From 5b297a38de1bcc829dcc5ae9ffe0f84a56c635b9 Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Sun, 23 Jun 2019 23:30:44 +0200 Subject: [PATCH 001/134] Updated TODO list --- TODO.md | 15 +++++---------- 1 file changed, 5 insertions(+), 10 deletions(-) diff --git a/TODO.md b/TODO.md index 6e5e16c..7ff1796 100644 --- a/TODO.md +++ b/TODO.md @@ -2,8 +2,6 @@ Numpy checklist: https://github.com/ageron/handson-ml/blob/master/tools_numpy.ip to come still: introduce sets as an iterable - - Data analysis/Data Science Cover topics mentioned here still: https://github.com/kgdunn/digital-skills-module5/blob/master/Notebooks/02.0%20NumPy%20arrays.ipynb @@ -13,10 +11,10 @@ Containers ========== There are four collection data types in the Python programming language: -List is a collection which is ordered and changeable. Allows duplicate members. -Tuple is a collection which is ordered and unchangeable. Allows duplicate members. -Set is a collection which is unordered and unindexed. No duplicate members. -Dictionary is a collection which is unordered, changeable and indexed. No duplicate members. +v List is a collection which is ordered and changeable. Allows duplicate members. +v Tuple is a collection which is ordered and unchangeable. Allows duplicate members. +TODO Set is a collection which is unordered and unindexed. No duplicate members. +TODO Dictionary is a collection which is unordered, changeable and indexed. No duplicate members. Strings ========= @@ -104,9 +102,7 @@ Loops ------- Make the Fibonacci series with append function -Files -------- -Write to file + Types ------ @@ -150,7 +146,6 @@ NumPy * Random walk * Average of the dice thrown tends to be normally -* eig and svd * 3D array: calculate summary values across each axis * Raspberry PI question * Linear system of equations a least squares equation for a doe From 9601eff40afe944a61effb6f6cb3d5c5535f2a62 Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Thu, 27 Jun 2019 05:51:20 +0200 Subject: [PATCH 002/134] Something is preventing rendering in JupyterHub --- Module-07-interactive.ipynb | 9 --------- 1 file changed, 9 deletions(-) diff --git a/Module-07-interactive.ipynb b/Module-07-interactive.ipynb index 1a1470b..4eee3bf 100644 --- a/Module-07-interactive.ipynb +++ b/Module-07-interactive.ipynb @@ -17,15 +17,6 @@ "\n" ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - " [Prior module](https://yint.org/pybasic06)\n", - "\n" - ] - }, { "cell_type": "markdown", "metadata": {}, From a4923ca630822ad237398330cc1e49ebfad5aa8a Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Thu, 27 Jun 2019 05:54:59 +0200 Subject: [PATCH 003/134] Updated the README file with WS7 information --- README.md | 7 +++++++ 1 file changed, 7 insertions(+) diff --git a/README.md b/README.md index 2aa02d6..be10737 100644 --- a/README.md +++ b/README.md @@ -59,3 +59,10 @@ All about functions in Python, to help make your code more modular, and reusable * Single inputs, or multiple inputs: arguments based on their position, or name. * None, or single outputs, and also multiple outputs in a tuple. * Challenge problems that recall work from prior modules, and apply your knowledge. + +[Notebook 7: https://yint.org/pybasic07](https://yint.org/pybasic07) + +Introducing Pandas and dictionaries +* Dictionary objects in Python: the very basics. +* Pandas two main classes: Series and DataFrame: what they are, and how to use them. +* Loading and saving data to/from CSV and Excel files. From 58b5a9a1ea6b9fb07bfbdc65f8e399de1a916ad6 Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Thu, 27 Jun 2019 06:55:43 +0200 Subject: [PATCH 004/134] Updated style sheet for H4 --- images/style.css | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/images/style.css b/images/style.css index d8c07f1..b32b4cb 100644 --- a/images/style.css +++ b/images/style.css @@ -87,8 +87,8 @@ div.text_cell_render{ text-align: left; width:500px; margin-top: 1em; - margin-bottom: 2em; - margin-left: 80pt; + margin-bottom: 5px; + margin-left: 0pt; font-style: regular; } From eaddb55185088416246fac9ec1bad80ce386c6db Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Thu, 27 Jun 2019 06:55:56 +0200 Subject: [PATCH 005/134] Added section on DataFrame manipulations --- Module-07-interactive.ipynb | 122 ++++++++++++++++++++++++++++++------ 1 file changed, 104 insertions(+), 18 deletions(-) diff --git a/Module-07-interactive.ipynb b/Module-07-interactive.ipynb index 4eee3bf..f3dea40 100644 --- a/Module-07-interactive.ipynb +++ b/Module-07-interactive.ipynb @@ -21,7 +21,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "> All content here is under a Creative Commons Attribution [CC-BY 4.0](https://creativecommons.org/licenses/by/4.0/) and all source code is released under a [BSD-2 clause license](https://en.wikipedia.org/wiki/BSD_licenses). Parts of these materials were inspired by https://github.com/engineersCode/EngComp/ (CC-BY 4.0), L.A. Barba, N.C. Clementi.\n", + "> All content here is under a Creative Commons Attribution [CC-BY 4.0](https://creativecommons.org/licenses/by/4.0/) and all source code is released under a [BSD-2 clause license](https://en.wikipedia.org/wiki/BSD_licenses). \n", ">\n", ">Please reuse, remix, revise, and [reshare this content](https://github.com/kgdunn/python-basic-notebooks) in any way, keeping this notice." ] @@ -34,7 +34,6 @@ "\n", "\n", "* Mention: https://www.kdnuggets.com/2017/01/pandas-cheat-sheet.html \n", - "* Dropping columns (see above link)\n", "\n", "* Indexing: https://www.kdnuggets.com/2019/04/pandas-dataframe-indexing.html\n", "\n", @@ -447,14 +446,14 @@ "You used a list-of-lists approach above to create your DataFrame. You can also use dictionaries. Each key in the dictionary can contain a list of equal length\n", "\n", "```python\n", - "data = {'Herring ': [27, 13, 52, 54, 5, 19], \n", + "data = {'Herring': [27, 13, 52, 54, 5, 19], \n", " 'Coffee': [90, 94, 96, 97, 30, 73],\n", - " 'Tea': [88, 48, 98, 93, 99, 85]}\n", + " 'Tea': [88, 48, 98, 93, 99, 88]}\n", "countries = ['Germany', 'Belgium', 'Netherlands', 'Sweden', 'Ireland', 'Switzerland']\n", "food_consumed = pd.DataFrame(data, index=countries)\n", "```\n", "\n", - "Try to interpret what the following return, based on the values you see when you run each line of code:\n", + "Try to interpret what the following lines return, based on the values you see when you run each command:\n", "```python\n", "food_consumed.T\n", "food_consumed.values\n", @@ -463,7 +462,6 @@ "food_consumed.head()\n", "food_consumed.tail()\n", "food_consumed.describe()\n", - "\n", "```\n", "\n", "The first one is particularly helpful, if you need to switch rows and columns around.\n", @@ -484,14 +482,102 @@ "source": [ "### DataFrame operations\n", "\n", - "* Find the shape of an array\n", - "* What are the unique entries in each column or row\n", - "* Adding columns\n", - "* Removing/deleting columns or rows: ``.drop()``\n", - "* Remove rows with missing values: ``df.dropna()`` and ``df.dropna(how='all')``\n", - "* Add a row\n", - "* Deleting a row\n", - "* Merging columns from another dataframe\n" + "We will briefly show code for how to perform these commonly used Pandas operations:\n", + "1. Find the shape of an array\n", + "2. What are the unique entries in each column or row?\n", + "3. Adding columns\n", + "4. Merging columns from another dataframe\n", + "5. Adding new row\n", + "6. Removing/deleting columns or rows\n", + "7. Remove rows with missing values: ``df.dropna()`` and ``df.dropna(how='all')``\n", + "\n", + "\n", + "#### 1. Shape of a dataframe\n", + "\n", + "```python\n", + "# There were 6 countries, and 3 food types. Verify:\n", + "food_consumed.shape\n", + "\n", + "# Transposed and then shape:\n", + "food_consumed.T.shape\n", + "\n", + "# Interesting: what shapes do summary vectors have?\n", + "food_consumed.mean().shape\n", + "```\n", + "\n", + "#### 2. Unique entries\n", + "```python\n", + "# Address the column names directly. \n", + "# Does not work if there is a space in the name!\n", + "food_consumed.Tea.unique()\n", + "\n", + "# So this is clearer, in my opinion\n", + "food_consumed['Tea'].unique()\n", + "\n", + "# Names (indexes) of the unique rows:\n", + "food_consumed.index.unique()\n", + "\n", + "# In newer versions of Pandas, you can get counts (n) \n", + "# of the unique entries:\n", + "food_consumed.nunique() # in each column \n", + "food_consumed.nunique(axis=1) # in each row\n", + "```\n", + "\n", + "#### 3. Add a new column\n", + "```python\n", + "# Works just like a dictionary!\n", + "# If the data are in the same row order\n", + "food_consumed['Yoghurt'] = [30, 20, 53, 2, 3, 48]\n", + "```\n", + "\n", + "#### 4. Merging dataframes \n", + "```python\n", + "# Note the row order is different this time:\n", + "other_foods = pd.DataFrame(index=['Belgium', 'Germany', 'Ireland', 'Netherlands', 'Sweden', 'Switzerland'],\n", + " data={'Garlic': [29, 22, 5, 15, 9, 64]})\n", + "\n", + "food_consumed = food_consumed.join(other_foods)\n", + "```\n", + "\n", + "#### 5. Adding a new row\n", + "```python\n", + "# Collect the new data in a Series. Note that 'Tea' is missing!\n", + "portugal = pd.Series({'Coffee': 72, 'Herring': 20, 'Yoghurt': 6, 'Garlic': 89})\n", + "# Give it a name\n", + "portugal.name = 'Portugal'\n", + "\n", + "food_consumed = food_consumed.append(portugal)\n", + "# See the missing value created?\n", + "```\n", + "\n", + "#### 6. Delete or drop a row/column\n", + "```python\n", + "# Drop a column, and returns its values to you\n", + "coffee_column = food_consumed.pop('Coffee')\n", + "print(coffee_column)\n", + "print(food_consumed)\n", + "\n", + "# Leaves the original data untouched; returns only \n", + "# a copy, with those columns removed\n", + "food_consumed.drop(['Garlic', 'Yoghurt'], axis=1)\n", + "\n", + "# Leaves the original data untouched; returns only \n", + "# a copy, with those rows removed. \n", + "# Rows which don't exist do not create an error!\n", + "non_EU_consumption = food_consumed.drop(['Switzerland', 'South Africa'], axis=0)\n", + "```\n", + "\n", + "#### 7. Remove rows with missing values\n", + "```python\n", + "# Returns a COPY of the array, with no missing values:\n", + "cleaned_data = food_consumed.dropna() \n", + "\n", + "# Makes the deletion inplace; more efficient for large data sets\n", + "food_consumed.dropna(inplace=True) \n", + "\n", + "# Remove only rows where all values are missing:\n", + "food_consumed.dropna(how='all')\n", + "```" ] }, { @@ -733,7 +819,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 3, "metadata": {}, "outputs": [ { @@ -828,8 +914,8 @@ " text-align: left;\n", " width:500px;\n", " margin-top: 1em;\n", - " margin-bottom: 2em;\n", - " margin-left: 80pt;\n", + " margin-bottom: 5px;\n", + " margin-left: 0pt;\n", " font-style: regular;\n", "}\n", "\n", @@ -888,7 +974,7 @@ "" ] }, - "execution_count": 1, + "execution_count": 3, "metadata": {}, "output_type": "execute_result" } From 5d4483db647e98567ec16f377ddb8320bfd51d9b Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Thu, 27 Jun 2019 07:27:22 +0200 Subject: [PATCH 006/134] Added most of the content. Just working on the challenges next --- Module-07-interactive.ipynb | 132 ++++++++++++++++++------------------ 1 file changed, 66 insertions(+), 66 deletions(-) diff --git a/Module-07-interactive.ipynb b/Module-07-interactive.ipynb index f3dea40..2c01948 100644 --- a/Module-07-interactive.ipynb +++ b/Module-07-interactive.ipynb @@ -7,7 +7,7 @@ }, "source": [ "

Table of Contents

\n", - "" + "" ] }, { @@ -26,20 +26,6 @@ ">Please reuse, remix, revise, and [reshare this content](https://github.com/kgdunn/python-basic-notebooks) in any way, keeping this notice." ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### TODO\n", - "\n", - "\n", - "* Mention: https://www.kdnuggets.com/2017/01/pandas-cheat-sheet.html \n", - "\n", - "* Indexing: https://www.kdnuggets.com/2019/04/pandas-dataframe-indexing.html\n", - "\n", - "\n" - ] - }, { "cell_type": "markdown", "metadata": {}, @@ -416,6 +402,12 @@ "\n", "### Try it:\n", "\n", + "* Calculations on certain columns. The beauty of Pandas is how easy it is to write equations, based on the columns\n", + "```python\n", + "temp_df['Toronto'] * 4 - temp_df['Montreal']\n", + "```\n", + "does exactly what you think it should.\n", + "\n", "* What does this do? \n", "\n", "```python\n", @@ -563,8 +555,7 @@ "\n", "# Leaves the original data untouched; returns only \n", "# a copy, with those rows removed. \n", - "# Rows which don't exist do not create an error!\n", - "non_EU_consumption = food_consumed.drop(['Switzerland', 'South Africa'], axis=0)\n", + "non_EU_consumption = food_consumed.drop(['Switzerland', ], axis=0)\n", "```\n", "\n", "#### 7. Remove rows with missing values\n", @@ -587,15 +578,6 @@ "outputs": [], "source": [] }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "a" - ] - }, { "cell_type": "markdown", "metadata": {}, @@ -648,6 +630,19 @@ "\n", "The Pandas function ``pd.read_csv`` has a lot of flexibility and [smart processing](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html) built-in to make reading CSV files easy with headers, missing values, and other settings. It is a swiss-army knife function: very versatile, but you need to know how to use it.\n", "\n", + "#### Read the CSV file from your computer/network drive:\n", + "Download this CSV file: http://openmv.net/file/batch-yield-and-purity.csv and adjust the code below, where necessary:\n", + "```python\n", + "import os\n", + "import pandas as pd\n", + "\n", + "directory = r'C:\\location\\of\\file'\n", + "filename = 'batch-yield-and-purity.csv'\n", + "full_filename = os.path.join(directory, filename)\n", + "yield_purity_pd = pd.read_csv(full_filename)\n", + "```\n", + "\n", + "#### Read the CSV file directly from a web server:\n", "```python\n", "import pandas as pd\n", "yield_purity_pd = pd.read_csv('http://openmv.net/file/batch-yield-and-purity.csv')\n", @@ -663,6 +658,14 @@ "\n", "# Convert the file fetched from the web to a Pandas dataframe\n", "yield_purity_pd = pd.read_csv(web_dataset)\n", + "```\n", + "\n", + "### Write a DataFrame (or Series) to CSV \n", + "\n", + "This is as simple as can be:\n", + "```python\n", + "filename = 'output_name_goes_here.csv'\n", + "yield_purity_pd.to_csv(filename)\n", "```" ] }, @@ -670,33 +673,21 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### ➜ Challenge yourself\n", + "## ➜ Challenge yourself: working with CSV files in Pandas\n", "\n", "Read in the Batch yield and Purity dataset above. The dataset is described here http://openmv.net/info/batch-yield-and-purity\n", - "1. Advisable, the moment you have created a dataset with Pandas, is to call ``df.head()`` on the file. In this case: ``yield_purity_pd.head()``. Do you see what you expect?\n", + "1. Advisable, the moment you have created a dataset with Pandas, is to call ``df.head()`` on the file. In this case: ``yield_purity_pd.head()``. Does the data frame match the website's description?\n", "\n", "2. What is the lowest ``yield`` recorded?\n", "3. And the highest?\n", "4. What is the average ``purity`` of the raw material?\n", - "5. In the description, there is the idea that batch yield is affected by purity. For a cause-and-effect relationship to exist, there should be a correlation. Do you see that? Use ``yield_purity_pd.corr()`` to calculate the correlation between the two columns.\n", - "6. We use relative standard deviation (RSD) as a way to judge how noisy a variable is: $$\\text{RSD} = \\dfrac{\\text{standard deviation}}{\\text{average}}$$ \n", + "5. Check the output of ``yield_purity_pd.describe()``: can you interpret each row of output?\n", + "6. In the description, there is the idea that batch yield is affected by purity. For a cause-and-effect relationship to exist, there should be a correlation. Do you see that? Use ``yield_purity_pd.corr()`` to calculate the correlation between the two columns.\n", + "7. We use relative standard deviation (RSD) as a way to judge how noisy a variable is: $$\\text{RSD} = \\dfrac{\\text{standard deviation}}{\\text{average}}$$ \n", "\n", " Calculate the numerator (``yield_purity_pd.std()``) and the denominator separately. Do the values look reasonable? Now divide them. Which column has the highest RSD?\n", - " \n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Write a dataframe to CSV " + "8. Create a new calculation `hypothesis` = $ 4\\times(\\text{purity} - 50)$ and add that as a column to the existing data frame.\n", + "9. Write the data frame, with the new calculated column to CSV file." ] }, { @@ -712,7 +703,23 @@ "source": [ "## Reading and writing Excel files with Pandas\n", "\n", - "Excel reading and processing: https://www.kdnuggets.com/2018/01/using-excel-pandas.html" + "There is not too much to say here, other than to show the basic commands:\n", + "\n", + "```python\n", + "colour_data = pd.read_excel(excel_filename, \n", + " sheet_name='Colours', \n", + " skiprows=5, \n", + " index_col=0)\n", + "colour_data.head()\n", + "```\n", + "You can call the function with various inputs, depending on your situation. Read the full documentation for reading Excel files: https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_excel.html\n", + "\n", + "Similarly, for writing Excel files, it is often enough to just use:\n", + "```python\n", + "df = pd.DataFrame(...)\n", + "df.to_excel(\"output.xlsx\", sheet_name='Summary')\n", + "```\n", + "and it is worth checking the documentation for further function options: https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_excel.html" ] }, { @@ -722,13 +729,6 @@ "outputs": [], "source": [] }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, { "cell_type": "markdown", "metadata": {}, @@ -773,17 +773,7 @@ "metadata": {}, "source": [ "* Moving average example\n", - "* Combine columns: fridge simulation example\n", - "* Plotting a simple series with Pandas\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "aa" + "* Combine columns: fridge simulation example\n" ] }, { @@ -802,6 +792,16 @@ " " ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Further tips\n", + "\n", + "1. Download a *cheatsheet* of Pandas tips: https://www.kdnuggets.com/2017/01/pandas-cheat-sheet.html \n", + "2. Learn more about Indexing Pandas arrays: https://www.kdnuggets.com/2019/04/pandas-dataframe-indexing.html (to be covered in the Advanced course)" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -819,7 +819,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 1, "metadata": {}, "outputs": [ { @@ -974,7 +974,7 @@ "" ] }, - "execution_count": 3, + "execution_count": 1, "metadata": {}, "output_type": "execute_result" } From 6c0a9e45f1d04c60ac8f1e788b2edf369f0adaeb Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Thu, 27 Jun 2019 07:28:53 +0200 Subject: [PATCH 007/134] Remove the forward and next buttons; don't seem to work in Jupyter Hub --- Module-06-interactive.ipynb | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/Module-06-interactive.ipynb b/Module-06-interactive.ipynb index f344c00..3ad82f9 100644 --- a/Module-06-interactive.ipynb +++ b/Module-06-interactive.ipynb @@ -21,10 +21,10 @@ "cell_type": "markdown", "metadata": {}, "source": [ - " [Prior module](https://yint.org/pybasic05)\n", + "" ] }, { @@ -901,7 +901,7 @@ "metadata": { "hide_input": false, "kernelspec": { - "display_name": "Python 3", + "display_name": "Python [default]", "language": "python", "name": "python3" }, @@ -915,7 +915,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.3" + "version": "3.5.5" }, "toc": { "base_numbering": 1, From efd3ec761ac6fbe3f73ca02e47d0c60210719fd9 Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Thu, 27 Jun 2019 08:15:57 +0200 Subject: [PATCH 008/134] Added and expanded on the challenge problems --- Module-07-interactive.ipynb | 112 +++++++++++++++++++++++++----------- TODO.md | 3 + 2 files changed, 81 insertions(+), 34 deletions(-) diff --git a/Module-07-interactive.ipynb b/Module-07-interactive.ipynb index 2c01948..e7e219c 100644 --- a/Module-07-interactive.ipynb +++ b/Module-07-interactive.ipynb @@ -7,7 +7,7 @@ }, "source": [ "

Table of Contents

\n", - "" + "" ] }, { @@ -733,65 +733,109 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Challenges\n", + "## ➜ Challenge yourself: Fridge simulation\n", "\n", - "### 1. KNMI data loading\n", + "Back in prior [worksheet 6](https://yint.org/pybasic06) you simulated the cooling process taking place in a fridge.\n", "\n", - "Back in [worksheet 4](https://yint.org/pybasic04) you used a data set from The Dutch meteorological service (KNMI): temperature readings from a location in The Netherlands, since 1901. [Download the file](http://projects.knmi.nl/klimatologie/onderzoeksgegevens/homogeen_260/tg_hom_mnd260.txt), or use the direct web address: http://projects.knmi.nl/klimatologie/onderzoeksgegevens/homogeen_260/tg_hom_mnd260.txt\n", "\n", - "The first column is the station number, the next is the date, and the third column is the temperature, measured in units of °C.\n", + "By the end of the exercise you had assembled 3 columns of equal length in 3 separate variables. Here is how your code might have looked:\n", "\n", - "Unfortunately, the KNMI service has used commas as the delimiter in line 27 for the column headings, and then spaces in the rest of the file as delimiter. This makes it hard to find the right settings to import the file. Nevertheless, try using [the documentation for ``pd.read_csv``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html).\n", - "\n", - "***Hint:***\n", "```python\n", - " = pd.read_csv('URL here, or the file name on your computer', delimiter=..., skiprows=..., header=0); q.head()\n", + "import numpy as np\n", + "def simulate_cooling(time_final=30, initial_temp=25, delta_t=2.5):\n", + " # Models Newton's Law of Cooling: \\dfrac{dT}{dt} = -k (T-F)\n", + "\n", + " # The fridge has a constant temperature, F=5 [°C]\n", + " # Heat transfer coefficient = k = 0.08 [1/minutes]\n", + " #\n", + " # Discretizing: T_{i+1} = T_i - k (\\delta t)(T_i - F)\n", + " #\n", + " # Temperature at time point $i+1$ (one step in the future, T_{i+1}) is related\n", + " # to the temperature now, at time $i$, T_{i}.\n", + " #\n", + " # The time steps are `delta_t` minutes apart.\n", + " # The total simulation time is `time_final` minutes\n", + " # The initial temperature of the object in the fridge is ``initial_temp` °C\n", + "\n", + " F_temperature = 5 # °C\n", + " heat_transfer_coeff = 0.08 # 1/minutes\n", + "\n", + " # Create the two outputs of interest\n", + " time = np.arange(start=0.0, stop=time_final, step=delta_t)\n", + " temp = np.zeros(time.shape)\n", + " temp[0] = initial_temp\n", + "\n", + " for idx, t_value in enumerate(time[1:]):\n", + " temp[idx + 1] = temp[idx] - heat_transfer_coeff * delta_t * (temp[idx] - F_temperature)\n", "\n", + " # After the loop:\n", + " time[idx + 1] = t_value + delta_t\n", + "\n", + " # Exact value\n", + " exact = F_temperature + (initial_temp - F_temperature) * np.exp(-heat_transfer_coeff * time)\n", + "\n", + " return (time, temp, exact)\n", + "\n", + "\n", + "time, temperature, true_value = simulate_cooling(time_final=30, initial_temp=25)\n", "```\n", - "filename = 'KNMI-Homogenized-temperature-monthly-average-1901-2019.txt'\n", - "full_filename = os.path.join(...)\n", - "weather = np.loadtxt(full_filename, skiprows=27)\n", - "What is the lowest temperature recorded over that time period? And the highest?\n", - "What is the standard deviation of the temperature values?\n", - "What is the average of the first 700 rows in the data set? And the last 700 rows?\n", - "Repeat for the standard deviation as well.\n", - "What is the average temperature since the year you were born? And prior?\n", "\n", + "The moment this starts to happen, you should realize that you can combine them in a single variable, a Pandas data frame. Put each variable as a new column, and then the rows 'belongs together'.\n", + "\n", + "```python\n", + "simulation = simulate_cooling(time_final=30, initial_temp=25)\n", + "```\n", "\n", - "2. Fridge simulation: return 4 columns\n" + "Modify the above code. Remove the last 2 lines inside the function, and replaces them with code that:\n", + "* Creates a data frame, with a column for ``time`` and ``temperature``.\n", + "* Append a 3rd column, ``exact``, which contains the exact solution, but calculated from the values in the first two columns.\n", + "* Append a 4th column, ``error``, which contains the difference between the true value and the simulated value.\n", + "* Make the first column, ``time``, to become your index! That actually removes that column. If your data frame were called ``results`` inside the function, you do this by writing: ``results.set_index('time')``. Check the ``results.shape`` before and after doing this. \n", + "* Return a single output, the data frame.\n", + "* Modify outside the function, so that only the single output is used, and not 3 outputs." ] }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, { "cell_type": "markdown", "metadata": {}, "source": [ - "* Moving average example\n", - "* Combine columns: fridge simulation example\n" + "## ➜ Challenge yourself: CSV file processing\n", + "\n", + "Load the CSV file from http://openmv.net/info/raw-material-height which is actual data from a process, where the height is a critical parameter to monitor, to ensure it does not go too low.\n", + "\n", + "1. What is the minimum value seen in the history of the process?\n", + "2. When did that minimum occur?\n", + "3. Try this: ``data['Level'].plot()``\n", + "4. You loaded the data from CSV. Now export the data set to Excel. Verify that the plot matches." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ + "## ➜ Challenge yourself: KNMI data loading\n", "\n", - "pd.read_csv('http://openmv.net/file/raw-material-height.csv')\n", + "Back in [worksheet 4](https://yint.org/pybasic04) you used a data set from The Dutch meteorological service (KNMI): temperature readings from a location in The Netherlands, since 1901. [Download the file](http://projects.knmi.nl/klimatologie/onderzoeksgegevens/homogeen_260/tg_hom_mnd260.txt), or use the direct web address: http://projects.knmi.nl/klimatologie/onderzoeksgegevens/homogeen_260/tg_hom_mnd260.txt\n", "\n", + "The first column is the station number, the next is the date, and the third column is the temperature, measured in units of °C.\n", + "\n", + "Unfortunately, the KNMI service has used commas as the delimiter in line 27 for the column headings, and then spaces in the rest of the file as delimiter. This makes it hard to find the right settings to import the file. Nevertheless, try using [the documentation for ``pd.read_csv``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html).\n", "\n", - "http://openmv.net/info/electricity-usage\n", - " * Average electricity usage\n", - " * Maximum\n", - " * Minimum\n", - " * Usage during off-peak, on-peak\n", - " " + "***Hint:***\n", + "```python\n", + "knmi = pd.read_csv('URL here, or the file name on your computer', delimiter=..., skiprows=..., header=0)\n", + "knmi.head()\n", + "```\n", + "Warning: it can be a frustrating exercise dealing with other people's badly formatted data. ***But that's reality.***" ] }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, { "cell_type": "markdown", "metadata": {}, diff --git a/TODO.md b/TODO.md index 609e359..aee734e 100644 --- a/TODO.md +++ b/TODO.md @@ -166,4 +166,7 @@ https://towardsdatascience.com/simple-and-multiple-linear-regression-in-python-c * Average of the dice thrown tends to be normally +Come back to the moving average example from an earlier module. + + From 345991498c2f96790cec1ca3ed7c6f0450951b1a Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Thu, 27 Jun 2019 10:36:27 +0200 Subject: [PATCH 009/134] Spelling and corrections for the first sections --- Module-07-interactive.ipynb | 18 ++++++++---------- 1 file changed, 8 insertions(+), 10 deletions(-) diff --git a/Module-07-interactive.ipynb b/Module-07-interactive.ipynb index e7e219c..466b503 100644 --- a/Module-07-interactive.ipynb +++ b/Module-07-interactive.ipynb @@ -34,19 +34,17 @@ "\n", "In [module 5](https://yint.org/pybasic05) and [module 6](https://yint.org/pybasic06) you used NumPy to create arrays, and perform mathematical calculations on them. Even though module 6 was about Python functions in general, the applications were all with NumPy.\n", "\n", - "Now we take a look at Pandas. This is the current best library for data manipulation. Along the way we will also learn about Jupyter notebooks, and Python's other important built-in data type, called ***dictionaries***.\n", + "Now we take a look at Pandas. This is currently the best library for data manipulation. Along the way we will also learn about Jupyter notebooks, and Python's other important built-in data type, called ***dictionaries***.\n", "\n", - "

Once again, don't forget to use your version control system. Commit your work regularly, where ever you see this icon.\n", + "

Once again, don't forget to use your version control system. Commit your work regularly, where ever you see this icon; actually even more frequently. We will show this icon fewer times, as it should now be almost automatic to make regular commits (***several per hour!***)\n", "\n", "
\n", "\n", "### Preparing for this module###\n", "\n", "You should have \n", - "1. Completed [worksheet 6](https://yint.org/pybasic06)\n", - "2. Finish the short [project on DataCamp](https://projects.datacamp.com/projects/33) about Jupyter notebooks.\n", - "\n", - "
" + "1. completed [worksheet 6](https://yint.org/pybasic06)\n", + "2. finished the short [project on DataCamp](https://projects.datacamp.com/projects/33) about Jupyter notebooks.\n" ] }, { @@ -93,13 +91,13 @@ "\n", "In the above example, the keys were all ***string*** objects. But that is not required. You can use integers, floating point values, strings, tuples, or a mixture of them. There are other options too, but these are comprehensive enough.\n", "\n", - "Dictionary values may be any ***objects***, even other dictionaries. Yes, so a dictionary within a dictionary is possible. We will use this below. That is why we waited to introduce dictionaries.\n", + "Dictionary values may be any ***objects***, even other dictionaries. Yes, so a dictionary within a dictionary is possible. We will use this below. That is why we partially why we waited to introduce dictionaries until now.\n", "\n", "Dictionary objects are excellent ***containers***. If you need to return several objects from a function, collect them in a dictionary, and return them in that single object. It is not required, but it can make your code neater, and more logical.\n", "\n", "### Try it\n", "\n", - "Create a dictionary with 5 `key`-`value` pairs, which summarizes a regression model. The `key` is the first item below, followed by a description of what you should create as the `value`:\n", + "Create a dictionary for yourself with 5 `key`-`value` pairs, which summarizes a regression model. The `key` is the first item below, followed by a description of what you should create as the `value`:\n", "1. `intercept`: containing a floating-point value which is the intercept of your linear model\n", "2. `slope`: a floating-point slope value\n", "3. `R2`: the $R^2$ value of the regression model\n", @@ -1041,7 +1039,7 @@ "metadata": { "hide_input": false, "kernelspec": { - "display_name": "Python [default]", + "display_name": "Python 3", "language": "python", "name": "python3" }, @@ -1055,7 +1053,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.5.5" + "version": "3.7.3" }, "toc": { "base_numbering": 1, From eb3ceceab78b0f255d5ecba754f5f1e768d64f8e Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Thu, 27 Jun 2019 10:50:19 +0200 Subject: [PATCH 010/134] Added pointers; updated section 3 on Series --- Module-07-interactive.ipynb | 41 ++++++++++++++++++++++--------------- TODO.md | 6 +++++- 2 files changed, 30 insertions(+), 17 deletions(-) diff --git a/Module-07-interactive.ipynb b/Module-07-interactive.ipynb index 466b503..38a9c04 100644 --- a/Module-07-interactive.ipynb +++ b/Module-07-interactive.ipynb @@ -139,9 +139,9 @@ "\n", "* In NumPy you have arrays of data. Pandas adds column headings and row labels (indexes) and calls the result a ``DataFrame``. Think of a spreadsheet.\n", "* But much better than a spreadsheet, Pandas can merge two tables together, to align data from different sources.\n", - "* If the axis is time-based, it can be used taking advantage of that features: e.g. you can then average over a week, or a month. In other languages you have to manually program that, including taking into account that months sometimes have 28, 29, 30 or 31 days.\n", - "* Data which are not time-based are equally well handled\n", - "* If you do something on a dataframe, like calculate an average over all rows, then the result has the labels, the column headings in this case, kept in place.\n", + "* If the axis is time-based, it can be taken advantage of: e.g. you can then average over a week, or a month. In other languages you have to manually program that averaging, including taking into account that months sometimes have 28, 29, 30 or 31 days.\n", + "* Data which are not time-based are equally well handled.\n", + "* If you do something on a data frame, like calculate an average over all rows, then the result has the labels, the column headings in this case, kept in place.\n", "* Pandas takes care of missing data handling.\n", "* It has a database-type thinking, so in later modules, when we handle databases, it will not be an unfamiliar topic." ] @@ -154,7 +154,7 @@ "\n", "```python\n", "import pandas as pd\n", - "pd.__version__\n", + "pd.__version__ # ensure you have a version >= 0.20\n", "```\n", "\n", "Before we start with DataFrames, there is a simpler object in Pandas, called a ``Series``; roughly the equivalent of a vector in NumPy.\n", @@ -165,7 +165,7 @@ "s = pd.Series([ ... ]) \n", "print(s)\n", "```\n", - "Notice the index (the column to the left of your numbers)? \n", + "Notice the index (the column to the left of your numbers)? Let's look at another example:\n", "```python\n", ">>> s = pd.Series([ 5, 9, 1, -4, float('nan'), 5 ])\n", ">>> print(s) \n", @@ -188,7 +188,13 @@ "s.values\n", "type(s.values)\n", "```\n", - "Ah ha! See what you get there in the output from ``s.values``? Pandas is built on top of the NumPy library. The underlying data are still stored as NumPy arrays, and you can access them with the `.values` attribute. This is partly why understanding NumPy first is helpful before using Pandas." + "Ah ha! See what you get there in the output from ``s.values``? Pandas is built on top of the NumPy library. The underlying data are still stored as NumPy arrays, and you can access them with the `.values` attribute. This is partly why understanding NumPy first is helpful before using Pandas.\n", + "\n", + "Lastly, give your series a nice name:\n", + "```python\n", + "s.name = 'Random values'\n", + "print(s)\n", + "```" ] }, { @@ -211,26 +217,28 @@ "```python\n", "import pandas as pd\n", "s = pd.Series(data = [5, 9, 1, -4, float('nan'), 5 ], \n", - " index = ['a', 'b', 'c', 'd', 'e', 'f'])\n", + " index = ['a', 'b', 'c', 'd', 'e', 'f'],\n", + " name = 'Calculations')\n", "s * 5 + 2\n", "\n", "import numpy as np\n", "np.sqrt(s)\n", "```\n", - "The last line shows that Pandas and NumPy are compatible with each other. You can call NumPy operations on a Pandas object, and the result is returned as a Pandas object to you, with the row labels (indexes).\n", + "The last line shows that Pandas and NumPy are compatible with each other. You can call NumPy operations on a Pandas object, and the result is returned as a Pandas object to you, with the row labels (indexes) intact.\n", "\n", - "Also notice, that taking the square root of a negative number if not defined for real values, so the square root of $-4$ in row `d` returns a `NaN`.\n", + "Also notice, that taking the square root of a negative number is not defined for real values, so the square root of $-4$ in row `d` returns a `NaN`.\n", "\n", "Logical operations are possible too:\n", "```python\n", "s > 4\n", "s.isnull()\n", + "np.sqrt(s).isnull()\n", "s.notnull()\n", "```\n", "\n", "### Accessing entries\n", "\n", - "Like in NumPy, you can access the data using the square bracket notation. In Pandas:\n", + "Like in NumPy, you can access the data entries using the square bracket notation. In Pandas:\n", "```python\n", "s[2]\n", "s['e']\n", @@ -241,16 +249,16 @@ "s[[2, 4, 0]]\n", "s[['f', 'd', 'b']]\n", "\n", - "# Selection based on logic: I want only values greater than 4:\n", + "# Selection based on logic: I want only values greater than 4\n", "s[s > 4]\n", "```\n", "\n", - "You can also access a range of entries:\n", + "You can also access a ``range`` of entries:\n", "```python\n", "s[0:2]\n", "s['a':'c']\n", "```\n", - "Take a careful look at that output. You might have expected them to be the same length, but they are not! When accessing with the index names, you get the range inclusive of the last entry. When accessing by index number, it behaves consistent with Python and NumPy.\n", + "Take a careful look at that output. You might have expected them to be the same length, but they are not! When accessing with the index **names**, you get the range inclusive of the last entry. When accessing by index **number**, it behaves consistent with Python and NumPy.\n", "\n", "That makes sense. Names of the rows, the index, do not necessarily have to be sequential, like ``['a', 'b', ... 'f']`` as in this example. Often the index is unordered. E.g. if you have a series related to different Canadian cities: \n", "\n", @@ -261,7 +269,7 @@ "\n", "### Creating a Series from a dictionary\n", "\n", - "Now we can combine two new concepts you have just learned:\n", + "Now we can combine two new concepts you have just learned: Dictionaries and Pandas.\n", "\n", "```python\n", "raw_data = {'Germany': 27, 'Belgium': 13, 'Netherlands': 52, 'Sweden': 54, 'Ireland': 5}\n", @@ -269,11 +277,12 @@ "print(tons_herring_eaten)\n", "```\n", "\n", - "The row names (index) is formed from the dictionary keys, associated with each value. Because dictionaries are not ordered, the rows in the series will not likely be in the order written above.\n", + "The row names (index) are taken from the dictionary keys, associated with each value. Because dictionaries are not ordered, the rows in the series will **not** necessarily be in the order written above.\n", "\n", "1. Write the Pandas command to determine which country eats the most herring. It is **not** with the ``tons_herring_eaten.max()`` command!\n", "2. And the least herring?\n", - "3. What does this do? ``tons_herring_eaten.sort()``. Print the variable afterwards.\n", + "3. What does this do? ``tons_herring_eaten.sort_values()``. Print the variable afterwards. \n", + " * If this command fails, you might have an older version of Pandas. Try ``tons_herring_eaten.sort()`` instead.\n", "4. And what does this do then? ``tons_herring_eaten.sort_index()``" ] }, diff --git a/TODO.md b/TODO.md index aee734e..bc09b78 100644 --- a/TODO.md +++ b/TODO.md @@ -1,3 +1,8 @@ +Next WS8: + +* moving average: group-by month /week. Return back to an example from an earlier module. + + Numpy checklist: https://github.com/ageron/handson-ml/blob/master/tools_numpy.ipynb to come still: introduce sets as an iterable @@ -166,7 +171,6 @@ https://towardsdatascience.com/simple-and-multiple-linear-regression-in-python-c * Average of the dice thrown tends to be normally -Come back to the moving average example from an earlier module. From 6bc0f5ccbba24b8029f157cfae42df0696d4ea8c Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Thu, 27 Jun 2019 11:02:54 +0200 Subject: [PATCH 011/134] Improvements to the DataFrame section --- Module-07-interactive.ipynb | 65 ++++++++++++++++++++----------------- images/style.css | 4 +++ 2 files changed, 40 insertions(+), 29 deletions(-) diff --git a/Module-07-interactive.ipynb b/Module-07-interactive.ipynb index 38a9c04..fac9a6a 100644 --- a/Module-07-interactive.ipynb +++ b/Module-07-interactive.ipynb @@ -326,7 +326,7 @@ "temp_df = pd.DataFrame(data=rawdata, columns = ['Toronto', 'Vancouver', 'Ottawa', 'Montreal'])\n", "```\n", "\n", - "We also saw you can calculate things on each ***axis*** of the NumPy array. You can do this also in Pandas:\n", + "We saw then that you could calculate things on each ***axis*** of the NumPy array. You can also do this in Pandas:\n", "\n", "```python\n", "# NumPy and Pandas do different things here!\n", @@ -409,11 +409,11 @@ "\n", "### Try it:\n", "\n", - "* Calculations on certain columns. The beauty of Pandas is how easy it is to write equations, based on the columns\n", + "* Calculations on certain columns. The beauty of Pandas is how easy it is to write equations, based on the columns:\n", "```python\n", "temp_df['Toronto'] * 4 - temp_df['Montreal']\n", "```\n", - "does exactly what you think it should.\n", + "The above does exactly what you think it should.\n", "\n", "* What does this do? \n", "\n", @@ -424,9 +424,9 @@ ">>> temp_df.diff().abs().max().argmax()\n", "```\n", "\n", - "* What is the interpretation of it?\n", + "* What is the interpretation of that long command?\n", "\n", - "You can stack up your sequential operations quite compactly in Pandas. It works because the output of one function is the input for the next one on the right. Refer back to [the section on functions](https://yint.org/pybasic06), if necessary." + "You can stack up your sequential operations quite compactly in Pandas. It works because the output from one function is the input for the next one to the right. Refer back to [the section on functions](https://yint.org/pybasic06), if necessary." ] }, { @@ -442,7 +442,7 @@ "source": [ "### Create a DataFrame from a dictionary\n", "\n", - "You used a list-of-lists approach above to create your DataFrame. You can also use dictionaries. Each key in the dictionary can contain a list of equal length\n", + "You used a list-of-lists approach above to create your DataFrame. You can also use dictionaries. Each key in the dictionary can contain a list of equal length:\n", "\n", "```python\n", "data = {'Herring': [27, 13, 52, 54, 5, 19], \n", @@ -465,7 +465,7 @@ "\n", "The first one is particularly helpful, if you need to switch rows and columns around.\n", "\n", - "***Hint***: whenever you create a dataframe (by hand, or by loading a file, which we will see next), **always** use ``.head()`` and ``.describe()`` to check you have the data correct. It will save you a lot of time from making errors, only to discover them later." + "***Hint***: whenever you create a data frame (by hand, or by loading a file, which we will see next), **always** use ``.head()`` and ``.describe()`` to check you have the data correctly loaded. It will save you a lot of time from making errors, only to discover them later." ] }, { @@ -481,17 +481,18 @@ "source": [ "### DataFrame operations\n", "\n", - "We will briefly show code for how to perform these commonly used Pandas operations:\n", - "1. Find the shape of an array\n", - "2. What are the unique entries in each column or row?\n", - "3. Adding columns\n", - "4. Merging columns from another dataframe\n", - "5. Adding new row\n", - "6. Removing/deleting columns or rows\n", - "7. Remove rows with missing values: ``df.dropna()`` and ``df.dropna(how='all')``\n", + "We will show code for these commonly-used Pandas operations: shape of an array, unique entries, adding and merging columns, adding rows, deleting rows, and removing missing values.\n", "\n", + ">```python\n", + ">import pandas as pd\n", + ">data = {'Herring': [27, 13, 52, 54, 5, 19], \n", + "> 'Coffee': [90, 94, 96, 97, 30, 73],\n", + "> 'Tea': [88, 48, 98, 93, 99, 88]}\n", + ">countries = ['Germany', 'Belgium', 'Netherlands', 'Sweden', 'Ireland', 'Switzerland']\n", + ">food_consumed = pd.DataFrame(data, index=countries)\n", + ">```\n", "\n", - "#### 1. Shape of a dataframe\n", + "#### 1. Shape of a data frame\n", "\n", "```python\n", "# There were 6 countries, and 3 food types. Verify:\n", @@ -506,18 +507,20 @@ "\n", "#### 2. Unique entries\n", "```python\n", - "# Address the column names directly. \n", - "# Does not work if there is a space in the name!\n", + "# Access the column names directly. \n", + "# Does not work if there is a space in the name though :(\n", "food_consumed.Tea.unique()\n", "\n", - "# So this is clearer, in my opinion\n", + "# So this is clearer, in my opinion. It is also more programmatic.\n", + "# In other words, you can replaced 'Tea' with a string variable, and\n", + "# the code will still work.\n", "food_consumed['Tea'].unique()\n", "\n", "# Names (indexes) of the unique rows:\n", "food_consumed.index.unique()\n", "\n", - "# In newer versions of Pandas, you can get counts (n) \n", - "# of the unique entries:\n", + "# In newer versions of Pandas, you can get counts (n) of\n", + "# the unique entries:\n", "food_consumed.nunique() # in each column \n", "food_consumed.nunique(axis=1) # in each row\n", "```\n", @@ -532,18 +535,18 @@ "#### 4. Merging dataframes \n", "```python\n", "# Note the row order is different this time:\n", - "other_foods = pd.DataFrame(index=['Belgium', 'Germany', 'Ireland', 'Netherlands', 'Sweden', 'Switzerland'],\n", + "more_foods = pd.DataFrame(index=['Belgium', 'Germany', 'Ireland', 'Netherlands', 'Sweden', 'Switzerland'],\n", " data={'Garlic': [29, 22, 5, 15, 9, 64]})\n", "\n", - "food_consumed = food_consumed.join(other_foods)\n", + "# Merge 'more_foods' into the 'food_consumed' data frame\n", + "food_consumed = food_consumed.join(more_foods)\n", "```\n", "\n", "#### 5. Adding a new row\n", "```python\n", - "# Collect the new data in a Series. Note that 'Tea' is missing!\n", - "portugal = pd.Series({'Coffee': 72, 'Herring': 20, 'Yoghurt': 6, 'Garlic': 89})\n", - "# Give it a name\n", - "portugal.name = 'Portugal'\n", + "# Collect the new data in a Series. Note that 'Tea' is (intentionally) missing!\n", + "portugal = pd.Series({'Coffee': 72, 'Herring': 20, 'Yoghurt': 6, 'Garlic': 89},\n", + " name = 'Portugal')\n", "\n", "food_consumed = food_consumed.append(portugal)\n", "# See the missing value created?\n", @@ -870,7 +873,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 2, "metadata": {}, "outputs": [ { @@ -925,6 +928,10 @@ "/* margin-right:auto;*/\n", "}\n", "\n", + ".table tr {\n", + " text-align:left;\n", + "}\n", + "\n", "/* Formatting for header cells */\n", ".text_cell_render h1 {\n", " font-family: 'Merriweather', serif;\n", @@ -1025,7 +1032,7 @@ "" ] }, - "execution_count": 1, + "execution_count": 2, "metadata": {}, "output_type": "execute_result" } diff --git a/images/style.css b/images/style.css index b32b4cb..3adff56 100644 --- a/images/style.css +++ b/images/style.css @@ -47,6 +47,10 @@ div.text_cell_render{ /* margin-right:auto;*/ } +.table tr { + text-align:left; +} + /* Formatting for header cells */ .text_cell_render h1 { font-family: 'Merriweather', serif; From 66ea2d2230b4ee0676f5e166f4fff8c17575975f Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Thu, 27 Jun 2019 11:16:20 +0200 Subject: [PATCH 012/134] Updated the challenge CSV problem --- Module-07-interactive.ipynb | 134 ++++-------------------------------- 1 file changed, 13 insertions(+), 121 deletions(-) diff --git a/Module-07-interactive.ipynb b/Module-07-interactive.ipynb index fac9a6a..68d54f4 100644 --- a/Module-07-interactive.ipynb +++ b/Module-07-interactive.ipynb @@ -475,112 +475,6 @@ "outputs": [], "source": [] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### DataFrame operations\n", - "\n", - "We will show code for these commonly-used Pandas operations: shape of an array, unique entries, adding and merging columns, adding rows, deleting rows, and removing missing values.\n", - "\n", - ">```python\n", - ">import pandas as pd\n", - ">data = {'Herring': [27, 13, 52, 54, 5, 19], \n", - "> 'Coffee': [90, 94, 96, 97, 30, 73],\n", - "> 'Tea': [88, 48, 98, 93, 99, 88]}\n", - ">countries = ['Germany', 'Belgium', 'Netherlands', 'Sweden', 'Ireland', 'Switzerland']\n", - ">food_consumed = pd.DataFrame(data, index=countries)\n", - ">```\n", - "\n", - "#### 1. Shape of a data frame\n", - "\n", - "```python\n", - "# There were 6 countries, and 3 food types. Verify:\n", - "food_consumed.shape\n", - "\n", - "# Transposed and then shape:\n", - "food_consumed.T.shape\n", - "\n", - "# Interesting: what shapes do summary vectors have?\n", - "food_consumed.mean().shape\n", - "```\n", - "\n", - "#### 2. Unique entries\n", - "```python\n", - "# Access the column names directly. \n", - "# Does not work if there is a space in the name though :(\n", - "food_consumed.Tea.unique()\n", - "\n", - "# So this is clearer, in my opinion. It is also more programmatic.\n", - "# In other words, you can replaced 'Tea' with a string variable, and\n", - "# the code will still work.\n", - "food_consumed['Tea'].unique()\n", - "\n", - "# Names (indexes) of the unique rows:\n", - "food_consumed.index.unique()\n", - "\n", - "# In newer versions of Pandas, you can get counts (n) of\n", - "# the unique entries:\n", - "food_consumed.nunique() # in each column \n", - "food_consumed.nunique(axis=1) # in each row\n", - "```\n", - "\n", - "#### 3. Add a new column\n", - "```python\n", - "# Works just like a dictionary!\n", - "# If the data are in the same row order\n", - "food_consumed['Yoghurt'] = [30, 20, 53, 2, 3, 48]\n", - "```\n", - "\n", - "#### 4. Merging dataframes \n", - "```python\n", - "# Note the row order is different this time:\n", - "more_foods = pd.DataFrame(index=['Belgium', 'Germany', 'Ireland', 'Netherlands', 'Sweden', 'Switzerland'],\n", - " data={'Garlic': [29, 22, 5, 15, 9, 64]})\n", - "\n", - "# Merge 'more_foods' into the 'food_consumed' data frame\n", - "food_consumed = food_consumed.join(more_foods)\n", - "```\n", - "\n", - "#### 5. Adding a new row\n", - "```python\n", - "# Collect the new data in a Series. Note that 'Tea' is (intentionally) missing!\n", - "portugal = pd.Series({'Coffee': 72, 'Herring': 20, 'Yoghurt': 6, 'Garlic': 89},\n", - " name = 'Portugal')\n", - "\n", - "food_consumed = food_consumed.append(portugal)\n", - "# See the missing value created?\n", - "```\n", - "\n", - "#### 6. Delete or drop a row/column\n", - "```python\n", - "# Drop a column, and returns its values to you\n", - "coffee_column = food_consumed.pop('Coffee')\n", - "print(coffee_column)\n", - "print(food_consumed)\n", - "\n", - "# Leaves the original data untouched; returns only \n", - "# a copy, with those columns removed\n", - "food_consumed.drop(['Garlic', 'Yoghurt'], axis=1)\n", - "\n", - "# Leaves the original data untouched; returns only \n", - "# a copy, with those rows removed. \n", - "non_EU_consumption = food_consumed.drop(['Switzerland', ], axis=0)\n", - "```\n", - "\n", - "#### 7. Remove rows with missing values\n", - "```python\n", - "# Returns a COPY of the array, with no missing values:\n", - "cleaned_data = food_consumed.dropna() \n", - "\n", - "# Makes the deletion inplace; more efficient for large data sets\n", - "food_consumed.dropna(inplace=True) \n", - "\n", - "# Remove only rows where all values are missing:\n", - "food_consumed.dropna(how='all')\n", - "```" - ] - }, { "cell_type": "code", "execution_count": null, @@ -614,22 +508,20 @@ "\n", " \n", "\n", - "\n", - "Problems with CSV files:\n", + "***Problems*** with CSV files:\n", "* The comma indicator often used in European countries for decimals, as in \"72,6\" for the number 72.6 will be problematic. Since importing reads from left to right \"72,6\" will create an integer of 72 in one column, and a value of 6 in the next column. CSV files must therefore be created using a period (or full-stop) as the decimal separator for floating point numbers (i.e. non-integer numbers).\n", "* The CSV format is not economical in terms of storage space for large datasets.\n", - "* It should be clear from the above description that it is not certain how many rows or columns will be encountered before loading a CSV file. So computer memory cannot be allocated up-front. This can slow down large file processing.\n", + "* It should be clear from the above description that it is not certain how many rows or columns will be encountered before loading a CSV file. So computer memory cannot be allocated up-front. This can slow down processing of large files.\n", "* Editing data in a CSV file is not simple: you cannot easily delete an entire column, for example. \n", "\n", - "\n", "***Advantages***\n", " \n", "\n", - "* The CSV format is future-proof: since everything inside such a file is just plain-old text, it can always be opened, no matter which software you use in the future.\n", + "* The CSV format is future-proof: since everything inside such a file is just plain-old text, it can always be opened, no matter which software you use in the future. You can still open text files from 1970 on your computer from today.\n", "* You can quickly change the CSV file to update/add/remove parts of it using your text editor (e.g. a single row). No special software is required.\n", "* We can handle missing data, or create missing values: put a `NaN` between two commas. For example: `71,NaN,73` indicates a value is missing between the `71` and the `73`.\n", - "* The CSV file is a good data-interchange format. By that we mean: almost all data manipulation software can export to CSV, and once you have that as an intermediate file, you can re-import it into other software, including Python. Use it, for example, to export a database to CSV. Or to share data between R, MATLAB, Python or other software tools.\n", - "* Because of its simplicity, it widely supported in most data manipulation software. But its simplicity is also its downfall for more complex data (e.g. data greater than 2-dimensions, such as digital images, or data from batch processes)." + "* The CSV file is a good data-interchange format. By that we mean: almost all data manipulation software can export to CSV, and once you have that as an intermediate file, you can re-import it into other software, including Python. Use it, for example, to export a database to CSV. Or to **share data** between R, MATLAB, Python or other software tools.\n", + "* Because of its simplicity, it is widely supported in most data manipulation software. But its simplicity is also its downfall for more complex data (e.g. data greater than 2-dimensions, such as digital images, or data from batch processes)." ] }, { @@ -674,8 +566,7 @@ "\n", "This is as simple as can be:\n", "```python\n", - "filename = 'output_name_goes_here.csv'\n", - "yield_purity_pd.to_csv(filename)\n", + "yield_purity_pd.to_csv('output_filename_here.csv')\n", "```" ] }, @@ -688,16 +579,17 @@ "Read in the Batch yield and Purity dataset above. The dataset is described here http://openmv.net/info/batch-yield-and-purity\n", "1. Advisable, the moment you have created a dataset with Pandas, is to call ``df.head()`` on the file. In this case: ``yield_purity_pd.head()``. Does the data frame match the website's description?\n", "\n", - "2. What is the lowest ``yield`` recorded?\n", + "2. What is the lowest ``yield`` recorded? Make sure your command returns only a floating point value.\n", "3. And the highest?\n", "4. What is the average ``purity`` of the raw material?\n", "5. Check the output of ``yield_purity_pd.describe()``: can you interpret each row of output?\n", - "6. In the description, there is the idea that batch yield is affected by purity. For a cause-and-effect relationship to exist, there should be a correlation. Do you see that? Use ``yield_purity_pd.corr()`` to calculate the correlation between the two columns.\n", - "7. We use relative standard deviation (RSD) as a way to judge how noisy a variable is: $$\\text{RSD} = \\dfrac{\\text{standard deviation}}{\\text{average}}$$ \n", + "6. In the description [given on the website](http://openmv.net/info/batch-yield-and-purity), there is the idea that batch yield is affected by purity. For a cause-and-effect relationship to exist, there should be a correlation. Do you see that? Use ``yield_purity_pd.corr()`` to calculate the correlation between the two columns.\n", + "7. We use relative standard deviation (RSD) as a way to judge how noisy a variable is. For a single variable, this is defined as: $$\\text{RSD} = \\dfrac{\\text{standard deviation}}{\\text{average}}$$ \n", "\n", - " Calculate the numerator (``yield_purity_pd.std()``) and the denominator separately. Do the values look reasonable? Now divide them. Which column has the highest RSD?\n", - "8. Create a new calculation `hypothesis` = $ 4\\times(\\text{purity} - 50)$ and add that as a column to the existing data frame.\n", - "9. Write the data frame, with the new calculated column to CSV file." + " Calculate the numerator (``yield_purity_pd.std()``) and the denominator separately. Do the values look reasonable? Now divide them. Does ``yield`` or ``purity`` have the highest RSD?\n", + "8. Create a new calculation `hypothesis` = $ 4\\times(\\text{purity} - 50)$ and add that as a new column to the existing data frame.\n", + "9. Write the data frame, now with 3 columns, to a CSV file.\n", + "10. Open the CSV file in a text editor to ensure the data are properly stored, with the expected accuracy." ] }, { From b91f5fa46c865813defee24f079da27eb12e8f99 Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Thu, 27 Jun 2019 11:24:31 +0200 Subject: [PATCH 013/134] More final tweaks and checks --- Module-07-interactive.ipynb | 208 +++++------------------------------- 1 file changed, 26 insertions(+), 182 deletions(-) diff --git a/Module-07-interactive.ipynb b/Module-07-interactive.ipynb index 68d54f4..e31fa6a 100644 --- a/Module-07-interactive.ipynb +++ b/Module-07-interactive.ipynb @@ -645,19 +645,21 @@ "```python\n", "import numpy as np\n", "def simulate_cooling(time_final=30, initial_temp=25, delta_t=2.5):\n", - " # Models Newton's Law of Cooling: \\dfrac{dT}{dt} = -k (T-F)\n", - "\n", - " # The fridge has a constant temperature, F=5 [°C]\n", - " # Heat transfer coefficient = k = 0.08 [1/minutes]\n", - " #\n", - " # Discretizing: T_{i+1} = T_i - k (\\delta t)(T_i - F)\n", - " #\n", - " # Temperature at time point $i+1$ (one step in the future, T_{i+1}) is related\n", - " # to the temperature now, at time $i$, T_{i}.\n", - " #\n", - " # The time steps are `delta_t` minutes apart.\n", - " # The total simulation time is `time_final` minutes\n", - " # The initial temperature of the object in the fridge is ``initial_temp` °C\n", + " \"\"\"Models Newton's Law of Cooling: \\dfrac{dT}{dt} = -k (T-F)\n", + "\n", + " The fridge has a constant temperature, F=5 [°C]\n", + " Heat transfer coefficient = k = 0.08 [1/minutes]\n", + " \n", + " Discretizing: T_{i+1} = T_i - k (\\delta t)(T_i - F)\n", + " \n", + " Temperature at time point $i+1$ (one step in the future, T_{i+1}) is related\n", + " to the temperature now, at time $i$, T_{i}.\n", + " \n", + " The total simulation time is `time_final` minutes, starting at\n", + " t=0. The initial temperature of the object in the fridge is \n", + " ``initial_temp` °C, and the simulation time steps are `delta_t`\n", + " minutes apart.\n", + " \"\"\"\n", "\n", " F_temperature = 5 # °C\n", " heat_transfer_coeff = 0.08 # 1/minutes\n", @@ -682,14 +684,14 @@ "time, temperature, true_value = simulate_cooling(time_final=30, initial_temp=25)\n", "```\n", "\n", - "The moment this starts to happen, you should realize that you can combine them in a single variable, a Pandas data frame. Put each variable as a new column, and then the rows 'belongs together'.\n", + "The moment it happens that you collect several variables as output which logically belong together, then you should combine them in a single variable, a Pandas data frame. Put each variable as a new column so your function output is simplified:\n", "\n", "```python\n", "simulation = simulate_cooling(time_final=30, initial_temp=25)\n", "```\n", "\n", - "Modify the above code. Remove the last 2 lines inside the function, and replaces them with code that:\n", - "* Creates a data frame, with a column for ``time`` and ``temperature``.\n", + "Modify the above code. Remove the last 2 lines inside the function, and replace them with code that:\n", + "* Creates a data frame, with 2 columns: one for ``time`` and one for ``temperature``.\n", "* Append a 3rd column, ``exact``, which contains the exact solution, but calculated from the values in the first two columns.\n", "* Append a 4th column, ``error``, which contains the difference between the true value and the simulated value.\n", "* Make the first column, ``time``, to become your index! That actually removes that column. If your data frame were called ``results`` inside the function, you do this by writing: ``results.set_index('time')``. Check the ``results.shape`` before and after doing this. \n", @@ -703,12 +705,15 @@ "source": [ "## ➜ Challenge yourself: CSV file processing\n", "\n", - "Load the CSV file from http://openmv.net/info/raw-material-height which is actual data from a process, where the height is a critical parameter to monitor, to ensure it does not go too low.\n", + "Load the CSV file from https://openmv.net/info/raw-material-height which is actual data from a process, where the height is a critical parameter to monitor, to ensure it does not go too low.\n", "\n", "1. What is the minimum value seen in the history of the process?\n", "2. When did that minimum occur?\n", "3. Try this: ``data['Level'].plot()``\n", - "4. You loaded the data from CSV. Now export the data set to Excel. Verify that the plot matches." + "4. You loaded the data from CSV. Now export the data set to Excel.\n", + "5. Open the Excel file, and make a plot of the data. Verify that the Python plot matches the Excel plot.\n", + "\n", + "We will return to plotting in a later worksheet." ] }, { @@ -745,7 +750,7 @@ "## Further tips\n", "\n", "1. Download a *cheatsheet* of Pandas tips: https://www.kdnuggets.com/2017/01/pandas-cheat-sheet.html \n", - "2. Learn more about Indexing Pandas arrays: https://www.kdnuggets.com/2019/04/pandas-dataframe-indexing.html (to be covered in the Advanced course)" + "2. Learn more about Indexing Pandas arrays: https://www.kdnuggets.com/2019/04/pandas-dataframe-indexing.html (to be covered in the Advanced course)." ] }, { @@ -765,170 +770,9 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" - ], - "text/plain": [ - "" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# IGNORE this. Execute this cell to load the notebook's style sheet.\n", "from IPython.core.display import HTML\n", From e7832e926426111e6053c76a48a6ce60777c2772 Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Thu, 27 Jun 2019 11:25:48 +0200 Subject: [PATCH 014/134] Saved and updated formatting --- Module-07-interactive.ipynb | 172 ++++++++++++++++++++++++++++++++++-- 1 file changed, 163 insertions(+), 9 deletions(-) diff --git a/Module-07-interactive.ipynb b/Module-07-interactive.ipynb index e31fa6a..053e80d 100644 --- a/Module-07-interactive.ipynb +++ b/Module-07-interactive.ipynb @@ -475,13 +475,6 @@ "outputs": [], "source": [] }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, { "cell_type": "markdown", "metadata": {}, @@ -770,9 +763,170 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "# IGNORE this. Execute this cell to load the notebook's style sheet.\n", "from IPython.core.display import HTML\n", From 09fe73e39492db909719be515dbfc88a0742db3c Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Thu, 27 Jun 2019 12:32:47 +0200 Subject: [PATCH 015/134] Use notna instead of notnull --- Module-07-interactive.ipynb | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/Module-07-interactive.ipynb b/Module-07-interactive.ipynb index 053e80d..08f0018 100644 --- a/Module-07-interactive.ipynb +++ b/Module-07-interactive.ipynb @@ -231,9 +231,9 @@ "Logical operations are possible too:\n", "```python\n", "s > 4\n", - "s.isnull()\n", - "np.sqrt(s).isnull()\n", - "s.notnull()\n", + "s.isna()\n", + "np.sqrt(s).isna()\n", + "s.notna()\n", "```\n", "\n", "### Accessing entries\n", From e79f52c484a0bbbeb7cf714b951b9e857f6b630a Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Thu, 27 Jun 2019 13:35:27 +0200 Subject: [PATCH 016/134] Updated the output of the Series --- Module-07-interactive.ipynb | 12 ++++++------ 1 file changed, 6 insertions(+), 6 deletions(-) diff --git a/Module-07-interactive.ipynb b/Module-07-interactive.ipynb index 08f0018..103ad3a 100644 --- a/Module-07-interactive.ipynb +++ b/Module-07-interactive.ipynb @@ -169,12 +169,12 @@ "```python\n", ">>> s = pd.Series([ 5, 9, 1, -4, float('nan'), 5 ])\n", ">>> print(s) \n", - "0 5\n", - "1 9\n", - "2 1\n", - "3 -4\n", - "4 NaN\n", - "5 5\n", + "0 5.0\n", + "1 9.0\n", + "2 1.0\n", + "3 -4.0\n", + "4 NaN\n", + "5 5.0\n", "dtype: float64\n", "```\n", "If you do not provide any labels for the rows, the these will be automatically generated for you, starting from 0.\n", From 862cce16f4b670eafe7ec25f5f60c9e4e6419aa8 Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Thu, 27 Jun 2019 16:27:10 +0200 Subject: [PATCH 017/134] Adding back a section which was deleted by mistake --- Module-07-interactive.ipynb | 113 ++++++++++++++++++++++++++++++++++++ 1 file changed, 113 insertions(+) diff --git a/Module-07-interactive.ipynb b/Module-07-interactive.ipynb index 08f0018..fea4ae4 100644 --- a/Module-07-interactive.ipynb +++ b/Module-07-interactive.ipynb @@ -475,6 +475,119 @@ "outputs": [], "source": [] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### DataFrame operations\n", + "\n", + "We will show code for these commonly-used Pandas operations: shape of an array, unique entries, adding and merging columns, adding rows, deleting rows, and removing missing values.\n", + "\n", + ">```python\n", + ">import pandas as pd\n", + ">data = {'Herring': [27, 13, 52, 54, 5, 19], \n", + "> 'Coffee': [90, 94, 96, 97, 30, 73],\n", + "> 'Tea': [88, 48, 98, 93, 99, 88]}\n", + ">countries = ['Germany', 'Belgium', 'Netherlands', 'Sweden', 'Ireland', 'Switzerland']\n", + ">food_consumed = pd.DataFrame(data, index=countries)\n", + ">```\n", + "\n", + "#### 1. Shape of a data frame\n", + "\n", + "```python\n", + "# There were 6 countries, and 3 food types. Verify:\n", + "food_consumed.shape\n", + "\n", + "# Transposed and then shape:\n", + "food_consumed.T.shape\n", + "\n", + "# Interesting: what shapes do summary vectors have?\n", + "food_consumed.mean().shape\n", + "```\n", + "\n", + "#### 2. Unique entries\n", + "```python\n", + "# Access the column names directly. \n", + "# Does not work if there is a space in the name though :(\n", + "food_consumed.Tea.unique()\n", + "\n", + "# So this is clearer, in my opinion. It is also more programmatic.\n", + "# In other words, you can replaced 'Tea' with a string variable, and\n", + "# the code will still work.\n", + "food_consumed['Tea'].unique()\n", + "\n", + "# Names (indexes) of the unique rows:\n", + "food_consumed.index.unique()\n", + "\n", + "# In newer versions of Pandas, you can get counts (n) of\n", + "# the unique entries:\n", + "food_consumed.nunique() # in each column \n", + "food_consumed.nunique(axis=1) # in each row\n", + "```\n", + "\n", + "#### 3. Add a new column\n", + "```python\n", + "# Works just like a dictionary!\n", + "# If the data are in the same row order\n", + "food_consumed['Yoghurt'] = [30, 20, 53, 2, 3, 48]\n", + "```\n", + "\n", + "#### 4. Merging dataframes \n", + "```python\n", + "# Note the row order is different this time:\n", + "more_foods = pd.DataFrame(index=['Belgium', 'Germany', 'Ireland', 'Netherlands', 'Sweden', 'Switzerland'],\n", + " data={'Garlic': [29, 22, 5, 15, 9, 64]})\n", + "\n", + "# Merge 'more_foods' into the 'food_consumed' data frame\n", + "food_consumed = food_consumed.join(more_foods)\n", + "```\n", + "\n", + "#### 5. Adding a new row\n", + "```python\n", + "# Collect the new data in a Series. Note that 'Tea' is (intentionally) missing!\n", + "portugal = pd.Series({'Coffee': 72, 'Herring': 20, 'Yoghurt': 6, 'Garlic': 89},\n", + " name = 'Portugal')\n", + "\n", + "food_consumed = food_consumed.append(portugal)\n", + "# See the missing value created?\n", + "```\n", + "\n", + "#### 6. Delete or drop a row/column\n", + "```python\n", + "# Drop a column, and returns its values to you\n", + "coffee_column = food_consumed.pop('Coffee')\n", + "print(coffee_column)\n", + "print(food_consumed)\n", + "\n", + "# Leaves the original data untouched; returns only \n", + "# a copy, with those columns removed\n", + "food_consumed.drop(['Garlic', 'Yoghurt'], axis=1)\n", + "\n", + "# Leaves the original data untouched; returns only \n", + "# a copy, with those rows removed. \n", + "non_EU_consumption = food_consumed.drop(['Switzerland', ], axis=0)\n", + "```\n", + "\n", + "#### 7. Remove rows with missing values\n", + "```python\n", + "# Returns a COPY of the array, with no missing values:\n", + "cleaned_data = food_consumed.dropna() \n", + "\n", + "# Makes the deletion inplace; more efficient for large data sets\n", + "food_consumed.dropna(inplace=True) \n", + "\n", + "# Remove only rows where all values are missing:\n", + "food_consumed.dropna(how='all')\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, { "cell_type": "markdown", "metadata": {}, From ce6d0c16e2cb1f123288f0d5032d9651ec1d7e4b Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Wed, 3 Jul 2019 06:32:01 +0200 Subject: [PATCH 018/134] Working on module 8 now; adding part about ordered dictionaries --- Module-07-interactive.ipynb | 12 +- Module-08-interactive.ipynb | 404 ++++++++++++++++++++++++++++++++++++ 2 files changed, 413 insertions(+), 3 deletions(-) create mode 100644 Module-08-interactive.ipynb diff --git a/Module-07-interactive.ipynb b/Module-07-interactive.ipynb index e7e219c..7f1dd13 100644 --- a/Module-07-interactive.ipynb +++ b/Module-07-interactive.ipynb @@ -731,7 +731,9 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "heading_collapsed": true + }, "source": [ "## ➜ Challenge yourself: Fridge simulation\n", "\n", @@ -811,7 +813,9 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "heading_collapsed": true + }, "source": [ "## ➜ Challenge yourself: KNMI data loading\n", "\n", @@ -832,7 +836,9 @@ { "cell_type": "code", "execution_count": null, - "metadata": {}, + "metadata": { + "hidden": true + }, "outputs": [], "source": [] }, diff --git a/Module-08-interactive.ipynb b/Module-08-interactive.ipynb new file mode 100644 index 0000000..2137784 --- /dev/null +++ b/Module-08-interactive.ipynb @@ -0,0 +1,404 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "toc": true + }, + "source": [ + "

Table of Contents

\n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "> All content here is under a Creative Commons Attribution [CC-BY 4.0](https://creativecommons.org/licenses/by/4.0/) and all source code is released under a [BSD-2 clause license](https://en.wikipedia.org/wiki/BSD_licenses). \n", + ">\n", + ">Please reuse, remix, revise, and [reshare this content](https://github.com/kgdunn/python-basic-notebooks) in any way, keeping this notice." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Module 8: Overview \n", + "\n", + "In the prior [module 7](https://yint.org/pybasic07) you had an intensive introduction to main Pandas objects: `Series` and `DataFrame`. You were also introduced to dictionaries. In this worksheet, we only see a bit more of dictionaries, and get to apply Pandas to solving practical problems you have seen in prior modules.\n", + "\n", + "

Check our this repo using Git. Use your favourite Git user-interface, or\n", + "```\n", + "git clone git@github.com:kgdunn/python-basic-notebooks.git\n", + "\n", + "# If you already have the repo cloned:\n", + "git pull\n", + "```\n", + "to update it to the later version.\n", + "\n", + "
\n", + "\n", + "### Preparing for this module###\n", + "\n", + "You should have completed [worksheet 7](https://yint.org/pybasic07).\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## ``Dictionary`` data type\n", + "\n", + "A dictionary is a Python ***object*** that is a flexible data container for other objects. It contains objects using what are called ***key*** - ***value*** pairs. You create a dictionary like this:\n", + "\n", + "```python\n", + "random_objects = {'key1': 45,\n", + " 2: 'Yes, keys can even be integers!',\n", + " 3.0: 'Or floating point objects',\n", + " (4,5): 'Or tuples!',\n", + " }\n", + "print(random_objects)\n", + "```\n", + "\n", + "### Ordered vs Unordered dictionaries\n", + "Dictionaries are an ***unordered*** container; though in the very recent versions of Python 3.7 above they are now ordered in the order that you add key-values. \n", + "\n", + "That means the above dictionary is created in a certain order (not necessarily as shown in the code!), but once you add new key-values sequentially, they will retain that order. This means if you create an empty dictionary, and add pairs ...\n", + "\n", + "```python\n", + "testing_order = {}\n", + "testing_order['key1'] = 45\n", + "testing_order[2] = 'Yes, keys can even be integers!'\n", + "testing_order[3.0] = 'Or floating point objects'\n", + "testing_order.keys()\n", + "```\n", + "\n", + "... that they will retain the order you added them. Because this is such a new feature, and people do not quickly upgrade their Python version, you probably should not count on it being available.\n", + "\n", + "If you need to test the Python version in the code, use the ``sys.version_info`` attribute:\n", + "```python\n", + "import sys\n", + "\n", + "if (sys.version_info.major >= 3) and (sys.version_info.minor >= 7):\n", + " print('I can rely on ordered dictionaries!')\n", + " testing_order = dict()\n", + "else:\n", + " print('Use the OrderedDict class from \"import collections\".')\n", + " from collections import OrderedDict\n", + " testing_order = OrderedDict()\n", + " \n", + "testing_order['key1'] = 45\n", + "testing_order[2] = 'Yes, keys can even be integers!'\n", + "testing_order[3.0] = 'Or floating point objects'\n", + "\n", + "# Guaranteed to be in order, no matter which version of Python you use!\n", + "testing_order.keys()\n", + "```\n", + "\n", + "### Iterating over the keys-values of a dictionary\n", + "\n", + "Once you have " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "hidden": true + }, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Further tips\n", + "\n", + "1. Download a *cheatsheet* of Pandas tips: https://www.kdnuggets.com/2017/01/pandas-cheat-sheet.html \n", + "2. Learn more about Indexing Pandas arrays: https://www.kdnuggets.com/2019/04/pandas-dataframe-indexing.html (to be covered in the Advanced course)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

Wrap up this section by committing all your work. Have you used a good commit message? Push your work, to refer to later, but also as a backup." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + ">***Feedback and comments about this worksheet?***\n", + "> Please provide any anonymous [comments, feedback and tips](https://docs.google.com/forms/d/1Fpo0q7uGLcM6xcLRyp4qw1mZ0_igSUEnJV6ZGbpG4C4/edit)." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# IGNORE this. Execute this cell to load the notebook's style sheet.\n", + "from IPython.core.display import HTML\n", + "css_file = './images/style.css'\n", + "HTML(open(css_file, \"r\").read())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "hide_input": false, + "kernelspec": { + "display_name": "Python [default]", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.5.5" + }, + "toc": { + "base_numbering": 1, + "nav_menu": {}, + "number_sections": true, + "sideBar": true, + "skip_h1_title": true, + "title_cell": "Table of Contents", + "title_sidebar": "Contents", + "toc_cell": true, + "toc_position": { + "height": "calc(100% - 180px)", + "left": "10px", + "top": "150px", + "width": "221.984px" + }, + "toc_section_display": true, + "toc_window_display": true + }, + "varInspector": { + "cols": { + "lenName": 16, + "lenType": 16, + "lenVar": 40 + }, + "kernels_config": { + "python": { + "delete_cmd_postfix": "", + "delete_cmd_prefix": "del ", + "library": "var_list.py", + "varRefreshCmd": "print(var_dic_list())" + }, + "r": { + "delete_cmd_postfix": ") ", + "delete_cmd_prefix": "rm(", + "library": "var_list.r", + "varRefreshCmd": "cat(var_dic_list()) " + } + }, + "types_to_exclude": [ + "module", + "function", + "builtin_function_or_method", + "instance", + "_Feature" + ], + "window_display": false + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} From 4a33dd7ea052fecedde688654cfdb34c2b00f4d7 Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Wed, 3 Jul 2019 07:29:18 +0200 Subject: [PATCH 019/134] Added the molar mass challenge to module 8 --- Module-07-interactive.ipynb | 4 +- Module-08-interactive.ipynb | 133 +++++++++++++++++++++++++++++++++++- 2 files changed, 132 insertions(+), 5 deletions(-) diff --git a/Module-07-interactive.ipynb b/Module-07-interactive.ipynb index 77897d0..dc2a153 100644 --- a/Module-07-interactive.ipynb +++ b/Module-07-interactive.ipynb @@ -1064,7 +1064,7 @@ "metadata": { "hide_input": false, "kernelspec": { - "display_name": "Python 3", + "display_name": "Python [default]", "language": "python", "name": "python3" }, @@ -1078,7 +1078,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.3" + "version": "3.5.5" }, "toc": { "base_numbering": 1, diff --git a/Module-08-interactive.ipynb b/Module-08-interactive.ipynb index 2137784..26f90ef 100644 --- a/Module-08-interactive.ipynb +++ b/Module-08-interactive.ipynb @@ -7,7 +7,7 @@ }, "source": [ "

Table of Contents

\n", - "" + "" ] }, { @@ -61,7 +61,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## ``Dictionary`` data type\n", + "## More about ``Dictionary`` objects\n", "\n", "A dictionary is a Python ***object*** that is a flexible data container for other objects. It contains objects using what are called ***key*** - ***value*** pairs. You create a dictionary like this:\n", "\n", @@ -111,7 +111,65 @@ "\n", "### Iterating over the keys-values of a dictionary\n", "\n", - "Once you have " + "Once you have a dictionary, it is common to operate on the keys, or values, or both - in an iterative loop:\n", + "\n", + "```python\n", + "random_objects = {'key1': 45,\n", + " 2: 'Yes, keys can even be integers!',\n", + " 3.0: 'Or floating point objects',\n", + " (4,5): 'Or tuples!'\n", + " }\n", + "for key, value in random_objects.items():\n", + " print('The key is \"{}\" and the value is: {}'.format(key, value))\n", + " random_objects[key] = value * 2\n", + "```\n", + "\n", + "If you need only the values, and not the keys:\n", + "```python\n", + "for value in random_objects.values():\n", + " # Do something here \n", + " pass\n", + "```\n", + "\n", + "or, if you need only the keys, and not the values:\n", + "```python\n", + "for value in random_objects.keys():\n", + " # Do something here \n", + " pass\n", + "```\n", + "\n", + "### Setting and getting key-values\n", + "\n", + "We already saw how to set a new key or overwrite an existing key:\n", + "```python\n", + "random_objects['key1'] = 'will now be replaced'\n", + "random_objects['key2'] = 'is newly added'\n", + "```\n", + "\n", + "You can get a value, from a given key, using the square bracket notation, and then immediately use it for further calculation or processing:\n", + "```python\n", + "uppercase_value = random_objects['key2'].upper()\n", + "\n", + "# but this will fail:\n", + "random_objects['key3']\n", + "```\n", + "\n", + "with a ``KeyError``, because you are trying to access a non-existent key. Two solutions to deal with the case if you are not sure if the key exists, but you need your code to continue:\n", + "\n", + "```python\n", + "\n", + "# Option 1: try-except\n", + "try:\n", + " value = random_objects['key3']\n", + "except KeyError:\n", + " value = float('nan')\n", + " \n", + "# Now \"value\" is guaranteed to exist after these 4 lines.\n", + "# Or, option 2, in a single line of code:\n", + "value = random_objects.get('key3', float('nan'))\n", + "```\n", + "You probably will prefer using the last version, since it is compact, and provides the same functionality as the first option.\n", + "\n" ] }, { @@ -121,6 +179,75 @@ "outputs": [], "source": [] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## ➜ Challenge yourself: working with dictionaries\n", + "\n", + "Create a dictionary containing the molar mass of of pure species:\n", + "\n", + "* ``C``: carbon = 12.0107\n", + "* ``O``: oxygen = 15.999\n", + "* ``N``: nitrogen = 14.0067\n", + "* ``H``: hydrogen = 1.00784\n", + "* ``S``: sulfur = 32.065\n", + "* ``P``: phosphorous = 30.973762\n", + "\n", + "Now write a function ``molar_mass`` which accepts 1 input, a chemical formula as a string, and returns the molar mass.\n", + "\n", + "For example:\n", + "```python\n", + "methionine = 'C5H11N1O2S1' # make life easier: explicitly add the '1' parts\n", + "met_mm = molar_mass(methionine)\n", + "```\n", + "\n", + "For a solution, you should get 149.21 g/mol for that amino acid. Try your function on some other amino acids, such as Lysine, $\\text{C}_6\\text{H}_{14}\\text{N}_2\\text{O}_2$, which has a molar mass of 146.190 g/mol.\n", + "\n", + "*Suggested solution approach:*\n", + "* The input string will always start with a alphabetical letter, not a number. \n", + "* Iterate over the string, until you encounter a number (use `.isnumeric()` on the string)\n", + "* Keep the preceding character(s): in this example, it will be `C`.\n", + "* Keep iterating over the string until the numeric value switches back to alphabetic (use `.isalpha()` on the string)\n", + "* Then you have the value(s). In this example, `5`.\n", + "* Store, in a dictionary that letter as the key, and the numeric part as a value.\n", + "* Keep going, until you have built up a dictionary:\n", + "```python\n", + "formula = {'C': 5, 'H': 11, 'N': 1, 'O': 2, 'S': 1}\n", + "```\n", + "* Now iterate over the dictionary, looking up the molar mass in a second dictionary, and add up the molecular weight.\n", + "\n", + "Challenge yourself even more: adjust the code so that it can work with *natural* formulas, where the `'1'` parts are not given. E.g. your function should be able to handle `methionine = 'C5H11NO2S'` instead of `'C5H11N1O2S1'`." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## ➜ Challenge yourself: random walks" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## ➜ Challenge yourself: moving average" + ] + }, { "cell_type": "code", "execution_count": null, From 8ef73ebb0294a27f984258d26f30efb1c2696c37 Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Wed, 3 Jul 2019 07:31:57 +0200 Subject: [PATCH 020/134] Cosmeic additions to WS8 --- TODO.md | 27 +-------------------------- 1 file changed, 1 insertion(+), 26 deletions(-) diff --git a/TODO.md b/TODO.md index bc09b78..79af036 100644 --- a/TODO.md +++ b/TODO.md @@ -1,8 +1,6 @@ Next WS8: * moving average: group-by month /week. Return back to an example from an earlier module. - - Numpy checklist: https://github.com/ageron/handson-ml/blob/master/tools_numpy.ipynb to come still: introduce sets as an iterable @@ -102,13 +100,6 @@ Do while loop. Execute, then check: can be done with a break statement and condi Example. Keep going until you see a particular DNA sequence. Or peak value above certain threshold -Style ------ -Comments: TODO comments used sparingly - -Loops -------- -Make the Fibonacci series with append function @@ -124,21 +115,11 @@ change from one type to another: Lists ------- Then you can iterate on that list, or do anything that lists can do. This section explores list methods - -* See mikedane resources * Find entries which appear more than once in a list * Common elements into two different lists. Join function equivalent? * Count how many entries in a list are greater than a threshold. List comprehension * Contrast with tuples. Seen before. Immutable concept introduced -General exercises ---------------------- -Random number. Guess it's value. If else, while loops printing. - -Later module: Dictionaries introduced: ------------------- -Calculate the molar mass given a chemical formula: C5H9NOS. Methionine. Do for others amino acids - NumPy ----- @@ -154,15 +135,8 @@ NumPy * Random walk * Average of the dice thrown tends to be normally -* eig and svd * 3D array: calculate summary values across each axis * Raspberry PI question -* Linear system of equations a least squares equation for a doe -Matrix form of least squares: https://learnche.org/pid/least-squares-modelling/multiple-linear-regression -P <- c(-1, +1, -1, +1, 0, 0) -T <- c(-1, -1, +1, +1, 0, 0) -y <- c(699, 713, 753, 745, 732, 733 ) -summary(lm(y ~ P + T)) Statistics part ----------------- @@ -171,6 +145,7 @@ https://towardsdatascience.com/simple-and-multiple-linear-regression-in-python-c * Average of the dice thrown tends to be normally +Come back to the moving average example from an earlier module. From 881b6e85aa7c75cb580f63923161eaa305fddce4 Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Wed, 3 Jul 2019 07:35:22 +0200 Subject: [PATCH 021/134] Tips to add to ws8 still --- Module-08-interactive.ipynb | 11 +++++++++-- TODO.md | 5 ----- 2 files changed, 9 insertions(+), 7 deletions(-) diff --git a/Module-08-interactive.ipynb b/Module-08-interactive.ipynb index 26f90ef..c9fbe54 100644 --- a/Module-08-interactive.ipynb +++ b/Module-08-interactive.ipynb @@ -7,7 +7,7 @@ }, "source": [ "

Table of Contents

\n", - "" + "" ] }, { @@ -231,7 +231,10 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## ➜ Challenge yourself: random walks" + "## ➜ Challenge yourself: random walks\n", + "\n", + "* Average of the dice thrown tends to be normally??\n", + "* Random walk exercise" ] }, { @@ -339,6 +342,10 @@ "/* margin-right:auto;*/\n", "}\n", "\n", + ".table tr {\n", + " text-align:left;\n", + "}\n", + "\n", "/* Formatting for header cells */\n", ".text_cell_render h1 {\n", " font-family: 'Merriweather', serif;\n", diff --git a/TODO.md b/TODO.md index 79af036..d1939c9 100644 --- a/TODO.md +++ b/TODO.md @@ -144,8 +144,3 @@ Statistics part https://towardsdatascience.com/simple-and-multiple-linear-regression-in-python-c928425168f9 * Average of the dice thrown tends to be normally - -Come back to the moving average example from an earlier module. - - - From 0be05c8a6add806e56894389410c283cf2820848 Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Wed, 3 Jul 2019 22:51:07 +0200 Subject: [PATCH 022/134] Wrapped up WS8 mostly; still need to spell check it --- Module-08-interactive.ipynb | 154 +++++++++++++++++++++++------------- 1 file changed, 99 insertions(+), 55 deletions(-) diff --git a/Module-08-interactive.ipynb b/Module-08-interactive.ipynb index c9fbe54..a5363b3 100644 --- a/Module-08-interactive.ipynb +++ b/Module-08-interactive.ipynb @@ -7,7 +7,7 @@ }, "source": [ "

Table of Contents

\n", - "" + "" ] }, { @@ -74,41 +74,6 @@ "print(random_objects)\n", "```\n", "\n", - "### Ordered vs Unordered dictionaries\n", - "Dictionaries are an ***unordered*** container; though in the very recent versions of Python 3.7 above they are now ordered in the order that you add key-values. \n", - "\n", - "That means the above dictionary is created in a certain order (not necessarily as shown in the code!), but once you add new key-values sequentially, they will retain that order. This means if you create an empty dictionary, and add pairs ...\n", - "\n", - "```python\n", - "testing_order = {}\n", - "testing_order['key1'] = 45\n", - "testing_order[2] = 'Yes, keys can even be integers!'\n", - "testing_order[3.0] = 'Or floating point objects'\n", - "testing_order.keys()\n", - "```\n", - "\n", - "... that they will retain the order you added them. Because this is such a new feature, and people do not quickly upgrade their Python version, you probably should not count on it being available.\n", - "\n", - "If you need to test the Python version in the code, use the ``sys.version_info`` attribute:\n", - "```python\n", - "import sys\n", - "\n", - "if (sys.version_info.major >= 3) and (sys.version_info.minor >= 7):\n", - " print('I can rely on ordered dictionaries!')\n", - " testing_order = dict()\n", - "else:\n", - " print('Use the OrderedDict class from \"import collections\".')\n", - " from collections import OrderedDict\n", - " testing_order = OrderedDict()\n", - " \n", - "testing_order['key1'] = 45\n", - "testing_order[2] = 'Yes, keys can even be integers!'\n", - "testing_order[3.0] = 'Or floating point objects'\n", - "\n", - "# Guaranteed to be in order, no matter which version of Python you use!\n", - "testing_order.keys()\n", - "```\n", - "\n", "### Iterating over the keys-values of a dictionary\n", "\n", "Once you have a dictionary, it is common to operate on the keys, or values, or both - in an iterative loop:\n", @@ -169,7 +134,41 @@ "value = random_objects.get('key3', float('nan'))\n", "```\n", "You probably will prefer using the last version, since it is compact, and provides the same functionality as the first option.\n", - "\n" + "\n", + "### Ordered vs Unordered dictionaries (advanced)\n", + "Dictionaries are an ***unordered*** container; though in the very recent versions of Python 3.7 above they are now ordered in the order that you add key-values. \n", + "\n", + "That means the above dictionary is created in a certain order (not necessarily as shown in the code!), but once you add new key-values sequentially, they will retain that order. This means if you create an empty dictionary, and add pairs ...\n", + "\n", + "```python\n", + "testing_order = {}\n", + "testing_order['key1'] = 45\n", + "testing_order[2] = 'Yes, keys can even be integers!'\n", + "testing_order[3.0] = 'Or floating point objects'\n", + "testing_order.keys()\n", + "```\n", + "\n", + "... that they will retain the order you added them. Because this is such a new feature, and people do not quickly upgrade their Python version, you probably should not count on it being available.\n", + "\n", + "If you need to test the Python version in the code, use the ``sys.version_info`` attribute:\n", + "```python\n", + "import sys\n", + "\n", + "if (sys.version_info.major >= 3) and (sys.version_info.minor >= 7):\n", + " print('I can rely on ordered dictionaries!')\n", + " testing_order = dict()\n", + "else:\n", + " print('Use the OrderedDict class from \"import collections\".')\n", + " from collections import OrderedDict\n", + " testing_order = OrderedDict()\n", + " \n", + "testing_order['key1'] = 45\n", + "testing_order[2] = 'Yes, keys can even be integers!'\n", + "testing_order[3.0] = 'Or floating point objects'\n", + "\n", + "# Guaranteed to be in order, no matter which version of Python you use!\n", + "testing_order.keys()\n", + "```" ] }, { @@ -185,7 +184,7 @@ "source": [ "## ➜ Challenge yourself: working with dictionaries\n", "\n", - "Create a dictionary containing the molar mass of of pure species:\n", + "Create a dictionary containing the molar mass of pure species. Let the key be the chemical element (as a string), and the value be a floating point molar mass:\n", "\n", "* ``C``: carbon = 12.0107\n", "* ``O``: oxygen = 15.999\n", @@ -194,7 +193,7 @@ "* ``S``: sulfur = 32.065\n", "* ``P``: phosphorous = 30.973762\n", "\n", - "Now write a function ``molar_mass`` which accepts 1 input, a chemical formula as a string, and returns the molar mass.\n", + "Now write a function ``calculate_molar_mass`` which accepts 1 input, a chemical formula as a string, and returns the calculated molar mass.\n", "\n", "For example:\n", "```python\n", @@ -231,10 +230,38 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## ➜ Challenge yourself: random walks\n", + "## ➜ Challenge yourself: reading data from many files\n", + "\n", + "A common problem in automated data analysis is reading data from many files in a directory, or sub-directories. Try this:\n", + "* Create about 4 to 8 Excel files for yourself in the same directory. \n", + "* Put different values in the cells, but always use the same cell location in the files.\n", + "* Save each of the files in the directory.\n", + "* Create two or three sub-directories, and spread the files into some of those.\n", + "* Now read the files, modifying the template code below:\n", + "\n", + ">```python\n", + ">import os\n", + ">import fnmatch\n", + ">pattern = '*.xlsx'\n", + ">\n", + ">result = pd.DataFrame(...)\n", + ">for root, dirs, files in os.walk(r'C:\\location\\to\\your\\files'):\n", + "> for name in fnmatch.filter(files, pattern):\n", + "> full_filename = os.path.join(root, name)\n", + "> \n", + "> # Put code here to use Pandas to read the Excel file\n", + "> pd.____\n", + "> \n", + "> # Put code here to add the result as a new row or\n", + "> # column in your Pandas DataFrame, df:\n", + "> df.____\n", + ">\n", + "> \n", + "># Finally, write the dataframe to CSV or Excel\n", + ">df.to_excel(\"output.xlsx\", sheet_name='All file results')\n", + ">```\n", "\n", - "* Average of the dice thrown tends to be normally??\n", - "* Random walk exercise" + "You can also use a dictionary instead of a Pandas DataFrame. The keys of the dictionary could be ``full_filename``, while the values of each key could be a list of the number(s) you extracted from the Excel file." ] }, { @@ -248,15 +275,36 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## ➜ Challenge yourself: moving average" + "## ➜ Challenge yourself: moving average\n", + "\n", + "Back in [module 3](https://yint.org/pybasic03#Challenge-2) you had a challenge problem of calculating the moving average from a long vector of data.\n", + "\n", + "You downloaded and used the ``Ammonia`` series of data: http://openmv.net/info/ammonia and calculated the moving average over $n=5$ values; called a window of 5 values.\n", + "* Accumulate the first 5 entries in the window and calculate the average.\n", + "* Then throw away the first entry, add the 6th entry to update your window. \n", + "* Calculate the average based on the 2nd to the 6th values. \n", + "* Keep going until you run out of values.\n", + "\n", + "If you look back at your original code, it was probably several lines. Now you can make it even shorter: **solve it in 3 lines**!\n", + "\n", + "```python\n", + "import pandas as pd\n", + "# Read the ammonia.csv files as a Pandas data frame:\n", + "ammonia = pd.read_csv(___)\n", + "\n", + "# Calculate the moving average:\n", + "ammonia.___\n", + "```\n", + "\n", + "The last line is obviously the key to solving this. Look at the documentation for ``df.rolling``: https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.rolling.html\n", + "\n", + "Compare the solution in [module 3](https://yint.org/pybasic03#Challenge-2) with the solution from Pandas." ] }, { "cell_type": "code", "execution_count": null, - "metadata": { - "hidden": true - }, + "metadata": {}, "outputs": [], "source": [] }, @@ -266,15 +314,11 @@ "source": [ "## Further tips\n", "\n", - "1. Download a *cheatsheet* of Pandas tips: https://www.kdnuggets.com/2017/01/pandas-cheat-sheet.html \n", - "2. Learn more about Indexing Pandas arrays: https://www.kdnuggets.com/2019/04/pandas-dataframe-indexing.html (to be covered in the Advanced course)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "

Wrap up this section by committing all your work. Have you used a good commit message? Push your work, to refer to later, but also as a backup." + "1. Read about different user interfaces for writing and editing your Python code: https://www.datacamp.com/community/tutorials/data-science-python-ide\n", + " * You have already seen and used Spyder and PyCharm, which are the top two listed. But have you tried Atom, or Jupyter Notebooks?\n", + "2. Get even more comfortable with Pandas DataFrames: https://www.datacamp.com/courses/manipulating-dataframes-with-pandas\n", + " * Follow the first chapter of that online course for free.\n", + " * See how to slice, filter and transform your dataframes." ] }, { From 27e2a3672d0f0d004c5f49efd3d2d57e0eab900b Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Wed, 3 Jul 2019 23:01:31 +0200 Subject: [PATCH 023/134] Added a supporting image to WS8 --- Module-08-interactive.ipynb | 4 +++- images/pandas/spreadsheet.png | Bin 0 -> 19921 bytes 2 files changed, 3 insertions(+), 1 deletion(-) create mode 100644 images/pandas/spreadsheet.png diff --git a/Module-08-interactive.ipynb b/Module-08-interactive.ipynb index a5363b3..21c0733 100644 --- a/Module-08-interactive.ipynb +++ b/Module-08-interactive.ipynb @@ -227,6 +227,7 @@ "source": [] }, { + "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ @@ -234,7 +235,8 @@ "\n", "A common problem in automated data analysis is reading data from many files in a directory, or sub-directories. Try this:\n", "* Create about 4 to 8 Excel files for yourself in the same directory. \n", - "* Put different values in the cells, but always use the same cell location in the files.\n", + "* Put different values in the cells, but always use the same cell location in the files. Here's an example:\n", + " \n", "* Save each of the files in the directory.\n", "* Create two or three sub-directories, and spread the files into some of those.\n", "* Now read the files, modifying the template code below:\n", diff --git a/images/pandas/spreadsheet.png b/images/pandas/spreadsheet.png new file mode 100644 index 0000000000000000000000000000000000000000..a188bf5544239f0662ec2366d3a199875030e3ff GIT binary patch literal 19921 zcmZs?1z4Lwlr|b%ifeI-OCeCKxVuY>6DXy)y9FpviaQi{2wuE672Mqk#a)62yXo%! zyZhgJ^E@HLH*@BkIdkltOd_>36mhXBu>k-8uCkJx4gi3phiG?Tq9gvY!rq?%061i} zva(vrvawOe`(}B=!O!=_rqo32A}^JV6;E`V;_` zbZ;Ct#}6-UB&s&#!gV8nAt#xfA*z26ePMk)H<<&ZLm9~wbia1j)q1fzB5eJ{ce65x z0~l&P%Fb5PLkoT_oy+rPB7!0>VSwohnPgoGFatF zb1CZ|DRSwXBI7Q@zo7v#hCaQ}Mbb(-`?TY(V?oV~rD%+l4h;T*{6SNLGV8@T%2(Ep zR#viAYF`$_?%Lm$2SsOyktL66(EP49DVDk3jCOmoc=0s8eG5%WWv9*gO(1BO$-}0T z#AniS5OYL;RVou8lR!;|S4a6L{nn(s6BVjTjL|!AjPaHM^y5=7()!^}{i6*1T*$Xq zV_(nHEd86c4qhBj@_@};8mU=dG%#+TPX4P|lzyMF1(P(LgrNee1rJj8|c zA>FD95&;&ZFm;gd4Tc4ZXkDiWkpdJ#kk44<#ONt6E)wHlQW7&k6w^bwbM*2enZT<7 zfaa^QUrnx>D>V4wnq&^wKVF=O9Q5na=A`avUNWK+qI@N@6nmTC$>Jc>^DNXxuyA4S zMa2DilDeyxQHVt;(czndg7j->f%RM%iY<%MjIs&>Rb7uICS%Is4`l&i#P;nA$b-h%ToLekFC z*nZjh{w|_*5q8IX$UL+;I+`4S)3qpk5%w_CC{`-866-r+j@17Nd3tSbj1(}q#=R`E z##8Js`0K}mdb&S4VEzL{?XlF73d!Yx9dPLl^-!p_XstzA|H!KNdL(_HX_=QEfUWff z6izk~`b@pUL+8Jax`OoLHk6&7S}qio=S7VV<-q6c-C#6xb~a>YbD9O5p&pIz7pV87tUZPnuO;4-4@-0HNzNFBJ&F!X^kr3d8ppS-z5fi2p&K`&E)CN{#_b zi6|)wlYqA#VE844o+{zZMnk;{KQef|WBawKpV7~Pv=bm~aRbU971wi-D%Wp`ZVq49-4Bn=FEispI zAbcN_`XSYTW)25>;aNpR)g!SXmmSCFYHyGw?SnJ+)BRlj)~*AmwvX!U;?}bRgYHi^ zkqs)%XVRas1ZrPdi-~p!qA*Ls0>doBUYxb>Gj=c%MdB1vOj3Z;vHo~$1Z>!CczqB* z$Ek~6P^D%_R5D`XOu}H#{=>4J7^SqVgrQWXJg*d3jQ>%-USctqT1tcI#X$I$4h#%q zhY7&=VBbGSeUAK`CG!JW-y-*yQFtfzD7HQ+oa7681qoji26JYThM~%$N_mk6E>K8X?x@K1S*(k(?vo#N^1(Od!K_;o3x)0Bpb zstaZ(#wKYeCDVS#3bLOB0%o00u~(gIjTIW z7Tee=QKfarHFcRow!-6`=&Z}^>)F|g`*+KFd6kJXYO@csKkSBQuOT_Qhb5LCjBUUi zS&#x$wOi^`m$f3R9HX+VG95yvcdA7SV0KI^4puw6d5s1F~4Js zV>CBC`hDX!V~quBoK~7#PX+qz>-l{%do!;xg#;vRd7B=Z-ZakH3)qRz^fhrcmD!F@ zt`!7I`7P%iYv>gAX!E2>NnXZ!L+jRCFwOS z%BLx2-4doy-Mrdv<>$sHIyKxCb}A!p&mKVytGQzLu4l(U(!fG}H;FJxB2pbP z*xQ*mdM}s6NOMH24*JURf2sXKwTS&oFZMRT^7c1o!`GFs&{D!Oc{R?wYyK&2H|dY| zB;s~nGfxojNr_4OqSO9w{a-DOKBQV&|C#&K6@L-EOfXL)$qTl4NJTwH1P0< zMQusP0j*!`qNVq){yE3vzS0?*iYe(PUm|m23uu4sWO(7Wx~-aa^F(s1>zJsM_LSgL_JXO#dJlY8&8OTlf6JTZrwy3u zsKjv~^L>{dRz+JSW99h#+xeNJ`Ni&LvTD-#Yr1c)`4{=npQR#)ZL3!?@Fdywgxd+a zZk9*CLzjWSX^h;82XUFy)o&Ff->(GokJ!I-P_sXBQn5J@k=XW8ZScRSgF1jKMJ!wj zABy`1o66YA(()*UOP-EYMR`xVS3T#b=?NNiWd6p zY|={M)o}QJq*}DadgY|+cjv`})6S~?4eS&b3W5cn<=++z{hm@3iRXB>IFE-T6qGCu z7C(+JqJ^GrUv~L0_`zD8?{t@@r>x=QcDc)vl9O~3(7XOiNx0co$4go^xbD?>RQe7u z{;3yU8OQ_vewunVJ8(Gb+_tIIKzL85J9y6Jq9w+|HlvydvOK>buD^XXE!T)0d9V79tH_)dU|>>w~wDhbmSEN ziyZNvID?Ichl>ah=}Cz*6&4l-^1K1QdBcSm!R7Ajb!zpOgHb zdE~6zE!}KgJZznv=>N@Y@xj^CL!5!(AEW<%{imE(KDPhE$;th{mW5a#@Lvy*mzxLp z-*Y2K#r{1N(X#ciaxjpyb+mGFNAQr~qQ@a?y;=Dvd+X4~}{n2~um}mcNw}Qm&tJ-fH z()FstdL7}iX}VON#A!O^#Y;;|Bz7crMPqtK6VI0Yar;-?<(pq{*lR_rTd^Qdvb=*N z6MfjEhmtNZI^Qo>l%K_hwU*GC@;|wxMBfsvDDJj79CyG3bFQc_7I%y89R@j_r=iQs z_C$eu69s~96W_)q=vIXc&3yBoIy~|MCEA>yI$#oyzWd78SJ&6;9n}fe>#|sj0Nj^S zoqHSOl>H7rQ;?FxULhsc@2NhT1vVOU)GB%k9WNxPJWioQ1AMo)1L}cS_eYUl(Vmyx zWxEi;%2B4aaS7#{B~CQCZi)w1sxaG9RsNY~om)_sh#Yl5Nm*I{_cP*_7-t-SYappAI;Bb6p~- z)3ciwpR1pj0-OUW7RR-C$js&KQfz6-%mwuTIJ_V=L>n$P!43~oc&+9I*Gho}j}vz= znCd!O@$6?b^_NV)v@l^r`Jyrd(K{KpRT)&cPTVh z3@@t60iM&P>UQwUeSteEsH}Qhgb}0pA-&8|l89Y;?bi=P9=;)z@+WUCkw+zXFdt42 zL_QP-{KESEyGR`K0pB}QndGTV;>mTR&s8$u)Q#TxG=QV$vT5E-cizMucNnz< zQw!L!x3QP2uqWP68Q!*uqDCj~0j`y>$WI4R(|7sT$UFvLb~jvnZ=IoATZ_w@62MU6 zyww!8n5#eQwm1wbZqO~$S8i&FcR{g}dB{T6!cuc(KkK#cGH`z&&NuT&1P`4qXwPBp z;W5+Mk(^Q}pbm70hHH#i&L}$0&#wer|JhptAV=1tz=4Yfxo^&$)$#;m`l>z`w{K|j z!J)pl-?98e0kgUT`ZH|3aQug>)5?ebNUA%iL_k=%WBHdxH=5^1JP2y(#~=0)QL5m1 zqz%zvrkowOSr{M%7Tblfl>-8N9Ff3Z-4=@V-z5*$T#s*~?G==S3NP&Of4M7L#r+14Y4$>c{p8Rg(X*kyX{$O^xpONGRNwg^j9tEd8#GZl1 z5@&Aic8gf|(bb1kpF)m;gvV7x#uZdr3c*RwkLVCVp77o)z|6pfh`>jH)vp=b%+hz$ zI8SsU9uw39%8_djfMDozEQ~95?L7>dX8r2v=0$#64@vZLOmHU4KIP!WbuAe3H~dd5XF(#P=E#;o9*P~&w_l-Z!BLp&UKFdpioEW~C}&vG zrF>guQ?0*m4Q|YQ3_LCO@AioH%lV@)t_SV(j}wW6Lr{))3rlI(@*JGi+P&#xyJRu& zUkYi8oujx0hFtfPpbnMQ2?;9xl5z?py~ppYQ!ou0hlgdPWZtDdYq@V>`6k?g;y0hy z3s6|VtZ_5GJ3aBmR|mRMS0U_T$|w+JJmycjIbRDdB4F-(_>N#T)90Kf2Z*Vu`+es@ zq4FZwEQWn(1?P%21^Q`08W+L_nDN_d7)|tg?eU}q&ZFTDjCeltN#P_OYnL&-j?~q& zR*Zm8S87)7nn8`V@3ot5F`{Q8+#K{wFDxxBI13&GX#%R&;6I#_t>LKd8yK%yPp~bg z9sBRuqAqE&pAtKo%XCx@!8fh3@VC$7FA-vCBg!YjEZ#YZdM`fM;JgxjbOw1;Kvd zQaVqPhMV5-9p$LzMMaGygc)=fw^WEB0iL}&D5|Z}itj`_@I8o|eXd~9)8Kij%rUjr zb*(rCbWFWg64??Jxz6I`QSq2!_jL^1kdI~9P4*}+s=eEOn3Ax?Kc|}#ok2^j%*YU0 zE2&Ek@6ISrxcsAYbPK0fwOM^s9Npv#LDO2GAofvBd# z9Pdm^%t?p7>DwB36n=TPAxv^6Xe0e@`_TQ_b>qu3Yaaj5Ov2SR>pWCTN*z_#3C*4r ziNkVu76&WAks+@m-f5bG?oh`*JwRT(OJ28cTxU4lq(;HZLGOjLNx6$q)nmuu%uUy2 zi)$STqwn#>;Qb!ET1*}NHc-NsPJCvq@gX1rK4{-nu#@Xwad049 z*z6RbQth)fZzZ7nsgktiA(>Kpk;I%pN=~pWBicuMc`NXe-<>~+b+F4Vmp#XNmZqYS zS-Hz1I1^3H!iOlojf`jKyF~c3AsN425iL)6$ZmhFQ5D(9L%s&wsmWX!k9)`3pd4YM@k^b6rQmzNBl$p2`C&dKK&(@kr?Oy%vTGlsL5QT z^tFsn@h1t6a-4_6_`dg+8bv8}nMQ+eN&Jg|;-(y@1StbNj0?FxvaEC3xg5$`U5t0AJep6cd1f!vg^iI@ zM}N5o`D0-RT_3Mnj!+AT;Gu>(KW;uH$2T`IP@WX5eZOS?{bmzxWp{E3v$A*AkMP^P zQ@pa0Jn1hA&{^#|7`FS+O8nG9HeYR!V&-2jcqs6?ySzCG&{#b?m8^H<{-d{fMc$eY*%yGq$X~Y|W@)N~!Bl-glF?6{ zlv=K9Drz46e+n+bVWOp;ctR?Y&;nT513$D>0IJ6cZZ%z=t*PmF>=l+_?L@|5SduD`n`%d+k4_OQ>poq~<q-RNH%E~DFr4ueOsWT>n`Tgo=$-?cNZs%0aCpn=_^0fMujV{e-0I> zSI&MW-FA*OX}Wdt9Ne-{m??uQmfe+KpR0-tYI8j%Km3bms$j}8qapXFPLc8N2W3ov ziWJsP$RRSKdhp=;rb#gMrQ`5MD;bcAfqKC#jMEkmRgAzhW0EW@;5trxXu8a?ySjpE z0spSe-!9rM(txyB?ak?Fi%!?G4wi*hikkEJo-W{20DV;PCiPq>9i7^6^i034P4Y2B zo2k2)isc&P!G8_vxaAO>DNi>VX$#5emzerF5|=4gnGR0x`W^IOcxA5(|2u6(x6?f` zTM54CnV$`E{1aI0<$2uFT{$LM{Qxa7ffMMHC<}!i#m7i8W|aPCVI24%;rCSnP@%yu zU<5V#Y?eZB?}ow=QqC`84{eg|WtOCtJx5CjrV&ut({;)N7d1);wXON;1YV7?#$3mP zLRWYHEPQTmqR|Cbbx6}uORXOKBRbX}reK7{ z)3U294pahT#k>$%Uk`M?e=!*dXBMyR>VSR3AIGAMp5L7H^aiUwjxKDzK~gZudqh=| zSiIeSd0wcHc*k)U7?{_^Bm%>sir3YoIm}`ybPvox5_s`VfsBd&011M1z?Znkl;GK) z1)h>UI5&3E()`={Gef`Po@|U?a?v{V^s&-!9qOb{B`x;&#uF-J-RfJ7J%xXr^X!zh z2JKX(Yvo{@TwVIbHo6|f5iM$_uj*t}@Z@0OL>Jg5az9O82{eII2#mp2t)i9q`OP2V zUyrTv_?Gr+(&(bi5IplC*%kGWSSX=Eez^4x#?+XX$NKf8n}rLpg@$2o*7j|zavUIzkJ3aFeA=Kn2E3QJ>$se_qx}0^lOq~KVcDO< zGJ0OqZ+<4Z!%sDEn5UVmZk1^U7FpBHJwrf5q{7o={DRZ9a4~yb%f7g1r^v7SL>F9` z2!{>I{%-8jUO~cyo$lL-QyC2r-#FL0r1ef`^jfh(UwEvW}Qt9cNDuM$#Osw(5tlZ zE4P&R^Jj`lvXz$LVopac6sB#2xW0qHeRT4D!QkB2Bs?WxTW1@|PkCDFS(-ztVCC_R z=eXlj+sdUG+fCL#UXWia>rNvQ1=4WF0Ty5+1|r!iMDF*y)IBK$=w`A%dmk-)I+DrN zPCQiJ)VsL4LPpd;Iv)~tCYBiTP$9*+V{^9NE===P0w98gJ=2~ZKA#4-x>w10Q2(_f z<+tzd-|{>0mw!%+jT)7m=PjGvLVsLA5o+6&#)F7mcX=`7vwXJw{K@DHm5h}gH(wwd3Wr-lhi1csbx)cjkrC7{ha=@GJZ|lEB>YhdCmb zp7(Dh_o#u{!FIYcbe7|f2ZnrHCk1UPNuk^s#piy9s+lhuJ1(|U)30ZZ^JakewmT^K z$cn6L-(3xdt<+}lps(XG z5(*?w`1$hyc;DPcD)8Z|RPl>GQMjFr`d19u2UE# zt#t^nfb&0{L6EMF>)llRruqKUB2|AY(2#0dj8Iwk&B^;!E?cQb^G4ZikH!+QJZCAS z3XhT5bUalFT7YuHRf$AiK+&C}AdFWSk;jf3Krq!ni93Zeglml+Q5Of+19#Is@*a~w z2N#1vnV==sdpEH1%_8vbKM70zW56ZTy>Na~_Dnhxv>Ck0_e0=a3Inn{Y7{03;Q&Pl zvX(pgcLE@TmR$Z>-k$7xJ4l}X@J8hSMc2HxW)=%t$n1-zX3a-ooy5G|n0iNB zXq5;Aq!!LEd9KMhAMcT_mBmV}iP;|>PX^mHXK%AJYpL`!hA;>T>aCU1!EHJKdbF!^ zj=SoYbFn6WeU(sQJBANQpmB|S<#jgPLRVyQs#SRuXC}=Xr*LG6AS4LGTdt+itUWHu z=3mD>|HOZp@5U3#MaUC{@m_%cQ=_igS#c^t0<@a&EMMZza9RByv;-j?zVE?9&b|QV z5bY(@Hug^c8Ta@nrRwGUXZ)kBAT1DxM>n=HxK_7ICjU+?-D&>-19Sx*3c8xruk?ln z>K{Y9L64VZlJBf@eLuz8M&Q%EZ}>DC)tBqLL-B|{)pK*AFeP7PM(Dx}@9@2t2|>Zo zQRj2rkn_A*^)B1s`eww3TqCARg?orc`fGAb&xU~>EpRvMa0X@-&(@)^mNMBeQ(ux^ zp6tOIEA~+-FVQ+Msdg9dYN5{3ZXn^{FoPUuR^`-wESR}8W8CbZty`uM+qdR-Sp9NO z;ZNbDHQ{&WHj{DwzJUN$M%^>EE7&lwGVl3emxW~B%)dJGjnz;-PBhoJ40Wt{%Eqro z`xsV>2%{F5*VVw6&TLb5T*z>`S&hO$4s(=o7j`jfwpHX(cS0>|z6{j0pN3q$-eX^< z$>r}aNIbe%Z8EE7T;H1SZjN-8SYk3tzJ=-~vev!R-|vGxpHO<633fVKtb^3MP|c7 zUju;SG9OUo`_l&rBF2DHcC2z~+U`|;a&j_|Xggh69(aE(|5$B&?(VSt#$ka+!0X81 zKtUjwqLtx-`NMa96Jhi@rcC)%3hYEApoCbush=(NgYwhe-fp&goZoTNd`#Q@X*Xyz zPclz$zUg`~(W+Vo$79>jj^>t@<4Lmnfm+;eCME-JqlwjY=Wz({F)qRA>g>2YqFNqZ zFpgg}$`ti>vOW1MP|~@&%AB)aQd3i75L?Hn826IW*-{NGA}Tui5{&zT&bW2IG)tvO zA(mr*IDV=?HbMno{E{GnA8sD7JC>6OF^l<%F3~9)Ycn%}VU8QWRzOq^x#vZu5^{R| zcazgPFVL$IY}1ZC=i3)UK?sB)wHE&@R46Vg`W+McB|uu@RV~{%&r>_}acp339-YEW zBl(Uvvti}s!k0TGNxRz~cj|`#ypi$8FeqC>>q*<;2l)Cjv8I@X&)4{SRd-od$u1j> zh5qe=-||JSd#;OEca8RFYaPsvxve|eL`svjNYg5G^b{c#==zuY7k!yVQca)t6KgP) zu+*5p>g4s1coO9=k!6x)&%b5UV#*&1#Sl~C=jO!6JR>PNWlRv96wYUmblASz&8s!E z>{_#Nr|*MXsv&2jC>NeCHn6^7T0>zm1s(SvoZbZGYewtc zs_i-%;Pv4tp$R!?ElF_P>jKcL4eAm-Gc; zLDsYQtTjdzx!*9ya0d7KK;`Hi3oo*JjD|jUq~0N&t-Iw<*AN4k?qu(&&9}t3O;Z}a z2c2*93J3;&LJ@%p*y3&RNd%bfZMGW}{`L7;lLc?4Y}2~UUV$=ErYE))2zgY;yb^vc z9_5?o=amX4c1w@qeJWVx2;sz-5sy<1#Hv7`Ky&Of^`(L#H0clPWM7VPVz#~`RhTF( zmW8>ZeSdkHg;}ibkxMKnh2{ejP>9o(ej>p2({c!|=)SXXQX~Y{Ci=rTB0Qw&TJYTp zgkQLnFgVK6$&ZDsa>0C7+dL<$1psVbK^^NlIrlnu&igw*{)&DysVE|#ag?xrFO}-` zrH1rqz<6pW!=4re@*u&1#1X=Qq0=b*O$Uk&S>L2rab)5NVV`ZZmsbx~Ic^M&Lj5bB z`_sZ6;cGG|l{tcwcOi}_dKwr$fCqpa1c?Ndjfqn_I?vp7`0K6qbTzZwTrJKcnhV^ZzLR zxlJQsqe@@OKP%S7l+~n>WzGG#O;hm{LV{9?qlcS+ zZIjRx%z?!2GqEG8x2y{$PgwGTpw{~$k)~UT-3m&jV#U&j#1CsHwILhC+^C~Yv4}`w zI$}_kU3jKBo)subZPF*p4I@LEvs2xbM1AQx*j5y&ZY?f)woM#QDmAT%R^{DesaV74 zxT$#Y#IHDPFGd7Fo)Oq*9{~q#TSB6G0iG4er9@h;_@q*iuE$VP~=M>?gYxr zPHi_2=04iIE*y2-abIwwzIF-z{M8Hb(R~Wst40*}(zaVfYt%C8Yg%*0SE*yLxQEwgtP}xDj$Y3&}lnSTm%I@t{ zcLItNYzY2l*%BkAMKO+Z7a7Gjydz~k;lz*^6H5x8wgC2$vf?^PwnQxd>{s^QGfFhc z75NvWv~I=qsJ>3&rP|>YE5>`JtwHOG8WFi+>ZEg7bzI_mKCJiYU5Vt$(z~T*$E?z0 zZW=PtcfssrxuG1ft^}j?vL*7HnvAwMFG6(y6`Z)4L1Ktd5jukoc`L1BrWH#wuL*`F zXJRNXU==cjd?MoF%K!DHI6EAdsA`?@sF(WElNHZR3|%lk2@WV;FY?hEMS6$KxSx-U z5rnA-YtCHWY~b^#CaC<+h#Cok9S(zo%TRTY^=4N6L0nut&oL?wuQ?vOimpW=)JnMD zY1vU;BOKEgFx&jqqxm&pHWhtTGWVYf?NIc5hPr93hRI{DnDdt$^0UJ`VO?FZlBin3 z3(FppFER95{h4XA^|Ty7@0e)KA`l7mOBLzuMOvfpP9`fl;;S1*^Xe5LfndM&*r_Br z9<&8+-r$3_OQB$+#X6#d!X0x;x54-x1mtC+NJ@-C)w=_2^{^(BN9v?J#Y-*8mC;b) zeQ0}AXPAe|F~Gbf95sT0_r@(kr3H)rhTy)7Qz{o5x=C!nFvSnp?DzGo(yZyLf^5nCF_oQ`}_6L|A#s$CWo?vUO5{o5%;JRqqJW_Jk!)`M)gODd;k>g2)_h_3+;!Iq%Y5S4{Y-MDD2UcA&J7_7+in?~M|LFj!|l#ir$#5@kTjVq)8rpnf76F=wDTxwm>Sp{F>9Eh0!^;>7A2Uf1|q# z-;L7fc#K^$j0VX)KIK9QExYe$a^Fu)$C-Kpu6Qi{t*?+D@ zy{^w4dWk;t@N(XR&&;X&VvKBBa(jlil>3Qupgze?8-;HPAvRAj9Vc;|2UWgKJzyVz@V5-P6JtX5 zy{PiTC-q@Fah(&3sW<3FN=9M-P726+mwSn9kW8y$sK)UH-4+$b0;k7S{rf%#p~CSY zQN1OLH(IfPdgQnjCp@2-9gjxkHH9+Xr%Na^2v8BDW`BLb;%Bc=eI~;Hk3*YmNrtWW z{%xMlmuln=)EK6y%)Yk6G5RAI**H!R82nN#y52LVQ#Y~lkiV9YOp2z)~EPgNB z^(S^#=r&cJmjxP_UdBIHeaaQ(g=3RlE<{n6-QfTueGpz<+VXOkEF{ah%WyxvvHbD= zrt)3o`*O{|16}DTLFcvqKs`-f$4g2l4;SP5(C4R{*<$77k%d`(5Y40s?n7EBxKr_{ z#o>ab&A#hHhcn~)FkjVkz18r{Z+ywB>*HnXm@J9FHi{Rc%CMuF_7fdW{TjX99PeEC zd3=!C?>Q0YTtjcjH}<8BC|jg})5lLuZC3^4XeCSHf!DDIX^YnK>DTYD+gHf(TfRmF zr|kf}AS4-mvziij#hK#%Ui{K~&cn!T^Hqk#gBN`%?7Asnp@b*rk^YhR1((dq>YyC6 zSX%M6FWEwq_9>(};K*R$xS7viG|!)ClRrI_1g4I zAy9l>giZk7k^s>F;qj<|P^H!3&B2L}z$VP_AX~Y=QYg<)uNoS|o8ol^^j@oc0w1|X z_TXqBYcyK@>_E#Og3PoyqqGr7^)3cY7RvXrF&#~7N>;OI=2l%+^3DX_td^CkXO-4; zUK`2wbN_sgz!*g}9k8LVdH_3;DCudXWa|{wfg(k^K)oE-K8hW?NZ5;?!L;UIYDcn! zG{tY%Lj@cHkst!6DTO!6SJYhH5d6nX&FxMdV~}4}Bm5ki=B01OYzi*9T${3N(F3jA zoDH`Zwq(K5FA8$519iH*Rcw2>RK_qD)`Mwwy1wETeL^GvqQyp|(>nmHXj^y6r>!?*OzAL2up z_dxI?GZW>tR1X{usR9fIH8HXMT@br%iCR7(y{?XGfuY_nFmB`J9# zT#sx)K+8ScWLqRspm6b@-b^blpP$tGAvDcNLX(an(RE#s2q)VFKBMfxqt<#eO<2xK z$XTwj@>S?dTC#^Sdx!x;(kVS8S9wqV%BT>@0MC}i0tNF55QVzvJ7itzux9+A3tJ>e z*X5vw;^%YISDo+pxbmmQ3e4Jd7dAK$*J>E1A2xk2V!8+4cSQ=s-dxVjlmhgSwJNZr zHuKxs8$S`6!hmd@jqUB|QdnwOQpr+HfEj+w`>@1R_w}X1`P{r!@N{ssl6sT z%4)o40|>B3jVcc(S$p_84VP4zT?^;K?jfiU)C$x>J$D{vE%7#Q+5NfJ+1339V^RB) zthSyR^a=!s(`|eqHJYj5)Y=PI5NCd!l#3l=OerNlmVh_2kh2l;8QccixOp%A+h_^9 zyQME=wGR>Gxj06})0oFUo}5wtey5o>wHu6m_9r<|x2ReY-QeywTPGv4R!Lij?5dGb zQ*e)mlkHs_SIJ2YY+GWMTFW=fs{}Q71|xy!J6UihbNI>|>OWh=?~wJNHAG8yCny+k zuP4+oLJy^pS3}W2ii#0>+S5Ql6AQIEv|KUwRsSv5t1acsmGU(Vi zkhY*xv40~OPNr){d*gJ(_Ex)+fmF+-WP#|teG4uSO~%pe7ZJLcE;cSZc3)p|MxFJJ zS8d>!_ld}THlO?0YsQtMroU^C2KLAOLc`Fi&YM13H#yLxq6 zO-71)b-4C6n%%WiN8v5Hr&F8(Xx9_!{7K%8uFq_$!s!;zm%5sMlb^$d z!Z_aNp(1AqIhQus&-)Eq4W~_B?oT(E(FUCTtQx5|cJ53i<2L!$6dqn#(-vjsx6h0y zv8k#J>KIsQsi=zBbxUuX5$8^^J0ls%$)epw<+^3?=DUmCX~g+MVsb<(xtY&Tq0uZM zAc^54zudYWeDUmzCnxZF5u7S6E(DT6j!$3S#}}`(qkUcvn_dwxsswPig4bU03Jx z0VvL#D+d`>&~fQcH?Do>$&bxAS4Bj$;|!FHBY5HW(9rw#gicDDd-pG93q3v+9`)Oa zo%E7tI?RDQ;6pw~-oUs|?~$d$xWqhvE9iD@j_@F?)JW1kHZBfE?^M%E((JyfSk12{ zxeCS*Zw#8C@&pCGxB?%>+ZavAHw6-f)WhYp5BM}CxBZ(i1pwYjvo~x0@wtK5h6e`+ z9G5P?aR<4BgOX1d>OyzMa#RuODVX163z=@T&B=px-mIw}&ez@?pO6D{e0MUsMx5Kd zPfM9q({4o+Nmf{i?t3Y$v;S7|eHzI}970LyWmGao4CShyY18viNLtb*KZW}$2U$oa z5!z*de&Go-=qdJHZbSnMTlw|x7xxBixMk$!hO{};6N_>f#~+`4^vN=~K~Fi?LD$`@ zCqWmZ*I6f5eN@i3^I4Cl%|XY7S`_6B9NQ*oR>ecwBjYQCi8ok^ z-;Q_lg1U0h{f-g0N$(&ePYgwi9Nk;;A-X^4nl1cKvI0r!>wE1Vt9rxs(TACZCf+7) z^7U&MFsKE%XZu(s1xXt5NpMgdqh8oZL-GswecafPH@sOgytfQBmhblVI^SSt zoO$2+nrhn9IZTAMuk1a#B0ey~=ick-ZukDD$)yzH_My7d`m$4d>{dA03t#_j25phk zjtjT8sl{zcNVbl${NWz6snK+Qm{e+B=f#+)$Hl17bh0K3`J|g4_YhOpUQ%~J<%8Rs zt(dw-@DA2HqL(6gk)+21(orTii7bjaxh|%%3SHoCjARq;W5eL{4jrN%_|s9EB*wC$ z+2AAfADdfWGP3yzjh~T+#qX72p zJZUb9_(4~O53j$WP43HGzjHfD?-!EcqNlbBotrE|9VJ_RiBz4p&7enMv-tY~{E6LA zCf+@xVyS>}+e(gO`#Y};8jG{}&D)i5_Pk-ysS?K4*ncBk zD$<1pR}P1EJ{tJP%<{>M_Nm|7HLM)gkA1t>lk2V>&-SbtKOQCELB$D~CJiAA;)rD3 zjf{!p=3xG;OeTT zjtmRyzd8#b{i82;YZ4msL0cx+&hWD-P0S4B#o;Ep_)?vEb-+AV=5;8vr}Iq$wmXEl9V zJqV0q>LpE11K#PsoajQFlj5&7IntO0%>99uVQ*+ut^53A@aG>#@B}f5=wt4VPhiI2j0r^=cI4l}gCo zmyYTbmKn;k6ov3jv@xH`fAso7$?$(~y&EA1I!4AIwN-hjTN3_6&Dy)h$~^l9+bfh#{u}DLZOx)( zxfb`dsJ0PavR$$Qm5&H(rV%$o{M<|(u{VohVU!wQl;d?&UO4A+fU|!V3P|2MO&4DXdT4 zRD67oD8{-xKYk2e^F0=ZmsQ8>1XT$6|2&>)zr=p-gfN$OMPd=NGwC?BV3O_`)OdQx zP7pvs5iXO2Nt#zqUYtpoZU4LF+){>KhGNlg@gBowb?Nw$Tfc2}F37$9DuM>4;?MSj zdJ`c-Fp;bF;U1x^wW@RQzc_$UygF8+R9b?2E)no+9V2CFzfe_i&=YX}jX##-;`eX2 z$}<&8EjD?VsBgAcnjdI9EV*rI#6KN59AEv5o7?UXvG9a5qC%>d34y84o@8_Ign_LS9lHD~`q=A7aCAqPu{{aN~#RaD1;NyHHq-FleK7hrhA^f{kt15MP3JVK(8{ zgzapt2)u)`p*03QdMfW4&&wZ^4YTv|2uZ_L*@bxu6%szOC0|uh%awV4ZK?`7iC>P@ z;`>;{Z9^k&cjj>3^q{|7cOTo8#k-uOEIY;>=2_BBDd0th%O4_ z??L4M?Z@6!z%ii`jkgx;$y@(VA6Fg^<<`d|S18Mn0xneOLv?>q1I|8t&mp5OU>xAXa& zC;9rIDe>EBxECplFEg0}tUhDO+eJQ!3%7o|eX7)=zejce zk~QV~5fzVVdLG_h#9G~WjG~RI$88d5l z_?jYjo^Ra!LtR|eXF9R)S_N>E){=_H?=>3Y25StfS$cPx%jzQ6<@osc0yTq7HN{$D zkfU(HDLpviIrOSAV0&d#Le_8^TPj(i}%QYC-pc!{)ShPw`^Dt?VRW3N8g zy%cyI94rkuG5*)dRZm0K%&t&8wNXD{lI`&h*Kt$r)$i1f*20s^2lHz;OiDOk-An=G z`Zx>|aS)g|XKXchY%rsFQ6IRiTG#7p=3 zR;3TYVy@RaNp7HU0FdpIl-ZB0nTkM=^nByuX4Kh)Q}eCs-zPQ?l*i0upQl7N`;OEv z^>g|lNH`yocx~JgsT0r!mecuL8yqKXEChNIv_Q}MU&Aj~Gxob%kf-;|VnvXDAG!}cay5>-l$aHo8BX| zo{&=S3ujAQ;PuTX5|mMnpqcI(kT3VSfuG7BnerE?G-|P0L+GhI1=9bkpyb1eZ19s$ zmXw`s(JCgG6k5bFGRyP9w4^!5$SF<2U0*!?8fIUJtg{Gofrut1#P&~>6jp2}C;}=O zIC@yHoa}eui%V0I!!?X4>Hb_}$Sp#stX*KIt5^EhjC1(`Q7Pyj*!$b0l!=gY@&f0e zkNO??n_lEPl*P1utoS~su>CIN48CUk1bKXO*Hf505hmvMYQb&Ca6rMx{JkVVW{=WG zYk2u%SOa<8#X*y%FE^r6trkTGKh=SoATe{^q@;U3c3R>EEDr zONe{AfArFGm;@#=w5|j-E3~jTg)IVqP~5YdY?5ENREo=V~#<3Jhx{n zS5C%C)Ml9P)ouU)U;9sh6G{U0-LkeDB_#LUH_m~i=qjngtv#=|O@We*m!{Oax9hr=KOR&00Nw`QX6zjGS4CXv9M zU#SGHC~!(XRK(-yH0A-xZfkrr{Y6_;Zbz6oSX&;C8}DfFw^>#9Hb?a;h$^JFD~d7ms1ydV%@#4~f`QG6)y%#|GJv70dKhCEnO#-E>F9 z#MsBl7JObN=xI{(#1RhUXAP4FUnC$RlBDn;PDd&eS(zx6gHue_d@mFx1z>QV~&jJC}L<(rjQo3ePWILlQ05k{FF>aYRv;_##VJYNJhh>;_S}E1^eAJR8un#Q$i+6Yuia}^@K=(V9! z#}CVx29vozvl~}dYM8F^Xg%(9Y1YH7KYJtA$~jWbj>D+@z{KbLnc!$C zM*EKHd!wZxWZPrQ#q;(;D*-#9^u?GE5&Q^V1@e$aaI@hXg}1s;@qs}gKoh_d7+89^q%n#7ZUtfQs)#F~LN{Zji+L=#)X`tJ- zj*&TuuW&#bPb(;IgtETf$)Y2cICd6WiT~W^9=!9;pz+Doec4*K#NERsiVO1H#YQfx zhX$Ol^d`y#QunRBB<1WLfY|&d;Ptquy~ISpZ#%q2qubL2^u=(*GPy4LcLFpJ6AApo z$WfsjK#QuJuX0j0z&SVBHWb*QpKE4MbcGhezQAM$hO2xRLl;(Wl^d9e=&JJVQPrz& z@J9TfXgIilWnQfVv@QkRMrnIoS|~uhLU^tN9NnQ5*-VtBS;=I=-5G9|PegxaepOx4 zT+}T(SH3X?x{a^hzPGqAQX`gC&=BN`?KL+kZ-m#2lle}U(LsH%+GcN_fj>h)wuggp zM4Kx Date: Thu, 4 Jul 2019 11:46:54 +0200 Subject: [PATCH 024/134] Updated and fine-tuned the challenges --- Module-08-interactive.ipynb | 83 +++++++++++++++++++------------------ 1 file changed, 43 insertions(+), 40 deletions(-) diff --git a/Module-08-interactive.ipynb b/Module-08-interactive.ipynb index 21c0733..28bf129 100644 --- a/Module-08-interactive.ipynb +++ b/Module-08-interactive.ipynb @@ -32,18 +32,19 @@ "source": [ "# Module 8: Overview \n", "\n", - "In the prior [module 7](https://yint.org/pybasic07) you had an intensive introduction to main Pandas objects: `Series` and `DataFrame`. You were also introduced to dictionaries. In this worksheet, we only see a bit more of dictionaries, and get to apply Pandas to solving practical problems you have seen in prior modules.\n", + "In the prior [module 7](https://yint.org/pybasic07) you had an introduction to main Pandas objects: `Series` and `DataFrame`. You were also introduced to dictionaries. In this worksheet, we only see a bit more of dictionaries, and get to apply Pandas to solving practical problems you have seen in prior modules.\n", "\n", - "

Check our this repo using Git. Use your favourite Git user-interface, or\n", - "```\n", - "git clone git@github.com:kgdunn/python-basic-notebooks.git\n", + " Check our this repo using Git. Use your favourite Git user-interface, or at the command line:\n", + ">```\n", + ">git clone git@github.com:kgdunn/python-basic-notebooks.git\n", + ">\n", + "># If you already have the repo cloned:\n", + ">git pull\n", + ">```\n", "\n", - "# If you already have the repo cloned:\n", - "git pull\n", - "```\n", "to update it to the later version.\n", "\n", - "
\n", + "\n", "\n", "### Preparing for this module###\n", "\n", @@ -63,7 +64,7 @@ "source": [ "## More about ``Dictionary`` objects\n", "\n", - "A dictionary is a Python ***object*** that is a flexible data container for other objects. It contains objects using what are called ***key*** - ***value*** pairs. You create a dictionary like this:\n", + "It was [said earlier](https://yint.org/pybasic07) that a dictionary is a Python ***object*** which is a flexible data container for other objects. It contains objects using what are called ***key*** - ***value*** pairs. You create a dictionary like this:\n", "\n", "```python\n", "random_objects = {'key1': 45,\n", @@ -79,11 +80,6 @@ "Once you have a dictionary, it is common to operate on the keys, or values, or both - in an iterative loop:\n", "\n", "```python\n", - "random_objects = {'key1': 45,\n", - " 2: 'Yes, keys can even be integers!',\n", - " 3.0: 'Or floating point objects',\n", - " (4,5): 'Or tuples!'\n", - " }\n", "for key, value in random_objects.items():\n", " print('The key is \"{}\" and the value is: {}'.format(key, value))\n", " random_objects[key] = value * 2\n", @@ -92,15 +88,15 @@ "If you need only the values, and not the keys:\n", "```python\n", "for value in random_objects.values():\n", - " # Do something here \n", - " pass\n", + " # Do something here with\n", + " value\n", "```\n", "\n", "or, if you need only the keys, and not the values:\n", "```python\n", - "for value in random_objects.keys():\n", - " # Do something here \n", - " pass\n", + "for key in random_objects.keys():\n", + " # Do something here with \n", + " key\n", "```\n", "\n", "### Setting and getting key-values\n", @@ -119,14 +115,14 @@ "random_objects['key3']\n", "```\n", "\n", - "with a ``KeyError``, because you are trying to access a non-existent key. Two solutions to deal with the case if you are not sure if the key exists, but you need your code to continue:\n", + "with a ``KeyError``, because you are trying to access a non-existent key. Here are two possible solutions to deal with the case if you are not sure if the key exists, but you need your code to continue running without failing:\n", "\n", "```python\n", - "\n", "# Option 1: try-except\n", "try:\n", " value = random_objects['key3']\n", "except KeyError:\n", + " # Key not present: use a missing value as fallback \n", " value = float('nan')\n", " \n", "# Now \"value\" is guaranteed to exist after these 4 lines.\n", @@ -195,22 +191,28 @@ "\n", "Now write a function ``calculate_molar_mass`` which accepts 1 input, a chemical formula as a string, and returns the calculated molar mass.\n", "\n", - "For example:\n", + "Water, $\\text{H}_2\\text{O}$ has 2 hydrogens and 1 oxygen. It could be represented as `H2O1`, and therefore has the molar mass of $(2 \\times 1.00784) + (1 \\times 15.999)$ = 18.01468.\n", + "\n", + "Now try it yourself for an amino acid, Methionine, which is $\\text{C}_5\\text{H}_{11}\\text{N}\\text{O}_2 \\text{S}$:\n", "```python\n", - "methionine = 'C5H11N1O2S1' # make life easier: explicitly add the '1' parts\n", + "# make life easier: explicitly add the '1' for single atoms\n", + "methionine = 'C5H11N1O2S1' \n", "met_mm = molar_mass(methionine)\n", "```\n", "\n", - "For a solution, you should get 149.21 g/mol for that amino acid. Try your function on some other amino acids, such as Lysine, $\\text{C}_6\\text{H}_{14}\\text{N}_2\\text{O}_2$, which has a molar mass of 146.190 g/mol.\n", + "The molar mass of Methionine is 149.21 g/mol. Try your function on some other amino acids, such as Lysine, $\\text{C}_6\\text{H}_{14}\\text{N}_2\\text{O}_2$, which has a molar mass of 146.190 g/mol.\n", "\n", "*Suggested solution approach:*\n", - "* The input string will always start with a alphabetical letter, not a number. \n", - "* Iterate over the string, until you encounter a number (use `.isnumeric()` on the string)\n", + "\n", + "Work backwards: start with the dictionary written below (`formula = {'C': 5, 'H': 11, 'N': 1, 'O': 2, 'S': 1}`), and implement the last 2 bullet points here. Then write the code to create that dictionary:\n", + "\n", + "* The input string will always start with an alphabetical letter, not a number. \n", + "* Start by iterate over every character in the string, until you encounter a number (use `.isnumeric()` on each character)\n", "* Keep the preceding character(s): in this example, it will be `C`.\n", - "* Keep iterating over the string until the numeric value switches back to alphabetic (use `.isalpha()` on the string)\n", + "* Keep iterating until the numeric value switches back to an alphabetic one (use `.isalpha()` on each character)\n", "* Then you have the value(s). In this example, `5`.\n", - "* Store, in a dictionary that letter as the key, and the numeric part as a value.\n", - "* Keep going, until you have built up a dictionary:\n", + "* Store, in a dictionary that letter `C` as the ***key***, and the `5` numeric part as a ***value***.\n", + "* Keep going, until you have built up a dictionary that should appear as:\n", "```python\n", "formula = {'C': 5, 'H': 11, 'N': 1, 'O': 2, 'S': 1}\n", "```\n", @@ -227,7 +229,6 @@ "source": [] }, { - "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ @@ -246,21 +247,22 @@ ">import fnmatch\n", ">pattern = '*.xlsx'\n", ">\n", - ">result = pd.DataFrame(...)\n", + "># Dataframe for the result:\n", + ">result = pd.DataFrame(___)\n", ">for root, dirs, files in os.walk(r'C:\\location\\to\\your\\files'):\n", "> for name in fnmatch.filter(files, pattern):\n", "> full_filename = os.path.join(root, name)\n", "> \n", - "> # Put code here to use Pandas to read the Excel file\n", - "> pd.____\n", + "> # Use Pandas to read the Excel file\n", + "> excel_values = pd.____\n", "> \n", - "> # Put code here to add the result as a new row or\n", - "> # column in your Pandas DataFrame, df:\n", - "> df.____\n", + "> # Add the result as a new row or column\n", + "> # in your Pandas DataFrame, df:\n", + "> result.____\n", ">\n", "> \n", "># Finally, write the dataframe to CSV or Excel\n", - ">df.to_excel(\"output.xlsx\", sheet_name='All file results')\n", + ">result.to_excel(\"output.xlsx\", sheet_name='All file results')\n", ">```\n", "\n", "You can also use a dictionary instead of a Pandas DataFrame. The keys of the dictionary could be ``full_filename``, while the values of each key could be a list of the number(s) you extracted from the Excel file." @@ -287,10 +289,11 @@ "* Calculate the average based on the 2nd to the 6th values. \n", "* Keep going until you run out of values.\n", "\n", - "If you look back at your original code, it was probably several lines. Now you can make it even shorter: **solve it in 3 lines**!\n", + "If you look back at your original code, it was probably many lines. Now you can make it even shorter: **reduce it down to 3 lines**!\n", "\n", "```python\n", "import pandas as pd\n", + "\n", "# Read the ammonia.csv files as a Pandas data frame:\n", "ammonia = pd.read_csv(___)\n", "\n", @@ -515,7 +518,7 @@ "metadata": { "hide_input": false, "kernelspec": { - "display_name": "Python [default]", + "display_name": "Python 3", "language": "python", "name": "python3" }, @@ -529,7 +532,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.5.5" + "version": "3.7.3" }, "toc": { "base_numbering": 1, From 553e4de712e545a328f5c5d8e0c3a3884a8475eb Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Thu, 4 Jul 2019 11:51:15 +0200 Subject: [PATCH 025/134] Added ideas for future --- TODO.md | 28 ++++++++++++++++------------ 1 file changed, 16 insertions(+), 12 deletions(-) diff --git a/TODO.md b/TODO.md index d1939c9..c275e81 100644 --- a/TODO.md +++ b/TODO.md @@ -1,13 +1,7 @@ -Next WS8: - -* moving average: group-by month /week. Return back to an example from an earlier module. Numpy checklist: https://github.com/ageron/handson-ml/blob/master/tools_numpy.ipynb - to come still: introduce sets as an iterable - -Data analysis/Data Science - Cover topics mentioned here still: https://github.com/kgdunn/digital-skills-module5/blob/master/Notebooks/02.0%20NumPy%20arrays.ipynb + Consider elements from this notebook for module 1 and 2: https://nbviewer.jupyter.org/github/engineersCode/EngComp1_offtheground/blob/master/notebooks_en/2_Jupyter_strings_and_lists.ipynb Containers @@ -16,13 +10,14 @@ There are four collection data types in the Python programming language: v List is a collection which is ordered and changeable. Allows duplicate members. v Tuple is a collection which is ordered and unchangeable. Allows duplicate members. +v Dictionary is a collection which is unordered, changeable and indexed. No duplicate keys. TODO Set is a collection which is unordered and unindexed. No duplicate members. -TODO Dictionary is a collection which is unordered, changeable and indexed. No duplicate members. Strings ========= -* M3: List comprehension. Find number of AGTC entries in a sequence. -* M3: Read genome. Stop when you find first sequence of GATTAG +* M9: List comprehension. Find number of AGTC entries in a sequence. +* M9: Read genome. Stop when you find first sequence of GATTAG + Lists ====== @@ -130,7 +125,6 @@ NumPy >3. The reciprocal value of $x$ is equal to $1/x$. You can calculate it using `np.reciprocal(...)` >4. The sign of the values in the array: `np.sign(...)` - **Exercises** * Random walk @@ -141,6 +135,16 @@ NumPy Statistics part ----------------- +* summary: min, max, mean, nanmean, nan-versions +* percentiles +* regression +* EWMA monitoring +* DOE model analysis? + https://towardsdatascience.com/simple-and-multiple-linear-regression-in-python-c928425168f9 -* Average of the dice thrown tends to be normally +Plotting +------------ + +Back to the bacteria multiplication problem +Seaborn: Viz: https://engmrk.com/module7-introduction-to-seaborn/ \ No newline at end of file From 7893f8a020401ef0ee113f6b3385859e4e1a6ce6 Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Thu, 4 Jul 2019 11:55:18 +0200 Subject: [PATCH 026/134] Updated README to cover WS8 --- README.md | 23 ++++++++++++----------- 1 file changed, 12 insertions(+), 11 deletions(-) diff --git a/README.md b/README.md index be10737..efa8e26 100644 --- a/README.md +++ b/README.md @@ -40,29 +40,30 @@ notebooks. [Notebook 4: https://yint.org/pybasic04](https://yint.org/pybasic04) -This module focuses on introducing vectors, matrices and arrays. - +* Introducing vectors, matrices and arrays. * Using NumPy to create various vectors, matrices and arrays, containing specific values. - -It is a long module, but it is to bring everyone to the same level of understanding. +* Get everyone to more or less the same level of understanding. [Notebook 5: https://yint.org/pybasic05](https://yint.org/pybasic05) -This module focuses on mathematical operations using arrays. - * Mathematical operations (addition, multiplication, matrix math) on arrays. * Challenge problems that require using vectors and matrices. [Notebook 6: https://yint.org/pybasic06](https://yint.org/pybasic06) -All about functions in Python, to help make your code more modular, and reusable. -* Single inputs, or multiple inputs: arguments based on their position, or name. -* None, or single outputs, and also multiple outputs in a tuple. +* Functions with single inputs, or multiple inputs: arguments based on their position, or name. +* Functions with no (None) or single outputs, and multiple outputs in a tuple. * Challenge problems that recall work from prior modules, and apply your knowledge. [Notebook 7: https://yint.org/pybasic07](https://yint.org/pybasic07) -Introducing Pandas and dictionaries * Dictionary objects in Python: the very basics. -* Pandas two main classes: Series and DataFrame: what they are, and how to use them. +* Introducing Pandas' two main classes: Series and DataFrame: what they are, and how to use them. * Loading and saving data to/from CSV and Excel files. + +[Notebook 8: https://yint.org/pybasic08](https://yint.org/pybasic08) + +* Iterating over entries in a dictionary. +* Getting and setting values in dictionaries. +* Reading data from many CSV or Excel files. +* Moving average calculations. From efac378d5ac1a9c5956178e642eda64c13fb4c6f Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Sun, 14 Jul 2019 19:11:40 +0200 Subject: [PATCH 027/134] Starting to work on WS9 --- Module-08-interactive.ipynb | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/Module-08-interactive.ipynb b/Module-08-interactive.ipynb index 28bf129..8d73d92 100644 --- a/Module-08-interactive.ipynb +++ b/Module-08-interactive.ipynb @@ -518,7 +518,7 @@ "metadata": { "hide_input": false, "kernelspec": { - "display_name": "Python 3", + "display_name": "Python [default]", "language": "python", "name": "python3" }, @@ -532,7 +532,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.3" + "version": "3.5.5" }, "toc": { "base_numbering": 1, From 78047d23213748cc2259753f5ca219133ce82ca1 Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Sun, 14 Jul 2019 19:12:48 +0200 Subject: [PATCH 028/134] Now adding WS9 which is being worked on --- Module-09-interactive.ipynb | 323 ++++++++++++++++++++++++++++++++++++ 1 file changed, 323 insertions(+) create mode 100644 Module-09-interactive.ipynb diff --git a/Module-09-interactive.ipynb b/Module-09-interactive.ipynb new file mode 100644 index 0000000..24658fc --- /dev/null +++ b/Module-09-interactive.ipynb @@ -0,0 +1,323 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "toc": true + }, + "source": [ + "

Table of Contents

\n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "> All content here is under a Creative Commons Attribution [CC-BY 4.0](https://creativecommons.org/licenses/by/4.0/) and all source code is released under a [BSD-2 clause license](https://en.wikipedia.org/wiki/BSD_licenses). \n", + ">\n", + ">Please reuse, remix, revise, and [reshare this content](https://github.com/kgdunn/python-basic-notebooks) in any way, keeping this notice." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Module 9: Overview \n", + "\n", + "In the prior [module 8](https://yint.org/pybasic07) you got more exposure to Pandas data frames.\n", + "\n", + "In this module we use these data frames from getting a brief exposure to **statistics** and **plotting**. We can look at each topic separately, but they go hand-in-hand. You've probably heard: \"*always start your data analysis by plotting your data*\". There's a good reason for that: the type of statistical analysis is certainly guided by what is in that data. Plotting the data is one of the most effective ways to figure that out.\n", + "\n", + "
\n", + " Check our this repo using Git. Use your favourite Git user-interface, or at the command line:\n", + "\n", + ">```\n", + ">git clone git@github.com:kgdunn/python-basic-notebooks.git\n", + ">\n", + "># If you already have the repo cloned:\n", + ">git pull\n", + ">```\n", + "\n", + "to update it to the later version.\n", + "\n", + "\n", + "\n", + "### Preparing for this module###\n", + "\n", + "You should have read [Chapter 1](https://learnche.org/pid/data-visualization/) of the book \"Process Improvement using Data\"." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + ">***Feedback and comments about this worksheet?***\n", + "> Please provide any anonymous [comments, feedback and tips](https://docs.google.com/forms/d/1Fpo0q7uGLcM6xcLRyp4qw1mZ0_igSUEnJV6ZGbpG4C4/edit)." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# IGNORE this. Execute this cell to load the notebook's style sheet.\n", + "from IPython.core.display import HTML\n", + "css_file = './images/style.css'\n", + "HTML(open(css_file, \"r\").read())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "hide_input": false, + "kernelspec": { + "display_name": "Python [default]", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.5.5" + }, + "toc": { + "base_numbering": 1, + "nav_menu": {}, + "number_sections": true, + "sideBar": true, + "skip_h1_title": true, + "title_cell": "Table of Contents", + "title_sidebar": "Contents", + "toc_cell": true, + "toc_position": { + "height": "calc(100% - 180px)", + "left": "10px", + "top": "150px", + "width": "221.984px" + }, + "toc_section_display": true, + "toc_window_display": true + }, + "varInspector": { + "cols": { + "lenName": 16, + "lenType": 16, + "lenVar": 40 + }, + "kernels_config": { + "python": { + "delete_cmd_postfix": "", + "delete_cmd_prefix": "del ", + "library": "var_list.py", + "varRefreshCmd": "print(var_dic_list())" + }, + "r": { + "delete_cmd_postfix": ") ", + "delete_cmd_prefix": "rm(", + "library": "var_list.r", + "varRefreshCmd": "cat(var_dic_list()) " + } + }, + "types_to_exclude": [ + "module", + "function", + "builtin_function_or_method", + "instance", + "_Feature" + ], + "window_display": false + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} From 8b4559b43cf9352aabf2d4644d0e6349724f239e Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Sun, 14 Jul 2019 21:48:09 +0200 Subject: [PATCH 029/134] Added text for median, boxplot explanation, as well as supporting images --- Module-09-interactive.ipynb | 454 +++++++++++++++++- ...ce-explore--Wickham-and-Grolemund-book.png | Bin 0 -> 14224 bytes .../summarizing-data/ammonia-description.png | Bin 0 -> 25464 bytes .../barplot-example-expenses.png | Bin 0 -> 42928 bytes .../grades-data-description.png | Bin 0 -> 41531 bytes .../summarizing-data/percentiles-ammonia.png | Bin 0 -> 42261 bytes 6 files changed, 452 insertions(+), 2 deletions(-) create mode 100644 images/general/data-science-explore--Wickham-and-Grolemund-book.png create mode 100644 images/summarizing-data/ammonia-description.png create mode 100644 images/summarizing-data/barplot-example-expenses.png create mode 100644 images/summarizing-data/grades-data-description.png create mode 100644 images/summarizing-data/percentiles-ammonia.png diff --git a/Module-09-interactive.ipynb b/Module-09-interactive.ipynb index 24658fc..d520b44 100644 --- a/Module-09-interactive.ipynb +++ b/Module-09-interactive.ipynb @@ -7,7 +7,7 @@ }, "source": [ "

Table of Contents

\n", - "" + "" ] }, { @@ -17,6 +17,50 @@ "\n" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## TODO\n", + "\n", + "Essential: https://www.datacamp.com/community/tutorials/pandas-split-apply-combine-groupby\t\n", + "\n", + "df.plot(x='col_name_1', y='col_name_2', style='o')\t\"Jupyter notebook introduction;\n", + "\n", + "qq-plot in Pandas\n", + "\n", + "\n", + "https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.probplot.html\n", + "\n", + "\n", + "https://nbviewer.jupyter.org/github/engineersCode/EngComp2_takeoff/blob/master/notebooks_en/2_Seeing_Stats.ipynb\"\n", + "\n", + "https://www.youtube.com/playlist?list=PL-osiE80TeTvipOqomVEeZ1HRrcEvtZB_\t\n", + "\n", + "Distributions: random numbers from normal \n", + "distribution\n", + "\n", + "Box plots and bar plots\tDistributions: t-distribution\n", + "\n", + "Histograms\n", + "\n", + "Distributions: sampling from a list\n", + "\n", + "Scatter plots\n", + "\n", + "* highlight a point in the plot\"\tPlotting values from a distribution\n", + "\n", + "Time-series: plot some of the integrated curves in pybasi03\thttps://www.coursera.org/learn/python-data-analysis/lecture/KjG8R/distributions\n", + "\n", + "Labelling plots: titles, axes; legend\thttps://www.coursera.org/learn/python-data-analysis/lecture/xhEIo/hypothesis-testing-in-python\n", + "\n", + "Time-series: monod kinetics\tRegression: https://jakevdp.github.io/PythonDataScienceHandbook/05.06-linear-regression.html\n", + "\n", + "PCA: https://jakevdp.github.io/PythonDataScienceHandbook/05.09-principal-component-analysis.html\n", + "\n", + "\n" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -52,7 +96,364 @@ "\n", "### Preparing for this module###\n", "\n", - "You should have read [Chapter 1](https://learnche.org/pid/data-visualization/) of the book \"Process Improvement using Data\"." + "You should have read [Chapter 1](https://learnche.org/pid/data-visualization/) of the book \"Process Improvement using Data\".\n", + "\n", + "### Summarizing data visually and numerically (statistics)\n", + "\n", + "1. Box plots\n", + "2. Time-series, or a sequence plot\n", + "3. Bar plots (bar charts) \n", + "4. Histograms\n", + "5. Scatter plot\n", + "6. Data tables\n", + "\n", + "In between, throughout the notes, we will also introduce statistical and data science concepts. This way you will learn how to interpret the plots and also communicate your results with the correct language." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Five main goals with data science\n", + "\n", + "There are 5 major goals when dealing with data from systems:\n", + "\n", + "1. Learning more about our system\n", + "1. Troubleshooting a problem that is occurring\n", + "1. Making predictions using (some) data from the system\n", + "1. Monitoring that system in real-time, or nearly real time \n", + "1. Optimizing the system\n", + "\n", + "Goals 1 and 2 take place off-line, using data that has been collected already.\n", + "\n", + "Goals 3, making predictions from the system (e.g. predicting how far away it is from completing, or what quality is being produced from the system), is typically required to support other decisions, or to apply real-time control on the system. \n", + "\n", + "Goal 4 also can take place on-line, and is used to ensure the system is operating in a stable manner, and if not, using the data to figure what is going wrong, or about to go wrong.\n", + "\n", + "Goal 5 is typically off-line, and here we use the data to make longer term improvements. For example, we try to move the system to a different state of operation that is more optimal/profitable. This can also be done in real-time, where systems are continuously shifted around to track an optimum target.\n", + "\n", + "This is one way to to categorize data science problems. There are of-course other ways to consider it: such as if you are dealing with one variable (vector) or many variables (matrices). Or which type of technique you are using: supervised or unsupervised.\n", + "\n", + "We will encounter these terms along the way. But for now, you should be able to see any problem where you have used data as fitting into 1 of these 5 categories above. \n", + "\n", + "\n", + "### Try it quick\n", + "\n", + "Try breaking down the existing data-based project you are currently working in. Check which one or more of the five apply.\n", + "\n", + "\n", + "### Framing your objective <-- fix up / merge\n", + "\n", + "We can look at any data science project and find that it is aligned to one, or more, of these major goals, or also known as 'application domains'.\n", + "\n", + "1. Learning more about our system\n", + "\n", + "2. Troubleshooting a problem that is occurring\n", + "\n", + "3. Making predictions using (some) data from the system\n", + "\n", + "4. Monitoring that system in real-time, or nearly real time \n", + "\n", + "5. Optimizing the system\n", + "\n", + "\n", + "\n", + "We can find our specific objective in one, or more of these 5 goals.\n", + "\n", + "\n", + "\n", + "For example: your manager asks you to use data (whatever is available) to discover why we are seeing increased returns of our most profitable product.\n", + "\n", + "\n", + "\n", + "Your objective: Find reason(s) for increased returns of product.\n", + "\n", + "Method: That is what this part of the course is about. You will learn about the tools to do visualize the data, and reach your objective.\n", + "\n", + "Which of the 5 goals above are used?: Number 2 \"Troubleshoot a problem that is occurring\" is the most direct. But along the way to achieving that goal, you will almost certainly apply number 1: \"Learn more about your system\".\n", + "\n", + "Following up: in the future, after you have found the reasons for returned product, you might have done number 5: \"optimizing the system\" to prevent less bad quality production. Then, in a different data science project, based on number 4: you \"monitor the system in real-time\" to prevent producing bad quality products.\"  This might be done by applying number 3: \"making predictions of the product quality\"\n", + "\n", + "\n", + "\n", + "As you can see, these 5 goals are generally very broad. Why do we mention them?\n", + "\n", + "You might learn, in other courses and later in your career, about different tools to implement. Then you can interchange the tools in your toolbox. For example, linear regression is one type of prediction tool, but so is a neural network. If one tool does not work so well, you can swap it for another one in your pipeline." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## A general work flow for any project where you deal with data\n", + "\n", + "After years of experience, and working with data you will find your own approach. \n", + "\n", + "Here is my 6-step approach (not linear, but iterative): **Define**, **Get**, **Explore**, **Clean**, **Manipulate**, **Communicate**\n", + "\n", + "1. **Define**/clarify the objective. Write down exactly what you need to deliver to have the project/assignment considered as completed.\n", + "\n", + " Then your next steps become clear.\n", + " \n", + " \n", + "\n", + "2. Look for and **get** your data (or it will be given to you by a colleague). Since you have your objective clarified, it is clearer now what data, and how much data you need.\n", + "\n", + "3. Then start looking at the data. Are the data what we expect? This is the **explore** step. Use plots and summaries.\n", + "\n", + "4. **Clean** up your data. This step and the prior step are iterative. As you explore your data you notice problems, bad data entry, you ask questions, you gain a bit of insight into the data. You clean, and re-explore, but always with the goal(s) in mind. Or perhaps you realize already this isn't the right data to reach your objective.\n", + "\n", + "5. Modifying, making calculations from, and **manipulate** the data. This step is also called modeling, if you are building models, but sometimes you are simply summarizing your data.\n", + "\n", + "6. From the data models and summaries and plots you start extracting the insights and conclusions you were looking for. Again, you can go back to any of the prior steps if you realize you need that to better achieve your goal(s). You **communicate** clear visualizations to your colleagues, with crisp, short explanations that meet the objectives.\n", + "\n", + "___\n", + "\n", + "The above work flow (also called a '*pipeline*') is not new or unique to this course. Other people have written about similar approaches:\n", + "\n", + "* Garrett Grolemund and Hadley Wickham in their book on R for Data Science have this diagram (from this part of their book):\n", + "\n", + "\n", + "___\n", + "* Hilary Mason and Chris Wiggins in their article on A Taxonomy of Data Science describe their 5 steps in detail:\n", + " 1. **Obtain**: pointing and clicking does not scale.\n", + " 1. **Scrub**: the world is a messy place\n", + " 1. **Explore**: you can see a lot by looking\n", + " 1. **Models**: always bad, sometimes ugly\n", + " 1. **Interpret**: \"the purpose of computing is insight, not numbers.\"\n", + " \n", + " You can read their article, as well as this view on it, which is bit more lighthearted.\n", + " \n", + "___\n", + "\n", + "What has been your approach so far?" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Box plots: using the Ammonia case study\n", + "\n", + "We will implement the 6-step workflow suggested above.\n", + "\n", + "Our end (1) **objective** is to describe what time-based trends we see in the ammonia concentration of a wastewater stream. We have a single measurement, taken every six hours. We will first see how we can summarize the data.\n", + "\n", + "The next step is to (2) **get** the data. We have a data file from this website where there is 1 column of numbers and several rows of ammonia measurements.\n", + "\n", + "Step 3 and 4 of exploring the data are often iterative and can happen interchangeably. We will (3) **explore** the data and see if our knowledge that ammonia concentrations should be in the range of 15 to 50 mmol/L is true. We might have to sometimes (4) **clean** up the data if there are problems.\n", + "\n", + "We will also summarize the data by doing various calculations, also called (5) **manipulations**, and we will (6) **communicate** what we see with plots.\n", + "\n", + "### Exploring the data (step 3)\n", + "\n", + "Let's get started. Either download the file to your computer, or read the file directly from the website." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Loading the data from a local file\n", + "import os\n", + "import pandas as pd\n", + "\n", + "# If the file is on your computer:\n", + "directory = r'C:\\location\\of\\file'\n", + "data_file = 'ammonia.csv' \n", + "full_filename = os.path.join(directory, data_file)\n", + "ammonia = pd.read_csv(full_filename)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Read the CSV file directly from a web server:\n", + "import pandas as pd\n", + "ammonia = pd.read_csv('http://openmv.net/file/ammonia.csv')\n", + "\n", + "# If you are on a work computer behind a proxy server, you\n", + "# have to take a few more steps. Add these 6 lines of code.\n", + "import io\n", + "import requests\n", + "proxyDict = {\"http\" : \"http://replace.with.proxy.address:port\"}\n", + "url = \"http://openmv.net/file/ammonia.csv\"\n", + "s = requests.get(url, proxies=proxyDict).content\n", + "web_dataset = io.StringIO(s.decode('utf-8'))\n", + "\n", + "# Convert the file fetched from the web to a Pandas dataframe\n", + "ammonia = pd.read_csv(web_dataset)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Show only the first few lines of the data table (by default it will show 5 lines)\n", + "print(ammonia.head())\n", + "\n", + "# And the last 10:\n", + "print(ammonia.tail(n=10))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Further exploration\n", + "\n", + "We have opened the data we check with the ``.head(...)`` command if our data are within the expected range. At least the first few values. Similar for the ``.tail(...)`` values.\n", + "\n", + "Those two commands are always good to check first.\n", + "\n", + "Now we are ready to move on, to explore further with the ``.describe(...)`` command." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Run this single line of code, and answer the questions below\n", + "ammonia.describe()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### Check your knowledge\n", + "\n", + "1. There are \\_\\_\\_\\_\\_\\_ rows of data. Measured at 6 hours apart, this represents \\_\\_\\_\\_\\_\\_ days of sensor readings.\n", + "2. We expected ammonia concentrations to typically be in the range of 15 to 50 mmol/L. Is that the case from the description?\n", + "3. What is the average ammonia concentration?" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Theory: the median, or the 50th percentile\n", + "\n", + "There are 1440 rows, or data points. If we sort these from low to high we will find the minimum as the first entry, and the maximum in the last position of the vector.\n", + "\n", + "What value will we find halfway? It is called the **median**, the middle value, the one that separates your data set in half. If there are an even number of data values, you take the average between the two middle values\n", + "\n", + "Try find the median value manually:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Sort according to the values. In Pandas we have to be \n", + "# explicit what to sort by (it could have been the index!)\n", + "ammonia_sorted = ammonia.sort_values(by='Ammonia')\n", + "\n", + "# Verify that sorting happened\n", + "print(ammonia_sorted.head())\n", + "print(ammonia_sorted.tail())\n", + "\n", + "# Notice the indexes are maintained. So you can see, for example, sample 811 and 812 (0-based) \n", + "# were the lowest recorded ammonia values.\n", + "\n", + "# Find the middle two values: 719 and 720, and calculate the average:\n", + "ammonia_sorted[719:721] # gets entry 719 and 720, which are the middle two values of the 1440 numbers" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "So there is the median: 36.18 mmol/L. And compared to the average, the mean of 36.094, they agree closely.\n", + "\n", + "```python\n", + "# There is a quicker way to find the median. Does it match the manual value above?\n", + "ammonia.median()\n", + "```\n", + "\n", + "Now, with that knowledge can you interpret what the row **\"50%\"** means in the above ``.describe()`` command?\n", + "\n", + "The \"50%\" row in that description is called the 50th *percentile*. \n", + "![alt=Pandas \"describe\" output](images/summarizing-data/ammonia-description.png)\n", + "\n", + "It is the value in the dataset above which 50% of the values are found, and below which 50% of the values are found. A shortcut name that we use for the 50th percentile is **median**. It is the only percentile which has a special name. All the other's we just call by their number, e.g. we say \"*the 75th percentile is 42.37*\" for the Ammonia column.\n", + "\n", + "\n", + "##### Check your knowledge\n", + "\n", + "1. What does the 25th percentile mean? Below the 25th percentile value we will find \\_\\_\\_\\_% of the values, and above the 25th percentile we find \\_\\_\\_\\_% of the values. In this case that means the 25th percentile will be close to value of the 360th entry in the sorted vector of data. Try it:\n", + "\n", + " ``ammonia_sorted[358:362]``\n", + "\n", + "2. What does the 75th percentile mean? Below the 75th percentile value we will find \\_\\_\\_\\_% of the values, and above the 75th percentile we find \\_\\_\\_\\_% of the values. In this case that means the 75th percentile will be close to value of the 1080th entry in the sorted vector of data. Try it:\n", + "\n", + " ``ammonia_sorted[1078:1082]``\n", + "\n", + "3. So therefore: between the 25th percentile and the 75th percentile, we will find \\_\\_\\_\\_% of the values in our vector. \n", + "\n", + "And there is the key reason why you are given the 25th and 75th percentile values. Half of the data in the sorted data vector lie between these two values. 25% of the data lie below the 25th percentile, and the other 25% lie above the 75th percentile, and the bulk of the data lie between these two values." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Introducing the box plot\n", + "\n", + "We have looked at the extremes with ``.head()`` and ``.tail()``, and we have learned about the mean and the median. \n", + "\n", + "What about the **typical** values? What do we even mean by _typical_ or _usual_ or _common_ values? Could we use the 25th and 75th percentiles to help guide us?\n", + "\n", + "One way to get a feel for that is to plot these numbers: 25th, 50th and 75th percentiles. Let's see how, by using a **boxplot**." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from matplotlib import pyplot\n", + "%matplotlib inline\n", + "\n", + "# The plotting library needs access to the raw data values. Access those\n", + "# using the ``.values`` method\n", + "raw_values = ammonia.values\n", + "pyplot.boxplot(raw_values);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The boxplot gives you an idea of the distribution, the spread, of the data.\n", + "\n", + "The key point is the orange center line, the line that splits the centre square (actually it is a rectangle, but it looks squarish). That horizontal line is the median.\n", + "\n", + "It is surprising to see that middle chunk, that middle 50% of the sorted data values fall in such a narrow range of the rectangle.\n", + "![alt=\"Boxplot for the percentiles](images/summarizing-data/percentiles-ammonia.png)\n", + "\n", + "The bottom 25% of the data falls below the box, and the top 25% of the data falls above the box. That is indicated to some extent by the whiskers, the lines leaving the middle square/rectangle shape. The whiskers tell how much spread there is in our data. We we see 2 single circles below the bottom whisker. These are likely *outliers*, data which are unusual, given the context of the rest of the data. More about *outliers* later.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Challenge problem\n", + "\n", + "On a different data set, with multiple columns" ] }, { @@ -62,6 +463,55 @@ "outputs": [], "source": [] }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Time-series, or a sequence plot\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Bar plots (bar charts)\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Histograms\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Scatter plot\n", + "\n", + "Seaborn: https://engmrk.com/module7-introduction-to-seaborn/\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Data tables\n", + "\n", + "* Precision of display?" + ] + }, { "cell_type": "markdown", "metadata": {}, diff --git a/images/general/data-science-explore--Wickham-and-Grolemund-book.png b/images/general/data-science-explore--Wickham-and-Grolemund-book.png new file mode 100644 index 0000000000000000000000000000000000000000..bd84df327fb6aea5057ca1df5a54054aee6a7818 GIT binary patch literal 14224 zcmb7r1yEc~*XH1ZyW7A70t6?xJHa8iYl1U41b5e<0fGkzp5QuIaDpUQAV3n_-C-|z z-~Zolw{~l5rwZoIZ9S*E&*?tT)6wdx^4J&@7$6V``-OsxCJ2Ox0z7wu5rO|K4ms!7N!52LkM_&e9b`*`J2VvUX)%>MI9pT>}n0+Wq;1j zNiT*0fj~rDtzHRf%EH}__9a)bU;$$!-&W9???Y729>b#{V0)@yFz?BOm-Pyg7^e}Dezr@QT||Jjn0 z+rMG~0&+a2aB#76a{PDQKv9v$w?fj+jxbkiH#eYuFYYWy3|~4tpTb3mgf4m^nbqlH@^tSqu~Fch<~*F z_bs4iF$@uo{~j_ijN0GaOCS)h)(aU)EpLQ9V>Bb80n&gV2(=6{Q5#d^T$@}xZ~Coe ztg)p17r_G@k(K@C4&RgCrJp~) z{OR}kqBHB_mFHN>+qcn3P&k+qF)nBbnxw>r7#tjohD+1eg^!PK#{;APH*FUW27J7{ zoM$S@@3o14D%<+Q)`M^7x)gkQxl1mdBAeft1Y5q`Z=&9Iy4tuc;AD(nvE?e| zpFYE*@Gox;y7(RDV4D+kry46rl@#qA9igG2^RLbNipGsC|4K%Ta7l2yHiD*x;7OJB zo3Amw(P2JiNP?JI)%-CX-i#l#KH#KT3uM}#)FS02e|>SNcQ~h>vji3ERX!8=DF69;h=?F-+`oJwCX{sal)t$;1&3;l1sevnx6;jpARgW>itlQw?aA6J=SYmLn!>O^XoF)nX0%GhxdA8jo9aa& zQyxTp>7Xl!eX|QQFhDCFRAViw8KG&DnSrs5H|TAbE*DjexFMJFAGCe@^6rl`oN{Z( zgDdIaeo4HG%|uWLL|t5bUT-3qlr}&3>ZSqDPCrvoVDcFCkKJ9j@t%qMd7+DTgCWE0 zt5)#gmDM!0@4nADe(ks{w&+%-czm^#_d_BXEPA36Z#CcBNOR%b^nt0B=*jLThlLvN z;>(kpPU2COl9S@}cz^j>>GF2Wc|#25{B+D=j7BTdqKhq-mNCzj+n0&S&{vd;z|Ji9%@G6ok;jfV_aEND}xCtRoE zb9Y4*<8Oq$MaHxIsZy|YbvBqDcufl$B1J^JRX=otgRL-w-|hc#V91P<5d+5)H?O`X zrW`-^{npuB8z1=t2}E>1qf zS-AlQ+nq}3%aDH??M667h0Uw>5u zGxtwA(g+GUe_lwy*21=HAL5T5n^vO;9u4~hUZyI!_=z1dLdU3~$3*n$tGilDkP8&< zXSVozq+=Qlk@zGfvdWA*gg&CqMkgj*zI@e{y}q1WG(P`XH{$C!AvL5CjRT^aPK)ud zi)l|*lvbJ#w~ZmegCj2{mZ))xx7_>bHK_!JiAoI%qzHxcCUC^N<(^!lGipJzaRYaL zy^&%W!IuMpYdfN7k>nt4;FUJ6%!6J{WW}I1vK^!n5Zb}Fk&qwxQAiEXRAbH8zREu} z!Dy+KMt2KjUc^+2H^CzKaL8k)F)bBBO3_$`6(`FSnyYlkZzicONPEVt^o$aHC)zDo zYgoSwuTp(P^bFUt>NCQwnreU6!%LZ$|3%o@g1aR_w*k(H_zBE7B+j$ zpRNSEa;!3u?HCg2YnkH4&orpB?wxP2b&JyEZts6-BM}U>$z>ZX2r}e z6-T3s%^(QWIb^slD%+v(csX2lNA9K}CNRn{6sv3?6@_CTKWJzxaEchFWCW+xOLvk%5Q-q+85}scbL-aM ze~5**c^$Cl2)M(3eEEIj**EaPpI~(1OQUPm^>li*mwUj2RJ8lf3T0f-F8<0{@NQ(1 zaFR7L0U;sBdl7CA@2*$YOS+@E1|KXMs$L)X>f(*#WoKorH8$RxA1|V0pL3C0k(;wK zaUgs9Lu!sJY#T!1-`$?#?#=mmZ*lsHUavr;AttPnQV92+cf z5R%SV9{J`&`^&ro`7ynfmDJ;HRLf2B3&5qK18!F+IPKY(KJp5?38%HYmW=m<##@R; z2TSvUW7O!JG_{PXQrnuY&sHP*kG0nLM~?y}li8P|KveVd51{1VEw90) z>d9+5h;b~ky-d{+_+%ztLpVj>E~BPKr@DAwpO z{C-z&yYn!91vfPNv`{;nG+DZq_`UGREcawf~e!}uB$4BlRh8#@LGaTx<5n_yz=aobX#Mq-}>cs(QFph6Fn{H z&pfS<-)rZutxvR^T`-{eF~A73Fy>fHfJJ<74|mpiV^f*VHfDOO_nB!yJT^XVdd=@c z|o%1R-!gNTh}Z`7$)9SLg12Hvb2F69Hh z{X!?+)s1mlF6atgKVYiU(G|F}kYDpIKKnwq?fsnG8>!O#lk@fK}-m`c0RwCTt5_@0YiMPA`Rsjd<3%{(*vUs(Q^peVB{)~L%<8{Ei z*=6eT4xba9@T!}US$lVzXVF(Rs=2J+DYYQf1VFf8T)bF$1djKsD30Q)R~_~b=2-GG zcs94PH-tByR#mJS+|x3`mIMKE_SP-f(p*LWK4kA>d>yuwpHih&W#v6HCd3*e=HTt9z}Q3(*$5 zB04u$mF+pkB`1Lb2uQ3T5RA_$hYZ8$ekjl5I*+?4<^>wBM`h6M1Cwzhs`?o9NcoJE z)8T52k9_e%T^{@sr(QL zh`JRocro_`KPn-vwy}ZuAYHE(MacFe)Y?Di)sPR zA$WKoTD=op7cBE9Sb7nox$?e;E8X3pXlUY`66Q?zZUk|-(6~JijR-qHbzoz!BbG9|2CpM9zMLYE2*IPA-f=KhLR|M z%I6yG-e*9o}nrk%HU7t8#1-245>^S zQhwBdLn#d1XurS2Qwq748HhD|9nf&@ek*@#M6>7??7k>Yd=O+aY^_>7Q=XBlw4H=| zE>={YQJyZGHrDHxAHG4&5#>1dsfvV!JC5bB`x|g}Rm~IY@ILzW{iAjpY_(^qL@7B0 z-Tvx$4O{w4q5=XhqV~i`?TX5yVD?k<^~)9L-Sp93bF;uG%Fj;!idfHTqn4DUB=rg% zHWd~$sF>fS`lz7K@gLKGtF`^5HXR)u&H0D>o3GQ;FI%724;D~oACb$VJ$?3jfaDqG#O}g;Rpdx4_)@f8w=(sp68D2jHlN$NGE5>*%)bvu z%>SCGZ{m~nhU)ta@xc4a=#QBGnI2+b9Gp&{lUIO>YD~KVj(+tQ z%En45tq-T|XevIQ-j`ZE_7__wwMV0%P-y>nC;@)(f;Lqx91j2d`fJEOi&mNX=T|Cj zZrv5ZvsF}Leq=}vj*kBOi-JZLKH=_KiGe$_HHm=@WD|IH&(!nb@L;5_yK_UCPcH={ z6pt{&YdLZS-55ng+Vwxb(rnoHnujK)_eYT#LR@RSx6rB`3<>4(7uGjetJdgp8Tc7` zdj(6F+VOfxR`9u~S(p%TR^qS*g) zqr-_HXrSTf^~v`kG~P%4H6jyJgpun@YTQ*P2YO>%x=Pt&{pl+Sb99Tm6!QLqPP%7q zbSRF|bWhUXhrQ(G$A~Vdp!-&tWM;v#rX2mkU2yGGTg7YmZ8l=jmS!!4=A9>hhcTb? za(hB-bhlyLb1Eaz*S)w@YkUO{%;<-9g zWms#s5{cR$BHNx>*0SH~f5R8!?c0p&#!ctr7JeTJ&DSiTSODwaOnd5urv#TwCO!g3R{t zJmi}C=`9397<{y)Yio-XOz`D>X_=SQaPDk+nd9tBmQ@9p=s&cw9U~J#t|9Fi zA)B*1&pR0X17lJYRzeF(%RiIu`7qX>v8Loyh2^|t$0Q=4Q2JamIV|_5YI2I{r8k-T zy4wJbR>ehDcYrw&3&A<9udnar_xuT^G?p~3cQ@yIy+njv>Lm`Qfp;EFPD?T+af0OQ zo)tP(fTg5*&itxS{Na{I=Y*-SWxt2u&sa7;C%R=J2`z16G&M^Ouf2|fg2H{^#?9$z^?z~eO=GstB^X+>q_v{%jKM93&3q$aYLE(KAH z=5j*lQSer;l7!gTySuXXDAw1>BjqogpLRa9zR@aPVg7l0QOH)2zH+-AqH@zQY&Cv< zy@P#is$plSoaz3xMQ#<{J-;D;0zW^aNgV$YL`N6x6gKr<$I4OiVp;tH>V7B)oIVX{ z--Zi1-sHF%s{7HO39453+sLsAT{E1COQP)AwAVTm1^U@6^B7!~uc%5~9@N39N^;B1 zhy6&O#R<-$j1cIcTL@f++}l2>9j{=r`<(Z|q<~iiSuf6yo;X{82w zq|x_^%Wz5AjiTaN)S-H*QHzKDq^4#UG0&H@9N0U&8!tg=15 zFNPUKi{2GY?|?pmC>*PxTARtjwUG>{czOVRNe1)FSEHF+>iL_Ld{_|iT0&-H){2L~ z&w?dAa!`?JU^hU_5Lt!Q(JO+IkqHJdU^Nb+Wm3RBwaPUa?k@1z3bS9m>gmdIq*m0= zDJ?QP=?OU}9RdwgdxZCweCMytkw68{v1-k|H<873nTs+RnBoe&9(|b~hLVR-nNM+l zR+28OIRx^OeBzro)s?7u1rdwxWXq)>9r0wPOG1ze5O)1spm@NhtCt)^OjJT}LV4Gf zp-Q`Vzm%xI!}y_0uTr|72~~N6n4`pdW{T^K#F`MQesLLZrj4E59ZSlg)gNKeZ6U>L z%!RUz(rWkwsaX2KV!z!RI2s057wmsDXkZxx@xm)Htg$IkKdcsZ_8gEBn)b_0$Esy< z%PxwCEDPv}!#tSQj6PYR7ZW=o*?_0znWXWMo{M=)Y2h=`|01NI!0-*##Kt6Hg@>S9 z1-WlpaXw4^`d-wx_?~4=*Eh>pY%qf(Pp@VWBPCqb!uE(g-61A|w9?{m5$@;yaPME~ zB*Pz?Nw|Y966g()>3#E-QRUlkRVr9WTXATYA(NS2Dw9=O6%3;3Ap)th#N^HkCDZOa zbyvs7?kA>tuOVWnclB%aODcj^!Gg@IHcy7M5N&%!mEZ@^4AK!|1QgQ^b1rt_d^1De zH(3v<9Z?g0{?g`rtn>7+s#cbGVOjr>wggq6umnU4+Pwkq#ZHHEzJqDZHEPX-i;Zy< zGodsSB3dBJhg(RjLos5cG_b5fdnGVPUWMQqVdy1f8Z^5cRcbr!unNB|c+WY|$5Tm` zkN3}Lq>1QdX5`b%Ez8PQ3Yl=W1QFDx>fZTCA@$sb1YI@ToR|ImTd@`j|8r!dfO?iws5Oqv(&qlKxS^P^|snf-rxt> zGvacpHEzQD6+U&WW+Gimi^4*(n0Wyl%QXq##UzaH5%9%kmD@~&hiJa*Y z+Q6Cg&pueHM9?yh{s#6Bp=Vfpr~+@hLoz?IydwNPw-^P&t^T7xI!)}O(2#1U=sAn_ zk@urYH~kK9KA0M3ai9t*46Ec!%g3;~0`p`F2Ir*OmjN z1X3Xp`9!hmU;4Yrfq1tEzMYo(WvG7OI&XLC69eDAPkKVBFoL#F&;%~;1j^IRO+gOUAPU*~k@oQ-iw%J$QbANaMWQ=-JaxSYb zRg!)X)TqxysKw+-_1x{xAb!K}^P9n_=SbFU*KfNWYj5mL*sc@ysf0bTW)SO$&cWu= zM7K4tPcvm2NOuI&$%TyuoM`S~KCu_)T!Wx&k+p9IN$pb$_c}idw!{1E1*eb`NAFF-Qia16|;sRz8*TSh+k4UiRA7kqYzje zR}X$jq6X9vS21L4?L&<9#XNhLGP-*9BJn-Ee^EjBnw)fY!2@Zg)($-Nu!eKtz>B!5Zcatry4?a76fBiM)Q2}+?bYPl$`3+IPr3(C z*OJOx3)t%@(d^$`8q{4z1cTWnMvDrh``&ck9*+Rt8%}@{EAC0(4GM}T4RFe`lkFYl zZ7?1sTK|#wKxfknBS?&>}jlu*_!e`_iSJt;e3v#)_CE z`GU4b4TN0lh&I9+gua1*v*TZHT!QtA6Gw`-sJ1LW&B=a^z|HEA_!~V{=?Z&hv>EHm zkK~49oc<9!#>`7L?7clbwfquQ!pL$wB5eyj4@LJ@xl$OP17KKdpYi!H>C6uB8c$c? z244{D!Kt4blzj>1-dxp11aTNF_N1E7sAk{^1l~>@5Jor)`6ww4Nfp~|rzf)#eV4~4 zd$GdXZ-u!aUFAc*ZZkT=tM6&`(&!fMk^{CV+vXp$kD#PtBXRqGyZj{7+4hPrK3d;-Uta{$Rdke-e3s+*VLGK32|S)4EAC zYYPGQed!y`du|8B0PR$mQ0bqO{v29=*@{CInIrZX-%=&4| z%ebHybew_5YSdlSRx7V@lb~UyAN})VuV{QM3=dKNk&u%b6Y5{`4k)u_rec-GE3B3Dxq z4q`I?Dq53ceck6Szjg1b2$kuf{-G^;yu)Af=M5uA*6+N~k1m{zZvt*d3r&7*t*=u) z0t+i=-2-^PZiJ*CL$ZhKHFKL~NDqz^`p_>%M+s-%Uak5L%Fj*ga!>b-Pa2KmTACL5 zfj0f}edAhCJiseytq-Gl=*AHj*VId&wf)-iTH|uk*%1wO*H0eY;O3Pj-%|ZX_wX!=4t==!U zxtST`n}>;(1NCXiAm5K3kI_dQX5C8{WWR%-$G$M#;f&NwZy4H1aM-{Av~F^8;KET! zRh7G`wsttTO*V30m_wZW_QV}mZLMh|u$_Ip8{94*bV1r7AM!8@MSQ3>!czN`8*2Hh zt*=kU?}lU51D15q@x#R0{a8?1^juj@g?j14lv~5eKHKh0jFRgtQL4Y=^cyF?<+n!^ z|Ll;$ZX+O5q)B7vd@>o|K4Wyuv=)Yba7>ck5|hsASawX2V??S(Gj46(V)bM4Q`$%J z92jeo128#~_9lk(VfK{S@37zHqcv6Mc)1Tx+uLmOPpmCI?HIoQ{mqAvv~tS+?P4Z6 z1b&Z1NM?n!Ul?2QVjrb>QyEEXgPDZ zT)xG1jYYFCb-CBqmEfJVHF6vgFvd`7y({+$xjV*E+`Z()c2;JnS^Z;)y@}xxOONb& z5jXD|qhf18as=pO2t5i-m&Uk4>+{dwH(vBVBZj1n(o^s`O@Q%>^K!7B;%SfC`>f-5 zR3)D^IAXz#C>IOFgC}vS;)G^e4wA;6k^G7UbEoJNob}!3X5SlJuAE~t%f>8rzQJ!A zrxt~j*w7$I{;CQj-&k%5Si8&CgvKOi~nEi@~h&B(vJ&lDgq6&Muw@r(R70G;Ky&~%P~Z5~7L>v}G#)btZK zk$D?;-1Kx}CXtStm3F@J8$bjk3>lTF@$hsqG&^JbSGooL06Bv6qr6G-17TJbv-R5e z90wkO<7t+8Bf90uUFymHhBGV}iPphhSHp_5&54PzZGP(lV%Bc!gJKM%Z>(el2>99a z0=K?t^uOs77+gOb5ANnQfh&OX4O`m^ zIu2cL=kZCQHX{V=&NJTbWm_KZMn}Jh*6ap0hALMDiP@1)W0Y?@XY=c(JIVRv zS^+Fu!tfEKF;s9BotFjCdTjB#{#r>GE24*fGR*in(zHEyQulSKZI&aJ%~T*@Q$=B7 zW3N>)WQB5)uye=!l~d4iz4NvGl%5G|FB=tA*{d#FYeVY+ed=&K6#Li}~a z`)8A>ZWpslz6T zRcZt0d#r68awr(2RXR-te}v?UO+L>6hzCRFzEPX|#dS#m;j6aR4f(=`s=Z9Xz=#eU z(R#}hz#$x-sgGXo?Nav{0&q|UhLd3%Rn4i*bVp*QX4e&|2W8V-=Q#&65uK{d7ki#A)UGw!poATd))>*=F}`6r7}mZ4+q`g)`vft zEuuy~jA*kKPPn-Fw3?5j@-SCRYN|P{+R<85;<9u8Sq@hSFtu|#czzTV2dnB1gv&x- ztc@JvEa=&jogD2WW$>ciF~5|Ag?+2iY4kkzes;NX#8c81rC0jxLuQZ5BjxDu8gfJC zifteVA02hrI=Ad^A347>^(R*e17Nv#w+9tVl)9@mvNui;K3OBhv>FAg2*+|w`W)<4 z^BSeJnm@*!DX^W*fUOw-2VRxLguuGZK{>eRf)fpm?yaoU>_1z7;Ftb4~>RpPf6mFNzX&7cgkK z$KSDKyP9>4ZY z!!K;U@}<_os>s*k2kNEDC&yP8j{1>rL}H0vR^`0}=tT5ps7h-EYF9c6KK) z*a)2unYo@7$poR^?tb)X=SA1P!j&ky%iZddnQ6aDvd{O^OM1u(0m zXDzV{8X*bUt2v(+3>E4dng&eYcnRj>4~hZ9H$RYMKS78%aS#14Mk(U-rC=|+I!82t zSlU6^{kssh{WoW$W*O$MJ^irak)9rU%qcTxH5+x%`ubNI(IB7gmOPGoyzXssUthD^ za=i}KoA-D4U!~TJ!tj$Yf!bZknbUcQ5q2f+3Y9o+S1BS$+i^A*THg9T7~cRJD!|*d z?-WX`TA*MMhx2|}_(IYq==Ng{lJYFWTG^dwm+dk(Q8p?%28@gDheF{^O$9a?+F3`C zj(?r}3nexkt}`js-;Oug_#an1KPRC!us0FwV(Uw_+i2p|vobUA!|QHK1NGMOCmLY{@d>AmT9MrG>mj}sd@#y%xVJ-H5`I1(M2aXr*uZlB z5=f^3j2Ql(X}jX;GQHs6HH9|oylVm2RTBNwX@t{l_eWT1u)>4kQm?#6GAdl*aYK|6 ztXxA`Q1|>H{dlZK(JBO&Wa)z%CMPYE<=|{w(9t8?#Lx2M2l+hGLSr`Kskd9Mcx#RM zYR3R!5}@#TrvGu0PV6mD+_t(pkJ7zy~t&3Z2z{Ce(Xae&c>kOEWT54Yxg3ePq5Re0%)nXRfU^;Q#Q{ba^@ zQz540=?H_tQdI3-`w#q&?-HFNHH`??no4?2)%7##J#oA86VRCH-@{V6hhq46ix^RC z`}Bp*Q|wx%gE#8$+*WnILVH}$zJbK%mfsy4lzxYE0cR&pE9AL6hryyE-g(u|LQP7| z2Z{rNkH$uMB72)VMbFPLJXj?~+h6`b#FjZNz}y3{$1ldpgb?PeH`ENe_86P8!5zqK ziAqoC&A7~+7?b4t+fVnnf}haeOqKJw3ueA5Z)Tse`$GnhYsknR=>)Y1lko!DMz($p z-#+eXexaIqAD*ZA<1TE30ei||Pa}qvtt>)V+f#)XJNm**@i?(iBTaMT#xZ6xXUEn) zp+679K7o(}9knF8;2SJbeQ-D@;imNa=wC@-fcCKbg6g5~+t?&SpM_HgNJ)JYUf7a1 z%~0(iKVj!Z%uf8(RM$sJrr>4y^3w}vUbrTbWP4avnbOcV#oa4Qta63Jz_=hRU^XOm zL#$2vgllXkhU)FEQwv@v*AGXcrWc(AKmYTb_f)w<_~65eRVRrQzv(ppLA*jUfZdt( z*LLf!5bH(bb(d`1WSB>Bh=q2PCFQC&1`2kM9p2eqx3KW4+NWCrLv1$kxIsQWv{4eU zdFc0=VyQ?;4CsV72;MdD0j$*TO&F>xoz~$1d*gJ=GvtAs{TF$|R1BoCj@d(8x$veS zg0f0u@^q%fM#*j4C5&S4$q%D%jby>z0*}0QqelTo6s$GIkA0YZ^51>xShlxwAc#NU zu+n>wxFl8dGbZeoW%bv3%D2YuWd3ZsALmp^#~b@o^E^@X4+C&XF=!xEO&24EabvN4 zUP~$*8W$w;Sm%Ji)=Nbyiljk_24gDLOB>kdI~$VmM>0L?BWa@>`-Lj{w~yeZ{l2`u zVdl#gV>!qMu@mfQlh$a5N_;Cjfh!3tFF#-j6S#W&HT(P{N(dZ4McUijb*hb+QxFya!hT-_4t1+pcZgyd z%PJqM;+y11%D+5%Adtb2IB_^}!fQX1BjjNRkot?)Q35}?2ZOQX0q#b-`3pF|`JKHp!$%tO%XsOQFOD;hJN)eq z83F?`Yyk@m3jjJ9g_6?tKW-qEDEkflqeHV(aPbvxTxZ3iR?soSfKJQNHfPAg>Hl6T3;H`yoN<%|KrZ^v;PB~=Xq|@(e zwKp<4I+~rGohb?fzqa>mp~0Sxj;@T#c}bck^$}kDm;@Z3{+Tqg$lrd%rcyBJRFY{H z78b(T&96_luqmDkxcrgr@$doNj8Uj{_6}4Rc_6Oi-1f90enx zd2UW1;6K{@$HgNg1%U=~KfeKBY7%xM0s9%&=cWM3MkC6w$w?)XvjF%4*eaf`t_vvy zwPJ8wcFn+ba54F5jGZK(QlnQJ3E2PECUruNeJ^q3?!H&ELvbi+S1=MU^zcn?gE%WwT%6JeG2onx#%uDJUp0~ zn9Rx0e^uBj2Z4$WHam_k9yy8VdDP0lm6Gtf83^han|&|X7m*m0(!+)n92pX6#UpTA z08R#srrqy~zy!HrULg6O%O?`fU@I$*>oPoG+(T_``l9fm@(E$#XckOn{1()!1HK{;NVR(gtHA??(cl(INj~g z4s>FUo;L3z`kXI^gz#QJVEO%?y8pR)7|@2?TP%TB8P@dgbV-x&=lmQ)!)C<-tRj^`1jAZiXWr^04lDHl+;HB zDJhDNE{>Kqb`}7Dd}OLNf{w;-{9Ju?L?l*BD8>SQ37^z8I4FoQH4T&`QUa#t@o?cc zTLP@A1Ez>VTPSliEanj^;~ETUO|6B2Z)mCfjQK~l>q6`Np0C*g`(punxk4FG;?tR_ z$;pvSPzeK*IMVQs9NRe98O1{Ys3>tHjzFkr*0GDY2t>G#gO6RKZTeG0BkqdMRRN@L zHHBlF$V&hUEKGXWkYkpJc$mP-23J^b0OoSRnz4gX91ugIiYX8liek$&n`z+CG@E50 znTBsVu@lo5O1!jQ=bI(~x4%8(;aC$WCowjiIk|a3xdvZ{AQU?gbPv^^Twh;LsYN4Y zm-%d%J=Zm$L>B+sv?R{Vh7FtY=^{iRqw3*p-{sly_Xuw6cmW16uQDbs;{;)~zPqeP z1W<$0VUIpMRH_R4!h%fBlzs4SMp}ZC>q(+%ilCa%ZxjGWlJ*&~Uk{U8nvipi%Wf1~ z-mgG}XmAuIE^X6X!lRf)G;?wi6(w~*H)9ZutWT&}@~xaR3)e`TqrY}$Y8%dG+F3pK z;K9$x4%m;3>50r;C~4jqk38eoH)sc2D9>pn6|r852u)SO2lh#GVqqVP8c!O7vxT}E zQH(}UdNjQ-F!4J8BB1}7{5%4+?exIOhq}D7B(5Zo4haAubu5xm;2emaIDAhCqMbKmd!w>T?alLjwPBE^;6SD9AwrP!PqL zHlP(VEXSx-xO&4U89oADLn2T@w!exdsj&@*KeBJ@L1wXwgZ^3L)z?#6-!JFC4DgJ4c2SlaC;al3UN+!>&}ZF<-zaE8!ltm$qzO1BSupkc2`|K-6F<^mD~Km0Xokc`B!mvT6yq)h zYErZ%676X3(752+NVO)k$+L3>w#$kZ06)llQnQ}}=EMjVtyv=y#ZE|SOdB);SSA1D z?^@&eVE&MsEYzOPvc`CXCLILO#dC6qjA6SD`qeqHU@7*%E}B-sGWUJ26|6$)+&|L6 z;EV9@j|7ogZKc)n1)l@6WB0eBFXp}AjAH+6?_V5wv5STT&`u%h!J>R)rUYZE%F~X~ z;^K@TJ|WU05^Q+Rs(Q)MU=vE?6yiLy;Y2|C;ri$MPx|}%@l6Tp;z3GOi9GW7G@k09 zNSP68yyT`N^rVS|R)v>h40G>#wxu)@aTS`Y-=RBPmr$2BF8mLK-qI=x6Y>+E*bL&R z`9C}SST$;)Yq52CaiPYwh(a33!B$o%V<}3}IAkDTz+iCP+1|$AGeoOo=$y@fQZlx|W$2<2jhks~zNK6!KsdQCHJ9BAmYt7r}+9=nEf$Rpy9BK>~ z*NYwcA=D?-Av8V8B}z7GEvf+z1$PuTp3z8yL^DZ)OY8EJDI=@acTK?xH+>tOjB2|g zlIrY|cD;u{m#j-yyrihQs4ir=5_yaG5rI@uL0SI%rlV%d|AkcqTamyOc)#180 z==aqtPixUCUV#1~qIaU#w=B3Ev@Ec!|8vp?qF{8{Ydx7`55{benU?55j7i49hHx;kqDLWkVu8w zz*@)FYf^qDa=ul;gh+Ssg<$DL7gd( zWdXM5KjM)aCmov|V;-;3&Bu?!7mhx`H%vxMHlVwp|D@b%ukiD_Y3x_k&*Pt_I-z=a zdb~Ov*>)fS=gY_6>2v`NnY!oS+G18V3HwZj)`( zzQw;acp|;^BsoBzCD8&k3i>&_x!{5p1kgc*g0uqmuB|6kha{Wr%MbM^Jp)4)k%|qY za@ul#g#Q#(2ejz6S~Qb7`HBvhBYTdlG5ViAp0eEiJryBSil>P;BooQ?$z_>jnjA8M zHzKL=H=1l8Z=dbJ@aej)yT!WCKKDL5I&2&MHGpx2a?N~kbgq37e^GNDfSXUAK=hHA z1NQ*4nWC090uvXzQS`v0)`LT+na<1l`|O;I#$@(t_Dil@-v5 z1Xv9yRz*n?f)MVA8UQrGP9(lqaof6%fTYgm$u3K?#kAwf#Ao8TQydyLs$MT2JaLwC z7J?Ua1{O2wcZ~9f^KH~=PN^l3IPl4q>#3-+(gM|A62KNYGxJfPXC);^P z%@^8r?HhQltR_Tx<($!NC+cV<)eUBXiYKd_wD4>}0w8bwOU#w@j?kBH+XGAegd44{ z{7!i#&1H7--noalt(@)@=3>=X7!D>phmV0>85con4swuH z8QNo<+@7?}a}*7jf3|{yg6m@GCa5K7WSi4(wlg`SI+JN5ppH%^_{GMlquy8?V6!oE zXpv$;IQo^nk!|(ky@&VeWhvE3VTp{t7~HF-e$_`7hR%*&`+sduzyyJF<872p;@9Sv^#WrppBo*oFN)iqqzOe<2W$zA)9wZ)F~ugU8ROq#%Uj| zkS?n}pPoNOq7TJA+N%5^5;7FbYAtokIlVm=_5FMHI6&OPU%iIfw&c#dw~({K?RdAk zx$6Cu|LU~T_u)?Vl-*z4>*M7|h{+Q554lfo98W`=WJ9?c9bY?6;)}@E&&=*Ryr}#x zTe=PyPi&UB|61`*+UN0Oz@oana&E`J5(u!%!biVpzPhd`&ZZB&T|QR&Gkh(7OWl}1 zIGT6lSvwA}eQRt4_-9eWmkfdo#T)f!GfJK`7EK zDiUCUQgp%XHkQ&*2Y7Xm1N5MUh1{UU)e_b^XuipxMPtLh;-sxj(rh7ie`N=lra@yO zPcjG@bAJOP`(8{7Eu-Xncx)@v_2LTY+psXT_h5>~#C1-?2hPEE6Z9M$4Bt*qv-?sm zwE-G;KAicPQubcGu*qCf~`^`Dy2EdQ`ak{+fW~B(LiV0N~U9b3-Yp)0_hU z(6Ba|I&M13N`hvN_G~8Rj;0oDUiMD!(g1+4m*9KS-onj&Ju3J3_Wb8xY9ak0Kju)2CXxS4pdI=E8*yORH|N7};G%*DpZ&BoDz z;-7j=OdZ|bM5w6#Y3P5hfA`bE%jSPua&Y~xVZ9HK{htzcPBsqq|CgGZjphGG?Vpl= ztNm+S|87qBpUMP3+IU&m=}Oz!TR6DBcTJQB1QPyNGyhk~|9130G4~7Ki;cy*k^V7-D5o&{|CRS&^1|%@*y%s)_U}pgSMK|)h$0KK|IZAIA{QYX zngIaf00n6YO)sdE9E5yanVF$124iS7R4c$h1k@~{Kpt6PVXgrE*u(SOEO+#N2K6^x zRb1EGId0~?Y!wkaPG-v_1`3nTx0>7e8OO!HcOIXmON~7&1+}!_ugRnD4ylNe@Pu$g zVCWyj&FxjqG0?I>F?C$B*0{*#G4l-Or@3 zWhRL}NA$A_mut>!sdB>s7PV}Mq32&-RC3YPwONaEBc#S3G#Y7T9B?spdOwkCx?X)i zkm6((waHwOzW3V9l;&IAkET9cgyw$)K~N+FfBeyB5OMyYUyIS50j5>OEekZe5+5V|cJDXJ%Lkqa?Bk$!J zWl2^P@@d>PbRNLF8hf0UBM+Svds_uJ``(?JKuXe^nkPlySYk-I`NqWFo;SDS#n6-K zl#xeSe;MeQM$-0DMYCY5h}_K8?j$J^O^Cf*YuumrVe~E5nMn=Bk)r(?z}FueQQ~&% zObjKHPCz9JgwE8f!gXg`_Hh~G9HJQ_4`>(Zy5EY%FSD6mi;S-s=U;CheA0L9NR1&A zX_W<+t-Fk}+J=bTt-5M80h?t(5F{9Q3^HL2l8d>EW!oCvRgt^ZWWT4AUk`4?j_uB` zx?|S6Uc@IQX?eZ%T0bp6lEL}$be;F2q&b)6cp$^Tqt@=1<@$`A+OO=o>3hLgbv$$Id?@|ilipc1Nl;t^`%|Spv9oN^~`ikO31%=<9uQuOp zizXF@TIaUINKjuGeU(;i&G4XD15{IrA55hmvAE-U_Zi-!IL<3Lj~EOEc)O5 zjdeB=w0acve+*$WY+dA$C&JkG9!X&|3B}Vw%(8FN^?HPq_04O4CSCJA6Df2N%oLe_ zp-h5hc zc1;Jt5mf;*Zn>3FDu#YeOzUwkYmWj)}rp>JR&#GLJw7jl>d|k1C1&00f5R${xz>Y zHXsbeM8?!n!>7W5iTfaDT_u3NU7d{1*N0vEFFT|*T5RSTCM~#%C1u-?+M3SCky7Ep zX?L(oV9S24P*v0Nm(9jm6_kMIZF1Hz+UNjk7n>bY$Cw11Zzjugt9Nvx<$2~lY`wE_ z#Qbby{Of*Df6@Qi-^^>@6-z|$j6% z>(H$_Whyx_0tuoFE3V_b>72z{HbIy2DBKBYssN6pvJxdLQ#ZjsN8Ldv8?#Vjq1dW_ zIjCn`gB}QK83~>lf_+S=X4El)zj>%3pz5KU$9zKn8CC4Q$AoRj0m`9&G2+m0r+CzU z47MnE4uPsGW=yGWU4-wjh?y7PxmGD|Zl?B*-_B+B6DK^4{l}L7W4b+Sw%^n zrC|NRNml^98T`8Rw3={h*-;MOPDf|I&E?eM95LU#DHLyFsv>x(9~)pu_@Asnog1pp zX)QoFrq{SsE!^l&388PDj31RMYQS|-c=u0qW(%#Y>iMRFtydF5C-EtMn%kq!{)FS{ zo1vKO{BhUfUj^(Z@y$maFzEY7Z++Q5jjyXaI}Rw1| zP^kd}C-sXBrH#yE6zxL40?r9W@c=Sgs1p9&Q$E1|Oy7Bi^*gxk{z`mC@GkwutzhZt zSRzPWlJ+T%*Y{jJ`4^X26&?M1ZsqNP7D29nX(; z1C03DRHnYIlt{FGi(SURWX_mQ!8y3kLk&|eo&!2-oSe=mysesG|KC_We|#ekiiNgyCpGJ@w0%=1 zj~I1!W>!>;QNUu6jesP$d17aQT<57)~c7NbPUT^A9z57NP^~&cQXM47N`wP^5{-YjnS z#Bl84s0y1XeN$d1vaP~;y@(H3^jP=8>`s`Q@9@2Ix)>k`e_v{ARpzy6K}dBM!PC_( zdqgXWfy}FWq!hho|6+(dd=y)^p5{=vFBWvzelbYQs^Sr%)pc7# z|JWc`s8a7@US@UC7mo4kdZ&nWIXHKCjwz9{;-}(F@62D{vyRB(A`uK?J{Bx$+9Z|R zIJgF-kz-x>>iRlx?r`b!n$6Jr0fVEv40h+X7kxhOOYVBTsnL2>lOs(%?wDK)E27b+ zGK=4NAK9NS*7qD} zrZ!dRqeZeg8(&xKf5BxeXNBxIIt9a{A)Ds5a~{5*=#K6t2d#H&zAJ8UqA9UFeVGWs zbD{Wp!=;>;>I7jx;Lp?cs|hF@SpRdFy4g4(U63rc9GQ2qu6{6cAWx~GQeHTzhmP0V z%N<&Pbz->Q@JfEnu96JGJ5;-&bD->}LSe^t=(y36N}K2%!B;~qpe&S4r$kRKK(OxD z88T7$w#!aM9F`;&QoH{3DfInt{=*XK{H2E{h?P`&KmxvB_IcCsCo0L7?ZG${4!lQvNH?5pZ+(~-|0r}9I;jv)nXqvRWt12g0yT(#wQ2JX~7 z1EVk)PshfLJOoVD2G+HoC{t&RW&0G_JIuYhIjXXCbl(B9Llct=ftWmLin76D{&5n* zk$!iiyfo0SEekb+SzZcE0HHmS;o^?4m`w;n?p%+H?cc z5q1qUWH#Acc`hK)fPSlyc;f49-mCeEnNJYihH483*;semuTf|EI48iMtjk!@{PKRD zzr%?{VGoBqvmeiSTz^>NFoIeBhlH{mEf+R{ia)e_2H&%Os8kt10TFHBX6wETjFAa5 z1iLWC_i*BL+tL;<#1!yoOkBcPlc1e50)pk%I8%xnu(~45N`;6J68AEE$tok@r!WJ< z)bXh&XfZZZMpLB9uEt0M^Nr|loaYJ3(=U4x3I!ip|#>EFLI zWr_N-&CllAaFfEFBSArA$o?ebF%+=e1i7uKVo!!fQ+5X4zyc zSS)BSwi^8)@~ULW z(4h3|eUl1xw~i+hVIg(zRjO%!jPgz?pk`}5pmJ?=?nC1bd0*fCDbA%zKv)IE=eL*j zw~Q}=n#E=n#Djuo?N^f8oC{)a530$5EU5XkFliI;>?4xnKn~-;apWOV&umUaGW(A> z*(M3)eo^AsoW8a4Hh)SDf&5>y$ARo!&-J^(iBsG^k$<)Vr4Oo6wGNE5%e}<#w`OE& zwc#mkSk@K9;dR{SKiLm7UNSL<%aMD}X$5f*bbFGP;sQ*$M$|M-T7j>Z>0LWzq_S8> z7r+j$5h=ZV1FkRrOreqN?dQGODrzFi{k!wK85M-TKOj(H*$@+qO@6^R@Q;Lfi) zIavv17oB`4E9^^jlUILcniADACbp{$QZ_qqxz`f^K=DGSnrVmnTilF7jSq!P_tMXCp#PSh%M3QVM zT2z`yTLGJzBwu1oN2%c0NkSd}8@vSz69;s3O9G!8`YaKw1ulnA#GBG*k4Pyd&R*R$ zs!j++zW}nR4-zcB*w_amLFj{qujEg&2xlBbGa(aRyQ$iCBTn$NlZd1IDE24;PS;1$79%J%A z%#YJkw$Na!-OmYnSZZ3J-`m}Ue$N)iz(JQ_Rxi*`uGKZb+CrL zZlJPKd-rJYMtc}2$_bfOrL9S^;&$o0v4)s-0GWRX;eDq-dGc4!Z|bbk@xDv_dzNgc zTY0D$6h#<~;o7-c!;Y={s+$a5Qmi%bdCf{$-CTzs5ALwUj2ACSSEPXqj%zUU=Fu*# z8)R0cTbN}jLc{%E8O>XtHd&@yOQmP{kak|JjjVs}kmI5Z3|QkU?r#>eYQfvgIOnpH zst62h3Abw+_NRWc`=k>k=pLi!S?-CNqsvgOLqD{c7O(v2@pC%Yh=K+Kt1>IX`m%ho za_CRB^0fQrWIqfc(v(vgKAL*crHpVt^nsCxjHs6{;Gw$7u~GSbD~)1*eRIWVC%~eT zLWej}nd!Yc0X$9UVg0wm%OY7`!ScFDRQD_6vxi@q7^#D5A1c~;ZEe8(HL9d3*)AiD zmTK(_dbSz64Ib%ww1^o()WNNzX=MO~5R?rnp1p#tu+oqO|DW zqneJ~;RNaeyNQqmEi2}%_GK2ENkLnVCF`PCY{I(bHZbFK?t`>`F^)ZksyVl4i)p1K!y)H4L#q}DMQ@JNUL97@XJ`|@dA%OW^x0=vvWoVJUifYWS^U0Jz%a z%_Y-^u|>T1AXY5oV@y)$zGN;C%u19$fH}BX7|tBl{C?FUPOa7nU%9+zASYv&ci)j7_?UhC58URQoZgbvG0 zEa79uodl+jwt;)&uw@;4VeKw=2*W5Asf>4n2QW|3tce#yNV3s8uPHa|o6?uRMsXMn z^oS-ALVXuXWK^eeW%1oJybY!c^G^HeR2a5Ayp`jY>-Y{p`62E-a0EJQ$*KYZiJ^5O z(cOC`12Vkc7VbGUQXTBC=CxFh$weB%I0BV}vI``Q{0)$H|{GiSu*6NE&P> zMKHpJ6EDJ=>PJ{K>hqXYMNZSaVuBcRc~Umr6Y$0RVPZwl^l0bBlui~ETTv*!IqOMg zf#U$~5r1DYnxNy#^jnSn4)dWb20N94O`Dy5=PN3G0-blmjALgBgV)WbV>I~NpN!$d z#gGn$a3gtn;5&3Qw~wGO1h)_xApJf>qjn0CS%VqybvOMP(J*d<18NeE+_~k89r%OH zLdz|gi6w$Kx^sGjm&_Jtoh0}{cHR>ybvFz8^j!R^q9hjujO`3{5!S`2sD`Y0RYl`S zghfBi!sGZ3!EEI)au$I?WUjP}&UM4^uNUo6ruJZMSIgmwnr@GZ8Ap!nhBdB;wj z?;_}dG@^SK_l~t5iVs6^*cB1|o+ws+iWKt<7_HW+UsRU6p)B$geX10`(hzix08%`b zgU=8TEjL4D1UIl3jJ`Z!xu7A7CMA-|Q)$bGkGO9FAgImSusf~8xYB7mF+Pzl$tsse z3Bw|4Q~?=jakSi{*6v{?a$*J9j=XQ&(7*nA=+Ab^$Ea7~6+xWah1i7o@%!D+MHm-; zZegjAoUp)_j6{fK<&z8adkc@9IcI}^!mBuw><)l@zMeW8whujc)u3g*IEGq6Ph{!` z!p`iMJ(pieY$gr6<6}57dSbNxP_7oLx6w8I`oQ!{@Z<}KhrmhmsNR+|X`YUoH!{C>%F6KZUTsWc=AuTCNa4NU0 zI>kG(Xjs=1ULZ94dC!)~i!}zcT{!-QAMgH-Nc>9{w)DZ2i{-cs&Fb2*c-;5_U#I>o z%E|~bw_9icN-xFo%Q%1h(F7~};1RIOyIX$jG>YMUO5n7$$%Gy#6<1B?Ow*uh<7apW zGG9KrScVF`CtN<5-_jRyXy03$W}m6=gKng!;N%vVu3(70EbkrmY?UX-iw zhb?`CtqJv*P(#uXcj%H8go|bhGHusy+|clps-idM2^sB6>ZTi0?+z@#{p7fbe(m0d zNnv8TPb*K;5E9W)QraBUWG6j>@XsdNNLSsp*_GpI7E9RRA0=bQCm&fZ8^-T1hVn3_ zn(FFn2SUE4++EMAt~6~62#pi+o&Iv(kmj=jrm$%8MEdQS4=ll4Hez}M ztpWPFF{0*koIJz_=+k2Hs5LGm$qq8E9aX3X_N%jbFLFh>}R}ZQhFOhvf^LjNHYQ`EG?L{&R6OirwE5dc`{3GMd)QFih-UpSwW15 zQX$9u6q_Ap8|&hDG5URCT18GpLbARM$}Bn?yb~|L*q^!!#qw2!C~v}AY}ZsOVs0~T z7wr+J(U{3>ncBYw&nMJ`AGM)gpf;zzBK;Anm;%AtC5|5(lUTYKcs)dy;v)RRBCws- zauB~yhXMtPL#USo^$kS{12faiQD8^CDa?bcVf6^S$uzd`%ki^q+5SFyVkU8Skc|~g zj@JlM9XN!u!};Umx4-y}anN$hF-F{e_p_HdwfV}rO1>n|3Rxxqr4H~!b9-=^a*m}E zGHY|IqGPh58BoxzobZ%u%AC-F&YS~tlGFilM&{#8xNR>TDw#a zh}Nfb_ydX-JTilaZRU<-J6w?f0n{<=n_FVD^>^ex?vbq5$QD&E90plqQS0#D*JsS_=3$L+d$$2+ zoCZCiXUTRG;wnf#W4RnanQq^B;J2G&0F{0jC; zN$QE$SlQ+JaDFt!kA~c4o9{x2ROypfutbnmRBC900)wttmK6~?!O(#={y3d?KH&_; z4b%;^O@wKjscJ?QM}|>`PokGR`-4aAJj2aE!q@n1F9)m`I4T~cqQTYMjd$EqclW*H zgvR3;X``?E1o=fD<$-4_c6i5%Syd4VSg4rJ7KW}tJc~8^n5u1LlQZ(vaH-JqK|4B) zqJ}dlmBgMVhA{$WboQ~38&88FI8ti1 z**c+x-o9Pg6Pc#Uws!1{RM@vQH9=d#@xKSb&7UW?S<%*>Zz4PReT__lsBe+Izu&#Np1+K>GR4X$*eKd;Sz$;TtVSG;v@MX)L1%5TrcjYt4qbzWoGWOf?EmF@(66jd=CjM z^3t6a(-`+ZjiD&=v~RJ}8s(|7|8R9&j3Hw=3d?)-LWG=XSS>hZwg|pCodfvKVKGW= zhx&dG<>l!8`V!VRNE+mFh8ctrA@+P9{33!}*eC9WEp1^TLrn>-f#!p1f*IC`8RsO3 z(928jHN@F59Rz583Z%(axlxIptuv*bxKhK9=@)`P_2#2IJm>hWIm}3@b|2A-YzC%} zbA#sLFlGc3@_N(}^Kn0Sj&wQFCAk-lcV+%ZJv$W z8>EMukUKZQ0M#=3)jnagJN4ZM^5*U9SEWw%U2nlQ+p#pkfzAO=eEBkB?WB*U<&qoT z$O9H8Xi`wt21=$s%Q1@AR!x=E7}`IA)06)aCql>UXQB)crTzp@qVd*_80m?^ec-?w zwu+g*Y^#+q1#4-~$Xmvwmdf9*QQ!^(D?su=Q)5&QoecVa}srqs|eVAQ&3(W++#2ek7(4q8L_u z1gVl`2nvt6R7%pPIaXFk5ofVRda4iwNp8BMUDeBD;2zzp@21A!Xbhk#lZMXV7$I8< z3^L7w({Kqq!>Ziv=;`4xvg-$a<$=~NEa@4Z{wyK2j&Y67fixog&$EMuTfUJT9ia|b zis$Tn5z?%K+i{t~-|B7&&sJ+Z<{DkzldsXnSF;=%E)}ykoXD$}H9F=OOJ*dr{JbGS zG`Vl_$45KNG91z?4*T6XNRwnwz8-_DfxaqY)<(Fa%pS>e{c6IPO&XsOfcNH?B1Azl{SSaF@ioqY^u`9O$-aV=eiNYxdy2`g zBf_@S`+AFB)@mCmS=Hxw3J? z#Bn9`qLKhZt-vS>VRMmXpJ;fK!d;twhm#ftXL)d1x4gq$B&6U%BMw8ZK+=4n-BgtE z2_1?t2A6y(V=|%W;P-JjC_JNMyAWy6G&A|e1@wBq-6wcdg>$>+>-dzNpIQnr;YedC|3Na+ zN0VETu8J7XcB1mtI-Cxd^@$>df zJR$8BiiJI(07gU5BL*79o`&x_Bv?axz{|RtQ@;;lKnNy!eS`?45h2D=!tb7l9}OAU zySnt$^WT9p@x7g+Y;CZ`LKDL0KLZ^?Q>=)>5}VJn zLcb!9JC$gD`h>UKWJ5d{OHS}k4ls4)kQAk%(x?~S0Llu8Hf zqF`!$SGyY=<*7}RfloLNm;{Wl1g6-k zt|#S_hbd#{8GuBq^dz7hbk$Sg3|3INW)C~KaS)|E4T_>PljD9=Z- z*wbD0XiNckiJNEk8V(ObLoAhC)<8GoeMMlZ{ zv7B3@JcYnXZacv`5zY~#2h8a}*(LaAMy&ur;g?eeOmy7CsmFdiCe?u7bzNBaQOsd^ z+qws9$1$G}D?aqj#Hw~_t6NI#Kw%6GoUM7IGUc{>D5>O`plwM%V}dzh!q@&@?Q$?p z1!P_yUU+`s-hT;^1yKs;-rWnRhG>eORk)8iYxR zj;8odZzM{~)wP*_KjoOsLjRlDST*%ddn9|OJ!(Gh=5)>0t?pj|vd+vR`nL8#%FhN2 zv7tZJA1-;79%N=U{}?ieRu@gV(t0zLHTmuK|4D1YT!V1DsidN-cK!KTEm$^t$N$Ey z*INA^J`l@&K~$%>~iZHju0i$;l@(hi^_$JTPWTEto#_H zyZFwXX*9}la39pMi84P!lMIS-uY#|5@zj*B!Y_7@S9j(_dN+t|c3M@_mm3$6&qVZF z(F5Kf8|2*vCnhGS@j;z|g!n#EM@IvaeUsvgbI{lo-$2e|Mb_U8;U`(CUN0+c_)!P? zV2K&gMGm~AT@%UBN>as)P*B`?v=cqDcRP$ow%hT79Xf#h9BOg;aAg`xE# zr2fP$x|t&KST^0Xp6fXyL}o;wpVw1_dH$mkm#3wl%M?X7A?zdO+{rp{95Vt7g_6V? z1c@;7Wz%;N_>BxLjwy(`Wdb9oM_;|~SS57xkzBtJ0fUT$%;$j8*Xr}rgwUDY)1n2M zeHhkp(!hPt%i*!t&8@dpy*nWc@{GxGH(~617_@{F3&F^gY|z8RdSEH|6R{Q?IO@l5 zJ8e1)rGAqv9aafq^zQb(Oxxp(?cgQ-Nm0KT5Tey*q3b^RV2$~F#x@s$rgWTRg;9yD z_c%d1+!r00{6vlIXF+#|A45A|XqH<%!I4i7J|ygwDs^VI7en37Ke^E5-D0v0vn#_Z ze$fOCR5*LI*F@M`*o?YR;V=tD{&mhL3vf7YQ)u z8=;`u95y;f@KhkU5`!Wgz>GwtjG-%@rOZ!Ld76)9+bM_zuY4{`hIpqpU~rcV3FkJT z7hsh>gZng^P>ong@0)G9P-(}i$b2-y>`<_mT$iuj8KP!9v$tmT&2Vyu zea3%ysA($H%jnK2x~W)^DlU?~R^HphSEnJNo6h+`d2k5JJZ=Y5(nk8I{DjOpxTF$# z6Arg=&{ik2zuY(g;$Rwmm+e^oJ&fv|7|TFD_nfXu0olajM%OwMCWW{5B3!VcI&&iI zn9yb5biU9vf>_Rr_3i~Va}KOeYYqGzT#xQtlA8zJFB;>^tB|}an1z)*cAA^1VnO^_ z_%v$MBno!A&7EXbK57-tunh7C!Vx(V=a39$%EC#JJAaOIPKOT#%}s-r*9(LLz_v8Y)Bl~Ur7`66hR!b~^t2Q&wM*;s1|0zVu0FCjYJ zrPFz^bD}1QF6g0K;i{a|pf0uGlh#hzZ(#JJ4dS{1=4LZwGuui_Rf#f2T$WCQwvtJU z-wijA#w;?Hmz|kZw)`53*d)dn9D`-_>5~OB72@*Zn2f$LW@*~#-!}cM0}`;wkDm)% zzH)0&S|)A`q|wsfkPbj>U>qQy9a!Kc|7C{xDsA1ZHM=qcihaiaoq1g^c)u1ZhCoBJ z3lQZnfwcq_19yWFZqv(A-uW5apCmPw1OJF=WdSEm`$y<;&O>_=l5`A-iz>$5;jzl8 z$~C>^B-SgJ+j3}BzNvrEC9;TgV~gG{b{AK)(fH!nya}&itwyJ2r%(x>*&74HmCGn6 zU1#MU_+$7Z2eD#MnO%yrlc@}SrHMwP+E$O%Z~`TMJb|e4Qz>v3ed}Y~ZVhE3kBa$i zZp^b+ap>o}nj>tjF|I{ro*$WoC(-!X-#ae$h=0E`p_1wI{ARSG?^b=|cg^6Uwpb%A z$R4{Dn1TnKtxDuOlI~@-6$E^(@DvRDZEiXIY!FaT55B8ne*vbT&na2_JHg6wQfDGg?LfSA%8 zIb3Y4XVGU+I|6Y|Gm_4I1FM5|*b&4k%g4xX)QyNXDsB72se59VSW%}oR)zij-1 zLW;)SCB~T*Q@<(3QAN(OYmJ0xzw@-?AkrX2i6o9t?9zz_NM5~gTzj*-B=qJHlubBp zZw2BE`d{1*%{*`bRhopY#x=&~g%nV|md>n2uPktM(mXBU&g2>53!Jnt*^*g#@*iTM5PiFq^=98CSU;NsoTc(S@_; zoTAWC6(Ka9ag{3bpcIs%N@9~y*aHI(C5LYD=Dt;<#TWb&zVi|If#iC}#jk=N{+!W+ z&MjGiMGn!t*}53(!(ou*aSjg;k?9mrFe0o+I2VJ?yq^j}LP0UY;BCXuZ~NiAX(~h5 zw`}MnX1nSyS|EixREl!O+);D!wlPV!^A@4crzpqhL>-=DK6xB!I$ZC_@CZyAOR`=w zDqhW@`7lSpwF`F5fQn`}f!)q@rZywz`QT1W(Vv`Jv;NnNA%?i{g=>@-5qBI(m#75^ zmXLEVY1sijh*^wA>z2ARr14)$oLh(AK1Z9dluCuG_fser+)J7m8F@IuB6FZj9@J+r zST|Mi4Km4Qu(b2Q75|?AnjvN0@0NmkF;*>Q zm#R05o5d-hWmL%)RII#H>@=Cbm*(4&b!U;YGzIt`S-b%iGuBVPwF|#a;j=!a$J|?@ zw&Hk1Wq5gUIlct(dt6YVFyiBIfA)K!{2s?0a6EEvGu|C9Pv>bpU7>P3j(eea4~x^K zpS`|x{r(=O_wv$tJWU+$?esfo{5igRUhaGx3ZcD>Kj!QhhtGJfn6cRQ#UC7URr6b4 zh|7qdDc9fq9@kYUEY1@@7fS14>3f{d>+>{);?im2v>q4di{s@Js6AGH3KNX8p;1~&KGI+ipSu)Gz!JV>3D{! z>95+n*C=1_4pwIMJN3qS6B%k)yb^o{>v-;^o212UmuhYoBqoEcy0Z`)3*zUsP2Gi6H6-J@yT3%%Ea zu?iJedl-abV;%&`gNV&Ov}xL)*S>v@7}K<#ZP$j)YdNPC)_LtPof0vWmxen5TZ`~K z1I~o`vK#TinTiqr+*417m!5qp%r*DCq0dJB!ZOR}&Lo7(UVY)k@XQmBggH9Q5&CYn zRaknt6=vG%ONVyo*eZPS>DS?v=bsJzx7ookC;XQQx*Kd1dato|e&5<_ zFTE6=ed;muE%B$m+8*6&Wn;cyfBD(!di#x6!eUGGu(}pnWYL-Mb+W>@>b{vE?%tUq z8#=(5>Vx%dsnze&mVvIz6jeke5O6u!>+kJ3_5FI`1hT+g|Rxv z7)AtMeD>*Z%F%~}TZdi~ejYzogut;#oAB(DkA}-GI8#jLJ|Adq(?Hv{t;3TKKM;1` za-*c>XZV<4FpSqe z^!MNSFkF7o+2PKcud|M%eN(mf?3y7LhC}w)HuPF~Rh9c**kGmZVeIIi!mqLq+-0*r ziJ^ywl~-Le9J=TB;nEAvkmPC=Mv9*O*IikB-C9hzc-UF#pi{?At!)5ozwtU@!G#vK z6J59Lvub$%-M2;O5U#u8l5p_u+lWcm2yeXdQrJoP#*F^aJk!vBX(+^0q-hq3_3RUm zhO+cBL@3y@dD};C6d@a25 z*6U%(rI!sy?YC37?cwLbpEp@ghN2-Xx_Ec%DDNW5X(vhi!ZS~V!^9ZCZu=c#^IdCw z*`BDq=Y!8VE!_F&3!$%=VS~P#g&VIP62AN9>+sv;-@@mgejM(3^40K%#k+*Xy1x~+ z?9)5!ci7RAppS;V4>>X%aKtehu&{KiaNq4WNuvEZ+^hSk=MD~g?!RBqR(UJyg{Pkg z3oZPIaM3?c3il0vEv(&VbzN0q^&VZr2k*Tb*59y7ZOf@5bsrNizDFMK#E9Cqv};ihXZH>Ub! zLe9i~*L@BO$DVdhc<-GzZTfulfqTLh+wC0IT=!4X1#)^#-7u_V1^{I)B3K zf3g_r-7w;V_iSqU=IgJ*oO8`%6Ttu=SA|tp|6^EV?e!&zau!aMGiB=Z&}YMb z;hnE1gez~kFZ}rZcbe`|17v_QM+Y(5q2aZcpAREOejna=^+idYj-lIv3y1H&8x=O+ zcIPmcyu^$jH$5!gW698KmDR$iFF%*$A8B==a!81V6&3#cQ;%5Lzy2~o=~k6Rk@`id z#oB!~4BvnIjRxtrp_8WT1;t>Hd!Bhahrj;))bPniADFIIj+#*q#wsQRi+31*SDZ9y zVtDbHC&Re0W5SgepBv8q#|h!p7oQcAObcI0PXG}43v`<^tS4pze)v9TdT-C)eH%Xi zc%%{bo3BTO;}732{Pnnj(kt3Yl(&&+&soJ-#wPe-x>~9Cs_NW%!{ryAt?6f_@Y%=_ zk{(Nj$uj)-L9UvPI$(Eo%=GZ-$PY~-GfjbOernO6>m+md&Ryn|F-Y#Dd1MSzd&iC) z!unNx!`UYv6SmoCtuSDleqp=a_6?oq>l%Lg;rp=MiYuGmL{r;I!$-fGAg-A5+Z1CA zpS{{>p6l3YE=`{k!mlzsnYT;VJay)rQ@$EB;Kyis-C)zLLI<b=HV;Xn7?8E*d9<>A7sZnQ?Xm)xF9)1VA1_uX+*IO?Q-${ug7aNXrs8i6i;X?IPH`-O+^yDO}^=2}+Splfdt?rW=k)56c=#)iiq`nQz( z<@1b%Bw%1ooyvKP)wY`Ah_;#{M}7H~={#o-`B&I@^Q}xj+fmbM|E;zUbBme3{OnWx z-7eR?eD>fGy{fgC0{tuo%4T)gR+djJlwcNZP%-}z;D9OFBu%~3SxG6JQms5*ia@cL zCSxq&ErgRWf47CgosYj5x-PI_=-#78=)d(2q2C{u4@_zE&EHLirgK}PK^Q^-)3k=} zwqVzA=?!<9D2H*r7lWR2%CX_$m);BK4m{2}2EF6mx84XRoq3@tr8AUyE2cqza=KC5 zz^d%#e_avwKKMv6^a5H*Ef5Yl`gko!hM6>>(j}JcY12`Mj%`BE<$7t_8pC2yt3*lH zXgN=qMd(J$#T(&^&py`Fv}o9J`(31Wc2FJbhGR}WOVV$I!WRkezWs)MH)9bqe%!?H zk(B$ca{e)grqFR?M{BUDNR@-6>fB|1lVUK?=pTPDWgVXRL9@Wznoj5Ix`0-g516Fw zxZxn`Jx=t-NzqlRiwtDRL<8mXCH|E)kWfc z^pD@mh2f7Px*Du`ALt~B#Ak-N=jj}lSz-AwuiX9&I_tD>(KR=lsJ`#^8^iIZpBIkP zh4lON*I#VKSXbOCO~+sOJ4&h!IrsGN*n{_I`k5|WWxQ6qcZ7xhu&7pv%Y?PsbjT1s z|KzK1-f72&1r}T=bYE)e@az*0Yc=_{NtoxKdfXNUED&IZV-6l5e0~s9O$oPLe|1<_ zihDQtbm+0vGU2uxuF+?VNuu{ym3M+MKc5wV=Y~IS^#16B|AiZ_8XT79(}_^ZPu-TP z^iPvXEXE+C=i5|w*OYUBP|*(?z*J^!EKAx)1H#T?gN zG05WR2pDUsBp2U;UXp*U|J-w1ID7ClrWcS1J%DKjC`ZY(3>Ey?^rh(pCcpW?;eiz^ z%YHs3@X3KyV%PaQhx0BQ8g|-reOvYMEo$ch2ZTTO|BKr9tHS$)lg}O$mRfchwaxlY z{nyIcLHSd)-)&KSOFCC&Q2vg4?jLTy;c6>mjdlCj%K3ydE(}{$tuDQ5K)CCsq2cOV z@0Ti((@!_~%XVRpt^0+A#pFn$M_&G)eQ4cjPr0(xXM}@x-_|5okDfh4Rloj{W^;z2 zcRv~iY}-%YvK|ZfO6nea+PR_Uvdi0`DMVKWLv9$k*8cTZpW7;Bp3Ysu!V=Gn3W!Am$7q`5V_xqy z*Ri~!e3+;YL@ck-9nfdmNjXIUEi}Rk(4gKyve&b4l%JHF7I&|=`0)ydoOtA zM!thb3^7v|i}UarY3WVmISoO}%t=k?ddSWT#7Wq@p`P1(+Qf5z$O@U%PRgcdNjg4|v{;W)a zdN5WoUY(W6k>TD@6sQMdRX!Cq6!KX)EtdlIV60rDGP%`qJGVJ8t9VtI=&zUj@sm}3 zYNg$r?aAtHA__2Hv953MRbl6LQ^TCCwPUl18j@AhvM2yUwb6&%R-y2h_lhOf9IfRM zSUd}3xwcgoCUXw=yOS$^kDrP6cfWfckK>-MJ5I|pkWP~e&Hbj+d)hcWot}437sv5j ztWGblSiI*=ms=`*T(_6+VYR(`I=_2*zo*0F_xJ!#5BGb;jHO9XQz3uLnn6S_G`r6R z6i9Pks>u~IR<4{}>FLpxsv~>-JyM{SPOtZ>@b^fwtWEW&K*m`0r{Qc_g75Av*7$l( zg~f`UeZzgHLHzei!ni!l?`bM|UJv(l>F`qVo`*E0>a8>`Uw6@EOD;u|GgdJofeu6| z7VmMy^IV94Y`JMp05|rGfd?D;99Q;|AJhe&ZgAt$EN4wmGfeDaB%=EeCxJ+%#(^MSl0 z9bY>6Go2L1#YtbJ4k9OifeUmZFXtaZ ztEHD-+D@&7mc)^s6UlhyP*P5?hpynk$zPmj$Z2fkD}*n2loDEP1`51!<=jEgnWC=w zU=mKj0%?d(2pyxXvmQ^wh~pqgod;+~&vFbcK-@uv2%NaOkq+u44F`L|P;0Nfw&6`j0<=MA5Zb9_ z#B(M#XEaw;RT-Uj+ika?a|Of04?P@SdF7RG=%I(&k#d}hcGg*E1)VQw<#T#kuU@_E z#8sG)WBWK-P6x7Eo~^dp${0`QK^ntw!rI+;-)%?nZNB;DcJS5x_up?Pxq=5r%E5RX z?8!auZ~BtU1VJGpDse@i6S|Ue4w@vb2ydsa3lI3c#-$^96HbIzC)5Zh9jCzSEW)Jo zyz?eHYR=+yUZIu8p^rM>FuCA@3mX0K%VLLW>NGOLMaShCZpR;gydCa2a%Ap+OAe|O z6D8_ki`TKl`GX~Onpq+#XW_Tpa!aB!q7w}idmpYtFV(?`j_yr3KolBM7BnFb2U+s` z)?05`AL=+hdnf&M*Ik#aw9-m;Xeb9(ib)ckWtdQ(m_ONf-+iq-4c=spHP%RU-lEk( zc{(20@a0fW-d}j(g+zj+tb;I{R4HK;aI!iFS?aXWaPuuUhduY)Q@95c;~Xc)$mNj7 z*I$12HD}C=q*SvfGH2aE`XEnkzyPYiuB@W zUZ%25H{H~v57LrD$`_F_1v3KlL-H}5aYiBsT|WHq!#1rl-R`i%4*7C9gZtx=BklNM z>O(@&E~aA+)`a%pNSo>kO{QakloJ<(5up%Z*IjnC!^bz?cw;*+8N@l8n3LAgnK($B z`5(dooJYvCNW+;<5!WyqQzQBY;pGy+3a;RXdT7VkF=NA~>hMR@afIo(T*GCt#TK*E zRbdp`&mo{pO&lEVI6@QJchErx8N+d)=TS!;Wv8Aptr4y-F1gf_;YS&qKs)p>=mBsLCI^plx+-O&?@>2-yLIapewJkrst1fqIh4=zx6r~1 z88fEIZ+>^kNxB|#&snEINp{M+hI0{h(b&!0jHmSx*b%` zQM8&WY_yUFiNQhMbO8De4Q~pdV>q$?#1l@i6Ja^1leRcBF%USoQ&Y7u3sR%IbU`{7 z08cv5brp`|m0DoO5~GwOwR{l%;~)PB0|pGpw{NN(qQNjO*}w&uJ}qZi<7Ij{X<;Os1K9SaQcYHRq+q$n?hI%o$gK5$?q zb>W2<2I)4217}3T=jMlj}L+n0iQu zTEJ9?w1-xN%{%YBHcfeZDVLLG38!476JSguT&RxT&W0YOMY=P%_S$PNQw7KipfaG-F@-UG zef;sqL5jTTtKh-_g>FbLR+F5u4U@xIQv8kXlmkS2|Z?$O*Y9h3`#Z~imn3wv~#mfHwzbEe6cYIQy{0w!;s)Sc<^8wEKL7M;ahIL zCA{$B3lS+oF10TPrlkad`>#n&qtaOsFJ0pFvLZZITy>3sA? zrajt#6d^5&I?M=D0nm(Ze)@b7^f@B*=+VQN0= zOlLrx(?E#6-g@hqRDhT;;HXifr1W29Qw$>vKyp3y*kd*wASoaO(xe=wFGQSj!(cEv zn~Tnb(YOF`A)dQW?Mz=Vj_XXck9X(+Bf^BF=fW8Z&eY;|d42I9A`fK%lt)v7-!ke)clmHOg3Em8Fk`C9~Ife#HsF=P%0d2f)#>D?O)Vd)?ks*q%)QRL^s zi=T}{g^{)xA*$)os5i&S21_-5=?cM}3kL9K&*$y(aL*g3^)T+G@}=XP$;jvBkp}R% zbe=RGmbm(dxE8}$;N-~j>(3fYp&j?PsVh!^+^6(r3c`|5x3Y223Ci_4dH?tVC zkjC~=SMxiuen*x4MhP|no^K4Rw?RaaYZS>wx&{$F;*$+ zWO2nQP@1noy%;OgZHm)r|BRawon6c z9DCX+iw&1?9Jmk%uEq9SS%wlnEn+I9u^L)V=NgTVakq2|sAL4iiFur|W1 zo!y*l7slw8?ZxbFB@W{Sw)$d3y2Tb-SQ|V)+meqv?l>JhIoZyF_ReH0@&N}Nkf#R> zwBNq_h5ZlQKWtdFp*3T;wk%`OLmBK%mld{c`DVB1jW^yH+*)YcZMQWud;C4HgZGLn zt}sIkcJxxm0GXA+tXNN-amE?8b(tN!fB*a6&9bO$nyGQk0@}f7X58EzG*T>#caKj$ zr{4>ui_0W^V*&UAGVMyVKRuCoS0YQ91k-deo0-SUL@kj4Y9hZAiL7~$Q)WU>KF_aR zw25pY&19bYQ%^l*>F&JaPLk!*X-l?+V`dM?n#SHS%@;E#V$P&Tj~+%lFXPo$UrpT9 zUxpi&@5(E$w0znVpJ?y9J%bw{pA%++uR)Ty$-Ye6EY9(@ms)-p4b2W|gf*??aY{2u z`aPd8^-$MzscdDvI^Ot^&?rwd9VL*r^SUP@WiET_Woqdv{#&8B07g=~O5@Yzn~8VAu`AbnI>?GiSnP z4pT5Zv|y=%1u*ZJDIt!r>bdvcd(GgJX%JUE_-a6}zzP`~K0K>n6pC#jmOg#^_SIIj zoZ&#(V!VzSd`iX|=EM_E49`6KjLhsGG3z1B0F~wHLcV>@TrGV(No_0D2I{Bfhvp;J^dy6&p5m59a)1jyc8% zPXxAZGz@z??B=k-Aq_TmbQU@Uej8vyOwTd!M4!+!WHxqIIODGoH(xkop=47x4nOEP zZ1FHdgF)y-m_<{QIWNIy0=g2$s16J`+R6d|OK_~IN#_F*n?&p_u>xn{xOEb`lDi(D zEEtS(ChO>6%5nxF4qO?eFeP@Kas6(z0u33^@xp-e+}wI%*Bfs{sKFi8g>iSRxH zV5xia%{QAP4c>7Y0t2B4<6Q=iDVT!+5QkNZduhR`226!b9K`WXvBZu1gPkMw({b46 z(fK1j8eukt7?NTPdj9$6n++waHn|BZh!GNryhvLBIw7G@&XG8n#UVXlRFrj?4?9E$ zP0hwoSU|CefJP25IJAUmV7NGraMH6n#F~22*`Q`0S8#n8}nYEn&mv|Pb9|i?eJVvR$ryN=!wehHfw;5atoq5KY=1dJq&p>pE zg1-wauW|b{{{r)yKM5}z<5{LWn6X{kb~WPUf6T%e7#O&Y8=Ld_K)Kj|VmJ#pPF`lo zy9m@|;L4vwZXyR4i5MYKCzwMojmQM0k~BCOqaB*!5?K=4^Y+_sZ{e(Dh(p-~aLUHJ zUm|pqw8z^b;wM#ARkoU9MW~K3Tu`j_?aH1{IrWs}i_gDE8d|UzHScJT3sbGm4;D>T4AN@ofZN3&z*pZ^>LpV1f z4jmAQcH~hBYNeeiIZ$PL*D|(2i}<57Xoh!(!a#(e8Dq@`o!lHv{C~VlyWcx(rctEALL>Oi@2$3e!gCA2&EYA3>mTZZ?{Wg{MD+F2X(mxy z{6IByZS;S8)%5|~OcOo@eSP&o80~w+e6iB;r%Ho|54)Z44+9**LPx_04uZ#3UgJ?U z2LR9|K}hZFT>J?R(0c{YIU5v2DnRq=PJ#$1M=z=&W)MQ4Ap_f1IHJfHfUzX1I{h(m zR2ueYgDU`<<(v4o0$6~jF94jtA2C#HudW&Jd%Wh8%=ubtyaMC^NlK}yp}GK@VgQSz z>#OSQ)xUnpfB_tX0<3KTUeQ5xm;<_=1OVQOyeb2dYyx-l01XmU%LA+O;GzLTX+x#` zWWW3ZhzBC@6Dgsk@nYCFx)N< z7>>Qs_mSGY0 zaeyU%&m^Mp*A#D*ECsXx2wI9!;LvW{DvUBXwa$ntR4fqTo+0aR?f_hn3*F(D22D^n zez;wTm%`2v>jG1`i$8!!P2w;@LTZG5>sQi)nV`Ivg z5itdh%6Fb8H7kA6^N`e@oDEkafXlz#@0^!gKst*%cYzKB8dV4=H-N6MN!vJyb(Bkj ztN?Z<2ynv{}45v0_IslQp|t z*}WN~dBmRIKGvS%R=^eC6~)C5J26Y5iUF7fYAwirglSRk%9_L?nfXM3#sw(cWiP6oZ6{79PD9y$E^*JqAq- zJq7Ixdch!Va%7pPBmO`XTny$=xP&wizLi|sN^q-;o9V&C={4Wh1-(~~v)*U~*$ULfv0?<2AFVGUrN zBG#}Ruo}Pbv#PMpeQ*2zV8d(;Ygb`?Ws7d>Z-Z>3vE|wqzL&7)xGl9;v4gX%xx2Mb zw+nIbz1J??C?wHaDSRQ3C9^U9ffzSI+Izy+3U>pvo#d6&Q^k|zUE&?;RT^{>2ofj* z=sQq3P$kF_=o|E z3NnJj*D)juWDmlAN+IM>gi=IIWZ__n(3#%IAh;l}#Hg6dI95CxeqBvjk!clr;TnEh z#SpDwUUKmgjpJCx%sOBDhFgWB33@(yYWgR74SMmKn40yP{F+7smfeOS|6zq8&KQzG z%t4Z2tthX;&hpKys6uPGt(F`g-74Ms?WV6PLlP#DvMtly%*7UfD-l+ha^EOY$&5&y z$SaFTi~NdbOC^eIi`hz1ieZa&=88;BOtDQzjzf+Sj$w}FFuF0?G2$^M7?+sR8O0fK zjic)*>#ys+)KxDFEhjH?vPDI-OEpU+j!SE3tTC=(Hgn(I-cH{&-+8xtdj`By0f%`P z^Hy}>#f#KuqsR%vkOf!<3_xq4LtspWjiZfWP@oNM7@r@N<*v%gt0+fdtNSV!B4+Mrt- zINUi|IKCYj?kR3D?^K*;oN?{rZzCK`oeXWGZ!T^7U)$c6+^8;F*1cWclUXrca9kL1 z(Q}z_^|bS~+q46Frg?68YP^rWGk!z>=>D|o%;#~>QrZ;62-xQ}gX9DI1;zxL>&xkr z%3p=AiBFYnpUstRp_5nDSv8JL$?kZ12y*}%34oKwQ^;`;F)*uQd;DsDH?T z%sRwMY=OF6qs6IBWKN1Rp}Aqj?xCLXyl%D*^@#0A;V9M3{o(c$c|EoMfj_`SNbeiJ zq5b|L*PO@R%Y3bSt!r&xEmTd%F6&<1!S(+6So(17a7&W(ko1_BoVKF14)@8s#>)m4 zE&HT>)SLEl*MtAOe`2U}XiW$gY73H6yht2UVp+nMgmv~j$D(`ME$i2kYFuPi zRqI=|WUr+++p%joCTI*pl^8=Xx; zj3L4}s5?A4l#=vFaaA^!TyPLOl{_=<9EHt@8yOpAq}8*oEa7cf=R}v&HQJo1&;DvW z&=`l)m~5F`CYq988l6p>Y4x-@=!2tLQ4>-dQ){6v)@1Wi*}bl2-fw87n2g`0fI7=Q zt7PY36RJ?vY;%x&SdN$S9}hSoSSYo$UMD@%Jsds}aw>GHT$gD2HHkRIFoQY!vY#+f zj_Psl5&44sf(yF{z1n7B^D>S-!~W*m@7ovv9q4*4d$HbXWPP#kar~A6769iO7#{F~ zo5Iz~sY_?;G;3)87`>A_pl7K!f$PTY$smQ9>GJhTf6L@`X3pqnLT18Fi?)^2W9X^o zIDW7+0HQCLBDOi!qq1Bxvi-{WX5V6QrSd{{z2^d|K)E2o3;u1Av7Bp-L67O?G52C1 zGIN{TVtju>X5W;1#NF~k_twC9-OSSv|DEEs-a6W-T1V8P*lNk<=}v5Rc*5$X!_Ld< zG5cy~yyWHhR&|=qv(25~cIQ}nB$I}j@M9my%g(#wSLcTMrWN%i3+iJk)aw}N`#IF> z8tP*U&83sp=0$twhKF~@3($wx18B~h?yKh>5a})?7%1T79U}md6M%96AYRscw%gMDAbmBV2Ov!t zN(KX$bX(R!-iEo$R10x4)6I1Bh|w}z1$0BlVNzT3yr@_DO@MQvEz4bjWTcVRWqDJ( z##=RTS0m@SGTbrj(8gYiaC4)h*KyaS^*~Qb^yyTUFtZ+HWHK&IcqC`B7skuz=J%tg zT2vA(p;lR!dafzXU`<=P#) z=*+3iNOy#nX|_s+jSlU4+UvQUla{{pP)u=^k-WVe~I|Mq*NASqzG58h2rk z*y7?E6iTDy5$7^Yj7<|vJ!YrosHWWv@C3t|T8(c^fz)$}tPECJ;uTHKKP!UD96}%6iypitSPt%8#x2nB1C#9??9kF1dZ*5ip!; zUsKsy%J{DMYuSbVsTCCZrR%*CY#rBK*158%u&Hg=-DE90q{m;lCZZrtFyTdk6^DVX zLY+*uPZmajW`1;mIzzem#m2VWb7!{yD4YS)XaU2M(UZN=*7K-)p`dc?2K7JK-1%&?RGZGc!OWTSOxr*U%cY|7#`t@lcU$Alc^otj+OiYNo#yLX z5Llf~Wncs$O73%{d_NJ6T_oZFONP7a^RCLq%|5CDjhvQ?G@3+6YkymY3&ZVwcT4w! zj9dfmZb9%214AR1qK8;oeQNAy`SiLoGW)vN-ML^EIwoG2SgJJKj_ft@7TthRE2QSM zp7kELrvHKbv2oD>U56{w<9W#+hj9Ew6>Ke>t{+-gqdL>t?ULiskqyo@>7Ao1RRn*X zc#mE=YG{|PAESWO&;vy=!DQaD!EqS=g^?sdJT7&Ze`jpF^Z*w=34s8TB4jbRKNuUq zD$$t?G|yi@%z%FnayJ!82uZ2IhN84Ms8n|L(zNv04kI=tvd+>>Yr$lSGgm3!Yf+oq zAycPBCe6lAG^#iKRCIW;M86$~-TMqh=b6?8i-+(3n&+?Km&I@N>wDzrSo} zCp6E`i#JkpTc)fN_S_|5-f1ARxI``GU(c_2CVTI$G=lvK%(=MVIPi+% zcs15vF`mkuh_vWW&4|eqRhW?3%T{o+aS z-f?oIW(K5){PS5AKs}0SfEn`VGCY6)OO)#)IDjJ&KpG=J>ngDJg(Cp6*Ym_3u@8qF9+SRao^2X1OXtHTC=zIX zI3&+r7KThu5i%p(GI$%XM##B7iBe zR_D_cDk)q@7D&2hpkjEThpR5CP1DV~`Qrd>8+xnTCVi`6 zH{*b8C;!@Wt8}+f&@^@dWXB)LAH`2iFh=06@361GPg;~nR8>4!4EQLKUde!BS9Z?> zDGVt;UOA4rVT?4gcvZG7&rz&ReJ9H>K{3TKMk?o=x()gb$d_<7HXt$VIXp9!GKDTl zTuoV3NCms$yyi)Nz`$y+YTznlrZqIE)PF_lK@aCGLwrTBbq9*uksDO+{c4sDOrtpdRQda19MD_EQt6JyW&9)mb)-U%tPYy?5eEAem@`xJNA}61w}*Re@CV zh(&QC!64(i`vguZC4nk>YiuDkeQk%3&ITt1je{ZwRq#LNmCQw-95$x8<+^pbW&P4U zsLMh7J&Ab~DZxj;1GNF-1!o}Kt{b~^tv@#!!{bYPB5bJqZs<`40n;P+b14W%SNJ54 z0ODIPizr{7N1n+SvjA~@Ocf=P{SWC#h?8s7a_>@B#=EC=1AkU@WA&ud&F1y_urw31tav zr0LX%gqTE)8tZ~xic_*f=BdRs$sztFtL^A4PnH8unzB8|;mTiW%JHU_$87>_b1ZfKEl z#$LJal+kWe=vI+fJE4pBHh$N#**<4IH#nSh^LSNANJCpGPXfGw)P9oW%Fh3sM~C{H zZ@ASLvnjUw(9Sd!-mP^tfQOz3-mPu}2$2P?4t9Z0p9kvCV=#!>0ZY-{WzF=8wB^H^ zRf8};K&c9U7D6omhgUt{m8ZQ-w^5BDlGb8_=9g-N#^RmWO|t!RL~7qDN-m}f- z%@_2I0}lg!MT9;t7TO&eSs&IGoe)(I`5GrvPto99r&=#rKU}A$MnN`?>|v>g^%6@m zjY~uwtZBw&)+NDN?P>dQ?vVxL88pjioIEH1`|J64Ht|o?a_oR$$MmmlapFj$MqmL^PANpX&822T)5xOm|H$ z<^*SBrI<3Sxm%{4Pg}eEkM?s=rsiW4{g+LbUD$^!s_ju$c^rrxChi{ZBJR;28rKq< zR59s`Wa(;f`{DQ=BO8D>tjOvb=pAU1VGg z`LKeWpMM5CgvssB)deYo4)^qU?PwA38zAJU)BJoKh zWdBHmgQW{>GewY&jj)805PaKM{RVdOr7wvU56uK>NpL`>krvFyH)rQG?LE3M-w$mW zFDYmcZb~=&<5muF-^kl~5&)RMDmd85TBr)#r$rADD;!}oXw!)dU#j9`krH$|>^-{2 z`bSallNDytcgAt|5mbt6FbQMfxV?Eac&#e(Dv+(8U$znYQDFoK%u0}H1q|mmlvLnB zUg0Hyaza7bJCS?{qflf-Qb|FeUiFL~xrx4YEQ1oBy}LyMfp<_sUfmBISaAadO>lbz z`0#*yM8Dv3HQ1}=hTcJpJtj_Yqo}>TVTAMLc87I8XVPW&O^O*KGa?UBI80&i07&xM z0jlV)D+yy}-A$?nNdYJQbP}29^6GDz^AZsM!KWf$Qy>nWv-W)c?o~HvUTc8;oSFGC z0M2vxwnS0uCG_)>#LEUKngpgwBrQT~mCr-8<-vUI;{-uie0duZsHf;~H)(P+iWLyp zk4ZEZfi@C4Di+~~?2k!+4?v-YskLj;rB7cP0K!^C#SQ=f3i0`AW;BQ~cczLHnEatW;9f|9l-$YwX6YEa&*CZ^#YL#N$#9O|(vy)U+ z&^{_Qhq}dg-M0a)w8A%bTM1mKD$@jxZM}=A9#ML>X>+pXlY^S_f{L0>#~9~4ab?=Y zMDcWM@d8a8#D6<*f9J?NaKSyc%b3Wt1Cc6>)#d{d0f4{*B>D;B6W*DoEr)g|_}>*$ zK>Mvnr=K8E0AG24MDR!j?Y}3|1o4^i4;7$b4bz>v%?V!q?;rF)T}Rz*SFFpB z^``aA2igwFsyJYx6{9AHj+5jK;~`k(SoEMaw!dtp1$|+zmrduy^4SU#A~#k{q2k5% zGL99uW8@aCU#%nPrLroj;8(7E{Y{BUkn&3Gj#rFx8{F-7S2QM>3@|E)C@AeA-f4Tie#G zal{7am1Rdo6!XUNX2EN|gB~}0YJpu|mf!tIha(v?JPuNoq_v`l^_RfL=am%SJ*}7* zE=LV0UTv|5ug6o;=b;p2Rkc}{ERQWn4_+JV(wNxN_sLD_BTXTTKN9ve0N&Cx zK_uc@BXt#p+Z1}fOMS7j;(BYTj1ntllRcciE;b7Pz@`L)s0iRuI ztt7W|&TDXPS~;$@AM9c3F&l*W1?6TsM>p%I zP-k!mdC9jZRBvtW$M^MDR8(YSa;@E5xui@ec3fkHEtS?Z(WY~*ZM6?%`6vCC$MKzE zHd`Tq7uj9a>FNgvK|#(ZniOhIcxt&nv3%P}nZDyosGX4)*sw_Ez`r|fzGTw~T9ZUP zr`?%-{VG>$i%B(7Q>y^X^q70%&O-xxgG}7U;uCq{&zCJCz}bEzi@V@M{B_dWUnn*s zqe2ufbH*75@xP?`nnXvP7PLyZLyc6$A^9e|m08*TSc*|Nv#vZGZkBmbd!3Q!^1-2z zV(5ASKAPZ0qA&^xzOS={sTMQQZM8m?A;)Ck@^RhdMBFiOgG%G;&fL+OtVZVa%8ewB zfA*{=kHs=yQCw0{R#sf>{^nmvspUD5D{YbGg!O;pPwd3&V9}&=s>AMRaF2p?)Ilrb zo#{E49O(*%Lao>rD{;u5LPc$F zBMfK996uBCvMUTZy!8{4lExEcBWIJo>E#xriTcV}DvqKtrBBlmQ|Vjploz+RfBHT9 z(f?mcV1f9sL&9ZeHwN95QXi1phKGp@O>=K2(ZK;CmcBwsSfaVW4;n(a6NmkXwv_pQvL+M&a`lz-sB( z0Y8g22r0@;Fid1=ZzhWouyAQC4sjehWc{ETE7h&9?pcHR5&Yl0K#TJLgysd7!{7Qd zr}mjTfb$c7z3Pne?a`%Q3L@fIrI^UfhfN*Q#h#tl;>_eo?bE*^#Con<#1i<5J{~^% z!iat)fCtafZs(O{%5aT-q@bWMG&JNbkx~3qJ88=3Qt(cft0Bju-B~KhYvhy%Rjo{b zv(4Zib2&KW*TqNY{8U{+mEafp1|G=O^QIrE`W$vUliPqpLGV9`?$ieA;*8>2#NZJA zi!55R-#X8fhyn8lV&2Ju02+^@%^Aipf6{Ff<5R+o#`1;u|4OtW0uL%zZ3T&{@1Iqu z4fv#(ie2&4k3Wb@Qu)NfMA=F3{2%r0EW`gv?LMz=%82xbnuaK!lwde<&0+cj!vB{? z(B9|PcIa2Hl-&5Zdo=GNsf~!lZ1^7lB}LPT z-fQPeu&1-$tbpe87NL~{NyGe3q3cB+klr*3#Xk)HFXobAj>c*|jh2*m+-f}O)l9&S zs{Xs_FLjryxvxzTnK2E^eEG7)>vCo{a);wJY0C*wv@t;E!;LRa@)+yqQZhJyCrAV+ z7RNu7Pw{dy4^pAK=IPbu1Nmzs5hLx7=&P`GZM>D!oKA<=xJ4RlJ+y!%#D|M}x#QuO zRW0kR)){)Mo;N3Lcx`!%FZ0;q|HQ=^T*4LU{9N=-QPLopU12`XA{?c0?p%hv9=X2W zU)3NDkD6La#kMJY@snp0X9mVC9xa(O=f(NaP5I>n!W4nzKSb4>TUP*G8X8pVWs_x; z*M6uGpn|tINVZYMn;D9{1-MF62y9Q9Mk|5{p@P22+El_>1`7JXv;_eGSmN zCU>o`nUu_;lSHui*K@J^REoRPmxoeQdL_@|TuO$^V5ex#|D^{EEv z)rA?_+m6oY^ZFIRxOY51dGMUw58m-j!^jCml=74m6o^SkB8R)t<^NX)O=NXwF&dOW zNT?u5g~-MtUrN(Uvd18vG^tpQ`wsnsnQ6<`ZoV6NdcQ0vCm_v9+0^|klI*86v}pUk zgjWEeryV}LXUETP#^!92j?8~dt;&xw#Uk_9I?HIWe_}F)kh74S;v~{`4EnB2P$1w@ z(!@nBa%R1+v3=Sjyy;}{8m)F_G|#RC0o|_4^h~=6v0kR5Y~QUDXi>e?UaxEB`uh`X;B*qqWYdk|Jlxn#WRA zSMkL5h7*^^o)H}B*IF1)-VN$ z3>_%8Hxpd(j@!Ulnwu&LmmOf&kaKG2X#aA#?y5h0I`-G4Ug7HP&}y6!b-E%rpYIt} zAn3Joqw~@A?rR45ze)?@_jisnvo!isp{QcdlJTWsSL^NtnL6EfTDRysU_oot3dkvF zB!C<{;#SUgI5{41TPX9u%0XC8u;GP|RM&M(JXs0m)*I#~VQH<8>w{Wv^Akf4Vw@X~ zhPe2JHws4raQv;}iD(_D-3OkT)|;R(!h_cjxCUSu4tB2*m9VC|YmT_6nh+6i@i1k3K*nHjd+l6CQ;7|XMD0QbyjF$=Q^$nm0;3iSg-er! z6|7)VM-6hd#`mLtg8geGoPlE7(rJSM z%qBRcmK^di2@O11nP?)HhC4)NxWRM`xU(~)Qak$E3*PRXIk?nCQ&TVzm&)Yl3=oB} z3gj5v2KhB1|CCVLz5v*CGsZ4L*hl9roGZ@Al^-QcfVYBqdIDBjc>Ie35$!OLZys_> zXm?k|=hmHEmerGcC)g;lefxMZgVvtM%Y~*t5d-^ly}xb63}IQIMd||H!X&|@4u5ld z(dul!_|ZkVY6g;Lls#vBjs46G-I5Lg@@=MGGAZ)M;aS-yvC`{Da-m?~a8{_w;wK^;@Po_2EBZ zhAuDj?O$q&l6=By8bR;Bx&7w*iMOGw5c+?`u>{*EzG5TL*#BE?^xt>=q7WDS?+sw3B*}F_BoMEW3Bw>*SUYuXfC0xE+vv(X8v#%LgUapuL*FOn4 z3Ku);UvFVi?-nO!;b13zhr`tRr6s42ev+J8DqY686;l&YDk!)7N2#Kj9js#FmBvu~ zcbGL;(xZ>Ex80%Gv&_30)7~jrwe1oBrr~4GVe9bIlW6tt4l+|L{bQzoCk6OF2u>&sVB@;LLtlCurvP8+(*lGvGUE@6f33!r3iU)Z{ z>zXH&$MAo7!vXR-(8r{Jj9>$0xtjIWYE}7i?!x@aQ>HOLpMWoA`zTzJ0jZv0zD>

pIXF2OMAue?jqB!mzzbT=@*r|6)j-8#sydgG zDYbVY;^=ns<*p*6Zj=Y7X5PHfarVT%Ud!W0YJ-2Byt{M?{f{1PZCHnSrnYK>PFnFB z@lxiKC)gx{gqGCJiC4@Rw@Ux)H_O3AbVOXweHz!#hBW*b)#KpCfsG*4iz$}%Rb@D3 zMA6}q_~w?Krd$jVCXYUz9J<##=3qa)eD%DY?i%g?az;q9(+g>Qw}2FB$bGq*@FZtW zEo1MYrT9Y;39Fv{f4w3r+45WB_{7KUmxB%i7t}JT!fF{o%%gXL$B3ELysUu`q1swm zO!1%-Pae6^s?$L6jqTUQvY!p~wMX(;H?B`M1h#WCaX9`lwF*b_U+kVC!+VajS>Gn6 zp2f$#C_;+qv4yYkBFAXVYdR|_>fe5a-E4$3!@|$VRb*pZll{csrzvHuYu%qT;gj%s zfw_AEEg{(tX%g}S4<4(`XELJxg2&GkKqNlAs--d`qf|CkH2;+==|KDv^Pj>bK|q6) zu1gxEv|4CsI;W4+EOjR|wV{qxIbdx8seC)R%hS{8T^;vdGe0qy>87aTxTv2sR<8ZF z-n6kOr(G{j&<$a7klxUUmQ(yZS5eNV`@J6~@Zil2a)DeiHJe;)3KQ1Lc)8v?gplaH zI*@n01Z=yhmLajcmq{EBr}c&r^(RG*9J4nu#a_!8CylDep=>3u?>kpX0_8vKV)5KR*wvG#f4}D5HabtFV zOI>5?=;G-{GDk~kA2oD|e;n$U?(BftNQf>EzaqPaGz04v4i?aj7MYpZdsBM3&>}tE znN@BA=OC8+Ax(6Bwd~IIQ6A*g+2R}JQo%6AvCez*0QW=b>XLI7e4w~$1`RyxiHu^1YQ&49zZzz7HahH{08yQeb-O((2Z zS=VpnHU13Sz8f8qph@_6aOOd~yq1*db0?pkgHoFJ zlK!JQmIT|L+k=;Yb;KWiwEtQlG;F{R>Q+*hw-ANW`KFoqYdOv7oQ8`6DN=45f7#UR z_(0-<0t173YG|$7Qwq?i2^6vnMgI2^_hq50(Vned%Zr==3BDvAw<>=eSfU|@bH$VF z`0LVQSJi~rJRtB$xBp;H;5;hgAZ0$>!Oe4~SqFLolZi8KSi! zka}h#8{ai~O+5ZAqbo$(gmW=+;;@_-B2fVGg(nh3bly$FEK-ZHndO?0jo0&XA#zG{ z^_3g<*-pei3z9Sk^4fCAE22o_*JVPjS|C0sVlR6&C42lGT_YN{TRyqqoDYYimdaLc zU!?%xl^7an#=W>8WDOT?UH)3zH6tX^<-KGCRGd$pa63b>>Z`^;XH$LIt?|GO-K0eC zcilu5l&dMmtFYu7jNr!ev+q$b*{o2_ll@2eMqaRTrOP|A>A5SAPo_xU)Tuz6k(*Gbiftek8pG^LC_%bC(I=$mOIxPN6r zSjNxJBm0Q<25HH_G5s3&Y*r5UD2ALTSiTz%^jzO~W#ytE1C(#s8`o&)K|2YXZ0K~vf;FyO4UimEpzo?m!iZE}I!E zdh-}x>D2DfBR^kqtzT!7#}ELjbyBqFf}VHgZ6b{yu-*s$ z#ouPbXEElfMwWpcw?J``x_m4R>qkc*x%>QP{7RVQ9itNG*2|I*O(Yn4{AY(Wus_T134g%a`Ln(jJ z9-kXx4;uK<0qrGrxhAWZ0J<{ZzXiZ1fd`RkN{tpkI%b1*_+{-B{6A|TGFP;iievq3 z6H4N@+d-U3lUOQls-_P5!~EN)SzsZH!Cy+xEg_3K-*8nvI_5z9-BeR~NJr_LjXf^q z=%&C>yx3V+fK+?U1~pHOYVjy(nPm}GG!)2j4a!#@eob)Ce-#@Vm^WTf_nP97Q%CcC zHMlJ&QSY*CXS!%mE)|KnWcy2+fr`+=w0=b#h8bZVWD1oWDR}R4SyvXE&e+Nt6ZTu8 zJtI)zQ0Ji%k>R)Nfo4i2YMuXID?4@s15N0`L~jD_{2h-6HSrc2*aO7|D8In&yN)P7 zQ`i86Qv{snpA7AM1P75pl1j>1En8h(Eh}^9JgIIdFNks#HdzNPojE!skLn8cyuej0 zH_VkMS1=wPyJKRy!(NhI-fs55gVlmBbx28NC8;!KWT&XFuKPlyvaV7)rj!^^s;j^ z>)7xde~_Z>o)%fUG=rVJlIhi<_-xek@`QfOFR012ks23t8GYGF$&MdlF^o1C&vBI# zb{YN97dv1~IA^I~&iYCo8m>{PCYX&7+TGXVm~C7(x=M-<Cr#axdC`l_ZC0d`V^Yj#geMEK6+-#{*D`xALaOV)qSavq;U;o67;?T3hwpi z<lN?UZr3dba^%UY!UDDrQSTaz68vA=S%i%;PA{3jH56}*+REKQPJffSDZw4p z8jXj)UF-7{#$P4l0s>O*=WI`yDU0vXt@)pgeC`TPQJC4MZwt=fL%i<7kL1KdAV7&_ zBhW4Mg7?`&S1ZlQIPkvQR&K#tyc&UnFzkyxu~-{he!|4o_ImO)Ih_HjTqxG)K9fPN(WxNyN~}FO#xLN;sYb13}^mdJG>dm0}q|| zB8PeNPYp*MKULf4MGIg#@{eruiUDXiM`^Ok|E-b@**{zA+BX`2vp3;v+fn!hQZlP|p5x(gb{+&qLkt ze>!lD@4HufT=A_om&5}b$K3+=c~>6&@+|_!ylJ`!k96< z%1V?vQ8l~Ysy=J{blyIEM)!5(sqrhb5rV9?y@ugi*>eiY z5}lXl!R@&TQaP=)dQbv4HMKMG%2rVvcbyH)Ixbw7N~O0KrDh8HX;ua3;*B2U*?^vaGH@f8qD%EWrOZ%F!siwH>zp>zVJ@o2oZUHMK`Lv_Z%V$wtkDU zm}I%TAOz89!o+?5>+2{(fSiQbe`68M7TKSPz*a#m?=@u>%a`>pSXI}OliP@<$|tRu zaLJlBq1@wevx%Kj$<^Qyo-x_B)NIO9O>mk&t z_rK@{6gI;@=upTHcPy+uF{Ufe+qimBOf9|dUXoEgWom07AcwZcjL|}fTyZC#sYn584Y*O4HGhPI)8uD4f$y4h{#KOHboe7 z8&eSOvK@A2JE~Vl2iV2B_uk`tlfWd<1F!0S)*9Xt9=ElIox;y--Kefvy-6*__>mpl z$?o;vISkrwKwWH6>#iwh=cnd&h2xs3?DiFQ86`_E{iPGoU6V_C=rIS}dUu48Q$QNm zRv2uOYXe>dTj$WL)X7$anixId!6zpX4l`-zh#h;1C4B=Gc&}7|H}5XX*+*@JuI)pe zjV_z;k^l59Eb?y}R$5PCqqhBLS+lH>!G?vBsQLB&E&sTb> z7bghkxw=>@30R82AR4C%y9p!wkf!`2xZX<=c*+`&S!NBc*`%83snq!=<1@03yEUO( z@Um~gj(pw7mB=@Rl;NSjY%D6HRKIScLlsIMI=8Uy8woXV(5U53<)LD+%Ek*rwWdtU z5v)GfW&kfSA}ydIdw(R5U#GZUD?$d-KBo#pHo>PG+Q=@6~Q%k-Hs!VOEcQcoRAvF9Tq36hs&H%a47BOG~w%`|Wh9GDb5_m<1|Gcq!= z)0fAD1{)$O1`y(bJcP;^ddOSf?pGK_bEcC1halmbKyQbrpISg%6y5!&AB9@LqR!5E z`F`C~=iLcqZsgKpwkm7;$Q5H-o0FyV?dOecKPZEdUY2mb#rX+855eYP@BdehVtOa< zcMlkPWG#0eu1WS6e)P6F9j_7-s$ipj+%gO&iRdE-q5l1NCpO+sOELg^oyY$239D6% zEPJsUtL4gxK5P>?9}ITh-|z(?{AAY5Nl6#OeuZONfV9=X5h%h4uG|yXjDss#=x{=%?4c2f%q``| z3{Klq=7WQ8Py4de+C6H&ct!vPZnRs()&DGO+BR@y)%&9SU#mB?t;ll7vu7i#^pGr; zW<{h=KRKFDo+LdJ(OpKM`}J0SeR$qZ-TJ_VB|`uz8B4BG+ixKnu^K{*t2I_=935I% z{aU_)18=g(OnnVeuDKrZyrDz<-8)zZLM*B>bms}mL#T9lFEm(&q1<^*UureSxwmmq zOc7X?EFp8p1l%)pj13=Cc$x$>TRUek!-FTYd<_VW&xOiF>!@xFNP1a&OIEboxRg8q z7u=FD3#j}9R&RE`ER_esaW6BBa05&Y-u>ajMah~mGbQ4EdJ~s1GQ##D(O%9tHp<%w zG}@L5u6HaU`(O!RBx#G!tB%sm=qth>jKy)msid*@^w@e4wrR<<7gZrM-vo`V1i zs~KQm^Uzqn7O!}<%qsud6Fe7H9u0 zG1ba}%V&ONmMk43Yi2Y5H9r_j@ljm-1OBM9euX%Bz2(k$mAATAh;mq+>z6XF?M`%)cy38h?9Fb8+%&%`)~l7TGL)ZUJIE&L#SH78^T({|IMuvjW^r1ID@tsf zjCRx{i{TV$K+*&U=y!B>aHmk%b8f{nB*feHjaLw^rUQ>%o0b&=RY#?`x44nkMkx}d z)B;DY)1%nQj%DH<#c$X!Kb!-8jCz? zA=h^)Lx4Ov6Pn+dGLddbC?m1kQc`g5h4x6dy=TPE%8*S|pXJ$cc1CA%=a0!xWY#!j zyT72Z;nGlA*;NhPJv7g%8g}9GA~NcOmb{(tUV=uE`V0)`hCa| z7om6AF^tQ%1@atDDm|wF*>{g9)a0(5IfKEJtAL#kz_5jdsO@WmIkDTLq_gWW9yT8; zb+u;8@lYBey!-sxmrN+!S-yg&`B!lkRHqH~X%D;VE5jr?yvx}%E-;vm$Maj6FHD~@ zwR!(Fs&AeBRqVPi(!DWDdqs|B=*bioEc>ED`w5j1%AXJ7p*;j10_&@;PUMu4j%m_q zIUOI^EV9+~d!BYCb?BH!;~nvcnky+s6*qgrN)|D6YZT^9J8hW`UFnFmAz}T?&0#4 zPB|V$<38O{Ad;X&w=7#N01Kd%fu*g(!JXY2G)dWeV}}>d%V=|abgH95O=Q|(WY|>+ z{WyPE_W;DXBa@r9-1N>dF4Vyja}#R?4TEiXjzutwPgIptc@ zWgbyi*g~p+uKj%Mn<>B58dnq84-OJF(UYfw=rVZAwHMg%UXvK?r?(1`_sIjb>)w$% z$kaAUPwX`ianWw4KTd>7HomFF|4IP6hK-_P8Ha;iIW6gYB3s0&tudUMnnn zsnm68?YB!g@o;_X2hVP5I5!_d9}DXpANK=VNz^xNmn%bjJt!Nf4+@VwhKC$mwKN~j zPpj>uIvZXMLhc2Cld@1|oJ_Xni z3NXp3UPYo|BK*?h?PkIph49p}{uf+3t>!NWyG?_T%cMbtE3KO>gkV-BW9N>Zf^h6t ztFWC&6|;L`%ocyv&!hGfr+wcQqdv>xRUD|86|uN;f2N{UisFwM9M`h8V5*)cb2L_E{^BL;bNjpJvpnMEzC)1 z(te+6bu@k`U-Qm%{?nOR95REvey_`S3A4U%ho~E?I}b`Cs3nJiMgY``j?F!d%rb|%R9p0R?TK$R~$>S5%$g8X;(Uc=M9&e_R3?j+k>6#1T25Y5q zM0pjBn&}S@x8RKlKR6$3*~KLJA$1ubkd>L*-kK$)-be#^bG@o4UQG6$nnj*(&*A)* zfxQ)A7tV3NbDLg4S}@GL7QJ+D5EbKKS;ioXJrz?DzG-%^LN@{J|nJCrUZFVIxdr|xn4B~-Of64+O$ zc{oicHmf3C4sQmE=1LDO;#+mRcnOG=T9HZ!)EaP~*G5%=2|RrH&HhYo6Cc@) zCK9?!BAK0NV>i{4J#WEm1$y?}mKb9sdn)DpKgJxNd>L zhgxN+GPV-Y_?0Ei)IZr~xlXL2++B<2zX`{V2MM6+VmSE@wrp1z1GitbOYV2xAe5!< z`ot11<2TlBB^I8hZ03+E8j3hIOV?Tk2z-P$?M;L$!UX|lcw<2KE$ znRW4WNn>R~;(Gq7xgwa1b60x9!+(iSLQArB4NZF;A_}g#_W%8tx~}E3zr-j_$i$zT z@3huA>3`guWJAiI+U&Qxh}7Fm+TJw@5X>ND-FfK2i|9uh&VOiKG2HVP&dtnzX*`XP z-t*M3Ztt$xNZ6LUnFAt8Xr_(1<08bDx>IQ1=}7L@HHjfUyvR#ak=!g)#B1> z)PF?0Ji^td0x=!rnW+Y(79t_9hMQd!bK+mqUHAP4@$s+IYiK95JWwAJWCW~l_~S0c zDHSdD=V%qCW87@fFbrXucQ9B{1@|g;1SXOAPInJaW~owWPf_?%*X=hiokj<3ySvoeY#-z&_gd%DKHoWH4#F?7X&xv@$$MMc}cJXxD2DXX0Ylb~P{l6~{C zm!Cg#gO6ZiQn|$kO}VH!b9ii*hx&aThZD5XSU~2R(hV#k&{8CS&Zfg@061D4owVxI zP8#i&2O>vqls#D2p#ci$YLruB zL#lrC0OZ$g7Souo@S?m#&$CV*vAuE3_hr8T79xCR5;K47t?Imd|3?G~@`I&j)iqTZ zN6rYW`_S&JLW=U0eMDSJLx>HcVM+L3O~;JBDvheb6oza%h~OS?w%dl0HTN~ArdFu; zj3wp}rwKwZ5=&tLd=e}%#eHU3X$ks`i@O`T*MJHW3^{>O5KAcEEx5n~l zSE6a=d%wt)?n=bMoARG6=QofUzdb?At)*oiX1n22U=a{;>9rceLaotdaC@udq~8SD z3W8r_h+;giZZW9i_ywI)AIykh!m*B}XlC^YyNawN4i?g%RmF4WCl?}`VprE-6Aw}R zg}%=A6f>(@>>)SBKF}e{l+#;TdT1~dJT6cYW741z8pmqhZ4Za6e3lSeV z47_nJYlOi0tYsOF1%H9KbQwq;zYs5kBHNaFcbv^@Jwc%OEmDba^4iwvZRYg}RT6Uj zWpo@e%w-)|6e4KL{BZODw0CI_e1C-@ecds)9F)rv!pFJg*`Bd)Q>^YAk9QNw>o>1N zK~Gi6-ajxlC$-jQO4EUczQC03Zr@~uXz&q=2eVDabF z+3_e(&TL*)Ck#s$NQwL6>*$r$GN5g^Fw>+X)ckjL4Fg3R@S_4xOmeST`4{XSnQPl! z19mKxSzV~MUwfuTuYQ=m9E|9ldli3Lnu!~xoBCpPt?L`OY-5BcqscS}k}kBH8ZbO& zzG`y<+?ZEvBh%|QLx|lL9=>6#>qNS5fOZCj{h8n*rsx=EK4$iTHPHli69##awsCpb z8{i+Na|y4bNqYL?Ivd30Wjw2TweR>eBAmc=mbo;OH*mlDOPaS~D!pCe3HmUzfpdI4 z_JD)IW7w_B+I)>lMweL_FM-6rM~Ai^nmRE#B5$bSfRMp=;tEw@6cXFM+VS)a+a

    `PN{b3(~AxD8cib@%zK%{e)F+u$hQ+u3E}+2esPxwkYq2G{C>jr>foWYF?2rN66r4 z!j%x`8{jXopi=?9=rv-%@>wmCs}@ommADhwyK^NR45Ol^OaHsF7BZjXy>H5buVPMk z!9E)KFn*mDe`;7=*Q0$VynPC&F_ZDxD{x8y)FCPK4hW#p{z=C# z%$|M1TGt@75V)KaD$&&9ShA3ot9%NIVIrRSmmqhBPTR}3z+z|litLh_Cmc34SGehS z6GDBCQ4M>D_pZ+#M|hyGJ!+Mg_^a78Dy`0oCHXg`zd>dBJ*iQu+)vRLh&l5Yy4K6J zOP2Pn=hLNJE9TYQHy56g*-Y7%vAI07x7FaOQIfNULRZAe-<7w)4hmrL{Hws}GnloW zHRn>aESJUDZ=M#i4#{^R1kac+2M1s8c^Dl{IyawYC-z-u;!)Qy37`_~i=Xv-Vv`vN z@I`m~>OduUn|AX@1oLgQzJ0B}FEBB+>9TwSg(bXoekOTyrJM8V_XxD@5@ovbNS$^C8vj6< zlcC6ce*6=Tvtt)t0Q6E`{%3Hx&*0(??^pSRoP_?^(boSvZVfh_5qu5kce~$}&&fG- z*@_G7DQX_Y`NMXX^SsgM@xxJ6tZg%PigP!oiPh_6?K9nYkIsw!m>dJDNYm<%0fSDN zN^pA+2MY$zT?f?(dEK%V1y>lT>UK;w4)ylMGQ01O5tQ%p!I0SY_BUZ&v!I*E_ImJk z=d7pARtVgPPiNxCPdPWnB++>d~D<$dFNdDspPw&q_( z%PnKa{+ zSi=`9NEE4OH|}V|bu&~6O(cmr#g1sMhZO}lKAW-6c4OjF=R}HthpMivhQ@i19kbrh z0qDdxod{;~0FK)G18`K94DINFZ=aH_2u__oahc$Hp!6yt?r2(t);YWa*OocmLFAts zy`^*W5r<55vatYOo#5bGoSYkT1j@d16w$*d_0z;w=gFgsblWcrrO9OhuVGW)lqkQ_ zh+eLMkEC0R^?uXx1&+rHiKb%W1CkX39CG@yceR)IQ>V#&iOL(Jp>4|=)Y1Aq^nPC1 z)v8Ha$A;a@7Mg1Y2GoY&^3$ii3GHT1eT?4UfXmpM0|Zy#vy2?BC4OD971)) z6JyE=-|z6e3a?kgmG8%~ytFnd<8s0(2YtVT&c-xzjnAR*^hsUfHdb@yGB(Y1J;8(0Kl4~r8>=Y9D--Qu3(uv7?&kf zaozf7OWM^@7h9zfuJ-%6ct!84j6=;B%dWRijtB)ZF z*^D|5OGehyl7b90o;)sXGsBhQ=_( z2`dhM6n!&PYE|&`{m?Z}^HP0+x~FG`kVX&t1KqQH&yK1Zn#!{dzBt#n8qOk{oQ`77}G14wKG&tV8DoSEuV#hVb4OrUmj^I_orBDJ5Af z8^Lr8@-*C7Db`g8JK4b_Fyy?@`ETu;hjUcv&3)l2CgI~os5F8UF%AgDXUFTuO2+VZ zP$*Bb!!ha_8=Jjr_*2@=lM0AnEw_|C+iqaAUHed@tF0vsz)*s5>G-Bb$@Gn{? z1bS0x)A6ANh@CTBZjn|>zOt6i-f4Owuj|X;hHa;Ftn4WD|Dyz)PQ#h^skDt& zuC=z1lI&4(fwf-q6~ILExgN*=hu~YU!tSMa_VF^U+S*+0IM;7yZEnWmqQG@RF!eG> zOl+jK90SQESY5r^q;HpD07&$_(8aYbSBWwPhlhrTm(>+)nnn3EZ8M*aMA(pxjEegw z2Dc1lj3L7vrkF7n-f46_L2WxevmiCRpYb&bDzJM6v1P`CA&0vfbByJ7H~?YZ)sCo{ zfE#A|nnIHhc>dp%pywbp>oNKFnrUbLft|ys#W=5c(nNI`b?&g&(W!hDRVfdBHpK!r za~i&?yAyZGru;ZAdN$8pm0Xo%S?hAjfGN>5*@cPUS?28>YWFAG49>};Z<^)IC*d#pDKY{83wTA;;0wDNVF&_Y%UGYs-$?rn|>;YydV|)%;fky^lg8HSjWQmZHBPzSwGML4S1vGg&T7vqAFFO3|Evh+Rz-NR=f%)wFVeRUp6%cuK9A(n$J1E}9#=D)w72SH zBo9#|1R(CcIKKkhn6E0MW!#Sdz!{L3~-|u7=q!CS@6{wBQzTynC>=|Do5CNG3d2z|hNOV&O)%*Om*als#os zI+WeYswq7!+GT9s_#ySklIEsMF%3{e#RQ|E7-O*xNjb!EB>$!K7ZA__+k zZAI#Ha_iX&7XbGw-rTCErnF~Q{=eaVd%`c}SRWEsOAulUywn&RBWF{1kmT}0Q+b9u zks;f{@F~ClMF^=;O8~mW-?>4wdBckr!)L2Sk0+m7yk<~4NGO`hwlwSUl%1t~#SX>= zw0*>zMgwX$X&ru8@NG{?rBS&e~!^gUK ztKQ30Lf%eKPeNknh{jd#;nD@i&A1Cl!>UTmL)E0_v0)C1bMo@NQK{^1+Zfrx;Xwzj zzp#9%Z=Tk25+1t@#(CfGd9W$+cnJ9)%_Ol_kLQ@<5SIG0M_(B{s2XpGoyD6 zeK60=ooaw&Zzz@Iy+eBjI8Dxf-JlAn0c`Ilwf5gO|#Zm32UBvCJ* z@b^q56BQH5y_zfXZfq{42x77K=!>*X*waT}^)P`rOc)NuAt1u%Qtw1_Y-VG|2B{EN z84Odir(*`=Ih3mI3T9j!T*(&m7OoCqhk)-$m8jojECMFHZT171UKWxBGYBRODZ<~Z zOG6A2MtbmR%$76zZ>xdWCDSt4=YL&O1OWm~46a^c#6PFy36xBrk^KHof(Jf??35_K zyYQi6g}YmQzMPMO{|*i8>LO}=@L6<`q#{NP1doSWO3tr6^XmExIoQLiD3m?DtmykR ztY4*6`g&}oh_;KWv1>(AHcg8m;Vk{Pb~DF;euVAs_W!X3+zdD|Q1+Eq-NLs_kmj@g z?|um2B^-Cr`-nwC6RT4QjaOLVH$0@*_RoMldywc<@E=nRdr%GkE21I?s`J2elUvat z`WPs}S~~BjV+d~ThyK(u0AL@`#(+e?31Y$ZFpg9+ z9rCf++2q!@qXm8EfeCh9Yk-{$`_j+s7Ql7@g-%GP&qYz@=*ORg$AvalsG!eq*dGoU zD=iO-`hHc;$LcycKAJrMm)rh}R_5~L} z*Wnb?AGZRNIu2vXEMht4|L8SI2)|@T`ry8Kt`fQ4I1Sn6%3)1qYLd;L*miPuD`F5BvS zV`c89%OsK_Bd?N=7wfe0+;uOCiI{*dL(ht5xsiXCeQ%?~5#B&NP5Ri}K_KPpjJVFl z+V+8ihDt0D@T*LsD01E${diAAzdUUP0@y5RirOA!?4Y8}(40y!JqVmC z_e-dS$5U~5ev4VAUzwd*l8(RLnETK*`>2N)Y`I|mluCTQC&oi?mV)XL4eMJeDVMPW z8++LH53Xd*`Ck>!?#wr9!9YnCEkB9;qO(>!4s4;KN}MgZVt5duw3EgmDszTkVi~dR zdN4wbsWyDBUDb7nS&ON% z1T0UCSY_@GCzsDWTNsETLY1!q-8QlRE9#06m0_C6U29yLbnEXZ=D%9k2qt4M?S&Z-R|GSK4C63%)5 zJUEI70bChhLP`pdx7^X#f}acD9$Ep^mu8h(|M=YS@p*js+=NbTXzZWE{e3rj-}Q)& z)4F5lr_Oy<3(%>=-{M#r!(vaSV82?f>?rKfC&HN>aSe-m*u{HT|@wppWlr-W4r}LG5 z@+9Ml?gsQY)s&y8BdlJz2$_KehMQ zie;gTLB^-N1;BbGq*EGbIkYe_el_=LD?Z?K0RA_*>X^2LWQ77><47x$Z;RE2P7HPb zgK3KMtlP5nEgL2=mM1t&s zgAUC66)}8x$zDdQR)Y3dwZb2Q&>kxC^06r?9ImN}ifn%|1FPwDDhzrcy~kpC;#Ct4 zgy7*ZzTvfvfR_0!>KjB)RR5u9V=(Vu^r9LTRqjY*t#{HCmVVhYFt&*2eIfmal*nWC zIzV_go3YI4Tt2%?V=#Y5z}k=6o=9e{3lH=r@iMjk+3hPxo*2@pL{TZq<}Wh=GqX$u zbdtc|zh&dF%n8Cq5lU4`<#0{utYX=R_6uukp|gyZE)IEfv5b2GwPNrilSWeEjb&KU zSePt1eNnOt0H0sXVem(x|CP0&8voglpQSAm@X7J&;sgI+`s_7zkOG5J8&jBD z=*){Gv5PVBBbOoestP!1APnQp)=F_7hBHzhm-WVfdDfoRb_9l34q#eF^D5iQ3b}dc zC1+Vpay7wKV~8yrLoO#%r7;%UX7g*UN~-m^FrQqHe&7_}&1vw!EANn3S;m$xvyB?3 zwE#+$TUa`aWxS~mflT5?7|1t)e%b#EgHmYFaeWWRH;58EesP>~K5xWNLkLF}9*8@l1 z_(<@vJ&Lmz4hCRVV9s)0RaHhYHtcf>)qoe2|Flgl*@fjY_75$5iM`R!!&A?mR3ea< zw2AiCr@$B)6*Vg;Z3_KfpfqPDPRYYJ{~R&4yk+W6w2jc^f+@UKxDlfI-! zh2+uF5FZ0Bl<0qR>Fnu2Yahe8S4hjb(bD)gK-@3L+dU!GOlp&e(y)O(T8xrvcw}1Q zQxLb!`Bd;?O>$P`(Zv3xx4$j4v&&B!6G6T@Xw%Q44-w&}I*Og38zbYl&1tN|MK~u^@xCG_T%VoeZe=Xgp^>v1Ar(FWVUx&?$~t14mCkf`9`Ir((Y zazdhl-`?tOurlitnt}jaTX<&cJJLObvqA9_mDceTNAxa|N8`A!m9}t@d$Q{t~K&6IA96P8pZFNBda06VM5WHY}mxPn3lMOd! z{Cq+aMi6rfX;cawz73hAZD3h80?tnAx5V1ElYWgl1%pVrxjDOhtwkBs7DuAroM<`6 z7zf;5i=O_MP|Y7J)|nfB-azDP)Y8y=A?27ZCo;sS&pKp{;He9&bQ z^e;pf(T)d*B%q%=-u01x726$v<$p&@HIiwBk0j;)uPwBWrO=^an)EXO-^_VCLN}Z# zCyvERwIc=&Pc*nObzwR$_n1}+1TiN8lu;HW5;6b4JHlFnV9Q>l%}u!*E4n1yErKZ2 z>NVO^dH04MfAAB(f13YGqz%9oyw(Y6Yp9ne)Z;3@$)EX%O8>lT8m2;Y^ob8=;P{K7 zzyqv1i-C#n@HCb_x=_DSO>M`7Bk0@8%joc({+UBmgbXhGJaEG1|ZXn`II6 zzGqn^lkV4Ms^rs?NN9YD42dS2L}m6cVixfg>4BXJf~=z3VpC8NH1dTgM>p5P3d?fo zyfNBG=u*s+I$MS6X#+N5Vgd;aJ+i{EljujQ7FbJH*U=4lKjh`_?$f&E;v$Y4!^NImuCcX^a%7YNMC-qI*jz%V@ zH0MfdMzwn7#i}xxxcLu>)RJEX8jL!YD2?*$)bI9_=zM0iF>+tnax#ke@jNao<6nzN zTNS?yn|gm97Kx18A^fWdn)_kSU^br?x(zWRnkg0RyV*d{LZ|S~V4q%_MjMmQU@z>) zyu~b{wQamng`y{eJrov2ZGKwtbcPkgAC>kcU!9P@0G@)mq`uB2jpgTiONaM*v+ZhfYbik3>>O@nRdI~zOX|*47_ju`TH}N! zV7sXk1qmB-NJK>GfmcztR6zoCTN#R|2Xk`k3R8{uQG8(Kv>NS({0rSs4h4luJhEzi zTRad6a@)r;J(O2_f5UnA6KdEAQLjn2-X8d z>MA13idg}P0nG1K-LnuNh63?P83aoVS9Do@4vs`S~Dm^fhj( zuk=f+>~GV!u-Di1BPw4aZ+5;I;6^(B>pfuzA~@PXj_;)x*O+^E-V(V1;RGtkiOIWQ~ z5J1@6OZRyv$I-2Xg*-}sn=1=VdNKNsLQ$qfhm4F|c?HNSQ_iBw$fO~_GQW*(mV86L zv%0AuqX4S$L9eJ$amP#Ik_x=*BbxYvhb-rO*TlxEl?<4|Mn_DCo6C1v-m+xj2w{;t zzDa9M^zFilAKBI7pRlq5ZWKVZt>YU}HMdgy<;Vjpc&z!nzI`6-s0I@-MS$=F)*09D z%e7SlmZUHa;A3TXBBMi?c%PyN1x+8=booHBKiZEEP@9MKfO?TAii6o9~GKd z@pxg7c;G488T+5ep7_14B=@h#$M?uRHtp*oEmfJXd40aV*g(m^(ELQAI(>rZRELj1 z#HI>6)g+~X2L8Abe_kzHwfmn8P#TK~PHm;r+-{8S_TuNivIsvOQ#LzRSs@ z^kzuUN68EJ-3uOj6y?{7G}cGqOiK(XoI@prFMnu-A{+V_XVa4$Yr|j zce4-vK00k2pf<-Ha)7n_2iyPuumkNn(>=77x$^eIV9ho*!C0Z1NS=K}mS;_=@PsJs z`n==73g|lTaughM2dtBSENQKHwf2jvoJ?=hvEITGZRc7N2bNE9(q!g9wMG)nB~Sa5tb^JwfiXO2g+6bZ+d1357^?)7z23#;MoT{Z<6L;g#ECv@Oz_w zbg6kOBUG>{srd5h@{(DxBKB^#$jr&fN%fAoLqK(^W8}e!p=-0bS>ox4UHM1t*Fb~p zDrTph^7#9)Pexcb$yb*f^Y-P)Q8Q-?;*t<|w$4d)$h=xtW$FL{rStS6wlm7+*4pfQ*BFuUEMWItb?^yhqt z0;)f?>A$%Rz7g*#QxbtEn6aNh>dae*Zn`8C_*$4(w!1L!5P86#Ax>R!WJ?@1F~94+ z?oF*Avrgcr9rJbXR&5Qt4jbA9DEA?sKvnV2B9QlXY%j8^O)w=?_V?Q6=XSs5d2v46 zAj_=EM$NPdw4aiv@p1#LtT{F6j7EKRBaY>0n|ju)`QK~Akd)GAEOz=#@lZr}qLfm@ z3h?Hb6-uOzD4a6ru_C$Pu$%os%o9I_3AgEe9mB5u&;t09Y9WCwyHYJ@QIJuu0tsE9 zY_>IYO;v|JS~ScapB@+$&qO$`_%kOv7pH!sCPTkR8KO$d*lg3wt->HWwQNf!&QmpDMA$=qi`>bSE zN%h^et@1TLvFv5oPKhTL>F?c$BFqyFY_ur@15*QTcHYYGGBaVpNz_#;nGs`c(>n;0 z0aMD2w|2R9VAI2Nf@m!0_CE4!tQ_fh% z$v+2{udnp**sS!t6dEh~yHkuG;U2Ihvj)1{7v z{5Rugaf0-Y4GJ8^rdWl{t+7bDW@M-mh@Hf;TM6BOCCKUwXCJ3mh*V>py6Fu#6etZc ztkrC`5i2~g7JJ6}amK`apf&^2qP}Aq5p*0A-O)pB)9LjH@f>*>cS*h8B;JsTcb$Q3 z=SYwQC)93tn`-A+?`&0S{?SbSVb}Fvsl@uO`u$d$dn>KaO-LGP_M9KRqO!n!g}L<4 z3H<~}b;(h`DcQiF5FNztA*5#URXY=Nck-=ybBUCV-|s0D&{uCY^t*K`_$Z~xtD43f z#*z<y?-&gVUjJEPuZQ2h7%pT)tWhA0yXh>?{4b z1gFs4H&%NU%r#$&TOt0P3Gx~oin2r;m4M^6^H+|+aXFj*b}2Yu?jxf3)k7dybdP!s z71BcTKh`TOK+J0q?mZ{hC>@{)`{+jB5sK+?j7Zi_(pv>7^2F$)>f>~~gfycfHEUsu z?Fc`ITpKT@zfG+ru@UYt_Bp47ieea<>!5hL5V_6&KaviH^h}$HDv+sqjI^OeVWN%z zGND%pW}YzqM0?D`fx50N8hpE_5~2fdYvIOELS3sPUp&Uuoz`=c(r{b|%(e||^QL5h zh7uQBsooOJ&Qd)N!$F;$m-S1%g`Y2ZX=*+ZX(4?~`j~L*M|sS`%=1G!12i!qnIU8v zvC|oHwXv}i{suEiwpQXt4CMUr4W0Pu`dR^{KSD^OCeUp|emLx6N@y%LU?dq@EoR-& zkk^(hsYgZI%4DWI=q;Fk6E=DY{nHr)WW*sqHgo{#J!m>0Bl3$__JY0%hwI#i9AlLR z;yZRaDY^~1TT{d?rE(PMPX*@qt~ZMJjAT@6JaNp3dBm8L2lGLX0);vOLuphuL?GX% zO_!uviqdS+fOu0U+m-5q=F`}}ZN$L#k-5(7Z!c~UED%X!0u65ynTnA`^zKb}>JrGe$m`4)P;zsbH)~LvkFdyf= zsut0z%#gVaK_w6mJT{huILe1UJm{e}u;1j&nvjwg7`F)y#gNNGM2G~ei+m(0=X%mj zh6<0L$@4iMjB{0BLeGf=zF>;2OYjtx&QOM;L`9!t>XsrvF`ZD8lakYS%)8026kE66 zv??(hN;Mp(ixwM{e)@xOR|m9+n16Y2Mq#n-0E! zsE?mRh`o|=N12jTbQeB?T4x#{K`HkDf&29LXbzD8(qGmh7!sNpJ4a<+x|x| z1h5@EU+9;A*Y}A(n+n4c|JRyEH=reeOE;|q_win6y*mtvCz1YJK?c72-s==p;C&=k z9fW{%DS<&6V0;GjenwvK@2&6dpSnLj&d*x}u+~FsltuaR7Xm>*FFY`_*Zbq5K%xO> zrZvg0{P7pT5FVBjIVPQ-J}ME#RX5uQHmCgqSG)Nnfqfk>m(|RSX)V*7c8|xbWI-)Y z`Aw!0BvR_uLXxSR%v2Q)dye>5ew#jnT!x)kCnF?dY2hgxZsyLSYG<6+)y&LkoNL&u zcC($;+sT6P3{*bk{j;mCyT?xT>5wRSJvWQQTHguaXwKz8hn@Se{I7Fn9#Y~k;hc5WttNnBWtjyS#0^5FB!)%q!9zk@AXKl}K8Q7JZ0=EkHcn?B?PsjnCObO-e_n>*0OwU|_FHF0 zzym?+hN}cg33a{=;K`FC(?h_Bo2wY5`W1`wvqFXOW*Q+;MYbqH=6BA{Z5j%)NxodB zg4L>|`U?K9)}POwMB$4)OaxCR)MPV?apd#K1*Tq_Hlto*F~-Puk6EHVf@ls*9PdPs-3!wFwAtraZpD0w<|4^COicV_^?Hi=B|`xiLPG?WnQr zMdh02E{pN$!aOe@uAw8u(Y<^<8-pG5`SB^B>fsgDUvB>P;RhmVj-w&`35Ucherai{ zQ5%ws3XDKveHKdb%;N2k-)LSo;~&!{k;_5U9?b?`pi1N`BdN_6r|@W5m%EDg-E?d* zB`gDze$HRwJ7b;p6_FK%?A#RwrJBhc6DN2Rl_`2b=g6ES(XU~cVa%F&6F&U#NmAYc z6^I18Ypk)ZbQc3Q1M!8gN1nvYjG8cLG@jlUaN79Rfi}g^kD`1HNjIG-3bK2@Lw9_OFFBFZ43^-8x#>&7X9Cj~( z4U5Z%Vnu&%Z}41PN@*2)bBr#>q(+F^{rjbesHe?}Wz>Pfe7mtf)^$pFgl?x5E@N)| zo6m2l0f9TNb%+`dfp{DdpNIgc!?+t<+2q}o7;3|v`KbYyEx=Jre{+E~_R+dF-qs=P zS@!N%)YOksy#(PuXzvq23*ePg&BHGpRJW^6UCyej*34Gvz3jCX73z&>&ycok;5{~Z zKoniHFN@a8Gbmk}RBUo5wuyi0fy~&apduViF<%UsRzy|pdTs7!{n8W!JU4w>PRp&8jbI_7>vm; z9n84P7&OX4D!4i1Hpx#7u{lkI=Qb{>ZoJRwAo!HO^`~~7I-)Lk=K<3>PGy~1GlS6Q z!Nk{VNeWjxcV|x~Vf{ZD>c8=eYsz)966vvsqX)|METHN7XXklbz!S;pqH$Szt0%@k zaqreT3>vkVT`cc-jkFn1YQv9>L?Ud3$P2aK+0J5TS!g2+tXzFJ61WL<2Ht)tj) zN#))fWfwl|$O4-n$#hqA7njkuyFNTw(xh(om~=NzrX-=r7znB|_!5H3V+HE=haiIY z){^l=WF&K}Tzu)WjE#PE%d-m^@xDR5hA;y#1-mMUgDHP1nD0jb>rG&Zq2mCVf5_f^TD^LB4F6q|l#8&UTD~|awlx51 zcjD%p{*NP)%;Y>5KN7x?b$lXbA(gD-o*WsuHg%5Y0Ph75Deu@XcJ?}N%*fLcLYmdr zfa+?=eJ7l6apP6Ej2QAjEQO|W7i$IQVQieGJrkNBK~d^pJA#S4_l;Eo#n*JgWo1WM z^t;EQ#^#&sO5|jW)`)w)!>GZqB10>7&gQG^6%u7$@rceW#f&Z7x8LQ7>S+7nqRN`2McA3HXc8 zZM*_WhmpSNggY z>e)B@)8pFE4Ka26%pj$>q4m|!%}2uVwRP`OQNQY;__NG?5Z0=!6b0JUIC;t0If}>8 zZE8(+*{jU_NlptL`l!^4Av;%j0k*84V&07qGUeSJN1jxR^;5Ljih9?Gq*4@a8! zd&t6E%M+459Q0y3VDM( z=p&^gD2$^tXQkOg{g9(_q}_;pLz1YOWoaAFlQaFD{>o=IM0u{;7xUZgWh*LbV7*8A z{v6fCB)Zl;k}t_ z6)#jVhKmL%rL-9Jbx8i8^d_1;TS!SyZ!=o@(VB4E)r3dvapexWRj`+&jKt(h}DJnLA;(9!xB&mQIQ&8mM zyezmlDVc)V=1JQ{3QZL;sr`T(NL@@&3_oksKRJkjq3<_;VD2shtvp7tysGfVf2-ZC9HcE5UZ*UeuVJqU;sd!|Irj*(K)Y_2mXrr*|OE3$8zWkG}#nWOde=|9Ta7Q@GW%8HJa+g5C_(ZJI8is$904 zZo)NbSSR87UZe@kwBo@WmuIs0^c4EDG`@&R{WK{_ceGaJGE9r~G2G|G-TEsv9h;un zZ?BSj)u^fqLxZC-0|ofP+!`AFXy~{sL+$a)vj)pBhHv9kP+{0Un?(apenz^$C86k@ zppEBnt*iwY@7XUNAvk}2sY3Kfyr{TDPU*r@aG6RpzP^q=XDQi?g86`C9?s%cP|A1c z$?`C#@mUrwSD$7?xz<8Xl43cq>fo9 znUPjhg-4^!Q!XhT03f0~rDelowSY_&cW6wHhBOE`kDsmV1(*n6+(0Lw%ofGq+*N%k zJwf4IVnv02?(@l<5d`-xAF# z7nCU5VltP-X)_hRo)N|hwR*d&g4YrPDwRYKqA7^G~ z*uBgDKKCo!`2g=b&&-+koH@TZpFcNL{s73ox1Z8nOXZr)RMXaY=4d%-w~fZoM3-aY zEwF0jRBn{}3j%r*$Uh_LWB{ERHlbGio^#A5##aI(7O{c!ldr?Rsr%o8E^H#f!Y`11 zb(XCoMU5a2!zik*Vu!#%#e3M*ob{9q(}G0&(^wS@uSRb(6~y zq{q+v7wbjVjLPSmXM5a*BD2M;bDSl!t2@q>5qXexnF{A3|03~fY%rW%n`Wt6`|!^` zt`!iwIwKDKpn^Fz{ho=tdAi!lAODE_z)S^_JOJ&f-=Xn(o7_Tltv|#(i|bK`WH68s z^L1eU#VF>95`SdiliCI7!wF z#i$w2xJ}%IsFg&1$a0(RE@d<-EBqSK;k*;DUQVj1I0sZ8=%D-~nRUx_fBmLu*}hj$ zE3LExTEC-Ks@CDy?}o~K>M8eLx_)Mv_U@3AS+`twJ90)RyJN=;nIY%$ByPSU-EQBF zV(EiP38PeBinfc(IDXM>qb(eH0Y$K6oKhKM;8o^f$2)K&QS^p0gHuLZ)J<*0WM(sS z$C^8Qmc1XGCBA<@500_n{_|xI6Y8J-t$q&5x#Mu?sxsf3Y^GJ-PHmddU_R;osZ!6X zYhJeKmR967ib^ctVVS)fo|$PN^sRZ=P30c@cVK%hBb!a?ed@p^DaCJA>tXu9lxO@e zk%3b41bkFswG?I3qAVL#77m^}u|b1kgq-b0OdrcosL$$>t>$oF<0zpTn=(_8rd@L} zKWLLFarjxWC*8Vo_L@PBmSWeL_1!K3h3s&drrjSQ3_B>?77O_>ypfc@v|4XQ)lfnN-}YQg7&?ZpoN#(cD>IuL#n%bn<%5-F-PtT z$x^f_M!5*-CkNv)v#&em;$jrqveXd_tO9;joz(FUU9*EQ1nzHzCNob}rj3sKjAatyP-%d_PJ^ z4g{p|e2m*vjhz8H4Ur}qL1~?Ps+u>%+WUmt4^%{A_hAdJ$S%Qt_>Y&|_0E;v`cWd8 z;uJUIkjdMSg6ZWgXG<_W%f@6IQaR$;YsR5;X^5?_t6+Ylu$A-`OJ;3b9$sFNGNun# zi#f^X9}1Ha&ALyVe6lUuyQ{y#NmI%QHYOzORRU#Q-d$71y1R9!qw7#E$oyzdm{#Os zp>1#zt)CWFq6&bgl2Ds!FM;_ZLSH$!w4P=%>h6tnV*hlSqJGB+Y5FAdHF<$ZRCHtd zqsb2)iaYri$2BFo&P&3QUE$LP*TxZtN{M>@!FzW9)`@GlQz|raL+tSlpQa25*E!U2 zccsq{f8_~WxkE6B1U0~{LSG&qRZ_yAAF5f1q%|PjkB(E)X)ce%RBx<}Z;(Eau!a3V zL>6n*x!ZX+J8x@U!Kzd9HbsUs%lRMiJCl9x5xC^r?@)IjX!SzL%_m1(+wPc!$7oP; z8U@sL7xx7_m50v!GSnOnEW{^nH{_S1IPY*lxF@myUkG$ldQct0d9`=-lH zA{YiZN#>OgN?Gg;Ivp&K(mQwZwfN~NGOR0W@|3ZRS0BBjL&qzH2Bdq|G%LP{_pE=W zOxhX+ANEsN+oIJOw&fZZ_Z{oT`>5y)JJ^8|8Db6UVZfSp+3>xB;`P9CkU zD*C-oKh4wIus+PCq~j-@H9xBuse;3dZ7|97IonP3Pp4KT(0__dWt&i%T(cP@%pbac znz2N-$3M)av5(SJr?~;G#x%O)iH!Y#FQ76n&4JXTvT~HzXG-yXo2+Q5(BzT@81gz2 zST^4a{x~E>rRD2f+ErOtSU5T%lq-7dvb(K*r(BTEXxAH^kdlg3aA$oXP4oUc;uAbu z;#hW$$KT8f&O#VUeuNK07;V75k%XA&Outo*pPp8mv4bu)PO5}1PzzUy#Mm8 z<#j_7%L2|6HE!U*Z{F(hQTV=qp%Nv)!cH7wa&eAmRW?yXbTj~@d4niKng@GSNQ|z@ zi4|msCRktmG ztbzMWet#KxyZ2W^+S|!(wqS@!jvt^xo#RF2z)ulOMkmv?ik? z-`J>vRJSQJ^B8-$CN0(u&r;e7gcMgXO6qE9%0tQhIZka>?~a8gh#ahdPbRcdbXPad zjp~yLc7yQ4v7U$5_c6NEcileZ(8Mz=yFX;oY^#B&e0MrkWXN7eJs)CaVfp3D#wHuR z`T9lf8Um*aO9|8D%XSqD$((d0aEwIxa(tebmitx3;CD=}72aER1>AQuR?T%cXUZFA zY8CxWK^i%u>pKr$rDyKB8(&X2ARd9HdK8Ie){*;~E9N*0|FYsMsR~u3{tr#{+|{*l zqur9Ii5%qsrh&HFDc&2B;$yd#H+Og4e-GV&}^t7NQ*OOs?N>d&7P&%-DYc6ye5)&qF5 zoGRw{avnkK3EX_&4MVZM^unbt2B*A+%*j*N+>4(j%hmgZl4DPQ_l~Hz#Nto#@;Dr6 z33$J9gJ{d|;U!RgP`c-}bhljeI6x6=M=ZAZR$-;4#OtDaQ#x__yl+T3@AG<7Mf<*!hKYYZg8{75Y*kxAPK4!|sE`NF`;r{^48$!e-x-J%vI4(4ZkzLq)YZ zZ~y#1Jzp=tT7_5P{Wvz_!<$jxyTVz7oCFibxgDV?+ApFZJd;eZNi2)Q^gqybA>8|Dx!wW!p=O!rj6k4#Ku1rn#eBhk zJiP{x#6IYLixC^2^ZK*Gu?ppQ0qG5243_w$Ano#*<4h#54&h&5t2M~nGtA@nzX$ln2`2{_6ePTLE{==c_&T~_(zI~iCI1r%Z9M+z`VUU)@9H#bi{0Zl zFg$+wby~M4au~%sLT~Ir=S3U~ZY#VAbd*@zH|sI$^bY0kH|h2;5N$&vaV^PbGF5H4 zo~M~li^Ifq7U%m8wg(fL)V{4XC{J#yRA$jolx{EpKR~S<*bDd(P3& zh@+Hb-|5gLo(R_g8Kw?uwk2XmhDAje>0aUHYb`SLPfQd?%(yK}bIT4cOs{{i*yVwi zVUTRNCvY5j-0;L+5RF@00$4(61c~Th$WJ#$RuEoyYzz`9hM>r4L??uzY$o}dAp5Zi z;$6r6N`c%bvAwCz@KT_&O=s7V#>@$X4uTm+hi~wMeQzFb!==U0<{KIIyWSyIcj@y> zm6i*&c|N7Nx<1m3-d`Qkx49xaETKB(1#6RnMiV?#7=ob0KBWZ5voH9~s)y`;9JtO@+Pc|P&mUU+ zASmxwWQ%W}v%f7U=ARekP<7sn@NJYCIP%O+bdx0Tf>Do;iYd=OT~t=8J!m$3seRFS zbi?HTLVy}+tN`hMry<#y@(0cGXG9WEAaE!or=%)XDuTr9(yVWpW^Vl>HKVD0Qv;d! z!R4wyeo-pB!xEm^$@5s4Cw76ZpIg?(DUmB|#qAGaP?J?PDZN!%j*ma!N%hoWU+W;k`#F zE1vy;fBkU^LhI4cj*-6WO4>OxOy_D!FSP{ZUo@de#Hz(ruJrehvSp;!`HDF3brhzF zkvy=F@JMdM^&$Or&hJE+)x*n?QRz*u51z!EOou9l>Rlj*6_XM;fJpn3LaV%`Q{sy%=x)j7#fD~4;gzk*b^}2R zc~78&ESX39z*rmG%&8deE@As_`<>izmKwuPB6L0HvDtkU_uy1eF2&eq&3VA%Ag-~H z5BKAwryldPH;3(&XJF(=CXI8Pt2?V%4Fb#P_zFnZpsHk=gD(+7u(H|UDQ6`}Ay8SR*?@On>?Jx)i;$K>gIQV<;Q{uzb4_Bmjt>=7Zg z->d&mfz*pjzSlkLdz7v1zq3i zcr>24Hyb#q>nv<)dFd3bhkUccKpzVVX^aLY9hBL~P)Z%NqEY+@wG!}##?7QnRv>Jl zH&MK=d`AY7vP%m}S0{$d%wD5#TdC*J7Y8wqBsQvNp(oLFLorCW=YYA?)og})+Mghy zz=@Zr*I|K@g`L*>Lp2}0fD%F&Lmf`I)S6RG1N2AY#VFOH+9Bq?2X0GWzLP&`-2BS- z=)VH$FfK!FfbxMM!I}`JZTSi3Brw^US#Q39qwc`9Uxe5)0Hu(QkB5KL`>&sh8yXGH zM%+7bS9wirwMp_>jSvTmN#4?Z3o9^n)_4iR`+@Be8c>bFl`Z4?V(oBQ6bwq#G zNt?1d$jy1zp4MH;B#*#jbL(oNz!=pG{DQJsX7f5Y&8m}Omo|U>xnEYldM8(x#%x!= zO%qo|;_uhU9Vdmt#NH{q-o@SPlEU&&(zJehV|+%azr0SbT_`lCYQCLk0OM+v&mm~{ zp8~#x&Dgd42CNOGf(uw(HxMMi!%BZ^GwQl$Nukl>Zhernp)7AFqL6?5YlskdFXGy@g3njy57zBg0f-q5nZ)vBE`cB?Y&JSXZ(HKaewB(YlUoZ z)EY}+#FZnJVcFQbUp`+)Hs{@cnZ)T@vm<`6L_GMCGqar~QsI(65)-%OQF4KeG+d+o zmWxsM_oLOfldN2MIs>3`L$auh$oIWFd*UCe!*hYQ_~sX=k}xClD%@j#@|D_Pj(%jA z8*Q;1rBs~rtIRO0h*&hkCy?L44%Nu}oHf7-D88@vl+?v^zXWpv{N>5Qjn;|5>#u6c z&e2&TLuQNwkA_DBS#htJLz&1!;#_*(%%f&aPN?R>h>_cr@ulxr&{m>z5Lu)xl%3~m ztR_b>DgNe>No~J$P+?$>@@Dc`T=x^C#UluP8%#-*aaif4o)H9z@l9gF?Jo*vo|>7t z@RT_|>*@BoeJ_!>buF>m7vc^Q7({J7h9}z_PPU6X6@UsN>{n>`5ww~}5H##c?G1-K z0p@I}s>)^TuhVK0#tHb10$?tSApmXq6<7)rI~(i?^pchRRgF9Jb1MdIzJF+mP|iK! z?I~XGc5w)TM!Dm_Bf#hkepK+$g`&<7LNw8Ne51f-e|Zfw^tDU;t36#Tt!9iE`2LdC zWkS0T4TW!rN{b1BLr zLUCl!Qdp|=;I01~a)KMw(Q$%@Co;&t5#UxjMGs zsd^`u@iU4UB^g!BfRdI|#!Wu*NH9t3nhnjx z-7Ztw>_+fWc3+T=A;Lp98Ep7%;|zqSpJ+LB5zh!Sf;&$)_(Lc1{OkJ8xLop-FaBx2 ztvQD1OJfkB2}<1(V&1{)Wzw^|JCr>zuRn-<9b)ZncG1NE4C^W*o!-FfeaT&lygn(9 zM_{N_pS4fw1)J++R$x^$sQe#^gDdUb-czzWWieD{nR zKq>z+w2!S#BLC{gvwLfFOELv~^5KsB z5Hz(yNRw=I+~U7A3>&*unW6WirA&rdg>B}eW=YaNdmKplg$^CWi&#J+ggT$ueqL_C z$-OaNWIE+*yBKp_?5IB89_r@$s~!^*hJ7&$x2h}7(l8)+8JhnH4-2NSrV{pp$24}i3qYaGqh+l8+_jI|RWzBTA4AijHRfxsF!=20mwopZL*yCsI z;#(ldLSlk-P>EP{45D$2K&(+ne~g@z0_Bu)+aM71jvQX&?sKrTNl+_Q#oE;CP`dSQ zeZU)4R1P5~*MAm`)gOj-By-ny0x^FgQukc%I_)`v?Z{3tj@x^gw`sNqd=7(|Re)+U zipB$!ybjzP1z^Qto92%*%oj;5&=t)B$V0vkRv>M(VZVt00Aca4x(CUbspRUsNXAjwtC7vi)|DrozPtoi(>T`0M;+UwBz>ZF< z^7-fOs&p}wgpSeCzu0t9&DJe`jV=g+6Y@unoOyGny$5<5X;r*+j*-V0cpS=B$2^FU z@K%&$&sNIIXA=0M<>_GmIvcDSp1wrQHB_@{Y#NNdHQVi6_BG92nk&DR=8gBXB(Z8t z_O>^kMk1<;K&A8k-g;3MfHR&)c1u73*l*4^quFJ%f)Kx0IvNCUt)e0@^!CnivIh$0 zIf>pIgKL}tOx6dNVk!)|S+~PZXN`kVa%GUV$EUIi{wzp>7egC5O1UiUcg(5)S#V4Q zG&w1q)RwUE(uxsAn2H^q(LvsT>{TIaf z?xTocYB(e}vB8Hxh~?%}XzA7?h0QfM`tMs7z%-U$jVb)!X%?Hq^?A*QXF}9o@)@m1 z9~QSQiki;#hl8UblYm-{m`<#)qxR}B1zK6VTDHWW_1B|M=; zgc(L2YR_f3eLq_^*=jw*GGk6X%&nYiB*IS`$b&?YN5sK`X>i%e zBmVxLRL6{zbh=(6L9;_oHfJHDiheBYes@NQGl$lz^{%_7#c((v2!!#?7d%k*lBA@q zYf=JUgGY-QBWFtZy*BYZb0*<~PoKmFqR#XogrqEfLNACF&0@jnc)U)EOO+jhT*c^G z2+~u}q@`hwi;s(qC)L1|=2iz07Eb?~f&P-4xqrL4FN)G+1ki$w1PSqClrTQ#5Vcmq zmvt!}!{rgHJo?&Co;!VA>oqH=N9+T&>5Dyrr4_5QG*|CkMRve^m#k9es_3Ib?7 rF&Fz^F!@pW0C=og{vRli8%WHc6bd1~BM}lb)TJb+E?e{7EbM;(QE!Ng literal 0 HcmV?d00001 diff --git a/images/summarizing-data/grades-data-description.png b/images/summarizing-data/grades-data-description.png new file mode 100644 index 0000000000000000000000000000000000000000..5538b5a03d84dfd080ddc648c3c7900ab0367288 GIT binary patch literal 41531 zcmZU*1yCGav^9zacX!v|?mB4D0KqK;2n2Vx;GW=aL6YDW+}(n^ySw}AA>V)Rt$I{Z zaGHHi@7-snd#$zC5T>FegMvti2mt|sA}1@U3IPF`3Va{J!vaSRye(THAds;wKp+)4 z5QtpG!Pd;e$`k@ZHY`CCPD`yHH&a&?9)TGhk|Bpz+#_N64dk8?6*Z&;!Z&pF!@k_F zmUtM&yKh5tEg?{)Wyn6TToGL1b$w3f-x>1V&J;|66dOxT zh>Ht*3;C^k1WOY3o^1mQGbOJV0y10-fz1yxf_dmHIu!nmO3!`kV59CR;efNeeX%de zOIhyF8sZ!TIR-kNW8fiEXbiMpQI#W%I|TZC&a#n>K{P&^c=2057)bJUA3EDAjeA zb_vB-qp;bg3kd=hL!FtD${4fu+>A?#vvWL%{~5(ACGZ-Actf0M2;ZfH&M8U2zRY1Y zh$-upBTU#ch!mZ;W+LvA$0U+EGJ=eh(5;=)gF@OVSSRuFlRXXFK#Z-ce0+4{jm4O~ zYUb{pmw^?27b3bVB4@6INlOgkxL0S76-=%y`)5$-N&!3+Wj;@`N1`1Q>rnV`?9dxa z$cq8_2-Mhn<1@XFUc2~ks52vm1CSebckCQC_{A()vMILqN@jsWqzmoC$dU1-oGy~d zWZc^e8E{An4XCplPSca{b9yHZ=ajkmi+0$7P=>2;$zm|N9DT5RelzT|Z1BEvGEfjm z@M3RQq2yD{hNzS{IzmS1RUn=NLy-bEd_-d3v-E}Bvu^0@OgbS zWzRtu!j8dzVA56~5fXwf3rfuQM)C70Vd8@TgpzZm)K{-xN=+otP}yz1C?B#Ro%|r# zg6?LaWL9CD{6v!xJH)wUA*$BG3;mh;+*!2X6a9@<5U2fzv!M=QJjJ;AV4}amjw1j4 z8nOCz7lyapTMO@L^$kAMNgMoEa_Yd~Q4ADGJa!2tblon3GqK0-D%6;AVzJ-U17kwJ z1@$@PVbA%glQ(`R+|=BpcEGg&HGFH7W##Z|k`~Fqe<$_fz4au1Mx?-xWpjAKsJ{|w zV|vvP%n~!%Tjn?(=p`~Exte2X=4kg&Bs~zcG3;!@Lzs>|UKMss81n5fv&O|RjGe#B z1&R?`b`G@ActX9q!uUu&uP2uC1f1fhNA0XfoK3mCF^HPk*f~3JV-*SXr5T0SfkFDp zNRf=LEK4&)gN-!+{{T-1kGJYNq3k9@jY%Mhm5cSrf)%>g^`>j8>!_=<3)dL0B8E?a z@;jF-F14#FUzpSY6;9lrSk&0R-x}ne^3Y7&D_Q0eiN%ztFZzQvInE)^EgX372;3!= z;+Z5ocyoq?$+SIG1uUTvQqj~w05 zz%M6V3$2t=s~^Or>G@4McYY3O=Z-kB;T7Snh%))IrZEHj2_gd0yx9-qbC+9}&6h}* zJ|A*_hkYsk((vWiKE)L36a_a9w`Yx3jr*5`FNKpH`1qa47(;y~#iqoji^g85*~0Cf zP_7-n5uC9a=$bUMejexl{lNNOwAe@ODGpYx(~t`EsaZOp2c)Psq377Jtv5`PipK>< z_gl#+tuIrH<7~IfQ|D)5y++?BBjQ`eE~kF`6GYJ+wXcJ&ch=ky&X!(_qrDlP6P!*z!|6 zQnynzQkL1MQu)(NldX9VxMYS&h9-s>hs(6HaiejCB93tNAfP|ZT4F+M=@^LQrA)Uk9GbL zieRd~-x6k{bfe}q?zP?n$+au-F6soa24A&+m%Wn%Hs3TqDj$IW4ZpQx!%^`*@mkaT zT_sX`cdu!feAS?grp%1c%#TvvdhG_&Iubiik!}-2*MVgQ@8kPprkkZ>VN!({>KJ`e z;Y^QArjfTJy#}xb#AV(FBTd6i6U}HIt(O(o7`N%C?k5NPjeWJ zd|$s>`Eq{ufxUn|H+fpCdp4zlyW(Wyah<2@s!KWA5ZjkqoYOyPG+Fjtq~c-{pHQc7 z&o;pmCy5#ENE7#<$#j#pbrtvL&woX@W$aNc|5i{-sOpXT=ZzHGY2aA$@$ zb2Gi|H6{lQ)oHmFM9~0W5nVb@0~gI`DJ6R)2_cHQ-VPs)@qhTm0K70#q$EnquhKcZ_zi;>bk`$O!O_y9oF4{ z6K>xv4@7@(Df&}-uhYR$ulhw_N8{d|+w&?R%i4$K#obA9AT_!s+S0X{s&u2Qv1ZxP z`wDgo@mgNBkU#__i{8u#j? z%LO&oQ-5w2_!k;o-Hv`P{A#Xp+9}j;(sy-%J1#BbD1EyCT8wMm*;}4%PV%vT&Ns{2 zZW;GByuP@(QJ2xkDzpFni$B}h$eLM)@iz${--Xc*MJp)EInlWhjT1GA6jDY~=J}R; zZ$?)J6#a+PQAERaargEQ)+H9rmF&~weNJ$7aAr?nPidT*@*kdh?u^^v{o1EtkKu&E zNu?5DMSguJk4uI2l(oe4#P+IRpC5E~s+UFae2;tX_I3nW0`=;=*jLx<<(HHG>bbNo zE^g1eoQGc|1Q$hX9xRZ|D?c8eK7^t6M&Da1%@7Le3#2s^IAt7PABuP`o!oa5weyxP zBR9@DGj303EO6T1EUqoO`|w^I7kS>@NFTF$i@B+stL%N8qbia4@WS@cyGGiZsn+b% zd=&G8bmipJO|u)N*Li*GF2j+<9Ou$!?h)%OUNjhFr)Tz!m}fkGR%zIX7xiby1^J1j z-k0?T57uG3{NN@Yl zdb7M3U+3>x_RYZk(Ejm*p9xal0lUozq^1ht)=UPW10^Kr1SR(V+j2AYSJ{&YOqge^ z#N`p{b@(XJdl%NZBqf8;Z0Y*n+wiOmCao(M2MoTgG7h zCSls}+IM&RuE)k$Jt^iIA*wguop>2jbX+{KNU?u8(25Qq+sx9cv2r&)$lU^H0)m~a zwj%@tE)Dn_Qcjin6kre;7V26~T8at+pKPsJKAPAXo3glB+X2xK5JGMOz^~S(P9MqL ztgUPu1>A%wUn2y7-@%7jDal_$oGgVYwG>szLADO2f$M%r=fx{}%aw z>qwe9esZv|bF#3tAqTJf(b(46Ntlune4_vP`j@Avo5la0$;R=&vVa0v!GB?8XJKRg zpS6LhLg1qUDi&_0R$7u4)}}U&z&S*?*x7_$6k31cVrboTRwA8|0xkLK9ARg3nsCac=C-FeRvHHUyioE=iCq@n_l|e44Sbtc~4J z_Ma5(VUe((q{X}03ES(|pkVDGVS+-#G4K{uV5G!wO`XNn(M>*>9Qb-?q~B+i>U!I* zY%ky3H{V>H+!#2|IP6bq7XJMu@L{R;g9&SA1UxzV`qbjhkb0xD& zfx#q>0VW*~4=lx%7YK0L4K6 zi}{~oW{~_xL>`8$=BxXy8jt>%6=t~n*5uBU2QCH*I*>eMDD@Z{Jd;j!UnDXAI5Iw4 z83tbj=bS)4#$udJ{RIklb<^ z5e`bf{$cJJy-zwdUlJ<1Rx0JPPO3&kwzt!4d9tfMcEVmPo%qZUdmdJN82eJ0LS-PC zy$WwNS4q=w+;BiC*!TAN>SRT9zRBG&M~CanSp9#H)8Gnf=Gx;I;V- z9_v(#rG^>;4wKNk#T}8)8f6C74K7DtQ2AEcAqHK7sRVI>5rYADZy!*`+AS?!Vw=cnH2sD$u%c}_0#lS z!}5T;^Q2a*KMOX33_ax#@LIK2i=swvJh>01OE_gn-Sbj}J^ySR=O-D2(~0vHe`T~K z3pSB^3rQA%$I3&*YZHkwi`R1crfMTv@SOvjmHOS6FY;{X3l8XYJDHxCES!Rzk;P*O zP;Bn!o00~e^yK%OamwpWjyr#yEj*9wKUW*Ie>K0{9Sf_&VbthyKcWcu>3XuvG8{eI z)vTW)sqriR)CfgmvP8F5(jdNhH#Z_z#QUCl{YjXxdT)qxL}By0hi&uKbl=d&zu-o;|k`H1#yB%}rGH(F1UU zVWCC1{G1Kyv$!o2f7oiOrwryaX-HzxD$u{jR}Bd)Om}!!Y@`>|#DEMng->XRy2a*4 z#`=^==XKf+hc$~W)naarxzrJoOAgU#KlxsUCjK;nwIw-1n4mA2d0a zoW$pLZLIubC*_ckH#GG-s1O__fjw#&`CT&a%dz)6e=|1RUh-n`35DYl9Fj@0T;?rk zE_KFx>`Rqw@+711q&IQKT;LRLJQZIcVMPsc8s=( zT^-JGe&;dnf@i>G)~Tj%k6B6!*VJc$wng+8YepXKL=z>hMJv_w&4tqT^IH8{9HvJR zFQ+!P84*l-%<{}g2!-GF3{gclglQEV-$d$E>2QjIa;}giA}o%CW*4HEA;7&HkRs~a zA|EnFB;w^}EEbVdf70^s^{lkK`RvB4Eont$Nb-Hml3p~3K75e1RY+WS{)fdyi#^8A zkeoC9E@(JZg}(OD9FYDG3OWy46=X&5xqF-mY{LV^5+T!PMvVeQjyfQr9%y}?2AONS zSeUe*%%Oul*}0zm-}p`idGtgQ#HnDj;U|B;=VBB_BNgI{vhLxrQCzvfA@_!dyMV-VhB$RY}8qi4w*7i2|g? zb+_)x<)VJ^mKMtU;hKBedo#Jyb?DGQ?s3^K;_)GhB)*3fgU2OkE%wka(l9ce*EVx+ zw&F*G@BXjC$faV}kvjL2<{RYYv9Tm!Hlx1+2TY&z-Od`>UC8=qbWM$Xu8Is(m{>mr zpRYEDTpuk6di-oOZ1p+gEvLpj8SiVvaHE4h>b_Y&F z^Do9!O+)Vwcu^;YzE4+@?n9VY4~!ZF)Z?bpVK_MZv8_dAEe(M#iNdKHF`^BMn?PK3#&xEVI12dGE!Wps!DJi!SQXhrgbeqPNi-qa2Ub@~EiSwc>rV^mleP z#bL5YvrJO^g)MNhz5EQF{&x;Ts@K>kS7v18HZuHbXhmj<1xR(z0Qns*2una~w6|p} z<|%7b_n|P;&z%rGL*`cH5W>17>!GndVCn3i!LWST za=;ycP=`a?a0=dNf~*MN@S~;&Zct|T=&F`Iw{sf~g{X|5E6JrGpY|OTddmT`I&Ke~ z^XXesC@D6sd$I6z0j#`mN<%KLaVlh_D2Qv*@&;M8-D}Ig7zV48CpCSa%^#m|!fuEn zPZHL2&2kUf&Fy2*dy}ttOWJxaUJz)WeIVfMm%Ya%%gV!g%{Z*kinx<)T62!d#_ zi)5u<5GQ^4vX#_wnSaaJU-RWnORD8cA-mv7lcN`+Rax`(fPzlTw+N_P2hNt&^s5fJ zoCHSA9@Ehl;Ay*%Au#wZ;4V~*5GslRsLGYs z{~;=FaR4pRvcP}AWvh3o5xHU>yD?nHv;6~(Gp0ioebfM^XaVssM#t`_I| zeXy?;hDQOR6%Qec7~pzSg@AGuTae};UW=~)LK$3Mz6rjL;$(mg>35|d5(C#q&jW;Z zACo!AfJf%%K(SnREGE#ed)X}wgw8&Jj$cQLq`-F2t^`@Vg4*m^AQZdNw~qw8S=s$S z<`bKZ^!*OG;SFPm?OU>`< zYnT1W{`iLvv$+>Z^Q+QIvYlz?35UrAEWpdM|9LY`!sz~TuK+-uW^ zhHuX{6nmpduq@b^ggvjhen>~X>)OasOyjYCylH)Timk2=ZMq}{(3vBEC}8_D0oc49 zOk~3*cvP)M>HYk8w_Pau^h>+i{5>Tp+R;KSZ;Z&jxfPqU@z~u&6Yf#w`PGYOUj3k^ z2I$kFviPOXi8SL?blo8>gqV_)qlHY)~6%MMc^TMI1nG_-*lPjvHwfbdlkWJ_d4C{ydPs%{>irW$wh7fcr+ACE{Z%H zVtL=Lg_J6c-NpUEVbAmOX8$60o-pMGY+&}sbU{~}%e0k8+J?(<`5(aTP3BWir2Rli zPJ9om@11;MG8`%~zBaG=5OfD5G;Ce9u1$USSpm*tjL+qd-KU!sR|`-GsSkpT(CY(g6E{VlGyRdOBm^In2N_)R8k=m00pYT7rM*b0anSlkZn6XZxL!goSN)i_~e34-SPP4kp=ck9> zJ@b|CGNc5(RF?~lUU%oaZO~|u6TXidWP()cPS1~j@bo3bHGU13=A`=gAc_$WdP zov5Xe200c!Cf(3fcgvn9IGLiuo){-p0Le=V`%R#XLh~{;pdQD|1wdVmK<&5BhqR@R zXYtTbHW-a(2LpTF!46wrzQfYw-=U19bC`y!c}1C;oBWAxPU(-Mqr<)io<5qrE354R z^2mzwhzeyqhadf66v^PM&41^(0?44JDNOuyZ(Vync_5l=R_O!)@CLrR5ttY>k=wSjXyFWWR_(}; z_(A!T>jm4GJI0WyPz&9R+58Lu>m!~=i^K}CNlWc0+cABSy?aLr^X2$_Y7-fS z=SRhRmH-jvF0;#l1jdYUtxA)yi>kr|aiPS^N{mSH-zZV^w8Cy7$ON&gQf6KAqwz&( z77nTXD`{tgLHjdJllKO-`WKWv=!`_a)GkOJv?&a^gK1ft9slyv9mjCFLf?LKLCCyW zbX3-p&dgU7n0yKoVG;06y~$mc7d4;j5Z)@f>(`9qRd-UoYFKTVU)n9 zdpMSqyGNi)S8=$+<+|*r6vmebmo5BZMFXNr8xSe;y&E*796B#2cB(&726-cS zq80O!X`9+R37#vX*cqa0jXx>280&K_fD4p|9Oa@JTG?5lO`ynD!cWD<`bKACg*OpV6jM2V1WUr>6}26y{jUuV$io15=?K@F5x>`E20_@-sm5 zS}>({8#lU)LNO)y-z#{u?K^FLchJG0XwfV)2ov!Bl#3E&s8P7raNt~~9HQ?y%#F~J zuapie(U>=^9SM&eSsebhhJjUhFGj@>;iU3yq7b3&o@hTK1ubojxh?37&I=E?3nmbz zZnGFF4vhAZCqSaPs^$B`Z2VY33~>Mm`$swctUphIa_KU?5ys=r`%dp0WM>AD&RUF_ zlMGlCXY|WF-*>G(4D+rqwIg1A0U>OqcZcqBTwidDH;flFT~;2}_KoS(>7MJuCNujt}>L&pSVwmw|o`hiC8>dm|8CCih9mBQZ#b&ooGg5+Zbg5EOu=+wj++ zCr>Z6;C-3r(Yvnq%PPVx4#6FXyyq37>#djYgnUzUPb$Ao&c`QY%1kS>??MSw?8Y-BF8q{$eDe|f?7;(`Js-Z9r#58-|Nhz8frfwcF?C$p<)ESzB@Ahh0+ZgZoo9$vTk*(K*0eS3ZL5oMqA zxMbJ(H=-TT9e}h`=OUi?jqD6~PuJ$i-T=3MI`DQh-L6O2w1IwQxh}gS1VOwpYHc|< zH!AD#p%gj4F%L!~%cKtxPd1H#b#4KkSYee<_g9Wr37lNUekN^6oU}eV^9%bDMbi|E z68BDvZ}9Zc=aipi__`qSi%@Epoo2kCJ&Re4_)Z;)SvH7RiKSp&ZqwL4e(mIC6}FG^ zCpCcyhHmPddVA$3dW1WPh3Ex?-Ge2KxB`mvriq_Ap3l9|w5xWiK-U#-ULSr{vk8epgPa%2-#s$NV|Y5+0eHj=NtY_{R%0=#w)_mi zk6*L$c5({!KT?pQ@3gA_*8gZ>YJ`3zsNue_@a+*HS_+B5&^JxXLfi5$_W(;(VP4cY9?yy86a8+BLTPuJYP{Pz`wS=_b?iUyD^M1N|bAObg%^?!k#rJ=j zoKuoTpU+~BHOY@i{rR_(KSeGrmTLWVX_#|au-@=Gm?`6({`P^1PO?OtJ%q$1xjn|5 z#G#J@)0*0V^3loCe5igWlZeiCv2M)k#B+u5*TmcYTRbY)1#4c43G%gI6r#wCGosU) zC6|R1;pSwC7ziHtlmp)7i|ZujYiMB(OmX_(-1`r2)|?LZm`O?Yy4WHT)Q zO=NZ}$t~;@C2A>zeW}4Y&g7GFPs+;6^G(k&LS0=C2Uj%Y@+)k2ARjeBiK@n_S{zQ} z?X9wYyE&X4DN9g8UAhkx? zZ~x8Zf`ieS%fgIK1%YN^|1CgI3#L1Vcn+^;Gv@)*owQOD(Cd2LfXZKx{3KEOIvR!r zYA~BfuzF>#*~wtKQ)SqP1I{aZ4!BYiRt>Qzuf!D_3kWs7MymhE>4?CbPEoUx0$jbn zF<9Xr@}bat9hn6HDOc^i<9Vg6DhgmuH^;j9x*wxfK(Q7)`u)Mc)fa;a4+BEkAAEsB_6^7z2B*1QvX;lq<)I#FRYi1L`u1E(OfrWB`*r*NRco|ORX4GkPu{MFz+2-gB zMqxzSo*pOSGFN%a3J^3~s-nEXXvS$)p#|f zFw+6nrY}>!cPG`9Q4*_q_&x6T3ZE!(vIfuWuckC*H1254#du1aujk3pR-0{CTEaNo zd*ak@0Ua%WnyQk+qz}FSxC0;tTs6d-^Ms;Fnl|C&hRGP`UntKmb(t?29ag#_QbQhe-z%k7QvI{G%h!0 zQJ9e!D)@Z6LDe{5-#uyw z59e>7X*4s>s7<}Kr>_Q@S+lU{loU?khWz3-W#B)RY_-w@OpZ!;MM7ezAc@t`;QVva z28IS3WwjPbUnE*lph^lLT1ihgqdV_UGO&cq)jC^#kmNuU7XF#DyFHw?vkz|FY(PHh zCPm42D%^$9WrhOqgOtR1@_ngy-wv7y!(^c{SrS^f6f8^p4}TVUTL>GAVAvw!Jh@DOr}By9 zoJI>@Ysu^Yk2XgO9e+~SMSG0RccmCq(sdjym^h?`Rl)9dRE$m=B$ zbKj>Jp+n(0Xs@!3ta;2e+=TiwO|ok@4qN|vJ({OFK=3v2 z9I%bJ=MJM{7!k()4omZlQOkg4x&s@lp{km-p5H(E&E(}>G99A*-0 zDW5a#JDz|yh3Q*07Bzm4+^+FOSr1=HqHj_zz8jxKAG8nezdj)Oa*#WVtjQClR(}Yj zC!v=vv3t`A^w$*n5>VRHPS+dl^RkCzpBku}Gbzj#*xtSPNANr@D^w^Ku0cKZ$OnQoR&2h32lN0NI2G&jh{`GC>0 z1?c~z?LY7E?yn;`|I+U{ie?FE5-MMJCI8^|dAyzV_E>h`k;2on6L$ih95R&ym>%$N zblVjR`kOBY9_n}9BaDzKd2S>???fEv?f?x$*aV9T5~jS4}JR za4A`U5XoN6CiaWDz+M{d+ebP=E^(-_#C9JgZ4OEN^R>8O zgv)@?^37N!Gf~n9QmZm}_(DyH$?JjbkE<+3*WVe<=GwAXQ z6T*>eNiE44t8#2sjg9Uqo)&cp;~JvgjQyLyp~A82bvxk=o%gxd*gP*i5P<($5_{w= zvBua2`xwR$5$ls~AAZZjzAMq-bl(F%?;8Nph?V>$fb5G5_dEHd-hG`Le(YbF7?wc{ zEJO@wA^`Mp>McC%UDYS<^P`9DF9VhEMc9~g{V~U5`)Wx@hs$nbLM$6P@m`A}9EqpI zJGGSbGa+65j9U&V@%P{ZMHYO{rI`zw z@b$Vb625EA87wn1CO0WpkX#}wf+kl*@PqRXJx#g<_uB3!-Qg)*=*7 zJ37FX04B#vd*gRLTsNSs?$DKo98e5Wpr5KojgME!?-g;~C?#GaF6S~;B0D@?*Y}ww zHtc_=i&&Rvp4Ga!kzhw1o!RJ#ig-|p8F}YvhHuLee8q=U^S+E}Lg~dKLnSP8GUp~X z?}ZxWCZubJV%>7)STCIU(a;ES0kO73rBhy&ny+}}6~^BmwL#4c zVR#MY6mH;#aw*R!%Gekb(K=|}uUxg^uWp&AaA%JyDRlmLkkEMnmxkw5dIQoJz>eK; zg91eS(kKVtO3!3Wjqb9-XR}<2Dv=iGv-xS&eD&Ft&^4umIs9hG*v&;n$$?gnH2fFj zJjJMV@wMfr(?<@tS^|Upgt^9{X;UvVc1oQy4UZF;Of-TYEzjsaW6B)C>^5VcPX*fi z7J&|IYzZ|sUfF3WrwNI&)?Kd8nVmVIL)n&ulK(&;lX`7DRx{;EyM;g$vtbYqmySEM z0)`U?CYcZ<;odmK{BQaCcR7a>Cj4UL)m&w%F{8^NN_ZktT7+*W2Or0N$b9~dyYrIY zjHmDPzJOzk;{yoof#RN%#;q50@;$ytrqGm~>%JMK&aD!klm4wyfOqS+G3j*T??DpK zCv3#KzVQKqEKd3Wn6wwTZ7XhIXC?5p;D~5eIgP-By-K_4;GB;<^Sd6{goTw|ei<#i z%|n)GW^2I`ZON%r}p;;pZQTE??JYoLiQ&*GPeQ=&63(Md~;HKxGyim3V?Hq9h4tu8y_L7+i-N(`H>d|9*&x4Ri$0v{#W$C3Da`ZkC5UxQ6@D?E{V58ikGN@sA zAebh`Jl={G`kLm4JYz^f=$z{QXf5}}y=UB+{$*l*8HvTJmzxE0?pw~NmQ%Ww&060Q zwJ+SGDwCZFSNPsiO zBg}0^Rk_4E^!&U_R~+ut`cM?bb$7m(!%Duf`UXp34MfD!OcrvDfM#d^(NHd4XkY-6 zW{vFQ^cjryG@~PbO31YYOF1FNvxx-dl`M&@3_re(5z^c@jy7dqYq5LeJ)p%rygZuy zshgK2!~SN;Rq#_l^f(!-WG3&57iVlzR$inis53%0Hdy5$phgUPY*g%LcQd+Z0a5D?@e{&LMo7k0a@|{#4$)kxOyDxmG zKIj`^9NDE3?#D1761e0|16>^?!36n=UTQLDLu>xbQWovxyDJ)WINv&{u+VW}B|7>^ z<^dJ1KRzzuWrgd0_2I~^L%z}Cl7>{eJqzNCX7c6*sJRuHG=dUb285Ncd_r_PvXt-5 zyLEOoSw?6nD5XmuNPCwRzrb36{v>%S*9D zpSO7PWDW036&qbFxZ-wpWnWIbONO5hW$ zQh91Vhf9{np@(yENwd|r^LCE2L^3x!pd+(q+Wl;6ecO+>*qGBI)*2>1P>4V(VYiTUq;ZYcMrf>RBqTSlKWj{~)8nr`nt!mLulD7m>$7&718Z4und z4XmjfCKj=86^#b>xN`2IeAM!(tGlEzR0tA>A8t5B4O}*#2!=L&(#A4FyBCyUL!=Kt zmv`iUiQyaiDj9l(Da3U!6-?VzXoGd~YCTXS@z*f-`w-8(UzzsQ^H+6!MWnW;`w+nT zX1ye?3f&N`?_*X-fi`W%#>)M*ub@y3Io3bXsjXTT)amn|2_YD)R;`trDZYw3xM0O5 z;?RXB^|eKB2UeGer;A@DvQbKK!~XlyU+Gty0U=l+3+_zieie6gr~z?@xpHC7{8ilP z1hlmYJFP0(*HHvmmXdN2BvJ$`WafN;WJHK+IsGc=nSTe)QQc?r`NwNjC}2IW^W$*p zYpTqcz&UW|j;y#|HLEqSy2MwkjrBT`0%WNP%EpYSSJ{w@7)Ssmgxm5}!K#)8&Y@#c zTQ&AtRxl`g8}Kqn_W!S!;dW|`2@gdPH$FM!pZ@m_Se(H>5Cc2`kPhX61-^vQTKuQX zfgK_=-`KwXi~Rz=Ow41{%;53>3j)|70)r|2Dtd*AF$34>7fov3e|jJdP++`R2mHU- zpESTqHIi}F|Mnsq>=40}#TWliI|N^;MDti&aD{&G@nDAt6av+Mv5CM+lbDL*|H+P+ zK#K3kKf?TrodjPiom@Gc{|W#*L=dPWWkE)OOTla)o?*LgBbpOzB$%k|KD*c+=Co}( z3)ZeOi<!t~0PSE_;yB#59KC|h7ed1VqMGtTjZ1c9>MSV9!qwC|Oi2l%bI4PcIyOn*5&A7o7f zM<#g zKno7*0;r~;nsY>GVkm{PR{;zVp^kn80Wz%N6zVJL7b96eQZUX|F=oIc$6zPMfh_6_Rw(H#$*Z<;Mm zPue|L=R4n7$*B4e+@>9n=UM=V_tF4bFj^c+IG$#iC zYW>)LtTpZq-}QaD@ud=U41FmD^y$98*F|5daA0qv)%^{Az#7KGk_pQe&@?s}a$`wAkM1Y}$@`cP`^(nhvHI@0;q%#L zZ$LI>i%Keuis+aATGZ9dwuGL?jCHO4&;xUiGa_Q<_NORH0e`kXtjO_nwH;M09?rXc zGU-O>9FPvTzL(WI?g+H_e@s=#wVw79NKa(Z-`~VJk7mc};3*R_i+G-wQhJs;I(R!y2x>sgo5}r0IegDh(vjFqe^CK6*ELMH0U@U5!?K zNUEb(m?;FWcv+FBn^eIm;l7E)brD$zyv+s!*(yDYQ9lbugPp2;q;qv;rf1KX*A3R=< zU{$L7Sd89FUE-Hm_t(j@LOmpAb|pO+Y2EO7%g~t6J!zFbveKm+d&2(!o^LP+Wg6T+ zJfqt0goJtND4@IMFSo5+@pW-i(vLf zC*sc{!c^6kicX+kvY-X}G79HXV|0ipP$v_hcm)0wgcr~^sEA-Y%9cvJHXkadyUcpI z%L+4Aab15mex5GVB33tl7I<%}TupdK2(%xXL~-UfpvgRZRbn;}uxPt%PQH2NEKVC} z>wo6r@|7V>TXKOV&cg3NczZh_dQ(4=a2bGWLJgS9S&MjsoGFkg z*yw2vF}xqodhJEJK6UD4sdNUPQiKp=RvCYGIqN4(m$*OeMBDH>9obm*6JZazp2v~% zs{GsV2F2@v55Y{+;VcKLFVOjj2ATWqDB@;r1WPy$-E}p&8lS}*Q=|sIwI8f=qFFl_2#!_WC}Cu;}bQ09<0??(w5o&NtxGDcJF@mk6irT5Y8G@gn!APhUlZ z?{|M}V13pmjEpk_dJtUjV>gDk9e9}Cc7UL~@?=9?xWymiMFaoxL^0?#KxIgYG|#tx ze|0-{)ImXZ*k~L(U2AK2vFJELaQM+1_>fABvc>a-=u1@^y@iK1U>r-uJrSrPnx*l? z!8NH}tS(A$t4DY#CE2xa%6nJ?de5tg1sby%w(2`o66oz$RQ6iqJe#CZ+#b;~i=C$A zEOe*ag`G>(p0u-|(}}ZUeKHEd91frKx}D;VsN&eSzj`xu!r41TB9>z?h%un#>o@}c z2rCgK`7ay-@WTFqr2+Yv%EW}{ zB!bghGh9`R3kVtoMN&kmV6T)ho!DxQPz~A)8O*s=(l7gvIW?7(-CRBMRnxsyovmLc z)YWK&J)G*cG(hnJN@ya22f)8LfZSkoz|SXpJ`F)AuE}|)W<>uZLGT`OfJ7)vB3>k6 zwB-R~PWxjn%W#nm^gx@~+(sS7IXp@r8=;F-g83)HtZ{?BxSpcj8xD)M7OZPYu2Kqj zJQ`NMoF->aDY|q!2`IrsHT4A-E3ZLG#LG8ohlLh8?wj&SNe}NnQIvThJgJ1r#Tyl} z&%l!HwJnog#DM8s?G4@5;jbPT(i{&7`;_9y;Yq;nlVk&MM1VYmiIh77p9L) zFjrsK$ByE`^dXqz!V{{P|ArH^loaN1b9}@mWe|UZQ|Em`GhWzr8TS9N_ttMwMQ^w_ zNOy^ZbV&Co-Q5U^bf+{T(nyDNgGh%6(jn5_jYz1}42Xch(0$h6_xql6UFRQo&-+>a%14<+$wCucJXclkZ(FXzT~7TB;R(aH(aRnsn| zot~UW{u@$|+aQJHh>JvyHDu}ES4onP&yS|86K_uqC;pZzxSZ`JfK=z5(+wK7CU<4Y^iyz6i$@W@@4kx$VkZNj}1)64}p~GAz}T816=fDVa|oLTS_@ zG)q;ck}o82%ba8IfZOq_mD)%dskY<=C3))fQv%*ZibB?36~_)eJC?=vkyRAs zG?!S}E1g6=3>kkI^AWgVu=P=AME(>9iSIOr9(o4UzN%gtH#XedcJjF-0{E572?XB6uFI4Ha%IA2CAInm!JzP-3nMJ-Ht@f>Ipv22YE|zued;iI)Bm zJp*Gfg_ok({;W65WF)-)`NQr>WXzOr^U>P(v*fX-Bm$F|$&14}X_6r;;T`oScCZ+- z*cmweuN<0p)jnZH#Y4#zm7VEFrZnf+2T$$AV5vN_Vb62bTsuV{4d*|P*+*MPF`99e zlGtHXx$QhtU8tbPi$$v;*31OOtAR82?aCE!mma5Z97IDaH5E;l@Mkol8HUl$bFmS zL->-}&`K7?#O2E>dPMQj^Jc=`sa@6W7aj2siJP`T<>qS%V23N_fOWc1(zg4Zzg};i z_8R6eb;Yyf(c2HjF=^S6ZH>I7O%`w)x;WnvoV3W|x4Ak}nSekjaAV&_s`F!t+dMuI z>)2M?dKOxsRZmB6k`g|d#4I#DEmFny*=~}1m+|xkr_ajSC1ysOc_4ORr#f$vR_=JR zj%m_H#3HMC@fHDpo8;Rl1 zww@%IeA@YqwgvY44}_AELyMB|mgary$@;5Ae@n68i3h=tyy-g6awtTkZshF1tno@8 z*H6!cqi?m}`xZ^HW#6ylRrcoN5~I`6_G}1Q^nLVuupQOcSZ|`LIDr7`IXvZ}Zg|zB zM8IbIf$X$kG?6x!pvwgB2MTNX>DUpUo-u|IUIsPJ-s1PqFL(lcYf9gea^aF%p&zen z5@=kjKRzl;3EGwktVM@e9k1=3O7p3_-x>Lc<;a(>tg|MeA@BD<&EGr1d`jT;){7$| z*Xh0NsGziyFsP~~_uI$3eO}?&Z*%^>%1pp)6N58bGmi@7$mvc)amb}5xo1dKJ6B3DxcF9*M(lcrsRUJ)?t?tWMXYT@$tlG75zZJJL2xWLh4}L0U!( z9pA>mwUkc1C6S3bz;iOJ^ZxE^rst{hLo^iX3%^3A3xbhX;yUvBP9Cz(v`LB3|}LcZO4@oPC_PT)CMW~|R9J15^Lq>h*F1!*qQ z#FadUUP5G1a%z%hckzC%lUIMKD*j*(FMbhCZxGoNinXq5M-RT!uVR1e;!0maRcF*3 z;^V$2i|puc)lZ7Y)Z}npI-uDuy-d)l z9WTnHlMzX%9RUw{NpPw2dzIOT9=c0k-<)>D&jh`zk}J}X z4CN<8VXh~Vaq9%a4KJ^l4|BnYIq3tD>L8yQO1xtVo9V@{Lhs%k$TRfo+{VB#<@g+R zhnvYc!p5)TC9XW-=nBR*KeAjZM5ZrDO_jdyy;W*C3HqJ5HCIyQ7x_&q=LahaZqwjs-TH>H~@KW-gO7;PfXWj^7{a7os+2`>TIL zBF^0CMK5`VTx@p_PCx8y#r9&*tMY%sEdTQGs4(l(pC3)0mV7tl%$O^J2Ec?``lBBH zpm)IVGjdc1U-(|c>U-S_QCs@2XRamG^#^aN_YYM3_J(c~KWYj8H1XRWrEJh@l%r~w zm$kw|Lc-ibWC3)A@71gh8=%vk$-UoiT$XFC5wc*A3_?(hbfzP@d$sWnXoQEmhK(_I zk|!oO6nhHK>Q3aG^h2nco8W@kC0B~ z1QW3CUL7LR1EIQQB-hf*l%?HJB8D(9ib>Mw_A_gNt$5*t1Kb>DfQ^?)fgEV z`NmR{BgNg+3BjTF3my*M>6>}y2({PmGL4H7A&mZSlcXG*gqSM*8xIoEV2D)tpouqj zEiU4n5EJJFZ)PPO<^4}dr4s~$YR&!(hLZxw)nzO!kMqHw`bui$ACY4cMinMcMAxa3>kxp@O!SV-AswP&BkaZ`tfJe zj$ifmGyNXFC%dRXECG6Jsj>VfPwbvgFG|mU$VhZ+x$l`|F6t;9X8b-!c6Dy+3J5n^ zKRkb??gv@hZS=V5gBSr=*WT3r%LPn5YwF|QQz#v(_jdtWHU*GE6(sN9`4MX#Q02>q z{8mcJ&GnIB67mS&Yr-7R!6*@Ra907sxmJzq^#_R6M_Z-2X(@Ff!i&IN77Qcou$wAK z;+Nm73SC8y%n-2Eh%wKK!Nl?2PpcKFR~S29fDR?U*6zD3I5nL*FUNFErBF*f&orjz z1=IQs1kCu#FKf}i`yaZ*JaPF|q5XdR^AiSp6|0rbAm_0eO;>gt5B~>}w3p2(EP}didLOj~l8& zJTDX~;4xYu--b{ii+b{y}(^fVbhUW2zHa->nJ!RLw(J`Xm96!?~CW|VlU@8 zz^CIYTIg6B`Z*fC4%T|#;rKnXegSQzJSA1?-vIQmwaWd>gyl&?}{rOz{A3gmyF&VJ)XO- zzegx^Zxg8e!r6I8viuCK&@RJa6-?nj;0h`j2X3FK%c|d3%96AEMfpQfk8ssXH9q_> z`#oL!PRBx6`H2@F>t3aC%hxAGY(!rQt)5&03Bl=cuK&eR)OKjML9LZCR$Gp^@7E*i zk+i<8MY?XYv+u3mheo1z2%SC$CoA_d;UCYfD4D7A!zGh=TeU|T!m#@hWhTZ&6j`la zmsbv!%*VQxcG15A&NPOwc%E{-3siSfG$2*Qjnwct3udy8H zuiuRl8j$^6eUE=g4ZMz<0u=|bxz5+=m@@6c=VX zD@fB>qX5m$%%c}7Q-QnUT;{P_ANz$0gMfx=w36?>br6ZuN3w^f_Te@l$Ha}sz9)u4 zfa))}<>1VPMTOR53|IWVLVGwRmB@e*TxIG+)A~3T{Fny(gZxF+dh4mI9z*VaDy5f& zX{TJ>lY>*nPg%WXslxiyDAIHMgL1w&9IbS|t$3FH>r18eKw4q3?G10nmthLZr%2Ne zQX&qn7A6AH?3O|L#qjfor9(veli1Cj3CfnN;R+X8xIP~lOo@gM<{^EUl+(`pDAu|j zH!{1p zWWp7`hmfib?i+b7SU3EgsXaQn8K}^&GctMlg}#`RW!&}Z3}jh&Si6Rt8W(+l=|0rP zOUIt8V z*76;?$hSKy=W!h!3va zSRnt#Pa7I9hOlswg?j+3{m`B;+ynSZWVObs8XUeq0x2~e9D!gRi3S5nA%o}Ot$z)H zZW&H@qvJvn-7a`i;9Q-%E;%)wivSKb^Vd@#-#1&Yt2joTf_BvIbZWQ5?8m3vAUNHWI{w7DK#W-wV2&kn?FgU_JqDC?R1bh`W|-Ss(W-^=^b@ z?@-IXSr|Qh7JQn)XDN2Ws1TzBp6u%vP+*!&CNuS$iumcZ9y1Z8! zfxUDR+CVk+R!NGx)v8B!AvD?)pC(l2AZ%;e26Cjy!Gmkt`m&{(>hg4N4}&|^f$a@w zHaj;qfX4@Fpgq}rq(fx$)UOsy#Qo{L$K5zQUsgc;&|s=GG1kmVCOVo;MTWm}^K_&F z`veH*Ve(Gr(cSYoSFV7PTb!q^jEOA-4mShWHP^d$U+>04hSq?c!=(txFHm8`wOBGK zXa=|6%+yySsV@kdhY3LYuAC**9ffjLYh2rVG+S7JeQLX^qfX85)QTB|6=-3#sG?kspEbLQxCEN`*25Qco zZu7T}pwm2*YTph9cun7*b zGtZQnrh*BzG9-b~NitGZNs9r5f1EH(%_$S_Xg^o%%-p~e+F~B2e z;~N>zu?HU#nLW%YN>G5Lu6@wOu)iKivuX&urfz@zd}_B6T+KRO#@**oWOdcuUW4EdXrbdJ2kjN)!->`&YKp-yOS9U8lt1uM)x_KdQgS1h86nR(D^?c>cepyF6kab5o8+O$!+;cu#4ik*>ZfqN`lVi*pY zk32pa@ns0{a=pEdbO%(Kua|(dFM(dR;GEZm(|RbAls`>XAcpMgs=Y{a3UNP7;J&WV z%t(tLn$-6#dND^Ljz;ZPOYc-h%3aew%Nm1g$vK+c1D%4W1#Z_7awIfqW}DqR(m4i& zN&UEMASyvg;^H@>!ZCN;YXKS?!qwwJ#`rTBZ-2T{lw|_se2^;Hg@6RSn>0LPpzJn~^STO? z^AagK-MSTTAKpI>$ePAME6u6q+KOZ_mSnLh_p~^8S>quzZIb^)johnW*rpNfdpA7wz281n8uzsR@5>XDHW9EguD5Azu*GIQ3a?y^j_ zf3HI^S*JoHf7kuz;O9hI1!e5nS(*Qb{P8(h0gM8|H5n@ka2lCBeyce0ZkwZ-mcRpL z3#c0_paHQQY66yK104AT*zCBX4Tsmkv-k-jXXIsy#s`s1U>^GJ0Uq?MdR4HsP**CgZ%_6oTBNZ3 z<2r~evBVcY(y9Zi@=|8L;}o9fk(8)NJ-`??3s%H58{4M0J}DiR!m#`62ZIFV1RoMY={r8)eF zGTET|5M(7TAzZyr2{#e$Blr7W0T*w-ATmYpl(bC_Hzx!^W=IkUf=N8`Jk>HvKtpBV zAsp!pLK*w`w6LhDWf}P5KiqcQUUra$eN$~O2;N@dd-K=mkmnZ8gT9MbfQYdwEWWw; z-th!HZXF;oIXoR#wZhN@+0isE!|eQ8pW~P4sUCa4Uy*cOB7W}l^Xs>(rH*UE`gk2y za#Ik~lqF5O@@@FKoH+_TZ5GtL*=X41sMr`ED6n~-u$p~Nt2ObQH^;E$>oG`sa0xuq zqX@_HeXB4w`kLR_jI z+U^VjB$|TE@oVhVro=1aaUD8dNd@?t!Q;WIeXf()kH59xBU53PApbs+|u}4 z(;|%j@@Q*)#0Q$FC>94yv&w)9QKGfM>Wt9ugI@Er?C_hiqzKwg($U&PO_X{ApG2GF z;wX3N8L#R~iP5C2Di?7WN0`&&p0|vyh-d`=4}9F+eDotmAg7b|1xN<1=n;gnSA2#|uWd;xM59cc0 z$;8S0ZlTpWs%QE9=LnKZ8Fedfuv_C6+!QYOEBXxY)Aa9sv}JwG?yelE?KZEkPxLgH zDFB3(Tp+V63xDRO^A?@)u+NK`UQ-Sfy*v`?cTGd@1ZxbVoR1{RG?h%;P%fC%PZ?gva1~q8kBh3l+L|f#bu>c?U3KygH}B!+ zvsucLh%sfCjQa-aRfeN4o^2K0e_1EZCpV z3noQ#prsyhesl?W_VxFb+M7;f3?|R>ae{CV%JALL5(ORCHO;r8XQN9KU#ca2eVZ;y z!QfhZ1F^6+*HS?qI@9_U`OY)RdPrzhd<1C@EJu#ud^wPNlTWYCUuvw== zlb^^Y3(&NnLgAm&{j^UEmMt5jGFkeGZ&5EHD3E8ThcR~=v`?CczQ3!f9A97 zms_fOcEMX=6hMV?=fJ3~4{RWun#9hpjd+X?i_}05Qy9ryeTI9w9N4kfo1```Z2uEZ z@fY-+S7)@`l+noWJ3(aY*E6k;0=DC$v)Su*mS}+$-eAKHHMJU(qda1Ds&%YOZ7MGRspCHmE1b> zpgT8vm zeE~}Dr39tw2|5f~42&L^X4nHVjbhY5-;1GAWVgX1xQPKTuq8Lfv!rVaB|z0M(vn75 zG*2^vrnF3EzUFwnA-v%Vb9f+C6SwH_MXOluCOru!=QIvMA5u3|J}X>PY0 z{fxv*B}^Fx@fnGJr!C9JPQkpsDc{yL(b5{T!}w+82isb-od^wzYh!0@T=@#h(*0o7 zpRK(jUGyHfCSD_dx!t?HadE#s{(iZDwIl|?v^JT}d$&6<^hN(~9h7BVsvpEda0eZ{ zg|i75HDBakmxo274IJ#IwqcdWQ!Q}gJE*^?tS5y_)S*@#$0{R z3~mL;aS~5Tan6MPKI+2CM|U;unAp9*+e_vlQ*L2PWsx*Z!>ig2jOm`2n0W82anF+F z7BK2o=r2id$+*mdIv*=FC`mL_0NwZHu>!Y%lg0)1q$eQW1eI+FfmE_eD+ zf}oA^e6BgUk)Fvst<)E>#G_skO`)~KJ%>RLdulG-(wCRY)2Ny74CgX;s3Xd;)Yp1g zvG#ciPO@TZ)YCNS*y1O{Xnk}TuNQZE+hMy)#BM+|80N6;-Ff)m(f`rYpvhFMm~a!u z-W_b@Nw+QAf4M58-3UhvO-qb%lkE@qU>ADbdn2^=4L7 zMKvyjEo8%XnU)>l4zp^Er&3Z%CxQijzufy74=V@S>L;sH&~{W(eL?@kr#Xmi?k8+o zsjQwKH;vJxHR-WJr@0lyvLsMx0_(`z%iC`7RCX~oTy2z=g| z;9R3Uby2)NF$dVNwZM)*D!bzNbhTg@vMzf-8LzO=%#%>>D+-|`x}w&T)86RebfyWx z6KN{CN6=(XIKhAmQJjzYmK@EdhN!%4px$&c_fnM!Jhi)V&U|Ot-pVELV!(2Ud0p$# z#q2b0A7ZgXP}7hi$qt%pHl9Y)LS(# z4Pxjb#^JQSTA&T#j3yz*vt=>gOrFrvHmY35l{OfFTWjF!4XVnsAATBW^Lt8!!v9%q zrEh)Wqp4#vBNx|6{{A@DjUC(YdaqtE?h*z{hA!8>v>%iJC#xvvWQ8-yS`{{-PYAa$ zQF{3I-Rd*?OWY;g^C5ADaXq~_Cdi6(n1SXwt7@C^$r8D;)B_qGjFMGN33@932q)GW zOK~QBTVZ61ZPQU4XG8e9BY8PKABs|?dje_$;%O$;HL`#qBAixLy~-m>y(dd7J%CO6 zc_(i${sI4CWb=2USFt(0NmOF-s>7C-ay#P*DuXf;gPEEWXfytT?-FK zm}3z^zTs|$5|>h$!3uiz3F^o=Un^M$o#~mN@JS4@SXf?__SV>8t`_5xa&Jm^kJZ{5pe`cqF=RnwAoti`+u zaP3g5jb~0SGVoQMR(C3M5DLlHohExZ6#eegxyW>ngOJZPI?-a`M(lz5%k?*XLQZ4x zJW(q8J(v3)Hsz;PX>?hxp2VKf^8)uH>rE`&if9AJLq7;^bi)<0T;F#3q=z7vPP!f? z^LR1fRcz|zG#vH73DSF{zSc-jz-1jYEJ%Ju6osXmQD6vQZeWqs5wYLv4|+$@3yQAy zK9fkp+3#!lsjJgFeshj=S8PUeRPNUfdSpa}GxgMKu@AoJ9}u_UwpaApW}}5wq>r?T zBslKyBEdQxnf%Tle7Och?5lh0@dq-eZ#phN^nCrn`F=~~n5Wm?AwUVG@IEZUDK7nM zGwlF;tI_>-SOxNda4OiKp?vn#_>=BnDaAtgle4q??Qb)VYX_eG6x7(c$A+C zOpgH|Zp**9=8$@Zo!_v6b9F2YM4tOW3etJZktGJP$Rjupa5J%0&)ozBslt?mLkBICpRH)k}76mxg#@YDu`@7Q!OG!mN!idddxEsUdC^#1KYWwBSyVDFJ0}V^q4wdxZ z+-wx2qDnFiUu>7$NjCU|S_MPWj2|)Y#sCoj$BzB@Y9M%b8uzzg`1q94^58>3me0!s zijDoo+_$fHg3kXoRjCLfb%Bsi{{}2YWG8y>1F>&|cxK7nU*E}R^kDvYEV0G^ke{{1p}TPcb?yJ~|1K?wJO;T%8L*Lb+fS-Z&Ob*%tm*FBzwD?iInb0Iy}8_TS+QxB zIERuToNI>&VTC~QYH|l?6B}<)@Od$4{i?S>Tl?h$gzpUWm%i!){d%F@zXbt77-az| zh3D}Y$b2%=2f;&JtlJ>UiH(hCZ6fROh$9Gj+X3DxL}b-t;Mw}J0Kf~Kkx!+5WiqpL zNaPYnld?8o^#MWT&8ns)guiKSO!c}8xytoF;j?2ridEsxG^JVM*@Hh1_J-iKD;Bm7v8O(DX`uJ8!rqY(!mQL`ybQ&rn((=gndsOBQP#{ z00W|<3XD77wJ&j}8FKdx+I(KS12co-fx=Q8jkt)KHeC2l?Ntdjl&0hS7T(e5{4)!9 z=(xPsV+Dyl;PsNMi~BMm@e~4&z}6E=?m$@(Jq4PwDk6xT_fwz=ND+2Ncva32X}d{? z%^s|-*mO#mv^2=A?6GHUO?uupEeD9crW?Stn=Vow0*}G$qrX2zUxBZvrP2{krdxC^ zk})aw3d(|Jjl{u9>#d$GR6{rJHb9+zw71;RNdPsoRgqZu^t>E9g$6FK@2YQ0`2Iu9 z8AK_*l>(m(hTvk*0)D%|Kc)NCj{5vW89?+EztPSY6X9Jn_2OOA%qzFL@hm;)mj-uQ z?CB4{c_)AE34(j5_W;Kp`2>x)-yP!gmUS)%K$mo_KO{U+>TaV+cQcgzz}95cNhd;P41X@@@}rquncF zaKWKB0d_omU)EgE(@XhGlU5VSHOSe@)KAAvNLLB4k8=;c>|$hBa0z{dBtfN5=!bfe zN>aHm`+>3W&-M|R*q2tQB)g7%=64+lHr3C6rExQ!SAQ;gA7+Oyw%^InT7&!UiM+{g z!B&M>O4tb2K{%Bjv3!=^Lw4}7>N`BEs=Bjl##|@E$2e}v1qLZa%d710S&D{Vm$NFc{@XevrP;a(IEC zwkqQ8QeqU*mGfX*#2q^5K4mQATJU=D0dXpMw^XFDkd~D9$HB4~nHXyygJ>;xJ5Buu zhlvMn6EL0nL~-Lyd=l5Rkm8(qW?LRjiSwd&+C1kL@Y#`gtK4F|x0|5(tWTE(QTq!n zSK9t3QtvJ8wM}@T^Aj49*GIMeSno;|Yuut50zEzSN;CBHg1kQfs7^xci5=8O5>7v*#H=jI`qH42zY3A6nM!}H z7m#CQQ1;O_YmESw8v1aF2Wx%AwxX-fDbMu_MvoAk9XnZ+_!6g+FwT~&yxsCS>k|5E zg<_+dV-!BDH?qV8o_`hhRmN`yY9`hwU|e}0m`y8L*)-+&@n_zexyB!)z=rRBgq-9r zh)Y+a6rNCt+Kz_7Wo-NVC@|OhIISEFhVdu-Da)7=@k2v(bU5Qxw1$~91)fh!HK?J4 z4K0`%+6XXBHICcpk(FRLv(l=*5voC`*BxpyYEiW5^gYQTqa@s-6sg-%I z^q13VOBQlEJm*&a+y1m`4>@QR6Bax@V0s11poO`Xygp0EXX`bp{@(l|W=H)O;>o4V zS?;~OFUQCQ*V{}9(9&Lod|+abPK`$0Ql=9^mK}M%G2%OlNw^78yF5eiLLz)6=Qqz0 z%>~qGlI;s}BWnMl$FEv(Qea7{!E`$++_T~(evyS9%~1Itmb>y4GV29O(ydX6e!B=RrE8(Z2aj@V{etGdvT@OrCxlp<5tY4*-fO~J4B#8 zXhIB{XXacvBevPkQ*_)D&Ot}Q_1sN?5##Y8*7hS)8hNUP6Q)Go*z5y-jW#Hbb=l^t zW|84`;QIWoDBoi*5Qn^ir)_R%nH{D$nHY7|fVM_G_QU7yhGt4xxqIy5RS;C$qjrzS zbCpNTt$)3I=ZDuo@Fsi}qX0{^X$Lowq^{sVdjVK0w@vh{e7t#s?4dC@p;m#6!vqk6 z*Sk)=D$^rvTvX<02PrLt5j=)6C$53TMi+WQ6}seTLUY(Z+@z6f+LQ>Hgp!mvdAOtC z;&jcSLw?;J+TIq84;aDFfAsi*Ofw_bf5WfqRdL?XK_?bps_3Qyt z_deJ8@+DtwI_=X0Bwh_h>Ft*+(2Sd$b5xY znU!-~5=KJM>{)KP+s`b%KbU{j1ILd+ANR6Uz#L9}@B|@igdJCI3S7Q%9F@Y)xsWv- zczQ6;9EB#wIABXTW%YENljH7o5NX-)6Vy0rEpDj9djTs19b=>>?&qi|NOCARG^b}h zoR)y&K^ubB==H9O3ZNwhW3aNZD)esRO5+or^Rr-Zu9fI7N}oIrgsKs!pr9tfl7=B8 zSdZ%oehGKc+HxcjLX((AOqoogQ+=iA0tc~2EmS$R&kv31gi&M-DzED*Kt{r4K<5+L z3^9{23Y;0Gb68A0D4ElIS`Z~Oqq1Ckg0k=w4QK)EXIOT~#}QE}A-AtGn+}3qoFe>P zD+1|x?EsFjXG>Prs~`yUK5f9N2V%E~Hd>vPaX0*Mq58m)?&ZstK8;>s>jYp*L*q{G2vC7nu*_md{adjo*#vzlh#mw!uimt zN>Rh3&!);A)Y6d7*nuqX0*yJA-5ii#XcjEyMU3M$>|=34*7&}c>J*Ogm@VE28)yAc zSnM9hP>!1n8TllpnLevz3`=g!?4wkg>2Ep`!}^-(*Nx9E*AEGZOXtO>RV|UOrHP+$ z;$3y?dl=l_d-M;O+6960awxoKH!=pBDL3w>K`J`o1Am#_ih?xXaZ0+4pPZ z@i1=H>i%}}my@=L9E0gjt~U#r@1zZkSR?#DKKtr3{6Zxz4j0A7j#0FHG^XjXPt0SP zm=CW-r$9gK4Pqa<`f|#<5C1#&e&&}pwbb;ZYJBKL`{&%cxN6RD=K73p*yUFUZ?(bG zGp9#--NoGJAzAMBoNA1M0&HXz^)IOi@JFU?@2YTkxKz)Col=I!?oCV$_7DB1x#y#{ zF~%3JbN72Jxhpg;k$G$z)(rO%Jt@5Q7df!nhjabh>Ex=A{=cF{kEAK8jm*@0R7Na< zN^MGz|JC_~_tX_3c%g04pYBuuRUk~v5RX-)KD#UQ*MTUoCA8CEb$5P)dq8YRv$OeJ zbSE}YM*vY^z`Tn24)d5K24X|KoPYx}DFTuCEd(?T5qw`R{X4-U4G0q@%vt&zWp}3; z00sVx+q}cj-5}~wLHW-$HEN)IcN!6VaGJOt6II>2F))KM*hksSsjwsHkx4gj8V{-y z13=(_x8e!{V^D?E>1yAdCQcTdX1)4*(%l&Bu)r7$3Njm#?oQ)D1x`a9(Uw;6pQ$2H zmUO271!dVMUFS?E2966z+}*oJOChiy`Gk)V|9SZsfvP;p%1ZzL%zw+7{f98I0m$YC zSf22=?9{$HUnA?V!x#BYH`DyemZD*WX8EBHD8>KFs2G1m@LY&UC$s|wx_}6@8JTSJeZz7JqMSJjNq>}nYXTuP^5-L=owgvZ*#_{` zce@E8R0q%_{)o^itm}g>!S71THI`;_4s>E609kP(2T{~lA$KIlro?Hp8Z*N#sCf`T zxH@ppMo-r_N#3_+6@w!dRGLy0ZDT4B^8M#+2*mccX*-`6XyX!#uHRO6kcBwqQ7c(t(7@i{xWW7r5xY${frxy59xgC0#8@*7SoPrmgsz~f zH|4S46l$2V@$=2HI-vi7atAVK9#e>VIzFXLdCqgrRMPO(6y#jHBRm*D=pMfp z(T6_*_>w4XQ`FdEX_1t3Ahy1jfA>Jx;Y`)^BIz9LGn4od2I5i5HC-sb%1}_Bq%50-vc^`#4nI&W7&S%ws*dX$dtJQg){>% zl22Oz!!f3B`vI0~DF^_($3XaK&4k!%bAB0|U}q6;oD@Bffa)zlvk(S_d%;!nwwD14!%2p*RSfy)*p)%BFQ0 zu{#r|ug@$1R$i!*k^9|VE`y>Vn;ad1#FXX+h!oy$o)h8&GVPliP}ytg-+7qWqM^2KzY5+X}qCC zrsGM>s>CgRn?0P!XS{k-j^Dv!VRYgvT~D5Lh+oF@42dz&&)>VAvPpRNy1Hnihj%^5 z2(!G@FQquGlG(yk(+mkG8zz3aQzwDDE*ri|V-NU}zriOm5Ay=~2)1;mX{|2y|6NKl zVyfb{AEqEz(+l8>)LGst)0#F?rt~zP=a{HJ+fTQbv4)4xUUep8uE`{Z#WJM7|A(Pe z9ScMuL`PNzaZXFuC@fX;6ts~Sy{x(s2yi1J#4Dqcm<&ezrk?1qx=zzn0oT?Z373Mu zw>X)Jpq4m9=EJL;g#gvtE=FgH~ksIKV>VBNy zurnP@0L$jH3}0GWjp4(c08tl=;%S~>FZsy&q|rwj*?NTGuJ)*TPWzlos^gPIoY@D} zE=q9eWf=*6iND42D$IsF=Q8>)kJV7{oyPU6I8`lFaS8En_X18^hQO9yjJE>^Q@RCg z-)M_C|DWHp{$ImzyXq;2?_=+7%vN*2zAPqg`E_9LT;M)OWROazC1G{NIyn|{;#0D7 zm#uuP$QVFu)#>L*)AW7XHfQ&>y}ISL%Vijf0*xSU?PRwbHh~~#i zdusP>q;=7UAb8D@U18XduT}8jP4K#irEe3|K=w!OYI}&$%oUi#G*UtxRsu?e zPP2zhacH%Urua9G9~o#P{6(Y@GeSq3oYL&l!ZV2@T52;-xiJaclX%UiEKh(1;i~IW zdi9kJ!*&cT2~ZN_1C}(dPY1N;Q_FdlP_S=7$~1hQ|L1Pg^55Y;8X{{;a$|0tT574H z6h6?u@t7&qJaxxbG2g{FDWve>o0#TX0ZIM+e7$O*JwEZpg!_?*EN6%bEv?6vox}2eJ2_j znrttU^bKf?hLsJ+Wo|0S_&UI^v6WwqkwssUFxGK>o|t<04#eOHvlQ><^@PrM`ZL}%${nyL!&B-O7XBKrf22_ zqhj1qz_Z|5fuR|-(NacZ-`2&Ek*~egUI%?-#%;w63VsPVX>ocOtd^{v8)0X-BY%=o zW^4ooBSsRyrUEDLPt0%Vr{>p(G`NX1$!RBQ1L!C@QQWb3oRnEh#6ZPUfqx8t54N-G z+G?Lqdc~@WTh6O-mR&3vYJZk}cT4T%D_^RWLwPsSj>6H%c{yig!_fs8}izJBeOxeoJcc=J>*J{lHp0lG-7`Q`7g@yxSSRv zOefS2bK?ZsD&WJ+3Y^j<#f*R99(v@0Oj!sn#1?#r@BGl&2Bv#cY}=skhIAYxkG4er ze(7oAyTI2)hSuysC@l1f`@#a}ZW7WI@4ocn)vS%>TDg#>U(8spI)?Z9@XY!{QseNP zaj6o}uD4WR6uyR(X+kF$TH*f-`oXLD#XeeX*kH_;?O__WrT2P0g*9$^k{2tjV=vWex0J?T$Ev&WJ?*9wlK-!zK%WE4F-)?9(qP}GH4%~BkvVY9Kk`*_D?2}XNEO|*)2}fPFwwx|L^WjNp?jHeJhv*$Vi+J z2&eCr9Qw^Zw~~?q{gkU`68e*?;@V=Fw7GYFnL5PUS;fYmDpY!yqI%Q1-uA=?URi1e z>uJd8i@n5FgH5z(#TmM^eJfq{WyTDt?e0RpLe}Xopg1pjIcv9rT>nd zPSxP{pKjV%|7wH?F9loBs!Z%7E3+$olo?%DQj(ihgrZ4(f_3)(O_oFD0ZKBDZTK9{ zvg&Wv0_20CW6##kmx1>ryV^-oxKp@llA-LUB5%nm46h9CrEIGU{)Emb_2KyOl2`?R z)htIR`6@96RT?HAUT!laT&yMrMIL1Vu|c{iJ~VkGxEA+sU%s(ahWlK!n4XEA=@G`! z`}4z1GPCKXI=7c>7EO@?oy5pu8>N+_DvVQBhs{wc%I$jDFV8wH$ zFTPm4B&`V|xj5KVQ$d~}o0kcr7_W83#(Q7pt{Wt6%)Vz3y6TT{19SzYRMX5o#4 z%Dui$qqmNCsim9kX!&D4X$d^;MakmC&VAj@X;uYNn#K0Ju7cXGv9n7u#s+v zD<27-a=5)Ba5krJTTz;&hd&huuA*iqQwdOo>+D){ExE!^?9wT9tt? zL`R5rsW|0*svYHxFQjq3WrW)y16VGzR)JZ|&EIL+ z#1iAPw~0STcuhzy4RF6Wjxyxn1NDZnsPj zQYy^hKS2G)WBKufMMHsFLaMmiMr6M;cWE>-4p|yb#TF>K#FPIoWx;xHEav}G7A5bF z0Y>rOex@X|ST#Kh>}!Frsom`ow*xA%sjmTm7vOe=O!^?UH7?!-G=)LR$J_r=-kJYH zx%P2f2FaRzn}-p~mL-#9U&fv+&FLV^*use#QW_)5F3CQFBFTs&vP`l}vNe{GP}y@N zL!!vOrRTcGdCv2C{)XrGnb+%n-81)fU)T5Z{(L@A+63@8_dt=gXLY`LgLAsn)lTVn zC=>XkxK#dsc#8~QP?&WwMQ>eRL1!Rfto99Xg0~e=AWDNC3BdQdY6N~%jy?wT{x{%6 zc8SMe7rXDkDJ=t_1zO$Evsu&FeFS9nIarsnO(>VSL|O>7vRRDm8*v3|13B6@{8s-s z&H{9F_3&uD++s`Dbo$_DcM z$w5(r_S!nxj1I9}p1maDU0JoA$Ea=Wxc(z=stNccoV2> z;SC@%Lk?<3ONriLU=tDe#h0O;zG!{!0hudF1*Y%s)r}KR+t=qq)0xeaWES`WfaC_OI|28&#xW z%mWV!@G9%~sMz9S^}Rb&S>9gXD*d7=d+ebRR>l_%$}p|LkZ8&aQ*6kpYAJ&b52nIK zwp6%JOaWQJc%JLPN}~rE4?coV5^owG~zb{gQpAtO6*huOsDV3octC=?Ia~l zlnbua_xxlMmCwhG>1oWmDokXp9_;43%1|Oz|#D<;Q7$3(_niDjNxIV6at)45peW;nP0ijr2DqKo_RH z_>Dg1V@K1&5%J`~oZDmzfIfYt%*#pnl#n>9eI+o1X3-{uE)rTY)1 zNGrW7*Jw9z6e3J~E!lN^rC`bwj&G%9yak!m^O-B4S}y(STfI~DfS}3%tP-`_YHf$+ zzBhG<$=ZI|SR&}NB;Fhy3^uBA?>^-drXcgy@VRS;G)b07*%&o$p96^iRjf1anG^1!%W@UW({^M7qkV}4cd-W9W-_NX8&ES0UyWLs)djd zuReV~w3Hu91T zm%e1d^|>QOH8r`0siH#w)&u_z7Sm}c;*xVJMO6Jr%>n{HEmA8cB-))RLR=jn)Ep+p zSQMtU=bD{;B%}{;G506`oVrc6{uR`v->j+q`K|^Bs+8r*#lFG4=8%8RHXp(+ix;Lv zKjf%#5P>D)`5gGvUnQwFX@RzHbACmU?Q<=Uf+~@wkqyJgfJ1UKg*g&8TI!sfOR!Dg z>%0gQ)-K?;=1*mz7tzF6iSMxFljG;op0rPg-OS}$>QJa6k4V$vlzaup1-^i^%ZI1q zd}2^-IivuhT5^E;*xzvi zQ%>cx#Ye>-oNdjNdg4*}1dyNKw+8;T?r%)XUBp6jB-XhS$3CWPzNHw!Wlo_{5O8jn zs;MkBc-mI`w=yFd9j2t0DYLF@3EOc2A7XKIq=Hw`%!=$~54e7O_U(lNKkTD&!%2sH zV3wrCroE@nsfi%=Vo{)wwq#FJR(uQec8T_b*^BCpgC7fCHGw>Xh(v)vQ{xJjMXMbX z=e7M+gL`Ow`_%D%j7jz}0@DB(=W+;&PW+W>Z7!{VU3v=2rf!qs)_j%m9vNaHY;esM zI+vWR`1CKR!@Iym(Y`(TTSi^arCr{5sb0`R#$1mn_nh+r@7i92r`8H-)BRIOde16C zXqp>tD6YPoeq|_QxJF*RR@#Rco%_x5^cT;X`+-qf>iixq4Z%6J6U+8-_pa0V)znM& zukz>rTxHCqEeA2Z3g(gZGe><(jks`uV*Tv$q%WIsd5GD8N0 zz87hil1a1EA0ckK*)w2-*BV^%3+kRZCjx&RHiNsT)0J!ZDL%QitMTNpS?C0?k5D)l zrgf+sNGI1Ca*$iu5kfqP(RU6>>A9 zQom0y@y2+S9zGUjXs6qG!1Tgp>g#s_Yw5P#Ze{q(JuoQ5$1Ew0+6>akr=}RMTWQ72 zwVuC+gJbj0P%8>i{-|hy^P<@0D_&kjPomJL2Op&GY6ur+#Kf7vT&&8WY594T(K~p8 z|IbyBFt9P)?^g!>{;;o-^X^M;q3hPiIDWHEoH>W`LPg(}Iki)j(vsmAz^*c6r~v-+ zy@e(3zfdErVzK`HW59ehRT`Nk}OPY%Lk9*9JssLX^Gi-Y99fpZe~{bO zh^SQTzlSciPy$-=+jc9GXOjk^bZ5Cxl*&O#{0}1?3txjVQzu1 z8})ul557X|PrRy*m(3~mhuT26f<$9z*60ZSHRvgnwx9B?nE=EyTO|QGsZq&{6S;pEa#44HnXgdxkzKz4`D@+Z~*7hhfa#WXQya%AD2D;gwWFFag_@XF{jDUv#0Re$5DLTY*;Yavh zoj<;Xuna+hjz;Yie990W`@z4w&I!r`0&OL4-N?=$1_xENg3ccbl4RQ?lWySHB$Htv zk%DU`z7x$0Qsif?R-hWh$Nu)Tr&Bc?Y0>eS^r@{Y(sh^`SpMjNfJeyw#M;_gQVj}m zn{<$V=I^cnd7{`6lcE??D<%xmm#bjjw2G(q14oek$mqxDi9A$%P6f1&w3E11x-L?# z;W(tK)D{~@g6XwB(SqV{AwinUHY3wRo?=c8yf@DLuejPM+30&57Hk&aF z8SgwnyumTVnB*-pQP)BSq4cRKB*dfv?X*E;qCWm+vG)?zjE@E)Ed9S`r+1*OW*k(q z51+gZY;gJ!(A*H%^To_MV-aS(`vz^G@?}^p#lts#!U4#NxKcfnfeg&!krN5y(AJPQ zqjFIw3C|{1ddA*|IIt*-Q--6EJHRJaHanaOrW~0xdj~~};BlhWo(ZJyKdRVWB~pnw z_gAxE5#?J^mUf&Me#0&6T{vEodU^MYi6sDVi@3Z^7Y+!8^V}3Cc{vVb9DvI!ALDg)&k%ltj3jwEf!6RObP0 zTX~m9&>4*9-`l=Fv3?q|pnS%B4HxZ)$Y16`eWX>%$CU?uGqgsfEH%447AFHl|qa&PXYP3HnWqJ_wY1)i?EM?!iF`nV?XG&c05GWxlxG@drvB? zV?tkJx73hub2u7b&m&MMCblJ(Uh-68x?vneSY&CVl7 zT?im;!02y#zGO%U>KuTG--CkXC0_CiAB3Vytz@8gsbV|f2S9GOAF_Hbq_aOHOUTm_ zKzb9V-CsBrp;wec2BK~&vN(WY*n>$6E;+#D3&KLcL@wYI%1eZk2P!5IW*TWSFlv+T z5Q@9UM+^IP6B-9_(G3?!LJ=G~jgBmV%__!#rrVEuB?5~7LV+PGk`SjB92*`NGVECR zaoJyuq%9tAS96!b5z9)vHLgvDna#glN+=KKv!uGR?Qfi{?|cR8U*YhgC&g4}^y(oP z#TIk-zJBsVtCXI~*PO}tiuw#79E6~XWn~c@$8Z|-t^qQj%k@AlnN&d0_m%zPtAOu3 zIMG7o3is)c;32f!PX5IebcvH0eXt#MHSZ2>5WTo_aCPF&EEMcVISr=+g&0Urnu?|* zLpe_Q5pxvo1&$gHd(&-B$z7TP16Kkw9}~oc8Gh6c-9O)d*5B8UWrAH3%Og(~&mn_F z;ike9AvsF^DX}pDC1EnIRra+I)y$)oX*rodM3LfVBxINE8uHr8k^2ePLqbt@Qf5+} zNiT+++t99Z&7g&<#oF=Jk^G~1B>X@YhJtJ{L%|Q#V;XE4R2uu;y}i3V{oUfRo86Sr zlriG?E`|;I_xLg~&f;ekOBKoAoWEaxV;$=soYJR4-kRir@@Q zA7TU@(~A-EIm9!>E+i$=F;XgWJ+kf-;>WR%v9t!N1ZoMYY#P_ z{rcAWt@N059%Y`C^Ao36gI0sbx1?{yzddnq`cl!yhs`R?3C!0_ywh_9d%OT{y=Cw& zn61?9nmHxsMU(2x%EA@Cs;`MKs(ps!;-(!^L4)E7dUJYCt^0Ztgz4BEu+(LW&Kbkm zT5MN`{a!jH$t@a%3xG;Noim-j6~2{#72XxyhAAu5V;1Lj=UEr7qs#@|>7o&mqrYcf@#KkTQ`~khpN`@sMzj z@f6whzG_*!PsvOUFVjqXjhdk>co?J_bQq-nj{iL;qa*_=<74XYbODy4G|%+?bd9ui z7V>o74D(c5?h_8_3BvKYar%jB?Od!FEP<#qEd4~dL_Ml2YITKHTiJ%&#_^_#hSLTU ztq`40I-FV^nKnGU4%g2kDO7$9uD>Sh*R6dvqy{X?6!H`jC#-dybQ^7p&XD=j_5J@~ zv`MvT-ecYCy%65J5gek-5oqw#^LaZsJAUL@;6>rV<)h@ab!t7UI40O?UwNuU>=_s` zkC3Yylh%}86j&^%@@vszfXrJpq_3XN>xkrD@y!5y@Ic^(n8bG~4yrsW7xzxOhy{f+S`Mh*Gs!Q?aI}vY^+JcPzg$`Po2lHtmd*W^RGkX@BAzcsCq@*O9)=*6@iTAk zr{XHlnP{pqj&KDjK`?BXJ(3@eF-AQ8)vELMZTL~rT#nR=1k?BSkCL(Jm@Xv8`t?e; zD~B(vKUwor7qkYJ(rP$sE_OiMT>W?bN->5X{WwM015&0_Wj=pbSWDp%=<^%g$9-id zw7{Bb=NvOzXxFx_(typi@ML@r?JH~7^;Z-0xy zQA1@xwi7`($WKU@+RMOIGe%O;K~bs7`h0(lR5aWu2Mv7^gKNLE*Hp1>SnW2kgnNU$ zi|xH{ZK-8wpLS|z$~wnh$ZsBG2@MI|#n6rY3%j1_w{EkI@deq1WE(blR3dg06RVa= zeW9P#=IpWg4|CixU*>wIwJ(pZ9&6V>$cy{R%DU0-#P1Jcz^To zpeC)6Q|(Yz%A4zAWXq^SUq;Bob7OQs+9e+ClI+rk%8rsk1Su^c{r1Rtw5TgB9@9wV zB&6ZCcKFzcd5cMTC-Vw=&I_#%%^nOMtV&c>YUFC+%zB(SZhD>YoJcDEtyn3jz^m`< zc`M(Oww0Wj+*4O-`J!`Bzb=gJcRu)ZbimIPtk>+#y1CsVx1KVo=i0Tlw!h+f9eI-! zS{|c$vP!t31UkQbi9i{OdA3$u#N*fJ%V_=SoOOPGD&+O&;&}kShr4PWscqSXet#ir zmEHbfZEMZLm;2_t-0SH<>YUj}#Qn?lmm}k4@=9s-cb1o-Eux`p)ehf|v)BTnjSJI< z4tFx|>z1xV+B2(V_CJ=KQ?@zWs8C4GZ>&49Z`i!dQZP~PYHv=fa&sv|@7K@eJ~X~1 z?@62UhbQy)9P6ik*6)ojJSLAbZ53|h7ji;hy-VH>L07ZI%}P^J`@U2@Oz$T5MMu`d zi?9XS1qHkekaCV6yN$$ERUq6uh#_4~Oq( zW|+N5m)jufcRycvn~?V2yfR6$eml{M2_oLj(Q2^qFgeNJ178#1fil`o5D-|De;-I$ z6^cs;2mq9onwGPcf;^w8y)BcmnZ1cQle;Yt+!_Kxz?~2LYHRLnOyX{9W9P)@E=cxI z3qJ7s-(qGml7E^wTMLqDDSROjw|6ur;bh`qVj&YkAR!?Ua5S^vQ<0GRH#zuAknF3o zGmwv&+0D(3$&H=K-qDhom6w;7nT3s+jg1l9g3-yt&e_O+c|+*6XIlH5%_1A|EuPI82w+ATK_}I&B67* zDgRf^|DycM37?Xql{r{Qe?=k0D!}}ImHoTD0P|lt{V%!wODX@9g0&)qAi(@z4GSUY zY^?7?K!`xdN{FhtL!RoxX0G+$z11&fobkV`(R0}~<72Z7qM(T(a^}Ixh{?bLtk4qt zWP;GdJjsL60C~aLX!5YCwja)o^dKMB$C8rXHt?+$TJMtnbToQB?E88p{G6h;>h!Q* z|4tB#a{LieQUv`A6!?#%06pBy`K;kO(w{6Bjs^h!GeY|!wg@ZwuX+*muOHxO@|prN zN)-Mf_)GU=`VRNMA1e@m&xf{~RNpZF(`&$~bD#+F`P`A+SN(sN>EJ;QIjAtPRl;?! zBFo}JDwONy(4^wTKR60qqs2e{mNOjQ$Jncx_G3%-ozZlZl{a z9$p`h6sq&vJe|P(l4(gepUyIu-@8`S}r3m z98sdI^$r(RDTeuClsZq&rH9}hA4M0i75w7Cf%E%|5ON5&76f@=f^@!BI$w4@ z^|HXu&X6H>pfY;3KJaY*efOk`A)!(NhRzU5T56b3T`L;q}%+|?xih0$8GLn@1LAn9EQBKCHYrh%xe zEW9UJ1)DPB!@9l+UAv`<|6StDaB!NDu5GMUqGBmCL5Fu>g+y_$yMNHsclq>FF$+(% zh?oZmF(v#ipiymLTj-*UeY#ZBSF&k2nHf@!w5R+r}=SN~_*aF7G8ye-wvWs^0j^TuRE5#kEaT0s4P z*Q4SbuA9}>M%%un8dHZ}cxt1U`?H@~%1Kcz9iZT)6lO!a!k3j}3Mm&8GiqU4X(Rw$ zIi2V z=jl2a79M~=-lio~iT4H4v0S0{Y{g7iXC_xnQVu4MRL3r)ex&9FfftMKak9SU8gT+I zP9Evwgu|h1^qN&1DxRj%fR%aV#le5?gL(z1gt&1=2p5djXcB4CYbO2HT%{bLK?Hpn z?fsET&cBL}PWPEe=R90%agtvl;{2wTCAZL@uHP&D9miNk9|nfG^KqN>gFjI4R`0*- z0u@dxk1wr}OXg5)y*5SzfJ?~lTG1q=LDrPuwKQ729*p;2dq)Fcg~Fq7##bE%^V_y@y7|H{T&5IlF0 zGq@!;8jE+6{mrjSqr$jni*TsD6x1io7ukZ?eqMxr98c^%%>=xtDR~z)BqfUIGK7#X z>r{#2V9S8fS|N;$fnDyZ+!E#KvpXCwMaX>Y7Qg#&x@`J;KR=t8%}hp~F-N|LqY7+k zC}O)wDe%U7wCDAsFQ-9zOTykvoWB;YhH%m{WMEIe?GWD1u!HUPS6V0xDrZt4tM|#D zsJ6}sUP1lGy|dM(>NL})Pbt5E&3Dx&U-`3Id*=zMoT^`4jj+m4z}hEneYr`^6^28@zr_3<;gfNHYB!itdTiCEFI#(l&@JZW4~;e5d?qjjb}{KgV`l9$f$Fd_qYV zh9`!Rm6~L3C0XvQyKYC_N|n5%$iX!G-K15=rvMG9Tvn&cO1-<#sNxz!m6$nX))bi) zpm)af&vM4`!5PyrGLnbF=nd2?ar^|y>RY99B#g^tYl z>cAb0s8K;}T0vVl!KA0a!JeYhzY+))k)erxYKX_QKQeJg+z<3p9UHt0YaD%6SMSB; zfSNpnXO*4Q?Sfg)Tzs{bwxHQ@eF@j-!{tX;+<^357sI<=twS6(dC>WSbK_>{3$s4= z9^f>K8&2TWn|Jpm=cjacLd$7xtto$IOqP}uFxJ&3$m?QbQ(cqPvBz@D`ONq{>7_sD za@`Yik{6qdEp$qZA@*mrf$BjjS8(>JOkrujGzjdLZNP_ly;|lMy-mE>(4jH4)^ss)W{ZP7OpM_KZVI1{yicU2G9> z!F>^{#+;)<{3X$D&%E|>0V6C1I7q)3tbMq@2zh9*&+rOYodN*FU~{l9in~JCJrGEO zvqhO~;q)nQkvzZEm)W8Q=s+zt&dON!<4C++Mg`5*+Ttv(kf*4;NYiiraTC5gmkyWD z+hs6gGDiQr+qQJX-g(n^(Th7xocobDBdmzxTur4+*apsYI(~dhYU}Ok;qvW`1=u$+ z$bZk=)lICn`{~g@iXDymin;)c>nJVhhqV-j1NY4HOVRvw&ecvrs!YQ?sYdd5tw3ig zKiZXSD9NSfEsUL=;J$6e_j)Tv#?zYbUV#vCQeY0e`dRXF7KB_*X75etoXai_d3qo*aTr%^FdjIE2d08HsdP? z%x1+9%(>8M%&$38%HR!PA(pGppc{2J1sgHsvrW30egV1Y3m>m!DB--EC%v3!Y2LHi zfbaf_YXsF11t`^_aFe6EHyCaJ(Nvle&k-yggq^NUo;dn3>F-}u)|rjCuL})UZZr8% z_!W!8i(Jd5{-#G^c{SjX9O(Qhsy6JEmJ^546?5cFcX#qhN$g%Hrp>Ll{D(e(68YrI zIN$JESG4KLxMTMB3oG)23Q0xthS8F?eRmCy;2) z8ryQcfOO-DZF+-RZ=HvY=uvVx^wV7*KiEum%bQuZzQmdmzl}P$X{BGQ`m;%-xj%(J zmMeCQTNn`E>7hX8e9`h@#wpeuFPZU3(X4gVPr7z}yBM7TaIpTODKUkMdht2{yl6w5 zaU48b__KuI-sbjrCF^`Xez4`cbK~p#2Y0=QVCJMM_+ipUm|8alg5SP}KYaZXxjD?` z{^U;!V!oz6%tLe<><;W5n$4Q(7>}SMcKey`=DG`izUpUf?1c_FO^GfK==SC6Wjg%p zScCUZ%{c<;clW4oq5f! zSf}b6d6;Ec>&fOkiE=()sNNs%_qz68)H&X@5BvD`>DDJ3Wl3|rp8{M1y9;6kKi~U5 z+^^baU^Oj2Fyq~=a=&oqDOW$I=4H3pMf;@$bq=pz9|pO-IQ)#hj>QlL@w=vC`|OzG z3-YuY+%Z?_Ovl%Qk1u3nfP6$p1u7W}|Pbi?@AT92L6N$D89yX{ zARNDFr57xVMU`4^o-BX6HYcJTixTqm8{df1@R)CU{jKy+o+0SAx*ufx^58k+^=>z- z_I}Bqt?5C6h1GF4sHHvc_Y{3lWpLDjxN)_%Cnrzvkc17o#4L6{_kPE%jVMqO+z;DR z75-%vMC><0wqdW;g3Wn$w@MLkUi;8~T&Kjgb>7a)g|Dh{hu#jW=BcKHf7&wM$LBW0 z#q4>5s*rvd+jZcfp2QV?h4sP%x;|hP=5^q%xGNLp`dvpS>|_X+l2%#H@oa+yVV=AZdIJM-*G!DM+LjcA1<4( z?O2jd#PsvJoR#BqY^xRH#{jNa|7j0hH`1duAJIaRK7ke(!x{XDCu6HVSaiZ(6k7ejN_jk@^ixJ1Q_fV^UM)y!>;l4PmZx>9 z9%$)VK7QpP7GC~=JvKG?;KYC1bw)4D3O%V=Ey!cueQl=TvRjw(!jAN?HsW%X>Gks_ zxwguL9Z0&^>$hJA{LCw9L|EBLZs~(J$z3A&xHYxa@lZufc2?uk@;nx<_xY&)0fI+w z{Q!xeS6;ta>2C%&PEmHADl6yoLz~nRcS&`9cpG zSq1PpevFNEn)d#Aq0x3aU*j23%Kg*F!~ObcGL9T%ZN=O`KADztUoep)DVw8G?~-}K zJ^5Su8m?-9eUwy*^WXv>xL(d4;8zpf1cHlapUj&8a54utwK|LM-WUe6n?tqZcbzI} z%V;$d;PZ};(aj$q`E6se;ESl1v?{Kg@o^^ zrjR-=5(3|D_{efvr%M*IY9}dbdcwUE3*GxTIcgEq))S&AJ6ewifJfO`@zPLI`l6P$ z{AX+l35CeRO;t81&o3@6FLg zKFG~K8N`;uAk4Z?zd74l@bmdY6tY@M6ykx$qY++Z{CGc*F25E~D%w1=#IW&qo=F#}_5l#(qm;{srwb933|Y z#f`W9uQmV>yU6!#9;seMMbstHAHmw*J5zhDLY8wi2Ad+on_Nd<3#zaykSt76hk?bq zsEXCzfYd44AjbSYd%zGNQN6{ITeLdrlx(V`!SqCFNX@U;&^`+^;qrE3@ z4H7msnmt3b{yvpi+V>N;rJnXe2wiEN?*-B=BO|Nh&m+qS->@l0zrT~V+DMM8tj6}= zkE~cHbVi7a^AkK=1)W?|suXue>Rr|bQ)68qX2bscMbskCJlQxwz>BTd>$1-E<~r#2 z?viWIx|U&2mK^d1K^lIt%JYTJ&yW0|$r8d^7%&QQHNwAnTLLD~jbT$;*>tKLvAvaz zJY#*pmyX$%_kOSMc^4(B#pv~X*R1yg6w5?D_y zo5B@Lq}oEg3=#b|U=b~yJJIDgdsN5%a9`)-`=(9&YsM603YJh!qcwcJb?S#5u5dLf zyP3IejnC#{hY>tSpc9}NDkqHQl}m)2<@V~Cyh3W;c2LbVAP^Y_p6!x_>GLPh;DZO= z5FVLJietCK+fWPA_pzEn&@Xy;IKfkDx-0ct9x)kirp^fLAI5MQL@%@o zwQ$WZ#+&s=dZW%}XX=>SdGmE~U1-tE@2d&%vgl}mlzEPyP4h$T00##IWCeJ8L^}Qv zUC}}CxMoXtXI$xe_Q=E13n_CEQoV8W#Z02R+f&cGc!g2%sWL~QENN|j7%Lk+wYpF! zmN3Kj+Uig$gDRscj8k&@lSF%lq*S6i(Bff}dyW)O?ne zcM1ipfT^3dZ(#(K`7Z5Y_Z&S1#KJO^LHVRR0mW}H2gLRHIlzw(*qe364NzQ4ZHpol zx$04|$VywOr(Vm!rV$^%mCJ%}ek6=&G7FDXjC5J@lz{6yAuV$iUem9^8Zzqk?R8gN zRUux>X}}?;Y>!tR;ba+O3_D6^W#}k;oCrA#Nj{*^%4od=}uu)enHAa1LllPo2e?f-;`LjU%!1LCFYJC^i2@L?Rb{g%+`$z>eSp;1a8Y&m~Wk1Qs=sc5k-jy*(&_ zUzTmsLrEy`u$g?zz>AbT{&pa(=Lf-r`q}$8#GQ4}wL5+g|BMucr?AaSt)u@;{b7p0 zo5+b@8@xgZ%({1#GO=rLDf{Cm?w!+D_yM_njwCCVM#U^}7^U6|>e~t2Dguq@s(@?# zdgOp_If`&Ewa}5X?GPiWBa^QhCqK6DVEtV~5tqsBAU9_x9x0{ch3o zbUhIMJ;!W2&99cRjAs?*eRSw^yAnU<;glTHkQ4DEwXA(Z*WU55I`G{Www?cN1a%D< zk*ifL2U22t`$+XTQwey`aXSMHHMfHhyP|(&Kd_gUu;=j8(W*Xup|(f zC{8wIXS{rZUudb@dJFU&=e#anMfoPaJ*ITc_X%FGSxz?jH`0tMZZwBDCx_hMkfAl4 z*6ey4?Bl%QYfRGz^`dQ?R6q3{KeOYjwU9F*cf(GIb6QJ>2>cNlwSjk}!Y@p^QQmj> zozLpm@R{ssvy4+6%m$SBEu`0rhCMByZ&f`%3rDRjrzS}()&jh8Gl2A41JH{ePYrUi zOuAb!SrC~*S;<@FTOBok$>2_)uSap0fi4DY=BF)B+Xto_k^uSKB ziv9(EI{RWTdkH%~q;qE3U`?MP5Rf%`b3w)SHQ!$OTmZ;TMxE(>Ni?#4wCm%2DR9ZJ z$k@-%3i7f>^m#(8{&=VdqjxR45R(4=<;nCrT#=3R>4)sJlLImj{Gn+^g3ZgdcysS< z2}z~Cj$!qU&@txyt*|EG*s3t3CDBv>#*O^uboxmUHZ1rQTgRVRqOu|pOVNbou<0-n>lYJP7m38DpDxR2@vhi1$4xsP!eqlVi!oE%Voqw|H z`MaYPTJM9MU?|sA74M2vmF1!mpCjsA>dv;6D?rgj!VkXKCTy+{8sE9kt|JyHa=eia zI$~M13B|OylxRa6VZp&+_d(G_??3XL{T7Q3AvFn^P?)4gO1~zz?+v@3Y*kdgVsoh` zm#k1SMIU84(cFP~QtFi*oz%{$>KgUFrPbtYlh8tE{o>0^~gH)TPcCmiB=L`(4~U2h-}&wEf?bV&n!y9BjCVD z1L)X^OOL{n7dt;MbY8|;<6FJM_DzkIL}X)DJHeTUH(yH?vw+b1WkcboPjzuAIJ?R+ z93HZnkB+^*voHbTYE!NrIu+{MdLl_?6A)z)&>zqc>~?tTDQnVx83qwO8ytxqg(>dnLb3|PJ<{AyjHF)ro9imy-= zQ^I16{+ozPixBaK&H73oEYL4&$uzl(`S>Ih_Ljmy*4vzQGz%Qu*4GfV7+Gvc4P|3sL-^ZrP)*$#DLQ-6|AzX$OC zyey4v*)cKNu&#ckT4jViiK8LKAeQ;UIH9R#ay-4I(}X6Qp|qGdkNeY-%Q`eNIFTP9 zjy{cj@kM@ibtsLEFkaJOx83C-D8Yg~QQnh0zd=q|Y|$$pJYmKd|AO=ytRaCtz=zr7 zB9m*?VmK`*yi~Z_ne=xY-LNV`xtpL$N*aIzT>p9(k6(wpDU=z?;@fO+()kz6uo*ha4_IV~xii7T~J!ErIVoJX{@f5(< zm2}7eGyWKhl0b{nzpl9i2{?AH?i<~nn68KZ6$7Uv3w(_B*xfh0^e|{xbR4t1P;8~9JSE0P= z0DL{D6F)hFyGX2bmxCxXrvaS7K%Nz>PE;zk=7o0OLCWGaNm0rC6B{ouvtd^Kzodq%$gI0I! zvqXGS(m?E3GYuVGZ;5ijbc>T^g<%(wTrxvXr_T$|z;>>5ED;Wy85{zlxM87ez6qW> zc&NY0jytrti*j{M^&agb^LmCxSsL8d3vKKHfe_x)*g~If1H8H}S6^k7lm@%EennDxTH^p$xpJn=F1d6} zzh>97`gbD1bi=GDoO~vF`ab@P_8^a&edF0e+5IMu8;kKQer$Hbw1}82zI<>>_xJQ+ zIFoG-L8Vrkv`9*2!;5q-3`D-h!x|0U6RmP_;m65V1*!S-vo-Vj`UYRudMOmo89X?O z3dfYuPai+#8g}{O@Hv02sG29JWYll{XuVi9K$)T!=&&Y?f2$EK7*LI zxF5XBIFs=N;2bYSrn*ywN+%3Z+doO~P|*=7CnY&{zUj$c6KFQqe=61JqKkk16dsvJ zz^q<6_pPaTG7uA-1T`Q%11HJ}bsKH|f)Ab_E@EeARsKN^EQg$i+&VcrjuSlhh9Ej@ zb_ehwa-$*>6FB5Ix{*DH|AtS7p#e;U`%i{(kvHR}H;AveIy%wjxp6SYt@Env<&W;1 zwjS=xbJ7DQ_`;ZAfaFr&yXmXj1Jl?o^ToqZq@I&ou3ukx=X&uOV1W6NQ+whhH~aJ& z6)b~J4GlW`%jTW>zS~02hvedK39)>CoiJ@EH8FebcJ`wBiV7R|(<##q#{o$9)3*3x zSLF#G)XD|Ev>w-9jOWdsAcvi3?);Kp;oOUTr^|I$*JI51vicORHQuq*JCD|oBD15z z;=iw}JDOYC<0FT^9c{%oaTtU?aE{IR`VAfs?lIox~cm+?L| zqzSFC=^zs2EgsEL2-!3n+){w+*pHt@W(a`&mS2U8t8q`>*|hUhm!4GistY7}h{l>4 z8hGU{%85}|>CF!tej9O(48|wR1=Pt*y5AP^qasC;D=T#xMk^$n%nY$>6a0`H0+FES zX~FmMD6%iBw^~seB8YNIP!gYu1uRP>clpxzu~Ce=Dy!1aS#ZXXW!f`g;Pq=U?pi9? zyI#)QqCNG%C=c_L<{Hx>Jh_L!UO-*VI3jbq(Y8`53#4jnR^;`yV}wCseYDbqUkwUn z#OUI$7u+x62RhX5IelC|{j z_Z708jmh!>E~L3qye^~#Z;>K5gy7QA%b;`?HqBxUwjl(@m+{9T$0vxE!t6*NzTpm_0>YNCG&C|bgw&TTTA z+t<0XZ*ZX^+;u0hWrcoFrKJ-uV^V-OKkDM)BJm! z1yD(d>`y(lsM)V#Nf`Lz#WM*QwiA3ZjR~A9Cw3g(`+TSn?uKcZ1m;?r{P`Eh72(1u zc!i6g%K#v?tM+{#A#2~gncLs`CZ2EfO$SM1SA8;Kol1kVq0&pG6$Yv({|b4u7$xba z8h9`~xWi0MWS*6akf5(FpU9NnhYYJ+jf7FWZ7Ar%qQ!)SQwZ~JtHd;)g$ThCK0=IN zkpG8CSAU4EihY%$b0*!uiWfiB?>tD8`Ja|Nu04jgHQ8^TLKMP+tE%?UWLy#WUe9Ab zBQQSHf0g}5K5&3c{^G}pYAcOCkK?ZJ@eLSie$-C|{3Z|0@HE?w4W|_hNt3$QR$Gj+ z8u$s|X&y``a?aVydN(lqg?+@?49#dbd~G@-%gboF89M>qx0CH zA<$+?%N(uEtoK@`d#lTK%#7BY7sAu70q!2*)$RQG)kM#AD4s{t%f!)*S@w8v$tw$|0}hIu2-f7{a11c>F=Ue#-!KR zH!f!$^n$ph^5XP)O|uiTCZ7W8#lZNQxnoxjYjXfw?6vi`^9$dYVOzfdw{a-54p!`p zs&)chVONY%K4%e9c>ROPj5|dRkA3huMJcuT2N@=kPG&R$>K1Zudi@xG;)if?=rHVS ziqe?lho_O_LB!|EBptSGvQew=a#ra|uBzN(*`#B;gP>S+?Vx>F1h%h*k^W_Cs*+6X zvm>({4s4d4PWmVenzcHgssio=Y~RLhf7eHfkfTrY-bw*dLq|e}gA`1W(xyB=J&w2l-(Jen z*r&2N!(Qr@`f8_q2zi6T3g{0e$=cFyY}g zt@y`ccHlb9RQ!coK|-l@tU!pQVb~mu%I@diIb%-*J%p`pf}V)ncVa~fTQO2OiLJX{ zIlbLy(`e2YF!lLeB;ZHZHbkU^W7BDyS{proBIlKlb~LUQ_(qD1ft`NCvCTD`A{?^f zbb(a*2d;{cmq+pLl&brvOaZLrsDu1`B_g5bGb$V2Z+LtzbmA#7YIXE!+^e=$@`L+X zyLz&0L1*=(w`#u;qao$y{_$AiX5h4}^zhJ2hW}J%Y;`;`T&5TTraC?l@B-q?KJ(a5 z4m8S5_Liv%hkVBCN^+`d{~=)@PtK!WSA3xwhm37Og30vQ2ME%m}WNZcmX8R?qOO%k<= z^a0ExY~omxa_}@8=cJW0{*=MhF9y^nIZF06gc=1(^4*Cy z#@s`)-tDs0k0Q9AEOdLF({2i*_IYhn`nI*>gTb)XO86w1oRftA$|VMjytOME)bT%;yKXniIEJnok||SIB?LYxFrRn z()_z;hk)n)Jfz8)b^f>-(!L#V5kURAQ~*mp%a0#FaFJiT!*(k0B38k_&vSarjpo7O zc`~S!<9ezUNcQ>QIxoqlY>7M%Qmk1

    CH%#r^HCQt2Kz`qat`;Oe0O4e{UPeprwF z+FLcvIJphs2%-28vG%7iL_!F0UHEO7Ir?>~d(-z~6<9#zsITm#W0t-}<5ELGRHoWY zQEei8IRgviwgXsneNKAr=$5;{4Ite6xH1&&U*`h<*H-(9q1v=Pf3_juh4GTvZ2^UP zSlazr2_V*_&7aYQoHDP&aZ<{t)8B$Q^hhKD`vOz}%IwNeIw+8uopQGPkID308VSy~ zDzFYSUw;#nmzO7MJfsCHTq+%#!eT{_GJU6wPz|=TAER=w?tohJ$-0V?sB zhLV&AVx3%6ikUYxEP371E`jbMmW00Yp!{%?6jg>Fb#hV`yKA-C&=C=9l3;S@g8zBf zpwO325MXwpy&`j{5EBeG!iB5=*WC{L4Wahu<8rMQ$D&eOYqU0JJo~QKM%wqhFrwbS z7t;k2=h855G_%{o8608Xc3!0?tikwN?Gy!i;Kfvz|IPOe4S5`RwNuhG6}+FArv(X< z33Y;@^vW4IadjXJAX`bd1`1sXX?M0yH&r%s>W6j(_2*T!B4%No8@wD|aXvyB#l z$yS%}{Tt_%t0kAMfu-3dV%G;;e>nA{kRRP%Um6S~04Yk@qhablhD}*4PG#v_%|9RF zdbKrd+d>9_0scEV?;z^)mIEUBbdC|3(d1LcmJH=q7SV9_UgMg_PO;<}Q216ftvtbV zl%cmThKAVusVsF?@ZX#2l;A_A@>Duoa5+U5T3V(T>@FmKY zErwKfUr<}P9Nf`L+aqVMz%j}+ z)`Q{A)BSL8#%CK{#EW`P$W_hT2*ZwK%3e**mZyl>BaHD@bTm*ONb@H$xOYPF?Q-wa zjt|uIL>fbfg|#5<_Yu1<>>$?3N+ZAdkWpU0w!P+zY{Uoz_R1U*Q94&|`{TO9ks``E z74{IHP?*_HmN%Pye`90pd2)@_!Lpz8G#Z1!c;Lf$3?q>7hO-o$nBuP5o~=!fcDUxT zI9w&33@7*o>k4?`>RGPCUw{5nvZ-ad5npWl{)BB}nZmTRT+U6`<}6LYjmqoI#W!tK z&B8r29u-BwL}AArihdT_ob2oRtx>T$9RZS`MTx2l?Car1m#9Lm-~(o#BF$F7AtWR` zj{n2cH^=4q{c+d5Y`1LNw(YgNv}~J;%U-tEYH8V6w(o4)^<4Y@p6B_yR~OFpIp_YI zw@#Up^&S$eNMZ>OZFM#Gb8mI_D)ndE^bI_0PwGf_~@jw7U!FU)f`ks7@2dSU!@T(6RKN<@o*TeE)L7au|Uy9wZ}>Odd{| zlZ!1DZj0e5JRx@w)+M)9ppFY_T4&V8s5!PbYwnyhS#AE^f%89JqrAo#zXZ+<1d>h} zi;B`@?qepZN7MB=%7gw;>D(mk1-~w!#^k8Fb9FH8`EmRZ_u=Te+iz2eSZdfqW)0&H zljQ7qzX6&~EkuF^U!2|RX>EiQ7H;?Ot{n4H%lAY#KID7K5}9%#`NBr)L|?A`zDn6u zLc}lIpQ4s;jt1Do-tEgy*q~C@o(n5%98N3@pXDEp^<(AFR`=9)NfLI=2qAV7%M`qF zXhi9{t#I76^u^NW+x$6kT%k#mTeyuKHG4105b6#8fc)qW~dY@!iW zon<^N^WC!XVk2do3cOPK&cMs)c&SK%@ar2s$~_RViyXLs8<#!J2xa287ZxZj7sT&If;WLB)9wOzN33P!P*ju;I+2ii4HHy z9o(&A(mt*eaPl&Q>dj;3*hC81@5HBkuvmdz4A_xd^nIMl!u2S}DV=2rfljnfR(DG7 z!>1blJ5@~IMjzLRLU}+7zg!&3qzj4~Ta`~aavLZ$$B*j>(q*o>{s5XtEktWTYl?S| zXs$+BOKc+Sx61vo=rXxy(l1mJS)J0EIj|hIpXi%a z7f(GyOVsXQmXhaMyL`3Oyr*`USJ?6JAvVS^{!Iec4@|m$G*MUG{FsVq*W=TPcj9KH~}iO&$TAdfB*g+y~1EK zd%WmHt@XS#A>2qrWLrI0X<`XOB^ZAsnKI%!F_CtH9fU%rnf?eg@c^45d%4CVsoQzZlH`S@ zBPT$rqtLkbG5!~oiNfDIS`vW-Pw~Y@Lk#M1VmtqVr1u@&Y;v@?Ku43hq8!%z5eXU? z1_B=YzVCP(7nMfu2&FmB^grA0bcgmnvUI+%69>FFaimdQ>u8iHvf1c;Ta;=@{xxGE zU|hyo0F=oC9Gs3k36&)MYmBXjZlAx^M2^s6|Fzrh+ApVBURM!+?iP`IUIargTyVUh zBi?{oAlXe-56E>h)`p5)j)Ua52g-KhRBdbMk5Je|j0KuKH2HCaZ2m5Lqhf5GXEW7$Jf_ViBzO48 z@NjMOzwps-#eo7@<^;tMj;;vzjVfuV<4SPoR2s;duzX!_VCY1%d4R+ryUQ8u2>Quk zDR_V9+`OtjM+<9Nl{&F&{B4#MAzz`BW_*ue!0_e!rvx=?MAX4*hPVe_?`pU{iZ6e7 zz@0yjL*WcCWd1xS$nHC|-=-$C4aN|JGwE4M$(O$t#tHW{+O7Qa;{8tjG_PR4l^Rx; zy#pA$kb&t2c};yO)ySffeaZRHoVm;m5)R<5h)LDorR`(JXjO##n_AZYVzQJY^th<= zITW?!e!v@l{5IYHa~_ibT*|4u*AI4a_|vikh^;Q z;;~)*0;g*j8}tDdUn}+GL{m-8c)Y(8(StkD9A|fT_h70J*3fGgo1@fFFXirP_h};p z_1D)i{NEh2QM(MkTn5Kyxl_ujApi^=E66=2@J6o=xuR?vr~;ETuRC%wcLX8<&yETi z7F*sc+8dv<&iecO1|Rx%%T{R}f^}QCAqWn+-ev&jq_kLya$2e@mgX1PP1Zni0?K4X zb`FEuNs_)vn#5g(g6yD$J1YK^IgLs0tE`dc!`GiS_smo`Uw!yFO{GZN(Jf`kmCNtM zN@+uxUz6Yn$$jB!aW$|zGwB}~sWTe1B|Py=!QObk5z?mQRqFO~gUy(JtL&{CA6~+U3JjbH)A{9y)IS(DFPmJo zNxWtlvbKmRlvyMV6vlhJz5{I?7A2Yp$9c%_`ut_2SJ?N#k=27Tih7lUe5!z-=5ETF5?8wc()z2j_&$v zz4}PTekfmRk_i#xw||0Kh6O#HHN`zwRoiky;cNa`Nv!UUA~YXaDAy=80owSlF@MU| zN>y@W4coo(KJbw}rcZuVYQhx1zR#!Li z-{h_9uY8#Wpn5=-iU4YilcTCGQG;5>2mM3F!ivZ6W77W$MgFzX{8t46aG#mJtXL&9 zN&+Ulp#Kl$9;sUW(*Vfw0Q8GWlR&}kFy}u*G$4;L!(Y@j0{&D+5aiC3KT^V9r;tt9 z`;+-qrt|JX_Z zP}x=~CD__M~k&8&kaWn!75*XLEmJ?bX5)``PcK>;d?+ zsY~cx{mUHtI!na4(ZPFTtZ1D()&C3$md89AE2RKosuTnvr{T#_)q-MS^IC0`&bi%d zo3+R`v|`BfQ6%CcbBG~|M+JxT=Y3-5U74-a#qpux4Z~$oC)oA#_?PX!X`jRUE|Z?< zeK5Q4;TF2FGMXtr?v#adN&wuj(3s=Y(Lc|F0>z}QZ_jr-u(-)(sKx6E8=<`%%LyPP z>Te?Mo_ZSe%2Xi08DS|)XQI&^JA(GtY?b->3V9K8{^7;)yA${5K$^`;qoY@2)~{Tp z<2d`H0kSOV2|e_nWqaG#IXMFH1-_dnhvYDNkR35(LP2IP-m#NzyhUv*rh1Z1#cyQH zD~*Z`*fLU*u)18IRMtp}%TwhvE;x01dP#aB=7~bJcic_?i=~&yfON-Vr9FOGiv5?5 zDVK#{pYaQ1oSyBvp>z!jmHWHo*x4YKyY9Ul{%6!Xnx#ozGrdCl3dYg zWJ)uJwK~u95bTS$-iK%$5JBTiUNzQudaa}IBOP!1^JAZ7C7$e{|Bvv^_9uM!)X=q3 zMDpBs{7z1}I&7Nk=EET`LmeQcpc53m-vh|CczdNEKOmC@VAMX}F$PMzfTxSQo|vjQ zU@>=zHhfQ@B$fGzXio{F9hUDZ34+K>(EyoTvjf{{0CDL3Cd^hm;(kQFqp}F@_{L@l z{u2u_+QxQ5l>jfJBDXo_AYeUV^${nghG=9&jC(+b`QMk^($m5;-CsK?4WUcm1MRu%Up+a#ZT zl1(Lk7%-RS;Q1Pg#TS*v$dKU9H$>u?+{Cz4Jx5*8|eOQWs~Td z4e-i*^=b_&B@Vo=CfFqQfNJ~m`_+5JVv0rU-2x5-%tQ+~LtQ1QJV4P4UeZ3z*DYdT zfL>N^mQ#@59<92O*Shp)38t^;gib4QRvuLMY#wUuGm;%w7I8Z=yiewQZ~Ni9<;K8B061t!XW!XS5YIFhp5Zkoa}nVA{oORYY1*@+B9&&cI-)rczLRE3?tmEe8F3P9ye)>qHA?I+$$?T6zyy5dVNdl$Rv zO0klezr)hp#gk%xTBjOlVRe+2e1~n6s2ooh&>oMtG}&-}RKP9qm*&97g~l4Lp+9a` zJHim2X(t(dcU9&`220l6t)Oa%zp-g8Qo5?Stp~*AzNy@ki(fU4CveiJ7IdDUUobx~ za)IKy{%px(p0rC~_}_T(E*QlOm9ku&b4V!uKxCG3eZ<%pYCqbul0AQ`briB9f|QG!mWI z9yb-T(07p=&e$j9UP&198kLzl+o&UO5twnGID*7X3+ksFlBJ143X;zXbS%xgCJ4gm5c zT6N}=M3WVb3Q$G4DQ6AjN5)fOezX(#k#D`@MXV{k!eB1r&5qAo%f}a9b{mgtjU?*> z4Kk4q6TO!`Z`>1(f_m!@g?$Zxbv8D#2)RjS-dOu=HL~BKTKez~0f{t&Q)izN=VU7i z;iWKR8t$c!-ay|%trXV((->n&)QLVOA!6YXVWlBV*!^zXz2Al9XN#)Ui~&phK3(4l zVv(`L$BRbWV2VD0d##X2B+~Cm>?d)=C?axp@^Rd(c}cSB)B)hLY|b+uRPdc$m%Y98 z?>!37_f|wtuOK>d>CrcA$H420g1|iPK3)#XL;>vPX~?cvt=bY@2cbq3P*3Er_0PMX}aHN-=Tk2PG)QI(t<40CXPtnnB4*A$XZFOcVY9oW!ZSU zkA$k@w(?w%@ay&?U zlAG3;q;YWfvnVms41Aa>NR>ekQDhoZ8V#D zv!d8Qqi82IX1QhvwEmW`aOuqRXi=w1A%*Q&NIS)i3wNu;+iZ12fqhN;7^RIj4Uf^e zyqN)hGLg8BGDt0ip+T@bcqx4!6+-|P9a6Oksqc6@nv*Zr*!xw%5^ zh40ou*koT&@qWGqz29%~WqxRI5Zo|0(JQDyZGEs##;2g1?FejDEs^%~y^W~JR$ z9$OwWd4%nUZ%sbv4WyDBfhKf&QDTU;1xxi*c(-XLX=8Stb|@P9IgjTHg}i&(H{~nV zQ%Gv9C9vK0TU%6nH5}bRlUl#pUWzB~t^)!|r2tEqM z!nG~125zP7y5N9SmH=+1{oN5;lSPj}Kq*ek{G>6SzwXs35;u{(XA+ax7UeUY9((=B zhHK9{f%x&$EDKHrO?7l2wsTUs)G``>cwz~-!dYeS&PpGk<;l=Y>q_jBWI{NT+`ggd zZ`kUjyhxUN+8Nrkk`nZ$*)K3(*PIIS6@Rv%Z1UI@1mOR>I?K%g-rFD zMqa8FIFVl0_?`aU>g=U9sPN29?bp$~ z{#Sw3>htwk6Bh(_cS?b&WSfto9c(|8|^lAeSR$9s-6ansQ5;TOyc(ydF-7G z9U-8|e}C%uwa7AJg2kYtqKgsq-LP?9aF3MkUtJ|0_wbSVn}55+ zu~<=;%kcO-H{-;*eePAmm1gHEbR5meKGPg-y$tPhoWwVqB6xG^!(i4WBjG(;-(&Qj z;m90P*GA2@))0ic%Y#`l1lJppeNB%`jy^=OH2d884LESF^j ztxcsRz17yWRg~b?_3ZJD80ohTvY4vX8CaR>Nb*S&ILnC-3_tqXP0AgOL} zp!5JS4_1&jnym5oubfp*S@a=GD0RFI`h1HUriH%@AUin71{zBV9*xXt{C^2=Fh{!o zHi-X$9jd6H^2KD@{Dlu?Fm%9I2&~A+Br;(FEF+Roz|@KKP&!`iKv(5*dG2^$_Lj;+ z0lY%Ab4;p_V)_;+f57yuKD7|Is#0v=HeDePU)c}i0rL1M3~&0v zgzxPdx=sLc!3zaBVb%W#yM!y$#`8qhpn)otXZ{~>;lOgA+OPOu2#u>)9@oQaV)I#a z4zo(oJcVf95|!(c&7T35yI0Xp7_Od^=){dvIdjg$FZ2J&#@Qi)a9(+%Pjf?u9s!u* zn}7#Oo28q6O)6xU6*hJdL{L#`^)RCLHtxMuJ-)GAtS5lE92oqQd~t`0x+oloZ{5*Q zDj%$l5up2>h&5XfeYigp*px1W%o{Vv;C5ZFr?UzX?V-O1#Hc50tqZaT>d&&2!GK)! zI>`loy~%+@e<9`@HVzK;i_k)P=+AStWkEt+bg4Wl^oU!?F}1RNbqo>OPEUgQF27eT z&ww`g@oPlI$g|`}$J#0_qON577lTn~j>b70HARg#~=kz=8mTkgDeQpkd zZjTpC?@pEu<|=W+NZ1JbrTXPG3Isnv=$W`r zJ(-W>7c1vLP6DX-CW{wiu@jN^*F@Z)w`TO;Yz%%BgllTWcR=tJ6X?g1NcX=-0YvKT zp*fkEHkwB)?Kc?y&nxRDa}`>j0nz-YpZby4;{vGvbmj$8(HA|4EE{7y>ym&X89ARv z^UqhUCaRE#0WBzC$}psSH8&@tp&3kO)cAZltbRb~5p%40~`J-u;>f3E2CXN%PaEEr5EG0RZ<}+a-2W zR*RSoe)p3IK+j&7n&x@SXCp}?;}#|ABek)Y=`a9f@MRj_W|8KZY|t0c4^&@`H{L+# z$?8LWdw;v{1hNFxgBwt!w)46wD?;zdsIE%iKD=BCbUh=Hfa5T{$W#r)B7L95u8^su z`u#n7pGfa_X%c>$;k5mH-E==iPWJd9j}RD3wBdR_EG8DfyXM_9JQgIQRGg$>C2VFn z2->QlLj9|EAXXT|^30#4hr zZH>QwdAuI`@_L>7F8Fj;SgqLLz%Y}wJFw4GlaYI>f&yn@E}*AYw!~YJ{be5R+Qb5}R(VQSS*u;b6X|qwt1qdYv$x7a2QF zB(!aiSah@SUD`|rXVpGDW6XpwgQI3)ik3wkp2q@{9P97zyTmSYIqwNy&;H#kqlu9H z=8Hv#&6I_}=bXFhJ-q%5VW@Oh1Xf3gEDGr!Ja!O@_LJz|_9>}WvxMa^v)+-z{* z?qA*DqZ|2%$?92BqFCAWtK;Q{N;Xf-a_`wVlU( zR?^`Y=e~tCo6;1lAgbhVo3g|wQ#g*uoiM{Hg)Q0)OtRcQgAmN@)*`Z$DifOA>8>olq_wAt^H8}>Hllo^dwxhWhuKRoL^dXCwo;F!D-Nco57yg^yy4| zS$qe0Sq>OS_V)(gN9P&z2z&!d4>gLvKW>(@zIU0&v>23v+x0wVYKx~Mmanu$q)0W; zetp=Ruc&ErnGd7#wXODGTXLrAxKWzUz`kg!t4GoUJey+@GI`ham{ZsNc(h(yRFY5b zqV?aew5|V)etn(DCed#Z+3Oxv1(+OMxv zQ42q%r%LRGbUG212(&{?L7w4GXF_o_0)HSE;_M5d0tg(Tyq-1Izj5T)tkDpCaAg*e zJ^N&>Z4$SJAjB6DST!x{&g7jP%AEb(uhuM_mu*p}(HF0dZyGBg;~gOMTSm*H^H()g zgv`0~blSf*s4Yc)^U=}CD9;}|{^Dlt9jUdaVmM&!)m@g7DE&|1f(dG9C#YWYFW2Co zujJM*%9#$2_#{@3SYS@O{2R8_YxUDIv|d<@WRq#E%sp<7N`m07y2yIxDXCk-Yk$VINDTapq3b* zxITg)NvN-h=j9GAGi=uyu{n%#tQghIu~_Ku4rfYD|B+Osya}r$J|}FWzUCzfEv3rY z)|9RcL4)*o{P1bUOizhK388f}8vjTj>>#9l3^Lb4mC(szmcKNAaA#VXV|Bc)D1Wm6i(r(CX9@{#gxTuH;E0cPE02(^b-c zHOO79=>YK_a!OJw<*Q}0+|bsRK3z19xf=T`)_(&sI>$uWQ_L+j;xeMx3J3d&ti7E2 z#I-e#oS7Ar!cg#{Xl3fIoaNGs6lTlKa%k1@|AjqTOLVyhvS;H`-;tkX8%GG$KoFE) zfjNDVya@#e)^dCZ`&pPm1x)gW$A?j1K6rVRpkj9GJW*B3aYCsirmeAm+o|M3rqf8M z8?8y4Nqkn|{~}Vub9)w!ETb%TmWq7f{Dk1D+XzLJ`v&VQV&*T=(#>=TbH32jyE!40 zIsIhO38N^CubgJzkHe*jRiP1wL7&&BVc#8o+K7RD1?F^x+)cnTizaAY z#iDS=50$(%l-nCqrrYP5iZ`wk>b@;$!|ygTLa~V6Ftt50iNBWUXc-qYMxBrN{f_J> z;&fQgv3%(pKr{k`6%A;b2mbM|W*(urwje`oCRO8$=d5?daI52X74sfPWn@z6j@`2` zncJ{YRx+7@1wwZ;KNwA5*pFpod4TAEJLY4^w5f_{+=8Lxq02p4rj#^I3`|Zgq#)~u zGmo;c&Km?t%SnqXZL4-Zk_7G~j~)zfm!`#v-{1RXU2sbt{{^HdL0M~e&3#YW)E57q zz<36Oi{>-x8C&6*Q08JOm_~%=Os~|?$82>f*irU+3Q-VY?wU6XPN)p)0|j^ts<-(p zen}>FWAtvn5|lsphD+%EyMc0qc)s5meto}A@iZcU#`j7n$v?E^!JjhkN4VS_Fc@7P zhGB09*k*dT<|Furpn# zY(0n3_TkX_PeTnF0FcE809l_7`x*=)>s9`7-=gGj^}YAXLsJ;74Up`i8E}SjeYIZ8 zbyfK}jMWSUY)+9URl{Qav5B#ZQvqn+&N=P-uTA9Vg$R;y_=u~wtb%U^s4tiaGvne# z@y82V>MC0(W?wa*S1C1~0i@lGzS`-ZHs1<80=X=cd*%C(692d+|AZ#K#YkcyTASK) z^ei#jGfGa)=JH)NU>A7jP{})SK!q?3OV5zqZ=2|P-AfB}&_^w`Ai3~iceQ3s`|CFp z$~k6@l?D%CN%Sv}lnbiLo26m)2fYqdPam_jXJssp`t#4V#c?~EG}q&xGs?RTk5??d z6?$|bZ^10Rccl9@FGv3?0?B5hcD#u4`W(g=Jamy1F?T>Myqs^=$5E1ETL{;O^UGVXUOo8#elfh|c|)ZF=5ZPxnL-#GNmgq%bZ*&8V+d`(5qZ9{S)rDapD&2Gxn)3gEi0EDVKOXXRzM zKZw+TJ-a0fT)jkLbA4+=8|*ad0KvrWrN-<^^ZLtQ7v`Q0u;0}C{BgX&YV`3uUA57h zTl0zsgi!}R`cJ2YwcY8npN*E^0F8lKa|5dssSdeZgF5I~^G#%Q$H-SQ2k`~`!Keorw?UE8=D z`iVZFMh+V4Dm6Y!>J4h*4s=Bggi@q2=x7pFZinH4M3#}EhJZA~y$;iPUCn&-)Gz{laba z=@T@I%#t}X`80n(CJb_~PwqQ^*d*!Cnb&tIS9-bElJ%}awrrnM_omJ7cfj)LkWuB(uvgd(ByL>W^!saZ$$h z6NQhu29dGvg-?Ee6C!-~rJIYh6!v-Mr3$pwC;BWXyjoKM%0C5-{W55VzX==a=5-`X zz)H?Qm_8(yNU5Lawz$Y2UM|}xmci>8Thrykk0ESrvgKkz-eZs?FB)m(b()}@849~y zWl8yJdHs^E?Ed7+d~aFxFyp^VRXw}K&t9vEtDpZhI?K!dEFI}<)CoDX+z1ao=yn|M zK%3I3`N7iEttAkt*fLVymIMqiJ(<~bVTs#6_-bCdi^grx_f1Q-T`wHP(ekz9YGfh* zsEc2IH+j%!xBKx97v10w60z3p*X@k?pUtVcXdu8Z39N+TOtZ58t%Uy)v{B@bybjRf zz55enHhUe`5FEhjdH1Tk9P7~bZ^8uvO^*cQ2l)LT{SSQ;0jP=pL!}$g5b}eboKi>I zd)d@W^Rwc;7f@b)J|)K)zalS?v)c%Ft?iHp_(6a_+>;(j(=}?iYOAX}6Xg64sjBa! z0BmZc693F`684%zbM-~c^XEk6-skG`c*i16{EY_AIOOMT$PQbyk{zDdt7*CS`!mNw zGVL?4kSyQCw3o|P0eGnh^+p#{iu5-+nz(A(5*!eg;&ybUbgOowCB$3dB!hfRS1@*B z<4>BU2npXV9O;BUe~k;Y_q%*QHGt2;>Yoc(>+Pu<8FMCKZVp`KagK0ijFM#SljYo! z!-|=bG&RBCdfMfnrp7O18|br?R1y?HO(o5vjiQB%SRJBETRm|$5?EV**7g|V?j1cF zJsGz>KdD?FclRKwF?_9THEP$csfdaDl=NCtO6R%NoDTK_k3YVa z72!jAy{X4|ULA#q4%U1f`=OZz?cF=TSMPGuba-(fhPBxL!~40!OxTqNy2%b_#^EA?i`tK3a%2ryRp8)2@D!xf_o4aM=3;QJw&;4%**o}GumIAr1e2y|<{jZ#|>1nF1}`5O-db-N2Lxe1KOBd6dqhF)@_Ae@niD2hmB8 z2BpdT^-PMwknZAC+@(y*PLV=>G-dL+8l0TE=2zP|AZw^>yVHjsQmOb*a*IN@#QZgf8?x?pj z(#-8zRD8J5sTO!Z2BtrT+JcxFWW+?#WRW28RB6KWv}lX>XE=UaYfx}^lHl_uqv*TQ zWf-xLQPkjNsEEjS6Rq@#jay`wn;BFI#ZAKsIZZE|7tc{ z#9vix!DXl1I_RGkERYdBz%=CRA-r^sgXVz1&@BU3X2GuPbU+Zqj2|3#MrmBUOh!6k z}s>tAQ1Lf>`@!=4r(H~YxQ{(k9$;NRXoHO<7(-d#pst+11E6C=8S z-;%ysIkZM?ivS81O%aC>7Ya1k@ubsRljf_p*!jpmm#AHBZhl?Dp%($pJo9aX&eg$& z{Ud*_$Ar0U+y{&SNA)PulXxuf5&xA0b{GV>X3??4|5UL~z%BoEeV1ql=XzhOHCHK! z=Dc`gPYG+k-tOBab*QpTp1jQg+1{=_f4lasJen*t=xVhXv@2gDkpX`Ez}#?Iu4Opz z$+Mf5KVd}IyPAZN zS}nH0r71fO6V1_V>S(}q%gq>pIkOPm(4bs0(biUW@ZEnENUH2f+4|pu&k;iw7iU6N z^n=`x0^us7m9URU_I3%DF^5o#BoMW#dZYrb>% z8=qlr9%>=L8-GG88-NS-{anEYGgp2Xn`*C4Eig2<`RC??#5J8~GP>nrGU%L{)aQ-n z%4<%(gAAiqcaU+?=|k2fV&(;kN{yLdkvC9(5!gXcgpMXuOph;-5a0#iWh~TLYcPp^ z+z7EZ)o70X_-&zf*-dW2ETrgkZDAA2K#GXn1RM`BeYVzW1;lgI1IYIBZwpi+ zVc+y%u|b-vhs$kx6ssW(O-(HMXlUzdvIA2_bILeiz%-FSo_`d|4B_%7=DuEnUGiY^=PhA2FTCI17xGqKeJmsuY)0wKe7f&#}O+jWpZorDCyi?@1=Rc8s`L(SFQ}4>%etrgyjt#J(oil7*u5I@h%nT;PElWAH<)jGdNCuOt z+Ha?XvsoRWZFp{wWj)^BhlXEUWCnk+G>Add!Bk3>VdDf4sMIH>*WZyZfme__1i zI}A4)l_0t{qLZK5>}hA)Z-^GvipWIJtidBABZYv-TwPf?cG>En7geN)1_%HLVmFFH z?*KipRbK=;r`ZtNa;pc+*pFM{u?!BG6r0(y1bnp6%v;CmZIG`*xcT7)a@GnpX1cWows)>#`;+6L<1VoaWLJVBfEjLTe8pdMm?B`2QD=TdKE3*r; z&8-g(P87jfaLZnm^VPJOJa;nt7MI#Sd6Bt-Uh42}qqTr=IpqhZl{k>jv2Dc6q~9DL zOUM`OJr0-dBZD9M4zMCt>xP5LEG3;Bd5Lg9)uBNp0u%mna{9N9LeolpK83b2xeJ8@ zXK!~FPg)czkz@9D;y^H3Y@jIln;9_vj#-nCD9&hot?s7N*NHk(b7zId zxvf8q#r65;rX1I!9x+LoI|1s|6b9PQzVe}7QLT(t`23-K{DcZK^Hn+$zbz&{<(zL1 z#+81m)-C^P66*1HZXkgqxD$xpQ4?C-#EXLzt1)a(mPWl6gn_qa7V7Vka|;%Alj-^e z^qKcQ5a$=8Kk$;Ls;DN4?+ZtlaxV?f+vE?k(}wW<;Fn@thPtfb)LPV?D=C#E!db%u z-=29kfEw7Y#??u&XMUt zU%&tcmGl;lvH-a#N1>c818(CrvpaQ8@h*wq`AoI0wqN#D8q3pZq?vr2hBg5E}Tsm;r96LTLagJ-J_4t(*IgD`h8aMt|z>2g`23TOBRh1B{nwQP)yl zS3;2;v}RZoLRI2p;7AzO+k+*EjOooe!{48j{t5`Fz~3lm^H0H&_~zAn^0svgiU6Yc zhEXLhBg2nx?TDcqK(&+UF5_FyXT=(^#vZNS=k@gKH+~O(zE_127^_u9 z`|X2phGXG?bC$$wX5kuih7lwh?#QhuQOyw^Nd!K~~I<9ACrBvQ7IFlw^T z{sDWw-q|_5Ra=joU-cMRH?0wvt4Ri@sRy<5SlMV0pxet9XBgt~R5f;fTj)hpmQE#^ z2kX=N?uP*F(DscH=KvD@pwu|E3h`EPfNZo|2Dq(rq#6Nt(&K!(!_=e1gtoH%fh!bY zEiuu^{I54b9vqZ_9p;Sb%r=qtkPkyM5X(j-IkepA=VpWW7jnjLp) z3q5r#W!ChaVnwLZ+xBdASQYICxA~4mc$LgI*;OHY-^}>#kw=sy>M@_PppD`<6(~v! zcPS|mamgz~897h03lv2j6y&8dOLsv_ZU*Boo2%zGX=M(6=W#yG<5xaOCXV4O1JUl6 zDYNVSPyH)Gj~;Te)B|c-qY_N%;KEl|zs*B_;nYG)xY|5QFQ}j$QlK$$cC1d+)G4p% z#`k7&_ZD9EAjP9;#^$T0Wqro3i@J+$@`>WdzTyNsWcD#mru0H(PE!!MJ@?GG`Z5km zN>kKMrU?G)61hQFFDWrQkijrata6_U-MFd zz!sxXkPylbcynYcIQH-yG=FtjG+Iv$A z8!1X$1iO<{WRIG@H>}tOj_7m5j>KF$W4)ihr4`%Aoq17VZYPHW-JaZl^bjJ@Xwkt% zgc&06&auLSgt}s#bgGKa@m-0r-44ZqmNSwQW;ClM!o!G5tIES@OFD*uf4mZx^V?Sd zB8A}~YxBeM;xS<%;oPe9tta!y=BkE!vcCCbkLuPbc|_TxrLSx^WC87QxZ)WdNTC89 z>c6EkA{HVPo*Sw6s|mo|sKq)rr=nU)4OWqBY+>(}tpI%-=S@@_c4#Uo8VQI!FBY}t zD4qZW-J|C~8OBY)j4q}@bRjQKu${GX5hI$0E3a-3OGXdZ7aE9EW*S_+Y>okG=w)D7 ztaNrIUfxC^V~qn<@hu#a`-qn5*PWL%Z6y*ynTfHv8y|}jQR&~%U6DeQ$TCN$z|JNS z)u1y>hqhRW79QdSI;6c zk5)f>2q!R19`g^8Y7=3n^=ByA$mcsIpnP~zfTt4EI6pLF-{59N)U$R?1!3v~CZH^m$<+X{@yX??nuQ>Z5YDDzM>bV zdc)yWJTWuTcA?tKrck{6c|jU7V?8H@4t^kfo@(64ti+yS?>fkd4gUm%FAUQeDCESFNup@;<{*Mv{2Je zk1PGx8;FfbPWxkK?jc{tAzAF&YIF|pvs=(!Zw47}NND&SWvRAv{VpJ;EY6b>MsRPB zE<{k|Nkz#m^NWi=kc22+?>OZonKKb@KB)Z+hlPk=Z;P>(a~%2N*tMJ=!?y}iYBA@2 zAcKid1(n6YEF+lGwbJY)&@6Z)M=;Af>5+S!rEvaVFg7oU&v5{o9s8@*v0mqDc`$f0->253?=Y>x}S{2 z1)=$3PQo@U@<2kKnpZ~FofHropjcHfUO5t=cVRyDL8)wHY$j22>q(WZ6Agd{wSp4V7}TWq1Nt@Cel=n=Eth8d@A1R8 zbN+I%k@-V3`sJO91`AQAMCe5V61151$nU9kgpRIw`+vQHwyDOupKMW}YY4?|9%UrG zl!m=GO0lw7zl-p-3=LOX{hq9Aawyq2_gCshY)zW$M1*D`k(%cSAY1NC+XY>3PrD+7 zy)N92J;w*HA4=UNPQYK^bsM?(^^TKO>H(J}QJMb^Dlld2YP+fL+6)TUx`2Up=!^}P zXjOMqr9l8c7}ObNi}$&VDC2#X%=*&K{VkZsX#BQ{%4V6s%)nb1`WiOzwn?N`rKelf z|9M0T>t$>WOYof#;Z86*nBtFLfM?)ILnV>8q2c6cjNO;lfvk>*e)h|TTTtEi@|ny((ML|CxUs#*Nl_G@S&$yA+t5E$nPk& zkr|ID&@{2s#|h6VqK&9n>K8eBbPv}A!{9$_bhyYKxI8}V#C31CJP3vYvB4j%XnEUU zq0d_)nFN2QtH3?5KQZ?iI4eu$(ZFiw)5B>pK~1aX9HX!<*Hc_a*$kg}{G_10oR)Gl z0^fm!B;W5XWcJ5{OLoJ0{Ny7;Of%apaCKOO6y}X`zl1k+CUD(y)!n=BDIrQZ=FFwX zRn_WLInD2Q>A0OvhkPCE&bepP(KeKHT|bX_+Qp37yS^1n6M3XzOg_JWn`P(!=2d`q zJmmk(RrixXf%8^}y<@`VwP{tU{z;*ZnOJ5XGvG`9ICyOXIXD6Mu~@@;IrTG(Yt6Ex zL+nyurr2)PMn4r$yu)VP2pFD6z{!!voClp9$4IjLy1yUM7$P3oO&9j-_;FG*&#NoY zH0FIuRmYlrxse+=P9!&Ac1L!=k$mDqOdefLdYAZ(84cxaUgkV$F1)t=nMaaoIl*cB zRMOzt`EhXg2%HIv;*bM2`k2+mnRz0GsMUJnpaL8z9&yED%#;f&*Xi}WicDw@LPo3a zw87@re9ltf%#t%`tj(RG?n70~2UN>_2cePwQ`A?-MHzH$!?M6iBLdQ~f{I89NGy$n zNFymFAT1!Zba$6@iF9|Dlq{Xn-3?3Uck?{&_rCYv^P8D_=FFKh=UnGH_js&)NsT*{ z@gELFu#u&z(PwDX<8ANh)qToaCi7j+aVi3IJAIOcVv5Tr>zuYbU34TaBwzFp9mbI} z_bHvR>QqeuH5^0suaKLC=2W`*{nG2+!dxOt#kGrnb~|*M;N@mEngSm190bB&LO$J{sVIhGdNih;DDOltg=vkD@ibCA6uq2+4s$;#zjc}?|Rh=TivhqWh- zmnAfXu*vJvl&Y1l_Bet!@zE8Ib0%7|wQTZBZ%i;r2P;F6n0)IbyoYULmv8eK#>1DA zSv;1EPCnOEJF2~kuQqMgcAap1*1Xj3tpFosF+D_UwT3V89O)4sRQkx@O`EPlANmq_ zU9+r@q8?r^-z{TWm=AEwUhhF?H4my5HBS>`1T#V`2a*kDbLD=#>t}+GXW4?KrV8 zf6(a)SsCi$xLokCyy>*b)$Yo**zNOkI7WASMl-py&LniNvHNeTOS`^!KWVy)s#hX4 zNz#1Nq46?}KlNPjmSTcBEWO$_pXi|{z@jnXYK8BaKrGqFG|PeVPz`sh!#LjAD zHlXpn&W~${Pmb@T{{f;Ah$Xm^{Y_qBsqpi&sT#ljY+ZtR8zPr3(nx!IkBZvwKTf;^ zH$2#TLOh);!InAyj@5MKP$viD$aDvKlPv_E7fp&n8=D;%@EC6S)J7iC7eo4W=V&w~ zi-R{#q6?F)J{#@5ez2a@L&i1VzsYSj2#DgnQgvkVy80#jkktKvPrt~Fn<4SVxiq2kuE5XJIxsZzilHDCE})mQZi|^ z<+&y;{Kf7ynbrA_@A2L3+aap>BK1JdC8(m-ZU2R(VJ4#ex!Y^90jFnZ0LgS+&%UQE zIX08Q`11*nOAlV0+7nG}wf7`z(|cVJ4h^n_SDSHtR1KS({6==kZP?i6$d^L7ZKNMy z@$-p$zud&%sPSB3;@O{MeTRIffL zEYY;!VIP#W(QPa%dG`R((+8Gt1m^>>Jgc>wL8spwbs9jM)G$T1Kgif{it&rLk5VXb zOT|ELgoAwplu|AMON>d5mo$EKSOBhe5)iyxOzYc_$?gPcZ_CeW3lfy>@rP)#7AG8R zHl*kz)ilLl=e@(d({5xh0A`YE1ZiwWoPR9r@y2Q=jvhpR2ylo%u{wc+ ze1mF0@IH}U%ZdJJDdWxeFxu^pRbHD-yi@7@*-P!vL0H8`2XRZ)x9rjIeJUxASt7~70EVxbWfA3?jgff_eKW>W&L|?G+`AkZ zVQ2Rr_M}^Oh#Y9=ejTZQzhhjis3yM8{KJR9)6w1deQB4Ba-R@wQGk+#{0X) zx?#6y?&zI#?>@V=yWg(Md{uSNI`yLiHQc>>`oL4H>&2yf812fNT?#L1Xygii z_ z*-p6q+WFh0?!5}X_RfsZD^)KW>d=y1Yg3A*k}q5`#m5^`zq8!K8UtK4av3bpW}^#7`|7XCzBRky|8mr&^@-0- zbaNu2ucnMVKEv2hlO+o<*cgaeL$ZZOe@Tuc1zz|b^aQy$$Hq{4Yrpu`rxrKxR1WiX zf(^9@D6)5xO21^&d&C{$u69$?I*l-|dZ~C6Y_q4=Wm^G}LKASjBHN$d?sVMxAVI`! znNIk{E7B8%&qu|SF!_Dl-&aQ)lL7XVRY7BXlT6cTHB`xkgyEHwL2u=ft7xIQiJSjY zFgfPBwHvAEcGp$vV4Pw6}YS}f?6ZmZSn z{%zu~ahe`1dtI51$Hrq-FuF#5KC!<28rMTtGQZ4(0iNTW@5x*_Ske(_0%W^iGbNmvXcozlW#BMW~c z#%9`Z(p!tK_fj3F(&Pbfzn8AnKa}ZJ)>zFu;G**%T_1H7*%U4XR+JUdS>)@8o%0wY zc`#kN`Q^B)H1xZgj%F-ex<6Gs+_lUo4hY{1G7m>ROpwxJ37e~;q7My1cNraqI}Ti! z-XT#{f0eDSDLw#PxoPK-15JiuPG8->?&Du9C?*ry8yO1^Uv3gHS2?E3(HxtrMou)~ zqR(zdHTT&w;?M-9C>E?hQ_@P|4Wf#VucN0RxK_4l+osZfz#%0o-V$({XLXg7{hAm zhw~Dz9^UzFy`j~@-`QRg-rgC?eXK7pN0GWcJxtbBhRKbwjs`cn74ORwHs?q7eEbZN zId9M1-oIJtz9_MwJWy|I)9AaL)eWpE|8?E7_#?Sh56H&lAKYJ=AKfE$8b)%s-0HF? zh3edWOc+CMHQ@4f5o>nW^{IrqjYae(@lG5Y3Uv<}CTzg(jDF>&trj~v>5W8jIpHyR zuo&1~pc&rX=+3=_)kfS-p&lTe427<>7=*)mTQ>wQDGE5uGJcSxpGbaJ`9-94LUX~! z+MG25YjvBs+tWD;fHPD7o?5hCC8RBT$7?k|H-?lnDP%W%HB#&<)YSO~n)WR-+}%iL z;;!sFmle-x0==nVe;?*7Tk}UOm}<;paCCyot4fOnOT>qio8Mx3=%~-3aIAwwFp8Yy zs9|%CDZ#2$q&qv@nnThpgla2|{>Gms+I|5-^21=tyh&grOTOT?dq6Gb3VAc7($8op z>zV&tps`Tqra&5DiAXtlmiTY(&%y>~$`1l?6sRd*Q3oG|em&^fh0hb1$ABo+qFp*H zDqePI>kFYs{LR_t3-+4_s;F>|~@9jW(?2|7V zRGv^)F6C@?$35H<67#A)r~wN;{lOZyf%M$4!`|8b+lAh6(~>2Snn!X!zkBcQtrH6k zT1e$g%+(BRf%?MOtlG=_aFFKd{z8c_V?o=D2QvCFb{s?b+_?qD$zL%|IrcK-+}3|c zV|UY*ihO)?{s@CWRzC#Gozm(gY;k^W#w}{Dk-A;=B<3YR)Vb4cP60_w|!I`L)DnUTFm5fbaK+6x39%@&~6q znY+pL(!Qya=y*7+He3lQmbA^bM!#_CGaqraUZ@kzRvLhgHgmiTH7v{5Kws+3u}5Af z_ik{FH2E=DRsD%Jopt7*zC$a$`Tk+!Nbwfe(jgG-ly=*}i}##k!59`|vifa7&K}=N zb4)IZ(;1HzIU*E2(wyFa_h6hdmfA05<9wL5EFD#$Q{di(Mh1&co9!s? z9`xur87U4lON%wP=qcNr1m*7g7f4CRsQLI};y0?t(M6xdlm9&xux2Go<&R>A=?<6% z`0~EOA(P%PfGviLh`|-AoDvtEpwqtLud&Xr7wfz>$4Lpp9vH|jD(lJ3*Ux5L1Rz^N z3H`=8%eNMHQ-3s((N25%L&!~e7{Uj&J9sQEh!T0UmF^7NeBi_n@q%M!OrkQ_Lzqnr#oC1Q)9b2#X3|7je^pC2Iz0IG({>42Uv`vGSXb98L+M~WXw$vtm^m4=exEYnQf{j? z%`aq_gHdixZ8N~1LsrHo4ACd|iuWgDCV;vVhe;<~ks@2xZ^e#AJF4FtS#wTp;|WcC z|D;%kreT=WkM^Kn3tJ5~7mkf3qQTIf?hnAr!@i)WS;o{mI&jEbT1VTqc+KwK_A^q! zy6>cVB){-FU-m0Z*YKTH0wrRe(Co`sb{uZb)%H}Xixi)eCq}ug zFNQH{iI9U`=k5G^kbq7%QKwY!6Od_;Fneof1dU^Az={PO2AX6!cS6TdUd8WX>_MJbjD|{5lno>n*@9X-{EKUSdxf9@vAwY2mpUs119vXXF1Hy-i5?r7w(3hDs;b-k0jkN(P_jTvwpSZ++msz9Qy%{Ouk1Lu$l@uZK3}yuEF!&5|NN zpeB{jXer_jW)(;!<>b;{Yj*;Q*sp&EWoE!_k-qeOj?sai06Yq-?pSsetwJ-QdYK+- zGr$#ltFuC?oq`IKa0w|9T7yLw+8IE1W zMxAN~IQ91Yr|e2mCZ>V^Oc&xE@_B5@63&{h6m#QMIjQZmqeeSc?R4IT4r?#)**n8| z?ZX`EpETgGWW^~SH+X8XjG|s0h4|%^uqxe4U7AsUG=M7AOP#&aOd)tJG-~Gzr)V~9 z2wSK-x?Qi6Tbm~I(!p!X&ZAu-1=D(FYWKVuW>*W>1tQ#AKefIuQ@xj0R3tpCA7ITF z2lFAs@^&Kwe`fYwA3Wb@pa~m+BPFwl-lnD2#HKk#%C;^LST!GSTuc)0!*r64HzHK6 zG>(Zii=eg&o)n#u87QkwcsZ=4O!Aq6>a7W5r0m$2ss5JZ2Fc_ zG9no>^a?SxshzA*DErhxXCQqq1s|%Im5EcLd^N<2K+iW-VdqUbDIQM&-Y#)wL*TG( zPcw`%iO_NZG33OKpzn`R3d7!~GiCZ{0P$Jq&T-HC2D|NFRd@qm?t|daC+ZF3#4Ff2fr!FP|T8et(?m2A^oEi+ew5L6`T=tvHLFq zNbk%~o0bS8e~n9p<^)?!=C)L_-DT^LApnED3cQ4YSy$qF&E?2aB(dp(a4EP$b=zGgvVH&HwwlY z03-PIn7U}zLg`W}2JOjVE9-0rN7UQHdj1EaVDiQZ#wAI-H3P=<3b&+N-VQcmu}&JP zadRC;MOp^}n~Qt}M9EWIPY`d+UgNCL4rigW6(y>2I#u$>@@tX>0goiF6R1M%cWp#( zZ>Ih3L~@GSgAR#37*9BEo%3aHbHZVJ<>~V%^pj@^Y(%CXFY0ss3)s zbZe|lN1{gFJ$Wsbvo(lv49!MId1LKv7qI03=f?3-xu^IBZWHJF7r?4UNTA5sz$IKR z4rDtn8>g!|%=1f&L_BF=aD`N>>4p!yT|qx}xYMG=2#(M|Mp$;NF`Ab;ZVoIF(dYhbE|hsL2K0Ga7-6)^!y%%|w$b0D(jRUJ*n2L)kaUD4QfM=8vQJ zlS`ou8NhoA)R2l;@HliMj}!WcJGq+0QvZmS;vfi=$%yaPt1F90BIQWqvN3_AyPcD{ zU2o@Bxm1MaSoy=V?)Q9MFvl|o>%YE@QiA5`tor8FqyT^^ZFSMg{@{*OFla}h&PDD zGv;??*y#)+GHaA(4hvCdWO@Fg5;!&Dq9{Yf?k#$OasLGK6D3c#gZ2)jU%r0=Xt># zlSQJm24u7Gy6*XtxlqBML%gEO!oxl4Wbv+#0Y@HCSvc;hQ64%v`fU?NTpSMh&7`H4 zsb)JT)10nUyxRpwcGpXtkl1H{WQr5!Da15#54ER+I~_b?;3|yzVxa>C6NRyk{5lYV zIf6BS+Ep>j$+gS0KY`us6d#v5vntBJ1XJ?K<5=Y2r1w@O=Rv}j>8>YF+)hU%fupoL z%wFogUCWx??t@uK%<@-x=3S`WV{?UeNZtLnV}-ZMVgVaC$gAN@v5BYgK}0W^uGJCV z3}$SV2Km@0dSn!XjrO}aHU1MhSL)A$9Z!TvlAyQL>(|VkPn{!W~f{wWHN~p+>GcTIwv@ocd_d! zVPnEOZg3sddQ1E$cA^lyHr(YfE7mPzEuqGfTSjpHv!`GtVy`@qKuV#~W}QYJW~eZn zu$~0)chEpH{AvWR6F%$96685RRJJIcd7L%hU39zXf*0(pn%=jj0Ddsf2ZAHP#w30x zf3By1u3>uOW!Rs&n-hEH86Q`&{r6E>-}-sN8t-@Tmn8^LKtZs0_T)Kb^l~+=qqN)t z_x#7d{jblF3{=9XLwGXi2+|&!c*(&ht$``^0a(k&cb&KJ2ii746Nu(HuUgREMTGFC zM5f3!w&it#dgbp}ph;&43MUvK?F&g-BLyQOP*hWdH$*UYjM?(#Y}SqI?Xc84S^z@V zByP*3Yl(N~K0PyboLHz~IL+2PAK$Cyn(y$X*M`cCNunpnK%Z?+uFE1vN3X0;yLWA? z!_zPsk|Ylm<0qW5Mj-13Ix1}EPF4T>)x z{AypTP_Ofp4x*7SaK5M6f)8B@4*T$y_{^Jz;$I?s?L5;&n za~)W84I5P)6Q3d5WbqIDXY@G-@?h7Hzc7grTtmP5;3Q#%2t&jKuOwef5km{_^)tq{?j0~3>pLUVze!4l|SDyWAw)D|hSLspjHbIuq ztBm?cH0!MC0CVKaKC%R3oRU=p5US`1lr#~OEdU|NdKJr#?aY-InC0w)p36@Xnx*oz z;%fxlRf%{{rSpsEQ}t)j-ol#no}0Kd63+Kmo7)GChdG0({Ds;yt8R(E8F)rtiO_z4 z2%j&jwYt0gA?XhSFPdykT~KMsetf*D$DyA1m3q{r(lLxDB0tAFSh=u3#NM7(;0Add zbYf5e0pX(;Xl4#mh-5!B_{wf%xKN1|t908}_}5UH71;R~u2imEYz+hy=Z7L#;45G7 z&Cu`_$q@|kPD7)a?hFeQM7QJ`3M;Qr`Uw2kC>ZsVV>?|5!1ro8N^j~*T!Wze?=)(b!#E%slb^uCe^(Xa@3b()$Xk9QY^Cyco5)9@r`=$VFp6MUo zCsod8W|{yccq*S0(-W>I(vKGqI*5K)*{fol4q(zoZKiz7|0db_Z0AENpS@BtVo3|j z|MhJ1bzY$_u?Q^-SUjT#J>HN6Jc@~0#M|?u8VwUKFG399?)s1BwI__U-}+p8=xZyI zF$dWyE%YMbbet|PpNqr-1ZI?gz)Qz;Sf=ZL6-yT#EvR{=?Ab>EoG*q#UO$OAD@SmN zK7Z7Kex4A!dP1<5St!b<1217=w+i)iG`xKtwXn>n9Bj~MJYYFLm-PASi)4HyXd|5n zrxy75;ll^BT{WJrb`d;^!KFU)NAoJfjE+|4;B#TCuh!$F+N$tyDZO30L&-Qj?p?1} zLRd`}nw(Ss*+L8r<%;-VjPRxoW|EVg1iyN}Bnm7KA?Tzk2V#;hL2yI?Vk`ewtQ9{~ zV<{t>#F_bMS|a&Z#*I~sq#G6+K3x)m0Xkm6K_w Date: Sun, 14 Jul 2019 21:53:58 +0200 Subject: [PATCH 030/134] Move things around in WS9 and WS10 for the remainder --- Module-09-interactive.ipynb | 83 ++----- Module-10-interactive.ipynb | 429 ++++++++++++++++++++++++++++++++++++ 2 files changed, 444 insertions(+), 68 deletions(-) create mode 100644 Module-10-interactive.ipynb diff --git a/Module-09-interactive.ipynb b/Module-09-interactive.ipynb index d520b44..00de20c 100644 --- a/Module-09-interactive.ipynb +++ b/Module-09-interactive.ipynb @@ -7,7 +7,7 @@ }, "source": [ "

    Table of Contents

    \n", - "
    " + "" ] }, { @@ -29,6 +29,19 @@ "\n", "qq-plot in Pandas\n", "\n", + "* Random walk\n", + "* Average of the dice thrown tends to be normally\n", + "* Raspberry PI question\n", + "* summary: min, max, mean, nanmean, nan-versions\n", + "* percentiles\n", + "* regression\n", + "* DOE model analysis?\n", + "\n", + "https://towardsdatascience.com/simple-and-multiple-linear-regression-in-python-c928425168f9\n", + "\n", + "\n", + "bacteria multiplication problem\n", + "\n", "\n", "https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.probplot.html\n", "\n", @@ -113,73 +126,7 @@ { "cell_type": "markdown", "metadata": {}, - "source": [ - "## Five main goals with data science\n", - "\n", - "There are 5 major goals when dealing with data from systems:\n", - "\n", - "1. Learning more about our system\n", - "1. Troubleshooting a problem that is occurring\n", - "1. Making predictions using (some) data from the system\n", - "1. Monitoring that system in real-time, or nearly real time \n", - "1. Optimizing the system\n", - "\n", - "Goals 1 and 2 take place off-line, using data that has been collected already.\n", - "\n", - "Goals 3, making predictions from the system (e.g. predicting how far away it is from completing, or what quality is being produced from the system), is typically required to support other decisions, or to apply real-time control on the system. \n", - "\n", - "Goal 4 also can take place on-line, and is used to ensure the system is operating in a stable manner, and if not, using the data to figure what is going wrong, or about to go wrong.\n", - "\n", - "Goal 5 is typically off-line, and here we use the data to make longer term improvements. For example, we try to move the system to a different state of operation that is more optimal/profitable. This can also be done in real-time, where systems are continuously shifted around to track an optimum target.\n", - "\n", - "This is one way to to categorize data science problems. There are of-course other ways to consider it: such as if you are dealing with one variable (vector) or many variables (matrices). Or which type of technique you are using: supervised or unsupervised.\n", - "\n", - "We will encounter these terms along the way. But for now, you should be able to see any problem where you have used data as fitting into 1 of these 5 categories above. \n", - "\n", - "\n", - "### Try it quick\n", - "\n", - "Try breaking down the existing data-based project you are currently working in. Check which one or more of the five apply.\n", - "\n", - "\n", - "### Framing your objective <-- fix up / merge\n", - "\n", - "We can look at any data science project and find that it is aligned to one, or more, of these major goals, or also known as 'application domains'.\n", - "\n", - "1. Learning more about our system\n", - "\n", - "2. Troubleshooting a problem that is occurring\n", - "\n", - "3. Making predictions using (some) data from the system\n", - "\n", - "4. Monitoring that system in real-time, or nearly real time \n", - "\n", - "5. Optimizing the system\n", - "\n", - "\n", - "\n", - "We can find our specific objective in one, or more of these 5 goals.\n", - "\n", - "\n", - "\n", - "For example: your manager asks you to use data (whatever is available) to discover why we are seeing increased returns of our most profitable product.\n", - "\n", - "\n", - "\n", - "Your objective: Find reason(s) for increased returns of product.\n", - "\n", - "Method: That is what this part of the course is about. You will learn about the tools to do visualize the data, and reach your objective.\n", - "\n", - "Which of the 5 goals above are used?: Number 2 \"Troubleshoot a problem that is occurring\" is the most direct. But along the way to achieving that goal, you will almost certainly apply number 1: \"Learn more about your system\".\n", - "\n", - "Following up: in the future, after you have found the reasons for returned product, you might have done number 5: \"optimizing the system\" to prevent less bad quality production. Then, in a different data science project, based on number 4: you \"monitor the system in real-time\" to prevent producing bad quality products.\"  This might be done by applying number 3: \"making predictions of the product quality\"\n", - "\n", - "\n", - "\n", - "As you can see, these 5 goals are generally very broad. Why do we mention them?\n", - "\n", - "You might learn, in other courses and later in your career, about different tools to implement. Then you can interchange the tools in your toolbox. For example, linear regression is one type of prediction tool, but so is a neural network. If one tool does not work so well, you can swap it for another one in your pipeline." - ] + "source": [] }, { "cell_type": "markdown", diff --git a/Module-10-interactive.ipynb b/Module-10-interactive.ipynb new file mode 100644 index 0000000..2bdefcc --- /dev/null +++ b/Module-10-interactive.ipynb @@ -0,0 +1,429 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "toc": true + }, + "source": [ + "

    Table of Contents

    \n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "> All content here is under a Creative Commons Attribution [CC-BY 4.0](https://creativecommons.org/licenses/by/4.0/) and all source code is released under a [BSD-2 clause license](https://en.wikipedia.org/wiki/BSD_licenses). \n", + ">\n", + ">Please reuse, remix, revise, and [reshare this content](https://github.com/kgdunn/python-basic-notebooks) in any way, keeping this notice." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Module 10: Overview \n", + "\n", + "In the prior [module 9](https://yint.org/pybasic09) you ...\n", + "\n", + "
    \n", + " Check our this repo using Git. Use your favourite Git user-interface, or at the command line:\n", + "\n", + ">```\n", + ">git clone git@github.com:kgdunn/python-basic-notebooks.git\n", + ">\n", + "># If you already have the repo cloned:\n", + ">git pull\n", + ">```\n", + "\n", + "to update it to the later version.\n", + "\n", + "\n", + "\n", + "### Preparing for this module###\n", + "\n", + "You should have ...\n", + "\n", + "### Summarizing data visually and numerically (statistics)\n", + "\n", + "1. Box plots\n", + "2. Time-series, or a sequence plot\n", + "3. Bar plots (bar charts) \n", + "4. Histograms\n", + "5. Scatter plot\n", + "6. Data tables\n", + "\n", + "In between, throughout the notes, we will also introduce statistical and data science concepts. This way you will learn how to interpret the plots and also communicate your results with the correct language." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Five main goals with data science\n", + "\n", + "There are 5 major goals when dealing with data from systems:\n", + "\n", + "1. Learning more about our system\n", + "1. Troubleshooting a problem that is occurring\n", + "1. Making predictions using (some) data from the system\n", + "1. Monitoring that system in real-time, or nearly real time \n", + "1. Optimizing the system\n", + "\n", + "Goals 1 and 2 take place off-line, using data that has been collected already.\n", + "\n", + "Goals 3, making predictions from the system (e.g. predicting how far away it is from completing, or what quality is being produced from the system), is typically required to support other decisions, or to apply real-time control on the system. \n", + "\n", + "Goal 4 also can take place on-line, and is used to ensure the system is operating in a stable manner, and if not, using the data to figure what is going wrong, or about to go wrong.\n", + "\n", + "Goal 5 is typically off-line, and here we use the data to make longer term improvements. For example, we try to move the system to a different state of operation that is more optimal/profitable. This can also be done in real-time, where systems are continuously shifted around to track an optimum target.\n", + "\n", + "This is one way to to categorize data science problems. There are of-course other ways to consider it: such as if you are dealing with one variable (vector) or many variables (matrices). Or which type of technique you are using: supervised or unsupervised.\n", + "\n", + "We will encounter these terms along the way. But for now, you should be able to see any problem where you have used data as fitting into 1 of these 5 categories above. \n", + "\n", + "\n", + "### Try it quick\n", + "\n", + "Try breaking down the existing data-based project you are currently working in. Check which one or more of the five apply.\n", + "\n", + "\n", + "### Framing your objective <-- fix up / merge\n", + "\n", + "We can look at any data science project and find that it is aligned to one, or more, of these major goals, or also known as 'application domains'.\n", + "\n", + "1. Learning more about our system\n", + "\n", + "2. Troubleshooting a problem that is occurring\n", + "\n", + "3. Making predictions using (some) data from the system\n", + "\n", + "4. Monitoring that system in real-time, or nearly real time \n", + "\n", + "5. Optimizing the system\n", + "\n", + "\n", + "\n", + "We can find our specific objective in one, or more of these 5 goals.\n", + "\n", + "\n", + "\n", + "For example: your manager asks you to use data (whatever is available) to discover why we are seeing increased returns of our most profitable product.\n", + "\n", + "\n", + "\n", + "Your objective: Find reason(s) for increased returns of product.\n", + "\n", + "Method: That is what this part of the course is about. You will learn about the tools to do visualize the data, and reach your objective.\n", + "\n", + "Which of the 5 goals above are used?: Number 2 \"Troubleshoot a problem that is occurring\" is the most direct. But along the way to achieving that goal, you will almost certainly apply number 1: \"Learn more about your system\".\n", + "\n", + "Following up: in the future, after you have found the reasons for returned product, you might have done number 5: \"optimizing the system\" to prevent less bad quality production. Then, in a different data science project, based on number 4: you \"monitor the system in real-time\" to prevent producing bad quality products.\"  This might be done by applying number 3: \"making predictions of the product quality\"\n", + "\n", + "\n", + "\n", + "As you can see, these 5 goals are generally very broad. Why do we mention them?\n", + "\n", + "You might learn, in other courses and later in your career, about different tools to implement. Then you can interchange the tools in your toolbox. For example, linear regression is one type of prediction tool, but so is a neural network. If one tool does not work so well, you can swap it for another one in your pipeline." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + ">***Feedback and comments about this worksheet?***\n", + "> Please provide any anonymous [comments, feedback and tips](https://docs.google.com/forms/d/1Fpo0q7uGLcM6xcLRyp4qw1mZ0_igSUEnJV6ZGbpG4C4/edit)." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# IGNORE this. Execute this cell to load the notebook's style sheet.\n", + "from IPython.core.display import HTML\n", + "css_file = './images/style.css'\n", + "HTML(open(css_file, \"r\").read())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "hide_input": false, + "kernelspec": { + "display_name": "Python [default]", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.5.5" + }, + "toc": { + "base_numbering": 1, + "nav_menu": {}, + "number_sections": true, + "sideBar": true, + "skip_h1_title": true, + "title_cell": "Table of Contents", + "title_sidebar": "Contents", + "toc_cell": true, + "toc_position": { + "height": "calc(100% - 180px)", + "left": "10px", + "top": "150px", + "width": "221.984px" + }, + "toc_section_display": true, + "toc_window_display": true + }, + "varInspector": { + "cols": { + "lenName": 16, + "lenType": 16, + "lenVar": 40 + }, + "kernels_config": { + "python": { + "delete_cmd_postfix": "", + "delete_cmd_prefix": "del ", + "library": "var_list.py", + "varRefreshCmd": "print(var_dic_list())" + }, + "r": { + "delete_cmd_postfix": ") ", + "delete_cmd_prefix": "rm(", + "library": "var_list.r", + "varRefreshCmd": "cat(var_dic_list()) " + } + }, + "types_to_exclude": [ + "module", + "function", + "builtin_function_or_method", + "instance", + "_Feature" + ], + "window_display": false + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} From ef51840866daf694ed9969faecaea7b15bf8f8df Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Sun, 14 Jul 2019 23:09:20 +0200 Subject: [PATCH 031/134] Updated the barplot section --- Module-09-interactive.ipynb | 288 +++++++++++++++++- .../website-describe-summary.png | Bin 0 -> 76212 bytes 2 files changed, 280 insertions(+), 8 deletions(-) create mode 100644 images/summarizing-data/website-describe-summary.png diff --git a/Module-09-interactive.ipynb b/Module-09-interactive.ipynb index 00de20c..e9c3aba 100644 --- a/Module-09-interactive.ipynb +++ b/Module-09-interactive.ipynb @@ -7,7 +7,7 @@ }, "source": [ "

    Table of Contents

    \n", - "" + "" ] }, { @@ -89,7 +89,7 @@ "source": [ "# Module 9: Overview \n", "\n", - "In the prior [module 8](https://yint.org/pybasic07) you got more exposure to Pandas data frames.\n", + "In the prior [module 8](https://yint.org/pybasic08) you got more exposure to Pandas data frames.\n", "\n", "In this module we use these data frames from getting a brief exposure to **statistics** and **plotting**. We can look at each topic separately, but they go hand-in-hand. You've probably heard: \"*always start your data analysis by plotting your data*\". There's a good reason for that: the type of statistical analysis is certainly guided by what is in that data. Plotting the data is one of the most effective ways to figure that out.\n", "\n", @@ -391,7 +391,84 @@ "It is surprising to see that middle chunk, that middle 50% of the sorted data values fall in such a narrow range of the rectangle.\n", "![alt=\"Boxplot for the percentiles](images/summarizing-data/percentiles-ammonia.png)\n", "\n", - "The bottom 25% of the data falls below the box, and the top 25% of the data falls above the box. That is indicated to some extent by the whiskers, the lines leaving the middle square/rectangle shape. The whiskers tell how much spread there is in our data. We we see 2 single circles below the bottom whisker. These are likely *outliers*, data which are unusual, given the context of the rest of the data. More about *outliers* later.\n" + "The bottom 25% of the data falls below the box, and the top 25% of the data falls above the box. That is indicated to some extent by the whiskers, the lines leaving the middle square/rectangle shape. The whiskers tell how much spread there is in our data. We we see 2 single circles below the bottom whisker. These are likely *outliers*, data which are unusual, given the context of the rest of the data. More about *outliers* later.\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Run this code to see that basic histogram.\n", + "# 1. Adjust the number of bins, and see how the histogram changes. The default number is 10.\n", + "# 2. Adjust the colour of the bin edges (borders). Try 'red', or 'black' or 'xkcd:pea soup'\n", + "pyplot.hist(raw_values, bins=30, edgecolor='white')\n", + "pyplot.xlabel('Ammonia concentration [mmol/L]');" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Don't worry about the interpretation of this plot just yet. We have a separate section later which is all about histograms.\n", + "\n", + "The key idea is get an idea of what the percentiles are. We will add these now on top of the histogram." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# It is helpful to visualize the 25th and 75th percentiles on the histogram.\n", + "\n", + "# Run the following code:\n", + "pyplot.hist(raw_values, bins=20, edgecolor='white');\n", + "\n", + "# Now superimpose on the histogram the 25th and the 75th percentiles (a type of quantile)\n", + "# as vertical lines (vlines) on the histogram\n", + "pyplot.vlines(x=ammonia.quantile(0.25), ymin=0, ymax=250, color=\"red\")\n", + "pyplot.vlines(x=ammonia.quantile(0.50), ymin=0, ymax=250, color=\"orange\")\n", + "pyplot.vlines(x=ammonia.quantile(0.75), ymin=0, ymax=250, color=\"red\");\n", + "\n", + "# NOTE: the 0.5 quantile, is the same as the 50th percentile, is the same as the median.\n", + "print('The 50th percentile is at: {}'.format(ammonia.quantile(0.5))) " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "It might not appear like it is the case, but \n", + "* 25% of the histogram area is to the left of the first red line\n", + "* 25% of the histogram area is between the red and the orange line\n", + "* 25% of the histogram area is between the orange line and the next red line to the right\n", + "* 25% of the histogram area is to the right of the second red line\n", + "\n", + "All of that you can get from this single table. \n", + "![alt=Pandas \"describe\" output](images/summarizing-data/ammonia-description.png)\n", + "\n", + "Which brings us to two important points:\n", + "1. Tables **are** (despite what some people might say), a very effective form of summarizing data\n", + "2. Start your data analysis with the ``.describe()`` function to get a (tabular) feel for your data.\n", + "\n", + "\n", + "### Looking ahead\n", + "\n", + "We have not solved our complete objective yet. Scroll up, and recall what we needed to do: \"*describe what **time-based** trends we see in the ammonia concentration of a wastewater stream*\". We will look at that coming up shortly.\n", + "\n", + "### Summary\n", + "\n", + "We have learned quite a bit in this section. See if you can explain these concepts to a friend/colleague:\n", + "\n", + "* head and tail of a data set\n", + "* median\n", + "* spread in the data\n", + "* boxplot\n", + "* percentile" ] }, { @@ -417,22 +494,210 @@ "outputs": [], "source": [] }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## Time-series, or a sequence plot\n", - "\n" + "## Bar plots (bar charts)\n", + "\n", + "\n", + "Bar plots are a simple (though inefficient) way to visualize information. You don't need to explain them, almost everyone has seen one and knows how to read it. \n", + "\n", + "We will use the case study below to introduce the topic and point out some issues to be aware of.\n", + "\n", + "### Website case study\n", + "\n", + "We will follow the 6 steps from the [general data science workflow](#A-general-work-flow-for-any-project-where-you-deal-with-data) (see the prior notebook for more details).\n", + "\n", + "**Step 1** is to ***define*** your objective: we have recorded visits to a small website. Which day of the week is the most popular, and which is the least popular? \n", + "\n", + "**Step 2** is to get your data.\n", + "\n", + "**Step 3** asks to explore your data, look at it and make summaries, get a feeling for what you have.\n", + "\n", + "**Step 4** is to clean up your data. Thankfully this has been done already.\n", + "\n", + "**Step 5** is use the data to solve your goal/objective, to manipulate the data.\n", + "\n", + "**Step 6** is to communicate your results, which is what the main task is here, using a bar plot.\n", + "\n", + "\n", + "### Step 1: Define your objective\n", + "\n", + "We have a small website, and we record the number of visitors each data. Our ***objective*** is to find which day of the week is the most popular, and which is the least popular. \n", + "\n", + "Why? If we absolutely need to take the website off-line, we can pick a day which has minimal disruption for our visitors.\n", + "\n", + "### Step 2: Get the data\n", + "\n", + "The data has been assembled for you already. You can read more about the data, and download it from here: http://openmv.net/info/website-traffic \n", + "\n", + "Refer back to the module on [loading data from a CSV file](https://yint.org/pybasic07#Reading-a-CSV-file-with-Pandas), if needed. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "website = pd.read_csv('http://openmv.net/file/website-traffic.csv')\n", + "print(website.head())\n", + "print(website.tail())\n", + "website.describe()" ] }, { + "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ - "## Bar plots (bar charts)\n", - "\n" + "### Step 3: explore your data\n", + "\n", + "We have done a little bit of this step already, above, when we used the ``.describe()`` function.\n", + "\n", + "So it seems like we have data from 1 June 2009 till 31 December 2009 here, sorted in order.\n", + "\n", + "If you are paying attention, you will notice that the ``.head()`` command gives information about more columns than ``.describe()``. \n", + "\n", + "That is because, by default, ``.describe()`` will only describe numeric columns. To see a summary of all columns, use the following:\n", + "\n", + "```python\n", + "website.describe(include='all')\n", + "```\n", + "\n", + "and you should get this type of output:\n", + "\n", + " \n", + "\n", + "\n", + "\n", + "We see that `DayOfWeek` has 7 unique values, which is expected.\n", + "\n", + "`DayOfWeek` is not a quantitative (numeric) column. So we cannot calculate the average, the minimum, the maximum, etc, which is why those rows in the summary table are `NaN` (not a number).\n", + "\n", + "Columns `Year` and ``Visits`` are quantitative, so those averages, minimums, maximums, etc can be quantified.\n", + "\n", + "In contrast, `DayOfWeek` can be collected in groups (categories), and then we can count the number of data items in that group. For example, we could ask how many rows (in our dataset) are on \"Monday\". When we can can group rows into categories, we call it ``Categorical`` data.\n", + "\n", + "\n", + "Plenty of data you will work with are categorical. Some examples:\n", + "* *type of operating system*: Linux, Mac, Windows,...\n", + "* *colour eyes*: grey, blue, green, brown, ...\n", + "* *shape of object*: square, circular, rectangular, ...\n", + "\n", + "##### Self-check:\n", + "\n", + "* Name/describe some other examples of categorical data you have worked with recently.\n", + "* Which of these are categorical, and which are quantitative?\n", + "\n", + " * Number of years of education since high-school\n", + " * Highest level of education achieved\n", + " * 1st year student, 2nd year student, 3rd year student, ...\n", + " * Relationship status\n", + " * Fuel type used in cars\n", + " * Octane number\n", + " * Type of sweetener used: sugar, honey, stevia, maple syrup, ...\n", + " \n", + "### Step 4: Clean up your data\n", + "\n", + "We don't see any issues in the data yet. It actually was in a good condition already. In a later notebook we will show you can plot the number of visits against time. Perhaps there are issues that you will see then. \n", + "\n", + "For now we will assume the data are clean and that we can start to manipulate it.\n", + "\n", + "### Step 5: manipulate your data, making calculations based on it \n", + "\n", + "To answer our question from step 1, we would like to summarize the average number of website visits, grouped per day.\n", + "\n", + "In step 2 we saw that there is a column called `DayOfWeek`. In other words, we want to collect all visits from the same day together and calculate the average number of visits on that day.\n", + "\n", + "If this were a table of results, we would want one column with 7 rows, one for each day of the week. In a second column we would want the average number of visitors on that day.\n", + "\n", + "Luckily Pandas provides a function that does that for us: ``.groupby(...)``. It will group the data by a given categorical column.\n", + "\n", + "```python\n", + "website.groupby(by='DayOfWeek')```\n", + "\n", + "But once the rows have been grouped, you need to indicate what you want to do within those groups. Here are some examples:\n", + "\n", + "```python\n", + " website.groupby(by='DayOfWeek').mean() # calculate the average per group for the other columns\n", + " website.groupby(by='DayOfWeek').count()\n", + " website.groupby(by='DayOfWeek').max() # once grouped, calculate the maximum per group\n", + " website.groupby(by='DayOfWeek').min()\n", + "\n", + "```\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Now we are ready to manipulate the data:\n", + "average_visits_per_day = website.groupby('DayOfWeek').mean() \n", + "display(average_visits_per_day)\n", + "\n", + "# The 'Year' column is not needed, and will cause problems \n", + "# with our visualization. Since it is \"2009\" for all rows, \n", + "# it also provides little value.\n", + "website = website.drop(columns='Year')\n", + "average_visits_per_day = average_visits_per_day.drop(columns='Year')\n", + "print('After removing the \"Year\" column there is only 1 column of data:')\n", + "display(average_visits_per_day)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Step 6: communicate your message clearly\n", + "\n", + "A bar plot can be used to show these results graphically. Though, a table, as above, is perfectly valid, and actually meets the goals we set in step 1. We will come back to this point later.\n", + "\n", + "```python\n", + "# Plot the data in a horizontal bar (barh)\n", + "average_visits_per_day.plot.barh(figsize=(15, 4));\n", + "```\n", + "\n", + "The results a better in a horizontal bar, with the ``barh`` command, than with vertical bars. Try using vertical bars, by modifying the above code and simply use ``bar``. Why is the ``barh`` command preferred?\n", + "\n", + "#### Final checks\n", + "1. The most visits, *on average*, occur on a \\_\\_\\_\\_day.\n", + "2. If the website should go offline for an entire day, the best day to pick would be a \\_\\_\\_\\_day.\n", + "3. Is the bar plot strictly necessary in this case study when compared to the data table? *In other words*, what value does the bar plot provide, if any, that is not provided by the table?\n" ] }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, { "cell_type": "markdown", "metadata": {}, @@ -441,13 +706,20 @@ "\n" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Time-series, or a sequence plot" + ] + }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Scatter plot\n", "\n", - "Seaborn: https://engmrk.com/module7-introduction-to-seaborn/\n" + "Seaborn: https://engmrk.com/module7-introduction-to-seaborn/" ] }, { diff --git a/images/summarizing-data/website-describe-summary.png b/images/summarizing-data/website-describe-summary.png new file mode 100644 index 0000000000000000000000000000000000000000..f3e1f8f7b2f229fb6224dd73bc80deca0bd44505 GIT binary patch literal 76212 zcmbTcb8zNOw>Fw&VjC0NxntW-CN?LwolI=Z#5N|jZQHhO=iJY`pS{0b^_}z2N!4BT zOLwov>h9HRt?LR`l$St&{SFHP0)ikVDXIhl0@@4wr9(pkOVm^2JV8L|Of9TUKtLqJ6V;(Klt(bLw3VP?=#fFGb2)?}oc*VTkmC^9g;9wTKwyLhVi;(e zU4MY$wu0qtYk_FeVv1^ld-)ON)z&g#T9>p-f$HkNZN7B2+#QW`nSHW6t&hNij5eNU zWXP&O{Gt=eVq~5U#mSBvCVK!w-xmCa4T{Ask+6r4f&!Zp_2`%E)&xRwQl%|p^l|p= zhoQ=#&<_d{{);n}cK4@{H#&$;d_3v+w_nqU58_U@j%4o0MlQr;&>$$u+bTGV3EMw$ zvWObOWA1}fAV5+_P2rS575`kD9y%!*;*rBhXoDsLel>#`Dae0Mhr9U}M)}jkM5J6c zWSRG+jq|TxWGXLa{DeGyU#(7o@Z(;jBlF7L=hVUT)}KUbg3LZ-cFQzIDy2UxI!&ih z=g2Tc!rsDhc$kPa-}{rFb^dmMZ^@uR4GdpEagyjaoBjgbK0B=a5GGpmPa&QRyGb(k zYE(RhyO?40)w8e1qlBv?J-C_i7BbZ+;hh|1)w`zJ>_K~xh+ZwY{uV$Sk{CijFBusV zemP10tZwxtIp`GQN=0$>vW5b%Fe)`pE))Oo zoiDj+;MFjwb?GK3t}7NDKJrYC$3mgs3&|%!e+Coi1~*#%Bg8HV^&aCt2>L9;jta6Y z2(1K)q%p>pPv9_%0_rX94|Yu{%1iY9?(TQYtswurAI{up)*_J@cN*Yf7({`1vbVuO zVI3bSSOL@eu^H}?`*cW!AT#k;;hq!{C{9KT1arcMLb70e1;_MCMwsKJ<$+`Sw%OOn>mxlxk32_8FCz|vUTYR&HLCA4Mb z_J#b6d~|POBHkOmbA{_J=zYGPw}@js+GE@RbjTEJZgX)G17u{AVU2r}vA~PHxA|Qz z*$Wb6$*4s3qsSN+)c&0sjFT6uW zLa%M`bx^qHKx!g9(LiuUxJvi$!vPsbzaR{#sldn$@R#97yXC8)R00FH8O^~dyEW}m zbU-t=DVmYa@{rm=0=Mz8#gT)8rjfbxf{#fl!Z3_tn~Ac*1W+SHNnj*V|3p9|Gu47< zh9nT-#xeioPzrpHz>}CHv5~}b#5xgr{k=3yi7xWDgu65{Ef4Jn);unPQ2tD+IZaw5 zX3p3Q+p$_bD&H^m9J3kPW4U@eUMFfSrI<$9P2#p)N&diGU(c`y;O@y(0ZLUnhq*r~QYD3ag5P_4(`2fK{tO{Ex`9d;xAWczauG)_&#Ve()X>(TP?~zH8WBC=i3)7P`1T*|p zGl|v-0g27hk%^;;-xDgSJ5Y zjYg!@S(RtOet~Xbq4Z64O(nbR_q^=F`$Dtj*urB;rt(>#u`_8aAX7wNd`qTF@JgAo zH2p7BS#eo%38BiBBH_H^TuK2-8IyXx&R&5y$2a2?<^Y`3sD`M%DD5bPJ?9~h*u7|N zwo2Re28S!QA*)(ekFhX3*q3dl4H>P?O|gwN%r)$ur^Af)jS`INM@k0F zr!}_ROK-sTwD!CxU?~_VEGV>Pwd6L_(^3ahD;aHAeQb*?Fs;=L)T|!6GfXc{vaIwh zeER~-cZ_};)@p*A?z%hu5~wOa;jacSOEG-|uZ5y{$T5~V0|?KHA2tgdlywJx>} zg&3k)Dx1%l-#O;p^!JCKQ8voITb`MxTeK}bc4nq+ptlLPnF7C)9`W8B-*6FGLqS3Z z5akf7C^Y4EA;JcwfwdClhpl|vAVUf?#K(( zlZO8O3xNj{HI2Q8AP-Z#n0gRj^liF*3PL zP6z)Y^~&~w8%FOC@p5__Klee`g{_Be6`>T1$U+nLUy^CB!Ucwh(@-=)<1it|H6;>vpW@2~H-<@{;I!P~nny}CK z!Me97TbJr&);KYnmB@9rZ+)I#=w4tg>5+B%yOpUyV1l-S)#lgL7+|kU8cBL9^^>2JH=o9sjD?|&KQbdR z!9^#BVi-ANYH=(peIwC0Q8{5Q^DL>2%S{oRWSvr2ltoO=AN4rNUY1WRgCCewThjTcnBIhGnzScI~LPzBc`U|KI_G8>5V7)9%Q& zt1+-4-?sR2@=s>A>y6vS3Vw52?reRnGm?YCXI8P7@l)gH?ybxO|Ai0vTc-+4X=@p2 z+0+u}(){_-N>?Lh1;)}NVTwb}UCvfd5%*c^#zWNWACc|2=V`(&iVx2-`{A7=QU;0B zm^8c!PH_RX^MWrVEJ7RzE~XbFa+r|J2P$Xwy0e#&L#6QWSTo!@%XMBIPPH- z(;{5NTnzcTy?rTH?viG2ksD4x%k?;t*O(;8kzG9h-paRrz5mBKZ&y`#JDh=ELY)eU*5< zFnqRPSHG#!k$K-}LS=M3(^l@*cNHmM?o;x4d|UINyk2b9=foe+Z}(wzQ}|*vyaYw6 zNlMCPO|0#S-fbYFtOVk&3jsn8nuX5|nnN{msi!3L^GS>v>(oD$#EGGg&a2ypx zcn8M>%9;XM*$}|xDNzS3~nq8c8+EMCN3^603$PinVBBgg5Jr)*4faV-qwlqzdHHvend^2j2$iPoh|Ha ziT>%=(8$iknU93zpMn18@4x10;%@POMzVGKcUiy%0{*E1FflL!{@=u$ElmGE#Qv%I zFR}lu>%WHM{iic-MGJQmYfVuL8xvb6;MDlpxj1?MGtB>0^M5A#za%yOk0b{>>;IPg zUp4z!10G0HQD)^ar0smLozwLPe|LEy|>FvKZ9PaOZ1UagFoVVHurrhXre^>dB@9{=oCFNT zUpzuEUVQa(`8-Tel!)Y?a%`|4D1-k0-6HzCe+e|M%hS-H#DCg{391A+!2g$Qm|(s* z5lyf7#z)N!ivNFgfMJOD?ceX|5|prr>K|@?*53biEh>gR^xwm1CEn8y~g`SA9pVNbSj^Fi#k2Jf>AhT4Ll&FJfkMQPnkB$iKJt*{3{ClLIW) z4Ni^6pxq=lPH_xPO`={%&D~ymGpe#P^4kX=bSs4@W{Q;D0eb@h*srUdDKgiPIunkCaOwkbe8k7 zpy}&oS=M&dzN`1gbEL`=nT;(BIwduoI}sDm#1|{Jynd&AhifQP)Tw9;JV~k(uxwZ@ zRiTJ-u8>|?9Zx?1yy>L3msCQwkbrA|2|q+ubvo`1#k!SMw3b?})>||rK-SM|`h7ek zzulGrYziTKsPh_a)>;R!^xMa|RS2{aVMYa9PF0>xinCkw{XQ1dLg=;X?Z@cqqO_f7 z#G<2a9X>{z9lsdyCrR42TpUAqP8!-$@QHs+5Ia?>@`~ir4?_@eP49DArg-lPQm7R? z)XT3Z2&R~f2b+6D_?cCQRX5|D zbDJ4EXr72G6d?U9FZ5cpIY?28RD+9dW3ZWeKOWcYVwgJKZ^x34p=N!*_T19Vwnfru zORMsnPZMh~kXEcDjgODA+rrT(TU6C`2L?@3lIYdbr*@5Z`@>_H?zjBDRyYxk#t8l1 z4ULOU#*!-K(%EBSp@W?EgW;#tOj-v*2(CR55Pe_nNdZAO1* zTdio+a$DjBIE}`05J%^&dkub9xvmVT=MxF_`F$_2ol|gU$@fQn%bhfp*`>5F*kg7a zW8GcIj;mcscr5AF`FNU`>;1Yf{;KnB^7aQ5;pks}zIdUhxuT=v5C^>%90UN_pS>8q zN)=r_LCRRZ$CQH~Ep1nwZ7TfFczmAq2XDajqXA^;rbLkV5|TP@265>x!$@N!+iO`n zg?(MBz)TvEs_}|Wr>o>jcWrcauB{QWk#HB>n!J4e_7oT{@~&9GriEr-`R! z|Bno6m3j0yb#aD~O9yaA9%X&`PyOsP3fhBs0ky*i-nt zyKnoC1i_%qvW}MW{$9tjcKfrZdoh_L0|UuHywM{PLbi6%X;wQ5iA!$Rac8?4YnYW| zUa=Vw3fyD9lbQU`odT|kdR*J)p53?mlXxBXonTkLMNKoD?0uLwpVxXEc-z-}Y^D-cO4}SL&~jA7y#jIu7BxC6t^2Z-2ez zU^H&>b7J;^&$d6*pQCI){+q>YKELZ8sHCGrbv-E$QA1K|6vnrUCVj0+x~#f(j8P7Y z*@FEP;}|9_yN(C7T)G3J7}WNYMxH;7GJx#zn#~wtBm4t4hqxXv&EP+M<=(gq zr!5}M+OyHe9p7on?1Eku53#PivRhK~SpHXYD}|{nzBv!4gGBWrn|s>bfc+d|ZU~m= z;fUEj$E-9yCDY;QsrU{=UQW$+nWdjCs;!i3=k->%lU`Sp@g2F6C9t}*iv3lQ46Vb} zMg(I9*JZ6g+b$aG+!v65rsYh?ODy?_sU>5Ts2Dbm(5NeFSk{T;uZ)jooOAk z&09yW^P14R#SSl^MP8rexw5{|qi(+Hzy(Przm(8HJF95Q!sT_ZzWX*`(YzZm31{Nu z=L6j2nDms^I^@JVgM!Cf>3-W~RppJ;7crs+20(TD1olT~07VyB52E#wYUN>hJi z7)~BntpG>#LQa|GjjNWf!QH)ZfOAMhyyJG4nrxp*Id0(DiA5Rmikvx!3rC0_b{)Brcxmk<=n<4y$6N+^1XVPp&GQuh2!6+9b zB=2#2_d_n*krwSX{V%*dOmqG=p6z>oIG#XC5g{qFf6<4y-l{!{Nd}8rM8u zn>UYZCfF=i`*q^a%IjiU;yyo~^r38^{Oz_k6=?exq3BiGJuZxYp=_eBb}$qjZBXDs0^&l!&}_<5d)6nJ)ucBPp6iu zw#(KKh*a$2tMjD;*r>aXc3pck936adv2kO0IN`>B?^!a&H{QEKu*UmXv&n;5h^G0kv zd+!4ek7EM7)OB4$&d=vPdW2-G z#memM$8#P=O`nH_xwqmhPnw%=<5>(7~L z+|7EGW>uNGsqZww22-g%lS>b-bJlOuxMCWvzKTg{?eg)OzB9t$b&*cD_hulrB`{9< z8tk>}y5ZHepU$gKV;n^DQpkJ_4e+(&atYtn?3vq%9!+p-@Gnz~NY?lDNR!7oxETy_ z*g+7Eyc6b@n{)L)U3!3uo%jsJ|4nzmCrRt+@p}|;OYf(|Ri>Lvh%bLRxLTsMWwaUE zlwJ+x=5#|N-}82$+SEnUmhIHI$05Hlf(}FHvr#;`RdG~1%2gHYCv5D8!p){XY* zlUFzm3afGd*H(P}4e9uS52_tw{#%Xl5c#)BF2KpOO=3aWe(jJmM66Bn!jkObruEpq z+*Jk4*s=({4_gL?;pVIziyLm!8RA--P2=+V#38-2-Qt_?ZI5>D`ce5~u#*GJ&BYrf z{RPk3@u|T8&`r2#9~-5ks2W};4#nGTZ=29{+igpod%D&A}6K zMz+djs#%r;@ZCzE**ybZMmJy76_zC9D!q>L%~e5x=Nwhy^qaD(#SLA*&z6@!@q&Pg zCQ=`@s_u0XIKcj#w?1k*zz%8QS?Q&sX>+xvRN!u$#Rg(1V)!b#HPdxopTl|x4;7-j}<8S;#0<=PdyW=7F zuFE|ej$`y8zmGj~ZJ^rQb4~UIUXMw66h-u(JIwDapM8{gmO&>a@Ldw3y=HMDqdcl- zbD0mR_8P60D#>~Ah_7spEY2QpP23(oR3%-1y#>HEB1O)>@ENDn9BrJ1Ky3b6()ZhV zHY$w8l7`Y-ZLm9PkKELCJuz{$KYYKNdJ0ult9yx*_%`L=PFxOsBTOuTT?h0eb1S%i zGr9LdkNXW`dt95_4@c#2nIgSZCHWRMH6)LmRW6VUOv#Lz)B}&`8?B2HBBO|G# zP5=Xi=!and);>98BfiYbz1sb`!(I4WYh(~2{eC*Gx{8!xC|| zXgt4>^{gvc2$Dm_RHkBdtTzEF4LjdmU z03+^MR7ZV>@9fSdrSrA1F@LO?E|lRAh8r{JUTCL@S4g)GrFq7V^bzaRD{lFf-dzYj zgUe53Cr~$5%JGlV$x+5FoY?P8*fQ(DJOY$vu>X74*T>X)4e)(08^MAN)W+1-DcSVe z_I<28;WEwc>&j2{<46PRL>NaKJn7xc%x(&l`r9yVk8Vi7%>C;ll{AKbLB>BL7&Xsh z|AsQH7kaPMX^MXaZ{nyr51O1?$xF68YujJSvj+l8gWwS zlOu!Acp-OLJOvSM_y-b0x za_GMG@=&`4qm?e1e`y|}%$0&a;x&S{vYHRwoK$7Gj+8MerP`9`BM+oAsO#%>4ZR_V zqBpSHok%b+G5j^ytne@VAcWB9G6A#xcOELj;~FHX96BHODZVF8HOU}7+($k;Y_w=y*D-`Ha<8bNl68E2>7mvsD|jZ*jCh2 z*@tl~XGDgO^yOpFSLS8SB+h&x>KS8zx&ky68H?#apQv9^1;-rgbB#qWjnspKeX*2Vs|KbG(1`_Ej*l{%D%R%OI5cK-yvA&71F}UYyeZ}HPSzeaM=!3B ze$zFYLyc*d^wC6qp!>yjzs*<7;SkBHBp`w&gGYdqhgpS=M4%dh7*$wR8)_OtxMg@?w#bO4IqU8K6tSo=^-+I}Ais+4axuT&aUDC22t3)igAq`49maBK6fNJ_ zUNx!vSjHucERORQ|BBAad!MIIiNJMUy_49xQNIRNHP=u=_g~sWZORGy>c*}VoyROe z!dsm_HV{!pA|uy`WKcBFpBgQiRR*#K2gLpnW52ske>aLCiNPQQJnxqx-9Wp+nCX(I z{4n>f_2<;NVD^0fYjE@gO^-W>7=W}y1R9x@C{U)+bz~I*3V`;0<+Ij?sdXf>-i~HC zE!yh!+`-zkmm+N6>g?Q9yKMBja+{+(YDbnkG{1b@biryGvTbXA349`qHfQT9VTr`Q z8bH~`Z(`fS#xo}^lU$8P1@}V-@d=bkdl`HWEgCF{Vw;GKlWSjEMxj=aJOp6vxMOr3Q8nNcugE>FAcIhPV1tD9IDy!2czHKo5r-zHZ8rLT$TeaS zzpFFHmOADh*F0A^+S*==wAZgToqBTfVKxocjq(vTa-q(zqMOL)9NGM3RLxnj#U%4V zGZ~Yy3V7a3cx2A4-aEU&uNXFJo)#~=eV%GY-pdbgdcqo!WY+9;#zH-s-pyppT4!TZrB+2ETD8fSJ{4FH5d_MuYhQ@hv?Pu zW+C@F&$&~v-ZbXg?iMVBSxuN7euSa#mvm7KK%Yp|VT9#!nV|VPFXIf&jpU+xA`&CE zyH7Qy_bSPcNv}QJtui7V7&oo!eYiHM9?(Cn%S4=YjmcN~b#1J-za*C5h8&c65;p3Z z+^B3z2~EF>FtI~w23K@a?sN`wUR^j$)y=Vz?%M;N;f zkL!7gt^fFj>E%3;5gRt-A=5H5Rvc)vK90;hkL5kp*ywZrMJhrs++M-dqP7Rl{JgHi z2Et?)vx)Tebs(a%%%Mr*t*Hh2$4cOwL7rgxA+v$X6S3~icBfOg^>qcCYph7EP3=381qdftjrzke0F<=wS^vb@%=l$ zY+81FRt6Y?$D=S6U&ASe;smn@X+)iDUavrd^(WUFp7+V4V(rRQb*Jihhrw)e`oKTT^d zh3mIa_%3ADThGi^`eLL{1FkD`;=S_}1U!KL%`CN4my+Z=LD9g=-Xo3HAzKE;rdV1A z^Y-}uJj-0!H_qDps zTxB1O8-YP%m(PJ@3SV0Cn>Q^Cld3xBhR~bZOYWAMzQ23+*3TW*eS%lxuXj+71oe!2 zqtrh)Meg4Yl9H2;J5UUY^IX1Xd4Ceg_rjPyB$_{W41yCt@BXDzqytg(KzqTeBVdY>+ge8zd*T@MMg^SFH(!|4W)%LnO{m+8pV7q zaQK7zgi{R5g)tTp*V=odL{MFy3DS{ggBg3_T*ZU^-N)n3H zog&s;EyT`nl=ByZ2|XjdmD^b<^Ldd6wsw@*VD%tWc>Oo{KCZAbr*^+kq$aKu2gP8= zeNq8tfA>LrW0k!mCM5hrZbuO7-?Z*cVOXxz%Bi@8BJq5Ei!W}<7}+CwR`Tp8|vr#eSMOTCQ9VDv(A*CHqfO-EV0QnDSGENTeqA$HOfA6 zrFT(eIV6Tu)(X2|M&#S>!YC;{Dh{e^vW^bx89J+;igWH7^+(HXgCzKM&4cTkyujWC zKVdL)$K#BaM!E}|R97Lw8FuXWxR@_AF`G0LD|(yknH%S}2d`#LB>OO^6fHX-XrX`+ z5TRLG_J(DlOn94|Q6(gEmaEdKs{PW@gs5HWhmE=)ou;N$(7YjrB!4kd_7)eBF7jAs z^dFM~L^60M=8yhy>uhs;b0>eHN&Wk(K&;R!?XY5I`2+81bciokQR{nhqp^6W z^$T9&debPi!XwxCSjQ|zm7^zORY48MNNkyL3(KMgC~|foTGH5NSxjld$Sl>B=KToT zBFbP{`z#y~cIkCa{NX94o>*bo5^;=4tNSi2u-~Ex^!j|M&;}#Lu_;$qI0qutfGyPV zF%AH(o`LE?1CZ4eCoG(&W8Ebqu3}mbNdBCQr~28VF{g<>mj>l}6SWa!33;gH z1Ti%#1JM07YE0rx5_@7qmC$F+SB2nbDbX4}#)7|e1G*QX4Tv~cg1BJlqsP(lxWEqZIk@frxhrfXM-o-5COTgUmX3i{Fh zLyiUQMC@OvSd>T<1VAQmFc>R%9e6V`83g}wQ zUDXG=6R29@66N!RurDgzB^qYU66wjmji~&8>Eyq|n=lC{st3KldWCnxwH}ls{zzjb zd5TXg^o!E6$oqW=_z~_myp->(TenjBnlTHr+H+-fdbLQct9~5%R9dBoQ<&Ha>GGSx zvo+)equ45iLUz_F&iuuP_Pj~hr+w$V>fi>aNQkDKr31+W=@m#i72VG9Y6rOu2aoC$&o<^|;aHLr}2u{c1(AUveM(mQZLxJwG7?Y2ru zenWk^3*QZ;{etOTt@Oxnq-I$ia3c1!=;W=mARrYmj^F*~S7$QYIgG(! zUHedQ5co(V@8P2A9d6aB)8gUn&#L=y{2iGTi5M^2Fg>8$l{RgKHawz?gH{-E?3$8$ ze%RW0*Xh5}d2q|`py)Jy6cGXsDpAP#B>>3M-=_ao&QpO6==>5B)5zDw2>*9~yURm> zY=AngSTSExAeA6Y&{))f;xURgfR?5=0y*O3-}9pQ1ie4Gg&rJBllh$<7V5Wopr~N+ z`uTjZfWLZ@pZ?3JG!!0>N0LDBB2iE2fjEqlsy5~$#ts9wNg~!qT4$-=41JmJL78pq zv53T8igH_qZ$>Inr)WO!=csgk`Ef!r<@k^fdlh|cz+NfWrfQF`1O?7*|3EX}9Dmv_yx*DNqf=8fzbBpG z7bFCqX8`Sx{kQd5(A$X27tOIXr&i}PhTc0ALI)-P%OjYQCiQRTC64+uLCFx;WYi0#rw77pskj$=~B4p@l zME~mF=X@bo-UE6ojE7=uPg(7Ti7q0rRjz>fOdA(c6&||To(Z0<_CYAs_|WcU!*#|> zttMMtqxHB@_83Bee^BgE`i6O>!c}O5K^*69*l}#XNI+-v4koPgts1)`&~5&-co1$A z2}QKc@;H>b3FV0PI)wb_liAO$A;H@YXP=g^Y~pK4E+J97^b0ebYUaPG4W0Jv4{57s`bEI6x9fw+l=t^5>7h zrrll-ar*ns0+;<+Uorm$)L`>WzJzwB0nd_-69#Mfyy;JICgJ>5(w_$3$OzGjTDX+q zb#Te$AZg>zo3?zNfYgO3ZHEDj4PZ9>gxl@%{Icuo6BP|)C$gGvH;iUL!t5NJlB0ly#u0{V78r;u*1YaGqCE=^mp|G4Gn_XLbX(iDSet}KY%x4f?S znpRBHTO9TV3&9edVaULj+1IT1E<2v|B1K>@>+DpnfU~}Qy+7Gg(=@?o0;0!l!C0Eh z9YEOaFNtv!W22(|MyrdHzV}UVw3IugU}#IMK_?Jnjh+=1q5m%;}m zY3Shm*5*7x_v|+yg~H`1(=F?R82pueypN>|!Dqu|sl_BobMWDKrjNd9-SHC00&)F^ zXL1w!+p`aW;~$ilU9Jm==#RVG@Jl!;D^X@T|7p;^d(MR-WIm6}1(Hn~)+~xMXFI!z zJolnG$^jY>0Ur!)=SFwQom%6xD{h+}L#IUuK&Uwh2drQwo9C*%4hLZ9MH_iFepsd| zCMm%L(r2~&i&5`MdWq!#1AQn_Fzpx(tBB>fMjnWb5u}4?D9fcyV)N$VR4qt=L}~Ug zwb*vPm<|;TeeVG3b3@PT;s6ri`_K4{5g*_^O0D(&d^xho3;h`71H&<_zGz(gF2XV! z*>+mudv<0gbqLxEK@OIMrR)6rVGM}%T@m;`8=@6K%e^8Bg;cKtv&wS6YK;_sA$GCI zuG=(i{Dt8dh#@uuogM1Hx0<`%E z?91I3oo|<>-thR`^Amhe>$X6skv;I+!NW{W?0*t34sq#BmuAQk;W;@#R*dHokb9w|u!8%s8|BNV34@xHesl-k)ok1J-j z&(}M)Pre^IKmfj?0viq2rv5k2ew+wAoVme$02?H;4g8yp_*tZrx>ZD+I8$>qJ7_BH zlw~<2+#>Qxt!(&_h)x-owkB7OqHnptF)~%;TY%Z9atJ4+#+<3#g(nbGZ2N}9J6%rh z{!1R7B^HD;fF>dS;pr=>V^m=aUo>o}IXB2!uE|6_>tFa*Vm}Qifh}FJj zW=JCn2-8{@g2#*wSxJG*GI|oPHk?IV&PWh8w1k2b+9?uY$ATY{iNpJZA)Bxj_@-vL z6R)=iS6Bjh3AEZ=%-JZV7AZ5q7AkV<*k8Wu*Jkd>o#!V^MR6$5&R}=xH%-8sn387( zF(e(zIVyuwI>@b1^(EG7KI4YVlMw$7bK8 zbu!iV@|yGUvEJx|CvY~MM@0)$Wo>sR%e9rTa^<`np6Afy4Gm30WN@<{(3Z-$*s+8T-$iy zID?T3NtA^54FC^+4#crXAAj4Y+W>hump}*>rmi`Zz;k$=YwJx_6bJyW`@UTsF|@ri zfBQ4i3eH7l)-%Y!OAi09L#%?}MgGiAy>@N(%;3za+G zXt9AGTLldOSukdylxgfEnm545s}sd&Dnu$cKxBo_`l# zp66!h&s`r#(CYMEhy}+n7l$!7%}u!{&Oo-iqiGQ&ww^FW3HMn)Z)6q2uj-?~Ti%QM zIctnSL6ZSdfudYVA5yV^X;CgKcqRsoiJTNJm4Mp-!e=CPbSe%oi(#|`luL=9{dQen z?8er=N6Zr6utaeE$5RUApW|kbjYMj019q;4xa+xrsjl1DapNvDz(N2Vz4<%b7izQT z?mZM}6JRuY0T&i-)i6hYB=Xj)Z1R{$1yK>Te{-_Iv96p?Tc^x*6B%x-OO z&pz_Bh}Y*jR=xBbAI*JGGLH^6F&MV~M?3f_DMF_?S|ql6AF=^P*v$bNJrXCHWU;JG zNM5V>f;%g3r#YB(q?}46U6*F5afhz&%Rv$N4|!-oIsq_Df^V4qk{UT1V6F!;fw~q{ zoM5o=3p;E}I>uA*?`rhgsk8<_R#W4`?p~~b?VFlx7PciKCjACjMt+RyD>TM1gmEZB-*(8Ude);zmlz31a1@gl>c~pR^%-&=LNfqIBC+MkV`L zl;dx&Vm^Vy`GOu%vb>Dg)Ts0KFi!)QSjYKM*htV?k8Sq!qq;a*?dV^-_y-|zreAS< z4Dj?(_Q%A}JNmu+^m}$Cb&B38#kEh<0dA+FBh^C@R^RCyaPmOd2y5T1Z0)D_`_UBY zJB=S8>D>YSUGBx!*zQGm{=7*9$9P#UaYekY@n54wSkiD~PT7!tWiPUL%cWVY3iun~ zhdK_NIW^}9I}ty{hAlzI!sLu%#+ZqI1mPJOYEDv-p#tcV`|#A3jvLjnsVyXfW} z>qjY=SInZ~)wDAnifWKEiBU?2*uAUWKf*~CltXYe&O`BII!1|tE={*>9ih{G6x3({ zv|sn0jPhhq1w?WN^}qqz4MHueA8S@G6ypg+)b%_HaTuadC>(uK1$VnT^?R^Pu7Ma* z8c2wKwVqW)L-~}jY%o17^#fcPbUW3!A>t2%bNlTe5mfA)aVz|FMWD|w>di>NdEGM_ z_D$2>qXf%0WoUnFaf+qZpBa4pmI@<*o54$7dKXOWG7jl`l(CKv_QACH3UVA4cr}^6 z$u|$`K(jJn_Qo`!j(fv>FWP1xJb((Q#~zH4P9pybF!`_9WW1j{jNcv6T4==jbc7pg z!{WRPVl~5oOfRkVjz4~L#RpMJ=E_JmLxS7&)Rk-1yi>#S`yBp>hQ%w~Eq_N;%5alu z9n~E%&&>lLdg}k4oGHyCeU;-e89`r*o3G@VBvv;Fv%ILzV-UB4{(2vQW&$x~%w4v( zDsTGqWEUJB3j#y$Hr$>u1i$!ZAFDcM5L^jKc>}J=4M$h~%Oxud$6#F{jgxvJuzK=R z?x3Xq>Xbw<8=3Q$e;brP3(yL)xQCeqm;^>4kIqVzgH1i^fo7$u$dWx0H}9s+6^zb? zPnnP+!y2j)-@||*5RZ=r@GEYG!%m&Updtq~S7@x%MHJ8pN4g&p-D!ep99Z4bm+&0x=>MRJGXPC8p3gsA%G$*bnsH4uXPLXQkD|g!+d&CC$OZ0s9~!;CK2*ogybND#$N^@SS)J`kLT&${+hD z{(F3OALlt-9+_qsqlATk9-Dc!76rje6mj>6n!8X7@eq?elVxGMMt?WYJyQ~+!HyIh z)}*BY2;(H95%jRxshNMDhA?$rGm|WIJC@d3?lG+}q<=Y7IToUTfd?of<|L5tZ0Bp) zZ9@1vS$!q$^C4M(W4k910qK4IyR!zTGd3&+mI8JH)HKZInT`7HiLCdRGc4%#i>QgY z{rEi=Hp|M2TlYpZNx_y2RrtsVxKOkCfqbE?(gPA2hB1txoI$`2&4DDF#0CnH1BBhQ z$_pH6;NA)NdN`^UFKJjUATi!=e3^;eu32JwC%499{|Hq&aPJKo@VIg!accs>d2dC+ z*vKgvO4JFY6IU>(xs=+CkSDXI=G2gD=CpbonhRWsqhf1w8;;U`qf!B9sRFl`{?j4( zSPz2@(*FI|?Lq%3hPsYngg;ZoE4?w7{`}BmH!z?yr*zVkx*3H!_$_h`Xo0{nr?pr3 z&R~6ORawKlzYU{@^%^R|JFN1Ezap}~4+!Z4#yU1v-km@2``5Q}I^(}8RBMyei4CPFV(LN8Mnf_97ew%0@Xg#D%Ld=p z>_D8o_shXR(AAe8mUOQgPwJvuhB(>83<@Pf(Kt6J-YB6p<<(KFr@bS z_ieJK*~t3`K%5zrs|N`*$p1q?jo8t~=$d(v3~jhf6|G(}o7p3x;fHhv1|=m86D+n> z6wf|F6(LbI%=r;``0NSc#XzXVK(oZ}T=;%7 z4XF1}NQ{eKpWzgdPjuLN6whk~&1l_0oCE0k%mv(AC~jzv!D@Rt(WY|FQ&>L5`fvO# zyR+ z?Wx(nurS-5n~RNH@|A(jCv5 z|Ji##=bX2GoMC3xJ@>5N^^LV|x7WE7i7jh`Kn_opFB`|L7%l6vp+~xeE&|hIDZLGc z?#P?GA_7kWPddYh_sNeouqXkB=#xv*=M-*t=FC@Q_1{Nxf}bUG!N+iKgmn?yK7$49 z+dY{kfjWxsL4nN167dwD*#PoLY(flsOUGiGsM-5^bnlye`*=%f_V9ii=hMh?%C~^r z6ZNs?AC2mxBynVf=01o*y%-|Jilf>#n%?(TE`%Im^94dO9IT|j80KL!KLu=Lt$AQz zjMxi#sAWk!R~&VpyEFU%P17a-LIaqgCqCI8Edr{m-`kcr)mgwPO`Fn?z&pUdq@%MZ1AoY z2YWiq6~DKMW>Ka}ZBEK##6Dw>@-(*O1bTwTtrm_gf@eKMEskHrPCcJg|$4BpIdn!k@twR#I2@Ga1j+ zj$>qsNNjMWFJp9foeQeQwQml5gtW{4L)sstVf@sTWOUE_xT(Kt$o9KrV`#qyKLVIy zE{{y1=R;AN`v3jkb!n>YMF-!*Shm=ILSP>Psj)$D3;7>l`~MGarSf4{hltCV^D+0* zz>@y>_iz5B#?E>w7AzH1(AEgeSX5sz9&O!Pw*5X(J+&A@D5=#{q zKYW&ZPbl{h?xgg)^)q+0@t_Eix>E5k9OZpSJib=@A%+T?hbL)LLYC9i#*^%#+f}8C zGpx!3QT{_nWFOyV6`kvOycv&4zU@KYDlW^|`#!KWuaxe`&6}iSxjK9Ve`}_nD*khy zc0$D4xZ)@kGm)>Ix+^B4)x1zVF88H&h&l_cz0nX0X^r^qfKL{8)(dNLrGWme25ntcI+-F!wIJDXC6!zxgs{pzLYz9 zmbSP0n?!pTJmP#m<-ZdBm)es;&SCXt$e?`7BwM_=k7w=o1c4h#yugziFl8T){&!Vj zS{Zz`D+_T-5^3I`!~`Upn61Vg>@j%Qrl-ks{3i)f!!b&@V~KzK@wb4GR_g~}BqS^A z`p=x={plxyyzLJ&GX)g|oUi5I4l|7oaVzUR5{=*5h>F3Z>RqT+ahQszsWOQL51|zl zxSzU*9C((w50J(^n#slt*2dwO2#WOHn;8$dDc}6i6|!j`g>OU{*vxYED71n7+xz;a z*KRiXI7?)@lDm4eVB70QGTLs$4Zf2*e7)48HD1soq`i`PRNEt5XU&0Zqh?qgH?D=n zn;EZmHrz7$NklX3mdjpRSLG_tsM=^vbmxgTfSBmKYR8p;B2sZU{N{`xrJv#I>t%7q zPN>cl*SZkAff?Q}9cwP@3a3-wVpjLFgRkxTbK^tSbyMp+U+=>YdD3|{lyp<9BPo6O zg%&rZ^c;xDjnFnQpcZySH5v0;f5j4^U#)<=$)G-7H;YX|vcS1d zl|%a{OaL=(pGYCjg@E?cKohHyM|lTpWS%DErgn&cg~GqzEt#P}d+WO6R4N~v{Caed zs7(1H%uy!wlQG`x>Cmf$Iokl>KgJwRMDp}|jvXKOp}Ra9#*LMwzs_ZDTj~(wEc7bu zbXwLhIpTQkDc5AMv2sp z&n(`=|M(gM9oE11FTf!#AnsvzyPBqYpSh6s*M4i-sq1k|?D5*-rTr}DOP95N+%tz; z_otBOVpu0%&oVG@^~E2r^Fb)-uR`MJRz-}}$r(sLwh@{5jzJ;&Al^v}?{??YqtDf{ z&)*iCiNYk)*BlObC3jFx3MR*a2Y@4)$O%Y<+>4=7!Nu%KRj=p$^~n*4hIoqKA4^Am z9Dlriz`6of=h;+P?6ta{wRT)BN@z^6V8<6Ec80m3z%HT~piji`&wnTPJ0HU=KyFkZJ)OgD0x^p=V2k>uuhc&NVP)p~ zdB$b@H=O(zU(XKeM(4e>D5vOs`HGMq0!=x?;3Ef%Twp${5~kpCpjMQKj z$mc|#migui3?FpW@_y7Yl$X0%Z}6w0%ALxUM!Et-U6_6ZteP3&4isJ~Rf3S|MaY~U zP+UcWrj-6JcPs(YvaaR~6r>g(psX!Dx5_Ys2*B-thrR<3tYJz7D3{@7_Ss=r?Cowi zsiSkgY>X=i(S9$QehBMQkr3EFsI!;()-ex~lXYz}gnFTjXnLcX*Gk4xPmd2vpQxqF ze|{&E+MljiGIaZCd38z9eEaqlf4lH=d153iv1`-HUE}At@&+JeI8lRRZnNt@s=E1w z-@(@M7noY1xyJd9+hXstEypy= zvl*jz4V0W)a?#M--%OK}$vdC}EZqC*;(VC^TL}c z)n+l^JKgpNTH29{@FDLzK(da}TDyEw8J>8!bRodKIgGFod?}q;>K{+Lpx=TO}ldDUwl)Bcwl3k8bE&u5%>#7-R#$#)>MxU}&jAqMMF=$QxRgMIN>;LCCo-^bskdFxS_ z1jX7EU3(aCxYh?K;MrG?0O0iKcz;p)^8Tl7v~_t^`{~e87?H7jn9!lAQ3b~5f4czw z5`@W9BzA+e)Hcu_{oR5(t{#1MMRHX+-=xKTacE4dUCg8N6eU##G$iU@_dG=|Tr9Q?-M}1;@8a$SjSb zU|d>x>%`yIwp;i`L$Aua%D3VDMNDeRN?OzDvg@}=1wteDv3?fXs53>AsI%@D8)sDW zbx6IH8{2i@mDBluqW90A%<5oaJ#kF$cXDR%r_6t4oOGhVdjc<{O#0F>V`{fTBx=Fw z&%?o-LDTDOF~4zNW>q7E6DO>bGGnS7v6I25i!bjINKE`ybB&K*vT#!?NiRRFBK2K? z*NB#XnANiXw4uC)mG#wTc~;4D!S8AV2$~Jeq)zQzCwGoE?{kI5`)QV~4ZWHw8@`cF ze|&c{FY1E8;f&XXT66OVbOt&D`x=?Gs}7Ay&#OZrpp+cW{e`9X7iUcqaPU<^BGdJ$+NVpSam$YE0o*P={#jSOf3#g|;?uBZZ(f1x z`*M=&e{vW7(d2jHPX2yn7yIs9oz)tVHl&gN+k{dT@&i>3Rg+a5g{TIL#-r)|x6sSO zg@q*LOK57XoQ>w*)GdSNvv6VoFJ!LcYT2$#9)duYXQn;V;%1c}bWtkwki)LMZ63w( zmL1bj45|fB_1NOPLtX{cm9=5l4&|gw1?QNj`}VV_IqQ2&0oIQ5@xg@haUn}*!V0p3 zc2lk+L2YjkYn}_j#tc|trVH#ib*{Rx{P-C4kgNX4Ibr56hMSZ2(*nige!!UF?hB9u zGRW6foRNHd5Jcq2@XhJgFdP!l%Bcj;X>X+44nk{*CdekG3Txs}jV_S{H^y|~&uW2F z;eYv`BntMoEitbxC<$AB4jp&;{B=7(%<>)j5$nJa!*&6WWIubkGK8|kU$Kzr`fY~r z7hfUrfHO7a-^7xZ1brp;UT}9^7r3roe!ow!NM<>)U_j)Vn0)U)V9k#1#FiS6-pu)( zjbxBZQr&lc))G4a+`v5NV|>X_yCcY@AEYEKLQ%r^Gdh@2Tq?P=uwa=QdqR*vT62DG znP>rzIIX!#9_bJ3;2u^Zhcgj(m(x`dy`WkjKfLS~kPCH=wL|t?gw6`S7CZalf<1wl zuy2HtMC0{TrgZW_?J)agBqqCs$`=|re6>gs3ug<~97e7@uA@5Q5+#dfTag3swX6j3 zqHqigi&Ysye*16tf`jDlza<@$v>`6pSa*w;7g)1Tf#K z%3=fCD7cA#Q689zP{1H?Zz8f)gJ_JrGD5P zm#I7xy-WUzqayy`zCaq70+ml=$X_=0cQ+}Wl>Nf_Eg)fv=k6?f;_+*R^?P6<*&w3S zQ(hE1HzIM?^~l;VPXLDD$znb__Iuq&sbU~yk!oVoJIvR+03SgV z)R1ssI>N2UVd3Q`up@m&cHBvAC5n9TgZuKumydYlm$q{eOCXkPUumVvoY2HC6~iRO zByQaLCJ$RT9_NkBY{--CJnOsA$skuo+ zz=*pOG9-DubXe&Q^2A2k9NKN^dVCya11$tJ1XULZuqeh57W>+|_aDvZalW%4V-8^p zoO}!7TE2sGN;FJiH_}*rMS-rEm<4ylaZ8Kt_D86xW3LxAu-jMbDeT5}Uo0)_OyD)U z8V8b3tk52#=9@M6x!&oKt7X0+PmG8V=On0Ryc@^AlPQq2dWYihQPT$%XiU(WbpppyT)UxM482IxyAw$m(D7~3XPg)`+e2N}ng z-YqO;xzwGMA!bMn>@{EKMJdneo8OlbA%ABy|7@mI^Rn25AU5uO&jD*Mf*S@0auyCg z=`*_EsFdBBUiHXk!G^qvMSDIgmM;vwnO|b z-ZQX~wXal%d@IN2N{nZDREwy<<;oJAE0*wyr#ryIJrM0}cgYpOcwp8mD;q>Pvb(@|iLaIf5{6 zl5}8>(f#Y&Y7jZ|4wrKjzOegtum1^n8%v^sB=r=O%xsGBAe1k5t2((9%&-WIq9|Ae=lhS_u}s(shP zM9V6S6{}}ISQ4ar~6Z= zYfO|`Bs5q)c&npFUW&iub6`+1yjZGKta-EZTMS%3e!dIpxAS%k1)rf*;3IXvSZRwR zPGJ}$VQ)*GAkBL~N=ox*UAFYE`sjzTMyab->%25Fj9hF9auTBGgPvkWUhV}k^HPM8 z3b;~=p&5h>^~tIU&DbN~F@Av@Y?G*ma+W-cGPyd2CJ9$2KHhs?9ewH? zyq~D4@;WJdD55)Arf+8xn3751!G?hv`>trKEx$AslGv4Zp6(=hgRd-@lw1X29Jaem zQ;K9sP@&Zhlrp;B(VMaNy_`Eme9+)rvSMa2zQ8}zr>z__=hpquh;NizPyB!BOevL` zMUiZo#_q^gh2pT;Tkp8d|HmKsD#xFiQ;}H;63X>&gVL)UdhAp>0y9IL=~pvyB>xQ8 zFmQEWX`+q(?^C8rfNKFFQ87`n>X66 zr`uJsEUXD#L>;&u@yV|vl+wSUesq2$`HCmKe4H;(iBJ%BH78K8Tk2jJIWaXZVxmxo z{y6;Y*s^E5*JqrkK5-@z(E&NT@6P^4;{wrRBQ)IfM~&LVwS$6g^y&kIn_}~H*`Bxdo#Wb_dr-!a3!0%gHPTBl{BM(%C62_+30}tiW~6zj zLItum7phvo+AEinfBn}uLFP1pM@(CA<$Fc4XAJ(4b35|F|8YC1KmzJ)^Dt(XUUM$o z-G8C%s~lE@y{X7*R(gy7TDK71${?&oIztW`zW?j>orJc0O%o@^tNjCS@X=uJrqXF} zs>VykXil(y{CWWw#{c;+j%IZ0Wy-_T?b>PM zWAO(S@7Z}uC3X$kd>U5V>W0_JS9a6Uqn+0-`EC=(YmGKbKA)}rV~vjbZ(kaxS^gbs^oVAyS56SsqNNd1 z=dlcw8iJ!0ndMqIn<3#kKP?FPR7@4H;-W`_wx>e)^426sQ-%bDK`TW?nkm9#x&E~# z)Xmwt+85C_*O8MFhz~(u1iQsFm=()O;I>Tv1QRmfjU%Qt3dVbT?g~H^3J{V`C*A*W za(v9IfUI6$D|4l1>{9;JeiuuKiI5J?&pMMC&alrHTV6U9d? zb{iLmztO1rTJ<885r>X|SpR;qk*6LM>Lhh@e9ga8nA+CqpM$|fZin)cL4pfDhv`X3 zKC(2zY@GPxj{n`^%b7+8gP9Ud22ITR4qd<0O|CoE5jhaZeP}x!Vgc4tV*zd8dO2GM z#vM<)@|y6AILHjOO1kPF-?JDf=UN2wwxdI$hD^Nw?QT&aIz->5fRz;ERBtx+InSUU z=nZl#DM)sO`iPmOyDyjcQ{YQL(B z_9T;W%2LU#W73cWEk&}=GY0)N^eX`2 zIW+;o(E>bui{IaPOQ6uON@o?DjGFnc5vPF3Jra28_BH5a+QrQLnO{)6&--yLi_Idg z@cY!8f-#Ebt5etQ9*e=8u6~w3yVa4wX5B@6Y3q0C_x#u|BVHz_T17MA_gtT>|C|jL zPh1Cr_i8ez$e5|KQpI}8qi0Wq-U|}4~&YEAJ?@oLp2a`NN zZOdQH$Z`?D##@n;l0O!tA$Ct-OpcOX9_HIsx+KsmbGIj50&8!p|HG{wrDPGm^x-rl zCK=^L`3E%i=5A5I8g@g&$##{F!ADDmn!(vckPc+OH@a&|{;X`}vrs>&et*B!u{qse zV5xHiB{Z(koj%}W)jh)!7GVMg{tc6P-ccIjCa;XkIpMC57~t%6QQ)uol-HR%sfbM#Sp-7i-t ztYOIV%3A=_*ju6yZD7(gNPmOwW?eb$7H20oG#^_W@Kkzl z!8fL3?d2=7xAb>xZPPsDNIZ`&Z$&Qf6Y%Jf5%hrLmEb<9-ia05B8F1By4IS{X*+?# zk<#76I?C+`uE%-~Wc?iJ`(x7OiR0L+L>N&{U&02%$XI^>;+&8|kaMMnvJ zbtahJ26d@In~=i)0Q>mfR=OMeOr4G@3szRY$HDB_VhO;LIRIRKX&G>i2TWGXak5yQ zo=lHv1bEOL6O{RDg3t>=lz^`wTKKcrtZ4{FG|_FKKU@I9KImAon!bbf`0+2<^E6F< zR%`|2ZDNrFT2Qr_FT#Rv$RK>H&4CyGSk7quxfc!gu_U4~h)CfWB;#v@oW*hDv=xkw ze?+?E$MAC_K7vZKW>EC?-O%wX=$85eWuY!#yt8hoO(6?$BBvkBe0y$)nh)R2F0%p5 z5qn81;ym2o^k*5eJIvOUaR(m4Mlr+c4Yh;cj>Z6-H7dI7_;Ly{cD5G7c$%ENYtrAa2u2{CT~ zeqwY)(96$}&xvN+w-9Fl*4$A0G&zt&&q0bGig1BPRsY6=X-6nVz3=s;mOnR6tD)pLstr zULhk-Cdy^rC+^S4Y-vFWtHINV>!v!&3&0G^#_pw4?w@` zQD_nw2GIu*e0UB5G)76CI?eoCHwkoF3EC=m_V0QIVJ@h@cL%k=ibV&khR(oPoPkzM z7bFU=oS&qFaAzO)9or7yN_}FIri2!V8PCRWuEUK=86jQ2AOp_)x1VbCE$_=PM&LK# zEE2ii#k?Ek^0avZH+09ytoB4R#|)5@pcm()s{fpeIVElM_)#$giyz|4@|=iREn0gJ z+bj6n*C+Zp(X$j6S8%tPBkMU90iLCiOx6$t@4%Pg+ArK<{naU_2tHl-%Lw??%_)0> zj;rp_@8s_mSFfv?#{y+w!dAg=CI36B%-&9g-0m!OAd49FvOKHvGW`@znT{vs#(@Ye z?OO;!^Swp>UDbI%>6q^!UZT3=NW|b} zK|RJ0Z|-0ATF20A)XhV{M{ehOW=$GFg`LC5hA$EnLQvkUCfnSP94B)7Vc~sQg)(Pl z>t3njPrjLYZQKOPPH4WuZB_GSFWkUDCy9W@6;$yGC*`#v^>JXx_N_Jh8A6$tY`=Mh~-u@#P~8gRGNz?7W`yHP4tmh<9|<20aVKV5b=3 zw%K9ya5wUJHMV!b9otyrD!iGfN#=-(z>i8N@-TpqvH)j{O_FHltdTYKEEo$`naoif zt{1Mgd3%R)k*s{=`LPm$buh=3?p!&I{_PA*s?xzkje=EJxS6yBqa-P!v`MbL?q*fp zk&xr-zx)-pCOyKvSOXDM76Tzv{h1MKeck4kVJo!NO}9Y#{KENa77xg(caxjZW8KVw z1Uz@op@I-OAr$=vG{mV-kw za9ITAe=B?zW~~}Vu4P+j+E?R~=!4*a1=A-O+Lm{Lf*Ry$VanQe;Ogl*&281W^NtB@ zP=CL@eP;G;^#dsL>{YJTm}r^D$&aIq`4@V`ckQKeQ=4Zo$s@N znfCJHtxP29Bhvdd`-VM`?W~ktYT&Jhku$;M$KOUE^08zdwauzaFJ6XpSy0W5yx`E3 ziK2Sh_Df(LJ!*m(M-j^o6Aha#kWvKPv(#N3mm1bESksayT*9?r<7O^8> zN5Y06!6G;qYWf`26jh{`w(jMKm1{z(8LbkTSVS)cu|p9cQMis95l-|X$%ip7m#v?{ z>*mUHQ8}ZHQw;s4uU<>*);@GNItwOn*$AR%X$CRGZ-$)*s!SXnkw}*Z2ZDd(@_t6* zWF^Lx-J&3(dzN3bc3B~1sYeojuFsU9{2ccl4RLQX0VA4rO%FCterMmTFFZ{~)z23- zX?VOO#>%-TELJf#kd)$J*8t)ZZ2;kIZs5}8{H&X%beV;USpAIQSPUqG4o@k4l9sFa zt}&aDL4k7cSKKTj#$hl9?ZnY96UoA#hqD?W6FZuzQO3)f`k(42B-*An@gMD9M5@7X z{@{~uk^4krx&s68*BuZ1pteHJ0ym0Uu8*zT?=oP^g!9R)VB7yAYu%8vUave{f~Pe% zE%EsX41x{oIcA&DJ#qo@lu=&-7ZL>KLjog+#3tp8a5;}F9-D$K zedFaUbEFM)b1mlT*1qL@B{zL-JSgRd60I5ygU;$TfGjJ^se;p8emfU3fNX)@Exe81 zox+ckBiWXUN9=c?u9?-nhpi;@@DdKE1gt+a;x$HxgV3e!xH z?3&vX1T?G{*jQDZHJw(LzM2{=%5B7`@kN` zB$Xy|KoE~e*Kg{$()WWIV^ep8cEI5PV9W^kK+8=%`Y~A*v{(4qHL)_2E zRBp{G$SQ8UXJr|-CXK^g?4s_*iGtYA`~mwk%u+=V!5%2}Y~=5ldXcEZhY6ZqvO8qe z-5UgQVxh4(ml8m2<+`ElOlZhfb?$sFYa%_TQ)-qC9N_ zmtNI}0WY&SA|>5;M)HE#6bS}rm!;KQ3I1wIMFVRNSpD-UcHzIDvtD9n&fDtv6(f-$ z_Yz8nc>4ou#vIwB(|ADgFI{TRrsp9eNYTbyyz5LD+?5^gEJ0ASQOw*}=}XpGwiU%@j($&6G(b7=*eVx-e%3iJj;|~%>prh#@<0v{AWXtX)%ly!Idy-&OOo#8QhHgTA@;r&zr~b(W|vUC ze7j!|9*h5hPU|>KLV9c+c4d+i6@DNm(2lUlF0SEyGqfxXe;Sm#I+UrOmd{xz8{E`d zMO6RYSPJU6hmB@ynjMdMvTHwy;Ttht-C#;kPRnzjD|%~^AWeb{$K-8&`Zzh=(ZrAS zZP1u$Na0e{(l6qQ#-8?BBqXjLKDUP&QKcG}(^$74NPITGT)?BWdvV2`eHq)ZjV!QK zsXJ^)jGp+k2VR(A?(?X4IRO;$Eq)6^A|_d62Zk8WAc7-d zxT-g1#b#b(O&PXdtEM~$)!Hr(Su-EQW915nm5YI^{!GJ}%=iU1l34l1^#HB+imqtg zyALM{rUyKKk0Yx!-c-^m3Ro)LluQ)PFK+q5?j90aTlpb8%%fjCGE7gR=r$aX=Jq2u zZylel7n;_xa8l0^tzyH0_9o(9_@K&^pE!@#cY3fnrn{fQaj|7}?T}}mvn($zlj@pd z;59Q)1_!kp;&>tp4B2ofTw9Fcj0)?P*QOF9ldw9Bt92u*uJz!jmq!Z7$O?ucwM)je zFKQ+WF?~a_%ka7k`VqoHphFiy{-Mm#M4jPYjp)9b0|B!>{=E&-1v3`$akQ|qqdG*4 z(ZLI@tn2A!p~2?Rr1Dn^lI9?eZm}2&*8JOP6)b*${KJS4gz9tPMaOTt z#cei1l5FHyab|djh8#7|5uKG#_y|hbTuL56%Xba!tT&G=H zxcgu%i+BkVfs^~0KLOqz)BU7IEq*$X&}s2bR`*Fymei*_tegsO{6fABpDk(6dt`$_ z#&tv`;sg<%XH5AgKltI@!USP5tK+(3xDXo=#(TMB$vh<6bem^2yWo_H77 zA1Ub*axjIBrKanKtbAI{yWNC~C49gs{56o%+;u{*Tz{uMoVYtOs80@7zqI&z#hpfGU&w~#*$#fjM8#3~%vi%RUe+&|c`O5tZ-xDch zk!$M|*nN+im&u$~Dff92AAxttdd@+%+yi4l*Q0CUTT(%-lBn)8McVHX}tXn1L8lXO)mXhN8@#q7(We z_kIysdHww|MCP`t)U=ozV^hEQuvf!tH?2K=zc-tOa`WdJ0L+}3t^=S%BHAtyHWEf^ z3>I}%mqOQ}IS$S{^9tR}jUPyCwini>A5j!Dt8!n{QuPw|n@6{JCZA|BbGoNVv6Do!<8zI2 z7WGGJv)4Cl+>W*qdvp@bX)V)7Y_3MdkP)xef#_+P@>#1n$tWLLlx;)xMvI8On+5KH z+j>U(9QLI;f5q%*k^#<^C3XmWid3#F{ulKfMNT(@ok-1AFXHGRPgz$m# zb^bJgHN7iwLq-0VsvFESYG074kRo?UehU7utCOjz{2)Px-MvF&9cJ>8hD-5($iJ8n z+82Y?s9QXX{0dRmK9u$W*eSzctk5F~@@QBIYvUdNkp_TPK-SCx0d7y-@3O7`C>@-N zRGgZTYKq$Y+yo!cvI$Jm>~w$a%m&>(ua}X&aiYOc4nZ=OP0=}zWv|y#(PpBKFTy=D)=c#y=kmBKnO^+~;cw>2%1;n4lMj_^y}l46 zFU0m_c?LG?l+7<=7&d}QSXH}zYQ`do?+Og{`A2oW!&@d*`i%Dpj5WUiUWYLqJxmJdbe=~ekuqIN-}dMXrS7*$M%=#UL+<#R21;0dkU-7MVP*LYsJ zM(aZv36hcQ&W>Mo3Ow~0xL2tse9Nb&lVq5$WvC?Xpv=!Y9{G=l zH#|(DraeB%H6~n*Fe<(}*6ZJcS8#&nrA!M|Vx|cbYO?-O#6BS7qX9c_RG9r&(tqr{ zbqL^!`GvcLpZ2fA+#DJksQDD*{*SzAnk)g%gVD?TLX+^%WunFkPI>v?#ngg)OrpZQ z6wrLDs+XI0UOO~!y+)%(d54&FJr*am{@Nx8Z`{*zpsTKB$<247zJzH0Urovw@AFJ{5XD(DF*ptsu<^dw}F z3c7x+Q58@4CAT`ED&AniqmjP0-r$JceOkof|8SuL48YZ`W;B{*gZS$^(9UFlHtSA^ zV+)|#4Ne3pZ}I9;PUY-5#*X!;Pw7tUj~Cy(wLae&quaf%haO#WYrQvFLbo$39pANA zK{NS=6!Zo_&sEWoD2qbM#Fbv6$@$3R+wTn331&Kc-p%C8VKwdKMYTc${p z;@m?U*^hup*i*AmX?5&+%IgKC<9kH>C5VB;CWY^cq)fpKAU4020LI;|+f$(>nT?sh z0+V>la)(b_2$q-tpVB5KIWRXbxKAiA0WYXsMNzcb{)|_+gXy9_kFPA{7?DB|)sQmouW9PoY{d8%Ldk}|k@ z{IUJX06Bq2!gP-y_e>QAXJ#0Ju%4S+*^wSEW;);SgW5E}hxSrQ@+ZHr_&I=SlBq~f zb;4fxEwSmX*)}|;K)2uN2?IYwIsAGY3eW8(3Y8TixR!|F0&aqifmBi$9=Jtk1KvAl z#&=CrgE;ln6p<7|*N@Nx8Jd;vie;h*9lH z?g@;EH4{`EyvOMy{LK8xPcmhVuSUk{~cL1urMem@ktG#zZap+z#hMC;0Q7~dL&WP24CG) z4L<-!fNqb7h=%@1m=g?Um#&)*pX|PaIiGibmzLVvs(D(kGI&Hsh0mr(1k2khz1=61 zfG3x&=Mt((s)}AD_DRXfvjcqpR++uJ8}6eW35f$(+9QB+IjI#yiP>srwVjNNNTaC| zvG0MfxCqEh^7X1gljGrhgPm39Zal4AD>&O^&L+SH$PAunZ1tZGdAN3K_z4Z2C1)D! zbmRo#-tsFYq5P?}RBW2mP;7afK%cfB>f2v(*b3L7-k2~Y^SdwtoqP>Cm7bfAt=Q_D zg%K=*+Ksor59%jW9D%XTg_V8L(BH3LEe=_Jwx-dsWs`6p>RMd_RDLN3Avcwe;zc_K zxN}tKQE*xy5GxVd{f(du;1mnIZ~+x8#C^+F*?uGQ0}YXZa)QF3sY97q?6H6S2teyv zmx*UjOuU54xq{BnN|88GaA3s}xLj7%$hrwfI3dn)y(uSq&`Ze?97+T|zsH%e8&p4( z_V5E8w*@FP3yF)+e7lkF$pAg4^i}3*(|29;@E!fwRRYb78o_c5dime`XXQViyJGcVS~R$QF#EaLepXvRmNT zr+(aapqXY`zXQDl>CP__2s4Qdc72Ep81aMBq5}#!8SCv!&VD>JUYkd?fn{38H@|E+ zX6-KD74{yCBXv5%q$~5gyPU4zko8{$woaY}i_lz)k{oyO<8F9IK;0W!0YPu6?fACh zo4;jS@(uFm!Y*Sa%r4{N_IlkCHF#W2fKx-wmeS{dOOt=+?B zf`bF-a@jiBU+!odE9#uSSIRaQrLB0qSfEJc_Hhk!^PKR@B2;*Vl_#n>`b}>f@ZeEL zZ2DF7{dsi=0aVVadjO_Rx4)fdl}RbsWCG4Pne@U?sPuKRihtjGC#LY`{Dl=(s-|_* zlIItjsNd~Oio zcYpmZvAQ%U&(L2o_u?)0N@8Qq=X_cp`~73W&|&n*rTLrSVmPi3fcd0iXxlBz~J^o<$H4SK6JLPgc*MQ%VE|vppUA_=P^BMSd=VhgA`*><~08svk;EnQ#fU zK#QWPaO2E&%YLyCf6WlP9Ps29!IBiX^6GeXz6VjNTa=_#fR+0(5gnEg7X4Ye3vcGf z(LBi$$+TS{`7yn8r^@a|BhvUGM8cA_iGy9$9U~WLQ@6azrt8yw3Cj~9$ul#nx(EcS zAucn+;${uOZqTHqle&;NgXH`t4AtEtGr``-)W$-4eZay1UhL=X)+f>h6I;LlX|_ z7o*Z2%8j6~^@$MrwU8?v@zoK5^~*#18O=K*CfHby6lyBT55npByJYIy7btM3*h&#$ zuhfivj>YpjDkI}&Zlz)LsdPy+e&2t}S-byV(A)=dj#n5}@a;JQF<%j3fipNNARonq zn!`d6%#2bx2Y7`FIa zM~#*WwPV;VG*%EutF0B$AJ?);eNtY&g;^9DLk{TY%y~ZlA_5mXJOf*1{q2c8=wI6W zgyZ)WUk0s{OyuJB_|N3iNNLrK%2yKAt&dk?j4LFYBQUU!5-Wx4*E$zxY8hqA^EjG!+(A~Pbj%gYNmLL}Pw~N`xqSq|mZ@yAt-*m(7k_q+FV5ugT zitY6pAjNRnlRT8D!!W%Fg{iFjB?Lhb=b1+$LFBl-{QKw62?fnxD%{zSUiWY5uj*)d z2Y=YZR~1nrP}fT*^k?=`V4O=UhN@VHk^Nwhw>GD)O{;`g9t*BwSlhI2?DHijOa5$~ zM5~x7$E6DD*D`cV%Uuj}+Yx@H!KpCw{Fyyla2pjpw7_)#T#*djk7NQ%E&ai)l%7pN z(&w6<^ErRBQJ3F2l9*VU&c=nmzUfh71k+x>{{0clf)0z6pVd1pE1?-#%s7V1H0;m& z{R&Ul^C=x;53rqRKm0Q!lp&TMEi3AC$!nP^9dEN^>jF z>0~6_&*r@cDa|=ayx2r+G?<)&^A{*s@1o<7`WL_W62MKQi;AucG)%h@q{;q7CcBXjr5A zl55zsiFW5RCgh3CN*G*`iLPW>5o)5daW?3%R^~b>kX2)8K1cqq_H{G7;;qwh1xOGD}CTo#jnZp`GPL zsLfE7T`DBgXDZ*W6?4Fi4qu32{33MJEOYmkSrKjjcgN{|3x8FqfzIBv->rUvXNh9& ztVh1rL9%ITEO?6j)u27x;J*6E>zQKQOFm&4oYqOFhvnVVEj6ED@u z<1`R(%4!kl%Zm zeW*!6FRFXXNR*7+rir3o@3xk55a;JYQdF?GUh}0z%bYNm+2M{-Jv^bvTE;L7mPEL= z+$Ov^f4QeRE9<4YeC{R~U6-m$aRJZ$p6ml{advBy{FB8w<{(a?j&;JlnL)`-{AAjY z#YxGduJBxEsmhvrcBgH7f6+<(?b$tJ*VqtI2JQMV(mDbATbrAD=Vh&8ZsBm(lQ{u9 zhA%lnyG8Q~LkJ$$(XaI{3*nUOA-=79Tcz03c+1-gRoE%{;%4MOI!2K^!!?sTOQXt8 zT`U({oR!A=vC4CveqhRYU>mW&xhpr^*Pt-GFa9< zl$5p)=@raT+J!uB7VFsDRM*`GH}<{vs1ni&7`NhnGptYXL_AHjHQ}eNQ^qY!biG{i z7)G*Y$AkX@`8hiI*6@n2jmU$#R>4fYh0II>UE_R3xo_%Qw4aQHpS>$fZqGJq5uc-8 zNu8F6x0WhZb{3p5I(byJ%>NE9cg&n((wT6Xsu%HtkPC9vpg%?oWYVgIKk1RS1n*U{ zvWUtV-qq*Q0dU1-$TGePxD z@}8opOp9y{@{N@OGwVGGYoPP*fnYt@W`$dI`z5n31#c5GbU_lkV!zR`skJ=jTpbqz zZSi+Wv(q_oVZZqgylZayYNtA?;`qxJX3U4DE@w+KSOz>fznd)hVU$*C%`t7J_KInF zn#fajBSn4stCB*4?`O+f)RGUJG!6Kwi;nv8^s;Dm!fhy zQBkF##sk_~4~yF71|edEQVZ4F16x?bkgHCy`Eo~-C^nr1i!#?r{DmH>0Ea8S;?}%X z+!x8NN|HQD%Y^e08s=JwRIgmmO#WY{V?~5&R7HYF+|V$EBMlG!>3=ay3|`PP3mkrx z>-FM)v5Ti{4rf%gJK^p@v;&#Jzt|2J?&2>=MNd$WelHaS?;nU0LmZ^hDvS0$t{TUJ zGQt=JZhUeaZz>k@lhFr>FEhC^8JxFgBIIOgv-^JSObLOxFNRl&WIwIIYIzDG%41i4 zui}U17WSZ26k(I7E~GPlT2S`r-n!IlzJwUeqoaWH0=vEKAOmiU%bg`r3VW(!_wTro|HM^Wdz^C?uxOh3;+ zTzC^pU+F!(8R~9xK)@3aTm_@I@ zk>X;Ym+MC_#{6*@CMT8+B=@sDf_JVY`+csc!|9iSP2=ZK-Y~LTVQ&E^X&j7bhkyv%lla*hFObspVx67 zmkYJ{J6CW#S0~}y=GA$E@Ww(6?sr_C0Q(>T>N^|K9spcqemfw*z^v&v-(o`%$QS2I|{>W~{s!eWyma?MY-b%jBo$ex-1~ z>pCr{Z-Rg%8W@VLONL}?(EPyhspbMqXO)D3fwuu(9GlU8AQwKf`gE3gu5itBgp~|; z950Ii9P1Kn(rWOW`MsJxWLV%BuReFQ+&TYMD{s$=t(qw`@eJ?v&Ks~H^u>I<)OGf+ zgH!zMANZY02A<{2W-d?eQUzYddjl5G6vP*ECY&3UrT3tjFEjy)`<+hGesdn|KRujL z(0`k}6pUuyD_2!BW-IqePbH2>Ds<~!8+-9Ju3ahhHNC!E6gveXhg6HC_sBDrh64~( zEHj49rqCKdIE=`^ewY0XgJD(6Eq02bKl!RZHVuOuLCMG+eASw6M8-lI65^;xF9V+M zg-7|OI7b7I-sZs0 zQfoPcjk06QW4bspaNeHZ)HCz6-o^B_jA8g{$NtMa6S1)GX`lzN<<37>;amsVf(vCQ zXbA2s_+FY4svE2g6R5)Fn@axg=H2we+iZPyaP_lTKZV);z1-ai6BjjihcXwn z`aq_>-G{ryhXz0@FYbf4ghS1^o(o*Bhpq(Si5LO=Un&gy09X2~e2}>30q$9_dN?$w z1JHHj{JX`$5)ix|fK!;zdZ=gqJ>o-3USthTPk9*y>{3r`!U#ym#(Z#mN+qm zIkJO_CTMqc@G7UOmjs@c-dOQ%nK3Fjev2~q=0B_=?=5pp+B6LGzWbPhBEdLYaMJbq z93SBnEHD~>T)&b2TD6KWVR&VN!TO}Ct@dqP<%kY< z15k>&+64*jB9vqt3OyEh%bP&5gq8PZh0_m-1aEms9!F?5P+-m&!XaBsuv7dj;C{I2 z?P80~w#Ap6r@*gl`cD80*QN4K!4Eea+NlDnNfrCx;w*U6F2fBf#C0<}MQMUqc?Tf# zL+3vEOhyF+3I{+rQS+9WQJ_80GxAbSnZycN{DjtROzQw#t-`q{K;~Ny-%$tOpom^o z`YTnJWY2)#s;MJ9ry0)M^}_z-A$%TyX$7{UvwT_t3^M&L?hr_UoP2N2c;B>Xx-Q-S zV#yY0zXp}Q)FbcXZqj)``fQm2R+R7z^bP9a9r=Ohoqaxg6+f{w60sA*;KZ`q_DFX* zM7mrWY$OKm3SV2(R&W=>j)Y^oN3E+d;&V_>GVDJWKEwg`rWr|ft}R;#Yj@i z9vUF-4sz)7?-pJ4LwJ@@3=Ua{Xfjq{#W60D1kgns3`pkPnf>Pi;2#n|g~Lm5A@9%# zxYw#!4M!pGLfv=3UbL;!`V|cArmyCwaSi>ccs-C}rJJB`S71NL2vs(Jt<9UK7J`Uq zF$M77DlGgt4;=$>s3Ot?9hWMRCdU&9zA=%Ji%Bl$1XBf8`Jjrj;?_c}2_ zqoM(2VSsc4M`E=k_icmVghA)rm-zniuutt$19+R6!5{raYAP^h-l(YG_l(0gqbOhpER*vr|IY^?5h z^$q?Gg#XSIr)-sRQV?ZmV?EbstI!|t=?Hp(y{h;GkFO9~>_&}ec?;zwt2>fe(xM3) zpp{idz9e{bguy{a^!mO6af9_h7D5;$F$ZR#YDoKxbJHxgR8i6QF~@ogfr8b)m@`C* z#cxy}o+*iRU}gxii%YynyTi2#n1HJ8AgSD7;r8^|^Xg-|gFALcK*-x5eiFvObF>A6 zDA-^!WI`~D;)=P6ya^q;1uQUqA-pbc;1iQT#f+$J0RFx+wr@@v%!HGAeMj<{d+ZFo z+i1!N7*k+~V8ZRwuoi@8$$N}|73Yk?%!et1I0!lQZ;3f=_`JQGk@UBg7N!G<2G9 zN<%w`>ZGa12+@9 zyCp=-XvaG9ey9eL@3IWm1Vb)>(+}YOT+z_KgkHRFQz`f6;VlK5zzCro+S6^YqKx-T zs1W|vfUF%{)G{GzUaCFGnuC9YnRmC!z(@x~I}?rSvyk zk4l#XuA{D!CoE<&$*x~Dh#b~HQc@++e-y3;d(R`hgTAeAm+icsM>AuAlf$zdZ-reY z98UUdKST~X$rb4Lij&=Z3iX_U3^pddU!A~aT<<07tK5e4JckQuHCw8A;N-c{x6-Ht zDTV-i)M3PKlt_$AE-U%8N123KN*59%#k#c=j)nvpnu`sesg3{!{&sds6pC!>gd0pR z7soCUPuNIh*S_O@wH$80$48(^F_qA596W5*N*8rq+R%2W`Y744a&@nNSNgDX`hEw-Cjbpcc5(Vd{e!na1XF8t>H>jQHm$>fj9 zx#47?a@aA_lHdB$0GJcLC83s+>%hQFZi$@kBs3UeHHJXgUP30MqtY7LaLZ)LV2I0Z za>ID8egR(OXxA1?2AUpxM2_3|jw#=S-Aj}|r@8=5BsvE1vVSKB&i_1om6RvoV(N;h)8)v|G)%EQHO*i`Xs zYL3zg%$A(KaN%R`2cbt!v_T$irFnCR-VReOgDr#t2Q&gKE21{o_=wb>@rK`_zp8T6 z3%1}Td_=cTe?JCA+(I)Ikj^3We#S$YN`m<*7;6vvM2aq)dYELIkUl3Z;)65sYR}E) z5%vu88S__c5cHzZBiI`l^E^&%#p#0mVuXntAqrTzXOhzC?Bksn(Th|;PjuF9){ZsX1^lVk zijFX1`lomo16n%_O9#RFy%Cmk2Dwxea#w#y5EU}+bS`MzoF@og9d*`kbNec2btzM< za|(oD9D^=`hkKl0==i%jcm2}JzQ@Um=Iz0wN5kX`iVcC>I0Eb8f|Ij9n%8$iN})xd zRM&47o$H6Ri^CKoseGa1zG&s%8Gf_98nw+o_rzZ_;)L}{$f5t$f(Mr}sz?PB3N9+6 zdKJT*!4ER2CG?9u;~@6GWz|3V?Hzvy(}~T>A8F@Z6OSeA)|N|l6cgY~38Eu?68oxx z9E<=N8ApX#so_n1RZ2jnD@GnXDJD9BUlYKL+SwXfwy9c(&0%g9suK?DfK_ z8RoG7@KarygI|9fHS#{7{d=$;BvnF>0fQMU%j%fwdz*IoWaxsM0#-q7`8E(0R2|kIF0acTFASO-N?^IYz z;!o!%PKwX~#4;tv?#3@1XfhtaAQ4upt2q}Vd0}uleKe%{bRG;IHYlDfjlGzgINrlO z?~UjX3;(&SK;L$W=hbu}lT!xu4}oS`n8kD`63AsNbFJ8)~ zG866fHZ3n`M|+(h{}#%|(>c@iMO`8S>F~;T<8Sx2MtQipBp|fb<%l&MVB=O4AED}6%@$-rW-*@}cV{8{Q_}^Kx@I@YK~!#2`8nw` zz9r)4z&!d_x#drtlFASJ&A72rC%L9lW}L#Q)n*0Kt<$(1TrWuQKk=y4Xq{#awFt@} zJIbkqfBdC_4_zYxdZ^#{cklY!zp)MgprEj*P##I*E2$mJEfof&G zoL+kM=Z@kq{rfgDiXdE%KSJIKbMoen>yFsUC`c3*12Z-;ys@l9RP7X-`63Rsj(NT} z?X&_AjU8*86D9v?v@jAfepZ&Iy7w@}qlCi5Aa1oVQ6DADtPTb}Ug~@=5=uD?wa93_ zix@fxQgkyywZt4O08u`Kw^9@Fb@`>>YF};?QYj$`1npJt(6KiP8A}%utQu25V#g{d zN0-;hj#4}G8BXplh3mQ7yLvfuGQ2V^0sDA2mA@in%r7|*NWOB&Rhy9EU}7sM{*{!F zN9#LQ%8|Gn8=A|@vfNnM3wW#6gJAP=u8oK)7ttVyyIQusTv(n$kKQ$S+F3(t2OoQ! zW#!k;BxgbFbd@prOpD=9Ik;z`Exg>Y1Itf|ESa7m&Z;dunKw_vpYiLF2_OZ?m_qu7 z-%Vwmbe{c^MsulzM5WhWGpy z*S6Ndw_w*D-OPFe1d`Ki5fTaexa|5FgEk5)tL7jk#2Yq84GI6bU2-piLIv(yPd&5o z_9SOZ<+-1lR7jz)$5HKR-hYBNZorIupeBH zdVEc=?F+NgB_AoFkskDUMpHEKHtp56l2xy+>C{i3?XIF2xfAx-@-;&Y#Pj^ocHU^F zYaOY~tb@XxM+-;ic=9aW+Gh3z{RFWC0j((vV`+3R$}PPD26H?&V!iPZID?x;Z!4^Y zY|*$U3#lrr0#1m{XZD8N*am(E;=b%aQ8D*ZK<#F zXZ8Px$T4Q5Tz9~9d@1dKSWJ|$>s#BqGfe!Sq@@qDs=JRw6 zJdq5VsdNL4inf1vdmR4tf3$JL$gtIIfR8ntw41`etvQ+A`JPv8k#1q0MyH$J`kjV- zDA%M0e=WC#C)-YC(Yc#td%DqiU0d{gai&+xd?fn~ZL!Js#qEo}@o&d3`i;eHT0hu`zbr=_Y7aRn#U z@g-$)4V4Z$Tin;s?^Sbx#$_X&0tfqsp3l$unM3iA$G^OePcG50XEi+!Ieyms(j;-( zR@3iX%ewb-bv`x|>dQ5)mhxCx!e@=$*8R!sDF^02o@_BsvdOM8gZ)>=@WEe~UVpmW zDphU8@m2v;UjzL_5uS%u6 zm8P=uRcm7>q-n`7#BJ~QL0#{BR8s<>PnKYvoWlKfxOg=e%g)b@HjR-zf zcElWYEn~m#{Oi14RnMwkA9C$Bq}#qB`G8}=*Awwt-BZ{0q}VeqTJvswq`$3i`t7=Y zbK`TfmwKf0#B=v85^8;ybtarJ^EGne;1uVNd> zE;6fq=!;{WDOzt}+fQsaxrScxe^41jpZP5Dz>e#L@httV>YYyWGaBUJ&PUU+JGMW| zTun#UM~*2#EwgB3#O+9RSftbaSLaEMlX)WDTBvKwOg!e;%$8~~BN%pnHHIK%8P{R| zoM1pwpbOYr*7j=BF^|xUqf5-+*yZ-AEKZDXAPSCh``2XCR{Q}WjMSWh@rZNmdB|s} z3cU!NF0ubzQJUFMqIU)bQr={<|Ff9Opu?x@Axk~q|NXF>Wkx&{i_Su=J&S*bVu^TQ z+^zz3C>Hy7{!Sry^~Xioe*)HIZ(Vf2cflRCS|X1(O4WW!ErY`vpILr>y?cE$DR`s=?9 zsrUJ(1wV~-8*fT|wy!^XtQYOOjvMd1&hw7N>-gaDu_D>ai&#(k3`(kbMYW)9eA7@) zLSbGipuWAi!|>erT&M1?kt5}8@%4(ze4Wp}o^Z>svqj5MOTlW%VB@Qql!9j8uP>RZ zlsyq~N3qEdi$@;9#xyKM-F9?@!RoS0fHgOClNb*;>dt^gj{9(5=SG&dgD|j}K9Y-a zMH0|7YcV(jcG!Br4Nh`a56gY1l*gfslX+4#jr1(Qe;&c5Xb zkSo?N`rQq3&b?d?gUEjIy#|!;JRmr?>iM#reM_E@oxJ3ByoC>&0O^XQBz6AfOqud~ z_mi5R=NWHXD((Sj#Xa!=MrFEo&#qa(XiVzvO#2di-Km*ZfRTDVQEWK!0F)K|yrhaT zREG4XNtLM503sB&?jsTg^t{cj0$As=I z0vSumEtt8yy!-6a3|Y)o#J>%xbyB~1{d@zk&AnIMna8S=D@}h(wP2bV!9-aAu^r$5 zi!YxFbtVdd<$5-1(KM1XD~q0+)ZQ1_Tm4_D@aG7X$oOrd*1ymU<#4Ez!x$e8+F=d zdg}FH4mr!8bo@R6yTbNK%C5h-u~9Whfi&k=)3I`D66R>LT*lZwifgEAAKsJTM=l@U z#tl@d!d7G@erV&LPyOu3C9#>@k0(P8tu^csK7YW zx7YA9D~v5F$u<;@bgzK-tgiyoB>58@3CPwMoG1T~IU_veYc2X9EqnvHK$4|@ze z|L}d|SV)wYxsm_@c^GBX*0{boXE45}d@S@O04b;sWx{jB7{NAiZKKhS7>cvdB8 z(>~@Y&QwACO|iA_XaW9J6Dt=~ZaG*C4$5f>>SAo$7@kS3V33o%XzW7%cF-EEnH2O^ zB&Xv+Bg?KM8Du@8A@?SEIMXxQ0O9Iy*ZrCC6KR@NJhXk&7XSfzL!;KIosv%-g;nQxCbX&u0NMkg~$S1^9D3-!9atr3~y z@#AgCixKOio<4oLNgm%|{q)h$Q0wg;4(Oz9lEzXB*u`CDChLAVDQG23isn{{ZoS4k z!kUk7(p|cchWUqQDDQUjlW%fjb!Mv8|NJd^Y2tom5iZV6HxC~oI@%LD>X$War2jLU z1oGobj|pPeWvkvXL3T)4s-ZAgZ7Jj81m9nJa77s7UhnSIN=TM))ocz2s}DhD<&U$#1a9B|SuI1z zA=7Q**-3>i*t-01XK$Pj7T5m9l#I+XJ4AGbTfRxn9CN|q-R90_?*-4zhFtlu^vE&3 ziRB>U`#_UZOK0F?8E4sImhcWPPyGP~f>fCBwm@xj zD}0zoHVD=@&Pjr72Ga%X_jQD~RE%MPDDhtL3k>>sJgQ5*?wyT+?VkW+{@WPw0PY}x z@9yOF8iBpJtrA)oDR+a6%Gq@+HGSE{BLWuIB&+OSKV&$g&o6*`L*y-bqM&iX>Wd%4 z~AK&;Y~WU2(a{rU67Gfk!5Q4i-Y)Kn&UiBjBnlIHzB_ zFynfwmDRkViB~xZFT)%E%@lX9ZSDlVqMsYsO?A5cdIhlZva*0B#sC(VQt!(H9P8DF z{w$YaAc(DXf|`bW_h{)$zTKhxWF2H%%OU$PoPAO-bmQ*Td zl>FB;LgQA+i_UKLp$RLCpGo#4gRq_F+5v?+3sr$TjH&OQM*f_~?6GWfwvbjF@ z1t;4P=2O*GF;Fc?xaj0v`(7oqO40Os40mF6bAZ?h5EZk&pboFbzMe==k#Tt`ekiPA zVsF4w)_UC7fYtOcmvQHkRy6oG3qHcOeW>R#dWKaK+;&U7DSSy@_@`Vf3ryrUFAE1| za!|PGOhJ7nbCJ>U6Gmq<#Pl}54(AH}P~VL_vqH)-$#I5gl8t4-IWwXtGfOzesI3*` zdj;*QdYyvZ+tQAgs)G_NN;IDN@Vd)s)Z(0>pT?iLmvkXXveaOxK9_HB@rj|U@pG0T zJ?xGz#^jDT`;Ul-aHKf?>#ruP83i^KiILpP!8fSBG2kA!d3irDIQUHOEnYnUTt+z_ zOK`8Pb5~;>|Auw907o7UO#})#sy{;Sh&k2OXV2GNww+=f-ZSmZjc^d5`C_4euCP8c zO?-gSpPB9(O;)7$yI^b~p50@xaG^?|mDFCJJAa<{CzX}Yr_s$L2mcsGHgkPpY%@Fz zDDyg8Efwn*JbR7ph1P2p%Ww`Z5A1f7}8bKd!@|@ z!LxMs_llhJEE#sZNdAN_7($1&1>9$R%n_7f%_vz3an?NF(I#0VvwYcO^a#7~;`xpX z=pbDKT2fFRv5SWsO#k{?r?(a6)j*eDpC#!%BSjRX9(evlvc4pT8*BG^GpkNeps1LU zhyxCtjth7vN%dPF5>%4R!-*fE*iA|w@NoTwjV@S634 z33+06ca6A#xhSxvDH4%efNC#sZ;k?Adb6D0*rSs1TEjQXwGH!v7u>!T?x2~Cfv5J4hK!t&pSuz++ z@3@uXrw}At9_;Z--VKbtBSU?oMP}i#N4;P7;8z>dv^x+&CxF?^JeGS?4*hfDK5ws2 z_}-0)=(~zCn9+ zbU5Uk`2J~Io}A3fV~5wXvsLf+aFLvIQAqi^6Yp+?!<)#NGlIIj6lF1x&oPl##!8i;yZC{`Q8s>T;6bQG_yq;6)$B%dhcTV*Y5 z=W@}#m5q(cvdy;}k$($=Fi+xOEDqnfyZ~I%6D>0p;iy-6e*D=YXTj`ogbANW6n?EF z?tw$e9;^!#mcE^Oe-Og(k7+ACQ7&f+{*kqxdKQkNEc)h8Y^T4^6awiZq)#;=-URE` z-@c^q?GCl#Zr#3qu~FHw97Z_@?}WUDB8I9E3x8i^sR@?dKwW(6zj+yNuLdkq(Krhj z_V^*MQrOp-T*=wdBCpzzJXW-p0*GnQh|uS9y0pTAML#{=2qvSd57g&BET@83JK%Lo zmoJtIa-=5BV%0jzs-td01ci#*0wL{4pZMG&P7hnj2*-J0>dftS59vA^CvEnfD-Z(? zMP?yFYPIBFvhPW9+cj5dIY2{kX_pDYORb(U4{u?hSk5ndEkBiF882rR;YBs|m`6hG zltL_nZJm>hcRu5r6KtYjRMUDXcyRm1DDdc|_*-MEvylTWuC};QKOUBeu1|v-0{wxT z@VT>qtNLXJ5k8&)vBANo?>aIS%Mc+|!b>*~K21-G5n>7025ajPYNCL;2w^x(<|qM8 zamW*y&7S9lKV8@PMcFA2?yq2dD^Ox88eRU71(hTsQjb_6mwzV9BOhF#mOgU3nS1HI1i_B!$OoZTf;b#x~j#jGIA#&bw$g(b$D>sDUsEpTtbjtDmluilj z+$GcB6GbCnBH!4xSK4l67t@fyw)7Hq(cLMK;=2*^Y-IJmvZ%N}R-V*$Wude{+^E@j zCzrud08_)8_vpz)De>S8u${Bp%lsJb^;89IJb|4vv#upOG_&m!_{cA^8_BF%Tz8Q8Cj`6;LmZ>|-x_2O zP_mhhWn-%Jy^`AQljs*DIhoK+WrA2hQKJa6oAFC^RlHO1kRC5}w9f=D*>MI$8xyyO ziw8F&FcXAyh6=NDz@qK-8pAN7{Wgt=wn5&Y|1`^F-O|JlGLl-5eVX#=T-!NXQ2&!+ zIywDZd3@_I*OGOdWiNsu$UY+CmvmNys*wtVe2J@6>`%Yq?^}CfnNvNyjG0!niUlDKMdUX5k}LmehaG zDj5}d`Cn6_9xrtrVzJ7gL1q76c0&;u@ni9e1MkHD71vQiWQanr-;-6a|5rG_gg%iq zxJ>;?@?QpoNDnd~WCq1O<^RBFNhAe-LuOyTs)HX?#{YHMd%|ScG_FZGp(@j9J&IEz z3;)KxU;QC~!S=BUA3A?xVek+VDf#}NK7BL_qQpm^74_`*Mf*;qkD%L-j@Y5}YkxHf zzvSZDZ+N?r|JLq5LFv4&IGD2s)>iN1l|=dV`76JY?o>c`S83IXH>NBr{{2F!YIsYG zcV8-@ky3&bxcvjnRgZDt!P$H000YRa4~RISw)k_F!vFqUFd?}B|C?_*^cWq_=_z;r zThwJFpCk5AsgN73Bx}I>oY(x{pLrk|yeuNd@q#%26;Ch}=rB6uK1N)_J@4RKfYm<9 z$+?8u_J8~-J5GW0>qF^StEPR%?DXBfoK#1S*NEq7_v8$M&1ggjWoHq3L5;3PE>HOW zH`S>JxzRNLJ$7Pkz5Q(?UE@A|{YlHe+Pe2M>bMoC39fhD1(U?3Rhe`Uk9!0OY%kNm znW>qVe?Es|dxB2;de{O0y&ZmUxXkpI^A`*q&DEPYH=x;di^~nics&u%g6}pmPoncv zv~5IdEaHs>|j@a-9L1Cotf#=pX-d{Z0`u~ zZ>P1K;_&astNW)5u({YAQx#}4XO^~nOmT*N=2Zny2$Il5`2(9!YhTh%`kAfz;=`Wh z_wNr&z1cmOdWrbS`GMhbVwu%V)khJEQpLLFy4wS^=hzgZe!d|fW@D|kP!n@&8g_O| zioKT=A>$|XyTQ^p+6(zsBqfmit}Pvf55!EDV6DXuT2Q2h@7xLdF#uzzX}b>2z;XwJfwq{l8aPSd5akrhMpkY zw%f1uepJlBIdyXcb!L9lr(6@gAdy&tH)P=}j~)pSx;%=V5YayYV&z?jj|wDCa6WwN zX^U(y>hxs66aFN|60yJ*xOKo6AT178N6SL3SD&HB!{HD}cJ(8+bpaHTL3Kp(>q> za;<7uX=XZ+7%N)Ie~l%R>NvXoCv7V+s;RsWb9*eE-4*hi*7xk=UqF=1OPmg@0;IMS z(*G-gKaD51u@OHFfG{t(l5ZmZu`2gi> zF6Ak8tNQS5dMF4$RqKFFc_v7%GuWa6+7nH=2@qLnV-6#U;SU0wBzYNyqd;Q4eX;28 zU-w6mvH>1Q70d7BQbmST12Z^tWI6AW@jP#GNoYY&8~j{5xtT1bScrEDD91nZ;I&a? zpUK4vlo(F3?WWhk0r>`85MfMnCzB1x{;`nU9X+E8{TVrrPR%rA_% zO8Sv9bLqOB??p48;7(t)?Vw-%l(MaZUv_w9pbH?nn+P9O7as%`$$_iS-=eMgH^P zdw2p`s*=LhLy04Lrdb!Hq4cugEg388FR+j5vpAUNM`fvae8CE&j`?Cx{5_*p7E=z| zXSu5J#3pAhe5k(P!(oFnGR4g67Ze1Sm(y#qR#>|M2z}0hu@l_l|w=h9syO{)W6BDkf(X!jm-e z{$+VkTsI;w@83V_20lEdBv_G&A7sTWN=aOpBFPG(Ch7qHZA`Il*gJ;5F_{mx4;3mx zVS~KiD#(U^qgOtzSHed;1O|o%xEY%4)exh1dJk^!#{ert>UUEX2cUz`&n|!V8Aq<; zjf=N>A7A$(1QCL40p1R7fSry-M`L3fej1EC*-j`%4%Oti7$iq9xhr6`S#2kP&{-jix*TJUb8lJGguqFuWNVZ$bK2 z;aW^O=g4yoH-SO~9O~hPjS;8tjyDxNKim%;ZeeL(Qk=#@9j`#>NGRJoXRQi1;U|5; zJ;LXpxCu{!Ruv4nJwhv?mA*c&06|_OJe*8KDV}GH5n*sb%v+Nuyusba_W=-Y#w<9X zMElFh+eM8>3BGrfZ)mp+X?5<7P^7aY#sMXfA7Hck;H%(phl*~JiCFj^GFjXvjGxs0 zpA5I^%kZ5cwa>2L3nokMfpTWbZELuFgKpcy$5Dll4A-@z@28Q%(^27#7u}j-*!8OM zI&Uh>tmv3AlRx~0H&K|HeyLK~@F(DQd=7<2AO)T|(<{o$5phqp5Fg#Yec%1)V5%bT zrKTzj+G*LAJs4uK(xoX0$w5mOPiIO<5B(Wr>^|>C*p9;KsFItx2&Yqzd9U$3hVih8 zyzzVZPr zIPAFN4fx7WEda-+I(K4^?>62rIvWb>Nq;4$|n^;Q(X<2eu448COZtN&s6F%gq zvLXAvxO=l|8fWa8JCIJf%4wF^3l~5NewKosio@PRkCACUH_(^pk?gfc zB5;xsMxb~n52y1ko6^yRq#Q{|Q!6)|Q5MsMl=H}u*wQ01M>79fgPmB`uD13(|3wVz z4fkrTA(1PU09&CT!)q3g?0#pwsr=ATS&n50gD{J#Mm~$(HA-hPV)mAt`OC;XfQyN0 z#6UFEy5z&IVFZv+x;YCT9@VW*KOAMcLJz@9EwbrN$?+f9v!3linrll05v*8IHSfDa zP=XXf#&M7pEYkSgl$|oaKN8j}AY#3V`LUmajOz^7rd#=ASSZOX{o%e@%zsH})yVS- zA{6MUkpAT_TyXH>*ksZ3l3Ke3)P2N%%0>g_b=yd}GchaL=}+HqJOvq^)(^IR1W(KQ z1Nh$4$&xJ#DZXdrSPn(?)kYA9PzF)$Rv3=jIP9E#tBo;8C>EYz42ly(_hlQRJx@Rj zM!d(I7*krpsD*Ov(B%w|2=_&hjNWJ1C_=Y6Hy`JroPCx^ma6{jw}IOiYscm%>m@?7 z!{%mJUaEy!`V77~BdvcG{K2dpv=|vSNbBWMLE^$^u2O%``x1dr<)dTgx$u-+Bgjwp zuR+_cDiqm??g`eo5`tP>X!wOMTx?QqWiD5$29EPIDU_J|pqA$jqR1DPx*=EExC3ay z?0tjYoeL@#UyH*(>L?Im+=>P`g9JN+rwe8N-9l|o+tbcI`D>5$aeXy9=e7^ppLv*h z*?9em@4@;Iv5R1>fSEz#9%$r&P7D%{4g^Q_1neOcv{|(N#&rOW#XPYw8|bPM=+oCS z6j+&>zk}ljpOW|dq9HwaEoe+HZ1ngmZ;^wf3F+mx+?_4z6q4X=q$W z&4-{IN%dpCav5Y4q4eszBHRkox?QZ`BUN7!mknpG+ooD{r-Ux{qQRc0te$ z0Rt;2hp;D_+yB|fI!SjxErRK{8N?fnBdF$3113|_E%T^`s| z@LWgr@Dne({<->uh6tKD_zEEb#3AK@T(`?YVW|_je+5me4nIYeJphA9Y4_Hp0RF{c?1X<{t%A8{)xmT@3rTx*Oh)WNK$`8wkE$XKB?q;?RC{B zrnff4K@SzgAEtw(FOt^s3=$SrBGkX>Qa+N!l9T`Q81z zUr@AV4IYEh<*d{5=)Af5Z4d6~whltm206-=`@@I(A#5s<;kjAx>{-2D(%*@0js3f^ z6?77NXACVrFzx9g&HXk|G$84!(uh>(MI?`@too@EVAy9G3d^B^;G&I`-~Pf>`^92o zXj;9+eqe;tSfTMAWWF}A`uz4ad@0DnE+gHQ$fIDH&O1yOCda42e*EEU>Y-@mqYl4tFO3u3^w3r_xSpM=Z$llo`aDFUm1P1_PC~v4#^1b* z^A6d`BXPdklbpWz8d@mP_?TP2`xh=v4;$wI?O~)6f>=31etwRfV`?Dd;T{@+!PDnY z94)F?MdJc7W7_D+_gBkP4GlQ#O!TST;FZe#_k#8cjpQ#-?w)QFIv5b|;W`&*N;+4& zl`95==2pL2d4=AT#uG9NCm6k^Su)-wkD*-$x-=Qf{#XcC({Hd61(VQ^)Wk8cdF3eB zHl0W7Myb_eLB&J%HzK>bSjW>eeyRmJx-G{)j9VhT$ox#W$xMaxTKOXRPGD+i=&x1j zK^>G30d?t%IiA2NGlSuehBavnSmRL9!$iH?b|rcIZgdlzNaddF*xu2NX<^ka`g!k? z-aT>5X$wGHwWY4ij;M)I3UkNO^6=;mv9$}O^VyiTEq=&&V^W(v^ds<7i|@ho=AI)x z%gZ!ESa>D!J67odawIe436Vp(AVE*h0_+9KCwK%(t*I;nY!J2uIvn#q`WsjR-LscR z^0;tEUISn$rfz22*_lSGxW?pozDG-dTTA5@R2719{VAz{JxT;Cksf;=TJoV=QS;so zKg>?|kfsD%u^Zo^7_;1ZIY{*9n1vXJaueJBkEp|N8w3N?%7H$qI=-S0-MSJvv;hMnGfE#dpKrU#dFX~I-zZGH7;l`7Hn z{7O*hqnkk8aAI^un-<60Y+haxqz(jkyVqqtyzl1P>fe1sTb46S<-ZFDs}HWXFvIsX zp;N(((tT8N!Gwc?6lLed?`dO2MHru!FNtghSfhenihy7p!gG7VyO&W70(7vBE-UEZP4ra3%-HdG%sH9RoIVoHC&U@4@*0;spGiyl{ zGoAgxN1aBG?tsuw2=P4uqOTTLswZ zuR&IN>~cGWFz$b&YL3oYS3P*6KnI@6o{H(;sQZn4u#y<-lst{Ccph{7QF>9NH&zq2 z;H=@Bv|jf+X(?Q&o$?0u>lDpA;fFy`FmHTHTl2}N{{-c#buldO=IP(bSSPM*bzkK| z4z~c}tB;D*4dp#DFXz8AaN4064Ht%xjNV=(9x_~MbDxirj=a>cLbu45xF&aDlM5ya z!6K3wA&m2oLHQcT+VwFTMU|WxJ&O3V6Hl-JvrIjdt}>u-f$SA&V6|iZJ5HM|3-ik~ ztqmK-tX7jikCUI8-q3vBasGk#bh&N(Q5@!)4L;jn-s@-Vu-|D@?QgeKx{jo3uZ>@w z4Dy~3CA1P*>1CdU#-06K96FMV*37)GQoNS_#vK|y6Rb}Vk}|WB=G{m5T|Tm}&lqS# zW?m%*;V~SSk;*`1U`_=2U!J}Wgf_Jz$$qHX+(QcEVPJSUChyhwn`7emITEDWKu2&0 zg9Ax&c7=g0c0gq^Pi&>e3z~mSq@6F67us5Iy7uZ@oJ2$4dSum2DkL4vPkmVU{MmYM zVVpW+OXXSLNb&D6iDJH1vFA#YeK*J)FPkeWZ(SQEMxx&^%&GF|`0KiUeo`vYrLB}l z6ha}PAB50{@`|j`JLy>#G6S2s8z^_M{739PLOR-ej?sbYYrve6^ZhYbW|m)AU&9K; zqjRgmf5Xh2HE5!!d(kVK0@BalKk-Wb`(GK5YGMK!4qrD1pJVqgc@}kNA!G#p`IaSnx-ydl#1NOHXdfG;s_g}!wg~z%+9rGFN z-j$kpuDscZAXtkJQd{_jM{HU|^tR`HpTPgQXr}O~ZVE4qVZyT+P1tN~d{&p?S6bvZ zmY-=@F(gR-*5I8UnYY@F!JBEz({O|TGlvL^$Ci+B*dSBk1@&e<4~3)0f_<1fHxVk| z#EAZv`@RprYdey=II7`UVB%0;`623NL|yNghW&WLccDY8sVu(G zJ8lulzY0lB)-L%)lBWGNx-vjM5?wTd^H-xeLZ5QmwVTDW>Q2umRoax)^Hn@evf7M( z=k*TGO$rw+5$CpjFr2u2FA_k2ly@b-(5J0yI5O&1up2RS9*Yp9@vs(Qr}xmDUgH(l z!+B>i|7T23@_J@SzZJ+%Qie!rH~LcwYgamJUpZ%&Nq0}Am1X%HZ{M7*_mgHP;zEoG zCfnYoUtHwUpW!>A6X-NRmujQB#^%*$kQhsOUXciqiQJ zQ#ssI0(1sSaFu14E)c;a+*kzZMz_l*07V!o^fZ@h|Ko8 z`BjdneIg$@>~aducSh#$<$EgO$rxwHfFI>GYL{-S0ce+U>1@%VYBO4^OoEgLjNdPQ zHrqDfnS`guMS%6~lX7WX=N^sUQQ33JZ%6W*s&50z{9)b{2Rch>;p6;(_=*f?hS=pglYER`UEqG&uOc}|s1s}ZD)|D0 z;YLk%uW*kGk&rqz;TnZGb>Qb682hHpnSBJPty6vwtSa?jQbg*L>ncjEH*XhY6lcMG zAtsfL;nDxO0H_mzgwc2d_-46C%fuoYzH@TV@nxYKdxJcw)D*ZOf}-@}iW@=fH@uR{ z!d_AxKM!)Td34+W_qd)#IBqfth6lraLG5rz&!?MfZtW@Rk_Wx0J)?rm`;nt@^TDnUK>5y(jP+Gb{Kw{G&ozf}N(o!Pb-6hg3 z-QC^r&3*1U_deghJe&2v+H20W))?dc4KId2C2{!h>K#B!&iE%_`jl*zuEnZ15Pgd> z4!UhbUXhjp#^tytn4rf{+Do5>)b_4*6;HMqWU#e-;=sZkZh`y^uMo3cWI8tCXoIZtV?FQjy++yJkZv|KnE34yLpv*Immm5oa(9u5NJ>;~x z_RsE)T<4DX5?g=8q+qCCBvIUL01Rp71s!YkEzoIYI*h_}+pwXoV+t~nwFrBFT{Jtk zLw|;{;sWraI%y1?P_l8ZB9UnOw)7kW$q1_Z#r7y|Wqhg1`{>B^LTLt#Q@P>4ulu;25MYneMBO7Cmo zE>Ns0R%2r?UFN>|$1clfWE2PBM-v zcZb3?PwvHdx9L9-?j(xEp1r+xb*WfEszhi#YJC#vi#Bxv1l^b59g)oE{-ozGuy~&2 zKr46z$A@K5UN>YYegH0@w-6#a*iBRxqfZEfs2&Wf(i=&X=Ui1J*h*nv-Z`>mDd37e z+{bns;Zy&WNgR1WeiXA>CRWDTZT^lDP+@a}9c3Rtn9+lCktLa7c)b;@O-=wER(hV_ zl%vM`6Lb4B*kV1z=L7*;VN0`BLY$%d?RD&uEu%@(9GCK~8lhJ^NkC$d-^FC123z=P z$#jIvmrutX)T)xYn$u7LyI3Qh9!nEI#yi!6JhZacjl6M!bNK}JFjn=A&XYK?a6Gjj zBv=_8fUZ&0v}wUdu)#Q4-QFZ}0+Pq>=xJwfK!nvb>x>}v?0ZbNo6=zP;1`3YAvE!= zVx+CW%(IS>Q`g#Hy+k00*8=%BG5qX%nBYnP?ms!!lau^QY(sB`5_dO;nIa8{g)!xtYL^v>~2f#uh}u&q?`QIuJMuoGGTyT zYzAn&^7~Oix^fi%erq8Fi|Oglj3r(se6ZK);v2$yOe51*h6vAq0GY;b|#*~$$Y8Z z8p`RAK0plU_7FGK@c!$l4M50gOV7(sMiXXf^@#ie{l|O&_1$GVD|lA)DckcOnG-b7 zTAP-hs2!Y?GVOyM;}C3fj?f0b$wF?5CaK+~i`~D83&4X()u2nOO-ft(ZnwWT+RF|S zY-t5Y`_1mTJ(s!#(ZY)6dx6;pvF@_-yR?xHVwW+^!BNtMUwn}IJZ8!6y!Ur-tG1*` zN4n7zWeG(Vy&yN&7J`a8jb@_XT3n~A59(jR-why`t4(LMqexhr+cxavy_MtXtuE+q z6-RVM;5h_1X6Y>!No3=T*)QE52fs_?^jRnfVA1*^pASI_QI=;y_GZ{klb&Q|IIcj2 zEG)zYLZl)9Lizhz=kT`Mm4JLB*lN4nB-jn*CqbK3IgL=@zfj|5z79`aE|zWNB>WS| zd85txN<{UI*clnpc&&kf3faqfCDtx(An1XgEJF-#h8w$z~0BUSEBn6_K55&Y5f6qZK<;dZ=5 z2PxY9BAL5k*ktYp3~i49e3Gwa8}#1C=V^2=T*Pd`J}Q>E0zSvg z?Mr1%N37=dgc}-hdT|+2`R_dCUxaVW#obyLOp!C&<~)4mU{rXsCjKT=f4i$)M9d1= zdbs5o#R-5p;B8v~cBoDn?T*uI$KVZ_4>VFta>h z(ZWxTe>Y*|xk%SsPeSW@Hlmg){~iHAkyRf526 z&@COH0~xGN6^&Wv`w%Hx^_2ZUo+m`|TzyFbjm?CF;)egT9K}&EDBL{_vxt{VIH;Xl zyb*ron3lKT;tYSaKlA?6Te|WZmxM2g(yV*nUlOP z@bxuwAlM>~T*=o63R%w#WxpWsB@f&(M9ROz)3o(gWbd?4_9yiGOrvx0JRdi7qPv~M ze=|T>^(?zp!78;lqqDAB1w^-wB-L+<7SplDmBsoyhH^ zGZ`yTDJ9Y*-YhX&{5+gR{>K4D8g`(`@STGCR8Nu`uZGb*u;Ml6niPIyb}CX+o|`c- zXDk`iT15<^i8XGiA>Ee7w)_e%)SzPqiIIN&Q0gJHhJnYs1KZ%AO^DWzzqSTnO~jE2 z_?-(+-CqZy3z+sZQU1U$En?huMtkzkPYc3di1P-I;5r%imkCmnJT;c|)A)lw^uHh# z#-{nM>3zKPro#Oe`yM;l^>NYtj%AMxH?aGCYEu5RW^8EJ>WhP;J|9x}4GKE+@@Cl= zTI&}A*IIS3d|*R{cgsOT{n8nHt{c5>aV`YG(KAN_y}1C&R)eiG-;q9?eJ>i=v{m# z`N}SqjFw1iV9bO;8tDb0X`=V2=wjm9Bx;iAk!0A-*)JqFBGSEN7u4ol6X|n{yC32G zQTL7=&wKV*79*}$lk7$c#-Ozs0q}oForS@;*wjI}Xw;x96Jv7!hc3RA0Wx)O1^MSy zNc&j{-T{bzXuTwVG8_+amnKq&thfoB?6P?E!@cc5^26kLTviTpd9EdGxU-O6^T?3t z@=BR(xs`!BZi}1IuSp2Z+okb%E8w2(7YoQv?_p02Hg+t2v3VbXhoS$4rd8C?6q4$p z?;`oTgSV-0c8rlJcd&6j)=mAHXYm@p_wGYKr$eEx%Y*ahuN_}Z^IiwP5~}3BBDTR& z@LXNHj2LrU*|upqdF!}iR}mK*e5z%9=;+(i3R%B@W1o83fe|2R7WsNA)4iARgM!&g z&smb{@sm#8waQDlks&r+Q0YY)IB2_iy|zw4y0$-P_ba+|$j)Ju?QO3Jn+?JIhdRTi zOY{6eyX<9w$#-14S{;qu_Q{U!#dn(vxQS>M9P83Bo_1>-t^A|m5W60y*669Cg3&)%a{d@;QA_Y*}>gP-bSHhz@)m~;Ji(p zDnFj&6F*8<=v!TfRLvf>-Q>o#A{dLuhu5S_UGH!Q^>z*L?a9zrAu?nXCvcNP%w;TV zfq@74mZBASXI}-h(8%mgO6gwS)z^9RzxZ-D%5>ZF#JABO>Z&^x*S-KvF*M!?4jp-u zUZorqcgXS+4-{AdN+aH4@Ar)+M9t;RPx2087y`I#)L&9bOt_ zDDiU(RWbSBD%nyEL}4Vl$vZ}&*OIEYz^RLpd@RAXh((M4-mMl?Kq#?c4x9F>-=H!b z&p==w4I-E-JwcGiRoZdR9tpT9`oA?$#_{u+EGF=W#{Zla>J}S(ahCES%9bd9Kt1c1 zKwInZ7_(rDKs!RqLUd$8H*y=ZNgi@iTST}WpAvqvrjF}236Z1xmtZfHvD_~f>^ZWn$5{C!W;-{&+R6NS-Qk7$(0zqW)Okvs8v7!~OcGL-Fn;Uj6rrp+sH-&(62Gj~?{%+wVwxa&y-lFSOkt z+KMF&j@^L=jKce7qdV$E*L|ztUKMs2!-qr`y#2y1z))SDV`@k2|dwNA1vU zW4|`RF-i4_&E6*}UUhm&xuJ%9Qa?6!5*MEJ35DBsbRJt^~YQ-7(@Wb-ed z5xECy1@2chqV=beqJx1FW0K6o8Zv0&9@q(VuU!^?Wy?tJu>$R<*0ljh4sqP$Wov zYprI+R`CqXTR*mhp`h4`lpO<~uVFM>8k$&}TUVdWc^5kmM)7wylg%imLA)>^^cw|| zIhRof!gQ;Tk90D4@DajEW$r3B?rng=bN|tnEyn4xAez!m8KE%O{&OKXw9t6zA+-1C zniT#VJ;eDEs{KOQt$^$LGK+XmwrZ4Q>-{1ao1gg~Wf>}g+yMyn^X~=o1B-Yry}Hmq zT4L-UTHOO135+GKBiF#det0tnZ&=TMsQCYfV2jE~q)-+qw3 zGQGL}fNH=zTE~+8w32)en#t^e+FRfOD#VHxfEd~c9S?NpX}mI zdA{2RVc7C|PPfx_hpJ3bLyQDN`DBNxr0h^qFw8&t5hSt`7NNxLu3j!h>_1>8xZ)Jb z6*xK6ttx9b>s3t2MZwrCLvOpk?Jvb#h1b9CH8C-QCyR9jr6h0pP~bVFs(|J@jsZfL z&|%HDhPk21(ASW+R;%N<`FP7iht3jQ1e=J2y36k8+eT=ZMOnz2NjJk_GiXHuF?3N_aCKUAQ5i>ZT6!n=x5Dj zLA6CVwQ&=YigA*5v1mF|H42 z)ALZ0zzz@)8=%ca*82?BAby*s0|GR9tt}7pK>M@(L;4KX8q%cO4%6ZYUWaQ z{jHZ!CsvjZv`7xT9XviAETH<9PR=7AXGziyB4F`@K971Xls?cPY7WS@mW3TX`{pch# zhf07$oe-`gp7E>LyCQ+)aPNZosYvu z9fJZ|WfpHHyr;DRCIL{56qF7C0AT|t7#MrU*0vrxZacCDBvYi2__7>Bpolvgy(4${ zO}zmzxYOo8I3NEJ3B)S8fd1mAI%g&2pJ(zu5lmml^+>VfAZI=M zlpk>3amV(M=d054p5ddajW!g@{h!tHh@Bm)-Nw0DJh%*&g>u2r<>vJV9q8qfHQGL z(XSGy62Pqm+kwn9(yWqaDGjiiYj)@1~2IdMvi}Vj_?vocd{d>Z(|~ z8+e*7hWi=3#g_f$m{t8S@?v~tc(U$D^xC;5~6rMsYBi_3-AsDA#6ehR2EFG!4C|39XiscQLS@!-(USTjs`@^ zLOdI}gdjW67ZyNz)Tij}Fa!Q_V_mLK10gqW*%yy%Noj_X2K0<+Lev2_U>m-tX-XRs zAMLeoyb+smZ*p9iT07c?;Ip5Mg9!&ox@erWEQ}|wS)yJYS^f@r#J&P^6Iu)`%s;^v z#j9IDjk2e&x8FMXn9br1HA(P{r!<~1wL|A!16F*OKG5)hIZ+vx1>2i{=9 zyQp!fA*Sa~j?@?!+|GC~rm=IWVs}GnOJn*TZ&Qk`S2y-;#S-;_Sv3r!&FkvBl8{E1L-kyS zI!J*zGGFvz$8=^RfyLH+Jf&k*LRvyfA7UOW&x0z3SFD9(&aUO8gw+#CJzGfQRIFlc zpjZ12;Vz*5vt#Q_>ho5x5h1UczC*$C+Ln|QTXLIDGrCztMX-pPd3~4uM~p&7S>*1^ zj4ikZjbI_+BlLK6xAmv7TMS&InTO!%K=kr-zY?dbr~ehcVL3Qfpj7&SLwrX#cDeT$ zNt}Tf9x(;a&4mH^?6OG0+mjb^#T+{w?$LT|J<>bNreDY-a?TKv2=OpC5U*vYHJmtx zQR;KL0UlgPCR{t69S=nSl5R+lZ*#3;gHT1nihZhrzu8DNfSTNPs$(1n^MhJ5N2~!b zkKo}05QHL?MZ{-P$>??_HT1|&nBU1IV=t^#dvr-~5o2@DMMfN$NuaDtl(k;nZ;6Ut zlFOYt4Q9!6;*d~I;}c#2uM78mgwz*Sf2nuj_?mZr_{ApCnndGcs@VnL>gmWhS83KI zXy@7GBY37^Ztd&sNylytE-Mnd<7wa^+~p)URR=?faD*e1?5}QUo3vRpTU?#I%MDo{n z8fDkme6O?5`<~6Dd(YlxVgFpBAbGh75KCBo*=*Mtoy=3{?%K4vtv#s;^&D%-2>c?+ z5LuxJRHYpRYLS$kTUc4+xZn-KU>!?-aW~DjC>kp40RF@rdKS$qiLs7mCx61?W$V&u z&2I^}bTZS4kG|>uoL6pkvAj)VuK20$4WqS-KsHaKItDpRSn73TzQK28FjlkAcsgo- zeaF2DIj?%PfEz-GzmgP7_pCYtmD&*2IKYOt|37h_f&?5Tq4@gW5fu) zRS{MMcIC&uaec>VOLoWmnhbj?Uwi&-Ll#X9?%OJX5##Jgo-o(DH$-fvJp_`^VB|68 z1?yaDfN&RdVJk|+_2$knAhs=MLJ~&F%Gv`vEPzwvMNp~{-wFhC!*h@DL((hsW26Tj zEH`#d**?2*?a*>et%#($nvb5H?3??;Cb}12U`AZhW5D2|WnSv`N2)|Pixhodz`J+Alq|3VrTl?bbCAB%_WW#4GoQ2ZjaKM4iw7=f-xor;kk$aw`1u26V>_$ED(rt`hG{Y zPtw7Rn_!=EXL0f~;^57JpS43YKu=-Q zb0bfb7xG0M1f!jlkH-$c z+V9mb{$h4%+oeKA{`qz!SOo76eJLBtV zJM#dYp+~Y6It)dbVc+U-<=qTVgrIVxl8$cCdcIqTzEM+01Thy4Wi2bLp+QVaOhplf z|3s7V#wth8LD@65=PP9c@W>1C`ou~6j-S}i@D#u;&^rRrr*U%^B2m`PW037zUrrj{ zqK$@$e)7wX<=H#ZhuXzsS$WF0=hJH_6jCOd6I6NAE{cAG3Wmyd?u#bQ9;lD57 z2Y%@42vTB!7w5*=8{>2hsvNRvmpD;9>+CDbYqBfMd7Xror!nx5W^#)WuHYH)ArHA5cXqW3cZ>YsY zQ;i`_7qxNOgO{E}S+;uaTYAyWVuM(IO1DY`3B(#B7B%Y1fr|bB$Q%nK-qf1UTNm0D6TR%sdkC z+Ak|h`1=rxp5|+2Hph3zLn+R3eYYpwqER;-*{|Mi;^d>kwkp3Npr%4q_n&U`RXET#-ZdnDC5r-?gC+ML`Rj(+mF95DC|uNR zX8!QL*MpJP^>ryc)&l9`aZm_XhHKzCIZNuCVX?=8|MHvu$9e=u9~GQK4MCw#;kbMQ zhmV*FImX|4`Q9Leyc-;59{B#6iJR9~mi`55izjj*I&?C@xFgS3oe~McIT`_jsfv3O zU+QT(AuIUfr53vu>+{)RU25OZj%J@%FDo-oDjS5yKN>}`COK)pJRB^v5k8zuyGZe2 zi6Dn{z1>?yQgM;XhN_*3yWHw$SfchB_w9ez&+?1O3f&5<*nEnQ7H3Op?(UMj(&h?l z0#|k?Ga`l|wQ2i`m!cUL8Ae%8x^X>_d#wy7$cJ<%qfZSD%LP_0gB|d1kH^7YB&(jB z6X+z~aF6v>|IDnR=0dW;!Te=L&22A(zPDFu7(2Kdh!ekP)4QpQ<>!p?L*o;J-Rfyw z(zLmowl=x}ULql1+gOshI=7z1?&l2>al7x|+#5IY;O3?3hwKD3@CyaAMtOHa6mC)- z4f&eZccwUW(+PM*5N*A#^)5K5D?|>Dc?N8OCzYwzA$kAI1?RgMm_F0NT^QKAraLTUZ`stE_83ano-~_@yOV5 zZ20up^!e@y4su&tJI3Nf+)Og_6^~VnlSC ziKl(YOImDn7tJV7-ReH)F64W6hVTj^ZD}S@9=K?WsN$LvzFh>YKrE{K@S%Gf{bESOzM zBziBnpSHBhxeTHw(yzU3_~hkA&X{pMdK!_C?p*h|mp|VjdCDiUAxM93`;_h^mbm97 ziu0I+hzAlg@*5{`L{$~7?V zZ#dH|F=n&58p`6pPiHr`>fHFDP35s3+nlHqdIzETzZHZ)J%P~RUCN4%f3!R;XvpVJYFco9&YnpqIRD{qoUxrMhzVbaFq=Coyswsge0-?3{tCnVAA=b=@j#KgA2d3Qz8wr$Jgh9q z`u63(WtF!1Qv}D4Jwr2(xU5%qh(H?b}6z#*ivQ$^MWM|M=eCV(R(Sv@6t0 z)Np}u!DYDMf1(lGNyj(1Eu4Bah+%E{MlQVkfxNF~2 z!G)&ehZ+iKT|~sQE?my8&f1!tmC{yB=9-<3WHAFDxknd7A`{Xt&^25p)Rs7O_r1@0c~W?ea6ZGz zx19<+x1-ICe)BcNV4yIS{Eyko0|6Es8Eu9BA^A0hi?yjIp<2C+BKNnJJ~_A2VSs%0 zjn($_8#CcFH7u`=t`||k5KhGvA?4MX%t3*2mI>?i)UIp=+p7eUZq-OV43mJbPfpJz_zw}fh$Ypy>wOYJ#&8r+U0 z{u$4BJm&=AbbU{64jP@#R2vY@JDn``t}d#c(l!MhY|%|)xlrwL17Kj7**sU!`Xwn& zzv>HXwdk2iQ(2t#8$4EcZV4_if}ppx+d3_!mS^6sw`ABdmiO_O)9Kd7Y9SylM%(gz zBG$-aVqbsgX7g4CbJdNf%gCaxJol|9k+yL_kSYNqk_445AK?^lok1o&0Yu*Gg>FZq zSphS}yZ-6nXbEx^?Q?H@b2IFtZv%32r%Am+c_8Q~U>f@Jac#Z<&{$|50DR;Xq_p|7 zmTmKe`x=f57!gPWBDD*L8Sh`iFBL#cTga~sg@Qt~pi}b>AhebM43`!mAVsq=l{Pt4 z>mjucIAr)c62}~5joSL$&24A16>L+^q5^r*`Ud>B&kZzVMEjx86&6%w8#9~ALy%?Tzc)az_kU=D_XK^0Id;K@(XVjI6=A( z1)jp(k7)dJS1^@dh`X+hN9X3|V;N!UgD;1M0(A zKG)#pK^ee|i*>Lig7QK{tsG_k64*R`uefOpR(*iZfw2$#9C$VMH=YT7f7bh(z+WDm zO`$=(7C!?f?UAGSRzqf1*Njp{waoAZMibnW0-ffe-#OX!mgp1l>rGuv0DwUPotuR+ zPrs!_IKMg`-Yq?OcNIUDO?vErArjBHKtKD!##hMp&OV^9QQG~Ix>T(%yu9zMX-l{? zQFO~}lXOezC{}pSZ;M{!B-Fh3FUXn=)|I|DjN=Ch(N+GnLZ!otf>**Z`LewLF85-L z@+3sM%Na;5yBobsE6Rx0U1~;xWj!R2F0WOi)Sg2&i<7C^7UxXwPh7LNi&rg#7PnlE zn*()E>-3^CIvHxH;dQ-54@rJzLTkkKPxZrICA^P{Ub`wd8u%N2!NU7S_8CGiICf0a zS4l~_JTdr}X`_WWePx#Q3P0o6t3gnIK+D6f`p$~XgqaAqI@BYp6Kzg3tbg*>@V4Fz z!V@U6{G?m|kUeja`V12wml2+uPtixF+6#w_yF2#CMgfE53ETg%&i^SS9q{`H!;Bj)SG)vg-R&jjoF4DimZ>{4BV zq<_Ckh}E==$hOTmw<~l1VY@>)Q?3*QOyR*ihnt(Ma4+BLU8Rm;fSZcPS`7Hr~iwTwNy#mk2O zu=Vk%(qkEQrTc1xN?0|!Z=pz<^ctd$wPzeH%rkZ&OFrp9@fYk8KNN13z$}oofH8vb z#KmZ|x6^WZ<58%<$bm)mkY(0ek5Dk+c`^*_Dt?jh11UD|(Y8W^hh3P`hITjxLp?Q? zaD+ofMYs3Z6hEsPqdm`Ql@Xbg^yRK}mTuMOq1Q@iRVvJ6SM*lu_RQzTC`!N79D*S( zV7O%JIO||~F2hr9t0kZvNQ>SocWK3qWjySgVF`Jpm|^XM7`ZUhH>w=1mP6-KwAqc1 zYS`qX>RuAr25s!CimQ^>?bd*S9a`udx6*v%b<_qX5@vASnHl9GUv}J0+@qO_G}X`i?Hk`A1LG&yqjEbSYXry+2M{>X%ypg-WIgEDtl4pIRJHg&f&cB4B_N%kd`GndnPP z&ht!xMLc`Phz5C0*|?zdBvau9AveYHbyz--@aMAhl`>;SAe5wOHs{owW|j$ii*z7# z?1x2m4HW35&I{m64X;x?;$en`dgrgcP|@J%$M~JKSUchUs`$x zft|ZvRU)v|J+wQKL9H#m)aw9}%i6)2eaJT1N4`*qR;nt`bBPQEp6VwS_TXGicCi%} zRlJ`!n{QmaC~+7OM-IdiKm+|5qI-H1C6~m%R+U?>yV(*fi4*?F^s8jtPE>$WN~H?8 zsCh0v5XY2tPK)Cj;>#{7>v)!{{XEz5s{HArXime&FgHWWEX$o-*3=IR0_C;UKUV~Z z*W~Y^^Id@`cj1rS#OI!q zh5Gm&HUOgUFaxen_q+GF2arSQ*~YON;W~6@$P1eTjJ;r`;)*(w47c;tEg|~L;a|P< ztBo6z7Q=^>e*;STo9zKV<+=w(ZVAHX|3Y5g0dMzH~m2 z`Xok5eWw(k`u9sAT*W@fl89?O2`S@~T-{vVF0T!@u4%;ke$Xr2kfgj-QYXLj>G@E6 z{DI}DV*MeJIYVGar9JrIK?AW$)x~06Bic*IvEW(hU#>XAVORD}D!ufozSuwDX(C_W zr?Kj{mvoiy32ypvzzloQdui2|UiwG)Lm8F7zKjfBqOF@IXyvI!X6w35#*3Rslz#7z zIRY4xXvm~4crXYRTRQ zvk|%4pI+{K*X;kv3L*JCNfT9p7lY!ADRukpDkGABv27zpAtuvP^+>6JB6IoX3w|60 zmhVFo=J;D|I(y$POKkJBDinJK8&vL;-Dxb0sTbZ4dj^zfZK1T<*(!QmW<$)*83oKw z2K|Y<1h0C@U35{T=!y2y#j{K;N}J!}d{wyaU2Rw!68w?ATM~uqlO+F)9j%wf(3CIh z5^7C1o#(P)d@95SBm5Q*Rj%lyXC-$yCs+;&b+O@gh)J`t>E}7X5)Y2seUBy!1K&B% zkw!1F5^B^}NwmA@o(dBvy1^|uW;RD?MM^KfbXil|-O!n-B4e^x-~5TxnX(lsr)`u+ zds#6wI?ugeMt78c**#(+c=&;=O+8V!k7*VDOvA%ngcw8!`lSzIqY!F+kX{cTM zeo=<7=dGtXp^(3ti;k6E*Tr5w)KHb}`Ktb5=X3|lh}A^+M9F9Dl&6+~)gs2M0diSN z$~$>Au7E9&CqI{!Tt0IgL`jH{V`!gpOIt1f9dv}2lh_&IXRJ{Ruo zs(eyZ#F0nBF;5XNueJ$ z&3a2Z=uXzV^=nPR*;6Np5-q3I2W^$>7R6bSy@c}Vy7vq0NAe~ptx!jr^E*uWoO!uv-ZDI$?HMhSOfFW%3+jFy?^Ojf3+`TApcZ)HmvQnSBU zjEwl2Go0U*B`5q!Ze)WZ5v#?+;{tvw8uK}ZNa)$jR;pfl*$S?N@<{N$&SJh2zU=}r zQ@81)nnomRAu@}~4qkz>MJTd$2z%stcL?WbV*I2O=669Y@@tLaH|$+(zs5jZF-4^Gn|C0L4?*tlEv-r zg7rnmW~SYxuj&mpU1U?DG*0f{R85vzJkIPZ^L4V@keO*of%Z%eW3P8iihWjFW}BqGv~IIuJL)sIq?Z)E$hNpao6WC_tikN zY~5@v;Wv$nhP2#~1hKy#EDcd9?-ROt*+$;84-d5NrLNB&q^I=viWZT$8P; z9yv}TeeCX=?KFlWn{mI~MD15mJ1&asYQ>*2pIf#uP7-WV_~j%|E01(@n8RWOG>Ex# zJ8IW*#=43aKEeCfIKy6!?S0%!mtI1fwk@0M~-(W-j zd~;YdZ&y4e-X)j?5$5v>2~tSbHqd80-dD9SErQptwiDpkQ;Sv!N@g?2z!v4D-gAyH zXuQDwEhen=dO5A~k1MjsS@Q7tBFo@3waDGf@LPk8QgykbfIVeta(w3r>#uz8UM&dP z#rIt)2)HA5S_~BRhpJL5rnzH?$+WChvy`Hnc-K9vM_M(46V+0zp2$8@(~6F*>^Ta^ zQ>k*z{@OIqfE_1)&xyf9e5%*tj>7nZvoyHD6z>2eKq$jsYZb4#Dl8W2UGu-Ty1!w~ z9nbKO?Hx<&DK0s$b7|na({8rI(P;h*4-z!BYl}?J)o#KxUYt7f?X|iS(lk?S@2-5W zdt`h*wvmm99XkJ3{%{j`*%Kx$dB^8ACMRtF%ym-jkMXpJ)xKUXK4WoU4300B z2Chq%q@1o^JZjKgxJIC9dv*t>nLPi5QZghJ=F{L=-d~m4Qs4|=@)Zycj>en*zO`Fb zO~cia-Q76lX1g!P)RcMDB%gO;=1!+N8<>vJWV#&Qf4TMUEAqQ zDi;Y6kdyG|tj@ffsq&4#>TTHa6W1U@b^X=i;Fd4NqVKIwAcUj1!4f+ZX?gE2uzqtp z-Ab`jWJzG+zLBGqVQ&9;H54srbFucU*;{LTzTA9eqLmBoVhyEyQ!A5eZz_RjkjqT$ z*x@c=bN9{W2Pf}T(eYJW2){XQRZAu*Zdps~b1J&**W!EOdF4Ls#eG-@V(3@N?|__o zdgoZII`~S?+n%mPii+>z6YNjg{z%-~1TR(`-`eJ&c`N9I?w$m>&;xIxTFu8bu}q&9 zmyA)w@fRTo5wCZ+qv$qYL24;!)kX$YSmv;QH$SR*&|J;L9Vs3q#1CPF5a)~SDJJHV zk|CXGYkcI=ezckCYseVjX>?vGH&=u)B~rZgD#P5;!>@^=owl1^aEZSK%A{^sr%=3p z0ZfwF_SYT&q}?A@HOLR78W11T#6b|FbA_8k4B|0)!Wu;pb8FZMv6M`F{f_je8?y)o zh7{r58*$Y>ZjFTCTU4fT zO}4qxamQDt5(RoC5(l=vU({uoZ(p(;O(t8L=!(ehUAi#uJeVG-JTW-dq%1v{1d>Td zzz(9Ib?s#v{7!zX%Th2QUl73{q!*qon7&)ak;gn$ySW`dt8eve^=(viFAI2bUB11W z%rKZcdnLyt&X+HK^(DbgIxI2W!flXqp~^yth zvEHI0ukY>M>{2U7E*8iAV@0QMwEB{rDM4J_Xb(^8_!eT+xGc7MI+3;%`Ar#GS#0_; zdZH~~hw1Zb`p>g6>x>LdH<6{asDwMB9^V|{`-(1)O?7N z_OSfVd_ec3Lm}kwuU+}i{n$rg=D1tiR(!~3lV%%r_&*VT6$Sk&p{)y2yfj8``%+~x z=HxPa!}j0f1htufLRs3|gzv8CPr{Ec#|HrySE;mrcbv=b|)bD&D3QQdp0 z3Fe&kgJUJ;pp$8_L-ckwQEb*)-Zk%i4}{btR%fPnhlRL4r9CDlub&^1FwI zCJm(-1@h+mW|APApi>if{kzJ@t9lK^TC8fx1-AJd8tk>780UYSNY3Qj9y!z2XKV$n z-~GNlogGZIcRR?tIK11%&A8DE)L+^f89pTXp;WsF%oKFVs|B7_?>aUZjOvt!u-ojg zr{yWi#D^U=S_8I{xs0r5Kd`iB*uDC4Vs?kG2Y6>+-+i05d7N1d+JW%e&PRWv-zC-N z)w)W(O>sLMSBU&w)%3$`;&smTW~y>cV($YsOZPA%dLr9iA0%#=W6N0~en?(Be{tnD z=g+>Per0mZshPWe<3__(a=M0vgs5WQ`ASLUB(J8>^`_Oyf`8h{C#TIpNYC(R@>jgQ zLe*ky!gGC)d``CjqAj9L*{K;HHR+xkhFYv#MJb|Ms`KHJbt?KsNk&}yM*Rz%4|Eq! zXvV~6nx}HL_SKIFr6ki45GR|;Pp`0(N}6nij9)6Db{w{TJH+t=1J7+AyX=}Fe#)njyTXWOO z=B6lKpM;bMNR4oM`BiO-v(s9y%93irQR!U4PIr)gs3d^a%QGC8zVYLQZjGS1zG`1`G{J#R&Hr+6dp8!Io6r* z79Pz=WAyhp==ipDV?;h_qc`8hYSN3m3-5X{E}UI{TTSZ|l`Ar}#mr$_5>BbznUwO2 zT<&X+Zl0+w0}i_dOD0emno}K4`!>RuN*DmlV{`cj>H9{IJM7OFxhSXrk@7@*4c+qI zfjE4JQ=K9J>oC57J`Todfqc8W|F{Gcl+q6**qc+Jx>g8ni(~ChRw}^>qJHsbLpndp zcxv*ztju76YCZk$nTjWLz&QpobgM4F4s38lyA4=LJyJFdfm=JA*Z_pNY%RzhxJu505oCPz>v#VYt~PU@Rkj|b$Db^o zD|(;CIsmRoqUik!)`lOJr{O^R<2^31qmPzzc81$i+L0&yrq{C;f){fdnNBv}pmfnKcvwMjG$#-M}(2LPQ;Kw~A7lQwWed9z~< z**6FO#{aAB%KxG20zUH)8Zns?9=q&f6tb_`HHfnBG$RyA_9aUxL@9=3U$RGbW69ni zls#mdL9%BV4DXru)ARlZ@BDl|_kPZub7#)^uE%`nIUD7(EAuf|Z0+NiL5{a;pG2@R z@?&%8e&f$h7Ba1%qYZtOpp_J@4JF31UeP+cJoiAPt!jqvM&BH*A``3~&n5gICPNk? za82t^^L|q~`52FXrgH2cWDzaZ1cM_*z;?0tF&`7IpV@41j?g_Yf#{Xo6>B)O0nt`c_5lh_5AMgzUd=X8LuM)Bg$;$t(0rc;p6;Mqd9MP`vEiqkt3v!@C=Pr$jRU;A)|;Nj&7HS+!lghu$6MQW(%)Q0b==p%nk6J#@PPJ-u|GiBtk$r%GEA#6sFY- z%>oo!6hy|GPB=W{P{+7REXaVoh3!0v;6gHDMa`@NNTGnL+vW0$f{SE9_clP$i_<{- zJ6>+UAL;)YYHI{uhg68Z`g(OBR%Ucc4wV64A+u8*M{iPmbcChX$--q9LSG6VbP+~} zi20o6sfT@L%fC=|Q)VJJh;S`qh3dP_>Q`xT{xcJ9Q2~Zw5 z0MS|r*_cGF>0n|q?u5fANkcN$lu1yr?~2g$YtELTCw-{ThrL15OC>orOAM5la$t5g zW@$epQ%LIcqq@au<7F%ibFRj{3l<5NBAAr7U&Tibw!;>Ukv;V=#x;~F6?z<^wgrUj z#RWmpP8SEiQcJx_KBBi7q#+cR*r&FUl{FuE`8Ea*0}tA{Y?CbRrc8`FIdgU!e!b`s zx~#!<_UZ9EyHf#{#p}&maj=?_$_vgC{$KRf6GFFQ?8L~RKrh+uadObDqSf;APyY3{ z(~o~#5mOI80$TQSE(Y>EN9p_6f;2Az>*tSjem)!_2XjgeIT9za#)k?&iC-W7DlB-a z9qy=xNPF~67r)+k#-<={Eirfeo#n&;LXFJq^|dB z?e#w$Bf>|T>io~`VR?UH??1z%!oBgiTG91{8#N#7g8`-*`IJOfP*;)L=%krl2`)r( zDJMRMi-eXtO8XQDL3G1+`xlxb+ym9HmQV5k;>><1fZH?S zF%S(r()nV=p#?!KXjM;XG^as;?T?y*7)>A0=bOce09?ADYZt`FFgQdNI%1}p4r@m4 zSZOxY?*rAlFsA9xGsQ)o&u}s#sk79U*bK6_k_r@w!b3}7Sm|#Ww_5vQ!d(%|LkRgn zUgtTeWQ_Og;KKo~ViX2D1!NrWsWVPZcHW8#@dVk^E=vgJpe~65B(UfKD?P9%^k-@> zR>&0n?m5{RBzJw{=?wkUW0QCN(9?7#Dr^rcvX>S(_v=_BR^#64dQKK01WPonm>}$R zT)Q9v?3Osldh&cuCT$r%r52vM!6rm;eaf?) zTfQv_SP;Zmggufn-t{iJ8U|XzMk0;4);8>X2Ic^Ha}Uiy#xz0wm+>1(e@hk>h(HN- zJN3@|r54#L|8<6O0t9&%mz|mS{ni?_xwEzOGKyznN0smBjzY70_d`G@KU)Q{NP1l1+T*=xag zQ9D+Hoi`>(VPGCJD`|3f;?=PTj12SfD5o>2dPzs!X2m^Di^B?j_A6%D@ON?E~CYw60QZ*9l?N*!7tvQc# z4-G4ig*f*v(5cCaFg{CeImYuW->)Yop+zMV?n_)!>3sG*CQLv#2Dt5IaL1%By%^m6 ztp`|Ji{PN~c1{_Ltt4X9pEW;*%*_G;LR{TM@bqIGUX{%^qoC`?|x@(~}Z69McI;1MSeQEyF9w+FFj@}R+&|j)c$E$rig@&*V|ssz15c;mgxf-?WS9HU zlX#|^Nn43qiao&sIr(&>l=P|<^O5k?GqunCK=@PFC(V8E^LRD#U6hE<(l@_;H(NNA z2-F+&E%K$hnKmi1!Yr=F!e}B9*d2EGK`bbPG zRiLw@t4W1&?b=jG_gdD3_mc`1k8~&ZD}723mW(C=X09{6ahO!a$;~<=WLn>QK(f-R ztxGbiCd;r~*uNy2&if)s>I8N+@nht0PF%|=smr{Z!OnAfB5+=<$0rq19@Ep>bURZ* zPAKpKES*1@W$MVx?93LLuch84NVnKsVTZxD^xlByP$JWH88z9Cg8W;& zOK2E!Hr^KW*Yv_O4m$h@;jy{b8rks9o#b?2n{96X+<$f2X0Twyah6 zu#y{bPfw8AB;CmGB&RpF-flYfvtlt~_D=hhaEbLYGL-4gXj%PbSnH&z7MSXo{Mbrm zFMa-}yRR!mx)nZew}$!pO)z8`nN-z>`Eyc*>oj;3{Q!SBcg_{ZB6RK!;FxH?0H?jc zL5}#s#X4nSu{RWyjJcTcrNttbA^6l3hKjHEm9hQ%mD*-;|5JXx_^T6!*o3)OZxD?P zPuic^$!LFGa^r@tPJstywPI|(^o5fSky_PJrBNEglJJfyp zxm)H-z2>L4{r=Mh7?toO>@0fjMozFg4mH*!U2xJTeABMfxD1z<)DTK^s3}>oQfh zW+69(mbm%jaOraX4jrTAx|)*mg>we8-Q)fK&w{W7`(}kI$CK4$lVLwLQJk)!o8GB? z=7aE)EPge?>Br$-6L4m2#PcOOzS&_n{gn@V@gmpnK+`;Vqmjkw?CY*>mPGH>la_#y z2j>**<`T|32+p?n)jWD}A+|3gmzuxBa@6<5GgS&VyV-RuCvT_?wMPMaH269S->5`1 zN8WeaAu6XhiO*wyB?X46_AXJyM|}=Zji$0zhR&B<8+hUSFx!YUr>E&obI-li_eYQ7 zn!F5^fw`aHOAKAy*A>GfT}bL;TLq1}eh2o}f{$ujb}x20Um1$q@|~f$@72eP?mR@d zAvW1oXpoUfVOr@MMf7ob{nBeJ%2BXUOj3l@0NA6qGtIuZ0WXsucd84m+hc6XAMO^J zYZeePclkB&IDoa=FQP1xnGGIUQUxtWIC+5n*MWS)>8g^(nT87LHp`CjriRZ=>qc~H z=$94we$lkLeWNG5W@SW|;z$?G*-e>Esn&25@W7#&7#NED_%)g!`iGnMQckJ}OO|-! zHten_VSxpxT-^~hG`%?ZU?&?-$6(ZL1OLeCt@a+yGI&jT+&~gl^B!O)#UfWiPxnK$ zZMyX8m@3~;VPD&4)62g9H8G=XX=~c#sy!yzmVDK%g|o(bwZvQP-;Xk=KN>a+LMft$ zdQWr)o;=PgX5(;D|8k`yJ6PK#Ne=mVR!0Bi5NdNuka`n3 zy;pvA)3!pD`1z({*{#eWr2FG*Ll(@;F(`X00}y(`1C6HLOoLUi?jto*oTHNh`AsDA z*AJMx0x=e?A5r|{wB5tUa+CcY9%|;EQrmGdGasz?c6!5~WM34Bq|C}9vGsKpUW>J8 z3fI)&E(6wJNg8yS(vvzwxV)|tuPXY0Q0w#0M(%BP^AD>m1a#z(gJ}te9jn*nnJhMD ztk1Kj)()5~pBFTl5v6CV5@`6+t<-w(c`YT9-mO8E>lS$>pz4CO`<)UBiGXztuPJ=; zq&vHi_@FD6b*n6G|2I}<`{`JV!=R64ceLOK_|6FDbqQ$vNSkAJ7^`4xtQ84U<-1`` zcQL7`UIiQ}Uv|_dZHg))r$?#Nz6UzSP7-XLCrnf=@D~DuJ5}D|^`a;>DdL?9&xfNm z2W4sVIFeXHba*^}ah?-m+PmxE+P_`n-yP3?@5cf-qeG8J@T^M1{o4`M(jFu|v(d?2 znCx+wr?8){@cy&T(K6&}wN=Wnh_D?j*bBysZ#D zr^M00N<)<>_d6<@IITj~{YB?OjnNicuxXFC}6zC2|Cbh|Yvvlv2uQ86O|T zhBG^2U@)$wmJ?AAO3NU2vTz74^Bh}+P<{1~W<%ZmgzK(PW#DwvA%)t3^V_zh$+3K5 zX8Am=pTBpk+}#zN{-xYr6ho@rw-KkHUl&ng^HWRKiR+xqB;v^Rw`!!W#NeSjdv>9J zE|vZnV>vv^AbvWOXSa%`qcXb${m0m_rESw@Iqi1{O_N8(Y$FMVfYp2akA&H)ww90nUM(6E} z3Ic`&XOz^P~@T7*;$I|J1+JEtd$G{7KZuNt7+$T zejj?R#t)!YHFN|D)2a-(3OQX4zjyTC?5R2Iy-P}&Su4ga=q8W-^mOVyY~1Y^4h>Zi zJhBL_l=$^^DON+2C*ztD@2a74pbuoA54GZTkSjiPvgNb-dL!f@|5(F2OC^}M%IH)F zpXV}IWAa&fP3EG5b@*VTd?XSg$$jy)&F9fzs&x>7TM>Gb~X#nGdS)6=+9QS2|Z*NCb#=iut z-xIbFgf-m2DN0{meyxf+!HRsp*()D_ck7Dny}CB}7tj3;r3?xZvB~+qK8%j8Q7+A~ zGv8fWG2D3VSyy$kJ$<~^{8yySe1)oOk8>_NO7~xn|CHS7WF6^z06AlJ&F@jpEIX=`|7 zYaKF9zHKs?!$FM=z3TSg{V=o!)xTMjxt-4iB%??t4j@+knOT|hB>$K}84%97_XJ6N<^^>-fse?yK{?yD_d Ui}odWP=JrFCh|s^x_$Wn0CtM*6951J literal 0 HcmV?d00001 From 2decea268305399dc474fcad15417c4ce1178af6 Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Mon, 15 Jul 2019 15:54:14 +0200 Subject: [PATCH 032/134] WS9 for publishing early --- Module-09-interactive.ipynb | 650 +----------------------------------- 1 file changed, 9 insertions(+), 641 deletions(-) diff --git a/Module-09-interactive.ipynb b/Module-09-interactive.ipynb index e9c3aba..a9a3340 100644 --- a/Module-09-interactive.ipynb +++ b/Module-09-interactive.ipynb @@ -1,15 +1,5 @@ { "cells": [ - { - "cell_type": "markdown", - "metadata": { - "toc": true - }, - "source": [ - "

    Table of Contents

    \n", - "
    " - ] - }, { "cell_type": "markdown", "metadata": {}, @@ -17,63 +7,6 @@ "\n" ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## TODO\n", - "\n", - "Essential: https://www.datacamp.com/community/tutorials/pandas-split-apply-combine-groupby\t\n", - "\n", - "df.plot(x='col_name_1', y='col_name_2', style='o')\t\"Jupyter notebook introduction;\n", - "\n", - "qq-plot in Pandas\n", - "\n", - "* Random walk\n", - "* Average of the dice thrown tends to be normally\n", - "* Raspberry PI question\n", - "* summary: min, max, mean, nanmean, nan-versions\n", - "* percentiles\n", - "* regression\n", - "* DOE model analysis?\n", - "\n", - "https://towardsdatascience.com/simple-and-multiple-linear-regression-in-python-c928425168f9\n", - "\n", - "\n", - "bacteria multiplication problem\n", - "\n", - "\n", - "https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.probplot.html\n", - "\n", - "\n", - "https://nbviewer.jupyter.org/github/engineersCode/EngComp2_takeoff/blob/master/notebooks_en/2_Seeing_Stats.ipynb\"\n", - "\n", - "https://www.youtube.com/playlist?list=PL-osiE80TeTvipOqomVEeZ1HRrcEvtZB_\t\n", - "\n", - "Distributions: random numbers from normal \n", - "distribution\n", - "\n", - "Box plots and bar plots\tDistributions: t-distribution\n", - "\n", - "Histograms\n", - "\n", - "Distributions: sampling from a list\n", - "\n", - "Scatter plots\n", - "\n", - "* highlight a point in the plot\"\tPlotting values from a distribution\n", - "\n", - "Time-series: plot some of the integrated curves in pybasi03\thttps://www.coursera.org/learn/python-data-analysis/lecture/KjG8R/distributions\n", - "\n", - "Labelling plots: titles, axes; legend\thttps://www.coursera.org/learn/python-data-analysis/lecture/xhEIo/hypothesis-testing-in-python\n", - "\n", - "Time-series: monod kinetics\tRegression: https://jakevdp.github.io/PythonDataScienceHandbook/05.06-linear-regression.html\n", - "\n", - "PCA: https://jakevdp.github.io/PythonDataScienceHandbook/05.09-principal-component-analysis.html\n", - "\n", - "\n" - ] - }, { "cell_type": "markdown", "metadata": {}, @@ -113,21 +46,18 @@ "\n", "### Summarizing data visually and numerically (statistics)\n", "\n", + "Across two modules - this module 9 and module 10 - we will cover these topics\"\n", + "\n", "1. Box plots\n", - "2. Time-series, or a sequence plot\n", - "3. Bar plots (bar charts) \n", - "4. Histograms\n", - "5. Scatter plot\n", - "6. Data tables\n", + "2. Bar plots (bar charts) \n", + "3. Histograms\n", + "4. Data tables\n", + "5. Time-series, or sequence plots\n", + "6. Scatter plots\n", "\n", "In between, throughout the notes, we will also introduce statistical and data science concepts. This way you will learn how to interpret the plots and also communicate your results with the correct language." ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [] - }, { "cell_type": "markdown", "metadata": {}, @@ -176,561 +106,6 @@ "What has been your approach so far?" ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Box plots: using the Ammonia case study\n", - "\n", - "We will implement the 6-step workflow suggested above.\n", - "\n", - "Our end (1) **objective** is to describe what time-based trends we see in the ammonia concentration of a wastewater stream. We have a single measurement, taken every six hours. We will first see how we can summarize the data.\n", - "\n", - "The next step is to (2) **get** the data. We have a data file from this website where there is 1 column of numbers and several rows of ammonia measurements.\n", - "\n", - "Step 3 and 4 of exploring the data are often iterative and can happen interchangeably. We will (3) **explore** the data and see if our knowledge that ammonia concentrations should be in the range of 15 to 50 mmol/L is true. We might have to sometimes (4) **clean** up the data if there are problems.\n", - "\n", - "We will also summarize the data by doing various calculations, also called (5) **manipulations**, and we will (6) **communicate** what we see with plots.\n", - "\n", - "### Exploring the data (step 3)\n", - "\n", - "Let's get started. Either download the file to your computer, or read the file directly from the website." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Loading the data from a local file\n", - "import os\n", - "import pandas as pd\n", - "\n", - "# If the file is on your computer:\n", - "directory = r'C:\\location\\of\\file'\n", - "data_file = 'ammonia.csv' \n", - "full_filename = os.path.join(directory, data_file)\n", - "ammonia = pd.read_csv(full_filename)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Read the CSV file directly from a web server:\n", - "import pandas as pd\n", - "ammonia = pd.read_csv('http://openmv.net/file/ammonia.csv')\n", - "\n", - "# If you are on a work computer behind a proxy server, you\n", - "# have to take a few more steps. Add these 6 lines of code.\n", - "import io\n", - "import requests\n", - "proxyDict = {\"http\" : \"http://replace.with.proxy.address:port\"}\n", - "url = \"http://openmv.net/file/ammonia.csv\"\n", - "s = requests.get(url, proxies=proxyDict).content\n", - "web_dataset = io.StringIO(s.decode('utf-8'))\n", - "\n", - "# Convert the file fetched from the web to a Pandas dataframe\n", - "ammonia = pd.read_csv(web_dataset)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Show only the first few lines of the data table (by default it will show 5 lines)\n", - "print(ammonia.head())\n", - "\n", - "# And the last 10:\n", - "print(ammonia.tail(n=10))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Further exploration\n", - "\n", - "We have opened the data we check with the ``.head(...)`` command if our data are within the expected range. At least the first few values. Similar for the ``.tail(...)`` values.\n", - "\n", - "Those two commands are always good to check first.\n", - "\n", - "Now we are ready to move on, to explore further with the ``.describe(...)`` command." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Run this single line of code, and answer the questions below\n", - "ammonia.describe()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "##### Check your knowledge\n", - "\n", - "1. There are \\_\\_\\_\\_\\_\\_ rows of data. Measured at 6 hours apart, this represents \\_\\_\\_\\_\\_\\_ days of sensor readings.\n", - "2. We expected ammonia concentrations to typically be in the range of 15 to 50 mmol/L. Is that the case from the description?\n", - "3. What is the average ammonia concentration?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Theory: the median, or the 50th percentile\n", - "\n", - "There are 1440 rows, or data points. If we sort these from low to high we will find the minimum as the first entry, and the maximum in the last position of the vector.\n", - "\n", - "What value will we find halfway? It is called the **median**, the middle value, the one that separates your data set in half. If there are an even number of data values, you take the average between the two middle values\n", - "\n", - "Try find the median value manually:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Sort according to the values. In Pandas we have to be \n", - "# explicit what to sort by (it could have been the index!)\n", - "ammonia_sorted = ammonia.sort_values(by='Ammonia')\n", - "\n", - "# Verify that sorting happened\n", - "print(ammonia_sorted.head())\n", - "print(ammonia_sorted.tail())\n", - "\n", - "# Notice the indexes are maintained. So you can see, for example, sample 811 and 812 (0-based) \n", - "# were the lowest recorded ammonia values.\n", - "\n", - "# Find the middle two values: 719 and 720, and calculate the average:\n", - "ammonia_sorted[719:721] # gets entry 719 and 720, which are the middle two values of the 1440 numbers" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "So there is the median: 36.18 mmol/L. And compared to the average, the mean of 36.094, they agree closely.\n", - "\n", - "```python\n", - "# There is a quicker way to find the median. Does it match the manual value above?\n", - "ammonia.median()\n", - "```\n", - "\n", - "Now, with that knowledge can you interpret what the row **\"50%\"** means in the above ``.describe()`` command?\n", - "\n", - "The \"50%\" row in that description is called the 50th *percentile*. \n", - "![alt=Pandas \"describe\" output](images/summarizing-data/ammonia-description.png)\n", - "\n", - "It is the value in the dataset above which 50% of the values are found, and below which 50% of the values are found. A shortcut name that we use for the 50th percentile is **median**. It is the only percentile which has a special name. All the other's we just call by their number, e.g. we say \"*the 75th percentile is 42.37*\" for the Ammonia column.\n", - "\n", - "\n", - "##### Check your knowledge\n", - "\n", - "1. What does the 25th percentile mean? Below the 25th percentile value we will find \\_\\_\\_\\_% of the values, and above the 25th percentile we find \\_\\_\\_\\_% of the values. In this case that means the 25th percentile will be close to value of the 360th entry in the sorted vector of data. Try it:\n", - "\n", - " ``ammonia_sorted[358:362]``\n", - "\n", - "2. What does the 75th percentile mean? Below the 75th percentile value we will find \\_\\_\\_\\_% of the values, and above the 75th percentile we find \\_\\_\\_\\_% of the values. In this case that means the 75th percentile will be close to value of the 1080th entry in the sorted vector of data. Try it:\n", - "\n", - " ``ammonia_sorted[1078:1082]``\n", - "\n", - "3. So therefore: between the 25th percentile and the 75th percentile, we will find \\_\\_\\_\\_% of the values in our vector. \n", - "\n", - "And there is the key reason why you are given the 25th and 75th percentile values. Half of the data in the sorted data vector lie between these two values. 25% of the data lie below the 25th percentile, and the other 25% lie above the 75th percentile, and the bulk of the data lie between these two values." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Introducing the box plot\n", - "\n", - "We have looked at the extremes with ``.head()`` and ``.tail()``, and we have learned about the mean and the median. \n", - "\n", - "What about the **typical** values? What do we even mean by _typical_ or _usual_ or _common_ values? Could we use the 25th and 75th percentiles to help guide us?\n", - "\n", - "One way to get a feel for that is to plot these numbers: 25th, 50th and 75th percentiles. Let's see how, by using a **boxplot**." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from matplotlib import pyplot\n", - "%matplotlib inline\n", - "\n", - "# The plotting library needs access to the raw data values. Access those\n", - "# using the ``.values`` method\n", - "raw_values = ammonia.values\n", - "pyplot.boxplot(raw_values);" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The boxplot gives you an idea of the distribution, the spread, of the data.\n", - "\n", - "The key point is the orange center line, the line that splits the centre square (actually it is a rectangle, but it looks squarish). That horizontal line is the median.\n", - "\n", - "It is surprising to see that middle chunk, that middle 50% of the sorted data values fall in such a narrow range of the rectangle.\n", - "![alt=\"Boxplot for the percentiles](images/summarizing-data/percentiles-ammonia.png)\n", - "\n", - "The bottom 25% of the data falls below the box, and the top 25% of the data falls above the box. That is indicated to some extent by the whiskers, the lines leaving the middle square/rectangle shape. The whiskers tell how much spread there is in our data. We we see 2 single circles below the bottom whisker. These are likely *outliers*, data which are unusual, given the context of the rest of the data. More about *outliers* later.\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Run this code to see that basic histogram.\n", - "# 1. Adjust the number of bins, and see how the histogram changes. The default number is 10.\n", - "# 2. Adjust the colour of the bin edges (borders). Try 'red', or 'black' or 'xkcd:pea soup'\n", - "pyplot.hist(raw_values, bins=30, edgecolor='white')\n", - "pyplot.xlabel('Ammonia concentration [mmol/L]');" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Don't worry about the interpretation of this plot just yet. We have a separate section later which is all about histograms.\n", - "\n", - "The key idea is get an idea of what the percentiles are. We will add these now on top of the histogram." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# It is helpful to visualize the 25th and 75th percentiles on the histogram.\n", - "\n", - "# Run the following code:\n", - "pyplot.hist(raw_values, bins=20, edgecolor='white');\n", - "\n", - "# Now superimpose on the histogram the 25th and the 75th percentiles (a type of quantile)\n", - "# as vertical lines (vlines) on the histogram\n", - "pyplot.vlines(x=ammonia.quantile(0.25), ymin=0, ymax=250, color=\"red\")\n", - "pyplot.vlines(x=ammonia.quantile(0.50), ymin=0, ymax=250, color=\"orange\")\n", - "pyplot.vlines(x=ammonia.quantile(0.75), ymin=0, ymax=250, color=\"red\");\n", - "\n", - "# NOTE: the 0.5 quantile, is the same as the 50th percentile, is the same as the median.\n", - "print('The 50th percentile is at: {}'.format(ammonia.quantile(0.5))) " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "It might not appear like it is the case, but \n", - "* 25% of the histogram area is to the left of the first red line\n", - "* 25% of the histogram area is between the red and the orange line\n", - "* 25% of the histogram area is between the orange line and the next red line to the right\n", - "* 25% of the histogram area is to the right of the second red line\n", - "\n", - "All of that you can get from this single table. \n", - "![alt=Pandas \"describe\" output](images/summarizing-data/ammonia-description.png)\n", - "\n", - "Which brings us to two important points:\n", - "1. Tables **are** (despite what some people might say), a very effective form of summarizing data\n", - "2. Start your data analysis with the ``.describe()`` function to get a (tabular) feel for your data.\n", - "\n", - "\n", - "### Looking ahead\n", - "\n", - "We have not solved our complete objective yet. Scroll up, and recall what we needed to do: \"*describe what **time-based** trends we see in the ammonia concentration of a wastewater stream*\". We will look at that coming up shortly.\n", - "\n", - "### Summary\n", - "\n", - "We have learned quite a bit in this section. See if you can explain these concepts to a friend/colleague:\n", - "\n", - "* head and tail of a data set\n", - "* median\n", - "* spread in the data\n", - "* boxplot\n", - "* percentile" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Challenge problem\n", - "\n", - "On a different data set, with multiple columns" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Bar plots (bar charts)\n", - "\n", - "\n", - "Bar plots are a simple (though inefficient) way to visualize information. You don't need to explain them, almost everyone has seen one and knows how to read it. \n", - "\n", - "We will use the case study below to introduce the topic and point out some issues to be aware of.\n", - "\n", - "### Website case study\n", - "\n", - "We will follow the 6 steps from the [general data science workflow](#A-general-work-flow-for-any-project-where-you-deal-with-data) (see the prior notebook for more details).\n", - "\n", - "**Step 1** is to ***define*** your objective: we have recorded visits to a small website. Which day of the week is the most popular, and which is the least popular? \n", - "\n", - "**Step 2** is to get your data.\n", - "\n", - "**Step 3** asks to explore your data, look at it and make summaries, get a feeling for what you have.\n", - "\n", - "**Step 4** is to clean up your data. Thankfully this has been done already.\n", - "\n", - "**Step 5** is use the data to solve your goal/objective, to manipulate the data.\n", - "\n", - "**Step 6** is to communicate your results, which is what the main task is here, using a bar plot.\n", - "\n", - "\n", - "### Step 1: Define your objective\n", - "\n", - "We have a small website, and we record the number of visitors each data. Our ***objective*** is to find which day of the week is the most popular, and which is the least popular. \n", - "\n", - "Why? If we absolutely need to take the website off-line, we can pick a day which has minimal disruption for our visitors.\n", - "\n", - "### Step 2: Get the data\n", - "\n", - "The data has been assembled for you already. You can read more about the data, and download it from here: http://openmv.net/info/website-traffic \n", - "\n", - "Refer back to the module on [loading data from a CSV file](https://yint.org/pybasic07#Reading-a-CSV-file-with-Pandas), if needed. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import pandas as pd\n", - "website = pd.read_csv('http://openmv.net/file/website-traffic.csv')\n", - "print(website.head())\n", - "print(website.tail())\n", - "website.describe()" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Step 3: explore your data\n", - "\n", - "We have done a little bit of this step already, above, when we used the ``.describe()`` function.\n", - "\n", - "So it seems like we have data from 1 June 2009 till 31 December 2009 here, sorted in order.\n", - "\n", - "If you are paying attention, you will notice that the ``.head()`` command gives information about more columns than ``.describe()``. \n", - "\n", - "That is because, by default, ``.describe()`` will only describe numeric columns. To see a summary of all columns, use the following:\n", - "\n", - "```python\n", - "website.describe(include='all')\n", - "```\n", - "\n", - "and you should get this type of output:\n", - "\n", - " \n", - "\n", - "\n", - "\n", - "We see that `DayOfWeek` has 7 unique values, which is expected.\n", - "\n", - "`DayOfWeek` is not a quantitative (numeric) column. So we cannot calculate the average, the minimum, the maximum, etc, which is why those rows in the summary table are `NaN` (not a number).\n", - "\n", - "Columns `Year` and ``Visits`` are quantitative, so those averages, minimums, maximums, etc can be quantified.\n", - "\n", - "In contrast, `DayOfWeek` can be collected in groups (categories), and then we can count the number of data items in that group. For example, we could ask how many rows (in our dataset) are on \"Monday\". When we can can group rows into categories, we call it ``Categorical`` data.\n", - "\n", - "\n", - "Plenty of data you will work with are categorical. Some examples:\n", - "* *type of operating system*: Linux, Mac, Windows,...\n", - "* *colour eyes*: grey, blue, green, brown, ...\n", - "* *shape of object*: square, circular, rectangular, ...\n", - "\n", - "##### Self-check:\n", - "\n", - "* Name/describe some other examples of categorical data you have worked with recently.\n", - "* Which of these are categorical, and which are quantitative?\n", - "\n", - " * Number of years of education since high-school\n", - " * Highest level of education achieved\n", - " * 1st year student, 2nd year student, 3rd year student, ...\n", - " * Relationship status\n", - " * Fuel type used in cars\n", - " * Octane number\n", - " * Type of sweetener used: sugar, honey, stevia, maple syrup, ...\n", - " \n", - "### Step 4: Clean up your data\n", - "\n", - "We don't see any issues in the data yet. It actually was in a good condition already. In a later notebook we will show you can plot the number of visits against time. Perhaps there are issues that you will see then. \n", - "\n", - "For now we will assume the data are clean and that we can start to manipulate it.\n", - "\n", - "### Step 5: manipulate your data, making calculations based on it \n", - "\n", - "To answer our question from step 1, we would like to summarize the average number of website visits, grouped per day.\n", - "\n", - "In step 2 we saw that there is a column called `DayOfWeek`. In other words, we want to collect all visits from the same day together and calculate the average number of visits on that day.\n", - "\n", - "If this were a table of results, we would want one column with 7 rows, one for each day of the week. In a second column we would want the average number of visitors on that day.\n", - "\n", - "Luckily Pandas provides a function that does that for us: ``.groupby(...)``. It will group the data by a given categorical column.\n", - "\n", - "```python\n", - "website.groupby(by='DayOfWeek')```\n", - "\n", - "But once the rows have been grouped, you need to indicate what you want to do within those groups. Here are some examples:\n", - "\n", - "```python\n", - " website.groupby(by='DayOfWeek').mean() # calculate the average per group for the other columns\n", - " website.groupby(by='DayOfWeek').count()\n", - " website.groupby(by='DayOfWeek').max() # once grouped, calculate the maximum per group\n", - " website.groupby(by='DayOfWeek').min()\n", - "\n", - "```\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Now we are ready to manipulate the data:\n", - "average_visits_per_day = website.groupby('DayOfWeek').mean() \n", - "display(average_visits_per_day)\n", - "\n", - "# The 'Year' column is not needed, and will cause problems \n", - "# with our visualization. Since it is \"2009\" for all rows, \n", - "# it also provides little value.\n", - "website = website.drop(columns='Year')\n", - "average_visits_per_day = average_visits_per_day.drop(columns='Year')\n", - "print('After removing the \"Year\" column there is only 1 column of data:')\n", - "display(average_visits_per_day)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Step 6: communicate your message clearly\n", - "\n", - "A bar plot can be used to show these results graphically. Though, a table, as above, is perfectly valid, and actually meets the goals we set in step 1. We will come back to this point later.\n", - "\n", - "```python\n", - "# Plot the data in a horizontal bar (barh)\n", - "average_visits_per_day.plot.barh(figsize=(15, 4));\n", - "```\n", - "\n", - "The results a better in a horizontal bar, with the ``barh`` command, than with vertical bars. Try using vertical bars, by modifying the above code and simply use ``bar``. Why is the ``barh`` command preferred?\n", - "\n", - "#### Final checks\n", - "1. The most visits, *on average*, occur on a \\_\\_\\_\\_day.\n", - "2. If the website should go offline for an entire day, the best day to pick would be a \\_\\_\\_\\_day.\n", - "3. Is the bar plot strictly necessary in this case study when compared to the data table? *In other words*, what value does the bar plot provide, if any, that is not provided by the table?\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Histograms\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Time-series, or a sequence plot" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Scatter plot\n", - "\n", - "Seaborn: https://engmrk.com/module7-introduction-to-seaborn/" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Data tables\n", - "\n", - "* Precision of display?" - ] - }, { "cell_type": "markdown", "metadata": {}, @@ -911,19 +286,12 @@ "css_file = './images/style.css'\n", "HTML(open(css_file, \"r\").read())" ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": { "hide_input": false, "kernelspec": { - "display_name": "Python [default]", + "display_name": "Python 3", "language": "python", "name": "python3" }, @@ -937,7 +305,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.5.5" + "version": "3.7.3" }, "toc": { "base_numbering": 1, From 4a860253979e624c0453f6be77c0cf4580db5145 Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Mon, 15 Jul 2019 16:18:00 +0200 Subject: [PATCH 033/134] Added Peas challenge problem --- Module-09-interactive.ipynb | 71 +++++++++++++++++++++++++++++-------- 1 file changed, 57 insertions(+), 14 deletions(-) diff --git a/Module-09-interactive.ipynb b/Module-09-interactive.ipynb index e9c3aba..225e40a 100644 --- a/Module-09-interactive.ipynb +++ b/Module-09-interactive.ipynb @@ -30,7 +30,10 @@ "qq-plot in Pandas\n", "\n", "* Random walk\n", - "* Average of the dice thrown tends to be normally\n", + "* Average of the dice thrown tends to be normally distributed\n", + "* PCA loadings are orthogonal. Plot a scatter plot, and see the correlation is zero\n", + "* Categorical variables in boxplots\n", + "* Bar plots of percentage explained\n", "* Raspberry PI question\n", "* summary: min, max, mean, nanmean, nan-versions\n", "* percentiles\n", @@ -194,7 +197,10 @@ "\n", "### Exploring the data (step 3)\n", "\n", - "Let's get started. Either download the file to your computer, or read the file directly from the website." + "Let's get started. There are 3 ways to get the data:\n", + "1. Download the file to your computer\n", + "2. Read the file directly from the website (no proxy server)\n", + "3. Read the file directly from the website (you are behind a proxy server)" ] }, { @@ -477,7 +483,15 @@ "source": [ "### Challenge problem\n", "\n", - "On a different data set, with multiple columns" + "On a different data set, with multiple columns\n", + "\n", + "\n", + "http://openmv.net/info/film-thickness\n", + "\n", + "\n", + "* Which position on the film seems to have the most outliers?\n", + "* At which position do we have the least variability in the measurements?\n", + "* At which position is the average thickness the lowest? [use the median and the mean to make your judgement]" ] }, { @@ -485,7 +499,44 @@ "execution_count": null, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "# Imports for reading the file and to plot it\n", + "import io\n", + "import requests\n", + "import pandas as pd\n", + "from matplotlib import pyplot\n", + "%matplotlib inline\n", + "\n", + "\n", + "url = 'http://openmv.net/file/film-thickness.csv'\n", + "proxyDict = {\"http\" : \"http://104.129.192.34:10137\"}\n", + "s = requests.get(url, proxies=proxyDict).content\n", + "web_dataset = io.StringIO(s.decode('utf-8'))\n", + "\n", + "# Convert the file fetched from the web to a Pandas dataframe\n", + "data = pd.read_csv(web_dataset)\n", + "data = data.set_index('Number')\n", + "print(data.describe())\n", + "data.boxplot()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Challenge problem: Peas\n", + "\n", + "Many companies making food products have taste panels. In these panels a number of people judge the product based on different attributes. \n", + "\n", + "In this [data set](http://openmv.net/info/peas) (http://openmv.net/info/peas) we have multiple columns, but only six are scored by judges: flavour, sweetness, fruity flavour, off-flavour, mealiness and hardness. Remember in Pandas you can select columns using: ``df.loc[:, 'Flavour': 'Hardness']``, which will select all columns from `Flavour` up to, and including `Hardness`. \n", + "\n", + "Based on the boxplot, answer these questions:\n", + "\n", + "* Which of the 6 attributes has the lowest variability?\n", + "* Which attribute has the most outliers?\n", + "* Which attribute is the median most imbalanced (not half-way between the 25th and 75 percentile)?\n", + "* For that attribute, is the distribution shifted to the left, or to the right?" + ] }, { "cell_type": "code", @@ -570,7 +621,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ @@ -911,19 +961,12 @@ "css_file = './images/style.css'\n", "HTML(open(css_file, \"r\").read())" ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": { "hide_input": false, "kernelspec": { - "display_name": "Python [default]", + "display_name": "Python 3", "language": "python", "name": "python3" }, @@ -937,7 +980,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.5.5" + "version": "3.7.3" }, "toc": { "base_numbering": 1, From 62bf110e222196c9d7d17395f8d44df464acb083 Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Mon, 15 Jul 2019 19:55:47 +0200 Subject: [PATCH 034/134] Small text tweaks --- Module-09-interactive.ipynb | 12 +++++++----- 1 file changed, 7 insertions(+), 5 deletions(-) diff --git a/Module-09-interactive.ipynb b/Module-09-interactive.ipynb index 225e40a..3d7d273 100644 --- a/Module-09-interactive.ipynb +++ b/Module-09-interactive.ipynb @@ -733,12 +733,14 @@ "average_visits_per_day.plot.barh(figsize=(15, 4));\n", "```\n", "\n", - "The results a better in a horizontal bar, with the ``barh`` command, than with vertical bars. Try using vertical bars, by modifying the above code and simply use ``bar``. Why is the ``barh`` command preferred?\n", + "The results are more clearly communicated with horizontal bars (use the ``barh`` command), than with vertical bars. Try using vertical bars, by modifying the above code and simply use ``.bar(...)``. Why is the ``barh`` command preferred?\n", "\n", "#### Final checks\n", "1. The most visits, *on average*, occur on a \\_\\_\\_\\_day.\n", - "2. If the website should go offline for an entire day, the best day to pick would be a \\_\\_\\_\\_day.\n", - "3. Is the bar plot strictly necessary in this case study when compared to the data table? *In other words*, what value does the bar plot provide, if any, that is not provided by the table?\n" + "2. If the website should go offline for an entire day for maintenance, the best day to pick would be a \\_\\_\\_\\_day.\n", + "3. Is the bar plot strictly necessary in this case study when compared to the data table? *In other words*, what value does the bar plot provide, if any, that is not provided by the table?\n", + "\n", + "\n" ] }, { @@ -966,7 +968,7 @@ "metadata": { "hide_input": false, "kernelspec": { - "display_name": "Python 3", + "display_name": "Python [default]", "language": "python", "name": "python3" }, @@ -980,7 +982,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.3" + "version": "3.5.5" }, "toc": { "base_numbering": 1, From 9a2564b6d9c29c50c676f0818c903e0944d7dddf Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Mon, 15 Jul 2019 23:47:30 +0200 Subject: [PATCH 035/134] Updates and additions to the section on histograms and barplots --- Module-09-interactive.ipynb | 477 ++++++++++++++---- Module-10-interactive.ipynb | 56 +- .../general/Crystal_Clear_app_korganizer.png | Bin 0 -> 7118 bytes .../ammonia-histogram-with-partitions.png | Bin 0 -> 66786 bytes images/summarizing-data/ammonia-histogram.png | Bin 0 -> 71451 bytes .../summarizing-data/barplot-explanation.png | Bin 0 -> 202948 bytes 6 files changed, 426 insertions(+), 107 deletions(-) create mode 100644 images/general/Crystal_Clear_app_korganizer.png create mode 100644 images/summarizing-data/ammonia-histogram-with-partitions.png create mode 100644 images/summarizing-data/ammonia-histogram.png create mode 100644 images/summarizing-data/barplot-explanation.png diff --git a/Module-09-interactive.ipynb b/Module-09-interactive.ipynb index 3d7d273..b110987 100644 --- a/Module-09-interactive.ipynb +++ b/Module-09-interactive.ipynb @@ -7,7 +7,7 @@ }, "source": [ "

    Table of Contents

    \n", - "" + "" ] }, { @@ -21,30 +21,15 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## TODO\n", + "##### TODO\n", "\n", "Essential: https://www.datacamp.com/community/tutorials/pandas-split-apply-combine-groupby\t\n", "\n", "df.plot(x='col_name_1', y='col_name_2', style='o')\t\"Jupyter notebook introduction;\n", "\n", - "qq-plot in Pandas\n", - "\n", - "* Random walk\n", - "* Average of the dice thrown tends to be normally distributed\n", - "* PCA loadings are orthogonal. Plot a scatter plot, and see the correlation is zero\n", - "* Categorical variables in boxplots\n", "* Bar plots of percentage explained\n", - "* Raspberry PI question\n", - "* summary: min, max, mean, nanmean, nan-versions\n", - "* percentiles\n", - "* regression\n", - "* DOE model analysis?\n", - "\n", - "https://towardsdatascience.com/simple-and-multiple-linear-regression-in-python-c928425168f9\n", - "\n", - "\n", - "bacteria multiplication problem\n", "\n", + "* DOE model analysis?\n", "\n", "https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.probplot.html\n", "\n", @@ -53,28 +38,13 @@ "\n", "https://www.youtube.com/playlist?list=PL-osiE80TeTvipOqomVEeZ1HRrcEvtZB_\t\n", "\n", - "Distributions: random numbers from normal \n", - "distribution\n", - "\n", - "Box plots and bar plots\tDistributions: t-distribution\n", "\n", - "Histograms\n", "\n", "Distributions: sampling from a list\n", "\n", - "Scatter plots\n", + "https://www.coursera.org/learn/python-data-analysis/lecture/xhEIo/hypothesis-testing-in-python\n", "\n", - "* highlight a point in the plot\"\tPlotting values from a distribution\n", - "\n", - "Time-series: plot some of the integrated curves in pybasi03\thttps://www.coursera.org/learn/python-data-analysis/lecture/KjG8R/distributions\n", - "\n", - "Labelling plots: titles, axes; legend\thttps://www.coursera.org/learn/python-data-analysis/lecture/xhEIo/hypothesis-testing-in-python\n", - "\n", - "Time-series: monod kinetics\tRegression: https://jakevdp.github.io/PythonDataScienceHandbook/05.06-linear-regression.html\n", - "\n", - "PCA: https://jakevdp.github.io/PythonDataScienceHandbook/05.09-principal-component-analysis.html\n", - "\n", - "\n" + "PCA: https://jakevdp.github.io/PythonDataScienceHandbook/05.09-principal-component-analysis.html\n" ] }, { @@ -87,6 +57,7 @@ ] }, { + "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ @@ -116,21 +87,22 @@ "\n", "### Summarizing data visually and numerically (statistics)\n", "\n", + "In [this notebook](https://yint.org/pybasic09):\n", + " \n", "1. Box plots\n", - "2. Time-series, or a sequence plot\n", - "3. Bar plots (bar charts) \n", - "4. Histograms\n", - "5. Scatter plot\n", - "6. Data tables\n", + "2. Bar plots (bar charts) \n", + "3. Histograms,\n", + "
    \n", "\n", - "In between, throughout the notes, we will also introduce statistical and data science concepts. This way you will learn how to interpret the plots and also communicate your results with the correct language." + "In the [next notebook](https://yint.org/pybasic10):\n", + "4. Data tables\n", + "5. Time-series, or a sequence plot\n", + "6. Scatter plot\n", + "\n", + "\n", + "In between, throughout the notes, we will also introduce statistical and data science concepts. This way you will learn how to interpret the plots and also communicate your results with the correct language. These concepts are indicated with the icon shown here." ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [] - }, { "cell_type": "markdown", "metadata": {}, @@ -187,9 +159,13 @@ "\n", "We will implement the 6-step workflow suggested above.\n", "\n", + "\n", + "### Defining the problem (step 1)\n", "Our end (1) **objective** is to describe what time-based trends we see in the ammonia concentration of a wastewater stream. We have a single measurement, taken every six hours. We will first see how we can summarize the data.\n", "\n", - "The next step is to (2) **get** the data. We have a data file from this website where there is 1 column of numbers and several rows of ammonia measurements.\n", + "### Getting the data (step 2)\n", + "\n", + "The next step is to (2) **get** the data. We have a data file from [this website](https://openmv.net/info/ammonia) where there is 1 column of numbers and several rows of ammonia measurements.\n", "\n", "Step 3 and 4 of exploring the data are often iterative and can happen interchangeably. We will (3) **explore** the data and see if our knowledge that ammonia concentrations should be in the range of 15 to 50 mmol/L is true. We might have to sometimes (4) **clean** up the data if there are problems.\n", "\n", @@ -298,7 +274,8 @@ "\n", "There are 1440 rows, or data points. If we sort these from low to high we will find the minimum as the first entry, and the maximum in the last position of the vector.\n", "\n", - "What value will we find halfway? It is called the **median**, the middle value, the one that separates your data set in half. If there are an even number of data values, you take the average between the two middle values\n", + " What value will we find halfway? It is called the **median**, the middle value, the one that separates your data set in half. If there are an even number of data values, you take the average between the two middle values. \n", + "\n", "\n", "Try find the median value manually:" ] @@ -337,7 +314,7 @@ "\n", "Now, with that knowledge can you interpret what the row **\"50%\"** means in the above ``.describe()`` command?\n", "\n", - "The \"50%\" row in that description is called the 50th *percentile*. \n", + " The \"50%\" row in that description is called the 50th *percentile*. \n", "![alt=Pandas \"describe\" output](images/summarizing-data/ammonia-description.png)\n", "\n", "It is the value in the dataset above which 50% of the values are found, and below which 50% of the values are found. A shortcut name that we use for the 50th percentile is **median**. It is the only percentile which has a special name. All the other's we just call by their number, e.g. we say \"*the 75th percentile is 42.37*\" for the Ammonia column.\n", @@ -397,7 +374,7 @@ "It is surprising to see that middle chunk, that middle 50% of the sorted data values fall in such a narrow range of the rectangle.\n", "![alt=\"Boxplot for the percentiles](images/summarizing-data/percentiles-ammonia.png)\n", "\n", - "The bottom 25% of the data falls below the box, and the top 25% of the data falls above the box. That is indicated to some extent by the whiskers, the lines leaving the middle square/rectangle shape. The whiskers tell how much spread there is in our data. We we see 2 single circles below the bottom whisker. These are likely *outliers*, data which are unusual, given the context of the rest of the data. More about *outliers* later.\n", + " The bottom 25% of the data falls below the box, and the top 25% of the data falls above the box. That is indicated to some extent by the whiskers, the lines leaving the middle square/rectangle shape. The whiskers tell how much spread there is in our data. We we see 2 single circles below the bottom whisker. These are likely *outliers*, data which are unusual, given the context of the rest of the data. More about *outliers* later.\n", "\n" ] }, @@ -415,10 +392,13 @@ ] }, { + "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ - "Don't worry about the interpretation of this plot just yet. We have a separate section later which is all about histograms.\n", + "Don't worry about the interpretation of this plot just yet. We have a separate section later which is all about histograms. You should something like this:\n", + "\n", + "\"Ammonia\n", "\n", "The key idea is get an idea of what the percentiles are. We will add these now on top of the histogram." ] @@ -448,6 +428,10 @@ "cell_type": "markdown", "metadata": {}, "source": [ + "You should get something like this:\n", + "\n", + "\"Ammonia\n", + "\n", "It might not appear like it is the case, but \n", "* 25% of the histogram area is to the left of the first red line\n", "* 25% of the histogram area is between the red and the orange line\n", @@ -464,7 +448,7 @@ "\n", "### Looking ahead\n", "\n", - "We have not solved our complete objective yet. Scroll up, and recall what we needed to do: \"*describe what **time-based** trends we see in the ammonia concentration of a wastewater stream*\". We will look at that coming up shortly.\n", + "We have not solved our complete objective yet. Scroll up, and recall what we needed to do: \"*describe what **time-based** trends we see in the ammonia concentration of a wastewater stream*\". We will look at that in the [next notebook](https://yint.org/pybasic10).\n", "\n", "### Summary\n", "\n", @@ -507,7 +491,6 @@ "from matplotlib import pyplot\n", "%matplotlib inline\n", "\n", - "\n", "url = 'http://openmv.net/file/film-thickness.csv'\n", "proxyDict = {\"http\" : \"http://104.129.192.34:10137\"}\n", "s = requests.get(url, proxies=proxyDict).content\n", @@ -517,7 +500,7 @@ "data = pd.read_csv(web_dataset)\n", "data = data.set_index('Number')\n", "print(data.describe())\n", - "data.boxplot()\n" + "data.boxplot()" ] }, { @@ -545,33 +528,11 @@ "outputs": [], "source": [] }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## Bar plots (bar charts)\n", - "\n", + "## Bar plots\n", "\n", "Bar plots are a simple (though inefficient) way to visualize information. You don't need to explain them, almost everyone has seen one and knows how to read it. \n", "\n", @@ -579,7 +540,7 @@ "\n", "### Website case study\n", "\n", - "We will follow the 6 steps from the [general data science workflow](#A-general-work-flow-for-any-project-where-you-deal-with-data) (see the prior notebook for more details).\n", + "We will follow the 6 steps from the [general data science workflow](#A-general-work-flow-for-any-project-where-you-deal-with-data) described above.\n", "\n", "**Step 1** is to ***define*** your objective: we have recorded visits to a small website. Which day of the week is the most popular, and which is the least popular? \n", "\n", @@ -617,7 +578,9 @@ "website = pd.read_csv('http://openmv.net/file/website-traffic.csv')\n", "print(website.head())\n", "print(website.tail())\n", - "website.describe()" + "website.describe\n", + "\n", + "# You will need to modify the above code if you are behind a proxy server." ] }, { @@ -642,15 +605,13 @@ "\n", " \n", "\n", - "\n", - "\n", "We see that `DayOfWeek` has 7 unique values, which is expected.\n", "\n", "`DayOfWeek` is not a quantitative (numeric) column. So we cannot calculate the average, the minimum, the maximum, etc, which is why those rows in the summary table are `NaN` (not a number).\n", "\n", - "Columns `Year` and ``Visits`` are quantitative, so those averages, minimums, maximums, etc can be quantified.\n", + "Columns `Year` and ``Visits`` are however quantitative, so those averages, minimums, maximums, etc can be quantified.\n", "\n", - "In contrast, `DayOfWeek` can be collected in groups (categories), and then we can count the number of data items in that group. For example, we could ask how many rows (in our dataset) are on \"Monday\". When we can can group rows into categories, we call it ``Categorical`` data.\n", + " In contrast, `DayOfWeek` can be collected in groups (categories), and then we can count the number of data items in that group. For example, we could ask how many rows (in our dataset) are on \"Monday\". When we can can group rows into categories, we call it ``Categorical`` data.\n", "\n", "\n", "Plenty of data you will work with are categorical. Some examples:\n", @@ -673,7 +634,7 @@ " \n", "### Step 4: Clean up your data\n", "\n", - "We don't see any issues in the data yet. It actually was in a good condition already. In a later notebook we will show you can plot the number of visits against time. Perhaps there are issues that you will see then. \n", + "We don't see any issues in the data yet. It actually was in a good condition already. In the next notebook we will show you can plot the number of visits against time, as a time-series plot. Perhaps there are issues that you will see then. \n", "\n", "For now we will assume the data are clean and that we can start to manipulate it.\n", "\n", @@ -743,6 +704,99 @@ "\n" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Bar plot theory (can be skipped)\n", + "\n", + "\n", + "![alt=\"Bar plot terminology\"](images/summarizing-data/barplot-example-expenses.png)\n", + "\n", + "* A bar plot should be used when there are many categories.\n", + "* The category axis can be shown on the vertical axis. In this case we call it a horizontal bar chart (`barh`), since the bars are horizontal. It makes the chart labels more readable; but a \"regular\" bar plot with vertical bars (`bar`) and labels on the horizontal axis is also possible.\n", + "* The text can sometimes be added *inside the bar* if there is restricted space.\n", + "* An interesting characteristic of a bar plot is that **the *interpretation* of a bar plot does not differ if the category axis is reordered.** It can be easier to interpret the plot with a particular ordering; however, the interpretation won't be *different* if using a different ordering. The example below demonstrates this: the interpretation has not changed, but the visualization is far more effective.\n", + "\n", + "### Definition for a bar plot\n", + "\n", + "It seems strange to end off this section with a definition of a bar plot. But perhaps it isn't: you see these types of plots everywhere, especially in the media. But it is hard to describe what they actually are. Here's one definition:\n", + "\n", + "> The bar plot is a univariate plot on a two-dimensional axis. The axes are not called x- or y-axes. Instead, one axis is called the ***category axis*** showing the category name, while the other, the ***value axis***, shows the value of each category as a bar.\n", + "\n", + "\n", + "### Enrichment\n", + "\n", + "\n", + "\n", + "Bar plots are notorious for their use of excessive 'ink': using many pixels to show a small amount of 'data'. We should aim to maximize the data:ink ratio, which means high amount of data represented with as few pixels as possible. Bar plots do not do that, and so are not actually are suitable plot always. \n", + "\n", + "Read more [about barplots here](https://learnche.org/pid/data-visualization/bar-plots).\n", + "\n", + "\n", + "### Ordering the bars in the bar plot\n", + "\n", + "The categories used in a bar plot can often be rearranged without 'breaking' the message. We saw an example above.\n", + "\n", + "This happened because each bar is independent of the others. If you re-order them, the information shown -- from the height of the bars, on the value axis -- is still the same.\n", + "\n", + "This does not mean you should show the bar plot in a random order. By ordering the information you make the plot easier to read, and in an underhanded way you subtly alter how the user reads the message. You can use this power to your advantage to make the message clearer, but you can also use it to frustrate your reader. Rather do the former, and not the latter." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "fig = pyplot.figure(figsize=(15, 4));\n", + "pyplot.subplots_adjust(top=0.8, bottom=0.1, left=0.1, right=0.9, hspace=0.5, wspace=0.4);\n", + "\n", + "# Left plot: subplot(1,2,1) means: create 1 row, with 2 columns, and draw in the 1st box\n", + "average_visits_per_day.plot.barh(ax=pyplot.subplot(1, 2, 1));\n", + "\n", + "# Right plot: subplot(1,2,2) means: create 1 row, with 2 columns, and draw in the 2nd box\n", + "# Take the same grouped data from before, except sort it now:\n", + "sorted_data = average_visits_per_day.sort_values('Visits', ascending=False) \n", + "sorted_data.plot.barh(ax=pyplot.subplot(1, 2, 2));\n", + "\n", + "pyplot.suptitle(('Showing a bar plot with no ordering (left) and '\n", + " 'with ordering (right).\\n The message is clearer; '\n", + " 'and our objective is reached.'), fontsize=16);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "![alt=\"Bar plot explanation\"](images/summarizing-data/barplot-explanation.png)\n", + "\n", + "\n", + "The plot on the right helps make our objective clearer. Recall, it was \"to find which day of the week is the most popular, and which is the least popular\" for our website. \n", + "\n", + "The plot on the left can answer those questions, but the plot on the right is far more effective, and easier to read." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Challenge\n", + "\n", + "Plot the percentage explained of a PCA model\n", + "\n", + "### Challenge: \n", + "\n", + "Where a subplot is needed. Boxplot on the left, barplot on the right?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, { "cell_type": "code", "execution_count": null, @@ -755,32 +809,270 @@ "metadata": {}, "source": [ "## Histograms\n", + "\n", + "##### TODO\n", + "* Average of the dice thrown tends to be normally distributed\n", + "\n", + "\n", + "In this section we see how to create histograms, which are just another form of bar plot ([see above](#Bar-plots)), except the category axis is now numerical, instead of discrete categories.\n", + "\n", + "Like, bar plots, histograms are fairly simple to understand and you don't need to explain how to interpret them. \n", + "\n", + "Again, we will use a case study to introduce the topic." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# Standard imports required to show plots and tables \n", + "from matplotlib import pyplot\n", + "from IPython.display import display\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Following the 6 data science steps of **Define**, **Get**, **Explore**, **Clean**, **Manipulate**, **Communicate**\n", + "we want to look at a data set where students were allowed unlimited time to write an exam. \n", + "\n", + "In a later notebook we will look at the goal to determine if students who took a longer time to finish actually scored a higher grade. For now, our objective is quite simple: visualize the distribution (spread) of the two variables:\n", + "1. the time to write the exam\n", + "2. the grade (out of 100) achieved on the exam\n", + "\n", + "So the above is our (1) definition, and (2) we get the data from a website where this dataset has already been prepared for us (https://openmv.net/info/unlimited-time-test). We will (3) explore the data, and notice we don't really need to (4) clean it, since it has been done for us already. We will (5) manipulate the data into a histogram and visualize that to (6) communicate our goal: what does the spread of the data looks like.\n", + "\n", + "If you visit the [the website page](https://openmv.net/info/unlimited-time-test), you can right-click and download the CSV file to your computer. But, you can also directly import the file from the URL.\n", + "\n", + "Use the `.describe()` function once you have loaded the data to get a summary description.\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "data = pd.read_csv('https://openmv.net/file/unlimited-time-test.csv')\n", + "\n", + "# Add a single line of code below, using the .describe function\n", + "# to get a summary of the data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You should get a summary that looks like this: \n", + "\n", + "Note that it matches the data source, showing there are 80 rows (each row corresponds to a student). Answer these questions:\n", + "\n", + "1. What was the average grade (out of 100) for this exam?\n", + "2. What was the shortest duration a student spent on the exam?\n", + "3. The student who wrote for the longest time wrote for ____ minutes.\n", + "4. The student with the lowest grade passed or failed the exam?\n", + "5. Does the median grade correspond closely with the average grade?\n", + "6. What else can you see in the description table that is interesting (*hint*: look at the 25 and 75th percentiles)\n", + "\n", + "\n", + "Step 4 is not needed (cleaning the data), but we will look at step 5 next, which is to manipulate the data to draw a histogram.\n", + "\n", + "A histogram can be draw directly in Matplotlib with the ``pyplot.hist(...)`` function, where the only input that is needed is a vector of data.\n", + "\n", + "We want to get 2 histograms: one for the `Grade`s and another for the `Time` taken to write the exam.\n", + "\n", + "You can extract each vector using Panda's ability to access the column from the table: ``data['Grade']`` and ``data['Time']`` will each return their respective columns.\n", + "\n", "\n" ] }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAD8CAYAAABw1c+bAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAEThJREFUeJzt3X+MZWV9x/H3p4jaKgF0R0RgXbSEFI0imawaWuNPhJWINrZd0lTa0qxaTTRpk6410dX+g23UxGIka9n4IxatVZSEVdlYGzRRcJcusBSRla5xXcKuoiDR1q5++8c9W4fZe2eGe+7MZed5v5Kbe85znnvO9+Ewnzn37L3PpKqQJLXjN6ZdgCRpZRn8ktQYg1+SGmPwS1JjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMY8ZtoFDLNmzZpat27dtMuQpGPGrl27flhVM0vp+6gM/nXr1rFz585plyFJx4wk31tqX2/1SFJjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYx6V39w91qzbfP3Q9n1XvGqFK5GkxXnFL0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNWbRuXqSbAMuBg5W1bO7tk8DZ3ddTgJ+UlXnDnntPuCnwC+Bw1U1O6G6JUljWsokbR8FrgQ+fqShqv7oyHKS9wEPLPD6l1TVD8ctUJI0WYsGf1XdmGTdsG1JAvwh8NLJliVJWi597/H/HnBfVd09YnsBNyTZlWRTz2NJkiag73z8lwLXLLD9/Ko6kOQpwI4k366qG4d17H4xbAJYu3Ztz7IkSaOMfcWf5DHA7wOfHtWnqg50zweBa4H1C/TdWlWzVTU7MzMzblmSpEX0udXzcuDbVbV/2MYkT0hywpFl4AJgT4/jSZImYNHgT3IN8A3g7CT7k1zebdrIvNs8SZ6WZHu3egrw9SS3AjcD11fVlyZXuiRpHEv5VM+lI9r/dEjbAWBDt3wP8Nye9UmSJsxv7kpSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY3pOx+/tHy2nLjM+1/oL4ZOYv/LWP9y165VzSt+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5Ias5Q/tr4tycEke+a0bUnygyS7u8eGEa+9MMldSfYm2TzJwiVJ41nKFf9HgQuHtH+gqs7tHtvnb0xyHPAh4CLgHODSJOf0KVaS1N+iwV9VNwL3j7Hv9cDeqrqnqn4BfAq4ZIz9SJImqM89/rckua27FXTykO2nAd+fs76/axsqyaYkO5PsPHToUI+yJEkLGTf4Pww8EzgXuBd435A+GdJWo3ZYVVuraraqZmdmZsYsS5K0mLGCv6ruq6pfVtWvgI8wuK0z337gjDnrpwMHxjmeJGlyxgr+JKfOWX0tsGdIt28BZyU5M8ljgY3AdeMcT5I0OYtOy5zkGuDFwJok+4F3AS9Oci6DWzf7gDd0fZ8G/FNVbaiqw0neAnwZOA7YVlV3LMsoJElLtmjwV9WlQ5qvHtH3ALBhzvp24KiPekqSpsdv7kpSYwx+SWqMwS9JjTH4JakxBr8kNWbRT/VofOs2Xz+0fd8Vr1rhSiTp17zil6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1JjFg3+JNuSHEyyZ07bPyT5dpLbklyb5KQRr92X5PYku5PsnGThkqTxLOWK/6PAhfPadgDPrqrnAN8B3r7A619SVedW1ex4JUqSJmnR4K+qG4H757XdUFWHu9VvAqcvQ22SpGUwiXv8fw58ccS2Am5IsivJpgkcS5LUU68/xJLkHcBh4JMjupxfVQeSPAXYkeTb3TuIYfvaBGwCWLt2bZ+yJEkLGPuKP8llwMXAH1dVDetTVQe654PAtcD6Ufurqq1VNVtVszMzM+OWJUlaxFjBn+RC4G+AV1fVz0b0eUKSE44sAxcAe4b1lSStnKV8nPMa4BvA2Un2J7kcuBI4gcHtm91Jrur6Pi3J9u6lpwBfT3IrcDNwfVV9aVlGIUlaskXv8VfVpUOarx7R9wCwoVu+B3hur+okSRPnN3clqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TG9JqPX+NZt/n6oe37rnjVRPpribacOO0KpKnwil+SGmPwS1JjDH5JaozBL0mNMfglqTEGvyQ1ZknBn2RbkoNJ9sxpe1KSHUnu7p5PHvHay7o+dye5bFKFS5LGs9Qr/o8CF85r2wx8parOAr7SrT9MkicB7wKeD6wH3jXqF4QkaWUsKfir6kbg/nnNlwAf65Y/BrxmyEtfCeyoqvur6sfADo7+BSJJWkF97vGfUlX3AnTPTxnS5zTg+3PW93dtkqQpWe4pGzKkrYZ2TDYBmwDWrl27nDU9ao2amkGSJqnPFf99SU4F6J4PDumzHzhjzvrpwIFhO6uqrVU1W1WzMzMzPcqSJC2kT/BfBxz5lM5lwBeG9PkycEGSk7t/1L2ga5MkTclSP855DfAN4Owk+5NcDlwBvCLJ3cArunWSzCb5J4Cquh/4O+Bb3eM9XZskaUqWdI+/qi4dsellQ/ruBP5izvo2YNtY1UmSJs5v7kpSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1JjlvQXuKSRtpw47QratNz/3bc8sLz711SNfcWf5Owku+c8Hkzytnl9XpzkgTl93tm/ZElSH2Nf8VfVXcC5AEmOA34AXDuk69eq6uJxjyNJmqxJ3eN/GfDdqvrehPYnSVomkwr+jcA1I7a9MMmtSb6Y5FkTOp4kaUy9gz/JY4FXA58ZsvkW4OlV9VzgH4HPL7CfTUl2Jtl56NChvmVJkkaYxBX/RcAtVXXf/A1V9WBVPdQtbweOT7Jm2E6qamtVzVbV7MzMzATKkiQNM4ngv5QRt3mSPDVJuuX13fF+NIFjSpLG1Otz/El+C3gF8IY5bW8EqKqrgNcBb0pyGPg5sLGqqs8xJUn99Ar+qvoZ8OR5bVfNWb4SuLLPMSRJk+WUDZLUGKdskHS05ZwSwukgps4rfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1JjDH5Jaozf3B1i3ebrh7bvu+JVK1yJtAr5h+Knzit+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5Ia0zv4k+xLcnuS3Ul2DtmeJB9MsjfJbUnO63tMSdL4JvUFrpdU1Q9HbLsIOKt7PB/4cPcsSZqClbjVcwnw8Rr4JnBSklNX4LiSpCEmEfwF3JBkV5JNQ7afBnx/zvr+ru1hkmxKsjPJzkOHDk2gLEnSMJMI/vOr6jwGt3TenORF87ZnyGvqqIaqrVU1W1WzMzMzEyhLkjRM7+CvqgPd80HgWmD9vC77gTPmrJ8OHOh7XEnSeHoFf5InJDnhyDJwAbBnXrfrgNd3n+55AfBAVd3b57iSpPH1/VTPKcC1SY7s65+r6ktJ3ghQVVcB24ENwF7gZ8Cf9TymJKmHXsFfVfcAzx3SftWc5QLe3Oc4kqTJ8Zu7ktQYg1+SGmPwS1JjDH5JaozBL0mNmdQkbcesdZuvn3YJkrSivOKXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1Jjmp2x4JI7J6R22nDjtCqTVZTl/prY8sHz7nsMrfklqzNjBn+SMJF9NcmeSO5K8dUifFyd5IMnu7vHOfuVKkvrqc6vnMPBXVXVLkhOAXUl2VNV/zuv3taq6uMdxJEkTNPYVf1XdW1W3dMs/Be4ETptUYZKk5TGRe/xJ1gHPA24asvmFSW5N8sUkz5rE8SRJ4+v9qZ4kTwQ+C7ytqh6ct/kW4OlV9VCSDcDngbNG7GcTsAlg7dq1fcuSJI3Q64o/yfEMQv+TVfW5+dur6sGqeqhb3g4cn2TNsH1V1daqmq2q2ZmZmT5lSZIW0OdTPQGuBu6sqveP6PPUrh9J1nfH+9G4x5Qk9dfnVs/5wJ8AtyfZ3bX9LbAWoKquAl4HvCnJYeDnwMaqqh7HlCT1NHbwV9XXgSzS50rgynGPIUmaPKdskLS6OE3JopyyQZIaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1JjVt2UDes2Xz/tEiTpUc0rfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktSYXsGf5MIkdyXZm2TzkO2PS/LpbvtNSdb1OZ4kqb+xgz/JccCHgIuAc4BLk5wzr9vlwI+r6reBDwDvHfd4kqTJ6HPFvx7YW1X3VNUvgE8Bl8zrcwnwsW75X4GXJVnwD7RLkpZXn+A/Dfj+nPX9XdvQPlV1GHgAeHKPY0qSeuozZcOwK/cao8+gY7IJ2NStPpTkrh61DbMG+OGE9zlVOfrG2aob4wiOc3VxnEe8u9cNkacvtWOf4N8PnDFn/XTgwIg++5M8BjgRuH/YzqpqK7C1Rz0LSrKzqmaXa/+PBi2MERznauM4V16fWz3fAs5KcmaSxwIbgevm9bkOuKxbfh3wb1U19IpfkrQyxr7ir6rDSd4CfBk4DthWVXckeQ+ws6quA64GPpFkL4Mr/Y2TKFqSNL5e0zJX1XZg+7y2d85Z/m/gD/ocY4KW7TbSo0gLYwTHudo4zhUW77xIUlucskGSGrMqgz/JviS3J9mdZGfX9qQkO5Lc3T2fPO06H6kk25IcTLJnTtvQcWXgg910GbclOW96lT8yI8a5JckPunO6O8mGOdve3o3zriSvnE7Vj0ySM5J8NcmdSe5I8taufVWdzwXGudrO5+OT3Jzk1m6c7+7az+ymq7m7m77msV37dKezqapV9wD2AWvmtf09sLlb3gy8d9p1jjGuFwHnAXsWGxewAfgig+9SvAC4adr19xznFuCvh/Q9B7gVeBxwJvBd4Lhpj2EJYzwVOK9bPgH4TjeWVXU+FxjnajufAZ7YLR8P3NSdp38BNnbtVwFv6pb/EriqW94IfHol612VV/wjzJ0+4mPAa6ZYy1iq6kaO/h7EqHFdAny8Br4JnJTk1JWptJ8R4xzlEuBTVfU/VfVfwF4G04k8qlXVvVV1S7f8U+BOBt90X1Xnc4FxjnKsns+qqoe61eO7RwEvZTBdDRx9Pqc2nc1qDf4Cbkiyq/tGMMApVXUvDP5nBJ4yteoma9S4ljKlxrHmLd1tjm1zbtUd8+Ps3uY/j8FV4qo9n/PGCavsfCY5Lslu4CCwg8G7lZ/UYLoaePhYpjqdzWoN/vOr6jwGM4e+OcmLpl3QFCx5uoxjxIeBZwLnAvcC7+vaj+lxJnki8FngbVX14EJdh7Qdy+Ncdeezqn5ZVecymMVgPfA7w7p1z1Md56oM/qo60D0fBK5lcBLuO/LWuHs+OL0KJ2rUuJYypcYxo6ru636wfgV8hF+//T9mx5nkeAZh+Mmq+lzXvOrO57BxrsbzeURV/QT4dwb3+E/qpquBh4/l/8e52HQ2y2HVBX+SJyQ54cgycAGwh4dPH3EZ8IXpVDhxo8Z1HfD67tMgLwAeOHIL4Vg07372axmcUxiMc2P3KYkzgbOAm1e6vkequ597NXBnVb1/zqZVdT5HjXMVns+ZJCd1y78JvJzBv2d8lcF0NXD0+ZzedDbT/tfwST+AZzD4VMCtwB3AO7r2JwNfAe7unp807VrHGNs1DN4W/y+DK4bLR42LwVvJDzG4z3g7MDvt+nuO8xPdOG5j8ENz6pz+7+jGeRdw0bTrX+IYf5fBW/vbgN3dY8NqO58LjHO1nc/nAP/RjWcP8M6u/RkMfnHtBT4DPK5rf3y3vrfb/oyVrNdv7kpSY1bdrR5J0sIMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGvN/sBcjSK/I16YAAAAASUVORK5CYII=\n", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Will plot both histograms in the same \"axis\" (graph)\n", + "pyplot.hist(data['Grade']);\n", + "pyplot.hist(data['Time']);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The above is very basic, but actually confusing. There is no x-axis label, and we are plotting two different things (grades and time) on the x-axis.\n", + "\n", + "Let's clean this up and create two separate plots, side-by-side. Below you see the creation of what is called \"subplots\": multiple plots within the same figure.\n", + "\n", + "The `pyplot.subplot(nrows, ncols, index)` command will create ``nrows`` rows of plots and ``ncols`` columns, and will draw in the ``index`` space. For example ``pyplot.subplot(2, 3, 1)`` will create 2 rows and 3 columns (there 6 subplots), and draw in the 1st subplot. Once you are done with that plot, you write ``pyplot.subplot(2, 3, 2)`` and it will go to the next subplot. \n", + "\n", + "Let's try this out:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3QAAAFNCAYAAABIei33AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3XuYJVV97//3J4yCIIpCS7g4DqBi0J8iGRGDGhQ13BRM1MAxES/JqFEjuRwl8UTJxYRETWKikaAS1GMQQ0RJ8AJiFM0RdCBcBQRhlBFkBpFbICry/f1R1bJns3d3T+/u3l3d79fz7Kd3rVq76ltrV/fqb9WqqlQVkiRJkqTu+ZlxByBJkiRJmh0TOkmSJEnqKBM6SZIkSeooEzpJkiRJ6igTOkmSJEnqKBM6SZIkSeooEzrNSJLLkxww7jjGKckLk1yf5M4kT55B/QOSrF+I2EaR5OVJvjLuOOZKkkry6HHHIUlTsV9dfP1qkhOS/NF8LX8U9m2aigmdSLIuyXP6yjb5J7+qHl9VX5xmOavaPzgr5inUcXsn8PqqenBV/Vf/zHH9sV1Mf+QXUyySNC72qzM2tn510MHMqnpNVf3pfKyvb92dOOCr7jChU2csgg7tUcDlY45h2UjDv1GSNE/sV6WlwX+WNCO9RxuT7JtkbZLbk9yU5K/baue2P29th088LcnPJPk/Sb6dZEOSDyd5aM9yX9bO+36SP+pbz3FJTkvyf5PcDry8XfdXk9ya5MYk70nywJ7lVZLfSnJ1kjuS/GmSPdrP3J7k4731+7ZxYKxJtkxyJ7AFcHGSbw347OS2X9xu+6/2zPu9dnk3JnlFT/mWSd6Z5DttO56Q5EFDYnt0ki8luS3JzUlOHbbeQUcde49yJtk+yRlte3wN2KOv7uOSnJ3kliRXJXlJz7yTk7w3yZlt+56fZI/p2qDn81skeVe7DdcleX3v0eckX0zy9iT/CdwF7J7kFUmuaNd3bZJX9y3zf7dte0OSV/bNG9rGSXZI8u/tvnRLki/HBFLSAon96tj61SQ/B5wAPK1d9q1t+clJ/qx9f0CS9Une1LOuI5IckuSbbb/xh33bemySb7Vt//EkDx+w7m2AzwA7t+u+M8nO030Pfct4epqhqs9qp2fVb2sJqSpfy/wFrAOe01f2cuArg+oAXwV+vX3/YGC/9v0qoIAVPZ97JXANsHtb9xPAR9p5ewF3Ak8HHkgz9OLHPes5rp0+gubgw4OAnwf2A1a067sCOKZnfQWcATwEeDzwQ+Ccdv0PBb4BHD2kHYbG2rPsR0/RjpvMBw4A7gH+BHgAcAhNkvKwdv7ftrE+HNgW+DfgL4Ys+xTgLW07bAU8fYr1bvLd9dcBPgZ8HNgGeALw3cn6bdn1wCvaNt4HuBl4fDv/ZOAWYN92/keBj21GG72m/Q52BR4GfL53nwG+CHyn/e5WtO12KE3SGeAX2zbcp61/EHBTux3bAP/ct61D2xj4C5oO/QHt6xlAxv376MuXr+6/sF+dNtaeZY+rX93k+2jLTgb+rG9db23X9ZvAxraf2bZti/8Bdm/rHwOcR9O/bQn8I3DKkHUfAKzvK5vJ9/Bo4Jdo+ul92/KR+m1fS+M19gB8jf9F06ncCdza87qL4R3PucAfAzv0LWcV9+94zgF+q2d6T5rOZEX7R/KUnnlbAz9i047n3GliPwY4vWe6gP17pi8A3twz/S7gb4csa2isPcve3I7n7r722ND+wQ7w38AePfOeBlw3ZNkfBk4Edp3Bel/OkISO5mjoj4HH9cz7c+5L6H4V+HLfZ/8ReFv7/mTgAz3zDgGuHBbLgFi/ALy6Z/o53D+h+5NpvvNPAm9s358EHN8z77E92zplG9P8Q/CpqeL15cuXr9m8sF+dNtaeZY+rX3050yd0dwNbtNPbtvE8ta8tjmjfXwEc2DNvp95t7VvPAfQldDP8Hv4A+Dbw//WUj9Rv+1oaL4cXadIRVbXd5Av4rSnqvormH+crk3w9yWFT1N2Z5o/PpG/TdDo7tvOun5xRVXcB3+/7/PW9E0ke2w6T+147XOTPgR36PnNTz/u7B0w/eBaxztb3q+qenum72vVP0HS0F7TDK24FPtuWD/Imms7qa2nujPbKIfWmM0GzTb3t2rvNjwKeOhlTG9dLgZ/tqfO9AdszU5t8533vB5YlOTjJee1QkltpOqPJ77x/eb3bMl0bv4PmyPFZaYZyHrsZ2yFJ07FfXdz96kzX9ZP2/d3tz2Hb/ijg9J51XwH8hBlu6wy/h2OAj1fVpT1l891vqwNM6LTZqurqqjoKeATwl8Bp7ZjwGlD9Bpo/NpNW0gxhuAm4kWZoAgDtOPft+1fXN/0+4ErgMVX1EOAPaRKduTBVrHPtZpqO4PE9Hf5Dq2rgH9mq+l5V/WZV7Qy8GviHDL/z13/TdGoAJOn9o76RZpse2VO2suf99cCXev8JqebuY6/d/E0caJPvvC+OST/9zpNsCfwrzbChHdt/ij7Nfd/5jQzflinbuKruqKrfq6rdgecDv5vkwNE2T5I2n/3qnNisfpXBbTuK64GD+/rPrarquzNc90y+hxcDRyQ5pm+989lvqwNM6LTZkvxakomqupdmGAk0R6E2AvfSjJWfdArwO0l2S/JgmiNOp7ZH104Dnp/kF9oLf/+Y6TuRbYHbgTuTPA6Yyz9YU8U6Ezex6bYP1bbd+4G/SfIIgCS7JPmlQfWTvDjJZCf9A5rOYPKoYf96LwYen2TvJFvRDLGZXO9PaK5hOC7J1kn2Ao7u+ey/A49N8utJHtC+ntJeQD4T07XBx4E3ttu6HfDmaZb3QJprETYC9yQ5GHhe3/JenmSvJFsDb+vZ1inbOMlhaW42E5p96ifc16aStGDsV4eat361Xfauw248MgsnAG9P8qh23RNJDp9i3dun52Y2zOx7uAE4EPjtJJNnfEftt7UEmNBpNg4CLk9zh6p3A0dW1f+0QzveDvxne9p/P5prnD5Cc33AdTQXEL8BoKoub99/jOao4h00Y+F/OMW6fx/4X23d9wOnzuF2DY11ho4DPtRu+0umq0yTzFwDnNcOr/g8zfUFgzwFOL9t8zNoriG7btB6q+qbNNeHfR64Guh/aPjraYZbfI9mbP0/Tc6oqjtoEqYjaTqO79EcLd5yBttzv1gGzH8/cBZwCfBfNGfb7mFIItXG89s0idsPaL77M3rmf4bmIvgv0LTlF/oWMVUbP6advpPmhgT/UNM8E0qS5on96mDHMX/96hdoHpnwvSQ3b0ZMw7ybpn86K8kdNDdIeeqgilV1JU2ye227bTszw++hqr5Dk9S9OclvzEG/rSUgVXN9xlmanfbo3a00ww2um66+uq8943ZCVT1q2sqSpM1ivyotD56h01gleX479G8bmuukLqW585eWoCQPSvMMnxVJdqEZInn6uOOSpKXCflVafkzoNG6H0wwRuIFmCNyR5WnjpSw013T8gGbI5RU0t9mWJM0N+1VpmXHIpSRJkiR1lGfoJEmSJKmjTOgkSZIkqaNWjDuAQXbYYYdatWrVuMOQJM2zCy644Oaqmhh3HF1h/yhJy8dM+8hFmdCtWrWKtWvXjjsMSdI8S/LtccfQJfaPkrR8zLSPdMilJEmSJHWUCZ0kSZIkdZQJnSRJkiR1lAmdJEmSJHWUCZ0kSZIkdZQJnSRJkiR1lAmdJEmSJHWUCZ0kSfMoyUlJNiS5rK/8DUmuSnJ5kr8aV3ySpG4zoZMkaX6dDBzUW5DkWcDhwBOr6vHAO8cQlyRpCTChkyRpHlXVucAtfcWvBY6vqh+2dTYseGCSpCXBhE6SpIX3WOAZSc5P8qUkTxl3QJKkblox7gAkNVYde+a4QwBg3fGHjjsEaTlYATwM2A94CvDxJLtXVfVXTLIGWAOwcuXKBQ1yOfFv8P3ZJlI3eIZOkqSFtx74RDW+BtwL7DCoYlWdWFWrq2r1xMTEggYpSVr8TOgkSVp4nwSeDZDkscADgZvHGpEkqZMccilJ0jxKcgpwALBDkvXA24CTgJPaRxn8CDh60HBLSZKmY0InSdI8qqqjhsz6tQUNRJK0JDnkUpIkSZI6yoROkiRJkjrKhE6SJEmSOsqETpIkSZI6yoROkiRJkjrKhE6SJEmSOsqETpIkSZI6yoROkiRJkjrKhE6SJEmSOsqETpIkSZI6yoROkiRJkjrKhE6SJEmSOmrFdBWSnAQcBmyoqie0ZacCe7ZVtgNuraq9B3x2HXAH8BPgnqpaPUdxS5IkSdKyN21CB5wMvAf48GRBVf3q5Psk7wJum+Lzz6qqm2cboCRJkiRpsGkTuqo6N8mqQfOSBHgJ8Oy5DUuSJEmSNJ1Rr6F7BnBTVV09ZH4BZyW5IMmaqRaUZE2StUnWbty4ccSwJEmSJGnpGzWhOwo4ZYr5+1fVPsDBwOuSPHNYxao6sapWV9XqiYmJEcOSJEmSpKVv1gldkhXALwOnDqtTVTe0PzcApwP7znZ9kiRJkqRNjXKG7jnAlVW1ftDMJNsk2XbyPfA84LIR1idJkiRJ6jFtQpfkFOCrwJ5J1id5VTvrSPqGWybZOcmn28kdga8kuRj4GnBmVX127kKXJEmSpOVtJne5PGpI+csHlN0AHNK+vxZ40ojxSZIkSZKGGPWmKJIkSZKkMTGhkyRJkqSOMqGTJGmeJTkpyYYk97s5WJLfT1JJdhhHbJKkbjOhkyRp/p0MHNRfmOSRwHOB7yx0QJKkpcGETpKkeVZV5wK3DJj1N8CbgFrYiCRJS4UJnSRJY5DkBcB3q+riccciSequaR9bIEmS5laSrYG3AM+bQd01wBqAlStXznNkkqSu8QydJEkLbw9gN+DiJOuAXYELk/xsf8WqOrGqVlfV6omJiQUOU5K02HmGTpKkBVZVlwKPmJxuk7rVVXXz2IKSJHWSZ+gkSZpnSU4BvgrsmWR9kleNOyZJ0tLgGTpJkuZZVR01zfxVCxSKJGmJ8QydJEmSJHWUCZ0kSZIkdZQJnSRJkiR1lAmdJEmSJHWUCZ0kSZIkdZQJnSRJkiR1lAmdJEmSJHWUCZ0kSZIkdZQJnSRJkiR1lAmdJEmSJHWUCZ0kSZIkdZQJnSRJkiR1lAmdJEmSJHWUCZ0kSZIkddS0CV2Sk5JsSHJZT9lxSb6b5KL2dciQzx6U5Kok1yQ5di4DlyRJkqTlbiZn6E4GDhpQ/jdVtXf7+nT/zCRbAO8FDgb2Ao5KstcowUqSJEmS7jNtQldV5wK3zGLZ+wLXVNW1VfUj4GPA4bNYjiRJkiRpgFGuoXt9kkvaIZkPGzB/F+D6nun1bdlASdYkWZtk7caNG0cIS5IkSZKWh9kmdO8D9gD2Bm4E3jWgTgaU1bAFVtWJVbW6qlZPTEzMMixJkiRJWj5mldBV1U1V9ZOquhd4P83wyn7rgUf2TO8K3DCb9UmSJEmS7m9WCV2SnXomXwhcNqDa14HHJNktyQOBI4EzZrM+SZIkSdL9rZiuQpJTgAOAHZKsB94GHJBkb5ohlOuAV7d1dwY+UFWHVNU9SV4PfA7YAjipqi6fl62QJEmSpGVo2oSuqo4aUPzBIXVvAA7pmf40cL9HGkiSJEmSRjfKXS4lSZIkSWNkQidJ0jxqH++zIcllPWXvSHJl+/if05NsN84YJUndZUInSdL8Ohk4qK/sbOAJVfVE4JvAHyx0UJKkpcGETpKkeVRV5wK39JWdVVX3tJPn0TzaR5KkzWZCJ0nSeL0S+My4g5AkdZMJnSRJY5LkLcA9wEenqLMmydokazdu3LhwwUmSOsGETpKkMUhyNHAY8NKqqmH1qurEqlpdVasnJiYWLkBJUidM+xw6SZI0t5IcBLwZ+MWqumvc8UiSusuETtImVh175rhD+Kl1xx867hCkkSU5BTgA2CHJeuBtNHe13BI4OwnAeVX1mrEFKUnqLBM6SZLmUVUdNaD4gwseiCRpSfIaOkmSJEnqKBM6SZIkSeooEzpJkiRJ6igTOkmSJEnqKBM6SZIkSeooEzpJkiRJ6igTOkmSJEnqKBM6SZIkSeooEzpJkiRJ6igTOkmSJEnqKBM6SZIkSeqoFeMOQJIkSY1Vx5457hAkdYxn6CRJkiSpo0zoJEmSJKmjTOgkSZIkqaOmTeiSnJRkQ5LLesrekeTKJJckOT3JdkM+uy7JpUkuSrJ2LgOXJEmSpOVuJmfoTgYO6is7G3hCVT0R+CbwB1N8/llVtXdVrZ5diJIkSZKkQaZN6KrqXOCWvrKzquqedvI8YNd5iE2SJEmSNIW5uIbulcBnhswr4KwkFyRZM9VCkqxJsjbJ2o0bN85BWJIkSZK0tI2U0CV5C3AP8NEhVfavqn2Ag4HXJXnmsGVV1YlVtbqqVk9MTIwSliRJkiQtC7NO6JIcDRwGvLSqalCdqrqh/bkBOB3Yd7brkyRJkiRtalYJXZKDgDcDL6iqu4bU2SbJtpPvgecBlw2qK0mSJEnafDN5bMEpwFeBPZOsT/Iq4D3AtsDZ7SMJTmjr7pzk0+1HdwS+kuRi4GvAmVX12XnZCkmSJElahlZMV6GqjhpQ/MEhdW8ADmnfXws8aaToJElaApKcRHOZwoaqekJb9nDgVGAVsA54SVX9YFwxSpK6aS7ucilJkqZ2Mvd/puuxwDlV9RjgnHZakqTNYkInSdI8G/RMV+Bw4EPt+w8BRyxoUJKkJcGETpKk8dixqm4EaH8+YszxSJI6yIROkqRFLMmaJGuTrN24ceO4w5EkLTImdJIkjcdNSXYCaH9uGFSpqk6sqtVVtXpiYmJBA5QkLX4mdJIkjccZwNHt+6OBT40xFklSR5nQSZI0z4Y80/V44LlJrgae205LkrRZpn0OnSRJGs2QZ7oCHLiggUiSlhzP0EmSJElSR5nQSZIkSVJHmdBJkiRJUkeZ0EmSJElSR5nQSZIkSVJHmdBJkiRJUkeZ0EmSJElSR/kcOkmL1qpjzxx3CD+17vhDxx0CYJtIkqRNeYZOkiRJkjrKhE6SJEmSOsqETpIkSZI6yoROkiRJkjrKhE6SJEmSOsqETpIkSZI6yoROkiRJkjrKhE6SJEmSOsqETpIkSZI6akYJXZKTkmxIcllP2cOTnJ3k6vbnw4Z89ui2ztVJjp6rwCVJkiRpuZvpGbqTgYP6yo4FzqmqxwDntNObSPJw4G3AU4F9gbcNS/wkSZIkSZtnRgldVZ0L3NJXfDjwofb9h4AjBnz0l4Czq+qWqvoBcDb3TwwlSZIkSbMwyjV0O1bVjQDtz0cMqLMLcH3P9Pq2TJIkSZI0ohXzvPwMKKuBFZM1wBqAlStXzmdMkrTZVh175rhDkCRJup9RztDdlGQngPbnhgF11gOP7JneFbhh0MKq6sSqWl1VqycmJkYIS5IkSZKWh1ESujOAybtWHg18akCdzwHPS/Kw9mYoz2vLJEmSJEkjmuljC04BvgrsmWR9klcBxwPPTXI18Nx2miSrk3wAoKpuAf4U+Hr7+pO2TJKkZS/J7yS5PMllSU5JstW4Y5IkdcuMrqGrqqOGzDpwQN21wG/0TJ8EnDSr6CRJWqKS7AL8NrBXVd2d5OPAkTSPCpIkaUZGGXIpSZJGswJ4UJIVwNYMuc5ckqRh5vsul5IkaYCq+m6SdwLfAe4Gzqqqs/rrLeW7QHv3WM3EYtpP1h1/6LhDkO7HM3SSJI1Be7Oww4HdgJ2BbZL8Wn897wItSZqKCZ0kSePxHOC6qtpYVT8GPgH8wphjkiR1jAmdJEnj8R1gvyRbJwnNjcauGHNMkqSOMaGTJGkMqup84DTgQuBSmj75xLEGJUnqHG+KIknSmFTV24C3jTsOSVJ3eYZOkiRJkjrKhE6SJEmSOsqETpIkSZI6yoROkiRJkjrKhE6SJEmSOsqETpIkSZI6yoROkiRJkjrKhE6SJEmSOsqETpIkSZI6yoROkiRJkjrKhE6SJEmSOmrFuAOQJEmSumDVsWeOO4SfWnf8oeMOQYuEZ+gkSZIkqaNM6CRJkiSpo0zoJEmSJKmjTOgkSZIkqaNM6CRJkiSpo0zoJEmSJKmjZp3QJdkzyUU9r9uTHNNX54Akt/XUeevoIUuSJEmSYITn0FXVVcDeAEm2AL4LnD6g6per6rDZrkeSJEmSNNhcDbk8EPhWVX17jpYnSZIkSZrGXCV0RwKnDJn3tCQXJ/lMksfP0fokSZIkadkbOaFL8kDgBcC/DJh9IfCoqnoS8PfAJ6dYzpoka5Os3bhx46hhSZIkSdKSNxdn6A4GLqyqm/pnVNXtVXVn+/7TwAOS7DBoIVV1YlWtrqrVExMTcxCWJEmLW5LtkpyW5MokVyR52rhjkiR1y6xvitLjKIYMt0zys8BNVVVJ9qVJIL8/B+uUJGkpeDfw2ap6UTviZetxByRJ6paRErokWwPPBV7dU/YagKo6AXgR8Nok9wB3A0dWVY2yTkmSloIkDwGeCbwcoKp+BPxonDFJkrpnpISuqu4Ctu8rO6Hn/XuA94yyDkmSlqjdgY3APyV5EnAB8Maq+u/xhiVJ6pK5GHIpSZI23wpgH+ANVXV+kncDxwJ/1FspyRpgDcDKlSsXPEhJi9OqY88cdwgArDv+0HGHsOzN1WMLJEnS5lkPrK+q89vp02gSvE140zBJ0lRM6CRJGoOq+h5wfZI926IDgW+MMSRJUgc55FKSpPF5A/DR9g6X1wKvGHM8kqSOMaGTJGlMquoiYPW445AkdZdDLiVJkiSpo0zoJEmSJKmjTOgkSZIkqaNM6CRJkiSpo0zoJEmSJKmjTOgkSZIkqaNM6CRJkiSpo0zoJEmSJKmjTOgkSZIkqaNM6CRJkiSpo1aMOwAtT6uOPXPcIQCw7vhDxx2CJEmSNGueoZMkSZKkjjKhkyRJkqSOMqGTJEmSpI4yoZMkSZKkjjKhkyRJkqSOMqGTJEmSpI4yoZMkSZKkjjKhkyRJkqSOMqGTJEmSpI4aOaFLsi7JpUkuSrJ2wPwk+bsk1yS5JMk+o65TkiRJkgQr5mg5z6qqm4fMOxh4TPt6KvC+9qckSZIkaQQLMeTycODD1TgP2C7JTguwXkmSJEla0uYioSvgrCQXJFkzYP4uwPU90+vbMkmSlr0kWyT5ryT/Pu5YJEndMxdDLvevqhuSPAI4O8mVVXVuz/wM+Ez1F7TJ4BqAlStXzkFYkiR1whuBK4CHjDsQSVL3jHyGrqpuaH9uAE4H9u2rsh54ZM/0rsANA5ZzYlWtrqrVExMTo4YlSdKil2RX4FDgA+OORZLUTSMldEm2SbLt5HvgecBlfdXOAF7W3u1yP+C2qrpxlPVKkrRE/C3wJuDecQciSeqmUYdc7gicnmRyWf9cVZ9N8hqAqjoB+DRwCHANcBfwihHXKUlS5yU5DNhQVRckOWCKel6SIEkaaqSErqquBZ40oPyEnvcFvG6U9UiStATtD7wgySHAVsBDkvzfqvq13kpVdSJwIsDq1avvdw26JGl5W4jHFkiSpD5V9QdVtWtVrQKOBL7Qn8xJkjQdEzpJkiRJ6qi5eGyBJEkaQVV9EfjimMOQJHWQZ+gkSZIkqaNM6CRJkiSpo0zoJEmSJKmjTOgkSZIkqaNM6CRJkiSpo7zL5TKy6tgzxx2CJEmSpDnkGTpJkiRJ6igTOkmSJEnqKBM6SZIkSeooEzpJkiRJ6igTOkmSJEnqKO9yKUnSMuIdjyUtVYvl79u64w9d0PV5hk6SJEmSOsqETpIkSZI6yoROkiRJkjrKhE6SJEmSOsqETpIkSZI6yoROkiRJkjrKhE6SJEmSOsrn0GlZWyzPK5EkSZJmwzN0kiRJktRRJnSSJEmS1FGzTuiSPDLJfyS5IsnlSd44oM4BSW5LclH7euto4UqSJEmSJo1yDd09wO9V1YVJtgUuSHJ2VX2jr96Xq+qwEdYjSZIkSRpg1mfoqurGqrqwfX8HcAWwy1wFJknSUjaTkS6SJE1nTq6hS7IKeDJw/oDZT0tycZLPJHn8XKxPkqQlYHKky88B+wGvS7LXmGOSJHXMyAldkgcD/wocU1W3982+EHhUVT0J+Hvgk1MsZ02StUnWbty4cdSwJEla1BzpIkmaCyM9hy7JA2iSuY9W1Sf65/cmeFX16ST/kGSHqrp5QN0TgRMBVq9eXaPEJUlSl0w10iXJGmANwMqVKxc0Lkmajs/0Hb9R7nIZ4IPAFVX110Pq/GxbjyT7tuv7/mzXKUnSUjPNSBeq6sSqWl1VqycmJhY+QEnSojbKGbr9gV8HLk1yUVv2h8BKgKo6AXgR8Nok9wB3A0dWlWffJEli+pEukiRNZ9YJXVV9Bcg0dd4DvGe265AkaamayUgXSZKmMyd3uZQkSZttcqTLs5Nc1L4OGXdQkqRuGemmKJIkaXZmMtJFkqTpeIZOkiRJkjrKhE6SJEmSOsqETpIkSZI6yoROkiRJkjrKhE6SJEmSOsqETpIkSZI6yoROkiRJkjrKhE6SJEmSOsqETpIkSZI6yoROkiRJkjrKhE6SJEmSOsqETpIkSZI6yoROkiRJkjpqxbgDmC+rjj1z3CFIkiRJ0rzyDJ0kSZIkdZQJnSRJkiR1lAmdJEmSJHWUCZ0kSZIkdZQJnSRJkiR1lAmdJEmSJHWUCZ0kSZIkdZQJnSRJkiR1lAmdJEmSJHXUSAldkoOSXJXkmiTHDpi/ZZJT2/nnJ1k1yvokSVpKputHJUmazqwTuiRbAO8FDgb2Ao5KsldftVcBP6iqRwN/A/zlbNcnSdJSMsN+VJKkKY1yhm5f4JqquraqfgR8DDi8r87hwIfa96cBBybJCOuUJGmpmEk/KknSlEZJ6HYBru+ZXt+WDaxTVfcAtwHbj7BOSZKWipn0o5IkTWnFCJ8ddKatZlGnqZisAda0k3cmuWqE2BaTHYCbxx3EImJ7bMr22JTtsalF3R6Zm0H0j5qTpXTTjPrIEfrHRb3/9DDOudeVWLsSJ3QnVuOce5sd6xz1jzDDPnKUhG498Mie6V2BG4bUWZ9kBfBQ4JZBC6uqE4ETR4hnUUqytqpWjzuOxcL22JTtsSnbY1O2x5I3k3501v1jV/Yf45x7XYm1K3FCd2I1zrnXhVhHGXL5deAxSXZL8kDgSOCMvjpnAEe3718EfKGqBp6hkyRpmZk5BVZeAAAO+ElEQVRJPypJ0pRmfYauqu5J8nrgc8AWwElVdXmSPwHWVtUZwAeBjyS5hubM3JFzEbQkSV03rB8dc1iSpI4ZZcglVfVp4NN9ZW/tef8/wItHWccSsOSGkY7I9tiU7bEp22NTtscSN6gfnUNd2X+Mc+51JdauxAndidU4596ijzWOgJQkSZKkbhrlGjpJkiRJ0hiZ0M2hJOuSXJrkoiRr27KHJzk7ydXtz4eNO86FkmS7JKcluTLJFUmetszbY89235h83Z7kmGXeJr+T5PIklyU5JclW7Q0izm/b49T2ZhHLQpI3tm1xeZJj2rJlu39ouCQnJdmQ5LKesoH7Shp/l+SaJJck2WcRxPqOtm+4JMnpSbZry1clubvn7+QJY47zuCTf7YnnkJ55f9C26VVJfmnMcZ7aE+O6JBe15eNsz0cm+Y+2/788yRvb8kW3n04R66LaT6eIczHup8NiXVT7apr/O76W5OI2zj9uy3fLgP9FkmzZTl/Tzl+1EHFOq6p8zdELWAfs0Ff2V8Cx7ftjgb8cd5wL2B4fAn6jff9AYLvl3B59bbMF8D2a54ssyzaheYDydcCD2umPAy9vfx7Zlp0AvHbcsS5QezwBuAzYmub65s8Dj1mu+4evafeXZwL7AJf1lA3cV4BDgM/QPPduP+D8RRDr84AV7fu/7Il1VW+9RRDnccDvD6i7F3AxsCWwG/AtYItxxdk3/13AWxdBe+4E7NO+3xb4Zttui24/nSLWRbWfThHnYtxPB8a62PbVdn97cPv+AcD57f438H8R4LeAE9r3RwKnLnTMg16eoZt/h9MkNrQ/jxhjLAsmyUNoOp0PAlTVj6rqVpZpewxwIPCtqvo2y7tNVgAPSvOcyq2BG4FnA6e185dTe/wccF5V3VVV9wBfAl7I8t4/NERVncv9n+s6bF85HPhwNc4Dtkuy08JEOjjWqjqr3c8BzqN5Bt9YDWnTYQ4HPlZVP6yq64BrgH3nLbgeU8WZJMBLgFMWIpapVNWNVXVh+/4O4AqaA3mLbj8dFuti20+naNNhxrmfThnrYtlX2/3tznbyAe2rGP6/SO/+expwYLstY2VCN7cKOCvJBUnWtGU7VtWN0OzcwCPGFt3C2h3YCPxTkv9K8oEk27B826Pfkdz3R2xZtklVfRd4J/AdmkTuNuAC4NaeDnQ9U3dWS8llwDOTbJ9ka5qj1Y9kme4fmpVh+8ouwPU99Rbb79Urac7MTNqt7Te+lOQZ4wqqx+vbIXcn5b4hz4u1TZ8B3FRVV/eUjb0922FpT6Y5+7Go99O+WHstqv10QJyLdj8d0qaLZl9NskU79HMDcDbNmcxh/4v8tE3b+bcB2y9UrMOY0M2t/atqH+Bg4HVJnjnugMZoBc2QkPdV1ZOB/6YZWrHsteOwXwD8y7hjGae2wzmcZhjIzsA2NL87/ZbFrXir6gqaIT1nA5+lGSZzz5QfkmZm0NHjRfF7leQtNPv5R9uiG4GVbb/xu8A/tyM+xuV9wB7A3m1s72rLF2ubHsWmZzzG3p5JHgz8K3BMVd0+VdUBZQvapsNiXWz76YA4F+1+OsX3v2j21ar6SVXtTXMGdl+aETP3q9b+HHubDmJCN4eq6ob25wbgdJqd4qbJIQPtzw3ji3BBrQfWV9Xk0ZjTaBK85doevQ4GLqyqm9rp5domzwGuq6qNVfVj4BPAL9AMs5l8RuauwA3jCnChVdUHq2qfqnomzZCqq1m++4c237B9ZT3N2d5Ji+L3KsnRwGHAS6u9IKUdGvb99v0FNEfKHzuuGKvqpvafvXuB93PfcLVF16bt381fBk6dLBt3eyZ5AM0/8x+tqk+0xYtyPx0S66LbTwfFuVj30ynadNHtq+16bwW+SHMN3bD/RX7apu38hzLzodrzxoRujiTZJsm2k+9pLqS9DDgDOLqtdjTwqfFEuLCq6nvA9Un2bIsOBL7BMm2PPv1HpZZrm3wH2C/J1u3488l95D+AF7V1llN7kOQR7c+VNJ3dKSzf/UObb9i+cgbwsjT2A26bHPI2LkkOAt4MvKCq7uopn0iyRft+d5obA107nih/mnBMeiFNvw5Nmx7Z3vFuN5o4v7bQ8fV5DnBlVa2fLBhne7Z/1z8IXFFVf90za9Htp8NiXWz76RRxLrr9dIrvHxbRvtqud/LupQ9qY7uC4f+L9O6/LwK+MJnoj1WN4U4sS/FFc83Yxe3rcuAtbfn2wDk0R9rPAR4+7lgXsE32BtYClwCfBB62nNujbZOtge8DD+0pW7ZtAvwxcCVN5/MRmjtx7U7T4VxDMyx1y3HHuYDt8WWapPZi4MDlvn/4mnJfOYVmiNKPaY4Yv2rYvkIzROi9NEe8LwVWL4JYr6G5DuWi9jV517hfafvQi4ELgeePOc6PtG12Cc0/cjv11H9L26ZXAQePM862/GTgNX11x9meT6cZinZJz/d8yGLcT6eIdVHtp1PEuRj304GxLrZ9FXgi8F9tnJdx3103B/4vAmzVTl/Tzt99odp0qlfa4CRJkiRJHeOQS0mSJEnqKBM6SZIkSeooEzpJkiRJ6igTOkmSJEnqKBM6SZIkSeooEzotGUl2TPLPSa5NckGSryZ54YjLPC7J72/mZ45I8tZR1jvXkmyX5LfmadmvT/KK+Vi2JEmSpmZCpyWhfYDlJ4Fzq2r3qvp54Ehg1wF1V8xzOG8C/mHUhUw+YHOObAfMS0IHnAT89jwtW5K0QJJsn+Si9vW9JN/tmf5/87TOJyf5wGZ+5gNJ9prl+lYl+V+z+Wz7+c8nedhsPy/NBxM6LRXPBn5UVSdMFlTVt6vq7wGSvDzJvyT5N+CsJA9Ock6SC5NcmuTwyc8leUuSq5J8Htizp3yPJJ9tz/59Ocnj+oNI8ljgh1V1czt9cpIT2vrfTHJYW75Fknck+XqSS5K8ui0/IMl/JPlnmoeEkuRlbZ2Lk3ykLZtI8q/t57+eZP+2/LgkJyX5YnumcjLROh7Yo+2U3zHN9v9RkiuTnJ3klMkzlMO2v6ruAtYl2Xe0r1CSNE5V9f2q2ruq9gZOAP5mcrqqfmGeVvuHwN9vzgeq6jeq6huzXN8qYNYJHc1DvOfrAKk0K/N9pkJaKI8HLpymztOAJ1bVLe1ZuhdW1e1JdgDOS3IGsA/Nmb0n0/x+XAhc0H7+ROA1VXV1kqfSnIV7dt869h8QxyrgF4E9gP9I8mjgZcBtVfWUJFsC/5nkrLb+vsATquq6JI8H3gLsX1U3J3l4W+fdNB3tV5KsBD4H/Fw773HAs4BtgauSvA84tl3m3vDTs5SDtv/ngV+ZxfavBZ4BfG2qL0CS1E1J7qyqByc5APhj4CZgb+ATNAcg3wg8CDiiqr6VZIImKVzZLuKYqvrPvmVuS9MvX9xOHwfsBuwEPBb4XWA/4GDgu8Dzq+rHSb4I/H5VrU1yJ02feBhwN3B4Vd2U5GTg36vqtN74aQ5w/lySi4APAX/Xlh0AbAm8t6r+MclOwKnAQ2j6w9dW1ZeBM4AvA28fvVWluWFCpyUpyXuBp9OctXtKW3x2Vd0yWQX48yTPBO4FdgF2pElKTm/POtEmOSR5MPALwL80ozuB5g9/v52AjX1lH6+qe4Grk1xLk3A9D3hikhe1dR4KPAb4EfC1qrquLX82cNrkGb+e+J8D7NUTy0PajhHgzKr6IfDDJBva7bpfEw3Z/qcDn6qqu9vt/rcZbv+GdrskSUvfk2gOIt4CXAt8oKr2TfJG4A3AMUx94HHSauCyvrI9aA5K7gV8FfiVqnpTktOBQ2kur+i1DXBeVb0lyV8Bvwn82RSxH0uTDE6OmFnD4AOsvwx8rqre3l4CsTVAVf0gyZZJtq+q78+ksaT5ZkKnpeJymjNLAFTV69ozT2t76vx3z/uXAhPAz7dH+9YBW01+fMDyfwa4dfIM1xTupknOevUvr2gSqjdU1ed6Z7RHPnvjzBTxPG0y8er5PMAPe4p+wuDf82HbnwF1J9c31fZvRbPtkqSl7+tVdSNAkm8BkyNMLqVJxmDIgcequqNnOYMOgn6m7ZcuBbYAPtuz7FUDYvkR8O/t+wuA527mtgw7wPp14KQkDwA+WVUX9XxmA7AzYEKnRcFr6LRUfAHYKslre8q2nqL+Q4ENbafxLOBRbfm5wAuTPKg94/V8gKq6HbguyYuhuQlLkicNWO4VwKP7yl6c5GeS7AHsDlxFc6TytW1HQZLHJtlmwPLOAV6SZPu23uSQy7OA109WSjJdonkHzRDM6bb/K8Dzk2zVnpU7dIbb/1juf5RVkrQ09R44vLdn+l7uO4g4eeBx8hq8XfqSOWgOBG7VV/ZDgHZky4+ravKgZu+ye/XW6T2IeU8bw+SN0x44ZFsmD7BOxrlbVZ1VVecCz6QZ6vmRJC/r+YwHMbWomNBpSWj/mB8B/GKS65J8jWZs/JuHfOSjwOoka2nOVl3ZLudCmjHzFwH/SjNOftJLgVcluZjmjODh3N+5wJPTc0iSJoH7EvAZmmvQ/gf4APAN4MIklwH/yICOqqoupxmn/6V2vX/dzvrtNv5LknwDeM3QxmmW832aYSSXJXnHFNv/dZrrAy6muS5iLXDbDLZ/f+DzU8UgSVpWZnLgcdBB0Lmyjua6cGj6qwe07/sPcA48wJrkUTQHPt8PfJDmGvvJ5PBn2+VLi4JDLrVktMM/jhwy72Tg5J7pm2lukjKo7tsZcLFze13bQdPEcFeau2MeyH0Jzn9W1e/01buX5s5ef9i3iC+2r966H6JJTnvLbgZ+dcD6j+ubfkLP+/67eg3cfuCdVXVckq1pEtR3tZ8fuP1JngxcPnmdnyRJNAce35vkEpr/N8+l7+BjVV2Z5KEDhmLOhfcDn2oP8J7DfZczXALc0x6cPJnmWr9VNAdYQzME9Aiam6T87yQ/Bu6kuZkZNEnieVV1zxzHK81a7jtLLWkuJNkReGpVndF/l60uSPPIhL1ohpR8qKr+Ypr6zwWurqp1CxCeJGkJSfI7wB1VtVnPohuXJO8Gzqiqc8YdizTJhE6SJEljkWQr4MVV9ZFxxzITSX6zHYYpLRomdJIkSZLUUd4URZIkSZI6yoROkiRJkjrKhE6SJEmSOsqETpIkSZI6yoROkiRJkjrq/wdsQq8CkzHY+gAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# We want our histograms in separate axes:\n", + "pyplot.figure(figsize=(15, 5)) # (width, height) = (15, 5)\n", + "\n", + "# Start with the 1st plot:\n", + "pyplot.subplot(1, 2, 1)\n", + "pyplot.hist(data['Grade']);\n", + "pyplot.title('Histogram of the student grades')\n", + "pyplot.xlabel('Grade (percentage)')\n", + "\n", + "# Then draw the second one\n", + "pyplot.subplot(1, 2, 2)\n", + "pyplot.hist(data['Time'])\n", + "pyplot.title('Histogram of the time taken')\n", + "pyplot.xlabel('Time (minutes)');" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As you see, you get the same outputs as the graphs above, but now in two separate axes (1 \"row\" and 2 \"columns\" of graphs), each with their appropriate labels.\n", + "\n", + "The histogram is calculated by dividing the range of the data (from low to high) into a certain number of bins, or sub-ranges. The bin ranges are equally spaced. For each bin we count the number of data points that lie in that sub-range. For example, there seem to be 3 students that spent between 100 and 125 minutes to write the exam.\n", + "\n", + "We can change the number of bins, and this alters the shape of the histogram. We also add another parameter, ``edgecolor``, which improves the readability." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3QAAAFNCAYAAABIei33AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xu4JHV95/H3xxl0BEFERuQijhrEKE9Ac4Iixmjwwi1ijCawalBxR914S8xjcJOIe0mWrEmMG43sBBCzUWJEUSKIELygiaLDTQcGxOAoI8gcRQEvyDB+94+uo83x3Pv06apz3q/n6ae7fvXrX32r+8wXvlW/rkpVIUmSJEnqnvuMOgBJkiRJ0sJY0EmSJElSR1nQSZIkSVJHWdBJkiRJUkdZ0EmSJElSR1nQSZIkSVJHWdB1XJJPJXn5qONYDElekuSzo45jrmaLN8nHkpy4lDFJbWJ+Gh3zkzQ9c9PomJuGw4JuyJI8Jcm/J7k9yW1J/i3JrzTrWvOPsE2xDFOSvZOcl+TmJJVk3aT190tyZpI7knwryR8sdFtVdVRVvWfQmKVhMT+1S5Jjknw2yfea/PP3SXbtW29+0opgbmqXJE9P8uUmN30nyblJ9u1bb24aMQu6IUqyG/BR4G+BPYB9gf8G/HiUcS2FJKtHHcM0fgJcCPzWNOvfAhwAPBx4OvDGJEcuTWjS0jE/tdIDgf8J7AP8IrAf8Na+9W/B/KRlztzUStcCz66q3enlpxuAd/WtfwvmppGyoBuuRwNU1dlVtaOqflRVF1XVl5L8InAacFiS7yf5Hvz8NIDJR3+SPDPJdc1Rq3cA6d9gkpcl2Zzku0k+nuThfesqySuT3NCsf2d6poxlsiSPSHJpkjuT/Gvz/n9s1q1rxj8pyTeATzTtH2iO1tzevPdxfeM9uDlbdkeSLwCPmrS9xyS5uDk6d32S3+5bd3SSa5tYvpnkD+fyhVTVrVX1d8AXp+nyu8D/qKrvVtVm4O+Bl8wwZJL8bbN/1yU5om/FT7/Lie8xyV82n/3XkhzV1/clSW5s9udrSV44l/2RBmB+al9+el9VXVhVP6yq79LLP4f3dTE/aSUwN7UvN91aVTf3Ne0AfqFv2dw0YhZ0w/UVYEeS9yQ5KsmDJlY0f/CvBD5XVQ9ojnrMKMmewAeBPwH2BP6Dvv/YJ3ku8F+B5wFrgc8AZ08a5ljgV4CDgd+md8RlrrG8D/gC8GB6R2NePEWfX6N3ZPnZzfLH6B21eQhwBfDevr7vBO4C9gZe1jwm9mUX4OJmmw8BTgD+ri+pnQG8oqp2BQ6iSYLNe7+X5CnT7MO0mu9nH+DqvuargcdN/Q4AngjcSO/7OAX4UJI9Zuh7fdP3fwNnNP9R2AX4P8BRzf48GbhqvvFL82R+an9+eipwTfM+85NWCnNTC3NTkv2bovVHwB/SyxPmppawoBuiqroDeApQ9I5WjDdHVfZa4JBHA9dW1TlVtR34G+BbfetfAfyvqtpcVfcAfw4c0n+kCTi1qr5XVd8APgkcMpcNJ9mfXjJ7c1XdXVWfBc6boutbquoHVfUjgKo6s6rurKof00tkByd5YJJV9KY9vrnpvwnonzN9LLClqt5dVfdU1RX0EvLzm/Xbgccm2a05InTFxBuravcmvvl6QPN8e1/b7cCuU/SdsA34m6raXlXvp5d0jpmm79er6u+rage9fd0bmPhb+AlwUJL7V9UtVXXNAuKX5sz81O78lOSZwInAm5sm85NWBHNTO3NTVX2jKVr3pFccX9esMje1gAXdkDUJ4iVVtR+9oyH70EsmC7EPcFPf2NW/TG/u8tuboyzfA26jN61g374+/Unsh/zsH+Jctn1bVf2wr+2mKfr9tC3JqiSnJvmPJHcAW5pVe9I7CrZ60hhfn7QvT5zYl2Z/Xgg8tFn/W/SS9NeTfDrJYXPcj5l8v3nera9tN+DOGd7zzeZ7mPB1ep/VVH762fd9jg+oqh8Av0PvSN8tSc5P8ph5RS4tgPmpnfkpyZPoHWF/flV9pWk2P2nFMDe1MzcBVNVt9Aqrj6T3mz9zUwtY0C2hqroOOItecoLe0afJfgDs3Lf80L7XtwAPm1hIkv5lev/AX9EcZZl43L+q/n0u4c2y/hZgjyT9sT1sin794/wn4DjgGfR+7L9uInRgHLhn0hj7972+Cfj0pH15QFW9CqCqvlhVx9GbUvBh4J9niX9W1fvNyi30plRMOJhmytM09m2+h/59uHm6zjNs++NV9Ux6R56uo3dUUloy5qd25Kckj6d3BP9lVXXJTwM3P2mFMje1IzdNsroZYzdzUztY0A1Rej9MfUOS/Zrlh9Gbz/z5psutwH5J7tv3tquA5yXZOckvACf1rTsfeFyS5zVHRV7LvZPWacCbJuZKN6fnXzDHcKeK5aeq6uvARuAtSe7bHNX5jVnG3JXeVam+Qy/R/nnfeDuADzXj7ZzksfSmF034KPDoJC9OslPz+JUkv9hs/4VJHthMn7iD3g905yTJGuB+zeL9muUJ/wD8SZIHNUd6/jO9/5BM5yHAa5v4XkBvDvwFc42liWevJM9p5oP/mN7Rrjnvj7QQ5qf25ackB9G7Cu9rqupfpuhiftKyZ25qZW56XpIDk9wnyVrgr4Erm7N1YG4aOQu64bqT3o85L0vyA3rJaBPwhmb9J+gdwfhWkm83bW8D7qaXJN5D3w9hq+rbwAuAU+n9Qz8A+Le+9ecCfwH8U3qn6TcBP70a0CymimWyFwKHNdv+n8D7mfkywv9A7zT6N+ld8vbzk9a/mt60hW/R+4f/7r59uRN4FnA8vaM232r2baIQezGwpdnPVwIvmnhveleb+tUZ4voRP5sicF2zPOEUej+Y/jrwaeCtVXXhDGNdRu97+DbwZ/SmSH1nhv5TuQ+9v4mb6U31+DXgv8xzDGm+zE/ty09voDel6oym3/eT9B/lNj9pJTA3tS837UvvYNOdwJfp/XbtN/vWm5tGLPeewirNXZL3A9dV1SmjjkWS+pmfJLWRuUnD4Bk6zVlz2v5RzSn3I+nN8f7wqOOSJPOTpDYyN2kptPWO9Gqnh9Kbu/1gYCvwqqq6crQhSRJgfpLUTuYmDZ1TLiVJkiSpo5xyKUmSJEkdZUEnSZIkSR3Vyt/Q7bnnnrVu3bpRhyFpEV1++eXfrqq1o45jEOYmafkxN0lqq7nmp1YWdOvWrWPjxo2jDkPSIkry9VHHMChzk7T8mJsktdVc85NTLiVJkiSpoyzoJEmSJKmjLOgkSZIkqaMs6CRJkiSpoyzoJEmSJKmjLOgkSZIkqaMs6CRJkiSpoyzoJC1rSc5Msi3Jpr62tya5LsmXkpybZPdRxihJkrRQFnSSlruzgCMntV0MHFRVvwR8BXjTUgclSZK0GCzoJC1rVXUpcNuktouq6p5m8fPAfksemCRJ0iKwoJO00r0M+Niog5AkSVoICzqN1F3bd3RqXC0vSf4YuAd47wx91ifZmGTj+Pj40gWnzphPvjE3SRqmmXKM+Wf5Wj3qALSyrdlpFetOPn/Rx91y6jGLPqaWlyQnAscCR1RVTdevqjYAGwDGxsam7aeVaz55zNwkaZhmykfmn+XLgk7SipPkSOCPgF+rqh+OOh5JkqSFcsqlpGUtydnA54ADk2xNchLwDmBX4OIkVyU5baRBSpIkLZBn6CQta1V1whTNZyx5IJIkSUPgGTpJkiRJ6igLOkmSJEnqKAs6SZIkSeooCzpJkiRJ6igLOkmSJEnqKAs6SZIkSeooCzpJkiRJ6igLOkmSJEnqKAs6SZIkSeooCzpJkiRJ6igLOkmSJEnqKAs6SZIkSeqo1bN1SHImcCywraoOatreDxzYdNkd+F5VHTLFe7cAdwI7gHuqamyR4pYkSZKkFW/Wgg44C3gH8A8TDVX1OxOvk/wVcPsM7396VX17oQFKkiRJkqY2a0FXVZcmWTfVuiQBfhv49cUNS5IkSZI0m0F/Q/erwK1VdcM06wu4KMnlSdbPNFCS9Uk2Jtk4Pj4+YFiSJEmStPwNWtCdAJw9w/rDq+oJwFHA7yV56nQdq2pDVY1V1djatWsHDEuSJEmSlr8FF3RJVgPPA94/XZ+qurl53gacCxy60O1JkiRJku5tkDN0zwCuq6qtU61MskuSXSdeA88CNg2wPUmSJElSn1kLuiRnA58DDkyyNclJzarjmTTdMsk+SS5oFvcCPpvkauALwPlVdeHihS5JkiRJK9tcrnJ5wjTtL5mi7Wbg6Ob1jcDBA8YnSZK04iT5feDl9C4w92XgpVV112ijktRGg14URZIkSYsoyb7Aa4GxqjoIWEVvZpQk/RwLOkmSpPZZDdy/uQjdzsDNI45HUktZ0EmSJLVIVX0T+EvgG8AtwO1VddFoo5LUVhZ0kiRJLZLkQcBxwCOAfYBdkrxoUp/1STYm2Tg+Pj6KMCW1hAWdJElSuzwD+FpVjVfVduBDwJP7O1TVhqoaq6qxtWvXjiRISe1gQSdJktQu3wCelGTnJAGOADaPOCZJLWVBJ0mS1CJVdRlwDnAFvVsW3AfYMNKgJLXWrPehkyRJ0tKqqlOAU0Ydh6T28wydJEmSJHWUBZ0kSZIkdZQFnSRJkiR1lAWdJEmSJHWUBZ0kSZIkdZQFnaRlLcmZSbYl2dTXtkeSi5Pc0Dw/aJQxSpIkLZQFnaTl7izgyEltJwOXVNUBwCXNsiRJUudY0Ela1qrqUuC2Sc3HAe9pXr8HeO6SBiVJkrRILOgkrUR7VdUtAM3zQ0YcjyRJ0oJY0EnSDJKsT7Ixycbx8fFRhyNJknQvFnSSVqJbk+wN0Dxvm65jVW2oqrGqGlu7du2SBShJkjQXFnSSVqLzgBOb1ycCHxlhLJIkSQtmQSdpWUtyNvA54MAkW5OcBJwKPDPJDcAzm2VJkqTOWT3qACRpmKrqhGlWHbGkgUiSJA2BZ+gkSZIkqaMs6CRJkiSpoyzoJEmSJKmjZi3okpyZZFuSTX1tb0nyzSRXNY+jp3nvkUmuT/LVJCcvZuCSJEmStNLN5QzdWcCRU7S/raoOaR4XTF6ZZBXwTuAo4LHACUkeO0iwkiRJkqSfmbWgq6pLgdsWMPahwFer6saquhv4J+C4BYwjSZIkSZrCIL+he3WSLzVTMh80xfp9gZv6lrc2bVNKsj7JxiQbx8fHBwhLkiRJklaGhRZ07wIeBRwC3AL81RR9MkVbTTdgVW2oqrGqGlu7du0Cw5IkSZKklWNBBV1V3VpVO6rqJ8Df05teOdlW4GF9y/sBNy9ke5IkSZKkn7eggi7J3n2LvwlsmqLbF4EDkjwiyX2B44HzFrI9SZIkSe101/YdC1qnxbF6tg5JzgaeBuyZZCtwCvC0JIfQm0K5BXhF03cf4PSqOrqq7knyauDjwCrgzKq6Zih7IUmSJGkk1uy0inUnnz/lui2nHrPE0aw8sxZ0VXXCFM1nTNP3ZuDovuULgJ+7pYEkSZIkaXCDXOVSkiRJkjRCFnSSJEmS1FEWdJIkSZLUURZ0kiRJktRRFnSSJEmS1FEWdJIkSZLUURZ0kiRJktRRFnSSJEmS1FEWdFqW7tq+o1PjSpIkSQuxetQBSMOwZqdVrDv5/EUfd8upxyz6mJIkSdJCeYZOkiRJkjrKgk6SJEmSOsqCTpIkSZI6yoJOkiRJkjrKgk6SJEmSOsqCTpIkSZI6yoJOkiRJkjrKgk6SJEmSOsqCTpIkSZI6yoJOkiRJkjrKgk6SJEmSOsqCTpIkSZI6yoJO0oqV5PeTXJNkU5Kzk6wZdUySBJBk9yTnJLkuyeYkh406JkntZEEnaUVKsi/wWmCsqg4CVgHHjzYqSfqptwMXVtVjgIOBzSOOR1JLrR51AJI0QquB+yfZDuwM3DzieCSJJLsBTwVeAlBVdwN3jzImSe016xm6JGcm2ZZkU1/bW5spAF9Kcm6S3ad575YkX05yVZKNixm4JA2iqr4J/CXwDeAW4Paqumi0UUkSAI8ExoF3J7kyyelJdhl1UJLaaS5TLs8CjpzUdjFwUFX9EvAV4E0zvP/pVXVIVY0tLERJWnxJHgQcBzwC2AfYJcmLpui3PsnGJBvHx8eXOkytcHdt3zGUvmq91cATgHdV1eOBHwAn93cwN2m+ZssR5pC5aePnOOuUy6q6NMm6SW39R7E/Dzx/ccOSpKF7BvC1qhoHSPIh4MnAP/Z3qqoNwAaAsbGxWuogtbKt2WkV604+f059t5x6zJCj0RLaCmytqsua5XOYVNCZmzRfs+UTc8jctPFzXIyLorwM+Ng06wq4KMnlSdbPNIhHmiQtsW8AT0qyc5IAR+BFByS1QFV9C7gpyYFN0xHAtSMMSVKLDXRRlCR/DNwDvHeaLodX1c1JHgJcnOS6qrp0qo4eaZK0lKrqsiTnAFfQy2NX0uQgSWqB1wDvTXJf4EbgpSOOR1JLLbigS3IicCxwRFVNWYBV1c3N87Yk5wKHAlMWdJK01KrqFOCUUcchSZNV1VWA1x+QNKsFTblMciTwR8BzquqH0/TZJcmuE6+BZwGbpuorSZIkSZq/udy24Gzgc8CBSbYmOQl4B7ArvWmUVyU5rem7T5ILmrfuBXw2ydXAF4Dzq+rCoeyFJEmSJK1Ac7nK5QlTNJ8xTd+bgaOb1zcCBw8UnSRJkiRpWotxlUtJkiRJ0ghY0EmSJElSR1nQSZIkSVJHWdBJkiRJUkdZ0EmSJElSR1nQSZIkSVJHWdBJkiRJUkdZ0EmSJElSR1nQSZIkSVJHWdBJkiRJUkdZ0EmSJElSR1nQSZIkSVJHWdBJkiRJUkdZ0EmSJElSR1nQSZI0yV3bd4w6BEmS5mT1qAOQuuSu7TtYs9OqTo3dxZilUVuz0yrWnXz+nPpuOfWYIUcjSdL0LOikeZjP/+TN17D+p7CLMUuSJGlunHIpSZIkSR1lQSdJkiRJHWVBJ0mSJEkdZUEnSZIkSR1lQSdJkiTN00y3N+nirU+GtT+zvXdYn9WotjsKXuVSkiRJmqeZriLdxatAD2t/Zrva9qiu8t3F72g6nqGTJEmSpI6yoJMkSZKkjppTQZfkzCTbkmzqa9sjycVJbmieHzTNe09s+tyQ5MTFClySJEmSVrq5nqE7CzhyUtvJwCVVdQBwSbN8L0n2AE4BnggcCpwyXeEnSZIkSZqfORV0VXUpcNuk5uOA9zSv3wM8d4q3Phu4uKpuq6rvAhfz84WhJEmSJGkBBvkN3V5VdQtA8/yQKfrsC9zUt7y1aZMkSZIkDWjYF0XJFG01ZcdkfZKNSTaOj48POSypfZbT/VAkSZK0NAa5D92tSfauqluS7A1sm6LPVuBpfcv7AZ+aarCq2gBsABgbG5uy6JOWs9nul7JQy+k+K5IkSbq3Qc7QnQdMXLXyROAjU/T5OPCsJA9qLobyrKZNkiRJkjSgud624Gzgc8CBSbYmOQk4FXhmkhuAZzbLJBlLcjpAVd0G/A/gi83jvzdtkjRySXZPck6S65JsTnLYqGOSJEmajzlNuayqE6ZZdcQUfTcCL+9bPhM4c0HRSdJwvR24sKqen+S+wM6jDkiSJGk+BvkNnSR1VpLdgKcCLwGoqruBu0cZkyRJ0nwN+yqXktRWjwTGgXcnuTLJ6Ul2mdzJK/BqMQ3zarbzGbstV9XtYsyS1DaeoZO0Uq0GngC8pqouS/J24GTgT/s7eQVeLab5Xs12Plepnc/Ybbn6bRdjlqS28QydpJVqK7C1qi5rls+hV+BJkiR1hgWdpBWpqr4F3JTkwKbpCODaEYYkSZI0b065lLSSvQZ4b3OFyxuBl444HkmSpHmxoJO0YlXVVcDYqOOQJElaKKdcSpIkSVJHWdBJkiRJUkdZ0EmSJElSR1nQSZIkSVJHWdBJkiRJUkdZ0EmSJLVQklVJrkzy0VHHIqm9LOgkSZLa6XXA5lEHIandLOgkSZJaJsl+wDHA6aOORVK7WdBJkiS1z98AbwR+MupAJLWbBZ0kSVKLJDkW2FZVl8/QZ32SjUk2jo+PL2F0GqW7tu8YdQhqodWjDkCSJEn3cjjwnCRHA2uA3ZL8Y1W9aKJDVW0ANgCMjY3VaMLUUluz0yrWnXz+tOu3nHrMEkajtvAMnSRJUotU1Zuqar+qWgccD3yiv5iTpH4WdJIkSZLUUU65lCRJaqmq+hTwqRGHIanFPEMnSZIkSR1lQSdJkiRJHWVBJ0lqlflclttLeC/MsD7jYX4fbYlDktrG39BJklpltsty9/MS3Qsz3894GH0n+s+VfxeSNLUFn6FLcmCSq/oedyR5/aQ+T0tye1+fNw8esiRJkiQJBjhDV1XXA4cAJFkFfBM4d4qun6mqYxe6HUmSJEnS1BbrN3RHAP9RVV9fpPEkSZIkSbNYrILueODsadYdluTqJB9L8rhF2p4kSZIkrXgDF3RJ7gs8B/jAFKuvAB5eVQcDfwt8eIZx1ifZmGTj+Pj4oGFJkiRJ0rK3GGfojgKuqKpbJ6+oqjuq6vvN6wuAnZLsOdUgVbWhqsaqamzt2rWLEJYkSZIkLW+LUdCdwDTTLZM8NEma14c22/vOImxTkiRJkla8ge5Dl2Rn4JnAK/raXglQVacBzwdeleQe4EfA8VVVg2xTkiRJktQzUEFXVT8EHjyp7bS+1+8A3jHINiRJkiRJU1usq1xKkiRJkpaYBZ0kSZIkdZQFnSRJkiR1lAWdJEmSJHWUBZ0kSZIkdZQFnSRJkiR1lAWdJEmSJHWUBZ2kFS3JqiRXJvnoqGORJEmaLws6SSvd64DNow5CkiRpISzoJK1YSfYDjgFOH3UskiRJC2FBJ2kl+xvgjcBPRh2IJEnSQljQSVqRkhwLbKuqy2fptz7JxiQbx8fHlyg6SdJiuGv7joHWa/hm+g6G+f0Nst1RjDuT1UMZVZLa73DgOUmOBtYAuyX5x6p6UX+nqtoAbAAYGxurpQ9TkrRQa3ZaxbqTz592/ZZTj1nCaDSVmb6jLaceM7Tvb7bttm3cmXiGTtKKVFVvqqr9qmodcDzwicnFnCRJUttZ0EmSJElSR1nQLSPDmpfr/HItd1X1qao6dtRxSJIkzZe/oVtGZpsnvlDOL5ckSZLayTN0kiRJktRRFnSSJEmS1FEWdJIkSZLUURZ0kiRJktRRFnSSJEmS1FEWdJIkSZLUURZ0kiRJktRRFnSSJEmS1FEDF3RJtiT5cpKrkmycYn2S/J8kX03ypSRPGHSbkiRJkiRYvUjjPL2qvj3NuqOAA5rHE4F3Nc+SJEmSpAEsxZTL44B/qJ7PA7sn2XsJtitJkiRJy9piFHQFXJTk8iTrp1i/L3BT3/LWpk2SJEmSNIDFmHJ5eFXdnOQhwMVJrquqS/vWZ4r31OSGphhcD7D//vsvQliSJEmStLwNfIauqm5unrcB5wKHTuqyFXhY3/J+wM1TjLOhqsaqamzt2rWDhiVJkiRJy95ABV2SXZLsOvEaeBawaVK384Dfba52+STg9qq6ZZDtSpIkSZIGn3K5F3Bukomx3ldVFyZ5JUBVnQZcABwNfBX4IfDSAbcpSRqxu7bvYM1Oqxa9ryRJmp+BCrqquhE4eIr20/peF/B7g2xHktQua3ZaxbqTz59T3y2nHjPkaCRJWrmW4rYFkiRJkqQhsKCTJElqkSQPS/LJJJuTXJPkdaOOSVJ7LcZtCyRJkrR47gHeUFVXNBefuzzJxVV17agDk9Q+nqGTJElqkaq6paquaF7fCWwG9h1tVJLayoJOkiSppZKsAx4PXDbaSCS1lQWdJElSCyV5APBB4PVVdcekdeuTbEyycXx8fDQBaiju2r5j1CH8nDbGBMOLq637Ox1/QydJktQySXaiV8y9t6o+NHl9VW0ANgCMjY3VEoenIZrptjCjug3MbLeqaWNcg8TUxu9gJp6hkyRJapEkAc4ANlfVX486HkntZkE3Al07jStJkpbU4cCLgV9PclXzOHrUQUlqJ6dcjsBsp60Xqo2ngCVJ0vxU1WeBjDoOSd3gGTpJkiRJ6igLOkmSJEnqKAs6SZIkSeooCzpJkiRJ6igLOkmSJEnqKAs6SZIkSeooCzpJK1KShyX5ZJLNSa5J8rpRxyRJkjRf3odO0kp1D/CGqroiya7A5UkurqprRx2YJEnSXHmGTtKKVFW3VNUVzes7gc3AvqONSpIkaX4s6CSteEnWAY8HLhttJJIkSfNjQSdpRUvyAOCDwOur6o4p1q9PsjHJxvHx8aUPUIvmru07Rh2CJEmLzt/QSVqxkuxEr5h7b1V9aKo+VbUB2AAwNjZWSxieFtmanVax7uTz59R3y6nHDDkaSZIWh2foNCuPams5ShLgDGBzVf31qOORJElaCM/QaVbzOao9Xx4F1wgdDrwY+HKSq5q2/1pVF4wwJkmSpHmxoJO0IlXVZ4GMOg5JkqRBLHjK5VxuypvkaUluT3JV83jzYOFKkiRJkiYMcoZurjfl/UxVHTvAdiRJkiRJU1jwGTpvyitJkiRJo7UoV7mc5aa8hyW5OsnHkjxuMbYnSZIkSVqEi6LMclPeK4CHV9X3kxwNfBg4YJpx1gPrAfbff/9Bw5IkSZKkZW+gM3Sz3ZS3qu6oqu83ry8Adkqy51RjVdWGqhqrqrG1a9cOEpYkSZIkrQiDXOVy1pvyJnlo048khzbb+85CtylJkiRJ+plBplxOeVNeYH+AqjoNeD7wqiT3AD8Cjq+qGmCbkiRJkqTGggu6udyUt6reAbxjoduQJEmSJE1vUa5yKUmSpG64a/uOBa1r47jDHLutMUuTDXyVS0mSJHXHmp1Wse7k86dct+XUYzo17jDHbmvM0mSeoZMkSZKkjrKgkyRJkqSOsqCTJEmSpI6yoJMkSZKkjrKgkyRJkqSOsqCTpCGYzyWp53v56mGNPazLaA/z8txe+luStNJ52wJJGoLZLlndb76Xrx7W2G0Yd5hje5lwSdJy5Bk6SZIkSeooCzpJkiRJ6igLOkmSJEnqKAs6SZIkSeooCzpJkiRJ6igLOkmSJEnqqM4XdF28b5IkSZIkLYbO34duvvc3mqstpx4zlHEnxpYkSZKkQXX+DJ0kSZIkrVQWdJIkSZLUURZ0kiRJktRRFnSSJEmS1FEWdJIkSZLUURZ0kiRJktRRFnSSJEmS1FFNRa7jAAAKuElEQVQWdJIkSZLUUQMVdEmOTHJ9kq8mOXmK9fdL8v5m/WVJ1g2yPUlaTLPlMEkaFfOTpLlacEGXZBXwTuAo4LHACUkeO6nbScB3q+oXgLcBf7HQ7UnSYppjDpOkJWd+kjQfg5yhOxT4alXdWFV3A/8EHDepz3HAe5rX5wBHJMkA25SkxTKXHCZJo2B+kjRngxR0+wI39S1vbdqm7FNV9wC3Aw8eYJuStFjmksMkaRTMT5LmLFW1sDcmLwCeXVUvb5ZfDBxaVa/p63NN02drs/wfTZ/vTDHeemB9s3ggcP2CAls8ewLfHnEM82G8w2W8g3t4Va0ddRAT5pLDmnZz02CMd7iMd3Ctyk0w5//HaltugnZ+vzMx3uEy3sHNKT+tHmADW4GH9S3vB9w8TZ+tSVYDDwRum2qwqtoAbBggnkWVZGNVjY06jrky3uEy3mVpLjnM3DQg4x0u4122Zs1PbctN0L3v13iHy3iXziBTLr8IHJDkEUnuCxwPnDepz3nAic3r5wOfqIWeEpSkxTWXHCZJo2B+kjRnCz5DV1X3JHk18HFgFXBmVV2T5L8DG6vqPOAM4P8l+Sq9M3PHL0bQkjSo6XLYiMOSJPOTpHkZZMolVXUBcMGktjf3vb4LeMEg2xihVk1jmAPjHS7jXYamymEd0LXv1niHy3iXKfPTkjDe4TLeJbLgi6JIkiRJkkZrkN/QSZIkSZJGyIIOSLIlyZeTXJVkY9O2R5KLk9zQPD9o1HFOSLJ7knOSXJdkc5LD2hpvkgObz3XicUeS17c1XoAkv5/kmiSbkpydZE3zw/TLmnjf3/xIvRWSvK6J9Zokr2/aWvv5an7MT8Njfho+89PyZW4aHnPT8C233GRB9zNPr6pD+i5XejJwSVUdAFzSLLfF24ELq+oxwMHAZloab1Vd33yuhwC/DPwQOJeWxptkX+C1wFhVHUTvx+jHA38BvK2J97vASaOL8meSHAT8Z+BQen8LxyY5gJZ+vlow89MQmJ+Gy/y0IpibhsDcNFzLMjdV1Yp/AFuAPSe1XQ/s3bzeG7h+1HE2sewGfI3m949tj3dSjM8C/q3N8QL7AjcBe9C7aNBHgWfTu9Hk6qbPYcDHRx1rE8sLgNP7lv8UeGNbP18fC/qOzU9LE7v5afHjNT8t44e5acliNzctfrzLLjd5hq6ngIuSXJ5kfdO2V1XdAtA8P2Rk0d3bI4Fx4N1JrkxyepJdaG+8/Y4Hzm5etzLeqvom8JfAN4BbgNuBy4HvVdU9Tbet9JJXG2wCnprkwUl2Bo6mdzPaVn6+WhDz09IwPy0+89PyZm5aGuamxbfscpMFXc/hVfUE4Cjg95I8ddQBzWA18ATgXVX1eOAHdOCUcDNv+jnAB0Ydy0ya+dLHAY8A9gF2ofd3MVkrLg9bVZvpTWm4GLgQuBq4Z8Y3qWvMT0NmfhoO89OyZ24aMnPTcCzH3GRBB1TVzc3zNnpzlA8Fbk2yN0DzvG10Ed7LVmBrVV3WLJ9DL0m1Nd4JRwFXVNWtzXJb430G8LWqGq+q7cCHgCcDuyeZuG/jfsDNowpwsqo6o6qeUFVPBW4DbqC9n6/myfy0JMxPQ2J+Wr7MTUvC3DQkyy03rfiCLskuSXadeE1vrvIm4DzgxKbbicBHRhPhvVXVt4CbkhzYNB0BXEtL4+1zAj+bMgDtjfcbwJOS7Jwk/Ozz/STw/KZPm+IlyUOa5/2B59H7nNv6+WoezE9Lxvw0JOan5cnctGTMTUOy3HLTir+xeJJH0juyBL1T8u+rqj9L8mDgn4H96f2hvqCqbhtRmPeS5BDgdOC+wI3AS+kV522Nd2d6P5Z9ZFXd3rS1+fP9b8Dv0Dv9fiXwcnrzvv+J3g9+rwReVFU/HlmQfZJ8BngwsB34g6q6pM2fr+bO/DR85qfhMj8tT+am4TM3Dddyy00rvqCTJEmSpK5a8VMuJUmSJKmrLOgkSZIkqaMs6CRJkiSpoyzoJEmSJKmjLOgkSZIkqaMs6DosyV5J3pfkxiSXJ/lckt8ccMy3JPnDeb7nuUnePMh2F1uS3ZP8lyGN/eokLx3G2NJyYX6anvlJGh1z0/TMTd1lQddRzY0bPwxcWlWPrKpfBo4H9pui7+ohh/NG4O8GHSTJqkWIZcLuwFCSEnAm8NohjS11nvlpVuYnaQTMTbMyN3WUBV13/Tpwd1WdNtFQVV+vqr8FSPKSJB9I8i/ARUkekOSSJFck+XKS4ybel+SPk1yf5F+BA/vaH5XkwuYI1meSPGZyEEkeDfy4qr7dLJ+V5LSm/1eSHNu0r0ry1iRfTPKlJK9o2p+W5JNJ3gd8uWn73abP1Un+X9O2NskHm/d/McnhTftbkpyZ5FPN0baJZHEq8KgkVzXbnWn//zTJdUkuTnL2xFG26fa/qn4IbEly6GBfobRsmZ8wP0ktZG7C3LQsVZWPDj7oHeV42wzrXwJsBfZollcDuzWv9wS+CgT4ZXrJYGdgt6b9D5t+lwAHNK+fCHxiiu28FPirvuWzgAvpHSw4oIlhDbAe+JOmz/2AjcAjgKcBPwAe0ax7HHA9sGezPBH/+4CnNK/3BzY3r98C/Hsz5p7Ad4CdgHXApr64ptv/MeAq4P7ArsANc9l/4I+BN4z678CHjzY+zE/mJx8+2vgwN5mblutj2KeTtUSSvBN4Cr0jT7/SNF9cVbdNdAH+PMlTgZ8A+wJ7Ab8KnFu9IyckOa95fgDwZOADSSY2c78pNr03MD6p7Z+r6ifADUluBB4DPAv4pSTPb/o8kF7Suhv4QlV9rWn/deCcao5a9cX/DOCxfbHslmTX5vX5VfVj4MdJtjX79XMf0TT7/xTgI1X1o2a//2WO+7+t2S9JszA/mZ+kNjI3mZuWCwu67roG+K2Jhar6vSR70jt6M+EHfa9fCKwFfrmqtifZQu/oD0BNMf59gO9V1SGzxPEjegmm3+Txil5SeE1Vfbx/RZKnTYozM8Rz2ETy6Hs/wI/7mnYw9d/1dPufKfpObG+m/V9Db98l/TzzE+YnqYXMTZibliN/Q9ddnwDWJHlVX9vOM/R/ILCt+Qf5dODhTfulwG8muX9z1OY3AKrqDuBrSV4AvR8SJzl4inE3A78wqe0FSe6T5FHAI+lNA/g48KokOzXjPTrJLlOMdwnw20ke3PTbo2m/CHj1RKcksyXLO+lNA5ht/z8L/EaSNc2RpWPmuP+PBjbNEoO0UpmfZmZ+kkbD3DQzc1NHWdB1VFUV8Fzg15J8LckXgPcAfzTNW94LjCXZSO+Iy3XNOFcA76c3F/qDwGf63vNC4KQkV9M7qnUcP+9S4PHpO7dOLwl9GvgY8Mqqugs4HbgWuCLJJuD/MsXRoKq6Bvgz4NPNdv+6WfXaJv4vJbkWeOW0H05vnO8A/5ZkU5K3zrD/XwTOA64GPkTvKN3tc9j/w4F/nSkGaaUyP5mfpDYyN5mblqv0/ralhUvyduBfqupfk5wFfLSqzhlxWHOW5AFV9f0kO9NLsuubZD1d/8cDf1BVL16yICUtiPlJUhuZm7SYPEOnxfDnzDxloe02JLkKuAL44EwJqbEn8KfDD0vSIjA/SWojc5MWjWfoJEmSJKmjPEMnSZIkSR1lQSdJkiRJHWVBJ0mSJEkdZUEnSZIkSR1lQSdJkiRJHWVBJ0mSJEkd9f8B9ojyYUtrzmUAAAAASUVORK5CYII=\n", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# We want our histograms in separate axes:\n", + "pyplot.figure(figsize=(15, 5)) # (width, height) = (15, 5)\n", + "\n", + "# Create 3 subplots, side-by-side\n", + "pyplot.subplot(1, 3, 1)\n", + "pyplot.hist(data['Grade'], bins=10, edgecolor='white');\n", + "pyplot.title('Student grades: 10 bins')\n", + "pyplot.xlabel('Grade (percentage)')\n", + "\n", + "pyplot.subplot(1, 3, 2)\n", + "pyplot.hist(data['Grade'], bins=20, edgecolor='white');\n", + "pyplot.title('Student grades: 20 bins')\n", + "pyplot.xlabel('Grade (percentage)')\n", + "\n", + "pyplot.subplot(1, 3, 3)\n", + "pyplot.hist(data['Grade'], bins=30, edgecolor='white');\n", + "pyplot.title('Student grades: 30 bins')\n", + "pyplot.xlabel('Grade (percentage)');" + ] + }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## Time-series, or a sequence plot" + "Some things to note:\n", + "\n", + "* The `subplot` command with 1 row and 3 columns is used to visualize the differences side-by-side. Our eyes are very good at picking out differences this way. When you want to communicate differences and contrasts, this is an effective way to do so.\n", + "* Compare the 1st plot here (with the white edges) to the one further up the page. The white edges help highlight the bins and improve readability. It also emphasizes the point just made. It is hard to scroll up-and-down the page to make comparisons.\n", + "* As you add more bins there might be some sub-ranges where there are no data. These lead to the appearance of gaps in the histogram.\n", + "\n", + "\n", + "\n", + "* Notice how the shape of the histogram can change quite dramatically: the 10 and 20-bin histogram still look similar, but the one with 30 bins does not. You can use the number of bins to - unjustifiably - alter your message about the distribution of the data. Use it to \"tune\" your message, but be careful of using an excessive number of bins, leading to a sparse histogram with many gaps.\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## Scatter plot\n", + "##### Enrichment\n", "\n", - "Seaborn: https://engmrk.com/module7-introduction-to-seaborn/" + ">Try entering this command below: ```python\n", + ">counts, bins, patches = pyplot.hist(data['Grade'], bins=20, edgecolor='white')\n", + ">```\n", + ">\n", + ">and inspect the value of ``counts`` and ``bins`` that you get as outpu. What do you think these are? Compare them to the plots above." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Try the above code here, and interpret the output\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## Data tables\n", + "### Step 6: communicating your results\n", + "\n", + "We need to wrap up our workflow with the final step of communicating our goal: what does the spread of the data looks like?\n", + "\n", + "We won't provide a definitive answer, rather, we will give some phrases and sentences below that you might use if you had to write this in a report. ***Which of these are correct***, and ***which are incorrect***?\n", + "\n", + "* The grades of the students are uniformly distributed (spread).\n", + "* The time taken is approximately symmetrically spread, with a center of 190 minutes.\n", + "* There is long tail observed in the student grades, with a tail (skew) to the right.\n", + "* There is long tail observed in the student grades, with a tail (skew) to the left\n", + "* There appear to be outliers in the `Time` taken variable, with some students taking an exceptionally short time.\n", + "* The median grade seems to be between 70 and 75%, and matches the value in the ``describe()`` table.\n", + "\n", + "### Summary\n", + "\n", + "You should, from the above exercise see the value of a histogram. New terminology is ***highlighted***.\n", + "\n", + "\n", "\n", - "* Precision of display?" + "* Histograms are a graphic summary of the spread of a single variable. We sometimes use the word \"***distribution***\" instead of \"spread\". The word ***scale*** is also used by statisticians as well for this concept.\n", + "* We get a good idea of the center of the data. Also called the ***location***.\n", + "* We can, depending on the number of bins, detect if there are outliers.\n", + "* It indicates if there is skew in the data; does the histogram have a tail to one side?\n", + "* We also see how many 'humps' there are in the data. Is everything collected in one hump, or are there two humps (peaks). This webpage shows an example of distribution with two peaks." ] }, { @@ -963,6 +1255,13 @@ "css_file = './images/style.css'\n", "HTML(open(css_file, \"r\").read())" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { diff --git a/Module-10-interactive.ipynb b/Module-10-interactive.ipynb index 2bdefcc..cd128ad 100644 --- a/Module-10-interactive.ipynb +++ b/Module-10-interactive.ipynb @@ -7,7 +7,7 @@ }, "source": [ "

    Table of Contents

    \n", - "" + "" ] }, { @@ -17,11 +17,6 @@ "\n" ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [] - }, { "cell_type": "markdown", "metadata": {}, @@ -148,25 +143,50 @@ ] }, { - "cell_type": "code", - "execution_count": null, + "cell_type": "markdown", "metadata": {}, - "outputs": [], - "source": [] + "source": [ + "\n", + "## Data tables\n", + "\n", + "* Precision of display?\n" + ] }, { - "cell_type": "code", - "execution_count": null, + "cell_type": "markdown", "metadata": {}, - "outputs": [], - "source": [] + "source": [ + "## Time-series, or a sequence plot\n", + "\n", + "\n", + "Time-series: plot some of the integrated curves in pybasi03\thttps://www.coursera.org/learn/python-data-analysis/lecture/KjG8R/distributions\n", + "\n", + "Labelling plots: titles, axes; legend\thttps://www.coursera.org/learn/python-data-analysis/lecture/xhEIo/hypothesis-testing-in-python\n", + "\n", + "Time-series: monod kinetics\tRegression: https://jakevdp.github.io/PythonDataScienceHandbook/05.06-linear-regression.html\n", + "\n", + "\n", + "bacteria multiplication problem\n", + "\n", + "* Random walk\n" + ] }, { - "cell_type": "code", - "execution_count": null, + "cell_type": "markdown", "metadata": {}, - "outputs": [], - "source": [] + "source": [ + "## Scatter plot\n", + "\n", + "Seaborn: https://engmrk.com/module7-introduction-to-seaborn/\n", + "\n", + "* PCA loadings are orthogonal. Plot a scatter plot, and see the correlation is zero\n", + "\n", + "* regression: https://towardsdatascience.com/simple-and-multiple-linear-regression-in-python-c928425168f9\n", + "\n", + "* qq-plot in Pandas\n", + "\n", + "* look at the goal to determine if students who took a longer time to finish actually scored a higher . Come back\n" + ] }, { "cell_type": "markdown", diff --git a/images/general/Crystal_Clear_app_korganizer.png b/images/general/Crystal_Clear_app_korganizer.png new file mode 100644 index 0000000000000000000000000000000000000000..288156018d6c2149927c9a73ca2ce8300b4e4548 GIT binary patch literal 7118 zcmXAOcQoA3_x@{(&RU`qE#kdI5IqE|MvG1gVzm`5M2je~dQA`nAxOw-iRir(M9FH2 z7FO?~_qF@=`Tgdcx%WBunRCzFInUfbW?~HW@6%CpPy+x!r>&)KeC09!o0O0%dpMVL zcIBXsDi2fup!{v%g;6p9fG-X8Of|0JBogV$h8cn9LjbUis8|pBUkY&D946lEYGVPu zqR2%VB++0;l-3pg|AQC#|GYRGmA~>8qC~~%6&czqfL3F!Rzt|txB#?d4vzHwD0Jh9 z)V)CBam2QdZSJ3u8vc@QG@*yrNWBxAJat!qcrgt6JHJVqwEek6I@xu6)^4fP;m%%x zUfR19?nI0AqKQP(tuD0qPxRW(2}dRR_sr()Zgl0qX2bX)>7!^JZnFWmIkQcunIi3+ zkPz)?u4*)X<6vlhXKHS9XlA_&f5usbCXRUajc?%mHM%Evho(1$+8szF^qoHR>N`bN z+q_!b%Gx2Rdy&*QLn`}o!Tjv2NSDLO1!;blRCASlVT&|?R*z~O+aUe;vq@TYp7}=_ zT_@ZRull(}__INxvBr+9TyzfNm-a|U=OmHNXFtX__D(ORwn((OsLr{|=2=qx-^=d# z%T_$;*9vJro0-(h_wDCK_X&+U#2*;U-pyE#$-v%7JCl&e0iZ zn~T`S@N06@XTqm)V1e;zZmltk&2)qY&b#>MI}#(EfE zY2(p*r8}>MbKCwB^6rx6!-&H=CNT}fb{FDM^!(yx)P7>u*m~9Ara-g9N)$kyhh`~t zXc^fgToSiZfr+`*(+lGFzKwGN>26>ZB+KD?jYG!3#labA0>63ZWhJpsbY-6;*y^x- zOsbkVFB&>Nzz&d_L8K2N8Kex-Ca6&zAnpFWlD#B0k9Z|tZf|3K69ACRTpe}uOShD89tW~{BQV(K@wof%*`a7OI;I9X%cYpVPX%GiSu5XBr=;-b%HNo7$4XhrR7jQ=`MQpOr=1?OBowYou#@brYxA&2dN5d)pROe`S@NGUj$otrqhN~^7v+Hr5VL7Ozkq!f0sz$wv&cEV%udiiv{AXYb9RVKG>ubkS53+m- zty78}!xg-dM;ee3q7V7ZlgWFN&b1@xF6!@51Ti9&eMSl)7*J0+2-v;BOSswJrrZnl z_Vw}kwz~XWa{~s0nZL3|BuHQ^2VX=#>9)*f?zQ-4 zsxWP%nQ-LoJb%6>WRb#?~1|#Ik+>u3qK{iR$KetbZ_Xn z_4MrQ?Ed>|DSm)WH6Mh_;R%GDvz8HA>@kFu-cn-uJ&Q5hh@f02?XgaWnyk zYB!;0Y2lXt)WUPgTJeamBmgnS3lYsZUB1hXLK0^J#ZjLLBWlgFG*%5HU-Ojl(l2D^ zPw1y9-nVN3OB`a>nn08TaCVm4$`P5^WN!LhNs{7bm{Yv)9Sc*64a7+Ge?j6H)kW>Z z*1)s0&M10iifEd%ULd{07rx|6P zk}VAzC{ZKYh3rmPc0Dx8=E;py%mjQ8jW$wc%y!!EhPq>MR){iR4^Lfgng5 z{2iWieQjb)oxhHfK?7zY12^KcJ@Vc@jJl+LaSB675k2!b0Wv3KJQGYsCYusq5Em!} zv>vEI2{WT-?(SL4av`M=rhc2|fP)Icq6~n3^7qJN_pY^iJ|`E*Lq^`)%Abmr5A<2O88av3t?~u)Wl#KF zeeNxm7vp?qKD&*M+;rEF=(abUCk`Rk0f;e8!T>K-eAkcuPizs4g⋘C?=_dU$Hug zga$g!Ki@K?Bmnz1tP=2uq!WL5%=aH>Ci{JOXhb6!Q(oN!wkU>6Q&s!KBakX$q5{+t zD>W&_CWx`TF@pDAbfg?2o$0(fOWnWCz+mKf+~gMmfBHIAjm=4^8d3Vv^+|T;n1*QX zTX>$e)%#aX^6>lR?EzDi028svV^MYq7@+_gwt9ZKr}@Eop^Ad?DG(Aj)Z4q(&xK7Y z$cuwJ59j;waQ|dO%4Vg-9kQx?v1Lg$0?b-#Ar`wJaLq}<=x;LnCa!F80HaF|$ zz_W^YyF=6DL=ks?t`BN$C;=fj$fQeSBQBKX%bSl#RA-&d$WjbNg;lO+mXGE+&j2OIAejN>*}sHzTyj&Y@BA(4|s|>jAs|SN&Dcz;G7%F+Xo35 zcd;QMAr1=QJ*UC&{t~r?H45q%Y(O$IM{pw)CUWY=9hQ#K?MpzzjzyLN6r)z;My@#!e4_}uy z1;$k!Zdx_MF|1zG&t(e~J7k7%Q{-X8g>>?^XZ{VS=Nb_`ctv3_gbYFR!10x(dg6QY zG_0iC8c-Jb&sueF=aoJ0rPnfpal+(u?GBh;{_jUV`o}*MP6F$T>w3|VbZWMCuIF^E zuK)hV=55dpo#ZZNH1SX~bn$ubM}jc4Z7@Q>tVVuoIe`msP5N+w(}XtquD}bL|7O){ zDBKN7Q$w+SJ<3+Rwtovi8nduH+S5|JE6#)$wp@K>hne_mbJfTGCL|=ZGLd%T4u%|O zyS-ND{?l|`Nua7}taClt-*>k|-tn|NZkn)rz`D7v$iK#o#d?{X-oGU*>S&62V?h9fU+U z5;5@yBnrQ)(A@MnE+;)bVtaxC?L@`o@9)oTL6)%c>j6MbIY!mcK%AU)QYp98nDPJ? z0)UnF9Ew$L*LxI->E)aZU#B#Y+?a(bR)P_}Nb;%^EHL@}KMkcm}&Z{t2QVgJ9}Q{{-p6H?apx5=Rsn=RmPuWs$E9 zPN#f{1lTm3H0hQFk2{xWDJdzD{%C_nzegGXtd#!D6TC|}GGHw#Hg+fyG8q%|B(>h! z5aFx_#Z>MdWFi)JtkijoN$o67*n{uv>_;^iI3xeSV`fWSZl$zT@l@Y{BoxvaOE)1^CInviH88CrD3f0IAPrdSJF#^$@zzCb}d&XN~4s=kGZe3hh zScXML`w<6Mi*&wo5*Q%(n@LA`$e>DS!ooJGmO8Q|T8^^rqTfmMi;vO1PmFY=Y(LEW zx)~EAU(T=9*7d1$QD`48`?PtA&SQ`JPeK5kPw_*N)20ccSIf`X)XHscOC*Vn4H~zu z9+XO6o=WEg-`^bU=zTxdNr}aRCaYsMg}s=am^ge8z?jg!-89dK@vdg_@PNI1vKMfA zoi8hmij1z4iDc&J;l7QH4W=Ui0+F$1v$UpXN+bh+XcwWCRg(>Ip%%#9m-pt?ct!ai zzv1|Zvw{2}7x45XA6RM+XLIV%v)D8fc|Yf>BH?G)l`mQHaeV8UBqa>CN>d^wHG#b2 z2=lrn1*w8)mI>6&RwosxFFK|C+)+#kJ)f$6VwBXKt#4sl+VXnF<7oE5>EFf}+UQ%U zv$4b}lmo*pz9)g^yp#xGVMaUF3G#Mw2e+dm4zoZh#;@zpI^G*)BE6;Ge#a~aspJ*4 zthS(Hn+Q|YE@{_=yJVYKo$Ybm3`k2ZRq-?;!@n)d=67aHiS5S5w#*ocTO}F)^unac zg*FU$=@d``ruASlCObAw@nZ#R z1Q(VSt#aZbZ%YSd;~-tX>nNSjW{M_=Qc+>XGU^G($>Cv;K{njMFy7U_j{^d^$2f$V zTHR=H|Hak6la=+W>b<}p%^$JIV16HQz|guvK&V1|tQ?p2=0P*87tWu*GOz06&)(SJ z|AqGkFE9JM#E^R!sj6+v6Z?_^D21A?M2QqiCNnVV?O>!KARfvGs#1B5TV76<5wl=? zTsWCOec*QOEePN1AfS1}a6S#Z_TtrQg5P%RGVr1`|IsKzeA5 z90$PWjW+U0O2qlfP`rDkMkn59aqsiwhy-+EX<78+{57GbXrq$X-O&Y=+# z>pNl!mD$;;GnS2?D)X&Dhd^(Rj?NQ)JOgR` zYGH)AuEXDyt`FV!y z&!xY#J$!x-VKnjcqBb4klv-$3%xeiRpuFxJVERGp7~eXmbfY{5=X2eM)w?Ajo~ z!anNG5bE4onz1oKB)eQy^rLSGEYG?VQoDQz>fCk@A`+dbxl6|FpKvI0n~&yDqTGd< zgN)1}kzp5^*edfdf#l<5ZiYTqmIIM2Q zQNcrle7!2o9sjk#wjjtaMq|0O?{8alEIZhM)o6KPsX^5@q%*4dGP! zCPqa&2@$R*or&I`G*p(q$qzFd$B3w{g4+_io)EVMy*sQ&5xLT%~HuZ zdO_h`A5G>K7i;@|Jr!Eq+S#I2Q%fPY4>fSn_VQx-8#y#9f@$feOl=Q0=|4Pq%KFj$ z_SV*xNLI)O24loTEri*No5JONwk<7Mm!yYrKy7S>VvxwXx<+`Ul9CbyY+~|e8SQrP z2K*%($2+H84YIONk~`Z}YY?Q_7d_MZYenC`=lmDDrEU~0_?e0$ydlBna=4!n3>ltT zHX;{RS%V_N?v@TzxVgpS)mCt|AMakH3{;p~u(^%kqfex{>T=aXA&dB}HqhoHb`fJs zw&mQNwq-NhP&37_=)5l5@b(}F)SQuNXsDyVma>T6!2BxZWsQ5z_KtFJ3(x$>i?;E! z?f(pQer;&6*n!m$m=&!xq**M-k)i?a6D`6p`s%Tv-ja5x{#qKZ2vp_AA{HA-KI38Y zBGd0|bXlf9O^h@W`fR#8=2$++fBbl|a@Fxg8&wvxG2UM7b7xs6w|_fa)1y+~5$D$1 z$n!K$f{oQ>8Hn)vDBu@zzd}3hIiz>WH7TblbZ`&X+5frnMVwR`+LoxTZOqIOjuMD9tSa5iVz z9DtYkZb3Z(GXOYn?4x|`csA)+J!K%KLe>@m9ZHEh_+#1?WQ&pa@8b z{III43L&Y*QSDA?s9;Y4%ba?jehRb#Hb1nOAhKJo@n(+V$lX0>(CxWW_{-d>Av`ur zBKLp&rgqgPl9FES&*;wRnglP!J*_BaPPJkk6eE3 zvy>O?>eaOtFJ967y960&hzcxn|A*49%;8|47jA>fQ5C|1+gMIH^hrXTBlsp!7R}vL z6$OvP05#L-MSTrL*V?|pOGwnyoW^{Q6pGBAx6fFb1UNq>kQFj)ZQ*QvyrFBBa`Q7( zew={Wo6pn^b3;UNvwU?%Z?W#63KNN9u)$#MV-KKYT&9ysyttxr|2Vw%dg$y45nvw7 zn=YrXuG&x+c{fK^!OO)l^vIm-fdtLDS-W09sHr;)eDtd?;-z3=QzJlr_8OU?nOW$k zuy5n&89Gc_f3y{g|JxISjY?QA}l^@AH>$?%qn62|=*pLrfP|$h(2KZFw zUvDN$)1er0171CG);IkUX{BLSZDGBA`TdOk_%?g}d;Vcvv8LOs3?cW`f@!j!Cy@K> zNF|Q*eg9}$@M$19O*tjlUwUoayN=d2uZpL}Wr7hL7(^2@9=;z<0ExCYvC-jA73rgxW`pEzU&W}%)zbr=l$pYB&j0u{$3iI$wB8zbC(x+3BUW8Jso)z7Dl z%A51v|EXO|?FmFS?Ih9NO%T3u!>%#vV{D)LZ>7aZo$Hb-c3?v@Cy!A}A(I|m{ZtwG zaiuQVq7)-O{kj_#o>jx1ui3sIe5%g>Tp0alps<8~yMA6h1L1b~JL+`KI92tGZCuG4 z5Oz~{K{J6;oOrZ@dcS)b{g+U400D@Vd)62dMXAZGB1JVg>3<(;+8X-mrK+gV{{uQy Bi=NWsX_z2^+#1oL*uPMe0j<8M5D9?L2SLhZa+mmW;QWV?HaZ3ne)jaXIr1Lri9k= zu2M06gYROYWR_Hk965IA5M65Enoo>N5e4^Dj{X(XotX_Ert3nQUnwb``<{zCJ$&c9 zCnJSHLmc#)IZ;bI0w(}A-LdtY7fyb#K9^k6RA z*O(21H)Xqrt{kDMs-2@b$8B6}?o0V?W;}1_0<7CF_IUHN#b`4RjMntNxi%4Rqk9D$ z{QL5G#unQ=&zs+TE!SKxZuH~i;O8TFm7qTKk6jOrKZ$z6DToLNj##|dGO=t{3A^#2 zSSRuj6Zg8;wa{^PNoyWPmCNVYm9`}>u`meae-_Wb_|nZpk^|!;baNleX<XL+h*+ zPt2UCA8Bfe@Z4YCE4}<^yR$&7|oXnsI+C%b7@wR%5 z#~uo->1(x}S7z*#_qGKnR$PXhlygiY!>@9tF=mPvCkmsW(|Th3_-N}xBFDH0 zm&do={gnGQ9tyxXE|TBcO(=A}vcyuF2bJ6|zj-eDS^Dh@HivEm zMwv$4Jl4H`X!-s-cJ@yS!xs~S#q5zc6VAKtZ~pAKcxl7>qr&qtoa&-bUXwy}E0?EUIA>^W>b>})E( zxIZ_b=L!dR7~&T1>2Ml>#IJl~Vg3jlf(DVHibZ&#>F-?1Q|L|RfNSvXt9?AGz2v6#>ex%Ie=u8B^UX_N7Zz*|N!f0`5V;Tn3EdoRCvX^<+H z`tjfzP=bbe4>i8D&(5P+Y?KW($;EyP+j{b?ruSx{=tfFd%Xd~6 z3KnKqwX_Ys@H+2t`{SnT`eNc@)d+n^MaIMFo6{Gk8?n7FJF>;lnHlV_6JD08uP4s? zaw>(S$7C0&E<_qtC>Rduq~uhn5(@}iY6o6PiA9t|xg|?mrkXL_fl2nDT1`Z3EX`TW zZd%^7+h~1eI%*neT2S}8%Chz5kn7t;s*zhG9(;6sLVQ+y`f9h-2NUAss^hXnP~u*; zudI&R+_-%Mx%Mg1eEx1S(#XoY@`2@d(=e0VfwYdpg-!)(`DcngT0g!et+$wk(Z8<_ zQ@fW0i`A0;j*;lAai#N>#zj%A1CvP0V9*RRiK_%RyW)-#p~R;Adr@}&3y z#?lL==HUD2HI6NZE%t-rPbr>O9aKM6Y{tllR&70feW|8|6~=4g$uMzh9+44DjX z3$qE{3AzcK(6rDYp-e-elEVgG2F#_&_jV@7N24d4d**~)kn8)`cjjC86V%7m2W3mJ zm8}owa&a$l5mRxaB@OwwhED-=*QZuv?|vQ5Tgy#$(|67A;QHY`Wj4dJB0au5h;4Ft zvB0X>DBPOUlT&Hjq*z_iNWAK60=I^vKHW|=`?mc_?EItD(A3rQMGx;kl>RL7`Jql? z#+gJ1g-2|MnY52Co$EY%jipbHDM{w;boCqhFKS@wNMFdB}1Ajsbg2QPkUH zJ8JjbZtn{^+ybJK_Qu1lPQ7c{=QaXrW@$=`3-S z??Qv{NX2FP%R_Ml1s=JVr_6Z8gz^;v5~CvT8>I5pG9=RG45KM) zJSTd4O+s>phuJ!YFuZi7Nny_G#8&yWy>CBc@?^GP&tW@fvAq?TqghPYHLh6u)aBHn z&#z==J`Ah|ZiXv;3*Bhts^HskpSf52J(@>IWjZ*XBkP>9;*EY^@kS(zjT&;+_Oj)) zjKY}fm3)uo+#wt9Oc|4VY1`=Py26Z;8PO?h(uVikC)Jwc{PN#ec<7rK^(!*_%va;B zCS-*k85BE-ej6^ivC!QSBPWz(>4=o|?j3U&VahmtU@myB#@l6k=jKx#mCEZAnd(W| zNlk_kr5c9IADq`d46O!8J+LzCdpJbX15?u-h?ROvfW@u{1n-JUr4i$MxMAKiyW+(WY=Uq^1z0 zOg<(Er-bnlWo%KrsRK&dv^A_6nRH^>d@W#Uw7rwLJrLo~-&@mB~c2~)#nEocx zJ<5IA{(VeU+86fy-z#ft*$pWWO%$Gof&=&4ak1j_n8VBVeTp;aP15AP=vqFMe&#&t zSi`*^54Vq;h_{I?J%R^u0>$2Y2t7v%ilZl>|0z|qd4Et)P$pYlyXkaOT}{T!4kcuA z$IkSwkSppQ^l=I~R~hgv>aLRs%oSy0>nP(Y&rSM-4EP@Uu`oA`^bsedJoim?Etry> z!(Et!khqWtw*nmu29tBRV=kk8QTgX^@HcsGODCs$GQz?xE-peYVnTKf7Q&*^($c~r zXNAw66$GCUbabtyG>+5%truD-Mjr%g528;xZ;hQ5D$^Ocz9*){VcOd4qLo#`7xttxiR?84=&&Bk6;0 zFb-T9sR@x9sSe8b3ep*F{pE<#!ded(d+&T;Wnp>0!$sUsSOSP8mC}iQ`r7dsgZf)>CeG0Lln*umlcU- zXybBEw~YTbI;VorH#-14@r4Rvd2fMLL|Az=l4jVf?9@bVp40 zJ6Z34_>0)!o#f|S6@If6fh}ffNIBra{maWjgGuwzmYKr|Ube*jW72}Dq81sxk;ih-#58+Rz5~s5$A6hm zs1A9~7C*FcY9pp5M63vw2Le=L^ z#7X?R5hm2)(1G<~(~-%)F5Ww~g|~k1@-> zTCtUz8tcMhEw<_+_}Q`jEbZ&V>Gq;)!*Z-gemSpxJ-f-%u^lQ$*$#ZTi&k`Bd5uyD z<`8w6@6T0NaH(RO%1}=*f2EmXi))M%YYJo)3tY+2NIJW-vx8CeA$%;k_x(W_;W>Y@ z$V=s*yt0ao@y0kag9xhDNC6$2M27n`7m3X!@Q10UTwipQC4#+wo>3_S2-F+oV0gB&72 zY(;ZlpC1|DSRBCwamx1tF7-*>XG=xWPLrY1u0K-4jH;c~$4B~> z#u|bO?lwgCnnp7g-Fav95p0)HBEQ+My2FqFc3u7rRXAga0p-+>@0H^z#O(|e;ey+b zZ+`abbW%%3n^ghKF8=Vm9Hb&)fGym-reXu|vPyv7+31e{%k z#Matee%b8ln#dT>ERAwg{xahI50CdTvtjSZ7L|RZUu-XCQA%Vs`_*@0D21j`M-|?W za+>d##*JoL%$Hnj-)d2k0lPmjpN2K|8F*(<(vDb|mkBqj4o{0*$v1DB7WWY~m)}*# zl#d=Nb;;??w+KPaXY)^`7xNltMG(M#j?ebyV~q37gY-(Bv%&_MLJStTN@qQS0&-_d z-gEt`yaJFFi8uwrS8)={Jov&^=7V8VCtzGY+qrYtEPabX&t-LD91@#*o#$U?uyuc& z<$MG>uK>e%-!||chOrSG>oqhTBKzEE^662+&S-=to7K{3Yp_Us>5BJfWlmo~_2kE+ z{tE3bI`B=x)LC|r*Cw2j5Hb_iT6yhU7hY)L*Cbv zUyZaE?4(Y$7kwflRsD~pnv<7`P75%@VNlhD_~i+9toP;=zy54kc>+~9u>ncwAN}4F za8xjlzHUu%=)?WYvR$g~0(VqBR=aeYIy4mrtO#oZAAvnDmF8Nz^ovo0F+ndFp+h)i zgvb#QeG@4@whJ3!ghH&5SVOd6ewjyTp=XqOa{6ez+{G>YL`qT9Ko@VB+(mtFFZIns zJjzaegq^J>mmx0;bj;l7Y0LJC?WKmKap8IBtn0Ko;1E}leFauY<90($kX9uun;8G< zaA-sKpj5W6(@eMENW7d~t%Mt27y@&hCG*p!i+FcIWJTfh;#`R#bf7jvd**b>HCt!EP{{eY{rRMILB9b zNi9eSRogZ{_4>!1bqU!2!D6cRPoI2CfcFtb=;#(s-WlN{zTfd!D6{ZcRC9OhDMV(6 zg2gMTmbdejZKvTn-{_!(U4%>cTv+Oc(uvcVIgP+YLJ1oyMa-qgm`0ptzz1wK2v>-g zx-3Yxx5SE89t}dr$fg)97cGnf)7R64e=q#&8GAzu&KUbu_!3v5*L0^q2XJE0if&72 zFX5ed31nkmArd9*lZNeIT7K{-N7Lkpb?gH^;M8Xzkz396<`OQ&u+Zz#XKSn~T5zEF|#DqSq^?0wv zwx(N->bG&t>VE60h4CsC^De1zD>LPyVaX>w@>EAE6^l8|o*j0)Na6PgL_uAQ1_Eov z#^#R3rz5^Rmy4(!5agxLjOL>+D)+?a?G%dR#|ps7ce!P3Y&?Nio@h?WujuBh=mcI= zv4&%dQ1~EI=%^4c@qCZlJUl!ntE4n^wB*XAdH9mgC5^#SpRMf-%@oX~vr|&2zB`h3 zgEk&M?1N;VLM#2#!(B8%y*{6M24(LJWd;Q5ZNJSeTbH(D+Pm#pD_87L8+(ITi)_Ep zA?5Z$G%H!xfXX1mzAB)X+ZXOm#TaVs|Hi`-vyy@-$E?-yr}P;4U&=1w4q91iwQjuw*UQ3ebniu>8{M6l^1jfZ8?YKd>XECpI|OUTkkA< zX~_g!mH7QB7tpu^3uH}ut^Mt@g?{5hP5rE{t(@{zySVZq@a=NDz>ja+l4i|z5}5T@ zJyJUd%w7?jdj_`>i#Dl?Iah0*v4UClfmxmk&hfmj-UqG<8JF)I^6s4+vd)bd(#_E? z=0BQg4zBAd@%2WYsR1xqevQQU>d8U8K*;LeWvGD<_t#AN+qYa~>vk11fRiOj~?PZOKQa8wLS(w&)f7{PKYqAq9GUDCT#5F{eC{lWQus1Dgg>YrwJv^sb zb)f=dJ7BG_H7mxmGh7vbikLWyZ_!-(<(R^^sd(QlR)oZpETne7W9iyjB94DF!)yogBfeO&1}mE7*#QnplRwjGn}uM~6)B^h{G!0R>lCgZJA|fRh1`TB z_7Res@Kpf*h0UV>PB&xdaFAhlV+m*eoed5ktJliFs3qT_RGpU#w>YLM>oEGP#9{1m zMu`Qd>H?kE5k587JJhw<{?XI6?G4!Ge&Iqq`|A2S&R8_Ui0;yo8t;_Pdg;*pc;bHU zxTnY^PqfsaYo&s4-7%Hm6V$vVyHxu&S7&6^%h$%^6`$G;0uOy4k$#KhL46elbF$kH z0uJ`lcX5vL=5;@$fw|ENg4~!A$eS81^jNpecbw3`l}^yBR@n6BX*AH45;LvMssnRd zl*0#oR7GnCdPj#03(T9?M*6xkb(>lgi8kn%lG&cz$~AUL8xeLXTk-Z%W4j38x1fpN z9@5LGbN0>s&n5$0J7UKQFiuiSTGmqomAUCLIXPt;!vUD}N(HNSULMr&*XNi?p2u7z zj;eH06>ARkZP7GV4aY8L<6X|xiG`y@cz1x+Z%UT;uu-%dlpBdJ1sCu-(spT|6%w00 zCoV;UCH8sxd%v<5Jt|LwAssQq72ih^gRa_ee<^1@u?hFa@b8X5xl`GG-uK4d_^QD< zo-(;-x5^Lmm3dxjDg?fKf`HB|mZ=?VqO@Zmaz4{SnH?FSd8i)_%6cRWOHHpXmSFZS1!}jkq}ybetOP zY8E5mm|b&*RRNmkTj*xyzYY(lxm5}oM;2`Vz@_%m3xP9+lQBYu)@VV!yswFJZtb=C zLFo0A6kgnio$3%Sy8!w23c}`0QuJz6(L);gKI1zPgYv?v?yQ=eoq}b=RT+T`b(Ll5 z3su15`ggbrmxE5%*XhMLZMeGuFTuxAzM4y^8BAmND0v!73-G=Qp9=hZ=|bR&gKh{i z?~%cwT4Rm*d7df5Lzg%G{3y4W#HV(=29&bWU5r&C6lPxFmI@1WGBjAH#+v!CcZ9N= zP(+!;m3g5zH4BkT|5Gto!0K}1R8v+1(~M7Zs%{JzUS8VIyWY?3<{U=64vuvon?!ve zhjcqaxQY`yYRio`h$lK!3A&|X7+)HgT*lZthMR^V9rz=VgmW*T1M{Le$exrY9A<=> z1c}+6MbaS_tA&u`1|fQ9J%d4nevJnNubOXtuc@K0^b(kOw@jjIBNh2C(HNQj-SgfdP3As|zZWZwM@pk}0ufmRGBx6oo%Io4^!c za#kO#qVAgmHz{~e-;KC=CHGCwbERqJq+ zG~h1KyN3F%3NC8&rWu3#9)pkW?l;|+S`0Zd@PXW9W3q`AOD$@=uQ5 zm4nV&EIFRfW#P*&1ajRk#Q%UK*ULbzj0yfpCt+`Bm0DHr$?qAvBLWS0Pag1H(ozA)}9$9_#p>t#z*FJphz%dbIaQ;7p49w7`~KZ*$?57@@cn@69@d z@W_Wnl_0je%E25~XrIlg3{(O@&RIoGFJ|CrN*%`hlNz9uFGK*a9sFpeZ)}`muf7%| zdAFW%8DOw|YhRCOZdC5}$gvmQBP+e<0!TD5Jkti5)%y3nsyhEIw+eE-3Hn90tWzPJ z^47R89+k!_@75y_@1C%mL1$>|WxCm}d(&GSZd{#{yOWs(f?$G%iKnqdQU7r5Uk6 zr_r8stFZo^QCZ)b19SUmUBuh~!rAu|@g)$V!lfr92GTP%AjCXhw~ln*Q4`*!=o!&4 zxC0w4j3Eok--DF7r-T}S8%Kj*_z;#;F!!!MjNzrh=oqSqQe54D1aH}vOu~xxdk16PEs)P`EE@7gqFpZWlw7GB znBv_LYmqZsk0Des8y8dwPI*AQ2oL+@z~@kgjv<6%FH$bo-SZV=C@1rC;*deeVoj(R zNMsh1Xd_2M(f4>X{Ek)3JaBGj;<&2)B*YLY1DR>_vHB=w_uiVh89G(% zYYxUP5k?q$R6AO=x)9*YeZwIu1l_KK$7JptO zQ&IBNqCu%J#baK2>)sroj3h`qjN1M5=u-S$);zYMA3m=z*1z}}igV!iQB3{bs1thfBj%FMnpGx6( z4niFQ6B^@x52&4jl?=B+Mnr(IME2R}_ii%ZLLXxzn&PzXI(b_aX?(L8IBnvD*{uS;iHEA9vPp%A31r4))}tV}?WIkgD!3%n>Vu{78kJ6&)UR zI(=<`l7|JJSYGF9JZ4&AZ4h|8IY5-0lLx8epmWX>MXZkAGnE&@UD&)jhD6La7Xs(X zTHG>?eP^!v1jZhxqD4alGbl&zgtx(Anu^C2Y4yDYQ451*Yq}k1-;sEa;BcT&qXyqq zHX)V^y~4()HIKDf(QNsx*?e=rk5DGhY6jvb`fTBb0$1i^+qY^~{|f*q`#Yo$&=<*2KEB;egzz+*dZceeY|XaFu%-)Ka_Z1+ATO7nIL5+ z>9bME6}VFBJU3kcI3R-%m?Vk6oVcy;PCQ|@y|ds`WCj$_AR=c_JyztiH&e?{dBQr_ zOR0&{A&?@#+Yc0tJrR+hy|YuQFa%&SOU<0IUaRyKXvaaRCORL zW<4gEqeTKB_1mWs3!We0?=yCbQ1}~@ham%)i$wbfz2Dymfc&y+*RF8@Whz626GnhA zmIjW_ShQaeova|tRM-%6h?_aph41bzO(+t3x3?;YrC|h3pUnt-kX)T1@BAhn-a+G zSis=uBPasaY7jEpmDj5~6HCpjD_5@%^fq?;L&6Hc#|aPt#;ZDFMO)m1xU-I0u&eZd zP8dM&0Irm!Ejycg683ntQ-lrs^2tdNn%xYRc@)&>_%vZ-DaVRNjNOm|&!r<)FI7V3 zw?Fh|=9B|u?^Z$W_L#6wuFDbCArz(6On26r5Cr;GM-M`@HsWR>K&>@+1vpB^?NU|& zY`;AIIH+8gc4Cdswn|3TO}LErb}_zie7O{mD;AO$ zdF6%43!DZxMAnt^tr2bb^q>}w)*z&h`->+)Yph7DiDJN-h%aSV*#v8gH>(Nm9aoH* zoXSYSw6KQf1k_=%qX0V`Yv$0sEwIdh!k>_G3&nUm!>qV*rIlHCy=_)17^Cb1e`z{~ zU=kKT_>^@2Tm-ixt(o9ME%@8VWf?SM?y~~I47D(q@Pvp|}J6ZRM%r z_UEI?&U1Zt4IEw0fvdeiZoS`8nEj>-%~RZh$P!H{eJWgDcL-}m6|7T3-dl4T?BEg=Jge%nJg)9IQhfl|fE_l7 zn4tCg@tJ1L?ZV%U*(SI#V!_RUE1$IAnJaYz{+Y9*!fXIZcojeiK8m7!8SQ5C%$rwZ zPgG7o;G_iP0NwFDjSHuHUJ}T;>gMfaz_uKm{lPC8nWro$gcZ=@E1&Dm<#@iwj?mSw1$PxGt8p{Dv5PvU>&-l=?F+^?zyrBrs zfkxomc=`BLNCVQ=TuZV%67bXk-@MGdP!I4d=QI<~wYkNvjx_-GD&U!a(91P_i~<*? zSaw~0IC>6n8;*uZ+VtG^&~;^#c0emOWkW!*VG@HZiSTrh#H^tGe`8kY?+!Pb|7MTs z&ASUs*ZT!rQA@4Z19Z%eatJ5NqhiBpvi0~#e82o?pPlzI`$#-vq=6%~;1sYU>dW2w zcD;o5^ebx`0#g9SN9MaM7~!rgS^~erp7cl*Y{b@fA0Y-6ReTv;w9WxgB9?#l;gMCdx5(p^Ef3_Hzz*DhtMmz zzRinglE9~nS><`lZebgYu4`@PVhSU({)~M-*3D8a5ittNSio zHe|ddWyoqN5N(m{R;_TlPTo?V6EmmCZv~1eswJd@WuraH!&jEan`Xp)lK+R`{tDn} zvSLR~IsvDIc6D{N*Rpi*@u1JmHHcwIiEwx04C}As-C3Q%%Ax>|qq-2>34m**JBE&l z*}6QSYwUHmBAKtOzYx$gu?T-v$i;u#fv!DK6I0GC3}~0k6LqoVYnm2Z(?>FEEG|<{ z*@tZqn^swT_Dk;qag#no7P>}RSFuagdq-`46Oe)3(J|PODjs|zWbjM%0cVT0Xp35k zn9W19MU#S{{v<#LiD3*I_3LXdClWlix+K?c+krd5*wSMvJ!UpZt-T?)CWK3Il5)tl z(H3HW;v7wVNZwyDiE{#w|Np`{p$hR#SK9>K;x>cgd!I4<$*y0D*N{~_dn*8a3=qQn zmD-Izy5<6|6>5G4(3+16P~eT_9jjndJ28xbqj8A#23?#%1ipA2P@-i+?vy)tT9vti z>$vQkW;Ln)>X`~KX0@!q8ukAS$LxhetSx}~x^enb8|gkR z*cQxDLUJ$qy8)8kTXOF6O*Y1)8L(P7%xMyDp8+B4#Q z?a&@RK=?QSabR@d){_r9i&@y&=rq`&r>6>n^S7X#`a5e1N+x^Kq_r54W@_o@^5K(MS$7tA@egNoX!IW_}_IFtw(_a>>{A`yGR-oZ&;h= z%%5aqeksGt_XslWT5o`9PwziZuS_X$GQ zG8Cy>LLOr&pkULSnEm*kvWI|cu8OTeY| z;Z-)53c z(`!$^J|bz&DG*6yMaoWoJ_(~9yC%wled#YEvKNTpCxEWRj0SArR;_z|q(h2=R3?V% zwBzTUFiE8^~Y9jGlo8Jc*_zvbM+ES>~1Pr@tdTgmNzf< zX^)uNSe`tG0vbc%hk-8OE5IH24T(_zcKwLQeU-LimagNX$4MW*34dUF_+T<{-o+)+mCJ2|gIbV?r4L~Iu za($Ap{HT1Y!lqoI*Lp|y1D9*;p>f5H>P9K!gc#0Qk2?)!UKOG$O=leo77A4q)`__` zYj^T(ni-e-W(A@Yit18!Ezs<{Cx1}#`w#)q>d9w!Rda#Wl@x>bZek>-AjWTr{~BpmLb0%ke1aq!)~tiO8PDzOD@mFOFDetAh6f1_(E9Bu zsk~VWMA~eUB8;J5+$B-s*)^{&B`$-qWE5E|`fjLRS_a|gX_@;6Np;w%Ancd0xedV= zHhq=`A?g9=CO{&&kDNX!$O`u#2gvmer)iEoK-O?Ll!NH`qy?v&=`Cn0=1e$h-^@(8 zyMSDW=X{GI$%ctT& zuZNp$ZyZ^mV3-neVoY`^Q3|}X=ujSUx4HFI8k94)lKHP_RMa(bE|4Zj)0q$&$~+FT z7k>#hu#9mW`j4!PTWNxtO&`boT?h;-%WQ2`IJI#LrmmBlCT0<#Kc1YiRw;bJ05 z)Zaz^zJwzXQRWd-3(~qKLHY3G114(JyzBeXcALTpIhvST#HjZyek%Hs9(j6_7XEIi zHO6E=#-8Z!q_fFMmXL(g{lDj`KoZPZ;Hx&guhZRkZ9H8pXytly2|LQCc_8qmn{l>E zQ=5q`Na#SFM?m)gbVH1A0$`%BPTBpWmuvwlNIbwGS*Ad-v8{PytcizDn_-!IS1|x$ zB*a8SZYSV0-H8(aDhf0QvfD=le?l`WAWm zBz|ON7%EZ^SiYl1+A3F2-Bnrrw%&99&7Ia2oyM{ z0^o*)gW&`KIg2GoqCkHT7J80zx7QYi>~H|BZ3N9uP!V3BAl~?c)0;31V2y}5j;nd- z0*HR5^@S2tW324X+93f_${0_)0|eO5H=hLN3nGMgH3yP0E-2|_;|bY_6_t^L=pwbD z%_7gkTXJMR^m#m1Y5WvX+;_7&LmHNbqt55CKjTfZ%~#ii3!Xd*8okM9lTCEh(%( z?IXN`1IZX+48T|4FQx&*(!mu(b(oshN1jx`Jo)&ite{$7C}qx5#&{3vzLLbQSg5UDh~5wpe`sWWd#6+$p_7sa3n&IqhrM2z=;$8?g_BquadnU zatzurmf?>qyC7o-GXlNKOw3e(xyn#vqvoYU5Zu2(mZ5bY`4I4yASXfZjXW3nI>!J2 z?iWHr8C{DYfP(H^a_5dmzwg{Z*i~L+(`!m1QIvTW+5+4I6Z0huS#r?e9uGL*-vr)6 z1;4&;XWhI$THI^x~)$(ZiFzTHrxRPU_f)w$wPTFBia3Jhr2!H z-{A$g66KV4rh}8QKO)O$em7^^DbAp01rIJ#zHvdO0Hr_=W(g@n$#9ZQgBq*sL*2gp zNg)8S3H0=1hr1!@fZ*1Y5+VolXiK}acD$D`0cKd}0#k*ERyZTC)$7XuJaPfOEnY)( zjK5H8#2G{93*V|}UkvxYlj#l>#hZavT+@b~Ct={rz_jTdunXT_kYiGh`}H|Rb3+wF zl5VaT^7i##}NN=rfwQ_@CQkV>7%OAqF|pE z(v&HmgD*Fjd7#`qJsB?O%j^(_)jcdWjNlGKLM_7}pu4>#Nf!I@$CrH=E@_856Mh4K zYyXi3fNVc?Kv|*hi=GfuRkUd40PTd?a{KRS|%PV)v)7;VRbpkkt|;l?Z~+ z4g|=p%?}_w@NDrm!exvJ27a{_u=4FC(5H0WmS+bvQL<@6xR)%~N&I$Rc!%ppZ*Pw{ zFAoaaT$3jL<+^xPfxP{q_r6zHul)PTu$CR4P6-R2gO`T3z|C)W28S%=G_yBLh7R6I zlK+KvcJkTyP6OJiY}|_Pe=Kg@d6LJ4Mb(kMJlY#H4Z)~}O@LN7g~n15gTjDrb+rpD zZoUJ+i-8cY*whMy6eP#2K+9qQ;cv0z|hEt*pl?Qq5R zBcPnU7a)lMVt+iUNGscN46#%w;ldm)=kjLu7~*WrK4u}O@oB=`atgSv5@qh!BPy&q z`10MB&2d{ea$^Vzzf;r&C*A?UU69s+)18oBIaj{is$adOi^7_H3~z)wBAn!hT3YD8 zDf0*2fnM~2PIYl0JRM?L^nbXZSu)2|BghJDU^7rAe)7-re znKx2^8YUPc2@DR|*P|UC?wiTOC!-SPpz*+$O6(~3Es?mv5MIo z^d7>Lpa1}Fm-0p&)h7;wKH(-j(JU6agvdPr9dTbiO4Q!d)adQZhgAO$%NM8#U30r! zDX%;A@5`N7c<=j#e9Ja&0KxZx_C@&F{FcBKU~VyUUEmyz;#CQ2zryLQ(eJh4^%cP< zVPi%9cdvjAK4aSm^){nD0fNE_-JZU-`xWo`K#!9FmH8O#_P0_RR6|aFoo<(b$3&6~ zP$|$>$g@n{yGb1~?!Cs25#IQvG4m>aCX7o>xHn)2B=NOq-72(>0@$+MFa6VCoIlr! z1Z@TXvDKtrd~=ia!Z~$fq3D>LB93p+VyG^bLS8SUmFxq<0jd7-Veg8u3@f0u@dDWAV zfWN?_N~hGm0Gcm?&SW)fz^@R?E|CpIyHt$xRrq6ocd6m%cyA}CDI=i;^lbZgGpAwZ zpGxuS_eufinWN=Gd@g$pLBBnPhY0`6pbL?hMN4ww&O5#QM({G!@=(JX#JkN_{Xy!e zQCptf1bQ|V^WhMsz-&*jsxH0bWvvY2Y0+~)eR;Ik98fWoH*27V8uWz}JN5u*_wgpT z(6LPZX$>S0lmZpk&*)qK-7rJ#%kcF*Yje0c-Rk~<3+T@gTey5rEqmB9?%^#AVW_m$_T#?Jl5Jd!n5 z;96?DNHB*?wY+ju05(R?0}SDfT$?v@?txW7fE_|X^@5zQxNu1-589ks+BhMSXLS3g zDWQDj8##0;TCmVCB)3>p6LQ`o$*$S!No7eeH5S(69i;AUv}ef6QTzmqfPPh8I%Y=n zsMI*bjDK{P6lBve4b(#7=i#~Yfh2xE=wbw)riuM;_Uc6%d+#~mKi+wy2C^mK1xq^w-)M2fnp z_Wj%xk^gU-@-|zLOHO3m59BkqHgBnegpHo?0jyb@v_;ZBQuilOaz3J}IGn0c4}^gC zZtW*EXkp0pee$Sl;-&8>a{o>;ReP%f8^OKedQb^DTl1D9$dV~UdH>b(?f2x5Cgtz3 z7>9K0zwemA3=nE(D#9Ncn%987VPZ{L|wB&0ueRJ4|UwVt+;r9;LuV&1-Bnxy~5+WUcLoF3~o5pRQf}au%OgH*zUP zwy9ItB~~D7yh13)z)YyHFDj~HRdK#<>t|-iE4lQQ``NvFAdR#pYu#Hb(N3?MAoR06 z5=@H9wQ@iRJij9)=+$gvB-4Q~zDo&cN9(yWtF(X1d7h=0C4MtnZvULqc;#ui`<(={ zeK84U0nrIB18&GIxd{{gn({13#&rfri$MKtwPMHz#4z*4_y|Y^NkrUpC9N+Wq?GP+ zQP3d<*vDBvyENyQVNgqq%(|-!Qkk0bQtewg1NqDehK@(sK_0<>paiP`r4g*i6sYvF z@v|)&pz~zn86Q$JZp%l|GAd{J``!F^4{$Ahr|tJ+yqp(rzx3_^#ISns60&f5_(FcN3E4~kVxne7 z1I8WDYX;OB5FNh*FU@lx`Y2Ys56eLOAg<5OA9I1-pU_<$bnD*Z0=s^UDHuvL$eki( z!B;E;*_I)qpXf&7NyxB#$^lg5&Fj$@xU}J?zFv1X8!B0WNz5ZC-za;M8YYjDlezV* zA3G&Gidl5T#sO&>?56)-E%>SNRiysb;~=?94~*GgHd^%iT~p2~_W}!^hrbn8;DCs2 z4CIMF$yNt%{R=OOG4z8mU|oHXY7~30kZ9q7!fCj{Y#sCzWwd8wku07Wa2tYst7-z$#*WB*s`9p#%Xz;t@!Q7Ol> z(d>r7Vh&LAq7IoTK=S{|8~bc;{godaKAvyVswCx90}2r*UPAoFEV;zE*MVNH@kzg* z`2Ns5#R)z3en0dXOEu69myMsat)0bpH-0?&J84b}KJ5)CdDDX;Ewts1$#aD$B}!HO zi?Q@z+eOHXFROcrY>Usqbw=x|ahPPzbwC)vr#`Q^LE6;*UG(|KU0?@xp=Vo2+9a@# zt>Zj}Up3i(l(1!0kTdzSt$(%^LaP6q)<389j}iV~YJ_2Wel+xfZZKluW_kII2;wcT zZt!~;qSXj3kpDexer2d6!G5|A6m%IbaX^tnEg6-MRPc=4PWe5R(+e7 z05^EfjWNrMnXcld&*(q`e4aUobp1{ep3$p(JBZc_?+T27u3y0a{&o`bkfO==FZf-6 zL<7*7KQXZb!V}r}@8tkspF4boM<3w)oS-RVns4NZ2%;kteSGL`cbPX&{IHhpdo4z; z2J%vu$nM=(h_SXla28c59nXTNQ&5HU`#F7|R(CA#0{*i)!674VbL^m4de=5~EDG6} zexo#RsfbV`@22S0ep4*J%Uq4kY>Bs5KJFs(!_CJ*rzSwE(r|ay6T@Yab97vU1G;d3 zkfXhi6cSTe;2P%jX=VaHwS3?!w^b{@Ybt@zFg_EJ)$Ma)xpRW6A891B5#=`3svBbC zX!G5{(WcG8(W%W}MPZ>zF}fwrG`cW;#Vvf+sPRRDr~vH#%NQTyA!(wKJEk!oBLJIv z&MXG*Zu6h0sG}g;e{OC+W!kT?@5kfvG2ie%C);=9OY3r7z9jh7HK50-76(o5o6jY*o@7%^YeEBAU!}`F%{NT8(g)Mr6-mP1bnzxGbjx_+1XvuD% z@|m*F{9wNiCZ9+l?Khg6!R$-CMRVWq2(#qdL`8rE>+e-+;cw{!zyGG-xDT`??&ROg z&^hz^^f6<=mcLw8KypE;$dh)Yh)-1lKz@CkbnHT6N!YOBs2+|nl#wR%4d_M81BsYO zPeDN>CY_v;``51=noSBwIa(D}f!xEyKz+4R-K4B)lFpwkr^M3vNN4}L@PN9r*>+aK z#r(y?W{eBUR}X!pICTD_AKms~M~;LC-+-9T!1bN(H}e@gkzJj*`+br`Gvn4Zu@e<_VN<$$PLyi`Q?b;2a@Y6f|W9I&w9e2a&L>$K+ zZH;YwGwNy}-twL~X+Dz)@aOxwLld{gyCusdCC%d$_h{qd>ODN4Ns5FnH6OBgO0gSu z+rBB-Ph8vZ7UKva|j@I2d{vWvg{c1%7^= zY^RUGC@5)pPmo?3>Ez$A*ZgYWSSybXX}*?M$b(VRD_(MYw1*yLEJ{rDCW_AKT__0h zi;R|TgGLvSM|V0OrE&OpN%Y`u!Aj`Opn8SsgwRbT2U`~FZa$Pv<5{11c)iSAmL_M~ zf&J+2n^Ryc940^+fOOuEM(Y@8hy<9PdCD1g0j$^;uK#mz!;6Ix(a=pkxu6{BmhnKV zmcwbN{pfy-L# z<=NyWX`$v3&44n4rQg*Mheo5wqYIO&{5b5c2JSlFAOgJ^p6W;5WcDZVg{tiA`Hem{ zF0g?j$4rmgSV{iX{zON|r6IJ?-T%Yhn?O^!w}0b8rBWnCk$FgEO6IY_uoG%WWe8D3 zAtW%ZQ${%5VT&fwJD zeSg2#e0{FZwXJ5;CNy6fDwg(6!5PxCwrg1&@-2^Nyr2?+VJAMzkaP+eV%&@>X%Rbx z{aqrWB$Ow2OOf)`st-WzT& zYi_|Bu~nKV&9uF47-`NbLgkrvv3NOh+41QjVst7(ZQ?!|<-=12U6K1K%wCx5Ue?=F z^#1r~7i#zB36O@S$}(#H=n3WvG7+-F{sUdDh`- zo~&bJiKWM#05PlId9QAnwH&ve}t+=ul*2_ zd6A3?IGFy%b(^k0mGESPm?>zruyLXwBFA*3+j;x~ODU;KZ+!RiPIBUx_|j1c8^7WQ z5zly-gZzGXYV7RGl8@-|VNP{ji;Ihn!}qobBNus*hxqPSw1s8+K*3~pgnc2tL_mbX zqrJu!h@_glO0UZl-D18$O3aY$GMimU)!X)Wv0<_SG{^&}1BhQyOZH&T5iTDi>ar+f zlCYg7XE&jSuWK9JXiqgcC!)@Y{O*L>Apd96uUeZCgCewvd{5Ibql)nv{ZEYi-f!5| zB8k7(kd5+q1vNExuB>s}C~e=kX|z&-!bgQu3EcaYhqN=(XyEh=sY!OF_(|?VVI6wo z6Ol*ZYC)_NsP2dFWmFjtPG)FhujsCp@Vn!2-y`Ids+50Ynx!c#@@p8Wi2CJs%yGN% zy931!kDA>j+650iY_hB0N0k<(r*8?EfgU;#)_>sKTg%dx!15COdR{2Dv0(57H$uhBOH&`54_$3FaY6 zC?k~ztq27LpWEB%yVCa^m-Z&^6bcXuK%1dTYMdHJhKVMgf~3B}2U0Kl?kV~jz@tW# z5FuK)U@#O*SBCz%;QuEsc<~7}78nb%04VeYwG6vga$u?1`ROFBmu*W+xxr4*8ncAX zk5;mxeP6|1f=}TbFyJR$G;p1MEDc-Uf)}D~t8hjtu4UX|n!Q~z%%sJM9M8Ek%tACq|YWR-O4K|-u^%8t5nyrS^Tku!IR4)V^HHNnsv_zS_f zcO;<0p?f>;)lR%?Rg}09j~6?qqHkP#j(tv)Wj5}h&MhO_`3WE;$wIajp&q3teY8f*=c;rNOimwcmvvDrwoI4&v)AilhAtT0jKBmMP5&OYuPSE@WIqwfJn#H z@9}$*VT)T+7mdGA7vwYn>eM0&OSRMoXFJ_H0g~pd#s9n-wyGSQghrt3C@k)=M-Pqo z2;y(zWniDsC~UR5iAIR2M$@Y0UYZNrSHWV5&plaiR_)L&AHjx7dlo(k(h(EJTxo>` zOU^URrZ06SVA<4}#~ATwEPf=TwQVG`Q@;VImJ}H-X}0@mZtNd-2fgdQxn(=i&_rxm zGjQ0yFmN=V6`Ww_Rg9obCPqezXS#&dJ@-uLkpMsf>d0pBr04sfMz7GFQ=vY9D>4j{ z4#LjZZ%2)=ng+MXLpT5*)enRU50Yk{2LemX*sY+2T2;a11y$GH#}~3+rer52Ev|UH zK2VG=IqgEUCZ)=2R*dy8teESWO|`JwE_nBe z(ujH^8I&ZfE1OQ?aw#s&MGsF6+-SGr7N zUpabHE%4-wxdi6;xnzxI4@CujRLwLM5}>E;hL@Um&P<%G1J)&W3v-o{Wrqe$8b~KKtt%4U&F{E#cG3^w7xO+3|;^v6w4K(P809; z^|7_PJ@kjW9c|5OkbQkUD%i=gDob+S3LW;g?D|>WLqTPcSAv{9=EFWl$gm4(BCZ}3 zeoFlLe9pZd^`{_>E>Ge0Wf%INjRq>S;Jn*VTvwsT?$cq#WxstszSHVfwe0MB*rwEk z;vX|~0(yWXor<`uviv>h#hh?#;~08^u=I&_JzbzGo|J&WJ&bZa#Kl8m=?kB{EDYK_z3^LLrCBD)CvzTqmt*@a7C zwR9s8CEP%w1W=;dx)=GfBM5=d?*jimqP~;K5DrvC(&RNpkfuIxQ;J1s6|y=Z-8n z5lDI~o|Sf({FJ=Zh}eMSg;m z+DxUlxJ^cNN*K6JJ!91pYz@`v+=A_No&tI#X#=;VZq}T*6T;*ntDG@>>pWsC?LTZ}kiac|J?#AkV@R*$~r$*VYs&QKd_dS4mLA!^U|_{jC1EgPgsK^eZW#C?U}o^7zY z(4=lIeAjIvI8O7bn;YJVQjO&VIGbBqz;V*e;_~Ce#!myL@{19Ru_8SxYmcZPFGv_Zul&FfqQKL2!&OPasK|X#VRDAvSd?&gEeYI%6N*gKSbNgKY zZ|(YMV7a|j&?d+J#w~G+&Qj@s)7A84#|n5z0ZwZA1ncTJYgL%R%0yUISORwHrNQ#& zWrV&dc!42*?!h9^H)STxU_PUgJDqQVI7%7ZI_)?cB)HJp28*fs1@Lo5ymqWnU~z=i zjYz(5JMnrqQ)4gN`tQ92q4#?VoJEze%R>Ll$uUkjh`~KB?;-}23p%zPGC?g-%4os# zX$v;T$rnBzTx0G*R!+e>V?%EcKA%xQ-r1qcou2|B4L+%{+SB} zc%5pp_t^vY&&UbTr-c6Cv>lL?`P7T4pBHrJibLM%#jXN{B$0vSgb~$u=k}?r!uRRs zz0)04$Of9bm(qbt?aJt(%1&3VbRhOHhrF()#B&&S6n)(0Rs&tIG&J?w!H)H;8_k%tLNXb$h1oivAj#mL-_RoT$K8$@A=Rg#)yv0}=h6 zn<*NA#-CgSmb_Gb?1(`;zg@rTJFA?Lj0a)Y%D27C$vqh*9bj_csQN~tWjIF4G1x-N zS+L04hHY=`I)Oypdu+DI9Sw`Uw@dH4Ld@z`&k129?BBP68oMuOWnara6@+7N4_<3T zS$^T{v>Y3*T6#>zel&}4ei}f)-x1Iz@AM}c`P?%-mI5@o+~|i7OAUgt$y1qe{*$0aJ6eRhVkM;Rid1m z-mf-{l-3bW310j)t&7%kYLqM-9$GT)`oaL^EZ(1{U=E>fn|}*P^1-trj%^j4qFmF! z&D9PZT}cZFedk!-Y;5qtOskc>eTSo|RzBd$w+X(MyFDB}*$aF~cA0H9s#-ncM+{;e zy1WKmQ5tgdSFW-w59P01*K+PgRV2!Z`4|lwM;AhI1Cm~*wTw5bc3b1G882^GtlbXb zMXA+riKz#W2BL^*;J|f$IapZ+QWtBBE^n6yh+c}hds9GtD$sWx56tm&$%5^bF@i=1 z=HCKY8=>4jfAP{R5Quf6mSNM}dHW-%JQxp{tq`f!Ob=IGZRjUT`cs}QjC4Rndkf{pTsm?UOidbvBiu`~e5DfA+h`%VygukLt z$ez_;H@u!>@8ePLLn$}Wi_-qE7jG1Hfj<6xGf0P(bIf!?(SMRKY0rmhpM@HQD<)!& z6v|`PLV0+!s0xGNv~%93>5{#qLE)7NMXW2pwNHJomRr0r?GRaS zqz|7UN+*IEY_-g>c#42GFS(2tL77<`NB8sFSVC(O>bn-`vz=v7aHW$4bs7xik|NxRbJiJ!grYg#LxY{q!g@L zE#(>R8smPNc>#WHHy2d3O42o32;cjmxHbpL;KEKtH%=Qm>WyVbE*47qW=wHt5#>l-Jd zFpHkFw5i`ybd8Q4MJ%@|(2?#$#{6%+dlo!Fr)LK?uuA&VLlC$CpEVVh{%aLBWb?D_ zQ1fqzXH>h(!AFcZRF0EQPC5B+IUjpAzjHnSo~d;-{fbx+o1G-TV5I@e|5Y#~h&1qFJk5_r7+uE?D?!he+=Z&f&O_5q0*2}K73DKYSD)iU`s6J|5 zP;^lhkS#Hl^LsL>u{&4-Y?1?#UD$4}b(qS$hJ}jufnzIRD-@n6lbiBbR_qlHga;Q& zM#hCJPZsaT(%CkiV?^qUW=8EZ#DFL>t={=ER8$+Zc6J7-R*y$$aP}{qE8^M#c7%mg zSM9Fpj1PovO+4j1u?fVoB|7%KvQeqZT8TZqH@Prcv>GV^qIL~s5QDayn1qgPQ1ry5 zc+Z9EIr&$+>^nw?JIG@VqB6c#`oyg4@vDz#WZ*7kMeN&@ib7|lZBHS}-T{rx$hFYP zFSdXZxoXz+Qx&%&ER@zNUnFh z->OCh8YXA&E^RI+S%>1eFFBb8J-5fc_FJ~#--OSK4V?8v zD!!2yGhGoO>=-#bt&fyI?X(IrdunZ6`s%2pRyBpaAYk$JBo#vc<@?q@3W=vQX5f!ZK{6N$uqpjQFyiI6}bU2scsnR zGrZ9JN%s`#!?rekLMxlc+!r!9sNQ-T37Rt^w@Au`#h$R)CaFYVwUH@7;?*ydaQEA1 z(&(T{^h!ZO5+qZHJWcOPiGqMDJKe{<6nskTb$A`#zep93EBjS-6=DhwGc-@9d1i*J zeOZcUf`2{S7+y0vV+6T;3(;LRE&{TiJ$r0?tK@qe{E=4FlP#b?`-V-q4bS>&d)%}E zp9>hNmliLZqSH% z{)o7>e;;pOjmxneXev``>`mFjc38w&{BIAh=ZN{Lb3D=sq2MjTG zvg$QtPg01844KkcjROO;>;GtR$LmImm=J!Z#`lOujHluL(!@eaCqZcMdBN{p!*w7C zIx3qq5V>ItheNPulePa5-s)_K-ob*|((K$B1xa`g)DVadKNtU(5C3;U(Ep(HjBT+3 zQ7Zdtw}67wq9dUpn?MMUwlj#yCv|-ks33)-J;f}tiyXR;!5+4Bh!0s+FnnQBAx|w* z&N|)2N4)Z*=~sVg!K~+m|HY9FQXcp9b4qQ_TzeJoCM|&&q~BHaGLwZpEOsd3*7cfs zdmjZs5V;Cai(;9@;$q9QzQweGh{2{KKOt&-_;j4U%mc)3#HDBa`|NqW(@=Qy=Iog0 z;+{O(z2?Y`Wq(fCg{Y>(bR#F2LD^tSeyLT!@VJJiFn;d3h%25>FcjBZJctjN{>IUC8Lat8Z z^oVV6Yiv34OB-#yU>Ur*IzOOrRR}Q%Ai<8Dy;v!)X;^pa_>~uu#%x7H2gB46kJHtl ziwRJzo<5zO-oKQi_yi&^Arr8d#<8x(#+e6{j322WPH2nA(@5bx&ou;N5xZMdt)u%( z_i?>k><_k*t?=uM*+^F({YTWIpzaQrdWj;5&UG5vX)}-&i^|*+X^8~}Obgi@(U@yDrwqH~C`nA5&q{!349z03xp2#It6Ky${}BN1W!mivrM z)B0&vHQNH8_JP??eW@q)0UD^@7p!ED3&=K!3^c}1j_vW#heHnslj!F-)_uH>bx(O)p&wR*V{?Wfa|zRhie*+76hH zV5`<5R&Wk_@7A*vV`Fkb3#DGcqd%}J7LKj&-27SrjbOVus5gQmbKUkay~2|z;)8c- z|GNhZ{tF@@JRonjJ#U#K)44>+zHY`ZmjY+s5=};4PO2#CxK(Xh!~yPQj~K3QJWKrX!Y@>^iUP`s6=pvU&5QOYW_S|y}mZ3I2 zD}CFqw>P4i-(L3nq%f#a=tT19ZUXCSt)Q@bjBUkN1o%)$dOPp9CJs)BR07#h`@nYK z2b=OKa3Q)=RoQ`;Bf~3^#E-D_@WJw#T8Wyog&LA52y*O&~b&wCkLLH*K@1 zNAw82lUPDMC7Sb~=*@xRkF-Go2*AkjMX}PSGo~F_!9mZ@h&?+02YZxIxMWw=uA~Nb znQb>I0@X~@y~qrJA8PgiIE3w>3^$Ha+x4j}#JjyfUghfJe_rLEQ~5_$);#(@8uX7{ z`N!J+M)l|AbD-|G2|{+~Gg&@E>>h|A9N)Z88g_NTUEtwMAD~R%Xr5&nJai zPMGG;FIPs1OY;GJqK#=)wDtj3x4EZ_fc1^8U&H#|(u%XKlC*3{(o!E(70ALK1mKFb z9gAdG$nQ`ICaRD>7vJC$i&HbGr+Ey;@X5AJvr1A?QA}#PtQge$Cv^wj(@i!>rXH1( zgAVcn36}QmW3>Eag-8{Hu#?O9!@&CN;gLO zSChSf^0mV|oJ090{P$h~@Xe#hM!x8JqrPb8(JZZGHO}T)d!FSVp7OWw(EVnp3PULC zWXB74sSj$%FW0+5CtWKKfx@lK6Qpslj#Awo2<$FQI}&0p#HbGb*WT?q1+pN|5_q!I z&E0u}>RV3N+OzGKb$aJ?Lv0Y@E*xpiOg(6{wd|5I+UEn8Jr~NgQncwX{i;M%z3UBt zX_QEKZP`Fo5n6D@&#xJMLoN#cg7qL24EwUI>LN)63X5C&oNho1q%X79n!7L6R^QCU zWe2qDR7ryb4bq>0nhQe{NF9PqlvmL7EVu!ypFifB5MarG;{!s2j8?8tYET27xvTuO* z+Mk-nWXy(uyBnl2*hWmgMJK);A(TY90=1<5w*rqOH`t8$(#j=x!C!jx#b-cepR$8e6Mu`|0j;T}Vhe4BY4k1nB zPvlqD4te}k`5%h>$W@PunL9y$9!HvUNfycx-c);nMz+TdR)tF8il`^90)VfzNIcTHFws7rilgG^FXb3d%BcAF8Ios5HXY~67I-#h|5ZQD9W`&M6d z=fXDI(HQ#O=)ma9 z%vOUc$z#kx^nHDONvBh?2M^kVen{i&<}s^tG=y?N_jy%9IeK7q@It=L>dM&aD0Zbt z(Cz!mNasp&Qkaw*ZbrP*rA~CW>k?4dMhkX)4T{{3^x3Hq{S`iqp8idXLjS!Mk-=tcQPiu3G~)D&AcYtNE3d|+x)JD^^0^HvL$dxev;U{ zgZU=#?q&q*RB$?ur_(!H1qx0?2#UAe{PZz1c^ObtfPQNqi>^;Q8ZhOInZg$rOCybG z=zeMe=S@>(P3cu*bydCQhoW=*BB5cTa1gpiIF%|P z|J8>_am(U~D1MB4nfMFTGRSKU0%q58ovaj>Hehic7M@L%UoJz*s#5S#VibiR_EZXk zwXz^ut20gifwk)VnDKEKAy!oP2D_Lqsm5}761ug^2uM*D=1#O~#uOG{_w6872HdWQ ztJlod6G@1r3doh*L{9r!ji|nZziGwaDW-$^E@xs<{GE|~KDnzZEm$}3jfa9&kbvRJ z(_CP%9!&_-w?VJ=E6dx!I!~PW@)1ibb<{Fo&jsn{&%Z;UuaC#y9runw-b9_^Da@-G zdJ}DCz<*>jLkw@{o#isAkt9T?oq-{d?w!goE`vuU);TFWP!5>OZvmc z!Zob6=9zMgpdfxO-ue3jhNP~_=MZ)%CkEW;jAsnq?ymsyBZgf6+YMU0jU)lU^5k|~ zlA6VKA;WLmZ3Y~hu{tgn5s$U!MDH1ZUu-79dA9FLX4TmBOhpX0+|QBX@};`tS;ZM{n7zb<>|8!z;w7RTJTO!HyPv`vhA0? zT`>=_%$C_2WmYW&f{HLuYwf(ZO{;;Oj7)(HSviFI{Pcup+r#Zldp-l7^#IHnZT$t$ zpT-T&*EoYds`@#pql9xDZGA^V9H5zE940)Y?%YUM5SvCrrJkFk>zn}X`&+!k<)J;54D2xNB_hKeL`%k3&Q z%0c0p=)!l|Fw?fjJC}C=8N#7=ambGq2P-qJXTKU_w9@4?sX2uMh;tY){w!#; z)zMa^1H<(Oy8|D+l8S+_p zYE!JRkUu|~9Y*rMmqc^)^7Wkb1ro*L9wR|fIaVW9MtiS3x;#c1 zztsJ7C51EVTxnRjKu*OaSi-7q?x+zI0$}jkJeW}!h2g)K-uNMvPQP1_Nk|#=$g09` zay+-x3@_vB!w4^sFM35LanmE$T+5r<|ea^4@X-L<67=qdSX#gj0W%ux`?1>^IF5zkz{!%2yC zkaV!#4Cnp;F5yG^tC?r(w!xt)5)YNHVR+A;5@=qZP|1c9p+KIp{X~po@Xvrl`wzGT z2srYs2ya{0YR8TvX8OI*zqK@F%C%MK0tQE)_{kDB>NR+>AIXeGVBrNQ+qeS3UANic>9X z7E(uxoFsMj0~AamycLD3Y?h+oqxwA|-jLVhHuu^Vm_Y<~B=WC=0A8k>?EF`BRA^@1 zu344ST*&i}XxOBkAU)q-&Lq+co=;E4dykCLiT#d8{kFz~*Z%VPv%kWm*1(Qg6lD{q z19f#tmfFJ9nyo~azFXnT5o#*mNO*PkI)k6*vS79zqJwlUV+u~A--I(~3$V;GEcc$y z;(rHq476vPR*%|M5k$&g4(~SX2PTATR5Un%jqC>)haDxum*m0+Dy`6^CcppsBfCXJ zDy_hrF#-ZIeDh91C@fYN`+oQ-cb|b%Rk=D9>+vT-r1yQ`bwDe7Pf@t}jY5C|P3$aC z7{s^^Fif+zz)*UV#yZlrS_?VGxv9H%)JRVdORsf44{7P*6UhzGdYAT~4Sq7qMXr8k zVdDgn9c_GM|KNm;856`+W*g0JFGz&NN^`eU`|&xwu02JJ z;v7z3J@+7C^6P?(DW3&|A7lL-%Y8u7K8nxj=O7nXl+J+cApo_zegP~5ZGViyBh(jX zx(&PsmdPEF4nBEd&PVnvAaJX;yleodp51VWq8_M^w1TqJ!|(PusZ zYw(mzJM#csvW+O;hPn%it_Um2`jCYDspy#boSbcL4hq8oTZV6nWIJ=1)M+;A zr4M@#8L!`?4u~N)5@X2M{LArjCxKC7{WK76x!uHDpY}CrWTfo*d8g{nfR$lA$_wCU zCtg}3x~bTc1zS$#E3hD?1G4dyn<@f8ByyQ8nXOWtl~8M&c!f#oaX1{X_-P6?+5@2^ zy?w#-{0fPxkGuT zSI_$9(M0Y7>CFS=*cK-Zj&GC+25iJq(;bHk5?o=x*&!5gKENaqV>^&_?(O!NQx$N) zOwVB#Jw2(4fx9SK#0@w)YtDFa2roT|;pGk0{1-F`iOKr0OjxXKW<)##g$-|8q2?q6^*MMU|-)ueb2}pnI>6&fiVk9Py z=K51(+Q9fScCU{TjP@Ai@zZxZf~h2q4KS1vYa47GyLXf&SRg9B8{0h4t>-iva^plI z-6S0FL$fDa$csoHb@05pwHM^?ZIAi^5q6P{ST$&^6&ys^b^fG60@82s9N>XbBu%_w zo-q3g#;9hG*^)yLYERD2b8HMn8U18xTMy#jx6+Pn_3Wt?L*SNMYlo+-1!V0{WjsCS zH4g{;>F5_q4yHLz4gX)J0YQmImN~Q^g0oK{{sa+lZPxWUJOw^ zuS{PBUfLTnZRUk~1V?G5^IG8dW)4ejS_{ZtKDdz;ivPw&!lIP2}52ieF9!>*_E9 zs?v{r{`eCbsG+%@NiI1&PVPtz(P2Y+O9uB^ufSZiXAXJ=W&Azi$SIh*&jS5{OVr5o z>FaHMsK7|+fa7kF#g4uRcNV~&`wx3tW6ynf&HnlkVA?sD^Om0$ZtD^5fj)rX{CX8k z?!Lnaj26w;X_Di-sMsL>wd0+uvGAD1;LJINR3c;<27p9#ZW_SbGVEusPDUwt$jpjrQyq>adFt z1hlcT%Et}gLmAgZBy-_oGTc9MocgQlMFnM9t$LXw36hy3<>TG##E9uA%QF8y0P_l* z3XoSY#8RFT7MYsr_j!Vz;5C)Kw>*-GbUx%6*2O!Ah09BpR5&;oR7&PDDEs@75{R#w zbJGqmX|;BG3VfS<)pZOg9|y@x4(%Pb%I8Pm=ULbOBv~nwG%5bHXkPU_Pr~NL+F0WA zkEtcs*9H?k6yX&OZ`Cevya-t;)2=pjU$j8-wra(7A@$sS8dbs~EFBkYcZ?MU8gr7q zS!}nPtiF#C^MIz%4XVQ&XS_E&3vOgMme8Y7<+N$B)v6p$@XrCqHvSRgKk$*Z4uby7 zOe86MgZnWw{*%AZaHj{Fnla`bp6VdCyG^6W*G@NGByqK^S#R{g&1*i`w!+tQwjuhH zvvto`lCt=zJutukL|j>FH;h2|P=y#3^kb(L&+yF$r^S9)nP~-i`E#gsT(q%?Om1o) zbB7OSi4rj{HM?Ki{jEZ`tdU=)%vbKR+VYUS@33SL6^UYfC& zlAg0&rEf?u>wQsM^I1|Ah5c_GWV~%eZdxs6e|{wj2B(5KR@HzM1P-X@4!Wt{~U;KzQdX>~jn2%&ZUHW_;M9p#VzolNgc71{FuB3JCewd5o zw~7*fWv9z~wfv!I3f%5w{eMfMd3o5zS zS+*FOOi^8U0Qx9&!H{mu-vb0Q_u6{J<6zs&EX!6^Tg%q4?h;b@#Y|>F_bA%ONH2uV z{f+`TdHCKfY@6HI4@$E_U$1j)t|CY6x}kNMEgO(uNSQWQmc>z1`QU%2~@2 zjY;fln9A)@C*^gRJrxj@{c83?{AfBIIFmgTb)YE2>(mGQc-8$1dx8AsIz#TFZCGtlb z*r(uG6nE@ot{`71<$c1A)ClI{{&XcLYbx5D46&#<6Zd(E$jJ%iiGgrZF6O5hxMo{q z=?W_PccyFw+hUkfz}2yz0_?p*&3au(UV^1W}OLI4@ycQ5jq8Gs;BTQ z7P42}?8q0^pJh(cCFOQ}dwE(b69}3V2ZY^i)I}G|OKPIS{ilEX3YaV%U9$CQ>VCPVlx#N z+ntC&G9v{lc-ADD;eMLE$QSx|oq-k$(%(as2{l^^$R_SnKrDMwvw@s{U+z+%i`Kr%sp@PVU2TthsDwt~(JmoO-*#Wq;7~ zK;=qrLVQz`UX7f{a_faxG>+3_;Lqn^gKqkVuq3{kZ@~jO7 zQY=T1FWg`BG@Ddl3JSXXwq4IjUGxqTcxk5PyD(Qe&U4P+svrr2Qj!WOboj?q{n1nr z@G-jW6ge4^I6_}^R4`K72O>oxpMf3ZFdv%{wp|?kG*?w!JmW5!z?-x;!}q4`+`tfZ zQ{P)b7izKmibrzu_$Pmqma}>xmDJqh*{+eQ)$MPSXAgpwr&JrW@{^{Y4cDfhYkxZO zOGYcM6=tl${0K4hLihl=5fHd;_^R?o2=aoo2q6Kn@456I8Bl!I@xJ2VtlRfJFif5f zDIGgLxU~q}OgUF|$Fx8c_2Nq8bpA*j{BxQQDs)>-i6qYG`d|qSpk0$W`SI8tV1dGJ z5D+t^a3Xq#^pJHhB5U4ZWt0<#iIy1Hq2Uc2Y*CG=)=|8Q=A#OOR*ghf>xC$*x0V&w^?yeoFgMwYCMcxI(}CB;U6mR7>N%&=(=;m@y_<=$T9rb9B8W`y_Q*I-DHT857QA(=_>jpwHfP8Q_K6SG|U)VM$Qbq52} zSe{iGWTwTfRhL^N1$ZJAh4)ZkPWrIli4cy$)iUf98pF&JeZdg#pZfy%zLFP{O(VmJ zq=Ib7ZGRsxU<@iM;H)tM6IWr9G^I#cv1lwuw3Q2gZYxviB!`3t|MaLp6(athI;vFT z_+P_t^KxA;$?LJoApQR8Xru%XbACwUxL|Zjla5D+6|r1+K>{ z@|*hvp-{%ID-=WFFYr->KMd-I1x@~Lw6!AKFZ=&qXry?OI(etsJ{Vh$d7va6a*f|L z-)jBclhsP??_O!@W1?#0K*IM&YFEX`RHd~Ss@94^lQg1QGtM?4$W^-AN;SrFTY z+=U;$_FIKc$zQuUib?aQwuSpzCdL5kb`jTNfX5(lXMdHr&5DzN8(y3pv$x8dKCk6G zsWJ#$bXkCFzAz0ay*`9N538OI#w+Q~W7^He&+@fv;Zw8ZtE7%pi2AL}kYY6XKabJ0 zI80@g5N-(hHLCu1w#@V+0I04C%X6O1HjQ&_MDYU#0_bHEat4!LM%M$iR{QZSQpXC8 zK{+R2#&8Gntp}(7ufJ80sj~C()K4l~U>0?^jdPjsS_EX>ON96?SttE7ia$!;ttsWw zD3NM54p2p-2wU^uRgH{~o*J z6%MC{eBRV_`aYhcu>m`=_b`M8f4kDc53V7GQ5j#M))qeR<#^Pp?UFgE`Z~?63^vC@wz~1)WdH799(geU{>n=Huqytr}jfLZf+ZEup4*8i*Opfx1 zwG}>!YU9x^O%77^gBXbK$oL5N$~`@!DyQd&mHXROA<%1O!k=&xpl2gKDhyVoXjQ{I zeVv~`P@S-%{xfQ%5_sm8mGPxM>2Z#I5rZ3BVOHQxPEU|(bo~WA>j#U8?hA=YmX8bM znf2m5G`lQ3SMRuf$1tjFI}kJ$Lb`RYL;s6ghwbmx`(^rOSi(c@l}xku&DdMzmyW>t zg?6M|E6xe*S;lOYDlN(w7CZb;IAYT0S^R9?;7&2zbf3XH{`8I>rskCVm4!jw=3CCK zK)kDGM$O%E`+a@5P(Uchu1@_f`BLt_SEfnelm2#%G86pPEd;jHX#6JEilie&2;z-M zwK%&llnRpr_(jXvm@${cB)fwX^MHUozke3M-4X_t@4s)#1jIM59qEddJ3TZ%CkHv5 z{-2`I4hmE-DkpW-`i`wmhN|MddGwXq3{psD@)sf5zrI!O>dInO7{%rt?*abTisBb6 z#Ul_voy4wu54Azyq{KQcsSUy|>6-Rib!uA47^@uE7;?z(7?F#Cdpg`Qw(SUCrrIgL zH&4s3?MP#hl5DKVzqhf)2#R^=&BcyPB!-O)Gy=1+pHL1+yJ$fK z3>PCPwOcscWgcLoFH1VHz!(|T4(0^iurQag2#69B>I6m#r_&39$v;coVWrx2NFm`r zvLlxeOy2ax!(+N6xe;C?+Xc^Jp63XE6ZX&bqBmkgkme1SR1utcXZ{mib1%oCX~ zw3Hj`A`H`5qt)Z&M)VzK?>mpiVA>{w(VzQ3rF8U<&c4dMVTnF$)gu$ttnHoFn44?p z4vfbK)5;Dm9aimSg$|T*(BzG9&zp@>`7?9Qqb)R@F(I>ixZjV#Ms>VuW{$W(GyX*$ zM*eqAxq`E@*s)e`p^KaZMDkw~EfL7>No=$k3A%e5|43e7Z_!GHod* z&!XxAt89PDyuxSs3O;!ZI~~p+P(~6rF`J)%b_|u$cx;Qgc>Sqrg*Ht*LU`eH7&o){ zWvL_2`K4e(klh%>F%p5g95zs=QHU$ho5)PzF7raXcmIiLoI(uG{~lr3to6B zr{16nOvyFC3VFT#DMrqIOyl!Y%nkQ;Zpm4W2RdI8B(7J+!9>z%n{BlnTDLXybEi(M z6st`m#FRAOU)kXYe5%{}1m$fz!|C((>*jR0I;=cIX{SaxH`A15h3(?q8hL2d=Ys37 zfE?jIEKy>O#eZ>~Yq+w)GmX|wi4ObBi9YoqSw9Fm zND#0V3dlY)^hKFT#fA_l9=ISBFtr#wg;!tf#>l61yyTjGz@Y#B%#?8Bj7E%~+#yZ+il8zHt-82(F-JIJNTA|)%PnTg4LGtJ~x`!})gwPRZs%zbu_G4Yf8S@7Jp{ zbf<>@WHgBoj<-E3B!;|C$MT`;w{g9jwi?*HEmDZwx%^BSbG{SHGhHs2KdcYD@kuUY z&YiaKU<}9x5acE~!}wBky;Bab__qN*cnr(ZYBJ70WgJCOEUim^%`GEWQkR9iUxvoM zDiT8$SzQt1#W6^6|F8JL7*N7VWDde&0kq$^V=t2B)xrwiY(;g%dlY4k_>4M(larBt5t zlK1EGzP>N2YIryjF~^h$z8xWB$GY`D^=!LGBX_Z(Lm{Xozf@=NXY7P6SgNJE^nR#ex?*0^2Wk= z{wZ^7?vaiJ_>P3;A7wW|{J&Rlb8g|h)AvcjTCTNM<4`xBFUqww+cWgQ;rPkB{4yOP;+laQMD) z7S3K88Ew##ZR8bYf)!k3l{9uHd*KGEM7PfX!(%1pa_C-8DP;;{PU4~asWorJH05jR z4Z?a5^QZJOTxidNx1g?X9p-MbQGS_M;0d}+xl3X4!wZSmh9HRF$~dRhDU0JBsj=!4 zPtNTi_oQLHjSxkntvYhEoC*y!a1Vx>%ol|=+|vKi z6X?WC)H5`%BQoL!h)9IX6u^i-|J4^D$F&Z9k%7Ph_48-H{cjI-=;TXXen#5C^xKa~ z4*)JxYV3H0C?{aL|K*|ZD`Thts{2tXF@@59zjUA6(vK6o(}XzpQFVa8H@rNbYy$&m z>gMw%>HNAGn(1=Y5hAA1f^^-WnJ&8u(5Aol<{wXZ zee8)9dAxEes%8NY?1w5BZ`Zu(m{R@T+xvq--{JCfkVC3Ht|phK7%vK4+gLmN5?HNN zyzn{mPM-PC_*BR*hhSli3oin9Z-+UEB%M`Pfyl79{d^0i-*YFcY>{<8!8$8$vsW!G zQ@qE925FXP$VE85O^@XBpU3+tr7855 zw{qp@om#Y!9m^NhUfo|ceY)0+{h|@M{>usbZ2e3C`-fFANG3GR7yB{29HPZtUFK`z zMbl^#7*)I!mEZSn$pu<-_0M?M#kTS8l9#Nf=f8)rimg&)I?r0#*QtqXDJlnV6EM(s z9uXx4;^2GJ&zw)yA92Z=X}J!Aq#JnUE6`urzKDAuV>-3i`gl9O_zSBvn0Jfr4p?N~ z&n}RgK}R>!GMQQvm)DV?H0fHsZ`_!we_KkJzEfG=T$hi!c^27Z9Li-rjb7L_w=Cav z@iwwqLmJmRW;BGoe8F5|^7>KB}pW?Y-ouZQIzZ0_|7V>eSw zUsW7%Ji3!MdBK1@AA;qEY^}zWIM*3%ySjVzPQgQ%m#O&dgA=N6M6Wk$<})+Btr8A+ zNB(szrl3wkek9gukdJqIaV+0pndgMLuxrm|^+8$ZnfLIM{3N^MZ~JF@%Xs5%X~>L2 z9ECq})-60CRPn*mdEG(jvD~_L*V%ThWOw6aW&>Bp}Ot{?1>wH*dm zgok~aa_X<)F%cXl2gz;Ta4QAYV`L^CErO&OG~m_Dwe=Qts5yyg5W#0jcGTxu2g7n2 zTYhg&f4omLX-cWvUplF!^XliA=Qxwc5>F{lw&ItnSC=r8ihFk9U1oDSVN%>rbwpG^ zREmbX%36|2=6@!=7u2^|G0wLz%@Zl@1$A2E?NYwmRK9!xkFP=idn}dbh;MDNlih@=@bpCL>yvwUeQ8R`z-!hW*KQj#Nk7^rd6* zc9Ns4qJrC~SHHeJ{G5ha;!K3H9P2=Lr!ANL{`qZElIK~RCou(OIg>8qt~hp~ZRAE& z^EpY&oHP)9GO48IPJI3-ShpnH-xmBNaPWTD|fm-`9+^uuSCtd2SDXZye|#Lfn&GgNLznES1z zXW|nyLE$gZ<=s1A)cK}XxpCOrF9AB#=L~WYb5mNuu_5b8kXpWc!Rmg&bg_UH;49F? zWWg|9UJhvdOC5nWm#pEpYGnCjiGI2)9ATd_-W_L z4OY5VmI(4-&wOZ*Js_ItZI9UO_oDclMDPy5D06Mk&w^A~YQ!q<36Y9t?(t`LkIKAl z)ob)QEPeH=Ug3bor^f^N2gsf%II?Px-vYC*SWi=OJ&&ow9F1jTkH)B5s(` zKDo$Y&obY|z&$~C`DmQk5lM?f0$jN1qENAbLYZs`3=aaS|DB60 z-BU&G&X4OC7&g9@m@Q&G1mC;B^JH~Llc0Z-eS4YJlU`w0z7_?iD-*Fo2Jb9u96QsL zmKe!}H_s$v?ycg^#T}zDd0yC(7QQcZ_+=@R3_4h@1MO139RfW z%wpP+q}}cE_tj(L?lbv*0j;^q@>1wkB$$u4!Yvye?|9I|z#V_}Xy@#!o$|XkBwH+3 zk*(UY$up>J3JO=5V3Ie0Qr4K3k0mZ|{-8n7H}|t_nCyAw(1cKiiwj}e&-ZP!Ms}-a z-45hvIttm69kS{{tGw&Dn=yZSE}@jcijA0nt&XiO=Rdex6~=KoN0f8|jV8e^M>n{; za-@eZ+W2v#yRZif+U&Q1seH{QPMa9csQT7 z@xE@-SYJ-^iij)wz|sd{B`8z_Ggv+#FOp zPj370*6k4+`rZ$kxha_+Ivpd{@|EwL?MK@jcQAKkn#IJpRy5}ja;r0EJ6aFAbPkWD z*ExR;ak3;gOWgNu^4Ye-Q3~0xXChz%w)G)!lkAa8$(T*p(BfX701wRPcLon-H`K3<}e#Je&bFl42oOL@bPA-hAlL zm(+Y}86OkjaB{TyR!XW~R_#8EqiqMY=}uNuV7Rme_1=F8N)Gn;;a73~i9m35G47=L z^Hc2Bg?!P4b%`38c_Uvt{rw$UL>ecX&j&Uy8>V+Wk2$XUKult>ZRgNoKc|=l^>?x& zIZ1D3I*|S2>7wE58otrVf5>JuO8zR|cyG!M|L2uLS=8Iw;Q?QyU zy+(>-3%k_rkm1x1EKCu1OX<88JX8FCB&UXtxu}zCe@69SG`BvhJ8Z{>#Cgds5X?5t zOS;a9tZE0zaJ;>2J|p^h;C^AY26ee8AFq1!wKOFWyW9=}dwD7A|7q_!qngUrHUz{W z0+PU00UH8% zpa#$pBp@S537GI5T;I38d++?azvuioYn`>%K6}6CZF@iOS^GIw?y3cBj<9V39Q*#q zH+G)BoH}hqYuIujL!G69b)C8JG?zevS!W*sKJVlW?4#rN3e&~5qO~|}W|T1th0*9z z8B#)j`q;#s)$rFyth3nSOHq&>RZ$(?q43@y+&*AvHtXAIFMQ^@x&5fgMBbxMqbM7I zym4`4>z$S5?`gd9x?oUH%Bks)11P31k(6Bri9Ypc`EzBF5(bv=?Ip8u=#c-#)y*NjSMDVa!YDWHYP%*@- zv@a-#h^=y%SV>N@3gGK2>X8y`Ttll`E4SWvLGx6jnd6n5fp&bs7w$a)qnYx%q%2+>xMhY%#&&g_ z|6px4w*-&_T7i8tFGEb+P0I^W_6zg?%=u?aZ)FD?jd^tfL)s_}OS?y@?RfFqmT6Bz zv$RzJ*=Zg~W`xS+r_$6)$kj3|%OjWwiIverI`956Otwm3PN&L28AYfh&o4~v?M;gX z18Bxm9p-^EZAQ*ED3Pc`Md-G|T&!D*?g z|H6NABhXycnj^Hn4M=kDDy;mR$X7OlSQ7_-DI)jj=%ZaBu2T%t)Xb}62AV>ik1_4r zL0HO0+(}TRo=YMC6;A+K-c6^%>Tq`Lcv_Y#D2GOb2Jv&EMi$Q`00W)@>%DpWo=P0u zzkB*{Uxyx1;tRIVG-X_u4Y{+}Oooq@kz$XYps#=EH)=R?mvF6Yo0$*nkxx2>?*XH#aR)x>MZ^yRiO>G9oQ%lje z-VZd&qYjOaRn6$%hGp}2WnFY}vc9XVbQ(BH z#mX)$>y@Hz_fstmr%~cM04|24J_LxjDj%ml+2N;3^OacO^~%!-l%k!aH$j3$SLU#O>NT;!KP9^#7GjZFU31qB78%MwEReik4Dv5`v%aB zk=IZVmUM&asHGrjBOzofzfkR~)k673rc}bqthQsCoZN%H9dE&XgITku`!5_PmsFSo zz`x(}{|1Dl8nWb8yD|{uBgJb=%_1$9(h<9g7to<_WFt}cif>}J6%gj?i$F$I(|RhI zDD4gaM4D?kjnHtY7+xV4)T#SCw=Is+nf|T51pD>Ny9Z%z>8ssaVG1Yfe8O1#V=3bh zfL^f0eE}Eg005DO`S`fz$EIE)j>EBW07~B9Z5wcqops9cvv;M{052u9rGMe0YIcVh zAm0s>&tHni71hlLtbmpZ^LwE5O^*o&b|)T#iRjU*g7((B`Z(#eR18&KgG0AjP!ZnJ zx&CWi+3*ngM|5~KI=<8a1`@TM0ln#!gUoZcKU2;shde>Z{aT?4ISoP`0_ z`3zJ3#PrKsJpkBZvKyH1^ywtS)HItN80=M%zu^eIZt}zDz)ewBf*!!n2>aL_&j3kTNI6Wsb~R!M4R^O82G1Q?UoG&@I~v1VVS(v!aTw$L0iZ2d^}&) zB@K^ml)LG#%4kCRnC;;EU+slFz=Uj{+Fri{6!dF@mtH{tX~a>*RNW}B64s0B%uIRi zbUb+|+NE(gg`MibFygtGl%Ta&!k4A|FO#yjKqA!lG$^UocUofu26)<}W%iymXFqok z&u+3y7Qs2rc^QmDaDnrOqHcRWKe=QpO4tc0w&Eq^v7;0lp8a0s>+1B2+4)H>(`7rP zL9vtm(3i7U8qgTpsc^T8!5jNpd*cvs-F)n3_H_}LwQHS8Mnb&?tx*1XXXY1g*ziuY zq>N~q$JFl+gD*TmYn%PCsLr?l1pKM8;rWbk4e{Bx@4j#`7zD(`M$NRIay|9?30XKprj2qr^9M2Bm>&UKiZaMU zYG#KzI|S62a2y!62Oy%;U3A#XYoOauPe28y(T^{7)HwCeKcExj{DYpqNTkf~v}?al z0a8Q){<75D*O`QV!IsjwoTDGbx$g4y-wn`@D(1SS<#`r%C8-%$+}!fM$4+@yRxExP zr+ZU`Rp+_oWD+~_ zrQ5gszGIwyUJ|Yhl=g+#p-b!!mJGf|vM0>+Sw8!OC19<4WAVn)Gq}8CP)_GIDwe~V zMrE3po^QfeWFF?hWs+bSD8z}Z9EZ2_LnV7EA|7=Hx-q#w|DTv#7p?3j$epR%Yh~X% zZv3RDOZdfUCwWMJsHjE!zOY-`2UsPRzaR6WG8M0eJ>Q3ze_d;rjMB~PP{~{^3vu_0{90g%18K-j}wzqxOLc&mZ z#)#-AwMtzkUW!iTlW|bS!|1z0slyorZlnQySd^7(RMYpmt@Dg#0K1emA7m&SJVvh6 z4jow>sM;2>iU~PW{!Tn_NN{gCTFh^$r1%vpU1AaJY&D90jjNaez9Fs6_cK8Del-ha z%h)~J?WfnEHQqfB+CG^tY?Uvoel?oYS%i~esHtP9G9FNT3a}DaD04uf7H~#9UE^)M zPHhpf8eLfLVHWs_D~VB2t}sS5BP$@|nA~atSZzasi>i@~U`}4m+ohoFu})wRZ41^^9ts z9;sSJKQ7^i(jvciJOvN8<%%ED$6&3mr|M-$c=(=`bEE6clxCqw;0i6)w93269x`Cq zX1KgId`Yu0L&fQhEI<1p73S3&#h8O$g#-sQ&6CqcRc-x3b6ZKTK6Z;TXPlIOVRHMB z!e@5bpSi%MVm7^nBs~*pJ!YUjAUR{30xilipA4g9L#dYXCrYV_k6|?e$p-iZ#%4lN zn30ra?Jmh%H)XgXsCexHg)hSD#fKhZjqZ6TIrW)+c%MAM?SjPn3+<`k6ik=c@=Et_ zS)&cjz=}+Mbu|n-#)hNX@7B zEEK1?8enL>5}TZl&Vr2}Qmxs>-AM+4b&LP~_ClUbn6ZgJBE3b`negwoVlbOfqwe$b zfArXVj0EX0anPdw?6LWRDxj(6>g&G@1avD%mM=@=qW>}w(5(h&s+nl|>->rdXg^Rj z@~iw`=SQIJ1)73m{uXOfZ+~m+U+n5{Bm5V4`P;YtKd$|^A>;dYoLp1IkOJ0G3b<^K LIuh?5@w@at7-Ka# literal 0 HcmV?d00001 diff --git a/images/summarizing-data/ammonia-histogram.png b/images/summarizing-data/ammonia-histogram.png new file mode 100644 index 0000000000000000000000000000000000000000..b06f155ed3d2a71b085c1cf38d53506a39621926 GIT binary patch literal 71451 zcmeFZbyStx7B-HeAOeEYy=j&1E>S5#MHG;d?rtd&2?0p~X%G|@r8`wXKpLb=X+(0< z62JAn8?VZVd+s;B?~mUY=ZaUiqXG4Go9bR9gC)oU}CJnw_baGr|U;3%8ow$d>c)jh4`ZSF*h&7)4V)( zVv83Qa!0guzK?8Gl_IB`g^c%jHijB;&^{J@OGvn)a{L~vR1zn5yFXcSSOde_QNquX z=%hzT_+=iCQ=LA2G9`H3E5^APjcztuLqTtMZqtkCCi~UeBWMrr3C6OF8A!PkqG?7( z(l?{uYd^Ji*?z^2!3AH>k(S{E+Uc0jDr7y6KO2xGAqpRctolAVju!jT2>Zs7YY|IE zQ})Wbl#Ez18b@L{?v)(XyQ)MUkG+f@z-(Y>DE<11U!Uk!x!_B$pjc7j$QC84nmo<) z3+v-ScHI5Qy|&5C(TJ#X)QL6t{AO{SXO$y(G>g9mf5XRme!=}h7$xzkT=LqOP0g2; z$3_(hFzXuTF$L*#N{sFu`8+q3w|fE6vA{SM2!?PET!{0!n7=eEP}d z4tFUdwHKnTA9=Nx&W^kz*phiPkiLX|pVlwRkD5(3C?s}fkU3rr3kPUWK3KHBS^pI$5$imKhob9_skk)Ls~ zVft=NB*|&EalbSK;pS0^x5xDQBBc0bF?T||KOEUq;6H=bCwW5o2%cIKUmCS-=jkKv zm%WcJF<%r#kRy@dAuE#NpS;MrJ|^`bE(ynRtTmurrEPs*XnS>t3eWc{vBi1`_JZ)& zdKK!#sF|y)^cbhn1BmrS1;ZSfEH1p=7bwH;L*8*Z!+yVmvZ{_=l+ocdHG$QcGAw5) zRu{TQbj5Kk9E5vs6R@7&w<2YeOwwA}=>PIOtdM@e$4zoCOr-T~p*Np6meJTFw|7I7 zsq1cjV_a6FJuCHF46m!(WU^HARO}w-%Tl}XRO#Q6xV*e;^{6BVZ>!^s#zU%iw{!E= zD4dR(AG`96x935jJ~N}s>oZBREV>Rwvge9%Nc|BbB2ZcvC)7|*rm+UCUxM866>b{Cv0(zty-Hgp7g z)8`z5@}kc%PV6if@`n2f)Ax?wId}Fb;~lC#oR4pnaxhhVd_HrU9Akc~ZgX1mNaAOv z61=&mcok?qpQ%VM<3D)NjxYSwcZQxRfJiU21d$XVaVGF09hU5wh`G+z0;;s1D#e@(ZTXVH|DHoj9clOJdHq9zFllP5&zKyex=-}(5&o3` z=JYdD_<<*$J@9y-{{VZbe3rg~{>($1r(_*uo-tUp4rA_PW@AozV#_$WL4698bm6kM z8CW7P&n46{O@;@`4$5N6X2|u*dZgnST*?#gPok7mV!&?jolsu!TsgPGx5BfMb3gF@ z!~5|UN{*`PCcVGyTY0kOq$<%iq2IYzggk+mjByc4>hk^aFVi$rL{loRtElj*INVHl z-k_@awB+V;*cf9SbzP_m-z&!M7-66D&$Ci*U2nU#s65(k!h3@}C|b5D?M-TTdus=E zhxpl!D2vDUqe|q1qCQ5EKh8Q=sdDQY|Mm4-NzXJ>G+()2+i+Imui~kc=}}lbp0pX_sL>|3xjKdHG;2> zJJh>|jz7}i%d#3Ov|Z$@H_zjBjjM}Wixc3JFy$)TDdaBbG3PTA`}CoZtuVv1tz#tB zL(1(=#kR}Fa>8=mI9_OVhR;{EuNS{I_x7iCW$~nEW>CC{Pb*j4NLaW>EgkwSCaYL( z@v(NbxYp>6{enH3E4a@Ecp^)qT$6-MQuOf+5d3|X?Yf*6CPt+CY9?ydo9zL5 z6MB#J3L0P3nY62oy1ZIGI(~cHjp-y4JCiAs#+BQOBk^&uA7ZmOEqOhxo|_U|+`4ni zeEn^L(Sl);xwffi&3%(Edf~dc!%w@;6gm`K$!9IDF!Q}Fq`v&7NW)PPam6MP@#LD& zmmxt_*lv6`J1zAPYi3v^44>cTs2%W+-R0OXZ7dkSB0jKBfTxosf%P1%^dC7 zec3fSEfOE9oAa%;*TJAUPa$s=i2Dam3tgs zJKiqWr?O4FGyG;vdoEMph1J=<_Hx^=AN&-X73<TtH-w^e#(>$?FL8gqpdoDaz zHoO+R9U=WWY_pxFnrZj$oK3@*XnJ;;uOV@iZv-z(+#0&a+iXs1amD+Ti#!PX9?$vE)dT@H?EJiJLH_UZg7mTP>CaxA4p4FS_D1Yr-vlt{{ z;_+f{W+iv+#!!ZFjlFoJxb?2y^0O`ThF(m1b$WUs3tEl4gm3Ri-%v(#(K?RCb|i^P z_(;mx#szIn*E7a=`OldjXqheXi_xhmUPDM*+ZiJG z*m>DG>BLVW5C~B_10!MOi4lZ_1j{p2N_^K%Mx5C#d)qj3fkdyP*Z~pSh!8b)Ypc(u!Bb2$|zXkRZKPk%bAKQzc+;G3L0+xf)^x{<& z@ZY1*+JKb<86etO)PJErn|Jd|kdLFGNutSJlu~gy@@+WC>sDRi(z4wBkBSIc-;~so zJ!wRQx8Ete(Yr}#ZMok`J*aO!XIj{O{>{_Rl}}9`-cQlISo%?|;Jv!Sjvi_So zk9phT7arrH6#&py$YCKmEy%-FtiKxCuh*vA@^DKlxM={UQ0Eya&JJ z1sZO8(8?0W=|B0@1aTex@PwdAk`SeMJ6xyUWBkK(!Kb(kW`CRyzU1epM|s28Kh{)V z{F6^pyf5PZne{YP?qPIZa@~yivr+Jdz4(LOfO))wfK|)RhK_oWm4EKiDY+-P?Y;)mPA}a;+!Fajpkp-^f8O%b49Nnl=BBIq5|8?!2{6vqCg0 zRuBn?)wF9ug!QGvCh$IWOetBMN-0s8$iQ=FxxR+OYpcm=;q#|PB`NfCWR@cY5?d3I zv?0sO%Q;rVWlj^7=bzFa_O`d)=$Q9|A3l7z)IcBF92{Y2f{3aRMwS$1B;7r~vmEM$ z!)@K4XK2(s{@9)6un|r;Aaab`l9oQQWFL#AabJ43)Gm!zXpfnp_IvvhF8hFSb?@=5Hb#o$@ zwfbnDgT1B}>|@wae%P!_=RVuEDWNwSzu8SzozErRZ%cPUKRjqL{G}4(4DU}q@4sge ziV}}IPrmCtw2|;<;_uaqiQuMJ-TdOUvaA*?rggIO!Xf*ArZ`Hy@r^gED)+(e7G`K& zAB_jM)S+kYIH3lepPe!1HJ(eVL9KRlH9{)&N%~H(BLN32U{>;uG3!*+pmER9?Lm}m+5$4 zb4j~0@sAvy(hkacE4_*lEK6#^atOh5hezv+1&{Xp>wvN{N?_od3kjHqe(*h*44r^~$L@xnduY#LegTE6hUcHochY zC=SnR#v5fCYQhocXP{0{w)wTM54kJE1u~C!@u0CS? z)+XV?`eAP-66^3Y`PlHF<2=N)_9;T^X2=tQWDa{*2+D?2B_$&xVB1uZ*;gL+E_WK# z#72#uQMrThIK2JHNOvd*a9X3DL29paUj_4OdOY#!4|Bf-d#Q3U-?ip`;9XoUnkNnq z84I-*jI03(8S84nLX`nO%$$#X<*Gj?n^&Bx$qTZTjMy91c6Ex0B-5xFp?>-5T#r82 zy2CkHY}6WW9KE5)Y%Cuq+amhOA;d3!sv}1V^PH;Y2KHsti|bGpI$!m=YV`PB)(?v@ z=SF=GmgD7druc<$UV8&-(=wS((Fmb67S*9ouC|^i-#{%HJFqMgM%LtBE> zbALM(VgI#PI=;uxU*OU4Sl5G(nNiE*@k%l(s9sMcrj7Q%@`T{Pf7$N)B@do}CThFb z-PE(MRs&mMIBidAk+Q=p z@HPteb_P{O{*53IaP8YdoZ$yQv8K?>4DIl5aWZ&y?qA*tW3e(dS44kVK=kD4YG2;9NoPI@d_zI$AALjD&aBLmu2Ga*l+Z7JFw{V4_al*j zqqa{{GDc^LUIh*8E8f;9!)~t&uaB`%2j!A1F?d6s5T+?Pisdjd(Qi{i#+~7*RcfKD zHjER?w&*UO*qbt);m!MkbP?r*p9c@Zd1XlDW+2$O$3^8}biqK<-bObdVk`Phs6F^0 zLF2d;wa#h&Yzo}s;LxHr&Ahwo$}6=PIFjh5lAI$Uu>ZYvMn#fp5`JL&Q+K zbJZHGNRoRg9P7NfkC_p{5vi;f#X*ha3&yao+Ezx2@23#Ql_JI^i z)FzqybTvbDESFT|_-6yyz&B5*@$*odk(1$BlVfxD?&R^te7H_24MIzaDK##IL)i1U z){e)#;c@-kRxOT~7ND70qU?P4_A}s1846Oj;a|c!&Kge!;3#YQv#pT$5AQ=Bncr`w zSKN?|lL5Y^$UjVPO4s<0hXhdf*>eg=myPgd8Kop#|9D!k^`n}I{kmJiVnxD~&F!IB zm7;{2me`w{-~jA;hG2sh&HKU8=oTDuSrX#TPEB%|WinYe<`91|%s4JvI^9cJf@@RD zM7qeb4x6UUvu%>{S&C@?;HS7_T(e5BnqqFiE2zSH5bBQq8tTBRJih>~N@A0!>X16= zCO2wdBT*rRH=B`TBOV0R(l|{r*k@iI>5TS0q4z>W2T9bYLoYy#!uCg=OIudpLEZRdR-20;7nnh(n9 zl5RaePE?J7Asv6@q*V*}U( zr(w6n_^}LEeqRP&qBCQyc3+`qTi?HpK_R6lF{p94vbmOyego%e_rymyFv=69yu4G* zUD|A4S4hHy+Euted@c5OUo$z+P@6dU33@is*Zaq|;y{f9d3(jKx?i6wIs*FW#T{+bIHn3GCOz{3 zG*pdbk%m4wd-LA&`@0_}xZ8+&wV$AZ79T3SeKj@w^&Dd$OnDiG?;L$&8a(SvjPWCC zRiMVvV&2%a3yuS|EGAVLHC=m!rg;2&RHI=MOI9T(Djb*{fb*`8tG@@s8?;a`Yz5CQ zu;RFrp~Ai^>cordjfnZ)0?enWn1ur`m&%d2lj|&zz)3aTbm>s17UIC6qh@~(GygjD zuW{vHhyDr7{&nd8ClR_l6Qgr^yuKz^zy5x+accq=C?Qx*hlhuAii%PiXjk5KRLeI~ z6q$P(9~XDhwn0ez`?vgcO&zaYN4Vs|p_Y>(=HINUX?scJR+eUel13|sbhT1~V25_o zbh4MYy_lV%w6rvjbd}DBnHiIk)lP*$+eXHinJxw)5axd*nv&Vj0m5PZhXVu}-uK07 z8iR_B5jR?X>-1O#Tr#rG&Hf5k`;y6Mje*o4CGv~572g-ibw{f_q^3Y2rzNw*1A<`L$u1Bd`WcNxf_0F6bqoP~x^8F5|NpEP9hT$(~Nca;w0ZzK~gV(+i-! z3#XLeq^|u2G+yjKA8(I_wXfiW70uSnlV%x{O(^g@7vm=Uyw!iJN84Hx&PhFkR7FW+r=(mdUkoLrh_vcI?c#RpIP1b17HWQ5ng zE;5`a_SrJS_(Wsme1614sT}ty8gWscXbv6fv687c^MU7~&D&{aixo&Em+$k%KFyt! z5nde93ub}zAHuhoCAQ=?XRmq<{4XP#%}6eCKHW%}EXR=V{+cbMpIkP(a{YFI^a6k2 zxF3bp30qnEv!_b2&+)&ss@j@D=yyF=oR|4DCeuA}ipe!PqS<-aQMCm4-k>^lC!4cy z<7pD!g!;ne2--(a zU5vwr3|A*(bXsv9k|h^AELLt5;il{CjFIqE^C^jMM~_YBlHL%sQGx-RCpHADM*j$_ zRB;)0DZ0jnrR*}=u{kO@d5p{vyKC8AxNYL!Ekq`i=*TDptad&iA5CPX3a%m_EtF0t z<#>EwN92q8%(e)OS{R$|;o#yPj~&;#!aZkvuI@>jDDp}em{jP5rXA*EPfq7v2?T%# z=IE{du*-PCE|c(QE|VT4yT4ul#gSSr4fNTU8A&I-Hfw0^H+Q~$DDCMs`1DfH!06a> znlLH~3GOCq$H7v2W06Hr?5$n)q1i!bx=uz(O}UUnHgEIAlx**6Q31@FWj8GfBg?fD zkO}7gV1jisa@nimTLuB+-k8)TG(~LrRRppU8#BOJPT7j?EY*DJkfFilt~X|Dbnm{Y z>YJHeRYtWEF1TeJyQa{(oFTFMQmi-8d4z0CEzdwst<1qROsK9&pX<5J=LGo0yTlOi ztokGH?B)&g+$bOQ9o<_mmNGIuCbrT*KTk?cZ6$G^iAFj;A;F^l(;vMgCtf`& zU2q|ROnCp033K~`xJ~z7Z@hZNf#7b4GSajEnV-eZ@32VJ0r-5$y4E+B@lKU(LbFxMrY(zaUrBe zH?_-W?{!y6Zk@Zc&%Q(`u$xW;E1pk~@Dgv>S?#*ohO@QVn-(fQ;ED4sd4I<^VEk2P z)=5$OWWyc~p|<3`)r@sb=Mh)q&Hgq|;)Rm&kQ|5E&K!fr2&b8iwn;U+ zX);;+@G&uXK|J8~c>fpUx^Y#EXm811;#h34^{6-xI4ens*=`dWh`X&@2-;6w5s?6( z0=TMEduyV|pz(?MLpvByGQNN}aq7Xbf0#Ks+MNp$%Ja^xK5&{D3b|Dwl#BeHw`5Nh z=hPX6i8kMbf_7htt$xW^AdAt5jx-r*O6!W{%Ps&P44$S?+8DCG>N5AH_l`L!NXvBm>iBW{bh)thx3@7JGuKLcf}<(e=5Af`eA zWq-3?;sT|^RrJZ zrW%cer)ceRSMnb3&IGfBslR&#YY0FSxgOe`Sz6@-Qym@~!@aG!%M2|U|9D&9oiFTt zKT_%D(`>iVW*DQ@(+Z7c)O9*Bmev`s&KB7s06V!iAZ=DA8l7fBqw31<6~i*^OSdP8>Vs>E(V zWt!|%-)gwJXM7y5k3rS!^LV2VH&wN|#W!S)T&X+2sodV0aTOd!tlAZVwYK$C&JP6B z8wvdhS5{XYG}@q$`F)u;_L(b@zi6*)oE!uo9gTuRLj0mwR53s?{T~9h^hL=)8lA|k zoh{@%l?1m!+B6hQ{HxH<@mqoT%GH>7Wjl-BL!fi5SBGXSz?ry_Qm6A`1g2Tj=28vb zpvcpSaWn38TLyrO`f_xoA@5O$VaEl4+jQC`Nd?q3t{A>^MHL=dpo)nlR0T0V$GR`^ z(R8b;Sz5X!Orj-WJBr2XYlWZ$R8z_WwH%NVM0f%`;W;sGzpVh@RiapohbhxREE^Alm$){);W0ZNV`u zna+}k57AYTa>Dj(Pmso^R$j>t6WMI57 z2aKE_A5{1z0^{ln!G>~8Zz_h5XqEHVq;I4aJcG~8XVp~%GYyUTUu<|l?Y+#d|9wsw z8MnsB*5m*2XFQ2JMjnpqws{*}Ns#r#imz9F&@y+qhHX4;o+svYQsrY&uA@-B{rCZ^ zQ<5@eZ%Q3xE55aYBDEY(eri`aYiS6rSbS4;k-NPR0YsEGpelstR0|nGK&_G>(&jFV zH>pqNG#2T6Lb<+9fSN{CX~IJ&*P1{TD<5axK2r~>=nv%t#bCqX9q%(3>u$SQ#)WF_VfG zZ}I&S3cxJ+1{6-lH^o9EjwCy(4p{n%(N+_nt0xb-;HvHFwR?(1yH8Q*YV$(vz)H*H z6-{6c#6d|?vpYgC3+#d`?`Pp%aQEz6ra{l^@GjtRr`5CEnzCbJ2j&PvRY#Sx%;YG0 z^|_dszO2H>t{CB+NXzOMsAIPZKllH|GMM!lT>XtMw6BB;n;P-+=|3r=bUvZXGvzqZco6!NL$pJQP{E zmV?j8_U6H7iMQ)>vuVf06UboMct4{)P4wX3gNv-xF)PZdu@#+9LEeXja##5m z3CDT?UrfMhBM)!6BF(Fnj)U>6sYzuuRZP|^RC?7&Z>8Br*0@3f3LQ0Wh zkzv){etDA#wW%y*_o?Xm!bx*e1y;yR$54*WsG@Y=9LNN)NCjd2kYw9&vq1xmsZ0eK z0TtHl)CVO4?^Xn3@(n|3A)SU9F^W~|3IrScKjID9vnYd9S}^k3vD)`;L6#U;DJ)=w z82W4XQC0gh=b7K}flT@sPQn>@n@=Atw9I2ec0Ws_I3L}6?Skg~9oK}Wer_2($jp2{ zINiG6YvC^}BQ0aIwTsS>3q_aCxkHw)-1-r`4=50!i@5L%9)XP|PUQq&4N&d&G+PVzm*R~1pCp0+D$4u@B`FVa;DM*HhTtmh4X*#L$811hYpNx$dVeaA6woES)w;O`xzT-^fL#$ z>zWW&);kag?|goY3WOx66=tUzzLxv%wgPeH-)(gaf9Bt9b)a{Wyzu|WZI$~B=|fTf zzE#oO2P6ZuIE~3hO1p7Mr*v=c@#Y);P!Qc=KOjr<@=lEcSsxX*eIpzcVvn;5^q0kk zvsgB{JBA25|A^s54$*%lI>?$7h7aN=5TFM#K#R=TojK~D4k4i!7&L}Sy|s&c6Hi8_ zY$<(vD%1W`sm8&{3dZ^mWC%}!P(iQs_3N4qAouZa)`UrWNuwi8ibYmN6Y^l|CZ@Fx z|A@?NiQ~gE+%!V2{FFfb^ioHaU4!%%fHMn{@^4zUPD`fnq5}4_o7ZJ}!Q@5c6T4uc zj0(e@(#D>aV9i=^f>Amy{5UHuW?3JlZQ`W=B9I#XMIe>r{a7;|=%cR1p$6Ld>P6Zd z&^S^(Yc+){Q0LF&3>nNBU1rz&-KZb>mE)nq>Ru)MMTYOfTn}e*Nfqy$xDQu(S-dsl zzi9?QgHiYiElO8fi2ezV=`Z{p$8fbq55UJ95C%bt!~Wifau-AEOpZ$9!`Md~Yhu7) z`a(go>a^O=Bdaya8f0?+{d{c6GOYUTe6%h4!~~sLcQ|0E+gPP^h3+ovWdhRsu&r0+ z5xqigzJAn7+LN>S?~|wjME`F6P*8yA3E)hxS`f|-BIsMhdx)_Tl`}%1X4X( z%HLm#556T7{Sy${PsW23^S>XH`R1|NzaEqN32cQhIO#)Sr@U-}$N=E-$NUiRE~-4! zP}tb&YZ9B?n)?%IB(RKX+Wr$%qXpdLS5z}@@lp{&8gI4X9Twq{_~ar`7cg-igSD?S zQIc7TPV5&U=lTT~YHm#h{u2=T4Q$F^K`5!Qf+dVm)=@Fy+gvTf(|SE#Z(3L{DVcrD z&N9!Q7TU_JKk>%&M*&sMe*kWbdI6sQ72F7Fm=QqrfE*H(CRc}<=`_$=Vc|%@d*?1= zn0aI(b_dwv`aj{Jpla36Lc-r+(eguB^xrM_f4JqMa(M+6ek zUqE(XQ4iD#??EAdkX9#jyit4eUJbbJWo>(V~R7f*FftH9wa>cqsrw;p`e zm@umspTbc2#BVXEavP&FRoedor9U3cDVY#TQ-Aj4x*!sN!L0IyvK-wSKLiqRBSfvq z5~Ho(*XOYptG-)>ZGl>E5*aKVXxP}9k&!T~F5aDItEu5pJWrJ!1eFmljU=GM;hOyb zddYYGOe25Wx^8Q@>3y5wQ*D?u?)dAAqob|L;>!yupe*h$SY$O!J|=j;lZ3hUW@+(A zlPlOZB+9egdTp|(Hc(`#Q8HgNc)z(u5qUO*@ENGV{6g}gl2KKqzlk=LA2F17`eK^_ z+h$o0s_Z@d!RasQAJL2HrOC!!0%R|az_7y&kz`Rdj@Bky61o+ z|4?5)XbV&p{($dn4vw{6SbD3^<@7{61HK#b;^KkZJ@_kE1#gvGUbgcjFGETCv&oUXRE4~jMY)cpRG{;(Sk~PKmwcQ2cuR zP%&a^ubpL}F}Nop9xNixEH_m=a+jrIYbt&|>~fdb#!wf3g7V{6p!o3Rtq_V)U^^&2 z2>ne&UO!JEyG=W=lFLiBl0aXYKjSa4qbmZ@$9o&q`@Jqp#Ld z(rbLZ__}lP3n>&5(2gtu2v^Qm+g+GSah`7iRc8AM9#XswtoJJEl$4bG1k>NqjRUa_ zHpD4+YDTD&%dFsA#_sPMlUNQEy!069fW!hz-}2iqVre`#zaU!Z$yOrD!zR{1BrO26 z*0L32>>}W~)~~JY^M;KL%iA$`hI;LcuhUy_*N0{|@O zja5@Nj$S@((>Us)Pyr6OFp<4{PXcFzDK6^0+vmf~^EIS3wRp->m8DTdwO^nBx$OGX zD2v{XY#gtj)8dF2&%~)T!By#kNix}GftPP|s>Ln(a%dZNz#Y7TQ5GZu@Op?1_aue% zWViHCK8!ZWPI5{VH*oVHJQ@9Icmj%oksY^7kEbaUCA_LUM#4oUH5M2mw$=x&@tlWj zWkeLvXQ6Y?3tPjz9n^RMd0+DNRpx-u-Yve^=}yUr58W!l5tl17m-Oi!IOiOePYvurx{_I{#JuTimIN!;zf zJ``rVu1er?LyE&CKsEaV1z>h!vE?AKfdx>+;o#vFOMAu-RPU{2F9Ew0=ezGHif=O^ z!70kgL+!EJvDBv@T3GF?Sj8Mdz^wE@P>(>KTp9d`HMCWe(v?AsK663|zSm$8#x8}RieTg;bmDZI?)Pge*eg5Us|1v-k81Ox>0*`@mvkykHJg0N&h2x3_E z1eq+@kGf%7fQ;mkPL_$236tMq-5t@7vy1n-?{tp>pcUEfWTc zNUh0MS2$U)I0j#u`Va5Xzj6~M5GwyJFMnEWy^(ni%iNrV8=(TzkCkkR^r~MVg`iRj9`2B&^g7#(VdrA!=!D`3%w4}nG} zrR%SL5kBRdeqjkhN>!O10KgO6y-*SSaM|M~KMa3?f{P+vwEcFRD0jVINVDB^IBytG zV@gFDBjj$J4H>Tw^%tB-vs%Hw?plWdRBb|Xodyw$QLZgy#`m{0flu1R|6~VS+dUHK)lIlzi{^oMe(mpkm#~rV$W7&;yVQTaxD7uoRoeO z#2ldjz^9yVB9p}*BcdlqC@b}YgI52GGsnRhcvc3a{{VVMu*Yuh(8oT*BJ>}+&d@?1 zJE?EH(!m!yDNs;nJJlSEUk{Wn7bwe2)2p2aiwHuuYthhHqM%*?mS3P?$UP^Lu)5~p z2rhP%e@sNe<(NJYJk)LdD~0TGD{U+!J6i9Tl?kOz++wp(zPw!g zs*$ygJpvNbSr2IySdUhL6}b`bsaCY7y=5{K>baV>o@SRT#AqKF^UJ=lIA%8ZttTw| zFToas@FSV8`n5^yi#D)26C{dzlu?1ztpJNF7pX3B(ap||yOvgwnQZ0G!poO0V^gbD zlO8(M5vdlm$p%h`*bdyG+M@wUh3@HIBLk2V4q9$(X>^Vw9Y46D2*H z$ow$nUI@f(t&Pi?Lh93`XSwxu>M+CBbim4ObrHA`pf6` zyo`$JMn%Eq>JosA@?Jr4QBgXoqjM+4h{reNA6vtyn%07+~3b2kY4+^9Z){6)bBy1*)w-eK!iu8_`~dc6dDy9(45SV3=c{_?Vy z*8r?+Fl#!H1ii@py#{>v0`p(6nksD9YK&9`h|C&PNgON>Oow>F1Xtu{V28h>gGZiOg+-_LoE~d#^$>3iuDC<6 zG3PXjSh+zlbsaQ25jt}Ot`-Orys+$22euG20hxR}up-Yhnr zvH;lY?GVZ}T0A_oD#10rvZGUa@W88R@AUVz$4iWP>XSw6N?T5C_cl#$^DTaI%CkFF zmeh6WOEdKKI@H&-+!crSG=P>3Gz_sf*1uOR=c+Y%kwLVCJIa z&*mGqICKa<#N`@oU5LxW%5~IY#Ho1+h7Z~_!Cg_xW+JwCV*t?1=2wMVE=Z!E)54u; z$$FN5@MFo|1lShre-cP`1-Ne5}N1nlLGW0IbMg(duu#j+r2yvG{7nyCq)F zGDooEGHCg0QO%Wo{h9!GuOU@I@%$;7-zIj!46xW@;F|3c6==Ruh5js!V-}i5)sAMb zq$as+*{O2j9>?x(At5|yyf083xs+;u<9Fa51h?6t!AO1hn zI-T)a3dSB=rCHu3ykQPhPL8kVUS-j}nd<*2(lKr`Un3Vm7E=M~#ZExK61cM&{tS3P9hIBs?hUfHn|3 zAi8Q)nM|a2wRTr@fX#$4)>+c&*w>w#m6_Gr2$eIurBEJ>TlP_DWHFaCvE42f`W0Ky zR%Y7dx3)62m=7_O%ktWxnfy7(1H(&?Go{Ayalgx1X0RxatjCNq!bz~Qy)G@TwWmhuJ3m+Wl{ie1LgGGt!dPzzQvDZK(-k|KD-b^W?KM&~b5>qL#7 zM}94!sRV|yuvKM$p#v0rfW0LDnY}uWM&n{sV$oZb z*2~h=7a%QVCDDu2+;>wWM)uiWvYf?S_5CC2y+Y6htb5N;8jq%vT*2T{A+GBQNKv|a z>mFFRXKyU+vl-2s65Z!1gi7}o{>v*G3ZcnFeC%#+hYiuw)zG-+9FS!Xmtz%BE*njx zM+z>`k+0xG$?wb?AQ2$7?TS*#VhV%;41NqoL{?2!h@+OHqY`{829pbr z;^l+rCP-%qZcl|rTDh)1&&M!kQ`cCS(6~A-|Myc$@%w-g?-t)uxkvkM=mVv(o3Yk3 zT)~Y-EjcSoEoU?k6im<(f^E^R0XqB5Mi&*eR7SsMb6zR5o|xD!SNQu^0PRR{$*lZ& zRUT>M$8+QX8dvF=dq-)@T7{ry5Ui+;qkbzumlX(H8l=xco>dI^1KnChRprvSvj?%_ zp9QD0x9?q6Dx2(xZzWGCG_WjZ*!DkWPhp=hpXiuq5A{M+ zLpfUBYy28D5Ie*CuR&Yd8niHcrZF(Uzi~USXsEHbDm-#-k^R5CLNlIo>^aLz%@!PZ z%Ug*(O3?K3pAnvh_>vq#)S<6V>z4}-eOf%|E}Zws$%%mnrv9ZZUa}t z0{r~^25ys6QQ@+vX5nyy1^@_6yGF)&*3pfAA)Zz3+~_b$)5DgvgV@C*u~2uYZ{>;N>H%*1v%(l@$=@DG2Bz z=&oRxdi4)t-ih^g!C6+#63&L5h4Mu|a0$5(S!zFhfigzRNj+d3@RoSCwGdORTmfL; z0Ui5^380hVz}}+LUU==-Ay0Fj{l(L=tGpSU$)NlD^TU^+@^HX7vP}XH&>=Y7O)Mkc z1yF}bi1Wma(ed1B?khA`by=<>@oCObN;IRm%FUsk#{h0-l_XkM@2=ZSCpu%qa#XH% zt}igg-uP`GsKtwl&Wufk7w-)?q~;d!f88oT79qa7+GR7*5RO2~(0K6jr0X)!@I_JRxeBOVO)I|1>aR@@10?Dd{9J=v%w!>wR14{n94FK7qSdnWvT>9-I_ z?7!?A@ak2WwlVvl34P0DA(@re^g!*B>%O&u@6VeAZsrf2D!p-Tq_E)b+E;v;oel2# z#mKEV^DL}hZ8u91yxS)BuGJu6QP8e{y99n7JIZUvzQB|0l_`+OCup7t_QmL3a@Aj> zT&6Vw*h%3F&HkoLm}~c|n_n;`Hl;)q>}3|XBZS0FG^Y9tBDMgdfdwqg5dGu%Fhtq@h2f1RNg17p7s&m{o+gV z9;`FX9-w}U@k;ix_qVg1ssOt`SRP;yvKVS_!2sV&<>KcjhVIE4P}9)h&Go!7p9cLp zZ2%XJKmr-b`*%K=gIh&|R@mG{mV?phmw%E>DzN9>|2xmi1D=Ohw+z@^KjS1 z@7L!C2Zb($12Yhwf)VlyMbt5Kp6zdr89<9PN@q_B$#6>mr~3lPQ+*K$aN(Wy)VYMs z_+BHHr*I$AFL+)jxD|NLhWKKW_+1JjJ|5eaBu3GiAk@{`nI1Tv>Q8-A#CZXSJHrKB zWc%a$2`<6MoC3OBudZr+Syq`a^EAXxVi18apPlEus->6+k$Us>jT7{S+^g1VL2dkH z6A=pU1BqDfi>hf*KVWM~gJcTx;G#3;`w%LT`^_t!uG!7or81qb1EtAt0)dLjU=Ddf z`xJEi3&vEqKzJR>qf90=hm6JdZ^6O;)}I7_)qcrs(BZ=;n4@Zwu3~d6NGi#PAzzeN zB;-bhl5bbW)naM!R$_@xrfM-oKT*x^pi2kNK2l=8i$5%#b``X3Ezoyy5eyCvE}-{R zQA&zuXkpr-CJPl?S91YfVGl3LPv7kSbKeA=R8EhD`QHHyOVfN!P7Ip{@mQGG{?>GI z@nWP%$XFlfgVL90s1ODuE7jkJ7YDXftG90k=odY88+*w7-r5rxk3d4LXqV=6_RA8D z-S*w9762n0$uSCdI5JNH*kX@XEUYom|m4IOgkLuk@LB{a3`Wa&)Z>h=?fe)?I~BPp8$0ja7LieY^HY7190-_#NV}JxyV*q2G1Fc2MCCwor2rQ z$8vFTojye=*d79PxetX6+2}1VI6O%pG!Na^Sofd{-zm;AD zxhb{6N7S9!9hn16&G}b;1#!SY<*-80J(eidDH$l8_Par>~ z7|&m*KmOs-e17DF?jSdav%)+hAkZ!WWKm4d9}m&?417Rv7b$6@454yvlsmB${Ea)I zXwS}x34oq9xvAp@m#0QYU3|fT14lt~-ZICV)|4&DRQ>LVH<8ns35z|y!poR9leJFhB z%IuT?(9wH?Qef2GK0rD-BNGxm9yA4hq5dr+Slfl6QiSvZ_3dg; z4-tNgKF%)5h|3VR5_p%_mkEdQ8!K22!c9C z8;b-4z{~f1dK@7HnQmCZR%E&PSH{YPkH=I!3{F8(dSQ^sK zdh#k7ZJmgBcL!pQIt*ot)dp5TZMVsH);WS+RQUd)1|k6ARWW-~Dv1{n*Do#E{2w?K zD|Rh6$i@p+X`$O1?W#~Ve(Qh8#>GfX#62kE@Mr~`Bm6jdKjDBb1TS?!eYXP2&N5X~ z2gjil^%5v0{`V9$W%@6ACRZjv$$NKZ`@Ahw!Jzx+6%5Rykx++Ip&vqVs5e4ZYtZG8 zo|$zu7}DJR6G#In`d?G@cKah9%-}>E)v8*>4WHDxkDcm&gN;FhXo-nYy)S^C*{^IMD$Xn%7d^2m z2d|29^7(6%piyx5q&?I;)`1DoB4LVhl+rCBci_&z&S9)bL;KN1s1RrH=6hvN;T!86 zx7$;iUaD955);mu((&a_LcGPkIHa*<|Irh54WvM*-rmp^JHL;I@91e%u_E69?ntAm z%nB-6ejny!`Lg)65hCO$W7+mM=u|a#H?RPPvH8&{HxqPVIOvSdjjhJ7vbwMO{Xac9 zZdbZrCpG^NH;L_ISY?s-y|S^#vFY}P+Z%I@Q83oI)0Yt8R9u379%H8&JhT67SA;^WWy&ysf|wXKQ{>rN9PE5Xsq z3aC1b+j+O-7C&B*9Ues%|7SgUiSo!jgDJywS`C)k(g>CsQr$%bi;HKxAD7>^I`j*S z?724#H?fvcdAa%StXy94Vs$Ft4l2!Eng`lc)jHE|y`7!C2BpZKb$2PVU~V4l#s@zk zzT(`JmT`&)RMD|*Vrp-4S^{m^4%#^*myn-!E4Gl=Uy{oE$YkPnq1SperLJ1N3DY=R z-(q2E^SE2OTvHoSA^TY?AfRZxG>z=`Z*7geS z9Y5={^SgM-LFm?ZqBo=BHxEWS{jWagcOt6?NNHbdI!RmGe)`c1KeGy%cB0JU;a0Wi z(42U{3?8QRb&g0E1o{;e(?hZSXZ?8YA2;HS)VFx^zke)Dulw)P?;6G50L7QENB_Im z#6&so`5sopziA=PP2ImEJp3Tfj?L^%;}*!`<#q8zj+=nZ#B~_yoYKxnOV3sze>VC{ zGv%Us^7ifMYw0h$tg7Bt1lJU$ukCr$Ov5LkX~U-YvQ9Z~p9Mb&#m`a0O@O1Fo6!sW z#4r%_EPylIQFHC6PZGD0SN@1<%&q7oGoBBC1^*m0+)VMrwD2^b}JTb{`ve> zB|0UYW*VE8Gz__@Quo!@9lwI`wliMpINK1c^3pX#V?e&xWWr`8K_I>?k$WUr!=2J4 zKELK}*1=z3R5Y09gnN%TQ*NzsuwOA zwKfTkq}AxvJt66Jc1;u`LVYGN^6J1cmX4z1N@+`JPpvISG=!mCl)(Q;f6WlULJSD&g;8x zRAsc^@i8%vKUm}yrPKV^hfd_a%HqB!BfxL3@g5yA8d`TEk~8Ff7*FyU8M3p7-q5=0 zSobUJh8c!Pu&U=hzFoUWO4^iIeWMI<}NjpM}T` zGbOn1xIO%h41^lZeb)P18IW8k9jb-ga9zq78on(%gmM# zX{#%`BHnI!XcKe=+@t(fd5rY_r#oX&Tg5kf)5#ZY? zB~_O%aR4U+_Y8Dv@qy5|e+*|28omL62%w6?<(lAx`n-7XV|;BF1JaA;I%`?&bxUn7 zUs35@(=adM!-ZbhL`R0AaC^R;?1!u-LEsm8RD}E~n5}6I7(99jQM68uu&g}VZE8RW zI*IRwGP(ma95z7(KN!J^dO+$py`9}yJxBLm9MC(CYXW-(X{H??gTV{|RR4Fce@1$9 zg;{U0NYTPTc%+T_f;wtAP)!Sq&`8wAMATpCIvy}=@n;Hra7i7;YN*vh>v}fehe=nW zBjeJ}c?HZw>p(WEN5Sa6XZKJr#oe<$e5++cmC@pt{*t|}CxRcXABlLS0!yZ(i$+5= z#UnexKULd3PNOyI`iFZHtvOb;f-Fb5(J5yeI&+MLm#TT{WYcsT(@X$s7&kLq0w_Nu z^(lvJs(LI9%fQJkH;70)4^o6Gf0EyQYlkqIj+0JVuwdy{bcQ?KZ0i6)|H6&Q?=sjL z7QdN2d~CpOIqv`rn1IxA1@sb3YfV4|BG^v3&(yiD^5Ad)q!6ws7zT6$BSJaTJ4bK4 zh#;s1S?HE6KIFt?GcrF~_nh0$th;D|1V4T*jwK1!%xW08M&o1fkI3S+l}Q%dxRq`x zr4-Do&{?d~UOldYjB7Bn!KaGYn1Up5caM~??U)oRoXJpDq*;0qW~sgnq&p8wE+}wK z7V>>k<<1#p@u=Odl<+f3It#w zlr$l1g<7Lm#%#74;i;68(v%eli9`XxDP9_naGU1};CQ@^$n-P32ESV+e9tdLTT}l}3TrEOMAtKKEg$MNNBr zPBI@Rb~Noc@wPq?^s7ZzU?|2&B_ff)_tD?8dy(0gEh4*eI7q_`E4tKC zCloH0{N0uyNwWykzet+H6&O1Lnsuo;E()kDn;M*QN0cMtK{lMD0#?O!-0X6|N-3v{ z|AUj~8)PaD7a=D#-Dz<+p?icm?b`VT=zoqvrdib5nn!$EYdKOze)!!r@H@mLQjDb} zi%cYk{B^ubxbvqHC_>(Fc}zbM4CYU8`s4Nm-*4JMcD{HGFN>b1-+ru`#Bq$EHnFlM>rnGBzjB0bDBU5Tq(g#ki8%j3l3Pq8*J`61(A;w+Do#|ck7J)9IFiyF?VJ0+vu zfF2#ynwpZytE@=&4lu1^2!N{=k$VT_4+p=_?yqkR3&SItw0C~8H#!xOz!>&E(IZ6w zr50Hrq}i)w>o>e%aD6*|d8UR0FCrp$FE#+nC^FZsqr+q~!+WADqatc7er=9Zgl_`4 zRKrp934!wYrSd`4$OA~N9|P)tItFn2i(0_u44tS|bp{*6&Vk@T1nXqUnoDq;f21-B zdoNa!-X858j_E9Rc3jN;aGCCulK?KWDAdH2dF>Qj@`y+*e|*>I{eN|GupD*Eaq3Pm z@FgG+rs>$ESZ7}uys?cVgf(|jsx@Pv!PIO&zljt9gwtn~Lu;5j6+~v0^X%tf=!L`i zaDyz=aNM29UEotiD3Gh?{6AeiiQ(Q^t&l9PaSmMovxJfe(AS&|tT(jr68gZ&>rV>2 z*znI7AKgYa?Or#0aFngxg zdg_a_uTwX}T@k;NJCIAR_KyZWxZ{^wjRf@6WsoG1Q++TKDr{#Kyew$>QA)^R#sI$p z7;-{XrERU?Aet?IRxZU|H}GUWs1yl}`euQz(d~zsF!G3xRzsX(Ht2Jp!~0ZXX{@fj z3xVe-Sr70^|02K_RU|wCd78tx26{P~BM5)I|Se&>OXs zrXgKs@;Ep^kAbpuqGH6*Oqwz&!eJz7IJ-%Hv=VmEKlLKa3&Hk-#y=LuoXZ0vVR(#J zlV-Gz&(q?V#{w4#qaympEyI%jY|Ef_v;KYP@$ebo4B0NRh=A9x@MQARwW;bP=v4_h zf@6+b4-zAW<{%g|`j>A)ieXzY6#Qe1UZ1`9X%FmS^DEqJ*{l&>6?K`sc|{%kdYbEkoMKBiy?EFm(m1IyP)Xm{ZOK+O4yKiSB?%{l&BNBbd8L?8RB@BC?{@GLV` zp$^IAS36(Q^oD%alg~s|7&A&1+@9JnjW@&_W;ku?7lHGf(V{cj_GQS#+I z`>s9nfzPn(VPXB+#39$i`xiVRf|vX|hxffnz$XnIv9eaiLT|Bp|SyTtm%>8T7EnL3TJz?-3tXpX-EK7a9um{<~ZDb_C!|IJP3&p1#0 z5yU$Y+mREW-lnr-kVa&wiRl*s{(G3m-~nbEmQ*zRf9`>4*W=PVj)RN_ms8)<#p=7} z-}>1#`3DE=O=)m2>77T={}@(+r9lqJTP6|`b}zmNotZI(;D2L@=TPius^xmh|FOe2 zSVwr=3U0Z@+y=oh%l1?LBqsAejxTVckeqOW5_My58Eq}M!`#1fIY-?0;^ZZZq1Ok zGrbV0J6Mf1^jSSYc&7cv=drcy+WwAmTdSqg&j-17Ze)RdUe{klL(PM+-&#tzGXSed#B9OAeB$k{*LoP`fL9{!C2Yax96q|%rKjWfA^o>CT%1SEf(LavzC-Wbk`P)h7|Sn*i#NPj|Zno=VfSz z>JEAnB&F#q23!v8)AN0B7Vm9xB2Sx+0o6ybenNR`?@}*!(3W1{lF#4lJ_0A3)>iRM zeZ`l7Q`m>xyg_0*X~UH~V^ww<&gg>q=MS^>m36I3YPATAX*5(gRmT4Kn$N}u*IjPX zUYi<1G-R+r989cd9u)hp9Xha4nG|YmD25RKd?i+5)1cP-m#cl zF#(@NDwJM%iQXxzZ}%!ae*Z*nJezMkUvE)K)FvCUY}xhSZp2V&#L{dL+Vhmu{SZ_- z4}GaRc$R@8J0`Prc{a?j#%{SkVt6(>wuew=`RQW_MWX)(xJetxfAdt^k+OYHOEuuW z9)PYtb8WIA+v#!-47Vxfej#FIq=Ih^QPLt0NJHR_qE@H*RfnC;2kVb-*uW+g6DTYX zDZblF;>lQlhUnwzrEM*Ho!<0@+>$nq2vtI_=h>l3rbfp+g5aWNgx*+4iN`fD$W>so z+2_4vn0IJ61!q4SsBe@06bvE3)kla{OlQc5K%yR{6u?x`z^KT%@qM!+BRWiI={Q&9Ymq&at>V7|>NW~Y152EtC8cm;kHPv=aG#0D3@NV#+S;>B1R{darK0n(SpL!8*-8=n(H;)-Ro zUl~k{<>tMU&MXttFUW_()9pabQm!wNaz;;a)*zqfXW;`M7@&Zdxo%7QWiU-nPy31P z3YJEMT~+s*)gNenV$)yRFm=K4SGIt8B0Lro*N=%KHJ#@xUj5jj#$XU^72NhdZp3-G za=s+v)Pwr;Uv3UNNe8_(IdwTZQlq=+IG`N9)O2lPs_Qf9Ct2_r?5w_r5uTHg6VHhSPVX1dK%p9<6Culi;5p z{d!N`-(hA}BCyJ}ksQ(9nUnwYNP;`+9f>QHyO|~2NGM26gX}!IdkPTa4I=jB2z`G^b)ZD+OPV zUOsO#pe*dj*fDarqiD;{$0D(Z!k293@T7*NiRA>;(G#XVq8b~)?5c2OU}1>_x9W`` zvokT$>sg^CSzgY&3_jPQtLoDSTm|(VAg1NTbN`TW^<$QDbj<#gaxK#CTa6{z_+V*8 z`8%hYkCbhv5kQkLeiB7K`HrRRomN!LpVKCvvJZSgI&^}}BxM_kpkc&soL{o|JTosv zSnoi!?1t3e^$ zj32fXWV~~;#eTg0N7A!t{CGm)P8O9(8MWdy=h=t-wj!=06i3`Q!X@Q{fQP#P*W0vt zCqS*szDV-*gf8G=Kjs#s23O?06=HI%?y|IoO)`BMT~PACkZ)K;U`)hz=frbf`?#)2 zLAK{gLS{>DYbARJxw~X{Q|o7h7B6B7A_{)-&5i-&aZn3I2O<))NcSuBlx1Yi%>(5D zWY`j-T^tsB=8J=?IY1|2$-Jnp5+OyLf~m)7V5NUn5bS@zYu;0cc7!^+t=_^^zacc` zDfJtB%MFQw@!z^Q$OVa69>o9hIkP+`_qXf0FBGGdOO|rDf{Rcr8k3`RABu)jcCqLE z@mk@sjLv{l4}W_93Ofg&*-#}yhd|~|qz_G64O9>FGC9t5=qG@hueBaj+zp}fj#a&P zhz)AT>W$pGHYRMKfdQ0>;x8X`OYzdu$NK-kGpQff3CwWjqs!lSbR zfiQ94IKZ1s6)x~x-I;nhMuq@qM;1-wk2V6r>!+(AJf3Yml9XV}?{OXYpgVWc?M6`u z$gf|CM=3d!H7)@SbW2C|(XU)m+nt}cYfKlBxPCJd*eW!W?=kl{Dlueouv+0=Xs8cL zJrWw1KL+!mgP;Y{uQfwE8hU~Kkg@3L2;``g68eCyG5Ii#Da0hF3Fah(q_&Tnd=I12 zvDBYA{>s;eoH`j&LLPFo=%i(HL;DlH*3K`Bf{lN+w{Uqz!<+_a6fYn^OKA4B_b;H?Pk zP0BYYy$?z|SHEO(yg!pe3OrHUYjxkqrh^o9PxyLeKDAB5U6vB@tS3S-=RZiX`Hk7~ zrEqHG9$UwBR2}ylDxh&Y#*nUcT=xyzCb<(fd5?-#=DI38Rrlj?FaUx;fT`WO;wk>t zvK`+0PuPm5gjyCFeZLdBcNo6zgg&K|OHY4dZ02R-)SS<=R&jrMhN*jWGDGD?C5PB@ zQP?>U!g!R{EWpI+FUm0D5E_x22BATkGcWTASKyyn}|dRDl$CFiow?qf46b@`Mv6IbyvUrhpmuh#90o3XnDm5 zA@_zEL{fj3Q@K$LcyBURd!4MpJO=P?1KS z*?3P0V2svP?0M+#aTTB41_wjmzsbJ^x6P1Op>RCx;CPs{(;AyPt+g3fQ}WE)dxw&75`xKbu!&$iT#g%z|$OYDIvq{?a0-b~J)#3)6M(W*7uM zz$B#xVWjPV-P;D-8a-0u-tOLTri|Aiz0W{ghgPJxX_>8MZFT;wPMj~aH(~+?m2~S|h#~_(S`n#3b9`(F*Cp>>?wHsvk> zAi-!J8Uh&{c~(HJ_8Ju5C`bt$T+>`{iw; zZ2;Ady^H$B4yrvEb=kN$_+7?E1Y~qqetASTahH0>G^~Xko0D}{DE=%#y(adoS1SHA z%w=E@UP{qkVa0`}Z$p?ejfhqSdI@3gtSq*bOpIAiMo&z3<(Vt=sxB|FFEAP3W5;R1 zGM@ZP1s=@%WZj0d`@19Nhhe?Er)=nEuYg91-3$pI&e1b$3`iltNQZOnDsZ8sRFB!C zg}aTBsW^oV;eHEv}Q7m4Li`{l9;E(=hgwt`?Z9;tHqf5ZhpcmAnuz7y`!3U6;C& zC_^z}_nLveq zA2Us*Oz$MUUQkJx83;GG-C!TWgq_eJPVFA5?&A0sNkV5_=NxTi(Y-m@*H9PI|3E$I zju|JBVtwt!_^s~0Vsd+O5**(|ExU+*X-^a+5M(5VK-7uJ#fs6BcKCQ8T!2C}KeLyCazfZ;sXldp%0etN!X z7^rSm_@e$GjrhtNq}%e*0b{_oYy>qR;gqfqsY6&ZWYog^*%PkS*cK=d#W@WMP#g(G zDzFU)f2UbxM5leNuwRw;2lg3Mm1uS526juq+$kAVgtn>Mk4Pd3O%_h)6F~C>5nn=& zY6oq1`10PP>CTS*`2>)zkL!Ay+McPW4ae2+|l?fA$B(-WNZceIlu-pHH(_787< zb+?o>{qQUtiUJu_h0)|8ws3w^Y1R0Exow<=m|lH%SYq7=rmOGGLXC?a<)+` z-`emzj-ZR}EONBV3zK5I|1BYEU&VHc8G;6qW`pB+7Qxo!kFbX^T>omafBfo2m>!aU z%XbV}WqSLM{<+uyU+#Z+7z9_O3HduFYEJZyrKU+VdZJ~N z4OWIkG`Tw4p5bUFiE!s#e`gSc!d7J!gW!@kmN|IB7Ok~HMi@5 zh%6)?&S$?=LkNbW%jBjD!WP6R;*$U5YR+c~bME`DMfzsnb z3MoWUv&aFtR!R|qgENnPTnXGPaT;mp6uGD4Q3;B_-+g(MVN5>2LYoe3eam|Hx&OI2 zDJ;6f9>KXK3I3e$CfVP>r%`>juQ2BZQ~<#VX%B0}*nEXER49l`P==H4a3T`R2VBxF z)eZclpTPL);B~k11o#K$e#rB#Zx&Pg>>tazrBhG-d(_8xoYg|tkx~4VyIoTlPd>{h zt>UY=p&l76o#v{ICd4Es%}C{4U{zSbN)N_scyP**=%@RfQjw?5`KPCj>HZ?v|0Yt1 zKn$*k(t<3hxA3$xiC!$4fY)XbeO#J>$;8rpU z>w*1o#T=AHk_ehbPAK}LlH(2~p+7Ciq&7;d?I};&&+H#9Qjg=87YrTxK zHWniyBe1*sT`$*OoCD}Zvdci&BVWBK5V_^CFOB~4C5Ea`NI7ew9efu@HjPt4lfpMl z?T7M`yKUd#0|vVhiccGLqJ`h+6d}&;Boj?n#sKA``1A;vu46M`M<-TaMm!q}jLz`M zZLr;GlM~N|T)H*p+J5;G^`Xd?OU-O-dHLKgw|vuhS=~|5iROdvHjHxWus{q1JUR-O zi%D*fSvcKnZYxciPlN+xwtQRAs)J2b`+#ZeINgYmoEmaX$s5b~oVhRHFr!DjlN`CngH)@fk z6o0h7lpLpXf9;D5PPoV~SS0Ku-e?!bGrS;1@?5u1ebS_G-1-qKm*24RKF;dUDy@Zu z5rh4vgNka#`BO+qO3!uWS1&;lxxSQV*OyZBhRJsxB}Q}L!S@ekwj43_tFz{ZsYI+i zV#CVIv_p7;i>9Vq8u&YFAEvij_al{os@26`y#$%iG_sWUHkOj4<4&u2-zNcth3l# zE|DAFmGO|iWFygRf!=NY&HC~iIc)Wtykt8_7n6yaI!4GTC_e6g`7Jc- zQ0~9x^M2!c{8b?VoED#}d5MWizVk{YTG;%7$oVNLKm*H~87*mP$)JWcHeWsCiuiat;8xU|$zIu1%l(aj^OgLNH;@4p$?k83 zCw)$wpQ@MVF*ZNTCi=B6>oO8$4D*M46=P}clVB4F6h|)Gvy;ai6YDyVopFD|Wp;^^LhoA&RA7oYjlwI4C>;8rAbe*sz4N;un#qHQ*l?|M%?I(rskr?tSV=OrJ zfxlm$1Fkx?T~S#-&mI%+xM{oZd6sJTjr!^)caA5yRJ-sj^GKl#k`MK9`W;39gX3SH zoF}3F!cNTvo!oft$&5ivk?hxWx4E&s2wE?6glmYC55AkncwTIEEH%Jp1kF}bS`P%= zFS&m2MQF?mfgEM1#*hqCOW`T*-0)lT|ArpyhDK~#Om_IELV~PM9;VDfU3v! z4U$lhhMJ&H9XE^2hE418DONW?wTt`HkQ5LJDfeGQmt90Vy#IDzE@d}am&1q@LsF7A zyBI%5YHLSav0Fm{8>6{=2Kpaw_JBtZ}pNTN>m@~MI6 zGlQw!M1QLCfvn4aum9if|7ZOFo&EnGt}p+?COYAuM(!1JplI)-f`3_+EE=^fwVa_S z6IZGh4``$MQ%w!p+=M-@!_^F81SB#)iw0B-(9#lM_2-rrT|fBLT~y>~1s%d{D@W@| zApe3*Z=2p*t69AcXCRKQ;CDZN^k;s4*mKu4UC3mPOWO889`n)PWCEJX9ZJ5r&iotS z12c$p(*~Ljj(_Rp&m8|EdY9r$(~B-l^*x(B8l%oZVz;>ZfpmC`X-02*EbcM5czn_0{cnKMjB&arfUN9fLj4Cmy$SGGk>qL<0XN|s64ZKr9d z<+!QkwAB8Dy&zw^4i+O{t9`^m_i@J4_*?CjbvgLa^{h);wVB2_1(J@Z!mW}rPra*z zDMA&W{a!db284&L0clnZd#oBhO78eov_b*POMWa{+cOe z7N?JkSeg1}UQyOvQYYVL)FWPSRX3;=9&v!vy`zxZ@K#nd@5SnUz zR=jLFe&`XO>q>+Xgk~m-ejud#l-1MZhaDpx*kffx@Dy_4W%65mnmb=?LTl>#@ae!5 zUzJ0bN5y=?M~8JWE<6>VL@#i5XeQ*xVnI@^*O24T)4QJ>LX?Z3{9v}uSQ9G*###dn zt(aN>({mst$*G=u;O0-;t@^5PEd#BOit| zPEC95W!A*r2!qD`C5NGV_-ISeJQ8WRJsWTCMt&)Eof)@@%T9Lt}!2 z5do?hT9LX|!1##my`Pw|q<8qHqv(WlHfo3dK($5yo5GOsGc%yGVFTJJ&kTDC?Xjwyj%xrlHkNts4;V{IhzgSj zx>l`=q*B&m0&VF~RvG)r->P>V(N2D~dR}i`Kt%k>=NQMS?f;5Y(@}EWek)O6j zOcg^XoIkgww}NX5a@F|Qa;hqy>E=4%lnrQH`cP}ON{XsYUSgzer(s1UP)z~?Vf^}W zO`8@KtnK@kx7SHgk$Tke&W_$!X6Dm!Kb_?gy}rH++jRfuyMTdRFmhVdST|tqtKJ}L zLl2`ytk+iNSvsPZKe8ZrYUFGMOgeEmA_A;6>|CdDhFqJrtFwMiXl@{P{&bFS>k)}b z%*QlcXJ>y0*Ci;cTK@L_`>Nfakb)md+8aezt7aLv?vz;4Z5RWMv;cxnPQi?kIH1ct zWs_#atrG~g#<4_QKO_R&EX`*_kM1{?Qfo)(np&BfJ`qV$gY_s5zy zJP}bOkJNcBC%(ff{@oLN0hkgW2q#WR1T>4Vt$+`8u9bW8x4HmRFMmfaK!s7YC#S2? zjv%x1m|^+dmdFFK!rDs)@EAL@DRdoOWds`5Njb#^SL8GEZmnzoeGMRX?Y-2_-XPF7 zc@*?!Y_gp%>Ik+E2wdIRh6hjnDrPXTmmjxA@Xpm+kx|es00KpR0%4)VR|!yrp5DFq zeLcO!@^jf$q=fHFgg-fYKL9w@=QvO62rgGzRIi^4og~5X_-ekSV&DJ@jqWm6xD)_KRH2}& zSNDY3+Yk^9skj+>G~3<^Y>W;tc(D*)8N#&rNua%n8fj5HuMV=31p%M5p5EjcAU%-}|4 z9$(U8L#$*#C8%mOw%S48R_}s95f|$-?eJC(88t7@F)QJ@1bsaeDGQ<5OK+{}Y<9IbzRE?$G*|;O z&DNGVdVEv_?N`Q_@w%ZlQn)}x3Xvd^K2*c(uFK~4;N!W_3K>(wNhTcIqWRi+{K$A- z?}X~fVRG{Tm&$N+A-EQUO6Eb`L7= zjC{3lwiekRu4ut&3*KFWp;q*ggOE`;Po(S$FtW=PidHU&dM`TypO~4Eq*h-sqdGZ;p8r z32~a99a1nu3GyOCkL>LBRP=y?#c*)RvYx)x((&5QSVr&Db^P_nxQskXY>La(tb4iq z^|^A{IsUnovRXVicZ6jdXE{{=5FwQ!n!0 zM^ktJk3k4Y<90^5`MurzSNjpg3G>3w5^Bh-6l<8x#f)2PbVL|D=p}H^vVm0`1;^5~ zOHNhPe(awYnX*~Kv1exK+1hGUqs_fPo604xE>G97bZJ5}M~t%)=1X_+ZVI~uN(GrU{T~O)cm|^#&F7{O*s`0J!JN!TawnJ26 z<{E*dep%PvGW$4r%=Ga$x3&5YyAAjv-*TsH`IH!ElKWh?hx{vfvrwtNe3$kXHO#MY974{z&?pL}3h@=o!-P z5D8^mO&l7!MHaKr$B2AKBFukzj41MTY@xr-*bR)4$Q%-Us;L(HQoY!&$6FYjo@61T z?ef9x;>YkzGL67I78aJUOI|w?Kv+EZ+8sxUna(09>q!Nr~pe~dDh{YpKJtx`mMhO3tTq-G;Vs~|e^ISMp zY2Bit#?%2b)@<%EcLZt6Rt8Cy$n`cjh4=M@wG9>K{Psqh*LSlzqg$;8jh@pCETIK0 zG;p%YKT0RTYjx6f@t3y-G>i=!bgmgd{-)WmbnJb$MPHe&xPqk8BkbdT>HtE2gL#u3 zZ|}gHALavl%WlkI%dUevtMNo((M()DT1>DI{ZAT( zxsg@>Bn7K}XsrRX;*KC40u{wTs~!f~rjgVh9c&!ry23aRcYqViQX1*D33 zn~Yo&fwW)D#?JF%{_<|j^ecMpLScEL$ktS9_OLvJHiOkKLjjnu`eXG0 z?aDjpPlh1ub&gPU%18gA>^BV{Ow&VU8j(i0{`tz%;J|omnnn{sE7Lt;(q7;Ffu(92 zN(|1uhY;aQKY5Im!cB*5B=t_)V!eEa=yqgF5Y;d+SWrr(9WA-!YI@V61JdzJ$$Q@F zLBnz;JV@rJ&+nyS4W&1Gn#p^?`_oA8ROW*B|Madt=NPh2sc1h!`Td(w+ucPR=i-VS z=b1Z@zJt7_im4mV6~S;H`W$nyM-9Dgis?ZS^Y*?x(sx)$a#I>&M3NCC=Zz~l+qE4n zBU8<0m!OxTt>Z?4Y#SrjUNE}7r%qiYhwrMuG}PRKzrS0o!hI{VTkSS_y8NKqL}8*n zfh6bm+FK}+LBkIs#l;9BlfVBb7af4ccX)!XgIx3PKl|f<6A)qsDH}p7|NfUY{=%z+ z7?h!a&OMeNKNI=ijN71mjC+#nSiiC~pRh}GnX7^xMz|pYYFXfvWDwdi!GX{T+l}EhC&vJB3=~G5@l3-;Al_W3nk2*m{qgM+D6SG zdw(yxGy&v}u!tyPs%W&#beJ%!3r7URr(vWwgCJC*5z3=4Z|9WN?fS`;g6zx|fdMg(dU$#^t-5(tJLyyoY z&pvJnvsiwgMG>-t*ifCbBTXYO9z@a}W=UJBulGvasMQw>o)0?n4j92$)nnYOqZ#_j zd4$Wa?jTMHJ&G*SgX528`nt%ZQsxeSf}38!QJggU zD-OZp(}EJ7I`W=w9JvpU;8zAk*Fq7cN4wTl=9G7xsgx3`90g+pUGYH+w#Gs#QR*4C z-hKKJ{<;}3p$ySQv~5)lB{W)}kFB)0DvjyPoysd&VaJ{0y4)WhZYHfN+ee7Ez*(PC z`cRm$3pL;C>bls+uoj}bBE3z9CN$^lDtO1R)a#})qZePzbKl4o+>KhyRC5SaDKzTu z^A(jxRImsR9X87_xw9|M68dHA>?npfP=P@`K|d zVM?id@6&l{6`iciX=93(QukPJa@SV~EGb@3sFogUfG(ir?)vdiR%!Gw^<5Cp%wa3m z+{Ujv%cQI7p6!yRQR1@FOdU8t9yULd7%YLgcaTlpIZlO!FgNAUwlrodj~njh&6qAQ za}GfIRgkHE`B(B%JM4QnCOClfZaw@sm>E}K5YSHw>Vx@r&RsgVA>#Ulu?ubk`8$S? zJk3Q)Y|#I(xJDnvC&)4JT15^vc}9!jDgMX&fn` zQN{Yj)%gomMs>t&ol37NK`%DAR&;F{4H4lP`2`d<#XDQg&C_}~I9Hu0?UK6o@vu#- zYMM4G^K5rgPw7O9Pd}6N?(-FU&T?0Fn&6`1mz_TEtTerqYb;lfv^Vh-q@P=?d>gB@|7kw(Dn7++~cp<(HP6t3j{3QpMtjBxy+uO=BWMZ>28DFumI? zWm_ARb2f=`#i65ed%>wT)5VLgf`yW2M#D*#)AaLI^SU@~4m>iZpmMFz$&63!-IUQk z3PjUhWvVriy~KJpIi6Cg+5)O$dl@=l=R1|2d%E1tz2dmF+zciNCbx4o6SgXjsrhBn zy?aFwLQD(@alm!$wqT!bhgeQD(>Xnxf>#^eP_{`JF;#LUws<=nujtLw@7UjySf73z z+$;LL_A>#rU%>`r3u@$4mwGfUN~t1SZifeg7;OUbBkUuDDX!{xt(|pO4U1-WMJGK8 zp^%XR`<$0;sYXt1{Nm(psr;Px_gJEa%q%c}Y^XQ4vNT@GbCxp@h!7nR5HgaSa-JUB4K48g_ub$O|Qt1eWg6eerYU? zBR*9&7<1kdJLx|wqwjp_y=zgf_9nd?$vfi#+>8-V&mSRujuOad9HYdl_AN{(ksC_Q3hr4x5ODA7t{@$7etu*Cw&r#c!&Sb9T zY9G$7?kcv{WdPtT`Ku_OLL4Nep1`o07ldY3akzx|1QjQwX*XcqLJxgQ-E zZeILsTfQFqLb3@ehO!Ph3B6o~*xZNqdwPe{ly}&du zZ6Qr(*bmM&Q3l;(dLVotY5gB$dS{ny;Cte zy3^WO&x3|`oLmPon|Ro+WJy!M!G6O311unyJnEkD7pynxO~vWwxexqWf+(e@s#ZTx zmxQnywav|krSBSA7T5>6iAQgh_{v?%C67addn+oDPL}aNbc)J>xm)zEqkhcARFOo; z;L!;*m+c!tXe-A&zhOw)yftk0{_Rx$xaKG>f*SV}{n~GL0Ny9`OYL(x< zOF%_cA)fH)wSUyhqmD3$)XuTX&{df9gRRKT+VDU{8z0B+P8-j373&@8&J(&TtUI(% z6jfP@D0SEGDt^_QOLV&JVB1Bj8s&4A6`m!r&*%7CT)fnWV(cF^5^8}N<5D>@_|9av z6wDN6$k!g#4Wu})`0&b-v4QUnjT?y?=w<52wc8n@zJ~iyYte4ql}A%JkFqV=sOJfl zpPH!`(_C2UUGo`O6BRPLz5B^W|5Se29B1#b;adckXqxWyBufY{wkZ;(!%s!)s`Qrn z6?~=D7LaxyD^@{DaF9blt~I2Iz?@{6Gij7=nR=uncN?UJ*LY#d};T&Rx|B@$ceqV z$Yh&}$_$s;6kR=`2zC0^@ZRNk4d&I~+v4QG=oC@J8Lr(%NofDnwi4&xD#Cj75*!~c z43~eJmqNLS60O}jU4RK_VGnaq4@>1w%zk7aQ&&EctE1^wu^7zJGd6dyd*W(o-GMci z5sLED&$sMzI391N5zvx+zTm)1N-6c*aVyVejB}3()o~x9<2gYbjhRYWYe{GNLS-`g z*6eg1uD~U@-+_5v%3`^L@)KKl4)GjZ{<}rSZ7T3g6`nmhyCmwB0@J>*RIu8|=_Z*V zIU279>D21J-Jghg$>a9v^m$Y5R=kwfVnKjTCi%R5Pg40e<$Al%Zp$&V@oNe83k)i` z%Su1RT)^Qx$~3CRc=WSQ1w;45rM#10-gWUuKZrC%4f_aBNI_2W`37bun5hS(h{a8L zsjgq#hcDXZli;;AJ!`GJ_PnV+jX9ko^6?U+##r%tXw9|@pHpOJU%AyzBC54{u1S=N z`K2DCp>(mYxZfO%`B=ZYvQ(h)arU+O3MOXiCc|=!h9=rrbbGrm$y~2A-e}f8wOfv{ z3o%{qScy|hkw9*BW}#oTa3it4|CocIOLc+mlVXE-$avr5uItLMj=css{hW`8r7wTt zz)@CAy2riK$TO+z3`o+InBp zN^ibRyXt$xI!?z!sViKJDbty%+T~i1B`ApxIu2jR?SJlY!IQ@4gfyKqM6m8%B&&P- zqM?hmd)1Rr70fvaeWY_lyKp7<3SE@1gGVZ0pjK}cgr~3e{%|tX6m@UM7tj4?gm}eJ z>fR4OL^tb{TpVpPX8)Y~NSkY>KkmkWK3Pbf%4tl6lH+2G!k#qE0)E_QYCV@t(t-w# zCQe-&BGPvLcB24E=Wb=RCJ3R-eWU0NO4m@PONHf~^!o_vmlL`k=mny4T4?gA%C`z- z$ZxK(ZI6meV%TKTl5KW*n$2$pv#A>u_hIn1s$L>sB0Sn%0>wEsx5KFv-uo~JTw_cc zDl|>$&z4qJIIq-@Q;JL<;IC0_D7IC#E+CX<3-xMz9-M2n23-5vi?+8S;U3nq@b1{_Du z#XZsx82{~Qr{5G@567Z9nT5OFgpX36S=Xk%@a|JQ4J!AMlUe8vq z5r?_%WQn=Z?AaSDpArV=yEgp@&Zu;by=6R1{kBm*(q^Xa%({MpZp%E4+^iptad_vx zCBJ4~mx}R1CQ~-S_C0fo#;sI?sZm=p$W!j3W45u9Ruh8Iftt@O_2!>~cjYoHo!?R8 zNZagj_W73GThC-a%pHTGX1?~UE|jTytb3j3ZB$cyXSPL+K~*5$^MIs#1)Qn~e)FEU z9S1XC23wMubm!;DT&pzVq+!#F-kQ!H(^|Q`>zYa)i$+75IWoP&%w24---}aZU$mPj zOV=w(UF4pS4f4L}?Xv~P+CKI143hQjR(xwv+WRtIn?_n@f=#<))kI&SNRsq2s|WiN0=bUW zF1#XPBePDXH(-D_ZFFu?J@!tuz6h!XW^3DV8t0Fs^xx`?#ms>y!7%-O4!A^}Be6dB zxX8yuNyJt7=D0mNWhr^Q$Ef#2Q^B#Yd0n_eKF`R0a!Fm4T0Qrr6!BduLv=^p@F2q9D<6hV;^s+3TqS1AJ0n^fs29i%82I!Gwe zJCQDkO7Fddj(`;Dh;-@Scb?sSKD%e1-Shnemh=80IVZVf=H9t8cV2T}(-v_t!fu~B z(z|h?tF$B&5GI8v7fa)JH%h*Heh@BH4W;vR4)1M74?&Rn>MSQzSRnv(?GgR2;z2tFsCdb>7 zR!+UarSR^fPl45;jRqG+1i4bc(mJoql3B2$SMjvp(lJLz-w35Y4E9D(iWvF?+6J4? zQo-!iSrUK~gG~U*Ow5=rH*h%O2WD}I`Z`e8j0?8>I6W$8@DU;F+57Ik){Xba0*|X7 zf^mr6c+9=~xCzy7gtj(zN``I&w<}e3&t+skg=G+W&0(mov&Ntefu8H#5f_tOn@(c~ zr^kNJvB{>dpu%WXM6|-_eeuek$?4K#K?0X8T!ylWFnxsCU zA$x=8!(aeo0Nky=sFQn1%)JK$%WS4W)o7d>;+2NuPBD(&35O3bXt-1Kn{iH2_|9F; z2a$mvI))q{defCg_(z_tl#K%97KF?IevNItG8=uph9VEG>!#OaPD|NqSM*6Yxd)&< z*PXv{+O7@+W~aOT~md!*18U3d? z-3`>1b?M1}lX%wORz2jSJ()O@R7o^?4ccBh>@oYic5z1F?dcrWfgk401=ZO5JY9Pt z;uj7e3g+<|<2X1Mi(8wg0#8l!Dr+1x#`(S)#99V@Y4~-J3+9?;RIHWk+Ixj~j^o|; zsX^G15jY||&kIG1UuumX;R6XOpR_vk#RmJ^6>-*$Jc^j{k6yXx?H%U+X*<}BZs0QW z;zsKDD`Ne#SgCokcd*CVUAlbhzE0O8(Kpyn(f+r!7j^!W`1y}vN5{&wuVt~>v&rN` z(Kwvbm`5e+)gvZHsjHr6E{M)iFXQ%%8IOq|N1ndJK9#Qh^acVB!eZ5VtNXh}_TUWo z;qD4Hd!=1{It5bro1vO)(A#|ZoG8!5YkBeL9b5LR>-ttN5{cvLw<>${BaXU<(t(^y ztwD*X<#v*jzGJ!FkJHUEbzMq#JsJ)J;C5)>g*3Z;uc?)zM=To0uD;LU_#)ru^oNY1 zx<1?~q?{F0E`H7O!ZDRf0i`pqb1X@&2U5UFY&#dB4n0{enV%oH>e66lIUU8n9^lA7 zd*5O0E6IK0X5}&+qZg7uhJN<2_E>e*{miWCiXa~^?)H}sAlU4{hsTlw022HE1`GLSE75y-T2y#30M8-KnWqHrn4&cb6;1fhG$bm2-># zcE*kIXNkU#ch$v)>!)=&{FZgw}Vos>5cP1 z<+2U0NUlm!xwFr2B%YRC)!fcfirElzderE;nZ~`@_@KHo@U{D*VR%3#5TOFpwRA(~Zdl`gs03NWtWc17Hp8ObcXxF)Z+LfcO@s9*k|c^6%en zA_M~Z_kkf;F0{Y+_DcX9`J;cwU*R9@065}~1G@Z+VS$f-2Y76;WFCJx?*D}Sb29$_ zXEsdgJJ5)!y9bEyMgV{|#_~z2p@MVZmA{7hp&K&APr(R-gf8LnGY_Y|-Qll9@w>CU<_ z7RRd0-m&015}E>Xq0fp{UeH})S1_<+z+z6B)xTg@93S}iuU4}7L?G2JQ1lh3ECV1P z)pa0kzk}v>|6uu(^mWD!EM^GfqMGdTzdD=G;H(m+b8=Llu{13Vgopa%FM%?y zxI}=*DxZW_5T>7Dc=&n-;NPm;yPAGjWvtv&NiwnU0-^DpAk82R)Yc|Paih)C)J7_} zEg+obdmD^2un-SQM><46$~z1OgDl`16HkUGE`M&7DbJ7jY#X;WaCv>A{xVUzP+V(Q zwrV_hrak9F1Hc@Zj1`{)ohL>DG}u%Tmg!4Q_92>e3XellHc{>3#$eWt8*XTCAKL~2mhcLKMhbKa_oMzHATqETesK4^-O$a zc75Xs6Jlg<)8xvVw1J+zS!#Ya>V-;y+WQob(6Pf0?8s{q;)zro6Tfc*on@RqxYdJa z%FnUgslYC9k~<)0&gZ1;i)Y?Ou-91nIzG$5Ie-od1JFD1ZVIM-G5Yoz%U^^6c(VAi zGEVxQk+#?g!IQ9I65rljukd-llRtl|GJw}@yU%(|sIEPoKOGP5I$XBrQXU4jt>%BLhwWC3s5T_s9!_+`WWfaQ!hi zQ-oS#o=K(}`=9(E z>@N~RwI3j4o*3~&6Bne=kI5?K^m0BVh81spV$Z7E+VqIU2dzf>2=*Ls=F@_=gA!O4 zMvTksn1F=wd}=y?1`_^IrVie>K-)1{m9d;LW@!^>d4-K5K3DJ0%yR~TK8fMkF&Qxo z%qn5^Yv_rCW#2~WO>BU_L@;}g=xqnR+eWyc` z+sWYL;0=Jf>x?ic{C0{G_6SA^67Wcwihgpdb2ug@-k#V!^wpoqQkMQont1Kdr2qfnQ35=RqyYudKQw7(|waM zyq`(Zcx55VA)W1$y)N%M+eKcpEPyLDqI=!U9)LepWJXDidX!604Yq1_L{H$IMcJx| z0r{w#TH|!~+OVmouQMp<_#Up3NNnF-t;abOeRT06A*|y7 zB}H@fHHkO1-qJG4mA+0rYN2%^)B^P5CBeY`8O*hZzD6&}%#7qxM7>Jg81*tXm(xBo z%m;ib7$9C_zUp?2gedSK7SzD534X^CEh53!htKwDhvbQ2SL03FuO-hH4uDjl={Wzh z0Tpb4FgqnKVKCK)Aotkovy6!d!YzRysDh85w~sS0r|gl}6mu1K!RlhXG`=~57#}RE z>Oqcwai_O&s2g62T6s=9)UAomW_@|^l@R$ZDRH~@0 z&n#9`fkohq%4+78IESS#>g~Oczs!qg!OYmqp-*77f)pLTyY)8QCuG&J$Y4TOU9FN2eg^!X*LeaDz5e=*2JIT=* z7DD>ZOyu6tJweiTkP|&q1&`-YWMBVPQ(N!IKphqBxa9CE^0b;YVK-D0u`DeKeYLKG z0oYb+`9{;$M2R@iNp4{SfKj zb`^g)zc9Dp7qZ!Mk3Z9B(yx{iSoH}N=1kn6Z1Gzy|nFWI;oNKn=f%-frw zgaCVkR3L>F8y4MW2O*C!&bdbgj`8|d^#C;L;44X(y3#lO4w)Nkp&lUMKg0!`jtTY0#UQl-^5 zAZfIJ(`9s-3fRv4!yxxabhCfJ&4inUrlLsaY=tc5W&6$PB^d%s7KN?M%h18+Sc!5$1S(xz zyGBo`C@ZCXda&L-bnj78>8%~b!rN-vA{F8tygdyTg<0Aru8x^oT*#qAtc zJJFD6-BU{e_N5l3GCE1+GNbvzpoE>B3$OD_F>@x{l#E^brVk&x3C9;RH-KGgHEiSoMP-mtw#qhMPoYRxN3Uy}CpIC8U9 zi6>z*`i%N?^bRf|cgQhhv?u}+dGM~Pk!~{^L`bi{=l}5WKdIl0+zwW_V7=sKv9;N_Dz892Y}mwEsQXK(^Ti*V&)u z&LNDr6C=heSy+mBiBV~S@WTf*sODOwLB)!p6!zu!Yl49d?WI4jIqxfYG_MRK)ke4D z*Hze;y6Db4MPy6FjUT7*bMXY*j3@wB)F|ag8kE+h5iMWfwrBFc zBZd{wWu23DHVgDzgzd|lHb8CjUCDSy01iO;I!{v-XAZIZ>;bW%t>3G5+H@ zexCsUC5C$U00!QeuR=NgCxKEZ>j1t%AKR#z*!}dK?u}N#VKqKKBOKOpM<9xDoS|92 z1fraTCJKUOZD`}8M{eFXFml8o`Z&^rKSpOHa2EljVM+jTE}hIavxfb>5x;)>n_-K zMnY5y6Q34hFgy(-JWXPJs1&(&>WE?U?1iNa&2dL7JVGL^#vuyayCrYY_)=~Qyg$R( zNPGOXXN6T2-p>bj)lij6u#+jhmEcnBg<29xc6NfhUR4p1FLh?teoNjTd%xBdcRT|` zZgUx(JA*9vajWG075(!9uk1a>Htj8mM-kAh(PKcl4!FS9GviG4nG75Emb2mL;%Jgc zy>hZyHr22kabUeRMy^Y1>S-z6`r7K1(*ee?o9G%y(3?9eg{!dNRk%GCe62Y%8Qz-z>Jr+pFE6u^njO5;_M&-#4XPO+OhC-vvp&^4DZw8Kax=L;Zif4KT83UdR5~)UP=z}GpU>1J+l2R_Y8DJEsb}Q8mCF~NI=J0F{L?@TtUmDc zvt%?x0X2g+p#hCQ7iTRTF**b|`*8(gZ>QL6TKy^qC%=?& z!s7a%CkY&!x`i+VFSzhPia(2YU0xAg*e4<;5N!E&U9nIHUZ^9=p_m$b789oG&+{Tc zlQU1nvdEq3?jsT1Vg-%-ahh;U$Td}&x5qKxt8AJw#bUcrSGz3%Xai@ZD3WHgu=QZ` zYY;NAUrh%<8)_G6{crD71BcNg<)B+eN(uZGD|9q!S~9BNHMxQ`kR*E9+Ck*63)qZ= zN3YmX!78}2@73N+KfyOLK-s;Sdi9)k6}a+ea|%?ONn`<~GxJiYz-;BW^)EGu3CiNr zpvjH)9;7`lJ3CD$;B zmZl$Hv+G`7AwHPP7D3t$r0SArw7Fd+0TA$=`fg5Kq-`a~an_*!QB~E7XOi*iA5-8m zakhVTSlD}0aQVWk4bjthS7HI2mp%3XN4LJ=-GI;KSNz8#Yny-tII?Nr+NKVw9e=J80GrEfV@C=+V7ujq+JErDnw^!!ZpeP0hvVI~$TAFw~TU|5e$a~88 zAk2b8SVMJsE3jr8u#aP%F1GS0gZ(`p4S5QaT2WmY}H?r_`Cnq zvyyHnoNt(U+jZB0BmcUT2j2YWGmaB=X1yaOIboF=W+!QbXpZiROBRJib%KZGj8^ zULKTimg5xyL@sMTYG;+hUD?Ku{H4ucW#{?d=D0b!OT)}kbn2Xx%Yf8_G;>jlgRDTb z9A`}0-bdB6Xgem}s3JrqHK}+#3P&zYRMH4eonKF*M*FBrDB5DRaH*3w8c>8$-?bI! zK&Y|g(b)oIOK7E9Ym|r;o~o+VY=cDZfBQLd7CnPlOt*e1DT9HuiY&0eh$8$AQnp zxv{Woxa~|8`O-Jr5!oArfJI{vi!%pKzDupNBscxz!t2ylI+qf9PWp982l9yex zkELdnQcyKFPe<6#@jd>?XW_D5gzGewT^`Zrjmpv`1L!`aLhffOPKQ{K7 znUV5d4mqHm$nL|FC`eB(V<%W9F1x%>(*b(~2|vdXh>1#do-n~C`Z`qtoqjtOs<1ps zt=kJ>U;4#u!yF5TXfsj3Jf~#L?Q1KiDgDH!`Z|Ge*HKWwF%?=-u-kt6(ly@{?s42s#t(n7z0CcAFg{eFRv zW?q$Jnqy|<^f#LRVx}nNscEo4cztI_qz;Ez?(S=CNBX8wa67rrLYZGq)OOHvO1Mak^e%tO`)Ioke@&d4c2mrODX*vquxcDP3HXirIo^+`y^u;LwZr8(c`JI+mR$UiT^fZ>mjGkF zn6L6#V)U5r5{jnytB?PKZhlq#DvYj`_Zt}xuuD*hv)s2YCP2bzkH!$pQv!AQyZ15b z8b}C3YoxWC4yQ8@bO^rc&=*k^M#-+xb%WmGYQsc25GT8VyuQZiTWh+1+ovUTGnLUXn2+PE)H7wDi@V3D8`&+`K8o> zaN-sx89W0oX@DC%1DbM^{(w;tsDVvcez;H!ja z1kLjInEUbL#Zqld(76GysYMx)`J)`=O}Z1)=K{Cvu5y&ugO;lq5_%xQnXn1Ga8F$( zt9V@`UH)VyiWJtj_L(?P#W~5l73Rj7iRuW>x0Par&gbU{hCc$L)56hT-A|JpcHs|6 z;GK}f=cqej{WDW#K#uGNadA;_auezo#SvYSj)L~1Nsj5IN0{=g&z%MM27YZKZ3>vc zN>B&qt;-BOKxZ92wuU0_BbP8@R^L`Usz-O&qbGduSNS7_rkoAMtcJP@uIC3WV>Vx! z=;H9U4-B14({y%>c*G{YGE6#WkSgPbs-97>V5;f;s4pylI5# zHI$)cC|-AP*o*?Gyp%x!MWv!6UDeYWf}c0_DR$Lf2RA%I&>NDa{h0=~3)SLb)*I2Q zqMA5Ad<_IZ#3(D3GQzRsc5zdwT+YhHoF&Jxu%`wes z!%dnP*@|5Own9J55NnkszRQ9nGfvoK{#iTLoq2X*YFl5EIph-!ApJU!2CT* z^cSN3b#w0$B8eD=G*;1~tcvG-E2^f6WbDs?M~+;B)D_f`j^a<-q}niE+`0KTt3)qa zeG~Q{&PzA5WwOHc>y%8n74U?2NVC|t$U)kTrtWC}0(F&FgsR*>o&Gs_1UCs?^yTBh?X5# z_$rlbyAgXqIED3@rZKlolh@qtL!fImb5D}6w%S0HyYxx&0gVE5=3u;Md+!nPn6wSI zEtA)kTwM*)Hz1{7&{O`usO-AL!Rd8jF3HMDGg~dSB}9?-!i;tcpKn~#d0-m8PAUKK z9ooaa`=#Ab{KP~e<;}LC7ILW%hEn`AthW3LOn^%!wEvH)|Oiwh1 zmLg+JVvF>H1S%CYv15I6oZ1+73AHukLIBa z9!8NZHlDL{Rmc&a#roJjcU{(#8y9hXa5#s2K661MGu(7u+ZoHo)iW=Qbb@|*SWf|# zNLr3LcJ9cH-C0esx$zjZjy)?FVb2OlgT}}8*t5a_xNA9BHi4|Z(2r&)FEnI;CzXB^f;F+f5{wgmaDxHE&j5o4M_KUkE#){CjBr>HX3~ye;+}s~L_9qe61P zF7yj9Up0;*Es6SBy}W&2gWtl*c=nNoWQ0}LMr=b+tHN$NC1%GFr^f>)AC@Bg1( z4FBDOH10^o-*u!3^RLD2%)3v=1^k5{7(1nL1v`FWObaNrh~~OVGm1YhdI_(;n6%VP6;cyj(e-glqVj`fUPWhx*FD&lmk|%u6zPUbRe(sCK)A*L zF0n>@fctWK{@wPM-5VS~Wl&#%G|>!{H%6@1#`vsW@@nw>MeDB5?@Q!DRCknhG;7ND zeP=xHAhUDYZ(qLdta@1*p1kPUyyl^@^83f}Ub@2-3p`1ei8Zo;I|wvs4aA2vCtL3G zSm^H`&rwQKG5&~g>ts{&aP7vhJmdQ_y1mZvQ@JC$0KTm;edK?Rle^&6s z9>4$ZDQCV8V5en6zQt@>Xk^|-_HCiDT9c4KvN*(#NNycUBg@;Zl9d|+LtaI%_J?qT0sopr=q>~tjQ(lx*Myc%JU$0Qxe|=l2z7>64B|%P z%7N>zRqSQlB9ie(L~A?XDh1}#$G7rUXYI@C1to311J`O&C64O`Rc(^6`{Se_R^)A@ zd%&Oa0x#5vuXAc_UCG{vNaQ%8ka23fIKtNcqYm2wr&@9Ip1r@=e7VPTk)+`hlm#>o zd;b$C|J6Sxmm(_yoK+_wkOtZXPtHETrh)$cOd8=#5u7DHF-|6Cq(ktp>N0KrJn0uV zDMnN#OZI@z)iNZ+XJk(@ zD4YR}slAzgXyJHy&wrdSet1sVc)^6p!OC?TkjwLjiiafDf&TkrDuX><68H)|{TGe? zsogKqz+{%D75#jM^~V4HIJ^P;GfB{n^?w-t2{sp&$Uk;*?;jfYQx$)_Ai?J9@BEr| z_=~ZD|F%U0O!ybq{LdMG{-S?*QGN#yPY|ym_5NQEZ*&LPPM!>CA6NaA@IV=dEFfN3 z(~GKq8TC(fmvaHy+3rc+@PGGL!Y4F^VZ|f={k-O{hxZHxv|}WqH9Po!E8w5ypCkvw zqs5u;{}02LViy3{v*I)Tzn&dhtc#cV{$=Vv4FA8$|KH^Q7t6n-{*Z@b(>=Wwbq)Aa Ne558@DsB4e{{exmS6To7 literal 0 HcmV?d00001 diff --git a/images/summarizing-data/barplot-explanation.png b/images/summarizing-data/barplot-explanation.png new file mode 100644 index 0000000000000000000000000000000000000000..d4a61ca226e3196cf87b43eb9d76730d8883049f GIT binary patch literal 202948 zcmeFXcQ~Bg_BW1*7NSQBql})Y(V2-7y(EYdqL+wXq69;TPB3~f1R;5d8lv|yg3+Qy zXQIR?qm04eot*PM&pFri`~CAh*Zb$|y2jjd-+S%7_F8-I^;w^F$3529prT-a=3CNZE-iZh``adCLYbGjMc}8F^d`HckI5>>6 zsJ2$*j@zeJEyCy47fWaDO-Gx@Ih(VT?~j40;I(;=*Nfgx4IDLl_7w z)6#f`Z-kHCK2i5Q^Z^Fa*uCNck`d5mtr)XRr>{7$z&PvU-W^9}-z3QS?sUtD@G)(nj>zdulC9 zR50raJ`!_BSEIkM%g_u#j{F`P>6h=t1Pq~)mfwCSqG-rVRYFu!?%ugw!`hpLwfx*h zysSe{+6UhymF2c>bP6Y2+1aSQRNV&(PqF8{4Mo?qzk z5M?K`Pl|}|53CLZmb&QAG?IRn9NdWDiq44UxUZS;E)A_Vx_M;Z!)X%HXp~ON$bA}W zoU*|t{gQ`4LtBp`7bageR_-3C7qvs=u6;(AIas=`UJa?ib{$ZHXvrXoPXWO%swPDB&0SQk}Br#o}eWRQGY{p zz^|sr$$E5@`tI-{=tmgK~&y|=*vJ9U)79XCwltv&hQ1I8Tr z8CwR&JS4O?V(-{1%BH;Hb5rTOmT9J$J+kqq6NwnV+up~c$m>VTLGMA=OdgUs7egCAa{C?GoP-$;SToz{|qyB6+#zywFH ziF+(h9}b)WD>_CsDotyRebVbRIf5nI?M=Yy=u3~J#%k)baXO1Q_O53&b!Ke-M6SfT zs0Y(;>+Sh@11soYn!>hz4Vr@AD4AoxFYPT{=RGgZVw&a-&vsaM%HRoz%|;Mce}oV5*{7w06PcpPmVb!RN{`tF7pAb5p%f$$bKQjqhmS|qX9 zt;#@FctqZ2_)Qx@0U}--_F2mBo%+?J#*vXLVlRmKJI%dlEeZ2i_!_Bqil|!&B3Ia% z)oI?o9ix#iirV7gi)FM+Zsdf;g6ZPbxXCr?pz&lh;6F5y3!TS> zxAeZUg}%9MOJLN?oK5JI)MV3cCYu@i(MH9M)+8~*F2js{nsWK*RRtScCumJA@13N# zt68pcASI&97yStPvX!!`pY7lX`>K@`(Az=xf|xymu`7v2HEUvT)o8CX;-P2N`G;c4QLpAwhR^>OX{dB7i(DP-Zf~pR!>#tV;U8+(U z$+V`7Aeh{XLVFqqPU%_qF;C`-4!AQkOe!CN?Inn9e+>Jx7?Ul?$XN;>D_6s%_0; z(Ij2H-&ftbd*51LMm>`=M}KLsc%{dw>y^)${a9|bL2Byfy!>+Wbn`&8E&WTQ7n3iJ ze2UP$y>UDI4f?p3J1=rwT4pfq`R^AQT2xw`@Yk7`yB9teY_}i85XAJ|*1KKBXRf!V z_fvfP9nYfoU+WYDcLqfD5&9}+@?{Wb`%T~`#pb-oZxLFN^5-H=be5r(Of4|4%dHJ$ z=BEGbu4sVkDdp+q-Y9>r-iF?iLeosoSmbWaeDQqRb`G*>sBV6!Ghz4X_DQy5?^-RU z1{P!ySQZR8fNb0E@Epr+94*a^1bo4sGo?5HKze3)AH83NCVaN%w?cHAXkv_Nac5;&bKyiX7w%h?rsJhNFTsH z29~&K2El%(HjCGTM})sTa1Y-f5?$}mrq*80xdQPh77N(}B}M8$33(amuPh7s;52!o z(?hV_#SHrlqx8xAoy-=wfXB?-3;Zf-l8^L)ejj8{ibykE1NR0`heb!P#rXXZsZD?R z-t?W{G)GuS?VBq<>=HdfpXHt1zeRcH-t)1#vEbFcNAM!#qx%U-cSNlhz5%_oP7J?K zB!28*`gzAgAf)Anxn6!{{>byR7X9Z(&Hk9?<&y-N2v5r<7XP{(li@E4-<%ir+I!lL za2^|rrl*JdRLj)Rn4uNx{lhOFB4bkMQzVq@>F-Y}(#=#VPXUg;I zl5t!9af73P-PU+ZML^Gf0{BJfr>m{QniHdiGUpy&P#Vbd(hmLc%oRRE%45#MBj?6t z@tUF2M%BoWAn^H3g8PIpc6q`=fx$g1LuH54M}kDx>MQDIqg?HQ!`Yq_XpRts(7sEg^aQY+)iOcbZgu8Z z&gC0$s|B_%f4ryc&OYRI5Q(GbeeagtLVt$O69~w?G|hbp2=4Iy`4DOu0uKlX2w^V9 zW`1URy7Km(?jp7ho_3BRf$m;^niD7n%HuEH9sO)M1Kr&`eB}d`xc|{Y9)JDkwkS8} zKbrWtDsh|XJ?2#P^l{{r5_upZ#tow2D_weQUXD9#aN6pdK-p9qu&&AV&^H0CF zcAl^Nl(@P74D|QkKlOABbouv49=`uGE&K#U|2z>D7ZDTvyKlUx;-949x9vd`p%k|Hcz4`&Q8O^ce-r)j4c>F+_xcR?P`d>ri zWnL5;I{p{a{znh?8ih&P1Gl}I{!8WY(i#6-d;d%IckFMZh1eB(pZ~YYOA9?E`7doI z>yLMtABra6zf~UZaF+klX8+IO|Cb!@MM8sJzP?c92KUz*%Z}^7*IaXQ8M82uiKsP_Ur({D;Bik177JL;fldnjY+ZLSAq{ zK6!EX0(`X&Hn~1Fxc(}!d9i$bHD!JE%eoS@I|*_>d1QV3s9a%jTfaQ{YAYEAZ)FF( z>m&soykR`g?KsPwD!AG%sJy~>Ui+V%6G{+t4tV~8Dc{DL+k4kYx+?U z>-JWaW27%=)7PZna;~7QNO+3}w8m38c;&I5aD@h3qkHKa_SW&L@CTnX6Oueyp@HdZ$eJ>Qc!<2!Q5r!qR8d1S*wge1T00pofc<_G!b zxa|R_-hglD=1B}GI-5BHhCE3FZKs)7pMSKL&;Rvx_w)fO<~bd8@hm?Ed8^~#7XNpS z>&>t$=UUtA^Qvq4vuu1%;5<9KhP^t_PMv?Pea?=6_2BP6^EVI&o;mVg?=D}tXI%DE z#}D-h2y8NxRd+ZzWSK4E_Jfx%_}K1&9&KDEj$#uBXE=T}c~to}0pM-Md(;Q9_kBFQ zrem^MQlFg4>Az~9~JZgkLTo(Q#d<6AJ!o7jw~$t zvPZ5xxf0u_Wr=-ySCT&tO%T@Q^J7A+q0m z^mp)C@qZhx)`wp|1yxsTqE~hwI}c%}tilx7uyArv(>) ztGUE+NL?sb2gbFdLB$%^XWjaGOBK-EynMMQ!~22v5k~K4o~en;W0n1oO$AfW*OR#> ze|Ad8>#<0Vudi2b0Av{lfmy&zd3{o%W6ckSc8B#y_`Jp_NcW#eH)P5_sNdr3N#!6 zF+O>&0(?RoV=>m)DC=y$uIts%f{O*`T5E*xXAjNB9^x)d?))$`2gqrD<(uVcWk8$j zp?JsDP6z0W8KSP7m^>&yzp=d>-$_S=)It@_>2vAcJFbpVa^sHrRwvPGZx_3K(YBmx zb%_fqI1MV-0H2SiwdZB{<{?3IAHmp2aJGQI#qdc=jH1IU^je>AO?lD1i_-9sfrHC{ z_M?1L^d%~r`3z|PTsoZ{GN7zfCZ_QdB5 zo%K{ReGi_zNDHf-#;@0gIMu&!D0?tn?M*HDIFnWzVpSc~dt-)-m{< zU}XDBMe-lF7T7r_QQ1AvL&l9ipk?tJ34Mate`++D6*`xtSG%E{-hD=A$;iJKf7iLgl zZ-AF!WS$zPEuMYwvY6xK)1XYPL9W{mk>DSB$Q$7}WuJhMMjUGaB0y9M!OKU()Ch38 zG4f}DxI*pGoMFosAD=glo&FPjb(*W1(gKi6grL+j0jb`p7r#n72uGc#rRy} z4zK1Ju?lxhl*s{*bs32L$@xqNS?|AkjS z?$qv?H&ZLe)j^E4pmgnyTXwWoJ0LFV><;GLe#Zsg!oMyDLdl{u{f&+K*_N^WpT`$t zXc(mP2bbqwIIrI7+pnpw>50#9t0JMH3c~#;<-gzg`%icDQJHnocHRC2COQ9y>oo`T&j87%pLNBdf(t#Xaw2 z3#Ao8>c&IAy<*w7^#_`&O&hAGHo)+C-f7eL~G@|?2j*dA0kE4gyF z`&(OY^*lyYkPn;FUi`WdZYSTaU{J_*8ZR0GZa$f|Fx`vmdvHjnImsUJH1s6aGEC&3 z=k!tdpL6;KQ*iXZ&*=s3La&bpd~@Y2B!b;8>W4po1$Pa6G$vGhRDJ282N_}}osYLt z7M`X*MrqcxC23#8y;Bo~rkD~NW~b;*pgz_Rd7ck`yA%U`FQ5P9m;Qp|(z5Kslek4= z_=$^&fh?LCLM0dP_`-+_yEQJm#FC!?;!L6iy+M2vSaN-A*O8}SJ-~_Pu*5QwzcN6E z#}OeL#??Q%ZykGHaC=#?X3TPkt7)bV8R_hWU0)dJK`++)V3h_u$!lfmIzT?BItEr- zOuh9*z3IDp9z!gR7)vY|^A$zC}&I zwjdRua$07zNW)U|`FkoOK*jz=eb9)v=5Mz~mQ zA4J`gioPpV>TC?+6+QqY^w9HY=aM;b8Pv%F6I z`(HTT%Zdh{i3P1Xj6V50fy~n(X84OCl{Y$UI}75%9Yt9nG-7`s#i?b(8RbOIMWz4V znSqaCnm0W(UI*RJZ*An}Sv&!;yWy#4OLrue<&f2=!J2*mG~54XSOuc^lXNf$a4g^b z<7SayyKsKWnq<0ORwcku_JFQ+ms;6q4>P!_oLtcPshH;Y!&R`}m-ydZeMZ?UMO>Zy z(^Z(SS<*uJq;Ya>&a$FO+OR^^Z@siZPc2VQwBv)=0V)p{`U(4_g)C13hu1VR2O{jklZKT(QQX+lYX_ z#-TRMtpB>i1x`9Qwxy7~=7){!mBP`0T-q~)SADTx(vYLxGD3qLE`}2fdDtIme_@}2 zvfR!KR~tTbO@frnjW`~!Ptq4)d*hHtvtxSxe)FxD7XOMklkxZ+t1s-_T=n;kEhMX; zJs7MDSsO7W!!mqbtFHR%ar%>16|HVTKVEZwmJ;TotwI-d6?mG2NJR&Q2>AzTpvG!nT)jQ- zJrwn}r>Y<)#||GfK!>T5lW!P4J?VGBFL+dH)xsb>^a0ykM;UNc&al%lM#?E}d)$^S zV>WQ-wcU)c6*_*q+;M?A@Ovb+*uohizzUzI1T@xiN_5+i3RCCt1?u-UmLsSfGK=7av~d4^IXse}vAC&DfmF zKN%^Qu@1XbI}C?a&Q=XCX=n$#|I zS}zD~GmB@|GSt4!%T?l{<=vA~nD#i60s0tmG5_g7cxWsj?Os$6*|dG6VKu1txD6Rg zn*u!Py?YbE)VB4goT&rbXCyv3V>&LZ^{n9D2!Bs<;F+t$a|b`&yJ_Q-0$G0?L>s3o zz{z=?yvq%+w=GN3<{!#EYJY~~m1El$+XR&-Y5U#2jWF1!lxKE3l(`ZJ15<)F(X1oV ztY=E@oijOYyY8MAO2;3lpW`FE!LvW;CbxaVIiz_E@3`037t3JAcqQ+yrEw*E$eK!$ zS!#UU%flhw$BE^z{&E1Ta#e6EHl*l#pAR|K2=n7M@IPP-YUdtQ>I+H;(|?8;4KAKw z7Vh;(8;1+F;=@FU;Q;t;tu}V$gmb+@TBuLs^{b8E&p5}c4d)KP`dp-qFKl@z;5FTc z{;ZkS4XH_^u=bsncGoDyxW|zdisQB#$jKeq0}AVnQ`X{L=H;+Fa6yzhuR#H{YV0v) zBCFl+Wj|!LhoeEo?xw-hLq;$5fAKYlTSRzkiRPi?{!P00#)Ve}xBSYqFu?=Col*n& zi{7J1j^o0qZ;+jD`j4WXQ!DW$_B(7C7DH9~=wSzMr}|Dzm4T}zU8)~6j*RFc>CEBl z<%|j;KI6;%X9JfX1+p~ibUL%?dA)yK#!G^f_tNY(q&=s-y zRqTXf+&jOAz%4gwG^m`aGaX*F)gOVtJ@yu>6ZO-N7odr^r&r&|rAlVcj6&@MdagqM zqAR_)y(6C+I!hms8+x8gc+0sv3%vuxB{t*-%v`#^H0ItpZQBnmtHK^iSz}1RRjE;^ z$W|<{c;>*_<#J`8(V%Tj_nXy-Sw>N(G%qJ{ns<;UZZ#0yTc36gEqdaOe_-LXcuF52V^e%J;E%Y1t{AY z)7rmYs3s4)QZ-I;G33gAPdnn;Pr99QvtwR5Pxz>d;ZcBPmXxm*F0n$syaO;5E>p42 zrfxwS?56ZOJ~>u#mRi9+5u58NqJy}Te=5VkwmP*uD3#m0@!C_YlWG4AZB9(?X>)%w zCdyi@7C^Pgsu7hqiz_cxj@tr~m3?$ps0{*IG*B~=QQq4+UMC3^U?a7DOGA zABTdj>fJEes3{oUzJ>tuhP46?XoEzp2~Ax;z>k$t$Wo;memqLC;LC+}msdSBa%;n{ z52gID^e40Hb^Hu34AtXnse|CErTpnH4cqZZ{VELk^Cu$K6h1dXt2!eON}hgq zSq+wK9}{#6mk4vL_m0K}_N8+JCZsbuuSRu=+H=3p6$`C`XS<@~7A3+0 zHTK{%iz9`T_^I_uUOcRBFmOhgcDV2X=iLgc1dSb%L%-*3*si0frp1mKXaT^3DPyJ? zw49IU@6bS9*kdF-4;9~J7deYK;CE&3D}SY-uyrlQBOKk9BDmATj~Tt*bRLD+Fj?$9 zn`xBZA1Ht~*HgBxg6ANc7^@@B5H*bY)g@v%H8h3g!ZG-e@o6B*yfgS>t~}SXUC!d7 z+Vn8}ayG5ti+ww4M84VpM>Fra+k{&E;JTYO%q>j@cn)ye&aa2ZE;s2@YJ1pZcBF-> z@hNfL&b;yfvs7~p_)++yt;J;EoaTt17&n6@rd(88rPOIDp)hljLjfYe($#A7K~>v? z>O}zPsOO%%G|YDLz3D|8|C!6dNBj3SB2^uRx{;z2I6JV8a|Ee%0vI!>-g845qfJ8d zXZNQ)Nw>W%P0oQz?T}lhdsm&X+@B23X}TO~o(2T1d16R=;CXG_I}Z1xgckiK^~#+= zM>%Q3W}_T~thIM?8tz#2Em`#JQ!>x;*d0|6+9O>tih|=YlxNRok}qrleSubJ=BshX znTyx+7M^Xd&VS14^|izHtxlU~j?<6xK3Dx62IT*Qft|aktAxKRF1|_O8a~(XWE}kW zKX@aNfTp3}-RG{X40H^pAt&?7>U0Y0QaVZ6@lwfQxb-rFkHS7W^1%gm4aAASc(u%u z@9g`511{E;=z2yi{dca&O<>5dVBFEtX?uXSS&l-S#*EI2Ch@PRZ^r4FydpWE;PFt3mkKnBqbYRW z{hJ=SRJO2(*2V`QL%s%dCMV=QKntcVFJ};4-)5k~3by$y8&&af>>Qu)?`wA(9NxZz z5NY}q3h|c?n}2XXF1_`KVqvV{y$uVN9u-Q$JhfjeV9cV zpg60EJIlO8yn8?}?@<2C67HU@65q+~7Jv`m6QR@`exV#|BHC+SQgrVXyv?D(LBjk1 zgae9F7$7HMDQ(F&qNg9ywUCKc+&>c}bkX0`pP(0gOd(y|n(Vvj?DP3e>cVWAYhBo2 zfNM8vyCxdL*1pQdXF1qTydx4>>G)2j9i1fX&>61Ot;#Tr8j$jeWU7_fADFb+KplCH zsq+S|(YhJ+o`lstLQvs!Z3*=;ouydz?}Y)Z9KgM0JbKi(9*Q)LRx0C!hF;{?ts42k z^7bU)q_wv%K6*Wbr6_T0;S%9VMFm9lrxrTs2*|n6L(a~8hQO2uQsFdsC_0?%Xyi8y&5lefuZ8f(HMw4lm`ZnfKzfCVm z>Je7Iow2GxN~o_iO^W$NcS2jkyS5+$ic~~0b%@=xA7*^7E(nvvkckc2bP8b1sQ9(u zrLmM1I!3D}jWWcQgmQ^zuC+IMf>7pe+3Nnd)v^^;ut=37Q}h}DG!TpHR)`9#Rp=L7 zmq*^Lxq*phLNXx`i4_AJHRc;?D0J>JZbPeTH=!N*%2Yva&;Cl%;?Ng->T6^~W}z(d zAnlx0()%ZzZDvhS;WggLiffYxw=x6QaBf6J!X)NgX$Q{MwDTku?c9;c=%=3eEvHa9 z+cv!a8Wg@Ll}G3irw9KrzkG$+md8#q)ebtDtKOq+c>$>Dh{cdE<^lHug7X6d6wIs#0jzKiSe*fv}d!~RD#dVDfoLW ztMf|74^Ik9#4PMrv%5{ou22AKqFjs0kjfwOAY&})wp9*>liE0FXx*rTm?};gvfAYg z^~Qsue%INwr@ecta)~SS*W!l^1|it!e97US=yyrlc7B_0JyEnuNYyQYs|i4Gt*3M> zASuN0`l9_An+cMoCgF-&^3Y?JC)A;3eQ3@C?0NXh&BzaWKlk)sD1e`Ahc))31gQASas*RcO|$dX(IrXTTH>){kx)&rR6V-lym{z1bhg3 zgj`Zd1el25ji*_B{eUuQ8C{;kWRT%c0Xps zaXRGZKr!HQYg@SQfWlM#%0VgcfTePzEj}O=q!oE?<=5mEW16E4ed3a zHIZ9mmeWaea`)x&%^l@H_k`YsaQd4stim)}Q?nzfd>ayjis^!a&L;~%w7JRwsEmqn zTGv#UO~;s&rtQzmHO^v%q?(ljp&3DgAAJvK?KCCqMH(H|Owh8m6gT`~_pi6{C9*+K zXL=QKQ=~FiCYc+YrgU8YKSle_dUZT)JoEm>^N#;0<6F?A&`f*+z7gc&mII=XR!G5t zLT@!;Tw2hv%xw_L0Ll;Dr&t!`w9x2MSp&x5X?$LVx>B{I-URMErJxQVD{I;q-g$46 zNr-&4jkS8UX0^_B6t%XrNVH5o0Aa1#D_RfC6|}?$Rio;dT32qCTTC0|8`7jVq8;w; zo1);=(IsgHwAx>}207yR3e>ZJSqH-@#73y}@KAi%kxA_)S>T;9Ow@@m@t&UXmYq47 zu?C0wJo`Waf*P_=xGwRN^AY}1q|?`=H9FKKlIqIHr&gv1)u_wMmjP{?=7RQ(7;?$IFL2ej=LMqThF zV0b>0pqu7jIu5UsPdWTG;ZR$jEOlNj{XxiK#$`$Xxua}%f?`S*gCks_=~Uru@;c`c z_R}Y1#<0%sw6Ju!=UHm6u<`s3FgIbLYc={CHQf%(0az4yB{ zaK^)R&VhRpD5*Z`D4xbtNduo0V=0*hU#=HmOKE9$KzwbKVhv=EOnmBe?qRi$d4>ag{Z1aJK!rX1f9&j-``0kND zbj2xocEGgbd@8L{K_Q0=1;0<|BMd3|psYNmGF^8jwB$3~jqQ1RaH26P|O_*@(o|7Hd-4T3ex`!F6E{O8(Ee z9*4YTXtT!DX6fzMo5Vx0Zf!m9X7wA!X0ilHY8~Nt`l<7V3Db1V&k$KK3-1n+zKb$! zR<)I}?orH_bvLZGz9oOD59FK;92rI;w`#Py)d~mMbf0E3wH;p<{HLf6LM5$8_uU^6c}QIVGV$##%-PijOy+7%lVE_=zZxvkRe%gl${jHFr~hd z|E1#DpaE?9J7nb57-36Z(q&1H-4Is%oGB>rU0=Z}A!?Qdl-Y{Fqmnm~PVUkfOKUMz zSE`T(K8Q=VO+v)|s}(6jZg>7u zuReO+?uCSlyEEft9Ge7+rAxz2d1)|7JaIxu3rZkW( zQV`=eWtx`IkD*!UvlT14Mm^fwh0|LlyE^IXv9=!`u#5)w_wq{zx)~QuhLB%M0F+82 zQ2+qlB09hy9!x*EzB`)&lcGMSm|P(f_Su{Q&8l2HjFyDPVSP?1+~_ShtU=b+iK%99 zhg(P*R@0>NvMg7rg8B@uCR-7D{p;2%`>=#Br3qp>3l7$mwlVn$m)>_;*G*-lgn~rp zR8b@yS_508wW7>p>=#aTz0^2oF)!=A(^y^RjXLn@eTSh?5=t!pK6QfwLcW@t6r);2 zqx3e_H+EHO+vPhwY0Aw8V#h}3Z+EOm_&B8}t!#&^J}l6mv%{eLt;kW-$c3#FQW0{y z5<|{^=;j$BVNKWZ(qN<4wI=Fhz>&M>D9&5 zYND7j3|$CFLYhXG`~~a?ou@z3f-+@pq!2^`T6r5&+DcNiGr65LralqtL_Hc*xX_}@ z3Q<#Ug^JE9w5Um+J=TQ2NH;rGAm8qJ2kaeC=k?XH={AyJmHq(S;3Zj&2WT0;yvLnI z=F~M2g5VxZ8l_mFaIBO8d~eE^>`S)cHW%6cy?{(>O;(id_){mgJyhL~pte#-Q1-7# z>nH6qk7BE>9;yZhYq%Ik+<=U|p{=VRcg_|B1&V@%fGs3e2xn>@CrqtQG4v?K)F<7c z&Q2ha_DoualG6Db^~I@7Uj;)wZ_Xe+H+{_$!Fyx;kzc$_`rhWzPEV%_IIGU)KNs%{ zi+uNzu80YnxQt5ZC&3@?qQP;k*5XeHzr$#9OFB{VKCWR}PWW7w^7_NzK=ACNKAI@k z>`o_(VmbgJQvIBN+pQMSGXR)=c+1G)hpSzKCZ?pvLJdIWZu<5yzjC(aqnuJkFhFEdYTtF=#xGN@aK4?-`BY7@$cJ0Z) z#3$tN692mu*T=|7h_97=p!XtkR$$NmpxoNP3KezD?OIdcIUe&a9-m=Eile;FX%=gS zT>$-2H5;PJE1Oy9Xui0v7?n{u322amC@^;lp&znl*gUjCi}AFcvIa3#38;0;_SLm^ zd*RW@OzjglvN=cJb=QLdmRY^pge~ebUQ>rGh@#h#+iM1`?aG2dZpHjm zYItYZp)-3cr*N0a5ml3l7jWK>I#Y9%y(zkNMJKvoju6`quHhov3#^3S3V2IO0%lUg z=>}|lv#mmVBckD?;G(V3%3x6?h2c*A%{NT!POc(VmszWxsXA3>a^4;F`Eg1#b)1{; zlOG7l#WXRd+w*VxxS9IhlkS#VjShnu@@3vpFqdg|yFZggi1Y5?%+ya*#;j_M4&UV8 zjNh-l!%a;Fz_=SneBei^lkV#9ysvsJ6^8W~t$s^=Nh3;ZuQw9Ex(C=T*dO6s1|La+ zB^i5G^{V=ARdz)t;**JEqK<6{DyuR6ZfB+&efTaD?y+`Tr-NVs^@ z+aLr(@Iz5_3}Qlt;S7D$9%)qowR~dH`G|OaddyW3(a*s{CP}IfvFnA`G za5&*0Ye7y%?nu(&dqeG6pp%kMe6KW)7Pj)r&Tf`v<3Pse9h_dNC^#4I;zAc9^oREu zTlsRd7nx_a;c%WJdvw&Qv%~cHv4fj2H)#mK!UNGuU5%Crk%3dP$lo?_r-W_Tmi24 z0tBeik?9N7IoPCGBgGk%8ugRCH&P}^%|v!JDy*gS3H_j0^I2c-$bwaFEBg!4%3t6{ z>WbgVe{*8MKb%;a+fM1fIkEX$L=Iv#eFR0(r9uIuEOah{KR<@w zBNXTY(mH#@-HUq+^oAmHi4!*fgGyTTR^k!aZ2P}vC(oycGa^Z@2m z+#kQc`iX`|kcSZXhEEV^%Rji?292eYrt^3oXT$mVbN25^7buzqAu!1E#&Hz0caP30 z{vFJTb35&WoTkdN?nQp;-RE>#&}9&6rrj|6!MD?FYu{vp=DBjBiEQi;eFjR|_UW3w z&kzV$15~sXVM)%S%cQHKgF{Q`9M8T3Wrq`lp?(+#h^wHXfF^eoAWj~a&KzC;w(iU} z|LrRWEg$qJ){GTF?~2B)3Z$#9mo_o?#X#`ptJ{j5!GYZc6-j~7)-COPTq3F2277Cf zZJfS5j{*lZ&Qi2Lor~X-f`QM#z`@t6*Gw{Kd2-0P?rnJGS>{Gw)#|mMOw_jrLaRe} zC0(JSuT$6FB1MN8k}Ebn4^-l(c$}txeta?rvH8yNlB}@cI9<=n|2&zSA46m+zt7tG zwZWi>Coo0$Je=B%!o2P4)q{#x2NUgc^yzkQO<#YX?#c{3zK*1nSc@Y?#k``7b1r!3 zPtvo$3n-Xl($n)ws*vmX^G=O{^eBu5lInW&($8@|lo#4v`c~FreOR#6!`0Z(FFax6 zPBy1j@P(bHt%`{xT<-1xPh)2~6$e{};jj!TSl#6E_9`v7=c>+8Gm;FDR{ECV;twr` zkEWYI$z#!4Js55NNx+25@q;!<#Ok zy2PHW;EZdhWcJ1lOy(sWQ>XIqdbtQz(Km(sLe*iYzPe}_F|fpVA$oVbig{Dw(bi5T_Ea!XQc z_jfVoPDr)b{3bf{J}asAcJLi@zdJM4qz+lhyuJcAz=x2A@1xjz`pVcX%jhPw8ZH`Z zhV4QNuw|g)IBH#RsobUf&VhD?N~uo{B>;ZoOLGkEfK-K>D-2|3^IJ>>eI7Nz$eRXK zn|(dKWL*gysgD%DX{f1V<;5w3V_TE+O3YI{##L*WAvKrwsPC8+XFK~D7d4yt5$An7 z4-iGy{9{z&rQWKfH!0wyUdfw<%bQofwt*X~I)ekYBy)zu8e*-j?>6B?Y&ISjH3s`V zI>ZV{XXl0hv%o_uKeq)P{7W{*hkSe=oc$hB>g{bm^#W z`e6F>51;h;7bH{MosAX(I&KX82^-k&kfZV%+hgSr5)06l-ZTTvroGg-{Yp*dz$bS8=L1Ck{WXOft9#Xh#U*j6w7=; z8*?)fl~ABnOvlc=9t2(|ydb{O8qJd97&#ZvQS2FrAUzty#dRd)!^=;x>{kaaeqGPp zGL(3(LXC>)+AW_Agss^t@}}V^E|tZYz$Y2? z)G%4coMuOH0P=kv)O53O`8dOKwjTd#K~xdIt5^8&Cg~Ni)0KWZ92h*3HR}tDScfEi z=}n_-PeHk6YYqQu#U#KL?D$dn9miHPSTOey!VS$A}g?t-OJ(-oyN-Bv=GFrH!u0GL*xCo{gS_ipS}^&{;2uFB-|=x<&R*Z6&s zOc9++HT%dMw={)AzZ7-e*1mvXDe%I!uftegNRHG&?Edhi^RF7a8*~MM)N?YPeh=@i zupYkLN8XPNQAjiOp<6r%cukcs%N}Agzi?W^Tdn@@D*OL`c?FqhaHM_C7ss2!lgeF_ zR`NxSR{OAL2di)s@v$fpnea9qX~CKS{5pJ}_TFa!LP4~!3!g3j98kQZbCtfG&Kkp` z%u8PU!XZ>uMf7IHp9;@QA+Il?I^SQ=sUU!Z_nU;c1jO+{MUJP5PfpNVfJ?yJLzJ#< zsq6_Mueh)|AB!TyF{fnK{oA56V<3PPV&q)2=vH*~Fo;3Pa4aGQS=*h2gq6sER`p1%J<_nM_!>eSXK2gaCM=(pv1EH?8=fFBtas)Al6Tt0esE^5w ze&m9b3rSA_FlRf@6__-4qq!=MFjWJSUiyvfo{*+8*X9pi?Zn3TRVuX6#E9L;N;;g%SBdTGmnU(! zG3%(66(WA-3HnBXB8SdCDWtGJ6j7~*dV-^zkAllB%`weANeA-BJ7vw>+{3cStG6@! zLVMiXaNdnx}b6)ibmV65chu7fuQjyr;NIZjc?g(JIJV>s&pB>^xmz zyMod-Bt9=K2;pLpkdbq0Nj>c*-!P7ochvc_ChZQq#*&6z zcw04?aZNS*Nn3Bn@Czd3go9YwGPXFEVd?_XD(C?@ICU)t^ahlf>Hwi z5ePbBQCFAPVy0_MYNJ3#D9K+}oP#8AOVI(riiratI~5Vsq*tsYfoqWqsHjsrOCm2o1j^#WZu!c+i&~(eBH& zz6AQ!≤Opc~h7j1A07UOrVSF(aP$WmC0!2Wm9d=w?2wROYzhYb!Xd5ChC^j9ZPb zpK$v?d;TQLoSZ-LG^VJqQY()76-loL`o^B5l$fk=Sa>V7wAb(~9yxRLSzwtic%4cW zP(t9(-pP04-RYKR*_t>3Beg9%6 zGnou$&iyM_yZfUh!jM{cs(yGY)vX1Oh7RAUh!2Z|#ZpqZ>B1HxR$X(J%TJXgtSsn0 zm5XJ+$bC1Y@GHPQ^;Ck>v*BVD5OHcH|1ebyXVFd35DW|^rU}eEG*yp)1+a8pKNxqx zN}ImUQ`;AY@8($fpm`5s;TJ+R)2%*NwOr@UK`q>~RY{5Debse3D&~k2q?||Ygoe6w z+s&z+3yjGOjQf|~GUDg=!F!RpO*h}$VfqM5D~ib+;er%_B};sKljbgIAq`J)*1-cy zcDO9PYKL&DwOkFnis1Ovm|OmXu6+07W7MqY`3Jh)^^bNKo_EQ)kzW=+lKVe@4cO4p z63s79K7p*EnM>$9tPp+LDtDtN8SQ&v#9qc#sP=+7@ ziua5M&gL4+6g>SyZ$h>nLEYr|c2Ge?n?{iKk-oDgj0lVWPPHEAOx@OiuRYIv;*pL@ z58jj@`(+_si-h%_mU5-?w4Ug+%+8-r_DuQd$HTVy4A8{09{t4(2~fe*lZy#y)GMJn&*>aN`r(HtQ1gNBmSC3HX>t>g(*a!Qd&in?J@T6 z^PeML6!s$F$`DV;rz5Ednrj&xBSy^EL9;Gj-STe~UbA43Vvs??K}H~xg-8LYbcA&^ z6y0DbP9d7%9Sn)te@YBl-zl_o1S>TRmHYUonqNb0<;%7g)xGrT^P&t=6@u32NZ5mK zUxOn5dh5%>Y>Rw`{5pOHd6y5*CnY6PSKumr+Hen3w;JP0T-%+EUG1zo5^>ya&;c_;~XC$BqfBRp4#H+FIP)U-Q1m#v-Qa2L0q+BXesYkHECni6ba`dICSW1mYb*PVCZw|ce zfnq**!4b0b??tHiCt~T=%g^|^M$^=BE&BpRiOQ(p-7zX>wA)|_UYOo3+-ygzhRxNq z0aMyhW-uZ^ucIrRT1wlR5VkaMuhpicvmD!^Q)}c7NOj zSIIn-z~uGByYbqk9RBY*d-pPvry6e$1(%mU@TDT%+*QPi zkN7K(rFNW}Gn~VP$fAtrkmYx!lzq+h`S=&Fm2E%nM7hB`_16KltZwac^dyTAKy^0j zjJI;ZeZT46#647qT{`LDHWIc$nAxS>d@raujA}X*BkfF-B~Gvz*c4UJuTQ|LfM;~+ zG1x!%H2Pj{^N|rPPrJa@SIk>46}`~--TJ5Ss?VD+Jf|*MqfRNkBF`>jo}#^3YhXI{ zG+#p7RN_8W#IJ2U*Fxub41xcuiAv)IYo<%ILU5~-5^Z?SMgBCJD!{QOE%VXVHJE!S z%VbpK7d3$T#q)JaRsB=AzV^Y6UjHQh{Lzl6M7sRFv^8z2aDl)LI`Ti?$UM5DKc?jL z2VhZ4Wb7U7X}1~zOCK(UX@KD$Dar-@tdv&q;WVBgtxIA35;>9lm@g3W77Y85tm$71 zBCGUk7P$4e+1c~&{l(k*mGD%b)|Y{N&a`SdfvoYxWqu!|G95!luSLw;YS=2HVm=FA z0e#OTKwZ^fIcpIP)~d}){pOW$!T$*#5^6)m_JCk&-!6UE#}7;0W3kJkgJn_1ai~Y; zxGkZMvAIUUw@Fq}Xk#Fu!%71~On(Y&GU6lNJr@0WqfCo4aop4f?UKGTy>Bxt+PDI~ zU>rV#yB&RtPptII#p2N3aOxmz=3Zzt?Bkw6_}ypkmf%45>7)L!9yFB89hc!M|gKrl)SW-`W{hixDz8vFV*)F@HT$mSIMsAf|*sZCG7@ z1>fvppV$~}K`<(ppItws>Hm6n@Kz9rPv~{)=s!>Hzb03_6Y0nES55O3j$e=6ydZnr zaNqoV&Me|E<(Cji863^Sgmv)2LErB@uQj4wnp!Cy%vDHA#8QwAdYke+^>Fv#X&up} ztK!33*UmE(CY~HDy&EaoD!xF<^yTZda!zbAX^>j&@b=*>ycdLgg*sQsC}smJPv13x z6XT{p*p5UNE(L#&ug{0GO=nA}^DA%ApTN54Q{pCaSuy!hVfTZC=J9vL=7wrtyF`HF z5S{YBvhdsbw@u8w*FPg+5cP=l?|qNw*$eMyaS^3&am2QM3zFlxwPI9sxN^Rhi`_%t z3`$F_Pga$ly%`1W9ut~|Ul+jk>m7P;{k=kGmPU@&;y+5Bj(!&NPR0in0*gR!TTfU@ zR2E*1k88W-j3ZF18S?!-|H%T#&x~lQWX(!voP7A8-KuzF_CJ1$4O!9OU1{R;!RP;W zCC$_8mf4WR2E}BEjo1gs5wZ?ZZ3q%XYJxt2V8Zm0&_c)<qb}fQ_Q7 z1H~4QiU?ArWQ0&fsxo#gF^qXe*H4T*i3+W*fqHOp;du3lgNlcon$_R0!A-G`{>#txKM0$ z6jvNLo=4pTK|y+PVoVU4%3}aAgP4lGoe~w6Ka_Y=jIMI}p@N4V@k3Lsu32ZwOjHlE z1kN|K+0nCBIJN6JZw{sxqD5UsRiG9r@!_TDH|Sa)<(pr}yPKf74o%6)o6fYASBNMCko`MM!yy{DgPp z&D%>e(ubSX`}BMuWZH(^Vpg{9eAGj@anZ1C&YhzrD-6g-9Ex>rC(Tkhkugc3B@Gwu@6J0z?lceKwH-c~GwjoE2RZlB^n7(Pvf0x@u=(<#9H| z=d5@xtJ%m39U7rdOx5^(JjAV4$L9tAph%8YGz()74;(w@q1C+U_hZbDCjMF4VyoBH z9(C!%`Eb1^Y_Mqq!k4jUT78nQ5X~@E<18(3d*+U8IOmA@A|dYBd2Fqs^d-_gMZL$2 zc7&>obB?JXS}4bgVVof+)ZQO$QWC^FRY95H_Vlr%h`SfpF9^|daXbWHt%jk90nMkk zj4K$_wUx0f^YNs1c&VS&m7F1qdwt4uY*T#9lNaHHCsH=Ur*l2z($!W88pD*~xZhaf z2p#jkk=zP5$U_dqFny49N6OR-^!)&MwQDp+eu(;V%9aj8L#|ffrQ7=gZ%sQa1a{S= zgy97BUt2wcy0M}%85tN3&|(0{x&1L|vnf5q_*}maA)}9a?2cTo|2*epx{H;7JG7b) zCh2}x*^2dqso&nxkIq5o<|p)|v=Bv`4TA)9@?X=&0xKYiv$IG()}Z%L=2UnsL=OHB z-(gjySNVpyx>~H1reEum)=iTo(Y|6iP|G|9Tid(Nvn0}KJj{9|K=Y)>Sbu-XlP*C- z{%#XzgJ@43bl?)hv-+2fVbLDFp5O7(6Jlbe?_0EXK+zL*Q}+>fuMgP3&MaH*u$6^I zaDQE^z?s?Tcc{ZuN7c_JDVEaZdN%g(soXrOaAEVB0gy8t?-uIe z77G)*hcXDqn(7iHdw* zAIZl8*IuoqBTl;wJ)hh(AkcM&3sl{!bCHTKyxBVH@7JENtD#Y8+Z*D(gL`@k&`^G5 zDXQfG)ZzN!Nx4%=Td4My!zV$GUhLzN{pRLNu%49S<3U!4x<~`S`d}N-k$4H0=UKa2S6|E71MP1sqUuJ6`?0k#;kB_9{?r$&9J+1jTj{nW$@W^@YRe|e6 z*F$KKw;j(B*n%!|=z%1qWiYe|`a+1_4r&JV!!Q?Y6;gko&NcNzN`X!R7Gw#j2K|!D z)TWSOK`)$QkYS0@N+I~^Zu2;SmO> z4blVEHa~Hr7mu|ZM*4KuJok#oq|f9C3s|PXXwe>q3qds1EcIinRWF^PQ;>@_7OOlTL^L zN8613TuuM~`s#+>-^TVQ4j@m3n3rcxA5 zlj_YYCqEm^UW4k&Y|yD3(Wo5z{O$rzc>{06&xLi`);P0SxAW)3zOwN7HrEr{d|fC8 zf3L0^8sS7V(x1ySF@Iq3)c$^{MzPP2v=}vmr96*C)#|)q{iR&546o;Pa0XFa>ZJ_4 z%Up@8#hcy38iuu{NyPg0dPg7vF|;=4YcVZmwV(&)$a6SlzlvZa-E^L@@TY88)r8P~ z|Bnp^dwv{jujL|oD=~?Nhxea!`8)&DB92%>-b#1s4@Elou&b>Rju%C$gnRL|?3g*U zbE2jMWl|40@VYS@v3WIUBU=3i56jUTOYI>vim~RIuZ{|EmQi7fhB)CBM&A4= z>z7UW=3+z}L{88>6C>F0*z3WUgAT&9@z)i=b9<)o#os(R`Vm8HD5GYM=fE zI?jzulb=Zl+%PCRMn9WkH5gIIiP)lLW(!I>4yd_pn!^kOruT=tB)S);%Vh?{07qp7 za)*G+3-bN=rBCAuu~Z@IW&9gbJc?#T>oU~5WuXxlmtH||;q4)5fei%R5#67W z7LdD673Ptpf_}>c>Zt&3A(_QL?4%B}NiX=*~9wGqwMtGCNgXgI|`=3N+jg?5QVJ@{vPq&wpY z#^BO-L+8RHVM!n=vGRuB3|l{69Mux!ia15v4$V0HA1Y&KNI|v!)a=4uYcWkh6t8>K}A&Nf0u&9}^y|Clil#HFwr zRe@5mrnca%EyA-m2rvCbQo=D(?$q+|pU7l|F{iV8?J3>6o>U~;u33sc{_gdSucGt7 zlIp?{k@*j3K1*kpsC!mNg)7u+bJ8{sL0d*Heeho4U9Ah;@;uG)8Ms`rm;n5h5$cO^ zjkJnKVggG2PJYjSzy}7p^Dbr?iN$!~BP*vR)6S*%(KF>qgV3$7GmX>7AMh87fXrC< zI5Q3{d9K|zcdEo$t%EPp>)W7FCa2VbHJ-rCu3b|+E05SbF8@IV z>rtu!&L7a5Xl*FmIFllV%2h7ju$-Rp&uuTdpHJSuHZekr*P39D&5n27?mn}}-9IQK z2+Rib7RHvaJ~KvbrWvFQeAUS528B)AsY#n15MIK((pG@@Vp3oj-&OSOWpxABEBF5h zo$mdf(E}$FoB#94?>L{EY?i{NBG&fiTNYcC&?;dw$%Oo-f^!RG94G*(9>WU*@j?fz zZZ+6Jy=>aey==CuhJ0+b41F;kH<9G*oS9Nv13qysU#Ew9rPG?CC zrulJDLu-3zlr=4M{1G^>saSHp;FUiTfm;TMiH&#Z9#`H}Mmv@LLr&qhx8zZ7BQSd1 zSlE_}(IH&|fv({~=1Am6e&h08$W%j$SjJ|<%vu-$G5rbTyV%ps`cTHe*!mD2lAq`K?R`80NtWNZC=lh+gPC2kZVi`#ph1XOIe9h%*9o*)t(4jYbr5a z)d#cQ?IUUb&{Mbi^iNp(a>NiG>Tm6GNL7`$S% zz8m$CmTU;;=h;-LG)jD#d%L3c?V5_Zv`hXE`a!j@!MQaKW4%Fhqv93OLxu~DvCdaB zR_ba$mZl-hjw0K0Ifhx&wyh`6n6;r1{+jTds+OvTkwYjbJFGI+L^Zt#5|cE5g&TFa&+9B=-E0T(HRru2m)em zZ>)uE-;8~9b)Ky9{g~tr?IKFgrH$4Gr@a@A6FMZF|9X3YiuXThxSE&QQH?1cf0d8OF6Z6w{l~Dn& z@@#-=6nr0HVClEFF{d4rO}Zs3C0_Rt=PZym^{}-The*hLnL)vFY%11GdC4pvz|Zw< z#;6Ck1{+?-W|zeMua&~Z_;&(NhU;qJfASDSLO+=cWyq$m(udaF5Dyc7B_@1u1>yxs zg6u7k_m1q2%-ZS5)UVJrkgTCZ$U~&mS_6-zy*}n`4AODvma(K6XRg*qx?G}#l(s~G zY*@39Zvyf;Qq9}mFQX0lh=GKx1z>){8#PEw!^QzW2m`7BIq=@xfEc~alRQkp&#!|I z-sPz3OGR2{OPNY$TRnmX$Dl+CeG4Fo5K*xSu@}lnxQ>4PxQtJbRC=dJXL4DNv8=LhJJ^SRiuW#eQk@?OUDCL9ZbFF^4HPryH;rLHEA_=BQlMU_$Jiq>3QkJd+%4@e;u27}epwMWlnU!NdzE zL;kD z=lp0h41R1X58F2^3nOdxZ2Wp`;=mLynRKt%wo*e{>S!a``Nbs8eVqRR@8g*{Z3eTc z21_#*@(;8<5GJ)zyVU`}^mq3vPoJ^=O?)CqDxj_JJ@~s3ax3iRc*`QW`WWF(q*#C} zeKLyYI2ucHL-o}YiP zC4sRDa`mds4{}TrtI;qxF)>gb@q;VJ*-muHiLZ_tgm1tjU*4%-P+{t@ zX)pcl#quww7t-%ka=avdi7(UXWsqO2v4c7=)(FB?%QXeJgs}NHNgW13a;R?@yJ++H zl?Z;HE~kyJb9u3?>JOycd)j#6^J;IxL+cv`Rn7yk7%SdFbj%jb?oWZR@5qp- z%1tSY1rJySESUyn@_OmmHaTccw2nN_Q|Y(XX!>-7nRoPaZj)v*_cet*!rWzrUeu^s z+oJdVfse<-CvicJ;qJciou#>E%U&Tw+P}VK@UAY`y`TOoPm39+Gv_x zGtp}YwYQlwJG2sg4%yPBe{(~IEe+BFz6TzFXvY0A$N^Q|6Y-P{lU?#k0KG(dgWfEs z`V@W>tAf01stq$wa^Ac<=OS{?>xPsxv>G}N-LMqb5k*1@OY&up-)Pa?8yU3@ghLL% zGC)M&3xou{WZBSdkiGIPBpaFfu{kn??y)2CcHznUkMQ;w*F)fREP#axvjULKBdJNq zKIAQj6Y#}Wup4Cdb~N&HZcFF_#4EnHh!8#r&^uX4pJOx+wSs;L8^w_ zA7L%7opvn4ucgw>1(>|^On0gCoQ2=_qt9ix-SoJzB2R6i-jJCAwpox;LXIik3^L8PmN93)k zy6d%CRcaS5Smojhp0QL#BS!q|^_J|~cp!5DJ)I|b)br=S;M0+5f)f1s@eI8t{x{$} zBHGpQHsF56^z;uJm3ZdS^Ma%vV^A-c;PJLA%_7s7fe%jC-++BL{@lI})nd{QHU{5U zm97s<3mFnLJ5FXgd``<(haGP~(x>oDN}S(teg7VX=7Cqh$g$xjnGvluv3O0bBwOHI zQZYFDybKmr?g^MNqv?U)L!HYgcUNTx@xgVLYp?}7Lx43?r<78?YL*XP!@5j-_yB(D zrj#8KV;hkhO*_5syG3z!XnL)rH4ILbt;%eQDw^s5z=(LHdkMlFUYcvSt9K`LDvJUm z-yP1PEL*jawn6U%^SG@l-jBZy=u@`4XuChqmWIWT#K3Q6rTF-|HmOW$TrI5xIQwvo zE64jg8cV&O+P-tF$sWJ)IiePrWR8Y|kJuG!K1GYuVw|Wm9MqY)o#~d+0{0YRQ*N2m zB0uK`m`afB_3fBmjI;dhczZpPcwXf`@AyZCWPDLyef1wohPn(+&Y3yk2|~oX6H)F% z%_3%@;oW~Wn)VS2zGIxOy;OQeEO0tL{^6xUWI;ejo^^_w$PTS7rHQK(CG{g6yfXvI z1$#_dA}}v-@47_PWFKi0t5mXNpylhgr*sDG^pqamdI~h3*CQLG_~Bm|VZs-um<+uo z!Qp&^8Dwq`XO0zI+-u#V8+V14Z?%A{oSF2ksQ7b=eNAuC8TXhchlh_Ai*};q>SO{4 zSXGHw!!=U)p&`7RJ8LrMWloOO0W10h@9XtTth`8Vbu5!ida@|;thU?x%^R7;04q^; z$zNY`Gg@>jWrr{R@D+cy&vZ`7zu(%GAQe3RVQN~SHSK_A$>fl#GD6=+AfZ9Q$LYS9 zIM_hbpejqSbG3ML-jlbGkgtCXJ#jx6cxFB90#sC}LutuhTEfBX<* z7}I4)hu{In>ab`;1|PPs*56TN>|~{?!WAznftKH-nE2?as}87DUKB^8^@Djst%H8c z%d)d{Zdd(6)6S|9<-*411lXSrRId8=i+Uq8E+vxPw~q575c|4=SUv5t?z)Kc66}4I z3Y7qXEfn@??1bhQbFntY?pi^8{#O(%{d=0FAKc%+uqMtg{wI>lj{*pRuB4HF@?R}I z019K-C}>2W%p(#RlJrs;Q5e?|&5=*P4U7)PR)eNT-fN8z=xzW9C<^*)id`MF3O&Nz zvA0b+KI{8&_8O8Y=kBJ_X!(bztrZf(5L;Cj_5sj!2rOFnSv6aW2iRNHBGEM$^?83_ zo3RQ|Nh7fg@zTtR+L?DH6jZzO+%+>|-TS=IKf(KAUm(_Eq2Jj#L1D6<`-8HnNe$gg>7r{{X;Wv}Z$O62yW-2GXg{Oe*1n&OoEP zg8{-D^Au(HC-}8uoeQ*WVFlU3wUEPosSuL`ynOQcjRjplHK68aMrk*Jm<;3xWLzdo zX#2;<^ajeWB&!EZ8X#{mwwaUxoJ>_^a*(S-S(?~h%S{I)DqiYeDNcWV;e4Fk{Q6(O z?^`)I+q^o20OhnODO%B*A}T`zImB?EA)1g>j#Hliqm)?ye1V7AiTH&-y0N71@c{P~ zR#rO&Sux6IGKj0=Eo^t9_y6^sULv%POE`t0t1U4y<-#`?e4j1G&b0Ppz%v`AS(kBI zIM$?7gxSb@e&~b0qgS$;G(s>6{w6W`0Nszf^D6CD>-HH-yb?^Q8rACMw2xRMZ=8B$ z0?^gM>vZ&MVXXA^-w2|w6Hr3qeH;>VLpDCmH`Xa;0b>48d5%ZBu{W=#`|Agjr%mv0 z8gdB+=QBWCS1-w(j|MCuQRbd3zBrJ$cP$e2{Z1R=hbiK7SO~dP{*mKc5I_GUtOYaP z$>t7N#z;U!6DZ3+XyeleOVAhQZFW#9AdTxV{Y|&?{HD52 zHw;Ls`b)C^Bu;<)Ax4j{nTnfB1kcpWmNXX*{#$ zkBIwO64GrC33aUSH+qEK^nOEc@0sZ4w--%H6u}HVKIxSlT&3mT6^DC=vAiOgp!axjLRIum4%oB`coItWE<&)4mBPxHln4hxq_+;S?BKs|Ba@| zR9g`X95g5lfUn>+Eg!62Ra_3uU#`AwMWx${Mr^4nTSOfKDkP(8ms}6!!|F5(6kayT zk03JS&_Chg%Ut^PF>Hd{EtsxY4ecM$bd4syx+azW2Bw1pHZqI0ym-6Y!Pjw!emccY zGJH_r&@RA{L7teo!Ybf1$Ky6(Nz$d))fsoQa=0 zkY7oE+eW(pY^5E&`x0^`-~TnpJ$I7lSZ^zT^tVcV9&n$nwEUWRd3x9uS@t-B`1mrY zuj(paLFrTUfXu3g`@TXPAV+sevMci-#4X41=-=!Fc=8($63ah7=2c`wVHI?FGj3)H zj;m9Ib`n>(68T?^l8|A*hzkmY zta&Vc51X&1%E$pyKf2Qpv23yFT6tZM0M&7Xb*#;b5gqysT%#|$ZLEq!+YnEA0K-d*6Rt?4$Ki!s01;uo~^WL1+M9E=l6fG9kiw(bhrf+qY2MBPyR?H`>V zFFbhje@4qRQz6)1UivK~`ynUfUxa-v2#*v6B<4v407WJ-P=aoiHRRRQ)_sQj+li2v zu+)V%X{F&>TjCw~9rp@1B7F;5lo6IlCdZ9po5GUL=5;=XjUHF^uaW-&`0!7C*^(Yhu9SeMu?;!?OZj$pvcCP#M%T|5ks^7-B@5ObU*izUK`D)zCB7LE~9F_LshD(NZVfZZ%JWjIlrsSwn`w3c_ze@3q%8CbBN4dIk0U zlFQMLS?RCI7!jiB<`x z1cx7FSY<{s7%>Dy$9O*I1=K~rB(-IOS6n(WWzJEJbfO3fFo>C>KdXx#MFn1e&!wJo z5Wpm4fy-d^5?#NmTiDP#CvOw|4<29LMww+W}Hn zqaa4|B)if+6?x=r{0H0sSJf-DxGB;1a>V$!>ryd!64W6aChRVImr!7X{^&pMe6(KH zGTvD70$x)uA)Uc7iD_MF8&iQnMk-r&^7|NFTT)K;Z&7hMlZpV7$ zX5_ui{9E%`kD0ZWNn^J%*U>Xx0e(Agm*kI!sZbs!#d#7m0skh_FWG@%VVC!SLrpQ> zA|BiGQoi{yn^gn`M0=7dXY7-q_k~?UbrP?mYMd9RIV*QIUorF&z(+fRT3^fCUiXsi zq;Jc|2`sFI7)bSW+?g7AtySCQ`6lt0xX=hGTGZXtSF$ayI>7bat{5nKJeN-j4|@!} z3$`JV6eFDN7Xi-!_K4F{<6Yw3`0GKIIW=XY#XSy}jo1~9$Gkocx)m+)qA;RLLJjb$ z+A>|EgK$3lx<6u+idD}sa>KmQ>zLeqWe2T&!25IMIFCnr?{eldi+hb{a6lfHy30x$ z`Zl}(tJE3lw620$?~`va$a{e{!uNIK9MBR+Qs)v&OR6tF*=6)k#4)?pZ{ChKTzNH{ z6;xBNCw@>(wdF`Ghrev2!>ddIN~TzyKD&v5&QI>%5guFd#6q z357Lsi%~GwT7QGp4O!07L3x)y_V4D8G2}Emd0;{X%%%gE8tc-n^(z4GL$?roXJfWE zi4dzFescnHheHW$@9DP&6b;p6$v-5!%mu_qAwB!AWiY2o6sQZyy1J4^P5P%JIG|!6 zHJ{$4pY-@pa6LsqBul@oSyKp_3nq={;9i-&_3~%v&BRVMg$iM$wG70;l}m&Z3g(!y zXJA^$8`il-RZg|vPdIK?sG$TjF+Kqw_)3O!d74{n)^oom)okR`3NIc2Reu-$nZ72A z;U+_30Onb032o?3t7-+9Vl&g(!x;g_j+ znC@mW^17>vwyyiwZt=D`WDe;+{`y*Ege}Fs-PRAQt1ft#p=i`jRl03B)b3W-bBVJ=8UtIAXnFSQ1+o26QfX2k^cC1CDdo3ugnvdZ)qort})cd=h7pv(QR`|?PS24uV zUNQC5CBV_^;}UzkCB^-1QL?wIDsR5Q;SAjWwy*-uP`IFX=B&-R3z&<@7)AYj3s~}? z(;*~2-$d8tX#EplSN~+(VJu@t8}my2UH<+2?OsyT={wW$+1WfpNz5dNNH; zSZuTH3VQAE!D5dcMqpeaCOMf@DhC>CU@E4>nLu$&3Rllt_hDCGGCne7y?yW%J5LIaU(xMWSZ=V(n8NZkt?u5- z*G-=!xoJ+fbsB^j!9}z_8iZ~2+F{~C54H&-4%7GtLHld;3f_x^&}9!+wXeD8^&ntA z<^IOx?~0#PuS%7W?$!_)jvl<+wB8cy^>Z!W`Z%7I%4hqSw{TDU)BdF|urzd5@z<(S zWVnuBciGgjJ76t}?gExyI&{4Szy|eMuOwn&ZFE|%0)rH;Xg}5Kwe!H4QD1^v6N9ka zu@#ZENbJ}}FZa;JXV$+1G#galr*nG8paa}BaX7^0hTg+vh2}W*`!n|EeX8yWPX8fz z-~Z1f@}>0P?f;oX0;wVV4qXLkqvIFbpxej?pod6xq;h_)5(2qZXk*|pkx z+@{X=*H|o(wcXrP1?*QaVdG@h_^mcQnI@r>Ch~IxwfMx5Wte8nqvzD?zqPQ8>bM)M zp3+MHN~x0z2$HTu(M?I=29NLao4D0@NOW$k9W<%LMtWudy2*>O&^s2u7}wd+-<>jb zyU_$O^K3BMJnCsPRpyp5^$&doBPEKMKyS@Az#q`WK)xYQ8$Q@&xDD7G8{xh#Sxk)c z>Lu|sdAw$m(0)yCgmg8M^9G_2w7P_ugZ+@wCF|l&$;9FxDNmPN=)B1PN#9PYtMzASBG3J1VqN+&fO_`V62@PWsa3sl z$v2f-2kE6d4UQSfJVixcg$BLOoPG^ewZchh>7 z3!sWod_v1Ce=h1(uC~-h&W!Ruv2Y2z{4zDjfI?8R#aZcwE&!ToF+Nxb*#pOZhRZ_@ zKUEbBqKpwf#W{7PUFD7#FA6%wcd*1xs*B|OQ^n+YiT;rJB&Y%#s*i;|+qeiw+8G`< zi2c&}?3ZQGW8Py@6Zp%%?9D%$-hUO6NQc)c3JOB+?tw~IKG;DcZd!?Ecim-kO3tKg zjzf&SW!6sW=k>w-kt*AEZ%a^fAk|IKcZP;pDZNEVhhYg%aqrRdL$n4pYj6Emsj1=B zpXZ^enl^`vYMDQxV+-6bUMEsb?WA$_9Y$;|G6t59-OBDv!iz>_ulnY0Y}`9a05-0J z$JlV6+{owe>YaFnNsOIxr(r>Sapq<2`|aFRu)Ju8WBSjp)_MJpsC8{ij@trjk!QEU zZAaN$zXe9Ar7Sa6rpspsrteqmzE_oAVq7;e0HP78F1dH$T1~sjvgqRD@=&hDv0@2Y zAeU&q5mF__crdm^_s!pnQ0NkwX3M>Ox35r+V?8sCEhb#HJq9`0%$tu&8_SGuM9wg1Z8VaBY~YhP{zC9a4SKT?-V_1IlH?n|9I$~0?XXgJ)e!DOup_ThzD-&; zKvTL{+Ig*f>fbgHkP5bBl5QoPbkWj{eEL1~7)ohF1*EI|@A3h}jvww7M9j^a03}#8 zZlNwVmcsyp7zIpEgm2KwE)1QiYbhiOeFke4_R}vs_{Il#Vr%vrw&X=VF@S-Phl0%K z@#ctA$cO!pbxo=4J%4bE1;pOtD+H^KV^W^9tGbU}A7)cIGE4I?*YKqM1pmiO|ACE$ z%DDW47pT|9mOp7k!W&&dN^Q%=G-Z(po8NKv!N9?9gS< zw1#iwK(cAK0(aP$_PQ3##6h+3PsM`RS%9*LH=&jhkU$>iCAGeY<}KeCqDAiWh4h9Y z`>{hCLzhxRT0elwph!-@uV$fs-T`j>3vns^_~(EP4Se8?#!hLR@yP#Psh1l&lv&OU zf0ZaJ#)Ovb$#Z!n$+}4cmXb9Y!Aa3rrw@I({poz?a{_$y`{EC+h@FXv-z7G8t&L8>`#<>*`YNhJvz zJQL*OPM|8Yu}}BBxFwwW0VL;YIDndwAdXLq+P2^E(hl5mOr!%s&JfhL6h`Nec2ZzG5jyq~zoquh4C84>K5eckmBbu;0Z_|B`BrU+9i^$KqkX@4K(O)UFU0Na+%O>7nrbWdS44bYl-6y}47zIsTBy$XeriaOdA0ns#IN*n!9_NKA8{w~Aa3 zX#LyTB&YPD#DZvn0|%)T%y+MUBH<5g=)~J6qGvqxj^E_Z999N6@f`2IW{KO6U3AzQ zNThiLS3WOIGEprIn#SlaT#tHG1)UPi0e)e~#p#ezp}|v9(_VJ~c9P*qG&X0@-eYdx zX%~YMze_s;bqCzedHgZ548L!<5E=F8ac9EZo>2C?P586(H*u6ppHTAkdyf||Vp*Kh zgUnK-4piH%ULarfaePd##kZe+A33DSOt+dB{sC+LVzNeYq`H2^JY6C2ooc?jo7nr| zzJV024|}}6oO)-Wu^8$tytC81lvG_JlO`9FV54BKxdIn9{ZGt(b2 zic9%ewrXKGC=84QGJGh!Fd~DNi7bgsP%X&JcKqUZpI69@+6_KXlTkFMA*c!3x&ZH$ zACL&hr7mZAcVUzB;w6splE$6JA|DRM*|1k|aC32k>Z}yqZr>kr%d>tyBPFDzXEw9` zgwl($lk%ZulF@pm0`-}vI)|f`SNKP;H1zuQ%;D!#8!#b&0P7yUSIxVyR@`_4mtTVD zExi4_rH;S%qG`O{c1De!k;1gD%fge2yiKItlVM*9$1NcuS}A&@MiqB%BBeYfQ5p6 zBX$3VasQ@>XF~{m@Z~agR4LVBn(e9|#ZX9M(I4)4+h~XosMx=C>t~0+VVqm7Nptad zfxjud9bK(Dod#`H=zZeHW_s7WS&(*;hVyE4CPkMB%OC*!V@fCoy@Nk>HP+gUC&Fyu>3CeEl6{vOQe{TM;B9I<(@AcqdSse-W;5hAyjMLM0u*=7NO#ZwemW;b#Jva6G-ei(?xCpm4!Y#*8_}$F z9OPtx>(LY1R|6ry&V@D;B zo|=l62OM7f`iGINw47Cc!@4ijFP3+`bjUeStFn4=ZTeo7!ah#msB0sMkr(lB0f&cq zs=g&RH6%PMW6!Nv@pli-{Yq@Q)0XhdWCuT?osOp?JsN4;1_}%m#?tbA8!Uaubu#?n zmbOD^%6M+ynBWk7eEOA$XwLU)l0@|3pF0CV!L@Oj3bd_IeIfM#JxEBzzl)FBTUoOV z?&L|{HE|<$>7NeK)hm>=`W3MMv6u6i&%h%)Tg7_e=QE)0{ZIJ|RlU(@Twj~`EXU

    #f_iHI_+2Mx};t@*tQ{DCHpk z;Ddtd&mj?vH-t|aK@3NXMC>~qg;~Vk+r8pFDBjHz9I`-^r3v}@oO<2-#FX37q*bFk~+!w>_oxdYOtMY z3tp#P{3sS@!#Y{0FX!5bb9)vZJ?Yd+VJ1@c!Ckq)wic|pG4^*3N%V3aPIx&M_6j6> zc-?Q^vN-4otKgqpR8|7Bfjvwbb?(%xDO{sPr1qCCGW$9~zsD~L=|Obw_vM=Y^LJ!~ zMt{;oW&EQBy+HLC!h=kYy-ycTt>L*>AAv$}l~2dSux0-&?3?)-*1?i@C6Z!w zF!Jf5K}|MyCs5Fs)d4%YK0@0RGx|y*^2PMS7KZ=F*>}gY-FJT%QAO=tt(aBRUbPZ? z)@W(fs8LE=YLuEuY-+}6YfFpLVQY=nrbf{iEukuAM6DnqB6#Auuj{_=-|wI2^*n!h zN%)S>cz@pKocB40r9zP~hqsQopA>M<1o8+@7{NBh|5UTHBb8$uL#kvT#pXdyO1@H-K4JR`~7HNtJ}N}^%%sT zga5_O#CA-IbHR1UR}TFbuG4X*)o~mn!yarsZX+`+@TBWTQeaPk`>uA92kOkxYp>p7 zPr^OOcxQNWxG+z+7lOV*-kYup_6ByN3 zp!XXqiMGj=bBNjvy6q<}8;a+(mVwx-p~7CgQ>d&ZM&1yNWtoLdmqxpX#l(Gr%XL(G zZn#y_a$Wg8$l1IMvr^yQ8}H~_IA1;IMZP6rqhJI}sT4wpR3uNBl5_=$pf0w^MaQ-Nr=f=7Qby;EfK(S616A}C8KDf{0{k3#qi&l!Uluh8R7+f0PZMlN^4 zsF*uFbgt;|cV+;lXs3UR~xaOIh6L?_8$x5@0v!znC7$S;Tc^SxGcNKy{Z}pM8j} zg6ldLK$rcfI^t+;5Cp$#=e0*XTFaYrW(FPXEEmuEgk z6A-#|&=qs?5;*U45;B+s{)3|9h{d z)RLMaUYZ3guRa%i(^KX(_2HmPT!F1d+~_d{3r7!$A|airPM7YOrGzlk^i+2Y6}Vi^ zrIB5V$l2?hGobJ;_OKVCVGstb48a>UvAELt7`PreZH4`Q^fv|>ta>Iz%XW*%S~_Q` zoloY#P582h_U?kAF9VH%l_ln6dGTY82=*3s`rd5E5iFmB&0F^Z(Vmu-CC#AkbQ13= z)k~h2As94Vp?=b?YCgS60#jFSzKw046HYwGV;-%y6IY3E3Q4m?;RbPN**H_YNr{(V zG|%14rjM99jy7JEz>Ek%y0F3p{_0SKjMV!8Nx-G84NA-6L@?fjN-9%(KDZ)ZVyBz& zi%Nq&;{u}Jg59ys`koXmo%h`mGh(^rAjQVp-%QZ4D5)24Sexhjl9pOaX`#aO{Ta(A z%C_l^GsUD4f9rXD4I*feIh>P&!x>F<4w+P#*BlWGye(6}kigGLTI`pyuSDw*Xu?~q z=wTPyjUw27-)|?M`5kA=z>F=O9O$`_=Hj|x`8poJ2acL)^cHcZ6w;?O9WFmw%FyL5 z^-a9q<~xI>Qkh)a(v}K$BX#UAAZ8Biydw7;*BD=5&)t3VWgYbyj(S=ClR3Uvl?HA$uc$a%_$)#r z+#pe4(vu|S%sb0^M0SN8wODv9P(l1Sp{T>`Np1u_PwU6%Rhv55QW~;+#F8lAwXPR4 z2fE?J|;kiwRJmjr;2qx4J79$Jbr(EBG#-+WP0 zB=1Zlv=+R>hj{x#-Tsg!rU2Vjc3|k1#lOS%tthg3UU{&=mOcASz#r!C{e6*~^-+a-0B!5VZ_cAt&D(e2KrT&-3P_^Jphbwk+{f_5k8JJxo3;{YSCD4l?bYrptVV)%_(V0I06^b9h|?; zJiBY0P;5lhYPrq(5NVoFk%}=v_k8U4o^f=uknq_7f8n0oZB}ilSto%6s*8C3WixY9 z|BBP*l6=gQ`P1?rDtXE%H6kOm%Z0_z-#9wBey}^T_83QY*Or&3@jF*)PJ5O110Wu7 zA21L3z-dv%g?oM_-BHO2Xv_up)~L^Mg>!~$&XnCLoe{kFvIFHKVZ+YJEtsX0(Zc$c zy(WeUYAmGVN6$_FgfWou9({#Wk{^kC{pDlo8Y0^@JO^v^jQi5lI_^M&CAhdrmZ&UX zl=h}_HKW2N1tDu`?P%FJ9LuX~#e(R7n%%a7H(Xw5E$i1{vkp;3;X9A*NfwrXD%xdN zFAyd_G(3=ny@Ka?+%F$#n=bw#lm|SwxtqxelPMY(3m6hL%e1kG7T(X=rLY#c%Z!Ph z$NGZ&y?$BeUW2cI(u$VDqWlI#6U9KZ%?*|dJGBsM2UbB(qhoQ^9z;5igMw_EaFpMc z?D&ub%#ziaI_|h98v!Lu(JauUPKi4LW~N@02D3j5w7!>c!rsqa15|}F?qn^W-s`*! znZXgz<7)a6&sXcI*<~kpNu}x+obnCka0qQLbC9bqw0Ft`R)>?)>?$apF_cj)WADe_tTMIUnG^YuSp4z@ch34ampDA5%)~88dXR+Mp zalAkVy)Dne?wCmm{t=Z}N}YEbSac=^Kf27zhhK#Y@ow`ZAu{$lyxdckY4$gpvxX?y@pq@Lzh)nD%aSN4{z7zBl!F5& zz}M?!rWAJvmfkcUkJvAaC&qerwp2)1Jj3rgRt>gHGv$+GYzc3C4`E&(SM0p@fEsCc z<03wLK>fEUuvUDyv>w2qHlHY~8<<{ncwLTQK)yp}nQ>uh3bR|Jbae1s4xZmo z!r<=WUtg%VgbJ2QS&iFzh z%_zzkeUm#d!=2qqxgGMs`V3tJkw@Qz%{Zw7kPGl(Z&^Jgv>(#`2HcnVj4dWq?s6^= zUoJI!p}7fVx%RD5ZBN<96iodBrI^6(vQ5Bf#b(ACArmEaDG6B|CO>XIAC@&0 zrF`@|QCG|@zeM+fN*rLF)}QvJ*ag7YYOL=Q$+==4YJ}YLB|bXx&=fgcZJZ@BThtdN zSOArJex9{iFi}+fdSj5+>&yd_vGEL-mrHT(%nq^qL+R9XIT_MJR$B?h&Xfam*oB|X(h%aBY0lR-L;HKG%2!ItUcoZTJ0MO?EtUTu{n9VT zQY(`uVokg>GJzTc4o4XpQ(bXd%c584KOWtA3kV?TSCQ$}?rSxc?b6|bQ}^O5B+e9D zlT)Y_6_Dx^YpZvPl0o9)bt#C~ze2J?dRX`t#S@hbfX|rBh$CVu_bZvfBqbKosT1sY zKDKW1wKIXi&-z&`7F@t-(RmI$s?(N$E={neaDx8B{$stdBH!D*om=C#0$jtP>_d6| zaO0)S8%f%n{kW5LrNbzSRU^#!S=$*~*~3#oycp*rr{ud6naV*ur|Wwl(w1`d0QOw# zl5@+?c$RBYV}er0vqh=M+M=}l{Q)j;=6wJ09r^PxYh%{Jp!S3D$4{0|#1y9(onP*q zIg4{;@xFYgL+?pCOwy`9Y*F1DVdCPs_0N)~>j@IXq5!o!T$jw)Jf*0X zI99a!fLk&bTv4J(Tu4r*NS**jJBIEf3#now2#;Rl%R$K)vKu_m(YJ)Oja5uCh;#OMR?fK*`4OY#ATu8dI%)3s6WS*9 zntqkfo1@(kP(W)Z0#3Hc=GVw9Og$HsO?0FPRQ=C9f zZ;e%suC`9^oOC~l+&Y~hjyrZhEQ2W|sxtEhvVkxNis||)VeNM#@@@LLSrEr=s@m7g z>ZwO1{NxXNG3H}TF1Jg7M(?d8!h%97=h7nT4ae$H7aR|fK~wNiov--`6Ab>Y z9_ZH(vcT@}hfA*J-&T4lkfp$U@W$`kMIsY@KV8EAwT&?si2_ z&;e&ym*?SC4W9|bkTiTkJbXdY=0eFWB;&tg20CXbqvaNd{nGnqb=n`s3#)r_(skOGf z6}(I}{gwRgit#(Wi;wY+Cm2?Un2m5SS#(Nof?*8%KK5)e|Am7^`rCsl>hV0C*XhM` zE)VGUJ)yRWK4QPT6x+{Ez?Ja?T93JY1L4Gp$wRq5Ch3<$#h)Q>ukuw4objz;MTshg zafK^vHjVm!6%Og)h%R*Tt`1l{R5`q8*{jWN#7<9+Lg;f|d`Z^Em{xCJa!9GlD=C$p zjkeoL=*rT**4)w2nlveTfNh@JXxfe;D##33g{01Q*k@1)D-H;Um4T~M^E+xOvSAEQ zR!*tvk~<8OViaZ~zKXGlSUgq@tMb$BWJ6GgFN%%AeRp*p2ENdm&!Ch8S^}~T9pL>H z=^7#d^#^7r-Rg-?+d4FrRahNyXDNll0S1_LDw%bOCS&Z5QAi*#vq>*7rp=?E$Z|hJ zLM9y6cd?0e}fws)!)881yuWbV&}^i@d|uo z&qxFqTzqzZD!?7|={V)UVJVbdWLuHUekcSai-tz?DBSSN5OoWD*aF8sl~D0!DmGf5 zy@+N1m_fyhC66L}6ENYyFSKqtbPFK*f6flYu8JvZ;-=hH(!gQRP*<<_*K>>=C; zofDMi-Pa-$lvYuKi)LZ9Zg+MVGu@0r|;u>woQ--e@@>rUS4bw!y z0r0iHEt4HJwrA*pS=q&O@#Znd*3T>HLQM;QgE2QY#q?I8IGpNPcG{paxxLk4Eb)-QynAX0TcS;n_a=e34l9CfKMge8 zQBA$n{jJSsW-dwGZA1;SUAX-skYY`%68envoflYI`gr)`mG`hN}b)Nt2NLRNi7`Rs944) zr-u5FVJ9y`aoyX?1Qt8z8PDIJdcA+3ZZVW$C1)zvAlb)@98(2aulxE3AQh_a{dB{m z=%h8}y7OmyBk7NHCv;(7HRmIVU{cQ0Z)6+|yuyr_;(NQtcoUyFG|K7I8N0q6Rn8ep zDIr>Z?h0fnj5y*(h*4cq->3A5e}wUD6_aW}wB8d~Lyd4BG+xp}A{>X( zYh}VWQCEyt-#OR3L*f%bG_&fOf*AH`H!Sokr9%S}V zD;b};9w{5ed{_Kh&Y9OP*3sk+9k-_Km~K!vXEaxUKkzU8_sV7{iNTC%3raPba`yy7XX#(4#u3T$8mqTxGRJ+ zyNuZc<$Qq`WsNs=a-{Cfcu^7{R|k*$(#%&r`6G(H@MO@m8wX*2BBgiM_MRm5y*plM z?FDy4g1cz0ipjGc$^oByY!bVrwDd4jYq5vD(j-Ilq63-5E9VPcZaH`E0=@5ccBj}R zfM@?QRVf+;*33|jx9pXI4qtm*6MoVpdn|Q)X4bo_)!}i7?RsY#Ru7(gQhuR`HT+ps z*ZKRcg>~)y64yemJNF7%^I~ZX;syE?5DQ+4)fxB6=N-4XVg0tYL75)PYg=m&=xIkDB%aOLV$|~iKz1nixB;jmFx2o-3QgOtU&kI_UO(0G8 z!h|Dl=J6gmy1RH^fHU_Mw+=m=fTa?sb4LyGQ2A2 ztaIR36lttnEjPdSa=QNOEFm1m2IyW`>c-u zEy4V0yeu%ng(M9Hr_N*W4vA zZ>eYzq8Pjc^?DWFe|C@8qXNeC1m0{XG6jJLR3SxLe}YX*q-u)k7P$+Bsw=8Vaz*h7KRuzqiyU-DlzHt4(&RJ zfE}U^)a5#Z&Glzn*A%Bgb>^*OO+gwYg&f2un^yi z&(CWI`aY3eNyvgfwf~?XO8T75>oK1U{p}n76&*em&3Lm#0a^jO>=j&rW?i~CCVIS3 zr&g2^nic<8iwgABB<;HGTTwanJ?UNPI=jX#Apqc3Uz{m*A>Aayivqlei>W2R>jT%n zoQV}@sRtP1|j_b`{r(R&ae?4R7-q1Ctl^}IC~sV6MF5XdPB?ph~{ z%EE)Io6mvH7t}xA4oN271NXg4S2Ad`HVDgKwxVLJ18Lksu38=BDj}9D==lrNKTgT3 zhC>OLBz*9iC_9A9)RyHs&AL{>b5EzDLkY8RmU4+<$+qdM&PF?7pXYuUh)W*iT86)$ zY{4j}7ATda`)Uww8a=U4zWtAjRE{M|(k3s#qSf|)4d=QLK$I=RS5tlVZq0YqqjX;_ zh9?X=%fAX?PC{Td!Txd=6Bqm&S?EIznY%SNYd%gN8&JYngz9xK3?;Hv6Tz0Q{gf0{ z{HkD1+&{*q-bFqO+_oaK6oA$^=yXXBd;7L%!c;bx+luFfBi4M^~8Rc4oGm90O>n$_0T*jPl1Vs$p960bC9 z(Q|!=_G7D3`NF4vmS#=@#s564S3WEC-=Zzbw**#d>R{@?#@|5>j3C$o2jani2CY$M zGWFBw61B$?XlS{Z-56+&HkFL@QYM!&i={8 zBIwQby$J^g|MYSCf;N$dlCE!Ej59Lb^A>o%n$B96iq5Z=n{sxe!o7ppQbfzf1;NBl z7L|`;ik9lDrSmC@-yf9guluu6`qL(`00ltD+i(`dF~0m4@|!U=BJ9t*jTL{*+kd|U zN}XC_cG<1|vi%|1F zFjuL3Lr7dgDqd}RElMk)H6dF1kU7qgaMAc;_i@*856O4ywJ|*mbH-U7PQIR(#nl*& zu6@ch)kFvO3}1d>+t8Y=D@E&LF{w*%`T1}8+buoH^15watc>`FBmGMj2ThLD6p~~L+5^;2GsU%!?TxpA-z3VFo*;u%!+F7}3!XPBZV+p-YZG)%SFbyf(%>1*{+WHA z5C`KndSdTy`|0n8uN0Xx15fA}7(-<0K+E+ZhBdvPCk9MsgQ>H|pFoZY_l3Z2e^x$0 zVQ9*@e%>53ZJc>xCZ*8O;J|WPz^<`2H8IW5Ix-e44w8Zd=_;*9M?n+r7`3_3dZ7-~ zl)!gAx8?)io+iR?nAsb-F%PEYX4O`I+5CLlxQx}T_Qir!x%ZT{g#G)!x0BVmiVLTU z?GbzB!GAjoC|X1Z0H6u5C0Yu?zh+^wz5DbhNp+<#Oi)nrUCx=(ak`5VvR5SECIC#1 zVw1FUy2@IK<~`64XEfyeqXMY{ZQ@Kd&iFn3OUctAqu=4AlR0EL0K+IE_zFhex=7G| zpEx^-61f7|u8aT!Mc%y>{m@g6sL;`<&8{i;pN<~qDG*%+oE4Y3#dGw?dM5=$m~1bNPRk}%;3v8r#VN(@<5zbT|(Sz zGKz-IezX#aoeru-B$eRYQX4P3-?h5<21VzLeV`Q144Lvp1>b4hQM2*SgeKe*J7gBO zT28)A;Kx~CEQBU_5lqdfUS9itTA*phubZiocd(^DR^}B230k9}+kZ=z{P1k28YbD8 zg@3f0|9}LF8vtnLlu}bU>gD(K7H7H^<|KFX^-cEV=#qY9r`qMaW8WI_JLXyjrqK~U z8K|gSsUDL8_I}!`vde)Fma-DW!3P7~+kHT^@slR|e}Q<%BSAsC%kSRH4J4jL9L}sv zBhyQ*2Bsr9LAxhViViOCD7MSf!E;w89~Lu=Gt}-N26BrmuxYq?X?vc zC#86pwT%Z0mNSWzh;F?)wa`j=WQqrA!hlwJLJVwDhV7XS-2WZisQlB@zm&Cqx}Waw zoeiz3#jsA&OX6}N$(u_6+F-38$GLw;qwrbIwa(EFmZJZ-|nRzq$7&zFCOjWU{J z{}ICe>r)p4R@S94&X?EJFD*X^)G?uw74;Jzc_D~C+KM>YIv~8BlwxfVHm&{oaD->T zg(T9sxth`GyD^IP)Bil`-%1AE#$UaGRTkG3edhtrC@pJ^jTS3cHVw1qUl$8{ z1RmYRmamB3-FAc6Y zo!_%7<~*6Ff-hF8T}^htyo~lk9wMhOEt8m!SGk`$|2^f$r=-(KL~PeB1G z*;B!E#K0F1hyU+uT;!r$WA$x^Qw;Y%5#_(f)SnR(;vLkiNnaHWG8;_ZDoQe={6?SoIOQo9l)q=uv8jb$1I8Y7E15(!RP0`H8X; zt4~PP^Z95pW*?QTb;e;{>U||MHTvLt@Yx>K<6rGZzi_9u2)p$JcGBlNSzvxydvJ0; z{5*N-HhF1N9t#)>GuJGFLWE{(hp9tzTkQfEbp+`5i?N!FB z%?!-{LLU=cz_20tzK@?mF{x6=y;}P-!;0^kV*>>-CU1N*1=A++meq0Gya=3H@U|oNXMfxt(a~jelmOc~6^N`@{4QxJ??)UbOxAgZfsUtx$~}z~{?G z!&WULoh|3jEBKpuV4f}ZO~@LhNUJ~_ zE>2cS?FzTXYH3#d3S}8|XBFW~E4$h}w2_+a`?onYUqa7hT_|&#-kO;*B^*>Hk~37k;JpdbA7P&zIadY;gtD4 zk6v|^Ejj!J!H9TgEOop=Y3%SIacLI`Za-){ zo+h=kqLAkxn*j)~pe`pAeST=4#;knJi*nH3yF1*5r?Q>Y?I)Q7xAS`rH7L8l5DCF3CRkf)ed6j3w~4Hq4)V^z9HTG_O887efRB-xrRo+QW8#mE@kty zVhy_0RtgjgV5HT-Acy@8Ho!5d`Xmgx;p#v(0ws{{4I3gJ?)NLT!_DJN7}PUl8Mf(I zB8c7j;E+XrG!Z&E$@t$3ecj*`pJYudLuCGIie9mz_RpQ0mby(zanH9G?pYP21PdvA z+Lo^LoK92*;#K;U47qI%&iXvvIG%RmSLsmED>K#<8$-9!NftmjORaXpg#Fe6Ty|bh z^jYDwU~Li%Zxj*ed;I~u%m=H7^do;>LK7+bZUa~ge5WgRIQF6H^CKcI0X$=I^U0(1 zEdTVQRVUvFf@g#ZWR3>-fVLAJKC^iCIS1oW%kK(IIS!Std%pavP#mvkfq$g(m_@BAMi-aQ5QQ0$NJ z{~i*`>C_=(Fh>dJUA!14`wm~Y1@ZLL{njMmc++Kx6EMI+YsfCz22BwlcF?8y+C}^Y zMu>de@IjmLzzKz_GFu;6pIbKpp!~@3vD>ErtpZ#SS31SpPRqkrq2L?!;^MRNcjHVi z@$UHw$t*8s7$YIEF{YcoJQPlKRD&|=P6`U z(SE+2qXcslSR~6uq|}v$#P#&U$gvz2sFzt41j(uiFNE7BB}aKr))Q4tT%d)#uT-Is zXbR{3P&u#svzgVGGQip2$!LUwoAF@rtI8WVtz$-2Jq~8cM zW^wCg!K-TnCMGb2Q#8j7O`$1=gx7#bxy-HCW7l*3r0Tj@3U~1I_!^&?h3@~}Xx23Z zuk>$bAja?fyd7s+FJ=ZF@j13bwstIf$L>#PP{!+MXS$LUe){f|R4XRfME}4wi%mU3 zp}-d9=`mmI+DxrBSwX?3roQPGXG$%HqmB6F zuFAQ4?F#|tA%w7BmB%iPbM|qjlsh;C))N1fsq_~?+c2W6h6dpHf1Edee~I!30RGT! ziYc?t39$Uxqr6{C4C0mFy`(O{Kw5U|`u$YODVC5zneYk-gjl#Je zUz|vP0GMfjuoZwf{3t9IC;4HTvf}LP@PY>33_nMF#$zb&tn@j2_ot-Iv{SP|gjR1` zP;%-e$_4;~-`}CP^R3XZ3)e)iJ)Y7PYf~-1L_(x>bi*!!4nK`%b6&X*t#iI%)ymN1 zZb81M^^W018NS%*zYP1I+LV{Ot(T^p{6FVZckYlieU7+DS&#FlsO8hT zH}Mie*jTh}+j)@+Blks+4>$SR{g7Jw*SRHIHy-=)pGLG_3L4)u5T>I4SRz`Kc^%hu zLxCAd8u4VP)wJyDJ)~bMKM|GWUX9Rff49=BP__*XcMvwuyn>!4II&+o?#sH|%v$6K z|A;RKLJ7MAj!&Xf)r?IaKYwcm)Ux0cCu23BtE!1IkYayE0*RS`dFNb8dx9%Gh(9T! znB1!b4wDsvTXMrOgW5YSP@=$MHFD#@{QV(1z7XFbBe|iO;t~f5n__;UYeX<4*A1?N7p-F~v%WL(7`j^D zXN!IaMb~Pe4BG?l3jF53w2UMMLTjp>A{3nj27b~*k{nXAFi(%}9}A4Pdqsm`F28rN z&69n@N5nsS-wJTp(Y2ZZ)Fu*gaR1|7k}{?;LVzz{5f)alBjBy)#*fq7+B+hlXNt#3 z`|WBwB7W!2@{Nb&9rurt!|!_eekZzJEv=qKgjHrclMWYn+OHXNqC*x_yO~sHMhJkd zkUoug%3&4}^2ZvX?)H4Rea0=a5mq%n2$|10Fl=uD`HY&OMxjlH&cgY2qzCK$e1^S3 z$rWNpAyokk%$FvrLF4UfDO-7So1buneG;JFT|O}U`znyOzF$5k4$;pM)Vr~g-d4`= z;#34prA6tp%1fSk33c!N1|^MEhxScgm|U}71SpnApQVA%%O7Fn11_zd@b1rAU+ezA}6wEn!N*&>WV}_%X8tGnwYn!V6D#2E7lmk?jZc zP2}}DSZ}~29aL|=PkB@e@+BTLt~QBpU_H8sltm7I)xsD$m(;IEBL-%K>*p2(6q1YH zAn^P{B@Xl5YpYU|GP}I6R5*`&O2HYm&G9|0_9CM+3}=x78ppJT@~h(8ZygO-?0Atv zuI5W9!Xmu4CwAS*D2oY9$~aPFKUa^`TYkJJU({Ej*3`Zt(gG++**Hd71}Y;x_X@*P zqi_Xk`ujUYUVDlH3EuNBK;V`^<(P%23ew=91Wa(T@uW1ZhR-rS0pg|3=O>xi2q1cPm(kC&Z~->|hQCl)1Wt-C({ zE?(f*6$z-J&AYp0^PxL|rLir`<(s3U6v~I$FMK3MKq>e_(p54Z2x%kztY(g$G)bRN zSRc>^pCgd^5V1T?eM}9Q)X7t}xkk)Nh)o75n=tHVURNWa-1xP2GT`2BniMC{-7OUp zxzDbfxE@v0x`D6m@wNjR`bDSIA)doh(_bsf)tjCZf=z~vFp~3v*~3j<&6zv1zsE2+ zU(4Coyd)nF5{dYHv{xO`n(F1fpZ6s+PchVhJ2WuWT{Q2)An&tv7u}#yu^ba@PPKo! zJgXy$B0R2p{S>E4>?3xrpBf1`+lW0|^ULtiA-DJ}3-x!Yt``@*0vW#JU$zM~g;;h_|MUlyC!#%A4p6_tYbMYT<0xaI=5a!=mu%sSCopO{&UY3V!Lk6_A?ZFA{hsijv@UgoLW+@>F;*#{l1S^@U`JP`JDkvSl#fdBI4k>)Vc_8H>xqT7#C%`yWFi9yqh9>9y}XC@k>tOzh2zlR*l$I zt&G_DPLwl(Y*oY~)>TpUN0n<_)>;(f($U$W&d|9euD6;`R#c2eI zedM<-@XKAK#=w34=$#=q(J+JKcX#~}U0W+%0BVF|r%Osh^}FU_Ks5}<*KS^hKSSt@ zzPe{tHSvPtVQ7CGP>Sq*r~5`?^{3Z=sC

    sjstDvU%a(-nxHy-WjT>g~BT~>~D`K zK(%ZbU7l%C)4&JMcr|V@;J2sMwNjzm>R8U-mB&Z)6arQCEyFQC&&A$dbJm%(!`Kg(%6TFqZB2?uGE5z=IBi&xjX+iV5w^ob+?k^fMH6e*HuOf} zJ@0GF+4tqjSgr&VqfJ^mr4nxqxDcovjwH{!Xkava@QF@;q`N#l)UB_YJd_S|5?+%TmqM6rtfAf%foxzMSZMrydMh$N=Xpu(3=!2AFH8 zok6U_Bl<)T{lUUp+lBa{HEekVsXXD-`%$^IJ=3_W_PhSrSE)pNFYTU#^#woWf;p=Z|A^ z9p2vt6ONi06mivn!+O?t4;hf>sEJo)Xb1R^3B-b!xD|&Y3*W7i9We^@(PV+#Z>=qJ zXIXvh-^~? z8!#tBnD2W|$k(O$G_lA8$`N!L7$V$&wcRjg_b6HY$%EUU`zE)Oo%Zca&=^b0{^vtP zX)ks=SE?AmkJ3>c%2O)fLCnw=*k+Ur0>n=iXa zy-W8ETT|T1uTv8Xk+mv_&6o>dKcC4QJv*qf%XZ$Pc(WULj1%;e(UyH6JCY)czJhH0 zro}U-BCE46dPx*J#3(kuEYP_r>a4|JXogeU=xmLir5_Q`k)h9aZvwn8U7HWj%FGso8bx(p9k8PLv1y7%(dCRnAOx&jlnMh#wTi#vLoUg$%b+@3>1g3lE6g$h@o; zWmG3>J&@QY3wapI1UB|h=#rzKZ%HuP&F0NY*N!HcT$lsWN*(B@9OX-VTrRifuy*XbtA<{B$gv5ip zvcuV+pxq(G{7vbuUq6&XT%7TmCPqYw%Py9)eR{op9J4qby8h0YbW!-^)Nc=l7ySu$ z1rwz{OY@o1-M9dXHtH=OSF5GW2Y$ZR7r(`UAnK1lc1x#gzvsC12H6(T#`VV7AT!fh zzn1pMxJF34R4~NE!_;T-_cfto>5%p%FqdO!W_g^^zKEu= zpRik}pyt>ru3rE|8ihBEJCH5=h}@vU+1)~Sc%LY}+hk@anMK1yD8{JAg1O>AOQD?Z z!IU9$VCrn2C4p9G*3;Hr)*&YyjP5__imDDa$7~7gnz5_E*}fHw4XtvM4%<@c}MO^S2Tsaq@mVL zd`I`k84OpQFy+sVcLrsBy)xSNKIB}#k*j8;s)*Fwc|%Z@IEU{C9*xN!jdh@n8W*?L zX$BZZQ`Z^C5k|X)AtfRZnds!BB;{`fid)CC1}Ea-O?N~F=p-uYkT*HAxzR`?2?bZ4 zqhrZQgQ^U1fmLI|Gw+y`?1v%!p0Z&E5gR%v>bl7WTX!RTzK!litbeaQ^fP{$l z+1P3qUr;CNBDUnygeI!9XhtpC!gt=S3bJ1oX=>Umesy6RZ_+5vUY&#j*n z__M*Qk{)hmPyz36%xhGHW75@98DI48%}qP~e7gBMKajudidTuh3vz#yqd^}%b=|p% zw+#hs3!fd3+@fQFJ9PsOFUyj5R!J+K;q9h$0~aRNk&udD2mt)@sj8Q3(e_Fx$U)zC z9ZE@!xL^za5AfA6oNBxzjcYOgJEVDCP%u5ur8)BLtM_viz7`_r%-?V6Rm30W8BxuP zI*B#oMU16%gx*T#qygU0PNjaZ(wR@}2#s#ybFgw`wO#np_yy`_U&BkEVisbov<9Rn zn*rwZPS`!8k;eXU?v-oVk12k#&r;Pbbz(5lH=GGMil$G_Awm?KO@g94O|(0MbV4*4 z?mi%EdXAit!H^+1uUD)`w?8iM6-@atS?q9`IAs#$% zo%pCGqkjy1mA1Q;P7h*QBQ#7NvTiql%*VBGo}Wwb?p7tQ8eEt;ri2Y!hGi#B$I``N zVq&6fnO3YR;jClnn0gTJ{U4|EUmT-tErC&0FY+}~XaRGerjUt&KqiKjoRV&Ye1PMA6=U!NstVvltJ;4cJ z0ilhEvV9^aZV=g9vPLdEKG1J4I~(}&IuW**%KzJek{yR$`VQ~i?>Lj@-E{}ErWVnK z?xqHBYpq9Z&BtKb$>S&q=l61*Z49+^hcQk;OB9#GWKOXA@JZf>HS2YKm4pe4#lXi9 z8v>hM<0{R?@aU5k-8cPcdsp~<^m*XowWlVX8Qa8W31_1Q(hALjDsF4GAnz-@n^qP- zq?tm;0m>HW&^+|kY$o8QovekjJiOPWPd-Ehd~b<4@(|#Wwn;jfLvTHxcCM#~J#X`k z&0PJb7Qh^Elgw{7CJO`ju1A6lBC?mWnKAV|zZX;w&?x5hlw~z1;)9mX7wv9dA@!4U zJX8ONvGssY-y1%nV2fdEnzLJ38XF1<-n2pv(1f>c2tN`y#H0@6Wh0O=r#fQodG z8mbhfgLDbagx*34{oBub-nPzK-&*Hyevxcu_RKx^T*DIl`DDf@V&y5pR=ndug3B_; ziCLDWTvsfr5^pQ_s+F2k@M4|99=hJ6oS+hO7T!dm>L1{lD-)J$S4zt{`4O`W#$7K) zUy<-}sF*HJf2DcqN1L)83@jBd>6Juswb4Tf_uRKzq)%7sF22P^LT&k88HVt+xtv~W zkfIOZMYTW1NA}O9;JV_-k4|o`p~g1$5X~!G0i3y##weQEkhg0+>3DC^^FMFrXhmGS zScIu2{qOuwefao4#trJxG7+ z0?SeOIe;NX{4WJ;k8!DcZr9j}KxVE3>^?-wKE zR^p#kUad`lV^!f(gC2sHmqY%vJb_TxjiqJ&_CgOm^~?gy#4qm$vQSz1uY8J~px_FA zOPLRIwPVOmc%feAkm~9?`9Kx>fR^1>Fi}hOb+%|*Kc96FSaq2aotXAR8&eZXr-Opq z1DH72PJxdz(tN z)kHlZl9Ygig${AsKf1NRG5OskPN5KejBzkLbMnYPPBPw%UJZ?QD4|zIyddNFy(-=~5G|>fX5yi}2Yz z^xUq}1R310AGO}ixwHQohWmx-bP=iMvm2l_oYTR%vOBp-;w0*wn>zx9 zmFJs}u2E6LXGS>F>bRU7KLq}eAOw?XFuD4@SAU32NHnyk)@_%gO4?i;@-Oioe1DM# z!H^r6D@ZD?!CS2nbs6!JN0-ODR2>3O0nh1a#{iXmeP6_s`Jh^ujq4LU%8YAgpgCO} zYKv#GY{BA&N0zt#HRXJ-{$2eVQZA`A%YpfLb%&aqZeGNU>wz?LZCpLl$Mp}`C7Nva z?~gIN&}5ptifJs^VKU?}<<9BECox*t+Bbu*V!A&nBn5IDwP#`yS$9XW4>D=xZGRf3 zx*b1T(&Befv|4985_hSVq257Gig!9KFzx(^UzAi${3bTCd`~r?^#@Y*4Tc+Y!*Y5# zct55w;o^u2Cw4-o=x9WtS+StE7h+D@&Z*`OxL;EURU|r#^}Ip9pU7366!CN$OIgmt zFy^qIRfs50m_Hi2oB^+js$eabnk6;_C{ zNvBOm%KDzA-hvi`mBi8Dl-zf!cT{auU-&ga->Cj3`NH4C1XV0WX+T?_Qn>Zds69@; zZ(9a67>)AR@mqY06o6~Puk;A3d!zL3kUz`6@j4ZV6!U;_yUhmA_^3yEy2N<_NebSh+@OVat4o1w%Ct(xjdX%XYhPdD%Hg}Oi@B~HqOFwB%pc?lU@y0e^(GX|D`AS}UWt@@Pe71-0|-*05l`bnXw2}yf;6%oD6 z@~|F(#E<17V7fHmYG82tc$)9{7Ql*Z++NSgnn(@}0o}(o6PWxmML1jOu`PE?{B(sY z9Cjl@aIzzF`Qpk0B9E}O?-CNpkA1`Eik9E%^9!$h-m%t`>&|hX<1DuZE8v_bJJobL zbZI!BkQljEgs`{l&G*8@xKU{zL1_vLA%^psZP!Y%&cN<>9qScG!Pb1^=$Kw5@IUAG znspokIt}dUFJ3bu93v(~{E~9RoiPz^Ba)c5{dM-C!11&sE$)VB_nWEB`ClOfA%Djl zUu^)$n*~^B-ZAA&h&Ln`-No%FYoA6giRX52?XnQKRJa|ORa*GY$wFbw-BxoQ5eq4t z;o1{R$@FLuseJL*z56>iquKskrk7fRVl8CUT&{B^1^p$$_JFOoa!0XE%YxP%E5_4a zBb&0Wkh(7Fa*Bid?;JTU3@@17b#9RayHzs0ShiGFq}jHaP_i~x^&CbdK}s&7IY5sN zmCcjyc#^qr$^V*pjjJd(lWOO&owb>3Z_Y|KZj%0p$9o~49d3G7i})I*`#Q#*7d`#8 z%*BOnx-5KziONkv)_IXvu}!c-90{!0m&|mP%v=ue_W&r2jdJTb7#)eSFI#S>IkBiP=%dy85-wj*k&l!OTrKd4+<#gIhXnyqp z0?^skk0z44m>;gaZT7L*+5#|>z=b20FBaN8%<0WFFY>Tw9~TfPl1ewG>o#11;8UUY zChusNdU0e&(`AhcW!wI4nK?awQcW0Bk=l#t@jCV~+LJu^b3$>!Cky6NWIZW6tOGCs znWcl!gvn@`TDP2K*P%%8cnpyC6??;wtWa7EpNiC4a{gRYa z>_i9#7tD5vjF~}R%{fm>?_y?7EJYSF<$itjI2m}h{qg4Zr@%2okYlA$6EVx$X5QXy?+aP>>q#N;rzTqM)^Z zU$sl2ZtOGxM`GtYVOp$I^45@>&!^YQIob`y9l6){mS!SYgztOqTl|j|>;KP(8P);< zHYw3%R)c;3?-&$Fb(W|V_udtor*acpiRIy<`b5>n5=}E#Z`7XjzOv<8XryEErEj@; z@+a$+<3|5@Uev-H!NGbO!k~M;iib1Erwob|n>*;6DyhW~)FzYH?bXEBiF*t!Tyhj1 z_z$VY%*B9?Y5Yz|0ue?5p$?vTg1t%*@d)kKhdgDlhFq_CH3Hliz2NSlYen^l`zn5R zoUs)li$^UBz7(rl!kPiP$Qx#MolbVsVZ8<8yp+)I=a_x-!0IN%oz|Ty7;LvOF!@!2 zqdLUv-?`Nv-vl9^On`ki;D_EnJGfXhC#7AS5TCVEW99YQ7!EKTItvu;P1pDz!=z!S z0NIxY#=v|lF>FZ_qTCt$6?9#Jn9p;OnHpRL4Aa>4viK(j=J_Ty<>s)w8JL*fD1$OO zSzZM^bF5l+U-CvoQ_P@aF!A!8yYTY1-05v80i~4M=Y=`(#Qx2h5SSbP&%H3` z!qq`-R2Qxt`MQ35>lCjxtbYD@CoTUL8r$tS;;M8uY^oRw)Re6SwQp^Zv~<|J*}utG zNbd&aZb*gu=~$7fZ{Hi#CNEJxoD)cNJ2Sc40$qA^d;Bm=*EJDW*DtddiA>;vgYC!o*vP=7#h9K z2%H0WvabzzhH4Y(vQ{|iL}<#zxYyzy95PD_xh6{7ciaTsSQB-%WrijzY_mj@ilLAK z$9hhHXfB9h+=(C;I%AJ`;Arr%N9CCI7$LOy7r`!;ki?vJ>tFJ?X=1u#g`-UR`;9@B zlS?p<4aYlzZwDFAh3=zKziKTP>A!8Hl6en)^pj~_q5@V5K!LRXR9?(~C*SBGWaqb) zbjG4b)K0h$x$Cv5_r-@wg#=D=?_W(>haQRI6mi<>9F`=T)9V*WH*Qvilj0){Nh${p zsQ9zAwYx5=C;1@~_Y9RQaT9_GlTw}mL?!$rX3B6VS%vy%lo)ADxV}jz59>AgEQNCd zKSXu^Scihz@AfNrB|bD);~H*RWy{YfiO+JO4-*+bWb2^jSPG{nQz?_WXa|^uV{fY2 z^?l5oWE#?R!D4Vx=7F4lDS9pFd}mK_)48;L0& z;>+z69C_;9MSokX{DAMgXKG-!vrlo(-;>w;Y@6RTQmtydj4LkFOW;5|u=w}uNse!9 zL%u?52AlDm9qx@e7bn`NPc3x#^>mdT9wA?>+SB_7|IpwGZd~(x;}P+(T)=*0bOl+3 z`OhcPVkdNmLN)UT{fG|+toCy6ZHe<%5JEL5cb=L|Uw_wqJ;CPw_IJ5z^BslJCR9?L zaHON@skfn!quv+|dHbzpKrFCB@AI*1J;9*d4mn2z{Hb@M{Ga_#W(r{c*JtxETD27- z!mdKDZeFbstov{)p4%1pu84mWwjIFLv~xDs-n7t|K4Y z{rx>ZM^*uk-BRHU%opZw3^_*gK83Ks_jImgL?DFQ;hxWeo?K9lrCNJiiny9E@KG%J zgUdYlF6MG_j~R7RJKo(%h|$DeC#N*R#E}U>383L-#1Svp6E?*2KF4owu|WRk%(gI( zKx>{FtcOx53TT+>*9LB}CMG$ig*G63*I19Bs@*4q82WrR{wP=YHPVi#lW(GPMn1#S z#JN_b;IA6I^c|d^VAJts(EwHqq3rf{i=P)KUv< z!5kTRj!%f>z;5v?X18(oWVbP#@%V2%iGLlv#V6?b-gFQCkV#e1Qnos zJLjL`ftJ2{q-FbS%MX>)2vuy1%jMaVt|nKk+8#1`iJ)-7GYMC z`*hl?TKsBfPMn%!^b=EWfyqy8H-}u#8o7=V8o*EG9PLUbbaOmAH9_eHir<-#^c2Si zIXeK$$Hckfgb-J|2lOk+!PGdeos-w&7mEcnolRqk_rKBBOv(j%B}{Xo8|%HE7BT1!otG-MUF z6fB;n{mpEb@R;_L>=5oM;B)PWl3vg;EKQ!WL(^dl;?ydfUcu?0l-&JuFhx=3mJD6685 zz$K*6S%s|O{D^jQvk4?}7NOeyBJcc4r>hE_FdkA!7o%F@{v${#(|8$SQZW&-|VPSMM`1oHd zX#Z(yVdLYjy>m}QzCIgBj`ARQVoMqC+s~Iu?lmy^qe31@m?u0Aezq%CI7!o~Yy6?z z1>eDv_B;1dmBuCbb$IA!t>FB$_qF-fkTQr2gaQkJENtRk?*U&5X7UcPsk=-AF+w9* zFW?!vvO31K=b{Kdy-cI%fVTJ!!)W{2vrQlRE&uU`CyBw1?;XF|)}K(7@iX^6PQ)%H zfb*Cj!4XF~p)K0O*K;73I>&oc zX8nvz;>%gmb*%RBl&M>jxE(W`R4fx_3^X z9DY@E1KF2 zmb(23m0A|j;BJ)ZCq`1>6dNH`<~;t|b2?uRj~ z$WFd|-F}Nk1vsC4+4pFp zdewt%7zLz!aCgafA8ejob{TK8*~#~MD|$QB*g{u(@xC><{4~jl1Ej^l z#jNuV92GvIv@YG9A)X<;E`Y>jZ7O0)w>`Za&7UQTR@o{ zW#wS=mY2L zHY%MQ4f3F40kT(IFu%Mat>bR?GNNJ9CkFLF+9%AI&Z#Qbr&Y#1PktCp3buyR2So%w zCJUK8>~$V++~}LNE7ttAyMhCBPV&x~VQD2%S|Ec%TB-utg9*u6mn&u+tNMJ#l2wT} zu61fwZ{Cnurfg8RM1G4u;8>!1YGK(`f#1fRT~QfP9;QQ2ZSAn^{c=_;Onxp#JH7s! zOo!eEAHWa(S(im3vfUR30KtT)nyYU2Q`|8d>hsc2;kIn9<~)t*$;n;8zN1@T28ED5 ztJvys=l9ES08XM$e$+8uCc;)Ja#$gfTfUq>z&55>%2Q!de78EnUhm-g*aoVTTbwFy z3}ClMgZ^JtFOZ_o2V;246G}__UO5-4J}Qr{KDqBKM>K=F7@jEFH_xf$Gv@p;4|VTZ z;vr}(?+amgx(BG2#Y5*Ff04MKSkG+<@$_KGy#b(wqn*(c(}4(Glcav*n=ho3U{T>P z1Dm!MxrY$L24k(uuryrXK_67k35avT_RZ##)1>Ua&4J}HM7LDJ7@E{?Uz5N+XlA~|9mN8s zs29vb6Vjba)~>jU;m8Z`8dG|;ut*3Pt5lic*c_S#if}B_ip=i-o>f5E`~xf4auc1%Zbmhsl~ z>|v!ajXhp4yFbrMX5KE#9+IE(!Pf0d2`FhFxUV7~xT9p5DAhM}l7CSQxNC)Lk}o~i zejR^(hZy^JnaLH(MbPBaiN%+lz1 z=9!Usw6nE?1QyXCYh&~-95aKDhDt!6lP+xCviV7{AEvJAsS}B&fn<9Z*`p!W9)e%2 z8(aGmL+v3mfb7lkRO8r-k{Wen2=`O%1E4|-Zv&C}rkFO`A+#Xl6QxO(=_Qx=r6}EX zKKKjo5}Iy*TsEB{_77xr$*s@M2oW$nJ*B83Ci`pRlv54k>t>@tozSMRMl-_<<*A>_ zEy@qNQ&{zUfH7Ma&$ZIv^(K2_;B*XeW;P;?i7V0G0vMug|84k4fCX^HN6W87;EKP| z<}S}o9QKL~%HYXd=V4otY8LR_Y12ugL6;NZFyk?``zy4-wclSQqT3TIz;k**8#N)5 zwcgCoxWdI5qdFm1F72P>^Qvt zoX`bW<$}o;0d&kcwwuz~ZDs-0%=f2D|C02NXL=VOv^X1-1BkG1aD$|SM z#+WuvoX&|HuB7I)c{?)ed)H1~s7-aDoKNn}m3K1JQyBw!(P(t%Tmy++lOpx3M&-2l zfq?5Y@fs%m+KdgbRmSjj{C}D=Tk(GpWdSDt{6PNieF?zEQFe)va$L!zDBlL`7$q5{ z)f4-9=`$$5?OG3`x>c)H4-K6c(q zcM?kCL4(fw(iqNMfMK8@RMyte(#XB@h*Iy~Of}^!WFkjzyYZ+G;eHs`wKHRtm=6GO z)n7y@Qk*g00cYrW>j>u;=}FzcWYrdQ4F)C1z+aJD^dxNNBk!qTeX+F(u7c7%jHm7D zQtbgcZ5AJ_G_<*Azkgv7;l2p?MhsErk9p|J&931TsSmT-`)tvQf*J7JE4RrDzDZ-9 zg|Wj5vUT%qwV{N~b7s{c)-wSG!F18q6=sT4IE|2OQcQAkjC(#qJNy!sO9vawm5why zxR_{Q6316m;4TVpz9?|-d_V;f3zmu!&0y0CzjEu|Whs%`7)y~~9jBU>4+34NTHP66 zaDy2cLvO?cXB6?+adA9nhz-)0l5O_SUV4MTS$iQK|Eafr{C(E>8xgZ+h6b#{&4-nT z3V^A`849$wDh1i{iG=p5O)P5B%8hp&q(ZPJri=8X30JM`H`~8#RJLy%!G&G?Y0zXa_9kqkI{!iBjVz zC`m3#pvUW0mC1sMQddO5OrOzu+7Z2+!=KuBRdSu*_P9Nw#qp9pzPxzlmiVK{gB?Z( zdg6}TbND}B=%KA)YK(|-xWJacqhTXRZs!|siN6R0_7!S|T=pd@luR=$u}vbR;b(0) zkHFI5U=s=CX4yX}GhNe(mf+1S#)ek&7Pq;$6OmJP~ zJW(+WpY|*5aa?1L?$bWeV?-@O#@vE`f|@ju*(q+?MOuvLKU4S9=XZooSNZjZ4fCSA z8Y1IXQ>*pq(E5YFOdz4vAN1Kae*`5+)aooZO7w_U0cpp(4RwbPp+xX_O@|1p{rmnB zx!x#b-`~c~df)!kfZy=xEJWmPZ|u|yF3)~RdPz5A)4bAYrynb;>Oz(TDfM7rziN^F ztts@>3NiQhNeH(y;nw(c$#0rZsEB5Z*uLrvi~()!%6Y+1SR+v)R79_Rk4J3g3B)afr&+u@&Pwx=c5oy|1*eQ#B*D;r8* zHAmCoCtQ%C%RCeg;}&uenctZJmu)d#o12m`@*ary6$cphNHMm_ESrzv4UN`+ep*IP ziM`HrM{t{=<;JqWk{!U&pMrf6lu*w7d6oj`yT3uNsEP!2nk;i13%F~8l-`7aq6HCD z7J`0)^YW$AOup}oA+Q@TR%86PnLY>Ci#tMyPfWRd-ij~SgC|$NG?_se=gbhTz8d^r z!8%i}2qp&B(^QZx_7m1Vc#k+8nOrQ!Efm{FlS0EG@lY_T$r7v%brpcXt{+rRYD)z} zbsQzty)qqtf_C@AIsgYK9*om-lIT$f(}3x~b^<2cL(*+@z5G}93p;R*Rl5@NS0Vhz zmea70>2pmT5sn|Uf`11K^bp8qmL}mTnrTb1TT@--{GQ1lF$bp98X~26gYl@}K6^ZQ z^ogD1D~!>Pxs~gR^}7g~5b$dCcmW;c)-{p+4xgt*u)JbdaD-jZUs%V1aNu{mNN!N{ zXTgJ{_p=)(4QJPV(C-8Lzkk3wOpba%f=-Qhu|Zw(iR8pA$3>e^2keN&8dSh86e2WV7T6-%&%~nb)?JCw%}-7S9Pt{@n5?_oN`9GhtJai^&5q zfyfLG+gp-<-4R%?1Hmf4l{kwaW4OjE*G}RAhIpbj&#@zr*|An&+@t(YjP0U~L1s?} zDJ9_Zg_A3S)`c8*{8dmbRe4ml2XUu-Uhw!Os9?3W&NC)g5L};W3?I%?dlD96v@YWf ztI2lBMml4%wF+?6?1g-^W^%#wqzDhKVozM3ui)!Jr)#iSae$kJE2E@h{OoBhNd8k? zQ+@k*s^n$?K?39Omkas54s8l5u<13@_e{gPbQO0v>90t4P0sFBBj0y4k`zYF(-aYG zPhI<=zJN?4{xn{)$BpQ&!RT;SBuhjGGm{c)7~B=9V{3mY_?7lqc%$uHW1(r{y%haO zKE+vsBFAg}(b)cKK*(NZ<>fDpzT36XJ5cPok|je-CV^8>fdsAvI}xXyojL-$N!znU zJMk+eBIkemU3Md#_9Xcpd0Kx`o$4;*=9(Cg*?rbk52PSzadthvCGINEKcDegti9U( zEPUO=)V=sgtIMlOL|y{NFBAf`P;#x2IQ37dH{yKOYFWOs<=-V9uXVTcGj6q;@dWwt ze~_xuI4c)R$rrLnF=_mY=}F(3@KMbg8}Y82Bqo-EBSY1ZjCF4q^2`e1}WLi{jW{0@}lx5)FE389)eKx*{Dvh{9{v;OUmBqw;`V5 z#xZBA|0m%9Std(>5}aaaig-N!-w6l!^j1*IOGaV8=oChOhF>(kS7&r{Xa=E~L!azdCNOY?ZjlB-xf-qpEDF15l%l6nr z-B2f4oKFo>mXj zMQH}Qh&K;j!R1{{kYh29kT@P%HzhKw=*7lpX;y_0U&m6_(r};)@1sOxhImp7TwA>oG^Zs7v4hJ)O4;=SG zWv&aIY+EA`(XbuobqkZ8nRacbP06jYkQ_ZLQ;yQpj%o_&0&CM9&5gT)5M9Q|O#vOe z`{A>TW+0&Zn?Wx9u^rb+B(tcCmluv-Xvu|YPpzOj581CDV?vz?RQlu~Pb&n+)@g@D zx4v(U#$2%F;f2(y_RS*|Z|bH_ z4|L@1Kp+<>bSM+7?jEuMZi4QM!zr3I0$00N#Kq0G;FJU2v913q1LR{t5aI03XJ7mO zqfYqG;$VWBg5m^xCwGY@MZiz^jZ@OCgi+hz8R|(;DAg3&5WB>Eal{>lG_X=b|q^8FY4Im?Dt3(0L`;*I3kKZ} zTXrZ(tNV@bRj=KVT+~;SB;h@P|N3>Je^A0;!3FuPY!+fMw^H##xm&*~Z5~82;i#=q zEb(pX_-}X{q@A6wq0de04$kG7jF05G5RaiTY~FoVc3d%6@03Z2DYWW;zHjOYZRJ}#J=_l$q z^RoS75=IAr`ad6^P0h|&OA7XL3dls3fYcJ>kR_6~C61@FM5_^Noua$Qc+%H8?SSvZ z93Vz}6OXN+bp`ev93@|qx2%4U<6Z73(>MHi2FMg|=;h;k_w&5#F}$I#R9x@Wop1Z# z3~senCDLh=MqZU4e{?Yr*;-a2!q%;zZqHb=;s>l!*}Kx9W{=j{fao+p6P_SRNw4~4 zGG!rX38IyV$$a-kUli(3b%M)KyK4YA#i}$7G4Q<)^`f6&z+NlZ?72$r`{&=K`m&MP z^GP-gGs2n81N-3$EkKAOOXRZJCtOc|RbSy-GI>{L3-mhucgG>;6L`PG(w9nVitFB= zfg^MZ<7p^6S>@hEAS`)0?`}rA?NcBz$Q(~G$#6C?RP4Y;HT!gl(u_k|GZ-IP2>E}j z*df|UY07|j4hMl5A1raF3;2mj7)36C-FvRLZl1Y{fw^;l{^5I;+<|4D zbTKUmP1LFkjqB(URT6Q~!9BUHfrd?jwzaR#r$O96OnlLawL7$_e{zQ3#Xttl4SDRg=o75cJA#+KIS4^Z`||0yP^ryvgZ;V^*eYx$5R+g@Fs)nF2MSYGFmgc* z-76bk&Z>sz5p$@7+NgDVvjO1azwy3c>PE034SVE-0Am4K>%MBag8r^~a~fZ=h{wnC zfxvT;dD7i3_23Qen-`V;yvgUBUi*zWj%y|{o)^;d&+sq9W(&j*Mtn|Roc=2G)7^b( zO7q-`(d+DM;C|^?in~*z;dE7Y;MWUSK`c1<>Q~t!R_Piy!u6h)0`ot5znaN&hqf6} za76Y(_Q%*{Bz|_{Qn8~oWcH}~ScVnZERyHk@ zHN4?q%6Y^oj2$hHlg}j_ee~bY+;#rJ!mF{^O)D+#+j`Y3a7es!&`GVI{LbiINLBA7^MNMzx=g8U@DG>IHI4XD%!% z$mVejf!_=^(tjf$2Uqz@VBGXo-poi+&oYVRT_X z(K}Qm;tx%AWB<53vahvwO)IwHXzx}8+3><*B`SXH>ItJ;y};D0w-S`?yH-`G^>IqP zOYZox0-|S8*dE$J%0xEXR$0`d+lqosApMJu!y_~8*w8PoF8S%b(cJW^0)1RLb zM25*1Q1u*zp_w2VlaH8ITBx@LQZ^Mo6Kr2V)$ZqE zA2kTsFMaB}>XBEExcHMrRCMf*J)IY_ISY^SZ*Z51uPfNU7lI5!GQK-$>X+SOH$DET z+W+mRPkf%5gK}yy46}cwS$E(>$yH`wpMLy?$6-R1%D~U<-BtG$gFwM4tFY zTR^d_NQDVv}8;yWECkIA2J?Db+ z^4?JuJJNZ?8|9OSdxf$pRE^k2?vES7f1Q;S-F3sCF0sm<_sGE>!m4P>U!{^0-~Tp; zR85qHxMP)22H0m6*1HcD*1~{o>iVBSOQ*%7<@kz2z>hn)6bO0M;dyGD2_wR036F1| zC~N{ajT}|j-9c4cAAPzf|Me(gl+TDbZ2agukPUvWQXLOxwG_gxPXhXv(>m!XT-F|v z)d%P6;AT+3Ti^*FLn1gI*?8S5CQUcQPua2G zE*+2hwFT9SmS(_L;ec+J1un)LA0( z4^0QnIx5~)B5ychRrb|7d-HIwyc#xtguT11RVojM)V|yIL|WRk3s66QY=y|LL5jKc7ubUtO1QgMFKa)%BD05{^}TLgU| ztya`xK1>gjpUVU>16vJzVE?EUp?nog$Fn1u%Y zw#O=Ij_Dm`p8Qz;UbIi==L!i~u2E;R2Seg)x2la_PT46lxU;SKN_chPeIGU(;Hz`% zS0mVyFium&1~C^CaT-OTr5<%JEe4Jp8W3Zbp>t5MIjPif(UpzCe%tLYiDL1wb+1Xk zvunQxVb?&ta|7_|zal(Exe~NU1)y4_=$n6x62!&`AlQc-=(tD(AX3m!4<_sH|1t;MSZ@6taWw|e#&6A z$5Ab;&N(+tcmw6SD%X5KhCss5>Tc-`A(-DHCwenIgMVpoUx>dZzR{*1ur5b5{=i=9 z$`4z(+F9P5p49tR%db<#E?NqFy_j-gMxOZEA!C3^dYKwY0!kv^1)I?O{XQLZ$HU${ zdBew_vI9poIg2Hvk@2{kI(%ch?7;oij^;p z>-LiL=o0sm05+&M-GcH{93+0P6m}tWVda1qX-{v&Fihn!#Ra2f(tkSwQeP(HK zaP?%td^a_Di7a^zi22SZF9gd!tZ@=AKiGcm^>Fctn&flI#i{*p64ZoMdN#&++#9H5 zkrAY9Qq0=R&cj%9WbzubEUs|#ShMMQ!?Ryp1XVw4RzRUAcQsxL+7v;xcC9y(~hma3u?-O37 z&L|uPhS5Q+u>8SQl;xCV!8K;AJf4XykgOCoQq|{s=XP>Yie4F7*@~9m?zI^#=uSe^ zrZazoQ0CmZ#^G?sfaeif+ebAvXTNQ%%~=!j6S7hy{xvlu%+!FNTs_vi+t1XTCLiu^ zph5c)&J8}5hW`@-8m79~DCC4BoR>5~{$ZNCG5T(Bcjd$t3xzOZg|KzOCowNH+f3Uq zHH-xLf_iwck{FZn_#vcc` z7Y;((W&Tbr?srJx`MSGpgP!w}1v$HFvHWc9Du2NC9&u|N0~yxm)mm73-$RXVgO(}g z8pAnhDn_SkB@B-~;`ZvYM;A1Yv&-%WCnW?8>PdAHi!I7E6k62ceiG!jTGaHQvhpxvU`6PdJT*3M|W64R%>@o(rv6v z*=|lb;*guSY`ky+ReZG4f)M&N8*-1;MH-?{wAaF?X>3tyn0P^4Fax=2?Z#ren8YT5MqW_l8skmDJ?nI~!IqZe%bGJjr~)F`woO9x8@ zj);vrmw3HWUazsq!%BWVJI0{gwYbR({n~`ayW`m<9(z{QQy;QT&lb?u%4E=gzg> z>e>b~zPM3UeBG!9KT%`9v-2qNv-sHQAHVK1Y|Vg|O0Kz2aqpYc*~Y?Bt6Y~g*PpWA zYvVivTdRhuLjueWSxfAQC?_uOK)cz_T!kD-FC0tC==05#8141Gc)r2xBcIjZ&i|9G z!2f2e&}T*0|97^k1%W`yfbYGBJ3%x^*rFdsFIENi*PCAHsVBp%}Hx@}0niP~*%C!BGkKOW18R}Cql2^LIH2BUpNglgyN7;_O51|Wg3!YAr zHv@z(^z{ZX!`C&~DyY~f*ci@j1$hg8(bCbY9*k0Ya%^Tf;Vn6wJKB&0E|`&bpYADi3a zJ^0mOFe(DSuJVu}TLG8;8K+T&eemh3AXzM3D2lsVe6j;{$PYrrHS743bI^d8JH?Z( zHww$^Bc~lqQwusJ-APza6?)gP*sLD_qZkc|uY|uKBZD_G|BD5Xxf2ogSQwU8%_8Wa zJ$bA-&9AgUlt0+v%-VYkOFUm#%-NF-7feJl1dhu-e+KAls)Y#HD>ea$+^XV2mR+x0 zY`|F$9;SPAg)#HDl7NSA0)WrzWjw}zbt~qOY+fXt8t!t?gR9_NaMc}i(&c&j%zSB^ z*?8lZtI?_E9TH$Su=1HAI^u0;g6!0(n-^ z1hdPjczIEL{kf~c^}I`of@=7I@GXKLEuX6MEl9e)z0Y^#Z_H1h>q)gfIUI~YXD1-z zy|02)-L>8yDumP=_sPprbEX>iShYp$g`AU~2-<^i4sp5u=?LOXYgded+rlpb7jBLO zj4d*IIh{d~X_8UTh{#1-!jE**tgFTTt%#UFBCEsn7fxJr(`}o~>|cGP{>-05Xy+Jg zCtEzm4ei`75%^LL**~Xe);e*(AM-EC=o|8c=4s^nUNmxcqGZJG0&z{UYgB-gxbveb zTdm(}`ALiKFc)!>F`Mmaug|1_bPO;F2))85EYZcNCx2)!Hq@U>mQ$0HjZsovQVuUY z>K0a>&QzU=H-=A65oSI%5uh6jO#PZuU$_X_3WzUE(Cjq|;=|q;HPUsP+`j5Cg~w=` z$aK%Wk88ph4K@i?dmKS+^|`X7YJT%?XIWqr!IyP48xiGLJQ_+R3j+Ooea8zbeaQKs z$PwidBKZv(X`J=8aCYkBR-{RB^pD(u?>m*`lRE9GZz=>m-0G8o z#x37kVCr%A@4T}iEbedaahv?z+#;eC;zfLH{J{Pds1%`G?#fZa+T}x|)sJ@;UzW&i zOHu=~kX&?pe5PD)H5m|I{e=c5rf&%Ec#S)e>&-}t8g7#AStr(C)5kfPY}#%*bo>3N z&ZyZHC)K&^Gq$BS^okCS;+hWS0?-ur#`_WhpoIp^=+`Nt2!JkQ**?zOHJ_qu?( z3aV}PhRl71caCP(fnPrqW=`Bfnzx#!(l$GL%~izvTPVCSoP?QJgDg;UwK}ut5D>zZd#bE2TFyas1J)@T$wwp@X&W4%hN8EA zng1l4Gn5^{#uh=uA;A+dv?ZlXZzH%Yfa4oUolC)pi=ZIYzxt{uv%5@BC?c7Sha<8G zlXl>;!B)X{_idS|vKEmH(E~XjWpW!8pQ2U5ywm5B$hc<@v-U3AXqd9gvVqvN*-Hr} z*!lr&HMy8)8m5&al=|*OYMQNSjGh>_CsuHw26RS~!yR|J*V3elcAo0l;_T!(3$JF2 zvUbE<+MR}!sZZrQA1BQ;Kvvg%3uZ?rHiJ*j;-76P75z+Wu)d?+P3IP9?Wab|u6SCg zdHjSz2dP7$cFs{*H~gW@T*sWF)7FF{>Y?~PwB1!c#|u#Mf89M%@)bY4BM+(p8&AVzBZAaH>=tL z>k69{XAs!yRTI7KsM5-7Wu^mp6E@@H_x@21B_8=`;gnc^>+twECVS9$zimzy+g6~; z$ zv!4U1D+Ylz$r5oOyOoMWCf$s-Znc1;v#j=5&I^0##rLK?yqRq^?VD_o9ut>_ejp*D z6X3uIQi{i9_s?>k)L#g+oxuibd!B<9yaId0)18Rll7A{k1T#VUZlI5Yac_77<<5FUM{R9&%C3{bR(;ck zK15&GCUYz$fJ>UK$*$7G<4gDH@1A9A+A@g80F~-FmFu@72|tTa^Eq!6ffae)<^;G< zr%|nBMaTLKw-oI3y!R2vY#%%u5*KRAN*vlI%rJ4HctYnR44x0+&WRy=Wf;2WEjlph zVz?G?EXbGkY>2MUjRtCioRo-!?s;IhIyF}lM~4c?b>c^V%q!*EfK*~mtYVB@ejw{(GXGtKC<_h<`rgGGS58Gqeb#Pzq_Kyps|^ z8Auh8OlAqdq66H|;j$LkLC#cpMZDzTm&T#i(+vCf<8TalmQW-cZ{njbu#H(ykF^t{}@9O+7& zyq94A>PGF`E1Ba&(&=SrHPc%2N1cLf3uD2`JPu-f{Lj8dr{tbD<{D4eu7}47f8ywM zgX}~eldt?Rmm0U3ii@@00K>+wlvu>PB35z%e|foj6sgC^CQ3KmCp@tmA=#tkp3PRq zM!rOgd;}(?ioAKOr+J(lkwBfC_dOn|KRfPC@q(aucZIH#V1PV~5p^@b`y0bdjSEF0 zO4pRmxS5(c6zN$0?uc!)X3&>N{$jBGOsu{*r;5`-;T;=}%a%HZJ07D3zfP)_Bz0dx z*{X-}jFO=z4ISx3oh#rv@L<%(WY9YyzK5_NP*>(C+_UEJ5fF3^+#6J;uofr}rOEwH zvb`EVO3?G}Stg?`J4x=qX+2Fp6}RpuRjWBv2mfjKlLeri9{)#3tccWB&%|+iUB(1m zf7W`I&6d;QfE>~|fW3849-nalu9SB#7u8Xawg367d#xx;CGHI{7VRr$NH+!Dz|`XW z! zkbC9SCDnI_saHb-zc<{ABdm4zEc=wefBK`LqZdvWO0FcXlszq>BzYxgdK$>roTt-@ z8O&*mj+#OGvvSYMa${kGKuoDbX2tZ7Bv-&dl2p)&29tZ871V)I+4zHTKdIWc;$@W z60jhhGoEcO4QbN@UIS-CExV}bMr(EB7)EPSTCX+`3|5Q3vO=+1_N%tTa@(YgbUYC} zJX4?^=z!D?I^%r9z_CK%RkwMiCzYg{{)JX#?%rk5MRkyfi;$fVE&SfafKgAi;Mz0! z%ot9VCJD^`Wt&VX+p_WUA%YE=3EC;}stYJC@!6iWH3RLEy>ZdKb8DH2+MW-G`w`9b z0nPkl!!1KIU8e0`9}D>D!re?A-+UXJ7K!u1yXD2W!O(#jpGHTYSc5>jCXwee;RgXO z0tI%NPIs(dx(V?NlCHQcZ%{3T-|a^gGmgUorM$}gZTa6&kWT@*^b)ROum4H>s2tnf zzahh-RknD(I*gJstZjsYiTjH*hkt&Sk)oNq(MYa~TgV3PLdZ1k#{nn8lV>u~_#sO~ zKPBU=Rc;Us0Nq+e30a802zQ!nzrI1Cd?MiW>m;_>*5m0dCq;o@({8# z&MT9=`y6-5TN7SVYTcU06a!tGF{`~(vvIq67QoFLa5uf$fog*BrNDs9!VVb`zIhp< zOPx<~+<07&NIS_%Det20jfK6>H;^ zcmrosVmCQ!vVIu#0mf#}CYN@R(BeL@Prke>a#0uGdN62k*;DtW9RoC-ClF zaps7KBhq#Ow}9=uVF|ab%Ja+6kGrdMHf91VgV%d1kycB)Q;s=bH6m4TuaxgH-`+#e zP#rqN)un@NT{91JD~A|~xCQCWf0Xg;zw#n&|4Q0J;1dIPaYK%vhTLl915ogW?<7HX zJW`r#!do?P__#KDtY3OnimLf;K%i64+opB-)weWwD^e{rk!y;x?)P$re0dj977!gM zk(aXDghF3W6r+{X(5PEaiC{?MVdJh8NzTe^nu!b7#5F|Jy`}!P0spV3o;eLSXw8Mb zk3sSA{q~hsr_+fAb`GLM7_Fg(JM$LuzmaqC7Iwh{hKh&mme>>`pEcmpO<6U%{_7@BG1+~gsBCVcR?C#m_ua+UFTv0n{+*1nYH zn+`wZJx^~=eP z@!)~H}SMKS$Ev2nnUp#3`_qX&LDD)f@zD9ZB%pfebrn9`SzT9x-lV8u&82t1R zw667TSK}AJy*wbgkU`&@F!`T(ae0PsGl|Bg@%1lzU*=Vt3K|mvEwrh9K>Xgguo5M&z31*P* zKyfBL4QM0sc#Kw_$E8a-=yC`9r)lwx{cb@?-gdVHdukmG4u&{BMYT%W#yi-nHZcH*8^9DZnbMAKcJ zvk*)(`$m#r(5m>uzV(fi`Cd|9 zg+JjC(NEz(6KA-QfmY_ThYHwE$wwJSy1D2Yk8*1VDV-C-+eghFCFnz6mu&x+?d#l2 znZ^J&Kr1mzkq8Xi}8k%&5i zEL|;>;fgQHYjWXxv&{@djjGj zf}26EL2-x7z}YRX3p_axFjZ1E08f{U!`zNmYuA7;R!pZ=l>0w4>Un(5i1A{n{cznaZQ5?iHisIXdEk3q!{4@odl=g|=i!X(@-C`6 zv8pgm@5`*4AF>@9&2fkZt>9fF=z;GE#-FvfiEr70M)(fL-34zAZx47)-J8ymvU6R@ z?;#w$C4Ks3Om8;E-`jg=e|>kWf|jp`#LFbpLvVE^G^wP`%QR12n4c?^f3SzYHd2$u z7nx@6mbI30emkeCFLfXcks-Qb3MZIU8dfdHoNGgSnok$>1XmZYC#1% z8-sMi$5XcElLj=_;sdoApe!Gk3G4HzkllF?*LWx57CSoi0D9Hd@OU2yhMbK!${oKV zVq0N;=Lx0EaXF(YA;d%Eqg)c=C6lZ=CJ>A&Jkf7a`YSK_nXWn<=OtjV6y_JHsE_ToieE7!0V)zl7f8EoNN zwW9EH3Pw`~6PmnwF6eOcb*5{Rga4*6yy+@;1b6As{Y#cMA$5cb^QVLlFNBHwS2egJ zTL98~)4{8`SXz?r`;OjpxM9F2{=7N#=l3?Cup>g9H{4SE=N}?EK!jvWMwSuecl|&7 zpq$H5IT@>I7uNJOF78Fl0c@^i<%X4uVad!bZHiUnn?hR?w}7!p;<7$J9R*U3yIY_dpzW9_LK+<5$C!fEdIkXG_9or+b7crT7cU*Ui@V zv78dvR>#$CW}h*wRV#J?b>svv)`T$sSa|?EyRQ=tY}#A^-6QNxvzLL^75xVQH>8^g zcNR^%S?)JrDs-ec)=9De&0$0U7_~rJzN)!+|72zrFholz+6; z*F|QwpJjU65L&VM00ct3SgNz{ddxsATgD4hkIy$bYm3LZaZ@h`y9F-M5(Cs6bM<6* zTQ^O2ALpEQbCxOE`=vI|*wA;SKCpIDz}H~L!L|5grdV_YFw{EBKp_A(tl8u*Mb7}x zUhpA+2~Q+n)3g*W@%(KDgmkZfDd6F5ZvJZ<{uB;(e+njDWGMJFbev5GgKcgaWD`5l zYIJiEOZe-E|IlpHHkrNrL#1awE5m-ogSW?6PRM$*o4)>!KIoB)OW@n8-7d)mhMR)r zLEUt;)xXF3h()MI@-cQ-r14`0#ah?Z`>}8H7P)`leCY&&XofqQr6a>Qr7eS&X)WE$ z)nsxY8%4hj&D9OKtK#amNYDRQ&CXw@Gal;!dO)b#yWZY57()CO&Wxa@BU z$`hJ^iwn(dw|B5azMmM5@(4aE8*tyRdGP0yD@sG)Vl4~Ti4Orb`A4f-i)JT9N-~cA zNBNAcGv{*%5`*7YFN+x%%8-`b#Moa$_)9=0GoL3XmcHvQMgF4eWj4#WnM|0RrpH)X z@DyN9hdLdn0Ni8@P6y*$d@g@Ykf%go9gp#}<5L@OotH3mE;eLo;t5dx&Jk(|It{7NP@#u>XY1}m z2wdZo3Nlsw-#zAx%|_57N$7sx)&F*i|Ftmuw~tw~0?R)+;yeG}t@eLRF^e86_8R6B z-~LyR(a{3S4|~~$_t#C=e<;)c>Q(bwWWZkgAe&Ntw_E=)uD=WF{3LeyMUUvkf7cR! z9nt^iF4~0ydtE&`QG4%y^%zVMIE$5Uc02yt)&6~o|98}WU*!KgYQIV6{~fj8)!_df zwcm8i{~xT{GZn(X!%Vn|;lIP-f2waf(qQhg1}n=yK$QCtepC>>%&1DtKaGPs87_?e zT&3vgtGSJ4@`i4FECu#5(EoJU5zBIyA~n0N(N7PMC#wdIMaBQ~Suz}iwK)bkk&5M@ z?aya8E*jtQE)TfO@k@Edz3Q+79j1%y9AiC^#*Ggp-zO)M4b1$*l!}UeSNM~$9o?;1 zl<)SrEpAf|C>3o!)@qOL5F|hC5o@b#SrI8W+SbWMj(Gx5IH(Z-{Lj>C*DL;G!*Oum z^F#Kd`%~Ld%gc?!K|2SiRWQ_lFO)IR=hE0Ot6Yy493S|TwI6#WxCI!m@s3Y@^T$el z(v8}`@a|vcx8ptg9+n)?lGLvQ@B3ux>4b-jc!JjYw-fL8O7pV#Mbzfl+L;xiYOmEH zUih&o+&fPQ`Jb*tR>vv`(YTC_pQZo^+q(Z(7VM+~-~pb$T&wg8b8RWlqj#a0+X!SV z{4`eY8uC@R^ppL2ZvU~bCXaCeQdiDYfJHgKAGmJ}Up7ZYLn|NOf3Mo#@{QGXKLo?JO6+gd! zuWCv-=;%#hqw=pSJROm&dw>_?9vct|MNh_~ClB6n$~XjNAiDKxuKu=a4FiNIfYRvm z?enJN@5U386Ikj)prX;{J4}QVH=ISb=;(t%tE2yMiFxbHE(Bq02FMv7*3l!;)0g_~ zWf2`0M25>5_$Gx|DP`<%l;oP zDZ~GD(d2QMCKNg9wAGI`$k^9$qoVs$CV1}oKX$X18@90!0K=T;8@f31PFOB zA=4|ZyWqe75jbyvLkPfLQbZi!%w+Lm;iW!wV(K5~XZ|M^2znylW+==nVCVC;DZlUU zkdF!1E&>><@YoL#5nOWd|F=UjB#!j~W^f!K_$Mr{v>f<_{?-QJ*V};O0Lq{pGb9peFwrn|AWC2V7(xw8l>xQ zen~zSp063|Kf?aL6&T7C5VZSEJ-Itz_pK(7TL!l<1(?3hw6~u0KNeqn8SBvIt(fv3updI`M0<{@#9K&c3C#)qEkS?pBfLwIn2CCFiJYo>}JWp9PfG@`sYL$1hX>jk@d~ ztyc8ZOd2hSYX{Kvysw@{)c!V8Ghj4vsZb?gjfSpZH#$Gp$>!gS+JRwaLO8L%2fFu{ z^c%DtBro@yUmVoqt5i>Yd!gSMX@gHj4c!;cwe)Q}%x<^Q*RKMa8r6lVtmcoxS=?V@ z=hT&LKKf6G&KfH&hWoyIz*fg#MO0C;$@XvJP>LS`L;`*$j)ajXRT!Z;-aHzrV#H)EHb_$Sg)%3KQo%I>;4nu~# zQdhUS+uBwwNu{_4%d`L75mxqjP`^w{z(;Ic@d?G=hkERl-4esz&Bn9|ZzG~`!@IA) z^={QCKIR6xvRum=Z!8`A+;U|n!>P<@$0I%7{42|%>un@&C|x+B9bChr&!#zaKlup-%>EsF|ztKugdH; zPM!6s7Ci+?qIq%c(w-|XPni2G9bmR6IokqZ%Tv41KF{)S^gIp6qu)fJKe(gOsoX3F z(FJdnMuamwwaQG?TJQEzzX?Qb_*ijw{V@dJ8z#yzJ+b{k42Rv>lM{)l&2tExRBd7> zl|STj{)Ba}74AQHkd+-!YKNJ}b88Rvc?ax=EPlj80AUORy&CT)1OUv-C9;tf@5Ylz z!m9Y)$e8r2ni9sFK<7V(%fLXO5MhRPT5_sC6MXZ{<<(I%p~5Ac`|qKcZ?q}q(?s6` zkD?9u48RAG{j&@Qc%6T)-Cs)7{R0tU9_G{1Ffad)%ETsiUCCk@omN2N`Xf7<;fUbu zhKcJ=sLdTXB5XNB>0;8eFaVD6bhL8$YY$xU8N4w8r3gbXg7u?@U$fkl6ZADS#6vdfuv^%ZL4x0W`aA>e5Aa>Du}77Snj34VI*PF-Y|Pj4`X6SAQUP%1i8f+BPz1{mI$upL_3J8Y zIp~vVn=NN`7XZG8q^HCUh++f)@2DY2gZ!g%ln^+Rz(~9idS}@2Dq%wduiupB{V}DE z1g*QA5gonQFZ_x4>QH9+*A-$;tns28qtRpkr}h>C-WGSw<}%hSi;rU`v$0ch@M|*e zpMV9Ew4{IJ%~C-OsJmv_b%TF@UzQ8-BKvbTPn}hVE}n z|G7AaSi}130C0wOK*Ch&A%~g$;TI>wz&|_0{ZwtJ+C=Sryzh&0h{p4Sirt21jVBvY zjPAqJ5HvtyKXC9h9`f{TtPoT?19Vb1#fHw8e`yIIxXbU`*l+4u-37i_0`uiw92HWX z2Q71(8?~X9`T0F}>gS$qdIFuF{QUu5(}q9=>sfr#o2~IdsE=Ls`=xwg)-mPO-~>d;Dw&iY*gCM4pUK*s}ure>HQ6b;BU1& ztA#gsoUKuno0LI*Ql>V`{3Kxcr=%&&>tgNshvxD=Y>Z0$?@JFz#r2cQRJ3Ex+s#3H!K6Hl$dT}rVaQ1}@%~Uma# zu-$EDuBB@Qp3yY>h$zzrVCP^#``?Z*@M9s?WRFh!j!Wa#6Z}eSIMJ!{sAk!P^jSU5 z%uLHli#N<@pqsuJT0!`p`{z`6t9eLpD00R<9jWr+#@vAxmMzArJvSZbr|h;0C=_W+ z)mpzJ^RDWbL7Xq8w14ovdIzT#bB}B?UTb|5-r(K1K+kCE8o0{aujHezCmB0kT^2BZ zkO0dyhMdj>@iid<_b(tttZhHGUkZLUv>ed38lZm;@G{T6m<0%Z+SSh(&nICi;Il-q z5tair&?DE5ojn5w;R}d%Ybp$Uv0q|jx-LNb=G&mur{emy;$l@bI;1pUg)$d|ChR|f$qBoPApXKbGDCKjYdIWH^DA27`a zHydB{kdUrnviaQDYou=30)xLJBDKx!b=F~`UITF4#EmN~%9JJZk7xVFva z0rwTX6ZrRr{5%xaHTkU5&H7zZ*?ZQ_6ljx@stf-!b77JO2mrD01}(X`D^`Wh z;q6?9@5lM_K!FS2ji9^*&|uI!7+r{Y>Oa}V;FF2_vEvA69~#gPMVDi|$K^*n8YaBp z3PnfH38XE?ed$ghnvBnG(xX4G@!C^doVa0pTI&O`sWO4vFF0k^l}j`hM3Y+-+JOTd z*^v`wg*A?Rz(Io6NT!ZQNLL=ODS@Azbuywl$BV~bH~a)+RxvFZmqIwR+BTcpob*PG zko_2!5T0MfbtDv;vXxk0v7Z#xL0THu3|Wu3V9r2RgU_q=zR17(87b^-%UU7%R-WEi z5Z?+JuC0=B4YdPgpbjL7)=Ea}0AuPRqaXB7=!nMJ4@Q+BPF%bA=kt8kR%CJ{)h6v7 zHP1I!xRkn8LPl}h!AJ7onn0LuAdG8D!oK2+6`-;|z{VQRfE;B#XoPcw$49K>UiLe) zJ+eh8Djq=7nwWL)$8xT{KHLy?7bOu2WjV#+Up^yEQ%^(3@@O6e!(Ba56bg-D+SsQ%Rtihb!#B*0g>ll0i!x(O!#@I<) zH|{iTeh>K3n5!4JB*`&7hca!9lY-4$44Gjxi)yIS`{xlMR0?1qPH;ZK`B8e|7*I&A z-kv3tKg3ry%@9rF5wA;=ey$f_124pO@4i=)k7^wP$waru1O%@s#&Zkb;6I4-R4qDs zC(`jWNzE<3ih^sFAxTQ{-<|;05?CGx4xCQJfcq=VT_525L zFvGvyMU&VuKdO2{y}A$Sgq{pv{P-{lTx*Ebid2awXC-dfA#%F*^ktjOh;JfYdj)Ax|Pe1$9@2XX388N!t_JW_)El9Vs@1vKb5{W%+yYp zHD7r_`slk{J9nIT0WZ~u0AM94cFz9zetsH)6U5r<2zBe}z#N z^UP0Qm>a@Ne}ej2S@ucuqxZ5i-P-*9zgOqfN&|S=tmWX`1!(VW<;{VyyGOqxw+^~E zjmP)}wbH$&$UMLI>20C(^4$`nw3lBZKtJmtoAoIMEsHn%qs>u^k>i^ zIH8^*B|?LV=2sGKX5KkZT0q=*x|IXu_%Vl1s0dd424ri?3rC7J(-3Trxu%7_pRA4? zZiww&S2;KH9@i_$*P)$)U&`*ZXR6R9MwY41f-q;p<^7)L_lzceuT%st`3b50SN(U3|WOAX1 zu!7XZ*O3)zJ3dyKc0$#3!A0>NPR&bAJ;j{Eq3F4lD(B5$l2c7?E_yOU^M3|1G%f=o zQ}{OX!xMa0U))7kD{d>p9L3tV->@cCq+lh|z=K*;vrmJkxA62j<+){BHBBZ(F2$1^ z+1>70{F2K_mor;MJGk+?_q%uTlRpQectpFq!%!LnDyH4x1t2R8GvieqvdqYBwH8zyVi@^RvzMkC)K&8{m0OK_7ENq{!d)ovi?ChnFj3+ndt8B8uP#*!I#0D z9<4(fCK@JRR|Ry;1!a!E+KLMD+uRxU4GNDOJtN_xYChhmk7l2|_)|FD0PS+*atnPU zI8nu7hsLCQ_(O%)wv6`$Qq0xV)eokWN(%>yQC_#7e?lR3gFu^21bqDdsK({+;n~%< zo7)$?GN}Q)O;>IAshWt(yL{qT%)-SZG&)M)Gr~qj>zt59PW|gwK6cxSK`vII5X+rL z9<`;5!&aci;UJha&?3n2Gdd3B!T;W*{I*?w;vO1{M9jC%F`Lj<)B!){;F-DIWlmUj zfD$5Rbtu~y{?5jmePu5G>rL^3im8A%4-H&xM zG0;Ia0#`%49oEQ)-S2aW$JxJKkOgXpz^!c;gX+=*KfAH*{ZiqmLAc3N6t)Me$en#` z702u_CnX`-9WpI)Ldy`cYBlQ8kSk-5E3a_ai@Jy;M1$ic$wmmB#oL1K-DeL?Q5jLu zzUXnNm3Nolllw97&1S%Js`?&{ujQ3`U-`MJ!){v8iJl#0_yJ*sEz`4)*(Xk^*75WG z7`fx~@5E5^r& zUQF&Ej}Kh*tPe+ZSVlSK{@p(VpfV@c#ibm*smF%P8TGs&mO3#lRy?}n;8;pC;bLGI zHL!>y7i`So!OUXJ6^!V7O!ZD{m1yNR$S^*?98@AS>4k4iG2k!D;@`24@{x z*|Il|nuXCcmKZB&(^5uIuJS>r|Mm@Nz_-Mln(y+@=R&WX&Z^Y%!M*n` zR!^t$=@)$$%{E>(8)i&SfX_HFPh$H$NRE%_ZK5QQIi7)}xzV$LBg)fx@~0jM#0Hw( zs@Dn$vvhyqL*bpXnTdwog90wMQcvhoPQT398s`jYQ~bd?LpVw2hsKzK4wa^-Kq$@A z?Qj)(v074QwL@?BnH6CV;e>%nlgTI>#k`>Pyt;3>-N7pmE&8;ZNn>A2R%V6;5ndbj zVQf$$F~Vw zJkjG{F!5Mfxbtf8t0SwvAI zls2y2oEGGsp}AN<&Lxqf+&fRT_Q}7&qDUi$gH^z43TStt1=g{9?1)MSYO*BXkcmjF z5H{kMnxTO><7vPk{1C7sdZ$lc^~%eL)&p(L?;-zyjK6#=z`8e>0P%(v3iI|v z5uJp$G`AE{JtdRfV-Ydk0V|fm;9(4rXLs}kpkO>>MF#N#t<=?8!ex+O_3DIEB8xE%Y>h$M$UJwwX=x>?c>H{&9O>V<|KyV-t0 z7A}PTJ(}u9JFj8;1uEE6Qc2i5${(9)koJE`VnZY1DS2(SFR9Qjd(GPfoDQ7TUS6^D z!y}5-{q9?oh5`ck^4ADC)|kmGv^-pK8CYn07A~_8zPxs0*~|GYvqrhI_u?2XO&g|z z0OWr2UaWmMb!1vZ#o8OvpfyQ*UrH__!x-wm52}4Rg(XR!uleCz-)1kcI#fuuhz@pQ zDiJmdQ`m4mV7l~{?nvz1lIcq)zFJLqLzH3f^9d5$ysLe8mR7R$qSHE6be9c7Bqxcu z$ORUHtJ{G)@njE;3uHnbvPNYjS0$CBuN8&^^_5P0Yw7?espR@u`|}%@+4hqUKCX2W z*3Kcn*OztP-EDrtnlrWgvr>kKg3E<+9rLF#{WEs9EDLPW@@RtcmhWkG#d9 zMJDxNBj&tgraP;?d?T2}9 zsguN6Sj9g*l#Y#vi1c!3Kb_>j^HAODUUjD?PdtdI9ox;t975aL95wwnSRqQ?Y-{nU z>I0=WljG(v+=73E^xP}4u{W&B>v)e10Pe+n)HsjxZLtoL#Zy8k@3`^oEOwGg5=jKH zFd<&;G~1K%XjtJSy1e-o5w&*17KaMqu!FO`3L24FEp`0qx5MhdN5ZXp@H|#8%buHV zw2Q?{tqE_643W=3=V1cN446Q_QpGx$g{M;8ydhW2rh8^)jOAe8db3otp12-er|u-j zhSmCmY!tOQTlSt!m{i@CaWCp5uPo3A2b&C}XsuhV)w=!D_j`nO7=A^!-COXx>$@W&;%t?n9=9r)J0Dky zEHaaRjqE)&a#q_?d_Ex$34vMJfLyH9^gG-9SKo*&$51Of!!7_f4cfw>8mL4U5gAV| z66qDm73UCfUqNaI}K-MGqc>uA$_nF7Ul3HAV*ZF@U&Xrt^ z!QtVio#1{|2B_=Vf)_%fO0wDDovOu7$&6Iv>KTxg+aI6V^*etZz=F`erCCXKm6c@b z7S~q-KjWkTL4*@1@@3jNJp!~tGaKCm&InLLxP;&2GBUA^a~NkQu5e~Z?C8Vej$3V* zZu4MHBTD8|SQ9#xf-SGbtc6!op2lc7aNO#=1oTU|iG!=SwK%HKO-}Qg5+;0?yr1x4 zOkRXQ4+m4H<#jd|8Y`AQ$j3C|~rhtZm5;mlGR}ZNJ*;&Y^!B==U5)NTkY%^Y%T_Nl|EB z#!qVIG=tXkYe%mm@d)6Z=t#}LMXtV2+5Q{X@X$7k*0|PGQ*`Fjwl*AKr*d`l++IpO zuiH#zd;4Nezeqgfz_Z>9ZpN^4-v)vB9rwKk5K!VI_xN30n5Kn3X8#hrl#b1eC5KgU zF<3y(R*;dyR^IRDD0~}S$ynKNH@-t@U;spkf3mJ@r1_KLK_s#Noguu)Fz`U7vy}*N zBbh>qg4o(h1$?Xnu4RCBE8y#>wWtKDtGSvHaIU;J#a%5AT;@*2Mt089bI;O`J=RlHZEg1Qk0O9iiHydQFE; zcP|i}snF@Or3(FVfn3TpfgnD*8PDyVLn} z^Fxb1fyr&kYJ=7dy%LgTY-3WS){xw1?dIfwG`MM{&bk|eEv&jOo)*fD5a=YcVi!Z^ z&rz~j;xb){n18MZNxKyGyo>NjgzZ*;FTVLTT)dbsFFhV+&W9{r{Z4j7#zJ(pp^{UV zB4W>1?iLQ|{law(O_|x2!=Gt->7@y5BNYG;y^#g?fXESO#uZmTQxCW-fGtER4<>rc z%wgZTKHkM-BMRf3V_qa@YJ#jr0{5woi#IQgLcB!<1z>FYLX(_YEc2b$xL^YIms9b5 z@fClC1Fj3u2;lOwX0hDyl*TC~=Q?Yae2lj5e$dvXra;+|ZjpMx`-a#3ea=7_r~MNP zV?C8io7=$M1joJ!MpUq2j5_?Iz{zR&9fy>ale>4iIi34Z9lX%i7AUOkSv>vc73-X) z8FT=|K0X2I{SPHd7Cb5k*yHuJLPwh5>CETi6o;46Pg767bU#5!TT$)vda!WwM8-#U zM%D{fO32xsN2W)DW1lN!sb6zr7@;(;4msIo);$<2_lex~cgaXgn9Nj{xf~%AxN6r< z#aQi_lssCiI-uT+|5`>|f)pDi_rl>9%7xN=13@c@1oBc^*EzEB)o{HIRK(^1(fdZ-j83 zc%y-2b@2J!y4}CB6&2W^(ydn)w84}Qfu9znKDS4Ez-8G9(j6H(*_%lad3}Sn9uta5D*Tb=qnTYco zTK^$Ui!S`TGkL^KljdjnIg~LKKQ!H603kYsm{$?h4{5TD-Fx#GOS?PAQ(xID zD33iGdx0-o-Ce5}+Y%D{yzkPz`OEBSaLgkA#p3M|za?6DgFrATtnNqnpzSv@wXbHK ztew=0tlQr-DDiN}aFVO8i-N2DO&MNpxK?$(UO2~M;!BBes%jlYr+dd08Oa#RUN40f~m+3yd>v|9eGG*&~f^! zWY5ZE(VXFS^*1GBIQN&L}jx(PT zIa9Jmw)@|FZcs#i9PuNvpPVL=vY0bCX*^+Un&Ug?+)usBIY~gt8e?-$Dk^($v|8aI ztM0Qtot!F@_Cwjc6H1Fnk;lB*mhV~_`ZCq&(|4naCE9}0;l>}8P5MCBI9+aPQf?vU zb9{txo^4aFc*V4WlEH%IXEQgr{2ywfxZiv;!#@xD% zS4O!KTHq_&M%uusq?v?R+^y*1Xz;I4lgDR5LYTQxlN=47{I3g?u-wh;qTF-0w|zwi zbgW8#WAy2V$GB6N%9Vn`S{`1R`|PTglskm_llYQ7V=f^#H~Iyt_{rl%&ze1D7Cx)t zPVM;OJ~SjuA+sU+atc<&y`9tYttXT)S(@IK;uA5{n<-7Gg5KZKoD;(&t5)<1A`B8YU^3$Lq9u<-Hbz2BI{=9&I>| zzEppc;FqWeL$K;rZM>$wVJ5aKt>v)nMSACPZ109L1Kkr0IA9gcu9v*C`|;tcti)g@ zuBebG6~`Nb#1U81R)%JBSKOKmR-1Py>|}|eJQVjOskPLK?p(Rzp#bZ+R-i4gS)U{0 zi@2xm>s|Drj54SCyOa00gk89u0pcL=v}ITEh@+Dg4#TU(MT~#$#iJMJO8+4$(td+*Xb} z?c#~G7H!-hMcMpEE=7sE&!Z~XvMMgqwc&?A`(bX+E5onW+@LGA)m{7%W5=8WJ59G^ z|4uMWFzh4Ey{J0>BVztX+x1y7{$$yf$rA4cU#@H+w`xLhE_p9OHC?AkPs- z^Z{K@kaXr(#^Gnhnky68^7)T^?<}J-j%*ed=&dP8r&K4{^jJb+hi;uK>Cz=gfCc|DDk@a%+tN-ZhoF1 zi&vlWM%&&}c*#9srWR9V@4f}GB)jpb=ay|gwlHpA@&l0|rvd|h+)uWjq_W1HZ@1G% zR|9(j&z7xcP>WV9_w5(suNqkq3RAzB?=(Ec3$5suSc%Xk5~d_@@nAHb6x4)}pIz3x znSA=W!1G4?jKfY^G~v$YtS}r$AoTiGw}5WfS%%`(bNoLy2m7OtJg_ac zDW8HLGI`-oIX-l7cM-XDFYDd)*D|WdEKgawt+@DKi#ON~W~4oQSOkxg zqad6xe@Yij%X@d->Tacg-ZiC}o+5?3dTc7A@|*ao1EXBVd1BgNgQO7G8v=^8peN&2 zX^XO$HyISY&(oqt@W1|eXvNk*z?YVt0IGlYNPRs)l`oP-y4P>bmlSkr;Wr;lU^Ts# zz{XbaL`F@`8UE7j7^KImK-BPAXjS{f<`OnFzJsBOAuHJn9!@Y-E?o)W~=UyYc5(!`LdH^YbqP zl6evadl%st{sLF zzwSwcc%%`(WL2QAf=B2^5|KP9Ag{1=Q-;W`NBh*d!5Q!lsR^u9gt+#j)gKh;zP+AL zxrs-N)S$6e-nw7v=%)K=OF=3vTbvpUJv9`&rrw{*AAg@}^&8_&$jK2Nhn&MX(gA`bIr|a1OdQ9s^D#Ri$$g`ZM0^TlH~+V6)-&Ec zbuIgX65gdriKtbRm40D1BK}jp3=cXTnxpm&F0p(B-EnVMfDo1CcV_NLejz=m`%I+` zb+8}KqpBu>UNWEu+<^xlO~&cv4wF#jD{o%Zk<(#sC>Z)jI&+a!Wkx)~U5t+U@~M^j zC1KbVWKTpWbHoKX>rN|TZc@zLS>eUwSQTB8Pg)909ee$uT5_UP!Oy$J$t_q^fS7uU?%Yuz26dkx(%7ZC#yeR-$s zbZ9GYt&P=*7i>?!Z!1l4vci}{W8o)BLvQXxYFirU@DIh>NRO;BV^G>$I(Ap=6;+4A zHm7LL1Qj6$b9XdvbX{;*(~#p4VoD5%_ZnIx;L+l#wY)#Q(;qo>jJ>W?B3cpUkfP>C zn$OP7S9HrOe>49O3%_>@oa)+x6+tq` z47I?}$sc_ZskBQ8+;uXIyPu<1HXo@*afa^7-#uBXP|1BbiK2ygljd-e3wHhp9lY1( zQ%!_vcz*q{_lI(Q@u~3=_$>2SS^xH_@gJ)JE4dGyo^b3?`7`q9O-;N>ZX%&ctKCB@2?c(pu#(b4S}QkT|_qeyaNpL_)YNa@1xeWV~<+tMj) zsfqR|t){lxs}KMyfiys_JYp*jP&58Ho}LslH5CME#65I5EEJR1xBh!yXYFd&|bY zl_r8EtP!4$%>Rcws2DJ+ES*I%qFp86w_pi zmIB#5uPilL27#5n^a=)S}HzOz{H`*3MwS-ZHrhGA}K`iJUzj3DDgg;jDlLXw~TiK!37OG zS(SvB1d119{5amXHFlk0@TIi;4mLd}t&Zm846MP6Z{War#a4rN@pe&ErkLbe&Q9I{Acag<~bS>tSh@ zSg$_c%N5G@2aJm^*9D(QuUf~G5OE%!UDfkk!M3j-TS7%|j2XPOj^`HHyqOz$GIFw# zQN8HI=?HSqT#`MoW^hgDx80ri>xW{REN+Nwq0TkBB3(&qor|1lXm-;J1$I&qq;RD3 z&V}bqnkz4pc?w#ZBJ`tWcbeDQOsxu6OJwn2O2>c}(d302=NRb_C*^-QqBW*9q74I?-ONgbUr|xr zT^jOufseo^G)9MJ&cvUI?=pUwDHea0HIQ}J`YCmS!6wgT#ovknK*Ne$7$sU@xbiG` zQo?7C<-YVEnjHVGFZrCZbsgR-2J6*PI=R-6;rFyz@VT#&%_^l9YdOX8Yj43`C8g7A zqLE%Pvpl2IQk5TXCg)#&G0-*Sjx6%8EKfkMU*5OM;H=1&o{Goh*LC^((IBl&A)78 zVoF0`R@5ferYD$)G^uR#v=EeXjyjX?r=<+isxPoGJ388OV^<v-Ol$&U9gG3p%!hz~UJ;z+-PP~8UGOXiXW%A9^+AyaB)4${-=VXPZ)zt$vD{nIF+9w8+=vOs$<;Oe+0#5=$ z(9L{YxGZYUlPfGaAkzQ(twb)Vcs-iky=wJjuAQ(IUDA|8=3#myVgCr+Mz4~XA1Vkt zEJb$>PdXN$4>0=CBgyw0Q9>!0NZK$v!6RYXUCkO=>Xh6&4lz4TA$25VFv|ACe>8q* zNt#KxcPo-Ivw2ROzyA(-6=9CxY}ZlTc%ckyrWls!`5^LPx7ORSp*uzGx;+Qm3%%A5 zn2Ba3|6I7&Yr!RnalS?_M4zC8@kNnQqiya}Udl_)slDm>tAwX>sD~2NL<2$EREUby zkNtLRo&*!Owcy)yuIR*5r_sdySs!0A0})Hc{riYSO`yXeSLPO=Lmp`H1h@ zGon#tj!GIQ4OqB_Q?y@(AXAYf8Cc{=Ns1KFj*-5Re)VQ{jJx(%YM!IKqpVfaB0neD0h>)2g;0H*{YK4CW zZ5Q}K23LM`xnW%kq^`NAj$U&Z#HT-#xqG>lR6uFxPXDKEDJq)ixHDy6EvznYpF zshX=E$*j|zB^QK!zf6t(*Rfj>bSl#-yL#K+HVb*fTPf}OHf|kBo&B}%2CiiZ&LX9T zOTtx77Jn)6Zn)jZ>|HOOAoXted*FM)=g}&!Q$~uv_V1kFbi4QQK@Fqz@YZ?DlAzJX z+lwd0$MUGPgkZd7YRca>Uaw}9S;B};It!k&S-h)La+WOc*+C{~Lrka>Nz^BLC3syR z&F5xu(Q4zjl#Lt3U-FOe=LpT880+w5o8R5YU3~p?e%I$(e|%k%OKN6DduDrE2wUk= zv2ICkUk0JKPW)j`<(+dp34*d4*M3Zn4(KjOZKhOCdyjgIo79WH65brHD?WF+&Csfnz2^0<;iOTjA z&rDbsC&>~FlwmU;|Hgq(NT_y<)Ct|yCMmB+rkBqL^ZPu;TlNeF97@RP2fZp3txcH2Rxi(=)Q`>YI`NbSm^uOHpo1G?gf`SHB1im_ zQ#>oH9h}iu$3u>@$$4_w>hX+xrbrpa;OAy_`a}U z*Gy59QdZ5^`_dMMF=G0^B6I^S+nLtM$;>YAp#-LE>%udN7Gxjd0eMf9;kB+@kA?*r za-9hV@|Bst4ZfmFyR&*HuX$8;jN!BOwX1T$pC&v{z09!NeY2ie*M9r}X|Kc9bZo~~ zFq3X7I>2FHBY=IPDNI$*#YBKP2==ne&mY z`+(oeo3P3J1)YD=5N)P0EzvY2-JWc?2^}ob{2}L25sS8IeX{f$O{NS*{qI<1qo`Pq zN80h~M!Qr#RS~re_6oqrc^}AJ@@ZkjY^O_+iuh|tuiziuJ-VP^c%vNy2yujGrKd5( z&Ov*-K4`k#b8szVa)DtuTKM&CCZ{M9?O)js;VO)HE!!fXo#lMM&>AQ?-q-(!m(0Qg zB|^m}S0zJCiKKmHaOzaoO#KC4G%h{#`IR!Y1Z8N{T57m2*8-1otUxYzqaHj3=HR2i%I7D`I`1gH zxeS(BKmupij%EHBHT8-ASCJZG7`fp;Qe+kx{vVrgTH5@DHqSyMa~{#Tuz}a9?yYE2 zVhvlpI@pfieaRzrT6#^{*fo^>}aT91%hYiY-1`Ub^(l zdHs})6>%chUhU0WwcM;^1L6M=^HX}DXPsFGM~Cp}gv41sGkdUkgN7Xw@cn(&S|<^( zlyRHKERY?2ps*q@G!%{hWfiF4x(#X{VXMUy)gxy3zZ>JcIS_MHhswO*XfvLXQ^`x? zG0vda=rK$-Au@UzW$xU!z+}JTK|5dJC zELcTF(@hu9Bo=I5WOYi>_g|WTfFZvWd{c(uS&kvs6Uabbbz{4EzzdtX0&2%SZR{~2 zLUa-X62Gw|(d9l+A4*RGZ&|B&ES0JD2oQdOQ9wNP-(5p2GP?>ESx6iphR(~Ttya`; zuDACu;eI+LwLFmK3<%pgH_5w-8o27j<9943>7SQ%ye(EPww)rihP z+~(&I|4ASzuoD^HnuD7K4I=0ir$-v}iQ0gxF5PkYM0rqTT%otW^7TRknp8tlKNP6I zdf-J|s^G*QFIBLW!gkXkacFb9bYQF3VP_$^)}Ew+{>=h4qFM-}RR^Si3sVMG`E48_ zZdX2)`dvr+O_?l6*S){IeFC^m4Y=J^-P3d8fP!{%K+DNBuNm$a zA@IL^d2kS!=qFDNxYohbh0s{G`~ypvnStGt*H@Vs0)eLoTfTXgn&e>{Y zB|>Ldos#zL^%*^b<<8TAP zu!005e-)C3+-l|DQv8R9a}b9U@jJj4(n^bb;os+Hphp55;6_%X-4y)64`{^y zgGesqe~S><)IZ?Up)`L^@O#J7(ctAXo{vtGIp%_=Zt;}E`#cKx5IJP))R~4Z1BTy( z%-YG9lePyI0hs|fVPTtJ8DfqMlAnT)4-cFb$PXkn-z-N{ff8VPAeF#k^A0+Fgp(-v zZo)^GMMS3Ia#Bgb&c^di+8>#o9bD|9bIV!qQ&_!0?jpCC9&$xr%dU)cV?v$Y%dKxO-*BcI411`)lvTVsvOS$C_=60iX1?SFN zwNproWOxncJOIKp4Euh6I|m??B$1RzZ_Dhi zlJ$LytM$Oz2LTZrrCWUpB$RA#XF6$e>*1nEwMwvOoeeTzW(wuAz&5{+y3iy3W>cG# zV8ku)Yy@Ku(#qRP+ZB)*etJ+Iyygt=3TO{cUcFjL^JsiE8WlWKh??roM0pN;D5rY8 z`e!LK6pRh13Sc9qkfj!uxOW4DUAE}@rNnE@8C#qRvXnV*5X7c8&!xWE zABRComjcVomEhiUeqK|xGvJl*N#K#2%OCs4r3*ueq!dSgm-$c=X=mA1K5%WInC(?l z!5>LT)+M@;D=#soaILJjCBRy#19

    1Ry%~1vT7c^zq=yzT(b<{mQ162}H82kp+aM z>#OCEjQ-bH{(Fe)usFRxM9HTH(lU6c(D={cfB6!2$Z>OL4$;VnJS0f5(LTHwQRb!9#JM7~_$oz%2$8V8KVZ@*X*iZ?H1h*X7k?t}#TMy2V} z@<(gYP?w*a%@lCG1bUPz~{;pB#MCV#415WCv8>vEriwd#iRMRd#lr$=qj<_DLOp z&K;c%(2=1~0iyu9YmyjQ;I2PFmU&FvZe8FyoGcBY@sdKkfj0Nr_b)4LOg62D>}+>I zf@aT`)&r$jk&NAn^Kzhk*3ukF(Q@We4#N>@twbe`s*!33UH{LIXAASCU53h04((V} z@XiV{Ao~WWQ-#v8155Kue4!1jLH2di_qWU?GZFFCF1>vu-mu=II0?=`!x^$+F6X~u zE4|D26nh%6Luijl;ni(#s!A_8{3tS>t|@#cquOONtSX1eX6bk#ebn%lw?nd=+XBM1M0TiFP-NI z1;O-5-o47lMXhQ@yYp0k;GGTUvy>X_M@B)Lm-2omqxgBY9v}=TzfU8mi`_V(i4S%h zZXH12#i*|R5u;yDc0nJU(>Lq4;@>ynvS87*dh^)(lK*NOQ<2?#nyCs|Ug+*+7wtmn zq}AyTT{p@QY#vz|!-e_$EQNJ0Jq^CwMmG^X^0V1$JoX%*Iuu|n16dqMoI6#4cz&_b zyaeg233$;GrQus5i?q};pyMBbHn8+w0TUYEWr&ww+~?u_RGel)E|}}j!`T*&J=%%| zul^F_df!Jy{2oij+WixWzY2_hnAAxG79Ttf`gXo5xfyChWL3s244rS*639Qm@{F^j zg#~I-2)cZ32^HgnZqkhhHAk#7XG+b54ew4`{#^sgDgw?ccK}B_0Eu;Ais)rU#~3&= z6ScS^MKYM)iR9hEiXLsny?JmcTB=v+K?WnSK##ekLN7>#mG0#_91QYzvmo7Ql@YO+ zojyb6nDY-=FfxdmO^!AtS8~ zD`mb#H!jSB@UdjjQ}mBz_;3>}`uklAAU8bmRByBg4jXx-k`XSTNa+>1pr0PDvRMAW zo{`y}@?)jy_nm1^ASIR-v8jFfF?LpudsV)Q5+^wLYv7rI&LdTV{pr0rb*5Qb5#8ph z-!@KS`96EHYtUL%Q6W)W?Z?N1>A+nucm2Q3=3V3HPQLUDP%(uHeID^i z@iYJ7qyVE_C3(qwo6jFvcwR;Kq9Tm5OQ2Z&qjHL8!hNGvnUI|&C zHGZa>T~0seF^7h2 z(``gwjP%Q-_Nm<-zouHN>bo#7BH&$M^Er~tTQ7u$RaVqpURP27rJ>vA#vnja{d5Pv zwB&dD$cYu$`u9+d@Rj_c&)y)`;K9XLaZ`t06B3@>eX4Xgv_OYG+RODc5OwBW60 zc*t0BzCCi&SfK$=)zz)H9?_?5LS!1Y-v^nGsZZz=QCoH8Tzwxf38XHO`LbgPcO4gf zwamL*<)Eo=F&r<7BUWP;&z?P7=&$wI4aVCZUZ=GpRY*%hL^jM@M!WIY@kOfVWF%89 zOU4MxGPq`x40KFPu2ZELS;R==3hO*(x^H@gA`3d}HF5UmTgM)Iw=@K-7yhIDY>ei3 z<=2UDnnK&~39V<=Hz;ka-`)zZ1xZ#^_VypA_{-9sg97KA0r zWZtfv(LL?sG$IOi^af<^4W{a;THhg%@j48g?^PBurdFY~h$NrDRL4yBqTo)k%Eq#hV2;xXp?@pr1^Tz!^?y zUc=_N*lP0d4d(ziw8~;+^HdqC?`A{w-Jg1EMgdIAL&Exb5D^Fgr_OMJUrIKq5^Es* zB(BUbNoCiGUe&!}wOuXwO&ca3W2w&N%w=mkqaLHCr=HHewe*&WN*Cvc8s@U~^i+Oh z;VKjTn2bBTsW>7zd}Xaqm$PjffPol&kioQO#~y!3JvB`qCDh7d;CoV@j2FJ-tvt+= z53r|mSH66_5e*vjH7pr(i;+y{V>D>IJzUT{nu+pBoT@5uhR6gQ$r-O04cENwwU^?$ zyu$#i!v0n_VlvC|Lo>d02T3zE0K6=lb~$Nb*R_c*>rvvRE4C4%RUZpHhcii<1yw1j zTY4Rr2EVU)6dbgY;50 zuT3$W6M8!P0JyqHC~)axs|nm(s5{4|!(AgtX*PEORC3)1@Pty-5_IdTd7eg)hOXf# zT|JEsFLjL=))0pU2s|cZ9lrX42L(q84%?Y&+-LEL)~1_fr* zWF!-2^$3O+OKNpW(CTrEgqM0Ej_V#xg5E2i^&aL z+jO{g*4lKH^k?{6X<I!e75IpGJQ8MUGJQmNXNNyX8A8rB6iFq+)}D42x?D=MW-1r&w39cv41tc#Ow zgW!T4x=;bG!@Y47#7@sr&yeuKM;Sv3Y|aII%&5rd9S6uYC${FQ2<{jy^$h_Z$(gXp zxDTp5aI|rUf1B@|)kbV(#IYNc>T_0eCQjDK`}jsJi#x?H`UC{{e2!yJqLahmt^`8r zWIXu^*tQM0j--MigK*?7yHmRUy1_l+7pt6kp^U!wn9heNQ!1_(8lVwBbn?t9PW0BC~U z`pm0UDarRJMu4rk%>!fURz(()h6?yCjWTcquRO<9w<|d@RYxI4W0bI)Ak83h9 zMtfJ28__2)h$k&mFqa{xqthu(Gf^m&ai|>KK1??RVsK`|@O6Wx#KYY4oHoG>)S>1Q z#}btJDOI1`7aQMrJeakf{U7J*4%uV&w11hntZvm@>>qKNgoY>L{Uq65IjM(o_ylqnrvY3`uq^3XY%sg2> zT0eYxayjoBb5x$MK2l{d6=mBU`|k3P%b&O}S?wN_lglW0fLaeZRA<64N*SKKoNi8b zxaaX~E-RH9>v4BVm;moqZAZT51wJFC7iJOjQ3g8b(;Bvqzwa(OFuQ0mV|Ar2^9l4#%-yRHiLDJ;eg*N-7V+~@2k#}evk*w4D zI{fXrXWX^8j10!2k>Sh~ynWC`g~$#0tDndG6U!xM;-1eJM03Oq-~Y%uMSCUymrdJP zuRvRhWMaPXVytaP4ms{EzD(ZxZ13!jGocQ(*UfL&)W^&`XnOh!-fy{%6geVl1-Hcr}`YaC_jTrVz!)g5w4z6?P zId7Q0x05-VUze2^-;ll`Uc;<@f>ivh#n6&T3*%%B|5G z1TySGC~Zv7=pIpGxq#+*Kv_+6Xm7}6pHMoycUd06S|rw0-^&M>2{x|U=u#i7>98-JTznPJ?xbFL^yT|X-}d2_s+;jG6Q$nu&i(8A zT`BM;^-#8`zymz$7yna40bJK_YZgbybSt_hL=m_4A_EC{C`5fIY^2zl$gWr@Paqn2!L0NFF7n z{N+R1Wa*vUxIlpV8%*dQ^1xlMFXU&Uv)R#d$z}xXKCwTq!Is13=gvX=KHcqxx6aKUJmLoSA-cc;M%*|7@ zR7suH_+g&*fYUhRHd^4O#nNT% zU}jKK#VmTp8;dDdC=;wMVcX{BN=b-1Ba%@vqoBpUtL0R9&A@?oD4ARLAsA~N<#Sf1 zz2g4F;apwF(r(ocLbcr-s1t$#nzOeyL;vG9LH@caj`?kImEd|=j2CmzZZRSnuy!_S z-VKg!#gj+%UFOW5TwP8aJt-+tLO$iBId@^skgwLxndc033w-dojsIjM&QsT(15>MY zfrnCiz6tL$eD10?dtBVaSZ}RM&6h8;dAifIf%Gg4DOdxvbzwdH+im9$d~0@KpaXl; zZIn=lwJbCv;&2h_BPDbfnb@b{x34xg@uRk#;KXsQghx zyD*H~;PlCdWW0z&6cJouuF_%Q-rf9U`eP4#=KC$($~Xl0cL{jd5t;-1$%p#J7I(^i z8%z%v>S)S`C;{z!ML5oTC!}L6O{M4xJR=ju1bH;~=TWs_gvtCdDb+miBJq9i@ezLM z(t@L0la&Ak{+xuR$`Zab~tMwOKjrs`5?C@%Sa9#8Lt`3MS#0H74}~IceJVI0reHA zWR^i?Hx4SK_JQ9)Tc7X3ryHoG&1+wz4+myijbvCu$4)Ps|A2dcapHF!Uw-YWP6=;htU`FLawSuZV~pTEm+M zC1k!Dv((=Y@g*vfTBneM1*soAcLu$r{ain&Q160i2Pu*}>!k6a(E@(dLFrt99A zP(O9=#z~mB6rGhD%+y0W2FdvxD@#f9xl!xc((Ti$yxpos$9snMyz7OIU_14X_!nu5 zk7RD?lx$S2Sp2DGHbSOb{PNoypi^l9N*MR+CFMC!pVr~0RD^xZKJM|J?a}ckA2Y3p zp8H)Ug_DXWsebqG&Mpi?VBpb4C`zSUvTo!cB*8}I-o4kTz~WmM^%WjM8_{{H=ma9D z@6LiwdcsB3z_2`t54PX!x^Yn`{->aVBXKg`RjidxgoB%-PnL*0BMBwOT}MzEEI?8` zzXY;t8VaUkt}?pjjI2fQ=_b4u-*fWkM^a*pk^EBPTk7D>La7^Xs!OU3aE(& z5IXh6gkz#XBCDev#%2+Tq9_Q5;{rxlsHbV#1-_rM2C=#fbH>Pt1o8;$(-! z$wljvQ^k9uweL717<$P>f*m5D(yHYXKexK+L`8ds)x~?yR9JEdm81xGUpq?kc_d#8 z7;f6tCDAIMxlZ>N{23Kf6K40ocqgc${ROouLsfpknub%LrVhbmw9mZ} z=)Id|P8LoRMuicM!5+Q;6d$*7*XElDODZjwko>o%!!)gNhUgPKBa#VS>U07|F~owB z6{y+dlE~-L2D(}bw5MqO@e>ixW11SY{E#!8U50d}lJF^7Hy*5+!mV=Y9tp-)E+hSP z{6)%mCh^3Ov{&u2zPNOhsRW0J0Cz6e2U>KZeI>Fe)tt;Os#dNe zcd8g59!v*)AWT$sTrJ9pTQ7yVV~qCNf-lHfnDpQ7Z|+=&jY9r3w=-o~Muh!E%T+`t z>!H+Xg1eq;i>qd`j}AW%R&`!&+RjRf((v*k6xswNlxaM;)SGylA8Tl>Tga-wa$8^n z59Y7tZ1k54yLL{RDl^ESx^-an%%k)nX|DduPq%f#5&FSSUN7()P{5DDNnJ9j`!aLO zfrztRH0*=2kqICFTCP?TU`kDEj^fpJu9Rf16gYcI{yEEHgHN$`VxY?FTrm6ePt3EC z3Eao~)O8ggS$a?b<+6;F^bKI(Umzp&Nu&@KktbxhyJZiPP-BUUK=(ub)Nz1Bh~fHl zvbXjUG6>%pQ9#@WE8xjUCq5EV94=b!=+|u7ddfRSzLegt{_}K_s=Ju5@em6?{&AGc zn>gwg#D%i?JaQehXY)z~E+SdeGts~Z8nF5r-w4lvreEf6#hJy(VQC63jRVwLM&laoP^>&U9q7X?LJQ}sE}-&aSFkdD6xxDs#pp!J$5gyS z@fR4U=yf3R*IU^Lk5F_eDBWbUnD(}v&(D5*_XJs-HXUNyuDm&08w_*em=su}DgZlD zsroue+po7rnUlG>>+>_C_yr|%1K9yQL%aXa*z5krwwgJ}okSM8WCPBhW6n5{k*^%I zrS$;LLmmdhIEB}RA=UZ$!tVFrl2OaHX#2ZTl$tS8xI|hB+Do*7a;b3g*L3z|Gu*9o zL=WJ^f(94vh)vW*OO%95m`ThR#vhAwu(Nh74Dich^`w#FTYu{n2ipncHs?$f2I@>$F; zBAtw|%*qM!uTO&s!`SOkb7i2DBXF*u>cY!RxnUWXq1FgBBz(?!QvoD3@x_0KEC_T^ zA5r6_3zX$R)s}$_x3vaZKGYDGE0>yWcY&i!&~P4zd@G8+&J`sQUF0WPr_$l5)NbX{ z6uB9IVuL%H+R0`q_&VQ})8Is6P)AFa22#yqjif8vlv+a^eM-7T+oKPWr9?_xA&A>k zFl6I{wFu&2q4c$x^OCP=Z#l&`(z?KXov464wK-TOgkX3*oqLPk zzjK>2g4b0dzlVpW*GjdZBbZ5^9(e#iOFPO`Pp89K!$)LH6+)JSb(HtH=g6mVi6@0d zO!%Q`A-hF1fl$YoK;@Q@Pjvh&+tQusSi#(ww^h~eSjht88O7puK>(~D=w#|-R$3;f z@0IOPE{rlRi0o6jSn?uGQ1@w^#A{WCbe#A$-1_ARGu`@~S6|j=qtichjG!d>-IhQA zhqdaqGk|`FsbyjC?sRql&6EF|rjUxqusU9~Bht`P!>Ji@_hWWa@0Xz7(^|(*q>9k2 zb_EfcJB-zNt!Ai@M$k~2l1j(0!+`tJF4n)ujXg1D$ceU}QqiIvotOyh)c zOJhPWCmBf^xX|roe=ef=Y&dw6)`r$;PMl2NbD|L~AN%!nHc+}d{>B=n2v6GU{m*6n z(?>2=cEi0cL2+JP<9m{jv3*niErgq5b}Q*`Hb1xj2a1n?Iq$H8t!l~kA@tGzB>e*3Z1!T&ouC8G{$2NkG%!&VwNj!zz`tgAVFjp`C(PLdX3_nIC$Y;kK@Q-f!phwKpf3mv;63NyYXIP4Mhw2*Rn^ra@d$>OYdhr; zBMp_ZgZaHbLp>R*H+GghC$`Qg3xf0_SK1B0>3(*;e}(f-5M0oTMfXR!`Mi@rC=W=5 z)Bef8;W1!eCr1P6wIXPa>S~Wxpr&b$-ZLHE#Pwba%?lz6xGLjiyIXls8}urqTqA$)`J#JUT%KR0ei8 z;V)5+Kt%axtp*T<91z8zy4ytZ9t`rBRiHwQ#HB!RgWINg9E``Tk+g0*7D-1vO@VUrQf^B( z^q&wMnwnT3O1=ZwcmgUC#a-}A4d90wr7J+OTjgeO4u!&(KXj(pt$lbQaSPiUqr=9M z!JtP{9)~W7 zdVQqnRH0bd%!3GYcqmvwWw<@=`@`Umn|5u!$0O!no0eWZzE9~BxhB?E;BvvBvX~BG zfm4q)yv|fR4G>puqcy^=?;GT?tf${(g2|IAP&W8~aclra0D+?t{&@;v@70czHhlg3 z#C%)h$5}8vY56qJ7boGMbNurL;y?UE;3L7?&dvqggONi6IvA$m(!ZUEp9bM3=p+fh zemOk>s_k6E!hTy3kqp@bN&yve;bw>2qUcwABR*54}mi_ zFFD5_SOgRqAz0~Ep@0OK0dy2Hrgy^oH4uOxfjJSTdpW@c?F7&my>i4a@W3K!7oj%x zr+zsUne+{Cu9>w*R}UOGzX7Om#?_^q#{k`T6+CaUy9E6Q5>J5Q|61w2GXS3jfeL?P zwf33FIS5#_OaCYbQ0iaY;jhl}ul-deAhH4M4pN z^X>#>*RzsXeFf!U_2k7(S^N=o4f~MLvav1N@A$*j9&g{ zz`jBDQmQ|;{x|*S7{Ma%nm=emocN!!2Kggk6^5XYoSZ-Y>n8(~&w&lzewltw(V3?2!v=bYLO9!F%j%k2Yu9fjcscNsmYR06TH0qarxr;49q_y+Sfot#q!na@2@pbWODp(KE%Nuv@_&{jS$np4Fk^r@ z=}-8*n|=}eH*eI`fz1->)KCCWPOjI`P67ki4t6EYY{5>*8|qAqi5^0Bk3xC*KeGe` z2ws~@WJ4Q#aKyU~XbvO| zT_5kuI~`ag{~xeH23vSe7>osye_s6P?E^#uo*jH~AuHuH^lm&<|Nei5cDXR`Au&~S zf6tF;hOFlfzhBrvn&?1ppKF#A1+Lf(dZn{`4)(x{l6k?2uhdvlTM&gn06v@kTJZy0 zh2~}R&F9BO_w*r4Pz0##On(NNjNE@{vmCHP2)2sphvNIulB-h(cajEn;=D#Q0^w@^ z#BB%XD>|Y13TA8iXg-W6;7)p^g(u~~HJHH~BGYAxm%wR$c3oYjwhl(wdJ{I_lwXX2 z%qu{)R#P{$70;AJEs4BhR_mgff-;fF?vwBnc0{QENP1GZ)WGKRa=HT)2*b09V{Gpim10P+zm z0c%)Z4iE7sTR}{E;zNCKtfdngT9CILeMy82-oBKr$P-53QPep+f`SjjK7+85;HPUUVu*X z3N1ni@_HrKeu82^y!R|6MBc4NKWQHIy&B!p!N%ER>938uvK4u5e2(ED;~$Y?Ic0^q zRWBITd5&7PRlCEF_G*KK=)q7Ah{>HeFv>yWvGq*5!}IIn6qiKnl(1PoC)SA_d-p9v zC5XChZ~lXaIJTsAb>v;>F`1&Cxw)l9WFzp(waibIiahbw8m(y+5e^|+FS z-|0T4$T+*-9%1U?IEhfpox!lu$)SLgG9rTs&JrvD;rn-DuHo?|5AE%#6wxPoo3^;&#c|+<&eKjaUZ3a@^J%qg4zuJh& z23nrJe#CWR1tdkZmBx@g-+{)T_C)>)AZ86n6S`66YWo|Y0m8Qyr|^6PAMly1Mi@2t z{O@Q*FMk5E2f-K@T&_+D%S6CkpwAe0$lM#7ofr5ktiK@*uS-8bcvNfgyzm=p)6gc_ ztgQAsa>$^4QJ(u%ec1uQ7#C(2+K6gqE#Ke8)*zR8{#2J2BV;ZL?^Ug*sfmMgF7V5F z?Dt-3$Dw};;1TD+1x*q0pVL8lqXGq-y(w@10-h003P75SZHP#?Fi^f>1N)h8fb6n$ z>Of+FX9b`0)jU%d1rF@4pOXw4C+dJ8l66AVkWKq#$)s^$OT>q31IT?dG6(X*bJ1boVtrJ@4U_V!*Xfh*!&_@>l-yiU4VBpkdEfJ~JEewD9uv z5T6+mJdr<0H_`h0Qa!FBK(`A%c9JMjVEim$(Ll%OArIIrUQPF}D(eDL`p_d(!CWjv zd-APMS9f2VsvemFzp1FZv(iEXC5-PCoG3-Jzk&vBi$n(-T@jcZ#!PtkcqeXmuwS*7 zTWzIlf$nJ3No0F7s?!&`^YMmFGr)N=d9#(-dENE# zt;e$j9kz%Ba4k>_R~=0ewZIMaaN;)027j+Q&|qv9zLVV#QKAVK>8Z5`e&U_RCU{j_ z+U3txwtSlgyKgYDIc!5?RqIM-sS zRywZ1)jZW|ntW=&#ScO;4WL_6;g7G>0!UCjE;TGtf+r3R4Ud1Fdls*@eZFEf(VEC{`J`p#j&8}r*@#yE}>B7AE94bQo?VPr=q-I zipx+?Or6<&b$ndw+X4_jYLA9h9m^UgbILMaUtdBy7>D2lptMFy0E!m ze^?IlvtZe*y*!f+YIk($H}vzHV0h2aw{DLjL2Xj*l*qGV zQX3-e+|jY?UsBvQK}kr5`|xVGQH6Jpydd#1TmgdSKxO_F@N1qD;D=2aCU4(zcdoz> z42h;k4cB&=D~$I&-eA6`Z>zt3dw6U6(NjiE_^>%yoZj&5;o2qdbIuQzX6HvYy5vVM z1Su6hh%<1z=kZl)`_a;!rQYo6vxN^}S0_P#p5ocJB@YJx(0{yZobg~uM$mmis^;kVG=Zql)}TUO zvDn_%DWN9YwrHN+%|)is(`e^sn^yJ5A8NC*&C7)JxV&{yR2cux^8TtH`)s`e0BA9A z_x?>?FjJ6QX^`>N`2zX3yv3mb^Q#^BjrT#zZCLU9jS&3wk*Xq?k|DBcHb1X$!QY%Q z%h`xd&;;8|WKX8UStjfCu2?^9O5VWAAx0y(NzEIWD9gclfN%#B6-J~G5bvhLWh;d; z1v{MmR|PHVRvel?PUQu?gW^v}KC#=CToj^Oca6s}Yoz-B6S+0qs?pc0z$>QPkGbqj8;(L~o~)Kqb!Yu`M|_T|Z<8 zpfZ!72}aJVgN=FH10m2Wte#0k0Z_TnsY|-g9IRjPMV@L?c5<8Zb_$&H+Q7JP&ELsu zZ%U3l-}#Wu$;Rf|H($!pS%n!L2BAt9k3@y6iye7jm$>-6zgawn2TD#p4EnkUKtr#l zcQaC|{e~fM4$&dlH02B{rAl7N)|tJV+m~{DPf4$L=PD~^Iny!%5cT5~Fm0)8_i@a- zHz6ZSCy9eSK@aIctLroiaO(*exbw#@aM{Vmyw@#-+A>W&b$azyJz{?B@mA(b+3*KX zo#^_aPmIP0kg~lfZ5S*}9?SD>8F4f_rz;A6yhN zErYyQHv@3*N#6t?obUj^ii|+bS3!T72W7U<@L_##nd@n1w8+~yMH@0U7QOw(`y;nY-DQ z)@_E{9QW&K1!Ubu>16>dP(Fyq?OYy=tp&Tl@2ZGJN>u#ofhwNlFrG z5;uCN|3AjwI;yI!?H*RjL&KrFk&y205ReiO=@gKbkj_JQiU>%E9zu{%Lb^p-5hOjJ zQc_Auerx;Oq0jq`_xJwc7!DLTd+l}gobx)q<3d>m3weq|c4cKNcs0#qyE`QsT@D}n zKg0x?XLV2iOIu)-31mew7)Hf!MYysYYx2v1W?|R|uanJ&7&Ur-)?Yk>4Js*Lmloi%3cO{Y%!TS>h>Q9v(cUfh63zVmq+%H1c!=|I#$~JYw7Mu6J`F;T+Ljsm! zD_#j)l6VFVhG7)pw;eCe&n^#dPiXQb&CoT|nULpx;;wFi^Isb$XMbjAps|@c7jrxQ zlh7U?S7k;^BhY_BhC(>8yH=b`ss6-fF}wo``V4x*NQBXY`szI#+~oGQ3x&pK#lf!r ztK3Zw#=og;L zee#A+GXgveTZ_{qzO65>1_{~eQ;IrYrxe_58Oi4B$SQ(XB{A~xObjB|C;avx)FxDyTw2^M!>oD(kl zkeoRQpUWY`-m6#56ml8U1G{T0mWW%6rmp9y<^{OYL|(ehH@^Uo{G8h_f#!N+7WG#K4B{bK3>y`$pNYEwn4}|j z<~hk6}ND08>Ak_(PCw+Xr(Y+SWbdQ&_(dIfVJ4lMKM-kpiqMp zjo7fzsM>e=%xBAcA6s>OB&T?5K;cB!QY8G6`hSj5zqIUYU)znDz(7E5z# zlxjzOq%U!yRg_;(5Px)Mo-;4N2sZAUilngz`wXyZQaP<<-PNN_-0p4BzBsP-02n;wR-7bmCz(~P zoFtfVIgl{#`z)rVK^dOT+jnpm!g;@cHr4}6lw}=n1$nj_RTiKE7CJ^c!-P4G<=eaW zlytx3eO89=BiDm_$!-B6W3;FWLr%E<1mh;W{^Xh587Ij5aXp>IUb(Sw5}qZrIRd@P zSHVhel^9scQhe3vS=HHl`~WTCIf{~EMM_GY;IsSPiB>nnwZ4J7-BO5zDxWtlWrW8oscN_9k)RlK( z;vZzZtChoFvT6V{dhbR^Kq^I@8XN!@}rV4Zt@?|zk^ySJgzL_mAg|@0=U=RR? zu_XjA9mk82CmvMPw=@PyxWo*H1Yi&_>IK5>rA=>qV=r|sW%$;+hkBfbnq57aiMj>~ zj{)B7{nprStert|Epaq+qLwQ+S5a`0P}GgDS+G}Ns-!QPD$eSg3lmTpRehqy z5G-s&(*H!+&@&xp{PidKR9f}WRZEvZwZd*6-xvF4ftv|!;<9C|D>7%NnqYX@JNU|- zBFfsq!cL`hME)4+m;C37a=<`1!Mv^hEG-anxb28wIY`o&e^S>!wh`bkf6-qcjx+}? zW8Sy9CLyc{%*j|NAK<3en}jhv1ya+dImEy-^D9d@5gaS#74`^I8NA^ad0D$jbBC=b zKQk$6M}fZ&D%q){8n1NvfjYHj9;6#DUmnAwnO<3SBM_^RM;VD4Fvj}GwO9=uj4lGQ z{DGw|ehiA*o>)7CB3{=3f;f(67s#IHH32Dfn^_2CI!B(|Hu1`1C|tgNeO;c_#$|7q zyVHU8G^pSFQTNPi(I~<;I$dHHldeyk|C5sNKU+Ry$sIs5kjAb3?7%qf6p*`pj)vVs zNC0Y-vRZLbBiuT!g9xDz*UsQ*V}SK+eGJr-^db^&p9}5+6f{SoB7nIQ7|5zUP!v+) z?j}OqK|~|;;uxu29G%^rG^VJg7`$s5mMpp+ z^qpANEZ9tWSBV6PctKlXDn5VT)||)%;(QIO?4?|ebzLJ;B~s#`yP>-uTQf#amIIr4 z4b`k4DDZ`@2zE{D6DVMfN7aA@246X}v^@ZnLdWKbmgtNcvgjVkQ?{=$HR~Ya;6pG@ z)4sIvXx%+ftn}}8?sehvCHAp}#PtKx{sHK&ja-WITqi`P}P2vNoq;#Jv^+y+x z)!YGCpjO8>rhi}aU(qK#8F;7l*!ag_1d_fOd52iOM1AH~IWprF&4!~Er8fUS;dWs~ zB9#z3Eg;y^nXfy@u!iZa-ETiJ7v?%UXlTdBki6w^1>!Ok$rRZFU^a!4rG}aakfkR# ztt;~MBn-d4h9J>)oD>$I1+RC8d@^b54ZmPfaB--$xT4&$3G>5pensnI#Rs;U5^!<> zB?0X=_czntK<~mh4Ldmb2kT0y#@BbxbO-?l!o0A{;I7#4^Jmq+6Ba15$en;Bi*oh9 z&3g$TP{Qee`_%&%n!OS}@C7MbO)~*AKH<9Efq@hejN`#jq?9W4Al1s*YL(tEYF1w^ z#N?j~`Z4^x7=}g3MMz8;=9jVqG2wgUV*$g9i-MTaJ^d%vO~N~cpt~Zbs;0_@fsc0i zN*$5wGxTwMC891ZL18vxUaEAWX(B~qAq>&J*v>c&Js3|8BEZIANoog5jJ!yT>1G=Q z7_?LX)G>pSZ+4tG@jfV`^y*R4y8|pK7&+y7i zV``y(^D5L5uA<7?$4Sz#H~;x{l;%02d}7s-)x9WK5A$^$x(w#s9!cg|$stt4w_%{N1~!Wmsec^eS@4a&>c*AmCmWKE6OUfO3?dsuk=w9;Zc& zL)o+dG8-WpZIQ{vwVThFmJ+X#lLqU%q2ke|>1bGStC}DZ3qSsPo};CsX-?|cD_EPu zs=JG`T9#*oKq05#l~)1X!u{c2qnxnm5>M^|lKZ5_*vY?5&2#X+1{ZTBmTaIQM5Ise zr|*03boxJuCSH@?c{V71{YBAt?eavWr$hqQT?oe+a^7+YX+RBE! zLFsE;W1}*pZfh!+3>B<}TqI=mL>>SxpBDXmonJujG7c))7kkKrGI>?Z@SEZ%CwGG- z>e`XUX#I~tqn|p1h#Zk-S&1G)Wgh?;;J+cMlOU}wA9*(90O~{k{YO&w%Xe5?F=ene zac^L3;^wo^Ihs3KvRV}R?9lU|Cq-|_+`T#mNZ2%yYsB%`mU#WUL$eW5vvY8 z(1I9U1*ea-_MY?OU1KBsOftu-B?99FfG>Ein!X5-bhczZZMFvf%>3QJA+jhfGZR$` zaOq9bX3*Mp<|tbgC|>7O7*qpyDh693G^qS~6WIz*(fET`$S^8uQ^mG2= zsxMHNA2LeCvcyT|nDD2ky7r*&u{|(@H+)@Jc<`{Leq5EU_JIFPHyFm0$oL~c9uE~% zF5R<{&ZZdv7yv@J8H8O|B5>01G%M*gSq41tzp`P7Vo+%q+ltz}l{f~<1vJYmWx3?D zlQKIU=qSL;i#5y{VAN7A1v)uumtzi^9&DqLrNK1Hg)GZ?)0(2OoyLn*K;BJs0f`$3 zkvZ|%i!syMgmqu)J*=?+gNuN)KX+buLqMp0vs2-o&$I<{4K5$y7io_}S09^{aV;^0 ztCAE(h)jBnwX0J)I}Mx!?MsE`d*2)GBsbFtG9bmhXD*Ub5%4 zIB%9P?59%hpvmMgxK;`0{E4P=$)`u3HH;|242=?H9P`XUl0=B8mW$?=@4-7mKB>S> zi;6&*)}t38`+>b!{y!t9RUF{0-FedTH2q9lKA9Yh^q%ysf9i13tC00Ixs3!s^V>|% z8v<#mdI-*_2X_X|ehA($YY&mhH6!xTFSD^|F6&eJK%5omm&SYG+n%KH<{E+@*Y=f^ z5(m>jcGqX6Y;xxga@Pu@=Yybtp_NdrWo_gqU>8y*ktH_c=hZ8XEi8sdvnJEY28m;J z;Y?W%-@d7#>m{2eIKa;evZUGRH2Z;|ca2WY5+nT>y-hGa%5;9lBw;Qlf?9hzEoiyh zi~HLPMJ|Fp9bjCA*>}z09nyd!-QsWj<*!2KJ_H&WF_XTl!uB})6sAih?PR$sfbo^o zn{SVJ4%wPU^f z%+|cj;i;|{{PouQN>bfOPmruf$xno4n!>msk8bt$A0`9Yj&X-LXh*<#H-M;msD~;C9^2}sg?A=87&eXahY$J z(gCJSt)F1Ri@2=8zx^^UaH_+6p3WsG*@5 z?X?}p5KY&E?dOTFjD1k5Rw<7m;s5<}s$QHYOuQTZj>0e&rlDJH{#sPpSE`N>74ah- z87+?%T9r?27`LkAOL^EO4R{nHHnfRquCA^E19*1Q1(+kYcq1&7F-;_}dz4Y)k2gFC zY;SJHo+u2IXpl}855T}bFBkY(tUeyRo8cP$2K#9l(qh2FU7twU;B=4&gTuPon~{T|8OY`CSEmj z={K^plzZ}8&lB4mZ#dIyeAv$@2X~a9`PS{*w}VvujHs!pZBpmru#;J-5Y35%(0Q6hyD(aZ?$Y!UwiNHu%F_> z&aX2}QO=^?U!dPg(TIqh!lM4BDiwRSjXMl)PHr+dz2*v2#K~8wAtLU9%HnmRE_Aly zn=cuTJn_+%@gpeB_{o^=?b6*OC{`bQzub%wfwhE{_cMQ8(=O2Zy#fb{vU3iG5c&|d z@idxJi9t)>iGB#1geq+d8x`ry@`Rs0cw#?etc!9e-^z_LMf`DFUdD&VC*jz(%vD4z zqsynl?ue^BPf$O!z4}(`0}r=yCa1^8iR<1_)6gs*nf=e_1s#MrNZ(7!YZs{stWGZa z(hMdwLFZ!GuGkEop%;Ivm1B{hh$NxOm1E4W@Or+zf+xWqd5hyJF3VTL6kzWNXN}iQ{AB+TTjPo_$$M z57h3na?bv70Z>aDLU*{dXq1U<2ZOaRFu**tSY2O_4^Qi02YR<1iOOi8HN;=bCWJFP zU3Yd0n1NJ2eD!=>u_b{;;ib`AQEM38={L}BWA8{mbs)$9OWxG^S>sY!)nCQ3_>JI9 zg4-AWWa?i6WiNz>-mT0M%AW%_GpV-C#a$JPkjj>YhHn(~+sK$0;dU5I1G-ePcf~RK z9SvG;H+opl&A5DidCD99n)uUCX0PPJ0E(>FL_`7|X-=jiuB?$lM_hIm%w%f1QwFvlo zJ$R}^8p2v?294K~+OfHKnYNxx^g7YJKvCJX7}VXEntAE`ZY@OPQvn9YgZX#wNRsJg zsH1WL)uX?5I`g#!00UgB(SGQ|>Kb)xRVB!WTg;w--nsav}!&_Qf5PQtZSPy zFS()K+1=-qUy#$k8r^p%%ZprB^!JYi%=hT?fkQ-3{TD79ejNaeCRoi3+{-vXHcxH; z5n5>hC7*|p&t}zuZ+Uj!uLEgV{QUmKlW+gxXdE5hhr0}rbD;x*flt0`4(b|rz~ehT^e z_uoUg6@Z^UlKo<7qUGubq&aiLguFF?TIjF$z0%g!<^ixa9^kR{0+KeL4Gs=AJ`ON9 zpP$x#@c_e(q|yJ!9YCwnAjP|ag@qQ*88@+>lZl*Bd9$H-CxdOruIlV;^SSlg5BC*6 zc28PQ9^XKHEaiLp`0QWg6Lg#Vt{1j^8!ajdFmXiYijHvmA47NBsrLD5PYZ+a74K>= zvR6K{ZmF}AYK)GKmXFASj1rH4AR3@yFuAz(hH;hjRa8`v&!6K%)BQzUCw-fc#eyT= zmS9teQPFnL-aY8^sOy`ASDp6!@7be@vek^z#e17O^V;+$H!t7VQ9*Q+X;>*jNDWV_ z=m)J|F>`CD?0$OCcEbXn-8{&(<>U{tVnz9J#pQb%zt;Rjc(udpH7F{L(dhM%6&2js zGw0n`m%{!w(!T<+285e~o9Kfsqd_Co}zWoQ5U_ zHDxo!^QI;Vtmr3cGZeW1x*;g|#fLDNJG=(e?7~L+2fw5Epz8}kSOvecCM1gctQ&~m z`>cKhhONuKW-f0gXJ)9g`7G%nZPG?_3e!HOuS8$Ie6b$MlNcY$^i+SX$w&dd`CjK% z;eQ=ggen_DL<`VAw$T)?uP#wbQQh3wTYIN>vefXvB7hTXGGnYY+Sw9nSI#`R9^n7H zVEGP!Y;$r8oct4M{&P+oc)*KLi8Bva=^lecGs_`s!NI}dh2;}~tEpsaYHHjb66^<7 z`*eZ5Wj0oJlD^-J=WYfAD}u0HRI2qA7~df$D|e9m=jww@XxTw&>$(4e3@9Wh!oT_e zI1|#pDEJHj1OSKUq#TKiZKeoLW{{(g#E`8Q;7Xol)y0F-m2NHxwLe~`l^{6UOlv~{ zE~x(K>rJ5OeqVMIz2C3w?EGZAyVm~glEqgr-*-6zI5b=D`}boY67}U3NN17zR@D%H zu{m4nFB(S8eY-z?a$!C2Wn7#4qd&F;=po>W-U%qTaBn`zpj#t44e$hpyrE32f zjr{V5GvJW24vts+4_jMX^-dHoa>2C5(akM+wyh{o&;B$?Yyno?ejWg9J*k-@>j3~0 z5=Uxif+~Z$;d&t@)Dw(0yqEmPmFlpAkVM_(HU?dOdw{@)Q9Ec6wA(v2F#!)#|4NC) z){_gm|A@tq6CNYefW!Iw-9RIz1U#U_Yi)@4!rmt-j{E1)?m@q(Rpc?p{lr}kCrbkY zwUg$Mvw+In_aNl?@C~W^`1t4@cD2+)oW+d~&lB364RSdu)}*(fjUBD9pJ2DcUlSqd zu^GcppxgngDklY*to;7{`ySVYnVFelVr;!TAZ+WUcD_KA#er@pP(IYPu%HjEE7r&Q zNW7M|yNmW&qE=a}g z43@;a1pvsLub|rjqKyd&>iqgV|FNH6Z-fXkajPC==HTsHw{FE892~p=GJ%d}OMZe} zJSO!VZuny2;*`)df}8&afB`ao*2S7-54VA+q?AT)B!2H+%A;if_F?Ip#`0cIovS(p ziBDO)tCDEMfQ5s+LGNUyJ@g_~&k5W~y^~@zlB|C40NsuTiYK+j`ks|9>+lpx(sjcB zcv`SE1ZpgHI_oVzRnctI8@RCWP9S(TH0$jnzYtM>azn0Q9UjuA& z*vpqMQD6d=5Ki<1xQ&?X?Cc$|y($L4eWGtZ)5ffQ3#y?mz#WHtfMBBIE$q+GYJiY$ zbP#0=x-@?|Ialz4Gy>0lw44B!_-pylLW}>nH=-@-z~|d^4G_b>UB{l8m8CLYQC-cq zZn0`PDt8g|zU}Ks{-YHh@mCmqpnW!xqxVtokDr?=uK)oC!bkuFw?xf0Pr{4+PBPPn zJaJFvzHcAvlt51=N5bolJW?X`JV=dn}wmVJPO1C!u|dI@t*%n3<5lR7S>JN`Gi7!@wfnVbacJL;=4zm zK3TnQgS4!D_{ur0jX}9EeP1<9^%U0)gN1;~pDK<~I-qz8jOTbFbwaP7dRU;9!o0@qQ}!EF=^< zsU^65q77e;S7qEvj>U-&Yb=KA9t1Bc5G{s`46O-c#FsDJ4cuD!QBq#vHXpd<#r5+^ zLD1;-tK*lxxR`AMJ>XCfk3-KT@}%zb=E(+2(n|aBfB5qDff8tQDFXczrD}^-8=#cT zsSA3>Dciekk1*oHf9-q&JrHsWAO(749s-H}0{uKwJf-`Izgq|}miXL`MIacv1Fl9i zP{!ifF-?S+-+GoAk$m)Metf4C3ki}Tr+#}DYAN*3y-dwt`zBQtf}(sp5Y=YV;6_*B zSM@$ETPhrgaBv3jolb%C?Y2#kA%~WoZ5g-x+t2-vRSs)^YQH#XwG0G-s(7u_r?bv*%fyyxHdD=Ku?cY(t9r3#HC7#OZGeOU`ka#Yw`kEd{CHa^&T+R@UV_jQ zTQyOXEd>7a7wHp=KSNHc4jNV#wftj4`+;20*@=dkwwzS~}ax0t!K^=T;lN!I!70Pr#5FX_UJTY`{)k;>hNc59E9G__kxQc3mM!WP(yV77D#QBW?#A5UiECD$nOTmv1SY|Qp!R? zvgR+o$4Qqzs;yBZ4>DKq%{Dn~{eQCUGMT~clo;YtC~a5>;3iji0%A>!MQcFR{>D@c z$Q2P(LU)vJdjT|l?ES34J5!c;K}`!w&VUt7s3UvTIrSzwO{gYIfcv;5^6uL1WO22QdF+8kuSNJ4;l77(y$*CEe zD7Z_KOhTZ2O=*w|ZmE@J1U)pU+P=U3{!O7iLFK&21@vv91hjuPhUz4DZ!#58m5qi@^7E2#INb|ED!-tG2UGOMhn-lEmFgD1@U*L3!8r39e8|FB71=t#XB(d`-{S zfGZ5!8}|P^Fkl?Ep4<(PxDUV}_wd8RpTv<|jfMbWvIQU|8lye|IBfzD*poY-LesA? z(b*elz4E{`1%}dX|7>({y4&L>0cIq1i<=3Dr zUh`ld(+=Q@^;1jSv&)eQ^lgM3JE+ZU^5sHh%^E$JATrlbt_b&->zn_>CuR>KPuTLX z1lCOm3Q#;?Hn@=RF+y?+=)8~7#|Dgc`KT5|rM_749F$ThIV(2L;dw%|ZB zkyjwrz6iZIH%6pE679|2Yw$$}hVuepCw)o)u7=E&5=bTg-%MT3b4fWLxSnwVCtxQi z5Gzoh-(-xtqZ(Ih5r@rwyEfmhC7)1(1sC3ybL1oc`_t1pWa+~1Vd-TchJkVm`Xsna zV_-SXSlP{I94?OGNlz3$;n7Qr?`_RXRVlyS&D`PzL?2*=6yFN|7L@txn#%JdKR;l! z#8^$voCEoWX=iCWwg9C2(#)54*_ureJx8FURuv%~;OmVlS31UE>Y$pZ;8>8SYlct8({p&eb_f)5Y^1Nn*C zy8Va8xeV^qcd1l9w8pT{Z95jExCc8H(%T?ysRSmiwhgAV<|}O;HjULl*zT+I5%^I5 zo6*?I$K^-_9=J3H{k)fX4K!jCQeeNjREOI6l4RW)-Udq|qEGO+2RPi&)oQwiz}YK9 zwlbV;`{y%i#6h-_JKWWp4U$9UhNzRf^UXf_KQzu0rq;+qfMoA#TQaSL{(XUK1Kol9 zpduLwt_d6c-+vxn-Sxl?kQZTgsn2~#>d*_&>MUXPArg~zU>WGyT;!1C&;#l%Z#>u+ z)8$dXs0{qPmSX?3weO6;KTCg=SiI#Ag7j*uhh^inyj$Nb#9xp~9|L={wTizH2zZ%C)gBCDve{;#Y>`k~n~ z%~})!bwHbDc7V5y26-w1OcbVMESkMJaVXI=A&=A=u;0AJlK-H*qN3yl${;#R@Y3P) z2xjoM3ZMQrf!`jwb5u8c>G`run^3I~6T<`0I3-u2&`UgwNzJp|KDPpjDsd~tc|u|O z0(T0@dYKnHi1ZG2A%E0$fE=6wnds$Zuq>qu;tMRa26orj_S@*jso^|SN=3h%VPehV z#&P~M0bVgU;f#0)=~o3DZsnsA+kmbEQ^(=SPYO#MzLxrH2HsoLTjoa|Iikx|T~viE ze@~VQS+Nc3ok@;;Hz|+3%aCV_Gi?5G7Mb9%!ym!^xIYYAST5XkHUy8a<@Db3ivWqCrck}c z!|<4{j!vaV7d-`kuh#nIxa<`R1D_qdENHM@HSyo)>3#e8d+QLCCfkRBB>JHT(7@_o z;d#Nys(rSy<{qKhGP2y{wbBJ*S~u{KU7%Y>-K|xknuG&#HhiD}<`6A(oQ;7K)A8kP zJL2N_?GIGSXe*`mnF+D#T!>|({WsSrA$hgGwOiz`!&l8|beo+GwrAGKOdf${#1aR^ z(4&K^>g}bvHSULoNZqkG;x;q7XZEn=Rsi9)%C3Yc`S)SKGn)gu#jRI$Bk7YK)1{2T zFUh;Z))q7 zwLP)Mq{_0xFOD|6GeC=`0o*F?U;Y6Hbi1*I?hL^)uIh}S61TX*Pa*FjcTn(GOHFqK za#=sV1#SYv2CjoMZKs9}`%~*`GGewXw1yE}t*dNv6r=trHkNa@K&aibXsiYoJw|G) zkp+)-^?9Aiy#?u8-QaQWic87;wuzfD+y(fz!DxN|En8jA?iLn1B7v*gd9ggzPJu}; ziU8B4{JlMAYk$Z9b-D9YRgr0fn{@{ua02eC^;n?-)yS$ToP!qfvkttpasTnNg?W(6 zeD?9c1RN_3bU#=G+ZHl0R-@}d3^AT-#(x}z`^krvqOGFsWXb=YCBT^`FH``|7}PC* z%4yKOAO`;O(Y+jcO|)TE@Mh|Y_W#h`i3JDpQ>Bp@#2hi^ndOfnz zy43iYcK&)fux+2wG@-e#N!e4dN35X!^rh3gr&SX+GA$In zi~s+f2zddhm>#N|YOxhVW`=Kr43lyJtcTeFi;8;5>?(O}4JlPLH)Mm45gNRb43tTPq z+s&MyTNQ``f(ZoR3~@k9FqtlGwOpA4Tj8eV43Wh;@F=UG(c}nNb(MHAhamO~L$O~* zh5&33|J8V@h3@OO_W{=6z7l}Hf4TJ5oJQ-?RMg?GIR+42EIH}I98q2ULH9=6MXDoQl$dh7~Y>VKC7U zjn4r>3>IYi#dZ4YRXu~X?{TEMQNfyMm^Z);QqW0>{A)~@c@2DAHmR2uIRK4;4*o9D zac>HX#7cpF9<+y`Jp~IJpzS*zjB3}{<>Z;rTu4xJ!;CrkF6xfow|xaS3|t$uoL{0D zf45V0C!izp) zX}UBa_2=|wTa2=C75h-iY(EX^I5gM(YO|($h8rF;v4lY1VsB##M1v1JRqK(?Os?(c z$IdPpBQHG?EMKIl^R#j19R=8t^Ugjg&`|U^55eEL8%XNQQ{#Xl2T|# zxNXkBit+nX7*e(prY5pMmT11V4YD5*aj^K+FBiNVwL?Qg!z=>57b%U;EJJ>>N#=ny zc^K=bKYw_(w8W4UO*d*w6HaNEgER+LB5Ode4Y#7iv}M)hvKs^4bQ>TV!HN~S>S(A=15X$+ zCFO<_8^$(4og2`+=J>GD3TjKDd$7D$x1#d@@ba;6NHafRbR4)(iSTxem;zzyi46d23 z9BUxeUpkgO`V={BxDHAc&*_%_eLWX5mVy|5@`MSvP!L%|2Mh8CB)!huc(a_Q66Wm+ z6gWEKi(h{LjTxxH8UMW&pNs5E{qNFU;mlCJ7|UJ}6?0dYQ|(h_ZgHwG*t?bJ11KX< zdD^@($DB-{MOqwP2)|r$b7qKq%JQ`EYc}I=HlWR`~SNjl9S`sI+iz`^oNWdljkt<;Sc0W+c7Y+mmFuQ@yUb(!)M^S+=79n!M;p{XlOKOj-0Kk!@k`StqU5V+Wy&|2EEhugtQ8YrX>P?WS%WYxQ}{il$!EQDZ-B3rRj zF<(b22kz`W+{;ORvvRYv=Bd{`vo4bX!G&e<#Ip13zFygHk4@5^*}h*Cd$3|w(Gc=B zD(B?yLG2hRaIqqoDk)%}E-BP%>y?e{6*&J)a&(rWQM>dv!%*1-)6YkRa24*)Kv0CVx4c&P{A&PW7H~6IOeKHG zzgBgb0uiD@sEfshe)`Gmv51%ABPYq*Nl=3a4wLBge8})MF3Te?^240>UBx^|tirc_ zDHuZ?PJ5kTm)hnz=m8Z06t+*)snv3@5uyI|54$GtYl%r&(TR`9yg{v7j>|>dr~&80 zZrwYx{+1UxiU*uB9-XA{`LJiI?HqZE;$9M1+vuCE(S;SKvsJYvPONSmoZfGXTE-|1p2O}^0*UDw5g zda*iGU`9!gdnJ0gYhSk|CZqT@@p2EkfLNJ_vUmw-HmJ1sD87Z}Yt7ddD&(H|aY!nA zh7>GMrMGvPm#Rb$v4ykCj_z`_F^G%Pk~f4r0Tw9I#75{=ZKF(B?2JgP;t2da+ zKG&~~MQwD4mNLRy#IdH%fG|p51l0*1HN@Xeem6E;sIT8gH z!f!cmfQ+8g!Z!2?>>iH{^WEv`2L!r7e6QT*sc)t22Fo)uWu)?wb|JRqOO(FvuAZmkfvXeh85_3C+-+Q>!tXl7rF zQ(46+dN-D3ug(~$vG!=?pFswX3V3$Sv;%4I=9!=bb)fF1q-}R3sCw`+$=6W^=_g=v zb{+Y-X0D=MZVv{YNHSA%P|Z~_wglHx+;!iI^CJLyniu+vZR9vUF8bQKi(v_Nu{pd>YFGDoO|_#CUf zhb8J!7oQ#?Ul!m${3<`E>Km7VmY9H9l#uN>ebkR0|J_9eNSnsnYKX<_?fw&fvTD>L zpnOIZsewRJ;`SCR%f1F>)arWr$&yspd18Xs)38~vY>3*NA)Kv+F(mbq!7(qY|5G?& z(B{i2Xx6zbi_twDvn={Pn99J0eg5}ez*rFE5E*7|KlKZuG5Rc`)MQ3~ z5)VCZO|M5uEImDE8O0XX!%&?&kGZ6Xs8X&RvJoLwOq{fa5LXQYkxs!s6^LNFVWifO zI+|#uX#+1#Za+h)G!D*!S`cF-jG1_@DD_T?^mla#SYbZvHqy(*)1#BCgt)@pDUPKW zee@EZUV)O1@$zb=Uh(yf?&*nwiXqMDrN*5RT!Pi=2I3 zHH|8aw8q!_{Uzw(cL3Z1!ruv03WMerN3%HJRA&vg{d0>}$>@6e;JtCbVKa2wAy#K1 zV|8I1;x{a|*2}F^izkdN=Ue3-M;a@-BEG&zTEU;8?Bk*TbPnW&pqy9BN~RLv0S&-O zkxhD&ZCYV-p;~vYHev={I%jF(JH<0x^fBLPgJlwF-POAFND)29RTtY$oaU4%|M^-( z(n=>Ev8qNv6sD6mT^9)|V239t8Pfsr2sXF#@%=o_iZU^C;Fqjh#WBb8+aVMoKuWIf zr}g+E82+#0#PrxmDC#w`)3W9#i;JFbLIgAI_(M)<;$>FKEJ;d%eo_?k9E~+g8(|_# z)R?&Flro!+ngdH!Qlb8O2jYTRJ?h<(G^b-v&5m~-NrTF#*cYS<*T`4Lf5wd%kZyaL z2UUN1ljreBCSG?MOk`*&j#10gS2IqQTAX+%Se9*On*!aBOrIYHoXsC9t&G3Kz0$ux zHe-0mS6}^P`R^Vc)HReJ2i-b@`kPbV&_R8ASs>r*$a5s+crP-aVW|ujp?hkjvzg~# zaQ-!oVK8a!Zicm=$_aTyggo9vbl5NiGcMIWGYlAj8Qo(tLDt_(ne7n~Mb?9IUi{e* zE_Wjbng)#04#z8*^r;Xr_lMMbv3N%1;H|28vQcw)z(|SJm&DE90kn$Eu9$gBDlaDz z@mcBEb68z2K53M=3PMQQ`o%e`OfY7oYJ58c9=*rVSDi0e?X|~2IK@)T2I>dtR411V zSMY^kuwJT&nb(<3o{RdU?N{fdZL_ar%)Uu88YI2G>P;=m_6`-K^ADOx7@D1`vg};~ zM}Q5wr3Ppj#uyLeb+NA~qN+VC%Q9}@6tixF3xevHSakBF=Y3-E$|X`mycmLe`f@{P z#73Z9SX>cK=N5H|BtJ?&HqNxb^O49jcz)&k_t4bymcdeMLeT5GPpMCXU>5E(^T1CG zSGkW74O7Eskd>BXBOgQs<)}s69FnNsz1^qTa5Xt4(nf*qg#QltTjGLZ{jelw7GzIb zqfopRaYJ+k(5S1AxwY)mCWP^HV)Gk}qcdHtSzFJkGVj6e@|`uS-X(<~D)R@8ZdF+| z4l}E8qs72o>7>o0H#es8S0Bt@v6IZ({!^J-0%{kdR|?L8iYyvihc4^L zQ)iWR{$2t@r}r=uM^}n}!yGozoI-lX5$Fyi=wEyOUNMo_pcwY~$tMEtr)>aDxdU>& z4=-EY)YaG`WMBk#G&Yeo+EgUzE6~A3Bm z8Gs`+s7UHsi2>ayIMi5BX0PqwD+y6!Yu@cKA#$B~OnV7#WUZTd=qP11BZb(Q=a zkk~P3$(SC2WUAj|7!+6xP?dK?O%St#-*%-c37>0xH&$Dj)FL6u*V~>sNO?6;pym?E z03GAbBNn>3uO1#BmpBNuU+c(VFx$EIauL$T(agK8$*7E9JEnG~MP9>TP*#tQ$m*!RYdn--`rBDNrfZE*m5Vf`8-R03j(U zoNQ}Un?K5E7{i_ejR_$Ak|LP8nSwU3FjC1#!E(I1 z%8#g5=@Mo|A`0dE1Y#=1ON@h~SQQc(9~#R<+Z7Yt8=#!AeAgLUj7wskkjmnsPAaJ+ z0LE-KDe`(aT%J6Y(n>_7hIV;`{@oj96e-@x%!N^@P0%_t8aJaFroxFq;pE{!L>7?+ z>GDdDw@vXf+^3Gr-f1rH!K6LuC^lb>K-;0*xp1XP9WSlBDP417S?m7nnCWuh`M(-c zxe36`zcO!lg7<9$)zLY3D*XE69Xjkk$*&$LIU=?`_`%%xqTdxh5>9wJ==4?;+0#`E z0UQ=0Ho*>298!xIMk4bt<8OV>_l+}E$FUukdg44E_hDtNFCHgpYa_B?xu^)(l~OCB zBH9D{Dr`YLzpGtpel>uWu-Zz=7ZqCUOx)n9nQ#JQ^)$24Ojw&Z3{PI3@-^u4M2(5l z%i=lo6^pl!j3kDUChAjgosyg^W4-f1SvB!SXds^L_#}oez1CR8Im{YX)#Yxg-W!nk zc(5gR)V{R=GUg%kqVf;HFSoazFV>>gW&ci`p|?E%^*3EOvQ}iVvIK{uib%FFM_mWO zx-Y2ybS9|YjV#DgId$}P7Qftcsfbk>v#8WS9UlX;h#!MzGY@-(kz!)=h??5KMmCMP zlAP5A2&mOJrYBaYE3kb%hhPl78!&n_)x->D^`0EZkHe~;Vy$SRPK%bw?{Q&fQHo6= z7&TmLv8|X~I0}T=lhue3%_{|gHb=3eolys~i7DF)0NJzDxVEIs1jjaGy4%PbKbi8; z#mUF?tl#^_#mYyDZlDbK^TmeQ>{!#CJ4jk-&PPhkDgRnBgg3)iUAY2TGW2E<>~&#$ zQQD&7RX|}=<#Ct;Q%~1oBbMa#EuyvEzDun!XGak{MZXI+NG>(&DEsWYbSHK-Yn>!bwnm~PjaSq7AebBd1- zw;9fe&FlOa2>U%b$!k#361@5CA7M18ryS%y`eq~wY|^()E~y>5qnRL*jX4HtC`q;w zN3;;HVC@h>Il9Qh(NAbZ$1%Apa5tD0seIKp$kZf9O*hUt%2w1gcrmNs*=X>^q3d|y z*<%MwSib5!Rr%dJQNELB6SJ~^m&N~?Y$maS$4|SYd9(~(wU!$W*Le8KU$qac!g*Hm zW~F5DFn@Tui)aYq2YT*K{Olw~Dn@0MqQ{de4QXc6RBD(>mjuGyFW)d2k(6q$j@wuZ z$3=CTF+~zF!&v;}z7McigE@-NWv0(pc&a2U?gkDox(txJ@x+iSJEcDu!!ER4cEEfDzJ%`kB$tJP14MrI@easB%W zXmBLo0}-CQrhFIR^Al}V#uz;*Ng`qt6GiUW=Cxled!YzJ17yER&o+x9g)6|H8iAO- zx_|Ear>7vlnSc)13xjGT*enQC)PR((+lIWyFeV2+^NZgXQ$@@DziM5$uAW}4Y#Xa4w z!9N@MHNNt8mT=?izrPEZ7b$KDrmLu*eo0;7sJYd>_tTrNc}$&Kr@Y2P&vbO1o+^~~ zDenLH=VX8vKte^N45e&qJn#k;9%g4(HmixzPLV6GK<^K@=Pxk~YxT|}zJ^qX$g8B? zg!dal*~65XC^JkHNj@v2j)lX{Ve}@dEK;fb-@tEplg_3WF_l}-7jN=%|E|-uRFjw}>t-uWwk&H#+SS!n~<)`t>6y@WV-+h&g zqmR%XV07Egj<_+vm)z;sNXB#$bcBjQm88f*6S26d>r-WTnuU0O~ z{jwjivR037AhDixyDq}GYIM`^V^kcNByF!&D|JLiIe7~*KT#HAH)G+w@&S>#nv>K} z4CC@l5FhbsEreI$>8Orj>-3zK;sH#3#;Pk@}@|D){91F3Akw&Bt)+q`YF z%rlXB%skUXA)$&ZLDOd42jqjq70=dsa>Gxx(9gv+vb=MF3^d^%g#u+Vl+_SQv!}TQjd0Uc8%Qjx7hZ{BK z?028w=zV_XCfl3MV8Zu-Ew4c;k8Cn~UDwl6=nJ%I2jhNd9WSG6Es}S_X}^Q}S|PYS z{ZM=U4=r$KJuiwg8(+bsvohSR#cJ`MwbasA_xu1nU!1v@kJWfBNt>5|weZ^Y=oWNP<(Z6< ze&=Y--Ee*1Yd;HuIDQC-i+9YNtIA5^Jp245LwS52=RT9|!Yu1~U6UGSnd7^bfTNwG zvNi3r-mN8QLvtKD-sT#GX~T>Su|%4R>4YtGAsn%G__@Mcw}ia&AJM;!`2iz}X6w`S zOzZs*v;@0i`19=!n27qWM+VJ|x16JppbvB)aYK@p#ZxU-C$P6_tEe)~UjXiZZ+&lX z^mr!0H!IHi34Ko9Hhimd&DS@;WN<8uwcg>qe??T=B>c8WTbymdPDakF(|L)d{KdMO zaWooj%P9`x{_+i1;;*y@-KkU=Eq#ZdAm6!|1Qkc)m;68PXGbW!RdJs554%z5R^1hk z6)ew-;$FgX5G5HOj%o|^EDBwtq0m~vESk*iY~pHRiBPiVr`A0pP>t7iaC~5%s)A+L zRt--RNz^il*7oPo!uCrkb}$c_@oOb(0y34}Ex@ED=tQY!?cw>LZB3T>=0U5k5!0kP z!%VoKD@({4(3rD@Qg4s1${G4%_#Vi_A|7J3%f0Ub7PWrXs}?h>y~FE3Vu%!9VM|8l z=hYJ?qQNvE3jF6|gfIgI+2}VZ##^+LWl}aRT_n5oJ5#tO)N`Gc)NdG?#wyl zNbv*h5c^Mo=!B>>vf19j15gvaHW)NnGns5x(zyAdLigE;;FjBcT5PnY%ghgXbd-8R zZVxNI!;(>#EEL?ulLTt{OhpS@j3oqig!0|PpMHXws16@ z>UtFWPP4o{_=%emzIYkTO+;2W!h926m)d_UdD)Oe3o8efd4gU{=c&W}H>|bEc*(xEpTS<(%x_4q-XG zs9hAEnGLnSaRQvVL)UtVbzE!P8^TPey0$GxoHF!`c+>wPN`IvtaU)UP3bGao+}8Q~&s#ZS<|MHA@a`UravYqD;gi|YM?rjPPd z!NQh08THtSN|EF@<)k+&*EWKiq@_nOA(q%HYfQQF!_4-#7y(*-S3RCadyuj8D-6Bk zxix+kK^iH5b2%MJ_rBi~ZAx4LGiFDTM6af=5TG3Gy}0x=sno-#?8tU%NmAW^C zK{1p2?l0`?qJ*%a^O2csIp~^4Qn;DiXPfl1X3WJ~Y~WvuYH zPw@>oTZ)Q6Z$WgI`C7tCZn6;LFa-zwoEDZ>We}^(D~}V!Ty{A~V{LJk{(!@V*?xMn z8Cb%YrrfEK7v80xb!n03607XpmpG$9#biaFb48=3F^zr5asLF>y}QanxdKk~0~Psx z4>-iDcO*t&>l6wx!WQ?v#D9kEy*L{}&Q&=35tDywEtt)$_O;^c<=P#8Yt=pKJn>J@_2 z$+4}WJ}%=Nj3cer+++)1nF*-5b6$L{S#gU#7X|3N^^uzztYARC?RQVP zynGR8)%R2L=YxWSnI8hFqZ|bB8lS(@CzO%eRY{B%X}tCouW?%gBYBK#PD}0A;se7Q zN_lPdg@VDc?Ymlbd=6tee0JE&AdLgdJZTSY?#0TFNozUB{KRhVz~2;wDk?EqvRG!{ zt{F?cNIQ~z*YnlzyVVM{+PvN`-1b-$@OojHz3Nq+eOVnM#w#(S)fOe$^Fv=f*Y$H^ z^704vO4c(XT|w}dYojgNASr7xJ?s(xe)&S+?lscE?x^d|)=^#ZmD=yeV)py`|0k`% zXWk2+*|&Tp4{*v!xP9rb!>1O#fjgpS67EFU&G;~|If$fI@p?h2S~BZ^^y%lEW_c4T zU9m(D`h_Njf(5#gln56k9_AMMk53>bcIV3CN6J@JbNR^(JE>Z;DoOXSTS&u7+!0@H z#xZ1*sxA(PCT{n2b@vyhByTIPW)3y>$sD&~9Lb#C(ORCmYTS@0g+GAH_5;Ya@pSbS zY$xFOxi+QIzCQi&K8Po4#~5kv-BI{wfcZxpG#vW@4}UB>u9V&E>CB!+xnvu;!lt~+r6h%{X?B!_CK+?4CtHV~PG-L!ck8;G zcl?{j#xmT)ue2O%`zmmd~UEQ9ubMfs{nJH=?&U}n3vtP5J z(ra`By1^nT6%PzB+s`LO456#_w$Ck=n!yJ)SGFZT2R2NNa01e^-<= zzz@4)KfDGUMiVRazWM{1oBPI$VaQKD%#yBZ;BB?SKD;gBSz`c6Hg$At{m>xx)MB<4 z2c9-=wtaEztYznA4&GdjP<>1yb{37`D=uz5K)De%PZTCuF6{NeOh`w!d0)E6Z}V&{M-t@EU2D%8!MC4pTr~E!^^Z9;Sbdx*=P#fD4IZSXzh0nGq+#dlStp4#yW9HiTkHmjWC%OV>?OSMsTVziJpuY02N`^ zl{)j!CLg=olwX`1)QHGS%^vsX$nHK9WV6lM+jeDF?3pss2*EE<^3X*pKO2?{UzB4{ zjh}IkzjlgWr1h+DJuQR!-g{OL#Lzm<-VuqT6#}ZzfLv6baDO^~RjWWr@Q;oc5PnXg zll;1ec|8P302$ihTQzQc_u8+>5z2cfpZ0Sk_ot5N`->ACu3C*JfXY|CE=`OqQNf1Y zpAr8wpO5j>-{KX`^z?kKo3L{QtR?uNxj-h#~Y6RW2U3U1w+S^PbRs%Aq6h5y|u z^w3cY*^IU_YvYuFyS5Sr0L9?q%dJR({c=0B0 zP8y|aw4oEz2naBA_V3@H)2euPG4nj+tXH~fH-5*0*Qg;*Be;yv5+cbT$|e!3)q|HO z>P0;1B3JVs9jrZeWTxVh%HSA(>Z*el(_1Qo$YsQWS~~9Yz?0U%l(mIJ?+k8iPrJn2 z^kl@w_@jZ4T6W&#Pt5rW4Y{L;!UOQ@eQ1(@T=?9a@x~p5 zhl~D5Y?in85GZgQ1KuxPef9b3+}@oE?$OJ43|_@U4*@yWMjB&x*BJ3wlikPJKJxQe z0Z&~rUcm8BB9{5sWJ*j}YI6e-j3bS-B zsczffBXX|vRa4}g@sprl=`6nLmNt*}1xC!?hV^f6rt4R(>6ukaaxL1f$S6`c?Y%fh z0>0P@mv6tk$7L8&0mzK+{SoJ#=iqRQg5l7G5H-8-X{mMf7)N$;E^K-2PAs=da*~y3| zhFiAs>Kp$>AA*B$#5{`7zHq}{-{XO2U(p@9`OS0AxE;>8p7ee_4Z~WcN+mb=ty^zL ztP+(4mir)@PB#oaJk4F2p7UZ;F6F@6hy2fkIqF#Au4AusW+}`1HHn^AI<6T<-|tf}`N6O~xIsT1_jbA)WPb#k!EeT2Dw;KKU*2&tKGHN8RR%k>4y2i{Bn#(|rx z%FCFxuk-B3<~!8QPn=snzLWr8S*`T7GB6P;L#EH)I{mOZHQi*#%;0)O) zYtDe&-qOe72au~K+$w-irG)tBu4lOg35Ur#)CG7xCs)ldhT^;oO%msMcnd6^FI*V! z?OKmO0)U1(aWlU=v|m`%@V7>lS8qA`k^eq10zIr`oI?+2)l|-6)l_^z0icwioSKaU zGbVMAKAGl+nO=4r%u=GaD6wHft}BoFhrQZ4%Xb}0;!?{y+o&&tnlA#AY@g0}9l*|I>rT6x@S$DPuH+tOs|I*wBf=XAhqu z@f&sJ&&g}2BVnBhFOMe}g|S~2KZ@7ki_R2qEm`)m$XMjR=J&ee1{w-P8s7jpX&KnN z&jz&&2$&EsSTVHeqVDt4UFCg9b;mUa6SB~qx3|Hj#@}&r^ZmIYNHG-8Jo&Y(W3H9O zmKqrzWB^|T#x$>*15B?f5J8%wLK>^zq=}6+v?Xz8f5>kT4hiMm)X&dHY!KJgzYRLt zw?xx#msS5wT>gECbIi~slBz`etr!)G@d2RgB-5g)9T+YSdyWJT*mEY)nOEG7yf4Fd z0P}LN!JL5J({P#+&wpMjYB=TWL%H%&OxKqa{d8hzdsVGuC`5o0>|Ak63p+6B$AiDW zw}gHL{g--e)OyA_w@Uv#P<)U2u#ra(XcfRLDdP5x^J1z%D_dl?em#6Lt_-iI$X+Yc zTQvCp<0-DI$k$4GZnRy#w~8*2%{xP7HHzO}00z!Np~fq+d&J(Kb5INFhfj4P;VI{z z*9ShA9Fk(P5gK6B=A}0X2d-I%PK^;&-Qcmq8rOG1aR}>A(D02ddkGz1?JK*FIrO-K zI7snFM(N(19Q2(OejrHwiIkEx*-*sRzjVEQZ|m9K?OA*_;j4UQX~Rcu<$AqQtQ$z= z+=KWpj-)!vcZy&Ovyc0$8U-UYJjixgCfYxC@8(&nSCqZ^TM!)j}vIkoj|9w z0A1`f&=R5h(M+QeQ>^vP1Qd0Ynv-XSRXjnBptzQG+At>>J>AXM1o6M04vFH-4pd%$ ze5%#Dmm-T@JrK+UK+}B6$I`!e-y5WcL4;#1y1D^0)x6F!cM5i?TveY5z>BcL(@>ri zJ=avWWhfxxL*Hww@X74g$BxW zLol@Mr|Xft2`d<}+HK4d#0EgV|T<{?{agxoEG;w{v z{_a6iN{|ZG@*{JREY))|NLf-M@&**4nsYdBl;holp6CD1V$uSoyAfyigVz8SJVO#6 z0GeS{aG*a9;8Ie|m+3LMlL1aR#FwGl5mv^qRXFy5G1RS8z@QVWi}TgRSJT1?83-BQ z``7Edh_OQCbL!+I&OOY?46X|FXX;Q#BRVgoP9!x2Cfy}$zjMKTUgsCi$nu~N&XO#u zM38$=H!^kjH21$6IBfTEy&`Fw825=_J3CMcvU$DpVdQj)5zBdEVq)Wkh(jZy63yW0 z&>S%0J8;aaoU5T2Zuz3`Mv7)G;%ZIHzFYY-^!?M<6>aW>1t7b71Y>B8fP$XT`cy`j z*87(EU5kw+*CD$v=O6if8uuU}^@n}}I};=`hDVa-78XBWItOZzMIhY|Z&$42-(mGB z67YLxykE2B_XK;1PlM(B=Qnjv?;1cYN3eyLoG=Hve;>N`AYirYEw_Fe|6lwRr0zzu z+MwhDLx9?5G46lpQg!ST&;LV*B+PbxUjG~fZ2cr0zYI=nDCW>9{{*dIkD&~&^u*8YE=|wc!SkW(hT6`NBQxSZfxM$TAF+z`zZ~?( z;WH??!d34L=nbL(yA0QtLg!0ow`W-`q^hQ4Do{)El-bF+ zE!9S=w(2ko)tA8q+b2Pb>~G^}$Daf-^}JVNq;Nu%L5qyx|Jts)*~HMi1V=J$+aa>O z9on%t@`@da6CCo@SAqs$k+{;VcNJxrty}&0(Ji2x6J;5Xby|? zURtEjM+PM2U0D-<8zsb|`okf+X`FK-h2J0#L`TOO0+nke*O=eNfmpx35VUEpe9gq( z-t~R={s8=lnhV?hW&Hy3ZWys>-pF}@qWmmiKrA^e2iCbOi$W)gHbLI)RUuk_D&@a0 zW&-}#r>WXKMh9Jzu6xp7X%+?L+&QG2J3Xyd{&y;vM1lG{3s2G&aLD?3Q5;RN#=e6d z-Eo;PJOG0d9dFy9A4@TFak#^ukJXl{9>}`wiGzbdL!6BI*MZrjV{zbaSwHS2+j;a1 zR7fCf0uvASv-{u7f`ql*V$jD7sVdSGhPifczhdd7?;m5#Cmh9FeHUYezGh~fPci@c zp*CeiGSAV%?S zAAFBp9czC>I55@##*nB%Jn~d=?!G|-zA8z+5U5zKAoJM{0+D~P()pkgSoTow_Oe#8 z$O5gBxcUoMR}gCWI<)5;N?aJJ*MrOIW;%Rh-+v|z|D01!_+orT0$&g@)g#tH%gDWt z01^A*a?yMPR+3b2nH;s8w{RT7d`#R|tQ@_&_od&|*oncvK6uC>G?EFa+#AjR7TH5(bS zw@`bO*2r@lyNs1GMM(}aq}!OtS_UQ)IoC`&&ZhheA_g6)y)hOX6BttS@f)S=6vh3?fy4%}*-09KIMOB z0x@-w!2>gE{q1B;Pjr>rp4I>Bb8kvdlv7o~WFjX3zv~H7lcD&1deINOiK?F#L!OmR z3x8$b$96ppLT_m$8I9{1$TUb|4qhu77lKhOl9*383p#9gH_y8VW&i8~!_!xD!JiN0 zkDrpzx@dxbJB#cqK(pze*v(fQKI*V{RcGR{vm@!vBE#ln5;|~gpAo+Oje?;Q4-JhER(wB44q+^#qacDVsnE^{lORyYVlP{wW1wEDn8A3EqVb zPK8xurSqTMTnIk|3G|)g7w0eYX(|@HYnYDK?L9#;-*;>OwF{q*tDRpeJY(x~lqiVv z)K)67eXM?7a`*~ox|Q1wwS)gPSN|^(0V;z~piwTLxY0^hziH{w-WWhn))W9#jol!=DJa<8 z^uJv~0-rU~XT?n+tS(WSqF@Gx#q+!zk=w@+Ek2-D@Oq@A4NU_PIruUuJ@h&Li!HWU zf}?LF{nNHSPkx^>%*mPA9$<%-wSLW#@BZ?!SN6q5-s(FOiJ(@?w; z*Wcx_4FY)fw*J$6xfvLike7JT1RzRg333pC^IUVV>;$>?}0Z<`@W)I+@ zK$_7n#ytNcmNMl6$uI7ZHoNE0eNot4rAUI2bUBjeS3j^00x8G-YlCmkgZqO$oGG+C zSNTTo2zb%Lf%x1!Qu#M;4w&!n&H^~X3J4-#fD%vrz*Sji09iqT8+}FQcc<$YZ0XdN zOnhvClk{X@L9GN zz8em^H)>N*3cc1S*;?=(MtriLg8?W1z7lnCaKz@ncTe?kgY^V}(<9mHLE2#N zK?F%w-YRMefGdGyZR|t?%1reGaH5E?+=>CM<0aVrpQZDtlZZ_G-b>xR{~#EY7DO-| zb$rAM~eGVF|iDfTgYHba>ret|km$m3Gw6sf3j=zgnyS|8LVqkqfF8Rx=pjSXU#%=VfGcH{GyRWme?b z4FCoe8UPuv!42)66I%eVuz}B>f$8FO!2AY83knIVh zLCXLv;L5L$ntW5gZM{jcf~!KL?V8{g}G06UAE%b%yV6rMQ(E>?Sqad?{L%_DHi zMpzz3@Hgs`>Ik;*UY|_~`g>A1A^CfM;qbqGR4>8dPute@LrXB!01UfnikSnz4{pL( zwpLILrlt0tF6UuI7ui%29wCQhI6aX^ zz2pCmMxy8un~U*gXt9bTy_ps4Ql=II^S1O8(2$@-%8J4}cPN0DOaXO14Qh*Ru2X;{ zk+z45S-j(yn+8we(lC`|#FXuM<@@(O;!lolm}CS#;%xe?$p6b@BlfE1HH&*hiIH8W z?jD{VY}hYt8|%19oe5z^)=JxX0%B+JV-}vJb)SuWY$1Rp?vAs5T>ow86bY6LQ-J0z zu@BD3bUixV$#F2yXNmg(jjl5zj;nbX%7n-If<2)wtEseIZ#L+ygsw1$geF3rou zzcJQ1zMgv(K}$c@YyCQ3VvU#Yql;@D3S~Vq;0U2L@-aIbMX^Ow{v zXAFD)^c$5<&NqskoG*o!ii$+47nT3%2aAZKGjs&G6C~Oj^vM+GOt=Gs81E_vRadp6|1rxloS~Xq&^Ypz9cDeUAq?~5z zbBmT6`5O45cK?k^1Vd7SiiklEj&CHA)UJIl$jT!YO`ef zi?|&L#O=(FD_np1#Nb6d$qq;P&~*>13y9xP&8e2Wxy9hLiD;CORwr^fC{LD#Q$>q{ z^)GBpi3;~9T25rl@l)7KXEUNK$|`5QfRC$)vRvd_hE2zLO$xX^W}%m61W{APMIZhy zlfERX%W$kEhQS^tEWJUXb1&+0BsEw@pM@%5deh}*j&G2MLma*$8@qfk`NN5fCza zd|ewaZp{VDRWoz*_x}24uV@CNXh(Op`yWhHUEc* zOc7@Igs~@Xaoh%29zsNcOKLKg!yqM)d2ZJ^$s3gg%QG6|HQ>Lt6(%~p5yQ}P`agL> zZss62^>0uQ+r@$Eb8=rXVc09P zM;EOS1bT~XSP_D=hrVU`H6_oB%Rt@=Fhwn`x2NF3K=J!{!QsDs`d<;<3gLrEM^Esq zvG$yZOjbs#*}#Bz1rd?~B@*GlqUp$!d3zmxFuK;X>$l@H48`=`cOY19tfIwSW!;EtfmKui`mreFK4 zD&Z?0W-OsM^kwr&els&Z$|LaWqJqB3!~%n-`!0_DRJs90sQUTR(uN;m3+v4nNGDRC z-I;Ij_ke~~FDlJSx`KLLDOgg~FMaPU__BLW%=g&Tke3$0Ft_AXDdT0=3vc&!#d&@V zyk(-;c0J3E-Lck!E6z){&@8@kGULw{MUOWCIeBhS2(S%;JsL+sN~(sjCytIW$IK)-q!UnfK@^D%Ay1- zG-PB^<%C>P?81)62cTWOhpJ;~Kev9|LnGF=;rHY3+N~O;!c#GFBcm`NEQ3}$x1$op z(MrJTtd@B?FFYQOFe3v$)X5AJ`G8xq(||kco^&0v{ozHOeLeORUSU2W-)Oud_SyS# z+PF|8=I|7z5seM6f{$@HatV9N7QVM6FV=bvMeQoC`O(K0a;7c%0K2nViU}lk)FYsc z$VbvGNCqYaNtkut#8Arl)++G#sbV`*xB0c1bikL$^!cOG=5m+_6edZ}jYJcpw>!An zbJ0?_>m=`hDYios>)bAh7mg{=!M5w7(^$hjN@DN!zQopPd^f0Oaehd9YNYea>mvXE@LDX8Uqz#Ch=^ z0Xy^fYtT8*l5hVLONU%Wvxe`MJ7GP;H&A6`0aww$Ca%I$Z&X26saY;FGt@{OItAqL z@;A6$`63oqdzsl>!*ViYP8dhZGS6AtGy{Xq(Tl1MIZ?qo&6KD6t$2XdYr-B=%OzOdGQLDyFA zh;LR8$nX#q-f;n2<&zt#+ytX^hzD*eOD~T(ffX&!qc%PK_%N+Q zB!T=zh;_cH;Z6(oaurGvVkbE%0T_wcM^ZTb3R$xtYlIV&yIPV(37WNy7lTs7d^GYb z_v=?jznOer(R(LGavDl>hsL;M7P4^9{T!7wiWnQpU0!NebyFbp-k?d6{0GYc%7XM1 z@ROq+CC1CBJ6;fTW$OF1QvwL&zYc7RD+cKw9!MDel9Z#(k^Dw;v(U!w4L}Yh=Sw9Y zugP>?l@%7Zx?d(~L>0K1`T0WuhB5*X3HrBh zv)@@1todO`hsR@DT{lY5iSC#m#5f|XPo`(yZR7uGPH$21dftnm>BA;5IJ^zSrz0$8 zd}YlK7%Uv*IrSRJk7Fg?-X2`p^Mu{P-rUTr#Zz}7pMmLNkTsN|X(xw`6RIY3-1ZzU ze-U4XKb9`iWiacNxc6fGfRb?g0mm`5$*>@0meqxhQL~{W>4GU&hm6w}^n6o?2E^M8 z%e}bN+wYBvfU$Ep=5F%g4)t&ED+xx~?`1!HiH{h!A=pvJFlFaXkEOTKYgn!x93nsd zv03_cRFLfUyDz3>)x1CcpJ4gPAJP92rW3ZoJM-Mqc4ae*jMYM9ImQwvsUW?TIiFOI zb}vi8M&@aMf}}sin(i$c@{ohPK4HtmQB~Mi(HrEotIT@{E4Ds$;it2>4RsvT2N_zr zTCt`}e8a60-=_6j^Yob&$B)}RzxM@n=YA`kHgxK=*)5~hdG|@L58Xa{<8WQ}FhloC zXa5_q0}BTsKRqsb;l)PxCDVq{aV)bCpkV~EWeNnPkXL7XfZ@H{d$%g8Us_{K;)qK) zGu|cAb*=6CTgOiEA5ItQxXedg3uf)O*SIH~xik7lC2xqgUjQJA?Hu_tNp8}_AScD8OI@DOda^GIV36o?fr=lXgyDhAE>@?+KNVR4>LA9$Uzlu|tEWtbk%b(cv)x-#t|9Ee~ zdmOOr?E))sB0i3%h2!sz*%5(a9~jSaw0Y4P)+2?uXx&IE{Vi06cGg zyb0WR(E5n0-&Z_e;&=*m4L?99CElK4cmOh?#gvZB_3iUvij7YQRI;(H=c-G+CfZK? zaCuUHM58dgl4wghap%{kezn_5wDCD8&S;K6dk|1D20< zXnx#Vqk2xRj@>iHkyOok@Uyk*t?pX{HpeDk)2u7TJKuT&G+bo$xjT!!?N z_hw=(>xwktx~j}^%BWWUfv87Bx?5$;Q+WZ5oG)Md)7eIzdbiq}6JjyhHRV<=`3JTvE| zWS$N#fu}Id82>bb+VK%=_c~HUuzaz~`qPB#;mKGyLazwr`~aH3j}hqyh2 z=xcH0Nc$|0RCqX>g1aR$f6t*pdoPSVfl?{mk*0ePe-O)DlFf5yhNHEbelJ1O&NMzG z-QQ@kQR)f5fP$9jO$N>q5li`#6DwfQr_Z>X{ow+%h5Gjx2t z$~hkfMX<$m0Gc#rI`3Y0(Vabd#G{iFtpD0 zx}IQs7|g#ACT^%5Hp|bUn}MwfZ5)%2O}8yhU^~)Y`2Nh6Y-$j9QCet1OONfA{{wF&#=;IuR-TC8N z0$)iER(h?SwJ4>SFa9CI;n62=mT;X@ENWlFYu+H+Usow)7BQ2U$IfH%C$ZU2@1ES8UBQ zWbQ2I-YUdAP%edwN=M{F?frEJEU}8=&drZVZUjU36*0=U)w|d5U9@K-Ch``%F|jME z4deqY!HgvdWpp9JiAKu>Kpky~2v#a)G&WAE>y|gM;pS|jP^LHIi*7v|QhqDZxLPRG zaHaGeap9aeR-jDRB#!vpYqgQ{0q>prD~YqjM_%}5ZDmC1&I_H>iN;X|8*T~5hK42> z#3pKC83m|Q$(owHaCl7o&u&1jE<=m6y3tyggNQ<>@R$Kj8DQ(!-lY^JpP7yAp z)r0%StE4*^RnD(ly?y7Z*U0^ald9nAuE%~ojg`Eq2(@E84|d!D!63Ja9-B_QXM*?ze0<0HP z1o*VHq>}})d^vni^7E%Uub%4aeC$I#wTF^2wMAMwGR$F%X_I(#&bH{SXS7>aW*;@& zsq%OfFh5d%xxTr+WY$+PV4%p{cVJGw@<#C6hhyFSr!fw?o}LORbd+9cC@>9=llV4k+xJZS!w6g8Kvx}1{sx7WP+cP z=E-)5bRLY~x=zWNat13Fo_|N0h5Cruc_JpFErQGFGrty|M_**JC9B4h_Y!_Us3xi5 zD#Q8$C3&J`g9;Zd$N4?_*%W7H9+WD7)i20hl->BP|NhOffh}^Qu-NflSM@HZ!PKa-x zg6kf|ie@F2lu*MUf%4E!DGa`4$5TCiZ-HDguWehWkcGn0L$JZ@w8-`6Utff{B07KX ztCtq}cn5ki+8w(v1t9m6vyjM(#iw7#rHCARzH*hEj4PC;po-o>YT4u#yBBR!gvST= zo#|sOfl^|<npoLr1E;s9=@gL}H|+?}yKSHC6^<9Vl0Y9*<5)N`ij|8F ziMH>|&v-Eqzl*}U4*#UEWkpKt(}u8qfvlWZfn-+cuTF#ltVMmb!{r956>=hB-CYr> zb%XQv0d1x?4PchNdq%>nQnb%0{A6UcVGiv2vsbuNkY8>}@hSGHnLr7mKnmSLHuJaz zeg2k=w4&HEyD0)Wo)q4PTGeHTHiNdK_Jq+6E;&*BYR^k4YE<%jw-dq@!h<7vV|;Tt zr&8o%64T|Bi&*Z#&iJ3Jkvl!3PZqqoQEu-yZqt7$hn?XElMuIDQNVotL#;>o7nVfi z>hC|`5X!l^RcJja_zw1f41aoRkCD+90Yl0_#G>fx;3%vJr;nZIbG${?hlGc0_WOv1 zErHc1r41bO56OtQL%o|`5W2vcpQI61K-`a;Eob)@f?j7YM}Cq@p_w7u^;Z9KVjxT8y`|J5N(i= z%qn}5JDf3Imo*j_jk}g=7h0x$&VBNFyfIb`#^Uiuo$ut~zwGPFC`{FDWTcJO2sE&Z zF`}r%J5crI`L zH2BRvtoUK>^AE$^Bo~(UnNJgy-BF_A)P=A?9#UHVEVXb6Epd}BYzv!R+Zy!ZEZ>XsQK<&_>eeonB8S23BUcrs^y=N&vfM3Bsk7MB53KyPqNBp0egXn{5rWP5 zAr>oEE2dHDBEkL8)0{ay9W6kfsv4!B&ux}PTx$KEQ7#pBgO~ z3pLtdifOvoEiG(+i0@i#r-*LK=(EBWe9UT1}o=YpxM@wM!Iyv>tT#Y&C6Qzv2?9B3t6>dp%8fVnuu3~l51g3f9 zOqFBiMcz;m6N~j)ZabC5a#l@f6nF1`c#lT0^f(JG_dMhFYd4yOtMUyF{@OhAYBvPM z2ampWp_ZVgHLMkNqmu6yP2XZ2U4G*A##;A=ZWxwbSGw=&PFwPOe6aR)3Lx1}yzlik zkD~RdHhn?-07}BGv0Bse8KJ476tb*8=sJ7SdUAT=GTGCWl43_(PPl)F?AKx9<8!?P zKkVLyZn)g+z zB6J4$5X0eM0bV&W7dC|Hf1+BC3s;FZu1n2|ei9R|QI+lJIelU}0JENI***CL57JEj(dg8k;?qMzklfx|MP^W zdstHo({%Ot$Z|0{bY$B?w}+6nYmrGuTsSPlULLNwh4*D_a7Q>XFw6)`zg;@tGXDjz zy0}V>TE!}ws%gn^LOe2kxV<9$`;%k*V7S#TUJRaAyK%(~6I$Y=q5DP#hx73#1uF(A z+0v!l?49^TOcOGil{yF$Y9;N*47Fg_*tn&u zB(y8uST}$!!T6Kl^!H!Mz!pB;kBA73O_;A~4_j3!Wh?YnDNJZ6u4CX^#w3J_Od1a1 zJbKNrauoL^mr|`%GG)bbPpd)it(@KDMWYlxS2*`V?y}u|ExM=8h2cBeeWgWGs0{`4 zd|;dPGmZX@*j**jOtpv2i=E801GERk`U}JLfp1u{5;Xp(<$-iVf#xb-51wu3ne4;1 z_hQDZT;ejaUikT$S=TPT*qeXrM~@C&>%2&tAXx$$?Dy_VpM2GSB*EB2aO&J|*n=h! zg=l~KXKQDa!;b783#Lz_ApW8aJ=aU*qcm^r2jmXRQWH!swv+z=2S9gq${N? zV<<&mIeZc2LRdlUu8b#zAJY;iLwDtcEZ|B!{ir(Zl- z9Bc=FynXYtnoy!G+&vW@))YDK?QmMF+7l#~q;Kh+ie?j#rj_&YKWJ4LLniee@a;3s zI4!lMK+H^FRo;1%Aujj*enB3-udcURio)I`&s*8LpkSh5b?%guSjtkBT~nx%{?eT) z_VmFWiAAFrA&Dvv{yT|IYM~AGTXs?Jb+Lw_Zd}vUg61Q~J$uBA?MsZ!n|qtlR_QX> z$j9n(wjg8XMcuW4zQR`=Orw9gOkc#{;jv?Mzm>A5S2$axtMOUd+cYI#qOHissYm

    okIk*iaIX;u@I>fPt#bj z;;c71wD-32C#mB5OKrIy-q2~}71_GKj}N1W;q5$ZChxE+A8)vSml$sg?^yEJ_NfFK zjjZKC$E4PCykfl3$tjV_(OxDJvF_4Oy(_=&oD|gMYRl?0?DPUQbNLAB{Pqd2@D}s% z*gFi>2b^V0&X{=ZoXweF401EKP6haFVbsiK$3wSfr-Ve}qRT15SmG;HU=yz1i{Q21&Y@zaK6&)L#@;(OYA0(zPvL9y2+jOZfMwF-?B$St4UNt)96+Rj>|~<1_iH;JxYbJsCYU5Cbx{{W$hwp;|$o zm#jW<+w-JYgBI8f>X2j5yCHfz3;!_BagPdqe((_OF>$tZ!$VH)X7_}7>4NBAGM_BC zxtPl-b2jv6&sfiM)}1@VibQk2+s8hg0U*R=wE7o1@cc0dJX|rnYWQCSH3-db-q#4HzAl&(I5ThE}oq`|A;!E{1Kn zRPhWaT$rINWG-f|=G2ia5_$8K1E0g=^F^{L<$71WhI&{AZlCVdkLHaJGd3t-O~*yw zX=%yA8D<2?9Og~r5tkltGRvdHhjv1{JU=Gx+#%!ZsiPU0QeyPc>R8$Mq+j6QNY-sSClOtl$Nc6}x%8aulVWi#%Gfy|07ci|!sa zA0HDU@X?ehOQ8Nxg0a~aVOkC)Tzj)T>ob_zJBD&FO-LJyOWbYc5;v9 zeDFnsJ$;Cx=jC5L-uH0Q-al-FQ0QoFuI5Uf&C@zk;Yj6@ zYlSQqx};I7I%zDjkr!OM!x)}|O>xv+_d5xJL(Ge()*YaGEVr4oc8*bBI8Gj?dILx~ zmMK^Ud?aT@i;IEOahWQdtB6DbR#(AFR9{e+QD!t_oAo_qP*VyLR>ACocCmfn z(!u_tVh<8}W6qhJi=mbxi^Nb%IRQQIjF)?SQtW|f6H#kgW~_M`B4XwDv{v~c#@G>{ zHonupZ1vPTKj^<@t?I9DB*oYM(c(}t^c0$9q(}&u?8ZPyKITt~kR~PF)L0Vpkr5*} zD&$q*r*PBz_roh0)}JN5YiY7LKb3Xn0JV>RkLVBGS-!%V1obpI8M&%M@y2H7_)-!z z&kTVa@6~7j3(z*|Eo@OjJ8!=#7KPq69-DS#O_#!>(giIJDW6fSWtl&0dcCnw_i-nM zTGGrx_&w97fGsSgDXeouK$M;)@f6-Ax@Gvu4aY3jOx8X6 zf=WCl^jHOqgUQg-gfn-<(`8<=A2AEv{-)cMIV)Z{{&3oh;~-He9&ceu{P$;*6Z_7& zsRs#p0l-cy;mSS1o)mN`%J;Jwd2qO>V=`%eu&G#_(if!OlaaFNMh^y9?e7$S?(Y!} z%8@q(^9rL7my;gSVkz!Xp8D`7&!cr!I}c@~_K;Sno9QXMGxB?edYZdbW{X|S90FA2 zB#VkK*%=V|RM=}-rt%gSWrGASnFCH$F*DYzn=N@n1R5P*<;F_VMzr;t+^@O34u$_O zStk0Tbd*ddYm`)HSvvbXe;H2|E}99;63z7S@IiB)aEg8VS<^al#_OC++~%0Pwl&kP z6Lw#9%(yN!!(+)~$m3n6#&MFTWEH&j+Z*V$r9Sfn^4ze?Bo^!1#$V4lE%Utat*#Jj zQ;2=^N4X+R)5txXMkWqFqa~KQzjg>rXu6P8j12kqctWqemyp(Z1iL3I$}~=zpiV~B zWJ!P3U(ba&tQ*OCQj*%_!`M)?`qFk5jF>TjVWH~>T4?c6tQ zGfi+gFdDq-At#m_m&=k{W7>=TL~&i*TvaWL)>qg#<29{y+I5~e?8Xc@ALx|6-oAppuQ;inJsoMre4Cp#6=Osu zVE8QnF>1T~0e`jV>UHVu(IM~r`=0-UW&Q;Rj*|1{mfKTkh3zXzV`>Y(gbO94>{G#t zX1Jvm5+5Iav=nP9ydJL^;@|Yxb+4TXQKW?xCx8=@ni2@3oyg)P|>vO3)) zhRT_@zcHG;9%TOg5)Ut-g1E;MBJxl|53Rt$BYMDIcXLw}pLl1y>@Je|?FDeQ#~pg6 zSCyhPCHK~v4ZWqgo}dsI2|dclx4Hy@WAUeQ>*f0kdTNxC6fo=zDm$&rRitn!x*fh! zs`N(r4*QID={V~=%gy%d-ud#Uu%_wc!i!WoW)Cb5vYsD%YQKD`aDPFwhW zm&4yYH&QC882tC@{Rm~n)F@)%O?yvH+IMiCa^TOySVVrRE`qb?NrsBQMPcwxM3$Js z_e0k{BhR5P2$gE@bLn8egAv$U8KnqlHk{_Kv8xw>Lq^@<>z*SE=vQlj2WCP{MOSxH zT(E`PcaZn*9hiRcgOdv4;8k{%N)Hi-0V@y+kQ_bV{QYWTeb0KhPTr7Pv*@?e_3ZL* zv8Y`#6>W5zIFUcL0q zC*dt8q?>*Reo!>MaEO@cJLs@}gsl;ZTf zKaa~J*2{O35NKGm{(Xfjogw|Ss#|Ew2~Xz}PcHheReF_r^mK*T54H$ZTfZ>=ogEGt zXS&TKH0}FFD}B~3ZTv~e*n^K7+vk+b`w*8Z7&0FKu9s2sE$EBv2k61M%*Xu*LT0+? zNe?9$&(b0S06+*M2gYZwlgdw8HeAife8tD+;JN)x!OY1a*r2fYmqitS*Oh+HPvO`G zW@0}bo10C9fF#*93C=Q|JPBK_FsoN2+p7MEOW`e&qy*q8XaIO9$238gKTm6;%`c~a zotm||)##qaVgPYdeBO)Zm6J~f+Uovc*q9RSjpY2k@J4!N?hU{9Tv}{LRq*8K-{#Yu zX}A8q3iuA6)p-kG_Wg)&iX1{-tdTu+0-EZYrDtk2Kp*F_QGYX6h5dB?qk!qwN3)R+ zo2T+#G%eBPNZh-}zO(nKMwDcfd3~hEY+!My*ucpomrA$PtbmH?Ik#RW8@U~340Flc z;bZl2V|o4}P|^bLuTr+q59r?q!GE$oj5M5sEoz?`gO}kU1|ozGGFVHfw=6obtzrY} zY&HTpUg&>5{(BG$li_*hZB9E2V6Q@kT>yh7&tg2?b3x(grAHhXFM zJ3{;p7HawM8K=mB9zIiL_{*aAlmf81{s|+ax zh3!Pv>6Z}#^D!AYav)-^@?y; z^@^8|{zqnk3kL2T6Wpr{a>a9HYY<`n{{6p47(}cfbhDQ+Az>c{nI8Xk{Qq|=Ac(^w zUZJ{HDvW)Myrxgd?R$6Ms0H${Nk@tXK;@z{60Y+26b;$V%J*K1K@{Abbor>U1yLUI zER>?JcK-%_dklQ>(}^+Q`2pAsri^O@ZgHCu@H@ALacf6r?2R8|Pf3K4hl#XNAluEy zz{tU680&7)K<6A!j=V{SRJK1-iQ5ls8iLHy$!rCFinHo)-vA*_IGq#ZW<-fL;sq*mL9 zoG=@sW(fSZ1>wGZ`ztQ}XGV*{Ck7>0Rgt>MZASRa$++@=JszAX7sW zdHma|a34P;zf|)P@)#CJPuz}z`>_!G#5j5Ej=s?GDlnM_ZZs} zi6T*ro_S*T%Hz9z6nTIz71xl#hNpeEx+7X4f2y@1V<0|WTS(HG4i|ZB%R{z%RbhnS zCoF0n8AC%H9C%s4fmfalw`*aUYQh8`F@6?Wi^#z6|Fozt^n;-*u z3VC3DiMs#JGh6t~m-lXq^!O9-m+;j&wyNEinMCH<8j%9@7czN}2@vjd`Sz|?qsEBD z&XB12M84bm;J#0qmec-cp5-AkQ9-g7dB3K@@R>aNCkX2F-zb2XE<>CM&8a<>IgebX zhX0Dj?#qNA3!8iYdoc)Ukpl2I*~z_)yH_xyAu`X7rfVjvrNe!{*BhzZ_4XieBA>7O^{+I3Z=XRMGHeST}|7@CFO5Ed_UGw-EmK zz*90lI!0qg#EygkUDMUO|NQ>%-AeVGFs}-cgaA+Zy}_7bIkTz^{S+;{Q2t zLi{@jm#e6F)3Xb8On-zdFvub+|xeE&}jfA-_UJ$p#DzLkkv2fQD$ z@34RzC@$xe>t~SO{5Pt@pOHL-x!eSe#fvr?8GhYG1~bOm_m8_p!vY$MRJ5fyp!YTm zQnz`<&s1*1#k3PwKQs2+uNF&_Kd&F>{A&01jK4~x{IMpuqxompejO_EjZbmxF!V3W z$_0@*FG@Fh^R3-r?QoF|r+}d?swdU=BwEhrghBTou+=|fW=2vod@n(OmJ@XZ9~+?j z^xzfaV(ET7#!ck&4SrKTEHIL}$IJaLR5^XC@p$JmL%6ijMR04$<>{?V-L-T~7f9Au zi}sHgF>{pMm*AnAwXj+k*tD5>U^aK{`NDIE$}IekuKmK|ufHx|k0GpnV$NEuO3k|1 z@RlWSvV8ZD7m=^bj#ZyI`f#M{2nR>#_r+9;zbuAgVTPYF7Uac#BG-cIuUm6BpjDdN z6hq!PI)_4I_T06-*I{qov7UwR?)i|bYRpboQW}e`eQL2{-FaaNrs4%{M1824hN$y z!E*f5r1*2)Vk8{1-2d*MZ&u*Hp@b-_s3Expqh^Q9uKA!=fc(D#@G&vo({OA;cFzu{ zYyCSv^gA0(8aK@`?`T)r&c!<5Ye~2+h8@odgNp=3VJf{Gb9u^q+A`MB?r50sQl(=nnx=JtSx8fpqW6cB6NZmf-z?rHUlxUlw zErc9*Sp0rLL2SAgXjuVo(-7i8fbqTKCd$$}peDdNmOMa<+XOl#Z3Z~ktO1%y6X=$R zQXyg%=?F*9>a@_)gD2o>Assq9Uo!qA4CR;8en=&|!Ws6_w{Uc%Bw-l>M`9H3{obFd zTWgM>g`Hp=c`1i1Yj57ouYQ2s2?H^wFrb*U%FI0(G|79G{W0q$n1LUrLTt$wCsbW; z*gU;Tt;Np)8>;6J+moFOqca0}a<|;=xmTXh0JO(#${Rvm4y9pd>5-epi2>urtndJ4}N0;ambUOn=Hh@q{( zY!=pHD$A^Z-l|)C*M!|bro}Uzznk=m6o{Y2#_G*q*QCCr`F=>XhhilnNg>`YteM%E zo7j>8H+8fKIu!_sIPG$$kXidl;JBZFa*~vMg_m4)nlb5XuU=)QphA7};~=sab?z|L zNjT%TzpwGVT4*L@QuBS+v_wvSLiN)Blv;#H#Dwg1rmoS`T>(NP^@HQ~;qzmBMNq<< z$c~g7syM#Slga?}vt0@0F1nbh<>AwpLI9E)eEoB^U>7Jpw4QXn&nS{FYphk2TYVl= zm^*a2XxFSlj(C)%N!yFK&zJ~l#aAu2vNnG#t>-YXp#}9TJEfYbND+q+ei9a(3i#-r z$00CsOFKWH!Z}Lwcj`fyo8c*+^ai}Ztq(%Gew}-J&bt4ZvwLbO{of&WQ4~JEK)9aO z*jYqw%P5bVN{@swlu(PO>B0KWff-GVx(4en0pVqc6cG=1(-66^G25Zy%66#8zE6UW z@qQutS1K!{P_^_0Pllp{KCj8Au@{l_Q0$k2lsZ+X2@_5PNo;<=%BzaT+Jt1Rd69(0pzJ zV#oBs^VU;PsEPIjHE)*_*-iZj0iZM;r;n(+E&2mRMcgsEr~=`uTx8X~b6Pmdf4<-W zX=ReZ`$}=mxXtfp z(#@6mArU}=KeGQQ`(~Oguy~T3CiqCJ4yQYiP4(hcXCTKWQLejxAO;;1VIi5Z#2* z9g!cC0*yGZ5b^u67BiXYz=-oAm3Ic9!#6rxf{j-?1T$I|rsKIOl_N4$dvx0nQJ>5} z2GyLKS^K1i8;lhf%JHRHZuXHHPqy8@-e2}UymeoS$NNxEUK0b$YtF5uuu;wt-BLeb z7iI_CX*Id&?i7|^2{h>K0Ag^Ynh%lH%q^Z6{X%mg($3&nZmqcSy3y&Wtn<|1={$d> z-0_uCYwMNs2HL{qs;zCH|!2`b&M+ zO4-Qya_HYbI$rIDlR~>f`!Ad;7u1}2NgYT7fy6JEof(LV1014q_yI6kEnaw2tH=_D z5=EJ!Oi_dzJFpKEuqO7^qslS6yzrHs};LPQ|uZEE6JUxBQ=LeN3`12yQY#8 zQzV^@t2Vy8;QfnlG}le#*T&b$I9-m2KmsuAi5pW;S@9@~`F>Z7a8k;`&iQS68n)y2 zfZ~KUxLYrMd!!n)yy#~MII;bp6D2~**m|^frQc)uIg>2a-U}2t3?DK9outSrd(nC@ zd6w8{oARS>&gsVtNC|9~vW-XMJ~Ky6TSN-La8Ite{7^c`HZVQBBN$CieBji9d?6}b zKKgvo&nXP2Ub&Ul9&GDb>q{oQAVio;drJvBAblhst(z{#NzUK!v6eBJqYT-XngEV;&X zmQD=dSKK(ZM97Fb@WFGWyfgwlBvgUI>Syo8QGWyER0yKTZOO|ML@7yQ5ea+YebO9y zQZ5n}5;l0VT;T`xy7WG92Ga+#lb~8?A6K+r=0%fz5bV+mmn2v0sA}mg*EZEy;X*m0 zEUJ#2baXdLe%yyLL%E}{v$4lgZMsC6liC$DKV=!pG*O1;Nm<_JJ;*JP=O$sY?o@Q` z^%bkp$4&-PoHkG+OIbtJB-q9dlCqVHmh;dr9(lIZ zguiDmqrp0T3ehuSLHQZ=C(4mgQ(cJ8RqIl-{s{(Tkyz4@$`-j}pA0N&`|6Kzr72#! zSmc+!!Vitbhj_nq8mU840#xR>uoI8$)YHh$ahHU(CVR_v>CRq^j@EZ^BGJR9#P!I} zq%BQ`akdH@rDPM75u>?7>XyteZ2@DZLCHh2 zXup+ZQt8q>s>PU%A!YeWk3AWF;lu1v3W0Fd#1}eU;OH6`rf(e1u@X%;4`e=^y0*aj zR4rmsLh9H;qAkP5Lp#;6|L8LmF)>{>#rx6(vxqu6J5*@@XhSC&Wh3Ue{4(6{I3xCv zmfel9nk#NpRA(M#+m=LOg(HRapUo%ZA|WbRjzs6(XA>` zs(r&ZV~bFVznWgi5@*-;j8I5;ASRh5YWAFsI#Np>XQ(Hsc^u$|aY7cS9mZYs`8MtG zQ%M07QcB(mT_0p8@!ZGTYhh)>NZc24;guLGg1M*UySYA)(Ubvs z$Dwh%NS^)MtzqzhihW<4x}VuD{0O-W=%!F2YR^PesqQ!t<|I5#h)b~CzzH;w?52cF zWxk^d$xDy3q1>Gw$|X_E`k?CLzyaZYhFmpSUVB@04e3L$G zO`bhm|F5EI$&H)WifDCXuF=%CbyF#ando!=XPyos<=P+qdw-|Aw;8cYfO4@$U)utT zvaS~aT7EePLu9n3SQHLsBzT0~(bnd{>CRfaxFQnI*w0s=Gg@gClh;y+QrD7E<8nZt zS$r=oFG@Y0BPo+mQYC=>5OPE(Nud0w@XbLN=w4YJ~Nw#F(Sz20?7xVF00vF&)K4-OIN%U zE={nKHUAn9aK@c+%nwt6V|K|V*@IaB-33iPf&h|gIu2|DiN^G}n3GV4OF$av&|SpO z)*h5%#d)b5sfjct=wZfSwuG0Fq+0y&PDAk)L2kfrJ z50Y;umgRo}?d@bUq4Ro}Lt`K(qNd5q9HTa)&sZ*gAg)|Tu`(=2LRRkz8jJW4pi@Hd zkF=UthpH*)i78f&;Phv83j*aV8pPTAE`mprIHA@jL#sM5cceUwu6 zk5ZEm<|f*BfAnSqvlW2POu8sFsnl;Zj%p4c#F}C|$hdO~%pw*B+Q+x?o`NVLltcR) z{gd|AVTOl=d6zlP@lxrnXmi~m$YztCE}$cqWeev8km9lSx2GVd?=sJsr?W^AW3>-; z=n5AO=Ovf1PS7`rRo(JAaH)Mm1EV)Z|A7;C3>}a78=zBy#W=agx$Z7ql9-0?m^(x% z1?af*pb9C1Sv~}L1TA?3#lNlEgN893hs&iAo0;JF&W~ z_Z=t062e02X1b_rb!<%W2CBPrKG$G4CT|=(1@tHPg_A@l>DqyJP2sv6$f{F&oP`GkIi3mfZ}-C^%HRpKux-XxT;n|&QWH09jtTfhm(&Kp^!nuxify5pDvyM0>W!w*Q@km#F_Y1lb z+>I%-vfu8@m9IqV37@ys`=zgwXQKLx=h=GeJ>X#|23#Gig9ETu|LX2!*J1k=>;LnL zA^74nF`PUoZm~(OLZIe3Wzxx^=mF-&9my47XYLvWd_|q`!{`Wey*a)bJIpDNMjv0l z03ru_pU{&{p#mv2_G6LHkSnl-KpHHJXmB2Giyqamlj9L{Gt0lX#mtIrj1ZkeImOFU zn(aSMuR+zsz+WZwYZC#GUri~*(^$YsmY1fe;b!}@>2-3|aP?=Gm1#bBPc+Ad{^S@t zsIpOTZMJ#%5^s+PA%}Bk83)>GNS`S{q}WVIwetI6Y!UeZ31R*LYSK)|1zHPVj#zsc z8A=&AB8uNdEHT(n;%-6M?>`$=c;FQHis<-OrIiVTa>uM86qEANzZ2V&RlF>zcOLUo zK#ZOaqv0STUCvi1M2B$~eva4D_KqhJ=g%_9I^K7*hFR~*>;;l_jxjWuMGCp0F^Qfx zIyL2zzC><3!(H?`*BEz(BThr4nZ&Y4FXCgLs-G3*aL7BQnC46M44;cfYCqrfIX$a< z_1xz0r6(FATNgJEPOj}fQg1^M7&O6B#Q2k1t$9_5jK#%FIt2{T1MDDxCv7Z z$+a9u3oQw+R@~Xy#$!?-7j&rR7FlyI!lmf8DpzOIKy1Z?#U&vTGH_>m<+zU)sS|v=E8+4U+5LA z`8+r@y27SXcE8rIX7~CN-Clq3yVjpnRxWp(w~qEFj9EnFXot&J$hw1}xTl>!bBYmb zMsYu^bHoLM6d+yBBPSroBwnea@=aE+M(+fi>@$pJFQky4f-5)m$9Rf0=uA4o$)&ZAAm z8ppLB)v}%AYmLH2{)o>FEBgo*O|-o8B3fp9DR~cinI6BYg)?zoaxy|+;~WXPM!x**%+N%OyOOLS0oyAuUf?g3z^LVSa{6= zV;V@;M3YTFt$S$d?K=4hkjbP8*ZcoNT0?#Mtahe!4*jcwEL!`w+;i@rY}t1sXcB=! z_oW4$jEI~Je}eg9OmP82&@s{YWq(haej0zM#}~tr%^u-f5KphbG?JwnzeXsll3`)+ zW2Erkz~#4Ax}r1i{lV(t^Wzv-jhmXu8VMS<&4+@AwLI9@Z!T1fOevumJ_y89_tjM$ z(cvvG)#dQbZNzKwe>t0?@ql-4Y``poq@{$g8FSi4i3yB z2N1IwQ8WZbSHqki8PdYiz0a=!vUCvd-ApYjg^m=PLKOZ{?YZu|_|s;L z=RtK-{0B~0-Ng{e+YE7<16dk$NkQc0;^p~*={`L3S{R0GBD!<@QesqEB&2+WR~(g^ zS_VsP>q%cnYss!ib{U}W5FQaSA=5h2lq&_+6jik>r;Fn7VX5TZuERwq#l;l+R4w|% zt+V`#Pn7Xk8nH;bV%Uh2;z!q`?b0w9jfa{h%~H?h)1vHM!IGhD%v=I8AevtU2@+!H3L@oOs9R$Qjdgbu2n*rjzVW%N0u5zthvE3=Hif-QM(APw1 zxZAsjE5Pc#VI0bSE^pym>ZOzlL?-!_JuYyshJ|IAPF~Tmv0c*Ug$NvLW7y(P66w;7 zZ;`o_5=gMb^92jE)EDq+S#aSrQ?P3`g5nD~u_}>6)dhs;Mlze(hoyCqdKYfQdNnvP}wUfe712!@zKg(NWW?869k_ol9xR*JZCTwa)jw8+`2qhOHQiqZGZB4NuHEK_yJ3 zbuY2u$&|nFk7H!W+kV@U>atVQ6g2r9{D?Ob+8_BHu%>^i6`-8J56wEExQVUPIsKPX z*Nj^c*nHe`Z7y%Fb4!v;T(SpR|^M~<=Jw6?7qp!GTyfY z!E7T4WI93;uTt88dY&!TQh61mh9kYSZ|hGPA2j%X-z#<=ZWS=M{~&%XNlr-$+skQ8 ztADhAC|&5n31#%Vv0}9RM&veBq7*j!iTk1b$AZ)6du%_-Eyhmga-2<1RYOxFC_9ir z0j-0l`<9ei#Sxkfxxe;nT;Z{~W32-8Z}4}K%@yw{9s~NYWQN+9FRiFxJ&K?M)7m!` zq5Li-VKy25PCkBR{rdvz(>EZ&?X%LSOFWb$rekk6Wi3^ad)|!s{#ix(HK=b9#>7nN z#)&E7$w2#U-UXu{`Y?BI{*Uq*m{ZqheM@%jt^|ZFC>riXzkSGmsIejaiwNKNBgF6JUjBPku(6WS&UtS5zd$SR!~>WJ9-ZU0cYAS{_@ zaG^FLHg~|%rTJ$#PdKj-Ym{4=5o;h#QcBg4m!~02em3on;Cf2s8Tv^^rI{;utw|(% zKM%E|(Izhyw;lImJ4>E^-}1b}ve~pvbR+8JsUXvLAeCOEvV|8cPS`&~<4>*?`cW#V zlx)oSVD$!?mP{Ub&s9O9$)&+k5{ZHsRuEE^BleoeM2a$B>32MD2 zuibwiNBL$}o$rx7T7y{AnU@fZ&ka8Bvaz;YHYEcTQ%+CO^|x%TP3jU8a}P2&5`H3; z`4b^*)a1t*YtVXrv(7H2DKTiKh@dX<+OQ8gc2_lQHLa$V;#WqSqQxb3%8&N6Ed@7* zSK?&B6Ib#k&AN`4f#D>jZe>98fu#Qd^Su|z#y8lZ{RO0}F}*!>p@xS^=&0n#1&i6w zhH+>X_v@@vRNzgw2REXA(PL)E{Nv!XIN1u#C-K}Iy}c> zO_sp$@*27NoDUq6b4G()zCw1RJHYV1l!7E*YIU%#7PzMWEt{LZ-cH-<{-kYtYApK0 z;{^tM+$z1kE>X`%`~sBMd5D5l=Tb(-j{YQ#FmJkz~BsOxb-N>oMD zK=UDQL9A!?0RO`N*U_1xGbop$x~tPSO4OeV($jyHgCd*ykjkzT5Uhug zdgAReaR`Y*q8fcVeoD(iK%$epg;%0;l!r!K_#;q;hqV?EN!&m1fFT6F7x1y*@7)zJ zl1$j#>-Ou}l!J(qB*UthSzOhziZ74_&q%mL>sQ-V9N!rdw;SCd^+?_)`53N?+mn>i zewNpbCWl`A1B*p^d;dK-Plv;O-StmY0RLq)xV00|VQRBI*y+Cq`?i`dT_z>NP&b8l zDOd!G+)V)8g9Cp(fL_@EOJ)BHzjuJK6L7t`su~ZxP%EE&uib8N}px67UeT6E}bPkLO-g!V_9&YE;miL)3K* z)0N~`KEGDf0SRMC&K#Y*uDG$RUB83CZ#V87|GlNsA390|9Vzos;2k2zK7b$WN3ai& zLffavTsVaWO*1(Jc?E!s%gj)!vwk#Iu=Dp^5&UD5EizFMj0(HXtqX5dfTOSGln3B_ zvdTc-1b5IBF8g$a-UD^v@&DcXQd?C3KnddWo6SveoPMY|jEb2);Va?U7eZ|&Y?sgK z_Q&i(We*_-+sUNC-+asj1fBHQ&!)<$yJqS0Up7s*D3XH%oYSom4yTpxynDW-(?o)+ zpIGkLdgz?+ZG1$iw|aevb}qIQz@+fPg)yA8Hx+m<*Wx&xyi=z= zXGE|(6dNZl0YTr>akLyflT_{OPSo7cPLaNT@qfb1-Jidf`FS|cYj(Ke_-tbH)xn{j z(uyDFF|N@u83^Dd*Cg;_?pK3JoeWyGqKphWb{W=cc zerq+7cYGFi>%%evl@17Mk%d)^FdD!m8PP73d!Kl`2|0;A^ZgpU8!QgbB@ck9L`l1+ zNY&BQKy z%ULNftnk-RWp>Z*@*@5KjES&Q9-?_}ion(^zRb&C-SuuW5dd1@yCJVn^zFz^u}zLu z?3&wLSWBc?yDx@w`~8H&XK-p`yP^s}zUYx%l`f^5-&6!HGt{ZCXtMh<;|M(NFGf!# zK;uax;}-pJK5b{f<-+PC;1hbw4srcVV)*p@p4l^hla~H`OidXcGhmyX@eZM0Y~gAV z5Z%tf|GTpsi72J2=fv9*?Yaw)3i<;;y}d1)ggO0j!F~7Z`+|UdZwxoZ9m_02Zu;T- z|JvG8!#cufMlE0fflPzI(VGd^?RQ-$vlSWD<)gO-lGO}gKq|CacNYcsQoKV58+A7p z5N;*1QT$N;cjw#QMgEr%@xO!!SXuu|h}aPs|CbQ)zl4bYBOwAWO$6shFRlO}gQGWY zPOY3NF7v2+i9)hZqCPO9AwV?+Jy$zi0%2QPApr5S`Ilt1I|Az?H5H6QWwKf{0>|dv zzaX_^r{KY!JqF2hM$=yt0jzaEK|uVnwTV?1eUD{|l7R8$0V91R2Zo9k6_8G8pINmR z0o+%#Tp8J;)y_l6-pvmZ^yC_Y4WM<$Ko#eU4EqP>}> zz?0_hH{qIgCdzB-*RKG;--(L}4h;=G&m=MieEO7cu|>oAGDlUs9uYc0&Nxku?x9y% zG*{zl(WQyHERzhCvO;qMkAKsFv$}TwZC~(uFR02r-9L)(6L;n{G+Z7pgB#5z?yLBj zl3CYQ831Z9CZU+m)CV;R9$Dr7ZcKo=`A1p`^$fI0)bLS%}PCft@ zkc(*(`Re;*+fZo5x4}=BJp51v+ukW83$wHw^WE_tj%8LN3E72O;1wWhRP9NSj9M>` z{o7qWbegE*A_fG?Dy>uW#Dq`k6}Z0`{No<9E`2)d%*14Y>_|Ij{na*6&O zZ&MXyc~%|-HpH}(8^t?>omt|u@UQVmq9|md_2?uJzA&r&_^v@XszG+*2E)TEW)?sJ zaVox_0}!2mna}_JGCUc=t0*5D`I}A2g|L4wKX?11fqN{|9dbt?09D%dP;#6o#6!>s zWa`U;!-NIG)EyEnVAxHvnMZQ(1vmIrsWX*#)Jovi-$#!0{E1a+FCpKCUvaNbV^k6Y zI@&WI8pt~Fr{KzkSI^&1**Vo*5&Cui9oye}Qr7U>os6aT|8#({k0C0;Bfbof7xA%! z(}mA68*~>JM-W{gz%Cl3WT11pCNBItvBFI7b^S4hj#;HTe1K~l?5R0 zdi#Eud}5%e#EdzqZs&+l(|^{l3jJ{zQw}sksi% ze{AEt$%ddpmmm;_f&ps?!eCzk2N`cb^u83Y96L!CfHx~3p1gkk&wUZFaH}v&*55{5 zYR-y{4O>B-W)z)tSG8-{Tq17&lPBI-cv!p0KxkyAAors%xJ43ZTyDp z5~EhoR?-Cj$H;lvDBwao&UE1%GJXr@a51N-{HW@m%*xFwBbH_Wb-X+au5MaO0A3FP zJ3ra2x&cz<@awdzw~;=C-Bf_4ZTSQ0xOI)3j(NKx7xj!AU-X_O0|r+J%pQ4TQa@U} zz*>F>_5YT)={g>zx~syLk|MG&r+?G0cEp!$!e*WsR6bZr?_P|im<7Xw7%W$CJC1yC z1q~V;DGFCyQK=(p90Rt^a;z)N3ul zz44cEZ8XcE;^7oAxh~dgr=FI!dkrA&9zm++5Kvy)16@VjjHFp@fR8Ty^)Wea6+pTz zA$mE^N7I$pJ|POGy=MU8e_>!$Oapp(%B1H)UOsUS1A0LSQd7d2Dd{>0*jYQLdFtR~ zZ1B{AP=z3tGAWQJN}=v^AP;cvGbNaVrU848($_ARQ$(F0jl_glZxf4#Umd?r2xyIF z9cftTmYtwN5R_8VeKcP5{&Xiv^Nzx%J|cAdyLEsPQ*E{*6;M=P2ALW$;NpMRV1 zA%ku>zeucTaot5h!m&!kn=<7=0C?lkZt zF8T!MFD8A7RJTKrh+-5VFL5*tOq0q28S)PaKQi4L=^2N)3~1!Ue*dS?iE?F9F)5)V z+Mw~eiC9=WT*<}=Q84hv(GPC@=)D;V??IN7(VyVA=ARDE+=iA0RfH>I$Lqje+$xV2``tgIEO+VuPjj?Jkq38tRc=V`{g%%(fESv@2Xn(KTUU`1rRf$P*OZ+q9`#dLE?0H5;ePS8v>OzM4xRA?6b zqZfCylvLwCXp0 zS#i1roieNJm0``O^0OWB9v%G2Qg*K@+^nR`FWYA7%M9JAItsA4;whvNd>+#||McuG z**C~nA0vetsYqmVv=}I+yL$;yV872`$N`+p=*SoFpWBD@C zKhKZX5qd2#!dmUU|L$dod=oNwmt;QNtG&J&I&$W^C>vO&3HX`54A$2Hot!zyf8ANV z5$BEuwU#I2zy)!9PgfYb#C9j$5v}Q0sn@H}9UV3ES8K1*oP12>jn+GtaSQjay`eyQ zZR2n5tulc@OwiTn(vJFpD?h5|;>Kj^&JDSUf7gR~goFqFv;) zAp(e;eEi}_RH#mX>JN8N?^!<6v?$qFc?khtTO^s6zWVrA;JftZt4=8lpf?|L_Nl~Y zi|*H_`xoW>r8bpKRzve=>@hs&qq%+*pV!W7oyk+V_dTv;WNrOC$FqEu{@!R+1Am!o z7ZpmYKlbS=2!89U`sIDGW*E8v2StSK*R+y(L1RsS#KrH7LdM9QlD4r2y(fD=#N@B8 zwmM!c@fTk_38LZp|3R1vMiIyNKhw)cG(mP za$CoR7!0#pq#}|%?ca?qOuzy>bQSD>+x9l5ewu{+uI+FguWpRi6Z#9NCe*|n12;$6 zK5W|C^@$r_jSlq8CHJ<^^18f0w;$9>bbMwV^;Us*UUCn!iNb8y)h^MB>92^9G9aMj zrA6kTqpDZs{_k0#F!YuVf3*JdfYbu57f+~lxag(Vc$ItUAaRI}!|5t567I~DAz;k6 zv9B<#NF#mvC$bS1U2b~9)T^cByxgTV;XcwTX|g_jZQaqw??cwQD5J%w0Hq}T&0ZOmG}{QeMIe&nkMb$){mLC3#mSDczq7OW1}LSyQ?%Kel^Cs8_b}e&lDkc=#=Id zFQE?*psDy@4Jzyn=p~rrJ-Qdg8RJGD(-HTB4fE8Z{3_83i|`Y(ENaoPx2v0grJ_RA zz}G2R_Gdu0qmnsb?fIN>+3T~}#>L}wG}F|6`$yhiWB*FO%K4dMTv5zaV1R0&pevN) z`DWx#<{1y#Op{id0g5?XE_BP zsjp5deHOCL=&j}~d+kK&&9(mi8Fa^=|M;qZz2vz($*R)l9K?NZWcn^H?gw30@>{#Z zD`b*^;wava50BgL$;oCsEPkOe{43h6=HROHmMpgHGUxld8~0YLXCB{Yn@I;=6m~&# zvfVjCbtIqqbZ=v_4DP;+)@e}4`me6>Z8fCEjv0flxp1_V(O*Y~@WE<9Vp?3cxH#-* z)ic%MtVEMd0G+MuhKgF1uQ6yqu5^_<{UjP==vDo7<3LyYXM6#aM(sWu+%B*>?EdDLRA90`C;Kwn^$Wz1@>+1Cz4+Kv}Vrv0cmE<0XK8$ zy@_yo}H{nAIF-ShH!HZLZzJPHse+ zU?$P%@hjVpt+AS8@xAqD-*Mf(*kdWv zcOQk()|eNj=)UJ^jVE$+xqEcvol2Kdf+wRU-H7H*gH=0DR2O1SRu zp5=An{ca8F*Jj7m$u-K=xipTc6Evi_ny}X&!TUN=!sdKcapDAo81B=F1#Y z2b=b5sHh9P1%I*}H66v07vIt$J$4C2Ji1eWsik>`%K@c|V{AlIVb1$0SGw7tXAZdZXm9Wd{ z_k2D~`3h}f)0}0u8hSYAe7{fA4!hI!JmEPPRKNADbU8J=Q-q|Ih+fHuMqiJoeA+qQ zc=ldzzqGG_>kXrH<{#4vBk$y++@Koq{gs0v#R1)0KlhaZ6V%5f>lCX1Z{URb3fE`; z^Vj9dspuQllv|I5%ZE=mdEZ4mk-n>c89~}?h+_6Pt}dPN{c^Ex%hydNT=dYcgvd2z z!KzZbK=oe`Zk!!LWIpSTue$Uq2U>Zv#<}1hleasCIyQhZQ0y6fSPXm z)R7`jHchK=fYk7FMvBrL(=@F*r}aHAX4yvn@V9j>%C1ep6w7QqKv1%kx?0H?dM zUT<2b^l{zuv1XCCL@j2kXtQ)h;RCLt^Aw}*?uW~ zxjK6JmnNXam9Ody*42FHG#^hMvfMdeA;0QOM0VzbI)CrX(oKWWvTxAD>df~0#1+}Y zkCKG)>aX*D2T0cYW?QiOJM^8)fllwl6kE$VeFMQVB~aJj$}M`j()kS)JIgsqyiC%# ze_1){;Dcv!(`q-=pXoPIXOmBv(zl@6QGw*^yv;Z_LEZzYx6lvJ(+IQcNf!_#&x+Z` zeT!O3BoWriC?8Uv>R(A(=FwQzy>%e`3>$9Yy+2u#!O!num;9({`~|uwYITe+j)nZ% zaf-o9z`6tc!_OqxEM{2J&vQV=uoiYM{*ccdZcRvuP(%&ez zSo5*u1U9nMl%zL_gC3MzHhR2FvM31v1$EGNqtZb~S220S>M@3_`Rlhb1laaDuPIMn z+h0r4Of8@-mFxTU!}A8M=0&E}qc~+3y$!?6D36Q=HYuPJyR7T^(Ph{_=8K@BrmPK_ zaQduR-qsR)q(*2Lu$7{huD<`a@q$VP&R zS04e=g8NOzaSKmFV;tjGx{vC1&m7Lop0y4m7RA|7iz|ED=H2X>xydS)lvTlh1apQ5 zJq=O=2WD>hMuU21!>=<-_1s+{E(=^{;^)uk5j(Q6W!$jLz*SwlIat3QlVJnWk2F_^ zLo0{xZ@1}p6sJPfv!*R0M5T40<&aiBpOW;! z<0-@rH0St;>`Al2B&NwHNnSd!%D9K~j3Vmf+IfkM21x?JP~q-MJ;vM=t}4o&l7lLb zx9b%l;vjQW@cWdr)I-J@l0k~2^6yP$^^2~_%q!U`V3dhiWx!$WPN~FArGVM2uxyG5 zO5Ketm3;zS!snK7EncLJUnzS5Xw?Kz>I({$ok=BC}}##;k$ zD`L#z4&&juzQ`A}YWbBu2)cz`st7eHmWuL2Cq3)?8ADKN}_6Ts&M;*>hy3%9`*eg#xx@2Fbire~>9dL|@w4%b6wL?M8K2=R zwKyZ3pQ&x$T$4S=w<6f3zj29Z{j|i{tj0zT2IdRQ3~tX)O!odHxy#g8%gi90!Q^E( zs9$5%-ymk@$@Z&81-lruE^PB{-3oldJ~|rXS=S7B&Wdlo+J)GGMoKkODjAFXonE#Y zdJP!KKF`dR$tKUfqJYXp6_^XKYM4q0=UKJH@?DMV4q4I~b_Xb|7QL2Gi1IZ{^A#&p2c^F0UW)8v2Z)ay6yp&Nq}M{F z`)2qD)M~#{KCXOxz{X0gy6ygnEDU0dA{c%dlyqH_G>?H@8p ztD0OS8vp#u4_3qJiwhSU9s2k}OoZ8R*w&nyM{+Ov(5j0Z@!M~BY2uB-Eh8g(p`7?6 zvlUPDJt~)n>#`N6^qC{5Dj!nqCw=|Res~yvcF!A?Vgd7?-ZyaiRC|Md4vu&SIGtb# zP5wGa){;%S_U-hH2V}$~XgprMy z5{G`~C;1l9AFi*kQtKGUy+BK!SG*jwC@I|MkBRLm4@?{vD3v&BaVB1MR_n}pz3-Q# z`KzOhpEoq$3b9yr`0QzHsBIY}teM<#=`ud;1G;Fw1^t{)=c#Zvt|01M>yqO>Pe#?D zAB57B$Ft`Pdw%xR$3cfE6RZHj#)%&ie=3jq(bw>I1@Xy-%SLc$xSIp7)uDlYn{+fy+$L{>M%#X_H zZz?gu>F=K&`e?#%Q2&+;@xqggO?L)yN=kcu{@g@7hLoQtDKDKug+DT}-Cbwsh7SL^ zT>A8IV-kMJ;MCi$1s;JBd3DT5YIZ_o`>aK{9NW1dun549Yue`3zS-BD** zV*N6hsVP-IrL09xJ)|shk9MLNg^!iBr#8de98}1cvuuhPSIV~O0r1nH5 zb}KT1(~_`sLXMPplO^calW2W`v=f^e6CIiI&G8m@s6O8tG>av5;E=d=@wUycUb}1G z7?`tFR;zojG?(C82zD7gjVcyFKfa&btYds=dF8RHzqk(hPqxYyywu@>8%IdC!fw^8 zCsb@~{$$OKYG;ySzj@u8p_P@CO^45qvbg(^y7be{ny0Hr(KKfU>rzE82ClZtXLNb}z9 z5mZ@@$nO>N9V_v&VmD!y`V}@{<|q5Wg~yv7uZl0clm2(n|GoNKqv8GRf65~+EQ+%#RkhLK=aGv0307z~B)@l& zg>aec@C)!87%>!+%L(ViKUT(kWOZqpYavrFWNk;RIbe)t(a^ zuFi z$*Z8S@t1lSH#i-obn(@mRj`EVUst!(DU%3qJ8{}~c)IwT#Y*=%)+ECfJfr-)r!whX z>iiMMr{88$;#Te#xjJON+OsyslC)CF7UhNapMUuBfx2HSnT0JuB{chMXj4B#8(EB8p^`JmerbiG-1iN|2n>5G7{> zfg$tXcK3bX-Tl7rod29Xdj@2>Z+G9Wdg`gCsqQ@ zVnC}pW1(gCq3mmwMj?B*AbWo*W%7zdS0W7QO2hZ4IMa%yG7>NcQ*2U4?N(Z!l*z7H zRz!I&FfYU3_-2XH7$2OC&K`-0@~(H&uK z2A=mk*7>fCS)|>BesH>MgZ`%E^2sh3e6* zG~=6Dq+gmH^cc(Gp+g=#?8q`f;ZXbgS)?SX@8t4$Xw+EjXkD5~R1-e=S+Scn=vm7N zmw)S`E&`=H{Fx-*ViBhs)>27&?2|AdzL}yx3v#ydxL`GVdks=U9`^m?NB7w1|8x32 zb8H?^@>wDH!2nbFZk%TSjF3$a9TRY#2wKaZ~iWjb8& znH9y-!YSs&dh`98U>nfW$q7tb;@j>bEm3S7-r$?7JVX9abXQkN7aHt751y;)ZMJxp zL}ez&_o^SX02{U1B3TC=`OaAvlGLpmS^9`4iqP%=KMVF3_Sib&fb~?e#Baa(?|Pan z$o_o4gH6vE5coKKAbsdkh_|qhBFs#Bx3j=L|6o6W@)7_dLA`?PJh$N&%JdISl;|Iu z^axU>YH_^PO_4KEZTx=e+)#mKhVQX63vugZoI}vE?**UeP&M^JDR|xE?tbMNk=#dZ z3^o*>Hj8t^g4Jy)m5*Tfr(9TmD423rCHG%Y8f7Qnu+s{0y9wkI1@JP7SWT$g$ObHb zUC}IjdlRQn>&F{fg+0zCR*n(yhEXo7J3!gr!fBMMNPpS)tV+?S*xUuLHp@lvVK0%k zj_8P_AD!kH!$JKY?RK+a%95pHzN%Zl=mK|nej(SNf<&4-NDVxzeHM}1(}?imyttV) zp#Q3K^uL(!FZYo6+dYW? zd;k2Gh9>hsXM5i1=m(8 zYkr9qZ+^<^wl%RzQDXBSN^B`ZFn-sU`c||@^PlG<>?2*GleA{cr+4%fC}-Z|Bsi?_ z7#CCIq62-tN?XcM7YF`$tH8unT&Nzr#k~D|DDmu01wDr-&&^?;4tPOt0yEokhiw64 zq#5(uf#T%L<-~(G2lLG1CbRe(84oFQ5TJn0Ukz9Vk1vN)J&$uO||69$-~@tgB1 zK5|e4y!m|pcu?humf1r_9}=C7v~+XrRK;Riw=SN|nQ5jKL*V5dpP@kk;JDQx4?9U< zkb%`Vk{&x&-ELwgUn9UY6(>?zAMmIbhbcFdCbTP_exhxAK>qsNsAV<@w`6w+iktII%qvSR+DlMUx zCC7FCwiEm!AGB3>#5l4NbTha4`nqy;(!Jg(;a!zdp1`!)vim!)x6f^xV{( za_!`tC}6_dyDqwtelYd{-MVIMuBA_#ata{g`LJuBTN6C&Ly7Eg|CYDn9S|rl^5Fiijfg1W{NrN6w%6Y- z$@OO7j7$BBQnH4LuG?vu5u34R;{0fuHLoQUt1?nh3#1z^`;H=1bB$P=T$4EJ@^t78 zQLYLucl*Gh_oU;BHlgByy({fzM~Aw0z^98u(`A>WX-{!Wt*_EXWgQQnO|p~e7F)@S zoosnFPE>GD#M>Knjw`TiPz^$~SzMuW?Pk?83FVtv(fQvbU4PMMtq_g6xLTrG96SX0{-+?7GiXlvkya zK8?UkSzGOR%@n9uB_iv+(YCn)vSd%b`*!A4T%4Z>xr7TV+~Ykdwj$tVCrJ_invRR) zW%nBL-y~~0h3PV$6F=|LWlAors=g2Tpp5wK!2j9&1%T;nLAT(x)FTy73|a59>r!XS z!FAtj?@wfk`LyhAy^}zhaJ7||=9IdEZYCA6d_}2WbWNWkAGCKU7VxI22k$&=3|$R= z(qvkT^&D|aY8@wEvTdjt*AhF(cgP_t3huPo*7Vt&*H*3(W)g~&_6wtu_UkmQ*FWKZ z=ae>Gh2$m9$`sPH?jncI~2@VvQGlRLJTjeydoeaxDt} z^JkV<`=bciY%u1keH~S#e`L_oKR;JB;Z%$CSr+YB-z{A?p8*kWlWHLms_u>I!~Y7!;^kLQUF6F`1DYx}wJU-K-6KP1K~CYVutS`flg zV0lcU5;TiT&-k9o;x*4)C6$R4S-g7iJGle~J01#>NuT(ivS9^nH@gJck@ZYSbxK^_N7bvm5O6qfC|m=2CQjf#cLkUz%Dx1ZfRTb%=QMQ zUvG6tr+$i|%3(gyMD$8hVQoAT&~-|~+ut0#bj}U-@{>D@d<;JuaXa{%^V~pw7{wmX z-P$J&8{%~-4r#P6tmYx(`Ifhr00Deej`wa_R*W2$gKj>78Hzie#tL+-wr z;q*mqYVv@B5V90lYDGu%txcbzn3fp+i9F`EwDEwtn_)ZN0`YcW)Q1Pi6y6|~pDmSZ5z}WDpxlF5ZJGLzM zwQXkPc$L)Qm+NR)1*p_)K*YV16=oPC4#qcV_P}Fh6u=6#>2a_~vN{^SoRN~g2bk~iMknCEY)lYfPWDQ9IOH~$tZE)f4| zSK6ziRNOvcF}#Y4Bs2bWT(@0zVb#I=8)ttDW?+d{r03^eeP8)o|@vOO%hf8BAg zsqSpNRPts(OhY1KP3M~Ct;X}T1}kkX>Oft|K~L-o(l-p>XZE3nG5j~JZY@y;vQ&mN z8t7kTirUW8PK)y{O4WW7G2d_Ys6;SL}t_ zaEA+_0BgF4@zPxdrK7K9!oFTjRg1Jo-*;v{*$HGCIM-KZJxKA{ZRbS&xXso7GT~)H zWJ2(Ye#lJxj>i2M#l_Z+Z#_Eq_nnW5cJu12G*a9w@?7Z(HboncQ-8r1q`acG;OKZn z=bMAJgvHMrZDj-9ryJg5TGPL1PoDO`(%7#lFPbi&RF)!&YZsza5;NAo7$v(JlQNHu zEOs9D@DPhCvj0SFe@2hoY5>gXj}1d+r0&I;ZRQ_O+RN7o`d-tQ{vtPfn_WVnVwG|v z>5>!o`JjBxt=XoLOZ{z-+UF`nBU=Ht7}878g0$+Z>h1%D4 za0YD>{U8N90%^Gf{rvWmD?1(cBs)XI=)NXomr5i?j0qF~)RFhlO6+gYQtwY_X~d{4 z^|hHOn%}MueY-|-IK4XeSXI(G`}!FdN9S>J?`ZQigz!Z9)Ed{S7!TQsJrB+b-w`S^ zGOyI8$w;bSa#N+ajh2deG*V+9<71N6WnE{Tb{u(ZaG-~Ca_}VkMzr$Y@M-OFl)V{6 z)<7cuB8K5-B<`u|wKb^cYpQ0#Q%dMnIkyrr}2^xI(7CRU~TLzw>ghc49uwG>Dq9u>tEPed% zBo*+RO}dcnc@od?-^GBm;(7^a5OF|>qhevOdm2E0YU&9z%~kN&d$Fp`{}=n3aPK$e z!LLUmMx{uTHDF)QK?E^inJbDp0oa!tJ-G0+iPQk*iE}&A1^PqA1`~>v{k0vY(JT@j-B+=iZbh$qt zTkw@J0+BKB*cN0KxuM6F@^Uz)h|Y;6+vIfarX%^z*}+7q*h+dp4d{jE4jQzbJ=7tl z7ym*Ti)XvA{4Z>3%kbNiSU{d6_7NtmY1{AOWD5iwt3bAwZT0ZeiviGmdWh4cp{_h} z;Et+tUu)h_`K8X)zahyBfN#O1+aq&I39ug(dif0q{fQHPT6xY~$b9?IM z{X=C;3zx~H#90UHl)-h$s)-*d+j^xZU9JC%aBkzqr8d32hOQJln?-qeZ&vIN(04J? zeF2?g&}XZU{OpFC^2l#hjhThYi@(~iO9b%{f47d%G6gmRcRnti&qDuJ=uN}Pz0#Bm zTT4tF96cH*R+84%rOKXl%ky8`e}P1JiB`;m-Z*=k?$h#tx%W>XrZ@LIT8#IE8nJsG zj9YuspNzGk$v(u*y##U4m9=qe{4Uwq%EpWO+Mk&!HCMSBD!dWpjx|h@PxVn38QV$A zgI;2Pix^Gy@i$IJ9BU9WHIAq=?Ig9%yF?yzfGK@*mtJ25TbuC7YluOfggp&=s!f0_ z72o~NG^NvcJiG-oZVqNdUs{>oY5d7AC@9XpZ=*BF_BI;XE0v8DtF$!{Yjo`G-@I*b ztVMW^S4~*f?xeh?${HZWRd_~)9W6b(T^Ocp7#45hB9EGn5G!%z zNu8nvQBm~M6_M7z?=X+sAHU!kq5Lnj>ksm~EVa-+zq%FAgBB%ux~tEx`-6LxRY)Fd zrlqU}A&90!;^#oaSj$mzXgAmhiM+Rp;C#<#b|O5(da;%s{);VB zlvdrxBYk|Bm_IK&h~M%mfcC#qua1XZ^#tB~^uM=A+K+&n9U2uq1$u_f&>d9)jk0H$ zGL2(}Its|SF*jj7J}LMsI`s!=`|jW3ZFfkajRF(twS~qlqPt4auuJ;13rh%ohM)8Mc zm_}e!LTubz2W&|a8FQnR8SdltXv(gzSl?($*+@^_mbcV9LKIiV^b_DP`1M9P6lwnX z=5kAbH#afW9?3`G{~ii4KM0qX{e4UDu>Ay*xZWaP&BEE|&Q&6|2aRo~6|T=!q|;%_ zmG&3YKr}b8W(aex)QHC{aqzHrE3*FPPMcPsQ;NooYy9&XrSb1U3Dv6^vAu!Pk>GEJ zvO-fd|9+7+98=t^`OsrD&}*NssR$j8A=ahAhMsvYFPol{Ef}fbki){7J&c?NzLW-i z^g9~62PM-Wv-mH!`?@I)TFLLA4Mqi?ch1JECHKE?&XI>r9YSHsbiu-NL1e8sg;ucTts&-(;V&N3#37r1}=zqnR zXvkGM<}Hdb^x=SW?9VbT-}t);1!r%K0@rWurRVw>;5bbMaHPAn=_3D*MS>v@(rj38 z%Lf16eQ+}<;yn+5CH-d#LmqsY@%<>Y4|M$?)9&X`zWDcD@%vwB!Pm7F*&46<(}8W9 z-*!_fm+qfO`uG9*vc~DS7uW-jpl2O@HDwUEo4@CBDaF7Ag-@}xW4&p54qc{riEISp z-z+M)vFXq%)@B5Hslda%Ckd@P&Fg^jpJyY+24{#72FFf_2Die^tUc*p*TwL08obsO z(#6MpfmKM*7O8mf=YI`#%4Dwtk2>aKBfc4c(K3Nbrqc@7w>KQeyb% z3$5Gt$ZDN|y9}2y_I~w3lr{=&SGWZVgtj7p4+)k?yLEU-`uuEvv=*|{!$d-pA2l^) zOoworbz2fCCrkr~^lA5fKh^t^QHJsHXqSyRvx}VUKaiHx+L1SJ#!DV;6Cbq#nKR`8B3JlVpwUWmb(A(=Wyfa3${tq}C=k8IjuLUi7+RMId zRgS#FX;Q=)>-EGjLTUy{h&`-8X3y_quF$`G6N8ojYSby&>k>nb_4^~LnB$>b$w~{q zb&!JCs_dPXF$HCWml}S);i`ZfP?Z4~ID?vcHc@;ac4UcPMC1?3JMw=+JN5Q8Bd3RV z8My7RZ;j7wl=_|7>$t=zEa%;|_TEaF+W=KjD-h<2>veysA!8bY>z>(?plkj(>aY9K zWJ;rY0xQbCM~5YYZ1jj$pp2FLh3s_)3!%H%xC>rcdfcG7i=(uQal}rj$p&SNjR|N> z<0YjgXdLT}kNV%B!K(Cq`-`8hz3N3J^=mr$KkH8E4}+B zMSKWQQfrXx71mKZyg#v#3-G_yE#tku2jxysg0HL!0G9pB(mn3#_%>P9 z&eMJuXWepJ)73!BB|q-@Y=8?pQsO{2R3MPb#p=y)ObgSjb4q`rG&Ex!RRciS{b?+V zN572_4tAvY?!&=)8J%nCvNWm}#7}ALpAjF;m6MZDq-X@qMNwH^6rZFIHt1UShOgkS+d4{$vw#rVr zTm9MGotiosR2MmV_DWzXC{Oy{O5VVF5mwS$aqEg~vT*cZgve5YTCzN4a$KR9q>NAAv8vTm_*P(gzq8S z?AJwN;0aknAY&w%g{U4y9DbvZ!1Bo~nYFl8q&IgQTyUPD>)q=;%|~@PEi3sBw$S8L z*-$MEu`NQ|z~Z-3Sh+sjqw^oA4I7 z<-L-%V&{kR%ZC=zSNuJgp3a90RSEN5oj0dH(G9K4)<-)}^)S!SSz}9`??f6T^R&W~ zk?jePk@^W*nZH9Ux&F^ESDSRC5}IxUG0xLx9c@id=j zw9Upe?1Vd42xk=z>=J#>0ho#4boR28P4q;u@|~Uq{>UX|0)KT^s?Owk}rk>oL9nN#>`GN?1$e07pqZc$M$XTk@=d8^%LC z;-Kko>(5Ns4+g*qyt(N?_y|xNJau<8UpxfhfAvkb?VsSk3qk^T^1ix}5QK<)TD~d- zJmspY@NVS39DpbLxPnOtGT>FGUo&0kK7#(}ktv&dIXKA5o6aYX*uX#K{HlqV*8}H? z(6Ky@0Owh)&6$6$0KD})9NAzFQm4lytDjTV!<6S=Sh^bi2^O*-vKC^)3Yox%wUq_W zEN1ZGj;)o!FUVI*@_PBjKv%`mO%xqCTEeCr^00X)ebJDik@`ifXQ_JZz zAzZNf2Kn_HIMWrbHOf>FcAGy}&-wWdpog!aqJg;}u}5hfb64U6SnS@{rHVfRr4@u% z0~n=>6u}XS6+e&fC4t}UvEDjrdjYNP1$I(*Lok2}&R^gA6|q5o#P*S_W*m?VdtVnn z=0fOa(95W8rwA;wt&kVd2F|l*H0UCp1#bRM0c?f`+!Vy9yJ7Dgg>094UXhYNcZ)i7 zfe?W`41Mr$->p@LVuBd{^5P?CP4vh*DP`!YqO7U}=)oOcVjAqlm}{*qd-Uo>-o;YL z282k)FevzL5CeXymMKEm3>GQ)R-hdhf)86DlGsiK1!7xZ5}=(2XjGiMpxIFt$>0yB z6n$PS2lMJm7x~JnzFiXw`|*D19V@bluUC9<4yNY4?L9NGI}Tjhfs$nQtrJSp=ljDt z)^i)2&R!~=wr}ZPtWeU~Ub7t_m;{On&Jl3j@3C&6A|%oYry?7x%utBs2^k>BRJu<%l&gA^GD0~l0O5Bk*oeQ7v~thO$?@PS)%x?;a87XX*|L*>x|{+XybWhWxh?(@mv02 zFbJf!QQCEBJ-jK>cP}e$kTSMekI-eE$fHyUYEytpJ^;NrQNm>QNsd)|rO1T^#YeNA zjVDH()~vLlJRV28i&-=3Rb%$pT?=UIy;F&Uv8siAnJMe2B$>5=VZ<+kAibBk>(M`)}*?1I$HXiNIE~n*KqGkgq8a zo&d%AiuIumT)3imq%KRV_}OJnpW0a&$gr7MZZ}l)PfAtxHYff;{u@@ox(XYbBE+`F z<{ZFS$loZG0D8x9jf!rq?U9*ky#NF0^rxQBht~qaF`I$=EFPiM^OMW(NX43*G?M0q zHPw(wR44bo7y@`41Icn%ofhO|9OOGpxlJV9E{43~dIdopsrnY<#1(%vn&P=I$~!$( z(=XQFfsmh!`#DFNZB{TJrZ?s`~K+#{`LP*D4dp;O`-i8Gxcv;<6qI=e}41>k=xLWeH!2O ze}=vP?{)rn!Sav?%FO7AkeQ_?s5?JipMqY>Mr;BRC>X#gb~X1ImQ?_wbTysTp@?GCG3&zw> zOSUr1v?__x;Dz5E&AQKqdfPqZa~exyLnql5@09KvtLGmie15-NAhG0TrnzxclAuXG zL*l)g$UcH+URISd>PwuLP~e^SJRcMC@{rO2b29F2_Nid|Bo%XczTJ9Ju(aJ#p1<_Z zXE866j)tL?(5l01Me}ak)DG6wY1yxv(8SNdz88Zh<)fAN^(V-j-LHBaY_IWo5&3t( z(Lb^g!8hR-YNs}SI`5Znl$ncyWdxH!)-)h*D;#Y;*g53v#W#WRaD8*I zqTejMOHMgs55B~%NFbpq6tPH*LQ z#&NC>g$y6Vj89~xt*dcuc9^Dpe)F&nOj`$D0q zfm8VuY3ZT>{Y8E{vQbYfF9UmR|*z zR4%lU4tFB`CiC4xshillI}c8aisepTjMh$*Pd#zGjad*wuOGh!lTY0{P4-R(ZtiV2 z_kwa}5!rw(mQmZ%b(&*eD(vRW^9;e7?FJBLf>uyDk#sx(ALFG?0j1#RqR`164zCL$ znwNGj1!*b2z-|y0Ol)Pjhpy3g*awIf_zl(r7mj)+75htBENT3)?+Q6qb#R0f(wJv{k7z=G5Xc5g3S;+^#tX zD^3^#2Q+XZHOVgP@Y_vK)~!~(f5Y4(?S=vP{?er8YUSO*2f(ncevS|cC19Clb^iI| z%VqkFEuhrfDyiK{bU`W)0Z`@)I<%d5fZjn*?UVH%FtXrMD9?gxUxiqxEl6=+`(;$s z80Ue)Z_rf)pX;VKAqWij~m8--88k+Mn6-P5uFA0Avh55G$RH6gk?FhoIUOe%?Y}L zUfRv0P{MN!B17^;rvx;s9yXk9I&WW-*z0>H#rZ=)ku5t7moTDTo=~By4$_%oK!jRR zEPZGC21bD=morCIJJ7i74vHjmu@X=d)kHzWA02g!2anF1E=%^gCOv0TtG&qCi+l;^ zY|)#Ng|;{CP+&S|EfN212cyftOX=3)>lp%5k45X^71ydFEeQZ6~ z*KNu2v%RV6E>;w!&=sXC*X(7h>1XhalA8%{?3)P@l3F1Qy_m7bu?V zXG0o#p0T}dANNJ+;_(Lj;<1Uk_q4QwvL8VoeKXRVX{vL!VUndM;Rlre*aCT%B&_C3 z%jJZ~0S6RnxHZuqM6^j!~L_ zfVSvz*~1^+hF8DavfR)xE|(DLlDP_eiq2sDf>7DYbmHVlA+bGMC$S<%Bb+9f@3>A_ zlcOhLwwa2ykYBqx@?bwY?exQ<;E}3NaPGk7nSqmLOTnZ#Ji7E?x3MzA zl1>4{oDl8zi1uVEO{(st{4Bhdm!&Vj)F?VZ_Pj%6frarW$P}la0E0Rirp%#TWJC0@ zFiNWkF8d>hDZ<7j=gT`%Y&Q~9>L)&fPx-HESI&hO%zJ~jSC#rAU295&NIBc1Ezohs z`Tnt;ja?q7+V*oK(n@(sq`DKYwr99^@+a;}Zl*xo?6L6Ug zIM92k?$cI>bL+l}tjh@z0Vi_r-yY?Vjna)yYo>ZogElUo?`k9(2;oCqVyy5k0e>VL zP4x_f1yn(J5(`xTC7ZLN#(n>@z3vHMVFYj}+_~VjsRx#Qof6%%0abAY^?TEp29!5M zexdcz2Gwbt`{c<*XMT$uCbsDKcHB878l^BI>bO0u%JP*WfkOd3Yh;!YA$Hg8J^Y-G z2NE*$eR5)n%@E(?b|(y0!Id^DG}JgGWFegKWQCsEqIkG&`k)F`d7km$Jm#E~m~E~L z_nAx10IC_;o<6sc1_(gwOUOf+lY(;wiLV8W6{R687*&Mq3`#j8*&3b=zGM1fh{7C< zdg^07EeeVssH+%1h1I&IiG#Pvde>x8Fi~$&5bsX4>IU4YoHSvZ##4FqCdeB0Hvld! ztx`Da$z6a*3XNBd=3x8Pyrv!Y=bWDX4eW7Y!8%T4)_d@rnV8kv07$tTwk5Z`CVBS` zuC`!bQk}zTs}rE-QNGM9FxZujr?~6VMk_QJyn_TRPn5TDT19V6q48yOhoDu=>Wc1_7*kEY zF7Xljr?&Ie5lq{vLRbMe=VXR=Ae_-GgJ})nOEIzR%VX|w|4P7PWfN4%?wWM1Lf4I+ z+>`3`j_8^9@U_CaW@1I%kqinZ(c0Mg1+nth1eK!GXI}}}Dn9chsV`SoJ-PjQeBkBV z$t8^F^jZiUhsBkqj62&8BnY&sm6P=Z)WU)VS_MUVI-Xjk=7GHrhs&v4bapyBprC!(l=YxCZ)DaTZ({|B`BaOo|S zTjx#~8@ThW`4!lZxsaE{d4U;9>81FF}!lZ05)Mv8UO^C7dRO!Uo+>s?^)l zi_RIRWG>!OMN?$NHDp{*uUCsq_gbZo%PEUlPDF6gV!gng3Vp`jqvgUpvXFlS#1yK- zQWc5e=TB4zvRsBGV(?fm+5_&Mu}JI0#;+Iwt8?}!Ip}?egaXNn*9SBbbCAw2)zA{A zfn0I;w!LEPn#6;>qtcl-nG?>2vWzmmm{XnTtk+2XJQK_pJ*aY0Ak6VCyZz@J%sX6L z;pEdm{7LRC?m?DXWldR`HZ*`40UQvZbPfY(x z#dLYx@pA4UAl3&NBcz{Bam{NBx8yHsj@JrnoqgtMHe>d2BuWCevWvH;<4Li< zk>1IQ8p}jL%1Kp|Yy=Qi-fQu>=0Ct>LuRHZmP(f~Kn3d3Akj?@;wZHt<5rGy9(D7m z)Sj;Jne4DK%kf*hQ_W))X@?*xeU2%WA}_-zVK=|z-aHGIoHhCo9v&qe6$1Zi{5~4x z&^#TCd?7y{}ODjyeSw1gYg01r@{^v-Gr_%I9tcM8oGbj^$ql z>hHiyUG<@qgZ7&&Z!dCdcCr*v*cu7;+#-L}` ze?^EoZJGl#qcaaz{lzm-YE?V327<#tP!o3>g}o`ukr6Z&J8q}E+Q&ib*}267((2a@3Ce!WY=Z8^PD6muYm)o4|_V ziSBfStm#gHU0b`OTvE(ANggGQ54pKn_*3)S@gJ>Uz0w_=MkV4h^o1DP?OzA!R+H0( zFo+5=)gV~m8>lb3p^kHkhJ`8P(XCBC137s20$}c^W*RZS2?=hGaiA36;M*ym1+I8X59YP=ipipyPc-I-gLPRcQ>`;E}HJN$1e(Q zN>^WnWSo4Rgg@8!J|Efh-`TIp*#x3R)5pVM^urEmVDfv_nIT>jFZ=2TL-&69Zuiyd zHAtG5bm(C9t}d6MK+_kbTs(A)Jm3aVhh%Aoa-N`Q2Gt{|$XWQx5{D(G~)!E&Dk!5x-TlKe%1 zC9?9Kg(}d%)6%21WBUcH$(*Gbsk}#KuT97Qxp3xoX|*#id%I&CCM~7Y>Y}zy*lq34 z(Ar%3rBb^@S5}gJdM8t~jR{&4Zuhj)obiUJJk=MXFc4*b#07??f{TMan5~lk%7k)~ zt#0N~a_nPO!ML;)a9hE~ z#4Nl_C)um0KQT=C_$`3XO<_Dv+$f^+TVENt39%l@r7P+#s-%(`@cYFoJivVF&{(WW z>~g65+~Ek#?8dY|^5x}_zK&Cuo3`^@#UxxA3U0BnjzcH-2Fwk8!YavOoN};5UW%s>+kS8Y*ho0N0{q0*`3-2A} zqmB(h#$Oe;Bk#i(B}y$K-|C%peuK5a@_>5%2z7Cg5?RA1wAcDH_x+EXhJ99+D@7|7 z271lE`imLW3m2hc{VA4s!vX5dwDY~(iFpDY)WvCu6fT9G)~A8+2PAxgU9A+(zH#dd zB7r2Ouh$-w)kw*?<$NRMzWOlYQ)bk7nU$daSN-7#Cb~rO6A+2kMb9+HPUak@j=$eU zLm4L&-7Za4kEE zr=7>i?i&kA)w6D410vN-qwu+Z3{*mpG{?KYfl#=w0mhnV)+8e!{Q$#z=>fQ*7(h$v zVuvY1qi2$cEPylbUEgQe zzYZtU-2;6u)Cm0FP{&R_D)f6epNUu{TcahvVFcrv!P9D@}CNq{84s0{;itW^WE!(wTee;#%3$y!MiYS2<9_ z?1dHDUaFFXliGND3sn!kMxVKbDMusDT=&QxzWiy{lu^KZuRj%Z9hib3otuIjbz}`s z^h{JJ``dhlSC$_Eiqplm)Z*m`xLS>;In^a$ry`zDComWL66gX7nYfG8S3&T*cD~+t zURVoQw^}IcJJkq&u8MUkV91x1tLV=-8i;Qg672=EzAr{Zr3xqfd`IcAuL`hN=higx z9#W4zRtcL1J!dCogW4WywTaHT`m3f{RB$c}i@J=W74QeVp>St|EEHiZ;F zo``mlzHzPA~C zLX8!mxL_9aO)}JZs$dPly=<>x`^qV{Uk+|Vp$|;KGad#h`#IH_pUG}Lwk~X~%9w%a zQ7J8`E}`n2LDona|K3pE0s-x?)X>GClp$y~1Gw;0D&AmQ3ANH(@0 zzDKj%s|i~yaeFrxgyt9d&pI4;^(6G+Cu&>e__7`DP=-*n#JtDs6+SmRlD7Co9YD}{ z+1X?uA{KFDjr$&#jOe*%-`NFR4kViXw)FUU{%$wlNvLsg@IRZGSMG>-ve^3sqU5x>6Cc z(&ky_SoEk?W=5UDQ`T!8PoN;149Zw<3r1@@g%XtK`o|7lgZO10M(J;v*41scnzp%v zw`@#UiM3ox2dj3y(ed82Q=yWr2}uzCIs}x|6d>Ma?D%%Ot8(paCkn0RL)pmifiZ`B zB3Kb$pAcZS-M&%B7A<7Y3iX*SqQ(;&o+VG_ z@b#tPs$(teJxCxROkyUlv`U-@fm|T3w&S9Q48aF zY1b~_SvGn*0V$5xM)-WSdBLi&`KD8tCq2l)nk3&9s{j>$czlyg>nq2OMbUX`bCoN-H(Fl_dgpgDNscBnVcDWhiqk!6sVw0Aqxs6UNfUG3aa2O9RSIu z(f-2=P>IyFcin#YGbG;LzfQEfPE)}8X@!2N{Z>|kS#+aB&8yGlQA83l`>7`knxqnQ zQ`^3te7E}>Y>2>3Johl!;7cz9xv%UHo<|5Cy+_GZ-uJ?X>$Mvnh{qksV>Bc}9@9i@ zJsQ;EoMS+3RxhW9B9zBx{+o^tZ1Mq7XV)F3v8NnT)pmEq!rOoxqd_9Rydn38?U8*T zE79XlE1J(APd%s;81Ym0+1 zgS`#0DM^{rQjUeq+D@^Sb1a#>$d}S5ykqj17f_~K&+#?ja5z|Sml%OJ$_I>*>N?1u z+ataW)H_Tt2dvSLWX*tM7!I9a=xARZSi;{!iFeyQcTSguvWM`MW7ou9or{mhh~wAC zZ^2x4lXaRkdg`uGDOfW3mpTfp zjdxM~f)(@ZsA1?t8t=C-g*%Fyyhq^;1p^i0UscnjyMhH=m{B~P?TB52)xxb5cRmg@ zaAn(omhRBZ34kOBF0^hGWOCB7(yxX^o-v^;a{UJYI?X1!Hi7j6T4E`ub(M z=cenA4R%;ra06LPiA}6q3$b3Pd_C4{Q%Htr;S?-ABAl|tvWKF4=P6K#ODtu1`v@xY z741JSCMzBpSWOl4`SQn2cSy_6NAL9^DI!96Xm-dH-gr=1>H)PdwJ*|VJ=iGkO|?gP zmA=Jg@40u?8v^2H1#>V(z5a}RT~cpR3Gx85O1y`JFF!BWr16G5ud1;&&VBuoQlrIy zD2}I!#IgB1!`oW}qF=2}^Q^G+&J)#F0gSZhbOv0nY;B{q)8MrESFINIFRkVvj#QOS zw)JaQG*k7HE~3I^7zq-H1awq0Rdx6BqCn+qo3yl)iPMOuc_Yims$$lE_VD-^gWHvm zgOI4UbET6ldG^^mMKQRqs-Ul4t1xSz;f4aK0A5sP%;*z*8=?M&indi_v>IA{TIjp{ z327wkM+H|+d~iB?=eLP?60QuiezxoMcI$)nJ;L*06ajO6-g6p~Mdukjm(FB!Ud9l= z%e5h~2TU4jfiK`_SgPoYPhrFgeIn(yZ()adhg|M=9-&-9gcfEHRtIJ5(_7a>2qDthRWvT=KR`aa+rae zednb1l3XaSl$41*Hg=Q*Ah0=6daA)&vED0t&DvnAxN*9%lF3Lf%b95t)w$NLf3^`$ zR9A0t;Jg34-4I7>pHPiJ_^)gK+|FU_VLJ4p_g?uI#7opuAZ8v)2CXk0TQkSQ!?ztqNh4F==U{u|G1Gw!NbV{rL%afScuSnNzu#OyrS2NDMV134w zDV1zho5+3^%0!=$wR!N6@A=ya9i2i2YE~kJnUXurWPBXq_A{aKtUFNprRk$WHb=?l zOj{GzgoYosxhW%aVXXyIYM7|2g?`T=LD_l67c>AxBYCg27OOj4Y2S(_W?2u)##^>J}C9Ef&h90s(-BxN6I<pOozzK2KsJF-2%5*NH-9)ORO>NSR7@R2 zlGw)u@53A-V}#d>%JtdA0_cPJa4R|&7*lKtne$<_Xv3{HyAY{M30#erkfU z$<_pYhSngQ-U=^}GzW>Kh?fT%wkG=`n=FnDrP;x@AkYJyhmG+%VR+eyBay$n%4*Wg zsnt4tV$odLtFX9Ts2fpNq@$9HzfurIO zVX|Cp7XG;VC?4cs1Eg|4)-`5J2Cjw77Yod|P;62)R(v~{f-^*9Vm@#w4ryr>nNO&k znsy&)AP@L%G?Y09su|Vk;N_s3Dbhrfq1Eh`uYaY^B=u|d1_?aW4zQ#q3JCbLe^wWG z3EM1}khu`_$NR>jjwaNv2E7j+_z`KUd>_ej4jN_u(zg)?CYy_<%chg$2{Ya6#jFS& zbxFW0+2g(Q40D6v9At?0p@Yvr~fB(8Y<5lyI4Ggq0Mfp%hQJYpNjN!KL3Q2(>GwT0q?>xhr%+fGS(2ZdX zDuWCGEJy?elo$e`h|xg-snXI=NrWYlF2#aK(I^r`X@Zo{L~0_Kp(Bf;0Vx8K05%j2 zf`Ai{A`uYWlU?1NYi6z)_u9XcUtjrk^1Y`$&;7oqmdHnf!hEOCKXC+|NI&_tPU}S0t87NMKzz|I#fI`K6{w_Ht@EBAdKWE$lm`8#}EOrB=Tv_YEMR5j;X&Z>X~AGU)GzVx9!C%yqy3H4m#y+8b6;# z^}eoaWz%%M)*N+K-qQKV!C-%2!5$nwvjRbD9UgG!CjODx}l3VHKDw2}K4j=Oa z$281lH9Ev`IVQ9r|2cagah|z46MaoR22MsqQWv+eAyvX_#wCJfM82pKl@#q1ICv z9zsscDTiISc(P^T?W!Zqh(_~I$ufejl7Uv=K#J98STq{&1ejWzbxi%?!vR%*2Y(o; z*-fULJyjHg6u0WCD(MyX54&!wR{A^8_W?Q7b;ggDH@E2vbM-@7^OR$0tG#$ zEvlQq-);+Y@c6DUw7Yr4RbvF75uUJm*X;~d>5A>f7pf9)H*mS)icDS{Hg&eH_xPwQ zw0^`DkejCj8;??;4}oqJFSXs&#Pgy6iO?C+G~Sh@VrvRlvQKWG`Fxau+wyX4w&1gN zUSexVKJgSU5z^P#F#Kw1I%qcxk*Y|a;qXZ}b+`7-ERL`@$ddvz9=8TGycJLNgQGH_ zlTBqyn~InC?BI!e98?bwHCeUbK^i4~B{_;i_q+@ct5S#$1<+@pAy zbj6UH{ywIj@k?BuSG0?*<^6IfRaS^;NfWvEneo!Yd4e-^O&wlZ$$jn4ZIfEzsoKob zZnpi=m}N@F9UlAC9NYb4LcP;c&)E621}s;BLIP6x2c*Xt>Lv$`pJ=5J#uKxh+h;B* z?$#d94$K(CX_YZ++kB1rxOYKS+T(BZ@fTEYs>-M+#8!a`~@hr zvg?CvSe(YDx6DRhkmUq1G0WZyfz?2zz`NH;7NBnCtU1;?;^O_f!WfL$skU>oJwDs< z^A7g&8G~k4Eh&L9LafwfMF@~KC$8@<(tkM;#zhYI8&q~9wl}GV-3t@Y5yKx<}H~R_87Z1XfPfmq#y*};t z%X?m6vqFNR4;l||)3_R$VUmjdXZAf@$yoAGWd{7+6gBhx`V;!ABo+BP zr}?rxf}A_FR&TABJzMxNhYYQWadurHld9P$*QJDt7|j`h1(jdgVr0cAr)>qbKN^b% z-T!7Z@L`v%&3d2g$02hPf+aJsP4lL^)AgBG;nP8PU?VIbP~kjmDOAY4JSK1xViuEReue)$v{vLkm27$Ibh_&yXtDJQxegmPJ_0V=iFA z*Fc*rnqW>DZ?oA`>7n_d#r*{_J8L^ag@VNoARWyQqpFnrrV4%z?s|6Vlh0jK4!PEv z6~eoWV9UT50Z}nZWdw3%;y!@e`0x-3=5pCn>4%21fUr9_$fJDa8DdvL#5#=GiZTgi zA<@5PI{zV;80rRC4O**u z?(i>0CR3SXcXxxNw3`W@s`qT~@RViS(>o}gbMRvz4Z`*M{XXt%zmrJ@mndiO#fE~& zo)PEcR9<>Ugcaccfsf27o8;{mBvQn_vrz~qBYnl13@#$ruBi)7JxFTwY zZ9Eop*3Xm3V}c3`0MZ z>vsGW=H#js+Cj|p4Su64-D0+ zM^i768Jjd0k*Zi;8pMTNto&ZJExNpJ0ME*GPXXYKxqG1Fkp8(GlcMMcF_;j0za;q= z#G&f1;4(r{nnqFy&H?-9wp;ra0{xvTGQdDnRTq9^fouhXTkiot6DnyBev)7oTRa~d zjGDwhBUXyvl>=B*jhd`-`aILA0%~q3I)=}-3q2TNzw?lOd|6ykM`?uQ^t>+4cMhTx zXwu?d(V4~jJgVHpTlP|}VYy?Nr%S~)v8@?vbQ;fU^}rSSlR*q=jS}ZMPxuDTN)A4I zIbhn7x?hvpy(-V5Xgp&EHhCRBCKsq8vi?x+Rf!T4wZorgxuCav#{0>8zdYdgj#A$n zW98NXLSovmhu=VZpd>00#`fj=tC|mCD`Qf@{)tHNlTQjfIO_S~X}z5!msdmlY^bF$ za?kNVxQ}HE)J;M5fMpGIQeU~J|4rem>nNe-8lPa29!@rq$$e^O!^Bhyw;9Ymy*f3a zrb@)qNlSc~0zEM0x;wG}k;F@ix)FukWC1T}*rF5mU;$SabR$7?m9P6PhVw$FcLXdt zVJx*L?5C-;8aYhzZC?7q(5tsR52n6C5)P%oM!G&9S>4MT^^tb7buBfvpgj_o6UC+k-AvdS4V6rDouBOb#k1-cy=w~Uv4|kzB0io zsOY0|e-thcTlEY`vjlQ_5Jm&^~LL%q3?lGJu_h z{d8zCa_-8Oi33|8^Lsrx3iSMI#)D(endlJf0MrLE{tVOF%!H|(OmnEa;QR3~KMhG*3ta-IW!2<9|lDF11I z#_ZSztpclssq#;R{HYwntB*%G;dXx7rh-XOZcsujnSC*JzT)J6ejBR~LZNwn>dmV^ z!03Pf71dah<+J`VnlAV2)aqXW@xQ%wmy}81HkcUI{D)uv)(cR4)Sh>L2|Iqy6=1|1g;E{`G0U pEu{bIwcn7zBk9opU$1@tSt`IGLHFvS#-bGXS(@4HD>bE_`zNqH4 Date: Mon, 15 Jul 2019 23:51:49 +0200 Subject: [PATCH 036/134] Tweaks for headings in WS9 --- Module-09-interactive.ipynb | 43 +++++++++++++++++++++++++++++++------ 1 file changed, 36 insertions(+), 7 deletions(-) diff --git a/Module-09-interactive.ipynb b/Module-09-interactive.ipynb index b110987..ef69f32 100644 --- a/Module-09-interactive.ipynb +++ b/Module-09-interactive.ipynb @@ -7,7 +7,7 @@ }, "source": [ "

    Table of Contents

    \n", - "
    " + "" ] }, { @@ -167,13 +167,18 @@ "\n", "The next step is to (2) **get** the data. We have a data file from [this website](https://openmv.net/info/ammonia) where there is 1 column of numbers and several rows of ammonia measurements.\n", "\n", - "Step 3 and 4 of exploring the data are often iterative and can happen interchangeably. We will (3) **explore** the data and see if our knowledge that ammonia concentrations should be in the range of 15 to 50 mmol/L is true. We might have to sometimes (4) **clean** up the data if there are problems.\n", - "\n", - "We will also summarize the data by doing various calculations, also called (5) **manipulations**, and we will (6) **communicate** what we see with plots.\n", + "### Overview of remaining steps\n", "\n", - "### Exploring the data (step 3)\n", + "Step 3 and 4 of exploring the data are often iterative and can happen interchangeably. We will (3) **explore** the data and see if our knowledge that ammonia concentrations should be in the range of 15 to 50 mmol/L is true. We might have to sometimes (4) **clean** up the data if there are problems.\n", "\n", - "Let's get started. There are 3 ways to get the data:\n", + "We will also summarize the data by doing various calculations, also called (5) **manipulations**, and we will (6) **communicate** what we see with plots." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's get started. There are 3 ways to **get** the data:\n", "1. Download the file to your computer\n", "2. Read the file directly from the website (no proxy server)\n", "3. Read the file directly from the website (you are behind a proxy server)" @@ -236,7 +241,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "#### Further exploration\n", + "### Exploration (step 3)\n", "\n", "We have opened the data we check with the ``.head(...)`` command if our data are within the expected range. At least the first few values. Similar for the ``.tail(...)`` values.\n", "\n", @@ -1075,6 +1080,30 @@ "* We also see how many 'humps' there are in the data. Is everything collected in one hump, or are there two humps (peaks). This webpage shows an example of distribution with two peaks." ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### Challenge\n", + "\n", + "* Distributions: random numbers from normal distribution\n", + "* Box plots and bar plots\tDistributions: t-distribution" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, { "cell_type": "markdown", "metadata": {}, From 5fcf65a5b84dc7e7d32a71489acba4fa01735296 Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Tue, 16 Jul 2019 08:08:55 +0200 Subject: [PATCH 037/134] Updated the histogram section with challenges; also styles updated. --- Module-09-interactive.ipynb | 271 ++++++++++++++++++++++++++++-------- Module-10-interactive.ipynb | 4 +- TODO.md | 2 - images/style.css | 10 +- 4 files changed, 218 insertions(+), 69 deletions(-) diff --git a/Module-09-interactive.ipynb b/Module-09-interactive.ipynb index ef69f32..0b941a9 100644 --- a/Module-09-interactive.ipynb +++ b/Module-09-interactive.ipynb @@ -7,7 +7,7 @@ }, "source": [ "

    Table of Contents

    \n", - "" + "" ] }, { @@ -57,7 +57,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ @@ -67,20 +66,6 @@ "\n", "In this module we use these data frames from getting a brief exposure to **statistics** and **plotting**. We can look at each topic separately, but they go hand-in-hand. You've probably heard: \"*always start your data analysis by plotting your data*\". There's a good reason for that: the type of statistical analysis is certainly guided by what is in that data. Plotting the data is one of the most effective ways to figure that out.\n", "\n", - "
    \n", - " Check our this repo using Git. Use your favourite Git user-interface, or at the command line:\n", - "\n", - ">```\n", - ">git clone git@github.com:kgdunn/python-basic-notebooks.git\n", - ">\n", - "># If you already have the repo cloned:\n", - ">git pull\n", - ">```\n", - "\n", - "to update it to the later version.\n", - "\n", - "\n", - "\n", "### Preparing for this module###\n", "\n", "You should have read [Chapter 1](https://learnche.org/pid/data-visualization/) of the book \"Process Improvement using Data\".\n", @@ -99,8 +84,9 @@ "5. Time-series, or a sequence plot\n", "6. Scatter plot\n", "\n", - "\n", - "In between, throughout the notes, we will also introduce statistical and data science concepts. This way you will learn how to interpret the plots and also communicate your results with the correct language. These concepts are indicated with the icon shown here." + "
    \n", + "Statistical concepts are indicated with this icon.\n", + "
    In between, throughout the notes, we will also introduce statistical and data science concepts. This way you will learn how to interpret the plots and also communicate your results with the correct language." ] }, { @@ -109,36 +95,36 @@ "source": [ "## A general work flow for any project where you deal with data\n", "\n", - "After years of experience, and working with data you will find your own approach. \n", + "*** After years of experience, and working with data you will find your own approach. ***\n", "\n", - "Here is my 6-step approach (not linear, but iterative): **Define**, **Get**, **Explore**, **Clean**, **Manipulate**, **Communicate**\n", + "Here is my 6-step approach (it is not linear, but iterative): **Define**, **Get**, **Explore**, **Clean**, **Manipulate**, **Communicate**\n", "\n", - "1. **Define**/clarify the objective. Write down exactly what you need to deliver to have the project/assignment considered as completed.\n", + "1. **Define**/clarify the *objective*. Write down exactly what you need to deliver to have the project/assignment considered as completed.\n", "\n", " Then your next steps become clear.\n", " \n", " \n", "\n", - "2. Look for and **get** your data (or it will be given to you by a colleague). Since you have your objective clarified, it is clearer now what data, and how much data you need.\n", + "2. Look for and **get** your data (or it will be given to you by a colleague). Since you have your objective clarified, it is clearer now which data, and how much data you need.\n", "\n", - "3. Then start looking at the data. Are the data what we expect? This is the **explore** step. Use plots and summaries.\n", + "3. Then start looking at the data. Are the data what we expect? This is the **explore** step. Use plots and table summaries.\n", "\n", - "4. **Clean** up your data. This step and the prior step are iterative. As you explore your data you notice problems, bad data entry, you ask questions, you gain a bit of insight into the data. You clean, and re-explore, but always with the goal(s) in mind. Or perhaps you realize already this isn't the right data to reach your objective.\n", + "4. **Clean** up your data. This step and the prior step are iterative. As you explore your data you notice problems, bad data, you ask questions, you gain a bit of insight into the data. You clean, and re-explore, but always with the goal(s) in mind. Or perhaps you realize already this isn't the right data to reach your objective. You need other data, so you iterate.\n", "\n", - "5. Modifying, making calculations from, and **manipulate** the data. This step is also called modeling, if you are building models, but sometimes you are simply summarizing your data.\n", + "5. Modifying, making calculations from, and **manipulate** the data. This step is also called modeling, if you are building models, but sometimes you are simply summarizing your data to get the objective solved.\n", "\n", - "6. From the data models and summaries and plots you start extracting the insights and conclusions you were looking for. Again, you can go back to any of the prior steps if you realize you need that to better achieve your goal(s). You **communicate** clear visualizations to your colleagues, with crisp, short explanations that meet the objectives.\n", + "6. From the data models and summaries and plots you start extracting the insights and conclusions you were looking for. Again, you can go back to any of the prior steps if you realize you need that to better achieve your goal(s). You **communicate** clear visualizations to your colleagues, with crisp, short text explanations that meet the objectives.\n", "\n", "___\n", "\n", "The above work flow (also called a '*pipeline*') is not new or unique to this course. Other people have written about similar approaches:\n", "\n", - "* Garrett Grolemund and Hadley Wickham in their book on R for Data Science have this diagram (from this part of their book):\n", + "* Garrett Grolemund and Hadley Wickham in their book on R for Data Science have this diagram (from this part of their book). It matches the above, with slightly different names for the steps. It misses, in my opinion, the most important step of ***defining your goal*** first.\n", "\n", "\n", "___\n", "* Hilary Mason and Chris Wiggins in their article on A Taxonomy of Data Science describe their 5 steps in detail:\n", - " 1. **Obtain**: pointing and clicking does not scale.\n", + " 1. **Obtain**: pointing and clicking does not scale. In other words, pointing and clicking in Excel, Minitab, or similar software is OK for small data/quick analysis, but does not scale to large data, nor repeated data analysis. \n", " 1. **Scrub**: the world is a messy place\n", " 1. **Explore**: you can see a lot by looking\n", " 1. **Models**: always bad, sometimes ugly\n", @@ -275,13 +261,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Theory: the median, or the 50th percentile\n", + "### The median, or the 50th percentile\n", "\n", "There are 1440 rows, or data points. If we sort these from low to high we will find the minimum as the first entry, and the maximum in the last position of the vector.\n", "\n", " What value will we find halfway? It is called the **median**, the middle value, the one that separates your data set in half. If there are an even number of data values, you take the average between the two middle values. \n", "\n", - "\n", "Try find the median value manually:" ] }, @@ -397,7 +382,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ @@ -470,7 +454,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Challenge problem\n", + "#### ➜ Challenge problem\n", "\n", "On a different data set, with multiple columns\n", "\n", @@ -512,7 +496,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Challenge problem: Peas\n", + "#### ➜ Challenge yourself: Judging the Judges\n", "\n", "Many companies making food products have taste panels. In these panels a number of people judge the product based on different attributes. \n", "\n", @@ -701,7 +685,7 @@ "\n", "The results are more clearly communicated with horizontal bars (use the ``barh`` command), than with vertical bars. Try using vertical bars, by modifying the above code and simply use ``.bar(...)``. Why is the ``barh`` command preferred?\n", "\n", - "#### Final checks\n", + "##### Final checks\n", "1. The most visits, *on average*, occur on a \\_\\_\\_\\_day.\n", "2. If the website should go offline for an entire day for maintenance, the best day to pick would be a \\_\\_\\_\\_day.\n", "3. Is the bar plot strictly necessary in this case study when compared to the data table? *In other words*, what value does the bar plot provide, if any, that is not provided by the table?\n", @@ -713,7 +697,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Bar plot theory (can be skipped)\n", + "## Bar plot theory (this sub-section can be skipped)\n", "\n", "\n", "![alt=\"Bar plot terminology\"](images/summarizing-data/barplot-example-expenses.png)\n", @@ -723,7 +707,7 @@ "* The text can sometimes be added *inside the bar* if there is restricted space.\n", "* An interesting characteristic of a bar plot is that **the *interpretation* of a bar plot does not differ if the category axis is reordered.** It can be easier to interpret the plot with a particular ordering; however, the interpretation won't be *different* if using a different ordering. The example below demonstrates this: the interpretation has not changed, but the visualization is far more effective.\n", "\n", - "### Definition for a bar plot\n", + "### Definition of a bar plot\n", "\n", "It seems strange to end off this section with a definition of a bar plot. But perhaps it isn't: you see these types of plots everywhere, especially in the media. But it is hard to describe what they actually are. Here's one definition:\n", "\n", @@ -743,7 +727,7 @@ "\n", "The categories used in a bar plot can often be rearranged without 'breaking' the message. We saw an example above.\n", "\n", - "This happened because each bar is independent of the others. If you re-order them, the information shown -- from the height of the bars, on the value axis -- is still the same.\n", + "This happened because each bar is independent of the others. If you re-order them, the information shown - from the height of the bars, on the value axis - is still the same.\n", "\n", "This does not mean you should show the bar plot in a random order. By ordering the information you make the plot easier to read, and in an underhanded way you subtly alter how the user reads the message. You can use this power to your advantage to make the message clearer, but you can also use it to frustrate your reader. Rather do the former, and not the latter." ] @@ -786,13 +770,13 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Challenge\n", + "#### ➜ Challenge yourself: PCA plots\n", "\n", "Plot the percentage explained of a PCA model\n", "\n", - "### Challenge: \n", + "#### ➜ Challenge yourself: _____ \n", "\n", - "Where a subplot is needed. Boxplot on the left, barplot on the right?" + "* Where a subplot is needed. Boxplot on the left, barplot on the right?" ] }, { @@ -815,9 +799,6 @@ "source": [ "## Histograms\n", "\n", - "##### TODO\n", - "* Average of the dice thrown tends to be normally distributed\n", - "\n", "\n", "In this section we see how to create histograms, which are just another form of bar plot ([see above](#Bar-plots)), except the category axis is now numerical, instead of discrete categories.\n", "\n", @@ -829,7 +810,9 @@ { "cell_type": "code", "execution_count": 4, - "metadata": {}, + "metadata": { + "code_folding": [] + }, "outputs": [], "source": [ "# Standard imports required to show plots and tables \n", @@ -851,6 +834,8 @@ "\n", "So the above is our (1) definition, and (2) we get the data from a website where this dataset has already been prepared for us (https://openmv.net/info/unlimited-time-test). We will (3) explore the data, and notice we don't really need to (4) clean it, since it has been done for us already. We will (5) manipulate the data into a histogram and visualize that to (6) communicate our goal: what does the spread of the data looks like.\n", "\n", + "### Step 1, 2 and 3: Define, Get and Explore\n", + "\n", "If you visit the [the website page](https://openmv.net/info/unlimited-time-test), you can right-click and download the CSV file to your computer. But, you can also directly import the file from the URL.\n", "\n", "Use the `.describe()` function once you have loaded the data to get a summary description.\n", @@ -885,6 +870,7 @@ "5. Does the median grade correspond closely with the average grade?\n", "6. What else can you see in the description table that is interesting (*hint*: look at the 25 and 75th percentiles)\n", "\n", + "### Step 4 and 5: Clean and Manipulate\n", "\n", "Step 4 is not needed (cleaning the data), but we will look at step 5 next, which is to manipulate the data to draw a histogram.\n", "\n", @@ -892,9 +878,7 @@ "\n", "We want to get 2 histograms: one for the `Grade`s and another for the `Time` taken to write the exam.\n", "\n", - "You can extract each vector using Panda's ability to access the column from the table: ``data['Grade']`` and ``data['Time']`` will each return their respective columns.\n", - "\n", - "\n" + "You can extract each vector using Panda's ability to access the column from the table: ``data['Grade']`` and ``data['Time']`` will each return their respective columns." ] }, { @@ -1047,14 +1031,14 @@ "metadata": {}, "outputs": [], "source": [ - "# Try the above code here, and interpret the output\n" + "# Try the above code here, and interpret the output" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### Step 6: communicating your results\n", + "### Step 6: Communicate your results\n", "\n", "We need to wrap up our workflow with the final step of communicating our goal: what does the spread of the data looks like?\n", "\n", @@ -1084,10 +1068,175 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "##### Challenge\n", + "#### ➜ Challenge yourself: Random walks\n", + "\n", + "Imagine a person walking. Every step forward also includes a small random amount to the left (negative values) or right (positive values).\n", + "\n", + "We can model these values with numbers from a normal distribution, which is centered at zero. If they were walking perfectly straight ahead, then viewed from the back, their position stays at zero if they walk in such a straight line.\n", + "\n", + "If they have had too much to drink, their steps might be biased a bit more. We can increase the standard deviation of the normal distribution to make the distribution wider." + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Regular walking: \n", + "[ 3.36872552e+00 -1.13917806e+01 3.22569416e+00 -9.77637798e-01\n", + " 4.08921191e+00 7.35784690e-01 -2.90071068e+00 3.75347963e+00\n", + " -2.45082272e+00 7.49820386e+00 -4.93361234e+00 3.48327341e+00\n", + " 1.13822432e-02 -6.85604873e+00 -8.68931720e+00 -3.41468947e-01\n", + " 2.16465212e+00 6.57643141e-01 -7.34073427e-01 -1.33100624e-01]\n", + "Someone who has consumed too much: \n", + "[ 19.65502962 1.39951335 32.73139175 7.04282902 -3.19859331\n", + " -20.33808233 9.63950154 5.80177213 0.9900464 1.92216785\n", + " -20.843857 -18.43692294 -11.35410504 7.06983521 8.08637714\n", + " -24.71550656 8.58118158 7.17017213 -7.92971946 16.67303932]\n" + ] + } + ], + "source": [ + "from scipy.stats import norm\n", + "\n", + "# 20 steps for a regular personn, showing the deviation to the \n", + "# left (negative) or to the right (positive) when they are \n", + "# walking straight. Values are in centimeters.\n", + "regular_steps = norm.rvs(loc=0, scale=5, size = 20)\n", + "print('Regular walking: \\n{}'.format(regular_steps))\n", + "\n", + "# Consumed too much? Standard deviation (scale) is larger:\n", + "deviating_steps = norm.rvs(loc=0, scale=12, size = 20)\n", + "print('Someone who has consumed too much: \\n{}'.format(deviating_steps))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### Questions\n", + "\n", + "1. Visualize the histogram of 1000 steps of someone who is walking *normally* 😃 \n", + "2. Visualize, in a subplot, side-by-side, the histogram of someone who has consumed too much.\n", + "\n", + "Both histograms should be centered at zero. Give each histogram a title, and a label on the x-axis, including units of centimeters.\n", + "\n", + "***Hint*** To create a Pandas series of the values, remember [from worksheet 7](https://yint.org/pybasic07) that you can do that as follows:\n", + "```python\n", + "import pandas as pd\n", + "steps = pd.Series(data = ...)\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [], + "source": [ + "# Put your code here" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A person walking in random way has a cumulative effect. If they have deviated 30cm to the left, therefore they are at `-30`, and their next step is to sway to the right by 10cm, then they will be at `-20`. \n", + "\n", + "Modify your code to show the histogram of the cumulative sum of the deviations! You only need to make a very small modification to do this - thank you Pandas!" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### ➜ Challenge yourself: Can you see normal distributions using a histogram?\n", + "\n", + "Many statistical tools require the data to be normally distributed. \n", + "\n", + "Novices fall in the trap of plotting the histogram, and saying that it looks to be normally distributed, and then keep going with their next steps. There is a better way to test this,which is shown in [the next module](https://yint.org/pybasic10).\n", + "\n", + "But for now, try to run this code, to convince yourself that histograms are not a great tool to visualize if data are normally distributed. \n", + "\n", + "***Run the code several times***. Sometimes the normal distribution does not look bell-curve shaped, and the others do; but also the other way around." + ] + }, + { + "cell_type": "code", + "execution_count": 79, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3QAAAE/CAYAAAAOkIE9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xu4JXV95/v3J00jRomCNMitbaMMR3SkzdmDOOSCosjFEeNohGQMJjotGZ0T55iJaCZCNJfOk9HkRBJ5Wuk0JoiYRJQZUOkhGiTx1nBQYcBAOK20jXQjyEVtpdvv+aOq42Kz1r6ttffatff79Tzr2XX51a++VbXqt+u76paqQpIkSZLUPT827gAkSZIkSXNjQidJkiRJHWVCJ0mSJEkdZUInSZIkSR1lQidJkiRJHWVCJ0mSJEkdZUI3Q0nWJKkk+yzgPJPkL5Lcl+QLCzXfpSjJ1iQvnGHZ1yS5rqf/oSQ/OaI43pbk/W33SL9TSVa3sa4YRX1aHmzbhpfkd5Pck+SbMyx/fpK/artHut8muTDJb7fdJybZNop62/p+JslXR1WfNBu2VfMjyaYkv9t2j3QfT/LxJGe33Y84thpB3b+U5OpR1dd1yyahS/LJJO/oM/yMJN9cyAZiFn4aeBFwRFUdN+5glquqenxV3TFVmZkeOFXV71fV60YR1+Qktaq+3sa6ZxT1qxts28YryZHAm4FjqurJs51+pvvtTA+GquqcqnrnbOMYMM9K8vSeuj9TVUePom4tP7ZV82/yPjtbM93He3+Umqa+U6vq4rnG0zO/RyXzVXVJVZ08bN1LxbJJ6IBNwKuTZNLwVwOXVNXuhQ9pWk8BtlbVd/qNXKSN39BcLmlWNmHbNk5PAb5VVTvGHYhn57XIbcK2alloz2wupxxj/KpqWXyAxwL3Az/bM+wAYBdwbNt/OvD/Ag8AdwLn95RdAxSwT9u/FXhhz/jzgb/q6T8e+Efg28CXgBN7xr0GuAN4EPj/gF/qE+9r29j2AA8BvwOcCGwD3gJ8E/jLtux/BG4H7gWuAA7rqaeA/wTc1s7vncDTgM+2y/lhYN8B6+xpwN8B3wLuAS4BnjjFOi7gnHZe9wF/BqQd92PAfwO+BuwAPgA8YdK6fS3wdeDanmG/0m6L+9q6/w3w5Xa9XjDTWCdvr0lxP6ldbw8AX2jX0XWTluvpbfdpwP9u1+U3gN8AHgd8D/hhu60eAg5rvxN/A/xVW/frer8nPcu4DtgO3AW8uWe+m4Df7ek/EdjWdv9lO7/vtfP7TR79HT2sXa572+/Hf5z0ff1wux0eBG4GJsa9n/qZ/QfbtpG3be06+A2atuZ+4DJgvz71vJBH7vubBszvqcDft3FuBi7g0e3APoPWIfCMSevs223ZTcB7gauA77TxbKJtN3rW69va5dzau02ATwOvm7T9rmu7r23j+k47z1fR0wa1ZZ7R1vFtmjbkpT3jNtH8D7iyXZbPA08b9/7iZ3wfbKvm9Tis3z47oNxzgBvaWC4DPsSkNqOn7FtojnUeBL4KnAScAvwAeLidz5fasp8Gfg/4B5p28en0tDHtOv8H4D3t9+BW4KSeeQ3cnjTHhsWPjrGeR0971Zb5t8AX27q/CPzbnnGfbtf7P7TLcjVw0Lj3iZHuX+MOYEEXFt4HvL+n//XAjT39JwL/mib5eDZwN/CydtwaZtiQAIe3O99pbV0vavtX0Rz8PwAc3ZY9FHjmgHgnf1lPBHYDfwg8hqZxfAHNTv5T7bD3ANf2TFM0jctPAM8Evg9cA/wk8ASa5OTsAfN/ehv7Y9rYrwX+ZIr1W8D/BJ4IrAZ2Aqe0436VprH7SeDxwEf4UUO4d91+oF0/j+0ZdiGwH3AyTcP6UeDgdh3vAH5uJrFO3l6T4v4QTYP6OOBZNI3XoITuLuBn2u4DgJ/q2TbbJtV7Pk2D97L2e/BY+id0l7bz/tftOnthO34TAxK6Ad/BvfXt/Y7+PfDn7fpb29Z9Uk9su2i+oyuAPwA+N+591M/cPti2jbRta9fBF2h+FDkQuAU4Z0Bdj9gvB5T5LPDudn4/S3NA8aiEbqp1OHmdtcM20Ry8nNBuj/14dEK3u2feP0dzsLe3/k8zIKHrWcdP77eswEqaNv1twL7t9nqwp+5NNAe3x7XLdgnwoXHvK37G+8G2aiGOw54+xfh9aX5Y/y/tPvwKmuOURyV0wNE0SfVhPev/aZPXdU/dn6ZJvJ7Z7vMreXRCt7tn3q+iab8OnMH2fMS2n7xtaNrp+2jO9u4DnNX2P6kntn8G/lW7zT4NrB/3/jDKz3I7HXox8Mokj237f7kdBkBVfbqqvlJVP6yqL9McaP/cHObzH4Crquqqtq7NwBaahgWaX3OfleSxVXVXVd08i7p/CJxXVd+vqu/R/Hq7sapuqKrvA28FnpdkTc80f1hVD7TzuQm4uqruqKr7gY/T/FrzKFV1e1Vtbue1k+agYLr1sb6qvl1VXwc+RZNI0Mb57na+D7VxnjnpcoXzq+o77XLt9c6q2lVVV9MciFxaVTuq6hvAZ/bGPsdY916i9O+Bt7fzvome70QfDwPHJPmJqrqvqm6YZhafraqPtt+D7w0o8zvtvL8C/AVNQzSU9r6enwbe0q6/G4H30zR2e13Xfkf30JzxO3bY+WpsbNtG37b9aVVtr6p7gf/Bj9qyWUmymubKgt9u53dtW98gs12HH6uqf2i3x64BZfbO++9pzpj9wqwX5NGOp/lxbn1V/aCq/o7mB73e9usjVfWFai6lu4Q5rkMtKbZV838cNpXjaZKpP6mqh6vqb2jOZvWzhyaRPCbJyqraWlX/PE39m6rq5qraXVUP9xm/o2fel9Gc9Tt9jsvS63Tgtqr6y3bel9KcAfx3PWX+oqr+qd1mH2aJtUfLKqGrqutozlKc0T618N8AH9w7Pslzk3wqyc4k99Nc4nfQHGb1FJoG69t7PzQH14dWcx32q9q670pyZZL/YxZ175z0T/swml9b9i7jQzS/Qh3eU+bunu7v9el/fL8ZJTk4yYeSfCPJAzSXDk63Pnqf8vbdnrofEWfbvQ9wSM+wO/vUN6PY5xgrNL947TNp3l8bUBaa5O804GtJ/j7J86apv98yTVXmazTraliHAfdW1YOT6u79XkzeVvt5P0A32bYBo2/bBrVlU2qfMvlQ+3lbuxz31SPvwenbxsxxHU7XxvSb96jamDur6oeT6p6qjZnROtTSZVsFzP9xWO/0H+9pj36pjfUbVc1pq9ag9uh24E00Z8p2tHFM13ZM1x71m/eo2qPJy7Gs2qNlldC1PkDzi9CraX4h6d2pPkhzWvzIqnoCzeV+k2/e3es7wI/39Pc+3exOmssJn9jzeVxVrQeoqk9W1YtoTvPfSnMJwkzVpP7tNA0XAEkeR3NP2DdmUecgf9DO79lV9RM0v3gNWh/TeUScNJdk7uaRjdrkZZuNuca6s43jyEmx9VVVX6yqM2gu+/woza88MDj2mSzT5Hlvb7un+o5NV/d24MAk+0+qexTfCy1Otm0zN8q27RGqecrk49vP79Ncpn1AG/9eU7Uxg9bhXNuYfvOeaRszle3AkZMefGAbo5mwrZq5odqqap4yubc9uoSmPTp80oNppmqPPlhVP02zfEVzqSnMvT3qN++ZtEfT1Tv5GHNv3cumPVquCd0LaW5gnXxp3f40ZzV2JTkO+MUp6rmR5pLBlUkmaK5D3uuvgH+X5MVJViTZL81j7Y9IckiSl7Y7/Pdpbu4c5jHzHwR+JcnaJI8Bfh/4fFVtHaLOvfZv4/t2ksOB/zpEXZcC/yXJU5M8nibOy2p0T7WaU6zVXG74EeD8JD+e5Bjg7H5lk+yb5r0nT2gvJXiAH227u4EnJXnCHGL/7Xbez6R5CMxl7fAbgdOSHJjkyTS/lPW6m+Ya/H7LdSfNzeB/0H7/nk1zg/clc4hP3WDbNnOjbNumVFVfo7nU63faNuSneeRlQP9imnV4N3BEkn3nEMbeef8M8BLgr9vhNwIvb9ufp9O0Eb0GtjE0Dzn5DvCb7XflxHa5PjSH+LS82FbN3Gzbqqn2WWju590N/F9J9knycpr7XB8lydFJXtAu0y6aM4m97dGazP5Jlge3816Z5JU0D1a6qh031fbcSXOp66Bluwr4V0l+sV2uVwHH0FwGviwsu4Su3cH+keam2Csmjf5PwDuSPAi8nR+dfennt2mePnQfzZOP/uWSgfZg+gyam8V30vxS9F9p1veP0byzaDvNDeM/1853rstzTRvL39L88vI04My51jfJ79Dc5Hs/zX0XHxmiro0092ldS/NEqV3Afx42wB7DxPpGmlPv36S5kf8vpij7amBre+nDOTS/llFVt9IkrXe0l3fM5hKCv6d5uMA1wH+v5n5BaNbXl2huFL6aHyV6e/0B8N/a+f1Gn3rPormReDtwOc01/5tnEZc6xLZtVkbZts3ELwLPpVkv59Ec0PYz1Tr8O5onSX4zyT2zmPc3abbldpofdM5p2yuAP6Z5Wt3dNAfWk3/wOR+4uG1jHnHfXVX9AHgpcCrNAyH+HPjlnrqlvmyrZmW2bdX5DNhn21h/ALyc5oEi99FcejqozscA62n272/SJGNva8ft/VHoW0mme5ZAr88DR7V1/h7wiqr6Vjtuqu353bb8P7TLdvyk5foWzY9Vb6a53PU3gZdU1Wzayk7b+0h5SZIkSVLHLLszdJIkSZK0VJjQSZIkSVJHmdBJkiRJUkeZ0Ela0pIcmea9RrckuTnJr7fDz0/zbp8b289p09UlSZK02PhQFElLWpJDaV4me0P7Xr7rgZcBvwA8VFX/fawBSpIkDWGfcQfQz0EHHVRr1qwZdxiSRuj666+/p6pWLfR8q+oumkdJU1UPJrkFOHwuddk2SUvPuNqmUbJtkpammbZPizKhW7NmDVu2bBl3GJJGKMnXFkEMa4Dn0LwL5wTgjUl+mebFz2+uqvummt62SVp6FkPbNCzbJmlpmmn75D10kpaFJI+nefHrm6rqAeC9NC8xXUtzBu9dA6Zbl2RLki07d+5csHglSZJmwoRO0pKXZCVNMndJVX0EoKrurqo9VfVD4H3Acf2mraoNVTVRVROrVnX6qixJkrQEmdBJWtKSBLgIuKWq3t0z/NCeYj8P3LTQsUmSJA1rUd5DJ0kjdALwauArSW5sh70NOCvJWqCArcDrxxOeJEnS3JnQSVrSquo6IH1GXbXQsUiSJI2al1xKkiRJUkeZ0EmSJElSR5nQSZIkjVCSI5N8KsktSW5O8uvt8AOTbE5yW/v3gAHTn92WuS3J2QsbvaSuMaGTJEkard3Am6vqGcDxwBuSHAOcC1xTVUcB17T9j5DkQOA84Lk0r1M5b1DiJ0lgQidJkjRSVXVXVd3Qdj8I3AIcDpwBXNwWuxh4WZ/JXwxsrqp7q+o+YDNwyvxHLamrTOgkSZLmSZI1wHOAzwOHVNVd0CR9wMF9JjkcuLOnf1s7TJL6MqHTtHY9vKeTdUuanfnaH21DtFwleTzwt8CbquqBmU7WZ1j1qXtdki1JtuzcuXOYMNUhtqfqx/fQaVr7rVzBmnOvnJe6t64/fV7qlTR787Wvb11/um2Ilp0kK2mSuUuq6iPt4LuTHFpVdyU5FNjRZ9JtwIk9/UcAn55cqKo2ABsAJiYmHpXwaWnymEz9eIZOkiRphJIEuAi4pare3TPqCmDvUyvPBj7WZ/JPAicnOaB9GMrJ7TBJ6mvaM3RJNgIvAXZU1bPaYZcBR7dFngh8u6rW9pl2K/AgsAfYXVUTI4pbkiRpsToBeDXwlSQ3tsPeBqwHPpzktcDXgVcCJJkAzqmq11XVvUneCXyxne4dVXXvwoYvqUtmcsnlJuAC4AN7B1TVq/Z2J3kXcP8U0z+/qu6Za4CSJEldUlXX0f9eOICT+pTfAryup38jsHF+opO01Eyb0FXVte0Tmh6lvaTgF4AXjDYsSZIkSdJ0hr2H7meAu6vqtgHjC7g6yfVJ1g05L0mSJElSj2GfcnkWcOkU40+oqu1JDgY2J7m1qq7tV7BN+NYBrF69esiwJEmSJGnpm/MZuiT7AC8HLhtUpqq2t393AJcDx01RdkNVTVTVxKpVq+YaliRJkiQtG8NccvlC4Naq2tZvZJLHJdl/bzfNY3dvGmJ+kiRJkqQe0yZ0SS4FPgscnWRb+6hdgDOZdLllksOSXNX2HgJcl+RLwBeAK6vqE6MLXZIkSZKWt5k85fKsAcNf02fYduC0tvsO4Ngh45MkSZIkDTDsUy4lSZIkSWNiQidJkiSN0K6H94w7BC0jw762QFqUdj28h/1WruhMvZIkaenYb+UK1px75cjr3br+9JHXqe4zodOSZEMqSZKk5cBLLiVJkiSpo0zoJEmSJKmjTOgkSZIkqaNM6CRJkiSpo0zoJEmSJKmjTOgkSZIkqaNM6CRJkiSpo0zoJEmSJKmjTOgkSZIkqaNM6CRJkiSpo0zoJEmSJKmjTOgkSZIkqaP2GXcAkiRJS0mSjcBLgB1V9ax22GXA0W2RJwLfrqq1fabdCjwI7AF2V9XEggQtqbNM6CRJkkZrE3AB8IG9A6rqVXu7k7wLuH+K6Z9fVffMW3SSlhQTOkmSpBGqqmuTrOk3LkmAXwBesJAxSVq6vIdOkiRp4fwMcHdV3TZgfAFXJ7k+yboFjEtSR3mGTpIkaeGcBVw6xfgTqmp7koOBzUluraprJxdqk711AKtXr56fSCV1gmfoJEmSFkCSfYCXA5cNKlNV29u/O4DLgeMGlNtQVRNVNbFq1ar5CFdSR5jQSZIkLYwXArdW1bZ+I5M8Lsn+e7uBk4GbFjA+SR1kQidJkjRCSS4FPgscnWRbkte2o85k0uWWSQ5LclXbewhwXZIvAV8ArqyqTyxU3JK6yXvoJEmSRqiqzhow/DV9hm0HTmu77wCOndfgJC05nqGTJEmSpI4yoZMkSZKkjpo2oUuyMcmOJDf1DDs/yTeS3Nh+Thsw7SlJvprk9iTnjjJwSZqJJEcm+VSSW5LcnOTX2+EHJtmc5Lb27wHjjlWSJGm2ZnKGbhNwSp/hf1xVa9vPVZNHJlkB/BlwKnAMcFaSY4YJVpLmYDfw5qp6BnA88Ia2LToXuKaqjgKuafslSZI6ZdqErn2Z5b1zqPs44PaquqOqfgB8CDhjDvVI0pxV1V1VdUPb/SBwC3A4TXt0cVvsYuBl44lQkiRp7oa5h+6NSb7cXpLZ71Klw4E7e/q3tcMkaSySrAGeA3weOKSq7oIm6QMOHl9kkiRJczPXhO69wNOAtcBdwLv6lEmfYTWowiTrkmxJsmXnzp1zDEuS+kvyeOBvgTdV1QOzmM62SZIkLVpzSuiq6u6q2lNVPwTeR3N55WTbgCN7+o8Atk9R54aqmqiqiVWrVs0lLEnqK8lKmmTukqr6SDv47iSHtuMPBXb0m9a2SZIkLWZzSuj2HgS1fh64qU+xLwJHJXlqkn2BM4Er5jI/SZqrJAEuAm6pqnf3jLoCOLvtPhv42ELHJkmSNKx9piuQ5FLgROCgJNuA84ATk6yluYRyK/D6tuxhwPur6rSq2p3kjcAngRXAxqq6eV6WQpIGOwF4NfCVJDe2w94GrAc+nOS1wNeBV44pPkmSpDmbNqGrqrP6DL5oQNntwGk9/VcBj3qlgSQtlKq6jv739AKctJCxSJIkjdowT7mUJEmSJI2RCZ0kSZIkdZQJnSRJkiR1lAmdJEmSJHWUCZ0kSZK0zO16eE+n6tWPTPuUS0mSJElL234rV7Dm3CtHXu/W9aePvE49kmfoJEmSJKmjTOgkSZIkqaNM6CRJkiSpo0zoNFbeKCtJkiTNnQ9F0Vh5A64kSZI0d56hkyRJkqSOMqGTJEmSpI4yoZMkSRqhJBuT7EhyU8+w85N8I8mN7ee0AdOekuSrSW5Pcu7CRS2pq0zoJEmSRmsTcEqf4X9cVWvbz1WTRyZZAfwZcCpwDHBWkmPmNVJJnWdCJ0mSNEJVdS1w7xwmPQ64varuqKofAB8CzhhpcJKWHBM6SZKkhfHGJF9uL8k8oM/4w4E7e/q3tcMkaSATOknqGN/fKHXSe4GnAWuBu4B39SmTPsOqX2VJ1iXZkmTLzp07RxelpM7xPXSS1DG+v1Hqnqq6e293kvcB/7NPsW3AkT39RwDbB9S3AdgAMDEx0Tfpk7Q8eIZOkiRpniU5tKf354Gb+hT7InBUkqcm2Rc4E7hiIeKT1F2eoZMkSRqhJJcCJwIHJdkGnAecmGQtzSWUW4HXt2UPA95fVadV1e4kbwQ+CawANlbVzWNYBEkdYkInSZI0QlV1Vp/BFw0oux04raf/KuBRrzSQpEG85FKSJEmSOsqETpIkSZI6yoRuCfFR5pIkSdLy4j10S4iPMpckSZKWF8/QSZIkSVJHTZvQJdmYZEeSm3qG/VGSW5N8OcnlSZ44YNqtSb6S5MYkW0YZuCRJkiQtdzM5Q7cJOGXSsM3As6rq2cA/AW+dYvrnV9XaqpqYW4iSJEmSpH6mTeiq6lrg3knDrq6q3W3v54Aj5iE2SZIkSdIURnEP3a8CHx8wroCrk1yfZN0I5iVJkiRJag31lMskvwXsBi4ZUOSEqtqe5GBgc5Jb2zN+/epaB6wDWL169TBhSZIkSdKyMOczdEnOBl4C/FJVVb8yVbW9/bsDuBw4blB9VbWhqiaqamLVqlVzDUuSJEmSlo05JXRJTgHeAry0qr47oMzjkuy/txs4GbipX1lJkiRJ0uzN5LUFlwKfBY5Osi3Ja4ELgP1pLqO8McmFbdnDklzVTnoIcF2SLwFfAK6sqk/My1JIkiRJ0jI07T10VXVWn8EXDSi7HTit7b4DOHao6CRJkiRJA43iKZeSJEmSpDEwoZMkSZKkjjKhkyRJkqSOMqGTJEmSpI4yoZMkSZKkjjKhkyRJkqSOMqGTJEmSpI4yoZMkSdKytOvhPeMOQRratC8WlyRJkpai/VauYM25V4683q3rTx95ndIgnqGTtKQl2ZhkR5Kbeoadn+QbSW5sP6eNM0ZJS8uAduePktya5MtJLk/yxAHTbk3ylbZt2rJwUUvqKhM6SUvdJuCUPsP/uKrWtp+rFjgmSUvbJh7d7mwGnlVVzwb+CXjrFNM/v22bJuYpPklLiAmdpCWtqq4F7h13HJKWj37tTlVdXVW7297PAUcseGCSliQTOknL1RvbS582Jjlg3MFIWlZ+Ffj4gHEFXJ3k+iTrFjAmSR1lQidpOXov8DRgLXAX8K5BBZOsS7IlyZadO3cuVHySlqgkvwXsBi4ZUOSEqvop4FTgDUl+dkA9tk2SABM6SctQVd1dVXuq6ofA+4Djpii7oaomqmpi1apVCxekpCUnydnAS4BfqqrqV6aqtrd/dwCXM6B9sm2StJcJnaRlJ8mhPb0/D9w0qKwkjUKSU4C3AC+tqu8OKPO4JPvv7QZOxvZJ0jR8D52kJS3JpcCJwEFJtgHnAScmWUtzr8pW4PVjC1DSkjOg3Xkr8BhgcxKAz1XVOUkOA95fVacBhwCXt+P3AT5YVZ8YwyJI6hATOklLWlWd1WfwRQseiKRlYzbtTnuJ5Wlt9x3AsfMYmqQlyEsuJUmSJKmjTOgkSZIkqaNM6CRJkiSpo0zoJEmSJKmjTOgkSZIkqaNM6CRJkiSpo0zoJEmSJKmjTOgkSZIkqaNM6CRJkiSpo2aU0CXZmGRHkpt6hh2YZHOS29q/BwyY9uy2zG1Jzh5V4JIkSZK03M30DN0m4JRJw84Frqmqo4Br2v5HSHIgcB7wXOA44LxBiZ8kSZIkaXZmlNBV1bXAvZMGnwFc3HZfDLysz6QvBjZX1b1VdR+wmUcnhpIkSZKkORjmHrpDquougPbvwX3KHA7c2dO/rR0mSZIkSRrSfD8UJX2GVd+CybokW5Js2blz5zyHNV67Ht4z7hAkSZIkLQH7DDHt3UkOraq7khwK7OhTZhtwYk//EcCn+1VWVRuADQATExN9k76lYr+VK1hz7pUjr3fr+tNHXqckSdI47Xp4D/utXDHuMKRFa5iE7grgbGB9+/djfcp8Evj9ngehnAy8dYh5SpIkaRmZrx/CwR/DtTTM9LUFlwKfBY5Osi3Ja2kSuRcluQ14UdtPkokk7weoqnuBdwJfbD/vaIdJkiRJkoY0ozN0VXXWgFEn9Sm7BXhdT/9GYOOcopMkSZIkDTTfD0WRJEmSJM0TEzpJkiRJ6igTOkmSJEnqKBM6SZIkSeooEzpJkiRJ6igTOkmSJEnqKBM6SZKkEUqyMcmOJDf1DDswyeYkt7V/Dxgw7dltmduSnL1wUUvqKhM6SZKk0doEnDJp2LnANVV1FHBN2/8ISQ4EzgOeCxwHnDco8ZOkvUzoJEmSRqiqrgXunTT4DODitvti4GV9Jn0xsLmq7q2q+4DNPDoxlKRHMKGTJHXWrof3dKpeLWuHVNVdAO3fg/uUORy4s6d/WzvsUZKsS7IlyZadO3eOPFhJ3bHPuAOQJGmu9lu5gjXnXjnyereuP33kdUozkD7Dql/BqtoAbACYmJjoW0bS8uAZOkmSpPl3d5JDAdq/O/qU2QYc2dN/BLB9AWKT1GEmdJIkSfPvCmDvUyvPBj7Wp8wngZOTHNA+DOXkdpgkDWRCJ0mSNEJJLgU+CxydZFuS1wLrgRcluQ14UdtPkokk7weoqnuBdwJfbD/vaIdJ0kDeQydJkjRCVXXWgFEn9Sm7BXhdT/9GYOM8hSZpCfIMnSRJkiR1lAmdJEmSJHWUCZ0kSZIkdZQJnSRJkiR1lAmdJEmSJHWUCZ0kSZIkdZQJnSRJkiR1lAmdJEmSJHWUCZ0kSZIkdZQJnTQLux7e08m6JUmStDTtM+4ApC7Zb+UK1px75bzUvXX96fNSryRJkpYuz9BJkiRJUkfNOaFLcnSSG3s+DyR506QyJya5v6fM24cPWZJmLsnGJDuS3NQz7MAkm5Pc1v49YJwxSpIkzdWcE7qq+mpVra2qtcD/CXwXuLxP0c/sLVdV75jr/CRpjjYBp0wadi5wTVUdBVzT9kuSJHXOqC65PAn456r62ojqk6SRqKprgXsnDT4DuLjtvhh42YIGJUmSNCKjSujOBC4dMO55Sb6U5ONJnjmi+UlFvbdnAAAQJklEQVTSMA6pqrsA2r8HjzkeSZKkORk6oUuyL/BS4K/7jL4BeEpVHQu8B/joFPWsS7IlyZadO3cOG5YkjYRtkyRJWsxGcYbuVOCGqrp78oiqeqCqHmq7rwJWJjmoXyVVtaGqJqpqYtWqVSMIS5IGujvJoQDt3x2DCto2SZKkxWwUCd1ZDLjcMsmTk6TtPq6d37dGME9JGsYVwNlt99nAx8YYiyRJ0pwN9WLxJD8OvAh4fc+wcwCq6kLgFcCvJdkNfA84s6pqmHlK0mwkuRQ4ETgoyTbgPGA98OEkrwW+DrxyfBFKkiTN3VAJXVV9F3jSpGEX9nRfAFwwzDwkaRhVddaAUSctaCCSJEnzYFRPuZQkSZIkLTATOkmSJEnqKBM6aZHY9fCeTtUrSZqdJEcnubHn80CSN00qc2KS+3vKvH1c8UrqhqHuoZM0OvutXMGac68ceb1b158+8jolSbNXVV8F1gIkWQF8A7i8T9HPVNVLFjI2Sd3lGTpJkqSFdxLwz1X1tXEHIqnbTOgkSZIW3pkMeI8v8LwkX0ry8STPXMigJHWPCZ0kzQPvXZQ0SJJ9gZcCf91n9A3AU6rqWOA9wEcH1LEuyZYkW3bu3Dl/wUpa9LyHTpLmwXzdEwneFyktAacCN1TV3ZNHVNUDPd1XJfnzJAdV1T2Tym0ANgBMTEzUfAcsafHyDJ0kSdLCOosBl1smeXKStN3H0RyrfWsBY5PUMZ6hkyRJWiBJfhx4EfD6nmHnAFTVhcArgF9Lshv4HnBmVXkGTtJAJnSSJEkLpKq+Czxp0rALe7ovAC5Y6LgkdZeXXEqSJElSR5nQSZIkSeqc+XqidNeeVO0ll5IkSZI6Z76eKN21p0l7hk6SJEmSOsqETpIkSZI6yoROkiRJkjrKhE6SJEmSOsqETpIkSZI6yoROkiRJkjrKhE6SJEmSOsqETpIkSZI6yoROkiRJkjrKhE6SJEmSOsqETpIkSZI6yoROkiRJ0rzY9fCecYew5O0z7gAkSZIkLU37rVzBmnOvnJe6t64/fV7q7Zqhz9Al2ZrkK0luTLKlz/gk+dMktyf5cpKfGnaekiTNp/n6RdlfqiVJozaqM3TPr6p7Bow7FTiq/TwXeG/7V5KkRWm+flH212RJ0qgtxD10ZwAfqMbngCcmOXQB5itJkiRJS9ooEroCrk5yfZJ1fcYfDtzZ07+tHSZJkiRJGsIoLrk8oaq2JzkY2Jzk1qq6tmd8+kxTkwe0yeA6gNWrV8945rse3sN+K1fMMuTx1StJkiRJozJ0QldV29u/O5JcDhwH9CZ024Aje/qPALb3qWcDsAFgYmLiUQnfIPN5n4NP5JEkSZK0mA11yWWSxyXZf283cDJw06RiVwC/3D7t8njg/qq6a5j5SpIkSZKGP0N3CHB5kr11fbCqPpHkHICquhC4CjgNuB34LvArQ85TkiSpk5JsBR4E9gC7q2pi0vgA/w/NsdN3gddU1Q0LHaek7hgqoauqO4Bj+wy/sKe7gDcMMx9JkqQlxNc9SRqZhXhtgSRJkmbG1z1JmhUTOkmSpIXj654kjdQoXlsgSZKkmRnr654kLT2eoZMkSVogva97Ava+7qnXjF/3VFUTVTWxatWq+QpXUgeY0EmSJC0AX/ckaT54yaUkSdLC8HVPkkbOhE6SJGkB+LonSfPBSy4lSZIkqaNM6CRJkiSpo7zkUtKylWQr8CCwB9hdVRPjjUiSJGl2TOgkLXfPr6p7xh2EJEnSXHjJpSRJkiR1lAmdpOWsgKuTXJ9k3biDkSRJmi0vuZS0nJ1QVduTHAxsTnJrVV3bW6BN9NYBrF69ehwxSpIkDeQZOknLVlVtb//uAC4HjutTZkNVTVTVxKpVqxY6REmSpCmZ0ElalpI8Lsn+e7uBk4GbxhuVJHXXrof3jDsEaVnykktJy9UhwOVJoGkLP1hVnxhvSJLUXfutXMGac68ceb1b158+8jqlpcSETtKyVFV3AMeOOw5JkqRheMmlJEmSJHWUCZ0kSZIkdZQJnSRJkiR1lAmdJEmSJHWUCZ0kSZIkdZQJnSRJkiR1lAmdtMTN54tefYmsJEnSePkeOmmJm68XvYIve5UkSRo3z9BJkiRJUkfNOaFLcmSSTyW5JcnNSX69T5kTk9yf5Mb28/bhwpUkSZIk7TXMJZe7gTdX1Q1J9geuT7K5qv73pHKfqaqXDDEfSZIkSVIfcz5DV1V3VdUNbfeDwC3A4aMKTJIkSZI0tZHcQ5dkDfAc4PN9Rj8vyZeSfDzJM0cxP0mSJEnSCBK6JI8H/hZ4U1U9MGn0DcBTqupY4D3AR6eoZ12SLUm27Ny5c9iwJEmSFhWfPyBpPgyV0CVZSZPMXVJVH5k8vqoeqKqH2u6rgJVJDupXV1VtqKqJqppYtWrVMGFJkiQtRnufP/AM4HjgDUmO6VPuM1W1tv28Y2FDlNQ1wzzlMsBFwC1V9e4BZZ7cliPJce38vjXXeUqSJHWVzx+QNB+GecrlCcCrga8kubEd9jZgNUBVXQi8Avi1JLuB7wFnVlUNMU9JktTHrof3sN/KFZ2pd7mbyfMHgO3Ab1TVzX2mXwesA1i9evX8BSpp0ZtzQldV1wGZpswFwAVznYckSZqZ/VauYM25V4683q3rTx95ncvdDJ8/8FCS02ieP3DU5DqqagOwAWBiYsIfy6VlbCRPuZQkSdL0Rvn8AUkCEzpJkqQF4fMHJM2HYe6hkyRJ0sz5/AFJI2dCJ0mStAB8/oCk+eAll5IkSZLUUSZ0kiRJy8iuh/eMOwRpUZuvfWS+6vWSS0mSpGXEV1xIU+vaPuIZOkmSJEnqKBM6SZIkSeooEzpJkjQWXbtPRZIWI++hkyRJY9G1+1QkaTHyDJ0kSZIkdZQJnSRJkiR1lAmdJEmSJHWUCZ0kSZIkdZQJnSRJkiR1lAmdJEmSJHWUCZ0kSZIkdZQJnSRJkiR1lAmdJEmSJHWUCZ0kSQtk18N7xh2CJGmJ2WfcAUiStFzst3IFa869cl7q3rr+9HmpV5K0uHmGTpIkSZI6yoROkiRJkjrKhE6SJEmSOsqETpIkSZI6yoROkiRJkjpqqIQuySlJvprk9iTn9hn/mCSXteM/n2TNMPOTpFGarg2TpFHz2EnSqM05oUuyAvgz4FTgGOCsJMdMKvZa4L6qejrwx8AfznV+kjRKM2zDJGlkPHaSNB+GOUN3HHB7Vd1RVT8APgScManMGcDFbfffACclyRDzlKRRmUkbJkmj5LGTpJEbJqE7HLizp39bO6xvmaraDdwPPGmIeUrSqMykDZOkUfLYSdLIparmNmHySuDFVfW6tv/VwHFV9Z97ytzcltnW9v9zW+ZbfepbB6xre48GvjqnwObuIOCeBZ7nqLkMi4PL0N9TqmrViOucs5m0Ye3whW6blsL3Z5ClumwuV/f0LtuCtU2jPHZaBMdNM9GV71AX4uxCjNCNOLsQIzRxPm4m7dM+Q8xkG3BkT/8RwPYBZbYl2Qd4AnBvv8qqagOwYYh4hpJkS1VNjGv+o+AyLA4uQ2fMpA1b8LZpKa/7pbpsLlf3jHHZRnbsNO7jppnoyneoC3F2IUboRpxdiBH+Jc41Myk7zCWXXwSOSvLUJPsCZwJXTCpzBXB22/0K4O9qrqcEJWm0ZtKGSdIoeewkaeTmfIauqnYneSPwSWAFsLGqbk7yDmBLVV0BXAT8ZZLbaX5dOnMUQUvSsAa1YWMOS9IS5rGTpPkwzCWXVNVVwFWThr29p3sX8Mph5rGAFvVlCzPkMiwOLkNH9GvDFoGlvO6X6rK5XN0ztmVbYsdO0+nKd6gLcXYhRuhGnF2IEWYR55wfiiJJkiRJGq9h7qGTJEmSJI2RCV2PJH+U5NYkX05yeZInjjum2UryyiQ3J/lhkkX/BJ9eSU5J8tUktyc5d9zxzFaSjUl2JLlp3LHMRZIjk3wqyS3td+jXxx3TUjbd9z3Ja5LsTHJj+3ndOOKcren2gzT+tF3uLyf5qYWOcS5msFwnJrm/Z3u9vV+5xWYm+32Ht9lMlq2T261LunJstZiPn7pwfNSFY6CuHOck2S/JF5J8qY3zd6abxoTukTYDz6qqZwP/BLx1zPHMxU3Ay4Frxx3IbCRZAfwZcCpwDHBWkmPGG9WsbQJOGXcQQ9gNvLmqngEcD7yhg9ugE2bxfb+sqta2n/cvaJBzt4mp94NTgaPazzrgvQsQ0yhsYvr9+zM92+sdCxDTKMxkv+/qNptpm9bF7dYlXTm2WpTHTx06PtrE4j8G6spxzveBF1TVscBa4JQkx081gQldj6q6uqp2t72fo3k/TKdU1S1VtRhfLjqd44Dbq+qOqvoB8CHgjDHHNCtVdS0D3rPYBVV1V1Xd0HY/CNwCHD7eqJaszn/fB5nBfnAG8IFqfA54YpJDFya6uev6/j3IDPf7rm4z27RFoCvHVov4+KkT/y+60EZ2pU1o29qH2t6V7WfKh56Y0A32q8DHxx3EMnI4cGdP/zYW4U62XCRZAzwH+Px4I1myZvp9//ftZUp/k+TIPuO7aCnv689rL5H5eJJnjjuY2Zpiv+/8NpumTev0dusYj61mr/P732K02I9zkqxIciOwA9hcVVPGOdRrC7ooyf8Cntxn1G9V1cfaMr9Fc1r2koWMbaZmsgwdlD7DfATrGCR5PPC3wJuq6oFxx7NEzeT7/j+AS6vq+0nOAS4GXjDvkc2/pbqv3wA8paoeSnIa8FGaSxQ7YZr9vtPbbJpl6/R2Wyy6cmzV0eOnTu9/i1EXjnOqag+wtr3n9PIkz6qqgfcnLruErqpeONX4JGcDLwFOqkX6TofplqGjtgG9ZyCOALaPKZZlK8lKmkbukqr6yLjjWcKm/b5X1bd6et8H/OECxLUQluS+3ntQUFVXJfnzJAdV1T3jjGsmZrDfd3abTbdsXd5ui0lXjq06evzU2f1vMeracU5VfTvJp2nuTxyY0HnJZY8kpwBvAV5aVd8ddzzLzBeBo5I8Ncm+wJnAFWOOaVlJEuAi4Jaqeve441nipv2+T7pH6aU01/ovBVcAv9w+OfF44P6qumvcQQ0ryZPbfYgkx9H8f/3W1FON3wz3+05us5ksW1e3W5d4bDU0j49GpCvHOUlW7X0abJLHAi8Ebp1ymkV6EmosktwOPIYfNeafq6pzxhjSrCX5eeA9wCrg28CNVfXi8UY1M+3lLn8CrAA2VtXvjTmkWUlyKXAicBBwN3BeVV001qBmIclPA58BvgL8sB38tqq6anxRLV39vu9J3gFsqaorkvwBTSK3m+ZG81+rqikb9MWg335Ac0M3VXVh+w/1AppfG78L/EpVbRlPtDM3g+V6I/BrNNvre8D/XVX/OJ5oZ27Qfg+shs5vs5ksWye3W5d05dhqMR8/deH4qAvHQF05zknybJrbLFbQ/Mj04emewGtCJ0mSJEkd5SWXkiRJktRRJnSSJEmS1FEmdJIkSZLUUSZ0kiRJktRRJnSSJEmS1FEmdJIkSZLUUSZ0kiRJktRRJnSSJEmS1FH/P4Yeckj/3UjxAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from scipy.stats import f, norm, t\n", + "import pandas as pd\n", + "from matplotlib import pyplot\n", + "%matplotlib inline\n", + "\n", + "N = 100\n", + "bins = 10\n", + "\n", + "true_normal = norm.rvs(size=N)\n", + "f_distributed = f.rvs(dfn=50, dfd=30, size=N)\n", + "t_distributed = t.rvs(df=50, size=N)\n", + "\n", + "norm_values = pd.Series(data=true_normal)\n", + "f_values = pd.Series(data=f_distributed)\n", + "t_values = pd.Series(data=t_distributed)\n", + "\n", + "# Plotting\n", + "# We want our histograms in separate axes:\n", + "pyplot.figure(figsize=(15, 5)) # (width, height) = (15, 5)\n", + "\n", + "# Create 3 subplots, side-by-side\n", + "pyplot.subplot(1, 3, 1)\n", + "pyplot.hist(norm_values, bins=bins, edgecolor='white');\n", + "pyplot.title('Values from a normal distribution')\n", + "\n", + "pyplot.subplot(1, 3, 2)\n", + "pyplot.hist(f_values, bins=bins, edgecolor='white');\n", + "pyplot.title('Values from an f-distribution')\n", + "\n", + "pyplot.subplot(1, 3, 3)\n", + "pyplot.hist(t_values, bins=bins, edgecolor='white');\n", + "pyplot.title('Values from a t-distribution');\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### ➜ Challenge yourself: Dice averages are normally distributed\n", + "\n", + "A common concept in a first statistics course is to talk about the central limit theorem. As you take averages of more and more independent data values, the average becomes normally distributed, even if the original values are not.\n", + "\n", + "We know from the above challenge we should not judge normality by plots, but here we will show how the data ***appear*** to be become more normal. We are not testing, or saying, they are normal.\n", "\n", - "* Distributions: random numbers from normal distribution\n", - "* Box plots and bar plots\tDistributions: t-distribution" + "\n", + "\n", + "If you throw a dice, each throw is ***independent*** of the next one: the value you throw now does not depend on the value before, and it cannot influence the value after. This is another important statistical concept, but it is not the one being demonstrated here.\n", + "\n", + "Each throw of the dice comes from the [***uniform*** distribution](https://learnche.org/pid/univariate-review/uniform-distribution). Each value of 1, 2, 3, 4, 5 or 6 has a uniform (or equal) chance of appearing.\n", + "```python\n", + "import numpy as np\n", + "\n", + "# Throw a dice 100 times. Values are between 1 (inclusive) and 7 (exclusive)\n", + "np.random.randint(1, 7, size=100)\n", + "```" ] }, { @@ -1095,7 +1244,9 @@ "execution_count": null, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "CODE HERE TO SHOW AVERAGE OF 1, 2, 4, 6, 8, 10 throws" + ] }, { "cell_type": "code", @@ -1114,7 +1265,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 11, "metadata": {}, "outputs": [ { @@ -1198,7 +1349,7 @@ "\n", ".text_cell_render h3 {\n", " font-family: 'Merriweather', serif;\n", - "\tfont-size: 150%;\n", + " font-size: 150%;\n", " margin-top:12px;\n", " margin-bottom: 3px;\n", " font-style: regular;\n", @@ -1207,15 +1358,15 @@ "\n", ".text_cell_render h4 { /*Use this for captions*/\n", " font-family: 'Merriweather', serif;\n", - " font-weight: 300;\n", - " font-size: 100%;\n", + " font-weight: bold;\n", + " font-size: 150%;\n", " line-height: 120%;\n", " text-align: left;\n", - " width:500px;\n", - " margin-top: 1em;\n", + " margin-top: 12px;\n", " margin-bottom: 5px;\n", " margin-left: 0pt;\n", " font-style: regular;\n", + " color: #8B008B;\n", "}\n", "\n", ".text_cell_render h5 { /*Use this for small titles*/\n", @@ -1273,7 +1424,7 @@ "" ] }, - "execution_count": 1, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" } diff --git a/Module-10-interactive.ipynb b/Module-10-interactive.ipynb index cd128ad..88b824d 100644 --- a/Module-10-interactive.ipynb +++ b/Module-10-interactive.ipynb @@ -183,9 +183,9 @@ "\n", "* regression: https://towardsdatascience.com/simple-and-multiple-linear-regression-in-python-c928425168f9\n", "\n", - "* qq-plot in Pandas\n", + "* MUST COVER: qq-plot in Pandas\n", "\n", - "* look at the goal to determine if students who took a longer time to finish actually scored a higher . Come back\n" + "* MUST COVER: look at the goal to determine if students who took a longer time to finish actually scored a higher . Come back\n" ] }, { diff --git a/TODO.md b/TODO.md index c275e81..b5be63a 100644 --- a/TODO.md +++ b/TODO.md @@ -96,8 +96,6 @@ Do while loop. Execute, then check: can be done with a break statement and condi Example. Keep going until you see a particular DNA sequence. Or peak value above certain threshold - - Types ------ change from one type to another: diff --git a/images/style.css b/images/style.css index 3adff56..bd68222 100644 --- a/images/style.css +++ b/images/style.css @@ -76,7 +76,7 @@ div.text_cell_render{ .text_cell_render h3 { font-family: 'Merriweather', serif; - font-size: 150%; + font-size: 150%; margin-top:12px; margin-bottom: 3px; font-style: regular; @@ -85,15 +85,15 @@ div.text_cell_render{ .text_cell_render h4 { /*Use this for captions*/ font-family: 'Merriweather', serif; - font-weight: 300; - font-size: 100%; + font-weight: bold; + font-size: 150%; line-height: 120%; text-align: left; - width:500px; - margin-top: 1em; + margin-top: 12px; margin-bottom: 5px; margin-left: 0pt; font-style: regular; + color: #8B008B; } .text_cell_render h5 { /*Use this for small titles*/ From e9735d6f7b065eeefb0608142b9852b16aaa8316 Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Tue, 16 Jul 2019 11:55:02 +0200 Subject: [PATCH 038/134] Added more to the histogram challenges --- Module-09-interactive.ipynb | 139 +++++++++++++++++++++++++++++++----- 1 file changed, 121 insertions(+), 18 deletions(-) diff --git a/Module-09-interactive.ipynb b/Module-09-interactive.ipynb index 0b941a9..8c765fe 100644 --- a/Module-09-interactive.ipynb +++ b/Module-09-interactive.ipynb @@ -1079,24 +1079,23 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Regular walking: \n", - "[ 3.36872552e+00 -1.13917806e+01 3.22569416e+00 -9.77637798e-01\n", - " 4.08921191e+00 7.35784690e-01 -2.90071068e+00 3.75347963e+00\n", - " -2.45082272e+00 7.49820386e+00 -4.93361234e+00 3.48327341e+00\n", - " 1.13822432e-02 -6.85604873e+00 -8.68931720e+00 -3.41468947e-01\n", - " 2.16465212e+00 6.57643141e-01 -7.34073427e-01 -1.33100624e-01]\n", - "Someone who has consumed too much: \n", - "[ 19.65502962 1.39951335 32.73139175 7.04282902 -3.19859331\n", - " -20.33808233 9.63950154 5.80177213 0.9900464 1.92216785\n", - " -20.843857 -18.43692294 -11.35410504 7.06983521 8.08637714\n", - " -24.71550656 8.58118158 7.17017213 -7.92971946 16.67303932]\n" + "Regular walking. Deviations from zero [cm]: \n", + "[ 3.72621982 -4.91278231 4.6324655 10.42456315 -4.43405379 -1.11718155\n", + " 2.26788297 -1.61296986 0.82638733 4.02201486 8.187456 -3.25374999\n", + " -0.96481704 -1.71439881 -2.28592108 7.40025231 0.14113873 4.75635199\n", + " 4.91799275 8.77207791]\n", + "Consumed too much. Deviations from zero [cm] \n", + "[ 25.36350575 -1.09761261 22.05827837 -2.88915491 0.27609478\n", + " -10.21747628 -3.41118495 18.51946387 9.03690663 10.82971298\n", + " -9.99393738 5.25460869 6.0769399 -14.35339998 2.98534817\n", + " -18.29159814 2.9722485 22.66107231 18.5237443 8.0073894 ]\n" ] } ], @@ -1107,11 +1106,11 @@ "# left (negative) or to the right (positive) when they are \n", "# walking straight. Values are in centimeters.\n", "regular_steps = norm.rvs(loc=0, scale=5, size = 20)\n", - "print('Regular walking: \\n{}'.format(regular_steps))\n", + "print('Regular walking. Deviations from zero [cm]: \\n{}'.format(regular_steps))\n", "\n", "# Consumed too much? Standard deviation (scale) is larger:\n", "deviating_steps = norm.rvs(loc=0, scale=12, size = 20)\n", - "print('Someone who has consumed too much: \\n{}'.format(deviating_steps))" + "print('Consumed too much. Deviations from zero [cm] \\n{}'.format(deviating_steps))" ] }, { @@ -1150,6 +1149,110 @@ "Modify your code to show the histogram of the cumulative sum of the deviations! You only need to make a very small modification to do this - thank you Pandas!" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### ➜ Challenge yourself: Understanding the normal distribution\n", + "\n", + "Use these function from Pandas (we introduced them in [worksheet 7](https://yint.org/pybasic07))\n", + "\n", + "\n", + "In general, the same things you can calculate in NumPy, you can repeat in Pandas:\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    NumPyPandasDescription
    np.meandf.meanArithmetic average
    np.mediandf.medianMedian value
    np.stddf.stdStandard deviation
    -df.madMean absolute deviation
    np.vardf.varVariance
    np.mindf.minMinimum value
    np.maxdf.maxMaximum value
    \n", + "\n", + "\n", + "Create a sample of $n=10000$ values from the normal distribution. \n", + "```python\n", + "from scipy.stats import norm\n", + "import pandas as pd\n", + "n = 10000\n", + "normal_values = pd.Series(norm.rvs(loc=7.5, scale=1.0, size = n))\n", + "```\n", + "\n", + "1. What is the mean of the above values? Run the code several times, since everytime you will get a different sample of values.\n", + "2. Does the standard deviation match with the ``scale`` input provided?\n", + "3. What is the median value?\n", + "4. Use the `.describe()` function and see what the 25th percentile is. Calculate this value yourself. In Pandas the function to do so is called `quantile(q=0.25)`.\n", + "5. Repeat this for the 75th percentile. Therefore, between which two values do 50% of the data from a normal distribution lie?" + ] + }, + { + "cell_type": "code", + "execution_count": 189, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "count 10000.000000\n", + "mean -0.015069\n", + "std 1.007716\n", + "min -3.702258\n", + "25% -0.702562\n", + "50% -0.000469\n", + "75% 0.663414\n", + "max 3.925027\n", + "dtype: float64" + ] + }, + "execution_count": 189, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from scipy.stats import norm\n", + "import pandas as pd\n", + "\n", + "n = 10000\n", + "normal_values = pd.Series(norm.rvs(loc=0, scale=1, size = n))\n", + "normal_values.describe()\n", + "\n" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -1265,7 +1368,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 1, "metadata": {}, "outputs": [ { @@ -1424,7 +1527,7 @@ "" ] }, - "execution_count": 11, + "execution_count": 1, "metadata": {}, "output_type": "execute_result" } @@ -1447,7 +1550,7 @@ "metadata": { "hide_input": false, "kernelspec": { - "display_name": "Python [default]", + "display_name": "Python 3", "language": "python", "name": "python3" }, @@ -1461,7 +1564,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.5.5" + "version": "3.7.3" }, "toc": { "base_numbering": 1, From 90ad1c0605234fb3423fbd43c1c470a016e977ee Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Tue, 16 Jul 2019 12:03:50 +0200 Subject: [PATCH 039/134] Unresolved merge --- Module-09-interactive.ipynb | 152 +++++++++++++++++++++++++++++------- 1 file changed, 125 insertions(+), 27 deletions(-) diff --git a/Module-09-interactive.ipynb b/Module-09-interactive.ipynb index bbb6b86..2201694 100644 --- a/Module-09-interactive.ipynb +++ b/Module-09-interactive.ipynb @@ -13,47 +13,145 @@ "source": [ "> All content here is under a Creative Commons Attribution [CC-BY 4.0](https://creativecommons.org/licenses/by/4.0/) and all source code is released under a [BSD-2 clause license](https://en.wikipedia.org/wiki/BSD_licenses). \n", ">\n", - ">Please reuse, remix, revise, and [reshare this content](https://github.com/kgdunn/python-basic-notebooks) in any way, keeping this notice." + ">and inspect the value of ``counts`` and ``bins`` that you get as outpu. What do you think these are? Compare them to the plots above." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Try the above code here, and interpret the output" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "# Module 9: Overview \n", + "### Step 6: Communicate your results\n", "\n", - "In the prior [module 8](https://yint.org/pybasic08) you got more exposure to Pandas data frames.\n", + "We need to wrap up our workflow with the final step of communicating our goal: what does the spread of the data looks like?\n", "\n", - "In this module we use these data frames from getting a brief exposure to **statistics** and **plotting**. We can look at each topic separately, but they go hand-in-hand. You've probably heard: \"*always start your data analysis by plotting your data*\". There's a good reason for that: the type of statistical analysis is certainly guided by what is in that data. Plotting the data is one of the most effective ways to figure that out.\n", + "We won't provide a definitive answer, rather, we will give some phrases and sentences below that you might use if you had to write this in a report. ***Which of these are correct***, and ***which are incorrect***?\n", "\n", - "### Preparing for this module###\n", + "* The grades of the students are uniformly distributed (spread).\n", + "* The time taken is approximately symmetrically spread, with a center of 190 minutes.\n", + "* There is long tail observed in the student grades, with a tail (skew) to the right.\n", + "* There is long tail observed in the student grades, with a tail (skew) to the left\n", + "* There appear to be outliers in the `Time` taken variable, with some students taking an exceptionally short time.\n", + "* The median grade seems to be between 70 and 75%, and matches the value in the ``describe()`` table.\n", "\n", - "You should have read [Chapter 1](https://learnche.org/pid/data-visualization/) of the book \"Process Improvement using Data\".\n", + "### Summary\n", "\n", - "### Summarizing data visually and numerically (statistics)\n", + "You should, from the above exercise see the value of a histogram. New terminology is ***highlighted***.\n", "\n", - "In [this notebook](https://yint.org/pybasic09):\n", - " \n", - "1. Box plots\n", - "2. Bar plots (bar charts) \n", - "3. Histograms,\n", - "
    \n", - "\n", - "In the [next notebook](https://yint.org/pybasic10):\n", - "4. Data tables\n", - "5. Time-series, or a sequence plot\n", - "6. Scatter plot\n", - "\n", - "
    \n", - "Statistical concepts are indicated with this icon.\n", - "
    In between, throughout the notes, we will also introduce statistical and data science concepts. This way you will learn how to interpret the plots and also communicate your results with the correct language." + "\n", + "\n", + "* Histograms are a graphic summary of the spread of a single variable. We sometimes use the word \"***distribution***\" instead of \"spread\". The word ***scale*** is also used by statisticians as well for this concept.\n", + "* We get a good idea of the center of the data. Also called the ***location***.\n", + "* We can, depending on the number of bins, detect if there are outliers.\n", + "* It indicates if there is skew in the data; does the histogram have a tail to one side?\n", + "* We also see how many 'humps' there are in the data. Is everything collected in one hump, or are there two humps (peaks). This webpage shows an example of distribution with two peaks." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### ➜ Challenge yourself: Random walks\n", + "\n", + "Imagine a person walking. Every step forward also includes a small random amount to the left (negative values) or right (positive values).\n", + "\n", + "We can model these values with numbers from a normal distribution, which is centered at zero. If they were walking perfectly straight ahead, then viewed from the back, their position stays at zero if they walk in such a straight line.\n", + "\n", + "If they have had too much to drink, their steps might be biased a bit more. We can increase the standard deviation of the normal distribution to make the distribution wider." + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Regular walking: \n", + "[ 3.36872552e+00 -1.13917806e+01 3.22569416e+00 -9.77637798e-01\n", + " 4.08921191e+00 7.35784690e-01 -2.90071068e+00 3.75347963e+00\n", + " -2.45082272e+00 7.49820386e+00 -4.93361234e+00 3.48327341e+00\n", + " 1.13822432e-02 -6.85604873e+00 -8.68931720e+00 -3.41468947e-01\n", + " 2.16465212e+00 6.57643141e-01 -7.34073427e-01 -1.33100624e-01]\n", + "Someone who has consumed too much: \n", + "[ 19.65502962 1.39951335 32.73139175 7.04282902 -3.19859331\n", + " -20.33808233 9.63950154 5.80177213 0.9900464 1.92216785\n", + " -20.843857 -18.43692294 -11.35410504 7.06983521 8.08637714\n", + " -24.71550656 8.58118158 7.17017213 -7.92971946 16.67303932]\n" + ] + } + ], + "source": [ + "from scipy.stats import norm\n", + "\n", + "# 20 steps for a regular personn, showing the deviation to the \n", + "# left (negative) or to the right (positive) when they are \n", + "# walking straight. Values are in centimeters.\n", + "regular_steps = norm.rvs(loc=0, scale=5, size = 20)\n", + "print('Regular walking: \\n{}'.format(regular_steps))\n", + "\n", + "# Consumed too much? Standard deviation (scale) is larger:\n", + "deviating_steps = norm.rvs(loc=0, scale=12, size = 20)\n", + "print('Someone who has consumed too much: \\n{}'.format(deviating_steps))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## A general work flow for any project where you deal with data\n", + "##### Questions\n", + "\n", + "1. Visualize the histogram of 1000 steps of someone who is walking *normally* 😃 \n", + "2. Visualize, in a subplot, side-by-side, the histogram of someone who has consumed too much.\n", + "\n", + "Both histograms should be centered at zero. Give each histogram a title, and a label on the x-axis, including units of centimeters.\n", + "\n", + "***Hint*** To create a Pandas series of the values, remember [from worksheet 7](https://yint.org/pybasic07) that you can do that as follows:\n", + "```python\n", + "import pandas as pd\n", + "steps = pd.Series(data = ...)\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [], + "source": [ + "# Put your code here" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A person walking in random way has a cumulative effect. If they have deviated 30cm to the left, therefore they are at `-30`, and their next step is to sway to the right by 10cm, then they will be at `-20`. \n", + "\n", + "Modify your code to show the histogram of the cumulative sum of the deviations! You only need to make a very small modification to do this - thank you Pandas!" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### ➜ Challenge yourself: Can you see normal distributions using a histogram?\n", + "\n", + "Many statistical tools require the data to be normally distributed. \n", + "\n", + "Novices fall in the trap of plotting the histogram, and saying that it looks to be normally distributed, and then keep going with their next steps. There is a better way to test this,which is shown in [the next module](https://yint.org/pybasic10).\n", + "\n", + "But for now, try to run this code, to convince yourself that histograms are not a great tool to visualize if data are normally distributed. \n", "\n", "*** After years of experience, and working with data you will find your own approach. ***\n", "\n", @@ -107,7 +205,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 11, "metadata": {}, "outputs": [ { @@ -266,7 +364,7 @@ "" ] }, - "execution_count": 1, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" } @@ -282,7 +380,7 @@ "metadata": { "hide_input": false, "kernelspec": { - "display_name": "Python 3", + "display_name": "Python [default]", "language": "python", "name": "python3" }, @@ -296,7 +394,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.3" + "version": "3.5.5" }, "toc": { "base_numbering": 1, From 83694f8821c217960906f32dac13212ef00bb9be Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Tue, 16 Jul 2019 12:12:26 +0200 Subject: [PATCH 040/134] Moved the TODO list to the bottom --- Module-09-interactive.ipynb | 86 +++++++++++++++++-------------------- 1 file changed, 39 insertions(+), 47 deletions(-) diff --git a/Module-09-interactive.ipynb b/Module-09-interactive.ipynb index 8c765fe..cc303f1 100644 --- a/Module-09-interactive.ipynb +++ b/Module-09-interactive.ipynb @@ -17,36 +17,6 @@ "\n" ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "##### TODO\n", - "\n", - "Essential: https://www.datacamp.com/community/tutorials/pandas-split-apply-combine-groupby\t\n", - "\n", - "df.plot(x='col_name_1', y='col_name_2', style='o')\t\"Jupyter notebook introduction;\n", - "\n", - "* Bar plots of percentage explained\n", - "\n", - "* DOE model analysis?\n", - "\n", - "https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.probplot.html\n", - "\n", - "\n", - "https://nbviewer.jupyter.org/github/engineersCode/EngComp2_takeoff/blob/master/notebooks_en/2_Seeing_Stats.ipynb\"\n", - "\n", - "https://www.youtube.com/playlist?list=PL-osiE80TeTvipOqomVEeZ1HRrcEvtZB_\t\n", - "\n", - "\n", - "\n", - "Distributions: sampling from a list\n", - "\n", - "https://www.coursera.org/learn/python-data-analysis/lecture/xhEIo/hypothesis-testing-in-python\n", - "\n", - "PCA: https://jakevdp.github.io/PythonDataScienceHandbook/05.09-principal-component-analysis.html\n" - ] - }, { "cell_type": "markdown", "metadata": {}, @@ -1221,24 +1191,24 @@ }, { "cell_type": "code", - "execution_count": 189, + "execution_count": 192, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "count 10000.000000\n", - "mean -0.015069\n", - "std 1.007716\n", - "min -3.702258\n", - "25% -0.702562\n", - "50% -0.000469\n", - "75% 0.663414\n", - "max 3.925027\n", + "mean -0.000908\n", + "std 1.004785\n", + "min -3.606757\n", + "25% -0.677830\n", + "50% 0.002335\n", + "75% 0.667788\n", + "max 3.813767\n", "dtype: float64" ] }, - "execution_count": 189, + "execution_count": 192, "metadata": {}, "output_type": "execute_result" } @@ -1249,8 +1219,7 @@ "\n", "n = 10000\n", "normal_values = pd.Series(norm.rvs(loc=0, scale=1, size = n))\n", - "normal_values.describe()\n", - "\n" + "normal_values.describe()" ] }, { @@ -1352,11 +1321,34 @@ ] }, { - "cell_type": "code", - "execution_count": null, + "cell_type": "markdown", "metadata": {}, - "outputs": [], - "source": [] + "source": [ + "##### TODO\n", + "\n", + "Essential: https://www.datacamp.com/community/tutorials/pandas-split-apply-combine-groupby\t\n", + "\n", + "df.plot(x='col_name_1', y='col_name_2', style='o')\t\"Jupyter notebook introduction;\n", + "\n", + "* Bar plots of percentage explained\n", + "\n", + "* DOE model analysis?\n", + "\n", + "https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.probplot.html\n", + "\n", + "\n", + "https://nbviewer.jupyter.org/github/engineersCode/EngComp2_takeoff/blob/master/notebooks_en/2_Seeing_Stats.ipynb\"\n", + "\n", + "https://www.youtube.com/playlist?list=PL-osiE80TeTvipOqomVEeZ1HRrcEvtZB_\t\n", + "\n", + "\n", + "\n", + "Distributions: sampling from a list\n", + "\n", + "https://www.coursera.org/learn/python-data-analysis/lecture/xhEIo/hypothesis-testing-in-python\n", + "\n", + "PCA: https://jakevdp.github.io/PythonDataScienceHandbook/05.09-principal-component-analysis.html\n" + ] }, { "cell_type": "markdown", @@ -1368,7 +1360,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 191, "metadata": {}, "outputs": [ { @@ -1527,7 +1519,7 @@ "" ] }, - "execution_count": 1, + "execution_count": 191, "metadata": {}, "output_type": "execute_result" } From 31ecea5211e007005f31873fa3d9314f0536e816 Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Tue, 16 Jul 2019 12:47:41 +0200 Subject: [PATCH 041/134] Merging --- Module-09-interactive.ipynb | 390 ++++++++++++++++++++++++++++-------- Module-10-interactive.ipynb | 10 +- TODO.md | 2 + images/style.css | 6 +- 4 files changed, 314 insertions(+), 94 deletions(-) diff --git a/Module-09-interactive.ipynb b/Module-09-interactive.ipynb index b42d4af..7a032db 100644 --- a/Module-09-interactive.ipynb +++ b/Module-09-interactive.ipynb @@ -7,7 +7,7 @@ }, "source": [ "

    Table of Contents

    \n", - "" + "" ] }, { @@ -36,6 +36,7 @@ "\n", "In this module we use these data frames from getting a brief exposure to **statistics** and **plotting**. We can look at each topic separately, but they go hand-in-hand. You've probably heard: \"*always start your data analysis by plotting your data*\". There's a good reason for that: the type of statistical analysis is certainly guided by what is in that data. Plotting the data is one of the most effective ways to figure that out.\n", "\n", + "\n", "### Preparing for this module###\n", "\n", "You should have read [Chapter 1](https://learnche.org/pid/data-visualization/) of the book \"Process Improvement using Data\".\n", @@ -55,8 +56,7 @@ "6. Scatter plot\n", "\n", "
    \n", - "Statistical concepts are indicated with this icon.\n", - "
    In between, throughout the notes, we will also introduce statistical and data science concepts. This way you will learn how to interpret the plots and also communicate your results with the correct language." + "Statistical concepts are indicated with this icon.
    In between, throughout the notes, we will also introduce statistical and data science concepts. This way you will learn how to interpret the plots and also communicate your results with the correct language." ] }, { @@ -67,23 +67,23 @@ "\n", "*** After years of experience, and working with data you will find your own approach. ***\n", "\n", - "Here is my 6-step approach (it is not linear, but iterative): **Define**, **Get**, **Explore**, **Clean**, **Manipulate**, **Communicate**\n", + "Here is my 6-step approach (not linear, but iterative): **Define**, **Get**, **Explore**, **Clean**, **Manipulate**, **Communicate**\n", "\n", - "1. **Define**/clarify the *objective*. Write down exactly what you need to deliver to have the project/assignment considered as completed.\n", + "1. **Define**/clarify the objective. Write down exactly what you need to deliver to have the project/assignment considered as completed.\n", "\n", " Then your next steps become clear.\n", " \n", " \n", "\n", - "2. Look for and **get** your data (or it will be given to you by a colleague). Since you have your objective clarified, it is clearer now which data, and how much data you need.\n", + "2. Look for and **get** your data (or it will be given to you by a colleague). Since you have your objective clarified, it is clearer now what data, and how much data you need.\n", "\n", - "3. Then start looking at the data. Are the data what we expect? This is the **explore** step. Use plots and table summaries.\n", + "3. Then start looking at the data. Are the data what we expect? This is the **explore** step. Use plots and summaries.\n", "\n", - "4. **Clean** up your data. This step and the prior step are iterative. As you explore your data you notice problems, bad data, you ask questions, you gain a bit of insight into the data. You clean, and re-explore, but always with the goal(s) in mind. Or perhaps you realize already this isn't the right data to reach your objective. You need other data, so you iterate.\n", + "4. **Clean** up your data. This step and the prior step are iterative. As you explore your data you notice problems, bad data entry, you ask questions, you gain a bit of insight into the data. You clean, and re-explore, but always with the goal(s) in mind. Or perhaps you realize already this isn't the right data to reach your objective.\n", "\n", - "5. Modifying, making calculations from, and **manipulate** the data. This step is also called modeling, if you are building models, but sometimes you are simply summarizing your data to get the objective solved.\n", + "5. Modifying, making calculations from, and **manipulate** the data. This step is also called modeling, if you are building models, but sometimes you are simply summarizing your data.\n", "\n", - "6. From the data models and summaries and plots you start extracting the insights and conclusions you were looking for. Again, you can go back to any of the prior steps if you realize you need that to better achieve your goal(s). You **communicate** clear visualizations to your colleagues, with crisp, short text explanations that meet the objectives.\n", + "6. From the data models and summaries and plots you start extracting the insights and conclusions you were looking for. Again, you can go back to any of the prior steps if you realize you need that to better achieve your goal(s). You **communicate** clear visualizations to your colleagues, with crisp, short explanations that meet the objectives.\n", "\n", "___\n", "\n", @@ -94,11 +94,11 @@ "\n", "___\n", "* Hilary Mason and Chris Wiggins in their article on A Taxonomy of Data Science describe their 5 steps in detail:\n", - " 1. **Obtain**: pointing and clicking does not scale. In other words, pointing and clicking in Excel, Minitab, or similar software is OK for small data/quick analysis, but does not scale to large data, nor repeated data analysis. \n", - " 1. **Scrub**: the world is a messy place\n", - " 1. **Explore**: you can see a lot by looking\n", - " 1. **Models**: always bad, sometimes ugly\n", - " 1. **Interpret**: \"the purpose of computing is insight, not numbers.\"\n", + " 1. **Obtain**: pointing and clicking does not scale. In other words, pointing and clicking in Excel, Minitab, or similar software is OK for small data/quick analysis, but does not scale to large data, nor repeated data analysis.\n", + " 2. **Scrub**: the world is a messy place\n", + " 3. **Explore**: you can see a lot by looking\n", + " 4. **Models**: always bad, sometimes ugly\n", + " 5. **Interpret**: \"the purpose of computing is insight, not numbers.\"\n", " \n", " You can read their article, as well as this view on it, which is bit more lighthearted.\n", " \n", @@ -237,6 +237,7 @@ "\n", " What value will we find halfway? It is called the **median**, the middle value, the one that separates your data set in half. If there are an even number of data values, you take the average between the two middle values. \n", "\n", + "\n", "Try find the median value manually:" ] }, @@ -424,7 +425,8 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "#### ➜ Challenge problem\n", + "#### ➜ Challenge yourself:___\n", + "\n", "\n", "On a different data set, with multiple columns\n", "\n", @@ -655,7 +657,7 @@ "\n", "The results are more clearly communicated with horizontal bars (use the ``barh`` command), than with vertical bars. Try using vertical bars, by modifying the above code and simply use ``.bar(...)``. Why is the ``barh`` command preferred?\n", "\n", - "##### Final checks\n", + "#### Final checks\n", "1. The most visits, *on average*, occur on a \\_\\_\\_\\_day.\n", "2. If the website should go offline for an entire day for maintenance, the best day to pick would be a \\_\\_\\_\\_day.\n", "3. Is the bar plot strictly necessary in this case study when compared to the data table? *In other words*, what value does the bar plot provide, if any, that is not provided by the table?\n", @@ -667,7 +669,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Bar plot theory (this sub-section can be skipped)\n", + "## Bar plot theory (can be skipped initially)\n", "\n", "\n", "![alt=\"Bar plot terminology\"](images/summarizing-data/barplot-example-expenses.png)\n", @@ -677,7 +679,7 @@ "* The text can sometimes be added *inside the bar* if there is restricted space.\n", "* An interesting characteristic of a bar plot is that **the *interpretation* of a bar plot does not differ if the category axis is reordered.** It can be easier to interpret the plot with a particular ordering; however, the interpretation won't be *different* if using a different ordering. The example below demonstrates this: the interpretation has not changed, but the visualization is far more effective.\n", "\n", - "### Definition of a bar plot\n", + "### Definition for a bar plot\n", "\n", "It seems strange to end off this section with a definition of a bar plot. But perhaps it isn't: you see these types of plots everywhere, especially in the media. But it is hard to describe what they actually are. Here's one definition:\n", "\n", @@ -697,7 +699,7 @@ "\n", "The categories used in a bar plot can often be rearranged without 'breaking' the message. We saw an example above.\n", "\n", - "This happened because each bar is independent of the others. If you re-order them, the information shown - from the height of the bars, on the value axis - is still the same.\n", + "This happened because each bar is independent of the others. If you re-order them, the information shown -- from the height of the bars, on the value axis -- is still the same.\n", "\n", "This does not mean you should show the bar plot in a random order. By ordering the information you make the plot easier to read, and in an underhanded way you subtly alter how the user reads the message. You can use this power to your advantage to make the message clearer, but you can also use it to frustrate your reader. Rather do the former, and not the latter." ] @@ -744,9 +746,9 @@ "\n", "Plot the percentage explained of a PCA model\n", "\n", - "#### ➜ Challenge yourself: _____ \n", + "#### ➜ Challenge yourself: _____\n", "\n", - "* Where a subplot is needed. Boxplot on the left, barplot on the right?" + "Where a subplot is needed. Boxplot on the left, barplot on the right?" ] }, { @@ -779,10 +781,8 @@ }, { "cell_type": "code", - "execution_count": 4, - "metadata": { - "code_folding": [] - }, + "execution_count": null, + "metadata": {}, "outputs": [], "source": [ "# Standard imports required to show plots and tables \n", @@ -795,16 +795,93 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "\n" + "Following the 6 data science steps of **Define**, **Get**, **Explore**, **Clean**, **Manipulate**, **Communicate**\n", + "we want to look at a data set where students were allowed unlimited time to write an exam. \n", + "\n", + "In a later notebook we will look at the goal to determine if students who took a longer time to finish actually scored a higher grade. For now, our objective is quite simple: visualize the distribution (spread) of the two variables:\n", + "1. the time to write the exam\n", + "2. the grade (out of 100) achieved on the exam\n", + "\n", + "So the above is our (1) definition, and (2) we get the data from a website where this dataset has already been prepared for us (https://openmv.net/info/unlimited-time-test). We will (3) explore the data, and notice we don't really need to (4) clean it, since it has been done for us already. We will (5) manipulate the data into a histogram and visualize that to (6) communicate our goal: what does the spread of the data looks like." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "> All content here is under a Creative Commons Attribution [CC-BY 4.0](https://creativecommons.org/licenses/by/4.0/) and all source code is released under a [BSD-2 clause license](https://en.wikipedia.org/wiki/BSD_licenses). \n", - ">\n", - ">and inspect the value of ``counts`` and ``bins`` that you get as outpu. What do you think these are? Compare them to the plots above." + "### Step 1, 2 and 3: Define, Get and Explore\n", + "\n", + "If you visit the [the website page](https://openmv.net/info/unlimited-time-test), you can right-click and download the CSV file to your computer. But, you can also directly import the file from the URL.\n", + "\n", + "Use the `.describe()` function once you have loaded the data to get a summary description." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "data = pd.read_csv('https://openmv.net/file/unlimited-time-test.csv')\n", + "\n", + "# Add a single line of code below, using the .describe function\n", + "# to get a summary of the data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You should get a summary that looks like this: \n", + "\n", + "Note that it matches the data source, showing there are 80 rows (each row corresponds to a student). Answer these questions:\n", + "\n", + "1. What was the average grade (out of 100) for this exam?\n", + "2. What was the shortest duration a student spent on the exam?\n", + "3. The student who wrote for the longest time wrote for ____ minutes.\n", + "4. The student with the lowest grade passed or failed the exam?\n", + "5. Does the median grade correspond closely with the average grade?\n", + "6. What else can you see in the description table that is interesting (*hint*: look at the 25 and 75th percentiles)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Step 4 and 5: Clean and Manipulate\n", + "\n", + "Step 4 is not needed (cleaning the data), but we will look at step 5 next, which is to manipulate the data to draw a histogram.\n", + "\n", + "A histogram can be drawn directly in Matplotlib with the ``pyplot.hist(...)`` function, where the only input that is needed is a vector of data.\n", + "\n", + "We want to get 2 histograms: one for the `Grade`s and another for the `Time` taken to write the exam.\n", + "\n", + "You can extract each vector using Panda's ability to access the column from the table: ``data['Grade']`` and ``data['Time']`` will each return their respective columns." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Will plot both histograms in the same \"axis\" (graph)\n", + "pyplot.hist(data['Grade']);\n", + "pyplot.hist(data['Time']);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The above is very basic, but actually confusing. There is no x-axis label, and we are plotting two different things (grades and time) on the x-axis.\n", + "\n", + "Let's clean this up and create two separate plots, side-by-side. Below you see the creation of what is called \"subplots\": multiple plots within the same figure.\n", + "\n", + "The `pyplot.subplot(nrows, ncols, index)` command will create ``nrows`` rows of plots and ``ncols`` columns, and will draw in the ``index`` space. For example ``pyplot.subplot(2, 3, 1)`` will create 2 rows and 3 columns (there 6 subplots), and draw in the 1st subplot. Once you are done with that plot, you write ``pyplot.subplot(2, 3, 2)`` and it will go to the next subplot. \n", + "\n", + "Let's try this out:" ] }, { @@ -813,14 +890,101 @@ "metadata": {}, "outputs": [], "source": [ - "# Try the above code here, and interpret the output" + "# We want our histograms in separate axes:\n", + "pyplot.figure(figsize=(15, 5)) # (width, height) = (15, 5)\n", + "\n", + "# Start with the 1st plot:\n", + "pyplot.subplot(1, 2, 1)\n", + "pyplot.hist(data['Grade']);\n", + "pyplot.title('Histogram of the student grades')\n", + "pyplot.xlabel('Grade (percentage)')\n", + "\n", + "# Then draw the second one\n", + "pyplot.subplot(1, 2, 2)\n", + "pyplot.hist(data['Time'])\n", + "pyplot.title('Histogram of the time taken')\n", + "pyplot.xlabel('Time (minutes)');" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### Step 6: Communicate your results\n", + "As you see, you get the same outputs as the graphs above, but now in two separate axes (1 \"row\" and 2 \"columns\" of graphs), each with their appropriate labels.\n", + "\n", + "The histogram is calculated by dividing the range of the data (from low to high) into a certain number of bins, or sub-ranges. The bin ranges are equally spaced. For each bin we count the number of data points that lie in that sub-range. For example, there seem to be 3 students that spent between 100 and 125 minutes to write the exam.\n", + "\n", + "We can change the number of bins, and this alters the shape of the histogram. We also add another parameter, ``edgecolor``, which improves the readability." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# We want our histograms in separate axes:\n", + "pyplot.figure(figsize=(15, 5)) # (width, height) = (15, 5)\n", + "\n", + "# Create 3 subplots, side-by-side\n", + "pyplot.subplot(1, 3, 1)\n", + "pyplot.hist(data['Grade'], bins=10, edgecolor='white');\n", + "pyplot.title('Student grades: 10 bins')\n", + "pyplot.xlabel('Grade (percentage)')\n", + "\n", + "pyplot.subplot(1, 3, 2)\n", + "pyplot.hist(data['Grade'], bins=20, edgecolor='white');\n", + "pyplot.title('Student grades: 20 bins')\n", + "pyplot.xlabel('Grade (percentage)')\n", + "\n", + "pyplot.subplot(1, 3, 3)\n", + "pyplot.hist(data['Grade'], bins=30, edgecolor='white');\n", + "pyplot.title('Student grades: 30 bins')\n", + "pyplot.xlabel('Grade (percentage)');" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Some things to note:\n", + "\n", + "* The `subplot` command with 1 row and 3 columns is used to visualize the differences side-by-side. Our eyes are very good at picking out differences this way. When you want to communicate differences and contrasts, this is an effective way to do so.\n", + "* Compare the 1st plot here (with the white edges) to the one further up the page. The white edges help highlight the bins and improve readability. It also emphasizes the point just made. It is hard to scroll up-and-down the page to make comparisons.\n", + "* As you add more bins there might be some sub-ranges where there are no data. These lead to the appearance of gaps in the histogram.\n", + "\n", + "\n", + "\n", + "* Notice how the shape of the histogram can change quite dramatically: the 10 and 20-bin histogram still look similar, but the one with 30 bins does not. You can use the number of bins to - unjustifiably - alter your message about the distribution of the data. Use it to \"tune\" your message, but be careful of using an excessive number of bins, leading to a sparse histogram with many gaps.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### Enrichment\n", + " \n", + "Try entering this command below: \n", + "```python\n", + "counts, bins, patches = pyplot.hist(data['Grade'], bins=20, edgecolor='white')\n", + "```\n", + "and inspect the value of ``counts`` and ``bins`` that you get as outpu. What do you think these are? Compare them to the plots above." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Try the above code here, and interpret the output\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Step 6: communicating your results\n", "\n", "We need to wrap up our workflow with the final step of communicating our goal: what does the spread of the data looks like?\n", "\n", @@ -861,27 +1025,9 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Regular walking: \n", - "[ 3.36872552e+00 -1.13917806e+01 3.22569416e+00 -9.77637798e-01\n", - " 4.08921191e+00 7.35784690e-01 -2.90071068e+00 3.75347963e+00\n", - " -2.45082272e+00 7.49820386e+00 -4.93361234e+00 3.48327341e+00\n", - " 1.13822432e-02 -6.85604873e+00 -8.68931720e+00 -3.41468947e-01\n", - " 2.16465212e+00 6.57643141e-01 -7.34073427e-01 -1.33100624e-01]\n", - "Someone who has consumed too much: \n", - "[ 19.65502962 1.39951335 32.73139175 7.04282902 -3.19859331\n", - " -20.33808233 9.63950154 5.80177213 0.9900464 1.92216785\n", - " -20.843857 -18.43692294 -11.35410504 7.06983521 8.08637714\n", - " -24.71550656 8.58118158 7.17017213 -7.92971946 16.67303932]\n" - ] - } - ], + "outputs": [], "source": [ "from scipy.stats import norm\n", "\n", @@ -904,6 +1050,7 @@ "\n", "1. Visualize the histogram of 1000 steps of someone who is walking *normally* 😃 \n", "2. Visualize, in a subplot, side-by-side, the histogram of someone who has consumed too much.\n", + "3. Looking ahead: in the next module we will show what \n", "\n", "Both histograms should be centered at zero. Give each histogram a title, and a label on the x-axis, including units of centimeters.\n", "\n", @@ -916,7 +1063,7 @@ }, { "cell_type": "code", - "execution_count": 43, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -1004,28 +1151,9 @@ }, { "cell_type": "code", - "execution_count": 192, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "count 10000.000000\n", - "mean -0.000908\n", - "std 1.004785\n", - "min -3.606757\n", - "25% -0.677830\n", - "50% 0.002335\n", - "75% 0.667788\n", - "max 3.813767\n", - "dtype: float64" - ] - }, - "execution_count": 192, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "from scipy.stats import norm\n", "import pandas as pd\n", @@ -1048,29 +1176,117 @@ "But for now, try to run this code, to convince yourself that histograms are not a great tool to visualize if data are normally distributed. \n" ] }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3QAAAE/CAYAAAAOkIE9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3X+0JGV95/H3JzOjY9AIyqjID8coS0Q3jJ4JwZAfKGoQXNGsJpIsIQlmdFeTmGMSkd0oml/j2Sj5YaJnFByMiLiKygaMsCohZBUdyYhD0IBk1HFGZpTf6igzfPePqlmbS997e273vd117/t1Tp/bVfX0U9+urn5ufbueeipVhSRJkiSpe35o3AFIkiRJkubGhE6SJEmSOsqETpIkSZI6yoROkiRJkjrKhE6SJEmSOsqETpIkSZI6yoRuQElWJ6kkyxdwnUnyriS3J/nMQq13MUqyNcmzBiz7a0mu6Zm+J8mPjiiOs5O8s30+0n0qyRFtrMtGUZ+WBtu24SX54yTfTPKNAcufk+Q97fORfm+TvD3JH7bPT0iybRT1tvX9TJIvjao+aX/YVs2PJBuT/HH7fKTf8SQfTXJG+/x+x1YjqPtXklwxqvq6bskkdEk+luSNfeafmuQbC9lA7IefBp4NHFZVx447mKWqqh5aVbfMVGbQA6eq+tOqeuko4pqapFbVV9tY946ifnWDbdt4JTkceDVwdFU9Zn9fP+j3dtCDoap6eVX90f7GMc06K8kTe+r+p6o6ahR1a+mxrZp/U7+z+2vQ73jvj1Kz1PfcqrpgrvH0rO8ByXxVXVhVzxm27sViySR0wEbg9CSZMv904MKq2rPwIc3qccDWqvp2v4UT2vgNzfcl7ZeN2LaN0+OAb1XVznEH4tl5TbiN2FYtCe2ZzaWUY4xfVS2JB/AQ4E7gZ3vmHQTsBo5pp08B/gW4C/gacE5P2dVAAcvb6a3As3qWnwO8p2f6OOD/AncAnwdO6Fn2a8AtwN3AvwO/0ifeM9vY9gL3AG8ATgC2Aa8BvgH8XVv2N4GbgduAS4HH9tRTwH8DbmrX90fAE4BPte/z/cCDptlmTwA+AXwL+CZwIXDgDNu4gJe367od+Bsg7bIfAv4H8BVgJ/Bu4OFTtu2ZwFeBq3vm/Xr7Wdze1v0TwPXtdn3roLFO/bymxP3IdrvdBXym3UbXTHlfT2yfnwz8a7stvw78HnAA8F3gvvazugd4bLtPfAB4T1v3S3v3k573uA7YDuwAXt2z3o3AH/dMnwBsa5//Xbu+77br+wMeuI8+tn1ft7X7x29O2V/f334OdwM3AGvH/T31sf8PbNtG3ra12+D3aNqaO4GLgZV96nkW9//ub5xmfY8H/rGN80rgrTywHVg+3TYEnjRlm93Rlt0IvA24HPh2G89G2najZ7ue3b7Prb2fCXAV8NIpn9817fOr27i+3a7zl+hpg9oyT2rruIOmDXl+z7KNNP8DLmvfy7XAE8b9ffExvge2VfN6HNbvOztNuacC17WxXAy8jyltRk/Z19Ac69wNfAk4ETgJ+D5wb7uez7dlrwL+BPhnmnbxifS0Me02/2fgr9v94IvAiT3rmvbzpDk2LH5wjPV0etqrtsxPAZ9t6/4s8FM9y65qt/s/t+/lCuDgcX8nRvr9GncAC/pm4R3AO3umXwZs7pk+AfiPNMnHjwO3Ai9ol61mwIYEOLT98p3c1vXsdnoVzcH/XcBRbdlDgCdPE+/UnfUEYA/wJuDBNI3jM2m+5E9r5/01cHXPa4qmcfkR4MnA94CPAz8KPJwmOTljmvU/sY39wW3sVwN/McP2LeDvgQOBI4BdwEntst+gaex+FHgocAk/aAj3bdt3t9vnIT3z3g6sBJ5D07B+GHhUu413Aj83SKxTP68pcb+PpkE9AHgKTeM1XUK3A/iZ9vlBwNN6PpttU+o9h6bBe0G7HzyE/gndRe26/2O7zZ7VLt/INAndNPvgvvr27aP/CPxtu/3WtHWf2BPbbpp9dBnwZ8Cnx/0d9TG3B7ZtI23b2m3wGZofRR4B3Ai8fJq67ve9nKbMp4C3tOv7WZoDigckdDNtw6nbrJ23kebg5fj281jJAxO6PT3r/jmag7199V/FNAldzzZ+Yr/3CqygadPPBh7Ufl5399S9kebg9tj2vV0IvG/c3xUf431gW7UQx2FPnGH5g2h+WP/d9jv8IprjlAckdMBRNEn1Y3u2/xOmbuueuq+iSbye3H7nV/DAhG5Pz7p/iab9esQAn+f9Pvupnw1NO307zdne5cBp7fQje2L7MvAf2s/sKmD9uL8Po3wstdOhFwAvTvKQdvpX23kAVNVVVfWFqrqvqq6nOdD+uTms578Al1fV5W1dVwKbaBoWaH7NfUqSh1TVjqq6YT/qvg94fVV9r6q+S/Pr7flVdV1VfQ94LfD0JKt7XvOmqrqrXc8W4IqquqWq7gQ+SvNrzQNU1c1VdWW7rl00BwWzbY/1VXVHVX0V+CRNIkEb51va9d7TxvmSKd0Vzqmqb7fva58/qqrdVXUFzYHIRVW1s6q+DvzTvtjnGOu+Lkr/GXhdu+4t9OwTfdwLHJ3kR6rq9qq6bpZVfKqqPtzuB9+dpswb2nV/AXgXTUM0lPa6np8GXtNuv83AO2kau32uaffRvTRn/I4Zdr0aG9u20bdtf1VV26vqNuB/84O2bL8kOYKmZ8Eftuu7uq1vOvu7DT9SVf/cfh67pymzb93/SHPG7Bf3+4080HE0P86tr6rvV9UnaH7Q622/Lqmqz1TTle5C5rgNtajYVs3/cdhMjqNJpv6iqu6tqg/QnM3qZy9NInl0khVVtbWqvjxL/Rur6oaq2lNV9/ZZvrNn3RfTnPU7ZY7vpdcpwE1V9Xftui+iOQP4n3rKvKuq/q39zN7PImuPllRCV1XX0JylOLUdtfAngPfuW57kJ5N8MsmuJHfSdPE7eA6rehxNg3XHvgfNwfUh1fTD/qW27h1JLkvyY/tR964p/7QfS/Nry773eA/Nr1CH9pS5tef5d/tMP7TfipI8Ksn7knw9yV00XQdn2x69o7x9p6fu+8XZPl8OPLpn3tf61DdQ7HOMFZpfvJZPWfdXpikLTfJ3MvCVJP+Y5Omz1N/vPc1U5is022pYjwVuq6q7p9Tdu19M/axWej1AN9m2AaNv26Zry2bUjjJ5T/s4u30ft9f9r8Hp28bMcRvO1sb0W/eo2pivVdV9U+qeqY0ZaBtq8bKtAub/OKz39R/taY9+pY3161XNaavWdO3RzcCraM6U7WzjmK3tmK096rfuUbVHU9/HkmqPllRC13o3zS9Cp9P8QtL7pXovzWnxw6vq4TTd/aZevLvPt4Ef7pnuHd3sazTdCQ/seRxQVesBqupjVfVsmtP8X6TpgjComjK9nabhAiDJATTXhH19P+qczp+16/vxqvoRml+8ptses7lfnDRdMvdw/0Zt6nvbH3ONdVcbx+FTYuurqj5bVafSdPv8MM2vPDB97IO8p6nr3t4+n2kfm63u7cAjkjxsSt2j2C80mWzbBjfKtu1+qhll8qHt409pumkf1Ma/z0xtzHTbcK5tTL91D9rGzGQ7cPiUgQ9sYzQI26rBDdVWVTPK5L726EKa9ujQKQPTzNQevbeqfprm/RVNV1OYe3vUb92DtEez1Tv1GHNf3UumPVqqCd2zaC5gndq17mE0ZzV2JzkW+OUZ6tlM02VwRZK1NP2Q93kP8J+S/HySZUlWphnW/rAkj07y/PYL/z2aizuHGWb+vcCvJ1mT5MHAnwLXVtXWIerc52FtfHckORT4/SHqugj43SSPT/JQmjgvrtGNajWnWKvpbngJcE6SH05yNHBGv7JJHpTmvicPb7sS3MUPPrtbgUcmefgcYv/Ddt1PphkE5uJ2/mbg5CSPSPIYml/Ket1K0we/3/v6Gs3F4H/W7n8/TnOB94VziE/dYNs2uFG2bTOqqq/QdPV6Q9uG/DT37wb0/82yDW8FDkvyoDmEsW/dPwM8D/hf7fzNwC+07c8TadqIXtO2MTSDnHwb+IN2XzmhfV/vm0N8Wlpsqwa3v23VTN9ZaK7n3QP8dpLlSX6B5jrXB0hyVJJntu9pN82ZxN72aHX2fyTLR7XrXpHkxTQDK13eLpvp89xF09V1uvd2OfAfkvxy+75+CTiaphv4krDkErr2C/Z/aS6KvXTK4v8GvDHJ3cDr+MHZl37+kGb0odtpRj76/10G2oPpU2kuFt9F80vR79Ns7x+iuWfRdpoLxn+uXe9c38/H21g+SPPLyxOAl8y1vineQHOR7500111cMkRd59Ncp3U1zYhSu4HfGjbAHsPE+kqaU+/foLmQ/10zlD0d2Np2fXg5za9lVNUXaZLWW9ruHfvTheAfaQYX+Djw59VcLwjN9vo8zYXCV/CDRG+fPwP+R7u+3+tT72k0FxJvBz5E0+f/yv2ISx1i27ZfRtm2DeKXgZ+k2S6vpzmg7WembfgJmpEkv5Hkm/ux7m/QfJbbaX7QeXnbXgGcSzNa3a00B9ZTf/A5B7igbWPud91dVX0feD7wXJoBIf4W+NWeuqW+bKv2y/62VecwzXe2jfX7wC/QDChyO03X0+nqfDCwnub7/Q2aZOzsdtm+H4W+lWS2sQR6XQsc2db5J8CLqupb7bKZPs/vtOX/uX1vx015X9+i+bHq1TTdXf8AeF5V7U9b2Wn7hpSXJEmSJHXMkjtDJ0mSJEmLhQmdJEmSJHWUCZ0kSZIkdZQJnSRJkiR1lAmdJEmSJHXU8nEH0M/BBx9cq1evHncYkkboc5/73DeratW44xiGbZO0+Ng2SZpUg7ZPE5nQrV69mk2bNo07DEkjlOQr445hWLZN0uJj2yRpUg3aPtnlUpIkSZI6yoROkiRJkjrKhE6SJEmSOsqETpIkSZI6yoROkiRJkjrKhE6SJEmSOsqETpIkSZI6yoROkiRJkjrKhE6SJEmSOsqETpIkSZI6yoROkiRJkjrKhE7aD7vv3dvJurW4zNe+4j4oaRL5v1ea2fJxByB1ycoVy1h91mXzUvfW9afMS71afOZrP3QflDSJ/N8rzcwzdJIkSZLUUbOeoUtyPvA8YGdVPaWddzFwVFvkQOCOqlrT57VbgbuBvcCeqlo7orglSZIkackbpMvlRuCtwLv3zaiqX9r3PMmbgTtneP0zquqbcw1QkiRJktTfrAldVV2dZHW/ZUkC/CLwzNGGJUmSJEmazbDX0P0McGtV3TTN8gKuSPK5JOuGXJckSZIkqcewo1yeBlw0w/Ljq2p7kkcBVyb5YlVd3a9gm/CtAzjiiCOGDEuSJEmSFr85n6FLshz4BeDi6cpU1fb2707gQ8CxM5TdUFVrq2rtqlWr5hqWJEmSJC0Zw3S5fBbwxara1m9hkgOSPGzfc+A5wJYh1idJkiRJ6jFrQpfkIuBTwFFJtiU5s130EqZ0t0zy2CSXt5OPBq5J8nngM8BlVfUPowtdkiRJkpa2QUa5PG2a+b/WZ9524OT2+S3AMUPGJ0mSJEmaxrCjXEqSJEmSxsSETpIkSZI6yoROY7X73r2dqleSJEmaJMPeh04aysoVy1h91mUjr3fr+lNGXqckSZI0aTxDJ0mSJEkdZUInSZI0BklWJvlMks8nuSHJG9r5G5P8e5LN7WPNuGOVNLnscilJkjQe3wOeWVX3JFlBc//ej7bLfr+qPjDG2CR1hAmdJEnSGFRVAfe0kyvaR40vIkldZJdLSYvaDF2aHp/k2iQ3Jbk4yYPGHaukpSfJsiSbgZ3AlVV1bbvoT5Jcn+TcJA/u87p1STYl2bRr164FjVnSZDGhk7TY7evSdAywBjgpyXHAm4Bzq+pI4HbgzDHGKGmJqqq9VbUGOAw4NslTgNcCPwb8BPAI4DV9XrehqtZW1dpVq1YtaMySJosJnaRFrRr9ujQ9E9h3fcoFwAvGEJ4kAVBVdwBXASdV1Y627foe8C7g2LEGJ2mimdBJWvSmdmkCvgzcUVV72iLbgEOnea3dmiTNiySrkhzYPn8I8Czgi0kOaeeF5semLeOLUtKkc1AUSYteVe0F1rQHTh8CntSv2DSv3QBsAFi7dq2DFUgapUOAC5Iso/mR/f1V9fdJPpFkFRBgM/DycQYpabKZ0ElaMqrqjiRXAccBByZZ3p6lOwzYPtbgJC05VXU98NQ+8585hnAkdZRdLiUtatN0aboR+CTworbYGcBHxhOhJEnS3HmGTtJiN12Xpn8F3pfkj4F/Ac4bZ5CSJElzYUInaVGboUvTLThynCRJ6ji7XC4iu+/d26l6JUmSJA3HM3SLyMoVy1h91mUjr3fr+lNGXqckSZKk4XmGTpIEeJZfkqQu8gydJAnwLL8kSV3kGTpJkiRJ6igTOkmSJEnqKBM6SZIkSeooEzpJkiRJ6igTOkmSJEnqKBM6SZIkSeqoWRO6JOcn2ZlkS8+8c5J8Pcnm9nHyNK89KcmXktyc5KxRBi5JkiRJS90gZ+g2Aif1mX9uVa1pH5dPXZhkGfA3wHOBo4HTkhw9TLCSJEmSpB+YNaGrqquB2+ZQ97HAzVV1S1V9H3gfcOoc6pEkSZIk9THMNXSvTHJ92yXzoD7LDwW+1jO9rZ0nSZIkSRqBuSZ0bwOeAKwBdgBv7lMmfebVdBUmWZdkU5JNu3btmmNYkiRJkrR0zCmhq6pbq2pvVd0HvIOme+VU24DDe6YPA7bPUOeGqlpbVWtXrVo1l7AkSZIkaUmZU0KX5JCeyRcCW/oU+yxwZJLHJ3kQ8BLg0rmsT5IkSZL0QMtnK5DkIuAE4OAk24DXAyckWUPThXIr8LK27GOBd1bVyVW1J8krgY8By4Dzq+qGeXkXkiRJkrQEzZrQVdVpfWafN03Z7cDJPdOXAw+4pYEkSZIkaXjDjHIpSZIkSRojEzpJkiRJ6igTOkmSJEnqKBM6SZKkMUiyMslnknw+yQ1J3tDOf3ySa5PclOTidrRwSerLhE6SJGk8vgc8s6qOAdYAJyU5DngTcG5VHQncDpw5xhglTTgTOkmSpDGoxj3t5Ir2UcAzgQ+08y8AXjCG8CR1hAmdJEnSmCRZlmQzsBO4EvgycEdV7WmLbAMO7fO6dUk2Jdm0a9euhQtY0sQxoZMkSRqTqtpbVWuAw4BjgSf1K9bndRuqam1VrV21atV8hylpgpnQSZIkjVlV3QFcBRwHHJhkebvoMGD7uOKSNPlM6LQo7b5377hDkCRpRklWJTmwff4Q4FnAjcAngRe1xc4APjKeCCV1wfLZi0jds3LFMlafddnI6926/pSR1ylJWrIOAS5IsozmR/b3V9XfJ/lX4H1J/hj4F+C8cQYpabKZ0Ela1JIcDrwbeAxwH7Chqv4yyTnAbwL7RhM4u6ouH0+UkpaiqroeeGqf+bfQXE8nSbMyoZO02O0BXl1V1yV5GPC5JFe2y86tqj8fY2ySJElDMaGTtKhV1Q5gR/v87iQ30mcIcEmSpC5yUBRJS0aS1TTdm65tZ70yyfVJzk9y0NgCkyRJmiMTOklLQpKHAh8EXlVVdwFvA54ArKE5g/fmaV7nzXslSdLEMqGTtOglWUGTzF1YVZcAVNWt7Q197wPewTQDEHjzXkmSNMlM6CQtaklCM+T3jVX1lp75h/QUeyGwZaFjkyRJGpaDokha7I4HTge+kGRzO+9s4LQka4ACtgIvG094kiRJc2dCJ2lRq6prgPRZ5D3nJElS59nlUpIkSZI6yoROkiRJkjrKhE6SJEmSOsqETpIkSZI6yoROkiRJkjrKhE6SJEmSOsqETpIkSZI6ataELsn5SXYm2dIz738m+WKS65N8KMmB07x2a5IvJNmcZNMoA5ckSZKkpW6QM3QbgZOmzLsSeEpV/Tjwb8BrZ3j9M6pqTVWtnVuIkiRJkqR+Zk3oqupq4LYp866oqj3t5KeBw+YhNkmSJEnSDEZxDd1vAB+dZlkBVyT5XJJ1I1iXJEmSJKm1fJgXJ/nvwB7gwmmKHF9V25M8CrgyyRfbM3796loHrAM44ogjhglLkiRJkpaEOZ+hS3IG8DzgV6qq+pWpqu3t353Ah4Bjp6uvqjZU1dqqWrtq1aq5hiVJkiRJS8acErokJwGvAZ5fVd+ZpswBSR627znwHGBLv7KSJEmSpP03yG0LLgI+BRyVZFuSM4G3Ag+j6Ua5Ocnb27KPTXJ5+9JHA9ck+TzwGeCyqvqHeXkXkiRJkrQEzXoNXVWd1mf2edOU3Q6c3D6/BThmqOgkSZIkSdMaxSiXkiRJkqQxMKGTJElaYEkOT/LJJDcmuSHJ77Tzz0ny9faSls1JTh53rJIm21C3LZAkSdKc7AFeXVXXtYPIfS7Jle2yc6vqz8cYm6QOMaGTJElaYFW1A9jRPr87yY3AoeONSlIX2eVSkiRpjJKsBp4KXNvOemWS65Ocn+SgaV6zLsmmJJt27dq1QJFKmkQmdJIkSWOS5KHAB4FXVdVdwNuAJwBraM7gvbnf66pqQ1Wtraq1q1atWrB4JU0eEzpJkqQxSLKCJpm7sKouAaiqW6tqb1XdB7wDOHacMUqafCZ0kiRJCyxJaO7re2NVvaVn/iE9xV4IbFno2CR1i4OiSJIkLbzjgdOBLyTZ3M47GzgtyRqggK3Ay8YTnqSuMKGTJElaYFV1DZA+iy5f6FgkdZtdLiVJkiSpo0zoJEmSJKmjTOgkSZIkqaNM6CRJkiSpo0zoJC1qSQ5P8skkNya5IcnvtPMfkeTKJDe1fw8ad6ySJEn7y4RO0mK3B3h1VT0JOA54RZKjgbOAj1fVkcDH22lJkqROMaGTtKhV1Y6quq59fjdwI3AocCpwQVvsAuAF44lQkiRp7kzoJC0ZSVYDTwWuBR5dVTugSfqAR40vMkmSpLkxoZO0JCR5KPBB4FVVddd+vG5dkk1JNu3atWv+ApQkLbjd9+7tVL1SP8vHHYAkzbckK2iSuQur6pJ29q1JDqmqHUkOAXb2e21VbQA2AKxdu7YWJGBJ0oJYuWIZq8+6bOT1bl1/ysjrlKbjGTpJi1qSAOcBN1bVW3oWXQqc0T4/A/jIQscmSZI0LM/QSVrsjgdOB76QZHM772xgPfD+JGcCXwVePKb4JEmS5syETtKiVlXXAJlm8YkLGYskSdKo2eVSkiRJkjrKhE6SJEmSOsqETpIkSZI6yoROkiRJkjpqoIQuyflJdibZ0jPvEUmuTHJT+/egaV57RlvmpiRn9CsjSZIkSdp/g56h2wicNGXeWcDHq+pI4OPt9P0keQTweuAngWOB10+X+EmSJEmS9s9ACV1VXQ3cNmX2qcAF7fMLgBf0eenPA1dW1W1VdTtwJQ9MDCVJkiRJczDMNXSPrqodAO3fR/UpcyjwtZ7pbe08SZIkSdKQ5ntQlH43862+BZN1STYl2bRr1655Dkv7Y/e9e8cdgiRJkqQ+lg/x2luTHFJVO5IcAuzsU2YbcELP9GHAVf0qq6oNwAaAtWvX9k36NB4rVyxj9VmXzUvdW9efMi/1SpKkhbX73r2sXLFs3GFIS84wCd2lwBnA+vbvR/qU+Rjwpz0DoTwHeO0Q65QkSdIEmq8fgP3xV5rZoLctuAj4FHBUkm1JzqRJ5J6d5Cbg2e00SdYmeSdAVd0G/BHw2fbxxnaeJEmSJGlIA52hq6rTpll0Yp+ym4CX9kyfD5w/p+gkSZIWqSSHA+8GHgPcB2yoqr9sb/t0MbAa2Ar8YjtauCQ9wHwPiiJJkqT+9gCvrqonAccBr0hyNAPc61eS9jGhkyRJGoOq2lFV17XP7wZupLm90yD3+pUkwIROkiRp7JKsBp4KXMtg9/qVJMCETpIkaaySPBT4IPCqqrprwNd4/15JgAmdJEnS2CRZQZPMXVhVl7Szb23v8ct09/qtqg1Vtbaq1q5atWrhApY0cUzoJEmSxiBJgPOAG6vqLT2L9t3rF6a/168kAcPdWFySJElzdzxwOvCFJJvbeWfT3Nv3/e19f78KvHhM8UnqABM6SZKkMaiqa4BMs/gB9/qVpH7scilJkiRJHWVCJ0mSJEkdZUInSZIkSR1lQidJkiRJHWVCJ0mSJEkdZUInSZIkSR1lQidJkiRJHWVCJ0mSJEkdZUInSZIkSR1lQidpUUtyfpKdSbb0zDsnydeTbG4fJ48zRkmSpLkyoZO02G0ETuoz/9yqWtM+Ll/gmCRJkkbChE7SolZVVwO3jTsOSZKk+WBCJ2mpemWS69sumQeNOxhJkqS5MKGTtBS9DXgCsAbYAbx5uoJJ1iXZlGTTrl27Fio+SZKkgZjQSVpyqurWqtpbVfcB7wCOnaHshqpaW1VrV61atXBBSpIkDcCETtKSk+SQnskXAlumKytJkjTJlo87AEmaT0kuAk4ADk6yDXg9cEKSNUABW4GXjS1ASZKkIZjQSVrUquq0PrPPW/BAJEmS5oFdLiVJkiSpo+ac0CU5KsnmnsddSV41pcwJSe7sKfO64UOWJEmSJMEQXS6r6ks0Q36TZBnwdeBDfYr+U1U9b67rkSRJkiT1N6oulycCX66qr4yoPknqtN337h13CJIkaQkY1aAoLwEummbZ05N8HtgO/F5V3TCidUrSxFq5Yhmrz7psXureuv6UealXkiR1z9Bn6JI8CHg+8L/6LL4OeFxVHQP8NfDhGepZl2RTkk27du0aNixJkiRJWvRG0eXyucB1VXXr1AVVdVdV3dM+vxxYkeTgfpVU1YaqWltVa1etWjWCsCRJkiRpcRtFQnca03S3TPKYJGmfH9uu71sjWKckSVKnJTk/yc4kW3rmnZPk6z0jhJ88zhglTb6hErokPww8G7ikZ97Lk7y8nXwRsKW9hu6vgJdUVQ2zTkmSpEViI3BSn/nnVtWa9nH5AsckqWOGGhSlqr4DPHLKvLf3PH8r8NZh1iFJkrQYVdXVSVaPOw5J3Taq2xZIkiRpNF6Z5Pq2S+ZB4w5G0mQzoZMkSZocbwOeAKwBdgBv7lfI0cEl7WNCJ0mSNCGq6taq2ltV9wHvAI6dppyjg0sCTOgkSZImRpJDeiZfCGyZrqwkwZCDokiSJGluklwEnAAcnGQb8HrghCRrgAK2Ai8bW4CSOsGETpIkaQyq6rQ+s89b8EAkdZpdLiVJkiSpo0zoJEmSJKk/P7G9AAAQAUlEQVSjTOgkSZIkqaNM6CRJ82r3vXs7WbckSV3goCiSpHm1csUyVp912bzUvXX9KfNSryRJXeEZOkmSJEnqKBM6SZIkSeooEzpJkiRJ6igTOkmSJEnqKBM6SZIkSeooEzpJkiRJ6igTuml43yQttPnaL9yXJUmSFi/vQzcN75ukhTZf+9zW9ae4L0uSJC1SnqGTJEmSpI4yoZMkSZKkjjKhk7SoJTk/yc4kW3rmPSLJlUluav8eNM4YJUmS5sqETtJitxE4acq8s4CPV9WRwMfbaUmSpM4xoZO0qFXV1cBtU2afClzQPr8AeMGCBiVJkjQiJnSSlqJHV9UOgPbvo6YrmGRdkk1JNu3atWvBApQkSRqECZ0kzaCqNlTV2qpau2rVqnGHI0mSdD8mdJKWoluTHALQ/t055ngkSZLmZOiELsnWJF9IsjnJpj7Lk+Svktyc5PokTxt2nZI0pEuBM9rnZwAfGWMskiRJc7Z8RPU8o6q+Oc2y5wJHto+fBN7W/pWkeZfkIuAE4OAk24DXA+uB9yc5E/gq8OLxRShJC2v3vXtZuWLZuMOQNCKjSuhmcirw7qoq4NNJDkxyyL4BCSRpPlXVadMsOnFBA5GkCbFyxTJWn3XZyOvduv6UkdcpaXajuIaugCuSfC7Juj7LDwW+1jO9rZ0nSZIkSRrCKBK646vqaTRdK1+R5GenLE+f19TUGQ4NLkmSlpIk5yfZmWRLz7xHJLkyyU3t34PGGaOkyTd0QldV29u/O4EPAcdOKbINOLxn+jBge596HBpckiQtJRuBk6bMOwv4eFUdCXy8nZakaQ2V0CU5IMnD9j0HngNsmVLsUuBX29EujwPu9Po5SZK01FXV1cBtU2afClzQPr8AeMGCBiWpc4YdFOXRwIeS7KvrvVX1D0leDlBVbwcuB04Gbga+A/z6kOuUJElarB6974fvqtqR5FHjDkjSZBsqoauqW4Bj+sx/e8/zAl4xzHokSZL0A+1AdOsAjjjiiDFHI2mcRjEoiiRJkkbj1iSHALR/d/Yr5NgDkvYxoZMkSZoclwJntM/PAD4yxlgkdYAJnSRJ0hgkuQj4FHBUkm1JzgTWA89OchPw7HZakqY17KAokiRJmoOqOm2aRScuaCCSOs0zdJKkztp9795O1StJ0qh5hk6S1FkrVyxj9VmXjbzeretPGXmdkiTNB8/QSZIkSVJHmdBJkiRJUkeZ0EmSJElSR5nQjYEX20uSJEkaBQdFGQMv4pckSZI0Cp6hkyRJkqSOMqGTJEmSpI4yoZMkSZKkjjKhkyRJkqSOMqGTJEmSpI4yoZMkSZKkjjKhkyRJkqSOMqGTJEmSpI4yoZMkSZKkjjKhkyRJkqSOMqGTJEmSpI4yoZMkSZKkjjKhkyRJkqSOWj7uAIa1+969rFyxbNxhSOqgJFuBu4G9wJ6qWjveiCRJkvZP5xO6lSuWsfqsy0Ze79b1p4y8TkkT6RlV9c1xByFJkjQXdrmUJEmSpI6ac0KX5PAkn0xyY5IbkvxOnzInJLkzyeb28brhwpWkkSrgiiSfS7Ju3MFIkiTtr2G6XO4BXl1V1yV5GPC5JFdW1b9OKfdPVfW8IdYjSfPl+KranuRRwJVJvlhVV/cWaBO9dQBHHHHEOGKUJEma1pzP0FXVjqq6rn1+N3AjcOioApOk+VZV29u/O4EPAcf2KbOhqtZW1dpVq1YtdIiSlqgkW5N8oe3htGnc8UiaXCO5hi7JauCpwLV9Fj89yeeTfDTJk0exPkkaVpID2t4FJDkAeA6wZbxRSdL9PKOq1jgCr6SZDD3KZZKHAh8EXlVVd01ZfB3wuKq6J8nJwIeBI6epx25NkhbSo4EPJYGmLXxvVf3DeEOSJEnaP0OdoUuygiaZu7CqLpm6vKruqqp72ueXAyuSHNyvLrs1SVpIVXVLVR3TPp5cVX8y7pgkqYeDNkkayDCjXAY4D7ixqt4yTZnHtOVIcmy7vm/NdZ2SJElLxPFV9TTgucArkvxs78Ik65JsSrJp165d44lQ09p9795O1atuG6bL5fHA6cAXkmxu550NHAFQVW8HXgT81yR7gO8CL6mqGmKdkiRJi17voE1J9g3adHXP8g3ABoC1a9d6bDVhVq5YxuqzLht5vVvXnzLyOtV9c07oquoaILOUeSvw1rmuQ5IkaalpB2r6oaq6u2fQpjeOOSxJE2roQVEkSZI0Ug7aJGlgJnSSJEkTpKpuAY4ZdxySumEk96GTJEmSJC08EzpJkiRJ6igTOkmSJEnqKBM6SZIkSeooEzpJkiRJ6igTOkmSJEnqKBM6SZIkSeooEzpJkiRJ6igTOkmSJEnqKBM6SZIkSeooEzpJkiRJ6igTOkmSJEnqKBM6SZIkSeooEzpJkhbI7nv3drJuSdLkWj7uACRJWipWrljG6rMum5e6t64/ZV7qlSRNNs/QSZIkSVJHmdBJkiRJUkeZ0EmSJElSR5nQSZIkSVJHmdBJkiRJUkeZ0EmSJElSR5nQSZI0hfd0WxjztZ39/CQtJd6HTpKkKebrfnHeK+7+3M7S/tl9715WrljWubq7Zr62xXzVa0InSZIkdcB8/QgC/hDSq2s/NtnlUpIkSZI6aqiELslJSb6U5OYkZ/VZ/uAkF7fLr02yepj1SdIozdaGSdK42D5JGtScE7oky4C/AZ4LHA2cluToKcXOBG6vqicC5wJvmuv6JGmUBmzDJGnB2T5J2h/DnKE7Fri5qm6pqu8D7wNOnVLmVOCC9vkHgBOTZIh1StKoDNKGSdI42D5JGtgwCd2hwNd6pre18/qWqao9wJ3AI4dYpySNyiBtmCSNg+2TpIGlqub2wuTFwM9X1Uvb6dOBY6vqt3rK3NCW2dZOf7kt860+9a0D1rWTRwFfmlNg0zsY+OaI65xES+V9wtJ5r4vlfT6uqlaNO4h9BmnD2vmDtE1d/YyMe+F1Nfauxg2zxz5RbRMMfIw1n8dNXfy8jXn+dS1e6H7MA7VPw9y2YBtweM/0YcD2acpsS7IceDhwW7/KqmoDsGGIeGaUZFNVrZ2v+ifFUnmfsHTe61J5n2MwSBs2UNvU1c/IuBdeV2PvatzQ2dhnbZ/m87ipi9vMmOdf1+KFpRPzMF0uPwscmeTxSR4EvAS4dEqZS4Ez2ucvAj5Rcz0lKEmjNUgbJknjYPskaWBzPkNXVXuSvBL4GLAMOL+qbkjyRmBTVV0KnAf8XZKbac7MvWQUQUvSsKZrw8YcliTZPknaL8N0uaSqLgcunzLvdT3PdwMvHmYdIzRv3TknzFJ5n7B03utSeZ8Lrl8bNkdd/YyMe+F1Nfauxg0djX2E7dNcdHGbGfP861q8sERinvOgKJIkSZKk8RrmGjpJkiRJ0hgtqYQuyf9M8sUk1yf5UJIDxx3TfEjy4iQ3JLkvSadG9hlEkpOSfCnJzUnOGnc88yXJ+Ul2Jtky7lg0+36X5NeS7EqyuX28dBxxTjXbfpTGX7Xv6/okT1voGKczQOwnJLmzZ5u/rl+5hZbk8CSfTHJj2xb/Tp8yE7fdB4x7Urf5yiSfSfL5NvY39Cnz4CQXt9v82iSrFz7S7ujKMVPXjgkG+Z5NqiTLkvxLkr8fdyyDSHJgkg+0+/GNSZ4+7phmk+R32/1iS5KLkqwc5HVLKqEDrgSeUlU/Dvwb8NoxxzNftgC/AFw97kBGLcky4G+A5wJHA6clOXq8Uc2bjcBJ4w5C+7XfXVxVa9rHOxc0yOltZOb96LnAke1jHfC2BYhpUBuZ/TvwTz3b/I0LENMg9gCvrqonAccBr+izv0zidh8kbpjMbf494JlVdQywBjgpyXFTypwJ3F5VTwTOBd60wDF2zcQfM3X0mGDQ79kk+h3gxnEHsR/+EviHqvox4BgmPPYkhwK/DaytqqfQDIg00ICSSyqhq6orqmpPO/lpmvu6LDpVdWNVjfrG7JPiWODmqrqlqr4PvA84dcwxzYuquppp7tuoBdfZ/W6A/ehU4N3V+DRwYJJDFia6mXX1O1BVO6rquvb53TQHEYdOKTZx233AuCdSux3vaSdXtI+pgwScClzQPv8AcGKSLFCIndORY6bOtc1d/Z4lOQw4BZiUHytnlORHgJ+lGXGfqvp+Vd0x3qgGshx4SJr7d/8wfe6P28+SSuim+A3go+MOQvvtUOBrPdPb6EBDqM4bdL/7z233pA8kObzP8knU9e/U09tudh9N8uRxBzNV263vqcC1UxZN9HafIW6Y0G3edgfbDOwErqyqabd5m6jcCTxyYaPsrEk9Zpro79FsZvmeTZq/AP4AuG/cgQzoR4FdwLvabqLvTHLAuIOaSVV9Hfhz4KvADuDOqrpikNcuuoQuyf9p+51OfZzaU+a/05zyvnB8kQ5nkPe5SPX7NdWhWjXfBtnv/jewuu2e9H/4wZmASdfl79R1wOPabnZ/DXx4zPHcT5KHAh8EXlVVd01d3OclE7HdZ4l7Yrd5Ve2tqjU0Z5KOTfKUKUUmdpuPyyI4ZursZzrL92yiJHkesLOqPjfuWPbDcuBpwNuq6qnAt4GJvsYyyUE0Z5gfDzwWOCDJfxnktUPdh24SVdWzZlqe5AzgecCJ1eF7Nsz2PhexbUDvmY/DGPB0tDSEWfe7qvpWz+Q76M71OZ39TvUeBFXV5Un+NsnBVfXNccYFkGQFzcHahVV1SZ8iE7ndZ4t7krf5PlV1R5KraK6/7B1QZ98239Z2Z3o4HezSO0qL4JhpIr9HsxmgfZg0xwPPT3IysBL4kSTvqaqBko0x2QZs6zlT/wEmPKEDngX8e1XtAkhyCfBTwHtme+GiO0M3kyQnAa8Bnl9V3xl3PJqTzwJHJnl8kgfRXCx66Zhj0uI363435fqn5zPhF1/3uBT41TSOo+nisWPcQQ0iyWP2XQOV5Fia/2nfmvlV86+N6Tzgxqp6yzTFJm67DxL3BG/zVWlHYUzyEJoDoy9OKXYpcEb7/EXAJyY0SZkIHTlm6twxwYDtw0SpqtdW1WFVtZpmG39iwpM5quobwNeSHNXOOhH41zGGNIivAscl+eF2PzmRAY8lFt0Zulm8FXgwcGX7/+jTVfXy8YY0ekleSNMVZhVwWZLNVfXzYw5rJKpqT5JXAh+jGf3n/Kq6YcxhzYskFwEnAAcn2Qa8vqrOG29US9N0+12SNwKbqupS4LeTPJ+ma9JtwK+NLeAe/fYjmgEjqKq3A5cDJwM3A98Bfn08kT7QALG/CPivSfYA3wVeMiEH6McDpwNfaK/pAjgbOAImersPEvekbvNDgAvSjHr4Q8D7q+rvp3xHzwP+LsnNNN/RgUaPW8Im/pipo8cEfb9nVXX5GGNarH4LuLBN9m9hMtrZaVXVtUk+QNO1fQ/wL8CGQV6byWiHJUmSJEn7a0l1uZQkSZKkxcSETpIkSZI6yoROkiRJkjrKhE6SJEmSOsqETpIkSZI6yoROkiRJkjrKhE6SJEmSOsqETpIkSZI66v8B3ImOOYQKLEUAAAAASUVORK5CYII=\n", + "text/plain": [ + "
    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from scipy.stats import f, norm, t\n", + "import pandas as pd\n", + "from matplotlib import pyplot\n", + "%matplotlib inline\n", + "\n", + "N = 100\n", + "bins = 10\n", + "\n", + "true_normal = norm.rvs(size=N)\n", + "f_distributed = f.rvs(dfn=50, dfd=30, size=N)\n", + "t_distributed = t.rvs(df=5, size=N)\n", + "\n", + "norm_values = pd.Series(data=true_normal)\n", + "f_values = pd.Series(data=f_distributed)\n", + "t_values = pd.Series(data=t_distributed)\n", + "\n", + "# Plotting\n", + "# We want our histograms in separate axes:\n", + "pyplot.figure(figsize=(15, 5)) # (width, height) = (15, 5)\n", + "\n", + "# Create 3 subplots, side-by-side\n", + "pyplot.subplot(1, 3, 1)\n", + "pyplot.hist(norm_values, bins=bins, edgecolor='white');\n", + "pyplot.title('Values from a normal distribution')\n", + "\n", + "pyplot.subplot(1, 3, 2)\n", + "pyplot.hist(f_values, bins=bins, edgecolor='white');\n", + "pyplot.title('Values from an f-distribution')\n", + "\n", + "pyplot.subplot(1, 3, 3)\n", + "pyplot.hist(t_values, bins=bins, edgecolor='white');\n", + "pyplot.title('Values from a t-distribution');\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, { "cell_type": "markdown", "metadata": {}, "source": [ - "##### TODO\n", + "#### ➜ Challenge yourself: Dice averages are normally distributed\n", "\n", - "Essential: https://www.datacamp.com/community/tutorials/pandas-split-apply-combine-groupby\t\n", + "A common concept in a first statistics course is to talk about the central limit theorem. As you take averages of more and more independent data values, the average becomes normally distributed, even if the original values are n\n", "\n", - "df.plot(x='col_name_1', y='col_name_2', style='o')\t\"Jupyter notebook introduction;\n", + "We know from the above challenge we should not judge normality by plots, but here we will show how the data ***appear*** to be become more normal. We are not testing, or saying, they are normal.\n", "\n", - "* Bar plots of percentage explained\n", + "\n", + "\n", + "If you throw a dice, each throw is ***independent*** of the next one: the value you throw now does not depend on the value before, and it cannot influence the value after. This is another important statistical concept, but it is\n", "\n", - "* DOE model analysis?\n", + "Each throw of the dice comes from the [***uniform*** distribution](https://learnche.org/pid/univariate-review/uniform-distribution). Each value of 1, 2, 3, 4, 5 or 6 has a uniform (or equal) chance of appearing.\n", + "```python\n", + "import numpy as np\n", "\n", - "https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.probplot.html\n", + "# Throw a dice 100 times. Values are between 1 (inclusive) and 7 (exclusive)\n", + "np.random.randint(1, 7, size=100)\n", + "```\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "CODE HERE TO SHOW AVERAGE OF 1, 2, 4, 6, 8, 10 throws" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### TODO\n", "\n", + "* Bar plots of percentage explained\n", "\n", "https://nbviewer.jupyter.org/github/engineersCode/EngComp2_takeoff/blob/master/notebooks_en/2_Seeing_Stats.ipynb\"\n", "\n", "https://www.youtube.com/playlist?list=PL-osiE80TeTvipOqomVEeZ1HRrcEvtZB_\t\n", "\n", - "\n", - "\n", "Distributions: sampling from a list\n", "\n", "https://www.coursera.org/learn/python-data-analysis/lecture/xhEIo/hypothesis-testing-in-python\n", @@ -1088,7 +1304,7 @@ }, { "cell_type": "code", - "execution_count": 193, + "execution_count": 1, "metadata": {}, "outputs": [ { @@ -1172,14 +1388,14 @@ "\n", ".text_cell_render h3 {\n", " font-family: 'Merriweather', serif;\n", - " font-size: 150%;\n", + "\tfont-size: 150%;\n", " margin-top:12px;\n", " margin-bottom: 3px;\n", " font-style: regular;\n", " color: #008367;\n", "}\n", "\n", - ".text_cell_render h4 { /*Use this for captions*/\n", + ".text_cell_render h4 { /*Use this for Challenge Problems*/\n", " font-family: 'Merriweather', serif;\n", " font-weight: bold;\n", " font-size: 150%;\n", @@ -1190,7 +1406,7 @@ " margin-left: 0pt;\n", " font-style: regular;\n", " color: #8B008B;\n", - "}\n", + "\n", "\n", ".text_cell_render h5 { /*Use this for small titles*/\n", " font-family: 'Source Sans Pro', sans-serif;\n", @@ -1247,7 +1463,7 @@ "" ] }, - "execution_count": 193, + "execution_count": 1, "metadata": {}, "output_type": "execute_result" } diff --git a/Module-10-interactive.ipynb b/Module-10-interactive.ipynb index 88b824d..a793165 100644 --- a/Module-10-interactive.ipynb +++ b/Module-10-interactive.ipynb @@ -168,7 +168,7 @@ "\n", "bacteria multiplication problem\n", "\n", - "* Random walk\n" + "MUST COVER: show Random walk\n" ] }, { @@ -185,7 +185,9 @@ "\n", "* MUST COVER: qq-plot in Pandas\n", "\n", - "* MUST COVER: look at the goal to determine if students who took a longer time to finish actually scored a higher . Come back\n" + "* MUST COVER: look at the goal to determine if students who took a longer time to finish actually scored a higher . Come back\n", + "\n", + "* MUST COVER: https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.probplot.html" ] }, { @@ -380,7 +382,7 @@ "metadata": { "hide_input": false, "kernelspec": { - "display_name": "Python [default]", + "display_name": "Python 3", "language": "python", "name": "python3" }, @@ -394,7 +396,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.5.5" + "version": "3.7.3" }, "toc": { "base_numbering": 1, diff --git a/TODO.md b/TODO.md index b5be63a..c275e81 100644 --- a/TODO.md +++ b/TODO.md @@ -96,6 +96,8 @@ Do while loop. Execute, then check: can be done with a break statement and condi Example. Keep going until you see a particular DNA sequence. Or peak value above certain threshold + + Types ------ change from one type to another: diff --git a/images/style.css b/images/style.css index bd68222..1ce6a4d 100644 --- a/images/style.css +++ b/images/style.css @@ -76,14 +76,14 @@ div.text_cell_render{ .text_cell_render h3 { font-family: 'Merriweather', serif; - font-size: 150%; + font-size: 150%; margin-top:12px; margin-bottom: 3px; font-style: regular; color: #008367; } -.text_cell_render h4 { /*Use this for captions*/ +.text_cell_render h4 { /*Use this for Challenge Problems*/ font-family: 'Merriweather', serif; font-weight: bold; font-size: 150%; @@ -94,7 +94,7 @@ div.text_cell_render{ margin-left: 0pt; font-style: regular; color: #8B008B; -} + .text_cell_render h5 { /*Use this for small titles*/ font-family: 'Source Sans Pro', sans-serif; From 810193a9c6fbfe154311d632f2a0a852c73a1ae6 Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Tue, 16 Jul 2019 12:55:36 +0200 Subject: [PATCH 042/134] Improved styles and added TOC back --- Module-09-interactive.ipynb | 67 +++++++++++++++++++++++++------------ Module-10-interactive.ipynb | 17 ++++++---- images/style.css | 2 +- 3 files changed, 58 insertions(+), 28 deletions(-) diff --git a/Module-09-interactive.ipynb b/Module-09-interactive.ipynb index 7a032db..3598511 100644 --- a/Module-09-interactive.ipynb +++ b/Module-09-interactive.ipynb @@ -7,7 +7,7 @@ }, "source": [ "

    Table of Contents

    \n", - "" + "" ] }, { @@ -47,7 +47,7 @@ " \n", "1. Box plots\n", "2. Bar plots (bar charts) \n", - "3. Histograms,\n", + "3. Histograms\n", "
    \n", "\n", "In the [next notebook](https://yint.org/pybasic10):\n", @@ -1025,9 +1025,26 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Regular walking: \n", + "[-2.57115333 -7.37138332 2.19716599 4.25570082 -2.98367864 6.64037109\n", + " -5.43226229 5.59855755 0.02884415 -3.20585254 0.05748574 5.97951734\n", + " 3.3079726 -5.57491717 1.42070849 1.91880599 3.24860086 -3.43166382\n", + " -7.25573698 -3.2321531 ]\n", + "Someone who has consumed too much: \n", + "[ 8.77562421 23.52766348 9.18991539 3.53753894 -20.57871161\n", + " -15.23314825 -7.399464 5.33402184 1.55263217 8.9968268\n", + " -12.09806838 4.15903355 14.42756426 -12.60316331 -16.10626453\n", + " -14.40328778 -4.27674407 -10.73410348 28.700337 13.2529157 ]\n" + ] + } + ], "source": [ "from scipy.stats import norm\n", "\n", @@ -1151,9 +1168,28 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "count 10000.000000\n", + "mean -0.004293\n", + "std 1.001094\n", + "min -3.620157\n", + "25% -0.680514\n", + "50% -0.014631\n", + "75% 0.678491\n", + "max 4.146061\n", + "dtype: float64" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "from scipy.stats import norm\n", "import pandas as pd\n", @@ -1280,18 +1316,7 @@ "metadata": {}, "source": [ "##### TODO\n", - "\n", - "* Bar plots of percentage explained\n", - "\n", - "https://nbviewer.jupyter.org/github/engineersCode/EngComp2_takeoff/blob/master/notebooks_en/2_Seeing_Stats.ipynb\"\n", - "\n", - "https://www.youtube.com/playlist?list=PL-osiE80TeTvipOqomVEeZ1HRrcEvtZB_\t\n", - "\n", - "Distributions: sampling from a list\n", - "\n", - "https://www.coursera.org/learn/python-data-analysis/lecture/xhEIo/hypothesis-testing-in-python\n", - "\n", - "PCA: https://jakevdp.github.io/PythonDataScienceHandbook/05.09-principal-component-analysis.html\n" + "\n" ] }, { @@ -1304,7 +1329,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 4, "metadata": {}, "outputs": [ { @@ -1406,7 +1431,7 @@ " margin-left: 0pt;\n", " font-style: regular;\n", " color: #8B008B;\n", - "\n", + "}\n", "\n", ".text_cell_render h5 { /*Use this for small titles*/\n", " font-family: 'Source Sans Pro', sans-serif;\n", @@ -1463,7 +1488,7 @@ "" ] }, - "execution_count": 1, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } diff --git a/Module-10-interactive.ipynb b/Module-10-interactive.ipynb index a793165..f1ae7cb 100644 --- a/Module-10-interactive.ipynb +++ b/Module-10-interactive.ipynb @@ -181,13 +181,18 @@ "\n", "* PCA loadings are orthogonal. Plot a scatter plot, and see the correlation is zero\n", "\n", + "* Bubble plots from this notebook: https://nbviewer.jupyter.org/github/engineersCode/EngComp2_takeoff/blob/master/notebooks_en/2_Seeing_Stats.ipynb\n", + "\n", "* regression: https://towardsdatascience.com/simple-and-multiple-linear-regression-in-python-c928425168f9\n", "\n", "* MUST COVER: qq-plot in Pandas\n", "\n", "* MUST COVER: look at the goal to determine if students who took a longer time to finish actually scored a higher . Come back\n", "\n", - "* MUST COVER: https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.probplot.html" + "* MUST COVER: https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.probplot.html\n", + "\n", + "PCA plots: \n", + "PCA: https://jakevdp.github.io/PythonDataScienceHandbook/05.09-principal-component-analysis.html\n" ] }, { @@ -291,17 +296,17 @@ " color: #008367;\n", "}\n", "\n", - ".text_cell_render h4 { /*Use this for captions*/\n", + ".text_cell_render h4 { /*Use this for Challenge Problems*/\n", " font-family: 'Merriweather', serif;\n", - " font-weight: 300;\n", - " font-size: 100%;\n", + " font-weight: bold;\n", + " font-size: 150%;\n", " line-height: 120%;\n", " text-align: left;\n", - " width:500px;\n", - " margin-top: 1em;\n", + " margin-top: 12px;\n", " margin-bottom: 5px;\n", " margin-left: 0pt;\n", " font-style: regular;\n", + " color: #8B008B;\n", "}\n", "\n", ".text_cell_render h5 { /*Use this for small titles*/\n", diff --git a/images/style.css b/images/style.css index 1ce6a4d..23378a1 100644 --- a/images/style.css +++ b/images/style.css @@ -94,7 +94,7 @@ div.text_cell_render{ margin-left: 0pt; font-style: regular; color: #8B008B; - +} .text_cell_render h5 { /*Use this for small titles*/ font-family: 'Source Sans Pro', sans-serif; From 2b2a39ca134b40e9d1dc8c50412e2a4f419de841 Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Tue, 16 Jul 2019 12:59:09 +0200 Subject: [PATCH 043/134] Added note for what is coming up --- Module-09-interactive.ipynb | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/Module-09-interactive.ipynb b/Module-09-interactive.ipynb index 3598511..128e813 100644 --- a/Module-09-interactive.ipynb +++ b/Module-09-interactive.ipynb @@ -1067,7 +1067,7 @@ "\n", "1. Visualize the histogram of 1000 steps of someone who is walking *normally* 😃 \n", "2. Visualize, in a subplot, side-by-side, the histogram of someone who has consumed too much.\n", - "3. Looking ahead: in the next module we will show what \n", + "3. Looking ahead: in the next module we will show what this random walk looks like in a time-series plot.\n", "\n", "Both histograms should be centered at zero. Give each histogram a title, and a label on the x-axis, including units of centimeters.\n", "\n", From 29804e309371a782bab02dc8424410ff4b9968f0 Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Wed, 17 Jul 2019 07:17:13 +0200 Subject: [PATCH 044/134] Updates and tweaks to the text: spelling and grammar --- Module-09-interactive.ipynb | 468 +++++++++++++++++++++++++++++------- Module-10-interactive.ipynb | 12 +- 2 files changed, 390 insertions(+), 90 deletions(-) diff --git a/Module-09-interactive.ipynb b/Module-09-interactive.ipynb index 128e813..3a83cff 100644 --- a/Module-09-interactive.ipynb +++ b/Module-09-interactive.ipynb @@ -34,7 +34,7 @@ "\n", "In the prior [module 8](https://yint.org/pybasic08) you got more exposure to Pandas data frames.\n", "\n", - "In this module we use these data frames from getting a brief exposure to **statistics** and **plotting**. We can look at each topic separately, but they go hand-in-hand. You've probably heard: \"*always start your data analysis by plotting your data*\". There's a good reason for that: the type of statistical analysis is certainly guided by what is in that data. Plotting the data is one of the most effective ways to figure that out.\n", + "In this module we use these data frames for getting a brief exposure to **statistics** and **plotting**. We can look at each topic separately, but they go hand-in-hand. You've probably heard: \"*always start your data analysis by plotting your data*\". There's a good reason for that: the type of statistical analysis is certainly guided by what is in that data. Plotting the data is one of the most effective ways to figure that out.\n", "\n", "\n", "### Preparing for this module###\n", @@ -69,21 +69,19 @@ "\n", "Here is my 6-step approach (not linear, but iterative): **Define**, **Get**, **Explore**, **Clean**, **Manipulate**, **Communicate**\n", "\n", - "1. **Define**/clarify the objective. Write down exactly what you need to deliver to have the project/assignment considered as completed.\n", + "1. **Define**/clarify the *objective*. Write down exactly what you need to deliver to have the project/assignment considered as completed.\n", "\n", " Then your next steps become clear.\n", " \n", - " \n", - "\n", - "2. Look for and **get** your data (or it will be given to you by a colleague). Since you have your objective clarified, it is clearer now what data, and how much data you need.\n", + "2. Look for and **get** your data (or it will be given to you by a colleague). Since you have your objective clarified, it is clearer now which data, and how much data you need.\n", "\n", - "3. Then start looking at the data. Are the data what we expect? This is the **explore** step. Use plots and summaries.\n", + "3. Then start looking at the data. Are the data what we expect? This is the **explore** step. Use plots and table summaries.\n", "\n", - "4. **Clean** up your data. This step and the prior step are iterative. As you explore your data you notice problems, bad data entry, you ask questions, you gain a bit of insight into the data. You clean, and re-explore, but always with the goal(s) in mind. Or perhaps you realize already this isn't the right data to reach your objective.\n", + "4. **Clean** up your data. This step and the prior step are iterative. As you explore your data you notice problems, bad data, you ask questions, you gain a bit of insight into the data. You clean, and re-explore, but always with the goal(s) in mind. Or perhaps you realize already this isn't the right data to reach your objective. You need other data, so you iterate.\n", "\n", - "5. Modifying, making calculations from, and **manipulate** the data. This step is also called modeling, if you are building models, but sometimes you are simply summarizing your data.\n", + "5. Modifying, making calculations from, and **manipulate** the data. This step is also called modeling, if you are building models, but sometimes you are simply summarizing your data to get the objective solved.\n", "\n", - "6. From the data models and summaries and plots you start extracting the insights and conclusions you were looking for. Again, you can go back to any of the prior steps if you realize you need that to better achieve your goal(s). You **communicate** clear visualizations to your colleagues, with crisp, short explanations that meet the objectives.\n", + "6. From the data models and summaries and plots you start extracting the insights and conclusions you were looking for. Again, you can go back to any of the prior steps if you realize you need that to better achieve your goal(s). You **communicate** clear visualizations to your colleagues, with crisp, short text explanations that meet the objectives.\n", "\n", "___\n", "\n", @@ -199,7 +197,7 @@ "source": [ "### Exploration (step 3)\n", "\n", - "We have opened the data we check with the ``.head(...)`` command if our data are within the expected range. At least the first few values. Similar for the ``.tail(...)`` values.\n", + "Once we have opened the data we check with the ``.head(...)`` command if our data are within the expected range. At least the first few values. Similar for the ``.tail(...)`` values.\n", "\n", "Those two commands are always good to check first.\n", "\n", @@ -293,6 +291,8 @@ "\n", "3. So therefore: between the 25th percentile and the 75th percentile, we will find \\_\\_\\_\\_% of the values in our vector. \n", "\n", + "4. Given this knowledge, does this match with the expectation we have that our Ammonia concentration values should lie between 15 to 50 mmol/L?\n", + "\n", "And there is the key reason why you are given the 25th and 75th percentile values. Half of the data in the sorted data vector lie between these two values. 25% of the data lie below the 25th percentile, and the other 25% lie above the 75th percentile, and the bulk of the data lie between these two values." ] }, @@ -356,11 +356,11 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Don't worry about the interpretation of this plot just yet. We have a separate section later which is all about histograms. You should something like this:\n", + "Don't worry about the interpretation of this plot just yet. We have a separate section later which is all about histograms. You should see something like this:\n", "\n", "\"Ammonia\n", "\n", - "The key idea is get an idea of what the percentiles are. We will add these now on top of the histogram." + "The key point is to get an idea of what the percentiles are. We will add these now on top of the histogram." ] }, { @@ -453,7 +453,7 @@ "%matplotlib inline\n", "\n", "url = 'http://openmv.net/file/film-thickness.csv'\n", - "proxyDict = {\"http\" : \"http://104.129.192.34:10137\"}\n", + "proxyDict = {\"http\" : \"http://replace.with.proxy.address:port\"}\n", "s = requests.get(url, proxies=proxyDict).content\n", "web_dataset = io.StringIO(s.decode('utf-8'))\n", "\n", @@ -472,13 +472,13 @@ "\n", "Many companies making food products have taste panels. In these panels a number of people judge the product based on different attributes. \n", "\n", - "In this [data set](http://openmv.net/info/peas) (http://openmv.net/info/peas) we have multiple columns, but only six are scored by judges: flavour, sweetness, fruity flavour, off-flavour, mealiness and hardness. Remember in Pandas you can select columns using: ``df.loc[:, 'Flavour': 'Hardness']``, which will select all columns from `Flavour` up to, and including `Hardness`. \n", + "In the data set at https://openmv.net/info/peas we have multiple columns, but only six are scored by judges: flavour, sweetness, fruity flavour, off-flavour, mealiness and hardness. Remember in Pandas you can select columns using: ``df.loc[:, 'Flavour': 'Hardness']``, which will select all columns from `Flavour` up to, and including `Hardness`. \n", "\n", "Based on the boxplot, answer these questions:\n", "\n", "* Which of the 6 attributes has the lowest variability?\n", "* Which attribute has the most outliers?\n", - "* Which attribute is the median most imbalanced (not half-way between the 25th and 75 percentile)?\n", + "* For which of the 6 attributes is the median most imbalanced (not half-way between the 25th and 75 percentile)?\n", "* For that attribute, is the distribution shifted to the left, or to the right?" ] }, @@ -531,15 +531,120 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " DayOfWeek MonthDay Year Visits\n", + "0 Monday June 1 2009 27\n", + "1 Tuesday June 2 2009 31\n", + "2 Wednesday June 3 2009 38\n", + "3 Thursday June 4 2009 38\n", + "4 Friday June 5 2009 31\n", + " DayOfWeek MonthDay Year Visits\n", + "209 Sunday December 27 2009 15\n", + "210 Monday December 28 2009 24\n", + "211 Tuesday December 29 2009 18\n", + "212 Wednesday December 30 2009 10\n", + "213 Thursday December 31 2009 7\n" + ] + }, + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    YearVisits
    count214.0214.000000
    mean2009.022.233645
    std0.08.331826
    min2009.03.000000
    25%2009.016.250000
    50%2009.022.000000
    75%2009.027.750000
    max2009.048.000000
    \n", + "
    " + ], + "text/plain": [ + " Year Visits\n", + "count 214.0 214.000000\n", + "mean 2009.0 22.233645\n", + "std 0.0 8.331826\n", + "min 2009.0 3.000000\n", + "25% 2009.0 16.250000\n", + "50% 2009.0 22.000000\n", + "75% 2009.0 27.750000\n", + "max 2009.0 48.000000" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "import pandas as pd\n", "website = pd.read_csv('http://openmv.net/file/website-traffic.csv')\n", "print(website.head())\n", "print(website.tail())\n", - "website.describe\n", + "website.describe()\n", "\n", "# You will need to modify the above code if you are behind a proxy server." ] @@ -615,20 +720,190 @@ "But once the rows have been grouped, you need to indicate what you want to do within those groups. Here are some examples:\n", "\n", "```python\n", - " website.groupby(by='DayOfWeek').mean() # calculate the average per group for the other columns\n", - " website.groupby(by='DayOfWeek').count()\n", - " website.groupby(by='DayOfWeek').max() # once grouped, calculate the maximum per group\n", - " website.groupby(by='DayOfWeek').min()\n", - "\n", - "```\n" + "website.groupby(by='DayOfWeek').mean() # calculate the average per group for the other columns\n", + "website.groupby(by='DayOfWeek').count()\n", + "website.groupby(by='DayOfWeek').max() # once grouped, calculate the maximum per group\n", + "website.groupby(by='DayOfWeek').min()\n", + "```" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    YearVisits
    DayOfWeek
    Friday2009.020.766667
    Monday2009.025.322581
    Saturday2009.015.266667
    Sunday2009.017.633333
    Thursday2009.023.709677
    Tuesday2009.025.774194
    Wednesday2009.026.741935
    \n", + "
    " + ], + "text/plain": [ + " Year Visits\n", + "DayOfWeek \n", + "Friday 2009.0 20.766667\n", + "Monday 2009.0 25.322581\n", + "Saturday 2009.0 15.266667\n", + "Sunday 2009.0 17.633333\n", + "Thursday 2009.0 23.709677\n", + "Tuesday 2009.0 25.774194\n", + "Wednesday 2009.0 26.741935" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "After removing the \"Year\" column there is only 1 column of data:\n" + ] + }, + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    Visits
    DayOfWeek
    Friday20.766667
    Monday25.322581
    Saturday15.266667
    Sunday17.633333
    Thursday23.709677
    Tuesday25.774194
    Wednesday26.741935
    \n", + "
    " + ], + "text/plain": [ + " Visits\n", + "DayOfWeek \n", + "Friday 20.766667\n", + "Monday 25.322581\n", + "Saturday 15.266667\n", + "Sunday 17.633333\n", + "Thursday 23.709677\n", + "Tuesday 25.774194\n", + "Wednesday 26.741935" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ + "from IPython.display import display\n", + "\n", "# Now we are ready to manipulate the data:\n", "average_visits_per_day = website.groupby('DayOfWeek').mean() \n", "display(average_visits_per_day)\n", @@ -679,7 +954,7 @@ "* The text can sometimes be added *inside the bar* if there is restricted space.\n", "* An interesting characteristic of a bar plot is that **the *interpretation* of a bar plot does not differ if the category axis is reordered.** It can be easier to interpret the plot with a particular ordering; however, the interpretation won't be *different* if using a different ordering. The example below demonstrates this: the interpretation has not changed, but the visualization is far more effective.\n", "\n", - "### Definition for a bar plot\n", + "### Definition of a bar plot\n", "\n", "It seems strange to end off this section with a definition of a bar plot. But perhaps it isn't: you see these types of plots everywhere, especially in the media. But it is hard to describe what they actually are. Here's one definition:\n", "\n", @@ -690,7 +965,7 @@ "\n", "\n", "\n", - "Bar plots are notorious for their use of excessive 'ink': using many pixels to show a small amount of 'data'. We should aim to maximize the data:ink ratio, which means high amount of data represented with as few pixels as possible. Bar plots do not do that, and so are not actually are suitable plot always. \n", + "Bar plots are notorious for their use of excessive 'ink': using many pixels to show a small amount of 'data'. We should aim to maximize the data:ink ratio, which means high quantities of data are represented with as few pixels as possible. Bar plots do not do that, and so are not actually a suitable plot always. \n", "\n", "Read more [about barplots here](https://learnche.org/pid/data-visualization/bar-plots).\n", "\n", @@ -699,7 +974,7 @@ "\n", "The categories used in a bar plot can often be rearranged without 'breaking' the message. We saw an example above.\n", "\n", - "This happened because each bar is independent of the others. If you re-order them, the information shown -- from the height of the bars, on the value axis -- is still the same.\n", + "This happened because each bar is independent of the others. If you re-order them, the information shown - bas on the length of the bars on the value axis - is still the same.\n", "\n", "This does not mean you should show the bar plot in a random order. By ordering the information you make the plot easier to read, and in an underhanded way you subtly alter how the user reads the message. You can use this power to your advantage to make the message clearer, but you can also use it to frustrate your reader. Rather do the former, and not the latter." ] @@ -710,6 +985,9 @@ "metadata": {}, "outputs": [], "source": [ + "from matplotlib import pyplot\n", + "%matplotlib inline\n", + "\n", "fig = pyplot.figure(figsize=(15, 4));\n", "pyplot.subplots_adjust(top=0.8, bottom=0.1, left=0.1, right=0.9, hspace=0.5, wspace=0.4);\n", "\n", @@ -779,18 +1057,6 @@ "Again, we will use a case study to introduce the topic." ] }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Standard imports required to show plots and tables \n", - "from matplotlib import pyplot\n", - "from IPython.display import display\n", - "%matplotlib inline" - ] - }, { "cell_type": "markdown", "metadata": {}, @@ -818,10 +1084,14 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ + "# Standard imports required to show plots and tables \n", + "from matplotlib import pyplot\n", + "from IPython.display import display\n", + "%matplotlib inline\n", "import pandas as pd\n", "data = pd.read_csv('https://openmv.net/file/unlimited-time-test.csv')\n", "\n", @@ -862,9 +1132,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAD8CAYAAABw1c+bAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAEThJREFUeJzt3X+MZWV9x/H3p4jaKgF0R0RgXbSEFI0imawaWuNPhJWINrZd0lTa0qxaTTRpk6410dX+g23UxGIka9n4IxatVZSEVdlYGzRRcJcusBSRla5xXcKuoiDR1q5++8c9W4fZe2eGe+7MZed5v5Kbe85znnvO9+Ewnzn37L3PpKqQJLXjN6ZdgCRpZRn8ktQYg1+SGmPwS1JjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMY8ZtoFDLNmzZpat27dtMuQpGPGrl27flhVM0vp+6gM/nXr1rFz585plyFJx4wk31tqX2/1SFJjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYx6V39w91qzbfP3Q9n1XvGqFK5GkxXnFL0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNWbRuXqSbAMuBg5W1bO7tk8DZ3ddTgJ+UlXnDnntPuCnwC+Bw1U1O6G6JUljWsokbR8FrgQ+fqShqv7oyHKS9wEPLPD6l1TVD8ctUJI0WYsGf1XdmGTdsG1JAvwh8NLJliVJWi597/H/HnBfVd09YnsBNyTZlWRTz2NJkiag73z8lwLXLLD9/Ko6kOQpwI4k366qG4d17H4xbAJYu3Ztz7IkSaOMfcWf5DHA7wOfHtWnqg50zweBa4H1C/TdWlWzVTU7MzMzblmSpEX0udXzcuDbVbV/2MYkT0hywpFl4AJgT4/jSZImYNHgT3IN8A3g7CT7k1zebdrIvNs8SZ6WZHu3egrw9SS3AjcD11fVlyZXuiRpHEv5VM+lI9r/dEjbAWBDt3wP8Nye9UmSJsxv7kpSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY3pOx+/tHy2nLjM+1/oL4ZOYv/LWP9y165VzSt+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5Ias5Q/tr4tycEke+a0bUnygyS7u8eGEa+9MMldSfYm2TzJwiVJ41nKFf9HgQuHtH+gqs7tHtvnb0xyHPAh4CLgHODSJOf0KVaS1N+iwV9VNwL3j7Hv9cDeqrqnqn4BfAq4ZIz9SJImqM89/rckua27FXTykO2nAd+fs76/axsqyaYkO5PsPHToUI+yJEkLGTf4Pww8EzgXuBd435A+GdJWo3ZYVVuraraqZmdmZsYsS5K0mLGCv6ruq6pfVtWvgI8wuK0z337gjDnrpwMHxjmeJGlyxgr+JKfOWX0tsGdIt28BZyU5M8ljgY3AdeMcT5I0OYtOy5zkGuDFwJok+4F3AS9Oci6DWzf7gDd0fZ8G/FNVbaiqw0neAnwZOA7YVlV3LMsoJElLtmjwV9WlQ5qvHtH3ALBhzvp24KiPekqSpsdv7kpSYwx+SWqMwS9JjTH4JakxBr8kNWbRT/VofOs2Xz+0fd8Vr1rhSiTp17zil6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1JjFg3+JNuSHEyyZ07bPyT5dpLbklyb5KQRr92X5PYku5PsnGThkqTxLOWK/6PAhfPadgDPrqrnAN8B3r7A619SVedW1ex4JUqSJmnR4K+qG4H757XdUFWHu9VvAqcvQ22SpGUwiXv8fw58ccS2Am5IsivJpgkcS5LUU68/xJLkHcBh4JMjupxfVQeSPAXYkeTb3TuIYfvaBGwCWLt2bZ+yJEkLGPuKP8llwMXAH1dVDetTVQe654PAtcD6Ufurqq1VNVtVszMzM+OWJUlaxFjBn+RC4G+AV1fVz0b0eUKSE44sAxcAe4b1lSStnKV8nPMa4BvA2Un2J7kcuBI4gcHtm91Jrur6Pi3J9u6lpwBfT3IrcDNwfVV9aVlGIUlaskXv8VfVpUOarx7R9wCwoVu+B3hur+okSRPnN3clqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TG9JqPX+NZt/n6oe37rnjVRPpribacOO0KpKnwil+SGmPwS1JjDH5JaozBL0mNMfglqTEGvyQ1ZknBn2RbkoNJ9sxpe1KSHUnu7p5PHvHay7o+dye5bFKFS5LGs9Qr/o8CF85r2wx8parOAr7SrT9MkicB7wKeD6wH3jXqF4QkaWUsKfir6kbg/nnNlwAf65Y/BrxmyEtfCeyoqvur6sfADo7+BSJJWkF97vGfUlX3AnTPTxnS5zTg+3PW93dtkqQpWe4pGzKkrYZ2TDYBmwDWrl27nDU9ao2amkGSJqnPFf99SU4F6J4PDumzHzhjzvrpwIFhO6uqrVU1W1WzMzMzPcqSJC2kT/BfBxz5lM5lwBeG9PkycEGSk7t/1L2ga5MkTclSP855DfAN4Owk+5NcDlwBvCLJ3cArunWSzCb5J4Cquh/4O+Bb3eM9XZskaUqWdI+/qi4dsellQ/ruBP5izvo2YNtY1UmSJs5v7kpSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1JjlvQXuKSRtpw47QratNz/3bc8sLz711SNfcWf5Owku+c8Hkzytnl9XpzkgTl93tm/ZElSH2Nf8VfVXcC5AEmOA34AXDuk69eq6uJxjyNJmqxJ3eN/GfDdqvrehPYnSVomkwr+jcA1I7a9MMmtSb6Y5FkTOp4kaUy9gz/JY4FXA58ZsvkW4OlV9VzgH4HPL7CfTUl2Jtl56NChvmVJkkaYxBX/RcAtVXXf/A1V9WBVPdQtbweOT7Jm2E6qamtVzVbV7MzMzATKkiQNM4ngv5QRt3mSPDVJuuX13fF+NIFjSpLG1Otz/El+C3gF8IY5bW8EqKqrgNcBb0pyGPg5sLGqqs8xJUn99Ar+qvoZ8OR5bVfNWb4SuLLPMSRJk+WUDZLUGKdskHS05ZwSwukgps4rfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1JjDH5Jaozf3B1i3ebrh7bvu+JVK1yJtAr5h+Knzit+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5Ia0zv4k+xLcnuS3Ul2DtmeJB9MsjfJbUnO63tMSdL4JvUFrpdU1Q9HbLsIOKt7PB/4cPcsSZqClbjVcwnw8Rr4JnBSklNX4LiSpCEmEfwF3JBkV5JNQ7afBnx/zvr+ru1hkmxKsjPJzkOHDk2gLEnSMJMI/vOr6jwGt3TenORF87ZnyGvqqIaqrVU1W1WzMzMzEyhLkjRM7+CvqgPd80HgWmD9vC77gTPmrJ8OHOh7XEnSeHoFf5InJDnhyDJwAbBnXrfrgNd3n+55AfBAVd3b57iSpPH1/VTPKcC1SY7s65+r6ktJ3ghQVVcB24ENwF7gZ8Cf9TymJKmHXsFfVfcAzx3SftWc5QLe3Oc4kqTJ8Zu7ktQYg1+SGmPwS1JjDH5JaozBL0mNmdQkbcesdZuvn3YJkrSivOKXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1Jjmp2x4JI7J6R22nDjtCqTVZTl/prY8sHz7nsMrfklqzNjBn+SMJF9NcmeSO5K8dUifFyd5IMnu7vHOfuVKkvrqc6vnMPBXVXVLkhOAXUl2VNV/zuv3taq6uMdxJEkTNPYVf1XdW1W3dMs/Be4ETptUYZKk5TGRe/xJ1gHPA24asvmFSW5N8sUkz5rE8SRJ4+v9qZ4kTwQ+C7ytqh6ct/kW4OlV9VCSDcDngbNG7GcTsAlg7dq1fcuSJI3Q64o/yfEMQv+TVfW5+dur6sGqeqhb3g4cn2TNsH1V1daqmq2q2ZmZmT5lSZIW0OdTPQGuBu6sqveP6PPUrh9J1nfH+9G4x5Qk9dfnVs/5wJ8AtyfZ3bX9LbAWoKquAl4HvCnJYeDnwMaqqh7HlCT1NHbwV9XXgSzS50rgynGPIUmaPKdskLS6OE3JopyyQZIaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1JjVt2UDes2Xz/tEiTpUc0rfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktSYXsGf5MIkdyXZm2TzkO2PS/LpbvtNSdb1OZ4kqb+xgz/JccCHgIuAc4BLk5wzr9vlwI+r6reBDwDvHfd4kqTJ6HPFvx7YW1X3VNUvgE8Bl8zrcwnwsW75X4GXJVnwD7RLkpZXn+A/Dfj+nPX9XdvQPlV1GHgAeHKPY0qSeuozZcOwK/cao8+gY7IJ2NStPpTkrh61DbMG+OGE9zlVOfrG2aob4wiOc3VxnEe8u9cNkacvtWOf4N8PnDFn/XTgwIg++5M8BjgRuH/YzqpqK7C1Rz0LSrKzqmaXa/+PBi2MERznauM4V16fWz3fAs5KcmaSxwIbgevm9bkOuKxbfh3wb1U19IpfkrQyxr7ir6rDSd4CfBk4DthWVXckeQ+ws6quA64GPpFkL4Mr/Y2TKFqSNL5e0zJX1XZg+7y2d85Z/m/gD/ocY4KW7TbSo0gLYwTHudo4zhUW77xIUlucskGSGrMqgz/JviS3J9mdZGfX9qQkO5Lc3T2fPO06H6kk25IcTLJnTtvQcWXgg910GbclOW96lT8yI8a5JckPunO6O8mGOdve3o3zriSvnE7Vj0ySM5J8NcmdSe5I8taufVWdzwXGudrO5+OT3Jzk1m6c7+7az+ymq7m7m77msV37dKezqapV9wD2AWvmtf09sLlb3gy8d9p1jjGuFwHnAXsWGxewAfgig+9SvAC4adr19xznFuCvh/Q9B7gVeBxwJvBd4Lhpj2EJYzwVOK9bPgH4TjeWVXU+FxjnajufAZ7YLR8P3NSdp38BNnbtVwFv6pb/EriqW94IfHol612VV/wjzJ0+4mPAa6ZYy1iq6kaO/h7EqHFdAny8Br4JnJTk1JWptJ8R4xzlEuBTVfU/VfVfwF4G04k8qlXVvVV1S7f8U+BOBt90X1Xnc4FxjnKsns+qqoe61eO7RwEvZTBdDRx9Pqc2nc1qDf4Cbkiyq/tGMMApVXUvDP5nBJ4yteoma9S4ljKlxrHmLd1tjm1zbtUd8+Ps3uY/j8FV4qo9n/PGCavsfCY5Lslu4CCwg8G7lZ/UYLoaePhYpjqdzWoN/vOr6jwGM4e+OcmLpl3QFCx5uoxjxIeBZwLnAvcC7+vaj+lxJnki8FngbVX14EJdh7Qdy+Ncdeezqn5ZVecymMVgPfA7w7p1z1Md56oM/qo60D0fBK5lcBLuO/LWuHs+OL0KJ2rUuJYypcYxo6ru636wfgV8hF+//T9mx5nkeAZh+Mmq+lzXvOrO57BxrsbzeURV/QT4dwb3+E/qpquBh4/l/8e52HQ2y2HVBX+SJyQ54cgycAGwh4dPH3EZ8IXpVDhxo8Z1HfD67tMgLwAeOHIL4Vg07372axmcUxiMc2P3KYkzgbOAm1e6vkequ597NXBnVb1/zqZVdT5HjXMVns+ZJCd1y78JvJzBv2d8lcF0NXD0+ZzedDbT/tfwST+AZzD4VMCtwB3AO7r2JwNfAe7unp807VrHGNs1DN4W/y+DK4bLR42LwVvJDzG4z3g7MDvt+nuO8xPdOG5j8ENz6pz+7+jGeRdw0bTrX+IYf5fBW/vbgN3dY8NqO58LjHO1nc/nAP/RjWcP8M6u/RkMfnHtBT4DPK5rf3y3vrfb/oyVrNdv7kpSY1bdrR5J0sIMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGvN/sBcjSK/I16YAAAAASUVORK5CYII=\n", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "# Will plot both histograms in the same \"axis\" (graph)\n", "pyplot.hist(data['Grade']);\n", @@ -886,9 +1167,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3QAAAFNCAYAAABIei33AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3XuYJVV97//3J4yCIIpCS7g4DqBi0J8iGRGDGhQ13BRM1MAxES/JqFEjuRwl8UTJxYRETWKikaAS1GMQQ0RJ8AJiFM0RdCBcBQRhlBFkBpFbICry/f1R1bJns3d3T+/u3l3d79fz7Kd3rVq76ltrV/fqb9WqqlQVkiRJkqTu+ZlxByBJkiRJmh0TOkmSJEnqKBM6SZIkSeooEzpJkiRJ6igTOkmSJEnqKBM6SZIkSeooEzrNSJLLkxww7jjGKckLk1yf5M4kT55B/QOSrF+I2EaR5OVJvjLuOOZKkkry6HHHIUlTsV9dfP1qkhOS/NF8LX8U9m2aigmdSLIuyXP6yjb5J7+qHl9VX5xmOavaPzgr5inUcXsn8PqqenBV/Vf/zHH9sV1Mf+QXUyySNC72qzM2tn510MHMqnpNVf3pfKyvb92dOOCr7jChU2csgg7tUcDlY45h2UjDv1GSNE/sV6WlwX+WNCO9RxuT7JtkbZLbk9yU5K/baue2P29th088LcnPJPk/Sb6dZEOSDyd5aM9yX9bO+36SP+pbz3FJTkvyf5PcDry8XfdXk9ya5MYk70nywJ7lVZLfSnJ1kjuS/GmSPdrP3J7k4731+7ZxYKxJtkxyJ7AFcHGSbw347OS2X9xu+6/2zPu9dnk3JnlFT/mWSd6Z5DttO56Q5EFDYnt0ki8luS3JzUlOHbbeQUcde49yJtk+yRlte3wN2KOv7uOSnJ3kliRXJXlJz7yTk7w3yZlt+56fZI/p2qDn81skeVe7DdcleX3v0eckX0zy9iT/CdwF7J7kFUmuaNd3bZJX9y3zf7dte0OSV/bNG9rGSXZI8u/tvnRLki/HBFLSAon96tj61SQ/B5wAPK1d9q1t+clJ/qx9f0CS9Une1LOuI5IckuSbbb/xh33bemySb7Vt//EkDx+w7m2AzwA7t+u+M8nO030Pfct4epqhqs9qp2fVb2sJqSpfy/wFrAOe01f2cuArg+oAXwV+vX3/YGC/9v0qoIAVPZ97JXANsHtb9xPAR9p5ewF3Ak8HHkgz9OLHPes5rp0+gubgw4OAnwf2A1a067sCOKZnfQWcATwEeDzwQ+Ccdv0PBb4BHD2kHYbG2rPsR0/RjpvMBw4A7gH+BHgAcAhNkvKwdv7ftrE+HNgW+DfgL4Ys+xTgLW07bAU8fYr1bvLd9dcBPgZ8HNgGeALw3cn6bdn1wCvaNt4HuBl4fDv/ZOAWYN92/keBj21GG72m/Q52BR4GfL53nwG+CHyn/e5WtO12KE3SGeAX2zbcp61/EHBTux3bAP/ct61D2xj4C5oO/QHt6xlAxv376MuXr+6/sF+dNtaeZY+rX93k+2jLTgb+rG9db23X9ZvAxraf2bZti/8Bdm/rHwOcR9O/bQn8I3DKkHUfAKzvK5vJ9/Bo4Jdo+ul92/KR+m1fS+M19gB8jf9F06ncCdza87qL4R3PucAfAzv0LWcV9+94zgF+q2d6T5rOZEX7R/KUnnlbAz9i047n3GliPwY4vWe6gP17pi8A3twz/S7gb4csa2isPcve3I7n7r722ND+wQ7w38AePfOeBlw3ZNkfBk4Edp3Bel/OkISO5mjoj4HH9cz7c+5L6H4V+HLfZ/8ReFv7/mTgAz3zDgGuHBbLgFi/ALy6Z/o53D+h+5NpvvNPAm9s358EHN8z77E92zplG9P8Q/CpqeL15cuXr9m8sF+dNtaeZY+rX3050yd0dwNbtNPbtvE8ta8tjmjfXwEc2DNvp95t7VvPAfQldDP8Hv4A+Dbw//WUj9Rv+1oaL4cXadIRVbXd5Av4rSnqvormH+crk3w9yWFT1N2Z5o/PpG/TdDo7tvOun5xRVXcB3+/7/PW9E0ke2w6T+147XOTPgR36PnNTz/u7B0w/eBaxztb3q+qenum72vVP0HS0F7TDK24FPtuWD/Imms7qa2nujPbKIfWmM0GzTb3t2rvNjwKeOhlTG9dLgZ/tqfO9AdszU5t8533vB5YlOTjJee1QkltpOqPJ77x/eb3bMl0bv4PmyPFZaYZyHrsZ2yFJ07FfXdz96kzX9ZP2/d3tz2Hb/ijg9J51XwH8hBlu6wy/h2OAj1fVpT1l891vqwNM6LTZqurqqjoKeATwl8Bp7ZjwGlD9Bpo/NpNW0gxhuAm4kWZoAgDtOPft+1fXN/0+4ErgMVX1EOAPaRKduTBVrHPtZpqO4PE9Hf5Dq2rgH9mq+l5V/WZV7Qy8GviHDL/z13/TdGoAJOn9o76RZpse2VO2suf99cCXev8JqebuY6/d/E0caJPvvC+OST/9zpNsCfwrzbChHdt/ij7Nfd/5jQzflinbuKruqKrfq6rdgecDv5vkwNE2T5I2n/3qnNisfpXBbTuK64GD+/rPrarquzNc90y+hxcDRyQ5pm+989lvqwNM6LTZkvxakomqupdmGAk0R6E2AvfSjJWfdArwO0l2S/JgmiNOp7ZH104Dnp/kF9oLf/+Y6TuRbYHbgTuTPA6Yyz9YU8U6Ezex6bYP1bbd+4G/SfIIgCS7JPmlQfWTvDjJZCf9A5rOYPKoYf96LwYen2TvJFvRDLGZXO9PaK5hOC7J1kn2Ao7u+ey/A49N8utJHtC+ntJeQD4T07XBx4E3ttu6HfDmaZb3QJprETYC9yQ5GHhe3/JenmSvJFsDb+vZ1inbOMlhaW42E5p96ifc16aStGDsV4eat361Xfauw248MgsnAG9P8qh23RNJDp9i3dun52Y2zOx7uAE4EPjtJJNnfEftt7UEmNBpNg4CLk9zh6p3A0dW1f+0QzveDvxne9p/P5prnD5Cc33AdTQXEL8BoKoub99/jOao4h00Y+F/OMW6fx/4X23d9wOnzuF2DY11ho4DPtRu+0umq0yTzFwDnNcOr/g8zfUFgzwFOL9t8zNoriG7btB6q+qbNNeHfR64Guh/aPjraYZbfI9mbP0/Tc6oqjtoEqYjaTqO79EcLd5yBttzv1gGzH8/cBZwCfBfNGfb7mFIItXG89s0idsPaL77M3rmf4bmIvgv0LTlF/oWMVUbP6advpPmhgT/UNM8E0qS5on96mDHMX/96hdoHpnwvSQ3b0ZMw7ybpn86K8kdNDdIeeqgilV1JU2ye227bTszw++hqr5Dk9S9OclvzEG/rSUgVXN9xlmanfbo3a00ww2um66+uq8943ZCVT1q2sqSpM1ivyotD56h01gleX479G8bmuukLqW585eWoCQPSvMMnxVJdqEZInn6uOOSpKXCflVafkzoNG6H0wwRuIFmCNyR5WnjpSw013T8gGbI5RU0t9mWJM0N+1VpmXHIpSRJkiR1lGfoJEmSJKmjTOgkSZIkqaNWjDuAQXbYYYdatWrVuMOQJM2zCy644Oaqmhh3HF1h/yhJy8dM+8hFmdCtWrWKtWvXjjsMSdI8S/LtccfQJfaPkrR8zLSPdMilJEmSJHWUCZ0kSZIkdZQJnSRJkiR1lAmdJEmSJHWUCZ0kSZIkdZQJnSRJkiR1lAmdJEmSJHWUCZ0kSfMoyUlJNiS5rK/8DUmuSnJ5kr8aV3ySpG4zoZMkaX6dDBzUW5DkWcDhwBOr6vHAO8cQlyRpCTChkyRpHlXVucAtfcWvBY6vqh+2dTYseGCSpCXBhE6SpIX3WOAZSc5P8qUkTxl3QJKkblox7gAkNVYde+a4QwBg3fGHjjsEaTlYATwM2A94CvDxJLtXVfVXTLIGWAOwcuXKBQ1yOfFv8P3ZJlI3eIZOkqSFtx74RDW+BtwL7DCoYlWdWFWrq2r1xMTEggYpSVr8TOgkSVp4nwSeDZDkscADgZvHGpEkqZMccilJ0jxKcgpwALBDkvXA24CTgJPaRxn8CDh60HBLSZKmY0InSdI8qqqjhsz6tQUNRJK0JDnkUpIkSZI6yoROkiRJkjrKhE6SJEmSOsqETpIkSZI6yoROkiRJkjrKhE6SJEmSOsqETpIkSZI6yoROkiRJkjrKhE6SJEmSOsqETpIkSZI6yoROkiRJkjrKhE6SJEmSOmrFdBWSnAQcBmyoqie0ZacCe7ZVtgNuraq9B3x2HXAH8BPgnqpaPUdxS5IkSdKyN21CB5wMvAf48GRBVf3q5Psk7wJum+Lzz6qqm2cboCRJkiRpsGkTuqo6N8mqQfOSBHgJ8Oy5DUuSJEmSNJ1Rr6F7BnBTVV09ZH4BZyW5IMmaqRaUZE2StUnWbty4ccSwJEmSJGnpGzWhOwo4ZYr5+1fVPsDBwOuSPHNYxao6sapWV9XqiYmJEcOSJEmSpKVv1gldkhXALwOnDqtTVTe0PzcApwP7znZ9kiRJkqRNjXKG7jnAlVW1ftDMJNsk2XbyPfA84LIR1idJkiRJ6jFtQpfkFOCrwJ5J1id5VTvrSPqGWybZOcmn28kdga8kuRj4GnBmVX127kKXJEmSpOVtJne5PGpI+csHlN0AHNK+vxZ40ojxSZIkSZKGGPWmKJIkSZKkMTGhkyRJkqSOMqGTJGmeJTkpyYYk97s5WJLfT1JJdhhHbJKkbjOhkyRp/p0MHNRfmOSRwHOB7yx0QJKkpcGETpKkeVZV5wK3DJj1N8CbgFrYiCRJS4UJnSRJY5DkBcB3q+riccciSequaR9bIEmS5laSrYG3AM+bQd01wBqAlStXznNkkqSu8QydJEkLbw9gN+DiJOuAXYELk/xsf8WqOrGqVlfV6omJiQUOU5K02HmGTpKkBVZVlwKPmJxuk7rVVXXz2IKSJHWSZ+gkSZpnSU4BvgrsmWR9kleNOyZJ0tLgGTpJkuZZVR01zfxVCxSKJGmJ8QydJEmSJHWUCZ0kSZIkdZQJnSRJkiR1lAmdJEmSJHWUCZ0kSZIkdZQJnSRJkiR1lAmdJEmSJHWUCZ0kSZIkdZQJnSRJkiR1lAmdJEmSJHWUCZ0kSZIkdZQJnSRJkiR1lAmdJEmSJHWUCZ0kSZIkddS0CV2Sk5JsSHJZT9lxSb6b5KL2dciQzx6U5Kok1yQ5di4DlyRJkqTlbiZn6E4GDhpQ/jdVtXf7+nT/zCRbAO8FDgb2Ao5KstcowUqSJEmS7jNtQldV5wK3zGLZ+wLXVNW1VfUj4GPA4bNYjiRJkiRpgFGuoXt9kkvaIZkPGzB/F+D6nun1bdlASdYkWZtk7caNG0cIS5IkSZKWh9kmdO8D9gD2Bm4E3jWgTgaU1bAFVtWJVbW6qlZPTEzMMixJkiRJWj5mldBV1U1V9ZOquhd4P83wyn7rgUf2TO8K3DCb9UmSJEmS7m9WCV2SnXomXwhcNqDa14HHJNktyQOBI4EzZrM+SZIkSdL9rZiuQpJTgAOAHZKsB94GHJBkb5ohlOuAV7d1dwY+UFWHVNU9SV4PfA7YAjipqi6fl62QJEmSpGVo2oSuqo4aUPzBIXVvAA7pmf40cL9HGkiSJEmSRjfKXS4lSZIkSWNkQidJ0jxqH++zIcllPWXvSHJl+/if05NsN84YJUndZUInSdL8Ohk4qK/sbOAJVfVE4JvAHyx0UJKkpcGETpKkeVRV5wK39JWdVVX3tJPn0TzaR5KkzWZCJ0nSeL0S+My4g5AkdZMJnSRJY5LkLcA9wEenqLMmydokazdu3LhwwUmSOsGETpKkMUhyNHAY8NKqqmH1qurEqlpdVasnJiYWLkBJUidM+xw6SZI0t5IcBLwZ+MWqumvc8UiSusuETtImVh175rhD+Kl1xx867hCkkSU5BTgA2CHJeuBtNHe13BI4OwnAeVX1mrEFKUnqLBM6SZLmUVUdNaD4gwseiCRpSfIaOkmSJEnqKBM6SZIkSeooEzpJkiRJ6igTOkmSJEnqKBM6SZIkSeooEzpJkiRJ6igTOkmSJEnqKBM6SZIkSeooEzpJkiRJ6igTOkmSJEnqKBM6SZIkSeqoFeMOQJIkSY1Vx5457hAkdYxn6CRJkiSpo0zoJEmSJKmjTOgkSZIkqaOmTeiSnJRkQ5LLesrekeTKJJckOT3JdkM+uy7JpUkuSrJ2LgOXJEmSpOVuJmfoTgYO6is7G3hCVT0R+CbwB1N8/llVtXdVrZ5diJIkSZKkQaZN6KrqXOCWvrKzquqedvI8YNd5iE2SJEmSNIW5uIbulcBnhswr4KwkFyRZM9VCkqxJsjbJ2o0bN85BWJIkSZK0tI2U0CV5C3AP8NEhVfavqn2Ag4HXJXnmsGVV1YlVtbqqVk9MTIwSliRJkiQtC7NO6JIcDRwGvLSqalCdqrqh/bkBOB3Yd7brkyRJkiRtalYJXZKDgDcDL6iqu4bU2SbJtpPvgecBlw2qK0mSJEnafDN5bMEpwFeBPZOsT/Iq4D3AtsDZ7SMJTmjr7pzk0+1HdwS+kuRi4GvAmVX12XnZCkmSJElahlZMV6GqjhpQ/MEhdW8ADmnfXws8aaToJElaApKcRHOZwoaqekJb9nDgVGAVsA54SVX9YFwxSpK6aS7ucilJkqZ2Mvd/puuxwDlV9RjgnHZakqTNYkInSdI8G/RMV+Bw4EPt+w8BRyxoUJKkJcGETpKk8dixqm4EaH8+YszxSJI6yIROkqRFLMmaJGuTrN24ceO4w5EkLTImdJIkjcdNSXYCaH9uGFSpqk6sqtVVtXpiYmJBA5QkLX4mdJIkjccZwNHt+6OBT40xFklSR5nQSZI0z4Y80/V44LlJrgae205LkrRZpn0OnSRJGs2QZ7oCHLiggUiSlhzP0EmSJElSR5nQSZIkSVJHmdBJkiRJUkeZ0EmSJElSR5nQSZIkSVJHmdBJkiRJUkeZ0EmSJElSR/kcOkmL1qpjzxx3CD+17vhDxx0CYJtIkqRNeYZOkiRJkjrKhE6SJEmSOsqETpIkSZI6yoROkiRJkjrKhE6SJEmSOsqETpIkSZI6yoROkiRJkjrKhE6SJEmSOsqETpIkSZI6akYJXZKTkmxIcllP2cOTnJ3k6vbnw4Z89ui2ztVJjp6rwCVJkiRpuZvpGbqTgYP6yo4FzqmqxwDntNObSPJw4G3AU4F9gbcNS/wkSZIkSZtnRgldVZ0L3NJXfDjwofb9h4AjBnz0l4Czq+qWqvoBcDb3TwwlSZIkSbMwyjV0O1bVjQDtz0cMqLMLcH3P9Pq2TJIkSZI0ohXzvPwMKKuBFZM1wBqAlStXzmdMkrTZVh175rhDkCRJup9RztDdlGQngPbnhgF11gOP7JneFbhh0MKq6sSqWl1VqycmJkYIS5IkSZKWh1ESujOAybtWHg18akCdzwHPS/Kw9mYoz2vLJEmSJEkjmuljC04BvgrsmWR9klcBxwPPTXI18Nx2miSrk3wAoKpuAf4U+Hr7+pO2TJKkZS/J7yS5PMllSU5JstW4Y5IkdcuMrqGrqqOGzDpwQN21wG/0TJ8EnDSr6CRJWqKS7AL8NrBXVd2d5OPAkTSPCpIkaUZGGXIpSZJGswJ4UJIVwNYMuc5ckqRh5vsul5IkaYCq+m6SdwLfAe4Gzqqqs/rrLeW7QHv3WM3EYtpP1h1/6LhDkO7HM3SSJI1Be7Oww4HdgJ2BbZL8Wn897wItSZqKCZ0kSePxHOC6qtpYVT8GPgH8wphjkiR1jAmdJEnj8R1gvyRbJwnNjcauGHNMkqSOMaGTJGkMqup84DTgQuBSmj75xLEGJUnqHG+KIknSmFTV24C3jTsOSVJ3eYZOkiRJkjrKhE6SJEmSOsqETpIkSZI6yoROkiRJkjrKhE6SJEmSOsqETpIkSZI6yoROkiRJkjrKhE6SJEmSOsqETpIkSZI6yoROkiRJkjrKhE6SJEmSOmrFuAOQJEmSumDVsWeOO4SfWnf8oeMOQYuEZ+gkSZIkqaNM6CRJkiSpo0zoJEmSJKmjTOgkSZIkqaNM6CRJkiSpo0zoJEmSJKmjZp3QJdkzyUU9r9uTHNNX54Akt/XUeevoIUuSJEmSYITn0FXVVcDeAEm2AL4LnD6g6per6rDZrkeSJEmSNNhcDbk8EPhWVX17jpYnSZIkSZrGXCV0RwKnDJn3tCQXJ/lMksfP0fokSZIkadkbOaFL8kDgBcC/DJh9IfCoqnoS8PfAJ6dYzpoka5Os3bhx46hhSZIkSdKSNxdn6A4GLqyqm/pnVNXtVXVn+/7TwAOS7DBoIVV1YlWtrqrVExMTcxCWJEmLW5LtkpyW5MokVyR52rhjkiR1y6xvitLjKIYMt0zys8BNVVVJ9qVJIL8/B+uUJGkpeDfw2ap6UTviZetxByRJ6paRErokWwPPBV7dU/YagKo6AXgR8Nok9wB3A0dWVY2yTkmSloIkDwGeCbwcoKp+BPxonDFJkrpnpISuqu4Ctu8rO6Hn/XuA94yyDkmSlqjdgY3APyV5EnAB8Maq+u/xhiVJ6pK5GHIpSZI23wpgH+ANVXV+kncDxwJ/1FspyRpgDcDKlSsXPEhJi9OqY88cdwgArDv+0HGHsOzN1WMLJEnS5lkPrK+q89vp02gSvE140zBJ0lRM6CRJGoOq+h5wfZI926IDgW+MMSRJUgc55FKSpPF5A/DR9g6X1wKvGHM8kqSOMaGTJGlMquoiYPW445AkdZdDLiVJkiSpo0zoJEmSJKmjTOgkSZIkqaNM6CRJkiSpo0zoJEmSJKmjTOgkSZIkqaNM6CRJkiSpo0zoJEmSJKmjTOgkSZIkqaNM6CRJkiSpo1aMOwAtT6uOPXPcIQCw7vhDxx2CJEmSNGueoZMkSZKkjjKhkyRJkqSOMqGTJEmSpI4yoZMkSZKkjjKhkyRJkqSOMqGTJEmSpI4yoZMkSZKkjjKhkyRJkqSOMqGTJEmSpI4aOaFLsi7JpUkuSrJ2wPwk+bsk1yS5JMk+o65TkiRJkgQr5mg5z6qqm4fMOxh4TPt6KvC+9qckSZIkaQQLMeTycODD1TgP2C7JTguwXkmSJEla0uYioSvgrCQXJFkzYP4uwPU90+vbMkmSlr0kWyT5ryT/Pu5YJEndMxdDLvevqhuSPAI4O8mVVXVuz/wM+Ez1F7TJ4BqAlStXzkFYkiR1whuBK4CHjDsQSVL3jHyGrqpuaH9uAE4H9u2rsh54ZM/0rsANA5ZzYlWtrqrVExMTo4YlSdKil2RX4FDgA+OORZLUTSMldEm2SbLt5HvgecBlfdXOAF7W3u1yP+C2qrpxlPVKkrRE/C3wJuDecQciSeqmUYdc7gicnmRyWf9cVZ9N8hqAqjoB+DRwCHANcBfwihHXKUlS5yU5DNhQVRckOWCKel6SIEkaaqSErqquBZ40oPyEnvcFvG6U9UiStATtD7wgySHAVsBDkvzfqvq13kpVdSJwIsDq1avvdw26JGl5W4jHFkiSpD5V9QdVtWtVrQKOBL7Qn8xJkjQdEzpJkiRJ6qi5eGyBJEkaQVV9EfjimMOQJHWQZ+gkSZIkqaNM6CRJkiSpo0zoJEmSJKmjTOgkSZIkqaNM6CRJkiSpo7zL5TKy6tgzxx2CJEmSpDnkGTpJkiRJ6igTOkmSJEnqKBM6SZIkSeooEzpJkiRJ6igTOkmSJEnqKO9yKUnSMuIdjyUtVYvl79u64w9d0PV5hk6SJEmSOsqETpIkSZI6yoROkiRJkjrKhE6SJEmSOsqETpIkSZI6yoROkiRJkjrKhE6SJEmSOsrn0GlZWyzPK5EkSZJmwzN0kiRJktRRJnSSJEmS1FGzTuiSPDLJfyS5IsnlSd44oM4BSW5LclH7euto4UqSJEmSJo1yDd09wO9V1YVJtgUuSHJ2VX2jr96Xq+qwEdYjSZIkSRpg1mfoqurGqrqwfX8HcAWwy1wFJknSUjaTkS6SJE1nTq6hS7IKeDJw/oDZT0tycZLPJHn8XKxPkqQlYHKky88B+wGvS7LXmGOSJHXMyAldkgcD/wocU1W3982+EHhUVT0J+Hvgk1MsZ02StUnWbty4cdSwJEla1BzpIkmaCyM9hy7JA2iSuY9W1Sf65/cmeFX16ST/kGSHqrp5QN0TgRMBVq9eXaPEJUlSl0w10iXJGmANwMqVKxc0Lkmajs/0Hb9R7nIZ4IPAFVX110Pq/GxbjyT7tuv7/mzXKUnSUjPNSBeq6sSqWl1VqycmJhY+QEnSojbKGbr9gV8HLk1yUVv2h8BKgKo6AXgR8Nok9wB3A0dWlWffJEli+pEukiRNZ9YJXVV9Bcg0dd4DvGe265AkaamayUgXSZKmMyd3uZQkSZttcqTLs5Nc1L4OGXdQkqRuGemmKJIkaXZmMtJFkqTpeIZOkiRJkjrKhE6SJEmSOsqETpIkSZI6yoROkiRJkjrKhE6SJEmSOsqETpIkSZI6yoROkiRJkjrKhE6SJEmSOsqETpIkSZI6yoROkiRJkjrKhE6SJEmSOsqETpIkSZI6yoROkiRJkjpqxbgDmC+rjj1z3CFIkiRJ0rzyDJ0kSZIkdZQJnSRJkiR1lAmdJEmSJHWUCZ0kSZIkdZQJnSRJkiR1lAmdJEmSJHWUCZ0kSZIkdZQJnSRJkiR1lAmdJEmSJHXUSAldkoOSXJXkmiTHDpi/ZZJT2/nnJ1k1yvokSVpKputHJUmazqwTuiRbAO8FDgb2Ao5KsldftVcBP6iqRwN/A/zlbNcnSdJSMsN+VJKkKY1yhm5f4JqquraqfgR8DDi8r87hwIfa96cBBybJCOuUJGmpmEk/KknSlEZJ6HYBru+ZXt+WDaxTVfcAtwHbj7BOSZKWipn0o5IkTWnFCJ8ddKatZlGnqZisAda0k3cmuWqE2BaTHYCbxx3EImJ7bMr22JTtsalF3R6Zm0H0j5qTpXTTjPrIEfrHRb3/9DDOudeVWLsSJ3QnVuOce5sd6xz1jzDDPnKUhG498Mie6V2BG4bUWZ9kBfBQ4JZBC6uqE4ETR4hnUUqytqpWjzuOxcL22JTtsSnbY1O2x5I3k3501v1jV/Yf45x7XYm1K3FCd2I1zrnXhVhHGXL5deAxSXZL8kDgSOCMvjpnAEe3718EfKGqBp6hkyRpmZk5BVZeAAAO+ElEQVRJPypJ0pRmfYauqu5J8nrgc8AWwElVdXmSPwHWVtUZwAeBjyS5hubM3JFzEbQkSV03rB8dc1iSpI4ZZcglVfVp4NN9ZW/tef8/wItHWccSsOSGkY7I9tiU7bEp22NTtscSN6gfnUNd2X+Mc+51JdauxAndidU4596ijzWOgJQkSZKkbhrlGjpJkiRJ0hiZ0M2hJOuSXJrkoiRr27KHJzk7ydXtz4eNO86FkmS7JKcluTLJFUmetszbY89235h83Z7kmGXeJr+T5PIklyU5JclW7Q0izm/b49T2ZhHLQpI3tm1xeZJj2rJlu39ouCQnJdmQ5LKesoH7Shp/l+SaJJck2WcRxPqOtm+4JMnpSbZry1clubvn7+QJY47zuCTf7YnnkJ55f9C26VVJfmnMcZ7aE+O6JBe15eNsz0cm+Y+2/788yRvb8kW3n04R66LaT6eIczHup8NiXVT7apr/O76W5OI2zj9uy3fLgP9FkmzZTl/Tzl+1EHFOq6p8zdELWAfs0Ff2V8Cx7ftjgb8cd5wL2B4fAn6jff9AYLvl3B59bbMF8D2a54ssyzaheYDydcCD2umPAy9vfx7Zlp0AvHbcsS5QezwBuAzYmub65s8Dj1mu+4evafeXZwL7AJf1lA3cV4BDgM/QPPduP+D8RRDr84AV7fu/7Il1VW+9RRDnccDvD6i7F3AxsCWwG/AtYItxxdk3/13AWxdBe+4E7NO+3xb4Zttui24/nSLWRbWfThHnYtxPB8a62PbVdn97cPv+AcD57f438H8R4LeAE9r3RwKnLnTMg16eoZt/h9MkNrQ/jxhjLAsmyUNoOp0PAlTVj6rqVpZpewxwIPCtqvo2y7tNVgAPSvOcyq2BG4FnA6e185dTe/wccF5V3VVV9wBfAl7I8t4/NERVncv9n+s6bF85HPhwNc4Dtkuy08JEOjjWqjqr3c8BzqN5Bt9YDWnTYQ4HPlZVP6yq64BrgH3nLbgeU8WZJMBLgFMWIpapVNWNVXVh+/4O4AqaA3mLbj8dFuti20+naNNhxrmfThnrYtlX2/3tznbyAe2rGP6/SO/+expwYLstY2VCN7cKOCvJBUnWtGU7VtWN0OzcwCPGFt3C2h3YCPxTkv9K8oEk27B826Pfkdz3R2xZtklVfRd4J/AdmkTuNuAC4NaeDnQ9U3dWS8llwDOTbJ9ka5qj1Y9kme4fmpVh+8ouwPU99Rbb79Urac7MTNqt7Te+lOQZ4wqqx+vbIXcn5b4hz4u1TZ8B3FRVV/eUjb0922FpT6Y5+7Go99O+WHstqv10QJyLdj8d0qaLZl9NskU79HMDcDbNmcxh/4v8tE3b+bcB2y9UrMOY0M2t/atqH+Bg4HVJnjnugMZoBc2QkPdV1ZOB/6YZWrHsteOwXwD8y7hjGae2wzmcZhjIzsA2NL87/ZbFrXir6gqaIT1nA5+lGSZzz5QfkmZm0NHjRfF7leQtNPv5R9uiG4GVbb/xu8A/tyM+xuV9wB7A3m1s72rLF2ubHsWmZzzG3p5JHgz8K3BMVd0+VdUBZQvapsNiXWz76YA4F+1+OsX3v2j21ar6SVXtTXMGdl+aETP3q9b+HHubDmJCN4eq6ob25wbgdJqd4qbJIQPtzw3ji3BBrQfWV9Xk0ZjTaBK85doevQ4GLqyqm9rp5domzwGuq6qNVfVj4BPAL9AMs5l8RuauwA3jCnChVdUHq2qfqnomzZCqq1m++4c237B9ZT3N2d5Ji+L3KsnRwGHAS6u9IKUdGvb99v0FNEfKHzuuGKvqpvafvXuB93PfcLVF16bt381fBk6dLBt3eyZ5AM0/8x+tqk+0xYtyPx0S66LbTwfFuVj30ynadNHtq+16bwW+SHMN3bD/RX7apu38hzLzodrzxoRujiTZJsm2k+9pLqS9DDgDOLqtdjTwqfFEuLCq6nvA9Un2bIsOBL7BMm2PPv1HpZZrm3wH2C/J1u3488l95D+AF7V1llN7kOQR7c+VNJ3dKSzf/UObb9i+cgbwsjT2A26bHPI2LkkOAt4MvKCq7uopn0iyRft+d5obA107nih/mnBMeiFNvw5Nmx7Z3vFuN5o4v7bQ8fV5DnBlVa2fLBhne7Z/1z8IXFFVf90za9Htp8NiXWz76RRxLrr9dIrvHxbRvtqud/LupQ9qY7uC4f+L9O6/LwK+MJnoj1WN4U4sS/FFc83Yxe3rcuAtbfn2wDk0R9rPAR4+7lgXsE32BtYClwCfBB62nNujbZOtge8DD+0pW7ZtAvwxcCVN5/MRmjtx7U7T4VxDMyx1y3HHuYDt8WWapPZi4MDlvn/4mnJfOYVmiNKPaY4Yv2rYvkIzROi9NEe8LwVWL4JYr6G5DuWi9jV517hfafvQi4ELgeePOc6PtG12Cc0/cjv11H9L26ZXAQePM862/GTgNX11x9meT6cZinZJz/d8yGLcT6eIdVHtp1PEuRj304GxLrZ9FXgi8F9tnJdx3103B/4vAmzVTl/Tzt99odp0qlfa4CRJkiRJHeOQS0mSJEnqKBM6SZIkSeooEzpJkiRJ6igTOkmSJEnqKBM6SZIkSeooEzotGUl2TPLPSa5NckGSryZ54YjLPC7J72/mZ45I8tZR1jvXkmyX5LfmadmvT/KK+Vi2JEmSpmZCpyWhfYDlJ4Fzq2r3qvp54Ehg1wF1V8xzOG8C/mHUhUw+YHOObAfMS0IHnAT89jwtW5K0QJJsn+Si9vW9JN/tmf5/87TOJyf5wGZ+5gNJ9prl+lYl+V+z+Wz7+c8nedhsPy/NBxM6LRXPBn5UVSdMFlTVt6vq7wGSvDzJvyT5N+CsJA9Ock6SC5NcmuTwyc8leUuSq5J8Htizp3yPJJ9tz/59Ocnj+oNI8ljgh1V1czt9cpIT2vrfTHJYW75Fknck+XqSS5K8ui0/IMl/JPlnmoeEkuRlbZ2Lk3ykLZtI8q/t57+eZP+2/LgkJyX5YnumcjLROh7Yo+2U3zHN9v9RkiuTnJ3klMkzlMO2v6ruAtYl2Xe0r1CSNE5V9f2q2ruq9gZOAP5mcrqqfmGeVvuHwN9vzgeq6jeq6huzXN8qYNYJHc1DvOfrAKk0K/N9pkJaKI8HLpymztOAJ1bVLe1ZuhdW1e1JdgDOS3IGsA/Nmb0n0/x+XAhc0H7+ROA1VXV1kqfSnIV7dt869h8QxyrgF4E9gP9I8mjgZcBtVfWUJFsC/5nkrLb+vsATquq6JI8H3gLsX1U3J3l4W+fdNB3tV5KsBD4H/Fw773HAs4BtgauSvA84tl3m3vDTs5SDtv/ngV+ZxfavBZ4BfG2qL0CS1E1J7qyqByc5APhj4CZgb+ATNAcg3wg8CDiiqr6VZIImKVzZLuKYqvrPvmVuS9MvX9xOHwfsBuwEPBb4XWA/4GDgu8Dzq+rHSb4I/H5VrU1yJ02feBhwN3B4Vd2U5GTg36vqtN74aQ5w/lySi4APAX/Xlh0AbAm8t6r+MclOwKnAQ2j6w9dW1ZeBM4AvA28fvVWluWFCpyUpyXuBp9OctXtKW3x2Vd0yWQX48yTPBO4FdgF2pElKTm/POtEmOSR5MPALwL80ozuB5g9/v52AjX1lH6+qe4Grk1xLk3A9D3hikhe1dR4KPAb4EfC1qrquLX82cNrkGb+e+J8D7NUTy0PajhHgzKr6IfDDJBva7bpfEw3Z/qcDn6qqu9vt/rcZbv+GdrskSUvfk2gOIt4CXAt8oKr2TfJG4A3AMUx94HHSauCyvrI9aA5K7gV8FfiVqnpTktOBQ2kur+i1DXBeVb0lyV8Bvwn82RSxH0uTDE6OmFnD4AOsvwx8rqre3l4CsTVAVf0gyZZJtq+q78+ksaT5ZkKnpeJymjNLAFTV69ozT2t76vx3z/uXAhPAz7dH+9YBW01+fMDyfwa4dfIM1xTupknOevUvr2gSqjdU1ed6Z7RHPnvjzBTxPG0y8er5PMAPe4p+wuDf82HbnwF1J9c31fZvRbPtkqSl7+tVdSNAkm8BkyNMLqVJxmDIgcequqNnOYMOgn6m7ZcuBbYAPtuz7FUDYvkR8O/t+wuA527mtgw7wPp14KQkDwA+WVUX9XxmA7AzYEKnRcFr6LRUfAHYKslre8q2nqL+Q4ENbafxLOBRbfm5wAuTPKg94/V8gKq6HbguyYuhuQlLkicNWO4VwKP7yl6c5GeS7AHsDlxFc6TytW1HQZLHJtlmwPLOAV6SZPu23uSQy7OA109WSjJdonkHzRDM6bb/K8Dzk2zVnpU7dIbb/1juf5RVkrQ09R44vLdn+l7uO4g4eeBx8hq8XfqSOWgOBG7VV/ZDgHZky4+ravKgZu+ye/XW6T2IeU8bw+SN0x44ZFsmD7BOxrlbVZ1VVecCz6QZ6vmRJC/r+YwHMbWomNBpSWj/mB8B/GKS65J8jWZs/JuHfOSjwOoka2nOVl3ZLudCmjHzFwH/SjNOftJLgVcluZjmjODh3N+5wJPTc0iSJoH7EvAZmmvQ/gf4APAN4MIklwH/yICOqqoupxmn/6V2vX/dzvrtNv5LknwDeM3QxmmW832aYSSXJXnHFNv/dZrrAy6muS5iLXDbDLZ/f+DzU8UgSVpWZnLgcdBB0Lmyjua6cGj6qwe07/sPcA48wJrkUTQHPt8PfJDmGvvJ5PBn2+VLi4JDLrVktMM/jhwy72Tg5J7pm2lukjKo7tsZcLFze13bQdPEcFeau2MeyH0Jzn9W1e/01buX5s5ef9i3iC+2r966H6JJTnvLbgZ+dcD6j+ubfkLP+/67eg3cfuCdVXVckq1pEtR3tZ8fuP1JngxcPnmdnyRJNAce35vkEpr/N8+l7+BjVV2Z5KEDhmLOhfcDn2oP8J7DfZczXALc0x6cPJnmWr9VNAdYQzME9Aiam6T87yQ/Bu6kuZkZNEnieVV1zxzHK81a7jtLLWkuJNkReGpVndF/l60uSPPIhL1ohpR8qKr+Ypr6zwWurqp1CxCeJGkJSfI7wB1VtVnPohuXJO8Gzqiqc8YdizTJhE6SJEljkWQr4MVV9ZFxxzITSX6zHYYpLRomdJIkSZLUUd4URZIkSZI6yoROkiRJkjrKhE6SJEmSOsqETpIkSZI6yoROkiRJkjrq/wdsQq8CkzHY+gAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "# We want our histograms in separate axes:\n", "pyplot.figure(figsize=(15, 5)) # (width, height) = (15, 5)\n", @@ -919,9 +1211,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3QAAAFNCAYAAABIei33AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xu4JHV95/H3xxl0BEFERuQijhrEKE9Ac4Iixmjwwi1ijCawalBxR914S8xjcJOIe0mWrEmMG43sBBCzUWJEUSKIELygiaLDTQcGxOAoI8gcRQEvyDB+94+uo83x3Pv06apz3q/n6ae7fvXrX32r+8wXvlW/rkpVIUmSJEnqnvuMOgBJkiRJ0sJY0EmSJElSR1nQSZIkSVJHWdBJkiRJUkdZ0EmSJElSR1nQSZIkSVJHWdB1XJJPJXn5qONYDElekuSzo45jrmaLN8nHkpy4lDFJbWJ+Gh3zkzQ9c9PomJuGw4JuyJI8Jcm/J7k9yW1J/i3JrzTrWvOPsE2xDFOSvZOcl+TmJJVk3aT190tyZpI7knwryR8sdFtVdVRVvWfQmKVhMT+1S5Jjknw2yfea/PP3SXbtW29+0opgbmqXJE9P8uUmN30nyblJ9u1bb24aMQu6IUqyG/BR4G+BPYB9gf8G/HiUcS2FJKtHHcM0fgJcCPzWNOvfAhwAPBx4OvDGJEcuTWjS0jE/tdIDgf8J7AP8IrAf8Na+9W/B/KRlztzUStcCz66q3enlpxuAd/WtfwvmppGyoBuuRwNU1dlVtaOqflRVF1XVl5L8InAacFiS7yf5Hvz8NIDJR3+SPDPJdc1Rq3cA6d9gkpcl2Zzku0k+nuThfesqySuT3NCsf2d6poxlsiSPSHJpkjuT/Gvz/n9s1q1rxj8pyTeATzTtH2iO1tzevPdxfeM9uDlbdkeSLwCPmrS9xyS5uDk6d32S3+5bd3SSa5tYvpnkD+fyhVTVrVX1d8AXp+nyu8D/qKrvVtVm4O+Bl8wwZJL8bbN/1yU5om/FT7/Lie8xyV82n/3XkhzV1/clSW5s9udrSV44l/2RBmB+al9+el9VXVhVP6yq79LLP4f3dTE/aSUwN7UvN91aVTf3Ne0AfqFv2dw0YhZ0w/UVYEeS9yQ5KsmDJlY0f/CvBD5XVQ9ojnrMKMmewAeBPwH2BP6Dvv/YJ3ku8F+B5wFrgc8AZ08a5ljgV4CDgd+md8RlrrG8D/gC8GB6R2NePEWfX6N3ZPnZzfLH6B21eQhwBfDevr7vBO4C9gZe1jwm9mUX4OJmmw8BTgD+ri+pnQG8oqp2BQ6iSYLNe7+X5CnT7MO0mu9nH+DqvuargcdN/Q4AngjcSO/7OAX4UJI9Zuh7fdP3fwNnNP9R2AX4P8BRzf48GbhqvvFL82R+an9+eipwTfM+85NWCnNTC3NTkv2bovVHwB/SyxPmppawoBuiqroDeApQ9I5WjDdHVfZa4JBHA9dW1TlVtR34G+BbfetfAfyvqtpcVfcAfw4c0n+kCTi1qr5XVd8APgkcMpcNJ9mfXjJ7c1XdXVWfBc6boutbquoHVfUjgKo6s6rurKof00tkByd5YJJV9KY9vrnpvwnonzN9LLClqt5dVfdU1RX0EvLzm/Xbgccm2a05InTFxBuravcmvvl6QPN8e1/b7cCuU/SdsA34m6raXlXvp5d0jpmm79er6u+rage9fd0bmPhb+AlwUJL7V9UtVXXNAuKX5sz81O78lOSZwInAm5sm85NWBHNTO3NTVX2jKVr3pFccX9esMje1gAXdkDUJ4iVVtR+9oyH70EsmC7EPcFPf2NW/TG/u8tuboyzfA26jN61g374+/Unsh/zsH+Jctn1bVf2wr+2mKfr9tC3JqiSnJvmPJHcAW5pVe9I7CrZ60hhfn7QvT5zYl2Z/Xgg8tFn/W/SS9NeTfDrJYXPcj5l8v3nera9tN+DOGd7zzeZ7mPB1ep/VVH762fd9jg+oqh8Av0PvSN8tSc5P8ph5RS4tgPmpnfkpyZPoHWF/flV9pWk2P2nFMDe1MzcBVNVt9Aqrj6T3mz9zUwtY0C2hqroOOItecoLe0afJfgDs3Lf80L7XtwAPm1hIkv5lev/AX9EcZZl43L+q/n0u4c2y/hZgjyT9sT1sin794/wn4DjgGfR+7L9uInRgHLhn0hj7972+Cfj0pH15QFW9CqCqvlhVx9GbUvBh4J9niX9W1fvNyi30plRMOJhmytM09m2+h/59uHm6zjNs++NV9Ux6R56uo3dUUloy5qd25Kckj6d3BP9lVXXJTwM3P2mFMje1IzdNsroZYzdzUztY0A1Rej9MfUOS/Zrlh9Gbz/z5psutwH5J7tv3tquA5yXZOckvACf1rTsfeFyS5zVHRV7LvZPWacCbJuZKN6fnXzDHcKeK5aeq6uvARuAtSe7bHNX5jVnG3JXeVam+Qy/R/nnfeDuADzXj7ZzksfSmF034KPDoJC9OslPz+JUkv9hs/4VJHthMn7iD3g905yTJGuB+zeL9muUJ/wD8SZIHNUd6/jO9/5BM5yHAa5v4XkBvDvwFc42liWevJM9p5oP/mN7Rrjnvj7QQ5qf25ackB9G7Cu9rqupfpuhiftKyZ25qZW56XpIDk9wnyVrgr4Erm7N1YG4aOQu64bqT3o85L0vyA3rJaBPwhmb9J+gdwfhWkm83bW8D7qaXJN5D3w9hq+rbwAuAU+n9Qz8A+Le+9ecCfwH8U3qn6TcBP70a0CymimWyFwKHNdv+n8D7mfkywv9A7zT6N+ld8vbzk9a/mt60hW/R+4f/7r59uRN4FnA8vaM232r2baIQezGwpdnPVwIvmnhveleb+tUZ4voRP5sicF2zPOEUej+Y/jrwaeCtVXXhDGNdRu97+DbwZ/SmSH1nhv5TuQ+9v4mb6U31+DXgv8xzDGm+zE/ty09voDel6oym3/eT9B/lNj9pJTA3tS837UvvYNOdwJfp/XbtN/vWm5tGLPeewirNXZL3A9dV1SmjjkWS+pmfJLWRuUnD4Bk6zVlz2v5RzSn3I+nN8f7wqOOSJPOTpDYyN2kptPWO9Gqnh9Kbu/1gYCvwqqq6crQhSRJgfpLUTuYmDZ1TLiVJkiSpo5xyKUmSJEkdZUEnSZIkSR3Vyt/Q7bnnnrVu3bpRhyFpEV1++eXfrqq1o45jEOYmafkxN0lqq7nmp1YWdOvWrWPjxo2jDkPSIkry9VHHMChzk7T8mJsktdVc85NTLiVJkiSpoyzoJEmSJKmjLOgkSZIkqaMs6CRJkiSpoyzoJEmSJKmjLOgkSZIkqaMs6CRJkiSpoyzoJC1rSc5Msi3Jpr62tya5LsmXkpybZPdRxihJkrRQFnSSlruzgCMntV0MHFRVvwR8BXjTUgclSZK0GCzoJC1rVXUpcNuktouq6p5m8fPAfksemCRJ0iKwoJO00r0M+Niog5AkSVoICzqN1F3bd3RqXC0vSf4YuAd47wx91ifZmGTj+Pj40gWnzphPvjE3SRqmmXKM+Wf5Wj3qALSyrdlpFetOPn/Rx91y6jGLPqaWlyQnAscCR1RVTdevqjYAGwDGxsam7aeVaz55zNwkaZhmykfmn+XLgk7SipPkSOCPgF+rqh+OOh5JkqSFcsqlpGUtydnA54ADk2xNchLwDmBX4OIkVyU5baRBSpIkLZBn6CQta1V1whTNZyx5IJIkSUPgGTpJkiRJ6igLOkmSJEnqKAs6SZIkSeooCzpJkiRJ6igLOkmSJEnqKAs6SZIkSeooCzpJkiRJ6igLOkmSJEnqKAs6SZIkSeooCzpJkiRJ6igLOkmSJEnqKAs6SZIkSeqo1bN1SHImcCywraoOatreDxzYdNkd+F5VHTLFe7cAdwI7gHuqamyR4pYkSZKkFW/Wgg44C3gH8A8TDVX1OxOvk/wVcPsM7396VX17oQFKkiRJkqY2a0FXVZcmWTfVuiQBfhv49cUNS5IkSZI0m0F/Q/erwK1VdcM06wu4KMnlSdbPNFCS9Uk2Jtk4Pj4+YFiSJEmStPwNWtCdAJw9w/rDq+oJwFHA7yV56nQdq2pDVY1V1djatWsHDEuSJEmSlr8FF3RJVgPPA94/XZ+qurl53gacCxy60O1JkiRJku5tkDN0zwCuq6qtU61MskuSXSdeA88CNg2wPUmSJElSn1kLuiRnA58DDkyyNclJzarjmTTdMsk+SS5oFvcCPpvkauALwPlVdeHihS5JkiRJK9tcrnJ5wjTtL5mi7Wbg6Ob1jcDBA8YnSZK04iT5feDl9C4w92XgpVV112ijktRGg14URZIkSYsoyb7Aa4GxqjoIWEVvZpQk/RwLOkmSpPZZDdy/uQjdzsDNI45HUktZ0EmSJLVIVX0T+EvgG8AtwO1VddFoo5LUVhZ0kiRJLZLkQcBxwCOAfYBdkrxoUp/1STYm2Tg+Pj6KMCW1hAWdJElSuzwD+FpVjVfVduBDwJP7O1TVhqoaq6qxtWvXjiRISe1gQSdJktQu3wCelGTnJAGOADaPOCZJLWVBJ0mS1CJVdRlwDnAFvVsW3AfYMNKgJLXWrPehkyRJ0tKqqlOAU0Ydh6T28wydJEmSJHWUBZ0kSZIkdZQFnSRJkiR1lAWdJEmSJHWUBZ0kSZIkdZQFnaRlLcmZSbYl2dTXtkeSi5Pc0Dw/aJQxSpIkLZQFnaTl7izgyEltJwOXVNUBwCXNsiRJUudY0Ela1qrqUuC2Sc3HAe9pXr8HeO6SBiVJkrRILOgkrUR7VdUtAM3zQ0YcjyRJ0oJY0EnSDJKsT7Ixycbx8fFRhyNJknQvFnSSVqJbk+wN0Dxvm65jVW2oqrGqGlu7du2SBShJkjQXFnSSVqLzgBOb1ycCHxlhLJIkSQtmQSdpWUtyNvA54MAkW5OcBJwKPDPJDcAzm2VJkqTOWT3qACRpmKrqhGlWHbGkgUiSJA2BZ+gkSZIkqaMs6CRJkiSpoyzoJEmSJKmjZi3okpyZZFuSTX1tb0nyzSRXNY+jp3nvkUmuT/LVJCcvZuCSJEmStNLN5QzdWcCRU7S/raoOaR4XTF6ZZBXwTuAo4LHACUkeO0iwkiRJkqSfmbWgq6pLgdsWMPahwFer6saquhv4J+C4BYwjSZIkSZrCIL+he3WSLzVTMh80xfp9gZv6lrc2bVNKsj7JxiQbx8fHBwhLkiRJklaGhRZ07wIeBRwC3AL81RR9MkVbTTdgVW2oqrGqGlu7du0Cw5IkSZKklWNBBV1V3VpVO6rqJ8Df05teOdlW4GF9y/sBNy9ke5IkSZKkn7eggi7J3n2LvwlsmqLbF4EDkjwiyX2B44HzFrI9SZIkSe101/YdC1qnxbF6tg5JzgaeBuyZZCtwCvC0JIfQm0K5BXhF03cf4PSqOrqq7knyauDjwCrgzKq6Zih7IUmSJGkk1uy0inUnnz/lui2nHrPE0aw8sxZ0VXXCFM1nTNP3ZuDovuULgJ+7pYEkSZIkaXCDXOVSkiRJkjRCFnSSJEmS1FEWdJIkSZLUURZ0kiRJktRRFnSSJEmS1FEWdJIkSZLUURZ0kiRJktRRFnSSJEmS1FEWdFqW7tq+o1PjSpIkSQuxetQBSMOwZqdVrDv5/EUfd8upxyz6mJIkSdJCeYZOkiRJkjrKgk6SJEmSOsqCTpIkSZI6yoJOkiRJkjrKgk6SJEmSOsqCTpIkSZI6yoJOkiRJkjrKgk6SJEmSOsqCTpIkSZI6yoJOkiRJkjrKgk6SJEmSOsqCTpIkSZI6yoJO0oqV5PeTXJNkU5Kzk6wZdUySBJBk9yTnJLkuyeYkh406JkntZEEnaUVKsi/wWmCsqg4CVgHHjzYqSfqptwMXVtVjgIOBzSOOR1JLrR51AJI0QquB+yfZDuwM3DzieCSJJLsBTwVeAlBVdwN3jzImSe016xm6JGcm2ZZkU1/bW5spAF9Kcm6S3ad575YkX05yVZKNixm4JA2iqr4J/CXwDeAW4Paqumi0UUkSAI8ExoF3J7kyyelJdhl1UJLaaS5TLs8CjpzUdjFwUFX9EvAV4E0zvP/pVXVIVY0tLERJWnxJHgQcBzwC2AfYJcmLpui3PsnGJBvHx8eXOkytcHdt3zGUvmq91cATgHdV1eOBHwAn93cwN2m+ZssR5pC5aePnOOuUy6q6NMm6SW39R7E/Dzx/ccOSpKF7BvC1qhoHSPIh4MnAP/Z3qqoNwAaAsbGxWuogtbKt2WkV604+f059t5x6zJCj0RLaCmytqsua5XOYVNCZmzRfs+UTc8jctPFzXIyLorwM+Ng06wq4KMnlSdbPNIhHmiQtsW8AT0qyc5IAR+BFByS1QFV9C7gpyYFN0xHAtSMMSVKLDXRRlCR/DNwDvHeaLodX1c1JHgJcnOS6qrp0qo4eaZK0lKrqsiTnAFfQy2NX0uQgSWqB1wDvTXJf4EbgpSOOR1JLLbigS3IicCxwRFVNWYBV1c3N87Yk5wKHAlMWdJK01KrqFOCUUcchSZNV1VWA1x+QNKsFTblMciTwR8BzquqH0/TZJcmuE6+BZwGbpuorSZIkSZq/udy24Gzgc8CBSbYmOQl4B7ArvWmUVyU5rem7T5ILmrfuBXw2ydXAF4Dzq+rCoeyFJEmSJK1Ac7nK5QlTNJ8xTd+bgaOb1zcCBw8UnSRJkiRpWotxlUtJkiRJ0ghY0EmSJElSR1nQSZIkSVJHWdBJkiRJUkdZ0EmSJElSR1nQSZIkSVJHWdBJkiRJUkdZ0EmSJElSR1nQSZIkSVJHWdBJkiRJUkdZ0EmSJElSR1nQSZIkSVJHWdBJkiRJUkdZ0EmSJElSR1nQSZI0yV3bd4w6BEmS5mT1qAOQuuSu7TtYs9OqTo3dxZilUVuz0yrWnXz+nPpuOfWYIUcjSdL0LOikeZjP/+TN17D+p7CLMUuSJGlunHIpSZIkSR1lQSdJkiRJHWVBJ0mSJEkdZUEnSZIkSR1lQSdJkiTN00y3N+nirU+GtT+zvXdYn9WotjsKXuVSkiRJmqeZriLdxatAD2t/Zrva9qiu8t3F72g6nqGTJEmSpI6yoJMkSZKkjppTQZfkzCTbkmzqa9sjycVJbmieHzTNe09s+tyQ5MTFClySJEmSVrq5nqE7CzhyUtvJwCVVdQBwSbN8L0n2AE4BnggcCpwyXeEnSZIkSZqfORV0VXUpcNuk5uOA9zSv3wM8d4q3Phu4uKpuq6rvAhfz84WhJEmSJGkBBvkN3V5VdQtA8/yQKfrsC9zUt7y1aZMkSZIkDWjYF0XJFG01ZcdkfZKNSTaOj48POSypfZbT/VAkSZK0NAa5D92tSfauqluS7A1sm6LPVuBpfcv7AZ+aarCq2gBsABgbG5uy6JOWs9nul7JQy+k+K5IkSbq3Qc7QnQdMXLXyROAjU/T5OPCsJA9qLobyrKZNkiRJkjSgud624Gzgc8CBSbYmOQk4FXhmkhuAZzbLJBlLcjpAVd0G/A/gi83jvzdtkjRySXZPck6S65JsTnLYqGOSJEmajzlNuayqE6ZZdcQUfTcCL+9bPhM4c0HRSdJwvR24sKqen+S+wM6jDkiSJGk+BvkNnSR1VpLdgKcCLwGoqruBu0cZkyRJ0nwN+yqXktRWjwTGgXcnuTLJ6Ul2mdzJK/BqMQ3zarbzGbstV9XtYsyS1DaeoZO0Uq0GngC8pqouS/J24GTgT/s7eQVeLab5Xs12Plepnc/Ybbn6bRdjlqS28QydpJVqK7C1qi5rls+hV+BJkiR1hgWdpBWpqr4F3JTkwKbpCODaEYYkSZI0b065lLSSvQZ4b3OFyxuBl444HkmSpHmxoJO0YlXVVcDYqOOQJElaKKdcSpIkSVJHWdBJkiRJUkdZ0EmSJElSR1nQSZIkSVJHWdBJkiRJUkdZ0EmSJLVQklVJrkzy0VHHIqm9LOgkSZLa6XXA5lEHIandLOgkSZJaJsl+wDHA6aOORVK7WdBJkiS1z98AbwR+MupAJLWbBZ0kSVKLJDkW2FZVl8/QZ32SjUk2jo+PL2F0GqW7tu8YdQhqodWjDkCSJEn3cjjwnCRHA2uA3ZL8Y1W9aKJDVW0ANgCMjY3VaMLUUluz0yrWnXz+tOu3nHrMEkajtvAMnSRJUotU1Zuqar+qWgccD3yiv5iTpH4WdJIkSZLUUU65lCRJaqmq+hTwqRGHIanFPEMnSZIkSR1lQSdJkiRJHWVBJ0lqlflclttLeC/MsD7jYX4fbYlDktrG39BJklpltsty9/MS3Qsz3894GH0n+s+VfxeSNLUFn6FLcmCSq/oedyR5/aQ+T0tye1+fNw8esiRJkiQJBjhDV1XXA4cAJFkFfBM4d4qun6mqYxe6HUmSJEnS1BbrN3RHAP9RVV9fpPEkSZIkSbNYrILueODsadYdluTqJB9L8rhF2p4kSZIkrXgDF3RJ7gs8B/jAFKuvAB5eVQcDfwt8eIZx1ifZmGTj+Pj4oGFJkiRJ0rK3GGfojgKuqKpbJ6+oqjuq6vvN6wuAnZLsOdUgVbWhqsaqamzt2rWLEJYkSZIkLW+LUdCdwDTTLZM8NEma14c22/vOImxTkiRJkla8ge5Dl2Rn4JnAK/raXglQVacBzwdeleQe4EfA8VVVg2xTkiRJktQzUEFXVT8EHjyp7bS+1+8A3jHINiRJkiRJU1usq1xKkiRJkpaYBZ0kSZIkdZQFnSRJkiR1lAWdJEmSJHWUBZ0kSZIkdZQFnSRJkiR1lAWdJEmSJHWUBZ2kFS3JqiRXJvnoqGORJEmaLws6SSvd64DNow5CkiRpISzoJK1YSfYDjgFOH3UskiRJC2FBJ2kl+xvgjcBPRh2IJEnSQljQSVqRkhwLbKuqy2fptz7JxiQbx8fHlyg6SdJiuGv7joHWa/hm+g6G+f0Nst1RjDuT1UMZVZLa73DgOUmOBtYAuyX5x6p6UX+nqtoAbAAYGxurpQ9TkrRQa3ZaxbqTz592/ZZTj1nCaDSVmb6jLaceM7Tvb7bttm3cmXiGTtKKVFVvqqr9qmodcDzwicnFnCRJUttZ0EmSJElSR1nQLSPDmpfr/HItd1X1qao6dtRxSJIkzZe/oVtGZpsnvlDOL5ckSZLayTN0kiRJktRRFnSSJEmS1FEWdJIkSZLUURZ0kiRJktRRFnSSJEmS1FEWdJIkSZLUURZ0kiRJktRRFnSSJEmS1FEDF3RJtiT5cpKrkmycYn2S/J8kX03ypSRPGHSbkiRJkiRYvUjjPL2qvj3NuqOAA5rHE4F3Nc+SJEmSpAEsxZTL44B/qJ7PA7sn2XsJtitJkiRJy9piFHQFXJTk8iTrp1i/L3BT3/LWpk2SJEmSNIDFmHJ5eFXdnOQhwMVJrquqS/vWZ4r31OSGphhcD7D//vsvQliSJEmStLwNfIauqm5unrcB5wKHTuqyFXhY3/J+wM1TjLOhqsaqamzt2rWDhiVJkiRJy95ABV2SXZLsOvEaeBawaVK384Dfba52+STg9qq6ZZDtSpIkSZIGn3K5F3Bukomx3ldVFyZ5JUBVnQZcABwNfBX4IfDSAbcpSRqxu7bvYM1Oqxa9ryRJmp+BCrqquhE4eIr20/peF/B7g2xHktQua3ZaxbqTz59T3y2nHjPkaCRJWrmW4rYFkiRJkqQhsKCTJElqkSQPS/LJJJuTXJPkdaOOSVJ7LcZtCyRJkrR47gHeUFVXNBefuzzJxVV17agDk9Q+nqGTJElqkaq6paquaF7fCWwG9h1tVJLayoJOkiSppZKsAx4PXDbaSCS1lQWdJElSCyV5APBB4PVVdcekdeuTbEyycXx8fDQBaiju2r5j1CH8nDbGBMOLq637Ox1/QydJktQySXaiV8y9t6o+NHl9VW0ANgCMjY3VEoenIZrptjCjug3MbLeqaWNcg8TUxu9gJp6hkyRJapEkAc4ANlfVX486HkntZkE3Al07jStJkpbU4cCLgV9PclXzOHrUQUlqJ6dcjsBsp60Xqo2ngCVJ0vxU1WeBjDoOSd3gGTpJkiRJ6igLOkmSJEnqKAs6SZIkSeooCzpJkiRJ6igLOkmSJEnqKAs6SZIkSeooCzpJK1KShyX5ZJLNSa5J8rpRxyRJkjRf3odO0kp1D/CGqroiya7A5UkurqprRx2YJEnSXHmGTtKKVFW3VNUVzes7gc3AvqONSpIkaX4s6CSteEnWAY8HLhttJJIkSfNjQSdpRUvyAOCDwOur6o4p1q9PsjHJxvHx8aUPUIvmru07Rh2CJEmLzt/QSVqxkuxEr5h7b1V9aKo+VbUB2AAwNjZWSxieFtmanVax7uTz59R3y6nHDDkaSZIWh2foNCuPams5ShLgDGBzVf31qOORJElaCM/QaVbzOao9Xx4F1wgdDrwY+HKSq5q2/1pVF4wwJkmSpHmxoJO0IlXVZ4GMOg5JkqRBLHjK5VxuypvkaUluT3JV83jzYOFKkiRJkiYMcoZurjfl/UxVHTvAdiRJkiRJU1jwGTpvyitJkiRJo7UoV7mc5aa8hyW5OsnHkjxuMbYnSZIkSVqEi6LMclPeK4CHV9X3kxwNfBg4YJpx1gPrAfbff/9Bw5IkSZKkZW+gM3Sz3ZS3qu6oqu83ry8Adkqy51RjVdWGqhqrqrG1a9cOEpYkSZIkrQiDXOVy1pvyJnlo048khzbb+85CtylJkiRJ+plBplxOeVNeYH+AqjoNeD7wqiT3AD8Cjq+qGmCbkiRJkqTGggu6udyUt6reAbxjoduQJEmSJE1vUa5yKUmSpG64a/uOBa1r47jDHLutMUuTDXyVS0mSJHXHmp1Wse7k86dct+XUYzo17jDHbmvM0mSeoZMkSZKkjrKgkyRJkqSOsqCTJEmSpI6yoJMkSZKkjrKgkyRJkqSOsqCTpCGYzyWp53v56mGNPazLaA/z8txe+luStNJ52wJJGoLZLlndb76Xrx7W2G0Yd5hje5lwSdJy5Bk6SZIkSeooCzpJkiRJ6igLOkmSJEnqKAs6SZIkSeooCzpJkiRJ6igLOkmSJEnqqM4XdF28b5IkSZIkLYbO34duvvc3mqstpx4zlHEnxpYkSZKkQXX+DJ0kSZIkrVQWdJIkSZLUURZ0kiRJktRRFnSSJEmS1FEWdJIkSZLUURZ0kiRJktRRFnSSJEmS1FFNRa7jAAAKuElEQVQWdJIkSZLUUQMVdEmOTHJ9kq8mOXmK9fdL8v5m/WVJ1g2yPUlaTLPlMEkaFfOTpLlacEGXZBXwTuAo4LHACUkeO6nbScB3q+oXgLcBf7HQ7UnSYppjDpOkJWd+kjQfg5yhOxT4alXdWFV3A/8EHDepz3HAe5rX5wBHJMkA25SkxTKXHCZJo2B+kjRngxR0+wI39S1vbdqm7FNV9wC3Aw8eYJuStFjmksMkaRTMT5LmLFW1sDcmLwCeXVUvb5ZfDBxaVa/p63NN02drs/wfTZ/vTDHeemB9s3ggcP2CAls8ewLfHnEM82G8w2W8g3t4Va0ddRAT5pLDmnZz02CMd7iMd3Ctyk0w5//HaltugnZ+vzMx3uEy3sHNKT+tHmADW4GH9S3vB9w8TZ+tSVYDDwRum2qwqtoAbBggnkWVZGNVjY06jrky3uEy3mVpLjnM3DQg4x0u4122Zs1PbctN0L3v13iHy3iXziBTLr8IHJDkEUnuCxwPnDepz3nAic3r5wOfqIWeEpSkxTWXHCZJo2B+kjRnCz5DV1X3JHk18HFgFXBmVV2T5L8DG6vqPOAM4P8l+Sq9M3PHL0bQkjSo6XLYiMOSJPOTpHkZZMolVXUBcMGktjf3vb4LeMEg2xihVk1jmAPjHS7jXYamymEd0LXv1niHy3iXKfPTkjDe4TLeJbLgi6JIkiRJkkZrkN/QSZIkSZJGyIIOSLIlyZeTXJVkY9O2R5KLk9zQPD9o1HFOSLJ7knOSXJdkc5LD2hpvkgObz3XicUeS17c1XoAkv5/kmiSbkpydZE3zw/TLmnjf3/xIvRWSvK6J9Zokr2/aWvv5an7MT8Njfho+89PyZW4aHnPT8C233GRB9zNPr6pD+i5XejJwSVUdAFzSLLfF24ELq+oxwMHAZloab1Vd33yuhwC/DPwQOJeWxptkX+C1wFhVHUTvx+jHA38BvK2J97vASaOL8meSHAT8Z+BQen8LxyY5gJZ+vlow89MQmJ+Gy/y0IpibhsDcNFzLMjdV1Yp/AFuAPSe1XQ/s3bzeG7h+1HE2sewGfI3m949tj3dSjM8C/q3N8QL7AjcBe9C7aNBHgWfTu9Hk6qbPYcDHRx1rE8sLgNP7lv8UeGNbP18fC/qOzU9LE7v5afHjNT8t44e5acliNzctfrzLLjd5hq6ngIuSXJ5kfdO2V1XdAtA8P2Rk0d3bI4Fx4N1JrkxyepJdaG+8/Y4Hzm5etzLeqvom8JfAN4BbgNuBy4HvVdU9Tbet9JJXG2wCnprkwUl2Bo6mdzPaVn6+WhDz09IwPy0+89PyZm5aGuamxbfscpMFXc/hVfUE4Cjg95I8ddQBzWA18ATgXVX1eOAHdOCUcDNv+jnAB0Ydy0ya+dLHAY8A9gF2ofd3MVkrLg9bVZvpTWm4GLgQuBq4Z8Y3qWvMT0NmfhoO89OyZ24aMnPTcCzH3GRBB1TVzc3zNnpzlA8Fbk2yN0DzvG10Ed7LVmBrVV3WLJ9DL0m1Nd4JRwFXVNWtzXJb430G8LWqGq+q7cCHgCcDuyeZuG/jfsDNowpwsqo6o6qeUFVPBW4DbqC9n6/myfy0JMxPQ2J+Wr7MTUvC3DQkyy03rfiCLskuSXadeE1vrvIm4DzgxKbbicBHRhPhvVXVt4CbkhzYNB0BXEtL4+1zAj+bMgDtjfcbwJOS7Jwk/Ozz/STw/KZPm+IlyUOa5/2B59H7nNv6+WoezE9Lxvw0JOan5cnctGTMTUOy3HLTir+xeJJH0juyBL1T8u+rqj9L8mDgn4H96f2hvqCqbhtRmPeS5BDgdOC+wI3AS+kV522Nd2d6P5Z9ZFXd3rS1+fP9b8Dv0Dv9fiXwcnrzvv+J3g9+rwReVFU/HlmQfZJ8BngwsB34g6q6pM2fr+bO/DR85qfhMj8tT+am4TM3Dddyy00rvqCTJEmSpK5a8VMuJUmSJKmrLOgkSZIkqaMs6CRJkiSpoyzoJEmSJKmjLOgkSZIkqaMs6DosyV5J3pfkxiSXJ/lckt8ccMy3JPnDeb7nuUnePMh2F1uS3ZP8lyGN/eokLx3G2NJyYX6anvlJGh1z0/TMTd1lQddRzY0bPwxcWlWPrKpfBo4H9pui7+ohh/NG4O8GHSTJqkWIZcLuwFCSEnAm8NohjS11nvlpVuYnaQTMTbMyN3WUBV13/Tpwd1WdNtFQVV+vqr8FSPKSJB9I8i/ARUkekOSSJFck+XKS4ybel+SPk1yf5F+BA/vaH5XkwuYI1meSPGZyEEkeDfy4qr7dLJ+V5LSm/1eSHNu0r0ry1iRfTPKlJK9o2p+W5JNJ3gd8uWn73abP1Un+X9O2NskHm/d/McnhTftbkpyZ5FPN0baJZHEq8KgkVzXbnWn//zTJdUkuTnL2xFG26fa/qn4IbEly6GBfobRsmZ8wP0ktZG7C3LQsVZWPDj7oHeV42wzrXwJsBfZollcDuzWv9wS+CgT4ZXrJYGdgt6b9D5t+lwAHNK+fCHxiiu28FPirvuWzgAvpHSw4oIlhDbAe+JOmz/2AjcAjgKcBPwAe0ax7HHA9sGezPBH/+4CnNK/3BzY3r98C/Hsz5p7Ad4CdgHXApr64ptv/MeAq4P7ArsANc9l/4I+BN4z678CHjzY+zE/mJx8+2vgwN5mblutj2KeTtUSSvBN4Cr0jT7/SNF9cVbdNdAH+PMlTgZ8A+wJ7Ab8KnFu9IyckOa95fgDwZOADSSY2c78pNr03MD6p7Z+r6ifADUluBB4DPAv4pSTPb/o8kF7Suhv4QlV9rWn/deCcao5a9cX/DOCxfbHslmTX5vX5VfVj4MdJtjX79XMf0TT7/xTgI1X1o2a//2WO+7+t2S9JszA/mZ+kNjI3mZuWCwu67roG+K2Jhar6vSR70jt6M+EHfa9fCKwFfrmqtifZQu/oD0BNMf59gO9V1SGzxPEjegmm3+Txil5SeE1Vfbx/RZKnTYozM8Rz2ETy6Hs/wI/7mnYw9d/1dPufKfpObG+m/V9Db98l/TzzE+YnqYXMTZibliN/Q9ddnwDWJHlVX9vOM/R/ILCt+Qf5dODhTfulwG8muX9z1OY3AKrqDuBrSV4AvR8SJzl4inE3A78wqe0FSe6T5FHAI+lNA/g48KokOzXjPTrJLlOMdwnw20ke3PTbo2m/CHj1RKcksyXLO+lNA5ht/z8L/EaSNc2RpWPmuP+PBjbNEoO0UpmfZmZ+kkbD3DQzc1NHWdB1VFUV8Fzg15J8LckXgPcAfzTNW94LjCXZSO+Iy3XNOFcA76c3F/qDwGf63vNC4KQkV9M7qnUcP+9S4PHpO7dOLwl9GvgY8Mqqugs4HbgWuCLJJuD/MsXRoKq6Bvgz4NPNdv+6WfXaJv4vJbkWeOW0H05vnO8A/5ZkU5K3zrD/XwTOA64GPkTvKN3tc9j/w4F/nSkGaaUyP5mfpDYyN5mblqv0/ralhUvyduBfqupfk5wFfLSqzhlxWHOW5AFV9f0kO9NLsuubZD1d/8cDf1BVL16yICUtiPlJUhuZm7SYPEOnxfDnzDxloe02JLkKuAL44EwJqbEn8KfDD0vSIjA/SWojc5MWjWfoJEmSJKmjPEMnSZIkSR1lQSdJkiRJHWVBJ0mSJEkdZUEnSZIkSR1lQSdJkiRJHWVBJ0mSJEkd9f8B9ojyYUtrzmUAAAAASUVORK5CYII=\n", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "# We want our histograms in separate axes:\n", "pyplot.figure(figsize=(15, 5)) # (width, height) = (15, 5)\n", @@ -968,7 +1271,7 @@ "```python\n", "counts, bins, patches = pyplot.hist(data['Grade'], bins=20, edgecolor='white')\n", "```\n", - "and inspect the value of ``counts`` and ``bins`` that you get as outpu. What do you think these are? Compare them to the plots above." + "and inspect the value of ``counts`` and ``bins`` that you get as output. What do you think these are? Compare them to the plots above." ] }, { @@ -984,7 +1287,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Step 6: communicating your results\n", + "### Step 6: Communicating your results\n", "\n", "We need to wrap up our workflow with the final step of communicating our goal: what does the spread of the data looks like?\n", "\n", @@ -1025,7 +1328,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 11, "metadata": {}, "outputs": [ { @@ -1033,15 +1336,16 @@ "output_type": "stream", "text": [ "Regular walking: \n", - "[-2.57115333 -7.37138332 2.19716599 4.25570082 -2.98367864 6.64037109\n", - " -5.43226229 5.59855755 0.02884415 -3.20585254 0.05748574 5.97951734\n", - " 3.3079726 -5.57491717 1.42070849 1.91880599 3.24860086 -3.43166382\n", - " -7.25573698 -3.2321531 ]\n", + "[-0.85526303 1.94293716 -1.2108169 -0.11485683 2.06194554 -0.92115883\n", + " 1.99867291 -9.23186728 0.94882896 -2.4155263 2.45856643 -4.97977118\n", + " 3.99721759 -0.31779249 2.42777184 -7.28715019 4.54681949 1.27976685\n", + " 0.9463751 -1.29381538]\n", "Someone who has consumed too much: \n", - "[ 8.77562421 23.52766348 9.18991539 3.53753894 -20.57871161\n", - " -15.23314825 -7.399464 5.33402184 1.55263217 8.9968268\n", - " -12.09806838 4.15903355 14.42756426 -12.60316331 -16.10626453\n", - " -14.40328778 -4.27674407 -10.73410348 28.700337 13.2529157 ]\n" + "[-9.52760571e+00 2.13418424e+00 2.97119311e+00 8.38051160e+00\n", + " -5.21841490e+00 -3.51192102e+00 -1.17484857e+01 1.83258335e-02\n", + " 3.84816435e-01 7.29223118e+00 -4.63506962e+00 1.28184989e+01\n", + " -1.97047613e+00 3.45214953e+00 -2.28036131e+00 4.96446718e+00\n", + " -2.81905460e+01 -7.36290331e+00 -5.66052118e+00 -1.84086063e+01]\n" ] } ], @@ -1168,24 +1472,24 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "count 10000.000000\n", - "mean -0.004293\n", - "std 1.001094\n", - "min -3.620157\n", - "25% -0.680514\n", - "50% -0.014631\n", - "75% 0.678491\n", - "max 4.146061\n", + "mean -0.010293\n", + "std 0.999821\n", + "min -4.109381\n", + "25% -0.683082\n", + "50% -0.011365\n", + "75% 0.661128\n", + "max 4.232757\n", "dtype: float64" ] }, - "execution_count": 2, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" } @@ -1209,24 +1513,24 @@ "\n", "Novices fall in the trap of plotting the histogram, and saying that it looks to be normally distributed, and then keep going with their next steps. There is a better way to test this,which is shown in [the next module](https://yint.org/pybasic10).\n", "\n", - "But for now, try to run this code, to convince yourself that histograms are not a great tool to visualize if data are normally distributed. \n" + "But for now, try to run this code, to convince yourself that histograms are not a great tool to visualize if data are normally distributed. \n", + "\n", + "***Run the code several times***. Sometimes the normal distribution does not look bell-curve shaped, and the others do; but also the other way around." ] }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 14, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3QAAAE/CAYAAAAOkIE9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3X+0JGV95/H3JzOjY9AIyqjID8coS0Q3jJ4JwZAfKGoQXNGsJpIsIQlmdFeTmGMSkd0oml/j2Sj5YaJnFByMiLiKygaMsCohZBUdyYhD0IBk1HFGZpTf6igzfPePqlmbS997e273vd117/t1Tp/bVfX0U9+urn5ufbueeipVhSRJkiSpe35o3AFIkiRJkubGhE6SJEmSOsqETpIkSZI6yoROkiRJkjrKhE6SJEmSOsqETpIkSZI6yoRuQElWJ6kkyxdwnUnyriS3J/nMQq13MUqyNcmzBiz7a0mu6Zm+J8mPjiiOs5O8s30+0n0qyRFtrMtGUZ+WBtu24SX54yTfTPKNAcufk+Q97fORfm+TvD3JH7bPT0iybRT1tvX9TJIvjao+aX/YVs2PJBuT/HH7fKTf8SQfTXJG+/x+x1YjqPtXklwxqvq6bskkdEk+luSNfeafmuQbC9lA7IefBp4NHFZVx447mKWqqh5aVbfMVGbQA6eq+tOqeuko4pqapFbVV9tY946ifnWDbdt4JTkceDVwdFU9Zn9fP+j3dtCDoap6eVX90f7GMc06K8kTe+r+p6o6ahR1a+mxrZp/U7+z+2vQ73jvj1Kz1PfcqrpgrvH0rO8ByXxVXVhVzxm27sViySR0wEbg9CSZMv904MKq2rPwIc3qccDWqvp2v4UT2vgNzfcl7ZeN2LaN0+OAb1XVznEH4tl5TbiN2FYtCe2ZzaWUY4xfVS2JB/AQ4E7gZ3vmHQTsBo5pp08B/gW4C/gacE5P2dVAAcvb6a3As3qWnwO8p2f6OOD/AncAnwdO6Fn2a8AtwN3AvwO/0ifeM9vY9gL3AG8ATgC2Aa8BvgH8XVv2N4GbgduAS4HH9tRTwH8DbmrX90fAE4BPte/z/cCDptlmTwA+AXwL+CZwIXDgDNu4gJe367od+Bsg7bIfAv4H8BVgJ/Bu4OFTtu2ZwFeBq3vm/Xr7Wdze1v0TwPXtdn3roLFO/bymxP3IdrvdBXym3UbXTHlfT2yfnwz8a7stvw78HnAA8F3gvvazugd4bLtPfAB4T1v3S3v3k573uA7YDuwAXt2z3o3AH/dMnwBsa5//Xbu+77br+wMeuI8+tn1ft7X7x29O2V/f334OdwM3AGvH/T31sf8PbNtG3ra12+D3aNqaO4GLgZV96nkW9//ub5xmfY8H/rGN80rgrTywHVg+3TYEnjRlm93Rlt0IvA24HPh2G89G2najZ7ue3b7Prb2fCXAV8NIpn9817fOr27i+3a7zl+hpg9oyT2rruIOmDXl+z7KNNP8DLmvfy7XAE8b9ffExvge2VfN6HNbvOztNuacC17WxXAy8jyltRk/Z19Ac69wNfAk4ETgJ+D5wb7uez7dlrwL+BPhnmnbxifS0Me02/2fgr9v94IvAiT3rmvbzpDk2LH5wjPV0etqrtsxPAZ9t6/4s8FM9y65qt/s/t+/lCuDgcX8nRvr9GncAC/pm4R3AO3umXwZs7pk+AfiPNMnHjwO3Ai9ol61mwIYEOLT98p3c1vXsdnoVzcH/XcBRbdlDgCdPE+/UnfUEYA/wJuDBNI3jM2m+5E9r5/01cHXPa4qmcfkR4MnA94CPAz8KPJwmOTljmvU/sY39wW3sVwN/McP2LeDvgQOBI4BdwEntst+gaex+FHgocAk/aAj3bdt3t9vnIT3z3g6sBJ5D07B+GHhUu413Aj83SKxTP68pcb+PpkE9AHgKTeM1XUK3A/iZ9vlBwNN6PpttU+o9h6bBe0G7HzyE/gndRe26/2O7zZ7VLt/INAndNPvgvvr27aP/CPxtu/3WtHWf2BPbbpp9dBnwZ8Cnx/0d9TG3B7ZtI23b2m3wGZofRR4B3Ai8fJq67ve9nKbMp4C3tOv7WZoDigckdDNtw6nbrJ23kebg5fj281jJAxO6PT3r/jmag7199V/FNAldzzZ+Yr/3CqygadPPBh7Ufl5399S9kebg9tj2vV0IvG/c3xUf431gW7UQx2FPnGH5g2h+WP/d9jv8IprjlAckdMBRNEn1Y3u2/xOmbuueuq+iSbye3H7nV/DAhG5Pz7p/iab9esQAn+f9Pvupnw1NO307zdne5cBp7fQje2L7MvAf2s/sKmD9uL8Po3wstdOhFwAvTvKQdvpX23kAVNVVVfWFqrqvqq6nOdD+uTms578Al1fV5W1dVwKbaBoWaH7NfUqSh1TVjqq6YT/qvg94fVV9r6q+S/Pr7flVdV1VfQ94LfD0JKt7XvOmqrqrXc8W4IqquqWq7gQ+SvNrzQNU1c1VdWW7rl00BwWzbY/1VXVHVX0V+CRNIkEb51va9d7TxvmSKd0Vzqmqb7fva58/qqrdVXUFzYHIRVW1s6q+DvzTvtjnGOu+Lkr/GXhdu+4t9OwTfdwLHJ3kR6rq9qq6bpZVfKqqPtzuB9+dpswb2nV/AXgXTUM0lPa6np8GXtNuv83AO2kau32uaffRvTRn/I4Zdr0aG9u20bdtf1VV26vqNuB/84O2bL8kOYKmZ8Eftuu7uq1vOvu7DT9SVf/cfh67pymzb93/SHPG7Bf3+4080HE0P86tr6rvV9UnaH7Q622/Lqmqz1TTle5C5rgNtajYVs3/cdhMjqNJpv6iqu6tqg/QnM3qZy9NInl0khVVtbWqvjxL/Rur6oaq2lNV9/ZZvrNn3RfTnPU7ZY7vpdcpwE1V9Xftui+iOQP4n3rKvKuq/q39zN7PImuPllRCV1XX0JylOLUdtfAngPfuW57kJ5N8MsmuJHfSdPE7eA6rehxNg3XHvgfNwfUh1fTD/qW27h1JLkvyY/tR964p/7QfS/Nry773eA/Nr1CH9pS5tef5d/tMP7TfipI8Ksn7knw9yV00XQdn2x69o7x9p6fu+8XZPl8OPLpn3tf61DdQ7HOMFZpfvJZPWfdXpikLTfJ3MvCVJP+Y5Omz1N/vPc1U5is022pYjwVuq6q7p9Tdu19M/axWej1AN9m2AaNv26Zry2bUjjJ5T/s4u30ft9f9r8Hp28bMcRvO1sb0W/eo2pivVdV9U+qeqY0ZaBtq8bKtAub/OKz39R/taY9+pY3161XNaavWdO3RzcCraM6U7WzjmK3tmK096rfuUbVHU9/HkmqPllRC13o3zS9Cp9P8QtL7pXovzWnxw6vq4TTd/aZevLvPt4Ef7pnuHd3sazTdCQ/seRxQVesBqupjVfVsmtP8X6TpgjComjK9nabhAiDJATTXhH19P+qczp+16/vxqvoRml+8ptses7lfnDRdMvdw/0Zt6nvbH3ONdVcbx+FTYuurqj5bVafSdPv8MM2vPDB97IO8p6nr3t4+n2kfm63u7cAjkjxsSt2j2C80mWzbBjfKtu1+qhll8qHt409pumkf1Ma/z0xtzHTbcK5tTL91D9rGzGQ7cPiUgQ9sYzQI26rBDdVWVTPK5L726EKa9ujQKQPTzNQevbeqfprm/RVNV1OYe3vUb92DtEez1Tv1GHNf3UumPVqqCd2zaC5gndq17mE0ZzV2JzkW+OUZ6tlM02VwRZK1NP2Q93kP8J+S/HySZUlWphnW/rAkj07y/PYL/z2aizuHGWb+vcCvJ1mT5MHAnwLXVtXWIerc52FtfHckORT4/SHqugj43SSPT/JQmjgvrtGNajWnWKvpbngJcE6SH05yNHBGv7JJHpTmvicPb7sS3MUPPrtbgUcmefgcYv/Ddt1PphkE5uJ2/mbg5CSPSPIYml/Ket1K0we/3/v6Gs3F4H/W7n8/TnOB94VziE/dYNs2uFG2bTOqqq/QdPV6Q9uG/DT37wb0/82yDW8FDkvyoDmEsW/dPwM8D/hf7fzNwC+07c8TadqIXtO2MTSDnHwb+IN2XzmhfV/vm0N8Wlpsqwa3v23VTN9ZaK7n3QP8dpLlSX6B5jrXB0hyVJJntu9pN82ZxN72aHX2fyTLR7XrXpHkxTQDK13eLpvp89xF09V1uvd2OfAfkvxy+75+CTiaphv4krDkErr2C/Z/aS6KvXTK4v8GvDHJ3cDr+MHZl37+kGb0odtpRj76/10G2oPpU2kuFt9F80vR79Ns7x+iuWfRdpoLxn+uXe9c38/H21g+SPPLyxOAl8y1vineQHOR7500111cMkRd59Ncp3U1zYhSu4HfGjbAHsPE+kqaU+/foLmQ/10zlD0d2Np2fXg5za9lVNUXaZLWW9ruHfvTheAfaQYX+Djw59VcLwjN9vo8zYXCV/CDRG+fPwP+R7u+3+tT72k0FxJvBz5E0+f/yv2ISx1i27ZfRtm2DeKXgZ+k2S6vpzmg7WembfgJmpEkv5Hkm/ux7m/QfJbbaX7QeXnbXgGcSzNa3a00B9ZTf/A5B7igbWPud91dVX0feD7wXJoBIf4W+NWeuqW+bKv2y/62VecwzXe2jfX7wC/QDChyO03X0+nqfDCwnub7/Q2aZOzsdtm+H4W+lWS2sQR6XQsc2db5J8CLqupb7bKZPs/vtOX/uX1vx015X9+i+bHq1TTdXf8AeF5V7U9b2Wn7hpSXJEmSJHXMkjtDJ0mSJEmLhQmdJEmSJHWUCZ0kSZIkdZQJnSRJkiR1lAmdJEmSJHXU8nEH0M/BBx9cq1evHncYkkboc5/73DeratW44xiGbZO0+Ng2SZpUg7ZPE5nQrV69mk2bNo07DEkjlOQr445hWLZN0uJj2yRpUg3aPtnlUpIkSZI6yoROkiRJkjrKhE6SJEmSOsqETpIkSZI6yoROkiRJkjrKhE6SJEmSOsqETpIkSZI6yoROkiRJkjrKhE6SJEmSOsqETpIkSZI6yoROkiRJkjrKhE7aD7vv3dvJurW4zNe+4j4oaRL5v1ea2fJxByB1ycoVy1h91mXzUvfW9afMS71afOZrP3QflDSJ/N8rzcwzdJIkSZLUUbOeoUtyPvA8YGdVPaWddzFwVFvkQOCOqlrT57VbgbuBvcCeqlo7orglSZIkackbpMvlRuCtwLv3zaiqX9r3PMmbgTtneP0zquqbcw1QkiRJktTfrAldVV2dZHW/ZUkC/CLwzNGGJUmSJEmazbDX0P0McGtV3TTN8gKuSPK5JOuGXJckSZIkqcewo1yeBlw0w/Ljq2p7kkcBVyb5YlVd3a9gm/CtAzjiiCOGDEuSJEmSFr85n6FLshz4BeDi6cpU1fb2707gQ8CxM5TdUFVrq2rtqlWr5hqWJEmSJC0Zw3S5fBbwxara1m9hkgOSPGzfc+A5wJYh1idJkiRJ6jFrQpfkIuBTwFFJtiU5s130EqZ0t0zy2CSXt5OPBq5J8nngM8BlVfUPowtdkiRJkpa2QUa5PG2a+b/WZ9524OT2+S3AMUPGJ0mSJEmaxrCjXEqSJEmSxsSETpIkSZI6yoROY7X73r2dqleSJEmaJMPeh04aysoVy1h91mUjr3fr+lNGXqckSZI0aTxDJ0mSJEkdZUInSZI0BklWJvlMks8nuSHJG9r5G5P8e5LN7WPNuGOVNLnscilJkjQe3wOeWVX3JFlBc//ej7bLfr+qPjDG2CR1hAmdJEnSGFRVAfe0kyvaR40vIkldZJdLSYvaDF2aHp/k2iQ3Jbk4yYPGHaukpSfJsiSbgZ3AlVV1bbvoT5Jcn+TcJA/u87p1STYl2bRr164FjVnSZDGhk7TY7evSdAywBjgpyXHAm4Bzq+pI4HbgzDHGKGmJqqq9VbUGOAw4NslTgNcCPwb8BPAI4DV9XrehqtZW1dpVq1YtaMySJosJnaRFrRr9ujQ9E9h3fcoFwAvGEJ4kAVBVdwBXASdV1Y627foe8C7g2LEGJ2mimdBJWvSmdmkCvgzcUVV72iLbgEOnea3dmiTNiySrkhzYPn8I8Czgi0kOaeeF5semLeOLUtKkc1AUSYteVe0F1rQHTh8CntSv2DSv3QBsAFi7dq2DFUgapUOAC5Iso/mR/f1V9fdJPpFkFRBgM/DycQYpabKZ0ElaMqrqjiRXAccBByZZ3p6lOwzYPtbgJC05VXU98NQ+8585hnAkdZRdLiUtatN0aboR+CTworbYGcBHxhOhJEnS3HmGTtJiN12Xpn8F3pfkj4F/Ac4bZ5CSJElzYUInaVGboUvTLThynCRJ6ji7XC4iu+/d26l6JUmSJA3HM3SLyMoVy1h91mUjr3fr+lNGXqckSZKk4XmGTpIEeJZfkqQu8gydJAnwLL8kSV3kGTpJkiRJ6igTOkmSJEnqKBM6SZIkSeooEzpJkiRJ6igTOkmSJEnqKBM6SZIkSeqoWRO6JOcn2ZlkS8+8c5J8Pcnm9nHyNK89KcmXktyc5KxRBi5JkiRJS90gZ+g2Aif1mX9uVa1pH5dPXZhkGfA3wHOBo4HTkhw9TLCSJEmSpB+YNaGrqquB2+ZQ97HAzVV1S1V9H3gfcOoc6pEkSZIk9THMNXSvTHJ92yXzoD7LDwW+1jO9rZ0nSZIkSRqBuSZ0bwOeAKwBdgBv7lMmfebVdBUmWZdkU5JNu3btmmNYkiRJkrR0zCmhq6pbq2pvVd0HvIOme+VU24DDe6YPA7bPUOeGqlpbVWtXrVo1l7AkSZIkaUmZU0KX5JCeyRcCW/oU+yxwZJLHJ3kQ8BLg0rmsT5IkSZL0QMtnK5DkIuAE4OAk24DXAyckWUPThXIr8LK27GOBd1bVyVW1J8krgY8By4Dzq+qGeXkXkiRJkrQEzZrQVdVpfWafN03Z7cDJPdOXAw+4pYEkSZIkaXjDjHIpSZIkSRojEzpJkiRJ6igTOkmSJEnqKBM6SZKkMUiyMslnknw+yQ1J3tDOf3ySa5PclOTidrRwSerLhE6SJGk8vgc8s6qOAdYAJyU5DngTcG5VHQncDpw5xhglTTgTOkmSpDGoxj3t5Ir2UcAzgQ+08y8AXjCG8CR1hAmdJEnSmCRZlmQzsBO4EvgycEdV7WmLbAMO7fO6dUk2Jdm0a9euhQtY0sQxoZMkSRqTqtpbVWuAw4BjgSf1K9bndRuqam1VrV21atV8hylpgpnQSZIkjVlV3QFcBRwHHJhkebvoMGD7uOKSNPlM6LQo7b5377hDkCRpRklWJTmwff4Q4FnAjcAngRe1xc4APjKeCCV1wfLZi0jds3LFMlafddnI6926/pSR1ylJWrIOAS5IsozmR/b3V9XfJ/lX4H1J/hj4F+C8cQYpabKZ0Ela1JIcDrwbeAxwH7Chqv4yyTnAbwL7RhM4u6ouH0+UkpaiqroeeGqf+bfQXE8nSbMyoZO02O0BXl1V1yV5GPC5JFe2y86tqj8fY2ySJElDMaGTtKhV1Q5gR/v87iQ30mcIcEmSpC5yUBRJS0aS1TTdm65tZ70yyfVJzk9y0NgCkyRJmiMTOklLQpKHAh8EXlVVdwFvA54ArKE5g/fmaV7nzXslSdLEMqGTtOglWUGTzF1YVZcAVNWt7Q197wPewTQDEHjzXkmSNMlM6CQtaklCM+T3jVX1lp75h/QUeyGwZaFjkyRJGpaDokha7I4HTge+kGRzO+9s4LQka4ACtgIvG094kiRJc2dCJ2lRq6prgPRZ5D3nJElS59nlUpIkSZI6yoROkiRJkjrKhE6SJEmSOsqETpIkSZI6yoROkiRJkjrKhE6SJEmSOsqETpIkSZI6ataELsn5SXYm2dIz738m+WKS65N8KMmB07x2a5IvJNmcZNMoA5ckSZKkpW6QM3QbgZOmzLsSeEpV/Tjwb8BrZ3j9M6pqTVWtnVuIkiRJkqR+Zk3oqupq4LYp866oqj3t5KeBw+YhNkmSJEnSDEZxDd1vAB+dZlkBVyT5XJJ1I1iXJEmSJKm1fJgXJ/nvwB7gwmmKHF9V25M8CrgyyRfbM3796loHrAM44ogjhglLkiRJkpaEOZ+hS3IG8DzgV6qq+pWpqu3t353Ah4Bjp6uvqjZU1dqqWrtq1aq5hiVJkiRJS8acErokJwGvAZ5fVd+ZpswBSR627znwHGBLv7KSJEmSpP03yG0LLgI+BRyVZFuSM4G3Ag+j6Ua5Ocnb27KPTXJ5+9JHA9ck+TzwGeCyqvqHeXkXkiRJkrQEzXoNXVWd1mf2edOU3Q6c3D6/BThmqOgkSZIkSdMaxSiXkiRJkqQxMKGTJElaYEkOT/LJJDcmuSHJ77Tzz0ny9faSls1JTh53rJIm21C3LZAkSdKc7AFeXVXXtYPIfS7Jle2yc6vqz8cYm6QOMaGTJElaYFW1A9jRPr87yY3AoeONSlIX2eVSkiRpjJKsBp4KXNvOemWS65Ocn+SgaV6zLsmmJJt27dq1QJFKmkQmdJIkSWOS5KHAB4FXVdVdwNuAJwBraM7gvbnf66pqQ1Wtraq1q1atWrB4JU0eEzpJkqQxSLKCJpm7sKouAaiqW6tqb1XdB7wDOHacMUqafCZ0kiRJCyxJaO7re2NVvaVn/iE9xV4IbFno2CR1i4OiSJIkLbzjgdOBLyTZ3M47GzgtyRqggK3Ay8YTnqSuMKGTJElaYFV1DZA+iy5f6FgkdZtdLiVJkiSpo0zoJEmSJKmjTOgkSZIkqaNM6CRJkiSpo0zoJC1qSQ5P8skkNya5IcnvtPMfkeTKJDe1fw8ad6ySJEn7y4RO0mK3B3h1VT0JOA54RZKjgbOAj1fVkcDH22lJkqROMaGTtKhV1Y6quq59fjdwI3AocCpwQVvsAuAF44lQkiRp7kzoJC0ZSVYDTwWuBR5dVTugSfqAR40vMkmSpLkxoZO0JCR5KPBB4FVVddd+vG5dkk1JNu3atWv+ApQkLbjd9+7tVL1SP8vHHYAkzbckK2iSuQur6pJ29q1JDqmqHUkOAXb2e21VbQA2AKxdu7YWJGBJ0oJYuWIZq8+6bOT1bl1/ysjrlKbjGTpJi1qSAOcBN1bVW3oWXQqc0T4/A/jIQscmSZI0LM/QSVrsjgdOB76QZHM772xgPfD+JGcCXwVePKb4JEmS5syETtKiVlXXAJlm8YkLGYskSdKo2eVSkiRJkjrKhE6SJEmSOsqETpIkSZI6yoROkiRJkjpqoIQuyflJdibZ0jPvEUmuTHJT+/egaV57RlvmpiRn9CsjSZIkSdp/g56h2wicNGXeWcDHq+pI4OPt9P0keQTweuAngWOB10+X+EmSJEmS9s9ACV1VXQ3cNmX2qcAF7fMLgBf0eenPA1dW1W1VdTtwJQ9MDCVJkiRJczDMNXSPrqodAO3fR/UpcyjwtZ7pbe08SZIkSdKQ5ntQlH43862+BZN1STYl2bRr1655Dkv7Y/e9e8cdgiRJkqQ+lg/x2luTHFJVO5IcAuzsU2YbcELP9GHAVf0qq6oNwAaAtWvX9k36NB4rVyxj9VmXzUvdW9efMi/1SpKkhbX73r2sXLFs3GFIS84wCd2lwBnA+vbvR/qU+Rjwpz0DoTwHeO0Q65QkSdIEmq8fgP3xV5rZoLctuAj4FHBUkm1JzqRJ5J6d5Cbg2e00SdYmeSdAVd0G/BHw2fbxxnaeJEmSJGlIA52hq6rTpll0Yp+ym4CX9kyfD5w/p+gkSZIWqSSHA+8GHgPcB2yoqr9sb/t0MbAa2Ar8YjtauCQ9wHwPiiJJkqT+9gCvrqonAccBr0hyNAPc61eS9jGhkyRJGoOq2lFV17XP7wZupLm90yD3+pUkwIROkiRp7JKsBp4KXMtg9/qVJMCETpIkaaySPBT4IPCqqrprwNd4/15JgAmdJEnS2CRZQZPMXVhVl7Szb23v8ct09/qtqg1Vtbaq1q5atWrhApY0cUzoJEmSxiBJgPOAG6vqLT2L9t3rF6a/168kAcPdWFySJElzdzxwOvCFJJvbeWfT3Nv3/e19f78KvHhM8UnqABM6SZKkMaiqa4BMs/gB9/qVpH7scilJkiRJHWVCJ0mSJEkdZUInSZIkSR1lQidJkiRJHWVCJ0mSJEkdZUInSZIkSR1lQidJkiRJHWVCJ0mSJEkdZUInSZIkSR1lQidpUUtyfpKdSbb0zDsnydeTbG4fJ48zRkmSpLkyoZO02G0ETuoz/9yqWtM+Ll/gmCRJkkbChE7SolZVVwO3jTsOSZKk+WBCJ2mpemWS69sumQeNOxhJkqS5MKGTtBS9DXgCsAbYAbx5uoJJ1iXZlGTTrl27Fio+SZKkgZjQSVpyqurWqtpbVfcB7wCOnaHshqpaW1VrV61atXBBSpIkDcCETtKSk+SQnskXAlumKytJkjTJlo87AEmaT0kuAk4ADk6yDXg9cEKSNUABW4GXjS1ASZKkIZjQSVrUquq0PrPPW/BAJEmS5oFdLiVJkiSpo+ac0CU5KsnmnsddSV41pcwJSe7sKfO64UOWJEmSJMEQXS6r6ks0Q36TZBnwdeBDfYr+U1U9b67rkSRJkiT1N6oulycCX66qr4yoPknqtN337h13CJIkaQkY1aAoLwEummbZ05N8HtgO/F5V3TCidUrSxFq5Yhmrz7psXureuv6UealXkiR1z9Bn6JI8CHg+8L/6LL4OeFxVHQP8NfDhGepZl2RTkk27du0aNixJkiRJWvRG0eXyucB1VXXr1AVVdVdV3dM+vxxYkeTgfpVU1YaqWltVa1etWjWCsCRJkiRpcRtFQnca03S3TPKYJGmfH9uu71sjWKckSVKnJTk/yc4kW3rmnZPk6z0jhJ88zhglTb6hErokPww8G7ikZ97Lk7y8nXwRsKW9hu6vgJdUVQ2zTkmSpEViI3BSn/nnVtWa9nH5AsckqWOGGhSlqr4DPHLKvLf3PH8r8NZh1iFJkrQYVdXVSVaPOw5J3Taq2xZIkiRpNF6Z5Pq2S+ZB4w5G0mQzoZMkSZocbwOeAKwBdgBv7lfI0cEl7WNCJ0mSNCGq6taq2ltV9wHvAI6dppyjg0sCTOgkSZImRpJDeiZfCGyZrqwkwZCDokiSJGluklwEnAAcnGQb8HrghCRrgAK2Ai8bW4CSOsGETpIkaQyq6rQ+s89b8EAkdZpdLiVJkiSpo0zoJEmSJKk/P7G9AAAQAUlEQVSjTOgkSZIkqaNM6CRJ82r3vXs7WbckSV3goCiSpHm1csUyVp912bzUvXX9KfNSryRJXeEZOkmSJEnqKBM6SZIkSeooEzpJkiRJ6igTOkmSJEnqKBM6SZIkSeooEzpJkiRJ6igTuml43yQttPnaL9yXJUmSFi/vQzcN75ukhTZf+9zW9ae4L0uSJC1SnqGTJEmSpI4yoZMkSZKkjjKhk7SoJTk/yc4kW3rmPSLJlUluav8eNM4YJUmS5sqETtJitxE4acq8s4CPV9WRwMfbaUmSpM4xoZO0qFXV1cBtU2afClzQPr8AeMGCBiVJkjQiJnSSlqJHV9UOgPbvo6YrmGRdkk1JNu3atWvBApQkSRqECZ0kzaCqNlTV2qpau2rVqnGHI0mSdD8mdJKWoluTHALQ/t055ngkSZLmZOiELsnWJF9IsjnJpj7Lk+Svktyc5PokTxt2nZI0pEuBM9rnZwAfGWMskiRJc7Z8RPU8o6q+Oc2y5wJHto+fBN7W/pWkeZfkIuAE4OAk24DXA+uB9yc5E/gq8OLxRShJC2v3vXtZuWLZuMOQNCKjSuhmcirw7qoq4NNJDkxyyL4BCSRpPlXVadMsOnFBA5GkCbFyxTJWn3XZyOvduv6UkdcpaXajuIaugCuSfC7Juj7LDwW+1jO9rZ0nSZIkSRrCKBK646vqaTRdK1+R5GenLE+f19TUGQ4NLkmSlpIk5yfZmWRLz7xHJLkyyU3t34PGGaOkyTd0QldV29u/O4EPAcdOKbINOLxn+jBge596HBpckiQtJRuBk6bMOwv4eFUdCXy8nZakaQ2V0CU5IMnD9j0HngNsmVLsUuBX29EujwPu9Po5SZK01FXV1cBtU2afClzQPr8AeMGCBiWpc4YdFOXRwIeS7KvrvVX1D0leDlBVbwcuB04Gbga+A/z6kOuUJElarB6974fvqtqR5FHjDkjSZBsqoauqW4Bj+sx/e8/zAl4xzHokSZL0A+1AdOsAjjjiiDFHI2mcRjEoiiRJkkbj1iSHALR/d/Yr5NgDkvYxoZMkSZoclwJntM/PAD4yxlgkdYAJnSRJ0hgkuQj4FHBUkm1JzgTWA89OchPw7HZakqY17KAokiRJmoOqOm2aRScuaCCSOs0zdJKkztp9795O1StJ0qh5hk6S1FkrVyxj9VmXjbzeretPGXmdkiTNB8/QSZIkSVJHmdBJkiRJUkeZ0EmSJElSR5nQjYEX20uSJEkaBQdFGQMv4pckSZI0Cp6hkyRJkqSOMqGTJEmSpI4yoZMkSZKkjjKhkyRJkqSOMqGTJEmSpI4yoZMkSZKkjjKhkyRJkqSOMqGTJEmSpI4yoZMkSZKkjjKhkyRJkqSOMqGTJEmSpI4yoZMkSZKkjjKhkyRJkqSOWj7uAIa1+969rFyxbNxhSOqgJFuBu4G9wJ6qWjveiCRJkvZP5xO6lSuWsfqsy0Ze79b1p4y8TkkT6RlV9c1xByFJkjQXdrmUJEmSpI6ac0KX5PAkn0xyY5IbkvxOnzInJLkzyeb28brhwpWkkSrgiiSfS7Ju3MFIkiTtr2G6XO4BXl1V1yV5GPC5JFdW1b9OKfdPVfW8IdYjSfPl+KranuRRwJVJvlhVV/cWaBO9dQBHHHHEOGKUJEma1pzP0FXVjqq6rn1+N3AjcOioApOk+VZV29u/O4EPAcf2KbOhqtZW1dpVq1YtdIiSlqgkW5N8oe3htGnc8UiaXCO5hi7JauCpwLV9Fj89yeeTfDTJk0exPkkaVpID2t4FJDkAeA6wZbxRSdL9PKOq1jgCr6SZDD3KZZKHAh8EXlVVd01ZfB3wuKq6J8nJwIeBI6epx25NkhbSo4EPJYGmLXxvVf3DeEOSJEnaP0OdoUuygiaZu7CqLpm6vKruqqp72ueXAyuSHNyvLrs1SVpIVXVLVR3TPp5cVX8y7pgkqYeDNkkayDCjXAY4D7ixqt4yTZnHtOVIcmy7vm/NdZ2SJElLxPFV9TTgucArkvxs78Ik65JsSrJp165d44lQ09p9795O1atuG6bL5fHA6cAXkmxu550NHAFQVW8HXgT81yR7gO8CL6mqGmKdkiRJi17voE1J9g3adHXP8g3ABoC1a9d6bDVhVq5YxuqzLht5vVvXnzLyOtV9c07oquoaILOUeSvw1rmuQ5IkaalpB2r6oaq6u2fQpjeOOSxJE2roQVEkSZI0Ug7aJGlgJnSSJEkTpKpuAY4ZdxySumEk96GTJEmSJC08EzpJkiRJ6igTOkmSJEnqKBM6SZIkSeooEzpJkiRJ6igTOkmSJEnqKBM6SZIkSeooEzpJkiRJ6igTOkmSJEnqKBM6SZIkSeooEzpJkiRJ6igTOkmSJEnqKBM6SZIkSeooEzpJkhbI7nv3drJuSdLkWj7uACRJWipWrljG6rMum5e6t64/ZV7qlSRNNs/QSZIkSVJHmdBJkiRJUkeZ0EmSJElSR5nQSZIkSVJHmdBJkiRJUkeZ0EmSJElSR5nQSZI0hfd0WxjztZ39/CQtJd6HTpKkKebrfnHeK+7+3M7S/tl9715WrljWubq7Zr62xXzVa0InSZIkdcB8/QgC/hDSq2s/NtnlUpIkSZI6aqiELslJSb6U5OYkZ/VZ/uAkF7fLr02yepj1SdIozdaGSdK42D5JGtScE7oky4C/AZ4LHA2cluToKcXOBG6vqicC5wJvmuv6JGmUBmzDJGnB2T5J2h/DnKE7Fri5qm6pqu8D7wNOnVLmVOCC9vkHgBOTZIh1StKoDNKGSdI42D5JGtgwCd2hwNd6pre18/qWqao9wJ3AI4dYpySNyiBtmCSNg+2TpIGlqub2wuTFwM9X1Uvb6dOBY6vqt3rK3NCW2dZOf7kt860+9a0D1rWTRwFfmlNg0zsY+OaI65xES+V9wtJ5r4vlfT6uqlaNO4h9BmnD2vmDtE1d/YyMe+F1Nfauxg2zxz5RbRMMfIw1n8dNXfy8jXn+dS1e6H7MA7VPw9y2YBtweM/0YcD2acpsS7IceDhwW7/KqmoDsGGIeGaUZFNVrZ2v+ifFUnmfsHTe61J5n2MwSBs2UNvU1c/IuBdeV2PvatzQ2dhnbZ/m87ipi9vMmOdf1+KFpRPzMF0uPwscmeTxSR4EvAS4dEqZS4Ez2ucvAj5Rcz0lKEmjNUgbJknjYPskaWBzPkNXVXuSvBL4GLAMOL+qbkjyRmBTVV0KnAf8XZKbac7MvWQUQUvSsKZrw8YcliTZPknaL8N0uaSqLgcunzLvdT3PdwMvHmYdIzRv3TknzFJ5n7B03utSeZ8Lrl8bNkdd/YyMe+F1Nfauxg0djX2E7dNcdHGbGfP861q8sERinvOgKJIkSZKk8RrmGjpJkiRJ0hgtqYQuyf9M8sUk1yf5UJIDxx3TfEjy4iQ3JLkvSadG9hlEkpOSfCnJzUnOGnc88yXJ+Ul2Jtky7lg0+36X5NeS7EqyuX28dBxxTjXbfpTGX7Xv6/okT1voGKczQOwnJLmzZ5u/rl+5hZbk8CSfTHJj2xb/Tp8yE7fdB4x7Urf5yiSfSfL5NvY39Cnz4CQXt9v82iSrFz7S7ujKMVPXjgkG+Z5NqiTLkvxLkr8fdyyDSHJgkg+0+/GNSZ4+7phmk+R32/1iS5KLkqwc5HVLKqEDrgSeUlU/Dvwb8NoxxzNftgC/AFw97kBGLcky4G+A5wJHA6clOXq8Uc2bjcBJ4w5C+7XfXVxVa9rHOxc0yOltZOb96LnAke1jHfC2BYhpUBuZ/TvwTz3b/I0LENMg9gCvrqonAccBr+izv0zidh8kbpjMbf494JlVdQywBjgpyXFTypwJ3F5VTwTOBd60wDF2zcQfM3X0mGDQ79kk+h3gxnEHsR/+EviHqvox4BgmPPYkhwK/DaytqqfQDIg00ICSSyqhq6orqmpPO/lpmvu6LDpVdWNVjfrG7JPiWODmqrqlqr4PvA84dcwxzYuquppp7tuoBdfZ/W6A/ehU4N3V+DRwYJJDFia6mXX1O1BVO6rquvb53TQHEYdOKTZx233AuCdSux3vaSdXtI+pgwScClzQPv8AcGKSLFCIndORY6bOtc1d/Z4lOQw4BZiUHytnlORHgJ+lGXGfqvp+Vd0x3qgGshx4SJr7d/8wfe6P28+SSuim+A3go+MOQvvtUOBrPdPb6EBDqM4bdL/7z233pA8kObzP8knU9e/U09tudh9N8uRxBzNV263vqcC1UxZN9HafIW6Y0G3edgfbDOwErqyqabd5m6jcCTxyYaPsrEk9Zpro79FsZvmeTZq/AP4AuG/cgQzoR4FdwLvabqLvTHLAuIOaSVV9Hfhz4KvADuDOqrpikNcuuoQuyf9p+51OfZzaU+a/05zyvnB8kQ5nkPe5SPX7NdWhWjXfBtnv/jewuu2e9H/4wZmASdfl79R1wOPabnZ/DXx4zPHcT5KHAh8EXlVVd01d3OclE7HdZ4l7Yrd5Ve2tqjU0Z5KOTfKUKUUmdpuPyyI4ZursZzrL92yiJHkesLOqPjfuWPbDcuBpwNuq6qnAt4GJvsYyyUE0Z5gfDzwWOCDJfxnktUPdh24SVdWzZlqe5AzgecCJ1eF7Nsz2PhexbUDvmY/DGPB0tDSEWfe7qvpWz+Q76M71OZ39TvUeBFXV5Un+NsnBVfXNccYFkGQFzcHahVV1SZ8iE7ndZ4t7krf5PlV1R5KraK6/7B1QZ98239Z2Z3o4HezSO0qL4JhpIr9HsxmgfZg0xwPPT3IysBL4kSTvqaqBko0x2QZs6zlT/wEmPKEDngX8e1XtAkhyCfBTwHtme+GiO0M3kyQnAa8Bnl9V3xl3PJqTzwJHJnl8kgfRXCx66Zhj0uI363435fqn5zPhF1/3uBT41TSOo+nisWPcQQ0iyWP2XQOV5Fia/2nfmvlV86+N6Tzgxqp6yzTFJm67DxL3BG/zVWlHYUzyEJoDoy9OKXYpcEb7/EXAJyY0SZkIHTlm6twxwYDtw0SpqtdW1WFVtZpmG39iwpM5quobwNeSHNXOOhH41zGGNIivAscl+eF2PzmRAY8lFt0Zulm8FXgwcGX7/+jTVfXy8YY0ekleSNMVZhVwWZLNVfXzYw5rJKpqT5JXAh+jGf3n/Kq6YcxhzYskFwEnAAcn2Qa8vqrOG29US9N0+12SNwKbqupS4LeTPJ+ma9JtwK+NLeAe/fYjmgEjqKq3A5cDJwM3A98Bfn08kT7QALG/CPivSfYA3wVeMiEH6McDpwNfaK/pAjgbOAImersPEvekbvNDgAvSjHr4Q8D7q+rvp3xHzwP+LsnNNN/RgUaPW8Im/pipo8cEfb9nVXX5GGNarH4LuLBN9m9hMtrZaVXVtUk+QNO1fQ/wL8CGQV6byWiHJUmSJEn7a0l1uZQkSZKkxcSETpIkSZI6yoROkiRJkjrKhE6SJEmSOsqETpIkSZI6yoROkiRJkjrKhE6SJEmSOsqETpIkSZI66v8B3ImOOYQKLEUAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2oAAAE/CAYAAAA39zBmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3X24XXV95/33pyEaR1SkREQejFXHilbRK2VwaJWKWiSOaKe20g7FVid6j3a0t7amzFixj+ncrbbTB3tFwWBFxFuxMoKt3AhSHIsGGp4aHS0TFYgkKghYg0n43n+slXFzOCdnn3P2OXutfd6v69rX2WvttX/ru55+5/ddD7+dqkKSJEmS1B0/NO4AJEmSJEkPZKImSZIkSR1joiZJkiRJHWOiJkmSJEkdY6ImSZIkSR1joiZJkiRJHWOiBiRZk6SSHLSE80yS9yW5M8nnl2q+kyjJ9iQvGHLaVyW5emD43iQ/MqI4zkry3vb9SPepJMe0sa4YRXmafNZrC5fkd5N8M8k3hpz+7CQfaN+P9JhN8ldJ3ta+PynJraMoty3vJ5N8aVTlSXNhXbU4kmxO8rvt+5Ee40k+meTM9v0D2lUjKPsXk3xqVOX13UQkakn+LslvTzP+tCTfWMqDfw5+AnghcFRVHT/uYJarqjq4qm450DTDNoqq6ver6jWjiGtq8llVX2tj3TeK8tV91mvjleRo4M3AsVX12Ll+f9hjdthGTlW9rqp+Z65xzDDPSvKkgbL/vqqeMoqytfxYVy2+qcfsXA17jA+ebJqlvBdX1XnzjWdgfg9K0qvq/Kp60ULLnhQTkagBm4EzkmTK+DOA86tq79KHNKvHA9ur6rvTfdjRim3BXC5paJuxXhunxwPfqqqd4w7EK+nquM1YVy0L7ZXISckd+qGqev8CHgZ8B3juwLhHA7uBZ7bD64B/BO4Gvg6cPTDtGqCAg9rh7cALBj4/G/jAwPAJwP8E7gKuB04a+OxVwC3APcD/Bn5xmnhf3ca2D7gXeAdwEnAr8FbgG8Bft9P+R+ArwLeBi4HHDZRTwH8CvtzO73eAJwKfa5fzw8BDZlhnTwQ+DXwL+CZwPnDIAdZxAa9r53Un8BdA2s9+CPivwFeBncD7gUdNWbevBr4GXDUw7pfbbXFnW/aPAze06/XPh4116vaaEvcPt+vtbuDz7Tq6espyPal9fyrwT+26vA14C/Bw4HvA/e22uhd4XLtPfAT4QFv2awb3k4FlXA/cDuwA3jww383A7w4MnwTc2r7/63Z+32vn9xs8eB99XLtc3273j/84ZX/9cLsd7gFuBtaO+zj1NbcX1msjr9fadfAWmnrmO8CFwKppynkBDzzuN88wvycAn2njvAz4cx5cBxw00zoEnjplnd3VTrsZeDdwKfDdNp7NtHXGwHo9q13O7YPbBLgSeM2U7Xd1+/6qNq7vtvP8eQbqn3aap7Zl3EVTf7x04LPNNPX/Je2yXAM8cdzHi6/xvbCuWtQ22HTH7AzTPQu4ro3lQuBDTKkzBqZ9K0075x7gS8DJwCnA94E97Xyub6e9Evg94LM09eKTGKhj2nX+WeDP2v3gi8DJA/OacXvStAuLH7SvnsNAfdVO82+BL7RlfwH4twOfXdmu98+2y/Ip4LBxHxMjPb7GHcDIFgTeA7x3YPi1wNaB4ZOAH6NJKp4B3AG8rP1sDUNWEsCR7YF1alvWC9vh1TSN+ruBp7TTHgE8bYZ4p+6IJwF7gT8EHkpT8T2f5gB+djvuz4CrBr5TNBXHI4GnAfcBlwM/AjyKJuk4c4b5P6mN/aFt7FcBf3KA9VvAJ4BDgGOAXcAp7We/QlOR/QhwMHARP6jk9q/b97fr52ED4/4KWAW8iKbS/BvgMe063gk8b5hYp26vKXF/iKayfDjwdJqKaaZEbQfwk+37RwPPHtg2t04p92yayuxl7X7wMKZP1C5o5/1j7Tp7Qfv5ZmZI1GbYB/eXt38f/Qzwl+36O64t++SB2HbT7KMrgD8A/mHcx6ivub+wXhtpvdaug8/TnOg4FNgGvG6Gsh5wTM4wzeeAd7bzey5NQ+FBidqB1uHUddaO20zTKDmx3R6reHCitndg3s+jacTtL/9KZkjUBtbxk6ZbVmAlTX1+FvCQdnvdM1D2ZppG6/Htsp0PfGjcx4qv8b6wrlqKNtiTDvD5Q2hOlv9aewz/LE0b5UGJGvAUmmT5cQPr/4lT1/VA2VfSJFRPa4/5lTw4Uds7MO+fp6m/Dh1iez5g20/dNjT19J00V2cPAk5vh394ILZ/Bv51u82uBDaO+3gY5WuSLl+eB7wiycPa4V9qxwFQVVdW1Y1VdX9V3UDTgH7ePObzH4BLq+rStqzLgC00lQY0Z2CfnuRhVbWjqm6eQ9n3A2+vqvuq6ns0Z1zPrarrquo+4DeB5yRZM/CdP6yqu9v53AR8qqpuqarvAJ+kOcPyIFX1laq6rJ3XLpp/+LOtj41VdVdVfQ24giZBoI3zne18723jfOWUWwfOrqrvtsu13+9U1e6q+hRNI+OCqtpZVbcBf78/9nnGuv92oX8P/FY775sY2CemsQc4Nskjq+rOqrpulll8rqr+pt0PvjfDNO9o530j8D6aSmZB2mdnfgJ4a7v+tgLvpanI9ru63Uf30Vyhe+ZC56uxsF4bfb3236vq9qr6NvA/+EE9NidJjqG5C+Bt7fyuasubyVzX4cer6rPt9tg9wzT75/0ZmitcPzfnBXmwE2hOuG2squ9X1adpTtIN1l0XVdXnq7ml7XzmuQ41UayrFr8NdiAn0CRJf1JVe6rqIzRXn6azjyZBPDbJyqraXlX/PEv5m6vq5qraW1V7pvl858C8L6S5SrdunssyaB3w5ar663beF9Bcsft3A9O8r6r+V7vNPsyE1UcTk6hV1dU0VxVOa3vx+3Hgg/s/T/JvklyRZFeS79DcanfYPGb1eJrK6K79L5pG8xHV3Ov8823ZO5JckuRH51D2rin/kB9Hc4Zk/zLeS3Pm6MiBae4YeP+9aYYPnm5GSR6T5ENJbktyN80tfLOtj8Gez/5loOwHxNm+Pwg4fGDc16cpb6jY5xkrNGepDpoy76/OMC00Sd2pwFeTfCbJc2Ypf7plOtA0X6VZVwv1OODbVXXPlLIH94up22qV99z3j/UaMPp6baZ67IDaXhfvbV9ntctxZz3wGZdp65d5rsPZ6pfp5j2q+uXrVXX/lLIPVL8MtQ41uayrgMVvgw1+/5MD9dEvtrHeVtVcZmrNVB99BXgTzZWtnW0cs9Uds9VH0817VPXR1OVYVvXRxCRqrffTnMU5g+asxuAB80GaS9RHV9WjaG67m/rg637fBf7VwPBgj19fp7mt75CB18OraiNAVf1dVb2Q5pL7F2luBxhWTRm+naZSAiDJw2meubptDmXO5A/a+T2jqh5Jc5ZqpvUxmwfESXNr5F4eWGFNXba5mG+su9o4jp4S27Sq6gtVdRrN7Zd/Q3NmBmaOfZhlmjrv29v3B9rHZiv7duDQJI+YUvYo9gt1j/Xa8EZZrz1ANb0uHty+fp/mVulHt/Hvd6D6ZaZ1ON/6Zbp5D1u/HMjtwNFTOgywftEwrKuGt6C6qppeF/fXR+fT1EdHTunQ5UD10Qer6idolq9obvmE+ddH0817mPpotnKnti/3l71s6qNJTNReQPPw59Rb3B5BcxVid5LjgV84QDlbaW7dW5lkLc29vvt9APh3SX46yYokq9J0335UksOTvLQ9mO+jeTById2pfxD45STHJXko8PvANVW1fQFl7veINr67khwJ/PoCyroA+LUkT0hyME2cF9boenqaV6zV3PZ3EXB2kn+V5FjgzOmmTfKQNL/d8aj2sv7d/GDb3QH8cJJHzSP2t7XzfhpN5ykXtuO3AqcmOTTJY2nObg26g+Y+9+mW6+s0D1L/Qbv/PYPm4ejz5xGfus96bXijrNcOqKq+SnPL1Tva+uMneODtOP/HLOvwDuCoJA+ZRxj75/2TwEuA/7cdvxX4mbbueRJN/TBoxvqFpnOQ7wK/0e4rJ7XL9aF5xKflxbpqeHOtqw50zELzvOxe4D8nOSjJz9A8R/ogSZ6S5PntMu2mufI3WB+tydx7dnxMO++VSV5B0yHRpe1nB9qeu2huOZ1p2S4F/nWSX2iX6+eBY2lux14WJipRaw+e/0nzQOnFUz7+T8BvJ7kH+C1+cLVkOm+j6ZHnTpregP7P5fu2kXwazYPWu2jO7vw6zbr8IZrf3bmd5mHr57Xzne/yXN7G8lGasyVPBF453/KmeAfNA7LfoXm24aIFlHUuzXNQV9H0srQb+NWFBjhgIbG+geYy+DdoHoJ/3wGmPQPY3t6G8DqaM1xU1RdpktFb2lst5nI5/zM0D+ZfDvxRNc/jQbO+rqd5yPZT/CCB2+8PgP/azu8t05R7Os1DuLcDH6O5r/6yOcSlnrBem5NR1mvD+AXg39Csl7fTNFSnc6B1+GmanhW/keSbc5j3N2i25e00J2le19ZVAO+i6b3tDpoG89STOGcD57X1ywOea6uq7wMvBV5M05HCXwK/NFC2NC3rqjmZa111NjMcs22s3wd+hqYjjjtpbgGdqcyHAhtpju9v0CRZZ7Wf7T/Z860ksz2nP+ga4Mltmb8H/GxVfav97EDb81/a6T/bLtsJU5brWzQnod5Mc9vpbwAvqaq51JW9tr97dUmSJElSR0zUFTVJkiRJmgQmapIkSZLUMSZqkiRJktQxJmqSJEmS1DEmapIkSZLUMQct5cwOO+ywWrNmzVLOUtIiu/baa79ZVavHHcdCWDdJk8n6SVIXDVs3LWmitmbNGrZs2bKUs5S0yJJ8ddwxLJR1kzSZrJ8kddGwdZO3PkqSJElSx5ioSZIkSVLHmKhJkiRJUseYqEmSJElSx5ioSZIkSVLHmKhJkiRJUseYqEmSJElSx8yaqCU5OskVSbYluTnJG9vxZye5LcnW9nXq4ocrSZLUbUlWJfl8kuvbttM72vGbk/zvgbbTceOOVVJ3DfOD13uBN1fVdUkeAVyb5LL2s3dV1R8tXniSJEm9cx/w/Kq6N8lK4Ookn2w/+/Wq+sgYY5PUE7MmalW1A9jRvr8nyTbgyMUOTJIkqY+qqoB728GV7avGF5GkPprTM2pJ1gDPAq5pR70hyQ1Jzk3y6BHHJkmS1EtJViTZCuwELquq/W2n32vbTu9K8tAxhiip44ZO1JIcDHwUeFNV3Q28G3gicBzNFbc/nuF765NsSbJl165dIwhZo7R7z75elStNMo9HaXJU1b6qOg44Cjg+ydOB3wR+FPhx4FDgrdN917ZTdy1mfWpdramGeUaN9v7qjwLnV9VFAFV1x8Dn7wE+Md13q2oTsAlg7dq1XvbvmFUrV7BmwyUjL3f7xnUjL1OadB6P0uSpqruSXAmcMvBc/31J3ge8ZYbv2HbqqMWqp8G6Wg82TK+PAc4BtlXVOwfGHzEw2cuBm0YfniRJUr8kWZ3kkPb9w4AXAF/c33Zq21Yvw7aTpAMY5oraicAZwI3tvdYAZwGnt93KFrAdeO2iRChJ00iyCrgKeChNXfaRqnp7ks3A84DvtJO+qqq2Tl+KJC2KI4DzkqygOSn+4ar6RJJPJ1kNBNgKvG6cQUrqtmF6fbyapkKZ6tLRhyNJQ7P7a0mdVFU30HS+NnX888cQjqSeGuoZNUnqGru/liRJk2xO3fNLUpfY/bUkSZpUJmqSesvuryVJ0qQyUZPUe1V1F3AlTffXO6pxH/A+4PgZvrOpqtZW1drVq1cvYbSSJEmzM1GT1Et2fy1JkiaZnYlI6iu7v5YkSRPLRE1SL9n9tSRJmmTe+ihJkiRJHWOiJkmSJEkdY6ImSZIkSR1joiZJkiRJHWOiJkmSJEkdY6ImSZIkSR1joiZJkiRJHWOiJkmSJEkdY6ImSZIkSR1joiZJkiRJHWOiJkmSJEkdY6ImSZIkSR1joiZJkiRJHWOiJkmSJEkdY6ImSZIkSR1joiZJkiRJHWOiJkmSJEkdY6ImSZIkSR1joiZJkiRJHWOiJkmSJEkdY6ImSZIkSR1joiZJkjRCSVYl+XyS65PcnOQd7fgnJLkmyZeTXJjkIeOOVVJ3mahJkiSN1n3A86vqmcBxwClJTgD+EHhXVT0ZuBN49RhjlNRxJmqSJEkjVI1728GV7auA5wMfacefB7xsDOFJ6gkTNUmSpBFLsiLJVmAncBnwz8BdVbW3neRW4MhxxSep+0zUJEmSRqyq9lXVccBRwPHAU6ebbLrvJlmfZEuSLbt27VrMMCV1mImaJEnSIqmqu4ArgROAQ5Ic1H50FHD7DN/ZVFVrq2rt6tWrlyZQSZ1joiapt+xZTVIXJVmd5JD2/cOAFwDbgCuAn20nOxP4+HgilNQHJmqS+sye1SR10RHAFUluAL4AXFZVnwDeCvzfSb4C/DBwzhhjlNRxB80+iSR1U1UVMFPPar/Qjj8POBt491LHJ2l5qqobgGdNM/4WmufVJGlWXlGT1Gv2rCZJkiaRiZqkXptvz2r2qiZJkrrMRE3SRJhrz2r2qiZJkrrMRE1Sb9mzmiRJmlR2JiKpz44AzkuygubE04er6hNJ/gn4UJLfBf4Re1aTJEk9Y6ImqbfsWU2SJE2qWW99THJ0kiuSbGt/UPaN7fhDk1zW/qDsZUkevfjhSpIkSdLkG+YZtb3Am6vqqTQP6b8+ybHABuDy9gdlL2+HJUmSJEkLNGuiVlU7quq69v09NA/qHwmcRvNDsrR/X7ZYQUqSJEnScjKnXh+TrKF5HuQa4PCq2gFNMgc8ZtTBSZIkSdJyNHSiluRg4KPAm6rq7jl8zx+VlSRJkqQ5GCpRS7KSJkk7v6ouakffkeSI9vMjgJ3TfdcflZUkSZKkuRmm18fQ/AbRtqp658BHF9P8kCz4g7KSJEmSNDLD/I7aicAZwI1JtrbjzgI2Ah9O8mrga8ArFidESZIkSVpeZk3UqupqIDN8fPJow5EkSZIkzanXR0mSJEnS4jNRkyRJkqSOMVGTJEmSpI4xUZMkSZKkjjFRkyRJkqSOMVHToti9Z1+vypUkSZK6ZJjfUZPmbNXKFazZcMnIy92+cd3Iy5QkSZK6xitqkiRJktQxJmqSJEmS1DEmapIkSZLUMSZqkiRJktQxJmqSJEmS1DEmapIkSZLUMSZqkiRJI5Tk6CRXJNmW5OYkb2zHn53ktiRb29ep445VUnf5O2qSJEmjtRd4c1Vdl+QRwLVJLms/e1dV/dEYY5PUE15RU6/s3rOvl2VLkpaPqtpRVde17+8BtgFHjjcqSX3jFTX1yqqVK1iz4ZJFKXv7xnWLUq4kaflKsgZ4FnANcCLwhiS/BGyhuep25/iik9RlXlGTJElaBEkOBj4KvKmq7gbeDTwROA7YAfzxDN9bn2RLki27du1asngldYuJmqRe8mF9SV2WZCVNknZ+VV0EUFV3VNW+qrofeA9w/HTfrapNVbW2qtauXr166YKW1Cne+iipr3xYX1InJQlwDrCtqt45MP6IqtrRDr4cuGkc8UnqBxM1Sb3UNnZ2tO/vSeLD+pK64kTgDODGJFvbcWcBpyc5DihgO/Da8YQnqQ9M1CT1ng/rS+qSqroayDQfXbrUsUjqL59Rk9RrPqwvSZImkYmapN7yYX1JkjSpTNQk9dKBHtYfmMyH9SVJUi/5jJqkvvJhfUmSNLFM1CT1kg/rS5KkSeatj5IkSZLUMSZqkiRJktQxJmqSJEmS1DEmapIkSZLUMSZqkiRJktQxJmqSJEmS1DEmapIkSZLUMSZqkiRJktQxJmqSJEmS1DEmapI04Xbv2dfLsiVJWs4OGncAkqTFtWrlCtZsuGRRyt6+cd2ilCtJ0nLnFTVJkiRJ6hgTNUmSJEnqGBM1SZIkSeoYEzVJkiRJ6hgTNUmSJEnqmFkTtSTnJtmZ5KaBcWcnuS3J1vZ16uKGKUmSJEnLxzBX1DYDp0wz/l1VdVz7unS0YUmSJEnS8jVrolZVVwHfXoJYJEmSJEks7Bm1NyS5ob018tEzTZRkfZItSbbs2rVrAbOTJEmSZrd7z75xhyAt2EHz/N67gd8Bqv37x8CvTDdhVW0CNgGsXbu25jk/SZIkaSirVq5gzYZLRl7u9o3rRl6mNJN5XVGrqjuqal9V3Q+8Bzh+tGFJkiRJ0vI1r0QtyREDgy8HbpppWkmSJEnS3Mx662OSC4CTgMOS3Aq8HTgpyXE0tz5uB167iDFKkiT1RpKjgfcDjwXuBzZV1Z8mORS4EFhD0376uaq6c1xxSuq2WRO1qjp9mtHnLEIskiRJk2Av8Oaqui7JI4Brk1wGvAq4vKo2JtkAbADeOsY4JXXYQnp9lCRJ0hRVtaOqrmvf3wNsA44ETgPOayc7D3jZeCKU1AcmapIkSYskyRrgWcA1wOFVtQOaZA54zPgik9R1JmqSeinJ0UmuSLItyc1J3tiOPzTJZUm+3P6d8XceJWkxJTkY+Cjwpqq6ew7f8zdoJZmoSeqt/c+APBU4AXh9kmNpnvm4vKqeDFzeDkvSkkqykiZJO7+qLmpH37G/5+z2787pvltVm6pqbVWtXb169dIELKlzTNQk9ZLPgEjqqiSh6XhtW1W9c+Cji4Ez2/dnAh9f6tgk9cesvT5KUtcd6BmQJD4DImmpnQicAdyYZGs77ixgI/DhJK8Gvga8YkzxSeoBEzVJvTb1GZDmRPZQ31sPrAc45phjFi9ASctOVV0NzFQZnbyUsUjqL299lNRbPgMiSZImlYmapF7yGRBJkjTJvPVRUl/5DIgkSZpYJmqSeslnQCRJ0iTz1kdJkiRJ6hgTNUmSJEnqGBM1SZIkSeoYEzVJkiRJ6hgTNUmSJEnqGBM1SZIkSeoYEzVJkiRJ6hgTNUmSJEnqGBM1SZIkSeoYEzVJkiRJ6hgTNUmSJEnqGBM1SZIkSeoYEzVJkiRJ6hgTNUmSJEnqGBM1SZIkSeoYEzVJkiRJ6hgTNUmSJEnqGBM1SZIkSeoYEzVJkiRJ6hgTNUmSJEnqGBM1SZIkacx279nXq3K1+A4adwCSJEnScrdq5QrWbLhk5OVu37hu5GVqaXhFTZIkSZI6xkRNkiRJkjrGRE2SJGmEkpybZGeSmwbGnZ3ktiRb29ep44xRUveZqEmSJI3WZuCUaca/q6qOa1+XLnFMknrGRE2SJGmEquoq4NvjjkNSv5moSeotby+S1DNvSHJDW3c9etzBSOo2EzVJfbYZby+S1A/vBp4IHAfsAP54pgmTrE+yJcmWXbt2LVV8kjrGRE1Sb3l7kaS+qKo7qmpfVd0PvAc4/gDTbqqqtVW1dvXq1UsXpKROMVGTNIm8vUhSpyQ5YmDw5cBNM00rSTBEojbDMyCHJrksyZfbvzaEJHXFULcXeWuRpMWS5ALgc8BTktya5NXAf0tyY5IbgJ8Cfm2sQUrqvGGuqG3mwc+AbAAur6onA5e3w5I0dsPeXuStRZIWS1WdXlVHVNXKqjqqqs6pqjOq6seq6hlV9dKq2jHuOCV126yJ2gzPgJwGnNe+Pw942YjjkqR58fYiSZI0CQ6a5/cO338mqKp2JHnMCGOSpKG0txedBByW5Fbg7cBJSY4DCtgOvHZsAUqSJM3TfBO1oSVZD6wHOOaYYxZ7dpKWkao6fZrR5yx5IJKkedm9Zx+rVq4YdxhSJ803UbsjyRHt1bQjgJ0zTVhVm4BNAGvXrq15zk+SJEkTZtXKFazZcMnIy92+cd3Iy5SW2ny7578YOLN9fybw8dGEI0mSJEkapnv+6bqY3Qi8MMmXgRe2w5IkSZKkEZj11scZngEBOHnEsUiSJEmSmP+tj5IkSZKkRWKiJkmSJEkdY6ImSZIkSR1joiZJkiRJHWOiJkmSJEkdY6ImSXO0e8++cYcgSZIm3Kzd82v8du/Zx6qVK8YdhqTWqpUrWLPhkpGXu33jupGXKUmS+slErQcWq1EINgwlSZKkLvLWR0mSJEnqGBM1SZIkSeoYEzVJkiRJ6hgTNUmSJEnqGBM1SZIkSeoYEzVJkiRJ6hgTNUmSJEnqGBM1SZIkSeoYEzVJkiRJ6hgTNUmSJEnqGBM1SZIkSeoYEzVJkiRJ6hgTNUnSsrF7z75eli1JWn4OGncAkiQtlVUrV7BmwyWLUvb2jesWpVz1T5JzgZcAO6vq6e24Q4ELgTXAduDnqurOccUoqfu8oiZJkjRam4FTpozbAFxeVU8GLm+HJWlGJmqSeivJuUl2JrlpYNyhSS5L8uX276PHGaOk5aeqrgK+PWX0acB57fvzgJctaVCSesdETVKfbcaz1pL64fCq2gHQ/n3MmOOR1HEmapJ6y7PWkiZRkvVJtiTZsmvXrnGHI2lMTNSk1mL12GYvc0vOs9aSuuiOJEcAtH93zjRhVW2qqrVVtXb16tVLFqCkbrHXR6m1WL3Bbd+4zl7mOijJemA9wDHHHDPmaDTV7j37WLVyxbjDkEbpYuBMYGP79+PjDUdS15moSZo0dyQ5oqp2HOisdVVtAjYBrF27tpYyQM1uMU+cSIstyQXAScBhSW4F3k6ToH04yauBrwGvGF+EkvrARE3SpPGstaSxqqrTZ/jo5CUNRFKv+YyapN5qz1p/DnhKklvbM9UbgRcm+TLwwnZYkiSpV7yiJqm3PGstSZImlVfUJEmSJKljTNQkSZIkqWNM1CRJkiSpY0zUJEmSJKljTNQkSZIkqWNM1EZo95594w5BkiRJ0gSwe/4RWrVyBWs2XDLycrdvXDfyMiVJkiR1l1fUJEmSJKljTNQkSZIkqWNM1CRJkiSpY0zUJEmSJKljFtSZSJLtwD3APmBvVa0dRVCSJEmStJyNotfHn6qqb46gHEmSJEkS3vooSZIkSZ2z0EStgE8luTbJ+lEEJEmSJEnL3UITtROr6tnAi4HXJ3nu1AmSrE+yJcmWXbt2DV3w7j37FhjaeMqWJEmaJLabpPFY0DNqVXV7+3dnko8BxwNXTZlmE7AJYO3atTVs2atWrmDNhksWEt6Mtm9ctyjlSpIkTRrbZNJ4zPuKWpKHJ3nE/vfAi4CbRhWYJEmSJC1XC7midjjwsST7y/lgVf3tSKKSJEmSpGVs3olaVd0CPHOEsUiSJEmSsHsvYQ8MAAAJiklEQVR+SZIkSeocEzVJkiRJ6hgTNUmSJEnqGBM1SZIkSeoYEzVJ0rz5Q7iSJC2OBf3gtaTx2r1nH6tWruhNuZo8i/VDuP4IriRpuTNRk3rMRrIk9UuS7cA9wD5gb1WtHW9EkrrKRE3SRLIxJKnDfqqqvjnuICR1m4mapElmY0iSJPWSnYlIkiQtnQI+leTaJOvHHYyk7jJRkzSpbAxJ6qITq+rZwIuB1yd57tQJkqxPsiXJll27di19hJI6wURN0qQ6YGPIhpCkcaiq29u/O4GPAcdPM82mqlpbVWtXr1691CFK6ggTNUkTabbGkA0hSUstycOTPGL/e+BFwE3jjUpSV5moSZo4NoYkddThwNVJrgc+D1xSVX875pgkdZS9PkqaRIcDH0sCTT33QRtDksatqm4BnjnuOCT1g4mapIljY0iSJPWdtz5KkiRJUseYqEmSJElSx5ioSZIkSVLHmKhJkiRJUseYqEmSJElSx5ioSZIkSVLHmKhJkiRJUseYqEmSJElSx5ioSZIkSVLHmKhJkiRJUseYqEmSJElSx5ioSZIkSVLHmKhJkiRJUseYqEmSJElSx5ioSZIkSVLHmKhJkiRJUseYqEmSJEkTaveefb0rezFj7pODxh2AJEmSpMWxauUK1my4ZFHK3r5x3aKUvX3jupGX2UdeUZMkSZKkjjFRkyRJkqSOMVGTJEmSpI4xUZMkSZKkjjFRkyRJkqSOMVGTJEmaAHZprknRx27/F6Nsu+eXJEkjtXvPPlatXNGbcifFYnXDblfpWmqLuS8v5k8VjJqJmiRJGikTBklaOG99lCRJkqSOWVCiluSUJF9K8pUkG0YVlCQtlPWTpC6ybpI0rHknaklWAH8BvBg4Fjg9ybGjCkyS5sv6SVIXWTdJmouFXFE7HvhKVd1SVd8HPgScNpqwJGlBrJ8kdZF1k6ShLSRROxL4+sDwre04SRo36ydJXWTdJGloqar5fTF5BfDTVfWadvgM4Piq+tUp060H1reDTwG+NP9wF8VhwDfHHcQ89DVuMPZxWazYH19Vqxeh3Hkbpn6aQ93U520+V8tpWcHlnXSHAQ/vUv20SG2nvm7XvsYNxj4ufY19uriHajstpHv+W4GjB4aPAm6fOlFVbQI2LWA+iyrJlqpaO+445qqvcYOxj0ufY5+HWeunYeum5bTeltOygss76drlXTPuOKYYedupr9u1r3GDsY9LX2NfSNwLufXxC8CTkzwhyUOAVwIXL6A8SRoV6ydJXWTdJGlo876iVlV7k7wB+DtgBXBuVd08ssgkaZ6snyR1kXWTpLlYyK2PVNWlwKUjimVcOntb5iz6GjcY+7j0OfY5G2H9tJzW23JaVnB5J10nl3cR2k6dXM4h9DVuMPZx6Wvs84573p2JSJIkSZIWx0KeUZMkSZIkLQITNSDJ/5Pki0luSPKxJIeMO6ZhJHlFkpuT3J+kF73gJDklyZeSfCXJhnHHM6wk5ybZmeSmcccyF0mOTnJFkm3tvvLGccfURbPtl0lelWRXkq3t6zXjiHNUZtuf0/jv7fq4IcmzlzrGURliWU9K8p2BbftbSx3jKA1zzE/Y9h1meSdqG88kyVuSVJLDxh3LsPrY/upjO2YS2gJJViT5xySfGHcsc5HkkCQfaffzbUmeM5fvm6g1LgOeXlXPAP4X8JtjjmdYNwE/A1w17kCGkWQF8BfAi4FjgdOTHDveqIa2GThl3EHMw17gzVX1VOAE4PU9WudLYg775YVVdVz7eu+SBjl6mznw/vxi4Mntaz3w7iWIabFsZvZj9+8Htu1vL0FMi2mYY36Stu+wddwkbeMHSXI08ELga+OOZY561f7qcTtmEtoCbwS2jTuIefhT4G+r6keBZzLHZTBRA6rqU1W1tx38B5rfNem8qtpWVV37AfEDOR74SlXdUlXfBz4EnDbmmIZSVVcB3x53HHNVVTuq6rr2/T00FcSR442qc3q7X87XEPvzacD7q/EPwCFJjlia6Earr8fufA15zE/S9rWOa7wL+A2gVx0P9LD91cv/F30/TpIcBawDenWSNMkjgecC5wBU1fer6q65lGGi9mC/Anxy3EFMqCOBrw8M30qPKoq+S7IGeBZwzXgj6Zxh98t/396e85H27PUkW27H6nOSXJ/kk0meNu5gRuUAx/xEbt9Z6riJ3MYASV4K3FZV1487lgXqQ/ur98dOT9sCf0JzIuL+cQcyRz8C7ALe1962+d4kD59LAQvqnr9Pkvx/wGOn+ei/VNXH22n+C83l4fOXMrYDGSbuHsk043p19q+vkhwMfBR4U1XdPe54OmaY/fJ/ABdU1X1JXgecBzx/0SMbn+V0rF4HPL6q7k1yKvA3NLcE9tosx/zEbd9Zlrf32/hAbQHgLOBFSxvR8Pra/ppBr4+dPrYFkrwE2FlV1yY5adzxzNFBwLOBX62qa5L8KbABeNtcClgWquoFB/o8yZnAS4CTq0O/WTBb3D1zKzB4JeIo4PYxxbJsJFlJUzGfX1UXjTueDpp1v6yqbw0Mvgf4wyWIa5yWzbE62FipqkuT/GWSw6rqm+OMayGGOOYnavvOtryTsI1nagsk+THgCcD1SaDZltclOb6qvrGEIc6or+2vGfT22OlxW+BE4KXtSZZVwCOTfKCq/sOY4xrGrcCtVbX/6uVHaBK1oXnrI00PPsBbgZdW1b+MO54J9gXgyUmekOQhwCuBi8cc00RL85/7HGBbVb1z3PF01Kz75ZTnd15KPx9onouLgV9qewc8AfhOVe0Yd1CLIclj2+OEJMfT/F/81oG/1V1DHvMTs32HWd5J28aDqurGqnpMVa2pqjU0DcNndyVJm00P21+9bMf0uS1QVb9ZVUe1+/crgU/3JEmjPQ6/nuQp7aiTgX+aSxnL5oraLP4ceChwWVuX/0NVvW68Ic0uycuBPwNWA5ck2VpVPz3msGZUVXuTvAH4O2AFcG5V3TzmsIaS5ALgJOCwJLcCb6+qc8Yb1VBOBM4AbkyytR13VlVdOsaYOmWm/TLJbwNbqupi4D+3z4HspemY4lVjC3gEptufgZUAVfVXwKXAqcBXgH8Bfnk8kS7cEMv6s8D/lWQv8D3glT04q38g0x7zwDEweduX4ZZ30rbxJOlV+6vH7RjbAuPzq8D5bWJ/C3Osb2NdJUmSJEnd4q2PkiRJktQxJmqSJEmS1DEmapIkSZLUMSZqkiRJktQxJmqSJEmS1DEmapIkSZLUMSZqkiRJktQxJmqSJEmS1DH/Pxqt/WQpCTaoAAAAAElFTkSuQmCC\n", "text/plain": [ "
    " ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -1311,14 +1615,6 @@ "CODE HERE TO SHOW AVERAGE OF 1, 2, 4, 6, 8, 10 throws" ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "##### TODO\n", - "\n" - ] - }, { "cell_type": "markdown", "metadata": {}, @@ -1329,7 +1625,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 15, "metadata": {}, "outputs": [ { @@ -1488,7 +1784,7 @@ "" ] }, - "execution_count": 4, + "execution_count": 15, "metadata": {}, "output_type": "execute_result" } @@ -1504,7 +1800,7 @@ "metadata": { "hide_input": false, "kernelspec": { - "display_name": "Python 3", + "display_name": "Python [default]", "language": "python", "name": "python3" }, @@ -1518,7 +1814,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.3" + "version": "3.5.5" }, "toc": { "base_numbering": 1, diff --git a/Module-10-interactive.ipynb b/Module-10-interactive.ipynb index f1ae7cb..306f4d9 100644 --- a/Module-10-interactive.ipynb +++ b/Module-10-interactive.ipynb @@ -149,6 +149,8 @@ "\n", "## Data tables\n", "\n", + "\n", + "* MUST COVER: tables for website data Vs barplot \n", "* Precision of display?\n" ] }, @@ -168,7 +170,9 @@ "\n", "bacteria multiplication problem\n", "\n", - "MUST COVER: show Random walk\n" + "MUST COVER: show Random walk\n", + "\n", + "MUST COVER: time series of website data\n" ] }, { @@ -187,7 +191,7 @@ "\n", "* MUST COVER: qq-plot in Pandas\n", "\n", - "* MUST COVER: look at the goal to determine if students who took a longer time to finish actually scored a higher . Come back\n", + "* MUST COVER: look at the goal to determine if students who took a longer time to finish actually scored a higher. Correlation plot and correlation value. Linear regression? R2 = correlation!\n", "\n", "* MUST COVER: https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.probplot.html\n", "\n", @@ -387,7 +391,7 @@ "metadata": { "hide_input": false, "kernelspec": { - "display_name": "Python 3", + "display_name": "Python [default]", "language": "python", "name": "python3" }, @@ -401,7 +405,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.3" + "version": "3.5.5" }, "toc": { "base_numbering": 1, From 6e9f4988c46d30755e49987266238318944a95f7 Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Wed, 17 Jul 2019 07:25:31 +0200 Subject: [PATCH 045/134] Improved URL; update README text --- Module-09-interactive.ipynb | 3 ++- README.md | 8 ++++++++ 2 files changed, 10 insertions(+), 1 deletion(-) diff --git a/Module-09-interactive.ipynb b/Module-09-interactive.ipynb index 3a83cff..d424478 100644 --- a/Module-09-interactive.ipynb +++ b/Module-09-interactive.ipynb @@ -1050,7 +1050,8 @@ "## Histograms\n", "\n", "\n", - "In this section we see how to create histograms, which are just another form of bar plot ([see above](#Bar-plots)), except the category axis is now numerical, instead of discrete categories.\n", + "\n", + "In this section we see how to create histograms, which are just another form of [bar plot](#Bar-plots) except the category axis is now numerical, instead of discrete categories. \n", "\n", "Like, bar plots, histograms are fairly simple to understand and you don't need to explain how to interpret them. \n", "\n", diff --git a/README.md b/README.md index efa8e26..3922886 100644 --- a/README.md +++ b/README.md @@ -67,3 +67,11 @@ notebooks. * Getting and setting values in dictionaries. * Reading data from many CSV or Excel files. * Moving average calculations. + +[Notebook 9: https://yint.org/pybasic09](https://yint.org/pybasic09) + +* Statistics and Data Visualization: combined +* Box plots; mean, median, percentiles +* Bar plots; categorical vs numeric variables +* Histograms; visualizing distribution and Central Limit Theorem + From 6d5f7593611c4c6edd42206550a27cba810e8ef9 Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Wed, 17 Jul 2019 07:27:57 +0200 Subject: [PATCH 046/134] Correct heading --- Module-09-interactive.ipynb | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/Module-09-interactive.ipynb b/Module-09-interactive.ipynb index d424478..6aade20 100644 --- a/Module-09-interactive.ipynb +++ b/Module-09-interactive.ipynb @@ -932,7 +932,7 @@ "\n", "The results are more clearly communicated with horizontal bars (use the ``barh`` command), than with vertical bars. Try using vertical bars, by modifying the above code and simply use ``.bar(...)``. Why is the ``barh`` command preferred?\n", "\n", - "#### Final checks\n", + "##### Final checks\n", "1. The most visits, *on average*, occur on a \\_\\_\\_\\_day.\n", "2. If the website should go offline for an entire day for maintenance, the best day to pick would be a \\_\\_\\_\\_day.\n", "3. Is the bar plot strictly necessary in this case study when compared to the data table? *In other words*, what value does the bar plot provide, if any, that is not provided by the table?\n", From 364299a75ed55bbb1fa676f959b4d79210ac5d6c Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Wed, 17 Jul 2019 16:24:53 +0200 Subject: [PATCH 047/134] Added task for barplots --- Module-09-interactive.ipynb | 142 ++++++++++++++++++++++++++---------- Module-10-interactive.ipynb | 8 +- 2 files changed, 110 insertions(+), 40 deletions(-) diff --git a/Module-09-interactive.ipynb b/Module-09-interactive.ipynb index 6aade20..de22d92 100644 --- a/Module-09-interactive.ipynb +++ b/Module-09-interactive.ipynb @@ -41,6 +41,19 @@ "\n", "You should have read [Chapter 1](https://learnche.org/pid/data-visualization/) of the book \"Process Improvement using Data\".\n", "\n", + "### Cloning this notebook for yourself\n", + "\n", + "If you are seeing a read-only version of this notebook, it is best you clone this notebook to your hard drive and work in it directly. Check our this repo using Git. Use your favourite Git user-interface, or at the command line:\n", + "\n", + ">```\n", + ">git clone git@github.com:kgdunn/python-basic-notebooks.git\n", + ">\n", + "># If you already have the repo cloned:\n", + ">git pull\n", + ">```\n", + "\n", + "to update it to the later version.\n", + "\n", "### Summarizing data visually and numerically (statistics)\n", "\n", "In [this notebook](https://yint.org/pybasic09):\n", @@ -56,7 +69,8 @@ "6. Scatter plot\n", "\n", "
    \n", - "Statistical concepts are indicated with this icon.
    In between, throughout the notes, we will also introduce statistical and data science concepts. This way you will learn how to interpret the plots and also communicate your results with the correct language." + "Statistical concepts are indicated with this icon.
    In between, throughout the notes, we will also introduce statistical and data science concepts. This way you will learn how to interpret the plots and also communicate your results with the correct language.\n", + "\n" ] }, { @@ -425,25 +439,54 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "#### ➜ Challenge yourself:___\n", + "#### ➜ Challenge yourself: box plots for thickness of plastic sheets\n", "\n", + "Box plots on a single column are interesting, but they are even more interesting if you several variables. \n", "\n", - "On a different data set, with multiple columns\n", + "In this case we put the box plots side-by-side, from left-to-right. The variable on the y-axis is usually the same for all box plots. It doesn't make sense if the box plots being compared are of different measurements. For example: compare several temperature values, but it does not make sense if one box plot is temperature and the other is pressure.\n", "\n", + "In the data set at http://openmv.net/info/film-thickness we measure the thickness of a plastic sheet, also called a film. It is rectangular film, and measured in 4 positions. The data are from a confidential source, but are from a true process.\n", "\n", - "http://openmv.net/info/film-thickness\n", + "##### Answer these questions\n", "\n", - "\n", - "* Which position on the film seems to have the most outliers?\n", - "* At which position do we have the least variability in the measurements?\n", - "* At which position is the average thickness the lowest? [use the median and the mean to make your judgement]" + "1. At which position on the film seems to have the most outliers?\n", + "2. At which position do we have the least variability in the measurements?\n", + "3. At which position is the average thickness the lowest? [Use the median and the mean to make your judgment]." ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 15, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " TopRight TopLeft BottomRight BottomLeft\n", + "count 160.000000 160.000000 160.000000 160.000000\n", + "mean 556.300000 578.162500 485.881250 562.987500\n", + "std 253.979864 345.012148 248.875038 345.173805\n", + "min 26.000000 0.000000 5.000000 9.000000\n", + "25% 387.250000 295.000000 316.500000 261.250000\n", + "50% 548.000000 548.000000 491.500000 557.000000\n", + "75% 687.250000 855.250000 643.500000 796.250000\n", + "max 1264.000000 1440.000000 1229.000000 1410.000000\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD8CAYAAAB+UHOxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAGetJREFUeJzt3X2UHNV55/HvLxLiPQiMPSskYEhQiEAxGCYYs9gZoV2McGJps7AgcWLhla2cNWjjJAQJK1kcZ0VE2BjbwiFWPCwiQRKY2KAgkKzI02F1zPu7YEzQwQTGgLEDKB6LAMLP/lF3cGs00vR01/Rb/T7n9FHVrdu3bz9T6qfr1q0uRQRmZlY8v9DoDpiZWWM4AZiZFZQTgJlZQTkBmJkVlBOAmVlBOQGYmRWUE4CZWUE5AZiZFZQTgJlZQY1vdAf25vDDD4/Ozs5Gd2NEP/3pTznwwAMb3Y224Xjmy/HMT6vE8qGHHvpxRLx3pHpNnQA6Ozt58MEHG92NEZVKJbq7uxvdjbbheObL8cxPq8RS0r9UUs9DQGZmBeUEYGZWUE4AZmYF5QRgZlZQTgBmZgXlBGBmVlBOAGZmBeUEYGZWUE19IZi1H0m5teX7WZvVxkcAVlcRMeLj6MV3VFTPzGozYgKQdL2kVyRtHWbbpZJC0uFpXZK+ImmbpMclnVxWd76kZ9Jjfr5vw8zMRquSI4AbgLOHFko6EvjPwPNlxbOAqemxELgu1T0MuAL4IHAqcIWkQ2vpuJmZ1WbEcwARcbekzmE2XQNcBtxeVjYbuDGy4/N7JU2UNAnoBjZFxKsAkjaRJZU1NfXezCwneZ6fgtY4R1XVOQBJHwd+EBGPDdk0GXihbL0/le2p3MysKeR5fqoVPvyhillAkg4AlgJnDbd5mLLYS/lw7S8kGz6io6ODUqk02i7W3cDAQEv0s5U4nvnx/pmvdoplNdNAfxk4BngsHTJNAR6WdCrZN/sjy+pOAV5M5d1DykvDNR4RK4GVAF1dXdEKv73dKr8R3jI2rHc8c+T9M0dttm+OeggoIp6IiPdFRGdEdJJ9uJ8cES8D64BPpNlApwHbI+IlYCNwlqRD08nfs1KZmZk1SCXTQNcA9wDHSeqXtGAv1e8EngW2AX8DfAYgnfz9M+CB9PjC4AlhMzNrjEpmAc0dYXtn2XIAF++h3vXA9aPsn5mZjRFfCWxmVlBOAGZmBeUEYGZWUE4AZmYF5QRgZlZQTgBmZgXlBGBmVlBOAGZmBeUEYGZWUE4AZmYF5QRQgzVr1jB9+nRmzpzJ9OnTWbPG97cxs9ZRzc9BG9mH/9KlS+np6eGdd95h3LhxLFiQ/U7e3Ll7/fkkM7Om4ARQpWXLljFv3jwWLVpEX18f06ZNY968eSxbtswJwMxaghNAlZ566il27Nix2xHAc8891+iumZlVxOcAqjRhwgQuueQSZsyYwfjx45kxYwaXXHIJEyZMaHTXzMwq4gRQpbfeeosVK1bQ29vLzp076e3tZcWKFbz11luN7poZ4EkKNjIPAVXp+OOPZ86cObucA7jwwgu57bbbGt01M09SsIo4AVRp6dKlw/4HW7ZsWaO7ZsayZcvo6elhxowZ794Uvqenh0WLFjkB2LucAKo0d+5cvvvd7zJr1izefPNN9t13Xz796U/7P5c1hb6+Ps4444xdys444wz6+voa1CNrRpXcFP56Sa9I2lpWdrWk70l6XNK3JE0s23a5pG2Snpb00bLys1PZNklL8n8r9bVmzRrWr1/PXXfdxaZNm7jrrrtYv369x1mtKUybNo0tW7bsUrZlyxamTZvWoB5ZM6rkJPANwNlDyjYB0yPi/cA/A5cDSDoeuAA4IT3nrySNkzQO+CowCzgemJvqtqzyQ+zBWUA9PT0eArKmsHTpUhYsWLDLJIUFCxawdOnSRnfNmsiIQ0ARcbekziFl3y5bvRc4Ny3PBtZGxJvA9yVtA05N27ZFxLMAktamuk/V1PsG8iG2NbPBocjySQq+SNGGyuMcwH8Hbk7Lk8kSwqD+VAbwwpDyDw7XmKSFwEKAjo4OSqVSDl3M31FHHcW1117LBz7wAQYGBiiVSjzyyCMcddRRTdvnVuIY1m7SpElce+21DAwMcNBBBwGOax7aKYY1JQBJS4GdwE2DRcNUC4Yfaorh2oyIlcBKgK6uruju7q6li2PmyiuvfHcW0H777UdEsGLFCq688kqatc8tY8N6xzBHg7OALAdttm9WnQAkzQd+E5gZEYMf5v3AkWXVpgAvpuU9lbckzwIys1ZXVQKQdDawGPiNiNhRtmkdsFrSF4EjgKnA/WRHBlMlHQP8gOxE8bxaOt5o5bOAyq8DOP30050EzKwlVDINdA1wD3CcpH5JC4BrgYOBTZIelfTXABHxJHAL2cndDcDFEfFOROwELgE2An3ALaluy/IsIDNrdZXMAhru62zPXuovA3b7FIyIO4E7R9W7JtbX10d/fz/Tp09/d5bF4sWLPQvIzFqGrwSu0hFHHMFll13G6tWr3x0CmjdvHkcccUSju2ZmVhH/GmgNJO113cysmfkIoEovvvgiN9xwwy4X2lx11VVcdNFFje6amVlFfARQpWnTpjFlyhS2bt3K5s2b2bp1K1OmTPFvrZhZy/ARwAj2Nqxz5plnjvo5P79kwsyssXwEMIKI2ONj9erVnHDCCaBf4IQTTmD16tV7re8PfzNrJj4CqMHcuXOZO3cunUvWs3X5xxrdHTOzUfERgJlZQTkBmJkVlIeAzFpU3ted+BxV8fgIwKxFjTThYPBx9OI7KqpnxeMEYGZWUE4AZmYF5QRgZlZQTgBmZgXlBGBmVlBOAGZmBeUEYGZWUJXcE/h6Sa9I2lpWdpikTZKeSf8emsol6SuStkl6XNLJZc+Zn+o/I2n+2LwdMzOrVCVHADcAZw8pWwJsjoipwOa0DjALmJoeC4HrIEsYwBXAB4FTgSsGk4aZmTXGiAkgIu4GXh1SPBtYlZZXAXPKym+MzL3AREmTgI8CmyLi1Yh4DdjE7knFzMzqqNpzAB0R8RJA+vd9qXwy8EJZvf5UtqdyMzNrkLx/DG64X6eKvZTv3oC0kGz4iI6ODkqlUm6dG0ut0s9W4Xjmy/HMTzvFstoE8ENJkyLipTTE80oq7weOLKs3BXgxlXcPKS8N13BErARWAnR1dUV3d/dw1ZrLhvW0RD9bheOZL8czP20Wy2qHgNYBgzN55gO3l5V/Is0GOg3YnoaINgJnSTo0nfw9K5WZmVmDjHgEIGkN2bf3wyX1k83mWQ7cImkB8DxwXqp+J3AOsA3YAXwSICJelfRnwAOp3hciYuiJZTMzq6MRE0BEzN3DppnD1A3g4j20cz1w/ah6Z2ZmY8ZXApuZFZQTgJlZQTkBmJkVlBOAmVlBOQGYmRWUE4CZWUE5AZiZFZQTgJlZQTkBmJkVlBOAmVlBOQGYmRWUE4CZWUE5AZiZFZQTgJlZQTkBmJkVVN73BLaCOvFPv832N97Orb3OJetzaeeQ/ffhsSvOyqUts3bjBGC52P7G2zy3/GO5tFUqlXK772peicSsHXkIyMysoGpKAJJ+X9KTkrZKWiNpP0nHSLpP0jOSbpY0IdXdN61vS9s783gDZmZWnaoTgKTJwP8EuiJiOjAOuAC4CrgmIqYCrwEL0lMWAK9FxLHANamemZk1SK1DQOOB/SWNBw4AXgLOBG5N21cBc9Ly7LRO2j5Tkmp8fTMzq1LVCSAifgD8H+B5sg/+7cBDwOsRsTNV6wcmp+XJwAvpuTtT/fdU+/pmZlabqmcBSTqU7Fv9McDrwDeAWcNUjcGn7GVbebsLgYUAHR0dlEqlartYV63Sz7GUVwwGBgZyjaf/No5BntoplrVMA/1PwPcj4kcAkr4JnA5MlDQ+fcufAryY6vcDRwL9acjoEODVoY1GxEpgJUBXV1fkNR1wTG1Yn9u0xZaVYwzynAbqvw2OAflep3LRhp/m0k4zXKNSSwJ4HjhN0gHAG8BM4EGgFzgXWAvMB25P9del9XvS9u9ExG5HAGZmecvrOpV2u0allnMA95GdzH0YeCK1tRJYDPyBpG1kY/w96Sk9wHtS+R8AS2rot5mZ1aimK4Ej4grgiiHFzwKnDlP334Hzank9MzPLj68ENjMrKCcAM7OCcgIwMysoJwAzs4JyAjAzKygnADOzgnICMDMrKCcAM7OCcgIwMysoJwAzs4JyAjAzK6iafguoleX587CQ3y/7NcNPxJpZMRQ2AeT187DQfj8Ra2bF4CEgM7OCcgIwMysoJwAzs4JyAjAzK6jCngQ2a2aepWb14ARg1oQ8S83qoaYhIEkTJd0q6XuS+iR9SNJhkjZJeib9e2iqK0lfkbRN0uOSTs7nLZiZWTVqPQfwZWBDRPwqcCLQBywBNkfEVGBzWgeYBUxNj4XAdTW+tpmZ1aDqBCDpF4GPAD0AEfFWRLwOzAZWpWqrgDlpeTZwY2TuBSZKmlR1z83MrCa1HAH8EvAj4P9KekTS1yUdCHRExEsA6d/3pfqTgRfKnt+fyszMrAFqOQk8HjgZWBQR90n6Mj8f7hmOhimL3SpJC8mGiOjo6KBUKtXQxb3Lq+2BgYFc+zmW73ksOZ75cjzzlUe/2y6WEVHVA/gPwHNl6x8G1gNPA5NS2STg6bT8NWBuWf136+3pccopp8RYOXrxHbm11dvbm1tbefarnhzPfDme+cqr360SS+DBqOBzvOohoIh4GXhB0nGpaCbwFLAOmJ/K5gO3p+V1wCfSbKDTgO2RhorMzKz+ar0OYBFwk6QJwLPAJ8nOK9wiaQHwPHBeqnsncA6wDdiR6pqZWYPUlAAi4lGga5hNM4epG8DFtbyemZnlx1cCm1nbO3jaEn5t1d7mqIzCqpGrVOLgaQD5XO1dLScAM2t7P+lbnstPa7Tbz2oUNgHk+o0A2upbQTUcT7PWU9gEkNc3Ami/bwXVcDzNWo/vB2BmVlBOAGZmBeUEYGZWUE4AZmYF5QRgZlZQhZ0FZNbMPK3W6sEJwKwJeVqt1YOHgMzMCsoJwMysoJwAzMwKygnAzKygnADMzArKCcDMrKCcAMzMCqrmBCBpnKRHJN2R1o+RdJ+kZyTdnO4XjKR90/q2tL2z1tc2M7Pq5XEE8HtAX9n6VcA1ETEVeA1YkMoXAK9FxLHANamemZk1SE0JQNIUsuvCv57WBZwJ3JqqrALmpOXZ/PyC9FuBmam+mZk1QK1HAF8CLgN+ltbfA7weETvTej8wOS1PBl4ASNu3p/pmZtYAVf8WkKTfBF6JiIckdQ8WD1M1KthW3u5CYCFAR0cHpVKp2i6OKK+2BwYGcu3nWL7nseR45svxzFce/W67WEZEVQ/gz8m+4T8HvAzsAG4CfgyMT3U+BGxMyxuBD6Xl8ame9vYap5xySoyVoxffkVtbvb29ubWVZ7/qyfHMl+OZr7z63SqxBB6MCj7Hqz4CiIjLgcsB0hHApRFxoaRvAOcCa4H5wO3pKevS+j1p+3dSRxsm11823JBPW4fsv08u7ZiZjWQsfg56MbBW0v8GHgF6UnkP8LeStgGvAheMwWtXLK+f2oUskeTZnplZPeSSACKiBJTS8rPAqcPU+XfgvDxez8zMaucrgc3MCsoJwMysoJwAzMwKygnAzKygnADMzArKCcDMrKDG4joAM8uBL1S0seYEYNaEfKGi1YOHgMzMCspHAJYbD1mYtRYnAMuFhyzMWo+HgMzMCsoJwMysoJwAzMwKyucAzKwQcpuk0EYTFJwAzKzt5TWpoN0mKHgIyMysoJwAzMwKygnAzKygqk4Ako6U1CupT9KTkn4vlR8maZOkZ9K/h6ZySfqKpG2SHpd0cl5vwszMRq+WI4CdwB9GxDTgNOBiSccDS4DNETEV2JzWAWYBU9NjIXBdDa9tZmY1qjoBRMRLEfFwWv4J0AdMBmYDq1K1VcCctDwbuDEy9wITJU2quudmZlaTXKaBSuoEPgDcB3RExEuQJQlJ70vVJgMvlD2tP5W9NKSthWRHCHR0dFAqlfLo4phrlX62CsczX45nftopljUnAEkHAX8PfDYi/k3SHqsOUxa7FUSsBFYCdHV1RXd3d61dHHsb1tMS/WwVjme+HM/8tFksa5oFJGkfsg//myLim6n4h4NDO+nfV1J5P3Bk2dOnAC/W8vpmZla9WmYBCegB+iLii2Wb1gHz0/J84Pay8k+k2UCnAdsHh4rMzKz+ahkC+o/A7wBPSHo0lX0OWA7cImkB8DxwXtp2J3AOsA3YAXyyhtc2M7MaVZ0AImILw4/rA8wcpn4AF1f7emZmli9fCWxmVlBOAGZmBeUEYGZWUE4AZmYF5QRgZlZQTgBmZgXlBGBmVlBOAGZmBeUEYGZWUE4AZmYF5QRgZlZQTgBmZgXlBGBmVlBOAGZmBeUEYGZWUE4AZmYF5QRgZlZQTgBmZgVVyz2BqyLpbODLwDjg6xGxvN59GA1pT3e9HFLvqsray+6MaWbWeHU9ApA0DvgqMAs4Hpgr6fh69mG0ImLER29vb0X1/OFvZs2k3kNApwLbIuLZiHgLWAvMrnMfzMyM+g8BTQZeKFvvBz5Y5z6YtYVKhyehsiHKoh+hFnG4V/XspKTzgI9GxKfS+u8Ap0bEorI6C4GFAB0dHaesXbu2bv2r1sDAAAcddFCju9ESZsyYkVtbvb29ubXVzrx/5qdVYjljxoyHIqJrpHr1PgLoB44sW58CvFheISJWAisBurq6oru7u26dq1apVKIV+tkMKvnC4Xjmy/HMT7vFst7nAB4Apko6RtIE4AJgXZ37YGZm1PkIICJ2SroE2Eg2DfT6iHiynn0wM7NM3a8DiIg7gTvr/bpmZrYrXwlsZlZQTgBmZgXlBGBmVlBOAGZmBeUEYGZWUHW9Eni0JP0I+JdG96MChwM/bnQn2ojjmS/HMz+tEsujI+K9I1Vq6gTQKiQ9WMll11YZxzNfjmd+2i2WHgIyMysoJwAzs4JyAsjHykZ3oM04nvlyPPPTVrH0OQAzs4LyEYCZWUEVKgFIeo+kR9PjZUk/KFufMMq2tkh6WtJjku6X9P6ybRslHVzB808apvxkSWePpi/NYAxiu1ts9lL/i5KelLRc0m9L+tXRv4OxJemdFIvHJD0s6fQR6ndKmle2fpKkc3LsT6ls/32gPN6S7pQ0sYLn7zYbJu9+VqpJ41vxbCFJV6d9+GpJc+p1r/RCJYCI+NeIOCkiTgL+GrhmcD3do3i0zo+IE4G/Ad69UVxEfDQiflJlN08GWi4BjEFsK6LsPn6fAk6KiCXAbwNNlwCAN1IsTgQuB/58hPqdwLyy9ZOAvD9YL0z9+Svg6sHCiDgnIl6vss2x6GclmjG+o/G7wMkR8UfAHMAJoJ4kXSZpa3osSmXHpqz8t5KekHSLpP2Hefo9ZPc7Hmyrf/AblKQ/lfQ9SZsk3Szps2XPuyAdPTwt6fTU9v8CLkzfZs4dw7dcNzXGdrCN8emb/v2SHpf0qbRpPXAg8ICkPyH7T3xNil/nGL+1av0i8BpkCSx969ua4nB+qrMc+HB6H4uBLwDnp/XzJR0m6bYUi3sHj0AlfV7SKknflvRcOiL6i9T2Bkn7DNOfofvvc5IOT8t/Urb/rpF0adnzzkt/j3+W9OF0pLdLP/MOXIWaLb6k545LfXkgtfu7qXwd2T58n6QrgI8DV6e+/PKYRQmyW/QV8QF8Hrg0LZ8KPAYcABwM9AHvB44FAjgt1bsR+Gxa3kL2rRPgUuALZW33AxOB04CHgH3Jdspnhzz/qrT8cWBDWv4U8KVGx6dZYlvW5meAJWl5X+AR4Ciye1q8Xlbv74A5jY7BMDF5B3gU+B6wHTgllf9XYBPZDZI6gOeBSUA3cEfZ8y8Cri1bXwFckZbPBB4ti/0WYB/gRGAHMCtt+9ZgbIAS0JWWPwtcWdb2c2RXvHalPu+f/nbPlP1dS8BfpuVzgH8crp+O7y59XAj8cdk+/CBwTFofKKt3A3BuPeJW9xvCNKkPA38fETsAJN0GnAF8G/h+RNyb6v0d2R/xS2n9ZkkHAiIbuhnqDOC2iHgTeFPSHUO2fzP9+xDZIWk7qja2Q50FTJN0QVo/BJjKkHtKN7E3IhseQ9KHgBslTSeLxZqIeAf4oaR/An4d+LcR2juD7MONiPiOsnMwh6Rtd0XE25KeIPvg25DKn2DX/eymtP+OY8/77+0R8Ubq9z8M2d5M+28zxneos4D3lx3ZD+7D3x/F+8yVE0BGe9k2dJ5s+fr5wFPAX5B9Y/hvo2gX4M307zu079+i2tgO185nImLzLoVSy8UtIu5JQyzvZeR9ZE+Ge95g/N5Mr/MzSW9H+loJ/Ixd97MLyY7OlgNfJTt/MtJrlGvK/beJ4jtcm4siYmOVfcqdzwFk7gb+i6T9JR0EzAb+X9p2jKRfT8tzyQ7/3hXZCc7PAR+R9CtD2t0CfFzSvspmBVVykuknZIfb7aLq2A6xEfjM4Ae+pOP2cM6g6eOnbJbSOOBfyeJzfhoffi/wEeB+dn8fQ9fvJvsAR1I38OOIGOlb7W4i4m3gj4HTJE0bsnkL8FuS9kt/u49V0GTD499M8R1iI/A/Bs8TSPqVdAQ2VN1i6AQARMT9wBrgAeBe4LqIeCJtfhL4tKTHyU7U7HYlYBreuAb4wyHl95AdHj4O3Jra3z5Cd74DnCjpEbXBSeAaYrtR2cn0fklrgK+RjUE/KmkrcB3Df9taA3xOzXcSeP/Up0eBm4H5aVjiW2T7x2Nkf/vLIuLlVLZT2bTG3wd6gePLTq5+HuhKsVsOzK+2Y2mI5y/JzmWVlz8ArEt9+ybZmPVI++/QftZLM8Z3fdk+/A3g62QjBg+nffhrDL8PrwX+KH0GjOlJYF8JvBeSjgVuHRxbrLKNgyJiIGX6LWQ75uO5dbJF5RFbG3tl++8BZN+KF0bEw43ul+Wjacbt2liPpOOA/YDr/eFvLWalsouS9gNW+cO/vfgIwMysoHwOwMysoJwAzMwKygnAzKygnADMzArKCcDMrKCcAMzMCur/A+xJqKMJE0fwAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "# Imports for reading the file and to plot it\n", "import io\n", @@ -461,7 +504,7 @@ "data = pd.read_csv(web_dataset)\n", "data = data.set_index('Number')\n", "print(data.describe())\n", - "data.boxplot()" + "data.boxplot();" ] }, { @@ -472,10 +515,13 @@ "\n", "Many companies making food products have taste panels. In these panels a number of people judge the product based on different attributes. \n", "\n", - "In the data set at https://openmv.net/info/peas we have multiple columns, but only six are scored by judges: flavour, sweetness, fruity flavour, off-flavour, mealiness and hardness. Remember in Pandas you can select columns using: ``df.loc[:, 'Flavour': 'Hardness']``, which will select all columns from `Flavour` up to, and including `Hardness`. \n", + "In the data set at https://openmv.net/info/peas we have multiple columns, but only six are scored by judges: flavour, sweetness, fruity flavour, off-flavour, mealiness and hardness. \n", + "\n", + "Remember in Pandas you can select columns using: ``df.loc[:, 'Flavour': 'Hardness']``, which will select all columns from `Flavour` up to, and including `Hardness`. \n", "\n", - "Based on the boxplot, answer these questions:\n", + "##### Based on the box plot, answer these questions:\n", "\n", + "* What scale was used for the 6 attributes? Can we actually compare the values from the 6 attributes with each other?\n", "* Which of the 6 attributes has the lowest variability?\n", "* Which attribute has the most outliers?\n", "* For which of the 6 attributes is the median most imbalanced (not half-way between the 25th and 75 percentile)?\n", @@ -1022,26 +1068,53 @@ "source": [ "#### ➜ Challenge yourself: PCA plots\n", "\n", - "Plot the percentage explained of a PCA model\n", + "PCA (principal component analysis) models can be used to reduce multiple columns down to a smaller number. For example, summarize 10 columns of data with 2 columns. In this situation we say we have 2 components.\n", "\n", - "#### ➜ Challenge yourself: _____\n", + "The purpose of this exercise is not to explain PCA, but rather to visualize how much variation is explained by component 1, component 2, *etc*.\n", "\n", - "Where a subplot is needed. Boxplot on the left, barplot on the right?" + "Use this template code:\n", + "```python\n", + "from matplotlib import pyplot\n", + "%matplotlib inline\n", + "from sklearn.preprocessing import StandardScaler\n", + "from sklearn.decomposition import PCA\n", + "\n", + "# Get the subset of raw data\n", + "peas = pd.read_csv('https://openmv.net/file/peas.csv')\n", + "judges = peas.loc[:, 'Flavour': 'Hardness']\n", + "\n", + "# Preprocess the raw data: center and scale it\n", + "scalar = StandardScaler(copy=True, with_mean=True, with_std=True)\n", + "scalar.fit(judges)\n", + "judges_centered_scaled = scalar.transform(judges)\n", + "\n", + "# Fit a PCA model to the data, using 4 components\n", + "A = 4\n", + "pca = PCA(n_components = A)\n", + "pca.fit(judges_centered_scaled) \n", + "\n", + "# Prepare the plot.\n", + "x = components = list(range(1, A+1))\n", + "y = pca.explained_variance_ratio_\n", + "tick_labels = [int(i) for i in x]\n", + "pyplot.bar(x = ___, y = ___, tick_label = ___)\n", + "```\n", + "\n", + "##### Answer these questions:\n", + "\n", + "1. Complete the code; how much variation is explained with 1 component, approximately, from the plot?\n", + "2. The variation explained is for each component. But change the code to show the *cumulative* variation explained by the components.\n", + "3. Again modify the code to skip the [preprocessing step](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html). In other words, just fit the PCA model to the 6 columns without centering and scaling. What variation is now explained? ***Note***: what you see is here exceptional - normally preprocessing has a substantial effect on the fitting." ] }, { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, + "cell_type": "markdown", "metadata": {}, - "outputs": [], - "source": [] + "source": [ + "#### ➜ Challenge yourself: _____\n", + "\n", + "Where a subplot is needed. Boxplot on the left, barplot on the right?" + ] }, { "cell_type": "markdown", @@ -1577,13 +1650,6 @@ "outputs": [], "source": [] }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, { "cell_type": "markdown", "metadata": {}, @@ -1626,7 +1692,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 1, "metadata": {}, "outputs": [ { @@ -1785,7 +1851,7 @@ "" ] }, - "execution_count": 15, + "execution_count": 1, "metadata": {}, "output_type": "execute_result" } @@ -1801,7 +1867,7 @@ "metadata": { "hide_input": false, "kernelspec": { - "display_name": "Python [default]", + "display_name": "Python 3", "language": "python", "name": "python3" }, @@ -1815,7 +1881,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.5.5" + "version": "3.7.3" }, "toc": { "base_numbering": 1, diff --git a/Module-10-interactive.ipynb b/Module-10-interactive.ipynb index 306f4d9..df08967 100644 --- a/Module-10-interactive.ipynb +++ b/Module-10-interactive.ipynb @@ -191,6 +191,10 @@ "\n", "* MUST COVER: qq-plot in Pandas\n", "\n", + "* ShOULD show: correlations numerically calculated for the film thickness dataset, but then also visualized with ``data.plot('TopRight', 'BottomRight', kind='scatter')``\n", + "\n", + "* SHOULD CHECK: correlations between the 6 values of the peas (judges). Should we do PCA on this data?\n", + "\n", "* MUST COVER: look at the goal to determine if students who took a longer time to finish actually scored a higher. Correlation plot and correlation value. Linear regression? R2 = correlation!\n", "\n", "* MUST COVER: https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.probplot.html\n", @@ -391,7 +395,7 @@ "metadata": { "hide_input": false, "kernelspec": { - "display_name": "Python [default]", + "display_name": "Python 3", "language": "python", "name": "python3" }, @@ -405,7 +409,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.5.5" + "version": "3.7.3" }, "toc": { "base_numbering": 1, From 696cd694d4393e393fdc1fd25f367f95a6cdcc1a Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Thu, 18 Jul 2019 07:44:37 +0200 Subject: [PATCH 048/134] Updated for language, clarity and grammar; fine-tuned the questions and added a new one on dice throwing. --- Module-08-interactive.ipynb | 2 +- Module-09-interactive.ipynb | 448 +++++++++++++---------- Module-10-interactive.ipynb | 203 +++++++++- images/summarizing-data/simulate-CLT.png | Bin 0 -> 55934 bytes 4 files changed, 461 insertions(+), 192 deletions(-) create mode 100644 images/summarizing-data/simulate-CLT.png diff --git a/Module-08-interactive.ipynb b/Module-08-interactive.ipynb index 8d73d92..796d101 100644 --- a/Module-08-interactive.ipynb +++ b/Module-08-interactive.ipynb @@ -34,7 +34,7 @@ "\n", "In the prior [module 7](https://yint.org/pybasic07) you had an introduction to main Pandas objects: `Series` and `DataFrame`. You were also introduced to dictionaries. In this worksheet, we only see a bit more of dictionaries, and get to apply Pandas to solving practical problems you have seen in prior modules.\n", "\n", - " Check our this repo using Git. Use your favourite Git user-interface, or at the command line:\n", + " Check out this repo using Git. Use your favourite Git user-interface, or at the command line:\n", ">```\n", ">git clone git@github.com:kgdunn/python-basic-notebooks.git\n", ">\n", diff --git a/Module-09-interactive.ipynb b/Module-09-interactive.ipynb index de22d92..96472f7 100644 --- a/Module-09-interactive.ipynb +++ b/Module-09-interactive.ipynb @@ -7,7 +7,7 @@ }, "source": [ "

    Table of Contents

    \n", - "" + "" ] }, { @@ -26,6 +26,179 @@ ">Please reuse, remix, revise, and [reshare this content](https://github.com/kgdunn/python-basic-notebooks) in any way, keeping this notice." ] }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Run this cell once, at the start, to load the notebook's style sheet.\n", + "from IPython.core.display import HTML\n", + "css_file = './images/style.css'\n", + "HTML(open(css_file, \"r\").read())" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -43,7 +216,7 @@ "\n", "### Cloning this notebook for yourself\n", "\n", - "If you are seeing a read-only version of this notebook, it is best you clone this notebook to your hard drive and work in it directly. Check our this repo using Git. Use your favourite Git user-interface, or at the command line:\n", + "If you are seeing a read-only version of this notebook, it is best you clone this notebook to your hard drive and work in it directly. Check out this repo using Git. Use your favourite Git user-interface, or at the command line:\n", "\n", ">```\n", ">git clone git@github.com:kgdunn/python-basic-notebooks.git\n", @@ -290,7 +463,7 @@ " The \"50%\" row in that description is called the 50th *percentile*. \n", "![alt=Pandas \"describe\" output](images/summarizing-data/ammonia-description.png)\n", "\n", - "It is the value in the dataset above which 50% of the values are found, and below which 50% of the values are found. A shortcut name that we use for the 50th percentile is **median**. It is the only percentile which has a special name. All the other's we just call by their number, e.g. we say \"*the 75th percentile is 42.37*\" for the Ammonia column.\n", + "It is the value in the dataset above which 50% of the values are found, and below which 50% of the values are found. A shortcut name that we use for the 50th percentile is **median**. It is the only percentile which has a special name. All the others we just call by their number, e.g. we say \"*the 75th percentile is 42.37*\" for the Ammonia column.\n", "\n", "\n", "##### Check your knowledge\n", @@ -412,7 +585,7 @@ "* 25% of the histogram area is between the orange line and the next red line to the right\n", "* 25% of the histogram area is to the right of the second red line\n", "\n", - "All of that you can get from this single table. \n", + "All of that you can get from this single table which you can create with ``.describe()``:\n", "![alt=Pandas \"describe\" output](images/summarizing-data/ammonia-description.png)\n", "\n", "Which brings us to two important points:\n", @@ -431,7 +604,8 @@ "* head and tail of a data set\n", "* median\n", "* spread in the data\n", - "* boxplot\n", + "* distribution of a data column\n", + "* box plot\n", "* percentile" ] }, @@ -441,11 +615,11 @@ "source": [ "#### ➜ Challenge yourself: box plots for thickness of plastic sheets\n", "\n", - "Box plots on a single column are interesting, but they are even more interesting if you several variables. \n", + "Box plots on a single column are interesting, but they are even more interesting if you have several variables to ***compare***. That is the key point: they are useful for comparisons.\n", "\n", "In this case we put the box plots side-by-side, from left-to-right. The variable on the y-axis is usually the same for all box plots. It doesn't make sense if the box plots being compared are of different measurements. For example: compare several temperature values, but it does not make sense if one box plot is temperature and the other is pressure.\n", "\n", - "In the data set at http://openmv.net/info/film-thickness we measure the thickness of a plastic sheet, also called a film. It is rectangular film, and measured in 4 positions. The data are from a confidential source, but are from a true process.\n", + "In the data set at http://openmv.net/info/film-thickness we measure the thickness of a plastic sheet, also called a film. It is rectangular film, and measured at 4 positions. The data are from a confidential source, but are from a true process.\n", "\n", "##### Answer these questions\n", "\n", @@ -519,8 +693,9 @@ "\n", "Remember in Pandas you can select columns using: ``df.loc[:, 'Flavour': 'Hardness']``, which will select all columns from `Flavour` up to, and including `Hardness`. \n", "\n", - "##### Based on the box plot, answer these questions:\n", + "##### Answer these questions:\n", "\n", + "* Create a box plot of the 6 attributes, so they are shown side-by-side in one figure.\n", "* What scale was used for the 6 attributes? Can we actually compare the values from the 6 attributes with each other?\n", "* Which of the 6 attributes has the lowest variability?\n", "* Which attribute has the most outliers?\n", @@ -731,6 +906,8 @@ "* *colour eyes*: grey, blue, green, brown, ...\n", "* *shape of object*: square, circular, rectangular, ...\n", "\n", + "Categories are natural groupers: it is logical, for example, to see box plots grouped by ``operating system``, or number of visits grouped by ``Day`` or ``Month``. Understanding and using categories is essential.\n", + "\n", "##### Self-check:\n", "\n", "* Name/describe some other examples of categorical data you have worked with recently.\n", @@ -1020,9 +1197,11 @@ "\n", "The categories used in a bar plot can often be rearranged without 'breaking' the message. We saw an example above.\n", "\n", - "This happened because each bar is independent of the others. If you re-order them, the information shown - bas on the length of the bars on the value axis - is still the same.\n", + "This happens because each bar is independent of the others. If you re-order them, the information shown - based on the length of the bars on the value axis - is still the same.\n", + "\n", + "This does not mean you should show the bar plot in a random order. By ordering the information you make the plot easier to read, and in an underhanded way you subtly alter how the user reads the message. You can use this power to your advantage to make the message clearer, but you can also use it to frustrate your reader. Rather do the former, and not the latter.\n", "\n", - "This does not mean you should show the bar plot in a random order. By ordering the information you make the plot easier to read, and in an underhanded way you subtly alter how the user reads the message. You can use this power to your advantage to make the message clearer, but you can also use it to frustrate your reader. Rather do the former, and not the latter." + "A terrible use of bar plots is to show time-ordered data. For example, the profit of a business is shown for each year, where the profit is the bar's height. You can of course reorder the bars, but then you break the time-based message. ***Simple rule***: if you can reorder the bars, and the ultimate message is still there, then a bar plot is OK.\n" ] }, { @@ -1108,13 +1287,11 @@ ] }, { - "cell_type": "markdown", + "cell_type": "code", + "execution_count": null, "metadata": {}, - "source": [ - "#### ➜ Challenge yourself: _____\n", - "\n", - "Where a subplot is needed. Boxplot on the left, barplot on the right?" - ] + "outputs": [], + "source": [] }, { "cell_type": "markdown", @@ -1124,7 +1301,7 @@ "\n", "\n", "\n", - "In this section we see how to create histograms, which are just another form of [bar plot](#Bar-plots) except the category axis is now numerical, instead of discrete categories. \n", + "In this section we see how to create histograms, which are just another form of [bar plot](#Bar-plots) where instead of a categorical axis, we have a continuous numerical axis instead.\n", "\n", "Like, bar plots, histograms are fairly simple to understand and you don't need to explain how to interpret them. \n", "\n", @@ -1341,11 +1518,13 @@ "source": [ "##### Enrichment\n", " \n", - "Try entering this command below: \n", + "1. Try entering this command below: \n", "```python\n", "counts, bins, patches = pyplot.hist(data['Grade'], bins=20, edgecolor='white')\n", "```\n", - "and inspect the value of ``counts`` and ``bins`` that you get as output. What do you think these are? Compare them to the plots above." + "and inspect the value of ``counts`` and ``bins`` that you get as output. What do you think these are? Compare them to the plots above.\n", + "\n", + "2. Read this article of [5 important data distributions](https://www.kdnuggets.com/2019/07/5-probability-distributions-every-data-scientist-should-know.html) you should be aware of." ] }, { @@ -1443,7 +1622,7 @@ "source": [ "##### Questions\n", "\n", - "1. Visualize the histogram of 1000 steps of someone who is walking *normally* 😃 \n", + "1. Visualize the histogram of 1000 steps of someone who is walking *normally* 😃.\n", "2. Visualize, in a subplot, side-by-side, the histogram of someone who has consumed too much.\n", "3. Looking ahead: in the next module we will show what this random walk looks like in a time-series plot.\n", "\n", @@ -1656,13 +1835,13 @@ "source": [ "#### ➜ Challenge yourself: Dice averages are normally distributed\n", "\n", - "A common concept in a first statistics course is to talk about the central limit theorem. As you take averages of more and more independent data values, the average becomes normally distributed, even if the original values are n\n", + "A common concept in a first statistics course is to talk about the central limit theorem. As you take averages of more and more independent data values, the average becomes normally distributed, even if the original values are not themselves normally distributed.\n", "\n", "We know from the above challenge we should not judge normality by plots, but here we will show how the data ***appear*** to be become more normal. We are not testing, or saying, they are normal.\n", "\n", "\n", "\n", - "If you throw a dice, each throw is ***independent*** of the next one: the value you throw now does not depend on the value before, and it cannot influence the value after. This is another important statistical concept, but it is\n", + "If you throw a dice, each throw is ***independent*** of the next one: the value you throw now does not depend on the value before, and it cannot influence the value after. This is another important statistical concept which is essential for many methods (e.g. for t-tests) to work successfully. It is often ignored in practice, leading to misleading results.\n", "\n", "Each throw of the dice comes from the [***uniform*** distribution](https://learnche.org/pid/univariate-review/uniform-distribution). Each value of 1, 2, 3, 4, 5 or 6 has a uniform (or equal) chance of appearing.\n", "```python\n", @@ -1679,195 +1858,94 @@ "metadata": {}, "outputs": [], "source": [ - "CODE HERE TO SHOW AVERAGE OF 1, 2, 4, 6, 8, 10 throws" + "# Try throwing the dice 60000 times.\n", + "dice_throws = ___\n", + "\n", + "# Count, to ensure there are approximately\n", + "# 10000 values of each number present:\n", + "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - ">***Feedback and comments about this worksheet?***\n", - "> Please provide any anonymous [comments, feedback and tips](https://docs.google.com/forms/d/1Fpo0q7uGLcM6xcLRyp4qw1mZ0_igSUEnJV6ZGbpG4C4/edit)." + "Now we will take the average of 2 throws, and we will do this 10000 times:" ] }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 29, "metadata": {}, "outputs": [ { "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" - ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEKCAYAAAAb7IIBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAGXlJREFUeJzt3X+UXWV97/H3h0QgBCGByJQmqRNt0FKDmDuNWKpOgUJAF8FVWSVVDDRdc62ItOQuDPWu0qvLu2i5FAtY1p2SmLBuBBHUZGkqROSItCaEIBLCjzIXUjIkGmlC6oBKR7/3j/3M9TCcZCZnzzmbmefzWmvW7P3sZ+/9PGQ4n7Of/UsRgZmZ5eeQqhtgZmbVcACYmWXKAWBmlikHgJlZphwAZmaZcgCYmWXKAWBmlikHgJlZphwAZmaZmlx1Aw5kxowZ0dnZ2fT6L774IlOnTh27Bo0DufU5t/6C+5yLMn3esmXL8xHxhpHqvaYDoLOzkwcffLDp9Wu1Gt3d3WPXoHEgtz7n1l9wn3NRps+S/m009TwEZGaWKQeAmVmmHABmZplyAJiZZcoBYGaWKQeAmVmmHABmZplyAJiZZcoBYGaWqdf0ncBmr2Wdy79RyX5XLczrkQjWOj4CMDPLlAPAzCxTDgAzs0yNGACSVkraLenRYeWXSnpS0jZJf1tXfqWkvrTsrLryhamsT9Lyse2GmZkdrNGcBF4F3AjcMlQg6feBRcBJEfFzScel8hOBC4DfBn4d+JakE9Jqnwf+AOgHNktaFxGPjVVHzMzs4IwYABFxn6TOYcV/BlwdET9PdXan8kXAban8GUl9wIK0rC8ingaQdFuq6wAwM6tIs+cATgDeLWmTpO9I+p1UPhPYUVevP5Xtr9zMzCrS7H0Ak4HpwCnA7wC3S3oToAZ1g8ZBE402LKkH6AHo6OigVqs12UQYGBgotf54lFufq+zvsnmDlew3t39jcJ9bpdkA6Ae+EhEBPCDpl8CMVD67rt4sYGea3l/5K0REL9AL0NXVFWVeA+fXyE18Vfb3ogpvBMvp3xjy+7uG9vS52SGgrwGnAaSTvIcCzwPrgAskHSZpDjAXeADYDMyVNEfSoRQniteVbbyZmTVvxCMASbcC3cAMSf3AVcBKYGW6NPRlYEk6Gtgm6XaKk7uDwCUR8Yu0nY8DdwGTgJURsa0F/TEzs1EazVVAi/ez6MP7qf9Z4LMNytcD6w+qdWZm1jK+E9jMLFMOADOzTDkAzMwy5QAwM8uUA8DMLFMOADOzTDkAzMwy5QAwM8uUA8DMLFMOADOzTDkAzMwy5QAwM8uUA8DMLFMOADOzTDkAzMwy1ewrIc1eE7Y+t6+yVzOajXcjHgFIWilpd3r71/Bl/01SSJqR5iXpekl9kh6RNL+u7hJJT6WfJWPbDTMzO1ijGQJaBSwcXihpNvAHwLN1xWdTvAd4LtAD3JTqHkPxKsl3AguAqyRNL9NwMzMrZ8QAiIj7gD0NFl0HXAFEXdki4JYobASmSToeOAvYEBF7ImIvsIEGoWJmZu3T1DkASecCz0XEDyTVL5oJ7Kib709l+ys3s4NU5XmP7Ve/r5L9WmscdABIOgL4FHBmo8UNyuIA5Y2230MxfERHRwe1Wu1gm/j/DQwMlFp/PMqtzx1TYNm8waqb0VZV9rmqv63c/q6hPX1u5gjgzcAcYOjb/yzgIUkLKL7Zz66rOwvYmcq7h5XXGm08InqBXoCurq7o7u5uVG1UarUaZdYfj3Lr8w1r1nLt1rwuZls2b7CyPm//UHcl+83t7xra0+eDvg8gIrZGxHER0RkRnRQf7vMj4ofAOuAj6WqgU4B9EbELuAs4U9L0dPL3zFRmZmYVGc1loLcC3wPeIqlf0tIDVF8PPA30Af8IfAwgIvYAnwE2p59PpzIzM6vIiMeREbF4hOWdddMBXLKfeiuBlQfZPjMzaxE/CsLMLFMOADOzTDkAzMwy5QAwM8uUA8DMLFMOADOzTDkAzMwy5QAwM8uUA8DMLFMOADOzTDkAzMwy5QAwM8uUA8DMLFMOADOzTDkAzMwy5QAwM8vUaN4ItlLSbkmP1pVdI+kJSY9I+qqkaXXLrpTUJ+lJSWfVlS9MZX2Slo99V8zM7GCM5ghgFbBwWNkG4G0RcRLwr8CVAJJOBC4Afjut8w+SJkmaBHweOBs4EVic6pqZWUVGDICIuA/YM6zs7ogYTLMbgVlpehFwW0T8PCKeoXg38IL00xcRT0fEy8Btqa6ZmVVkLM4B/AnwT2l6JrCjbll/KttfuZmZVWTEl8IfiKRPAYPAmqGiBtWCxkET+9lmD9AD0NHRQa1Wa7p9AwMDpdYfj3Lrc8cUWDZvcOSKE0iVfa7qbyu3v2toT5+bDgBJS4D3A6dHxNCHeT8wu67aLGBnmt5f+StERC/QC9DV1RXd3d3NNpFarUaZ9cej3Pp8w5q1XLu11PeYcWfZvMHK+rz9Q92V7De3v2toT5+bGgKStBD4JHBuRLxUt2gdcIGkwyTNAeYCDwCbgbmS5kg6lOJE8bpyTTczszJG/Boh6VagG5ghqR+4iuKqn8OADZIANkbERyNim6TbgccohoYuiYhfpO18HLgLmASsjIhtLeiPmZmN0ogBEBGLGxSvOED9zwKfbVC+Hlh/UK0zM7OW8Z3AZmaZcgCYmWXKAWBmlikHgJlZpvK6gNpapnP5NyrZ77J5lezWbELwEYCZWaYcAGZmmXIAmJllygFgZpYpB4CZWaZ8FZCZjVpVV3utWji1kv1OdD4CMDPLlAPAzCxTDgAzs0w5AMzMMuUAMDPL1IgBIGmlpN2SHq0rO0bSBklPpd/TU7kkXS+pT9IjkubXrbMk1X8qvU/YzMwqNJojgFXAwmFly4F7ImIucE+aBzib4j3Ac4Ee4CYoAoPiVZLvBBYAVw2FhpmZVWPEAIiI+4A9w4oXAavT9GrgvLryW6KwEZgm6XjgLGBDROyJiL3ABl4dKmZm1kbN3gjWERG7ACJil6TjUvlMYEddvf5Utr/yV5HUQ3H0QEdHB7VarckmwsDAQKn1x6Oq+rxs3mDb9wnQMaW6fVclxz77/+XWGOs7gdWgLA5Q/urCiF6gF6Crqyu6u7ubbkytVqPM+uNRVX2+qLL3AQxy7da8bmjPsc+rFk71/8st0OxVQD9KQzuk37tTeT8wu67eLGDnAcrNzKwizQbAOmDoSp4lwNq68o+kq4FOAfaloaK7gDMlTU8nf89MZWZmVpERjyMl3Qp0AzMk9VNczXM1cLukpcCzwPmp+nrgHKAPeAm4GCAi9kj6DLA51ft0RAw/sWxmZm00YgBExOL9LDq9Qd0ALtnPdlYCKw+qdWZm1jK+E9jMLFMOADOzTDkAzMwy5QAwM8uUA8DMLFMOADOzTDkAzMwy5QAwM8uUA8DMLFMOADOzTDkAzMwy5QAwM8uUA8DMLFMOADOzTDkAzMwy5QAwM8tUqTdLS/oL4E8pXvC+leINYMcDtwHHAA8BF0bEy5IOA24B/gvw78AfRcT2Mvs3M2u1zuXfqGS/qxZObfk+mj4CkDQT+ATQFRFvAyYBFwB/A1wXEXOBvcDStMpSYG9E/CZwXapnZmYVKXUEkNafIuk/gSOAXcBpwB+n5auBvwZuAhalaYA7gBslKb1G0sbI1uf2cVFF31jMWsV/163RdABExHOS/hfFS+F/CtwNbAFeiIjBVK0fmJmmZwI70rqDkvYBxwLP129XUg/QA9DR0UGtVmu2iQwMDJRafzzqmALL5g2OXHGCyK2/4D7noh2fX00HgKTpFN/q5wAvAF8Gzm5Qdegbvg6w7FcFEb1AL0BXV1d0d3c320RqtRpl1h+Pblizlmu3lj2wGz+WzRvMqr/gPudi1cKpLf/8KnMV0BnAMxHx44j4T+ArwO8C0yQN/UvNAnam6X5gNkBafjSwp8T+zcyshDIB8CxwiqQjJAk4HXgMuBf4YKqzBFibpteledLyb3v838ysOk0HQERsojiZ+xDFJaCHUAzdfBK4XFIfxRj/irTKCuDYVH45sLxEu83MrKRSg2oRcRVw1bDip4EFDer+DDi/zP7MzGzs+E5gM7NMOQDMzDLlADAzy5QDwMwsUw4AM7NMOQDMzDLlADAzy5QDwMwsUw4AM7NMOQDMzDLlADAzy5QDwMwsUw4AM7NMOQDMzDLlADAzy5QDwMwsU6UCQNI0SXdIekLS45LeJekYSRskPZV+T091Jel6SX2SHpE0f2y6YGZmzSh7BPD3wDcj4q3A24HHKV71eE9EzAXu4VevfjwbmJt+eoCbSu7bzMxKaDoAJB0FvIf0zt+IeDkiXgAWAatTtdXAeWl6EXBLFDYC0yQd33TLzcyslDLvBH4T8GPgC5LeDmwBLgM6ImIXQETsknRcqj8T2FG3fn8q21W/UUk9FEcIdHR0UKvVmm7gwMBAqfXHo44psGzeYNXNaJvc+gvucy7a8flVJgAmA/OBSyNik6S/51fDPY2oQVm8qiCiF+gF6Orqiu7u7qYbWKvVKLP+eHTDmrVcu7XMP+v4smzeYFb9Bfc5F6sWTm3551eZcwD9QH9EbErzd1AEwo+GhnbS79119WfXrT8L2Fli/2ZmVkLTARARPwR2SHpLKjodeAxYByxJZUuAtWl6HfCRdDXQKcC+oaEiMzNrv7LHVJcCayQdCjwNXEwRKrdLWgo8C5yf6q4HzgH6gJdSXTMzq0ipAIiIh4GuBotOb1A3gEvK7G+86Fz+jcr2vWxeZbs2s3HGdwKbmWXKAWBmlikHgJlZphwAZmaZcgCYmWXKAWBmlikHgJlZphwAZmaZcgCYmWXKAWBmlikHgJlZphwAZmaZcgCYmWXKAWBmlikHgJlZpkoHgKRJkr4v6etpfo6kTZKekvSl9LIYJB2W5vvS8s6y+zYzs+aNxRHAZcDjdfN/A1wXEXOBvcDSVL4U2BsRvwlcl+qZmVlFSgWApFnA+4Cb07yA0yheEA+wGjgvTS9K86Tlp6f6ZmZWgbJHAJ8DrgB+meaPBV6IiME03w/MTNMzgR0Aafm+VN/MzCrQ9DuBJb0f2B0RWyR1DxU3qBqjWFa/3R6gB6Cjo4NardZsExkYGCi1frOWzRscuVKLdEypdv/tllt/wX3ORTs+v8q8FP5U4FxJ5wCHA0dRHBFMkzQ5fcufBexM9fuB2UC/pMnA0cCe4RuNiF6gF6Crqyu6u7ubbmCtVqPM+s26qNKXwg9y7dYy/6zjS279Bfc5F6sWTm3551fTQ0ARcWVEzIqITuAC4NsR8SHgXuCDqdoSYG2aXpfmScu/HRGvOgIwM7P2aMV9AJ8ELpfURzHGvyKVrwCOTeWXA8tbsG8zMxulMTmmiogaUEvTTwMLGtT5GXD+WOzPzMzK853AZmaZcgCYmWXKAWBmlikHgJlZphwAZmaZcgCYmWXKAWBmlikHgJlZphwAZmaZmtBPV9r63L5KH8xmZvZa5iMAM7NMOQDMzDLlADAzy5QDwMwsUw4AM7NMOQDMzDLVdABImi3pXkmPS9om6bJUfoykDZKeSr+np3JJul5Sn6RHJM0fq06YmdnBK3MEMAgsi4jfAk4BLpF0IsWrHu+JiLnAPfzq1Y9nA3PTTw9wU4l9m5lZSWVeCr8rIh5K0z8BHgdmAouA1anaauC8NL0IuCUKG4Fpko5vuuVmZlbKmJwDkNQJvAPYBHRExC4oQgI4LlWbCeyoW60/lZmZWQVKPwpC0pHAncCfR8R/SNpv1QZl0WB7PRRDRHR0dFCr1ZpuW8cUWDZvsOn1x6Pc+pxbf8F9zsXAwECpz7/RKBUAkl5H8eG/JiK+kop/JOn4iNiVhnh2p/J+YHbd6rOAncO3GRG9QC9AV1dXdHd3N92+G9as5dqtE/pxR6+ybN5gVn3Orb/gPudi1cKplPn8G40yVwEJWAE8HhF/V7doHbAkTS8B1taVfyRdDXQKsG9oqMjMzNqvTKSeClwIbJX0cCr7S+Bq4HZJS4FngfPTsvXAOUAf8BJwcYl9m5lZSU0HQETcT+NxfYDTG9QP4JJm92dmZmPLdwKbmWXKAWBmlikHgJlZphwAZmaZcgCYmWXKAWBmlikHgJlZphwAZmaZcgCYmWXKAWBmlikHgJlZphwAZmaZcgCYmWXKAWBmlikHgJlZphwAZmaZansASFoo6UlJfZKWt3v/ZmZWaGsASJoEfB44GzgRWCzpxHa2wczMCu0+AlgA9EXE0xHxMnAbsKjNbTAzM9ofADOBHXXz/anMzMzaTMW72tu0M+l84KyI+NM0fyGwICIuravTA/Sk2bcAT5bY5Qzg+RLrj0e59Tm3/oL7nIsyfX5jRLxhpEqTm9x4s/qB2XXzs4Cd9RUiohfoHYudSXowIrrGYlvjRW59zq2/4D7noh19bvcQ0GZgrqQ5kg4FLgDWtbkNZmZGm48AImJQ0seBu4BJwMqI2NbONpiZWaHdQ0BExHpgfZt2NyZDSeNMbn3Orb/gPuei5X1u60lgMzN77fCjIMzMMjUhA0DSSkm7JT1adVvaQdJsSfdKelzSNkmXVd2mVpN0uKQHJP0g9fl/VN2mdpE0SdL3JX296ra0g6TtkrZKeljSg1W3px0kTZN0h6Qn0v/X72rJfibiEJCk9wADwC0R8baq29Nqko4Hjo+IhyS9HtgCnBcRj1XctJaRJGBqRAxIeh1wP3BZRGysuGktJ+lyoAs4KiLeX3V7Wk3SdqArIrK5D0DSauC7EXFzumLyiIh4Yaz3MyGPACLiPmBP1e1ol4jYFREPpemfAI8zwe+wjsJAmn1d+pl432aGkTQLeB9wc9VtsdaQdBTwHmAFQES83IoPf5igAZAzSZ3AO4BN1bak9dJQyMPAbmBDREz4PgOfA64Afll1Q9oogLslbUlPCpjo3gT8GPhCGuq7WdLUVuzIATCBSDoSuBP484j4j6rb02oR8YuIOJnijvIFkib0cJ+k9wO7I2JL1W1ps1MjYj7FU4QvSUO8E9lkYD5wU0S8A3gRaMmj8x0AE0QaB78TWBMRX6m6Pe2UDo9rwMKKm9JqpwLnpjHx24DTJP2fapvUehGxM/3eDXyV4qnCE1k/0F93RHsHRSCMOQfABJBOiK4AHo+Iv6u6Pe0g6Q2SpqXpKcAZwBPVtqq1IuLKiJgVEZ0Uj1H5dkR8uOJmtZSkqenCBtIwyJnAhL66LyJ+COyQ9JZUdDrQkgs62n4ncDtIuhXoBmZI6geuiogV1baqpU4FLgS2pjFxgL9Md11PVMcDq9NLhg4Bbo+ILC6LzEwH8NXiOw6TgS9GxDerbVJbXAqsSVcAPQ1c3IqdTMjLQM3MbGQeAjIzy5QDwMwsUw4AM7NMOQDMzDLlADAzy5QDwCoh6QOSQtJbq25LGZJulfSIpL8YVn65pMfSsnskvbHButMkfaxuvjuXJ3zaa4MDwKqymOIJnheMxcbS/QBtJenXgN+NiJMi4rphi79P8QTLkyju5PzbBpuYBnysQflI+217X21icgBY26VnFp0KLKUuACR9SdI5dfOrJP1heujbNZI2p2/U/zUt707vQfgisDWVfS09NGxb/YPDJC2V9K+SapL+UdKNqfwNku5M294s6dQG7T1c0hfSM+m/L+n306K7gePSc+rfXb9ORNwbES+l2Y0Uzysa7mrgzWn9a1LZkXXPgV+T7vIeeib+X0m6Hzhf0smSNqb/Hl+VNF3ScZK2pPpvT0dYv5Hm/6+kIySdL+lRFe9RuG80/142gUWEf/zT1h/gw8CKNP0vwPw0/QFgdZo+FNgBTAF6gP+eyg8DHgTmUNzt/SIwp27bx6TfUygeGXAs8OvAduAYisdGfxe4MdX7IvB7afo3KB6nMby9y4AvpOm3As8ChwOdwKOj6O+NQ+0fVv6K9VN/9lGExSHA9+rath24oq7uI8B70/Sngc+l6W3AUcDHgc3Ah4A3At9Ly7cCM9P0tKr/FvxT7c+EfBSEveYtpnisMRQPNVsMPAT8E3C9pMMoHux2X0T8VNKZwEmSPpjWORqYC7wMPBARz9Rt+xOSPpCmZ6d6vwZ8JyL2AEj6MnBCqnMGcGL6og1wlKTXR/FehSG/B9wAEBFPSPq3tP6IT1yV9GGKl7e8d6S6yQMR0Z/WfZgiJO5Py76Uyo+m+PD+TipfDXw5Tf8LxdHVe4D/SfHfURShB/DPwCpJtwNZPTTQXs0BYG0l6VjgNOBtkgKYBISkKyLiZ5JqwFnAHwG3Dq0GXBoRdw3bVjfFEUD9/BnAuyLipbStw9P6+3NIqv/TAzV71B18ZfvOAD5F8U3956Ncrb7eL3jl/6MvMrLvAu+m+Na/FvgkxfP0vw4QER+V9E6Kl8o8LOnkiPj3UbbNJhifA7B2+yDFqzrfGBGdETEbeIbiWzYURwQXU3yIDX3g3wX8WXrkNZJO2M8LMo4G9qYP/7cCp6TyB4D3pnHyycAf1q1zN8VwCWnbJzfY7n0UQylIOoFiqOjJA3VS0juA/w2cG8VjjBv5CfD6A22nkYjYB+ytO+9wITB0NHAfxRDbUxHxS4o3451D8c0fSW+OiE0R8VfA8xRHSZYpB4C122KKZ7rXuxP44zR9N8Xwxbci4uVUdjPF43AfkvQoxQdro6PXbwKTJT0CfIbi5CsR8RzFcMgm4FtpW/vSOp8AutLJ1MeAjzbY7j8AkyRtpRiGuWgU3+ivAY4EvpxO8q4bXiF98/7ndFL2mldt4cCWANekvp5McR6AiNielg+d4L0feCEi9g61K53MfjTV+cFB7tcmED8N1LIg6cgoXiA/mSKAVkbE8CAyy4qPACwXf51Oqj5KMeT0tYrbY1Y5HwGYmWXKRwBmZplyAJiZZcoBYGaWKQeAmVmmHABmZplyAJiZZer/ASR5fKlqwdN6AAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "
    " ] }, - "execution_count": 1, "metadata": {}, - "output_type": "execute_result" + "output_type": "display_data" } ], "source": [ - "# IGNORE this. Execute this cell to load the notebook's style sheet.\n", - "from IPython.core.display import HTML\n", - "css_file = './images/style.css'\n", - "HTML(open(css_file, \"r\").read())" + "import numpy as np\n", + "import pandas as pd\n", + "\n", + "N = 10000\n", + "throws = 2\n", + "\n", + "dice_throws = np.random.randint(1, 7, size=N * throws)\n", + "dice_throws = dice_throws.reshape((N, 2))\n", + "average_throws = pd.Series(dice_throws.mean(axis=1))\n", + "ax = average_throws.hist()\n", + "ax.set_xlabel(\"Average of {} throws\".format(throws));\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "\n", + "\n", + "Repeat the above code to show how, in a sequence of subplots, when you add more and more values together in an average, the average becomes normally distributed. \n", + "\n", + "At the end, you would like something like this, which was generated in R.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Matplotlib for visualization\n", + "\n", + "Behind Pandas' plotting function lies the well-know Python library called `matplotlib`. It is a core library you must eventually understand, if only the concept behind it. MATLAB users will find it no problem: it uses the same principle of adding to a base figure, and breaking down your plot in terms of a figure, axes and other layers of data points and annotations.\n", + "\n", + "1. An excellent tutorial - one of the best I have found - to understand these concepts: https://www.datacamp.com/community/tutorials/matplotlib-tutorial-python\n", + "2. A quicker understand, if you need to find the right command is in this 4-part notebook:\n", + " * [Basic figures](https://nbviewer.jupyter.org/gist/manujeevanprakash/138c66c44533391a5af1)\n", + " * [Style and colour](https://nbviewer.jupyter.org/gist/manujeevanprakash/7dc56e7906ee83e0bbe6), markers, line thickness and patterns\n", + " * [Annotation, axis range, and tick marks](https://nbviewer.jupyter.org/gist/manujeevanprakash/7cdf7d659cd69d0c22b2)\n", + " * [Log axes, aspect ratio](https://nbviewer.jupyter.org/gist/manujeevanprakash/7d8a9860f8e43f6237cc)\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + ">***Feedback and comments about this worksheet?***\n", + "> Please provide any anonymous [comments, feedback and tips](https://docs.google.com/forms/d/1Fpo0q7uGLcM6xcLRyp4qw1mZ0_igSUEnJV6ZGbpG4C4/edit)." ] } ], "metadata": { "hide_input": false, "kernelspec": { - "display_name": "Python 3", + "display_name": "Python [default]", "language": "python", "name": "python3" }, @@ -1881,7 +1959,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.3" + "version": "3.5.5" }, "toc": { "base_numbering": 1, diff --git a/Module-10-interactive.ipynb b/Module-10-interactive.ipynb index df08967..7535c8d 100644 --- a/Module-10-interactive.ipynb +++ b/Module-10-interactive.ipynb @@ -7,7 +7,7 @@ }, "source": [ "

    Table of Contents

    \n", - "" + "" ] }, { @@ -26,6 +26,179 @@ ">Please reuse, remix, revise, and [reshare this content](https://github.com/kgdunn/python-basic-notebooks) in any way, keeping this notice." ] }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Run this cell once, at the start, to load the notebook's style sheet.\n", + "from IPython.core.display import HTML\n", + "css_file = './images/style.css'\n", + "HTML(open(css_file, \"r\").read())" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -35,7 +208,7 @@ "In the prior [module 9](https://yint.org/pybasic09) you ...\n", "\n", "
    \n", - " Check our this repo using Git. Use your favourite Git user-interface, or at the command line:\n", + " Check out this repo using Git. Use your favourite Git user-interface, or at the command line:\n", "\n", ">```\n", ">git clone git@github.com:kgdunn/python-basic-notebooks.git\n", @@ -175,6 +348,13 @@ "MUST COVER: time series of website data\n" ] }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, { "cell_type": "markdown", "metadata": {}, @@ -203,6 +383,17 @@ "PCA: https://jakevdp.github.io/PythonDataScienceHandbook/05.09-principal-component-analysis.html\n" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Other noteworthy plots\n", + "\n", + "### Violin plot / beeswarm plot\n", + "\n", + "* See engmark7 for sample. Alternative to box plot" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -213,7 +404,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 2, "metadata": {}, "outputs": [ { @@ -372,7 +563,7 @@ "" ] }, - "execution_count": 1, + "execution_count": 2, "metadata": {}, "output_type": "execute_result" } @@ -395,7 +586,7 @@ "metadata": { "hide_input": false, "kernelspec": { - "display_name": "Python 3", + "display_name": "Python [default]", "language": "python", "name": "python3" }, @@ -409,7 +600,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.3" + "version": "3.5.5" }, "toc": { "base_numbering": 1, diff --git a/images/summarizing-data/simulate-CLT.png b/images/summarizing-data/simulate-CLT.png new file mode 100644 index 0000000000000000000000000000000000000000..d4a56940bf3f74b2c40771ab53be135307fd8990 GIT binary patch literal 55934 zcmeFa2{@E{_&+>li$ak$+i4?OkdSpsiwaS;N=OTpFtTQu$(A`~KYf{d}M4mf=wye!g{l z2n2%v@S*+35s0N&1Y*gqB^=-{630HeA`rYgFYViBc>aQowd)lZtE;wWcU(Gm4uSB9 zjfk){3_H2HiZZUzAGk+IJIHX~ec8>|!=RaeV;?qQ8ouk^8jt z_}HR8Y-Qc@^UT4d2P(V%LhvPWtW8{E>?>8zb+ByNiN)qb#OdoiBV2pWh!g$S+*`u= z*V1o(_KApB$UU_u9BcPpdAIKBb^KqBTbA$zK1$lOh2ukD-o68dGR9nA_UhNm^ohA}74q_H zhbAgqTsJE^%ehgWH@TAUId_I&j;?@y+k2R|* zvWX`-|JonmyJchH64A~L5{Kl40+-yYIkf(G$mfljhg2GZ@cRPZEgM@Axc8HxUigj= zLOplK_KhBUmRgf~)>vdxVd}I6`h3Rjln4b1KJfIxUeU)_k|;KAg-dR}c%Av0uj_CZf7hDP zjkk_8NI4x||72N%L&LF#3k@3^%y&j-?9JQE6V~{?=)L~8^l!G`1kdhL&{T*&5%6`@ zi_0$rUaWu7yi(&pTt!mG<8Ou^WNf#%Z&B>>aN>8$@`#$Y8NEE}+_kYQM`#!CK3>6F z`){4SWpgV=$jEq`iT}W!;KW{|P{ZuwRhO3NN4$MHda3Oa|0}y!ylOXUAC31pO>CIu zokdt|Ivla4)S*0DAkXT1MDey{7$fg{6zUyfM!_rtIU zVR;cD;XA?|!XzFrH&uo^-Mbapvb9lW+<4XI^zDP2V>WvontC{NSInaJc!-?Y7WY%+ z7aH5Lw^O#`jxld~4Z)-oTFbQ0H;KrlOv$1ERyAHg$wE5xRxyLh(M>lMK z8mV_!Dk!=vBG)|Me%i))!FNdZb(mz~d zvE3~5!0-z-%eYL5$LKvJ20lmqpRP!JVf5JO-0jUZT`#Vl*q(7r|7CKpO`1(fug~_o ztIW4r4kk8P*q>y0f7zipw)_=Jpej$*l)n4g-7AYhTr_pm`%c z#xmYArNhogiE)NeGV3#IwM=iB(6V*Q;@2GKw^%m5tcV{{Zcy$LH4$yMI&9gGz54M( zR)phS*Si~o1=k{XB}HRnhIaKU%v`x_BP(yO6sK&YxKt@!LDagjC4T7a6ubco{@fTmmkx83Z>#C*S2x$=v3eohk!8;GDtSaHbge$ zQ^@v^4bs9X!AB$GKGkN`dd2B@@M&me-;%zn;N0@9VerV+NvF)KKIG(KDb%1_P`d@5 zS`eCLY8CgYu#v-KL}Tij#^m{H$)3!Cz|paZv?Bv!%0Ex7U_!%j+DPn%C$ zBI814jir}!+)!bF>*^+>rl3ru@NEJ9CH4XqOU9R^3&!x10-FQwOrK^hVx})?yZQ2F z|Dp7E4e#D>Nl$G^eReUu&*xL4g0e!7g5nGO*R-!HPPIHP|v%S^UOie(pzV`GQC6DI{rPk~n;UTiL@{*3O?+M?;Gv`x!YFiTwk#Cs0 zp4;_geXy|N+sNlAvUX*}>g_AX?>I89Ogq1+yHoVoO)xy_fmo}5OV}$?xn)dA)sf9d zoR3sd3n+tI&OH!$P|}7&Lp4{s$67f8IM(t6h&YH?L|l&Wl3ks4Htk0Ga9Z2tZ+329 zs>Sc_-tF>k%Fr%T+y2;aO67|n$tKk=uAl8bM@p89z1J9fRE|rcte%q74}KYZAUGjZ zN?b%@T&t<=eADO8+X$x{7U!RTr6(zjwBH}7 zctgK)C-Ul!8q1>v8qS+%KX}y5#!H)VWOq;|2gI?xp2Kfls|L+zyL}=ZPPFgFGE~DE!=A;Zh~3sig%w^bm@s_lnhd@Q5^-dB_zCw zRAT3$cQ;3@UspcU;SKH3sP)!>&JS+!d^PfHx^c{QtZo3)JX@lFQMOp#2H6DRNi$(i z%;|Jw1M@`GJIr46F|B92T6SI7<%(`~nk9c!l9RT4TKq6UX4^kNJni+13 z;jYnxBQ~RyuKb;jp{0uGX2n5O+K^8dZKj|?aHnL5&w0!cZRN2(jbQz2bq*)*}c62f|R#_y8!T5C}yC!UlneMj)yY2nhb9sEAOsK`2He z6sr-65PZ=_5n*G4u!%<4R3mI4cx|*IBH9KK9gT>tMnpsKt<{Q%Y8ym#G@`m1Q4Ik~ z2uKkD*&v{31XPWHzz0AZkOs8C&0sYI?*sqXC@MxPDpo5hLh!cWlZ}m{O|+s-wW19K za{(?!+bBjyD@Ioa}< z*aFwU#(*{;4QPRzAy^>zGx&+Nv8lGPfnfQ-w%}8Av`uuiO*90H3%CFmtD|kIt8J{fR3Ge`Hg1Z46 zfF~d@kPvVUhykX-oq#RC2iO?U2BaZaMeu5H8GHsm5YQL^637R(1)r)R2v#6V{V*3S zjl%k5DG6qZg*&WX7L+iLEOcOPvjm1&X2}36pT!m|0c$5f8khsn5&#d##M+8wiT|(v z?}DedIM|dIb?Brs0=8TEZuhVa`*O2k4aP6NmO(z&@{C93DW}laMH!Qi zKh|#3x&D{-*IJ`?pBd1@ye_(H3HBI?Ckh}CTuaCZgyHr7e*F)J|BT>2XZR%&#CBdi zH*pGahR?y6h>DbcY{rS0EI8`xuUX~xNgUBypyzw8-PZNJI6|On2Uke0NW*4##Km4& zE`eO(Ph8;FZ}6{?_3&T2rMN;~#ni!ng@4_IM2bVb#Tx$Hm%$Rb%V!E#h%bs+=I} zv?cD7wpq6OAzmP-?cwFe0x61T%Xpu-MYYtPj&a)^z2clj8+4%R)ilHwDN?p}`9Pf7U9BI*12x&N3t!ieu;iFpbxq92) zW2Wu-4k?u2PqaNUMbdANsohZ}eb7CBvdVkeY_)ecHMF#^)K&EwPTo^;%LVG|-A8N{ zNT;ve+LlfU`g%MeTE%Stc%TBKG#7bBo69uE{k+)IoG9n4;{6XcV-tF$((|EI+gTr7 zY)A^>ygs41DFu&gHR1fz*ELi87$0~| zPARsw>U<(b&=Xh561$0comb?<=X(Z?N`M_HpIanSi4K6Km%a2!=62?H&~J026L<7Q zsb)LdzO-#{ucx~7o94$5(SB{A(^G=H_irSIcNb`l{WXy z@VQxGiCJwh_TRay^o6mIV~OflDXIcLlGf_oc)b{94Xt6kx} zm31Ri)V;mKZ7_X2N59p61KYT-ON9{4Sz8}kLY5W_U@k)SI{3Jv^9~p3pP%)y!;}T^ z)xVx6QQ}X#4^c`>`(0dWT#F{Z%(O@iE8p*@W-=BD%kB}@8OaP#r9Kpz@ZqZaH1s5+ z35lr1XJ*&dDPPLJrH6AI7WB{yJd*R#MJzG@xRy+-Y<<@F*1kz60unJ`nzLXhT<+Y? z*E^2PJh_;@r>G-4u`z`)Z`q^Cg#3Vy#wc5Pp1#a*gWGw0uS7@qJiR~H{cLJKkyw{a z?2b9R2QidJ$*IBXqe4~SAW0MxIq{HV!n7jXQ=j)pv0t6=&~?OD6A*<8<~RYetI9s# z1vUzhnS3Y|?!lEH{dLiz=jo+&%Fc6U2)x?aI5GS&MS6bKXAdq(jP|l6*DWS}@}i4) z$uP%LJh6`#KNa&qs_t>ztoN)r{LHtl7x|Oqm?J;SwJT|H?h(08`JM`n&RnyE zT&T35@JrfUA5_Pls}0SZcWZQ(&Q`*=GhZ$7ou0 zztS04f%iHRbv#>UZ?oBmN+BMKwLmr7pI&eY*?#R96c$_%8+#IN zE+wlIrZeJ+S?1Tkh#vGJN+Q@O60cH7c2;IIy18_Hro$gOTqA;~?4wh^ zXhBW9F6nJ^mbUqHGKl;Omgb4`i+R%Vu#L;Ty_Ibq0Uv?lbzzfdX#+AF8E+MJE&@P! z{dpTY-@}mW;4<3^K`@ju{*F^BosZMK{o$X9_n7^K9c*Gd!7r@I;uim+z3(6z&WQXo zI3Ke2pqew;ZUX{6(9EkD!TO#h!@6rMeBC0fKvepL*+$94eOGBCGI30$h(FO*W-JoI zs~-6SyR8#Ehft&~|3EZgt#0a`qCYXzFKAeCce8P##h+Hq7*OvcF&`b<( zr*6kO>i$!xe!7G#`Hyk@UoYkkm7vOf%zt4GS<`dSF79#DN}0}`pa|NoE=O;3mj7Ks z5?14qtSj-u*e1A2NWI{dfz#pvx$&3yj=n+q+A%W1>a#$}bvB+MOD zRz*MLLs};%+^oapQvk8l<;OJIJ*-KJEoZ!`6GYaR-k25Hk~z7_;J1WI8+D5xZ>tg{ zsFX8O`NEx@J!9&|evg`xj#^AuzQ@V_MG073#4r5#FCpuiB|b=4jfTj- z@4(muN#v?}1%YvZ$!;C4%PqWQf<(aYu8(|!)6pbW^>%_jUZnPz?l72&()&`OgCID|LOtYJeU?4HaYxx|3J!z#oM{8p%qiOJQP~JM z_;BGAZt)v@@AE0+xd3@i_LZGEM}*4A8(IRpt!H>31wCo+tdQvG(x<1BC$}2b>Myes zxWIBiVLZw38V4xT;YzxScCEHZdKKQ}jIw)W$HZDzuu>@Z5r|MRoGX3N*cehVrb{jX z=}kDkqj6RwHLIVKCC`-*KI4u(bCor%bLuK6>=zG3!=>R@F_F|_Uv_0!$xD_kOJT(@ zWgRYA$Hcjs8Ti?I3zXR+w|QE3zm|OrZcyI8SBRkq%TL(bsg z5g%rzFsoNW7bozPcy&2S0=9&9yaWyHE0#WLj``M#PK&jPT0Ua$!x{6QF$jDmKj04F zm|gV(qoZ(l*iJTm1C1NpHXzF@??JQ%>X#7nw$5J&GRu7i?Si094)Y@>#nZ}4E7e_G ztBzpb^`@3J%nMiOK&)LVjCU1n0tBm^fD<@tb#91xyjYi2F#}lo#PP`4S=xNFnIpEc zts6-a{#k%{Q7o+xv^odj(NQ2Ux&r_>b~;p*{R=C(C%+JG`Cv1<4+MV7D!GAhOUOKP zEu7^v2!rRHLG#2?IpBaPI^Sf<{RUV7kvVL)lHDFG{S7F06v5-174G1C4>ba2UO$OF z>p<)oi?WO_9kI@>!?`YQA8`8<2(2jh=5Do46F(m!5{V@@zbdv(38&NgjKY@ z`Ih^4efg-2NEgv*5n$}~4(|Sc6BF24-O?f-*MCzCn9ikGX)=3r=I!lwlbOJm#ZX;D~#l@V#p z&GfBE#xP`zK$rt#xgJ6`xfFkb9OfAJqt!n(UXGt>oybOBI5KDkT-ia2nr-!%-Hp$o zDI>z^UaHI(G>C4P73q`2LtdBiA^O!7KZ*G>opEl7S?lfWIReW(qWQvA0Ewu3tOz7X zUw`MPJ!B0#01wvMAP8LN*VvK=2BzZm^J@R$-tPf-4mu;>F(4za@Xj9sqUIdi-%0N2 zfz6TCv$M=tkLyDWb5dIG-H*|APNUEETx-NJ19+n!FJ1`Tb2hwFWQ*f$bAtSO5b?%f z(`Sv`SV1LuagRPUD=c;Xhd9nQG~>kLek)8xK=m=-529QC0g&f8zMGXz;VjYCTCVA^ z*L*Q`*tFt6^5X39ug&wfw-YVT*s+pLrUbtG!NfN2`@E~8`HGL9wbkAB@&Id#)#aLK zcXmR$mhQQ{v?Ab+9+#y8iB||_uJ}l4e-0~5+Yb{heQJd_ojxx+^0%tsJy@zU7>;or zFyI4Rbd{G($4VcM?ndXoa6uM++gHur9k4?3}2pp!~M3lkeyVrZ?i8Gc9I@%VqI?Mwh5WP ze6T>(;2!G!vofCQndK}sqjP;DMQ!E!IN0VVIoYeR7X}MwTU&JqwyzO1hn%3=wt-0Y zkPDJg1pw^WDKfp;Sxb*4jEblSvco!zow6W|35iX^x>n~1i^gRR73Oh?+#dEWAJ|;x zSI?YbvEinII`;vhjkV~`DzV~uIuEs#y{Nf*#$#@gGRo@%6ux$1?)ineI@T;T-?MQ!l@Xj{vO~_CGD^nSO4oGOGG*b!;HS5=e}2v4&3=Yx>B+X4 z8>*5!Sk6l3wv^!3M5W9drXAZZEEP%JEM0nm>L6(EWs*xf^GhIVY z89iYw#_^Lyt=1l$tGJltt(9ElwoH~2s5;idb&vSVWMh_YIH}I7ADMfAim=`6#!`H~ zIZG{9n_`hwQ#agqvvK_kn^3g8y#f??l+vB27l04zrO!33bH2T(oPiJQTh*bD!cZeR z7rZxi4L-kg%A$YXg$dl$*CngwA`ue3-ah!gUEzJ$xVMt3XO6Cb`zbh3Fo@`DbnT!o z-UnIEI96UV!PZNJbFX*yyT~^w?2w0!^cGeO0-0@5dy@e93)_h0;uJ_lN}Qm)hr^*feiFvnIgntU$WlJLU`QHdwSUmi5^j^~iH?ngX=y{QERZaJ$ zU!}EFcdQjmS7WPwM0RFXX}vA0U$Y-2T6(i>|9DfZV}=d=QEem)-5wOueSKjdc>J<; z-t=!j9B1IQsO+skY|mSW?Wn_b6|19JDnF^d6`Njf3bftfE>2+0l=Hk%k|hDu1^WrG z&j6i({(_}ye)oJ~l_{&v-XYE3%ye|&?%2E+5TE48xpB7neK*q3)mX=TI3RlTWCSy) zZ+Ez_yHg_z`}1`onyl@z6n;+h-6a~{GQFQLKm}DQ$MSjf*l^+9Y}T;<$B5?g;VrW` zyG?~UX&%c~lE;1Tq90i-|OSq$jlaD*c(koeT7|MU+?={K} z`gYPo!}{-OT~>Jy*%ZG*j`)NLi?4FOZGZJcETw1aq(7}m3Z3D@3#$8sk~z`qc-t{*LCKT~(u&Jf@+H0QJnF}EjH6*shrDt9Lc$5gpRk8EvDTr39){>7HXP^r#7 z&@2Eq+Z+Hl63L4hyktLG)c4M9A>-o`sIJtmQlC4W*;c5!XTMh;++X#`R=77K%?YSd z6JpwL)dUBgzH(+N!K(E2KQ7t0&^YZT$f71Mb3ppmeLGk|_PZr^s9mTH{W#p8jqLPJ zFZ;se?zn5+cW^EeYhfef*{R5>HC7UIPau@dnEIx-^B0T1CcYb;$)DY^KYzsGr@VG8 zJzzX@v03)t6xX+on8*XaRtuY*JGQa*y7P@jKtfDq$8>f%0x`xZj@=KU3Q{Fmf%bfD z%;s1}5o~Kq*~iL6=w->ko9p$k)6GjNzwP-TV zrA7x)W}V;ohMxH(NFRdDCl}{C>I~OH9rlw%^xIfU#LP?Y-cm*wjE?A23a}HBIaijY z{h6sKR$&g(Fq$4qXwZe?km@FrN9X+O;>mZj~n?wqqdlZ6Ug@+iv8+K`KH zDM(>3(S=A4j|*k6=_rRkUQ@4|8SaM1M!@lU0zriiV@87>Plc5(rE$&I4j?@iRX68y z%$Lu`I5uNK_&ST54xONL67HoJ9M|n%(EXQr=@z0aQ&E77`=$6mz)1O1bdBHHM z+$ZHjey-KFG|DH|Y=$wSic~Y6tM9JF^9{E)$)^a>R)PQ{Bm8J_0w;Cj!(ro@m$P?F zCNzhk(?wY=4?U$<%;%3-L|GtOP%6_7aM# z5fm`-rMYbdU3!XkQJzxuv)2-Db_~g0&^A7!f=y`DMKy2F1Z^8*n_y_`6p_{PKSLRF z-QdMs<4rN*%Hm{?i@>q7AQ8ODmgBzG6;_rN{l>oOS)y2KDF725Pt`e5U-=dB9gvmR zoBpV~J5ClA0ZvQ!1hY}h!E1o*sC}PrnJ{xq=x7RvFHqIiqID1LnWNcutZo$K;sixf z{u_vy_TuRH*;?3pQO1F)acU%;Tc@gX0vew!HnZ@jC6M^GZ?>YppG#=KBjhG<7g~`@ z0w=0Z!l^kVO+F=zL|=34&b0?9HISbiQG{o0hC}1?g9Amm325Mz$$WvJV-nTa;*7qT z`bLArH;5*rWwZCWtmrKZITKU+aJ*;$$Y&y}H;7k7YJWZ(zd80O2>vq`Ia=DA78Alm4`IK&?_pr8}wMR*+^#gou z0sI7?3s@EB4)Uv>XNFl7v1xEE2jg|lpXPW6?M<3un-Grn0p-|R+dU`Wi$yFG5|x6o31;!&UF#7K#%!+&S`KR4l9zOj7`Xa zo!1{+54AdE-d*6F<;ORkKED9YB;Bi9y~OE?a`TC#n?%0|;B1$zel`o50~S6-qN7pO zpjBJd3`9nMh?Ud_erFzdSY)2b4tmvNLEM!gFjIQ~4_3WvL#05Z$gFsBdtTlmQIA8f z&_+h!oR15r#6Y@0%a>aOI*8bqc!ByChS&3juWj|rzGrzAEZZ~{B!liHX-;6X9=5;( zJ>2o~Jydwk#SLm>;M*I)^x7p|KBo}w30%_3OsM?Dv~NJ^qVQQ0X_$}2l>xY77VI3# zBfYu2;Lsd=&O#V((r5bJYgUL(hn->5?Pd`zlkb$1gK2(A=P#xQuM47#5mcnXIU+1L z5!n?hxsQdzEfKijft59-GIDih?L?)@YzoTjzTn)T)m#gkphgN>4sT|Ciq+o0J_^bq zjb*dE?-?5ay~4JEa>h4Rq#sL#Icb_~6_ymP$W}ztiuS2nol2i`Mh$ENk~BPriZQF6 z1!getCU_byi>5~4EH6p`;}J>%1|yokA7G3YkurgM43-JAsv;Gp&UUXF5FfeSfpb%% z#}EFZ@?0>CV|I;hRb@rw?cYEBYJBV#Wv(z-yQiORy^- z8i_#Ywa;a($n`H$HQO7=wQ}BYE!%HKA~8Ig&U14HUb02Dh_6+VX_wjI6fSb8pnWy>%Kzd|8-O{`-F>MxfvG*>(=!qo3A^dQ z7j7FX5+K6k0?Yw)%Cf1?Z|-TSh5gU=ovtZaZyPZ931ET}81ZNTB z6P2URr53$|t@Dm~2YTx>yp)j$H(Ve(Inz(&$up^lI!XsBNc8_!TW9ufC zcbuQCopDqLepV0aF1GK5J;*)GibLg) z1+J9ySS<4MmBHogLggn3+2H1o=*)d^deY@usJr2f=i+5`zcZTp3^vrKi~q29a%C*x zGbp9{j{j-*#&fk8t*OifxFVF*!0AT*RwU(yuPr5$$VdLz6)!%0XB=p1R=n*$qx?#=CU3E z_E@9e{=AS3e>Lre(sH49(gcwe)D#P~;ji|-Mv5)%_Xf>_rN@P0^Vh(3CW<8m=~;b- zJ#UW*dj8bzod3+xtGy9*-axLhB3 zI+AIiN|1dm86of!rxiSa!ABMOT0P$B%Q41ksq|@9kOWVI0Wy-t_waZ42s7d1ncDPY z{fT4U?9mEbaCjT;Maju}lZ-&$G^+E||7S^Z{ba;9fQz8C`|sj^Ap8%pgt_Bpb+|8< zrvndc-KO+ZwZdJi$0hA&(|0}{zbj&vZa)0Ry-l9=v2HB;8Xh-KHDXsu_w)k32%M`uGM>K+Pv!*ytMM5t zV8O2^ogx}^37nc6d$A7MfHxE7G%IVgPU^d6vqEt>?I8G7!Y_vHmd^(*^+e|L>TsJM z=((eyzCp@I(30iC!wUG&*+!7l3M!5mt=sgSRD39|s0EOM-!a>}qsWr(JM};|6=hx? zF0f+327HNV1Z%qDJVbH>szHnB^)LUfnT4}A;K7!*HkXmw{_mP!IDCT+2`*+ZfsREM z%VsD(J@(z2!COj%QqH*?L0hXV?EVeT%;y44l6UESCj<^eyhUReLafq&mn@CNV`&4; z;Jpk}FDH>znZKY(>2_qUBoDf?-;6+(6Ld;2=Kp7L0T-1+E&B!#k z2+6JxGI}WeU5`R=a&|KX4@XggpJJ zl9-K-I+lGr+u;Waezehef7*raj|t&$;bR8R;Z}*1I?YE2QWb%I@lJ8QAlr1iHMROM zxX@UZnWL`f9mtRY2k6+Dr8E@B__XR;lH{woXFbv$-k%2@H^QZy#8$CH`xUujlXx(c zV@IfEOUM`rxv6*TP6VJ@-mTQ(mJK?8+0>B}oe29oTfUX)fHQ9Mjx^X!xI!JS{egQK z3ChR=UB+j)MXlniTz%|q62^`fJahL?syHT+HYkqIM~i>wh~(jY3RsG)$PKwiw`mz2 z5Al`Y%+HxrFq#`U$W8tDHWIlF%qrl)5k=Yw^hKR7DnW8nT^u&jJhVrGj6Qx}07d^#qn zS=4T1uM6^2WQ11>BQd(v0FJzBdj}5uRHAD)!`}6JKJ5J)OsSnrg-S4KS`MD;u7CU|U8Q!) zV6E~>na9AhxIitDv~>D(%0fi)DmI#n7{Ge?;eZF(@XMYzPR;sVqX&jIxr1Zn>x|!} z{!vs90di!p9OgI~PXrUDoS)kYmU*rS6`UndK<4WDqw-`WR0e0w=iK_|W`||Aw?ASe zFml-R<(5f>zce1eKR%B}H3G^<{>XZu200SI9QY?|dbAttIPs?|XXiTpKiQcQtDFB5 z3{9*#$e;9ZA`GyQ|KCRcKZ9;$Z=j96?wX9T0d`rw5UgM$@;0;{{$_b?6a-+_E4b`P z{`w&(&9zdWyIqwl0fl0I(+}~RWtNiQ@M^ly52FG&UBR|DvKNdIWPb_ytXnL$8pk&@ z*unD!a5SDZ&6~feK3BU(X8WIa`tP>i!2b`D{~($3w*MUGzgPkaQn*m~r=T!lQ`;7o zry+90G*#p2(`IyUAiAD?&`{lVzUj&6uZhi9x4$MEo?&?Hh;BBcdZAAXbsv~(<2&!1 zXp8}0Xwy1oyyaxlSoi}=TJ-AKy>pKsB`6DB*^A`)$N4W=QGE)WTJT@RI`FI6@eF?Y z7YY~A`n{(?J0NS&e=}EdGV;t^#-Lp~QVpJiX~4bFDe&87IA@UUaNteM$%UDZYTCjY zZSb4PR`BxJzQ$SgeD$$W1M&I27|UFHS-mKzEZ2g)3Pl9!^KL$vqz=1L%Q8bT1BnZr z>y}-t9u#D-G~>LWOlHj7}v4RJK5fEUHB3* zGexPleizbYNQ>0QKkd=&S)ww%zmabIf)?wjLhKG6oa`V9>yI}+d5h^52)C}aM)!)n z1w)=*F{!h2ANrV(*f;0O7f=`nYMZmbxFSjZAYp|UQ_lY&l%iessamzVF1B)cob9$@ zeVXTc#d_yHaIcZSkUamvQ}N>e{cj|6-!ZcEah(jb)@M1frSDl(U7reH z-9drZWgXWJN^+*H@i{(|@Tm%scQ^h{%UyKB^9#iNckRS4PN*i{{iG8Csm!h{OaA1q z5dA4zSUEW6rgfZfuoic?!ffgobTDD@*Il0SQi`*#70FJ*3K`CiO0%`W+0<(NfB+S1 z{-zP^jm|q!dKC{&`73E;?M2nGzpJTNO1mQFIk%n1>B^AqCw@P# z8*^_*D5|Uw>Ih)n0~~WFulZ$I6z+1(%DL~riH=#q>sZ0Mr*gGIbinppSQLL^y!G7M zg#U^Ef2#I-GuoNe_+TFyNn+Ez7dLKx(mPRkUa0ng(zlHDXW!n)vZi#I!7Zjr>VpUFP&{}m--kFwkb_}?Dka+JyEHTaR%QGUAuM7r(MUJaTV=TswMsQ{#h8M{!i%? zqQ;dAxVIW>>57ri15|#jf^HuYPt#q?RD7P~tr1%mi_8Lh#ATzRh?SNv|Zqf#MQwNx>?4Qk_N3%!x(L zT4-Ty@U>P&IQ0VaD(P4atfKMTz*1V#db>5HqB|x&=|+X9V#sRVD%CS1o9|lgSyj$> z{y>r29eF@kk!_Hmt$-igIs^tl`v zUtR)1UpR%fVUh@Iy^{n>8Vb?Ni%&1E0tY&)XT|_4T*nR;|DCn3KBXo1a6YkP7^BB% zuKXHsXnI)*-?T#YyUi|QGYqa}%xqbJfejtSxKLY_RTdlS5O;Bm*wOzAV(2;r*+hDg z+-ZulM*ili6zl2xYdp88htSE3)zHg_vdXI}Rj(?$OcyDUdQYP;^27rZo-+)AR>BT( ze;UCmmM}aO*8R<)c=hNPXN$f}Goa3oW(5O)LZ zSW1wgwLLXQ;bvTe98}JEIjD3jy~g|4pt5iLtMfN^v-(kg;v4wh_2*S|a7~|hKE^`k zl|DmKD=c%2O#wA01|m5ciJCs>(|n+!|wJ z#&PyKb=S&vZ|bM5;;tsn@XK{47wMuX&B0Wmj`C?59k~&+Sjmk`klV8FakKohfSO$- za14AnRcTq@+6TU`=ntq9&sktzQAGzoK1{QdO=q~qcm%GFX7S~tpAhtYT>NCAgO37QXra+ZImc{b) zQH5@ZGX#)M7?e#>O0W1}khjNn`w8_!1?5b|A=^cj2hr|_D~q_VRB9Y_w5docwXTJ> zU-B?3*W8mISwH&OsxV%$JT8PA=ieD=M(FIY@?Xk$W>=$4Rg$06&4q#l@`Ba}}UeGFvg+@KNMto%ZQgrmntZ9m33x{2U9Ts(Pw>gX0ZA(>vU z!1r24R=K6Pb(bVj&d`0d9I*Mp=6fo%fF}m43hpNGElj zH!vP!Re@Spu=y8G_f?v9c6V;;)#&tw&eiIGm?XURsTB&>oYY>Kt=88t$ZVO-9V`qR zTI-WU73*Go$7A}7Jcn8Rj6bnv!{UxN#;_}0vIlRcdHHlyH1g~XC3ZkYDF!*Up~|!4 zG3px$+7tz5jqJe;qP4?8~FW zYRI-}L4NcTZ;wz7p~p1jwhI@>J8Acx-{8FvyVV(;6P{EPM5*jkx{Ks+QJ_CbNCjV$ zSR59NsVsa$t^4(xK5L3@d@>M3An1PoeW~^T6JKhr_3R^b*OCi?&{;8T z<5J*s{!``U@(DirmzjypZz%||tg>&o)7?d1NXYhy;_EY~CB)385|2E;P9LPvp_4m& zc!(Y|VbIkHLY5Y@zn8?NN3z)@c!-R|;9pfx#2Gk`xHERwbhfnwaWCB}KO@KEY&)8) zc5}6SOiOY*UCqFk$4VMi*6j7SO%z#tk4!q@dOG%y5m0 z1Qh3(u>6Pzwp6l~&bW*Bp;$k0&>10zLJX>MX<^Z$;KS|Pys5!)pTsAVUgTc6IVwM+ zc@SzpM7Np1Ja|467nNA=Wd}5nYFyn;P`MR2SM?acW zXrOQO+U|-kEmHMz-{{&hz1pE_tW&_-iKgk}HBRVAD^@M6)Y{ddA$51sc}xYfhjH0& z2O*eQbl+o^$;2`9$7n>ROEwp|g!&bY~A&sC=kFtgUD5}+CyL5s1p zsL}JQ@V-Ye_rd#9G~8B*K_Y8tp)p$@K@N9Sa3wQxkoV|hU+F*|gy8YMSbR-y&CuBH z8QV~JCnng*=i2m(nS&82CRg+)ZR*;NP-7;^D?H9eCci`$V4#_m8ztUe!*wwe(9G+F z(IaM1hc?19W@(93Hd{xJ?ATo$Anf4K?UZNjs=uk(Q4_G0dDxKC-T~{+E-7ITTy5ujC9KztZ$lUrp?tzQRljR_GX> zINKw4&>bIiV{7~sb0_AOH zZo}qe)#wgg3eU53bktDBK_3-5*45+@OOH9Ew||mcr=@-~Pu$8tj6tv>V$kZdI9_s{ zRl6=Bfy*6Tb)#m}7A(|K;_tqSxA80O{%3}J_{%Ki`Lh7X!Vvp3R5zY znJvah>a6s?7!!u+?Zd3ZTe*3j`sVO7)Q{G!tv|V9sM#2PJbuTCL4f+Ro41{HG$q@T zb9OVzBcKy!y><~esfmn0^uWPhnWHg;72-RH_9f(A@!cUg-dN{D} zYsNEg@V%SErdLY+CDHNRVXbS^g4?{ht-PW_t0)x9+j4KGsrl5SD4b+_+*O*A1iF1J z=>=^sSNCvD=e5U>=NJY#OTDA1ij5gCRlY3Srh~B?p}w_51szo1=c?!&12w&k^BgY; zb)a1GFVc-a(7)R*U7l5OL`*qySn>=4CFwW&|f*2SnQ zJ=Alc>@3kZZAKwi;UdVT%(gqzPJ3~TeN^ER)k5{2ywa<+K{wRn4;3lQ7JtGha^oZz zq^B6oFJ1|P$+NrNF3HA_n7~DQhuahBOab%?83*J!J*hCSQY<;S2MBiITrv3$boDMy zkR0>a>of{t?yD3xh;4t5bezCodB%(=t^)?EvKYA55cX(zSr@y z9=ZRfm2!5L75*7TaaOL%1L(^#*6VSRV!x=80J9!D#5}f!{N`JN@+=Nl1{I4k+N(S= zCXS(SZ5&2E%VTy$r=0h`rs){EuhEUiv4&6?@KCpRN)1b>>wY^ibozQsGoIX@Pm81? z)hlWAb|mdFjhw7GysuKk;5pze9GE*7v+Wb+SP!$Vcx!=5a`LRa@+D=#mg&yMuBkyJ zRFRNkr3HCWD8#tqp$TRoVn$w0K2~I&GtOu794WM|l>R%oHQkYMWM)kfGM5$ArWzJO zRUP741@=Q<7k{DQ&RCMr&IV`Qbsz1&b)bp+awhVe`}rl?5>K^-7~Gh##M8&Km@!4u zKm+-%JI&@3j^%N*n8NYv}^y{36MA6E8+OrDKL{#!JrVd4HP_kIy3@ zi!@7Y-Erj7w~cZRR^7G<MtM=8H6i)}j)u63RPXTs)Iv!EiS_3w^E@!pww+o7;m!?Eb*r6t8BEi)cGsuy}YR=$8 zC&%Ye3Uv1)^l)iY*T6V3S&Lx4D*rz1!(0Im6*&LL4;B88n0)-l z9)PEZK|F(vv-wp@0l#~hKcOi)9@_BO9{g|f}5yX9=FDzVw#tY6P%52f_Kd`c+ zD`XKO;o2(j53KBt+scjbKELtNQZj0%*)qiRJ5%jQeCKJ0HHeX0HQqb0l?8Zt1X0*e zU9al~xM?}wT1W*fyNT--aK>6A%5;<$7vcq^W1Qa5ktaE>SHxrdXeWYlEYRTdA@1v4 z63B9&CzV_~O3#J9XxHSqe%U*|a#^$GOM-iwKF{@s-`t{zvqa{Q9a#;ra$|1gmmMV+ zMOU}E@?00ufJBwAB8OaD;nT{9J(6t&76R8bvx;S6s11Q!*O{E|yAPsx5LxT7mFxY~ z5vbRnhPGoXk1|8l5hKqetr;VdF-ytMjkHnjR*MqDB~LP@tvpuXty4aNZ`u!a>?>Wo zN2ZQ>W0v~fV)^yBWIE=k&-90<`k)h~Q(G9ca~3Edg|`vi;QgY+!r9lMuIQ4-@VuiD}yMLrr!e4B_j}$ zqwaWX0TnI)@f5}cG>nQCXrp+#!SQx8#FlS$(lZo6S4j2H?v__j2#q3V*~W!HmE}NL z<5Vbfce%LR!!by8lI&2FjWB#)XE5Fk1>3@ZU5fVL8eiDsImgFV)sl!NOrp{4C5J%J}4g-FVDuS-zedMC+x$rF!Di;QEo5z`@ z9m;W^FRyOnq26jSSVZ5|Ygt6%eBl>1EpV*vGZF1IHA%wNOZoJarC|5nFg!=j^*XwI z>+V~QD<-R#k};TBH_2@c`2yaz)z2?cTDW)BvAS2dZg6CjLM`9m)Bmmt+^hHFy?UU2 zlD1+#i9O&sJiS8o{2@iAX(36^hD*A|eZ!7)2e*AA zHsJtx%*pBA3PfE(p4_jejY8fb3NV(CU!CKUUV$Hcronq>;=v#Oa&&#ZevbOmh3!+u zHf?J#_fvPhLUP+W9YZ{-Zi*5rFNyyUb`f_-&aav$geu>AiKtZWBUc{hmO)9_P2QLeLqfvmwJ#s=^&woC=-scoI!gGvzx z+8|mQ^c;R=^(5eHJM-RQTQ123F$%5%(gKw3g%lS9@*{D%S^~N%-pD?g-WF?GnFC~mC9Jhpj2X#kPI`nhA@`F7-MGM>-(Jzs1g!w>si{+6*Zzz?eH5h{i*0BcxC@82Yg6?!*Nm-WLR#Z@aCe?n zqGBS$y$(N+8V}A)<`)4TXFd)Y4f3L48jCV>%(~%&S2c*+1sJ};=zOqM4uo(!Wmc6< zLyT%}<*(SKvSRUiEpU+N+_q8pga)4Z&;Z=-kg;WgY)K= z>Z&heO2U&WZu8nEaracP+Nj-l|^;{=V+Bxc%7g7NEkEp1}WWazIa=RJqrYdrc1 zGnwu-5HrT3zt9YgN`;(j0{W*zFh?gr-$aR8mof?Z|2aziuPgd(Z*Jr1`2C0tiy^NZ z584()rc~G-xz1-o-i}8u#s6BD)Y}4)$Beh;gL|~YywjeUBL9FaRCcfU1`fxkOjAKX zKK0<9%TfV9`>4o^A&!6${Q?)9U$D~x@}j3Fotr|qYhWLTf5jI&yCGl5iG1?G-RHr$ zENQW0LioCB^%|zCn=!>LZkPGXGQss=AhJWo%{C??xiPqld~3)Xx2y=^w!_g663%{e z`1OynOjXz+_spSMXoUHc6mI$z1MvPU>sf~tIn!$F0$9!j$_;%^q zav_rW*TBH7-9)LqFbbzmUjb3(z52%$FYBq_Df!plvUafZJ_niK0!Pi%hlzrPW%-BM zF2XS4xC_#C1S!?tozIMhC$D%h1N<1LL@hbEUf=k*u!WCeqj zyp3exP7>-Yj&r&&REY54tUQ6xNa9cz1S#uUsPX>sAZ{+PZJd9?y~h0WDdQumlvF=m z7~Qz*#{1Vnv1sa0 zrfP3|owHtO=#hm)I#v=AZE@1~# zSbUM=Gu^B>hos^hdNmOu`I!|{kbYZ_*nn3D8a~2TzQUDv73&#SX&FZ8;4d=IJH&7*-t0R9 zxee_SJth#y>_Jevk8&3*wq9G94do+xwCX@oTn=PSQ*l&^q+>P7 z@$DN+RuXY$V8p#zi-|Z*I6SM7dHX^PD`zsBfqI_eBoJD_zcu3trf8SV#k;#6m;0ATTCVunzN=Na%CskD$uEcfkAd|fmRu-bkibCUO>X&S_gy%TwMaVGO9 z5PV{`q*Y9qqh8)HDX*4{%-=ENluRZ4{ky*<|FR%A}m0%0HEbL@H7hCR2;U zmmgw0C8@y#NS>%PhhNUFc`U*1o&?8oZ{$xd=Bs1*1U?G0;&Sh!S@viFeiF3yX%WFW z5r1OB;-s!Cnrx!L5H32zFbB@^f6L|cXtb$SM!0v)`X`B zW?gZ9bbOClSUQaRX8u12a81T9S?~1^af0xXV^Pj4?-EpNUX5DjzqSRxBzfGzQl;{A zho(-2Mm#vvDL($UaPoY3+MN%@%VHkuO>}Y_#|Mh{i94daPfef#(8_v=QuOIt<#4Jp zMxD9m>elCEEZuXWNzv@*T) z6XBZepP`k=yI129R$JV4r!=#2&t379PWyyLOmI;XZB_yu77~t8X(S7Q*rGwYumW8XVhnAwz-8?p;vwhrYPesp!gTHK z!Jy#Z@NWNMO7&n@;)V*tsxH00qb*$a#*3qaFYZd7{_c`bG`#dWof-c#*v=}THV7VR z!PWD44JRf-<0nu4pn>OY4HAe7;|W?RMt#55RVLoy7(eG8urKDAQ+9UILGil)(%xLE3FK{TFd?)#c<&vfU5 zE2{Z+@OIAOJ^KPndC9ZDSymjYJF}4cg74!5vs%`qsxl5v5IE-mavQJ-kG;E zT+>36m{EEaoZIVCRH-hmJIg&kA=FosifUl~^etoON`p+}t>(F$cyx{6F4z7r8m9vh zh`v6F$|4umVN&4`Li416H~wo+VidLP2Cf6H#)`SB)QWp-qMx}P_LqDH9$XWeQCezx zEx!Y|hnF_or7CXdbrF}y@Of(iH4x9j}Yki*bZ)a(jeRpLtlT$4vc%@V|);X zaWR#32&4+RgyOF9@0rL0X<&yE@((-uHwnEu9KjE!2oEq6gCk#Y3L zbJ1jRB?zRw5Zj;lXb9W)8hBbC&aQv25Uh6y(iY+GEqIm15cYKbhM)fh zdm9S(Eqj^%bAU!}Qfyc5&@K@?oA!oRSc}4bU~;j>g!n#zzv5Iv&8qQ*^J>e(-~svA zN>W*BI>J@3VpL&o9yreKmAQpk#~!hU!=FJh0!q|M2Q~N+E6yK(=zcv)F(=Y?Hq|+c z;UWZ*O=W@mXMJkpio2MPq#{;jqz1#IgkZGUBi`^RoEQu^d3rC*>laiJI_3AR(Lusoybtx^ia^d%;KzPF4-)NjL<#KnE%=DzG2J>6xw2h z@F>&q=6|E%4zz;L$W$A;GJ9m2RzEVo#ndc9pZIYDk+HMWD0IGVoj-S9uVM)1#f1-b z3DYQ943$F$#3Wn03mAtBK*MoAYyb-{EH5zLkb08j-pjcN?VdOcHrPfFEG;#3q2+zh zqnb&#Uk@8$Rk>`sVs0Xj!&&|a~(=$@U`vfqske;z!ErYX5b_D z$W)b(;7JYy;**r1RCzwY7{whVAw z<5If}D6cu!>e6>_Yw6k_yq8!0%Onaj(3>6ut+ul&m8rGKV}nNrY<$r@;pa1~Ybb>@ zH`nM7iM#edP`_xshRNT*6Rn_=bv7!s$6v@nmk~b-D{;;!l5w7t%qxM1b48NaU7)ZQ z0J!E*Lt*xPN54nVo-HOa?%KWixO2!TeJh9wU6J2MDs?Mb=D<+k4O>r0uxSS&MeMeR zhpwz>`3Ods&z*yLJ}5+!o@FI}5G@eGz2WvIeMld;*alG3v%KVeQd8*oqn=foHI_}( zeYR*9E$CScgakuJ4jh4WScF8@B}K-mY*9T7lg0N48h3!*vErb*AO*?+U6-HpfUt&B zoW8-Q1zuW|G*I~*b+K#g5yLJAwS_Yd-4v@p(C!Y<@ z{QM@Gx~*!yAS>))=xLEpIn2XS^b51;YEWAh&q4+V?2E5?R9z`&-V%b@TIVv-Joi%h zlGo4A2}8u@Mm%Z;8#U@jS=aQ8DL9vbgpYXx-l0labcZiL=L>Q#m|#_d9(_)e6nWJJ z3_s&CJ>LTkF6JB~+(8Dn>3NcB+y@DE$lLOv?nMGl#wxLCor>nOM?`tgN`#0p=RPqw zyOhbia9H2|B}4%iC*YoGSidB8!3rV8^q8D(I@5v*#|OLO6$Hl7opbXTx)NHRFi`HPDM^Gn6ukR23y~{4N zz~`Dcj4d$FVuWy|LLl95Ks5sFKuHp8l3*7fm517EEB3P4R2Nwo)zOe2?@d9Gcs!7Y zMzGgYL=trAx2Xs5g0k{OHqZ;<7P$-uZ%zofA|ifeDED%mL(quOD;vMk^M9efILg3d zM@zAx-NH-#x3xu*)U(umxjkm-A{N%5A@6VPSo{X>fnK6QmHi>l6!2u3NXL17KG5dr zqvS)P7}bFnqWOqnMm#^}SvYnGv;AjAf zzUfU-$Ew_{sJ;(d?n|nkS`cAlhcqbu;0$6h&r9#^%Xs0yyFVjn-3-wKYno+NS~OYkCs&sPy1TaJmK*O)$&87mZY(9yx5k#-!R%R1lnJ1L!Rngxkc z0I)t0lo1DV#2)#C%p;WSG1((tXDNVpC0E>jO&1a9HYPv5PJ%5(4i5}O)6STi1zOqXs)zqHZZMD2rfxdFx{+3Zy#|BKD(cx|?pwG9|iOy73p75s|DvDD|#QNiUR)5>-(6Q1f=1i4nLEJAxfOvf^%m( zjyXE98_SG-+Tbeh!ULxlM2QEs-SF#gT#$^c7)U8{P=f(D>TqFdfkUu~z1W@3Qcd~u zuF&&Wz=GZZ->0WslPS@DVN2gH_T(-XaHaEtE+^R`2Q2GnuAo@=V;PK;jqGHvtr5*iXla&}qsyyr&$>i6#}lZw$)vLD9Ovk&V13 z=_zujwQYrIfq6E=dFRG~V5MPoM<{PVlMzUVH$S}zyZRYE2W5k5%T4ChEl>s711@#s z85{5`0|{CGlZ1L(3Dhy_z=42w3(V3QuVApmvt{j)Chp|CbRIdVIF^^(mx`z7FBS$J zWls!8PCPm2GsYcWKDa`I`spCw2&{0TNCw0)Lw}n~SBrsKfQ$yyq<(*f-~sYjDPt(S`?ut8Pt7YL)XRW zs6mFUK%3=WHke@nC*M>9cHoPrr}AIGNH3tWDrdl2?+xX$TKMNj+r=sL%RYlL&n!vy z$a?brqv-AqKn&DH0{BMcmWUa21NAmx!2x9!OwO58Cr*=t{OiJeKkZaM@{-pX31uLS z(|K;9R7Ix>MXEQ8;Vchbt*yXyBT!g6>is7VTFENh(Mac@cr1F zo8!F5|8o(xh=v`6>9R4-j}jIxc6lApbg!@}NUBizvmb~?99Ksq&5ZaFf^o!zVw%iQ zNbXqqBC1k2XF{N7jABR&K-F)HirImHIcmxJhl0wgdu2-GvdF^X`nT@-dadp zP}fd?*42BabXCRk0>}_+zB4N3-wD6;gU?a&0&Yv zWEs;ry%>)`G}WtDu#KJXK_lP55eq+x({6?8dw1sMfGqvoy~!3*T2O`5lf zTPlJPg)Q$Wq>Bt?_p7!bKXR6Mc^LH!8{=FNanVn%`vX6L6VnYzsteypu=BOm9Yl^t z{8~-SU+65F!t`29r5r3vx_tK_?ddiPqG+DnHN$w6`Cc?-H7JN=d;PJOgfIm8W!BNI z;{88B^*tPED~B*TM8R9wOV$PA2}@xkyQ?)oH9p?+lWTpYr6Ko)x# zre@6`=^Oui1&RL!VI__@%s32xd=ME&4{uLVGsc7P2jLEU;*^_=O29HVWE2f)s$e>pbcWE0LL44;T1l2wTjB$1(OW& z69Jv~nk*`kYDNWv-~51Up4S+xAgq6>r@&k2^NYLiNE@$g7#qkZ_&hQ}*X~;dRvd69 zR7of5S#n}F0L+<>Ow_zaon!WSiUivqDthMZX9sRSVTF=_L!AnlCs6McnCr7{>y7%z zGhl9um4FpjKV&l~Cw&IYg#pDVcbagJ?lAt3teoH!$oIzQ5002!Dc;&SE0)?Qnq4ZuzF+` zx&_aTG!^Y}Wblr%YrDqBhDV(%L3nRYeb%tyR5D9TAPb(YC!n zY>_-^X0M4VjlLiDXC{$R1N-_b1NMj;4Be>3BQV%_xaN=bqEP0J3j_bVc5~f@Ch^d( z%b((xz=53DJe{{04ni9lc*1I!iuP($l!E-71>Xb0;+zBGjT7%fP{_lumr<3~|WJu^wrb5S8x?#xOX*i|QyW2k5J)hTGT znq;6~MXLAexWW)RN&alMDR*r$k05ahF6qXK+fh}{E^Np^CL!avtbc(iT`?>(zHaYp z!5f%8e>$;EQx7;0G{R<*!GEeXG&F*fL|>$ci|Vm?!8gy2^%&tw^QT^W(MZZ5No%N} zcdqq=*MIb$!LFS3v8!_F4df!N{xl zb0^$f-DXoQyjHzX-+bQ@@pQ|XsuJ8bLG#|UA5eVrb+eSi)|PKt_jbcZX=akC^fPTs zhdY}XNRc3<>w zTN0z_X)bJtya|A{I}kk61G(_IUP{t@*cUa#>`tE_#`c{K45O1=P~`#pe{Ji8CI(?_ z+Bad7H)_t@;Q8Xc=g|PYp}mK{C>AKVOquwt`x$n9mbly=Ytqrf&y;`#r5~V34hDIO zH?>CD?%L3}Xm~pjseI{;o&$tMhx=y`mB%Fl8+suYrGZPG-o77bohM37##}Nc06Iy$ z#+tq@wo;MmC9;vQ@&s8%Pp#IBgUZA>I=@c1U;A5vQ3&=k4%yH>L%1k7H2%IeiHy_X zeqEGKkLm?76H&(i)#hQJE0bmQqFEcDSAQ*DiULf_i#i39j%&Z#H^a*hSU@iV_k593 zFe8!xUdOE#s}_+Ze6XS-EKKew=mrkX47QOtbpkHH#1w{Q49}iv8wlAlldVPM}fj=faFU@4_0nX!Cx9}3Z zp%>a+7!_#hV7UdFa1iWpaAN3u99#*2+(3l?l#-v~%%N`sNNi`AboJBoDG|qIQvz2t zTA2X>W^X}9>VniU5aqfc1XB`SCc~8QZJKt+Vp-r*2)1b;4}j{bZufo7b&IP+kvt_( zyKy_z9i3G{3l&43&mP&M>qCJzCv01-W~!fsSPAaYAi-(c$ElH-!@IwwKpA1Y8nq

    qt-yKzkek$itEcn#p)C$@#J|OmXzdd0pQ@6A3pzP>vj9(qJlt-L}#x>OMdd2XYs;kN-h5gJO;Z}b%>dP_v!e@eaROT zHb73}7Q%f5Jq`=(F4=@N--SkT){zmWqc-ErU@wCn!g3nkt7piHIV-aHXt@5!2A6_E z?}eYbw-?4s>EB51VcW^{~UhBUM-{1^}=k#f{{s+Tj*v&(1#zeSpiyg{< z!*jKZ(`C}F)f*;;bC`wtHuG$P&-_c@%dy(mQpTkItyF=yS8S%d%f=~Ya;cP>5@iy! z*O(17!hyhabPGnvh;vpK_bcB^1cv~^54%U#TA}L_lMA29?6VSq@!Ki`2N8s$ zWaC`nV@Gi&C?cXq%9@mEmH*4At7qOiSX2R?Zf)MWZGzx)^y}*!3|*_Rz)f5FtT<;o zGWW`Ly1l+ILH(uf**RXAv+&OGkad0o_xbVdIjSocPta64mI*f07eE_fX^1raYpf3x$kN;CPC z5biH=UD5I<6-JvF-6@+7`ahnmKS(__CUQvJ@jv=)WYK@n5h^G$pk-(x*c6`DfN&vvzF^~oXdMK9BP{i~2V#&_zhq^`(yc|7~WW^UOZx7wf` z>#LI1t;tLh+d*CRT!|p{w;c1kw{XgtN$WJ<2$YcDgaZYhqIOeC#SVSJOyA(C3^O(L zoOa|2r!7q6QK5FmYx`dv6#KPwtcRy1IN;B=$@;Aq#*-^F>QF&9*T4VmWUWAwc*>SO zof5(2b{rAA+ES6+_SdcEP;Ktn1@ktV=j=k`dXr{I#eF#eJswd6Z4A4+%F{YXt2jp0 zUYukj&cf8*VE)VIuH+k5!MwNf+|tE%n{&5r&P0k#^Y`W8OHWJR6|)@jFahn>tF3C-}tq0QA8Uh{>#ZpWYb$r6nK%Q)5?LhOX{o^ zCr!(7#}7nrCwluWo91>MN-mCz!OiKn#_nrmYyq$|t$abNJ|@e|f_In2lmv9AU{`^g zNgM$v@;Su_-8oLK(A&ZgAVOn*7JcWmOl)s1LNHe_Flz=|7Ru%T3b6~VCD>K={@Ns$ zzrnRrPp7Ga?>0!K$iT*;v)g~f^q*QbuA!M6^x2c(sY9QoFrfB?3mM03(qFkBq%06f zFt0rv&;qU%e63302`3K~YWi|$cTmg<-}YoTuxdh=DFvPdmz$ZONsn7neiOX~7Tx00 zsOTz0_w3gfmErPWRPIGo!ZP6~aVSG@k(vvXyNp3NXw7sHkO<(euVPy|_(CBUBu1v! zUbJgU*^qzI@S$yD4d@X+%1(*hSfwL_7eyW^kd@Y}_s zqeK%v@rJ-1Fxu91rA#Ci*V}R2`9}ZY_}`92EIf4^96ojbcm6idV2&*OdH;(zI@SjycpAHeL01_Wxl0@AG4xsyUO->eb!W__?!7I9 zIdd!U@Vb-{Vq@hV;o9t>K;{j0cBof@OY7h&5EwiZ#JNlx&bgwbJG0^Cy`EWq1f6av zqKhPmOWv*QwXAn4sszW(5J~`hzw$8i4GzdlT>wv4fK6+q^j|AVZiG2 z#r=T3j}w-nlL?_f#YGCBq)LqIM(Gsj>tc2Nz$4;V)#bRGXG7>#5q)5vB&%|@R>0O{zE9I1!P``h$?@m zbPwz*KKOrO$`kiBE!Mm>&HroT70IpV+e#P2nJk5o7DmBJ5S^78p6&R!&J6G578SU{ z?Jv2IUtgj(Y!Z<#0*=awS>AqHxrf7Vos2Oef7j$3_`ZC>jH-vau4uLEusbY*1Mxnu z_8xP;48>)o>-|Gsn)N+-v46dE%67+Uy3vAUh^w0$@G=I<_kMnDjPC*NclOrD!d(>; zjVr`4=EN(w_jqQ&Fh172zY3Cb0zF~FC7WvIxc!yM8&t02;NOhREb@}|AzX=N8$O;0 z!Ss(oAOflXoIKxFSz!W| z#RC5ijtUC1;gfRZ2{(W9uzgF3j+O_a_HF!GH)3vhRjwnO|DUYOe>AI4Z6;(ppDWij8X@o6T zrEC}#aImUANei${gpK-+K z>E_6{aFEvF8b2`~J7cW}Qv2!1 z!bay!B2NP!R-Z&wX9He$mLb$tJ`ZYrX?YMZQ2LePOvPGTatzED6-lL{f82cv61FoA zvrr>;7T<3xLcjtsh>_GF-MYi>Z5U0`DxT5%E)$76gywH+17FA_xrf89{I2IcW#EF@ ziv2(upAozQc)3QQXZ~}8NGr#KTU!~M&d(~D#>GXjA8gwtk!ZjVHvU<5BpLv{h{Oo_ z6|Q@fVFU@B6w!FdNkHjU1Gmi;tS>=+Dak$DaSM1=GuzG*(R;EZPBgQ|g`LWt+H0=U zv0F{e*4>8?K3|>?@`(a2sYf4{_#NK2<^GU@&}M9E!S9Y=Z4fD=jRcpj7M@i8-9KwL zGxh_K!6lHyXVZSCv`9#3L)JzdonStT#46i~WWFA>zGr!C(75M`iU|^{t@Sx;2N1Bf z7h~Li(vZ|jIbG%-H~b3BTM~QK*zjrc4Vz=b+j`A%@HQ1I%Z zPcFmsRPMl2Eu2?{OXSXr&txi9j&DdXXTD2UN8VO?Z};di2;Aie_2F0X6upEEj9y;p z`yaiD4B|+l~nNjFa1zL%P07ofJ4XFfo-Ke#-FZL$Ca>kRb5MB z@y$Pc`Md%Xb#N7<5jGLrmFxJhZzsw6AqIrpbe=HXn7GLj8FBtw{$Tvhw_s_tDOLAA-2V#!Bd@fNc+$h5pMl?w zV;b0%?VLX4pJ_9Er%YMC1spH-Kk&x~u4vNMxZ2DR_Ni`Z+t|Ewv-B``P9Gm!Lb^k1 zv^_;xgufr8>*qRn1)Wv9vgGd!mGF(H()$d1<*+V;-y4%_RYLVo=}Onc=6TIphq-y$ zc~G0AM5Ftjid=+`30mvtJQ#w`t2G?gQLC|S;6WHyEm5DWy5W-bqrGOH&nv^)<<>Pk z7+N}OHt4Mw;h+#e>^>Htl)K+~_pBag(@fQ+mLe-dSb=>2ZcA;IX|Hj&DwQ?g-71O(K-@B!05^nRWe|(~b-g!h@*T`&I7*o9}a&o$D~BgHOLS3wG$o zu;PQebMM#nCVP;`_gekgt_n!-EIzCm0%kk4CL=^7onX-r1sOSnmCEL3kwi ze+06yPUay^z3|8UQ+->t0+-Bq-IE%9zZ)UYn0ADI{qj!#q-~M76Z-di~oN-KFgzrAz1&(W)!hp8y* z{hEV852-Sl`a=hKT0{E-^=wIgf}1Gx2KXN9KBNktO}OUs>2y8>#hX zU3%yRRbTyU_n*I5L9fnN_I^%_5d;mrY5VEdRdy1==hpF1J@LN!oF1jX9?38_N7h!{ z2M|f+zcsKUi}H_Z46J*P%L;0W;$him$U#1`$c7*fG@-wof|2G*7T^>;x{fLbj8OW! zi%=Tu_paSK9reCcFB*L%Q2Dafcb=q4?&qqd4em76KzmF#vV7R*=C{&$^T|Oh7ps7K z*ahIwy19N@jn(;gyntwd-L$>T>oowmy2j!GW)8WQ9Mq!}r$Wt4=k%KRu_TkE*jp{o zmmWLpicz!4#BO{Nc0cJH$lse~1$zMc@9a7u&=QqWu z<1Xl<(EezJVeFi5pDatI*p8Y~?Bum@o)hH!L)TjL{EAWV zzYt9`0d(z-~U0r?EVjCjt+eo0m0ND1-Pg(an3!De518C_hTr0x@d2+ z?p4yzfO819V@#+`Egbc9!Or*o$sCk=)X{t2FI~3$IC7L*-QvnSSdfR)Z8V%Nx zF5H!(y6_ObEY@ffk>nqm?%bW~h#i?@4F0IrXeL4CdCm-5$g16(dc7|8s&7^};HN_8 zUtX@XD_wfb29j;!e(aCzXGMxNY2A`x(G1hzm-l<^!)S>OUeuQ-C{w1$oj2XF)jE`G z0+6RUkr4$W+s$RBcx~qNrmZkpOk^GS`aEdm>#72v-Thr0XYMQcJ$4w9YKzPJMIU)v zK6-_4!-PG9^4r4}Do;t2U}wo0#muE9u?y7pXAVC9a%wuT`^g2ZNL`(dd)>qwlIpVs zR7YF&*;GdoIW?1eiEd2m+%C^8jv3Tq`lg|p9zJRBUVxru6#e26;e(rg576R~Dc0|e zEs0-|DN7X8#K+HuosGZMPhBMjxJVld_cWaIgbP(`2>LPV15p-KssaMAZTXrD zED$HYezP(kdirU&tSMJgvAofTR(wIt&t-U7?b2iM$Q#sSFB4jld|8|0h@f+CtH15B zVx`=G(3>5k-qMnH4Gff}lXQ~lual2~%QwU#JB|&Pe1(p23-fNhSx_xhN^&9NU ztfI@^vjQ3QMC=Hwdl#3lFDVtx2>rZ?J`*p=KGq>HCKCE2w_oacRY=sDw>mlc<_z}J z_)>7xNA^(fdzK5?Yni0d%X03r%tM{aIqmj0xV)nMsGiJDAdy33ZKULgJwfZFNt$5S z^P&de70dJZ|E#1eekkRzI}5}`{h{rC z(RU(lspB21X`x2z>#lc8B1;!J;q7zT9@vn1oQ>RRc{GX{n{%;g6L%6QGu9(=3vn4H= z0?8o5pj(=*i?18!o|+y?;Z*#Pp82rvh;x$ZmPU}x%v=tR%l~`oMZ+mmG#)^;(Tu;C zQ>NVbrw|;gt!PP{K4r@^8BjOv{{K{C+ZQ~~K@H7pFS~o3fo^%M!_T<%&m+UWQpjan zv!$$NMO+;@e|TW!2Sv`BI@u`FNIe;OV+jq3kc#)^r>>-0xKvTt17QbT zEKWEb+pb>B{lS(LZ2KCAiY;8Esrc9sPo1m6OmL84SArp{Zgyk2?$ZXjW|e9qw6nN! zSB1eOYaU+Bd!EbNPSybBr^)cI)F7htz&@WMg;P^(Z>6*w7Ph+|b8tPHXvy0kmY z^bHJL$gvMw-gmx;ScS48buZ;bg|a$F{xC;8_%?@Ww_$c z=MuUTT<hKAG(!jpLaAVIGr<#o|^K;b{L>MTd-qXK)p@s|%`%6?|#~%i_928X~?C zV&hnAn@Y0WJfGKBiD9g z9cqTRZWsnhZZjJ>nU`ycp!7wA+}}Mi^;uc%BRd=NQ+Y&Tm|>e$W({ekH@m%pI>>OZ z(|HmfTD zG9pdpu-fB48mOOMAso}Tu-<|5p%4)hUQD9=h+EZA9b3O-C zNhX;Yv@c;bc31UJ+|Xx4zCw4umURAPpzbV^%(ie5d*1bitKQ!6r!^G?#--k`+EiV8 zysGxz*WH|#^)NEcn%QhJ7o5C()vrWfGCEqHf$JC~39iJ1u5FEre0dj`ns=bln0MvN zYo2wZLs0O|q3(=5T36Nko|hMN)VZZs8ujV^#mw{Q>UwRGb5g*MAqi@ky^7|V{$39F z1&QY695f7mls9QM6MeZ^hV2Ig*|^s`?fIaQgTQc8dO&fHf zwE1WB_f#flKJ=y8ggx>my?H3RDVe&Av7g=&M|lhBf!NCqAjW!yDAjpz10&LuC_9>H zr_PyI$DNFzK3G0%$BI5!gE-m(Y~vwzUfkx|H$r% zW8sbxOAXqeC31;qL11IU$~+S*{=r6_UfS_9<=+C6pRJ?SeF?qrxp|RCTM?@AUEpTN zaFgjlzT0WfxB9PaJ#mS!61}3<%Xs1La?a^e*bgjq!gBPA6_lArU;d>in7h|2(X=Ji zx9c!(${T|r?q;=Qy`*xNa{8@f+`>z0Ki^#OuCU7exb%Fv%XC0ccLRu^b3YB38D)DT zGmd$A5e+i~?0-col0JWpJEO*ND6L6-lxOrN+?P#1eW3Bqdo5;N-N$$8OXDBD?U77` z#7Xv2n=4;6v#X^gPT?h9Xq!GwHM{I~b*!&?uJ>%{3 z0Q*I=Oi~hO2c0Np(FX0CFo%D9F+?uAmZ0W1Uq{2g+*a}|rqn>a@gl^S!|U%B@h;aj z#l2_OTzlD}XyVXBJ8{N*ePm!&U#tJBv+3%B^ibZ-Uk2aGI$SnB?=lKqY`ApbuCtFU zdJzC?J^;%p{V{-C_mZa?)4c9@6XPOAt4~p&=IVv-sqNg!-)~e&{>c5=^sJuD-`#t0 zv+V-2WcQ%rcINvWwTD5Rdx2>M7h5PC4R_D-l7O`kW@lLT(!NRVt9xZHVix*`<09XE zJkhra8C%MFbb0ml*Zpp@ECN?xbuZbx&01+77;HzogHG$d<$RofUhr|&-jQh?thE=W zGA+s*6EDQlj3j*z3Wj_d_WeUx!a!RUnw2`ET~2=H^@8^aaUI@$DbESN~2Xh z<@J|QUmHnf4l=s^hdR{I&hWpiH0uuXsJGEpEDdV>ha%ob=r0+J{a}~o i{|~9g|4c3=n7Vw#O;EdDB4i5q&vd8xjm literal 0 HcmV?d00001 From d436a80b8c3f24ff570314799cdfb83d1488784c Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Thu, 18 Jul 2019 07:46:22 +0200 Subject: [PATCH 049/134] Added PID hyperlink --- Module-09-interactive.ipynb | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/Module-09-interactive.ipynb b/Module-09-interactive.ipynb index 96472f7..467487e 100644 --- a/Module-09-interactive.ipynb +++ b/Module-09-interactive.ipynb @@ -1913,7 +1913,7 @@ "\n", "Repeat the above code to show how, in a sequence of subplots, when you add more and more values together in an average, the average becomes normally distributed. \n", "\n", - "At the end, you would like something like this, which was generated in R.\n" + "At the end, you would like something like this, which [was generated in R](https://learnche.org/pid/univariate-review/normal-distribution-and-checking-for-normality).\n" ] }, { From 8bbbf62705acbf2c8da7a1fdc4c3448f0380d2d7 Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Thu, 18 Jul 2019 11:54:43 +0200 Subject: [PATCH 050/134] Added reference to paper --- Module-09-interactive.ipynb | 11 ++++++----- 1 file changed, 6 insertions(+), 5 deletions(-) diff --git a/Module-09-interactive.ipynb b/Module-09-interactive.ipynb index 467487e..c98ceeb 100644 --- a/Module-09-interactive.ipynb +++ b/Module-09-interactive.ipynb @@ -1301,7 +1301,7 @@ "\n", "\n", "\n", - "In this section we see how to create histograms, which are just another form of [bar plot](#Bar-plots) where instead of a categorical axis, we have a continuous numerical axis instead.\n", + "In this section we see how to create histograms, which are just another form of [bar plot](#Bar-plots) where instead of a categorical axis, we have a continuous numerical axis.\n", "\n", "Like, bar plots, histograms are fairly simple to understand and you don't need to explain how to interpret them. \n", "\n", @@ -1319,7 +1319,9 @@ "1. the time to write the exam\n", "2. the grade (out of 100) achieved on the exam\n", "\n", - "So the above is our (1) definition, and (2) we get the data from a website where this dataset has already been prepared for us (https://openmv.net/info/unlimited-time-test). We will (3) explore the data, and notice we don't really need to (4) clean it, since it has been done for us already. We will (5) manipulate the data into a histogram and visualize that to (6) communicate our goal: what does the spread of the data looks like." + "So the above is our (1) definition, and (2) we get the data from a website where this dataset has already been prepared for us (https://openmv.net/info/unlimited-time-test). We will (3) explore the data, and notice we don't really need to (4) clean it, since it has been done for us already. We will (5) manipulate the data into a histogram and visualize that to (6) communicate our goal: what does the spread of the data looks like.\n", + "\n", + "You can [read the paper/presentation](http://nltnrlnx0021.tnrad.local:16001/tree?token=b84bd8a7e2dd5eb23020fa8f38905f421f43da9b0637e6b3) that was generated from this data. This is one of the 8 data sets used to show that unlimited time to write an exam does not necessarily lead to a higher grade." ] }, { @@ -1904,7 +1906,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ @@ -1945,7 +1946,7 @@ "metadata": { "hide_input": false, "kernelspec": { - "display_name": "Python [default]", + "display_name": "Python 3", "language": "python", "name": "python3" }, @@ -1959,7 +1960,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.5.5" + "version": "3.7.3" }, "toc": { "base_numbering": 1, From 9d78123100f31e2c53d6c0f3ca138fee972b64a9 Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Thu, 18 Jul 2019 12:56:48 +0200 Subject: [PATCH 051/134] Added note about utility of random walks --- Module-09-interactive.ipynb | 9 ++++++--- 1 file changed, 6 insertions(+), 3 deletions(-) diff --git a/Module-09-interactive.ipynb b/Module-09-interactive.ipynb index c98ceeb..d6be48a 100644 --- a/Module-09-interactive.ipynb +++ b/Module-09-interactive.ipynb @@ -28,7 +28,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 2, "metadata": {}, "outputs": [ { @@ -187,7 +187,7 @@ "" ] }, - "execution_count": 18, + "execution_count": 2, "metadata": {}, "output_type": "execute_result" } @@ -1578,7 +1578,10 @@ "\n", "We can model these values with numbers from a normal distribution, which is centered at zero. If they were walking perfectly straight ahead, then viewed from the back, their position stays at zero if they walk in such a straight line.\n", "\n", - "If they have had too much to drink, their steps might be biased a bit more. We can increase the standard deviation of the normal distribution to make the distribution wider." + "If they have had too much to drink, their steps might be biased a bit more. We can increase the standard deviation of the normal distribution to make the distribution wider.\n", + "\n", + "##### Note \n", + "The study of [random walks](https://en.wikipedia.org/wiki/Random_walk) helps explain many observed phenomena in fields as diverse as ecology, psychology, computer science, physics, chemistry, biology as well as economics. There are some interesting visualizations on that Wikipedia page.\n" ] }, { From 2bef21c59a92c2247372f2c1c475e0819bb6e0a0 Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Thu, 18 Jul 2019 14:18:27 +0200 Subject: [PATCH 052/134] Updated URL for unlimited time --- Module-09-interactive.ipynb | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/Module-09-interactive.ipynb b/Module-09-interactive.ipynb index d6be48a..f96d97e 100644 --- a/Module-09-interactive.ipynb +++ b/Module-09-interactive.ipynb @@ -28,7 +28,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 6, "metadata": {}, "outputs": [ { @@ -187,7 +187,7 @@ "" ] }, - "execution_count": 2, + "execution_count": 6, "metadata": {}, "output_type": "execute_result" } @@ -1321,7 +1321,7 @@ "\n", "So the above is our (1) definition, and (2) we get the data from a website where this dataset has already been prepared for us (https://openmv.net/info/unlimited-time-test). We will (3) explore the data, and notice we don't really need to (4) clean it, since it has been done for us already. We will (5) manipulate the data into a histogram and visualize that to (6) communicate our goal: what does the spread of the data looks like.\n", "\n", - "You can [read the paper/presentation](http://nltnrlnx0021.tnrad.local:16001/tree?token=b84bd8a7e2dd5eb23020fa8f38905f421f43da9b0637e6b3) that was generated from this data. This is one of the 8 data sets used to show that unlimited time to write an exam does not necessarily lead to a higher grade." + "You can [read the paper/presentation](https://yint.org/static/unlimited-time/index.html) that was generated from this data. This is one of the 8 data sets used to show that unlimited time to write an exam does not necessarily lead to a higher grade." ] }, { From 1cacb92ee6ee040a754ef7b0028b8c842cad407d Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Thu, 18 Jul 2019 14:24:33 +0200 Subject: [PATCH 053/134] NOte for next worksheet --- Module-10-interactive.ipynb | 7 ++++--- 1 file changed, 4 insertions(+), 3 deletions(-) diff --git a/Module-10-interactive.ipynb b/Module-10-interactive.ipynb index 7535c8d..8178e01 100644 --- a/Module-10-interactive.ipynb +++ b/Module-10-interactive.ipynb @@ -324,7 +324,8 @@ "\n", "\n", "* MUST COVER: tables for website data Vs barplot \n", - "* Precision of display?\n" + "* Precision of display?\n", + "* Colour coded correlation table. Use Peas case study\n" ] }, { @@ -586,7 +587,7 @@ "metadata": { "hide_input": false, "kernelspec": { - "display_name": "Python [default]", + "display_name": "Python 3", "language": "python", "name": "python3" }, @@ -600,7 +601,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.5.5" + "version": "3.7.3" }, "toc": { "base_numbering": 1, From a18826d44ee3f34a7af183c917a64e3e2371da2e Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Thu, 18 Jul 2019 16:02:27 +0200 Subject: [PATCH 054/134] Added topic for future --- Module-10-interactive.ipynb | 8 +++++--- 1 file changed, 5 insertions(+), 3 deletions(-) diff --git a/Module-10-interactive.ipynb b/Module-10-interactive.ipynb index 7535c8d..f71c039 100644 --- a/Module-10-interactive.ipynb +++ b/Module-10-interactive.ipynb @@ -345,7 +345,9 @@ "\n", "MUST COVER: show Random walk\n", "\n", - "MUST COVER: time series of website data\n" + "MUST COVER: time series of website data\n", + "\n", + "MUST COVER: time-series of stability data from which a database was built on" ] }, { @@ -586,7 +588,7 @@ "metadata": { "hide_input": false, "kernelspec": { - "display_name": "Python [default]", + "display_name": "Python 3", "language": "python", "name": "python3" }, @@ -600,7 +602,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.5.5" + "version": "3.7.3" }, "toc": { "base_numbering": 1, From 11ba9fad18d55d5e8327c6dc37a29359e1153526 Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Sat, 20 Jul 2019 21:52:26 +0200 Subject: [PATCH 055/134] Improved the last section --- Module-09-interactive.ipynb | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/Module-09-interactive.ipynb b/Module-09-interactive.ipynb index f96d97e..93f0e4b 100644 --- a/Module-09-interactive.ipynb +++ b/Module-09-interactive.ipynb @@ -1926,10 +1926,10 @@ "source": [ "## Matplotlib for visualization\n", "\n", - "Behind Pandas' plotting function lies the well-know Python library called `matplotlib`. It is a core library you must eventually understand, if only the concept behind it. MATLAB users will find it no problem: it uses the same principle of adding to a base figure, and breaking down your plot in terms of a figure, axes and other layers of data points and annotations.\n", + "Behind Pandas' plotting functions lies the well-know Python library called `matplotlib`. It is a core library you must eventually understand, if only the concept behind it. MATLAB users will find it no problem: it uses the same principle of adding successive layers to a base figure, and breaking down your plot in terms of a figure, axes and other layers of data points and annotations.\n", "\n", "1. An excellent tutorial - one of the best I have found - to understand these concepts: https://www.datacamp.com/community/tutorials/matplotlib-tutorial-python\n", - "2. A quicker understand, if you need to find the right command is in this 4-part notebook:\n", + "2. A quicker introduction, if you need to find the right command is in this 4-part notebook:\n", " * [Basic figures](https://nbviewer.jupyter.org/gist/manujeevanprakash/138c66c44533391a5af1)\n", " * [Style and colour](https://nbviewer.jupyter.org/gist/manujeevanprakash/7dc56e7906ee83e0bbe6), markers, line thickness and patterns\n", " * [Annotation, axis range, and tick marks](https://nbviewer.jupyter.org/gist/manujeevanprakash/7cdf7d659cd69d0c22b2)\n", @@ -1949,7 +1949,7 @@ "metadata": { "hide_input": false, "kernelspec": { - "display_name": "Python 3", + "display_name": "Python [default]", "language": "python", "name": "python3" }, @@ -1963,7 +1963,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.3" + "version": "3.5.5" }, "toc": { "base_numbering": 1, From 05c98a6f6e6d1e8cccbad1b93832fc26b393c12e Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Sun, 21 Jul 2019 16:50:14 +0200 Subject: [PATCH 056/134] Added overview of Module 10 --- Module-10-interactive.ipynb | 132 ++++++++++++++++++++---------------- 1 file changed, 75 insertions(+), 57 deletions(-) diff --git a/Module-10-interactive.ipynb b/Module-10-interactive.ipynb index 48e022f..afda891 100644 --- a/Module-10-interactive.ipynb +++ b/Module-10-interactive.ipynb @@ -7,7 +7,7 @@ }, "source": [ "

    Table of Contents

    \n", - "" + "" ] }, { @@ -28,7 +28,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 4, "metadata": {}, "outputs": [ { @@ -187,7 +187,7 @@ "" ] }, - "execution_count": 3, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } @@ -205,7 +205,7 @@ "source": [ "# Module 10: Overview \n", "\n", - "In the prior [module 9](https://yint.org/pybasic09) you ...\n", + "In the prior [module 9](https://yint.org/pybasic09) you learned an approach to follow for any data analysis project, as well as some basic plots and statistics. In this module you will learn about what 5 objectives we see for data analysis, as well as some further plots and statistical concepts.\n", "\n", "
    \n", " Check out this repo using Git. Use your favourite Git user-interface, or at the command line:\n", @@ -220,16 +220,22 @@ "to update it to the later version.\n", "\n", "\n", - "\n", "### Preparing for this module###\n", "\n", - "You should have ...\n", + "You should have:\n", + "* understood the core plotting library in Python, `matplotlib`, with [this tutorial](https://www.datacamp.com/community/tutorials/matplotlib-tutorial-python)\n", + "* read [this post](https://towardsdatascience.com/matplotlib-tutorial-learn-basics-of-pythons-powerful-plotting-library-b5d1b8f67596) for more details about `matplotlib`\n", + "* ensured you understand [scatter plots](https://learnche.org/pid/data-visualization/relational-graphs-scatter-plots) and how you can plot 5 dimensions on a 2-dimensional plot; maybe 6 dimensions if you have mixed reality smartglasses.\n", + "\n", "\n", "### Summarizing data visually and numerically (statistics)\n", "\n", + "In the [prior module](https://yint.org/pybasic09) we covered:\n", "1. Box plots\n", "2. Time-series, or a sequence plot\n", "3. Bar plots (bar charts) \n", + "\n", + "while in this module we will cover:\n", "4. Histograms\n", "5. Scatter plot\n", "6. Data tables\n", @@ -237,82 +243,55 @@ "In between, throughout the notes, we will also introduce statistical and data science concepts. This way you will learn how to interpret the plots and also communicate your results with the correct language." ] }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Five main goals with data science\n", "\n", - "There are 5 major goals when dealing with data from systems:\n", + "\n", + "In the [prior module](https://yint.org/pybasic09) I described my approach for any data analysis project. The first step is to define the goals. When I take a look at various projects I have worked on, the goals always fall into one or more of these categories, or 'application domains'.\n", "\n", "1. Learning more about our system\n", - "1. Troubleshooting a problem that is occurring\n", - "1. Making predictions using (some) data from the system\n", - "1. Monitoring that system in real-time, or nearly real time \n", - "1. Optimizing the system\n", + "2. Troubleshooting a problem that is occurring\n", + "3. Making predictions using (some) data from the system\n", + "4. Monitoring that system in real-time, or nearly real time \n", + "5. Optimizing the system\n", + "\n", + "I will describe them shortly. But why look at this? The reason is that certain goals can be solved with a subset of tools. The number of tools available to you is large. Knowing which one to use for which type of goal helps you along the way faster.\n", "\n", + "
    \n", "Goals 1 and 2 take place off-line, using data that has been collected already.\n", "\n", - "Goals 3, making predictions from the system (e.g. predicting how far away it is from completing, or what quality is being produced from the system), is typically required to support other decisions, or to apply real-time control on the system. \n", + "Goals 3, making predictions from the system, e.g. predicting what quality is being produced by the system; or how much longer a batch should be run before it is completed. The prediction is typically required to support other decisions, or to apply real-time control on the system. \n", "\n", "Goal 4 also can take place on-line, and is used to ensure the system is operating in a stable manner, and if not, using the data to figure what is going wrong, or about to go wrong.\n", "\n", "Goal 5 is typically off-line, and here we use the data to make longer term improvements. For example, we try to move the system to a different state of operation that is more optimal/profitable. This can also be done in real-time, where systems are continuously shifted around to track an optimum target.\n", "\n", - "This is one way to to categorize data science problems. There are of-course other ways to consider it: such as if you are dealing with one variable (vector) or many variables (matrices). Or which type of technique you are using: supervised or unsupervised.\n", - "\n", - "We will encounter these terms along the way. But for now, you should be able to see any problem where you have used data as fitting into 1 of these 5 categories above. \n", - "\n", - "\n", - "### Try it quick\n", - "\n", - "Try breaking down the existing data-based project you are currently working in. Check which one or more of the five apply.\n", - "\n", - "\n", - "### Framing your objective <-- fix up / merge\n", - "\n", - "We can look at any data science project and find that it is aligned to one, or more, of these major goals, or also known as 'application domains'.\n", - "\n", - "1. Learning more about our system\n", - "\n", - "2. Troubleshooting a problem that is occurring\n", - "\n", - "3. Making predictions using (some) data from the system\n", - "\n", - "4. Monitoring that system in real-time, or nearly real time \n", - "\n", - "5. Optimizing the system\n", - "\n", - "\n", - "\n", - "We can find our specific objective in one, or more of these 5 goals.\n", - "\n", - "\n", + "
    \n", "\n", - "For example: your manager asks you to use data (whatever is available) to discover why we are seeing increased returns of our most profitable product.\n", + "This is just one way to to categorize data science problems. There are of course other ways to do this: such as if you are dealing with one variable (vector) or many variables (matrices). Or which type of technique you are using: ***supervised*** or ***unsupervised***.\n", "\n", + "We will encounter these terms along the way. But for now, you should be able to see any problem where you have used data as fitting into one of these five categories above. \n", "\n", "\n", - "Your objective: Find reason(s) for increased returns of product.\n", + "### Examples of using this categorization\n", "\n", - "Method: That is what this part of the course is about. You will learn about the tools to do visualize the data, and reach your objective.\n", + "For example: your manager asks you to use data (whatever is available) to discover why we are seeing increased number of customers returning our most profitable product to the store. Your objective: Find reason(s) for increased returns of product.\n", "\n", "Which of the 5 goals above are used?: Number 2 \"Troubleshoot a problem that is occurring\" is the most direct. But along the way to achieving that goal, you will almost certainly apply number 1: \"Learn more about your system\".\n", "\n", - "Following up: in the future, after you have found the reasons for returned product, you might have done number 5: \"optimizing the system\" to prevent less bad quality production. Then, in a different data science project, based on number 4: you \"monitor the system in real-time\" to prevent producing bad quality products.\"  This might be done by applying number 3: \"making predictions of the product quality\"\n", - "\n", + "Following up: in the future, after you have found the reasons for returned product, you might have done number 5: \"optimizing the system\" to find settings for the machines, so that fewer low-quality products are produced. Then, in a different data science project, based on number 4: you \"monitor the system in real-time\" to prevent producing bad quality products\". This might be done by applying number 3: \"making predictions of the product quality\" in real-time, while the system is operating.\n", "\n", "\n", "As you can see, these 5 goals are generally very broad. Why do we mention them?\n", "\n", - "You might learn, in other courses and later in your career, about different tools to implement. Then you can interchange the tools in your toolbox. For example, linear regression is one type of prediction tool, but so is a neural network. If one tool does not work so well, you can swap it for another one in your pipeline." + "You might learn, in other courses and later in your career, about different tools to implement. Then you can interchange the tools in your toolbox. For example, linear regression is one type of prediction tool to achieve goal 3, but so is a neural network. If one tool does not work so well, you can swap it for another one in your pipeline.\n", + "\n", + "### Try it yourself\n", + "\n", + "Try breaking down the existing data-based project you are currently working in. Check which one or more of the five apply.\n" ] }, { @@ -328,6 +307,13 @@ "* Colour coded correlation table. Use Peas case study\n" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Correlogram" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -394,7 +380,39 @@ "\n", "### Violin plot / beeswarm plot\n", "\n", - "* See engmark7 for sample. Alternative to box plot" + "* See engmark7 for sample. Alternative to box plot\n", + "\n", + "### " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Some tips\n", + "\n", + "* https://www.marsja.se/python-data-visualization-techniques-you-should-learn-seaborn/" ] }, { @@ -589,7 +607,7 @@ "metadata": { "hide_input": false, "kernelspec": { - "display_name": "Python 3", + "display_name": "Python [default]", "language": "python", "name": "python3" }, @@ -603,7 +621,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.3" + "version": "3.5.5" }, "toc": { "base_numbering": 1, From bc5a6d997e3e8c34d27aaba62e21eb83fc1ff209 Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Sun, 21 Jul 2019 16:59:40 +0200 Subject: [PATCH 057/134] Added notes for self for the WS10 --- Module-10-interactive.ipynb | 67 ++++++++++++++++++++++++++++++++++--- 1 file changed, 63 insertions(+), 4 deletions(-) diff --git a/Module-10-interactive.ipynb b/Module-10-interactive.ipynb index afda891..c4e07d1 100644 --- a/Module-10-interactive.ipynb +++ b/Module-10-interactive.ipynb @@ -28,7 +28,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 7, "metadata": {}, "outputs": [ { @@ -187,7 +187,7 @@ "" ] }, - "execution_count": 4, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" } @@ -201,7 +201,13 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "deletable": false, + "editable": false, + "run_control": { + "frozen": true + } + }, "source": [ "# Module 10: Overview \n", "\n", @@ -302,6 +308,10 @@ "## Data tables\n", "\n", "\n", + "ata tables can be generated by Pandas. Also a form of data summary. Perhaps mention the grouper function?\n", + "\n", + "Level of precision set in the data table display?\n", + "\n", "* MUST COVER: tables for website data Vs barplot \n", "* Precision of display?\n", "* Colour coded correlation table. Use Peas case study\n" @@ -321,6 +331,13 @@ "## Time-series, or a sequence plot\n", "\n", "\n", + "If you have a single column of data, you can see interesting trends in the sequence of numbers when plotting it. These trends are not always visible when just looking at the numbers. What are effective ways of plotting these sequences?\n", + "\n", + "\n", + "As promised in the [prior notebook](https://yint.org/pybasic09), we will now look at the time-based trends of the [website visits data set](hhttp://openmv.net/info/website-traffic) and the AMMONIA dataset\n", + "\n", + "\n", + "\n", "Time-series: plot some of the integrated curves in pybasi03\thttps://www.coursera.org/learn/python-data-analysis/lecture/KjG8R/distributions\n", "\n", "Labelling plots: titles, axes; legend\thttps://www.coursera.org/learn/python-data-analysis/lecture/xhEIo/hypothesis-testing-in-python\n", @@ -342,7 +359,13 @@ "execution_count": null, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "pyplot.figure(figsize=(20,5))\n", + "pyplot.plot(ammonia);\n", + "\n", + "# Superimpose the median on the plot as a horizontal line (hline):\n", + "pyplot.hlines(y=ammonia.quantile(0.50), xmin=0, xmax=1440, color=\"orange\");" + ] }, { "cell_type": "markdown", @@ -350,6 +373,32 @@ "source": [ "## Scatter plot\n", "\n", + "\n", + "\n", + "In fact, if there is one thing we can guarantee that you will see in your career being ***misused***, it will be this model. Misused by others when they intrepret the results, misused when they build this model, misused when making predictions.\n", + "\n", + "### Why use linear regression at all?\n", + "\n", + "You use this type of model when you **need to interpret and quantify the relationship between two or more variables**.\n", + "\n", + "That sounds vague. Here are concrete examples:\n", + "\n", + "* *HR manager*: We use a least squares regression model to relate education level (one variable) to salary (another variable). There is a strong relationship.\n", + "* *HR worker*: We have a different regression model to relate \"number of years of experience\" (a variable) to \"salary\". What do the model coefficients mean?\n", + "* *HR manager*: can we combine these two regression models into a single model and get improved predictions?\n", + "* *HR worker* : We can combine these models, yes, but we notice some really strong outliers, particularly the CEO and the other Cxx staff. What should we do with these outliers?\n", + "\n", + "Or another scenario:\n", + "\n", + "* *Colleague*: How is the yield from our beer fermentation related to the purity of the sucrose substrate?\n", + "* *You*: The yield can be predicted from sucrose purity with an error of plus/minus 8%\n", + "* *Colleague*: And how about the relationship between alcohol percentage and glucose purity?\n", + "* *You*: Over the range of our historical data, there is no discernible relationship.\n", + "\n", + "\n", + "\n", + "\n", + "\n", "Seaborn: https://engmrk.com/module7-introduction-to-seaborn/\n", "\n", "* PCA loadings are orthogonal. Plot a scatter plot, and see the correlation is zero\n", @@ -368,6 +417,9 @@ "\n", "* MUST COVER: https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.probplot.html\n", "\n", + "* Regression model:http://localhost:8888/notebooks/Notebooks/Thermocouple%20-%20linear%20regression.ipynb\n", + "\n", + "\n", "PCA plots: \n", "PCA: https://jakevdp.github.io/PythonDataScienceHandbook/05.09-principal-component-analysis.html\n" ] @@ -605,6 +657,13 @@ } ], "metadata": { + "gist": { + "data": { + "description": "Module-10-interactive.ipynb", + "public": true + }, + "id": "" + }, "hide_input": false, "kernelspec": { "display_name": "Python [default]", From 7bb1f848b66ce21adcb0eb3240ae46981b9ee980 Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Sun, 21 Jul 2019 18:01:50 +0200 Subject: [PATCH 058/134] Added section on data tables and pie charts --- Module-10-interactive.ipynb | 421 +++++++++++++++++++++++++++++++++++- 1 file changed, 414 insertions(+), 7 deletions(-) diff --git a/Module-10-interactive.ipynb b/Module-10-interactive.ipynb index c4e07d1..9fe8a68 100644 --- a/Module-10-interactive.ipynb +++ b/Module-10-interactive.ipynb @@ -7,7 +7,7 @@ }, "source": [ "

    Table of Contents

    \n", - "" + "" ] }, { @@ -307,21 +307,428 @@ "\n", "## Data tables\n", "\n", + "Data tables are an effective form of data visualization. Some tips:\n", "\n", - "ata tables can be generated by Pandas. Also a form of data summary. Perhaps mention the grouper function?\n", + "* align numbers in the column, all at decimal, so trends can be scanned when reading from top to bottom.\n", + "* alternate the background shading of each row\n", + "* sort the table by a particular variable, to emphasize a particular message.\n", "\n", - "Level of precision set in the data table display?\n", + "Here's an example of the [Blender Efficiency](http://openmv.net/info/blender-efficiency) data set. It was a designed experiment to see how the blending efficiency can be improved, using 18 experiments." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "deletable": false, + "editable": false, + "run_control": { + "frozen": true + } + }, + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    ParticleSizeMixerDiameterMixerRotationBlendingTimeBlendingEfficiency
    10862004561.8
    1842006062.9
    3882006063.2
    5562254569.2
    12862007570.7
    4561754570.9
    15542256071.9
    13541756072.4
    17562006074.5
    16582256074.9
    8562006075.1
    14581756076.4
    7562254579.8
    6561757580.1
    9262004581.8
    0242006084.5
    2282006090.7
    11262007592.2
    \n", + "
    " + ], + "text/plain": [ + " ParticleSize MixerDiameter MixerRotation BlendingTime \\\n", + "10 8 6 200 45 \n", + "1 8 4 200 60 \n", + "3 8 8 200 60 \n", + "5 5 6 225 45 \n", + "12 8 6 200 75 \n", + "4 5 6 175 45 \n", + "15 5 4 225 60 \n", + "13 5 4 175 60 \n", + "17 5 6 200 60 \n", + "16 5 8 225 60 \n", + "8 5 6 200 60 \n", + "14 5 8 175 60 \n", + "7 5 6 225 45 \n", + "6 5 6 175 75 \n", + "9 2 6 200 45 \n", + "0 2 4 200 60 \n", + "2 2 8 200 60 \n", + "11 2 6 200 75 \n", + "\n", + " BlendingEfficiency \n", + "10 61.8 \n", + "1 62.9 \n", + "3 63.2 \n", + "5 69.2 \n", + "12 70.7 \n", + "4 70.9 \n", + "15 71.9 \n", + "13 72.4 \n", + "17 74.5 \n", + "16 74.9 \n", + "8 75.1 \n", + "14 76.4 \n", + "7 79.8 \n", + "6 80.1 \n", + "9 81.8 \n", + "0 84.5 \n", + "2 90.7 \n", + "11 92.2 " + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "blender = pd.read_csv('http://openmv.net/file/blender-efficiency.csv')\n", + "blender.sort_values('BlendingEfficiency', inplace=True)\n", + "blender" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Click on the column header for ``BlendingEfficiency`` and you can sort from low-to-high, or high-to-low. You can now instantly see that ``ParticleSize`` has the greatest effect. No plotting required.\n", + "\n", + "### Setting the level of precision\n", + "\n", + "In Pandas data tables, especially for calculated variables, you might see too many decimals (the default is 5). If you want to adjust that, run this command: ``pd.set_option('precision', 2)`` for 2 decimals. See the code in the next section for an example.\n", "\n", - "* MUST COVER: tables for website data Vs barplot \n", - "* Precision of display?\n", - "* Colour coded correlation table. Use Peas case study\n" + "### Pie charts, when tables will do\n", + "\n", + "Run the code below to convince yourself that pie charts should not be used instead of a table. If you are pressured to use a pie chart instead of table, use the example below (and some of the links) to help argue your case." + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": { + "deletable": false, + "editable": false, + "run_control": { + "frozen": true + } + }, + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    Visits
    DayOfWeek
    Saturday9.84
    Sunday11.36
    Friday13.38
    Thursday15.28
    Monday16.31
    Tuesday16.61
    Wednesday17.23
    \n", + "
    " + ], + "text/plain": [ + " Visits\n", + "DayOfWeek \n", + "Saturday 9.84\n", + "Sunday 11.36\n", + "Friday 13.38\n", + "Thursday 15.28\n", + "Monday 16.31\n", + "Tuesday 16.61\n", + "Wednesday 17.23" + ] + }, + "execution_count": 52, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2QAAAD8CAYAAAAYNWd7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3Xl8VPW9//HXeyYLqyCbolijViVoACWgqAjFWmvRe6u11ta2ar219dLFttbyu7Yae2/vjVvVahVRRNzqUq21pVatyiKism/G3SCrgEDCmmRmPr8/zkmZYiCBZHIymc/z8ZhHZs6c8z3viZLkc77f8/3KzHDOOeecc8451/piUQdwzjnnnHPOuVzlBZlzzjnnnHPORcQLMuecc84555yLiBdkzjnnnHPOORcRL8icc84555xzLiJekDnnnHPOOedcRLwgc84555xzzrmIeEHmnHPOOeeccxHxgsw555xzzjnnIpIXdQDnnHMul/Tq1cuKioqijuGccy7D5s6du97Meje2nxdkzjnnXCsqKipizpw5UcdwzjmXYZKWNWU/H7LonHPOOeeccxHxgsw555xzzjnnIuIFmXPOOeecc85FxAsy55xzzjnnnIuIF2TOOeecc845FxEvyJxzzjnnnHMuIj7tvXPOOdeKFq+somjclKhjOOec243K8jGtej7vIXPOOeecc865iHhB5pxzzjnnnHMR8YLMuXZOkkl6MO11nqR1kv7aQu2XSbqyJdpyzjnnnMs1XpA51/5tBY6V1DF8fTqwMsI8LodJukXSFWmvn5N0b9rrmyX9tIltZfRigKSLJd2Rqfadc8458ILMuVzxLFB/h+rXgT/UvyGph6SnJS2S9JqkgeH2Mkn3SZoq6QNJP0o75mpJb0v6B3B02vbvSpotaaGkJyV1ktRV0oeS8sN99pNUWf/a5ZxXgZMAJMWAXsAxae+fBMyMIJdzzjkXCS/InMsNjwIXSOoADAReT3vvOmC+mQ0E/gt4IO29/sAZwDDgWkn5koYAFwDHAecCQ9P2f8rMhprZIKACuNTMNgNT2VkQXgA8aWZ1LfwZXXaYSViQERRiS4DNkvaXVAgUA/Ml/Tws7hdJuq7+4D1cDJgq6XpJb0h6R9KIcHtc0o1pbX0v3N5X0nRJCyQtSdv/kvD4acDJae2fLel1SfMl/UPSAZJikt6V1DvcJybpPUm9MvkNdM451754QeZcDjCzRUARQe/Y33Z5+xTgwXC/l4CekrqF700xsxozWw+sBQ4ARgB/MrNtZlYNPJPW1rGSZkhaDFzIzp6Pe4FLwueXAJNa8vO57GFmq4CEpM8QFGazCC4QDAdKgUXAKOBIggsBg4Ehkk5t5GIAQJ6ZDQOuAK4Nt10KVJnZ0HD/70o6DPgG8JyZDQYGAQsk9SW4QHEywdDeAWltvwKcaGbHEVzguMrMUsBDBP+vA3weWBj+e3HOOeeaxNchcy53PAPcRPDHbs+07WpgXwu/1qRtS7LzZ4bRsPuBL5vZQkkXh+fCzGZKKpI0Eoib2ZJ9yO/aj/pespOA3wIHh8+rCIY0fiF8zA/370JQoHUlvBgAIOmZf22Wp8KvcwkuQBC2M1DSeeHrbmFbs4H7wqGzT5vZAkmnAVPNbF3Y/mPAUeFx/YDHwqKtAPgw3H4f8GfgVuA77OZig6TLgMsA4vv1bvQb5JxzLnd4D5lzueM+4NdmtniX7dMJr/BLGgWsD3u+dmc6cI6kjpK6AmenvdcVWB3+kXvhLsc9QHDvmveOufr7yEoIhiy+RtBDVn//mID/M7PB4eOzZjYxPHZ3FwNg5wWE9IsHAn6Y1tZhZva8mU0HTiWY4OZBSd9upP3bgTvMrAT4HtABwMyWAx9LGg2cQHC/5qeY2QQzKzWz0ninbg3t4pxzLkd5QeZcjjCzFWZ2WwNvlQGlkhYB5cBFjbQzD3gMWAA8CcxIe/tXBMPPXgDe2uXQh4H9SZtQxOWsmcBZwAYzS5rZBqA7QVE2C3gO+I6kLgCSDpbUhz1fDNid54DL0yaVOUpSZ0mHAmvN7B5gInA8wf+7oyT1DPf/alo73dg5O+mu/0buJRi6+LiZJffuW+Gccy7X+ZBF59o5M+vSwLapBBNtEP4x/O8N7FO2y+tj057/BvhNA8fcBdy1myinAH80s01NDu/aq8UEsys+ssu2LuH9V89LKgZmSQLYAnzTzOaFwwgXAMv414sBu3MvwfDFeQoaWwd8mWA47c8l1YXtf9vMVksqIygKVwPzgHjYThnwhKSVBD16h6Wd4xmCnl/v/XXOObfXZLan0R/OOdd8km4HzgS+ZGbvRJ3HuZYkqRS4xcxGNGX/wr5HWt+Lbs1wKuecc/uqsnxM4zs1gaS5Zlba2H7eQ+acyzgz+2HUGZzLBEnjgMv59D2TzjnnXJN4QeZyU1k3EQyZOhDoG349kGBSigIgP/zanOcQDIXa3MCjejfbP/0oq9qSke+Bc67ZzKyc4N5L55xzbp94Qebal7JuhfxrkdXQ175AH4LCKdP6NLuFsm4pguJsNbB8tw8v3Jxzzjnnso7fQ+ayS1m3POAIoDh89CdYH6i+2No/unCR20Qw0cH7wHtpX98DVlBWlYowm3MuVFpaanPmzIk6hnPOuQzze8hcViuZXFL4l+Wrji5KJI5lZ/FVDHyWncMB3b/qHj4GNfBeDWXdPiQo0t4FFhEsnvsmZVWJ1ovonHPOOefSeUHWBJKuBr5BsNhoCviemb2+m30vBp43s1XNPOdU4Eoza/eXUUsml/QFjgMGEhQTg4Cjru+5/yt3fbxuZKTh2o9Cgt7E/rts30FZt4UExVn9Y6kXac4555xzrcMLskZIGk6wgOnxZlYjqRd77qG5GFgCNLkgk5RnZjnxB3DJ5JJ8guJreNrjMw3t+0rHDsPWxONrDkwmD2zFiLmmA3BC+Ki3g7Ju9T1o6UVaXQT5nHPOOefaNS/IGtcXWG9mNQDhoqVIugY4G+gIvAp8D/gKUAo8LGk7QbFRAZSa2fpwrZqbzGxUuPjoQQQLlq6XdCnBoqIDwmM61geQdBcwNNz2RzO7VtJpwA/M7Jxwn9OBy83s3Ex+M/ZW2PuVXnwNISgCGid1/EmfXnP+sPpjL8haVwdgWPioVxP2pM0ApgHTKauqiiKcc84551x74gVZ454HrpH0DvAP4DEzmwbcYWa/BpD0IHCWmf1R0g9IG2ooaU9tDwFOMbPtkn4KbDOzgZIGAvPS9rvazDZIigMvhu+/BPxeUm8zWwdcQlDQRapkcsmBwBfCxynAoc1pb0lhwfD38/Mqj6hLFLVAPLfvCtlZpP0MSFHWbQFBcTYVmEFZ1cbo4jnnnHPOZScvyBphZlskDQFGAJ8DHgsXAt0s6SqgE9ADWAr8ZS+bf8bMtofPTwV+F55zkaRFafudL+kygv9efYEB4T4PAt+UNImg9+nb+/Yp913J5JJCgu/NF4AzCO4DazlS3o8P6L36rytWF7Vou665YsDx4eMnBAXaIuBl4FlgGmVVtRHmc84555zLCl6QNYGZJQl6AaZKWkwwPHEgwVDE5eHww90Nw0sQ/PFKA/ts3fVUux4s6TDgSmComW2UdH9aO5MIisAdwBOtdR9ayeSSYoLi6wyCQrJTJs+3LC/vxHmFBRXH19QWZ/I8rlliwODw8RNgC2XdXgCmAH+jrGp1lOGcc84559oqL8gaIeloIGVm74abBgNvExRk6yV1Ac4D/hi+vxnomtZEJcHQxGcJ7jHbnenAhcDLko5lZ0/TfgSFW5WkA4AzCYpDzGyVpFXAL4HT9/1T7lnJ5JIYQS/YV4F/Aw7J1LkaJOlnfXpve3n5ylY9rWuWLsA54cMo6zafoDibAsz2NdGcc8455wJekDWuC3C7pO4EvV3vAZcRLMK7mKDgmp22//3A+LRJPa4DJkr6L6DBqfJDdwGTwqGKC4A3AMxsoaT5BEMiPwBm7nLcw0BvM3uzGZ/xU8Ii7FSCIuxcgoWXI7M+Lz7kxU4d55+2bftxUeZw+0TsHN74K2AVZd2eAB4DXqOsylend84551zOkpn/LZTNJN0BzDezic1tq2RySZx/LcIOaG6bLalzKrX0tWUrjok6h2tRHwGPA49SVjU36jDOtYbS0lKbM6fdLzHpnHM5T9JcMyttdD8vyLKXpLkEwxlPr5+Wf1+UTC45hWC45LlAnxaKlxG/Wr/h9fM3bzmh8T1dFnqfoNfsD5RVLYk6jHOZ4gWZc87lBi/I3B6VTC45CLiIYLr8IyOO02QFKXv/jWXLi+IQjzqLy6jZwD0ExdmWqMM415K8IHPOudzQ1ILM7yHLIeGQxLOA/yCYHCTripramI6Y0H2/Vy7fVH1K1FlcRg0NH7+lrNtjwL2UVb0WcSbnnHPOuRbnPWQ5oGRyycHAd4FLgX4Rx2m2uNnKNyqX9yoIFit2uWMxMBF4kLKqDVGHcW5feQ+Zc87lBh+y6CiZXHIqwZpQZ5OFvWF78rXqzdN++cnGkVHncJHYDjwA3EJZ1dtRh3FubxX2PdL6XnRr1DGccy4nVJaPiezcPmQxR5VMLhHwZeAq4MSI42TM4127HPvjDZuqu5rtF3UW1+o6EizOfhll3f4K3ExZ1bSIMznnnHPO7RMvyNqJksklBcC3gJ8DR0ccJ+NM6nlN757Tblm73nvJcpcIen/PpqzbXOBm4AnKqhLRxnLOOeeca7pY1AFc85RMLtmvZHLJVQQLVN9LDhRj9f7RqeOQ9fHYuqhzuDZhCPAI8AFl3a6grFvHqAM555xzzjWFF2RZqmRySa+SySXXA8uB64G+EUdqfVKXK3v3qog6hmtTDgFuwQuzdktST0kLwscaSSvTXhdk4HyvSBrc0u0655xz9XzIYpYpmVzSCfgpwdDEnL9/am6HwhM/ystb8ZlEIutnj3Qt6kAzbnomddLoH4+b8jxwd2X5mLqoQ7nmM7NPgMEAksqALWZ2U6ShnHPOuWbwHrIsUTK5JK9kcsn3gPeA/8aLsYBUcMUBvZZFHcO1Ldus8O3za69558d1PzgbuB14q2jclG8WjZviP/PaKUmflbQg7fU4Sb8Mnx8p6TlJcyVNl3RUuP0CSUskLZT0critk6QnJC2S9CjQIa3NCZLmSFoq6Zpw2xmSnkjb50xJj7fSx3bOOdcO+B8nWaBkcsk5wBJgPLk4NLER7+bnD19aUPBu1Dlc9MzY/nhi5LSSmnuPmG39i9PeOhx4EFhQNG7K2RHFc9GZAPynmQ0B/h9wR7j9WuA0MxsEnBNu+wGw0cwGEgwHPy6tnXHh9MWDgNMlDQBeAAZK6hnucwkwKaOfxjnnXLviQxbbsJLJJacANwDDo87SpkmxKw7otfGF5auiTuIi9Il1nf/V2mt7fGAH7WnmzRLgmaJxU2YCYyvLxyxspXguIpK6EywB8qSk+s31v/tmAg+EPVxPhdtOJfi5i5nNl7Q0rbmvS7o0PP4gYICZvSnpEeAbkh4mmGDm6w3kuAy4DCC+X+8W/ITOOeeynRdkbVDJ5JKDgd8B50adJVusycsbNrNjh8Unb99REnUW17pSxsZbE19Z+rvkV07Zi8NOBuYUjZtyC3BtZfmY7RmK51pPgn8d9dEh3CZgvZk1NDHHd4ETgLOAhZIGhttt1x0lHQn8GBhmZpskPcTO4Yz3AU+Gzx8zs+Sux5vZBIKeOgr7Hvmp9p1zzuUuH7LYhpRMLomVTC75AVCBF2N77arePVNRZ3Ct6/1U31nDau5M7GUxVi+PYHKcJUXjpnyhhaO51rcGOEjS/pI6AGMAzGwjsFrSOQCSYpIGhcccbmavAb8CNgIHA9OBC8N9BwHHhPvuB2wGqiX1Bc6oP7GZLQfWA+OA+zP5IZ1zzrU/3kPWRpRMLikB7iG4Wuv2QXU8PugvXTrNOXvLttKos7jMSlhs1S/qLlv5ZOrUlhjOezjwXNG4KQ8DP6ksH+Nr22UhM9sh6X+B2cAHwJtpb18A3BXOylgAPAQsBG6RdBhBL9rzZrZE0gfAZEmLgHnAnLCNeWGbS8L2Z+4S4RFgPzN7JxOfzznnXPslMx85EaWSySUdCG4svxIvkJutQyr19hvLVhyl4A8s186YkXrD+s/4Tu3Ph2ylY5cMnGIDcGVl+RiflMHtFUnjgVlmNrmxfQv7Hml9L7q1FVI555yrLB8T2bklzQ0ng9ojH7IYoZLJJacBiwmGuXgx1gJ2xGJH39+t66yoc7iWt8Py3/1m3X+9+bXaa0ZmqBgD6AHcVzRuyktF46YcmaFzuHYmnG7/aOAPUWdxzjmXfbwIiEDJ5JLOwG3ApVFnaY9+t3/3g79ZtbkuH/KjzuKaz4yaZ1InzfpZ3fdPTpDXWv9NPwcsKho35TfA9b6otNuT3UwY4pxzzjWJ95C1spLJJUMI7kXwYixDEtKht/Xo7r1k7cAm67zwi7Xlq35c94NRrViM1etAsAj77KJxU45o5XM755xzLkf4PWStpKJ/sb7x8/hPE3n6P7znJuNiZmtnLVvRuZNZ56izuL1nRtVdyX9bdEPia6eA2sL9gJuAb1WWj/lr1EFc9istLbU5c+Y0vqNzzrms5veQtSEV/Yt7AH994ObkFZf+Pflqxx1WHXWm9i4l9fl1rx7+F08W+ijV+/WTam7ffkPighFtpBgD6E6woPSvi8ZN8Z+bzjnnnGsx3kOWYRX9i08AHgc+U7/NYPPSQzVvwhdjh6/poUOiS9fOmVXN+GhlqnsqtX/UUVzjkqY1v0pcUvlI8vMnRp2lEX8HLqwsH7Mh6iAuO3kPmXPO5QbvIWsDKvoX/wiYQVoxBiDoeuwyG3nb3cmDbr8r8drg91OLoknYzkndftG7p39v2zgzbH7qszMG10zomAXFGMAXgTlF46YcF3UQ55xzzmU/7yHLgIr+xXFgPPAfTT1mewFv/vHk2MYpw3RCKiaf/bKlmO14fvmqjX2Tyb5RR3GfVmN5H3y/7iebX04dNyjqLPtgB3B5ZfmY+6MO4rKL95A551xuaGoPmRdkLayif3En4DHgrH05PilWzzhWbz9wWmzwlo7q3rLpctMxNTUzHl318Yioc7idzKh7LjV05o/qfjC8lvzCqPM0093AjyrLx9RGHcRlBy/InHMuN3hBFoGK/sW9gL8AzR52ZbDtnYOZc/eZ8UNW9NZhzU+Xw8yST65c89FRdXX+fWwDqq3jkgtrry5cbIe3p4WX3wDOqiwfsy7qIK7t84LMOedyg99D1soq+hcXATNpgWIMQNDp6JWcevO9yaI770i8Mezt1PyWaDcnSfErDuj1cdQxcp0Zmycmzpw2qOaeAe2sGAMYBrxcNG7KAVEHcc4551x28R6yFlDRv3gw8CxwYCbPU5PH208Pj63784kamshTtg/zal1mNmnN2orSHTUDoo6Si1ZZjzfOr7223wrrfVDUWTLsLWB0ZfmY1VEHcW2X95A551xu8B6yVlLRv/jzwHQyXIwBFCY4+mszUqc8dFOy+sdPJ6d222rrM33OdkPSlX167Yg6Rq5Jmtb9uu5bs06quWNYDhRjAP2BqUXjpuTCZ3XOOedcC/CCrBkq+hefB/wN6Nqa540ZvU+usFETfpfsUj4pMeOwNfZea54/W30Sjx//QqeO86LOkSuWpg595fiau/PvS545POosrewoYFrRuCn9MtG4pKSkBWmPogb2OUjSH3dz/FRJjV6tc84551zr8CGL+6iif/HpwF+BgqizAGzqzNwHR8dsxjEagqSo87RVnVOpN19btsKHLWZQrcWX/bDuhxueSw3L9XW6PgA+V1k+5qOWbFTSFjPrsof388wssYf3pwJXmpmPmYuID1l0zrnc4EMWM6iif/FQ4CnaSDEG0H0rQ374l1TpQzcmP/jGy8kZBXW2PepMbdHWWGzAo127vBZ1jvbIjMRLycHTBtbc28eLMQAOJxi+eGimTyTpYklPSPoL8LykIklLwvc6SnpU0iJJjwEd0467S9IcSUslXRduO03Sn9L2OV3SU5n+DM4551yu8oJsL1X0Lz6KYJjibq9QR6kgyRFffs1GPHBTcvvP/5ic2qPafHbBXdzYc/8+SUhGnaM92WId3jy39rr3v1N31cgdFHZs/IiccRjB8MWWXHKhY9pwxT+lbR8OXGRmo3fZ/3Jgm5kNBH4DDEl77+rwyt1AYKSkgcBLQLGk3uE+lwCTWjC/c84559J4QbYXKvoXHwQ8D/SKOktjYtBj6Ls26q7fJ/e/6d7EzKNW2FtRZ2oraqXDx3fvNivqHO2BGdseSpw2bWDNvUfPtyOPjjpPG3UoQVF2cAu1t93MBoePc9K2v2BmGxrY/1TgIQAzWwQsSnvvfEnzgPnAMcAAC8axPwh8U1J3gkLv2RbK7pxzzrld5EUdIFtU9C/uDvyd4I+rrCEo+Mw6Tv6fB5Ns7siCh0fFal4epKEm5XQxfk/3/Q7/j6qqHYVGh6izZKu11m3u+bXX9Km0viOjzpIFDgGeLho3ZURl+ZhMzfa5dQ/vfepmYUmHAVcCQ81so6T74Z//HiYRLHK/A3hiT/ekub23eGUVReOmRB3DOefalcryMVFH2Gc5/Ud5U1X0L+4APAOURJ2lObpuZ/D3n02d8PANyeUXv5Cc1qHWtkSdKSpJ6aDyHvu/HnWObJQyfVJed8HMYTV3Dam0vodEnSeLlAITIzjvdOBCAEnHEgxPBNiPoIirknQAcGb9AWa2ClgF/BK4vzXDOuecc7nGC7KmeQgYEXWIlpKX4tAvzbGRk29OJq9+NDmtzyZbGXWmKDzZtcvA6piqos6RTd5O9ZtZWnMn45P/dnLUWbLUN4rGTRnXyue8C+giaRFwFfAGgJktJBiquBS4D5i5y3EPA8vN7M1WzOqcc87lHJ/2vhEV/YsvB+6MOkcmGSRW78/siWfEui4+LHZs1Hla0+e2bpv2u7XrfchdI+osvuKndZev+UvqJF+/qvlSwNmV5WP+FnWQPZF0BzDfzKLo1WvXCvseaX0vujXqGM451660xSGLPu19C6joX3wMcHPUOTJNkHfQRob/6tHUsZN+m1hy5uzUrFjKcmIWwpc7dSxdF4+tizpHW2VGcmbymGmDau7Z34uxFhMDHiwaN6XNDveUNJdgaONDUWfZE0km6cG013mS1kn6awu1XybpypZoyznnnNsdL8h2I7xv7A+krdmTCzrXcOwl/0gNf/iG5JrL/pac1mmHte8hfVLnn/XpVRF1jLZomxW8/bXaX719Yd3VI7fRoXPUedqZHsAfisZNaZMTK5nZEDM71cxqos7SiK3AsZLqf06fDuTkEGznnHPZq9kFmaSrw0VFF4Xr4pzQAm22hauSN5Dlk3g0R9w4+PMLbeSkW5LxsocS0w76xJZFnSlT5hcWDl+Wl7c86hxthRk7nkicOq2kZuIRb1jxgKjztGMnA/8ddYh24FmgfpzK1wkupAEgqYekp8PfT6+F66zV/465T9JUSR9I+lHaMVdLelvSP4Cj07Z/V9JsSQslPSmpk6Sukj6UlB/us5+kyvrXzjnnXFM0qyCTNBw4Czg+XHT080DW/2Fb0b/4S8APo87RFgi6DFjOyFsmJA+5487EG8e/m1oYdaYWJ+X/+IBeWf//bUv4xLrO/3ztjR//PPH9kUnibbL3pp35RdG4KWdEHSLLPQpcIKkDwTDL9NlTryO4D24g8F/AA2nv9QfOAIYB10rKlzQEuAA4DjgXGJq2/1NmNtTMBgEVwKVmthmYys6C8ALgSTOra+HP6Jxzrh1rbg9ZX2B9/bAWM1tvZqvCK4S9ACSVSpoaPm/zVyUr+hcfiE/z/CmCWJ8qho37Y2rQAzclKv59VmpmPNl+/uh4Pz//xMUFBe9EnSMqKWPTrYlzZwypufu49+3grFprL8sJuLto3JScGhrdksLFrosIesd2nSjlFIJFrjGzl4CekrqF700xsxozWw+sBQ4gmE33T2a2zcyqCZY7qXespBmSFhMsI3BMuP1e4JLw+SUEa7h9iqTLJM2RNCe5rX2PBHfOObd3mluQPQ8cIukdSXdKaspsdW39quQkoHcLtNNudaij+MKpqZMfujH5yQ+eSU7tus02RJ2p2aTYTw7olZN/JX2QOnDWiTW/r7s1cV67WdohyxxKMB2923fPADeRNlwxpAb2rZ9aOP3+uCSQt8v7u7of+IGZlRD0vHUAMLOZQFH4+y9uZksaOtjMJphZqZmVxjt1a2gX55xzOapZBZmZbQGGAJcB64DHJF3cyGGtelVyb1T0Lz4H+GJz28kVcePAU5faqHtvS3b8zeTE9M+stQ+iztQcH+flDZ3RscOiqHO0loTFVl1Z9703Rtf+dvha9veLENH6RdG4Kd4zue/uA35tZot32Z6+KPYoghEd1XtoZzpwjqSOkroCZ6e91xVYHY7EuHCX4x4gKAab/XvIOedc7mn2PSJmliTorZoaFk0XAQl2FnsddjlkX65KftnMFobF3qjwvDMlNXpVsqkq+hcXADc2p41cJeh45CpOvXFi0jZ2Yc7kz8c0qzg2JOpc+2Jc756a+VH7nqTNjNRsO3rGJbVXHb+VjsOizuOAYDbXm4Hzog6SjcxsBXBbA2+VAZPCRbG3Efx+2lM78yQ9BiwAlgEz0t7+FcH9acuAxQQFWr2Hgf/h0z10zjnnXKOaO6nH0ZKOTNs0mOCXVSVBzxnAV5rQVFu4KnkFcEQLtJOzBOqxhdKfPJ0a8uCNiXfPn56ckZ+wHVHn2hvV8XjJ0106z446R6bssPz3vlX3/5aeX3vtyK107Nr4Ea4VfaVo3JTRUYfYG5IubWBbeWud38y6NLBtqpmdFT7fYGb/bmYDzezE8H4zzKzMzG5KO+ZYM6sMn//GzI42sy+Y2Xfq9zOzu8zsMDMbZWY/NLOL0057CvBHM9uUuU/rnHOuvWruPWRdgMmS3gyvQA4guCJ5HXCbpBkEvWB7ZGbzgPqrkk/S8FXJF4C3djn0YWB/mnlVsqJ/cU/g6ua04f5VYYIjz5tpIx68Mbnlp08lp3bfYlmz+PL/9Ny/ewpSUedoSWbUPJMcPq2kZuJnXkmV5OxyDlngd211bbLdOE/SPy+USbqTHLsHV9LtQDm+hIFzzrl9JLPdjRSMHcxEAAAgAElEQVRs+ySdB/y7mX2rOe1U9C++Hr+pPqMMaioPYPaEL8b7vH+Qjoo6T2Ou2LDp1Uurqk+KOkdL2GSdF11Q+6sub9lnDo86i2uSyyvLx4yPOkRThAsyP0NwD9eZwAYzuyLaVG1fYd8jre9Ft0Ydwznn2pXK8jGN79TKJM01s9JG98vWgiy8Knkm8CUz2+fpyiv6Fx8AfAB0aqlsbs+qOjHvodGx5LRjVYrU0CxokcszW/5G5fID8yFrF3g1o3p88uyF1ycuOAXa5vfZNehD4MjK8jGNji6IiqQeaS+7Ak8DM4FrIBgqGEWubOEFmXPOtTwvyLJYRf/iW4EfR50jF9XF+fDZUi1/fESstDZfba4g/lZV9fSrNmw6Neoc+2J5qtfr59dee+hqeh4YdRa3Ty6sLB/zSNQhdkfShwQTMSntaz0zM++N3YPS0lKbM2dO1DGcc85lmBdkTVDRv7grsAbvHYuUwcZ5R2jhvWfEjv6km/pGnaeezNa9tmxFp05mnaPO0lRJ08fXJi7+8KHk6SdGncU1y+LK8jEDow7hMsMLMuecyw1NLciaO6lHtjsfL8YiJ9h/yPs26s47k71+OyExs/gjezPqTAAm9S7r1SMr/moywxakjpgxuGZCBy/G2oWSonFTvhR1iMZI6iTpl5ImhK+PlHRW1Lmcc865bJLrBdnFUQdwOwny+33Cydc9nBxw3y2JRafPS70ms0hnO3y2c6fjNsZibfp+mBrL+/DSuisXfbn2v0dspnO3qPO4FnNZ1AGaYBJQC9RPgLOCYD0u55xzzjVRzhZkFf2LP0uwdoxrg7rsYOB3n0ud+PANyZXfeS45rWONbY4kiLTfVX16Lo7k3I0wo+65ZOnUkpqJB72UOn5Q1Hlci/tS0bgpvaIO0YgjzOwGoA7AzLbzr/eTOeecc64R2bTeTUu7OOoArnF5KQ754jw75Ix5yeolh2rahC/Gjvi4h/q1ZobXOnQ4YWVefNXBieRBrXnePdlsHZd+o/bqgsV2+Kios7iMyQcuBG6LOsge1IZT3xuApCOAmmgjOeecc9klJ3vIKvoXx4BvR53DNZ1gv5JlNvJ3dyf7/u6uxGsDP0i1Xq+V1OEnfXp/0Grn2wMztkxKnDF9YM09xYvt8COjzuMy7qKoAzTiWuDvwCGSHgZexNd0dM455/ZKTs6yWNG/+PPAC1HncM2zrYClT4yIVT1bqmGpmDLb22uW/OPKNcuOrquLbDrv1dZj9vm11xy03PocHFUGF4mjKsvHvBt1iN2R1BM4kWCo4mtmtj7iSG2ez7LonHO5wWdZ3LNvRR3ANV+nWo656MXUSQ/fkFz7/SnJqZ23W1XGTibFrzig19qMtb8HKdO6/6775qvDa+4Y6sVYTvpi1AF2R8HC7mcCQ8zsr0AnScMijuWcc85llVwtyEZGHcC1nLhx0OhFNuq+W5N5v34wMb3fOqvMxHlW5OefOLtDYatOyb80degrx9eMz5uY/NJJje/t2qkzog6wB3cCw4Gvh683A7+PLo5zzjmXfXKuIKvoX3wAcGjUOVzLE3Tuv4JTb743+Zk7f594Y+jbqfktfY6f9enVKhMW1Fl82fdrfzxvTO3/nbKJrvu3xjldmzWqaNyUgqhD7MYJZjYW2AFgZhuBtprVOeeca5NyriAjuNfBtWOCWK9qhv38qdRxD9yUePvcmalX8pJW2xJtb4zHj3uuc6d5LdFWQ8xIvJwcNLWk5t4+f0+dcHymzuOySmfg5KhD7EadpDg7Z1nsDUS6dqBzzjmXbRotyCQdIakwfD5K0o8kdc98tIw5IeoArvV0qOPoC6anTnnoxuSmH/05OXW/rfZJc9u8plePDhb+AdqStlphxVdqy967pO4Xo3ZQ2LGl23dZbWjUAXbjd8CfgD6SfgO8AvxvtJGcc8657NKUHrIngaSkzwITgcOARzKaKrO8IMtBMaPPKW/aqHt+l+z8v/cnZhStsff3ta1tsdiAR/br8npLZTNj2yOJ0dNKaiYeNc+O6t9S7bp2pU0u/G1mDxNMc/9/wGrgy2b2RLSpnHPOuezSlKnCU2aWkHQOcKuZ3S6pxe/NaQ3h+mNt9UqzawWCDp9dzYgbJiXZ2Jk5D5wW08wBOp5gtrgmu7nH/gd8rXpLIq+Zi6uvs25zv1p7TZ9K6+sTzbg9GRx1gHSSbgVmAq+a2VvAWxFHcs4557JWo+uQSXoduBW4GjjbzD6UtMTMjm2NgC2pon/xsUDrLSjsskJtnPf/eoJWPXlybGhdnjo09bjvbqqa8aONVSP25Zwp04abE1+t+H3yy2313iDXtiSBLpXlY3ZEHQRA0g+Ak8IHwKuEBRqw0Mz8PrI9KOx7pPW96NaoYzjnXCQqy8dEHaHVtOQ6ZJcQTGv8m7AYOwx4qLkBI1ISdQDX9hQkOeLcV23Egzcmt175ZHLq/putSeuNTey232drxF7/gfxu6uBXh9bcmfJizO2FOPDZqEPUM7M7zOwbZlZE8PvhKeAI4AlgU5TZnHPOuWzTlOFWp5vZj+pfhEXZ9gxmyiSfPtztVgx6DnvHRg19J1n7UW9emXBmvPe7B+vo3e2fkvr+b88eU69bv2FUU9pPWGzFz+ouX/Pn1Mm+ppjbF32BJVGHqBcuCl1C0Et2MjAAeA94MMpczjnnXLZpSkF2EXDbLtsubmBbNugWdQDX9gkKDl3HKb95IEl1RxY8/LlY7dSBKjXpUz3Kf+rSefBPN2ys6pay3f6/ZUZqVmrAjP+ou7J0Gx36ZTa9a8cOiDpAPUkvAPsBC4DXgP81s4poUznnnHPZabcFmaSvA98ADpP0TNpbXYFmTx0eES/I3F7ZbzuDL/9biu/+nWXPDVHlo6fGSmsK1Ln+fZO6X92757Q7Pl7f4KQc263gnYtrr0q8bgN80g7XXAdGHSDNBwQzPx5J8PtgvaR1Zra+JU8iqSfwYvjyQIJ76dYBRcAqMxvQkudr4PwXA6Vm9oNMnsc551xu21MP2asE0xj3Am5O274ZWJTJUBnkBZnbJ3kpDh0z2w790uxk1cLDNPWeL8aOWtddBwFM69hx6Np4fG2fZLJP/f5m7HgqNeK1q+ouOyVJvFkzMToXajM9ZGb2PQBJ+wEnEgxbHBsuDL3EzC5qofN8QjjDpKQyYIuZ3SSpCPjrvrYrKc/MEi2R0TnnnGuu3U7qYWbLzGyqmQ03s2lpj3lZ/IvMCzLXLIJugz+0UXfclexz692JV4+tTC1F6vTTPr3+Oe33Buu64Au1N6z5Wd3lo7wYcy2oU9QBGlADbAO2h8/7Ace30rnjku6RtFTS85I6AkiaKqk0fN5LUmX4/GJJT0j6C/C8pL6SpktaIGmJpBHhfpdIekfSNIJ74wi3ny3pdUnzJf1D0gGSYpLeDQtRwtfvSerVSt8D55xz7cBuCzJJr4RfN0uqTntsllTdehFblBdkrkUI8g7awEnX/CF1zKTfJhYfvCgv9p4Klt6WOGfG8TXjB71r/YqizujanTZT3Eu6JVwSZQ3wa4Kh7HcDR5tZa81meyTwezM7hmBmx6804ZjhwEVmNppgSP5zZjaYYPjlAkl9gesICrHTCSYqqfcKcKKZHQc8ClwVTu//EHBhuM/nCab9b9Ghm84559q33f6CN7NTwq9dWy9OxnlBlkOSsbyaVCy/JhUrqEnG8mtT8YKaZLywLngUJJKxwkQyXphI5BWmkvHCVDJWmErGCy0ZL7BkvFCpeAHJWIFSsXyl4vmxVCw/llJeXioWzzPl5ZlieaZYvinW7TPbP6575f1Zn3y57wVHnCM2Rv3ZXftTG/RAtRUbgbHAW2a2JaIMH5rZgvD5XIL7yhrzgpltCJ/PBu6TlA88bWYLJJ0GTDWzdQCSHgOOCvfvBzwWFm0FwIfh9vuAPxOs1/kdYFJDJ5Z0GXAZQHy/3k3+kM4559q/Rq+4SjoCWGFmNZJGAQOBB8wsG9ea2fMq2K5FGVgqVrAjFcuvScbza1KxgtpkvKA2GS+sS8YK6pLxoCBKxguTyXhYFMULU2FBRDJeYMlYoVLxfCVjYUEUy4+lYnl5pniexeJ5KcXzUCzfiBWaVAAqBIKH/vk8o1J1Kypqtz5+6A7o+fq6Z+YO7/1vJZIKMn1el1s6NG3dyNby72b2a0nzaL0hirtKL1CTQMfweYKd36tdF3rfWv/EzKZLOhUYAzwo6Uagmt3/nrgd+K2ZPRP+LiwL21ku6WNJo4ET2Nlb9i/MbAIwAYKFoZvyAZ1zzuWGpgyBeRIolfRZYCLwDPAI8KVMBsuQDY3v0r4YSibjQVEUFET5tcnYP3uKwoKoIBl87ZBeEFkyVkAyXmipeEFYEBUoFcuLpWL58VQs758FUdhLlA+xApMKQQVAB4KipCM7/1Bqd5K1782v2/rMZwmGbLF861tDOsQ7zTqux+dPUAPT5DvXDHVRB0hTJ2kS0E/S73Z9M33tyghUAkOAN4DzdreTpEOBlWZ2j6TOBIXl9cBt4eyO1cBXgYXhId2AleHzXSctuZdg6OKDZpZsoc/hnHMuRzSlIEuZWULSOcCtZna7pPmZDpYhkRRkKcXqUrGCHclYfk0qXlCbjBXUpuIFtYl4YV0qKIjqe4mSieBrWBAVWipeEPQUxQtiqVh9YRQURRbLCwuinUXRzoJIhQRFUR7QOXy4FpSoWfhaYtuLx7FLL9y71fOGd4h3njGg+0kjIorm2qe2NBT2LIL7pUYTDBdsS24CHpf0LeClPew3Cvi5pDpgC/BtM1sdzuY4i2CW4XlAPNy/DHhC0kqCtdcOS2vrGYKhig0OV3TOOef2pCkFWV24JtlFwNnhtvzMRcqcRLzD6mS8cF14P1FtMl5Yu8v9RMmgt6hDKhEMn6sviAh7jGL/vJ9IefFg+Fw8f5f7ifJNscJdhs7lE3zP2tP9eDmtbvurM5I7XjuJnX+s/YvFG2eM6BDvMu3wrgN9/THXUj6KOkC9cNKKRyVVmNnCRg9omXOWpT2vBI5Ne31T2vO3CIbW1/tluP1+4P60/SYDkxs4T4OFlZn9meBesYYMIpjM463dvO+cc87tVlMKskuA7wO/MbMPJR1GMDQj60wfcfMGwO+mds1St/W5qcnapaMa22/2+mdHdox3ntq30xGN7utcEyyLOkA6SWcC/0/SAIL7rt4Erjezv0WbrHVJGgdczm7uHXPOOeca0+g9Lmb2ppn9yMz+EL7+0MzKMx8tI9rMFWaXnWo3P9WkYqze9I//OGpDzeoZGYzkckeb+fkl6bvAfxMM4zscOIJguviycDbBnGFm5WZ2qJm9EnUW55xz2WlP65A9Hn5dLGnRro/Wi9iiKqMO4LKTWSpZU/3QjFSictTeHvvCqgdO3ly3YVYGYrncYcDyqEOk+QnwBTN7ycyqw8dLwJnhe84555xroj0NWdws6WSC+8bayxS9iwmmR27wvh/nGmKWqKmtvn+Bpar3dZKO2N9XTBxy1iGXz+2Y12VIi4ZzuWJNv/IRtVGHSKO09bz+ycw+kRRFnqxScnA35pSPiTqGc865NmJPQxYXEcxWNRX4T2B/M1tW/2iNcC1t7PjR2wnuc3CuScxqNtdUTaiwVPUJzWknRapgyooJ/WuTOxa3VDaXUxY0vkurqpY0aNeN4bbNEeRxzjnnstZuCzIzu83MhgMjCaaLnySpQtI1ko5qtYQtb07UAVx2sNTW9TWbJqzAdgxuifaSVtd5yoq7D0mk6t5tifZcTpkedYBd/Ax4RlKZpLMlnSXpOoJZCH8acTbnnHMuqzRlUo9lZna9mR0HfAM4B6jIeLLMmR11ANf2pZJVK2uq7tkMdcUt2W5takf3KSsmdEtZMit7mV1k2tTEMOEEFsMIfodcDHwnfH6iT27hnHPO7Z1GCzJJ+eEV0IeBZ4F3gK9kPFnmeEHm9iiVWPt+bfV9MUgd1vjee29HckufZ1dMjKUstSYT7bt2Zwdt8OeWmX0MvAF81czONbNfmZn/P+2cc87tpT3Nsni6pPuAFcBlwN+AI8zsa2b2dGsFzIB5wNqoQ7i2KVm3fGnt5of2B+ubyfNsSWw85B+rHthiZhszeR7XLrzRxib0SHcB8K6kGyS1aG+yc845lyv21EP2X8AsoNjMzjazh81sayvlypix40engL9EncO1Pcnat+fWbXniUKBHa5xvY+3Hn5265tFV7eHflcuoaVEH2B0z+yZwPPA+wX3GsyRdJqlrxNGcc865rLGnST0+Z2b3NDS1cTuQzT18LgMSO+bPqts6pQTo0prnXbvjo2NeXfvnt82srfaAuOg9GXWAPTGzKoKMjwJ9Ce4znifph5EGc84557JEo/eQtVP/ALxXwgFQt2369MT2l08ACqI4/4ptbx8/75MX5plZMorzuzZtcb/yEQujDrE74f3FfwJeAvKBYWZ2JjAIuDLScM4551yWyMmCbOz40TuAv0edw0WvduvfpiZr5pxKxP8W3ts8/8Slm2a+GmUG1yY9HHWARnwVuMXMBprZjWa2FsDMthHMvOicc865RuRkQRaaFHUAFx0zs9rNT0xL1b41Kuos9ZZumjni/eoFbfZ+IdfqUrTxgszMvm1mDa6RZmYvtnYe55xzLhvlckH2LPBB1CFc6zNLJWqrH3g1lVg+Muosu5rzyXMjV25714syBzCtX/mIFVGH2BNJJ0qaLWmLpFpJSUnVUedyzjnnsknOFmThbIt3RZ3DtS6zuu01VffOs9QnJ0edZXde+fipket3rGyw18HllPujDtAEdwBfB94FOgL/AdweaSLnnHMuy+RsQRa6D9gedQjXOiy1o6qm6p53sC3Dos7SmBdXP3RKdd0Gv6csdy0D/hB1iKYws/eAuJklzWwS8LmoMznnnHPZJKcLsrHjR28AHok6h8s8S21ZV1M1YQ22Y1DUWZoo9vcVE4duS2yeE3UQF4nr+5WPqIs6RBNsk1QALAgXh/4J0DnqUM4551w2yYs6QBtwPXAR/r1ot1LJjctrqyenIHV01Fn2hpHK/9uKCQP+7ZCxiwriHQZGnce1mlUEvffZ4FsEF/Z+APwEOAT4SqSJssDilVUUjZsSdQznXDtVWT4m6ghuL+V0DxnA2PGj3wUmRp3DZUYqsebd2ur7CyB1aNRZ9kXSEp3+umL8oYlU3dtRZ3Gt5sZ+5SNqog7RFGa2DOgKFJrZdWb203AIo3POOeeaKOcLstB1+L1k7U6yrnJx7eZHeoMdEHWW5qhL1XSbsuLuHklLLos6i8u4tcCEqEM0RoEySeuBt4B3JK2TdE3U2Zxzzrls4wUZMHb86NXAbVHncC0nWVMxp27LU0cA3aPO0hJ2JLf2/vuKe+MpS62OOovLqF/3Kx+xLeoQTXAFcDIw1Mx6mtn+wAnAyeF9ZM4555xrIi/Idroe2Bh1CNd8iR1zXq3b9uwgoFPUWVrSlsSmfi+smrzNzDZEncVlxByyZymObwNfN7MP6zeY2QfAN8P32oxwbbQFaY+iBvY5SNIfd3P8VEmlmc7pnHMud3lBFho7fvQm4BdR53DNU7dt6rTE9unDgfyos2TCptq1R7y85g9rzGxL1Flci0oBl/crH5GKOkgT5ZvZ+l03mtk62t6/ve1mNjjtUZn+pqQ8M1tlZudFlM8551yO84Iszdjxo+8BXoo6h9s3tVv+Oi1ZM28koKizZNK6HcsHzFz79LtmlhUTP7gmuatf+YhsWuKgdh/faxMkXSzpCUl/AZ6XVCRpSfheR0mPSlok6TGCBa/rj7tL0hxJSyVdF247TdKf0vY5XdJTrf2ZnHPOZS+f6v3TLgMW0c6Gu7VnZma1Wx6fbomVI6PO0lpWbnvnuDmfPPd6ac8zSiXFo87jmmUNcHXUIfbSIEnVDWwX0KG1wzSio6QF4fMPzeyc8PlwYKCZbdhlGOPlwDYzGyhpIDAv7b2rw/3jwIvh+y8Bv5fUO+whvASYlMkP5Jxzrn3xHrJdjB0/+n3gV1HncE1jlqyrrZ78ai4VY/U+2LzwhCWbXpllZhZ1FtcsV/QrH1EVdYi9YWZxM9uvgUdXM2vLQxbPSdv+wm7uxzwVeAjAzBYRXKCrd76kecB84BhgQPjv70Hgm5K6ExR6z+7aqKTLwt61OcltWfWf2znnXIZ5QdawW4HXow7h9sysbltN1b0LLbXh5KizROXNTa+e8t7m+dOjzuH22f39ykc8FnWIHLV1D+996iKHpMOAK4HTzGwgMIWdvYGTCCY0+TrwhJklPtWg2QQzKzWz0ninbs0O75xzrv3wgqwBY8ePThH8YvVZF9soS23fVFM14X1sa87PfjbvkxdGrtj6zrSoc7i9thQYG3UI9ynTgQsBJB0LDAy370dQxFVJOgA4s/4AM1sFrAJ+CdzfmmGdc85lPy/IdmPs+NEfAt+igSulLlqW2vxxTdU967CakqiztBUz1/5p5LodK7ynLHtsBb6aJWuO5Zq7gC6SFgFXAW8AmNlCgqGKS4H7gJm7HPcwsNzM3mzFrM4559oB+e0ne/b777/0P2TfDfftViq5YVlt9QMxSB0SdZY2yL548KWvdivolbNDOLPIt/uVj3gw6hCu5Ui6A5hvZhMb27ew75HW96JbWyGVcy4XVZaPiTqCC0maa2aNjubyHrLGXQP8I+oQDlKJVW/XVk/u5MXYbum5lfedsC1RPTvqIG6PJnkx1r5ImkswtPGhqLM455zLPl6QNSK8n+wbwLKos+SyZN0HC2s3P3ogWO+os7RlhuX9bcU9x9Ykty+MOotr0Kv4fWPtjpkNMbNTfW1A55xz+8ILsiYYO370OuAM4JOos+SiRM3SN+q2PH0U4FOTNUHSEh2nrLi7KJGqfSvqLO5fVABn9ysfsT3qIM4555xrO/wesr3w+++/dCLwIr5odKtJbH99ZmLHzBPwRcz3Wod453VnHfL9LXHlHRZ1FsdK4KR+5SM+ijqIi15paanNmTMn6hjOOecyzO8hy4Cx40e/BpwPfGqNGdfy6ra9OC2xY+ZJeDG2T3Ykt/Z+dsW9BSlLrY46S46rAs70Ysw555xzDfGCbC+NHT96CvDdqHO0d7Vb/jw1WbNwJKCos2SzrYmqg59fef92M/PhttGoAb7cr3zE4qiDOOecc65t8oJsH4wdP/p+4CdR52iPzCxVU/2H6am690dFnaW9qKpbd/hLqx9Za2abo86SY+qAr/crHzE16iDOOeeca7u8INtHY8ePvhX4UdQ52hOzZG1t9aTXLbn61KiztDfra1YUv7L2qffNbEfUWXJELXBev/IRf4o6iHPOOefatowUZJJ6SloQPtZIWhk+3yTpzUycc5fzXxwu0plRY8ePvh34T8BnRmkms9qtNVX3LLbUpuFRZ2mvVm17b/Ds9X9fZGZ+D2Rm7SAYpvhM1EGcc8451/ZlpCAzs0/MbLCZDQbGA7eEzwcDqX1tV1Kbm9xh7PjRdwHfxif62GeW2r6xZtOESmzbkKiztHcfblk0bPHG6a+bT6+aKdXAF/uVj3h2bw+UdIukK9JePyfp3rTXN0v6aRPbKpN05d5maKrWuujlnHPO5YIohizGJd0jaamk5yV1BJA0VVJp+LyXpMrw+cWSnpD0F+B5SX0lTQ973JZIGhHud4mkdyRNA06uP5mksyW9Lmm+pH9IOkBSTNK7knqH+8QkvSep1758oLHjRz8EfJXgyrjbC5aqXl1TNWED1B4TdZZcUVH12snvVs+dHnWOdmg9MLpf+Yhp+3j8q8BJEPxMAnoB6f8uTgJmNiuhc84559qcKAqyI4Hfm9kxwCbgK004ZjhwkZmNBr4BPBf2uA0CFkjqC1xHUIidDgxIO/YV4EQzOw54FLjKzFLAQ8CF4T6fBxaa2fp9/VBjx49+GhgFfLyvbeSaVHL9hzVVE5OQPCLqLLlm/oYXRy7f+ta+Fg7u094HTulXPmJuM9qYSViQERRiS4DNkvaXVAgUA/Ml/VzSbEmLJF1Xf7CkqyW9LekfwNFp26dKul7SG+FFq/qLWHFJN6a19b1we5u76OWcc861Z1EUZB+a2YLw+VygqAnHvGBmG8Lns4FLJJUBJeHMcScAU81snZnVAo+lHdsPeE7SYuDn7LzifB/BUEOA7wCT9vHz/NPY8aNfB4YBPsV1I1KJlRW11Q90BesXdZZc9eraP49cu325F2XN9yIwrF/5iLeb04iZrQISkj5DUJjNAl4nuCBVCiwiuOhzJMHPmcHAEEmnShoCXAAcB5wLDN2l+TwzGwZcAVwbbrsUqDKzoeH+35V0GG30opdzzjnXXkVRkNWkPU+yc9HfBDvzdNjlmK31T8xsOnAqsBJ4UFJ9UbW7e2JuB+4wsxLge/Vtm9ly4GNJowkKur2+56MhY8eP/ojgj5YpLdFee5SsfW9B7ebH+hEMyXIRennNI6dW1a7zYXD77naCe8Y2NLpn09T3ktUXZLPSXr8KfCF8zAfmAf0JCrQRwJ/MbJuZVQO7TijyVPg1/SLYF4BvS1pAUPj1DNtqsxe9nHPOufaoLU17XwnUT+pw3u52knQosNbM7gEmAscT/DExKpzdMZ/gfq563QiKN4CLdmnuXoKruI+b/f/27jzMrqrM9/j3l9GEhEloKChk0IAgkggFgasFsRAEiSAtmtCAgNoYLNR+bugrXhyifYdq2yjaRusBmbRBSwzY6QhNoEOYZCoghBAGGQoJRCCQm5ka3/vH3kWORZ2acqr2GX6f59lPnbP32me/K/vkPPvda+21onO7a5Cqb6zbCJwK/KhQn1kuOlpXPNC+edHBwOSsYzEAdOvLV0/f3LHhwawDKTFtwBerG2q/Wt1QW8gBfbqfI/sgSZfF+0layLqfHxPwf7sHTYqI90XElem+fQ3U0n0jLPcmmICv5HzW/hGxpNhvepmZmZWbYkrIfgBcKOmP9N1yMoOkC82jJM+f/Tgi1gDzSO4m305y57jbPOAGSXeTPHSfa70qmIUAABZYSURBVBEwiWG4c1vfWNdV31j334GzgU2F/vxS1LH1vns6ttxeA4zPOhbbJogxN6++/LDWzi3L+y9tJM+J1lU31F7Zb8nBuxeYCbwZEZ1pV+2dSZKy+4Bbgc9LmgQgaW9JfwPcBZwuaYKkycAnB3CsW0l+c8emn3WgpB1K4aaXmZlZOVElj36djur4o4ioHc7jLJiz9ECSLj7ThvM4xax985JlnW0rZ2Qdh+U3VuM2fPI99S+PHTXu4KxjKWJ3AWdXN9S+NBwfLmk0sA74SUR8M113DXBMRByUvv8a8MV0l03A2RHxnKRLSboIvgisBlZFxA8kLQMujojmdFCN5ojYLx3J8X+RJG8CXgc+lS7/CLSnn/+5iHhB0vnAN4A1wHJgdERcJOk0kt4AL5O06B0ZETPSWMcCbwBHRcRTw/FvVopqamqiubk56zDMzGyYSXo4Imr6LVepCZmkS4ALgbMi4p7hPt6COUvHAz8kmUi6orRtvPHOro6W47KOw/o3ftTENz75ngvXj9aYA7KOpci0k7S2N1Q31A55LsVKM1I3vUqNEzIzs8rghKxILZiz9NMk3YB2yjqW4RbR1dm28fo/RudrvhgrIRPH7PTKKdUXxCiN2jvrWIrEn4CzqhtqH8o6kFIy0je9Ssn4qilRde5lWYdhZoPU0nBK1iFYiRloQlZMz5BVhPrGuoUkQ0nfnnUswymio7Vtw9UPORkrPVs61u9168tXt3mIciC5efIhJ2ODFxENEbGvkzEzM7O+OSHLQH1j3Yv1jXUnABcAG7KOp9AiWje2rr/iyehaf3TWsdjQbGhfu/9/rblubTqEeiV6AzijuqH2i9UNtZv7LW1mZmY2RE7IMlTfWHcFyZw9N2cdS6FE1+a1rf/v8tXE1oodwKRcvNH68vvvfnXhCxGxNetYRti1wPurG2oXZh2ImZmZlT8nZBmrb6xbXd9YdwrJ6GiFmlw2E12d619uXf+LjdDuUfrKxJqtz019cO3NKyOikHNtFaungI9WN9SeV91Q6+6aZmZmNiKckBWJ+sa6XwEHA1cAJTeKW1fHa8+1bbhqFHTun3UsVlgtm1Ye+di6ZQ9E+Y4A9BbwLWBqdUPtsoxjsSGSdKmkJyStkLRc0vQCfOY8SRcXIj4zM7N8xmQdgG1T31j3GnDBgjlLFwCXkUyCXfQ62196on3TDVXArlnHYsPj6fUPfnjC6B3uOmino47NOpYCuw34cnVD7bNZB2JDJ+kYkgm1D4+I1nS+tXEZh2VmZjYgbiErQvWNdY/VN9Z9FPhb4Lms4+lLZ9szj7RvumFfnIyVveVv3nHsi5tW3Zl1HAXyDPDp6obaE52MlYUqYG1EtAJExNqIeEVSS5qcIakmnSS7u+XrKknLJD0v6avdH5S2tD0t6XbgoJz1fy/pIUmPSVooaaKkyZJeSCfARtKO6THHjmDdzcysxDkhK2L1jXU3AYcAX6cIR2PseOvR+9o3Lz4UmJR1LDYy7n/9P457dWtLKSdlfyGZG+sD1Q21N2YdjBXMEmAfSc9I+pmkgUxE/37g48BRwHckjZV0BDAb+BDJDbEjc8rfGBFHRsRU4EngCxGxEVgGdE9ONBtYGBHtPQ8m6QJJzZKaO7esH2I1zcysHDkhK3L1jXVt9Y113wemUETPl7Vvvefujq13TMfdgirOsr80Hbuu9dVSm1tqI/Bt4H3VDbWN1Q21lTBIScWIiE3AESRTibwONEk6r5/d/hARrel8e68BewC1wE0RsSWd8mFRTvlDJd0t6XHgLJIRcgF+AZyfvj4fuDpPjJdHRE1E1IyeuNPgK2lmZmXLCVmJqG+se62+se4C4HDg1ixjadt8y52dbz1Yi78/lUq3vXLtMZvb1z+QdSAD0A78FHhvdUPtP3lOsfIVEZ0RsSwivgNcBHwa6GDb79S7euzSmvO6k23PVOcbvOYa4KKI+CDw3e7Pi4h7gf3SVrnREbFye+tiZmaVxRfUJSZ9vuwkYBrwbyQXHCMiIqJt4+/u7Gp7ciDdgayMBTH65tVXTHurc8ujWceSRytwOcl8Yl+pbqh9PeuAbPhIOkjSlJxV04AXgRaSljNIErT+3AWcLmmCpMnAJ3O2TQbWpM+HndVjv18CvyZP65iZmVlfnJCVqDQxOwc4APghSZesYRPR1dG28Vf3dnX82cmYAdBF5/g/vNQ4pb2rdVXWseTYBPwA2L+6ofZL1Q21z2cdkI2IScC1klZJWkHy7O08kpasH0u6m6QVrE8R8QjQBCwHFgJ352z+FvAAycicT/XY9TpgF5KkzMzMbFBUvlMLVZYFc5buDMwBvkoy4ljBRHS81brh6hV0bTyqkJ9r5WHcqAlvnrrPl9eNHjXmvRmGsRb4CfDT6obadRnGYRVI0hnAaRFxzkDKj6+aElXnXjbMUZlZobU0nNJ/IbMckh6OiJp+yzkhKy8L5iwdB5wNXEwy0fR2iWjd0Lr+yheIt6Zud3BWtiaOnrzmlH2+1DlKo6tH+NAvAfOBK6obareM8LHNkPSvwMnAJyLimYHs44TMrDQ5IbPBckJW4RbMWSqSiVL/kWTksEGLrk2vt66/6k3oOKj/0lbpdhz77paT9v78DtKo3Yf5UAEsBX4GLPKIiVZqnJCZlSYnZDZYTsjsbQvmLJ1OkpidzgCfG+zqXLe6bcO1ndC177AGZ2Vl1/FVT3+s6pw9JQ3HuN7rSEa6a6xuqB1QS4RZMaqpqYnm5uaswzAzs2HmhMzeYcGcpQcA5wKfA/bLV66r49Vn2zZePwliz5GKzcrHnhP2X3HsHp95n6SJBfrIZpLWsN9UN9RuLdBnmmXGCZmZWWVwQmZ5pd0Za0mSs8+QDOcMQGf7i4+3b1q4D7BzRuFZGdh3h0Oap+8+c2o6RPhQrAV+C1xd3VDrK1crK07IzMwqgxMyG5AFc5ZOJOnK+LnOtid3bt98y6FAoVo2rIIduGPNH6ftWne0pIFOr7EF+D3JEOJL/GyYlSsnZGZmlcEJmQ3a/Fkzq4DPAmcC0zMOx8rAYbscd9fBOx99bB9FOkjmdboO+H11Q+3mkYnMLDtOyMzMKoMTMtsu82fN3B+YBZwGHIUnEbchmr7bKXfuN/nQ3AnFO0gm3L0R+G11Q+1r2URmlg0nZGZmlcEJmRXM/Fkz9yAZQv9U4GO4S6MN0rF7fGZJ1cQDNpF0SVzsyZutkjkhMzOrDE7IbFjMnzVzAklSdipJkuaRGC2fF4A/AIuBZXObFrdmHI9ZUXBCZmZWGZyQ2bCbP2umgMOB44E64CPADpkGZVlaB9wJ3AHcPrdp8aqM4zErSk7IzMwqgxMyG3HzZ80cCxxNkpzVpa/HZRqUDadNwD3A0nR5dG7T4q5sQzIrfk7IzMwqgxMyy1zavfEjwAySURuPBHbMMibbLmuBB4H7SFrBHpzbtLg925DMSo8TMjOzyuCEzIrO/FkzRwHvJ0nOupdDgTFZxmW9egt4FHiAJAl7YG7T4uezDcmsPDghMzOrDE7IrCTMnzVzIslzaEcBHwQOSZdJWcZVYTYCTwAr2ZaErXDrl9nwcEJmZlYZBpqQuWXCMjW3afEWkueQ7ulelw4W8h6SxOwDPf46URu6VuBJksTr7WVu0+IXM43KzMzMrII5IbOiM7dpcQAvpsst3evTRG0f3pmk7QvsDowe8WCLz6tAS87yQs7f5+Y2Le7MKC4zMzMz64UTMisZaaL253S5JXdb+nza7iTzolWlf/fM875UBxYJkoE1WvjrZOvtZW7T4q2ZRGZmZmZmQ+JnyKzipM+t7UnvSdvuwIR0eVeeZQKDu5kRwGZgQ7qsH8Dr3rZtTJNSMyth46umRNW5l2UdhlnJaWk4JesQzAbFz5CZ5ZE+t/Z8ugxJ2n1yVM6S730XSSLl+bnMzMzM7B2ckJkNQdpS1ZkuZmZmZmZDMirrAMzMzMzMzCqVEzIzMyt6ki6V9ISkFZKWS5reR9nzJO1VgGMuk9Rv338zM7Pt4S6LVlQkvRv4r/TtniRdAl9P3x8VEW0FPt49wEURsbyQn2tmhSPpGGAmcHhEtEraDRjXxy7nkcyz98ogjjEmIjq2K1AzM7MhcAuZFZWIeCMipkXENKAR+FH3+0InY2ZWMqqAtRHRChARayPiFUnflvSQpJWSLlfiDKAGuC5tSZsgqSVN4pBUI2lZ+npeut8S4Jdp2d+krXBNJCOqkpb9uaTmtJXuu+m64yXdlFPmBEk3jtQ/ipmZlQcnZFYSJL1P0vKc95dI+mb6eoqkWyU9LOkuSQem62enF2qPSbojXTdR0g3pBddvSIax7/7My3MuuL6drvu4pBtyypws6bcjVG0zSywB9pH0jKSfSTouXf/TiDgyIg4lSZ5mRsTvgGbgrPRGTn9z8x0BnBYRfwdcCGyJiMOA/51u63ZpOnTxYcBxkg4DlgIHS9o9LXM+cHVvB5F0Qfr70ty5Zf2g/wHMzKx8OSGzcnA58OWIOAL4BvDTdP13gOMjYipwerruImBdesH1z8CHcj7nkvSCaypwgqRDgNuAw9KulNDHBZeZDY+I2ESSHF1A0oW5SdJ5wEclPSDpcaAO+MAQPn5RTtJ2LPBv6TFXACtyyn1W0iPAo+lxDolkIs9fAWdL2hk4hh6T1ufU4fKIqImImtETdxpCmGZmVq78DJmVtPQi6GhgoaTu1d3f63tJuiHdAHR3IzoW+D5ARDwq6YmcjztT0hfS/fciueBaJel64O8kXUdyUXjmcNbJzN4pIjqBZcCyNAH7EklrVU1EvCRpHjkt3j10sO0GZM8ym3sequfOkvYHLgaOjIh1kq7J+Zyrgf8A3gJu8HNoZmY2WG4hs1KRe0EF2y6GRPJsybSc5dB029+TtJLtBzwmaZd0fW8XXFOArwF1aevZf+Yc4yrgHOAsoCm9MDSzESLpoPT/aLdpwNPp67WSJgFn5GzfCEzOed/Ctu6Hn+7jUHeR/D9H0qEkCR/AjiSJ23pJewAnd+8QEa+QDB7yTeCaAVfKzMws5YTMSsVfgL0k7SLpXcApABGxDlgj6XQASaMkTU33OSAi7ge+BawD9uavL7imsq2L044kF3EbJFUBH+8+cES8BKwFLsEXXGZZmARcK2mVpBXAIcA84ArgceD3wEM55a8BGrsH9QC+C/xY0t30PZn7z4FJ6TH+B/AgQEQ8RtJV8QmSGzT39tjvOuCliFi1PZU0M7PK5C6LVhIi4i1J/4fkout5IPfCZzbw87TL0jiSZ0AeA36UdjUSsCQiVkp6nuTCbgXwCMnD/6SvV5EMlf0877zguh7YMSKeGY76mVl+EfEw8N962fTNdOlZfiGwMGfV3cCBvZSb1+P9VpLfk95iOK+PED9CkhyamZkNmpJnks2sL5Iagfsi4tqsYzGz4iHpYZLujCd0D8vfn/FVU6Lq3MuGNzCzMtTScErWIZgNiqSH0wHj+uQWMrN+pMPtrwO+mnUsZlZc0tFdzczMhswJmVk/0kmqzcwK4oN770Sz7/SbmVnKg3qYmZmZmZllxAmZmZmZmZlZRpyQmZmZmZmZZcQJmZmZmZmZWUackJmZmZmZmWXECZmZmZmZmVlGnJCZmZmZmZllRBGRdQxmZmYVQ9JG4Oms4yig3YC1WQdRYOVWp3KrD7hOpaDc6gODr9O+EbF7f4U8MbSZmdnIejoiarIOolAkNZdTfaD86lRu9QHXqRSUW31g+OrkLotmZmZmZmYZcUJmZmZmZmaWESdkZmZmI+vyrAMosHKrD5RfncqtPuA6lYJyqw8MU508qIeZmZmZmVlG3EJmZmZmZmaWESdkZmZmBSbpJElPS3pW0iW9bB8vqSnd/oCk/UY+yoGTtI+kOyQ9KekJSV/rpcwMSeslLU+Xb2cR62BIapH0eBpvcy/bJekn6XlaIenwLOIcCEkH5fzbL5e0QdI/9ChT9OdI0lWSXpO0MmfdrpJuk/Sn9O8uefY9Ny3zJ0nnjlzUfctTp3+R9FT6vbpJ0s559u3zO5qFPPWZJ+nlnO/WJ/Ls2+dvY1by1Kkppz4tkpbn2Xe7z5G7LJqZmRWQpNHAM8AJwGrgIeDMiFiVU+bLwGERMUfSbOD0iJiVScADIKkKqIqIRyRNBh4GPtWjTjOAiyNiZkZhDpqkFqAmInqdVyi9qPwK8AlgOvDjiJg+chEOTfodfBmYHhEv5qyfQZGfI0nHApuAX0bEoem67wNvRkRDehG/S0R8vcd+uwLNQA0QJN/RIyJi3YhWoBd56nQisDQiOiT9M0DPOqXlWujjO5qFPPWZB2yKiB/0sV+/v41Z6a1OPbbPB9ZHxPd62dbCdp4jt5CZmZkV1lHAsxHxfES0Ab8BTutR5jTg2vT174DjJWkEYxyUiFgTEY+krzcCTwJ7ZxvViDiN5AItIuJ+YOc0OS12xwPP5SZjpSIi7gLe7LE69//LtcCnetn148BtEfFmmoTdBpw0bIEOQm91ioglEdGRvr0fqB7xwIYozzkaiIH8Nmairzqlv82fBX49XMd3QmZmZlZYewMv5bxfzTuTl7fLpBdl64F3j0h02yntXvkh4IFeNh8j6TFJt0j6wIgGNjQBLJH0sKQLetk+kHNZjGaT/+Kx1M4RwB4RsQaSmwPA3/RSplTPFcDngVvybOvvO1pMLkq7YF6Vp1tpqZ6jWuDViPhTnu3bfY6ckJmZmRVWby1dPZ8PGEiZoiNpErAQ+IeI2NBj8yPAvhExFfhX4PcjHd8QfDgiDgdOBurTbku5Su48SRoHnArc0MvmUjxHA1Vy5wpA0qVAB3BdniL9fUeLxc+B9wLTgDXA/F7KlOQ5As6k79ax7T5HTsjMzMwKazWwT877auCVfGUkjQF2YmhdgEaMpLEkydh1EXFjz+0RsSEiNqWvbwbGStpthMMclIh4Jf37GnATSZeqXAM5l8XmZOCRiHi154ZSPEepV7u7iqZ/X+ulTMmdq3TgkZnAWZFnUIcBfEeLQkS8GhGdEdEFXEHvcZbiORoD/C3QlK9MIc6REzIzM7PCegiYImn/tLViNrCoR5lFQPcocGeQPNxftHeK02corgSejIgf5imzZ/dzcJKOIrnGeGPkohwcSTukA5QgaQfgRGBlj2KLgM8pcTTJQ/1rRjjUwcp7N7/UzlGO3P8v5wL/3kuZW4ETJe2Sdpc7MV1XlCSdBHwdODUituQpM5DvaFHo8Wzl6fQe50B+G4vNx4CnImJ1bxsLdY7GbFeIZmZm9lfSUdMuIrkYHA1cFRFPSPoe0BwRi0iSm19JepakZWx2dhEPyIeBc4DHc4Z+/p/AewAiopEksbxQUgewFZhdzEkmsAdwU5qfjAGuj4j/lDQH3q7TzSQjLD4LbAHOzyjWAZE0kWQEuy/lrMutT9GfI0m/BmYAu0laDXwHaAB+K+kLwJ+Bz6Rla4A5EfHFiHhT0j+RXPQDfC8iiqLVOU+dvgGMB25Lv4P3p6Ou7gX8IiI+QZ7vaAZV+Ct56jND0jSSLogtpN/B3Prk+23MoArv0FudIuJKenkeczjOkYe9NzMzMzMzy4i7LJqZmZmZmWXECZmZmZmZmVlGnJCZmZmZmZllxAmZmZmZmZlZRpyQmZmZmZmZZcQJmZmZmZmZWUackJmZmZmZmWXECZmZmZmZmVlG/j/Jq/A2bKeaCQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from matplotlib import pyplot\n", + "%matplotlib inline\n", + "import pandas as pd\n", + "\n", + "website = pd.read_csv('http://openmv.net/file/website-traffic.csv')\n", + "website.drop(columns=['MonthDay', 'Year'], inplace=True)\n", + "average_visits_per_day = website.groupby('DayOfWeek').mean() \n", + "percentage = average_visits_per_day / average_visits_per_day.sum() * 100\n", + "\n", + "fig = pyplot.figure(figsize=(15, 4));\n", + "percentage.plot.pie(y='Visits', ax=pyplot.subplot(1, 2, 1), legend=False)\n", + "\n", + "# Right plot: subplot(1,2,2) means: create 1 row, with 2 columns, and draw in the 2nd box\n", + "# Take the same grouped data from before, except sort it now:\n", + "percentage.sort_values('Visits', ascending=True, inplace=True) \n", + "percentage.plot.barh(ax=pyplot.subplot(1, 2, 2), legend=False)\n", + "\n", + "pd.set_option('precision', 2)\n", + "percentage" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## Correlogram" + "##### Answer these questions, based on the above\n", + "\n", + "1. From the pie chart alone: which day has the second highest number of visits? Note how long it takes you to discover that.\n", + "2. From the pie chart along: which percentage of visits occur on a Tuesday? How accurate is your guess?\n", + "\n", + " The superiority of tables is not surprising here. The human eye excels at at finding differences in 2-dimensions with respect to length and location. But it is not good at estimating area and angles, yet a pie chart encodes its information only in terms of area and angles.\n", + "\n", + "3. Compare the bar plot with the table now: you get the same information from both, but in terms of the [data:ink ratio concept](https://infovis-wiki.net/wiki/Data-Ink_Ratio), which is better\n", + "\n", + "Need more convincing evidence?\n", + "* From pie to bar: https://www.darkhorseanalytics.com/portfolio/2016/1/7/data-looks-better-naked-pie-charts\n", + "* Chartjunk in bar plots: https://www.darkhorseanalytics.com/blog/data-looks-better-naked\n", + "* And the full essay on the lack of utility of pie charts: [Save the Pies for Dessert](https://www.perceptualedge.com/articles/visual_business_intelligence/save_the_pies_for_dessert.pdf)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Colour-coded tables for correlograms\n", + "\n", + "\n", + "* Colour coded correlation table. Use Peas case study\n", + "\n" ] }, { From 2953550832c6232a9490f0eceb8b29a050bd4ae8 Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Mon, 22 Jul 2019 10:41:38 +0200 Subject: [PATCH 059/134] Better aspect ratio on pie chart --- Module-10-interactive.ipynb | 37 ++++++++++++++----------------------- 1 file changed, 14 insertions(+), 23 deletions(-) diff --git a/Module-10-interactive.ipynb b/Module-10-interactive.ipynb index 9fe8a68..0cbe6ed 100644 --- a/Module-10-interactive.ipynb +++ b/Module-10-interactive.ipynb @@ -28,7 +28,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 1, "metadata": {}, "outputs": [ { @@ -187,7 +187,7 @@ "" ] }, - "execution_count": 7, + "execution_count": 1, "metadata": {}, "output_type": "execute_result" } @@ -575,14 +575,8 @@ }, { "cell_type": "code", - "execution_count": 52, - "metadata": { - "deletable": false, - "editable": false, - "run_control": { - "frozen": true - } - }, + "execution_count": 5, + "metadata": {}, "outputs": [ { "data": { @@ -657,18 +651,20 @@ "Wednesday 17.23" ] }, - "execution_count": 52, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2QAAAD8CAYAAAAYNWd7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3Xl8VPW9//HXeyYLqyCbolijViVoACWgqAjFWmvRe6u11ta2ar219dLFttbyu7Yae2/vjVvVahVRRNzqUq21pVatyiKism/G3SCrgEDCmmRmPr8/zkmZYiCBZHIymc/z8ZhHZs6c8z3viZLkc77f8/3KzHDOOeecc8451/piUQdwzjnnnHPOuVzlBZlzzjnnnHPORcQLMuecc84555yLiBdkzjnnnHPOORcRL8icc84555xzLiJekDnnnHPOOedcRLwgc84555xzzrmIeEHmnHPOOeeccxHxgsw555xzzjnnIpIXdQDnnHMul/Tq1cuKioqijuGccy7D5s6du97Meje2nxdkzjnnXCsqKipizpw5UcdwzjmXYZKWNWU/H7LonHPOOeeccxHxgsw555xzzjnnIuIFmXPOOeecc85FxAsy55xzzjnnnIuIF2TOOeecc845FxEvyJxzzjnnnHMuIj7tvXPOOdeKFq+somjclKhjOOec243K8jGtej7vIXPOOeecc865iHhB5pxzzjnnnHMR8YLMuXZOkkl6MO11nqR1kv7aQu2XSbqyJdpyzjnnnMs1XpA51/5tBY6V1DF8fTqwMsI8LodJukXSFWmvn5N0b9rrmyX9tIltZfRigKSLJd2Rqfadc8458ILMuVzxLFB/h+rXgT/UvyGph6SnJS2S9JqkgeH2Mkn3SZoq6QNJP0o75mpJb0v6B3B02vbvSpotaaGkJyV1ktRV0oeS8sN99pNUWf/a5ZxXgZMAJMWAXsAxae+fBMyMIJdzzjkXCS/InMsNjwIXSOoADAReT3vvOmC+mQ0E/gt4IO29/sAZwDDgWkn5koYAFwDHAecCQ9P2f8rMhprZIKACuNTMNgNT2VkQXgA8aWZ1LfwZXXaYSViQERRiS4DNkvaXVAgUA/Ml/Tws7hdJuq7+4D1cDJgq6XpJb0h6R9KIcHtc0o1pbX0v3N5X0nRJCyQtSdv/kvD4acDJae2fLel1SfMl/UPSAZJikt6V1DvcJybpPUm9MvkNdM451754QeZcDjCzRUARQe/Y33Z5+xTgwXC/l4CekrqF700xsxozWw+sBQ4ARgB/MrNtZlYNPJPW1rGSZkhaDFzIzp6Pe4FLwueXAJNa8vO57GFmq4CEpM8QFGazCC4QDAdKgUXAKOBIggsBg4Ehkk5t5GIAQJ6ZDQOuAK4Nt10KVJnZ0HD/70o6DPgG8JyZDQYGAQsk9SW4QHEywdDeAWltvwKcaGbHEVzguMrMUsBDBP+vA3weWBj+e3HOOeeaxNchcy53PAPcRPDHbs+07WpgXwu/1qRtS7LzZ4bRsPuBL5vZQkkXh+fCzGZKKpI0Eoib2ZJ9yO/aj/pespOA3wIHh8+rCIY0fiF8zA/370JQoHUlvBgAIOmZf22Wp8KvcwkuQBC2M1DSeeHrbmFbs4H7wqGzT5vZAkmnAVPNbF3Y/mPAUeFx/YDHwqKtAPgw3H4f8GfgVuA77OZig6TLgMsA4vv1bvQb5JxzLnd4D5lzueM+4NdmtniX7dMJr/BLGgWsD3u+dmc6cI6kjpK6AmenvdcVWB3+kXvhLsc9QHDvmveOufr7yEoIhiy+RtBDVn//mID/M7PB4eOzZjYxPHZ3FwNg5wWE9IsHAn6Y1tZhZva8mU0HTiWY4OZBSd9upP3bgTvMrAT4HtABwMyWAx9LGg2cQHC/5qeY2QQzKzWz0ninbg3t4pxzLkd5QeZcjjCzFWZ2WwNvlQGlkhYB5cBFjbQzD3gMWAA8CcxIe/tXBMPPXgDe2uXQh4H9SZtQxOWsmcBZwAYzS5rZBqA7QVE2C3gO+I6kLgCSDpbUhz1fDNid54DL0yaVOUpSZ0mHAmvN7B5gInA8wf+7oyT1DPf/alo73dg5O+mu/0buJRi6+LiZJffuW+Gccy7X+ZBF59o5M+vSwLapBBNtEP4x/O8N7FO2y+tj057/BvhNA8fcBdy1myinAH80s01NDu/aq8UEsys+ssu2LuH9V89LKgZmSQLYAnzTzOaFwwgXAMv414sBu3MvwfDFeQoaWwd8mWA47c8l1YXtf9vMVksqIygKVwPzgHjYThnwhKSVBD16h6Wd4xmCnl/v/XXOObfXZLan0R/OOdd8km4HzgS+ZGbvRJ3HuZYkqRS4xcxGNGX/wr5HWt+Lbs1wKuecc/uqsnxM4zs1gaS5Zlba2H7eQ+acyzgz+2HUGZzLBEnjgMv59D2TzjnnXJN4QeZyU1k3EQyZOhDoG349kGBSigIgP/zanOcQDIXa3MCjejfbP/0oq9qSke+Bc67ZzKyc4N5L55xzbp94Qebal7JuhfxrkdXQ175AH4LCKdP6NLuFsm4pguJsNbB8tw8v3Jxzzjnnso7fQ+ayS1m3POAIoDh89CdYH6i+2No/unCR20Qw0cH7wHtpX98DVlBWlYowm3MuVFpaanPmzIk6hnPOuQzze8hcViuZXFL4l+Wrji5KJI5lZ/FVDHyWncMB3b/qHj4GNfBeDWXdPiQo0t4FFhEsnvsmZVWJ1ovonHPOOefSeUHWBJKuBr5BsNhoCviemb2+m30vBp43s1XNPOdU4Eoza/eXUUsml/QFjgMGEhQTg4Cjru+5/yt3fbxuZKTh2o9Cgt7E/rts30FZt4UExVn9Y6kXac4555xzrcMLskZIGk6wgOnxZlYjqRd77qG5GFgCNLkgk5RnZjnxB3DJ5JJ8guJreNrjMw3t+0rHDsPWxONrDkwmD2zFiLmmA3BC+Ki3g7Ju9T1o6UVaXQT5nHPOOefaNS/IGtcXWG9mNQDhoqVIugY4G+gIvAp8D/gKUAo8LGk7QbFRAZSa2fpwrZqbzGxUuPjoQQQLlq6XdCnBoqIDwmM61geQdBcwNNz2RzO7VtJpwA/M7Jxwn9OBy83s3Ex+M/ZW2PuVXnwNISgCGid1/EmfXnP+sPpjL8haVwdgWPioVxP2pM0ApgHTKauqiiKcc84551x74gVZ454HrpH0DvAP4DEzmwbcYWa/BpD0IHCWmf1R0g9IG2ooaU9tDwFOMbPtkn4KbDOzgZIGAvPS9rvazDZIigMvhu+/BPxeUm8zWwdcQlDQRapkcsmBwBfCxynAoc1pb0lhwfD38/Mqj6hLFLVAPLfvCtlZpP0MSFHWbQFBcTYVmEFZ1cbo4jnnnHPOZScvyBphZlskDQFGAJ8DHgsXAt0s6SqgE9ADWAr8ZS+bf8bMtofPTwV+F55zkaRFafudL+kygv9efYEB4T4PAt+UNImg9+nb+/Yp913J5JJCgu/NF4AzCO4DazlS3o8P6L36rytWF7Vou665YsDx4eMnBAXaIuBl4FlgGmVVtRHmc84555zLCl6QNYGZJQl6AaZKWkwwPHEgwVDE5eHww90Nw0sQ/PFKA/ts3fVUux4s6TDgSmComW2UdH9aO5MIisAdwBOtdR9ayeSSYoLi6wyCQrJTJs+3LC/vxHmFBRXH19QWZ/I8rlliwODw8RNgC2XdXgCmAH+jrGp1lOGcc84559oqL8gaIeloIGVm74abBgNvExRk6yV1Ac4D/hi+vxnomtZEJcHQxGcJ7jHbnenAhcDLko5lZ0/TfgSFW5WkA4AzCYpDzGyVpFXAL4HT9/1T7lnJ5JIYQS/YV4F/Aw7J1LkaJOlnfXpve3n5ylY9rWuWLsA54cMo6zafoDibAsz2NdGcc8455wJekDWuC3C7pO4EvV3vAZcRLMK7mKDgmp22//3A+LRJPa4DJkr6L6DBqfJDdwGTwqGKC4A3AMxsoaT5BEMiPwBm7nLcw0BvM3uzGZ/xU8Ii7FSCIuxcgoWXI7M+Lz7kxU4d55+2bftxUeZw+0TsHN74K2AVZd2eAB4DXqOsylend84551zOkpn/LZTNJN0BzDezic1tq2RySZx/LcIOaG6bLalzKrX0tWUrjok6h2tRHwGPA49SVjU36jDOtYbS0lKbM6fdLzHpnHM5T9JcMyttdD8vyLKXpLkEwxlPr5+Wf1+UTC45hWC45LlAnxaKlxG/Wr/h9fM3bzmh8T1dFnqfoNfsD5RVLYk6jHOZ4gWZc87lBi/I3B6VTC45CLiIYLr8IyOO02QFKXv/jWXLi+IQjzqLy6jZwD0ExdmWqMM415K8IHPOudzQ1ILM7yHLIeGQxLOA/yCYHCTripramI6Y0H2/Vy7fVH1K1FlcRg0NH7+lrNtjwL2UVb0WcSbnnHPOuRbnPWQ5oGRyycHAd4FLgX4Rx2m2uNnKNyqX9yoIFit2uWMxMBF4kLKqDVGHcW5feQ+Zc87lBh+y6CiZXHIqwZpQZ5OFvWF78rXqzdN++cnGkVHncJHYDjwA3EJZ1dtRh3FubxX2PdL6XnRr1DGccy4nVJaPiezcPmQxR5VMLhHwZeAq4MSI42TM4127HPvjDZuqu5rtF3UW1+o6EizOfhll3f4K3ExZ1bSIMznnnHPO7RMvyNqJksklBcC3gJ8DR0ccJ+NM6nlN757Tblm73nvJcpcIen/PpqzbXOBm4AnKqhLRxnLOOeeca7pY1AFc85RMLtmvZHLJVQQLVN9LDhRj9f7RqeOQ9fHYuqhzuDZhCPAI8AFl3a6grFvHqAM555xzzjWFF2RZqmRySa+SySXXA8uB64G+EUdqfVKXK3v3qog6hmtTDgFuwQuzdktST0kLwscaSSvTXhdk4HyvSBrc0u0655xz9XzIYpYpmVzSCfgpwdDEnL9/am6HwhM/ystb8ZlEIutnj3Qt6kAzbnomddLoH4+b8jxwd2X5mLqoQ7nmM7NPgMEAksqALWZ2U6ShnHPOuWbwHrIsUTK5JK9kcsn3gPeA/8aLsYBUcMUBvZZFHcO1Ldus8O3za69558d1PzgbuB14q2jclG8WjZviP/PaKUmflbQg7fU4Sb8Mnx8p6TlJcyVNl3RUuP0CSUskLZT0critk6QnJC2S9CjQIa3NCZLmSFoq6Zpw2xmSnkjb50xJj7fSx3bOOdcO+B8nWaBkcsk5wBJgPLk4NLER7+bnD19aUPBu1Dlc9MzY/nhi5LSSmnuPmG39i9PeOhx4EFhQNG7K2RHFc9GZAPynmQ0B/h9wR7j9WuA0MxsEnBNu+wGw0cwGEgwHPy6tnXHh9MWDgNMlDQBeAAZK6hnucwkwKaOfxjnnXLviQxbbsJLJJacANwDDo87SpkmxKw7otfGF5auiTuIi9Il1nf/V2mt7fGAH7WnmzRLgmaJxU2YCYyvLxyxspXguIpK6EywB8qSk+s31v/tmAg+EPVxPhdtOJfi5i5nNl7Q0rbmvS7o0PP4gYICZvSnpEeAbkh4mmGDm6w3kuAy4DCC+X+8W/ITOOeeynRdkbVDJ5JKDgd8B50adJVusycsbNrNjh8Unb99REnUW17pSxsZbE19Z+rvkV07Zi8NOBuYUjZtyC3BtZfmY7RmK51pPgn8d9dEh3CZgvZk1NDHHd4ETgLOAhZIGhttt1x0lHQn8GBhmZpskPcTO4Yz3AU+Gzx8zs+Sux5vZBIKeOgr7Hvmp9p1zzuUuH7LYhpRMLomVTC75AVCBF2N77arePVNRZ3Ct6/1U31nDau5M7GUxVi+PYHKcJUXjpnyhhaO51rcGOEjS/pI6AGMAzGwjsFrSOQCSYpIGhcccbmavAb8CNgIHA9OBC8N9BwHHhPvuB2wGqiX1Bc6oP7GZLQfWA+OA+zP5IZ1zzrU/3kPWRpRMLikB7iG4Wuv2QXU8PugvXTrNOXvLttKos7jMSlhs1S/qLlv5ZOrUlhjOezjwXNG4KQ8DP6ksH+Nr22UhM9sh6X+B2cAHwJtpb18A3BXOylgAPAQsBG6RdBhBL9rzZrZE0gfAZEmLgHnAnLCNeWGbS8L2Z+4S4RFgPzN7JxOfzznnXPslMx85EaWSySUdCG4svxIvkJutQyr19hvLVhyl4A8s186YkXrD+s/4Tu3Ph2ylY5cMnGIDcGVl+RiflMHtFUnjgVlmNrmxfQv7Hml9L7q1FVI555yrLB8T2bklzQ0ng9ojH7IYoZLJJacBiwmGuXgx1gJ2xGJH39+t66yoc7iWt8Py3/1m3X+9+bXaa0ZmqBgD6AHcVzRuyktF46YcmaFzuHYmnG7/aOAPUWdxzjmXfbwIiEDJ5JLOwG3ApVFnaY9+t3/3g79ZtbkuH/KjzuKaz4yaZ1InzfpZ3fdPTpDXWv9NPwcsKho35TfA9b6otNuT3UwY4pxzzjWJ95C1spLJJUMI7kXwYixDEtKht/Xo7r1k7cAm67zwi7Xlq35c94NRrViM1etAsAj77KJxU45o5XM755xzLkf4PWStpKJ/sb7x8/hPE3n6P7znJuNiZmtnLVvRuZNZ56izuL1nRtVdyX9bdEPia6eA2sL9gJuAb1WWj/lr1EFc9istLbU5c+Y0vqNzzrms5veQtSEV/Yt7AH994ObkFZf+Pflqxx1WHXWm9i4l9fl1rx7+F08W+ijV+/WTam7ffkPighFtpBgD6E6woPSvi8ZN8Z+bzjnnnGsx3kOWYRX9i08AHgc+U7/NYPPSQzVvwhdjh6/poUOiS9fOmVXN+GhlqnsqtX/UUVzjkqY1v0pcUvlI8vMnRp2lEX8HLqwsH7Mh6iAuO3kPmXPO5QbvIWsDKvoX/wiYQVoxBiDoeuwyG3nb3cmDbr8r8drg91OLoknYzkndftG7p39v2zgzbH7qszMG10zomAXFGMAXgTlF46YcF3UQ55xzzmU/7yHLgIr+xXFgPPAfTT1mewFv/vHk2MYpw3RCKiaf/bKlmO14fvmqjX2Tyb5RR3GfVmN5H3y/7iebX04dNyjqLPtgB3B5ZfmY+6MO4rKL95A551xuaGoPmRdkLayif3En4DHgrH05PilWzzhWbz9wWmzwlo7q3rLpctMxNTUzHl318Yioc7idzKh7LjV05o/qfjC8lvzCqPM0093AjyrLx9RGHcRlBy/InHMuN3hBFoGK/sW9gL8AzR52ZbDtnYOZc/eZ8UNW9NZhzU+Xw8yST65c89FRdXX+fWwDqq3jkgtrry5cbIe3p4WX3wDOqiwfsy7qIK7t84LMOedyg99D1soq+hcXATNpgWIMQNDp6JWcevO9yaI770i8Mezt1PyWaDcnSfErDuj1cdQxcp0Zmycmzpw2qOaeAe2sGAMYBrxcNG7KAVEHcc4551x28R6yFlDRv3gw8CxwYCbPU5PH208Pj63784kamshTtg/zal1mNmnN2orSHTUDoo6Si1ZZjzfOr7223wrrfVDUWTLsLWB0ZfmY1VEHcW2X95A551xu8B6yVlLRv/jzwHQyXIwBFCY4+mszUqc8dFOy+sdPJ6d222rrM33OdkPSlX167Yg6Rq5Jmtb9uu5bs06quWNYDhRjAP2BqUXjpuTCZ3XOOedcC/CCrBkq+hefB/wN6Nqa540ZvU+usFETfpfsUj4pMeOwNfZea54/W30Sjx//QqeO86LOkSuWpg595fiau/PvS545POosrewoYFrRuCn9MtG4pKSkBWmPogb2OUjSH3dz/FRJjV6tc84551zr8CGL+6iif/HpwF+BgqizAGzqzNwHR8dsxjEagqSo87RVnVOpN19btsKHLWZQrcWX/bDuhxueSw3L9XW6PgA+V1k+5qOWbFTSFjPrsof388wssYf3pwJXmpmPmYuID1l0zrnc4EMWM6iif/FQ4CnaSDEG0H0rQ374l1TpQzcmP/jGy8kZBXW2PepMbdHWWGzAo127vBZ1jvbIjMRLycHTBtbc28eLMQAOJxi+eGimTyTpYklPSPoL8LykIklLwvc6SnpU0iJJjwEd0467S9IcSUslXRduO03Sn9L2OV3SU5n+DM4551yu8oJsL1X0Lz6KYJjibq9QR6kgyRFffs1GPHBTcvvP/5ic2qPafHbBXdzYc/8+SUhGnaM92WId3jy39rr3v1N31cgdFHZs/IiccRjB8MWWXHKhY9pwxT+lbR8OXGRmo3fZ/3Jgm5kNBH4DDEl77+rwyt1AYKSkgcBLQLGk3uE+lwCTWjC/c84559J4QbYXKvoXHwQ8D/SKOktjYtBj6Ls26q7fJ/e/6d7EzKNW2FtRZ2oraqXDx3fvNivqHO2BGdseSpw2bWDNvUfPtyOPjjpPG3UoQVF2cAu1t93MBoePc9K2v2BmGxrY/1TgIQAzWwQsSnvvfEnzgPnAMcAAC8axPwh8U1J3gkLv2RbK7pxzzrld5EUdIFtU9C/uDvyd4I+rrCEo+Mw6Tv6fB5Ns7siCh0fFal4epKEm5XQxfk/3/Q7/j6qqHYVGh6izZKu11m3u+bXX9Km0viOjzpIFDgGeLho3ZURl+ZhMzfa5dQ/vfepmYUmHAVcCQ81so6T74Z//HiYRLHK/A3hiT/ekub23eGUVReOmRB3DOefalcryMVFH2Gc5/Ud5U1X0L+4APAOURJ2lObpuZ/D3n02d8PANyeUXv5Cc1qHWtkSdKSpJ6aDyHvu/HnWObJQyfVJed8HMYTV3Dam0vodEnSeLlAITIzjvdOBCAEnHEgxPBNiPoIirknQAcGb9AWa2ClgF/BK4vzXDOuecc7nGC7KmeQgYEXWIlpKX4tAvzbGRk29OJq9+NDmtzyZbGXWmKDzZtcvA6piqos6RTd5O9ZtZWnMn45P/dnLUWbLUN4rGTRnXyue8C+giaRFwFfAGgJktJBiquBS4D5i5y3EPA8vN7M1WzOqcc87lHJ/2vhEV/YsvB+6MOkcmGSRW78/siWfEui4+LHZs1Hla0+e2bpv2u7XrfchdI+osvuKndZev+UvqJF+/qvlSwNmV5WP+FnWQPZF0BzDfzKLo1WvXCvseaX0vujXqGM451660xSGLPu19C6joX3wMcHPUOTJNkHfQRob/6tHUsZN+m1hy5uzUrFjKcmIWwpc7dSxdF4+tizpHW2VGcmbymGmDau7Z34uxFhMDHiwaN6XNDveUNJdgaONDUWfZE0km6cG013mS1kn6awu1XybpypZoyznnnNsdL8h2I7xv7A+krdmTCzrXcOwl/0gNf/iG5JrL/pac1mmHte8hfVLnn/XpVRF1jLZomxW8/bXaX719Yd3VI7fRoXPUedqZHsAfisZNaZMTK5nZEDM71cxqos7SiK3AsZLqf06fDuTkEGznnHPZq9kFmaSrw0VFF4Xr4pzQAm22hauSN5Dlk3g0R9w4+PMLbeSkW5LxsocS0w76xJZFnSlT5hcWDl+Wl7c86hxthRk7nkicOq2kZuIRb1jxgKjztGMnA/8ddYh24FmgfpzK1wkupAEgqYekp8PfT6+F66zV/465T9JUSR9I+lHaMVdLelvSP4Cj07Z/V9JsSQslPSmpk6Sukj6UlB/us5+kyvrXzjnnXFM0qyCTNBw4Czg+XHT080DW/2Fb0b/4S8APo87RFgi6DFjOyFsmJA+5487EG8e/m1oYdaYWJ+X/+IBeWf//bUv4xLrO/3ztjR//PPH9kUnibbL3pp35RdG4KWdEHSLLPQpcIKkDwTDL9NlTryO4D24g8F/AA2nv9QfOAIYB10rKlzQEuAA4DjgXGJq2/1NmNtTMBgEVwKVmthmYys6C8ALgSTOra+HP6Jxzrh1rbg9ZX2B9/bAWM1tvZqvCK4S9ACSVSpoaPm/zVyUr+hcfiE/z/CmCWJ8qho37Y2rQAzclKv59VmpmPNl+/uh4Pz//xMUFBe9EnSMqKWPTrYlzZwypufu49+3grFprL8sJuLto3JScGhrdksLFrosIesd2nSjlFIJFrjGzl4CekrqF700xsxozWw+sBQ4gmE33T2a2zcyqCZY7qXespBmSFhMsI3BMuP1e4JLw+SUEa7h9iqTLJM2RNCe5rX2PBHfOObd3mluQPQ8cIukdSXdKaspsdW39quQkoHcLtNNudaij+MKpqZMfujH5yQ+eSU7tus02RJ2p2aTYTw7olZN/JX2QOnDWiTW/r7s1cV67WdohyxxKMB2923fPADeRNlwxpAb2rZ9aOP3+uCSQt8v7u7of+IGZlRD0vHUAMLOZQFH4+y9uZksaOtjMJphZqZmVxjt1a2gX55xzOapZBZmZbQGGAJcB64DHJF3cyGGtelVyb1T0Lz4H+GJz28kVcePAU5faqHtvS3b8zeTE9M+stQ+iztQcH+flDZ3RscOiqHO0loTFVl1Z9703Rtf+dvha9veLENH6RdG4Kd4zue/uA35tZot32Z6+KPYoghEd1XtoZzpwjqSOkroCZ6e91xVYHY7EuHCX4x4gKAab/XvIOedc7mn2PSJmliTorZoaFk0XAQl2FnsddjlkX65KftnMFobF3qjwvDMlNXpVsqkq+hcXADc2p41cJeh45CpOvXFi0jZ2Yc7kz8c0qzg2JOpc+2Jc756a+VH7nqTNjNRsO3rGJbVXHb+VjsOizuOAYDbXm4Hzog6SjcxsBXBbA2+VAZPCRbG3Efx+2lM78yQ9BiwAlgEz0t7+FcH9acuAxQQFWr2Hgf/h0z10zjnnXKOaO6nH0ZKOTNs0mOCXVSVBzxnAV5rQVFu4KnkFcEQLtJOzBOqxhdKfPJ0a8uCNiXfPn56ckZ+wHVHn2hvV8XjJ0106z446R6bssPz3vlX3/5aeX3vtyK107Nr4Ea4VfaVo3JTRUYfYG5IubWBbeWud38y6NLBtqpmdFT7fYGb/bmYDzezE8H4zzKzMzG5KO+ZYM6sMn//GzI42sy+Y2Xfq9zOzu8zsMDMbZWY/NLOL0057CvBHM9uUuU/rnHOuvWruPWRdgMmS3gyvQA4guCJ5HXCbpBkEvWB7ZGbzgPqrkk/S8FXJF4C3djn0YWB/mnlVsqJ/cU/g6ua04f5VYYIjz5tpIx68Mbnlp08lp3bfYlmz+PL/9Ny/ewpSUedoSWbUPJMcPq2kZuJnXkmV5OxyDlngd211bbLdOE/SPy+USbqTHLsHV9LtQDm+hIFzzrl9JLPdjRSMHcxEAAAgAElEQVRs+ySdB/y7mX2rOe1U9C++Hr+pPqMMaioPYPaEL8b7vH+Qjoo6T2Ou2LDp1Uurqk+KOkdL2GSdF11Q+6sub9lnDo86i2uSyyvLx4yPOkRThAsyP0NwD9eZwAYzuyLaVG1fYd8jre9Ft0Ydwznn2pXK8jGN79TKJM01s9JG98vWgiy8Knkm8CUz2+fpyiv6Fx8AfAB0aqlsbs+qOjHvodGx5LRjVYrU0CxokcszW/5G5fID8yFrF3g1o3p88uyF1ycuOAXa5vfZNehD4MjK8jGNji6IiqQeaS+7Ak8DM4FrIBgqGEWubOEFmXPOtTwvyLJYRf/iW4EfR50jF9XF+fDZUi1/fESstDZfba4g/lZV9fSrNmw6Neoc+2J5qtfr59dee+hqeh4YdRa3Ty6sLB/zSNQhdkfShwQTMSntaz0zM++N3YPS0lKbM2dO1DGcc85lmBdkTVDRv7grsAbvHYuUwcZ5R2jhvWfEjv6km/pGnaeezNa9tmxFp05mnaPO0lRJ08fXJi7+8KHk6SdGncU1y+LK8jEDow7hMsMLMuecyw1NLciaO6lHtjsfL8YiJ9h/yPs26s47k71+OyExs/gjezPqTAAm9S7r1SMr/moywxakjpgxuGZCBy/G2oWSonFTvhR1iMZI6iTpl5ImhK+PlHRW1Lmcc865bJLrBdnFUQdwOwny+33Cydc9nBxw3y2JRafPS70ms0hnO3y2c6fjNsZibfp+mBrL+/DSuisXfbn2v0dspnO3qPO4FnNZ1AGaYBJQC9RPgLOCYD0u55xzzjVRzhZkFf2LP0uwdoxrg7rsYOB3n0ud+PANyZXfeS45rWONbY4kiLTfVX16Lo7k3I0wo+65ZOnUkpqJB72UOn5Q1Hlci/tS0bgpvaIO0YgjzOwGoA7AzLbzr/eTOeecc64R2bTeTUu7OOoArnF5KQ754jw75Ix5yeolh2rahC/Gjvi4h/q1ZobXOnQ4YWVefNXBieRBrXnePdlsHZd+o/bqgsV2+Kios7iMyQcuBG6LOsge1IZT3xuApCOAmmgjOeecc9klJ3vIKvoXx4BvR53DNZ1gv5JlNvJ3dyf7/u6uxGsDP0i1Xq+V1OEnfXp/0Grn2wMztkxKnDF9YM09xYvt8COjzuMy7qKoAzTiWuDvwCGSHgZexNd0dM455/ZKTs6yWNG/+PPAC1HncM2zrYClT4yIVT1bqmGpmDLb22uW/OPKNcuOrquLbDrv1dZj9vm11xy03PocHFUGF4mjKsvHvBt1iN2R1BM4kWCo4mtmtj7iSG2ez7LonHO5wWdZ3LNvRR3ANV+nWo656MXUSQ/fkFz7/SnJqZ23W1XGTibFrzig19qMtb8HKdO6/6775qvDa+4Y6sVYTvpi1AF2R8HC7mcCQ8zsr0AnScMijuWcc85llVwtyEZGHcC1nLhx0OhFNuq+W5N5v34wMb3fOqvMxHlW5OefOLtDYatOyb80degrx9eMz5uY/NJJje/t2qkzog6wB3cCw4Gvh683A7+PLo5zzjmXfXKuIKvoX3wAcGjUOVzLE3Tuv4JTb743+Zk7f594Y+jbqfktfY6f9enVKhMW1Fl82fdrfzxvTO3/nbKJrvu3xjldmzWqaNyUgqhD7MYJZjYW2AFgZhuBtprVOeeca5NyriAjuNfBtWOCWK9qhv38qdRxD9yUePvcmalX8pJW2xJtb4zHj3uuc6d5LdFWQ8xIvJwcNLWk5t4+f0+dcHymzuOySmfg5KhD7EadpDg7Z1nsDUS6dqBzzjmXbRotyCQdIakwfD5K0o8kdc98tIw5IeoArvV0qOPoC6anTnnoxuSmH/05OXW/rfZJc9u8plePDhb+AdqStlphxVdqy967pO4Xo3ZQ2LGl23dZbWjUAXbjd8CfgD6SfgO8AvxvtJGcc8657NKUHrIngaSkzwITgcOARzKaKrO8IMtBMaPPKW/aqHt+l+z8v/cnZhStsff3ta1tsdiAR/br8npLZTNj2yOJ0dNKaiYeNc+O6t9S7bp2pU0u/G1mDxNMc/9/wGrgy2b2RLSpnHPOuezSlKnCU2aWkHQOcKuZ3S6pxe/NaQ3h+mNt9UqzawWCDp9dzYgbJiXZ2Jk5D5wW08wBOp5gtrgmu7nH/gd8rXpLIq+Zi6uvs25zv1p7TZ9K6+sTzbg9GRx1gHSSbgVmAq+a2VvAWxFHcs4557JWo+uQSXoduBW4GjjbzD6UtMTMjm2NgC2pon/xsUDrLSjsskJtnPf/eoJWPXlybGhdnjo09bjvbqqa8aONVSP25Zwp04abE1+t+H3yy2313iDXtiSBLpXlY3ZEHQRA0g+Ak8IHwKuEBRqw0Mz8PrI9KOx7pPW96NaoYzjnXCQqy8dEHaHVtOQ6ZJcQTGv8m7AYOwx4qLkBI1ISdQDX9hQkOeLcV23Egzcmt175ZHLq/putSeuNTey232drxF7/gfxu6uBXh9bcmfJizO2FOPDZqEPUM7M7zOwbZlZE8PvhKeAI4AlgU5TZnHPOuWzTlOFWp5vZj+pfhEXZ9gxmyiSfPtztVgx6DnvHRg19J1n7UW9emXBmvPe7B+vo3e2fkvr+b88eU69bv2FUU9pPWGzFz+ouX/Pn1Mm+ppjbF32BJVGHqBcuCl1C0Et2MjAAeA94MMpczjnnXLZpSkF2EXDbLtsubmBbNugWdQDX9gkKDl3HKb95IEl1RxY8/LlY7dSBKjXpUz3Kf+rSefBPN2ys6pay3f6/ZUZqVmrAjP+ou7J0Gx36ZTa9a8cOiDpAPUkvAPsBC4DXgP81s4poUznnnHPZabcFmaSvA98ADpP0TNpbXYFmTx0eES/I3F7ZbzuDL/9biu/+nWXPDVHlo6fGSmsK1Ln+fZO6X92757Q7Pl7f4KQc263gnYtrr0q8bgN80g7XXAdGHSDNBwQzPx5J8PtgvaR1Zra+JU8iqSfwYvjyQIJ76dYBRcAqMxvQkudr4PwXA6Vm9oNMnsc551xu21MP2asE0xj3Am5O274ZWJTJUBnkBZnbJ3kpDh0z2w790uxk1cLDNPWeL8aOWtddBwFM69hx6Np4fG2fZLJP/f5m7HgqNeK1q+ouOyVJvFkzMToXajM9ZGb2PQBJ+wEnEgxbHBsuDL3EzC5qofN8QjjDpKQyYIuZ3SSpCPjrvrYrKc/MEi2R0TnnnGuu3U7qYWbLzGyqmQ03s2lpj3lZ/IvMCzLXLIJugz+0UXfclexz692JV4+tTC1F6vTTPr3+Oe33Buu64Au1N6z5Wd3lo7wYcy2oU9QBGlADbAO2h8/7Ace30rnjku6RtFTS85I6AkiaKqk0fN5LUmX4/GJJT0j6C/C8pL6SpktaIGmJpBHhfpdIekfSNIJ74wi3ny3pdUnzJf1D0gGSYpLeDQtRwtfvSerVSt8D55xz7cBuCzJJr4RfN0uqTntsllTdehFblBdkrkUI8g7awEnX/CF1zKTfJhYfvCgv9p4Klt6WOGfG8TXjB71r/YqizujanTZT3Eu6JVwSZQ3wa4Kh7HcDR5tZa81meyTwezM7hmBmx6804ZjhwEVmNppgSP5zZjaYYPjlAkl9gesICrHTCSYqqfcKcKKZHQc8ClwVTu//EHBhuM/nCab9b9Ghm84559q33f6CN7NTwq9dWy9OxnlBlkOSsbyaVCy/JhUrqEnG8mtT8YKaZLywLngUJJKxwkQyXphI5BWmkvHCVDJWmErGCy0ZL7BkvFCpeAHJWIFSsXyl4vmxVCw/llJeXioWzzPl5ZlieaZYvinW7TPbP6575f1Zn3y57wVHnCM2Rv3ZXftTG/RAtRUbgbHAW2a2JaIMH5rZgvD5XIL7yhrzgpltCJ/PBu6TlA88bWYLJJ0GTDWzdQCSHgOOCvfvBzwWFm0FwIfh9vuAPxOs1/kdYFJDJ5Z0GXAZQHy/3k3+kM4559q/Rq+4SjoCWGFmNZJGAQOBB8wsG9ea2fMq2K5FGVgqVrAjFcuvScbza1KxgtpkvKA2GS+sS8YK6pLxoCBKxguTyXhYFMULU2FBRDJeYMlYoVLxfCVjYUEUy4+lYnl5pniexeJ5KcXzUCzfiBWaVAAqBIKH/vk8o1J1Kypqtz5+6A7o+fq6Z+YO7/1vJZIKMn1el1s6NG3dyNby72b2a0nzaL0hirtKL1CTQMfweYKd36tdF3rfWv/EzKZLOhUYAzwo6Uagmt3/nrgd+K2ZPRP+LiwL21ku6WNJo4ET2Nlb9i/MbAIwAYKFoZvyAZ1zzuWGpgyBeRIolfRZYCLwDPAI8KVMBsuQDY3v0r4YSibjQVEUFET5tcnYP3uKwoKoIBl87ZBeEFkyVkAyXmipeEFYEBUoFcuLpWL58VQs758FUdhLlA+xApMKQQVAB4KipCM7/1Bqd5K1782v2/rMZwmGbLF861tDOsQ7zTqux+dPUAPT5DvXDHVRB0hTJ2kS0E/S73Z9M33tyghUAkOAN4DzdreTpEOBlWZ2j6TOBIXl9cBt4eyO1cBXgYXhId2AleHzXSctuZdg6OKDZpZsoc/hnHMuRzSlIEuZWULSOcCtZna7pPmZDpYhkRRkKcXqUrGCHclYfk0qXlCbjBXUpuIFtYl4YV0qKIjqe4mSieBrWBAVWipeEPQUxQtiqVh9YRQURRbLCwuinUXRzoJIhQRFUR7QOXy4FpSoWfhaYtuLx7FLL9y71fOGd4h3njGg+0kjIorm2qe2NBT2LIL7pUYTDBdsS24CHpf0LeClPew3Cvi5pDpgC/BtM1sdzuY4i2CW4XlAPNy/DHhC0kqCtdcOS2vrGYKhig0OV3TOOef2pCkFWV24JtlFwNnhtvzMRcqcRLzD6mS8cF14P1FtMl5Yu8v9RMmgt6hDKhEMn6sviAh7jGL/vJ9IefFg+Fw8f5f7ifJNscJdhs7lE3zP2tP9eDmtbvurM5I7XjuJnX+s/YvFG2eM6BDvMu3wrgN9/THXUj6KOkC9cNKKRyVVmNnCRg9omXOWpT2vBI5Ne31T2vO3CIbW1/tluP1+4P60/SYDkxs4T4OFlZn9meBesYYMIpjM463dvO+cc87tVlMKskuA7wO/MbMPJR1GMDQj60wfcfMGwO+mds1St/W5qcnapaMa22/2+mdHdox3ntq30xGN7utcEyyLOkA6SWcC/0/SAIL7rt4Erjezv0WbrHVJGgdczm7uHXPOOeca0+g9Lmb2ppn9yMz+EL7+0MzKMx8tI9rMFWaXnWo3P9WkYqze9I//OGpDzeoZGYzkckeb+fkl6bvAfxMM4zscOIJguviycDbBnGFm5WZ2qJm9EnUW55xz2WlP65A9Hn5dLGnRro/Wi9iiKqMO4LKTWSpZU/3QjFSictTeHvvCqgdO3ly3YVYGYrncYcDyqEOk+QnwBTN7ycyqw8dLwJnhe84555xroj0NWdws6WSC+8bayxS9iwmmR27wvh/nGmKWqKmtvn+Bpar3dZKO2N9XTBxy1iGXz+2Y12VIi4ZzuWJNv/IRtVGHSKO09bz+ycw+kRRFnqxScnA35pSPiTqGc865NmJPQxYXEcxWNRX4T2B/M1tW/2iNcC1t7PjR2wnuc3CuScxqNtdUTaiwVPUJzWknRapgyooJ/WuTOxa3VDaXUxY0vkurqpY0aNeN4bbNEeRxzjnnstZuCzIzu83MhgMjCaaLnySpQtI1ko5qtYQtb07UAVx2sNTW9TWbJqzAdgxuifaSVtd5yoq7D0mk6t5tifZcTpkedYBd/Ax4RlKZpLMlnSXpOoJZCH8acTbnnHMuqzRlUo9lZna9mR0HfAM4B6jIeLLMmR11ANf2pZJVK2uq7tkMdcUt2W5takf3KSsmdEtZMit7mV1k2tTEMOEEFsMIfodcDHwnfH6iT27hnHPO7Z1GCzJJ+eEV0IeBZ4F3gK9kPFnmeEHm9iiVWPt+bfV9MUgd1vjee29HckufZ1dMjKUstSYT7bt2Zwdt8OeWmX0MvAF81czONbNfmZn/P+2cc87tpT3Nsni6pPuAFcBlwN+AI8zsa2b2dGsFzIB5wNqoQ7i2KVm3fGnt5of2B+ubyfNsSWw85B+rHthiZhszeR7XLrzRxib0SHcB8K6kGyS1aG+yc845lyv21EP2X8AsoNjMzjazh81sayvlypix40engL9EncO1Pcnat+fWbXniUKBHa5xvY+3Hn5265tFV7eHflcuoaVEH2B0z+yZwPPA+wX3GsyRdJqlrxNGcc865rLGnST0+Z2b3NDS1cTuQzT18LgMSO+bPqts6pQTo0prnXbvjo2NeXfvnt82srfaAuOg9GXWAPTGzKoKMjwJ9Ce4znifph5EGc84557JEo/eQtVP/ALxXwgFQt2369MT2l08ACqI4/4ptbx8/75MX5plZMorzuzZtcb/yEQujDrE74f3FfwJeAvKBYWZ2JjAIuDLScM4551yWyMmCbOz40TuAv0edw0WvduvfpiZr5pxKxP8W3ts8/8Slm2a+GmUG1yY9HHWARnwVuMXMBprZjWa2FsDMthHMvOicc865RuRkQRaaFHUAFx0zs9rNT0xL1b41Kuos9ZZumjni/eoFbfZ+IdfqUrTxgszMvm1mDa6RZmYvtnYe55xzLhvlckH2LPBB1CFc6zNLJWqrH3g1lVg+Muosu5rzyXMjV25714syBzCtX/mIFVGH2BNJJ0qaLWmLpFpJSUnVUedyzjnnsknOFmThbIt3RZ3DtS6zuu01VffOs9QnJ0edZXde+fipket3rGyw18HllPujDtAEdwBfB94FOgL/AdweaSLnnHMuy+RsQRa6D9gedQjXOiy1o6qm6p53sC3Dos7SmBdXP3RKdd0Gv6csdy0D/hB1iKYws/eAuJklzWwS8LmoMznnnHPZJKcLsrHjR28AHok6h8s8S21ZV1M1YQ22Y1DUWZoo9vcVE4duS2yeE3UQF4nr+5WPqIs6RBNsk1QALAgXh/4J0DnqUM4551w2yYs6QBtwPXAR/r1ot1LJjctrqyenIHV01Fn2hpHK/9uKCQP+7ZCxiwriHQZGnce1mlUEvffZ4FsEF/Z+APwEOAT4SqSJssDilVUUjZsSdQznXDtVWT4m6ghuL+V0DxnA2PGj3wUmRp3DZUYqsebd2ur7CyB1aNRZ9kXSEp3+umL8oYlU3dtRZ3Gt5sZ+5SNqog7RFGa2DOgKFJrZdWb203AIo3POOeeaKOcLstB1+L1k7U6yrnJx7eZHeoMdEHWW5qhL1XSbsuLuHklLLos6i8u4tcCEqEM0RoEySeuBt4B3JK2TdE3U2Zxzzrls4wUZMHb86NXAbVHncC0nWVMxp27LU0cA3aPO0hJ2JLf2/vuKe+MpS62OOovLqF/3Kx+xLeoQTXAFcDIw1Mx6mtn+wAnAyeF9ZM4555xrIi/Idroe2Bh1CNd8iR1zXq3b9uwgoFPUWVrSlsSmfi+smrzNzDZEncVlxByyZymObwNfN7MP6zeY2QfAN8P32oxwbbQFaY+iBvY5SNIfd3P8VEmlmc7pnHMud3lBFho7fvQm4BdR53DNU7dt6rTE9unDgfyos2TCptq1R7y85g9rzGxL1Flci0oBl/crH5GKOkgT5ZvZ+l03mtk62t6/ve1mNjjtUZn+pqQ8M1tlZudFlM8551yO84Iszdjxo+8BXoo6h9s3tVv+Oi1ZM28koKizZNK6HcsHzFz79LtmlhUTP7gmuatf+YhsWuKgdh/faxMkXSzpCUl/AZ6XVCRpSfheR0mPSlok6TGCBa/rj7tL0hxJSyVdF247TdKf0vY5XdJTrf2ZnHPOZS+f6v3TLgMW0c6Gu7VnZma1Wx6fbomVI6PO0lpWbnvnuDmfPPd6ac8zSiXFo87jmmUNcHXUIfbSIEnVDWwX0KG1wzSio6QF4fMPzeyc8PlwYKCZbdhlGOPlwDYzGyhpIDAv7b2rw/3jwIvh+y8Bv5fUO+whvASYlMkP5Jxzrn3xHrJdjB0/+n3gV1HncE1jlqyrrZ78ai4VY/U+2LzwhCWbXpllZhZ1FtcsV/QrH1EVdYi9YWZxM9uvgUdXM2vLQxbPSdv+wm7uxzwVeAjAzBYRXKCrd76kecB84BhgQPjv70Hgm5K6ExR6z+7aqKTLwt61OcltWfWf2znnXIZ5QdawW4HXow7h9sysbltN1b0LLbXh5KizROXNTa+e8t7m+dOjzuH22f39ykc8FnWIHLV1D+996iKHpMOAK4HTzGwgMIWdvYGTCCY0+TrwhJklPtWg2QQzKzWz0ninbs0O75xzrv3wgqwBY8ePThH8YvVZF9soS23fVFM14X1sa87PfjbvkxdGrtj6zrSoc7i9thQYG3UI9ynTgQsBJB0LDAy370dQxFVJOgA4s/4AM1sFrAJ+CdzfmmGdc85lPy/IdmPs+NEfAt+igSulLlqW2vxxTdU967CakqiztBUz1/5p5LodK7ynLHtsBb6aJWuO5Zq7gC6SFgFXAW8AmNlCgqGKS4H7gJm7HPcwsNzM3mzFrM4559oB+e0ne/b777/0P2TfDfftViq5YVlt9QMxSB0SdZY2yL548KWvdivolbNDOLPIt/uVj3gw6hCu5Ui6A5hvZhMb27ew75HW96JbWyGVcy4XVZaPiTqCC0maa2aNjubyHrLGXQP8I+oQDlKJVW/XVk/u5MXYbum5lfedsC1RPTvqIG6PJnkx1r5ImkswtPGhqLM455zLPl6QNSK8n+wbwLKos+SyZN0HC2s3P3ogWO+os7RlhuX9bcU9x9Ykty+MOotr0Kv4fWPtjpkNMbNTfW1A55xz+8ILsiYYO370OuAM4JOos+SiRM3SN+q2PH0U4FOTNUHSEh2nrLi7KJGqfSvqLO5fVABn9ysfsT3qIM4555xrO/wesr3w+++/dCLwIr5odKtJbH99ZmLHzBPwRcz3Wod453VnHfL9LXHlHRZ1FsdK4KR+5SM+ijqIi15paanNmTMn6hjOOecyzO8hy4Cx40e/BpwPfGqNGdfy6ra9OC2xY+ZJeDG2T3Ykt/Z+dsW9BSlLrY46S46rAs70Ysw555xzDfGCbC+NHT96CvDdqHO0d7Vb/jw1WbNwJKCos2SzrYmqg59fef92M/PhttGoAb7cr3zE4qiDOOecc65t8oJsH4wdP/p+4CdR52iPzCxVU/2H6am690dFnaW9qKpbd/hLqx9Za2abo86SY+qAr/crHzE16iDOOeeca7u8INtHY8ePvhX4UdQ52hOzZG1t9aTXLbn61KiztDfra1YUv7L2qffNbEfUWXJELXBev/IRf4o6iHPOOefatowUZJJ6SloQPtZIWhk+3yTpzUycc5fzXxwu0plRY8ePvh34T8BnRmkms9qtNVX3LLbUpuFRZ2mvVm17b/Ds9X9fZGZ+D2Rm7SAYpvhM1EGcc8451/ZlpCAzs0/MbLCZDQbGA7eEzwcDqX1tV1Kbm9xh7PjRdwHfxif62GeW2r6xZtOESmzbkKiztHcfblk0bPHG6a+bT6+aKdXAF/uVj3h2bw+UdIukK9JePyfp3rTXN0v6aRPbKpN05d5maKrWuujlnHPO5YIohizGJd0jaamk5yV1BJA0VVJp+LyXpMrw+cWSnpD0F+B5SX0lTQ973JZIGhHud4mkdyRNA06uP5mksyW9Lmm+pH9IOkBSTNK7knqH+8QkvSep1758oLHjRz8EfJXgyrjbC5aqXl1TNWED1B4TdZZcUVH12snvVs+dHnWOdmg9MLpf+Yhp+3j8q8BJEPxMAnoB6f8uTgJmNiuhc84559qcKAqyI4Hfm9kxwCbgK004ZjhwkZmNBr4BPBf2uA0CFkjqC1xHUIidDgxIO/YV4EQzOw54FLjKzFLAQ8CF4T6fBxaa2fp9/VBjx49+GhgFfLyvbeSaVHL9hzVVE5OQPCLqLLlm/oYXRy7f+ta+Fg7u094HTulXPmJuM9qYSViQERRiS4DNkvaXVAgUA/Ml/VzSbEmLJF1Xf7CkqyW9LekfwNFp26dKul7SG+FFq/qLWHFJN6a19b1we5u76OWcc861Z1EUZB+a2YLw+VygqAnHvGBmG8Lns4FLJJUBJeHMcScAU81snZnVAo+lHdsPeE7SYuDn7LzifB/BUEOA7wCT9vHz/NPY8aNfB4YBPsV1I1KJlRW11Q90BesXdZZc9eraP49cu325F2XN9yIwrF/5iLeb04iZrQISkj5DUJjNAl4nuCBVCiwiuOhzJMHPmcHAEEmnShoCXAAcB5wLDN2l+TwzGwZcAVwbbrsUqDKzoeH+35V0GG30opdzzjnXXkVRkNWkPU+yc9HfBDvzdNjlmK31T8xsOnAqsBJ4UFJ9UbW7e2JuB+4wsxLge/Vtm9ly4GNJowkKur2+56MhY8eP/ojgj5YpLdFee5SsfW9B7ebH+hEMyXIRennNI6dW1a7zYXD77naCe8Y2NLpn09T3ktUXZLPSXr8KfCF8zAfmAf0JCrQRwJ/MbJuZVQO7TijyVPg1/SLYF4BvS1pAUPj1DNtqsxe9nHPOufaoLU17XwnUT+pw3u52knQosNbM7gEmAscT/DExKpzdMZ/gfq563QiKN4CLdmnuXoKruI+b/f/27jzMrqrM9/j3l9GEhEloKChk0IAgkggFgasFsRAEiSAtmtCAgNoYLNR+bugrXhyifYdq2yjaRusBmbRBSwzY6QhNoEOYZCoghBAGGQoJRCCQm5ka3/vH3kWORZ2acqr2GX6f59lPnbP32me/K/vkPPvda+21onO7a5Cqb6zbCJwK/KhQn1kuOlpXPNC+edHBwOSsYzEAdOvLV0/f3LHhwawDKTFtwBerG2q/Wt1QW8gBfbqfI/sgSZfF+0layLqfHxPwf7sHTYqI90XElem+fQ3U0n0jLPcmmICv5HzW/hGxpNhvepmZmZWbYkrIfgBcKOmP9N1yMoOkC82jJM+f/Tgi1gDzSO4m305y57jbPOAGSXeTPHSfa70qmIUAABZYSURBVBEwiWG4c1vfWNdV31j334GzgU2F/vxS1LH1vns6ttxeA4zPOhbbJogxN6++/LDWzi3L+y9tJM+J1lU31F7Zb8nBuxeYCbwZEZ1pV+2dSZKy+4Bbgc9LmgQgaW9JfwPcBZwuaYKkycAnB3CsW0l+c8emn3WgpB1K4aaXmZlZOVElj36djur4o4ioHc7jLJiz9ECSLj7ThvM4xax985JlnW0rZ2Qdh+U3VuM2fPI99S+PHTXu4KxjKWJ3AWdXN9S+NBwfLmk0sA74SUR8M113DXBMRByUvv8a8MV0l03A2RHxnKRLSboIvgisBlZFxA8kLQMujojmdFCN5ojYLx3J8X+RJG8CXgc+lS7/CLSnn/+5iHhB0vnAN4A1wHJgdERcJOk0kt4AL5O06B0ZETPSWMcCbwBHRcRTw/FvVopqamqiubk56zDMzGyYSXo4Imr6LVepCZmkS4ALgbMi4p7hPt6COUvHAz8kmUi6orRtvPHOro6W47KOw/o3ftTENz75ngvXj9aYA7KOpci0k7S2N1Q31A55LsVKM1I3vUqNEzIzs8rghKxILZiz9NMk3YB2yjqW4RbR1dm28fo/RudrvhgrIRPH7PTKKdUXxCiN2jvrWIrEn4CzqhtqH8o6kFIy0je9Ssn4qilRde5lWYdhZoPU0nBK1iFYiRloQlZMz5BVhPrGuoUkQ0nfnnUswymio7Vtw9UPORkrPVs61u9168tXt3mIciC5efIhJ2ODFxENEbGvkzEzM7O+OSHLQH1j3Yv1jXUnABcAG7KOp9AiWje2rr/iyehaf3TWsdjQbGhfu/9/rblubTqEeiV6AzijuqH2i9UNtZv7LW1mZmY2RE7IMlTfWHcFyZw9N2cdS6FE1+a1rf/v8tXE1oodwKRcvNH68vvvfnXhCxGxNetYRti1wPurG2oXZh2ImZmZlT8nZBmrb6xbXd9YdwrJ6GiFmlw2E12d619uXf+LjdDuUfrKxJqtz019cO3NKyOikHNtFaungI9WN9SeV91Q6+6aZmZmNiKckBWJ+sa6XwEHA1cAJTeKW1fHa8+1bbhqFHTun3UsVlgtm1Ye+di6ZQ9E+Y4A9BbwLWBqdUPtsoxjsSGSdKmkJyStkLRc0vQCfOY8SRcXIj4zM7N8xmQdgG1T31j3GnDBgjlLFwCXkUyCXfQ62196on3TDVXArlnHYsPj6fUPfnjC6B3uOmino47NOpYCuw34cnVD7bNZB2JDJ+kYkgm1D4+I1nS+tXEZh2VmZjYgbiErQvWNdY/VN9Z9FPhb4Lms4+lLZ9szj7RvumFfnIyVveVv3nHsi5tW3Zl1HAXyDPDp6obaE52MlYUqYG1EtAJExNqIeEVSS5qcIakmnSS7u+XrKknLJD0v6avdH5S2tD0t6XbgoJz1fy/pIUmPSVooaaKkyZJeSCfARtKO6THHjmDdzcysxDkhK2L1jXU3AYcAX6cIR2PseOvR+9o3Lz4UmJR1LDYy7n/9P457dWtLKSdlfyGZG+sD1Q21N2YdjBXMEmAfSc9I+pmkgUxE/37g48BRwHckjZV0BDAb+BDJDbEjc8rfGBFHRsRU4EngCxGxEVgGdE9ONBtYGBHtPQ8m6QJJzZKaO7esH2I1zcysHDkhK3L1jXVt9Y113wemUETPl7Vvvefujq13TMfdgirOsr80Hbuu9dVSm1tqI/Bt4H3VDbWN1Q21lTBIScWIiE3AESRTibwONEk6r5/d/hARrel8e68BewC1wE0RsSWd8mFRTvlDJd0t6XHgLJIRcgF+AZyfvj4fuDpPjJdHRE1E1IyeuNPgK2lmZmXLCVmJqG+se62+se4C4HDg1ixjadt8y52dbz1Yi78/lUq3vXLtMZvb1z+QdSAD0A78FHhvdUPtP3lOsfIVEZ0RsSwivgNcBHwa6GDb79S7euzSmvO6k23PVOcbvOYa4KKI+CDw3e7Pi4h7gf3SVrnREbFye+tiZmaVxRfUJSZ9vuwkYBrwbyQXHCMiIqJt4+/u7Gp7ciDdgayMBTH65tVXTHurc8ujWceSRytwOcl8Yl+pbqh9PeuAbPhIOkjSlJxV04AXgRaSljNIErT+3AWcLmmCpMnAJ3O2TQbWpM+HndVjv18CvyZP65iZmVlfnJCVqDQxOwc4APghSZesYRPR1dG28Vf3dnX82cmYAdBF5/g/vNQ4pb2rdVXWseTYBPwA2L+6ofZL1Q21z2cdkI2IScC1klZJWkHy7O08kpasH0u6m6QVrE8R8QjQBCwHFgJ352z+FvAAycicT/XY9TpgF5KkzMzMbFBUvlMLVZYFc5buDMwBvkoy4ljBRHS81brh6hV0bTyqkJ9r5WHcqAlvnrrPl9eNHjXmvRmGsRb4CfDT6obadRnGYRVI0hnAaRFxzkDKj6+aElXnXjbMUZlZobU0nNJ/IbMckh6OiJp+yzkhKy8L5iwdB5wNXEwy0fR2iWjd0Lr+yheIt6Zud3BWtiaOnrzmlH2+1DlKo6tH+NAvAfOBK6obareM8LHNkPSvwMnAJyLimYHs44TMrDQ5IbPBckJW4RbMWSqSiVL/kWTksEGLrk2vt66/6k3oOKj/0lbpdhz77paT9v78DtKo3Yf5UAEsBX4GLPKIiVZqnJCZlSYnZDZYTsjsbQvmLJ1OkpidzgCfG+zqXLe6bcO1ndC177AGZ2Vl1/FVT3+s6pw9JQ3HuN7rSEa6a6xuqB1QS4RZMaqpqYnm5uaswzAzs2HmhMzeYcGcpQcA5wKfA/bLV66r49Vn2zZePwliz5GKzcrHnhP2X3HsHp95n6SJBfrIZpLWsN9UN9RuLdBnmmXGCZmZWWVwQmZ5pd0Za0mSs8+QDOcMQGf7i4+3b1q4D7BzRuFZGdh3h0Oap+8+c2o6RPhQrAV+C1xd3VDrK1crK07IzMwqgxMyG5AFc5ZOJOnK+LnOtid3bt98y6FAoVo2rIIduGPNH6ftWne0pIFOr7EF+D3JEOJL/GyYlSsnZGZmlcEJmQ3a/Fkzq4DPAmcC0zMOx8rAYbscd9fBOx99bB9FOkjmdboO+H11Q+3mkYnMLDtOyMzMKoMTMtsu82fN3B+YBZwGHIUnEbchmr7bKXfuN/nQ3AnFO0gm3L0R+G11Q+1r2URmlg0nZGZmlcEJmRXM/Fkz9yAZQv9U4GO4S6MN0rF7fGZJ1cQDNpF0SVzsyZutkjkhMzOrDE7IbFjMnzVzAklSdipJkuaRGC2fF4A/AIuBZXObFrdmHI9ZUXBCZmZWGZyQ2bCbP2umgMOB44E64CPADpkGZVlaB9wJ3AHcPrdp8aqM4zErSk7IzMwqgxMyG3HzZ80cCxxNkpzVpa/HZRqUDadNwD3A0nR5dG7T4q5sQzIrfk7IzMwqgxMyy1zavfEjwAySURuPBHbMMibbLmuBB4H7SFrBHpzbtLg925DMSo8TMjOzyuCEzIrO/FkzRwHvJ0nOupdDgTFZxmW9egt4FHiAJAl7YG7T4uezDcmsPDghMzOrDE7IrCTMnzVzIslzaEcBHwQOSZdJWcZVYTYCTwAr2ZaErXDrl9nwcEJmZlYZBpqQuWXCMjW3afEWkueQ7ulelw4W8h6SxOwDPf46URu6VuBJksTr7WVu0+IXM43KzMzMrII5IbOiM7dpcQAvpsst3evTRG0f3pmk7QvsDowe8WCLz6tAS87yQs7f5+Y2Le7MKC4zMzMz64UTMisZaaL253S5JXdb+nza7iTzolWlf/fM875UBxYJkoE1WvjrZOvtZW7T4q2ZRGZmZmZmQ+JnyKzipM+t7UnvSdvuwIR0eVeeZQKDu5kRwGZgQ7qsH8Dr3rZtTJNSMyth46umRNW5l2UdhlnJaWk4JesQzAbFz5CZ5ZE+t/Z8ugxJ2n1yVM6S730XSSLl+bnMzMzM7B2ckJkNQdpS1ZkuZmZmZmZDMirrAMzMzMzMzCqVEzIzMyt6ki6V9ISkFZKWS5reR9nzJO1VgGMuk9Rv338zM7Pt4S6LVlQkvRv4r/TtniRdAl9P3x8VEW0FPt49wEURsbyQn2tmhSPpGGAmcHhEtEraDRjXxy7nkcyz98ogjjEmIjq2K1AzM7MhcAuZFZWIeCMipkXENKAR+FH3+0InY2ZWMqqAtRHRChARayPiFUnflvSQpJWSLlfiDKAGuC5tSZsgqSVN4pBUI2lZ+npeut8S4Jdp2d+krXBNJCOqkpb9uaTmtJXuu+m64yXdlFPmBEk3jtQ/ipmZlQcnZFYSJL1P0vKc95dI+mb6eoqkWyU9LOkuSQem62enF2qPSbojXTdR0g3pBddvSIax7/7My3MuuL6drvu4pBtyypws6bcjVG0zSywB9pH0jKSfSTouXf/TiDgyIg4lSZ5mRsTvgGbgrPRGTn9z8x0BnBYRfwdcCGyJiMOA/51u63ZpOnTxYcBxkg4DlgIHS9o9LXM+cHVvB5F0Qfr70ty5Zf2g/wHMzKx8OSGzcnA58OWIOAL4BvDTdP13gOMjYipwerruImBdesH1z8CHcj7nkvSCaypwgqRDgNuAw9KulNDHBZeZDY+I2ESSHF1A0oW5SdJ5wEclPSDpcaAO+MAQPn5RTtJ2LPBv6TFXACtyyn1W0iPAo+lxDolkIs9fAWdL2hk4hh6T1ufU4fKIqImImtETdxpCmGZmVq78DJmVtPQi6GhgoaTu1d3f63tJuiHdAHR3IzoW+D5ARDwq6YmcjztT0hfS/fciueBaJel64O8kXUdyUXjmcNbJzN4pIjqBZcCyNAH7EklrVU1EvCRpHjkt3j10sO0GZM8ym3sequfOkvYHLgaOjIh1kq7J+Zyrgf8A3gJu8HNoZmY2WG4hs1KRe0EF2y6GRPJsybSc5dB029+TtJLtBzwmaZd0fW8XXFOArwF1aevZf+Yc4yrgHOAsoCm9MDSzESLpoPT/aLdpwNPp67WSJgFn5GzfCEzOed/Ctu6Hn+7jUHeR/D9H0qEkCR/AjiSJ23pJewAnd+8QEa+QDB7yTeCaAVfKzMws5YTMSsVfgL0k7SLpXcApABGxDlgj6XQASaMkTU33OSAi7ge+BawD9uavL7imsq2L044kF3EbJFUBH+8+cES8BKwFLsEXXGZZmARcK2mVpBXAIcA84ArgceD3wEM55a8BGrsH9QC+C/xY0t30PZn7z4FJ6TH+B/AgQEQ8RtJV8QmSGzT39tjvOuCliFi1PZU0M7PK5C6LVhIi4i1J/4fkout5IPfCZzbw87TL0jiSZ0AeA36UdjUSsCQiVkp6nuTCbgXwCMnD/6SvV5EMlf0877zguh7YMSKeGY76mVl+EfEw8N962fTNdOlZfiGwMGfV3cCBvZSb1+P9VpLfk95iOK+PED9CkhyamZkNmpJnks2sL5Iagfsi4tqsYzGz4iHpYZLujCd0D8vfn/FVU6Lq3MuGNzCzMtTScErWIZgNiqSH0wHj+uQWMrN+pMPtrwO+mnUsZlZc0tFdzczMhswJmVk/0kmqzcwK4oN770Sz7/SbmVnKg3qYmZmZmZllxAmZmZmZmZlZRpyQmZmZmZmZZcQJmZmZmZmZWUackJmZmZmZmWXECZmZmZmZmVlGnJCZmZmZmZllRBGRdQxmZmYVQ9JG4Oms4yig3YC1WQdRYOVWp3KrD7hOpaDc6gODr9O+EbF7f4U8MbSZmdnIejoiarIOolAkNZdTfaD86lRu9QHXqRSUW31g+OrkLotmZmZmZmYZcUJmZmZmZmaWESdkZmZmI+vyrAMosHKrD5RfncqtPuA6lYJyqw8MU508qIeZmZmZmVlG3EJmZmZmZmaWESdkZmZmBSbpJElPS3pW0iW9bB8vqSnd/oCk/UY+yoGTtI+kOyQ9KekJSV/rpcwMSeslLU+Xb2cR62BIapH0eBpvcy/bJekn6XlaIenwLOIcCEkH5fzbL5e0QdI/9ChT9OdI0lWSXpO0MmfdrpJuk/Sn9O8uefY9Ny3zJ0nnjlzUfctTp3+R9FT6vbpJ0s559u3zO5qFPPWZJ+nlnO/WJ/Ls2+dvY1by1Kkppz4tkpbn2Xe7z5G7LJqZmRWQpNHAM8AJwGrgIeDMiFiVU+bLwGERMUfSbOD0iJiVScADIKkKqIqIRyRNBh4GPtWjTjOAiyNiZkZhDpqkFqAmInqdVyi9qPwK8AlgOvDjiJg+chEOTfodfBmYHhEv5qyfQZGfI0nHApuAX0bEoem67wNvRkRDehG/S0R8vcd+uwLNQA0QJN/RIyJi3YhWoBd56nQisDQiOiT9M0DPOqXlWujjO5qFPPWZB2yKiB/0sV+/v41Z6a1OPbbPB9ZHxPd62dbCdp4jt5CZmZkV1lHAsxHxfES0Ab8BTutR5jTg2vT174DjJWkEYxyUiFgTEY+krzcCTwJ7ZxvViDiN5AItIuJ+YOc0OS12xwPP5SZjpSIi7gLe7LE69//LtcCnetn148BtEfFmmoTdBpw0bIEOQm91ioglEdGRvr0fqB7xwIYozzkaiIH8Nmairzqlv82fBX49XMd3QmZmZlZYewMv5bxfzTuTl7fLpBdl64F3j0h02yntXvkh4IFeNh8j6TFJt0j6wIgGNjQBLJH0sKQLetk+kHNZjGaT/+Kx1M4RwB4RsQaSmwPA3/RSplTPFcDngVvybOvvO1pMLkq7YF6Vp1tpqZ6jWuDViPhTnu3bfY6ckJmZmRVWby1dPZ8PGEiZoiNpErAQ+IeI2NBj8yPAvhExFfhX4PcjHd8QfDgiDgdOBurTbku5Su48SRoHnArc0MvmUjxHA1Vy5wpA0qVAB3BdniL9fUeLxc+B9wLTgDXA/F7KlOQ5As6k79ax7T5HTsjMzMwKazWwT877auCVfGUkjQF2YmhdgEaMpLEkydh1EXFjz+0RsSEiNqWvbwbGStpthMMclIh4Jf37GnATSZeqXAM5l8XmZOCRiHi154ZSPEepV7u7iqZ/X+ulTMmdq3TgkZnAWZFnUIcBfEeLQkS8GhGdEdEFXEHvcZbiORoD/C3QlK9MIc6REzIzM7PCegiYImn/tLViNrCoR5lFQPcocGeQPNxftHeK02corgSejIgf5imzZ/dzcJKOIrnGeGPkohwcSTukA5QgaQfgRGBlj2KLgM8pcTTJQ/1rRjjUwcp7N7/UzlGO3P8v5wL/3kuZW4ETJe2Sdpc7MV1XlCSdBHwdODUituQpM5DvaFHo8Wzl6fQe50B+G4vNx4CnImJ1bxsLdY7GbFeIZmZm9lfSUdMuIrkYHA1cFRFPSPoe0BwRi0iSm19JepakZWx2dhEPyIeBc4DHc4Z+/p/AewAiopEksbxQUgewFZhdzEkmsAdwU5qfjAGuj4j/lDQH3q7TzSQjLD4LbAHOzyjWAZE0kWQEuy/lrMutT9GfI0m/BmYAu0laDXwHaAB+K+kLwJ+Bz6Rla4A5EfHFiHhT0j+RXPQDfC8iiqLVOU+dvgGMB25Lv4P3p6Ou7gX8IiI+QZ7vaAZV+Ct56jND0jSSLogtpN/B3Prk+23MoArv0FudIuJKenkeczjOkYe9NzMzMzMzy4i7LJqZmZmZmWXECZmZmZmZmVlGnJCZmZmZmZllxAmZmZmZmZlZRpyQmZmZmZmZZcQJmZmZmZmZWUackJmZmZmZmWXECZmZmZmZmVlG/j/Jq/A2bKeaCQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxkAAAD8CAYAAAAbgmlTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xl8lPW5///XOxuEJEQUtdS0xqMoiEGUuFBFKa1djtpWa0+1Wre21hbbnvZYf5zaJfZbPelR664cd1rX4lYtta4FBBVlE1AUF6AKyiJ7gGSW6/fHfaeMMXsmc89MrufjMY/M3PdnuQaTmGs+m8wM55xzzjnnnEuXgqgDcM4555xzzuUXTzKcc84555xzaeVJhnPOOeeccy6tPMlwzjnnnHPOpZUnGc4555xzzrm08iTDOeecc845l1aeZDjnnHPOOefSypMM55xzzjnnXFp5kuGcc84555xLq6KoA3DOOZfbBg8ebNXV1VGH4ZxzLgPmzp27zsx276icJxnOOed6pLq6mjlz5kQdhnPOuQyQtKIz5Xy6lHPOOeeccy6tPMlwzjnnnHPOpZUnGc4555xzzrm08iTDOeecc845l1aeZDjnnHPOOefSypMM55xzzjnnXFr5FrbOOed6ZNHKTVRPnBp1GM4559qxvP74jPbnIxnOOeecc865tPIkwznnnHPOOZdWnmS4SEgySX9KeV0kaa2kv6ap/TpJF6ajLeecc8451zWeZLioNAAHSSoNXx8HrIwwHue6RdJVkv4z5fUTkm5NeX2lpJ91sq1eTY4lnS3p+t5q3znnnGvmSYaL0uNA8yqk04B7m29I2lXSI5IWSnpR0sjwep2k2yVNk/SOpB+n1LlY0huSngYOSLn+PUkvS3pF0oOSBkiqkLRMUnFYZqCk5c2vneuC54HPAEgqAAYDI1LufwaYFUFczjnnXGQ8yXBRug84VVJ/YCQwO+XeJcB8MxsJ/AL4Y8q9YcAXgcOB30gqljQaOBU4BDgZOCyl/ENmdpiZHQwsAb5jZluAaexMck4FHjSzWJrfo8t/swiTDILkYjGwRdIgSf2A4cB8ST8Pk92Fki5prtxOcjxN0u8lvSRpqaSx4fVCSZentPX98PoQSTMkLZC0OKX8OWH96cBRKe2fKGm2pPmSnpa0p6QCSW9K2j0sUyDpLUmDe/Mf0DnnXP7xJMNFxswWAtUEoxh/a3H7aOBPYblngd0kVYb3pppZo5mtA9YAewJjgYfNbJuZbQYeTWnrIEnPSVoEnM7OT5lvBc4Jn58D3JHO9+f6BjNbBcQlfZog2XiBIGEeA9QCC4FxwFCCxHgUMFrSMR0kxwBFZnY48J/Ab8Jr3wE2mdlhYfnvSdoH+BbwhJmNAg4GFkgaQpCwH0UwJfHAlLZnAkea2SEECf9FZpYE7iL4OQH4PPBK+LPmnHPOdZqfk+Gi9ihwBcEfYbulXFcrZS382phyLcHO72OjdXcCXzOzVySdHfaFmc2SVC3pWKDQzBZ3I37nYOdoxmeAPwB7hc83EUyn+kL4mB+WLydIOioIk2MASY9+tFkeCr/OJUjICdsZKemU8HVl2NbLwO3hlL9HzGyBpM8B08xsbdj+/cD+Yb0q4P4wESkBloXXbwf+AlwNnEsbybek84DzAAoH7t7hP5Bzzrm+xUcyXNRuB35rZotaXJ9B+GmqpHHAunCEoi0zgJMklUqqAE5MuVcBvB/+8XV6i3p/JFgL4qMYriea12XUEEyXepFgJKN5PYaA/zGzUeFjPzO7LazbVnIMOxPq1GRawI9S2trHzJ40sxnAMQQbKPxJ0pkdtH8dcL2Z1QDfB/oDmNm7wGpJ44EjCNZOfYyZ3WxmtWZWWzigsrUizjnn+jBPMlykzOw9M7umlVt1QK2khUA9cFYH7cwD7gcWAA8Cz6Xc/hXB9JWngNdbVL0bGETKonPnumEWcAKw3swSZrYe2IUg0XgBeAI4V1I5gKS9JO1B+8lxW54AfpCyacH+ksok7Q2sMbNbgNuAQwm+78dJ2i0s/42UdirZuaNby5+vWwmmTf3ZzBJd+6dwzjnnfLqUi4iZlbdybRrBYmzCP9K+2kqZuhavD0p5filwaSt1bgJuaiOUo4EHzGxjp4N37uMWEewqdU+La+XheoYnJQ0HXpAEsBU4w8zmhVOYFgAr+Ghy3JZbCaZOzVPQ2FrgawTTAH8uKRa2f6aZvS+pjiDReR+YBxSG7dQBUyStJBh52Selj0cJRvd8hM8551y3yKy9kXrn8pek64AvA/9uZkujjse5bCGpFrjKzMZ2pny/IUNtyFlX93JUzjnnemJ5/fEdF+oESXPNrLajcj6S4fosM/tR1DE4l20kTQR+wMfXLznnnHOd5klGX1NXOYhgC9cRBLvLlAEDwkdpyvOWjwTBdrGrU7629lhH3Safw+1cjjKzeoJ1UM4551y3eZKRr+oqK9mZTKQ+hvSg1b06USZJXeV7BFt1zv3Xo27T6h7065xzzjnncoivycgHdZUFBId+fYng0K0RdC4hyKSVBDvwzACmA69St8m/+ZzLA7W1tTZnzpyow3DOOZcBviYjz/3lik/u/tWtDf9OkFgcx0cPsstGewH/ET4APqSucibBHvx/pm7Thsgic84555xzaZW1IxmSLga+RbAWIAl838xmt1H2bOBJM1vVwz6nAReaWVZ+JFczuaYa+DpwUpHZp+Yvf/fTEYeULk3A3wj25f8rdZsaOyjvnMsiPpLhnHN9R06PZEgaQ3Cw1aFm1ihpMFDSTpWzCU7Z7XSSIanIzOI9CjQDaibX9CNILL5LsA++AOISi0pK3qxpahoaYXjpUkKwz//XgA3UVT5AkHA851OqnHPOOedyT7ae+D0EWGdmjQBmts7MVkn6taSXJS2WdLMCpxCsR7hb0oLw5NzlYWKCpNpwhAJJdWG9J4E/hmXvk7QwPBCrtDkASTdJmiPpVUmXhNc+J+nhlDLHSXqoN/4BaibXjKyZXHMtQeJ0N/BZwgSj2V2VFT0auclSg4DvEazbeIe6ykupqxwWcUzOOeecc64LsnIkA3gS+LWkpcDTwP1mNh243sx+CyDpT8AJZvaApAtImeYUnqjbltHA0Wa2XdLPgG1mNlLSSILTcJtdbGbrJRUCz4T3nwVukLS7ma0FziGNJ+LWTK4pAE4BLgQO66j89AGlu6er7yxVDfwC+AV1lS8Dl1K36S/RhuScc8455zqSlSMZZraVIBk4D1gL3B+uu/ispNmSFgHjCXZR6qpHzWx7+PwYgmk5mNlCYGFKuf+QNI9gK9YRwIEWLGD5E3CGpF2AMQQLl3ukZnJNUc3kmrOAV4H76USCAdAgDV9dWNhXtoY9DHiEusqXqav8ctTBOOecc865tmXrSAZmlgCmAdPCpOL7wEig1szelVQH9G+jepydCVTLMg0tu2pZWdI+hKMJZrZB0p0p7dwBPAbsAKb0ZF1HzeSaEoLRkP8P2KfLDUi6f2D50h9v2LRnd2PIQbXA36irfB74FXWbno06IOecc84591FZOZIh6QBJqQuaRwFvhM/XSSonmFbUbAtQkfJ6OcFICASLptsyAzg97PMggiQGYCBBMrJJ0p7Avz45D3ewWgX8Eriz028qRc3kGoUjF28Dk+hOghF6rLysrUQr330GeIa6yn9QV3l01ME455xzzrmdsnUkoxy4LpySFAfeIpg6tRFYRJBEvJxS/k5gkqTtBFOYLgFuk/QLoNVtb0M3AXdIWggsAF4CMLNXJM0nmL70DsEhcqnuBnY3s9e6+sZqJtccAVwDHNHVuq35oLDwoO3StlKzAeloLweNA56jrvIJgpGNlzso75xzzjnnelnWnpORzSRdD8w3s9s6W6dmcs0QoB74Ni12ieqpS9Z++NLJWxsOT2ebOewhYAJ1mz6IOhDn+go/J8M55/qOzp6TkZXTpbKZpLkE06ru6kz5msk1hTWTa35OMN3rTNKcYADcP7C8Kd1t5rCTgcXUVZ7SYUnnnHPOOdcrsnW6VNYys9EdlwrUTK45kGAqV6d2i+quJSUlBxiYeiGByVG7AVOoq7yHYFRjY9QBOeecc871JT6S0QtqJtcU1EyuuZDg3I1eTTAATNp9dv9+XV4f0gd8C1hEXeVxUQfinHPOOdeXeJKRZjWTa6oIDhC8HOiXqX7vHlixNlN95Zgq4AnqKm+grrKvLo53zjnnnMsoX/idRjWTa75CMD1qUKb77pdMvjlnxXtDOy7Zp70JnEXdpheiDsS5fNJvyFAbctbVUYfhnHN9xvL64yPr2xd+Z1B47sWvgUeIIMEAaCwoGLqiqOjdKPrOIUMJtrv9HXWV/r3vnHPOOddL/A+tHqqZXFMOPEBwNkekC6/vHlixLMr+c0QhcDHwMHWVZVEH45xzzjmXjzzJ6IGayTX/BrxAsG1q5P5ePqCi41Iu9BVgBnWVQ6IOxDnnnHMu33iS0U01k2vGEZw6flDEofzLhoKCgzYXaFPUceSQQ4HZ1FWOjDoQ13dJ2k3SgvDxgaSVKa9LeqG/mZJGpbtd55xzLpUnGd0QLvD+O7Br1LF8hFT8SHm5b2XbNZ9abbvcVD1x6ueiDsT1TWb2oZmNMrNRwCTgqubXZuYHbTrnnMtJnmR0Uc3kmlOBB8ng9rRd8UBFuW8X1gXbrWTp5xsvHwFMrZ44NSumvTkHIGk/SQtSXk+U9Mvw+VBJT0iaK2mGpP3D66dKWizpFUn/CK8NkDRF0kJJ9wH9U9q8WdIcSa9K+nV47YuSpqSU+bKkP2fobTvnnMsTnmR0Qc3kmu8Cd5PFJ6UvKy4aEYd41HHkgrgVrBzfeOXALZRVEiSNf66eOPXcqONyrhNuBn5oZqOB/wauD6//BvicmR0MnBReuwDYYGYjgd8Dh6S0MzHchvBg4DhJBwJPASMl7RaWOQe4o1ffjXPOubzjSUYn1Uyu+SlwC9n+byZVTh9QuijqMLJd0thwYtOlO95nt0+kXC4EbqueOHVCVHE51xFJuwBHAg+GIx03AJ8Mb88C/ijpu+z8XXUMcBeAmc0HXk1p7jRJ84B5wHDgQDNLAvcA35K0KzAaeLKVOM4LR0HmJLb5UjDnnHMfld1/MGeJmsk1FwJ/iDqOzrpnYMXmqGPIZmZsPys28b0ltve+bRS5rnri1G9mNCjnPi7OR39HN09zErAuZd3GKDNr3oDiewSjGdXAK5Kaz+352DRKSUOBnwDjw1GOv6f0cTvwbeB04H4zS7Ssb2Y3m1mtmdUWDqjsyft0zjmXhzzJ6EDN5Jozgf+NOo6umNe/3z5Rx5CtzEj8d/y7C59Ljqxpp5iAP/picBexD4BPShokqT9wPICZbQDel3QSgKQCSQeHdf7NzF4EfgVsAPYCZhAkC4TlRoRlBwJbgM2ShgBfbO7YzN4F1gETgTt7800655zLT55ktKNmcs2XgduI+JC9ropLn36tpPjtqOPIRpMSJ866LzH+iE4ULQEerp449dDejsm51pjZDuAygq2yHwVSd447FThf0isE059OCK9fJWkRsAh42swWE6zX2E3SQuCnwJyw7LywzcUEU0FntQjhHmCZmS1N93tzzjmX/2TmmxG1pmZyzRHAM0BOngr9lS1bp126bv24qOPIJn9PHDbt/NhPx3Wx2hrgM8vrj/ekzfUpkiYBL5jZ5I7K9hsy1IacdXUGonLOOQewvP74yPqWNDfcNKRdPpLRiprJNQcAU8nRBAPgHwMGDI46hmyyKFn9XDcSDIA9gCeqJ07dM80hOZe1wgXlBwD3Rh2Lc8653ORJRgs1k2t2I1gAuVtHZbPZlgIduK6wYG3UcWSDVbbrS19t+t1netDEvsDj1ROnVqQrJueyWbiY/LN+GKBzzrnu8iQjRc3kmkLgfoKdWXKbVPDnioo3og4jalus9NXPNV55UJKCwh42dQjBHHXnnHPOOdeBrD1ULgoFSbs0WaC82VHoL+VlJT/c2Hf3r2+yomXHNv7hE9vpNyBNTZ5QPXHqT5bXH39NmtpzLi/U7FXJnAjnBzvnnMs+PpIRWjJs+NfuuCpxwp4b7L2oY0mXVUWFBzWKHVHHEYWEac1xTf9bvJ7KdE97+9/qiVMP6biYc84551zf5UkGsGTY8GrgjtImRlw7KVE2dnFyTkd1coI04Imysj53+rcZW05pqtuwwj5R1QvNlwD3VU+cWt4LbTvnnHPO5YU+n2QsGTa8mGAdxi4AgkEXPJYc/V8PJabLLBltdD13b0V5nxrJMKNpQuwnb863oQf0Yjf7E5w94JxzzjnnWtHnkwzgl8DhqRcEOuINO3bSdYn5FdtsfURxpcVr/UqGGvSJw1DMsMvip8/5W/KITBygd1b1xKmnZ6Af55xzzrmc06eTjCXDho8AJrZ1f1ADo2++NrF9xIrkqxkMK62S0ifm9u+3JOo4MuHexPgZtySO78lWtV11U/XEqftmsD/nnHPOuZzQZ5OMJcOGFwC3EMyxb1Ohsdev70kOPeOZxIzMRJZ+dw+syPvzMmYlRkz/Rfy7x2a42wrg3uqJU/vsz5FzzjnnXGv68h9HPwTGdKagoOQrL9kxV94Sn1USs229HFfazSztPyTqGHrT28khz58e+8UxEXV/GPC9iPp2zjnnnMtKfTLJWDJseBVwWVfrfWodR912dWJl1Vpb1gth9ZodBQX7v1dUuDLqOHrDh1Yx/0tNv68FKcIwflc9ceouEfbvnHPOOZdV+mSSAdxIMNWly/rFGXrlrYnBX5ibfDHNMfWqewZWvB11DOm2zUreOLbxqn1jFLU75S0DBgO/iTgG55xzzrms0eeSjCXDhp8MnNiTNgQV330yeeQv701ML0haPE2h9arHy8rKoo4hnWJW+N74xj/sspUBA6OOJXRB9cSpw7taSVJC0oKUR3UrZT4p6YE26k+TVNv1cJ1zzjnnek+fSjKWDBteSDemSbVl5HI79pZrEq/uutlWp6vN3rKusKBmq7Ql6jjSIWlaf0LTpbEP2HXPqGNJUQRc1Y16281sVMpjeepNSUVmtsrMTklLlM4555xzGdCnkgzgTCCth7RV7ODgG29MFIx+M7kgne2mnVTyl4qynN2Kt5kZ28+MTVz5hn16n6hjacUXqydO7dEoGYCksyVNkfQY8KSkakmLw3ulku6TtFDS/UBpSr2bJM2R9KqkS8Jrn5P0cEqZ4yQ91NMYnXPOOefa02eSjCXDhpfQS/PmC4zdL3ogWXP+1MT03mg/XR6oKE9EHUNPmJG4KH7eopnJmpqoY2nHH6onTu3KGpHSlKlSD6dcHwOcZWbjW5T/AbDNzEYClwKjU+5dbGa1wEjgWEkjgWeB4ZJ2D8ucA9zRlTfknHPOOddVfSbJAM4D9u6txgWF4xfasdfdGH+xdIdt7q1+euLt4uIDE5CzicYNia8+PyUx7vCOS0ZqP2BCF8qnTpc6KeX6U2atnjZ/DHAXgJktBBam3PsPSfOA+cAI4EAzM+BPwBmSdiFIXh7vQnzOOeecc11WFHUAmbBk2PABwMWZ6GvPTRx56zWJ5b/+duEHb39S+2eiz84yadDM0v4Lj92+Y2TUsXTVXxNHTLsi/s1xUcfRSRdWT5x6w/L645t60EZDO/es5QVJ+wAXAoeZ2QZJdwL9w9t3AI8BO4ApZrmxWYHLHYtWbqJ64tSow3DOubyyvP74qEPokb4yknEB8IlMdVacpPqyyYlPnTQrOTNTfXbW3QMrNkQdQ1ctSO773AWxn4yLOo4u+CTB+p/eMAM4HUDSQQRTowAGEiQmmyTtCXy5uYKZrQJWAb8E7uyluJxzzjnn/iXvk4wlw4aXAhdlul9B6Wkzkkdfemf8uaK4NWa6/7bMKe3fa1PGesNK2+2lk5su+UzUcXTDz6snTu2Nn6+bgHJJCwm+r18CMLNXCKZJvQrcDsxqUe9u4F0ze60XYnLOOeec+4i+MF3qNGC3qDof+j5jb7sm8dpF5xYOXD1IVVHF0SwmVS8tLl62fyyWjbszfcRmG7Doc41X1CQpKIw6lm7YHzgJeLC9QmZW3sq1O0kZcQi3tT0ofL4dOLWNts5up6ujgVvajdg555xzLk3yfiQD+GHUAZQ2ceC1kxJlYxcn50QdC8DdlRX/jDqGjjRa0bJjG/+w1w76lXZcOmv9OOoAACTNJZhWdVfUsbiOSTJJf0p5XSRpraS/pqn9OkkXpqMt55xzri15nWQsGTb8MD66xWdkBIMueCw5+r8eSkyXWTLKWJ4eUDooyv47kjCtPq7p8uINDNw16lh66JjqiVMPjjoIMxttZseYZc+0PdeuBuAgSc0J9nHAygjjcc4557qsU0mGpIvDA74Whvv5H9HTjjP0adoPern9LhHoiDfs2EnXJeZXbGt1e9KM2FxQMGJ9QcGHUfXfHjM2f73pko3/tD0jn1qWJj+KOgCXkx4HmrcVOQ24t/mGpF0lPRL+Pn4xPA+l+Xfq7ZKmSXpH0o9T6lws6Q1JT5NyIKmk70l6WdIrkh6UNEBShaRlkorDMgMlLW9+7ZxzznVGh0mGpDHACcCh4QFgnwfe7e3AemrJsOGDaGPuetQGNTD65msT20esSEZzArdUOKWi/PVI+m6HGU3fj/307QW2X1pPZY/Yt6onTs31ERmXefcBp0rqTzDVbXbKvUuA+eHv418Af0y5Nwz4InA48BtJxZJGE/wuPAQ4GTgspfxDZnaYmR0MLAG+Y2ZbgGnsTHJOBR40s1ia36Nzzrk81pmRjCHAuuapFma2zsxWhZ9sDQaQVCtpWvg8Wz5NOxvI2vn8hcZev74nOfSMZxIzouj/kYqyrFpMbYb9v/i35zyZPOyQqGNJs1KCP+yc67TwoMVqglGMv7W4fTTBAYuY2bPAbpIqw3tTzazRzNYBa4A9gbHAw2a2zcw2A4+mtHWQpOckLSLYGnlEeP1WgtPhoY1T4iWdJ2mOpDmJbZt69oadc87lnc4kGU8Cn5K0VNKNko7tRJ1s+DTt+50sFxlByVdesmOuvCU+qyRm2zLZ93tFRQc1QdbM0b8r8fkZtye+nItb1XbG16MOwOWkR4ErSJkqFVIrZZsPaEz9mU6wcwfBjx3gGLoTuMDMaghGSPoDmNksoDr8fV9oZos/1qHZzWZWa2a1hQMqW952zjnXx3WYZJjZVoLF0+cBa4H7JZ3dQbWMfZrWmiXDho8iZaQk231qHUfddnViZdVaW5axTqXyp8oGfOwPhyjMSNRM/1X83M4kr7nqc9UTp+4SdRAu59wO/NbMFrW4nnog4ziCkebN7bQzAzhJUqmkCuDElHsVwPvhCPHpLer9kSDB6dTvXeeccy5VpxZ+m1nCzKaZ2W8ITs/+OhBPqd+/RZWMfZrWhlM6WS5r9Isz9MpbE4O/MDf5Yqb6vHdgRUOm+mrL0uRes86MTTwm6jh6WTHwlaiDcLnFzN4zs2tauVUH1IYHMtYDZ3XQzjzgfmABwbktz6Xc/hXBeo+ngJbrtO4GBvHxkRTnnHOuQ51Z+H2ApKEpl0YBK4Dl7NwetjPTQTL5aVrOJRkAgorvPpk88pf3JqYXJC3e2/0t7leyX2/30Z51NnDevzf9z+Gg1qZ/5BufMpUjJH2nlWv1meq/jQMap5nZCeHz9Wb2VTMbaWZHhus3MLM6M7sipc5B4UGOmNmlZnaAmX3BzM5tLmdmN5nZPmY2zsx+1OJAx6OBB8xsY++9W+ecc/mqMyMZ5cBkSa+Fn5wdSPBJ2iXANZKeIxitaFemPk1bMmz4cHJoqlRrRi63Y2+9JvHarpttdW/2k5A+uaBfyRu92Udbtlm/149tvGponKK+si3mF6onTq2IOgjXKadI+teHHZJuBHaPMJ6Mk3QdwSjJ/4s6Fuecc7mpqKMCZjYXaG1B7nPA/q2Ur2vx+qCU55cCl7ZS5ybgpjZC6OqnaSd0slxWK9/ByBtvTKy9/OsFC+YOLRjVW/3cNbDig1FrP8xoUhazwnc/23jlrg2U9qU/uvsTbGJwX9SBuA6dDDwqKQl8GVhvZj+MOKaMMjM/38U551yPZPWJ3938NO34jovkhgJj94seSNacPzUxvbf6mDGgdM/ears1SdOHxzddFl/Nrntkst8s4VOmslh4yN2uBNsOfxe4CNgM/Da87pxzzrlOkllba7Fzz5Jhw3ch2AGrwxGaXLOmktkXnVs4bFt/pX2vyCf/ufL9IYnEkHS325IZ206P/WLZ88mDRnRcOi9tAwYtrz++KepA3MdJWkawOYVSvjYzM/u3SALLAbW1tTZnzpyow3DOOZcBkuaaWW1H5bJ6JKMbxpKHCQbAHps44tZrEhv3XWVL0932fQMr3kp3my2ZEb8wdv6rfTjBABgAHBx1EK514QLof2vxtfnhCYZzzjnXBfmWZBwRdQC9qSjJ3pdNTnzqpFnJmels96/lA3r9ZPRrEye98GDymMM6Lpn38vp7NB9IGiDpl5JuDl8PlZQXa72cc865TPEkI8cISk+bkTz60jvjzxXFLS0ndq8pLKzZJvXamRmPJsZMuyr+jbG91X6Oyfvv0TxwB9DEzg0v3gN+F104zjnnXO7JmyRjybDhAvrMJ+VD32fsbVcn3tlzvb3X48akfo+Vl/XK6d/zk/vO+HHsR+N6o+0cdXjUAbgO7Wtm/wvEAMxsOx9dn+Gcc865DuRNkgEMA9K+KDqblcYYfu3/JcrGLk72eMXllIryWDpiSvVucvDsrzddclS6281xQ6snTh0UdRCuXU2SSgkWfyNpXyAto4bOOedcX5FPSUafnIYiGHTBY8nR//VQYrrMkt1tZ2lJ8bAkdLt+S5tswMLPN11xcJKCwnS1mSeEj2Zku98Afwc+Jelu4BmC7Wydc84510meZOQBgY54w46ddF1ifsU2W9+dNkwa/Hxp/1fTEU+jFb99TOPVn26kpH862stDnmRkMTN7iuBAvrOBe4FaM5sWZUzOOedcrsmnJKPPrMdoy6AGRt98bWL7iBXJbiULdw+s6FaCkiphBe9/vuny/pso36WnbeWxPpsQ5wJJIjjpe7SZ/RUYIMkTQ+ecc64L8inJ2C/qALJBobHXr+9JDv32M4kZXa37Uv/+VT3p24xNJzVdsvVd22OvnrTTBxwadQCuXTfMz+4YAAAgAElEQVQCY4DTwtdbgBuiC8c555zLPXmRZIQnffepRd/tEZSc+JIdc+Ut8VklMdvW2XpNBdr3neKiFd3p04zG82I/W7bQ9h3anfp9zCeqJ04tjjoI16YjzGwCsAPAzDYAJdGG5JxzzuWWvEgygL2jDiAbfWodR912dWJl1Vpb1tk6dw+sWN7VfsxI1sXPnPdUsnZUV+v2UQKGRB2Ea1NMUiE7d5fanTRuiuCcc871Bd1OMiTtK6lf+HycpB9LimoefnVE/Wa9fnGGXnlrYvAX5iZf7Ez5J8sGdPm/4Z2JLz43OfGlMV2Prk/zKWXZ61rgYWAPSZcCM4HLog3JOeecyy09Gcl4EEhI2g+4DdgHuCctUXVddUT95gRBxXefTB75q3sS0wuSFm+v7MaCghGbCgo2drbtfyQOnnZJ/Kxjex5ln+NJRpYys7sJtqz9H+B94GtmNiXaqJxzzrnc0pMkI2lmceAk4Goz+ynRTQHx6VKdULPCjr31msRru2621W0WkooerCh7rTPtvZGsmnVO7CJPMLrHk4wsI+lqSd+QtJeZvW5mN5jZ9Wa2JOrYnHPOuVxT1IO6MUmnAWcBJ4bXolrMWh1RvzmnfAcjb7wxsfbyrxcsmDu0oNU1FA9VlOvcTVvabWeNVc49vumyw0HqlUDznycZ2ectgg9NLg92seV5YFb49RXrwWGX+W7Ryk1UT5wadRjOOReZ5fXHRx1C1unJSMY5BNs8XmpmyyTtA9yVnrC6zBfRdkGBsftFDyRrzp+amNba/RVFRSNiEGurfoP1X/LZxj8cEKfId0jqPk8yskw4avEtM6sm+N32ELAvMAXo9BRC55xzzvUsyTjOzH5sZvcCmNkyYHt6wuqyARH1m7MEheMX2rjrb4zPHrDDNn30pgY+WzZgUWv1Ylb4z882Xjm4gdLyjASavzzJyEIKjAS+Gj6OJRjhuDLSwJxzzrkc05Mk46xWrp3dg/Z6ojSifnPeHps44tZrEhv3XWVLU6/fW1H+sflSSdO6LzXV2xoG7Z65CPOWj75lGUlPAS8CE4BG4DIzG21mXzKzS6KNzjnnnMstXU4yJJ0m6TFgH0mPpjz+AXyY/hA7pX9E/eaFoiR7XzY58amTZyVnNl9b0L/fvqllzGg4reniNW/bXr7IPj36RR2A+5h3CM7GGBo+9pM0ON2dSNpN0oLw8YGkleHzjZI6telCD/s/W9L1vd2Pc865vq07C7+fJ9jWcTAfnUKwBViYjqC6wUcyekhQeuqM5NG1byaf+/UZhYfHi1S1qKTkzZqmpqFmxH8a++GS2XZgbdRx5pGebLrgeoGZfR9A0kDgSOAzwITwML7FZtba6G13+vkQGBX2VQdsNbMrJFUDf+1uu5KKwh3/nHPOuch1eSTDzFaY2TQzG2Nm01Me8yL8H5yPZKTJfu8z9rarE+/sud7eu6uyYhXAVfFTXnwkebQnGOnli+azVyOwjWCNWSNQBRyaob4LJd0i6VVJT0oqBZA0TVJt+HywpOXh87MlTQlHl5+UNETSjHBkZLGksWG5cyQtlTQdOKq5M0knSpotab6kpyXtKalA0pthckX4+q3eGNVxzjmXv7ozXWpm+HWLpM0pjy2SNqc/xE7xkYw0Ko0x/Nr/S5Tt8nrx9ocTR02/NnHy0VHHlIc8ycgykq6SNBv4APgtUAH8H3CAmdVkKIyhwA1mNoJgR6uvd6LOGOAsMxsPfAt4wsxGAQcDCyQNAS4hSC6OAw5MqTsTONLMDgHuAy4Kt+q9Czg9LPN5gi181/X43TnnnOszujxlw8yODr9WpD+crlsybHgRUBh1HNnIkMUL+2+JF5c2xIvKGpqKy3bEissbY8XlTU0lFfFYcVkyVlxusaKygnhRaUGiqH9RvLBfSbKguF+yoKi0fNPCkhH9Dy6bUdh/fdTvJd8YbOq4lMuwDQSLvl83s60RxbDMzBaEz+fSuTOAnjKz5p/Rl4HbJRUDj5jZAkmfA6aZ2VoASfcD+4flq4D7w0SkBFgWXr8d+AtwNXAucEfLTiWdB5wHUDjQ94Jwzjn3Ud2eFy5pX+A9M2uUNA4YCfzRzHw/+R4ysERhv4Z40YCtsaIBDbHi8h2x4rLGWEl5Y1NxRSJWXJ6IFZdZrLhM8aIBhfHC/oWJwn4licKSfqai0mRBYRmoDCgnmF8+sMsxWGxbU+OMklc+XLN6zB5f2TX977LPs6gDcB/zVTP7raR5ZG56VEuNKc8T7ByljbNz5Lnl9NCG5idmNkPSMcDxwJ8kXQ5spu3vt+uAP5jZo+Hv8bqwnXclrZY0HjiCnaMa/2JmNwM3A/QbMtS/n51zzn1ETxafPgjUStoPuA14FLgH+Pd0BNZZw19fEl8ybHiMLJl+kigo2RYrKt0aLy5riBWXbY8Vlzc2BaMH8VhxebKpuDwZLy5TrKi0IF5UWpgo7FeSLCjplywo6m8FhWVGQTlBchB8jUhs62Mvgx37z4YlVYcmPr+gX+GAVk8Hd92WiDoA9zExSXcAVZKubXnTzH4cQUzNlgOjgZeAU9oqJGlvYKWZ3SKpjCBZ+j1wjaTdCBKObwCvhFUqgZXh85YL228lmDb1JzPz71fnnHNd0pMkI2lmcUknAVeb2XWS5qcrsC5qAHbpSQOJgqId8aIBW+NFAxpixWXbwsSgKZhaVJ6MFZVbrLjM4sUDCuOFpYWJon7FiYKSfsmC4v6mwjJTQfPIwQBy/HDAZPyDN5Px5f9aHPrCmkeLxg05NcqQ8tG2qANwH3MCwfqD8QRTlbLJFcCfJX0beLadcuOAn0uKAVuBM83s/XAXqxcIdgacx84ppnXAFEkrCc4I2SelrUcJpkl9bKqUc84515GeJBkxSacRfPp1YngtktGEpuLylbGiss2x4gHbwjUHjbHi8lhTSUXztCKLFZUVJIpKi+KF/YoShf9KDkpNhc0jB/0JpiH06R1UzMyatj6wg5TvjdU7VhzUENv0Ullx5eERhpZvNkQdgPuocGHzfZKWmNkrHVZIT591Kc+XAwelvL4i5fnrBFNSm/0yvH4ncGdKucnA5Fb6aTVZMLO/EKy9aM3BBAu+X+/EW3HOOec+oidJxjnA+cClZrZM0j4EQ+sZN/Oo3wv4dBR955v4jlkzsaaxLa/PXPPQbl/45NlJST05Jd7t5ElGFpL0ZeC/JR1IsI7hNeD3Zva3aCPLLEkTgR/QyloM55xzrjO6nWSY2WvAj1NeLwPq0xFUN0R10nhesWTD2sSOl1rdqnNj05p9NzWtnbVLvz2Oau2+6zLfsSvLSPoe8H3gImBOeLkWqJdUFS507hPMrJ7ofp8755zLA905J+PP4ddFkha2fKQ/xE7x/dvToGnLA0tpZ23LzDUP721mjW3dd13iIxnZ56fAF8zsWTPbHD6eBb4c3nPOOedcJ3VnJGOLpKMI1mFky7aFPpLRQ4mmpfMs+WG7oxQN8Y1Va3b8c8aepXsfk6m48piPZGQfpZw38S9m9qGkKOLJGTV7VTKn/viow3DOOZdFujO/fiHBTifTgB8Cg8xsRfMjncF1gY9k9IBZvDHW8LdBnSn7wppHDzSzLb0dUx+wsuMiLsM2Szq45cXwmn/PO+ecc13Q5STDzK4xszHAsQSfxt4haYmkX0vav4PqveXdiPrNC7GGv78IyX06LgmNyW2D39v2xrzejqkPeDvqANzH/BfwqKQ6SSdKOkHSJQS7L/0s4ticc865nNLtnYLCkYvfm9khwLeAk4AlaYusaxZF1G/OSybWLUvGlh7ZlTovrX380HC7T9d9nmRkGTObCRxO8HvxbODc8PmR4T3nnHPOdVK3kwxJxeGnfXcDjwNLga+nLbKu8SSjm5q2TNkA9OtKnbg1Vby1Zf5rvRRSX5AElkUdhPs4M1tNcKr2N8zsZDP7lZl9EHVczjnnXK7pzu5Sx0m6HXgPOA/4G7CvmX3TzB5Jd4CdMWHS+I34lKkui+94aRa2/dDu1F3w4bNHJC3xXrpj6iPeq6of2xR1EK5NpwJvSvpfScOjDsY555zLRd0ZyfgF8AIw3MxONLO7zawhzXF1h49mdIElt2+Mb5/Z7TU0SRL9Xt34fFQL/XPdW1EH4NpmZmcAhxJMabtD0guSzpNUEXFozjnnXM7ozsLvz5rZLa1t9RixqM7oyElNWx9eBOzekzZe2/j8mEQy5n8wd92CqANw7TOzTcCDwH3AEII1Z/Mk/SjSwJxzzrkc0e01GVnIk4xOSsSWL7LEB0enoamCeeufybZkMxfM6biIi0q41uxh4FmgGDjczL4MHAxcGGlwzjnnXI7IpyTDp0t1glkyHtv6aH8gLaeLvbPllcObkjsWp6OtPuTlqANw7foGcJWZjTSzy81sDYCZbSPYcco555xzHcinJON1wBfTdiC+7emZEB+azjZnr50aT2d7eW5DVf1Yn2KWxczsTDOb0ca9ZzIdj3POOZeL8ibJmDBpfJwg0XBtSCY2vpdoWnx4uttdte2tUdvjW30KUOfMjToA1z5JR0p6WdJWSU2SEpI2Rx2Xc845l0vyJskI+R+67Wja8udVwIDeaPv5NY+UmZn1Rtt5ZnbUAbgOXQ+cBrwJlALfBa6LNCLnnHMux+RbkvG3qAPIVvHGV2ZjW9M+itFsXePK4VvjG17srfbzyFNRB+A6ZmZvAYVmljCzO4DPRh2Tc845l0vyLcl4AmiMOohsY9a4Nb7t2U/3dj8zVz80xMx8fUbbtgDPRx2E69A2SSXAgvBAvp8CZVEH5ZxzzuUS5dsMlxvOf/Zx4EtRx5FNmrZMmZ6Mv3tsJvr6/JBvP7db/0+OzURfOegvVfVjvxZ1EK59kvYGVgMlwE+BSuDGcHTDtaLfkKE25Kyrow7DOZfHltcfH3UILiRprpnVdlQu30YyAB6NOoBskoyvej0ZfzcdZ2J0yqw1jww1s+2Z6i/HPBF1AK5jZrYCqAD6mdklZvYzTzCcc865rvEkI4+ZWbJpy4NJoDBTfW5PbPnE+9vfeSlT/eUYTzKymAJ1ktYR7FS3VNJaSb+OOjbnnHMu1+RdkjFh0viVwLyo48gG8e3TZ0LswEz3O3vtXw82s02Z7jfLvVpVP/adqINw7fpP4CjgMDPbzcwGAUcAR4XrMpxzzjnXSXmXZIT6/GiGJbesTjTOGxVF303JHbss37p4QRR9Z7F7ow7AdehM4DQzW9Z8wczeAc4I72WF8NyOBSmP6lbKfFLSA23Unyapw7m0zjnnXE94kpGnmrZMeQcYGFX/cz988jCz5Oqo+s9C90QdgOtQsZmta3nRzNYCxRHE05btZjYq5bE89aakIjNbZWanRBSfc845l59JxoRJ4+cD70YdR1QSjUvmWHLjmEhjsPiANza9vDTKGLLIi1X1Y5d1XMxFrKmb9yIn6WxJUyQ9BjwpqVrS4vBeqaT7JC2UdD/BAYPN9W6SNEfSq5IuCa99TtLDKWWOk/RQpt+Tc8653FYUdQC96AGC7Sf7FLPY9ti2J/aIOg6AhRumjxlaWbuiUIV7Rx1LxHwUIzccLGlzK9cF9M90MO0oldQ8HXGZmZ0UPh8DjDSz9S2mUP0A2GZmIyWN5KNr1i4OyxcCz4T3nwVukLR7OIpzDnBHb74h55xz+ScvRzJC1wPJqIPItFjD1NmQ7PWD9zrDsKJF66evjDqOiMWBP0cdhOuYmRWa2cBWHhVmlq3TpU5Kuf6Uma1vpfwxwF0AZrYQWJhy7z8kzQPmAyOAAy04POlPwBmSdiFIXh5v2aik88JRkDmJbb7Pg3POuY/K2yRjwqTx79DH1mYk42veTsbeOSrqOFK9sfnlMfFk0xtRxxGhh6rqx/raFJcJDe3c+9ipq5L2AS4EPmdmI4Gp7ByxuYNgwftpwBQzi3+sQbObzazWzGoLB1T2OHjnnHP5JW+TjNBVUQeQKWZmTVsf2Ep2LVAF0Jx1T2yJOogIXRt1AK7PmwGcDiDpIGBkeH0gQWKySdKewJebK5jZKmAV8EvgzkwG65xzLj/kdZIxYdL4GfSRMzMSO16che04OOo4WrOi4bXaxsS2vril7dyq+rGzog7C9Xk3AeWSFgIXAS8BmNkrBNOkXgVuB1p+r94NvGtmr2UwVuecc3kinxd+N7uKYH5x3rLktg/jO17I+KF7XfHCmscKxw35ZtRhZNp1UQfg8o+Zlbdy7U5SRhzCbW0PCp9vB05to62z2+nqaOCWbgfqnHOuT8vrkYzQ/QTD/nmraeuDS4Bdo46jPat3LK9piG96Keo4MmgNcF/UQTjXHZLmEkyruivqWJxzzuWmvE8yJkwaHwNuiDqO3pJoenuBJdYeHXUcnTFr9cO7mllf2fHrmqr6sY1RB+Fcd5jZaDM7xsz8e9g551y35H2SEfo/YHvUQaSbWaIp1vDXiqjj6KwNTav32xRb+0LUcWTAOnzBt3POOef6MAVboue/G85/9ibg/KjjSKemhr9NSza9Pi7qOLqirGiX946vOm8PSSVRx9KLfl5VP/aKqINwLlNqa2ttzpw5UYfhnHMuAyTNNbPajsr1lZEMgMvIo9GMZGL9imTT60dGHUdXNcQ3Vq3d8e6LUcfRiz4gj6fnOeecc851Rp9JMiZMGv8ucGXUcaRL05Ypa9l5cFZOeX7NXw40s61Rx9FL/qeqfmzeJLPOOeecc93RZ5KMUD3wftRB9FR8x9znsYYOh6myVWNy2+D3tr0xN+o4esFygvU/zjnnnHN9Wp9KMiZMGt8AXBx1HD1hyR2b4ttn7Bd1HD310trHDzWzD6OOI83+y3eUcs4555zrIMmQtJukBeHjA0krw+cbJfX6KbCSzpZ0fZqbnQzk7KfoTVsfeQVsj6jj6Km4NVW8tWX+4qjjSKNnqurHPhR1EM4555xz2aDdJMPMPjSzUWY2CpgEXBU+HwV0+7wDSZGdND5h0vgkwS5TOXdeQyL27quWWJUTZ2J0xoIPnz0yacmVUceRBk3AhPYKSLpK0n+mvH5C0q0pr6+U9LPOdCapTtKF3Y624/Z7I7l3zjnnXB/Sk+lShZJukfSqpCcllQJImiapNnw+WNLy8PnZkqZIegx4UtIQSTPCkZHFksaG5c6RtFTSdOCo5s4knShptqT5kp6WtKekAklvSto9LFMg6S1Jg9sLfMKk8XPIsR2AzJKJ2NZHCsmjKW5JEv1e2zhrWdRxpMHlVfVj3+igzPPAZyD4PgUGAyNS7n8GmNU74TnnnHPOZVZP/mAdCtxgZiOAjcDXO1FnDHCWmY0HvgU8EY6MHAwskDQEuIQguTgOODCl7kzgSDM7BLgPuCg8Pfou4PSwzOeBV8xsXSdi+SWwqhPlskJ8+z9mQmxY1HGk22sbXxiTSMbfjjqOHlgK/K4T5WYRJhkEycViYIukQZL6AcOB+ZJ+LullSQslXdJcWdLFkt6Q9DRwQMr1aZJ+L+mlMDlvTtYLJV2e0tb3w+uRJffOOeec6zt6kmQsM7MF4fO5QHUn6jxlZuvD5y8D50iqA2rMbAtwBDDNzNaaWRNwf0rdKuAJSYuAn7PzU+DbgTPD5+cCd3Qm+AmTxm8GftKZslFLJjatSjS+MjrqOHqDYYXz1z/TmaQwG8WBM6rqx+7oqKCZrQLikj5NkGy8AMwmSLxrgYXAOILk/XCCKYmjJR0jaTRwKnAIcDJwWIvmi8zscOA/gd+E174DbDKzw8Ly35O0D9En984555zrA3qSZKTuopMAmtdZxFPabXmOQ0PzEzObARwDrAT+JKk5UWjrCPLrgOvNrAb4fnPbZvYusFrSeIIk5fHOvoEJk8Y/ANzZ2fJRiW2d8i5QHnUcveXtLQuOiCUbX406jm74XVX92Je7UL55NKM5yXgh5fXzwBfCx3xgHjCMIOkYCzxsZtvMbDPwaIt2mxecpyb7XwDOlLSAIJnZLWwr0uTeOeecc31Db8zvXw40f+p+SluFJO0NrDGzW4DbgEMJ/hgaF+5qVQx8I6VKJUFCAnBWi+ZuJfhk9c9mluhivD8EXulinYyJNy5+yZKbj4g6jt724tq/xqKOoYtmA5d2sU7zuowagulSLxKMZDSvxxDwP82bLZjZfmZ2W1i3reQbdib8qcm+gB+ltLWPmT2ZDcm9c8455/JfbyQZVwA/kPQ8weLWtowjmKoxn2A9xzVm9j5QR/AJ79MEn+Y2qwOmSHoOaDkt41GCT/q7/GnqhEnjtxMkQ5u6Wre3mTU1xLc9tVfUcWTCqm1vjdoe35orWws3EEyTinex3izgBGC9mSXCqYO7ECQaLwBPAOdKKgeQtJekPYAZwEmSSiVVACd2oq8nCH4Oi8O29pdUlkXJvXPOOefymMza+4A0N4S7WV1lZmO728YN5z97EjunnWSFpi0PTk/GVxwbdRyZMrjfXkvGDzl9mCRFHUsHzq6qHzu5q5UkFQIbgGvN7JfhtTuBMWZ2QPj6J8B3wypbgTPM7G1JFxNMT1oBvAe8ZmZXSJoGXGhmc8KF13PMrDrcwep3BAmJgLXA18LHz4FY2P6ZZrZM0jnAfwPvAwuAQjO7QNJXgasIEo0XgcPMbFwYazHwIXC4mb3e1X8Plz9qa2ttzpw5UYfhnHMuAyTNNbPaDsvlepIhaSLwA+B0M5vZk7ZuOP/Zy4FeO3+gK5Lx95c2bbn339g5/aVP+Peq771QUbzrmKjjaMd1VfVjfxx1ENkgHcm9yw+eZDjnXN/R2SQj5/+ANbN6oD5Nzf03wfzySP9oMjNr2vpgI3nw36erZq5+aMiX9vpOXBEe2NiO6UCnDszLd6nJfdSxuOgtWrmJ6olTow7DOddFy+uPjzoEl8fy5mC3dJgwaXwc+CbwQZRxxLfPfA5rqokyhqhsjn1Yvb7x/ReijqMV/wS+0Y11GHnJzOrNbO+ejh4655xzLj95ktHChEnj3yc4kyCShayWbFibaHz54Cj6zhaz1jwy1My2Rx1Hiu3ASVX1Y9dGHYhzzjnnXC7wJKMVEyaNn06wtW3GF6w0bZmylGBHnz5re2LLJ97f/s5LUccRihOMYMzrsKRzzjnnnAM8yWjThEnjbwZ+lMk+E01L51ly/VGZ7DNbzV7714PNLOpthQ04p6p+rE82d84555zrAk8y2jFh0vgbgJ9moi+zeGOs4W+7ZqKvXNCU3LHL8q2LF0Qcxn9W1Y+9K+IYXB8m6WJJr0paKGmBpB4fzCmpTlJW7KLnnHMuf3mS0YEJk8ZfDVzU2/3EGh5/EZLVvd1PLpn74ZOHmSVXR9T976rqx14bUd/OIWkMweGNh5rZSODzwLvRRuWcc851jicZnTBh0vjLgYt7q/1kYt2yZOzNI3ur/VyVsPiANza9vDSCrq+oqh/7qwj6dS7VEGCdmTUCmNk6M1slaXl48CKSasMDGZtHKG6XNE3SO5L+dZ5LOCLyhqSngQNSrn9P0suSXpH0oKQBkiokLUs5LX5g2GdxBt+7c865HOdJRidNmDT+MqCuN9pu2jJlI9CvN9rOdQs3TB+TsMSKDHb566r6sT/PYH/OteVJ4FOSlkq6UdKxnagzDPgicDjwG0nFkkYT7Jh3CHAycFhK+YfM7DAzOxhYAnzHzLYA04DmDfRPBR40s1hqR5LOkzRH0pzEtqiXTznnnMs2nmR0wYRJ4y8BfpfONuPbZ8/Cth+SzjbziWFFi9ZPX5mh7n5aVT/2/2WoL+faZWZbgdHAecBa4H5JZ3dQbaqZNZrZOmANsCfB4aIPm9k2M9sMPJpS/iBJz0laRHCw4ojw+q3AOeHzc4A7WonvZjOrNbPawgF9ekM855xzrfAko4smTBr/K9KUaFhy+8b4jlkHdFyyb3tj88tj4smmN3qxiyTwvar6sVf3Yh/OdZmZJcxsmpn9BrgA+DrBtsrNv7v7t6jSmPI8ARQ1N9VGF3cCF5hZDXBJc3tmNguoDkdPCs1scU/fi3POub7Fk4xuCBONMwgOaeu2pq0PLQIGpyWo/KY5657Y0kttNxCcg3FrL7XvXLdIOkDS0JRLo4AVwHKCEQ4Iko6OzABOklQqqQI4MeVeBfB+uN7i9Bb1/gjcSyujGM4551xHPMnopgmTxt8NHEXwP/0uS8SWLbTE6qPTG1X+WtHwWm1jYlu6t7T9J3BUVf3Yh9LcrnPpUA5MlvSapIXAgQTrwi4BrpH0HMFoRbvMbB5wP7AAeBB4LuX2r4DZwFPA6y2q3g0MIkg0nHPOuS6RWcYPtc4rN5z/7GDgz8BnO1vHLBFr3HjDcogP7bCw+5c9+1cvGjfkmzVpau554KSq+rFr0tSec3lF0inAV83s2x2V7TdkqA05y2cbOpdrltcf33Eh51qQNNfMajsq5yMZPTRh0vh1wHHAVZ2tE9/29POeYHTd6h3Laxrim15KQ1OTgc96guFc6yRdB9QDvhGCc865binquIjryIRJ4xPAz244/9l5wM1AaVtlk4kN7yWaXj2srfuufbNWP7zrcZ88KympOwlyA/Djqvqxt6c7LufyiZn9KOoYnHPO5TafLpVmN5z/7KHAw8CnW7u/Y+PNL2NbPcnogS/udc7MXUr26Op6lnnAaVX1Y6M43M+5vFZbW2v/f3v3HyVnVd9x/P3hp/IrBKEYCIK2kSOmECD8qg3EUMKvFaSlbpBasFhEQpVzllOxUIx42kbr+qNwJAcrAjbIGiGarqChCOVHDc0mhkCC/DBn28TEQCANCSFAwrd/PHflcTKzO5udnWdm9vM6Z87OPM99Zr5377Oz9zv3Pnd6enqKDsPMzOrA06UKMn3WlMXAMcAdpfu2blmywAnG0D26du5hEfF6lcUD6AROcoJhZmZmVh9OMobB9FlTXpw+a8qFQBuwCiDitY1bX33g0GIjaw2btv7f2Be2rFxQRdEVwNSxMyddNXbmpGqTEjMzMzMbIicZw2j6rCk/Jlt28qY3Nv1oMcSYomNqFT9/Yd770jcil/MG8E/A+LEzJ/1HHe+LeAIAAA0PSURBVMMyMzMzM3zh97CbPmvKRuDyzvavngjcAAw4h80GtmXbKwes2vzMfx6y5+GnlOx6BLhs7MxJy4qIy8zMzMw8klE3HV3dC4ATgEuBdQWH0xIWvnDP0RHxYnq4BrgEONkJhpmZmVmxvLpUATrb20YD1wOX4dGkIZmw35T5h4867hGgc+zMSZuLjsdsJPLqUmZmI0e1q0s5yShQZ3vbu4ArgU8AexccTrPZRDb9rLOjq/vFgQqb2fBxkmFmNnI4yWgine1to8imUX0aGFtwOI3uFeBG4CsdXd2edmbWAJxkmJmNHE4ymlBne9uuQDvQAUwoOJxGsxK4Fbiho6v7hYJjMbMcJxlmZiOHk4wm19nedipwFXBG0bEUaDNwN1ly8UBHV/ebxYZjZuU4yTAzGzmqTTJ80XGD6ujqvh+4v7O9bTxwOXAucFCxUdXNw2SJxZyOru6NBcdiZmZmZoPkkYwm0dneJuBY4BzgQ7TedKpe4Hbg9o6u7l8VHIuZDYJHMszMRg5Pl2pxaWWqD6XbB4Hdio1o0N4AFgGPAj8GHuzo6vbJaNaEnGSYmY0cTjJGkM72tr2BqWSjHFNozBWq1gP/RZZUPAos7OjqfrXYkMysFpxkmJmNHE4yRrDO9rZ9gCOA95f8PKSOYawgSyYeST+Xe6TCrDU5yTAzGzmcZNh20ojHEbnbOGBfYBSwT+5WaerVNuB5YM0At990dHW/PmwVMbOGsvuYcTHmoq8XHYZZ0+mdeXbRIZgNmleXsu2klZoeS7eKOtvbdgJ2LnN7uaOre9twx2lmZmZmzc1Jhm0nfR/Fm2QXZ5uZmZmZDcpORQdgZmZmZmatxUmGmVlBJF0jaZmkpZKWSDqhn7IXSxryF3JKelDSgHNpzczMhsLTpepI0juA+9PDd5JdSP1Cenx8RNT0YmlJjwBXRMSSWj6vmQ2dpJOANuCYiHhN0v70/303FwNPAqsH8Rq7RMTWIQVqZma2AzySUUcR8WJETIiICcAs4Gt9j2udYJhZwxsDrIuI1wAiYl1ErJZ0naSFkp6UdLMy5wMTgdlpxOPtknpTYoKkiZIeTPdnpOPmA7ensnem0ZIu4O19AUi6SVJPGk35Qtp2qqS5uTKnSbq7Xr8UMzNrDU4yGoCkP5C0JPf4aknXpvvjJP1U0iJJD0l6b9o+LXVCHpf0QNq2h6Q5qTNxJ/C23HPenOtMXJe2nS5pTq7MmZK+X6dqm41084FDJD0j6ZuSTknbb4yI4yJiPFlC0BYRPwB6gAvThxIDfZHlscC5EfFR4FPA5og4EviHtK/PNWkZwiOBUyQdCfwMeJ+kA1KZjwPfKX0BSZem95SebZs37NAvwMzMWpeTjMZ3M3B5RBwLfA64MW3/PHBqRBwFnJe2XQGsT52JLwFH557n6tSZOAo4TdIRwH3AkWkaF1ToTJhZ7UXEJrIO/6Vk0ya7JF0MfFDSY5KeAKaQfZnmYM3LJSInA/+WXnMpsDRX7iOSFgO/SK9zRGRfnvRd4C8k7QucBNxbJv6bI2JiREzceY9ROxCimZm1Ml+T0cDSP/gTgbsk9W3ua7NHyaZCzAH6pjKcDHwZICJ+IWlZ7ukukHRJOv4gss7Eckl3AB+VNJusw3PBcNbJzN4SEduAB4EHU1LxSbJRhYkRsVLSDHIjkiW28tYHRaVlXil9qdKDJb0buAo4LiLWS7o19zzfAf4d2ALM8XUdZmY2WB7JaAz5zgK89Y9eZHO2J+Ru49O+vyYbzTgMeFzS6LS9XGdiHPAZYEoa5fhJ7jVuAT4GXAh0pU6PmQ0zSYenv80+E4Cn0/11kvYCzs/t3wjsnXvcy1tTn/6sn5d6iOzvG0njyZIYgH3IkpENkg4Ezuw7ICJWk11gfi1wa9WVMjMzS5xkNIbfAAdJGi3pbcDZABGxHlgj6TwASTtJOiod856IWAD8PbAeOJjf7UwcxVvTLPYh66C8LGkMcHrfC0fESmAdcDXuTJjV017AbZKWS1oKHAHMAL4FPAH8EFiYK38rMKvvwm/gC8A3JD1MtlJdJTcBe6XX+FvgvwEi4nGyaVLLyD5seLTkuNnAyohYPpRKmpnZyOTpUg0gIrZI+keyDsUKIP9PfRpwU5o2sRvZ3OrHga+l6Q4C5kfEk5JWkHValgKLyS4UJd1fTrb85Qq270zcAewTEc8MR/3MbHsRsQj4ozK7rk230vJ3AXflNj0MvLdMuRklj18lex8pF8PF/YT4x2QJj5mZ2aApu8bPRjJJs4CfR8RtRcdiZsWTtIhsKtVpfUvs9mf3MeNizEVfH/7AzFpM78yziw7BbNAkLUqLCfXLIxkjXFo6dz3w6aJjMbPGkFazMzMz22FOMka49MWAZmY77A8PHkWPP5E1M7McX/htZmZmZmY15STDzMzMzMxqykmGmZmZmZnVlJMMMzMzMzOrKScZZmZmZmZWU04yzMzMzMysppxkmJmZmZlZTfkbv83MbEgkbQSeLjqOGtsfWFd0EDXUavUB16kZtFp9oPXqtCP1OTQiDhiokL+Mz8zMhurpiJhYdBC1JKmnlerUavUB16kZtFp9oPXqNJz18XQpMzMzMzOrKScZZmZmZmZWU04yzMxsqG4uOoBh0Gp1arX6gOvUDFqtPtB6dRq2+vjCbzMzMzMzqymPZJiZmZmZWU05yTAzs6pIOkPS05Kek3R1mf27S+pK+x+TdFj9o6yepEMkPSDpKUnLJH2mTJnJkjZIWpJu1xURa7Uk9Up6IsXaU2a/JP1LaqOlko4pIs5qSTo897tfIullSVeWlGn4NpJ0i6TnJT2Z27afpPskPZt+jq5w7EWpzLOSLqpf1JVVqM8/S/plOq/mStq3wrH9nqNFqVCnGZJ+nTu3zqpwbL/vjUWoUJ+uXF16JS2pcGxN2sjTpczMbECSdgaeAU4DVgELgQsiYnmuzOXAkRFxmaRpwHkR0V5IwFWQNAYYExGLJe0NLAI+XFKnycBVEdFWUJiDIqkXmBgRZde9T52kvwHOAk4AvhERJ9Qvwh2XzsFfAydExP/ktk+mwdtI0snAJuD2iBiftn0ZeCkiZqaO6eiI+GzJcfsBPcBEIMjO0WMjYn1dK1CiQn2mAj+LiK2SvgRQWp9Urpd+ztGiVKjTDGBTRHyln+MGfG8sQrn6lOzvBDZExPVl9vVSgzbySIaZmVXjeOC5iFgREa8DdwLnlpQ5F7gt3f8BcKok1THGQYmINRGxON3fCDwFHFxsVMPuXLJOR0TEAmDflGw1g1OBX+UTjGYREQ8BL5Vszv+93AZ8uMyhpwP3RcRLKbG4Dzhj2AKtUrn6RMT8iNiaHi4AxtY9sCGo0EbVqOa9se76q096X/4I8L3hjMFJhpmZVeNgYGXu8Sq275D/tkzqbGwA3lGX6IYoTe06GniszO6TJD0u6V5J769rYIMXwHxJiyRdWmZ/Ne3YqKZRuVPUTG3U58CIWANZwgv8XpkyzdpefwXcW2HfQOdoo7kiTQG7pcKUtmZso0nA2oh4tsL+mrSRkwwzM6tGuRGJ0vm21ZRpOJL2Au4CroyIl0t2LwYOjYijgBuAH9Y7vkH6QEQcA5wJTE9TJvKatY12A84B5pTZ3WxtNBhN116SrgG2ArMrFBnoHG0kNwG/D0wA1gCdZco0XRsBF9D/KEZN2shJhpmZVWMVcEju8VhgdaUyknYBRrFj0w/qRtKuZAnG7Ii4u3R/RLwcEZvS/XuAXSXtX+cwqxYRq9PP54G5ZFM58qppx0Z0JrA4ItaW7mi2NspZ2zdVLf18vkyZpmqvdGF6G3BhVLjot4pztGFExNqI2BYRbwLfonyszdZGuwB/CnRVKlOrNnKSYWZm1VgIjJP07vSp8jRgXkmZeUDf6jfnk10E2rCf6KV5yd8GnoqIr1Yo886+60okHU/2f/PF+kVZPUl7pgvYkbQnMBV4sqTYPOAvlTmR7MLPNXUOdUdU/OS1mdqoRP7v5SLgR2XK/BSYKml0mqozNW1rOJLOAD4LnBMRmyuUqeYcbRgl1yudR/lYq3lvbCR/AvwyIlaV21nLNtplh0M0M7MRI60YcwVZB2dn4JaIWCbpeqAnIuaRddi/K+k5shGMacVFXJUPAB8Dnsgt5fh3wLsAImIWWbL0KUlbgVeBaQ2cOB0IzE397V2AOyLiJ5Iug9/W5x6ylaWeAzYDHy8o1qpJ2oNs5Z5P5rbl69TwbSTpe8BkYH9Jq4DPAzOB70u6BPhf4M9T2YnAZRHxiYh4SdIXyTqyANdHROGjgxXq8zlgd+C+dA4uSCvNHQT8a0ScRYVztIAqbKdCnSZLmkA2/amXdA7m61TpvbGAKvyOcvWJiG9T5tqm4WojL2FrZmZmZmY15elSZmZmZmZWU04yzMzMzMysppxkmJmZmZlZTTnJMDMzMzOzmnKSYWZmZmZmNeUkw8zMzMzMaspJhpmZmZmZ1ZSTDDMzMzMzq6n/B1fdY1eJxiCfAAAAAElFTkSuQmCC\n", "text/plain": [ "
    " ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], @@ -683,7 +679,9 @@ "percentage = average_visits_per_day / average_visits_per_day.sum() * 100\n", "\n", "fig = pyplot.figure(figsize=(15, 4));\n", - "percentage.plot.pie(y='Visits', ax=pyplot.subplot(1, 2, 1), legend=False)\n", + "axes = pyplot.subplot(1, 2, 1)\n", + "percentage.plot.pie(y='Visits', ax=axes, legend=False)\n", + "axes.set_aspect('equal')\n", "\n", "# Right plot: subplot(1,2,2) means: create 1 row, with 2 columns, and draw in the 2nd box\n", "# Take the same grouped data from before, except sort it now:\n", @@ -713,13 +711,6 @@ "* And the full essay on the lack of utility of pie charts: [Save the Pies for Dessert](https://www.perceptualedge.com/articles/visual_business_intelligence/save_the_pies_for_dessert.pdf)\n" ] }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, { "cell_type": "markdown", "metadata": {}, @@ -1073,7 +1064,7 @@ }, "hide_input": false, "kernelspec": { - "display_name": "Python [default]", + "display_name": "Python 3", "language": "python", "name": "python3" }, @@ -1087,7 +1078,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.5.5" + "version": "3.7.3" }, "toc": { "base_numbering": 1, From 699a827dff19365661b631d9849da28d6215a7e6 Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Tue, 23 Jul 2019 08:07:05 +0200 Subject: [PATCH 060/134] Updated grammar and added URL --- Module-09-interactive.ipynb | 27 +++++++++++++-------------- 1 file changed, 13 insertions(+), 14 deletions(-) diff --git a/Module-09-interactive.ipynb b/Module-09-interactive.ipynb index 93f0e4b..573944f 100644 --- a/Module-09-interactive.ipynb +++ b/Module-09-interactive.ipynb @@ -28,7 +28,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 1, "metadata": {}, "outputs": [ { @@ -187,7 +187,7 @@ "" ] }, - "execution_count": 6, + "execution_count": 1, "metadata": {}, "output_type": "execute_result" } @@ -1586,7 +1586,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 2, "metadata": {}, "outputs": [ { @@ -1594,23 +1594,22 @@ "output_type": "stream", "text": [ "Regular walking: \n", - "[-0.85526303 1.94293716 -1.2108169 -0.11485683 2.06194554 -0.92115883\n", - " 1.99867291 -9.23186728 0.94882896 -2.4155263 2.45856643 -4.97977118\n", - " 3.99721759 -0.31779249 2.42777184 -7.28715019 4.54681949 1.27976685\n", - " 0.9463751 -1.29381538]\n", + "[ 4.56798475 -1.36339616 -1.88600533 11.0979383 -1.34439339\n", + " 4.09510966 -2.17683652 -12.56631925 1.60094522 2.26334441\n", + " -1.29498663 -1.38011919 5.48607771 -3.24023843 -0.84698968\n", + " 6.39153474 0.34283469 1.58041635 1.34505927 4.9467819 ]\n", "Someone who has consumed too much: \n", - "[-9.52760571e+00 2.13418424e+00 2.97119311e+00 8.38051160e+00\n", - " -5.21841490e+00 -3.51192102e+00 -1.17484857e+01 1.83258335e-02\n", - " 3.84816435e-01 7.29223118e+00 -4.63506962e+00 1.28184989e+01\n", - " -1.97047613e+00 3.45214953e+00 -2.28036131e+00 4.96446718e+00\n", - " -2.81905460e+01 -7.36290331e+00 -5.66052118e+00 -1.84086063e+01]\n" + "[ -6.70629936 -10.85259119 14.41649468 -19.29289544 -12.79304396\n", + " -1.88593944 -4.10296009 -21.25691093 -19.26441228 4.1956626\n", + " -12.46944515 9.15476077 8.96899927 3.81338229 1.3806409\n", + " 12.37733136 17.41419496 9.27630789 19.07739056 -7.88737314]\n" ] } ], "source": [ "from scipy.stats import norm\n", "\n", - "# 20 steps for a regular personn, showing the deviation to the \n", + "# 20 steps for a regular person, showing the deviation to the \n", "# left (negative) or to the right (positive) when they are \n", "# walking straight. Values are in centimeters.\n", "regular_steps = norm.rvs(loc=0, scale=5, size = 20)\n", @@ -1629,7 +1628,7 @@ "\n", "1. Visualize the histogram of 1000 steps of someone who is walking *normally* 😃.\n", "2. Visualize, in a subplot, side-by-side, the histogram of someone who has consumed too much.\n", - "3. Looking ahead: in the next module we will show what this random walk looks like in a time-series plot.\n", + "3. Looking ahead: in the [next module](https://yint.org/pybasic10) we will show what this random walk looks like in a time-series plot.\n", "\n", "Both histograms should be centered at zero. Give each histogram a title, and a label on the x-axis, including units of centimeters.\n", "\n", From 05d47c582db64f9d88819a169b556215c90e3b2c Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Tue, 23 Jul 2019 08:08:12 +0200 Subject: [PATCH 061/134] Added a section on time-series --- Module-10-interactive.ipynb | 201 +++++++++++++++++++++++++++++++----- 1 file changed, 177 insertions(+), 24 deletions(-) diff --git a/Module-10-interactive.ipynb b/Module-10-interactive.ipynb index 0cbe6ed..ae50a95 100644 --- a/Module-10-interactive.ipynb +++ b/Module-10-interactive.ipynb @@ -28,7 +28,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -187,7 +187,7 @@ "" ] }, - "execution_count": 1, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" } @@ -318,7 +318,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 59, "metadata": { "deletable": false, "editable": false, @@ -546,7 +546,7 @@ "11 92.2 " ] }, - "execution_count": 14, + "execution_count": 59, "metadata": {}, "output_type": "execute_result" } @@ -562,7 +562,13 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Click on the column header for ``BlendingEfficiency`` and you can sort from low-to-high, or high-to-low. You can now instantly see that ``ParticleSize`` has the greatest effect. No plotting required.\n", + "Click on the column header for ``BlendingEfficiency`` and you can sort from low-to-high, or high-to-low. You can now instantly see that ``ParticleSize`` has the greatest effect. No plotting required. \n", + "\n", + "In terms of the 5 goals above - here we have used the table to learn more about our process: what direction is the ***correlation*** between particle size and blending efficiency? *Positive* or *negative* correlation?\n", + "\n", + "##### To try yourself\n", + "\n", + "Create a box plot of blending efficiency against particle size. This will achieve the goal of learning more about our system even further, because then we can quantify the negative correlation. ``blender.boxplot('BlendingEfficiency', by='ParticleSize')``\n", "\n", "### Setting the level of precision\n", "\n", @@ -699,11 +705,11 @@ "##### Answer these questions, based on the above\n", "\n", "1. From the pie chart alone: which day has the second highest number of visits? Note how long it takes you to discover that.\n", - "2. From the pie chart along: which percentage of visits occur on a Tuesday? How accurate is your guess?\n", + "2. From the pie chart only: which percentage of visits occur on a Tuesday? How accurate is your guess? Check it afterwards against the bar chart.\n", "\n", " The superiority of tables is not surprising here. The human eye excels at at finding differences in 2-dimensions with respect to length and location. But it is not good at estimating area and angles, yet a pie chart encodes its information only in terms of area and angles.\n", "\n", - "3. Compare the bar plot with the table now: you get the same information from both, but in terms of the [data:ink ratio concept](https://infovis-wiki.net/wiki/Data-Ink_Ratio), which is better\n", + "3. Compare the bar plot with the table now: you get the same information from both, but in terms of the [data:ink ratio concept](https://infovis-wiki.net/wiki/Data-Ink_Ratio), which is better?\n", "\n", "Need more convincing evidence?\n", "* From pie to bar: https://www.darkhorseanalytics.com/portfolio/2016/1/7/data-looks-better-naked-pie-charts\n", @@ -729,40 +735,187 @@ "## Time-series, or a sequence plot\n", "\n", "\n", - "If you have a single column of data, you can see interesting trends in the sequence of numbers when plotting it. These trends are not always visible when just looking at the numbers. What are effective ways of plotting these sequences?\n", + "If you have a single column of data, you can see interesting trends in the sequence of numbers when plotting it. These trends are not always visible when just looking at the numbers, and they definitely cannot be seen in a box plot.\n", "\n", + "An effect way of plotting these columns is horizontally, as a series plot, or a trace. We also call them time-series plots, if there is a second column of information indicating the corresponding time of each data point." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As promised in the [prior notebook](https://yint.org/pybasic09), we will now look at the time-based trends of the [website visits data set](http://openmv.net/info/website-traffic).\n", "\n", - "As promised in the [prior notebook](https://yint.org/pybasic09), we will now look at the time-based trends of the [website visits data set](hhttp://openmv.net/info/website-traffic) and the AMMONIA dataset\n", + "Below we import the data. \n", + "* Modify the code, if necessary, if you are behind a proxy server.\n", + "* Note how we can force a particular column to be a time-based variable, if Pandas does not import it as time.\n", + "* Lastly, we can set that time-based column to be our ***index***. [Recall that term](http://yint.org/pybasic07) about a Pandas series?" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2oAAAFMCAYAAAC6QU8JAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzsvXm8G3d57/8ZSaP16OzHW7zFWzYncYgJhCQlhEASdmi4EPK78ANaeu9laylQoO2PlvaylR9JKW0pF8IWgoEkQAg4G3HIBknsOIkd73ZsH9tn36QjaUazfO8fM9/RSDNaj+Zoe96vV145Ho1GX0mjme/z/TzP5xEYYyAIgiAIgiAIgiCaB1+jB0AQBEEQBEEQBEHkQ4EaQRAEQRAEQRBEk0GBGkEQBEEQBEEQRJNBgRpBEARBEARBEESTQYEaQRAEQRAEQRBEk0GBGkEQBEEQBEEQRJNBgRpBEARBEARBEESTEahkJ0EQjgNIAtAAqIyxrYIg9AP4KYC1AI4D+G+MsRlvhkkQBEEQBEEQBNE5VKOovYYxtoUxttX892cA/I4xthHA78x/EwRBEARBEARBEAtEYIyV38lQ1LYyxiZt2w4CuJoxNiIIwnIAjzDGzil1nMHBQbZ27dqFjZggCIIgCIIgCKJF2bVr1yRjbKjcfhWlPgJgAB4QBIEB+C/G2LcBLGWMjQCAGawtKXeQtWvXYufOnRW+JEEQBEEQBEEQRHshCMKJSvarNFC7gjF2xgzGHhQE4UAVA/kQgA8BwOrVqyt9GkEQBEEQBEEQRMdSUY0aY+yM+f9xAL8AcBmAMTPlEeb/x4s899uMsa2Msa1DQ2UVPoIgCIIgCIIgiI6nbKAmCEJMEIQ4/xvA6wHsBXAPgPeZu70PwK+8GiRBEARBEARBEEQnUUnq41IAvxAEge9/B2PsPkEQngHwM0EQPgjgJIB3ejdMgiAIgiAIgiBaEUVRcOrUKUiS1OihLCrhcBgrV66EKIo1Pb9soMYYOwbgYpftUwBeW9OrEgRBEARBEATREZw6dQrxeBxr166FKf60PYwxTE1N4dSpUzj77LNrOkY1fdQIgiAIgiAIgiCqQpIkDAwMdEyQBgCCIGBgYGBBKiIFagRBEARBEARBeEonBWmchb5nCtQIgiAIgiAIgiCaDArUCIIgCIIgCIJoW66++mrcf//9edtuvfVWfOADH8CNN95Y8rmvetWrAADHjx/HHXfc4dkY3aBAjSAIgiAIgiCItuWmm27Ctm3b8rZt27YN73//+3HnnXeWfO6TTz4JgAI1giAIgiA8Zu/pOVz11YcxOtdZNtkEQXQuN954I+69917IsgzACLrOnDmDlStXYvPmzQCAF198EZdddhm2bNmCiy66CIcPHwYAdHV1AQA+85nP4LHHHsOWLVtwyy23FN2/nlTSR40gCIIgiDbh8HgSw9MZ3PvCGfzZVesaPRyCIDqMf/z1i9h3JlHXY56/ohuff/MFRR8fGBjAZZddhvvuuw9vfetbsW3bNrzrXe/KM/v41re+hY9//OO4+eabkc1moWla3jG+/OUv42tf+xruvfdeAMBHP/rRkvvXA1LUCIIgCKKDyKo6AGD73tEGj4QgCGLxsKc/btu2DTfddFPe45dffjm++MUv4itf+QpOnDiBSCRS8njV7l8LpKgRBEEQRAeR1RgAYNeJGYwlJCztDjd4RARBdBKllC8vedvb3oZPfOITePbZZ5HJZPCyl70Mx48ftx5/z3veg1e84hX4zW9+g+uuuw7f+c53cM011xQ9XrX71wIpagRBEATRQXBFDQDuf5FUNYIgOoOuri5cffXV+MAHPuBQ0wDg2LFjWLduHT72sY/hLW95C1544YW8x+PxOJLJZMX71wMK1AiCIAiig+CB2sq+CH67Z6TBoyEIglg8brrpJjz//PN497vf7Xjspz/9KTZv3owtW7bgwIEDeO9735v3+EUXXYRAIICLL74Yt9xyS9n964HAGKv7QYuxdetWtnPnzkV7PYIgCIIg8vnG7w7j6w8ewv+6ej2+9fujeOZvr8VAV6jRwyIIoo3Zv38/zjvvvEYPoyG4vXdBEHYxxraWey4pagRBEATRQWRVHT4BeNNFK6Az4IF9Y40eEkEQBOECBWoEQRAE0UFkNR3BgA/nLY9jzUCU0h8JgiCaFArUCIIgCKKDyKo6RL8PgiDg+s3L8IejU5hLK40eFkEQbc5ills1Cwt9zxSoEQRBEEQHkdV0hALG7f8Nm5dD1Rke3E/pjwRBeEc4HMbU1FRHBWuMMUxNTSEcrr0FCvVRIwiCIIgOIqvqCPqNQO2ilT1Y0RPGQ/vGcOOlKxs8MoIg2pWVK1fi1KlTmJiYaPRQFpVwOIyVK2u/tlKgRhAEQRAdhKLpEE1FTRAErF/ShdGE1OBREQTRzoiiiLPPPrvRw2g5KPWRIAiCIDoIu6IGAN1hEUmJatQIgiCaDQrUCIIgCKKDUEzXR048HEBSUhs4IoIgCMINCtQIgiAIooOQTddHTjwcQIIUNYIgiKaDAjWCIAiC6CCyaqGiJkJSdCia3sBREQRBEIVQoEYQBEEQHYRis+cHDEUNAKU/EgRBNBkUqBEEQRBEB5HVClMfRQAgQxGCIIgmgwI1giAIguggnK6PpKgRBEE0IxSoEQRBEEQHoWjMUaMGgAxFCIIgmgwK1AiCIAiig8i6uD4CQCJDihpBEEQzQYEaQRAE0bHIqoar/2UHdhwYb/RQFg25wPWxm2rUCIIgmhIK1AiCIIiOZS6j4PhUGgdGk40eyqJBro8EQRCtAQVqBEEQRMciK0bvsEy2c4IUI/VRsP7dRYEaQRBEU0KBGkEQBNGxyKoGAMgoWoNHsnhktfzUR9HvQ0T0U+ojQRBEk0GBGkEQBNGxSFxR65BATdMZNJ0h6PfnbY+HA6SoEQRBNBkUqBEE0bTsOTWHJ45MNnoYRBvDFbV0tjMCNUUzAlMxIORt746ISMqkqBEEQTQTFKgRBNG0fPX+A/jCr/c1ehhEG8Nr1KQOUdRk1Xi/9obXgKGokT0/QRBEcxFo9AAIgiCKMTydhqqzRg+DaGN44NJpiprd9REwml7PpbONGBJBEARRBFLUCIJoSjSd4fRsxqohIggv4EpapkMCtawZmIouihrVqBEEQTQXFKgRBNGUjCYkKBrrmJQ0ojFwRa1TzjMeqAULFLXucAAJCtQIgiCaCgrUCIJoSoan0wAMNz7GKP2R8IZONRMpDNTiYZHs+QmCIJoMCtQIgmhKeKCm6QyKRoEa4Q2dZs8vF0t9DAUgq7qluBHufPbuPfjMXS80ehgEQXQIZCZCEERTMjyTsf7OKJpDASCIemA1vO4QRS1bRFHrjogAgKSkYKArtOjjahUOjCagk8ERQRCLBM18CIJoSriiBgByh6gdxOIjd5iippiKWcjFTAQA1amVQVJ0pDokqCcIovGQokYQRFNiD9Q6ZRJNLD4SV9TMWkhBEMo8o7XJWg2vnTVqAKhOrQyyonWM8QxBEI2HFDWCIJqS4Zk04iFjLYkCNcIruKLGWK5+q53Jlmh4DYAs+ssgq6SoEQSxeFCgRhBE0yEpGsYSMjYu7QLQOfVDxOJjD8464Twr7vrIAzVS1EohKRrSWQpmCYJYHChQIwii6ThlGolsWhoHQIoa4R32NLZ0B5xnxVwfu83UR6pRK42kaFA0Ru6YBEEsChSoEQTRdAzPGPVpG5YYihpPTyOIetNpihoPMEJFFTUK1EohmZ8fqWoEQSwGFQdqgiD4BUHYLQjCvea/zxYE4SlBEA4LgvBTQRCC3g2TIIhOghuJnLOMFDXCW7g9P4COMIngPQkLUx+7QpT6WA5V06GZ1vxUp0YQxGJQjaL2cQD7bf/+CoBbGGMbAcwA+GA9B0YQROcyPJ1GKODD6v4ogM5QOojGINnU2nQHnGdZMzAtTH0M+H2IBf1IZEgpKoZkU1/TMn1OBEF4T0WBmiAIKwG8EcB3zH8LAK4BcKe5yw8AvM2LARIE0XkMT2ewsi+CSNAPgBQ1wjtkVUPAZ1jyd8J5VqzhNWBY9JOiVhy74kqKGkEQi0GlitqtAD4NgC8nDQCYZYzxJaVTAM6q89gIguhQhmfSWN0fRVg0ArVOSEkjGoOs6uiNGpn7mQ6oO7JSH/1ugVrAUaN2y4OHcNO3/7goY2t28oxnOuBcIQii8ZQN1ARBeBOAccbYLvtml11Zked/SBCEnYIg7JyYmKhxmARBdBInp9NY1R9FhAI1wmMkRUdv1HA87ARFLef66LyNx8MBJOV8RW3niWkcHk8uytianbw0Wbn9zxWCIBpPJYraFQDeIgjCcQDbYKQ83gqgVxCEgLnPSgBn3J7MGPs2Y2wrY2zr0NBQHYZMEEQ7M5dWkJRUrOqLQvT7EPAJHTGBJhqDrGro44Fatv3dRbOqjqDfB6OCIR8j9TFfKTo5nc4LUDoZu/FMihQ1giAWgbKBGmPss4yxlYyxtQDeDeBhxtjNAHYAuNHc7X0AfuXZKAmC6Bi4Nf+q/ggAICL6O2ICTTQGWcmlPnZCOpui6a71aYAz9VHVdJyZlUjRNuk04xmCIBrPQvqo/Q2ATwiCcARGzdp36zMkgiA6mZPTPFAzHB9Dop8UNcIz7IpaJwQkWVV3TXsEgO6IiEQml/o4MidB0xlUnUHRaLFEtpuJkOsjQRCLQKD8LjkYY48AeMT8+xiAy+o/JIIgOpnhgkAtEvR1xASaaAyyoqMrJCLgEzpCJcmqlStqXN0GjCC20NK/05BUu5lI+58rBEE0ns6+6hIE0XQMz6TRExHRHTZUjojop0CN8AxZ1RESfUaKbQecZ6VSH7vDIrKabv3e+KIJAKpTgxHUc6hGjSCIxaAqRY0gCMJrhqczVn0agI6ZQBOLj6YzZDUdoYAP4aC/Ixqry5peVBmLh40pQVJSERb9iB66B0+Evo4uZBD62VZg85uBc24Aelct5pCbhjxFjVwfCYJYBChQIwiiqRieTuPc5XHr32GxMybQxOKTNa3qw6If0WBnLAhw10c3coGagiF1BNcf+QeIglmzNvyo8d/2TwFrrgDedCswtGmxht0UcFUx4BNIUSMIYlGg1EeCIJoGXWc4NZPBqr6otS1MqY+ER3C79VDATH3sgAUBxVQQ3YiHjHTjpKQCe++CyBTX/XDiCWDbTYDeWemQ/DrUFwt2xLlCEETjoUCtBJrOMDkvW//NZYrctAiCqAvjSRlZTcfK/lygRqmPhFdwhSQU8CPSQYpaJamPOLqj9IGmjgBnnq338Joa3iy8PxpEigK1poAxBl1njR4GQXgGpT6W4K9/9hx++Vx+H++f/Pkrcfn6gQaNiCDam1Omy9zKPluNWtDvqZHBP9+7D0cn5vG995OJbSHD02lc+/Xf49cfvRKblsbLP6HF4IpaWOwcRa2U62N3xFDUUvNzYMNPwd3E38bkYWDl1voOsInhilp/LIg02fM3BZ/7xR5MzWfx7fd2znlIdBakqJXgwGgS5y/vxj+99QJ89oZzAQCHx5MNHhVBtC/cGrzXnDACZo2ah0rHsckUjk6kPDt+KzM8nYas6jg6Pt/ooXgCV0hCAaNGrRMs18s1vAaA8Jk/QtCy5Q82daSeQ2t6JMWo74uFAqSoNQkvTabw6OEJ6vNHtC0UqJVgcl7Gxat68d8vX4s/u2odfAIwkZQbPSyCaFv4RDkazIn9EdEPycNJkaRoHZHyVgv8c7H31monuEISCvg6phZSLpn6aCyQ9I8+UdnBOi5Q0xASfYiF/EiTmUhToGgMkqLj4CgtohPtCQVqRVA1HVOpLIbiIQCA3yegPxaiQI0gPIRPfqJBv7UtLPo8DaQkReuIlLda4J97QmrP+lzZ5vrYKbWQpRS1rpCxQLJ86o+Ox46uvtH5hOmjdR1bsyOruqm+BpAie/6mgDu37h6ebfBICMIbKFArwnQqC8ZgBWqA8TcFagThHXyiHLEFahHRD1VnnqW2SIqOjKKBMSpIL4TXBibaVFHjDYxDoq9jUh+zmo5QEUXN7xNwdiiBwbQzANt/1judT5g6CnTQ70ZWNIRFH2JBUtSaBStQOznT4JEQhDdQoFaEiXkjIBvqyg/UJucpUCMIr8ilPtoCNfNvr9LSJFWDpjMoWudMOCsll/rYnopaXupjC7g+KpqObz58eEEKZynXRwB4jfiiY9s+fQ3OhDcAwa6CAaWB5EjNY2k1JFUzeu6FAkhnNXIbbAL4At5zpKgRbQoFakXgytlQPGhtG+wKkqJGEB7CA7VwwJ76aPzt1SSaqyqU/uiE1wa2a42aPfUxKgaQVXVoTTz53nN6Dl974BC2PX2y5mMoGiua+ggAVwgvOLY9pm+GpDJgYL3zCR1UpyYpuqWoAd5dk4jK4b/hYxMpzKXbc0GJ6GwoUCuCFah1ha1tQ/EQJuZlSpEiCI9Iyyoioh8+X84YPGIGalLWm9RHbtFOky4n7a6o5TW8Dhq3w2Y+D/hEdPve0ZqPUcqeH4zhZZozUHuSXWSojwMbnM/poEBNVjWEA4aiBgApSn9sOFlNx5oBo+/mc6dIVSPaDwrUisBTHwdtitpQVwiKxqjxNUF4RFrR8tIeAe8VNV6HRTUnTtrf9dHW8JqfZ02srPJ7z+6TsxiZy9R0jJKpj2Mvok8vqPXxh7A3cIHxWbkGap1jKCIpuuH6GGz+c6VTUDQdl67pgyBQnRrRnlCgVoSJpIyuUCDPJpwbi1D6I0F4QyarIRrKD9S8Vjp4nVIzKymNQmrzQC2v4bV5rW/mybe9Nu2+GlQ1xhiyJVwfcfRh57Y1l0MQI8bvo7/TUx9NRc08V8j5sfFkVR390SA2LYlTnRrRllCgVoTJ+Wye4yNgC9TIUIQgPCGdVREVA3nbwh4qHaqmQzVrkjqhh1a1SB1iz5+nqDXxecBTH9cNxmpKf+SGOaFigdqxHc5t669BWPRBLpr62EmKmmkmYipqpMI3Hp7Ke8nqXuw+OUulKUTbQYFaESaSEga7gnnbuAMkKWoE4Q3prJZnzQ/YatTU+k+g+USdvzaRT6bNzUR4IBoM+Fpi8j2XURAR/XjzxSvwzPHpqu9FWdMhT/QLzgdVGTjxB+f2da8xmoGrGjCwzvn4zEuA1ryfWT2xUh9N1T9F14yGousMqm6Y42xZ1Yu5jIKXJlONHhZB1BUK1IowkZSLK2oUqBGEJ2Syzho1y57fg0mRXUVr5pS3RmE3E2nHlWpZ1SH6Bfh9gue1kPUgISnoiYi44cJlYAx4YF91qppiLkwE3WrUTj8LqAV1b9EBYOlmhEWfUaMW6QOig/n76Cowe6KqcbQq9obXgGF+RDSO3MKDD5es7gNANv1E+0GBWhEmknJeDzUA6ImIEP0CpT4ShEekXQI1btXvxQRasilqzTxBbxQZ02xD0Vie+tguyIpunV9Rj/v11YO5jBGonbM0jrMHY1XXqfGJbTDgdz54/HHntrVXAj4fIqI/t5DRwemPuYbX3PWxec+VToCfz6GADxuWdCEW9GP3SQrUiPaCAjUXJEVDQlIdipogCBjqCmEymW3QyAiivckommXqwIl42LNIJkWtJPagpR3r1CRVQ0g0boMRK/Wxec+DuYyC7kgAgiDg+s3L8OTRKcykKr8fZdUSqY/HH3NuW3sVAORSH4GOtujPNbxu/jTZTsBSiAM++H0CLl7VS4oa0XZQoObClHnjKwzU+DZS1AjCGwwzkSL2/J6kPlKNWinsgVo71qnJipHKBqAl7PkTGRU9EREAcMPmZdB0hgf3j1X8/JyiVnDrV2Vg+GnnE9ZeCcAwW7F+K251ah0QqGk6g6IxhAP+nKJGro8NxZ76CABbVvVi/0iiqVVxgqgWCtRc4DVog13OQG2wK0Q1akRHIika/vWhw5aluRek5eJmIl6k3tkNSij10Ukma6R6AUCiDftHyi6KWjOfB4aiZgRqF57Vg7N6I1WlP2bVXKpYHi71aVKwDxg6FwByro9AxypqVnN00Yew6IMgtI+ipukM33z4sOUq2ipkC2ouL1ndB1Vn2HN6rpHDIoi6QoGaCzwQK6qoUaBGdCCPH57ELQ8dws7j3jQVZYy5NrzmZg/eKGqa69+EQUbRsCQeBtCeiprUcoqagu6wEagJgoDL1w9g35lExc/PpT4W3Ppd6tO01VcAgpEiGRH9uQDWLVCbPlbxGFoVriiGAz4IgoBYMNA2Kvz+kQS+9sAhPFSFOtsMKAUK8TlL4wBAzo9EW0GBmgvlArXplAxNbz8HNIIoxUhCAgDMe+R0ltV0aDpDLJRfoyYIAsIBnzc1amTPXxJJ0bDEvA62Y6Amq5qlLjV7HzVNZ0jKudRHAIiHA0hV8XssnNhauNSnxTZdbf0dFv25hYx+l9THuWFAyTi3txH8/fNU7GjQ3zaKGi/3mEm3Vv29XLDw0BM1fhvtqP4TnQsFai5MmjVoAzH3QE1nwHQVBdwE0Q6MzRmBWjUTw2rgSkZEdDrSRYJ+781EmnSC3kgkRceSbh6otd/kR1Z1K7XT5xMQCviaVlHjn789UOsKBZDKqhW3TihMFQNQtj4NQM6eHwDECNCzyrl/m6tqhYFaLBRomxo1bkgz12IBTmEqbzwUgCBQoEa0FxSouTCRlNEXFZ2rjqCm10TnMuJxoMYVrcLUR8Bc0ffYTKRZJ+iNgjHW9qmPsqJZqY+AdwsC9YBPorttgVo0GIDOKl9kkLn5gv3eVqx/mlmfBuRcH62AcGC98+BtXqcmFwQFEZEUtUajaMb5yOdqPp+AeCjQcgEnQZSCAjUXJpKyq5EIAAzyptfk/NhweBoPsTiMJozJnFe9g3igVmgmAhiTIskDExO+Sh4PBShQK0DRGDSdYSAWhCC0r6JmN9aIiv6mTYFNZIygIF9RM34rlSo7rg2vi/VPE3IW/mHRD8ZsqcL9ixeoMcYs5aSROBU1f9soatMpYz4z26JmIvaay56oiEQbLioRnQsFai5MzMuu9WkAKWrNwnQqiwv/4X48eWSy0UPpGLxW1DKWohZwPBa2N9ytI3zi2RsTm1ZJaRT884gE/egKBdpy8mOkPuYWBsItoKjZAzVez1npb9LeINji+KPOHc3+aRz+GcmWRf/iNb2+c9cpXP6l3zV8YY6r79wlNBoMtI2ixks5Wi5Q04zfqj37qScikqJGtBUUqLkwkSwRqMUpUGsGxhISJEXH8Ey60UPpCBhjGJ3z1kyET3rcUh/zXOfqCF8l74sGSVErQLIFat1hsS0bXhupjzZFLehNim09yKU+5hYyeKBW6W/SoUBUUJ8GwKrjK9302ptA7bnhWUylsg1XOvl7z1PUmvRcqZapeTNQy7RW6mNWNVMfbYpad5gCNaK9oEDNhcl52VLOComFAogG/UjNjgOJkUUeGcHhN20vemsRTpKyan3mntWoKcVTHw2lw4M+auYxe6PBplVSGoUVqIl+xMOBtqxRk1TdUkgAXnfUnOdBooiZCFD5b9Lh+nh6F6BK+TsV1KcBQNis47OcH/vWOA+e9OZ+ODxjpFzLDf59ypY9P3d9DCDt0bVwseGK2kyqtQKcXAP3XJpuT0QkMxGiraBArYCUOSEtpqgBwOouHTce+Cvgtus8W0UkSsPVD9mDyTvhhKtpQOX1MNWSloubiUREnzdmIqqGgFmA3i5pTPUiYwvUusNie9aoKZo18QaASDDQtAG7W+oj/62kKjx3LddHHqgd+71zp4L6NMClGXh8mfN5yVGgQvfJahieNrImGr0oZ294DQCxYPsoatPp1nZ9DPpzv2FKfSTaDQrUCuApjcXMRKDK+LL6VayV9gOzJ4DbrgdGXljEERJALk0uS4YiiwKvTxOEyieF1WKlPorOGjUvzUTCoh+RoD/PAZLILYaE21hRkx2KWvPa889lFAR8Ql77ipyiVqHrY2Hq4+H7nTsV1KcBttRH/hsJdQNiNH8nTQYyMxWNo1J0neG0qag1uiG9o49aGy3ucEVtXlabwrilUtz6AnZToEa0GRSoFcDdHF0VNV0D7v4QtmR357alxoHvvxE48eQijZAAciu7jU6H6RRG54zJ0qq+qHdmIuZ3GQ252/N7ZSYSFn1tZbVdLzJKewdqqqZD1Vm+Pb9HtZD1IJFR0BMRIdjUrmrNRLideSjgMxSwM7udO218nWOTI/VREIqranVkLClZi3GNXkiRrNTHnKKmaM3hSLkQVE3HbFrBQCwIoLVUtVzNZX7qo6zqDQ/sCaJeUKBWAFfUXAO12ZPA8cec2+UE8KO3Awfv83h0BMeqUSNFbVEYnTN+F2cPxjDvVepjmT5qXpmJhAL+pu6f1SjsZiLxNkx95OpS2K6oNXnqoz3tEVigmcjhB5w7DJ0H9K11bA6JBamPABBf7nx+nevUTk7lzKK8UNSrwaGome60zarAVsqM6fS4fqgLADDbQr3UHKm8yPUZbEfzI6IzoUCtgMlSilr/2cAH7kcytNT5mCoB294D7PuVxyMkgNwKMtWoLQ6jiQwGu0Loi4qeN7y21wxxjNREDxQ1xUh9i4hG6qOu17/GplXhCgI3E0lIaq7hcRuQa2BcoKg16cR7LqMgXhioBavro5bVNPh9Avw+ATjkkva46TrX50Use357oOa9osaNRIzXbnSNWn5rg1iouvrAZoWnPa4bigEAZltJUXNLfQwbATQZihDtAgVqBUwkZfgEw67blcGNePhVt+OwfpbzMaYB93wMSE97O0jCmkxRjdriMDInYXlPGLFQwMM+aioioh8+n+B4LCIaaUZqnb9vyTST4GYJjV61byb4b8wI1ERoOmtatakWeOBfaM+fUbSmDEgTkupQ1AJ+H8Kir+JgQdGYYWWuysDRHc4digRqjho1YFEUNW4kYrx24xW1gE9AwKzvi5iKWqunTBcGajOp1lPURF9+HzUAmMu09vdCEBwK1AqYSMoY6AoZK45FiA6twX/L/j3Sgxc7H5RmgQP3ejhCAshZuTd6lbVTGJ2TsLTbCNS866OmuaY9ArkVfanO9SC8Ro2/brOqKY3AqlEL+qzeXe1Up5ZLfbS7Pvqh6awpF4ASLqmPABALVv6bzKq6oT4cfxxQUvkPhnuBlZe5Po9/RtJiK2rTzZT6mN8cvVqtA1kNAAAgAElEQVQ1s1mxArVBM/WxhZSorKZD9At5i3tW6mMLvQ+CKAUFagVMJIv3UOMMxUOYQTeeuup7rg5ZlP7oPZY9Pykgi8JowlTUggHIql53ZQswvlO3HmpAbkW/3oEUd33kE7Bm7aHVCKQ8MxFj8tNOdWqW3bpNUbMCkmzzBWpzGcVK67ITC1Xez0tWdaM+zS3tcePrAL/z+EDuc1nsGrXhmTSW94QBLNxMRNUWZjAhqVpePSOvUfMi9VHRdMvR0GumU0a5x/olrVejpqh6XrNrIKeo1bNGTdH0ljeNIVoXCtQKmJiXS/ZQA3L1a6OyCLz2884djv0eyMx6MTzCxLLnp4un52SyGmbTCpb1hG11GfUPaEopaq4r+nVAUjWEAr6cYtdGqX0LJT/10az7aCNFjU/8Q2J+6iMApJXmep+MMaeilhgBHvw8PqN+C0Nzeys6jqLpCPkF4JCL8dVG97RHwKZo56U+LoailsHGpXEAC1+U++r9B/GO/6jdnVlW9Lx6Rn4tTHugqH3q58/jL7c9V/fjujFlKmor+yII+ATMpltnMSar6RAD7oFaPd0rP3v3HvzP23fV7XgEUQ0UqBUwmSwfqA12Ba19cdalQHxF/g664n4jJOqG5fpIgZrnjCaMHmrLe8K2vk31n8imFc2q+yjE0XC3TvB0pqhHx29leDNw0e+zlJy2Sn3kimGBmQjQfCmw6awGVWe5QG1+HPju64AnbsUbsvfhUyN/BYw8X/Y4WVXHBv8ZoweoHcEHbHht0edx1VEqq6jVL1CTFA1jSQkbTaVnoYrao4cmcHg8WXP9oaRqBUG9d4raiek0jk7M1/24bkynsuiJiBD9PvRGRcsFshXIuihq3ab6P1fH9/HSZAr7RhJ1Ox5BVAMFajYYY5iYl4s3uzYJBfzoDgeMnms+H3Dem5077bvHo1ESgM1MhAI1zxkxe6gtM81EAI8CNVlFVCxdo1bvCbSsmg2vKfXRQSarW59Le6Y+OhU1rxYEFgpXB3j9DX77KWBu2Ho8CAXY8cWyx8mqOq7UdzofWPVKINpf9Hk+n4BgwJdfJ9bl4n48Pwro9bkmn57NgDFggxWo1f6dzMsqDo4loWisZqVFNo2HOJai5sE1Q1L0RauxmkplrR5qvdEg5jKtk/qY1fQ8x0fAcICMiP66pj4mJQXjSRkauQITDYACNRtzGQWKxsoqaoCR/sh7ruH8tzp3OPIQICfrPEKCk6YatUVjzFTUlnXnUh+9MBRJZzXr+IV4lZpoKGq+pp2gN5KMoiEc5IEat7xuH0Ut5/rY/Ioan3T2RERg/6+Bfb907nTofqPXZwkUTccrVZdArYjbo51wwAfJ/rmEuoBQd/5Ougqkp8oeqxK4kQgP1OQF/DZfODULLqRZ9+0q4dcKTtRyffSmv+NiNZ6eSWXRxwO1iIiZVOssxrgpaoDxO6nn55eUVGg6s9o3EcRiQoGajZLNrgvIC9RWvxKIDeXvoMnuDUWJusBdH5vRna3dGJkzAzXTTATwZnKSKZH66Npwtw7YG14DzTdBbySG0Ypxi2hnRS3sUqPWbAE7T+Pq96WB3/x1kb0Y8OwPSx4noMzhfHWf84EKAjWjl2HB9da1Tq0+hiK8h9rq/ihCAd+CHF93n8zVjNcaqHH1nWPVM3qwaJXJakhltUUxFJlOZdFvU9RayvVRdSpqANAdCdQ9UANy90KCWEwoULNhBWplUh8BYCgeNlIfAcDnB859k3MnSn/0jEyWGl4vFqNzEnoiIqLBgJX66I2iVj71sd6Kmr3hNUCBmp1MVrM+l1jQD5/QZjVqLg2v6+n++eSRSXzsJ7ut//76Z8/jyHhtWRZ80rnp+a8A82PFd3z2h4BWfIJ6XuoZ+FFwzexdDQydW3YMYdHvtMj30FBkeDqNYMCHoa4QwqJ/QYrac8OzVp3dRI2qiKToeQ6hot+HYMDnibESXyhYjN9bfuqj2Fqujy6pj4ChqNVL/dd0Zt3vRucyZfZuHXSd4esPHKx54YJYPChQs3HKXMFb0Rsuu+9QV8gwE+Gc/xbnTocfALJp53ZiwfDeNWQm4j282TUAb81EStjze5GaqJv9suwNr9NNpqQ0EknNBWqCICAeFttKUXNreG01Pq/DefDjp07ivr2j2HN6DntOz2H73hF8+Me7a6qrTUgqrvTtQf+hn5becX4MOPjbog9fknnKuXHT9YBQvG8oJxzwOz8XDy36h6fTWNUXgc8nICz6ajYTYYxh98lZXLVxEMBCUh/zFTXAUNW8aHjNr3Nepz8yxjBjU9T6omLruT56nPo4bwuWR9tIUTsxncY3Hj6C+/bWt6UGUX8oULNxeDyJUMCHlX3RsvsOxoNIZbXchHXtVUCkL38nJQ0c/Z0HIyX4jYzMRLxnLGE0uwbgqZlIpoKG15k69reyNzy2FDtS1Cwy2fyJaTwcaE9FzSWdrR7K6kw6iwtX9mDHJ6/Gjk9ejW+8+xIcHEviPx45UvWxEqk0/jHw/cp23nmb+3ZdwyVZl/q0Erb8dsJBPzIVpT7WSVGbSWNVv3EvDgVc1LwKOT2bweS8jD/ZNIRgwFe7oqY6A7VYMFD3hte6zqz7mteGIomMClVneamPGUVrmTYlxWrUusP1C9TspiQjifYJ1Pg1bmK+dRTUTqVsoCYIQlgQhKcFQXheEIQXBUH4R3P72YIgPCUIwmFBEH4qCELQ++F6y+Hxeawb6oLfV351kadHWsWlfhE4543OHan5tSfwVUwyE/Eeu6KWMxOp7+eeVXWoOisbqNVzAmFXVCIe1cC1MpKSr3DGw2Jb9VFza3hdT/fP2bSCvmiu79m15y/FWy5egX/fcQQHR4ukQE4eBr73BuBLq4FtNwMpw5hj9fG7sN7nsvJ94Tud2449AkwddW4/9Qy6WcHrilFg7ZUVvZ9wwLeoitrJqTRWmYumhqJW23fC69MuWdWHoa5Q7TVqBWYigDeKmj0g9VpRmzbTHPttqY+L8br1IquxIjVqYt1cH5Ntqqjx84wMUpqfShQ1GcA1jLGLAWwBcL0gCK8E8BUAtzDGNgKYAfBB74a5OBwZn7d6tpSDG45MlEt/PPAbQF6cfiidgq4zKw2GFDVvyao6JudlLDMDtYho1CrVW1GzmisXNRMxLlX1DKT4jSos+hHw+xD0+8ie30amwI48Hg7U1fK60VgNr11SH+txns2ms+iJ5K9ffv7N5yMeFvHpu15wWn1rCrDtPcCJJwB5DjhwL/DjPwVSU3jlyW87X2D1q4C3/xeSsTXOxx76B2D8AGDvGebW23PdawCxfKo/APc6MY8UtbmMgoSkYlV/JPfaNV7reX3aucvjGIzXHqhx4yE70VCg7jVqdjXX80AtZXwWVqBmnq8zLVKnllWLpz5yp8aFwtO9fUJ7mYnw7BGqUWt+ygZqzIBHGqL5HwNwDYA7ze0/APA2T0a4SKSzKk7NZCwr4HLwQC1vNWLd1UC4N39HJW0EazZaZbVqISQlpebGouXgk6iAT2jJGrWsqrdMasl4UgJjsBQ1QRCMdJ86ryKnFeN4xRS1UMAHQbApalNHgV9+GLj9T4Hnt9X0mnyizlfJDVc7b74XWW2ddCJOpkBR625Q6uNcurZriaRoJRV3WdXM8yqXQRFMnsLXxG/hjc/9T2DXD/IDnSqZzeQragAw0BXC5998Pp4fnsU3Hz6CI+NJ87956HvvBiYP5R/kzG7gv65ClzrtfIHr/hnw+XF6/budj+2/B/iPVwD/9jLguZ8Y7+OQiwtxBW6PHNc6MY8UNW7Nv9pMfXStj6uQ3SdncOFZPRD9vgUpapKq5/XcAwyTnXq7PtoXCbxeGJky094GYsZ8hp+vrVKnljV/w4XwfoP1qKnl17y1AzFXRU3VdM9NqLx4Db5QSYFa81NRjZogCH5BEJ4DMA7gQQBHAcwyxvgV6hSAs7wZ4uJwbCIFAAtT1AIh4IK3O3d+ITeR/PnOYWz5wgM4MZWqfbBNznhCwqX//BAeOzzpyfG56tEbDULVWcs1ofy7X+7BX/xoV6OHURFWD7WeiLUtFgrUXVHjdR7FAjVBEBAR/cbNSkoAt78DeO52o1/hL/6ieF1OCWSbogYYaqEXxgAA8Jm79uC9333ak2N7hdE3Kj/1cbHNRMaTEl75pd/hJ08Pl9+5gI/c8Sw+e9eeoo/LBS5+0BQIP34nbvQ/irVzTwO//ljNiwCyqiGd1axUMjtvuXgFrj1vCW556BCu/fqj5n+PYOS3X3E/WOK0c9sFbwfOuhQAMLfpRsjM+ToAgOljwC//B/CrDwPjLzof3/j6St+S8ftbJEWNB2q8XjxUo5lIVtWx90wCW1YZC6hD8RAma6jJ4XVj4UJFLVh/Rc0ekHqvqJmpj12GktZjBWqtoagpRVIfe8xArR7Oj0nZ+A42Lu3CaEJyLBr928NH8MZvPLbg1ynFfz16rO6vwX9PFKg1PxUFaowxjTG2BcBKAJcBOM9tN7fnCoLwIUEQdgqCsHNiYqL2kXrMYdM2eePSygK1/mgQguBykl/0LufOxx4BkqMYS0j4wr37wBhwYqp93SCPTqSQVXUcGfcm5ZOvLPHVv1ZLfzw4Nt8ygbrVQ607lx4VC/nrXkDPv9NokdRHwDZR3PU9YOZ4/oP3/x0wc6Kq1yxMfYu4mSXUgXRWxfa9I3ipRb5zjmSz5wcaYyZy/4tjyCgafrH7VNXPPTmdxsGx4nb4sqrlGYng2CPA5MH8nZ78RtWvC+T6nvVGnaXbgiDg3256Gf7z5pfh3266BP920yX4p/NHcJbsUlfmhi8AXPP31j9DPUtwt1amzuy5Hzu3Lb8Y6HZRxIoQFl1UrS6XQC01DmgLO0+GZ4z7Y56ZSA2K2v6RBLKqjktWG0ZfQ11BTKfkqhf3eL9Oh5lIyIMaNds1yOtAbSrFFTXu+mj8v3UUNR2i3+kpwAO1enx+PNjbuCSOrKpjpuCz2XViBi9NpTxdMH5pMoWT0+m6Zinx39PEvOxZ9hNRH6pyfWSMzQJ4BMArAfQKgsBnVSsBnCnynG8zxrYyxrYODQ257dIUHB6bR8AnYM1ArKL9A34fBmJBp4PU6lcafWnsMB1sz8/xt7/Ya/Xj4CtZ7chowmhz4NV75Gly/KbSaoYik0m5ZUwZRm3NrjmxUKDufdT4ZKeYogYYkyRFloA//qfzQSUF/PrjVaWq8RuVXVHzIoXlkYMTkBS95hS+RmGkPuZuEd1hEfOyuqjvgVtH7zwxg/FkdfUhKVkruVrsMIc4usO50/g+YLJ6l8YZK1BzV7oiQT9uuHA53nzxCrz54hW4Wb278oNv/QAwsN76Zyzox5fUmzC+pDJTEItN11e1u2ugJoadbsdMB1ILW5Qdns6gOxywJtxh0VfTgtzukzMAgEtW5xQ1nQFTqepUBLdWDoCxsFRRXauuGyUQT3277PmUl/pYp15gxZhOZREN+q1rID9fC4ORZiVbpI9ad9iYmtYjUONZBHwRf6Sgl9qR8XkwVp80y1JjUM12MvXC7pyd9MDFmagflbg+DgmC0Gv+HQFwLYD9AHYAuNHc7X0AWtre8Mj4PNYOxlwLU4sx6JbvLgiuqlriqR/jof1j+PDVGwDkVrLaEa7CePUe+Y2xpwUVNcYYJuZlT2v46snInIRo0G/d+ABuSV3vGjVuJlIqUPPhoun7i9fAHNvhrhwUIReo2RW1+t+wtu81UsGymt4yZiWKZrhwFpqJaDpbtPcwncrij8em8brzl4IxQ12rhnRWxVQqC73ISres6vnmEEcfdj/Q/upvbTx1rM9FUXMw/Ax8J5+s7MDBLuBPPp23KRYKIIEu/G7rfwIf2QW87p+AlS8vf6wKbfk5IdEHye1a60Gd2vBMGqsHcm1yXIPECnhueBZL4iGrxta1ZKECcvWshfb8FdSoSQng9rcbRjHbPwV860rgxB+K7m5fLPLann8mlc07RyOiH8GAD7OZ1pifKKqOoN95z+Bzg3rU+CUlFcGAz6qXtNepJSQFo2Z5gJfBLQ/Y03XMZLErt5T+2NxUEpUsB7BDEIQXADwD4EHG2L0A/gbAJwRBOAJgAMB3vRum91Tj+MgZiofce1C4BGo9c/vxpuVz+Pi1G+H3CZbbUjsyZl7IZjwK1ApTH1vJUCQhqciqOhSNtcS4RxMSlvWE8wwXYh46nZVS1KKigNdOl6kZuv9zFdfIWH20zMl6NFh/RU1SNDy8f8xqFD7bIkZCGZfAOR7mBfqLs/r64L5RaDrDx1+7EeuGYti+p7rJfzqrQdNZUQc7w8XPvAUmRoCJ/e4H2ndPVa8L5CZtXBEqyRO3OjalejYAZ7/aue8VHwe68jNT8nobDm4ArvgY8MEHgfNL+HvFhoAVl5Qfm42I6EdW1Z0pXh7UqZ2czlnzA6aRSS2K2vAsLlnda12/ag/U8hd1ONFQAGlFK7oYgNQk8IM3G2m1HDXj+p1zMjb1bjFSHwe6coGaIAjojYiYTbXGdUrWdIgBZ+pjd7iOqY+Siu5wAMvNOu1RWy81e3mHl3V9vE4uXUdDKvvCBwVqzU0lro8vMMYuYYxdxBjbzBj7grn9GGPsMsbYBsbYOxljLftNy6qG41Opih0fOUPxECbdTvDBjcCKlzk2/+OaPRD9PvRFRUy3yIWwFriiVkvq4893DuPJo6VNSLia02ulPjZ/wMOxXxBbwep8dE7Kq08DgK6Qv/6KGg/UxOI1alfpz2C5WsZUQpoDfvvJil6zMPUxLPrrrhY9dngSqayGt25ZAcC7xYt6U/jZAIaiBizeebt97yhW9UdwwYpu3LB5GZ56aTrvmsIYw7/vOIJdJ2Ycz1U13bouFGtwLKs2s5RjLmmPnJHnnDWRZZgzFYm+WBlFbeKQwxUYAG5J34DM227Lu4+c7r4EeNVHHfvGzGA6r25UEIC3/QewdLP76268DvBVVflgfVaOVPM6K2q6znBqJmPVpwG11ahNp7I4MZXGllW51MyhLuNaVq2hiKQ6fw+AsbjDGNybcc8OA7ddb5w/hZwubibF3+eynrDrb23n8Wn86A/HKx57KaZTWcuan9MXDS6KorbrxDR++IfjNT+fMcPgJVTEnh+oX+pjd1jEUDwEv0/IU9TyAzUvUx+5ola/+65MgVrLUN2Vuk05PpmGzlB9oGamPrqmsF3stEweOPYrQNfRHwu2taLGV5yqrQMAgFsfOowfP3Wy5D58xbHXUtRaI50MyL8gNsLqvFqm5mUMms3dOV64PmbMGrWiqY+M4e3pO53bBZdL2P5fG253ZZALzURqTK8qxfa9I+gOB3DDZmMy2yqtOaSs8dkUmokA3tZicOYyCp44MokbNi+HIAi4YfNyaDrDg/tySs09z5/Bv9x/EHc96zQaSVcwCZHt1t5u9Wl29v+6qvFbNWrlFLVd30ehD5cUXYYfJF+Oh08owAfux+yNP8d7sp/Dw6/4DiBGHIcI+H0Iiz5ny4xgDHj3HUCk3/m651RXnwYYDa8BuFj011dRm80oyKq6la4I5BpeV5MuftJ0jrRnygzGjaCk2olp4bWC4xokA8D8uBGkTR12P2BqAki7tFxALlBbGg+7Xi9+/NRJ/NNv9kOtQ72SW6DWExWdaXxyckGtKty47Ynj+PL2AzU/XzVVTLcatWjQj4BPqEvqaFJSEQ8H4PcJWBIP5fVSywvUPAxu+VyhnpksGQrUWgYK1JBzfKxFUctqunvB7wXvAISCSWfiNHD8UTNQa42V9VoYXYCillE0Z1PVAtJW6qNxg2mlGjX76n4rBGpJSUV3JF/l6vLETKRM6uOJJ7Ex65Ka9o7/A0QHndtPP1v2NQtXyaPB+ipqWVXHQ/vG8Lrzl1kpV63SSLZU6uNiGOE8fGAMisZw/WYjCLhgRTdW9Ueser+peRn/cI9hN++2aGCv5Sg2CZG4Pb+ul1bUgKrTH2fTCoJ+X8lUXgDA8Ucdm4JXfhTdsSi27x0BAkFMLX0VntQ3ozvmDNI4sWCR32TfGuBdPzJq20wmei4EznlDxe+Fw38njsWMOitqhU2YAaOPms5yk/NK4JN0u6FLNBhALOhfQOqj054fgNP58aF/BBJlnEonDrpu5unXS7pDroHaRFJGVtUxPJNxPFYtUynZcnzk9EVFy7UUSga4413Al9cAXz8fOHT/gl+Tc2RsHumsVvP9mz/PzVdAEAR0R8S6KWr82re0O+xQ1HjGyYxHWVKMMWtxrJ6KmqTo6ImIEP1Cfj9goumgQA3Gj00QgPVD1QdqADAx7+JG1jUEbLjWuX3n9zAQC7WtmYii6ZiYlxHwCZjNKFVb1qazatlURquPWqT1atQm8xS15lZXjBuEat2kONFgALKq12VFl8O/04hYZGL71Lec25ZdCGz+U2DzO5yPufWeKkAuaHgddusTtQD+cGwKCUnFDZuXtVwj2YxLTU63pah5H6j9ds8olveEsWWl4dbHVbUnjkxiLqPgC/fswceU27An/Gf42yM3AQd+m/d8u7pUbBIiq5ox8R5/sbxL4amngbny5xRnNp1FT1TMq+10ICWAMWdvM9+FN+L1FyzDjgPjkBTNmmx2l1DnSqrca68E/sdjmLvib/F3yvvx6OW3Ab4yAaQLPGj3updaYRNmoESQWAL+uRXWCRq15VUGamr+tYITC7koakoGePEX5Q864a4m8RYhy7rDSGScplM8yFxo+5tMVoOk6OiP5WdM9EaCuQWlB/8/4NB9ANOA5Bngzg/WpU+equl4adJoV1KrEsUDNTdFDTC+93osKiVMRQ0AlveE82rUDo8ncemaPgiCd/XHslnTDtRXUZMUo/2Kqyke0VRQoAbg8Pg8VvdHHatl5Rjq4oXJRS40W97j3HbgXqwOJttWURtPymBmGilj1SkIus4gKXrZmzFPk2vJGjXbBMFr6+WFIqs6sppu3aQ4rpOTBZIxbxo+X5GJ7YknnNuu+EujFqf7LOdjc+X7bhWukkeD9U193L5nBLGgH1duHGy5RrJuCgIPFLxeYEjJKh49NIHrLliWdz5cv3kZFI3h7365F/EXb8f7/dsRRxpL1BHgrj8DErkOMZUoaobro6982iPnwL0Vv4fZtGIF50U59YxhZW+n72wgvgw3bF6GVFbDo4cmcoFauMZADQD612Hmkg/jdu118IWixfcrATfdqUxRq30ybzVhtitqYpG0yxIUC3CL1paXIGfPX4GidvRho11IOSYPuW7mgfCSbqOVQKFSyu8hPBOoVqYs5TL/8+mNiZjNKGCZGWD37flPyiaB3T9a0OsCRloqt5qvdfFK0UoHavVV1IzveVlPTlHLZDWcmslg09I4usOiZ9d2e51iPXv2SaqOSNBf08IFsbhQoAZDgt9QpZoG2BW1Iif5uW9ENlLQO05XcUXyPsxllLoqEs3CqNlj5PwV3QCqM0/gN6hyN+N0VkPAJ1hOei2V+pg01Eag+RU1foMoVNT45+6oiVkAKVktniY2PwGkp/K3+UTg/Lcaf/esdD6nkkBN1eATYH0fEdEPRWPWBGAhqJqOB/aN4ZrzliIs+hEK+BEN+ltOUXOvUfN2gWHHwXHIqo4bNucrNVtW9mJZdxi/fv4M3ht+LP9JSgrY83Prn/Zzs3jqo2ZMvF1s+SdZj/MJVaQ/zqSz6I2UMRI5+UfnttWvBABcvn4APRER9+0dtVL4SjlIdoX8jgm9prO8iSqfGLvZmVdC0WDJVVGrPfXRasJscyMsGiSWgF+/6qGoyZai5mx4DRQoHW7nid/lXCiiqMmKhrDos84f+3eoaLq1+HlkrDpFjTGWt0CcC4idilpW1aE8+xNASTsPtOsHgL6wBa3DdTDhkEukPgJGBkDRQG1+AvjVh4Hvvwl46r9KNmi3Z5Us7wljXlaRlBQcnTD6p21c2oW+qOjZtd2+oFvXxdGsUaM7RIpa09PxgRqX4DcsrT5QG+wqY/XrFzG85k8dm7eM/xIC01vGqrsaRueMz+KCFcZEp5oUT57+Vu5mnM5qiAT9CJkTh1YzE+H9WJq9Ro2Pr9uhqNnswOtExvxOXRnf59w2dA7gNydgPaucj8+VcYeEMeEMi34rPa1oalcN7Dk9h+lUFtddsNTa1htxKdJvUiSeimr7TiKiH/46FeiXYvueUQx2BbF1bb4Jhs8n4A0XLsdSYQabNJemwfty/c74yrPoF0q6Pnb5FeCks6fVl5SbnE84+SRw+MGK3sNcRina7NpiuHigJvp9uPa8pXhw/5iVClgqUIuFnI2X73j6JF79Lzus62O5VLFyWK6Phb+PrqXOndOTgFqbwsAX9+yfX+5aX52iFgz4HMFVLalexRpe82uhteimZoGD250HKOh9B6B4jZqZXcCVQPtEfTqVtTw9jkxUF6g9/dI0Lv3nB/HwAaMf4ZSLcgnwtjcMwq7vuR9obhg48lBVr12IPW2z1rpdvvBQ+J1weiIikm7XqtQk8J1rDLXw+GPA9k8DRd6rava+5ItUS816tNE5yXoPG5d0oSca9Kz+OOmRosZTvyn1sfnp+ECNS/C1KGq8ELPUSb5n2dugs/x0ri7pDF7te74t0x9HTEXtAlNRq+Y98otQuZtxJqshGvRbF+hWU9TWDEQhCM2vqPFArTD1kStq9TQUSZvfqSvjLiYiQ+fm/nZV1CqoUeM1SiZWoFaHOgDuDGave+2NBi3b9mbHTVETBAHxcMDTBQZJ0bDj4Diuu2AZ/C5psJ94/Sb84vUuq/yAYXluKql85XlVfxSTRVLTZUXHemkPoObXGGeC/bhbvxJaz5r8JzAd+Mm7gRd+jnLMpLOlAzVNAU7tdG5f9UrrzzdcuAxJSTVMRQCHqY+dmIvBz4GRBGbTCs7MGu+PT2xFf4m6uRLwc8GxkOEXjb5shcxX16CcM5XKIh4K5KUZ1lKjlsgorumiQ12GSUc1C3xyETMR3lvrzKxp7PHS7wF5Lv/JwS7gsj93OtQmTht1igVksiV2iGAAACAASURBVMZ1iX/fdlWIzzXO6o3gyPh88f5tLgzPZMAY8Lm79yIpKZi2agHzA7XeqIiXCwchTrunZgIAdt5W8eu6cWR8HkFTCZtbaOpjEUWtxy31UVOAn70PmC1wln7mO67H4L+pbktRM77vkTkJh8eT8PsErBmIGQYsHi1g2a+39VTUJFO5HYobngnVnEvE4tLxgRqX4DcujVf9XJ9PKLsaMawNYoe+xbH9Zv9D1kppOzE6JyEs+nD2YAyAR4qaoiEazN3IW6lGbXJextLuMLpCgUVxz1sIySKpj9FiltQLIK1oiASLTETdFLUl5+X+ji9zOqxmpoFs6ToRSdEty3HANhGtQ6DGrwk8PRowJkCtoqhlikxMjUDNu/fw+0MTSGc1q51BIV2hAFaM/b74AUwbfb7os3Yg5qqoMcYgqRo2Jp9xPDa15FVg8GF20zudx9dV4O4/B576dtEhMMYwk1YsV1pXRvc408oifcDgJuufV24cRFcogGeOzyAs+hz1UXZiQWdvwzHT9GDYtKmvl6LmmppeR0OR6VQW/V35n13RHm4lSGRU9LgEt/w3WU0vNUlxNxPpiYjoDgcwPG0GajZV12LTdUCkF+hb63xs0mnfzxU1t15g/LryqvUDSGc1nJmr3PmRH2c0IeFL2w/kUh+7CgO1IG4OlFHMDt3vDHaq4PB4EheuNLJualbUyqU+moFanhnLfZ8FTjzu3HnioNGCoIDCxUreMmI0YShqaweiCAZ8ZrZEwftgzFBXn/wmMP1StW/PMQagzjVqio6IaNSoaTprGUfiTqTjAzUuX1drzc8ZiodKWptOpbK42/d6x/ZrfM8hM1H7j7dZGUlIWN4TsSYp01XcDCsN1DJZFRHRb004WkVR03SGqVQWQ/EQusNiC6U+5gdqMQ8UtUxWRbSYmY+borbk/NzfPj/QvcK5TxlVTVI0hGyvGa1j6uNEUoZPQN5kvS8abCEzEfeanHjI2/P2vr2j6I2KeMU6l95fAKDKpc0/zPogfi1ZMxDFdCrrqDtUNAbGgDUJZ+Ph9Ko/AQAc2fRBYMUlLi/CgO2fKqqsSYqOrKpbBjKuuNWnrXpFXhPqUMCPa85dAqB02iPAzUTyz1uu6p4sCNSKpYqVI1ej5vL7cDMUqSD92A1Hb68TT2LFyXvQh0TVZiJun5sVqFWR7iUXaXgNAKsHohieSRt1Ti7Ny3HeW4z/D57jfMylTs1QOnKBmt1Mggdql68fAFCd8yNPWX7/FWtxx1Mncf+LoxD9AuKh/GB2QEjgBt/TZY7GgGd/WPFr29F1hqPjKVy0sgeiX6i5BKQS10dVZ7nr+a7vA8/8nyJHY8DIC46thXXaS7qNc2d0TsLh8XlsXGIs8PdGg84ate2fNhT4B/4W+OZW4LhLgFgB+amP9TXwCpuBGlDCa4FoOBSojc9jeU/YSueqlnKFmDPpLF6MXgZ056dn+QSGwUPbanrNZmZsTsKy7jCCAR/i4UBVqzRcyZDKBF4pOT/1sVVq1GbSWWg6w1A85LkyUQ9yipp76mM9V/eKpj4y5l50b1fUgCLpj6UnilYfLRM+CavHzXAiKWOgK5SXvtfrYcF5vZFcUh8BeJr6KKua0XfuvKVFV8lx/PHSjnon/wAkx3KBmlkPWpi9IKsaQshiMOVUNIR1rzaeIwnAe+8B1l7l/loP/r2rCQG/5pVU1ErUp9nhhiqlHB8B4zeZyqp56gF3pxueMQI1RSutQJQjXCz1EXBXi0b31PQ6U6lsLh3vvs8B37sBGx//BB4N/RUCky7qehHmMoprS4OyteUuSIqeZzxkkZ7GtaEDhiJz4nFDybcTiAAbX2f8PeQSqE0669QkxXDjy9Wo2QK1+doDtbmMgngogE9fdy7WDESx88QM+qJBRwuJZcfuRkio4Df+7A+NVMIqOT2bQUbRsGlpHD2R2hevsmXO5zxF8sxzwG8+WfqAZ3Y7NvH6QF6nHQr4MRAL4uR0Giem0tYCf2/UWMCyDOKOPgw8bVPddRX4/Vcrfm92+PW2JyLW1cBLKgzUqE6taaFAbXy+ZjUNMAuTS6xETKey6O2KAJf+v47H1p365YLdk5qNkTkJy8z0gIFYsMrUR+MilFV1R++YvP0Uw3ii1RQ1fiEc7DICtcQCA7UfP3UC2/e4u6vd8/wZbHu69tQUIHeTctrzL6KZSOI0IOfXceiBCNBbUD/kFqiV6aXmqFGroQ6mGJPzstW+g9MbNW2vS5zbzUImq8HvExz1TN0RccHnbTGePDKFpKziDRe6pz0CqKDhLgMO/BopWcVK/wzWhIx0psJJiKTo2Cy8BB8rOIe7z0LP0rUAzPracDdw853AuW9yvlRyxOgxVQAPxnuLqWCMFVHUnIHa1ecsyUuDK0YsFABjuSBKVjXr2nvKTMurX+qjy+9juTO9323iWwnTKdlQ1GZOAE/9p7U9LmRw9nNfq/g4Cam0olaNgsAntXlBzYu/AP51C/7yzCfx/fRHwO54t+N5B+OvwAvj5u/FXlfLcTEU4amPXcEAfIIz9TEeCmB5TwSDXUEcrsL5MWEGrpGgH19+x0UAnEYi0HXE9rrY7198E+ArWMyeH3NXEMtgz2JaiFtiufOZL27MZRTg918B9DKv43K+uqX/L+sJ4w9Hp6DpDBtNEzq+KDOXUQBdB+79hPP4p3cBNVz7k5ICQQCWxEN5bUcWimGm5atp4YJYXDo+UOuLBXHJqt6anz8UD2FqXi7a2Hlq3lwdfNl/d1zourITwEuP1vzazYauM4wlcoFafyyI6VTlP377Sm2purNM1rByD/gE+ITWqVGz1y3F65D6+J+PHMVf/ew5nJzKr3U5Mj6PT/78edz6kFMtqAZ+g4gFi5mJ1LFGrZii5pL2KPVtyksRA1BTLzXZvFFxcj2R6qCozct59WmAcTPXdIZkHQNcr+CTxcLV9v5odYsv1bB97wjioQBetWHAfQfGXAMjB7t+gHft/RAeFz+M19x7Ff534LuYTOYbhsiqhkt8Ls6RZ12KPnPyahkhiWHgnT8A1r3Guf/O7zo2cYWgt5iiNnPcabThD7qmWUaCfnz0tRvwli0uqb02CtORxxO5666V+ljGfKEc4VLOi24pomd2Vz0x5RbyfbGg0TuxoM/cwPiTgFxZcFIs9ZHb/lelqBUs6uCZ7wA/f3+ecYigOuvF/n3sAnzkjt1GtsjQJsfjroFa1jB58PkEY2GkQFHj15X1Q11VOT/aA9fL1w/gk6/fhLdfUnDdPPkkfDMuJRmv/rT7YsUjXzLSkavACtSGusy63YXVqJVyfQSA+bmZylwqXQM152Ll8p4wTpvmMXZFDYBRg7z3TsDtM8zO15QOnJBUdIUCRnpzPV0fSVFrGTo+UPvhBy7DJ17vkpJQIUNxoyllMXdDK98+vgzY8DrnDi/8rObXbjYmUzJUnVkFt/2xUFWGKfYJcilVw5jUByAIAoIBX8sEaryWcagrhO46pJDNpRVIio7P3P2CpdLoOsNn7noBWVXHaEJakPrBbxCFTajDog8+ob6KWjqrWoFSHi5GIqkelwlPDb3UJFXLM2iIBI3LYb1q1AoDNSsVpwXSHzOmI1ghy3rCmJyX69Jrzo5i9p177XlLiptmTB4CZk+UP9joC1gz/7z1z5sDv0P0wJ15u8iqji1ugdrKl0P0G2nbedd0fwC44mPO/Y8+DEwfy9vEa26Kuj66qWkrLjECQhf+19Ub8N7L17ofyyRWYPDD69PW8PoplDdfKEfQ74MgFLk2D50DiAWNtKVZIyitgnlZhaIxY3HzlNPoxa8rwLFHyh5H11lR18dQwI/eqFjVxFTmxkOMAb//F+A3fw2gdBCq+0Q8rF+Ck9Np/P8PHMwzirGYOQ4o+QEeV+8AQxUqVNQGzevKxqVdODyWrFihN1JBc9fYj1yzEX/x6vX5O7m1Flh/DdC/Dnj5B52PTRwAHq1c5QQMI5HBrhD6YkH32q4KUTTjfRc3EzHTFY89CGgF85DCcxUApo8Cmdm8TW7p/3whWhByrr58USYxnwQe/qfig3arty5DQjLO41jI70mNWizoR0T0l/RaIBpLxwdqCyXnIOXuLJZXGH3xu5wH2H8PkC1iN91ijJk91JZ151Ifq7PntwdqpRS1nPoSCvhbLvUxp6jVPmFXNB1JWcW6oRiePDqFbc8YK3U/+uMJ7DwxY9W2HK2ihqGQpKS6TnQEQUAs6LQDXwjVKGqJ+AbnfjX0UpMKghHuOplZ4KqlrjNMzstWSgmHp8e0gruWfbJoZ1lPGIwB43VefX3q2DRm0wquL+L2CMBVTZsb2opTbLDs8Tce/o6RkmQiKUUUtZVbARRJ2z77aqDvbOdzdn0/759la9QqrE+rhsJ0ZN4m5eVr+zGbVpCQlLJ9p8ohCALCAb+7K6rPDyy/2Lm9yvTHvCbMbu0LgIpU1VRWhc6Km7AMdZU2AStEUnXDeOihzwM7/rmi55zqvxzziOKGzctw2xMvYfeY6qhVB5jD+ZGr2YDTYn7StgC0YagLCUmtOOAspjDm4ZZafKHpfrr2KuCsS52PP/71quoRD4/PY8MSwxW6N7KA1EfNOA9LmYkAQN8Jl+Bzy3uAgY3O7SPP5/0zp6jZUh/N+c2qvijCR+8DbrkQV/58C34a/AJW7Pir0m6Ybg7GZTAabgcQDQbqtjiqajpUnSEcMLImhuLUS62ZoUBtgZSSjedlFVlNzwVqm64HQt35O2XngYO/9XqYiwKfHPAVp76Y0QSy0hU/+wS5lEGIfVJvKGqtUec3kZQREf2IhQKWKUOt9Ur85v2+y9fi8nUD+OJv9mPn8Wl85b4D+JNNQ/j09UY9xOEFBWqKoz6NY7jM1eemkVWNm0algdpMbL1zvxp6qfGG15x62fPPZRQoGnMoalxhaQVDEck2WbTDf9ujVdiCV8L2vSOIBv24+hyXflwcl0lkau3rsF27rOzx+9PHgMO55+uJEZwlTOXvJPitWivXtG2fD9j6fufBd9+el/5l1ahVo6i51KdVQ2FvQ24kcpnZNHx4Or3gGjXASMWUil1vi6U/VgEPjodCGjD2ovtOhx/MC7rd4NfHYoFJtU1+JUXDVrwIPPGvFT/ntz3vQl9UxFdvvAhLu8P4m7tegO6mqk3m9yuTlFy9bnckv43LRDJX+8pbClVqKGK0KygRqE0dBaYK0+WFXCaQIABv/oazVk1XgV99xNVYpxDGGI7Y3BL7YkHM1thbshLXxwgkLBt3cVs87y0Vna9JWUVY9OW9xjKzl9ql/Vngrj8H5k7Cr8zjFb4DWDbsEhTaqUFR4/fhWLB+iho3bOMLlYNdQXJ9bGIoUFsgpQoxZ1LGzcIK1MQIcP5bnQd5vj3cH0fNvj12MxFFq7wmJ1WBoqabdrtc/QjVkPqYlJS6GEZUi72+IB42rIOrsZu2k6uDEfHlP70Qiq7j3d/+IwQAX3z7ZqzuN/q7eKGoAahrGgYPjBx91HTNtYZjMuoWqBWpUSsRCMuqhnDAJVCr8TuxxjefU07t9BZR1BRNb7p0yGLmLlYfobn63dQ1neH+F8fwmnOWuKp4AID0tGuAo66/tqJADQDw+K3Wn8GRZ52PL9sMBI2UqKJp21tuNurJ8sY2ZfVvA4zfZlj0ub+X9LS7i+mqV1T0FopRqKiNJiR0hQI4b7mxMDg8nVmw6yMAhAO+vGuWpjPMcOWxzMQ3JatlF3d4O5ezMgcBVuT6Mj8KjD7v/pgJD9SKNQkfittMwGZOAL/6MHDb9UYan0v/RUnR8EblQfcXu/gmvEG8DXes+JxhunH+24D/5y48NL8OG5Z0IR4W8b/fvhmHxuaxW3LpN1dwPhRT1CRFQ1JWrevKRrM+qtLFuLkiqaAWhx9wbEov2YK9c0HsO5Mw6vCXbQaudDHKGHkO+MM3y45hPCkjKamWCUdPRISk6DXdj7NW6qN7A/d4WMTVvucR0PPrUxHpB9ZcUVmgJimOPqL8GnhdYGdpB1o3albURERDgbo5LVuuvuY1nhS15oYCtQVSykFqylyRHbA3lLzY6QyFow8D8+OejG8xGZmTEPAJGIwZnwkPUCvtpZapoEaNr+bmUh+rD9Ted9vT+NJvq1/ZWij2uiWuVNVaQ8ZX7fuiQawZiOGTrz8Hqs7wNzeci5V9Ufh9AtYNxhakqCVKKGpdofqlPqYV4zgORW3mOFBQoD/HopjyufTYCvcCwQL3Vk0GUpNFX1cqMBPhfy809dFKcXVxfQTyXdwA4LuPv4RrbynRxLkBZIqkPi7vNlaTR+qoqO0fSWByXsbrL1hafKcXfuacuPeuRmDp+djNNmCy96K8h1S4BEnDf7SCvfC4i9Jz1lbrzwEzG8BBbNB9sW3nbdafs2kFvZEiaY9HfufcNrgJiBUxUKmQrpBZo2ZeQ0dN991V/cb3dWqmPopaWPTnXZtv/+MJvPpfdhhBoOvE9zlL/froT3b/X/beO0yO6swePhW6q+P05CBplCWUUAAEImOTMcEBbGPACePwc1h77fXib9cBe+11zsZe4wS72NjYGBMscjAmBwkllMOMNDOa2DlVV9X3x61bXVX3VoeZlhCg8zw8aKrjTFffuu97znsO3vHzpyoqIKj0sT3OZlo5UMX907JV95I+0o1pqQD84UrCivY9TeaLfnYS42aoFfM4sfgs+0QnfRS47EaE23pwp3EG8LZfAO+8Gca8s02JH2GO3ryoC5eumIY7+jizUbZCTTebdwqnUHOvKzTmZccwG9TsRrGkI6dqlRk1jqT0xgPzcfFP/omLfvwEfvfUXnLwjM/xHSwf+++K6y0Ay6VyfofTLXEyKgPLTETiN3ckUcAlPnbOEYsvJjOnNRRqyVyJuQbObA1BEIBl6iTiJ0a218Q82kGljyTUvrHNUdqoPFqoHdk4WqhNEXQQk3eSO/T2FDNPYedpDA3Y9JdD+TYPCw4m8uhqCljmE61mgVqrS5y9W+RVqFEWpyx9rH9GrX8ih4FEvvodGwy7ZTtd/Cc7pzbhkldde9oc3P/pM3DNmrJt/fzOSE0XcS/QCwQPjdTLuz9TCxyZyDajF+MZzt9MEOrOUnMHXguCgKBPqs1MRNeI89vafwd2O4usES9GzdwkTbje/+aBJEZShSNq1jLnkoVSNAVlBHyiJa1rBOhzzW4L8+9gGI5CyMKiixEO+GBAxENLvkEKqOaZwMqr8L7Qz3DAP5d9jMmqRUfWs7fNWG39szVC5mu50uQTPsge2/ckMEw23BNZ1Vv2uOVO9ticM/j3rQPUiKc8o5ZHTyyAWNCHaEBGnyl9FHhZYHVAcRVq6/omkMyXkM6XgNZ5gD/qfEAxRUwaAOwZzWDrUAo3PrrL8/nptSIyyvl87KhSqFWTPnZEFWSLGvIb/goMuySWiX7gtvcAv383kCLunItyLyJkuGbJlSbg3K8CoojelhD2j5dvH00XkcipFusFABcd24OtGof5HylLH2nTMWgzE6Guj+51RRAELOiM1CR9pA1Br8IVhRSw90nm8KkXXYWb3nsCmgIydlOHSVkBLv0pANd5VMpX/Vx2mtej+V1ut8T65Y9VGw9qHmcJHOZ8sdlo6T4WEFyPje8jrLeJJIdR620N4e+fPA3T4y9WfH+6zDEH0gp8R8gKSJlmIiG/jJyqQfdwGK8HtFmimM3JjkgAE1m14SZRR9EYHC3Upgg6iMkbTKYXnVb7ULkolodz7Xj2F8D9/wE8+CUio3kNZC25Yc9QA2CFltZqKOIwE/HYtFoyOd/kGbV0vvTqSB9tjBqVoCQn6fwYdxkWCIKAY7qjDjv1BZ1R7J/ITXrmiif7oAi7GbX9LwJPfA/Yclfd2YDuz9QCp1DbK8701tLXkaVmGAYKJdPJzYZQLXMAhgHc/n7i/PbsL4BbLnW4t3oxarIkIqrIzpmMYgYzB+7DR6S7UTjIMbd4lVBQNQQ5ro+CIKAnFsRgsnGFWrmh5cFC7XuKGwyM499vuR0eFLuBd94CfHoj8NYbsbPUgSc638M+ZvtaYGgTmiY43fAZZUatNVRBtj3zZD6jYErHErkiv1ArZviM2uJL2WN1gpE+mk0zQRDQ2xIiM2qaAZ8kMpEL9SDoc0ofKWOfLpTItW2ad57aSKoAWRTws0d3YutQkr0fyIZdkUVIA5U3wRh4ySqieKDFjZfUzzL64TUAKLavJd/tfBIn5dgiBgvPJ0ULyOZ9MJm3NsD2rDCKBV0R7DQ4hdr4Lis4uhw0T757TUEfCiUiDbSbUVHMr7FQq1a4YtejbM5YdBpOPuUsnLukCzNaQs7mTO9qEjnkhmvezo0dw2nEgj5rbZzK3G5ZyutxPu96BCG41iklVm6MKBGgneP4bWPViPyfbVYu9g1ByDhVUEXI2BtYRGb4mmdi51k/xzP6Yvb565hTMwyjzKgpFQLn6wT9DtNmHD2n6nHpPorDh6OFWgPgRRtbG5CIawOynOP+OLGXaLyf/BHwx6uBuz75mivWhpLOQo1uvCZqLNRyRQ202VvwWIxojgjtIPtl0fO+PJQ0IgEpTHEOqV4USzomsqq1QaCzE5O16KcXtphX5x5kY2AYwK46snYo7BcIHiKKVM50eeVu4NfnAA9/FfjTNYRlqgNlRs31Whw9/5Ayx1uiUUeWGi3uFVdxGKiFUXvpFuLWasc/f2D9cyRdgF8SufMxzWHT5cwwgFfuAX56Iv4t9U18wfcHRH5z2qSGzQ8Fch5mIgBxPTvoZtRycXIevHhzVRMXN8aqFWq8zfSs04COYyBLIgI+kckXyhY07Ow8n+8G+ucPQtZc0s1AM2GETFSUbQsCfw03N6kTWZXv+LjjQUbKa83LTBG0YE0XSihpOkbSBWuWprc1iP6JHIolHcoU5tMAp/RR1w1rbbHWMY9CLVfUkC6U8IFTZyMW9OHzf96AEqd7P5YuYlEoCSE1UP3NcGaqKCiD5LU+dkQVLBD2IzDAkTPaMbIVeOJ7WKNy7meTwPa2hmAYwECcfC8oc0RnsQBgVmsIWSmKtM8l3dZLVsRDzjU7RAurZE611j27m+yCzihG08Wq19hktUKNx4QtPI+c6yBz54Pu7zxvrnLcmy0FSAE7vzNiNQuoRDg+SUZNFEgDjAv3Gg0Ax1wIyLbvZhX5o6eh1t4nmEPbfEvwH+0/Ar44CvzLBmyNrsE2ndM8rGONz6kaSrpBZtQoa96AObVyQ4CcZ+2TyBY8isOHo4VaA9Ae8XuYiRThl0XrImqhcxFybcsqP+m6/wWe+kkD3+WhhWEYGEzk0NPEFmq1Sx81y3DBi1Fzy+QUWbRsp2sB1Xg3oitVD+i8ot1MBJi89DGeK0ISBUQVfiEFlLu5kynU8qpuXSB4IK6P5t/wie87g2mfv4lrAuIFKnllzCs4pgsTkfneFxOuRb9HoebqKFIE/VJltjU5ANx3PXt8+BUriJcypzzmojnoh5TsA/7wbuCPVwHJ8vsTtALwwBe9X/swwstMBCDD9IOJPJEIPftL4JbLgO/MIw2muz8F/Hgl8Og3ALU21o2yKFzXz/QIsOVv7HGb+6J7XtIwDGSKJQQDCnDyJ9jH8ti56cc7QtSryrY7l7DHxsgmNZ5V+WHXvI0jnZeZIqyCtVDCaLoITTesptnMVsKoFUralObTALNQM1mjA/Gc1Zm3/v4eG1+qOFnYFcVXLl2KDfsT+M2TrARsPFPASf4apWEVbPoTORWiAER42YwgbPd7JA67ycOTP0QMLgm5LwTMO9v6sbeFzAL2m/LHHcNpRBTZsnIHyGc0pz2Mfmkm+xoHNwEoX5esHDVaqOVV629on3mnEsJqwdcVzVV03eGIamHhBdY/u2MBHHSz6G2cmJSx6oWaXQ7aEjYZtdwkZtQ03ft8LhWBrRw3bfd8adVCzcNQay/rJLk7vJI04QQBEAQMJXLYYfAKtdoNReyB25RRyzZgTs19npW9Fg7/SMhRVMfRQq0BcDhI2TCWKaIt7Odu2ArLOKYibjz0ZWDHQ414iw3B/z6zD//YPsK9LZkrIa/qDkYt5CfzLIzNtQeyqoYWswPqtVkuOwTapI91sGOpglNicrjglq2UZ9Qm1x2byKpoDvoqyphmt4UhiYI1wF0PeEGfdkSoPb+aY7JnADDZUpVAP1N6IQJALrQcGU2ueaF3/lEdM2p0s+nOlHJLHzdu3Ypb7nqAFB2GQeSOKi/30LA2W/ZQWjfOFNbhawMf9t5k7n6MCV2dDFRNx1fv3lKeK6kTXmYiANAVC6At9QqMH68E1v4bec+67TzWisDj3wJ+fjJf6ufCWNp7ncT6/2MlWaF2YPEl5R9d85KFkg7dMBna465B0d9S9T3Y59OAGmTbbRzn0fFdMAwD8SxH+qh6zO8s5hiTTBIRRUamqFlGL2VGLYRCScdAPDclx0eAGO7Q76t9/jVtrqvcje/gyxhOkO9Me1TBxct7cO6SLnzvge1WYUMxnilipcCRAHcdyx7b/ZgjFsGORI7ItkWPebyOQAnvkFhWBMsuZ109eVhwruUQCgAz28i/abj4zuE05tmYI+thnVFsLnHWqX1PA7CZPPicjFrCZNRaw37HZzi/xYcVwk4ktjxEZmV3Pw4ceJGsnzZUlD4OrgMyruu6HADmnGn92NMUwFim6LxuehVqHtEJ45kixjJFhxyUMmqTnVHzPJ/3PQkUEs5j/ggJ77bDywDHBFdVYhjcQm1/7HiHhHMwkcc+aRZzv3oYNft1OOhrJKPmtOevFDN1FK8+jhZqDUBHJIB4VmXMABxh1y4oaz6EF3VO4KIdhg78+YPA6JExu3Ljoztx67P7uLcNJp0ZahRtYaVmRi1XLFl/Ly85I91Ehy17fqkuRo12fj2zgA4R2EJtaoxaopJhgQm/LGJWW2hShiJJWyePh5BfRqGkozS0mW+jvf5WUsTVAIsl9dlea3yXc/MPAOFOhJq7KjBqtWep5V0dRYqAzxbo+9RPsPi2fyqJJAAAIABJREFUU/Hel66A8e25wM2XVM48HCROdfasIwc2/AmfGf0ygkaFv4uu1hToWw1P7RrDb57cg/s3e8/xVIJX4DUA9DQp+Kr0Kwj5BPd2C+O7gf97O5HEVrpbpsDKwwGy4Xvht+zxVVdbs0EAm+lH/x1WJMAfxsiJn6/8PgHHfBpQg2y7eRbJXbMjfRCZ1ARKumE1nCzseoRkZtphn5dpAGjBSmeJumzBvACwayTTGEbN3OTZZ6OshlPLHCAQcz5IzSI3QDanHRHCNF9/4SIUSjqe2OF0CRzLFHFMicN4rvkY0oLL1bWYBvb8g/s+k1XCndv23IMmwdVw8YWAi78PnPhhz8dZcDEzXdEA/JKIPhujZmeOKOZ1RvBIjlPgmFI6ui5FjAyg5plCzbGuHNyMGX94E/6mfAnnPHcdmae75VLgpjcDN54EjJeZSbqec81EeA2E2ac7ClF6XR9O2tbeUBv7WWsFh0rAjk0HyHpBIyMA0nBVZHFS8SRFTfcOb+dIE7HgXMDnMvjoXsZ+j5P7gfQwVHNMglGVjG5nC1tJQaJthUPCOZTII9XEK2Z3ejYY3LA+t4CvzKg1IBbHff2jctrRozNqRySOFmoNgDWI6WKOxioUasFgEB8wvozfL/g+cN5/kf+Wvp29YyEB3HalJat6NZEulBjHOgqqX+9xFWokOLZ26SOd7fAyCHHL5JQ6A6/pJm6y+WWTBWWBqBY87JcgCmUb6XoxkS3y5VUuWK5gdRp8VHMJoxeNYr+HO1s+AWy6o6bX4kofefKQzsVoj/qRKWp8x0mvLDUOCq7AT4qQ35xRi/cBD90AGeR1BDXDv/jbYWY7jdry8iw88wvgjusgoYbPgSf1qxP3bRokb2kSNvolTYeqGZ4zaksK67FS3F37Ez7xPYeznRukocUpbHc/QlzYHBCA49/vOBJRJIf00T3zKK/+AG4rnVX5PU4/3vFjVdm27Ada2G55eoAUGYw9fy3zMlMELVhpnmWPGcxLLfr7J7INKdToervjYNoycrD+/oLAZSnEISIn6zS/F3Pawgj6JMYII5nJYmaeU6jNXIMNgdXscZuJjx2JKoWa+CKnAbDsHaTwOP2zpIj2gqQAC85zPp8oYHpLEPvHc0hkSVHFK9QWdEbwjMYxohnZCqRHkFd1XC//HiffsQb4Rg9mv/B1CNCRzJUcOZzoexb47YUQvBwEx3cTu3wTFc1VtnFCmhee7/iRFmqOWA5B8GDV+I3l9f1xMt45w/m3bQ75Js2o+b0YNQ7jlZrOaYr4gnwZ88A6h+zQ+dyc60DviYiGI8gUNathP5TMI9LciVHBNZNoaMCoO1icj5RVYMuMs+tU4J5RC/gkNAXko4zaEYqjhVoD4EUbj2cK3gPyAKLhMF6QjwdO+ST57+03AXPPYu84up3MrL2KMAwDmUKJKUYpqLlAt7k5oJhsoVZN+li25xfrsjWnC1++QWHNtcI9CC4IAiKKPPkZtazKdu05WNoq4PrE12B8vRv4xWnAhttrMqmxLhAVpI8AoPNkjxSVHNVs4NrzT3CY245FVkeZK3/kmYmkh7jdS6ujKDuLkSBl1HY9wkruqmFwAzTdwHimiA47Q/T4d4D7+AYrOSnKHtz5MLHLniRKmm4xaYwBQA3IuyzC3Thmp8fnGp0GiB7n5D5240QxlimilXcuv3QLe2z+2UDrHMehsCI7usxUGkRng1sjCr6sfQADUY58DiAmIiHnZqom2TZnk6oeJBswB9td67zMFEEL1qFEHn5ZtNaHGSajZhhTC7sGyPfFYtRG0lhisiOOzSOnUAuOboQglAtgURQwrzPsYPvzqoZedR98hutvHmwBWudiXfRMMNh6D7eJmcipnmHXGFhHXCPdoLELoVbg9M/wHwuQc1Bhv7e9rSH0T2Sxc8S0oOcVal0RjKMJySaOmmbfPxHZ+wA+Kt8DUS8Cho7ml3+JD0prLUatPeIHtj9A5kKrMdo7HrTW+kROhSJzQtgn9gJDnMw6V6FmBd1PYU5tXd8EFpgB4Ha0hPyTdn308RoPxQyRf7rw3W0d/CfiGeD0P2uTHbrWJk4RiNmnodk8t6mrL80y7JMnL3+0v4dDwagptkZl+9EstSMWRwu1BsDLMWc87c2oAWQo2NGxlWTg8t8S+YgbOx5syHudLPIqmfvwKroGE3kIQrljStFWV6FWQlNQhih4M148M5F67PlfTeljU0B2XCibgr4puD4WEfMK1bXhsqEf41zxBQhaERjaCNzxIXKRryKn9bxImaB24NLBCqGfB17gz6+5kOXZ86c5kr2maVZThFuoyQoQ4YQmJ1kHOXp+KS5GLUgZtf0vVH3fDIZfwVgyBd2wWWhvvx949L/4959zBq6ffgtGDY58qIKjXTU8t3cc46aREbOxqgHWnAzP3GPwZUQPcORml/wY+NctwMeeZNgpAMDBzewxExM8Rq1U4M/ncjLM3FER1OQmZJ6jPklEJBTGLb1fI8WkGzM4TA1qkG1zNqn6KC3UbN/NPf+obV5miqAGPzRDjc5HBXyStS5PnVETkVM1GIaBnQfTWD6jGYJAIk8scAq1tsQmtIX9Doe+BZ1R7LIxauOZIlaJHKZh+gmAIGB708lIwlX8qFlSrLmQzJe8GTXO/Ow2cT4KXSvKB076KP9cATwL7N6WIPrGs9ZM8IJOtpib0x6GKAC7QpziYO8/0bPzD8zhz8m3A+O7MZou4KziY0Rh43YP5SE3bjE3nlLQLRymt/tYkkdoP2Q2YJn8RJtTqgUOo2YYBtb3x7Gyt5m5LRb0TTrwmsuo9T/LyOZTShdu3ibgvk1D7P17T2SP9T3LZ9Q85tMw+zQrJzOeVVHSdAynCuhuCmDAP5u9/0ithZrNTKShjBprptUROVqoHak4Wqg1ADxGLa9qyBQ1ayidBx7bdLAUgnHZT9k7V7G9PdSgXep4ToXGCVwcSuTRHlGYjm1LjYWarhvIq7rZyfZ23nPbF/vrNBOhGwpVM7i/x6HCCEcOFw34Jp+jlquBUcuOo/fAvezxPY8To4d//sCTXfOUfZiIKDJE6FDGqlxweDNGLhDjCtE5+J/iXFCjPdWHnmvMUvOaUbMYtWqFWqidPaarSPURQ5GOqALkk8Ddn+Y+PDP3IuA9t2NrQsYLwVPYO/A2UDXivk1DCPhEnL+0e1LB1G5ZjANP/og91jqXzI0JAtBxDHAq53ce2uT5Wpmi5nCyA0A2Q2rGeSzQDCxwdvoB4uyXcUgfnYwaQJjs3fko8O7/I0YJdqz+EPe9VVUDcAxFpAkiCXV8N1/hSFkXnMfOy0wRlvQxkXe4DQKE7QEwZXv+oE+Cphs4EM8hVShhQVeEKAOqMGo92R3oCTuNNeZ3RjCQyFtNofFMEStFznXOLKQlfwCPSJzvysu3MYc8pY9aifvd+nXhTfjZI7YCwxcE3vT/sY8XfQ43RDt6W0OIZ1Ws64tDkUVMbwky91FkCbPawngeS9kn2LYWHcNsXltQKOK0V76Kd+lrcdnuG9jZXQBjYht/TeojJiWEYeT8PbhOpGwhGlFkRBWZZeh5pjocRm3fWBYTWRWrZrLGPi0hvzNbskYUSx6uj5xCKrzwTCzpieGLf9vEzsPNPJl9jgMvIJUh64/jGjiyjTufhuknWGqgeFZ1OK8eDMxln38SjBptTjd0Rs2mKPEyxTsSkS2WrPGMNwKOFmoNQHtEgSAAA7ZFjGquubMXJlpDzo3AtqEUTvnmI3gixZFwxftqHkA9FKAbIcPgOzQNJdnNAQDMEkfwRf0X0P5wFV/+Y4IWYCG/ZM5BeM+oSaJgddImayYCHF7nR3vYNUU0MDnpY6GkmVEGVQq1zXdA9JLvaUXgoa8AG/7IvbkWRm2uMABRq1IIbLy9qowvWyyxGWrcQq2reqFWY5ZaJemjqKa40QBYfR3QuwZYdDHw/nsw3HU6cxf1AJnZ64gqJLyekwd1W+ksbD/jJzBkBf0TWezvPpd9rR0PAEWeu2Rl6LqB+zYN4cyFHZjbHsZIumAFw9aKsnWz6/IwvgfY/Ff2Aad8EhBtf8duTvTIwc3cpoBn2DXP4GDBuVwr+5AilaMiUGbU7DOP1iZk+vHQr30Yz/jX4CVpBfCuW0l4LwetYX/lfCoOmxBIkpkhK79L14FtHHOYJVMPuXYj4peRKZaYPEuAWPQDgE+efNg1UG5sUGOI+Z0RRBXZyajFehlm2wcVJypOOXM5PoRsiMcyRawSOIyaafQS8Em4G+x3DnseB5KDjkOJnMqfx9r3T8I02SEHYSx9G37++C7nNWHle4AeF/O18j1AkGWFgPLf+LHtw5jXEYHk4Tg5vzOCB9KcAid5ACLPmAnAvMw63OC7GQLY71CfsgAfCf3AEVlhoZ/kv3EL18QBYP/z7GM8GMOuWIBt/NQ4o7a+nzjZ8hg1MqM2OTMRrpSXU6iJc07Hty9fjpFUAbc+55LVt80nxih2lPIQhohaxHEeecynwRewrscT2aLDeXUsxPmsa7ToT+ZKEAXSdKIqloYUaiUNkig4wsI7ogqGJ6HAeDXwxTs340M3T0L18hrF0UKtAQj4JCzojGDD/rKtNk14ryR9dHds79kwAE03sDMBINrjvLOhEz35qwR7gcPrMo+kCuhqchWlxQzevvFjuFJ+FNK2e4hkY9ej3Oe3SxoDsuhZRGWLGkI+yZL1+GURmm5ww1N5sEsND2eW2mi66AgqBcj812Skj7QjWNVM5GV+EebApr9wD6fy5QsEDyG/hKXC3urPX0x7DvxTZIuccOU0p1CLdKM15IcgVGLUeFlqrEV/JTORhaUdgGtDNKbMAN7yXeDa+4F33wp0LsZeH4dRGSbM0Yz4SwDHsCA57XRcX7oO8byO8UwR2aIGYc5piBth5x3VLLCrxpwnG17qm8BwqoALl/WgJxaAYQDDdcpZPBm1p3/qzMsDgHAnsOI9zmPNswGf6/cppkizyQVuoWYYfOdLDyaD2NKXYJiFYE6ljFq5qOuwzV/cujeCdyc/hV0X3kpyzDzQFvbXLX2MZvYCMMpmIoPrgMyw806SAsznFOdTREiRkM6XrNkYO2jOl6f5Qo2g35eNZqG2oDPKSE8hCNww5FWG0ySEmm1QQ5HUxDDmiYPM46iUNiBLeLa0kJHlwdCBTX+2fsyrxNCByyDxmOoF52D1wplQNcO5rogScPUdSM19C/bpndg7513A+V9nH2+CumseTBYcQdduzO+MYP24DKNjsed9asbs0/GruT9BXyEMzFzD3m4yask8p1B75W72/h2LgI6F3JfqiQU4M2qcIiS+j4kHWNc3QdbWLlYO2hzyI5FVre9vreAyah7zaZh9GpZNj6E17MeBCZdsVBBIA86F4BApYq1Cbfv9RIXCPPfp5u9hOnRmVStzrjsWQCLMYdQm9pL3WgWpvIqIIkMQBCiyCFEoKwamglxRR0AWHfER3U0BZIrapOfmDyf6xjPYcXDyc9yvNRwt1BqElb3NeLk/bi02dAPCSHpsaI34kVM1aybk7xvJRWokXahZ+324YO9Ycwu1dIEpRLD5r4jkXLKzJ3/Iff5yPpoMxSd5B14XnEG81J63VlbtyGLUfFauWz2g3ceWSoXa+G5g/3PVn8zDfSqVL1kXCB4iioylIsfwg2cmUWW+MlfUnEYihgGkODNq0S7Ikoi2sN9bosG16Pdm1BQXoxbwS1jByXHa5Wed2naK7CxpZHwzAiig47HPse/DF0binO8CEBDPFS0r71kdzXjY4LA6k5A/rt00BL8k4s2LO63Ner3OjznezGBmFFj3f+yd13yUlfCJItDFcVLjzKnRQsghER/dzro9CpLnTFdYkWEY5cZLeUbNyaiNpgs4EM/hm2u34vQF7bj8eM65YkNV2XbTdEZGqWgZ9PptNvjbObOGc04HFO+N/GRBc9SKmo4el7phhsn2THVGTTHPiY0HkogFfWiP+BEJuAo1gCsnO0Z1fv4zW0PwS6JlKCINrmMeg/aFFoMV8Ilktmb5u9j72ZQBSa/MMF3jFydL3mqtzUxTI9yGvW/+Oc4s/hA7V3+NayJCQd01AWB+h/fnu6AzgpJuINHNKazqwaKLgav+jEC0meSkzVgNwLVej+8G0sMmw+hio7myR2+mt7uJw6gpUSDS7TzGaSqv749j+YwYl2VsDvlQ1PS6mSKVZ8/PmU9D03Rr7t9zDotT5DaPkoKvqTQK3HYV8Pt3cmX0mH0agPL1mDBqZqHWFIAv1IT96GQfx1NtuEBy3Mh5LAgCwn7ZsRebLPIlNn6FXi+YYPMjEPGsiomsetjzcF8tHC3UGoRVM1swkVWxb4xsvugFvtJmus2ygC5gx8GUJQEZSRU8tN+vZqHmzahpuoExniU5b6O55wkgO84czppd8JCZq+LJqKnOTT1dqGudU7NLdA6XRX+2WEK6UOJKHydjz0+zWipKHzksltHK6exxup8A2ex4WfMDZHPMZdSOfx97bKyyFXG2qFnGDwCAQpIdlpcDZEYJRGo8kvLYQNeYpZb3YtR8ElaJ7PdsI1iXtpdLM5ljrant+LxyB0SebfY5X0aki3wGExkV/WZnt7c1hMckzqZt+311yZ0Ng8geT1vQjqaAz1ao1ceoWdJHe/H80i1AyXkBTxtBGBxzDwBAF2cGh1OoUVfFFnuhxmPTek9inBkpqCSIFgvlGTUboxZRkFd1fOa29TAAfONtx1YMiwcIy5ctat6bAVHkNtSWBWwzLHUwg1NF2PYdcrvvWtLHBsyoAUT6uMAMdCbute5CjWXUetMbHWHIsiRiTnsYO03zjegoJ+pjejnfTpEllHQDpaVXsPcb2ggcJHIyGu7MrF/9z3LYTT+w4DzLTZa3iafGU27jITdiQZ81z1SNUQOAPRFO2HKtWHk1cMXNgC+AWNCHQklHXooAXRzZcd8zSGRVLDZ2As//msxHpYeBfU+x960gye2JBTCcyrPqlSryx7yqYctgkjufBpTnOeO5+pqWXOmjh9EHzO+65xwWp1DrmFiHJqQRu/1yrmENACDYaklzQ34JPklAPKcS51VJRGvYj5Bfwnadc10a8Ii2sSGZLznO45AiNYRR4+Vk0tGVyTgFH27QZvVroahsBI4Wag0C1V6v658A4NEpdoHOr41nilhruhFNiwXMQq32fJLDgYxtcXDLgcYzRafTHUCMFHZzZI6Gxg0Ntpz/qsyo5VzzTH6TEamZUSsefkZt1Cwq3CHIUbMTXa/kY8KSPnoUUobBHbCfWPQe1hXRQ1KbtHXyeIj4JSwV2cfh2Hdy3vBeQPO+COdMOasF3nxapKv6xRbwyFLjSB8te2L3jJqIlZxC7fkSuyHfkGlFynBuiBU9i/cLnIt67xpg9XVoCvogCGRT0m8yajNagtjoPw450SUXLCQt6VIt2HgggQPxHC5YRjrcPU3kvQ3Wyagx0kdd58o4f6+9GUnDY0PK2zByHELHzVxGxzrJm09byJqIUERM5ox2mq0ZNdtn2x4lz//c3nF8/vxjLHONSmirlqUGcBtqx/hMNjg5CAxyNmOuDK5GwVmo8c1EGpGjBpA1nxYjUR6j1r2cBEjbH1tKME2b+V0R7BwhhVpHguMgawsip02VQvM8YNpx7H0f/BKQHrZMBhhGjdc4nPdmINBkuWLy1hUv4yE3BEGw5I/zOY6P1kuabNsLBod1tuOMz/NdbE/5FHDZT615TcqUJfMqt0A29j2Nt6v34iPbPgTc+6/AjWuI86973q11Lv97a6IrFoBucP5GVZrKmweSUDWDO58GwHIvrjgPygHX9dGrUDPR4WVB37OCYcdD6gS+rfwawign1w8gRf4lPyRuwyCff3PIj7jJqHWbzqthRcZGnWPRv/uxSr8eACJ9tJuZhPyENZ8qCqrONClp7uKRXqgZhoGEaT5zpL/XRuFoodYgLOyKIuSXsL6PzKlNZIqQRKFi6KY9VHXtpiGcMKsFi3uaiPU4t1CrI2S2wXAwaq70errwOQqR7fcTwwoeOIG+Vj6aTzIlLhVm1BrGqB2eQm0kTRaT9qh7Rs0HTTfqlnyUGTWPJsD+FwAXo6MbAja1nldzA8B9gXAjkD2AZsGlsZcDZJ4k7Mqr0Uvc+SSKTLHklD5yjUTK8pqOqIJRzxk1luXCxD7GyMJrRq1VHUKHkHQcKwl+PJNlrboHU0XsFGczx0X3BkhSgEt/AogiJFFAU8CHeLaI/vEs2iN+hBUZPiWATSGOTfQBTt6TB/6+cQiSKODcxWRz1xSUEfRJdTs/5twb012PMJ+fAQG3aOdiMOlRBHILNT6jRv8m5MUngL5n2MdWYKHcQbBZ83yyu4h2RMgm7PhZLXjvybM9n8sOuj671zsHON+neaJZqPEiFjoWc4OyG4GITerZ4yrUupsC8EkCKxWrE/bvCy1GIm4zEQCQfPyYBlfjYUFnBH3jWeSLJUzPcCIcHIUa+f3yqgaseDd7350PAj89AdH1v8IZ4suYMfYUiUYoZkizgSf1M40zWsNk9pW3rlhW5nLlQg0g8kdZFDCrzbsREFZkTG8OYlNcBjo5zDMACCKw+lrgnf+LrETiO/LwA+d9HTjva1bTCigzh8mcyp21Mrbeg/+QXbJlnpnF4ksdz+tGT8yDcalyTVnXR5rXqzwKNcqoJepk1FTNcDYeKsynUbRH/BhNF9jmqKxwi/8LhGf5Lz7nTOBjTzPGK81m1IDd0Cfkl/CkxlkP9/yDyHErIJUvOSSrIb+EbAPs+XMcRq3T9Bg4eIQXP5miBlUjn99kXI1fizhaqDUIkihg+YwY1pnuRmOZIlpCPqfluAt0I7CuL45XBpO4YFl3ueNzhDFqabNLLYkCEwJLM60cjNqWO72fbNejTFgn3WSF/DIUWbIYDzeyReeMGl2oCzXmoqULJasLd7ikj9RYxs2uUsaqXkMRKhHxtOffwLJpT+lLsLvQVLOk1n2BcIM6YjnQtZR0ees8dzOFkoMN4Gao2TrLdM6Ay0SG20lGlR2lHPOceVWDILDmCl0p1kZ+NLoI8YJziDtX1BDPqsi3eWy07Dj1XxwD+i0hcjHvn8haYcQhv4RtPo65wABnbocDInscxCnz2iwZoSAI6IkFMFinPIR+LyxGihNcnpx+JvYbnd4dTd6M2tguxslyPFNES8hfXid3PkxYdzuaZxHbfw9EXNLHTFFjXESPnRHDhcu68d0rVlRck+2g88XjHJfb8p3Y71OvYTp98gq1CszgVEF/Z0kUmHlhSRTw0TPn4byl3byH1gz75o5K+CKKj5/txLM973NufOd3RmAYwP5dmxHRXeYActBRyNAiMV/SgaVvB0TO+pRPYOG6r+MW/7cw7/73AjdfAnxrDvDXj7DzRaIMHHMheSlJRGuIP/tKG2OeAdo2XHF8Lz521ryqEtP5nRGSt2YrIhyY+ybSnJp5Em454c+4ovAlXNv8a+CUTzB3pc3gRE7lSvjERB98Qg3XxypOpN0mQ89s5Hnr/Xi5qby+P47pzUF0clyhgXLDkecmXQnFkkv6WGU+DSB7lLyqswwwwDdjcUPyA+/4NfDevwHt7O/dEvJjIlt0RGSE/TLWGQuguxhm5ONV5Y+pgupQtoRNZ9epgid9DPgktIX9dV8vDjfitvNkMjmhr0UcLdQaiFUzW7BlIIm8qmE8U6jo+AiUC7U/Pk+61Rcs60Z7hISsas2zSFfNjvRQVavzQwV6Ie6JBRgpEGXUrM1BMUM2XF7QVUbeZM9Hs4bGOXAbT1iMWo2h1+l8yQooP1yMWrmwchdq5MJfr8vSRLYIvyTyc65KRWDTHczhu4zTySaEe1Flc2/cFwgGQxvYY93Lyf/rnK8kA9O2TZBHhhpFR1RBUdP5GXSCALTMZo+POxnGvKpBcbleAUDbBPt7JduIRfdoir1A+KZzgmvtCLUDp37KcShmXsz7x3OWJC3ol7BV4Hw2NcwxAMDWoRT2jmUt2SNFV1Og7g6pw0wkcQDYvpa5T+k4YgXu+dyBGIfdNJig17F0sTbZY4VOPy3yLUatUEJYcX43YkEffn718ZjTHmYe7wX6fXU3phzgfJ96SvsBNc93uD2EhRotWLuiCte04bPnHYM3HcMxNagD9jWHujZGAjLSxRJ0dy4lR4bHMmqElUvs5MxLTT/OEcdAjX/yqgZEOoCT2aKFC60AbOQ4z845EwiW56a8ZHG0a9/lUWjYcc6SLnz2PO+mAsWCzgh2jaShzTqVfwebYYo/2oHnjUXwxfhFdplRKwHNvfyIkmqI9fLlpDZ4M2qV1/t1ffyga+g6oJXzQOsNvS64XR+rzKcB/MxbC7UUaiuuBI693HM9iplNuCEzdB4gc2UqZGSncTIAdz1S8eXc10Yyo9aYHDUmfgXkHD/SWSr7eXKkv9dG4Wih1kCs7G1GSTeweSCB8UyxaqHWFJDhkwQcTBawfEYMM1pC6Igq0HQDEwWQTrIbnDDJw4FMoQRFFtEZVZjO14ibUdvxIGsG4YZL/kgXn7BCZtTyHgxZVnXPqNVZqNlMPbxeo9HwMv+IWrMF9XXIElkVzSEf3wzhlbu4OUEvBE+twNRyCjV38eTGIKdQ66GFWn2MWso9D+eRoUZRNUuNV6i55vDyqs6dOYmNv8wcU3vIBoZKWIHy3Jc8fQX/PVCc+e+MU1xLyIexdBEH4jnMNJ3iQn4ZW4yZbHMm0UccF6tg7aYhCAJw3hLnZq4nFqhbx182ExGJiYjbkr9pOpqWXwRBqDIjwDMUcQVfO9ZJXSPyNTeqFDfWjJq5hvAYtcmgzZwhHqtT+thWOEDylniB3TM48tYGgRasXbHqBcVkQTd3Yb9kbUSjputm1t34mnEiez5P7HE4us5uD0ESBYg8yZpLOmnNqNEm3jlfAS75sWUyVDdcDJJXoTaYzKM17K86o1YPFnRFUCjpGIwdB7dTY04IOGIjKGPmnnF2325JB2spONyoInsEyPXLL4udWbH1AAAgAElEQVQsi9Eym/2cU4NAIY3hVB4H4jmsmun6jDbdAfxoOfCt2Wi77yOYIYw4mJJawLg+VplPA8oSaO61o7fad1Mg84EV0BLyYe9YBkVNd0gfASDew2FPeXP8JgzDYK7DxPWxEYyazm30TuZ6cbhhL9Tqnb9+reJoodZAUA32ur44xmoo1ARBsLq2Fy4jjIFjE3oEOT9misSuvTWsMBuXkVQBIVsgI3cWwI2dDwGFtPVjtlDC+6X70Pm7U/GFPR/ACQW+tXyu6LbnN81EaizUUnnVYv5yDehM1YJ4VoUsClbHm6IsfayfUeMaiZSKwCNfY48vugihppaaJbW8CwQDLqNmFi11FGp5ldiJO17LI0ONopJDGwCglbXNd8/sFUoaO3NSKiA0xs7J+GadyLwedZuKzlwGTfD4O7XMAY5/P3O4OejDzpE0NN2wzAeCfglx1UdmmNyogVVbu3EQJ85uZZxFu2MBHEzmWbajAvKqBlEA/IIOvHQze4fj3gefz4+OiFK5o+kVfG3DeNa2Tu5/nsyo2eELA7M85GEmGEbNPfM4STQFZciiUNmiP9RG2EMbZKNI3PXc8AjsbhRoweqeT2sk6Ho733R8BGyum+6GU6CJP4O15U7gjo8A310I5bZ3YlVzHs3jnPVkhjOyghr/WA02QSAus598EVh5VX2/iCASe3sbOiKKJeO3wy5jaxSobHRbyk9CtG24N3IF4C8zv1ah5nZVdt1uFWqcOTUHXH9XBJqBkz9e9T1bUmr3d15W2Gw7ABjfZc3sOxi18d3Anf+PmDwV05C23IkH/f+GJbt+zXUg9gKRPprFZanAl4m7CzXzbzjKa74EW/jrL8WSS7lyRzuaQ35LDWQxambTaKSDw6j1P+epksoWNWi64WhihvyNY9TcRlpA+XpxJIMSBT28APbXKY4Wag1EZ1MA05uDWNcfr4lRA8ryxwtNyVJ5IfGSqb06hiKZgoaQQjTM7o2LIyNMzXPlS7o736WUd3TP5+/7A77iuwXSxC50F/bg66XvcLO0si6HQGqZXMuMmmEYSBdKVqHmldXWaEx4MGBNk2TU4lmVbyTy4m/5oejHf8DchBQrdj8p6AWiyUv6mBlj5j0MQcIGdTo03fDIAOSft3Q+zzEP55GhRtFRwaENgGMmwQIjfWRdrzC0CaLuuoCHO9HcM9d8vfJtVk5OSxPyLR5Sp7O/BMjs59Qc8luNBSp9DPnMC/A0jmV3lTm1ncNp7BhOW2uIHT2xAEq6gdFK8j0XckUyvyBsv5+cG3YIEnDcNQDIRb3ijEANFv2OdZKXcTX3LDanzQW3mUimoDWkUBMEoXqWmiDw12mOXPRQ2fJT0IKJzhIdClBWye5qGAnQGUFOw4nH7qz9PJmjTR8Edj6En6n/iRlFTiPHZiQClM08GMl6uB14643ABx8AVn8I28Kr8Yywkpw7ksc1eNap5HE2tEf5s692GVujML+D/P12DqeBi39A2MFll+MnoU/g/tarHfdtqlKo0XU6WQuj1jYf+MBa4EMPA2s+Dqz+EPD+e/luuRx0c6TUY+kCtBZ+U3l9fxyyKGDZdFsz46X/ZRQ3QaGINx/4OfCLU4F//hAY2V71vRQ1m/RxaCNrXhbuZK4FdOxhJMWuWyOpAtQZHLkuxamfrvqe7A3ULtuMGgCMBmaxslRdBfY+yX2u8rXRNqOmyI2TPnLMcXpiAYxnilMaC0nmVbywd9zzv4H41FgwOkqyqDv6hplRO3TtvTcoVs5sxkv7JpDIqZb9fiXMaAnBJ4mYbc5OONiCI8hQJF0oIeyX0RIm8zWGYViFx2i6UJZl7HoEKKYdj81JUdyvHY+34jHnk275G7D0bcDEPpy6yxmEHYBKOq8nfcQ6ZhgGcq4cNWoGUQujllM16EbZqtvLsKTRSOSKXPdPegGul1GLZ1XWVSyfBB7/FnvneW8G5pyO9hdexiuDKdL9jPWygcLju4hFMcoXCM8ZNU4w7XatB5f+z4v48ZWrcOmSOSByHtuGJ7mfGEn4ne+b/u6O16rCqLVXY9Rqkj5qTNg19j/PPm7GarSGFQiC8/WGEnk0BWSEFRml3pXAuIuJm3YcObc5sF/Mab4V6ZSWgGkrgfUuh7Yqhdp9m0gxdcGyHua2rqYApmEU0trPA6VhMl9x7OUVny9f0ogs5sWb2BuPuRBoIg6Y3U0BKzeSC67z4ybiwCkIKGk64lmVFGqGwbdPN80eKiFsrgfUICBX1BrGgPAaU+yd5vPd5uwQRM/A7kYhFvRBkUXM7ah9Dq9eRAMyAj4Rx05vKh9T6Kyth0HD85zzyIYulRMi3DTdOs8oGOkj81onATNPwvfGXkDfeBb3vfcMYHQn8PfPslbonPm2joiCQklHqlBybI6HknlWujdFxEI+tEcU7B7JkDX5tM8AAO783mNYpDiLy55YAIIATydJv0zmlS1GrWsp4I8CRQ5Tc/aXiCPnjBOYQrgW9MQCeLGvzHrruoHLfvYkvhtpBVMeju3C5oFeLOyKlmWjug5svN37BUa3Aw99mfzXNh846aPACdeSzEIbNN2AphvwS+bz7n+Bfa4Zqxk5Z0vID0kUuE2+q3/1LC5GOz7Je19zziAzk1XQHCx/dtTuPmQy3VlVIyYx7vV996PAMWwTp3xtdLk+NsJMpMRpVKJcXB5M5jGrbXLryH/8dRPufnnA8/b2iIIX/vOcST03AMTN9XhRTxMe2z4ClZen9zrD0UKtwVjV24x7N5CNU6UMNYrvXL4cuq2D126XPs44gqSPBSJ9bAv7oWoGkvmSVXyMpApWNgxP9ri37Qz8Zf+xeKv/MecN2+8nG5yHv0bkQi4YI9scPFxe1WEYQNA2f2JdvGso1OhGzmLUDlOhNpFRucHnZTMRc+HNjAJP/ZhsLigEAehcAqz5mBX4G88VsTLk2jg89RMgO+Z6BQE45wYApqV9ugBdNyC2zWcLtbGdtkKNvUA48PSN7O8y+zhgOzCczAO+ICkGEy5L/vHdjBwuaRWFtZuJxII++CSBK1MCUJP0kXuh2vM4+7gZx0OWRLSF/UyhRi/E8qqrgJdvtW4zBBHCef/lOfNBzwVJFKxOfdAvk9kw3kB/lULt7xuHsGpmM5OdBQDTwsDN/m+hbYu5Gd6+lmTarbzS8/lyRR0tcpGf82MLuO6JBfDMbvc5Z0PrXOLcZ++e5+NAcgCITbfyANsifvI7us8XQQIWvcX7+U3IkoiATywzasWStTmaKlprKdR4DLIbvWs8A7sbhZBfxkP/eib3PGgUAj4JD37G+RplRm2STno8cKz9FS9GzYVkXi0XWu3zgWvuBDbfAay7lQQ9n/B+7sbYPnZAH0+MwYoNlz4CQHdMwbCL2eHNDvW2hvDwv55Z0QgnFvSVCzVRAnpXM0YVxozVEBZXdnas/p6DOJgYItcRUcBLfRPYP5HDzmA3p1DbibHMyehqsjWs+57i5lpyMbYT+PvniJPjmo85blLN3FSfbK6x3CYbew6JooD2iJ9p8pU0HTtH0vijMQOf5PXXa2DTgLITsyQK1vlEGbVsUQPmcQo1nukQ+NfGsCJD1QySITeFqI1cUfOYUStnqU22UBuI57BsehP+/YJFzG13rR/A7S/un9L7j+dUhP0SeltCMAzyfZ3WfOhUBEcCXt9l6KsAe+etFuljS9iPNtuQcNgvIeiTKjNqdQYkNwLUQp3+TvZwypG0TfrIGegd6T0fT+tLoCuu4kLNAr8+z3Og1hje6nwPZicprEjA7seBh76C5p13wg+1tkLNXPhoVy13GF0feTNlQZ8ESRRIYVQqAr+5AHjyR8C2e8v/bb0H+Me3gd9dDBSzMAzDklJaSA0BT/+UfeHl77QMPjqiCkq6QWQDVTL6uMUTxe7HgF2so2f3SmL4YG3Wao4BIJsLyi6ikGYYWYg+xyZXNO3HPRm1WC/Z5NuRGXHMAhTcGv0XfssNYqfzHO7XG0rmy6YNs0/FvdM+hYNGM3bpPSi99ZfAbA83N5QZtZ5YALJUNmdQNQNqx2LWdjw1wC9eAfSNZbFlMImLOGwaAMza9xcsEF2MxQP/WdE9Nq9qOF7awVpdR6eRjrCJ7lgQyXzJu8MrSkAnZ+bjIDEUoQVQa9jPn2udc3rNxU1EKQfBZouatTmaKqpKHwH+ue4GL/frEKC3NXTIu8vu14h4zagB0KPTMWC01f8i7jkq1N6US+RK5fUEIA2TZe8ArrkD+Ng/idyPA55JEZ3XORTFb0dEYZidnMrfQM/tiPDNo0w0BWUr6BsAsMzJmusQIJz71aqGIdXQ3UQcd2lkxdpNZF3apXOCuUe2Im7Gb1jY8Mf6X/SJ75Pmkg30HLDiVQ54MGoc8ExjBhN5YuLm68Z6Y4HzAdOPr5kNj5lre6fNeZU2jTKFEpHjujG6jbjrusBTm1A1kbXm6hqw4U/AI1/nG3xxYBgG8iXWnh8on+dTmVOLZ4uY1RrG6Qs6mP+Wm7OK8Vx9xjF2kBl9v7cL6esQRwu1BmPptBhk8wtaC6PmhiCQTsxIugA0zSBhuXbkExzm5NAjbTJqrZFySDdAZsPiWZVc5DQVSOxnHqvNPhMlyBifewn7xO7NoB2j2xw/UvOPRQfvAW65FPjnD9D+wCew1n89mg9yQnI5vwNANhYB2TsCoNGImwuLG4IgIBqQCaO27V5gbIf3kwxvBh79OvKqjmJJdz7f498iRa8dkh94039YPzpNaipLarlyRIDIVh78MvvY5lkQl1+BkF8qb9ZqDtZ2FYVeGWquDYaXQxsAIu2JzWCP2+SPhFEzL1T7niKdWzeCLcD0E8qvZ9tUDSby6LF12bPHfRgnFW7EO+Qfw7fiCv77MkE/O2okAsAyyMnqPsKguuFhKLLWkj1yrLs1FZGXfs4ez44SBtYDOVXD8QYnfHjOGQ4JUneMnFMVB7q5c2qkUBsz5+ZaQz7GBRYAcaKrEWFFts2oNY5Rawv7mTgS9k6VDQaw4Dxg1TUNeT9HImihluIwahPZIp7Xq9vVM+DI8hyB1xWQzKlcqXk1OObDTdBzmzINjQRvDSPzofVvyxyMGkBs5E+4FhB9yIhRfNP/SWAWx8yiTnSbf4ehRN7MbiSF2tYip1AbfBkX5O6xiheoeWAz53t++mexN3Ss94tmhoGt9zoOUUZNkUWiRGFmswX+vC9Qnte2oX+CXD+/cukyfMX4MLaJ86EbAsZjS4F33VpzgUuLUnuUA52pzxY1MhfZw3EK5jSrefPbtFDLFDXSsL/rk8Ad15Fm7v+cXjkWyURRI8ok3nnW3YDiJ+5uJNsw2SgGO6jrNX2vbwRDkaOFWoMR8ElYMo3o91smUagBZZkaRPGIcX7MmvlltPikXWbqANkRVUyDCRfbF+5EWwvpomxa+El+5IAHxOwoMa6wvQcAWLT7d477zRMHcc5z1wJ3fJhIWzxAi4hIQCYRAIeLUcuqnuHUVqHGm89x45kbkd5FClJrIUwcIMPZbqy+Dmgp/63pDCExqal8TnENPgAiHxrkFAxnfwmQFZPVqFSo8WIAXEVhFWt+io5KjBrgIX/ca/2zYOaoId4P/PEafsPgzV+0Zuo6ogpGzddTNR2j6YKjy75qZov1vqqh2dxE0vk0oGyIkavTUGTtpiEsm95kmZI4sPmvELxkRk/9lG/aYr6HFSVOoLnLQY2aVlQu1LydHycy5LPvKezmmCQJjCtfJVDb6pKmo1DSG8aotYb9SORUa2PIRSVGbenbyUZPfP1eammThWcbPpou4lGNkzXYsYjvCAkQNryHfUw9hVot4dRu8GZfhw4loxYlBQN1ZKVMBzcfswqaAj6So0YhisDF3we+0I+Pz/gLnmlqTH5fj21zvGF/AgfiOcSCPmzPx7jOj9fjd1hWNJme7fcBhYTzDr4wcPpncfvym3Be8bswzv4KX0r8gtNFlc6k+ySRP5/WuYSJRaHgqTH6x0mhdtKcNrzjwvNwfvYGLCn8Bi+e/1egia9W4MGulqCQJRGKLJavjTZVggWO/DHJZdRMGWWhRGKQ1t/qfNAj/1X1PdIGNY9Riygyooo86eLHMAxPBRFQnuGbSqE2kSUsLZUjvxEMRV6/V49XEdSKdjKMGgCnhrp1LnuHVyFLLe2SPtIQWNp97IgoZNPrRmyGdQEcVIPAtQ94X6B5sLFq2WIJARQQTXoUqhv+CPzPmcDEPu7NKTuj5pMOC6OWVzXkVI3v0gggqviQy6T5Qb9uGDqiD3waftgKv2duJM5Rdigx4AwnQ9RelVHbYUlquWYiXtb/PSvJZhSkAE5NlVFzuwwCjvk06/fxsNK2UMX5Ma9qCMoC8KdrCMPkxnHvdcxjUZmSYRgYThVgGM6L8dz2MKIB2dOZzfHWKKPWWu7SOyQtNRZq/eNZrO+PW9EeDhgGkdF6Qc0Aj3+Tf1sxjXkqx3XNVajR33+gXkZt//OAYVhrSGc/59yfdQq3QPdCWJGQLpSsLK9GuD4C5TXcnR3pgBLlr2knXAu841dc58/XEzzt+UHWm7v1kxGfflb54NyziPPgW29kJcoAmWP1s40HmplVya1X0w2kCqVJMWrNQR9kUXBs4i1310MkfdR0wzq3CiWT6ZjEucswahS+IBL5yf09eLDkZsk81m4agiwKuHTFNEzkStDP+Hfm/rKg4y1bryfXZJ7sccmlgD+M5pCC7fo0pFZ/Arjkh+z99vwDGC0rTmih5pfFmufTKOzz2hT94zkyM9wcwFUnzcKJs9uQh1I5ooYDura7z5ewIiNbMBsMPBnlrodx10t7cPNTe61DzLUR5tgHgEy+SAxX3BhYx0acuEAbHV65gN2xAJtPlh0nBXGpsntwqlCCphvcmXygXMhWXE+rIJ5TEQv50Bwi5klDb4AstaOF2iHAu1b34j0nzbQKlHrhkEQcAc6PhmFYZiK0UKNyIPo+26MKf0i4uZeYBQCEkYh2Ax+4F+itYINrx0i5UMsVNcwXDkBws3Z2pAaAZ3/BvSltW/gCPvGwMGr04unVYYoGZMxNPseE4xqBGHG8ciEwsR3/T/4bYkE/kIsDL/6OfdKTPsLM9jikjzEvSS0Jyk5ac2O2i5SX9f+5N1hsQVSRbTNqnAbDONtgSOZLEAQg4q8ifXShI6pgLFMkcQA8cJ0f7YWajhX55/lMVe9JwEXfdchdOqIKiiUdyXzJujDYg4VFUcCnz1mId63u5b8fG6Y1B/Du1b0Ol0ZL+ujJqL3kmE01DANfuWszAj4Rb13Fsdbe+bAlMfTEizc7Nj8UXYn1kOH6bsR6mb/ptOYg/LKI7Qe9593QfSzcgb6I9wH7n7fWkNCue9nH1Wl6QKSPmrUZakTgNQDLuZeyf544+4sowNycCBJw5vXAW75H5vRe5/CZjAHPTGQknYcGCRNvvRX4yD/If9fcSdanaSuBUzkBwrNP574O3Vh6uj6ibFE/mcKEN/s6lMgjqshMBmYj0G5JLcn3gF6PJsWoBX1le34XEjnVO2qlTrRFyOzVUCKHtZsGccr8dsxqC0E3gNTidzmaWxQBNQ784jR+M3L5OwGUr4+JrEo+f96+x3atowy3d6HGn08DXPPaJvonsuiJBeCTRIiigO9csRyXrJhmqaNqRcAn4UOnzcHFy52OpUGfVGbUZq4BfK5GRG4Cr/zjr/jm2q3WiEcqr0ISBUfTia5r4a23A8NbOO/AAPY9XfE91lKoDSVtBdn63wPfmQ/86mzgRysqEgWJbOXvn+NzniSoQskz1+91iKOF2iHA0mkxfONtx0IUJze42xEJYCKrkq7REVCo5VUdukE2QyE/KXLG085CrSPqxaj1QpElNId85RmfYAu5WNtyhfJQsFvhzOaM2Bk1DccI7AwcAw+ZWJph1A59oUY7R3bbXjuagj4cl/kHc7ww93zgvK9z9ewfl/6G7uwrRA7iNt6Qg45IA4qoIkORRfIZiBJfGmieV/QCYW0YDAN48sfs/ee92TEcHQnI5a56bCYxAbEjO2YVgxSpvIqIXy5/V7jSR3b+qiPq7EYzqCZ9LGlYkOfI+6LTgHf+L7HMdr0eQM73QWtuxdk1vfa0ObhsZfU8IlkS8c13LLdCb4EyA5RTNSLbcec/ZUYc2XV3vTyAh7cO43PnHYPpPMerJzldaTcMDXj4BsehVF7FwtzL7H1nn8bMafhlEUunNVmhtlwEm8lsmxsv34bxTBErAsMQRrayty/mzLNWAJ1RcxgONQDlxlTlTrKx8AJcVPoO/jL/v4FPPA+86QtTNm54LSEakLkzatb1oSlA1rKeFc6/y5nXO8+PYAtwCqd4A3HS80lCOfCaA6vJNMnCxD2LOpTIHzIXzQ6X1DI3xUKNshluJN3mKlOAJAroiip4dOsI9o1lceGybkstEs8WgQu+RTLq3CgkyXpjR6QbmHMmgPLc7kS2SM4PTsGH9bcCKmmSUTMRn2gAB15i71ulUAOcEte+8axjZnhWWxg/uXLVpM6j/7x4CY6f1eI4FlakMqMmK8AxFzGPOyn9EHKqhse3jwAgjFo0IDtMZMJ+GQqK6F3/A+83wDF0s6MsfeRv/0mQtMlSxfuBuz5V/uxSg8BfriXz6hzQ67E3o1aDQqECdN0gM//BMnN5dEYNgCAIvYIgPCoIwiuCIGwWBOFfzOOtgiA8KAjCDvP/LdWe6yhqA11IxjJeMrXDK30sFzjkAtIWVizXJ4tRi/hZe23A0q0zM0X+EHDlbcDVdwAX/wDXKt/BP9s5Jgy2TVxW1bBArKFQc4UbM78HnVGrISR7qqBabK8ZtWbFwEnqs8zxkd7zAUkGLv0p4wLoEzTMuuc9ZM7IjVVXM0GugM2kphJTazJezAXi4GaSg+Z8Rsv6nyJiZ9QkmV8suWaRkrmSU15SB6MGVMpSqyZ91NFd4Jwnb/qC50wcfT3LYKCBwcLWkHihRKRyvNkuswExli7ghru3YGVvMz5wKuf33P8isPcJ5nBpJoepeOVuYF3ZLnrncBprRE6n1iV7pFjV24INB+KVZ7iWv4s9tvkOxNMZXOrndMOnn1BzAC9FxE/mIxvPqDlncr0wkVWxq9SBxOwLa3OBfJ0hosie0seAT7Sy7hj4AuQacPlvgbd8H/jUuoqS14BcucGWmAKjBpDrmF1SPZg8hIUaXcPSZD2hTEpwktJHgM3kNAxj0jN7XuiOBbBlMAlRAM5b0mXN3MazKlm7rriZMPDVcOzlFuPMmEysuJJVfeQmLNOhorneNGf3snlx/ijQvtDzZdvt89om+sdzjpnhRiPkt81vA9w18WT1OTQhYxlE0euw43kUCe+T7kcgx3cBBsBd++2wGDVO4DVA8jGHUwWypvNGKwbWAVv+yn0s/fy8FERhvwSfJDjYzHqQKpSgG+Xn724KHJ1RM1EC8FnDMBYDWAPg44IgLAFwPYCHDcNYAOBh8+ejaAAs96lU0XtD7dHROBSgVrB082PPFhpJF8ygVcmTUQP4A7wQBGD+2cAJH8TW0jTEw5xN52h5ViZXLOEYoYYMlvQQCVd2Hy6U4JMEKDKJQDgcM2pxs6CNeSxcK4ovIwrne00bAextNlNpepZzM1zEQgLIOdkpCBJwChvkSmGZ1AAVDUWYCwQvPmHO6Zb1P0VE8TlDb2tgg1N51dnt5c6o8Rk1oM7Q60Q/oJWsof2uvNvAAvyZKvvrpUmhFvRJDd38BH02MxGg4pzaDXdvQSqv4tuXL7csoB14hs25265Px65zf8Wd98M9nwH6nwMA7BkYxnKB83fxKNRWzmxGXtWxbaiC/HHxJYTptSM3gXmjj+FC7TH2/ksu834uD1Dpo8WoNWhGrdZCjc50uFnWNwoiAZkrfRxNF9ERVSpay0PyAcveDqy+ljBqFaBUWbetQs1jva0GtxPjUCJ3SDLU6GsB5TWM/l6Kxwa6Emih5p5TK5R0FDW9YTNqQNkB88Q5rWiLKGgJu+aOIh3Au38PVa6Sw2WLrGBml0Kt5Jxw44XfAABUk1FrG+dY0k8/rqLk2P13zxU1jKYLjpnhRiOsSJYZGgCSpxZyNlQVQcXF8nN45JVhFEoaUnkVUcX5uUX0FD4uc5wz7RjayChX7LCYW481sjsWhGEAoyNDRB7Pw8NfJXPrLlgKIg9GTRAExIJ+a19ULxJWIUgZtSAOJvOOecPXI6oWaoZhDBqG8ZL57xSAVwBMB3AZAPop3gzgrYfqTb7R0G7OdI2k84QdUWLOO5TyDhkUQBYdbuBoA0Cflw6N2wu1UXuGGseaH82kUHNLStzIFjVko7MBwXVKJg8A+aR1n4W1MGoAG+gMMqNGZw0CPrG8KT6EKDNq/IVrRYoNWX5EX4Vhe+12xr8BHZw8KjeWvo1foJhwFMsViijmAsEL5Jx3NnMoYho6WKjBsZQpCnlOhJxCjdcVdSDQBIRc+U16CUjuR1HTETJyiBU4RWEHG9LpeL1UweqyV9x81omQfUYN4BdqB17CQ1sO4q6XB/CJNy3Awi6Oq5muM0G3APBL7WIMZEXi0OmGVgT+eDWQHEBx91OQBddGONbr6da6yjROWtdfQf4YaILBkfpcN/EDTNPY/CAsqT+UN6yQGRCrqdSgmSLa6d+4P4Gnd43h6V1jeGUwydzvUOZtvRZQiVGrxQm1ViiyiEIl6WOOOtZOvlCjTowlTcdIqnDIim8iwRdZ6eMkmgzUodfh/IipM4w8UOv5i47tMZ/b73gtAEDPcvx59Z9wp3YKDH+EeQ4sOM+hGqAbb8dz8OSP/c8CB7dYjFrTOMeFmBPtYIe7UNtvWvNznXMbhJBfdhZqko8wii68P/ocUoUSntw5iqT72pgdR9vfrkZMYJvQThhAn/ecWnlGzVv6CADGczcxs/MWJvaSuXUXqs3kA2RNnazrY1laWXbXVDWjeoTKaxx1zagJgjAbwCoAzwLoMgxjECDFHIDORr+5NyocC4kg8De8rrmOa379LG64i5N91ABkTDkRLZ26T0oAACAASURBVHLawn7Llt+6EOs6v1Az86zs9uZu6LqBnKrBHwjzJWsmq1bKxjFdcGXICSI2iRyZA0f+mC6UEDEXPuUwSR8nKkkBtBIWTLDzaWu1E51FrS8AXHV79bymU/+l4s3VTWqI9NFxgVDzwL4n2fvOYy2GaVfdoKYXtTBqBdXpLpnmSDoik2DUAE/5Y6GkY4HAKRBaZgN+fhc4FvTBJwkWo9boLjvN/aKuhdxCre8Z3PTIJszrCONjZ3nI68Z2MEyrLgfxN+1UItlccSX5z430QeC2q9AxyCnKOfNpFDNagmiP+CvPqQG4U2cZuRA4bl2zTqvYbPBCWJFJFzhF1qVGMWqyJKInFsDtL+7HlTc9gytvegYX/ugJ7BtzbmAOpTvgawERxec5o1aLE2qtCPjEimYiUy1M7E6MI+kCdKOcHdZoCILTvGQqZiJejBr9uVFmIgAwrzMMvyTi/KVkXaab5gnXZrnfaMfntE8Cn99N5K2rryMNvjUfB972P441hb5/B3M9YzVfAr59reX6GB3lzNNWmE8DXPPaIPNpwKEt1MJ+qRxSTWEaqdixMPcyFioTWLtxyGximp9bcgD47UWQB9goAk3gNKUqzKlVY267mgIIoIC2TWwh5sDj37Ka6BTUdKm5wvevOeSb9Ixa3FUIvlGy1Gou1ARBiAD4C4BPG4bBthS9H/dhQRBeEAThhZGRkcm8xzccmDwXXgDuUJnyNwwDe0YzeGbPoQnCzliMmqknt0sfUwXiXpUZATTXptkfBQKk494RVZApatysHVowhfwS0MEJRzUNRUIJTiB061z0SZxuP8ehMJUvIWIyRQFZqnjBbxTiuSL8ssi/+O57kjhi2WDIQTwnH8cWIM29wAfvxz7/Av4LzTubkSK60REhs4Wq5mVSQyS1jgtE/zOEwbUj1A50sQGlEcUHTTesQW9uHk4lRk3NEfdJOwSRO3MX9hP5auVCbTZ7bGIP8l6zjrzvmQm7I9xQIt/wLns5R838fnQuZhnBUg5z40/huJktxO2Mhz5O8PuME1ASzGwcQQAu/iEw7Tj2fgMv4ewUR1bjIXsEyGZzZW8L1vV7W0JvGUjiCy+3Y9So4qAm+oCLvlP5Ph6gbP9wipyrjWLUAOD2j56MP1y3Bn+4bg2+9Q5y3rtZtaFEHqJQW47e6xHRgMxd20fSjS7UDu2MWkeUfK9H0t6mQY0EZfAA24zaZAq1EL9Qm4oLphfeeUIvHvncmRazRp/bPXdE87QEWSEjDm/5LnDNHcAF32BciX2SiKaA7Cz2BIHfVNr1KFRNRwh5BCa2sbdPr8yo0Xlt2jimGWp2M5FGI2RKsx2YdhzQxl7PP9W5Hg9sOYiJTJEwpWO7gN+cD4y8wj6xP4L7u1nzsEpzapSR9nJ97IkFcIX0OJRiZZt/ZMeAp5wmY/FcEVFFhix5lxbNIf+kGbW4S1r5RslSq6lQEwTBB1Kk3WoYxh3m4YOCIPSYt/cA4CYNG4bxS8MwTjAM44SOjo5GvOfXPQI+CU0BubwJ7WY3xRgsF2qpQgmFko7+8VzlbKlJwu6WCBDpY07VkCtqZUbNw5qfds06KkjVMoVqhRphD5t4+WmdizEsc+ZuJniMmoqo+TsE/YfHnj+eUdEc9PFlcq+wIdfCgnMQicb4n2O4HV9s/m9s9nMKstM/W/W9dEQVGIbZtQx3AIpr41zKAakBMnxOiyeOjA5zz+IG+FK2snKW2m6HzbyjUOM5PoY7ufMGljlKpfPdw/mxoOr8WcfOyvLSjqiCg8k8Dh4CgwG6ObPkMaLEdQY7tfgUWiMVcrk4hZo482R0RJRy19EXAN59K9ekhYsKhRoArJrZjN0jGa7lcknT8fm/vIxIKIingmdWfp3TPwt0eRfLlUCNjuia2ShGDQBmtIRw8rw2nDyvDZesILbbOw463VYHE3l0RgMVNyivZziMhEyomo7xTHHSMTU8VDOBSuZV+CTBU9ZVDe1WlEzR+r50HaIZNcBpslWWPtb/3iljlszzGbVGFmo+ScQMW1EjSyKiAZnZfMezRc9ZJR7aIgorYZt/DnvHvmdQyqexXNwNwXA1W5tnkRm5KmiPlK8d/RM5BH2S9dkfCnAZNUHgmoqclX8EiVwRQ8k8Fhq7SZEW5xi1SQpw+W/wN+0U9rahTZ5zatVMa5oDAj4icyJT3C7OAPD0z4BMOYc0nlXRHK58rjUHJy99tMxKgs5g8dd7llotro8CgF8DeMUwjO/bbroLwPvMf78PQJUJx6OoB/ZOG5cpsTFqdlahmgRpMsgWnTNqNAT2QDyLTFEzrfk5C4nN+am9glTN0Uls5xRqpvSxNcNxu+xYjFEfp1CrIn0MyJJ1YTyUiOeK/Pm0fALY8Cf2+OLLWIdMGwbyfvxixrdJmK4gEtby/P8GZnMskV1gJLW8MPW9TzoNPrjzaazsEYBVBFsbtmg34HNJCdWMVZAZhkHm4Sh7x3N85Myn2X+fyYRe51UNC3kxDxUYNYBsqrYOpVDSjYZ32SVRgCK75iaXsGO/ZwkvoUOpMDjdz2HUZp5E8mbsXcemacC7bmVjANyoMJ9GQefU1u9n156bntiDTQeSuOHSZcDydzO3W+hcUlOzwQthP2XUyPnQKNdHN0J+GdObg9gx7CzUDkXx/lpCmDOj9v+zd+ZhclzV2X9vdXVX7z37jKSZkSxZkrVLeMMY27KNFzYbsNm3AAYMhEBCCBCWYHBYQgLkCwkkhAQCSdhMwGBsBwwmLAYbrMW7ZMnWjJZZNNPdM71v9f1Rfaurq271Mt09M6U5v+fRI6mnuqp6uurWPfe85z1cddHOjJoiS3XNRCJ2C2MNYHRiXKyMGg8Y+MJhO81EdOljGwM1EV1+t8UgIpbK15TAmen2u62mPf2brQZIpTwik/fjUklgJFKnPk3fraEMYGw2hZEeX1trjs3wGjWL6cVOq9N1cP4IPqJ8E5dJB/CGw3+sqZVMZCQ/8JrbgE3X4IEZBUdK5jmQfZ1axfVRPP1nj/4Aw0ygfnv5N6zPi3wKeLwS1Bmt8+3oDngQSy9M+sglk/x67w0qkCV2xvdSa2Tp5mIArwVwBWNsf/nP8wB8CsBVjLHDAK4q/59oE1XGDyKd9uxRXR9srP2qJUFaKIlyxitgcH0EgCcmtMlKf41m1xxzzxgjqbzBVbJGRq0vLXCjG9iCWY/Aylsgfaw2E9EkNKraWbegaCovdiD7/b9rvWUMqLIX2HSN2CGzTCyVRzAYBF7wWeBD08D7ngIuentD56JLanlws3q3ZRv1D/+ORLac5UqerloQ0FkvDtT471afsNnVV85oEtZsoYR8Ua2dUasRqPUFPbWlj8KMmlajtlkSXK82RiL6jw0P906ssvs9Jmewsy61GAkFWQbnpKx1CgCAxJSl/QGYBAxfUO43Y1p1HDkfuOErVkdGIzXq0zg7R7rAmHWR6Oh0Ap/76SFcs20Qz9sxhPOfdYVgQlE+x+u+oFl7L5CK9DELWWL20tA2sHEwiCenrBm1TrkDOoGQV0auWKoy+tB7qLU5o1bLTCSezrcUlBgXsybnMlBkqaYxQqv0hxTMJjU5eqYFMxG/xwVZYosifRTR7ffo9dicaCrfVEatJ6BYAzXGhM+bgalf4TrXb6w7Gb2ooWMZx/JxUw+1TsDLRiyLw93rhOf8RvZDfM3zaShFq5lHjEXwd6s/C5x1CWYSWcwmc/hdSaAGsalTyxR4HzWb6+zB/7C+tvFqYPO1wLl/ZP3ZRKUfqfad177WIj43MvnSghRNsVQeIW9FWumSGAbDZ34vtUZcH3+lqipTVXWnqqq7y39+rKrqjKqqV6qqurH8t70fKNE0VbIub1ic/Zh8GEBl4h3wuLC/lvsatNWUP/v2fl2X3QjmGrXeIA/U5vRzFRuJGAK1kL30kU9O/R6XuP9J9BiQT2OVyE59YCtmvcPW12PHgFL1QFCVUXNLKKlAvtjZQC2eylt7qBWywG+/aNmW7X4V4A3bSvpUtdzske/PJWvuUQ0yYM5qCvT/bOw+nI1xLXg6eq91J32bbXtc6dLHrOGBLQrUysHEnLnQvcEeapz+kCbnEzV5BSCsUUtNHsEt3/41BpnpPmEuoM+m/q+MUcK1qgMGAxZnMNkDbH6uZbsNp+8R70BUnzawDfCGMRT2ilcdt14HvOO32oNYhEh6ZCKoyNg0EKpaJCqVVLzvtoPwyhI+fv12MMawqsuP34Suse7gmW8Hhs+te5xaGGvU/G2UPYo4uz+II9OJquuuk42RnYBlkQaGQK3NZiK1MmqabHvhQYnRifFUuRa1k5kWPqbMJHItNbxmjCHsc+tjKieuu2B2JsPMifjclhq1uPFZ1QC9htr3KjZcYXlp/fj3MMxOV7/IXA239uD12oViCcej6Y4aiQCAr7zInTTLHwFxHZ4dkRH8Zddn8DjT5oN8wei+kkANYlOnVnF9FFxnyRlxgMeNykQy+MmKiV08XT8479YbpDcvf4ylrAqlwbBCGTViaTD3c8GQQP5YrlPj2+3dPIAD43H7iSu02orvPXgCdz9So2GiiWS2AEWW9FWMnoD2cHm83DupL+ix6aFWCaB6Ah5IrLb00e9xAUpQ0CxTS+OHS6bJteQGejeg6IlgnpkkdsWc5pRkIJEt6PI8Pkh12vkxKpICHPimxd1QZRLwrHcC0L77WCqvO1txkrkiCiXVtnl2PSwmNSMXCuV+r3Ldo8kRm5A9AuLJmtBQhAdq5e0qGbXGeqhxLt7Qh7lMAf/+a3GDcwSHALl68uxXU3imJCjK7j0bkGtPKI0Tzk5Myn0eF9J504NcMPHoP/kzYQ8bYaA2qvXjW93lw3ymYKlhAaAFtK/6Nr40+FFMMYOBydpnC+WXIvaMdmH/eEzPUP/n747hgaej+NALtmLAkGnKnfdWHCxVMp2Z0b3A5R9s6Bi14DVqU3NZPWjrFBsHg8gWSrqt93wmj0S2sGJ7qAGGe99Qp3YipmVw23mv1Gt4fWQq0dKkW699nc9iIp7uaH0aUJ3BS+fqZDrqEPG5hdLHgMfV8drJbr+1N1ZUtEhZg56gB9FUzqpyWb/Xsq27JJiYb7gCCDZmPs7rtY9MJ5HIFjoeqPGa2ZTZUAQAdr0Sj8u11RwANMXHG+9GPLBWX9DjEuzfijJqNnVq6XwRHpck7sH5xB2AajrHrlFgbbm0QqTumnxErzuPpnJ1v3O9Z14yq6lA0o2X64gydqvKvdTOZChQW6b0hxQksoVKzUqNOrXpstxn7+Z+JLIFHJlOWLctM5PUJulm6U4tEtmKZBAAesorGk9MzuvnKpY+jur/dEkMPQFxpqiSUSsfQyR/fOT71tf6NgEuNzyyhJNMMKE3GIpo0pKSNonLJeGVtUEq08Feaqqqas5XxuLaUtHilAQAbOv1etaUP7z5d8XhjljNyEmM+DwuhBSDSQ1jwl41L3H9El1yTtzoWrC6yRFN1oSZ4HKgNp8xZdREPdRqZNSu3T6E52wZwN/+7xMYmxFkiCVJmFV7z6jYlKYe/Htxu5hep9lO/B6X1RlswxWAqQ+RnJsDnrK2dRDXp2mB2mh5ImKbSWcM30ntwS3rvgG86jvAa78PvO4HWta2AXaPdCGWyuPpmRSOR1P41J2P45KNfXjpudXZ7qt3rcOLch/HO6QP46XZjwCv+hbgaX2SxIOzbKHU+YzagNa/jo+hK72HGiAwEgIwHk3B45IwGGrf70WpkVGbnMvgZDyD3eWayYXSF9Tqw091wN3VjFFpks4X4ZFtJtANEBYEanOZfMdljwCvUascO5MvIp0vNmcmEvAgX1T1BTydYL/YUM3Mrho1sCb4ouUfjmkqgJHuzjW7BipzG2FGTfbg7fItuKvvDZpBiIg15wFvuBOIrKlSXjw5lYDHJWEa3Yj615nepAqfE9l8CYqd2c6jVoMzbLmuIn/vPgtwm8brbByIj6NUUrWMWp3rrcvvRhAprPn+DcDfbgQ+tw345d9VmYzZERNk7IYimlqk02UsSwkFassUS0PfoV3WjQwZtb6ggmes7QYA7Buzr1PjxZjNBGqpXLFqlTrskyFLDGOzKUgM6A0oNhm16syYJUuo718bvHRtvqhWSBSolSfXiizhuDBQe1r/ZzJbAEMJVx39NPCptXjFT56JP3LdVVNG0yrpfBG5Qqk6o/b4HRaLegDAxe/W/2lXz6c3k2yxBqNKfrrzZZaBN8zS2Pn45y1N1SG5KytrAvhkrX6gpgXQ8+aMmqiHmrmQ3ABjDLe+aAfckoT3f++geKAWWfQfusv6Wh0jEaAyqRoIeSEtcDJVC5/bZW3C7vaKZYmPfh8o5ivy3lwKOCXoKTRyofaXHqiJ3bFyhRKenklh3VAPsOlqLXPaYJAGAHtGK2PPB//nYagAPvHiHRbZ2EiPH1tWd+GO1BY84t4Gr7c9E2Hj+NTpjNrZA1rgzFezK6YTnZ3sLWcsRkIAjs+mMdzta+u9osj2NWr7yjWSe0ZbC9T6g5q769RctmM91IzHArSxPpMv2ho8NELYK1uCnFZr9hqly+/BXCavq3kaaXxshkvahPJHm7poHU9Q6JJrBx/LHyzPlTqeUeN9MgULw6qq4kRCxb71bwXefp/1s264Qls0K7c0MDpIPjmVwDmrQnBJDMdCgt6bD3/X8lImXxRnbdMxcbmDUdUhSeJn5eQjmMvkoar1F5K7fB7c6v43hKce0F7IJYB7Pgb86N2WchUzmlmJOaPmRTpftDR7P5OgQG2ZwgcS7mImzKhNPwYUsjhd7lVzVm8AYa9cs06NN6o+PJVoeAUikS1UrVIzxtAd8EBVNRmkKzenraoYcXks2RC7QK1K+giI69TM+wcMgZoLY6og82JwfpzPFPA610+w5cR3gFIecimDj7r/A8VpQR+WNsFXGHUpgKoCv/68dcP1e6uMPewcMnmQ3d1CNsdiVOKNADuszlNrDn3d+uaRCzRpqg08ozafaSCjpqqGQK1GRi1U20J+KOLFXz5/C35zZAbffECwWCBqEZAWlNMO1Jee8ElVp1bZA4qsG+tUIaq72Pd14ON92p+vXAMc+C+gZHpveFg39OHF8nYZtWMzSRRLKjaWs0XNcvZAEAGPC5//6WH84tA0/uKazbaTn+ft0ILvnjZmJQMGl8dOZ9QiPjcGQoq+2KU3u17BZiL6Io3h3h+bTWG4zRNgr9u+/+X+8RjcLoatq+r066tDf0jB0zNJ5IqlRcuoTSe0QG0hRiKciLBGbZECNZ8bqloJ0Pizqp4DoBHedmQ2aZ0j1FJyANCyPk1k5gcWOVDjGTVRoMbbK/UFFa2m+7X/ozUIv/jdwIu+BLz6u1XPXWNPtsNT8zh7IIigIuPh4CXWAx+6G0hXL9xrgZpg6n/oLqBUff1kfIPWvnSD26zvnXy4Yp1fJzjvTzyKF4mMYP7wVeC7b9Bq+G2ICeS0XJ58au7MteinQG2ZYsmqBAe0mhsjpQIw9RimE1n0BT2QJIbdo936yqIIvloVT+cr9v91SJqkj0DFol+z5hdMkMNrLL22+oOK8Jgpc6BWx31Px5BRO1YSaNMN0sdEKoVb3F+zbKI8LegT1ib0hxUfWI4/AJz4g3VDQzYNMNnoGzD3EFkIQqOS897Q2Jtr1KcB2vfgdrHqxrfBAYt0D/kUMD+hSx9rZtTM17yAV5w/govW9+ITdzxmdX/adG3d9wNoKKPGA+hOSdx8ZtdHzsar7J0Z1ZImebxDYG0/eqH+z4jfjZBXxnhUHKjx7BDPFjWLS2LYNdKFsdkUzlvbjdddtM5222u3a99pOwM1l1TpnRXokDW/kY2DQf13xq+5gfDKbHYNVBZpjNKu8WgKoz3tzUh53RJyxZKwDnvfWBRbV0cWXOPF6Q8puslUp2vUvO6KHD2dLy7ISIQjqlGbSy+O9LG7LO/ndWqWRcoG4HOK2aSgjnb0Iku9cRU7X9bwcYCKYunodBI9AY9lftNu9IyaqCm82XSHMa1B+FW3ALtfaekjyjNqc5k8Juey2DgQQlCRccCzW+s7aqSYs6iRbK8zgezx6f4rrD1TRTLUiYcrC8m1Mmqqip7ffML+54/+APivlwF5a9BVLKmalNe0/0ovtTO3To0CtWXKgGGlTcemTm16Pqvf5HtGunBocr56smzAKCs4PDXf0LkkswWLnIhPsvqCnrrW/ByeUTNn8tJmW+J+QUZNhCFQe6ooaHJpkD4qj33P+nMArtnDjR1rAcT1FabywHL0F9aNVu2yFEvrTVdNARX/fysZNWFWc/UeYPUzar9RkoWZNyOMMWvjW8bENvmzR6ulj+kYkJox77Gh4nDGGD51ww6k80X8x31PV/9w3bOR7K1T3+BSxD3XTAQ8LgyElAUHM/Xwi6SPAOAJaA/uZjHZPo/2+G0zaocnE2AM2NC/8M924Vm9UGQJn7phZ02524b+ILavCet1c+2CT7b8HZ50AWXnx7IqYWIug96Ap+UAwcmYs+nzmTxiqXzbbc/579gsfywUS3joRFzv6dcKRtOgxTCI4WNyOmcjSWsQ7vrIn6+qquJ0IqvXlHcSnjnjFv08YBO2prGhJ1Ajo+b2AmsFjZ0BTR5/1qVNnG2lXhvofH0aUFk8SgrG92bdUXmN2uGyRwDPqM3lVGDHjdY3HPxW1X8z+ZL1OsvOA0/+1PLWH+bPt+5PmFF7RHf9rPmdH7kHrqcF8yAjR+8F/u8zlpe1a9sa/PPFFArUiEWnJ+ABM7skCpwf1VMHcTqR02/y3aNdKKnAweMCqSCAmWTFlafROjWzmQg/P6Axa35OX9CDXLFk0RInswW4JAYPd6bydeNxd50Mh+wDutYBADyyhCMFQaDGpY+lEgYf+pJwN67UaeHr7SBqlgKU+8FVsetVlj5ViuxCxOe2BFRHphMIe+WWjCz6QwrmMwWrc5rAVEQnOAi88lviei/zpl5r41s7+eNcJg+JlR9ip/Zbt+nb2HD7gbW9AQyEFEzOmR7yjOGpzW+u/eb+TQ3VYzHG8ON3XYKbLxM4WbYBSx81I6L+NfUYubD6v91+jNkEak9OJzDc7WtJenXz3vX4xXsvbyiQ/cabLsQnX9KAQUAT8MWkQIeljwBw9mAIiWwBE3OZFW/ND1jrU3ktZLslZUq5hsssfzw0mUAqV2y5Pg0wt+Ho/PfaV1Y5pNsgfSyUVH0MORnP4HQih21rWpOCNgJ/xsXT5oxaM2Yi3ETLRuljV6e246WWrFMjcIVEp2WPQEUtlBKYifAF2MYDNW1ffI63cSCoPXezBWDny61vGLuvatFaq4U0/b4O/y9QrH52ptw9+OJTA7jzIZMbs0h9MnsE83Pa+dh+56US8JOP2n6uKh74ilaDbcCiUCqjt7iwu27OAChQW6bILgk9fk91VkWQUSuc2I9iSdWlkruHtQeVXePraDKHc4bCCClyw4GaZiZSfWNXBWqxMeubBIFaRY9fvfKRyhXhd7uqjAf+te99mJYEwRdn4Bw9Ja/IEk6qPVAl06Q+E9P02YfuQmDuiHA3noQgyGwTsbRJCnBaUA9n4zbYF/RYJIpPTiVw9kCwpb4+to3Ht79EYNzBgAveAvzxA8DG+v20ACCouDFvzubaBGrz5QbkksSAk/us26wWFEfXoCfoEa7GHurdi6dKNWrdGpA9cvqCSscyJz6PLM6oAcDZz8EX3H+EqNyvZTclGUCN68ATsqx8jvT4cDyaFtamHp6cX3B9GkeRXQ0HLF1+T6U2sU3wVetWJruNspEbikwmVnyza0AzwpFYpUaNLwi0O2tq11aF12W36vgIVJ5TssTQ28Zm3bWOd3o+i2y+ZJ1ANwGXOHL5I29A347fST24aiSa5DVqzZuJ+Dwu+NwuzNqVZNhJ70XBSQPwZ+FiBGp8Ecni6ovKs7ivwWuNKwYOHo/DI0sY6fFrSpZMQVPo9Alcsw9+R/9npiBwfRTIHpUd12HL6i58+AePVLde8HVZ53dqCSjX+9uWZjz0HWDyIevru1+t9cAzkolZHCtjaZNCiZ9O+bqJUqBGLAWN9FJzTT0CCSX0ly2QuwMenNUX0AdpM7PJHHqCHmwYCOLwZOMZNb/HJqMWtLPmtw/UpkxBQjpnXUmM+4bxp8FPi41FgKrJtUeWUIIE1dAOQCf6tNjAo4w3ecL2Z63CVxUjPrfmZnRaILO0qccTSRSfnEq0PJm2bTzuCQAv/wamfOuRV13AWZcBb/4Z8LzPaIYjDRJUXE1l1PTJejsCtYAidAyLpUv4cvEF9m9swJp/MfB7XMgVSygUBWYJjOFLuefh/+36AfCRGe3Pnx+yt60eOd+yyjza40e2ULJcV8WSiqOnkx2TdC4WQT2jtgjSR4Pz40Q8veIzambZM+8x137pozZlMbv17huLoifgaUtgyCfwAyFlwVb5zR5Pr1FrYZGBtznhvRL3jUWhyBLOGep8Ro2rdPhkOpbOwSNLTdfc9dg1vQa0Hl7m+cCac4EhQW+vBuDPwnZfoyIUWQJj4owab6/UaO05VwwcGI9hfV8ALolVMmqMAbsEgevBb+n295mcqUYtHdUyaiZc267H39y4E9FUDh//kan3qKCfmnf2MTAGsXlNLgX87Fbr62vOBa7/R2DrddafPVYdPMZ0gxrr/mteN2cAFKgtYyyT9e51gFI9aZYKKaxjE3pdE6DVqe0zNJ81MpPMoTfgwcaBSjF8LVRVXZiZiCCjNqAHCdU3VCpftDi1ed0unCj1Am+4S1w/tX6v/k+lvApZiKyzbnfgm8D476yvl/Hk55pquNgM0WQOPrdLWwWOHQMKJg21t8u2Bqs/5K367qPJHE4nctg42Npk2tL02sjwefjs2V/DZe7/BF5/O7CmTt2aAEuNGmATqB3BfKZQMRJpQ6DWG/AI5Q+xVA63lS6BGrDJ0PYvn0AN0O4HM9lCEYlsoVr2GhwA/ugOccsEgYkKd+AzG4qMz6aQK5QcH6j53Q8hjAAAIABJREFUy1l/v9L5jFpvwINuvxuPnIwjmsqv6GbXnJDXrdeojc+mEPLKTdUoNQLPOJml2/vHY9g90tWS2oDT32HTINHx5rMFzJafFwtFz6iVFwj3jcewfU0EnhYs/xsl5HWDMYOZSFLrp9Xs99ET8GA2ZTPhZgy47guaURmA49JqbZK/QPj33O6srwjGGAIe2Taj1hdUGm5jwRfNj55OYuOgtnAbMj53RbXkM4f1Z2ymYKiFLBWB227SDL6MeLuAdZdg2+oIbr5sPW578DjufWKq8nNBnVo4/gTCXrd4cePeTwBxgfLqqo9p3+sWUaD2oyq7/lpy2h6bZ/+ZAgVqy5h+s5U6Y8IV9G3s6Sp98+7RLkzPZ3EiVu2cky+WEE/n0RPwYONgEKcT2eqUtoBMvoSSau1N1FPWkzeTUbMLEtI5a8bOK0vI5otAoBd4/e14ss9gprDpWmDbi/X/8rqFfFiQUfuduDatCtH5twGtOSOvTztk3aB/s6U+Tf+RySHzyXIT8w0tTqb7RSY1BhLZArzehRdXB71uQaAmqOmafQrz6Zy2CpycscpnmdRYk1MD3X6PUP4QS+fh8wXALrxZ/MZlklHjq+ki+SNfLeT3nY43Arzmtmr5z1mXAs94vWUffOXYXKfGF2w2OjxQCyxiRo0xho0DIfzqsFbj2ul+W05AW6TRJlNjs6mOZCoUPaNWuUfmMnk8OZ1oi5EIUHFiXKy+eDyDdyqebklWbZQ+5golPNwmc5VGcEkMEV+l6XUsnWuqPo1TNzMyeiHwJ/vw7jX/jXd2f6mlsZsvbo+02ZnUDr+h/5mR6US24fo0AFVlKHzM1qWPANA1Cqx9tvWNZVORKnv+e24Rmohg63V6ffg7r9iIDf0BfPB/Hkaeqz0EgVpv4rDY5fPEH4D7rAH1r9gzgHXl89x4tdXVM3UaOFax8a8lp6WMGrFkdAc8egGljqBOba9rP/oDlcnJ5vIqy1Onk1Xb8X31Bjz66vnTY8eAmSNaoacAPukOmlapn7WhF6+8YAS7V3uBhLn/FdN6OJmI+Nxwu5glUEvlxBm1TKF8TkoI3zrrVlxb/CzwjvuBV36zymSCrxhmQ2uFn6Eu0WMLe18dYqlcRU8tMhLpF2jJ+Y9CChLZgj6wc5lqq5Pp3vLDSZhRg9jhsxmCilzdRw0AQkNWe/lcAq70aS2jdkqQTes/R5NjNkFv0INkrmhZbY+mtNVdnP8ma6uA4JAw+7sU8HtA5NjK+x8KLe3dPuAl/wK880Hg7b8FXne75pJmYrjsbmZuev3QiTgkBmwabE1Wu9QEywFap/uocTYMBHUZ90qvUQNQkV8BGI+mO5Kp4Bm1bKHyvDo4HoeqaguU7eJPrtyIV1ywOOMCn6SXVMDnaaHhtU+7/ucyBTw+MYdsodTW30k9unxufY4RTeUXlE3tDXj0sc4WWcEUeuCSW8vWXrt9Fd707LMWRfoIaAtJItfH000GasZFbT6PC3q1fettK0TtCh75PqCqyORLWub24LeBX/+9dTslDFxSaffidbtw0yXrcSKWxuRcWRUkkD6uyh6xtoIo5IAfvFOrYTO+zDy4NffqiupLCQIbBM7GBvljPJXTpJWC2uZeCtSIpSLicyOVK1ZWMQBhndoNrl8h+PVrgBMPapvY9JXghb7dAQ82B9L4nPsfsfObFwD/8Azgq8+3NEYEKppq8+S9O+DBJ1+yE/60qEnxECBbJ5SMMWuWEFqgZtbmK7JUNeGOpfKI+9cJs1Bc+pgOCjJqjSAyQ2kDMR4gAMBpUUbNvl+cbtE/zxuUz8PndmF1i6u8bpeEnoDHPlATBM3NEPJWVtV1GBPKHyPp41qg1gbZI2C0d64esPWA2det1dxVTgy4/C+tfWKWiFpNUfln6g3WWKXu3aCtMNtkab1uFwbDisWif/94DJsGQy0F6MsBPaO2SJ/DuGiy0mvUgMqqvqqqGJ9NdSRTobit0sd9Y1GtNKeN2aM3X7oel2ysYWbVRoyT9HaZiXBzlT2j3a2dXBN0+T26kUlc0Ji4ERrNjOQKpZYlnWcPBPHhF2xtWHLYKn6PC2mbGrW+WuO6CbuMGmDoY7j1esBsrpaYAOZPIZ0vYjR/FLj9nYK9M+CGf7U4PPPsqN6nr3eDJQMWLM1jvWJyG//V54CpRyxH+cNZb8HjxVXVzzphndoP9SRCNKX1BBR9X5RRI5aMcLl+Z87YxNKmboid2g98+Qrg/i/b9pWYSWYhoYStx7+F1d+4BC92/RoSykHg2G+A+79s2S9fITVLE3VEssGINZvGETVcTttl1PJFfcWF36Qi+ICdCjSwAiqqR+pQoBZN5fRGoMKMmsidqYzZIZM7PrbjoaLJKu0zaq00/wwqMjJ5gSGGoJdaX25cKzw+KbDmb2ugZpCg7n4VcPOvged/FnjLz4FzrRLBpYLfA2lBjVpF+thaTySzRX+ppGL/WHRRJ3Sdgmf9FyujZqwXpUCtUp86PZ9FtlDqiJueyExk/3gMG/qDwpV2J2AM1FoxE+HGTPF0HvvGYugPKVi9iNdll9+YUcvpvdWaoSfoQTpftHe/LZMvth6oLTaiGrVSSa1qr9TofgDNlXRtr6Y64c9sXf7o6xLKE0snDyBXKGHviX+21swDwJUfATZdY3mZZ2v1QE1yCWWn5zDDXGryUWE/NAztwLHNWjugmHFuu+laa3A5fwo4/oC+rZ2cttHrxqk460pfYUT8lYFXp3+z5sgnRAV+/F54Tz2AnoAHp+aqb8TEzEl81/NRrL//o2DZOevbj/zM8hIfWGwn7w1a8+unX7YiNpLKC2rU3BJKKpAvaoFavIbmndeozfvX2B4XAO7wvrAqpa/ToUAtns5rmRxVta9Rs0EP1MoZNc3xsT01RH2hGhm1Nkgftf2YBkxBRm2wcLKtGTVutGEuKo6mTNfO0HZNBrmAY3SSSq+dGoFai81rR3v8OB6tSB+fmkliLlNYtFqWTuJf5Iwalx2FvHJLixtnCjxQ42Y1nQjUFF36qN0jqqpi33jM0devcfGllRo1l8QQUmTMlTNqe9pkrtIo3X4PYimt4XYsnUdXYAEZNT8fw8XPJ062UILb5azpq1+x1qhFU7mq9koN7af8nFjb69eDVXMfQwDCGu/iyQNwo4C1sfutO95+A/DsPxUeky+SV/XAFQSCG0pPa//IzAHfeT1QMqtrXMD1/4hwQAswq2rKfV1VJnE6ZfljLJWzXayvPPtrXzdOxVlX+gpDvznMNT+v+E/gGa+zeZcK/PKzGAp7LRm1TQ9+HM+QnrQ/4MRDllo1Xi9j7qOmI7B1hcgmv0xf0JpRS2Wt0kf+wOIP5GgqX8lOmeCDVUZVtJojAQ+5d+I7fW8Tn5shUJtN5jA133qHe1VVK9LHuZNAbr56A3egbuYR0AqN5zN5nIpnWjYS0fct+A44iWyxtUCt/MCYN8sfe62GIqOYwACLA3OmFgmSLHwI1KM7wHv5VAdq8RrZ2OWEz6397kTymNlkTi/Yb4XhHj9OxdPIlWt89o1xiZRzJ7ocft0uVkZtKOxFUJGpPq0Mb3avN7vuQO0Pz6jxhtfjs2nMJnOLWovVbrgcHUBLro+AZo0+NpvCU6eTi/474WYi6XwRuUJpYRk1fQzP19wu59SMmmkRjhuG8fZKDe2nPM4ZW/XwhaKq+vBVuyzvVU8dxBZ2DLJqkgn6ezVHTZvAvhKoGb4XQZ3aSO6o5tT4vTeLyz0ufhewapcui61KQgBi+eOjtwPl+ZRFTpvPAD/6U1z/s6twULkJq764GfjkKPD3u4F7P623JHA6zrrSVxhhr83FrISA6/4BeOPdOAxB4HH4bpzrO1UdqOXTGJ68t/YBcwkg+lTVSxUzEcHkPR0FDt1tfX3dJbaH6A8pmElkK0WvqDS8NlKpRdAeyLFUHhGbgZ9n1LLFkjAgQGgVbvH+BXxeb91A7cPffxhv+8aDtuffKIlsAYWSqmVyhEYim2wHRUBbWWRM068fmdZMYdqWUQsqeu2bGU36uPDJgi7BaMCify2bxGhWMJgPbNEMMppElFHLF0uYzxYW5EC22NTKqM0kc+j2i/X5zTDS7UNJBU6WHWH3jUURUmRs6He24yOgmaXIEmtqdboVGGPYNRJpuWXGmUKwbJbw9Iw2XnHzmnZibnh924PHAQDnre1p+7EWE37NttqsPexz474jMwCAPSOLK2fu9nuQyBb0Z8tCatR4DW69zEi+WILitIyax4WU6blYaXbd+PNJkSV0+91VNZkhYUbN6mcgTR7EbtFi/fAFgMd+YSXsE8xFBYHa2TM/A/7jeuDQXdad9G0CLnsfAEODdLNZ3ubnW5tfx8eAE3/Q5LTm5/gP3g78/t/gTU8gzFJw5eaAbFybx977CeAXf2P7mZyEs670FUZEdHMYyK+5AM/P3oq4strysxenv4sJo/Tx2G+sqygiTh2o+q+dmQgAzUWoaNpnYECcvi7TH1JQUitSrlJJRVrQR40HX7xOLZbK2Q78uhwmX9LS90bcfuDV38HJnF8LIoKDgMt0s2fjei+18WgKhyZN2a8FoDe79ruB6SesG9QwEgEA2SWht2z6cbh8Pu3qcxX2uZHOm0xqoDU+1r6L1qWPjTS9XscmsTr5mOX1hUoSeQ+XWcNDnt87Ikvf5UZt6WO25fo0oNIziMvT9o/HsGuka9EK6jvJ3k39+M37r8DAIma4vvSac/GZG60r1ysRPll8/NQ8BsNKSzI+O7wGM5EnJubxT/c+iet3r8bmIWc7lnIFhW6bvkAiPhnpfBESA3YOR+q/oY3wMZYH6gsZc3n7kXrGEDknSh89LktGjdegN1OjxhjDT//sMtx0SaXuO6hov+sqx+DBbQCqx3V5bhyXSQetOx0+r+Yxgx4ZEqs0U6/svxqXWgCe/qV1B54g8LKv627EeoP0lGluG+itWPYb+e0XETfWmgNan7WHb6t53vi/zwCTVjMTp+GsK32FIUw3G5hN5pBTZTyx3mqIsCv2U3iTJyvuWEd/3thBJ6pv4kS51kjYm+jgt62v7bgRcNlP9PnKITez4CujPkuNWkX6mMwVUSiptgM/l0DkiiVgz2uBy96vuRaNXAi84U5gaAfmswVNlidJ4hq6clZtJpHDfKagNw1dKFXNGU8LArW+TXX30Vd2yHxyKgGPS2qb3TWfUJlt9HlQ3pKZiC59NFv0rwZc1Q+jMEthaPpX1p0sMFCTJIZuf7X7E+8T6IRArV4ftXYEarxuaHw2jXSuiMcn5rHbwfU9RhhjixqkAZqBg9PdMtsFHzcem5jrmOW5tzzWJ7NF/MVtBxHyuvGRF2ztyLEWEz5Rb1X6yOcMS+Hiag3UFi59bCRQc5r00a/Ilho1nlFrJlADgN6gUhWo6jVqxme6EgR6z7a893JJYN5VJ1CTJIawz12dNPD3AMPnN3bCL/kyMFBZnI7ogZrge95xo+Ul9ZHvIZI7WZHTpmPAHQK/ATOlPPCDPwaK1nICJ+GsK32FIUw3G+A3efycl2saYwMutYib5B9jaq6cXThiDdRK6y617vRUdaBmW6MWPaY5RZoR9e8w0KebZGjnxbMHFtdHPaNW0muO7AZ+XfqYL2ptAS7/APCuA8Cb/hdYvRuqqiJhdDOsIX/kqfjxaAo4/nvgF5/RLGKb1DpHjQHCAjJqQNl4JaEFauv7A5DbtILI3cHmM9XXFTcAaeUBH7LLqEmS0PkxMnPA8lorJh/mPjxVAfMyp549f6+52fUCGAx74XYxjEdTeOhEHMWSekbUpxFLD58sHptJdcRIBNCUBi6J4b/vH8OB8Rg+et029C6S1LWTcOlbq1lIXi6xFPc0H2N5/9aFLI6FvTJkiVkMoczki6rjArWAx4V8UdXrgwFtHuR1Sy2bEek1auYFUkHfXYmZ5zIMWC12EzcS9rqtc9EXfUmolqni8g8B5zyv6iVFdsHvcVkzagCw46VAoLo1BlNLuMn144pPwf9+UGs30AgnHwR+98XGtl2mOOtKX2F43S54ZKk63WyABzu93V3AhTdbfv4K188xPXkSmJ8EJh+2/Fy6+F3WnU4crApKktkCFFmCnIsDB78DPH4HUMgCDwmyaX2bgVW7a34mnlHj5562C9QMGTVdvmZjpKAYM2oCUrkiVBV1A7VMvqhPkvMHvgv865XAz28FvvUabVWmiWCN2852++Smm13rm4S0jNrhqUTbjEQA+4xaop5xTAMI3ac4PYL6QTMuDzCw8BXy7oC7SvceTTlH+uiSGDyyhFRebCZiZ6bT7DGGyxb9+8a0volnSkaNWFqMk81OBWqAtog3NZ/Fc7YM4IU7V3XsOItJuzNqi12fBhgyauVAbSGLY4wxdAc8mK3T9NqZ0ke+EFcZ37k1f6vunIHy/MmyQCqoU7PQfw7gDdfdLOJzW9VdfWcDb/sNHt14M7KqINjcej1w6Z8L96c1SBfMbd0+4Xz25a570S/Na0mHfd+w/PxX7Bn42Dm3i9VKP7sVmDkiPA8n4KwrfQUS9gpujjLcua8/qADn36Q5CRrwsyz8B/8dOHqv9c0DW4H1lyHPTJO/5DQwX1mpSGQLWOuZB750CfC9m4Bvvgr4xwuA33/Vus9dL69pkAFUHkgnymYGlYxa9U2uGDNq5Yl3t430q6pGTYBuiOKtHajxVbwQUtjy4C3VP9//Da15Y4PokjvMWRuJuxRLQ0kR/UEFU/MZjEdTbTMSASqBmnkBIFnLOKZBKvb8okDNmlGzMLgNkBe+Qt4bUKpWY/n34ISMGqA9cM3Sx2JJs7vuaUNGDdBMHo7PprB/PIbRHv8ZkZEglp6qQK0DRiIcr9uFkCLj1hftWFT7+U5SqVFrT6C2FC6YfIx9eiZVdS7N0hvwYFYkiSujqqozXR/LC6DGOjWt2XXr46/skuBzu5Awuy0LMmoW6sgeORGz9JHj9uE3o2/Fc3OfQn7d3srrG68Grv8n2zmh1iDd5ns+/01aXZsBH8vh/IduAf7nrdbtPSF8KfTHGMsGNPdKU20eChng9j+xuJo7BWdd6SuQiE+uK33sDymaXljQvHf9k18DHvkf65vXXw643DjtE6StDXVqyWwBr5Hurm5sHX0amDtufd+Ol9b8LIAmq3vGaBf+/ddPYSaR1VeX7DJqmXyxkhWp0/A6WxDfhDxzVMmorbVuFBvTV/Fulm+HtxC3bnPPx4AnBG5GAnhKvytx1PrDvo1aw8g69IcU5IsqVLV9RiJARR5jzqgl6zU3bwBey2jeN4D6Egmg5d5mPQFzjZrB1MUB+AVNUaOpHFS14mrZKiM9foxH09g3FqNsGtE29IUwdDaj9pZL1+Pzr9h9RjUZv2zTAF530Vqcs6o1U5Rrtw/h5ss24OwlcHHlY+z4bAo+t2vBQad5DDfDe6sqDgvU+HPV2H5lej7bNpfaoFe2KlmGGjA6ajBQC9eYi8ZSeRxjayC//vta2ck7HwRe+S2tTs4GrUG6jReArxs4948sL/cd/wmQmLRuf9UtKIXWaIv6oxcCFwqCuWO/Ah78qu35LGecdaWvQLR0s7gQcno+i5AiVwbEi96h9aAyoBTmgUN3Wt+84QoAwExIUCtlqFNL5oq4QBW4BJlZ++ya/dOMfOqGnUhkC/joDx/Vswf2fdRKiKdq16jpZiI2gRoPQEJ1M2pZDGIWb3TZBWMqcNtN4pozE9FUDkFFhjwrsJ9vwEgEqC4wNvZMaRXbQC1Xp7l5A0gS0xvfWmgkUBt55oKPDWgP+Vgqj0JZBhtL5/RGsE7A53EhbZI+6s2u2xWodfsxm8xhYi5DgRrRNhZL+vjWyzbgyi2DHdv/UtAT8OBj12/X1SELZeNgCO9/7jlL4uIaUmS4JFZuS7PwhbF6gRovcXC7nJVN1TNqhoW46US2aSMRO0KKbF0gDfQC4TW139igIUjE57b29C0TS2vNqBljmlqod4NWl14DrUF6DYnrRe8ApAauo7XPBs59Q/V1c8WHxfO8n/yV7vDtJChQW+ZYnHYMWG7yyDCw+9X1d+ryAGufBQCIR7ZYfz5RMXjIpxM4u9iAtreOiYiRTYMh/PHlG/HDAydx+4GTAEQZtYo9P191sZNSuCQGt4vpzbHNVHrBld9vE6jNJnN4t3wbfKzG4JGbB/77lUBmzn4boGIlu0AjEaBSz+eSGNb1tW/iU6lRE0sfW6lR4++3aOUBrT8aqzHk9G0Gtr24pWPzPjz8momWm447RSLl97gsZiL84dOujJrRPZSMRIh2ESqPr24XoybgKxDGmK56ibQgNdcMoez7qPEFWY9Da9SS5YxavljCbDLXtkBNmFEDatepeYINz0dqzUWjZuv8Boj43WIzEf2Aq4GdL6+9k8AAcP0/AJJUfd0oQeCFf1+9bdco8LL/AHzOe+Y560pfgdjqglHWN5tv8r0fAOQ69QEjF+rNDdO91l4YxozamuSjkCEOgHRcilY02gRv27sB5wyF8M0HNEmltY9apeF1LJVHUJFratI9Lsk2o2aRPtr0UpNP3I+Xue6tf/KzR4Df/XPNTbTmjO4FG4kAFYfMtT3+lldajXCJkjlTW7O5eTP7t8uohYaA7VbrXazara2AveXnmmtnC3SbGmlaeq8sc3xu+0Ctp4mmqLUY6dHGB49LwtbV9YvICaIR+ALPmi4fXGdAXz6iefhY21pGTcFcpmDp88nhr7sdJn3kZQGpckaNj+vtqFEDyg3nRc/dWnVqq/c0VIYBaEqcXKFUaflkIF5eEG2Gbr8bsXQeai2Ttov/xP5nG64EbvqJrtSxXDcbrgD2vAYAAy58G/C2+4ANlzd1jssFZ13pKxAt3SwO1E6L0ubhVcBFb6+907LsEQDy/VtQUk0P1dgxPT28PmN1i7Rw8buaXqXwyBI+fcNO8Oe5tY9aJaMWS+XqFiYrbpdtjVrCLH206aV22UMfgMtsXevtErsVPv6jmucTS+e1oGFaIH1sMFDjGbV21qcBgLtceGyfUWsxUPO6rTbBnBd9EXje3+Lu8EvxBd/bgD99FHjrLzRnKE9A/J4m4FknbtGvBczOMBIBtAULs5kIN0fpadPn4D2utq4Ot3UBgFjZcEODTsoeieUNH2tbWRzrKbvbGt17j80k9cDGqRk1Xt7BM2oL7aFmR1AkfQRqZ9QarE8Davf1jaZyTRt2dfk8KJZU+7kCAPRvxqmNr6p+LbQKeOlXgdfcVmXKxhcyo0bZ7NW3Am+8G3jup2rWyy13nHWlr0C462OpZF11sC1EvfhdgK/HfqeGVQVfIIKn1CHrNhMPAQC25h+1/uzyDwLP+Siw5TrgeX8LXPa+Op9CzK6RLrzl0g1QZMmyGmOsUYul83WtyWtn1LSBpSpTJJA/RnKCvhyXvAd4+detr088BGQTtuczGc/gbPeMtdcHczVmUw/tYdcb8HTEwSvktQ7qyWwBjLVuER1SZCRsFhfgkoEL3oyvBN6EX3ZdD0Tq6OebhA/W/KEeS+VbWt1dbPwea1NUbnJj53raLF1+N1ZFvLj47N76GxNEEwx3+yhLu4LhY20ri2Pc3ZaP4cWSihu/dB9e+5XfoVAs6QuyTnV95IqJXxyaBqDdM+3AVvpYK6PWaMNqVAI1kcIrlso3bdjFg/l4LfkjgO8N/An+Ov8q5Dc9H7jqY8A77tdKJEzlDHwhs8ox1NetmYs4HGdU2K9gIj43SiqQyBV0EwhAyzTNZwri1RhvBLj0vcDdH7D8SPX1gBmcgEJeGY+o67ABp6o3nDgIrH0WtqmCGqtN1wCrGnATaoD3XbsZb3r2WZYsTsWev6hlRXy1B37FLdnWqHEddNgYDDZgfJLyDsF/wVsAt1fLwBmdL9UicOIPwPrLLO+bms/gZDyDK84SBLmrdzcs72OM4Z73XNZyhktEyCtj3mTlm8wV4Xe7Wi5EDyoypuYzNbeZzxSwpqv9Ft7ccGM2qa1WxlI5bFnlnImjT5BRm01mEfbKbesbxBjDXe+61GLgQxCtctvbn+U4Nz6ifUTKz+lmZXBG9DG8vEB1/1OzmJ7PYno+iy//8ins3aw1Q3ZaRk2vUcsWcHQ6gf93z2Fcs20QW9v0fLItOYiMaMqgjMBEY03jGbVwzUBtARk1Q5lCrSz8gycSONb7CnzwVda5lhHzdXMm4awrfQVil27W0+Z2+ubz34R0YNjyMlu/t8qNJ6i48UhpnfX9pw5CnXoUYaSqX/eEgAFBXdsCYYwJg03GtOa/mUKxoTojj0uybXgdS+UQ9srVdRMNBGq/HLlZC9IAYFTgRjj2W+H79o9pA+K29B+sPzTIThuhy+/pSGPPsM8tzKi1IygMemWxmYiB+UweYW/7A1D+sOByQU2C6pyMWsDjQspUAzCbyre911nE73bcijSx/Al73SSnXcF06zVqLZiJBKvH8LsePgVFlnD55n587qeH8MTEPADnZdR4HX4iW8D7bjsIRZbw8eu3t83oKqhoz11LzRdj4qxaZBQINe6eqs9FTWqZXKGEZK64oBo1ADUNRVRVxb7xxtrImK+bMwlnXekrkLBPm8yaVzFOJ+rom2UFMxe+3/q6yUUnWM6oWZg4iPxTgkBk+DxNvrYIeGUJ2XLD63qBmuKWbBtea9JJ04ND1EvNwM+lZ+JueW/lhRFB+nzcJlAbj8EjqeievM/6w/XLo5g15LVa7SayhZaNRIAaK3sG5jOFSs1gG3G7JIS9MqLJHLKFIlK5orPMRDyywEwk2zZrfoIgiE7Bx9pW+lZWVBE5lEoq7npkAns39+PTN+yEV5bwsR9pShWnBWpulwSPLOFbD4zjgaej+NALtmKgje6oQa+MQkkV1+qL6tSaqE8D7KWPsXLT6q4mn1H8WonWsOgfn01jNplryJ3YeN2caTjrSl+B2KWbeUatlmNQ4NyX4+/yN6IgKcgxD77nuwHYfG3VNkFFxiMlQdAy/QTUoz+3vj56UZOfYOF43ZoMLM6NOWqhT3p5AAAgAElEQVSgyPZmIlGRI1F3jUBtYBv+re99OB41yPdEn3v8AaBklVvuG4vhBX2TYGapgTvQlCa8k2g1alYzkbZk1MqBmp2bk6qqSGQLCHk7E0D1BhXMJHO69t1pZiK5QknvAwdoxigUqBEEsdzhY20rGTWtnYqWGdk3HsXkXBbP3b4KA2EvPvyCrfpEvBNKk04T8LhwKp7BJRv78NJzrYqnVuC9QoWGIhuvtr626VrrazXgChhzTZn+nG0yo8avFTtXcwDYNx4FgIYyat1+j37dnGk470pfYVSkj9U333S9jBq0FYt/ZjfiM+feg1d3fwO3D9xs2SaoyIgijHmPKQWuFuE5/GPrThexMNPrdmE6kUVJte+hxqllJhIXOf/ZSB/TcgR45X9hoK8X41GD7HNgC6CYtOS5eWDykaqXiiUVB4/H8LyAwJb/rEtatp9vF2GvbLmmktliyz3UAG1lr6QCaYGNL6AVUxdLakcyakClYWpUD9Sck1Hj8hij/HE2mWub4yNBEESn6NLNRBY+5souCRGfG9FkDnc+NAG3i+GKLQMAgBvPHcYlG/sAOC+jBmh1an6PC5948Y629/bkbXeEapazLgXOv6ny/63XAzsErXJqENalj9X758/ZZoNzPqerlQHbNxaDz+3C5sFQ3f25JK2PX5QCNWKx4QYi5hq1ybksGKvockUwxrAq4sXJuQJOptzCVXmXxOD3uDAW3GF9P8xaZ1dTxaetosgSJuJaVqtuRq2GmYiwGWNgAFn/qqqXCqqEX+3+DNC9DiM9PkzMZSr7lFzibJipTu3w1DySuSJ25R60brtMZI+AJn20ZNRyBb3XSytw+aRdnRpf8etURo0HarGypKKV1d3Fhht8cEMRVVURTeXa1kONIAiiU1xydj/ecPE67FgTaWk/fAy/8+EJPPvsPn0exBjD39y4E6+7aC22DDnHJIpz894N+NzLd3ekhUWw3HBe+NxlDHj+3+Flga/g/cNf1xo/N9g/jeN2SQh4XLbqrlpzUbv9reny4fCUvXv2vvEYdgxHIDeYPe0uXzdnGhSoLXO41tt8c0zE0xgIKXXT/0NhLybiacwks3qPKTMBRcYvum8EUGeFZ2jHovai8LpdmJzTArVGzETspI9CRyJJwsS570Fe1QarkkvBBwo3ITd6KQCt15SqAiei6cp7hPLH6kBt/1gMAaTRFz1g3bZJI5FOElJkZAulqixku6SPPFNm1x+FFyPz+st202vKqNXLxi4n9IxaOVCbzxaQL6q29y5BEMRyIeJ3469euE1vr7NQegMe3Hd0BidiaTx3R/WC6qqIDx+7frsjXWtf+8y1uGaboB1SG9AXSG2eu/FUHvfP+DCyYeuCjxH2uS1z0VNxbY60OtK8i/Pu0S7dfM1MJl/EoyfjDdWncXoDHsyUHZ/PJChQW+YEPTIkZnXaORXPYKiBQtRVES+eOp1EJl/S+5OYCSkyHnVtBi54c+2dLWJ9GqA1veZ643p1RorbJZQ+FoolzGUKwsl6etvL8dzcJ7Hvws9j//PvwHeKe/Ws42ivtuI1XhWoCWSfxoxaIYd9YzFc4TsMVjLprsNrgL6NNT/DYqIHU4brKpEttq1GDaiVUcuXz6EzAVR3wINoypBRc1CQ43NrvzveS41bDVONGkEQKwWeUXNJDFdtadyZcCUTqiV9BLD/uBYQ7Wmg3suOiM9tUXdNxDPwuV0LWnjdM9KFE7E0puas7XwePTWHfFFt6nx7KKNGLAWSxBDyWlcxJuIZDEXqB2qDES9Olyd7dqvyeqPEK/9Ks2y1Y5EbBxpX5RaaUeN6apFFu1d24Ul1GE8PXYUTLq3xMk/fj3RrgdrYrKFObc25gGQajOZOAH/4KvD5HcCt/XjFY+/AG733Wk9ww+WWBo1LCQ+SjIXHyWwBwXbUqNVZ2ZvTpY+dy6jli6peY9hKT5/Fxm+SPvKFCgrUCIJYKfBF5YvW9zpqoW0pCejPXbE5x76xKBgDdgwvXJYqzKjNaXPRhdTc8WzZvnFrVm1fOdO2Z7S74f31BBQK1IilISK4OSbmMljVQKp5lSHrZjfg8f4bUILACz9vv7MRQS+xDmLsx9NYjZo1UIvWyKrwQDCTL+k3Nz/OQEiBR5Zw3BioeQJim9sfvguIjQEA9hQPYk9aYNu/jOrTgEphMA/UiiUV6XybMmreGu5Thtc70UcNqAQ1R6aS8LgkPfhxAmbpI78ue22y4QRBEGcafFH5uTs6IxM8E6mnZNk/HsOmgVBLSpawIGkw2aC6S8S21RG4XQz7BYHa/vEYVkW8GGxi370BD6KpPEolseO0U6FAzQGY082JbAHzmUJDGbUhQzBntypf1ffq7CuB3a+2btS1Fgivsr7eQRR35fKsN6n3uV1I56wDVKxGnZK3vP90rmgI1LTtJIlhuMtX7fwILFz+uX7vwt7XIczSx2T5d9cOM5FQuag5aZNR45LEcIcyXXqgNp1AxO9uu7tWJ/F7uPRRC9R+eXgajAGDEQrUCIJYGZzVF4Df48LVWylQa5RateGqqmJ/g42jaxHxuS0LsKfiGaxqYC4qwut2YeuqMPaNRateL5VU3P/UDJ7RRDYN0J79xZJqKRVyOhSoOYCwT65axeBOiI3cHMZtakkfq26+a/4aCK2u3ui8NzZxxu3BW86ohb1yXdef3qAHyVxRl4xxajn/6Rm1ghaodfndVccZ6fFXSx+Bhck/V+0CAn3Nv6+D8EGdD2iprPZ7a0dGjVv820kfj0fTUGQJfR3KEvHs07GZlFDyupzRpY/5An7/9Cy+/ttjeP1F6zAQal9jVIIgiOXMi/eswX3vv7Jm+yGiGkWWIEtMmFF7eiaFWCrflDGHCLO6q1RSMTnXWBmOHbtHunDweBxFQxZs33gMk3NZPGfrQFP74ou0Z1ovNQrUHID55uCBWiMpYeMNZGfxHVJkPaMCAPB1A2+6G4+Hn4WnsAa49L3AM9+2wLNfODzj1UjD4v5y4+/TiWrHn1iNXlqKLIGxivTRnHEc6fFhfDZd/aaFyD+XmewRMLR9KA/qPKhqVx814z7NjM+mMNztgyR1JtPVHdA+W65YQpfPWfUNPFCLJvP4i9sOYnXEh/des3mJz4ogCGLxkCSmO14TjcEYq/gNmNjPG0e3GKiFfdr+C0WtzOR0MotCSW0pUNsz2o1UrohDk/P6a3c+dErrn3dOc0YyfA53ptWpUaDmAMJed1WTQW6H2khGrS+owCUxuF1M71xvJujVatRU1aDr7RrFF4b+Gm8K/hNwxYcAefFXtnjGq5GsSF955W1qvjpQ4zVqomCPMQZFlpDNF4XtC0a6/Yin89Vp9NAgSl1nCc9hP85Blpm+E+YCdry07vkvNiFTHRmXKQbbkFFTZBc8Lsm2Rm1sNtWRPjIcYz2Xk5pdA5U+al/6xREcnU7iky/Z0ZYsJ0EQBHFmo/sNmNg3FkPA48LGgfqNo2sRMdW2T8a1+dZCa9QA6HJMbh6iqqreP6/Z1jp6Ri1BgRqxyJgzary3WCMZNZfEMBhS0O332NbqBBQZhZJqMeOIiRpFLyKKrF2ekSYyatOmQC2ezkNisA1SvW4X0nlN+miWR46Wg4lxk/zxaO+llv38Z+FKvCTzIdxx6feBrS8C3H7A1wNc+0lgaHvd819seECm16jpGbX2BAXayp5YJz4+m9JdNTuBz+OCrxzkOy1Q4zVqU/NZvPTcYVy6qX+Jz4ggCIJwAkFFFtao7R+PYedwF1wtqlh44MTno5WkQfM91Dhre/3o9rv1rN/DJ+a0/nnbm/dE4K7dlFEjFp2wz41coYRMXqsjOhXPoCfgabip5FDEW9PeO6SIXfqiqVxDssNO0UxGbSAklj7yz2Ans/O5XciUA7XeoFn6qAUTT04lql7/YvE6HGRlOZrsRXHvB/H13nehBAmbNm0FXvY14H3HgPc8Dlz41vofdAmQy26I82bpYxvMRAD7lb14Ko+5TEEPgjsFv97ruYUuN1wSg0eW0B9S8KHnL7wxKUEQBLGyCHlli4mX1jh6ruX6NKBSMsEDtYly0qAV6SNjDLtHuvSM2p0Pn9L6521tvn8ef+5zJdWZAmlqHAB3x5tL5+F1uzARzzRlWfr2vWcLres5xpoiY/FuLJXH5qHWUuWtoNeoNZD+7gl4wJg1oxZL5Wu+X8uolRBN5S3B7KbBEEZ7/PjcTw7h6q1D8HlcSOUKuONIHsFz/xU7LwsDShgufw/+Ycs8vvuH49iyKqy9WV7+AULY69YzatxlsB01aoDJSdQAd9Ec6Vn4Clwj9AY9OBFLO7LO4T1XbcKe0W5HnjtBEASxNAQU2ZJNeuRkHIWS2rLjIwD9mcTLQU7FM3C7mK1RXaPsGe3GvYemMZfJ486HJxbcP0+RXQgqMkkficXHmm5uzg71OVsH8fyd9mnkYNlO3ZwBiaVyS2rG4NXla/XPQXZJ6A14MC0wE6klf1NkCZNzGRRLqt5kk+ORJXzqhh14eiaFz/30EADg3iemkcmXcM2O1UD3OsDfAwDYOBjCB563pWVpwWISMrh9JtpYowYInETLcBnpcAelj4BzM2oA8NbLNuCCs3qW+jQIgiAIByFSsvBMVatGIoB1LjoRz2Ag5G3ZGGz3SBdUFfj2A+N46nQS125feFuG7oAbs8ls/Q0dRN1AjTH2b4yxKcbYw4bXehhjP2GMHS7/3VyzA6IpzDdHq3aoZvR6JUNNUa5QQjJXXFJ7c16j1midUV9QsWbU0rXlm163Cydjms5atCr0rA19eOUFo/jXXx7FgfEY7nx4Ar0BDy5Y5/yJdMgr6ytj7a5RC9XJqI32djhQK3/njWRjCYIgCMLphLzWGrV94zGs6fK1pcWLRfrYQg81I7vK2b4v/PxJMAZcva152SOnJ6CsSHv+rwK41vTa+wHco6rqRgD3lP9PdIiwoedVJl/ETDKHVS247JjhDoDGlZhYmrslLt1Et1Kj1lhWpD9kDdSiydoZNV9ZSgrYNwT/wPPOwUDIi/d+9wB+9tgkrt42WLevmxMIed1Vro+MQTfhaJWAYtXKA5rjY8Tn1gf8TsG/y6WssSQIgiCIxUKUUds/FmtLfRpQSRrMpbVjTLQpaRDxubGhP4BYKo/z1/W0FFT2Bjwrz0xEVdX/AzBrevl6AF8r//trAF7U5vMiDBgzalNzWiAy2IGMmrGXWlzvP7Z0E12l3PC60Vqd/qBiMROJp/M15Ztet4RCudGiXaAW9rrx1y/ejkOTCSRzRVy7ADei5Ui19LEIv9vVtt5mdv1cxmfTHa9PAyo9A53m+kgQBEEQCyGouJHOF/U+Z1NzGZyIpdtSnwZo8yWPS0I8nYeqqjgVT7clowZodWoA8NwWZI+ANo+LrrRAzYZBVVVPAUD5b9v24YyxtzDGfs8Y+/309PQCD7ey0QO1VL6pHmqNEhRk1KI1GkUvFsPdPrgkhnW9gYa25xk13g8uVyghkS3UlG8anTNrOWNeuWUQL9mzBv0hBRet723wEyxvQgYzkWS20NZ+Xd1+N2KpPLKFYtXr49HOWvNzNg6E4HO72nqfEARBEMRyhc/lklntufvbp7QcyzPWtqc6iTGGsE8rmYin88jkS00Z29Xiko198LqllurTAM0BfDqRtcw9nEzHXR9VVf0XAP8CAOedd55aZ3NCgO76mCnodqhtDdT0GjWD9LFsb7qUZgzb10Rw4K+ubtjgoj+kIFsoYT5bQNhb6T1XK9hsNFADgM+8dBeSuQI8svNlj4AmqeWN1JO5QtuMRABg++oICiW1bAusPSRKJRXHZ9O4asvC9eeN8pwtA3jgQ89p62ciCIIgiOVKyOA3EPG7cdfDp9AfUrBruD0ZNUCbj8bTecNctD0Kmet2rcbezQNNN7k2s31NBPmiisdOzbctk7jULHTGOckYWwUA5b+n2ndKhBl3uedVPJ3X66mG2nRzAJpphyyx6hq1ckat1ZumVZqZaPeZml7zYLOemQgABDyuun3pXBLreG3VYsL782ULxbZn1Hhwtn88pr82NZ9FrljCcId7qAHayh8FaQRBEMRKwZhRS+eK+Pnj07hm22Bb3agjPjfm0nmcirfeQ80IY6wt801ej7d/LNryvpYLCw3Ubgfw+vK/Xw/gB+05HcIO480RUuS2TkIZY5aaIm4mspBeFksF7wGnB2oNZdS0W6An6JzP2S64icx8poBktti2HmqANngPhb26NTBg6KHW3fkaNYIgCIJYSfDF1kQ2j18cmkI6X8Rz21xTH/Zqc1GeNFhu5QWrIj4MhhXsMywSO51G7Pn/G8B9ADYzxo4zxt4E4FMArmKMHQZwVfn/RAfhUr6JeKatRiIcs1tQNJWHLDEEPO2bvHcaHqhxQxFeUFpLvsmzaD0r0B2QB2pz6TwS2QICnvZmoPaMdlVl1MZmytb8i5BRIwiCIIiVhF7Gkingzocn0O1348I29+SMlKWPp+IZMFaZdy0n9ox0V809nE7dmZmqqq+0+dGVbT4Xogb85sgUSh1ZwQgqsqlGLY8uvweMOaeBc79Z+piuL9/0lp0l69WnnYmEyo3O5zMFJHPtlT4CWhPLOx+ewEwii96ggvFoCowBayijRhAEQRBthS++ziZzuOexKTx/x6q2txLic9GJeBr9QQXuZdiqaPdoF+56pDL3cDrL7zdMCAn73JjLFDAZz2CojT3UOCGvbKpRyznO2jzic0OWmKVGrZZ80+cpSx8Dzr+Zm8UqfWx3Rq26Tm18No3BkFdvu0AQBEEQRHvgGbU7H55AIlvAtTtac1AUobk+FnCqTc2uO8GesonIgeNnRlaNAjWHEPbJiCZzmJrvzM0RVOSqPmqxVL6mrf1yRJIY+oKKIVCrL9/k0sfeFVmjxjNqeSSzBQTbWKMGADvWROCSmF6nNh5NkeyRIAiCIDoANxP5+eNTCHllXLyhr+3HiPjcKJZUHJ1Ots1IpN3sGK6eezgdCtQcQsTnxsRcBiW1vc2uOUGv21SjlkOkRqPo5Up/uYcGoNXZ1ZNvrmjpY3lQj6fzSOfbn1HzeVw4ZyhkyKilMLwIza4JgiAIYqXB68wLJRVXbRnsSCshXkpyIpbuiLqrHfg9MjYPhs6YOjUK1ByC0RZ+MWrU4mnnZdQALVDjZiLxdH35psJdH1egmQi/png/lHabiQCaociB8Rgy+SIm5jKL0uyaIAiCIFYaLoOCqNXG0XYY56LtbBPVbvaMdmH/WAylkvPbN1Og5hCMhhhD4fbfHEHFZcmoOcman9NvkD5Gk/WDTZ975WbUuEyC2+y2O6MGALtHujGfLeD/Dk1DVYERkj4SBEEQREcIemUEPC5cuqm/I/s3zkWXa40aoJmZzWcLOHo6sdSn0jIUqDmETt8cQcWNdL6IQrGETL6ITL605M2uF0JfyIPTiRxKJRWxdL6ufHO42w9ZYljfH1ikM1w+uCStKfRJPVBrv8kHbz55+4GTAMianyAIgiA6xdqeAF6wc7Vef99uwsakwTIO1LiZ2YNnQJ1a+5fQiY7Abw5FljrixljV0T5fBFC7/9hypT+ooFhSEU3lEEvlsH11uOb2W1eH8dBHr4HPQf3i2knIK2MingaAtjZR55zVG0DYK+Onj00CAEaoRo0gCIIgOsI3broQneyq5JSM2vq+AEJeGfvHY3jZeSNLfTotQRk1h8BvjqGItyO9zUK8UWI2j1has7V3mj0/APSHtIFjOpFFtMEWAys1SAN4oNY56aMkMewe7UYmX4LHJWEwtHwHdoIgCIJwMh5Z6mhvM2NGbXCZmokA5bnHSNcZ4fxIgZpD0AO1Dt0YPKOWyBYQTWqNop0ZqGn90I7PppHJl9DlwKzgYhLyav35gM6YiQCaVhwAhrt9kCTnNFAnCIIgCKJCSJHBGNDtd3dMXtku9ox04YmJOSQNRnlOhAI1hxD2aZPoTqWauewtmS0gzjNqDrXnB4DDU1oBqRODzcWEW/QDnalRAyp1asNUn0YQBEEQjkWSGEKKvKwdHzl7RrtRUoGHTsSX+lRaggI1h8Azap3ooQZUMmrzmQKiKS2j1h1wXpDTV25cfXhqHoAz6+wWk5DBarcTNWoAsHtYC9RGupf/wE4QBEEQhD0RvxtDYWWpT6MuXM3jdPkjmYk4BL9HxkdesBV7N3fGcpXXqCWyBcTKgZoTM2pBRYbXLeHwZDmj5kDnysUkXJVR68xw0B3w4JbrtuGCs3o6sn+CIAiCIBaHv7jmHAyEln+g1h3w4GXnDTvexIwCNQfxxmef1bF980l6IlNALJWDIkuONNlgjKE/pOBJXfrovGBzMeEZNcYAfwe/79c/a13H9k0QBEEQxOLwwl2rl/oUGuZvbty11KfQMiR9JACYzEQadEtcrvQHFb3FgJM/x2LAa9QCHrkjbqIEQRAEQRDEwqBAjQBQcfybz2jSRyfXdvUbUvJO/hyLAZc+djKbRhAEQRAEQTQPBWoEAMAlMQQ8Lr1GLeLg2q6+oBaoeWQJXjdd4rXg0sdOGYkQBEEQBEEQC4NmsYRO0CtrNWrpnKMzUTyj1u13k5yvDrr0kQI1giAIgiCIZQUFaoROUJGRyGn2/E6u7eKBmhNdKxcbnlHrVA81giAIgiAIYmFQoEboBL1uzGcKiKfyjnZL7C9LH50cbC4WvJE6SR8JgiAIgiCWFxSoETohRcbUXAa5YsnRQU5fiAK1RuEZNb+HAjWCIAiCIIjlBAVqhE5QkXE8mgag1Xc5FZ5Rc3Kd3WJBNWoEQRAEQRDLEwrUCJ2AIiORLQAAIg6u79Jr1ChQq0vQI4MxIEg1agRBEARBEMsKWkYndHh2BXB2Rs3rduHWF23Hszb0LvWpLHskieGTL96B89Z1L/WpEARBEARBEAYoUCN0jIYSTs9GveaZa5f6FBzDKy4YXepTIAiCIAiCIEyQ9JHQCZ4hGTWCIAiCIAiCcDoUqBE6xoxahAI1giAIgiAIglgyKFAjdHiNmt/jgiKTuQRBEARBEARBLBUUqBE6PKPW5aNsGkEQBEEQBEEsJRSoETp6oOZwIxGCIAiCIAiCcDoUqBE6AT1Qo4waQRAEQRAEQSwlFKgROrxGrZsyagRBEARBEASxpFCgRuhw6SM5PhIEQRAEQRDE0kKBGqET1DNqFKgRBEEQBEEQxFIi19+EWCkosgufeskOXLShd6lPhSAIgiAIgiBWNBSoEVW84oLRpT4FgiAIgiAIgljxkPSRIAiCIAiCIAhimUGBGkEQBEEQBEEQxDKDAjWCIAiCIAiCIIhlBgVqBEEQBEEQBEEQywwK1AiCIAiCIAiCIJYZFKgRBEEQBEEQBEEsMyhQIwiCIAiCIAiCWGZQoEYQBEEQBEEQBLHMoECNIAiCIAiCIAhimUGBGkEQBEEQBEEQxDKDqaq6eAdjbBrAMQB9AE534BARAPEFvK+Z81noMZqBjmGP+bty6udYicdo132/1J9jJR6j1nfnpM+xEo7RqeerkTPld7WcjtHK97acPsdKOQaNic48xnKKP9aqqtpfdytVVRf9D4Dfd2i//9Lp81noMRbjc6yEY5i/K6d+jpV4jHbd90v9OVbiMWp9d076HCvkGB15vp6hv6tlc4xWvrfl9DlWyjFoTHTmMZZb/NHInzNN+vhDOgYdg45Bx6Bj0DFW8DEWgzPld0XHoGPQMegYy/oYiyp91A/K2O9VVT1v0Q9sw3I7H8Ie+q6cC313zoW+O+dA35Uzoe/NWdD35Uyc+L0tVUbtX5bouHYst/Mh7KHvyrnQd+dc6LtzDvRdORP63pwFfV/OxHHf25Jk1AiCIAiCIAiCIAh7zrQaNYIgCIIgCIIgCMezogI1xlhiqc+BaJx63xdj7F7GmKO0xmcyjLEXM8ZUxtg5S30uRHMwxj7IGHuEMXaQMbafMXbhUp8TYQ9jbJgx9gPG2GHG2BHG2N8zxjw1tn83Y8y/mOdIVFMeG//O8P8/Z4x9dAlPibCBMVYsj4OPMMYOMMb+jDG2oubLTudMmu/ThUcQRLt4JYBfAXjFUp8I0TiMsYvw/9u79xgtqjOO49+fQARBIVI1VlGgAQkoIFRbK6nQeteKVhtFEluhqEUlmqixxkZt0mrqBUXAa8BILEhbS/EGKkhJi0oBYYGKaNEWahOkUryAq9Cnf8x5y8u6F+Tyzuy+v88/O3POmZlnd/Lue848Z2bgbGBARPQFTgbW5huVNUSSgKeAGRHRA+gJdAB+0chm1wAeqOWrFvi+pK/kHYg1aUtE9I+IPsApwJnALTnHZFWq6gZqkgZLeqZsfbykH6XldyXdJmmJpOXODOSvsfNlxSGpA3AiMJI0UGvis3ampFWS/iRpXHk7q7hDgQ0RUQsQERsi4j1JAyX9UdJiSbMlHQr/z2TfK2mBpBWSjs81+urzHeDTiJgMEBHbgGuBEZLaS7orfX/VSLpa0hjgq8DLkl7OMe5qt5XsQQbX1q2QdKSkOemczZF0hKSOqU+yT2qzn6S1ktpUOvBqFhHrgcuAq5RpJelOSX9J5+vyUltJN6TP3jJJd+QXtUHWL0mfp1Kffmgq7yrpDUmPpKzpC5La5R1vQ6puoLYTNkTEAOAB4Lq8gzFrJs4FZkXEauADSQMaaiipLfAQcEZEDAIOqlCMVr8XgC6SVkuaKOmk1Bm8H7ggIgYCk9gxY9M+Ir4FjE51Vjl9gMXlBRHxIfAP4MdAN+DYlB19IiLGAe8BQyJiSKWDtR1MAIZL6linfDzweOmcAeMiYhOwDDgptfkeMDsiPq9YtAZARKwh6y8fTHYxclNEHAccB4yS1E3SGWTfg9+IiH7Ar3IL2Eo+Bc5LffohwN1pRgJAD2BCypr+Bzg/pxib5IHaFz2Vfi4GuuYYh1lzMgyYlpanpfWG9ALWRMQ7aX3q3gzMGhcRHwMDya4avw88CVwOHA28KGkpcDNweNlmU9O284EDJHWqaNDVTUB9j2sW8G3gwc60IG8AAAcOSURBVIjYChARH1QyMGtcGlA/DoypU3UC8Ou0PAUYlJafBC5MyxeldctHqYN/KnBJ+r/4GtCZrNN/MjA5IjaDP3sFIeCXkmqAl4DDgENS3TsRsTQtF7q/3zrvAHKwlR0HqG3r1Nemn9uozr9P0TR1vixnkjqTTcc6WlIArcg6kjOp/9wJK5Q0fW4eME/ScuBKYGVEnNDQJk2s296zkjpXfyUdAHQB1uBzUXT3AkuAyY20KZ3DmcDtkg4ku5gydy/HZvWQ1J2sT7ie7Pvr6oiYXafN6fizVzTDyWbsDIyIzyW9y/Z+SG1Zu22Apz4WyN+B3pL2TdMPvpt3QNYon6/iu4Bs2s6REdE1IroApWxZfeduFdBdUte0fiGWG0lHSepRVtQfeAM4KD1oBEltJPUpa3NhKh9ENg1oU8UCtjnAfpIuAZDUCrgbeIxsGusVklqnugPTNh8B+1c+VKsrZVqmk02hK1nA9ocwDSd7KFMp270QuA94Jl1QsQqSdBDwIDA+shcPzwZ+UrpXUFJPSe3JPnsjlJ6uWvbZs/x0BNanQdoQ4Mi8A9oVVZMxSl9ctRGxVtJ0oAZ4C3g938isPj5fzcowoO6N078DLibrkOxw7iJii6TRwCxJG8g6IpafDsD9afriVuBtsmmQDwPj0iC7NVkmYGXaZqOkBcABwIjKh1y9IiIknQdMlPQzsguuzwE3kV0Z7gnUSPoceITs/qeHgecl/cv3qRXC3cBVZetjgEmSriebfnxpWd2TwG+AwRWLztqlqY1tyP4nTgHuSXWPkk2TW5Lud3ofODciZknqDyyS9BnbP5NWYaX+I9n9nk9LWgQsJbtI3Owou0DQ8knqBzwSEX5CWTPg89WySeoQER+nL7oJwFsRMTbvuKxpkuYB10XEorxjMTMzK9fS+o9VMfVR0hVkN7/fnHcs1jSfr6owKl2xXEk2PeGhnOMxMzOzZqwl9h+rJqNmZmZmZmbWXFRFRs3MzMzMzKw58UDNzMzMzMyaHUmTJK2XtKKsrJ+kVyQtl/R0eoVJqe6nkt6W9Kak0xrbTxF4oGZmZmZmZs3RY8DpdcoeBW6MiGOA3wPXA0jqTfYqjD5pm4npFScN7Sd3HqiZmZmZmVmzExHzgQ/qFB8FzE/LLwLnp+WhwLSIqI2Id8heR3N8I/vJnQdqZmZmZmbWUqwAzknLPwC6pOXDgLVl7dalssLyQM3MzMzMzFqKEcCVkhYD+wOfpXLV07bQj79vnXcAZmZmZmZme0JErAJOBZDUEzgrVa1je3YN4HDgvcpG9+U4o2ZmZmZmZi2CpIPTz33IXn79YKqaCVwkaV9J3YAewMJ8otw5HqiZmZmZmVmzI2kq8ApwlKR1kkYCwyStBlaRZcwmA0TESmA68FdgFnBlRGxrZD+5U0Shp2aamZmZmZlVHWfUzMzMzMzMCsYDNTMzMzMzs4LxQM3MzMzMzKxgPFAzMzMzMzMrGA/UzMzMzMzMCsYDNTMzKwxJIWlK2XprSe9LemYX99dJ0uiy9cEN7UvSPElvSqqRtErSeEmdduW4ZmZmu8sDNTMzK5JPgKMltUvrpwD/3I39dQJGN9lqu+ER0RfoC9QCf9iNY5uZme0yD9TMzKxongfOSsvDgKmlCkkHSpqRsl6vSuqbym+VNCllxdZIGpM2uQP4mqSlku5MZR0k/TZlzZ6QpLoBRMRnwA3AEZL6pWPMkLRY0kpJl6WykZLGlsU3StI9e/bPYWZm1cgDNTMzK5ppwEWS2pJltl4rq7sNeD1lvW4CHi+r6wWcBhwP3CKpDXAj8LeI6B8R16d2xwLXAL2B7sCJ9QUREduAZWm/ACMiYiDwdWCMpM4p1nPSsQAuBSbv8m9uZmaWeKBmZmaFEhE1QFeybNpzdaoHAVNSu7lAZ0kdU92zEVEbERuA9cAhDRxiYUSsi4j/AkvTsRpSnm0bI2kZ8CrQBegREZ8Ac4GzJfUC2kTE8p37Tc3MzBrWOu8AzMzM6jETuAsYDHQuK//CNEUg0s/asrJtNPwdt1PtJLUCjgHekDQYOBk4ISI2S5oHtE1NHyXL7q3C2TQzM9tDnFEzM7MimgT8vJ7s1HxgOGRPcAQ2RMSHjeznI2D/L3vwNJXxdmBtyvB1BDamQVov4JulthHxGlmG7WLK7qczMzPbHc6omZlZ4UTEOuC+eqpuBSZLqgE2Az9sYj//lvRnSSvIHlLybBOHfkJSLbAv8BIwNJXPAq5Ix32TbPpjuelA/4jY2MT+zczMdooioulWZmZm1qD0braxETEn71jMzKxl8NRHMzOzXZReqL0a2OJBmpmZ7UnOqJmZmZmZmRWMM2pmZmZmZmYF44GamZmZmZlZwXigZmZmZmZmVjAeqJmZmZmZmRWMB2pmZmZmZmYF44GamZmZmZlZwfwPcpIhYF3uQzQAAAAASUVORK5CYII=\n", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import pandas as pd\n", + "website = pd.read_csv('http://openmv.net/file/website-traffic.csv')\n", + "dates = pd.to_datetime(website['MonthDay'], format='%B %d')\n", + "website.set_index(dates, inplace=True, drop=True)\n", + "website.plot(y='Visits', figsize=(15,5))\n", "\n", + "# Smooth it a bit, with a rolling mean\n", + "website['Visits'].rolling(5).mean().plot(linewidth=5);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Notice the common problem with smoothed rolling average data: it introduces a 'delay' into the time-series. The smoothed peaks are shifted to the right in time." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### Try it yourself\n", "\n", + "Copy and paste the above code, and try this again for the [Ammonia dataset](http://openmv.net/info/ammonia). Note in the code below:\n", "\n", - "Time-series: plot some of the integrated curves in pybasi03\thttps://www.coursera.org/learn/python-data-analysis/lecture/KjG8R/distributions\n", + "* The dataset had no time-based column, so Pandas provides a simple function for doing that (`pd.date_range(...)`). We were told the data were collected every 6 hours. \n", + "* Note how the plots colours can be altered, and the line thickness.\n", "\n", - "Labelling plots: titles, axes; legend\thttps://www.coursera.org/learn/python-data-analysis/lecture/xhEIo/hypothesis-testing-in-python\n", + "Modify the code below:\n", "\n", - "Time-series: monod kinetics\tRegression: https://jakevdp.github.io/PythonDataScienceHandbook/05.06-linear-regression.html\n", + "1. Try different rolling window sizes: `'12H'` (12 hours), `'2D'` (2 days), `'30D'`, etc.\n", + "2. Which smoother shows the trends clearly?\n", + "3. How would you describe these time-trends to a colleague?" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2oAAAE+CAYAAAD8q+PDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzsvXeYJEd9///uTbe3t3lv927vTqe7k4QSQgKEMCIIDCbZGDC2+JlgCbDlgIVIX4TJxhiTZVtYBAkwIgrJCqcs3Smn00Xp4uYcZmd2ck79+2O6uququ2e6e3pmZ3br9Tz77PRMh+pUVZ8sybIMgUAgEAgEAoFAIBDUDg0r3QCBQCAQCAQCgUAgELAIQU0gEAgEAoFAIBAIagwhqAkEAoFAIBAIBAJBjSEENYFAIBAIBAKBQCCoMYSgJhAIBAKBQCAQCAQ1hhDUBAKBQCAQCAQCgaDGEIKaQCAQCAQCgUAgENQYQlATCAQCgUAgEAgEghpDCGoCgUAgEAgEAoFAUGM0VfNgGzdulHfs2FHNQwoEAoFAIBAIBAJBzXDw4EGfLMv9pdarqqC2Y8cOHDhwoJqHFAgEAoFAIBAIBIKaQZKkKSvrCddHgUAgEAgEAoFAIKgxLAlqkiR1S5J0myRJpyRJOilJ0mskSeqVJOlhSZJGlP89lW6sQCAQCAQCgUAgEKwFrFrU/gvAA7IsnwPgQgAnAXwewF5Zls8CsFdZFggEAoFAIBAIBAJBmZQU1CRJ6gTwBgA/AwBZltOyLAcBvBvAL5XVfgngPZVqpEAgEAgEAoFAIBCsJaxY1HYB8AL4hSRJhyVJukmSpA0ANsmyvAAAyv8Bo40lSbpKkqQDkiQd8Hq9rjVcIBAIBAKBQCAQCFYrVgS1JgCvAPAjWZZfDiAGG26Osiz/VJbli2VZvri/v2QWSoFAIBAIBAKBQCBY81gR1GYBzMqyvE9Zvg0Fwc0jSdIgACj/lyrTRIFAIBAIBAKBQCBYW5QU1GRZXgQwI0nS2cpXbwZwAsBuAFco310B4K6KtFAgEAgEAoFAIBAI1hhWC15fDeA3kiS1ABgH8BEUhLw/SJL0MQDTAP6qMk0UCAQCgUAgEAgEgrWFJUFNluUjAC42+OnN7jZHIBAIBAKBQCAQCARW66gJBIJVxngwhtuHFpCX5ZVuikAgEAgEAoGAQwhqAsEa5Zg3AgDI5YWgJhAIBAKBQFBrCEFNIFijCEuaQCAQCAQCQe0iBDWBYI1C5DQhrgkEAoFAIBDUHkJQEwjWKEJAEwgEAoFAIKhdhKAmEKxxhAekQCAQCAQCQe0hBDWBYI0jC9uaQCAQCAQCQc0hBDWBYI0jxDSBQCAQBJIZRNLZlW6GQCCgEIKaQLDWEZKaQCAQrHkenfLh4QnvSjdDIBBQCEFNIFjjCDlNIBAIBIR4RljVBIJaQQhqAsEaR8SoCQQCgYCQyOZXugkCgUBBCGoCwVpHyGkCgUAgIIgxQSCoGYSgJhCsccSYLBAIBAKCGBMEgtpBCGoCwRpHDMoCgUAg0BCjgkBQKwhBTVD3TIfimAjGV7oZdYssKl4LBAKBQEGMCAJB7SAENUHdc2AxhMOe0Eo3QyAQCASrlLlIArcPLSCdW/2JNoTuTiCoHYSgJhCsccSYLBAIBMUZWo4CAGIidb1AIKgiQlAT1DV5oforG3EJBQKBoDh5pZ9sgLSyDakCYkgQCGoHIagJ6pqkqPfiCDouTQzKAoFAUBxSb1Li5LRMPi8KRAsEgoohBDVBXZPM5la6CasAIaoJBALrHFgI4vn5wEo3o6oQi5rESWpPTC/jgXHvCrSocogEU4J6I5XL49k5/6qMIRWCmqCuyebFgOIE+qqJMVkgENhhOpzAbCS50s2oKqqbPddfhlIFa9pqEm5Wz5kI1gpjgRgWoimMBmIr3RTXEYKaQLDGEYOyQCAQFCevymnGPWZOdKQCwYrRqFi6V2PeAiGoCeqa1fdKVgemLxMXUSAQCIpCBDSz7jKbXz0uV6twritY5RBBLbcKH14hqAnqmtXkblJNaK1wJa9gJpdHIiPiCAWCtUQgmUY4lVnpZriKalHjOkwSsZYRbvgCgSWCyQyemfW7qtxoUKSZVRiiJgQ1gX0OLATx2JRvpZsBQBiDnMIa1Cp3FR+bXsb940sV279AIKguVpRjj04tY89kbYwRbkHOmz/7poaCqLaqLGpiZBVUkNFADIuxFKZCCdf2KVwfBQKK6XAC/uTq0pauOai+rJL9WiQt0lYLBKuJtWo50ixq7Pk3KoJaRgSpCdYAsUwWT8/6kSlDMdG1rgkA4I2n3WqWcH0UCGqVVfhOVoVqXzaRnVMgWB0Ue5ej6eyqTI8NmPeZTRKxqK2ePk6MqwIzTngj8MRSWHAh66ub1i9SNSO3it5DQtNKN0Cw+sjk84AMNDdWXg+w+l7J6kD3j9W4hulcHk0NjVU4ksBN4pks/IkMtnWuX+mmCGqEYpr0hya8WN+0uvW/Zq6P5VgYag0xrgrMaFKCwcqxrFfi+SJzGuH6KBBY4O4RD+4e9Zj+Hktn8fCE16Vi1avvpawGTDKRCnZsyhxm1WrZVztHPGE8vxBcdYkhBM4p5eKXyFb3XU/n8jjiCVVNk853l43KxLXeLWoiMZfAClpMZhmCWgUeNbJL4fooELjAeDCOSDrrSiDpKnwnq0K1svM3K5MYIajVJ62KdWQ+uraKGwvMqbWJ0AlfBOPBOKbD7iUmKAafaIMoo2rtupTD6jkTgdu4IahVAqJoWI1TDSGoCapOc6NzVxFZlpGh3sTa6irqCM71MV6hFPotyr0Wglp90tK4OqwFAvewkxGwmlaalXZ5qnc5jWl+vZ+MoGI0qxZk52N6qZqEzvZZYKX7gUogBDVB1Wkuw8f5yFIYd496VuXLWE3oqze8HMUD40uIViBDo2pRW0XxGwLBWiWeySFlw7WxGlYmkkSgWmOC2WFW04i0ms5F4C6NwvWx6ohkIoKqQ5KMZBxYWWYUd8lcXkZDo+RIYzsejGHYH8PbdvZDIqP8mkO7bqTUQiWsJuTyrsK+c01A7pu4fwIAeMBmTcRsXkalc4s0KCWnq/WMmh2m3mO8qp1gSlCfkBlTWYKaO01h9ymSiQgE7qF4wzmyqGna08J/J6/kC54w4pkcYhVy96sHjPqyhgrKrKuv61xbiPsncEI1XGbVMaFKT2m9C2RmyLw/PABfPI0Rf3RlGiSoSchTUlbWR1I83sV3SXt+V5/yXQhqghXDiUWtgas+7+Q139jWAsDdYov1htF1q+j8Qy64TYlYp/pC3C1BOUTS2YoXvdfGhIoeRoU/jFyG0rCWMEow9dTsMo56I6uq9ICgPIhAVF6MGvvfFZSdrT4xTQhqghWkPIua89FxfVOhnldqDSe4MBTUKnEc9TbJeGB8CfvmAxU4iqDSrFYrgqCyPDsXwMMT3ooeo0F1r66SRc1kuZ5fkbFADP6EvgQHGSuNfhOsUYiLoYNNJ0NxPDzhpdwUXWuV9l6uQklNxKgJXGM8GMOG5tKPFHlJnWjpiPY0V4ZFTWtHHY+s5WJw6pW8GkQoXoqlKngUgdtUIjuXQOAmEqprUeNfBtWNq47fkheWwswyOZeudc2IZXIIpzLYtGHdSjRNUGOU85QfWgwBAAYUryZ3XR9XL0JQE7jGEU+49EoUTt5RYgLOU5YabX+yreQgq/nFLoXRpKKSgmtSyRTXWunMAgJ3oTSfkXQWHS1iyBDUFqpFrYLHoPtGvu9cDRY1HnIu1bi2gvplKZZCJp/H1o71ltZvlCTkZFlV3JbzXOWV/RCrL3lHV6FBTbg+CqqPk5czl5dxz6gHUSUBSDmuj9rAunaHn2qfeSJbuG/rlE5VUB+Q54S4rMQqHG8kENhF4uKWKwETv8Vb1Cp21JWHTHrX8FAp4KAfhadm/dg3H7S8LamhqwpqZTxXhz0h3D+2hFxextByFLORpPOd1ThCUBNUDDcFoWgmyxRNNnJ9tHo02QW3yXrH6NZU8nokFAG7tVF0OfVM0kYNLcHaYqUUX6RHqdThZVlm3Cr1yURW33iSzuWRympZkevZrVPgLuW852pdVdWi5nxfS7FCMrhENofjvggCydUbRyn8WARlE0tnDbUZMozN0E5edD5boFF6ftnsgAbtUtdfo1Q762NCmeCvE4JaXcE/E9VKgS5YXdh1S7eDalGr0LP54lIYY8G4umx2lNXkoXFyOYqTy1Gc1llwaVtFpyZYQZob3LOorW9qQCKbQyi1egU0giVBTZKkSQARADkAWVmWL5YkqRfALQB2AJgEcLksyyKlW5nkZRnhVBbdrc0r3RTLPDXrN6xJlpeNa3M5eTd5QS1nIKnJpqIhd/xVkk7ZKYUJRbXyPhYgFtCGShZrE1QcUV1B4IS8rNXPdItkNoe5SFLNBFwpYYIW0owO5GQ8uX1oAZs3rMOl23rLa5wLFBUwXbQW5mUZubyMZqGsq2vKeRbIvXfDora+uRFIZlTLGmE1zjDsvDFvkmX5IlmWL1aWPw9gryzLZwHYqywLyuSYN4JHpnyI1lEsSMrEHcrNmAG+ZodWR40O8rYG2WY1VrAvRSaXxx3Dixj1x3S/VSQ9fzUOIqgY/EC6Ft8ZgTWKPRm5Cjw3hxZDeGEpjKDi8lStZ1Ofnt+ZMLNYIxlwi7U7ni3f8kE44gnj7lGP6EPqnHJuH7GoqXr2sixqhXh3X2L118MtR7XxbgC/VD7/EsB7ym+OgAw6cQMLVa1iNgibdchO3k2+5pphjJrFHa9lixq5jjOcq2oqEUc8nqj48UWsQ33B3y1hUROYUaz/rYSgRvZIxspqzf/1MWrs/3qjWLsj6cJ8xI1+26MIpv41MLEWGNPIedSUE/FMdhXL1I9RwylWBTUZwEOSJB2UJOkq5btNsiwvAIDyf6ASDVxrNClPX7ZGe30jNwlzn333jmsWo8a6PlpjbWd91J/z8JGDuOLV5+MVZ5+J6elpd4+2hjKkrQXW5jsjKJd8BST89UqpDxL/Wq34SfM+rT7fjWJCWDqnKERdOLWNSu2sZVE8u64pR2jn3RLdeK74rqU+38LiWBXUXivL8isAvAPAxyVJeoPVA0iSdJUkSQckSTrg9XodNXItQQS13AqqrvOybDohYy1YxdtoalFzcGpGro/BZAZRWpticcerMUuXVYzO+Vsf/wgy6RT8/mVcd9116vfT4QQen/Y5PlYgmdbXHFqLF72O0SUTETdQYMBoIMb2xRyVsKi1Kq5PpPRHtYbM1VZHzUq73Ti1xiqUURBUnnJun17J4Xxna+kxsiSoybI8r/xfAnAHgEsAeCRJGgQA5f+SybY/lWX5YlmWL+7v73en1asYYhrmLUjVIpbO4s7hRUyHjd3g7DTLzUTeumQisoxHpnyYDGnt9MRSlgTcSg6subyMEX+0di0PXLNyuRxCy5owdvDgQfXzgYUglhMZR+fiiaXw6NQyQqnV75awlhDJ+QU8mXweLy6F8cT0suk6lRDUmiR2rKxWn6ubbNa54s/KO20Uqzrij9oUuur7OgnKh7/3ubyMyWDc0btr6slle0+1T0lBTZKkDZIkdZDPAN4K4BiA3QCuUFa7AsBdlWpkPXH/2BIeLzJglUJ1fcyvzJTIr8TImQU60y9UqRfCPEbNfofNx6gZ7fvAYgjHvOGS+9JiCsxbkJdlZHL278GwP4qj3ggjQPIcXgxh2B+1vW834M/41MHnmeUNGzbotnGiNDBLhrMaO9G1hNCGr11KTab4PprGQVdaklqJnzTwwq8r+Pt678034ao3vhK//v43kctmlXXYbSaCcRz1RjBikJTK/DjK/7JaK1hpZN0HB9sqZPIyDnlCRYtV5/IyJkPWhbnVOERZSc+/CcAdSq2SJgC/lWX5AUmS9gP4gyRJHwMwDeCvKtfM+iGRzamuGE4gWsJKaCCtQNKmtjQYy/C65B1FcqGaDpxOXnDuepgJD5F06WtvRVAcWo5iJpLAW3c6C70s9gxMhArpnl/S2+5o327yyO23MMt0jFqTJCEry8jkZTQ32tuv2eNbs5ZGgSH8/RLJRNYuRrc+l5ct9efVGM+qlagokc0hlcurNSGtKP5qGbrV0VAQv/zO15HLZnHHjT/E1PBJfPEnv9JdWTL+ZmwolLUJfn1eJ0EBTTHhaCJn+HW6iCbnqDeM8WAcbU2NGNiwjtqVfl/5fB6ZOsqYbpWSgposy+MALjT4fhnAmyvRqLWMJK2s66MqqJkUvcnbsKhZiXMrxYg/inRO3yUkTLJiWqmpaiVLVzKbNy07UIwWrk4IzXIijZEKWtIWo0kMbFiHhiIXgT7lSMCPJ3bfxvw+OTmpFqdtbJCQzcnKYGxPUhOFkVcnwqK2djG69XeNLOL8jR0lt61M1seViX8d9scw7I/hL84eVNpR39DX7dATj6hWNAA49Phe+BbmsKPrLGYbJ7XrtJI6lSWSzqK9ubFiBdbXPGW8aE629MULWUIbufvJ72t+chxf/tB7AVnG0088jvPOO89ZI2sQUXnQRdyYxBDhJpLO4qmZZUfCQjkQ95UWk6KU7CkWP183rsdRbwRD/qiub0g68KVJZHO4fWhBde8sJkzkZWf6Wb6gI83j08uYj1amdo4vnsYzcwEc90aKrkcLz975WeQ5jWg8HsfycsF1t6mMeElTi5rtPQlWklpxL6sER5fCuH1oYaWbUTeY3frJUNzkF41KZH2slYyypE8NJDM44gnZsqzJRRJ3VQv6+CMvHtb9vjA1wQjFI/4o5hVXNfsRapUVqAPJDB6e8GI0YN0lU2CPcu6jk1sfIRayEnL3d6/+WwR9XgSXfbjxxhsdHKl2EYKaixQz31qFPMgL0RSW4mlMhKrb4ZBzMLPKMAWmS7x1lZzUJTkBVpZlzI6PIJcxT/1LatQRIuksjnvDxiZ0WXbUEZEXyo1nwQ7E1TJuw+02FjEW6iYnJwFogpod9xaCmxk/q0U6l3cUl7iaiGdyTA1HvaBWwzfQJiNiMmcLM9WVlb6uGm/VSj2b5KixTA7jwThSNvqQ+8aW8ODEymbDpq/a/MSY7veFqUnGvfOoN6IqO+0JpYX/i7EUHhhfcjWztSzL8MRSiCuZR90uguyNp7B/PrDiQnUtwXjnpLKW3r9yhDv+2tOLmXQa0yOn1OU9e/bYP1ANIwQ1F3FFUOMeZFLHpFqQc4iks5gxyPxI962lWla64LU9zSNNKqdNJvP5PK77zD/imndehn9835/qrERmR4umcxjyx9Q6PDR5m+3jj2FnsC4HWZYxH0mqrkW8e4BufepzPGqceGVqagoAZVFz8Ayaj8G1O9DdM+rB3aOelW7GivLA+BIeGDdM4AtgdQlqBDH5sobZZSqWRETbthKujzUC1xA770gql2cUIysB3VxjQW1c/cyPlfYsapq3UDyTs6VULMV4MI6nZ/1YUDxW3H7cnprxYyaSrJ1nbgXRksJoV+PhSS+OlfDm4bcBgNnxEXjnZy1d12LdzMSJo8zytm3bLOyxfhCCmou4MTnn3fGMhL99cwFMBEu7mziBTPjHg3HsXwjqfpdNPtvCBZM57Y538LGH8fR9uwEAJw4fxKlTp2CITX96J+dHJiRWJi9uMBqI4bn5gCpUN5Ryy6ealYgax8sRi1qjVOgenJyL2dUTA119wU94VrK+Y6VYfWdUHUL+ZTx0y68NJ/fVoBpuuZasBFxLirmKz0eTeHLGeVboSkDmHJl0Gt75Wd3vy4vz6rgWTrFeKXYEIrOyBm5AhF3y3+1HoRpum/UCuQT8Y+6L2wvr2Lfnflzzzsvwz297HY4fOWL5uNqy9s2pwweY3zye1aVwFYKaixDrVymrhhHLibTi315YJnswcjubiyZx2BNy2syyYDrXEr2W2a9ORKBigzL/ko6NGU8c7Bw1L5drpre/rRPCiv82iWUslkgE4CxqEWOLmt/vB1BeqQizuUo9DHSnliMrVh6j9mBvWJUN/FWhHp7JWoCfWF9/7Sfwk69+Dl/5m79EKmlejqSwbUUaxC26fxBeUAsHlvGL//gqfvuf30YuZywUFBPUnpsLwBt31y2vXMgpRgJ+w2sY9HrVc+QVx3bGcv1E2z34Ya9SVvJqZRatZcg14N8NK1eG3uS3130LAJDNpPH1f/mshW3Nj7cwOc785vF4kJdl3Dm8gMkKGTWqiZX0/AKLkAfYSbKhF5fCCCQz6FrH3pJqxzrxkAyABN71sViH6KRLCyQzaGtqwLomLstgkZ3Njg4zy2aCWjmulpa3c3CscsgoM+cGRaiyoySIRzVXhZbWVqSThQDxiBK7Vl4ykfq1qJ3wRZHM5nHRpq6VbkpZZPN5hJJZ9LW1lFw3ms4auq7oFST1cAftUei3RYa4UtB3PpfN4vCTjwIAAl4Pho8cxAV/9DpL21aiPUBl4uDori8aCuKrV1yO6eGTAIBf/9HLccUVV+iE0JXK2OwU0tpwwNjSF/B6TGug2bOo8YK19W1LQRSUTmq02qG+7myFUC6Ck7GAbJFJpzE7NqJ+f2jfc7q5Jo/u/aYO71ucZ35aWlpCJpdDXi7MrXd0t9luay0hLGouUk7H09PaDAAIpZQCk8r31Y5R4ylmbpYNfmfWNbOqFNnm0SkfHpnyGWxjvtXs+CizbC6ombVHv2+L5YGMdmb8dYUmuMTyQ15kOxa1GGVR6900qH6OKi6RssE2VqmzuYqOeptsGXFoMYTHZ5Yt1XU8sBDEfNS86ChhNcRzpXN5PEr1MZU6pXwNZPRzE/pUluZmmN/oSZfxtu5fB36XlVAi0Lu8+5c/VYU0AHj00YKgaseiVouQexPya4La6Wdrqc2DPq+pAGTXS8XptqVo4MoFVOq1W0Wvs2PIJeBtCFauDVln+MhB3W9zc3MltjW3qPk9bPbebDaLQCCgrFf/N00Iai5CHgcnutkmk+CiYhn3quGepetcqeVRfwyPTOqFKmpt429LSABGyT3MXrVsJoOlmSnmO7MX3lRwNPherflis2euVpeQyOZw3BtR48dIbGGpGDX6fOJU1sc+SlAjFjVZvQb222dW+qBeJq710s5ihBWljxWrPFEQ8dRKCnQ3mQjGEaAywFbqnB4cX8L9RRKz1Bv0dZrjlGMTJ49Z3rZSVOKVpSd5Y8deZH47cPCggZVINh2za7VPIa2KBPzqd1t27EJTc0F5HI9GkEjE2ZXJtnayPvLLLl4PiZt1VcryX5t3sLqQa1DK9dE4g3JhrReffVL3i2luAZP9E87s2QA/Z1EDAM+ip+h29YQQ1FykGlpDmmokrCimxRgJxNQYKcNtXWyH2VzTtzivy/Lo9RqnOzZrj1Gn7vTSViuJxv75IIb8UXXCSbS4dlwfEzFaUNusfo5ySUYcxRQ6sKbWEvXSzmIQ66qVBCBWCxLXmbHAED51d6Xmz4lsXldGpJ6h+wEPpxybOKEX1O7+35/iI5degN/84D9Kusk7aw9LJSyY9PO+NDvN/Hbi+HH4ljUr1IvPPokrXn0e/vyP34BEonjMnpssxVK4fWjBcfZINVEIZVHr7O1D98Z+7RgLBYtFORY1/t642ZeoFjWw/12nRoXtqiIz//Q/oKAMu3vUgyg3PyRrTFGWacLJk/rvmG0NlAQbmhuxq60B4aA+8R1JKLIabpkQ1FyknOfB0cNUgQeQn+brhBhbPXNhklhM2LOKmYaMHzwBc0GNZ/iFQ7jn5pvUAs80Tn3d7fjylzOp4LW2RFBrKJn2UYO2qPVuNrKoOW5e3ccy1XnzAQCkZn05EyL9xKz+L4xeE+z+OemOIcvYO+nFbKR6E3i3oU+JdpMDgOmRIWSpGpa5bBa/+69vI+xfxu0/vR7/t+dx3DG86G57uPuWycu4Y3gRc5HSLrxWCCQzmFPulyzL8M6xGRFlWcaehwv1mvL5PP71I+9HLBzCi4cO4qGHHmLWjaSzRV2LyxkLxpVkCYGksyQl5MhhyqLW2dOLzdt3qstTY6PKus7HciPB2i2IUkr1hHFtzyz13/uVj6kymvqavDcxRXmQyObw6JQP/kShj/At6L2eFhYWdN+x+9c/exKAEydOGK6/tLSkrlfvCEHNTVycEFX4cJbh9cF2jpnI5nDXyCLGdFl37Lc8a9Kpe2asC2r0wBD0efGvH7kcv/jmV3DtZz5tum6psSSdy+sKaRthFgfnFF3adOULWkwz0jDTS3TWx74BzaKmCmomx3LSPqPvEytcP4hGf53qv3tXLWouTohWgwCr18y6f4wY92zn5YJ76fPzes1vvUBfpjAnqGUzacyOaUmdPLPTSFFWpW/83YcQj7qcTdXkvk2G3Mny9uiUD0eVBDtBnxfplF7QOnioEGtz6tB+5vuRETZm7+EJL/YVufc5GZgMxh0lD7NaQ9MMMg7xgtq2M85UlyeGC25p5bw7eouai66PEtmn8bHcYhV0f2Vjdg3o74niuEm5Mce9EQSSGfVZ9RqEpxgpzGnoN2Mplip4lEnA0aNHDddfTSn6haDmIuRBrVb+sGpMJsuZwEaVycosVzjbzOpUjLyJVGNkUfP7/chm9S6Z9C6euvdOJOOFAf3W3/+u6LrFeGbWj0emfCXjuYy+L2cCzQ9yRgHsdw4v6mvhUavFqKyPfZu3qJ+1ZCLOtZOmMWrK//lIEvePL8ETs1d7pVJUMtB9pWjktMxOcMMaXmuUYxWwStLFYr41A3WhjDIEjlPuj3PjrKASDQXw4YvPRiDmnkWRvm/5fB4P/v5m3HPzTYgl3e9T/B5ja+DUVMEF9OBjDzPfx2IxW/ufiyRwyBPCqWXj2pbFIK7NjTa8KWjI+8AIar192LrrLHV5atQ4WUw56fnddX3kLGoV6qhWg6KqbMzmONRnVXmgPJN0jeFELIZoKKDbnpQFMmMmnMCTM8vwxdN4atYPTywFCRIjqJG4SgDwLAlBTWCAOqlx0F9a1QDR61UmeJqlnM40TyW6CKVKW52KYWpRMxDUAGPtDD1hXeayBKXTacN1Sw1EJAlDUumI7MSolTOBLnVfyHMyy7kB0ZslKEGtd5OBRa0M7aR5HbXCD37FTceKNbIa8PdiNcRiNVIxatOhuCsuYbWaEMEORrEObqMX/FfBdaPOIbSsTyI1eeq4+tksC+QfARrhAAAgAElEQVT+g4ddbI/Gsw/eg59+7fP4xTe/gtt/9QvXjkEI+rSkMC3rWtXP01OF8ef4/ueY9YnblVVIbTWzpGLFIGNjqYy/PLIs48BCED7l2LSVtKOnF6ed+RJ1eUopgVOeRY1dNlPm2SGTy2MmnFAnspV3faz/97hcTK8A9QOvOKafzGWDxB9AaYuaN56GN57GElVYWwJrUbvgNa9XPy95Vk8iJyGouYj2aNrvbGvl9S+V8thOx0y0KqFUFnsnfSU70WITJrOECEYWNcDY/ZHe/fwEm8J/ZoZNN00Ol87JWCpi9WltKrxCRIOuHsLCgFaOoGZmjSPfpkxcaOiBpmTWR26fduDvZSadwmN33Ybdv/mlmja3lijXPfD+MQ/GAva06JWGxCvmZBkHFkPYNx/AEU/IkrVHNnlXa6WfKodqnNOqtETSFjW/flI1/MIh9fPs2KjudwAYm5x0sUHax1tvuE79/JOvf9G9YygEKEHtrAtfoX6enp5CPp9n0vYD9gU1v5LgZj1fP9QC6tio/Mvk8rh9aEGNEzIjm5cxHU5g2F/ot+isj129fdhGWdROHD6IqfnFsqzRvGDmhjLskCeE/QtBVWFaadfHVfEil0EqmzOdi9HPBhHUVC8zakrsnddiPdvaO9TPpSxqBH7eRAtqL2MENWFRExhQDddH+hE9uBjESZ++SK2b2HUJW16cxyff9SZ88l1vwtwsK/zwcRs8xfZtJtTQFrWBraepn40ENXof9KAEAJPcBIKs++ycH0/N+k1SzQLrlIwNiYxiUTN1C9D/UE6JPNOBSBUwC+0xi1vI5XJIxDQ3m66N/WhoUITOZJJxHV2IpnD3yKKt+kD8mr/63r/j+ms/geu++Flcc801lvdTLfRlKGycqywjkc3jhaVw6ZWrSCMXtwEUEg88N1daUDZXppTfrpWmnPxIlo9R4pj1CH0K4YB+UjV27AUkFJc/Ol6tu39A/Tw7baxYc9YeamKYZi3zmYy7lvqgVxO8zjj/AjQ0FgSqxcVFzI4OM/F4gH1BLVXCI6MYOVWpQhSjhXMfLaE44o9Eu7N29vShu38AGzq71O/e94EPl1UjrpQS2AlE6ZRWYh9FMpHKcu/YEuZMkuLQ10YV1Axi573zWnzaznNfqn4uZVEj0IJicNmrzvVa29rwkgtfrv62JFwfBUaUo8Wxuim93nIig5MOfNqL7l+n9bJ3Tg/d8mvMjAxhZmQI3/n8Z5jfImm2mLedPRtZPCaHTqia3XXr1+P0c7QinYaCGnVEutgzoM84RPoCvgA5T6uiAeWLCstgMzMauj6WMeiZuhYqRyIDf0sjK6iRy5ikhLSOjg40NjaipXW9+l08Hlef50Q2h0xeRqxIKQZdO6j2JWIx3HvzTeryrbfeamqxWSlK1YQpRq2cA49ZMhG/BXdTs1iPes/mCRjEqFXgnFbBZdJBTimbySAa0mJft51RsLzkczlMDZ2ALMtMnbU3/Nl71c/znPLOjfYAQDrFCkoHDhxw7TgAEKAEtb7BrYyr+OEnH9Wtb1dQy5m8b5a25awXWt9vfXqXz+cZ4bujpweSJGFgm6b8HD12RJcMppw6am70JVpsWmG5nOtohdX4Xlul5P2ifubHHHqJtqjtPO8C9bNVixq974XpSfXz4I5d6N6oKYXsvoO1jBDUXKScd7hW3v9S2uZSHfNDt/xK/fzco3uQoywzak0Nk2wi9K6txAz9/r+/q35+1R+/Dd19Wt0XY4ua9pl2+wOgc8ezOogQQYjXiKZyedw94sGkkvHS0PXR0hGMKeXfX2qwjlPxaZ2dnQAKwq76ezzumovYyYP7mOVkMom5aVKHqTaefN3AYqNZtSq8NNqoo8Zjrgiof6qR9VEvDFrfNpXNu5Zi3k1I3x8Jan1lR3cPNm07XV2OBP2IBgOqtX79hnac+TJNy6299260p/A/k05heZFVtD3++OOO9hlIpnH70AKW42zMcsCraed7Nvajf8s2ddmoeK/VSSehHDdAVVBTvSkKH0oJavRYHo+Ekc8VlI1t7R1oblkHAPjMdT9R1wkt+zAxyrq02lJoVSAOmBS6JkpPsk834t+MWMsxakYZSfftuR+f/Yu34o4bf2g4DqpKeeonOjX/aWeehabmFgCFOYeVJDz0eLY4Q3tUbUcXNQdc8nhWRUw1IAQ1VynvmbC2cbU7CruWhta2DczywvSE+jmTYzV/xQSBUi4W4cAy9u99UF1++weuQGdvn7pcyvUxFgkxv9EDqyzrr3Kp8zbL+jjsJ5Yroz1UwqJWIJU1FtTI77Sg2tVVcG9Zt75N/S4Wi5VlTaGv4NSQvs7J0wesJxXYvxDEI1P65AVuUk7yh1pNPEK8Xp2k/J4OJXDYE2KuwyO334LPffivsGfPHreauCK4pYAoRrHnqdTkYd98APvmAzWXOZK0mi+M3NHTqy6HA34mUVPf4BbGJd1NixohYKA5P3ZMX4DbCiSpx1iQnTD6KHetvs1bWEHtmSd0+/H7/Y4miU6eRZJMhLeorSslqFGf+UQihMHTd+KVl71FXT7+whF2HzYaXAnrPMm9Uo6izQ5kt2OBGCZ0ZYdWN3zcuyzLuOnfvoSJE8fw6+9/E888eK9uGyOdPJ1BtW/zVnT3a8KVlZT6dMjIIhX6smnbaVi/YYOqcE6lUoxCup4RgpqLVMOiVuk5od6CZm07v2cR3/qnK3XJPWZGhqklXugznzIV68Tnxkfx0Utfpi5vP+tsnPvKV1sQ1Ar/s5mMLqaAtqgZilQm7eHiuHXbkhIFRptXYjDxxdMYWo6WrK0Tj2qun5qgxlrUyoGcWz6fx4O/u1n3u5ebXMmyjGfn/PDG9YlbZsKJimeHLCdpTq1a1AhmiWWK8aI3jIlgXL0O0VAQ//OFT+HAk4/hPe95T11rKqtRM6/Y9Sl1NOJGXU48UEVQmsPEMvX2obOnR12OBPyMdatv0yAj1MzPuO/6SFu7CHxyKKuQZB4Rzs2bdtfq37qNET7zBrXhstmsWubEDuWFTxS2JYqZ5gYbghqXmp/m9LPPVT8PnzzO/FZeen5n5xpMZjATTuDx6WVdWn6zY7kFOcwLS2Ec9oSKr7zKIMpfQtDnhZ9Syjxx310GW+kV2P4lTVDrHdiEHspdkQ9BMXofaKF8kVL8DGzbDgDo6t2ofhfyGdfUrTeEoOYiRoGT1rdll3O5HOYnx5Hh0sZX2/JudQJ7189/jP2PPKT7fmbklLZtiWPR+zZbV5Zl3PClzzAv8PYzzwYAdFGawGIWNVpIIdCCWjETvhkm3pyWt3eLxVgKx30R0/aQ62ZkUWulLGoF10fnwgtZ9cT+55hJDiEWDqr7HAvEMBdJYiGaspToohKUM9C7LaglszlXJulqPGIZlpmkMjjPjA6p38ViMczPG6dYrgf0iWPcP0Yxq12p4zWoSWBqS1BT62352aQTOosaI6htRlffRjWlfSQcQigUgizL5VsMlevjN0gaMO0waQlJjx+nEl8l43FVkGlqbkZP/yYmRs0MkhyhWvcxm5eRzectW9DpZjHCd3cvs972l5yjfh45wQlqtixq7MpOujhPLIVHpnzYvxDEckKbG/GJuUTBa/fhFX68p8zsuD7Tq2zwiU7M0zuwCd0bNYva4qJxvUIa2vUxRCUg6enfBKCQGE09lkEZkXpECGouoj4+DtM+ks3i0Qi+/MH34Oq3vw5XveU1GKX8wituUdO5J3C/G2yTSacM3T8Afb0y+hhF4+FMTvSpe+/EqUP7me96+/vR29qMdmqAMYoRIOfCx6fx6xsOINx3aSUF8qySAlm1qJkMEBZ26SqlrChGMWp0MhEj10db2lNl40XK9ZUmGi5oI2OZHF5YCuN5vjB3lSkvRq3w32m2V38izTw3940t4ZlZezEuxUhzD7SdUk1xZTK9yMUWHTx4sOx2rRR8/Eol3kOZeyasKKEIfIKEWoE0J0QJal29feikBLVIwA8fVSepd/MgJEnCxsEt6ndTU1OYDCVw39hSWfU1VYvakn5yNzs7i1zOuSCYoS6+b1Fze9y4eQsaGhrQ0d2j26axqUlNrAJoY4qtbLll3PPnF4LYPeKxkflQW4O1qLGCGn1Oc1TyBsDeM8qPSE4E2HHOJZX02+V4RNihnj0JyoVXAEwPn2KW58bHmGzRgF6BnYzH1blHc0sL2rt7VAELKFjUYumsWlrC6GrT7xOdFK6to5Dqv7uPsqgJQU3AI+s+2NuWuKndedMNGDpSmAh5F+bwu9/9Tn8MelsXOw99nZRiumHgvl//HFf+0fmYHjkFI+gBwMjKE0pl1DpljNbZpH0P/+E3uu8uePVrcdn2Pmwb0AaYUEjvlqBa1CLlW9QiNuu2GP5ewT4/YVIKgRySFtS6urogoXQyETuDMlmV1na3dXSqn6PBoLJP+8JfJeC9l+wIpWSyYLPeLABgOZ7GY9PLai0jco6+RLrYZpYgZ5DlBlgzd1gafo35yXFmeWhoCPVKNSxq+mQGVnq3AmbuXCsN7QZLaO/uQQelIJseGcIdN/5QXd582g4AQD/lKjg1NaW6OIdT1jPJau2QccwbRkBxhzay2GezWUfuj0aXPOTTJnu9mwqTyg7O6gTokxk4EtQsr2lhXyXHJO0zH3dI00vV2PR5eKHYuRDqRBHBb5M3E9Sodi1Gk7YyFguM4ZNSTXGCWjaTxtSUcbIgcntoN+WNA5sgSZLOovbwpBf75oPMdsxxZG08IwpfANjQUfAMot/B0LJwfRRwlJVyXJbR2CBBlmU8ff9u5ifGHFzCZ9dtilnU5sZH8bNvfAnJIvFM9ABgNHXZO+nDU7N+LESTOMhYVQzOM5vF6FEtCcUb/vx9+NBnvoBL3vw2SJKEDkoQMBLUyP3hU/MDpS1qpSbumkWt+O+lvjPj4GIQ945arwtC4lzMrJa0sNrV1QVJMkgmUkZ7tY5Zc3M47cyXaPtXOlg7x6hkzE45bp6aRc2+pBZT7lNYsSy4eYrknDI6i5oFQY1bZewom0TAas0bmlAqg+Pe8IprpasTo1b4L0nAXCTBPLv16/pYYF1Wy0i5oaMDXZQGe/ToETV7IADsUtJv03Fqk5OTpqUjrJDOyxj2x9S6nPyEkbBv3z7D74th9CzQWS6JW2BHj96iNrhjJ2NpI2NKOSnsKwl9LLquKLGQksounT29ama+aDjMjPe2xgRubTeebyI88EIEvfTMXAAPTngd9zv0drX1RlYX3iI6NaxPEsa7xD87F8Czc35DxW2/4j5Mu077/X5mDCxtUdMUzqpFjXZ9FDFqAjeRUZhATQ+fwuLUBPMbk5HQYFs3J7AlMzNRi4eeeES3fUtrK7596/3qslFhVKPB8Nm5ABZjWiIJoz51auiEmgRk45atuOY71+O9f/fPaFSKj3Z0FhfUSEdj5Proo7SmRh16UTdN6nezO2FsUDNeO5vPYybMJjuZCiVsJYXQ6roZN5yPUZMArDOpo6Zu6mDCQbslnabEEgKaVt5olzPhBEIGyUN4gcNNSt3fYpB3xIlFTY1rVTbOujk5V3bF9w9W2klvkkmncPLQ88zvTgS1J6aXMeSPrXiSjGq4SZFd5mVg33wQByglVKnD1azrI3lWqZplrRvasXXXmYbrt6xrVd3m+rdqgtrU1FRZVsM45y1Ax8q89p1/rn5+5plnbO/bCFZQ61H+6y1qW3bsQntXt7qsCmo2juWGEkMrgF3iWNTnsJ8W1AoWNXKPJElC74DmnuY3CGewQsm5hQM0ixr/vX7dpIOkSgBnC6/AOdQL9LO5NDuDqaGTunX4GLOcLGMhmlK3DXppQa3wTNFF1YNBPgTCQGFv6vpYmP91CddHQTG0ybr9l1dGQYO1b8/9ut/oSVGlBTWeYha1Ewee061/9kUXo3/LVnU5zKW91+3EBKNViDto4TivpNYtrN3ZrQ2SRS1qYf1vPp8P2WwWx73G8VKlmpyHjLmIeXZCq3fohC+CRyYLwdL+MtzfzIQ61aKmy/ooobWNjVHjseX6qFxrxqJ2FiWokWQiBoLk/oUg9hqk4+eLrbqJXvC2frKqoObkuKo1rkBOOUc7cWSm+1b/lyGFApgZHUY6ydb1ciKo1cqUxkrcbbnwz0+QcvGzKqhV0lPCCaQ1dDbD9Rva0dHdg+7+Ad36b/vrK9DY1ASAtahNTU2p1honQ1c8o13LWDikas1b1rXiNW/9M/W3sbEx2/s2uuSRoN7aZGhRO30n2qkxaG7Ja7rPSkISANlxxw8F9On5aYUOnTzlibtvp/ZhrU1GJW+cYOY+afauMNYwxxY16jN3FiutdKom9Jne9fMfMZZzglkyECOL2sDmgkvtBsoTihfU+FuWSafVay7LMiuotRtY1ITro4BHnRg5eXflguZqdmxE9xMjqBns21WLGrdcLBve/IR+IPyT938I7d09qoUgFg6qRa+1iaPFtnDHPnlQ0+q/5KKLqfUK/9e3rlcnBqlUCklucqkJKXqLmizL8Hq9GPLH1NgHw41NvpAVzblZbJElK50s49RyVE3p76T+Fb9vg6MCAOLUZKuzsxOSxCYTKVjU2C3t1VErQFtUt1Gad+JqY8eSVVmFhPlzXnrbwn8nFjUSy0S2JedoJY6sFLRVx+h7qyxwFn7AmaDm9PhuYlgjsQIz6aK7LHG8Srk+7p304onpMu6b0pwIZY1fv6FQN3M7pYQBgGu++0Nc+fmvqsubtmkxamNjY5pFzcE7TVvUAj5NEdQzsAl9m7V4KisZ5HiMWsNa1AqCWHPLOl3N0MHTd6KDsqgteZWsj3biuGy01QySTdNsX7IsY8QfZTwUaNfHLiVGjXbl3rLzDPXzrTdch7FjL5bdXjfOlXggmApq1GenwwdbA5E7foUFtbtHFnF4sTbKAJB+MpfN4tE7blG/P/eVl6if+fT6PHSM2sDmgvC/odNYUOP76luu/x4+8PIz8N/XXgNZlpFKJNSEQetaW9HcUnDPZWLUhOujgKesGigoaNWjQX168lKTIncH9BITVupYtLXkVW9+Gz78/76ES9/+LjQ2NqouILIsG7o/WmkFfezQsg/P73lAXT73FZfotmloaGC0M7xVjTTdyKIGFC+2qE+y4j5G7htOrUilJum6GDWw6fmNYtScCGr0cegYNf+SB7ls1tZ1rGyMWvHlYmgWNfvClRbLpLg+EkHNTZNamRgJakZZVUvhwhmVjdElqYhFzeFvAGVRc/l5D6WyZSWpUS1qjKBW0GKTWDTCy1/3RmaZnugPDQ2pD74TqyHtLUAn+uju24huKoOcW4IaPSbTJWDoTJYAsHXXmYzrY8BEGVX0+C7ccs2iZvy7L5HGUW+EEQDMCl4T3vb//Q2zfPCxhzE5dAKnXjhoad7DrzEzOoxbfn5jyX7EG0+p8btGkPHRbGygv3Y6T2ItasbHrwSyLCOTlzERqo3C2uTcA16PGoLS2duHN7zrfeo6phY14mFDWdQ2bR7EO88YwGC/5qpoZlHL5XL4w//8APlcDo/ddStOHXqemVvQYS901keRnl+gw67FiN1WhiSx2jsC6/qo37urCQi4fXnjKTwxvaxL+ZtKJlSBp7GpCZ+7/md4z8f+SZ1w9gxorhKkEr0Nz8eCNoVacf+jDyGTLsSwnfHSC7HrfG1iQMcIEfM3YOz+CBhb1ABgZFqfPUxrT+n2Fv3dwnd8p78YS2H3iAcL0SScomuXsmgYo6bL+shua2dIkuXCsRmBsK9fdUvI53IIeD0G101/pUhto6rGqDlwfUzn8hjxRx3F8pGOuFSh8lKEUxnqXTXTMtu7jgsT47rvyrKoraBJzTCjawXaU2xSaFlQW0nToyGFBkWjtKDWDgDYcc75zJr8ZL+zpw/tXQV3wXg8Dq+Swt/JNJe+tCG/NhHr2tiP7o3aJM3j8RgWo7a8c4UII6hpLo9Nzc3Men2bt6jnCGiZhO3cRjccBEvtgSiUYpQLqVHBa7oHOvOCi3DhpW9Ql3f/4if4zLvfgk+89x3YvZtNfmYE3XXPjo/g85e/E9/94ufwwQ9+sOh2T874sWeSnmyzZ5cu8ZLQ7+GjU8vY56BOZ7Ej0GNSLi+7ap2Pl1tn0GXIqfqpzJ8bN29Bz4B5wWqCJuRpyv1NmwfR2tSInm5auRFgtiHvA5/Z9en7djNuj51KLdgGiXV9FFkfBTrUd7SMdzUd0QsX0WgU6XSh1pKTjIR24Pe0EE3Bl0gjmmbdF+kXrntjPxoa2EeJ1jYue7jiuBaay1vUju/TAsMvfce7VIEQ0CY0EiQmMFVnUVP+m1nUpufNzfalmlxsOrAUSyFjwY2R1wouKSms5yJlCGomy3yMmiRJOtdHfmN7FjUZyVhMnSi1trWhqbkZGwe1+EXv/KwlS1Y10pWXYzFVSzQAOOqNGLvOmh2XTyai7KzJgUVtOZHGnkkfxoNxtT3GxzRugxnDLx7SH2t52XnMxwo6P1a6/9T2WeS3Eocjt76SMWqyLOO5OT988VTpldVtCv+jETpGreD+d8lb3o7B03cBAC7/+KcNt9+6c5f6eWa8IPw7cX2kt6CzunX39aNlXatq1cpms7YVCkatobXytLb+Te99v/r55a99AyRJYixqwYD9rI9uYnZU0reQcTOdSiIZL8QkNzU3a8pOrgv62y//u/o5EdOegWuvvdZCW7TW/P6/v6dmjnzggQfMNjHZjz3oMSMny5hzoPSk7186l8dEULNw0eUB7hpZxDGvsRK4GIvRpKEyNpYuCGqtjbUxTSfXgSlov3mQqYNmZlHLKA+bn0outnmw4Kbc0WWcTESWtfs9xxXTnho6ySiB2zuIoCahraNTzVKajMeLZiWvF2rjCVglkM7IkUVNLvSLAcoFgTxsQMHV6JAnhIcn9BqCasSzqpor5R+dvaeXsp4R+qjaK8/cf7eyqY3rI7Od+/iJo+rn81/1GgDA+ib28S1Y1NrV5YhBdkeAtajRAuWSZ8lodUttNnJTGj16BN//1N/jmz+6Cc/Ns5q8gsWQ3YYX1GRqECjF/OQ4bv7uv+HEATYltdmWdIxal9JRlnJ9zOVl04yMPLIMxCilQ1t7wTWBFtSu+8w/IaLL8rQy6IUX69vy98debTjyX8Z9Yx4126eVFPo8RKBP5/KFZ6dIM0b9MeydLK1tDPmX1VhU2oKQTqcNE84UQy3+bGsrd6mWRa34PosfsJz4Laukc3nMR1N4Ysa6CytpjZFFbV3revxg9x5cf/+TeP/VnzXcvnez1tf6ldgyJ8oXJgkGJURtVrLI0Rr1UjEzun0bfEdnORwY1Ma1P7n8g7jwtZdh+1nn4KovfQMAmGQiwRIWtWwmg/t+/XM8+Pub1XNy81k0ExD5noWOT+vt61OVRvx6gzt2MTXVCFZqKtJNiYWd9/l2r48brxC9iwMLQRz2aOMa2T+xrE06cFN8Zi6AZw0sfcSi1tbcaHuflYBch2VK2OrdNKirg2ZERlHY0gr+zYOFeWPr+jY1t0AymUQ6ldSOpxx0dnSY2d/0yClmHteuuD42ShIkSUJXn1YLMLjsvDRDrSAENYpy/Y01g5qMyVCcGYSWYik8Pu0zHZhkAOlUSp38NDY1YYBKaby8vIypUMJ4Wxcewkw+j2zePOyZvGjkdzp7j1HGLzqo+8l77sDU0Ek6JLdke0KpDOJpzfRPa04Htm0HAKxrZDswCWACvHlBjVwm2u1vcIem5fUuFYlR45NNcKdgpP3+yVevxTP3343rr/0EFqniq7/5wX/gyj96KW780f8w6/Op2clSqclMJp3GN/7ug7jrZz/Cv1/1QaYD09eMKkBfg06lkytV8NoTS2H/QhAHFq0NtLEwlZFJOcb5l7xG/W55cQH3/uG3bPsMTlWd4FfUwsAt29i2nGQdpMeJZXJIZvOYVYQtJxY1Yslb19iAO4YXMRU26S8AvOgNI2Sh2PD8hKbJPP3s8xgFjG33R+WUVtb1kbRBxo1f/wK+8Nd/jqMvHCm+kQOKWelWwqJm1g842UeEeq/XU67mLetamVg0ni6qkLLPW+jPnUyk6U3o5ASvPnsnzu5tR/dGbTyyG6em69dzOWZy2U89/+vWt+ErP/sdrrv7EWxWEiV1U66RwRJ11H7xH1/Bz77xJfz0a5/H7T+5Xndu5WJqUeeWA15tbB3cpFlHJE5ZJEkSXnnZmw33mUoVt8zSlyDHufTxSb+Mt3emBDcaO+3GfhaLUeOVqU4UbGbk3IxXdgFy2QKMoLaZSd6xtLSkJvigyeRlpBJx1QrW1NyMPsU63SBJaKc8ocjcZDGaVGsljnB1PKOhIJN4r13JTUAuP61QWF7gPLrqECGoKfjiaewe8cATs+4KwkNe6LwMHFoM4YRPmww/vxDAciJTNJNfmPKF7+juYfz8i02K3AhnvXfUg3tGPaaTCNJuMgGh/ZT7NuktanxtnVt++H21l7PSTR5YDKkp2jPplFp3q6GxUS0qyveJEjQNL8CmkaaPTLs+btmhTSyWiiQT4eHPgbeGZTMZ1QqYz+fx1L13AihYKG7/6fWIhgL4yuc+i2w2a7oP+nkqxt7/+x08M1MACqb+Ky45V820STMRjGN4uRBDpU/Pb1DwmnsYiFU1kSntO8+nziVJXv7k8g8xFtgThw+U3Je6T8tr2kdf8Nr60cqpy0WOw/cLTmLUSDtKuV7S7YumszjuM3fXoctr9PQPoJ0q6Gs/Tq1wTivp+kiu99Dh/Xjgt/+LocMH8Dfve3cFjlPkN4v7cFNQ45VATgWkXDaLhJJIQJIktLa1Fd8I2rNM1zdaVhRvTs6R3sI3P6d+3r59OySp8JwSnCQUoQkv+9Q05O1dPWhtbTVcj1zPgY2UJj/gNw1XiAT8eOC3v1SXf/uf38Lx/c+5G8ZgsKsnZ5bx9CxrRfUvaRbDrVs1jwejHui9V/2z4bGKJeIC2HeeuFkSzGLJaeiU7HYwEtQSNmO/it2TvDpGuy+okaPWhkfkCmoAACAASURBVJimXQcmC2pPH5pbWtQ5WT6fh9dr7KnBh8s0US6d7VQyEDI/e34hiCdmCmPMyAtaaSYCnQW8vbOgMCJ9DV0iyijEot4QgppCIFnIhlWWoMYt0xNa4qPLa6nUbWWZcUFo7+4xLJ5ptm255OXCn1mnpE4klZ+XKXeQHgPXx0ve/HbsPO+l6vLBx/YgTDpkm83l4xBIPJwE4PWn9eKy7UrwMzdx0AtqBWiLE60B9nmLuD5ybeYHAF182ew0szx6rKARmjx5jPn+xAmtWCtv0bVqUdv98x+zbcvn8eQ9d+jafdgTQjidRSqRUCcfra2taFHS2payqGlJW0oPHTJYgZjEDja3tOBffvS/6venbFgzKtnZluMiU05qf7IuL6g5GfBVa3fJzH5aC5+e9WPYb+7CSLuWdfVtVAdkwL6gpllGbW3mGvFMDg8qruMTJ4+r3/u8Xpw8qS/e6pTZcALeIrFfJU9fWcFVQY1XAjl4m2Swk+zWtg2W+oJ1yoSMEdRUi5qDdlCbeBc0Qe30008HAMaiZt/1kW0P7TnSu2mz6Xv52m292NG1Hm1tG9CiCHPZTMbQhRyAzkUdAB6/61ZXOzmjXXnjaV2NTfoct2zZwm+C/rYWXLSpMJHetG07Pqa4edL4fNaz69HxbUAhLskbT2EuYuwBABTe3Wze/lNr1K/bLXtTXOmiWNSUXZZj/NJ77dSOqJbJ5dVrSZTmANCuKHnpOLXZWeOkbLT1u2dgM1VQnS16TSt4gULiOp+BVezUIUpQU2LUiKA2sFUrB7I0N7OiXhxuIAQ1BTcSFvAvGp2QSNZWMt0+HKDrtfSio9uaRc3Nh5Ck9i3sV1aTQRAfbHIoOs2qUYxaU3Mzvnf7Qzj97PMAANlMGsPHjzL7sAojqFH+0JIE9LetQ9/6gqAhAWjdYB6jJqPg752Oad9vpQS15WKCGr/MfcELWROcQLY4XbB4TZw6znx/8KCmKeInU8T1QedaRx08Ho2o1jQaYsELp7O4fWiB0SImomzGR4Leosbu087EUZZZgZgum3DaWeeoE7zF2WnGVaLYESrZ2Zaza31ZBTvXSbGocTtxNDQru0hki09E6COVuqd0Vr3Onr6yBDWj41cTOn4kwpUMoRUm5fL8QpApcM2zEE3i9qEFZfKpv1eagsa1Jpla6+0gy+wkm/ZeKAaRbbp6aUGNxKjZbwe5QrIsw7fAWdRQnkWNvy5Lc5rLet/mQdOJ+EBbC16xuRsSwGR+NEq6Ewn4cdM3vqTbx/iJoy67Pmp7G1qOmialor1jjCxqHS1N2NW9QT33t3/gSvzD17/L7KOUoEZfgmRMb1F7csaPffPmLvV7p3zYPbLoikXN7jUutj5fcLuc+pdmVm8XjXSOyOZl3D2qxU9HKQsoMSZsOm27+t3wMBtPRqAVAj39A4zSo4MW1MKsoBYyebZoJWJ7V2F+QfbZTwlqBYtafUtqQlBTIC+Ym1pMo32Z7V0GEA7StUx6LE+KKlHJI5vJ4GtXXo4PX3w2nn3gHp0WqpTrI2HbGZoL5PwMa2XKZjL45Xe+jmv+9DL86nvfMO2Eg1RRUzoejq9bJUkoaVFrbWzQLHtgY9SWTUz2gIFrHLfMT4Tu+/XPmWXPzCRkWdYFxU5MTJjugzw/xSb+RkIaAIwde4G5nsuUlSVGuT12Ui4H66isj4vBsE7zauTbH0pmmCxYBBkyZ1HTjtPc0oI2SnCLm2ThrCblWKX599wNixp5tBPZHPZMeJkivzzZvIxj3jByMuuebHpMGw2k6yuVa1HTjr8ygyathPItshraubk5fnVHWDk3khnugfEl7B7Ru4zJug/lw/ctjixZkJGgJtnr260JagQ6wJ+4PpZjUQsH/Egr8U1t7R1K9lp2jLBrUePxzEyqnwe378DLBrqwtUPv/kgn4ODfEf4Mb//p9UyCEsLMyBBSSXsePUWfN+qn474I9s0bp6anY462bNmCiwe78arBblVAIKMsmSM1NDTgTy7/IC59x7vU7UoKatRnI4uaVeIllFA0oWTG0FvAfkIS8w3UItCqt4m9fdNkcsbjyErb01KcqyidDIbElm094yz1OzPvBNr1sXdgkyr489m6+WQztLKQzy5OIIpgss/+LVp+B+/crLCorRbIDS4n05bOAmGwL7MHRpZZi1pHtzVB7ff//V2cv20TvvzlL9tvcBFefPZJHNv3NJLxGL73yauQSFCZeKDP/GMGrdlYULSTZB/P730Au3/+Y8yOjeDOm27A4ScfNdwHbfbuHaCDndn1CslEiljUZCCViKtxYS3rWrGRykQW8i8bBsKSbYst05P1VDKBIS72KhmPI+jzYpETrOi6IWZFO/VuSxrEUgcAL3/DH6sCUDjgh5eK36A34muoEWjXxxSV0nZhagKP3XUbAgbFI/dO+ZgsWPTh6PS5bR1dzO90xxy1KKhVNJkIt2xncCxlbWV/k5l+oVR3MxVKIJzOYjxo7p44Gohh2B9DREm+Y7bPpblZLM3OsF+WOD5jUevtY2LUnMb/rNSYmaLebd6Vxsxdxy6OCjjzMTMy+efelTJzq7aDLLPWeCsWtdamBvV9oJMO+MtxfVT+0xp1oiyUIKGTiu22W5idbw3dv27evgNtzY24ZLAbxdAJatxOx45rGYx3nXcBNm/fAaCguBwdsueCW9QDweI+eNfH7Z3rcVrneqi9IPnHdYr0dS7t+qhZQZ3EqBHsuC3unfJh3iDtvd33qqhFTflP+nQ7LuvEsk7gz012QfhzA75+KT1eb1Asatt20YLaKcP9hGjXx/5NjPWxmOsj7VF14WsvY9wa1e2VeQ9JvDLAWdQqV5a8OghBTaGBqy3iBL4DKGZRS+XySHHaIVZQ62VS/RoJasMvHMKtN1yHaCSCb33rWyUzL9lh+AgbvHnwmScBQE0rT2sEe4tY1GjNxuz0NF7whKiAflaYIXFVPHS818BWzcTO91+SJKF1g5b10ciiFmOEhw40NTerrir5fJ6xINDwd5J/8em+bG581FCoWJyegIezKtITCbNJHt1R8oXAPbPaRGJw+w5sP+ts7TdKKKT3zBShNnF9TCULbg6JWAyfv/xPcf21n8DV73ozfAtz6nUvVhtOlvkYtU7m9w4q/pL2eTeiGmndyxICTWML9IwGYrhrZFGdnLshfOYsZKsdfuEQ/vHNl+Af3/JqXH7B6WoB0VJHp5OJdPX2MUmCDh8+bKud1Y5Ri6SzarZagLWoebgYUrcsanyfboVImnWTLKfMixm0cmBoOYoDC85SpNtxfXzj9j68Y9cASC5hNplIYWJfTtZHxtpLCQ3rqTHAbgkJ/n0kpSkAqAJVsbg8SWIFNb/fr5sXLE5rXhSf+v4N2HneBerynb+92WZ7i/1m7eKWcn0knivkP1Fq06EZVl0fk/G4rl1eg7nNiD/KJGNzE7v9T/FrXPjvJJkIn8o/44IypRLw7YoG9Ra1bZRF7dQpY2VDkIlR26RZoSXjZCIEumh1d18/dp3/Mt2+2zs410dq3ulbmDNVwNcLQlBTIK9XWTFq3LKxf3Thu3tHPbh3zMN8HwpQro+cRc1IM/jk3bern7PZrK2A3mLIsoxDTzzCfDdyUovhiIVDqstJa1ubViCTgnTmtGZjbGgIY8E4/MkMZFnGgcf2MNvQAwbN0pym7aZLFhgNmOuLxqjJiFHfkXZ3b9QmEGaV7O1kBXz6/t2G38+MDOtcXmiLmtke9dpwbc0QpW3q3bSZCaSnz4XeN521qbdXG2wZi5qS2W1q6LgqSAW8nkL2TmJ9LuYSAk4obmcFtQ2UgBgtpVGtgkaxnEGR37aYVYW4iabULKrlN8jKqs8+eI/6OZvJ4Jv/cIVpIdDZ8RH86nvfwIkD+xirRWdvH8664CJ1ed++ffYETZKe3/oWZfHwhBdPU3XCiMY6k05hibNsuyao2UxUABhYZMl/Fy8UvavjvghTmsHqPZQBxvWxdcMGdLY0ma4vKTWNyO7b2jvU2qCJeAzJeNzZeKtsQ8cZktT/ksQqnMwSSlkhGgpi6IimTDz97HMtbMUWvfZ6vWzyk/lZtWBwQ2Mj+reehl1U0q3bfvlzxy7FPE4tagSdx4qyTJLD2LGoqQrquF5wHpvVu4Ee9UZwatn5vbPSFiuEUpmizyj5TYtRs75vXknBe2CRfa+02x5t6ctmMqpFtKGhQS3PQSdlGx4eNsw6zcaobVKvlQQ2hp23qIWo96F740ZdRnEAuOzC87Czuw2nKW7JrW1t6vOZzWQwX6YL9EojBDUF8jKUE6NmxfXRrJdw4vp45OnHmeWlJfNkGHY4efB5jB17gfluTHHJkMEKVL0Dmw0FJmLWPuuCi9TfR48eRiTgRzqXxwtPP47FqQlmGzNrlpcK6KZdKXUWNZSOUaPN9lv6+9DS2MC45NBmdppSro/ZTAZLszMI+ry471c/09pEXZuffO1a3X5pAdxswsRY1GAudHV09zDJVphzofZNb9NHxY3QMWqpREHzybhPAti/90GmLUaQ86BdLHmLWjtjUTOOndDv19JqjtDtuwzhsJiVgASMExcNs3VlALF0Vu8WZ/N4hAXuXZsePok7bvwhI/TLslyIGX3nZbjzphvwb3/715ge0dxYuvo2YnDHLlUZ4vP5HPU51YxR8xuUKliYmlSTJBHc6jsdCWpmkpqLuHHJZVlmLGr9Pd24uIgbIHmFtPgdthBt2L9cnkUtqPWdnYrCia+laVdQo5tz4sBzyGYKz88ZL70QGwe3Gm9EIQHYOKgJO5OTk6r3hSzL+O4n/k79bWDraWhuacFr3vZnzD7uueceWKVovT4Ax71hJj6ZJ5VMqP1vU1MT+vv7deuQ+9igfGpW4oTaKHc1q3Fmqbj+fiyZKGgrhdX+J5zKYO+kr6hlL5eXkc3nVU8sK1lQzdqh6wZqxKSWptzMYlw4A4kZ29DRqSaVy2QyhrHz+hg17Vo1b9CU/TFOcRukFM5dG/sZ6x1QyFx90csuwMs3dTE152ir2vSUcSx/vSAENRQmRCQrnpsWNTvJRAAgRA08pZKJHH7yMcYtA3BvsjFx4qjuu7GhwoRNloFlT+n4NPISdvT04qyXvQJAwbXw5KHnkc3LOP78s7pt6HgYGg8VVzOw9TRVCNRr/KTiFjWZdfvr6e5GU4PEWNSCBnFY85PjCHEDEV0aPJNO4fOXvxP/+JZX42Ovu1C1Ng6evgtXfv5rhudEYAW1oqtq61DrMYJaT6+poEa79EYNBDVJKhRZJxpvWZaRSaeYrGrkeLxrAllf/az8j0Uo18cOTlDr1CZ4RvszopKZm+j7eerQfux/dI9ldwn+vhXrQ0i84TOzARzxhIqsK+PBCS/GDBK16I9f+rqkDYrKHnj0Iabth554hCn1wG/T2dOLhoYGRns6NDRU8tiEaoZaFLsmc+Ojuu+MPBZkWcYJXwTRdOnC4AS7qb+BYha16szUrB5FBhujtmOgD13rmrBpwzrD9Y28VOjMjyG/r6wYNVqxR7vhlSWoUc2hFZI7zz3fdBs61kaSgMHTd6rLIyMj6n2cPHWcUYD+6Yc/BqCw/l/+0yfV76+7/n8QThWvhWjUXqPfhvwxPD5tbqGjJ8+Dg4NMsgbV9VEy/r+hQ5tcl4oz01wf9Ra1xYUqC2oW1yOu0r4igu4xXwS7RzxUjJr1dpRSUsjc/5WC7tNiBqn5CfS44OFjocHOG3v6NUFNAlTLHKBPNsO4PvZuxNadrEXtwgsvRFMTsexrN4D2LvK6NDdeKda8oCbLhQnRUSUTV1kxalyvabQv82kZEKImCx3dvYzVgRfUnrn/Lt0+zAoN2mV+clz33RJlWaHrYdDJPcw468KXq58nTxVcKEmMDE0kGNBpumPhkKrxa1nXiu7+AVVrosv6CH2KeZqCO5420ejs7IQENsiddiWUZRk/+eq1uPrtr8OrX3oOc33pW334yUeZukyE91/9Gew896W672nIBDGRzVmatETSWWbyTrv/dHT3sudCdXC0+yQt3G1UhFRyLWmLZDIe0wlqALCgBNibW9QK/+k0u3SwML9cKpmI1Ri1vCzjwEJQF/NjBdLm4RcO4YsfeDe+ftWHcfPN9uJF6HaYQQS1SDqL8aA+XkNtj43jWVmXLqdBmDx1AiFqsnvq0H7T7ds6OtHcUpiQb6EypZqlYi5GNeQPo0OQ52huQi+oGaVRT2bzOLUc1RUItnvcUpjV4XPzMrmh5JBl1vWxo6MDkiThtdt6cem2Hv0Gqou09hUdpxb0eRkFiZ12AIWESYQNiqBWqKVZRowa9Zkp0EtlkqS5cKAT734JG6O9ebsmqI2Ojqr7pPvScy9+Nd6pCGoA8NbLP4Sm5mYAwAsH9+P3j2s1oqy2FwAy6TSOPvcUFqcnLXkH0ePdpk3cWM5pQvkskLQ7e0lBTWlpMqYXnL1L1baoWVuPnK+V9Z3EqOnee53XzkqLaAXoGDU6npwf0zsoV1jeSyaVTKjjfGNTEzp6ejWhVpKYuFJdVlDKrbanv58RCAHgZS/TYtboq99FKeBLFWSvdda8oBbj0l6XlfWRWzbO+mg+MSvm+uj3+5ltvQYTaLcsauPH9RY1v8+LdDoNGTJjkaFfzl3d2iSf7q92nKNpI0l9MSNBLZ/LMRobgA36H9h2GhoaGjSLGre9JLHue0aDdIKKy+lQNIIkvgFghZjH7rwVD93yKwBAOBTCfffdp/5G38UDjz6sO05Tcwte+ca3YPPpO3S/7TjnPPVzIBBAIJ7C/WNLlqwnj06xrhh610etcwpQgzDtvmDk+qhqSWkBKhg0LDRJ3OjoR5l8zOVldQCi3SR0FjUqUU7UottMqXErlMpiOpzAfpM01Fb2ffN3/0397qMf/ai1bbllO11IOYoh7Xild0LHB2w67XT181HKsh3nYgNoOql3hBbURkZGLLeTvLHVqGljdA/IM25kUctmszoLPOlgzLKxGmKw6rF9z+Dx3f9nnlFW94VstquKYHU+KIOdRHVQFhVeaQYU6m/x0Bb/wJLHoetjYSPaotbeo7k+0rG2sVhMp/wrtXcCXRamp38TzunTJ08xcr+n+/zx8XF1TkErRTZtO53Zrm/zFpxBJUnwWnQHpC+fb2EOn3jH6/G1Ky/H1e94PX5/048M20gTpyyO3d2sGyu/HXF9JO59bdT9D4fN+w66nXwNNQDweth5SzkCiizLePbBe3HvzTfpYt4PPrYHP/na53Hk0AGTrU32aWEduo5aXkm4Zne/5pZ1Cw2oIPQ8llaq0oYEgE0QxnvJMEqPjf1oaGigktSwuQV0dfYoT6vuvn5GqAOAzZs1RQk97+ymlNZuzY1XCsuCmiRJjZIkHZYk6R5leackSfskSRqRJOkWSZJaKtfMyhHgYhjKK3itfY5FwvApHYWRW5jRxkwykZ4erFvfhpZ1heDIdDrNBP8vG0yg3bCojR17EcMvHDT8bX5+HrKsFw4A4G07+3HRJm2ST3fy9AB0/Plnkc1kGEGN9uumrwEAJksiGdyaTJ5aCcA6yiIU55IlyACSCa0T2LBhQ6HuDSVsRhT304B3CT/8l08y209Rfs70PV2cmtS15WWXvh5t7R0FE39jI/Pbp77/I1Xrm8/n8eKsdY0i//zw94IuPu73LGJxehLhwDLjvmAkqDVQ+yBEQ0FDi9o8F+8EaM/+XSOL2DtV6Fhpa187NwloL1I3xSnNioqOTydsBTL5M7I82cVOnKtZf8N/XWyyVepw6VRS1XA2NDbi0rdr9Y9efO4p9TNdoJyHzqrX3a9p3u0kPqhG9k6C8USp0ALeZZzAn4uT9vLrHnxsD7525V/hvz93NW78139R0pNz/RKvSTfbWRkU25Vl10dZVrPBAkA7VUeNdvm6eLAbb93Zr7MuNEoFgYSwvLRQVh01un+hE1s0NDQwwho/DljZNwAEqMndOy86B+dt1CfNMopJ2tDRiZbWwridTCZVBUCYer7oWD0CbbWLBq1Zcenn/DtX/61aoDufy+GGf/sK5ifGiqZ3T8RYDxMaXdZHaj9v2bERpw9QbqylEkIpzUwl9PfC73VnEv3sA/fgL8/diu9d83f4+Te/gmv+7I2YHim4Zu97+H588x/+Bg/9/mZcefn7kEgkSuzNHkSYkSTgzuFFHFos7c6vf/Zl7nfj76sNfXTe9ZF+tIp5yQQZL6zCHIXuM2hBTef6SCmciaLnDe/6CwAF69yVV15p2O4uSim0lixq1wCg825+G8B1siyfBSAA4GOGW9U4/MtSXnr+AovTk/jb11+Eq950Mfbu3cuuY7L/bDaLqKKVkiQJG5QYHrpuEZlgy7JsaOlwQ2swdFhzfzr/kktx1ss0t8XZ2VnIYM3fZGKvHwy0L7a/5Bxs3FIIxI6FQzjy1GPqhFiSJJxJZZLjJ8p0+vlNpxVS8zeajDySJKG1iOsjONed9vZ2SJKETiq+gbjTHHnqMd3+Jycn1c+0LBDw6a87CRBvaGhQ0zoDhYny1l1ncqUXjC1Ay4vzePgPv8GyQXFUAMjlcsy9aO/qZgJop4ZO4ONvvRR//6ZXYZSyfNATHN6iRmvJIsGAiUVtEgBrGaEf63gmh1QyoWrV6BIIWlup57pEen6rlhgrZQPMMHsvPbHSJS/4dtmZfJq6j1reQ+l1aW3mxoFNOOcVr1KXaTdnOv5oF5UyHAAGtmllMejEMHTW0pLYcCUql2KHoF236cmFac0tW/eTXffXP/gPdTL98B9+jX9+++vw4VedjQd++7+mrdVcH6skqVk8jgwgTQlq6ylhiO6R+1qb0W5gTWtqaGBKufg9i0Uv7QlfBHMR8wk1k0ykh+3HnLo/sq6P2nNCa+1pjOKkAdYC7VfinmmLGv07gY6zo/toK+1NJRO6BGD5fB4//MKnit5eelKsE9R0sWmaBaRzXTMGN2p9eGnXR/3xCMlEHOlUUrduMbKZDB676zaMHi2ccyqZwPc+eRWzTjwSxqfe9SZ84OVn4DtXa9NT79ISbrvttpLHsBNTS5RzRCE6FU7gjqEFJIskg+L1iXqxrTzLot34WiswNdQ6uxlhi45Z471kaI+Ol5x+Gv5oSw+aleyhEsCUVaLnaNlMRp33SpKErp7CM3fFtV/F5R//NH7wv7/Frl2ahwd9z7opN+slFxSwK4klQU2SpG0A/hTATcqyBOCPAZCn/ZcA3lOJBlaaMjwddZAB+af/+i9IJ5PI53L4+Mc/zrxuZocLU1aOzu5uNCpWGCY7njIwhQN+pmMjOLWomblUXnjpG5iBlaSwpi0yWvuM/dkLnyVc8ua3q8t3/uwG1R1lYNt2RpDxzs0ik9Ymx4xFTVmvUStpzx4TrOuj3qIm6wU1cBY1ZYAceVFfI4qxqDEuMtp1P/eVl+D9V38Wl737L9XvLn7jW9TPH/3C1yFJEuMmQN97QjqVxJc//D78+Cv/D1dd9krc9uP/0q0T8nnVe9fZ04um5mZ09vapVlh1X8kk7v7Db7VzNHJ9VC4mbVHzzs8a1jhbmJ4kF4GCfbLpa9LX388EqQNcgcsSg7xq2SjxrpKf044sagWyGTZw/JFRC2nbucO50acYZow1WMcTS5UUDANUDMjmwS1MXCntPkZn6XzN29lMdNvPOkf9TFtDbQlqCitlUSPvLH2emyk3UN6iJnP/rR1X+xxa9mF6mK0ptDg1gXwuhxu//gW1DzRTrLt5nYpa1GwcKEVZItraaFd3usM33raxQdJZ/ItZn08tR7FvXt//kC3oZ/dtF+xSDl04uNMU/XRr6D5scNA4aZbZZL6rRxPElpVxOUy5cNFJVQidjGeHxfdKaTBJ+c8zdPiAqYcMACSi5oIaD+nBya2my/KEw+GiLqaaoGYsNFs+XxTe7R98+h9w/bWfwFf+5i+wODOFF5U6r0akDKxnL774ItK5PGJFBBmjJ3NmdBjf/ueP4oYvfQaZtDZWkO6aKXsBYKmIok/XR/GLZfQD0UxOeX/s98889PEZxXBnF+g3oJ1xfWTfW1oBv33bVmzpoOYoEmdRozKDLs5Mqp8HBwfR1FSI4+ze2I/3X/1ZvP7Nb2UbS72QPZTnx8S4Pu9CPWHVovafAD4Hrc5vH4CgLMvkqZwFUDp3bQ3CT3LKqQJP9vQClTZ/aGiIGwg57anyI51IhHYz6jCwqPnmjSePTi1qdItoV7eNW7aij8rqODs7a+r6qNMscsd49VveoX4+eWCf+nnrrjOZtMf/88VP44OvOAv3/frnAICHfq8ldNi0rYRFDUAL5/LCd4aJOCuoAewASSxqowaCGm1RI7tNJRNqbE9TczO+/qvbcfnHP60K2gDwoc98EV/48c24bvcjeMcHP1I4NmVRMhLUntj9f0yK29/957dx189+xAjovkXN2tW3uXCfJEli0kMTnntUq1lXLEaNft7oBCn0RIy4PjIKCG40CVJWnL5+fcIZRvtmYlEj987JhNkupJB7iJusm71rzLbcsi2Lmsm6fO08I15cCuPpWT+CJTLEMfFpmzcz2nz6fONRLc7kgj96HbOPTds1gWaDg7TcAC1wV15UM7p6slywQjMp5qlyHzpBrUyB6fh+fWZbGmIBMXOAWunYFB5Zlpn+hxHUqPWM4tUAoEmS0Ecp/pY9Tl0fC+9qhFISnLltK9MOx5kflfbkcjkmLbiZRY137yRL9Du2TCxqXE1CHlZhaLFkCTkGNRac+8pLGE8YM1dfgHV31gtqbCy4lkyk8KGluVl1MZVluajlkrzzMRP3atqCWOqRGHnxMPY9fD+AghD2zH27cesN1xXfiGNhYQGPTfnw4IS5cpvXlWUzGXzz7z+M5/c8gL23/Q5P36cldFNL0nA5D4xOhTy/JS1qZXQAVhR9lqF2Rdc8be/qZuZ9G6hMzrzro5+yTvNKD32Mmva+Tp3S6vfSSUPUbXXzTu2Lnee9VFUQHz96tLR7bg1TUlCTJOnPACzJskyrZYx68WNEvAAAIABJREFUYsMnQ5KkqyRJ+v/Ze+/wSKorffitTlKr1a2W1MoaTc7DzDDDkGHIYBMM2IATNvaCsw2LwzritY2x13gX2DW2MWAb/APjtUkmLGATTVjiAJOYPKMJyqmlbsXu+v6ourfOvXVvdbUk83kWzvPoUXd19a1b1Tec8J73vGIYxivTxUo4nfL39lo6tKH2OdJJDGo5SAZ2gngm5JwhAOhud5THekIFPPmImvO6+4Cz4KcamrgBAFgRNROmwOjDDbUC15i7bIXyePOceRwWySQ3MYE7r/sx7r/1F8JxRoLA1qCwxIVrGAaCwSBnpzNN04VFd0Mf3RG1sdER7N6yCbK0trZyQgCmCA4QRqKK6pQrcgRYOOrVJ5yClgVOVIIqu2mFobL1jddcx26/9gd48Lc38/fUi0pzP1jkkcrOLZsxPjaG8bExrqgGAgFU2AaTKqK2d7tDvb5g5WoE7bHc29mhZNSkIsDtbDYx+msJkWIN66MMrCw0V6cyl/OwNn0azQXUpDeFpJgcNd2Zfggsekcsj26hU2lSfW1Dg6Akpvt6uCc8I9S9q8A5n/wMAKAyVYNVx50kfMbkHzei5rzOE4OfKgGlZTFJoVbn2xWjL9FTN770vOe5993yc6F/gKVgmT7HezHiGVEroo2xYQ300YeHMxgwBAhtx949mJhkOYORrAOXKy0tdYxGuxvRAvU0vdoGrBImeXutL69IoqTEuwSBLMK4sveINMm/VkXU6Nqb7vOX+8nGCq13mWpowopj1vL3qhxqJhTuTMlhABVRipSrZhgC86Mfp43OUEv7hHoCwIt/eVh4f8d1PxJgnxd87p8LtnHgwAEMjXuXX5ENpb3bt/AcQAB44p4/OOdq2lCtzfdubce6jrSL8XQ6HTaTYaHUCb08jZTFKioQCTr6jhf0sZ8EEWhRdUtEptaRbJbvSbuJobZixYqCgRT6cVl5nLNu5/N5PPvss+ovHQTiJ6J2DIBzDMPYDeAuWJDH6wEkDcNgVkgzAHcyCwDTNH9lmuZhpmkepiqm+P+3yJPRz7DuzIxiz4A7KdY0TRezVzwe1+byAM6Eol7ecrJgFoqozV3q5JJMNqJGFYWeDjFKUyVF1Gg/ACcypGJgpBKNxYTIFZOGmXNQoygkOpwZEhj4wpESnqM2Yj/jhnIR4scuSWEvFP5omuqImlh8uR87N65HbsIKFjfOmsM33YmJCbTZFe7ZuKHMYKxuh59aKuUC9NG9wbW37nEdA6xNiQn1otIo2vmf+qLre7mJCbS37nbltDHDkueokfHWRvKXkqla1DY5StaOHTu8I2o9FPpoPRdhUafeN03Ba6pgKy8iyxQ0W9NU96Nzf2FDTe5WUSSBmnPdhpp7ULF8iEKLOI3M1tU3IFJSymFLuYkJnktIlbZYPIGPXvlNXH3Hvbj3by8iSogjyicZUWPy9uSoicaPdV1TMEbL4gkXs66qjWJyReh+skFRK5LKhhefs9t3+nn/tna0DRXOiyxaPB66b0PNhL+Img76aBgor0jyfWBsZAQ97QeKjhyYphiBSaVSQv4UMIUcNbsrND+tUkPND6hy1Kz/CQJ97O1mETXvHDVauqBbA2XU9ZciYaobGgVm1wN79LCvrA/oI7sneV8zACnXWm9csl84O1QY+ug13wZ6uvE/d/xG+/nqtafgg1/6qrK+6/wVq/jrA8QhrYvqykuwvCdvfOl5bFlnMUjqhrDuXnYPZBWQZ+fAWC5flMNPFspCOXVx+iGwPiaSiIaooaZ2vubzeTx1/x/5e1VELRAIuEoDAQ7DNAAsXbpUybLqJYsPOxIAUFJSgtbW1gJn/+NKQUPNNM1vmKbZbJrmLAAfBPCEaZofAfAkAJaI83EA7sJeB4FMJkL87L5evKph9ZGxuf39/RifILhlV0TNhgRQbzZViiRyB0BclGcuWMKjdkNDQ5NiMxI9Jg78KZ6sVEIfVWQirporihpnFGbEpLZ5RsFaYwDw5etv4vlny1IJLEvFUS8VWmVdKIk6Bpy8SavIRMKRCFdc8/m8kJ82a/FS1JJ+M/gj39C7RdpZwKEx9hK6waUVDF8dBJutE0oyUl3nGGpLDjsCJ51/kev8fTu2KWGrgLPgCblzEqsapZ3esWOHxGYqDmyad8agvNRQK43FeIRubGREmTxfCBoiy5SSr2EqIZhd+92FO93fld5PgyUy4aMNVnKh0BpG66MtWW5FthNEKUz3WjXEKAyqLB5HMBTC4tVHoKqqGrMryjDbLr9RRkotDAwM+KY/d1gU//6WmurxmaYI7yyLxz1rVXLo4yS6Ozw0hP07LAKfQDCIz3z/Wtc5QwP9GOzrdWDUUnRpOiGini35vI4Jrxy1wt9n5zSQ8g4Hdu+c1B6sgm8DxFk3yYgakz6CTvGqFSpHEtk7yurYY+cSixE1t9Oyec58/nrnW5uKonin6IpUfSOa5zhFgde/+Dx3PMrixfrIxImkSVBIiAapJ6LH7igteE2ZOf2Sp7z2zBPKnDMmhxxlQbZp0XHAcmR+9YZf8ffUUNOhF+R1SgUhfeHRhwDoURSuNDRyQFc/MTM2gQe3d3CHzWTWS6cA9/RG1OQ6aqUkxYNCH6keTNNXAEVEjREAKZgfqZNx7ty5kE0z1/yTbve0iz6Kq++4FzvauvDZz34WB6tMpY7avwC40jCM7bBy1m6dni69vcIUNEaZPJVhbZpAWvbKmia6OukCJk46VmMlSyJqtOaUKqLWRZj4Uo1NqJwiDSlbMHITE3whNQwD0Vi5i0xkdGSEL5ThcJiz9bDnFg4YSJaEXc8xFDAEg4dJ3YyZqKqr50q7SlafcArWnOQkjcYiQSyoLtduktqIGkRDjdHzAyL8kdV6A4CaxmaRSdEmFGG/Ik04Z57XULDwKBINItFAGB8bFTZeChcCnHFAN7cVc2YgFnYWzUu+8T2c/6kvCorozk3rJUPNuWf2LMuTbgXCOrdSIF7YsUPctOStZIgs1BV2H6ihZhiGANe85KhlgvcMIBG1KSjMfsXKvVQQp0h90nzb412hb6rPdikPZEht78tgYHScKwdeeT59XZ3Y/ZaVa2gYBlYfcQQACEyng/29GBsZ5spcOFLC4cPW94BD6yvQaEewg6EQzykwTbNgDSVZ3m7WR5P8zwoOsbiwvmqhjwWulR3PuaK/e7Zu5kpZ05x5OPXCj+Df7/8rrrj2Z2iet4B/d/+uHXwMjEsG79vwmIq6jgmRnl/H+lho9Wue6xgk3//kB3Hf/ff57IHTj8yg4wiqrCSMsvY6NtkcNfYsaEStKqWPqLkVKAXrY3c3soNpTIyP230rE/YoJjVNzdwJMjjQzxEsfjrcI+Urzz1kJaf77+/pxtcvPNMF6wb8RdTEOxOVY3qfzFAby+WxtXdIWZZIlx9KDQCv9YGy1J543oUCDDuerMQJ514AAFi99mThe1f85L9QVdfA17XBwUGuC+gMNXp448v/izuv/7HrnD1bN9nn6ow9dk8mtvdmMEKcMXIZGb52pKdeOoBH1KahUjK9NeqAjSeTKA0F8N65tZiTLBN0GvZ75vN5PHjbLUJ7ixYtEt6z0UTJadg6TaGms2fPLgr6CFhr7+LVRyBSclBWD+NS1M9omuZTpmmeZb/eaZrm4aZpzjNN8wLTNP8OeI2/v7z8wgv4p2NX4rK1q9C5f9+UNkcTIgUvk34yuHuGx3HvFkcJZxOKsi/R+jS0tgobtLSGWqqhCSni8WPQvKL6bd809ahHy+MIBAICc057ezs2tTrRvKqqKsfLZs+Qs+fX46RZbvx9KGBg5sLFwjGL+MKCPZ73qS9o+zef0PcDHuF8gzF+6YpemxgmdVwY6yMgEopQEo1UfaNQpLWtoxPP7+vltLuUNKPCLrBYHtYbnfzaZFEbkMhEOvft5ZtcTWMTrn/gCeFz5mWiRtf85gYBmhKLJ/CRK7+BT3/v3/ixLa+9LBQrTxAFh32XKq5U4pVVAmNbZ2enOFekiUOLJ8eT1mZaIhmwNP8RAO74jx+hr6uTO02KVeinOneHFKQuu314tj0QLIWvW+w9mibe7Ezj8d1ObqSc60Dlibvv4hGvY445BhU2VLk0RmEmWcGAoTBHKsL4mgxFv/39t8MAUSmJpmkK49IL+pgeHff124xO5PHIzk6s70rb17CO7yFsj7MWLuH/jzv7fCFy8tgffse/MzaJfC2/Mh3P3DSt6DcTGlGjnnt5da6OhoXj1OkGAB+/+GJtMXBdP6jCSA21YshEqIHN27afFF3XvSJqQTlP2v4vQB97uiVqfvf+CFj7Ycv8hfz9W2+9pb2u3F85ohYMBnHKBR/mx3ZuWo/XnnnC9X0K3a9W1HYDVGQiznsaGWSG2mvtA9jQNYieYYcVkfWTFjOmaB2qe3iNVQrHX3bEMbj9pc34yg034/izz8e3b76Dz+fjzz6fG3HLjz4Oi1etgWEYAoyV1fbSETfRsfHAb29SnrNjw5vITUx4RNSs44NjE3izK40X93uslab7ulYb+q/ohNmA0wN9dESk569AsjSM0lAQiZIQSmMxXjOW5Xuve+YJtBHo7caNG1Faqk5ZKZcickMD/dzgKy0tRX19vQ/oo/p+/9GImYqVabC3D275/EcvxMT4GLKDafzupz8ozhvumlCmQBnMJD3gKAdbe4eEa6zvGsRfdnWJETXiWaDGDYv0UOhjTUMTqslG8ub23UXcgd1vu0cy9AmwvH/Mez42NoY9u5wIgwpywt9LB0IBQ6jfBFiKejhieTou/NyV+NAV/4I1J52Gb998Bz+ntKwMp0gwPl04n2/SmlpqpumGPjKhETVKqV1d3ygyIR7oQHtmFPsGLYWlX1GMMeLDjeVVR6ydhPvrZ8xESbQMq4iHkEEeqaFWVVUF1SK16FDnmW95/RXsISQpSuhjpcZQS1YKz6inp0dY/OR5I0Bo7Q1Tfi5jEoTlhUcfxKXHrcSXzz3FqrEktVlwbk5hMTZNU1nPrW3PTqQH1Qnw+m7470ixsC/V6V76/YaXnuOvL7vsMv6aevRHh4eRGRINGJXQ0UVhLsxQe3x3F7b16qMXHPr4drA+CiE1J9olr3GqiFrfyDj+ursbWzzuhQnLl+3MjPFrAKLiLMOwDj3+RP76hUcfRC6Xw3gu7zLUpuMxpUfH8Upbv2fU1X9EDb4iavLif9yMarxvfj0/61BCTANYa/SWLVuEY15jxASEiFqSwMgdQ82jniaAgdFxPLKzEzv71cXHaUQt5WGoudZ6uwMVJNLU19MtUfOLBlGIGHsUveEnosaeksgAbCEVPvCZK4RzVQy29NjMmTNdnwPg9yRD+g0YSugjG8eKKYjAuGPoUwbQrM81tnWbY7w22hDao04/E5df+zOhHmtlbR1ueOhpXPP7P+PbN9+JcDjMjzMZ6GaGWmHYIiVkOv6c93NncCY9gMf+8DvtGiw3PeKxWJuwaoBOx7xn0MfpNtQopPHkxbPQkrCegwEDhmEI+ctDAwN46HYnmvbJz38RS5Ys0bZNnX+ZdBqd+5ycslmzZ8MwdHyyjug+P8jttHcNtUHimdu3fVtRv6g8CXOmmq1pgAxu2fPSkRnF4NgEMkMU+ugYas1z5vNwffeB/ejr7OCbiGEYqKqrR4oseK9s21W0IsTuQ/A2EzYn6oWiTIBVxJtWaAqFAgHMO+RQ4ViSQEqCoRA+8JnL8fWf/xaHHncivnnT73DcWefhO7f8HnVNzcL3dGQdTo6aGvoIiBBTlqMGiFAwKtX1jUL0q0/6fWmOWqV9P37WRoH1UYrksNwWAGhomQUArvpDgCpPw/27V9XVY+GhhwGw6IUf+p2DUBaNMhv6SO6VSjxZKSi13YTtEgCnHGYiQJNsRSokMWKedYlYoJRJe+tu/MeXP4sJG4rHSR2KjGwVIybEOkdUtm7d6v1d0/u9l/hOGPeAf+qU8Fwuh21vOPmWa9eu5WMzSiIOw9mMENGnjiLAnaMCqAlFBkYnsL7LS+Ey6K38XUUFfcyb7jVOlaPGFE0/xc7Zs3eCxdZ7qtDIc+qk8z+IiO1VHhsZwVvbd+CB7R3Y2iszqU79Sb3aPoDW9DD6R/QlHHyPV9NfHTV5+QsYBoIBg4+9kK00U3ntNZHlVqU7p0fH0ZUdtaLfaU1EjeW7FKijtss20BgyYngih43dg8RQc9b1FfM0BgyAEslQ4xE1wVDrwZ9+4dTBTEnkWfR5VRNSqL17feTHmhYaxykRE+HXDkciuOiLX+HnUqciYEXS2R4SCof1Rb3Zf0P8D6ihj2xOqHQCyvpYJUTUWERaP+rb9uzC/p3b7XsrQcuCxZozLamsqcXCQw8TSuXQfZQxEWqhj6QnNM3gws9fiTM/5ji9Hrvrd5jQRITZ3TDnct7DMzc8kcMD2zuwrc+bUdmPsH0l4IfZrICwfXd8bJTP/2AwiLl1bhIfQVfq6sD6/7WYFg3DwEcv/bSyfdYG1YmG0gPo2OeM/5mzbWeXhrzHOaC5h4PcVHvHG2pUWre9hSsvPMvXAgm4J3jeNNGvqICeTg+Sc9RtDRKPEo30hMJhIfn6rdde5hOnsqYOoXBYgGb0dXUWDaHh0Eeav0GMRWpQtW5zDDUhouZihBIPhAIGoqT6PACMDLuZM5msXnsyrvjpjVhkQxaoFIqoydDHjd2DeHh7B7ITORfroypHjUksUYEZ8+YLnw1IMC/qaaustVkfAayqq8DsCnceApM48QL39Tpt5vN5XkMOABrsvDDqfWTXHJIMNZ3CRYtv01wAapyy9bysPK7MF0ymat0RNfK5V0StuspSpOQcnKPPOBvnfPIzCIXd+PHNr7yIRx95xGqbGSnuW5s2yZtA2+5dys/27/NR9JpIMf2k9W7y+Tx+8Z2v4iOr5uGbHzoHo8M0v7L4iMj+Hdt4TkhVbR1aWlqUeZyjw1kXJFAQCfIEAGWTgT4W6O90ihL6CFNY48riccFZwQw1VvZDJvdQCTuFQeDYZYV6QxKcOBAICOiCN9evB2BF8sR7KHj5gsKiNeO5qTV2z5Y27BrI+mJ91Ak95/xPf0n4bL39DJioxvtfd3fjb3t7LfZOsr7QiBqTQtDHYdtAKw1ZSvy69gFs6RlCtw3XoxG1xbP1hpoOPUENmAN7W7Hub0/y98uOPEY4lz6XVH2RhhokUqn6BmG/pHs3hTkCElNkfaOytIzQT66UO+kOKugw++WojcCOZYY00EcaUdMMfGrsrjjmeCFqWkhY36nTua/Lf0RNINaqqsY5n/g03ydbt72F//nTXZ5tsJ/EyzEn12Cbikwn6yPrMV3TkpVVol5mv4wRQ+2aT3+Mw+7rWmZhhu101gml988M9KNjn4MsmjVrtn0Z7/vRRtQObjvtXUNNls2vvYwbb7zR17kTpriR501TCM0z8ZNsPyJAH8UcEWqIbX3T8TymGpoQMIBwhbMp9Hd3IjtRnKHGPEcCIxqNqNWSiJrOUJPalNcHZlxRb2pDgYnLr18qemD1Ba9ZjpoYUdvSM4SRXB65vOkmE/HIzTrlgg+jJFomRdREshjKCshgK4ZhYFayDPOqRMOUilwSgMmODW8ItbuOPPlUABBIXXo72pHP54XvVSlYxJjQvAcqi2c4G6XjLTWUUbW6GS2KiJqoDNP9LkMU/5Tdt7FcHstrE5hjsweGwmF8/GtX4Q/rd+Obv7xdoJQGgE2bNgrvx3J5DI6p2ctYHyYrpmli/26HIIX2ZZ8Pin4mOza8iVv//ccushWd0I371af+ir/+8Q6MZLPYsu4VvP7s06R/9v8i7nLrG07py4UrVgsbK50jI5mMZ46aikRgMhT9DvTR1+lTElPxxjThgnjGEkl+X/39/cjlcr5qgjGR6xU5Sg2JqJFnxaRlvpNQv3XDetfnrnuYpIRt5XtMcpLsfmsjfvz5T+DB226GaXrvF8zBMjE+zglngsEgh5MB4npfCPEAAOd84tPCc962bZtwrhckeHQiz0tKAHKOmtVmaczbUONjUHICsXulETVdpAnQF7yOxsqVDigAOOyEU8QDpA1aZsUX9NE0xTIt9SKjXiUpidTfIyIGqK6iIvqiewIgsj0yiZLoO3M2MycJfTRs3RoiETWao8wgySb04/7lJx7lr8/48Cc0Z6mFdYXm3PvNURsbHeEka8FQCGU2CdHRZ5zNz32VrNVUcqaJ1zsG8MK+PqFNr+vJMpn10oE+Fv9dndA5VyE5R5w8M1Jjkzg7Zi5YpEUascNyweyOvSL0kZ7rfNffDR7kdto721DTJTBff/31yuNP7unGM60O9E2u/p4zTc6wRsWPoTacUUMfAdELRKnjU42NCAcCUgHbXmTH9cqsSthCkBl056gBDkkGAOzftZ2/9jIOdNPnKzZFrmEY+OCXvuqrfytqE5waHPABfSxVk4mMj43y3zwSiSAScTZSVURt/nKr7go1UGhEbSSb5Z62YCiEpL0JyEnXKqE5alSpY3VZAGDFMWsxzy5dQGEiPR1tGOzv496q8ngckUhEuxhR8gLh/pqJoUZ6m5RYzmKJCsSTlQLhipyjBlM0IrJkUU/ZitToRB7zKmOoi7mLx64+4RT8/C8v4J++fTU/tmP7dtY0AGDf4Aj+ssurqPvkl+O8aQr0y4cQr/f+/coSkc5VCTTk6k99BL+5/lpccMEF2vOo0DXkUYnG+AAxHCW90pe8/twz/PXCldZY5jk8MTGiltE4aaiIOWqTL3r99tDzqyJqoue+rDyOYDCIeMXk70XnuaZKjcrxMXfZCv56/cv/W9Q1ixEWHaQoi9GRYfzoc5fg5ccfxW9+9F3cdeednm2M2I4/mp9WJkUz6Prhx4sfT1biR394kL+nhloubyI96t7D2L2M5ERDTchRY9BHn3XU2FhkkceJvAXhptEnue6TlzjkWoZA0c/kiFPfy6GPh9TEcWxzlQh9JOu8X2RPt8T4SIXu3VRxBoDXn32Kv1646jBt+6x/bN+l+5sqcmny74khNdM0hRQPmi/GDTVTvcZlBtP8Nw9HSrDy2LXa/noJjW4zFEEh1kcKe4yTSNKJJHe+XePMy5vAzv4s0raD0SuwrTfiil8vHQfgdEbUCJOzxlCr1ORzztA4i6lQtvNMekDIUZs920KV6eoWMtGtPW9HXvTfU97Rhppc4JTJsmXqul59I+McGgGIE9w0TYyOjqGdeAGYDPow1CiUIxEXPbCVBFe97Q0xohYJBgQjI93bg+FiI2r2INbBnwRDhXjlqqurMb/SpufXTJBUNILDG5OE8et0XPfAk7jxLy9g1qKlvvoXDgZwaJ3zTHTXUsG66CY9oih2zXMKFIYai0RRRaufjBkKHUk1NHEsPEu69qphUhKNImQbimOjIzzSR2teHX7y6XxzrJYMte3rX+fv5y+w+ikvRRUlISyssgqNU08i73PKYR+jXa1pFHMoGC0/fQ69vb1C/SwTJt/YrMLCzliqTTkRNQBCGQFZKPECM9TkG9MtulNZi4ezGa4IhMIRzF3mJKbvLxBRY5ft2NvKyYTWrVuH7du3679kC6uX1nVgH14n8ChALLBqOiG1grLub0/isrWr8cIjD/Bjq20CCzZ3aA7PyHBWyFEri8s5avZ/MkZiUyh6/bZH1ODkT6rWuIREKFLMpi4bapzljdYbqnBH1BasXM1fv/7Cs2jd6kZimCbQmRlFL9lzipWwDc2jVOBvPv83gUTi1ltu9myD5XHpGB8BcWwUWp+Z0Lm+fft2jI1Z9/lyWx+e2evO9abrhi6ixqRQjpos7PebyJsYzgzxXJxoNFqQtl4nqqLWp174Uf56RiKKWslpVU3y1woZavdtbcPG7kGBuKZaiqjRCFvb7l2Cc5o6BVceU9jwcddGFdMZWESNDTV6tgnLscnmR2m0TGD5Y/NSN/Nkputiot6AMz6pE5ztUVrGRrs3AuyRpAvQKGSnZo+Qnfleojt1Mssl002nxSnG4dzOmpaU55z9gJtI/T4qS9ccpY+ocdikSEQiRtRm+epqqUa3OLjNtHe4oTaoYRoaIRuSl1BDLW+KmwcVPxG1AUJkUEXgCoAYUWO1WABrEY6GAoKRMdjX6xleVwk7myox1LuhMmIAy1A7pDaB8xe6PY5s8iVKQmiOR4VJ2jJ/Ieqk2mBewoyVJalybTTNuiaDPjoRNUomMpJ1PMKxmGhgyhG1SEkJ6m1oJjVQ0mSxEiAnNgzVatP6H/bAHRiGwfPPAGDLupexf+d2vPCo42VetGoNN/Zk6KNg0B15lPIaJcEAltYkkCqLYIEdUaGig67KMBhGRhIKh7lym8/nBQXdhKOAj2SzHCIVjUaRKLN+D5bPEfMoX0CVt102fFAezZMpkFtI+gX67GrBM71hx27sHtDnUzKhhjsAPP7448J7r26/8fwzLgOBFvv0G1HrOrAPP/7cJ9BL8lYWrlyNuYtFp4gAfczKOWqSoWYPDsr6RtcHv1Eo1s7bsWnSMUK99JT1MRaPI2gAFYo8Nd/XYYVlWY6afTxD1ol4hduQqGtuQePsufz90w/c7TrHhIln9/Xiqdbi+kQlzHPUHKdKb2e7cM66V1/lRpJKhhURNcr4CPgjUJJ/90QyyeHiIyMjePjhhwGAF/qVhTq+dDlqPGJcoOC1PJ8o82IfyTNvaGhQGgWnz67BabNrXMepUEZEJrMIi7PKkZeorEKkxCKaSafTnrpD3gS6smOSoSbuxZW1ddxJN5LN4JpPX4zf/vh7GM5khJpksxcf4nkvgBsKCUMTUZNqClrH3OkddJ1xIt2m0pHTRZ2icsFkH8KedFmcElZ462VsDUlLETXeDwJT7eloE3QzJr7JouCOqKX7evCr730Dd/zsukkQxE3fKssjajSKLRlq7Pmq0DuR0lIsXn14QZhiBSlb8dR9/y3Q+s+bO1e4jnxdfi2NgniQB9Te2YbasKbCfaFaZGws0EmYN03B40DFl6FGIlUpl6GmDidX1zdaNSwqtsIvAAAgAElEQVQE6GPfJGozWf9pFOTwOU1ojlsbhgoWCBSCPoq4dvfn/oW1tag6jnMX6GEofJMuIqLGRDZGZ81bwJOFaSHGzOAgjyTRBXxucyNm2uQhnN2sgPay6rgT+es3X/gbbr/2B/x9NBbDYStXoDluKUTlFUm+gY9kMwJe/4ijjgagX4wMAAtWuA21ujpnXFFlJBgScwIv+Pw/89cCnTlhfjQJ9DErUWdHggEc2ViJI5us78q1h6jUNDbz597WdsD+/cQbk0lJAGBb7xA2dZNaPEVOgv4e57esqKoSyFu62tvwWrvaCQPSOwpBAtw5Jl5dot5tJvsJFJNHK/VNALDy3CbGRaXbgtmJ85EqWKPZrLB2xXTQRxpRE/I2i4Q+vg27pgx9ZG/zZA0oK08gFBAdXTqUhU4YlIn6ZPJ5EZoXU+SoGYaBUy/4CH/PGOioTIdDgs1rGlGjNcgAy0h69PmXoRMeUdMwPgJu6naVyPcTNAwcd9Z5/P0jjDxI8306/oYIq6bI+mhHjH0WvDb570cMta7CsMdYJITyiNvhRPso0/CvWnuyAA1TLYOGYaCKGFt+8tREh6FoxBiGITjpXn/2KTzw25vwuVOPRN6OrtXNmOlJzMEdNYpcNVa6ByA5aoo2TEAg8orGYkJ+23BmCPm8npqewuBqJNZMP8J0CEoBzwwPLeCQRcdpRI2sFeFICU9JyOfzAnSeSTEGkzw/7r35Rjz6+9vwm3//Ee6+2+3I8RLuiJiWpdZqhDqfkkmNoTZvgevbl//kZwhHSgrqgqo8SQCoqE6hKmGPFTkn1AWF1BhqmmsfLPKONtRk6nYmvb29GB3VUzNTmASTnGliaECtsOgid0zGx8a4ohQIBJCUDCBdwc1kKoXSUADliQo+QDPpfoxP+M9RG8/nebSA5m9UVDht6oog6wpkUpGZopzjvrvoGUVTtRnRRtT8Qx/nLnI8n8FQiG9IpmnyfEKq3DbWphwsv4LOXCULyQZ6YPdOYaFvnjUHx8+s4VE5VoqBCSN1MQwDxx5/vNU3aTlyrm/wfDsm4XBYG1E79LgT+Ou1p79X8AyLSq3j6TfhbDQqb3djvJQzrAFW3qFKgqEQasiCfcczr7hw/aqcgvVdg+jMTh4i1k8i2vHKKlcE01NMyyiX6xQxumo/sn39G65jvR1tfIz5LVGwToJPAsCM+YuIN9z6TxWz4WxGYI6j9w6onS6TIRNh8nZsmvI1nFqRYuQwHDBQQeBMMptpIXFDHx2lE7AMBhUdPSDChGiZj7HRETxx91144Rn3b1m8uO9mULFPPfPmZtcxJgy+pWN8BHxG1KSxGzQMLFnjoAFef+ONAjBP5yI0AlyI9dErR433hUbUusSIWjFCH4MMfTzrY5cK73XQeApzp4bagF2eABCfpRBRq3P3d/7yQ13HaL1XWquVCjNEGWOoCgKtMojVTiXTFVELBoPC94czQzaZiHvMvvq0g07QkWN5Coc+Kgw1zYRXRdTk33QhgTA/98ifXW34jaiZpomc5ID8869/yV9/4Qtf8NWO02Bxp/tpSoQbSzlq9vOVkVKLDzsCR572XvskzQXsL9dqUFZzli53EdowKQnq0yiovJujdhCLLqIGAB0dbpp9JmxQ5oWIGjCoUVgKRdRo7bWamhqEpMGni6glKqtREgwgGApxxhzTNIU8qkLyRkcarWnrOVAlpqKiwjN/C/A21Nx0/fJ7/5aaXzy6E1FTk4koDTX7S3LC/2FHHyu8l4sxAnCxLqo2Mi+pbXIWprY9u9BBvIY33nWv3ZbTmFw4FwBmL16GajvXTBtRM0TyAsCCflI6ZmoMLz/6eHzgs1fguLPOw/d+KhLrlCvomK1rm3yD1RWjpTK3MoYZdsRWFjl3RZZxH6GGYpflvh7qNa1GPFnF6xdmhwaFHC7VtYIBQ/BsA25DTaWAmKaJB2+/RSiyTove7rFzl/zsM9vXv4FXnvyLcCwYCmH5Uce6NziJnp8qe7JXngkdizGJnr+YjfBtyVGj0EcQYoA0NdQSCBiGEB3s6ekpavAwI4ayPgqMj4r8NCaU6GGgxxkrd9/0n7jxW1fiu5dchLt/+Z++HVUqUT1rFUSfGuquNuz/tIaaC/rooy+uiFrAEKCAb7y5Hk/s1js32DVM0xSowkXWR0tKCkEfJWOCoh/8Mj5699KKBFCZvWSZ5kxRqDFA19jH7fIEgDhEBTIRRbRJdtIJfTAMvO+Tn1F+lopaOdRDNjkZh/Tb+4ZhWA4fti4MDw9jYmKCrHNiVDtL82BtxydFq2QH09Y3pHHy1P1/wrpnnuDvl61RQ/29xIE+kn3cw4HePzKOXrtcBjVq4xLkj5ZaeOi2W5BJD+DArh34ynmn4kMr5+COXxZmEP/9f/4EH1w+C/90xlq0t+5WntPR0SHkhBcSv1B5X22xtdMjosbEMAyc9P4P8vfv+fAlzmea9tlxuXwTk4/889e1bZRH3IbaYQ1JVJSI0e6D20x7hxtquogaALS3673oTqKmI3nTFAoQU2WrEJkIhT3W1tZyI4Z5aSk9PpWK6hQ/N0mIIToLRQCIsHoygCqiZr2eHPRR/C/PsGko76G4ptVoMWQiTIKhEPc81jbNwJnvv1D4nGLbGbTPZahpooc6qWl2Ikf7tm/leV1VdQ08qkon6IWfv9LVxvKjj+PXdUXUyH8Z2iJHQWifDcPAhy7/Gq746Y2Y2Sxu/ELdHFfRa+t/oRpH9DoqoV45WqqAiY5OWdUXv0Ijagmb2YvClHo6veDQJkIBwwV9dBlqij699swT+M01VwnXXnr40fz9ppdfwMT4uDLvQ5a//vEO/rplwWJ84UfX44d33o/6lllkLFivKGRpeGhQ6HtVnQyfEv8DIpVy0fT8vs6emtC5QIvoCoZaeRyGAZSTMfri9lZkJwrXM9rYNYjX2vudwrJkDmYEQ00//nXU6c8/7Hjm77z+x9paXX5E9ayHBhSGWrue2ZQbal6sjz4WdHl9ChoGkjW1/BmNZDMY6PYw1OxLjI2OcHhvJBJBaWmp65xoQeijpMqS7k9XRO3I0860nAHBID5+5TdcOWu6Z0ajPgOK3wpw1pLhTEYsdq3Yq+cdslKY71SuvedRLFp1uPKzpngp5lfGsLha/G4k6OxzhmG4opfcCBaS1ERHMGNadeWpSQWvx8fGcOvV3+bvk6kaLD5kubK/XsKetAx9pA5GJqO5PJ7Y040eO7o72K8mEwGAtWe/n6ckDGeGsH3DG7jv1p9j1+aNGBsZwW9vuNbTidXX2YG7f3EDJsbHsWvLZtx788+sa/a5ne1vvvmm/xu2ZToZdqmDp6FWdEJQ/eFDX/oajjj1vTjjw5fgyNPPIucUlhVHHy+8v+Tr/4rZix0HhzxlVPnuLYkoFlSJY/YgD6i9sw01r4iaV55aXuGuyEk5ahRvmx70NtRo8nJ9fT0f0Wx/DkdKBDp3wCF2YIsmZXtqUyi3OqED2GWoMSOwuoZHF5gEAgGBNVAnOqr6spC/kHUxwun5tdBH57UDfXR69o1f3o7P/uBafO/2u1EmeYwFtigWUesXDTW5HyqpKAlhgV1fLV5ZJfSVSUPLLELz7Byfr8gzW3PS6cTTLH4mK9g6RiYAaCh3U+YDQJnEoqTL56F5QJkCsKRCQhPiexWefh2dMpVi1+UBwWtq3SNlTOvyYH40YSmd3W2FImpu+Z87fiO8b5g5G4tXO8WQ7/rPa/HxI5bggT9YFOq6Dcc0Tbz0+CP8/ae+ew1OPO9CB/YkeU4EJtOebq4gG4bhgloHuQPCEVdETd0tSRg88O+/a8pDxDRNK3eMkIl8eJWV+F5Gjc6+Puwb1O8LTLb0DmH3wLCb1c2UGB8T+vGfIMnz6Z5u5HI5F8kD6/tkRfVVVS41jajqGvFiffQjqoiaYRhCBGlQ0Tdel8t+T3PskslKweDhqIoCETWnbfE/APT7yFHTCpkkjbPm4JdPvITbX9yMj37hn/XfkYQaLzonCHc8EIW+orpaCRErLSvDN35xGw478VRXO7MXL8OCqhjWtrjRMQHDwCG1CZTZyjBbd0NSYWxqqA0ODirHqwnRgRe3odO0FMhwZtC1jnTs3SPAXK+69S7Eo+q9ylNYWkRJKddlJsbHMTYy7Joj6VGRFCStyVEDrJqTx575Pv5+3/at2LnJqYuYGRwUvi/LC489JDyvlx5/FLlcDt0KHe6xxx7TtiNLMSzBBduy/9N1o0ZGU5EBV1VXj6/91y247KprOBM2oHdM0KP/9O2rcfR7zsZRZ5yNn/zpEZx9yac8zgaiIbUJI1/p7SgJ8/eUd7ShRpX4Y888VwjZekXUmMgRNWEgE0NtMO2do0bZ3WbPns0HGU1wlpWneNLy+s9IRLG8JiHAldp9JCCrhELWaEQtGAqhZcEi4dzFixejpES/YBbysMoGwHSKNqKW0UMfASv5+5QLPoLapmaBBQyQIRPWc6IRVAoD9YIqnTyrBstqEjAAmDBcdMqANXZYEzSPwTAMLD7sCP7+6PecjUWr1vBzdfYL+/xzV/+UH7vuuuuEc+rLS3HWPDfENir9TgKZSI9IJsIKp+tqHLn6pXlOcs04WWRDTa0Y+FuYx3N5dGRGhfo+7LemrHz7FYni8hVl1sduKeKokjGJYXbe8kOx7IhjhGMj2Qx+cOUXtHUfAWDfjm08Mh9PVmLhoWuEz+UIN/0dO/bu4c+wsbHRlVPF5oJXwWtftoT99bc7R820/4YzQ/w+Y7EYwuEwDBgoI0brYH+fJ6V2Lm8KkHcWUeM5hChcQ41JOBLhRko+n0dfZzv279zmOi9bwNHnJap5kEm7lX8d5MpqwxIv1kcmC6vVkRtAnaMGAHHyjFR9k++AOoLkek5skEVKo3y8joyMeM4dWfomWUPNubojsXgC0fJy137iJYXyP3f0ZThElJKqNNXWkLkqfmfp4UfhG7+4TZlGsawmgeqoujg3FcdQE68RlYqLM7yDMAdNUxjHcdvRUxYXibpM6Xv7dzrQ9xXHrMXMhYsRnYSTlzpkVWkMXpImDkmKLmI/adNch+nw19dchT1bxHzP9j27tG1vePE56Vo9OLBrBzK97sjyo48+6jqmk6lAH9Oj48iMuXkOvEpi+Bndfs5pmjMPX77uJnzl+pswd5kVOa0tc/RM1sasiihOnpnSG3/S4Xcjagex0IhapLRUWMQKMT8C4iY4NJYTFiJKITtYYKOluUlz5szhr6mSLkdDElVWfhoz1oR6KftFhVElu/qzrslII2rJZFKYWLMleu/Vq1fDS5x8LbeHzzoOnDmvDkc3qbHOkxFOz18qRtTYtSn0kdPza9qSmQkpcxt7TpQ8pqqqio+HYvLvKlNuWGuqsVEbiTzrY5chUlKK2YuX4jPf+wkAcJIOdn1eJoCTQFj/F606HFf9+i5cfu3P8LnPfc51XZUuEQoYnOIbEDcqmtdlElplOg9UNY6Y6J4STYinRB57t2/F688+hTGidPUMj/FcAkF8Lsw7+7N4bl+vMDaY4kHnHFUYXJcyLQVfNrp6e3tF9kGpT/l8XshNi8bK8YHPXo76llmCQc7EIrpQ39imV5yiyUvWHCnkH1Jhz1xnQKhqSLK5QH+vSGkUobCl3I2OjnqiE7hMg5O3d3gMW3sL18WSn7tpWhBPJhU29MowxIjaUH+fJwHA/dva8VdSdF0+1wQwIhhq+hw1wIqeM2nbs1uAwTOhOVPTIdTBxGTXpvV4/K092NildyqOerA+AsD5CxuwNBV3HWci279sf6NoEVW0T2bOo+uujtTAMAytww5wK7J0XvlhfdSJbk3zqqkpS7wA9PGNzjSGxq01UKc8665XbP0xKi5DzT6ui6iNTuTx3L5ejE7kLAcGNdTs9Scq56hJlhpdd9l6XKqJongJvWvR6Zp2Ew9JBygUNply4MrsGc9ZIpY2yEtOgTaNE8Q0TWx+9SXX8V2bNwhRXSbPP/98UXlqk5W/7u7Go2SNY78nnZuTMtQ0J3kNybUt1TimudJ1biQYQEWpmqTJ6o/Y6EFup71rqDGJlJQKk9BXRI38+i+39QuEA9W1zgI/mE57wleoN5MaajSiRnG6AHDIwvm8jothANUN1FDzjqjlTRPrOgbwVKvDcGYVKRYjanSxX0byZgBg7dq1ntdgIhtsVEqCAYEJcKrCN46YOj9hZNgNfdSJvNHRvAG2OWYJi1UikXDSHchXT5qZUiov7JxkjbsWTw0p6Cn348jT3ovbX96Ma+95jBuPJfbGxYaYTKNM16wVRx+P488+H5GI24OqMjADMHD2/HrMswub6yJqgKPsDA34jKhplncKfWSQrL3bt+JrHzgDP7j0w/jOlVfwz59u7cHTijpTfhdm9ngpLJYpHk0kotYmwdHka/UpGB7z+bygIMpG1rq/PSkozbe9uInnsVzw2SsgS1dXl/bGdm508hcWrjxM21c2rsKRiKBgMVm+3J3/EeJjUWxHgD8qlH+32FGnKbg3n2rtwQYPY4JfSQF9lKHdgDU14iTvZGigD7kCuhBTkgGniDuF0A35jKgBQD0hzmlv3S1AcJkUY6j1ZMewN+3sa/JzyOVyQnst8y2kRD6fx1PPPoctCiOYteHF+uhHWFfYOGIKP80RVBFyySyC/d1iTjcVAfKn2QcAN5nItEEfbQlK63YxhDAJ8jwK5X9S+H1lZSW/IR08nELJTrvoYv+dIm3KZWdkin525R39GXRkRrGz31pbBeijPf9oSkF2aBAv7O9FN2H+7NjnoI0YyZT8bAs92ngkKObXkr1cFa2WI4E0f7OhycnZZvvsIUeKxGOydGgMtXRvj0BUwmTnxvXoVcz5kZERX3opoB7XUxW6rrn4CXyMb63zwOPLAcNQQpsLOcPdEbWD21R7RxtqFPpYEo0WHVGTZTjrbAbxSoc1bmJiAmMjHgyTUkSNUz6T1Z2FgZkcvmYNwnYSmwExn6ajQI4aG7OjuTzYlB7JZHhEoKS0FOXl5cJUOOzE0zjuv6w8jgsuuMDzGrqIEBOe9zJ5B5/2mmUxZ/FPp9NEGVdBH9UdkDdW2QsHAOOS4ccVEXLXydIwZiTUMCFAzeiZamjim6Gqe+FIibLf7PpB6eFP5REHpDaoUtsnsD7SHDV/hpquY/SZ9Hd3wTRNPHLnb/n4/P1vb8XOnXrDifWnGKFjgxkw1GDs79GTHAAic6twXAOtMU1TqJt3/Nnn8/pxgMW8ecL7xDnW3d2tNUB3bnTyIuYsLVy8FlCX3Vi6dKnrmBNRE38wGl1tKxIqPlUptPHmydWYk56SGSSIkUmfw2CBiJosIxOyVWdiiBit5R45agBQTyJqv7zqq3jrNbeHffsGfyQCpmni6b09eLlNLERPJd3TzT3+8WQl5i1fyT/r3L9X3a79f8yD9dGPsMgYW9u4oUaMWVVEbWd/Brv6nbWWMmQ2eLAyetVS404TyWCTa+B5EWaphK3LMiLDMAyc0FLN85O9JJ4oTCbCRFae2dhljI21ZaJD7j0f/QROOv8iHHX6Wfjg5V8r2BcqOdMa6yxHTRVRGxoa4oY1gxAbhmHNP7IvsKghZX0cHhrEwOgE1nU459HcyZYZM7Coutyl8HtFK9c0JHHcDDGfyhVRk506ZNZkhwa5Ey8ajeL8lU6dMKY8G4aB93/mcm0ftEyOJOWFys5N69HbqWYdL7TvMZnGFDXeRkbDtAr4QxEVE1V22tUcL9AU+5hNw4PbTHuHG2pyRI2ycBWbowZYk5pJWXk5oiRqk9UkNJumKUzYOXPm8IWOeo6WHn40Uo2ON+foo50Il2FYyj3v+/79eGJPN3b0Fa4fw4QqojU1tTAMQ5gM0fJyXHndTTjq9LNw1Y23IB7XQ1wAWkvM7qP0uQyfmA5hbdHnThVlNZmIWrwjalabw6S9WCzGF0d5EVEWNuVsne6IWqqxSascUzm8MYn3zHVDJ2Xjyu8zVi1+AclgpPTEvT3+66gpr6c5Ho3FOMnK2OgI2lt346n7/ls4Z+PGjdp2rf74W5od9jRnfjLFgxoig329WuPANIEBTcI4VbTot3dtWo9927fy9+dIFNmGYeCL/3YDDj3+JH6sq6tLeVemaWIfyW2atchtbLHv0WeuMtTmz5/vOhYidNxUKGHSnt27FT1zhMLXpsO5WYhPRqDnNy1YbkYVUTMMF/NcMYbaKIuosWuhuIgai2gxefxPv3edc+9vbsLYmHeNwM7MKO7f5t6z5Hkg1strEGDGMhmOLF6sj36ER/wDxRlqm7qHsK5jgH+/nzBD1tWJji7qwIqWeUAfuSJrR3nt4zSPsbQshlDIzSrnR4LSXDEAVEUjWFztvW8CDtEG4COiJsBAK/l9LKwux3kL6l2IlXCkBJ+/5jp85YZfuQpyFxJGKsKhh/azppFLWjOWuTACBlzzL5G0I2rkXlVspJSNdsWCuViSirv2U/lZU6kti6A0FPTIURtw7xXkLTUUm5ubBb2Avq6boa4BBuihj1Tvo+Vzdm3egN5OZy5TGPuuXbu01xFFBvdOTUZHhjE+ZtXwi0QikyrPoYsqe33XrZP40xtlBu6DPKD2zjbU5IhastiIGoe7WC8o9DFaHnd5i1TS393FIwWJiiQqKyu5UkO9cuFIBF+94WbMX7EKZ3z4Ehy3ltKYGgKZSEfbAfRmR/FGp8abr5i8NDcipSkHsHrtyfjKDb/CYcefqPycitN1taXmeOWmz1Rjk5M+93Q6DdPW6rzo+WWRJwZd3JlncEQy1Hg/5H553GNSlaNW38SNdC/ITCISUiZWyyx9U8lL4Eaf3UZCG1FzaI4LFaNl4tWrCsKI99DttwjPGgBaW1vlrwjid11mc03IUbMVPMrwle7rxZiWtt1Euk8N/WOOgq29QxgiOaGvP/s0f33Me9/ngjYzoYr073//e6WxOETy48rK49oC9YC48anKbsydO9d1LGSoN8faJqcEya5du7XXHMvlcd/WdgyMWvc/HXtmIWNK/jQPkcyAQh8pdGskm8GEAvuoM9JHpDFhmqLCGSuQo0YL5uqkp6MdDzzwgOc5L7X1CcYrL+cgdZsaatX1DcK+0athfmRtjU3RUGNRTgdK6zbUVPlzvB/29yk81Av6SHPUWETNNE3s6Mu4x4/pXrto5MWvsOvLETX+uY+lmMIBi42oMQkFjCmt+yo5tC6BY5qreCFs7hjVQEzzrMagfaZIJmLNC+qo7FNEkXra3LBD2Yka9ihfoWJPjpFSO5kC0EfKOtzU1CS0Q19TmLwsOjKRDhLBXrrmSL5uZwfT2PDqy/yzhYc6UPbdBRxiTKbTTLPWNBFiO5mxpY2oeTQ12RHsjqgd3JbaO9pQc0XUpBy1QvAa9uOzDZJG1KKxcmEBG7Y9etmhQfzyqq/hy+eegvtu/TkOEDa55pmz7PbsDU1a7OcdshI//sODuOyqa0Q2QFibEkvKnhgf96xHI2Kwrf/UUKu2I4uTCVXzPsnGgvQ5jxhNJ/SRtR0K8YiMaZoYtZV8r4LXssj1OcTFfRC5XM7lYeZkIjKGXhVRs4/JRazjyUqUlpWR56N/QDoDkP9uRT5c1dny70gjan29PUJ9Lw599M36qO9fBZmLzzxwj+vzPXvUsBEuPtdldpqQo2Yr7uFICVfi87kc+jyUpgEP6ON4Lo8NXYO8WC0A7N2+hb+WWR6pUOrye+65RwmlpMp3jaZYtUrkJPhYeblL8QWgHYuU2faVTVuhk95hMRo0mU1zPJ/Hs3udZ+zFzAhIZCKwxmZWQyYSDIV4LaR8Pi9EygsJz58i16NRjkIRtcraOsyYv1D5GYVFbtiwwbOdsZz4PHKax9Ox13FwVNc1CKyzch1AJqypUUKWMxnoI3tEbDyx7Y1GdlRkKkxYPiCFPsoRNSoq6OO+wRG80Zl2nAYSRIzmMZYVQI14iZxH5UdW1iZw9rw6ARHiVVoA0MPR5DyyqRRN520GAqiLuRn4SsvEHDUmeb4f2jnwZF9g8E6B4VeqVZkdGuRzNhwpQbVdQFzWS7zqDKpuW3S6qqCPjlDHgbU2qiNq81esFhAGrM+sDVWR+bZdDoyxbsZMoSA6dUbMXLiEv6YlcbxEVXZiKkLHmQoO7Ge463PU9KLTcQoZiuxjXt/y4LbT3tmGmhxRK4mW8WjM+Ph4wUnBce32KJggOUtl5eVc4QMcI+HB227GX/77/2H3W5vwu2uvxlUfez8/Z5btzWabvxelr0jbbv1PkcRn3aYrdJyIDH0Epje3SZ5wOi/9VIS2ReuzDLIImIqeX/Hdc+bXoVrC9pdJi/uYxIAWCAS06qfSULP/N88VoWZs42IbvResQ7dWBSRY6XQYw6yJcKSEK0ATExN8IzVB6PmnIaKWrHYiaqpNrlBE7em9Pdjvox4WW8DFiJqj4FFDqatTTepgQqRwpjIwMKAcF5TNTB4DVFokJf6Zp59ynUPhOTX1IvmBV3R32REiQdCq1YcpN0DdOkQVk1279ZAcFyvnJDbN9qFRdGYdg6+YiJppWu8zCpIbrmwSp1omoyDUKNA/7sE2TRH6WCBHDQC+9OMblMcpSYFfEgEmrCi8/Jj2vLWJv26Zv1BiWNVE1Oz/hVgfCwkzZp38ZOs/RbKooipMhsas6KU39NF5raqnOV6ANY/mMcbKizfU2PV1hprXmhcMGAgHAygrEw21sVzexXzJPyeRDjmiBji6yWQMx4JiN6mNqDGoK8tRI46ShO3AqKpzcgzlWn70fXV9AwzJwGfiaagpAD1UN1BF1Ohkl52OtB3aj2AwiK/97FbOhHvUGWejrmUm/7y91e1YpHD1GXPnuxxn/DOyB/g11KZTTIhrmorJ2V+OWvHXdg9b2/gvdC0JInmQ22nvbENNpOe3FvVimB/Z2smUBlpMNVoeFzx6LAfmzRf+pm3v2JNOAeAsrmENxTYAV0QNEPPUvPINVIOWRuBq6ixDTQff8OOdkHOb3NDHv0NEjbSlyqXk3VgAACAASURBVA9URtQgwnDoMSoy6yNlkOSwR5ajJn034LGslFckkaxxohi1zZbyGwq4++VX3PkR/trwjN6RzwTyBZabZdKImk96frvJUMBAJGBwZkkAqKj2LqZeKKKWHc/hxQPe+R2AE91R5agBIvxRLmDN2zCBtAaylU676Z/z+Tz273LTTqvkqNPPEt4/+/QzrnOoQpOSImryFKZvlx5+NFcOSqJRfOf7Vyv7oFPyapucvIxOD6ZZmXBjMpumDDEsaKgJH5swTROD/Y6S49Q9tO6Nwh8ziiiGX4+sCZG5sBD0EQDmLF2OGx973nV8yZoj+eviDTUW6RY7vustJ7dz5qKlwjzTwXdZE2OjU4U+WsIjavZ7WiOUUqFruiFE3VyGGnlNy7Toykc4Brb1n0bUYpOAPjJxk4n4/25ZuWj4PLi9Q5tvTuuo0bWWXZ/dVzF13PyKyskhRNQ4mYj1nho9zFCrrnUMNVqKBRB1mOr6RuVeDeiLHlt9dOsZNKKW7nETNNE5I+9lAvRR2ldnL16GH955Hz75ze/jM9/7N9TPoIaa6MgyTRP7djiG2sx5C5WGWnkigWpqzPaokRuyTDf0MaMZZ0z8jK7JlIzQfVKQTETSO9+NqB3E8p73vAdf+tKXcMHFH0fjLIsWfzLMj3nToj2mG3xpWUzwNI1kM5gYH8eO9W9o2znx9PfY7RXnBWMDnSppPR4RNVPxeqCXQB/tvCnd9f2MefmrcktsI/HyhhUvzlVUFLwjZLPmxhXzgJJuqG5bZooaVVD98+ci37tHRA0A1p5jRVWTqRp87CvfBuAo2F6Gmu4T2Uieji2atkGNFwYNyZkmBscmkM/nBXavCh+KasgwcNb8ejSUO7Ca5rkLXOfVNjuGQWtrq9bLTKU7O4Yn93TzCIMspj13abSgJun81jSi1tGuVyIpVKWO9DOdTrt2ib3btnCoZUV1ij9PlcIRCofxlRtu5u93Kuq5UehjrVRAPSg7e8gPGY5EcM1dD+D7v7sH/37fX7Hm8MOV96bT8WqbnRy1rv179WQr06AuDEvGnhf0cWvvEDZ2OwqjCWZAuQvUszkiwtRVETXve8iZJoZtY5Iqz/EC0Ecm9S2zhAhlbXMLagh5VLGG2jg31BzZufFN7NliRdQCwSBmLVoiEXn0ITfhLnTL7n10mlgf2XBi6xTdc/u6OgumHHhF1KhESt0RNV3TDvSRRNQSk8lR83aw+VFKIyWlnEBidHQUE+Pj2pIUutpWPKJm35k2Z07bGz/idnIIETWwHDXrt88oCl6XJyt55HMkm0HrNgcS3tPu1INNNTS64GxMvEr8OHug851Gkk9GHRcqkQ1hXUSNybxDVuLMj12K8ook6ltm8+MHpPIufZ0d3HEcS1SgIpXCbIWhlqqtF+ZosdDH6bJQBuUyELL4GEiT0vQ07Ra6HNV9DLybo3ZQy8UXX4wbbrgB19xwI+YdYtEUJ4tgfnRy1EyJ3tuCwokRtQy6DuwTatFQ+frPf4MqWyn0A31UCc036DqgL3qt2ghpbZoaO09Fd30/g55FkXTrhEPRPH1DcHIRNUtUEUoqlJ0qk06rI2qa77P3y2oIlIZc76Nf/hauvfsR3PjYC3wTYf3xhj6qP3STiejbcLVp/6+PleCkmY63nbZRLtGZA8DrHQPY0DWITHqAF+VMJBIIh30UpVQYlMeddZ7r/MNPPoPfc1tbG0ZGRwvez3P7etE3Mo7MmJoIJA9TgLHGYjEsIMxsdE7t00SNTIisj5QBTAV93PiSEz1ZsuYofk/VUXdtOwCoaXQMolZFJJF6nuUcNT6HNdHecCSCpWuORMPM2R7eS/Un8WQVL9kxnBkSaOmpaHgbipJiImqyUmuaVoRVaajZ7+W1WpZCfd4zMIz/2dGJ4dExvt4YhsEL+p42uwaHN3obbV++/ldcaT3+nPMFoqFiy8WooI8vPf4of33U6WciFk8gGAoJBadVZB6siSnXUWNjUCJKKi1zUg4mxse04wgARoezfB2PRCIuaDXNzYuUlvLXWU3eocP66EbFlE8mojYF5xitnUkdB6PDWe2Oq8sdYnsA1yU05FRTykO3/8sFr5nkye+dzWR4WYhoNIqSkgj/bOWxJ/Dv/Opf/4XrJyL0sdFFEMEk4qFDqO5u7lKn1FHr1rdcOal0zugKirO+e0nLAgeyuIPUuQTEUhj1M2YiYBiob5klGL0AkKqrE+anf+ij21EzWTGBgiUrfEXUJuEskKOWMptjoe8ZMHBYQxLN8eIdS/9I8o421JjQn7yYiBqFPopsUZZSL7OJde5T59UsPfxorDnpdO710pGJFLoHCn30iqiphCZo19hQFF1EzU+kj53CE4rt46WhAFoSUTSUO5vomoYkZla4J9LymgQv6u1HaK8oDp1FeCjzpmyoFbqnWDzBF4lMul8oNMoMNbYougw1w8D5CxuwoMoZD4JnLhDAnKXLudJL+6Nb3LzE2XxFg43JmobCXv7SUADJUsfI0kXU0raBMp43sWXdK7j5+9/kn9UoinlTkSN+dPFNpmrwuR/+u9OfsjK89+JPotKGypimida93vUCAUeh121Ypqkw4MnN0vqE+/ap60wBJgbIBkoNq2w261Lyd25yap4tXrUG9bESHNlYqVWaaORqb2ury9HS0+HM9VqpQK9MKuAp0qnHNFfh5Fl6CKphGAKhSFeB+o1MJqM8yAV8C5GJUNnZn8XLbf0FImpkrZ5EjhqTtm4nspqsrOSRkfJIqKCyMO+QFbjhoafxnVvuxAc+c4VgqE02okaFjrvVJ5zKXyeq3PNZEAZ9nGJEjfVIZpIFxFwlLxhtP4E91tbWupTlPLlvP9BHh7nZ+k/38fJJRdTs/1OEMdA8WeoUlEWXO8SeC1srAsQIpDIVRKQqGi3mqDm/RdqVH+pc+Nx/+hzv7+ZXX8KODRbqiObZV9c3aPdqXbTQ6qOILgEspytDUOUmJvAWqUEJiHN9SOo3HW+Fnt2CFQ6j67Y3XhPW7S5iqNU0zYABSw+YtVgsrVJTN8mImvR/qqKD2BYjXikgOpHnEdeJCzRlkBczElFBlzkY5V1DDeJvXkyOGpO8aSrZouQcNboBLVy5Gs1z56O6vgGf/Nb3ATgLUL1txFRF1YOLQsT4PRhAJcl1UlW8Z6LMUaMbYIEcNT+GGtsQqFcNAMpCQRzWkBTanpGIYkWte1OMl4Q4FbAfoZsQhayxosk0mVn2xNJ7kjf/oGFB0JgyYZqmkGPk5KhNX3jdiah5bULq4ywKxw0hHr00cN6Ces8C3CqoCG0DEHPUmPd7OJPBDy79MJ57+H7+WUFDTX4l3c/J7/8Qrn/wKZx72edx9R33oU6Cg7UqErR1ooNJmiYwLBlqtBu0duHeVk1BYBNIk/wn6jDJZDKu+dZG6Jqb585HZWkYjfFS7e8ZT1bxSMvQ4KAr4iCQiZBrA25nTzH5ACXBACpKvDc4WkZBqeRDFcEvfp7I3WYGeN40cWBwxBMu156xIkGeETViqKmgj7m8iT6ZFMUWq2iudf0uYqhVKIh0QgEDC0nRY3mJrWlsxspjT0A4EkFpWRlCdkR6dHQUIyNqNIZKWIkB+lx2bXKYI2k5CMq6mCZMrkzYu6nWUYuFLYiaKjJC4WiUZEGWgQKwx4gNH64oCQkRtTf2deK5fe7xKY8auo9PJqJmSP/l476+a4jGz4giwgtYkG1mWBqGoYSZO/uv9b+YYtF+pVBEzTRNwVCrqKgQnseClatx7Jnn8vcs8kup+VP1jULEkYofh7Z8BkNQAcDG11/Tfo8a7rKBUujZNc2Zx5E4/d1d3AAFgOu/+gX+urapmf9Acp5aqrYO5eR37e3V1/OcbunMjGJvetjKUfModg2o9xX5yKTqqEnvwz7r705n2sc/grxrqEGMhBQTUUuPTeDB7R1oHRgW8NeMLUrOUaMRteVHH4/rH3wKv3rqVcyy6VeZ8dKSiOJ98+uVStJxM6pweIOadUcoHqlgymOimueCp7LGO0fNz8LITpEVZJ2iqAplFzvJaL+o0drX1Ymx0RFMjFuKViQSQam9iTteXv3V2Gc0h2QvwdLLOWp+aowUOsOP40j3mcz6SM8vSGvL/hvq44BYf4sp5/t3bnMpuCqqd89rKj6bMW8BLv7yt7hiSckPurv9JVYDehs6DxP5EXe+IRMaUdu2dQtUMjE+jiE76TwQCPCoH8AiauLFqaHWMHNOwU3FMAzUkihdDymGms/nheh5rQ76yNrSXEMlXtOcKd2C0W7ny+gUfd17Knk711EW+fdjELfN3UP43wN9AiOkcF4uh+ceeQivPfOE4LxyDDXrJlWlVKi81jGAJ/e4qeMf/t2tuOSIJfjOR89DPp+XoFJuiNA58+uxiEBrvSA8VjFux1goVPyYCns+3MgazvIiusFQSKj7JM7nHm0x8bGRqUEfj2+pxtFNTlFm6mFvnuMwn1KSBVn6uh3mVZWhFo+EcMqsFJak4kJELZsdRkdmVDsWeUSNOPPik4ioTUWok0yIqGlgm9m0aPwEg+5cLScvkDn+xM+nwgbJvqnLUWNiAkiTXDqZPREA1px0Gn/NIr8095bm37sLXhuYES/Fwipx7faSudRQWycaakKpDY9IUiE1KBAIYM1Jp/P3L/7lfwAAnRIyY9G8Ofx5uAy1ujqbadmab7lcTjCGdTId9PzP7uvFy239FuujJheSiepRyHvPdNRRYwR7MsLC9b3pZKn7B5B3DTU4i1nAMISIGjXUVF6M/YMjGMvl0TM8LkIfbYNJznugnsL6llmKyI3zPhhQb+HRUFAZ6TIg5VEN6g01Kias3APW/0AwiFSqmvdBJV5QAyZyjpqXMq6TYucaXQjkBPVsWk0Z79T2KdwuhXnt2bKZvy5UPFspBe5tOuqoyc/c3+KlMaTJYQH6aCu/HQpYr1/oYzEGLoWBdPf4pyrOa8wDC/ooGmq0Fy3zF/Koxob167F+/XrIQvPTklVVgtKfzYr5JcNDQzx6HQpHUN3gsJl5Ke2C44FQmP/up1dzkodUKoW45FVnZD2FWBIB9/P3+j1OnV2DhdXlIgOoHbEqaJh5dOXp1h78ZVdXQa8xgz4yAg85h43JA7+9CT+9/DL88FMf5cpGKBRyWB/tWywjVOwUIs2kR2MI3vrD7yCfz2Pzqy9h86svYVBSSFVCH2uhtZTWbyzGUHNyryzpIYx6VbX1CIZCSNhohUQliaj19brGCvstaERtMtDHaCjI0SKA+Bwo8yl1ZMhCx35TU5PynERJGIYh0vPz/DrN4GSHVUWZixHnnqYSU3M7eVUyqFCea8siPOoAOEyb+oiaj27pemu3pYuoMTEBof5jRUWF63E0kRIlbXt2wTRNN+uj5h6CAQNrGiuxtEZfTkFey+YtW8Ffb3x9nau/TFTOHSZRDxITJiuOOZ6/3m/XzJUh4p//6Af560WrRUInNgZpXrhf5kdLpif6pius7iXy2qaPqHk7q6iEbU+DjhzM3fb/DXnXUIMTog8aooLvOy/AED1xbNMvLRMXWxr6ptATJm5KX/9RJsMAyqmh5lGcl5KBmKYpwB4rqlII2545bUStKOijyftH/6v6P50iRtQ6kBmSNgpb2LMoNqK2e4tTj4htkrocNZUUOqeYPEBZ+KSWnnkx/XJH1IgRTOi0mddTlX8pb2zuaxUf7aGGWlcRG5bOAWcCGCWKUDweF2GelVVCPs/zz7tp1AcIpC5ZWSUoiDL0kdYrrKqtQzAY9JXXUkWidExZfe2ZJ/DnX/+SHz/55JNdawZTJsZz4jxUifyR1+YQMAwEDUNJLFOIPESfL+jACwsZe/K6omozn8/j0Ttvcx0/7rjjEInYZAb2sUJoBJWhu/X1V4X3Az1dYt0lHwpNwdzYxOQiarJHncJjq+rqcUxzFVbWWW0nJOijy1Cz/48OTy2iJvctYBhceaNrihdsnxqcOkMNsNYWVsQccBgrZSIsJ5fHeqViJixOit/I5lXGkIpGUBtjBBtSjprGUFMRPBw7oxpnz3fWCpNH1Cz5e0Afoxp6fqcTQJagLWRnGAA0tMzirzv3tSLd18vvuyQaRXlFktyD+F0/+ggzXtl8m71kGQK2nrNnxzYMKPQl0zSF+pgyQqShvBRHNXnna1GK/o69uwGAR7YBYO3Jp6ClpYWvY/UzZgrsxguXWRG2eJF5arKjZqpSGPro/o78u0xHlItF1FQ5uIIUo4wdBPKuoQYSUQsYQk0rIaLm8f1c3hQWTUYNTyEBHa27+WYZKS1VFrn1s+B4nRItd5TM4cwQ8gqqZUBUnPImMEAU3orqar4QTiWi5pCJ+BNVi37rf6lErM3jEVGz/3spTAwuQvOjqOeVG35FLA66e1tRm8CyVJxDyyYjMjOSH0OAdEzZP/rdVD2p12ezi6oKeq5atcrPpcAenJ/+xQkDVl8RxT/1OWqmkg2UypwljlNl2zY3LIsmnCcqKly04AKUhnjBeTTKx33LUF4AeO6h+4VzLrroIldTzFCbkBQ2P+IHJquKqLFnPTKRwyM7O5EeVed2yUJ/IbexJx5g0Bc2TlU/b/ueXQK7GpOLLrpIuAcAEk29aBC99dpLeOC2m13H/+sbVwjv+7s6hfxBbUSNvPYoAQVALDNSjKE2ODaBPQNZsKdKlcPq+gbUxUq4ki5HyPMaJWiqddSYOHBz4Ox59VhQFVOOo4nxcdfvTmttNTaKMF8qBsSIGo0GKnvDoI9kXU/4KC2iui7970cWVpfj+JZqoW5qoXIRgJ6an4r8U8pbt45p1o+wpvxAH7MZkSVZXltKomWorreIkPK5HF587GH+WU3TDBiG4exnsrHpQx9ZUVeBxdXlqLfz+0tKo0IJmI2b3xL6C1i5geNjo/x8FbtzQ3mpZ1SyjhigHXstIigaFZ43fwFvi8k3fnEbjlx7Er75zW9i6YpDAaBo5sfpgD4yyZuFyURUj8CPnggUcB7KRrndZiFDjRmq/0fstHcNNUBU1uPJSoRCFiRkYGCAs0V5DfhcXiITYTVCyOa/hXhfZ8xbiGDITZLhj+FPfY5hGAgEAkJOQ5ZEkXSSN02B8bGiuoZPMC3ro68cNaZAiRPG65slwQD38gJTi7JRxrR0bzcy5PcRImrEu6uT6jJrM6PQR+FatkJWlBNHc1I8EsKC6nJf3qdC3njHQBMNNl/f0RwHxHyB7vYD+NMvrsdf/3gHP7bksCNx8Ve+hQ984APe13JF7QqLwIClIa9QiReZiBf0EbBgykyooZY3TUzk8wKldzxRgdKoo8TK0EeqXLF78WNIyxFiAOjY70QxL/rYJ3DuuedCfoqlhSwBIq7fvMAPIhtqQxL0sTU9jOx4DkPjFixxsL8Pt179bfzp9l8r26M/kS7yIX+uy4UFRArskmgUZ37sUvzHddfj0ksvde7Bvkm5nhiTrgP78L1PfBC/+dF3cdu/fY8fHx3Ool2C6PV0tkssfFOPqJWRSJ/K66+Tnf1ZvNrulIageYxVtZZCzO5diKipoI+wopM0R62UEHVMVgzDQDBg8H2XyVB/Hza/+iI+ecxyXH7mWgHx0dfpL6IGiHXUxkZYRE0UU/pP9/HEZKCPPo5XlYaxUkGeRc+lkFddvjldS3RwNNnQpfvciTNTWFE3+Tw81hRFDg0NDSlyVE1kiTMsFospn9OshQ7j4U3/+i/89aJD19gXtP7JK5qqhM2JM6txaJ3zDEuCASxOxYX5RtfUh97cxuHUrPu0tmxCRUmvcWrSfiUqq/jzGc4MYbC/VyjqXs9Zep02WuYvxM/uuhs//OEPleuTf4p+f7K9L4N7trRp4ebj+byPHDX3M/AbQfM6S/6MR9Ry3iEA507+b5hq7xpqEHPUAoEAauvc8Eev2mE50xSMophNDZ/QbNQNM2crj/uKqBU4LhR6TqsNNXoneVOEYyVTNXwxmxrro9O+1UG1Nwz8YwNnzqvDnKSz6E9lisXJYpLu60Umrc4d4Ua6h/G5srYCq+oqBOgjFcdQ82+q6c4oJrm7eBYl/23L3aiNlaA0FLA2n6pqhCOWZzI7mMbvb/gJPy8cKcG3b7kD5176eWVyu+c1ffSvnPx2fb0i+6Fpmvjjz6/Dz75xhVAUF9BDH/MwMZIVYTlyNxpmzuGvt2932D7/trcXf97WwetmAUCsvNwNfSTXphEXdi9+asNQgpJe2yNL4aaXfvFyy+ssNSHnUXhuntJHheiUDcM7ojYk1a676bv/gof/36/xb1//Mu69915XeyIk2/PSrtxXejqbF91tTi3Jo047C5/85vdx+eVfUo5L0VBzFOMbv3Ulz2964p4/8OO7Nm/k9QKZ9LQdEJglk5W6HDXnucoFySNSsqyfiJpXPh8b9xTClUxZhDysF2KOmptMxDSB8VHRSAtMof4lp4y331vjSCQouu+WnyOTHsD+ndvxyWOW48+//iVyExMCkY5nRM0Q66hxI7NQjhrZx+urJ0FDzoyJgIEqSglOptIJM1OYUylGZ+RG4mSd09WV86rxxcQZoW7na2VpeFqgj8FQiMNMLYNejF5azLr6uqNMFhy6Wnl82eFHAXA7Hvn1yfvjZ1ThqKZKVJZGMDvpjvrSPZPqZ4N9vRiX5jOF4CarvcqUqI+HAgEYhojSSvf1CvncdfX1yjZkh2mxhhobz+2ZUdyzpU3rqASANzvTwndkGZuQSZL8FbyeDuNC3hNTZRGUBANYWO3NC1AeDqE0GMAhHnmLB5O8a6iBRlWs/xSL3NnZKZzDZGign284E3kTmTQlE7E213iRhloxkELXcft/rKIwoQjd2POmiQFS7LqiOsUXPp3h6CeJli2meSmi9naJxZRkbQj5XE5Q2gRIkt0/lYHEce0BA1XRMFINjUpFlxtqkvLoR2RvYDF10/RGr/Qf4n/vNtXHo6Eg3ju3DotTFryWwkCpHH7KGQLbmve1RAPFj85AN6z+PlGBee2ZJ3DXf16LJ+/9b9zwtS+4xrlKTFOkv47H467nVEM89/v2OYngPcMWwURWKpLrgj6StgaFiJq14fn5fehm39/VgfGxUQ4DMwwDDc0zlG2USBE1r2vIhpkvKKoHmUhmfEL47IVHH+Tvr776aldbYkRN/5nYR8P+nPpQrWNdB5w5z8osyIope0vze5n3eP/O7Vj/wrPK69J8YyZ7tmzGLlKrbObMWXZ/9CIzo5XYhhpfz33kqHmhgBhEVHAkxsVIUQWto9bbq4xeTpXxUWzPEjr/S6JR7vyZGB/DK0/+RfjObT/5Pp645w++yESY0HWI5ajJpEL8nT1+aERt5UyxJqEfYb9bOGDghJkpHO6jZqWrDQOICUXI1b+7H+gjMxbZMjAV8hBZaFO0BqiKNZUe00XUVh1/kmtPS6ZqsObkM4TruXLUyIFUWYlQo1UWXQmfdG+PE1GzR8UAMdRoCQsmcmqBLEyfo/llbbt3Yd3fnuTvV6xcpWxDNlAma6gx8UMmpTslk8kgZ6fRRKNRZTRd9QymElFbkipHwFAUNw8GcOa8uoKQ3WDAwHvn1QnkRQezvGuowVHimLJOlY++PjeT2T03/RcuOXIprrr4/cgMphURtbirHSq0ZgyVKVHl2l+l1xyQogoqyZumkL+QrK4hxTHFc0MBAytqE0pPlSy8YLOsGBX8Jjl3it4+6jFjjEuAuKk5ETX390+cmcLqekepCUdKBLIZJq76NT66zU6pkhYcFYxjqlLMYyy0+TBpmDXHdSxSUorLrrqmiGvZ/yWD0kuoQt0veZpfeeIx/vrN5/+GA+Q39yITkeuoyRJPVnHmx3Q6jaxElz1ElLt4PC5E1KxznYtTRju6+QLevxOF8vZ1daLrwH5unFTXN6CkxF1bEXAbAl6lNWSYpOrUE1qqcYpdBNuQIGsymcjwuBNRa93q5IAAwP79lhGVy5vcmKA/0f7BEaFumYxoyE7ksKMv4xlRo+xqOseCymPNFOCHfner63ymcO7c6Gb/bN32Fja/+hJ/f9qJa7GiNoHTZuvZT+U1n7FXsgKtlI1SB33UMZoCDjumqs4nu3JciiyofOtTZXxUCXVQGIahdWwyefr+P3LPfjgc9iQrYsYfE9Z/r3Ugn88L+WCqumSFhI1lBtGabIpQhERSdRE1GvnVQR9X1ydx8swUQnZ/piOC5ojTFq1DKJOfmCaENTMWiykX+zlLDsFl3/2RsG9ffu3PuBHI9IFIMIBwwMDy2gSObKxEiQ/HMRPBUCPXGejr4XlPbP2iTgG6/jLRRfiYxG1WVUpU9OtrruJOj+Z5C7Bk2VLld2VnK0WS+II+uphbfXxFc5xCwZMah4DqCfh2Cij0zUXVcZy7oOH/HM3+ZOVdQw3gixiDnUyUOKF5laH26F23wTRNbHrlf3negrgRWotsKBwWJimTqUXUdOdYxyk8T5VID7ihj/S82qYZTg0vvjA6E2luZczXYt9YXoKFVTEcYmPxJzPdpjpF6ca/d/tW/prW36H5ibKUR0KYWWFvEnZvVAofi6iV2QQgET+wIPtysXAQ5y2o5/fqZayvrE1wJVklRzVVYllNHKM2frs0xArMFv8k9fXuLGlSOBt+9thzWueEV1uyweYlUaK4DkkMY1vfEFn4aDkMVUQtb5rIK8hEVMW+dSRDgEg9XR6PCzlqFPo4MT6Oh4nyz3PU7Mt5zSu53ASFPdY2tWifoTyeZGgdFRc9v2LcVEUjSNj1HQ2ICoRMtqHLzQOAjo4OjI6O4uEdHfjztnb0j4yjm1Dgr7PrljEaZvnn2zMwjDc609ywoZ+z2+imEbUGnaFmnay6j3XPPOE6v6+rw6Ljf+0l12dU5s2bh/r6esytjCEWcecjM5HXfIZWqLHzYmn+T0ZT+Ngzf9q0np9QPoYZAfalxRw1N5mIaYoRkXh8anAijjyQlNFCawc1ghsbGz3hlwZEkgtmgMnrAM1RG844+VXl5eU8V70Y4YZaUJ5L/sWAOlItXJMobQAAIABJREFUC1WgdRG1YMBARWnYgZtOo+JLmxJLEYmEIiZMDFJ4eCym3ZNO/+DH8JsXNuDutw7g7rcOYPlRxznXs/8HDANnz6/HvMoYGuPFRUxE6KMz7gf7el21uaheVEfqWModku9kQVUMZ86tQ7mtD1AnEF23P/CZy12ldKSmudA2/NDzy0uCF/TR+Y76HD8QW9XP6dtOs/9PrxPh/5a8a6gBWFRdjuU1CbRUWB44GqrmhhoZ6LS+x3MP349cLidAHylcReUl1BpqRURiXMftD2qbHGpXVW0rQGZ9NNG13/E81za3CArb+QsbsLi6+I3ZMAwsrUk4UJ5JzMGpTlvqMdunM9Q47LXA1eyPVYQizFA7pCaBIxqTSJUVZtKitbMMw3CY0DyM9TmVMW58qaShvBQLqsoxu6IMcyvLMCfJPJEFu+NbWL8bZ89zfUYp5H02Zv3jHdR3lBkcZYKhJuZgdu4X69O079nNX7sUNNPEfVvb0ZUdQzYjRdQU3aCG0oEDB4TPMkQJKU/EtdBHajgC4Cxn7JnqmD4NANHycq4MjY+NChEdSucsdz0YMHDyzBTOmGNFdVTjfGZFFO+Z6/YY+/GIxhJJ/vtl0gPI/X/svXecJEd99/+pyWEn7M7mfHu3l3RROgWUM5KQhCSMAYMQQgIRbGwMtgEHBEYYbANOPwcwfqwX2PjBPDZgnH6I+BAMSEISkg6ddKeLuru9293bnLefP6aru6q6e6Znpme2Z/b7fr32tTM9Haqrq6vqW9+0vGw74M9MWCebJ06cMFaxv3nkLP7nJes+B8dn8dLUvONqL0/sLD5fbsI5Kpg7t9lNtGC+G8l01tCazkxOYPTUS7YLXeMjp/HYtx/B6WNHAOS1yK/7td+y7Ld7927LNjvUAfiy3hZc1ttivOeiSZldRD2g8CRsWXe7Ec1zs7qmiD/eaCxuXGd5aQlTim8zF2I4lQpqTtgJauFIFKGwtT8tZvYIJi/q8IVUiwmYZmpRbCP5lsiivrAQrsCHjzE5yp+ToHZOCLJSLGdlezKvcc/GShc+nRC7h0J536YXVzA6aba/fNTHMq7nwTgm9n/i3GxiVFgU0reJGvmOXuu477Q4Fg0G8ibnXBuWsZq/RuNxvOzlt5rmv8o51ABgqRKjPqq4EdT2n53Gqel5y3ZJc+ug9a4kmAiHhBFnqG6Qn8xsakkaA7yoBeMvBW/my0tyqOn52Vkc+fkzkuljoskU1MTIQkB+MLJ7cQF3DbuwPg1oFzqU08fcaNQ0nBU6pPYe+wlN4au7wf2xRsLOCjtmceAXJxqiDyKfVLqNoGg34evSIzcFAww9KZf+Wfx/EQ2I5TgXddISj2B3e8a6WldCfTruqv+w7+rrpc12CdyLX0MuX6HDua9VXDBNnJ6akpLxziqC27OP/o/xWTV5EidsxXzUAPk95ho13k7nZkTTxzRC4bCRo2d5eRkLC3lN0ZQSpXLfNfn8bMZg7KB54W1CFBZ//tOfGJ87+vqFust/GMjEcc1AKwIsv6KeCDtP0FpiEVd+pyoMQDAYtOYgs5kTzNpErjvm0D+JPHN2ylaA49jlC2IMaI2FcFaIdChGKhUxNNnBoKR1+x8hPLhU5oMHcOjJR43v19z1Gtzw6tdLgSsAYMcOa55M2+srjT4eDqIjGTWFKEU7a0chHzXezsX8YLkW7hspTFqFYB5nBQGAIyYBT5eVX8zEDJ3NJ6lML4NVULv05tvw5t/+sGV7oUAi+XMDiSZRo5bvK3g+Qc65hWXsPzsFQI7cXK6gtrzCTR91C4xEBAGWz5VWCm40aqLfdX9/v+0+xu/pOG7d1GFow71G1l7K7XR+ZQULc0p4/qqUojhNQh8r9gmnjx81Q77r/86IlkYOCz12xBVLFrv53qadexEKh4V6cNDAlhn1UZXLVorLaXhhfAY/OGFta1JuSIcASXbwadzmliQu63U2azbHf9KoOUGCmghfAclaNWpGnhWbkPeHnv2ZrQ8AYJ3Q2uVPG3Lh82UU0aEt882itu7AU49bIpPlMd/a2alJIxllLJGQEtiq16yNmAaEFYf6UkhFzAlnJme/yminUXOb86Ozf0D6ns1mK1phLllQK+caZZk+Fr5+c3sH3vunnzG2v+zlt5Z9DTfti2tm8yvs+cnG8tKSkedGjfIIAI99+xEjIbe6oihObov5qAGykGQKavkyScFEmvKpFcSJy5Q+SRYnXBffcLMR7MDwQ3AS1AJcUDOFxed+app5tvf2Qw3IEg4E0BxzNylzfNYutcxy0usxPDkyiZ+NTErCkxh1lSMGZimGGJhExJhbSYFjgJnRM1jWHeDTLTlJ4LG7B0Be5HryB9+13f25x3+CqdOmALh59/nI5Frxunf9prTf5Zdf7ngvIrzbycUjuLjbOglSQ5/bUSjq44re/4tttJWPb8K9i+aPo2dlQU3TNCmyacWCmhJ0yViosBl70s05KScmp6hGDfm+gvturiwvY3Fh3tCacKYWl7F/dBormjy2lyuo8ciBfAyLhYK4Y3OXxRe5EAyyL65dUDBN03Ds+eeM78UENcYYIsFicVxLw8n0UdWoMTApBUoy6c59wnI9D0rfl4phqx4xUIwVcPLwi5hfzC/C84UEPnYAQJvNArZT2hvT5SCPnaC24+JL9XPA9hzqdvHdKCeYiBuNmhNTkomtg0bN5tHw59UcC6Mjae9DLeJloJtGgwQ1AePFEjrJs7o9MG/ms4pfDAAcfPopqTMVo2pdc+drpH0v0iMYiezpyOCuLW4jTNm3Zv6ibNi2w3ipR0+fwte//nXLvuI7OyUl4G2xnZx50UGWcgbu46XajLvhqv5WIxeb3QAPuPdRE+G/9g9vlbYXGyAdz6efUB067Tqrm4bazAAO5TyLsg4pftDLXv4KfPQLX8U7HvoEfuHtv1Z0f6dimf+drxkxTGhlIWhOn0CKjt8cTdOw/9EfASisUVMFNbtSiG2Jmz6GDI2aoJHTJ7F2QSBEQc1uUhrRwwl3NcmDGm8TzUIZRP+Ujt4+m7p0T7lvN39eag6sUzMLeH58BrNCMJGZCaugxlOfuGHRYUmYCymqlcCokBg51+Fskiu2uY5ecxHmmR//wPi894prjM8HnnwcxwWTWm52evub34YH//6fcfENN+NXfu8juO666wrfEL8+f7axsKSN59uLCWr/8txJfO+488SNV5uobe5rzwtl4nMXBbWzZ6yLHt5q1HSUhmfnJpBuaZF8iThFNWp8EUFMVzM1ZUmUu7gwj/EzI1he9UajxhdVCvmCFodJi712cw7R1zUSiTgGE7Ge2UvMsxVK0L2iaRaNWjmB0yIeRNpijKFTFxqSqbSxALe8tIjDh/OBnngLEU3+Mi7rFzCDMhnvdpvVrHzXy/ILOU7WJOqdlp5HzXlhslRmJNNHB2swm22WFE0OGG4fpFFzhAQ1Ad5MkmmzMb7wUn4CyCcEqnkVAPzokf80wv8GAgHEhE4rk2vFfb/9+wDyqzJX3/lq47e2RARbWkoziXBqynzCEQyFcPENtxjbH3rooYLnE1/CpMMA7MXrwwcwNys7uUReE1DOixsJBpDRzTuabQS19s5OyZ5fTc3gBC9K36Yt0vbeXvcmEYXOa363FiQRDpkBHGojp7lmy959uO5Vr5N8adyimjwUNH0UJj6S74k+gRw/M2J73Kfe8w6MnnrJqlETRo85xUfNNgWDMNgeP/GSVN45KeG1LqgJE0QebGRKyqFmCjfi9YZbmoz2y7EzfRRp7+0v6SG3KT6UZQtq+oFi6OpzZ61mc4C8IMQ5fdoqXJcKF7jFycCqJmuQeH/eabOqK95776bNxmdRA3DB1dcjqAeWOHX0MH7+zNPGbx195kLNzksuw2/++Wfx2re83bUZD1+osayo61vE98rJ9HFmacV2O2d5acmINBcMBrGr1zpxzDSLgpqiUUN1fNTUSaqtRq0lZyvAFdeo5U+azpjv4dz0lGT6OHLiON544Tbcf8Ue/Ovn/s4TH7XzOzLY05FGNlq+Lxhj+WTdpuXAopHLj/MfnzeTxjc3N7s3G/NwMBBPJWnUlHa6smojqJWhPnGyOCgVsa56N5kWTk8/qafc0PIaWK4ZVBcHOU63oEbP3XvltZZ9Nu7YYymLXRmNOWlGdscppEUHrKaPlWjUxITrbhcEALPsxcuqm0KTnOYICWoCdlngz43nJxi8qc3YrG5NCDb96XTa8vLdcvd9+Otv/hh/8bVvSauDGzIJnNdW2uqks5mS+fmO+99hfH78cav5o2SSJGoC0/arJaUIWU5w7YMbLdnOtjSu6GsxQlSXi93E9jVvvFdJeOvOR413O/GmJmzaucfY6jZogP3ZTK4ZyLlKzlhOX1bWMU7trIxzFbuIGy2Q6L8l+Z7oE/ITL5qJqHnyVc7fPPg+PD8+o/ui5JE0ajNKwmsbpGAiJ09iVIhQKJqFpfTjxRXxSa5RE3zU0oJPULE6NUwf260TbJ4ywqJRK3DSy3tbcOsm837K9Q3gR4l1I6b6ELHzszlVhqD22LcfwVuvvgCf/PW3QdOE0P7C89SgSc80nkxia64Jl9r4SYi3LkaYE+ka2ICeIXNCt7SYf/ZO6TpKqU7V/NfYrv93Y/pYjIkxc3xqaWkxoiXKGjWzbkYVM+J81EfvTB8364uTfOJtp5nltHX12OawKiaoGdYxokZtesqIgnngycfx9usuMkyn//0Ln8fMdOUatWgoiKFssiJ/G4b8Oylq5WcmJ6FpGsZHTmNueloKdPO2t72thHN714OLZ5KsHBTTxxVNw/ysmd4hmUw65mgthFcaF3HSO7xzr/H51++/B0tLS9AgL8gn0xnbCKNq8KehbALnd2aMKOJGkKhUGm/+gOlnecFV1yMciej7QPoPh+/RWNzwg11aWnJctOF4afo440JQszMDNXJcFjm/oVFbM89F/0OCmoDRuQudNA/VbJo+WjVqItlsFjcPtWN3uzyYtXX3IpctPd/WNQM56VxumnJn/6ARNWpmZsbIWaRpGp4fmzbCtwOyRq2jtQUDGWswDD5RdJM00YlQCecIMIa2RHGbZid4HdmZPp63SxasDNPHElb43vMnn8Ytd9+HNz7wDrz3ve+tqJR88GmORTDcYi8kVEopkwZeH45HVGFF1mmyKtIUCeKGwTYkw0FFo5afQD77EzNwyLWvks2NH/v2IwCA/aPmZFO0pJstMZjIkeMn8J1jo5hYyPtASRo13ey5FNPHYoM0byN2UTUzuRwCgYBQl8UfEGNMWg2u9JGK75mdCSoAnLbxRyvF9BHIa7k++rY3YvTUSXz/P76KA088ZsnBpmla3kdNeCbxppQr/4e+TZul58Zp7erB4Nbtlu3tPb22E7hS6tMI+KOmRtC/utGoiTz27Ufw7tuvwz988g8M4XV8xNQ288BH4jUAxfTRRis666HpY08qjru2dAnmzNYyAPlUMedddCkSqbSlnouZPnKaUrL2nQ99n/+EnO/xhWee8kSj5iUJyWxzEp//xEO4/8q9eMO+zVhdyWtRW1tb8eCDD7o+p5dTYVFwqqZGbTATN9wZvEBs95v1hNOc//zP/4QGWYskPgeRkNImk+EgBjPm+ype58bX3o0rb7sLG8/bhdf+6m8Y2wPqIKh8FTeLkUDdhOgXqWTu5iYNBC+m+FhLNX0kjZozJKjZICU/1V9YPuiJ0bMuu+V2KQQ8kO844+GgkVNL5KKuZuxoNQcON+2yORZBuwuhRVwpY4yhZ8h0lN2/fz8AYGJhGT87M4WfCFHUxA5poKMNF3RatWp89asSO+dwBX5n5ZLr6jbMRzi9SjAQI5hICdEW23t6cd9v/z5++6GPl2QKYHveUvcvywm7FLgZgoNJRhVWZMVUBc77MqSiIQSUlWYecfHg008Z215x9/2W4+cUbcSqpFErLZjIWUUYkX3U8mVLFjF9TDWLpo+2l0QuHkFfOm4M/h29Vn/IK297lX4OZaAv8pyk38t8pPywrFA3j37L6hO7sryM0zah7ks1fXzie9+Wvv/u3XeZAQDkgG2SBijR1ORqtZYxZjGXDoZC6OgbwIat1sS0ds9DP1PRaxXbkz9PMSefG43a333093D0wH78y6f/HN/61y8CAM6dtRfUxKtnWsz8jGcVM2INmvT+VCqoqfBSnHfRywyfv0QqjXd+9FP5yHiMWaxCNm605nGUzsmFv7Tso8YnrEcP7Lccc0bIu7eWghqvD7GfGzlxHF97+DOWfd/xK79So1JZESflxXzUxAAjpQpqwy1NGMqW5iJSCFHA3H3ZVdJvjz/+OADNkm7JTWmtfbBJOBLFr/7RX+AP/89/YWj7Tste1sU6q66tFD81i0bNLqacS0RfPcc8ajpiHfB7cGumST5qzhQV1BhjMcbYjxljTzLGnmGMfUjfvoEx9iPG2POMsf/NGHMf1sinGA7IggngtJL/R1pZbM5h58vk6F7c/8muyUVDAWzOiRNBdw1TbL/ONs3y966BIePzkSNHAIiaMXM/0fTR6SUMeRCOpxTTx0rhdRSNxbHzEvn59CrBP4xQ0UVu0e7nyvqVGtplM+lfKYdUFUvUx0IXFe4hoWjUFuZmjfc0FA6jc2ADLrzu5dLhak6sFb0drqysYF5Y7U0kErblELXsM1OTZhALTZPD8+uCmmj6eOCl/MRX1qgVCFfMtSnBAC7syhrJczfusJrZcjNndVgv2p490Kjx90zUqB19/uc4cegFab/RUyexsmL1oxoZsfcrdOKFnz0hfV9ZXsY3v/ovAIBVcF81vqBmPpNYsslxErC4Is9gVFPG7g0bEY5EMLjNRlDrsxfUyjF9VGdWfGAW/Z2LCWpT42M4dfSw8f0H//VvAGT/zc5O+8AqmZwoqFlNH2clrbG3edR4FURjcfzZf3wXf/il/8Lf/t+fGpHxAOBN73vQ+Py2t71NMV93Pqdq+riqaViYn7M1xX3hqZ8an3M5q7llzdAbhajJ+d6/f9mSGiiZzuDdv/6eck7tCeJcpJBGbXl1VepjSw0m4vVYJF46Eo3hnQ990vj+xBNPQNPkeVGT4hJyQWfGNtx8OeXk8yKLoGYzZqdKEdRUH7WiBojOuEl4bQhbwjaeTzZdxF+Tz8Eo6qMzbjRqCwCu1TRtN4A9AG5ijF0C4OMAPqVp2jCAcQD3Va+YtcFw4E4mDefxxfl5LCwsGA1RNI9IpNKWBMitra38ZDbnL/zduVyl75MRBpoz+sBrt7Ihmj5ms/Y+al4Kaiu1ENSEzze+9m7jc9/wFqSVULlmqOhyNFXl14tpYljeObqb3JuG8iu4eo5FHo+b8XVzSxLbW91M5uRByoWcBkAOJjI3PYUxQcOVbWtHIBDAG9/7O9Lxn//kRzEmRALkE/rFOdl3ws6UDciviIYj+TpfXVkxggctLsxjRQ8DH4lEENP948RciuPn8ubTzqaPDj0Dk38PhcO49q7X6J8j+Otv/tjMYeamEq1XcLh+aagpR1TN1+njR43Pwzt2GZ/PjIw4pA+x5+AzT1q2feXv/hqA+R7z7kVMQp5IphzbLTcD5xHl1MAV/cP54EF2po8dfQOWbUB5EzY1STgvbygcMcaipaUlLC4uqocaHNr/tPR99GQ+6M3//dq/GtvcmD6K4fmnF5exqmmSf6XnQoxQkHAkgo07dhmpKzg3v/5e3HrPW3Hznb+AD33oQ65PLZo+zk3nNWqjp07a7nvoWTOJfLEE0tWE14YY3EssG2fvFdcgHneXt9M8t3ezYVmj5uyjtrCwYJhqBoNBRCIRVxo1vkcl/lX255WvvWG7mfPwsaeexv7RaUk4UU0fBzIJKdw873NU4dPNWOk0JtslTBfTRhWP/OgcPKtUJsdMM0un94LfxxZBEdGXjuOmoXa0FrEIUzVqYZLYLBQV1LQ8fNQL638agGsBfEnf/jCAO6pSwhpirkYzKYnr+Pi4GUxkUhTUUpYEyKZGrbik5npRqYx2Kw68hqBms9+0i9WSciI0qXB77mWPO91iXHTdTfjYF/8d937gw/idT3/eUuf9uk9eU8TdCm3xje4wfVNKP/bWTR24qLuwCYJISYIaP6aCe9vRljZy1bi5RinmnIzJwURmp6ckASyn+3F1b9iIl7/uHmP749/5Bv7oXW8xvnMTKLtodk6TmYQy6QPk1eO0YCIj7svNpcXJbiHTR1XmEh/bm97/Idz3Ox/Bhx7+otT3mPvar9CqSCYqZT5rflhn/6AkrB185ilpv0khmEVXXz+a9AnoysqKxWKhEMdfeN6ybfTUS9A0zViEMjRqoo9agbxNC8t5QS2qa2hGBKESAG55Q379Md2cQ65TTqHSO2TNiQmUqrl2sJDgixiMSWa0Rl5PG15UJvMjJ45i9PRJKdXAwIApXIpXtjN9nFtewf//4hmcW1jG1HjxyVq5uKmvUDiMe9//ID7+159Fu01QHes5dcE7rWrU4CioiayloMYRLQeOPf9z6bdgKIRXv+PdpZvOe1AujuSjJghq84rpo+hbmUzmA624CSZiZwHkBeowKPajZ0+fhKZZTR8LwfsedZ7kRih2mgcYIf6FbRWZPlZQh5Mu3v1ggOGuLV0WP3s7FyAn+L3aCanrHVc1whgLMsaeADAC4OsADgI4p2kaz0J6HIBtGCbG2FsZY48yxh49Y5OfxU/IjpvyS2EEExGSYiZTGYugxjVqdq9ouatZbo5TX3QxuqSpUbMe52q1hFX+4tRylUS90vCuvbj1jfejtcvaRDdkErhzc6eRpNL5pNbyV3JHJSpAJCLBQEn23HxS7sbcpJimz9OnaGgz9f825eMd/fyyqXmRNWrTUqTBZiHgBteGcA48+ZiRZJkPXPM2ya6d7lHUks3o/YBqEsabeULJ37SyvGys0uYXgsz+xel6doN4MpXGLW94M7aef5G0r6F1q6Gdv3ipd3zkE8bng0/Lmi9Rk5hpbkFzq9nPOIXzV5mfnbWNKDk9cQ4To2eFYCL5/6LpY6FgIlyjxidG1/3C64zfLrjqemw9/0Lj+6Dip9Y9tMn+pB48A/EUova1UBABVesyPzuLb/3L/za+B0MhvPrVr1YPy19D0CSO6dcQ3zk340S5VKXF6idVTR8B4IyNv6TKmmrU9LK3Cz6QojVM76bN+J3P/AN6Nw6X3tQ8rGxxDBJ91MQ+EQDmlGTX+WPVc1nPn9XTlHiQPk1CHWeS6YwRKXh+dhaz01OK6WMGuQIJy/lbot5DJcU2Qvw79ANOgtrC8goeefGM9O4C5QcTWZifM1KVhMNhV/6pezrSuLrfvdadl4yXMez1A28AXM3ANU1b0TRtD4BeABcB2Ga3m8Oxn9Y0bZ+mafv8sErlFtEuWcxbISafTKRSFrMfw/TRBgcDp6KUkzwz41KjJoZudlqp9NL0sSYUuJTlGTDmLlKe3TZPNGrVrxd+BS80o17iFO1pKGsGUNiqr9A166kaGBgSSVmjJkYaFP2l+jdbu6nvfe/7AMxBwU5Qc2o/dklo1UTAXGCS/egmJc11JtuMVwwL2hmHAZ4vbrgKW8xN5XgqjeJHmIcqp9/VnsZwsxvnffPAwa3bDbPRE4dekIJPiIJaWhHUJkbdLd6dOnbY+Nw1MCT565049IIheBuWD9NieH5nH7W+dF6jntAXaq689S5cfMPN2HP51XjnH3xK2nfP5Vcbn5PJJFq77XMolvOWqfMoadHQraD2zNOWbV/40z80Pr/1/Q9KZotiOWOJhGFiOT8/j3966kWMzi3qZdNwrpqCWgkV5nZfvltKCSYCAEeEQCJqMDCOG61dtdl96ZW229/5kU8YqSRKXfz1cggQzyXW46RgOTBy/Bj+6c/+yPjOBTV13LN7P/fqvmDpaGVpelTU2RRjDC0d5gLf+MhpySVkZ38X9nY4B5fhWnzLQmgJda2+/zFdw1+qRu341DwmF5ct28s1HxWtQFpbW13NV4aySbQUEGxV+Nya3zPvkwmTkiQATdPOAfg2gEsAZBlj3EuwF8BL3hat9siDo/lSjI6O2mrUEk1pdPT248rbX2Vsu+iiiyznsjt//ru7N7kcIUd0Di/koybmgHManLzo3GshkBjXqtE5K7H353Vai1rhnXQp2hanXb0trx5QRTjrXVu6sEcYFHOJCO7a0mXk1GNM0ajNTGNCMM3ICELAhq3nWfwLvvcDXVDTZ/biam9xjZrV9FHKoZYyfaFUjdrUOdnHRzQJUQUxLkRyc2E37x/fpRxfULUdb2pOYmd78ZVT8ahoPIFePRm8pmk48NTjxm+yRq0Zza1mP3PurDtB7eThF43PnQOyqeXxQ88bbZz3cdOCL3G8qcmxPW/LNeGVw51GvcWbmvCbf/5Z/O7f/qMlf9eNr7kbN772jWjJteKjH/2oEdCikv7R+T0zfxBX0u1C5wP5+x49VXgIftl1NzpeXDX3n5mcxMHx/CLG7PSUEcgimUwiUUZy+8JUrxeUfNT0oD8v7n/G2CYK35xgMFg0ul014bWxaeceQ3gWESOTltr2Ih6alYmXFucbfE6xsrKChx54gxF9FDAFtULn4gQZk3zBvMJOKBRTn4yePilF9+5szRVc5DR81Cymj+5Re+toyPqcRCsMpwWbhRX7JbpyTR+rqUnn8KIlwkG8YlOHy0XC9YWbqI9tjLGs/jkO4HoA+wF8C8Av6LvdA+Ar1SpkrXAeHEeN1iTZLuuDwC9/9FP4wJ/8Fb7zne8YCZDdvKTVnKSLpo+n9ehqdu+q+CI6CWpeCVkXd2dxw4bqa1ULh3n38joVHFuBj1qpLDvY0BfCcU8PC8wHj0KnbLKxcZe1VVOOiaTjTU347b/5nBQO+Qff/4F+7QIaNZ0AA/pSZvJsO40az7MI5JOB8ntJKvueFUJ/t3fI71lcuUceGZVr1ErR+PJnvFxCkI5yn6harM27zeSx//b3nzY+W0wfBa2O2P8U4tRRU1DrGtgg+YcdP/hVVbDIAAAgAElEQVS8RaM2LVo+NKUctZKMMQQD7rTqoXAYDzz4MTx56Aje9a53GdtVnwo3r8jejgwu7TXHGLVvFl9VN6aPC3NzWFyYd7xe76bN6OoflMup7NMkCWqmRqHak7WSNGouWyvfqyll1agde+E5Y5sanh0Acm1tjkGFagG/x2AoZDHXT2WbJaGi1Hc3YiMAlIv4ziRSaSMVzvzsDBbmZvHk97+D4wdlv1InQc32/N4U03pemxM3K7kg3UQ6VLEGE6lkIdfa94uRh8+dO2c5BjB9bjkry8sYPX2ybI3ahKC5q5qgJhQtGgzUdFG/XnDz1nYB+BZj7CkAPwHwdU3TvgbgtwD8OmPsBQA5AJ+tXjFrg9g8pMFxbNSIyiWZPupmFcFQCDfc8Qu48krRVMHa2GrZ/KQEpmfO6A738j5Li4vGRDMQCFQ9JHFPKo5UpHCoVk+oQkW70ZCWAp+IuTJrqxCuXVETdNpRLOG1l6UtdK1sLIyeVMw2N01cEKjmpqeliaSaNHfr+Rfiww9/0TjPU08+genpacNBfd4umAh/NoxhX1cWN+qLC6KAyH3URCEkl8sJpo+ib8wkjr1wwPi+ZctWqYwJxT9yyXhezLjnYvD741rTUtJgeDUu8sAbAPDT737TSHIrCWrZZklzo/qzOHHyiCCo9Q+iR/APO3HoBaN/djZ9dH8fxWCKz65q8eDGf3RDNoHOZKzAe2a/aOgkqIka20gsZvl93zU3OAat4YjPRVyAOH3siPHZbaLpUijp0bg1fdT3U4OJiP1FKBzB7kuvtAhlg0OFc7RVHeEeWzvl+r7jLe9EMBTCjrYUzmtNlTyprZYPK2MM6RZRqzaKJ7//Xct+oqCWLRK2vVpDo91pRY3g5PiYJKg5RcNWUd/7kjRqese1uz2Nu7Z02e6jBrizQ9SoLczP4dduvRoPXL0PH/+9DxTNZ2bHySOHjM89PbZhKCqGEl4Xx03Ux6c0TduradouTdN2aJr2YX37IU3TLtI0bZOmaa/WNG2h+sWtLqLGQdKoOZg+JoXJmOUltZ3YF9/HiesGW3FRV/EOg/thxhIJY8BeXFzE1NSUJQS0GM2ntbW16CpiS8xbW/FqUahay49+5G0vYkZ18/S0tvBJe0m5axz29VRQ05yTa1870IqLbSJb5qM+yiaIk1I0RavPSTqTRZ9ulreysoIf//jHxgrjnK1GLV+eADM1LoDVnBGAxaSR34mqfTsqRG3btl0O9a5qOrk2LBTkpo/uNWpcGC/FebxsjZryfWDLNskk8X2vuQ2A7OeQbs5JUQxVQW12egqnjh2xTCpOHTlsfO4aHELPRlNQe+nFgxbTxynF9LFYHZZSB+qpVEEtVoZPcaFriDn3HAU1oY67BobQlJHfnfOvuLboNZMOGjVRK7J9uzVNQaWUVPcl7pmUIrVO4/QJM6pne08vmts7sFepm74qCKOlIN5j9wZZaLzuVflgN5loWAqF7vrcVRxwxJRAE2NncUiJ/grIgtq1g23YVcDEunoaNeuZRTPnybFRKQ2TW0GtEh9wI5+rsl38nkwV16iJeSGf+sF38dLhQ9A0DQ//1V/gq1/9qvW6RcaJI8+Z/pw7d+4ssGf5DGbiaI6FsdHDpOaNBsXBFBAHXNGBe2x0VMijJgcT4ZTiR1osFLwdmWgYvS6cLMUJiahd2H/kOF6akk1jeJ4dAOjttXeM59yxuRNXlhDJx29wAbZcEwC751lJ8u5a+qiZPk/+WrIqpr2zh8maralJaZKq+hUBeQFVjN73wx/+0NAyzhfwUePaTsOMSnDm5hoHi0ZN31kS6hSN2nk7zLw9dqimj6VMAEzTx1LaZnntwm7Cs+2Ci43PRw/sx/FDz0tCand/v2y6KvSn4yOn8Z47bsA7b3gZvvbwZ4ztq6ur0jk6+welaLujp09iaTmfp8lJo1Zsfur0u13Vq5vUBZBoCYIaX7Cx5FETPouLD06C2qQkDLcgqwS12rTTmixdvWdJUJuaNMY8se1WRVArZQGpxHOnpHuakNIvdOl58N78O78vHdPXWx3NQTlccPX1xud7fuuDxgKyv3ryPGKKh7GRU7a539SogX65D/Edmzo35pHpo/1+vSmrxts8xrlGRNNHJ42aKKi98DM5+u4f//EfW/YvNkwcPWD2u7t27SqwZ/nEQkFcM9BqcQEgTEhQEwg5aNR4eP7FhXksLeYVh8FQCBEhKWcpgSW4+Z+T42cliIJaRvBT+9azh3Dw3Ky075mTpt9MX5+cuNvuvKWEhF9L7ErJy+5ljc/pk8Ny4OWpRVa57qb8wNDlJkm2EjJfpVAT2NuRwU1D7u3YjWTjJTQrBvndnBwfkwJS2GnUAgGGDdtM4ejnzz1n1HshHzXDj1D/LkU2082nRBOxvKCW3zuWSBqf52dnceS5Z439tm3Ph3m/pLsZl9hoDVXTRzcCNq/DUBmCmpev9a1veov0/SP3vx6L8/kFosHBQbR2dEoaNR7gAQD+18ceNCbSX/nsXxnbDz3zlCEQZ3Kt6OgbQDQWNxaiVldWcFbPpadpea3prJC7KZZwzqNWjJ6UdXFMPZN6brtAAI7wQy1RH0s0fVRy9F3/6tcb34d37UU0bhcARC63uhCxrOV7S9H0cetW2WzXC6oxqvDqa5Y0JWM4c+K48b2nPx/+vrNvAL/8B38CIO8CcP/991ehRO4R62PfNTfgoX/8Mj7+z/+B2+99wNzHh0OxmE7gwJOPS30rpxTzOS+TczvBu1bRp39ibFSK0uve9FH+blf+awdasa8ri4u7m3H9oCnYOo2FkkYtXVyjJrL/0R9J35955hnLPuoCkYi6QFYtjRpRnBo4DNUP4oqIOGiNjubD84urv8lUWhpMLS9pgT5mMJPAyekFNIW9r37xHtJiJCYbp30xwEF/f7/l93rFru6DAYalVa2gRi3A7HPNqefMREOYWFiuSEPFz1dJIkq3tMQjjnbvKpXYi7clIkiU0KZNc49STDKBRDoDxpj+TpomKrFEQnpvOUEGtPeaCxGP7zdNuewTXucxtJ56ZYgaam42bPVR048NBBBvShnl48JKU6YZnR15x/Vuh5VVnkOHa2bc5CA08qjx8PxrYPoI5JNA/95nv4AP35c30Trzkjkxvuyyy8CgJCzX+1RN0ySflvEzp/H+19yG86+6FmcFzf8V116PYCAADUBbV48hMP/T3/wFrh/+AwSbMtIEMZ5sQiAQKOqjZvfzjRvaEAwwHJuck/ct8nKUkk7FQU6TVlDdRH0U22Eq24Jb7r4PZ0++hOeeeBT3vu/B/DVUYVA5hyhAz0xOYFF35Bw/Y6a/qJafiltKDc9/chGIxeOYn5vD0uICTgsatRYhQuw1d/4izt+1A1dsHsCmTQ758WqEnIyeWXImApUJMRuzCUueLS8Qg9V8+TP/n+0+quVOobuohTAaZAyrmib37aNnJQ11S4t9CgfLuVxEfUyEgwgwhh6l74+FAphctDlAOIlopTExMYGVlRUj8qzKqaOH8cxPfihtGx8fx/j4uKQhLDRMjJw4ZvSlzbkcOjs7nXcmqgoJagJOq5hjuo+aOClUw35bOxXnXqarKYZXDndWJa+V6GYmatREfzTOiGCv30iCml3dcwG20AT2tk3OHZF4xs6mGLa3hisKHczN6gqtaK0F3EzSuW06t9lSWzMPUZ8p5lSuEAwG0ZTJSpNTALj0pttsB64AY9Jq78hLxwzb/PkZ5zxqqqZE9BXiA/m0g6CW379Z6jMAoG94M1iR9/78jgx6UzEjf5Ab30JD6xcJYWM2gaESQhyXOyFyOm73ZVehrbtXEtIAXVBjiv+e7qN2/ODzmJ6Qn+eBJx/DgScfk7b92gP3YzUSwtTiMlq7e3BQ94P5ysN/i5EDz+Dfv/ltKbddXM+5VzRoj83NNEVCWLDRmqt7qu9w0gMTHtlHrbhGTdTsprLNCAaDuPf9D5Z0zWRGDs/PETXW1Zis2bWjtkQEG5uT+J8TcpsoVUCZWlpBqjmH+bl8WxT97VQz6fP2nI9NNhpuP1KJELO7QE6wSugcGCy6j0XQX2PNYL6P16S2cOzg81hdyb/3LS0tiNkE57GjkjxquXgEI7OLmFZyoIntPRgMItGUMvrMiYkJRyHyxWetORUB4NChQ7jggguM74VmH0eFfIPD286jaIxrCJk+OmCN+ig7vicVQU2dCBRr0tVKPixp1FqsplqclZUVPPbtbxjf13oVsdoYpo8FeqZggLl6Lgx5YbsSU1B+aJkuc1VHDTnOKbwCWlp9dCZjuKo/JyW4Lga/gp2J4y6HBLEBxtDWbU4Qxk6dxMJiPi+UnY8abyOmRi3/X3U4B4BR3eQOALq6uqQ6yOZkPyEg78NVrJbCwYBkcucqPL+g/dvdkSkxump57bjQUWJURs5ll10GAEg2WQW1Z378g6LX27x9B6699lrjur0bN0u///CHP8TExKSU245HCC3qo+a03eZAdRNvL7vb07hmoLUkrTJH7QZKNX0UTbVEE6lCqPchh+fPC35LiwuGEBgMBtHaam3TlWInfO1qT6OrgoUw8YxiRL8Th0xBLasIan6Zhroph1/KKjKwpbj/ourvVatUOk7w+ZLYRsTFtVKinLqJ+uh0T0PNSbTGIxjIFB4LE4KPXyHzx3Oj9vkpDx06JH1XF641TcNj3/kGfvY/38Opo6bJ88Zhua8lagsJag6Iq+djo6NYXlmVHEybVKfY8hdTPMEURMwXL20zseT84D+/aqx4t7Tk8PKXv7wGpawNdpMyPukuO5iIaI5S1hnU8pRuolZLHM06C9x8OWsPuXikRAEvv684eeX0D9v7zwQZQzgSNfIPra6u4tixYwBk3x4+ieDaNiOXDb+m6HA+PoaVlRUpyXBfX5/U9rJt1ryEuy+90neTrAqWGxx/6ewfkL5v27kbO3fuzJs+ij5quqD29I9MQW3vFdfg9nsfQK5TNtd9zb33gTFm1PHlr7jDct1jR49KKRcMjZqHUR85O9tS6E/HjcWWUIChucTIuGldm6weJ5anSfWXtukzRI1akyKoudWNi1HluOA3fsac8HV0dFQlv5hthGQ4CMllnFQMciGa0WYVbYTfNQZi6fxY1o7eftzzWx90/D0ajRp5Zl1Rg1vkzbkpk7VNa1FJOgpbQc3hnqLBAK7sz1kW2NTdm4qE6Ofn50nHVcaEvGiAdYHoh//9NXz0gbvx4Jt+EQ9//EPG9m6lPydqCwlqDkTjcYQj+RW9hYUFTE3PSD5qTapGbY0ltS0t+QlJKmIO+GnFkZozdW4cf/Ledxrfb7/rLsTjxSNK1gt2VW+aPta2LE7wMvqlPCpOflFeatTKgV8irWjUgsEgujcM2R7Db0X0UztyOJ+Xa+yMqRHjg7JFowbzmvwep86N4+zJE1hZzpuqtLS2Ih6PKyv5cmCVWCKBLXsv8NT5guciKiUcv4rXpo8AjHQI+f0YHvzkn+p1p0Tt1E3sDgqhvN/wng/gnt/6IB78X1+UznndzbdK3/uHt0Dl6JHDkuUD16iVq/22FyLyG4dbmrCvK2uYPpZzjbZEFDdsaMOAEtFXfP3CkQhiibwp68rKCsZsJmiioCaaMAKm9UYhrZ163MxEXlA7d3bE2FYtH5WSas3lzuJuaQfzMFWj5hecmlFMyLfoPzEtz+33PoC//+HTxtwpmc7goX/8Mm593d340pe+hIzSNgu9MrXUqDHGkOuwCmVdXe58u+3wZDxUTiEupoyMjsEJUVDjzwIAJidlU3x12Pjpd79pe77ehnKNqT9IUHOAMabkUjtrJLkF/KdRa09GcftwB7qFyH5SJCPBR+2pH8iJKG+6RZ4ANSJh3cHfi+fiRf/LJ2J+81HjuEmOzeHVUYvOhF8ro5gV9vT2SgOSdIz+wNp7TEHtuG7WMX7GnIjyQXlV1ajpFw2GQmjWtXKapuG5nz5qHqufWzTlaW6VBbXtF74M4UjU076B51KKh8r3iyq3PIWOu/L2V+HSm2/D3iuuwYce/hJ27jk/fwzLa9S4ZmZuZhpzMzM4q2v3GWNG7qjuDRtx+5vfhkg0hjvf8sto14OwiIh52wDg6JEjmBP8DrlQWCwgi9M7bWea5WT6WK41eyoSsknsLn9v6zGDMHzlez+2nEOy9lByqLnNn9ikhLIH5Alfh039V4tK8zg6mT6KqD5qfhV+OHEhmqgPFWoGqeYWvPsTf4lLbnwFfvPPP4ut51+E3/jYp3DrraXOM6p/k+K7oWrwAXfBc/rTcduS2m8r7Z4sWm9B0P3xwWNYWdVwbn7Jcpxo+tg1aC5gTkxMSPup2vkzQoA5kd4+0qitJSSoFaBJirY1KmvULOYlhQfaWhAKBKQBzs6nBgAOPPlT6bjrG8jsEbCv+4FMHJtbkthaRpJQN+cvlYweKKIakT+9wMn0sdCd1zJ9Q0evPHD0FTDN4IOxGFDkxLGjWFlexoRNoISUrqUa1P0FxLtqFybMP3/8J2Z5dG2cbPooT2wvuOo6y/kqpScVx52bO9FUkk+aTDU0oYmmFN7zqb/B73zmH3DeRS8zfeiQT5eQE5LjvvCzJ7CqJ/lu7epBJGqaIN3zm7+Hzz/+PN7wng8I5zDL+6t/+OfSdY8eOSIHE0nk3/fiEVrdt3d1m2oq6wXqqYa2m6GxH33sccv+05JZvqJRM05WeFEokbaaPoqmwdXwTwNKM3Esp+8VTR9Fsi2K+bRPhB+ne2wXfPZ8UlRHLr7hZvzGn30GOy6+FIDzIkZBCw3vi2UhUERQc+O7v68rizvtoipX4QbEd/vM2DieGJnAN4+ctaQKEhdYugY2mNtVQU38rGl44WdPWK4ZCocxsHGjZTtRO0hQK4Aa+XHs9Enje05ZLbd0RGvUk4rlEE0fJ8bMF/dFIRHl+/7yfyHgs0TIlWIbnp8x7GhLG5q1taY3Hce1A62WML1+wXHSabM5F4/kf6pBM+LXEAcfAOgrYJrBm7eolTh17CgmRs8ak+y2tjaEw3nhOR4K4q4tXeizSTAvJlp+4SlzwaO1vUMqH5CfrHAfqVA4gguvvdGyjxdUKmiVrVEr4UBx8qlp8qT/wBNmZMfuQav5Ko/kyc8hXnfovF14x0OfML4fO3IEszN2wUSKaNScttuZPirb+GTHU0FNKZEoqB36eT4fkrgaLvmoKeZlXDleTHcvadT0CZ0YLbitzX2OxFJwq40o/IOymzgO2mjU4vE4YkpuubVYXLVDbUbpSAg3bmiTEiX70UetEOVoSGsSnl+Y+/RssAplw8PDlm1usW3XJd7Tkp4ig6dsSQimj5MT53BmNh/T/5kzUzh0zrQkECMii/7CVo0a/6/hE+9+m5SuhnPL3fchY5P2hqgd/lzOX0NePtSGc/PL+NFL47KgNj6OMyeOGd97BuQVfPUFXCtxQNKoCT4y586MYHlpCaFwGKOCwNk1OOSbAape8Kq2siUGHvADdm3lZT3NmF5arolGjV9BDQVdWFDLH9Uhhug/cQxjI2Z+qEK+COI71SaYT4p+VTld8BDrJ9OSw0e/8FU88qV/xO7LrkKuk/tAlF5PLx9qw/HJeTxzNq8t2tuRQYtH7af8p+b+SCb81wAEm8wJh2RCOigL4G6u1jtkTqaOHj2C9AYzQhkXlN2Wz912eWulpo+2V1DOJS4yjAnmupyZCTHqozypcmv6mNBzg2qahrmZaSwvLUn5pKqmUXO9sZwWZ69Ra21ttbGC8SeM5VNFTC6YJm5+LasTztle1vZOxHJt23ex5ffNm8uPdujFvGpeTxMQDwUxv7wqLcLMTExgRe98jk7O4ejknJHqRvTTbe0yzTetGrX88S+9eBA//K9/s1w/lkjirrf8cv01uAbDH+oFH5EMh4wIXGLy3LHRUYwIyTK7++SJoRqevxQfHy8RrxpPJg0NwPLSEo4fPABN0zA2YgZQaGnvXOu+0nNKWqH16gLrlBBjCAcDaI5FanTFfOX3DG0yojgCwBVXXV30SFHIGjl+TErk6za6l13YeQDItbcLpTPp37wVb/7Ahw2zRyCfgLtUkuGQJNhvyCaQ8UrQL7M9l3KY0cfoH5LCIthzgkata8A+IIx4QfW6ku/hkSO2wUSKF9BhswuzvEqCiTihTmyzwqLbuG6uyzVkC/P5ZM5A3kwpqgSGMgS1Iiq1QCAgRTadHBuVTOarpVGzq/tKJ7ni0ZmcNWhIXlBTjvFJv+5knON15GEvcJsD0ymPoZ9MHzfttEakrKjN27br0uCJybl/opSUfmrSMYiUmGKgtcsc21RBjS8yHXvhgLQ9Go/j5tffi9/9239AqrnFN+1tvUIaNRv4IClq1I6dHsGpY0eM7139A1gQj1FG1nA5szEPUCcLG7bvMMLwH3rmZ2jr7sXi/DyAfBS6eLKp8V7CKktqDVdfAlzjUeh3kWrlA3S8vn65SDSGD/79/8bj3/hvvPb6K3Dp1VfjkcP2IYk5rZ3dCAQCWF1dxdjIKZx9ydSQu43utWHrefbnbrOaPjrfQ3l1Vq2aLndSXI7pI29fYvoTMdG1atIqn8P+upnWNoQjUSwtLmB8fAxjQm67SjVqtvuqpo/V0KgpJRIDYqiht0VtWlMma2lfpbyj2VybIZydGz0jRQuulqAWctGQAiw/qSynitWgIYCuHVStYPwiqSnw58lstq011wy0YnpxuWjf66a4N2xow8jMAp4cmSy+s0eIco7oGwtATwVSC3sDZ/rTcRydnENHMoaXpheQFJQH0xPjhkaNo2n5RXk+xwsEAtKCpiXqo/7/+EFTULvgquvx/r9+2DdtjCCNmi28gYqC2snDLxqJVKPxOJoVu3d1sFmrTl+97MYd5irR/sd+JJl7Nbd1VtwZ+RF7Oa2x7rFavGJTB16x0Zr/y4niQRq8Rbxa79AwfvHt78JNN93kqhyhcBjN7WaAjxcF08VSNGqhsFV7aJo+Vo9qvablnrak44SdVzXNNg8eIEcos5zCVMtJ2wOBgJTQ/MiBnxuf9/R34qah4u25lP5B3dOIEurh07cIo4JGbWJ0FJqmGZPMYsmu+VjkJr5splUUCEcxea76po92gqR6/8b46rKKpaA+re2WHFm2GjV3p6460ZD9tCzgQ41agDFXprVO8yEm/J6KhOSAKTWYl6h5TF/3q79pfP7Upz5V0blt5yEl3lN7Moq7tnQZGrWsMO8cHxmxvNPLmoZZITp5vCkl5a10ivp44tALxrZ9195olJNHy/VrGqH1AglqNvBKEScTLzzzpPG5o3fA8sLVesLqhNoh7rrkcuPzE9//rpSgt0WftDZaI7ANqe3l+RtMsBWJBAOIFgj1bplArXG7Fwd6N0ha8heeNz671aiFwmHsufwqy/b+wcF8earYNqq12FCTIDDC/6WVVSSV9CYAEAgGJTPGQucAZN8r0az16IH9xufethwSYRepC8rQDnKqE0xEJpZIGMLG4sI8pqdNp/9Cya4B9z5qgOzPNTF6piamj3ZuAk6ae7fvgLhXMBTC8K7zpd9zNuaQfunW+1Ky6arZ3oVtPikr4NaKoPB28/nWFlVQe8Ub34LrX/1LuO31b8IDDzxQ0bm9lG0WV/ImkC0d5jg1Jpjuc+aWVqTo5ImmlGQueXbc7CsmF5ZwcjqveeNWVwDQJfh/87Qv80pUSaK2NNoc3RP4gJtqNid1xwUb3vbePkuiwGIT1lp1QOp1Nu7YbQzwY6dPYv/jZg6eDj0akJ86/XpgPVeXqjUoZRLoBZZVcP36hd4/8ZdEkzloHRXMPUpJbHrrPW81rxsO49XveDcGCgQz2dGW8iTwh9/aXSlCqagMW9EgrfJy2nv7EQoXryd+LvGZOwl4qVTKdrvlnK72kq/PMcPzl3CSotdglu+in9rp06eNieDMpJjs2hqdjZvhu0mKnhWiGZ8bPVOT8PxuvAR4P+M276Raf9uVQBFDQ0M2GjV/vGHhYAC3D3dgY1ZPD6IXy48atTwuNGpF9jEST3tSHvesKM0pnkzi7b//x/jVj/whYrHKIjJH9QjT2zxICcSL2dJhmjGOnT5pyYOmQQ4kkkilkRD6wJmpSeOYRw6fxXNj+UiRoqAmBh+Jh7mgtlrxPRDlQ4KaDXY+aiJiPiZOMUGtVooHdVU3GApJIcV//Mh/G595yGe/DFBe4SakNlEeIWFWFQ0GcF6bu4mwV1gTA+dxKzCKmpz52Vnjs1vTRwDYecll+Og//Rt+5WN/ir/8+g/x2nf9BsIFggcNZBK4uMe+LymFqpk+1sBnTvRRA8xE1CJ2ofmlcygXFJ+5k6CWzZYWVtrunra3yhMtta/nZkHV1rSLwa3Gx8fBp2/TE8451ABzVXzBxWSruc00E/3cH33EmPQFg8GS69It9gFblHGsDBOs1rhponzNXa8xkqwHg0G89rWvtTQoP40RoUDAGMt5XUiCmo8K66YkzsXN/2CYv9b4trhGrRqXbY6FcfPGdmxqTlZ8rr50HDvbUtjV12kEC1qcn5cS3XMkjVoqhXAkikg0b1K6sryMubk5af+V5WXJr1fMJ2f0HSskqK0lJKjZwDvBtEOizI7efovKvFiUx0SNEhvbdYjiColoFrRh2w7HYwjCDlEgecWmDrQlogX2rh1uJy52mhygNI0aAGzefT6uvuPVRsj9QsGDAvDbCrhMLcpmPp78B7vnUCiQSP5IWdgTfZvE8PUi/QU0nXblszNf3JpL4S4hoa0qlJumj64uVTZNWVlQMzVqcjARFT7ZciPj9AzZ543KtuQMQacWOAnl6rhbiEt7W5CL5zW0Hb39eMsHP4bBrdvxkU/9Gbq6uizt3ifeCwaGW57RNoXfal8cZ1wUppiPWkgRSmsFb0/q4osXpWCMIR4KemISHWAMwy1NCAUCaGkXzB8FAYsj+qglkvkFMXFhTPVTGxs5hdXVvCCWbW2Tgqq0xsMYSMexp8N+3CRqAwlqBWjr7rUdnDr6BjC1uE5SJNIAACAASURBVCxtK7Sif2FXFpf3tTj+7iV2nYKoUeOEI1EMncc1ao2F3f14OQCsZ8E27BOfNKfvxUg6CGqdnZ22291SSKPGmDftr1qr6OWetZTjTO1AnqSNSWJxQU3+VEyjFo/HbX2R7M/NtRbF93Xap9oBpMT8aGNjY4bkJfqoJWx8/+Jh98P84NbtttubXdZjtTA1au4FtVCAIRs1TWlvfM0b8IkvP4JfeuObbPf3m2WJ2p6k8Pw+KqorjVqRH2odfG1PexpD2YQRNdES0KaKqTYqgTHZ/HHURlCblnIq5vsDsb+dnJyUTCbHhbyMYoRIIB/N/IKuLNLR+sv52kiQoFaAcCSCVhsh55eu3Ic53Ywkotsh25k+chvlvnTcWNWsNnYP1G61eev5FxorJ34NS+wlXt6h3wb0WrLWwUPUqnfVdIV97CayuVwO0WhhzSBfmXciUkCjxsA8GferVfPllk2cOIYYw+YWZxMfXj38ENFXkFNUUFPOESzio9bf31+ycOumL3Q6Z7X7UdGsUdSoiSa8dukIokH3Y09rVw+ybdYomWqU42qj1iRfIFJ9ioph90yMcPfVm5t7Am/e9rKpfwpbqCR8vHAaNjRDo6Wfq0a3NdScxJ6OjNGe1AVIT+cLHt9UTvRTGzlp+X36nJnuhOdFTCqRH0VTRnGhR8yjCPipla1vSFArgjp5YIxheONGbG5JIhRgxgTEbgJ7w4Y2vHyoSklCHbDrFHptzFl2CtEgG01Qs+0YG+sW14y19o2watRKK0/STkBwYfZ4WW8LdhTwxyuuUauc6oXnL+/EfJLVHAvj9s2d2FrAaV7tYxI2GrXuwY0lXV/UqPFcaiJuzR4B8/lUUsfVXsNIZmRBjbMwZwpqsXjCclyhYB2W94kxvOP3/9iyX6611uOY/D2puw6slhgnXM1vanduY3tJZ64+ZloF6z37qqwFXhrDpNFhn2Wu0VqjYCJcQxtU+m9f1a8Ag6xRGx+xRn6cFAIApXXBSzV9XBbeoylBsFNNp9fzorSfIEGtCGKoUgDo6elBLBbDjrY0bh/uNCJp2QlqkWDAGGBqhd1koX94i2XbzksuK3hMo+HtCpmHJyNKotKBw06j1ttr798kEgoE0KuEzZZ/L6RR86bN+K3ZJcJB7GpP41IjUIpzCdWJmOqjFgpHkOuyD+jC69YQpozt5j6BQABD23dIx23evLnYLZgw6V9ZVPv5OGnU4tqSsT2WsGo1A4yhIxnFsE1Qg4u6myXzQAC44OrrceNr7pa2tXV0oJao73lMf9ilmD4C9hMc1dfR2NdnHTuPlGh3y34qaqGiBIpo1FY02fRwrQQ1N0nX/YJonmhn+jhlo1GLN8kaNbFJSRo4JWBQHVVLQ0OCWhG6BuRIZBs3yqu+XINsl7RzLbBbueroHzQiBQFAZ/8gNu7cU/AYgvAlFZorZVqsvjaDg4PuLm1zLT6BLPQO5X+r/B2rmo9aBaaPm5qTRt69QqcxtF/6P1WgSDQ1IehgoqeavRmmj0rBf+nd75e+79ghC26F8EbjWd1+VPRRGx8fN2bwc7MzxvaojUYtwPIa4Z3t1kWKnlQM1w5azRrFxPAA0F5jQU2FP+tSTR/tfMfNAIPVM3fzAl50u1v2U1nDAYatuSZc3G0NZBN0qGuOxUesxnMRp4V2v06J8j5qpgWImBeXMyUkqU9ndUEtJWvURB81KQ+jEuncp9Ww7iBBrQid/YPSd1VQ46Gb/bIiY/dAg8EgfvGdv45QOIxYIol3PPRJx0lRo+Ll4/HHk16flFP34jEdfYOW390KanZc0ZvDrZuKT2I9EQQ8OEc1z1voHQsYK+b6CrtiaiSa66hws9LlVTlEtLo4tv3CS6TvmzZtKlxggUrq4Or+HM5rrX6aiibB9HFsbMyM+jhtCmqxhJ2gVvrdieZVANDRWVpU1FK5oDMj+TiqRebtp2SNmm3of3v8tmBpmD7aatT8U1bGGLa3piyaWcC8B6fnZmjU1sz0Mf/fGvXRP/Wr0tZtRvE+89IJy+9iX8oFr7SwQHn8+HFZoyb6qGVkQc1vWub1CglqRVB91NTBf7ilCXdt6fJNx+n0Yt1x/zvx8I/24+EfPYvzlAlNoyKvpnr3fPzxpNeOTDRUs+A4KhafmhKfRkef1W9pYGCgrGsD+SAiPKBQwWM9NH30Snm/uz2NAPNu0ldYo2bd54ZffIPx+ZY3vNnxWD6J4n4V/JmrKVECgYBxnqGNG3HFFVe4LDkqekAt8Qi2eJDUVmVjcwJdTabfXTJt76M2JwQTuWigE01h+d0sZ9I5tE3WRlYr2TVnIJPAjjZT48dLvDGbwLZcE3J6TrSeVGlJiG3dlZ1CxfusY+fvjLpA4Vfs6s/0s7OHu4ZkdCFvrR6BXyyiisHA0N5rBk4aOX7EkvR6ysZHTVygPHjwoPRAJB81VaNWH9XS8JCgVoTuDRtx3kWXAgBCoRBuuummNS5RYQq9WLFEAqHw+gizekl3M64XTHo87W/Wee913WAbbt5ojQxXEyo0fYzG4lJCT8CqJXd5aQDF8ycWOrZUjGh1HrXmjc1J3LG5upoSjt0C0ut//f3Yvu9ibNq5B6+87+2Ox4Z1QXhFSU5rFyTj3g98GB//5//Eo489XjSSpwg/VSF9zcXdzbh2oHbRD3e3ZzCYMTVkqYx9HjXR9LG3tRnTSyvyicpoLhu275S+Dw0VTkZeLXZ3ZLCtNYVUJIS7tnShq6k0Qc2u3RnRFNXtZZaxWrQm8sKp5Xn6Fru6LqxR603FcHV/Dn3pvGvGWg2tqomsn4f4VLbFiO46PztrsUYYEwKMZPUgQJ395mLk5z73OWmhRzw+RcFEfInf+ibfwRjDB//un/CZr/wX9u/fj7179651kQrCkLcZLxShbj3QnYohGalOIBfqutaOQn4lqibBibTip7Znzx6HPa1XVym2EutlW/Fao+Y1hTRzRrAAYZdUthl/+IWv4OP//B9o7eqxpDjgmjRVo8Yrwq7uA4EANu3cjVSqNA1XWL2GDT2pGLKx2i50iXeYVAQ1zqygUUsmk4jrfpPXDrRiU3MSkTIaDGMMv/Fnf4vWrm7c+Jq7sW3bttILXwGeaXltTsMn5TNLy8q+/nqxEuEQWuORmpjVeoFdMyucYiBf5y26trTYuarBNQN5s2V/PXlnGPJ11t5rWoacPnbE+DwzOYHZqXzC62gsbox1nYrJ/xf/6QvGZzGPWrOSmsOvY816o7YhCeuUYCiEPRdejE1dVmdZv8EYw23DnVhZ1fD0mam1Lo5viLucxBP+ptC4cd1gG1Y1Df/2grmimLB57ne99VfwiV97AABw8803I+xSy1zJPI5PAitKGG7429ff6GkX1AGQn+d1g22YXlzG/z2WX+ENBRiWVzX0pmJYWlnF5pYm6Rinc+b3Ka2OoiHuB1ditIoqIz5rS9RHvaizM9PG9mQyiavaWzG7tIJsLFy2YBlgwCU33oJLbrwFgA/yJ5aJ3Uo0z286OrcIIP9OLq1qvpysX9m/tonGS8Gu/oqZPjrtL2qSq0lzLILmWARPjUzW5HoVo1dya2c3jjz3LADg3FlT0Bo5ccz43NNn5pFsFfzaAODokcPgTjxjQuTIZiXhdT2ONY0ICWouqbdxqt7KWy32dmQQDQWMwdkLqGrXjiXFX0McR4IBhqDwdK4ZaEUiHMTy6iqmFpcxOpcPY37Jja/Aza+/FycPHsDHPvaxqpZXLN++zozha1PROSs+Q+0JGGabMmL9xENByfdRzMF0eZ85YTUEtUIpEUo1ifWwf/AS8TbiTSkwxqBpGqamprC0lG/Pc4pGLREO2i5QlEKQMclcrVaCWjoSwuTicvEdXWI30eRC+YVdWRyemMP88gomFpZ9be5WD9jVNVeSuw0CE2AMtw131Dw4m3o1vwbR4KXK5Mz+cGJ01PgsCWpCHslAIIB7fuuDePjjHwIAnD17FgCwuDCP6Ym8dj4YDCKjJLb3Z6+4/iBBzSX1ZqtLKyF5NmS9X5mjql07phdlf41C72U2GgJjDNFgAFf1t+KrB05hWdMQCARw/+8+hM5kFLt6W1xf2+1j39GawvGpOZxbWJaO6a9wlZjPdepxEca0alRNV4ubS1qSHOsvYKHJXKlVFPFpFFxxwhgIBJBMZ4wobefOjUPTNMzOmD5qyaQ1V1r51629oHZlfw4zHvpk2RWba2J7UnH0pOL4xuEzAGjMrJSCGrUSFNVhl36/XqI+er+3hLQgUE2OmYLaycOHjM+9/XKQLDEw3uiZfJsXzR67uros0XjplfAHJKi5hBosQaw9U/pqeyYaKnkVXJ0rlPxOC/vvbk87mudszjUhFGR44vQkvBzyo8EAAgxSdLx6wQiEok6IWD68/fyyNbJdV1MMEwvTFl9TNxq1UvGraZ9aLFFQGx8fx9JKHKu6ljkSibg247VDFM3CAYYFQV4K1mjyHAkGXEVRdYud8KVuMxZAPLvq+sSuPw3Z+KbWA/7VqOXLlWkxBbWJsbPG58M/f9b4vF3JIynmEOUatfER0+yxq8saWMqv9bDeIEHNJY3WXLldPlEOjdYa6ofuVAwvnptFMhzExEJhE6liK+QVyGkIMFbY9A72pn6VEAywmkVprJRXbOoAA/A1wV/QCbtgAkDeT2Uom0DMIRVEQR+1BplgqBOlpkzWCB4wNjqKhYipEa5Em3b9YCtCgQD+61B+hb0tEcVAOIhnzub9nCvyrVxDShG+GqXNrBV22vG+dBzhQKAq6Su8RC27b5u7Xi7RRHFi1BTUXtz/tPF5x67dEJe/Us1mX3F6JP+eTwjauA6bpPZ+rYb1Bi0iOaCa1TRaJ76p2RsTmfVIY7WE+mJPexq3bepw9HkqhdLNmcu42jptLFEHzUghHzU77IQ0foyToFxulXcmoxj2Wb+oCqPZXJvx+fTpEYt/Wrmko2HEQubzYgzS5LpeV9bVcTsesrZJvlxZD3d4w2AbLivBXLuWiFUtBvzZ2Z72VEtaDerF9NHwUWsRfdTygtroqZdw/ODzAPIB8HYoGjUx2vGYfoyYQ80uV2KjzXvrFdKoOXDdYCtOTi/gqTP5aED12Fyz0TDOLSxZtr9yuBMBBuwfnbY5inAiwIBVrf7MOBoJxhjCQVHEKuVhqL5OJV5bKkeRfVlZl1h3FBKWi9axw7Hl2glcqk+AI8EAFlf8kWRYlUWb283w2SOnTwEJc3LllX+ayJV9OYzMLnh+3loh1t9NQ+2SMFpoX7+SioaQivpz2iZWXyIcxMzSChZ88h4Vw7qA5G1juKKvxTDb94LmNlP79bP/+R7+4O334IWnnzS27bjoUmTSKWDCzJGWaEohEothcX4eC3NzmJmckJJj2wlq9fBOrAf8vcyxhiQjIXSnSkuu6TeuHWzFVsXkIKibbNFKSenU66pyI+Lk8wSYuXFULD5qJV/T/bH89/X+nsWC5TunO+3Kt1drErEl14Sd7f7wA1T7nGyrKag9cfAIFua80agBykKE/r81EcH2OsnjZUdAuKtQgDn04TyR+vp+VytF7OuG9CBeTWF/CpUqarPwum9pS0QxlK18IYUXS8yjBgCPfuvrOCcEBtl75bU2SbwZ2rp7je9nXjouJbu21ajRO+EL6uMtWiOkiVmdtle12BmfrsbVA0HGsAx/5ttZbzDlvwjPjeP2HJVcv5rXaARu2NCGFSHkm5uBPxoMYGFl1VEzZvj/rYPKVSeM2VbT9PGlk6ewQTB9bGry0A+oQepWbCPFFtrWQ3uqFd2pGDY2J+tocVP1UfNpufVixZNJpFtyUsRHkS17LrBdJGzv6cOJQy8AyIfyFzVquZw1Zx9p1PwBadQKIK8w1meLVV/W89rqd3V0rQmSPZtvMB5FBc+iVG2XtLfLQCXrfaALBwOOwUDyWMWxy3pbMJCOW7RxBsZr2PiVW0ijNn52BPOz3oXmF9+HRqlb8Z6c3kXNZl+iMhictJf+pFTf2bVCfC87+gZs9wmFIxjcdp7t5L6tp8/4PHLChUbNp/Ww3iBBrQCSJ0ydNlhe7FgogLu2dKEtEZV+70xGrQcRtvAI1Y0yialn1voZFDV9FJI1EyZqbdhpzbKxMC7oyjrWnWlW6mXJ/Ik62W1uMzVq586e8dT0UaRRqlYUzhwFB70RNso9E5UTqIPW0LNhk2VbUyaLt3/kjxGJxmz7x45eU1A7efigpJGz91Hzfz2sB8gOrgCl+KT4lULv2a2bOnybP8iPFAoHTtQWU7np/pmoSVdLfZyyxsEdtBKm4MErZGgr9U+5eBijc9agSY2A1fTR1KidOzOC+SoJao1CKRNuGgq9o96GSh70hKct8mv5xWJdeO2N+PaXv5jfzhi+8OSLCASDGMgm0ZOK2S509W/eZnw+/PNnjVQfADA4OIiRGXl/n1bDuoPmEQWQTB/rtMUWGqgiwQCtmJQAF9SoxtaecrQqlQYTkY4tcjAFE7HHUhvlhGgUzF7v3NyJK/usvhWNgtp+MjlFo+axj1qjaSvd3AeZPnpPvdXk3FI+uzuPCurbeZFQrAuvvRF7Lr8aoXAY9//uQwhHIggGg8jFI+hJxW2fwYat5xmff/74TwzTx2g0iu7ubuvl/FoP6wzSqBVC0qjVZ4Ol98w7CiU4JmoL80Rort7z5O/demsyl/W22Oaq4qj9aHlymhlMZL1NJOLJJGKJJOZnZ7C0uIDRkVPGb6RRs1LK+7e+WlJ14Bop1XrB73CNWiwUxNTiim/bgliuYCiE3/3bf8TiwjwiUWuEcru2n21rRybXKiXJBoANGzYgECC9jV8p+mQYY32MsW8xxvYzxp5hjP2qvr2FMfZ1xtjz+v/m6he3tjSCjxrhHXyVbaXeRqEGpJLXMRyoPGqg24Wbel3gKZeOZBTpaNh5Bw9NH9db3XKybab546kjh43PXghqjRYvyY0gT725d1zYlUUqEkK0wGKNH9nbkcGGTAJZve/yrUbNBlVIK9Q/MsbQP7zVsn14eLgaRSM8ws3btAzgPZqmbQNwCYB3Msa2A3gfgG9omjYM4Bv694aCOXyuJ4wOh0ajignqVblKgtqaU8mEMqpHE6yu6WN+h/WmUSuGl9WxXuu2WQjRf/rYYeOzpxq1OpqoFqK+xIX6p7Mphhs2tNWVoAPkE4nv7cwIZrBrWhxH3BSrUI5RAGgXAopw3vjGN1ZQKqLaFO3HNE07qWna4/rnKQD7AfQAeCWAh/XdHgZwR7UKuVbIedR8+uYWoT5L7U+4j9rKKglqa00lPmBhDwS1ogh+VIQzZZk+GnVrX7mNLsCJAUVOvHjQ+JzJZCo+N1P+1zul9A+Ncs9E+Wj6IqxvBc1S2rPDvlfceqf0/bY3PYBXvepVFRWLqC4l+agxxgYB7AXwIwAdmqadBPLCHGOsvcChdUkjaNRIoeYdgQA3fVzjghDGIFROJE4vAn0UO9KITOjXAX+NUP08I0650lzgdGSjR7IVk14vzs+b27NZD87O0Eijhaum0Di3S1TIqs9TNbjTqOX/O/WPOy+5HO//q4cxMzWJK269E+FgsG4VEesF14IaY6wJwP8B8Guapk26fbCMsbcCeCsA9Pf3l1NGogLo9fOOSKAGmhjCFfwZhINlCGpe+Em5THhNbUUmpNRbomAybHvEYCL212hMg7e2RARnZhclHzURLzRqXGpplHbrxo+xOR7G7NRKwwv4RHFyiQhenJhFNlbAz9bnOEVujYcCWFrRsKxp2HfNDcZ2avf+x5WgxhgLIy+k/YOmaf+ibz7NGOvStWldAEbsjtU07dMAPg0A+/btq6u1KylvUp22ZVop8Y5trSmEAgz9mfhaF2Xds6r/L0WjdnF3FsurGg5PzAGo0EetyO8U8tsedVKQCJcuqBlmpQ5PoVEnHpf3tuDI5BweETRqIt5o1PI0SrN10xQu6MxiuHkJ0TIWDYjGoj8dR1sigrhP24IrjZrxX957VQNuHe7As2encGDMTJgmjqFN4SAysTBOTM2D8A9uoj4yAJ8FsF/TtE8KP30VwD3653sAfMX74vmHeo0w1igDrh8IBRi2tabInM0HcD/BUiblPak4BjKJmuSK4vFmGlRmKBv1eaUipWeIMc1KzW0twgp4o6bRYIwhAKC51V6j5oWgZq6kNkYdulkoCQUYWuKRGpSGqAf8KqQBcPVa8jbPu0GeLmVF0xBgzDJ/GcyaC883DrXj4u6GC+Be97gZJS8DcDeAnzHGntC3fQDAxwB8kTF2H4CjAF5dnSL6g3qfm0fKMBEjCL+yvJrXqYXKyP3ijelj4d9XDRMyeu9EgsLz2t2exmAZ2umOZNTIe8S5eqAVp2cW8P3jY0b6hYaEMTQ7mD56qlHz7EwEQXhFKe8lYwyvHO7E2blFfP/4mLG4KXaPN25oQ7IcqwaiphQV1DRN+x6c28d13hbHv9TrwMVfzoF0Yo1LQhDesVyGRo1TKM9MqedwgjRq9ojPa2NzeeHkc/EIcjYakNZ4BJ3JKHa2p8sunx+5cUObaUoLoLW7x3Y/b3zUCIKoZ8QhJxhgxsKV2Ycw6Xcyz/c/pdudrFPqtTH3puIIMIbelDVzPUHUK1xQK8fMrViemVLO4QTPtVev/Ua1UIOJeEkwwHBpb0vVzr9WNAnmoQxAKtuCWCKB+dlZY3s8Hkck4p35HjVbgvAfbhYX1XdXXcyU0k55USii6jRmeKwqUK8NOhhg6EvHacJINBQruiBUycS/kjeimJ8iX72kDlamUQN91AyWF/5bu3ulzblczuvLEARRl8hvr+oeEBB+p/e8PqB5hEtIziEI/8AFpXAFebgqu37h302NWg0KU0c0aqCPWsFrr00R1Hbs2FH7wtQRXU3RtS4CQVSMm/FE3aWQRo0GqPqATB9dQs2ZIPzDBZ0ZHJ2cQzZafhdWiZa5WFoA7qNGmmwZiphaKfn6UwW1PXv2eHuVBnpOd27uXOsiEETNUF9dNbiSG9PHWza2Ux54H0GCmksoehtB+IdYKIjNLU0VnaOapo9pXYBspbDfhIfwVtfeIwtqu3fvrn1h6oRGEjqJ9U0pedSM70r7Zy5MH2N+TlGwDiFBzSXU1xNEY1GZoFb497ZEFDcNtZeX0LnB6UxG0Z4gU7Ry4ONQtTRqhibYk7MRBOEp5UhqOlHdTUAcu2heWx+QoOYSas8E0VhUMki5MeEjIc2eRozMWGvSLXLwkOHh4TUqCUEQtcJV1EebfW7Y0IaIHlRE1rDRzLYeoGAiLiHzCYIgOBQTg1gLeLMb3nU+UtlmAMCtr7wDwaC3iwI03BFEfWI3NqUiIURDukZN2E6veX1AGjWXUIMmiMZA0+27KglsQUExiLWALxjGk0l85B++jGcf/RHe++Y3eH8dGvEIwne4eSuT4cLTekamj3UHCWouoQZNEI3B3PIqACBegWkidQfEWtO7cRi9G4fR4nEONYIg/E88FMTc8orN9sKGcm6CiRD+gkwfXUINmiAag9ml/OCWrERQo5UbYg2wa3XVaIrUugnCf4jv+pV9LdjdngYgp4spNjbR0FV/kEatCAyABjIFIYhGYUU3faxEUCMI/0CSGkGsN5KREDZGQuhMRhEOBjC1uOzqtQ2UINQR/oAEtSIwlg9ZTO2ZIBqDXDyM0bklhAJkUEDUF3bjkJdDE09yS8MdQfgPO4VBMpKfxudc5uykd7v+IEGtCMzQqREE0Qhc1pvD8urqWheDIEqmVpMsmswRRGNCSof6gwS1IjBdTiMVMUE0BqEAQyhAZo9EPWIdh2hkIoj1gRfT0AD1GHUH2f4UgSn/CYIgCGItsJ2oVcNFjRYmCaIhoVe7/iBBrQiGoEaNmyAIglhDaiSnEQThQ7x412kRpv4gQa0YeqOmpk0QBEGsB2i8I4jGJEgvd91BgloRTI0atW6CIAhi7bCP+uj92ETDHUH4Dy/ey1CAXu56gwS1IvAXg5o2QRAEsbZUOT4/QRA+pvKXPUirMHUHCWpFoGAiBEGIxELUbRJrQ+181GjEIwi/4cVbGaT8oXUHhecvgmFWQuMWQax77tjcudZFINYxlEeNIIhKIB+1+oMEtWLojVqjnNcEse4JkNkIsZbUyPKRmjlB+A+K+rg+IR1oEXiTJjmNIAiCWEtoikUQ6xjqANYlJKgVIRXJKx1JXUwQBEH4jWoskNNwRxD+g97L9QmZPhbhwq4szs4tIhGmqiIIgiDWDnuzJZLUCGI9QRH21xekUStCOBhAV1NsrYtBEARBrHNqF0yEZoIE4Tf4e0m+0usLEtQIgiAIgkBYX6qnaSBB+BD9xaRcaOsLEtQIgiAIog4Qp2f96TgAIOyhA3VzLAwAWF6l8FkE4Tf4m06mj+sLcrwiCIIgiDpAXEjf1JzEBZ0ZT8Nt96XjGJldRJBmggThWyo1fYwGA1hYWfWoNES1IUGNIAiCIOoCJn3yOifSQCaBllgEqShNDQjCb6zoCX0rFdRePtQGUprXD9QbEwRBEEQdIE7PquWmQkIaQfgTLlxVqvAOBcjrqZ6gp0UQBEEQ9QATP5J5IkGsJ/iEPUnpotYV9LQJgiAIog6ohUaNIAh/komFsa8zQymj1hkkqBEEQRBEHcAcPhMEsT7ozyTWughEjSHTR4IgCIKoBwQ1mteBRAiCIAj/QYIaQRAEQdQBpFEjCIJYX5CgRhAEQRB1APmoEQRBrC9IUCMIgiCIOoPkNIIgiMaHBDWCIAiCqAMY+agRBEGsK0hQIwiCIIg6ICjlUSMIgiAaHRLUCIIgCKIOkDVqa1gQgiAIoiYUFdQYY3/HGBthjD0tbGthjH2dMfa8/r+5usUkCIIgCILDSKdGEATR8LjRqP09gJuUbe8D8A1N04YBfEP/ThAEQRBEDSCNGkEQRONTVFDTNO27AMaUza8E8LD++WEAd3hcLoIgCIIgHCA5jSAIovEp10etQ9O0kwCg/2/3rkgEQRAEQdgR0CU0ivpIEATR+ISq+0IhMwAADXJJREFUfQHG2FsBvBUA+vv7q305giAIgmhYrh9sw9m5xbUuBkEQBFEDytWonWaMdQGA/n/EaUdN0z6tado+TdP2tbW1lXk5giAIgiCaIiEMZhJrXQyCIAiiBpQrqH0VwD3653sAfMWb4hAEQRAEQRAEQRBuwvN/AcAPAWxhjB1njN0H4GMAbmCMPQ/gBv07QRAEQRAEQRAE4QFFfdQ0TXudw0/XeVwWgiAIgiAIgiAIAuWbPhIEQRAEQRAEQRBVggQ1giAIgiAIgiAIn0GCGkEQBEEQBEEQhM8gQY0gCIIgCIIgCMJnkKBGEARBEARBEAThM0hQIwiCIAiCIAiC8BkkqBEEQRAEQRAEQfgMpmla7S7G2BSA54RNGQATZZ7Oy2NbAZyt8TX9dqxdHZR7Xb/fqwi/73oqs9fXdNv+vb5uLY51c5zT/dfbvVZybCltwKtr+ulYGgPW7xigHlvOu9Ao9eTm3v3aj3t5bL3OCyo5di3av5+PrcW8YIumaamiR2maVrM/AI8q3z9dwbk8O1YtVy2u6bdj7eqg3Ov6/V7t7rueyuz1Nd22/0atJ6f7r7d7rbCeXLcBP5TX62NpDFi/Y4B6bDnvQqPUk5t792s/7uWx9Tov8KKOa9n+/XxsLeYFbut6rU0f/63Ojq238q7VsfVW3no8tt7Ku1bH1lt51/LYtbhmvR1bb+Vdq2PrrbxrdWy9lXetjq238tbjsfVW3rU6tubXrLXp46Oapu2r2QVd4tdy1ZL1Wgfr9b5F1nsdrPf7B6gO1vv9A1QHnPVcD+v53kXWcz2s53sXqUU9uL1GrTVqn67x9dzi13LVkvVaB+v1vkXWex2s9/sHqA7W+/0DVAec9VwP6/neRdZzPaznexepRT24ukZNNWoEQRAEQRAEQRBEcdbaR40gCIIgCIIgCIJQIEGNIAiCIAiCIAjCZ6wrQY0xNr3WZVgrGGMrjLEnhL/BAvtezRj7Wu1KVx0YYxpj7HPC9xBj7Ewj3Fs5MMbu1Otk61qXpRbQ87eynvtATrE6YIx9mzHWkM70660PsIMx9tuMsWfY/2vv3oOuqso4jn9/4RVR8j5eULQBnSS8JYzGKJg2ajZeS4hJSTMvqanZZczSbDTHvOIlL4ipY6SOmtioQIahUYqgvogaGF4gHZEwFS8o9vTHWq8cXt/zJnDOPufs9/eZYd5z1t7nzHP2Pqy9nr3WWUtqy9fCwY2OqUiStpR0j6Q5kv4p6XJJa3Sx/6mSehYZYz3l7//FFc/PkHROA0MqVEVbcJakpySdLqlb5QKVWuGa2G1PTjf0XkTsVPHvxUYHVIB3gAGS1s7P9wX+tSJvIGm1mkfVOCOAR4DhK/IiST3qE07drfL5NyuZlaoDykLS7sCBwC4RMRDYB5jX2KiKI0nAXcAfIqIf0B/oBZzXxctOBUqTqAFLgEMlbdToQBqkvS24A+maeABwdoNjsi50u0RNUi9JD0qaIWmmpINyeV9Jz0q6Pt9pmFjRwCslST0k/VrStHx38biKzetJulvSM5KuaeE7LvcDX82PRwDj2jdIGiRpqqQn8t/tcvkoSXdIuheYWHzItSepF/Al4BhyIy33nE7p7DxLWizpXEmPArs3LvJVtjLn/2FJO1Xs91dJAwuNuo469phLulLSqPz4RUm/qKgfS9nz0tUxKKsu6oBq34UDJD0n6RFJo0vSE70ZsDAilgBExMKIeEXSrpL+Imm6pAmSNoOPe1cvy/XD05IGNTT6Vbc38H5E3AgQER8BpwFHS1pH0kX5/32bpJMlnQJsDkyWNLmBcdfSUtJse6d13CBp69w+bMt/t5LUO9eL7dfGnpLmSVq96MBrLSIWAN8FTlJStU0o6Uf5u/GUpAsaF3XtNXte0KqN71XxPnBIROwCDAMuzneZAPoBV+U7Df8BDmtQjPWwtpYNe7w7lx0DvBkRuwG7AcdK2iZvGwT8APgC8Dng0MIjro3fA8MlrQUMBB6t2PYcsGdE7Az8HDi/YtvuwFERsXdhkdbXwcADETEbWCRpl1xe7TyvAzwdEYMj4pHCo62dlTn/Y4BRAJL6A2tGRFthETfewlw//gY4o9HBWM1UqwM+If9/uRbYPyKGABsXFGO9TQT6SJot6WpJe+UG9xXA4RGxKzCW5XuY1omIPYAT87ZWtgMwvbIgIt4CXga+A2wD7Jx7G2+NiNHAK8CwiBhWdLB1dBUwUlLvDuVXAje3f35gdES8CTwF7JX3+RowISI+LCzaOoqIuaRcYBOqtAkl7U+qPwZHxI7AhQ0LuD6aOi/ojomagPMltQF/ArYANs3bXoiIJ/Pj6UDf4sOrm8qhj4fksq8AR0p6ktSA3ZD0pQR4LCLm5jtu44AhxYe86nIDuy+pN+W+Dpt7A3dIehq4lHQRazcpIhYVEmQxRpCSFvLfEflxtfP8EXBnsSHW3kqe/zuAA3MD7mjgt4UE2zzuyn/LVgd2d9XqgM5sD8yNiBfy83Fd7NsyImIxsCupF+F14DbgOGAAMClfC88Ctqx42bj82imkkSafLTTo2hLQ2ZpMAvYEromIpQAlu/4tJyenNwOndNi0O/C7/PgWll0PbwOOyI+H5+dl0p6UVGsT7gPcGBHvQim/G02dF5Tp9zef1kjS3cFdI+JDSS8Ca+VtSyr2+wgo9dBH0pfz5IiYsFyhNJRPVuatvODeeOAiYCip4mn3S2ByRByiNLnKQxXb3ikotrqTtCFpyMsASQH0IJ3P+6h+nt/PyVsZrND5j4h3JU0CDgK+AZRtYomlLH+Tbq0O29vrwY8o7zXi/x2DUumiDhhP58dBlFSu1x4CHpI0E/geMCsiqg3xLtO1cBYdegQkrQf0AebS2p9tRV0GzABu7GKf9uMxHviVpA1Iif6f6xxbYSRtS6rrF1C9Tbgf5f5uNHVe0B171HoDC/LJGAZs3eiAGmgCcEL7WGtJ/SWtk7cNyl3enyHdSWrl4W9jgXMjYmaH8t4sm1xiVKERFetw0nCOrSOib0T0AV4g3S0s03muZmXO/xhgNDCthHcPXwI+L2nNPPTny40OqAG62zGoVgdA58fhOWBbLZsd+AhKQNJ2kvpVFO0EPAtsrDTRCJJWl1Q5uuKIXD6ENCzszcICrr0HgZ6SjoSPJ4q6mDRqYCJwvPIEWjkpAXgbWLf4UOsr1+u3k4b7tZvKsol2RpKvh7kn9jHgcuCPZbmJKWlj4BrgyogIqrcJJ5J+x9gzl29Q7T1bVFPnBWW9W/oJufJZQhp3fK+kx4EnSRek7moMqRt3Rh6P+zppHDLA34ALSL9dmgLc3dkbtIKImE+qYDu6ELhJ0umU6A5ZJ0aQzmWlO4ETKNF5rmZlzn9ETJf0Fl3fbW0p7XVgRMyTdDvQBswBnmhsZMXpxsegWh3wTVJjdbnjEBHvSToReEDSQlIjtQx6AVfk4YtLgedJwyCvA0bnZHU1Um/LrPyaNyRNBdYjDYVuWRERkg4Brpb0M9LN+vuAM0m9Bf2BNkkfAteTfrN1HXC/pFdL9js1SEnqSRXPTwHGSvohqT307Yptt5GGxQ8tLLr6WDsPbVyd9H/gFuCSvK3TNmFEPKA0wdbjkj5g2XempbVKXqCURJefpB2B6yOi1WdtMquJPMT1jIg4sNGxNBtJm5OGR20fEf9tcDg14TrQx2BFSOoVEYtzg+0qYE5EXNrouIok6SFSHfl4o2Mxs9pqletBtxj6KOl40g+Cz2p0LGbW3PKwoEeBn5YoSev2daCPwQo7Nt95n0UaGnRtg+MxM6uJVroedJseNTMzMzMzs1ZRyh41SX0kTVZaqG6WpO/n8g0kTZI0J/9dP5ePVFrcr01pYcsdK95rP0n/kPS8pJ806jOZmZmZmdmKqXFeMFbSAqWlfeofexl71CRtBmwWETMkrUta++Bg0sxuiyLigpx0rR8RP5a0B/BsRLyhtLDfORExOM+INBvYF5gPTANGRMQzjfhcZmZmZmb26dUqL8jvtSewmDST7oB6x17KHrWIeDUiZuTHb5Om392CtC7STXm3m8gzHEbE1Ih4I5f/nWWLXQ4Cns8LAn9AWiT0oGI+hZmZmZmZrYoa5gVExBSgsGV7SpmoVcrrwOxMmhxg04h4FdJJAzbp5CXHAPfnx1sA8yq2zc9lZmZmZmbWQlYxLyhcqddRk9SLtFbMqRHxVppluMv9h5FOyJD2ok52K99YUTMzMzOzEqtBXlC40vao5ZXV7wRujYi7cvFreZxq+3jVBRX7DyQt9ndQRPw7F88H+lS87ZbAK/WO3czMzMzMaqNGeUHhSpmo5QU6byD9EPCSik3jgaPy46OAe/L+WwF3Ad+KiNkV+08D+knaRtIawPD8HmZmZmZm1uRqmBcUrqyzPg4BHgZmAu0L1p5JGo96O7AV8DLw9YhYJGkMcBjwUt53aUR8Mb/XAcBlQA9gbEScV9gHMTMzMzOzlVbjvGAcMBTYCHgNODsibqhb7GVM1MzMzMzMzFpZKYc+mpmZmZmZtTInamZmZmZmZk3GiZqZmZmZmVmTcaJmZmZmZmbWZJyomZmZmZmZNRknamZmZmZmZk3GiZqZmZmZmVmTcaJmZmZmZmbWZP4Hy8saEzuIqMcAAAAASUVORK5CYII=\n", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ammonia = pd.read_csv('http://openmv.net/file/ammonia.csv')\n", + "datetimes = pd.date_range('1/1/2020', periods=ammonia.shape[0], freq='6H')\n", + "ammonia.set_index(datetimes, inplace=True)\n", + "ammonia['Ammonia'].plot(figsize=(15,5), color='lightblue')\n", + "ammonia['Ammonia'].rolling('2D').mean().plot(color='black', linewidth=3);\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### ➜ Challenge yourself: random walks again\n", "\n", + "In the [prior module](https://yint.org/pybasic09) you created a random walk. Here's that code:\n", "\n", - "bacteria multiplication problem\n", + "```python\n", + "from scipy.stats import norm\n", "\n", - "MUST COVER: show Random walk\n", + "# 20 steps for a regular person, showing the deviation to the \n", + "# left (negative) or to the right (positive) when they are \n", + "# walking straight. Values are in centimeters.\n", + "regular_steps = norm.rvs(loc=0, scale=5, size = 20)\n", + "print('Regular walking: \\n{}'.format(regular_steps))\n", "\n", - "MUST COVER: time series of website data\n", + "# Consumed too much? Standard deviation (scale) is larger:\n", + "deviating_steps = norm.rvs(loc=0, scale=12, size = 20)\n", + "print('Someone who has consumed too much: \\n{}'.format(deviating_steps))\n", + "```\n", "\n", - "MUST COVER: time-series of stability data from which a database was built on" + "In the space below, start with this code:\n", + "* create a series for `size=400` steps\n", + "* convert this to a Pandas series, using a frequency of 1 second\n", + "* plot the random walks for 2 people: one regular, and one with deviating steps. \n", + "* Remember: plot the **cumulative sum** of their steps, not the step changes. \n", + "* You can add horizontal lines to an existing axis:\n", + "\n", + "Here's how my plot looked. Run your code several times to see how different the random walks appear." ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, + "metadata": { + "hide_input": true + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3kAAAFJCAYAAAAmFeRRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3Xd4VNXWwOHfSe89hBQgCT10CL2LiAKCKBaQpoANu5drL1c/vdZrL6igAgpKVarSi9RQAwRCeu+9JzPn+2OHBCRAgAkJYb3P43PImTP7rBkQZs3eey1N13WEEEIIIYQQQjQOZvUdgBBCCCGEEEII05EkTwghhBBCCCEaEUnyhBBCCCGEEKIRkSRPCCGEEEIIIRoRSfKEEEIIIYQQohGRJE8IIYQQQgghGhFJ8oQQQgghhBCiEZEkTwghhBBCCCEaEUnyhBBCCCGEEKIRsajvAGrDw8ND9/f3r+8whBBCCCGEEKJeHDhwIEPXdc/aXHtdJHn+/v6EhITUdxhCCCGEEEIIUS80TYut7bVXvVxT07RmmqZt0TQtTNO045qmPVV53k3TtA2app2uPLpWntc0TftM07QITdOOaprW/WpjEEIIIYQQQgihmGJPXgXwnK7r7YE+wCxN04KAF4BNuq63BjZV/gxwG9C68r+HgK9NEIMQQgghhBBCCEyQ5Om6nqzr+sHKX+cDYYAvMBb4qfKyn4A7Kn89FpivK3sAF03TvK82DiGEEEIIIYQQJq6uqWmaP9AN2At46bqeDCoRBJpUXuYLxJ/1tITKc/8c6yFN00I0TQtJT083ZZhCCCGEEEII0WiZLMnTNM0BWAY8ret63sUureGcft4JXf9W1/VgXdeDPT1rVURGCCGEEEIIIW54JknyNE2zRCV4P+u6vrzydOqZZZiVx7TK8wlAs7Oe7gckmSIOIYQQQgghhLjRmaK6pgbMBcJ0Xf/fWQ/9AUyt/PVU4Pezzk+prLLZB8g9s6xTCCGEEEIIIcTVMUWfvP7AZCBU07TDledeAt4FftM0bToQB9xd+dhaYCQQARQBD5ggBiGEEEIIIYQQmCDJ03V9JzXvswMYVsP1OjDrau8rhBBCCCGEEOJ8Jq2uKYQQopGK3gFHf6vvKIQQQghRC6ZYrimEEKIxM1TAikcgLwGyomHI8/UdkRBCCCEuQmbyhBBCXFz4epXgeXeFre/Ars/rOyLQdSjOru8ohBBCiAZJkjwhhBAXt/97cPKF6RugRX848FN9RwQ7PoKPO0JxTn1HIoQQQjQ4kuQJIYS4sIwIiNoCPR4ACytoeRNknoairGtzf12HhANgNFafK8qCvz+FsgKI/fvKxs1NNE18QgghRAMkSZ4QQogL2/0FmFlCj8q2p816qWPiAdPfK+kw5P2jberRX+H7m2D3WUtEd38BpflgbgXR26vPV5RB6FKI2qp+NhpgwTjY++359/k4CE6uNf1rEEIIIRoASfKEEELULOkwHPwJgh8AhybqnE930MwgYb9p75WfAvNuhT9fqj5Xkgd/vap+vesLKC+BwgzY8w10GAf+AyBqm3r81Hr4tDMsmw6L74eCNDi+AiI3q1k/o6F63JNr1DF0iWlfgxBCCNFASJInhBDXO0M5ZEaadkyjEdb+C+zcYejL1eetHaBJB4jfd+71OXHnLqm8XDs+gopiiN5WPc6296AwHYa/CYVpam/gr5PBUApDXoCAwZAeBtmxsOpJsHGGMZ9DRQlseRu2vQ8WtqpozNkzfhEb1PH0XypxFEIIIRoZSfKEEOJ6t+pp+LyHmu3SddOMefRXNVs3/E2wdTn3Mb9gtVzzTDIW8gN80gn2fFm7sdNOnrtUMidOjeHkC0WZkHZcLdvc+w10mwT9ngS/XvDXyxC3G+78FjzbQsAg9fwVD0NBKoz6CLpPgeAH4cCPkHEKRn+skr/Dv6hrC9Ig6RC0GKD29EVuvqq3SQghhGiIJMkTQojrWewuOLxQJUh/vQx/vXL1YxoNsONDaNoZOt93/uPNekFpnkqi9s6B1U+r8yd+r934W96GxRPg1Dp1rw2vg6bB3T+qx6O3w9HFYKyAAc+ox4a8oPYGjvoQOt6lrvPuohK4uN3gP1At3wQY/DxYO4FnO+h8L3QcD2GroCQXIjapa4b/B2xcVMzZsfD3Z6o1xKl1V/y2CSGEEA2FNEMXQojrlaEcVj8Lzs3hsd2w8Q1VlMS3O7QdCb9OUvvn7lmgljj+8YSa/eo548LjmVuqPWuZETD+BzCr4btAv57quPh+yIpU92oSpJZcFqSDg+fF4049po7LH1KzgpGbYfALKnl0b6X22WVHQ/O+4N5SXdtqGLwQB1Z21eOYmavk7uRqldidYe8BU1eBtaOKv+v9EDIXNr8N+cng4KX2FrYbBceWw4mVaonnGc+dAsemF38NF1JWCCf+UMllTe+dEEIIcQ3Iv0BCCNEQ6fqll15u/1DtSbvtPbVX7tZ3wTcYVj8Dv02BiI1q39my6bBwvJq1WvMcHJx//lixu+H/vFSiuPNjcA2AoLE139e9ldqrlxsPN/8H7l0IQWMAHU7/efGYSwsgK1otqzS3VAndyA9h6Ivq8YBBKu6McOgy4dznnp3gndH/abjpFQgYeO55n67VCaJvd+g2GfbNgbA/oNXNKgHrfK/aB9huFDx1FB6onMWL2Xnx1/BP8fugolT9ess7sPKR6n1/ZUWQfuryxhNCCCGukiR5QgjREH3dH7Z/cOHHY3bC9vfVcsp2I9U5cwu1X81QrpK7W9+FEf9VM12JB+CuudByGKx6qnrZ4hnR20A3qAQv6SD0e0LNlNVE02DScnh0Fwx4Wl3XtLNaMnqp5Y5pJwAd2twGD/4JMzdDr5nVjwcMUnFY2EKHOy75NtGsJwyaffFrNA3GfgH3/gxenVTCBxA4GF6Ih/HzwLUFNOsN1s7qvait1BMwd7ialcyKgn2V7RpOrlbHTW+q38ucuNqPKYQQQlwlWa4phBANTXG2Kj5iZQ+D/33+44WZsGwGuAWqYiNnc28J9y6AnHjV+gDUOE6+0PpmaHsbfN1PVa5sNaz6eSmh4N4ahr2qEsSuEy8eo0/Xc3/WNGgzAo78qma1LKxrft6ZpZpeHVRi9U/+gwAN2o9W++1Mqf1o9d/ZbJyqf21mDv79IXpH7cc8M2N3YiXE7QEzC5UsnlqnZvGOLAJjOez+Cm579+pfgxBCCFELMpMnhBANTXq4OqYcVbNy/7T+BdUvbvwPapnmP7W6uTrBA9XIvPXN6tdW9tD7UYjfCwlnNTRPPgrendUSzbFfgqXt5cfd5jYoL6zuQ1eTlGNqtsylec2P27vDxN9g+FuXf39T8B+o9gPmxNfu+ohNaj9i10lQkKJmQHtMU60fNr4BJTng0Vb1GyzKqsvIhRBCiCqS5AkhREOTflIdK0ogLezcx05vgNDfYOBzKim7Et3uV9Un936tfi7Ohtw4aNrpymMGCByilkOueRZyE2q+JvWYmsXTtAuP0+YWcPK+uliu1Jm9fTG1mM0rK1SVPVvepFo13P2T+n1pPVxVAt03RxXFGT8PyovUfr1jy1WiK4QQQtQhSfKEEKKhyQgHKpOgpIPV58uKVE88z3Yw8NkrH9/aUe1LO74C8pLUUk1Q++quhoWVaoNgqIAlD5w/C2k0qj1sXh2u7j51qUkHsHVTbRyKc6oLqtQk5m8wlKllrxZWag+hhbVaZnomWex2PzTtCG1uhf3fwdIH1FJbIYQQog5JkieEEA1N+imVCNm6qoIpZyTsg7wEuPmNC+95q63eD4FuhP3fq6WacPVJHoBHKxjzmYr1n4VjcmKhLF8lPQ2VmZnqt3dkEbzXAubecuFrIzeBhQ0073f+Yx3Hq8fO7G0c+xXcvwy6TFQFWs40khdCCHHF0vJLeGHZUabO28esXw6SVVgGwO+HE/lkY3g9R1e/pPCKEEI0NBmnwK8XODSBxENnnT+tjt5drv4erv6qv13IDyqpcfS+dH+72up4p1pWuv1DaD1CjZt4QM0aglrS2ZANeRE8WkN2DBxbpvZIerY5/7qITdCiP1janP9Y14mqNYOti/rZ3l3ti8yJhSO/qP17Tj51+jKEEKKxe2dNGGtCk2nv7cTuqEziMou4J9iP1/44jq7DgFYeBPu71XeY9UJm8oQQoiEpK1RFPzzbqobdaSfUMk2AzEiwtFMJmSn0eQyKs1TvOFPM4p3ttndVnAvGwSedYck0+PMl1Zy9STvT3svUvIJg2Gsw/E3188lV51+TEweZp8+tUHo2TatO8M7m6q+OWdEmCVUIIW5UxxJzWXk4iZkDA/nj8QF8M6k7Ycl5vPr7cfoGuuNub8Wnm07Xd5j1RpI8IYS4lmJ2wqKJNVfNhMrZOh082oBvD9UzLqVyOWVmhGqRcLGiJZejRb/q5O5qi678k42z6tnn0lz1sZuxCe78XjVOt7I37b3qirOf+j0IWwUVZfDDKNX3Dqr7DLa8QJJ3IW4B6pgdY7IwhRDiRqPrOu+sDcPN3opHhrQE4KZ2Xnx5f3fuDW7G91ODeXhwIDtOZxASc25l4wqDkSUh8cRlFtVH6NeMLNcUQohrKXQJnFqjkr2WQ1WyZyirTnwyKvcQeLZVe/JALXVs3kclef/sT3c1NE3N5q18xLTjnuHfHx7dWf2zX7Dp71HX2t+uWiGseRZid0JqKAx+Xu3Hc/JVv0+Xw7mZms28kiTPaIT8ZHD2vfznCiFEI7IvOotdkZm8fnsQTjaWVedHdGjKiA5NAZjUpwVztkXxyMKD9A50I8jbiUAPe+Zsj+JwfA7tmjqy6okBWJo3zjmvxvmqhBCioUqsrJZ5aq06rngEPusO+anq5/RToJmDW0twbKpK8MfvVTNJObGqYbkpdb5Xza61uc204zYW7W5Xx0MLwLM9lORC+HqI2q5aJ1zurKq5pZohvJIkb+Pr8Emn6mqoQghxg1q8Px5Hawvu63mBnquAnZUFn0/sRnALV44m5PDBn6d49OeDxGQWMn1AACdT8pmzLbLq+rS8EuZsi6Sk3HAtXkKdk5k8IYS4VspL1B47gJNrVePs48tVlctl02HK76pHnlugKskPagYveptq0K0bwb2VaWMyM1OzVaJmHq3AqyMUZcK01fBlb9jwOpTmXng/3qW4+l9+kpcZCXu+Vst3N78NExdf2b2FEFetwmAkLb8UHxfberm/ruvkl1bgaG2BZqrl+9eR3OJy1oYmM76HH7ZW5he9tl9LD/q19AAgr6Sc06n5+Lvb4+5gTWpeCZ9tisDdwRoPB2teWhFKen4pTraWTOh14eTxeiEzeUIIca2kHgdjheqZlpeget4BDH1FNd/+qB2cXH1uH7kWfaEgVVWrBNMneeLS7vsFHlwP9h7QYZxKuDUz1fz9Srj6qzEux4bXVNuM3o9A+DqI33dl9xZCXLVPN51m4Ptb2BSWarIxQ2KyeGdtGLquX/CasgojM+eH0PH1P+n8xl/M3x1rsvs3ZDEZhWQWVPcs/eNIEqUVRu7t2eyyxnGysaRHCzfcHVQLojfGdMDHxYYXl4cyc34I9lbm+LrYsuZosknjry+S5AkhRF1KPQ7f36xmbs40Nh/yokoSIjepNgaDZ0P/p1T/uNs+gNEfVz+/eV91PLRAHd0Dr2n4AnBtUV0Vs9Pd6ujbo3rP5GWP5w+F6VBaUPPjiQfhm4GqfQNA6FKV/A98VlX9tPesLgAjhLimdF1n5eFEDEadWb8c5EBs1qWfVMlorE7gErKL+GprBCXlBnRd541Vx/l2exQHYrMv+Pwf/o5mw4lUbu/iQ0dfJz7fHEFxWeNYWngh+SXljPpsB/3e3cyLy4/y++FEft4TS7umjnTydb6qsT0crNnyryH89cwgPp/QjT+eGMC4br7siswg46yk8nolSZ4QQtQVo1HN1iXsh91fQtIh9QHduws0662u6f2wOg5/EyavUE3K7c7q6ePRFmxc1DJOO48rTyyEaTTrBa2GQ/epVz6Ga2WFzZwavoWP2wPzx0LqMVg2A1Y/A8tnQrM+0GeWKtDT/2k185t0+MpjEEJckeNJecRnFTN7RFu8nW2ZPHcfC3bHnJPAnVFSbqg6v/FEKp3/8xfP/naYXREZ3PX1Lt5ff4ovNkewJyqLY4l5ACzaF1/jfZNzi/l002lubt+Ed+/qzGujO5BRUMrPexv3bN76YykUlhkY0taT5QcTeWrxYU6m5DOhV3OTLFXVNI02Xo7c3sUHJxtLRnfxxqir+17vZE+eEELUlcM/Q8I+cGkBh35WDbF9uqtiHf2eUMVV/AdefAwzM7UvL3y9atAt6pemwaSlVzfGmVnB7Jhzl+YWZcHC8eDQBGZuVhU9Q+apPyMTFlc3Xe82Cba8Dfu/g7FfXl0sQojLsiY0GXMzjQm9mnNXdz9mLz3Cq78fZ2NYGl9M7IZjZaXHjSdSefa3w7g7WDOsXRN+2BVDM1dbVh1JYvnBRJo62TCkrSdztkeyNTwNDwcrBrdpwprQJF67PQhn2+qKkUajzn/+OEGFUee10ervjF4BbvRr6c4326K4O7jZOdc3JisOJdLC3Y5vJvWgpNxIYk4RWYXldG9eQx9SE2jr5UhLT3vWHE1mUp8WdXKPa0Vm8oQQoi6U5KpqiM36qOqV5YWqgbZPN/V4u1Fwx5e1q87YvI86uresu3jFtXOhhuhHf4OyfLj7R5XQT/xN9Rac+BtYO1RfZ+uilo2GLlWJoRDXmZJyA59vOk1MRmF9h3JZdF1nXWgy/Vq642ZvRVNnG+Y/2Iu3xnZgZ0QG987Zw6ojSby4/Cgz5ofg52qHk40F3++MJriFK6ufHMjaJwcyfUAAyx7rx4d3d8HOyoJjiXlM6evPA/39KSk38vvhxKp7Go06L68MZf3xFJ4d3obm7nZVjz0zvA2ZhaX0ensjj/9ykJyisvp4W+pMcm4xu6MyuaOrL5qmYWtlTqsmjvQKcMOijtoeaJrGqM4+7I3OJC2/pE7uca3ITJ4QQtSFE7+riowTfgXvzmo2JmYH+Ha//LHO7MuToiuNg60rWDufW2FT19W+S++u6s8LgKUtdL675jF6zYSDP6nZ4n5P1HnI4sZQbjBirmmYmdVtxcY526L4eGM43++M5uv7u9OvlUed3s9UjiflEZNZxEODqr9w0zSNyX39aeZmx2M/H+SJRYewsjBjYu/mvDY6CGsLM06l5hPgYY+1hTmtvRx5dXRQ1fPfuqMjX22JYFKfFrjZW9HR14k526Jo7+2El6MN/10XxrpjKTw+tBUPDzp3T3ZPfzdWPNafFQcT+HlvHBZmGp/c1+2avR917Y/DSeg6jOt2bXuDjuniTXp+KeWGCxfBuR5oF6vi01AEBwfrISEh9R2GEELU3k+3Q24CPHFQzdbF7IQ1/4IH113+vjpDBWx+C3pOB5frv6yzAOYMAgsbmP6X+jnxIHw3FEZ9BD1n1G6MuSNUAZcnDlx+vz4h/iElt4Tx3+yib6A7H9zdpc7uk5hTzLCPttLT342U3BIi0gto6elA30B3Xh7VHhvLi5fEry8RaflMnbef3OJyts0eUlWh8WxJOcWk5JXQwccJa4srex37Y7J4ctEhknNLMDfTsDDTeOrm1jw6uOVF96B9vCGcTzed5vspwdwc5HVF925IjEadWz7ZjqONBSse61/f4TQYmqYd0HU9uDbXykyeEEKYStpJcGkGpfkQvQMG/7v6w7f/AJi158rGNbeA4f8xXZyi/nUcDxteVcmdb3c4tFAlfR3H136MLvfB6qdVBdemHesuVtHo5ZeU88CP+0nILmbpwQRmDAykbVPHOrnXu+tOouvwzrhOuNhZ8sPfMRyMy2bBnlhaezkwpa//FY2r6zqn01TCaG7imcjQhFwmzd2LpbkZix/qU2OCB+DjYnvVvfN6+rux6bnBzNsZTX5pBQ/2D8DLyeaSz5s1tBXrj6Xw0opQzM00Wns58NbqE+yPyaaznzO3dmjKvT2bXTd99f48nkJEWgGf3te1vkO5bsmePCGEMIWIjfB1X/hxNBycD+iX94Fd3Fh6TFNLNv/+BFKOwZHFEDRW7berrXajAE21VxA3vJJyA4YaKjxeSrnByKxfDhGems9nE7phb2XBp5vC6yBCiEwvYNWRJGYODKSZmx2ONpY8Oaw1P0zrSffmLszZFkW5wXjZ4xqNOm+uPsEtH2/niUUHKa0wXVuB6IxCpv2wDwdrC1Y81o+OV1m2vzbsrCx4/KbWvHhb+1oleABWFmb8794uWJhpPPDjfga+v4Xt4RkMbO1BXFYRLywP5dGFB4nPKiImo5CS8nPfo7T8EibP3ctrvx/jSHxOXbysWjMadT7ddJqWnvaM7uxTr7Fcz2QmTwghrlZ6OCx5UC2lTD6i+uE17Qyebeo7MtFQ2ThBrxmw438QuwtsnFUPvMvh0ETt1wxbBUNeqJs4xXUhp6iMwR9spazCSJCPE2+P60i7pk6XfJ6u67y68hjbw9N5765OjOniw+nUfD7fHEFYch7tvS89xuVYdiABczONKX3PrVqoaRqzhrZi+k8hrDqSxJ3d/Wo9ptGo89ySI6w4lEj/Vu6sDU0hs2AfE3s3p3tzV5q52V16kBpEZxSy+WQa83ZGowMLpve64rGulQ4+zmydPZTfDydyKiWfaf398XO1Q9d1vt8RzbvrT7L+uGoNMLC1Bwumq1Y+JeUGZs4/QFhyHnujs5i/O5b37urEvT3P3x6wLzqL02n5TDRRC4Oa/Hk8hZMp+Xx6X1eTz8reSGQmTwghrkZFKfx6P1hYwdRVMG4OoKky90JcTO9HwNwKDGUweTk41/6DbZX2o1VPvawo08cnrhuL9sWTW1zOHd18icko5Nlfj1BxiRmx+KwiXlweyuL98Tw+tFXVB/oZAwJxsrHgheWhJp0RMxh1lh9MZHAbT5rUMDt1U7smtGvqyNdbIy8ae35JOSsPJRKVXgDA0gMJrDiUyDM3t2Hh9N58fG8Xjibk8tTiwwz6YAvzdkZTWmHgv+vCmDpvH+n5l25yHZacxy0fb+Ot1SewtjTjxwd6EujpcMnnNQRWFmbcHdyMV0YH4eeqklJN05g5KJDfZ/Xn/+7oyKQ+zdlxOoO/IzJUkvzbEY4m5PD5hG6EvHIz/Vq68+aqE8RnFbFgdww3fbiV//11is82nea+b3fz8opjLAlJqFU8J1PyauwhWJOScgNfbolg9tKjMotnAlJ4RQghrsb2D1VRlEnLoNXN6lx+Cjh4STEMcWkxO8HeEzzbXtnzs2Ph084w/C3o/6RpYxPXhXKDkUHvbyHAw55fZvZh/bFkHll4kJdGtqOTrwt/R2RwVw8/Ajzsq57z1dYIPvzzFGaaxuS+LXhtdNA5szJnxpjStwVT+rZgd1QWY7r4XFEvNqNRR9Ngx+kMpszbx1f3d2dkJ+8ar11/LIVHFh7g0SEtef7Wduc8pus676wNY/7uWEorjHg6WvPDtJ5MmbePQA97ljzSt+o1lBuMnE4t4JON4fx1IhUvJ2tS80qxMjfDx8WG+Q/2PqcVwT89uvAAO09nsPrJAbRwt7/gdderknIDN324FU8nGzr7OrNgTywvj2zPzMrqnYk5xdz68XasLMzILCwjwMOemMxCdB1u7+JDVmEpITHZrJzV/4KzvRUGI2+tPsFPu2N5ZVR7Zgysrgx6OD6Hj/46RUdfZwa19qRPoBu5xeVMnruP0MRchgd58eqooIv+Ht2oLqfwikmSPE3T5gGjgTRd1ztWnnMDfgX8gRjgHl3XszX1f+CnwEigCJim6/rBi40vSZ4QokHKiYMvekHr4XDvgvqORtyo5gwCc2uYsaG+IxH1YPXRJB7/5RDfTQlmeJAXuq4zc/4BNp1M5cxHPEtzjQf7B/D4Ta04EJvNtB/2c1vHprx2exDezjUXCnl7zQm+21Hdy/HuHn6XXXXTaNQZ+dkOSiuM2FubE59VzL6Xh1208uSLy0NZtC+OedOCualddZXITzaG88nG04zr5svwIC9eXB5KYWkFRl1n9RMDCfI5P9kwGHXeXRfGmqPJvDm2I24OVjz4437sLM1Z/eRA3OytznvOyZQ8bv1kB0/c1IrnbrnCL1+uA7/uj+P5ZaEAPDwokBdHtj/n8WUHEnhuyREeHdKS2be0JT67iKScEvoEupFZWMbIT3cA8N5dnRnarsk5zy0pN/DowgNsOZWOo40FPs62rH96IJqmUVphYOSnO0jJLaG0wkiFUadvoDvZRWVEZRTyxYRu3NKh6bV5E65D9ZHkDQIKgPlnJXnvA1m6rr+radoLgKuu689rmjYSeAKV5PUGPtV1vffFxpckTwjRIC15AMLXw6x9qqqmEPVh67vqv9kRYH999BsTV6fCYOSDv05xLDGXyLRCrCzM2PKvIVX7l5Jzi3l5xTGGtvVkSNsmfLbpNEsOJODpaE25wUhTJxtWzup/0XYF5QYjH28Ip6mzDeGp+SzcE8fyx/rRvXntW8BsC09n6rx9NHezIy6riGn9/HljTIeLPqek3MCdX+0iObeYTc8Nwc3eit8PJ/LU4sPc1d2PD+/ujKZpHIjNYtL3+5jQqzmv3R500THPdjQhh/Ff76ZPS3d+nNbznJ6Auq4z65eDbA/PYOfzQ3GxOz8JbCwqDEYmz91H26aOvH57UI376/JKynGyqXn2Niw5j6cWHyI8tYDxPfx4dXQQzraWGIw6j/9ykHXHUnh7XEeMRp1Xfz/OmicH0MHHmc83neajDeH88EBPege4sfRAAp9sPE1haQXfTw1mYGvPun7p17VrnuRV3tQfWH1WkncKGKLrerKmad7AVl3X22qaNqfy14v+ed2FxpYkTwjR4BRnwwetoffDMOLt+o5G3MiSDsG3Q+COb6DrhPqORtSxcoORZ349zOqjyXTxcwZN4+FBgRdcAnnGkfgc3lh1nKj0QlY81u+y9pgVlFYw7KOtNHFUyWFti2E8vCCE/THZ7H7xJuKzivBztatVH7zw1HxGfrqDO7v7MmNgIGO+2ElnPxcWTu+NlUV1OYm8knIcrS0uuwDIz3tjeXnFMZ4d3oYnh7UGILuwjFd+P8aao8k8eVMrnm3Es3imUlph4LNNp/lmWxSeDtbc3sWbiLQCtpwhJw1WAAAgAElEQVRKr1qimV1YRq93NjKlrz93dPXlrm92MTzIiy8ndq8ap6C0grzi8qtuP3EjaCh98rzOJG6Vid6ZuVxfIP6s6xIqz52T5Gma9hDwEEDz5tL8VwjRwJxcC8Zy6HBnfUcibnRNu4BDUzWrLEleo/fqymOsPprMSyPb8dCglrV+XpdmLix/tB+lFcbLbjjuYG3BSyPb89TiwyzcE8vUfv6XfE5qXgkbw9KYMSAAawtzWjWpfd+9Nl6OTB8YwJxtUew4nYGDtSVfTOx2ToIHXHCW6VIm9mrOgZhsPt4YTrfmLvi52jHp+72k5pUwe0RbHh4UeOlBBNYW5swe0Y4RHZrywrJQFuyJxdrCnKdvbl21B8/V3oph7bz4LSSeX/bG4elgzeujz515dbC2wMFaCv6bWn28ozV93XLedKKu698C34KayavroIQQ4rKcWAnOzVUjayHqk5kZtLkFjq+EijJV6VU0SqdS8vk1JJ4ZAwIuK8E7Q9O0y07wzhjTxYelBxJ4f/1Jbg7ywreGWZfEnGLmbIskObcEg1HHYNSZ0OvKvqh/alhrVh9JJim3mIXTe9PEsXb94mpD0zT+b1xHjiWpKpwWZhoVRp3lj/Wjs99l9KoUAHT2c2HtUwMv+Pid3X1ZfzyFrs1c+G5KMJ6ONTeTF6ZVly0UUiuXaVJ5TKs8nwCcvXnFD0iqwzhEYxW5BebfoZpQC3EtFeeoP39BY6SCpmgY2twKpXkQt7u+IxEmEJdZxE+7YvhkY/g57QQ+3RSOvZUFs4a2uuYxaZrGO+M6YdThlRWhVWXxMwtKmbczmocXhDD0g60s2hdHeGo+m0+mMaStJ/4eV1ad0s7Kgh8f6Mm8aT3p38r0e03trCz4elIPSssNGHVY/FAfSfDqyPAgLxZO783ih/pIgncN1eVM3h/AVODdyuPvZ51/XNO0xajCK7kX248nxHkqymD5TDWTAuDkW126Xohr4dSZpZrj6jsSIZSAwarCZvh6CBxc39GIKxSXWcQ7a8OqGlaD2iv2n7EdOZGUx9rQFJ64qRWuNVSFvBaaudkxe0Rb3lx9gvu/38vYrj68/+cpsgrL8HO15b5ezXh4cEt8XWzJKizDzurKZg3PaO3lSGuv2i/zvFwtPR1Y/eRA7K3NTTpTKM6laRoDWktRqGvNJEmepmmLgCGAh6ZpCcDrqOTuN03TpgNxwN2Vl69FVdaMQLVQeMAUMYgbhNEIv89SCd7QVyBqC6SdqO+oRGNXnA3ZMeDTTf18ZDE4NwPfHvUalhBVrB0gcAic+ANueVst4RTXlcPxOdwzZzfmmsZTw1pzRzdfftkby3c7oknOLWF/TBaO1hbMGFC/+8Ue6O+PrZU5b68JY3dUJp18nVk4vfd5LQxqak/QEAVc4UyjEA2dSZI8XdcvtNN7WA3X6sAsU9xX3IC2vgOhv8FNr8Kgf0FxFhz4USV/8qFGmIrRAKnHwLuyJ9T6l+Dor/DQVigvhuhtMPxNWaopGpbO98Cy6RC3C/wH1OopqXklpOeX0sHH6bIrFArTen/9SZxsLFj1xICq3nUv3NaeuKwiNp9M45agpjw0KBBnuysrNmIqmqYxoVdzBrfxZG90JqM7+2BpLv/+CtHQSCkbcf0oyoK/P4NOd8PA59S5Ju2hvAhyYsEtoH7jE41H6FJY8RDcv0wVVjm2DHQDrHoKrB3B3hN6zqjvKIU4V9vbwNIejv52ySRvT1Qm/10bxpGEXAAGtfHkoYGBFJVV4OdqV2NjaVF3dkdmsisyk1dHn9uc3NxM46v7e1Bcbmhw1Qd9XGwZ182vvsMQQlxAw/obQ4iLObIIDKXQ/+nqGZQmlWV408IkyROmE7lZHTf9R82OGEphwDOw82N1/pb/AytZ4iMaGCt7aH+7Ws4+8gOwOL/Aga7rzPs7hnfWhuHnasvsEW2xNNf4fHMEk+buBcDJxoI9Lw3Dzko+ItSForIKnvn1MMm5JbjaWdHR14mdpzPwcrLm/t7nV6I0N9MaXIInhGj45G8N0bCVF0NZIdi5Q8g88OsFTTtWP+5Z2aw07QS0G1k/MYrGRdchZgfYeUDKUcg4Dc16w7DXIfU4pJ6A4On1HaVopMoqjOf1Arssne+Go4shdAl0vf+8JcVfbI7gow3hDA/y4n/3dMGxss/YXd39CE3MJbOgjOeWHGHVkSTu7Vm70vcxGYW8t/4kw9p7MaKDF6EJuYTEZnMyJQ8PB2veHNvx0oPcQN5eE8ZfJ1IZ0MqDjIJSvtkWhcGo89YdHa+4vYEQQvyTJHmi4aoog/ljIfmIWqKZGQF3fHPuNdaO4NJciq8I08mKgrxEGPkh7J8L6WEQ/KD6sHzfIigvBCu7+o5SNDLlBiPf7Yjis02n6RPozptjOtLc3Q6DUef3w4lsCkvjXyPaXrBIRLnByJH4HHzceuPj0lwVqNr4Boz9EtqMAGBJSDwfbQjnzm6+fHh3F8zMqhNAdwdrhrRtgq7rfLs9ivm7Y7knuFmN+/Ryiso4kpBLt+YuWFuYMeuXgxxPymPdsRT+tURdo2ngYmtJdlE5U/v509LTweTv2fVo88lUft4bx8yBAbw8Sq1EKSitICKtgC5+zvUcnRCiMZEkTzRcf70C8XvV7N2hBWDjAh3uOP+6JkFquaYQlyNsFXh1PH+Zb8wOdQwYDJ7tYPeXEFT5587cAszlg5i4NF3X2ROVRWJOMR4OVgxp2+Scx1ccSiA1r5RJfVpwKiWfl5aHcio1n/6t3NkfncXNH2/D392OknIjcVlFmGmwMyKDryd1p19LVYo8p6iMNaHJbDuVzq7ITApKK2jdxIH1MzdhHvEX/PmyapDeZgQrDiXw4vJQBrTy4N27Op+T4J1N0zQm9W3BqyuPcTg+h27NXQEwGHU2nEjhp12x7I3OxKhDUycbujRz5nhSHt9O7oGdlQV7ojLp2syF3oFuFJYa6PPfTaw9mswTw1rX7Rt+HSgsreCFZaG0a+rIv0a0rTrvYG1B12bSn00IYVqS5ImGKWw17JsDfWbBiLdVXzJLW/XfPzVprxqiV5SBxfVRslnUs7ST8OskcG8ND29XTaQ3vgG9H4boHeDgBR6twbMNBAys72iFCei6ftXVI1NySwiJzSIlt4Tk3BIyC0oZ282Xof9I4AC+2xHFO2tPVv384d1dGN9DFalIyy/h+WWhlFUY+XJLBAWlFTR1suG7KcEMD/IiObeY77ZHk5hTRHG5kX/f2paOPs7MnB/ClLn7eHNsR/oEujH1h33EZxXj62LL7V18cLWz5KutkayKKOeObpMgdCl62gm+3RbJf9edpG+gO19P6n7J5aDjuvny7towPt8cwTeTepCaV8KMn0I4lZqPn6sts4a2IsjbiU82nubP46lM7tOCWzo0BTinF5ajjSXBLVxZEypJHsCc7VGk5ZfyzeQeWFvIskwhRN2SJE80TMeWqibnw/+j1v20G3Xha5sEgbECsiJVwifEpez9BswsIfM0rHkOEg9Axin1ZYJmBi2HSXuEayA+qwhrS7MamxDrus6msDQ6+Tnj5XR1TYrjs4qY8N0eZg4MZGo//6rzBqPOrsgMMgpKsbEwZ0SHphec4UrLK+G2T7eTXVQOgK2lOTaWZqw8nMRDgwIrC5io5KnCYOSHv2PoHeDGu3d15uUVoby0IpRWTRzo2syFuTuiqTAY+XJid9YfT8HH2YYnhrWuKq7h7WzLa7cHnRfDssf68eSiQ7y0IhRbS3Nsrcz57eG+9PR3RdM0jEadLafS+XhjOKM6e2PRJIiKvd/xXvQJRnf25aN7utQquXCwtuCpm1vzztqT3D1nN0k5xZSWG/h8QjdGdvLGvPI9Gtbeix2n0xnY2vOCY43s5M2bq08QmV5wQy/ZTM0r4bvtUYzu7E33ytlRIYSoS5LkiYYpfj807wPmtegHdCaxSz0uSZ64sOQjYCgHt0DVzLzrBFVufu/XYGEL476FzW9BbrzM3plYWl4Ji/bFA1BhNJJRUMrh+FzCkvMI9LBn47ODz0uuDsRmM2N+CC52lrx7Z2du7di0VvcqKTdgMOrYVyZMJeUGHll4gITsYj788xRjuvjgam9FTlEZTyw6xI7TGVXPvbl9E969qzO7IjPRdZ2xXX0BlXA+v+woRWUGFs3sQ5CPE042FpRWGHlr9Qm+3R5FWYWRN8Z0AOCvE6kk55bw5tiOBHjY8+XE7oz5cicP/LCPN8Z0YOGeWEZ39mFUZ29Gdfau9fvoZGPJ3Kk9eW/9SXZFZvD5hO7n7NEzM9N4bngbZswP4YEf9tM3z4pZehnPBVvx6J3dLpjA1uShQS3xc7Vj9pIjuNhZ8cuM3rT2cjznGisLM4a197roOGeSvBt1yWZ4aj5bT6Xx1/FUDEad529tV98hCSFuEJLkiYYnLwnyEsDv8dpd79EWrBzVXqpO4+s2NnH9Wjpdzdx5d4GKYuj9iEr4Koqh410QMAia9YI9X0HQ2PqOtlH5cksEP+2OBdQEqbu9NYEe9ozv4cfSAwlsC09naLtzlzz+uCsGRxsLmrna8cjCA8yZ3IMRHS6d6E3/aT/7Y7IZ1q4JgZ72HIzN4XhSHi/e1o731p/kiy0RjOzkzbO/HSYpp5g3x3ZgYGtPtp1K4601YQT/38aqsdo1daJtU0cW749ny6l0Xr89iL4t3aset7E05+1xnbCxNGfuzmh6BbgxspM3P+6Kwc/VlpsqX5OrvRXzH+zNowsP8NTiwwDMGtrqit5LczONl0Ze+MusYe2bMKaLD6GJuYQaVZI6K6gULiPBO2NkJ2+C/V2xsTTHyebKGnA3dbYhuIUryw8l8siQlnXaNLuswkhEWgEBHvbYWl3ZcsjSCgP/XnqUAA97nr65zSWvzywoZcGeWHZFZJJTXMZLI9szpG0TCkor+HzTab7fGY3BqOPpaM2LI9vRzE2KNgkhrg1J8kTDk7BfHf161u56CytoOQTC/1Ll72WZnfinoiyV4Hm2UzN6AYPBS826cPun1de5Baj+YsJkyiqM/HEkidGdvfnsvm4AVTNK5QYj28PT+XFXDEPbNSE9vxQHawvySspZfyyFqf38ef7Wdoz4ZDtfbI7gliCvi+6rO5qQw98RmfQJdGN/TDZ/nUjFxdaSl0e2Z+agQKLSC/lpVwzz/o7Gx9mWxQ/1oUcLNwACPAJo5+3EprBU+gS689Tiw3y26TT/vrUtb60+Qf9W7kzt61/jfZ+/tR0HYrOZveQIP/wdzf6YbF68rV3VskY1vj0rZ/Xn4w3hWJhrtG3qWONYV0vTND6boN5nynrBO7NVYaqgMVc0Xk1LaS/Xw4NbMnN+CAv3xPJAf9P3M80vKWf2kqNsPplGmcHIkLaezJvas9Yzl/FZRYQl59E7wJ0XVxxlbWgK1hZmTOvnj4vdufu8DUad5QcTaOJkg9GoZngzCkrp6OtMhVFn2g/76eznzMnkfMoMRib0asazw9vi6Xh+z0IhhKhLkuSJhid+H5hbQ9POtX9O6xGqWmJKKHhfxvPEjSHxgDqO/ABs3VRhFXFNbDmVRnZROXf18DvvQ7eluRn3927BxxvD+XTjab7eFoG7vTWdfJ0x6DqT+7TAysKMmQMDeWlFKLsjM+nXyuMCd4K5O6NxsLbguynBVfvbzk4Knx7eml1RGQxu48kLt7U/r8F0n0B3+gSqmboH+vvz+eYITqflY26m8cH4LhdMGqwszPjy/u68/vtxCkrLubVDU+7rdX6PORtLc168yCycyVnZqS8u0o5fu3vW4Ob2TRjY2oP/bQhnTBcf3B0unfDEZxVxPCmPXgFuuNmfX1Dr/fUnORSXw7huvszfE0NYcj5T+rbATNOYuzOaH3fF8OCASyeUafkl3DtnN0m5JVXnJvZuzi9741h2MJHp/xjjl72xvPp79fsZ6GHPDw/0pIOPMyXlBj7eEM6eqEym9fdnVCdvukjVTCFEPZEkTzQ8CSFqSd3lVMpsfYs6nv5TkjxxvoT9qqCKTzfVW1HUieNJufxryVF6+bvyQP8A/D3sWX4wAQ8HawZeIDmb0LsZX2w5zccbw+kd4EZ6QSnrj6cwtK0n/pX7ze7s7sv/NoTz9bbI85K8knIDiTnFWJmbseZoMlP7+Vc1+P4nb2dbdvz7plq9lukDAvjh7xjCUwv43z1d8HGpobLvWXxdbPl+anCtxr6mGkCLGU3TeP32IG79ZAf/XnqUj+7pct4M2RlJOcU8svAARxNyAbAw0+jazAWDruNmZ8UbYzpwMC6br7ZG4mJnye5lmdhYmvH91GCGVvb5i80s5N11J+np70YnP2fS8kv4ZmsUDjYWtPS0p3tzV/xcbcksLGPmTyFkF5Xz6X1dOZmST1MnG6b28+dkch4/741lfHc/Pt4YTq8AN/oEuvPhX+H0DXTniZtakZBTzKhO3lX7P695Ei+EEBeh6bpe3zFcUnBwsB4SElLfYYhroaIM/usHvWaq1gmX49shqmLijA11Epq4ji24EwpS4dG/6zuSRissOY+J3+0BVHPnCqNO/5Ye7I3OZGpff14ZfX61yDPm746hrMLIA/0DKDcYWbwvjiFtm1QleQBfbY3g/fWnWPpIX4L93arOz/r5IGtCk9E00IBts4eabN/TikMJRKUX8uzwNlfdfqHebH4bdnwELyWB5dUvvbwa83ZG8/baMFztLHnvrs7nFW3RdZ0p8/ZxIDabZ25uQ0dfZ7aGpxESk42tpTlHEnLQgAqjTgcfJ36e0YeDcdm42lmds/w1q7CM2z/fSXG5ge+m9ODlFceISCvAqOsYKz/yWFuYUVphRNPg28mqdcXZlh1I4LklR3C3tyKzsAxQS27js4pY99TA84rQCCHEtaBp2gFd12v1jaLM5ImGJTUUDKXgdwXfiLceAdveU8s9m7SXGRuhGI2QGAIdxtV3JA1GVHoBuyIzic4oZMbAALydLz5LdUZRWQWP/XwQXxdb3h7Xqep8dmEZk77fi42lOYsf6oOtpTm/7ItjSUgCRh3GB/tddNwpZ+11MzczZ1oN+7am9PXn5z1xzF56lLVPDsTWypz1x5JZE5rMPcF+ONpY0tzNzqSFLcZ1u3jc14Um7UE3QEZ4va9yeHBAAH0C3Zm99Agz54fwxpgOtHC3Z0lIPG28HLGxNGPH6QzeGtuByZV/Js4udBOXWcRjvxwgNa+Uzyeofn9nlteezc3eioUzenP3N7u56+vdWJmb8eMDvegZ4EpEWgEHY7OJzijCx8WG7i1ca2xpMKqzN++sDcPS3IzFD/Vhw4lU5u6MZsaAAEnwhBDXBZnJEw3L3m9h3Wx45jg4X+YHrOSjMKey9L2ZpZq18Wxr+hjF9SU9HL7sCWO/hG6T6juaehebWcjw/22nzGAE4O4efnxwd5dLPq+swsiM+SFsD09H02Djs4Or+p69szaM73ZEseaJgQT5OFU9x2jUySoqw6MWe7BqY1dkBhO/28uEXs25o6sPjy86hKeDNb8/3r9OqzZe19JPwZe9YOxX0O3++o4GgOIyA08sOsTGsFQAnG0tyS1W/Qf7Brrz84zeF9z/aDTqlFYYa1U981RKPs8vO8pjQ1pWNWu/HMm5xdhbW1RVFo1KL6CFu/05BXWEEOJaupyZPPlXUTQs6WFg46waoV8u787w2B4Y8wUYyyF6u+njE9efy63W2sh9sTkCTYO/nhnElL4tWHk4kaSc4ks+7/U/jrM9PJ1/36qafn+/IwpQH4R/2hXDuG6+5yR4oKpomirBA+jX0oNp/fxZtC+Oe7/dQ3ZhGe+P7ywJ3sW4t1J/nx5bVt+RVLG1MuebSd15/tZ2fDC+M/tfvpmNzw7iqWGt+fjerhetimlmptW6PULbpo6snNX/ihI8UHs4z24dEejpIAmeEOK6Ics1RcOSHq763l3p/pcm7VWZ/E3/qayoONOk4YnrUMJ+sHYG9xuvEfM/xWYWsvxQIlP6tqCNlyMzBwby89445u6M5tWL7JkLicli0b44Zg4M4LEhrUjMLmZJSALT+gXw5ZYIjLrOM7XoKWYKr4xqX9V/LsDDXvqOXYqZOXSbrJayZ8eAq399RwSAhbkZjw5pWfVzqyaOPDNclkEKIYSpyNefN6i0vBL2RmXWdxjnSz8Jnlf5YVHTwLdHddl8cWM701bDTP66+3JLBOZmGo8MVh+um7nZMaaLD4v2xZFdWVzCaNTZF53FlpNp7InKpKisgldWHsPb2aaqOfRDgwKpMBoZ8cl2/jiSxIP9A65ZsmVhbsagNp4MauMpCV5tdZ+s/l48uKC+IxFCCHGNyEzeDerpXw+zKzKT/4zpwNR+/vUdjlKUBUUZaibuavkGQ/h6KM4BW+lTdMPSdfXFQdeGsRepPq0NTea3kAQe7B+Al1N1lcVHh7Rk5eFEPtt8mtdv78B/14Xx3Y7oqsctzTXKDTpf39+9qlR8C3d7/u+OTmQUlNK/lXuNhStEA+Lsp9rMHFoAQ14A85pbTAghhGg8JMm7AR2Jz2FXZCbezja8/sdxdF2vsZrdNZd+Sh09TFAsxa+HOiYdgpZDr348cX3KjYeyAmhigi8OrmMH47J55tfD9Gjhyr9vPff/rzZejtzXsxkLdsfStZkLc3dGc2c3X6b28yejoJRt4enYWppza8dz9zVN7H1+s2/RgPWYpr74+qIntBkBw15XzdKFEEI0SrJ+6Qb0zbZInGwsWPfUQIYHefHm6hPsisyo9fNT80p444/jFJVVmDawjMok72qXawL4dFfHRKnKekNLO6mOnjdug+KMglIeXnCAps42fDu5BzaW5xeteO6WtthamvPU4sO42Vvz+pgOdGnmwrD2Xrw5tiMvjmx//faJE0qbW1VRKld/2PsNRG6q74iEEELUIUnybjCR6QWsP57ClL7+uNhZ8cm9XQnwsOfJRYfZF53Fz3tjOZ6Ue9Exvt4ayY+7Ylh2IKHmC3QdjIbLDy49HCxswdkEMwS2LqrQRuLBqx9LXL/STqjjDTqTp+s6zy89Sm5xOd9M6oH7BSpdejhY89TNqjDN67cH4Wwry/kaHU1Te/MmLFYtZhLkCzAhhGjMJMm7wXy7LQorczOm9fcHwN7agq8n9aCgtJx75uzm5RXHmDJ3Hym5JTU+v7C0oiq5+2l3LDX2WVz1JHx/M1SUXV5wGafAo7XpCmT4BasPMtdBL0hRR9JPgqM32N6Ye8bm7oxm08k0XrqtHe29nS567fQBAWz91xBu7+JzjaIT9cLSBpp2ksJUQgjRyEmSdwNJyS1h+aEE7gludk7vqjZejiyc3pv/3dOFX2b0prjcwOO/HKS8slny2VYeTiS/tIKJvZsTkVbA7shMtpxM4/mlR5m7M5qY9AI4uRaSDsL2Dy4vwPRw0zYv9+0BhWmQFWW6McX1Je2EaqvRyBSVVbD8YAIl5TXPmFcYjPzf6hP835owhgd51aq4kqZp+HvYmzhS0SD59lD7la9kxYUQQojrgiR5N5B5f0dj1FX5838K9nfjzu5+9GvlwX/v7ERIbDYzfgohJqOw6hq9vIRT25bQydue10YH4WZvxeylR3n8x+2cOLKXt1af4Mkvf1MVMh29YcdHkHSIorIKDMZLzKaVFkBunGmKrpzR+hZ1PPG76cYUDU9JLmx5Bza8Dnu+qZ65NRorvzi4NkleUk4xoz/fwZKQ+Dq9j67rzF5ylGd/O8L0n/aftze2tMLAIwsP8P3OaKb18+er+7vLfjpxLr9gVZAo/WR9RyKEEKKOSJJ3g8gtKufnPbGM6uR9yd5SY7v68sbtQYTEZHHLx9t544/jnIqIIOZ/N/Fm0Vu85ncQG0tz7uvZjIycXNa6fsQfli+y5oHWdCw/pga572dwaELBkscY8N8NTPh2D4WlFynUknlaHU1RdOUM1xbg1wuOLTfdmI1ESbmBsorzZ2qvS8dXqkbPu7+A9c9D8hF1PicGKoqvyX683OJypv2wj2OJeXzw5ylKK+puhmTe3zGsCU3mliAvdkdmMmXuPgoq/98qqzAy6+dDbAxL462xHXhjTAcszeWvefEPvsHqKPvyhBCi0ZJ//W8ASTnFTPtxH0XlhqomyJcyrX8Am/81hDu6+fD7nhM4LLgFr6II8i09Cc78A4CnhrViZ4fVtCg+gWYsp0Pmn4xziyVNdyXBth1rvWfhkH2Ceyz/JiQ2ixk/hZBVeIF9eimVyaGpZ1063gWpoWpGJ3qHml001l1yE5tZSHxWEaBmVL7aGsHh+Jw6u98Z28PT6f/uZtaFJp9zfsWhBB5eEEJantpjmZJbwv+tPkHw/22k37ub+GZbpOmrpF5rSYfA2hmervwzFLVFHdPC1LFJUJ3cVtd1PvzzFGO/2MmIj7cTnVHI40NbkZZfyspDiSTnFvPsb4fZHp5eq/GMRr3mPa6V9/p1fxyT5+7l7TUnuCXIizmTe/DFxO4cis9hxk/7ic8qYuq8fWwMS+XNsR2Y3NffhK9WNCruLcHGRaoPCyFEIyZ98hq57eHpPP3rYUrLDXwxoTtBPhcvvnA2Lycb3h/fhSyv/bhtyiR+zK80K4+Fdf+GpMNYx+3BM3IpDH4eIjbB4UV007NYZ2zLsx9to9wQwFaX9vzb4jeCR93GX+uWMeqtcHD25ZN7u9I70L36ZlFbwb6JKrxiSkFjYf0LsOk/KsaKYlUQZuiLJr1NXGYRX22N4NeQeMw1jan9/NkXnUVoYi7ezrH8+cwgnGzqpmLhqZR8Zv18kKJyA48vOsRHFUbu6ObLrsgMZi85SoVR52hCLiM6NGXRvjgqjDqjOnmTU1zOu+tOcjwpj88ndKuT2K6J5MPg0wWcvKFJB4jcAgOeqU7yTLnP8yzf7Yjiiy0RBLdwpUszZ+7r2ZwhbT3ZciqNr7ZG8sWWCOKzill+MJE7u/vyzrhONbYvAJXgPfjTfhKzi/nw7i6UGYz8d20Yt3RoyiODW/LHkSSeXxZKoKc9MwcF8vjQVsQQX1IAACAASURBVGiaxshO3pQbjDz962EGf7AFKwszPry7C+N7+NXJaxaNhKapfXkJUnxFCCEaK0nyGild1/l002k+3XSaNk0c+WpSd1p6OlzRWG7Rq8A1gGbdRqj9Txteg7WzVXW2tqNg8Atg7wlr/4UFYBV4P93KXHlueBv+n737Dqvqyvo4/j30IqiIqIgKimKv2DX2EhOjKSaaZqopZlImbZK8k5lJJmXSk4mZ9GaqiekaTeyx94IdbCgWwAJKh/P+sSGIFMV74SL8Ps/Dc+4959xz1gVM7mLvvVa4x+vw4XCGzhnFUE/Y1nQMNx+dyPOztvH93X3NDfLyTJLXYrD58OFMgY0gvB9s+wWCmkOjzrDwefOX7I5XQ3a6meYX0g5ajyr35b9ds5+3FsSyK/EUnu4Wt/SN4GRGDh8s3k2gjwcPj4ji5d+289zMbTx3RYdyX9+27TLXUyWmZnLLx6vw9XLn+8l9+b8fNnH/1+uZMj+WI6mZRAT78++x7Xng6/V8smwPl3duzAPDWv05Zfc/s7bx9sI47hsSSWRIQKn3Sc3IJqCCklSH5GTB4c3Q6y7zvMUgWPkuZJ2CbTMguBV4l/6+SpKXZ+PmVvr3PDMnlx/XJ/Dcr9u4pEMj3ry2S5Gf0Z0DWvCXL9cR6OPBN3f2ZuH2RN6cH0vzYH/uGdyStKwcft6QwPr4E3h7uPHQiCh+WHeABdsTCfDx4PK3lpBng5e7G+vij9OqQS2embGVDo1r88PkvrifEduYzo3Jysnju7UH+NeYdrRqUL73KzVUWLQpjnUqCfyDXR2NiIg4mZK8auqz5Xt5bc5OrujSmH9f3h4/r/P8UZ88ArsXQb+/mgTMtw60uwI2fAH1W8MV75iWB+2vhNmPQ24WI0ZdyYgGBVPk6sHI580i/91/0Dp5NXde9C/e+HkZp/77KP5jXwEPH1OspcVgp73/InpPNsnp1Z9CYCikJMB3t8O6qZBy0KwH9KkD920A3zrk5tnFPkgX2HE4lVkxh4gMqcXK3Uf5eOkeOjWpw5OXtmV4uwaE1TXJ08Q+4QT5e9Gwtg8p6dm8s2gXPp5uDIwK4aKWwWcthBF75CSPfbeRlPQcnr2iPV2a1GVX0ika1vahlrf5WWZk5zJp6mqST2Uy7Y7eRIbU4uObe/D1qnhmxRwiOzePDyZ2p2k9P3697yKOpmURcUb1xNv7N+eTpXt4c14sr40veTTv+3X7eXDaBl64qgqOEB3ZArlZJnkH8zu07E2Y94yp8Dr69TJfnpGdy/O/biM9K5f6Ad4siUsi5sAJruvZjIdGRP35vQYz7fndRbuYvmY/qZk5dAyrzYvjOhb7WY7q0Ii9yacY0qYBbRoF0j08iB2HU/nfgjiu7BbGg9M2sDQumQAfD9KyclkWl8z+Y2n0iwxmyrVdeem37QT6enBTnwjGvb2UWz9ZjW3DOzd0K/X3clx0E8ZFN3Hseyk1S+tLYPGr8NkVcMMP4Bfk6ohERMSJrNLWgFQl0dHR9urVWjtwrvYlpzHy9UVEhwfxyc3dHaust/I9mPkQ3LUMChK3xO0w+wm4+D9mRKzANzfDnsXw4PaSe92t+Rh+vo/0SUt58913eJhPoElPiBoFc/4Bf91mRt4qWnY6rP4QFr+G7eHFkfaTaLDkSej3V9a1upebP15F9/Agnr+iA6v2HOWz5ftoEuSLt4c7ny3fS85plUJv6RvB46Na41FGcYuM7Fzu+WIdC3ccITvX5r4hLXlgWOkFZn7ZmMBfp23Az8sdP093DqZkUNvXk+Np2fRqHsSXt/cC4L6v1vPThgTevr4rI9uf//ft2Zlbef+PXcx9cGCxJBBg9H8Xs+nACSwLXrm6E5d3MYne4ZQMftt8iO2HU+nQuDbXdHdCE/vyWv0R/HI/3LsegiLMz/b5ZpCbCYGN4d514FFyA3CAv/8Qw9Tlewmu5UXSySzaNw4kIrgWv2xMoEGAD1dHh9GmUSAzNh1k9uZD2DaM7hTKmM6h9I0MPueiJrsSTzL81UXU8fMk6WQWL1zZkXHRYSyOTeLuz9eSm2cz+/6LihVF2hB/nKveXspV3cJ47oqODn2rRIrZ+Tt8da1Zt3rLLPD0dXVEIiJSBsuy1ti2HX1O5yrJu/CdPqUvOzeP699fwZaEFGY/cBGhdRz8n/aHF0P6UZi84uznZpyA9OOmqmVJju+D1zrAiOc4tPgT6p6MxdvKMVM9/YJh8nLHYi2nr1bs4X8Ld7H3aDr/9ZrCSPfVDM97nXTvEFMgxjLVCsPq+pKSnk1KRg5XdQvjoeFRHE7JICfPpluzc2+ynZ6Vy6PTNzJz00F+mNyX9o1rA7Bm71F+3nCQR0e2Js+2ueiF+YTV9eW9idH4eXkwZX4siamZ+Hq6M3X5Xl64siMHT2Tw6pwdPDIyirsHRjr0fTiSmsGAFxbQulEAX9zWC1+vwnVjm/afYPSbi/nbxa1ZtCOR5buSefWaznRrVpdxby/j4IkMvNzdyM7LY+otPenXsvKmfaVmZHNg6h20Sp6L26N7Cqf6fjrWFF+5+AXoeUepr58Vc5A7P1vL7f0jeOKStmTl5OHlYZK2NXuP8ervO1gal0SeDXX8PBnbuTG39Y/4c7S2vP7502Y+XrqHewZF8tCIwnWCCcfTSc3IIaphydMsD6dkEFzLu9RRPBGHbJsJX02AXpNh5LOujkZERMqgJO8CciozBz8v9zJH2+ZvP8IvGw5yZdfG9G5Rr8i5qRnZXP7WUhoG+vDIyChenL2dP3YmOaf4QnIc/LcrDHoCBjzi2LUK/DfafBhP2sFLuRO4xXchQVkJ0OtuGPlckVMzc3J5+bcdnEjL5vkrOzi119e0VfE8Mn0jXZvW4YquYWzftpEnd0/kG68xDLrnLY6nZfPS7O0MbB3ChO5NcLMsUjKyqePn5dB9j6dlMezVRdTz9+K/E7qw72gad3++lsycPCb0aEJobV9e/n0H393dh65NiyaQeXk2499dzqYDJ0jPzuXKrmG8VMJ0wfMxK+Ygd32+lmFtGvDGhC5/Fgh57LuNfL/uACseH4qnu8XNH61i1Z6jhAT4kJaVwye39CCqYQBj3lzCsbQsZt7bn5BAH4fjOZuM7FwmfriS/ztwJ+7+QbR5ZF7h92HD17D8rVJHJhbvTOLDJbtZtCORtqGBfHtnnz+TuzMdSckgLvEU3ZrVLfWc8sS8NC6Jga1CylzzJ1LpZjwEq96Dib9ARH9XRyMiIqVQkleFHTqRQS0fD2p5e7B6z1Gue38F0eF1eXpMe5qXUBjlRFo2g19eQPKpLO5w/5nLPZYwN68rO8Ku4t8TR/L8r9v4YuU+anl5kJqZg4ebxXNXdCj/+pyju8ByLzoK98tfzbq1+2MgoIGD7zzfzEdg5TuAxVOtviVt21yed3sLrv8OIof8edr2Q6n8ddp6NiekAPDmtV24tGOow7fPyslj2up4nvwxhr6RwXwwsfufH97T3hqIp7cvnrf+6vB9yjJny2EmTV1NwazP9o0D6dq0Lp8u24uXuxsDo+rz7o0l//uNPXKSUa//QecmdZh6Ww+8PUqu1ng+Pl6ym3/+vAUPN4vIkFq0C63NrzEHGdWhES+N6wSYP0rc/NEqYhJOMPXWnmYk88R+dh1JYdSne+nQuDafD0ol0SucG6YfpEmQH9f3asbJzGwOHEtnfI+mBNcqffpkaX7ddJCdR04CYAErdh9lZexBtvjcyrs5o3Af9k9q+Xiw8/BJHh4Rhb93yWtQ44+mMeSVhQT5eTGmSyi39osgJKDik1KRKi3rFLzdH+xc+Mu6kqfbi4iIy5UnyVPhlUqUdDKT4a8uJMDHk6fHtuORbzdRz9+LjftPMPL1P/js1p70iCi6+P2F2ds4lpbF93f1ptXXD+OWmcJduT+x/cBaLp8SQGziKW7rF8GkAc15Z+EuhrZpQO8W9UqJoAzTbwM7DyYtMM/TjsL6L0wFSmcleGAKY6x8ByL6c/XgHozcmEGXPn24Jr/oSmqGKev/5cp9BPp68s4N3Xhtzk6em7mNoW0alFqC/lwsi0vm/q/XcTglkx7hQbx9fbciozN+TbvApulg286v8nmaoW0bsOChQazYncyR1Exu7N0MX093NieksHbfsSJT+c4UGVKLuQ8OoH6At1MTPDC9ESPq12Ll7mRiDqSwcMcRMnPyuLF3YeLv7+3BF7f3JCUjhyD//FHNb26i+ZGtvD/oXX6e+x1eX75HjMdAknLuJjUzh9s/LfwDzcxNh/jqjl7k5NrsTjpJt2ZnL/aQmJrJ5C/WctpSSDzdLV4b4I7HihxyG3bihV+3/Xks9shJPrgpusTvz7Mzt+JuWfwwuS8Nayu5EwHAyx8GPQ7Tb4X45dCsj6sjEhERBynJq0Qv/7adtKxc/Lw8uOXj1fh7ufPF5L7U8fPkireW8vcfYphxbz883N04dCKDX2MO8sXKfdzcJ4Iu/kch7QBc8jIAbWY8iP/RzYTXa8uDw6Pw9XLn75eW0PQ56xRs/Bo6Xw8epUw1zM0xzchzMyH1EAQ0hFUfmJ5yve9x7jchvB8ER0HPO2ndMJCLWoXw4sYUxo7Kw9vDnad+3sJ36w5wY+9w7h3SkiB/LwJ9PJnw3nLeXhjH/UNLL1hyNq/+vgN3y+Ljm7szoFX94tMcG3Y0BVmO7TFVOH99BHr/BYIdW/NWkqb1/Ghar+jaro9u7s6+5LSzlsA/sziHMw1oVZ8BreoDZq1nZk5escTaw92tMMFLPwb7TRLXb/kk+nimkWdbRGVv46NbetChcW2WxiXRINCHQycymDR1NWPeXELC8XQyc/JKnJYKZmoqgJubxcxNB8mzYdb9/YmsXwsbM5rnsewNAK4fdw1uWzK5qGV9th9O5aFvNjDmzSXk5tnk5tn0alGP7uF1ycm1+TXmEA8Oa6UET+RMrUaChy9s/l5JnohINeCyORmWZY20LGu7ZVmxlmX9zVVxOOrYqSzenLeTsVOW0O8/80g6mVnk+Hdr9/OPH2P4eUMCX62K58be4fxybz+u7BrGlOu60qpBACEBPvzfJW3ZfjiV9xfv5skfY+j13Fz+9fMW2jQM5IFhLSF2jrlgiyGmhYG7Fx913cWXk4oWyihm1fvwywNmjVJpkmNNggfmPtkZptdY5FAIaePgd+gM3rXgnpWmfDdw50XNSTqZyUuzt7P1YArfrt3PzX3C+edl7f5MJHq3qMfoTqG8OS+W1XuOntdtE46ns3LPUcb3aMrAqJCS17E1yq9eeGgj7P7DVANd85HZlxwHn4w2LSUqSKCP55/FWKoCy7LOPnK6ZzFgw5Xvg399rGa9WN98EuHWIboFm0ImA6NCaNMokEGtQ3jl6s4cT8vi8i6NCfDx4JOle4pcLiUjm3cXxdH7+bnc8OEK8vJsftqQQOuGAbRuGIiHuxue7m6mmunuRVC/DXUbNGHyoEg6hNXmqm5hPHt5B9wsi4hgfyKC/flx3QEe+HoDD3+7kcZ1fLn9ouYV9j0TuWB514JWw2HLj5CX6+poRETEQS4ZybMsyx2YAgwD9gOrLMv6ybbtLa6I53zYts23a/bz7MytHEvLpn8ohKSs5aVZ9Xj+qk5/nvPybzs4cDyduqte5maf+tw3ZDi1/Tx5+epORa43ol0D+kUG83z+tLOb+oRzbc+mtAypZRKS2DkQ1MKUiQdoNZKgXT9CrefLChLWfmoeL3oJOk0oeerl4RizdfeCHbPNtM1TR5w/ileCPpHBTOzdjPf+2M1vWw4T6OPJPYOLj5w9c3l7Nu0/zt2fr+WXe/sVWUeVm2fz0ZLdjGjXsNRRrl82JgBwWacy1vWFtDPrEg9uhMxUs2/XArNd/7lJKtZ/Dv0eOK/3Wi3tWgCe/tDmMmg7Bstyp2v8ctj9DuxfBVEji5w+ulMoo/N/Bn5eHny6bA+Pj2rDifRs3pofy6zNh8jIziOqQQBLYpN5bc4O1uw9xsNnTmHNyYJ9y6DLDcVCurZnU67tWdjOITs3jz1Jp4hLPEnLBgEOTfkVqdbajjVJ3r5lZtaFiIhcsFxSeMWyrN7AP23bHpH//DEA27afK+X8ql8dRkREREREpOKcc+EVV03XbAzEn/Z8f/6+P1mWNcmyrNWWZVWPspoiIiIiIiKVwFWFV0oqXVhktM627XeBd6GKtlBIO2qmUO5datZpDX8a6rVg68d/oc2eT1l2xQreX5tK3JFUFvg/BicPmyIV13wG3gHw6RgICIX7NhQWRPlktJkS2PMuuPi0aZi//R+seAce3WOqoBX4+T7Y9C08HAeepxWSOLzZrCmb80/oNB5GvwankuDVdtDxGrjsjaLv5ZV2ZqH9pa/Cf8LBPxju21h6oZYqYFlcMhPeW87g1iHM23aEp8a0Y/uhVD5fsY8e4UGkZecQcyCF/i2DWbP3GFk5eSx+dPDZC24smwKzHzeP710P7w8xxWtyMuCORfD+UIgcBvtXwqnEYq0fapT1X8IPd8IdfxSuZyww40HTr+5ve8Gt9OmRu5NOMXPTQW7tF1F8GuWO2dhfTgA7D6v7bTD4/8C3jjn24cWmMNCkBU59SyI13sZp8N3tcNtcCDunPxaLiEglKU9vZFclefuB0xu5hQEJLorl/PgFmfYCHa8usrtF/6thz6fMmzeLZUdbc2/rVNixDS5+0SRre5dBXo45OTXBVDLrdA2cOGASMyyIm1v0XvtWQGjXogkeQJvRpjjIrgWFa5/2LoWPRgE21GkKvSeb/f7BJuFb/yUM/jvUMhUUSTsKKfuhQTuz8H74v02vvCqc4IEpxjKmcyg/rk+gjp8nV3ULw8LC39uDNXuPkZKew+vjOzOmc2NOpGeTmJp5bhUVG+YnK8FRZv1j84EQMx0adoBGnaDlcNj2C9RqAIFhJpFuPqhm9pWKmwd+9aBB++LHwnqYoj+J26FBCVVf80UE+zN5UAnVS+NXwrSJWA3bQ5Oe5lpbfoSh/zRrRvevgt53O+2tiEi+yKFmbfL2X5XkiYhcwFz1yXQV0NKyrAjLsryA8cBPLorFqbyadCXPcicgaR1pWbmMyp1nylJ3usb8D3PfUtg+05Srrt8alv7XFEiJ+RawIfoWSNoBx/Nns2ZnwMH10KRH8ZuFXwTetWHrz+Z5brZpYF67CTywGe7fBMEtC8/vNdlU0Vz1fuG+I/m1bhrmf1DvdSdEXez070tFeGJUG+r6eXJL3wj8vDzw9XLn8VFtmH5XHxY9Mogxnc0M4Nq+nkSGFG80X6KGHcDNw1SZA9PXD6D1pWbb516TwEz8GYb83VTi3Pydk99ZFXM8HmY9bn4XC2RnmA+BUReXnOAWfDhc9ALEzYe5T8N7QyAp9tzu+csDUCsErpsOo16E2+dDnSbw493w0z2mxUXn6x1/byJSlF8QNO0FO2a5OhIREXGAS5I827ZzgHuA2cBWYJpt25tdEYvTeflDSFt6eOzC080m7OBv5oOwT23zP86EdXAi3rQQ6PMXOLwJZj0G6z6HxtHQ43Zznbh5ZntwA+RmlZzkeXiZEbztM0yvu+X/g8StcPF/oHZY8fPrtzLJ5cp34HB+cnc4/9te0mhMFRcS6MOyx4ZwT0kjQefLtw7cMhsGPGqeR40yCV7n68zzpj3htt+hfhR0GGcqcs5/BvLynBdDVbPyXVg+BTZ9U7gv9nfISjXtPEoS1By6ToStv8DUsbD4FTiwBjZ+dfb7JceZiq+97ioccQ7tDLf+DtdOM9Nm79tgfp9FxPlajTT/Bo/vc3UkIiJynlw2x8y27Zm2bbeybbuFbdvPuCqOiuAWFk03z938p1sqbmlJ0PYyc6BpQYNZy/xPtMM4aDvGfIhO2m6mU9ZvbdbqFUzZjF9htmElJHlgpmymH4Ovr4O5T5nrth5VenDDngIPH/hwBCx60Uz39Ktnph9egHw83XFzO/f5yeckLNqsmwTzV+3xn5tRpDO5uUP/v8LRXbBrvnNjqAhZp2DtVNhSyqD53qXwemdY/KoZXQaz3faLebzincL9Md+Z35uIASVfy7LM2s+HY2H8l3B/jFn3eS6jAwUj0wWjpwXc3KHVCDNtthxz0kWknKLy/x+yXaN5IiIXqhq4kKgShEXjmZ3KFae+NglV5DCzv0kPsNwgrLuZiubhDVd/Cg9ug3GfmJEPyzJTBHctMKNz8SugbnjJ/e3ANEf3qgWxc6HL9TCmjKbnYEagbptjRvrm/RsyT0L/h/Sh+Xy1GW2SnTUfuzqSkuXlwo7f4Kd74eU2ZqrjtBtg5XtFz9v4jSkGdCrRrDOc9ZgZnTyyxSSxYT3MqPPepSZZ3DHL/IHC/SzLen3rmD861G5sErRDm8z607Js/RlCu5ScWItIxQuOhHqR5r9raUdLPy92LnxymflvhIiIVCmuKrxSvTXOX4+0a74ZjfDOXw/mE2gqBDYq2gidWiHQbmzh89aXwPrPzLTK+JXQYlDp9/LyM1XQvAPMB+lzUTsMJi00FT9rhynBc4SHN3S+1kyVTT1cejLuKrMfhxVvmz8ERF1s/pCwbArMfMiMjEXfYqbufj8JmvY21V8XvQjL38qvZGmZryvfg3cHwsL/mKm92WmlT9UsTauR8PuTsHO2uW9JThyAA6thyJMOvnERccjwZ8wfhD66GCZ8aaZgF7BtU0hs2Zvm+YavYdBjrolTRERKpJG8ihDcCrwDzeM2lxU91v9BU72sLFEXF34gPnWk5PV4pwtpfe4JXgEPLzNSogTPcV1vMhVT13/muhjycs1o3M7fC4v2JMeZEbvO18Mju+DK9yGivxk9bjkcZj5i1nzOfsz8vl7zmZmeOuJZ6DgeFjxvivQ07WVGk7vdDLsXmvV59Vub6ZflEdzKXGfH7MJ9sXPhywkmQYbCqZpn/rsRkcoVNdK0iElJgDe6mD/y7MtfPrB/tUnwutwAjToXrwgtIiIupySvIri5QeOu4OZppqiVl2XB6DcKE8UmPZ0bnzhXcCREXARL3oCE9a6JYfuv8N1t8PlV8Fp7WPAfs0bTw8eMinl4F57r4QWXv2Paanw61kwNHvS4SfDA/P5d8rKpzHrqSOHauIF/M6PGf90Kdy0rs/9diaz8tai7FkBWmklMf33EVJv9eBQseR3m/MO0sTi9KqyIuEZEf7hrCQz5h0n2fnvC7N/2s6lCPPxp82/6wJqyp3WKiEilU5JXUQY8apqLFzRvLq+ABnDFe2bdU0jpfcakihj9Rn6T+8vgwNrKv/+u+eDpDzf/ahreL3gWtvxg+iSWNIXUL8gkeunHTE/AM6dPetcy60RbDDYFgsAkimHRpn3B+fYFbDvGNJaf/4wp3pIcC33vh5NHzMh1sz5w3bfnd20Rcb46TU2Bqd73mP6USbGmam54f/Cta2am2HkXRvEpEZEaxLILquVVYdHR0fbq1atdHYZI2Y7vgw9Hmg9Ft1RyVbr/Rpvm7dd9Y9bLrHjbjO5d85lZC1qanXPM6+q1qLxYZz5sKsoWVHW9c4lp/XEoxiSUNbGxvEhVl3IQXm1rRva3/gSjXjItf/Jy4YXmZi352LMU/hIREYdYlrXGtu3oczlXn6ZEnKVOU2g71kzZzM2pvPueOADJOwvbGViW6TE38aeyEzyAlkMrN8EDU9ChcTSkJcNFD5ukrkE76HSNEjyRqiqwETQfaBI8MEkdmGnbLQaZ9bUXwB+NRURqCn2iEnGm0C6Qkw6J2yrvnrsXmm3zUnrWVTUeXqZa35i3TFIsIheGThPMtnE3M227QORQOHkIElwwVV1EREqkJE/EmUK7mG3Cusq7564F4BcMIe0q756OqhUCXa7TyJ3IhaT1JRDQyLSNKbL/UvAKMK1kRESkStAnLBFnCmpuqqJWVpJn27BroanuqYRJRCqSl7+prtv9tqL7fetA9E2mmNKxvS4JTUREitKnQhFncnMzze4rK8k7tNFMk2o+sHLuJyI1W2m9VXveBZYbLJtSufGIiEiJlOSJOFtoFzgcAzlZFX+vtVPB3RvajK74e4mIlKZ2Y+h4Naz9FDJOuDoaEZEaT0meiLOFdoHcLNM36t1B8P1dzmsUnJ0O7w0xjcOz0mDjNGh7WWEjcxERV+l8rSk8tXepqyMREanxPFwdgEi1U1B85evrwc3DTKmMmwejX4Ooix279pqP4cBqU8Xu6C7IPAFdJzocsoiIwxpHg4cP7Fns+H/rRETEIRrJE3G2uuHgWxcsd7juW7h9HvgHw5fj4bs7zAjc+chOh8WvQpOeUDfCJHxBLSC8nzOjFxE5P54+ENYd9vzh6khERGo8JXkizmZZMPZtmPgzhPc1hVhunw8DHoWNX8G6qed33dUfwcnDMORJuPJ98PA1Tc9LK4QgIlLZwvvBwY2QftzVkYiI1GhK8kQqQtRIaNK98LmHFwx6HOo0g92Lzu+aK9+BZv3Mh6jGXeHhWOhxu3PiFRFxhvB+gA37lrk6EhGRGk1Jnkhliuhv1qvk5ZXvdWlH4dgeaDW8cJ93LaeGJiLisMbRpuLvnsWujkREpEZTkidSmcIvgozjcHhT+V53cIPZNuzo/JhERJzF0wea9NC6PBERF1OSJ1KZIvqb7e5yfgA6tNFsG3VybjwiIs4WcZFZl5cU6+pIRERqLCV5IpUpMNRUxCzvurxDmyAwTP3wRKTq63YTePrB/H+7OhIRkRpLSZ5IZYu4yDQLzs0599cc3AgNO1RcTCIizlIrBHpPhs3fmx6hMx6EWY+7OioRkRpFSZ5IZYvoD1mphevsziYrDZJ3QiOtxxORC0Sfe8A3CKZeDqveh+VT4PAWV0clIlJjKMkTqWzh+evy9pzjlM3Dm8HOU9EVEblw+NSGi1+AqFFw0wzT13P5FHNs1Qewa6Fr4xMRqeY8XB2ASI1TKwTqtzbFV/o9cPbzD+WP+GkkT0QuJB3HmS+AzhNg3efgHwKLXzHT1psPcG18IiLVmEbyRFwhvD/sWw652Wc/9+BGc23vFwAAIABJREFU8KkDtZtUfFwiIhWh192Qm2kSPHdvOBQDtu3qqEREqi0leSKuENEfsk/BgbWln7N/tVnPsm4qhHUHy6q8+EREnCm4JXSdCG1Gw5AnIf0opCS4OioRkWpL0zVFXKFZP7Pdswia9ix+3Lbhu0mQmWKmdPaYVLnxiYg422VvmO2+5WZ7aBPUblz8vJws8PAq/Tonj5g2NLXDoGkv58cpIlINaCRPxBX860GD9qU3Rd+7FI7GwbCnzF+9AxpWbnwiIhWlQTuzPbyp+LG4+fB8E/jjlZJfO+ef8FJLmH4rTLtRUz5FREqhJE/EVcL7Q/wKyMksfmzdVPAOhLZjKj8uEZGK5B0AdSPMSN7pMlPhp3tNNeG5/4J5/y6axG39BRa/Ch3GQf8H4eRhOKK2DCIiJVGSJ+IqzQdATgbsXVJ0f8YJ2PwDtL8SvPxdE5uISEVq2L54kjfnX3AiHm78CbrcAItehLi55tjxffDj3dCoM4yZAtG3mP1x8yo3bhGRC4SSPBFXaT4QPP3MX6cLpB6Gec9ATjp0vdFVkYmIVKyGHeHobjN6B3A8Hla9Bz3vgGa94ZJXIKARLMlfxzfjIcjLhXEfgYe3WY8XHGWmd4qISDFK8kRcxdMXWg6Dbb9AXh6s/RReaQ0r34HWl0JoF1dHKCJSMRp2AGw4nD/dcu9Ss+1yg9l6eEHPO2H3Qlj0EuycDQMehaDmhddoMci8LjujUkMXEbkQKMkTcaU2l5l1JbG/w29/h7AeMHkljP9cLRNEpPpq0N5sD200233LzDrkkDaF50TfDF4BMO9pCGphkr7TtRhsZj3EL6+cmEVELiBK8kRcqeVwcPcy7RIyTsAlL0H9KFdHJSJSsWqHgX/9whG8+BWmH6ibe+E5PrUh+ibzeMSzxdsqNOsLbp5alyciUgIleSKu5BMIzQdBxnHoNCF/CpOISDVnWaYx+o5Zpin6ka3QtHfx8wY+BtdPh1Yjih/zrmUKWK3+CJLjKj5mEZELiENJnmVZ4yzL2mxZVp5lWdFnHHvMsqxYy7K2W5Y14rT9I/P3xVqW9TdH7i9SLXS5DvyCYdDjro5ERKTydBgH2Wmm9x02NO1Z/Bwvf4gcWvr09UtfBTcP+Pp6yDpVkdGKiFxQHB3JiwGuABadvtOyrLbAeKAdMBJ4y7Isd8uy3IEpwMVAW2BC/rkiNVfbMfBwLNRp4upIREQqT5NeENgYNn4Nljs07lb+a9RpCld9AInbYOYjzo9RROQC5VCSZ9v2Vtu2t5dwaAzwlW3bmbZt7wZigR75X7G2be+ybTsL+Cr/XJGaTUVWRKSmcXMz/UABGnU8/76gLQZD3/tg/Wewa6Hz4hMRuYBV1Jq8xkD8ac/35+8rbX8xlmVNsixrtWVZqxMTEysoTBEREXGZDleZbZNejl1nwKNQNwJ+eUAtFUREOIckz7KsOZZlxZTwVdYIXEnDEnYZ+4vvtO13bduOtm07un79+mcLU0RERC40DTvCJS9Dr7scu46nr1mfdzQO/njJObGJiFzAPM52gm3bQ8/juvuB0xcYhQEJ+Y9L2y8iIiI1iWVB99ucc60Wg6DjNbD4NWh/FYS0ds51RUQuQBU1XfMnYLxlWd6WZUUALYGVwCqgpWVZEZZleWGKs/xUQTGIiIhITTLiWdNa4ef7IC/P1dGIiLiMoy0ULrcsaz/QG5hhWdZsANu2NwPTgC3ALGCybdu5tm3nAPcAs4GtwLT8c0VEREQc4x8Mw5+B+OWmaqeISA1l2XaJS+KqlOjoaHv16tWuDkNERESqOtuGKT3Bpzbc9ruroxERcRrLstbYth199jMrbrqmiIiISOWzLOhyPexfCYkldXk6Q8YJOB5/9vNERC4gSvJERESkeuk0Adw8YN3Us5/729/hnf6QkVJ0v22bLxGRC5CSPBEREaleatWHViNhw1eQm132uQlrIf0YrPmo6P53B8KUHrDp23Mv4rLlR/h0LLzY0mxFRFxESZ6IiIhUP11ugFOJsLWMIt65OZC4wzxeNqWwkXraUTi4Hk4cgOm3woq3y77XyUSYfhtMuxGO74XARrBrPqQfd857EREpJyV5IiIiUv20HAbBUbDgeZPMleRoHORmQqdr4eRh2PCF2X9wg9leMxWCW8HuhSW/PicLZj8Br3WAzd/DoCdg8ioY+i9z/MAa574nEZFzpCRPREREqh83dxjyd0jaARu+hPVfwgfDISm28JzDMWbb6y4I7QIr3zfPD64329Au5uvgxpLvsWkaLHsT2oyGu5fDgEfA3QMadwMs2L+qwt6eiEhZlOSJiIhI9dT6UpNwzXwIfrgT4lfAV9cWFlk5vAUsd6gfBW3HwpHNkJJgRvLqNAW/IGjYEVIT4OSR4tc/shU8fODytyG4ZeF+n0AIaaMkT0RcRkmeiIiIVE+WBcOeMo/7PQA3/ADJsfD9naZy5uHNJjnz8IbIoea8uHmQsB4adTLPC7YljeYl7YR6kWbU8Exh3U2Sd65FW0REnEhJnoiIiFRf4f3gsf0w9J/QYhAM+xdsnwGxc83IXUhbc16DdlCrIcR8B8d2Q6POZn/DDmZ7aEPxayftKDqCd7omPUwPvuSdzn5HIiJnpSRPREREqjd3z8LHPe6AwDCY9xQc32eSOzCjfi0GQ9xc87wgyfOtA3XDC4uxFMjOMJU0g1uVfM+w7marKZsi4gJK8kRERKTm8PCCvvcWJm0FSR5A5JDCxwXTNAsenzld8+gusPNKT/LqtQSf2hC/0jlxi4iUg5I8ERERqVm63AB+weZxwXRNgOaDAAsCG5uG6gUadjRTOHfMNhU6D282UzWh9Omabm6m6EvC2gp5CyIiZVGSJyIiIjWLlx8MfgJCu5oqmgX860HzARAxoOj5BVM3v7jaVOhc9YEpugKm8EppGrQzzdZL69MnIlJBPFwdgIiIiEili77FfJ3puulmfd7pQjuDhy+ERZuWCVt/gvD+ULspePmXfo+QtqbZ+rHdpY/4iYhUAI3kiYiIiBRw9yjeEsE/GO7fCDf+CF1vgFOJsH3m2RO3kDZme3hzxcQqIlIKJXkiIiIiZ1MrxCR/kcPA0x9yMkovulKgfmvAMk3TRUQqkZI8ERERkXPl5QdRI83js43kefpCUHM4sqXi4xIROY2SPBEREZHy6HC12TbsePZzQ9ooyRORSqckT0RERKQ8okbC3cuhSfezn9ugnempl51e8XGJiORTkiciIiJSXgVFVc7lPDuvsK+eiEglUJInIiIiUlEKmq2r+IqIVCIleSIiIiIVJagFuHupjYKIVColeSIiIiIVxd3DjObFr3R1JCJSgyjJExEREalIUaMgfgWkHHR1JCJSQyjJExEREalI7cYCNmz9ydWRiEgNoSRPREREpCLVj4L6bWDzD66ORERqCCV5IiIiIhWt3eWwbxmkHnJ1JCJSAyjJExEREaloBVM2t5QyZTP9OMx+AtZ9BgnrYdO3EDO9UkMUkerDw9UBiIiIiFR7BVM2t/wAPScVP77pG1j2ZvH9Qc0htEvFxyci1YpG8kREREQqQ7uxsHdpyVM2dy2A2k3hrmVw1Udw6xzwCoClJSR+IiJnoSRPREREpDK0LWXKZm4O7F4ELQZCg7bQ/gpo0h26TYTN38Px+NKvmZIAc/4Jr7SFLT9WYPAiciFRkiciIiJSGUJaQ/3WZsrm6RLWQmYKNB9UdH/PO832j5cgcQekHS16PH4lTOkJS16Hk4chbn7FxS4iFxStyRMRERGpLO0uhwXPmymbAQ3Nvrj5gAXNBxY9t04Tc/6aj80XgE8dCO0MTXqZNXy1GsCkBfD9nZAcW0lvQkSqOo3kiYiIiFSWgimbc5+CrDSzb9d8aNQJ/IKKn3/pKzDha7jyAxj+jEn6Ug7CwuchoBHcNAPqtYB6kUryRORPGskTERERqSwhraH3PWYUbu9SaD4A9q8y+0riUxuiRhbfn5IAfvXAw9s8D46EDV9AZip4B1Rc/CJyQdBInoiIiEhlGvEMTPwZfOvCtpkmKWs3tnzXCAwtTPAA6rU0W43miQgayRMRERGpfBEXwSQnFkqpF2m2yXHqqycijo3kWZb1omVZ2yzL2mhZ1veWZdU57dhjlmXFWpa13bKsEaftH5m/L9ayrL85cn8RERERwTRNx4Kkna6ORESqAEena/4OtLdtuyOwA3gMwLKstsB4oB0wEnjLsix3y7LcgSnAxUBbYEL+uSIiIiJyvjx9oE5TSFaSJyIOJnm2bf9m23ZO/tPlQFj+4zHAV7ZtZ9q2vRuIBXrkf8Xatr3Ltu0s4Kv8c0VERETEEaqwKSL5nFl45Rbg1/zHjYH4047tz99X2v5iLMuaZFnWasuyVicmJjoxTBEREZFqKLilWZNn266ORERc7KxJnmVZcyzLiinha8xp5zwB5ACfF+wq4VJ2GfuL77Ttd23bjrZtO7p+/fpnfyciIiIiNVm9SMg6CakHXR2JiLjYWatr2rY9tKzjlmVNBC4Fhtj2n3862g80Oe20MCAh/3Fp+0VERETkfBVU2EzaaVosiEiN5Wh1zZHAo8Bltm2nnXboJ2C8ZVnelmVFAC2BlcAqoKVlWRGWZXlhirP85EgMIiIiIgI0aAeWG2z6xtWRiIiLObom700gAPjdsqz1lmW9DWDb9mZgGrAFmAVMtm07N79Iyz3AbGArMC3/XBERERFxRK0Q6PMXWDcVdi2ADV/BB8PhePxZXyoi1YtlXwCLc6Ojo+3Vq1e7OgwRERGRqi07Hf7XF1IPQfYps6/rjXDZf10bl4g4zLKsNbZtR5/Luc6srikiIiIiruTpC2PeNNM2+z8E3W+D9V/A0d2OXffEAfj4UlO9U0SqPCV5IiIiItVJsz7wt30w5O8m0XPzgEUvOXbNDV/Anj9g/rPOiVFEKpSSPBEREZHqxi3/I15gI+h2M2z4Ek4ln//1tvxotjHTIXGH4/GJSIVSkiciIiJSnbUcCnYuJG49v9cnx8GhTdDvATMd9A8HRwVFpMIpyRMRERGpzoJbmW3SzvN7/ZYfzDb6Voi+xbRoSFjnnNhEpEIoyRMRERGpzgLDwMO39CQvYV3ZSdvmH6BxNNRpAv0fhIBQmDYR0o9VTLwi4jAleSIiIiLVmZsb1IuE5FKSvG9ugg9Hwr7lxY8lx8GhjdBurHnuFwTjPoKUA/DDZLgAWnGJ1ERK8kRERESqu+BISCqhYEpyHBzbA3m58MU1kLi96PENXwEWtL+ycF+THjD0X7B9Bqz/vCKjFpHzpCRPREREpLoLbgXH90F2RtH9cfPM9tqvwd0Tvr0FcrPNvrw82PgVNB8IgaFFX9frbmjWF2Y9DikJFR29iJSTkjwRERGR6q5eS7Dz4OguyEgpbIMQNw/qNIMWg+HS1+BwDCx70xzbt8wkhp2vLX49Nze47L+QmwUzHqy89yEi50RJnoiIiEh1F9zSbJN3wg93wdt94eAG2L0IIoeAZUGbS6H1pbDgedizBNZ9Bl61oPUlJV+zXgvoex9snwmphyrvvYjIWSnJExEREanu6kWabdw8k5TlZsFnV0LWSTOKV2DUi+DhAx+Pgg1fQNux4OVf+nVbjTDbPYsrLnYRKTcleSIiIiLVnXctCGwMaz81z0f+B04lguUO4f0LzwsMhXtWwVUfQv+H4KKHyr5uo07gXduMCDpL2lFTDEZEzpuHqwMQERERkUpQL9K0Poi6BHrdmb8+7zj41il6Xq0QU03z9IqapXFzh/C+jid5qYdg71LY/its+RHcPOCBGNOyQUTKTSN5IiIiIjVBcCuz7XGb2Y56Aa541/HrhveHY7vhxP7ze/3O3+GVNvDtzbBjNrS/ArJPwbqpjscmUkMpyRMRERGpCTqNh553QcRA5143In+65+4/zDYjBb67Axa/ap7bNvz+JOxdZp7nZsOS1+FUknm++FUIDIPb5sEjcXD529CsH6x63/TvE5FyU5InIiIiUhOERcPFz5v2B84U0g58g2DHr2ba5gfDTH+9RS9DVhocWGuSujn/MOfHTDdJ38yH4PBm2LsEut8KYd1Mrz6AHreb9g07f3NurCI1hJI8ERERETl/bm5mNG/Lj/DJaLO+buDjkJUK234pnHYZvwIOxcDKd03Bl83fm3YOHj7Q9cai12x9CQSEmnNFpNxUeEVEREREHDPiWYgaBf7B0LAT+NUzffZWf2RG61qOgN0LYcZf4cAaGP4MrP3E9OrrfF3xAivuntBxHCx7y4wGevm55n2JXKA0kiciIiIijqkdZtb8RQ6FWvXN6F6n8bBvKWSegD73QLsrzGieVwB0mwij3wD/EOh1d8nXDO8Pedmwf2XlvpcCOVnwxyuFawdFLiBK8kRERETE+TqNN9s6zUwhle63Fu73DoBmveHhndCwfcmvb9ITLDfYs6Ry4j3T3iUw91+maXxmqmtiEDlPmq4pIiIiIs5XrwX0uRdCO5uRvcbd4JrPILzfub3eJxAadYY9iys2ztIkx5rtwQ3w1bVw3XTw8HJNLCLlpJE8EREREakYw58ubKpuWdBmNPjWPffXh/eFA6shO71i4itLchx4+sPYt0zV0MWvVH4MIudJSZ6IiIiIVE3N+kFuFuxfXfn3To41o5Gdr4X2V8GiF00RGZELgJI8EREREamamvYCLLM+zpkW/AfmP1v2OcmxUC/SPL74BfCpAz9ONs3cRao4JXkiIiIiUjX51oGGHWDXwpKP5+bAzIchKbZ8193wJaz6AGzbfH06Fla9X3g8JwuO7zUjeQD+9eCSlyBhnWnkLq6RmQqfjoFDm8zz9GOw6CXzeyBFKMkTERERkaqrzWjTiuH4vuLHjmwxDdPXfnzu18vOMAlcWhIc3QXHdsOu+bDqw8Jzju8FO69wJA+g3eXQ4w5Y/hZs+va83444YPcfsGuB6cEIsOYTmPe080d6qwEleSIiIiJSdXW82mw3Tit+LHG72ZanzUJyrEngAOJXmsQB4MhmOLan8BwomuQBDP83NO0N02+F9wZDzHfnfl9x3L6lZrtjthmB3f6reX44xnUxVVFK8kRERESk6qobDs36mimWtl30WOI2sz244dx72SVtL3wcv8JUzvSqZZ5vm2m2BUleUPOir/XwgglfwpAnIf04fH+npgpWpr3LzPbYbvOz27/SPD+40XUxVVFK8kRERESkaus03iReB9YU3Z+4zTRMt3Nh34pzu1biDsAylTvjV8CePyDqYqjfBrafluT51QO/oOKv960L/R+EAY9CbiYk73TorZ2Tle9B3PyKv09VlnUKDq4vbMnx6yNmRDYwrHCNnvxJSZ6IiIiIVG1tx4KHD2z4quj+xG3QfBC4ecDeMpqmH98HsXPN46TtULcZNB9g1vSdPAzh/aH1KNi7FNKOmh55QS3KjqlhB7Ot6AQjLxd++zvMfrz4SGZNcmAN5OVAx2ugfmszehvQyEznTdxm1lrKn5TkiYiIiEjV5hMIkUML12IB5GSawimNu0Jo17LX5c16DL64Gk4lm5G84Cho0qPweER/iLrEjAgufgWSdhZfj3em4Jbg7g2HKniq4LE9kJNuEtKEdRV7r6ps7zLAgiY9oeUws6/VSGjUyfzcEre6NLyqRkmeiIiIiFR9LQbBiX1mlA1MImbnmVGd8L6QsNZM6TtT+nHY+ZsZBdr8nZmKGdwSGnczUz0Dw6BuBIR2gbZjYOl/4eShwvYJpXH3hJDWFT+Sd+S05GX95xV7r6ps31Jo0M601WhzmdnXbmzREdVTybCnjBHdGkRJnoiIiIhUfS2GmG3cPLMtKLpSv7VZX5eXU3I/va0/Q24W+NQ2CVxuJtSPAu8AMzrY/gqwLHBzg6s/hWunmSmgUaPOHlPDDnAopmKnURYkeVGjYNM3NXNaYm42xK8ylU3BjML+dSs0H2gSdK8ASFgPX19v+ujVxO/RGZTkiYiIiEjVFxRhPtCfnuRZbmZULqI/1GkKC56DvLyir9v0jVlf1+tu0/8OzHRNgOu+geFPFz2/1Qi48Qdo0PbsMTXsaPrtpR5y7L2V5cgWqNMMetwOGSfgj5fPvZJodbF3CWSfMusoCwSGmq2bGzRsb3rn7Vtqkv2SeirWMEryREREROTC0GKwqYaZk2WSvKDm4OFtvgY/adbHxZzWqDz1kGmR0OEqaH9V4f76rZwTT2UUXzmyFULaQsQAM2K56AV4Kco0Aq8pts0AD9/C0dwzNexgRmjrNDXPj+2uvNiqKIeSPMuynrYsa6NlWesty/rNsqzQ/P2WZVlvWJYVm3+862mvmWhZ1s78r4mOvgERERERqSFaDIask7BnERzeYqZqFmh/pSnCMfepwrV5y94EbJPgBUea4/4hpg2CMzRoZ7aHKyjJy8kyLRpC2oCbO9z0C9w6x0xX/PlemP9c9a+4adsmyWsxGLz8Sj4ncpgZ7RyXn/geVZLn6Ejei7Ztd7RtuzPwC/Bk/v6LgZb5X5OA/wFYlhUE/APoCfQA/mFZlpP+lYmIiIhItRbRHyx3+OxKOBpXOJIGZtreiGch5QBMvRxWfWDW4HWdWDhyd+lrMOZN58XjU9skF84ayYubB4tfLXyeHGumH4bkTx21LGjS3Uwz7XwdLHy+eFuJ6ubgevMzbX1J6ee0Gg73bzTFc7xqaSQP8HDkxbZtp5z21B8o+FPCGOBT27ZtYLllWXUsy2oEDAR+t237KIBlWb8DI4EvHYlDRERERGoAn9pwycuQkmAqW7YaWfR4eD8zmjP9VtPovGkfGPVS4fHGXXG60C6mv15utqm46Yglr8OuBdByhFkTeGSL2R/Spuh57p4wZgoc3GhaPnS8xiS51dG2GWbt5Zk/65JYllm3qZE8x9fkWZb1jGVZ8cB1FI7kNQbiTzttf/6+0vaXdN1JlmWttixrdWJioqNhioiIiEh1EH0zDH7CTM/08i9+vO1lcN235vg1U8HDq2Lj6TTBNFTfNsOx6+TmmAqSAMvfMtsjW83IZXDL4udbFvS7H5J2wPYZkJ1ukr6K4qppodtmmGTdv965nR8UrpE8ziHJsyxrjmVZMSV8jQGwbfsJ27abAJ8D9xS8rIRL2WXsL77Ttt+1bTvatu3o+vXrn9u7ERERERFpPgCu+hD8gyv+Xi2HQe2msOp9x65zOMZUkKzdBDZOg5SDsH+lacru4V3ya9qONSNXc5+C//WBd/qbtYrOtnEavNoeTiU5/9plyckyiW54v3N/Td0I00A+L7dwX2YqZKU5Pbyq7KxJnm3bQ23bbl/C149nnPoFcGX+4/1Ak9OOhQEJZewXEREREbnwuLlD91tM1c8j287/OvErzPay/F5+U3qayqCty+jX5+4Bfe8zo3m52Wbf3iXnH0Nptv4EKfth4X+cf+2ypOwH7MKqmeciKML0RUzJTzFsGz4ZDd/dXiEhVlWOVtc8fez4MqDgN/sn4Mb8Kpu9gBO2bR8EZgPDLcuqm19wZXj+PhERERGRC1OXG8DdC1Z/cP7X2LcMAhtDi0Fmqql3LRj3MQz5R9mv6zrRTE+9ZxUENIJ9y88/hpLYtllz6OYBqz+EpFjnXr8sx/NXedUOO/fX1I0w24Ipm/ErIGEdxM6FnEznxleFObom7/n8qZsbMQnbffn7ZwK7gFjgPeBugPyCK08Dq/K/nioowiIiIiIickHyDzY93OLmn9/rbRv2rYCmvczzK96HBzZDu8vN2ruyuLmZKaOevtCkZ+GIoLMk7YC0ZBj0OHj4wJyzJJ3OdGK/2dZpUvZ5pwvKT/IKiq+s/tBsc9IhfqXzYqviHK2ueWUp+21gcinHPgQ+dOS+IiIiIiJVSuNusONXyEgBn8DyvfZEPKQmQJP8JO98K2U27QVbfjDJUXlGv8pSMP2z7VjIzjDN2M+8fm62qYDp5m6eH95iki1PX8fufSIesCCwHO8lMMyMOh7bDaeSYfP30HE8bPrGVC6N6O9YTBeIalprVURERESkEoV2MduDG8r/2oIplk17OhZDk55Fr+cMe5dCrQYQ1Bw6jTf7YqYXHs/Lg/cGF655S4qFt/vBvH87fu/j8RDQsHwVUt09zBq+o7thxf/M+ry+95kkfNcCx2O6QCjJExERERFxVGhns01YV/7X7loI3rUhpJ1jMTTsAJ5+zpuyWbAer1kfM220XgsI7Qqbvi08Z+dsOLTRJH4H1sAfL4GdC+s+M20dypKbA4tegk8ug5kPw+4/ih4/se/8RiTrRsCWH2HRi9ByuOk52HwgJKyF9OPlv94FSEmeiIiIiIij/INNK4XyJnl5eSZRihxiRqEc4e5pRqycNZJ3fB+kHIBmfQv3dRhnkrrEHeb5kjfMFEnfIPjlAdNuoUkvyDhupkqW5uQR+PgSmPe0ebzuMzMaeHo/vuPxpqVEeTUfCHWbwejXYfyXhfvsPNizuPzXuwApyRMRERERcYbQzuVP8g6sgVOJEFVGq4TyaNrb9NzLOOHYdbIzYO6/zOPTk7x2lwMWbPjSFIvZtxT63AP9HjBTVd094epPILhVYdGTkqx4B/avMkVmJi+HYU9B6kGTWIJJflMOlK/oSoG+98J9G6DbTYWJc1h3M8q5e1H5r3cBUpInIiIiIuIMoV1MwY/0Y+f+mh2/guUOLYc6J4YWg8yIVdy887/GySOmt1zMdBj8f2a6Y4HARqZ4yeJX4MPh4FPHtJDocbuZJtnrLrOOrtvNJok7sKbkeyTtMNM/O44zzwvWExZMNT11xKynO5+RvJJ4eEGDdnCkAprFV0FK8kREREREnKGg+ErC+tLPsW3Y8JVZh3ZoE2yfZUbffOs6J4awHuZaO86zFfWhGFNI5dAmGPcJXPRw8XPGTIFRL0H/B+GK90xPP09f+Mvawr5+nSeAf32YNrGwMfnpkmOhXmTh8wbtwCugcKppQY+88jRCP5vgVpC003nXq8KU5ImIiIiIOEOjTmZbMGXzxH74YHhhwpV1Cr6cAN9lHg5pAAAOL0lEQVTfYVoTfDgSjmyGqJHOi8HdAyKHwc7fIC+3fK89sR8+HAF5OXDzTGg3tuTz6jQ1I3dDnoRWwwv3u7kV9vXzrWuatKcfh6mXF50+mpcHyXFmJO/P17pDWHThSN6J/GmbzmoFARDcEk4ecnwq6wVASZ6IiIiIiDP4BUFIW1j6BmybAZ9dZZKWOf80I3gr3jbTM4f/G+5dD3XDAct56/EKtBphGpjvX22eZ2fAF+NNwnlsT+mvi/kOsk7CjT9B466OxxHaGa75FBK3mdHLAifiITez6EgemD5/hzebJKygEbqzpmuCGcmD/2/v3oOtqu4Djn9/XgQdFVFRi4ADIj7AWiRUjDo6PhohMWBT26KJNa0Zk4ykcTKpj2bMaGfiNO00dTpRo6OmzsRKHKWRJvWVFtskJr6fSEDiC4RU67uZjEb99Y+1CYfL5fI6+xzuPt/PzJ577zpr77PW/OYc+O219lplm4eG28YlfCRJkiT91p9+B26eBwvOhB12LIt/PPzPsHQR3PfNsqT/0V8odf/irmra4qTBrrjlDjy5POe3/M6y2uZt55TkcvhucM1xMP3PoG9E2cB82HCY9qnyrN3Tt5fRyL0Pal9bJp1YEt8l34OZny1lr1ZJ1l6T1687fiaQ5Vm+N1bCTrtv+cbyg/ltkrccxn1oXflrz5WEe+0oZAOY5EmSJEntstck+MwP4e5LSrJ10KwyXXPhZ+G9X8PxF66rO2LXdfvrtdPOo8redg9eX0bQ3l4Ns/++TK1ceG5Z2TI/qKZzJvziXvjENfDSQ2UKZrtN/UNYfHl5Nm/kfmWqJmw4kjduRkk8n/tRWWVz9zY+jwclkdthGLza8lze/dfCHX8FJ18Gx57f3vfrIqdrSpIkSe200+4w559gypwyUjazSvAmnVQSmU6Y+bkyIjfh2LJNwcxzS5Jzzt1wySvw1Vfh0jfgY/8AL/wYbp9fzjt0bvvbMuU0IOHpReXvV58po4q77rN+vRG7lZHEn1xR9g5s5/N4ULZ32POAMpIHpT13XFC2Vvivv4M3X2rv+3WRI3mSJElSnT7057DyATjhK517z0NPLcemTP90Gc16djHsMxVGH7jJU7bY3gfBvoeVzdGP+lyZrjn6wIGnR57+bVjxw1Ln0I+3vy17TS4rbL61pmy+Pm4GzPkmXHs83HMJnD7I3n5DiCN5kiRJUp12HgVn3Ay/c1i3W7KhvmFwytfK71NqGMVba+ppsPJn5fm3/tsntNpzYlm5c/bXyyhku42eXKaLPnANvPcOfOJa2OeQspn7U7fBmifa/55dYJInSZIk9bIDT4azvgdHz6/vPaZ9skyL/Pcvl0VVNpbk1W30QfDBb+CnV5VVTfc8oJQfcVb5uXafviHOJE+SJEnqZREw6QQYvkt97zFyPzj+gjIVk+xukgdlC4ejPr+ufOR+ZfP2NYNsZD+EmORJkiRJqt9R58Hog8vvXUvyqvfd93fXnw4aAWOmwWqTPEmSJEnaPMOGw9wr4ZBTYZ9Du9OGnfeAD8+HWZdvuPDLftPKxu2/+XV32tZGrq4pSZIkqTPG/z7Mu6m7bVi70Ex/Y6ZBvg+/fKq0cwhzJE+SJEmS1m5Mv/rR7rajDUzyJEmSJGnk2MYsvmKSJ0mSJEkNWnzFJE+SJEmSoDGLr5jkSZIkSRKUkbwd+uC1Z7vdkm3i6pqSJEmSBDD5I3DxS2W7hyHMJE+SJEmSYMgnd2s5XVOSJEmSGsQkT5IkSZIaxCRPkiRJkhrEJE+SJEmSGsQkT5IkSZIaxCRPkiRJkhrEJE+SJEmSGsQkT5IkSZIaxCRPkiRJkhrEJE+SJEmSGiQys9tt2KSIeBtY1u12DGB/4MVuN0JtsTvwZrcboW1mHJvDWDaDcWwOY9kMxnHoGg3skpl7b07lYTU3pl2WZeaMbjeiv4h4ZXtsl7ZcRFybmed2ux3aNsaxOYxlMxjH5jCWzWAch66IeCgzJ2xufadrbps3ut0Atc2/dbsBagvj2BzGshmMY3MYy2Ywjj1iqEzXfGh7HDHbXtslSZIkqTm2NO8YKiN513a7ARuxvbZLkiRJUnNsUd4xJEbyJEmSJEmbZ6iM5EmbLSJmRcSyiFgRERdVZRMj4v6IeCYivhsRwzdy7sXVecsi4pSW8hsi4uWIeKpT/VD7YxkR4yNicUQsjYglEfHFTvanV9UQx50i4oGIeLyK42Wd7E8vq+P7tXqtLyIejYjvd6Ifva6mfyefj4gnI+KxiHioU33pZTXFcVRE3BoRP6/+rfxwp/qjNstMD4/GHEAf8AvgAGA48DgwBbgFmFfV+Rbw+QHOnVLVHwFMrK7TV712HDAdeKrbfeyVo45YAmOA6VWd3YDlwJRu97XJR01xDGDXqs6OwP3AUd3ua9OPur5fq9e/BPwL8P1u97PpR43/Tj4PjO52/3rlqDGONwKfqX4fDozqdl89tu5wJK9FTXdENrimanUksCIzn83Md4EFwFzgRODWqs6NwGkDnDsXWJCZ72Tmc8CK6npk5n8Dr9XdeK2n7bHMzDWZ+QhAZr4NLAXG1tyPXldHHDMz/6+qs2N1+OxB/Wr5fo2IccDHgOtqbr+KWuKojmt7HCNiJOWm9vUAmfluZrqS/BBlkleJiD7gSmA25Q7HGRExBfg68I+ZORl4HThngHOnAPOAqcAs4Kpq6snGrqn6jAVWtvy9qip7IzPf61dGRMyJiL/ZxLnqjlpjGRETgCMoo0CqTy1xrL5jHwNeBu7JTONYv7o+k1cAFwAf1NRura+uOCZwd0Q8HBHuw1a/OuJ4APAK8O1q+vR1EbFLjX1QjUzy1qnjztbGrqn6xABlfQOUJUBmLsrMrw5yrqMD3VNbLCNiV+A24PzMfGtbG6pB1RLHzHw/M6cB4yh3oA9rR2M1qLbHMiJOBV7OzIfb1EZtWl3frcdk5nTKje3zIuK4bW6pBlNHHIdRHk25OjOPAH4FOAttiDLJW6eOOyKODHXeKmB8y9/jgBeBURExrKVs9WaeO1A9dUYtsYyIHSkJ3k2ZubDdjdYGav1MVlOJ7qXMolC96ojlMcCciHieciP0xIj4TpvbrfXV8pnMzLU/Xwb+Fadx1q2OOK4CVrXMjLiVkvRpCDLJW6eOOyKODHXeg8Dk6lnK4ZRptIuAxcDpVZ2zgdsHOHcRMC8iRkTERGAy8EAH2qyBtT2WERGUZw2WZuY3au+BoJ447h0RowAiYmfgZODnNfdDNcQyMy/OzHGZOaG63n9m5qfq7kiPq+MzuUtE7AZQTe/7COBq1PWq4/P4S2BlRBxc1TsJeLrOTqg+Jnnr1HVHxJGhDqpGXecDd1EW1bglM5cAFwJfiogVwF5UDxW3jshW9W6hfKHdCZyXme9X9W4GfgocHBGrImKDZzPVXjXF8hjgLMpowWPV8dEOd62n1BTHMcDiiHiC8h+dezLTpfdrVtf3qzqrpjjuC/w4Ih6n3Bz9QWbe2dme9ZYaP49fAG6qvl+nAZd3rldqJzdDr1SJ3HLKXYuXKP9xOBO4FLgtMxdExLeAJzLzqn7nTqUs/XwksB/wH5S7IjHQNasPlyRJkiS1nSN5lTruiAxyTUmSJEmqhSN5kiRJktQgjuRJkiRJUoOY5EmSJElSg5jkARExKyKWRcSKiLioKptf/Z0RMXqQc++NiBmda60kSZIkbVzPJ3kR0QdcCcwGpgBnRMQU4CeUvZde6GLzJEmSJGmL9HySR9n2YEVmPpuZ7wILgLmZ+WhmPr8lF4qIqyPioYhYEhGXtZQ/HxGXRcQjEfFkRBzS3i5IkiRJUmGSB2OBlS1/r6rKtsZXMnMGcDhwfEQc3vLa/2bmdOBq4MtbeX1JkiRJGpRJXtmwvL+t3VfiTyLiEeBRYCpl+udaC6ufDwMTtvL6kiRJkjQok7wycje+5e9xwOqNVY6IuyLisYi4rl/5RMoI3UmZeTjwA2CnlirvVD/fB4a1o+GSJEmS1J/JBjwITK6StJeAecCZG6ucmads5KWRwK+ANyNiX8pCLve2t6mSJEmSNLieH8nLzPeA+cBdwFLglsxcEhF/GRGrKCN7T/QfuWsxDHgnMx+nTNNcAtxAWZ1TkiRJkjoqMrf28TNFxAhgBXBYZr7Z7fZIkiRJUs+P5G2tagP0x4CrTPAkSZIkbS8cyZMkSZKkBnEkT5IkSZIaxCSvn4gYHxGLI2JpRCyJiC9W5XtGxD0R8Uz1c4+q/JMR8UR13BcRv9dyrVkRsSwiVkTERd3qkyRJkqTe4XTNfiJiDDAmMx+JiN0om5efBnwaeC0z/7ZK2PbIzAsj4mhgaWa+HhGzgUszc2ZE9AHLgT+g7MX3IHBGZj7djX5JkiRJ6g2O5PWTmWsy85Hq97cp2yqMBeYCN1bVbqQkfmTmfZn5elX+M8qWCwBHAisy89nMfBdYUF1DkiRJkmpjkjeIiJgAHAHcD+ybmWugJILAPgOccg5wR/X7WGBly2urqjJJkiRJqs2wbjdgexURuwK3Aedn5lsRsan6J1CSvGPXFg1QzbmxkiRJkmrlSN4AImJHSoJ3U2YurIr/p3peb+1zey+31D8cuA6Ym5mvVsWrgPEtlx0HrK677ZIkSZJ6m0leP1GG7K6nLKbyjZaXFgFnV7+fDdxe1d8fWAiclZnLW+o/CEyOiIkRMRyYV11DkiRJkmrj6pr9RMSxwI+AJ4EPquK/pjyXdwuwP/Ai8MeZ+VpEXAf8EfBCVfe9zJxRXeujwBVAH3BDZn6tYx2RJEmS1JNM8iRJkiSpQZyuKUmSJEkNYpInSZIkSQ1ikidJkiRJDWKSJ0mSJEkNYpInSZIkSQ1ikidJkiRJDWKSJ0mSJEkN8v+MElmgp3Y52wAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from scipy.stats import norm\n", + "\n", + "N = 400\n", + "regular_steps = norm.rvs(loc=0, scale=5, size = N)\n", + "deviating_steps = norm.rvs(loc=0, scale=12, size = N)\n", + "\n", + "datetimes = pd.date_range('1/1/2020', periods=N, freq='1S')\n", + "regular = pd.Series(regular_steps.cumsum(), index = datetimes)\n", + "regular.plot(figsize=(15,5))\n", + "\n", + "deviating = pd.Series(deviating_steps.cumsum(), index = datetimes)\n", + "ax = deviating.plot()\n", + "ax.axhline(y=0, color='k', linestyle='-', linewidth=2);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### ➜ Challenge yourself: reaction kinetics of bacteria\n", + "\n" + ] + }, + { + "cell_type": "markdown", "metadata": {}, - "outputs": [], "source": [ - "pyplot.figure(figsize=(20,5))\n", - "pyplot.plot(ammonia);\n", + "Time-series: plot some of the integrated curves in pybasi03\thttps://www.coursera.org/learn/python-data-analysis/lecture/KjG8R/distributions\n", + "\n", + "Labelling plots: titles, axes; legend\thttps://www.coursera.org/learn/python-data-analysis/lecture/xhEIo/hypothesis-testing-in-python\n", "\n", - "# Superimpose the median on the plot as a horizontal line (hline):\n", - "pyplot.hlines(y=ammonia.quantile(0.50), xmin=0, xmax=1440, color=\"orange\");" + "Time-series: monod kinetics\tRegression: https://jakevdp.github.io/PythonDataScienceHandbook/05.06-linear-regression.html\n", + "\n", + "\n", + "bacteria multiplication problem\n", + "\n", + "MUST COVER: time-series of stability data from which a database was built on" ] }, { @@ -1064,7 +1217,7 @@ }, "hide_input": false, "kernelspec": { - "display_name": "Python 3", + "display_name": "Python [default]", "language": "python", "name": "python3" }, @@ -1078,7 +1231,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.3" + "version": "3.5.5" }, "toc": { "base_numbering": 1, From 37ec3a226d6493500388618d636cbafdfb117b54 Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Tue, 23 Jul 2019 08:17:04 +0200 Subject: [PATCH 062/134] Added more about the ax object --- Module-10-interactive.ipynb | 26 ++++++++++++++++++++++---- 1 file changed, 22 insertions(+), 4 deletions(-) diff --git a/Module-10-interactive.ipynb b/Module-10-interactive.ipynb index ae50a95..317a425 100644 --- a/Module-10-interactive.ipynb +++ b/Module-10-interactive.ipynb @@ -855,21 +855,27 @@ "* convert this to a Pandas series, using a frequency of 1 second\n", "* plot the random walks for 2 people: one regular, and one with deviating steps. \n", "* Remember: plot the **cumulative sum** of their steps, not the step changes. \n", - "* You can add horizontal lines to an existing axis:\n", + "* You can add horizontal lines to an existing axis: \n", + "```python\n", + "ax = df.plot() # the output of the plot function is an axis\n", + "ax.axhline(y = 0, color='k')\n", + "```\n", + "* You can also use the axis to set labels: ``ax.set_xlabel(...)`` or ``ax.set_ylabel(...)``\n", + "\n", "\n", "Here's how my plot looked. Run your code several times to see how different the random walks appear." ] }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 30, "metadata": { "hide_input": true }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3kAAAFJCAYAAAAmFeRRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3Xd4VNXWwOHfSe89hBQgCT10CL2LiAKCKBaQpoANu5drL1c/vdZrL6igAgpKVarSi9RQAwRCeu+9JzPn+2OHBCRAgAkJYb3P43PImTP7rBkQZs3eey1N13WEEEIIIYQQQjQOZvUdgBBCCCGEEEII05EkTwghhBBCCCEaEUnyhBBCCCGEEKIRkSRPCCGEEEIIIRoRSfKEEEIIIYQQohGRJE8IIYQQQgghGhFJ8oQQQgghhBCiEZEkTwghhBBCCCEaEUnyhBBCCCGEEKIRsajvAGrDw8ND9/f3r+8whBBCCCGEEKJeHDhwIEPXdc/aXHtdJHn+/v6EhITUdxhCCCGEEEIIUS80TYut7bVXvVxT07RmmqZt0TQtTNO045qmPVV53k3TtA2app2uPLpWntc0TftM07QITdOOaprW/WpjEEIIIYQQQgihmGJPXgXwnK7r7YE+wCxN04KAF4BNuq63BjZV/gxwG9C68r+HgK9NEIMQQgghhBBCCEyQ5Om6nqzr+sHKX+cDYYAvMBb4qfKyn4A7Kn89FpivK3sAF03TvK82DiGEEEIIIYQQJq6uqWmaP9AN2At46bqeDCoRBJpUXuYLxJ/1tITKc/8c6yFN00I0TQtJT083ZZhCCCGEEEII0WiZLMnTNM0BWAY8ret63sUureGcft4JXf9W1/VgXdeDPT1rVURGCCGEEEIIIW54JknyNE2zRCV4P+u6vrzydOqZZZiVx7TK8wlAs7Oe7gckmSIOIYQQQgghhLjRmaK6pgbMBcJ0Xf/fWQ/9AUyt/PVU4Pezzk+prLLZB8g9s6xTCCGEEEIIIcTVMUWfvP7AZCBU07TDledeAt4FftM0bToQB9xd+dhaYCQQARQBD5ggBiGEEEIIIYQQmCDJ03V9JzXvswMYVsP1OjDrau8rhBBCCCGEEOJ8Jq2uKYQQopGK3gFHf6vvKIQQQghRC6ZYrimEEKIxM1TAikcgLwGyomHI8/UdkRBCCCEuQmbyhBBCXFz4epXgeXeFre/Ars/rOyLQdSjOru8ohBBCiAZJkjwhhBAXt/97cPKF6RugRX848FN9RwQ7PoKPO0JxTn1HIoQQQjQ4kuQJIYS4sIwIiNoCPR4ACytoeRNknoairGtzf12HhANgNFafK8qCvz+FsgKI/fvKxs1NNE18QgghRAMkSZ4QQogL2/0FmFlCj8q2p816qWPiAdPfK+kw5P2jberRX+H7m2D3WUtEd38BpflgbgXR26vPV5RB6FKI2qp+NhpgwTjY++359/k4CE6uNf1rEEIIIRoASfKEEELULOkwHPwJgh8AhybqnE930MwgYb9p75WfAvNuhT9fqj5Xkgd/vap+vesLKC+BwgzY8w10GAf+AyBqm3r81Hr4tDMsmw6L74eCNDi+AiI3q1k/o6F63JNr1DF0iWlfgxBCCNFASJInhBDXO0M5ZEaadkyjEdb+C+zcYejL1eetHaBJB4jfd+71OXHnLqm8XDs+gopiiN5WPc6296AwHYa/CYVpam/gr5PBUApDXoCAwZAeBtmxsOpJsHGGMZ9DRQlseRu2vQ8WtqpozNkzfhEb1PH0XypxFEIIIRoZSfKEEOJ6t+pp+LyHmu3SddOMefRXNVs3/E2wdTn3Mb9gtVzzTDIW8gN80gn2fFm7sdNOnrtUMidOjeHkC0WZkHZcLdvc+w10mwT9ngS/XvDXyxC3G+78FjzbQsAg9fwVD0NBKoz6CLpPgeAH4cCPkHEKRn+skr/Dv6hrC9Ig6RC0GKD29EVuvqq3SQghhGiIJMkTQojrWewuOLxQJUh/vQx/vXL1YxoNsONDaNoZOt93/uPNekFpnkqi9s6B1U+r8yd+r934W96GxRPg1Dp1rw2vg6bB3T+qx6O3w9HFYKyAAc+ox4a8oPYGjvoQOt6lrvPuohK4uN3gP1At3wQY/DxYO4FnO+h8L3QcD2GroCQXIjapa4b/B2xcVMzZsfD3Z6o1xKl1V/y2CSGEEA2FNEMXQojrlaEcVj8Lzs3hsd2w8Q1VlMS3O7QdCb9OUvvn7lmgljj+8YSa/eo548LjmVuqPWuZETD+BzCr4btAv57quPh+yIpU92oSpJZcFqSDg+fF4049po7LH1KzgpGbYfALKnl0b6X22WVHQ/O+4N5SXdtqGLwQB1Z21eOYmavk7uRqldidYe8BU1eBtaOKv+v9EDIXNr8N+cng4KX2FrYbBceWw4mVaonnGc+dAsemF38NF1JWCCf+UMllTe+dEEIIcQ3Iv0BCCNEQ6fqll15u/1DtSbvtPbVX7tZ3wTcYVj8Dv02BiI1q39my6bBwvJq1WvMcHJx//lixu+H/vFSiuPNjcA2AoLE139e9ldqrlxsPN/8H7l0IQWMAHU7/efGYSwsgK1otqzS3VAndyA9h6Ivq8YBBKu6McOgy4dznnp3gndH/abjpFQgYeO55n67VCaJvd+g2GfbNgbA/oNXNKgHrfK/aB9huFDx1FB6onMWL2Xnx1/BP8fugolT9ess7sPKR6n1/ZUWQfuryxhNCCCGukiR5QgjREH3dH7Z/cOHHY3bC9vfVcsp2I9U5cwu1X81QrpK7W9+FEf9VM12JB+CuudByGKx6qnrZ4hnR20A3qAQv6SD0e0LNlNVE02DScnh0Fwx4Wl3XtLNaMnqp5Y5pJwAd2twGD/4JMzdDr5nVjwcMUnFY2EKHOy75NtGsJwyaffFrNA3GfgH3/gxenVTCBxA4GF6Ih/HzwLUFNOsN1s7qvait1BMwd7ialcyKgn2V7RpOrlbHTW+q38ucuNqPKYQQQlwlWa4phBANTXG2Kj5iZQ+D/33+44WZsGwGuAWqYiNnc28J9y6AnHjV+gDUOE6+0PpmaHsbfN1PVa5sNaz6eSmh4N4ahr2qEsSuEy8eo0/Xc3/WNGgzAo78qma1LKxrft6ZpZpeHVRi9U/+gwAN2o9W++1Mqf1o9d/ZbJyqf21mDv79IXpH7cc8M2N3YiXE7QEzC5UsnlqnZvGOLAJjOez+Cm579+pfgxBCCFELMpMnhBANTXq4OqYcVbNy/7T+BdUvbvwPapnmP7W6uTrBA9XIvPXN6tdW9tD7UYjfCwlnNTRPPgrendUSzbFfgqXt5cfd5jYoL6zuQ1eTlGNqtsylec2P27vDxN9g+FuXf39T8B+o9gPmxNfu+ohNaj9i10lQkKJmQHtMU60fNr4BJTng0Vb1GyzKqsvIhRBCiCqS5AkhREOTflIdK0ogLezcx05vgNDfYOBzKim7Et3uV9Un936tfi7Ohtw4aNrpymMGCByilkOueRZyE2q+JvWYmsXTtAuP0+YWcPK+uliu1Jm9fTG1mM0rK1SVPVvepFo13P2T+n1pPVxVAt03RxXFGT8PyovUfr1jy1WiK4QQQtQhSfKEEKKhyQgHKpOgpIPV58uKVE88z3Yw8NkrH9/aUe1LO74C8pLUUk1Q++quhoWVaoNgqIAlD5w/C2k0qj1sXh2u7j51qUkHsHVTbRyKc6oLqtQk5m8wlKllrxZWag+hhbVaZnomWex2PzTtCG1uhf3fwdIH1FJbIYQQog5JkieEEA1N+imVCNm6qoIpZyTsg7wEuPmNC+95q63eD4FuhP3fq6WacPVJHoBHKxjzmYr1n4VjcmKhLF8lPQ2VmZnqt3dkEbzXAubecuFrIzeBhQ0073f+Yx3Hq8fO7G0c+xXcvwy6TFQFWs40khdCCHHF0vJLeGHZUabO28esXw6SVVgGwO+HE/lkY3g9R1e/pPCKEEI0NBmnwK8XODSBxENnnT+tjt5drv4erv6qv13IDyqpcfS+dH+72up4p1pWuv1DaD1CjZt4QM0aglrS2ZANeRE8WkN2DBxbpvZIerY5/7qITdCiP1janP9Y14mqNYOti/rZ3l3ti8yJhSO/qP17Tj51+jKEEKKxe2dNGGtCk2nv7cTuqEziMou4J9iP1/44jq7DgFYeBPu71XeY9UJm8oQQoiEpK1RFPzzbqobdaSfUMk2AzEiwtFMJmSn0eQyKs1TvOFPM4p3ttndVnAvGwSedYck0+PMl1Zy9STvT3svUvIJg2Gsw/E3188lV51+TEweZp8+tUHo2TatO8M7m6q+OWdEmCVUIIW5UxxJzWXk4iZkDA/nj8QF8M6k7Ycl5vPr7cfoGuuNub8Wnm07Xd5j1RpI8IYS4lmJ2wqKJNVfNhMrZOh082oBvD9UzLqVyOWVmhGqRcLGiJZejRb/q5O5qi678k42z6tnn0lz1sZuxCe78XjVOt7I37b3qirOf+j0IWwUVZfDDKNX3Dqr7DLa8QJJ3IW4B6pgdY7IwhRDiRqPrOu+sDcPN3opHhrQE4KZ2Xnx5f3fuDW7G91ODeXhwIDtOZxASc25l4wqDkSUh8cRlFtVH6NeMLNcUQohrKXQJnFqjkr2WQ1WyZyirTnwyKvcQeLZVe/JALXVs3kclef/sT3c1NE3N5q18xLTjnuHfHx7dWf2zX7Dp71HX2t+uWiGseRZid0JqKAx+Xu3Hc/JVv0+Xw7mZms28kiTPaIT8ZHD2vfznCiFEI7IvOotdkZm8fnsQTjaWVedHdGjKiA5NAZjUpwVztkXxyMKD9A50I8jbiUAPe+Zsj+JwfA7tmjqy6okBWJo3zjmvxvmqhBCioUqsrJZ5aq06rngEPusO+anq5/RToJmDW0twbKpK8MfvVTNJObGqYbkpdb5Xza61uc204zYW7W5Xx0MLwLM9lORC+HqI2q5aJ1zurKq5pZohvJIkb+Pr8Emn6mqoQghxg1q8Px5Hawvu63mBnquAnZUFn0/sRnALV44m5PDBn6d49OeDxGQWMn1AACdT8pmzLbLq+rS8EuZsi6Sk3HAtXkKdk5k8IYS4VspL1B47gJNrVePs48tVlctl02HK76pHnlugKskPagYveptq0K0bwb2VaWMyM1OzVaJmHq3AqyMUZcK01fBlb9jwOpTmXng/3qW4+l9+kpcZCXu+Vst3N78NExdf2b2FEFetwmAkLb8UHxfberm/ruvkl1bgaG2BZqrl+9eR3OJy1oYmM76HH7ZW5he9tl9LD/q19AAgr6Sc06n5+Lvb4+5gTWpeCZ9tisDdwRoPB2teWhFKen4pTraWTOh14eTxeiEzeUIIca2kHgdjheqZlpeget4BDH1FNd/+qB2cXH1uH7kWfaEgVVWrBNMneeLS7vsFHlwP9h7QYZxKuDUz1fz9Srj6qzEux4bXVNuM3o9A+DqI33dl9xZCXLVPN51m4Ptb2BSWarIxQ2KyeGdtGLquX/CasgojM+eH0PH1P+n8xl/M3x1rsvs3ZDEZhWQWVPcs/eNIEqUVRu7t2eyyxnGysaRHCzfcHVQLojfGdMDHxYYXl4cyc34I9lbm+LrYsuZosknjry+S5AkhRF1KPQ7f36xmbs40Nh/yokoSIjepNgaDZ0P/p1T/uNs+gNEfVz+/eV91PLRAHd0Dr2n4AnBtUV0Vs9Pd6ujbo3rP5GWP5w+F6VBaUPPjiQfhm4GqfQNA6FKV/A98VlX9tPesLgAjhLimdF1n5eFEDEadWb8c5EBs1qWfVMlorE7gErKL+GprBCXlBnRd541Vx/l2exQHYrMv+Pwf/o5mw4lUbu/iQ0dfJz7fHEFxWeNYWngh+SXljPpsB/3e3cyLy4/y++FEft4TS7umjnTydb6qsT0crNnyryH89cwgPp/QjT+eGMC4br7siswg46yk8nolSZ4QQtQVo1HN1iXsh91fQtIh9QHduws0662u6f2wOg5/EyavUE3K7c7q6ePRFmxc1DJOO48rTyyEaTTrBa2GQ/epVz6Ga2WFzZwavoWP2wPzx0LqMVg2A1Y/A8tnQrM+0GeWKtDT/2k185t0+MpjEEJckeNJecRnFTN7RFu8nW2ZPHcfC3bHnJPAnVFSbqg6v/FEKp3/8xfP/naYXREZ3PX1Lt5ff4ovNkewJyqLY4l5ACzaF1/jfZNzi/l002lubt+Ed+/qzGujO5BRUMrPexv3bN76YykUlhkY0taT5QcTeWrxYU6m5DOhV3OTLFXVNI02Xo7c3sUHJxtLRnfxxqir+17vZE+eEELUlcM/Q8I+cGkBh35WDbF9uqtiHf2eUMVV/AdefAwzM7UvL3y9atAt6pemwaSlVzfGmVnB7Jhzl+YWZcHC8eDQBGZuVhU9Q+apPyMTFlc3Xe82Cba8Dfu/g7FfXl0sQojLsiY0GXMzjQm9mnNXdz9mLz3Cq78fZ2NYGl9M7IZjZaXHjSdSefa3w7g7WDOsXRN+2BVDM1dbVh1JYvnBRJo62TCkrSdztkeyNTwNDwcrBrdpwprQJF67PQhn2+qKkUajzn/+OEGFUee10ervjF4BbvRr6c4326K4O7jZOdc3JisOJdLC3Y5vJvWgpNxIYk4RWYXldG9eQx9SE2jr5UhLT3vWHE1mUp8WdXKPa0Vm8oQQoi6U5KpqiM36qOqV5YWqgbZPN/V4u1Fwx5e1q87YvI86uresu3jFtXOhhuhHf4OyfLj7R5XQT/xN9Rac+BtYO1RfZ+uilo2GLlWJoRDXmZJyA59vOk1MRmF9h3JZdF1nXWgy/Vq642ZvRVNnG+Y/2Iu3xnZgZ0QG987Zw6ojSby4/Cgz5ofg52qHk40F3++MJriFK6ufHMjaJwcyfUAAyx7rx4d3d8HOyoJjiXlM6evPA/39KSk38vvhxKp7Go06L68MZf3xFJ4d3obm7nZVjz0zvA2ZhaX0ensjj/9ykJyisvp4W+pMcm4xu6MyuaOrL5qmYWtlTqsmjvQKcMOijtoeaJrGqM4+7I3OJC2/pE7uca3ITJ4QQtSFE7+riowTfgXvzmo2JmYH+Ha//LHO7MuToiuNg60rWDufW2FT19W+S++u6s8LgKUtdL675jF6zYSDP6nZ4n5P1HnI4sZQbjBirmmYmdVtxcY526L4eGM43++M5uv7u9OvlUed3s9UjiflEZNZxEODqr9w0zSNyX39aeZmx2M/H+SJRYewsjBjYu/mvDY6CGsLM06l5hPgYY+1hTmtvRx5dXRQ1fPfuqMjX22JYFKfFrjZW9HR14k526Jo7+2El6MN/10XxrpjKTw+tBUPDzp3T3ZPfzdWPNafFQcT+HlvHBZmGp/c1+2avR917Y/DSeg6jOt2bXuDjuniTXp+KeWGCxfBuR5oF6vi01AEBwfrISEh9R2GEELU3k+3Q24CPHFQzdbF7IQ1/4IH113+vjpDBWx+C3pOB5frv6yzAOYMAgsbmP6X+jnxIHw3FEZ9BD1n1G6MuSNUAZcnDlx+vz4h/iElt4Tx3+yib6A7H9zdpc7uk5hTzLCPttLT342U3BIi0gto6elA30B3Xh7VHhvLi5fEry8RaflMnbef3OJyts0eUlWh8WxJOcWk5JXQwccJa4srex37Y7J4ctEhknNLMDfTsDDTeOrm1jw6uOVF96B9vCGcTzed5vspwdwc5HVF925IjEadWz7ZjqONBSse61/f4TQYmqYd0HU9uDbXykyeEEKYStpJcGkGpfkQvQMG/7v6w7f/AJi158rGNbeA4f8xXZyi/nUcDxteVcmdb3c4tFAlfR3H136MLvfB6qdVBdemHesuVtHo5ZeU88CP+0nILmbpwQRmDAykbVPHOrnXu+tOouvwzrhOuNhZ8sPfMRyMy2bBnlhaezkwpa//FY2r6zqn01TCaG7imcjQhFwmzd2LpbkZix/qU2OCB+DjYnvVvfN6+rux6bnBzNsZTX5pBQ/2D8DLyeaSz5s1tBXrj6Xw0opQzM00Wns58NbqE+yPyaaznzO3dmjKvT2bXTd99f48nkJEWgGf3te1vkO5bsmePCGEMIWIjfB1X/hxNBycD+iX94Fd3Fh6TFNLNv/+BFKOwZHFEDRW7berrXajAE21VxA3vJJyA4YaKjxeSrnByKxfDhGems9nE7phb2XBp5vC6yBCiEwvYNWRJGYODKSZmx2ONpY8Oaw1P0zrSffmLszZFkW5wXjZ4xqNOm+uPsEtH2/niUUHKa0wXVuB6IxCpv2wDwdrC1Y81o+OV1m2vzbsrCx4/KbWvHhb+1oleABWFmb8794uWJhpPPDjfga+v4Xt4RkMbO1BXFYRLywP5dGFB4nPKiImo5CS8nPfo7T8EibP3ctrvx/jSHxOXbysWjMadT7ddJqWnvaM7uxTr7Fcz2QmTwghrlZ6OCx5UC2lTD6i+uE17Qyebeo7MtFQ2ThBrxmw438QuwtsnFUPvMvh0ETt1wxbBUNeqJs4xXUhp6iMwR9spazCSJCPE2+P60i7pk6XfJ6u67y68hjbw9N5765OjOniw+nUfD7fHEFYch7tvS89xuVYdiABczONKX3PrVqoaRqzhrZi+k8hrDqSxJ3d/Wo9ptGo89ySI6w4lEj/Vu6sDU0hs2AfE3s3p3tzV5q52V16kBpEZxSy+WQa83ZGowMLpve64rGulQ4+zmydPZTfDydyKiWfaf398XO1Q9d1vt8RzbvrT7L+uGoNMLC1Bwumq1Y+JeUGZs4/QFhyHnujs5i/O5b37urEvT3P3x6wLzqL02n5TDRRC4Oa/Hk8hZMp+Xx6X1eTz8reSGQmTwghrkZFKfx6P1hYwdRVMG4OoKky90JcTO9HwNwKDGUweTk41/6DbZX2o1VPvawo08cnrhuL9sWTW1zOHd18icko5Nlfj1BxiRmx+KwiXlweyuL98Tw+tFXVB/oZAwJxsrHgheWhJp0RMxh1lh9MZHAbT5rUMDt1U7smtGvqyNdbIy8ae35JOSsPJRKVXgDA0gMJrDiUyDM3t2Hh9N58fG8Xjibk8tTiwwz6YAvzdkZTWmHgv+vCmDpvH+n5l25yHZacxy0fb+Ot1SewtjTjxwd6EujpcMnnNQRWFmbcHdyMV0YH4eeqklJN05g5KJDfZ/Xn/+7oyKQ+zdlxOoO/IzJUkvzbEY4m5PD5hG6EvHIz/Vq68+aqE8RnFbFgdww3fbiV//11is82nea+b3fz8opjLAlJqFU8J1PyauwhWJOScgNfbolg9tKjMotnAlJ4RQghrsb2D1VRlEnLoNXN6lx+Cjh4STEMcWkxO8HeEzzbXtnzs2Ph084w/C3o/6RpYxPXhXKDkUHvbyHAw55fZvZh/bFkHll4kJdGtqOTrwt/R2RwVw8/Ajzsq57z1dYIPvzzFGaaxuS+LXhtdNA5szJnxpjStwVT+rZgd1QWY7r4XFEvNqNRR9Ngx+kMpszbx1f3d2dkJ+8ar11/LIVHFh7g0SEtef7Wduc8pus676wNY/7uWEorjHg6WvPDtJ5MmbePQA97ljzSt+o1lBuMnE4t4JON4fx1IhUvJ2tS80qxMjfDx8WG+Q/2PqcVwT89uvAAO09nsPrJAbRwt7/gdderknIDN324FU8nGzr7OrNgTywvj2zPzMrqnYk5xdz68XasLMzILCwjwMOemMxCdB1u7+JDVmEpITHZrJzV/4KzvRUGI2+tPsFPu2N5ZVR7Zgysrgx6OD6Hj/46RUdfZwa19qRPoBu5xeVMnruP0MRchgd58eqooIv+Ht2oLqfwikmSPE3T5gGjgTRd1ztWnnMDfgX8gRjgHl3XszX1f+CnwEigCJim6/rBi40vSZ4QokHKiYMvekHr4XDvgvqORtyo5gwCc2uYsaG+IxH1YPXRJB7/5RDfTQlmeJAXuq4zc/4BNp1M5cxHPEtzjQf7B/D4Ta04EJvNtB/2c1vHprx2exDezjUXCnl7zQm+21Hdy/HuHn6XXXXTaNQZ+dkOSiuM2FubE59VzL6Xh1208uSLy0NZtC+OedOCualddZXITzaG88nG04zr5svwIC9eXB5KYWkFRl1n9RMDCfI5P9kwGHXeXRfGmqPJvDm2I24OVjz4437sLM1Z/eRA3OytznvOyZQ8bv1kB0/c1IrnbrnCL1+uA7/uj+P5ZaEAPDwokBdHtj/n8WUHEnhuyREeHdKS2be0JT67iKScEvoEupFZWMbIT3cA8N5dnRnarsk5zy0pN/DowgNsOZWOo40FPs62rH96IJqmUVphYOSnO0jJLaG0wkiFUadvoDvZRWVEZRTyxYRu3NKh6bV5E65D9ZHkDQIKgPlnJXnvA1m6rr+radoLgKuu689rmjYSeAKV5PUGPtV1vffFxpckTwjRIC15AMLXw6x9qqqmEPVh67vqv9kRYH999BsTV6fCYOSDv05xLDGXyLRCrCzM2PKvIVX7l5Jzi3l5xTGGtvVkSNsmfLbpNEsOJODpaE25wUhTJxtWzup/0XYF5QYjH28Ip6mzDeGp+SzcE8fyx/rRvXntW8BsC09n6rx9NHezIy6riGn9/HljTIeLPqek3MCdX+0iObeYTc8Nwc3eit8PJ/LU4sPc1d2PD+/ujKZpHIjNYtL3+5jQqzmv3R500THPdjQhh/Ff76ZPS3d+nNbznJ6Auq4z65eDbA/PYOfzQ3GxOz8JbCwqDEYmz91H26aOvH57UI376/JKynGyqXn2Niw5j6cWHyI8tYDxPfx4dXQQzraWGIw6j/9ykHXHUnh7XEeMRp1Xfz/OmicH0MHHmc83neajDeH88EBPege4sfRAAp9sPE1haQXfTw1mYGvPun7p17VrnuRV3tQfWH1WkncKGKLrerKmad7AVl3X22qaNqfy14v+ed2FxpYkTwjR4BRnwwetoffDMOLt+o5G3MiSDsG3Q+COb6DrhPqORtSxcoORZ349zOqjyXTxcwZN4+FBgRdcAnnGkfgc3lh1nKj0QlY81u+y9pgVlFYw7KOtNHFUyWFti2E8vCCE/THZ7H7xJuKzivBztatVH7zw1HxGfrqDO7v7MmNgIGO+2ElnPxcWTu+NlUV1OYm8knIcrS0uuwDIz3tjeXnFMZ4d3oYnh7UGILuwjFd+P8aao8k8eVMrnm3Es3imUlph4LNNp/lmWxSeDtbc3sWbiLQCtpwhJw1WAAAgAElEQVRKr1qimV1YRq93NjKlrz93dPXlrm92MTzIiy8ndq8ap6C0grzi8qtuP3EjaCh98rzOJG6Vid6ZuVxfIP6s6xIqz52T5Gma9hDwEEDz5tL8VwjRwJxcC8Zy6HBnfUcibnRNu4BDUzWrLEleo/fqymOsPprMSyPb8dCglrV+XpdmLix/tB+lFcbLbjjuYG3BSyPb89TiwyzcE8vUfv6XfE5qXgkbw9KYMSAAawtzWjWpfd+9Nl6OTB8YwJxtUew4nYGDtSVfTOx2ToIHXHCW6VIm9mrOgZhsPt4YTrfmLvi52jHp+72k5pUwe0RbHh4UeOlBBNYW5swe0Y4RHZrywrJQFuyJxdrCnKdvbl21B8/V3oph7bz4LSSeX/bG4elgzeujz515dbC2wMFaCv6bWn28ozV93XLedKKu698C34KayavroIQQ4rKcWAnOzVUjayHqk5kZtLkFjq+EijJV6VU0SqdS8vk1JJ4ZAwIuK8E7Q9O0y07wzhjTxYelBxJ4f/1Jbg7ywreGWZfEnGLmbIskObcEg1HHYNSZ0OvKvqh/alhrVh9JJim3mIXTe9PEsXb94mpD0zT+b1xHjiWpKpwWZhoVRp3lj/Wjs99l9KoUAHT2c2HtUwMv+Pid3X1ZfzyFrs1c+G5KMJ6ONTeTF6ZVly0UUiuXaVJ5TKs8nwCcvXnFD0iqwzhEYxW5BebfoZpQC3EtFeeoP39BY6SCpmgY2twKpXkQt7u+IxEmEJdZxE+7YvhkY/g57QQ+3RSOvZUFs4a2uuYxaZrGO+M6YdThlRWhVWXxMwtKmbczmocXhDD0g60s2hdHeGo+m0+mMaStJ/4eV1ad0s7Kgh8f6Mm8aT3p38r0e03trCz4elIPSssNGHVY/FAfSfDqyPAgLxZO783ih/pIgncN1eVM3h/AVODdyuPvZ51/XNO0xajCK7kX248nxHkqymD5TDWTAuDkW126Xohr4dSZpZrj6jsSIZSAwarCZvh6CBxc39GIKxSXWcQ7a8OqGlaD2iv2n7EdOZGUx9rQFJ64qRWuNVSFvBaaudkxe0Rb3lx9gvu/38vYrj68/+cpsgrL8HO15b5ezXh4cEt8XWzJKizDzurKZg3PaO3lSGuv2i/zvFwtPR1Y/eRA7K3NTTpTKM6laRoDWktRqGvNJEmepmmLgCGAh6ZpCcDrqOTuN03TpgNxwN2Vl69FVdaMQLVQeMAUMYgbhNEIv89SCd7QVyBqC6SdqO+oRGNXnA3ZMeDTTf18ZDE4NwPfHvUalhBVrB0gcAic+ANueVst4RTXlcPxOdwzZzfmmsZTw1pzRzdfftkby3c7oknOLWF/TBaO1hbMGFC/+8Ue6O+PrZU5b68JY3dUJp18nVk4vfd5LQxqak/QEAVc4UyjEA2dSZI8XdcvtNN7WA3X6sAsU9xX3IC2vgOhv8FNr8Kgf0FxFhz4USV/8qFGmIrRAKnHwLuyJ9T6l+Dor/DQVigvhuhtMPxNWaopGpbO98Cy6RC3C/wH1OopqXklpOeX0sHH6bIrFArTen/9SZxsLFj1xICq3nUv3NaeuKwiNp9M45agpjw0KBBnuysrNmIqmqYxoVdzBrfxZG90JqM7+2BpLv/+CtHQSCkbcf0oyoK/P4NOd8PA59S5Ju2hvAhyYsEtoH7jE41H6FJY8RDcv0wVVjm2DHQDrHoKrB3B3hN6zqjvKIU4V9vbwNIejv52ySRvT1Qm/10bxpGEXAAGtfHkoYGBFJVV4OdqV2NjaVF3dkdmsisyk1dHn9uc3NxM46v7e1Bcbmhw1Qd9XGwZ182vvsMQQlxAw/obQ4iLObIIDKXQ/+nqGZQmlWV408IkyROmE7lZHTf9R82OGEphwDOw82N1/pb/AytZ4iMaGCt7aH+7Ws4+8gOwOL/Aga7rzPs7hnfWhuHnasvsEW2xNNf4fHMEk+buBcDJxoI9Lw3Dzko+ItSForIKnvn1MMm5JbjaWdHR14mdpzPwcrLm/t7nV6I0N9MaXIInhGj45G8N0bCVF0NZIdi5Q8g88OsFTTtWP+5Z2aw07QS0G1k/MYrGRdchZgfYeUDKUcg4Dc16w7DXIfU4pJ6A4On1HaVopMoqjOf1Arssne+Go4shdAl0vf+8JcVfbI7gow3hDA/y4n/3dMGxss/YXd39CE3MJbOgjOeWHGHVkSTu7Vm70vcxGYW8t/4kw9p7MaKDF6EJuYTEZnMyJQ8PB2veHNvx0oPcQN5eE8ZfJ1IZ0MqDjIJSvtkWhcGo89YdHa+4vYEQQvyTJHmi4aoog/ljIfmIWqKZGQF3fHPuNdaO4NJciq8I08mKgrxEGPkh7J8L6WEQ/KD6sHzfIigvBCu7+o5SNDLlBiPf7Yjis02n6RPozptjOtLc3Q6DUef3w4lsCkvjXyPaXrBIRLnByJH4HHzceuPj0lwVqNr4Boz9EtqMAGBJSDwfbQjnzm6+fHh3F8zMqhNAdwdrhrRtgq7rfLs9ivm7Y7knuFmN+/Ryiso4kpBLt+YuWFuYMeuXgxxPymPdsRT+tURdo2ngYmtJdlE5U/v509LTweTv2fVo88lUft4bx8yBAbw8Sq1EKSitICKtgC5+zvUcnRCiMZEkTzRcf70C8XvV7N2hBWDjAh3uOP+6JkFquaYQlyNsFXh1PH+Zb8wOdQwYDJ7tYPeXEFT5587cAszlg5i4NF3X2ROVRWJOMR4OVgxp2+Scx1ccSiA1r5RJfVpwKiWfl5aHcio1n/6t3NkfncXNH2/D392OknIjcVlFmGmwMyKDryd1p19LVYo8p6iMNaHJbDuVzq7ITApKK2jdxIH1MzdhHvEX/PmyapDeZgQrDiXw4vJQBrTy4N27Op+T4J1N0zQm9W3BqyuPcTg+h27NXQEwGHU2nEjhp12x7I3OxKhDUycbujRz5nhSHt9O7oGdlQV7ojLp2syF3oFuFJYa6PPfTaw9mswTw1rX7Rt+HSgsreCFZaG0a+rIv0a0rTrvYG1B12bSn00IYVqS5ImGKWw17JsDfWbBiLdVXzJLW/XfPzVprxqiV5SBxfVRslnUs7ST8OskcG8ND29XTaQ3vgG9H4boHeDgBR6twbMNBAys72iFCei6ftXVI1NySwiJzSIlt4Tk3BIyC0oZ282Xof9I4AC+2xHFO2tPVv384d1dGN9DFalIyy/h+WWhlFUY+XJLBAWlFTR1suG7KcEMD/IiObeY77ZHk5hTRHG5kX/f2paOPs7MnB/ClLn7eHNsR/oEujH1h33EZxXj62LL7V18cLWz5KutkayKKOeObpMgdCl62gm+3RbJf9edpG+gO19P6n7J5aDjuvny7towPt8cwTeTepCaV8KMn0I4lZqPn6sts4a2IsjbiU82nubP46lM7tOCWzo0BTinF5ajjSXBLVxZEypJHsCc7VGk5ZfyzeQeWFvIskwhRN2SJE80TMeWqibnw/+j1v20G3Xha5sEgbECsiJVwifEpez9BswsIfM0rHkOEg9Axin1ZYJmBi2HSXuEayA+qwhrS7MamxDrus6msDQ6+Tnj5XR1TYrjs4qY8N0eZg4MZGo//6rzBqPOrsgMMgpKsbEwZ0SHphec4UrLK+G2T7eTXVQOgK2lOTaWZqw8nMRDgwIrC5io5KnCYOSHv2PoHeDGu3d15uUVoby0IpRWTRzo2syFuTuiqTAY+XJid9YfT8HH2YYnhrWuKq7h7WzLa7cHnRfDssf68eSiQ7y0IhRbS3Nsrcz57eG+9PR3RdM0jEadLafS+XhjOKM6e2PRJIiKvd/xXvQJRnf25aN7utQquXCwtuCpm1vzztqT3D1nN0k5xZSWG/h8QjdGdvLGvPI9Gtbeix2n0xnY2vOCY43s5M2bq08QmV5wQy/ZTM0r4bvtUYzu7E33ytlRIYSoS5LkiYYpfj807wPmtegHdCaxSz0uSZ64sOQjYCgHt0DVzLzrBFVufu/XYGEL476FzW9BbrzM3plYWl4Ji/bFA1BhNJJRUMrh+FzCkvMI9LBn47ODz0uuDsRmM2N+CC52lrx7Z2du7di0VvcqKTdgMOrYVyZMJeUGHll4gITsYj788xRjuvjgam9FTlEZTyw6xI7TGVXPvbl9E969qzO7IjPRdZ2xXX0BlXA+v+woRWUGFs3sQ5CPE042FpRWGHlr9Qm+3R5FWYWRN8Z0AOCvE6kk55bw5tiOBHjY8+XE7oz5cicP/LCPN8Z0YOGeWEZ39mFUZ29Gdfau9fvoZGPJ3Kk9eW/9SXZFZvD5hO7n7NEzM9N4bngbZswP4YEf9tM3z4pZehnPBVvx6J3dLpjA1uShQS3xc7Vj9pIjuNhZ8cuM3rT2cjznGisLM4a197roOGeSvBt1yWZ4aj5bT6Xx1/FUDEad529tV98hCSFuEJLkiYYnLwnyEsDv8dpd79EWrBzVXqpO4+s2NnH9Wjpdzdx5d4GKYuj9iEr4Koqh410QMAia9YI9X0HQ2PqOtlH5cksEP+2OBdQEqbu9NYEe9ozv4cfSAwlsC09naLtzlzz+uCsGRxsLmrna8cjCA8yZ3IMRHS6d6E3/aT/7Y7IZ1q4JgZ72HIzN4XhSHi/e1o731p/kiy0RjOzkzbO/HSYpp5g3x3ZgYGtPtp1K4601YQT/38aqsdo1daJtU0cW749ny6l0Xr89iL4t3aset7E05+1xnbCxNGfuzmh6BbgxspM3P+6Kwc/VlpsqX5OrvRXzH+zNowsP8NTiwwDMGtrqit5LczONl0Ze+MusYe2bMKaLD6GJuYQaVZI6K6gULiPBO2NkJ2+C/V2xsTTHyebKGnA3dbYhuIUryw8l8siQlnXaNLuswkhEWgEBHvbYWl3ZcsjSCgP/XnqUAA97nr65zSWvzywoZcGeWHZFZJJTXMZLI9szpG0TCkor+HzTab7fGY3BqOPpaM2LI9vRzE2KNgkhrg1J8kTDk7BfHf161u56CytoOQTC/1Ll72WZnfinoiyV4Hm2UzN6AYPBS826cPun1de5Baj+YsJkyiqM/HEkidGdvfnsvm4AVTNK5QYj28PT+XFXDEPbNSE9vxQHawvySspZfyyFqf38ef7Wdoz4ZDtfbI7gliCvi+6rO5qQw98RmfQJdGN/TDZ/nUjFxdaSl0e2Z+agQKLSC/lpVwzz/o7Gx9mWxQ/1oUcLNwACPAJo5+3EprBU+gS689Tiw3y26TT/vrUtb60+Qf9W7kzt61/jfZ+/tR0HYrOZveQIP/wdzf6YbF68rV3VskY1vj0rZ/Xn4w3hWJhrtG3qWONYV0vTND6boN5nynrBO7NVYaqgMVc0Xk1LaS/Xw4NbMnN+CAv3xPJAf9P3M80vKWf2kqNsPplGmcHIkLaezJvas9Yzl/FZRYQl59E7wJ0XVxxlbWgK1hZmTOvnj4vdufu8DUad5QcTaOJkg9GoZngzCkrp6OtMhVFn2g/76eznzMnkfMoMRib0asazw9vi6Xh+z0IhhKhLkuSJhid+H5hbQ9POtX9O6xGqWmJKKHhfxvPEjSHxgDqO/ABs3VRhFXFNbDmVRnZROXf18DvvQ7eluRn3927BxxvD+XTjab7eFoG7vTWdfJ0x6DqT+7TAysKMmQMDeWlFKLsjM+nXyuMCd4K5O6NxsLbguynBVfvbzk4Knx7eml1RGQxu48kLt7U/r8F0n0B3+gSqmboH+vvz+eYITqflY26m8cH4LhdMGqwszPjy/u68/vtxCkrLubVDU+7rdX6PORtLc168yCycyVnZqS8u0o5fu3vW4Ob2TRjY2oP/bQhnTBcf3B0unfDEZxVxPCmPXgFuuNmfX1Dr/fUnORSXw7huvszfE0NYcj5T+rbATNOYuzOaH3fF8OCASyeUafkl3DtnN0m5JVXnJvZuzi9741h2MJHp/xjjl72xvPp79fsZ6GHPDw/0pIOPMyXlBj7eEM6eqEym9fdnVCdvukjVTCFEPZEkTzQ8CSFqSd3lVMpsfYs6nv5TkjxxvoT9qqCKTzfVW1HUieNJufxryVF6+bvyQP8A/D3sWX4wAQ8HawZeIDmb0LsZX2w5zccbw+kd4EZ6QSnrj6cwtK0n/pX7ze7s7sv/NoTz9bbI85K8knIDiTnFWJmbseZoMlP7+Vc1+P4nb2dbdvz7plq9lukDAvjh7xjCUwv43z1d8HGpobLvWXxdbPl+anCtxr6mGkCLGU3TeP32IG79ZAf/XnqUj+7pct4M2RlJOcU8svAARxNyAbAw0+jazAWDruNmZ8UbYzpwMC6br7ZG4mJnye5lmdhYmvH91GCGVvb5i80s5N11J+np70YnP2fS8kv4ZmsUDjYWtPS0p3tzV/xcbcksLGPmTyFkF5Xz6X1dOZmST1MnG6b28+dkch4/741lfHc/Pt4YTq8AN/oEuvPhX+H0DXTniZtakZBTzKhO3lX7P695Ei+EEBeh6bpe3zFcUnBwsB4SElLfYYhroaIM/usHvWaq1gmX49shqmLijA11Epq4ji24EwpS4dG/6zuSRissOY+J3+0BVHPnCqNO/5Ye7I3OZGpff14ZfX61yDPm746hrMLIA/0DKDcYWbwvjiFtm1QleQBfbY3g/fWnWPpIX4L93arOz/r5IGtCk9E00IBts4eabN/TikMJRKUX8uzwNlfdfqHebH4bdnwELyWB5dUvvbwa83ZG8/baMFztLHnvrs7nFW3RdZ0p8/ZxIDabZ25uQ0dfZ7aGpxESk42tpTlHEnLQgAqjTgcfJ36e0YeDcdm42lmds/w1q7CM2z/fSXG5ge+m9ODlFceISCvAqOsYKz/yWFuYUVphRNPg28mqdcXZlh1I4LklR3C3tyKzsAxQS27js4pY99TA84rQCCHEtaBp2gFd12v1jaLM5ImGJTUUDKXgdwXfiLceAdveU8s9m7SXGRuhGI2QGAIdxtV3JA1GVHoBuyIzic4oZMbAALydLz5LdUZRWQWP/XwQXxdb3h7Xqep8dmEZk77fi42lOYsf6oOtpTm/7ItjSUgCRh3GB/tddNwpZ+11MzczZ1oN+7am9PXn5z1xzF56lLVPDsTWypz1x5JZE5rMPcF+ONpY0tzNzqSFLcZ1u3jc14Um7UE3QEZ4va9yeHBAAH0C3Zm99Agz54fwxpgOtHC3Z0lIPG28HLGxNGPH6QzeGtuByZV/Js4udBOXWcRjvxwgNa+Uzyeofn9nlteezc3eioUzenP3N7u56+vdWJmb8eMDvegZ4EpEWgEHY7OJzijCx8WG7i1ca2xpMKqzN++sDcPS3IzFD/Vhw4lU5u6MZsaAAEnwhBDXBZnJEw3L3m9h3Wx45jg4X+YHrOSjMKey9L2ZpZq18Wxr+hjF9SU9HL7sCWO/hG6T6juaehebWcjw/22nzGAE4O4efnxwd5dLPq+swsiM+SFsD09H02Djs4Or+p69szaM73ZEseaJgQT5OFU9x2jUySoqw6MWe7BqY1dkBhO/28uEXs25o6sPjy86hKeDNb8/3r9OqzZe19JPwZe9YOxX0O3++o4GgOIyA08sOsTGsFQAnG0tyS1W/Qf7Brrz84zeF9z/aDTqlFYYa1U981RKPs8vO8pjQ1pWNWu/HMm5xdhbW1RVFo1KL6CFu/05BXWEEOJaupyZPPlXUTQs6WFg46waoV8u787w2B4Y8wUYyyF6u+njE9efy63W2sh9sTkCTYO/nhnElL4tWHk4kaSc4ks+7/U/jrM9PJ1/36qafn+/IwpQH4R/2hXDuG6+5yR4oKpomirBA+jX0oNp/fxZtC+Oe7/dQ3ZhGe+P7ywJ3sW4t1J/nx5bVt+RVLG1MuebSd15/tZ2fDC+M/tfvpmNzw7iqWGt+fjerhetimlmptW6PULbpo6snNX/ihI8UHs4z24dEejpIAmeEOK6Ics1RcOSHq763l3p/pcm7VWZ/E3/qayoONOk4YnrUMJ+sHYG9xuvEfM/xWYWsvxQIlP6tqCNlyMzBwby89445u6M5tWL7JkLicli0b44Zg4M4LEhrUjMLmZJSALT+gXw5ZYIjLrOM7XoKWYKr4xqX9V/LsDDXvqOXYqZOXSbrJayZ8eAq399RwSAhbkZjw5pWfVzqyaOPDNclkEKIYSpyNefN6i0vBL2RmXWdxjnSz8Jnlf5YVHTwLdHddl8cWM701bDTP66+3JLBOZmGo8MVh+um7nZMaaLD4v2xZFdWVzCaNTZF53FlpNp7InKpKisgldWHsPb2aaqOfRDgwKpMBoZ8cl2/jiSxIP9A65ZsmVhbsagNp4MauMpCV5tdZ+s/l48uKC+IxFCCHGNyEzeDerpXw+zKzKT/4zpwNR+/vUdjlKUBUUZaibuavkGQ/h6KM4BW+lTdMPSdfXFQdeGsRepPq0NTea3kAQe7B+Al1N1lcVHh7Rk5eFEPtt8mtdv78B/14Xx3Y7oqsctzTXKDTpf39+9qlR8C3d7/u+OTmQUlNK/lXuNhStEA+Lsp9rMHFoAQ14A85pbTAghhGg8JMm7AR2Jz2FXZCbezja8/sdxdF2vsZrdNZd+Sh09TFAsxa+HOiYdgpZDr348cX3KjYeyAmhigi8OrmMH47J55tfD9Gjhyr9vPff/rzZejtzXsxkLdsfStZkLc3dGc2c3X6b28yejoJRt4enYWppza8dz9zVN7H1+s2/RgPWYpr74+qIntBkBw15XzdKFEEI0SrJ+6Qb0zbZInGwsWPfUQIYHefHm6hPsisyo9fNT80p444/jFJVVmDawjMok72qXawL4dFfHRKnKekNLO6mOnjdug+KMglIeXnCAps42fDu5BzaW5xeteO6WtthamvPU4sO42Vvz+pgOdGnmwrD2Xrw5tiMvjmx//faJE0qbW1VRKld/2PsNRG6q74iEEELUIUnybjCR6QWsP57ClL7+uNhZ8cm9XQnwsOfJRYfZF53Fz3tjOZ6Ue9Exvt4ayY+7Ylh2IKHmC3QdjIbLDy49HCxswdkEMwS2LqrQRuLBqx9LXL/STqjjDTqTp+s6zy89Sm5xOd9M6oH7BSpdejhY89TNqjDN67cH4Wwry/kaHU1Te/MmLFYtZhLkCzAhhGjMJMm7wXy7LQorczOm9fcHwN7agq8n9aCgtJx75uzm5RXHmDJ3Hym5JTU+v7C0oiq5+2l3LDX2WVz1JHx/M1SUXV5wGafAo7XpCmT4BasPMtdBL0hRR9JPgqM32N6Ye8bm7oxm08k0XrqtHe29nS567fQBAWz91xBu7+JzjaIT9cLSBpp2ksJUQgjRyEmSdwNJyS1h+aEE7gludk7vqjZejiyc3pv/3dOFX2b0prjcwOO/HKS8slny2VYeTiS/tIKJvZsTkVbA7shMtpxM4/mlR5m7M5qY9AI4uRaSDsL2Dy4vwPRw0zYv9+0BhWmQFWW6McX1Je2EaqvRyBSVVbD8YAIl5TXPmFcYjPzf6hP835owhgd51aq4kqZp+HvYmzhS0SD59lD7la9kxYUQQojrgiR5N5B5f0dj1FX5838K9nfjzu5+9GvlwX/v7ERIbDYzfgohJqOw6hq9vIRT25bQydue10YH4WZvxeylR3n8x+2cOLKXt1af4Mkvf1MVMh29YcdHkHSIorIKDMZLzKaVFkBunGmKrpzR+hZ1PPG76cYUDU9JLmx5Bza8Dnu+qZ65NRorvzi4NkleUk4xoz/fwZKQ+Dq9j67rzF5ylGd/O8L0n/aftze2tMLAIwsP8P3OaKb18+er+7vLfjpxLr9gVZAo/WR9RyKEEKKOSJJ3g8gtKufnPbGM6uR9yd5SY7v68sbtQYTEZHHLx9t544/jnIqIIOZ/N/Fm0Vu85ncQG0tz7uvZjIycXNa6fsQfli+y5oHWdCw/pga572dwaELBkscY8N8NTPh2D4WlFynUknlaHU1RdOUM1xbg1wuOLTfdmI1ESbmBsorzZ2qvS8dXqkbPu7+A9c9D8hF1PicGKoqvyX683OJypv2wj2OJeXzw5ylKK+puhmTe3zGsCU3mliAvdkdmMmXuPgoq/98qqzAy6+dDbAxL462xHXhjTAcszeWvefEPvsHqKPvyhBCi0ZJ//W8ASTnFTPtxH0XlhqomyJcyrX8Am/81hDu6+fD7nhM4LLgFr6II8i09Cc78A4CnhrViZ4fVtCg+gWYsp0Pmn4xziyVNdyXBth1rvWfhkH2Ceyz/JiQ2ixk/hZBVeIF9eimVyaGpZ1063gWpoWpGJ3qHml001l1yE5tZSHxWEaBmVL7aGsHh+Jw6u98Z28PT6f/uZtaFJp9zfsWhBB5eEEJantpjmZJbwv+tPkHw/22k37ub+GZbpOmrpF5rSYfA2hmervwzFLVFHdPC1LFJUJ3cVtd1PvzzFGO/2MmIj7cTnVHI40NbkZZfyspDiSTnFvPsb4fZHp5eq/GMRr3mPa6V9/p1fxyT5+7l7TUnuCXIizmTe/DFxO4cis9hxk/7ic8qYuq8fWwMS+XNsR2Y3NffhK9WNCruLcHGRaoPCyFEIyZ98hq57eHpPP3rYUrLDXwxoTtBPhcvvnA2Lycb3h/fhSyv/bhtyiR+zK80K4+Fdf+GpMNYx+3BM3IpDH4eIjbB4UV007NYZ2zLsx9to9wQwFaX9vzb4jeCR93GX+uWMeqtcHD25ZN7u9I70L36ZlFbwb6JKrxiSkFjYf0LsOk/KsaKYlUQZuiLJr1NXGYRX22N4NeQeMw1jan9/NkXnUVoYi7ezrH8+cwgnGzqpmLhqZR8Zv18kKJyA48vOsRHFUbu6ObLrsgMZi85SoVR52hCLiM6NGXRvjgqjDqjOnmTU1zOu+tOcjwpj88ndKuT2K6J5MPg0wWcvKFJB4jcAgOeqU7yTLnP8yzf7Yjiiy0RBLdwpUszZ+7r2ZwhbT3ZciqNr7ZG8sWWCOKzill+MJE7u/vyzrhONbYvAJXgPfjTfhKzi/nw7i6UGYz8d20Yt3RoyiODW/LHkSSeXxZKoKc9MwcF8vjQVsQQX1IAACAASURBVGiaxshO3pQbjDz962EGf7AFKwszPry7C+N7+NXJaxaNhKapfXkJUnxFCCEaK0nyGild1/l002k+3XSaNk0c+WpSd1p6OlzRWG7Rq8A1gGbdRqj9Txteg7WzVXW2tqNg8Atg7wlr/4UFYBV4P93KXHlueBv+n737Dqvqyvo4/j30IqiIqIgKimKv2DX2EhOjKSaaZqopZlImbZK8k5lJJmXSk4mZ9GaqiekaTeyx94IdbCgWwAJKh/P+sSGIFMV74SL8Ps/Dc+4959xz1gVM7mLvvVa4x+vw4XCGzhnFUE/Y1nQMNx+dyPOztvH93X3NDfLyTJLXYrD58OFMgY0gvB9s+wWCmkOjzrDwefOX7I5XQ3a6meYX0g5ajyr35b9ds5+3FsSyK/EUnu4Wt/SN4GRGDh8s3k2gjwcPj4ji5d+289zMbTx3RYdyX9+27TLXUyWmZnLLx6vw9XLn+8l9+b8fNnH/1+uZMj+WI6mZRAT78++x7Xng6/V8smwPl3duzAPDWv05Zfc/s7bx9sI47hsSSWRIQKn3Sc3IJqCCklSH5GTB4c3Q6y7zvMUgWPkuZJ2CbTMguBV4l/6+SpKXZ+PmVvr3PDMnlx/XJ/Dcr9u4pEMj3ry2S5Gf0Z0DWvCXL9cR6OPBN3f2ZuH2RN6cH0vzYH/uGdyStKwcft6QwPr4E3h7uPHQiCh+WHeABdsTCfDx4PK3lpBng5e7G+vij9OqQS2embGVDo1r88PkvrifEduYzo3Jysnju7UH+NeYdrRqUL73KzVUWLQpjnUqCfyDXR2NiIg4mZK8auqz5Xt5bc5OrujSmH9f3h4/r/P8UZ88ArsXQb+/mgTMtw60uwI2fAH1W8MV75iWB+2vhNmPQ24WI0ZdyYgGBVPk6sHI580i/91/0Dp5NXde9C/e+HkZp/77KP5jXwEPH1OspcVgp73/InpPNsnp1Z9CYCikJMB3t8O6qZBy0KwH9KkD920A3zrk5tnFPkgX2HE4lVkxh4gMqcXK3Uf5eOkeOjWpw5OXtmV4uwaE1TXJ08Q+4QT5e9Gwtg8p6dm8s2gXPp5uDIwK4aKWwWcthBF75CSPfbeRlPQcnr2iPV2a1GVX0ika1vahlrf5WWZk5zJp6mqST2Uy7Y7eRIbU4uObe/D1qnhmxRwiOzePDyZ2p2k9P3697yKOpmURcUb1xNv7N+eTpXt4c14sr40veTTv+3X7eXDaBl64qgqOEB3ZArlZJnkH8zu07E2Y94yp8Dr69TJfnpGdy/O/biM9K5f6Ad4siUsi5sAJruvZjIdGRP35vQYz7fndRbuYvmY/qZk5dAyrzYvjOhb7WY7q0Ii9yacY0qYBbRoF0j08iB2HU/nfgjiu7BbGg9M2sDQumQAfD9KyclkWl8z+Y2n0iwxmyrVdeem37QT6enBTnwjGvb2UWz9ZjW3DOzd0K/X3clx0E8ZFN3Hseyk1S+tLYPGr8NkVcMMP4Bfk6ohERMSJrNLWgFQl0dHR9urVWjtwrvYlpzHy9UVEhwfxyc3dHaust/I9mPkQ3LUMChK3xO0w+wm4+D9mRKzANzfDnsXw4PaSe92t+Rh+vo/0SUt58913eJhPoElPiBoFc/4Bf91mRt4qWnY6rP4QFr+G7eHFkfaTaLDkSej3V9a1upebP15F9/Agnr+iA6v2HOWz5ftoEuSLt4c7ny3fS85plUJv6RvB46Na41FGcYuM7Fzu+WIdC3ccITvX5r4hLXlgWOkFZn7ZmMBfp23Az8sdP093DqZkUNvXk+Np2fRqHsSXt/cC4L6v1vPThgTevr4rI9uf//ft2Zlbef+PXcx9cGCxJBBg9H8Xs+nACSwLXrm6E5d3MYne4ZQMftt8iO2HU+nQuDbXdHdCE/vyWv0R/HI/3LsegiLMz/b5ZpCbCYGN4d514FFyA3CAv/8Qw9Tlewmu5UXSySzaNw4kIrgWv2xMoEGAD1dHh9GmUSAzNh1k9uZD2DaM7hTKmM6h9I0MPueiJrsSTzL81UXU8fMk6WQWL1zZkXHRYSyOTeLuz9eSm2cz+/6LihVF2hB/nKveXspV3cJ47oqODn2rRIrZ+Tt8da1Zt3rLLPD0dXVEIiJSBsuy1ti2HX1O5yrJu/CdPqUvOzeP699fwZaEFGY/cBGhdRz8n/aHF0P6UZi84uznZpyA9OOmqmVJju+D1zrAiOc4tPgT6p6MxdvKMVM9/YJh8nLHYi2nr1bs4X8Ld7H3aDr/9ZrCSPfVDM97nXTvEFMgxjLVCsPq+pKSnk1KRg5XdQvjoeFRHE7JICfPpluzc2+ynZ6Vy6PTNzJz00F+mNyX9o1rA7Bm71F+3nCQR0e2Js+2ueiF+YTV9eW9idH4eXkwZX4siamZ+Hq6M3X5Xl64siMHT2Tw6pwdPDIyirsHRjr0fTiSmsGAFxbQulEAX9zWC1+vwnVjm/afYPSbi/nbxa1ZtCOR5buSefWaznRrVpdxby/j4IkMvNzdyM7LY+otPenXsvKmfaVmZHNg6h20Sp6L26N7Cqf6fjrWFF+5+AXoeUepr58Vc5A7P1vL7f0jeOKStmTl5OHlYZK2NXuP8ervO1gal0SeDXX8PBnbuTG39Y/4c7S2vP7502Y+XrqHewZF8tCIwnWCCcfTSc3IIaphydMsD6dkEFzLu9RRPBGHbJsJX02AXpNh5LOujkZERMqgJO8CciozBz8v9zJH2+ZvP8IvGw5yZdfG9G5Rr8i5qRnZXP7WUhoG+vDIyChenL2dP3YmOaf4QnIc/LcrDHoCBjzi2LUK/DfafBhP2sFLuRO4xXchQVkJ0OtuGPlckVMzc3J5+bcdnEjL5vkrOzi119e0VfE8Mn0jXZvW4YquYWzftpEnd0/kG68xDLrnLY6nZfPS7O0MbB3ChO5NcLMsUjKyqePn5dB9j6dlMezVRdTz9+K/E7qw72gad3++lsycPCb0aEJobV9e/n0H393dh65NiyaQeXk2499dzqYDJ0jPzuXKrmG8VMJ0wfMxK+Ygd32+lmFtGvDGhC5/Fgh57LuNfL/uACseH4qnu8XNH61i1Z6jhAT4kJaVwye39CCqYQBj3lzCsbQsZt7bn5BAH4fjOZuM7FwmfriS/ztwJ+7+QbR5ZF7h92HD17D8rVJHJhbvTOLDJbtZtCORtqGBfHtnnz+TuzMdSckgLvEU3ZrVLfWc8sS8NC6Jga1CylzzJ1LpZjwEq96Dib9ARH9XRyMiIqVQkleFHTqRQS0fD2p5e7B6z1Gue38F0eF1eXpMe5qXUBjlRFo2g19eQPKpLO5w/5nLPZYwN68rO8Ku4t8TR/L8r9v4YuU+anl5kJqZg4ebxXNXdCj/+pyju8ByLzoK98tfzbq1+2MgoIGD7zzfzEdg5TuAxVOtviVt21yed3sLrv8OIof8edr2Q6n8ddp6NiekAPDmtV24tGOow7fPyslj2up4nvwxhr6RwXwwsfufH97T3hqIp7cvnrf+6vB9yjJny2EmTV1NwazP9o0D6dq0Lp8u24uXuxsDo+rz7o0l//uNPXKSUa//QecmdZh6Ww+8PUqu1ng+Pl6ym3/+vAUPN4vIkFq0C63NrzEHGdWhES+N6wSYP0rc/NEqYhJOMPXWnmYk88R+dh1JYdSne+nQuDafD0ol0SucG6YfpEmQH9f3asbJzGwOHEtnfI+mBNcqffpkaX7ddJCdR04CYAErdh9lZexBtvjcyrs5o3Af9k9q+Xiw8/BJHh4Rhb93yWtQ44+mMeSVhQT5eTGmSyi39osgJKDik1KRKi3rFLzdH+xc+Mu6kqfbi4iIy5UnyVPhlUqUdDKT4a8uJMDHk6fHtuORbzdRz9+LjftPMPL1P/js1p70iCi6+P2F2ds4lpbF93f1ptXXD+OWmcJduT+x/cBaLp8SQGziKW7rF8GkAc15Z+EuhrZpQO8W9UqJoAzTbwM7DyYtMM/TjsL6L0wFSmcleGAKY6x8ByL6c/XgHozcmEGXPn24Jr/oSmqGKev/5cp9BPp68s4N3Xhtzk6em7mNoW0alFqC/lwsi0vm/q/XcTglkx7hQbx9fbciozN+TbvApulg286v8nmaoW0bsOChQazYncyR1Exu7N0MX093NieksHbfsSJT+c4UGVKLuQ8OoH6At1MTPDC9ESPq12Ll7mRiDqSwcMcRMnPyuLF3YeLv7+3BF7f3JCUjhyD//FHNb26i+ZGtvD/oXX6e+x1eX75HjMdAknLuJjUzh9s/LfwDzcxNh/jqjl7k5NrsTjpJt2ZnL/aQmJrJ5C/WctpSSDzdLV4b4I7HihxyG3bihV+3/Xks9shJPrgpusTvz7Mzt+JuWfwwuS8Nayu5EwHAyx8GPQ7Tb4X45dCsj6sjEhERBynJq0Qv/7adtKxc/Lw8uOXj1fh7ufPF5L7U8fPkireW8vcfYphxbz883N04dCKDX2MO8sXKfdzcJ4Iu/kch7QBc8jIAbWY8iP/RzYTXa8uDw6Pw9XLn75eW0PQ56xRs/Bo6Xw8epUw1zM0xzchzMyH1EAQ0hFUfmJ5yve9x7jchvB8ER0HPO2ndMJCLWoXw4sYUxo7Kw9vDnad+3sJ36w5wY+9w7h3SkiB/LwJ9PJnw3nLeXhjH/UNLL1hyNq/+vgN3y+Ljm7szoFX94tMcG3Y0BVmO7TFVOH99BHr/BYIdW/NWkqb1/Ghar+jaro9u7s6+5LSzlsA/sziHMw1oVZ8BreoDZq1nZk5escTaw92tMMFLPwb7TRLXb/kk+nimkWdbRGVv46NbetChcW2WxiXRINCHQycymDR1NWPeXELC8XQyc/JKnJYKZmoqgJubxcxNB8mzYdb9/YmsXwsbM5rnsewNAK4fdw1uWzK5qGV9th9O5aFvNjDmzSXk5tnk5tn0alGP7uF1ycm1+TXmEA8Oa6UET+RMrUaChy9s/l5JnohINeCyORmWZY20LGu7ZVmxlmX9zVVxOOrYqSzenLeTsVOW0O8/80g6mVnk+Hdr9/OPH2P4eUMCX62K58be4fxybz+u7BrGlOu60qpBACEBPvzfJW3ZfjiV9xfv5skfY+j13Fz+9fMW2jQM5IFhLSF2jrlgiyGmhYG7Fx913cWXk4oWyihm1fvwywNmjVJpkmNNggfmPtkZptdY5FAIaePgd+gM3rXgnpWmfDdw50XNSTqZyUuzt7P1YArfrt3PzX3C+edl7f5MJHq3qMfoTqG8OS+W1XuOntdtE46ns3LPUcb3aMrAqJCS17E1yq9eeGgj7P7DVANd85HZlxwHn4w2LSUqSKCP55/FWKoCy7LOPnK6ZzFgw5Xvg399rGa9WN98EuHWIboFm0ImA6NCaNMokEGtQ3jl6s4cT8vi8i6NCfDx4JOle4pcLiUjm3cXxdH7+bnc8OEK8vJsftqQQOuGAbRuGIiHuxue7m6mmunuRVC/DXUbNGHyoEg6hNXmqm5hPHt5B9wsi4hgfyKC/flx3QEe+HoDD3+7kcZ1fLn9ouYV9j0TuWB514JWw2HLj5CX6+poRETEQS4ZybMsyx2YAgwD9gOrLMv6ybbtLa6I53zYts23a/bz7MytHEvLpn8ohKSs5aVZ9Xj+qk5/nvPybzs4cDyduqte5maf+tw3ZDi1/Tx5+epORa43ol0D+kUG83z+tLOb+oRzbc+mtAypZRKS2DkQ1MKUiQdoNZKgXT9CrefLChLWfmoeL3oJOk0oeerl4RizdfeCHbPNtM1TR5w/ileCPpHBTOzdjPf+2M1vWw4T6OPJPYOLj5w9c3l7Nu0/zt2fr+WXe/sVWUeVm2fz0ZLdjGjXsNRRrl82JgBwWacy1vWFtDPrEg9uhMxUs2/XArNd/7lJKtZ/Dv0eOK/3Wi3tWgCe/tDmMmg7Bstyp2v8ctj9DuxfBVEji5w+ulMoo/N/Bn5eHny6bA+Pj2rDifRs3pofy6zNh8jIziOqQQBLYpN5bc4O1uw9xsNnTmHNyYJ9y6DLDcVCurZnU67tWdjOITs3jz1Jp4hLPEnLBgEOTfkVqdbajjVJ3r5lZtaFiIhcsFxSeMWyrN7AP23bHpH//DEA27afK+X8ql8dRkREREREpOKcc+EVV03XbAzEn/Z8f/6+P1mWNcmyrNWWZVWPspoiIiIiIiKVwFWFV0oqXVhktM627XeBd6GKtlBIO2qmUO5datZpDX8a6rVg68d/oc2eT1l2xQreX5tK3JFUFvg/BicPmyIV13wG3gHw6RgICIX7NhQWRPlktJkS2PMuuPi0aZi//R+seAce3WOqoBX4+T7Y9C08HAeepxWSOLzZrCmb80/oNB5GvwankuDVdtDxGrjsjaLv5ZV2ZqH9pa/Cf8LBPxju21h6oZYqYFlcMhPeW87g1iHM23aEp8a0Y/uhVD5fsY8e4UGkZecQcyCF/i2DWbP3GFk5eSx+dPDZC24smwKzHzeP710P7w8xxWtyMuCORfD+UIgcBvtXwqnEYq0fapT1X8IPd8IdfxSuZyww40HTr+5ve8Gt9OmRu5NOMXPTQW7tF1F8GuWO2dhfTgA7D6v7bTD4/8C3jjn24cWmMNCkBU59SyI13sZp8N3tcNtcCDunPxaLiEglKU9vZFclefuB0xu5hQEJLorl/PgFmfYCHa8usrtF/6thz6fMmzeLZUdbc2/rVNixDS5+0SRre5dBXo45OTXBVDLrdA2cOGASMyyIm1v0XvtWQGjXogkeQJvRpjjIrgWFa5/2LoWPRgE21GkKvSeb/f7BJuFb/yUM/jvUMhUUSTsKKfuhQTuz8H74v02vvCqc4IEpxjKmcyg/rk+gjp8nV3ULw8LC39uDNXuPkZKew+vjOzOmc2NOpGeTmJp5bhUVG+YnK8FRZv1j84EQMx0adoBGnaDlcNj2C9RqAIFhJpFuPqhm9pWKmwd+9aBB++LHwnqYoj+J26FBCVVf80UE+zN5UAnVS+NXwrSJWA3bQ5Oe5lpbfoSh/zRrRvevgt53O+2tiEi+yKFmbfL2X5XkiYhcwFz1yXQV0NKyrAjLsryA8cBPLorFqbyadCXPcicgaR1pWbmMyp1nylJ3usb8D3PfUtg+05Srrt8alv7XFEiJ+RawIfoWSNoBx/Nns2ZnwMH10KRH8ZuFXwTetWHrz+Z5brZpYF67CTywGe7fBMEtC8/vNdlU0Vz1fuG+I/m1bhrmf1DvdSdEXez070tFeGJUG+r6eXJL3wj8vDzw9XLn8VFtmH5XHxY9Mogxnc0M4Nq+nkSGFG80X6KGHcDNw1SZA9PXD6D1pWbb516TwEz8GYb83VTi3Pydk99ZFXM8HmY9bn4XC2RnmA+BUReXnOAWfDhc9ALEzYe5T8N7QyAp9tzu+csDUCsErpsOo16E2+dDnSbw493w0z2mxUXn6x1/byJSlF8QNO0FO2a5OhIREXGAS5I827ZzgHuA2cBWYJpt25tdEYvTeflDSFt6eOzC080m7OBv5oOwT23zP86EdXAi3rQQ6PMXOLwJZj0G6z6HxtHQ43Zznbh5ZntwA+RmlZzkeXiZEbztM0yvu+X/g8StcPF/oHZY8fPrtzLJ5cp34HB+cnc4/9te0mhMFRcS6MOyx4ZwT0kjQefLtw7cMhsGPGqeR40yCV7n68zzpj3htt+hfhR0GGcqcs5/BvLynBdDVbPyXVg+BTZ9U7gv9nfISjXtPEoS1By6ToStv8DUsbD4FTiwBjZ+dfb7JceZiq+97ioccQ7tDLf+DtdOM9Nm79tgfp9FxPlajTT/Bo/vc3UkIiJynlw2x8y27Zm2bbeybbuFbdvPuCqOiuAWFk03z938p1sqbmlJ0PYyc6BpQYNZy/xPtMM4aDvGfIhO2m6mU9ZvbdbqFUzZjF9htmElJHlgpmymH4Ovr4O5T5nrth5VenDDngIPH/hwBCx60Uz39Ktnph9egHw83XFzO/f5yeckLNqsmwTzV+3xn5tRpDO5uUP/v8LRXbBrvnNjqAhZp2DtVNhSyqD53qXwemdY/KoZXQaz3faLebzincL9Md+Z35uIASVfy7LM2s+HY2H8l3B/jFn3eS6jAwUj0wWjpwXc3KHVCDNtthxz0kWknKLy/x+yXaN5IiIXqhq4kKgShEXjmZ3KFae+NglV5DCzv0kPsNwgrLuZiubhDVd/Cg9ug3GfmJEPyzJTBHctMKNz8SugbnjJ/e3ANEf3qgWxc6HL9TCmjKbnYEagbptjRvrm/RsyT0L/h/Sh+Xy1GW2SnTUfuzqSkuXlwo7f4Kd74eU2ZqrjtBtg5XtFz9v4jSkGdCrRrDOc9ZgZnTyyxSSxYT3MqPPepSZZ3DHL/IHC/SzLen3rmD861G5sErRDm8z607Js/RlCu5ScWItIxQuOhHqR5r9raUdLPy92LnxymflvhIiIVCmuKrxSvTXOX4+0a74ZjfDOXw/mE2gqBDYq2gidWiHQbmzh89aXwPrPzLTK+JXQYlDp9/LyM1XQvAPMB+lzUTsMJi00FT9rhynBc4SHN3S+1kyVTT1cejLuKrMfhxVvmz8ERF1s/pCwbArMfMiMjEXfYqbufj8JmvY21V8XvQjL38qvZGmZryvfg3cHwsL/mKm92WmlT9UsTauR8PuTsHO2uW9JThyAA6thyJMOvnERccjwZ8wfhD66GCZ8aaZgF7BtU0hs2Zvm+YavYdBjrolTRERKpJG8ihDcCrwDzeM2lxU91v9BU72sLFEXF34gPnWk5PV4pwtpfe4JXgEPLzNSogTPcV1vMhVT13/muhjycs1o3M7fC4v2JMeZEbvO18Mju+DK9yGivxk9bjkcZj5i1nzOfsz8vl7zmZmeOuJZ6DgeFjxvivQ07WVGk7vdDLsXmvV59Vub6ZflEdzKXGfH7MJ9sXPhywkmQYbCqZpn/rsRkcoVNdK0iElJgDe6mD/y7MtfPrB/tUnwutwAjToXrwgtIiIupySvIri5QeOu4OZppqiVl2XB6DcKE8UmPZ0bnzhXcCREXARL3oCE9a6JYfuv8N1t8PlV8Fp7WPAfs0bTw8eMinl4F57r4QWXv2Paanw61kwNHvS4SfDA/P5d8rKpzHrqSOHauIF/M6PGf90Kdy0rs/9diaz8tai7FkBWmklMf33EVJv9eBQseR3m/MO0sTi9KqyIuEZEf7hrCQz5h0n2fnvC7N/2s6lCPPxp82/6wJqyp3WKiEilU5JXUQY8apqLFzRvLq+ABnDFe2bdU0jpfcakihj9Rn6T+8vgwNrKv/+u+eDpDzf/ahreL3gWtvxg+iSWNIXUL8gkeunHTE/AM6dPetcy60RbDDYFgsAkimHRpn3B+fYFbDvGNJaf/4wp3pIcC33vh5NHzMh1sz5w3bfnd20Rcb46TU2Bqd73mP6USbGmam54f/Cta2am2HkXRvEpEZEaxLILquVVYdHR0fbq1atdHYZI2Y7vgw9Hmg9Ft1RyVbr/Rpvm7dd9Y9bLrHjbjO5d85lZC1qanXPM6+q1qLxYZz5sKsoWVHW9c4lp/XEoxiSUNbGxvEhVl3IQXm1rRva3/gSjXjItf/Jy4YXmZi352LMU/hIREYdYlrXGtu3oczlXn6ZEnKVOU2g71kzZzM2pvPueOADJOwvbGViW6TE38aeyEzyAlkMrN8EDU9ChcTSkJcNFD5ukrkE76HSNEjyRqiqwETQfaBI8MEkdmGnbLQaZ9bUXwB+NRURqCn2iEnGm0C6Qkw6J2yrvnrsXmm3zUnrWVTUeXqZa35i3TFIsIheGThPMtnE3M227QORQOHkIElwwVV1EREqkJE/EmUK7mG3Cusq7564F4BcMIe0q756OqhUCXa7TyJ3IhaT1JRDQyLSNKbL/UvAKMK1kRESkStAnLBFnCmpuqqJWVpJn27BroanuqYRJRCqSl7+prtv9tqL7fetA9E2mmNKxvS4JTUREitKnQhFncnMzze4rK8k7tNFMk2o+sHLuJyI1W2m9VXveBZYbLJtSufGIiEiJlOSJOFtoFzgcAzlZFX+vtVPB3RvajK74e4mIlKZ2Y+h4Naz9FDJOuDoaEZEaT0meiLOFdoHcLNM36t1B8P1dzmsUnJ0O7w0xjcOz0mDjNGh7WWEjcxERV+l8rSk8tXepqyMREanxPFwdgEi1U1B85evrwc3DTKmMmwejX4Ooix279pqP4cBqU8Xu6C7IPAFdJzocsoiIwxpHg4cP7Fns+H/rRETEIRrJE3G2uuHgWxcsd7juW7h9HvgHw5fj4bs7zAjc+chOh8WvQpOeUDfCJHxBLSC8nzOjFxE5P54+ENYd9vzh6khERGo8JXkizmZZMPZtmPgzhPc1hVhunw8DHoWNX8G6qed33dUfwcnDMORJuPJ98PA1Tc9LK4QgIlLZwvvBwY2QftzVkYiI1GhK8kQqQtRIaNK98LmHFwx6HOo0g92Lzu+aK9+BZv3Mh6jGXeHhWOhxu3PiFRFxhvB+gA37lrk6EhGRGk1Jnkhliuhv1qvk5ZXvdWlH4dgeaDW8cJ93LaeGJiLisMbRpuLvnsWujkREpEZTkidSmcIvgozjcHhT+V53cIPZNuzo/JhERJzF0wea9NC6PBERF1OSJ1KZIvqb7e5yfgA6tNFsG3VybjwiIs4WcZFZl5cU6+pIRERqLCV5IpUpMNRUxCzvurxDmyAwTP3wRKTq63YTePrB/H+7OhIRkRpLSZ5IZYu4yDQLzs0599cc3AgNO1RcTCIizlIrBHpPhs3fmx6hMx6EWY+7OioRkRpFSZ5IZYvoD1mphevsziYrDZJ3QiOtxxORC0Sfe8A3CKZeDqveh+VT4PAWV0clIlJjKMkTqWzh+evy9pzjlM3Dm8HOU9EVEblw+NSGi1+AqFFw0wzT13P5FHNs1Qewa6Fr4xMRqeY8XB2ASI1TKwTqtzbFV/o9cPbzD+WP+GkkT0QuJB3HmS+AzhNg3efgHwKLXzHT1psPcG18IiLVmEbyRFwhvD/sWw652Wc/9+BGc23vFwAAIABJREFU8KkDtZtUfFwiIhWh192Qm2kSPHdvOBQDtu3qqEREqi0leSKuENEfsk/BgbWln7N/tVnPsm4qhHUHy6q8+EREnCm4JXSdCG1Gw5AnIf0opCS4OioRkWpL0zVFXKFZP7Pdswia9ix+3Lbhu0mQmWKmdPaYVLnxiYg422VvmO2+5WZ7aBPUblz8vJws8PAq/Tonj5g2NLXDoGkv58cpIlINaCRPxBX860GD9qU3Rd+7FI7GwbCnzF+9AxpWbnwiIhWlQTuzPbyp+LG4+fB8E/jjlZJfO+ef8FJLmH4rTLtRUz5FREqhJE/EVcL7Q/wKyMksfmzdVPAOhLZjKj8uEZGK5B0AdSPMSN7pMlPhp3tNNeG5/4J5/y6axG39BRa/Ch3GQf8H4eRhOKK2DCIiJVGSJ+IqzQdATgbsXVJ0f8YJ2PwDtL8SvPxdE5uISEVq2L54kjfnX3AiHm78CbrcAItehLi55tjxffDj3dCoM4yZAtG3mP1x8yo3bhGRC4SSPBFXaT4QPP3MX6cLpB6Gec9ATjp0vdFVkYmIVKyGHeHobjN6B3A8Hla9Bz3vgGa94ZJXIKARLMlfxzfjIcjLhXEfgYe3WY8XHGWmd4qISDFK8kRcxdMXWg6Dbb9AXh6s/RReaQ0r34HWl0JoF1dHKCJSMRp2AGw4nD/dcu9Ss+1yg9l6eEHPO2H3Qlj0EuycDQMehaDmhddoMci8LjujUkMXEbkQKMkTcaU2l5l1JbG/w29/h7AeMHkljP9cLRNEpPpq0N5sD200233LzDrkkDaF50TfDF4BMO9pCGphkr7TtRhsZj3EL6+cmEVELiBK8kRcqeVwcPcy7RIyTsAlL0H9KFdHJSJSsWqHgX/9whG8+BWmH6ibe+E5PrUh+ibzeMSzxdsqNOsLbp5alyciUgIleSKu5BMIzQdBxnHoNCF/CpOISDVnWaYx+o5Zpin6ka3QtHfx8wY+BtdPh1Yjih/zrmUKWK3+CJLjKj5mEZELiENJnmVZ4yzL2mxZVp5lWdFnHHvMsqxYy7K2W5Y14rT9I/P3xVqW9TdH7i9SLXS5DvyCYdDjro5ERKTydBgH2Wmm9x02NO1Z/Bwvf4gcWvr09UtfBTcP+Pp6yDpVkdGKiFxQHB3JiwGuABadvtOyrLbAeKAdMBJ4y7Isd8uy3IEpwMVAW2BC/rkiNVfbMfBwLNRp4upIREQqT5NeENgYNn4Nljs07lb+a9RpCld9AInbYOYjzo9RROQC5VCSZ9v2Vtu2t5dwaAzwlW3bmbZt7wZigR75X7G2be+ybTsL+Cr/XJGaTUVWRKSmcXMz/UABGnU8/76gLQZD3/tg/Wewa6Hz4hMRuYBV1Jq8xkD8ac/35+8rbX8xlmVNsixrtWVZqxMTEysoTBEREXGZDleZbZNejl1nwKNQNwJ+eUAtFUREOIckz7KsOZZlxZTwVdYIXEnDEnYZ+4vvtO13bduOtm07un79+mcLU0RERC40DTvCJS9Dr7scu46nr1mfdzQO/njJObGJiFzAPM52gm3bQ8/juvuB0xcYhQEJ+Y9L2y8iIiI1iWVB99ucc60Wg6DjNbD4NWh/FYS0ds51RUQuQBU1XfMnYLxlWd6WZUUALYGVwCqgpWVZEZZleWGKs/xUQTGIiIhITTLiWdNa4ef7IC/P1dGIiLiMoy0ULrcsaz/QG5hhWdZsANu2NwPTgC3ALGCybdu5tm3nAPcAs4GtwLT8c0VEREQc4x8Mw5+B+OWmaqeISA1l2XaJS+KqlOjoaHv16tWuDkNERESqOtuGKT3Bpzbc9ruroxERcRrLstbYth199jMrbrqmiIiISOWzLOhyPexfCYkldXk6Q8YJOB5/9vNERC4gSvJERESkeuk0Adw8YN3Us5/729/hnf6QkVJ0v22bLxGRC5CSPBEREaleatWHViNhw1eQm132uQlrIf0YrPmo6P53B8KUHrDp23Mv4rLlR/h0LLzY0mxFRFxESZ6IiIhUP11ugFOJsLWMIt65OZC4wzxeNqWwkXraUTi4Hk4cgOm3woq3y77XyUSYfhtMuxGO74XARrBrPqQfd857EREpJyV5IiIiUv20HAbBUbDgeZPMleRoHORmQqdr4eRh2PCF2X9wg9leMxWCW8HuhSW/PicLZj8Br3WAzd/DoCdg8ioY+i9z/MAa574nEZFzpCRPREREqh83dxjyd0jaARu+hPVfwgfDISm28JzDMWbb6y4I7QIr3zfPD64329Au5uvgxpLvsWkaLHsT2oyGu5fDgEfA3QMadwMs2L+qwt6eiEhZlOSJiIhI9dT6UpNwzXwIfrgT4lfAV9cWFlk5vAUsd6gfBW3HwpHNkJJgRvLqNAW/IGjYEVIT4OSR4tc/shU8fODytyG4ZeF+n0AIaaMkT0RcRkmeiIiIVE+WBcOeMo/7PQA3/ADJsfD9naZy5uHNJjnz8IbIoea8uHmQsB4adTLPC7YljeYl7YR6kWbU8Exh3U2Sd65FW0REnEhJnoiIiFRf4f3gsf0w9J/QYhAM+xdsnwGxc83IXUhbc16DdlCrIcR8B8d2Q6POZn/DDmZ7aEPxayftKDqCd7omPUwPvuSdzn5HIiJnpSRPREREqjd3z8LHPe6AwDCY9xQc32eSOzCjfi0GQ9xc87wgyfOtA3XDC4uxFMjOMJU0g1uVfM+w7marKZsi4gJK8kRERKTm8PCCvvcWJm0FSR5A5JDCxwXTNAsenzld8+gusPNKT/LqtQSf2hC/0jlxi4iUg5I8ERERqVm63AB+weZxwXRNgOaDAAsCG5uG6gUadjRTOHfMNhU6D282UzWh9Omabm6m6EvC2gp5CyIiZVGSJyIiIjWLlx8MfgJCu5oqmgX860HzARAxoOj5BVM3v7jaVOhc9YEpugKm8EppGrQzzdZL69MnIlJBPFwdgIiIiEili77FfJ3puulmfd7pQjuDhy+ERZuWCVt/gvD+ULspePmXfo+QtqbZ+rHdpY/4iYhUAI3kiYiIiBRw9yjeEsE/GO7fCDf+CF1vgFOJsH3m2RO3kDZme3hzxcQqIlIKJXkiIiIiZ1MrxCR/kcPA0x9yMkovulKgfmvAMk3TRUQqkZI8ERERkXPl5QdRI83js43kefpCUHM4sqXi4xIROY2SPBEREZHy6HC12TbsePZzQ9ooyRORSqckT0RERKQ8okbC3cuhSfezn9ugnempl51e8XGJiORTkiciIiJSXgVFVc7lPDuvsK+eiEglUJInIiIiUlEKmq2r+IqIVCIleSIiIiIVJagFuHupjYKIVColeSIiIiIVxd3DjObFr3R1JCJSgyjJExEREalIUaMgfgWkHHR1JCJSQyjJExEREalI7cYCNmz9ydWRiEgNoSRPREREpCLVj4L6bWDzD66ORERqCCV5IiIiIhWt3eWwbxmkHnJ1JCJSAyjJExEREaloBVM2t5QyZTP9OMx+AtZ9BgnrYdO3EDO9UkMUkerDw9UBiIiIiFR7BVM2t/wAPScVP77pG1j2ZvH9Qc0htEvFxyci1YpG8kREREQqQ7uxsHdpyVM2dy2A2k3hrmVw1Udw6xzwCoClJSR+IiJnoSRPREREpDK0LWXKZm4O7F4ELQZCg7bQ/gpo0h26TYTN38Px+NKvmZIAc/4Jr7SFLT9WYPAiciFRkiciIiJSGUJaQ/3WZsrm6RLWQmYKNB9UdH/PO832j5cgcQekHS16PH4lTOkJS16Hk4chbn7FxS4iFxStyRMRERGpLO0uhwXPmymbAQ3Nvrj5gAXNBxY9t04Tc/6aj80XgE8dCO0MTXqZNXy1GsCkBfD9nZAcW0lvQkSqOo3kiYiIiFSWgimbc5+CrDSzb9d8aNQJ/IKKn3/pKzDha7jyAxj+jEn6Ug7CwuchoBHcNAPqtYB6kUryRORPGskTERERqSwhraH3PWYUbu9SaD4A9q8y+0riUxuiRhbfn5IAfvXAw9s8D46EDV9AZip4B1Rc/CJyQdBInoiIiEhlGvEMTPwZfOvCtpkmKWs3tnzXCAwtTPAA6rU0W43miQgayRMRERGpfBEXwSQnFkqpF2m2yXHqqycijo3kWZb1omVZ2yzL2mhZ1veWZdU57dhjlmXFWpa13bKsEaftH5m/L9ayrL85cn8RERERwTRNx4Kkna6ORESqAEena/4OtLdtuyOwA3gMwLKstsB4oB0wEnjLsix3y7LcgSnAxUBbYEL+uSIiIiJyvjx9oE5TSFaSJyIOJnm2bf9m23ZO/tPlQFj+4zHAV7ZtZ9q2vRuIBXrkf8Xatr3Ltu0s4Kv8c0VERETEEaqwKSL5nFl45Rbg1/zHjYH4047tz99X2v5iLMuaZFnWasuyVicmJjoxTBEREZFqKLilWZNn266ORERc7KxJnmVZcyzLiinha8xp5zwB5ACfF+wq4VJ2GfuL77Ttd23bjrZtO7p+/fpnfyciIiIiNVm9SMg6CakHXR2JiLjYWatr2rY9tKzjlmVNBC4Fhtj2n3862g80Oe20MCAh/3Fp+0VERETkfBVU2EzaaVosiEiN5Wh1zZHAo8Bltm2nnXboJ2C8ZVnelmVFAC2BlcAqoKVlWRGWZXlhirP85EgMIiIiIgI0aAeWG2z6xtWRiIiLObom700gAPjdsqz1lmW9DWDb9mZgGrAFmAVMtm07N79Iyz3AbGArMC3/XBERERFxRK0Q6PMXWDcVdi2ADV/BB8PhePxZXyoi1YtlXwCLc6Ojo+3Vq1e7OgwRERGRqi07Hf7XF1IPQfYps6/rjXDZf10bl4g4zLKsNbZtR5/Luc6srikiIiIiruTpC2PeNNM2+z8E3W+D9V/A0d2OXffEAfj4UlO9U0SqPCV5IiIiItVJsz7wt30w5O8m0XPzgEUvOXbNDV/Anj9g/rPOiVFEKpSSPBEREZHqxi3/I15gI+h2M2z4Ek4ln//1tvxotjHTIXGH4/GJSIVSkiciIiJSnbUcCnYuJG49v9cnx8GhTdDvATMd9A8HRwVFpMIpyRMRERGpzoJbmW3SzvN7/ZYfzDb6Voi+xbRoSFjnnNhEpEIoyRMRERGpzgLDwMO39CQvYV3ZSdvmH6BxNNRpAv0fhIBQmDYR0o9VTLwi4jAleSIiIiLVmZsb1IuE5FKSvG9ugg9Hwr7lxY8lx8GhjdBurHnuFwTjPoKUA/DDZLgAWnGJ1ERK8kRERESqu+BISCqhYEpyHBzbA3m58MU1kLi96PENXwEWtL+ycF+THjD0X7B9Bqz/vCKjFpHzpCRPREREpLoLbgXH90F2RtH9cfPM9tqvwd0Tvr0FcrPNvrw82PgVNB8IgaFFX9frbmjWF2Y9DikJFR29iJSTkjwRERGR6q5eS7Dz4OguyEgpbIMQNw/qNIMWg+HS1+BwDCx70xzbt8wkhp2vLX49Nze47L+QmwUzHqy89yEi50RJnoiIiEh1F9zSbJN3wg93wdt94eAG2L0IIoeAZUGbS6H1pbDgedizBNZ9Bl61oPUlJV+zXgvoex9snwmphyrvvYjIWSnJExEREanu6kWabdw8k5TlZsFnV0LWSTOKV2DUi+DhAx+Pgg1fQNux4OVf+nVbjTDbPYsrLnYRKTcleSIiIiLVnXctCGwMaz81z0f+B04lguUO4f0LzwsMhXtWwVUfQv+H4KKHyr5uo07gXduMCDpL2lFTDEZEzpuHqwMQERERkUpQL9K0Poi6BHrdmb8+7zj41il6Xq0QU03z9IqapXFzh/C+jid5qYdg71LY/its+RHcPOCBGNOyQUTKTSN5IiIiIjVBcCuz7XGb2Y56Aa541/HrhveHY7vhxP7ze/3O3+GVNvDtzbBjNrS/ArJPwbqpjscmUkMpyRMRERGpCTqNh553QcRA5143In+65+4/zDYjBb67Axa/ap7bNvz+JOxdZp7nZsOS1+FUknm++FUIDIPb5sEjcXD529CsH6x63/TvE5FyU5InIiIiUhOERcPFz5v2B84U0g58g2DHr2ba5gfDTH+9RS9DVhocWGuSujn/MOfHTDdJ38yH4PBm2LsEut8KYd1Mrz6AHreb9g07f3NurCI1hJI8ERERETl/bm5mNG/Lj/DJaLO+buDjkJUK234pnHYZvwIOxcDKd03Bl83fm3YOHj7Q9cai12x9CQSEmnNFpNxUeEVEREREHDPiWYgaBf7B0LAT+NUzffZWf2RG61qOgN0LYcZf4cAaGP4MrP3E9OrrfF3xAivuntBxHCx7y4wGevm55n2JXKA0kiciIiIijqkdZtb8RQ6FWvXN6F6n8bBvKWSegD73QLsrzGieVwB0mwij3wD/EOh1d8nXDO8Pedmwf2XlvpcCOVnwxyuFawdFLiBK8kRERETE+TqNN9s6zUwhle63Fu73DoBmveHhndCwfcmvb9ITLDfYs6Ry4j3T3iUw91+maXxmqmtiEDlPmq4pIiIiIs5XrwX0uRdCO5uRvcbd4JrPILzfub3eJxAadYY9iys2ztIkx5rtwQ3w1bVw3XTw8HJNLCLlpJE8EREREakYw58ubKpuWdBmNPjWPffXh/eFA6shO71i4itLchx4+sPYt0zV0MWvVH4MIudJSZ6IiIiIVE3N+kFuFuxfXfn3To41o5Gdr4X2V8GiF00RGZELgJI8EREREamamvYCLLM+zpkW/AfmP1v2OcmxUC/SPL74BfCpAz9ONs3cRao4JXkiIiIiUjX51oGGHWDXwpKP5+bAzIchKbZ8193wJaz6AGzbfH06Fla9X3g8JwuO7zUjeQD+9eCSlyBhnWnkLq6RmQqfjoFDm8zz9GOw6CXzeyBFKMkTERERkaqrzWjTiuH4vuLHjmwxDdPXfnzu18vOMAlcWhIc3QXHdsOu+bDqw8Jzju8FO69wJA+g3eXQ4w5Y/hZs+va83444YPcfsGuB6cEIsOYTmPe080d6qwEleSIiIiJSdXW82mw3Tit+LHG72ZanzUJyrEngAOJXmsQB4MhmOLan8BwomuQBDP83NO0N02+F9wZDzHfnfl9x3L6lZrtjthmB3f6reX44xnUxVVFK8kRERESk6qobDs36mimWtl30WOI2sz244dx72SVtL3wcv8JUzvSqZZ5vm2m2BUleUPOir/XwgglfwpAnIf04fH+npgpWpr3LzPbYbvOz27/SPD+40XUxVVFK8kRERESkaus03iReB9YU3Z+4zTRMt3Nh34pzu1biDsAylTvjV8CePyDqYqjfBrafluT51QO/oOKv960L/R+EAY9CbiYk73TorZ2Tle9B3PyKv09VlnUKDq4vbMnx6yNmRDYwrHCNnvxJSZ6IiIiIVG1tx4KHD2z4quj+xG3QfBC4ecDeMpqmH98HsXPN46TtULcZNB9g1vSdPAzh/aH1KNi7FNKOmh55QS3KjqlhB7Ot6AQjLxd++zvMfrz4SGZNcmAN5OVAx2ugfmszehvQyEznTdxm1lrKn5TkiYiIiEjV5hMIkUML12IB5GSawimNu0Jo17LX5c16DL64Gk4lm5G84Cho0qPweER/iLrEjAgufgWSdhZfj3em4Jbg7g2HKniq4LE9kJNuEtKEdRV7r6ps7zLAgiY9oeUws6/VSGjUyfzcEre6NLyqRkmeiIiIiFR9LQbBiX1mlA1MImbnmVGd8L6QsNZM6TtT+nHY+ZsZBdr8nZmKGdwSGnczUz0Dw6BuBIR2gbZjYOl/4eShwvYJpXH3hJDWFT+Sd+S05GX95xV7r6ps31Jo0M601WhzmdnXbmzREdVTybCnjBHdGkRJnoiIiIhUfS2GmG3cPLMtKLpSv7VZX5eXU3I/va0/Q24W+NQ2CVxuJtSPAu8AMzrY/gqwLHBzg6s/hWunmSmgUaPOHlPDDnAopmKnURYkeVGjYNM3NXNaYm42xK8ylU3BjML+dSs0H2gSdK8ASFgPX19v+ujVxO/RGZTkiYiIiEjVFxRhPtCfnuRZbmZULqI/1GkKC56DvLyir9v0jVlf1+tu0/8OzHRNgOu+geFPFz2/1Qi48Qdo0PbsMTXsaPrtpR5y7L2V5cgWqNMMetwOGSfgj5fPvZJodbF3CWSfMusoCwSGmq2bGzRsb3rn7Vtqkv2SeirWMEryREREROTC0GKwqYaZk2WSvKDm4OFtvgY/adbHxZzWqDz1kGmR0OEqaH9V4f76rZwTT2UUXzmyFULaQsQAM2K56AV4Kco0Aq8pts0AD9/C0dwzNexgRmjrNDXPj+2uvNiqKIeSPMuynrYsa6NlWesty/rNsqzQ/P2WZVlvWJYVm3+862mvmWhZ1s78r4mOvgERERERqSFaDIask7BnERzeYqZqFmh/pSnCMfepwrV5y94EbJPgBUea4/4hpg2CMzRoZ7aHKyjJy8kyLRpC2oCbO9z0C9w6x0xX/PlemP9c9a+4adsmyWsxGLz8Sj4ncpgZ7RyXn/geVZLn6Ejei7Ztd7RtuzPwC/Bk/v6LgZb5X5OA/wFYlhUE/APoCfQA/mFZlpP+lYmIiIhItRbRHyx3+OxKOBpXOJIGZtreiGch5QBMvRxWfWDW4HWdWDhyd+lrMOZN58XjU9skF84ayYubB4tfLXyeHGumH4bkTx21LGjS3Uwz7XwdLHy+eFuJ6ubgevMzbX1J6ee0Gg73bzTFc7xqaSQP8HDkxbZtp5z21B8o+FPCGOBT27ZtYLllWXUsy2oEDAR+t237KIBlWb8DI4EvHYlDRERERGoAn9pwycuQkmAqW7YaWfR4eD8zmjP9VtPovGkfGPVS4fHGXXG60C6mv15utqm46Yglr8OuBdByhFkTeGSL2R/Spuh57p4wZgoc3GhaPnS8xiS51dG2GWbt5Zk/65JYllm3qZE8x9fkWZb1jGVZ8cB1FI7kNQbiTzttf/6+0vaXdN1JlmWttixrdWJioqNhioiIiEh1EH0zDH7CTM/08i9+vO1lcN235vg1U8HDq2Lj6TTBNFTfNsOx6+TmmAqSAMvfMtsjW83IZXDL4udbFvS7H5J2wPYZkJ1ukr6K4qppodtmmGTdv965nR8UrpE8ziHJsyxrjmVZMSV8jQGwbfsJ27abAJ8D9xS8rIRL2WXsL77Ttt+1bTvatu3o+vXrn9u7ERERERFpPgCu+hD8gyv+Xi2HQe2msOp9x65zOMZUkKzdBDZOg5SDsH+lacru4V3ya9qONSNXc5+C//WBd/qbtYrOtnEavNoeTiU5/9plyckyiW54v3N/Td0I00A+L7dwX2YqZKU5Pbyq7KxJnm3bQ23bbl/C149nnPoFcGX+4/1Ak9OOhQEJZewXEREREbnwuLlD91tM1c8j287/OvErzPay/F5+U3qayqCty+jX5+4Bfe8zo3m52Wbf3iXnH0Nptv4EKfth4X+cf+2ypOwH7MKqmeciKML0RUzJTzFsGz4ZDd/dXiEhVlWOVtc8fez4MqDgN/sn4Mb8Kpu9gBO2bR8EZgPDLcuqm19wZXj+PhERERGRC1OXG8DdC1Z/cP7X2LcMAhtDi0Fmqql3LRj3MQz5R9mv6zrRTE+9ZxUENIJ9y88/hpLYtllz6OYBqz+EpFjnXr8sx/NXedUOO/fX1I0w24Ipm/ErIGEdxM6FnEznxleFObom7/n8qZsbMQnbffn7ZwK7gFjgPeBugPyCK08Dq/K/nioowiIiIiIickHyDzY93OLmn9/rbRv2rYCmvczzK96HBzZDu8vN2ruyuLmZKaOevtCkZ+GIoLMk7YC0ZBj0OHj4wJyzJJ3OdGK/2dZpUvZ5pwvKT/IKiq+s/tBsc9IhfqXzYqviHK2ueWUp+21gcinHPgQ+dOS+IiIiIiJVSuNusONXyEgBn8DyvfZEPKQmQJP8JO98K2U27QVbfjDJUXlGv8pSMP2z7VjIzjDN2M+8fm62qYDp5m6eH95iki1PX8fufSIesCCwHO8lMMyMOh7bDaeSYfP30HE8bPrGVC6N6O9YTBeIalprVURERESkEoV2MduDG8r/2oIplk17OhZDk55Fr+cMe5dCrQYQ1Bw6jTf7YqYXHs/Lg/cGF655S4qFt/vBvH87fu/j8RDQsHwVUt09zBq+o7thxf/M+ry+95kkfNcCx2O6QCjJExERERFxVGhns01YV/7X7loI3rUhpJ1jMTTsAJ5+zpuyWbAer1kfM220XgsI7Qqbvi08Z+dsOLTRJH4H1sAfL4GdC+s+M20dypKbA4tegk8ug5kPw+4/ih4/se/8RiTrRsCWH2HRi9ByuOk52HwgJKyF9OPlv94FSEmeiIiIiIij/INNK4XyJnl5eSZRihxiRqEc4e5pRqycNZJ3fB+kHIBmfQv3dRhnkrrEHeb5kjfMFEnfIPjlAdNuoUkvyDhupkqW5uQR+PgSmPe0ebzuMzMaeHo/vuPxpqVEeTUfCHWbwejXYfyXhfvsPNizuPzXuwApyRMRERERcYbQzuVP8g6sgVOJEFVGq4TyaNrb9NzLOOHYdbIzYO6/zOPTk7x2lwMWbPjSFIvZtxT63AP9HjBTVd094epPILhVYdGTkqx4B/avMkVmJi+HYU9B6kGTWIJJflMOlK/oSoG+98J9G6DbTYWJc1h3M8q5e1H5r3cBUpInIiIiIuIMoV1MwY/0Y+f+mh2/guUOLYc6J4YWg8yIVdy887/GySOmt1zMdBj8f2a6Y4HARqZ4yeJX4MPh4FPHtJDocbuZJtnrLrOOrtvNJok7sKbkeyTtMNM/O44zzwvWExZMNT11xKynO5+RvJJ4eEGDdnCkAprFV0FK8kREREREnKGg+ErC+tLPsW3Y8JVZh3ZoE2yfZUbffOs6J4awHuZaO86zFfWhGFNI5dAmGPcJXPRw8XPGTIFRL0H/B+GK90xPP09f+Mvawr5+nSeAf32YNrGwMfnpkmOhXmTh8wbtwCugcKppQY+88jRCP5vgVpC003nXq8KU5ImIiIiIOEOjTmZbMGXzxH74YHhhwpV1Cr6cAN9lHg5pAAAOL0lEQVTfYVoTfDgSjmyGqJHOi8HdAyKHwc7fIC+3fK89sR8+HAF5OXDzTGg3tuTz6jQ1I3dDnoRWwwv3u7kV9vXzrWuatKcfh6mXF50+mpcHyXFmJO/P17pDWHThSN6J/GmbzmoFARDcEk4ecnwq6wVASZ6IiIiIiDP4BUFIW1j6BmybAZ9dZZKWOf80I3gr3jbTM4f/G+5dD3XDAct56/EKtBphGpjvX22eZ2fAF+NNwnlsT+mvi/kOsk7CjT9B466OxxHaGa75FBK3mdHLAifiITez6EgemD5/hzebJKygEbqzpmuCGcmD/2/v3oOtqu4Djn9/XgQdFVFRi4ADIj7AWiRUjDo6PhohMWBT26KJNa0Zk4ykcTKpj2bMaGfiNO00dTpRo6OmzsRKHKWRJvWVFtskJr6fSEDiC4RU67uZjEb99Y+1CYfL5fI6+xzuPt/PzJ577zpr77PW/OYc+O219lplm4eG28YlfCRJkiT91p9+B26eBwvOhB12LIt/PPzPsHQR3PfNsqT/0V8odf/irmra4qTBrrjlDjy5POe3/M6y2uZt55TkcvhucM1xMP3PoG9E2cB82HCY9qnyrN3Tt5fRyL0Pal9bJp1YEt8l34OZny1lr1ZJ1l6T1687fiaQ5Vm+N1bCTrtv+cbyg/ltkrccxn1oXflrz5WEe+0oZAOY5EmSJEntstck+MwP4e5LSrJ10KwyXXPhZ+G9X8PxF66rO2LXdfvrtdPOo8redg9eX0bQ3l4Ns/++TK1ceG5Z2TI/qKZzJvziXvjENfDSQ2UKZrtN/UNYfHl5Nm/kfmWqJmw4kjduRkk8n/tRWWVz9zY+jwclkdthGLza8lze/dfCHX8FJ18Gx57f3vfrIqdrSpIkSe200+4w559gypwyUjazSvAmnVQSmU6Y+bkyIjfh2LJNwcxzS5Jzzt1wySvw1Vfh0jfgY/8AL/wYbp9fzjt0bvvbMuU0IOHpReXvV58po4q77rN+vRG7lZHEn1xR9g5s5/N4ULZ32POAMpIHpT13XFC2Vvivv4M3X2rv+3WRI3mSJElSnT7057DyATjhK517z0NPLcemTP90Gc16djHsMxVGH7jJU7bY3gfBvoeVzdGP+lyZrjn6wIGnR57+bVjxw1Ln0I+3vy17TS4rbL61pmy+Pm4GzPkmXHs83HMJnD7I3n5DiCN5kiRJUp12HgVn3Ay/c1i3W7KhvmFwytfK71NqGMVba+ppsPJn5fm3/tsntNpzYlm5c/bXyyhku42eXKaLPnANvPcOfOJa2OeQspn7U7fBmifa/55dYJInSZIk9bIDT4azvgdHz6/vPaZ9skyL/Pcvl0VVNpbk1W30QfDBb+CnV5VVTfc8oJQfcVb5uXafviHOJE+SJEnqZREw6QQYvkt97zFyPzj+gjIVk+xukgdlC4ejPr+ufOR+ZfP2NYNsZD+EmORJkiRJqt9R58Hog8vvXUvyqvfd93fXnw4aAWOmwWqTPEmSJEnaPMOGw9wr4ZBTYZ9Du9OGnfeAD8+HWZdvuPDLftPKxu2/+XV32tZGrq4pSZIkqTPG/z7Mu6m7bVi70Ex/Y6ZBvg+/fKq0cwhzJE+SJEmS1m5Mv/rR7rajDUzyJEmSJGnk2MYsvmKSJ0mSJEkNWnzFJE+SJEmSoDGLr5jkSZIkSRKUkbwd+uC1Z7vdkm3i6pqSJEmSBDD5I3DxS2W7hyHMJE+SJEmSYMgnd2s5XVOSJEmSGsQkT5IkSZIaxCRPkiRJkhrEJE+SJEmSGsQkT5IkSZIaxCRPkiRJkhrEJE+SJEmSGsQkT5IkSZIaxCRPkiRJkhrEJE+SJEmSGiQys9tt2KSIeBtY1u12DGB/4MVuN0JtsTvwZrcboW1mHJvDWDaDcWwOY9kMxnHoGg3skpl7b07lYTU3pl2WZeaMbjeiv4h4ZXtsl7ZcRFybmed2ux3aNsaxOYxlMxjH5jCWzWAch66IeCgzJ2xufadrbps3ut0Atc2/dbsBagvj2BzGshmMY3MYy2Ywjj1iqEzXfGh7HDHbXtslSZIkqTm2NO8YKiN513a7ARuxvbZLkiRJUnNsUd4xJEbyJEmSJEmbZ6iM5EmbLSJmRcSyiFgRERdVZRMj4v6IeCYivhsRwzdy7sXVecsi4pSW8hsi4uWIeKpT/VD7YxkR4yNicUQsjYglEfHFTvanV9UQx50i4oGIeLyK42Wd7E8vq+P7tXqtLyIejYjvd6Ifva6mfyefj4gnI+KxiHioU33pZTXFcVRE3BoRP6/+rfxwp/qjNstMD4/GHEAf8AvgAGA48DgwBbgFmFfV+Rbw+QHOnVLVHwFMrK7TV712HDAdeKrbfeyVo45YAmOA6VWd3YDlwJRu97XJR01xDGDXqs6OwP3AUd3ua9OPur5fq9e/BPwL8P1u97PpR43/Tj4PjO52/3rlqDGONwKfqX4fDozqdl89tu5wJK9FTXdENrimanUksCIzn83Md4EFwFzgRODWqs6NwGkDnDsXWJCZ72Tmc8CK6npk5n8Dr9XdeK2n7bHMzDWZ+QhAZr4NLAXG1tyPXldHHDMz/6+qs2N1+OxB/Wr5fo2IccDHgOtqbr+KWuKojmt7HCNiJOWm9vUAmfluZrqS/BBlkleJiD7gSmA25Q7HGRExBfg68I+ZORl4HThngHOnAPOAqcAs4Kpq6snGrqn6jAVWtvy9qip7IzPf61dGRMyJiL/ZxLnqjlpjGRETgCMoo0CqTy1xrL5jHwNeBu7JTONYv7o+k1cAFwAf1NRura+uOCZwd0Q8HBHuw1a/OuJ4APAK8O1q+vR1EbFLjX1QjUzy1qnjztbGrqn6xABlfQOUJUBmLsrMrw5yrqMD3VNbLCNiV+A24PzMfGtbG6pB1RLHzHw/M6cB4yh3oA9rR2M1qLbHMiJOBV7OzIfb1EZtWl3frcdk5nTKje3zIuK4bW6pBlNHHIdRHk25OjOPAH4FOAttiDLJW6eOOyKODHXeKmB8y9/jgBeBURExrKVs9WaeO1A9dUYtsYyIHSkJ3k2ZubDdjdYGav1MVlOJ7qXMolC96ojlMcCciHieciP0xIj4TpvbrfXV8pnMzLU/Xwb+Fadx1q2OOK4CVrXMjLiVkvRpCDLJW6eOOyKODHXeg8Dk6lnK4ZRptIuAxcDpVZ2zgdsHOHcRMC8iRkTERGAy8EAH2qyBtT2WERGUZw2WZuY3au+BoJ447h0RowAiYmfgZODnNfdDNcQyMy/OzHGZOaG63n9m5qfq7kiPq+MzuUtE7AZQTe/7COBq1PWq4/P4S2BlRBxc1TsJeLrOTqg+Jnnr1HVHxJGhDqpGXecDd1EW1bglM5cAFwJfiogVwF5UDxW3jshW9W6hfKHdCZyXme9X9W4GfgocHBGrImKDZzPVXjXF8hjgLMpowWPV8dEOd62n1BTHMcDiiHiC8h+dezLTpfdrVtf3qzqrpjjuC/w4Ih6n3Bz9QWbe2dme9ZYaP49fAG6qvl+nAZd3rldqJzdDr1SJ3HLKXYuXKP9xOBO4FLgtMxdExLeAJzLzqn7nTqUs/XwksB/wH5S7IjHQNasPlyRJkiS1nSN5lTruiAxyTUmSJEmqhSN5kiRJktQgjuRJkiRJUoOY5EmSJElSg5jkARExKyKWRcSKiLioKptf/Z0RMXqQc++NiBmda60kSZIkbVzPJ3kR0QdcCcwGpgBnRMQU4CeUvZde6GLzJEmSJGmL9HySR9n2YEVmPpuZ7wILgLmZ+WhmPr8lF4qIqyPioYhYEhGXtZQ/HxGXRcQjEfFkRBzS3i5IkiRJUmGSB2OBlS1/r6rKtsZXMnMGcDhwfEQc3vLa/2bmdOBq4MtbeX1JkiRJGpRJXtmwvL+t3VfiTyLiEeBRYCpl+udaC6ufDwMTtvL6kiRJkjQok7wycje+5e9xwOqNVY6IuyLisYi4rl/5RMoI3UmZeTjwA2CnlirvVD/fB4a1o+GSJEmS1J/JBjwITK6StJeAecCZG6ucmads5KWRwK+ANyNiX8pCLve2t6mSJEmSNLieH8nLzPeA+cBdwFLglsxcEhF/GRGrKCN7T/QfuWsxDHgnMx+nTNNcAtxAWZ1TkiRJkjoqMrf28TNFxAhgBXBYZr7Z7fZIkiRJUs+P5G2tagP0x4CrTPAkSZIkbS8cyZMkSZKkBnEkT5IkSZIaxCSvn4gYHxGLI2JpRCyJiC9W5XtGxD0R8Uz1c4+q/JMR8UR13BcRv9dyrVkRsSwiVkTERd3qkyRJkqTe4XTNfiJiDDAmMx+JiN0om5efBnwaeC0z/7ZK2PbIzAsj4mhgaWa+HhGzgUszc2ZE9AHLgT+g7MX3IHBGZj7djX5JkiRJ6g2O5PWTmWsy85Hq97cp2yqMBeYCN1bVbqQkfmTmfZn5elX+M8qWCwBHAisy89nMfBdYUF1DkiRJkmpjkjeIiJgAHAHcD+ybmWugJILAPgOccg5wR/X7WGBly2urqjJJkiRJqs2wbjdgexURuwK3Aedn5lsRsan6J1CSvGPXFg1QzbmxkiRJkmrlSN4AImJHSoJ3U2YurIr/p3peb+1zey+31D8cuA6Ym5mvVsWrgPEtlx0HrK677ZIkSZJ6m0leP1GG7K6nLKbyjZaXFgFnV7+fDdxe1d8fWAiclZnLW+o/CEyOiIkRMRyYV11DkiRJkmrj6pr9RMSxwI+AJ4EPquK/pjyXdwuwP/Ai8MeZ+VpEXAf8EfBCVfe9zJxRXeujwBVAH3BDZn6tYx2RJEmS1JNM8iRJkiSpQZyuKUmSJEkNYpInSZIkSQ1ikidJkiRJDWKSJ0mSJEkNYpInSZIkSQ1ikidJkiRJDWKSJ0mSJEkN8v+MElmgp3Y52wAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA34AAAFDCAYAAABlUtxOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3XdgU+e5+PHv0bYsyZZtee+9DWaZTcJIIGRvkiZtRm/b9PZ23Htzb5O26cyvI2lzu5tmtGmzaBKyICRA2GAw4L333rZsy7ZkSef3h8AJAQNm2Ia8n/8kHR29R7aPz3Pe530eSZZlGUEQBEEQBEEQBOGKpZjuAQiCIAiCIAiCIAiXlgj8BEEQBEEQBEEQrnAi8BMEQRAEQRAEQbjCicBPEARBEARBEAThCicCP0EQBEEQBEEQhCucCPwEQRAEQRAEQRCucKrpHsDF5HS66Osbnu5hnMJs1s/IcQmCIAiCIAiCcGU4EXNYLMbTvn5FzfipVMrpHsJpzdRxCYIgCIIgCIJwZThbzHFFBX6CIAiCIAiCIAjCqaYl8CsoKOALX/gCAA0NDdx9991s2LCBH/zgB7jdbgB+97vfcdttt3HXXXdRWFg4HcMUBEEQBEEQBEG4Ikx54Pfss8/y+OOPY7fbAXjyySf55je/ycsvv4wsy2zfvp2SkhIOHTrExo0befrpp/nhD3841cMUBEEQBEEQBEG4Ykx54BcZGclvf/vb8cclJSXMnz8fgGXLlrF//36OHDnCkiVLkCSJ0NBQXC4Xvb29Uz1UQRAEQRAEQRCEK8KUB37XXHMNKtUnxURlWUaSJAC8vb0ZHBxkaGgIg8Ewvs2J5wVBEARBEARBEITJm/Z2DgrFJ7GnzWbDZDJhMBiw2WwnPW80nr4s6WdNVL50us3UcQmCIAiCIAiCcGU4U8wx7YFfamoqubm5LFiwgN27d5OTk0NkZCS//OUvefDBB2lvb8ftduPn53dO++vqmnkzgxaLcUaOSxAEQRAEQRCEK8OJmGOi4G/aA79HH32U733vezz99NPExsZyzTXXoFQqmTt3LnfeeSdut5vvf//70z1MQRAEQRAEQRCEy5Yky7I83YO4mGbizJqY8RMEQRAEQRAE4VI624yfaOAuCIIgCFc4q81BQ/sgV9i9XkEQBGESpj3VUxAEQRCES6N3YJQXPyinpK4XWYb5KYF8cW0yOo349y8IgvB5I878giAIgnCFenVHNcW1vcSEmACZQ2WdtHTb+O69c/DSiksAQRCEzxOR6ikIgiAIV6D23mGOlHcSFWTk8fvm8L/3zmFpZggtXTbe2FUz3cMTBEEQppgI/ARBEAThCuF0udlX1EZrt43NBxuQgesWRiFJEiqlgnvXJBHir+fjoy1Ut1ine7iCIAjCFBKBnyAIgiBcAVxuN395p4Tn3i/j8b/msq+wjWA/PdlJlvFt1CoF91+bjAz8bUs5bvfJxV4OlrZT3tA3xSMXBEEQpoII/ARBEAThMjc86uSv75WRV9FFXJiJxAhfZOCmpTEoJOmkbRMjfFmcHkxLt43iut7x5ysa+/jLO6X88tVj7C1swy3LdPQOk1vawTv76ugbtE/xUQmCIAgXk1jZLQiCIAiXKVmW2Xywgc0HGxmxO4kLNfHtO2bhpVUx6nBOWL1z5dxw9hW3s/NYC5lx/rjdMi9vqwJAp1Hx/OYyXtleyYjdNf6e8oY+/uvu2UifCSQFQRCEy4MI/ARBEAThMnW4vJM3dtVi8FJz6/JYVs2JQKtRApyxZUN0sImYECMFNd30DoxSWNtDU+cQi9ODuXZBJM++W8qYy01WvJGoICPFtT2U1Pexp7CNMaebgyXtBJr1ZMT5sSAlSASDgiAIlwFJvsK6uXZ1DU73EE5hsRhn5LgEQRCEy9fw6BjffTaXEbuTHz84n0CzflLv31PQygtbyokKNtLcOYRKpeDJL+fga9Cesm3vwCiP/TUXh8PFZy8aHrwuhcUZIRdwJIIgCMLFcCLmsFiMp31drPETBEEQhMvI4LCDvPJOnnu/jAGbg+sXRU866AOYnxKEl1ZFQ/sgZqOWR25OP23QB+Bn0nHnVfHIwKz4AJ56ZDHfu38uGpWCjTtrGLE7L/CoBEEQhEtNpHoKgiAIwmVi1OHkhy8epnfAU2gl3OLNtQsiz2tfWo2Sr9yYRmffCMuyQlCrlGfcfsXsMGYnBGDy1iBJEmajlusWRvHWnjre3lvHXSsTzmscgiAIwtQQgZ8gCIIgzGCjDieDw2NYfL3YfLCB3gE7C9OCmJsUSHKUGZXy/JN3MmL9J7W9z2dmBK9dEMneoja25TWTnWghMcL3vMciCIIgXFoi1VMQBEEQZihZlnlmYyH/86cDvLytkq2HmvA1aLjvmmRmJ1rw0k7v/Vu1SskD61IA+MNbRaLlgyAIwgwmZvwEQRAEYYY6WtlNRVM/ErAtrxmAW5fHjVfunAmSIs3ceXU8r2yv4kcvHsbHoCEpwszdq0TqpyAIwkwiZvwEQRAEYQZyutz8a2c1Ckni8fvnsiwrhIVpQSxMD57uoZ1i1dxw1syLYMzpprXbxkd5TRTW9Ez3sC6YbXSMHUebGR4dm+6hCFcYp8vNwLBjuochfM6IGT9BEARBmIH2FLTS0TfCVdlhxISYiAkxTfeQJiRJEnetTOCulQk0dw7xgxcO8dqOKlKjL2wN4nQaGHbw9Kv5NHYOUd7Yz9duSp/uIc1YblmmtcuGr1GLwUs93cOZ8UYdTn7x8jFaum18585ZYm2sMGVE4CcIgiAIM4xbltl6qAm1SsENi2OmeziTEh5oYHlWKDvzW9mV38rKOeHTPaRJGbA5yK/uZuuhRtp6hvHSqsgr7+RYVRcZsf509o2gUinw1qnw1okg56O8Jt7bX8/g8BheWhX3XZPEgtSg6R7WjOV0ufnDpmLq2z39nX/7RiGP3zeXIL/Jt2QRhMkSgZ8gCIIgTKO6tgH++l4p2YkW1uVE4aVVUVzbQ2f/CEsyQ/Dx1kz3ECftpqWx5JZ1sGlPLTlpQWcNkGparOSWdnDDkphpnTE6VtnFn94pYczpBmDNvAiWZobwxAuHef79MgBso5/0LPTx1pAZ588Xrkm6bGc2L8SI3cnrO6rRqBXMTwmkoLqHP79TQmVzP/esTkQhSad9X02rlYLqbq6dH4Ve9/m6FH11exXFtb1kxPozKyGAl7ZW8Jt/FfKDL85Fp/l8fRfC1FM+8cQTT0z3IC6m4RmYL+3trZ2R4xIEQRCm15jTza83FtDWM0xVs5V9RW1EBBr4KK+Jzr4RHliXckoLhcuBVqNEoZDIr+7B6ZTH20aU1vfyuzeLaOocIszijV6n5lhlF8+8UUh1i5X23mHmpwTSP+SgoKabli4bkiRh0l+a4FeWZbYfaeZoZTfVzVb+8WElKqWCW5fHce+aRHLSgj19C4HC2l68dSrmJFmICjLia9RitTmobLIiSZAcZb7g8ViH7Hx4qIn86m4SwnyxjTr53ZuFvLOvnrq2QQxeKgJ8vC78wC+Swppucss6WZcTxb1rkpiXHEhlUz8F1T30DIwyKz4ASZIoa+jjl68co6lziJZuG8+9V0ZFYz8ldb3MSbKgVZ++WNG2vCZso06CzFfGbNihsg427qwh3OLNt+/MIiHclxG7k8KaHobtTtJj/Nh1rAXb6BiBV8gxC1PrRMzh7X36/xuSLMvyFI/pkurqGpzuIZzCYjFO2bh6RvrY33aIVZHL8VLppuQzBUEQhHPXYx3lV6/lE+Knx8egYVd+K0szQ/A36XjvQD0ut4wsQ0K4D/9775zpHu55G3O6efyvB+kdsPNvN6RR02rlw0NNnLjokAClUoHT5UajVhDoq6e5a4jFGcEcrexixO4CQKmQ+M6dsy5KYPVZHx9r4aWtFeOP9VoV37wji/gwn5O2k2WZzv4RLL5eJ81iDY86+cHzufQNOvjfL2QTF3ry+yZjX1EbL24px+X2fENhFm/GnG46+0bQqpXYx1woJIkNqxO4OntmpM8+/34Ze4vaePy+ucSGetag2kbHePq1fOraBpmdEMDNS2P5xSvHGBr5pECOUa8mMdyXI5VdhAZ48593zcL3Mzc4Sup7eerVfHy8NfzqkUUoFTN7RtXldrP5QAMRgUZmJQSc8npH7zBPvHgYgO/fP5cQf28AxpwufvRiHi3dNsIt3jR32dCoFPzwgfki/VOYtBMxh8ViPO3rYsZvCkzljN/rlZvY3bIfq32ALItYiC4In3f9Q3be29+A2ajFeIlmTYRzJ8syf9xUTF3bIO29wzS0D2I2avnGbZmkx/qTGu1HYU0Pow4Xd16dQFiA93QP+bwpFRJ+Ri25ZZ0cLu+kpmUAf5OOb92eRXKkGdvoGAa9mlB/PQ+tT2PF7FD2FbVR0zqAUqngxsUxpMf4UdbQx7GqLmYnBFzU3+HqFit/2lSMt07NV25KJzXKzK0r4ogINJyyrSRJGLzUSJ9JXVSrFEQGGtlX1EZlk5UVs0MnTG88mz+9XcKow8U9qxII8NFRWNODbdTJ+kXRfOeuWSRFmimq6eZweRetx4OEli4b+4rbCTLrJ+zpKMsyL22tYPvRZnJSg045hvPllmX+vrUCrVrBnSsTxverUSmZlxxEbauV4rpedh5rweF084U1iVydHYavQcsD61JYlhXKqMNFfnU3xyq7mRUfgP54SrDbLfP7N4sZGHZgH3MRG2IieIYHQXsKWnl1RzW5ZR209dhIjjKj+dRM5otbymnuHOKBdSmkRPmNP69UKIgL9WFvYRtWm4O4MBPd1lEaOwZZnBFy0X5ewufD2Wb8ROA3BaYq8BseG+Yf5f/CLbtpGWojWB9IqGHmlf0WBOHSc8syRyu7+c3GAkrqe+nqH2VhmjgfTLfdBa18lNdMRqw/G1YlYB/zBHgnLmr9TDoWpgWTFOnL7ISAy/6iL8Rfj0IhERVsZPXcCO5amUCQn56IQAOLM0JYlhXKovQQzEYtXloV0cGeu9RfuSGN2YkWEsJ98TfpyC3rJL+6m7QY/4uS9ul0ufnFy8cYtjv5j1szyYj1JyrYeF7FWgJ8vegfslNS10vw8WObrLYeG+/sqycrzp87VyaQGRdAVJCR2YkBrJobgSRJWHy9mJsUSHWLlZL6PnYcbWFfcTsVjf1Ut1hZlB6MQuH5fWloH+SD3Eb8fXRsP9LM1sOe1OHZCZZTZtbOV337IB8dbmJuciBzEgNPek2tUpCTFoTd4aKmdYBlWaHctDSGYD9v0mL88NKqkCSJtBhPAHS0qpsjlV1kJ1rQ69TsKWxjd0ErcaEm+gbtOJ1u5qfMnIIxdW0D9FhH8TN5MqvsYy5+91YRslsmOthIcV0vhTU9zEm0oNOoaO4c4uVtVcSGmtiwKuGUv2tfg5aYEBNzEgO546p4WrptFNf1otepiQs7/SzymNM142dBz1Vz1xC1bQMoFBL6478bwvkRgd8McCkDvzZbBz899DReSh1Ng60U95SxOHQBHbZOSnsrWBKag1opqo4JwufFmNPN1kONPPd+KTvzW3HL4GPQ0NgxyJKMkM9dIYWZpNs6wm/fLEKjUvLtO2cRHWxiQWoQ/j4np+VrNUqC/fRXxMWPJEkkRZpJj/EnzGJArTrzharF14vsRAvenyrwEhlkRKNWcKSii9ySDkIDvAny87qg7ye3tIO9RW1cnR3GyjkR572fE8IDvNlxtIWWbhtXZYdNemx7C9sore9jXU4UkUGe4DfYX0+Y5eQgUq9TsywrlHCLAdvoGGnRfvgatJQ19OF0u0mL9sMty/z69XyOVXXz8bEWKhr70agUuNwyPt6a8ZRZp8vNqzuqGB51Em6ZfLC6K7+FiqZ+rl8UTehpZqYVkkR6rD/LskInnGmUJInkKDMqpcTRym4Ka3pwumT+tbMGpULif+7JprS+j+oWK4vTQ6hq7sekV6NWnX5N4FRo7BjkZy8dZX9JO4vTg/HSqth6qJFjVd2szYnk4fVpDNudFFT3kF/dQ2K4D+8fbKCl28Z91yQR7H/6Wfwgs57QAG/PdxJpZm9RG4U13WTGBZwUrMuy5/v57ZtFBPh6ndeNhplkb2Ebv95YQG5pB9vymjla2YXZpKN3YJS88k78TboJZ7OFU4nAbwaYKPCTZZl+u3VSa/EcrjFeKH0Ft+wm1BDMtsZdlPdWUdxTTtNQC063i69mfQmn20Vlfw1p/sn4e138dRGCIJy//iE7T72az8GSdtJj/C64ktur26vYfLCBbusor2yrIre0A6fLzYLUIB5cn0KwWc+x6m68tEpso2M8868CRu1OYkNNV8wd45lOlmX+8FYx7b3D3H9tkujbNUkJ4b5YfHXkVXRxsLSDvIouvDQqwizedFlH2fhxDe/ur+PtvXU0dw1hNmoxG09/4SPLMs++V8rQiJOv3Jg2nl54IfQ6Nd39o5TW9xFuMRAa4M2Y08X2Iy3IMuMzQxPZ+HENfUN2vrg2ecJCJydIkkRogDeL0kPIig8gM86fvPJOCqp7iAg00NJtY8fRFpIjfdFplLhl+PZdszhQ3I5txMmK2WEA/GtnDR8ebiK/qpuMWH/MRi29A6PoNMqzBq4jdid//6ACx5iL+69NPmNA73UOMziJEb6MOd3kV3dTUt+LTqPkwetSiQvzYczlpqi2h+1HmjlY2kFn3wjzLvLsnyzLFNf18v6BBt7aXUeXdQSLr+6kGxDgOe6nXitgcNiB2y0zYvcUnnl+cxk6jYqv3JiORq0kPcYPp0smv6qbnfmttHTbiAwycOfV8ed0U0CrURJmMbC/uJ2yhj78fXQU1fTQ2mNjd0EbH+U145ahqLaH2BATWw818u7+ehLCfU5Jh27vHeb3bxZR2dxPeozfjDrnbz/SzN+3VuCtU7F2QSTeXmoqm/rJLe1gf3E7pfV9DA6PMSfJMt1DvWyIwG8GmCjw+7h5L78veI4hh40UvwQU0tn/GLc37mZn8z4aBppYEbGY1yo3MeZ2opAkRpyjzLKkszB0Hl0jPZT0lJPsl0CYIeRSHJYgCOeho294vHFvt3WUw+WdJEeaz7ty47GqLl7ZVkW3dZSKxn4Gh8e4anYY37p9FgtSgzB5awj207P9SDMNHUPklnYwNOKkvLGfQ6WdzEkKFHdTp8DO/Fa2H2kmM86f21fEXRGzeVMtItBIVlwA9jEXlU395FV0cayqm3f21lPXNsDQyBhKpYLqlgF2F7Si16qIDTWxcWcNz75bQk2rZ5ua1gH2F7ezIDWIpVmhF218IQHe7DjaTGl9L7aRMV77uIYDJe3sK2rH20tNRKABt9uNUqHALct8eLiJf2ytwOlys7uglYRwn/OafVSrFCSE+3KwpIPD5Z1Ut/Rjd7j59l2zWL8wmjXzIgjw8aKq2UpVi5XFGcFUNVv550eV+Bo0jNpdlDX0Ud7Yz98+qMDhdI+nYIJndvSPm4qJDTWNB9MvfVhBRWM/63KiyIw7tZDJ+UiJMuOWweKj45FbMsaLxQSavdhT0IqXToVBp6a2dYC5yYEXtdLrpj11/O2DCho7hhgaGaOq2cr2o81IEsSF+XCwtJ139tWzaU8dXf0jrJkXwYjDRWl9L8equhkcHuP+a5PHxyxJEqnRfsSFmuiyjtI34AnqJ5rtO50gPz2OMRcF1T0cKuukuK6X/Kpu6tsHCQ3w5rYVcRyt6GJ/STv17YP0Ddo5VNZJcpQZs1GLW5bZW9jG794soqNvhMaOISqbrGTF+5/15sJUaGgf5PdvFWPy1vBfG2YzPyWI+SlBzEm0MOZykxJlpnfATnPXEGvmRcyogHUmE4HfDHC6wM/pdvJc8T+xu+w0DDZRP9DE7MBMlGcI/gYdQzxX/E+cspNR1ygahZpjXYXMsqSzLnoVtdYGbku4HrPOlwHHIHkd+USZIojzvbya/wpXvjGnmxG786SF7+dqZ34LP//nMapbrKiUitOmGIHnzizIM+qfhXXIzpP/PErPgJ0bFkeTHuvH0cpucss6SIzwrGWajBG7k99sLGTM6ebRDdlkxvlz7YJIls8KO+kOvEqpoGfATmVTP5Ik8bWbMjB4qSmp72V41MnsRHE39WIbc7oYdbjQqJQU1nTz/Pvl6DRKvnXHLBFoXwBfg5Y5SYEsSg+mb9BOeWM/Jm81X1ybzMPXp3Ltgijiw3wobegjr6KL2uNBnssNLV02Cmt6KK7tBeCh9akXtVWGwUuNSa+mrKGP0gbPTMXi9GD6huzkVXTx3v563tvfwMHSDvYXtbOvuB2rzUHR8fGsnBNBfPj5VQU9sUbsYEk7w6NOFmeGsDQzFEmSxtf9jTo8bQN6B+1szm1EQuK/N8zGS6eioLqHtp5hlAqJ2tYB5iUHYtRrGBoZ49ev59M7aKe4roec1GAOlrbz7r56ooKMPHx96vj+L5QkSaREmck+vi7uBK1ayao54Vy7IJJAXy9yyzoZtTuZkxR4hr2du53HWti4swaLr45v3pbFhtUJhAR4U9c2wLGqbrYdaeJQWSdtPcO4ZZk5SYHcuyZxfO3pqMPFTUtiWDX31KA90KxnSUYIa+ZHEn4eKZlJkb4oFJ4g8qrZYaTH+JEcZeaulfEkhHtmdJs6BrlxSSzZSRaOVHSyu6CVquZ+th5qYndBK2qVgi+uTUapUFBU28OOo830DowSEWiYtnOR0+XmNxsLsdocfP3WjJOq6Jq8NcxOsJAe4491yEF5Yz8xwabxKqjCmYnAbwY4XeCX15FPbvsRFoXMx6gxUNZbia/WRJRp4rt979RsodpaR07wXJqHWqnqr0VGZm30SrKDslgZuQyzzpM+5HCNsbf1IMHegaT5J1/S4xOEyXC7ZX7+8lHe2FVLRoz/pAoNdPWP8Ns3CnG5ZNp7hzlc3kl8uA+Bvl6nbPeD5w9RWt/H4oypmfFu7baxaW8dQWb9aRtQjzldPP16Aa3dw9y8LJYbl8SQGOFLsJ+ew+WdHCztwM+kJSzAcNbZoLq2AT7IbeSd/fW09w5z3cJolmSGEBrgPWF6W6DZi7KGPjasTmReciAZsf4creyipN7TR8t0GTYJv1DDo076BkdPSef6rG7rCL2D9vG2A2er2ijLMk+9ls8/PqyksqmfLQcbUSokHrklY3z9lnBh9Do181KCmJccyPWLYogKNqKQJCRJItCsJy3aj9zSDlq7bYQGePPDB+azfFYo0cFGAny8WJASRPYluOERE2JiZXY4gb5eXDM/gtXzIpmfHITVZsfHoMHfpKOjd5iegVFmJwTw8PWp9A/ZGbY72bAq8YLW4AaavYiwGBixu7jr6vhTLup9vDV8eLhpPMD78vVppESZSYrwRZJg5Zxw5iUHkVvWQbd1lJy0YDburKGiqZ/oYCNtPcN8nN/CkYouNGoF375j1pT1mFQqPX93QX56jlR2UdbQR05q0GnPtZNxqKyD5zeXYfBS8+iGbCKDjCiVCiICDSxKD6G120ZbzzDLs0L5txvTuOOqeOYmB6JQSAT76bGNOsmI9eOGJTETnrclSTrr2taJKBSe9X5JEb6EBXgTFWwkLsxnfMYuPszHc7Mj3IeYEBPRwUa6rCNUNlkZHHawKD2Yr96UTlKkmTlJnsI5zZ02yhr6yC3tICXKPOH/4AGbg9Ye24T/Uy7Ee/vrOVTeybKsENbMi5xwO71Oxe6CVhSSNGGgX1bfy9+3VrDx42re2lPLzuPrWn0NmvF0WI1Kcdbz/JVC9PGbAT7bx0+WZX6R9380DbbyxMJHUSvUfP/Ak/hojPwg579RKjx/0H2j/Yy5nQTqA+gb7ecHB36OWevD93L+k6eO/J7GwRZUChU/X/J9dJ9ZJzjksPHo3h+SFZDGlzPvn9LjFYQz2X6kmX9+VAl4io587765Z13/Ap9cTJfW9/Hw+lT8TFp+/vIxUqLM/NfdszlQ0k5jxyALUoN47v0yWrpsAPzkoQUTzgqejtXm4LXtVfQN2vnmHVnnlBJzrLKLZ98rZdThwteg4dEN2Z4qZa0DrM2JQqdR8pd3Ssir6CInLYiH16eedJGQX93NHzcVM+Z0E+ynZ/msUJIjzVS3WD1331MCyYrzZ9Th4r0D9XyQ28iJM3dypC/fuiPrvIodFNZ085uNhcSH+RARaMDhdDEvORClQsH2I81461Tcd20SapUSWZY5XN7JltxGVmaHsyTz8k0h7x+y8/beOg6UtDM25mbdwihuXBKDSnnqxVlT5xA/evHweG81hSThZ9KyLCuU1XMj0Go833tZfS8HSzu48+p4alsHePr1Ary0KkbsTrRqJd+8PZOkSLHeeirVtFrZX9TODUti8JlBNzZcbjcDtjF8DZrx84Asy1OS/vvbNwrp6h/lyzeknragiyzL/OrVfMoa+ogKMtLUOYTFV8ePHlzAX94t4UhFF/NTArlpaey0tVc4VNbBn94u8czQ3Z513jNBeeWd/OntErQaBf9512xiQkyn3W7M6ZrWYjLno9s6AkCAj9cpr7ndMtvymnhtRzUatZJv3ZF1yprj5q4hnnotn4EhBz96aMFFbSvT0TvM957LxeCl5icP5ZzxZocsyzz6pwMMjozxzL8vGc8SOvH30j9k57FncxmxO/E36TDq1QwOO+gZsJ+0H7NRy/e/OI/u/hFe+rCC1XMjpuym8FQ7Wx8/EfhNgc8GfrXWep468gdmWdJ5OOM+AF6r8PTfuy/lThaEzKF1qJ2nj/4Bl+zm+wv+kx1Ne9jRtId7km9nUeg89rXk8nLFG2QEpPCVzC+d8pmyLPOtXY8R4h3Eo/P+Y8qOVRDOxDpk57vPHgQkrs4O4/0DDQT46Lj9qnhC/PSUNvThrVORFuN3yl3IDw818uqOajJi/fnm7ZlIksSvXj1GaX0fNy2J4e29dXz6ZBYZZKCxY4hr50dyx9Xxpx1PWX0vO462kJ1kIS3Gj4PF7bx3oGG80fBtK+JYlxM14fHUtw/wzt568qu70agUzEsJZF9ROwpJwn381BrgoyPYT09xXS+J4T58565Zp72I6Owf4f399cfT0k49LVt8dfRY7bhlmQAfHRtWJ5IU4XtBqTqyLPOLl49R0dQ/4Tap0WaWZYWyLa+Z6hYr4Gm+/MuvLjqvVN3JjK2rf4RA88W9uHS63Dz5j6PYppUkAAAgAElEQVTUtQ3gb9IiSRLd1lFiQoz82w1pJ32eLMv88pVjlDf2szAtCJdbpnfQTkvXECN2Fz4GDY/clIHFV8fjf83FNuokPdYP24iTurYBnvjSPNQqBSqlAovvqRdggjDVziXAbOux8ed3SmjtHsbldvOt27NIj/XH7ZYZHBmb9iBalmU27anj3f316LUqvnFb5qSKJXX0DfPW7loOlXWi1Sj5zp2zTko1/Lw4UtHFHzcVYzZq+OEDC8YDsIrGPn73ZhG2UScA1y2M4tblcRflM2VZ5unXCyip6+VrN6UzN/ns6bobd1az5WAjUcFGAnx0NHUMMTgyxk1LY6hqtpJX3sm9axK5Ojt8/D01LZ41mk6XjEalYH9xO5FBBjr7Rhh1uFBIEt+4LQOLrxeNHUPMOz6L+1mOMRdOl/uiFICaKqKB+wzw2VTPva25VPfXcVP8OoL0nlSTEO8gdrXsp3moDY1SzcvlbzA0ZsMlu2izdVDQXYJRY+CelNtQSgqCvYNwuB1cFbEUH+2pd6kkSeJgWx5DYzZWRS6fsmMVhInIsszzW8pp7Bji7pXxrM2JQj6ehnGorJOPj7VQXOdZKL/1UBM1rVaC/fSYjVryyjt5cUs5Pt4avnFb5vhJ2GzQsr+4nfLGftQqBXdcFY/T5SYmxMQ3bs1kV34rzV1DrJobcdJJfdThZPOBBl7YXE5rzzBHK7v4ILeR4rpekOCWZbE0tA9S1WRl+exQNKcJ1Bo7BvnJ34/Q1jNMfLgPj9ycwVWzw9GoFFQ297MwNYiMWH8Ka3ro7B8hNdrMf9yWNWGw5K1TMzvBwopZYQT7e5oxL80KYf3CaGyjY9S3DxIdYmTFrFAeWu+5W3++6UMnnOijFeKv5/pFMSzNCkGjUhIR6M2G1YkMDY9RVNtLXkUXvYN2ZicEkBDuQ1WzFV+jdsI75BdKlmWe31zGC5vL8TFoiA6e3Oc0dQ7xyrZK7GMuIgJPTp19e28duWUd5KQG8eiGbJZmhdI3aKeotpc9RW1oVUr8fXToNCqOVnaxJbeRzDh/Hrk5g7nJgSzNDOWq2eEoFFBS20dueQfljX109I3gb9LS0D5E/5CdOUkWVs+NwKjXnFdvOEG4FM5lVtGo17BidhjrF0WxLid6fEZNkiR0mumf+TqxFvBEldfcsg5iQ03ndHPFOmTn+88fpqF9kKhgI1+7KZ240M9f0AcQGuCNW5bJr+6hf8hObKiJHUdbeO69MpwumS9ck0R5Uz9d/SOsmht+UWak8yq62HywgfQYP25ZHntO+7T46Cht6KOla4jW7mFkGSTgWFU3rd024sN8uPeapJP25WfSMScpkHnJgcxOCKC9d5jS+j5kGW5YHENNq5WDJR1sP9LMkYou/Ew6ooJPDpRqWq08+Y8jbDvSwqL04PHsjpnubKmeYoX5NKjpr0NCIs4nevw5fy8zS8MWsqt5Hy+XvwHAjXFrKe4up6zXkxa3PmYNaoXnR6ZRqrkt4YYzfo6v1oeq/lqcbicqhfhRC9PrYGkHecfX5C2f5elzdfOyWBZlBLP5QANjLk8PKtvIGHmVXRTX9lJc24tSIeF2y2g0Sr55e9ZJaaHJUWZiQ03Utg7wpbXJ5KQFs2beJ+tkc9KC2JbXTGFND9mJFgaHHbz0YSUF1d2MOd34mbTcsyqRssY+6loHmJ1oYWlmCEa9JwXr9Y+ref9AA3dcdeqM4dt763C5ZR6+PvWkHlVrc6K4dkHk+OOUKDNVzf1ctzDqnNKFTN4almWFsuxT1QYTI3wvWSqY2ahl+ayw8cefvgiKudnEG7tqkGVYPiuUEH9vBmwODpZ28EFuI8tnhU6qeI7T5cblls+aPrslt5F9Re0AvLajmvQYv9OmLH2WLMu8taeWLQcbcbllDpV1cqSiiwfXp+CtU1PTauW9A/X4m3TcuyYJhULCS6vi4etTSY/146WtFbyyvYpXtldh1KsZsbtQKiTuWplw0ufodSpuWRZHZKCRP71dQk3LAMmRvjxySwY/+fsROvuGuXGxKKolXN48a9NmbvXZRekh6LVq/rCpiF+/XkBypC9pMf5clR024Tlm0946RuxObl0ey7qcqM99dd31i6IprOlhf3E7+4s951xfg4av3JhOYoQvVc1WDpS0U91iJSH8wlrQuNxu3jjen/GeNYnn/N0HmvX85KEFOF1uBmwOfI1aBmwOnnu/jLrWAe5fm3zGddeSJPGltSn4GrSkx/qRHuNPZKCB5zeXER1spKS+jwPF7Sf9z80r7+Qv75bgdHmyb/7xYQVfuznjgo5/phAzflPg0zN+LreL1yvfJkhvYWXkspO2S/VLIi0gmTBDCNmWTJaHLyLaFMG+1ly8VDruT71rUgFceW81rbY2FoXMQ68WaUbCxeNyu3n5o0r2F7fT1mPDbNKdcVaju3+E/3ujCKVS4jt3zjppQb7ByzPTNScpkMggz8L1pZmhJEb4MmJ3otOq8DNp+eLalFMq3kmSxOyEAOYkWk5bUtzXoGXnsRbq2wdJCPflz++UUFrfR5DZixWzw3jwulSigo1kHG8ynBDuO37BEBXs6aFUXNeLv0l3UlGOxo5BXt1eTVyoibtXJZzyD+zTjwPNXiRHmS+4uuh0XKAoFBLpMf6kx/qP94bSapT0D9kpre9jwOYgwmIYTxFyyzLNXTYOl3XwUV4zm/bUsa+ojcggI70Do/zk70c4Ut7FslmhEx5PfnU3L2wux2zUsn5RNEU1PTR32UiK9EWvU+N2y5TU9/LajmpPK4wo8/jPbOuhJt7aU4e/Scc9axIZsTsprvOU1p+VYOHFzeV09o3w77dkEPKZNSsnijn4mXS43DJuWfb0lsqJYlb86cvVhwZ4ExFkwO5wcf/aZHwNWhalBZGTFnxeFfwEQZicYH89sWE+1LcPUtM6QEl9L4fLO4kINJxys6i128aLW8oJ8dcfr0Y6cyo+T5cTxWO6+keIDDKSFefPQ+tTx9fFa9UKDpR0oFYqyJrgPHiuDpa0s6ewjeWzwlicPvn1dSdu1HlmnlUsSg9mzfyIcyoQp1IqSI/1H0/lD/H3Zl1OFIvSQyhr6KOyqZ+lmSF4aVUMj47xq1fzQZL4xq2Z9FpHKarrJcRfT9hp1sXONGLGb4ZpGmphzD1GrG/0Ka9JkkS0KZJo0ycVjkINwTyS9SAapeaUAi5nY9Z5LpL77Fb8vfzOsrUgnLt39taz42jL+OMPDjXx1RvTSI/1R5ZldhxtYfPBBmbFBxAZZOCNXbWM2J18aW3yKRU4J5ISZSYl6uzFMIx6zSkNa0+ICDRw3cIo3j/QwA9fPAzA4oxgHliXctZASq1S8sjNGTz9Wj7Pby7DarOzdkEUkgTv7KsH4PrFE1dyu5KtWxBFflU3u/Jb2Z3fSrC/Hj+Tjvq2gfF1IeAJEh0OFz976QiSJI3fsS2q6SEh3IdfvZrP7IQArj8+O9bVP8Jf3y1FrVLwjVsziQwyUNnUT2FND//9xwPoNErsDtdJaznr2wfYsCoRlVLijV01+HhreOy+ufh4a1iQEsRjf81lX1E7sxMsFNf1khThS/IEv1dmo5Y18yJOmjU+m9kJFmYnfFIdUq9TX1brQQThcpcW7cePH1zAgM3BltwGPjzcxM9fPsbK7HBuXRGLTqNClmVe21GNLHvWbs+kNj/TLchPzzdvzzrtaynRZkx6NYfKOrhtRdyk15Qfq+ripa0VXLsgio+PtaBUSKzLmbiK52SdriDXZOWkBY03jV+bE8Xmg43YRp3ctiKOjFh/An29+MHzh3hpawWxISYCLvP12mLG7xJzuV146dWMHC8WcbSjgLLeSq6KWHLOjdUDvPzH2zRMRudwFyU95aSYEwgVTdyFi6Skvpe/bSknwEfH/96bTZjF25MqUtJOTauV3NJOth1pZtThor59kILqHgDuuCqeFbPDpjxQSo32w8+kpbi2h1kJlknd6TUbtWTG+XO0ytMouqi2h535rZQ39BETYvzcNuLW61RcnR1OkNmLYbuTjr5hWruHMenVZCd41rbdcXU8t18VT0KEL8W1vciyzK3L4yip62XA5qC5a4hjVd1Ut1hZmB6MWqXg6dcL6LaOcv81SWTGByBJErMSAjDqNePrGYP9vUmNNnPfNckE+Og4VtnNoTJPOwyAf781c7xaoSRJeGmUHKns4mhlF263zD1rEqetGqEgCJeOVqP0ZCjE+FHdYqWwtofDxxua7y5oY1d+KylRZm5Zdm5rywRPFWP7mJui2l5kZNKiJzeJ8PzmMtp6hsczL5ZmhrDoPGb7LqUAHy8+PNxE/5CduDAfXvzAU0/gy9enolQqPP05vTUcLu+kstnK4vRgpOOtY2Yi0c5hGrncLr63/2cMOYcJ0PlxXcxqjnYWkt9VzI8W/s8ln4Ur7Crhz0V/46a4dayOWnFJP+ty45bdbG/cTaI57oy9E4WTjTnd/M+fDzBgc/DdL8wZL+5R02rl+fc9J3iAuDAT/3Z9GrVtA9S3D7I8K5Sgab7YHrE70WmU53WyHrA5eHV7FQdLO5CAeSmB3L4iHn+fyc3CX6lkWcY26pywp5bd4WLM5cbgpeaXrxyjrKEPCdAcn8FbnBHMmNPNobJOFmcE8+B1qef82TWtVopqemjpto2n7H6a0+Xmu385SLd1lBB/PT9+aMFZ+/AJgnB5G3O62LSnji25jWjUChxjbvxNWh6/f960VyW93NjHXDz+7EH6hxz8+KEF53zjrL13mO/+5SDx4T74eGuobrHy3XvnzMgKx799o5BjVd3jj7+0LpmlmSf/L3n+/TL2FrWNZ7JcuyCS20+z/n+6na2qp0j1vISUCiULQuZSN1RPfV8zL5a+ikqhwlfrg59u4hQ2p8vNqMN1wY1JfT+V6vlpsizT2jOMQaeasuarM8Gh9qOoFCqyAzMp7algU81mEn3j+I/sf8MtuynoKiHVPwmtUvxTmMiBknb6Bu2smRdxUkXHuFAffvpwDkMjY/RYRwmzeKNSKgjw9WJ+StA0jvgTF9L2wOSt4cs3pHH1nHD0WtWk+gJ+HkiSdMbzlVajRItnHd7qeRGUNfQhA/9+SwavbKsaL+SSEO7DfdckTeqz40J9zliVT6VUcP3iaF7YXM66nCgR9AnC54BapeT2q+KJCTHx1/dL0agV/PutmSLoOw9atZI7r07gD5uKeWVb1Xg7pbPZV9QGwNXZYeSkBk9Zr8rzceOSGDRqJQrJMwN4ujWI965JZNThpKXbRv+Qg21HmlmbE3XB1+pTbUYHfm63myeeeIKKigo0Gg0/+clPiIqauKfWTHRj3FosFiO51cX837G/4HA5iDMk8JO/HyElysxVs8NOmjXo6BvmNxsL6R+0n7ap5mSYtZ739n8q8NuV38IHuY109I2gVim4LieKlXPDL7ty4x3DXVi8/FFI55ayN+q084+yjUhAlDGcXc37AagdaMDhGqOwu4QXSl5mfcwa1sasuoQjv3y5ZZmthxpRKqQJ10AZvNSX3UlwMj6PvZ4utsw4f2YnBBDspyc12o9blsXy2zeLCPLT8++3Zl6SRslLM0NJijSf8/pSQRCuDHOTA4kJMeF0uwm6yD1BP0/mJFlIiTJTVNtDQXUPsxJOX+iltdvGC5vLSIn240BJO15aJdnH10DP1KAPIDLI08f1TDRq5XhlzxN9hXflt3DdwugpGOHFM6PX+H300UdUV1fz5z//mdjYWJ555hnWr19/xvfMtDV+zZ1DGI06jAoD4YZQSnrKkTrjqa2TqWq28lFeE9uPNJNX0UVZQy9v7qqlb9DTpPlweScJYT7nVMb800bsTv6+tZw3dtbjtlSjUWhYHLaA3QWt/O2DCsZcbmYlBDA4MkZBdQ9bDjay/Ugz3l7qU/qYzER11kaePPwbtEoNcacpknM6Zb2VHO44hhuZpqEWKvqqAU/KZ6I5jkMdx2i3dSAjkxMy9xKO/vKVX93N9iMtLEoLZnHGzMrRFy4fkiSxIDWItBhPqnuwn574cB/WL4yesEjPxXC53dwSBOHi0OtUV/QNyakgSRLRISZ2HWulptXKitO08nG63Px6YwH17YNUNvUzYnexKD2EOUlnb9J+uQnx92b70Waau2ysnBN+2ubv0+WyXuP35JNPkpmZyXXXXQfA0qVL2bNnz4Tbz+S7CYIgCIIgCIIgCJfaROHdjK5nOzQ0hMHwSc8MpVKJ0+k8wzsEQRAEQRAEQRCEz5rRa/wMBgM2m238sdvtRqWaeMiyLM+oqp4A/UN2Hv9rLrIMy7NC+fBwEyH+en744PxzLjIwPDqGfcyNyVuNUqGgq3+EX7x8lJ4BO9fMj+DW5XGolAo2flzNltxGVswO475rkugfsvPYB38Cvxa8alfz1XXzz1gE4Q+biskr7xx/vGFVAqvmzryKl4/t++n4usUV4Yu5PfFGAP5S9HcKuor5SuYXyQj4pCpg90gvPzjw/8gISOErmV9iX0sugfoAEsxxPH3kD9RY6wFYHbmCjxp3sjZ6Fetj15z0mR22Top7ygnSW4jxicJb/flYK/Du/nre2l3LtfMjuf2qz2frAkEQBEEQPAaHHYw4XLR123jmX4XEhZroHhhl0DbGf2+YfUG1KS43TpcbpWJmtXY4UdVzIjN6xi87O5vdu3cDkJ+fT2Ji4jSPaPJ8DVruW5fKiN3JB4caUasU3Hl1/KQqy+l1asxG7Xg+tcXXi//akE2g2Yuth5r40YuHeeq1fD7IbSTQ14s7roob/+x5cZ7GyPesDztj0Adw7+pEMmI9hRc0KgUf5TXhds+sTGCrfZB+u5VUvyQMam/yOvJxuV0Mjw1T0l0GQHlv1UnvKeutBCDFz1MtcHHYAhLMnu8oyewpxWtUG1gVtRwJicq+mlM+97XKTbxZ/R5/LHyBH+f+CpfbdcmOcbocreziFy8fpaHdc8IYsDnYcrABg5ea9YuiZ9SJTRAEQRCEqWfUawj09SIrPoBZ8QHUtA5gHXJw64rYz1XQB56q0ZfbtdGMnvFbvXo1+/bt46677kKWZX72s59N95DOy9qF0YwM2/Hx1pIabUajvvCqdYG+XjzxpXm8vK2KvYVtNHfZsPjq+PINaeg0n/xYU0PCOdwHg07rGfbmYfLW8K07sgB4cUsZuwvaKKrtISv+9NWbpkPjYBMAsT5RBHj5s7tlP4XdpQw7h3HKnmDss4FfSU85ACl+p944SPFPYnP9NjItaRjU3oQbQ6kfaOSdmg+o6q/hS2kb8FJ5UdVfS5A+EJPGQFV/LS1DbUSawi/x0U4dT+GfcmQZnnotnweuS2HLwQZGHS7uWR2HXjejTxWCIAiCIEyxu1bGU9XcT1qMH9fOj5zu4QjnYEZfzSkUCn70ox9N9zAumEIhsXxW2EXfr06j4oF1Kdy8NBadRnnaPmUWL0/Q1jXSfcprZ3J1dji7C9rYfrR5RgV+DQOewC/KFIGv1od9rbm8XrkJX61nNjPMEELLUBt9o/2Ydb4c6SigqLuUMEMIgfpTjyPWJ4qvZz003sQ9wTeWpsEWtjbsAGBX836iTZG4ZTdzAjPx9/Kjqr+WWmvDeQd+fYN2qpr7mZccOCPuFB0u7+TFLeUYvNQsywpl88EG/u9fhQDMTghg+azQs+xBEARBEITPm0CznqceWXxRJjSEqTGjUz2Fc2M2aidsTm3x8gega6RnUvuMDDKSEO5DcW0vr26voqB6coHjpVJ/PPCLNIUTaghmfewaBhyDNA42E+cTPd6Kobyvmtahdv5RvhGtUsMDaRsm3GeKfyJ6tadlRk7IXEK9g1kXsxpvlZ7ctiMUdJUAkB6QQqxPNAC1x9cFno+XP6rkT2+X8P6Bhkm/1+5wsfVQI32DdgBGHU7yq7opb+jDavuklcm+oja25J59//1Ddv7+QTkatYJHN8zmthVxfGFNIuEWA1+7KZ2v35KBSilOE4IgCIIgnEoEfZeXGT3jJ1w4b7UeL5Vu0oEfwA1LYnhmYyEfHm7iw8NNPHJzBnOSLBNuX1rfi16nIjrYhN3h4t399cxJshATYrqQQxgnyzKNA80E6PwwqL0BWBW5nJKecqr765gXPJs4H8+axgOth3h35AMcLgcPpt9LsHfQOX1GmCGExxZ8G4CRsRE+bt5LXscxjBoDEcYwJCQMam9qrZMP2gCGRsbIPx5Ev7W7lvBAA7MmMaP6/sEG3ttfz+6CVr5+SwZ/fqeExo4hwJNr/p07s9BqlLywuRy3LBMZaCQ12szmgw2UN/TRP+TAS6ci2E9PiJ+e4rpebKNO7l2TSJjFU0H3quxwrsq+ctJYBUEQBEEQBBH4XfEkScLi5U+rrQO37EYhnfvsTVq0H898YwkVjf383xuFfHi4ccLAr6bVylOv5aOQJB5cn8KegjbKGvrIK+/kJw8vuCizRj2jfdicwyT7JYw/p5AUPJT+BQ63HyUnZB4qSYmPxjReqfPW+PVkB2ae1+ctCp3Px817kZFJ80se/+7ifKIp6C4ZTyedjNzSDlxumUXpweSVd/Lnt0u4/9okctKCz/pe+5iLj482I0nQ1jM8Xi12fkog/j46PjzUxB82FWPwUuOWZSTg5W2VZCdaxmcXvbQq7D3DVDd/suYzNdrMitkXPxVZEARBEARBmDnOGvj9+Mc/5nvf+95Jzz366KP8/Oc/v2SDEi4ui1cAjYMtWO0Dkw5UvLQqZiUEkBHrT1FtD3VtA6fM4Dldbl7c4ikMolRJ/OWdUgC8dSo6+0fYld/KyjkXPoPUMexpNRHifXKQZNQYuDpy2fjjDEsq+1sPcU/ybeOpn+cj1BBMjCmSuoFG0gKSx5+P8YmioLuEWmsDcyb5fe4vbkeS4LYVccxNCuTP75bwl3dLKW/s4+5ViQzYHPz+zSLae4cx6NVcMz+S1cdbauwrasM26mT9omj6BkfZV9TOyuxwNqxOQJIk/Iw6/vlRJYPDY+OB3M5jLbx/oIEAHx3f/cIcfA1anC43nX0jtPcO0zswyoLUoElVmRUEQRAEQRAuPxMGfo899hhNTU0UFxdTVfVJlUSn08ng4MzqlSec2afX+Z0u8HO4HPwu/znmBc9maVjOafexel44RbU9bMtr4uHr0wBP6mVrt41tR5pp6bKxYlYoizNCeOZfhcSGmrjvmiQe+2su7+6rY0FqEHqdiubOIUrr+yhr6GPA5uCGJdHMTrDQP2RnzOnG4us14XF0DntSJAP1/mc83tsSbmBt9Mrxgi8X4ub49RxsyyPDP2X8uU+v85sTlHXO+2rrsVHXNkBGrD++Bi2zErQ88cV5/HFTMbsL2qhpGWBoZAyrzUG4xZuegVFe3VZFaIA3yZG+fHi4CZVSYuWccEx6NesXRhNo9hovEHN1dhh9g3ZqW63cviIOp8vN4bIO3DJ88/YsfA1awJMSGhrgTWiA9wV/P4IgCIIgCMLlYcLA76tf/SotLS389Kc/5etf//r480qlkri4uCkZnHBxBOg/qeyZaD71Z1drbaDGWkfDYBNJ5vjTVr9Mi/YjxF/PobJO5qUEERVk5I+biqlu8aQM+pm03LYiHr1OxdNfXzze0PLa+ZG8vbeObzyzB7VKwZjTPb5PSYLfvlFERKCB5s4hVCoFP314AQE+pw/+TlQmtXxmfN3WEbbkNtJrHcXplokLNZGdaMH33Jb1nVGcbzRxvtEnPRdpDEMlKSntqcBqH8RHazzjPpwuNx8dbuKDQ40ALEr/ZMYyyE/PY/fN4bUd1ew42gLA3asSWD03grq2AX720hGefbcUk15DZ98ISzJD8PHWjL/30yRJ4rYVJ/98f/jAfCRJwmzUntfxC4IgCIIgCFcG5RNPPPHE6V4wmUyEh4dz99134+Pjg06nw2QyYTQaGRsbw2g888XudBkedpx9oynm7a2d1nHZXXYOtuURrA86aX3cCUc7Cqnoq8Ytu+mwdTI/OPuUNgOSJBFo9uJweScHitvZV9RGR98IGbH+XJcTxV0rEzB4qQFP+4oT748JMeGWZbQqBRqVkvRYP66ZH8E9q5NYkhFCTauVps4hgv30DNgcOJzuCYudfNy0l+6RHm6Ovw61wnPPYnh0jJ+/fIzi2l46+kbo6h+hoqmfPYVtzEkKxKTXXMyvEgClQknXSA+V/TXsbztMgJc/IWcoHvPPbZW8f6ABpUJi/cJorsoOO+n7VSoUZMYFEB/uw+L0YHJSPYGh2ahFq1ZytLKLwWEHSzJCuGtlPGrVuVfQ8vr/7N13eJzllfj97zNNGmlGvfdebMmWu40NNsZ0DDhgSAIhbEgISbxkA2Q3C/nRFpOEN20hLElYlsSUhGoCoWNscO+SLVnVsnqXRmUkjaa+f4w0trDlkW01W+dzXb7QPPU88gBz5r7vc3w0I1Z8FUIIIYQQF46hnMPf/9Rf+Hv9RPinP/2JP/3pTwQFHZ8iqCgKmzZtGrsoxbg63svv1JU9q3qO98YrMZWzt/kgC6PmnnRcbkooD94+j2c3Hqaje4CvX5bO5fPjTtuLzkerZu2KtFPuCzb68PCdCxiwOtBpVfz8+d1sO9TItUsSTznq19rfjlFroKXNxi9e2UV8hLsKZVNHH1csiOf6pck4XS52HG7k759X8OGuar573YzT/3LO0u3Za0kKiOedox+w4cjfSTDGEqY/eQrqwfJWNh+oJzbcn5/dNhd/X+2I15yZFHLStssXxBPgpyM23J+EyKn5ZYsQQgghhJj6vJZafOONN/jss8/4/PPPPX8k6Tu/BOgM6NS6EZu4V3fXEqgzctfM29CqtLxV/h69tj5cLhc9VvOwYxOjjPzXXYv45fcXc8WCeK8NyF0uF6UdFVgdpx7xVCkKeh8NapWK1UuTcDhdvP55BR3dlmHHOZwOOiwmwv3C+Me2Y1htTo7Wd3O0vpvZqaHccql7mqlBr2XVgnhiwvzZfaSZtq7+M/hNjZ5KUXFJ3EXclHIjNqedDYVv4nAen3xeBQMAACAASURBVMY6YHWws6iJFz8oQaNW8f3rZ5426Rv5PgpLcqIk6RNCCCGEEOfE64hfdHQ0gYHnXiRDTJ6hlg6t/e3YHDa06uMJSOdAF50DXeSGzSBUH8K1yZfzztEPeL3sHQYcVg63HeH7ud9mVvhMzzk+OjU+upGLsJyozHSUp/P/TE5oFvfM+pfTJoqLZkTywa4a9pW2sq+0lYy4QL55eQYJkUbaLB04XU78lUD2VLSRGhvAPdfnUFJjYn5mBCrV8euqFIVrFifwv/8s5n/fO0J3nw29j5oHvj7njKY9Ol0u3tlaSX55O/fenHvSKKTFauetdy04YkI5ylEeeesdHlx9PceaunluYyF9A3YA7rgqk7jBHnlCCCGEEEJMhhHX+A05ePAgf/7zn6mtrWX//v3s2bOHPXv2sHDhwgkK8czIGr9Ta+83Ud55lECfABID4j3bS01H2d9SwKKouaQFpZAUEM+htiOUmipo6WsFoMPSyUUxZ/f3/UXddo5119DS34Ze40tyYOKIx6oUhflZEQQbfHA4XZTWdvJFQQNFxzrYV1uK2bcae3sUPa1G7rgyk+SYABIijafsERgd6s+OwibqWnvp7bdhMltp6ugjMz6I93dW02keIC7cMGIiarM7eOH9YjYfqKe7z0qzqZ9FMyKHHf/+zmoKKtpJCUqkW19BHyb279Dz+f46HE64ZkkC374qi9yU01chFUIIIYQQ4lyd8xq/yMhIIiPHoDyimFSXJVzClrrtfFy9mSUxCz3FUaq7j6/vA3fhktuybuavR15jYdRcKruqKGov4VhXDcmBCWd83yMdZWhVWnw1Prxz9EPSg9OIN8aMeHyAn47LF8Rz+YJ4Co+189rnFRxt6EIV0YwuEJoaISHCwKzU0ydTGrWKdV/L5VhTN3PTw/njPwo5UNZKQUUbDqcLgIKKdr59VSZ+X5mCWXisnVc+KaPZ1E9abCAatcKho+3sLWlhYbb734Uu8wAf7a4hwF/HT25YzEslVeS3FdLY14hOHcK9N80iOzH4jH9fQgghhBBCjAevid+JrRzE+cuoM3Bx7GI+r93K1rodLItdgk6tPZ74GY83WE8MiOfhxQ8AUNJRTlF7CVvqtpEc+M0zuqfJ0klTbzMzQ7NYHncR/1Pwf7xb+SE/mn3XqM7PSQ4l565QXC4XrxZvZEcTzEtM4spZWV7XFoJ7PWJilHtt3A9uzGH9S/sZsDq4elEC+8ta2VvSQmmNia8tT2VpbhROJ/x9UzmbD9ajKLBqXhw3r0il0zzA/3thD69+Vk5abCDBRh/e+rKSAZuDW1am4avTsDhmPvltheTO6+fmjHkytVMIIYQQQkwpIyZ+a9asYePGjWRlDf+Q7XK5UBSF4uLiCQlQjJ1VCSvYWr+Ttyr+yVsV/0Sv8WXAYSVCH4af1u+U52QGpxHjH8WBlkOsSbv2jJqiF3eUAZAdksHM0CzSg1I40l56xqOHiqJgsnYAcOdl8/DV+I763CFGPx3/ddciVCp3+4TL5sfx0e4a3ttRxV8+LOHvm8ox+mlp7bQQF+7Pd6+b4SmoEhHsx83LU/nbpnJ+90YBM5NC2Haokdgwfy6eFQ3AjJBMDFp/Gp3lRIeObv2jEEIIIYQQE2XEqp4bN24EoKSkhOLiYs+fodfi/BPoY+TOGd9gYdRcsoLTCfYJwl/jx6LoeSOeoygKi6Ln4XQ5Odp57Izud2Qw8ZsRkgHANcmXA/BB1adnHHtLXxsBOuNZJX1DtBoVapX7La9Wqbh2SRK/uHsJl82LI9BfR2unhYtyonjojvknVdFcNT+Oy+bFUd/ayyd7a4kM8eO+W/M86wvVKjULIudgtvVypKP0rGMUQgghhBBiPHid6tnf388f/vAHdu7cicPhYPHixfz4xz/Gz+/UI0RiasuLyCUvIveMzokzuNfkNZibmDfK5Z5Ol5PSjnJCfIOJ8AsHICM41TPqV9lVRUpgktfr7GrcR3FHGR0WEymnKQxztoKNPtx2uTsxtdkdIzZHVxSFb1yWjs3uoKGtjx+uySHIMHzh7MLouWyu28aX9TvJDRuf/oFCCCGEEEKcDa99/B5//HH6+/t58skn+dWvfoXNZuORRx6ZiNjEFBFjiAKgobd51Oc09jbTZ+8nMzht2FTh1SlXAfBm+Xs4Xc6RTgeg19bHy8VvsK85H0VRmB2ecxbRj95ISd8QlUrhzquzefBb805K+gASjHGexHZo7aQQQgghhBBTgdfEr6ioiIcffpisrCyysrJ4+OGHKSoqmojYxBRh1BowaP1p6G0a9Tlt/e0ARPlHDNueGpTEvIjZVHfXsqfpwGmvUdFZiQsXlyes4PfL13NZwiVnHvwEuzppFQAfVm2a5EiEEEIIIYQ4zmvi53K56O7u9rzu7u5GrT79yIi4sCiKQox/FO39HQw4RtePsK3fXYwlzDfkpH03pl2DVqXlnYoP+LR6CwWthRS1l3jOGVLeWQnAzNBM1Krz4z2XEZxKSmASh9uOUNtTP9nhCCGEEEIIAYxijd+dd97JzTffzMqVK3G5XGzevJm77757ImITU0i0IYqyzqM09TYPawA/kqEkLlR/cr+9EN9grku5go0V7/PO0Q8829WKmn/N+y7pwakAlJsq0ag0JAWcef/AyaIoClclXcb/FLzAlrrtfCv7lskOSQghhBBCCO+J30033URubi579+7F5XLxzDPPkJmZORGxiSkk1t+9zq/e3DTKxM891TNMf/KIH8CqhOXkhedS11NPm6UDi32Aj6s/5/nDL/HA/HX4a/2oNzeSFpSMVq095TWmquyQdIJ8AiloLeLrmXa0Kq//mgkhhBBCCDGuvH4itdls7Nixg127dqHRaNDpdGRkZIyqgba4cEQPFnhp7G2itqee6u5alsYsGvF90GZpx6D1R3+a9gth+pBhiWGIbxCvlLzJHw+9yKqE5bhweUb/zicqRcXciFl8XruVko4yqfAphBBCCCEmndfE7+c//zkWi4VbbrkFp9PJP/7xD8rLy3nooYcmIj4xRUT7u/s4lJuOsqfpAGZbL239HdyYds1JxzpdTjr6TcQaY87oHhfFLKS5r5XPar7gb6VvA5ARlHLuwU+C+ZF5fF67lX3N+ZL4CSGEEEKISec18SsoKOCjjz7yvF65ciXXXXfduAYlph69xpcQ32BqzQ2e15/WbKHd0kHnQBdRfhGszbgRnVpL10A3dpfjlIVdvLkh9Wp6rGZ2N+0/79b3nSjBGEeYbwiH2o5gdVjRqXWTHZIQQgghhJjGvFb1jIuLo7q62vO6ra2NyMhRdvEWF5SYwXV+2SEZ/GzBjwnQGTnQcojKrmp2NO7luYL/w2IfOGF938mFXbxRKSpuy7qZi6IXsir+kvNufd8QRVGYF5mH1WHlcNuRyQ5HCCGEEEJMc15H/Ox2OzfccAPz589Ho9Gwf/9+wsPDueOOOwDYsGHDuAcppoYFUXMw23q5PXstQT6B/MeCe2nr7yDGP4qXS96goLWQDcWvkRuaDYxc2MUbtUrNbdk3j2Xok2Jh1Fw+rv6cL+t3Mi8yb7LDEUIIIYQQ05jXxO+HP/zhsNff+c53xi0YMbXNj8xj/gkJTJBPIEE+gQDcNfM2frP/fzjUWoRO5Z7WeLaJ34Uiyj+CrOB0Skzl1PY0EH+Gax7PhN1pp9fWT6CPcdzuIYQQQgghzl9eE7+FCxdORBziPKdWqbkkbgkvFb/OvuaDwNlN9bzQXBq/jBJTOVvqto1rT79/Vn7Clrrt/NdF/4lRZxi3+wghhBBCiPOT1zV+QozW3IhZ6DW+uHChVtSe0cDpbEZoJhH6MPY159Nt7Rm3+5SYyrE5bTT2No3bPYQQQgghxPlLEj8xZnRqHQsi5wAQ6huMSpG3l0pRcWn8MuxOO3889Bf6bP1jfg+7006D2Z3wtfWbxvz6QgghhBDi/Od1qufevXuHvVYUBR8fHxITEwkICBi3wMT56aKYRXxZv5Nwv7DJDmXKWBa7mOruOnY17eMPBf/Lv825B51ay86GvRzpKOVfZn7znJLkht4mHC4HAO2WjrEKWwghhBBCXEC8Jn7PPvsshYWFLFmyBJfLxZ49e4iNjcVsNvPjH/9YevqJYeKNMdyVcztRfhGTHcqUoVJU3JZ9M3aXnX3N+RS0FrIgag6f1Gympa+NG1KvOadCOLU99Z6fh1ppCCGEEEIIcSKviZ/L5eLdd98lJsZdkbC5uZkHH3yQl156iW9961uS+ImTzI2YNdkhTDkqRcWqhOXsa86nuKOM1KAkWvraADBZOs8p8as5IfFrl6meQgghhBDiFLwmfi0tLZ6kDyAyMpKWlhYMBgMul2tcgxPiQhJriMaoM3Cko5TUoCTPdtNA5zldt7anHrWixqgzyFRPIYQQQghxSl4Tv7lz53L//fezevVqnE4n77//PnPmzGHLli34+flNRIxCXBBUiorskAz2NB1gc+02z/ZOS9dZX9PhdFBvbiTGPxJ/rT8lpnKsDis6tW4sQhZCCCGEEBcIrxUlHnvsMfLy8njttdd4++23mTt3Lg8//DCKovDUU09NRIxCXDBmhGQC0Njb7Cnoci4jfk19LdidduKNcYTqgwFot8h0TyGEEEIIMZzXET+NRsOaNWtYtWqVZ2pnS0sLy5cvH/fghLjQZIWko6DgwkVOaDaH2orOKfGr6a4DIN4YS7/d3Sqivb+DaP/IMYlXCCGEEEJcGLwmfn/84x/585//TFBQEIqi4HK5UBSFTZs2nfVNP/30Uz766CN+85vfAJCfn8/69etRq9UsW7aMdevW4XQ6efTRRyktLUWn0/HEE0+QmJh41vcUYiow6gzEG2Oo6alnbsQsSjrKMJ3lVM/OgS7eP/YpAKlBSTT2NgPQ1i/r/IQQQgghxHBeE78333yTzz77jJCQs686eKInnniCbdu2kZ2d7dn2yCOP8MwzzxAfH8/dd99NUVER9fX1WK1WXnvtNfLz8/nlL3/Jc889NyYxCDGZLo5dwubabcwIzSTYN+iMRvxcLhd15kZa+9v48NhnmAY6WZ1yFbGGaGxOGyC9/IQQQgghxMm8Jn7R0dEEBgaO2Q3nzp3LqlWreO211wAwm81YrVYSEhIAWLZsGTt37qS1tZWLL74YgLy8PAoLC8csBiEm00UxC7koZiEAwT5BNPe1jrogS1F7Cc8detHzenncRVyZeCkAob7uL2faZcRPCCGEEEJ8hdfELykpiW9+85ssWrQIne74B9N169ad9rw33niDv/71r8O2Pfnkk1xzzTXs3r3bs81sNmMwGDyv/f39qa2tPWm7Wq3Gbrej0Zw+5PBwo7dHmhRTNS4xuaKCwigxlaP42wk3hno9vry6AoCvzbiKrLB0ZkVleYrEhLkM+Gh86LR1yvtNCCGEEGIaOt1nQK+JX2RkJJGRZ14oYu3ataxdu9brcQaDgd7eXs/r3t5eAgICsFgsw7Y7nU6vSR9Aa2vPGcc63sLDjVMyLjH59C5/AI421KMN8d4eJb++CL3GlxURy1Gr1LS39Q7bH+oTTGNPC2/nf0pGcCqRfuHjErcQQgghhJhahnKOkZI/r5mUt5G9c2UwGNBqtdTU1BAfH8+2bdtYt24dTU1NbN68mWuuuYb8/HwyMjLGNQ4hJkOwr3satWmgi25rD722PiL9wj2jeCdq62+nzdLB7LCZqFXqU14v3hhLQ28Tfy99G61Kw/3z1hFvjBnXZxBCCCGEEFPfiInfmjVr2LhxI1lZWSiK4tk+VNWzuLh4zIJ47LHHeOCBB3A4HCxbtozZs2eTm5vL9u3b+frXv47L5eLJJ58cs/sJMVUE+wQB0N7fzq/3/YF2iwl/jR9XJ6/i0vhlw44t7igH3C0hRvKNrJu4KGYhVd01bKx4n+cPb+A/FtyLv9b7aKIQQgghhLhwKa6h5nxnwGq1DlvvN5VMxSmVMtVTjKSxt5kndv8Go9ZAj81MjH8UpoEubA4rTyx9CKPu+DrX5w+/RH7rYR5Z/FMiRjGF85+Vn/Bh1WfkhefyvdxvjedjCCGEEEKISeZtqufJ88m+4tZbbx322ul0ctNNN41NdEJMc8E+7qmePTYzCgrfn3Unq1OuxO5ysLV+J+AeZe+z9VNmqiDEN5hwfdiorn1N8iriDDEcaiui324Zt2cQQgghhBBT34hTPe+44w727NkD4Om553K50Gg0rFy5cmKiE+IC56vxRa/xpd9uIS8ilzB9CIui5vFe5Ud8Wb+TBGMcL5e8QY/VDEBeeO6wqdeno1JU5IbNoM7cQJmpgtnhOeP5KEIIIYQQYgobMfHbsGED4F5/98gjj0xYQEJMN8E+QfTbm7gs/hIAfDU+XBSzkE01X/LcoRfRKGpyQrMw6oxcnrj8jK6dHZLBh1WfUdxRPmaJn8PpwIULjcp7lV0xvRS1l7K1fie3ZtxIsG+QZ3t1dy2H24qxO+2kBSWTE5Y9iVEKIYQQ05PXT267du2aiDiEmLauTl5FS18byYEJnm3LY5fyRd0O/DR6vpd7BymBiWd17aSAePQaX4rbS8cqXH69/w/4qn358dzvj9k1xfmvqbeFFwpfYsBhxWK3cO+cuz3VaV8qfp3G3mYAttRt49El/0GQT6CnWBhAv93Cxop/siR6Acln+X4XQgghxMjUjz766KOnO2D//v1YLBZ0Oh39/f309PTQ09OD0Tg1G0T39VknO4ST+Pv7TMm4xNQQ7R9JWlDysG1+Wj3zImZxecLyURVyGYlKUVHdXUtldzULIufgq/YBGPV00a8yW3t5q+I92i0m5oTnDis+I6Yvi93CM/nP02XtJsY/iuqeWjQqDWlByVjsA7xd8U8SjLFcHHsRJaZy7E47EX5hPLXvaXqsvWSGpLGrcS8fVm1iX0sBKYGJhOpDJvuxhBBCiPPKUM7h7+9zyv1eR/wKCgooKCgYtk1RFDZt2jQ2EQohTulcEr4TZYVkkN9ayN9K3uJYdw1LYxayNuOGs7pWnbnB8/OepgPcmHbNmMR4LszWXjoHuoiTfoWTZnvDHpr6Wrg0bhlXJ6/iyT2/4/1jn7Aoai7tFhMuXKQFpXBF4gr2NO1nW8NuCttL6LCY+LJ+B1cnXUZ+SyHgnkr8PwUv8JO5PyAxIH6Sn0wIIYS4cHit6vn555+f9EeSPiHOHzNCMgAo6zyKzWlje8Me+u39Z3Wt2p56z897mg7gdDnHJMZz8Wb5u/x/+56ha0BapkyWEpO7x+SqxOX4a/1YlbAcp8tJSUe55z0Tb4xFrVJzbfLlOF1OOiwmwnxD6Ldb2NN0gLLOoyQa47kr53ZsTjvvVX48mY8khBBCXHC8jvhVVVXx8ssv09fXh8vlwul0UldXxyuvvDIR8QkhzlGoPoSrk1YBLhwuJ59Ub2Zfcz4Xxy4542sNjfhlBqdRaqqg1FRB9mBiOVkaepuwuxwc7TrG3IhZkxrLdORwOqjoPEakXzhBg+1JMoPTACg1VXjW+SUY4wCYGzmb4o5ygnwDmRcxm/V7fsvbFe/jdDnJC89hdvhMMoPTKO4o41hXtaz3E0IIIcaI1xG/++67j4CAAIqLi8nOzqahoYH09PSJiE0IMUauS7mC61KuZHncRSgo7GjYe1bXqetpwFftwzXJlwPuUb/J5HK5aO83AVDRWQlAvbmRup6G050mxlB1Tx1Wh5WMwWQP3OtWjToDpaYKanrq0Kl1RPi5+0+qFBXfmnELq1OuJMYQRZwhBovD3WdydoS78uzVSZcB8GGVzC4RQgghxorXxM9ms3Hvvfdy8cUXM2PGDJ5//nn27j27D41CiMkV5BPIzNBManrqqDc3ntG5VoeV5r5WYg0xpAYmEagL4Eh76aRO9+yz93uShnJTJTannacP/plnC17A5XJNWlzTSZmpAoCM4FTPNkVRyAxOo9vaQ2NvM/GGGM/I31ctiJoDuJPFyMF1renBqaQFJVPUXkJVd804P4EQQggxPXhN/PR6PVarlaSkJIqKivD19Z2IuIQQ42RJzEIAdjXuO6Pz6s1NuHARZ4xBURSyQtIx23qpNzeNR5ij0m7p8Pzc0NvEzoa9mG29dFt7aO5rmbS4ppMy01EA0oNShm3PPGEEcGia56ksippHuD6U5XFLh22/LvkKAN4q/6ck8UIIIcQY8Jr4XX/99dxzzz2sWLGCl19+me9+97tERkZORGxCiHGQE5qFr9qX/NbCM/pAPbS+L97grp55fB1X+dgHOQKrwzbs9dA0T4PWH4B3Kz/07KvoPDZhcU1XNqedyq4qYvyjTmrtcWLiF2+MHfEaRp2BR5f8BxfHLh62PT04ldnhOVR2VXGg5dDYBi6EEEJMQ14Tv9tvv52nn36akJAQXnrpJW699VaeffbZiYhNCDEONCoNOWFZdFhMw9ozeFM3WJ1xqG1CVoh7rW9Jhzvx67dbxnVkZnfjfu7/8v9xuO2IZ9vQiN+8yDxPDME+QQBUdFaNWyzC7VhXNTanfViSNyRUH0KYr7sX3+kSv9NZk3otakXNO0c/wPaVpF8IIYQQZ8Zr4nfrrbdiMLi/yY2KimLlypXccsst4x6YEGL8zA53F9EoaC0c1fEDDqunQmO0v3vEP9AngGj/SCo6j3G47Qg/2/oYn1ZvGZd4u609vFH+Lk6XkzfL38PutAPHR/zmR+ahVtQAXJt8Of5aP0+xFzF+DrYcBiA7NPOU+y9PXMG8iNlE+Uec1fXD/UK5OHYxHRYTxR1lw/bltxay8wynKwshhBDT2YiJ3x133EFWVhYFBQVkZWWRnZ1NVlYWs2fPJjk5eSJjFEKMsRkhmWhUGgpai7we63Q5+WvR32jtb2dpzCI0quNdYLKC07E5bTx/+CXsLgf5baNLJM/UW+Xv0W/vJ8IvjLb+dr6s2wEcH/GL8osgIzgVg9afuZGzSQtMxjTQSYfFNC7xCHcbh4MthzBo/ck6xYgfwLLYxXwn57YRC7uMxtCXFGWdRz3brA4rLx15jb+VvIVt8EsAIYQQQpzeiP833rBhAyUlJdx+++2UlJRQXFxMSUkJhYWFPP300xMZoxBijPlqfMgKTqeht4mWvrbTHvuPox9S0FZERnAaN6evHrYvM8T9gd/hcqDX6Knprjvr5vAjOdZVzb7mfBID4rlv7g/Ra/R8ULWJXlsf7f0d6DV6/LR67sq5nZ8vuh8ftY7UIPeXU7LOb/yUmY7SYzMzN2IWapV63O6THJCAVqXxFJEB92ifxTGAw+WgcRKLCwkhhBDnE69fw/7oRz9ixw73t+t/+tOfuPfee6mtrR33wIQQ42toJOXENXNftb1hN5/VfEGkXzjfy7l92GgfQHpQKpF+EVwWfwkr4i7ChWvMk62i9lIArkxciVFn4IrEFfTb+9nbdJB2i4kw32AA9BpfT4GRNEn8xt2+5nzg+PrK8aJVa0kJTKLe3EiP1Qy413sOqempG9f7CyGEEBcKr4nfAw88QHFxMTt27OCjjz5i5cqVPPjggxMRmxBiHGUEu8vvV3cP/yKnc6CLD459yutl7/D30o34a/34wazv4Kf1O+kavhofHl78AF9Lv87TwLt0sK/bWDnaeQwFhfTBZG5x9HxUiorNdduwOW2E6kNOOifOEIOv2pei9hIcTseYxjOduVwu9jUd5KOqTeS3FhLsE0RKYOK433fovVXeWUmHxUSpqYIAnRGAmsGiQyey2C08c/D5YV9q9Nn6pC2EEEKIac1r4tfV1cVdd93Fpk2bWLNmDTfeeCO9vb0TEZsQYhyF+oag1/ieVNnz46rNvH/sU76o24FaUXN37rcJ9wv1er0Tp+SZrb18XvMlFrvlnGK0O+0c664mxhDlSTwDdEaygtNp628HIGRwxO9EapWaBVFz6BzoorC95JximK5KOso9FVuHbK3fxYtH/sZ7lR9jcVhYGDX3nNbvjVbmYHP4UlMF2+p348LF1Umr0Chqak+R+JWYKigxlfPu0Y9wuVwcaDnET7c+yv8WvuwZNRRCCCGmG423A5xOJ4WFhXz22We8/PLLFBcX43DIN+hCnO8URSHOEENF5zEsdgu+Gl/APXVOrai5b94PCPMNxaDzH9X1tGotqYHJlJjK+fX+P9Da344TF6sSlo86pqERGUVRPLHYnHbP1M0hC6LmcKTDPQX0VCN+ABfHLmZr/U621u9kdvjMUccgoLKrmmcLXkCj0vCLpT/HV+NLS18bGyv+iZ9Gzx0zbkWj0pAWODGFvhKMcfiqfdjVuA+7046fRs+CqDnsbNxLg7kRu9M+bBpyVVcNAA29TVT31PLhsc8AyG89TElHOeF+oUT6hXN71lq0au2EPIMQQggx2bx+VfvTn/6Up556iu985zvEx8fzyCOP8J//+Z8TEZsQYpzFG2Nx4aLO3Ai4KzXWmxuI8Y8kKSBh1EnfkIzBkZnWwdG4wrbiUZ+b33KYn+94kldK3vRsqzC51+ilBaUMO3Z2eA46tQ6A0FOM+AHEGqJJDUyiuKPMawEbcVyP1cwLhS/jdDmxOqwcaDmM0+XkpeLXsDpt3Jq5htywGWSHZExY0qRWqUkLSsHutBNriOa+eT9Er/El3hiL3eWg3tzI/xW+wue1WwGo6q7xnPtK8Zs09DYxL2I2N6Vdh7/Wj8beZvY153O0q2pC4hdCCCGmAq8jfkuWLGHJkiWe16+//vq4BiSEmDhDjbXrehpIC0qmqa8Fm9N+1g238yJy+bJ+J5fGLyO/5TBHu6ros/Wdcn3gid4o+wdb6rYDsLNxLzlh2eSF51De5e7Fl/qVkSUftY654bPY3bSfKL/IEa97cewSjnZVsa1hF19Lu+6snmm6ebP8XToHurgk9iK21u9kZ+NenC4HlV3VzImYxfxxLuYykrUZ1zPLNIOFUfPQDo7uJRhj2Q68XPwGDb1NFHeUsSxmMdXdtUT5RTDgsNLQ6676eXniCuKNsaxMuIS9TQf5y5G/0dTXQlZIKNrligAAIABJREFU+qQ8jxBCCDHRxn9xhhBiyhpK8IbWSQ3982wTv0i/cNYvfYhVCcvJCcvG6XJyZLAq50j67Ra+qNtBmD6U7+d+G41Kw2ulG2kwN1HZWU2EPoxAH+NJ563NuJ775v3wtOsP8yJy0Wt8OdB8SAp7jFJF5zECdQGszbierJB0Kruq2FjxPr5qn5PaeUykMH0oS2MWeZI+OP4+HUru+uz9bKndhtVpIyUwiSXR8wHIDE4b9p6O8nd/WdDU2zJR4QshhBCTThI/IaaxSL9wtCotteaxSfxOlBOaDcDhdvd0T5vTTn7LYXY37h+WhFV31+LCxZzwXGaFz+SapFV0W3tYv+e3WByWk9b3DfHV+HqtKKlVacgJzcY00Ol5RjGyfns/nQNdxBiiUCkqT+JkcQxwbfLlBPkETnKEw8UYolEr7h6CVyVdBsDH1ZsBSA5M4JK4i5gTMYs1XxntjfQLR0Ghqbd5YgMWQgghJpHXqZ4AfX191NTUkJmZSX9/P35+p5+2JYQ4P6gUFXGGaKoHi6jU9tSjoBBriD7na8caogn2CeJIeyl/L93I/uZ8+gabu4f7hZISmAQcX4+VHJgAwKqE5fTa+jDbetFrfFkRt+yc4pgVPpO9zQc51FpEgjHunK51oRsaAYseHBGbFTaTQF0ARp2B5XFLJzO0U9KqNFyTfDkqRWFVwnJ2Ne6jc6ALgKSABIw6A9/Nuf2k83RqLaH6EBol8RNCCDGNeB3x27lzJzfccAM//OEPaWtr49JLL2Xbtm0TEZsQYgLEGWNxupw0mBupNTcQ5R/hKZxyLhRFIScsmz57P1vrd6JRaTzrw76s2+U57thgBcakAHfip1ap+Vr6ddwx41bWZtwwqlYSpzMjJBONSkNBa9E5XWc6GEr8ovwiAHel1gcX/YSfzP0BapV6MkMb0VVJK7ki8VJUioq88BwAfNU+RPlHnPa8aP8IzLZezFZpTySEEGJ68Jr4/fa3v+XVV18lICCA8PBwXnnlFZ566qmJiE0IMQESB0fBXil5E6vDOqajYlckrmBl/MX8YNa/8MRFD3LnjG8Q6RfOwZYCzNZeXC4XVd01hPgGE+gTMGb3PZGvxoes4HQaepukuqcXjX3uEbChNXAABq0/vhqfyQrpjMyJmAVAQkC81/6CQ0WBmvpknZ8QQojpwWvi53Q6CQ8P97xOS0sb14CEEBNrfmQes8NmUj/Y0mEs1vcNCfEN5qb01eSEZaNWqVEUhWWxi7G7HOxs3Eu7pQOzrZekgPgxu+epDPXxO9Q2PUb9ugZ6sNgHTrnP5XKNWNTEM+LnZbRsqkoJTOSGlKu5PuVKr8cOPaNM9xRCCDFdeE38oqKi2Lx5M4qi0N3dzXPPPUdMTMxExCaEmABatZbv5n6L65KvJMgnkOyQjHG93+KoeWhVWr6o20FhWwkAyYPTPMdLbtgMFBTyWw6P632mggGHlSd2/5pXSt445f5djfv4r92/5uApfhdNvc0E6Iz4e2m/MVWpFBVXJF1KspeiP3B8HaMUeBFCCDFdeE38Hn/8cd577z0aGxtZtWoVxcXFPP744xMRmxBigqgUFVcnX8b6pQ+N+2iPn9aPS+OXYRro5M3ydwFIGsUH9XNh1BnICE7lWHcN7f2mcb3XZKvurqHP3k9pR8UpW1jsatoHwO6m/cO2DzistFtMnvV9F7pIP/dMFmnpIIQQYrrwWtUzNDSU3/72txMRixBimlidciX9dgtb63eiVtTEG8Z/FsHciFmUmio42HqIVQnLx/1+k+VoZxUAvfY+WvvbifAL8+wzWTo9+4vbS+m3W9BrfAFo7hua5hnJdOCr8SXYJ0imegohhJg2vCZ+W7Zs4dlnn8VkMg379njTpk3jGpgQ4sKlUlTcmnEjQT6BqBUVWrV23O85OzyH18re4UDLBZ74dVV5fq7urh2W+B1sOYQLF2H6UNr62zncdoSFUXOBE1s5TI8RP3BP9zzSUUqvre+8nd4qhBBCjJbXxG/9+vU89NBDpKWloSjKRMQkhJgGFEXhqqSVE3Y/o85ARlAqJaZy2vs7CNWHTNi9z5TZ1svfSzdyTdIqYgxRoz7P6XJyrKsataLG4XJQ1V3Dgqg5nv37WgpQKSq+lX0LvzvwHAdaDnkSv6GRr+ky4geQFJjAkY5SyjsrPa0ghBBCiAuV1zV+RqORFStWEBcXR2xsrOePEEKcb+ZGusv972k6OMmRnN7+5gIOthxiR+OeMzqvwdyExTHAnIhcVIqK6u5az762/naqu2vJDE4jLSiZGP+oweme/bhcLspNR4HjRU+mg+yQdABKOsonORIhhBBi/I2Y+O3du5e9e/eSlpbGE088wc6dOz3b9u7dO5ExCiHEmJgbMQs/jZ7Pa7+kz9Y/2eGMqGwwCavtqT+j84ameWYGpxNniKbW3IDdaQfwNLCfO9jrbn5kHnaXg001X1LeWcmx7hpyw7Ix6gxj9BRTX6IxHl+1L8UdZZMdihBCCDHuRpzq+fTTT3t+bmxspLS01PNaURQ2bNgwvpEJIcQY02v0XJ64gn8c/ZDPar7g+tSrzuo6zb0tGHVG/LT6MY7QPV1zaPStrqcBp8vptRn5kKOdxwBIDUqipqeOmp566s2NJAbEU9hWDEBOWDYAy+OW8mX9Tj6t3sKhtiMAXJV02Vg/zpSmVqnJDE6loK2Itv52wvShkx2SEEIIMW5GTPxeeuklAMrLy0lPTx+2Lz8//6xu1tPTw09/+lPMZjM2m42f/exnzJkzh/z8fNavX49arWbZsmWsW7cOp9PJo48+SmlpKTqdjieeeILExPEt+S6EuPCtiFvKltptbK7dSmpQMqmBifgOVrb8qnLTUYraS/FR+5AVkk5yYAK9tj5+sfe/yQvP4c6Z3xjz+BrMTfTa+wCwOAZo628nYrD1wOk4nA4qOisxaP2J0IeRGBDP1vqdVHXXEq4Po6LrGIkB8QTojAD4any4Of16/rfwJerNjWSHZJA0zv0Up6KskHQK2ooo7ijn4tiTEz+rw8YfD71IhF84N6ZePeJ7RQghhJjqRkz89u/fj9Pp5Oc//znr16/3VPS02+08+uijfPzxx2d8sxdffJHFixdz5513UllZyf3338/GjRt55JFHeOaZZ4iPj+fuu++mqKiI+vp6rFYrr732Gvn5+fzyl7/kueeeO/snFUIIQKfWcW3yFbxa+hb/U/ACCgoxhiiygtO5NuUKfNQ6z7GvlLxJa387ANsbdvPE0gep7anH5rRR3lk5LvGVdbpH+2IN0dSbG6ntaRhV4re76QBd1h4uiV2CoigkDyZxB1sOYdD64XQ5yQ3NHnZOXngOM0OzKGovmXajfUOyTljnd3Hs4pP2V3ZVUWqqoNRU4f49Ja4kN3wGnQNd1JubsDms+Kh9WBA1Z9jIrNVhw+Gyo9eM/aiwEEIIcTZGTPx27NjBnj17aGlp4b//+7+Pn6DRcOutt57Vze688050OveHKofDgY+PD2azGavVSkKC+0PKsmXL2LlzJ62trVx88cUA5OXlUVhYeFb3FEKIr1oau4gQfTBlpqMc7ayipqeWenMjLf2t3J37bVSKim5rD6397aQGJqMoUNF5jK6BHurNjQB0DnTROdBFkE/gWcfhcrn4W+nbxPhHsSJ+KXB8fd9l8Zewofg1anvqmRc5+7TXsTvtfFT1GRqVhisHK6VG+oWTE5pFYXuJJ3kdmuY5RFEUvjPzNpr6mqflaB9AuD6MUN9gSk0Vp5xWO7RuMic0iyMdZbxa+haUvnXSdXw1PswerAzqdDl5+uCfaext4kd53yUlUGarCCGEmHwjJn7/+q//CsA777zDjTfeeMYXfuONN/jrX/86bNuTTz7JrFmzaG1t5ac//SkPPvggZrMZg+F4MQF/f39qa2tP2q5Wq7Hb7Wg0XjtQCCGEV9khGWSHZABgc9j446G/cLitmDfL3+OWjBuo7KoGYEZoBg6Xk4rOY9T21HkSP4Cq7lryws8+8eu197G9YTcaRc3s8JkE+gRQ0VlJmG8IuWEzgNEVeNnVuI92i4lL45Z5ElFFUbg1cw1lu39D50AXgboA4gwxJ53rq/GZtkkfuH9PKYHJ7G0+QGt/O5FfGV2tHGx4/60Zt2J1WNnfXECpqYIQ32ASjLFYHANsrHifw23FnsRvb9NBjnW73z/P5r/AvXO+R2JA/IQ+lxBCCPFVXrOos0n6ANauXcvatWtP2l5aWsp9993Hv//7v7Nw4ULMZjO9vb2e/b29vQQEBGCxWIZtdzqdo0r6wsONZxXveJuqcQkh3H4W8gP+3+e/5ou67VydfTFN1gYA5iRkM+Cw8sGxT2l3ttFkafac02pvJjx8yWmv29HXSVVnHXNjTu4T19XuHomzuxx82bKNxMA4+u0WliTMIzEmgkj/MOp7GwgLM4zYR7W9z8T7VZ+gU2v5xtzrCNIf/29NOEa+2X8Dfzn4BgviZxMREXDGv5fpIDs6hb3NB+hS2skJT/FsdzqdVPfUEmuMIjnG3U8xM354kux0OdlU+wVHTKWEhvljc9j5586P0aq1fCP3el4qeJvnizbwzDWPo9PoEEIIIcbT6XKOCR0+q6io4Mc//jG///3vycrKAsBgMKDVaqmpqSE+Pp5t27axbt06mpqa2Lx5M9dccw35+flkZGSM6h6trT3j+QhnJTzcOCXjEkIMd23iFfzx0F/4qHgr1d11qBQVQa4wLE4LAEWN5dR1NRLpF05zXytHmo7SGn36f7efzf8LRzpKuX/ej06a8lfRXOf5edPR7bhw4a/145KIZbS29hDjF83B1sOU1dUS4ht80rXtTju/P/BHugfMrE2/AZtZRat5eDzzguahzNSSGZwm/x0aQYjiLupypL6SDH2WZ3ttTwP9dguJhvjT/u5mBGexq2kfBypLKGwvoaO/kysSL2VRyCIa49v5tGYL7xzaxKXxy8b9WYQQQkxfQznHSMnfhCZ+v/nNb7Baraxfvx5wJ33PPfccjz32GA888AAOh4Nly5Yxe/ZscnNz2b59O1//+tdxuVw8+eSTExmqEGIamhGSiUHrz77mfCx2C3GGaHzUOnzUOgJ1Roo7ynC6nKQGJgMKNd21p2230DnQ5ekR90Xd9pMSv/b+DgDmhOdysPUwGkXN3bnfJtzPnYjEG2M52HqY2p76UyZ+71V+zLHuGuZH5rE87qJTxqBSVMyPzDvbX8m0EGd0T4H96rTaysH1fSmBSac9Pycsm11N+/i4ejOFbcUE6oxckXgpAKsSlvNl/Q4+qd7M0phF6NTaMY9fCCGEGA2viV9lZSWvv/46XV1dw7b/4he/OOObjVSVMy8vj9dff33YNpVKxeOPP37G9xBCiLOlVqmZH5nHlrrtACSf8IE/3hhHYbu7F16sMRqHy8Huphaa+1qJ9o885fX2Nh3EhQuVouJAyyG+lnYdgT7Hp1u2WdxTPa9OXkWkXzgpQcmkBSV79scaogFo7G32rB8bYnPY2Fa/myCfQL6ZdfOIU0GFd3qNnjB9KLU99bhcLs/v8njid/riLNkh6agVNQWt7iJkt2Xfgn6w7YNB58/yuKV8Ur2Z7Q27ZdRPCCHEpPHaFXjdunUYDAYWLlw47I8QQlyIFkXN8/x84gf+BGOs5+c4QwxJg8U6qrprT3kdl8vFrqb9aBQ1q5OvxOlysq1+17Bj2gZH/ML1oaxOvYqZoZnD9kcNJpSNvc18VVF7CRaHhQWRc4a1oBBnJ94YS6+9jw5LJ+D++zvaWeXui+ilnYavxpf0IPfawGWxi0/6e7ws4RJ0ah2bar7E6XKOzwNMAIfTQX5rIQ6nY7JDEUIIcRa8jvgFBASwbt26iYhFCCEmXbwxlij/SJp6m4cnfgFxnp9j/KPQqdxT9io7q1gSPf+k69T01NHU28yc8FyWxy/lk5otbG3YxdXJqzxTQ9v6OwjQGdGNkLiF+AahVWlp7m05ad/e5nwA5sk0zjGRYIjlYMsh6sz1hOqDOdBSgGmgk3kRs0c1mnp18irC/EJZk3rtSfsMWn/mR+Sxo3EPpaYKTzXZ882uxn28WvoWd2TfyqLoed5PEEIIMaV4TfzWrFnD7373OxYvXjysquaCBQvGNTAhhJgMiqJwR/YtNPQ2D1tXFz844hfiG4yfVk+cJgaD1p8jHaXDpgcO2d9cAMCi6Hn4qHXkheews3Ev9eZG4o2xOJwOTAOdnpHDU1EpKqL8wmnqaxm2lrDfbqGwvZgovwjiBqeDinMz9Pdb21NPelAqb5S/i1alYXXKVaM6P+0r03S/aknMAnY07mFnw97zNvErMZUD0NDbNMmRCCGEOBteE7+DBw9y4MABDhw44NmmKAobNmwY18CEEGKyJAbEn9R3LcgnkMVR84k2uKdfqhQV2SGZ7G0+QJ25kXjj8B55xR1laFUasoLTAUgPSmFn414qOo8Rb4zFNNCF0+Uk1Df0tLFE+kdQa26gw2IiTB+K2drL1vpd2J125kfOkbV9Y2SowEtRewm1PQ30WM2sTrnKU2jnXCUHJBDpF0FBWxG9tj78tX5jct2J4nK5KO+sBKC1r22SoxFCCHE2vCZ+RUVFfPLJJxMRixBCTGnfmnHLsNe5YVnsbT5AYVvxsMSv29pDQ28TWcHpaAerOA6NBlV0VnJp/DLa+t2FXcL0Iae951DhmKbeForaS3m97B0AFBSp1jmGjDoDwT5B1PTUA/XEGWJYlXDJmF1fURSWRM/nnaMfsK85f8QqrFNVc18rPVYzAC39kvgJIcT5yGvil56eTklJiafvnhBCCLfskExUioqi9mKuTr7Ms72sowKAzJA0z7YQ32CCfAKp6DyGy+XytHII9ZL4nVjgZU/TATSKmssTV5AZnD5mo1HC7dszvu5u2G6IJjUwCY1qbDseLYyax7uVH7GldhvLYhahVqnH9PrjaWi0D6Ctv/20bUyEEEJMTaNq57BmzRrCw8PRarWetSybNm2aiPiEEGLK8tPqSQlM5GhnFT1WM0adAYASkzvxG5rmCe4Rn7SgZPY159Pc10qbxZ34hfl6Sfz8IgA41FZEQ28TuWEzuC7lyvF4nGkvPTiF9OCUcbt+oI+RJdEL2N6wm33N+cwOz+GLuu3Mj8zz+gXAZCs3HQXcFW3rzA10DnSdsrekEEKIqctr4vfss89ORBxCCHFeygnNpqLzGEfaS1kUPQ+Xy0VJRzn+Gj/PurEhaUEp7GvOp6Kz0jPi522qZ7g+FLWiprKrGnA3exfnr6uSVrKrcR8fHPuUbQ27qOyqptvaw9qMGyY7tBG5XC4qOisx6gzkhGVTZ26gpa9NEj8hhDjPeJ2nERMTwxdffMGvfvUr1q9fz6ZNm4iOlipyQggBMGOwZ1vp4Chfa38bpoFOMoJTT5oKN7TOr7C9mIbeJjSKelhD91NRq9SE+4W5f1bUzAqfMdaPICZQiG8wS2MW0mbp8CTzdeaGSY7q9Fr6Wumy9pARlEqE3v1ebJV1fkIIcd7xOuL31FNPUV1dzU033YTL5eLtt9+mtraWhx56aCLiE0KIKS3aPxJ/jR8Vg2ugijvcJe8zQ9JPOjbKLwKD1p/DbcWAux/gaNZJRftF0NTbTHZIOnqNfgyjF5PhyqSVHGkvJSsknbLOo9T1NJ6yJchUsa1hNwDZoZmeLyFa+9onMyQhhBBnwWvit337dt555x1UKveHkxUrVrB69epxD0wIIc4HKkVFalAyh9qK6LCYONx2BICZgyOBJ1IUhZvSV1PSUU6UXwS5oxy9izFEcbD1MHkRs8Y0djE5gnwCeXTJf6AoCv9X+Ar7+wpot5i8TvudDD1WM1vrdxHkE8j8yDwG7AOAVPYUQojzkdfEz+FwYLfb0el0ntdq9flTiUwIIcZb2mDid7itmFJTBQnG2BHXPy2MmsvCqLlndP3lcUsJ0BlZGDlnLMIVU8DQ6F6cMYb9LQXUmxumROLXYzXjo9ahU7v/n/957VZsThuXJ65Aq9Kg0arRa/TSy08IIc5DXhO/1atXc8cdd3DttdcC8P7773PdddeNe2BCCHG+SA9yV4L8sOoznC4ns8JyxvT6/lo/lsUuHtNriqkh1uAuAFTX08Ds8LF935wJu9POJ9Wb+bjqc0L0wdybdzd99n6+qNtOoM7I0uiFgDthjdCHUW9ukJYOQghxnvGa+H3ve99jxowZ7Ny5E5fLxT333MOKFSsmIDQhhDg/xBqi8VX7eBpczw6fOckRifNF3FDiZ26c1Dj+eOgvFHeUodf40tLXxq/3P0uvrReb087a9BvQqrWeY8P9QqnuqcVk6ZzybSiEEEIc5zXxu/nmm9m4cSOXXHLJRMQjhBDnHbVKTUpQEkfaSwnThxI92HRdCG8CfYwYdQbqJ7GyZ7e1h+KOMhKN8fzrnO+yuXYb7x/7FL3Gl+/MvI1ZX/kiY6iyZ2NvsyR+QghxHvE6RyMsLIx9+/ZhtVonIh4hhDgvpQe6p3vODps5ZasziqkpzhBDu8VEn61/Uu4/1Jw9LyIHvUbPNcmXc2/e3Ty08L6Tkj6AlKAk4HgLkzNhtvXybMELlAxWvxVCCDFxvI74FRYWcvvttwPuuf1DJaeLi4vHPTghhDhfLI6ZT1NfC5fGL5vsUMR5Js4QQ3FHGfXmBtKDUyf8/mWDrUjSg47fOzMkbcTj0wKT0aq0HOko46YzvNfWul0caS9FQSHrFC1PhBBCjJ8RE7+//OUv3Hnnnbz44otkZWVNZExCCHHeCdAZuWPGrZMdhjgPxRqiAag3N01K4lduqsRHrSPBGDuq47VqLRnBqRS1l9BhMRHiG4zD6WB/SwEul4tF0fMAsDpsqBQFjcr9UcPhdLC1ficAZaaj2By2YWsHhRBCjK8RE78NGzZw6aWX8sADD/D888/jcrmG7Y+JiRn34IQQQogLXcRgU/S2/olvit410ENzXwszQjJRq0bfqmlGSCZF7SUUt5cR6BPA30s3YhroBCApIJ4wfSi/3Pt7DFoDP5l7D4qikN96mC5rNzqVFqvTRnlnJTNO0e9SCCHE+Bgx8bvxxhu56667aGpq4rbbbhu2T1EUNm3aNO7BCSGEEBe6cH0oAK2TkPhVdLrX92Wc4UjjjNAMKIcv6nfQ0tcKQHZIBsUdZexo3EtiQDzNfa0008rRrirSgpLZUrcdgK+lr+bvpW9zpL1UEj8hhJhAIyZ+9957L/feey+PPPIIjz322ETGJIQQQkwbflo//DT6SRnxGyrQkh6cckbnhevDCPMNod7ciILCPbPuJDMknYe2PcGuxn0c7TzmOXZL7Ta6rT1UdlUzMzSLJdHz2VjxT4o6SriZ68f0eYQQQozMa1VPSfqEEEKI8RWmD6HN0oHT5ZyQ+7X0tfJswQtsb9iDv8aPeMPo1vcNURSF3LAZANyUvpqcsGy0Kg0Lo+ditvVyrLuGGSGZxBliyG8t5NWSN9GptHwt7To0Kg2Zwem09LVNSrIrhBDTldfETwghhBDjK0wfit1pp2uge0Lu92rJWxxpLyU9KIUf5d11Ruv7hlyXcgUPzPsRK+KWerZdFL3Q8/OK+KWsiFuKCxf9dgtrM24gyj8CwDPF83CbVAgXQoiJIomfEEIIMcnCBtf5TcQImM1p51h3DbGGaP5t7j0kBsSf1XV8Nb4kByYO61sZY4giJzSbpIAEskMymB+ZR6whmsXR81kSvcBz3KywmSgo7GvOP+fnEUIIMTpe+/jZ7Xa2bdtGZ2fnsO033njjuAUlhBBCTCfHC7x0jHtLh9qeeuxOO6mByeNy/R/M/hfPzyq1igcX/uSkYwJ9jGSFpFPcUUZzXyv15kbeq/yIH82+y5MECyGEGFteE7/777+fhoYGUlNTh32rJ4mfEEIIMTbOZcRvX3M+Mf5RxBiiTtpX0FrEi0Wv8m9zv09SQAIAlV1VAKQGJp59wGNgYdRcijvK2Fy7jQMtBfTa+thSu52bM6TgixBCjAeviV9paSkfffTRRMQihBBCTEvhZ5n4dQ308GLRq0T6RfDzRfehUoav4NjRsBub08bm2m38y8xvAlDZWQVASlDSOcd9Lv7/9u48Pqry7P/4Z2aSyTKTfV9JCPu+CYiAuBb3XajiUh+X2lrrQtWnttJa3H4tPs9Tra1aq1VrK4riVjeUgiAgAkG2kLBkIWTfM1kmM3N+fyQZjCyBmGRI8n2/Xr5e5Mw5Z657joFcue/7usbHjMFqsXqbupswsb54ExdnzMVqsfo0NvEtwzCocdZS0VhFvC0Wm3+wr0MS6Rc63eOXkZFBaWlpb8QiIiIyIIUFhOJnslDeWHlC15U2tP77XNJQyvbvFEppcjWR1dauIbNsO46WBgzDYG9NLuEBYUQGRnRP8F0UYLEyIWYMAMn2RM4ZNIdGVyObSr/xaVzie3/a+gIPrn2EJzc/w0s7/+nrcET6jU5n/Jqampg7dy7Dhg3Daj30G7iXX365RwMTEREZKMwmM1FBkSc841faUO7986f5/2FM9EgK64tItMWzszIbl8dFeEAY1c01fFW8mdFRw6lvcTA5dnx3D6FLzkqZTUlDGT8cfjnBfsF8mvcf1hau59SEKb4OTXzE7XGzu2oPYdZQ3Iab/TV5GIbRYbuRiHRNp4nfbbfd1htxiIiIDGjRQVGUNJTR0NJIsH/QcV1T2tia+IUHhLGvJo9F656gsqmKiTFjvS0arh1xJX/55iXWHNxAs9sJwOCwtB4Zw4lKDknkvik/8349Kmo4OyqyKHGUEtfW+kEGloq2fpYjIofS4mlhc+k3VDZVExXk2xlqkf6g06WeU6dOpbGxkZUrV/Lpp59SW1vL1KlTO7tMRERETkBXCryUtc34XTXsEgBqm2uJCoxkS9k2vi7JJCIgnJGRwxgXM5piRwnv7Wvdsz843LeFXY5mbPRIAPa2FaCRgad9FjsmKJokeyIAhfUHfRmSSL/R6Yzf888/zyeffMJFF12c5ZZCAAAgAElEQVSEYRj85S9/IScnh9tvv7034hMRERkQDrV0KCc1NPm4riltLCfQEsj46NHcN+VnhAeEYzGZ+X9fP0VFUyXjY0ZjMpm4LON8YoKicLqdhAeEkWJP6smhdFn7TOS+mjxmJOqXzAOF0+2k2e0kxGqnrO0XH7HBUQRYAgAorC9iXMxoX4Yo0i90mvi9++67vPHGGwQGBgJw9dVXc/nllyvxExER6Ubxwa1LG4sdx1dQzWN4KG+sIMEWh8lk6tCI/Sfjf8R7+z7m9OQZAEQFRXJJxnndH3Q3S7DFEWgJYF9Nnq9DkV706q43yKrM4Xen/ZKyxkMzfiFWOwAH6ot8GZ5Iv9Fp4mcYhjfpAwgICMDPr9PLRERE5ATEt+1pK2o4vsSvurmGFo+LmKDoI9wrjlvGXt+t8fUGs8lMWmgqWVU51Lc4sPvbfB2S9DCXx8W2il043U7yaw9Q1tA64xcTHEWgJRCbX7CWeop0k073+E2fPp2f/exnfP7553z++efcddddTJs2rTdiExERGTDCA8IItARQ7Cg5rvPb90LFBh+e+PVlg9say+fW5Ps4EukN+2vycLYVHdpfm0dpYzl2fxtBfkGYTCaS7AmUN1bS5Gr2caQifV+nid+DDz7IqaeeyvLly3n77beZNm0aDzzwQG/EJiIiMmCYTCbibXGUNpTj9ri9x0sbyg7r0dd6/NCSuP7k2/v8PIbHmxQMVNvLd7HvKMVuKhqr+Ofut7yzZH3Rrsoc75/3Vu+nsqmqwy8zkkISMDA46Cj2RXgi/cpR12yWlZURExNDUVERc+bMYc6cOd7XSktLSUxM7I34REREBox4Wyy5tfmUNVZ4l34uzX6HXZXZ/GzCLYyIHOo9t30vVH+b8UsLS8GEicy2yqQew8Ovpy8kwGLt/OJ+oNntpNndTKg1hM2l3/DC9leJCAjndzP+u0Mvu5rmOp7KfI6yxgrqnfV9cmkvQFZlDmaTGZtfMLsqc/AYng6/zPh2Zc/22WAR6ZqjJn6/+tWvePbZZ1mwYEGHv2jam2h+9tlnJ/xmDQ0N3HvvvdTU1BAUFMTvf/97IiMjyczM5JFHHsFisTBz5kzuuOMOPB4Pv/nNb9i9ezdWq5XFixczaJC+4UVEpP9KsMUBUOwoId4Wi2EY5NUWAPB69tv8cuo9+Jtb/+n2zvj1s8QvyC+IBFtchxmeDUWbmJ18qg+j6mhP9X6+KdvBxRlz8TN3b92D57e9TFZlDuNjRrOjIguAquZqyhsriQlurfzqaGng6cznKWuswGqxsrVsB5VNVUQG9q1ed46WBvLrDjA4LI3QgBC2lH4DHKpwC5BsTwDgQJ32+Yl8X0dd6vnss88C8NZbb/HZZ595//v888/5+9//3qU3W7p0KaNHj+a1117jggsu4JlnngFg0aJFLFmyhH/+859s3bqVHTt2sGLFCpxOJ6+//jr33nsvjz/+eJfeU0REpK9or+xZ1FbZs7KpigZXI2aTmdKGcv6x603e2fsh7+z9kIK6AwT7BfXLAiizk2cwOGwQt4y9Hj+ThZUFX+AxPL4Oy+v9fR/zWcFq1h78qlvvW1BXyK7KbCwmM5ll23F53EyIGQNATvVeAJpcTfxp6wscdBRzevIMrh56CQYGXxSuP+x+Nc117K3O7dYYu9Puqj0YGIyMHMrg0FTv8W//MiPBFoe/2Y/9tdrzKfJ9HfXXVEVFRRiGwa233srzzz+PYRgAuN1ubrnlFj766KMTfrMbb7wRt7t138LBgweJjo6mvr4ep9NJamrrN/zMmTNZt24dZWVlzJo1C4AJEyawffv2E34/ERGRvsQ749fQWuCloK4QgLNTT2d90ddsLNnc4fwh4em9G2AvmZU0nVlJ0wE4JX4S64o2sr1810nRy63J1extN/Hh/hVMi59MoF9At9z784IvALh13A2ACT+ThdCAEDLLtpNdtZdp8ZN5dtvL5NUWMC1+MlcOvRiXx83bez9g7cENnJd2NlaLP9Da7uMv37xIQV0hD8944KSbDfQYHr5sS5xHRA7F+NZr357x8zP7kR46iJzqfThaGrD5B/dypCL9x1ETvz/+8Y9s2LCB0tJSrr322kMX+Pl12O93NG+88cZhM4OPPvoo48aN4/rrryc7O5sXX3yR+vp67Ha79xybzUZBQcFhxy0WCy6Xq9NWEjExIZ3G5gsna1wiInLyiDJsBHxlpaypjJiYECqKywCYmjaW80bNZn9VPpFBEZhNJqqbasmIHESMrX//+3KF/w9YV7SRd/d/iDXYzLSUid7kxhc2H8zFbbgJCwihprmODZUbuHL0Bd/7vlWNNWwq3UpSSDyzh0/GbGpdlGUYBmGZIeyp3UdWwy6yq/YwOXEsd532IyxmCwDnDJnF8l0fs69pD7PSWhvfr83fSH7dAQAKnHkMT0nF5XZR39KA3T+YfVX5bC7axujY4YyNG/G94z9RS7e/z67KbMbFjeSUjNG4PC78tvjh8rgYmZKGzXoowRuXNILs6r2UGyWkxYwDYGdpDiv2fsH8cZcQa4s62tuIDDjHyjmOmkU99thjADz33HPceuutJ/ymV111FVddddURX3v55ZfZu3cvt912G8uXL8fhcHhfczgchIaG0tTU1OG4x+M5rv6BZWV1JxxrT4uJCTkp4xIRkZNPXHAMhXUlFJdUk1WyH4AQTwTWZhvDg0d6z4sKjIMGKGvo3/++BBHK7KRTWV24jqc2vMia/Zu4ecwCn8WzYX/rPrQfDr+identrk+YGnkKQX5BJ3QfwzCocdYSHhAGwPv7PsXtcTMrcQYV5Y4O52aEpbO59Bv+vuVN/EwWLku7iMqKBu/ro0NGs5yPWbN/EyNsI2nxuHh1y3LMJjMew8OGvG8YFzKe32962rtntN2/d6/kgVPu8u4f7A07KrJ4c8cHRAVGcu2wqykvrwdgZOSw1uXNNW4aOPT/dZI1CYBN+TtI8R/EB/s+4eO8lRgYeFpMXDvyyl6LXeRk1p5zHC3567SdwxVXXMFLL73En/70J55++mn++Mc/ct9993UpmGeffZbly5cDEBwcjMViwW634+/vT35+PoZhsGbNGqZMmcKkSZNYvXo1AJmZmQwbNqxL7ykiItKXxNvicHlclDdWUFBbSGRgRL/cx3ci5g2/jEXTf0FMUBTby3d2aHfR23ZVZmO1WBkROYwzUmbS7HayoXhz5xd+x3v7PubBtY+QXbUXwzDYWLwFq8XKtPhJh507LCIDaC2GMjNpOhGB4R1eT7DFER0Yya6K3bR4XKwpXE9FUyWnJ88gOiiK3ZU5ZFXlkFdbQGxwNMPCM5gWP5m5aWfR5G7mxZ2vUeIoZVv5zh7vl+cxPCzLeR+zycwtY6/v8P/2LWOu474pPzvsmrTQVCwmC3uq9rOmcD0f5X1OZGAE4QFhfF2yhUZXY4/GLNJfdDqFdvfdd5OQkEBmZiZnn302//nPfxg7dmyX3uyKK67g/vvvZ9myZbjdbh599FEAfvvb37Jw4ULcbjczZ85k/PjxjB07lrVr1zJ//nwMw/CeKyIi0p8NCUvnq+LNvLnnPepa6hkfPsbXIZ0UYoNjGBYxhLUHN1DoKCI1JLnXY6hqqqa4oZQxUSPwN/sxI3Eq/97/KV8cWMfpSTM6VEH/roaWBl7b/RajI4cTERjOJ3krAVhTuJ4gv0DKmyqZHDse6xHaVgwNb038/M3+nDvozMNeN5lMjI0ZxcqCNeyq2M0neSsJsFiZO+gs3B4Pqwu/5F9ZbwGwYMTVZISnea+taKxiY8lmHt7wBwDmpp3FRYN/0OXPqDMbi7dQ0lDKaYlTSQnp2Bqsfenqd1ktVgaFJpNbW0D5vgoCLQHcO/mnrC/ayLv7PuKr4i2cnjyjx2IW6S86TfxKS0t5+eWXeeKJJzj33HO5+eabueGGG7r0ZtHR0bzwwguHHZ8wYQJLly7tcMxsNvPwww936X1ERET6qukJU1hduI6dFbsBSLEn+Tiik0daaAprD24gr7bAJ4lfVluz8RGRrauQQqx2JsaOY2PJFnKq9zIsYshRr/2mfCdbSr9hS+k3mE1mTCYTof52tpbvILitYMmk2HFHvDYuOIbZSaeSHJJIWMCRl3CNi25N/P61+y1qnXWckzoHu9XGqKhhrC78kvKmSpLtiYf1wps3/FJaPE4sJgubS79hXw9WAXV5XHyw/1P8TBbmpp11QtcOCR/Mvpo8HK4GLs04n7CAEE5NPIX393/CmsL1zE469ZiJt4gcx1LPsLDWtefp6elkZWUREXFyVYUSERHpTyxmC9eMuAITrT/EfndWZCBLayv5n1tT0MmZPSO7raXC8G8leO39BVcfWHfMaw/Ut/ahS7In4DE8XJJxHnOSZ+LyuPiicB1Wsz+jooYf8VqTycS84ZdxWuK0o94/IyydIL8gapx1+Jv9OSt1NtA6W+hnap1JOz358FnJIL9Abhl7PTeNuZbY4Bjy6wp7rHXGxuItVDRVMjNp+glXGR0SPhiA6MBI5qTMBCDUGsKEmDEcdBSTW+ub/ydE+pJOE7/p06dz5513ctppp/G3v/2Nhx56iMDAwN6ITUREZEAaFJrC3LSzCLWGHDZDM5DF22IJsFjJ9VFPt301eQT7BRFvi/UeSw8dRJI9ga3lO6hurjnqtQfqDmLCxD2TfsLiGb/k7NTTmZowyZvgj4keecRlnsfLYrYwui1xnJk0jRBra2X0QL8AxkaPIiIgnClxE495j0GhyTS5myhrKO9yHMfyZdFGTJg4O/X0E752eEQGpyefxo2jr8HffGjB2uTY8QDsqtzdbXGK9FedJn533303CxcuJCkpiSeffJLBgwfz9NNP90ZsIiIiA9aFg8/l0dN+5V0GKGA2mRkUkkJJQ1mvF/SoddZR3lhBetggb6sFaJ2Nm510Kh7Dc9SG7oZhUFhfRExQFIF+Ad7iLOEBYYxsWzY68SjLPE/E2alzmBw7nh98Zx/gj0Zfw0PTf9FpG4z25bN5bW0gulNpQxn7anIZHjHksOI0x8PP7MfVwy4hPSy1w/EhEYMxYSK7am93hSrSbx018Vu5snXT8fLly9m8eTPLly8nJyeH8PBwvvzyy14LUEREZKDSnqXDpYWlYmCQV9v9ycmxtO99GxyWdthrU+ImEmgJZG3h+g4VR1cf+JL8ugNUNVfT4Gok6QjLdi8bcgFzB53JuOhR3zvGlJBEbhpzrXe2r53FbDmu3oeDQlsTv/we+Gw3FG0CWvewdie7v40kewL7a/Npcbd0671F+pujFnfZtm0bZ5xxBhs2bDji65deemmPBSUiIiJyJGmhKQDk1uYzInJor73v3ppcADKOsPQ20C+AaQmTWXVgLVvLdzApdhzFjhJez15Oij2RCwafC0CyPeGwaxPt8STa5/Zo7Mcr2Z6I2WTu9hk/j+FhffEmAi2BjI8Z3a33htZ2FwfqD7K/Nu+YBXZEBrqjJn533nknAGeddRZz5sw5rubpIiIiIj2pvcDLx3krqXXWc17aWYfNcB1Ji7uFZrcTu7VrPRH31eS1LjVtSzy/a3bSdFYdWMuawvVMih3H/prWfYgF9QdZ3zbblWw/uQv1WC1WEmxxFNQV4va4j9pe4URlV+2lurmG0xKnfq99jEczLCKDzwu+ILvq2JVVRQa6Tvf4vfvuu5x55pksWrSITZs29UZMIiIiIkcUFhDKtSOuItgviFUH1vLKrqWdXwT8K/ttfrv+/9HQcvx7A/PrDvDfa37HJ7krKagrJMWedNTEJd4Wx6DQFHKq99HkaupQgCazbBsAyX2gQuugkGRaPC1kVe0hr7aAHRW7yarMwTCMI56/tzqXfW2zoUezqWQrAKd0Ulymq4aEp2ufn8hx6HQa749//CP19fWsWLGC5557jvz8fObOncvPf/7z3ohPREREpIMZiacwLX4S/7flWXZUZFFQd/CYbS8Mw2BnxW4aXI1kVeUctV/ed20t20Gts4539n0IwODwY1dYHRkxlLzaAnKq97G/Nh9/sz8BFiv1LQ5s/sGEWUOPf5A+khqazJdFG3lma8e+yz8edyNjv7MP0WN4eHbbS1jNVhaf9ssj3s/tcbO1fDuh1hAywtN7JOYgvyBSQpLIrS3A6Xb2yKyiSH/Q6YwfgN1uZ/LkyUycOBF/f3+2bNnS03GJiIiIHJXFbOEHbU3AP8n7/JjnVjVXU+usA2BHRdZxv0d7QZektr15Q8Mzjnl++57DrWU7OFhfTGpIElPjJwGtyzz7QrGeibHjmBo/iWnxkzkzZRbnDjoDgP8UrD3s3GJHKY6WBqqaq2nxuI54v+yqvThaGpgYO7ZDNdTuNjRiMG7D7V1iKyKH63TG78UXX+T999/H6XRy8cUX89xzzxEfH98bsYmIiIgc1ajIYaTYE9lSuo2ShjLigmOOeN63k4FdFbsxDKPTJMztcZNbm0+CLY6Fk3/Kvpo8hkUcO/FLDxuE1ezPV8WbMTBIC0tlRsIprC5c1+m1Jwu7v40bRs3vcGxfTS5ZVTmUOEqJ+1YPwz3V+71/rmqqIvYIn//m0m8AmBjz/dtVHMvgsDQ+YzX7a/MZHql9fiJH0umvXkpKSli8eDHvvfcet9xyi5I+EREROSmYTCbOTTsTA4Pnt7181Abq7fvtooOiqHHWcaC+qNN7F9YX4fS0MDgsDavFyojIoZ3OWPmZ/RjSNvMErc3d421xLJ7xS85JnXNigzuJnJ58GgCrC9d1OL635lDiV9FUddh1bo+brWXbCbOGkBGe1qMxprcV/dlfk9ej7yPSl3Wa+D3wwAPs2bOH//mf/6GxsZHly5f3RlwiIiIinZoYM5Y5yadR5ChhyaZneG/fx3xRuI6vijezt22pZm5tPmaTmXMHzQFg53Es99zXlkAMPkL7hmMZGXGoxUR7s/EQq73bKmT6wvjo0YRZQ1lf9HWH5Lr98wWoPELit6d6Pw5XAxN6eJkntBb9iQyMILc2/6iFaEQGuk6/C//whz+watUqPvnkE1wuF8uWLePxxx/vjdhEREREjslkMnHl0Iu5MP0HVDZV8VHuZ/xr99v8fee/eHLzM3xRuI78ukKSbPGMjx6DCdNx7fNrr1R5pIbtxzIichgA4QFhhAeEnehwTkoWs4VzBs2hyd3M/215lurmGiqbqqhqrsbu39oeo7Lx8MRvV2U2AKOjRvZKnOmhqdS3OChvrOyV9xPpazpN/NasWcPvf/97AgICCAkJ4cUXX2T16tW9EZuIiIhIp0wmE+eln8XiGb/k5xNv5YZR85k//HICLQEszX4Hl8dFWtgg7FYbqaHJ7K/Np9ntPOY999XkYfe3ERMUdUKxJNjimBgzltOTZnyfIZ105iSfxrmDzqC0oZz/2/wsaw9+BcCUuAnAkZd6ZlXl4GeyMKSHqnl+V3rb7Oz+Wi33FDmSTou7mM2tuWH7Jmin0+k9JiIiInKyiAgMJyIw3Pu12WTitaxlwKE9YEPC0smrLSCvtuCoBVcqGltns8ZHjz7hSpwmk4mbx17XxRGcvEwmExcPnosZEx/lfc5HuZ8BMDluPKsL1x2W+NU7HRyoO8iQ8HQCeqm9Qpp3n1++t5qqiBzSaQY3d+5c7rrrLmpqanjppZdYsGABF154YW/EJiIiItJlMxKmMjJyGCZM3h5y7Xv29h2lCIjb4+a1rDcBGBk1vHcC7SNMJhMXZczl5jHXEWgJwO5vY1BICuEBYYft8dtdtQcDw7v0tTekhCTiZ/bTjJ/IUXQ643frrbfyxRdfkJiYSFFRET/72c8444wzeiM2ERERkS4zmUzcOvYGyhsriA6KBL61HLBtD993Ld/7b7KqchgbPZLTEqf2Vqh9ysTYsQwJT6fF04LFbCEqMII91ftxeVz4mVt/tMyqzAFgZOTQY92qW/mZ/UixJ5FXV0Cz29lrM40yMG0v30VaWKp3n2tf0OmMX3Z2Ng6Hg2nTprFgwQIlfSIiItJnWC3+JNoPtaIKCwglKjCS/TX5eAwPzW4nbk9r+4UNRZv4vOAL4oNjuWHUD3u8EmVfFmK1ExkYAUBkYAQGBlVNrRU/DcMgqyqHYL8gUkKSejWuweGD8BgetXWQHnWwvpg/f/MiKwvW+DqUE3LUGb+KigruvPNOcnJyGDRoECaTif379zNx4kSWLFlCSEhIb8YpIiIi0i0Ghw1iY8kW9tfk87cd/8CEiTkpp/Hevo8J8gvitnE3EOQX6Osw+4yotgSwoqmSmOAoVheuo7KpigkxPd/G4buGhWfwWf5qdlftYUQvzjbKwFLkKAHoU7N9cIwZvyVLljB58mTWrl3LG2+8wdKlS1m7di3Dhw/nkUce6c0YRURERLpN+z6/F7a/SnVzDVXN1by95wPcHjc3jb6G2OAYH0fYt0R+K/F7Z++HLM1eToi/nfPTz+71WIaEp2M2mcmp2tvr7y0DR1ljOcAJV/31taPO+G3ZsoUPP/ywwzGr1co999zDJZdc0uOBiYiIiPSE9LbefDXOWlLsiVw/aj4f5X7GyKjhjFJBlxMWFdSa+H2a9x/KGiuIDY7mp+P/i2gf/FAc6BdIakgyeXUHaHI1EaiZW+kBpQ2tiV9scLSPIzkxR53xCwgIOOJxk8mkdg4iIiLSZyXa4giwWDFh4poRV5Joj+emMddyasIUX4fWJ0UGthbOKWusINQawp0TbvVJ0tduWEQGHsPD3qMU8BH5vsoayzGbzES1/b/fVxw1gztW35oT7WkjIiIicrKwmC0sGHk1N46aT2posq/D6fMiAsKwmCz4mSzcOvb6Dr0UfaG9P+Puqj0+jUP6r9KGcqICI7CYLb4O5YQcdalnTk4OZ5111mHHDcOgrKysR4MSERER6UmTYsf5OoR+w2K2cMOoedj97d52Gb6UEZaGxWTRPj/pdoZh0ORuor7F0Sd/aXTUxO/jjz/uzThEREREpI+aHDfB1yF4WS1WBocNIqd6H1mVOaruKd+bx/Dw2Ff/S2poMrOTTgUgNqhv7e+DYyR+SUm923dFRERERKQ7XDbkApZseoaXdv6T/z7lbsIC1IZMuq6qqZqDjmJKGsoYFJICQEwfK+wCx9HAXURERESkLxkUmsKlGedR56znpR2v4fa4fR2S9GEHHcUAuA03Kw98AfTNGT8lfiIiIiLS75yRMovx0aPJrt7La7uXYRiGr0OSPupgfbH3z321lQMo8RMRERGRfshkMnHD6B+SGpLM+qKv+Thvpa9Dkj6qfcbP7m8DwGKyEBkY4cuQukSJn4iIiIj0SwEWK7eP/xGh1hA+zVuJ093i65CkDypylGA1+zMraToA0UFRmE19L43qexGLiIiIiBynUGsI0+In0+RuZmdFFoZhsKV0GxWNlb4OrUe4PW5aPC5fh3HS8BgeVuSv6rBc80S4PW5KHKUk2OKZFDsegHhbbHeG2GuU+ImIiIhIv9bebuLr0q1sr9jFX7e/wmtZy3wcVffzGB7+b8uzLN6whGa309fhnBSyKnN4e88H/Gv3W126vrSxHJfhJtEeT6I9nlvGXs+lGed1c5S9Q4mfiIiIiPRryfYE4oJj2F6+k2U57wGwu2oP1c01Rzy/rxaCWVe0kb01uZQ3VvBp3n98Hc5JYVPJVgD21uRSWF90wte3zxQm2uIAmBAzhtjgmO4LsBcp8RMRERGRfs1kMjE5djwtHhdljRVEBIRjYLCxeMth564+8CW/+OI3FDlKfBBp1zW0NPDu3o+wWqyEWkNYkf8fKhqrfB2WT7V4XGwt347FZAFan+2JKmor7JJgj+/W2HxBiZ+IiIiI9HuT41r3ZwX5BfKzibdgMVnYWLKFJlcTaw9uoLyxgr3VubyR8y6NrkbWFm44rvu6Pe6Tok/gh7mfUd/i4Py0s7k043xaPC7e2ftvX4fVLZzuFjYUbaLJ1XxC1+2q2E2jq4nZyacSGRjBVyVbaHQ1ntA9Ds349f3Ez8/XAYiIiIiI9LR4WxxXDr2YuOAY4oJjGBM1gq3lO3h4/e+pcdZhNpkJsFgxDINASwAbS7Zw2ZALsJgtHe7T7HbiMTwE+QVS3+Lg0Q3/Q42zFpt/MBcPnsvMtsqPx8PlceE2PARYrN9rbO0Fa2z+wZyRMhOzycx/DqxlU+lWflB/Jkn2hO91f197b99HfF7wBcOKvuYn428iqyqHgrpCfjDozMOez7dtKm1d5nlK3ERC/UN4Z9+HbCzewuzkGcf1voZhcKC+CJtfMKHWkG4Ziy/5ZMZv7969TJ48mebm1qw9MzOTq666ivnz5/P0008D4PF4eOihh5g3bx7XXXcdeXl5vghVRERERPqJM1JmMipqOABT4ycBUNfiYFbSqcQFx9DoauKSjPOYljCF+hYHuyqzO1y/vyafRese53fr/0BVUzXv7v2IGmctSfYEnO4W3t330QkVVfnbjtd4ZMOT33vGsLSxnKrmaoZFDMHP7IfZZOaC9HMA+HD/iu91b1+rb3Gw5mDr7Gt29V5+s/7/8ZdvXuKD/Z+yvvjrI17jdLewIn8VW8u2Ex0URWpIMpPaZnyzq/cd93sXOUqoaKpkSMRgTCbT9x+Mj/X6jF99fT1PPPEEVuuh32wsWrSIp556ipSUFG699VZ27NhBYWEhTqeT119/nczMTB5//HH+/Oc/93a4IiIiItIPjYsZzQ+HX05aaCrJIYl4DA+VTVVEB0WRV1vAqgNr2VC8iTHRIylvrCSzbBvv7/vY2yrhqcznKW0oJ8EWx/1T7uTD3BV8mPsZXx78ijNSZnZ4L4/hodZZR3hAmPeY2+NmZ8VuWjwtZFftZWTUsC6PZXflHgCGRwzxHhsdNYLUkGS2lG2jsL6oT836eQwP28p3kRqSxJdFG3G6nVwy+Dx2V+0hqyqHjLB08uoK+Cj3c6bFT2Z7RRZNriamJ0zBY3h4cvMzFNQVEuQXyGUZ52MymYgKjCDE305uTf5xx7Gl9BsAJsWM7amh9uw9MW0AABqOSURBVKpeTfwMw+DXv/4199xzDz/5yU+A1kTQ6XSSmpoKwMyZM1m3bh1lZWXMmjULgAkTJrB9+/beDFVERERE+jGzydxhWabZZCY6KAqA1JBk4oNjySzbzsLVD9HoagLaGsKP+xGZZdtZV7QRgKuHXYrFbGFO8kw+y1/NZ/mrmZU0HT/zoR+zVxas4e09H3DHhJsZETkUgIOOYlo8rQ3lN5du/X6JX1Vr4jciYqj3mMlk4oL0c/jzNy/yYe5n3DxmQZfv35s8hodXd73BhuJN+JksmM0WbH7BzE6ewZmpsyisLyI1JJk3c97lPwfW8uetL5JVlQPAiMih1DTXUlBXyIiIodw05lps/sFA6+eRFpbCtvJd1DTXEhYQ2mksW8q24Wf2Y0z0yB4dc2/pscTvjTfe4O9//3uHY4mJiZx//vmMGDHCe6y+vh673e792mazUVBQcNhxi8WCy+XCz0/bEkVERESk55hMJs4ddAbv7P03Nn8bQ8IjGR01gnHRowkLCGF45FBcHjdRQREMi8gAwG61cVriNFYeWMOagxuYk3ya935fl2RiYPDO3g8ZHjEEk8lEbu2hmaetZTuYP/zyY+5XOxqP4SG7ag+RgRFEB0V2eG101AhS7Ilklm6jrKGCmOCoLn4ivcMwDF7e+TobS7aQZE+gydVMRVMl56SfTqBfAACDQlMAOHfQGaw9uIGsqhzMJjMew0Nm2XbqnfUAzEya7k362qWFprKtfBe5tfmMjxlzzFiKHSUUOUoYHz2aQL/AHhht7+uxLOqqq67iqquu6nDsnHPOYdmyZSxbtoyysjJuuukmnn32WRwOh/cch8NBaGgoTU1NHY57PJ7jSvpiYk7OjZcna1wiIiIicrgLY+Zw4bg5R339F3G3HHbsatv5fFW6mWU57zEkPpmJCWOobKwmv+4AAPl1B8h17mNq8gSK97VWixwTO5ztpbsp9hxkQtyow+7pMTyszt1AeGAYI2IyvAlQu32VeTS4GpmWMpHY2MNnsS4bM5c/rv8b68rX81+T55/IR9DrcqsOsLFkCxmRg/j1nJ9jtVjZU5HLsKh0zOaOpUliCGHB+Mv5+uBW5o25mF999nt2Vu/C4WzAz+zHrGGTCPLvmLBN8IzgvX0fU+oqISbm1GPGsqp0NQCzM6b2qZ/jjxVrr06fffrpp94/n3nmmfztb38jICAAf39/8vPzSUlJYc2aNdxxxx0UFxezcuVKzj//fDIzMxk27Pimv8vK6noq/C6LiQk5KeMSERERke7kx21jbuSpzOdYsuY57pn8E/JqCwCYnTSDNQfX82rmcgZZ09lVupdASwBnJ81he+luVuasJ8kv5bA77qzYzTNbXwbA3+zPj8fd6F0uCrAur7VyZVrQoCP+vDkkcCiRgRF8vu9Lzoyfg91q64mBd0lNcy2rDnxJckgik2LHsblwFwDTYqfgqHbhwEUUsVRUOI54/ZSIKUyJmAIGpIcOYmdpDgYGIyOHUV/dQj0tHc4P80RhwsSOohzKEo79s/m6vC34mSwMCkjvMz/Ht+ccR0v+Too+fr/97W9ZuHAhV155JaNGjWL8+PGcc845WK1W5s+fz2OPPcZ///d/+zpMEREREZFjyghP40ejr8XpaeGlnf9iS+k2AM5Knc30+MkUO0pYkbeKkoZSUkNTyAhPJ9QawrbynRiGcdj99te0VrafEDMWl8fFspz38BgeoHU2cF3RRswmM8O/lQx+m8Vs4cyUWbR4WviicH23j7fJ1cSft77oLTDTGbfHza7KbF7LWsaidY/zcd7nvL77bTyGx7v8NS009YTjmBA7BoPWz29c9OEzp9DawzHeFkte3QHvZ3gkja5GDtQdJC0slaB+sswTfNjH7/PPP/f+ecKECSxdurTD62azmYcffri3wxIRERER+V7Gx4xmdtKprC5cR7GjhARbHNFBkVw4eC6bS7/h3X0fAZAWmoLZZGZYRAZfl2RS0lBGvC22w71y22YMfzj8cgIsVjYUb2JL6TdMjpvAltJtlDaUc2rCKYRY7YfF0e7UhCksy3mPXZW7OS/9rG4da071PrZX7CLAYmV45JBjntvoauJPmS+wv7Y1mY0ICCfEaiO/rpDC+iJyawsIsFhJsMWdcBwTYsby9p4PAI5ZjCUtNJUiRwn/u/kvFDeUclriNM5LOwvrt3op7qvJx8AgIyz9hOM4mZ0UM34iIiIiIv3JJRnnExUYAcDYthmosIAQzk8/xzszld42szUkvDXB2POdHnOGYZBXW0B0YCR2q43z08/GbDLz/v5PcLqdfJz3OSZMnDtozjFjCfQLJM4WS2F90TFnurriYH3rXsVCR/Exz3O6nfx564vsr81jXPRo7pp4G7899X7OTJkNQGbpNkocpaSGJGM2nXiKEh0Uybjo0YyNHkVk2+d+JOlhrZ/53ppc3B43n+St5JGv/oda56HlnHur9wOQEd6/Ej+VyBQRERER6WaBfgHcOPqHvJXzAacmnOI9Pif5NL48+BWljeWktSUh7TNLe6pzO7SYKGuswOFq8LZ6iA6K4tSEU1h7cAO/WL0Il+FmStwEYoNjOo0n2Z5AsaOEisaqbq3uebAt4SttKKPF3YK/xf+I57215wP21uxnUuw4bhz1Q28F0/b9iqsKv8TA6NIyz3a3jbuh03Omxk2i0dXEkPB0EmzxvL3nA74oXMcneSu5cujFAOyt2Y8JE4PDuh7LyUgzfiIiIiIiPWBwWBoLp/yU2OBo7zGL2cIdE27mzgm3EGptLcIRb4vF5h982Ixfe2GY9hYGAJcPuYBzB51BVFAUVouVuWnHt3Qz2Z4IwIH6g99rTN/VPuPnMTwUN5Qe8RyP4WFL6TeEWO0dkj6AEKudZHuit1diWujhBW66k7/Fn7NTTyctNJUAi5Urh15EREA4awrXU9NcR4vHRW5tAUn2BIL8gno0lt6mxE9EREREpBdFBIYztK3/H7Q2j88IS6equZrKpirv8SMVOwn0C+SSjPN4aPpClsx++Lj3wyWHdH/i5/a4KWko8359oL7oiOfl1x2gvsXB6KgRR+xV+O0qpWm9PMvmZ/bj3EFn0OJx8VnBKvJrD+DyuMgIT+vVOHqDEj8RERERER87tM9vv/dYXm0BZpPZO1v3XSeyF84741fXfYlfSUMZbsNNXHBrQZqDR0n8tpdnATAm6shFV9oTv/CAMMIDwrotvuN1auIphAeEserAlyzb8x5AvyvsAkr8RERERER87rsFXlo8LgrqD5JsT8B6lH1zJyLEaifMGtqtM35Fbfv7psSNB6DwKInfjoosLCZLh5m9b8sISyciINxbBKe3+Zv9mD/8MgItAd7ltf1xxk/FXUREREREfCzZnojNP5j1RZsYHjGUzLJtuDwuhoQP7r73CElkR0UW9U5HtzRyb9/fNzgsjejASArrizAMA5PJ5D2nprmO/LoDDIsYctSeeFaLP7899f4O1/W2sdGjeOS0B9le0To76YuZx56mGT8RERERER+zmC3cOvYG/MwW/rbjH2wu/YaMsHQuSD+n296juwu8HHSUAJBgiycpJJH6FkeHtggAOyt3AzA6avgx72UxW7rUxqE7+Zn9mBAzhgkxY3waR09R4iciIiIichIYEp7OHRNuweYXzIiIofx0wn8ReJRZsq5oL/DyTflO3B73977fwfoi7P42Qq12kmzxABTUFXY456vizQA+W8Yph2ipp4iIiIjISWJw2CAemfkr/EyWbl/6mBGWRqAlkFUH1vJN2Q5uH/8jkuwJXbpXk6uZ8qZKhoYPxmQykRySBMCz2/7OqMjhzB9+GQ2uRrKr9jA8Yghxx9FrUHqWZvxERERERE4i/ma/HtnvFhYQyi+n3sXMpOlUNVfzef4XXb7X3ppc4FCPwTFRI7hiyIUk2eLZXrGL57e9wor8VQCckTLze8cu359m/EREREREBoiooEjmDbuUzNJt7KrMxjAM8uoKeCP7XcwmM1GBkVw74gr8O6kkuqtt797IyGFA6x69M1Nnc0bKLF7e9TpfFW8mr66A6KAoRkeN6PFxSec04yciIiIiMoCYTWZGRA6lxlnLQUcxH+V+Tm5tPvtr8thYspl9NXkdzn911xs8nflXDMPwHttZkY3V7E9GeMd+dyaTiR8Ov5zEtj1/pyfP8HnRFmmlpyAiIiIiMsCMimytsrm+6Gt2VGSREpLEdSOvBqCssdx7nmEYbCn9hl2V2eTXHQCgsqmKkoZShkVk4G8+fAGh1WLl9vE/4qLBP2BW4vReGI0cDyV+IiIiIiIDzIi2JZorC9bgMTzMSDiFmOAoAMoaK7znVTVX0+RuBmBjyRYAdlVkAzDyGC0aIgMjmJt2VqdLRqX3KPETERERERlgwgJCSLInYGDgb/ZjStxEYoKigY6JX1Fbrz6ATSVb8Rgedla2Jn6j2pJH6RuU+ImIiIiIDEDtyz0nxIwj2D8Iu7+NQEsAZQ2Hlnq2J37hAWHUOuv49/4V7KzcTVRgpDdRlL5BiZ+IiIiIyAB0auIpZISlce6gOUBrYZaYoCjKGivwGB7gUOJ3ftrZAHyYuwKXx8X56Wf3SMsJ6Tlq5yAiIiIiMgDFBcdwz+SfdDgWExxNQf1Bap11hAeEUeQowWKyMC1hMmsOrqfJ1cwNo+eTFprqo6ilq5T4iYiIiIgIwKF9fg3lhFlDKXaUEBscjZ/Zj4WT78BsMmumr4/SUk8REREREQEgJuhQZc+q5mqa3U4SbHFAa5N2JX19l2b8REREREQEaF3qCVDaUE5YQCiAN/GTvk2Jn4iIiIiIAB1n/OxWGwAJtnhfhiTdRImfiIiIiIgAEGoNwWqxUtZYjp/ZAkCCLdbHUUl3UOInIiIiIiLAoZYOhfVFFNYXEWoNUb++fkLFXURERERExCs2OAaA1JAk7pp4G5a2mT/p2zTjJyIiIiIiXhemn8vwiCGcmjAFP7PShf5CT1JERERERLzibbHEa19fv6OlniIiIiIiIv2cEj8REREREZF+TomfiIiIiIhIP6fET0REREREpJ9T4iciIiIiItLPKfETERERERHp55T4iYiIiIiI9HNK/ERERERERPo5JX4iIiIiIiL9nBI/ERERERGRfs5kGIbh6yBERERERESk52jGT0REREREpJ9T4iciIiIiItLP+fk6ABFf8Xg8/OY3v2H37t1YrVYWL15MVVUVjzzyCBaLhZkzZ3LHHXd0uKayspKFCxfS1NREbGwsjz32GEFBQd7X5s+fz3vvvUdAQIAvhjRgdeezfOmll/jggw8AOP300w+7TnpOdz7Hf/zjH7z11luYTCZ++tOfcsYZZ/hoVANPd//d6vF4uPXWWznrrLP44Q9/6IshDVjd+SwXL17M5s2bsdlsADzzzDOEhIT4YlgDTnc+x1WrVvGnP/0JgFGjRrFo0SJMJpMvhiVdYYgMUB9//LFx//33G4ZhGFu2bDF+/OMfGxdffLGRl5dneDwe4+abbza2b9/e4Zrf/e53xrJlywzDMIxnn33WePHFFw3DMIzVq1cbl1xyiTFx4kSjqampV8ch3fcs8/Pzjcsuu8xwuVyG2+025s2bZ+zatavXxzNQdddzrKioMM4//3zD6XQadXV1xuzZsw2Px9Pr4xmouvPvVsMwjCVLlhhXXnml8dprr/XaGKRVdz7L+fPnGxUVFb0av7TqrudYV1dnXHDBBd7n+Nxzz+mZ9jFa6ikD1qZNm5g1axYAEyZM4Ouvv8bpdJKamorJZGLmzJmsW7eO6upq72/Cvn3N7Nmz+fLLLwEwm828+OKLhIeH+2YwA1x3Pcv4+Hj++te/YrFYMJvNuFwuzd72ou56jpGRkbzzzjv4+/tTXl5OaGiofiPdi7rz79aPPvoIk8nE7NmzfTOYAa67nqXH4yEvL4+HHnqI+fPn8+abb/psTANRdz3HLVu2MGzYMJ544gmuueYaoqOjiYyM9Nm45MQp8ZMBq76+Hrvd7v26rq7Ou7QIwGazUVdXR3h4OE8//bT3mvalKe2vA5x22mlERET0YvTybd31LP39/YmMjMQwDJ544glGjRpFenp67w5mAOvO70k/Pz9effVV5s2bxw9+8INeHIV013PMzs7m/fff5+c//3nvDkC8uutZNjQ0sGDBAn7/+9/z17/+lddee42srKzeHcwA1l3Psaqqig0bNrBw4UKef/55/v73v7N///7eHYx8L0r8usDj8fDQQw8xb948rrvuOvLy8sjMzOSqq65i/vz53m+ab6usrOSmm27immuu4a677qKxsRGApUuXcvnll3P11VezcuXK3h7KgGa323E4HN6vQ0NDaWpq8n7tcDgIDQ096jVHel18ozufZXNzMwsXLsThcLBo0aJeiF7adff35IIFC/jiiy/YuHEj69ev7+HopV13Pcfly5dTUlLCDTfcwNtvv81LL73E6tWre2cQAnTfswwKCuL6668nKCgIu93O9OnTlfj1ou56juHh4YwdO5aYmBhsNhtTpkxh165dvTMI6RZK/LpgxYoVOJ1OXn/9de69914ef/xxFi1axJIlS/jnP//J1q1b2bFjR4drnnnmGS688EJee+01Ro0axeuvv05ZWRmvvPIK//rXv3jhhRd48skncTqdPhrVwDNp0iTvDxGZmZmMGzcOf39/8vPzMQyDNWvWMGXKlMOuWbVqFQCrV69m8uTJvR63HK67nqVhGPzkJz9h+PDhPPzww1gsll4fy0DWXc9x37593HHHHRiGgb+/P1arFbNZ/9z1lu56jvfddx9vvPEGr7zyCpdddhk33nijlnz2su56lrm5uVxzzTW43W5aWlrYvHkzo0eP7vXxDFTd9RzHjBlDdnY2lZWVuFwutm7dypAhQ3p9PNJ1qurZBUdaKx0dHU1qaiqAd610UlISv/rVr3j66afZtGkTt912G9C6VvrJJ58kJSWFiRMnYrVasVqtpKamkpWVxbhx43w2toHknHPOYe3atcyfPx/DMHj00Uepq6tj4cKFuN1uZs6cyfjx46murvY+x9tvv53777+fpUuXEhERwZIlS3w9DKH7nuWKFSv46quvcDqdfPHFFwDcc889TJw40ccjHBi66zkGBwczYsQI5s2bh8lkYtasWUydOtXXwxsw9Hdr/9Gd35MXXXQRV199Nf7+/lxyySUMHTrU18MbMLrzOd57773cfPPNAMydO5dhw4b5eHRyIkyGYRi+DqKvefDBBzn33HM5/fTTARgxYgSjRo3irbfeAuDNN9+koKCAu+++23vNOeecw3vvvUdgYCAFBQXcd999zJ8/n+zsbH7xi18AcN9993HppZcyY8aM3h+UiIiIiIj0W1r70gXdtVb6u/dxOBzqaSMiIiIiIt1OiV8XdNda6XHjxrFp0yaam5upq6tj7969mjIXEREREZFup6WeXeDxePjNb35DdnZ2h7XSjz76qHet9N13391hrXR5eTn3338/Doejw1rppUuX8vrrr2MYBrfddpvKjouIiIiISLdT4iciIiIiItLPaamniIiIiIhIP6fET0REREREpJ9T4necPB4PDz30EPPmzeO6664jLy8PALfbzZ133ukt9nI0GzZs6NDeQUREREREpLco8TtOK1aswOl08vrrr3Pvvffy+OOPk5+fz4IFC9i2bZuvwxMRERERETkqP18H0Fds2rSJWbNmATBhwgS2b99OQ0MDixcv5vnnnz+he7366qt88sknuFwuQkJCeOqpp3j//fdZtWoVTU1N5Ofnc8stt3D55Zf3xFBERERERGSAUeJ3nOrr67Hb7d6vLRYLQ4YMwc/vxD5Cj8dDdXU1L730Emazmf/6r//yzhjW19fzwgsvkJuby49//GMlfiIiIiIi0i2U+B0nu92Ow+Hwfu3xeI6Y9L366qt8/PHHAPzhD38gODiYkJAQAEwmE2azGX9/f+655x6Cg4MpLi7G5XIBMGLECAASEhJwOp09PSQRERERERkgtMfvOE2aNMlbwCUzM5Nhw4Yd8bwFCxbwyiuv8Morr1BdXc3tt98OQGlpKZGRkWRlZbFixQr+93//l1//+td4PB7aWymaTKbeGYyIiIiIiAwomvE7Tueccw5r165l/vz5GIbBo48+2uk1w4cPJzk5mfnz5xMQEMDjjz9OeHg4QUFBXH755VitVmJiYigtLe2FEYiIiIiIyEBlMtqnm0RERERERKRf0lJPERERERGRfk6Jn4iIiIiISD+nxE9ERERERKSfU3GXLmppaeGXv/wlhYWFOJ1Obr/9doYMGcIDDzyAyWRi6NChLFq0CLPZzBNPPMHmzZtxuVzMmzePq6++msrKShYuXEhTUxOxsbE89thjBAUF+XpYIiIiIiLSD6m4SxctW7aMrKwsHnzwQaqqqrjssssYMWIEP/rRj5g2bRoPPfQQs2bNIiQkhFdeeYU//elPOJ1OLrjgAt58802eeuopRo0axeWXX85zzz2H1Wrlxhtv9PWwRERERESkH9JSzy6aO3cuP//5z71fWywWduzYwdSpUwGYPXs2X375JRMnTuzQ+sHtduPn58emTZuYNWtWh3NFRERERER6ghK/LrLZbNjtdurr67nzzju56667MAzD24TdZrNRV1dHQEAAYWFhtLS08MADDzBv3jxsNhv19fWEhIR0OFdERERERKQnKPH7HoqKirj++uu55JJLuOiiizCbD32cDoeD0NBQAGpqarj55pvJyMjgtttuA8But+NwOA47V0REREREpLsp8eui8vJybrrpJn7xi19w5ZVXAjBq1Cg2bNgAwOrVq5kyZQpNTU3ceOONXHHFFfz0pz/1Xj9p0iRWrVrlPXfy5Mm9PwgRERERERkQVNylixYvXsyHH37I4MGDvccefPBBFi9eTEtLC4MHD2bx4sW88sorPP3004wcOdJ73qOPPkpQUBD3338/DoeDiIgIlixZQnBwsC+GIiIiIiIi/ZwSPxERERERkX5OSz1FRERERET6OSV+IiIiIiIi/ZwSPxERERERkX5OiZ+IiIiIiEg/p8RPRERERESkn1PiJyIiIiIi0s8p8RMREREREennlPiJiIiIiIj0c/8fxSSyudQU9PQAAAAASUVORK5CYII=\n", "text/plain": [ "
    " ] @@ -891,7 +897,8 @@ "\n", "deviating = pd.Series(deviating_steps.cumsum(), index = datetimes)\n", "ax = deviating.plot()\n", - "ax.axhline(y=0, color='k', linestyle='-', linewidth=2);" + "ax.axhline(y=0, color='k', linestyle='-', linewidth=2)\n", + "ax.set_ylabel('Deviation from the starting point');" ] }, { @@ -918,6 +925,17 @@ "MUST COVER: time-series of stability data from which a database was built on" ] }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "import seaborn as sns\n", + "# Use seaborn style defaults and set the default figure size\n", + "sns.set(rc={'figure.figsize':(11, 4)})\n" + ] + }, { "cell_type": "markdown", "metadata": {}, From 2469bb78a11b3acb3eb6b8589cc05d61235387f2 Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Tue, 23 Jul 2019 16:18:44 +0200 Subject: [PATCH 063/134] Added the section on heatmaps --- Module-10-interactive.ipynb | 367 ++++++++++++++++++++++++++++++++++-- 1 file changed, 355 insertions(+), 12 deletions(-) diff --git a/Module-10-interactive.ipynb b/Module-10-interactive.ipynb index 317a425..97c77fc 100644 --- a/Module-10-interactive.ipynb +++ b/Module-10-interactive.ipynb @@ -28,7 +28,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 33, "metadata": {}, "outputs": [ { @@ -187,7 +187,7 @@ "" ] }, - "execution_count": 5, + "execution_count": 33, "metadata": {}, "output_type": "execute_result" } @@ -721,11 +721,356 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Colour-coded tables for correlograms\n", + "### Colour-coded tables for heatmaps\n", "\n", "\n", - "* Colour coded correlation table. Use Peas case study\n", - "\n" + "Related to data tables is the concept of colour-coding the entries in the data table according to their colour. High values get a specific colour (e.g. red), and low values another colour (e.g. blue) and then the in-between values are shaded in a transition.\n", + "\n", + "This is helpful for emphasizing trends in the data which are not easy to pick up with the numbers alone.\n", + "\n", + "These colour-coded tables are called heatmaps.\n", + "\n", + "##### Example: Peas\n", + "\n", + "In the [prior module](https://yint.org/pybasic09#%E2%9E%9C-Challenge-yourself:-Judging-the-Judges) we created box plots for the taste ratings given to various samples of Peas, based on their flavour attributes: flavour, sweetness, fruity flavour, off-flavour, mealiness and hardness.\n", + "\n", + "The judges give scores on a scale of 1 to 10." + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "deletable": false, + "editable": false, + "run_control": { + "frozen": true + } + }, + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    FlavourSweetFruityOff-flavourMealinessHardness
    06.4856.6604.5552.2002.9103.475
    15.7506.0903.8052.3154.0253.770
    23.9354.1202.4453.6255.7705.395
    36.5956.1254.4401.9303.3104.465
    45.6805.9853.8002.1153.8504.140
    \n", + "
    " + ], + "text/plain": [ + " Flavour Sweet Fruity Off-flavour Mealiness Hardness\n", + "0 6.485 6.660 4.555 2.200 2.910 3.475\n", + "1 5.750 6.090 3.805 2.315 4.025 3.770\n", + "2 3.935 4.120 2.445 3.625 5.770 5.395\n", + "3 6.595 6.125 4.440 1.930 3.310 4.465\n", + "4 5.680 5.985 3.800 2.115 3.850 4.140" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Load the data\n", + "import pandas as pd\n", + "peas = pd.read_csv('https://openmv.net/file/peas.csv')\n", + "judges = peas.loc[:, 'Flavour': 'Hardness']\n", + "judges.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": { + "deletable": false, + "editable": false, + "run_control": { + "frozen": true + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0MAAAE7CAYAAAAfLlpqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xl8U1X+//F3ulCUWnAplXUGcVpEhcIIlYFhH0SsdEGUGQUUhEE2RVGgOLIp6w9RQFQYlUVRB2URKOIXq6LI5siq7CKbUpYCbVm6nt8fPJppSKEngZaWvJ488ng0N++cnNzk3uTDuffEYYwxAgAAAAAf43e1OwAAAAAAVwPFEAAAAACfRDEEAAAAwCdRDAEAAADwSRRDAAAAAHwSxRAAAAAAn0QxBAAAAMAnUQwBAAAA8EkUQwAAAAB8EsUQAAAAAJ9EMQQAAADAJ1EMAQAAAPBJAVe7A6XN2X8/a53N/uFn6+yiz26xznYYW806m/XND9bZg1+Xsc7+sV9V66wkKSPTOjpnSpZ19u/3H7HO+lcLtc5OfMc6qmc7ptuHJZkz9uti4tKbrLODRtq/L7I3/GSd/ew/5a2zcQPs30Mn5v9qnZWkJQcqW2e7zG1tnc364EPr7Mjl9q/HiG4e/F9Tbq59VtJj79q/597+U6p19pOd9u+hTvUPWGevi29knc34fK11VpIOri1nnb2tbyXrbO7vx6yzjhuut8/efKN1NnvjTuusJO1ItF8XdzzmsO/Hryessy+urWidnfBiFevsuWU/Wmc/XufZ59OjHU5ZZ/1C7V+/edPst+uHn7Hfd2bvPGidvS/R/vNUkpImtbDO5v68zTqb/s1v1tmQns3t+7DV/nvWincCrbOS1Ob/1bDOZv+w2To761P7z1RJ6nvgfY/yV0PWsV+8ul/gLbdd4Z54h2IIAAAAgHdyc652Dy4LxRAAAAAA7xjPjm4oaSiGAAAAAHjHw0O9SxqKIQAAAABeMYwMAQAAAPBJjAwBAAAA8EmMDAEAAADwScwmBwAAAMAnlfKRIQ9+FRAAAAAArh2MDAEAAADwThFPoHDw4EH16dPHeT0tLU3p6elat26dS27KlCmaO3euKlasKEmqX7++hg0bVmj7FEMAAAAAvFLUU2tXrVpVixYtcl5/5ZVXlJNT8HlKsbGxGjRokEftUwwBAAAA8I6XI0OpqalKTU11Wx4SEqKQkJAC75OZmanFixfrnXfe8eoxC0IxBAAAAMA7Xo4MzZo1S1OnTnVb3rdvX/Xr16/A+yQlJSksLEx33nlngbcvXbpU3333nUJDQ9WvXz/Vq1ev0H5QDAEAAADwjpdTa3ft2lVxcXFuyy82KiRJn376qTp06FDgbZ06dVKvXr0UGBioVatWqXfv3kpMTNSNN954yX5QDAEAAADwjpcjQ5c6HK4gycnJWr9+vcaPH1/g7aGhoc6/GzdurEqVKmnXrl1q2LDhJdtlam0AAAAA3snN9e7ioQULFqhZs2YXHelJTk52/r1t2zYdOnRINWrUKLRdRoYAAAAAeKeYfnR1wYIFGjp0qMuyHj16qH///rr77rv16quv6qeffpKfn58CAwM1fvx4l9Gii6EYAgAAAOCdIv6doTzLly93WzZjxgzn3+PGjfOq3WIthlq2bKkyZcooKChIkhQVFaXU1FTdddddeuyxx4qzKwAAAAAukzHeTaBQUhT7yNDkyZMVHh7uvD548ODi7oKb7OxsBQQwSAYAAAB4pJgOkysqJWoChdWrV+uRRx5RbGysHnzwQS1dulSS9MMPPyg2NtYlGx8fr3Xr1kmSpk+frujoaEVHR2vIkCE6ffq0pPOF1vvvv++8T/7rgwcP1qhRo9S9e3c9/PDDxfH0AAAAgGtLMU2gUFSKfTikf//+zsPkBg4c6HJb7dq1NXfuXPn7++vYsWOKj49XkyZNdM899+jMmTPavn27atWqpZ07dyo1NVUNGjTQN998o88++0wfffSRypUrp0GDBmnatGl6/vnnC+3Lhg0b9P777+v6668vkucKAAAAXNNK+cjQVT9MLm/0R5JSUlKUkJCgffv2yd/fX6dOndLevXsVGRmpmJgYLViwQEOGDNH8+fMVFxcnh8Oh1atXq127dgoODpYkPfzwwxo9erRVX9q2bUshBAAAAHjLyx9dLSlK1GFyw4cPV8OGDbV48WItWrRIt956qzIyMiRJcXFxWrp0qTIyMrRkyRLnYXPGGDkcjgLb8/f3V26+Ybi8tvJQCAEAAACXweR6dykhSlQxlJaWpipVqsjhcGjVqlXat2+f87bKlSurZs2aevnll3X77berSpUqkqS//OUvSkxMVHp6uowx+uSTT/SXv/xFklS9enVt2bJFknTkyBGtXbu2+J8UAAAAcK3inKEr57nnntOIESM0Y8YMRUREKCIiwuX2+Ph4vfDCCxo/frxzWbNmzbRjxw516tRJknTXXXfpqaeeknT+kLn+/furffv2+uMf/6g6deoU35MBAAAAUKIVazGUlJTktmzs2LHOvxs3bqwvvvjiovePiYlRTEyM2/KePXuqZ8+ebstvvPFGzZkzp8C28j8uAAAAAC+UoEPevFGiRoYAAAAAlCIl6JA3b1AMAQAAAPAOxRAAAAAAX2RM6Z5am2IIAAAAgHcYGQIAAADgk5hAAQAAAIBPYmQIAAAAgE9iZAgAAACAT2JkCAAAAIBPYmQIAAAAgE9iZAgAAACAT6IYAgAAAOCTOEwOAAAAgE9iZAgAAACAT2JkCAAAAIBPKuUjQ35XuwMAAAAAcDUwMuSpcjdYR/0q32ydDfagqs7df8C+DxVDrLPZOZnWWZN+2jorScqwbzvIlLHOBtx1m3XWnEqzzp505FhnHSHB1llJOrfloHX2rKOCfcO33God9Qv73TpbU/brzXH7XdbZm14IV9rUZdb5YA/+4yn36/+zzmb8cs6+YQ/43fZH66w5csTD1tOtk4E3OayztTLtt9PME/btXmedlHLPePY/jLm59v1w1G1gnTW/fmbfh9Rj1tnAymHWWeUa+6yksEqp1lm/MPt9Z+724/Z9MB58rbihvHXUZNuvi4frH9B/19jvD89usV9vNwy63zorfW+dzNl32Dqbst5+XeR4evhSUFnrqCf7uOzlyfZ98OD7kONm+8/Iu27Zb98HSQr9i3XUv6r98yuXWzSfOVcVh8kBgOc8KYQAwJYnhRCAK6CUHyZHMQQAAADAOxRDAAAAAHyS8eyQ3pKGYggAAACAdxgZAgAAAOCTKIYAAAAA+CRmkwMAAADgkxgZAgAAAOCTmEABAAAAgE9iZAgAAACAT6IYAgAAAOCTmEABAAAAgC8yuZwzBAAAAMAXcZgcAAAAAJ/EYXIAAAAAfFIpP0zO72p3AAAAAACuBkaGAAAAAHiHc4YAAAAA+CSKIQAAAAA+yZTuc4ZKTDG0bNkyvf322zLGKCMjQ3feeacmTpxYZI938OBBrVq1So888kiRPQYAAABwTWNk6PIdOXJEI0aM0IIFC1SpUiUZY7R9+/YifcxDhw7p448/phgCAAAAvMVscpfv2LFjCggIUIUKFSRJDodDd9xxhz766CONGDFCkrR582ZFRERo8+bNkqThw4fr448/liRt2rRJnTt3Vnx8vOLj4/X111872/7mm2/UqVMnxcfH65FHHtHGjRslSSNHjtSePXsUExOj/v37F+OzBQAAAK4RJte7SwlRIkaGatWqpTp16qh58+aKiopS/fr1FRMTo0aNGmnmzJmSpNWrV6tevXpas2aN6tSpo9WrV6tbt25KTU3VsGHDNH36dFWsWFFHjhzRQw89pCVLlujkyZOaNm2a3nnnHQUHB2vXrl3q0aOHvv76a7300ksaN26c5s+ff3WfPAAAAFBalfKRoRJRDPn5+WnatGnauXOn1q9frxUrVuidd97R4sWLlZGRocOHD2v16tV69tln9eabb+rBBx9UVlaWqlevrm+++UYHDx5Ujx49nO05HA7t27dPmzdv1v79+/Xoo486b8vOztaxY8euxtMEAAAArimGc4aunPDwcIWHh+vRRx9Vu3bttG7dOt177736+uuvdfz4cTVs2FAjR47U119/raioKEmSMUYRERH64IMP3NrbvHmz/vrXv2r8+PFut+3Zs6fInw8AAABwTSvlI0Ml4pyh5ORkbdiwwXn98OHDSklJUdWqVXXvvfdq+vTpqlevniSpfv36mjFjhho1aiRJqlevnvbt26c1a9Y4779582YZY9S4cWN9++232rVrl8ttkhQcHKz09PTieHoAAADAtYlzhi5fdna2pkyZokOHDqls2bLKzc3VM888o9q1a+vmm2/WCy+84Cx+7r33Xn388ce69957JUnly5fXtGnTNGHCBI0ePVpZWVmqVq2a3nrrLf3xj3/UhAkTNHToUJ07d05ZWVmqX7++6tSpo4iICNWoUUPR0dG67bbbNHny5Ku5CgAAAIDSp5SPDJWIYqhKlSp69913C7wtLCxMO3bscF5v166d2rVr55KpU6eO5syZU+D9mzRpoiZNmrgtDwgI0Ntvv30ZvQYAAAB8XDGcM5SRkaHRo0dr9erVCgoKUmRkpEaNGuWSycnJ0csvv6xvv/1WDodDPXv2VMeOHQttu0QUQwAAAABKoWIYGZowYYKCgoK0fPlyORyOAidDW7x4sfbv368vvvhCJ0+eVGxsrBo1aqSqVatesm2KIQAAAADe8fL8n9TUVKWmprotDwkJUUhIiPP66dOntXDhQn3zzTdyOBySpFtuucXtfomJierYsaP8/Px00003qXXr1vr888/15JNPXrIfFEMAAAAAvOPlyNCsWbM0depUt+V9+/ZVv379nNcPHDigChUqaOrUqVq7dq3KlSunp59+Wvfcc4/L/X7//XdVrlzZeb1SpUo6fPhwof2gGAIAAADgFW9/Z6hr166Ki4tzW55/VEg6P9HagQMHVLt2bQ0aNEibNm1Sr1699H//938KDg726rHzoxgCAAAAUKwuPBzuYipXrqyAgABFR0dLkurWrasbb7xRe/fu1d133+3MVapUSb/99pvq1KkjyX2k6GJKxO8MAQAAACiFco13F0s33XSToqKitGrVKknS3r17dfz4cf3hD39wybVt21bz5s1Tbm6uUlJStGLFCt13332Fts/IEAAAAADvFMNsciNGjFBCQoLGjRungIAAjR8/XiEhIerRo4f69++vu+++WzExMdq0aZPatGkjSerTp4+qVatWaNsUQwAAAAC84+Vscp6oVq1agb8pOmPGDOff/v7+GjFihMdtUwwBAAAA8E4xjAwVJYohAAAAAF4xFEMAAAAAfBLFEAAAAACf5OXvDJUUFEMAAAAAvMPIEAAAAACfRDEEAAAAwBcZQzEEAAAAwBcxMgQAAADAJ5XyYshhSvvYVjFbXyXOOrvRUc46+7HjqHV2RNYN1tmfA8paZ78LOGudHRxon5WkjEz7urtPdrp1trNfZets+Rz7t/rgjC3W2bFBd1tnJSnD4bDOjsvaaZ1deNPN1tkfUu2z0xy/WWeHZVe0zn52nWe7njUZ9v1Y8id/6+z8vVWts5Mzdlhnpzhus84e8/fs/6W6nfjOOvtixSbW2YVZB6yzsYHVrLMx/qess19lVbDOStJXfqnW2Qk3ZFhn/+9UqHXW34O3clSA/br4KTPEvmFJH3nQ9mNZ5a2zRwPs91ljT2+yzi6/2f49NNOD/n6Vab+vkKTH/e370fK6FOtsl/TT1tmXcypZZ1dcZ/96vPrbSuusJO2uXds6u/Gw/Tay1v6riHqHJltnv/rNfr194HfcvhOSZoRlWmfXHbrVOvu632GP+vHtoS89yl8Np55o7dX9yr+34gr3xDuMDAEAAADwTikfGaIYAgAAAOCd0v0zQxRDAAAAALxjGBkCAAAA4JNKeTHkd7U7AAAAAABXAyNDAAAAALzDOUMAAAAAfBHnDAEAAADwTYwMAQAAAPBFjAwBAAAA8E2MDAEAAADwRYZiCAAAAIBPohgCAAAA4IsYGQIAAADgmyiGAAAAAPgiRoYAAAAA+CSKIQAAAAA+iWIIAAAAgG8yjqvdg8vid7U7cKGWLVuqbdu2iomJUUxMjEaPHu3R/ZOTk9W5c2fn9SlTpigzM/NKdxMAAADweSbXu0tJUSJHhiZPnqzw8PACb8vOzlZAwMW7HRYWpjlz5jivT506Vd26dVOZMmWueD8BAAAAX2ZyGRkqcoMHD9aoUaPUvXt3Pfzwwzp48KCioqKct+e/nv/vESNGSJI6deqkmJgYJScnq0mTJsrIyHDet1evXlq8eHExPhsAAADg2sDIUBHo37+/goKCJEkDBw6UJG3YsEHvv/++rr/+eh08eNCqnWHDhmnu3Ln66KOPVK5cOUlSgwYNlJiYqLi4OB06dEhbt27V5MmTi+aJAAAAACixSmQxdOFhckuXLlXbtm11/fXXX3bbnTt31pgxYxQXF6cPP/xQHTp04BA6AAAAwAumlE+gUCKLoYLkL4QCAgJkjHFez3/YW2Hq16+vnJwc/fe//9XChQs1b968K9pPAAAAwFeUpEPevFEqzhm60C233KKsrCzt27dPkrRkyZKLZsuVK6f09HSXZZ07d9azzz6ryMhIVapUqUj7CgAAAFyrTK7Dq0tJUSqLoYCAAA0dOlRPPPGEOnfuLH9//4tmu3Xrpi5duigmJkapqamSpAceeECpqan6xz/+UVxdBgAAAK45xnh3KSlK3GFySUlJbsvGjh3rtuyhhx7SQw895Lzet29fSVLVqlW1du1al+V5t+XZvHmzqlSpokaNGl2pbgMAAAA+pySN8nijxBVDRS0hIUHff/+9xo0bJ4ejdL94AAAAwNVEMVTKjB49+mp3AQAAALgmlKRD3rzhc8UQAAAAgCuDkSEAAAAAPonfGQIAAADgk0r77wxRDAEAAADwSi4jQwAAAAB8EYfJAQAAAPBJTKAAAAAAwCcxtTYAAAAAn8TIEAAAAACfVNonUPC72h0AAAAAgKuBkSEAAAAAXmE2OQAAAAA+iQkUAAAAAPik0n7OEMUQAAAAAK+U9sPkmEABAAAAgFeM8e7ijalTpyoiIkI7d+50u23w4MFq2rSpYmJiFBMTozfffNOqTUaGPNTbHLfOllWqdTber5J19omc7dbZcgqyztYLsO9DzMkj1llJOpeTYZ3tfUNd6+w3SrfO/pSVbJ1dFPxH62yf7N+ts5KUY3Kts+8FVLXOxqQcsM7eEHDaOvu0qW6dHRNov44b6hbrrCT9v9xbrbN/3vKzdbbm9f7W2Rl+f7DOjitj/95Mzk6zzkrSsSFNrLMD382yzg7JtX+/Tcmx3wd8knHGOhsamG2dlaS7HBWss91P2vcjJXuPdfZcjv06Ds4pa539Q6B19Hzer5x1drzDfn9xu99N1tmkWytbZ/9x0n4/VKfM9dbZl3PsP8skaaK//ef6orP27b5g7LenQY5frbPVc2+0zqZOfdg6K0n3jdhsnb0uMMU6e7Oxf9//bZ/9d6dg/0zrbIcA+/23JMUc3Gudvd7f/nvA8zn2n2WlRXEdJvfTTz9p48aNqlz54vuZnj176rHHHvOoXUaGAAAAAHjFGIdXF09kZmZq5MiRGjZsmByOK1t8MTIEAAAAwCvejgylpqYqNdV9JDAkJEQhISEuy15//XW1b99e1apVu2Sb7733nj7++GNVq1ZNzz33nGrWrFloPyiGAAAAAHjF25m1Z82apalTp7ot79u3r/r16+e8vmHDBm3ZskUDBw68ZHsDBgxQaGio/Pz8tHDhQj355JNasWKF/P0vfTg8xRAAAAAAr3g7MtS1a1fFxcW5Lb9wVGj9+vX65Zdf1KpVK0nS4cOH1b17d40ZM0ZNmvzvHNqwsDDn37GxsRozZowOHz6sKlWqXLIfFEMAAAAAvOLt1NoFHQ5XkJ49e6pnz57O6y1bttRbb72l8PBwl1xycrKzIPr222/l5+fnUiBdDMUQAAAAAK/Yz5F75cXExGj69OkKCwvToEGDdPz4cTkcDgUHB+vNN99UQEDhpQ7FEAAAAACvGBXvj64mJSU5/160aJHz75kzZ3rVHsUQAAAAAK/kejuDQglBMQQAAADAK7nFPDJ0pVEMAQAAAPBKcR8md6X5Xe0OAAAAAMDVwMgQAAAAAK9czdnkrgSKIQAAAABeKe2HyVEMAQAAAPAKI0MAAAAAfBLFEAAAAACfxGFyAAAAAHxSbumuhSiGAAAAAHiHH10FAAAA4JPM1e7AZbIqhjIzM/Xqq69qxYoVCggIUNmyZdW3b1+1bt1akjRkyBBt3rxZf/rTn/Taa6+5Xb9Q/tubNm2qr7/+WpMnT76yzwwAAABAkfKJCRSGDx+uM2fOaOnSpQoKCtLOnTv15JNPqnz58qpRo4aWL1+uH374QX5+fjp27JjL9QtdePv8+fOv+JPyRk5Ojvz9/a92NwAAAIBSI9dRug+Tc69WLnDo0CEtW7ZMw4cPV1BQkCQpPDxcvXr10tSpU9WlSxedO3dOcXFxeuONN1yuz5w506Wt9PT0S95+9OhRde7cWfHx8XrggQc0fvx4SdLZs2cVFRWllJQUZ3bs2LGaOnWqJGnlypWKjY3Vgw8+qK5du2rfvn2SpPnz56t///7O++S/Pn/+fHXv3l3PP/+84uPjtXPnTg9XHQAAAODbjJeXkqLQkaGdO3eqevXqqlChgsvyyMhIvf766/r000/VoUMHLVq0SJIUExPjcj2/4OBgTZ8+3eX2/CNDISEheuutt1SuXDllZWWpe/fuWrlypZo2bapWrVppyZIl6tKli7Kzs7VkyRJ99NFHOn78uF544QW9//77uv322zVv3jwNHDhQ8+bNK/TJ//jjj1q0aJGqV69eaBYAAACAq9J+mFyhI0PGFF/tlpOTo/Hjx6t9+/aKj4/Xrl27tH37dklSfHy8FixYIOn8SFDNmjVVtWpVbdq0SbVq1dLtt98uSerQoYO2bdum9PT0Qh+vfv36FEIAAACAl3Id3l1KikJHhsLDw7V//36dPHnSZXRo48aNioiIKPQB+vTpo4MHD0qSPvjgg0tm33vvPaWmpmrevHkKCgrSv/71L2VkZEiS7rnnHp0+fVo7duzQggULFBcXJ+l8sea4yLGK/v7+ys39X72a11aecuXKFdp/AAAAAAUr7VNrFzoyVLVqVbVt21bDhw93FhM7d+7UW2+9pb59+xb6AG+88YYWLVqkRYsWKTg4+JLZtLQ0hYaGKigoSMnJyfryyy9dbo+JidF7772n9evX67777pMk1atXT9u2bdOePXskSQsWLFDt2rUVHBys6tWra8eOHcrMzFRmZqaWL19eaH8BAAAA2LnmzxmSzs8mN3HiRLVr106BgYEKCgrS0KFD1bBhQ+eoz5XQuXNnPf3004qNjdWtt96qRo0audweFxenVq1aKT4+Xtddd50k6aabbtL48eM1cOBAZWdn66abbtKECRMknS+UGjVqpOjoaFWtWlU1a9bU0aNHr1h/AQAAAF9Wkg5584ZVMRQUFKSEhAQlJCS43Va1alWtXbv2otcLy8fHxys+Pl6SVKVKFX3yyScXvW/lypW1bds2t+VNmzZV06ZNC7zPyJEjC1ye/3EBAAAA+B6rYggAAAAALlTaZ5OjGAIAAADglZJ0/o83KIYAAAAAeMUnzhkCAAAAgAtxmBwAAAAAn0QxBAAAAMAnGQ6TAwAAAOCLGBkCAAAA4JMohgAAAAD4JKbWBgAAAOCTmFobAAAAgE/iMDkAAAAAPoliCAAAAIBP4pwhAAAAAD6Jc4YAAAAA+CQOkwMAAADgkzhMzsfcVSbUOtsuo6x1tm3McevsscRw6+ztWX7W2fgWh62z3ZMqW2clqbLjOuts/z5lrLNfTrRvN8j8wTob3vd66+w/XwuxzkrSLTnZ1tm7/2nfbqPZ1a2zf8m2X2/xT9u/HvOmBFlnt+em6d8Radb5ch3rW2frvXzGOvv37Buts38eaL9N15oaaJ192GHfB0ny+1NN6+yA69ZaZ6v96y7rbNjQTOvsB2Xtn19vP/vXTpJu/dPv1tn7t9h/ZD/rb7+O/6Rz1tnpQfZ96H7Ofv8tSfU62a+7Rf+x31/UDzhhna3c1f6zIWPSDuvsqKr2n5GSFNLGvh+H3r7ZOpsUYL+O7+9mv42s+8D+9eiYZf9+c5SvYJ2VJH+H/fFOtfzLW2eflP166xto/5k6UfbZ2+46YJ2VpK8327f9XKb9umj8jP1nQ2mRW8rLIc/2tABwhXhSCAGALU8KIQBgZAgAAACAVzhnCAAAAIBPKt0HyVEMAQAAAPASI0MAAAAAfBK/MwQAAADAJ5X22eQohgAAAAB4pXSXQhRDAAAAALzEOUMAAAAAfBKHyQEAAADwSaW7FKIYAgAAAOAlDpMDAAAA4JM4TA4AAACATyrdpRDFEAAAAAAvcZgcAAAAAJ9kSvnYEMUQAAAAAK8wMgQAAADAJxXHBAq9e/fWwYMH5efnp+uvv17/+te/dMcdd7hkcnJy9PLLL+vbb7+Vw+FQz5491bFjx0LbphgCAAAAUGKNGzdON9xwgyRpxYoVSkhI0IIFC1wyixcv1v79+/XFF1/o5MmTio2NVaNGjVS1atVLtk0xBAAAAMAr3o4LpaamKjU11W15SEiIQkJCXJblFUKSlJ6eLofD4Xa/xMREdezYUX5+frrpppvUunVrff7553ryyScv2Q8/bzrfsmVLNWnSRDk5Oc5ln376qSIiIvT+++9706Sz3Z07d0qShg4dqh9++MHrtgAAAAAUrVwZry6zZs1Sq1at3C6zZs0q8HGGDh2q5s2ba9KkSRo3bpzb7b///rsqV67svF6pUiUdPny40P57PTIUGhqq7777Ts2aNZMkLVy4UHfeeae3zbl55ZVXrlhbAAAAAK48bydQ6Nq1q+Li4tyWXzgqlCevNli4cKHGjx+vGTNmePnIrrwuhuLi4jR//nw1a9ZMBw4c0NmzZxUeHi5JyszM1KRJk7R+/XplZWUpPDxcw4cPV7ly5bR48WLNnj1bWVlZkqRBgwapUaNGbu137txZ3bp1U4sWLTR48GCVKVNGv/76qw4fPqyFL4K/AAAfAUlEQVTIyEiNGzdODodD6enpGjNmjHbs2KGMjAxFRUVpyJAh8vf319SpU7VkyRIFBQXJ4XBo9uzZCgwM1KBBg7R7924FBASoRo0aev31171dDQAAAIDP8nZq7YIOh7MRGxurl156SSdOnNCNN97oXF6pUiX99ttvqlOnjiT3kaKL8boYioqK0ty5c3Xq1CktWLBAsbGx2rp1qyTp3//+t2644QZ98sknkqQJEyZo+vTpGjBggJo0aaLo6Gg5HA798ssvevzxx7Vy5cpCH2/Xrl2aOXOmHA6H4uLi9P3336tx48YaM2aMGjRooFdeeUW5ubkaOHCgPv30U91333165513tHr1apUtW1bp6ekqW7asvvrqK6WmpioxMVGSdOrUKW9XAQAAAODTinpq7dOnTys1NVWVKlWSJCUlJal8+fKqUKGCS65t27aaN2+e2rRpo5MnT2rFihX64IMPCm3f62LI4XDo/vvv19KlS5WYmKgPP/zQWQwlJSUpPT1dy5cvl3R+pKhWrVqSpAMHDui5555TcnKyAgICdOzYMR09elShoaGXfLzWrVsrKChIklS7dm3t379fjRs3VlJSkjZv3qz33ntPknTu3DmFhYUpODhYNWrU0PPPP6+//vWvat68uYKDg1WrVi398ssvGjFihBo2bKjmzZt7uwoAAAAAn1bUP7p69uxZPf300zp79qz8/PxUvnx5vfXWW3I4HOrRo4f69++vu+++WzExMdq0aZPatGkjSerTp4+qVatWaPuXNZtcfHy8OnbsqIYNG7oMUxljNGzYsAIPf3v22Wc1ePBgtW7dWrm5uapbt64yMjIKfay8QkiS/P39nZM3GGM0bdq0Ap/sf/7zH/34449as2aN4uPj9e9//1u1atVSYmKi1qxZo5UrV2rSpElavHixS/sAAAAAClfUI0O33HKL/vOf/xR4W/7zhvz9/TVixAiP2/dqNrk81apV04ABA9S7d2+X5S1bttTMmTN17tw5SeenwNuzZ48kKS0tzTnf9yeffKLMzMzL6YJatmyp6dOnO4ujlJQUHThwQOnp6UpJSVHDhg3Vv39/hYeHa9euXTp8+LD8/f3VunVrDRkyRCkpKTp58uRl9QEAAADwRbnGeHUpKS77d4YeeeQRt2U9e/bU1KlT9dBDD8nhcMjhcKhv376qWbOmhgwZot69eyssLEwNGzZ0O97PUwkJCZowYYJiYmLkcDgUGBiohIQEBQYGql+/fjp37pyMMapdu7batGmjNWvWaOLEiZKk3Nxc9ezZU2FhYZfVBwAAAMAXlZyyxjteFUNJSUkFLh87dqzz7wEDBmjAgAFumdjYWMXGxrrkCmp3zpw5BbZ74fXg4OCLDonNmzfPbVmzZs2c04EDAAAA8F5uKS+HLntkCAAAAIBvKuoJFIoaxRAAAAAArxT1BApFjWIIAAAAgFc4TA4AAACAT+IwOQAAAAA+icPkAAAAAPgkU4J+M8gbl/WjqwAAAABQWjEyBAAAAMArTKAAAAAAwCdxzhAAAAAAn8RscgAAAAB8EofJAQAAAPBJpX02OYohAAAAAF7hnCEAAAAAPolzhgAAAAD4JM4ZAgAAAOCTOGcIAAAAgE9iZMjH3G7KWmdT/B3W2cwDZ6yzD2Rcb509aoKss37XBVpnazrKWWcl6Q85/tbZ7N2HrLPH/UOts7dmZ1tn/ds9ap29a/Jk66wk3VTJ/rX2v+9x6+wfZiVaZ1tWOGqdVXC4dfQ2v2DrbG52mn0fJDmC7N/L4X43WGf/HJxinfVr0dM6mzxltnW2YnYZ66wkBbT8h3V2x4Cd1tmqp05ZZ/90p/176NbdVa2zf2ibY52VJEe5m+z7sS3LOms864a1O8x11tmt9rtkSVLVL+1fv2QPPv1v+WO6ddYR1cE6WyfIvr8Z6fb7C0ew/WekJFXNTrXO3hJov606QstbZ4ON/Tq+LdJ+nxXQqrN1VpJu9PvBOlvBg6+QNR+1/+4U8YF99tA5+43krkf+Yp2VpApbt1lnj/vbf8fxu/Nuj/pRGnDOEAAAAACflMthcgAAAAB8UekuhSiGAAAAAHiJc4YAAAAA+CSKIQAAAAA+qbRPre13tTsAAAAAAFcDI0MAAAAAvMJhcgAAAAB8Er8zBAAAAMAnlfZzhiiGAAAAAHiFw+QAAAAA+CRGhgAAAAD4JEaGAAAAAPgkJlAAAAAA4JNyOUwOAAAAgC9iZAgAAACAT2JkCAAAAIBPYmQIAAAAgE8q7SNDfpdz55YtW2rnzp0uy+Lj47V27drL6tTatWsVHx9/WW0AAAAAKFrGy38lxVUfGcrOzlZAwFXvBgAAAAAPlfaRoSKrQhYvXqzZs2crKytLkjRo0CA1atRI0vkRpQ4dOmjNmjWqVq2aRo8erUmTJikxMVFhYWG6++67ne2sXbtWo0ePVt26dbVhwwY5HA5NmjRJNWvWlCQtWLBAc+fOVU5OjoKDgzV8+HDddttt+vHHHzVq1Cjl5uYqOztbTz31lKKjo/Xxxx9r5syZKlOmjHJzc/Xaa6852wIAAABgrySN8njjsouh/v37KygoyHn9119/lSQ1adJE0dHRcjgc+uWXX/T4449r5cqVztzRo0c1Z84cSVJSUpKSkpK0cOFClS1bVn369HF5jN27d2vMmDEaOXKk3nzzTU2bNk0TJ07UDz/8oGXLlumDDz5QmTJl9M033yghIUEfffSRZsyYoa5duyo2NlbGGKWlpUmSxo8fryVLlqhSpUrKzMxUTk7O5a4CAAAAwCcZk3u1u3BZLrsYmjx5ssLDw53X8871OXDggJ577jklJycrICBAx44d09GjRxUaGipJio2Ndd5n7dq1ateuncqVKydJeuihhzRt2jTn7TVq1FDt2rUlSZGRkfrqq68knS+itm/fro4dO0qSjDFKTU2VJEVFRWn69On67bff1LhxY9WtW1eSdO+992rIkCFq1aqVmjdvrmrVql3uKgAAAABQChXZYXLPPvusBg8erNatWys3N1d169ZVRkaG8/brr7/e+bcp5FjDMmXKOP/28/NTdna2834dOnTQ008/7Xafxx9/XC1bttT333+vUaNGqXHjxhowYICmTp2qLVu2aM2aNerSpYuGDx+uZs2aXe7TBQAAAHxObik/TO6yZpO7lLS0NFWtWlWS9MknnygzM/Oi2UaNGmnZsmU6c+aMcnJy9Omnn1o9RsuWLbVo0SIdPnxYkpSTk6OtW7dKkvbu3avq1aurU6dO6tKli7Zs2aLs7GwdOHBAderUUc+ePdW4cWNt27btMp8pAAAA4JuMMV5dSooiGxkaMmSIevfurbCwMDVs2FAVKlS4aLZFixbauHGjYmNjVbFiRUVFRSk5ObnQx2jQoIGeeeYZPfXUU8rJyVFWVpbatm2ru+66S3PmzNHatWsVGBioMmXK6MUXX1Rubq4GDx6stLQ0ORwOVapUSc8999yVfNoAAACAzyjtI0OXVQwlJSW5LZs/f77z7/znBQ0YMOCS9xswYIBLpl+/fpLOn/uTv80Lr7dv317t27d3a++ll14qsM9z584tcDkAAAAAz5SkUR5v8AM/AAAAALzC7wwBAAAA8Ek+/ztDAAAAAHwTh8kBAAAA8Ek+PYECAAAAAN/FyBAAAAAAn1QcEyiMGzdOy5cv16FDh7R48WKFh4e7ZaZMmaK5c+eqYsWKkqT69etr2LBhhbZNMQQAAADAK8UxMtSqVSt16dJFjz766CVzsbGxGjRokEdtUwwBAAAA8EpxnDN0zz33FFnbFEMAAAAAvOLtyFBqaqpSU1PdloeEhCgkJMSrNpcuXarvvvtOoaGh6tevn+rVq1fofSiGAAAAAHjF23OGZs2apalTp7ot79u3r/r16+dxe506dVKvXr0UGBioVatWqXfv3kpMTNSNN954yftRDAEAAADwirc/utq1a1fFxcW5Lfd2VCg0NNT5d+PGjVWpUiXt2rVLDRs2vOT9KIYAAAAAeMXbkaHLORyuIMnJyQoLC5Mkbdu2TYcOHVKNGjUKvR/FEAAAAACvFMdsci+//LK++OILHTt2TE888YQqVKigpUuXqkePHurfv7/uvvtuvfrqq/rpp5/k5+enwMBAjR8/3mW06GIohgAAAACUWC+++KJefPFFt+UzZsxw/j1u3Div2qYYAgAAAOAVb88ZKikohgAAAAB4pTgOkytKFEMAAAAAvFLaiyGHKe3PAAAAAAC84He1OwAAAAAAVwPFEAAAAACfRDEEAAAAwCdRDAEAAADwSRRDAAAAAHwSxRAAAAAAn0QxBAAAAMAnUQwBAAAA8EkUQwAAAAB8EsUQAAAAAJ9EMeSjvv/++6vdBQAAAOCqohjy0okTJ7Rt2zZt27ZNJ06cuGJtDh06VN26ddMHH3zgclu/fv0Kvf+pU6cKXL579263y5AhQ7Rnzx7t3r3bJbtq1Srn32lpaXr++efVunVr9evXT8eOHbvk458+fVo//fST0tPTC+2rp86ePautW7cqNTX1opmTJ09q27Zt2rVrl86dO3fF+4CSJTU19ZLvh5Jqz549Rdb2yZMni6Rdm31camqqTp8+bdXWld53Xq6L7TsLUhT/kVRU+06b/abk2b6ztG53UtFte0W13UlXdtvLy/L6uSpNrx+KiIFH9u3bZ7p06WLuuece065dO9OuXTtzzz33mC5dupi9e/deVtv9+vUz48aNM8uXLzePP/646dOnj8nKyjLGGBMTE+OS3bZtm4mLizMdOnQwu3fvNj169DB16tQxTZs2NT///LNLNiIiwrRo0cLlUrt2bdOiRQvTsmVLl2xsbKzz7xEjRphhw4aZHTt2mFdffdU8/fTTLtl//etf5vjx48YYY3744QfTqFEj065dO3Pvvfeab7/91iXbsGFDM2rUKLe+XcwXX3xh6tWrZ+677z6zceNG07x5c3P//febhg0bmi+//NIle/DgQdO9e3cTERFhatWqZRo2bGjq1KljxowZYzIyMgpsPyUlxfz888/m559/NikpKVZ9KmonT560zq5ateqKP356errZunWrSUtLu+JtnzlzxmzZssWcOnXqopkTJ06Yn3/+2ezcudOcPXu2wMzx48fNkCFDTGRkpImMjDR169Y1kZGRZsiQIc73oo3u3bu7XM/IyDDTpk0zL774ovnqq69cbhs5cqTL9UOHDpm+ffua/v37myNHjpjhw4ebevXqmU6dOpkDBw64Pe8LLy1atDBnz541Z86cccnu3LnT+XdmZqZ57bXXTJcuXcyYMWPcssYY88Ybbzif865du0zr1q1N3bp1TbNmzcyWLVtcsnFxcea9996zWkfr16837dq1M926dTP79+830dHRpm7duqZx48bmxx9/dMmeOnXKvPTSS6ZevXqmVq1aplatWqZZs2Zm9uzZbu1eqX1ndHS027KUlBSTkJBgnnjiCfP++++73Na3b1+X657sO3ft2uV2adq0qdm9e7fZtWuXS/a7775z/p2ammoGDhxoWrVqZfr27WuOHj3qki2qfacn+01j7PedV2q7M6b0b3uebHfGlIxtj9fvf4pqv2lM0b1+KHoUQx565JFHzKJFi0xOTo5zWU5Ojlm4cKF5+OGHPWrrwg/19u3bO//Ozc01w4cPN926dTPnzp1zK4YeffRRs2LFCrNgwQLTvHlzs2jRImOMMV9++aXp2rWrS3bKlCnmySefNAcPHnQua9GiRYF9yv847du3N5mZmRft74MPPuj8u3PnzmbTpk3GGGN++eUXExcX55Jt0aKFeeWVV8y9995rYmNjzZw5cy755b99+/Zm+/btZt26daZhw4bmv//9rzHGmN27d7uti8cee8wsWrTInDx50syePdu8/vrr5tixYyYhIcEMHz7cJcsXsv8pjcVst27dzLRp01wK2OPHj5s33njDdOvWzSVb0Idp3qVp06Yu2SFDhphnnnnGvPvuu+aBBx4wL7/8svO2/P9BYIwxTz75pJk1a5Z54403THR0tHnrrbfM0aNHzezZs81TTz3lks17ThEREW6XWrVquWTzP87EiRPNU089ZZKSksygQYPMiy++6LaO878He/bsab744gtjjDHr1q0zjzzyiEu2SZMmpnfv3qZu3bqmT58+5quvvnLZh+XXoUMH8+WXX5oFCxaYZs2amcTERGOMMatXrzYdO3Z0yfbq1ctMmzbN/PTTT2bs2LHm7bffNps2bTJPPvmkef31112ynuw7C3rP510aN27s1mdP/iPJk31nUf1HUlHtOz3Zbxpjv+/0ZLsz5tre9jzZ7owpGdser9//FNV+05iie/1Q9CiGPHTfffd5dJsnH+pt27Z1u//YsWNNly5d3G7Lv/E3b97c5baCPvR++ukn88gjj5i5c+caY4zbB3me+++/3/kl+8J28hdrxhjTpk0b59/x8fEut11YLOT1NzMz0yxbtsz06NHDREZGmmeeecblC3xBz+HCwu3CfuX/YmHM+R2SMee/aP3tb39zuY0vZAWvt9JSzF5q+8v/fjSm4A/TvOsXfpjmf7+ePXvWPPXUU2bIkCEmNzf3ktvBhe+DC9+LgwcPNgkJCS6jbTb/EREbG2vS09ONMcZkZWWZBx544JLP98LX68I+510/duyYeeedd8wDDzxgGjdubCZMmGD27Nlz0fsWtu1duJ3nbUPnzp1zez082XdGRESYli1bur3vW7RoYe688063+3vyH0me7DuL6j+Simrf6clrZ4z9vtOT7c6Ya3vb82S7y7+spG57vH4Ft5P/us1rd+H9r+Trh6LHOUMeqlChgpYsWSJjjHOZMUafffaZQkJC3PLR0dH65z//qZ49e7pdLjxOtVq1alq/fr3LskGDBikyMlK//vqry/L8j9+4cWOX23Jzc936Ubt2bc2ePVuHDh1S165dlZWVVeDzO3funLN/qampSk5OliSlp6fLz8/17dKoUSONHTtWZ8+eVVRUlBITEyWdP++oQoUKBbYfGBiotm3bavr06Vq+fLkiIiI0atQot5zD4dCePXu0YcMGnTlzRhs3bpQk7d27Vzk5OS7ZgIAA7d+/X5K0detWlSlTRpLk5+engIAAl+zJkyfVvn17l+fi5+enmJgYt/MGPHntJGnfvn164YUX1KZNG7377rsKDQ3VP//5T2VkZLhlT58+rVatWik2NlaS1L59e0lSy5Yt3dru27evatasqTlz5igpKUlJSUkKCwtTUlKSvvzyS5ds/vfFf//7Xw0dOlTh4eEaMGCA2/HW+ft1+vRp1alTR5JUo0YNt/dH+fLllZCQoJUrV+qf//ynVq5cqebNm2vAgAEu55nlcTgcioiIUIMGDVSuXDnVr19fklSzZk237KlTp9S+fXuVL19enTt31sqVK3XzzTdr1KhRbm0HBQVpw4YNbm38+OOPztc9T2hoqFatWqXt27c7L9u2bdP27dtVsWJFl2z+91TZsmU1ZcoUnT17Vs8//7zb9uRwOJx/165d+6K3SdKYMWPUunVrPf744/rmm28KzOQxxujcuXM6e/as/P39Va5cOUnn398Xvo8l6a677tKcOXMkSXfccYd+/PFHSefPEQwMDCywXzfffLO6deumJUuWaOrUqTp16pQ6derkti5SUlK0f/9+nTx5Uvv27ZMkpaSkKDMz063dvPfroUOHnOsqKCjIrc+e7DurVKmiuXPnOt/v+S8333yz27rI3y+Hw6Fhw4YpPDxcPXv2dNv+PNl39u3bVwMGDNBzzz2nDz/80GVdFtSHvPMwHQ6Hy2tQXPtOT/abkv2+05PtTrq2tz1Ptrv8j3k1tz1ev/8pqv1m3rooitcPRY817qGxY8dq2LBhGjlypMLCwiRJycnJqlWrlsaOHeuWz/tQz8vm16xZM5fr48ePL3BjHzBggB588EG3dtPT0xUcHKyXX37Zufzw4cO67rrrCux7mTJlNHDgQG3cuFHr1q0rMJOUlFTgcn9/f02ePNllWUJCgsaPH6+mTZuqQoUKevfdd/XCCy8oKipKo0ePdsnm/wKSp2LFiurVq5d69erldlv//v3197//XX5+fpo0aZJef/11HT16VIcPH9bw4cPdsg8//LBCQ0N19OhRTZo0SZJ07Ngx55fwPHlfyB544AHnujbGaPHixRf9Qmbz2kkFfyEbN27cFflC9vPPP+u5555TTEyM/v73vxf6hcwYY/2F7Omnn3Z+IWvXrp3VF7K2bdvqyJEjmj9/vkaNGqXPP//cJZf3pSw1NdX5pSwyMvKSxWz16tULLWZHjBihF154QUFBQapSpYqk8x8kGRkZGjdunEs2KipKu3btUlRUlNvzyCv88txyyy3avn27atWqJen8+33ixIkaNGiQdu3a5ZItW7asc9ubPn26c/nJkyfl7+/v9lgtWrRQZGSkRo0apWXLlhX4pVSSduzYoXr16jlfu+TkZIWFhSkjI6PA/+B46aWXNHjwYM2cOVNhYWHq0qWLKlWqpOuuu85q+4uMjFRkZKRefPFFl+Vdu3bV3/72NzkcDo0YMUKDBg1S+fLl9fPPP6t79+5u2fbt26t27draunWrEhISJJ3f9ipXruySvXDfaYxRcnKy7rjjDrd9Z5s2bXTo0KECt72//e1vbsvy/iOpQYMGzmWDBg3SpEmT9Pbbb7tkPd135v1H0uTJkwv9j6QePXo4r+e9fgX9R1JR7TsL2m8eOXJEycnJbvvNvLzNvvNS29348ePd2i2J215iYuIV2fYu3O46d+6sypUrF7jdSSVj2+P1+x9PXj9PXjup6F4/FIPiHIa6lhw/ftxs3brVbN269ZIn140dO9Z5iNCFRo0adcX7dfr0aXPs2LEr3m5hj7lt2zazdevWi05GkP8wE29kZ2ebLVu2uJ33kufUqVNm8+bNhZ78v3fvXtOlSxfToEEDEx0dbaKjo02DBg1M586d3Ya9PX3tevToYdatW+e2/NVXXzUREREuy3r37l1gX3///feLnnuWkZFhJkyYYLp06WL++te/FpjJO3Qu75Ciw4cPG2OMSUtLczt+OyMjw4waNcrcc889pnXr1iYiIsLceeedzpM/8yvo8I9LSUpKMg0aNDBRUVHm+++/N48//rh54IEHzJ///Gfz2WefuWS/+uorExUVZaKjo515Y4w5evSoGTp0aIHtb9682SxfvtwsX77cbN682eTm5nrUvwvt3bvXHDp0yG15bm6u+frrr92WFeT48eNmx44dl3ycxMREt0P/CnPq1CmzYcOGi97+66+/mhUrVpjly5cXeAK3Mcbt5N3CnDhxwrktp6Wlmc8//9xs3bq1wOzu3bvNsmXLrM+5s913XuhSh2WeOHHCbXKOvPyF59VdrG2bfeeGDRvMW2+9ZdHb/7V79uxZt+0pT/5958XWRUH7TtvJVrKzs82mTZsuut80xn3feam28293M2bM8Gi7u9ikL3v37nV7jqtWrbLe9latWmVSUlKstr2CDje9VH9TU1Mvuu3l3+7+/e9/X7Sdgra9S02Ac+G2l5iYaL3tFTaxTv7Xb8uWLZe93zSm4NfPGM/2nTav37Jly8yIESM86pvt63ex9evpftOYot13ouhQDMEnefuF7FJOnDhx0S8SNl/IjDn/5aiw/mzYsMG8/fbbHvXtzJkzbrP15H/M0lLMpqSkmKFDh5onnnjCzJkzx+W2CyepyJ8tbEILTya/yJ+16YMn7dr298J8Yf04fvx4kfTDk6wnk4ZcKrtt2za3deFJ/kplL9bnhx56yLrd/Nm6det6vC4upw+erIsLz5ncuXPnRSdxKSh/qUlfiit7qT4XVbslZV1cbGKdfv36FbhP9mQiHk/a9rbdtLQ0M3DgQNOyZUvrbHH3t6B+PP/881ekzyh6DmMKGAcEfNCDDz6oxYsXX/FsUbZd2rKX23b//v1VtWpVRUZG6sMPP1S5cuX02muvKSAgQLGxsVq4cOEVz8bFxWnBggUlqg9Xqx+Xk33sscf0xBNPKC0tTa+//roGDBig9u3bKykpSbNnz9bMmTO9yhZl29dy1pN8rVq13A7dyTsUyeFwuJ276Em+OLNHjhxRxYoVi60PJWVd5N9/jBw5Urm5ufrHP/6hpUuXat++fXrttddc2vEkX9KyI0aMkDGm2PtQ1G2jiF3lYgwoVhebHW7nzp1us9t4OpucJ/mSnC3J68KTWcOu5WxJ6UdRzeLm6WyZRdX2tZz1JO/JrHqe5q/lbEnphyczHXqaJ1s8baNoMYECfEp0dLSqVKlS4ImRF87i5km2KNsubdmibNuTSSqu5WxJ6UdRTRriSbYo276Ws57kPZnExdP8tZwtKf3wZGIdT/Nki6dtFC2KIfgUT2aI83Q2uaJqu7Rli7LtS80aln92oms9W1L64UnWk1ncPJ3xrajavpaznuZtZ9XzJn8tZ0tCP/J+MiOv+L3UTIee5skWT9soYkU36ASUPJ7MEOfpbHJF1XZpyxZl255MUnEtZ0tKP67UpCG2M2B6OltmUbV9LWdt8p5O4uJJ/lrOlqR+GHN+Yp2LzXR4uXmyxdM2rgwmUAAAAADgkxiLAwAAAOCTKIYAAAAA+CSKIQAAAAA+iWIIAAAAgE+iGAIAAADgk/4/CQQR68y+BwUAAAAASUVORK5CYII=\n", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Now visualize the table trends:\n", + "import seaborn as sns\n", + "%matplotlib inline\n", + "\n", + "# Change the default figure size\n", + "sns.set(rc={'figure.figsize':(15, 5)})\n", + "\n", + "# Look at the transpose of the heatmap instead\n", + "sns.heatmap(judges.T);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "That visualizations is somewhat helpful, because we get an idea already that some of the attributes move together: see that if `Flavour`, `Sweet` and `Fruity` are low (dark colours), that they are jointly low. And that it is opposite to the other 3 flavour characteristics.\n", + "\n", + "Now let's sort the data set and try again:" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0MAAAE7CAYAAAAfLlpqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xl8U1X+//F30hWKBRSorCPiUERl8ScgA8oiowwibXFjRgEFYVwARVE2ZwBRWXwoLoiK4waKOi7AAFX8Iq6IqCOyKLvIpuyUUijdcn5/8G2+DelyTiDQmtezjzwezc0nJ+eee3JvPjn3nniMMUYAAAAAEGG8p7sCAAAAAHA6kAwBAAAAiEgkQwAAAAAiEskQAAAAgIhEMgQAAAAgIpEMAQAAAIhIJEMAAAAAIhLJEAAAAICIRDIEAAAAICKRDAEAAACISCRDAAAAACISyRAAAACAiBR9uitQ0Rx5YoB1rKdeffuCc3OsQ30//2Id662TZF+HhDOsQ832bfblSjK5+dax3ss625f7/VL72IxM+zo0/IN9ubt3W8dKkqdWLfvgvFz7euTYx/q2/mofuz/LOjb6vLrWsQWbf7OOlSTPGZWsY30Zh+3LTYizjvUmxFvHFuzMsI49+ov9tpOkhMvq2Ad77b/z8u13eI+cmWgfe04D69iClT9Zx0qS79BR61hPpVjr2LXv2B8ez7v0gHVsdJJ9P85cbn9ckKRKtQqsY73x9v3CmxhjHfufBfb7t8MOX8deFmffxnVaH7EvWNL2ZQnWsTX/cMg69r2N9p8BXL6ZjvfZx8YYh4IlZTlU5Ox8+4psi7EveG1UnnVsDWP/Ps3yODScpERjX+flxn7fubPA/pgqSUt3fOIUfzrk7f05pOfF1Dj3JNckNCRDAAAAAELjs/8ipjwiGQIAAAAQGuM26lbekAwBAAAACI2PZAgAAABABDKMDAEAAACISIwMAQAAAIhIjAwBAAAAiEjMJgcAAAAgIlXwkSGX3/kCAAAAgN8NRoYAAAAAhCbMEyhs375dd911l//+oUOHlJWVpW+++SYg7plnntGsWbNUq1YtSdLFF1+sMWPGlFk+yRAAAACAkIR7au169epp7ty5/vuPPPKICgqKv04pNTVVw4cPdyqfZAgAAABAaEIcGcrMzFRmZmbQ8sTERCUmJhb7nNzcXM2bN08vvfRSSK9ZHJIhAAAAAKEJcWTotdde09SpU4OWDxo0SIMHDy72OYsXL1ZSUpIuuOCCYh9fsGCBvvzyS9WsWVODBw9Wy5Yty6wHyRAAAACA0IQ4tXbfvn2VlpYWtLykUSFJeu+993TttdcW+1ivXr10++23KyYmRkuWLNGdd96p9PR0Va9evdR6kAwBAAAACE2II0OlnQ5XnF27dunbb7/V5MmTi328Zs2a/v/btWun2rVra8OGDWrdunWp5TK1NgAAAIDQ+Hyh3RzNnj1bHTp0KHGkZ9euXf7/16xZox07dqhhw4ZllsvIEAAAAIDQnKIfXZ09e7ZGjx4dsGzAgAEaMmSILrroIj3xxBP68ccf5fV6FRMTo8mTJweMFpWEZAgAAABAaML8O0OFFi5cGLTsxRdf9P8/adKkkMo9pclQ586dFRsbq7i4OElSmzZtlJmZqQsvvFA333zzqawKAAAAgBNkTGgTKJQXp3xk6Omnn1bjxo3990eMGHGqqxAkPz9f0dEMkgEAAABOTtFpcuFSriZQWLp0qW688Ualpqbqmmuu0YIFCyRJ3333nVJTUwNie/bsqW+++UaSNH36dHXv3l3du3fXyJEjdfjwYUnHEq3XX3/d/5yi90eMGKHx48erf//+uuGGG07F6gEAAAC/L6doAoVwOeXDIUOGDPGfJjds2LCAx5o2bapZs2YpKipKe/fuVc+ePdW+fXtdcsklOnLkiNauXasmTZpo/fr1yszMVKtWrfTZZ5/pP//5j9566y0lJCRo+PDhmjZtmu6///4y67J8+XK9/vrrqly5cljWFQAAAPhdq+AjQ6f9NLnC0R9J2r9/v0aNGqUtW7YoKipKBw8e1ObNm9WiRQulpKRo9uzZGjlypN5//32lpaXJ4/Fo6dKl6tatm6pUqSJJuuGGG/Too49a1aVr164kQgAAAECoQvzR1fKiXJ0mN3bsWLVu3Vrz5s3T3LlzdfbZZysnJ0eSlJaWpgULFignJ0fz58/3nzZnjJHH4ym2vKioKPmKDMMVllWIRAgAAAA4AcYX2q2cKFfJ0KFDh1S3bl15PB4tWbJEW7Zs8T9Wp04dNWrUSA8//LDOO+881a1bV5L0pz/9Senp6crKypIxRu+++67+9Kc/SZIaNGigVatWSZJ2796tZcuWnfqVAgAAAH6vuGbo5Lnvvvs0btw4vfjii0pOTlZycnLA4z179tQDDzygyZMn+5d16NBB69atU69evSRJF154oe644w5Jx06ZGzJkiHr06KFzzjlHzZo1O3UrAwAAAKBcO6XJ0OLFi4OWTZw40f9/u3bt9NFHH5X4/JSUFKWkpAQtHzhwoAYOHBi0vHr16po5c2axZRV9XQAAAAAhKEenvIWiXI0MAQAAAKhAytEpb6EgGQIAAAAQGpIhAAAAAJHImIo9tTbJEAAAAIDQMDIEAAAAICIxgQIAAACAiMTIEAAAAICIxMgQAAAAgIjEyBAAAACAiMTIEAAAAICIxMgQAAAAgIhEMgQAAAAgInGaHAAAAICIxMgQAAAAgIjEyBAAAACAiFTBR4a8p7sCAAAAAHA6MDLkyNO8lX1wVoZ9bNUzrUOdMtiYWPvY/HzrUM95jV1qIU9ConWs79P/sS/Y67EPPfcc+3LPSrIOLfh2pX25kqJr1bIPTjjDOtSjQ9ax3qSzrGN9e+3LNVmH7etQM1GKiXGox0Hr2OgLz7WOVZ59v3fqbw7flMVk7rOvgyRPYhXrWJN1xDo2e1WmdWz8ebnWsS7t5rJukpSzwn4/W7nz2daxSbW3W8eafGMdm7PJfnvEVLYOlSTlHrBv59jq9v0zY539+lVx6Pf5HvujWX6BfezWpVVUr7l9X/b57Nst/2iUdWyTXPv3SIHs67Aj2n6/2Uj2/U2SNvnsO92FNez3W/sP1LSOTfLafzTN8oRvRCLDU2AfbP8WUUEFP6WsWBV8nUiGAJweDokQANhySYQAnAQV/DQ5kiEAAAAAoSEZAgAAABCRjMN5guUQyRAAAACA0DAyBAAAACAikQwBAAAAiEjMJgcAAAAgIjEyBAAAACAiMYECAAAAgIjEyBAAAACAiEQyBAAAACAiMYECAAAAgEhkfFwzBAAAACAScZocAAAAgIjEaXIAAAAAIlIFP03Oe7orAAAAAACnAyNDAAAAAELDNUMAAAAAIhLJEAAAAICIZCr2NUPlJhn64IMP9MILL8gYo5ycHF1wwQV6/PHHw/Z627dv15IlS3TjjTeG7TUAAACA3zVGhk7c7t27NW7cOM2ePVu1a9eWMUZr164N62vu2LFDb7/9NskQAAAAECpmkztxe/fuVXR0tKpVqyZJ8ng8Ov/88/XWW29p3LhxkqSVK1cqOTlZK1eulCSNHTtWb7/9tiRpxYoV6t27t3r27KmePXvq008/9Zf92WefqVevXurZs6duvPFG/fDDD5Kkhx56SJs2bVJKSoqGDBlyCtcWAAAA+J0wvtBu5US5GBlq0qSJmjVrpo4dO6pNmza6+OKLlZKSorZt2+rVV1+VJC1dulQtW7bU119/rWbNmmnp0qXq16+fMjMzNWbMGE2fPl21atXS7t27dd1112n+/PnKyMjQtGnT9NJLL6lKlSrasGGDBgwYoE8//VT//Oc/NWnSJL3//vund+UBAACAiqqCjwyVi2TI6/Vq2rRpWr9+vb799lstWrRIL730kubNm6ecnBzt3LlTS5cu1b333qvnnntO11xzjfLy8tSgQQN99tln2r59uwYMGOAvz+PxaMuWLVq5cqW2bt2qm266yf9Yfn6+9u7dezpWEwAAAPhdMVwzdPI0btxYjRs31k033aRu3brpm2++0aWXXqpPP/1U+/btU+vWrfXQQw/p008/VZs2bSRJxhglJyfrjTfeCCpv5cqVuuyyyzR58uSgxzZt2hT29QEAAAB+1yr4yFC5uGZo165dWr58uf/+zp07tX//ftWrV0+XXnqppk+frpYtW0qSLr74Yr344otq27atJKlly5basmWLvv76a//zV65cKWOM2rVrpy+++EIbNmwIeEySqlSpoqysrFOxegAAAMDvE9cMnbj8/Hw988wz2rFjh+Lj4+Xz+XTPPfeoadOmOuuss/TAAw/4k59LL71Ub7/9ti699FJJUtWqVTVt2jQ99thjevTRR5WXl6f69evr+eef1znnnKPHHntMo0eP1tGjR5WXl6eLL75YzZo1U3Jysho2bKju3bvr3HPP1dNPP306mwAAAACoeCr4yFC5SIbq1q2rl19+udjHkpKStG7dOv/9bt26qVu3bgExzZo108yZM4t9fvv27dW+ffug5dHR0XrhhRdOoNYAAABAhDsF1wzl5OTo0Ucf1dKlSxUXF6cWLVpo/PjxATEFBQV6+OGH9cUXX8jj8WjgwIG6/vrryyy7XCRDAAAAACqgUzAy9NhjjykuLk4LFy6Ux+MpdjK0efPmaevWrfroo4+UkZGh1NRUtW3bVvXq1Su1bJIhAAAAAKEJ8fqfzMxMZWZmBi1PTExUYmKi//7hw4c1Z84cffbZZ/J4PJKkGjVqBD0vPT1d119/vbxer84880x16dJFH374oW677bZS60EyBAAAACA0IY4Mvfbaa5o6dWrQ8kGDBmnw4MH++9u2bVO1atU0depULVu2TAkJCbr77rt1ySWXBDzvt99+U506dfz3a9eurZ07d5ZZD5IhAAAAACEJ9XeG+vbtq7S0tKDlRUeFpGMTrW3btk1NmzbV8OHDtWLFCt1+++36n//5H1WpUiWk1y6KZAgAAADAKXX86XAlqVOnjqKjo9W9e3dJUvPmzVW9enVt3rxZF110kT+udu3a+vXXX9WsWTNJwSNFJSkXvzMEAAAAoALymdBuls4880y1adNGS5YskSRt3rxZ+/bt0x/+8IeAuK5du+qdd96Rz+fT/v37tWjRIl111VVlls/IEAAAAIDQnILZ5MaNG6dRo0Zp0qRJio6O1uTJk5WYmKgBAwZoyJAhuuiii5SSkqIVK1boyiuvlCTdddddql+/fpllkwwBAAAACE2Is8m5qF+/frG/Kfriiy/6/4+KitK4ceOcyyYZAgAAABCaUzAyFE4kQwAAAABCYkiGAAAAAEQkkiEAAAAAESnE3xkqL0iGAAAAAISGkSEAAAAAEYlkCAAAAEAkMoZkCAAAAEAkYmQIAAAAQESq4MmQx1T0sa1TbNOFV1nHRkXbz67hdYhdt62GdWy9xEPWsVWq5VjHrtla0zpWkhpUzbSOrXb2EevYA79Vto5dd6iadez51Q5Yx245UNU6VpLqJGRZx2bnxFjHxsXkW8euy0m0js33WIfq/Bj7/vZtgX0dJKnAoR4uauTb7wKPeO0rkeNQ391Rbrvhc/Ocwq0diLKvdIxDlZvmH7WO3eqNsy9YbnWuWmBf7r+jM6xjm3jPsI49Py/KOva7GLcNXdvYf79Z3Wffbr9E2Tfc9wX7rWOzffbrd15MdevYSwoqWcdK0ide++NTsqeKdeyi3O3WsR6FZwcX47Hvb5KU47BNzoq2b4sjvlzr2C3Zu61jE6Ltt7WR2342u8D+M9HuIwetY/MK7I/VkpSfu8Mp/nQ4eGuXkJ5X9ZVFJ7kmoWFkCAAAAEBoKvjIEMkQAAAAgNBU7J8ZIhkCAAAAEBrDyBAAAACAiFTBkyHv6a4AAAAAAJwOjAwBAAAACA3XDAEAAACIRFwzBAAAACAyMTIEAAAAIBIxMgQAAAAgMjEyBAAAACASGZIhAAAAABGJZAgAAABAJGJkCAAAAEBkIhkCAAAAEIkYGQIAAAAQkUiGAAAAAEQkkiEAAAAAkcl4TncNToj3dFfgeJ07d1bXrl2VkpKilJQUPfroo07P37Vrl3r37u2//8wzzyg3N/dkVxMAAACIeMYX2q28KJcjQ08//bQaN25c7GP5+fmKji652klJSZo5c6b//tSpU9WvXz/Fxsae9HoCAAAAkcz4GBkKuxEjRmj8+PHq37+/brjhBm3fvl1t2rTxP170ftH/x40bJ0nq1auXUlJStGvXLrVv3145OTn+595+++2aN2/eKVwbAAAA4PeBkaEwGDJkiOLi4iRJw4YNkyQtX75cr7/+uipXrqzt27dblTNmzBjNmjVLb731lhISEiRJrVq1Unp6utLS0rRjxw6tXr1aTz/9dHhWBAAAAEC5VS6ToeNPk1uwYIG6du2qypUrn3DZvXv31oQJE5SWlqY333xT1157LafQAQAAACEwFXwChXKZDBWnaCIUHR0tY4z/ftHT3spy8cUXq6CgQP/97381Z84cvfPOOye1ngAAAECkKE+nvIWiQlwzdLwaNWooLy9PW7ZskSTNnz+/xNiEhARlZWUFLOvdu7fuvfdetWjRQrVr1w5rXQEAAIDfK+PzhHQrLypkMhQdHa3Ro0fr1ltvVe/evRUVFVVibL9+/dSnTx+lpKQoMzNTknT11VcrMzNTf/vb305VlQEAAIDfHWNCu5UX5e40ucWLFwctmzhxYtCy6667Ttddd53//qBBgyRJ9erV07JlywKWFz5WaOXKlapbt67atm17sqoNAAAARJzyNMoTinKXDIXbqFGj9NVXX2nSpEnyeCr2xgMAAABOJ5KhCubRRx893VUAAAAAfhfK0ylvoYi4ZAgAAADAycHIEAAAAICIxO8MAQAAAIhIFf13hkiGAAAAAITEx8gQAAAAgEjEaXIAAAAAIhITKAAAAACISEytDQAAACAiMTIEAAAAICJV9AkUvKe7AgAAAABwOjAyBAAAACAkzCYHAAAAICIxgQIAAACAiFTRrxkiGQIAAAAQkop+mhwTKAAAAAAIiTGh3UIxdepUJScna/369UGPjRgxQpdffrlSUlKUkpKi5557zqpMRoYc9c8osI4tcNjSWQVHrWPrxmVZx+4+fNg6NvPgEevY2rFueXRstn1XW71qj3VsQnQl69hz4n3WsVv377OOreTNtI6VJNk3s6K9UdaxBTn26xflOWgdWy+6qnXsfw/9Yh37h0q1rGMl6WC+fcNdEJdkHbvVYfvl+PKsYwuM/fa4NLqudawkzdFO61iXOteOqmYduznH/n3qomZUolN8lMPvW2TLvi3aemtbx+5zKPd585t1bAfZ10GSFhXsto49OyrBOvaIL9869mpPTevYHIdPIOtlf4ycp732BUu60GPf738x9vuhkb561rFVHPYXmQ7HhaNy+8a+ni/HOnapN8469vw8+/W78Gz7jrE3w74f5/ncPrecUSnXOvaPd59hHes52+3YVxGcqtPkfvzxR/3www+qU6dOiTEDBw7UzTff7FQuI0MAAAAAQmKMJ6Sbi9zcXD300EMaM2aMPJ6Tm3wxMgQAAAAgJKGODGVmZiozM/jsjMTERCUmBp4l8NRTT6lHjx6qX79+qWW+8sorevvtt1W/fn3dd999atSoUZn1IBkCAAAAEJJQZ9Z+7bXXNHXq1KDlgwYN0uDBg/33ly9frlWrVmnYsGGlljd06FDVrFlTXq9Xc+bM0W233aZFixYpKqr0U0tJhgAAAACEJNSRob59+yotLS1o+fGjQt9++61+/vlnXXHFFZKknTt3qn///powYYLat2/vj0tK+r/rhVNTUzVhwgTt3LlTdeuWfl0uyRAAAACAkIQ6tXZxp8MVZ+DAgRo4cKD/fufOnfX888+rcePGAXG7du3yJ0RffPGFvF5vQIJUEpIhAAAAACGxnyvw5EtJSdH06dOVlJSk4cOHa9++ffJ4PKpSpYqee+45RUeXneqQDAEAAAAIiXGcwv1ELV682P//3Llz/f+/+uqrIZVHMgQAAAAgJL5QZ1AoJ0iGAAAAAITEd4pHhk42kiEAAAAAITnVp8mdbN7TXQEAAAAAOB0YGQIAAAAQktM5m9zJQDIEAAAAICQV/TQ5kiEAAAAAIWFkCAAAAEBEIhkCAAAAEJE4TQ4AAABARPJV7FyIZAgAAABAaPjRVQAAAAARyZzuCpwgq2QoNzdXTzzxhBYtWqTo6GjFx8dr0KBB6tKliyRp5MiRWrlypf74xz/qySefDLp/vKKPX3755fr000/19NNPn9w1AwAAABBWETGBwtixY3XkyBEtWLBAcXFxWr9+vW677TZVrVpVDRs21MKFC/Xdd9/J6/Vq7969AfePd/zj77///klfqVAUFBQoKirqdFcDAAAAqDB8nop9mlxwtnKcHTt26IMPPtDYsWMVFxcnSWrcuLFuv/12TZ06VX369NHRo0eVlpamZ599NuD+q6++GlBWVlZWqY/v2bNHvXv3Vs+ePXX11Vdr8uTJkqTs7Gy1adNG+/fv98dOnDhRU6dOlSR9/vnnSk1N1TXXXKO+fftqy5YtkqT3339fQ4YM8T+n6P33339f/fv31/3336+ePXtq/fr1jk0HAAAARDYT4q28KHNkaP369WrQoIGqVasWsLxFixZ66qmn9N577+naa6/V3LlzJUkpKSkB94uqUqWKpk+fHvB40ZGhxMREPf/880pISFBeXp769++vzz//XJdffrmuuOIKzZ8/X3369FF+fr7mz5+vt956S/v27dMDDzyg119/Xeedd57eeecdDRs2TO+8806ZK//9999r7ty5atCgQZmxAAAAAAJV9NPkyhwZMubU5W4FBQWaPHmyevTooZ49e2rDhg1au3atJKlnz56aPXu2pGMjQY0aNVK9evW0YsUKNWnSROedd54k6dprr9WaNWuUlZVV5utdfPHFJEIAAABAiHye0G7lRZkjQ40bN9bWrVuVkZERMDr0ww8/KDk5ucwXuOuuu7R9+3ZJ0htvvFFq7CuvvKLMzEy98847iouL0z/+8Q/l5ORIki655BIdPnxY69at0+zZs5WWlibpWLLmKeFcxaioKPl8/5evFpZVKCEhocz6AwAAACheRZ9au8yRoXr16qlr164aO3asP5lYv369nn/+eQ0aNKjMF3j22Wc1d+5czZ07V1WqVCk19tChQ6pZs6bi4uK0a9cuffzxxwGPp6Sk6JVXXtG3336rq666SpLUsmVLrVmzRps2bZIkzZ49W02bNlWVKlXUoEEDrVu3Trm5ucrNzdXChQvLrC8AAAAAO7/7a4akY7PJPf744+rWrZtiYmIUFxen0aNHq3Xr1v5Rn5Ohd+/euvvuu5Wamqqzzz5bbdu2DXg8LS1NV1xxhXr27KlKlSpJks4880xNnjxZw4YNU35+vs4880w99thjko4lSm3btlX37t1Vr149NWrUSHv27Dlp9QUAAAAiWXk65S0UHnMqLwr6HehYr4t1bIFD02YVHLWOrRtbreyg/7U7v+xrpwpl5h+xjq3tUAdJivXY/77v6qyt1rEJ0ZWsY8+Jr2EduzVnn3VsJW+sdayraK/9dO8Fxv4SxihPmYPCfvWiq1rH/jfrF+vYP1SqZR0rSQcL7PvnBXFJ1rFb8zOtY3N8edaxLtvj0vi61rGS9F3uTutYlzrXjrF/X28+Gp4vlmrGJjrFRzmcnpFt7NuibWxt69gjKrCOXZ271zq2g0MdJOmbfPuyz46yP038iMm3ju0o+z6U4/ABar3H/hi5vcD+uCdJF0bZ1/k3Y1+P63MqW8dWcdhfZDocF446TnlcryCn7KD/tTQ+zjr2/Bz79bvwTPvj794M+36c57M/7knSGXG51rF/7H+GdaznbLdjX+WBU5ziT4cZdW8O6Xl9drx+kmsSGvtPqAAAAABQREWfTY5kCAAAAEBIKvopZiRDAAAAAEJS0a8ZIhkCAAAAEBJOkwMAAAAQkUiGAAAAAEQkw2lyAAAAACIRI0MAAAAAIhLJEAAAAICIxNTaAAAAACISU2sDAAAAiEicJgcAAAAgIpEMAQAAAIhIXDMEAAAAICJxzRAAAACAiMRpcgAAAAAiEqfJRZjDvlzr2ARvrHVsrZhE69gmXvvYbb4DYalDojfOOlaSEj32bdHyjHOsY+M9UdaxdTyVrGPrVk6wjq0p+3WTpCwVWMdmO8S6fDPz51z7tmiQm2Md+25iU4daSJfl2O+CDkfZj8OflWPfbnEm3jq2erR9W6yWfR9qV2mvdawkfZ3XwDr2bJNvHbvDZ789GkfZr196vP17JDnPax0rSVEOR+EjDkX3Sj1oHZv1XZZ17PINZ1vHtvrjr9axkrR+VU3r2Opx2daxh4/ab78mKfusY6Ma1raOzftpp3WsJG37zP59ffYff7OO/XWd/XHyj4/UsY717bCvg3LsP4d4qp1hX64kVbXvQxfN/d46Nr79OdaxHq99u9U+bN+PPYlVrGMlScb+qOqpV9++XK/bPq4i8FXwdOj3t0UAVAguiRAA2HJJhACATyMAAAAAQsI1QwAAAAAiUsU+SY5kCAAAAECIGBkCAAAAEJH4nSEAAAAAEamizyZHMgQAAAAgJBU7FSIZAgAAABAirhkCAAAAEJE4TQ4AAABARKrYqRDJEAAAAIAQcZocAAAAgIjEaXIAAAAAIlLFToVIhgAAAACEiNPkAAAAAEQkU8HHhkiGAAAAAISEkSEAAAAAEelUTKBw5513avv27fJ6vapcubL+8Y9/6Pzzzw+IKSgo0MMPP6wvvvhCHo9HAwcO1PXXX19m2SRDAAAAAMqtSZMm6YwzzpAkLVq0SKNGjdLs2bMDYubNm6etW7fqo48+UkZGhlJTU9W2bVvVq1ev1LJJhgAAAACEJNRxoczMTGVmZgYtT0xMVGJiYsCywkRIkrKysuTxeIKel56eruuvv15er1dnnnmmunTpog8//FC33XZbqfXwhlL5zp07q3379iooKPAve++995ScnKzXX389lCL95a5fv16SNHr0aH333XchlwUAAAAgvHwyId1ee+01XXHFFUG31157rdjXGT16tDp27KgpU6Zo0qRJQY//9ttvqlOnjv9+7dq1tXPnzjLrH/IgVjwwAAAgAElEQVTIUM2aNfXll1+qQ4cOkqQ5c+boggsuCLW4II888shJKwsAAADAyRfqBAp9+/ZVWlpa0PLjR4UKFeYGc+bM0eTJk/Xiiy+G+MqBQk6G0tLS9P7776tDhw7atm2bsrOz1bhxY0lSbm6upkyZom+//VZ5eXlq3Lixxo4dq4SEBM2bN08zZsxQXl6eJGn48OFq27ZtUPm9e/dWv3791KlTJ40YMUKxsbH65ZdftHPnTrVo0UKTJk2Sx+NRVlaWJkyYoHXr1iknJ0dt2rTRyJEjFRUVpalTp2r+/PmKi4uTx+PRjBkzFBMTo+HDh2vjxo2Kjo5Ww4YN9dRTT4XaDAAAAEDECnVq7eJOh7ORmpqqf/7znzpw4ICqV6/uX167dm39+uuvatasmaTgkaKShJwMtWnTRrNmzdLBgwc1e/ZspaamavXq1ZKkf/3rXzrjjDP07rvvSpIee+wxTZ8+XUOHDlX79u3VvXt3eTwe/fzzz7rlllv0+eefl/l6GzZs0KuvviqPx6O0tDR99dVXateunSZMmKBWrVrpkUcekc/n07Bhw/Tee+/pqquu0ksvvaSlS5cqPj5eWVlZio+P1yeffKLMzEylp6dLkg4ePBhqEwAAAAARLdxTax8+fFiZmZmqXbu2JGnx4sWqWrWqqlWrFhDXtWtXvfPOO7ryyiuVkZGhRYsW6Y033iiz/JCTIY/Ho7/85S9asGCB0tPT9eabb/qTocWLFysrK0sLFy6UdGykqEmTJpKkbdu26b777tOuXbsUHR2tvXv3as+ePapZs2apr9elSxfFxcVJkpo2baqtW7eqXbt2Wrx4sVauXKlXXnlFknT06FElJSWpSpUqatiwoe6//35ddtll6tixo6pUqaImTZro559/1rhx49S6dWt17Ngx1CYAAAAAIlq4f3Q1Oztbd999t7Kzs+X1elW1alU9//zz8ng8GjBggIYMGaKLLrpIKSkpWrFiha688kpJ0l133aX69euXWf4JzSbXs2dPXX/99WrdunXAMJUxRmPGjCn29Ld7771XI0aMUJcuXeTz+dS8eXPl5OSU+VqFiZAkRUVF+SdvMMZo2rRpxa7sv//9b33//ff6+uuv1bNnT/3rX/9SkyZNlJ6erq+//lqff/65pkyZonnz5gWUDwAAAKBs4R4ZqlGjhv79738X+1jR64aioqI0btw45/JDmk2uUP369TV06FDdeeedAcs7d+6sV199VUePHpV0bAq8TZs2SZIOHTrkn+/73XffVW5u7olUQZ07d9b06dP9ydH+/fu1bds2ZWVlaf/+/WrdurWGDBmixo0ba8OGDdq5c6eioqLUpUsXjRw5Uvv371dGRsYJ1QEAAACIRD5jQrqVFyf8O0M33nhj0LKBAwdq6tSpuu666+TxeOTxeDRo0CA1atRII0eO1J133qmkpCS1bt066Hw/V6NGjdJjjz2mlJQUeTwexcTEaNSoUYqJidHgwYN19OhRGWPUtGlTXXnllfr666/1+OOPS5J8Pp8GDhyopKSkE6oDAAAAEInKT1oTGo8x5Sg1qwBa1bncOjbBG2sdG+eJsY69KMo+gfyfo1usY6tGVbKOre4QK0mJHvu2OGDKPm2yULwnyjq2jse+zoeUbx1bU/brJklZKig76H9lO8S6DFP/Ode+LRr47LfHu/H2g82X5bh9F3PYG/wDayU5q8C+3eIcdoHVo+3bYrUSrGPbJe61jpWkrzNrWMeenW/fl3dE22+TxgVHrWPT4+3fI8l5bicsRDkcwY44FN3rOvvJdbK+y7KOXb7B/su3Vs1+s46VpPWrSr/2tqjqCdnWsYeP2m+/Jin2/SKqYW3r2LyftlrHbvss3jpWks7+4yHr2F/X2c989cd/JFvH+nY4bOsc+zNqPNXOKDuoqKpVrUOz535vHRvf/hzrWI/X/o1qDtv3Y09iFevYY4XbH1U99cq+LsXPYf0kqdKNY5ziT4e//SF4emwbs7bMPsk1Cc0JjwwBAAAAiEzhnkAh3EiGAAAAAIQk3BMohBvJEAAAAICQ+BgZAgAAABCJOE0OAAAAQETiNDkAAAAAEamiT0x9Qj+6CgAAAAAVFSNDAAAAAELCBAoAAAAAIhLXDAEAAACISMwmBwAAACAicZocAAAAgIhU0WeTIxkCAAAAEBKuGQIAAAAQkbhmCAAAAEBE4pohAAAAABGJa4YAAAAARKSKPjLkMRU9nTvFrmnQ3To2Wh7r2FhPlH2svNaxLuId6lBF9rGu7FtNinGIjnNoN6/DuyI8W+MYl1aOcmiLGIf1qxSmPUSUY7mxDvEufSjOYRdYyWcf61IHr+OBJCZMu+0oh3pU9hRYx3o89uXGR+dbx0pS5Up51rExseGps9e1M1uqVD3XKd4Tpp1RVLxDsEMdYurYF+yJCt+e1pPgUI9Y+++QPWdVC6U6ZfM6tEVcrFPRnsoJDsEOe7lqZ9nHJp5pX4WYOPty4x3WTZIn/gzrWG+NevYFR8U41SOmxrlO8adDx3pdQnrep9sXneSahIaRIQAAAAAh8VXwcRWSIQAAAAAhqdipEMkQAAAAgBBV9GuGSIYAAAAAhIRkCAAAAEBEquhzsYVzIiwAAAAAKLcYGQIAAAAQEk6TAwAAABCRDMkQAAAAgEhU0a8ZIhkCAAAAEBJOkwMAAAAQkRgZAgAAABCRGBkCAAAAEJGYQAEAAABARPJxmhwAAACASMTIEAAAAICIxMgQAAAAgIjEyBAAAACAiFTRR4a8J/Lkzp07a/369QHLevbsqWXLlp1QpZYtW6aePXueUBkAAAAAwsuE+FdenPaRofz8fEVHn/ZqAAAAAHBU0UeGwpaFzJs3TzNmzFBeXp4kafjw4Wrbtq2kYyNK1157rb7++mvVr19fjz76qKZMmaL09HQlJSXpoosu8pezbNkyPfroo2revLmWL18uj8ejKVOmqFGjRpKk2bNna9asWSooKFCVKlU0duxYnXvuufr+++81fvx4+Xw+5efn64477lD37t319ttv69VXX1VsbKx8Pp+efPJJf1kAAAAA7JWnUZ5QnHAyNGTIEMXFxfnv//LLL5Kk9u3bq3v37vJ4PPr55591yy236PPPP/fH7dmzRzNnzpQkLV68WIsXL9acOXMUHx+vu+66K+A1Nm7cqAkTJuihhx7Sc889p2nTpunxxx/Xd999pw8++EBvvPGGYmNj9dlnn2nUqFF666239OKLL6pv375KTU2VMUaHDh2SJE2ePFnz589X7dq1lZubq4KCghNtAgAAACAiGeM73VU4ISecDD399NNq3Lix/37htT7btm3Tfffdp127dik6Olp79+7Vnj17VLNmTUlSamqq/znLli1Tt27dlJCQIEm67rrrNG3aNP/jDRs2VNOmTSVJLVq00CeffCLpWBK1du1aXX/99ZIkY4wyMzMlSW3atNH06dP166+/ql27dmrevLkk6dJLL9XIkSN1xRVXqGPHjqpfv/6JNgEAAACACihsp8nde++9GjFihLp06SKfz6fmzZsrJyfH/3jlypX9/5syzjWMjY31/+/1epWfn+9/3rXXXqu777476Dm33HKLOnfurK+++krjx49Xu3btNHToUE2dOlWrVq3S119/rT59+mjs2LHq0KHDia4uAAAAEHF8Ffw0uROaTa40hw4dUr169SRJ7777rnJzc0uMbdu2rT744AMdOXJEBQUFeu+996xeo3Pnzpo7d6527twpSSooKNDq1aslSZs3b1aDBg3Uq1cv9enTR6tWrVJ+fr62bdumZs2aaeDAgWrXrp3WrFlzgmsKAAAARCZjTEi38iJsI0MjR47UnXfeqaSkJLVu3VrVqlUrMbZTp0764YcflJqaqlq1aqlNmzbatWtXma/RqlUr3XPPPbrjjjtUUFCgvLw8de3aVRdeeKFmzpypZcuWKSYmRrGxsXrwwQfl8/k0YsQIHTp0SB6PR7Vr19Z99913MlcbAAAAiBgVfWTIY8pTalYBXNOgu3VstDzWsbGeKPvYMA3oxTvUoYrsY13Zt5oU4xAd59BuXod3RdiGVyWnVo5yaIsYh/WrFKY9RJRjubEO8S59KM5hF1jJZx/rUgev44EkJky77SiHelT22E8+4/HYlxsfnW8dK0mVK+VZx8bEhqfOXtfObKlS9ZLPqCiOJ0w7o6h4h2CHOsTUsS/YExW+Pa0nwaEesfbfIXvOKvlL4BPidWiLuNiyY4rwVE5wCHbYy1U7yz428Uz7KsTElR1UKN5h3SR54s+wjvXWqGdfcFSMUz1iapzrFH861K1+QUjP23Hgx5Nck9DwAz8AAAAAQsLvDAEAAACISBH/O0MAAAAAIlNFv+KGZAgAAABASCr6BAokQwAAAABCwsgQAAAAgIh0KiZQmDRpkhYuXKgdO3Zo3rx5aty4cVDMM888o1mzZqlWrVqSpIsvvlhjxowps2ySIQAAAAAhORUjQ1dccYX69Omjm266qdS41NRUDR8+3KlskiEAAAAAITkV1wxdcsklYSubZAgAAABASEIdGcrMzFRmZmbQ8sTERCUmJoZU5oIFC/Tll1+qZs2aGjx4sFq2bFnmc0iGAAAAAIQk1GuGXnvtNU2dOjVo+aBBgzR48GDn8nr16qXbb79dMTExWrJkie68806lp6erevXqpT6PZAgAAABASEL90dW+ffsqLS0taHmoo0I1a9b0/9+uXTvVrl1bGzZsUOvWrUt9HskQAAAAgJCEOjJ0IqfDFWfXrl1KSkqSJK1Zs0Y7duxQw4YNy3weyRAAAACAkJyK2eQefvhhffTRR9q7d69uvfVWVatWTQsWLNCAAQM0ZMgQXXTRRXriiSf0448/yuv1KiYmRpMnTw4YLSqJx1T0X0o6xa5p0N06Nloe69hYT5R9rLzWsS7iHepQRfaxruxbTYpxiI5zaDevw7siPFvjGJdWjnJoixiH9asUpj1ElGO5sQ7xLn0ozmEXWMlnH+tSB6/jKQYxYdptRznUo7KnwDrW47EvNz463zpWkipXyrOOjYkNT529rp3ZUqXquU7xnjDtjKLiHYId6hBTx75gT1T49rSeBId6xNp/h+w5q1oo1Smb16Et4mKdivZUTnAIdtjLVTvLPjbxTPsqxMTZlxvvsG6SPPFnWMd6a9SzLzgqxqkeMTXOdYo/HeLjG4T0vKNHt57kmoSGkSEAAAAAIQn1mqHygmQIAAAAQEgq+klmJEMAAAAAQlLRkyGuGQIAAAAQkcJ57TcAAAAAlFskQwAAAAAiEskQAAAAgIhEMgQAAAAgIpEMAQAAAIhIJEMAAAAAIhLJEAAAAICIRDIEAAAAICKRDAEAAACISCRDAAAAACISyRAAnEJfffXV6a4CAAD4XyRDJ8HBgwdPdxUkSZs2bapQ5WZkZISl3MOHD+vHH39UVlZWWMq3deDAgTIfX7NmjdasWVNmbCjxkl1bZGRkaM2aNdqwYYOOHj1qVW55UlZyEer62bZxaTZu3Bh0GzlypDZt2qSNGzeecPkVXXnZd9rKzs7W6tWrlZmZebqrUqbMzEwdPnzYOtZ2nWzKPXDggEaPHq1+/frpjTfeCHhs8ODBpT63tDZesmSJ//9Dhw7p/vvvV5cuXTR48GDt3bvXqv7lgcu+JVzHX1sufaOQzbHdpX9WZLZtURH2Kb9rBk7WrFlj0tLSzLXXXms2btxoBgwYYJo1a2Yuv/xy89NPPzmV1b9//4D7aWlp5pVXXjH79u0r87lHjhwJunXq1MlkZ2ebI0eOBMTm5OSYadOmmQcffNB88sknAY899NBDIZdbUr1WrVplDh48GLD82Wef9a/Xhg0bTJcuXUzz5s1Nhw4dzKpVq8ost6jj2+0f//iHv+zvvvvOtG3b1nTr1s1ceuml5osvvgiIdWkLF99++63p1q2b6devn9m6davp3r27ad68uWnXrp35/vvvA2K3bNli+vTpYy655BLTrVs3061bN3PJJZeYPn36mM2bNweV7RLv0hbbt283/fv3N8nJyaZJkyamdevWplmzZmbChAkmJycnILZ169Zm/PjxVn3cJdbVhg0bgm6XX3652bhxo9mwYUNArMv6uWy/9evX+//Pzc01Tz75pOnTp4+ZMGFC0HskOTnZdOrUKeDWtGlT06lTJ9O5c+eAWJf3v2s9Cu3fv9/89NNP5qeffjL79+8/4XK//PJL//+ZmZlm2LBh5oorrjCDBg0ye/bsCYg9mfvOok70PZ2VlWVWr15tDh06FPTYRx99ZFq2bGmuuuoq88MPP5iOHTuav/zlL6Z169bm448/DojdsWOHGTRokBkyZIjZvXu3GTt2rGnZsqXp1auX2bZtW5n1yMjIKDPmwIED5qeffjLr16832dnZQY8fPHjQ/POf/zQtW7Y0TZo0MU2aNDEdOnQwM2bMCIrdt2+fGTlypGnRooVp0aKFad68uWnRooUZOXJkUB90KdcYYwYPHmwmTZpkFi5caG655RZz1113mby8PGOMMSkpKQGxLm2cmprq/3/cuHFmzJgxZt26deaJJ54wd999d5ntV6h79+5By/bv329GjRplbr31VvP6668HPDZo0KCA+y7b2mXf4nL8dd1fuHDpGy7Hdtd+VJLjPwOUZMmSJUHLTvR9WhqXtnBpY4QfyZCjm266ySxatMjMnj3bdOzY0cydO9cYY8zHH39s+vbtGxRf3M6t8Hb55ZcHxLZv397ceeedpnnz5uauu+4yn3zyiSkoKCi2HoUf8JKTk4NuTZo0CYgdOXKkueeee8zLL79srr76avPwww/7Hyt6cHEt1xj7A1nRg8/AgQPNRx99ZIwx5ptvvjE33njjCbXbNddc4/+/d+/eZsWKFcYYY37++WeTlpYWclu4fNC79tprzccff2xmz55tOnToYNLT040xxixdutRcf/31AbE33nijmTt3bsC2LSgoMHPmzDE33HBDUFu4xLu0xc0332zmzp1rMjIyzIwZM8xTTz1l9u7da0aNGmXGjh0bENupUyfzyCOPmEsvvdSkpqaamTNnlvjhzSW2LMd/aHFJLlzWz2X7Fe0njz/+uLnjjjvM4sWLzfDhw82DDz4YEPvMM8+Y2267zWzfvj2gfYrj8v53rYdLQu1SrsuHU9d9p+2HU5f3tDFuXxj06NHDrF271nzzzTemdevW5r///a8xxpiNGzcGfai/7bbbzGuvvWaeffZZ0717d/P888+bPXv2mBkzZpg77rgjINY1MbRN7G+//XYzbdo08+OPP5qJEyeaF154waxYscLcdttt5qmnngoos1+/fmbatGkBSfG+ffvMs88+a/r16xcQ61JuYbsV8vl8ZuzYsaZfv37m6NGjQe3m0sZF7/fo0cPk5ub67x+/ryjui5PCW7t27YLq7JLAuWxrl32Ly/HXdX/h8iWVS99wOba79COXzwDG2H9R5rLtynJ8n3NpC5c2RviRDDkqenDt2LFjwGPH7zCNKX7nVnj/+J1b4fP37t1rXnrpJXP11Vebdu3amccee8xs2rQpIHbEiBFm1KhRAd9mlvQhq+gbNDs729xxxx1m5MiRxufzBdXZpVxj7A9kV155pf//4z+Un2i7FS27Z8+eJa778ffLaguXD3pFn3t8ex1f7lVXXRW0vqU95hLv0hZFEydjjh20jTmWaP35z38OeKywLXJzc80HH3xgBgwYYFq0aGHuueeegKTRNdYYtw8tLsmFy/q5bL+i91NTU01WVpYxxpi8vDxz9dVXB9Xjxx9/NDfeeKOZNWuWMcYEJW3Hl2vz/neth0tC7VKuy4dT132n7YdTl/e0MW5fGLj0i6IJwPH99vi+6JoY2ib2x7d54bY9evRowL7BmNL3K8fHupRrjDFdu3YNWjZx4kTTp0+foMdc2vgvf/mL/8Ntae1vzLFjSOfOnYO+POnUqZO54IILgurnmsAVKmtbu6yfy/HXdX/h8iWVS99wOba79COXzwCF8TZflLlsO2Pcjk8ubeHSxgg/rhlyZIzx/9+uXbuAx3w+X1B8zZo1tWTJEq1du9Z/W7NmjdauXatatWoFxHo8HknSWWedpX79+mn+/PmaOnWqDh48qF69egXETpgwQV26dNEtt9yizz77LOD5xysoKPD/Hx8fr2eeeUbZ2dm6//77g+rsUm7hY8nJyWrVqpUSEhJ08cUXS5IaNWoUEHfhhRdq5syZkqTzzz9f33//vaRj11TExMScULu1bdtWEydOVHZ2ttq0aaP09HRJx84vr1atWshtUXRb//e//9Xo0aPVuHFjDR06NOg87oKCAu3fv19bt25VRkaGtmzZIknav3+/cnNzA2KrVaum+fPnB5RvjNF//vMfJSYmBrWFS7xLW0RHR2vr1q2SpNWrVys2NlaS5PV6FR0dHVQPSYqJiVHXrl01ffp0LVy4UMnJyRo/fvwJxXbv3l1///vfNXDgwKDb8edbDxo0SEOHDtV9992nN998U1LJ/dNl/Vy2nzFGR48eVXZ2tqKiopSQkOB/veLarWnTppoxY4Z27Nihvn37Ki8vr9j6urz/XeuRkZGhHj16yOv9v12+1+tVSkpK0HU7LuXm5ub6r3/yeDwB7+Wir1VYbiGbfeeWLVv0wAMP6Morr9TLL7+smjVr6u9//7tycnIC4lze05ICnn/48GE1a9ZMktSwYcOgbePxeLRp0yYtX75cR44c0Q8//CBJ2rx5c8DrFsYWatq0aYmPFb7uFVdcodTUVElSjx49JEmdO3cu9hqDgwcPqkePHqpatap69+6tzz//XGeddZbGjx8fcB2Nx+PxP3/Hjh3+9Y+LiwvadnFxcVq+fHnQa33//ff+90oo5UpS/fr19e233wYsGz58uFq0aKFffvklqGzbNj569Kh/35CZmaldu3ZJkrKysoL6W926dTVr1iwtXrw46HbWWWcF1bno+9zj8WjMmDFq3LixBg4cGNTnXLa1y77F5fjrur+oWrWqRo0apc8//1x///vf9fnnn6tjx44aOnRoQB+S3PqGy7HdpR+5fAaQjh0bGjVqpJkzZ/q3c1JSkhYvXqyPP/44qN2ksred5HZ8cmkLlzZG+BX/iQclqlu3rrKyslSlShU9/PDD/uU7d+5UpUqVguLbtGmjDRs2qE2bNkGPFR6ECxX9sFCoRYsWatGihR588MGgxzp16qQWLVpo/Pjx+uCDD4IOHIVq1KihtWvXqkmTJpKkqKgoPf744xo+fLg2bNhQarnp6eklliv934EsMzPTfyBr0aJF0IHsn//8p0aMGKFXX31VSUlJ6t27t+rUqaNKlSrp0UcfDSrXpd1GjRqlyZMn6/LLL1e1atX08ssv64EHHlCbNm2CynZpi8IPesaYMj/o9e3bV3/+85/l8Xg0btw4DR8+XFWrVtVPP/2k/v37B8ROnDhRY8aM0UMPPaSkpCQZY7Rr1y6df/75mjhxYtD6Hh8vSbt27VKTJk2C4l3aYsiQIbrhhhtUs2ZN7dmzR1OmTJEk7d2715/UFiqub9aqVUu33367br/99pBjpf/70FK4bkV16NAhaFlhcvH000+Xmly4rJ/L9lu3bp1atmzp7xe7du1SUlKScnJyiv3wLUmxsbEaNmyYfvjhB33zzTfFxri+/13qUZhQX3311f4DvjFG8+bNC0qoXco9evSoBgwY4L9fGFvSh1OXfWdxH04nTZoU9OHUdf9W+IXB3Xff7f/CoFu3bsV+YTBkyBD99a9/ldfr1ZQpU/TUU09p9+7d2rVrl8aOHRsQGx8f71+/6dOn+5dnZGQoKioqINY1MSxM7Bs0aFBqYt+3b1/16NFDTZs21erVqzVq1ChJx/p8nTp1AsocN26cHnjgAcXFxalu3bqSjn1AzcnJ0eTJkwNiXcqVpMmTJxf7wXLo0KG65pprApYV18Z79uzRzp07g9p48eLFQWVKx7b5008/HbDsyiuv1I4dO4rdr/z5z38OWlaYwLVq1cq/bPjw4ZoyZYpeeOGFgFiXbe2yb5Hsj7+u+4tChV9Sde3aVbt379b777+v8ePH68MPP/THlNY3Jk2aFFCey7HdpR+5fAaQjiVDP/30k+677z6lpKTor3/9a7F90GXbSW7Hp+Pbok+fPqpdu3axbeHy/sMpcCqHoX6vMjIyzOHDh83evXtPqJzjL6Z0kZ6eHnQdRKHNmzcHnFZkzLELC30+n/n0009LLfeDDz4w48aNK/HxxYsXm1atWpk2bdqYr776ytxyyy3m6quvNv/v//0/85///Cco/pdffjGLFi0yCxcuNP/6178s1sze4cOHzZo1a8zq1atLvDi8uLYwxhTbFoXD64VD7jt37jTGGHPo0KFir0U4cOCA/3UPHTpk0tPTzerVq0us7759+8zq1avN6tWrrS6YdIkv2halxR48eNCsXLnSf1pGSadNFNdmLrGlmThxov/0yuONHz++1OcuX77cPP/88yU+fvz6leb47ffhhx+Wuv2Ol5mZaZYvX24df7wTef8XdfDgwaB6bN682fTp08e0atXKdO/e3XTv3t20atXK9O7du9hTao63ZMkS6/XLyMgw2dnZZuvWrVb1LWnfOWDAAPPNN98ELX/iiSdMcnKy//7mzZvNjh07guJK2r/l5OSY8ePHm0suucR06dLFJCcnmwsuuMB/gXtp8vPzzYoVK4KuGSx8veMtWbLE7N+/36xbty5g+Z133llsn/ztt9+KvW7wk08+MW3atDHdu3f372uNMWbPnj1m9OjRAbEbN240H3zwQbGTsRRn5cqVZuHChWbhwoXmxRdfLHY9iiu3uIvTT4b8/HyzatWqYtv4RJV27eKBAweCJv4pjD9+cpaS2qi4bV1Ydij7lvT09GJPvTWm+P1FadukuFNGy1K0b6xcubLE9TYm8Nhe2rq59s+ibPpcTk6Oeeyxx0yfPn3MZZddFvR4Seuwb9++YrddKMenom1R1gRRRdt41apVpeq/MAcAAAQ3SURBVLYxwodkyFFpF76uWbMmKN7lInyXWJeZb1xm4Cpah0OHDplhw4aZzp07F1uH4pR0IDv+9devX19iHQrXb/To0Vbr56KkNh48eLD1wffIkSNBs864tHG4ZtUqWvZ1113nL7t58+bFlu3Sl8NZ51DW72TX4/h+f//995fY74t7j5T0PnWxb98+6/e0MaG9R2wS6lD6ctH+Vtr+0MWBAwdK/PBatB4u+8KibL48cVk/l3YrrU4lbRebxN6lT7jsk0/Gup1qrsdql3jXY3V52CYuX1IVrfPMmTNLrbPLMdVl33mifW758uXmhRdeKHbdCvcXZa2bq3C1G8LPY0wxY60o0c0336xbb71Vhw4d0lNPPaWhQ4eqR48eWrx4sWbMmKFXX301ID4tLU2zZ8+WJD300EPy+Xz629/+pgULFmjLli168sknQ4odMmSI6tWrpxYtWujNN99UQkKCnnzySUVHRys1NVVz5szxxzZp0iRoCLrwdBaPxxNwPq1LHcpyzTXXaN68ec51cF0/Fydr/Yqum+v6ufYhFy5lhys2nMJVj1Dfp+PGjZMxJuT3SFGufb60+KJ1LEt57cu2dT5Z7XB8uZLb+rnu42zr4BIfruPCyVq3U8m1b7rEn8pj9e7du1WrVq2wbpPj+5xLncP1GSdc63cyP1ucqnbDKXCak7EKx3VGJJfZllxiXWa+cZmBy6UOxtjPtOJSB9f1cxGuqVld1s+1D7lwKTtcseEUrnqE633qwrXPu8SX1I/Xr19fbvuy7fvPtd1c2sJl/VzazXXa53C0hUt9Xfff5YFr33SJLw/Hatdt4tLnXOocrn1nuNbvZO0vTmW7IfyYQMGRcbzw1eUifNfYQqVdXCzZX1joWgfp2EwrdevWLfZizqIzrbjUwXX9XLisn+26SW7r59qHXLiUHa7YcApXPcL1PnWtQyGbPu8SXxH7sm2dXdvNpS1c1s+l3Vzq4BIfruOC6/67PHDtmy7x5eFY7bpNXPqcS53Dte8M1/qFc38RrnZD+JEMOXKdEalwKtDCN1Jpsy25xJY2803RGVIK2c7A5VKHwvawnWnFtg6hrJ8tl/UL1yxnrn3IhUvZ4YoNp3DVI1zvUxeufd4lvqL2ZZs6u7abS1u4rp9Lu7lsj3C1hcs+2SW2PHDddi7x5eFY7Rrr0udc6hzOfWc41i+c+4twtRtOgfANOkUW19nkjhw5Yj3bUnGxthcXF6ekCwtd62BM6DOBlVWHE1m/UBS3fic6y5lrG5+MGQlPRtnhig2ncNXjRN+nLlz7vEt8RezLtnV2bbcTaYtCNutXWru51iFcbWFb3xOJLW9c+6ZL/Ok8VpcV69LnTsbx92TvO0/W+oVzf3Gq2w0nDxMoAAAAAIhIjMUBAAAAiEgkQwAAAAAiEskQAAAAgIhEMgQAAAAgIpEMAQAAAIhI/x9Jumra6xkObQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "judges.sort_values(by='Hardness', inplace=True)\n", + "sns.heatmap(judges.T);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "What a difference! Very quickly we see the opposite trends occurring: ***how would you describe the trends***?\n", + "\n", + "Note that you could not have seen these trends from a box plot! \n", + "\n", + "Next we can calculate the ***correlation*** of the data. We will visualize what a strong a weak correlation is in the next section, but here we already see how the columns are correlated to each other: in a table, and a heat map. Heat maps are great way to visualize correlations." + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    FlavourSweetFruityOff-flavourMealinessHardness
    Flavour1.0000.9510.975-0.952-0.933-0.924
    Sweet0.9511.0000.949-0.901-0.914-0.945
    Fruity0.9750.9491.000-0.903-0.969-0.944
    Off-flavour-0.952-0.901-0.9031.0000.8360.854
    Mealiness-0.933-0.914-0.9690.8361.0000.927
    Hardness-0.924-0.945-0.9440.8540.9271.000
    \n", + "
    " + ], + "text/plain": [ + " Flavour Sweet Fruity Off-flavour Mealiness Hardness\n", + "Flavour 1.000 0.951 0.975 -0.952 -0.933 -0.924\n", + "Sweet 0.951 1.000 0.949 -0.901 -0.914 -0.945\n", + "Fruity 0.975 0.949 1.000 -0.903 -0.969 -0.944\n", + "Off-flavour -0.952 -0.901 -0.903 1.000 0.836 0.854\n", + "Mealiness -0.933 -0.914 -0.969 0.836 1.000 0.927\n", + "Hardness -0.924 -0.945 -0.944 0.854 0.927 1.000" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbcAAAFoCAYAAADU/7URAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3X1cjff/B/DX6aSsEl9bWsQQhZl7qmVDsqKoTobxI2PZWBjZKjZSW+5mG2tpYZhmbksrtzMTIw2zrxhyFyIVjUo61en8/vDr/Bzd3+i6zuX1fDzO43Gu61xd5321Pbz6fK7P9fnI1Gq1GkRERBKiJ3QBRERE9Y3hRkREksNwIyIiyWG4ERGR5DDciIhIchhuREQkOQw3IiKSHIYbERFJDsONiIgkh+FGRESSw3AjIiLJYbgREZHk6AtdgC7KysoVuoQaMTNrwpobgC7WDOhm3bpaMzUcttyIiEhyGG5ERCQ5DDciIpIchhsREUkOw42IiCSH4UZERJLDcCMiIslhuBERkeQw3IiISHIYbkREJDkMNyIikhyGGxERSQ7DjYiIJIfhRkREksNwIyIiyWG4ERGR5DDciIhIchhuREQkOfoN+WWOjo4wMDCAoaEhAMDW1hY5OTno2rUr/ud//qchSyEiIglr0HADgJUrV8La2lqzHRAQ0NAllFFcXAx9/Qb/VRAR0TMiqm7JxMREjB49Gh4eHhg+fDh27doFADh58iQ8PDy0jlUoFPjzzz8BAJGRkXBzc4ObmxsCAwPx8OFDAI+DMyoqSvMzT24HBAQgJCQEkydPxqhRoxri8oiIqIE0eHNlxowZmm7JOXPmaH3WpUsXbNq0CXK5HHfv3oVCoUD//v3Rp08f5Ofn48KFC+jUqRNSUlKQk5ODvn37IiEhAb/88gs2b94MY2Nj+Pv7Izw8HB9//HGVtZw+fRpRUVEwMjJ6JtdKRETCELxbsrR1BgDZ2dmYO3curl+/DrlcjgcPHuDatWvo0aMH3N3dERMTg8DAQERHR8PT0xMymQyJiYkYNmwYTExMAACjRo1CaGhotWpxcXFhsBERSZCouiWDgoLQr18/xMXFITY2Fi+//DKUSiUAwNPTE7t27YJSqUR8fLymm1KtVkMmk5V7PrlcjpKSEs126blKMdiIiKRJVOGWm5uLVq1aQSaT4ejRo7h+/brms5YtW8LKygqff/45OnTogFatWgEAXn/9dezevRt5eXlQq9XYvn07Xn/9dQBAmzZtkJycDADIzMxEUlJSw18UERE1OFENEfTz88PChQuxevVq2NjYwMbGRutzhUKBTz75BEuXLtXsGzBgAC5evIgxY8YAALp27YqpU6cCeNxFOWPGDIwYMQJt27ZFt27dGu5iiIhIMDK1Wq0Wughdk5WVK3QJNWJm1oQ1NwBdrBnQzbp1tWZqOKLqliQiIqoPDDciIpIchhsREUkOw42IiCSH4UZERJLDcCMiIslhuBERkeQw3IiISHIYbkREJDkMNyIikhyGGxERSQ7DjYiIJIfhRkREksNwIyIiyWG4ERGR5DDciIhIcrhYKRERSY6+0AXoostO7kKXUCMdDsTq5KrFrLlh6GLdulozNRx2SxIRkeQw3IiISHIYbkREJDkMNyIikhyGGxERSQ7DjYiIJIfhRkREksNwIyIiyWG4ERGR5DDciIhIchhuREQkOQw3IiKSHIYbERFJDsONiIgkh+FGRESSw3AjIiLJYbgREZHkMNyIiEhy9IUuoNSePXvw/fffQ61WQ6lU4tVXX8Xy5cuf2felpaXh6NGjGD169DP7DiIiEoYowi0zMxMLFy5ETEwMLCwsoFarceHChWf6nbdu3cKWLVsYbkREEiSKbsm7d+9CX18fzZo1AwDIZDJ07twZmzdvxsKFCwEAZ86cgY2NDc6cOQMACAoKwpYtWwAA//3vfzF+/HgoFAooFAocOnRIc+6EhASMGTMGCoUCo0ePxt9//w0ACA4OxpUrV+Du7o4ZM2Y04NUSEdGzJoqWW6dOndCtWzcMHDgQtra26NWrF9zd3WFvb4/169cDABITE9GzZ08cP34c3bp1Q2JiIiZNmoScnBwsWLAAkZGRaNGiBTIzMzFy5EjEx8fj/v37CA8Px9q1a2FiYoJLly7Bx8cHhw4dwvz587FkyRJER0cLe/FERCJzqb9zufs7/rGvgSupPVGEm56eHsLDw5GSkoITJ07gwIEDWLt2LeLi4qBUKnHnzh0kJiZi9uzZWLVqFYYPH46ioiK0adMGCQkJSEtLg4+Pj+Z8MpkM169fx5kzZ3Djxg2MGzdO81lxcTHu3r0rxGUSEekGmSg69epEFOFWytraGtbW1hg3bhyGDRuGP//8E3Z2djh06BDu3buHfv36ITg4GIcOHYKtrS0AQK1Ww8bGBj/99FOZ8505cwZvvPEGli5dWuazK1euPPPrISLSRTK57oebKK4gIyMDp0+f1mzfuXMH2dnZsLS0hJ2dHSIjI9GzZ08AQK9evbB69WrY29sDAHr27Inr16/j+PHjmp8/c+YM1Go1HBwccOTIEVy6dEnrMwAwMTFBXl5eQ1weEZFu0ZOX/9Ihomi5FRcX49tvv8WtW7fQuHFjlJSU4KOPPkKXLl3w4osv4pNPPtGEmZ2dHbZs2QI7OzsAQNOmTREeHo5ly5YhNDQURUVFaN26NSIiItC2bVssW7YM8+bNQ0FBAYqKitCrVy9069YNNjY2aNeuHdzc3NC+fXusXLlSyF8BEZFoSKHlJlOr1Wqhi9A1l53chS6hRjociEVWVq7QZdSImVkT1txAdLFuXa1ZV1xx8Sp3v9XeHQ1cSe2JouVGREQiIpMJXUGdMdyIiEiLTF/3o0H3r4CIiOqVTE/377kx3IiISJtct0ZGlofhRkREWqQwWpLhRkRE2uqp5Xbt2jUEBATg/v37aNasGZYsWYK2bdtqHXPv3j0EBgYiPT0dRUVFsLOzw6effgr9Ot730/14JiKieiWTy8t91dSCBQswduxY7Nu3D2PHjsX8+fPLHBMREQErKyvExcUhLi4O586dw/79++t8DQw3IiLSJpeX+8rJyUFaWlqZV05OTplT3Lt3D//88w/c3NwAAG5ubvjnn3+QnZ2tdZxMJsPDhw9RUlKCwsJCFBUVwdzcvM6XwG5JIiLSIqvgObcNGzYgLCyszH5fX19Mnz5da196ejrMzc0h/78Wn1wuR4sWLZCeno7mzZtrjps2bRqmT5+O/v3749GjRxg3bhx69+5d52tguBERkbYKuiC9vb3h6elZZr+pqWmtv2rv3r2wsbHBhg0b8PDhQ/j4+GDv3r1wcXGp9TkBhhsRET2lotGSpqam1Q4yCwsLZGRkQKVSQS6XQ6VSITMzExYWFlrHRUVFITQ0FHp6emjSpAkcHR2RlJRU53DjPTciItJWwT23mnjxxRfRuXNnxMfHAwDi4+PRuXNnrS5JALC0tMThw4cBAIWFhUhMTETHjh3rfAkMNyIi0lJfoyWDgoIQFRUFZ2dnREVFYeHChQAAHx8fJCcnAwDmzp2LU6dOYfjw4fDw8EDbtm0xatSoOl8DuyWJiEhbPT3nZmVlhW3btpXZv3r1as37Nm3aYN26dfXyfU9iuBERkRbOLUlERNLDuSWfTx0OxApdQo3p0kKJpVhzw9HFunWxZl0h02e4PZcuD3QVuoQa6XBoF1cPbwC6uDo0oJt162rNOoOLlRIRkdTUZmSk2DDciIhIGweUEBGR1LDlRkRE0sPFSomISGpkct2PBt2/AiIiqlcVTZysSxhuRESkjffciIhIathyIyIi6ZEx3IiISGrYciMiIqnhaEkiIpIc3nMjIiLp4WhJIiKSGi5WSkRE0iOBlpvuxzMREdUrmb683FdNXbt2DaNHj4azszNGjx6N1NTUCo+9evUqunfvjiVLltSh8v/HcCMiIm0yWfmvGlqwYAHGjh2Lffv2YezYsZg/f365x6lUKixYsABOTk51rVyD3ZJERKSloiVvcnJykJOTU2a/qakpTE1Ntfbdu3cP//zzD9atWwcAcHNzQ0hICLKzs9G8eXOtYyMjIzFw4EDk5+cjPz+/Xq5BdC03R0dHuLi4wN3dHe7u7ggNDa3Rz2dkZGD8+PGa7W+//RaFhYX1XSYRkXTpyct9bdiwAYMHDy7z2rBhQ5lTpKenw9zcHPL/C0q5XI4WLVogPT1d67gLFy7gjz/+wMSJE+v1EkTZclu5ciWsra3L/ay4uBj6+hWXbW5ujo0bN2q2w8LCMGnSJBgYGNR7nUREUlTRc27e3t7w9PQss//pVlt1FRUV4bPPPsOiRYs0IVhfRBluTwsICICxsTFSU1Px77//YuXKlfDy8kJSUhIAIC0tTbP95PuFCxcCAMaMGQM9PT1ERkbCy8sLv/32GwwNDQEAH3zwAVxdXTF8+HDBro+ISFQqGDxSXvdjRSwsLJCRkQGVSgW5XA6VSoXMzExYWFhojsnKysKNGzcwZcoUAI+7PdVqNfLy8hASElK3S6jTTz8jM2bM0ITPnDlzAACnT59GVFQUjIyMkJaWVq3zLFiwAJs2bcLmzZthbGwMAOjbty92794NT09P3Lp1C2fPnsXKlSufzYUQEekgmV7dW1EvvvgiOnfujPj4eLi7uyM+Ph6dO3fWut/WsmVLTSMFeHwbKT8/H/7+/nX+ftHdcwMed0vGxsYiNjYWb7zxBgDAxcUFRkZGdT73+PHjsWnTJgDAzz//DC8vL3ZZEhE9Sa5X/quGgoKCEBUVBWdnZ0RFRWl603x8fJCcnFzfVWsRZcutPE8Gm76+PtRqtWZbqVRW+zy9evWCSqXCqVOnsHPnTmzbtq1e6yQi0nUVjZasKSsrq3L/jV29enW5x0+fPr1evhcQacutKi+99BKKiopw/fp1AEB8fHyFxxobGyMvL09r3/jx4zF79mz06NFDq/+XiIjweIaS8l46RCfDTV9fH/PmzcO7776L8ePHVzrKZtKkSZgwYQLc3d01z2e4uroiJycHY8eObaiSiYh0hkwmK/elS2TqJ/v3nhMnT55EUFAQ4uLiavUf7PJA12dQ1bPT4dAuXHZyF7qMGulwIBZZWblCl1EjZmZNdK5mQDfr1tWadUVewtFy95sMcGjgSmpPZ+651Ze5c+fi2LFjWLJkic79JUJE1BDq656bkJ67cKvpjCdERM8dLlZKRERSw5YbERFJDxcrJSIiqZFVMn+vrtD9KyAiovrFe25ERCQ19TG3pNAYbkREpE1P9x+TYrgREZEWttyIiEh6KljPTZcw3IiISAufcyMiIunhc25ERCQ1bLkREZH08Dk3IiKSGim03HQ/nomIqF49amxY7qumrl27htGjR8PZ2RmjR49GampqmWNUKhUWLlwIJycnDBkyBNu2bauHK2C4ERHRM7JgwQKMHTsW+/btw9ixYzF//vwyx8TFxeHGjRvYv38/tmzZgm+//RZpaWl1/u7nciVuIiKqWG5u+aucq9Vq5OTklNlvamoKU1NTrX337t2Ds7MzkpKSIJfLoVKpYGtri/3796N58+aa46ZMmQKFQgEXFxcAQHBwMFq2bIn33nuvTtfAe261MDg4XOgSauS3+dPgujhS6DJqZFfAFJ2sOSur/H8UxMzMrInO1a2rNeu6DRs2ICwsrMx+X19fTJ8+XWtfeno6zM3NIf+/+3dyuRwtWrRAenq6Vrilp6ejZcuWmm0LCwvcuXOnzrUy3IiIqFq8vb3h6elZZv/TrTYxYLgREZGWInmjcvc3N2pc7SCzsLBARkYGVCqVplsyMzMTFhYWZY67ffs2unXrBqBsS662OKCEiIi0qErU5b5q4sUXX0Tnzp0RHx8PAIiPj0fnzp21uiQBwMXFBdu2bUNJSQmys7Nx4MABODs71/kaGG5ERKSlpKSk3FdNBQUFISoqCs7OzoiKisLChQsBAD4+PkhOTgYAuLu7w9LSEm+99RZGjRqFDz/8EK1bt67zNbBbkoiItNS0lVYRKyurcp9bW716tea9XC7XhF59YrgREZEWKTwhxnAjIiItKnXNuyDFhuFGRERailUMNyIikpiSerrnJiSGGxERaWG3JBERSU59jZYUEsONiIi01OaZNrFhuBERkZZihhsREUkNn3MjIiLJ4T03IiKSHBW7JYmISGr4nBsREUnOc9NyKywsxFdffYUDBw5AX18fjRs3hq+vL5ycnAAAgYGBOHPmDDp27IhvvvmmzPbTnvz8zTffxKFDh7By5cr6vTIiIqqV52a0ZFBQEPLz87Fr1y4YGhoiJSUF7733Hpo2bYp27dph3759OHnyJPT09HD37l2t7ac9/Xl0dHS9X1RtlK4WS0T0vJPCc25VLlZ669Yt7NmzB0FBQTA0NAQAWFtb44MPPkBYWBgmTJiAgoICeHp64rvvvtPaXr9+vda58vLyKv08KysL48ePh0KhgKurK5YuXQoAePToEWxtbZGdna05dvHixQgLCwMAHD58GB4eHhg+fDi8vb1x/fp1AEB0dDRmzJih+Zknt6OjozF58mR8/PHHUCgUSElJqeGvjohImupjJW6hVdlyS0lJQZs2bdCsWTOt/T169MCKFSuwY8cOeHl5ITY2FsDjVVWf3H6SiYkJIiMjtT5/suVmamqKiIgIGBsbo6ioCJMnT8bhw4fx5ptvYvDgwYiPj8eECRNQXFyM+Ph4bN68Gffu3cMnn3yCqKgodOjQAdu2bcOcOXPKXSDvaX/99RdiY2PRpk2bKo8lInpeSGFuySpbbg35MJ9KpcLSpUsxYsQIKBQKXLp0CRcuXAAAKBQKxMTEAHjcUrOysoKlpSX++9//olOnTujQoQMAwMvLC+fPn0deXl6V39erVy8GGxHRU9RqdbkvXVJly83a2ho3btzA/fv3tVpvf//9N2xsbKr8gg8//BBpaWkAgJ9++qnSY9etW4ecnBxs27YNhoaG+Oyzz6BUKgEAffr0wcOHD3Hx4kXExMTA09MTwOP/CDKZrNzzyeVyrb7j0nOVMjY2rrJ+IqLnTbFKt4KsPFW23CwtLeHi4oKgoCBNOKSkpCAiIgK+vr5VfsF3332H2NhYxMbGwsTEpNJjc3NzYWZmBkNDQ2RkZOC3337T+tzd3R3r1q3DiRMn4OzsDADo2bMnzp8/jytXrgAAYmJi0KVLF5iYmKBNmza4ePEiCgsLUVhYiH379lVZLxHR866kpKTcV3169OgRPvroIwwZMgQuLi74/fffKz1eqVRi2LBhUCgU1Tp/tUdLLl++HMOGDUOjRo1gaGiIefPmoV+/fppWWX0YP348Zs6cCQ8PD7z88suwt7fX+tzT0xODBw+GQqHACy+8AABo3rw5li5dijlz5qC4uBjNmzfHsmXLADwOPnt7e7i5ucHS0hJWVlbIysqqt3qJiKSoIe65rV27FsbGxvj111+RmpqKcePGYf/+/RX2qH399dfo0aOH5lZVVWRqXetIFYHBweFCl1Ajv82fBtfFkUKXUSO7AqboZM1ZWblCl1FjZmZNdK5uXa1ZV2xLOlPufufObZGTk1Nmv6mpKUxNTWv0Ha6urli8eDFee+01AMD7778PDw8PDB06tMyxJ0+exJo1a/Duu+9iyZIl1XqEjDOUEBGRloq6IDds2KB5BOtJvr6+mD59eo2+4/bt22jVqpVm28LCAnfu3ClzXH5+PkJDQ7Fq1SqkpqZW+/wMNyIi0lLRDCXe3t6awXxPKq/V5unpidu3b5d7nmPHjlW7lqVLl2Ls2LEwNzdnuBERUe1V9MB2TbofSx/dqkjLli1x69YtNG/eHACQnp4OW1vbMsedOnUKhw8fRnh4OJRKJR48eIDhw4cjLi6u0vMz3IiISEtDTL/l4uKCLVu24LXXXkNqaiqSk5OxfPnyMsc9GWJJSUnVvudW5aMARET0fClRq8t91afJkycjJycHQ4YMwfvvv4/g4GDN42IrVqzAzz//XKfzs+VGRERaGmI9NyMjowpXg5k5c2a5+21tbas92T7DjYiItDw367kREdHz47lZz42IiJ4fDdEt+awx3IiISAu7JYmISHIYbkREJDkqCUw5zHAjIiItUphPn+FGRERaVCp2SxIRkcSwW5KIiCRHCgNKuFgpERFp+WzrnnL3h4wqu5CoWLHlVgtDPl8ldAk18uunUzFskW6tar07cAoGBpVdFFHMDgX54vrY94Quo8Ze2bRGJ1e11sWadQUf4iYiIsnh9FtERCQ5DbGe27PGcCMiIi0VrcStSxhuRESkRQrjDBluRESkRQqPAjDciIhICweUEBGR5DTEowCPHj1CYGAgzp07B7lcDn9/fwwaNKicWkoQGhqKxMRE6OnpoUWLFggNDYW5uXml59d7VoUTEZFuUpWUlPuqT2vXroWxsTF+/fVXRERE4NNPP8XDhw/LHHfw4EGcOXMGsbGxiIuLQ4cOHbBqVdXPGrPlRkREWioaLZmTk4OcnJwy+01NTWFqalqj79izZw8WL14MAGjbti26du2Kw4cPY+jQsrOgFBYWQqlUQk9PDw8fPoSlpWWV52e4ERGRFpW6/Fbahg0bEBZWduYgX19fTJ8+vUbfcfv2bbRq1UqzbWFhgTt37pQ5ztHREX/++Sf69++Pxo0bo3379pg/f36V52e4ERGRloqWvPH29oanp2eZ/eW12jw9PXH79u1yz3Ps2LFq13Lu3DlcuXIFhw8fhpGREUJDQ7F48eIqA47hRkREWip6zq0m3Y8xMTGVft6yZUvcunULzZs3BwCkp6fD1ta23PPY2dmhSZPHc3OOGDECc+fOrfL7OaCEiIi0qErU5b7qk4uLC7Zs2QIASE1NRXJyMt54440yx1laWuL48eMoKioCACQkJKBjx45Vnp8tNyIi0lLRPbf6NHnyZAQEBGDIkCHQ09NDcHAwTExMAAArVqxAixYt8M4772DcuHG4dOkSRowYAX19fVhYWCAkJKTK8zPciIhIS0PMLWlkZISVK1eW+9nMmTM17w0NDbFo0aIan5/hRkREWrgqABERSQ6n3yIiIsmRwkrctRot6ejoiP79+0OlUmn27dixAzY2NoiKiqp1MY6OjkhJSQEAzJs3DydPnqz1uYiIqHYaYvqtZ63WLTczMzP88ccfGDBgAABg586dePXVV+utsC+++KLezkVERNWna0FWnlqHm6enJ6KjozFgwADcvHkTjx49grW1NYDH84B9/fXXOHHiBIqKimBtbY2goCAYGxsjLi4OP/74o+aZBX9/f9jb25c5//jx4zFp0iQMGjQIAQEBMDAwQGpqKu7cuYMePXpgyZIlkMlkyMvLw6JFi3Dx4kUolUrY2toiMDAQcrkcYWFhiI+Ph6GhIWQyGX788Uc0atQI/v7+uHz5MvT19dGuXTusWLGitr8GIiLJkcBapbUPN1tbW2zatAkPHjxATEwMPDw8cPbsWQDAmjVr0KRJE2zfvh0AsGzZMkRGRmLWrFno378/3NzcIJPJcPXqVUycOBGHDx+u8vsuXbqE9evXQyaTwdPTE8eOHYODgwMWLVqEvn374osvvkBJSQnmzJmDHTt2wNnZGWvXrkViYiIaN26MvLw8NG7cGL///jtycnKwe/duAMCDBw9q+ysgIpKk3+ZPE7qEOqt1uMlkMgwdOhS7du3C7t278fPPP2vC7eDBg8jLy8O+ffsAPG7JderUCQBw8+ZN+Pn5ISMjA/r6+rh79y6ysrJgZmZW6fc5OTnB0NAQANClSxfcuHEDDg4OmuUQ1q1bBwAoKCiAubk5TExM0K5dO3z88cd44403MHDgQJiYmKBTp064evUqFi5ciH79+mHgwIG1/RUQEZFI1Wm0pEKhwNtvv41+/frhP//5j2a/Wq3GggULyu1unD17NgICAuDk5ISSkhJ0794dSqWyyu8qDTYAkMvlmsEsarUa4eHhaN26dZmf2bp1K/766y8cP34cCoUCa9asQadOnbB7924cP34chw8fxtdff424uDit8xMRkW6r09ySrVu3xqxZszBtmnYT1tHREevXr0dBQQEAIC8vD1euXAEA5Obmatbi2b59OwoLC+tSAhwdHREZGakJu+zsbNy8eRN5eXnIzs5Gv379MGPGDFhbW+PSpUu4c+cO5HI5nJycEBgYiOzsbNy/f79ONRARkbjU+Tm30aNHl9k3ZcoUhIWFYeTIkZDJZJDJZPD19YWVlRUCAwMxbdo0mJubo1+/fmjWrFmdvn/u3LlYtmwZ3N3dIZPJ0KhRI8ydOxeNGjXC9OnTUVBQALVajS5duuCtt97C8ePHsXz5cgCPn8KfMmVKlcuVExGRbpGpK1rbgCo05POqlzgXk18/nYphiyKFLqNGdgdOwcCgsosiitmhIF9cH/ue0GXU2Cub1iArK1foMmrEzKyJTtZMDYdL3hARkeQw3IiISHIYbkREJDkMNyIikhyGGxERSQ7DjYiIJIfhRkREksNwIyIiyWG4ERGR5DDciIhIchhuREQkOQw3IiKSHIYbERFJDsONiIgkh+FGRESSw3AjIiLJ4WKlREQkOfpCF6CLnL+IELqEGtk37wM4hYQLXUaNHPhsmk7WnPq2t9Bl1FjbbRtwxcVL6DJqxGrvDq7ETZVityQREUkOw42IiCSH4UZERJLDcCMiIslhuBERkeQw3IiISHIYbkREJDkMNyIikhyGGxERSQ7DjYiIJIfhRkREksNwIyIiyWG4ERGR5DDciIhIchhuREQkOQw3IiKSHIYbERFJDsONiIgkp07h5ujoiJSUFK19CoUCSUlJdSoqKSkJCoWiTucgIqLnl+Att+LiYqFLICIiidF/VieOi4vDjz/+iKKiIgCAv78/7O3tATxu8Xl5eeH48eNo3bo1QkND8fXXX2P37t0wNzfHa6+9pjlPUlISQkND0b17d5w+fRoymQxff/01rKysAAAxMTHYtGkTVCoVTExMEBQUhPbt2+Ovv/5CSEgISkpKUFxcjKlTp8LNzQ1btmzB+vXrYWBggJKSEnzzzTeacxERkTTUOdxmzJgBQ0NDzXZqaioAoH///nBzc4NMJsPVq1cxceJEHD58WHNcVlYWNm7cCAA4ePAgDh48iJ07d6Jx48b48MMPtb7j8uXLWLSkCv6tAAAWbElEQVRoEYKDg7Fq1SqEh4dj+fLlOHnyJPbs2YOffvoJBgYGSEhIwNy5c7F582asXr0a3t7e8PDwgFqtRm5uLgBg6dKliI+Ph4WFBQoLC6FSqer6KyAiIpGpc7itXLkS1tbWmu3Se2U3b96En58fMjIyoK+vj7t37yIrKwtmZmYAAA8PD83PJCUlYdiwYTA2NgYAjBw5EuHh4ZrP27Vrhy5dugAAevTogd9//x3A41C8cOEC3n77bQCAWq1GTk4OAMDW1haRkZG4ffs2HBwc0L17dwCAnZ0dAgMDMXjwYAwcOBCtW7eu66+AiIhE5pl1S86ePRsBAQFwcnJCSUkJunfvDqVSqfncyMhI816tVld6LgMDA817PT09zX06tVoNLy8vzJw5s8zPTJw4EY6Ojjh27BhCQkLg4OCAWbNmISwsDMnJyTh+/DgmTJiAoKAgDBgwoK6XS0REIvLMBpTk5ubC0tISALB9+3YUFhZWeKy9vT327NmD/Px8qFQq7Nixo1rf4ejoiNjYWNy5cwcAoFKpcPbsWQDAtWvX0KZNG4wZMwYTJkxAcnIyiouLcfPmTXTr1g1TpkyBg4MDzp8/X8crJSIisXlmLbfAwEBMmzYN5ubm6NevH5o1a1bhsYMGDcLff/8NDw8PtGjRAra2tsjIyKjyO/r27YuPPvoIU6dOhUqlQlFREVxcXNC1a1ds3LgRSUlJaNSoEQwMDPDpp5+ipKQEAQEByM3NhUwmg4WFBfz8/OrzsomISARk6qr6BKkM5y8ihC6hRvbN+wBOIeFVHygiBz6bppM1p77tLXQZNdZ22wZccfESuowasdq7A1lZuUKXUSNmZk2ELuG5IvhzbkRERPWN4UZERJLDcCMiIslhuBERkeQw3IiISHIYbkREJDkMNyIikhyGGxERSQ7DjYiIJIfhRkREksNwIyIiyWG4ERGR5DDciIhIchhuREQkOQw3IiKSHIYbERFJDhcrJSIiyWHLjYiIJIfhRkREksNwIyIiyWG4ERGR5DDciIhIchhuREQkOQw3IiKSHIYbERFJDsONiIgkh+FGRESSw3AjIiLJYbgREZHkMNyIRKikpAQXLlwQugwincVwoxqbOXNmtfaJya5du1BcXCx0GdWmp6eHefPmCV1GnRUWFiIrK0voMug5xHATkEqlgpeXl9Bl1NiNGzfK7Lt69aoAlVRffHw8HB0dsWLFCmRkZAhdTrVYWVkhLS1N6DJqbNasWcjNzUVBQQGGDx8OV1dXrF27VuiyKnXt2jUolUoAwJEjRxAZGYkHDx4IXBXVhb7QBTzP5HI5/vOf/0CpVMLQ0FDocqq0detWbNmyBampqRg5cqRmf25uLtq1aydgZVVbtWoVbt26hc2bN8PLywu9evXC2LFjYWdnJ3RpFcrOzsaIESPQu3dvGBkZafavWLFCwKqqdu3aNTRp0gR79+6Fra0tAgMDMWrUKEyePFno0ir00UcfYfv27bh58yYWLFgABwcH+Pv7IyIiQujSqJYYbgJr27Ytxo0bB2dnZ61/wMaNGydgVeVzcHDAK6+8gpCQEHzyySea/SYmJrCxsRGwsupp1aoV/Pz8MGjQIMyePRtHjhyBpaUlFixYgD59+ghdXhmurq5wdXUVuowaK+3+PXHiBAYMGIAXXngBenri7iTS09NDo0aNkJCQgHfeeQc+Pj5wd3cXuiyqA4abwB4+fIiOHTuKvlsPeBwOrVq1Qnx8PIDHLYvmzZsLXFX1FBYWYvfu3fj555+hUqnw0UcfYdiwYThz5gw++eQTHDx4UOgSy/D09BS6hFqxsrLCpEmTcPXqVfj5+aGgoEDokqqkVCqRkZGBgwcPYtasWQAAtVotcFVUFww3gS1atEjoEmrszJkzmDlzJkpKSpCQkIDk5GRs3boVISEhQpdWIUdHR9ja2iIgIAA9e/bU7O/Tpw/s7e0FrKxiM2bMgEwmK7Nf7N2SS5YswR9//AEbGxsYGRkhIyMDfn5+QpdVKW9vb7i6usLe3h6vvfYabt68iSZNmghdFtWBTM0/TwT1008/lbtfjN2SpcaMGYPPP/8cc+bMwc6dOwE87kLbtWuXwJVVLDMzEy1atNDal5eXBxMTE4EqqlpMTIzmvVKpxL59+2BlZYVPP/1UwKqqlpeXByMjI+jp6SElJQWXLl3CkCFDYGBgIHRp1VZSUoLi4mKdqpm0ibsj/Dlw9uxZzevUqVMIDw/H0aNHhS6rUkVFRejQoYPWvkaNGglUTfW8//77ZfaNHz9egEqqz9PTU/MaM2YMvv/+e1y7dk3osqo0YcIEFBQUICsrC5MnT0Z0dDTmz58vdFmV2r17N/Ly8gAA33zzDXx8fHDp0iWBq6K6YLekwJ7ulszMzERoaKhA1VSPgYEBHj58qOkyu3z5smhHexYXF6OoqAglJSUoKCjQ3EfJzc3Fo0ePBK6uZmQymU48GqBWq2FkZIRdu3Zh1KhRmD59OoYPHy50WZVatWqV5h7s0aNHMWHCBISEhGDz5s1Cl0a1xHATmRYtWiA1NVXoMir1wQcfYPLkycjMzERAQACOHDmCZcuWCV1WuSIiIhAWFgaZTIYePXpo9puYmODdd98VsLKqPXnPTa1W4+LFi6K9P/gkpVKJwsJCHDlyBBMmTAAA0Y+W1Nd//E/h0aNH8fbbb2P48OH44YcfBK6K6oLhJrAn77mp1WokJyfD1NRUwIqqNmDAALRv3x5HjhyBWq3G1KlT8corrwhdVrl8fX3h6+uL4OBg0XeNPW3QoEGa93K5HJMmTdIKaLEaNmwY7Ozs0L59e/Tq1QtZWVmibdmXkslk+OWXX7Br1y6sWrUKwOPud9JdHFAisMDAQM17uVyONm3aYNSoUWjWrJmAVVUtLy8P169fx6uvvip0KZKXn58PAFrPQYpdTk4OTExMoKenh4cPHyIvLw/m5uZCl1Wh06dPY/Xq1bC1tYW3tzdSU1OxceNGfPbZZ0KXRrXEcKMaS0hIwPz58yGXy3Hw4EEkJyfju+++E+VsDt7e3tiwYQPs7Oy0htWr1WrIZDIkJiYKWF3lbt68CT8/P80Eyl26dMGyZcvQunVrgSurnFqtxvbt25GamoqPP/4YaWlpyMzMRK9evYQujZ4jDDeBPXr0COHh4Th27BhkMhkcHBzwwQcf4IUXXhC6tAp5eXkhIiICPj4+mkcBhg0bht27dwtcWVmljwDcunWr3M9btWrVwBVV37vvvgtXV1fN/KPR0dGIj4/HunXrBK6scqGhobh37x7OnTuHvXv34t9//4WPjw+2b98udGkVSk1NRWBgoOZB7nPnzuHgwYOYPn260KVRLYn7Lu9zICQkBJmZmZg7dy4CAwORmZmJ4OBgocuqkpmZmda2WJ8HKn22rXR2ladfYpadnY2RI0dCJpNBJpPBy8sL2dnZQpdVpaSkJHz55Zdo3LgxAGjmTxWzoKAgTJ06VfPgdufOnbF3716Bq6K64IASgSUnJyMuLk6z3atXL4wYMULAiqpmbGyMu3fvarr5kpKSRD+bw9PdkqXE3C2pp6eHq1evon379gAeT0gsl8sFrqpqhoaGWr/rkpISAaupntzcXLz55pv46quvAPz/XJOkuxhuIpCfn68ZLKALz17NmTMHPj4+SEtLw/jx45GamqoZYSZWO3bs0LxXKpWIi4vTDP8Wq1mzZmHcuHHo3LkzZDIZzp8/j6VLlwpdVpWsra3xyy+/QK1WIy0tDZGRkejdu7fQZVVKLpejqKhIE8oZGRmif3yBKsd7bgKLjIxEXFwcXF1dIZPJsGvXLowYMQLvvfee0KVVKjc3F3/99RcAoGfPnqJ/fKE8EyZMwI8//ih0GZXKzs7Gf//7X6jVavTo0UMnJqrOy8vD4sWLNZNROzo6IjAwEMbGxgJXVrGdO3diz549uHjxIry8vLBz507MmjULbm5uQpdGtcRwE4GEhAQcP34carUar7/+Ot58802hS6rUtm3bYG9vD0tLS6FLqbWbN29i4sSJ+O2334QupULfffcdFAoFLCwshC7luXDy5En8/vvvUKvVcHR0FOUySFR94u6XeQ6cPHkSAwYMwIABA4Qupdr++ecfrF27FkVFRbCzs4O9vT3s7Ozw0ksvCV1ahZ6851Y6Ke68efMErqpyeXl5GDVqFDp06ABPT084OzuL/mHoUomJibhx44ZmbTdA3JOBA49XiGCgSQdbbgJTKBTIy8vTTJD78ssvC11Std25cweHDh1CZGQk0tPTcf78eaFLqtCTjwLo6+vjpZde0onBGSqVCgkJCdi5cydOnjwJJycn0Y+mDQgIwNmzZ9GlSxet37GYl3e6evUqVq1ahZs3b2oFspgfX6DKMdxEICUlBTExMYiPj0fHjh2hUChE3dd/9uxZJCYmIjExEVlZWejZsyfs7e0xdOhQoUsrl0qlwqhRo7QGleialJQU/PDDD4iLi8O5c+eELqdSzs7OiI+P16nRhh4eHnBxcUH37t21Arlfv34CVkV1wW5JEbC2toa/vz9mzZqFzz//HB9//LGow23kyJHo2bMn/Pz8dKIbRy6Xa5610pVuPQC4f/8+4uPjER0djYcPH8LDwwMHDhwQuqwq6VLvQ6mSkhJ88MEHQpdB9YjhJgJPttw6dOiAJUuWCF1SpbZu3Yrjx4/ju+++w71799CrVy+8/vrreOutt4QurUJt27bFuHHj4OzsrDVHo5jvA7m4uMDJyQlz587ViT8iSrVt2xYTJ06Ek5OT1sP9Yv5d9+jRAxcuXECnTp2ELoXqCcNNYJ6ensjPz4e7uzu2bt2qEyPjunXrhm7dusHd3R2HDh3C999/jy1btoj6ntvDhw/RsWNHXL16VehSqu3QoUOaWT50SWFhIdq0aYOUlBShS6m2M2fOIDo6Gu3atdNq3fOem+7iPTeBnTx5Uqf+KgeA4OBgHD9+HAUFBbCzs9O8Sqe6EpPFixcjICAAwOO1uhwcHASuqGb++OMPnD9/Xmv6Kl9fXwErkqY///yz3P2856a72HITWJ8+fZCbm4tr165p/QPWt29fAauqnI2NDSZOnIimTZvixIkTsLS0FGWwAY+nBiv15Zdf6lS4ffnll0hOTsbly5cxePBg/Pbbb6JerPTUqVPo3bs3EhISyv1czI+7MMSkh+EmsN27d2PJkiXIyclBixYtcOPGDXTq1AkxMTFCl1bGnDlz8N5772H06NG4f/8+RowYARMTE/z777+YNWsW3n77baFLLOPJjgld66RISEhATEwMFAoFgoOD8eGHH2LhwoVCl1WhmJgY9O7dG2vWrCnzmUwmE2W4eXl5lTvnaCl2S+ouhpvAIiIiEB0djcmTJ2Pnzp04evQo9u/fL3RZ5frnn380N9xjY2NhZWWFH374AXfu3MH7778vynArLCzElStXoFartd6X6tChg4DVVc7AwAD6+vqQyWQoKiqCubk57ty5I3RZFfr8888BABs3bhS4kurz9/cH8Pj+5tWrVzFy5EgAj5cX6tKli5ClUR0x3ASmr6+PF198ESqVCgDg4OCAb7/9VuCqyvfkjfZTp07ByckJwOOh35X99SukgoIC+Pj4aLaffC+TyUQ9/ZaxsTEePXqEnj17IiAgAGZmZqJ+8Pzy5cuVfi7GPyRKuyO//fZb/Pjjj5r/jwcNGoSJEyfy/qYOY7gJzMDAAGq1Gq+88go2btyIVq1a4d9//xW6rAplZGSgadOm+PPPPzFjxgzNfrGu11U6ea8u+uqrryCXy+Hv749169YhNzcXK1asELqsCk2ZMqXCz8T+h0RGRgaUSqVmdGphYSEyMzMFrorqguEmsJkzZyIvLw9z5sxBUFAQcnNzsWDBAqHLKteUKVPg4eGBRo0aoXfv3pq/xP/++2+0bNlS4Oqk58m5OqdNmyZgJdWjy39IDB06FKNHj8awYcMAAHv27BHtjDtUPXwUgGokKysLd+/eRadOnbTWvlKpVAy4ejJjxoxKu3nF3Hp70r1797Ra9GL//+P3339HUlIS1Go17O3tMXDgQKFLojpguAnkp59+qvRzMc/mQM9WVSNlPT09G6iS2klMTERAQADu3bsHPT09FBUVoVmzZqJd9VylUmHBggWaATEkDeyWFMjZs2eFLoFE6siRI/jqq6+wYcMGeHt7C11OjS1btgzr16/HrFmzEBMTg23btuH27dtCl1UhuVyOGzduCF0G1TOGm0CaNm2q0zNn0LNz6dIlAI9Xh9bFcAOAdu3aobi4GDKZDKNGjRJ9T4SdnR2Cg4Ph4eGhNfeoGEd4UvUw3ASiyzNn0LPVtWtX9O7dG0qlUmtGErVaDZlMJtruvVL6+o//WTE3N8fBgwfRqlUrUT+fB/z/w9qHDh3S7BP7CE+qHMNNILo8cwY9W4sWLYKfnx+8vb0RGRkpdDk1NmHCBDx48AAzZ86En58fcnNzERgYKHRZldLlkZ5UPoabQHR55gx69l566SVs3boVxsbGAID8/Hyt7jIxK12LsFu3bvj1118FrqZmdG2EJ1WMoyUF4ujoWOFn7A6hp3l6eopyvtHyPHr0CBEREUhLS8Py5ctx5coVXLt2TTOjjRjp2ghPqhpbbgJhNwjVhC79DRoUFAQzMzNcuHABwOPp2fz8/EQdbro2wpOqpid0AURUNUtLS6FLqLaUlBTMmTMHjRo1AvB4jsySkhKBq6ra0yM8T5w4IXRJVAcMNyKRmT17NgBgw4YNmn1hYWFClVNjpaFWSqlUir7l+fQIz4sXL4p+hCdVjuFGJDJPPuemi/r06YOIiAgUFhYiKSkJM2fOrPQesxg8OcJz0aJF8Pb2xsyZM4Uui+qAA0qIRCYwMBD79++HUqlEkyZNNPt15Tm3oqIirFmzRnNf2dHREVOmTBHlcj3ldT2W/pMok8nQt2/fhi6J6gnDjUiE7t69W+Fzbq1atRKgoqrp4nypXl5emvdXr15F+/btNdsymYwrceswjpYkEpnZs2fjq6++gqurq2iDrDwhISHo2rUrOnbsKHQp1bZjxw7New8PD61t0m0MNyKRKb3n9uuvv+rEOm6lvvjiC+zcuROXL1+Gh4cH3Nzc0LRpU6HLqjaxriZPtcNwIxKZp+eWLL3XJvZ7bl5eXvDy8kJaWhpiYmLwzjvvwNraGlOnToWNjY3Q5dFzhuFGJDJPzi25evVq0Q+jf5qlpSUmTpyIl156CStXroSDg4Now+3y5cua90qlktPgSQgHlBCJ0MmTJxEWFoaLFy8CAGxsbODr64s+ffoIXFnF1Go1jhw5gujoaKSkpGDo0KHw8PBA69athS6tQpwGT7oYbkQic+DAAYSEhGDq1Kno3r07AOD06dP4/vvv8dlnn4l2Gqs33ngDZmZmUCgUsLW1LXMPi60gakgMNyKRUSgUWLJkSZlRhykpKfD39xftBMpPtoJK7xE+uc1WEDUk3nMjEpmCgoJyh9NbW1trLcciNpwMnMSE028RiUxRURGKiorK7C8sLERhYaEAFRHpHoYbkcgMHjwY/v7+yM3N1ezLyclBQEAABg8eLGBlRLqD99yIRKawsBBBQUHYu3cvXnnlFQDA9evX4eLigqCgIBgYGAhcIZH4MdyIROr27dtISUmBWq2GtbW1Tk3FRSQ0hhsREUkO77kREZHkMNyIiEhyGG5ERCQ5DDciIpKc/wVtwx8EtPug6wAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "pd.set_option('precision', 3)\n", + "from IPython.display import display\n", + "display(judges.corr())\n", + "\n", + "import numpy as np\n", + "corr = judges.corr()\n", + "\n", + "# Create a mask for the upper triangle\n", + "mask = np.zeros_like(corr, dtype=np.bool)\n", + "mask[np.triu_indices_from(mask)] = True\n", + "\n", + "# Generate a colormap for the correlations\n", + "cmap = sns.diverging_palette(220, 10, as_cmap=True)\n", + "\n", + "# Draw the heatmap with the mask and correct aspect ratio\n", + "sns.heatmap(corr, mask=mask, cmap=cmap, \n", + " square=True, linewidths=.2, \n", + " cbar_kws={\"shrink\": 0.5});" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Instantly you can confirm your expectation of the trends in that data set:\n", + "* `Flavour`, `Sweet` and `Fruity` attributes are correlated together. As one goes up, the other also goes up.\n", + "* `Off-flavour`, `Mealiness` and `Hardness` attributes are also correlated together. As one goes up, the other also goes up.\n", + "* The first 3 attributes are negatively correlated to the other 3 attributes.\n", + "* It would be very unusual to find a pea that had high values in all 6 attributes. Think about that: it makes sense! Flavour and off-flavour cannot be simultaneously high.\n" ] }, { @@ -754,12 +1099,12 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 42, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2oAAAFMCAYAAAC6QU8JAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzsvXm8G3d57/8ZSaP16OzHW7zFWzYncYgJhCQlhEASdmi4EPK78ANaeu9laylQoO2PlvaylR9JKW0pF8IWgoEkQAg4G3HIBknsOIkd73ZsH9tn36QjaUazfO8fM9/RSDNaj+Zoe96vV145Ho1GX0mjme/z/TzP5xEYYyAIgiAIgiAIgiCaB1+jB0AQBEEQBEEQBEHkQ4EaQRAEQRAEQRBEk0GBGkEQBEEQBEEQRJNBgRpBEARBEARBEESTQYEaQRAEQRAEQRBEk0GBGkEQBEEQBEEQRJNBgRpBEARBEARBEESTEahkJ0EQjgNIAtAAqIyxrYIg9AP4KYC1AI4D+G+MsRlvhkkQBEEQBEEQBNE5VKOovYYxtoUxttX892cA/I4xthHA78x/EwRBEARBEARBEAtEYIyV38lQ1LYyxiZt2w4CuJoxNiIIwnIAjzDGzil1nMHBQbZ27dqFjZggCIIgCIIgCKJF2bVr1yRjbKjcfhWlPgJgAB4QBIEB+C/G2LcBLGWMjQCAGawtKXeQtWvXYufOnRW+JEEQBEEQBEEQRHshCMKJSvarNFC7gjF2xgzGHhQE4UAVA/kQgA8BwOrVqyt9GkEQBEEQBEEQRMdSUY0aY+yM+f9xAL8AcBmAMTPlEeb/x4s899uMsa2Msa1DQ2UVPoIgCIIgCIIgiI6nbKAmCEJMEIQ4/xvA6wHsBXAPgPeZu70PwK+8GiRBEARBEARBEEQnUUnq41IAvxAEge9/B2PsPkEQngHwM0EQPgjgJIB3ejdMgiAIgiAIgiBaEUVRcOrUKUiS1OihLCrhcBgrV66EKIo1Pb9soMYYOwbgYpftUwBeW9OrEgRBEARBEATREZw6dQrxeBxr166FKf60PYwxTE1N4dSpUzj77LNrOkY1fdQIgiAIgiAIgiCqQpIkDAwMdEyQBgCCIGBgYGBBKiIFagRBEARBEARBeEonBWmchb5nCtQIgiAIgiAIgiCaDArUCIIgCIIgCIJoW66++mrcf//9edtuvfVWfOADH8CNN95Y8rmvetWrAADHjx/HHXfc4dkY3aBAjSAIgiAIgiCItuWmm27Ctm3b8rZt27YN73//+3HnnXeWfO6TTz4JgAI1giAIgiA8Zu/pOVz11YcxOtdZNtkEQXQuN954I+69917IsgzACLrOnDmDlStXYvPmzQCAF198EZdddhm2bNmCiy66CIcPHwYAdHV1AQA+85nP4LHHHsOWLVtwyy23FN2/nlTSR40gCIIgiDbh8HgSw9MZ3PvCGfzZVesaPRyCIDqMf/z1i9h3JlHXY56/ohuff/MFRR8fGBjAZZddhvvuuw9vfetbsW3bNrzrXe/KM/v41re+hY9//OO4+eabkc1moWla3jG+/OUv42tf+xruvfdeAMBHP/rRkvvXA1LUCIIgCKKDyKo6AGD73tEGj4QgCGLxsKc/btu2DTfddFPe45dffjm++MUv4itf+QpOnDiBSCRS8njV7l8LpKgRBEEQRAeR1RgAYNeJGYwlJCztDjd4RARBdBKllC8vedvb3oZPfOITePbZZ5HJZPCyl70Mx48ftx5/z3veg1e84hX4zW9+g+uuuw7f+c53cM011xQ9XrX71wIpagRBEATRQXBFDQDuf5FUNYIgOoOuri5cffXV+MAHPuBQ0wDg2LFjWLduHT72sY/hLW95C1544YW8x+PxOJLJZMX71wMK1AiCIAiig+CB2sq+CH67Z6TBoyEIglg8brrpJjz//PN497vf7Xjspz/9KTZv3owtW7bgwIEDeO9735v3+EUXXYRAIICLL74Yt9xyS9n964HAGKv7QYuxdetWtnPnzkV7PYIgCIIg8vnG7w7j6w8ewv+6ej2+9fujeOZvr8VAV6jRwyIIoo3Zv38/zjvvvEYPoyG4vXdBEHYxxraWey4pagRBEATRQWRVHT4BeNNFK6Az4IF9Y40eEkEQBOECBWoEQRAE0UFkNR3BgA/nLY9jzUCU0h8JgiCaFArUCIIgCKKDyKo6RL8PgiDg+s3L8IejU5hLK40eFkEQbc5ills1Cwt9zxSoEQRBEEQHkdV0hALG7f8Nm5dD1Rke3E/pjwRBeEc4HMbU1FRHBWuMMUxNTSEcrr0FCvVRIwiCIIgOIqvqCPqNQO2ilT1Y0RPGQ/vGcOOlKxs8MoIg2pWVK1fi1KlTmJiYaPRQFpVwOIyVK2u/tlKgRhAEQRAdhKLpEE1FTRAErF/ShdGE1OBREQTRzoiiiLPPPrvRw2g5KPWRIAiCIDoIu6IGAN1hEUmJatQIgiCaDQrUCIIgCKKDUEzXR048HEBSUhs4IoIgCMINCtQIgiAIooOQTddHTjwcQIIUNYIgiKaDAjWCIAiC6CCyaqGiJkJSdCia3sBREQRBEIVQoEYQBEEQHYRis+cHDEUNAKU/EgRBNBkUqBEEQRBEB5HVClMfRQAgQxGCIIgmgwI1giAIguggnK6PpKgRBEE0IxSoEQRBEEQHoWjMUaMGgAxFCIIgmgwK1AiCIAiig8i6uD4CQCJDihpBEEQzQYEaQRAE0bHIqoar/2UHdhwYb/RQFg25wPWxm2rUCIIgmhIK1AiCIIiOZS6j4PhUGgdGk40eyqJBro8EQRCtAQVqBEEQRMciK0bvsEy2c4IUI/VRsP7dRYEaQRBEU0KBGkEQBNGxyKoGAMgoWoNHsnhktfzUR9HvQ0T0U+ojQRBEk0GBGkEQBNGxSFxR65BATdMZNJ0h6PfnbY+HA6SoEQRBNBkUqBEE0bTsOTWHJ45MNnoYRBvDFbV0tjMCNUUzAlMxIORt746ISMqkqBEEQTQTFKgRBNG0fPX+A/jCr/c1ehhEG8Nr1KQOUdRk1Xi/9obXgKGokT0/QRBEcxFo9AAIgiCKMTydhqqzRg+DaGN44NJpiprd9REwml7PpbONGBJBEARRBFLUCIJoSjSd4fRsxqohIggv4EpapkMCtawZmIouihrVqBEEQTQXFKgRBNGUjCYkKBrrmJQ0ojFwRa1TzjMeqAULFLXucAAJCtQIgiCaCgrUCIJoSoan0wAMNz7GKP2R8IZONRMpDNTiYZHs+QmCIJoMCtQIgmhKeKCm6QyKRoEa4Q2dZs8vF0t9DAUgq7qluBHufPbuPfjMXS80ehgEQXQIZCZCEERTMjyTsf7OKJpDASCIemA1vO4QRS1bRFHrjogAgKSkYKArtOjjahUOjCagk8ERQRCLBM18CIJoSriiBgByh6gdxOIjd5iippiKWcjFTAQA1amVQVJ0pDokqCcIovGQokYQRFNiD9Q6ZRJNLD4SV9TMWkhBEMo8o7XJWg2vnTVqAKhOrQyyonWM8QxBEI2HFDWCIJqS4Zk04iFjLYkCNcIruKLGWK5+q53Jlmh4DYAs+ssgq6SoEQSxeFCgRhBE0yEpGsYSMjYu7QLQOfVDxOJjD8464Twr7vrIAzVS1EohKRrSWQpmCYJYHChQIwii6ThlGolsWhoHQIoa4R32NLZ0B5xnxVwfu83UR6pRK42kaFA0Ru6YBEEsChSoEQTRdAzPGPVpG5YYihpPTyOIetNpihoPMEJFFTUK1EohmZ8fqWoEQSwGFQdqgiD4BUHYLQjCvea/zxYE4SlBEA4LgvBTQRCC3g2TIIhOghuJnLOMFDXCW7g9P4COMIngPQkLUx+7QpT6WA5V06GZ1vxUp0YQxGJQjaL2cQD7bf/+CoBbGGMbAcwA+GA9B0YQROcyPJ1GKODD6v4ogM5QOojGINnU2nQHnGdZMzAtTH0M+H2IBf1IZEgpKoZkU1/TMn1OBEF4T0WBmiAIKwG8EcB3zH8LAK4BcKe5yw8AvM2LARIE0XkMT2ewsi+CSNAPgBQ1wjtkVUPAZ1jyd8J5VqzhNWBY9JOiVhy74kqKGkEQi0GlitqtAD4NgC8nDQCYZYzxJaVTAM6q89gIguhQhmfSWN0fRVg0ArVOSEkjGoOs6uiNGpn7mQ6oO7JSH/1ugVrAUaN2y4OHcNO3/7goY2t28oxnOuBcIQii8ZQN1ARBeBOAccbYLvtml11Zked/SBCEnYIg7JyYmKhxmARBdBInp9NY1R9FhAI1wmMkRUdv1HA87ARFLef66LyNx8MBJOV8RW3niWkcHk8uytianbw0Wbn9zxWCIBpPJYraFQDeIgjCcQDbYKQ83gqgVxCEgLnPSgBn3J7MGPs2Y2wrY2zr0NBQHYZMEEQ7M5dWkJRUrOqLQvT7EPAJHTGBJhqDrGro44Fatv3dRbOqjqDfB6OCIR8j9TFfKTo5nc4LUDoZu/FMihQ1giAWgbKBGmPss4yxlYyxtQDeDeBhxtjNAHYAuNHc7X0AfuXZKAmC6Bi4Nf+q/ggAICL6O2ICTTQGWcmlPnZCOpui6a71aYAz9VHVdJyZlUjRNuk04xmCIBrPQvqo/Q2ATwiCcARGzdp36zMkgiA6mZPTPFAzHB9Dop8UNcIz7IpaJwQkWVV3TXsEgO6IiEQml/o4MidB0xlUnUHRaLFEtpuJkOsjQRCLQKD8LjkYY48AeMT8+xiAy+o/JIIgOpnhgkAtEvR1xASaaAyyoqMrJCLgEzpCJcmqlStqXN0GjCC20NK/05BUu5lI+58rBEE0ns6+6hIE0XQMz6TRExHRHTZUjojop0CN8AxZ1RESfUaKbQecZ6VSH7vDIrKabv3e+KIJAKpTgxHUc6hGjSCIxaAqRY0gCMJrhqczVn0agI6ZQBOLj6YzZDUdoYAP4aC/Ixqry5peVBmLh40pQVJSERb9iB66B0+Evo4uZBD62VZg85uBc24Aelct5pCbhjxFjVwfCYJYBChQIwiiqRieTuPc5XHr32GxMybQxOKTNa3qw6If0WBnLAhw10c3coGagiF1BNcf+QeIglmzNvyo8d/2TwFrrgDedCswtGmxht0UcFUx4BNIUSMIYlGg1EeCIJoGXWc4NZPBqr6otS1MqY+ER3C79VDATH3sgAUBxVQQ3YiHjHTjpKQCe++CyBTX/XDiCWDbTYDeWemQ/DrUFwt2xLlCEETjoUCtBJrOMDkvW//NZYrctAiCqAvjSRlZTcfK/lygRqmPhFdwhSQU8CPSQYpaJamPOLqj9IGmjgBnnq338Joa3iy8PxpEigK1poAxBl1njR4GQXgGpT6W4K9/9hx++Vx+H++f/Pkrcfn6gQaNiCDam1Omy9zKPluNWtDvqZHBP9+7D0cn5vG995OJbSHD02lc+/Xf49cfvRKblsbLP6HF4IpaWOwcRa2U62N3xFDUUvNzYMNPwd3E38bkYWDl1voOsInhilp/LIg02fM3BZ/7xR5MzWfx7fd2znlIdBakqJXgwGgS5y/vxj+99QJ89oZzAQCHx5MNHhVBtC/cGrzXnDACZo2ah0rHsckUjk6kPDt+KzM8nYas6jg6Pt/ooXgCV0hCAaNGrRMs18s1vAaA8Jk/QtCy5Q82daSeQ2t6JMWo74uFAqSoNQkvTabw6OEJ6vNHtC0UqJVgcl7Gxat68d8vX4s/u2odfAIwkZQbPSyCaFv4RDkazIn9EdEPycNJkaRoHZHyVgv8c7H31monuEISCvg6phZSLpn6aCyQ9I8+UdnBOi5Q0xASfYiF/EiTmUhToGgMkqLj4CgtohPtCQVqRVA1HVOpLIbiIQCA3yegPxaiQI0gPIRPfqJBv7UtLPo8DaQkReuIlLda4J97QmrP+lzZ5vrYKbWQpRS1rpCxQLJ86o+Ox46uvtH5hOmjdR1bsyOruqm+BpAie/6mgDu37h6ebfBICMIbKFArwnQqC8ZgBWqA8TcFagThHXyiHLEFahHRD1VnnqW2SIqOjKKBMSpIL4TXBibaVFHjDYxDoq9jUh+zmo5QEUXN7xNwdiiBwbQzANt/1judT5g6CnTQ70ZWNIRFH2JBUtSaBStQOznT4JEQhDdQoFaEiXkjIBvqyg/UJucpUCMIr8ilPtoCNfNvr9LSJFWDpjMoWudMOCsll/rYnopaXupjC7g+KpqObz58eEEKZynXRwB4jfiiY9s+fQ3OhDcAwa6CAaWB5EjNY2k1JFUzeu6FAkhnNXIbbAL4At5zpKgRbQoFakXgytlQPGhtG+wKkqJGEB7CA7VwwJ76aPzt1SSaqyqU/uiE1wa2a42aPfUxKgaQVXVoTTz53nN6Dl974BC2PX2y5mMoGiua+ggAVwgvOLY9pm+GpDJgYL3zCR1UpyYpuqWoAd5dk4jK4b/hYxMpzKXbc0GJ6GwoUCuCFah1ha1tQ/EQJuZlSpEiCI9Iyyoioh8+X84YPGIGalLWm9RHbtFOky4n7a6o5TW8Dhq3w2Y+D/hEdPve0ZqPUcqeH4zhZZozUHuSXWSojwMbnM/poEBNVjWEA4aiBgApSn9sOFlNx5oBo+/mc6dIVSPaDwrUisBTHwdtitpQVwiKxqjxNUF4RFrR8tIeAe8VNV6HRTUnTtrf9dHW8JqfZ02srPJ7z+6TsxiZy9R0jJKpj2Mvok8vqPXxh7A3cIHxWbkGap1jKCIpuuH6GGz+c6VTUDQdl67pgyBQnRrRnlCgVoSJpIyuUCDPJpwbi1D6I0F4QyarIRrKD9S8Vjp4nVIzKymNQmrzQC2v4bV5rW/mybe9Nu2+GlQ1xhiyJVwfcfRh57Y1l0MQI8bvo7/TUx9NRc08V8j5sfFkVR390SA2LYlTnRrRllCgVoTJ+Wye4yNgC9TIUIQgPCGdVREVA3nbwh4qHaqmQzVrkjqhh1a1SB1iz5+nqDXxecBTH9cNxmpKf+SGOaFigdqxHc5t669BWPRBLpr62EmKmmkmYipqpMI3Hp7Ke8nqXuw+OUulKUTbQYFaESaSEga7gnnbuAMkKWoE4Q3prJZnzQ/YatTU+k+g+USdvzaRT6bNzUR4IBoM+Fpi8j2XURAR/XjzxSvwzPHpqu9FWdMhT/QLzgdVGTjxB+f2da8xmoGrGjCwzvn4zEuA1ryfWT2xUh9N1T9F14yGousMqm6Y42xZ1Yu5jIKXJlONHhZB1BUK1IowkZSLK2oUqBGEJ2Syzho1y57fg0mRXUVr5pS3RmE3E2nHlWpZ1SH6Bfh9gue1kPUgISnoiYi44cJlYAx4YF91qppiLkwE3WrUTj8LqAV1b9EBYOlmhEWfUaMW6QOig/n76Cowe6KqcbQq9obXgGF+RDSO3MKDD5es7gNANv1E+0GBWhEmknJeDzUA6ImIEP0CpT4ShEekXQI1btXvxQRasilqzTxBbxQZ02xD0Vie+tguyIpunV9Rj/v11YO5jBGonbM0jrMHY1XXqfGJbTDgdz54/HHntrVXAj4fIqI/t5DRwemPuYbX3PWxec+VToCfz6GADxuWdCEW9GP3SQrUiPaCAjUXJEVDQlIdipogCBjqCmEymW3QyAiivckommXqwIl42LNIJkWtJPagpR3r1CRVQ0g0boMRK/Wxec+DuYyC7kgAgiDg+s3L8OTRKcykKr8fZdUSqY/HH3NuW3sVAORSH4GOtujPNbxu/jTZTsBSiAM++H0CLl7VS4oa0XZQoObClHnjKwzU+DZS1AjCGwwzkSL2/J6kPlKNWinsgVo71qnJipHKBqAl7PkTGRU9EREAcMPmZdB0hgf3j1X8/JyiVnDrV2Vg+GnnE9ZeCcAwW7F+K251ah0QqGk6g6IxhAP+nKJGro8NxZ76CABbVvVi/0iiqVVxgqgWCtRc4DVog13OQG2wK0Q1akRHIika/vWhw5aluRek5eJmIl6k3tkNSij10Ukma6R6AUCiDftHyi6KWjOfB4aiZgRqF57Vg7N6I1WlP2bVXKpYHi71aVKwDxg6FwByro9AxypqVnN00Yew6IMgtI+ipukM33z4sOUq2ipkC2ouL1ndB1Vn2HN6rpHDIoi6QoGaCzwQK6qoUaBGdCCPH57ELQ8dws7j3jQVZYy5NrzmZg/eKGqa69+EQUbRsCQeBtCeiprUcoqagu6wEagJgoDL1w9g35lExc/PpT4W3Ppd6tO01VcAgpEiGRH9uQDWLVCbPlbxGFoVriiGAz4IgoBYMNA2Kvz+kQS+9sAhPFSFOtsMKAUK8TlL4wBAzo9EW0GBmgvlArXplAxNbz8HNIIoxUhCAgDMe+R0ltV0aDpDLJRfoyYIAsIBnzc1amTPXxJJ0bDEvA62Y6Amq5qlLjV7HzVNZ0jKudRHAIiHA0hV8XssnNhauNSnxTZdbf0dFv25hYx+l9THuWFAyTi3txH8/fNU7GjQ3zaKGi/3mEm3Vv29XLDw0BM1fhvtqP4TnQsFai5MmjVoAzH3QE1nwHQVBdwE0Q6MzRmBWjUTw2rgSkZEdDrSRYJ+781EmnSC3kgkRceSbh6otd/kR1Z1K7XT5xMQCviaVlHjn789UOsKBZDKqhW3TihMFQNQtj4NQM6eHwDECNCzyrl/m6tqhYFaLBRomxo1bkgz12IBTmEqbzwUgCBQoEa0FxSouTCRlNEXFZ2rjqCm10TnMuJxoMYVrcLUR8Bc0ffYTKRZJ+iNgjHW9qmPsqJZqY+AdwsC9YBPorttgVo0GIDOKl9kkLn5gv3eVqx/mlmfBuRcH62AcGC98+BtXqcmFwQFEZEUtUajaMb5yOdqPp+AeCjQcgEnQZSCAjUXJpKyq5EIAAzyptfk/NhweBoPsTiMJozJnFe9g3igVmgmAhiTIskDExO+Sh4PBShQK0DRGDSdYSAWhCC0r6JmN9aIiv6mTYFNZIygIF9RM34rlSo7rg2vi/VPE3IW/mHRD8ZsqcL9ixeoMcYs5aSROBU1f9soatMpYz4z26JmIvaay56oiEQbLioRnQsFai5MzMuu9WkAKWrNwnQqiwv/4X48eWSy0UPpGLxW1DKWohZwPBa2N9ytI3zi2RsTm1ZJaRT884gE/egKBdpy8mOkPuYWBsItoKjZAzVez1npb9LeINji+KPOHc3+aRz+GcmWRf/iNb2+c9cpXP6l3zV8YY6r79wlNBoMtI2ixks5Wi5Q04zfqj37qScikqJGtBUUqLkwkSwRqMUpUGsGxhISJEXH8Ey60UPpCBhjGJ3z1kyET3rcUh/zXOfqCF8l74sGSVErQLIFat1hsS0bXhupjzZFLehNim09yKU+5hYyeKBW6W/SoUBUUJ8GwKrjK9302ptA7bnhWUylsg1XOvl7z1PUmvRcqZapeTNQy7RW6mNWNVMfbYpad5gCNaK9oEDNhcl52VLOComFAogG/UjNjgOJkUUeGcHhN20vemsRTpKyan3mntWoKcVTHw2lw4M+auYxe6PBplVSGoUVqIl+xMOBtqxRk1TdUkgAXnfUnOdBooiZCFD5b9Lh+nh6F6BK+TsV1KcBQNis47OcH/vWOA+e9OZ+ODxjpFzLDf59ypY9P3d9DCDt0bVwseGK2kyqtQKcXAP3XJpuT0QkMxGiraBArYCUOSEtpqgBwOouHTce+Cvgtus8W0UkSsPVD9mDyTvhhKtpQOX1MNWSloubiUREnzdmIqqGgFmA3i5pTPUiYwvUusNie9aoKZo18QaASDDQtAG7W+oj/62kKjx3LddHHqgd+71zp4L6NMClGXh8mfN5yVGgQvfJahieNrImGr0oZ294DQCxYPsoatPp1nZ9DPpzv2FKfSTaDQrUCuApjcXMRKDK+LL6VayV9gOzJ4DbrgdGXljEERJALk0uS4YiiwKvTxOEyieF1WKlPorOGjUvzUTCoh+RoD/PAZLILYaE21hRkx2KWvPa889lFAR8Ql77ipyiVqHrY2Hq4+H7nTsV1KcBttRH/hsJdQNiNH8nTQYyMxWNo1J0neG0qag1uiG9o49aGy3ucEVtXlabwrilUtz6AnZToEa0GRSoFcDdHF0VNV0D7v4QtmR357alxoHvvxE48eQijZAAciu7jU6H6RRG54zJ0qq+qHdmIuZ3GQ252/N7ZSYSFn1tZbVdLzJKewdqqqZD1Vm+Pb9HtZD1IJFR0BMRIdjUrmrNRLideSjgMxSwM7udO218nWOTI/VREIqranVkLClZi3GNXkiRrNTHnKKmaM3hSLkQVE3HbFrBQCwIoLVUtVzNZX7qo6zqDQ/sCaJeUKBWAFfUXAO12ZPA8cec2+UE8KO3Awfv83h0BMeqUSNFbVEYnTN+F2cPxjDvVepjmT5qXpmJhAL+pu6f1SjsZiLxNkx95OpS2K6oNXnqoz3tEVigmcjhB5w7DJ0H9K11bA6JBamPABBf7nx+nevUTk7lzKK8UNSrwaGome60zarAVsqM6fS4fqgLADDbQr3UHKm8yPUZbEfzI6IzoUCtgMlSilr/2cAH7kcytNT5mCoB294D7PuVxyMkgNwKMtWoLQ6jiQwGu0Loi4qeN7y21wxxjNREDxQ1xUh9i4hG6qOu17/GplXhCgI3E0lIaq7hcRuQa2BcoKg16cR7LqMgXhioBavro5bVNPh9Avw+ATjkkva46TrX50Use357oOa9osaNRIzXbnSNWn5rg1iouvrAZoWnPa4bigEAZltJUXNLfQwbATQZihDtAgVqBUwkZfgEw67blcGNePhVt+OwfpbzMaYB93wMSE97O0jCmkxRjdriMDInYXlPGLFQwMM+aioioh8+n+B4LCIaaUZqnb9vyTST4GYJjV61byb4b8wI1ERoOmtatakWeOBfaM+fUbSmDEgTkupQ1AJ+H8Kir+JgQdGYYWWuysDRHc4digRqjho1YFEUNW4kYrx24xW1gE9AwKzvi5iKWqunTBcGajOp1lPURF9+HzUAmMu09vdCEBwK1AqYSMoY6AoZK45FiA6twX/L/j3Sgxc7H5RmgQP3ejhCAshZuTd6lbVTGJ2TsLTbCNS866OmuaY9ArkVfanO9SC8Ro2/brOqKY3AqlEL+qzeXe1Up5ZLfbS7Pvqh6awpF4ASLqmPABALVv6bzKq6oT4cfxxQUvkPhnuBlZe5Po9/RtJiK2rTzZT6mN8cvVqtA1kNAAAgAElEQVQ1s1mxArVBM/WxhZSorKZD9At5i3tW6mMLvQ+CKAUFagVMJIv3UOMMxUOYQTeeuup7rg5ZlP7oPZY9Pykgi8JowlTUggHIql53ZQswvlO3HmpAbkW/3oEUd33kE7Bm7aHVCKQ8MxFj8tNOdWqW3bpNUbMCkmzzBWpzGcVK67ITC1Xez0tWdaM+zS3tcePrAL/z+EDuc1nsGrXhmTSW94QBLNxMRNUWZjAhqVpePSOvUfMi9VHRdMvR0GumU0a5x/olrVejpqh6XrNrIKeo1bNGTdH0ljeNIVoXCtQKmJiXS/ZQA3L1a6OyCLz2884djv0eyMx6MTzCxLLnp4un52SyGmbTCpb1hG11GfUPaEopaq4r+nVAUjWEAr6cYtdGqX0LJT/10az7aCNFjU/8Q2J+6iMApJXmep+MMaeilhgBHvw8PqN+C0Nzeys6jqLpCPkF4JCL8dVG97RHwKZo56U+LoailsHGpXEAC1+U++r9B/GO/6jdnVlW9Lx6Rn4tTHugqH3q58/jL7c9V/fjujFlKmor+yII+ATMpltnMSar6RAD7oFaPd0rP3v3HvzP23fV7XgEUQ0UqBUwmSwfqA12Ba19cdalQHxF/g664n4jJOqG5fpIgZrnjCaMHmrLe8K2vk31n8imFc2q+yjE0XC3TvB0pqhHx29leDNw0e+zlJy2Sn3kimGBmQjQfCmw6awGVWe5QG1+HPju64AnbsUbsvfhUyN/BYw8X/Y4WVXHBv8ZoweoHcEHbHht0edx1VEqq6jVL1CTFA1jSQkbTaVnoYrao4cmcHg8WXP9oaRqBUG9d4raiek0jk7M1/24bkynsuiJiBD9PvRGRcsFshXIuihq3ab6P1fH9/HSZAr7RhJ1Ox5BVAMFajYYY5iYl4s3uzYJBfzoDgeMnms+H3Dem5077bvHo1ESgM1MhAI1zxkxe6gtM81EAI8CNVlFVCxdo1bvCbSsmg2vKfXRQSarW59Le6Y+OhU1rxYEFgpXB3j9DX77KWBu2Ho8CAXY8cWyx8mqOq7UdzofWPVKINpf9Hk+n4BgwJdfJ9bl4n48Pwro9bkmn57NgDFggxWo1f6dzMsqDo4loWisZqVFNo2HOJai5sE1Q1L0RauxmkplrR5qvdEg5jKtk/qY1fQ8x0fAcICMiP66pj4mJQXjSRkauQITDYACNRtzGQWKxsoqaoCR/sh7ruH8tzp3OPIQICfrPEKCk6YatUVjzFTUlnXnUh+9MBRJZzXr+IV4lZpoKGq+pp2gN5KMoiEc5IEat7xuH0Ut5/rY/Ioan3T2RERg/6+Bfb907nTofqPXZwkUTccrVZdArYjbo51wwAfJ/rmEuoBQd/5Ougqkp8oeqxK4kQgP1OQF/DZfODULLqRZ9+0q4dcKTtRyffSmv+NiNZ6eSWXRxwO1iIiZVOssxrgpaoDxO6nn55eUVGg6s9o3EcRiQoGajZLNrgvIC9RWvxKIDeXvoMnuDUWJusBdH5vRna3dGJkzAzXTTATwZnKSKZH66Npwtw7YG14DzTdBbySG0Ypxi2hnRS3sUqPWbAE7T+Pq96WB3/x1kb0Y8OwPSx4noMzhfHWf84EKAjWjl2HB9da1Tq0+hiK8h9rq/ihCAd+CHF93n8zVjNcaqHH1nWPVM3qwaJXJakhltUUxFJlOZdFvU9RayvVRdSpqANAdCdQ9UANy90KCWEwoULNhBWplUh8BYCgeNlIfAcDnB859k3MnSn/0jEyWGl4vFqNzEnoiIqLBgJX66I2iVj71sd6Kmr3hNUCBmp1MVrM+l1jQD5/QZjVqLg2v6+n++eSRSXzsJ7ut//76Z8/jyHhtWRZ80rnp+a8A82PFd3z2h4BWfIJ6XuoZ+FFwzexdDQydW3YMYdHvtMj30FBkeDqNYMCHoa4QwqJ/QYrac8OzVp3dRI2qiKToeQ6hot+HYMDnibESXyhYjN9bfuqj2Fqujy6pj4ChqNVL/dd0Zt3vRucyZfZuHXSd4esPHKx54YJYPChQs3HKXMFb0Rsuu+9QV8gwE+Gc/xbnTocfALJp53ZiwfDeNWQm4j282TUAb81EStjze5GaqJv9suwNr9NNpqQ0EknNBWqCICAeFttKUXNreG01Pq/DefDjp07ivr2j2HN6DntOz2H73hF8+Me7a6qrTUgqrvTtQf+hn5becX4MOPjbog9fknnKuXHT9YBQvG8oJxzwOz8XDy36h6fTWNUXgc8nICz6ajYTYYxh98lZXLVxEMBCUh/zFTXAUNW8aHjNr3Nepz8yxjBjU9T6omLruT56nPo4bwuWR9tIUTsxncY3Hj6C+/bWt6UGUX8oULNxeDyJUMCHlX3RsvsOxoNIZbXchHXtVUCkL38nJQ0c/Z0HIyX4jYzMRLxnLGE0uwbgqZlIpoKG15k69reyNzy2FDtS1Cwy2fyJaTwcaE9FzSWdrR7K6kw6iwtX9mDHJ6/Gjk9ejW+8+xIcHEviPx45UvWxEqk0/jHw/cp23nmb+3ZdwyVZl/q0Erb8dsJBPzIVpT7WSVGbSWNVv3EvDgVc1LwKOT2bweS8jD/ZNIRgwFe7oqY6A7VYMFD3hte6zqz7mteGIomMClVneamPGUVrmTYlxWrUusP1C9TspiQjifYJ1Pg1bmK+dRTUTqVsoCYIQlgQhKcFQXheEIQXBUH4R3P72YIgPCUIwmFBEH4qCELQ++F6y+Hxeawb6oLfV351kadHWsWlfhE4543OHan5tSfwVUwyE/Eeu6KWMxOp7+eeVXWoOisbqNVzAmFXVCIe1cC1MpKSr3DGw2Jb9VFza3hdT/fP2bSCvmiu79m15y/FWy5egX/fcQQHR4ukQE4eBr73BuBLq4FtNwMpw5hj9fG7sN7nsvJ94Tud2449AkwddW4/9Qy6WcHrilFg7ZUVvZ9wwLeoitrJqTRWmYumhqJW23fC69MuWdWHoa5Q7TVqBWYigDeKmj0g9VpRmzbTHPttqY+L8br1IquxIjVqYt1cH5Ntqqjx84wMUpqfShQ1GcA1jLGLAWwBcL0gCK8E8BUAtzDGNgKYAfBB74a5OBwZn7d6tpSDG45MlEt/PPAbQF6cfiidgq4zKw2GFDVvyao6JudlLDMDtYho1CrVW1GzmisXNRMxLlX1DKT4jSos+hHw+xD0+8ie30amwI48Hg7U1fK60VgNr11SH+txns2ms+iJ5K9ffv7N5yMeFvHpu15wWn1rCrDtPcCJJwB5DjhwL/DjPwVSU3jlyW87X2D1q4C3/xeSsTXOxx76B2D8AGDvGebW23PdawCxfKo/APc6MY8UtbmMgoSkYlV/JPfaNV7reX3aucvjGIzXHqhx4yE70VCg7jVqdjXX80AtZXwWVqBmnq8zLVKnllWLpz5yp8aFwtO9fUJ7mYnw7BGqUWt+ygZqzIBHGqL5HwNwDYA7ze0/APA2T0a4SKSzKk7NZCwr4HLwQC1vNWLd1UC4N39HJW0EazZaZbVqISQlpebGouXgk6iAT2jJGrWsqrdMasl4UgJjsBQ1QRCMdJ86ryKnFeN4xRS1UMAHQbApalNHgV9+GLj9T4Hnt9X0mnyizlfJDVc7b74XWW2ddCJOpkBR625Q6uNcurZriaRoJRV3WdXM8yqXQRFMnsLXxG/hjc/9T2DXD/IDnSqZzeQragAw0BXC5998Pp4fnsU3Hz6CI+NJ87956HvvBiYP5R/kzG7gv65ClzrtfIHr/hnw+XF6/budj+2/B/iPVwD/9jLguZ8Y7+OQiwtxBW6PHNc6MY8UNW7Nv9pMfXStj6uQ3SdncOFZPRD9vgUpapKq5/XcAwyTnXq7PtoXCbxeGJky094GYsZ8hp+vrVKnljV/w4XwfoP1qKnl17y1AzFXRU3VdM9NqLx4Db5QSYFa81NRjZogCH5BEJ4DMA7gQQBHAcwyxvgV6hSAs7wZ4uJwbCIFAAtT1AIh4IK3O3d+ITeR/PnOYWz5wgM4MZWqfbBNznhCwqX//BAeOzzpyfG56tEbDULVWcs1ofy7X+7BX/xoV6OHURFWD7WeiLUtFgrUXVHjdR7FAjVBEBAR/cbNSkoAt78DeO52o1/hL/6ieF1OCWSbogYYaqEXxgAA8Jm79uC9333ak2N7hdE3Kj/1cbHNRMaTEl75pd/hJ08Pl9+5gI/c8Sw+e9eeoo/LBS5+0BQIP34nbvQ/irVzTwO//ljNiwCyqiGd1axUMjtvuXgFrj1vCW556BCu/fqj5n+PYOS3X3E/WOK0c9sFbwfOuhQAMLfpRsjM+ToAgOljwC//B/CrDwPjLzof3/j6St+S8ftbJEWNB2q8XjxUo5lIVtWx90wCW1YZC6hD8RAma6jJ4XVj4UJFLVh/Rc0ekHqvqJmpj12GktZjBWqtoagpRVIfe8xArR7Oj0nZ+A42Lu3CaEJyLBr928NH8MZvPLbg1ynFfz16rO6vwX9PFKg1PxUFaowxjTG2BcBKAJcBOM9tN7fnCoLwIUEQdgqCsHNiYqL2kXrMYdM2eePSygK1/mgQguBykl/0LufOxx4BkqMYS0j4wr37wBhwYqp93SCPTqSQVXUcGfcm5ZOvLPHVv1ZLfzw4Nt8ygbrVQ607lx4VC/nrXkDPv9NokdRHwDZR3PU9YOZ4/oP3/x0wc6Kq1yxMfYu4mSXUgXRWxfa9I3ipRb5zjmSz5wcaYyZy/4tjyCgafrH7VNXPPTmdxsGx4nb4sqrlGYng2CPA5MH8nZ78RtWvC+T6nvVGnaXbgiDg3256Gf7z5pfh3266BP920yX4p/NHcJbsUlfmhi8AXPP31j9DPUtwt1amzuy5Hzu3Lb8Y6HZRxIoQFl1UrS6XQC01DmgLO0+GZ4z7Y56ZSA2K2v6RBLKqjktWG0ZfQ11BTKfkqhf3eL9Oh5lIyIMaNds1yOtAbSrFFTXu+mj8v3UUNR2i3+kpwAO1enx+PNjbuCSOrKpjpuCz2XViBi9NpTxdMH5pMoWT0+m6Zinx39PEvOxZ9hNRH6pyfWSMzQJ4BMArAfQKgsBnVSsBnCnynG8zxrYyxrYODQ257dIUHB6bR8AnYM1ArKL9A34fBmJBp4PU6lcafWnsMB1sz8/xt7/Ya/Xj4CtZ7chowmhz4NV75Gly/KbSaoYik0m5ZUwZRm3NrjmxUKDufdT4ZKeYogYYkyRFloA//qfzQSUF/PrjVaWq8RuVXVHzIoXlkYMTkBS95hS+RmGkPuZuEd1hEfOyuqjvgVtH7zwxg/FkdfUhKVkruVrsMIc4usO50/g+YLJ6l8YZK1BzV7oiQT9uuHA53nzxCrz54hW4Wb278oNv/QAwsN76Zyzox5fUmzC+pDJTEItN11e1u2ugJoadbsdMB1ILW5Qdns6gOxywJtxh0VfTgtzukzMAgEtW5xQ1nQFTqepUBLdWDoCxsFRRXauuGyUQT3277PmUl/pYp15gxZhOZREN+q1rID9fC4ORZiVbpI9ad9iYmtYjUONZBHwRf6Sgl9qR8XkwVp80y1JjUM12MvXC7pyd9MDFmagflbg+DgmC0Gv+HQFwLYD9AHYAuNHc7X0AWtre8Mj4PNYOxlwLU4sx6JbvLgiuqlriqR/jof1j+PDVGwDkVrLaEa7CePUe+Y2xpwUVNcYYJuZlT2v46snInIRo0G/d+ABuSV3vGjVuJlIqUPPhoun7i9fAHNvhrhwUIReo2RW1+t+wtu81UsGymt4yZiWKZrhwFpqJaDpbtPcwncrij8em8brzl4IxQ12rhnRWxVQqC73ISres6vnmEEcfdj/Q/upvbTx1rM9FUXMw/Ax8J5+s7MDBLuBPPp23KRYKIIEu/G7rfwIf2QW87p+AlS8vf6wKbfk5IdEHye1a60Gd2vBMGqsHcm1yXIPECnhueBZL4iGrxta1ZKECcvWshfb8FdSoSQng9rcbRjHbPwV860rgxB+K7m5fLPLann8mlc07RyOiH8GAD7OZ1pifKKqOoN95z+Bzg3rU+CUlFcGAz6qXtNepJSQFo2Z5gJfBLQ/Y03XMZLErt5T+2NxUEpUsB7BDEIQXADwD4EHG2L0A/gbAJwRBOAJgAMB3vRum91Tj+MgZiofce1C4BGo9c/vxpuVz+Pi1G+H3CZbbUjsyZl7IZjwK1ApTH1vJUCQhqciqOhSNtcS4RxMSlvWE8wwXYh46nZVS1KKigNdOl6kZuv9zFdfIWH20zMl6NFh/RU1SNDy8f8xqFD7bIkZCGZfAOR7mBfqLs/r64L5RaDrDx1+7EeuGYti+p7rJfzqrQdNZUQc7w8XPvAUmRoCJ/e4H2ndPVa8L5CZtXBEqyRO3OjalejYAZ7/aue8VHwe68jNT8nobDm4ArvgY8MEHgfNL+HvFhoAVl5Qfm42I6EdW1Z0pXh7UqZ2czlnzA6aRSS2K2vAsLlnda12/ag/U8hd1ONFQAGlFK7oYgNQk8IM3G2m1HDXj+p1zMjb1bjFSHwe6coGaIAjojYiYTbXGdUrWdIgBZ+pjd7iOqY+Siu5wAMvNOu1RWy81e3mHl3V9vE4uXUdDKvvCBwVqzU0lro8vMMYuYYxdxBjbzBj7grn9GGPsMsbYBsbYOxljLftNy6qG41Opih0fOUPxECbdTvDBjcCKlzk2/+OaPRD9PvRFRUy3yIWwFriiVkvq4893DuPJo6VNSLia02ulPjZ/wMOxXxBbwep8dE7Kq08DgK6Qv/6KGg/UxOI1alfpz2C5WsZUQpoDfvvJil6zMPUxLPrrrhY9dngSqayGt25ZAcC7xYt6U/jZAIaiBizeebt97yhW9UdwwYpu3LB5GZ56aTrvmsIYw7/vOIJdJ2Ycz1U13bouFGtwLKs2s5RjLmmPnJHnnDWRZZgzFYm+WBlFbeKQwxUYAG5J34DM227Lu4+c7r4EeNVHHfvGzGA6r25UEIC3/QewdLP76268DvBVVflgfVaOVPM6K2q6znBqJmPVpwG11ahNp7I4MZXGllW51MyhLuNaVq2hiKQ6fw+AsbjDGNybcc8OA7ddb5w/hZwubibF3+eynrDrb23n8Wn86A/HKx57KaZTWcuan9MXDS6KorbrxDR++IfjNT+fMcPgJVTEnh+oX+pjd1jEUDwEv0/IU9TyAzUvUx+5ola/+65MgVrLUN2Vuk05PpmGzlB9oGamPrqmsF3stEweOPYrQNfRHwu2taLGV5yqrQMAgFsfOowfP3Wy5D58xbHXUtRaI50MyL8gNsLqvFqm5mUMms3dOV64PmbMGrWiqY+M4e3pO53bBZdL2P5fG253ZZALzURqTK8qxfa9I+gOB3DDZmMy2yqtOaSs8dkUmokA3tZicOYyCp44MokbNi+HIAi4YfNyaDrDg/tySs09z5/Bv9x/EHc96zQaSVcwCZHt1t5u9Wl29v+6qvFbNWrlFLVd30ehD5cUXYYfJF+Oh08owAfux+yNP8d7sp/Dw6/4DiBGHIcI+H0Iiz5ny4xgDHj3HUCk3/m651RXnwYYDa8BuFj011dRm80oyKq6la4I5BpeV5MuftJ0jrRnygzGjaCk2olp4bWC4xokA8D8uBGkTR12P2BqAki7tFxALlBbGg+7Xi9+/NRJ/NNv9kOtQ72SW6DWExWdaXxyckGtKty47Ynj+PL2AzU/XzVVTLcatWjQj4BPqEvqaFJSEQ8H4PcJWBIP5fVSywvUPAxu+VyhnpksGQrUWgYK1JBzfKxFUctqunvB7wXvAISCSWfiNHD8UTNQa42V9VoYXYCillE0Z1PVAtJW6qNxg2mlGjX76n4rBGpJSUV3JF/l6vLETKRM6uOJJ7Ex65Ka9o7/A0QHndtPP1v2NQtXyaPB+ipqWVXHQ/vG8Lrzl1kpV63SSLZU6uNiGOE8fGAMisZw/WYjCLhgRTdW9Ueser+peRn/cI9hN++2aGCv5Sg2CZG4Pb+ul1bUgKrTH2fTCoJ+X8lUXgDA8Ucdm4JXfhTdsSi27x0BAkFMLX0VntQ3ozvmDNI4sWCR32TfGuBdPzJq20wmei4EznlDxe+Fw38njsWMOitqhU2YAaOPms5yk/NK4JN0u6FLNBhALOhfQOqj054fgNP58aF/BBJlnEonDrpu5unXS7pDroHaRFJGVtUxPJNxPFYtUynZcnzk9EVFy7UUSga4413Al9cAXz8fOHT/gl+Tc2RsHumsVvP9mz/PzVdAEAR0R8S6KWr82re0O+xQ1HjGyYxHWVKMMWtxrJ6KmqTo6ImIEP1Cfj9goumgQA3Gj00QgPVD1QdqADAx7+JG1jUEbLjWuX3n9zAQC7WtmYii6ZiYlxHwCZjNKFVb1qazatlURquPWqT1atQm8xS15lZXjBuEat2kONFgALKq12VFl8O/04hYZGL71Lec25ZdCGz+U2DzO5yPufWeKkAuaHgddusTtQD+cGwKCUnFDZuXtVwj2YxLTU63pah5H6j9ds8olveEsWWl4dbHVbUnjkxiLqPgC/fswceU27An/Gf42yM3AQd+m/d8u7pUbBIiq5ox8R5/sbxL4amngbny5xRnNp1FT1TMq+10ICWAMWdvM9+FN+L1FyzDjgPjkBTNmmx2l1DnSqrca68E/sdjmLvib/F3yvvx6OW3Ab4yAaQLPGj3updaYRNmoESQWAL+uRXWCRq15VUGamr+tYITC7koakoGePEX5Q864a4m8RYhy7rDSGScplM8yFxo+5tMVoOk6OiP5WdM9EaCuQWlB/8/4NB9ANOA5Bngzg/WpU+equl4adJoV1KrEsUDNTdFDTC+93osKiVMRQ0AlveE82rUDo8ncemaPgiCd/XHslnTDtRXUZMUo/2Kqyke0VRQoAbg8Pg8VvdHHatl5Rjq4oXJRS40W97j3HbgXqwOJttWURtPymBmGilj1SkIus4gKXrZmzFPk2vJGjXbBMFr6+WFIqs6sppu3aQ4rpOTBZIxbxo+X5GJ7YknnNuu+EujFqf7LOdjc+X7bhWukkeD9U193L5nBLGgH1duHGy5RrJuCgIPFLxeYEjJKh49NIHrLliWdz5cv3kZFI3h7365F/EXb8f7/dsRRxpL1BHgrj8DErkOMZUoaobro6982iPnwL0Vv4fZtGIF50U59YxhZW+n72wgvgw3bF6GVFbDo4cmcoFauMZADQD612Hmkg/jdu118IWixfcrATfdqUxRq30ybzVhtitqYpG0yxIUC3CL1paXIGfPX4GidvRho11IOSYPuW7mgfCSbqOVQKFSyu8hPBOoVqYs5TL/8+mNiZjNKGCZGWD37flPyiaB3T9a0OsCRloqt5qvdfFK0UoHavVV1IzveVlPTlHLZDWcmslg09I4usOiZ9d2e51iPXv2SaqOSNBf08IFsbhQoAZDgt9QpZoG2BW1Iif5uW9ENlLQO05XcUXyPsxllLoqEs3CqNlj5PwV3QCqM0/gN6hyN+N0VkPAJ1hOei2V+pg01Eag+RU1foMoVNT45+6oiVkAKVktniY2PwGkp/K3+UTg/Lcaf/esdD6nkkBN1eATYH0fEdEPRWPWBGAhqJqOB/aN4ZrzliIs+hEK+BEN+ltOUXOvUfN2gWHHwXHIqo4bNucrNVtW9mJZdxi/fv4M3ht+LP9JSgrY83Prn/Zzs3jqo2ZMvF1s+SdZj/MJVaQ/zqSz6I2UMRI5+UfnttWvBABcvn4APRER9+0dtVL4SjlIdoX8jgm9prO8iSqfGLvZmVdC0WDJVVGrPfXRasJscyMsGiSWgF+/6qGoyZai5mx4DRQoHW7nid/lXCiiqMmKhrDos84f+3eoaLq1+HlkrDpFjTGWt0CcC4idilpW1aE8+xNASTsPtOsHgL6wBa3DdTDhkEukPgJGBkDRQG1+AvjVh4Hvvwl46r9KNmi3Z5Us7wljXlaRlBQcnTD6p21c2oW+qOjZtd2+oFvXxdGsUaM7RIpa09PxgRqX4DcsrT5QG+wqY/XrFzG85k8dm7eM/xIC01vGqrsaRueMz+KCFcZEp5oUT57+Vu5mnM5qiAT9CJkTh1YzE+H9WJq9Ro2Pr9uhqNnswOtExvxOXRnf59w2dA7gNydgPaucj8+VcYeEMeEMi34rPa1oalcN7Dk9h+lUFtddsNTa1htxKdJvUiSeimr7TiKiH/46FeiXYvueUQx2BbF1bb4Jhs8n4A0XLsdSYQabNJemwfty/c74yrPoF0q6Pnb5FeCks6fVl5SbnE84+SRw+MGK3sNcRina7NpiuHigJvp9uPa8pXhw/5iVClgqUIuFnI2X73j6JF79Lzus62O5VLFyWK6Phb+PrqXOndOTgFqbwsAX9+yfX+5aX52iFgz4HMFVLalexRpe82uhteimZoGD250HKOh9B6B4jZqZXcCVQPtEfTqVtTw9jkxUF6g9/dI0Lv3nB/HwAaMf4ZSLcgnwtjcMwq7vuR9obhg48lBVr12IPW2z1rpdvvBQ+J1weiIikm7XqtQk8J1rDLXw+GPA9k8DRd6rava+5ItUS816tNE5yXoPG5d0oSca9Kz+OOmRosZTvyn1sfnp+ECNS/C1KGq8ELPUSb5n2dugs/x0ri7pDF7te74t0x9HTEXtAlNRq+Y98otQuZtxJqshGvRbF+hWU9TWDEQhCM2vqPFArTD1kStq9TQUSZvfqSvjLiYiQ+fm/nZV1CqoUeM1SiZWoFaHOgDuDGave+2NBi3b9mbHTVETBAHxcMDTBQZJ0bDj4Diuu2AZ/C5psJ94/Sb84vUuq/yAYXluKql85XlVfxSTRVLTZUXHemkPoObXGGeC/bhbvxJaz5r8JzAd+Mm7gRd+jnLMpLOlAzVNAU7tdG5f9UrrzzdcuAxJSTVMRQCHqY+dmIvBz4GRBGbTCs7MGu+PT2xFf4m6uRLwc8GxkOEXjb5shcxX16CcM5XKIh4K5KUZ1lKjlsgorumiQ12GSUc1C3xyETMR3lvrzKxp7PHS7wF5Lv/JwS7gsj93OtQmTht1igVksiV2iGAAACAASURBVMZ1iX/fdlWIzzXO6o3gyPh88f5tLgzPZMAY8Lm79yIpKZi2agHzA7XeqIiXCwchTrunZgIAdt5W8eu6cWR8HkFTCZtbaOpjEUWtxy31UVOAn70PmC1wln7mO67H4L+pbktRM77vkTkJh8eT8PsErBmIGQYsHi1g2a+39VTUJFO5HYobngnVnEvE4tLxgRqX4DcujVf9XJ9PKLsaMawNYoe+xbH9Zv9D1kppOzE6JyEs+nD2YAyAR4qaoiEazN3IW6lGbXJextLuMLpCgUVxz1sIySKpj9FiltQLIK1oiASLTETdFLUl5+X+ji9zOqxmpoFs6ToRSdEty3HANhGtQ6DGrwk8PRowJkCtoqhlikxMjUDNu/fw+0MTSGc1q51BIV2hAFaM/b74AUwbfb7os3Yg5qqoMcYgqRo2Jp9xPDa15FVg8GF20zudx9dV4O4/B576dtEhMMYwk1YsV1pXRvc408oifcDgJuufV24cRFcogGeOzyAs+hz1UXZiQWdvwzHT9GDYtKmvl6LmmppeR0OR6VQW/V35n13RHm4lSGRU9LgEt/w3WU0vNUlxNxPpiYjoDgcwPG0GajZV12LTdUCkF+hb63xs0mnfzxU1t15g/LryqvUDSGc1nJmr3PmRH2c0IeFL2w/kUh+7CgO1IG4OlFHMDt3vDHaq4PB4EheuNLJualbUyqU+moFanhnLfZ8FTjzu3HnioNGCoIDCxUreMmI0YShqaweiCAZ8ZrZEwftgzFBXn/wmMP1StW/PMQagzjVqio6IaNSoaTprGUfiTqTjAzUuX1drzc8ZiodKWptOpbK42/d6x/ZrfM8hM1H7j7dZGUlIWN4TsSYp01XcDCsN1DJZFRHRb004WkVR03SGqVQWQ/EQusNiC6U+5gdqMQ8UtUxWRbSYmY+borbk/NzfPj/QvcK5TxlVTVI0hGyvGa1j6uNEUoZPQN5kvS8abCEzEfeanHjI2/P2vr2j6I2KeMU6l95fAKDKpc0/zPogfi1ZMxDFdCrrqDtUNAbGgDUJZ+Ph9Ko/AQAc2fRBYMUlLi/CgO2fKqqsSYqOrKpbBjKuuNWnrXpFXhPqUMCPa85dAqB02iPAzUTyz1uu6p4sCNSKpYqVI1ej5vL7cDMUqSD92A1Hb68TT2LFyXvQh0TVZiJun5sVqFWR7iUXaXgNAKsHohieSRt1Ti7Ny3HeW4z/D57jfMylTs1QOnKBmt1Mggdql68fAFCd8yNPWX7/FWtxx1Mncf+LoxD9AuKh/GB2QEjgBt/TZY7GgGd/WPFr29F1hqPjKVy0sgeiX6i5BKQS10dVZ7nr+a7vA8/8nyJHY8DIC46thXXaS7qNc2d0TsLh8XlsXGIs8PdGg84ate2fNhT4B/4W+OZW4LhLgFgB+amP9TXwCpuBGlDCa4FoOBSojc9jeU/YSueqlnKFmDPpLF6MXgZ056dn+QSGwUPbanrNZmZsTsKy7jCCAR/i4UBVqzRcyZDKBF4pOT/1sVVq1GbSWWg6w1A85LkyUQ9yipp76mM9V/eKpj4y5l50b1fUgCLpj6UnilYfLRM+CavHzXAiKWOgK5SXvtfrYcF5vZFcUh8BeJr6KKua0XfuvKVFV8lx/PHSjnon/wAkx3KBmlkPWpi9IKsaQshiMOVUNIR1rzaeIwnAe+8B1l7l/loP/r2rCQG/5pVU1ErUp9nhhiqlHB8B4zeZyqp56gF3pxueMQI1RSutQJQjXCz1EXBXi0b31PQ6U6lsLh3vvs8B37sBGx//BB4N/RUCky7qehHmMoprS4OyteUuSIqeZzxkkZ7GtaEDhiJz4nFDybcTiAAbX2f8PeQSqE0669QkxXDjy9Wo2QK1+doDtbmMgngogE9fdy7WDESx88QM+qJBRwuJZcfuRkio4Df+7A+NVMIqOT2bQUbRsGlpHD2R2hevsmXO5zxF8sxzwG8+WfqAZ3Y7NvH6QF6nHQr4MRAL4uR0Giem0tYCf2/UWMCyDOKOPgw8bVPddRX4/Vcrfm92+PW2JyLW1cBLKgzUqE6taaFAbXy+ZjUNMAuTS6xETKey6O2KAJf+v47H1p365YLdk5qNkTkJy8z0gIFYsMrUR+MilFV1R++YvP0Uw3ii1RQ1fiEc7DICtcQCA7UfP3UC2/e4u6vd8/wZbHu69tQUIHeTctrzL6KZSOI0IOfXceiBCNBbUD/kFqiV6aXmqFGroQ6mGJPzstW+g9MbNW2vS5zbzUImq8HvExz1TN0RccHnbTGePDKFpKziDRe6pz0CqKDhLgMO/BopWcVK/wzWhIx0psJJiKTo2Cy8BB8rOIe7z0LP0rUAzPracDdw853AuW9yvlRyxOgxVQAPxnuLqWCMFVHUnIHa1ecsyUuDK0YsFABjuSBKVjXr2nvKTMurX+qjy+9juTO9323iWwnTKdlQ1GZOAE/9p7U9LmRw9nNfq/g4Cam0olaNgsAntXlBzYu/AP51C/7yzCfx/fRHwO54t+N5B+OvwAvj5u/FXlfLcTEU4amPXcEAfIIz9TEeCmB5TwSDXUEcrsL5MWEGrpGgH19+x0UAnEYi0HXE9rrY7198E+ArWMyeH3NXEMtgz2JaiFtiufOZL27MZRTg918B9DKv43K+uqX/L+sJ4w9Hp6DpDBtNEzq+KDOXUQBdB+79hPP4p3cBNVz7k5ICQQCWxEN5bUcWimGm5atp4YJYXDo+UOuLBXHJqt6anz8UD2FqXi7a2Hlq3lwdfNl/d1zourITwEuP1vzazYauM4wlcoFafyyI6VTlP377Sm2purNM1rByD/gE+ITWqVGz1y3F65D6+J+PHMVf/ew5nJzKr3U5Mj6PT/78edz6kFMtqAZ+g4gFi5mJ1LFGrZii5pL2KPVtyksRA1BTLzXZvFFxcj2R6qCozct59WmAcTPXdIZkHQNcr+CTxcLV9v5odYsv1bB97wjioQBetWHAfQfGXAMjB7t+gHft/RAeFz+M19x7Ff534LuYTOYbhsiqhkt8Ls6RZ12KPnPyahkhiWHgnT8A1r3Guf/O7zo2cYWgt5iiNnPcabThD7qmWUaCfnz0tRvwli0uqb02CtORxxO5666V+ljGfKEc4VLOi24pomd2Vz0x5RbyfbGg0TuxoM/cwPiTgFxZcFIs9ZHb/lelqBUs6uCZ7wA/f3+ecYigOuvF/n3sAnzkjt1GtsjQJsfjroFa1jB58PkEY2GkQFHj15X1Q11VOT/aA9fL1w/gk6/fhLdfUnDdPPkkfDMuJRmv/rT7YsUjXzLSkavACtSGusy63YXVqJVyfQSA+bmZylwqXQM152Ll8p4wTpvmMXZFDYBRg7z3TsDtM8zO15QOnJBUdIUCRnpzPV0fSVFrGTo+UPvhBy7DJ17vkpJQIUNxoyllMXdDK98+vgzY8DrnDi/8rObXbjYmUzJUnVkFt/2xUFWGKfYJcilVw5jUByAIAoIBX8sEaryWcagrhO46pJDNpRVIio7P3P2CpdLoOsNn7noBWVXHaEJakPrBbxCFTajDog8+ob6KWjqrWoFSHi5GIqkelwlPDb3UJFXLM2iIBI3LYb1q1AoDNSsVpwXSHzOmI1ghy3rCmJyX69Jrzo5i9p177XlLiptmTB4CZk+UP9joC1gz/7z1z5sDv0P0wJ15u8iqji1ugdrKl0P0G2nbedd0fwC44mPO/Y8+DEwfy9vEa26Kuj66qWkrLjECQhf+19Ub8N7L17ofyyRWYPDD69PW8PoplDdfKEfQ74MgFLk2D50DiAWNtKVZIyitgnlZhaIxY3HzlNPoxa8rwLFHyh5H11lR18dQwI/eqFjVxFTmxkOMAb//F+A3fw2gdBCq+0Q8rF+Ck9Np/P8PHMwzirGYOQ4o+QEeV+8AQxUqVNQGzevKxqVdODyWrFihN1JBc9fYj1yzEX/x6vX5O7m1Flh/DdC/Dnj5B52PTRwAHq1c5QQMI5HBrhD6YkH32q4KUTTjfRc3EzHTFY89CGgF85DCcxUApo8Cmdm8TW7p/3whWhByrr58USYxnwQe/qfig3arty5DQjLO41jI70mNWizoR0T0l/RaIBpLxwdqCyXnIOXuLJZXGH3xu5wH2H8PkC1iN91ijJk91JZ151Ifq7PntwdqpRS1nPoSCvhbLvUxp6jVPmFXNB1JWcW6oRiePDqFbc8YK3U/+uMJ7DwxY9W2HK2ihqGQpKS6TnQEQUAs6LQDXwjVKGqJ+AbnfjX0UpMKghHuOplZ4KqlrjNMzstWSgmHp8e0gruWfbJoZ1lPGIwB43VefX3q2DRm0wquL+L2CMBVTZsb2opTbLDs8Tce/o6RkmQiKUUUtZVbARRJ2z77aqDvbOdzdn0/759la9QqrE+rhsJ0ZN4m5eVr+zGbVpCQlLJ9p8ohCALCAb+7K6rPDyy/2Lm9yvTHvCbMbu0LgIpU1VRWhc6Km7AMdZU2AStEUnXDeOihzwM7/rmi55zqvxzziOKGzctw2xMvYfeY6qhVB5jD+ZGr2YDTYn7StgC0YagLCUmtOOAspjDm4ZZafKHpfrr2KuCsS52PP/71quoRD4/PY8MSwxW6N7KA1EfNOA9LmYkAQN8Jl+Bzy3uAgY3O7SPP5/0zp6jZUh/N+c2qvijCR+8DbrkQV/58C34a/AJW7Pir0m6Ybg7GZTAabgcQDQbqtjiqajpUnSEcMLImhuLUS62ZoUBtgZSSjedlFVlNzwVqm64HQt35O2XngYO/9XqYiwKfHPAVp76Y0QSy0hU/+wS5lEGIfVJvKGqtUec3kZQREf2IhQKWKUOt9Ur85v2+y9fi8nUD+OJv9mPn8Wl85b4D+JNNQ/j09UY9xOEFBWqKoz6NY7jM1eemkVWNm0algdpMbL1zvxp6qfGG15x62fPPZRQoGnMoalxhaQVDEck2WbTDf9ujVdiCV8L2vSOIBv24+hyXflwcl0lkau3rsF27rOzx+9PHgMO55+uJEZwlTOXvJPitWivXtG2fD9j6fufBd9+el/5l1ahVo6i51KdVQ2FvQ24kcpnZNHx4Or3gGjXASMWUil1vi6U/VgEPjodCGjD2ovtOhx/MC7rd4NfHYoFJtU1+JUXDVrwIPPGvFT/ntz3vQl9UxFdvvAhLu8P4m7tegO6mqk3m9yuTlFy9bnckv43LRDJX+8pbClVqKGK0KygRqE0dBaYK0+WFXCaQIABv/oazVk1XgV99xNVYpxDGGI7Y3BL7YkHM1thbshLXxwgkLBt3cVs87y0Vna9JWUVY9OW9xjKzl9ql/Vngrj8H5k7Cr8zjFb4DWDbsEhTaqUFR4/fhWLB+iho3bOMLlYNdQXJ9bGIoUFsgpQoxZ1LGzcIK1MQIcP5bnQd5vj3cH0fNvj12MxFFq7wmJ1WBoqabdrtc/QjVkPqYlJS6GEZUi72+IB42rIOrsZu2k6uDEfHlP70Qiq7j3d/+IwQAX3z7ZqzuN/q7eKGoAahrGgYPjBx91HTNtYZjMuoWqBWpUSsRCMuqhnDAJVCr8TuxxjefU07t9BZR1BRNb7p0yGLmLlYfobn63dQ1neH+F8fwmnOWuKp4AID0tGuAo66/tqJADQDw+K3Wn8GRZ52PL9sMBI2UqKJp21tuNurJ8sY2ZfVvA4zfZlj0ub+X9LS7i+mqV1T0FopRqKiNJiR0hQI4b7mxMDg8nVmw6yMAhAO+vGuWpjPMcOWxzMQ3JatlF3d4O5ezMgcBVuT6Mj8KjD7v/pgJD9SKNQkfittMwGZOAL/6MHDb9UYan0v/RUnR8EblQfcXu/gmvEG8DXes+JxhunH+24D/5y48NL8OG5Z0IR4W8b/fvhmHxuaxW3LpN1dwPhRT1CRFQ1JWrevKRrM+qtLFuLkiqaAWhx9wbEov2YK9c0HsO5Mw6vCXbQaudDHKGHkO+MM3y45hPCkjKamWCUdPRISk6DXdj7NW6qN7A/d4WMTVvucR0PPrUxHpB9ZcUVmgJimOPqL8GnhdYGdpB1o3albURERDgbo5LVuuvuY1nhS15oYCtQVSykFqylyRHbA3lLzY6QyFow8D8+OejG8xGZmTEPAJGIwZnwkPUCvtpZapoEaNr+bmUh+rD9Ted9vT+NJvq1/ZWij2uiWuVNVaQ8ZX7fuiQawZiOGTrz8Hqs7wNzeci5V9Ufh9AtYNxhakqCVKKGpdofqlPqYV4zgORW3mOFBQoD/HopjyufTYCvcCwQL3Vk0GUpNFX1cqMBPhfy809dFKcXVxfQTyXdwA4LuPv4RrbynRxLkBZIqkPi7vNlaTR+qoqO0fSWByXsbrL1hafKcXfuacuPeuRmDp+djNNmCy96K8h1S4BEnDf7SCvfC4i9Jz1lbrzwEzG8BBbNB9sW3nbdafs2kFvZEiaY9HfufcNrgJiBUxUKmQrpBZo2ZeQ0dN991V/cb3dWqmPopaWPTnXZtv/+MJvPpfdhhBoOvE9zlL/froT3b/X/beO0yO6swePhW6q+P05CBplCWUUAAEImOTMcEBbGPACePwc1h77fXib9cBe+11zsZe4wS72NjYGBMscjAmBwkllMOMNDOa2DlVV9X3x61bXVX3VoeZlhCg8zw8aKrjTFffuu97znsO3vHzpyoqIKj0sT3OZlo5UMX907JV95I+0o1pqQD84UrCivY9TeaLfnYS42aoFfM4sfgs+0QnfRS47EaE23pwp3EG8LZfAO+8Gca8s02JH2GO3ryoC5eumIY7+jizUbZCTTebdwqnUHOvKzTmZccwG9TsRrGkI6dqlRk1jqT0xgPzcfFP/omLfvwEfvfUXnLwjM/xHSwf+++K6y0Ay6VyfofTLXEyKgPLTETiN3ckUcAlPnbOEYsvJjOnNRRqyVyJuQbObA1BEIBl6iTiJ0a218Q82kGljyTUvrHNUdqoPFqoHdk4WqhNEXQQk3eSO/T2FDNPYedpDA3Y9JdD+TYPCw4m8uhqCljmE61mgVqrS5y9W+RVqFEWpyx9rH9GrX8ih4FEvvodGwy7ZTtd/Cc7pzbhkldde9oc3P/pM3DNmrJt/fzOSE0XcS/QCwQPjdTLuz9TCxyZyDajF+MZzt9MEOrOUnMHXguCgKBPqs1MRNeI89vafwd2O4usES9GzdwkTbje/+aBJEZShSNq1jLnkoVSNAVlBHyiJa1rBOhzzW4L8+9gGI5CyMKiixEO+GBAxENLvkEKqOaZwMqr8L7Qz3DAP5d9jMmqRUfWs7fNWG39szVC5mu50uQTPsge2/ckMEw23BNZ1Vv2uOVO9ticM/j3rQPUiKc8o5ZHTyyAWNCHaEBGnyl9FHhZYHVAcRVq6/omkMyXkM6XgNZ5gD/qfEAxRUwaAOwZzWDrUAo3PrrL8/nptSIyyvl87KhSqFWTPnZEFWSLGvIb/goMuySWiX7gtvcAv383kCLunItyLyJkuGbJlSbg3K8CoojelhD2j5dvH00XkcipFusFABcd24OtGof5HylLH2nTMWgzE6Guj+51RRAELOiM1CR9pA1Br8IVhRSw90nm8KkXXYWb3nsCmgIydlOHSVkBLv0pANd5VMpX/Vx2mtej+V1ut8T65Y9VGw9qHmcJHOZ8sdlo6T4WEFyPje8jrLeJJIdR620N4e+fPA3T4y9WfH+6zDEH0gp8R8gKSJlmIiG/jJyqQfdwGK8HtFmimM3JjkgAE1m14SZRR9EYHC3Upgg6iMkbTKYXnVb7ULkolodz7Xj2F8D9/wE8+CUio3kNZC25Yc9QA2CFltZqKOIwE/HYtFoyOd/kGbV0vvTqSB9tjBqVoCQn6fwYdxkWCIKAY7qjDjv1BZ1R7J/ITXrmiif7oAi7GbX9LwJPfA/Yclfd2YDuz9QCp1DbK8701tLXkaVmGAYKJdPJzYZQLXMAhgHc/n7i/PbsL4BbLnW4t3oxarIkIqrIzpmMYgYzB+7DR6S7UTjIMbd4lVBQNQQ5ro+CIKAnFsRgsnGFWrmh5cFC7XuKGwyM499vuR0eFLuBd94CfHoj8NYbsbPUgSc638M+ZvtaYGgTmiY43fAZZUatNVRBtj3zZD6jYErHErkiv1ArZviM2uJL2WN1gpE+mk0zQRDQ2xIiM2qaAZ8kMpEL9SDoc0ofKWOfLpTItW2ad57aSKoAWRTws0d3YutQkr0fyIZdkUVIA5U3wRh4ySqieKDFjZfUzzL64TUAKLavJd/tfBIn5dgiBgvPJ0ULyOZ9MJm3NsD2rDCKBV0R7DQ4hdr4Lis4uhw0T757TUEfCiUiDbSbUVHMr7FQq1a4YtejbM5YdBpOPuUsnLukCzNaQs7mTO9qEjnkhmvezo0dw2nEgj5rbZzK3G5ZyutxPu96BCG41iklVm6MKBGgneP4bWPViPyfbVYu9g1ByDhVUEXI2BtYRGb4mmdi51k/xzP6Yvb565hTMwyjzKgpFQLn6wT9DtNmHD2n6nHpPorDh6OFWgPgRRtbG5CIawOynOP+OLGXaLyf/BHwx6uBuz75mivWhpLOQo1uvCZqLNRyRQ202VvwWIxojgjtIPtl0fO+PJQ0IgEpTHEOqV4USzomsqq1QaCzE5O16KcXtphX5x5kY2AYwK46snYo7BcIHiKKVM50eeVu4NfnAA9/FfjTNYRlqgNlRs31Whw9/5Ayx1uiUUeWGi3uFVdxGKiFUXvpFuLWasc/f2D9cyRdgF8SufMxzWHT5cwwgFfuAX56Iv4t9U18wfcHRH5z2qSGzQ8Fch5mIgBxPTvoZtRycXIevHhzVRMXN8aqFWq8zfSs04COYyBLIgI+kckXyhY07Ow8n+8G+ucPQtZc0s1AM2GETFSUbQsCfw03N6kTWZXv+LjjQUbKa83LTBG0YE0XSihpOkbSBWuWprc1iP6JHIolHcoU5tMAp/RR1w1rbbHWMY9CLVfUkC6U8IFTZyMW9OHzf96AEqd7P5YuYlEoCSE1UP3NcGaqKCiD5LU+dkQVLBD2IzDAkTPaMbIVeOJ7WKNy7meTwPa2hmAYwECcfC8oc0RnsQBgVmsIWSmKtM8l3dZLVsRDzjU7RAurZE611j27m+yCzihG08Wq19hktUKNx4QtPI+c6yBz54Pu7zxvrnLcmy0FSAE7vzNiNQuoRDg+SUZNFEgDjAv3Gg0Ax1wIyLbvZhX5o6eh1t4nmEPbfEvwH+0/Ar44CvzLBmyNrsE2ndM8rGONz6kaSrpBZtQoa96AObVyQ4CcZ+2TyBY8isOHo4VaA9Ae8XuYiRThl0XrImqhcxFybcsqP+m6/wWe+kkD3+WhhWEYGEzk0NPEFmq1Sx81y3DBi1Fzy+QUWbRsp2sB1Xg3oitVD+i8ot1MBJi89DGeK0ISBUQVfiEFlLu5kynU8qpuXSB4IK6P5t/wie87g2mfv4lrAuIFKnllzCs4pgsTkfneFxOuRb9HoebqKFIE/VJltjU5ANx3PXt8+BUriJcypzzmojnoh5TsA/7wbuCPVwHJ8vsTtALwwBe9X/swwstMBCDD9IOJPJEIPftL4JbLgO/MIw2muz8F/Hgl8Og3ALU21o2yKFzXz/QIsOVv7HGb+6J7XtIwDGSKJQQDCnDyJ9jH8ti56cc7QtSryrY7l7DHxsgmNZ5V+WHXvI0jnZeZIqyCtVDCaLoITTesptnMVsKoFUralObTALNQM1mjA/Gc1Zm3/v4eG1+qOFnYFcVXLl2KDfsT+M2TrARsPFPASf4apWEVbPoTORWiAER42YwgbPd7JA67ycOTP0QMLgm5LwTMO9v6sbeFzAL2m/LHHcNpRBTZsnIHyGc0pz2Mfmkm+xoHNwEoX5esHDVaqOVV629on3mnEsJqwdcVzVV03eGIamHhBdY/u2MBHHSz6G2cmJSx6oWaXQ7aEjYZtdwkZtQ03ft8LhWBrRw3bfd8adVCzcNQay/rJLk7vJI04QQBEAQMJXLYYfAKtdoNReyB25RRyzZgTs19npW9Fg7/SMhRVMfRQq0BcDhI2TCWKaIt7Odu2ArLOKYibjz0ZWDHQ414iw3B/z6zD//YPsK9LZkrIa/qDkYt5CfzLIzNtQeyqoYWswPqtVkuOwTapI91sGOpglNicrjglq2UZ9Qm1x2byKpoDvoqyphmt4UhiYI1wF0PeEGfdkSoPb+aY7JnADDZUpVAP1N6IQJALrQcGU2ueaF3/lEdM2p0s+nOlHJLHzdu3Ypb7nqAFB2GQeSOKi/30LA2W/ZQWjfOFNbhawMf9t5k7n6MCV2dDFRNx1fv3lKeK6kTXmYiANAVC6At9QqMH68E1v4bec+67TzWisDj3wJ+fjJf6ufCWNp7ncT6/2MlWaF2YPEl5R9d85KFkg7dMBna465B0d9S9T3Y59OAGmTbbRzn0fFdMAwD8SxH+qh6zO8s5hiTTBIRRUamqFlGL2VGLYRCScdAPDclx0eAGO7Q76t9/jVtrqvcje/gyxhOkO9Me1TBxct7cO6SLnzvge1WYUMxnilipcCRAHcdyx7b/ZgjFsGORI7ItkWPebyOQAnvkFhWBMsuZ109eVhwruUQCgAz28i/abj4zuE05tmYI+thnVFsLnHWqX1PA7CZPPicjFrCZNRaw37HZzi/xYcVwk4ktjxEZmV3Pw4ceJGsnzZUlD4OrgMyruu6HADmnGn92NMUwFim6LxuehVqHtEJ45kixjJFhxyUMmqTnVHzPJ/3PQkUEs5j/ggJ77bDywDHBFdVYhjcQm1/7HiHhHMwkcc+aRZzv3oYNft1OOhrJKPmtOevFDN1FK8+jhZqDUBHJIB4VmXMABxh1y4oaz6EF3VO4KIdhg78+YPA6JExu3Ljoztx67P7uLcNJp0ZahRtYaVmRi1XLFl/Ly85I91Ehy17fqkuRo12fj2zgA4R2EJtaoxaopJhgQm/LGJWW2hShiJJWyePh5BfRqGkozS0mW+jvf5WUsTVAIsl9dlea3yXc/MPAOFOhJq7KjBqtWep5V0dRYqAzxbo+9RPsPi2fyqJJAAAIABJREFUU/Hel66A8e25wM2XVM48HCROdfasIwc2/AmfGf0ygkaFv4uu1hToWw1P7RrDb57cg/s3e8/xVIJX4DUA9DQp+Kr0Kwj5BPd2C+O7gf97O5HEVrpbpsDKwwGy4Xvht+zxVVdbs0EAm+lH/x1WJMAfxsiJn6/8PgHHfBpQg2y7eRbJXbMjfRCZ1ARKumE1nCzseoRkZtphn5dpAGjBSmeJumzBvACwayTTGEbN3OTZZ6OshlPLHCAQcz5IzSI3QDanHRHCNF9/4SIUSjqe2OF0CRzLFHFMicN4rvkY0oLL1bWYBvb8g/s+k1XCndv23IMmwdVw8YWAi78PnPhhz8dZcDEzXdEA/JKIPhujZmeOKOZ1RvBIjlPgmFI6ui5FjAyg5plCzbGuHNyMGX94E/6mfAnnPHcdmae75VLgpjcDN54EjJeZSbqec81EeA2E2ac7ClF6XR9O2tbeUBv7WWsFh0rAjk0HyHpBIyMA0nBVZHFS8SRFTfcOb+dIE7HgXMDnMvjoXsZ+j5P7gfQwVHNMglGVjG5nC1tJQaJthUPCOZTII9XEK2Z3ejYY3LA+t4CvzKg1IBbHff2jctrRozNqRySOFmoNgDWI6WKOxioUasFgEB8wvozfL/g+cN5/kf+Wvp29YyEB3HalJat6NZEulBjHOgqqX+9xFWokOLZ26SOd7fAyCHHL5JQ6A6/pJm6y+WWTBWWBqBY87JcgCmUb6XoxkS3y5VUuWK5gdRp8VHMJoxeNYr+HO1s+AWy6o6bX4kofefKQzsVoj/qRKWp8x0mvLDUOCq7AT4qQ35xRi/cBD90AGeR1BDXDv/jbYWY7jdry8iw88wvgjusgoYbPgSf1qxP3bRokb2kSNvolTYeqGZ4zaksK67FS3F37Ez7xPYeznRukocUpbHc/QlzYHBCA49/vOBJRJIf00T3zKK/+AG4rnVX5PU4/3vFjVdm27Ada2G55eoAUGYw9fy3zMlMELVhpnmWPGcxLLfr7J7INKdToervjYNoycrD+/oLAZSnEISIn6zS/F3Pawgj6JMYII5nJYmaeU6jNXIMNgdXscZuJjx2JKoWa+CKnAbDsHaTwOP2zpIj2gqQAC85zPp8oYHpLEPvHc0hkSVHFK9QWdEbwjMYxohnZCqRHkFd1XC//HiffsQb4Rg9mv/B1CNCRzJUcOZzoexb47YUQvBwEx3cTu3wTFc1VtnFCmhee7/iRFmqOWA5B8GDV+I3l9f1xMt45w/m3bQ75Js2o+b0YNQ7jlZrOaYr4gnwZ88A6h+zQ+dyc60DviYiGI8gUNathP5TMI9LciVHBNZNoaMCoO1icj5RVYMuMs+tU4J5RC/gkNAXko4zaEYqjhVoD4EUbj2cK3gPyAKLhMF6QjwdO+ST57+03AXPPYu84up3MrL2KMAwDmUKJKUYpqLlAt7k5oJhsoVZN+li25xfrsjWnC1++QWHNtcI9CC4IAiKKPPkZtazKdu05WNoq4PrE12B8vRv4xWnAhttrMqmxLhAVpI8AoPNkjxSVHNVs4NrzT3CY245FVkeZK3/kmYmkh7jdS6ujKDuLkSBl1HY9wkruqmFwAzTdwHimiA47Q/T4d4D7+AYrOSnKHtz5MLHLniRKmm4xaYwBQA3IuyzC3Thmp8fnGp0GiB7n5D5240QxlimilXcuv3QLe2z+2UDrHMehsCI7usxUGkRng1sjCr6sfQADUY58DiAmIiHnZqom2TZnk6oeJBswB9td67zMFEEL1qFEHn5ZtNaHGSajZhhTC7sGyPfFYtRG0lhisiOOzSOnUAuOboQglAtgURQwrzPsYPvzqoZedR98hutvHmwBWudiXfRMMNh6D7eJmcipnmHXGFhHXCPdoLELoVbg9M/wHwuQc1Bhv7e9rSH0T2Sxc8S0oOcVal0RjKMJySaOmmbfPxHZ+wA+Kt8DUS8Cho7ml3+JD0prLUatPeIHtj9A5kKrMdo7HrTW+kROhSJzQtgn9gJDnMw6V6FmBd1PYU5tXd8EFpgB4Ha0hPyTdn308RoPxQyRf7rw3W0d/CfiGeD0P2uTHbrWJk4RiNmnodk8t6mrL80y7JMnL3+0v4dDwagptkZl+9EstSMWRwu1BsDLMWc87c2oAWQo2NGxlWTg8t8S+YgbOx5syHudLPIqmfvwKroGE3kIQrljStFWV6FWQlNQhih4M148M5F67PlfTeljU0B2XCibgr4puD4WEfMK1bXhsqEf41zxBQhaERjaCNzxIXKRryKn9bxImaB24NLBCqGfB17gz6+5kOXZ86c5kr2maVZThFuoyQoQ4YQmJ1kHOXp+KS5GLUgZtf0vVH3fDIZfwVgyBd2wWWhvvx949L/4959zBq6ffgtGDY58qIKjXTU8t3cc46aREbOxqgHWnAzP3GPwZUQPcORml/wY+NctwMeeZNgpAMDBzewxExM8Rq1U4M/ncjLM3FER1OQmZJ6jPklEJBTGLb1fI8WkGzM4TA1qkG1zNqn6KC3UbN/NPf+obV5miqAGPzRDjc5HBXyStS5PnVETkVM1GIaBnQfTWD6jGYJAIk8scAq1tsQmtIX9Doe+BZ1R7LIxauOZIlaJHKZh+gmAIGB708lIwlX8qFlSrLmQzJe8GTXO/Ow2cT4KXSvKB076KP9cATwL7N6WIPrGs9ZM8IJOtpib0x6GKAC7QpziYO8/0bPzD8zhz8m3A+O7MZou4KziY0Rh43YP5SE3bjE3nlLQLRymt/tYkkdoP2Q2YJn8RJtTqgUOo2YYBtb3x7Gyt5m5LRb0TTrwmsuo9T/LyOZTShdu3ibgvk1D7P17T2SP9T3LZ9Q85tMw+zQrJzOeVVHSdAynCuhuCmDAP5u9/0ithZrNTKShjBprptUROVqoHak4Wqg1ADxGLa9qyBQ1ayidBx7bdLAUgnHZT9k7V7G9PdSgXep4ToXGCVwcSuTRHlGYjm1LjYWarhvIq7rZyfZ23nPbF/vrNBOhGwpVM7i/x6HCCEcOFw34Jp+jlquBUcuOo/fAvezxPY8To4d//sCTXfOUfZiIKDJE6FDGqlxweDNGLhDjCtE5+J/iXFCjPdWHnmvMUvOaUbMYtWqFWqidPaarSPURQ5GOqALkk8Ddn+Y+PDP3IuA9t2NrQsYLwVPYO/A2UDXivk1DCPhEnL+0e1LB1G5ZjANP/og91jqXzI0JAtBxDHAq53ce2uT5Wpmi5nCyA0A2Q2rGeSzQDCxwdvoB4uyXcUgfnYwaQJjs3fko8O7/I0YJdqz+EPe9VVUDcAxFpAkiCXV8N1/hSFkXnMfOy0wRlvQxkXe4DQKE7QEwZXv+oE+Cphs4EM8hVShhQVeEKAOqMGo92R3oCTuNNeZ3RjCQyFtNofFMEStFznXOLKQlfwCPSJzvysu3MYc8pY9aifvd+nXhTfjZI7YCwxcE3vT/sY8XfQ43RDt6W0OIZ1Ws64tDkUVMbwky91FkCbPawngeS9kn2LYWHcNsXltQKOK0V76Kd+lrcdnuG9jZXQBjYht/TeojJiWEYeT8PbhOpGwhGlFkRBWZZeh5pjocRm3fWBYTWRWrZrLGPi0hvzNbskYUSx6uj5xCKrzwTCzpieGLf9vEzsPNPJl9jgMvIJUh64/jGjiyjTufhuknWGqgeFZ1OK8eDMxln38SjBptTjd0Rs2mKPEyxTsSkS2WrPGMNwKOFmoNQHtEgSAAA7ZFjGquubMXJlpDzo3AtqEUTvnmI3gixZFwxftqHkA9FKAbIcPgOzQNJdnNAQDMEkfwRf0X0P5wFV/+Y4IWYCG/ZM5BeM+oSaJgddImayYCHF7nR3vYNUU0MDnpY6GkmVEGVQq1zXdA9JLvaUXgoa8AG/7IvbkWRm2uMABRq1IIbLy9qowvWyyxGWrcQq2reqFWY5ZaJemjqKa40QBYfR3QuwZYdDHw/nsw3HU6cxf1AJnZ64gqJLyekwd1W+ksbD/jJzBkBf0TWezvPpd9rR0PAEWeu2Rl6LqB+zYN4cyFHZjbHsZIumAFw9aKsnWz6/IwvgfY/Ff2Aad8EhBtf8duTvTIwc3cpoBn2DXP4GDBuVwr+5AilaMiUGbU7DOP1iZk+vHQr30Yz/jX4CVpBfCuW0l4LwetYX/lfCoOmxBIkpkhK79L14FtHHOYJVMPuXYj4peRKZaYPEuAWPQDgE+efNg1UG5sUGOI+Z0RRBXZyajFehlm2wcVJypOOXM5PoRsiMcyRawSOIyaafQS8Em4G+x3DnseB5KDjkOJnMqfx9r3T8I02SEHYSx9G37++C7nNWHle4AeF/O18j1AkGWFgPLf+LHtw5jXEYHk4Tg5vzOCB9KcAid5ACLPmAnAvMw63OC7GQLY71CfsgAfCf3AEVlhoZ/kv3EL18QBYP/z7GM8GMOuWIBt/NQ4o7a+nzjZ8hg1MqM2OTMRrpSXU6iJc07Hty9fjpFUAbc+55LVt80nxih2lPIQhohaxHEeecynwRewrscT2aLDeXUsxPmsa7ToT+ZKEAXSdKIqloYUaiUNkig4wsI7ogqGJ6HAeDXwxTs340M3T0L18hrF0UKtAQj4JCzojGDD/rKtNk14ryR9dHds79kwAE03sDMBINrjvLOhEz35qwR7gcPrMo+kCuhqchWlxQzevvFjuFJ+FNK2e4hkY9ej3Oe3SxoDsuhZRGWLGkI+yZL1+GURmm5ww1N5sEsND2eW2mi66AgqBcj812Skj7QjWNVM5GV+EebApr9wD6fy5QsEDyG/hKXC3urPX0x7DvxTZIuccOU0p1CLdKM15IcgVGLUeFlqrEV/JTORhaUdgGtDNKbMAN7yXeDa+4F33wp0LsZeH4dRGSbM0Yz4SwDHsCA57XRcX7oO8byO8UwR2aIGYc5piBth5x3VLLCrxpwnG17qm8BwqoALl/WgJxaAYQDDdcpZPBm1p3/qzMsDgHAnsOI9zmPNswGf6/cppkizyQVuoWYYfOdLDyaD2NKXYJiFYE6ljFq5qOuwzV/cujeCdyc/hV0X3kpyzDzQFvbXLX2MZvYCMMpmIoPrgMyw806SAsznFOdTREiRkM6XrNkYO2jOl6f5Qo2g35eNZqG2oDPKSE8hCNww5FWG0ySEmm1QQ5HUxDDmiYPM46iUNiBLeLa0kJHlwdCBTX+2fsyrxNCByyDxmOoF52D1wplQNcO5rogScPUdSM19C/bpndg7513A+V9nH2+CumseTBYcQdduzO+MYP24DKNjsed9asbs0/GruT9BXyEMzFzD3m4yask8p1B75W72/h2LgI6F3JfqiQU4M2qcIiS+j4kHWNc3QdbWLlYO2hzyI5FVre9vreAyah7zaZh9GpZNj6E17MeBCZdsVBBIA86F4BApYq1Cbfv9RIXCPPfp5u9hOnRmVStzrjsWQCLMYdQm9pL3WgWpvIqIIkMQBCiyCFEoKwamglxRR0AWHfER3U0BZIrapOfmDyf6xjPYcXDyc9yvNRwt1BqElb3NeLk/bi02dAPCSHpsaI34kVM1aybk7xvJRWokXahZ+324YO9Ycwu1dIEpRLD5r4jkXLKzJ3/Iff5yPpoMxSd5B14XnEG81J63VlbtyGLUfFauWz2g3ceWSoXa+G5g/3PVn8zDfSqVL1kXCB4iioylIsfwg2cmUWW+MlfUnEYihgGkODNq0S7Ikoi2sN9bosG16Pdm1BQXoxbwS1jByXHa5Wed2naK7CxpZHwzAiig47HPse/DF0binO8CEBDPFS0r71kdzXjY4LA6k5A/rt00BL8k4s2LO63Ner3OjznezGBmFFj3f+yd13yUlfCJItDFcVLjzKnRQsghER/dzro9CpLnTFdYkWEY5cZLeUbNyaiNpgs4EM/hm2u34vQF7bj8eM65YkNV2XbTdEZGqWgZ9PptNvjbObOGc04HFO+N/GRBc9SKmo4el7phhsn2THVGTTHPiY0HkogFfWiP+BEJuAo1gCsnO0Z1fv4zW0PwS6JlKCINrmMeg/aFFoMV8Ilktmb5u9j72ZQBSa/MMF3jFydL3mqtzUxTI9yGvW/+Oc4s/hA7V3+NayJCQd01AWB+h/fnu6AzgpJuINHNKazqwaKLgav+jEC0meSkzVgNwLVej+8G0sMmw+hio7myR2+mt7uJw6gpUSDS7TzGaSqv749j+YwYl2VsDvlQ1PS6mSKVZ8/PmU9D03Rr7t9zDotT5DaPkoKvqTQK3HYV8Pt3cmX0mH0agPL1mDBqZqHWFIAv1IT96GQfx1NtuEBy3Mh5LAgCwn7ZsRebLPIlNn6FXi+YYPMjEPGsiomsetjzcF8tHC3UGoRVM1swkVWxb4xsvugFvtJmus2ygC5gx8GUJQEZSRU8tN+vZqHmzahpuoExniU5b6O55wkgO84czppd8JCZq+LJqKnOTT1dqGudU7NLdA6XRX+2WEK6UOJKHydjz0+zWipKHzksltHK6exxup8A2ex4WfMDZHPMZdSOfx97bKyyFXG2qFnGDwCAQpIdlpcDZEYJRGo8kvLYQNeYpZb3YtR8ElaJ7PdsI1iXtpdLM5ljrant+LxyB0SebfY5X0aki3wGExkV/WZnt7c1hMckzqZt+311yZ0Ng8geT1vQjqaAz1ao1ceoWdJHe/H80i1AyXkBTxtBGBxzDwBAF2cGh1OoUVfFFnuhxmPTek9inBkpqCSIFgvlGTUboxZRkFd1fOa29TAAfONtx1YMiwcIy5ctat6bAVHkNtSWBWwzLHUwg1NF2PYdcrvvWtLHBsyoAUT6uMAMdCbute5CjWXUetMbHWHIsiRiTnsYO03zjegoJ+pjejnfTpEllHQDpaVXsPcb2ggcJHIyGu7MrF/9z3LYTT+w4DzLTZa3iafGU27jITdiQZ81z1SNUQOAPRFO2HKtWHk1cMXNgC+AWNCHQklHXooAXRzZcd8zSGRVLDZ2As//msxHpYeBfU+x960gye2JBTCcyrPqlSryx7yqYctgkjufBpTnOeO5+pqWXOmjh9EHzO+65xwWp1DrmFiHJqQRu/1yrmENACDYaklzQ34JPklAPKcS51VJRGvYj5Bfwnadc10a8Ii2sSGZLznO45AiNYRR4+Vk0tGVyTgFH27QZvVroahsBI4Wag0C1V6v658A4NEpdoHOr41nilhruhFNiwXMQq32fJLDgYxtcXDLgcYzRafTHUCMFHZzZI6Gxg0Ntpz/qsyo5VzzTH6TEamZUSsefkZt1Cwq3CHIUbMTXa/kY8KSPnoUUobBHbCfWPQe1hXRQ1KbtHXyeIj4JSwV2cfh2Hdy3vBeQPO+COdMOasF3nxapKv6xRbwyFLjSB8te2L3jJqIlZxC7fkSuyHfkGlFynBuiBU9i/cLnIt67xpg9XVoCvogCGRT0m8yajNagtjoPw450SUXLCQt6VIt2HgggQPxHC5YRjrcPU3kvQ3Wyagx0kdd58o4f6+9GUnDY0PK2zByHELHzVxGxzrJm09byJqIUERM5ox2mq0ZNdtn2x4lz//c3nF8/vxjLHONSmirlqUGcBtqx/hMNjg5CAxyNmOuDK5GwVmo8c1EGpGjBpA1nxYjUR6j1r2cBEjbH1tKME2b+V0R7BwhhVpHguMgawsip02VQvM8YNpx7H0f/BKQHrZMBhhGjdc4nPdmINBkuWLy1hUv4yE3BEGw5I/zOY6P1kuabNsLBod1tuOMz/NdbE/5FHDZT615TcqUJfMqt0A29j2Nt6v34iPbPgTc+6/AjWuI86973q11Lv97a6IrFoBucP5GVZrKmweSUDWDO58GwHIvrjgPygHX9dGrUDPR4WVB37OCYcdD6gS+rfwawign1w8gRf4lPyRuwyCff3PIj7jJqHWbzqthRcZGnWPRv/uxSr8eACJ9tJuZhPyENZ8qCqrONClp7uKRXqgZhoGEaT5zpL/XRuFoodYgLOyKIuSXsL6PzKlNZIqQRKFi6KY9VHXtpiGcMKsFi3uaiPU4t1CrI2S2wXAwaq70errwOQqR7fcTwwoeOIG+Vj6aTzIlLhVm1BrGqB2eQm0kTRaT9qh7Rs0HTTfqlnyUGTWPJsD+FwAXo6MbAja1nldzA8B9gXAjkD2AZsGlsZcDZJ4k7Mqr0Uvc+SSKTLHklD5yjUTK8pqOqIJRzxk1luXCxD7GyMJrRq1VHUKHkHQcKwl+PJNlrboHU0XsFGczx0X3BkhSgEt/AogiJFFAU8CHeLaI/vEs2iN+hBUZPiWATSGOTfQBTt6TB/6+cQiSKODcxWRz1xSUEfRJdTs/5twb012PMJ+fAQG3aOdiMOlRBHILNT6jRv8m5MUngL5n2MdWYKHcQbBZ83yyu4h2RMgm7PhZLXjvybM9n8sOuj671zsHON+neaJZqPEiFjoWc4OyG4GITerZ4yrUupsC8EkCKxWrE/bvCy1GIm4zEQCQfPyYBlfjYUFnBH3jWeSLJUzPcCIcHIUa+f3yqgaseDd7350PAj89AdH1v8IZ4suYMfYUiUYoZkizgSf1M40zWsNk9pW3rlhW5nLlQg0g8kdZFDCrzbsREFZkTG8OYlNcBjo5zDMACCKw+lrgnf+LrETiO/LwA+d9HTjva1bTCigzh8mcyp21Mrbeg/+QXbJlnpnF4ksdz+tGT8yDcalyTVnXR5rXqzwKNcqoJepk1FTNcDYeKsynUbRH/BhNF9jmqKxwi/8LhGf5Lz7nTOBjTzPGK81m1IDd0Cfkl/CkxlkP9/yDyHErIJUvOSSrIb+EbAPs+XMcRq3T9Bg4eIQXP5miBlUjn99kXI1fizhaqDUIkihg+YwY1pnuRmOZIlpCPqfluAt0I7CuL45XBpO4YFl3ueNzhDFqabNLLYkCEwJLM60cjNqWO72fbNejTFgn3WSF/DIUWbIYDzeyReeMGl2oCzXmoqULJasLd7ikj9RYxs2uUsaqXkMRKhHxtOffwLJpT+lLsLvQVLOk1n2BcIM6YjnQtZR0ees8dzOFkoMN4Gao2TrLdM6Ay0SG20lGlR2lHPOceVWDILDmCl0p1kZ+NLoI8YJziDtX1BDPqsi3eWy07Dj1XxwD+i0hcjHvn8haYcQhv4RtPo65wABnbocDInscxCnz2iwZoSAI6IkFMFinPIR+LyxGihNcnpx+JvYbnd4dTd6M2tguxslyPFNES8hfXid3PkxYdzuaZxHbfw9EXNLHTFFjXESPnRHDhcu68d0rVlRck+2g88XjHJfb8p3Y71OvYTp98gq1CszgVEF/Z0kUmHlhSRTw0TPn4byl3byH1gz75o5K+CKKj5/txLM973NufOd3RmAYwP5dmxHRXeYActBRyNAiMV/SgaVvB0TO+pRPYOG6r+MW/7cw7/73AjdfAnxrDvDXj7DzRaIMHHMheSlJRGuIP/tKG2OeAdo2XHF8Lz521ryqEtP5nRGSt2YrIhyY+ybSnJp5Em454c+4ovAlXNv8a+CUTzB3pc3gRE7lSvjERB98Qg3XxypOpN0mQ89s5Hnr/Xi5qby+P47pzUF0clyhgXLDkecmXQnFkkv6WGU+DSB7lLyqswwwwDdjcUPyA+/4NfDevwHt7O/dEvJjIlt0RGSE/TLWGQuguxhm5ONV5Y+pgupQtoRNZ9epgid9DPgktIX9dV8vDjfitvNkMjmhr0UcLdQaiFUzW7BlIIm8qmE8U6jo+AiUC7U/Pk+61Rcs60Z7hISsas2zSFfNjvRQVavzQwV6Ie6JBRgpEGXUrM1BMUM2XF7QVUbeZM9Hs4bGOXAbT1iMWo2h1+l8yQooP1yMWrmwchdq5MJfr8vSRLYIvyTyc65KRWDTHczhu4zTySaEe1Flc2/cFwgGQxvYY93Lyf/rnK8kA9O2TZBHhhpFR1RBUdP5GXSCALTMZo+POxnGvKpBcbleAUDbBPt7JduIRfdoir1A+KZzgmvtCLUDp37KcShmXsz7x3OWJC3ol7BV4Hw2NcwxAMDWoRT2jmUt2SNFV1Og7g6pw0wkcQDYvpa5T+k4YgXu+dyBGIfdNJig17F0sTbZY4VOPy3yLUatUEJYcX43YkEffn718ZjTHmYe7wX6fXU3phzgfJ96SvsBNc93uD2EhRotWLuiCte04bPnHYM3HcMxNagD9jWHujZGAjLSxRJ0dy4lR4bHMmqElUvs5MxLTT/OEcdAjX/yqgZEOoCT2aKFC60AbOQ4z845EwiW56a8ZHG0a9/lUWjYcc6SLnz2PO+mAsWCzgh2jaShzTqVfwebYYo/2oHnjUXwxfhFdplRKwHNvfyIkmqI9fLlpDZ4M2qV1/t1ffyga+g6oJXzQOsNvS64XR+rzKcB/MxbC7UUaiuuBI693HM9iplNuCEzdB4gc2UqZGSncTIAdz1S8eXc10Yyo9aYHDUmfgXkHD/SWSr7eXKkv9dG4Wih1kCs7G1GSTeweSCB8UyxaqHWFJDhkwQcTBawfEYMM1pC6Igq0HQDEwWQTrIbnDDJw4FMoQRFFtEZVZjO14ibUdvxIGsG4YZL/kgXn7BCZtTyHgxZVnXPqNVZqNlMPbxeo9HwMv+IWrMF9XXIElkVzSEf3wzhlbu4OUEvBE+twNRyCjV38eTGIKdQ66GFWn2MWso9D+eRoUZRNUuNV6i55vDyqs6dOYmNv8wcU3vIBoZKWIHy3Jc8fQX/PVCc+e+MU1xLyIexdBEH4jnMNJ3iQn4ZW4yZbHMm0UccF6tg7aYhCAJw3hLnZq4nFqhbx182ExGJiYjbkr9pOpqWXwRBqDIjwDMUcQVfO9ZJXSPyNTeqFDfWjJq5hvAYtcmgzZwhHqtT+thWOEDylniB3TM48tYGgRasXbHqBcVkQTd3Yb9kbUSjputm1t34mnEiez5P7HE4us5uD0ESBYg8yZpLOmnNqNEm3jlfAS75sWUyVDdcDJJXoTaYzKM17K86o1YPFnRFUCjpGIwdB7dTY04IOGIjKGPmnnF2325JB2spONyoInsEyPXLL4udWbH1AAAgAElEQVQsi9Eym/2cU4NAIY3hVB4H4jmsmun6jDbdAfxoOfCt2Wi77yOYIYw4mJJawLg+VplPA8oSaO61o7fad1Mg84EV0BLyYe9YBkVNd0gfASDew2FPeXP8JgzDYK7DxPWxEYyazm30TuZ6cbhhL9Tqnb9+reJoodZAUA32ur44xmoo1ARBsLq2Fy4jjIFjE3oEOT9misSuvTWsMBuXkVQBIVsgI3cWwI2dDwGFtPVjtlDC+6X70Pm7U/GFPR/ACQW+tXyu6LbnN81EaizUUnnVYv5yDehM1YJ4VoUsClbHm6IsfayfUeMaiZSKwCNfY48vugihppaaJbW8CwQDLqNmFi11FGp5ldiJO17LI0ONopJDGwCglbXNd8/sFUoaO3NSKiA0xs7J+GadyLwedZuKzlwGTfD4O7XMAY5/P3O4OejDzpE0NN2wzAeCfglx1UdmmNyogVVbu3EQJ85uZZxFu2MBHEzmWbajAvKqBlEA/IIOvHQze4fj3gefz4+OiFK5o+kVfG3DeNa2Tu5/nsyo2eELA7M85GEmGEbNPfM4STQFZciiUNmiP9RG2EMbZKNI3PXc8AjsbhRoweqeT2sk6Ho733R8BGyum+6GU6CJP4O15U7gjo8A310I5bZ3YlVzHs3jnPVkhjOyghr/WA02QSAus598EVh5VX2/iCASe3sbOiKKJeO3wy5jaxSobHRbyk9CtG24N3IF4C8zv1ah5nZVdt1uFWqcOTUHXH9XBJqBkz9e9T1bUmr3d15W2Gw7ABjfZc3sOxi18d3Anf+PmDwV05C23IkH/f+GJbt+zXUg9gKRPprFZanAl4m7CzXzbzjKa74EW/jrL8WSS7lyRzuaQ35LDWQxambTaKSDw6j1P+epksoWNWi64WhihvyNY9TcRlpA+XpxJIMSBT28APbXKY4Wag1EZ1MA05uDWNcfr4lRA8ryxwtNyVJ5IfGSqb06hiKZgoaQQjTM7o2LIyNMzXPlS7o736WUd3TP5+/7A77iuwXSxC50F/bg66XvcLO0si6HQGqZXMuMmmEYSBdKVqHmldXWaEx4MGBNk2TU4lmVbyTy4m/5oejHf8DchBQrdj8p6AWiyUv6mBlj5j0MQcIGdTo03fDIAOSft3Q+zzEP55GhRtFRwaENgGMmwQIjfWRdrzC0CaLuuoCHO9HcM9d8vfJtVk5OSxPyLR5Sp7O/BMjs59Qc8luNBSp9DPnMC/A0jmV3lTm1ncNp7BhOW2uIHT2xAEq6gdFK8j0XckUyvyBsv5+cG3YIEnDcNQDIRb3ijEANFv2OdZKXcTX3LDanzQW3mUimoDWkUBMEoXqWmiDw12mOXPRQ2fJT0IKJzhIdClBWye5qGAnQGUFOw4nH7qz9PJmjTR8Edj6En6n/iRlFTiPHZiQClM08GMl6uB14643ABx8AVn8I28Kr8Yywkpw7ksc1eNap5HE2tEf5s692GVujML+D/P12DqeBi39A2MFll+MnoU/g/tarHfdtqlKo0XU6WQuj1jYf+MBa4EMPA2s+Dqz+EPD+e/luuRx0c6TUY+kCtBZ+U3l9fxyyKGDZdFsz46X/ZRQ3QaGINx/4OfCLU4F//hAY2V71vRQ1m/RxaCNrXhbuZK4FdOxhJMWuWyOpAtQZHLkuxamfrvqe7A3ULtuMGgCMBmaxslRdBfY+yX2u8rXRNqOmyI2TPnLMcXpiAYxnilMaC0nmVbywd9zzv4H41FgwOkqyqDv6hplRO3TtvTcoVs5sxkv7JpDIqZb9fiXMaAnBJ4mYbc5OONiCI8hQJF0oIeyX0RIm8zWGYViFx2i6UJZl7HoEKKYdj81JUdyvHY+34jHnk275G7D0bcDEPpy6yxmEHYBKOq8nfcQ6ZhgGcq4cNWoGUQujllM16EbZqtvLsKTRSOSKXPdPegGul1GLZ1XWVSyfBB7/FnvneW8G5pyO9hdexiuDKdL9jPWygcLju4hFMcoXCM8ZNU4w7XatB5f+z4v48ZWrcOmSOSByHtuGJ7mfGEn4ne+b/u6O16rCqLVXY9Rqkj5qTNg19j/PPm7GarSGFQiC8/WGEnk0BWSEFRml3pXAuIuJm3YcObc5sF/Mab4V6ZSWgGkrgfUuh7Yqhdp9m0gxdcGyHua2rqYApmEU0trPA6VhMl9x7OUVny9f0ogs5sWb2BuPuRBoIg6Y3U0BKzeSC67z4ybiwCkIKGk64lmVFGqGwbdPN80eKiFsrgfUICBX1BrGgPAaU+yd5vPd5uwQRM/A7kYhFvRBkUXM7ah9Dq9eRAMyAj4Rx05vKh9T6Kyth0HD85zzyIYulRMi3DTdOs8oGOkj81onATNPwvfGXkDfeBb3vfcMYHQn8PfPslbonPm2joiCQklHqlBybI6HknlWujdFxEI+tEcU7B7JkDX5tM8AAO783mNYpDiLy55YAIIATydJv0zmlS1GrWsp4I8CRQ5Tc/aXiCPnjBOYQrgW9MQCeLGvzHrruoHLfvYkvhtpBVMeju3C5oFeLOyKlmWjug5svN37BUa3Aw99mfzXNh846aPACdeSzEIbNN2AphvwS+bz7n+Bfa4Zqxk5Z0vID0kUuE2+q3/1LC5GOz7Je19zziAzk1XQHCx/dtTuPmQy3VlVIyYx7vV996PAMWwTp3xtdLk+NsJMpMRpVKJcXB5M5jGrbXLryH/8dRPufnnA8/b2iIIX/vOcST03AMTN9XhRTxMe2z4ClZen9zrD0UKtwVjV24x7N5CNU6UMNYrvXL4cuq2D126XPs44gqSPBSJ9bAv7oWoGkvmSVXyMpApWNgxP9ri37Qz8Zf+xeKv/MecN2+8nG5yHv0bkQi4YI9scPFxe1WEYQNA2f2JdvGso1OhGzmLUDlOhNpFRucHnZTMRc+HNjAJP/ZhsLigEAehcAqz5mBX4G88VsTLk2jg89RMgO+Z6BQE45wYApqV9ugBdNyC2zWcLtbGdtkKNvUA48PSN7O8y+zhgOzCczAO+ICkGEy5L/vHdjBwuaRWFtZuJxII++CSBK1MCUJP0kXuh2vM4+7gZx0OWRLSF/UyhRi/E8qqrgJdvtW4zBBHCef/lOfNBzwVJFKxOfdAvk9kw3kB/lULt7xuHsGpmM5OdBQDTwsDN/m+hbYu5Gd6+lmTarbzS8/lyRR0tcpGf82MLuO6JBfDMbvc5Z0PrXOLcZ++e5+NAcgCITbfyANsifvI7us8XQQIWvcX7+U3IkoiATywzasWStTmaKlprKdR4DLIbvWs8A7sbhZBfxkP/eib3PGgUAj4JD37G+RplRm2STno8cKz9FS9GzYVkXi0XWu3zgWvuBDbfAay7lQQ9n/B+7sbYPnZAH0+MwYoNlz4CQHdMwbCL2eHNDvW2hvDwv55Z0QgnFvSVCzVRAnpXM0YVxozVEBZXdnas/p6DOJgYItcRUcBLfRPYP5HDzmA3p1DbibHMyehqsjWs+57i5lpyMbYT+PvniJPjmo85blLN3FSfbK6x3CYbew6JooD2iJ9p8pU0HTtH0vijMQOf5PXXa2DTgLITsyQK1vlEGbVsUQPmcQo1nukQ+NfGsCJD1QySITeFqI1cUfOYUStnqU22UBuI57BsehP+/YJFzG13rR/A7S/un9L7j+dUhP0SeltCMAzyfZ3WfOhUBEcCXt9l6KsAe+etFuljS9iPNtuQcNgvIeiTKjNqdQYkNwLUQp3+TvZwypG0TfrIGegd6T0fT+tLoCuu4kLNAr8+z3Og1hje6nwPZicprEjA7seBh76C5p13wg+1tkLNXPhoVy13GF0feTNlQZ8ESRRIYVQqAr+5AHjyR8C2e8v/bb0H+Me3gd9dDBSzMAzDklJaSA0BT/+UfeHl77QMPjqiCkq6QWQDVTL6uMUTxe7HgF2so2f3SmL4YG3Wao4BIJsLyi6ikGYYWYg+xyZXNO3HPRm1WC/Z5NuRGXHMAhTcGv0XfssNYqfzHO7XG0rmy6YNs0/FvdM+hYNGM3bpPSi99ZfAbA83N5QZtZ5YALJUNmdQNQNqx2LWdjw1wC9eAfSNZbFlMImLOGwaAMza9xcsEF2MxQP/WdE9Nq9qOF7awVpdR6eRjrCJ7lgQyXzJu8MrSkAnZ+bjIDEUoQVQa9jPn2udc3rNxU1EKQfBZouatTmaKqpKHwH+ue4GL/frEKC3NXTIu8vu14h4zagB0KPTMWC01f8i7jkq1N6US+RK5fUEIA2TZe8ArrkD+Ng/idyPA55JEZ3XORTFb0dEYZidnMrfQM/tiPDNo0w0BWUr6BsAsMzJmusQIJz71aqGIdXQ3UQcd2lkxdpNZF3apXOCuUe2Im7Gb1jY8Mf6X/SJ75Pmkg30HLDiVQ54MGoc8ExjBhN5YuLm68Z6Y4HzAdOPr5kNj5lre6fNeZU2jTKFEpHjujG6jbjrusBTm1A1kbXm6hqw4U/AI1/nG3xxYBgG8iXWnh8on+dTmVOLZ4uY1RrG6Qs6mP+Wm7OK8Vx9xjF2kBl9v7cL6esQRwu1BmPptBhk8wtaC6PmhiCQTsxIugA0zSBhuXbkExzm5NAjbTJqrZFySDdAZsPiWZVc5DQVSOxnHqvNPhMlyBifewn7xO7NoB2j2xw/UvOPRQfvAW65FPjnD9D+wCew1n89mg9yQnI5vwNANhYB2TsCoNGImwuLG4IgIBqQCaO27V5gbIf3kwxvBh79OvKqjmJJdz7f498iRa8dkh94039YPzpNaipLarlyRIDIVh78MvvY5lkQl1+BkF8qb9ZqDtZ2FYVeGWquDYaXQxsAIu2JzWCP2+SPhFEzL1T7niKdWzeCLcD0E8qvZ9tUDSby6LF12bPHfRgnFW7EO+Qfw7fiCv77MkE/O2okAsAyyMnqPsKguuFhKLLWkj1yrLs1FZGXfs4ez44SBtYDOVXD8QYnfHjOGQ4JUneMnFMVB7q5c2qkUBsz5+ZaQz7GBRYAcaKrEWFFts2oNY5Rawv7mTgS9k6VDQaw4Dxg1TUNeT9HImihluIwahPZIp7Xq9vVM+DI8hyB1xWQzKlcqXk1OObDTdBzmzINjQRvDSPzofVvyxyMGkBs5E+4FhB9yIhRfNP/SWAWx8yiTnSbf4ehRN7MbiSF2tYip1AbfBkX5O6xiheoeWAz53t++mexN3Ss94tmhoGt9zoOUUZNkUWiRGFmswX+vC9Qnte2oX+CXD+/cukyfMX4MLaJ86EbAsZjS4F33VpzgUuLUnuUA52pzxY1MhfZw3EK5jSrefPbtFDLFDXSsL/rk8Ad15Fm7v+cXjkWyURRI8ok3nnW3YDiJ+5uJNsw2SgGO6jrNX2vbwRDkaOFWoMR8ElYMo3o91smUagBZZkaRPGIcX7MmvlltPikXWbqANkRVUyDCRfbF+5EWwvpomxa+El+5IAHxOwoMa6wvQcAWLT7d477zRMHcc5z1wJ3fJhIWzxAi4hIQCYRAIeLUcuqnuHUVqHGm89x45kbkd5FClJrIUwcIMPZbqy+Dmgp/63pDCExqal8TnENPgAiHxrkFAxnfwmQFZPVqFSo8WIAXEVhFWt+io5KjBrgIX/ca/2zYOaoId4P/PEafsPgzV+0Zuo6ogpGzddTNR2j6YKjy75qZov1vqqh2dxE0vk0oGyIkavTUGTtpiEsm95kmZI4sPmvELxkRk/9lG/aYr6HFSVOoLnLQY2aVlQu1LydHycy5LPvKezmmCQJjCtfJVDb6pKmo1DSG8aotYb9SORUa2PIRSVGbenbyUZPfP1eammThWcbPpou4lGNkzXYsYjvCAkQNryHfUw9hVot4dRu8GZfhw4loxYlBQN1ZKVMBzcfswqaAj6So0YhisDF3we+0I+Pz/gLnmlqTH5fj21zvGF/AgfiOcSCPmzPx7jOj9fjd1hWNJme7fcBhYTzDr4wcPpncfvym3Be8bswzv4KX0r8gtNFlc6k+ySRP5/WuYSJRaHgqTH6x0mhdtKcNrzjwvNwfvYGLCn8Bi+e/1egia9W4MGulqCQJRGKLJavjTZVggWO/DHJZdRMGWWhRGKQ1t/qfNAj/1X1PdIGNY9Riygyooo86eLHMAxPBRFQnuGbSqE2kSUsLZUjvxEMRV6/V49XEdSKdjKMGgCnhrp1LnuHVyFLLe2SPtIQWNp97IgoZNPrRmyGdQEcVIPAtQ94X6B5sLFq2WIJARQQTXoUqhv+CPzPmcDEPu7NKTuj5pMOC6OWVzXkVI3v0gggqviQy6T5Qb9uGDqiD3waftgKv2duJM5Rdigx4AwnQ9RelVHbYUlquWYiXtb/PSvJZhSkAE5NlVFzuwwCjvk06/fxsNK2UMX5Ma9qCMoC8KdrCMPkxnHvdcxjUZmSYRgYThVgGM6L8dz2MKIB2dOZzfHWKKPWWu7SOyQtNRZq/eNZrO+PW9EeDhgGkdF6Qc0Aj3+Tf1sxjXkqx3XNVajR33+gXkZt//OAYVhrSGc/59yfdQq3QPdCWJGQLpSsLK9GuD4C5TXcnR3pgBLlr2knXAu841dc58/XEzzt+UHWm7v1kxGfflb54NyziPPgW29kJcoAmWP1s40HmplVya1X0w2kCqVJMWrNQR9kUXBs4i1310MkfdR0wzq3CiWT6ZjEucswahS+IBL5yf09eLDkZsk81m4agiwKuHTFNEzkStDP+Hfm/rKg4y1bryfXZJ7sccmlgD+M5pCC7fo0pFZ/Arjkh+z99vwDGC0rTmih5pfFmufTKOzz2hT94zkyM9wcwFUnzcKJs9uQh1I5ooYDura7z5ewIiNbMBsMPBnlrodx10t7cPNTe61DzLUR5tgHgEy+SAxX3BhYx0acuEAbHV65gN2xAJtPlh0nBXGpsntwqlCCphvcmXygXMhWXE+rIJ5TEQv50Bwi5klDb4AstaOF2iHAu1b34j0nzbQKlHrhkEQcAc6PhmFYZiK0UKNyIPo+26MKf0i4uZeYBQCEkYh2Ax+4F+itYINrx0i5UMsVNcwXDkBws3Z2pAaAZ3/BvSltW/gCPvGwMGr04unVYYoGZMxNPseE4xqBGHG8ciEwsR3/T/4bYkE/kIsDL/6OfdKTPsLM9jikjzEvSS0Jyk5ac2O2i5SX9f+5N1hsQVSRbTNqnAbDONtgSOZLEAQg4q8ifXShI6pgLFMkcQA8cJ0f7YWajhX55/lMVe9JwEXfdchdOqIKiiUdyXzJujDYg4VFUcCnz1mId63u5b8fG6Y1B/Du1b0Ol0ZL+ujJqL3kmE01DANfuWszAj4Rb13Fsdbe+bAlMfTEizc7Nj8UXYn1kOH6bsR6mb/ptOYg/LKI7Qe9593QfSzcgb6I9wH7n7fWkNCue9nH1Wl6QKSPmrUZakTgNQDLuZeyf544+4sowNycCBJw5vXAW75H5vRe5/CZjAHPTGQknYcGCRNvvRX4yD/If9fcSdanaSuBUzkBwrNP574O3Vh6uj6ibFE/mcKEN/s6lMgjqshMBmYj0G5JLcn3gF6PJsWoBX1le34XEjnVO2qlTrRFyOzVUCKHtZsGccr8dsxqC0E3gNTidzmaWxQBNQ784jR+M3L5OwGUr4+JrEo+f96+x3atowy3d6HGn08DXPPaJvonsuiJBeCTRIiigO9csRyXrJhmqaNqRcAn4UOnzcHFy52OpUGfVGbUZq4BfK5GRG4Cr/zjr/jm2q3WiEcqr0ISBUfTia5r4a23A8NbOO/AAPY9XfE91lKoDSVtBdn63wPfmQ/86mzgRysqEgWJbOXvn+NzniSoQskz1+91iKOF2iHA0mkxfONtx0IUJze42xEJYCKrkq7REVCo5VUdukE2QyE/KXLG085CrSPqxaj1QpElNId85RmfYAu5WNtyhfJQsFvhzOaM2Bk1DccI7AwcAw+ZWJph1A59oUY7R3bbXjuagj4cl/kHc7ww93zgvK9z9ewfl/6G7uwrRA7iNt6Qg45IA4qoIkORRfIZiBJfGmieV/QCYW0YDAN48sfs/ee92TEcHQnI5a56bCYxAbEjO2YVgxSpvIqIXy5/V7jSR3b+qiPq7EYzqCZ9LGlYkOfI+6LTgHf+L7HMdr0eQM73QWtuxdk1vfa0ObhsZfU8IlkS8c13LLdCb4EyA5RTNSLbcec/ZUYc2XV3vTyAh7cO43PnHYPpPMerJzldaTcMDXj4BsehVF7FwtzL7H1nn8bMafhlEUunNVmhtlwEm8lsmxsv34bxTBErAsMQRrayty/mzLNWAJ1RcxgONQDlxlTlTrKx8AJcVPoO/jL/v4FPPA+86QtTNm54LSEakLkzatb1oSlA1rKeFc6/y5nXO8+PYAtwCqd4A3HS80lCOfCaA6vJNMnCxD2LOpTIHzIXzQ6X1DI3xUKNshluJN3mKlOAJAroiip4dOsI9o1lceGybkstEs8WgQu+RTLq3CgkyXpjR6QbmHMmgPLc7kS2SM4PTsGH9bcCKmmSUTMRn2gAB15i71ulUAOcEte+8axjZnhWWxg/uXLVpM6j/7x4CY6f1eI4FlakMqMmK8AxFzGPOyn9EHKqhse3jwAgjFo0IDtMZMJ+GQqK6F3/A+83wDF0s6MsfeRv/0mQtMlSxfuBuz5V/uxSg8BfriXz6hzQ67E3o1aDQqECdN0gM//BMnN5dEYNgCAIvYIgPCoIwiuCIGwWBOFfzOOtgiA8KAjCDvP/LdWe6yhqA11IxjJeMrXDK30sFzjkAtIWVizXJ4tRi/hZe23A0q0zM0X+EHDlbcDVdwAX/wDXKt/BP9s5Jgy2TVxW1bBArKFQc4UbM78HnVGrISR7qqBabK8ZtWbFwEnqs8zxkd7zAUkGLv0p4wLoEzTMuuc9ZM7IjVVXM0GugM2kphJTazJezAXi4GaSg+Z8Rsv6nyJiZ9QkmV8suWaRkrmSU15SB6MGVMpSqyZ91NFd4Jwnb/qC50wcfT3LYKCBwcLWkHihRKRyvNkuswExli7ghru3YGVvMz5wKuf33P8isPcJ5nBpJoepeOVuYF3ZLnrncBprRE6n1iV7pFjV24INB+KVZ7iWv4s9tvkOxNMZXOrndMOnn1BzAC9FxE/mIxvPqDlncr0wkVWxq9SBxOwLa3OBfJ0hosie0seAT7Sy7hj4AuQacPlvgbd8H/jUuoqS14BcucGWmAKjBpDrmF1SPZg8hIUaXcPSZD2hTEpwktJHgM3kNAxj0jN7XuiOBbBlMAlRAM5b0mXN3MazKlm7rriZMPDVcOzlFuPMmEysuJJVfeQmLNOhorneNGf3snlx/ijQvtDzZdvt89om+sdzjpnhRiPkt81vA9w18WT1OTQhYxlE0euw43kUCe+T7kcgx3cBBsBd++2wGDVO4DVA8jGHUwWypvNGKwbWAVv+yn0s/fy8FERhvwSfJDjYzHqQKpSgG+Xn724KHJ1RM1EC8FnDMBYDWAPg44IgLAFwPYCHDcNYAOBh8+ejaAAs96lU0XtD7dHROBSgVrB082PPFhpJF8ygVcmTUQP4A7wQBGD+2cAJH8TW0jTEw5xN52h5ViZXLOEYoYYMlvQQCVd2Hy6U4JMEKDKJQDgcM2pxs6CNeSxcK4ovIwrne00bAextNlNpepZzM1zEQgLIOdkpCBJwChvkSmGZ1AAVDUWYCwQvPmHO6Zb1P0VE8TlDb2tgg1N51dnt5c6o8Rk1oM7Q60Q/oJWsof2uvNvAAvyZKvvrpUmhFvRJDd38BH02MxGg4pzaDXdvQSqv4tuXL7csoB14hs25265Px65zf8Wd98M9nwH6nwMA7BkYxnKB83fxKNRWzmxGXtWxbaiC/HHxJYTptSM3gXmjj+FC7TH2/ksu834uD1Dpo8WoNWhGrdZCjc50uFnWNwoiAZkrfRxNF9ERVSpay0PyAcveDqy+ljBqFaBUWbetQs1jva0GtxPjUCJ3SDLU6GsB5TWM/l6Kxwa6Emih5p5TK5R0FDW9YTNqQNkB88Q5rWiLKGgJu+aOIh3Au38PVa6Sw2WLrGBml0Kt5Jxw44XfAABUk1FrG+dY0k8/rqLk2P13zxU1jKYLjpnhRiOsSJYZGgCSpxZyNlQVQcXF8nN45JVhFEoaUnkVUcX5uUX0FD4uc5wz7RjayChX7LCYW481sjsWhGEAoyNDRB7Pw8NfJXPrLlgKIg9GTRAExIJ+a19ULxJWIUgZtSAOJvOOecPXI6oWaoZhDBqG8ZL57xSAVwBMB3AZAPop3gzgrYfqTb7R0G7OdI2k84QdUWLOO5TyDhkUQBYdbuBoA0Cflw6N2wu1UXuGGseaH82kUHNLStzIFjVko7MBwXVKJg8A+aR1n4W1MGoAG+gMMqNGZw0CPrG8KT6EKDNq/IVrRYoNWX5EX4Vhe+12xr8BHZw8KjeWvo1foJhwFMsViijmAsEL5Jx3NnMoYho6WKjBsZQpCnlOhJxCjdcVdSDQBIRc+U16CUjuR1HTETJyiBU4RWEHG9LpeL1UweqyV9x81omQfUYN4BdqB17CQ1sO4q6XB/CJNy3Awi6Oq5muM0G3APBL7WIMZEXi0OmGVgT+eDWQHEBx91OQBddGONbr6da6yjROWtdfQf4YaILBkfpcN/EDTNPY/CAsqT+UN6yQGRCrqdSgmSLa6d+4P4Gnd43h6V1jeGUwydzvUOZtvRZQiVGrxQm1ViiyiEIl6WOOOtZOvlCjTowlTcdIqnDIim8iwRdZ6eMkmgzUodfh/IipM4w8UOv5i47tMZ/b73gtAEDPcvx59Z9wp3YKDH+EeQ4sOM+hGqAbb8dz8OSP/c8CB7dYjFrTOMeFmBPtYIe7UNtvWvNznXMbhJBfdhZqko8wii68P/ocUoUSntw5iqT72pgdR9vfrkZMYJvQThhAn/ecWnlGzVv6CADGczcxs/MWJvaSuXUXqs3kA2RNnazrY1laWXbXVDWjeoTKaxx1zagJgjAbwCoAzwLoMgxjECDFHIDORr+5NyocC4kg8De8rrmOa379LG64i5N91ABkTDkRLZ26T0oAACAASURBVHLawn7Llt+6EOs6v1Az86zs9uZu6LqBnKrBHwjzJWsmq1bKxjFdcGXICSI2iRyZA0f+mC6UEDEXPuUwSR8nKkkBtBIWTLDzaWu1E51FrS8AXHV79bymU/+l4s3VTWqI9NFxgVDzwL4n2fvOYy2GaVfdoKYXtTBqBdXpLpnmSDoik2DUAE/5Y6GkY4HAKRBaZgN+fhc4FvTBJwkWo9boLjvN/aKuhdxCre8Z3PTIJszrCONjZ3nI68Z2MEyrLgfxN+1UItlccSX5z430QeC2q9AxyCnKOfNpFDNagmiP+CvPqQG4U2cZuRA4bl2zTqvYbPBCWJFJFzhF1qVGMWqyJKInFsDtL+7HlTc9gytvegYX/ugJ7BtzbmAOpTvgawERxec5o1aLE2qtCPjEimYiUy1M7E6MI+kCdKOcHdZoCILTvGQqZiJejBr9uVFmIgAwrzMMvyTi/KVkXaab5gnXZrnfaMfntE8Cn99N5K2rryMNvjUfB972P441hb5/B3M9YzVfAr59reX6GB3lzNNWmE8DXPPaIPNpwKEt1MJ+qRxSTWEaqdixMPcyFioTWLtxyGximp9bcgD47UWQB9goAk3gNKUqzKlVY267mgIIoIC2TWwh5sDj37Ka6BTUdKm5wvevOeSb9Ixa3FUIvlGy1Gou1ARBiAD4C4BPG4bBthS9H/dhQRBeEAThhZGRkcm8xzccmDwXXgDuUJnyNwwDe0YzeGbPoQnCzliMmqknt0sfUwXiXpUZATTXptkfBQKk494RVZApatysHVowhfwS0MEJRzUNRUIJTiB061z0SZxuP8ehMJUvIWIyRQFZqnjBbxTiuSL8ssi/+O57kjhi2WDIQTwnH8cWIM29wAfvxz7/Av4LzTubkSK60REhs4Wq5mVSQyS1jgtE/zOEwbUj1A50sQGlEcUHTTesQW9uHk4lRk3NEfdJOwSRO3MX9hP5auVCbTZ7bGIP8l6zjrzvmQm7I9xQIt/wLns5R838fnQuZhnBUg5z40/huJktxO2Mhz5O8PuME1ASzGwcQQAu/iEw7Tj2fgMv4ewUR1bjIXsEyGZzZW8L1vV7W0JvGUjiCy+3Y9So4qAm+oCLvlP5Ph6gbP9wipyrjWLUAOD2j56MP1y3Bn+4bg2+9Q5y3rtZtaFEHqJQW47e6xHRgMxd20fSjS7UDu2MWkeUfK9H0t6mQY0EZfAA24zaZAq1EL9Qm4oLphfeeUIvHvncmRazRp/bPXdE87QEWSEjDm/5LnDNHcAF32BciX2SiKaA7Cz2BIHfVNr1KFRNRwh5BCa2sbdPr8yo0Xlt2jimGWp2M5FGI2RKsx2YdhzQxl7PP9W5Hg9sOYiJTJEwpWO7gN+cD4y8wj6xP4L7u1nzsEpzapSR9nJ97IkFcIX0OJRiZZt/ZMeAp5wmY/FcEVFFhix5lxbNIf+kGbW4S1r5RslSq6lQEwTBB1Kk3WoYxh3m4YOCIPSYt/cA4CYNG4bxS8MwTjAM44SOjo5GvOfXPQI+CU0BubwJ7WY3xRgsF2qpQgmFko7+8VzlbKlJwu6WCBDpY07VkCtqZUbNw5qfds06KkjVMoVqhRphD5t4+WmdizEsc+ZuJniMmoqo+TsE/YfHnj+eUdEc9PFlcq+wIdfCgnMQicb4n2O4HV9s/m9s9nMKstM/W/W9dEQVGIbZtQx3AIpr41zKAakBMnxOiyeOjA5zz+IG+FK2snKW2m6HzbyjUOM5PoY7ufMGljlKpfPdw/mxoOr8WcfOyvLSjqiCg8k8Dh4CgwG6ObPkMaLEdQY7tfgUWiMVcrk4hZo482R0RJRy19EXAN59K9ekhYsKhRoArJrZjN0jGa7lcknT8fm/vIxIKIingmdWfp3TPwt0eRfLlUCNjuia2ShGDQBmtIRw8rw2nDyvDZesILbbOw463VYHE3l0RgMVNyivZziMhEyomo7xTHHSMTU8VDOBSuZV+CTBU9ZVDe1WlEzR+r50HaIZNcBpslWWPtb/3iljlszzGbVGFmo+ScQMW1EjSyKiAZnZfMezRc9ZJR7aIgorYZt/DnvHvmdQyqexXNwNwXA1W5tnkRm5KmiPlK8d/RM5BH2S9dkfCnAZNUHgmoqclX8EiVwRQ8k8Fhq7SZEW5xi1SQpw+W/wN+0U9rahTZ5zatVMa5oDAj4icyJT3C7OAPD0z4BMOYc0nlXRHK58rjUHJy99tMxKgs5g8dd7llotro8CgF8DeMUwjO/bbroLwPvMf78PQJUJx6OoB/ZOG5cpsTFqdlahmgRpMsgWnTNqNAT2QDyLTFEzrfk5C4nN+am9glTN0Uls5xRqpvSxNcNxu+xYjFEfp1CrIn0MyJJ1YTyUiOeK/Pm0fALY8Cf2+OLLWIdMGwbyfvxixrdJmK4gEtby/P8GZnMskV1gJLW8MPW9TzoNPrjzaazsEYBVBFsbtmg34HNJCdWMVZAZhkHm4Sh7x3N85Myn2X+fyYRe51UNC3kxDxUYNYBsqrYOpVDSjYZ32SVRgCK75iaXsGO/ZwkvoUOpMDjdz2HUZp5E8mbsXcemacC7bmVjANyoMJ9GQefU1u9n156bntiDTQeSuOHSZcDydzO3W+hcUlOzwQthP2XUyPnQKNdHN0J+GdObg9gx7CzUDkXx/lpCmDOj9v+zd+ZhclzV2X9vdXVX7z37jKSZkSxZkrVLeMMY27KNFzYbsNm3AAYMhEBCCBCWYHBYQgLkCwkkhAQCSdhMwGBsBwwmLAYbrMW7ZMnWjJZZNNPdM71v9f1Rfaurq271Mt09M6U5v+fRI6mnuqp6uurWPfe85z1cddHOjJoiS3XNRCJ2C2MNYHRiXKyMGg8Y+MJhO81EdOljGwM1EV1+t8UgIpbK15TAmen2u62mPf2brQZIpTwik/fjUklgJFKnPk3fraEMYGw2hZEeX1trjs3wGjWL6cVOq9N1cP4IPqJ8E5dJB/CGw3+sqZVMZCQ/8JrbgE3X4IEZBUdK5jmQfZ1axfVRPP1nj/4Aw0ygfnv5N6zPi3wKeLwS1Bmt8+3oDngQSy9M+sglk/x67w0qkCV2xvdSa2Tp5mIArwVwBWNsf/nP8wB8CsBVjLHDAK4q/59oE1XGDyKd9uxRXR9srP2qJUFaKIlyxitgcH0EgCcmtMlKf41m1xxzzxgjqbzBVbJGRq0vLXCjG9iCWY/Aylsgfaw2E9EkNKraWbegaCovdiD7/b9rvWUMqLIX2HSN2CGzTCyVRzAYBF7wWeBD08D7ngIuentD56JLanlws3q3ZRv1D/+ORLac5UqerloQ0FkvDtT471afsNnVV85oEtZsoYR8Ua2dUasRqPUFPbWlj8KMmlajtlkSXK82RiL6jw0P906ssvs9Jmewsy61GAkFWQbnpKx1CgCAxJSl/QGYBAxfUO43Y1p1HDkfuOErVkdGIzXq0zg7R7rAmHWR6Oh0Ap/76SFcs20Qz9sxhPOfdYVgQlE+x+u+oFl7L5CK9DELWWL20tA2sHEwiCenrBm1TrkDOoGQV0auWKoy+tB7qLU5o1bLTCSezrcUlBgXsybnMlBkqaYxQqv0hxTMJjU5eqYFMxG/xwVZYosifRTR7ffo9dicaCrfVEatJ6BYAzXGhM+bgalf4TrXb6w7Gb2ooWMZx/JxUw+1TsDLRiyLw93rhOf8RvZDfM3zaShFq5lHjEXwd6s/C5x1CWYSWcwmc/hdSaAGsalTyxR4HzWb6+zB/7C+tvFqYPO1wLl/ZP3ZRKUfqfad177WIj43MvnSghRNsVQeIW9FWumSGAbDZ34vtUZcH3+lqipTVXWnqqq7y39+rKrqjKqqV6qqurH8t70fKNE0VbIub1ic/Zh8GEBl4h3wuLC/lvsatNWUP/v2fl2X3QjmGrXeIA/U5vRzFRuJGAK1kL30kU9O/R6XuP9J9BiQT2OVyE59YCtmvcPW12PHgFL1QFCVUXNLKKlAvtjZQC2eylt7qBWywG+/aNmW7X4V4A3bSvpUtdzske/PJWvuUQ0yYM5qCvT/bOw+nI1xLXg6eq91J32bbXtc6dLHrOGBLQrUysHEnLnQvcEeapz+kCbnEzV5BSCsUUtNHsEt3/41BpnpPmEuoM+m/q+MUcK1qgMGAxZnMNkDbH6uZbsNp+8R70BUnzawDfCGMRT2ilcdt14HvOO32oNYhEh6ZCKoyNg0EKpaJCqVVLzvtoPwyhI+fv12MMawqsuP34Suse7gmW8Hhs+te5xaGGvU/G2UPYo4uz+II9OJquuuk42RnYBlkQaGQK3NZiK1MmqabHvhQYnRifFUuRa1k5kWPqbMJHItNbxmjCHsc+tjKieuu2B2JsPMifjclhq1uPFZ1QC9htr3KjZcYXlp/fj3MMxOV7/IXA239uD12oViCcej6Y4aiQCAr7zInTTLHwFxHZ4dkRH8Zddn8DjT5oN8wei+kkANYlOnVnF9FFxnyRlxgMeNykQy+MmKiV08XT8479YbpDcvf4ylrAqlwbBCGTViaTD3c8GQQP5YrlPj2+3dPIAD43H7iSu02orvPXgCdz9So2GiiWS2AEWW9FWMnoD2cHm83DupL+ix6aFWCaB6Ah5IrLb00e9xAUpQ0CxTS+OHS6bJteQGejeg6IlgnpkkdsWc5pRkIJEt6PI8Pkh12vkxKpICHPimxd1QZRLwrHcC0L77WCqvO1txkrkiCiXVtnl2PSwmNSMXCuV+r3Ldo8kRm5A9AuLJmtBQhAdq5e0qGbXGeqhxLt7Qh7lMAf/+a3GDcwSHALl68uxXU3imJCjK7j0bkGtPKI0Tzk5Myn0eF9J504NcMPHoP/kzYQ8bYaA2qvXjW93lw3ymYKlhAaAFtK/6Nr40+FFMMYOBydpnC+WXIvaMdmH/eEzPUP/n747hgaej+NALtmLAkGnKnfdWHCxVMp2Z0b3A5R9s6Bi14DVqU3NZPWjrFBsHg8gWSrqt93wmj0S2sGJ7qAGGe99Qp3YipmVw23mv1Gt4fWQq0dKkW699nc9iIp7uaH0aUJ3BS+fqZDrqEPG5hdLHgMfV8drJbr+1N1ZUtEhZg56gB9FUzqpyWb/Xsq27JJiYb7gCCDZmPs7rtY9MJ5HIFjoeqPGa2ZTZUAQAdr0Sj8u11RwANMXHG+9GPLBWX9DjEuzfijJqNnVq6XwRHpck7sH5xB2AajrHrlFgbbm0QqTumnxErzuPpnJ1v3O9Z14yq6lA0o2X64gydqvKvdTOZChQW6b0hxQksoVKzUqNOrXpstxn7+Z+JLIFHJlOWLctM5PUJulm6U4tEtmKZBAAesorGk9MzuvnKpY+jur/dEkMPQFxpqiSUSsfQyR/fOT71tf6NgEuNzyyhJNMMKE3GIpo0pKSNonLJeGVtUEq08Feaqqqas5XxuLaUtHilAQAbOv1etaUP7z5d8XhjljNyEmM+DwuhBSDSQ1jwl41L3H9El1yTtzoWrC6yRFN1oSZ4HKgNp8xZdREPdRqZNSu3T6E52wZwN/+7xMYmxFkiCVJmFV7z6jYlKYe/Htxu5hep9lO/B6X1RlswxWAqQ+RnJsDnrK2dRDXp2mB2mh5ImKbSWcM30ntwS3rvgG86jvAa78PvO4HWta2AXaPdCGWyuPpmRSOR1P41J2P45KNfXjpudXZ7qt3rcOLch/HO6QP46XZjwCv+hbgaX2SxIOzbKHU+YzagNa/jo+hK72HGiAwEgIwHk3B45IwGGrf70WpkVGbnMvgZDyD3eWayYXSF9Tqw091wN3VjFFpks4X4ZFtJtANEBYEanOZfMdljwCvUascO5MvIp0vNmcmEvAgX1T1BTydYL/YUM3Mrho1sCb4ouUfjmkqgJHuzjW7BipzG2FGTfbg7fItuKvvDZpBiIg15wFvuBOIrKlSXjw5lYDHJWEa3Yj615nepAqfE9l8CYqd2c6jVoMzbLmuIn/vPgtwm8brbByIj6NUUrWMWp3rrcvvRhAprPn+DcDfbgQ+tw345d9VmYzZERNk7IYimlqk02UsSwkFassUS0PfoV3WjQwZtb6ggmes7QYA7Buzr1PjxZjNBGqpXLFqlTrskyFLDGOzKUgM6A0oNhm16syYJUuo718bvHRtvqhWSBSolSfXiizhuDBQe1r/ZzJbAEMJVx39NPCptXjFT56JP3LdVVNG0yrpfBG5Qqk6o/b4HRaLegDAxe/W/2lXz6c3k2yxBqNKfrrzZZaBN8zS2Pn45y1N1SG5KytrAvhkrX6gpgXQ8+aMmqiHmrmQ3ABjDLe+aAfckoT3f++geKAWWfQfusv6Wh0jEaAyqRoIeSEtcDJVC5/bZW3C7vaKZYmPfh8o5ivy3lwKOCXoKTRyofaXHqiJ3bFyhRKenklh3VAPsOlqLXPaYJAGAHtGK2PPB//nYagAPvHiHRbZ2EiPH1tWd+GO1BY84t4Gr7c9E2Hj+NTpjNrZA1rgzFezK6YTnZ3sLWcsRkIAjs+mMdzta+u9osj2NWr7yjWSe0ZbC9T6g5q769RctmM91IzHArSxPpMv2ho8NELYK1uCnFZr9hqly+/BXCavq3kaaXxshkvahPJHm7poHU9Q6JJrBx/LHyzPlTqeUeN9MgULw6qq4kRCxb71bwXefp/1s264Qls0K7c0MDpIPjmVwDmrQnBJDMdCgt6bD3/X8lImXxRnbdMxcbmDUdUhSeJn5eQjmMvkoar1F5K7fB7c6v43hKce0F7IJYB7Pgb86N2WchUzmlmJOaPmRTpftDR7P5OgQG2ZwgcS7mImzKhNPwYUsjhd7lVzVm8AYa9cs06NN6o+PJVoeAUikS1UrVIzxtAd8EBVNRmkKzenraoYcXks2RC7QK1K+giI69TM+wcMgZoLY6og82JwfpzPFPA610+w5cR3gFIecimDj7r/A8VpQR+WNsFXGHUpgKoCv/68dcP1e6uMPewcMnmQ3d1CNsdiVOKNADuszlNrDn3d+uaRCzRpqg08ozafaSCjpqqGQK1GRi1U20J+KOLFXz5/C35zZAbffECwWCBqEZAWlNMO1Jee8ElVp1bZA4qsG+tUIaq72Pd14ON92p+vXAMc+C+gZHpveFg39OHF8nYZtWMzSRRLKjaWs0XNcvZAEAGPC5//6WH84tA0/uKazbaTn+ft0ILvnjZmJQMGl8dOZ9QiPjcGQoq+2KU3u17BZiL6Io3h3h+bTWG4zRNgr9u+/+X+8RjcLoatq+r066tDf0jB0zNJ5IqlRcuoTSe0QG0hRiKciLBGbZECNZ8bqloJ0Pizqp4DoBHedmQ2aZ0j1FJyANCyPk1k5gcWOVDjGTVRoMbbK/UFFa2m+7X/ozUIv/jdwIu+BLz6u1XPXWNPtsNT8zh7IIigIuPh4CXWAx+6G0hXL9xrgZpg6n/oLqBUff1kfIPWvnSD26zvnXy4Yp1fJzjvTzyKF4mMYP7wVeC7b9Bq+G2ICeS0XJ58au7MteinQG2ZYsmqBAe0mhsjpQIw9RimE1n0BT2QJIbdo936yqIIvloVT+cr9v91SJqkj0DFol+z5hdMkMNrLL22+oOK8Jgpc6BWx31Px5BRO1YSaNMN0sdEKoVb3F+zbKI8LegT1ib0hxUfWI4/AJz4g3VDQzYNMNnoGzD3EFkIQqOS897Q2Jtr1KcB2vfgdrHqxrfBAYt0D/kUMD+hSx9rZtTM17yAV5w/govW9+ITdzxmdX/adG3d9wNoKKPGA+hOSdx8ZtdHzsar7J0Z1ZImebxDYG0/eqH+z4jfjZBXxnhUHKjx7BDPFjWLS2LYNdKFsdkUzlvbjdddtM5222u3a99pOwM1l1TpnRXokDW/kY2DQf13xq+5gfDKbHYNVBZpjNKu8WgKoz3tzUh53RJyxZKwDnvfWBRbV0cWXOPF6Q8puslUp2vUvO6KHD2dLy7ISIQjqlGbSy+O9LG7LO/ndWqWRcoG4HOK2aSgjnb0Iku9cRU7X9bwcYCKYunodBI9AY9lftNu9IyaqCm82XSHMa1B+FW3ALtfaekjyjNqc5k8Juey2DgQQlCRccCzW+s7aqSYs6iRbK8zgezx6f4rrD1TRTLUiYcrC8m1Mmqqip7ffML+54/+APivlwF5a9BVLKmalNe0/0ovtTO3To0CtWXKgGGlTcemTm16Pqvf5HtGunBocr56smzAKCs4PDXf0LkkswWLnIhPsvqCnrrW/ByeUTNn8tJmW+J+QUZNhCFQe6ooaHJpkD4qj33P+nMArtnDjR1rAcT1FabywHL0F9aNVu2yFEvrTVdNARX/fysZNWFWc/UeYPUzar9RkoWZNyOMMWvjW8bENvmzR6ulj+kYkJox77Gh4nDGGD51ww6k80X8x31PV/9w3bOR7K1T3+BSxD3XTAQ8LgyElAUHM/Xwi6SPAOAJaA/uZjHZPo/2+G0zaocnE2AM2NC/8M924Vm9UGQJn7phZ02524b+ILavCet1c+2CT7b8HZ50AWXnx7IqYWIug96Ap+UAwcmYs+nzmTxiqXzbbc/579gsfywUS3joRFzv6dcKRtOgxTCI4WNyOmcjSWsQ7vrIn6+qquJ0IqvXlHcSnjnjFv08YBO2prGhJ1Ajo+b2AmsFjZ0BTR5/1qVNnG2lXhvofH0aUFk8SgrG92bdUXmN2uGyRwDPqM3lVGDHjdY3HPxW1X8z+ZL1OsvOA0/+1PLWH+bPt+5PmFF7RHf9rPmdH7kHrqcF8yAjR+8F/u8zlpe1a9sa/PPFFArUiEWnJ+ABM7skCpwf1VMHcTqR02/y3aNdKKnAweMCqSCAmWTFlafROjWzmQg/P6Axa35OX9CDXLFk0RInswW4JAYPd6bydeNxd50Mh+wDutYBADyyhCMFQaDGpY+lEgYf+pJwN67UaeHr7SBqlgKU+8FVsetVlj5ViuxCxOe2BFRHphMIe+WWjCz6QwrmMwWrc5rAVEQnOAi88lviei/zpl5r41s7+eNcJg+JlR9ip/Zbt+nb2HD7gbW9AQyEFEzOmR7yjOGpzW+u/eb+TQ3VYzHG8ON3XYKbLxM4WbYBSx81I6L+NfUYubD6v91+jNkEak9OJzDc7WtJenXz3vX4xXsvbyiQ/cabLsQnX9KAQUAT8MWkQIeljwBw9mAIiWwBE3OZFW/ND1jrU3ktZLslZUq5hsssfzw0mUAqV2y5Pg0wt+Ho/PfaV1Y5pNsgfSyUVH0MORnP4HQih21rWpOCNgJ/xsXT5oxaM2Yi3ETLRuljV6e246WWrFMjcIVEp2WPQEUtlBKYifAF2MYDNW1ffI63cSCoPXezBWDny61vGLuvatFaq4U0/b4O/y9QrH52ptw9+OJTA7jzIZMbs0h9MnsE83Pa+dh+56US8JOP2n6uKh74ilaDbcCiUCqjt7iwu27OAChQW6bILgk9fk91VkWQUSuc2I9iSdWlkruHtQeVXePraDKHc4bCCClyw4GaZiZSfWNXBWqxMeubBIFaRY9fvfKRyhXhd7uqjAf+te99mJYEwRdn4Bw9Ja/IEk6qPVAl06Q+E9P02YfuQmDuiHA3noQgyGwTsbRJCnBaUA9n4zbYF/RYJIpPTiVw9kCwpb4+to3Ht79EYNzBgAveAvzxA8DG+v20ACCouDFvzubaBGrz5QbkksSAk/us26wWFEfXoCfoEa7GHurdi6dKNWrdGpA9cvqCSscyJz6PLM6oAcDZz8EX3H+EqNyvZTclGUCN68ATsqx8jvT4cDyaFtamHp6cX3B9GkeRXQ0HLF1+T6U2sU3wVetWJruNspEbikwmVnyza0AzwpFYpUaNLwi0O2tq11aF12W36vgIVJ5TssTQ28Zm3bWOd3o+i2y+ZJ1ANwGXOHL5I29A347fST24aiSa5DVqzZuJ+Dwu+NwuzNqVZNhJ70XBSQPwZ+FiBGp8Ecni6ovKs7ivwWuNKwYOHo/DI0sY6fFrSpZMQVPo9Alcsw9+R/9npiBwfRTIHpUd12HL6i58+AePVLde8HVZ53dqCSjX+9uWZjz0HWDyIevru1+t9cAzkolZHCtjaZNCiZ9O+bqJUqBGLAWN9FJzTT0CCSX0ly2QuwMenNUX0AdpM7PJHHqCHmwYCOLwZOMZNb/HJqMWtLPmtw/UpkxBQjpnXUmM+4bxp8FPi41FgKrJtUeWUIIE1dAOQCf6tNjAo4w3ecL2Z63CVxUjPrfmZnRaILO0qccTSRSfnEq0PJm2bTzuCQAv/wamfOuRV13AWZcBb/4Z8LzPaIYjDRJUXE1l1PTJejsCtYAidAyLpUv4cvEF9m9swJp/MfB7XMgVSygUBWYJjOFLuefh/+36AfCRGe3Pnx+yt60eOd+yyjza40e2ULJcV8WSiqOnkx2TdC4WQT2jtgjSR4Pz40Q8veIzambZM+8x137pozZlMbv17huLoifgaUtgyCfwAyFlwVb5zR5Pr1FrYZGBtznhvRL3jUWhyBLOGep8Ro2rdPhkOpbOwSNLTdfc9dg1vQa0Hl7m+cCac4EhQW+vBuDPwnZfoyIUWQJj4owab6/UaO05VwwcGI9hfV8ALolVMmqMAbsEgevBb+n295mcqUYtHdUyaiZc267H39y4E9FUDh//kan3qKCfmnf2MTAGsXlNLgX87Fbr62vOBa7/R2DrddafPVYdPMZ0gxrr/mteN2cAFKgtYyyT9e51gFI9aZYKKaxjE3pdE6DVqe0zNJ81MpPMoTfgwcaBSjF8LVRVXZiZiCCjNqAHCdU3VCpftDi1ed0unCj1Am+4S1w/tX6v/k+lvApZiKyzbnfgm8D476yvl/Hk55pquNgM0WQOPrdLWwWOHQMKJg21t8u2Bqs/5K367qPJHE4nctg42Npk2tL02sjwefjs2V/DZe7/BF5/O7CmTt2aAEuNGmATqB3BfKZQMRJpQ6DWG/AI5Q+xVA63lS6BGrDJ0PYvn0AN0O4HM9lCEYlsoVr2GhwA/ugOccsEgYkKd+AzG4qMz6aQK5QcH6j53Q8hjAAAIABJREFUy1l/v9L5jFpvwINuvxuPnIwjmsqv6GbXnJDXrdeojc+mEPLKTdUoNQLPOJml2/vHY9g90tWS2oDT32HTINHx5rMFzJafFwtFz6iVFwj3jcewfU0EnhYs/xsl5HWDMYOZSFLrp9Xs99ET8GA2ZTPhZgy47guaURmA49JqbZK/QPj33O6srwjGGAIe2Taj1hdUGm5jwRfNj55OYuOgtnAbMj53RbXkM4f1Z2ymYKiFLBWB227SDL6MeLuAdZdg2+oIbr5sPW578DjufWKq8nNBnVo4/gTCXrd4cePeTwBxgfLqqo9p3+sWUaD2oyq7/lpy2h6bZ/+ZAgVqy5h+s5U6Y8IV9G3s6Sp98+7RLkzPZ3EiVu2cky+WEE/n0RPwYONgEKcT2eqUtoBMvoSSau1N1FPWkzeTUbMLEtI5a8bOK0vI5otAoBd4/e14ss9gprDpWmDbi/X/8rqFfFiQUfuduDatCtH5twGtOSOvTztk3aB/s6U+Tf+RySHzyXIT8w0tTqb7RSY1BhLZArzehRdXB71uQaAmqOmafQrz6Zy2CpycscpnmdRYk1MD3X6PUP4QS+fh8wXALrxZ/MZlklHjq+ki+SNfLeT3nY43Arzmtmr5z1mXAs94vWUffOXYXKfGF2w2OjxQCyxiRo0xho0DIfzqsFbj2ul+W05AW6TRJlNjs6mOZCoUPaNWuUfmMnk8OZ1oi5EIUHFiXKy+eDyDdyqebklWbZQ+5golPNwmc5VGcEkMEV+l6XUsnWuqPo1TNzMyeiHwJ/vw7jX/jXd2f6mlsZsvbo+02ZnUDr+h/5mR6US24fo0AFVlKHzM1qWPANA1Cqx9tvWNZVORKnv+e24Rmohg63V6ffg7r9iIDf0BfPB/Hkaeqz0EgVpv4rDY5fPEH4D7rAH1r9gzgHXl89x4tdXVM3UaOFax8a8lp6WMGrFkdAc8egGljqBOba9rP/oDlcnJ5vIqy1Onk1Xb8X31Bjz66vnTY8eAmSNaoacAPukOmlapn7WhF6+8YAS7V3uBhLn/FdN6OJmI+Nxwu5glUEvlxBm1TKF8TkoI3zrrVlxb/CzwjvuBV36zymSCrxhmQ2uFn6Eu0WMLe18dYqlcRU8tMhLpF2jJ+Y9CChLZgj6wc5lqq5Pp3vLDSZhRg9jhsxmCilzdRw0AQkNWe/lcAq70aS2jdkqQTes/R5NjNkFv0INkrmhZbY+mtNVdnP8ma6uA4JAw+7sU8HtA5NjK+x8KLe3dPuAl/wK880Hg7b8FXne75pJmYrjsbmZuev3QiTgkBmwabE1Wu9QEywFap/uocTYMBHUZ90qvUQNQkV8BGI+mO5Kp4Bm1bKHyvDo4HoeqaguU7eJPrtyIV1ywOOMCn6SXVMDnaaHhtU+7/ucyBTw+MYdsodTW30k9unxufY4RTeUXlE3tDXj0sc4WWcEUeuCSW8vWXrt9Fd707LMWRfoIaAtJItfH000GasZFbT6PC3q1fettK0TtCh75PqCqyORLWub24LeBX/+9dTslDFxSaffidbtw0yXrcSKWxuRcWRUkkD6uyh6xtoIo5IAfvFOrYTO+zDy4NffqiupLCQIbBM7GBvljPJXTpJWC2uZeCtSIpSLicyOVK1ZWMQBhndoNrl8h+PVrgBMPapvY9JXghb7dAQ82B9L4nPsfsfObFwD/8Azgq8+3NEYEKppq8+S9O+DBJ1+yE/60qEnxECBbJ5SMMWuWEFqgZtbmK7JUNeGOpfKI+9cJs1Bc+pgOCjJqjSAyQ2kDMR4gAMBpUUbNvl+cbtE/zxuUz8PndmF1i6u8bpeEnoDHPlATBM3NEPJWVtV1GBPKHyPp41qg1gbZI2C0d64esPWA2det1dxVTgy4/C+tfWKWiFpNUfln6g3WWKXu3aCtMNtkab1uFwbDisWif/94DJsGQy0F6MsBPaO2SJ/DuGiy0mvUgMqqvqqqGJ9NdSRTobit0sd9Y1GtNKeN2aM3X7oel2ysYWbVRoyT9HaZiXBzlT2j3a2dXBN0+T26kUlc0Ji4ERrNjOQKpZYlnWcPBPHhF2xtWHLYKn6PC2mbGrW+WuO6CbuMGmDoY7j1esBsrpaYAOZPIZ0vYjR/FLj9nYK9M+CGf7U4PPPsqN6nr3eDJQMWLM1jvWJyG//V54CpRyxH+cNZb8HjxVXVzzphndoP9SRCNKX1BBR9X5RRI5aMcLl+Z87YxNKmboid2g98+Qrg/i/b9pWYSWYhoYStx7+F1d+4BC92/RoSykHg2G+A+79s2S9fITVLE3VEssGINZvGETVcTttl1PJFfcWF36Qi+ICdCjSwAiqqR+pQoBZN5fRGoMKMmsidqYzZIZM7PrbjoaLJKu0zaq00/wwqMjJ5gSGGoJdaX25cKzw+KbDmb2ugZpCg7n4VcPOvged/FnjLz4FzrRLBpYLfA2lBjVpF+thaTySzRX+ppGL/WHRRJ3Sdgmf9FyujZqwXpUCtUp86PZ9FtlDqiJueyExk/3gMG/qDwpV2J2AM1FoxE+HGTPF0HvvGYugPKVi9iNdll9+YUcvpvdWaoSfoQTpftHe/LZMvth6oLTaiGrVSSa1qr9TofgDNlXRtr6Y64c9sXf7o6xLKE0snDyBXKGHviX+21swDwJUfATZdY3mZZ2v1QE1yCWWn5zDDXGryUWE/NAztwLHNWjugmHFuu+laa3A5fwo4/oC+rZ2cttHrxqk460pfYUT8lYFXp3+z5sgnRAV+/F54Tz2AnoAHp+aqb8TEzEl81/NRrL//o2DZOevbj/zM8hIfWGwn7w1a8+unX7YiNpLKC2rU3BJKKpAvaoFavIbmndeozfvX2B4XAO7wvrAqpa/ToUAtns5rmRxVta9Rs0EP1MoZNc3xsT01RH2hGhm1Nkgftf2YBkxBRm2wcLKtGTVutGEuKo6mTNfO0HZNBrmAY3SSSq+dGoFai81rR3v8OB6tSB+fmkliLlNYtFqWTuJf5Iwalx2FvHJLixtnCjxQ42Y1nQjUFF36qN0jqqpi33jM0devcfGllRo1l8QQUmTMlTNqe9pkrtIo3X4PYimt4XYsnUdXYAEZNT8fw8XPJ062UILb5azpq1+x1qhFU7mq9koN7af8nFjb69eDVXMfQwDCGu/iyQNwo4C1sfutO95+A/DsPxUeky+SV/XAFQSCG0pPa//IzAHfeT1QMqtrXMD1/4hwQAswq2rKfV1VJnE6ZfljLJWzXayvPPtrXzdOxVlX+gpDvznMNT+v+E/gGa+zeZcK/PKzGAp7LRm1TQ9+HM+QnrQ/4MRDllo1Xi9j7qOmI7B1hcgmv0xf0JpRS2Wt0kf+wOIP5GgqX8lOmeCDVUZVtJojAQ+5d+I7fW8Tn5shUJtN5jA133qHe1VVK9LHuZNAbr56A3egbuYR0AqN5zN5nIpnWjYS0fct+A44iWyxtUCt/MCYN8sfe62GIqOYwACLA3OmFgmSLHwI1KM7wHv5VAdq8RrZ2OWEz6397kTymNlkTi/Yb4XhHj9OxdPIlWt89o1xiZRzJ7ocft0uVkZtKOxFUJGpPq0Mb3avN7vuQO0Pz6jxhtfjs2nMJnOLWovVbrgcHUBLro+AZo0+NpvCU6eTi/474WYi6XwRuUJpYRk1fQzP19wu59SMmmkRjhuG8fZKDe2nPM4ZW/XwhaKq+vBVuyzvVU8dxBZ2DLJqkgn6ezVHTZvAvhKoGb4XQZ3aSO6o5tT4vTeLyz0ufhewapcui61KQgBi+eOjtwPl+ZRFTpvPAD/6U1z/s6twULkJq764GfjkKPD3u4F7P623JHA6zrrSVxhhr83FrISA6/4BeOPdOAxB4HH4bpzrO1UdqOXTGJ68t/YBcwkg+lTVSxUzEcHkPR0FDt1tfX3dJbaH6A8pmElkK0WvqDS8NlKpRdAeyLFUHhGbgZ9n1LLFkjAgQGgVbvH+BXxeb91A7cPffxhv+8aDtuffKIlsAYWSqmVyhEYim2wHRUBbWWRM068fmdZMYdqWUQsqeu2bGU36uPDJgi7BaMCify2bxGhWMJgPbNEMMppElFHLF0uYzxYW5EC22NTKqM0kc+j2i/X5zTDS7UNJBU6WHWH3jUURUmRs6He24yOgmaXIEmtqdboVGGPYNRJpuWXGmUKwbJbw9Iw2XnHzmnZibnh924PHAQDnre1p+7EWE37NttqsPexz474jMwCAPSOLK2fu9nuQyBb0Z8tCatR4DW69zEi+WILitIyax4WU6blYaXbd+PNJkSV0+91VNZkhYUbN6mcgTR7EbtFi/fAFgMd+YSXsE8xFBYHa2TM/A/7jeuDQXdad9G0CLnsfAEODdLNZ3ubnW5tfx8eAE3/Q5LTm5/gP3g78/t/gTU8gzFJw5eaAbFybx977CeAXf2P7mZyEs670FUZEdHMYyK+5AM/P3oq4strysxenv4sJo/Tx2G+sqygiTh2o+q+dmQgAzUWoaNpnYECcvi7TH1JQUitSrlJJRVrQR40HX7xOLZbK2Q78uhwmX9LS90bcfuDV38HJnF8LIoKDgMt0s2fjei+18WgKhyZN2a8FoDe79ruB6SesG9QwEgEA2SWht2z6cbh8Pu3qcxX2uZHOm0xqoDU+1r6L1qWPjTS9XscmsTr5mOX1hUoSeQ+XWcNDnt87Ikvf5UZt6WO25fo0oNIziMvT9o/HsGuka9EK6jvJ3k39+M37r8DAIma4vvSac/GZG60r1ysRPll8/NQ8BsNKSzI+O7wGM5EnJubxT/c+iet3r8bmIWc7lnIFhW6bvkAiPhnpfBESA3YOR+q/oY3wMZYH6gsZc3n7kXrGEDknSh89LktGjdegN1OjxhjDT//sMtx0SaXuO6hov+sqx+DBbQCqx3V5bhyXSQetOx0+r+Yxgx4ZEqs0U6/svxqXWgCe/qV1B54g8LKv627EeoP0lGluG+itWPYb+e0XETfWmgNan7WHb6t53vi/zwCTVjMTp+GsK32FIUw3G5hN5pBTZTyx3mqIsCv2U3iTJyvuWEd/3thBJ6pv4kS51kjYm+jgt62v7bgRcNlP9PnKITez4CujPkuNWkX6mMwVUSiptgM/l0DkiiVgz2uBy96vuRaNXAi84U5gaAfmswVNlidJ4hq6clZtJpHDfKagNw1dKFXNGU8LArW+TXX30Vd2yHxyKgGPS2qb3TWfUJlt9HlQ3pKZiC59NFv0rwZc1Q+jMEthaPpX1p0sMFCTJIZuf7X7E+8T6IRArV4ftXYEarxuaHw2jXSuiMcn5rHbwfU9RhhjixqkAZqBg9PdMtsFHzcem5jrmOW5tzzWJ7NF/MVtBxHyuvGRF2ztyLEWEz5Rb1X6yOcMS+Hiag3UFi59bCRQc5r00a/Ilho1nlFrJlADgN6gUhWo6jVqxme6EgR6z7a893JJYN5VJ1CTJIawz12dNPD3AMPnN3bCL/kyMFBZnI7ogZrge95xo+Ul9ZHvIZI7WZHTpmPAHQK/ATOlPPCDPwaK1nICJ+GsK32FIUw3G+A3efycl2saYwMutYib5B9jaq6cXThiDdRK6y617vRUdaBmW6MWPaY5RZoR9e8w0KebZGjnxbMHFtdHPaNW0muO7AZ+XfqYL2ptAS7/APCuA8Cb/hdYvRuqqiJhdDOsIX/kqfjxaAo4/nvgF5/RLGKb1DpHjQHCAjJqQNl4JaEFauv7A5DbtILI3cHmM9XXFTcAaeUBH7LLqEmS0PkxMnPA8lorJh/mPjxVAfMyp549f6+52fUCGAx74XYxjEdTeOhEHMWSekbUpxFLD58sHptJdcRIBNCUBi6J4b/vH8OB8Rg+et029C6S1LWTcOlbq1lIXi6xFPc0H2N5/9aFLI6FvTJkiVkMoczki6rjArWAx4V8UdXrgwFtHuR1Sy2bEek1auYFUkHfXYmZ5zIMWC12EzcS9rqtc9EXfUmolqni8g8B5zyv6iVFdsHvcVkzagCw46VAoLo1BlNLuMn144pPwf9+UGs30AgnHwR+98XGtl2mOOtKX2F43S54ZKk63WyABzu93V3AhTdbfv4K188xPXkSmJ8EJh+2/Fy6+F3WnU4crApKktkCFFmCnIsDB78DPH4HUMgCDwmyaX2bgVW7a34mnlHj5562C9QMGTVdvmZjpKAYM2oCUrkiVBV1A7VMvqhPkvMHvgv865XAz28FvvUabVWmiWCN2852++Smm13rm4S0jNrhqUTbjEQA+4xaop5xTAMI3ac4PYL6QTMuDzCw8BXy7oC7SvceTTlH+uiSGDyyhFRebCZiZ6bT7DGGyxb9+8a0volnSkaNWFqMk81OBWqAtog3NZ/Fc7YM4IU7V3XsOItJuzNqi12fBhgyauVAbSGLY4wxdAc8mK3T9NqZ0ke+EFcZ37k1f6vunIHy/MmyQCqoU7PQfw7gDdfdLOJzW9VdfWcDb/sNHt14M7KqINjcej1w6Z8L96c1SBfMbd0+4Xz25a570S/Na0mHfd+w/PxX7Bn42Dm3i9VKP7sVmDkiPA8n4KwrfQUS9gpujjLcua8/qADn36Q5CRrwsyz8B/8dOHqv9c0DW4H1lyHPTJO/5DQwX1mpSGQLWOuZB750CfC9m4Bvvgr4xwuA33/Vus9dL69pkAFUHkgnymYGlYxa9U2uGDNq5Yl3t430q6pGTYBuiOKtHajxVbwQUtjy4C3VP9//Da15Y4PokjvMWRuJuxRLQ0kR/UEFU/MZjEdTbTMSASqBmnkBIFnLOKZBKvb8okDNmlGzMLgNkBe+Qt4bUKpWY/n34ISMGqA9cM3Sx2JJs7vuaUNGDdBMHo7PprB/PIbRHv8ZkZEglp6qQK0DRiIcr9uFkCLj1hftWFT7+U5SqVFrT6C2FC6YfIx9eiZVdS7N0hvwYFYkiSujqqozXR/LC6DGOjWt2XXr46/skuBzu5Awuy0LMmoW6sgeORGz9JHj9uE3o2/Fc3OfQn7d3srrG68Grv8n2zmh1iDd5ns+/01aXZsBH8vh/IduAf7nrdbtPSF8KfTHGMsGNPdKU20eChng9j+xuJo7BWdd6SuQiE+uK33sDymaXljQvHf9k18DHvkf65vXXw643DjtE6StDXVqyWwBr5Hurm5sHX0amDtufd+Ol9b8LIAmq3vGaBf+/ddPYSaR1VeX7DJqmXyxkhWp0/A6WxDfhDxzVMmorbVuFBvTV/Fulm+HtxC3bnPPx4AnBG5GAnhKvytx1PrDvo1aw8g69IcU5IsqVLV9RiJARR5jzqgl6zU3bwBey2jeN4D6Egmg5d5mPQFzjZrB1MUB+AVNUaOpHFS14mrZKiM9foxH09g3FqNsGtE29IUwdDaj9pZL1+Pzr9h9RjUZv2zTAF530Vqcs6o1U5Rrtw/h5ss24OwlcHHlY+z4bAo+t2vBQad5DDfDe6sqDgvU+HPV2H5lej7bNpfaoFe2KlmGGjA6ajBQC9eYi8ZSeRxjayC//vta2ck7HwRe+S2tTs4GrUG6jReArxs4948sL/cd/wmQmLRuf9UtKIXWaIv6oxcCFwqCuWO/Ah78qu35LGecdaWvQLR0s7gQcno+i5AiVwbEi96h9aAyoBTmgUN3Wt+84QoAwExIUCtlqFNL5oq4QBW4BJlZ++ya/dOMfOqGnUhkC/joDx/Vswf2fdRKiKdq16jpZiI2gRoPQEJ1M2pZDGIWb3TZBWMqcNtN4pozE9FUDkFFhjwrsJ9vwEgEqC4wNvZMaRXbQC1Xp7l5A0gS0xvfWmgkUBt55oKPDWgP+Vgqj0JZBhtL5/RGsE7A53EhbZI+6s2u2xWodfsxm8xhYi5DgRrRNhZL+vjWyzbgyi2DHdv/UtAT8OBj12/X1SELZeNgCO9/7jlL4uIaUmS4JFZuS7PwhbF6gRovcXC7nJVN1TNqhoW46US2aSMRO0KKbF0gDfQC4TW139igIUjE57b29C0TS2vNqBljmlqod4NWl14DrUF6DYnrRe8ApAauo7XPBs59Q/V1c8WHxfO8n/yV7vDtJChQW+ZYnHYMWG7yyDCw+9X1d+ryAGufBQCIR7ZYfz5RMXjIpxM4u9iAtreOiYiRTYMh/PHlG/HDAydx+4GTAEQZtYo9P191sZNSuCQGt4vpzbHNVHrBld9vE6jNJnN4t3wbfKzG4JGbB/77lUBmzn4boGIlu0AjEaBSz+eSGNb1tW/iU6lRE0sfW6lR4++3aOUBrT8aqzHk9G0Gtr24pWPzPjz8momWm447RSLl97gsZiL84dOujJrRPZSMRIh2ESqPr24XoybgKxDGmK56ibQgNdcMoez7qPEFWY9Da9SS5YxavljCbDLXtkBNmFEDatepeYINz0dqzUWjZuv8Boj43WIzEf2Aq4GdL6+9k8AAcP0/AJJUfd0oQeCFf1+9bdco8LL/AHzOe+Y560pfgdjqglHWN5tv8r0fAOQ69QEjF+rNDdO91l4YxozamuSjkCEOgHRcilY02gRv27sB5wyF8M0HNEmltY9apeF1LJVHUJFratI9Lsk2o2aRPtr0UpNP3I+Xue6tf/KzR4Df/XPNTbTmjO4FG4kAFYfMtT3+lldajXCJkjlTW7O5eTP7t8uohYaA7VbrXazara2AveXnmmtnC3SbGmlaeq8sc3xu+0Ctp4mmqLUY6dHGB49LwtbV9YvICaIR+ALPmi4fXGdAXz6iefhY21pGTcFcpmDp88nhr7sdJn3kZQGpckaNj+vtqFEDyg3nRc/dWnVqq/c0VIYBaEqcXKFUaflkIF5eEG2Gbr8bsXQeai2Ttov/xP5nG64EbvqJrtSxXDcbrgD2vAYAAy58G/C2+4ANlzd1jssFZ13pKxAt3SwO1E6L0ubhVcBFb6+907LsEQDy/VtQUk0P1dgxPT28PmN1i7Rw8buaXqXwyBI+fcNO8Oe5tY9aJaMWS+XqFiYrbpdtjVrCLH206aV22UMfgMtsXevtErsVPv6jmucTS+e1oGFaIH1sMFDjGbV21qcBgLtceGyfUWsxUPO6rTbBnBd9EXje3+Lu8EvxBd/bgD99FHjrLzRnKE9A/J4m4FknbtGvBczOMBIBtAULs5kIN0fpadPn4D2utq4Ot3UBgFjZcEODTsoeieUNH2tbWRzrKbvbGt17j80k9cDGqRk1Xt7BM2oL7aFmR1AkfQRqZ9QarE8Davf1jaZyTRt2dfk8KJZU+7kCAPRvxqmNr6p+LbQKeOlXgdfcVmXKxhcyo0bZ7NW3Am+8G3jup2rWyy13nHWlr0C462OpZF11sC1EvfhdgK/HfqeGVQVfIIKn1CHrNhMPAQC25h+1/uzyDwLP+Siw5TrgeX8LXPa+Op9CzK6RLrzl0g1QZMmyGmOsUYul83WtyWtn1LSBpSpTJJA/RnKCvhyXvAd4+detr088BGQTtuczGc/gbPeMtdcHczVmUw/tYdcb8HTEwSvktQ7qyWwBjLVuER1SZCRsFhfgkoEL3oyvBN6EX3ZdD0Tq6OebhA/W/KEeS+VbWt1dbPwea1NUbnJj53raLF1+N1ZFvLj47N76GxNEEwx3+yhLu4LhY20ri2Pc3ZaP4cWSihu/dB9e+5XfoVAs6QuyTnV95IqJXxyaBqDdM+3AVvpYK6PWaMNqVAI1kcIrlso3bdjFg/l4LfkjgO8N/An+Ov8q5Dc9H7jqY8A77tdKJEzlDHwhs8ox1NetmYs4HGdU2K9gIj43SiqQyBV0EwhAyzTNZwri1RhvBLj0vcDdH7D8SPX1gBmcgEJeGY+o67ABp6o3nDgIrH0WtqmCGqtN1wCrGnATaoD3XbsZb3r2WZYsTsWev6hlRXy1B37FLdnWqHEddNgYDDZgfJLyDsF/wVsAt1fLwBmdL9UicOIPwPrLLO+bms/gZDyDK84SBLmrdzcs72OM4Z73XNZyhktEyCtj3mTlm8wV4Xe7Wi5EDyoypuYzNbeZzxSwpqv9Ft7ccGM2qa1WxlI5bFnlnImjT5BRm01mEfbKbesbxBjDXe+61GLgQxCtctvbn+U4Nz6ifUTKz+lmZXBG9DG8vEB1/1OzmJ7PYno+iy//8ins3aw1Q3ZaRk2vUcsWcHQ6gf93z2Fcs20QW9v0fLItOYiMaMqgjMBEY03jGbVwzUBtARk1Q5lCrSz8gycSONb7CnzwVda5lhHzdXMm4awrfQVil27W0+Z2+ubz34R0YNjyMlu/t8qNJ6i48UhpnfX9pw5CnXoUYaSqX/eEgAFBXdsCYYwJg03GtOa/mUKxoTojj0uybXgdS+UQ9srVdRMNBGq/HLlZC9IAYFTgRjj2W+H79o9pA+K29B+sPzTIThuhy+/pSGPPsM8tzKi1IygMemWxmYiB+UweYW/7A1D+sOByQU2C6pyMWsDjQspUAzCbyre911nE73bcijSx/Al73SSnXcF06zVqLZiJBKvH8LsePgVFlnD55n587qeH8MTEPADnZdR4HX4iW8D7bjsIRZbw8eu3t83oKqhoz11LzRdj4qxaZBQINe6eqs9FTWqZXKGEZK64oBo1ADUNRVRVxb7xxtrImK+bMwlnXekrkLBPm8yaVzFOJ+rom2UFMxe+3/q6yUUnWM6oWZg4iPxTgkBk+DxNvrYIeGUJ2XLD63qBmuKWbBtea9JJ04ND1EvNwM+lZ+JueW/lhRFB+nzcJlAbj8EjqeievM/6w/XLo5g15LVa7SayhZaNRIAaK3sG5jOFSs1gG3G7JIS9MqLJHLKFIlK5orPMRDyywEwk2zZrfoIgiE7Bx9pW+lZWVBE5lEoq7npkAns39+PTN+yEV5bwsR9pShWnBWpulwSPLOFbD4zjgaej+NALtmKgje6oQa+MQkkV1+qL6tSaqE8D7KWPsXLT6q4mn1H8WonWsOgfn01jNplryJ3YeN2caTjrSl+B2KWbeUatlmNQ4NyX4+/yN6IgKcgxD77nuwHYfG3VNkFFxiMlQdAy/QTUoz+3vj56UZOfYOF43ZoMLM6NOWqhT3p5AAAgAElEQVSgyPZmIlGRI1F3jUBtYBv+re99OB41yPdEn3v8AaBklVvuG4vhBX2TYGapgTvQlCa8k2g1alYzkbZk1MqBmp2bk6qqSGQLCHk7E0D1BhXMJHO69t1pZiK5QknvAwdoxigUqBEEsdzhY20rGTWtnYqWGdk3HsXkXBbP3b4KA2EvPvyCrfpEvBNKk04T8LhwKp7BJRv78NJzrYqnVuC9QoWGIhuvtr626VrrazXgChhzTZn+nG0yo8avFTtXcwDYNx4FgIYyat1+j37dnGk470pfYVSkj9U333S9jBq0FYt/ZjfiM+feg1d3fwO3D9xs2SaoyIgijHmPKQWuFuE5/GPrThexMNPrdmE6kUVJte+hxqllJhIXOf/ZSB/TcgR45X9hoK8X41GD7HNgC6CYtOS5eWDykaqXiiUVB4/H8LyAwJb/rEtatp9vF2GvbLmmktliyz3UAG1lr6QCaYGNL6AVUxdLakcyakClYWpUD9Sck1Hj8hij/HE2mWub4yNBEESn6NLNRBY+5souCRGfG9FkDnc+NAG3i+GKLQMAgBvPHcYlG/sAOC+jBmh1an6PC5948Y629/bkbXeEapazLgXOv6ny/63XAzsErXJqENalj9X758/ZZoNzPqerlQHbNxaDz+3C5sFQ3f25JK2PX5QCNWKx4QYi5hq1ybksGKvockUwxrAq4sXJuQJOptzCVXmXxOD3uDAW3GF9P8xaZ1dTxaetosgSJuJaVqtuRq2GmYiwGWNgAFn/qqqXCqqEX+3+DNC9DiM9PkzMZSr7lFzibJipTu3w1DySuSJ25R60brtMZI+AJn20ZNRyBb3XSytw+aRdnRpf8etURo0HarGypKKV1d3Fhht8cEMRVVURTeXa1kONIAiiU1xydj/ecPE67FgTaWk/fAy/8+EJPPvsPn0exBjD39y4E6+7aC22DDnHJIpz894N+NzLd3ekhUWw3HBe+NxlDHj+3+Flga/g/cNf1xo/N9g/jeN2SQh4XLbqrlpzUbv9reny4fCUvXv2vvEYdgxHIDeYPe0uXzdnGhSoLXO41tt8c0zE0xgIKXXT/0NhLybiacwks3qPKTMBRcYvum8EUGeFZ2jHovai8LpdmJzTArVGzETspI9CRyJJwsS570Fe1QarkkvBBwo3ITd6KQCt15SqAiei6cp7hPLH6kBt/1gMAaTRFz1g3bZJI5FOElJkZAulqixku6SPPFNm1x+FFyPz+st202vKqNXLxi4n9IxaOVCbzxaQL6q29y5BEMRyIeJ3469euE1vr7NQegMe3Hd0BidiaTx3R/WC6qqIDx+7frsjXWtf+8y1uGaboB1SG9AXSG2eu/FUHvfP+DCyYeuCjxH2uS1z0VNxbY60OtK8i/Pu0S7dfM1MJl/EoyfjDdWncXoDHsyUHZ/PJChQW+YEPTIkZnXaORXPYKiBQtRVES+eOp1EJl/S+5OYCSkyHnVtBi54c+2dLWJ9GqA1veZ643p1RorbJZQ+FoolzGUKwsl6etvL8dzcJ7Hvws9j//PvwHeKe/Ws42ivtuI1XhWoCWSfxoxaIYd9YzFc4TsMVjLprsNrgL6NNT/DYqIHU4brKpEttq1GDaiVUcuXz6EzAVR3wINoypBRc1CQ43NrvzveS41bDVONGkEQKwWeUXNJDFdtadyZcCUTqiV9BLD/uBYQ7Wmg3suOiM9tUXdNxDPwuV0LWnjdM9KFE7E0puas7XwePTWHfFFt6nx7KKNGLAWSxBDyWlcxJuIZDEXqB2qDES9Olyd7dqvyeqPEK/9Ks2y1Y5EbBxpX5RaaUeN6apFFu1d24Ul1GE8PXYUTLq3xMk/fj3RrgdrYrKFObc25gGQajOZOAH/4KvD5HcCt/XjFY+/AG733Wk9ww+WWBo1LCQ+SjIXHyWwBwXbUqNVZ2ZvTpY+dy6jli6peY9hKT5/Fxm+SPvKFCgrUCIJYKfBF5YvW9zpqoW0pCejPXbE5x76xKBgDdgwvXJYqzKjNaXPRhdTc8WzZvnFrVm1fOdO2Z7S74f31BBQK1IilISK4OSbmMljVQKp5lSHrZjfg8f4bUILACz9vv7MRQS+xDmLsx9NYjZo1UIvWyKrwQDCTL+k3Nz/OQEiBR5Zw3BioeQJim9sfvguIjQEA9hQPYk9aYNu/jOrTgEphMA/UiiUV6XybMmreGu5Thtc70UcNqAQ1R6aS8LgkPfhxAmbpI78ue22y4QRBEGcafFH5uTs6IxM8E6mnZNk/HsOmgVBLSpawIGkw2aC6S8S21RG4XQz7BYHa/vEYVkW8GGxi370BD6KpPEolseO0U6FAzQGY082JbAHzmUJDGbUhQzBntypf1ffq7CuB3a+2btS1Fgivsr7eQRR35fKsN6n3uV1I56wDVKxGnZK3vP90rmgI1LTtJIlhuMtX7fwILFz+uX7vwt7XIczSx2T5d9cOM5FQuag5aZNR45LEcIcyXXqgNp1AxO9uu7tWJ/F7uPRRC9R+eXgajAGDEQrUCIJYGZzVF4Df48LVWylQa5RateGqqmJ/g42jaxHxuS0LsKfiGaxqYC4qwut2YeuqMPaNRateL5VU3P/UDJ7RRDYN0J79xZJqKRVyOhSoOYCwT65axeBOiI3cHMZtakkfq26+a/4aCK2u3ui8NzZxxu3BW86ohb1yXdef3qAHyVxRl4xxajn/6Rm1ghaodfndVccZ6fFXSx+Bhck/V+0CAn3Nv6+D8EGdD2iprPZ7a0dGjVv820kfj0fTUGQJfR3KEvHs07GZlFDyupzRpY/5An7/9Cy+/ttjeP1F6zAQal9jVIIgiOXMi/eswX3vv7Jm+yGiGkWWIEtMmFF7eiaFWCrflDGHCLO6q1RSMTnXWBmOHbtHunDweBxFQxZs33gMk3NZPGfrQFP74ou0Z1ovNQrUHID55uCBWiMpYeMNZGfxHVJkPaMCAPB1A2+6G4+Hn4WnsAa49L3AM9+2wLNfODzj1UjD4v5y4+/TiWrHn1iNXlqKLIGxivTRnHEc6fFhfDZd/aaFyD+XmewRMLR9KA/qPKhqVx814z7NjM+mMNztgyR1JtPVHdA+W65YQpfPWfUNPFCLJvP4i9sOYnXEh/des3mJz4ogCGLxkCSmO14TjcEYq/gNmNjPG0e3GKiFfdr+C0WtzOR0MotCSW0pUNsz2o1UrohDk/P6a3c+dErrn3dOc0YyfA53ptWpUaDmAMJed1WTQW6H2khGrS+owCUxuF1M71xvJujVatRU1aDr7RrFF4b+Gm8K/hNwxYcAefFXtnjGq5GsSF955W1qvjpQ4zVqomCPMQZFlpDNF4XtC0a6/Yin89Vp9NAgSl1nCc9hP85Blpm+E+YCdry07vkvNiFTHRmXKQbbkFFTZBc8Lsm2Rm1sNtWRPjIcYz2Xk5pdA5U+al/6xREcnU7iky/Z0ZYsJ0EQBHFmo/sNmNg3FkPA48LGgfqNo2sRMdW2T8a1+dZCa9QA6HJMbh6iqqreP6/Z1jp6Ri1BgRqxyJgzary3WCMZNZfEMBhS0O332NbqBBQZhZJqMeOIiRpFLyKKrF2ekSYyatOmQC2ezkNisA1SvW4X0nlN+miWR46Wg4lxk/zxaO+llv38Z+FKvCTzIdxx6feBrS8C3H7A1wNc+0lgaHvd819seECm16jpGbX2BAXayp5YJz4+m9JdNTuBz+OCrxzkOy1Q4zVqU/NZvPTcYVy6qX+Jz4ggCIJwAkFFFtao7R+PYedwF1wtqlh44MTno5WkQfM91Dhre/3o9rv1rN/DJ+a0/nnbm/dE4K7dlFEjFp2wz41coYRMXqsjOhXPoCfgabip5FDEW9PeO6SIXfqiqVxDssNO0UxGbSAklj7yz2Ans/O5XciUA7XeoFn6qAUTT04lql7/YvE6HGRlOZrsRXHvB/H13nehBAmbNm0FXvY14H3HgPc8Dlz41vofdAmQy26I82bpYxvMRAD7lb14Ko+5TEEPgjsFv97ruYUuN1wSg0eW0B9S8KHnL7wxKUEQBLGyCHlli4mX1jh6ruX6NKBSMsEDtYly0qAV6SNjDLtHuvSM2p0Pn9L6521tvn8ef+5zJdWZAmlqHAB3x5tL5+F1uzARzzRlWfr2vWcLres5xpoiY/FuLJXH5qHWUuWtoNeoNZD+7gl4wJg1oxZL5Wu+X8uolRBN5S3B7KbBEEZ7/PjcTw7h6q1D8HlcSOUKuONIHsFz/xU7LwsDShgufw/+Ycs8vvuH49iyKqy9WV7+AULY69YzatxlsB01aoDJSdQAd9Ec6Vn4Clwj9AY9OBFLO7LO4T1XbcKe0W5HnjtBEASxNAQU2ZJNeuRkHIWS2rLjIwD9mcTLQU7FM3C7mK1RXaPsGe3GvYemMZfJ486HJxbcP0+RXQgqMkkficXHmm5uzg71OVsH8fyd9mnkYNlO3ZwBiaVyS2rG4NXla/XPQXZJ6A14MC0wE6klf1NkCZNzGRRLqt5kk+ORJXzqhh14eiaFz/30EADg3iemkcmXcM2O1UD3OsDfAwDYOBjCB563pWVpwWISMrh9JtpYowYInETLcBnpcAelj4BzM2oA8NbLNuCCs3qW+jQIgiAIByFSsvBMVatGIoB1LjoRz2Ag5G3ZGGz3SBdUFfj2A+N46nQS125feFuG7oAbs8ls/Q0dRN1AjTH2b4yxKcbYw4bXehhjP2GMHS7/3VyzA6IpzDdHq3aoZvR6JUNNUa5QQjJXXFJ7c16j1midUV9QsWbU0rXlm163Cydjms5atCr0rA19eOUFo/jXXx7FgfEY7nx4Ar0BDy5Y5/yJdMgr6ytj7a5RC9XJqI32djhQK3/njWRjCYIgCMLphLzWGrV94zGs6fK1pcWLRfrYQg81I7vK2b4v/PxJMAZcva152SOnJ6CsSHv+rwK41vTa+wHco6rqRgD3lP9PdIiwoedVJl/ETDKHVS247JjhDoDGlZhYmrslLt1Et1Kj1lhWpD9kDdSiydoZNV9ZSgrYNwT/wPPOwUDIi/d+9wB+9tgkrt42WLevmxMIed1Vro+MQTfhaJWAYtXKA5rjY8Tn1gf8TsG/y6WssSQIgiCIxUKUUds/FmtLfRpQSRrMpbVjTLQpaRDxubGhP4BYKo/z1/W0FFT2Bjwrz0xEVdX/AzBrevl6AF8r//trAF7U5vMiDBgzalNzWiAy2IGMmrGXWlzvP7Z0E12l3PC60Vqd/qBiMROJp/M15Ztet4RCudGiXaAW9rrx1y/ejkOTCSRzRVy7ADei5Ui19LEIv9vVtt5mdv1cxmfTHa9PAyo9A53m+kgQBEEQCyGouJHOF/U+Z1NzGZyIpdtSnwZo8yWPS0I8nYeqqjgVT7clowZodWoA8NwWZI+ANo+LrrRAzYZBVVVPAUD5b9v24YyxtzDGfs8Y+/309PQCD7ey0QO1VL6pHmqNEhRk1KI1GkUvFsPdPrgkhnW9gYa25xk13g8uVyghkS3UlG8anTNrOWNeuWUQL9mzBv0hBRet723wEyxvQgYzkWS20NZ+Xd1+N2KpPLKFYtXr49HOWvNzNg6E4HO72nqfEARBEMRyhc/lklntufvbp7QcyzPWtqc6iTGGsE8rmYin88jkS00Z29Xiko198LqllurTAM0BfDqRtcw9nEzHXR9VVf0XAP8CAOedd55aZ3NCgO76mCnodqhtDdT0GjWD9LFsb7qUZgzb10Rw4K+ubtjgoj+kIFsoYT5bQNhb6T1XK9hsNFADgM+8dBeSuQI8svNlj4AmqeWN1JO5QtuMRABg++oICiW1bAusPSRKJRXHZ9O4asvC9eeN8pwtA3jgQ89p62ciCIIgiOVKyOA3EPG7cdfDp9AfUrBruD0ZNUCbj8bTecNctD0Kmet2rcbezQNNN7k2s31NBPmiisdOzbctk7jULHTGOckYWwUA5b+n2ndKhBl3uedVPJ3X66mG2nRzAJpphyyx6hq1ckat1ZumVZqZaPeZml7zYLOemQgABDyuun3pXBLreG3VYsL782ULxbZn1Hhwtn88pr82NZ9FrljCcId7qAHayh8FaQRBEMRKwZhRS+eK+Pnj07hm22Bb3agjPjfm0nmcirfeQ80IY6wt801ej7d/LNryvpYLCw3Ubgfw+vK/Xw/gB+05HcIO480RUuS2TkIZY5aaIm4mspBeFksF7wGnB2oNZdS0W6An6JzP2S64icx8poBktti2HmqANngPhb26NTBg6KHW3fkaNYIgCIJYSfDF1kQ2j18cmkI6X8Rz21xTH/Zqc1GeNFhu5QWrIj4MhhXsMywSO51G7Pn/G8B9ADYzxo4zxt4E4FMArmKMHQZwVfn/RAfhUr6JeKatRiIcs1tQNJWHLDEEPO2bvHcaHqhxQxFeUFpLvsmzaD0r0B2QB2pz6TwS2QICnvZmoPaMdlVl1MZmytb8i5BRIwiCIIiVhF7Gkingzocn0O1348I29+SMlKWPp+IZMFaZdy0n9ox0V809nE7dmZmqqq+0+dGVbT4Xogb85sgUSh1ZwQgqsqlGLY8uvweMOaeBc79Z+piuL9/0lp0l69WnnYmEyo3O5zMFJHPtlT4CWhPLOx+ewEwii96ggvFoCowBayijRhAEQRBthS++ziZzuOexKTx/x6q2txLic9GJeBr9QQXuZdiqaPdoF+56pDL3cDrL7zdMCAn73JjLFDAZz2CojT3UOCGvbKpRyznO2jzic0OWmKVGrZZ80+cpSx8Dzr+Zm8UqfWx3Rq26Tm18No3BkFdvu0AQBEEQRHvgGbU7H55AIlvAtTtac1AUobk+FnCqTc2uO8GesonIgeNnRlaNAjWHEPbJiCZzmJrvzM0RVOSqPmqxVL6mrf1yRJIY+oKKIVCrL9/k0sfeFVmjxjNqeSSzBQTbWKMGADvWROCSmF6nNh5NkeyRIAiCIDoANxP5+eNTCHllXLyhr+3HiPjcKJZUHJ1Ots1IpN3sGK6eezgdCtQcQsTnxsRcBiW1vc2uOUGv21SjlkOkRqPo5Up/uYcGoNXZ1ZNvrmjpY3lQj6fzSOfbn1HzeVw4ZyhkyKilMLwIza4JgiAIYqXB68wLJRVXbRnsSCshXkpyIpbuiLqrHfg9MjYPhs6YOjUK1ByC0RZ+MWrU4mnnZdQALVDjZiLxdH35psJdH1egmQi/png/lHabiQCaociB8Rgy+SIm5jKL0uyaIAiCIFYaLoOCqNXG0XYY56LtbBPVbvaMdmH/WAylkvPbN1Og5hCMhhhD4fbfHEHFZcmoOcman9NvkD5Gk/WDTZ975WbUuEyC2+y2O6MGALtHujGfLeD/Dk1DVYERkj4SBEEQREcIemUEPC5cuqm/I/s3zkWXa40aoJmZzWcLOHo6sdSn0jIUqDmETt8cQcWNdL6IQrGETL6ITL605M2uF0JfyIPTiRxKJRWxdL6ufHO42w9ZYljfH1ikM1w+uCStKfRJPVBrv8kHbz55+4GTAMianyAIgiA6xdqeAF6wc7Vef99uwsakwTIO1LiZ2YNnQJ1a+5fQiY7Abw5FljrixljV0T5fBFC7/9hypT+ooFhSEU3lEEvlsH11uOb2W1eH8dBHr4HPQf3i2knIK2MingaAtjZR55zVG0DYK+Onj00CAEaoRo0gCIIgOsI3broQneyq5JSM2vq+AEJeGfvHY3jZeSNLfTotQRk1h8BvjqGItyO9zUK8UWI2j1has7V3mj0/APSHtIFjOpFFtMEWAys1SAN4oNY56aMkMewe7UYmX4LHJWEwtHwHdoIgCIJwMh5Z6mhvM2NGbXCZmokA5bnHSNcZ4fxIgZpD0AO1Dt0YPKOWyBYQTWqNop0ZqGn90I7PppHJl9DlwKzgYhLyav35gM6YiQCaVhwAhrt9kCTnNFAnCIIgCKJCSJHBGNDtd3dMXtku9ox04YmJOSQNRnlOhAI1hxD2aZPoTqWauewtmS0gzjNqDrXnB4DDU1oBqRODzcWEW/QDnalRAyp1asNUn0YQBEEQjkWSGEKKvKwdHzl7RrtRUoGHTsSX+lRaggI1h8Azap3ooQZUMmrzmQKiKS2j1h1wXpDTV25cfXhqHoAz6+wWk5DBarcTNWoAsHtYC9RGupf/wE4QBEEQhD0RvxtDYWWpT6MuXM3jdPkjmYk4BL9HxkdesBV7N3fGcpXXqCWyBcTKgZoTM2pBRYbXLeHwZDmj5kDnysUkXJVR68xw0B3w4JbrtuGCs3o6sn+CIAiCIBaHv7jmHAyEln+g1h3w4GXnDTvexIwCNQfxxmef1bF980l6IlNALJWDIkuONNlgjKE/pOBJXfrovGBzMeEZNcYAfwe/79c/a13H9k0QBEEQxOLwwl2rl/oUGuZvbty11KfQMiR9JACYzEQadEtcrvQHFb3FgJM/x2LAa9QCHrkjbqIEQRAEQRDEwqBAjQBQcfybz2jSRyfXdvUbUvJO/hyLAZc+djKbRhAEQRAEQTQPBWoEAMAlMQQ8Lr1GLeLg2q6+oBaoeWQJXjdd4rXg0sdOGYkQBEEQBEEQC4NmsYRO0CtrNWrpnKMzUTyj1u13k5yvDrr0kQI1giAIgiCIZQUFaoROUJGRyGn2/E6u7eKBmhNdKxcbnlHrVA81giAIgiAIYmFQoEboBL1uzGcKiKfyjnZL7C9LH50cbC4WvJE6SR8JgiAIgiCWFxSoETohRcbUXAa5YsnRQU5fiAK1RuEZNb+HAjWCIAiCIIjlBAVqhE5QkXE8mgag1Xc5FZ5Rc3Kd3WJBNWoEQRAEQRDLEwrUCJ2AIiORLQAAIg6u79Jr1ChQq0vQI4MxIEg1agRBEARBEMsKWkYndHh2BXB2Rs3rduHWF23Hszb0LvWpLHskieGTL96B89Z1L/WpEARBEARBEAYoUCN0jIYSTs9GveaZa5f6FBzDKy4YXepTIAiCIAiCIEyQ9JHQCZ4hGTWCIAiCIAiCcDoUqBE6xoxahAI1giAIgiAIglgyKFAjdHiNmt/jgiKTuQRBEARBEARBLBUUqBE6PKPW5aNsGkEQBEEQBEEsJRSoETp6oOZwIxGCIAiCIAiCcDoUqBE6AT1Qo4waQRAEQRAEQSwlFKgROrxGrZsyagRBEARBEASxpFCgRuhw6SM5PhIEQRAEQRDE0kKBGqET1DNqFKgRBEEQBEEQxFIi19+EWCkosgufeskOXLShd6lPhSAIgiAIgiBWNBSoEVW84oLRpT4FgiAIgiAIgljxkPSRIAiCIAiCIAhimUGBGkEQBEEQBEEQxDKDAjWCIAiCIAiCIIhlBgVqBEEQBEEQBEEQywwK1AiCIAiCIAiCIJYZFKgRBEEQBEEQBEEsMyhQIwiCIAiCIAiCWGZQoEYQBEEQBEEQBLHMoECNIAiCIAiCIAhimUGBGkEQBEEQBEEQxDKDqaq6eAdjbBrAMQB9AE534BARAPEFvK+Z81noMZqBjmGP+bty6udYicdo132/1J9jJR6j1nfnpM+xEo7RqeerkTPld7WcjtHK97acPsdKOQaNic48xnKKP9aqqtpfdytVVRf9D4Dfd2i//9Lp81noMRbjc6yEY5i/K6d+jpV4jHbd90v9OVbiMWp9d076HCvkGB15vp6hv6tlc4xWvrfl9DlWyjFoTHTmMZZb/NHInzNN+vhDOgYdg45Bx6Bj0DFW8DEWgzPld0XHoGPQMegYy/oYiyp91A/K2O9VVT1v0Q9sw3I7H8Ie+q6cC313zoW+O+dA35Uzoe/NWdD35Uyc+L0tVUbtX5bouHYst/Mh7KHvyrnQd+dc6LtzDvRdORP63pwFfV/OxHHf25Jk1AiCIAiCIAiCIAh7zrQaNYIgCIIgCIIgCMezogI1xlhiqc+BaJx63xdj7F7GmKO0xmcyjLEXM8ZUxtg5S30uRHMwxj7IGHuEMXaQMbafMXbhUp8TYQ9jbJgx9gPG2GHG2BHG2N8zxjw1tn83Y8y/mOdIVFMeG//O8P8/Z4x9dAlPibCBMVYsj4OPMMYOMMb+jDG2oubLTudMmu/ThUcQRLt4JYBfAXjFUp8I0TiMsYvw/9u79xgtqjOO49+fQARBIVI1VlGgAQkoIFRbK6nQeteKVhtFEluhqEUlmqixxkZt0mrqBUXAa8BILEhbS/EGKkhJi0oBYYGKaNEWahOkUryAq9Cnf8x5y8u6F+Tyzuy+v88/O3POmZlnd/Lue848Z2bgbGBARPQFTgbW5huVNUSSgKeAGRHRA+gJdAB+0chm1wAeqOWrFvi+pK/kHYg1aUtE9I+IPsApwJnALTnHZFWq6gZqkgZLeqZsfbykH6XldyXdJmmJpOXODOSvsfNlxSGpA3AiMJI0UGvis3ampFWS/iRpXHk7q7hDgQ0RUQsQERsi4j1JAyX9UdJiSbMlHQr/z2TfK2mBpBWSjs81+urzHeDTiJgMEBHbgGuBEZLaS7orfX/VSLpa0hjgq8DLkl7OMe5qt5XsQQbX1q2QdKSkOemczZF0hKSOqU+yT2qzn6S1ktpUOvBqFhHrgcuAq5RpJelOSX9J5+vyUltJN6TP3jJJd+QXtUHWL0mfp1Kffmgq7yrpDUmPpKzpC5La5R1vQ6puoLYTNkTEAOAB4Lq8gzFrJs4FZkXEauADSQMaaiipLfAQcEZEDAIOqlCMVr8XgC6SVkuaKOmk1Bm8H7ggIgYCk9gxY9M+Ir4FjE51Vjl9gMXlBRHxIfAP4MdAN+DYlB19IiLGAe8BQyJiSKWDtR1MAIZL6linfDzweOmcAeMiYhOwDDgptfkeMDsiPq9YtAZARKwh6y8fTHYxclNEHAccB4yS1E3SGWTfg9+IiH7Ar3IL2Eo+Bc5LffohwN1pRgJAD2BCypr+Bzg/pxib5IHaFz2Vfi4GuuYYh1lzMgyYlpanpfWG9ALWRMQ7aX3q3gzMGhcRHwMDya4avw88CVwOHA28KGkpcDNweNlmU9O284EDJHWqaNDVTUB9j2sW8G3gwc60IG8AAAcOSURBVIjYChARH1QyMGtcGlA/DoypU3UC8Ou0PAUYlJafBC5MyxeldctHqYN/KnBJ+r/4GtCZrNN/MjA5IjaDP3sFIeCXkmqAl4DDgENS3TsRsTQtF7q/3zrvAHKwlR0HqG3r1Nemn9uozr9P0TR1vixnkjqTTcc6WlIArcg6kjOp/9wJK5Q0fW4eME/ScuBKYGVEnNDQJk2s296zkjpXfyUdAHQB1uBzUXT3AkuAyY20KZ3DmcDtkg4ku5gydy/HZvWQ1J2sT7ie7Pvr6oiYXafN6fizVzTDyWbsDIyIzyW9y/Z+SG1Zu22Apz4WyN+B3pL2TdMPvpt3QNYon6/iu4Bs2s6REdE1IroApWxZfeduFdBdUte0fiGWG0lHSepRVtQfeAM4KD1oBEltJPUpa3NhKh9ENg1oU8UCtjnAfpIuAZDUCrgbeIxsGusVklqnugPTNh8B+1c+VKsrZVqmk02hK1nA9ocwDSd7KFMp270QuA94Jl1QsQqSdBDwIDA+shcPzwZ+UrpXUFJPSe3JPnsjlJ6uWvbZs/x0BNanQdoQ4Mi8A9oVVZMxSl9ctRGxVtJ0oAZ4C3g938isPj5fzcowoO6N078DLibrkOxw7iJii6TRwCxJG8g6IpafDsD9afriVuBtsmmQDwPj0iC7NVkmYGXaZqOkBcABwIjKh1y9IiIknQdMlPQzsguuzwE3kV0Z7gnUSPoceITs/qeHgecl/cv3qRXC3cBVZetjgEmSriebfnxpWd2TwG+AwRWLztqlqY1tyP4nTgHuSXWPkk2TW5Lud3ofODciZknqDyyS9BnbP5NWYaX+I9n9nk9LWgQsJbtI3Owou0DQ8knqBzwSEX5CWTPg89WySeoQER+nL7oJwFsRMTbvuKxpkuYB10XEorxjMTMzK9fS+o9VMfVR0hVkN7/fnHcs1jSfr6owKl2xXEk2PeGhnOMxMzOzZqwl9h+rJqNmZmZmZmbWXFRFRs3MzMzMzKw58UDNzMzMzMyaHUmTJK2XtKKsrJ+kVyQtl/R0eoVJqe6nkt6W9Kak0xrbTxF4oGZmZmZmZs3RY8DpdcoeBW6MiGOA3wPXA0jqTfYqjD5pm4npFScN7Sd3HqiZmZmZmVmzExHzgQ/qFB8FzE/LLwLnp+WhwLSIqI2Id8heR3N8I/vJnQdqZmZmZmbWUqwAzknLPwC6pOXDgLVl7dalssLyQM3MzMzMzFqKEcCVkhYD+wOfpXLV07bQj79vnXcAZmZmZmZme0JErAJOBZDUEzgrVa1je3YN4HDgvcpG9+U4o2ZmZmZmZi2CpIPTz33IXn79YKqaCVwkaV9J3YAewMJ8otw5HqiZmZmZmVmzI2kq8ApwlKR1kkYCwyStBlaRZcwmA0TESmA68FdgFnBlRGxrZD+5U0Shp2aamZmZmZlVHWfUzMzMzMzMCsYDNTMzMzMzs4LxQM3MzMzMzKxgPFAzMzMzMzMrGA/UzMzMzMzMCsYDNTMzKwxJIWlK2XprSe9LemYX99dJ0uiy9cEN7UvSPElvSqqRtErSeEmdduW4ZmZmu8sDNTMzK5JPgKMltUvrpwD/3I39dQJGN9lqu+ER0RfoC9QCf9iNY5uZme0yD9TMzKxongfOSsvDgKmlCkkHSpqRsl6vSuqbym+VNCllxdZIGpM2uQP4mqSlku5MZR0k/TZlzZ6QpLoBRMRnwA3AEZL6pWPMkLRY0kpJl6WykZLGlsU3StI9e/bPYWZm1cgDNTMzK5ppwEWS2pJltl4rq7sNeD1lvW4CHi+r6wWcBhwP3CKpDXAj8LeI6B8R16d2xwLXAL2B7sCJ9QUREduAZWm/ACMiYiDwdWCMpM4p1nPSsQAuBSbv8m9uZmaWeKBmZmaFEhE1QFeybNpzdaoHAVNSu7lAZ0kdU92zEVEbERuA9cAhDRxiYUSsi4j/AkvTsRpSnm0bI2kZ8CrQBegREZ8Ac4GzJfUC2kTE8p37Tc3MzBrWOu8AzMzM6jETuAsYDHQuK//CNEUg0s/asrJtNPwdt1PtJLUCjgHekDQYOBk4ISI2S5oHtE1NHyXL7q3C2TQzM9tDnFEzM7MimgT8vJ7s1HxgOGRPcAQ2RMSHjeznI2D/L3vwNJXxdmBtyvB1BDamQVov4JulthHxGlmG7WLK7qczMzPbHc6omZlZ4UTEOuC+eqpuBSZLqgE2Az9sYj//lvRnSSvIHlLybBOHfkJSLbAv8BIwNJXPAq5Ix32TbPpjuelA/4jY2MT+zczMdooioulWZmZm1qD0braxETEn71jMzKxl8NRHMzOzXZReqL0a2OJBmpmZ7UnOqJmZmZmZmRWMM2pmZmZmZmYF44GamZmZmZlZwXigZmZmZmZmVjAeqJmZmZmZmRWMB2pmZmZmZmYF44GamZmZmZlZwfwPcpIhYF3uQzQAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3AAAAFUCAYAAABlSN7eAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsvXm4ZHV57/tdY8173rt3T0xNNzQNiNAiBDRODEZEknOjXnJyTIzxyfEkmng098lwQU28JpiTozlqTKJRE0hQkwioSIsSlKmBpmlouhu66Yne3XvqPdWuaY2/+8eq36phrRp3Ve1au97P8/hIr71q1a+q1vB7f+/3/b4CY4yBIAiCIAiCIAiC6HrE1R4AQRAEQRAEQRAEUR8UwBEEQRAEQRAEQQQECuAIgiAIgiAIgiACAgVwBEEQBEEQBEEQAYECOIIgCIIgCIIgiIBAARxBEARBEARBEERAoACOIAiCIAiCIAgiIFAARxAEQRAEQRAEERAogCMIgiAIgiAIgggIFMARBEEQBEEQBEEEBLmend72trdBVVWEQiEAwCc+8Qm86U1vwr59+3DHHXdA0zRs3LgRn//85zE8PNzWARMEQRAEQRAEQfQqAmOM1drpbW97G7761a9i27Zt7jbGGG688UZ87nOfw86dO/GVr3wFp06dwuc+97m2DpggCIIgCIIgCKJXaVpCuX//foRCIezcuRMA8P73vx8PPfRQywZGEARBEARBEARBlFKXhBJwZJOMMVx11VX4+Mc/jsnJSWzYsMH9+9DQEGzbxuLiIgYGBtoyWIIgCIIgCIIgiF6mrgDunnvuwfr166HrOj772c/iM5/5DG644YaWDGBuLgXbrqniJALE6GgCs7PLqz0Moo3Qb9wb0O+8NqHftTeg33ltQr/r2kMUBQwPxxt7TT07rV+/HgCgqipuv/127N27F+vXr8eZM2fcfebn5yEIAmXfCIIgCIIgCIIg2kTNAC6TyWB52Yn0GWN48MEHsX37dlx66aXI5XLYs2cPAODee+/FO9/5zvaOliAIgiAIgiAIooepKaGcm5vD7/3e78GyLNi2jS1btuDOO++EKIq46667cOedd5a0ESAIgiAIgiAIordhjGFhYRa6ngPQ6+VSAlQ1jMHBUQiCsOKj1QzgNm/ejPvuu8/3b1deeSW+//3vr3gQBEEQBEEQBEGsHVKpJQiCgHXrNkEQmja+XxMwZmNx8SxSqSUkEisvN+vtb5MgCIIgCIIgiJaTzaaQSAz0fPAGAIIgIpEYRDabasnx6BslCIIgCIIgCKKl2LYFSaq7Y9maR5Jk2LbVkmNRAEcQBEEQBEEQRMtpRb3XWqGV3wUFcARBEARBEARBrFk+/vHfw333/XvJNsYYfvVXb8U3vvEP+Pa376n6+q997av46U9/DADYu3cPnnlmd9vGWg+U1yQIgiAIwpeXTy4gEVWwcbSxJrMEQRDdxLvedSu+/e17cNtt/8Xd9vzzz0GSJPzmb/52zdd/6EO/U/K6bDaLq6++pi1jrQcK4AiCIAiC8OVbu15BLCzjT//bztUeCkEQRNO8+c1vwV//9V/g+PFjOP/8CwAAP/zhA/ilX3o3vv71v0M2m8Xv/u7vY//+F/C///ddsG0G0zTxgQ98EDfccDM++9lP4eKLt+OKK67C/ff/B2zbxp49z+Dtb78Rt9xyKz71qT/FwsIcAGDnzqvx0Y/+z7Z+HgrgCIIgCILwRTcsTM9nML2QwbrB6GoPhyCIgPLE/kk8/uJkW459/eXrcd1l66vuoygKbrjhZvzoR9/HRz7yMWQyaTz22M/wO7/zu3jgge+5+91zz7fw3vfejptvfhcYY0ilSl0jt2y5EO95z6+4AR8AfPvb92B8fBxf/OJXAADJZLLFn9AL1cARBEEQBOGLYdoAgN0Hpld5JARBECvjXe96D3btehCmaeKnP30Yl1/+OoyOjpXsc+WVO3H33d/EN7/5NRw8eACJRKLmcXfsuAzPPvs0vvzlL+KJJx5DNNr+xS7KwBEEQRAE4Yth8QBuCrdedx45yhEE0RTXXVY7S9Zutm7dhuHhETz99FN48MEH8N733u7Z573vvR3XXfdmPPvs0/jCF+7CG95wDT784Y9UPe6ll16Ob3zjHjz77NPYtetB3H33N/G3f/v1dn0MABTAEQRBEARRAdO0MRBXMb2QxfHJZVywoW+1h0QQBNE073rXrfjHf/x7TE9P4vrrf9Hz99deO4lzzjkXGzduQjQaxY9+9APPPrFYDGfPzrr/PnPmNMbG1uEd77gJr3vd6/G+9/0ybNuGKLZP6EgBHEEQBEEQHmzGYNkMV29fh0f2nsbuA1MUwBEEEWhuuOGd+PKX/wbvec+vQFEUz9//7d/uxd69z0FRZCiKij/4g0969nnzm9+KP/mTT+I3fuN2vP3tN2JoaAj33ns3JEkGYzY++ck/amvwBgACY4y19R1qMDeXgm2v6hCIFjM6msDs7PJqD4NoI/Qb9wb0O69N6v1ddcPC7/yvn+H/essWnJhM4pVTi/hf/+M6yBKVzwcBun7XJkH6XaemTmJ8/NzVHkZX4fediKKA4eHGWrXQXZggCIIgCA9mvv5NlkRcu2McyxkDB08srPKoCIIgCArgCIIgCILwYFiOOkaRBFy2ZRixsIzdB6dWeVQEQRAEBXAEQRAEQXgwTAsAIMsiZEnEGy4ew97Ds8jp5iqPjCAIorehAI4gCIIgCA+mm4FzpgrX7BiHbth4/vDZ1RwWQRABYpWtNrqKVn4XFMARBEEQBOHBNAs1cABw4aZ+xMIyjkwsruawCIIICLKsIp1OUhAHJ3hLp5OQZbUlx6M2AgRBEARBeOBNvBXZCeBEQUAiqiKdIwklQRC1GRwcxcLCLFIpWvQBnIB2cHC0NcdqyVEIgiAIglhTGDwDJxfEOtGwjIxGARxBELWRJBkjI+tXexhrEpJQEgRBEAThgbcRUKSyAC5nrNaQCIIgCFAARxAEQRCED0ZZDRwAxMIKSSgJgiBWGQrgCIIgCILwYJbVwAFANCQjQwEcQRDEqkIBHEEQBEEQHriJiSwJ7jZHQmmSqxxBEMQqQgEcQRAEQRAeuIRSKZNQ2owhp1urNSyCIIiehwI4giAIgiA8uI28y1woASBLTpQEQRCrBgVwBEEQBEF4MP3aCIScAI6MTAiCIFYPCuAIgiAIoohTMykcPDG/2sNYdQo1cMUSSieAo1YCBEEQqwcFcARBEARRxA+ePIF//vHh1R7GqmP61MBFwwoAkBMlQRDEKkIBHEEQBEEUoRkWclTjBcOyIYkCRLHUhRIgCSVBEMRqQgEcQRAEQRShGxY0g1wWDdMukU8ChQCOJJQEQRCrBwVwBEEQBFGEYdrQdKvne52Zll3iQAkAkZAMAUCGMpQEQRCrBgVwBEEQBFGEbtpgKPRB61VMyy5p4g0AoiAgEpJJQkkQBLGKUABHEERHuf/x4/jr7+xb7WEQREX0vHwy1+MySj8JJeDIKElCSRAEsXrIqz0AgiB6i0MnFzA1n1ntYRBERfR85k3XLSC6yoNZRQyLeSSUAA/gKANHEASxWlAGjiCIjjKzkCGDCKKr4dLJXs/AmaZd0kKAEwsrSFMNHEEQxKpBARxBEB1D0y0spnToBhlEEN2LbjqBW68vNBiWDdkvAxeSkaUMHEEQxKpBARxBEB1jesGRTjLmGCQQRLfBGINhFEkoe5hKGbhoWEaaauAIgiBWDQrgCILoGDMLWfe/NYMCOKL7MC0GnhvueQllhQxcLKxQDdwKSWUN/PyFM6s9DIIgAgoFcARBdAyegQMcOSVBdBtcPgmQhNKokIGLhGXopt3zbRZWwrOHpvHNH72M+WRutYdCEEQAoQCOIIiOMV2UgSueKBNEt6AXZYZ7fZGhUg1cLOwYWFMz7+bhCoRsj59jBEE0BwVwBEF0jFIJJU1ciO7DKMnA9XaGybRsKGWNvAGnBg4A9YJbAW6vQQqCCYJoAgrgCILoGNMLGQz3hQBQdoPoTnSzOAPX25Prio28QwoAUB3cCtDyCwU5ug8SBNEEFMARBNERNN3CUkrH5rGE8+8ez24Q3UlxXVevn6NmhUbeXEKZpgCuabjTaa7HFwkIgmgOCuAIgugI3MBk01gcQEFCRBDdRPF52etZYsOqkIEjCeWK0SkDRxDECqAAjiCIjsDr387JB3BUA0d0I6UZuN4+R03T9s3ARcN5CSXVbzWN7mbgevscIwiiORoK4L70pS/hoosuwuHDhwEA+/btw6233oqbbroJH/zgBzE3N9eWQRIEEXx4Bm4zZeCILqZYNtnLfeBsxmDZzLeNAEkoVw6vtSQJJUEQzVB3AHfgwAHs27cPGzZsAAAwxvDJT34Sd9xxB3bt2oWdO3fir/7qr9o2UIIggs30QhZ9MRV9MRUA1RcR3Ql3oQypUk8vMpj5AMOvjYAsiVAVkSSUK8B1oaQMHEEQTVBXAKfrOj7zmc/gzjvvhCA4lsL79+9HKBTCzp07AQDvf//78dBDD7VvpARBBJqZ+QzWDUYQUiQAJE8juhOeGUlElJ6ugTOsfADnk4EDgGhIJhfKFVBoI9C75xhBEM1TVwD3xS9+Ebfeeis2b97sbpucnHSzcQAwNDQE27axuLjY+lESBBF4phezGBuMQBQFKLLY09kNonvhNXCJqNLTEkqegfOrgQOAWFjxBHCMMTy67zQWU1rbxxd0SEJJEMRKkGvt8Pzzz2P//v34xCc+0ZYBDA/H23JcYnUZHU2s9hCINtPIb5zVTCyldFywaRCjowmEVQmiLNF5EgB67TdSQ85jcag/gun5zJr9/LU+F5OcTPnQQMR33/5ECIbNSv42s5DBPz30CpRbFdz2i1taO+A1hsWc/7cFoa3n2Fo9f3sd+l2JmgHcs88+i2PHjuHtb387AGBqagq/9Vu/hV//9V/HmTNn3P3m5+chCAIGBgYaGsDcXAq2zRocNtHNjI4mMDu7vNrDINpIo7/xa9POvvGQhNnZZSiyiMVkls6TLqcXr+WFRcctNSSLSGeNNfn56/ldp+bSAIBsRvfdVxEFLCznSv526MQ8AGB+Ib0mv7dWks3XDybLvsNW0ovXby9Av+vaQxSFhhNaNSWUH/7wh/H444/jkUcewSOPPILx8XF8/etfx4c+9CHkcjns2bMHAHDvvffine98Z3MjJwhiTcNbCIwNRAAAIUUiExOiK9FMC7IkIKLKPS3zNfMpooo1cD4Syun8da6bdG3XoiCh7N1zjCCI5qmZgauEKIq46667cOedd0LTNGzcuBGf//znWzk2giDWCLyFwNigE8CpSm87/BHdi2HYUGQJqir29OTatKrXwEXDsqeNwEz+Ou9l85d64fe/LH1XBEE0QcMB3COPPOL+95VXXonvf//7LR0QQRBrj+n5LPpjKiL5+qIQmZgQXYpu2lBlEWFFgmUzmJZdMQu1ljGqtBEAnF5wOc2EzRjEvDv19DzPwNG1XQuDTEwIglgBvfdUIgii48wsZNzsGwCoqkRtBIiuxDAtKLLY8+0ueBsBv0begCOhZHAMijg8066TPLoqpmXDytf+UxsBgiCagQI4giDazvRCFusGo+6/qQaO6FZ004aqSAip+QCuRyVutdoIRPPZdC6jtG0GITmJt4YP4JzlfbCXZzsz0ADCA1xZcmS6jJGRG0EQjdF0DRxBEEQ95HQTS2m9JAMXUqSenRgT3Y1h2pSBQ5GEskIGLhZ2pg/ZfAC38OoL+ET8AUgCA9JA+l8fhtA/DnnzZVAuvBbS2AWdGXgAMPIS0/6YgrmkBiO/aEAQBFEvlIEjCKKtcAfKdUOlGTiqkyG6Ed2wEJLFQgauRwM4bmIiS4Lv36NhnoFz7PDZ899zgrci2NIUjJceRua+P4P+4o/aONpgoeWD476YCoCcKAmCaBwK4AiCaCvcWnxdcQ2cIvbsxJjobnTThqJIhQxcj06ujZoulAoAIJMzYWcWEVo6WeVoDNpz94MZuVYPM5BwA6dElAdwZGRCEERjdKWE0rRs3PfY8ZLi6JAq4T3Xn+8+VAmCCAbcWnx0oFRCqRt2iYNdO2CM4eE9E/iFS8cRjyhte5+1yNR8BvtPLuCycwdXeygdRTds9McoA+fWwNWQUGY0E9ZrL9c+oJGDvXAa0tiWlo0xqBiUgQssyxkdT740hRt2boYotu/ZRRC16MoM3PHJJB7cfRK7D05jzyszePrgNB56+jUcmVhc7aERBNEgi8s6oiHZbSEAwF2IMdpsZDK7lMO9Pz2CvYfJUKFRfr7vDL547/Owe8xgwetC2ZtmOwZv5F2lDxzgSCjN116o65j2wpnWDC7g8AxcPwVwgWPfkbP49iOv4tiZ5GoPhehxujKAW1jWAAB/9GtX4osffRPu/M03lGwnCCI45AwTkVBp5lztkEGEnp8Y0QSpcXKGBZv1ns250weuIKHsVXmbWaONQEiRIAoCcpkczImXPH+Xxrd5tlkLp1s7yICi8wwcSSgDB//tDlNCgVhlujKAW0zpAICBRMj5/7hasp0giOCQ0y2E1FK1tqo4t552N/PmD1uNJkgNw3+bTN6kolcwTBuKUpBQ9mpPs1qNvAVBQDQsI7p0DDBLF1czTIVy0Zs8r7EXJ1s/0ADCry2SUAYPvrBx+BQFcMTq0qUBnAZZElyNvSJLiIVlLKYoA0cQQUPTLU/taqcs2vlEqVdlcCuB/zYZrbeCX8eFkjJwpmVDEoWqNaqxsIzh5Vc82w/qG4GhTZ7tJKF04IsCFMAFDx7AvTqx1HPycqK76NoAbiAeglD04BhIhLBIEkqCCBw5w0JYrRTAtTew4q0KetVJcCXwAI43au4FGGOOC6UsQpVFCAhm8G/ZKx+zYdoVs2+caEjChtxRz/aXjE2wous829nyWTCTnuP8vtQXdYyVcj22SBJkeGY6o5k4PZte5dEQvUx3BnDLmiuf5AzEQyShJIgAounVArh2Z+DsjrzPWoTXD/aShJKvrquKCEEQoKrBazj/6L7T+MRXnlzxuA3Lrlj/xtmoJpFgyyXbGES8bGyALsgQEiNlr2CwF6dWNK61AL8vJfIZuGzAzrFehrfXAEhGSawu3RnApXQMxEsDuMF4iCSUBBFANN1y64k4nbJo5yvdOQrgGoZnnjI9lIHjNZOK7JyfYUUKXPB/ZjaNpZSO519dmfOqadoVm3hztsLb+y2dOBdZFoJuWBAHNnj+bpORiXtfiqgSVFnsWZluEDFNhrAqYTARogCOWFW6MoBbSGmucQlnIKFiKaXDtklzTBBBIqebCJfVwKlyh0xM8kFIu99nLcInmb0koeTnCz8/QwEM4NL5jOnuA9MrOo5p2RWbeHM268e87z9yCQDnuxQH/QI4qoPTDRsCAFkSEVYlqoELEIZlQ5ZEbNs8gMMTi2BUB0esEl0XwGU1E5puYTDulVDajGE5QzJKgggSOcMnA9cpCWU+o0ITpMYpmJj0joTSyAetPHAJBVBCmco6AfdLx+aRXMHz0jCdiWol7NwyhnRvNk0b2+H8v2FB8svAkRMldNOCkpfphlWZ7k8BwszXyG7b1I+llI7ZxexqD4noUbougOMyyXIJJf831cERRHCwbQbdsBEubyPQIYv2ggslTZAaRXNr4HowA5dfYAhqBm4w4Sx4PntopunjmBarWgNnvfYiygWWQt86CH2OeYluWBUycCSh1A2n1yAAJwNHJiaBwczXhm7dPAAAOHxqaZVHRPQqXRjAlfaA4/AAboHq4AgiMPDJ76q1ESAXyqbp5Ro4tTgDF7QALmtg66Z+bBqN46kDzRuGGDUklOZrL3i2yee8zu35qJs2xIH1nn3s5AyY1TvnlB+6aSGU74VJEspgwd1ZN4zEEAvL1NCbWDW6MIDjGbiyGji3mTcFcAQRFPjEpNyFUulwDVzQJuGrjW0z15Gxl2rguIQyyDVwqayBWETBtZeuw7EzSUwvZJo6TjUJJbNtmKcPeLbL517hZi91w4IQikGIDpS/GPbSyurzgo5u2AWjnBBJKIMEd2cVBQFbNw3gCBmZEKtEFwdwpRm4/rgKAaBecAQRINwMXFkAJwoCVEXsWA0cmZg0RvHv0ks1cK4LZbGEMkCTa5sxZHIm4mEFb9y+DgKaNzMxrcp94OyzxwGttAcWk0OQxrdBVfjijPNd+sooF3tbRmmYtvs9ORm43lkkCTrOdeGIh7dtHsD0QhZLlFggVoGuC+AWljWEVAmRUGnNjCSK6IuplIEjiADBJ7/lLpQAz250pgaOVrgbozjg7SkJZbkLZcAklFnNBAMQiygY6gvjonMG8NSBqaac8kyzch84c+IlzzZ5w8UQJNmt7dLy2Uz/VgK97USpGZabqSQTk2BhFF0XWzf3AwCOTFAdHNF5ui6A8+sBx6Fm3gQRLPjKcrmEEuhMdoNnVKwiSSBRGx60KLLYkxJKLvENBywDl8o62dJY2FkAvXbHOGYWsjg+uVztZb4YVTJw1imfAG7TpQDg1nbxRvDUSsCLblruIgHVwAWL4sz0uesSUBWR+sERq0IXBnAaBsvq3zgDcZUklATRAkzL7kj/moKEUvb8LaRIHaiBKxw/SJmU1YZnRkf6I72VgXNNTJwFB1URoZt2YPqPpvMtBOIRBQBw1UVjkCWxKTMTJ9PgbeTN9AysmaOe7TyA45klLf9d+mbgFns7gDPKXCg1w4K9hvuJMcZg2WtjAc0wC+6ssiRiy4Z+MjIhVoXuC+CWNY8DJWcgESIJJUGsEE238Af/53HseWW27e/FV5bLa+AAZ3LMZVbtwjALk4YgZVJWGx74DvWHYVp2z9QQ8s/J65P4eRuU4J838Y7lA7hoWMbrtgxj7+HGr/VKjbzN04cAVjoZz8r9EPrHATiTWkkU3O/SvwZuCswOxnfaDrSSGjhncWst3592H5jGx7/0RMn9OKjwRt6crZv6cWomFZh7BLF26KoAjjFWU0KZzBgkhSKIFTC7mEU6Z2Jqvjl3ukbI1aiB09stoaQMXFPw72qkPwIAyPRInyqjLAMXLnJUDALlEkoAGB+OIpnWG864V3KhtHzq36LnXw5BKGTrVEV06wmFcAJCKF76AtsEW27/AlK3ohtW4RwLOf+/lmWUp2ZSWM4YWF5BY/lugTfy5gz1hcEYkMr0jtkT0R10VQCXzpkwLbtiADeYz8wtUR0cQTTNXDIHAB1pHuuamIT8MnDtNzHRDBtifmJJAVz98O9quD8MoHdaCRRcKJ1Ho9qhfoWtIp0P4LiEEnAkes3UgJoW8wRwjDFfA5PQuZeX/FuVJbcHoyAIvlk4q4fr4MpdKAHHgGatspR25mzLayDIMcsycLGwc63xxROC6BRdFcDx+rbyHnAc6gVHECuHB3CdmDDkKjTy5tvaPTE2TAvxyNqXKLWa8gAuk+uNyYluWpAlwQ36+eQ6KNkRHmhHizJw3NE5qzX2GfwklCw5482cCQLkjZeUbCpvEUJOlKWUZODyEsqgnGPNkMxn3tZCkGOUubPy50u6R+6RRPfQXQFcPjAbrFQDl8/MUQBHEM0zt5QP4DowYdB0Z0LsJ8VyDCLa70KZiDoLP0HJonQDXP42PJCXUPZIBs4oarAMFBYe9DZniltFKmsgEpIhiYXrLaLyAK7+39C2GSybedoImBP7PfuKY1sghGIl21RFKvnO/OvgejOAY4xBL8rARdxFgrV7jSXdDFzw1VPlCxu83rRXVApE99BVAdxChSbenEIAF/ybQC9gmDbue+xYYOpHeoWOZuB00zf7BnSojYBhIRFV8mOh87BeCjVwPAPXG5MT3bRde3egYGKSM4Lx+dM5w80IcLh8OdtAgGDk5ZblbQSsiQOefeWNOzzbyh1mV6uVwMET800ZuLQTt85S6aEMHA/gAp6BY4zl22sU6j1JQkmsFl0VwPHArJKEMh5VIIkCZeACwtHTS3jgiRPUI6XL6HQNnF8POKBDjbxNG3HKwDWM7koonQxcr8iDdNNyMyNAIQOn6cHIwKWzpjuh5BQycPWf/7xerjhzzmwT5plDnn3lzZd5tqmyWBrAVWglwFh7v9f7Hz+O+x8/3tb3aBS3zlIurYFbqxk4mzG39i3oRh+WzcBY6XXhSigpgCM6TJcFcBpiYblEwlKMKAjop15wgYGvKK4F6+C1xHzSuX46IaHMGZa7wlxOSJFgWu3rsWUzBsO00ZfPwAVFBtcNaIYFQYDb0qVnXCiL+nMBxW0EgvH5U1nDlXRxeA1cIws2RlmQAQDW9FHAyJXuqEYgjp7veb2qSG4fOAAQYoOAEi7dydTBso03GG+E6YVs1ylA9LK64KDVWTZKOmu4Pe6CnoHjCxvF14UiS1AVsWcWuYjuobsCuCo94DiD8ZArtSS6Gy470imA6xpMy3YXQDohodR0y7cHHNB+hz8jH7DxGri1usLdDjTdhqpIkCURIVXqKQll8eTMzcAFJPh3JJSlAVwzEkrT5Bm4glTMOuWtf5M37oAg+jvMFgdOgiBAjA959mPp+brH1ChZzUQyrXfd86fQLD6fgQutbQkll08CQCrgNXCm5QSi5TXdsbBCEkqi43RXAJfSMFih/o2zLmrhuuSPkP73O5DbfS+Ylu7Q6IhG0SgD13UsLGtgcAxEOjFhyOlWlRo45/bTrhVybpASDcsQhOBMwrsB3Sz8brGw3DOry4ZpldbAuRLKYEyu01mjpAcc0JyEktfAFZuYmCf3evaTNl3q+/pQmYQSAISYN4CzU+0L4GYWsgC6r4cfHw9XGqmyCEFYuwtMPIATBSHwQY6bmS4L4OIRBens2vz9iO6lywK4yk28OW/NPIRLcRj23GswXnwImfv/HPbSdIdGSDSCG8BR4/WugTtQbhyJI6uZDTf3bZRclRq4dmfguGQypEgdMUxZS2iG5QbY0ZDcWxk4xetCGYT6SdtmyOR8auBCjddYlUsorYUzvqYjfvVvAKCq3vpW0SeAa2cGbnohA6D7FCB8PPz6EgQBYVVGrsE2D0FhKZ91WzcUCXwfOMNHQgn01iIX0T10TQBn2wxLKR0DCX8DEwBgtoWxXGlBsr04ifR9n4F55uV2D5FoELcGLgCTn16BG5hsHI011dy3UTTDrGpi4uzGSoSLAAAgAElEQVTTnjHwDJwqOzLAIEzCuwWtKHMaDSu9E8AZpS6UoihAlcVABP8ZzQQDPBJKWRIhiUKDJialUjHz+B7PPuLYBRDjw76vDxU18uYIPhLKTmTgDNN2a7C6gUIGrnCehVVpDUsoncBmw0gs+DVwptfcB3BaCQQ9u0gEj64J4JYzOmzGqmbgBFFCLjzq/YOWRvbBz0N/+WdtHCHRKLyJM2Xgugc3gBtx+jY12ty3UZwauAomJmpnMnAqz8BRAFc3ulEUwIXknulxpJuWZ3VdDci5wzMAsbI2AoIgIBKSG6uBK2sj4BfAKee/oeLrVUWEbtglGX4hNujZrxMZOKC7ZPzF9yWOE8CtzWssmdYhiQLWDUaRyhhtV320E6NCABePKD1zjyS6h64J4AotBKpLKBcv+7+RY4r3D7YF7effgHni+XYMj2gCqoHrPuaTOfTFVPTljT0amdQ1Q86wEK5QA8czHe2ugVMVkSSUDaIZtjvBjIVlZLXeWF02TLtkYg04k+sgBHA8A1AuoQQcGWVTLpSSCDs5A3vuNc8+8vk7K76ef4fF936/bB1LL9Q9pkaZzmfggO6qgyvcl4oDOHkNZ+D0/DNHgc1YoB1t/VwoAeeaS2eDHZwSwaNrArhaTbw50c0X4QvJm6GHvKt5ABxjE7qIugL+QOq2GoReZm4ph+G+cMGZro0PU9tm0A27ogtl2zNwrtubRBLKBinJwIV7Z3VZN0pNTIDONJxvBdxEobyNAOAYmTRlYiKLMI75yCeHz4XY56OGyeMuzpS0EvCTUM7VPaZGmVnIQhIdF81uaiHiZuDKJJTtXkxbLZIZHYmogni+nUuQe8G5AVyROyvgZL0tm63ZIJzoTromgOPW5oM12wiomLQGsW/rhyGt2+r5O0tOw5491pYxEo3BJSGUgeseziY1DPeFmnKmaxStrN9ROe02iOCr7m4GjgK4utGMQkPraNjJDlj22r+ODbO0DxwQPAlleQ0c4FjVNyLRK6718ZNPyhdUzr4BRQZFRRNa0VdCudiWZt68hcCGvFS8vB5vNfHPwK3dGrilfAaOt3MJch2cUSYt5sTzWW8yMiE6SfcEcCkNAoC+mI88sohISIYqizibkxG55Q8hjl3g2cc48lSbRkk0Ap/0UADXHTDGMJ/MYbg/3FRz30bhExKe7SuHB3DtWh0vrHRLCAdkEt4taCUZuPYH+90AY8zTBw7IT64DcO4UJJSlNXDM1DAsZxqSrvFMg6ov+i6IKlXkk0DRtV0UOAlqBFAjpTsyCyybrHtc9cINTDaNxp1xtOAewxjDD548gZmi2rpm8M/Atd+F8vEXJ3H0zFJb38OP5YyO/qjqLiwsB7gXnF+De6CQ9W5HK4EnX5rE4VOLLT8uEXy6KoDri6mQxOpDEgQBA/EQFlM6BEmBevFbPPuYR58Gs9emHCFIFGrgun/y0wssZwwYpo2hYgllG2U7PGCqWAPX5h5bxS6UakBkcN1CeQ0csPZXl92gRfFKKPUAnDvpfAAXLQrg9P27kPrG7+D9S1/DbfoDYGZ9k2c+UVUnX/D8TRzcCHFgfdXXq26Px/JWAj51cG1wouQGJpvH8gFcC55Bp8+m8R8/P4anDqysbVFxbS4nHGq/icl3H30Vjzx3uq3vUQ5jzK2BS0TWgoSyUiNv55pLteEe+d1Hj2LXM94aVILoogCudg84zkBcdSWX8gU7AalsxTG3DGviYMvHSDRGjjJwXQV3oBzpC3dGQpmf9FasgeOTvDYF+MVub0ExougWSl0onYnXWm8lwNtZKGUSylBAMnDpnIloSHYXQY1jz0J76l+BfE34FmEC2p7/qOtYPJiVJrymYNXMSziVejwKca+M0m6DE+W0m4HjEsqVP4OO5LMgS/l6/WYxTBuSKJQsVndCQqkZVscXYbKaCdNia0ZCaVZp5A0UFlFaSSZnus9ugiimewK4ZQ0D8co94IoZSIRc0xNBjUI+5wrPPsarT7Z0fETjkAtld8GbeA/1FUko27jqy49dKQMnSyIEoZ0mJoV+S0ExougGTMuGZbNCI+/86vJaD+DcrJMnAycGIvhP5wy3hYCdmkPusW969jEOPQqm15YAGhZDQshCmD3q+Vut+jfA6QMHeBdnfJt5tyEDN7OQwUC8EDS0woXy8IQjP+SO2c3i1JeWO506JhjtelbazDGUakeAUY2ltPNd9cVUqIoIRRYDnYGr2MibB3AtvkcapgXDtDGfXNmiAbE26Z4ALqXVNDDhOBJKzXWblLde69nHPLEXzKBVi9WEXCi7i/n8Kt5wfxiKLEKWGmvu2yg5NwPn3wdOEIR8YNWe88MwChNyVRGhmzZsmxxqa6GXmc/0ioSyWHJbTEiRAxH8p7IGYmEFzLaR+89/ALS0dycjB6OOfqmGaeFy9TUApdeL0L8O4uCmmq/nQXD5te3rRNmmDNzYYNSdaK+0Bo4x5tYhLawwA1feLB4AInmVQrsW1Pi9MNXhRZhkUQAnCALiEQXL2eDXwHkllHl5aIsDZL5olsoagbgHEZ2lKwI407KRzBgNSChD0A3bnXzKmy8HQrGyg+owT+xt9VCJBuATeGrk3R2cTeYQUiR3Qh5WG2vu2yhuDVwFCSWAtrpDaqYFWXKkSuF8EBmETMpqw6WEqlpoIwD0QAauyPSmmJDqZOBa2Z5mOaNjaj7j/m++BRKpdNZEPKJAf/FBWJMvV9xP3/8wmFX9tzQthtepJz3blfN3QhAEn1eU4mdiAgBivEMZuPkM1g1GCrV4K5Rpzy3lsLCsQZYEt3yjWQzT8mR5+f2pXTJKft/rdAYumc+29eczoYmoguUAZ+DcBvdlARxXebT6+y3O6J3tARmlbvSG23Gr8F8a7zAL+RviQL0ZuIRzM1hMaYiGZQiSAuWCN8A49GjJfsaRJ6Fs/YWWjpWoD9Oy3ZsdSSi7g/mkhuH+sDsBa7S5b6O4LpQ1Arh21sDxeia33s6wXPko4Y/b/kEudaEMcgPeetArOMyFFAmM+Tf5boasZuKTX3nSo0x4/9suxI1Xn9P0cdM5AxfHF6E/+72q+7H0PNIv7wbGXldxH0FL4ULZa9Yhn/+Gusaiug6zZTVwHcjAZTUTyYyBdUPRonGs7Bl0eMLJvl12wTD2HTkLy7ZrGq5VwsnAeZvFA+0L4PjvkM4ZsBmDWEcQ3gqKM3AAkIgoLc9SdZJKLpSA0wuu1SqF4nvufDKHjSOxKnsHn898aw+uvngMt15//moPJRB0RQbu9FlH6rFhuL6TczCfqVsskjLIF3pllNbpA7AznbfNJUof3BTAdQdzSzkM9RUWSRpt7tsouRomJoAjtWqXNKR4pZuPIQhmFKtNoX+e852psghJFNa8hNKoKKFsbb/CxZQG3bTx9qs24cPvvgQffvcluPSCIXz30aM4ObXc9HG1bBbXL/0QYLXHufT0A1UzisPJlyEJZfLJxAjEkXPrGkslF0o/ExOWXqjrmPXCWwiMDUSKGoqv7Lc7fGoJkZCMHecPgQFIppu/FjS/DFyovRJKfu4y1t7WMeUspXUIQsHkIx5VA10DV8jAeQPgWFhpeRuBTNE9l9ewr2XOLmZxaja12sMIDHUFcB/5yEdw66234rbbbsPtt9+OQ4cOAQCOHz+O973vfbjpppvwvve9DydOnGhqEKfzP9jG0foCuAGfAE4a3wohXmZRzBjMo083NSZiZRSvJFIbge5gLpnDSF/Y/XejzX0bRcsfu1Ijb/63VhgM+KEbtptFCrW5ZcFaws3Aqc7jQRAExMLympdQui6UiteF0vl7a84dLiG74sIRXLNjHNfsGMeH370DiaiCv3vgQNVzlDEb5sRL0F/cBetsQeJo2wzX4EXETW8wJG261LNNmzwKa+pwxfcZSx3ybJPPu6ou+SRQkKHWZWKSXgBroWyKtxBYNxR1x2GsMAN3ZGIRWzf1Yyjh3D8XV1AHZ/hm4NotoSx8/k7WwS1ndCQiCkTROW8SQa+Bs2zIkuB7HcQjSsvbCBRLKNe6E6Wd78O5kmur16grgPvLv/xLPPDAA7jvvvvwwQ9+EH/8x38MALjzzjtx++23Y9euXbj99ttxxx13NDWIUzMpjBQ1F64FD+AWirTogiBC8cnCGYcfa2ntAlEfxfI5ysCtPppuIZU1MFQUwEVUqa2yuJxhQZZET71AMaoilUwuWolmWFDKMnBUA1cbrczEBHDq4NZ6AFczA9eiyTWXkPGsBP/v377lEkzPZ3DvI0cqvlZ/9t+RffCvoO3+V2S+92no+bKB9NwU3hHZ79lfHDkPkZt+H0a/V5ppvPiQ73swLY2x7AnPduWC+uSTAPKTXHiubUEJA2q07A1tsGzrlDLTRRk4URQgSyK0FSwiJjM6Jucy2Lqpv1C+sYI6ON0s3Jc47ZZQFt/3OlkHx3vAceJRBVnNcjNZQcMwbV/5JOCYPbX6u+X3XFUR13wAx+eJi8vBDfA7TV0BXCKRcP87lUpBEATMzc3h4MGDuOWWWwAAt9xyCw4ePIj5+cb17BOzaWwajde9f0iVEAnJHjtfPzdKe+4U7NnjDY+JWBn8gRGPKBTAdQFzRQ6UnEhIRq7NfeCq1b8BXhMTxhissydgzZ0CYys7bwyzsNLdahncWoY7B5YGcHKJnGctorttBMqyI4qIjdIcrNkTLVkM5AFcIqqUbN9+3hBufuM5+Nm+M3julVnP66z5U9D3/bCwgdnQHvsWjOPPwXz6XqhC2bktSAi/5bchSDKsi9/hOZ558nmkv/NHyD35LzAnDrifzTy5DyLKAq/oAMSxC+r+jIIgQK2QXfc1MmlhHdzMvNNCgC/aqLK4ogzckVNOcLlt84Cv+qdRipUBHDeAa9OCmt4lARxv6xDUOjjTYhUXJGMRpeVtBPg9d9NoHPNrXELJn82LKQ02JV3qou5q/j/5kz/BE088AcYYvva1r2FychLr1q2DJDk3HkmSMDY2hsnJSQwNeW/QlTAtG1NzGVy5bbShgQ/EVc9NVBrcCHFsC+yZ0t41xsuPQip6+Lx0bA4zi1m87cradshrjecPz8JmDFddNNbW9+EriYmo6hYyBxnLtnHfY8dxw87NJQ+koOC2ECiTULbVhVK3qsonAWdlkU8umGUiu+sLsCZeAgDI574e4bf/dwhyc9+304w6n4FzsyjtXUw4dHIB0/MZvOX1G9v6Pu2kvAYOcAK41axdMUwL//HzY7jp6nPqdisuZmYhg6cPTuOWXzivogzQ7QNXtMLOmI3xl76FP+x/CXj8h8ge34HIOz8OQWzezGQ549wPizNwnF9+8wU4eHIB33jwEJ45VDARiUcU3Gb7ZcwYcj/9CmTbGygpl90Aacg5D9Xzd2LhyXsxKJX2gLMXJ2EvTsJ46ceQNu5A5B0fgXl8j+dY8vlXQRAaK5mvJI8WYkPA/ETpOFLzkMa2NHT8SkwvZrFusJDlc1qINL9wc2RiEbIk4rzxPkiik1lcSSsBvYoLZbYDGbhWy/yqsZTWceFgv/vvRP6cX27AdbybME27cgAXVpDOGmCM1S01rkU6Z0JVRKwbjLhtLIphjOFHT7+G11040hGDk9OzKew/No+b39i82VIl+L3CshlSWQN90eDNszpN3QHcZz/7WQDAfffdh7vuugsf+9jHWjKAnOVoX3dcOILR0UTtF+QZG4oinTM9rwlffTNmf/Dlkm3m0WcwfMtvQwxFMXk2jb+9/yXIkoj33bS9JZ8hSPzo7ufAANx8fWselpUIR5yLb3ggghNTSYyMxFt2U1sNXp1YxA+fOoktmwdxwxvrK+TvJrRX5wAAW88fxmh+cjM8EEFOtxq67oqp9TpbEBCLKlX360+EYZxOYnQ0gYXH/w2pfPAGOBkCcf/9GLnxg02NzxYEJKIqRkcTMPLnnhquPp6V8uf/9BxmF7P41Rsvbtt7tBs17JwrG8b7ADi/81B/BHNJra3fXTUefe4Udj1zCol4GB941yWNv/7FSXzvseN4z1u3Yrg/4ruPGnIml+Pr+tCfn1ymDjyGyEzhnLROH0Do1G7077y5iU+RPwYEhFUJGzcM+P79j3/janzh3ucxOV8ItsSF14DE8/4H9AnepNgANt74axBDzrWe6I/gAW07bos+V3lcpw/AfORLsCa9zbtHXv9mRBr87SMhGYIkes6Z2ZF1WD5Vum8UaQy06Nw6u5jD1TvG3feNhBQIotT0uXtsahkXnTuIDeudQGQwEUbOYE0fz7QY+hLhktcP5iWFktL8OCsxOppA6HghwylIrX+PSixnDYyPxN3327TkBL6SKq/avWQliLKIcMh/7OtG4rBshnhfxG29slJY/hm2abwPTx+awdBQDFI+gBwdTWAhmcO/PXoUEEVcsX28Je9ZjR8+/Rr+/T9fxftv3l5RStosuaK1VVEJ5vnRaRr2077ttttwxx13YHx8HNPT07AsC5IkwbIszMzMYP369Q0d75XjZwEAfSEJs7P1O3BFVRkT0ynPa9jo5YASAYxsYZuRw+Tun0C86BfxF/fszTvvWZicWqpan7MWmZ7PQJbEhr7rRhkdTWA6f/yQJIAxYHIq2fILvpMcP+WYA0yf9Z5zQeDkmUWIggBbN9zxM8uGYdo4M7nU8G8zOpqo+T0kUxpkUai6H7NsZDUTMxNTSD11v/cYz/4QxshFTq/HBslkDfRHFczOLiOdXzE/O59u2+93ejaFY2eWIACYnk66hftBY27ecQVOJbMY7o9gdnYZEoDltL5q5/6u3ScAAI/seQ03v2FTwzboc3lji2OvzcPOB6blLCw6+ywvZaHnjRay+x7z7rf3J9DPva6h9y9mZi6NWFip+F0qAD75/itKtp38158ADXz1ytXvxVzSAn8RYwxPaRfhHQMnENfnKr4ud8prXiKEE1gOb0aqwd9eFgUkU5rnc2qSd2K2PD0JowXnVlYzsZjS0BeR3feVRGA57R1HPeR0E8cmlvBL157jvr4/pmBqBc+BnG7BMi3P62VJxNxCpqXXGL9Pny1aDJie7cwzLKeb0HQLigD3/Szdyf5NTC5hw0C42su7knRahwj4f3+Ws5BycmIBIxUWiRplbjGLsCIhooiwbYYjx+cw3B92f9eXjjvX8sxcZ37Ts/n76MSZRV8FwUqYmkm6/33stQXEleDOF5tBFAUMD9dfSgbUUQOXTqcxOTnp/vuRRx5Bf38/hoeHsX37dvzgBz8AAPzgBz/A9u3bG5JPAsDkXAaKLJZIHuphIKH6amUFJQTFpxbOePlneOCJEzh2Jokd5zlWxkFuKNkMmmFhOWMgmdbbbuzC7dq55j3odXC8aL3VGvdOMbeUw2BCLeldxE2D2mZdXU8NnOrIrPT9Pwb0jO8+uUe/1lQ7EN2wvDVwbXSh3H3QkbwxINCW+1oFCWUmZ66KIdRSWsfB4wtYPxzFfFLDER8pUS14redCFfMJtw9cfuLALANmUUaYY88eh7041fAYOMsZw1P/Vg1r+lUMLVd2jCxHGt/maasjCAKkUBiPrftvUK+6Dep4/QoM+byrIDTR88yRR3vv++2sgeMtBNYNFibQlWrx6uHo6SRsxrBtUyFbOhAPrbAGzl9aHlalukxMGGPQD/wUqX/5n0j988eg7Xuw5nXJr2lJFDomoSzvAQc4bQSA4M69HBfKyjVwAFraSiCTMxANy27pQ7mRycSMs9jWqe+Tz3/aUatZfK8gJ8r6qHlXzmaz+NjHPoZ3v/vdeM973oNvfvOb+OpXvwpBEPCpT30Kd999N2666Sbcfffd+PSnP93wAKbm0tgwEmt4tXogHnK1suUoF/+iZ5t99gReeOY5XHfZON7yeqf2bS3UZjUCr4OybNb2QIRPlOP5iYoRUNcpDr+hZIMawCW1kvo3oFA43666i1xdNXASQiznBHAVYNkkcj/7esPBg27ahT5wbTYxsRnD7gNTbn+goBbpA45zoJR37+PEwgpsxtrmkleNZw5Nw2YMH7rlEoQUCU8d8DaYrgVfpCg3vipGNyzIkuBm96wzLwOm/0TCePWphsfASWV1975YD9oeb2NuIT4MoX+dd2dBROi6X/eVq4dVGUlLQeiq27Dpt+5C7Nf/BqHrPwAI1a9R+YKddY+1GFWWfK8332beqdYEcG4LgeIaOFlsOoB75dQiBAHYsrFQx+UEcM3NHSzbhmUzX8WDE8BVf74wy0Du0a9Be+KfwVJzYNkl6M98B9bpA1Vfxz//QDzUMRMT3iuvOICLhZ1Fw6DeH6u5UPKMVCsD5EzORCysVAzgTs04Lbg69X1m85+tHc+B4muUArj6qCmhHBkZwXe+8x3fv23ZsgXf/e53VzSAM/NZbG7AgZLjNvNe1jzFjtLIuRBHz/e4T74tcQxXv+OXcXrWWbVIZnorgCu++JczelMp8KxmIqRINQNuN4DLv4cRcPc/fkNJa8F88Mwt5bB1c3/JNjcD1ybnM80wa2fgZBFvCx8okTz7YZ16EcaBn0C99Ia63784AyeKAlS5fU3Dj5xaxFxSw3WXjeOJ/VNYzhhYP1z7dd2IblgeJ8ZofuKVyZl1t3tpFbsPTOGcdXGcv74PV24bxbMvz+DXbtgKpczJL5U1Kt7T+ISjmv27bpb25zJf21dxX+PIk1Cvuq2put7ljIHxofoMB8zJV3wn5y9Gr8U1b3szMvf/OVi2ID1SLrsR0vBm32NFQhKyRde6GOmDeslbIcgqco/+g/8AQjFIG5qr5wypku8iaaVecK2AtxAYLcvANbtYe+TUIs4ZS5Sc8wNxFamsAcO0POdgLXiWobwPHFDbFdjOJpH78f+BNe1tM2EefQayT78/jmY4xinxaGWnxEzORDgkNSxPrgSfXxXPz2RJRCwsu0Y+naLeeUstzHwfOD94cNrKADmdM7FxtJCBmy/PwOV7KHc8A9eG56hWEsD11ty8WVZdZJrK6Ng01ngAN5Dgdr7+P7Sy/S2ebVfIxxAWTfTFnId8r2Xg5opsaJv57JZt4//56lN4fP9kzX1zhgVVFt3MR/AzcM73FcReWDZjWFjW3Ca0nAjPwLUpgMvpFkJq9cl+VMjhzeGX6zqe9vS3Yefq1/nrhl3i9qYq/hmBVrD74DRCioQ3Xb4BQHAlQoDzIA2V1R9E8xPYTktDp+YzOD65jGt3OAX61+5Yh6xm4sWjpXVcj+ydwEe/+BhmFirIcN0MXOUAzijqz8UYg/naCxX3ZcuzHrfjelnO1i+h1Pc+4NmWkgfxjy8PYNqIIfqeP4V83pVYlEfwOLsSoavfW/FY4ZDsO/FStl0H9epf9X2NfO7rIYjNBeyqLLqy1GKE+KBnG8ssgPmYsTTK7ELWaSFQtABRaRy1YIzh+GQSF24qXfgqtBJo/BlaaFXRWAbOWjiNzH2f8Q3eAMAqc/UsR8s3D49X6FVmmBb+8G+fxM/2nan1EerGT0IJ5BtedzADpxvOZ/v5iyv/bKZlQ67UB86VULYwA6cZiIVlhFQJ8YhSMoczLRuTc/l65Q59nxk3gGufhDKkSCvqs9hLrHoABwCbRxu3Px2I5xtqVnggK1veCCilE1bR0mC8utu9ofRcAJcsfFdLTXz2XL4Z9Nk6+pE4k3fJlRuslRq4IAZwOc2CzZgnOxEOtdm6uo4auI3TjyEklH2nkuxIu8qxTJgn9tb13qZlw2asxBK+3hqTRjFMG88emsGV20Ywku+zl8oG996i+dTo8NXldgX7ldh9YAqCAFy93ZELbj9vEH0xFbuLZJQTsync+9NXAVSucXMzcNUklKbtni/2wmmw5bNVx2YcaVxGaZgWNN2qS/1gZ5O+2bfoG24DE0Q8dWAKYt8YIjd+FN+N/1fsCV9btVYtosoVfz/1db8EZYe3V5xy8ZtrjrMSlWrPBDkEhMqe+YyBNVHnWs5iWvPY0ytyczVwmmFBN20M9ZUebzDRfC84t0WHTwYurPoH2EzPIvvQF6qej/bCBJhd+RnLW7rEKgRPC8saMpqJIxON15dWgs+vyhcr4lGlZIHLzi1D3/9jaM/8G6z5MnvSFnD6bBrpnImpOf/FnUYwTBtKlTYCAJBq0RzBthmymuWqH4b7wiVzuOn5DEyLYWwwgnTWgG23vz45o7UxA5dv9TE2GFlRm45eoisCuI1NZOD6Y9VvooIShrLlGs9248BPEFIkqIrYVBATZOaWcu7ErJnglcvPjDp66mi6I5/jAVwzK6DdhCuhDKA5BW8GyifhnHZKKG2bQTdthKvUwNmZJQxNeSfByva3Qr3krZC3Xe/5G1uqr/7JlSoVvX+lvlQrZf+xOWQ0E9fsGHcn5kHOwOmG7QnguC12J018GGPYfWAa288ddCfNkijijdvX4YWjZ5HOOTK2v3vgAC6UTuOt4QMe2TyHTziqmZgYRkFCWU0+yTGPPQNmN/Z98POingycNenNTAuJUfTteBMuOW8Iuw9Mu3Wh6azhTiArEQlJFRdrBEFA6NrboV55KyApyDEFL/a/FfL4tprjrEQ185B2GZmUN44GgJDSXAaOBzrl32t7M3De78s4/ATYsrexewmmDrY8U+V9nQXVSs2m+WeZyNdUtYKljI5YWPaYfiQiqnsdMFNH9kd/De2pf4G+7wfI3P9ZWHOtDeL4Z2rFPdmw/OsXAUDJK45alYHjwRK/9w71hUrKYE7l5ZMXnzMIhvb392OMuQvY7egfy5/ZY4MRqoGrk1UP4BJRtamGfYosIh5RqqZa/WSU9vwErNMH0BdVe64Gbj6Zw+axOAShufo//vD3cxYrxzGwkN0V7SBn4EzLRjJ/8w9iBo4/sMt707RTQsmliqEqGTjz+B6I5RNgSYV6xbsAAPL6izyvsWtNZPLwxr3FGbiQKrnuqK3kqQNT6IsquOS8QceURZECW6QP8HoZ/xq4Ti5gHDuTxMxi1pVPcq7ZsQ6mxbDn5Rl89z+P4pLl3fjv8YdxW/Q5bHrub2AcftxzrHoklHqRQYF1smrfJg4AACAASURBVLJ8ksNyy27T+Xrh50U8UvuZZ53xBnDyOZdDEEVcc8k6nF3K4dXTTtYqnTVrZvWcGqvK17ogigjt/BUkfusf8GfZ/4rjg94F0EZQZRFahft+u4xM/AK4Zl0ouZtg+ffqlm80IfOqnoHzl1Aarz5Z17GrBT5cFh0LK0jnDI97N78uJucyMFtU7uD3WwBOBo4rFIyXf1a66GLkoD397Za8P2ditnUyw2qNvAEgFvGXqDZD+cLrcH8Yc8mcu2gzMZOGJArYmpf4ptq8aJjTLfe8aaeJydhgBMm0DqtKRplwWPUAbv1wY+0DiqnlBiWNngdp3VbPdn3/LvTH1B6UUOYwMhBGItrcZ9fcAK6ODJzhyOfkNRDALeXPsWhIdlfFgkRhJa80A9dOCSW/wVcL4OyzJzzblEveCjHqWHYLiRHva2rI2jiFle7SDFyra+AyOQMvvHoWV29f57ZoSJRJhIKG7lcDxyWUHVzAeOrAFBRZxJXbRku2nzeewPhQFA88cQKP7z2Gd8ZeLPm7tvvbnsxYNm8O4ZhP+N+L9Hzdrp1bhjXzqufvZ6Uxz7ZGZZTL2QYycKcPerZJG7YDAK7cNgpVFl0paTpXRwZOleteOTcsrLhHakiRoOuWr3usv5HJygI4mzEsZwz0lwUNiuzfzqAW6QrKBSerJKxMQumbgfNKKO2ladgzxzz7Sj6ZUbtKHZyuO4ZO8YgCxryLdjwYtWzWEqkh4ARw5b8FACTyMk7bsnzdh62Jl2rW9DVCwehj5fM9w6rsQgkA8XBlkxiOdfYkrKkjYKz6Oek+t0MFCaWmW+7xJ2ZTWD8cddUJ7V40LF68bodqRzMsiIKAkb4wGCu4mBKVWf0Ark43Lj8GE6GaWln5sps826xT+3FOKNlTAZxtO0YWw31hJ/vYxMWh5R/+9chR3Bo4iQdwwXWh5A/qDaMxGKYduM9SSUKpyiJEQWhLBo6vJFeTUFpzr3m2yRsvcf9b9AngatUlcQoTpTIJZYuD1T2vzMK0GK69tJAlikcULAe8Bq48AxcJyRDQOQmladl45tAMXr91xON6KQgCrt2xDgvLGt40dBYSK/1NncxYoXaM5dsf9OWDpqW0/zPDaTshwXrtRaA8QyH04xn5au84TzzfUI9CPomsFcDZ6QXYS+W95gTI6x1HyEhIxuu3jeKZQ9MwTMuxG49UNxsJhyTohu1Z2X7+8CyeOlD6XtXs0utFVUQwwDejI/hIKFeagcvkTFg28yh6VEWCzVjDmSVXQlmWgRMEAQPx2nMPPwyfhSVOWJWgFWU5AP92FeLQZshbf8GzvVoApxm2I6Gs4JRYvBDOpXmNsJTW8S8PHy7J0FfKwCWiKkyLIXt0T0VpqLF/V8Nj8IMx1lKr/doZOKWilJFZBrI/+Qoy/3EnMg98Fpn7/hysQpsSoFg5UwjggIIT5cRsCpvG4kWy/fY+c4p/2/Zk4BzTsYEV1Jj2GqsewI2PNN+xfiCu1vyRtbFLMWslPNuvMPf1VAC3mNJg2QzDfWH0x5TmTEyMBjJwuoWwIrkPqiBn4Pg5tnHEWWwImoyy/EHAEQQBkZBU1bq6WXimK1zBhZLZJuz5057t4si5hfHFhgCh9BbFcstgRm0THb7irrRZQnliMolYWMZ544V7TCKqtl3O0k40w/JkTkVBQCQkd+zcP3B8HqmsgWsuGff9+/WXb8CO8wZx0/oKE8CizJhhOoY240OO2qOSasOxhRd93Scn1C04ZGyEECqr17Z0ZO7/s7ozBvy8qCV3tM4c8mwThzdDCBfe/5pL1iGdM/H0wRkweAONciL5a7F88vXg0ydx/+MFGZttM9iMVTRrqBd+79f8mnm3IQO3VMH1kMuoG83C8fum3281EA81JaHU3DYC3u+2L6aCAVjOfw7GmG+GV9l6LaShTZ7t1QxA+KKM65RYdh0vpjQM9YUgS0JTdXCHTszjJ89N4J8eesXNuCYzum95jNta6KXKvT+NI0/BzqzcUGUprSOVNaDKopv9XgmmVdnEBHAWSf0klIzZyP3nP8A89oy7zZ49BuPgf1Y8Fr/X8sz6cN4ga24ph1RGx3xSw+bROBK8OXonM3DtCOBMx2hnIN68RLnXWPUAbiUZuIF4qKZWNpk18bPcds/2czIHwHLJjjj3dAPzefei4f4w+pqUj/KLtt4MXLgkAxfkAM75rjbkA7hOGjm0An7jjYa8E5FIqH5ZVSNoNSSU9uIkUCZzEyJ9ECIFy25BlCDEvc3U6qmD41nSUHEAp4gtl1AupnQMJsIl/cA6bZPdajQfExPAWQDIdKgP4lMHphCPKLj0Au9EH3DUFx//L9uhTHtlhgBgntgLpjs9wfh9a3zYuX4rTQx000ZYBsxT+z1/m+/bhsWsBXmLNwvHls8ic/+fV207wEllDQjwGmOU41f/xuWTnB3nDyEeUfCT55yJe7zGMcMh/5rX+aSGs4s5N0PFW75UskuvF34O+TpR+mXgVhjA8cCnryy7WVhEbOzaT2f9lQuAUwfXjIkJH4NfBm5dvncd72Vnzx4HS5abNgmQt1wD0SeAY8mZiotbzuRYLDSbLrs/cXXO+uFYUxk4frxnX57BE/unYJgWsppVIQOn4FxpFtLZKm04bBPGwUcaHkc5PBjduqkfmm6tSD3DGINhVm4jADj3/vIAjjEG7al7S4I3jt+9hsOVM+UZuLlkDicmnd6PpRm4NgdwWnEA1w4TE6dX4UpcXnuNVQ/gxgZXkIFLhGpqZZNpHU9rW2DLpe8jMgvXh15p+6pFt3A26TwUhvryAVxG961NqIZbA1ePC6VR2kYgyC6UiykNkii4D9igZeAymgFBKEzgiglXsRZfCXzSXKmNgH3WK58Uh8/xNEZuVkap+bpQyi1v5L2Q0twHDmct1MD5mSxEw3JHFi+ymol9R87iDdvHqsqVzFMvAlaF79nS3ZYTfLLBM3CVpG+GaWPcOuNtKq9EoA9twXJGh3zZOwHF55ll5JDd9QXohx6t+tmWMwZiEaVmQ2HTJwMnlwVwsiTi6u1jeG3amaTWklDyDFy2KONuWjYWlzXYjLk9pvhi24ozcFXu/WLMpxfcCiWUbuPoChm4SoYqlUhlDaiK6Nusux71jx9uba5PEDDmBnBODZpxxGteIm24GGJ8CIIShtDnrcmsJKN02whUlFA697FNo3Gczpt+NAK/L2zbPIB7Hj6MIxOOrLiSiclbwv4LL8UYBx6pKjGsB25gcvG5zvm2kvuyZTMwAEqFRt4AXJfP4rmV8eJDFbON1szRiu0fMmXKmURUgSKLpQHcaByKLCKsSh7VB9OzyP74b7D8rf+BzAP/34rrCrmEsl3teBwJpYS+qApBABaomXdNVj2AW0mhdK1ecIBjZatDgXHBmzx/uz70CpaTrbPN7WbcDFxfCH0xFYZpN3wR5hp1oVwjfeAWljUMxFV31bxTWYhWkcmZiIZkiIL3wRMJtedm7JqYVKiB86t/k4bP8WzzC+DqMTLhK62lEkonA9fowkU1FlOaex/iJKKK00OqTU3D2wljLL/44r0vx8JKRxYv9h6ehW7auLaCfJJjHttT9e+8foifiyP9YUhiZfMJ3bCw3vCpy9x8KRIxp7A+I/cjcvPve6WUAMAYtMf/uaobYD1NvO3lWW9tkCBC8nFlLXborCmh5KZFRQs2C8sa+NXAMz9mizJwroTS5/7i50LJMotgueafx+USSuPEXqT//U5c9MIX8Eb11Yavx3TOqCh1HYyHkNOthhe/NJ/aXM5w/vycWciC2SbMo0979pEvLDiD+ssoKwRw+cmxn4SSMYbFlI6BeAibx+JYWNYaVhCkswYiIRkffvclkCUBf/99J0Dzk1D22UlcoXqvs3KYloJxuD4HzkqcmklhMBHCeF7ptRJlRD3XRSyswLKZe88xXn2ququmkYO96C0lAJzfSBIF9xkqCAKG+sKYW8q50n3+7HFUH4WAhzGG7MNfchaxtDSsqcPI/ezrK3r28Xv/UF+4bX3gVFmCKArojzW3QNJrrHoAtxIG67Dz5dm50GXvAITSm2Zc1GAebbwZaxCZW8ohFpYRVmX3ptpoKwGtzho407JhWk4PMDeAa5E18WrgTNJDRVbqK5/E2jar+jBxjAlaZUdseurfOJFQezJwhRq4Chk4nwBO9AnghMSoZ5udrC2h5IsMoTITE8Zat5hg2TaSad3TOLiSTCkImJYNxvwD7065sO4+OI2R/jC2bOyruA8z9ZqSRev0AdiZRXeyEQnJ+dol//uebtoY0bwTYGnjDjcoSGZ0yOsvQvSX74A4sMFnYBb0Fx6sOKZURq+j/s0rnxRHzoOgejN/F2zow9iAs71eCWWx/Iln3YBC5sfMXx9ylUxDPbgSSh/FhiCrvt+fNVNFVleDZFqHKAiIRRTYS1PIPfxl2HMnEcpM4/b4k2DThxs6XjprVpS68mu+0Vpyo0IGzl6chP7o3+MP+nfhvJP3Q9/7fbDccumLJRn6hivcf4pDmz3Ht33q4GzbMXApzsAV35tyugXNsDAQD2HTmBPoNFoHl8oZiIVlDPWF8YGbL3ZLNPwycJETP4colAYSQqQf8pY3evbV9++q6dZYjYnZFDaOxtxFk5Vk4OrJTPMseDprOPeen3+z5nGtKa/jLeBIFiMhuUSVMtwXwlxSw4kzyXxLKOdviaha8tnMY8/COn2g5Hj27HEwjzFS/WRyJgQAg3G1PRJKveB+7DjMUwBXi0AHcIWGmpV/6OWMDkkUEBsahXyh9wYRPbmyFZ6gMJfMuUWw7mSkwYePVmcNHLeYDasyJFGAIATdhdKZpLsZuBYEcA/vOYVPfOUJnD7rlavYNsNff/sF/MU9e1f8PoATcJb3gOOE1crNfVdCNQklY8w3AyeO1JeBY6k6JJQ+tSYh11ShNZ83mTbAWKEvFIf3+AqijNJPesqJReS2B6WLKQ0HT8zjmh3jHjltMebES0AteRVjMI8+A3NpGrdE9mLspX/C1ZETvs8Lxhhs08CAdsbzN2n9NtcOnd8zxb4xRG/7U0ibLvWO7egzsNMLvkNyMnDVe8D5yycv9t1XEAT8wqXjkESh5nH9JJTFjYFn5p0MHF9sa4ULJVBZsSGt2+LZZk37T2brIZnWkYgpEAXBMf8ocycNHft5Q8fjQYkfPPNRrTG8H3zxs/i7NV97AenvfRrmq7uxWZjCttyL0Pfe73ntmdAW/Ok3X3TPX786OD8JpduTU5EgiSIioVKjDX68gbiKTaNOZrnROrjiPoQ7Lx7Dm1+3HgKc5tPFMD0LduQxz+uVHW93+3+W7L80BfOot3asHkzLxpmzaWweLaoTW4E7sGk5QWfVGrhwIcNpHH689j0K8G1ZAjg1cOXn33BfGHNLWZycSrq/FZCX7ed/U2bkoO2+1/+9fJ679ZLJOQFlJKy0KQNnu8+dagttRIFAB3D1aGWX0joSUeemrvq0FIikT8OaPdHGUXYHc8mcWwTrZuAaDOD4qkutDByfIIRUCYIgQJHFQEsoF5dLM3CtyIzNLGahGzb+/oEDnuD2h0+dwCunFjExm27JSldGqzwRqdXct1l4ywm/QICl5wGtNHA1BRlin1cy55uBq8fExM+FsoqkqxmKJz7F8NXeIGbgtCrS18FEGMm03tZr+ZmD02AMuHbHuqr7mce98kkL3jHrz38fG5+6CzdEXkJ4ch9uNn6Mc5ef9+xnmDY2y3OQWJmxTjgBsX+976KXoEYRufGjEMJlLsfMgvHSw77jTmUqy/KA/OKGn4FJUXuNcn7p2nPx/35gZ8UsO8eVUBZn4PIB3PrhKKYX87VXLauBq2xiAgDiugs921YawPXnn23W5Cuev4dmD4KZ9T/z0tnKv1WzVue6YUOVRQiCAMYY9Bd3IbvrC0AdzrrP6hcgmTHw9R8egs0YpGFvBs6aO+WRyeluAOf8nrGwXGIJzxVMA/8/e28ebsdVX4muXeMZ77nz1XCvZtkaLM+DZIbYBmNjMARCEgg0wS8hQ5Nu0t3pDLwkpAmkk7yXl6TzpZMAIWGIQwizMeABLINtybMsW5atWbpX0p2HM9a83x91dp2q2rvOcAfLVrO+z99nnXvmU7Vr/35r/dbK6ShkNeTSascMXMWwIxLeD7zlUvzhh67j1AnO6Wf5zypr0HbcArlvnfA4Nx79IrzyTEfvBwDGZ6twPYrhwdzyMHBuOwwcW/stOAIHUVLgr3HuhJh1rgoar31dKRSrNgzLxfBgo4DLpdVgBs569p5ER1eR8qVdVEwbmZSygjNwjfianvxPGLh28Jou4NrRyoazSOT+9ZAGNnH3sVsMnl8MmA0XcItk4IIYgVYMHMsAq7MvmiK/Zgs403ZRNR105zUosgRNlZZFQlmu+tbGo5NlfHVvI6j12NkFfOuRUxjo9n8rEUPXKdgMnAidhPt2AsN2ociScMbVnT7N3TavDIBI/H2FM3DF6ZZafibbCgdSM0fM5WLg2MZHZGICrHwuz0rACphL/rdg3fS5UuvN5mKx78UJbFiVx+q+ZHdi6jr+RjCGw938nDM1SpBiTMwb6eOBQyWD5XjYrExyj5dXXQJCSOKaSRQN6o5buMdZh/dyjoCU+rLpZjNwtDjBb74kGfLQ1sTHKLKEdUN8VE4cbD0Ox4bMFg10ZX3mhTFwAdOw5BgBZh4iPt/kQUEBN3Uy0dShFYpV/1pPXUcoxZRcC85YsutfHBXDSZwrbEf9I4Ll+JtU6jowf/zPMPf/K5c5KISWwWOz/RjoTuHQyVk8+OQoSH4QkGOsq1Xljp/43F02raJcC81BskZUXgchBCODucD8o12Ua9EmoSJLWL+KPyZFjRd1641BPIZ2+e38k5sVGA99puPjggV4jwzkkE2pIMCS4l2CxkazGbj68eJMn4E3x8+2pd/0a9xtdGEcXlwuC6aciTFwdRUV4BuYeAsTMA98Fzvtg9CNKXjz47AOfj/x/S2VgWsUcCvhQukFrtHdOQ3lmv2a3Te+UnhNF3BA6zyWeJikuv2nuPvYx/e3lS31WkXVsFEzXfTWC7h8EGi7OAkly1VKApupYl381zIDt1BudCeB5TNyKFUtrBvK401XD+OBp0bx/IkZ1EwHn/72IfR26fjIu3YB6HwWQYSmEsp6uG+nIbetwGIkRBB1AaclnmkDAJIpAHKs+LRrHIMXh2l7IIhuQtnxuFxZcPOxY4PhlcrlWQmE5VZx9Ac21ivTGT03XcHp8RJ272xuXuKefRGw4k6RKZzt240xl4+diCNLTFQPRDc5tuNhsxK3bPcLOMCf/1NkggVBUa7ufBN/jFpV2C9HpWI10w+azjdh4BwR+za4GUTVBffuDClNBkHUxGRmwUBfl46h3jSmF/woAZEB0GLQiBEQry1Sz2ogPtdnG/DmFueWx6713vSpRHfSVsY3DJRSVGp24gxcWlega3LHMi/L9gPSzX13w37p4fYfN3IdDIfgzhs34qqt/fjqw8cxOlWB1LuWu298Ds6MzQPn0mqUgasrmJiSYHggh7PT5Y4ilpqxlQzUNoS2+eHRFnl4F5QN13D3cc+/BOtg8mypCGOTFcgSwaq+DCSJ1AvXJZiYBLOhzSSU/jqQOfc09zdpaAvk/g2QevjZT0/AwokklGwPRwiwmk6g8u8fg/XEV3DZ1PfxO7lvoPK1PwC85OubyP25XVQNfyY0pSkwrOU1AwMazQ0gNGP6ExauKS6OAq4ZA1dtyCoAQN18A6CmoneyDdgCx6eLBdP1QfX+evdGkf08mGKH3agwbd6sIKuZUQZOlV+7BRybcWCSmeUycmCd+J+9eTPWDmTxj/cexufuPYyZooEP37kDw4M56JqMscnlYeASJZQJ4b5LhdlhATcJ8cabEAkkJ2DhWszB2Y4LVZUic1Ts/VjL9FnnyhYI4Z3WMroCQpbW7b1QaCah7A0Fya4E9r84DkKAG7bz9uhhiLr4yroroKd0PGlubOu13EP3g4aaAJZtY6PCS3Pl1X4BR4g/YyZSLUjpLqhbb+Rut56/P8IasII+14SBc8/y9upywvxbpyCEIBXLfZwp+vlfg92ZIEpg+Ri45ow3IRLkweWZg6OUYqFioyurwTmfbFbinDkAmhQ9EYJhuXA92rQoie89qFWFM/p80wBqy3GxSi0lZpy5g5fiUWMrLK07uE3qW49TQz7LOzKYw4feug25tIp/+PYhoLu1EyXHwMXCpudLJtK6jFT9WjA8mIVle5iajzVJEuBRGmzum8E5w8d+kFQ+aJIA9WP0jXeBZLrjD4f15DfgTp7gbk/C2FQZq/uywXHsx7ssZQaudQGXTasg8NAzwxsssTVCyDwLjvmqKZBQ1tfg1X1Z0IPf5ou1Fsc2rS0sOiC9YvgSyrTmm4G140beCfwYgToDF0iUX3sqllcSr/kCrqdJoCallGPgiJqCGrLiZbiYZZQsQoB1bwAsKsw7vMlvNgcXNjEBAFVdXAF3eryE7zx2quPHLSca3cl6AZdSlmUGrlTvWGqqjF+9cyeqhoOnj0zhzhs3YOtwNyRCMDywuFDVMCzbheN6ifMxgTPdMs/BmfUYCRFEMo7zNJk5Ecsom8/B+bMm0ddvbCiX58IzXzJRyGpcppckEWRTqpCBe/zFCTxxmGd6Xi2Id+vD6M03gmSXG5RS7D80gR0belHIJbNN1DZgiwq4jdcipSt4xtzAuQ2LQOxaRGrkzJxFRoqth2oq4ozqr5nic18VzFfT0hSc0w0jIjZ/w0xuuPt7DlyBgUk8wHspSOtyIKGklPrS+kIKQ72NDLLlMjHRAxOTxrXCtFz8y/1HAiZEbjEHd36mgrsfONLW3LXjeujKaHDH+fm3AFZNWCTHwRiqpMYX4LvxMfmhO34U5S9+FLXv/QUqX/ovqD30GXiCXDvL9nAFEReo6s43Iff238LXjBvx0PrfQPa9f47Me/4YmXd/HKdnXUiEYE1/BvmMhl9++w6Mz1Tx3EyKex5vJlrAcTNwMSaKuSwzBEYmbao/qoYDitYxFqLGy0t0A/7m64fwv756EPfuOwUAIKkcUjf/CoCYiRF1UfvhP7Q9xzg6WQ5cNQFmtb/0GIFm54UiS9ienoLuxCSRRIay6ToACcd8TPJL60VxfPShN6+DANi8Ki1cK9rBYufgqqb/flgjdDlHLyilkfzRxUqU/0/Da76Aa6aVrZkOHJdyVrbq9pu4+3pTJ4WzORcD2IYrrJ/uyqidu1DabTJwrIsfZuAWIdF7/MUJfP1HJ5rKNVcabAHpqctLsil1yTNwlFLfzKDeiR8ezOH/ets2vPGK1bjzdRuC+40M5DA2WV6SVKEShIGKL66ZwNhgeRk4w3aREhmYmBUuiNsDwWkz2TJeEhiZtArztmw3Mv8GhGaA7PZ/P0o9/z0LfoP4xieMfEZFWdDt/c5jp/DgU0sLVF1JWE1yqlRFQiGrrUgBVzEcTC8Y2LmBzwcLw375x4BVjd4oa1BGLkdaU1CkGdi73hH58+nMThx0+dln64UHgtkTMnWU+7s8uBlEanwPhSZNL7lnLeSRy/n3e/C+4P8ZI5s0A+eOvSiwjleFLNViEZ55LVVtWI6H3q4Uhnr8kPOJuVogFVuqiYkiSyCIduoPn5nDD54Zw0unfZdOcQHX2Mw+c2QKDz49hq881JyVC0K8M3JLBk9USMRRqc+INStK2PgG9VzUHvqHEPtB4Rx9FJV/+12YT34tMp5h2Q52gGcItSvuQOp1/wGKoqK/O43J+RqkrkHIvSMgRMLYZBlDvekgVHzHhl5ct30QT4zz74+XUEavx7n6GAC7rjKXZYY1/VkQ0pghawVW7OaaBMknxX4876zHbMnAifNF3PPYqWCdVdbugHbFW/nnKU7AOfFkW+9prmRiZCBq9LEUWXu75j7X6ye52+SRXZDqZkdC857J46AhNs20fQY43kBQZAlvunYYb9lgAm7r69gc5ecQFzsHF5ZQAsur2rEdDxSNudnA5fUnBVxTXAQFXLJWNgj2jEmc5P4NkPrXc/e3X3zIt7m1akvKHnm1YaZoQJEldIU2Doth4EzLCbKBmhlBGIIZuMWEGrPAbHuZqfpOMF82oSlS4OCW1pUlz8DVTLc+C9M4LnfvWIUPvXU75JCRx/BgDlXT6diqOgwm90zqJKcE4b4Alnz8G5YjZOBEF4+q2ovpMk0sVMkiwrwtxws2OwytZnLicM6+iMoXP4ry5z+C2nf+lLOGb1rACbq9HqWYnK/CfBUHwZuxbn0cfYXUikgo2VoUd/QMg3oerOfv525Xt+wGUXWk62xyeeMtyLz7fyB10y8j+/N/hke77sBesgeQ4rOUBuznvgcAkKf5GRQmn2TIZ9Sm2ZkiAwZ34mggaWMW5kkzcPYxPtJGWXcFiNI8HqATpHQ5WJ9ZId7flUI+oyKlyZicrQXNtqUGeRNCoKlyJAeOzfSy9UYe3IQ400KLE/BqRQANBcQPnzmLA8eSz3l2/PTRuZbzsfapZ0C95mt4OShKmhRwdfWPfeIpcUPJtWA9ew8qX/kY3Hk/nqLHOo8CLcbuSKBedmvwr6GedBCqzjA2VcbIYDQ8ftOaAo5V+EB5b/58RCYaSCiVhokJReM38NexxjGmqzKGejJtG5kExW4TCaUw9kPP4kN3/TT+6K7rccfu9bBsL7Jmate+G1L/Bu653HG+2RIHO87CTo3xrLRO0TgvkuNNqGNhh3SKu13duif4f6l7FaBlondwrEgEBNtjpAXX7V948yUYcVqTDfLm3dhb4+XXi5mDsx0XtuMFJiYAltXIhBnjhec0FZn8hIFrgdd+AddEK9ssTFLddhN3m/3SXpT/+dfr/30E5jPfXvZBzQsBNqgengfqymrCgfxmMCw3MGjoZAZOUxbHwFXrUp8kF7NXAvNlK3DnAvxCqLrEDXiZbeSazMIADSlLu51QEZjcs5kLJdBYjL3yDKr3/CnKn/0wA90J7QAAIABJREFUKt/8BLz584t6XdNyhTI8kXyjll0D03YTO3oiBq5VlIBvSRxd3vTgwtP6eHLnzqH2/b8KGBH3/MuwnvpG5D7zZYtzoGTIxTYLXq2I4t7P4w9yX8GvuZ8XFiKvBlhNTEwA38Z6dgUYODabIlqrGZzTz4AKfncmX2TNCMNyIfevh3rJ6yEVhmCYDmytIFReWIcehFddgDYnKOBWRQs41vRKuibIa7ZDElm71+VRDQaO/4zUNuCc4nMfldDGbzngM3D+b8wK8d6uFAghGOrJYGKuumxB3oDfUQ83TNhaxq4RRMtA6hEYcdRZuPmSiYHuFIYHcvjcvYcTTQ2CBkC1DRWNWYF7ronMEghmxJpJKLtzOhzXhflcsusf4Mem1L73l6COha22QCK7djukbE/w78GeNCbnasFxVjN9djqc+wUAIwNZVGkKjh5TL1AP3lwjz9CKyaLDYd6UUr+Ai61jw4O5tg20WNHVjK0UsWbK+itB6k0V5pA9GzJIIrIC7eo7ucd583xWYxys+IxnpZWr9qL3dGw2tBkD55w5AB28FFtZ3whgJ0RqmYHICrikorh6kmcz/71yPV7e+F5o174LqZt/Bea1H8SowysaFsPAVQMljyJ0s10q4soPQkhLg8Kf4GIo4OodcBHVykw6hAXclt1wpSadTbsG66mvw3r6m8vzRi8gZkMh3gxdGQ2m5XZkqW7absBmNmMxeAZucTEC7CK/GPZuucAy4BgyKQU10+3IoSuOxixMqwLO1++3O4sgQisJJWMtWHaf+eiX4J5/CaAuvMkTqD3wt4ti43wXSn7zI7p4eAV/A5fUbROGebfBwMVn4NoN8qauDeOHfwe40Quxferp4OJvO363OIkxYsGq1LFgHrgXlS//NuSje1GQasiRGsx9dwsDmy80mgV5A/Ug2aIZyK+8WhH20cdQe+jTKP/rf0f5y7/tN77aCLANY6FJs40hLEdkkEd2Qa478WUS2GTmiKpd9XZAjp0HjoXafX8FxYyxIpLMSRcLGQ2uRxMl1IQQKCNXcLezJkipZkNVJGFEg3PqGSA+26NnoQhkmUtBSleC72c2Jq0f6vULh8YMXOtZwlbQFDmyfrO1LGwEJdzM1sON58sm+gtp/Oo7d8K03SADLQ7GjKYXTvFvQhAI30pGWWmjKOnOab7xzQwvmYuDlqZgHfgOLvV4eae6JVqkD/VkYNpucE6cZcVIjIFbW/93SeNNf8IyyriEkn2mSs1BuWbDcSmnJBgZyGJyvtYWy1JpwVZS14Fz5gB3u7rx2uD/mcHadIzdlwXFvTt3tmURNjpZRi6tRtbnfFqFRym3PrQL5s7ajJkWZb8pG68FUaLfb6vZT/adimbXvfIs7KlR7vaD9gac0S+BfvU7oW69ETNlG2fdHu5+dGGiY9f1SriA05dfQtkw2ml8t75J0E9MTJrhIijg/BNUVKk3Y+CIlkZt9VUtn9965luwXnxoie9y5eC4XsvB3OmiETEwARrfSalNGaXjenBcGrBGzVixmuWzH8zcQVlkjECjgLtwEsq5mLyEFUJLcaJkOnxRJz6MTEpFX5fecSZPGDWjhYRSa4T7Utvk5hS8uTE4p/mLbyuYttiFUsTAyXU5c1K3jXSJGLjmWXC+JXF0eVNkCbJEuCDveOFoPvFVeDP8BRJmBbToZ4XF4yXiyKVVrLNOovKV34P1xL8Lg3rtQz9IfP+LxXzZXJJqoFmMAOBv9h3XQ+nkC6h865OofPGjMB76NJyjj4GWpkCLk7Ce+joq//a7sI880nbx32ytBnwWy53gpVParoZsMWm43rBcpHQFUqZbmNnmTfEbcGlgIyddDNbMJsoFoUV4nQ1hId5EUFDYR3n5pLrxOpB4wblEpDU5WFeniwZ0VQ7WhsEeP0qAnR/qMjBwuiYHx5TtuJioZ83VQt37ZptZJlNe25/Fe2/ZghdOzgpnSIsVCwQU0pSgQLqUjw5yTj3dNFes3IIBAfxz/+YUb4hC0l28XBeA9cy3kUE8xFqFEipkADQMZWb9WU9mZMUaegxdGQ2FrIYJKmBZQjLDuIkJK7Qqhh1skHti6xhjrs62ce1pxVYmxX7Ia3cG/2QZk3F2n+QH+IgOs8LPisYwNlXG8EA2cq7llhjm3YqBo0YZzuhB7vZ4gQ60dqJk+wuRcsY9e4i7TepbB6TykbnrmQUDBtUwj/h8OY3INdtBmBFcEQklY4lDTaPuXPOM55/gIijgmmllixXf5jsxd2fbm2HR1l1G89EvwBbIW14NeOCpUfzBZx9P3LTZjoeFshVkODGwzUi7MkrWbQkklC0YuLCBhbbIAo4tGtYFklAG8pLQxY1dpJbiRMmkVM3sxBmGB9qXsojAOnkiLT3QYOAM04U7cxoQbLjt53nmoxVELpTUdSLSnuA9rPat35MGlomeA2IdTLgWaC0+S9KAyIUS8AsTtqGkjoWze7+K5//5U5h64J/gnDkA+9TTTT+vO3Ui8l7j0iPAP24uLe7Dh/M/AC3PJD6Xc+ZAxMp+qTg9XsJ/+9tH8eKpudZ3ToBVD2CPO2sy9HbpGJCKID/8X/AmjgEQrzu0Mgdj72dR/fr/aMscqli1IBGS2MW3BOyb1DsCee2O4N9sTjUu7TEspyHnvvJtsEjrmTIlJp8EkBjmHXlPwgLOD/QtVS2hbNqrzgs3ZcstnwT874hJKGeLJvoKqWCTO9TjRwmcn/ELh6XGCAD+2s/mW85NVwP2LCxDFxZwUyfhuk5dwu5/7zddtRZXbO7D1x4+HrAhDMWKhZGsCVqNHfuSDO3ad8GJbXVorShsCDBUajZ0VW7qONgvlbBL5RtS+p73IfPTf9CWG6qy/iqQWBbeYMhQBvDnudK6HMgMwxgezOHlGu/g64y9EOwJTNuNZGKGJZSiLEvquVg3/zh+Lf8AMj/6S1S//Sf+f9/5M9+UJcauswZyktOxc1Ign1x3ZaRB4jsyS5xBEpFkSIXV3ONF1xEG1/PqBVyUsWTur4s1MmF7mCQGzhl7gbP1J5luoYuscPazNBXMflabNF6FWXrDl/my/dBnY8VwSR/i7t+pjJKdr74L5UoycOECrnlE2E9wERRwgVZWKKG0kE+riZuR3Or1+OfyG1HKjvjZcGoKEA2MUwrjB3/X1vDsK43peQMLFSvS0QxjrtSYcwij0MZmJAzWlWWPa1ZU1WIGFosN8mad4jhj8kqhZrqwbC8qoaxvEpfGwDU3MwhjeDCH8dnqonP0Au16wgycrjbCfb2EjB33/MtwBSxFElzPg+V4nAulN3dWeIHr7vclkklyCUJIghNl8hyc5XhCqZquycHxZO7/MrqOfAdXameQOvkwat//Kxj3/03zz1b/juLxEsF7cm0Yez+L9ecfbPo8/pM5Qkv8xeLR58+DUuDsEmYmTYF7Zxh9XSnckT4A4rW3CfJmTqN6z/+EV11oer9ixS9uJAE75ZWmhJtA7fLbIh32dIhNDiMcKi+lu3Bw1U/Do83ZpbiBCRBqejUr4LpXg9uYlWdAbdPPfhSc887xJ4BYA47k+iCv2tr0PS4Gqfrx73p+5htjPgAETpRnp/3jZ6kmJoC/IWMMEJt/01Qpcr0ihVWAHmWX4FionDsJ12vI+wghuHHXatiOh3PTUSfShYqFbSleVi0NbISUKeA04WcT7ZcfSXzflZqNbBNXRQDInNqL+NaCZHuhbLrOn8Hcdav4gSGI2Jm+Lh2yRDDJCrh6MSJibkcGcnh8tocrFml5BnRhHABgWh42puZg7rsb5lPfQLYel1Gp2YHqgalMqFVF7b6/gnbgq9iunkeudAru+BH/v3OHYT17D4yHPhN5rUrd7j5swBW8D8+Fc+pZ7nZlYzSsmxBSl2fzSgX/nIqi2RzcmYkyLNvDluFC5HbWPFlsPmcrF0pn7AXuNmnDNSCC74VoaUi9ggy/OguXNPpAPQ+OoNkjD1/mxySEPtt00UA2paCWFTSVOjQyqYhm4JZxX8b2k2HlR09eR810l5Xpu9jwmi/ggGStbDwDLo5sWsVhZx32DX8I+bv+Hvm7/h65u/4BytbX8Xd2bdQe+JuOZztWGmyzkuSONlMfChbNwAHtF3CGzRi4uoSyyRxRzXCgq42Lnyo3urCdIJBQXqAQ8KA7mQ9LKP3PtZQogXLVhiKTxKDrMIYHctBpDbNPfg/WCw+2NO+Io2r6xXRSNz0c7tssJFXEgCTBtPzfK/75RLINqW8dUpqCtC43HVju1IkynCkTBmPgqG3APvxw4uOTwApZ9l7DJiZerYjad/4cztFH234+59j+jt+D8HlcD4/X8+Vmiotfo0w7Ob8PAHq9aVytn+rsSW0DzvHHm96lWA9hFsF64UG+wMl0Q9kczfPUVAmEgGtmxecxraHL8JXqDU3eDYE8xBdP7TBwRNHFx+r8eZSqNnIC2bR9jJ+bUbfsASHLf3lusJQOZopGRJkx2OMzQeemq5AlIiymO4WmSsFc5ehkGaoiYWQgF5lDIoQIoxJqY77RSE8ko8wv9OLGTsWqhU0Kn6/ImNTjKl+QOyceB41HUtRRMRzkmsgnqVH2Iy1i0C57c2DMoV/9TmEgdQA9C3lkF3ezLEkY6E5jYq4KSqlfwA3ybpOAH7pdcRU4vRu4v7GCIlU5h/+Y/i7sFx6A9cy3IN33P5EhBiqGE1zjCjkdXnES1W9+Eq6A4Yk878mnImHQFSO52HXPHgI1Yw0lRYOyjp/t7OsSO9wKTW7qrLYIR0b997Z1OPrds+bJYsO8mwV5U0rhCgq4fbP8WsAgnP0c9yMmkszHvJnTvMuqokFetTWYu2aYXfBHZ4wsXwC7M51FZoUllPoKSijjM3AAsPCTObhEXCQFnFgr26qAkwhBPhvNQyOEIPVTd0Eevoy7P60V/W7pqwhMLpS0qWALYl9XlCnoyqpNHxeHGZdQNimqDMsJAqKBxQV5O64XFG4XysSkkQEXllDWZ+CWUMCVmszCxDHco+CjXfch8/y/w3zsS6j82+/C2PevbUvvKoadyL4xpHV/LqYZy+aceAJeEzlgGPGheQavwgfbSoVVAFrLJYRh3q0KOBEDVy/g3InjAO38uPKmT4F6/sZHkUkgcaFWDbV7/jRRliWt2YG7q6/nbnfPvSQM/O0UL56aQ6lqg2BpQdum7SXOvwGA9Pw9/I1aBupltyL15o9A2XC18HGtGNyFhLWaei4c0XzYzjeBxGZjCCFIa0oklN6jlJvH7M7p2GdeAnMbnzMFAFLvMEicEYIv85IIaRolACQwBnNnURIwcN78eeEM3krIJ4FGATdbNFCu2ZHGXj6jIq3758dysG+AP9PCuutjU2Ws7c8im1Y5BYNIRunV3TvDMuWhngxUReKMnYoVC2s83jGXOYmO6lthInZ8ORbshAZK2bCbGphYL+3lTGdsokIJzdsRLQ39hp9LfA510/XcMcww2JPGxGwNM0UDNdON5JmFwWSCszm+GGAF3Pb5h6GSxlpHi5P4QH4/ylULc2XLvxZNHUX1G59oy+ER8NcthnLNTpwVtEWmHiOXc6YegK8SEjJwPSIGLtkd+cjoPAa6U5xDMBtZWGyYd6OAE6gE5s6ChopaAHAh499flPDCSfF1U9QkYt9r1XCQ1mVOPSaST8qrt4HIqh9dE56BKxro60rBzgsK4NmxSO5cK1RDpioSIdA1eXkZOKGEsu5v8RMZZSIukgJOF2ZlJW0Kwihk+Dw0IilI3/ob4gySRYYgrhRYJzOpEJstGiAAevJRBk5VZKR1BcVKe4sZ67awwq+5C2U0xFmVJTiu15G5QvgCf6FMTOYFc06Z5ZiBq9ktDUwY+s49glVySH7mubCfvw/lL/82rOfvB20R5umHb7Yo4DQFtFZqKkkE9WC98EBb75kdK9wMXIWfzZJy/gB+K8epTiWUtsCFkr0n03KDTmczED3HS7tcB97sWDAbyYpw47EvJW5+1MvfCuN1v4HHjY1YkOIdeQrn+NJZuP0vjiObUrBtfc+SCji/8BUXcO70KbiCWWD92nchdeP7oW66Dum3/Gekbvowdx+vxRxcsWJFciqD1zz/sjDcWtt+s/B50rockVCyxlOYgWMbu4nhN0PdxhtciNgBoN7wy6gtm16iOThn7hxqpsPNvYrYN6lvvdB9bznACrgzE/53GpbWE0KC+aulhngzaGpDsjw26UsB07oSmCsxiAo4dc4vbMMmUpJEsLY/yzFwbrWIghtvhJBAhiqpKRwil3KvYR/eK7wuVWp24rpJKYV9eC93+6O1LXj0SFQqrGzZA3k1/7oAoGy9UXg74Beqk/PVoFCNz3MxrO7LQiIEJyGIrzh3GPbseaw2+QbBTuUMVs09jfmSiddlTqJ275/zTFkTuCEH3UrNEc6uUtsUR2MIZKOArxIqVW2uYSt1ixg48VpLKcXRsQVcMswzn2ymcbEmJrbj+eH0gsarOyaYS1u9FQP93fjH7xwWNn1Es3He9GlQs1KXpQrWQ9GsbJ1syGVUlGuNgPaZoom+rhSkXC8qXmy/4drw6hLbdlAxHGiqFLCPKU1ekRw4LdQ4YvuupeTgXuy4OAq4vA7Dcjl72GLV4kK84+jKatzJ9eOD57D/5XloV/Ad2mbDsxcCbLOSNJcxXTTQldOEw9hdWQ1uaTIih0hCnIFrxoqJZuCA5qwd9xyh3/JC5cCxhaM7KyrgljYD1ypCAPDDtJ2XfyT+o1mBue9u1L73F02LuKrhJEYIMKR1Bfla6+PaPvwwaNxNTADWmUup0Q2QqIAjWVbANXecIl3tM3AepckzcIyBExVwoflXksojdetvwO3dyN3NnTzhmyvUmVn72H44R3jZpEMlHBl+J1K7fx4TCwYAgulevjgQdak7gWE5eObIFK7dNoihnvSSgrYt24WewL6YsRw8wP/94kWQsk5spZ9kXU0p9ddqQbNNZPeurLsCJCXe0KZ0JWJiEhyLuqCzW7Ggv/6DUC99Q/A3qWcNtMvFzBzgr3+tml6i4sue8eXDYQaOUgr7GC8tVbfu5m5bLqTr6/Lp875ZQtwYY6guo2xm3tEJdNWXzy9ULBSrNoYHc8joCs/ADW4CYpJR3ZpHr1RCIRtzSIxllJmWixHKMzJS79qASdVUCU9TQajxzBl406e42/0ZOPG66U4c42NMCMFY7/W4+4GjkfOPEAL9xg9wn43kB4RFK8NgTxqW7eHQSb8oXTvAM8KA/zut7svgcDEvnCOc+u7fQUowGrp64Ye4dv77uIP+kJtNBgALKn6o3wp9989zfwtHoFQS2Ern9DN8eLeWSWyQMJVQvAElFYa4749W54UqlPMzVZRrNraO8AUcqZsksRn0TmG7HtSEEG9njC+s1JFd+JV37ETFcPDF7/O5g1KuF6QQNxihcM6/jJrpcKYw1KrBHeddVuURv4DLpzV4lKJqOKgaDmqmg75CCildwVmXdyoVOUInwW8EN37jlKYsr4mJJTYxAZLNzV7teOjZszhwrHnc0VJxURRwq3r9rmG4K2dYDizbC0w3kuCHszYuyLbj4ss/OIr7nxqF1C0Y/mxTYvBKoZWEcq5kojfPu1dRz8P75PvwrpnPovKl34TxyBeav069YMvoChSZNJ1L410o/f/vJMy79qpg4CykdSVSjOqqDFkiS5qBK1XtliHeAOCOHWrqYgj4nVDndLJDKhswb4aULqPHaiOw267BTiooQ2CLcTsSSlIPsGUSyiSWVsqJCjgxA8caBSImSddk2JblSyhjyLzr48i851PIvPP3kfm5P4GyZhtGXf513cmTmCv58RJeaRrGI5/n34Si4zPVt+B4yp9xYYYEZCO/OfdmR+GGcps6xbNHp2HZHvbsXIW+Qgrlmt1RvmMYpu1CE8zAuRPH4J7hw2O1q97O2e2TVM63/46AJqoXDMuF7XhcAUepB+fk09z947brYfhB1Y1zk3WJwxLKQq7R2SWSjIVd78P/V3kn7sm9B5mf+ePE4hAAClm1qYkJkGS64J9fYebdmx0FLcbntgg327ecYBlOpxIKOMbALUeIN9AwMWHX5pGBrM/AmU7kXCdqCtLABu7xuzLTXDE5PJBDsWoHv8NC1cImdZJ7bDiIXVNknLW7IQlm7eJsGqV+1l9Sk80RsKby2p14263XwrTdYAYr+FvfCPQ972s8PwhSb7yrqYSeRQk8c2QK/YVUwJyKMDyYw5mpKpSQLT+DcZovLBgUONjl8TEIgG+i873Ce/G0swXqpW/ksvRocTKQ1CexlaLGlLopORpDFOYN+IHeUpcg604gozwy5n/3lwgKOAB1meHiYwREzDR1LLjn+QJNGb4MI4M5vPGK1Th4YkZ4bVNW8yyce+6wXxSHvlNKKeyX9nKyf5LtDVw6wxJRVgT3dulIaTLGRIHeHRiZVM3oPiK13BLKwMSk8f2mNBkpTX7NMnDf3XcKP3i6s7iGTnFRFHDMbSi8cLbKFWLoyvgMHDu5njs2g5rpYr5s1js/sYWrMpc4+Hwh0MrEZL5sclpwALBf/AE2uidD//4hnNO8WxRDeFMeD2fl3pO5dAYuzHAtdjO6VMzHMuCA+pyNoIPcCcpVG/l0awml/VJ7JhuirhxDzUyWAjGkNQUDLi+nIKk8/54E0qE4WLEfNzERSihZAZfX4bg0cT5BEmTB0fKMMMspcAsTsAi6KqHXmeBCusueDlJYDbl3LeShLZDqn/0cBBuHqRP+eZVVYTz0aT7jCEDqdR/ApD4SdHsn5qpQFQl9w+twyuGLQlEAbLvYd2gcfV06tgwXAklcPE+pXSTNwInYN+T6/c2dACzbLwxv6pTwvmztiqsl3IljoLWYe6WkCBk+hpQuR5o/zNAkLKHUVRkZXcF82YTjevj0PYcwTfpw+9vfDCI1NxbyG36dSyil8hRkuJGiQMQuyqsvCc6JlQBj4M6MFyEREjFoAsIM3NJDvAGf+bJsD6MTfgG3djCHtC7D9SjXBFTW7OAev03n16WRmJFJqWJhs8DAJFLAqZIvDxZIZu1j+yPKAqPu0ima66KuA1tgyKNu2YOBbv+7EykJtMtuRfHm38UXy6/Dyd2/B2Ut/1nDYI6g82ULIwkGJgzDA1nMFA24Q82fs11IQ1uQ+ek/hJVfg4rhgOhZ8TjJucPwPJ/xiRe7Xq0oNPVoJhtlBZx4Dk4c6B3H0dF5dGXU4DiOI2700QlsRzwb6o4fAdzoc5J0F6Q+X9Y60J2G7XjCPYO8hmeF3XOHI8oZd/woqt/6Y5j7/427rzJyWdAICLtssu+wr5BCSlsOBs6OMILhPMnlgGl7ICRqEBM4ky5BUXIhUarai74Ot4uLooDrymhY3ZfB0bHGxZ6xaq1mjbqyGmzHC7oJ+w6N1x9vwZMUkDY7PxcKtRYM3HyJL0IACJkU+6VkdoV9P7oqQ1Wl5jECZtT1jW2kO3GTjDJwF7KA44vfbEpZ9Ayc4/oLeasMOK86L7RflkQb4yascKUdCaUmYTXlO9j6je8XvNb5ljLKxtxRYxNIXVuQ20YClzZmFJMYJaBleImQ5/K5TwgH14pdKNcKzA5OOIOBW17kdlNw4Zs7B2oZ2FV7XCjFVDZdD+WS1yOf1oJ5i4nZGga700hrCp4yN3GPsY/tbzv0OoyFioVDJ2exe+cqSPULHrB4IxPTcrnvzZ04Jpy9qF1yW6IJg4hNcQVSNaCxdsXVEs4JQYEzvJPLzQojoysRF0rGwKVjzYTuvD9z+a1HTuLk+RJ+8fZtXNSKCExy32yel2gZzn2QgGJQLkbOe6E8tAm7uBxgTM756Qp68hpn/T603AycIsOjFKcnSihkNXRltGA9im8ARZvZ9TjHfddr6wUNk1GWFopYK/PrQHj2TFNlf4Zp8w1+XFAYjhkpypoFU7ujz/MugLIGZcPVSOu+xXqS5MvIrMZT1mZIOT63LY7eepQAkDz/xsAKvInUhpbP2wrKlj3IvO23IWUKyKXU4LuQV/O/jXPuMKqmAwo+8Nw5/jiXKdoqGqM7r4MQJDhRivIV+evekdEFbB3pTmQ3cxltSQycyIFSaCyydmfgIssa6CKXZeEc3OwYYJaQ0WQYj92N6rc/lRjxEzbbY03hUtUKmdelkNJknHX5ppA3fbptX4LKCkso2ex1/HfrK4iNbV7tMG0XluNhZsHoyPuhU1wUBRzgW8YeHVuA5/lfFuvqtpZQNtwYyzUbB4/PIJdWQalfBMoiGeWrZA7OdrzAGUnEwNmOi4rhcEWIOzsKb4aXbDmjB0EN8SBz2JjCdxYTbzYd139PS2bgXg0SypIlZC8zKXXREkp2QWwlobSPPMLJJSwlj9Qb7uLum3Q8up7fmEgKWGXokSrIktgiKatQNl0L0sWHgLZqYJiCAiru0AX4XUpWAHQHBdzSnSiDUFARA6fJWEf493/cGRK+9rkywZQbZyIprtOPY90Ez5CSbC9Sb/hFf94iowaM4uR8DYM9aeiajGet9aDxYOHK7KJyJp84PAFKgd07fTfPoIBbZNfSFJiYWAe/z91vys1jvJDMhMmCjr1o1ggQqyUopcICR910XeJrAv7GIiqh5Bk4wJ+DOzI6j+/uO403XrEa127jG3UixBt+SRAxBkPyQtBQdOfOCc9bZcM13G3LCfY9eJSXTwLAYF26t1wmJmwNOH52IbDCT9fnEbkCbtVWIMaAZmklyDNj6MpoKOS0oIDzJo9DIrGYifxAhMlkgeJU0aAKWCD7xYdA6ywKW9tFEkqR6YyyoRHG3cyMyWqyLsXBogQAJEYIMLAC70xJERY6YWjXvIv7joO/XfczSN38K4EkOptWYDkeLNuFslYg9Tt7GJWqhQKpYOfJL6D8xf+M2v1/A3f6tFg+uWV302gMRZbQndM7yIKLruOzRQMzRUNoYMLgz8AtsoBzPKGqwxXMvymhwqq7SXNSyhSEv9lqZww7zGdhv3B/4vshuT4o664M/s2O11LNZ34UmaCVeHgTAAAgAElEQVQrqyGlyZhwC/BIbKbOLLfNwvmumHEJ5fKamIhmr/u6Upyk9rUA1iSwHG/Rrqft4KIp4C4ZKaBmOoGsom0JZSic9amXJuF6FLdc7V9858um8OQSUfcXAuETSMTAzSWEDSfKtTwX9glxTIIf8CtDIiSQxSTdD0DUhbJ+YjodMXD+8yhyc7ZvpUApTWTgMill0SYm7OLRzMSEUk+YUXYsfZl/PHKy3lkhK8a+w1YF3KBAPin1rweRFMjCzmfz45/ZuIcZOE9oYNLYYAXGEk307qI5OFrkmcOGhFLAwCkSNsj8Y07Yg9xrU+qHHZ8DL998V+YpEMSOZ0KQuuVXA+MENm/hUYrJuRqGejJIaTLKNC20/XbPiudRmmH/oXGsG8xhbb//mt15DRIhi+5aWk40yNuen4Bzip9Du692OWbLyRcmYQE3fx7UFse9ANG12ps6CRqfmSQylPVXNX3/aV2OmZjwxyLgr4nlmo3B3gze9yY+IywJQX5mqygBwXmzSp4PWB1RcSoNbg5cWVcK4e+ht8AXcPm0irSuJOZGdgpmJDS9YARW+GyWJi4pI4ouzIMLG2YwjAzkMFq/1quz/DxrWD7pv4/6HLbjCZ1HvZnTqHzlY7CPPxFYsceNOahVFY4ZqKHIh2ZmTFaT2VwRmAxwOMHAhKEnryOjKxidqkBey8cfMZBsL7Sr3g79+p+N3E4lFak3fwT6VXdGGBD2+SuG43+f8bDwyixq02P49fyDyM8f9WOWTj2N6tf/CN4UzxgpW5Llkwx9hZRQdtZOFhwboUmafwP8xmnNdILGdyewXY87L7zKHLw5fs5JHm7MI7aywxexcNukM9g6n5wnmt58FTLv+Fhk/pix+6WqhZmigd58ChIhSGkKPEgo5Xj1jnPmQOJrhFGNjWIs+wxcgvtxb5e/TpvL+FqvBMJGOSvJIF48BVy968JklGxT0IrpCAda7z80jtV9GVyxxd8ozpfMBCOTV4eEknUwc2lV6IzGNqThOQdKvcTsGyA5WNi0GgG/apMZOLZ5EjFwnRRiTKJYyGoXREJZrtlwPYqCQH66FAkl68zE86DCcM8e5izyKYD95lYQRQPJtyfrrSSEgcbRKzAwkQd898V2Op9xGAITEyrIOgt3yAvtMHCcYxeEVsisuaALXCh73Rlkpejmm8o6xtxerkNaMx0Ylgu5n5c8KoTfAGhXvA1KSLaVy/iOZ7NFA47rYbA3DUWWoMgE5zOCDKBJfiPaDOOzVZw8XwrYN8Dv3PfkNcwsdN619CiFFZuBW3jiXmGI9nPOxqYXJt/IJFZwU7GRyULFAkF0rRbOh63dLsxnCyOtKTBtN1BiGAI5L+C7/MkSwa++Y0fT4PI4Cm2EeQPi82atWgo2gEJ2cYXlk4Bvw88+r4iBI4RgZDCHfIvGZ7sIb8qGB/3fjnXy41ECgHgzG84cC55rIIdz0xW4nodc6RT/PKtjBVxIBSL3r4c0wLvL0tIUjB/8bww9+qf4za7vYmD/X6HyrU/C+PHn4c6c8Q114rNOqXxExtad1xObUIbAaa8ZhgdzyKaUQNaaBEJI4MypjCQXcOqlbwCRZGiX347Rze/BYWsNnjI3wr39Y0JmmwWZV2q2bzIzyH9nuac/j9VKbE5V4Hop9Y1A7m0djdHflcK0SELZvQpArHFZnok0hI6MLSClyU1nBtl1dzGsiO14HDMtmvOT+kYghSTUYdMkEUTH/HX6CWgu77Ug9Q4jfcdvYfV7f5+T4uqqDE2VAhMTlvHI1r6pLH/NcU7zxlRxeB5FzYwqeZbdhTKhgGOf4bUmowzLdBdzLW4XF00B11fwgxtZF2ahaiGbat1JZBfkk+eLODK2gD07V0XkXO1qry8EGMMy2JOGabtclyLIMQuxSO75I3xnOwR3/Ai8Iu/uZ9iNbDdmDS2CyMAicKHskIFLaTJSuiycTVppsNklUQxFJsUH0bb9vLXWs5ki85JxfSPOVPzfUVxU8cckYwmTQlYZugyeUZMH/aKl3eHxyOvWTWzC8zXNIgQAv8jPpdWANRaBhX6H4c0LCjgneaPUY/AFhDS4CR4kbnaFbSTy61ozNKRrCNo174zclk+rqJkuzk37MzNsI6arMiYV/jd0J453NAe3/9A4CIAbdkQL276EQNxWsIPC1//eqFlB6bkfcPdTd74ZXflMy9doV0ZZrPo25Ox4oZTCXuR8GHNZZMxbkoTytuvX4VMfvgEbVnW1fM4wutot4ATnDctz9IqTQunSSs+/MbB5wD4BAwcA//GnL8MHbxNnl3WKcBbjcAsGDkgq4A5zcyTDg1k4LsX4VBE9pkCKmsDABTLGy25NfM96bQoblWkoc6fgTRyDffghVL/2cZiPf4V/nU3Xg0iNY6uZmy7bwPcIVB0ivH3PBnz8ruu4MGcRRgZyGJsqQ1p1CSCYS6UgULc1DIfs9bvx9+U340vVN6BrDc/MAA0GjhU7iuC30cvt7YXUNtg3wM8lnCuZQQOGgSg63xBCtJl4dHQeW9YWmn5f7Lq7mDk4x+UllI7IqGV4V+TfYdMkEZTV2xAvToX323Q9Mu/+RESeGQdTfcwsGOitxzKoigRZIjiX4tltb+oEvGq8AI+CnaeZyAycP1PqCkzEFgPL9oTS4qXOdF8ohLMGf8LAtQFCCC4Z6caRsXk/V6iNEG/A75ITAA8f8Bei3TuGUMhqIMSXIIo2y7Q0DRrPN7kAYJsUJrVYiMl65gUSSpEFchwinb9hNhg4Zg0tgsjAYrE5cGldael4uVJgFy2R2UhG9yWUixlOZfKcJBMT37yEl6xN9F2DhbIFz6MJssbkAq6ZhJJ6LjIV/rHyQL2AExWLLRoYVUF0gVBCmYsOVnfnkrvXAEC6BQXcAu8+xxg40bxCocJvnNU125DSZO61mfY+s2YTvBYX2NSN7+fssdlm4cQ537yFnacpTcYM7eHNFOxa280hSin2HRrHtvU93Jxmb4IMqRWC2UEmN3vpYVAr9jyKBm37Tehtwx1MZLjjCpwo42u1N3OGl8YSAmXD1S0/AytOWHPLsBwQAi4TUFflwDK/E7RdwAnOmz4yD+q5sAXmLFLfeqHT6kqAMWAiBg7wP2M7OZXtgLHgEiFY3Rdj4EQF3NBmIHYeUaPEyeVYMTh78mXIiFmrp7tAYs0eLWakpWzZDfXy2zk5ejIoHyiPqHwS8Iszx6XCGemZBQNpXWkpaWfQNRn9hWTDnjCGB7MwLBezFQp5FV98z3dtiTA2rDjryvJGNsF96u+TKTlExXV7IFC2tBeN0VdIwfWoMKpD3Ez3j4tyzcbZ6Yow/82dGYX59DdhH3kUedU/VkotJNAisCBvBko94fybLCiwevLJs5EklQscKxNBJOjX/QxIwm/FkMv4Et6FshWc34QQ31wHXUJFmSgeJgymNopIKING2fLszSybN88CXsMFXH3/SMjiHaHbwUVTwAHAJcMFLJQtTM7XUKxYLQ1MAF9ylMv4jMrW4QL6u9OQJIJC1j8RiJoC4VyjqLDz/0qDbVKG6jl48U3FfNmEqkjBiUcdK3HGLQzn2D6uODFtF/1KBfaRR7HOOwM7sYCrm52EZ+DkxRVwGV3x2b4LUMCxBV4kdcymFLgeXVS8QasZOOvJr3GhqiTdBXvVLniUolS1ElgxfuMfSCibbBi8uXOQvFg3Us8G7qtJDQxPMMsUft24g5uI9ZUysQIu3zzMW8jAFcc51iqJgaOUIls8xT2HvPqS+gU2+tqBFXNPHkaaf20GZf1VwnBa9hsfP7sAVZHQXS+0dE1BzaHCeR93IjkSIowT54qYmjewZyf/vvoSutitELATqgTqObBeeJC7j3rJG0BSufpw+WIYuNPcbcWKha5W8slVl0JKt2bLguKAMXB1R9xmmVudgP2mLbPg0l1cDIcMD7Q4JXaf3PTKsG9Ag41MKuCWE+wcXN2XCRoqjQKOXz+JrAoDrhkL54w+D/vlH2NIq0GWCKxzfP6WvOoS7vdm87DsGCdEQmr3e5H5mU8IN9ztgHQNcrly3U0cB2eKRhBWvdxgBe3oVFnI5E4PRQtNtj43YwNzoRk4AP7vIrUoPgXnmbzu8rajMYIwb6GMMnmc5SjLf6tHSjE440dR/fofwXr6mzD2fgarHvkT7NGPoFTtfFPtuF7EndWbGQU1Y6ZvsiZ02mw2Gwm0Lo7VS14vHCGII59WcXqiDIro+c1m1mRBBIvTqoAz+UYwa9AbgnN4MbAcsYSyO+e7sb7WogTKNQsSIRjqyazoe7+oCjjWfTkyOt82Awc0uqrhWRImhQCad34uJGoBA5dQwNUjBNjFzBk9yGVW2ZQ/abz58/BmohutPuMM3md+Gcbez+DWha/hFlecUdaQUIZiBNTFuVCmUwo0VYbZweOWC82kjmwhW4yRSalqJ5oEuBPHYL/8Y+529dI3oLurkQu0nBJKVzBsLg9sDI4ZoqWFDQx7JpkpqgqiC8QMXNSwIXzOiUBSeUCLsSauw83XMQYuLsmgpWkoVjxXTIY8uEnoHjdTNKDIEvJZDfIQPwcHAJBV6Ht+QfgnNtN1/FwRg91pSPXvNLiYDi2+gNt3aByqIuGaS3nWpq/L72I3+y5FCLuHOieeFBTdBNqut/ivUdAxV7KaSmhEUQLe/FlOvRBeqymlsE88yT2uXXlhSo9uLAzL5ebflgJF9qW+xTYkWKLrhjP2vNDg4ZWYf2PI6MkzcMsN1sgLOymmNBmE+MYIIog2s86pZ1C7989R+95fwHj4H2F96+O4pmcB6fmT/ONX8ZJnxgTGzbfk3hFk7vgtpN/6XyH1Drf/weBnv8ULxWaGFX4BtzLf+VqWjTdZhrrtDQ2zH0LwkLEd5kA0I44VZyKTLoa4hJIomrC4ZiCpPLLv/XOf2ayzqFJhFVKv/8W2P0czxqWZodbR0QUoMsGmNdEmj/nYv0TcnCWzhPdm92P9038N5/SzoG7713DbpRFVhyhCRl59iTCovNW1TSRPbbxpGdrVd7b1HsPOx2GJNJtZU9ZfyT3GGXshcGAVgRXw8SBvAMvmRGnZHqeSAPyZ3Z68vuJ5asuNUtVGLq2gv3tlYxDa4/JfI1jTn0U2peDo6AKKVUs4vyRCV0bDuFTFdSEr6e6cHszASN1r/PyXEF4NRibM7W+obv0sYuAi8kmB++RhbMIqtYpBO1qQ2kf3BR10r1bEW+37oKOxAF1NDsMrTkKK5eSJDCwCBq4D56eq6aCQ1ZrKNVcSTCMvYspYcVI1HPR2NkKDcs0WsnrU82A8+kX+AVoG6q7b0F2vf+bKJtatE7BixSlQx4q4Uok6Z3GI8mWemMzg4FcP4oO3X4runA6pezXc8kzkPvb0GDDEzySw141vVJqFeDN053QsVHyZqGiOgRACqbCK2wB7C+ORiIEkBk50wZX6N4AoOrpzWiRHEkAwRyARgvzIJbBO8a5g2pVvS5S+5errj2G5GAwFy+qqDNNyhZshr40CznE9PHF4Eldu6Y9YOzMEg99zRRRqY5B6h0Hick0B2KyprkjC6ABlw1VBF7ivKwWPUsyXrMRZKimVB8n1gYaPHUrhzYxGPvtCtVHAeVMnOdt4gEDZ2J69flqLMXCWs6wFHNBemDfgs9fu+ShDZD33Pf5+PWuFTZmVQkpXkM9oHZm3LBZsUxZ2UiSE+Hl9hnhdV9ZsR/zbdeNOlFYN75IehGSb3PhQ3MDEfx91Bi7BSEsZuRzy8C7Q0hT+7d5nUKxa+OW374A7cRzms9/ms99AoG7Zwz1PdxPDitmigS0xhmi5kNIUDHanMTpVAZEUpG/7KLzSNCouwTf//jl8JLYWsmtCtyAmh0FTJCiyFETfAH5x7Z7nTWUAQL/h5yDlB5Da/V7o170HtDQNUhjqiP3uTSjgfvzcOWTKGuK/rFtvXB4Zm8eG1V0R52F36lRidEmmNoHafX8NqCkoa7ZDHtkFZcPVEfOROBzHjZiYxM9tIJo9GEZ3XvdHICgNGnkMjz5/HrVyBjcQwhlGAYB66Rsh5duTV7MsOEDEwDmQh3b4earh49kx4Z57CcpIdHaPQdQIZg365ZJQmrYbmZcNox25fjuYmq/h7geONN2HDvVk8IG38Ax+pyhXbeQyGvq6Ujg9zkuvlwsXFQMnEYKtw9148fQsaqbbNgP3+stX411v3BTZrHfnWzFwF97IpFY/eQa76wxcTNc9V7aCCwo1K0Kq/KS+HYcl/oLnHNsPavvD2MbDn0MOUUckiYhd85rNwHVSiLEZOF1JjixYSZSqNlKaLJyjysRmAwCfOXDnz8GdPh385y2Mc1LUctUSzr/ZL+0Vysv0694NKd0VsdknWjpiAFJ/B5wjY8WwIUskMXeI2obwmDjj9OPAsWkcqxc0IsmmNc1bJzNUYxJK6nniHLhYAdeT0/z8xSbzCUInypicOYmBc8fFcitAbD4wG+qYq4ILM8kPQLvijsT3Gi7UmcwZCDFwAgmltzCemMXIcOjkLMo1G7t3iiU1vV0pbFImMPDA76P6rU+i/MWPCq3Y42AMXM44LzwW1ctvD/6/XXcwkYwyPAfHzJeY3F00fyuvvrRtCVYqNl/lM3DL26fsyqjtFXCC80YkJX6lzEsYdu9YhXffnMykLCcGutPYs3NVpDkK+DLKJCMoaXAjbLSewct4ZaRIjDlQU5B613H3bVyDkq8lhBBIXYM46QygmBmBPLQF2uW3IffzfwZ1122R/DTt6jvrzohRJDFwNdNBxXDQv4Ks51BvBlPzDYWNlO+HofgyXl2LroWyJOH2G9bhhu3J+YeEEGTTSuQ6JwpbB/wIDOWS1zUeKyuQuld1vBFO6wqyKSWyrtiOiy//8Bjuf5lniWhxEtS1MTFbDWIqgse9tLf1C9oGnNPPwnzkC6j863+HfTx5xMR2KRSlYbQkZOAE7C/gX19cj0bMLRgeeGoUdz88BiMnYIBlBdpV7bFvQHS2vjck12XXHCLJwkKtWZxAVTCK0WDglnMGTrxP8U25lu45cfj0HJ47PoOq4cCyPe6/ybkaHnr27LJ8plLNRi6toq8rhVLVXjES4qJi4AA/A+TAMT/ct90CTjRH0pPTUK7Zvu2wUHv9KijgTAeyRJDWZWRTipCBu3yTL39zTh8AvFjuTroLpexmnJiew09JcmT2itYWUL3nT6CsvwpuwsntzYwCsS5kwMAxJzvHarhQdsLA1YMjCbCoWbOlolyzEufUWHHCNiDu9GnU7vtr4eaMFFYhc/tvBvNbparNmU5Qowzzya9xj5X6RqBuvxmAfywTINJUcGOv582dg9zX2LxUDQfZVPL8j/XsPYLCiuCOO38Ke//pULAJFjUwrOlRJPXvKzEJJa0tAHF3RT0LokS/h3D3OknaI9o0xQvXBgMX6pZOnoB97HHuscrqRgHnuNRnSOvM2XTRwK6NfcHrTvRejaHZZwAAjqQjf/OHI4xnHNl0Y3mNMHCaDNN2QPQspO413FriTh6HIphVYNh3aBzZlIJdm+LSVh+9GeBDuR9B9urrgWPCeOBvkf35PwVJJVtss/MsO8sXutLARshDjdmOdofLpf71QMyUxw11xUssAy6jgXounOOC32grz3QkoWFiEi7glp+BO3W+dVe1XVbtlS7grrl0AAMDeUxNrVxnmEGRJXz4zh3c7WldEZqYAACRFIxiFTZhtOPXk4e2CI0eWjFwYVQMG2tDxQBJ5ZDa8z5oV7wV7vhRSIVVkBNMJ1TFvxaL5NhAg2FaCXTnNJyZjP6mQXSBgN34uTaK+FxaRbnW+J3kwc2++ZLdOO8pgNTr/0PTkO5OEGdcDh6fQc10MGvoIIWeqJqDUjhz51E1nEgMCbWNpnFJQrg2jB99DsrwTmFciRMyMaELE6C1YvQOshLE78QRbsCGvRkopZiY84vu/XO9uEmJHvPq9ps7yobMh8xpwmxkSlMCh2dl3ZVcXJRz5jnQGz8g3CuIzNCaSSip50ScWduB6XiJ8Rp9BR1zL5pwPS/RcKcdMF+D33n/1ULDlEcOnsfnvnsYpZotVLZ0+lpr+rOR6yQzcVpOXFQMHABsHWlIFNot4ERgG8iFpCiBhYmO9NMrAaNutU8I4WQ9NdOBablBBpwof0nZfAMK+TTGywTKCG/C4E2fhvX0NxNf35nhWRi2CVSrU6h87eMof+5XYH/rD3G1djLR+CQOSmlgYqKpFybIu1SzEzMEAxtswwH1PNQe/N+J0Qx0Ydwv7uqmH6WazTFw5hNfFUh0AP11HwSpd33ZLFajgBMEm8YKAdEsWuO+58UyufVXIlPwC4OggBM0MOwEBs71PBhWNDOmHfkkEDIAaGpkIpj/ixdwtgdZIsFi7y1MoPb9vwTizrGEBEVJ47X9c8h2PN/JKyQPJHs+iE+XbsGXK7tx+qr/xFmVxyFLDQOhcJZTqi6hBNDxHFzNdHDg6DSu3z6UGJEiH/0RClJ01pWaZZhPfb3p+2VdQn2aL+Di8z6B1KmFtEUWzcGFCjjmnNuV1eCePcRviiSlo/mwuEFGbaUklG242InO0TiULXsSi4GLGZkmDBwAHLGTTYOaIYkB0dtg4BgqNRs5gexcynRD3XRdy99LZIjEZniS5MbLgZ68jmIlOpcqMhXrBNmUGpFQElmBfvU7Ivd5IXujkGlfLOIGSfsP+U7DpZotvBbVXvghKGik4WoffzxSZALw2dkmM3z+Aw3YL/1I/KdQjIAjUnMMbEps6CVd24oVC6bl4uar1uKHte0wSOP4kAqrOmLfgMbcdXyEgUkoAfgMHOHnw5N8HSqGTxSEj6GUwIjIPvIIyl/4Tyj/06/D2Pevbbt0U0oTg7zZZ/EoxUKTiKF2UK7Z0FQp8Vxg391iIiZEr5VPq8H5PrsMDKIIF10Bt34oH3Te23GhTEJ4Q0f0LEhcG009oYX5K4ma5QQblq5MtIBjCwVzmYoHQwO+WUVPXodhuaC73gaQzhZ5b5bvkBqWnwFmPfqFwAiFzp3FL+Z+jKtPfBbO+NGWz+vni1CkdRm6KsOyvUVZ9i8FpaqdmNXGiqKK4fjuaMXmx4E3fx5mfUELMzwA4M6OCnPflK03Qom5WfWEjDbasfevGrZw/o1SCuOxf+HcLiEr0Pe8DyldBkGDYZQFr2XPjQsbGGxBD7+uJ2ImOQkoQvmLHUooY+dh+GLgVRdQ/e7/K7QAV7a+LmCkemJB4nOl+oYrdCFcv6oLR7EO+8xLkBlsz/CAzcENhRi4cAiqaEPRrIB75sgULMdLlE9Sqwbrue8K/2YffgiuQBrJYNoudFiQZwXGNjGnPl2VkUurLYfLJZET5dw5UMf/jdma1ZXVYAtmdJX1V7YM7468L80/do2YC+VyopDVYFhuS1kMyXQDarINvLLhGqTe8KFlfW+vFTRj4GzHwwtV8cwPdx2OIWkGSW2TgaPUjwDILiFGQWRYwRodK2kc053TfQl6pbEBFc2kd4JsKiqhBAD18rcifft/gXbFHfgX8xacHLhp0e9ZhHCOZcWw8dzxaWj1UQrazTdFyJG9uCV1KHJdtQ/z11R1y25k3vF/4we5d+Blspk3xKrDeuEB0JhaiVIaYeA6kU8C/PWFgbFvV27txztuvgx/Mvs23G9ehQdxI9J3/m5bzrthsCI27naa0pTA2InoWaFTZpKMsmo6yMSUPHEGzjn7Ioy9n/Wvs64N+/n72oqsAgDHpaAUTSWUAIQB752gVBX7DzCwxvpiIibC8Or7vFxGDWSsK2VkctEVcIosYfMan4VLYlDaQXfshGvX+e+VRM10gs1JV1bDQqhzwGyM2ecQhXNL+YEG06ivRupNv8pl8DRFdY6b1zEtF92axw+dAygY51D79qdQ+8HfBYxU0ucCUGfgOg8BXw6Uq3aihLLBwNmwjz3W1vPZL+1F7diTsB0vsohYT30TvgglBDUN/Yaf456jO6cFv6uQgYsVcL6Ukd+8OqeegSsIINWuuANS1yAkQpDS5aCAI6kcSPxC4rnwBIVrEF2gd87AdWVVECK24A4eJyjgaGk64qJlOX4oKLUN1L7/l8LmhdQ7gtSNDffIsMQFQKC5D18Iw2tLs+H/MPIZNRIhAPibKcvx/Ew/UQE3dRI0XlzXsf/QOPoLKWxZKzZDsA49KCxWAQCUwnj0i4lh4ZbtYas6ARL7O8n2inPNCilMtyrg0l18sU69IMg6KOBUT5h/2Il8EkBw7IZz4Jgz5XKBmWO1moMjhEDqFbNw2pVvR+rWj4CoK2Mr/2pHswJuoWxi1O1DJRdluuQ125F9zycjgdQRSMkSNq1NBs6wXLgeberc2wpiR1sTskRQyC2+qdzO6wLRIsGMjTR0imy64WrIQAiBsu4KqNf9LJ6sDEek4suBvkIKNdNF1bDx9MtTcFyKG3f5648xshui0Ot3Zp7B4Lw/z+1OnxY7vW6/CYQQzHZvx93mzch98G+QvuO3uOejlVk4saxG16OgANR6jIB7XuxAmQSmBosfFxNzvrfAUE8aN121Fhs3r8e9lV04nL6mqaFKElgRG2d6U7o/A8ca4UI3ytMH4FGK6fmoeqNq2Fyuazo0A0ddB6bAgM0+wpt+iRCMPCSYmDRYrKUVQeWajVw6+fzLx1xXFws/I9g3lOnJ6yBk6cVnEi66Ag4Admzoga7KS2Pg6gvt3KvYyMQ3+vAPep6Bq4d453VQSuEJNrGkayA0dG1B3XQ9Mnf+Hki6facsdzYqpTNsF+u0hYR7+3COPw7zsS8l/p0VDn6QdzSA9ZVCuZZcwEn1uUOzWoNzkt90ksIqQBYUTo9+HgVSDZ7XnT4l3LTq17xTuHiHjXVErJi3MBHpHFZNh9uIUMeEue9u/j3n+qBd+bbg3/ENVjsFIyB2rBIVcCIGTpYkdGWb5+UQNcWZn/gGLo3gZz9TRoJ14F6hCxnJ9SH91v8KEurAFmKbn6BjHrsQ7tjQA02V0N3m2jJQSGF4IBdxHmObKbq/PfcAACAASURBVNN2/cIo3gm2DXizvET12NkFvHh6Drt3is0BqFUVymLD8CaOwTkqbjpUDRvbVP43VYYvE75efyGFydkad3scIhkliwpga1Z25hDgxAoiLSOUdrdCSlNCLpQrMwMHNOSfzaDGA4wlBambPgz9+vcs28zQaxEZXUmMYfGvuQQzV/0S1G03QV6zHfqe9yF9x38DSeWg73k/F9QN1ONPEiRsTJXTioFjcsGlFCXdec13HAzlMM4UG462KwU2LhFugDVm0hd3rOXSqjCUHPCvLxTNY2oWg4ZBkol9L4xjVW8Gl230rxdlbQDa9T8rftyhL8M88F2hAkHqXx/IPPOsKCUSlOHLoGy4iru/dfD7EdUPayCrigyvMsc3BUNyfBEUWUJXRuXcSSfn/DzDvkIKhBDcdcc2FHJa2w3COLpzGhRZwprYvFVKk+FR2giyX8cXcN7EMbxw4DB+5x/2YWyy0ZiPz7SzzyNLBIblwn7hfqEruzv+cqC0aAbWZBDFCABAb56ft6bUg3Xw+6je+//4ck2r9XWoVLWakjqs+BUZzXQCxuDlMipkSVrRGISL8gpy2/Xr8Me/dH1kiLNT5NIqFJk0ZzwuNANnuQ0JZVZFzXRg1y9QbCNayGp+Rz6uB5c1kHSB02bLg5uQedfHIfWtj9zdoRKMrKCIjckoTcvFWkU8DxaGfeLJRFlk2P4+GD5/BY1MLNuFabtNT/aMrqKw8BL3vbqyjuzPfEKYDUasCj6QewT5+ubAfOob/H2yvVB33CJ8ze6cjmLVhuN6YlaMupFCpmo4XOfMOnhf1Na9Dn3PL0RMReIbLHGIanIB11pCKe4uirrXcQgDvUNzcH6mjCzM1IOeReaO3+IYQFXx873YoDdbcHvy0QLutuvX4ZO/dEOiXj+O9996KT76s9EiJOzgRYgEeZDPmIs7vNZMB5/+9iH0daVw+/W8yx4AWM/fL5yljMN8/Cuggvudna5gh85fiOURcdDxpjVdmJyvtQy1ltfwJhb2kUdAHQvFij8w7p3gzUvUTdcLM5VaIa0rMEwnkGIvuwtltj0GDvBNCB6Tb8C01A95ZBcy7/gY1JBb3/+pSKf8Ilt0DWDnf1dfP1Jv/BAyb/8daLtuC4wRiKojfcuvRVwhAUC59PWJrydL/oazFQNXrisIcktk4DxKI3OSK5kBF35dIM7A+etxu+tVHNmUAtvxhNdfVuwmNToXCyY7Ozo2j5dH57Fn51BwLS5VLWhXvBXqZbdyjyPUg/XEV4RGSOq2m4L/z2VUOC4Nituwuy6DN30qIpN06gZsikzEcTS960C0ZLk0IJbWTszV0F9IBfPa+YyGP7rrenzwNrEUuBUyKRWf+vANuHFX9BoZt/0nhVVCUkI5+QgoBR471LieMjO0MAgh/nWsOgfzmW+L34zrCKMW4mBFZdIxqmu+XD88b2099Q2Y+78M9+wh2M/f5yttmmSSAvVstiZ7upQmQ5YISrWlz9oBDUavb5liEERoWcDNzc3h/2fvzaMkueoz0e/Gnmtl7d219L6pu9XdklpIrQWtSAhtgIwQjPDY7M94OOOH7Wc/M7yxPcwZOMyz3/jhwR6PeR4bgwHbILG1ABlhJLQgIbS2ulu9VXXtS1blHuv7I/JGRsS9kZlVlZWtauo7R+e0MrMyorIi497f7/ctH/rQh3D77bfj7rvvxm/+5m9ibs7dkD3//PO45557cPvtt+P9738/ZmfZjeGFgCQK6MnU/zI1AiEkGObdhOao3ShXagL92qbCvXjm8xVoioiYKvEpZOle73cEgjd9IdnlbjT23waipWCmNuC/525FcQOnaxOewOkWNpAmrgOjzLWWB2oUyljVxARorxNlvk6IN0VCkzBceJl5fC6zD0RSIF9yUy1M1Ydd8gQGTnwN5vhrsDgW/spld0ULoavTUirm5U/FXCGy4zhVExMfldFxuEWNOLQf0pbLA4+xE7jmrv8Cx3KYT6HkO2t1JlVuhlLgZ7k6OF8BZ1rIiJzriwiIv/W3It0B/RTVmcUyOpIKEyOx1HtLXJOYPEr6naXXNK9zG9bB/d0jr2FusYIP372Pr2ss56G/cJR53MywxZ5TWkT58b9jNs+5qXF0k5CJCBEgcQowANg15BbhJ0b432MKecfVLDW7UoB55lksFHVsTJhcSu9S6ZMUMUVESbc8fUbLJ3BNUigBgAgivlu8FI8NfgDxOz7BLdZ/GRFXJTgO34acfgfDbr1+iL1bEHvbb0PoHATRUlAOvg3yruvrHrOZTNFC1XFxJRo4nt5pdmH1C7h0XIFAiNeEAtzPVxRIpOFRI4TDvP2gxW6rKZQ0auF7T7k066v2bahNR0oGCCFQj7wH0rYrm3tDSQ1MwmlWWq76O4n9OyFwqLeGj81gWlXqoSQsmT5JkeGY20zNFQMRM4DbdF9JUdybiTFujWHNGiEE8u4bmJ/tm/s5RFh46pVJb4IcpaXXFBF7Zn/IDgd8MDn39TDodzKKQgkEowTs/CyTp2lNHOd6CfhRj1UFuJ9JMi6v2MSETvA8Omt69cK8G36rCSH44Ac/iKNHj+Lhhx/G8PAwPve5z8FxHPzO7/wOPvWpT+Ho0aM4fPgwPve5z63KSV4o+KcB3M3ywnjDqn81EZzAVTcV1a5f1mfFztO/kWowZEyVoCoisrngZoTIKrRr3ovkr/4Zxo/8Lk6aGwCOgNgKTeDKuoU+Z6ap8w+7B3q/V1W/4ubA0Qlc+z7nXJ0Qb4ou1cCgcYZ5/GzM3ewSQqDe8H6u6D52/hmUvv1Z5nGS6oG8O0LfgWZ1me4EpaxbsJ2glsPOjnGpHxrHPtgt4GqbnaYplBWWQmnnmzMxAapFVB0KJcB3onRCE7iNhD2m0DnI1Zx5x/YtsHOr2DFXQ4sp34myNoF78uUJ/PTlSdx97ZbIIGD9xaOAEaSRmI6A0Use5G50zJM/he5zpTRMG915NtdR3bg9Mnpg84YUFEnA8QYFHNGS3HMwXn0MiwUdV8inmJgJkuzmCu2bgVadwNHioPUUSvfabqaAM0wLiwV91Tfvaw2U+s/TwWXzFUgiYbr+YUgDlyDxrk8j+at/BvWq+7nxAX4oktCQil/wipIVTOAoq6W6ppqWjWy+sqoRAoBL7e8I3T8rddz9mkHSZ9gVhkc3bTGFMpVQIIkEMwtl7BjsQF8m5q3FdHNNiADtxg9Fmtb4Ie+4KjAdS8bD70WgXHo783Pm2ee9jFHKbJJFYckGJhRhdonjOJjMltC3wmFDM/AmcL41Xd51LRCy+1ftEg4o5zCfq+C1c27jlUehBICdyhQ2l+rni1qjbJM7DLq3C2cV+tHdUSuC9OceYiKxAKDyzNcjM1QN03XHrteUB9zifqUUynxoMt3doWE+VwlQqluFhgVcJpPBVVdd5f3/oUOHMDY2hhdffBGqquLwYdfi+YEHHsD3vldff7HW4N9MEi0FooY2MpbJnW61C+WKyRZw1U1FNq97Ext7cYr5WSFdc/nijfYDx6GOeZ2s8549NxowRTB0HRmTLeBGCY+Cxy/gij4jDCU0rWgH6Ai9HoXyEpyCiOBmYNGJ47Rdoy4IWgrajR/kvwHHpEK97B4QjnaOojNEd62ny+RRGc2z7MRP7N/JzVaLhydwPAolp4ERPq7jOHCKnAlckh/MnEmpXv5iFIRMfSdKw7TQz5kCCz186qF3bN/3YDU75hrVwNEogb7tYIT0i5OwS4uYzpbwt4+8hh1DHbjrms3ht3JfGzFZfbKyA1N6HOrVDwCcqa7+84ehv/IoAGB8toDdMmsjHdsWnUcniQK2DaRxfLR+AQe4BgJhWOPH0F14HW8y2fBcN7ZgeVOD2gSu2ghqMYVSllxmg9/tLwq0a7zam/e1Brpu8aIEsnm3+bjUEOhGaCaSxtt8NSge6yHcaMvmKnCc1Y0QqB1bCWrgKuay9W9ArZAtcCZwdFrZagqlQIj3fTlSdduNaxIEEqS3EUlB7LaPY0StHw1As1QpPLt433tJ264ESYZzNR3oLz0CwA3xBgAVFa4+ubkCTkGuoHt0TBohEJ7ArQaokZM/t81trLERLbekT0NTRPz0lUkv0incTLHzs3ir86OGx7XnR2FzGDh+VBqYmAAurXZ2sQxrYRLGaz+JeKMCKs98nftUmNYYhVScNe1ZKvwaOMC991u201BqsBws6Ztt2za+/OUv4+abb8b4+DgGBmqbuq6uLti2jWy28WK+VuDf0BFCuBtmaz74ZXYcB3/3yGs4M7HIvLaVMC0buml7bkAd8XABV/E2/HwKZZ/3786k4pm18OCJTDt6gDDP29Th+CZ8KWMWIoKLJNFSGJc4xd9SJnBtzILLNzGB22EcYx47Lu3GfCG4IZGG9kO58r6GxyTpPki7rqn7mrDNPl+X6W7Ciz4nTwpeILvIETMDrkbFv7kisTQQtnPnNDAKZQOiQDzzGaeSB8JxA5Iaaa/uuaIW6jlRcjRwPhG1btjo5UyB/SHnUcdeqOYozS5WVnECF9IjKDHu39IaexVf/I7b4fzwXXsjQ0zt7BhLFxVEPKofxOxCGUKyG+o1/4b7s5Wf/C2M089iZGIBOyX2+xjfxtKA/dg1nMHIVD7SUdA7nb4dyCs9zOO/4nwXisMubNKO5dEnAXcCV6qYNQpli10oAbdh9syxSXzmS895//3sGNsoo13jnjZs3tcSaIOHP4HTvftAK6HIIowGTI6aicnyi5J0QgYBPCo4vQbaMYUNN2Mr+somcHTjHo4SAPwUytYWcID7WYkCweE97j5FIATJmMTQ24iawPe0u/Al+X4oV97nFlK+xo9y6C7GmZRu4v2TFiKIUPbfypyHceIJOJYBs9pQTObPIewaTTr6IcQbG79lUioc1PZoNELAHzGzWvDrrv2Q97A0ymF7FDdsl/Dsa1PIlwxYthNoBFuTJ1H85z9Ep8Oa1dmEbXzw6PF+ePmjda7TnrSGim6h+Mw3ACd6L2i8+his6dPM415R1eBaTcZkj1q7XOSKwby57iYzU5eDJbWZ/viP/xjxeBwPPvggvv/977fkBLq7+fScNwIGN6RRenYUyXQMMVXC9MAW5ELjc60wjq7elPf/84tlPPrceUiyhCsvbRzkulzQC7KnO4He3hTSGbeLYxGCnp4ksnkdA30p9PamMFaeQ/iSzAwOI1E97/7uJI6dnUOv7/fwQ1bdzfDAQAbl/i0ojwTH5klzBoletwvWY7PForZxG0ozvQifhFya4R6TiAIEAgwPZmBWb8ZaTI08v1bDEdyN2NZNXdyRuzE/gR6dnVZMdx1AfsFgz/O292Kxrx9T3/4CBPA3ED03vhupfv5UiqK724EoEFQsB729KZixnQjHszsLk+jpjmOi2vkf2JBGb28KVjGHHCdfrO+ya6H0sJ9rT2ccpYqJnp6k1wk3eodRGQ0Wrkl73vvbA4BDBKTiCvr6XIOVysQMwnYZcke393wYmwddyimRpMi/t9MVw2lBDEwxnXIOXUkCMZaEaTvc67Br+x7E6lxDwxvTcBygaLoNks2DHatyzZVoN1dTau+/dS9yoWYQOfczHDt3Ce6/dRcu2dkXfhsPC2dPoxh6TBveAxU9yFdM9xi9d2HOyiH7eLhD6aDy6BfQk96PmBDeHMWhDuyAVmcqfOX+jXjo8TOYzuu4Yij6+v32T07h2PwWvCMRLKwlwn4fEvuuQ//uPZHv1QhdmZibaVfVumzsS7f873jXddvw1Mu1psHpsUU8/vIE7rg+SIfVT7lU3h1butHb3XyeXTvQrvspDwPVzbPi/w5UkSsZ2Lyh9X+zuCbDEUjd97WJgJgqYuOG5p2YecikVJRNG729Kbx41m2u7Nzajd7e1d3vbOhN4uT5Re93LOsWEjF52Z8lkavGMZLIvIdDBBACbBrqhCi0dlp695u3Y3q+iG2ba1OxjpQG3XaY8ygZFrSuzRi6zdW52eUC9JlRiPEU5C626Z6oGlPZJHgt2NfeibPPPRR0NDTKSBbPIZl2m3/dFXb6ltyyr6nPl65tqH6Wvzjt3hv2bO9Fb8/S7w1L+ZvSNUfRgteC03MlRp/YCGMuaF51S+YsjlY24IUz7rXb35NEb28K+Zf/FdPf+nwgtodCHdiJZ2bTOFAJOmuL08fQe93bIs9NHXELwf7qfpWHrcOd6BMWgNNPNvhNHVhP/T36f+0/Bxgc56vF8vBA/TW9rzuBV8/Or+jeYzquqzV9jx3Vz95A6++5TRdwn/nMZ3D27Fl84QtfgCAI2LhxI8bGahqYubk51xQjs7TsitnZ/KpwQ1sBpXpPOnlmFhu64jCS7BQpd/YYrOla7tLZCfffL5yYxvR0RB5TC0CzOizd8o6jKSLGpnI4MzIP07KhCATT0zlUZtnOes5JoVj9uZgsYHahjKmpRS5tZWbO3R4WciUgtRFAsICbP3MCxe59AMCdfFjpQSzMsQtiaXqU+xnNzBehKRJmZvIo5N2uxfRsflU/Tz/Gp/MgBCjmyyhzJkGV537IPCZ0DqIS34iZs1P88xx8E46mp3HD4sOII9iJETIbUeq7DOUmfr+OpIKxqRymp3NwHNGdivkcBR1Tx9TpMxibqBZdZQPT0zkYJ55gdUapXmTtNAjnuI7lOvidH1/wOkl2sh9AsICbP/s6ip21zfbsfBGaInqfgTnKLni2lon8WxLLLcpOj8yjO1FHcJzqDejeAGD61OsQ+7bBqpSQBEuhzIk9yNf5jKWqqcfPXnLva4qAVbnmStVrasp3TZsbDgB4JPC64uvPIU62QhNJ3fMoHWcnq3bvLnTMKRibrh3D2Xsn5JlJhm7pWAYG5n/OvIe48RIQUap77O6EDIEQPPPSODZ186lA56fz+J8Pv4yMvBt3O89xizYKkuwGOfyelX3ulo1S2cTElPsepWKl5X/Ha/f24dq9taL6r7/zKl44OcMc5+z5LAgAxzDbdv9qBr29qQt6PpUqfW18ahHTPcHrZiZbwp5N0feI5UIAkC/odd93eq6AuFr/mm8G6biCiZkCpqdzODNapZC14RrQRIJcUcfY+AJkSUBZNyGS+vePeqDShYlpdv2dnnU/q7lZvu5oJdgzmMaewXTgmDFFxMx8iTmP7GIZ/ZlY8HF1ALAA8NY2x4EsCd466oc4fBDm68EiYfaFJzA95Gq2yRSrfzMyW5v6fIUqdfL0SBZdcRknz81DFAiItfTrYqnfX2/NmWH/jsLONwNP/UPgMfXsk+hK3oeHf+zqom3dwOh3/xf0577JP4CkQrj6fXjmyz/FgdDwvPj6LzA1tRBJiZ+Zc/cvhVwZ0xGcQAkObo+9ADCutQThiWhl7ATGf/LdQF7k6LjLiDP1+p+1CDeEe2JyIZLx0gjTc8XAPYRU2WOnR7O4JELDDrga1qUOtJo6wz/5kz/BSy+9hM9//vNQFLeruX//fpTLZfzsZ27g4Ve+8hXccccdSzr4Gx3hcF+Ba/d9KuDmRqmIE3PFpkTuy0WJ6jt89KB0ws2C80K8Uyocy4TDsXEX0jU6UyapwLTsyLyXss+KWOgaZp63Z10jE9OysVHgHKt7E0pKmF8OOIvTgdwyCr97Yi2Atb0ulMmYzM3scWyTqzeSdhxBJqWhUDYjz/V1cwP+OX5/UE8mylCv/7WGAnyKMK1X5GjTrJmzjBbN5DheSpsPRepMqEaloQ4uZGQSdqzi8d/ZHLcaqAFAPUovUN+JssueZaJeSbIbJEwBjTj2yfPuzX71TUxq14k4sJfJXyS2hcuUs56+lQfHsWGOsUJyceCSgPAbqBrrXP9vITaZrSYO7Wv4Gk2RsHlDMtKJ0jAt/MVDLyOmiPj3D16DFwy+jq96gtBu+nDDv1MjxFQJDmpU41abmPAw3JvEYtFgdA6zC2VkUuqyXQAvVlBqdym05pSq5jOdq0WhbCIHrhWUwE6fIdLsYgXpuLwiKmOz8Cjo1WNXDGtFGjhFEiCJAl8DVzZabmBSD1H6pFwDd8EwCCFMbi4FN+D63C9gmhZUGFAWRpjnmzFSAcBENk3OFQMRAquJKAolAEi7rmUiOVBexH0DY5jKFiHDxPDxr0QWbyTRifg9v4+c2o+XC13QneB7OZU87JmzkefmUSjr3Ke7nTlcrrDUSOXKd3K9GSrPfTOwL29eA+eutVTfuRzkS3rgODFVQkKTVsWJsuGVc+LECXzhC1/A1NQUHnjgAdx777342Mc+BkEQ8NnPfhZ/+Id/iNtuuw3PPPMMPvGJT7T8BC8kwl84ITPg6nf80ItwFmsGCn7++YkmxP3LBd1Yaz6NEy3g6OY3k1TczK9Q14LEOgKZX+HfM4yybkGVRQiEQOxmCzga5l2qmBgU+QUclBjyTojr7dhwFtmJXclnzlLLgWunC6Ue6VZkHH+cqymUd1xds4+OKNzzJQN2sg/xd/5HaDd8AMrhdyB+7x9AanIBAFgnK552ynj1R54RTEKT4NgmzJEXmdfxwjwp6AYrkAXHM00JZcEVK6HoAl7zIB5dwCVjMkSBNHai5AaZuwUczwVV7KlTOFRBNz+nxlxKx2qZDnhB3n5BuSBACoc+A7hCOV23gLPnRtnsN0mB2LsN3WkNC3k9YAhDBAmxWz/GbUaFIQ1d2vA1ALBzKINT4zmu8czXfvQ6RqcLeP+dl2BjdwJTPdHW38qhu5b0XYgCvXfQRlarc+B4GOp1i05/AC7QnvyvtYgoExNaAK+KBk4SGq4jhbLZkqLEb4Dmhni35xqoGV25n+NKNXCEas94MQIlo+URAvWQisnIF4Nra8WwoBt2XcMxHuheKQxpaH9AQwcATm4GJDeOy9XTICH9FYlnPEfvhucfd5vC9LqYmi+1xcAE4DcNKYRYGtKWK5jH988cxW+kvo+Pp48iPsmyPADgnNmN2L3/AWLPFoxO52FBxEmD1ajXixPwcuCk6HJEPnYUYZYuiaWh7L8N6rUPMq938rOBfVquqIOgceSFP29wueDlza1WFlzDAm7nzp147bXXcPToUXzzm9/EN7/5TXz+858HAFx++eV4+OGH8cgjj+CLX/wienpYkfpaRtg0gggCxN4tzOusqVPev7O5CgjcYODXGthrU0zOhRUsjeFlpfk2J+m4gsWiUZvAJVXYnGKDpIM3HF4WnB8Vw/JuALyCwVmcgmOUoWdnkBBCF76oQOjYAFkSMeOwuieekYm/gKOb3XabmPA6eo5luha2IYjDl0JI9SCTCk5sw8gVDaRispsTt/t6qJffC7Fny5LOrTOpBt5f2sy6BFrnXwbJngeBW+BbEycAPXSNyVrdziF3Asct4MYDna7wBog7gUvyIwQAV6yeSapMrAXzOo6RSXbsHF4+Mxc5BW6EdEIGIa64XFNEJgS9VZBEAZJIUA5NamVO7tl2eQodTrQhknWeM33bsAtElLzCYT4XXDiIrCJ+5+9C3nsLs1nxXpPuDzjV1sPu4QxMy8bp8eB5vnhqFj/42ShuuWIIB7a7a8O2Q1dgymJ1AELfNihX3NvU8RqBdpvnqr93OyZwg30u9WWEV8CtG5gwkCU3WNsfVQLAt3bVt/teDhRZaOhmnG/RBC6TVJErGjAt240kadM1QNdy2sQt62Zdc4hmkIjJ/BiBcms+q2aRjMvIl0zY/slKKHOrWXQk3L1SGERLcuNLtKmXcY16gnlc2nJ5026pAqnFPDiOg8n5EvraYGACuEH2SpVSywPPJRgAdssT2CTxc32nO/bivy3eDlN1mSO0eXXM4LCC6hVw1e9kOHOVwtFLME8/yzyuHLoTRFYhDeyB0MeJ4pk54/07V3KZQY2mnck6uYfNIlcyvKxBiq60hrkLMYH7ZYamiFBlMRhyzQl89LveZPMVpBIKtm1M48QI69ITxunxRfz+Xz655GldSadh1xwKpW8Cx40QCHWMPNpaROFR0S1vE0SUGKfj5MCePw/D94XxjtU9BFK9eUxZzRVwxYrpbZ4lkYAQoNLGCVy+ZHBH7cZrP3YnmiGoV7wDQP1C2LYdFJZI9eAhk1JQrJi1EOhNB0HSLJ1wYOaniKmu9TKXPjm0v25kQZxTwJFEJzuBDgWyF8tmoPDhh3jXN2vpzWg4PpKt62zIo1DOjZ7Ff/3K8xiSllfAiYLgTbu601rLbcz9UGXRc3elELo3c2mqifHnIt8nij4J1CaI05zOH5E1aNe9D/Ff+U+YS7OFvHLpW+r/Aj7sHK4GevvuYYsFHf/z269isDeB+2+qLa4HdvTgMTM0+ZVjiN38URChNQWzfwLnFsurv8yl4wo6kgpGp2sFnO04mFusoCvd+mnSWgchpJo1GfyOz/vo/62GS6GMXkdsx8FCwaU7rhR+Vks7QryZ4+ZoAbeyCRzg5rxFxQgk20mhjCmwHSfACqGxAktdV9MJOVLiwmOmdI49wS1keC6O9ZCpNmAXCjoqhoX+zvZM4AB3P8ubwAGAOLAHOY1tikZBufxenN7+AAxI3nuOTNMCjmXHWBMng+YwPuiGDUUWItdb88xzgBX6W6mJQDxE2GkUAOzpM96/3alY4yLfC4xfZhacYVqo6BY7getYnTDv9QKuDgghgXBfABB5OrhAAefmr+0czuDcVK6hvfbkvDsZOTW2tNgBGsioBSZwLkd8drGMZEyGLIncEG9/hAAAZKqbVj81L3As3fKyqwBA7GI5x9bcKKyZsCdizbpdlgRMmkufwBFCoMhiWzVwLoUy+AV0TB36zx9mXituOuhdE+GJrR+FsgEH9bPlmkG4SCREgHLpbczrBvMvoU9zz8M6y9IfeFx/P2IaS3EiROBmxlELf6e6uDaiUEaFeFO8/fptmMuV8fffZwXjFLwJ3IBawP/xwAFsVtjGSaMIAQr6+a52x1xTJKaAI4RA4kzhnNNPBqac3uO2BWv8NeZxqVrAUXvq6Xn+wgkAYucAfph6O/5afxukbVdC6N4E5U2/AnnvzU3/LsmYjIGehMc4cBwHf/2dxtq4sAAAIABJREFUV1Esm/jIPfsg+/J9ZEmEsP0Ivlm+Clm5H8fMQcTv/SRzT1oJKCthPl9py/SNYrg3GSjgFvI6LNtBzzqFkot4KKoEcNdDAqCno/WTCVmqnwM3Nl1AqWJh60a+Q+5SQCeIo1MF6KbdtgIuoUmQxBpNr1KVP6wEyZjsRQb4kS+1VwPnBXD7isnaBG5p55GKu4HNNue+KnJYLbLO7s+E3q1NUfP9cKm1OqbaGCFAoXEaJhSECHi8+504bTUo4kQJ2s0fhXr4HdBU9zOnU73RqQJURcSk3QFTC5kZOhasMTZ6CaiGzdfJgDNOPME8Jm+/CsSXbcplxvl0d3nOno4H2ggoLWZRefprKP3or7hN0ijkq9q58ACgO62hVLECzYdWYL2Aa4DOpBKYTIm9bAFnz5zxzDiyuQo6kyp2DXfAcYDXz9efwuWqYbBh7UQj8CZwHdVCbGSq4C0g/Ay44ARNkUUkNKkpCiUACBwdnD07AjLPCnzp5EMWBUyYLHWKF+ZdqphIyxb0l76PytNfwzZ5tm0FnO04yJdMpoNiHHuMO01SD7/T+7e7eApcCiXt6ITfd6nwCjjfMeRd1zEZbSJsHJFfhb0wwSmSSUMji3iERoWrPavq4Mq6BdtxGlMoG0zgdg1ncNeRLXj8pQk8/eok9zUkngHk4KZIsHRsl6dA7NBmQ01wQlr5oDrG1dasRHVDZY4Ozs6Ow55lReD2zFnACBVnsgahuqnIpFS3cTJfn6I9Mp2H0bMTsVs/hsR9fwT10F1LDtHeNdSB188vwLYdPPrcebzw+izuv2k7hji26Uf2b8Sjxd34L9m34evCnRC7Whu3QnPf5nN6Wwu4ob4kxmYKsKrh9pQysx7izQdvAjc1X0JXWoukU60EqizW1cDRQHo6UV4J6H369aqetl3XAKEU9CpNr6KbUJWVfZYJTWImcLbtoFgx266BA4L6JJrZtfQJnFJd69nCVOjYCNJEQ2mp0zcA3kCAymb62qSBA+pP4ABgvKTh6/I7oL3l33FZPSSWRvzu3/fWKDo8KFcsmJaN8dkCdgx2ACAodLLB5sbr/AgAvY7Rjl3Mwhp7hXlcDuWEChwpijVzxmt8RrGqwkjGZKjQsfOVv4T+/LdhHv8JSt/6DMpPfgWO3ZgFRq/NcLFIG8KtnsKtF3ANEA7GJMluN9TYD8t0zQTgTkYyKRXbBzpASG1RiMJi9Q8+Oh1Oy6qPUsUCIcHwQ0r/Gp3OewsIbwLHE91mQtoqP8q6GSzgeE6UcyNQcmPM494EThYw3QSF0nEclCs6rp7+OipPfAn689/Gh5RvIZ0/wz23VqNUcTn2SR+H2TEr3OmbtOWKQAfOXTwVbiHsuSAtkasfhueM6pvyEVmF4qMTUByyX0b5x19kHhf6tkEIX8Mh0MZAeIMldPAKOHcCF3a+dPQSYIRuWIIEojW2yr3nui3YPpjG33zvNcwssBMkQgiXRqn/7J+Zx8TuTU3TIenn273KtDdVERkNHODSm8UN7OJXefIfUHn666g8848wTj4Jx7Zgcjqa4sbdIFVHMYEQ9GVimJyLnsDZtoOxmQK30FoKdg5nUKpYePKVCfzDoydxYHs3brmCndTT13alVZQqVl2DluWCTuBMy26LgQnFUG8CpuVgovp5ewHO6xo4LuIqfwLX37U6UwlZEmDZDkyLvxE7PpJFJqmgtwV/L0plpA3cdga5U6Mr07JhO6g73WgGPA0c/bu1UwNH105/mHduBRo4AFwaJSGkrsEXAEDWIG+/aknHBNwGYaFsYnS6AFEgq77O+KEpUt0Cbj5fQSatQt56BRLv+jTUI+8F6egHiABpy+WIv+P/gujTmtFGWVk3MTFbhGU72Fm1yc+m2TXMPP0s7DJr4V8x7Uiar3nyKcaEz050Q+jfEXhMyGwExNA1UCnAybmGZrmi0dQETpYE3J16EQk9aIRmvPA9lB75b5E0UIqohgKl0a8XcG0GvRnSSp4QwtfBTZ2CadlYLBrIJFXEVAmb+lM43kAHR123zvs6t82gXDERU6TAxpRuhgzTRiapwnEcvgaO011yO0MroFBOn4Gqh6YthHjTOlkUMGOngNBG2ilm4fg2+WXdwmH5dXSVahMHkdjYXojWAbUSOQ4lw3jlUTilMIWCQDn8dubnO0OUW+Z9V7jgdUY4hsr7b2WsgDWU+RS7BvRJAJ7rKFPAcSdwbhFOF3U6vbO59MnOpqY7oiDgw3fvg+M4+KuHX+FmRfKm4dYkKzRvRv9GQTdeq0154mngKHhulNbYq9Cf/xb0nz+M8qNfQOlbn4F5lv1OUPokRV9nDFPZ6EVncr4Iw7Qx3LeyAm7XkDu1+OJ3jiGuSXj/2y6JLJoFQnDVXrf4Tq+wocGDn5WgqW2cwFWLYMqmoK5j6y6UfMRUiYkRmJovrZouiBYyPB2c4zg4MbqAXcOZlmhfqZvu6XF3w9rOIp5OeahuvBUUSsO0AwYwtCHZTg0c3RTn/BTKkg5CEKDtNwN634nUwTVYI+XtV4MoS2800Mb68ZEsejKxtkQIULgTuGgKXzZf8RgoRJSgXHobku/+DJLv/0vEbvs4hBCLhTbKyrrl6d/oOjAZ2w6ihRhXtgnz+OPMcXUjWqdpnGTpk7l+1jiGCCKEHnadp1M4Nxqq8VpjzZ3HtRI78QMA69zzKD70adg51uXaOzdvAhc8FqXRt9qJcr2Aa4BMUoFh2oFOIVcHN3XauxnQLv7u4QxOjS3WFU7TnzEtu26nPIySbgY2KgAC3exMSnHtxcMUK1ECibNhglGTI8ClUPo72STdDxOhL5zJ/qzQscGLK5AlARZEOHGWymYv1GhypWIZt8dYy/uMwU4SVwN5TqHFzX3bdiVEziQyk1QxzymElyu2DiOmSlAkgflbCfEMd+PPg7T58oavcU0GRIazzS/g6ATO/ey8CVyOFX03MjDxozcTw/tu243jowt45BmWnivvuwUOk/jGoln9G9BODVw0nUXe9iY2lycEa+I47MmTzONiqIDr74xjar7E1XoAtcn/Sidw3R0autMqLNvBB+68pOFk7cg+V2vRsQoTOP+9KtbGCdzG7gREgXg6uNnFMuKq5Ol51xFEeAKXLxkolM1Vc+ajNC0eHX9moYz5XAU7h1ZOnwSom67i6ntkAYklFhgrQaYq+6ANonr5Ws2AnnshUDhVY2ra7EIJBCmU1DGal9laD+k6EzjAdfKFHH0dRrk2NgJ1qj43lWur/g2ov+ZYto3Fgs6N74gyO/Nny41O5SGJBFsHXGZP0QDk3dczP2O8+iNGz60bFlQOZdqaH+Pmx43E9nLPh6dHtGfOoFSxYNlOw72X4zioPP63EAh/rQTc2J7iQ5+GU+ZLnvIRUplUQoEkkvUJXLsRdnUCohxvTtUctKpfgp1Drr32mYlog5LFgu5tYvwC+EYoV6xABhwQ7GZHRQgIqV7uBCSTVLGQ17kbvYoe1MARQcC0yNLXmGP5Ns60+2mn2Omfn0ZpnvgJukX2c0jZC01xkFcKr9CqfgEdowJ7fpx5HW/6BrCUW4qp+RIkkayYMlbTOLALj3LpWxv+vLz3lqY1RzyNiktbDE1RC3NwjLJHs6EaOGuGDd5sNjOH4sj+DRjqTeLVs6yWTuwawkxH47DppUzgLt3WjTcfHMCWDaxes5Wo1w0lWhLiMCukbwg1wehT+7pinpU5DyNTeQiEYKBn5VOPu6/digdu2YlLtzXWGw71JnHnkc3eJK6VEATiTR3aqYGTJQEbuuOBCdy6/i0a4fsL1Wqu1gSOmunonIbq8aoBz64W6N8ovGbQKjvahtGZVFHWLU+eoawgyBuo3c/9NEq6V2mXDT7gThIVWQjo1lxq3NLX1EYFHBElSMP7uc8JPZu5phnNgF4TjtPezw6oT6FcLBhwnKW5v9YKOBMj03ls7E64fyNJQKliQd7zZuZn7IUJWBNBc7KKwadQmid/yjw2jl589ecFbk4bL5LJmj7j7ekaUSjNU0/DGucbrfjhFOZRiQg1z5cMELCTacGnTW0l1gu4BuA5C3KNTObHsJBdCPzMzmF30nW8Th7cYlHH7k0ZCIQwGUL1UNJNprusKaIXhtgZlQEXsYHOJFXYjoNc6IbmOI5LoQxthF6MXQW7wfTDv3GmonQzEV3AOaYO5dj3uO8lwoZTZDfxrUaN6uje4O358wBCQeipXogcu3fA7bBVdIspfEan8xjoTrTE0jwTMtahELuHIQ7yCxqS6oV2629wQy+jEFclJqeJSApIis17tBcmGA2cNfk6e45NBEiH0ZVWIxfaVzuug+3UuQ4FCUInOzWMQmdKxa/dsSfgnLgaUBWpbiaVcehXULSXtjGRNu5hmjN0MzwV4UQ5OpVHf1esJb/vmw8O4LYr2al0FO67YTt2b2p+IrsUUHZCOws4IOhEObtYaav2aa0hproTAUqPnqoyUFZLA6fUmcCdGM0irkoY7E0wzy0X/gKunaDHpQVxK3LggKD744mRLNJxue1TpFRMDli855YZzZPQJIgCwUKdwOYoHdxyzEso/BOudkYIAPWbhv7oqebfr0ahPD9d01HHqpN1oWMDwwgB3CmcH7rJUigdx4HBKeA69l+PQsnAF79zjJnkRRmZ5AuNCzjHKKPy5FeYx0k8A0jsZ2KefNIzLvQjV3SzEYVw6jiiw+NXgvUCrgF4GWlES3JcihyY1dwJqlNKxxVs7I7jxChfB+c4DhYLOrrSGjZ2x3F+CUYmpYrF6DsIIV43KpNS+RECdQo4gLXANy0Hlu0wi8B0Yju+hrcyToB++EfaUrWAM+Ls8amGyjj2GMRydLHL0/O1Gh63v/plt+ZY6h5PA0gRlQU3OpXH0Ap1Rt4xInR2AKAeeSCY1abEoV79biTu/8+Qt71pSZ3gGMdkAIimUfoplI5jw5riFHAh8XEzSMVlr5scxoSVxosOG+LpnWvXYMvyxVoJrY4GDgAWSRqfXrgX47veBeXwO93/Lr+XcRv1g7dY0g3WZFQBN51fsf7tjQhKW2yniQngOlHOLlZQLLtxLusZcNGIV7vU1FF5cr4IQlYnQgCAt0nkT+AWsHOoY8lUvHrw9LRtLuLpJpwWxCvNgaMFkp9CeXxkATtbpBdc0rnEldAETl+WrpwQ0nBDLW46wGj2ISmMA+JSkNAkr5l9ISiUumFz9eTZEHus2fcDXKbBfK7irSP+fQOv2DVPPxOgIOpVmrEf1uRJz4DEAyHoPfRm/MqNO/D8yRn86OfnA08LnQOAGLoWKgWU5t19Yz0NnP7cQ1yXce3Nv474PX8AhGikTjkHa5TVytVrKKTjChYLyw8I52G9gGuAWkZacMPMm8KJc2chCiTAf905lMGJ0QXul6ZUMWFaDtJxBUN9ySVN4MqcCRxQowZkkiocbgZcRAFX5WbPh35POiUId7IVScSrxhDi936SO5EBwhRK91KraPzpjev0+C3u+9Rex7eUbyVyRR2KLHgFqz3Li0aInjJQEbCfcpsr6sjm9RXrjCj8NtFhiF3D0N/ye/h28RDObX0Hkg98FsqBO0DCN7YmENckbm4JL4PNzo6jUDZB4N7A7eyEq8H0Q1Ih1Cl+o0AXWt7vmy8a+Jl8FRBhjLIU/Vs7oSoidJO/mAIutSfvxIDt10K9/B73v8PvQOLtn+IW0AC/gPOiBObYKIFSxcTMQrll1+UbCbRwa/cEbqg6wTk+uoBSxVx3oKwDz+m2eo+Zmi+he5UiBIDaGhSewC0WdEzMFVtKnwRqhVS7abS0cGzZBI5q4KoNurnFMmYXy55hRTsRnsDlS825C/KQrmbBRUHQUlAO3BF4TD1837LMSyioUzXQ3ggBIDgxC4PubzuXQKEUBAJFFnCi6rQ61Ofe++JajRotbb0CRA2tL5YZyHbTDTtwjTpGBZUnv8wcTxzcByGewa2Hh7B/axe+8uhJnJ+p7TGIIEZEXJ0BED2Bs6ZOQX/hKPM4GT4IadNBiD2budNYnsFKvqhHRkWlE0pkI3q5WC/gGiAqI03sY3VwsfwoOpJKoIu3a7gDpYrJ1bdRB8qOhIKh3gRmF8tNB/0VK6yJCX0vAiCdkPkUyogCrjNickRH7mEhtCILMEwbYtcQ4m//FMT+nYHnpS1XBKzq6aJcVvkFnOv0WN+x02nHBK4YzAuxORO4ekWIp5n0TTI9o4i+1tBzMkkVumEz9EaKktqLR8oHUBo+0pRlfxR4Gjgg2omyWA1gFwjhG2z0bfMs7peCjrgCy3YYK2vA7XhZiR43C4+Dpejf2glaWETRKGlnOKyZFDr6Eb/3kwxVVhzc63YgQxAIcZ0oORO48951efEVcB6Fso0ulEDNDOaF110Dn3UHymiEsyYn54urqguKmsCdaGH+mx90mtHuIPcahdL9zreaQrkaesFmkYzLnv6J5rgtN1s1nVC8PVgUlMPvhHbjh3AidgDfcG6BfOltyzqWH5mk2vYIASBo+x/GfN5181yqK7CmSBiZdPe2fgol3TcQUYa0m12bjWM1MxPdrAV5O7aF0g//HPbUKeZn6ORTIAQfuPMSaIqIv/jmyzDM2hrK08FJWXcPx5uMOXoJpUe/ADjBddhwBJQP3Fd7j53s1NU881zAQR1w9yNRE+F0QkGuqEc2bZeD9QKuCXRUDT784E3gMpUxZgS9o9qlOj3OGpn4N2meBXWTRiblisWlB23oiqOvKw5REPgRAhwTEXoOBGCy4CjNK3wsRRa9TqYQS0O47RP4p8KVmE3tQuaad0C76cOB19MCriQl2TG3XkLlWb4o1I92UChzPrtZx3FgVfP9/OC5T1J0cCa21NRguFUTuBR/KkxRC3lfGX1saQWcS6H09G9TvAIumupYD/UE5/migWRcgXL5PVznxjdqAaf6HLx4oBsL3oJK1ARid/zvUK99H8RNByFfejtit34sks7Ul4lxw7zPTroW5626Lt9IiCkXhkLZmVKR0CT84qRL/1kv4KJB70+lignHcTA5t3oRAoB/Ahcs4I6PLECRhJYbF23sdht2Az2t09U1g5gqQVVEb+oeFZLcLFRZhCwJXgPt+OgCNEW8INTrVKxGoSyWTThOfWpcPaTjckNNEhElyLuuxROJt+C4tKsllNGN3XEM9SXbGiEABF0jw8jmK+hIKFztVqP3dHNzZW/vE943KBwapT0/5jV5dcOGIguuC+S//g2sc79gXk/iGUhbD3v/35FU8W/fugej03k8d7xGteQVcFr+PCSRcNkY5Se+xB0M/KC8H3mx1qCQhg+w8gVTh3kmGOWTr5M315FQ4DjghscvF+sFXBNIxmTmQxd6NjO0rZSTw9vt7wVcFXvSGgRCMMPJf6Dj+3RCwXBfEglShv2Lh1B65M+gv/QDOA7fddG2HVQMi7tBf/v1W/EH77sCjm3ByXNs3CPojpIoIJVQGA0c/bKHu3iKJEA37VrSve7gscolGNn7a+i66UEQOVjIUpMEwwI3gJkJfOagLQWc7wvoFLMsDVCUQdLRznkxVYKmiAEq6uh0Hqm43LLQ4qhpKQWdzK10+hBTJZR0k3Em5RZwCxMolnSfgQmngFuG/g2oX8DRjpeQ6oG895bAcyTZDbF/eUXjaoPmKkaJyheLOiRR4E7ZAZcuouy7BfG3/ha0I+8BqaON6++KYzpbYjp/J0az6EypF6VOS7tAJiaEEAz1Jj3N9LoLZTTovaJYMVEomyhWzFXVBdUmcMEN7PGRLLYNpFtiMOXHtoE0Pvcb12DzKjva8pCpBkYDK9fAAS6NkmrgToxksWOwY8mb/VYgGZdR1i0Ypu3L3Fr+BC5X5FPzwzAtu2XXx3tu2YVPvLtxFmurQZtZJc6ak81XlqR/q72ne20N9yW94jYeih8SMhshbtzN/Kw5+iJMy4ZlO+5A4NlvwHjtx+xBRAnaLf8bs6fcvcktsPxTVIHjDpoujyMVl5ni23j9aZjHf8K83kgP4/ulSwP0WiLKkLddyb7WZ7TSKG+ukfPpcrBewDWBhCZ5/G8KIikQOJOYzfpJFL72Byg/8fdwTB2CQNCZUrk23l6XXSNInPohPpX5ZwyOPQrzzLOoPPF30J/9Bvd86KYvxtmcKLKIZEyGk58DQgUg0VJ1+du8LLhylAZODoai5iLyLyjoBM4wba6GKgyem6K9ON3UzXYlyJdqHGau/q1rCKRB5yyTVAOTzNHpPIZ6ky0TfNMbLc+JEvBfHyubPsRVCY4DxmyDxNIQtFDBYBkQy/NIaDKcSgH2/BjzfsIyiynvxlcMG+zYKFVM7++lXnU/5L03g8QzEPp3IHbbx9+QBiZAbQIXRaHMFXSkE+yisxz0d8ZgWg7mcrV7kOM4OD6SbVlw8RsNsQukgQNqlFRRIOhYgqvbLxv8Ezg6LeprywSu9p0rVUycm8q1LP8tjAtVwHf6rruVUigBl0aZLxnIlwycnym0nG7aLFI+Oidtqi/HxARw1xXTcrhGXWEYpt0ybaaqiCvOg10OYvUmcLnlFnDud9ivo46rMsPckbazGbXW9Gnvu9hbPguda81PoN30EUicAjCmSiAkONFyjUyCa75ql7BRC+6V7Pwsyv/6RfZwkgLjyPthQfQy3bynOOY11uhLsIuu9KdUMWHZTmRDIV19vJ7z6VKxXsA1gWRM5upvpOFL+T9gWzBeegSlH3wejmOju0PjJrAvFnQcks9A/NanoD/9NWgkeMEYLz/KLVjohKUeRW4p+jeKcOEB+CmUwUWA3syonqB2M+VvWGSx+QJu1umAdvNHWKqlUYJTztX92ZUi73MR4jlQCp2NTTjcQrjK07cdnJ8utJRuQjeF0RO41lAoaYc8fDMmhEDuZrPk4pUZxFUJFoe/Tjo2QNCW14mO6lyFF3AiStCu+1UkH/xTJO79JDfY840COoGLcqJcKOpL1iNEgW6K/U6U0wtlZPM6dg11tOQYbzRoF8iFEqgZmXSl1Za6Gl5sqBVwVi0DbpUiBAC+Bu718wtwnAuj51pN+DfjrSjgkpq7B6J6wQt130j5wry9yJ9l3ieXMhExLNvbw6xVeCYmHO18Nq8vKQOu9p7utTXki9+Iqa5Bl2nVvmc8Jow1dcpb/wZmn+a+v3rNv+FOvgBXC5fQ5MBwhQgShC5WNrFZnvP+7Zg6Sj/4c0BndeHaNQ8i2e/u8cJZc+KGnSDJUMap48B8/Sn39dTBvI4GDlifwLUdCQ6FEgCUg3dA3LAr8uesc7+Aeepn6E6rmF1kN9t9E/+KX0/9mEt1BACnkufyc5vROPE20VH6Nwpe0CD9goVNTOiiQDsoee9myr94qU2sYdoQMtEFXJHE8Q35bldXx0Q1rK6RiWG6xiB0QeAZmIjdjQu4Tp/N/1S2BN20W5ovpCkSYqrIDfMGfBTKFU4fYiGTAT94BVzSmENckyLok8unMiZjMgRCmAncShfwCwlaYEQHq+oto9xSWprfyOTEyOoYN7xRcKFy4IDaBG5d/1YffhOTqfnSqkYIAPwJ3PHRLARCsH0wHfVjaxK0gJMloSVUx0TM3SifGFmAJBJsG7gwn1eSM4Fb7jRrKRtq02wdhfJCIcrExDBt5EtGYGrb9HvSAs7XoPZP1imEzkFADL1/pQBjYRKAg1TuDPPeyqE7oey/te7x/dReCl7I+pDo7rEd20L5h/8dNifiSNp6GNLu6z0jtlzofQkRuBESlEZZbw9sl3NITT6HG9RXkDj9I+gvHoX+4iMwz78SKZVqBm9MftEbDAlNgmHa1byK2oaAqAnE7vo9mCceR+HJr0OssC6K+rPfQHf/r2M+V4Fl255w1bEM7Fl4vOGxrelTjGas3EDj5Dg2l0vcyMK9M6VisWgE+N70y65xNHBArZtJuxWRFEo6gbPqTOBkDQ+Jd8OQ3S6HkO6rBmnXYC9OeVqqp16ZxHS2hLuu2VL392oW4YmOPcsamPBos2H4bf49A5MWC75501KKsu7a+YeL7qXCs/nmFHBKN+t4mLHnAE3mF3B9y9O/AW6nLcURnOfpNXcB6CgrhSpH01kAd1Oxqb812plMSoUSihI4PpJFQpPabrDQLlxICuVgTwIE6wVcI0iiAEUSUCqbmM9XVjVCAPCxRqomJo7j4JUz89jUn7wgk9rVBJ2mtOr6T2gS8iUDx0ez2LIx7Wna241ktVmXKxoN9xyN0FF9r0ZOlIBL11/Na7MdiIoRWPBCvJc+gaM0Rv864te20uYqEUSIvVtgTRwP/Lw9fRr9wgIkM+w1oEC54h0Nj5+MyUwBJ3CYN5v0k7AXJqG/8F2YZ3/OPE8SXdDe/OsghIAASMYk7tBG2nkE+vPBuCt7+jTs7ARyRff3DjeU7ewEit/+DJzCPN6ZADAGVHwKE2nH1VXTv6V/p9b2FdkmUBtdHo2SCALk3dfj+OW/jaMlllJpZ8ewwzgO23GQzdVuFNb4a1CcxjcOa+o081ipgcbJGjvGmVQRyNuvqnssmk/i3yhTDVy4GKA3cNrNzJUMCIR4XdUwJF/3U+gcDIZNAwAREXvLb+Kc0eV1cNiwdATCyZ94aQJHnz5X93daCvwdPccyYWfHmdc0k2OWSaowLdf2fnQ6797gulu7UU7FFaZDREFD3ldK34qr7nXPi7bgTeB6yAJiqsCd/i7XwITCzYIL/r4eZWGZC/iFRL0YAdtxkCsanqvXSiEQgt5QlMDx0QXsHMpctBS/A9u7cesVQ6tqSx8FTZHw9jdvw/UH2SbHOoKgob+Tc8VVDzYmhECRBE+3/dgvxnBqbBHX7G+syV5roGt5K+iTQNXIrWjg7ETuguS/UdDpRr5kIFc0ApmtS8WSKJSmDUlc2/fKmgtlcD2nTJ7lUCiP7NuAd755W+BvwJvAAYDQy0ZvkdnT2CazrCqxbxuI2LipkojJyIf2JzwnyrQxg8JXfw/Gqz9i30SQoN3y0YARWCoiI1DsHITQzRaI+svfR67ENpQdy0Dph5/nhoRTmCe8SD60AAAgAElEQVSfhPHiI5HP18N6AdcEklowB4WH+ZKD75QOAf0spXJo/F8gwMasz8jE5FilQmYXMGua3QzTL4YWUSzxLlJxaF9kiDeFZ47ho1FWdAsErJMVtSb2a+CSHKcfCoEQSKIAw7JBlBiUQ3f6Tk6BdtOHIA3tR8mXb8c7X3uxFua9WNBRKJsts2X1u1rZ2XEmG4TEM4Fsuyh4WXC5Ckam8tjQFW+JE5gfiYiQbcC9PlrRUa43geMVcP3iAnowDxghbrmsuUX7CpCOy0yndC1TKOvFCBTLrhi6VRo4AOjvjHs6o4V8BZNzRewcvjj1b4BrHvHet+xqu1U3xd3XbLnodFWrAa+Amy+tqoEJhSKLqJgWxmcL+MoPTmDf1i7cfEXjptxaA13L1RZNFhMxGZbtwLId7LqA942EJoHAXavzdTK3mkEyJoMQ1hyLB/Mi0MApkgBC2DUnu4IJ3K7hDO48siXwGG3il8KFVR8bvSXOn8V2iVPAbYyWJvnBo1AKXYOAzGE/cA3wCLSbPgwpJIVyGxb860LmZMIZrz4GI+sOF/wUysrTX+ea4YVRefrrDNusGaztK7JN8CZwdQqFbL4CWRIRu/KdzHNyaQZXKqe8As5xHJhnn2depxy8g3nMnjkLxw5+EegXkOdCaZcWYZ55lj0HThZHGPQL7J8UlnULisJOc5SQBi5XbHwzlX3dT/XyexC/95PQbvwQEu/6T5B3uC5FxbLpdXB4Gjh/lAC98dKNqePYK3Kp9CZwcWXJAd5+0O7nfL7iOVC2GnFVQrESMYHTzRUbmNBjABEFXOcGgASvv7RQRk+Bn//WyLmzEdwJHN/EJKGtPfqT6pmYsJ/tQkSI90rQ3xnzogROjLpU7wvZSV/HOgCXbjWdLaG0yhECFIrsUjb/4qGXocgiPnDnJRflFNqjULYoyJ7eYwmAHYMXroATBQFxTUKuOoFbbgYcAAgCQSrOMjt4MCxnzVMoCSHQFIkp4KibdaZFjrlR2nmRM4GTF0exQ5pgHq/nLeEH1Wb6QQSJu5fmQT3yHsjb38Q8nozLkQwnedd1bIFom+gfewySWJsIm6MvwXjxaFPnAdtE5YkvNfdaH9b2Fdkm0JtX+ELxI5vX0ZlUIQ3s4Vrg3x57AfNZVw9lZ8fghF0iCYGy92aUSWgRswzYc8HKnE5eeJt08/jjgM3avktbLos8dwpvcuSfwBkWo38DWD1Bvqg3zGPxF3CAS6uTd13rFWq27aCsW17hIHDy1ig11HEcb0M/NV+C/uJRFP7Xx5H/m99A5bmHllXI5XwiVCsiQqAZ0EJ4YraI6Ww54NDUKsQ1vjMqAJQrJre4X/oxok1MiChxJ6RdU88xj7Uiiy2dULAYyuzJFw3EVWlNisslUYAkCh5F2Y/FVSjg+miUwGIZx0eyUCThguRTrWMdfsRUydMJ93Wt/gROlkQ8c2wK5ybz+PW37VnW1GEtIFO9d7RK20dpYUN9ScS1C0tZT8UV5IsG8qXGe45GSMfZxiAPxkVgYgK4NEqWQlmBJJKWacnjEQUcSfWCqMFmtmCb6BSLCL5QaFpykdRklCpWwPESAJTL7oF24wdhqdGMKfnAHVAuvY37XBSFEgCIloSy/y3M40OLz2M4XgIhBHZpEeV/+R/Ma2wIeMraC3FoP/vcMgz61v4V2Qb4nY+i4OZoVHnnh1nxZbeYR3LsGQCAeZalT4r9O0G0JPJxlmoW1hTRL6CUPYPitz9bzZ37EuxiFvqxHzE/L+++vqk8rFRchiiQQAFX1i2uGUY4FDXns9+PghIq4MKgvxe9AZBUNxOW7pQW4RhlFKuZGwBgn3kOlZ9+GU4lD+gl6D/7J+jP/GOjX5dBrqiDwC3YuQ6UTRiYALUC7uUzrnXtUIsNTAD3HCu6BctmP8+Szg95XypkSYQkksicHF6gt1KcZB5biYEJRTqhwDDtQPcw14IF/ELCXUzbU8D10yiBbAnHR1cnuHgd61gqYqrk3cfbMYFTJQGW7eCmywZx2c76koK1DEUWkdCklmngEtWi7Y0wtU/GZU8Dt1L9czohN02hlNb4BA7grzk0xLtVeaAxL34oNEggBAKHRhmG0LMZhEeB5ICy45hikRDIu67DycO/g++WDsAJOWBKO45Avepdke+brE72bJs/CFAOvBUIZSoLsHGr8gs4egnlH/0VnBJranii52b8Q+5KaG/5eFOGeI2w9q/INqCeiQlFNl/xJlhi/w6IwweY1+zKPg7HqMA6x9InxU2HAABO9xbmOTukgytVLKQVG5Uf/Dms86/Anj8P46Xvo/Dl34azwG6gm6FPAq5OradDwwuvz3odjYrOn8CpoQmcezOtv+EMT+DCKIbyy4ggsbkbcDsVdJMrw8T28e8xr9Gf/xb0l35Q93zCyJcMxDUJoiDAnuM4UHY394WTJQHJmIxj51zh6vAqUCjpTZKngytVzEh95JKPo0rMjZiCV8Dx0JIJXJwVnLdiAb+QUGWRmwPnFXAt/N36q9ONsxM5jEzl1/VZ63hDIF6l+BEC9GZWv4DrSKoY7Eng/ptX3lR6o2OgJ4HeFhXFPR0aCAH2b+tqyfutBKmY7ObANdE0bgQeNT8Mx3FgmmtfAweAS6HM5vWWTqKpuR5PesGjUTKvaZI+CfjYcRHDlVyF4HulQ7Dv/iMoB98GcdNBqEfeC+3GD4GQ6L9nKibDcfjsI8B1oFcufSvz+F7nNRS+8ruwRl5gnhMH92Fu6HpYtoOiSaDd/FE263iJWPtXZBugSC7dKeoicRwH8/lgkr16mNXCJZw8Kk9+GdbkCeY5abNbwJFu9gIPO1GWdBMHtfNwCnOhF3K+MIP7uFqyKNx/0w6MTOXxTz92i8aybnKtiGXfBM62HRTKTWjgxAYFHIcaGqWDozfd2+MvIWEvct+v8sSXYJx6pu45+ZErGkjFFdjlHJxiNvgkEZsuWACXT64bNjRFRHdH6+3EE3UKuLJutYRCCdACrvkJHPuagYC703JBHRn93VJXxL72DEwoNCWigCvqbkhpC+MROpIKFEnAEy9NXJTBxetYm6BOt91prS0T4Y/euw//5/uuaNlk6o2Mf/+ug/jQ21ln7OWgJxPDf/3YtTi4o6cl77cSpOIy5nMVVHRrxQZWlEJZT3Jh2Q4c4CKawLEUylbp3wBXW6gqIndvwjMyYV7TpIEJUGPHFUr8PQqlQSa7+6BedT/ib/0tKJfe1lCT7w+Mj4Jy6W1AaG8jwIFTzjGvJWoS2o0fRLpaIywWdIhdg1CvfqDueTTC2r8i2wBCSGQuBOBOxHTDDhRwYu8WSFuuYF5rvPojxg2HpHq9zbDQxxZwdvY8HKPmYFmumFzhJw/NTt8oLtvVixsPDeB7T53DK2fmUDEsrpOV4pvAFcoGHKexnbssCzBM/jQHqHVs4pq/gGNpLs7iFBYKOnqERdysvVTniA7K//IXMMdfq3teFNRJkzt9y2wAWUK3hF4LQ33JllET/KA6BF6HyHXybM0ELq5Gu102U8BJO+pHVzQLnuVzrqiv6QmcpohcDdxCQUcqIbfUXEEgBH2dMYzNFCAKBNsHLl4HynWsHVCn23bQJ93jSS27N77REVNbR6EEludSuBpIxhSPDbUSF0rAbQzqIWp+GLTpfDFM4GKq5OUIU8znKi3/28YjGr+8KIEwljSBo/KmCH+KXMlAbBk6+aRXwEXLpogSa94s5Yb3Q0h0Mkwiee/NHvtuOVj7V2Sb4Lrd8Deyng1rKtjFUK+6H2hCeyZtPuRt8rV0BjNWiHLnOLBmznr/W9ItbCFjaASipSBtubzh68J49y07sbE7jv/xrVeQzesRGjgaI2AxAdhRaDSBo1S94ASONTKxF6ewmK/gnfFnIKJBir1lovzIn8GpFOq/DjUnTZ7t61L5yl4Btwr0SaCmEwwb69iOawTTqgDXuhO4ns0g8ehJjrTrOi7NYDkIF3CO46zYRvpCQ42YwOUKuhcy20pQHdym/tSKQ97XsY5WgN7r22Fgso6LA37d84pNTDjMjjConGStu1AC7ASuVDFR1q1lZcDVQ2QBF0uDpKK1p0JmAILWvLlWQwplUV/WHoEyexpFVCn7bgWpd76iBPW6X4Vc3YeHrzdCCGI3fwTStjcti0659q/INiGhsYnvFLSA6wx1MYSO/qYqdMlXgcdVCedMlqZg+4xMpPI8Mg4rkAxD3nNDU2GIYaiyiA/fvQ/5ooH5XIWrgRMFAaJAoBt203lcsiR6uXE8UFt8fxg4P8x7CurUS9insLkZvC+TU8nDOP6TuucG1EwxuBEC3UvLCqI3xOFVcKAEoimUtCBo5QQuqoAjogzthveDVLPx8o4GaccRaDd9GIkH/x/EbvwgiNyahYEu1NRiv6xbMC1nTWbAUagyS2cB3Jt7Kw1MKGio9YXMcVrHOvyg96n+Nujf1nFxwK97a4UGDqgf5k2bzms9yBtgTUzoehreu64UNN+Rh3o6uKVM3wA/hZK/N8+XjGUV+c1QKAGAyFow09gHacfVSNz/X6Dsvdl7jF5v/kxbosQQu/U3EH/Xp5d8nusFXJNIxuTIMW29IETlsru4RhweZA3ixt3e/8ZUCWcttoDzB3r36+eY54XMRkiba1EB4sbdUC6/J/q4DbB5Qwr33eCaT0R16xVZhG5aNZ5xMy6U1lIncGwBZ82cxc4JNl+DJLoQf9enuU5H5vlX6p6b4zjIV3NlrOkzzPPNOlBSdFY55avhQAn4KJShAq5UYXWEK0G9GzEASMMHkHjv/40vdf07/Lnwa4jd/BHIO6+BEG9tkSAKrjHMYvVaoxktrbI+vhCo50K5GgUcNTJ5IzjJrWMdQI0uvz6BW0ez8G/IGxmnNQLPHCubr+BPvvoLjM+6rB06gbsYXHupiQnV/E3NlwC0LgOOIq7VKeA4MiHvuSXo3wBAUyUQAuQj2HHunm7pe4RmnOc97LkVP9e3eP8rbtiF+Ns/hdjNH4WQCu7lkzFXGsFrGNQzVYnCLwcZvAXgJb5TZPPuH6OD8yUgkgr1yHtQ/v7/y/1ZaWh/YEomiQLGHHbE7I8SGLRGmdJb3HQI2tXvhlPOwynnIWQ2NPydGuG2Nw2jUDZwcDtfuKzIAnTDRr7k/v5LzYELg36+jTRwqBTAm2upR94DIZaGds2DKH7jjwLPWeOvwbEtEIFfjI7NFmHZDobiesQEblPkefNwaGcvxueK2LoxOodkJYhHZBOWqgVBqyiU9W7EFESUsKgTxFa5mPI7huVp02BNa+AkVEIaOMdxsFAwVqWAO7SjBzdfPoi9Wy+8k9w61gEAu4czuPnyQezZtN5UWEdz8LMuWkah9G2o//WFcbx4ahbZfAWf/NXDMCy32LlYKJSW7cC0bDgO8NV/OYmOhILNG1q7T4mpEibmitznhN5oI5OlTuAEQuqy43IlA8P9S2+iK7IIVRbrauAozkzm8f/l34zOO96DfTv6ICQ6655vKi43nOw1i7V/RbYJ9TRw87kKYqoYGZopbbmCG+4N1Nwn/ZiT+mAjOK538rOwiwtwHAdbwOrfpMFLALghg60o3gD3Yrvvhu3YMcSfpiiSENDANep0SA0KuFyJDWYmsuZR9OphQtkEaeth97x7NjMZHTDKsH06wjBOjLiukzsFznSza7jul5KHzpSK9966a9W6dq4zKmnLBK6iW5F5KBTFsonEKpsDpOOyt9DSG+BazoHjaeBoKGl6Faih6YSCB2/b/UvhwLeOtYG4JuPB23a3LHB6HRc/6D6DZrauBHT9oMwOx3Hw5MsTyCQVjEzl8Y+PvQ7zIjIxoY3dkm7hq/9yEmMzBXzgrksCTfNWoJ52XuzZ4uaGhEASXczEqhkkqpltYTiO4zmLLwfJmNxUAXdi1N07bt21ral9otuIbmKy1wTW/hXZJiQ0CYZpMx1zoBaEGAVCCLRrH4QV+rgdEG5enKzFkJU4Orjp07AWp5ARQoYcRFxy56IVUGQRRlUDp8qiF+4d+fpGBVyEqyDPyMQPHTKOOtd5RjBEECFu2M28zhx7NfI9jo9mkU4oiE2zVEtekX2hQQhBXJOZ6ViZFnAt2hDRQrDE0Wr5USibHq1ztRCYwDVpnPNGhia7mlB/cUzFzR2rMIFbxzrWsY61DlrA0czWlUASq9T86rpybjKP8dki7rluK26+fBCPPDOC50/OuK+9KCZw7nr+1CuTePS587jtymHs31pH4rNMxFQRpYrJjWcgsgqhk/UUWCp9kiIZwY6rGG4zdLl7BBoY3wjHRxYw0JNomqqZTigBDdxKsPavyDahnliyUQEHuBq1p9VrA4+Ndl8NgTNdiqkSJglbtFjTp1A59zL73n1bm06ubyUUSUClqoFr5uJtRKGMEpzyjExqT4p4pu8+HMtqgZuFNHAJ81KrTgF3YiSLSwbjsMY4Bdymg9HHv4CIqxIzFfYolGqrXCirHbs6IfaAG2fQ6i5eGOmEgoUincDRqe/aLXSottSvg/NCvNcLuHWsYx3rYKApIiRRaJmBVcrH7PjpyxMQBYLDu/tw/007MNiTwEOPuzm8F9ME7quPnsRwX9LzOWg14qoE03Ii93tiH3tcXtO9GSRiMlcD16w3QxSaoTratoOT57PYFcFS44FmD7YCa/+KbBMS1ekCj0aZzTWXZH++9xp8yXgLzF234G/y12Nm29u4r4upEs5zdHDmuV/AHGULOF6x0g4okjuBa9bpR65SLqNCM10bf/amXC+IXLvxAxAG9qJYMQN/G3GQU8BNHIfDCTufXShjdrGCyzvmACtYoBMtVZezfSGR0CQUwxo4mqXXMhfK6Lw5Ctt2UKqYK6azNEJHQkFFt1AxLORKOkSBeAXmWgQt4PxTfXpjX8vU0HWsYx3rWC2Qqo6oVfrnjmpj0LYdPPXKJA5s70YyJkORRXz4nn3elO+imMBV10tRIPjIPftWTddH9x9RNEp5/y2ATyZEYmnIO48s61hRGjiPpbPMQj8VazyBG5nKo1SxsHO4eQ1vR0LBYrF+eHyzWPtXZJuQiHClsR3HncClGl8k3R0ans5txPT2u/GcvhXpJN86OaZKOGeyY2175iyEkWeZx8ULVcB5LpTNBSrLkgjHAawIPVW+xJ/kCR18CuX4prdC3nkN+qr5VpM+0azQNQSihsSrph5w86Q4TjnM5mnmOXHTQZAV0jRWC3FNZjRwlELZKk1JnE7g6hRwRS+AfZUplNUbca6gu+5ScXlVQtLbBc2bwNU+W0qtWKdQrmMd61gHHxu64tjQ2RrnUkrNf/XsPBYKOo7sq3kIDPclcf9N273XrXV0pVym1gO37MRAz+pEHAE16UWkE2XXMGL3/AGet3bg9fhBxO/9D8tmkSViElcDt7DCZmhHUkU2r3supDzQveNSnJ3TCQVGg/D4ZvHG3Jm+ARFFoVzI67BsB93pxhcffc2ZiRwAIJXgX1hxVcLZSgeEzMbGJyZIEPt3NH7dKkCRqAslf3IWBqUg8MbqNcEp+5lImw5CJ8H3f6y8B/rOWwEA/V1uITw5XyvgCBEgDuxh3otHozwxkkVMFaBNc6abb1D6JFB1iIyiULYqyFurfyP2P9eqqV8UvAyVor7mQ7wBQJPdzys8gSNY2+6a61jHOtaxmvj4fQfwvttbo/unlLafvjyBmCrh4I5g8/zWw8P4049fh76LIKtwoCeBP/34dbjxssFVPU6jAg4A5rVBfHHhGsztfRffbbxJ/P/t3Xl0VGWaP/Dvvbf2qlQqCUlMSFACJAZRQNlE2yXKogYCiqK4/TzqHKeP7eh0uw02Im0zQ9ujx9b29NiNcrpdxiOCCMhg0wzY2to2ragjjUFETELInspSe9X9/VG5N1Vkq0pq5/v5S2q7b+pWle9zn/d9HotBqxb/Cnv9LhcAIDeCuflgyoqs8PkDON43Xx/MkbpO5Fn1yMuO/BjWvnl/LJZRMoCLkHmIsu3tfR+SaAK4Y41dAIDsIVK7Jr0GDrcf+otvBzB8hkEqnARBk5wrQzptcElkdxRLKIHBA7hgY+bAoBNXQWfEXwpuwPFAAcScYjRPWoqtjtmw9i1bHZdthCD09zRRDB7AHR5w29d1nZhb6IXs6Ay/Q5SgKZk24t+VLCbDwCtPTrcPep0EUYxNZkoJyk4NFEMpyzjjvYQytOTzWKpLpQp1CWXoHri+bPZYN+cTEWUqvU6CVhObi5RWsw4ujx9//7oFsyryB33deFQFTpZE/C3KfvjhVu7U1kWfvRqMsjru1DlKa5cLkigM2t4rEsqySCXLdipZllFbb49q+STQ//7HopAJZwkRGmoJZVs0AVx2eAA3VEreqA9Wp0Nh+ZBd3hVS8dQRjxsvOq2EXqcPbo8/oo2iumECuJFaEfSYz8QLjmtgvn49vs+ZAxmC+v5pNSLyrAY0DQjgBtkH13QEss+DQHcL3J9tR/eX+9DZ3oGZpoYBj5WKzoZwajuCFGLu69EWupba5fHBGKPsGxBShXKYH2Jl72G8i5hkhwZwQyy3TSehJZ0V8WriTUREAym/t26vP2z5JI1e/7xh6GWCtXWdMBs0KM4f21JOs3Hw5Eqb3YVcqx7iKLdZZJt1KMw14UidfdD7mzuc6Or1RB2ADtZ7cLTYfCVCeq0ErUYcUMREDeAiSKHmZOkhIHjiDbqhy+6HTpots5bB1/AVAi0D92cBg2eZEkWrEdUUeVQZuEHWFI+04VRpGh5sdBxcZhZ6zMIcY9geOAAQbcUQjFbIzq7+G/0+uD98Bd7aDwE5+OPy02wdDPaBgVoqtg8IZdJrIcvB7GXoD2asesABkQVwTldi9sCpPXt6PeiJcN9lKlP6sZ2agcukq71ERKlMmVDnZOlRzobyMTFSERMAwexViW3UAZbCohQYdIYfq73LHVFiZTjlJdn4tLYFAVkeME4lgxh1Bk4J4GLQzJsZuCiYB+k30WZ3wajXRDRp1kgibFnBZX/DXWU3hew7EkQNjFX3AJpBqlxKukHLsSZKaEPgSMq5KwGcZ5Beempj5iGyKjqthIAswx+Q0eXwwmwMX2ZWkGNCU4czLBslCMKgWTjv1++rwRsAmEUPJPfAqyypvP8N6P+chF55cnp8MW2Kq5FE6DTisFfSehO0hFKrkWDUa9DZ40Gvy5f+e+BOqUIZCMho73KzgAkRUYIov7fzphaOOZigIOMIWy/svR40tTswpTTy8vtDGW513JgDuFIbel0+nGjtHXBfbV0nLEYtivOiK6aTZdJCAPfAJZx5kLKi0Ub5udaRA7hTsx5idiEMF90y4HGaknMgSMlLoupCStBGkoFTWzEMUppV7dkxxOsowaLH60dXr2fAJLcwxwin2zfg/Iy2QqeYUzxs+4JUoARMoT+SLrc/5qX1jQYNHO6hy+m2dbkhCImp0mU169Qf03TfA2c4pQ/czo+Po6PbjemTxyVzWEREp43SAgsWzi7FlbNKkz2UjGHQSRCEoYuYHInR/jegP4ALvZDt8wfQ2e0edQEThZJdU8Yb+voHv2nFtLLcqCthS6IIs1GLLsfITcJHwgAuChaDdsASyla7C3nWkXvAKZRgb6gCJkBI+jnkWJryi6E9d1H/g7RG6GaviPi48RC62TeSAE7JPnb2DLzyoARwQ1Wz1GmDH1W3N4Auh2fA8Qpy+1oJnLIPbrQ98jQTUnv5JDB4gRGnxwdjDDNwynEcw2TgmjscyLMaoElAo9NskxYNagCX3hk4ZQm1y+PD0QY7tv35GOZUFmBOZWpfOCAiyhQaScSNV0xBTlbk8zganiAIMOo0Qy6hrK3vhE4j4swzssZ8LIuyEink4n1HtxsyItvaNJz8bANsFh1q68NXaH15tA29Lh/mTR3dnslsc2yaeTOAi4LZqB20CmU0HxIlgIskAxc6aRYEAYYLb8Iu2014G1fCsuqXkHLjWwp2JHpt/8cnkoIStr5qQJ097gH39Ti9wzZm1mvCM3Cnvn+FOcE9bM0d4fvgBGsBBHPuiGM7lZTi+9+A/j1noRcVnG6f2qwzVoz6oX+IgWDQXJgbm548I7GadSMWvEkXGkmERhLR2ePBi9u/Qk6WHrctqkjr3nZERETDzRuO1NlRVmyNyUVfo14DURDQEzI3j6Y6/HAEQUB5qQ21dZ1h23M++uokskxanDMxZ1Sva2UAl3hmgyZsiZ7T7YPD7YvqQ6IEe8PugVMDuIEp1u98+WgwVULQx68JY6SUDIKA/uWRwzHoNDDqJXQMGsB5hm3M3J+BGzyAy7cFWwk0tYdn4ARBgCt3YJ+8gAzsE+fjqa5qCEXhWTppwgxIhVNG/HuSTV1C6Q79TPpjnoEb7odYlmU0dzhQkJOYap2h5z3dAzgguNTk/YMn0Gp34e4lU+NeCIaIiCjeButTCwTnzd83d6M8yuIfQxEEIdhSKaSISas98uKCI5lSYkNHtxttfa/pcPlw8Js2zK0sHHW7n1gFcKxCGQWzUYteZ7BsuyAIUVWgVORGkoEzDF2CtdvhTVi2YyRKURKzURtx3zGbRY/O7oEBXLdj+MbMSrDY6/TC5fEP2AOnkZRWAo4Bz/1EPhcXyZ9AHaLWgHfFK/HHxlxMKLTAXH0d/I2H4W84BMGSB+3kC9MiC2I6ZQ+cLMtwuX0xrUIJBC8oKD9ep+p2euF0+1GYk7gMnCLd98ABwQCux+nF0ovOitn/0IiIiJJpqAu/RxvskOXoqzcO59TVcUoGLjcGy2LLQ/rBjbMZ8fevm+HzBzBvDC0nrCYd7DGoQskALgoWoxY+fwAeXwB6raROaqPZKFkyzgxJFIatXKNkUAb78Hc7vZicInt/lKAqmr1INot+8D1wI/T1UgqmtPS954OVWi/Jt+DQdx2w97iR3dfkOxCQ8cejArryb0TNGfUQtHrozl2EhbIVf3n5E0ybmAdBEKAprhz1frlkMeg1ENC/hNLt9UMGYh7ADZeBa+7LeBYyAzcquVl62LL0WHLRWRmiDocAACAASURBVMkeChERUUyY9Bo1kApVW98JURAwqdgas2NZjOGr49q6XLCatEO26orG+HwzTHoNauvsmD+tCB99dRKFOUZMLBr9/j2rWQu3xw+31x9WzT1aDOCiYA7ZLKnXSqNaZzvOZsSz91087FIpURRg0EkD0s8BWUaPI3UaGOv7gqpoxmOz6HCkfmDJ/h6HF6UFlqGP1Vexr9UeDBgGy2Bed9kkrNv0N2zc+Q/cf8N0iIKAfxzvgL3Xg8kLzofx7MXqY/MAbLjnwph8wZNF7Fs6oBS7UTK2sd4DZxomgFMynolaQqkU/zHoJDUDnM4euGEGRFEY9VIMIiKiVGPUS4NWoaz9vhNnnmGJabsjs0ELe0hioK3LHZPlk0BwnjW5JBtH6jvR3uXC1993YunFE8e0Siu0mXe+bfRzpxFnDRs2bEBVVRUqKipQW1ur3n7s2DGsXLkSixYtwsqVK/Hdd9+NehDpQtnnpUT6rV0uSKKAbEt0S7ki2ecyWNbD6fYhIMsp0/9Kq2bgIv/7gxk4d9iGUCDYB264xsy6viImrZ19GbhBArjx48y4sWoy/u9YO/YcqAcAfPzVSRj1GkyfnDfg8SaDNiGVE+PJqNegt28PnMsT/LzEfg+cBI8vAN8gDdibOpwQBIzpRygaWX3nPd0rUCr0GRKIEhERKUx67YA5rNcXwLeN3ZgSg/YBocyG8CWUbXbXmFsIhCovtaGxzYE9f6+HDGDeOYVjej1lBdlY98GNOHO44oor8Oqrr2L8+PCKh48//jhWrVqF3bt3Y9WqVVizZs2YBpIOLMbwqn/tXW7kWvVxaf44WNajRym1nyJ7f3SjysDp4fPLYZUT/YEAHCM0ZlaKmLR0BjNwQzU7vmzmeMyYPA6b932Dow12HKhtwayK/LCWB5nEbNCqmVolAxfrPnDKBYfBrqYlsoUA0B+4R9I4noiIiBLPaJDgdPvDLtYfa+yCzx+I+X5vs1GjBnCyLAerw8cygOsLOP/4tzpMKraOec9/aAZuLEacdc2aNQtFRUVht7W1teHQoUOorq4GAFRXV+PQoUNob28f02BSndowsC8D12aP7YcklFGvGTBhHqnZdaKNag+c0gsupJBJr9MHGcMHpsqxlD1wQz1WEAT8v6vPhtmgxS/fOAi3xz+mzaapLrTSk7MvAxfLpQlAf0A42DLKRLYQAPqXUGZKBo6IiCjTGPUaBGQZbm9/Mb4j9cGG2FNKsmN6LItRC6fbD58/gG6nFx5fIKZz87OKsqDViPAH5JjMJ5UERNcYC5mM6rJ5Y2MjCgsLIUnBiZ0kSSgoKEBjY+OYBpPqlD1wSr+JthhH+aFMhkECOGfwZKfKHrjRZOBy+oqLhLYS6I6gr5fSB66r1wOTXjPssjOrSYe7qqfC7fEjJ0uPigmZW93PZOi/8uTq+7zEo4gJgAF7MpUWAokqYAIElxzqtVLKfAeIiIgo3GDzhq/rOlGUZ4r5KjJle5PD5euvTRGjPXBAsMp5WZEVoiBgdmXBmF9P+fvtY8zAJb2ISV7e0IUrUo3V1pdpEEXk5JrR2eNGaVE28vPH3k3+VDarAS12V9hrC98GM5xnleQgPwVaCYwbZ8FNCyuwYM6ZyD9lEj/UexLoC/r9ENTHNHUFg7mSIuvQzwv0p+FzrIYR3/PL8rPgDsiwmnUoLIhdtaNUk2cz4dsTXcjPz4LmWAcAYHxRdkw/H5V9W986nb6w911n1MPp9qOsNCcu34Gh3FkzDROLh/6sUGzxfc5MPK+nB57nzJTq5/WMvvEZzHrk52eh2+HB4eMdqL64LOZjLyoIvp7OqIO3bz456czcmB7n1mumoqGlB5POHFhPYTTOyDOhqdM1pjGOKoArKipCU1MT/H4/JEmC3+9Hc3PzgKWWkWhr6wmbnKc6rUZEc2svar9thSwDBo2AlpbumB9HBNDj8IS99onm4H97nB60tAzsEZcMC84fD/h8YePMz88a8j3x+4LRQF2jXX1M3YlgVUq/xzfse6nTiPD4AjDrpYje8/MnBb9o8Tg/qUKUZfQ4vWhp6UZzWw8AwNHjQos/dp8PvSAjy6TFp4dOYmZZLoDgOf7HNy0AALNWTOh7PGty5p/XVDHcd5nSF8/r6YHnOTOlw3n19RVXO9HYBZMkYN9nDfD5ZUyfmBvzsQd8wSxf3YlOHDvRBQCQAoGYHqfYZkCxzRCz15xUZMXn37SiubkLgiBAFIWoE1qjWkKZl5eHyspK7NixAwCwY8cOVFZWIjc3dzQvl1bMBg16XN64pGlDGfUSnG5f2AbQHocXOo2oltRPR1qNCItRG9YLTqnqOVJaXdkHN1wT9NONyaCB1xeA1+dX96gZYvz5EAQBU0psqO1bv65QWgikSmN5IiIiSj51CWXfvOSjr06iKM+ECYWxX3WnLKHsdfrQ1uWGTiuqW55S1ZRSG3qcXjS2OUb9GiMGcE8++SQuueQSnDx5EnfccQeuueYaAMDatWvxyiuvYNGiRXjllVfwxBNPjHoQ6cRi1KLX6UWrPfoecNEw6TXw+WV4ff2l27udw5faTxc2iw6dUe6BA/orUTKA66f2JnT54HL7odOKcakIWV6SjZZOFzpCis80dTggCMC4OF3EICIiovRjMigBnBetnU4cqbfjwnPOGFP/tKGoBQZdXrU2RTyOE0tKJc5TL4xHY8QQ9bHHHsNjjz024PZJkybhzTffHPWB05XZEAzglAxcbl9VxVgz9V29cLp9auapO4WaeI+F0gtO0e3wRNSYWekFxwCun9HQv1HY6fHFvAecYkrfj82R+k7MqQz2QGnucGJcduJaCBAREVHqM6pzWD8+PtQEAJg3dWz904ZiCenR3NblitvKuFgqzDHCatLiSF0nLpsxfuQnDIIzryiZjVr0unxo63LBatKqwVWsnZp+BoIfzlTpATcWtiz9gCWUkQSmzMANFFp9yen2wRDjCpSKCYUW6HUSauv6rxY1tTvH3A+FiIiIMosxJAnx0VcnMaUkG+Ns8alYbdRLEAUhmIGLY3uvWBIEAVNKbaits4/6NRjARUnZA9fW5Y5rlD9oAOfwDtvsOl3YLHrYezxq8Zoehzeivl5KsJydAUFsrJjUJZReuDx+GOO0P1ISRUwutqo/NrIso6nDgYIEthAgIiKi1KfTiJBEAYe/70BjmyOu/XgFQYDJoEFHlxs9Tm9aBHBAsEF4W5dLXdEXLQZwUVL2wLXZXciN44dEmZiHNk/udnoyYglljkWHgCyrTQy7HZFlFvUsYjKAKSTQd7p9Me8BF2pKqQ0NLT1wuLyw93jg8viZgSMiIqIwgiDAqNfg/75thyQKmH322PunDcdi1OL75mAl7rQJ4JR9cHWj2wfHAC5KZqMWPr+Mlk5nXD8koeuHAcDnD8Dp9keUqUp1tr5m3so+uJ4IA1OlcTgDuH7hSyj9Ma9AGaq8xAYZwJF6O060Bn8omYEjIiKiUykXmM8ty4t78sFs1OBEay+A+FWHj7XSAgsMOgm19aNbRpnadTZTkFL1zx+Q4xrAhRYxAfpL7VsyYPmgra/wS2e3BzhDycCN/OVmBm6g8CWU8c3AlRVbIYkCaus7IfQVlGELASIiIjqVMh+5cFr8lk8qzAYt/H3bcnKt8SkuGGuiKGDy+GwcYQYuMUKvIiRkD5wrGMB1O/p6pWXAEsrQDJzb64fHF4i4iIleJ6mBHAEaSYROK6pFTOJVhRII7kE8qygLR+rsONHaC1EQ2EKAiIiIBjAZNDDoJEyflBf3YylzSEEAcuJUHT4eppTa0NDaq871o8EMXJSUJWtAfNfZ6nUSBKG/iElP336xTFhCaTVrIQjBAK7HEVkTbwC4dMZ4lBVnx3t4acds0MLh8sHl8cOgj29wW15iw3t/q0NuthF52Xq2ECAiIqIBFs2ZENYKK56UuXlOlh6SmD7zkvKS4Jz22MkulI63RfXc9PkrU4Q5QRk4URBg1GnUJZSRNrtOB5IowmrWoaPbjW5nX2Aawd81sciKS6YXx3t4acdk0KCzxw1/QI7rEkogeLXIH5Dx6ddNLGBCREREgzpvUh7mxqn326nMxuDcJ10KmCjKiq3QSAK+O9Ed9XMZwEVJCaD0WkndDxcvRn1IAOfInD1wgNLM26Nm4CwZkFlMFpNeg7a+MrTxaiOgmFKSDQGAzy8zgCMiIqKkU+bm6VLARKHVSDiryIpvG7uifi4DuCgpQVuuVQ9BEOJ6LJNBo66LVYuYGDNj1WuORY/OHndGZRaTxWzQ9gdwcc7AmQ1ajM+3AGAFSiIiIko+ZQllumXgAKCi1KZW9o4GA7go6bQStBoxIVF+eAbOA7NBk1Zre4djs+iCAVwUe+BocCaDBh5vAABgiHMABwDlpcE124W5DOCIiIgoudJ1CSUATCmxqRU0o5EZ0UCCFeeZcWZhVtyPYwoJ4Hqc3ozKUtksenQ7vOjscUMQ+svhU/RMIUFbvJdQAsD0yeOg1YgoLYj/d4CIiIhoOIU5JkiigAkJmJvH2pSSbJgM0c/vOWsehdW3XQAxzssnAcCol9QqlMFeaZmTpVJ6wdW39MBi1Cbk/cxUocFvvJdQAsGmnK/97Cp0251xPxYRERHRcPJtRvz6gUsSUvEy1ox6DR677YKon8cM3ChoJBGiGP+Aw6TXhhUxybQMHADUNfdkVGCaDKGtLRKxhBIADHHsN0dEREQUjXQM3hSjacnEAC6FGQ0SnG4/ZFlGj9OTET3gFDZLMGiz93gyKjBNhrAMXAKWUBIRERFR8jCAS2FGvQYBWYbL4w/ugcukAK5vCSUQWQ84GlpoAMfMGBEREVFmYwCXwpT9TB3dbvj8MrKMmbPU0GLUQupbhppJmcVkUJZQaiQRWg2/0kRERESZjLO9FKZUF2zuCBaLyKRARxQEdRllJmUWk0H5nBj1XD5JRERElOkYwKUwNYDrDAZwmbZXTClkYsmgzGIyKEsojVw+SURERJTxGMClMKOagXMAyLxMlRLAZVJmMRmUJZQGZuCIiIiIMh4DuBRmHLCEMrMyVUohExYxGRudVoQkCmENvYmIiIgoMzGAS2HK0jhlCWWmBTrKHrhMC0wTTRAEmAwaVqAkIiIiOg0wgEthSgauze6CJAowZFiPrzMLs6DXSsjLNiR7KGmvOM+MM/JMyR4GEREREcUZL9mnMJ0muDTOH5Bhs+ggCEKyhxRT08ry8Nz9PxhVB3oK9+BNM4HM+ngQERER0SA4c05hgiCoWbhMrdTI4C02RFGAmGEBPhERERENxNlzilMKU7BSIxERERERMYBLcUYGcERERERE1IcBXIoz9vX2yrQm3kREREREFD0GcCmufw8cAzgiIiIiotMdA7gUp/SCY680IiIiIiJiAJfiuAeOiIiIiIgUDOBSnFqFkksoiYiIiIhOewzgUpwSwFm4hJKIiIiI6LTHAC7FFY8zw6iXkGfVJ3soRERERESUZJpkD4CGN60sD8/ffwkEQUj2UIiIiIiIKMmYgUsDDN6IiIiIiAhgAEdERERERJQ2GMARERERERGlCQZwREREREREaYIBHBERERERUZpgAEdERERERJQmGMARERERERGlCQZwREREREREaYIBHBERERERUZpgAEdERERERJQmNMkegCgKyR4CxQHPa+bjOT498DxnJp7X0wPPc2biec0sozmfgizLchzGQkRERERERDHGJZRERERERERpggEcERERERFRmmAAR0RERERElCYYwBEREREREaUJBnBERERERERpggEcERERERFRmmAAR0RERERElCYYwBEREREREaWJuAdwVVVVqK2tjfdhKAkiObc8/+nJbrfj3HPPxc9//vNkD4XiaNeuXVi2bBlqamqwePFi/PjHP072kCgGPB4P/uM//gNXXnklFi9ejGXLlmHPnj3DPqe+vh5vvPFGgkZIY1FVVYXq6moEAoGw2/j/2vRWVVWFxYsXY+nSpViwYAH++Z//GZ9++mmyh0UpSpPsARBR6tm+fTtmzJiBnTt34sEHH4ROp0v2kCjGmpub8cQTT2Dr1q0oKiqCLMs4fPhwsodFMbB27Vo4HA7s3LkTer0etbW1uOuuu5CdnY3Zs2cP+pyGhga88cYbWLlyZYJHS6PhcDiwbds2LF++PNlDoRj61a9+hfLycgDAe++9h3/6p3/Cxo0bMX369CSPjFJNwpZQnnp1KPTfVVVVePbZZ7Fy5UpUVVXhlVdeSdSwKAaGO7eUnt566y388Ic/RHl5Ofbu3QsAeOSRR8K+m6H/bmpqwu23345rrrkG99xzD+655x5+j1Nca2srNBoNbDYbAEAQBFRWVgIAPv/8c9x666249tprce2112Lfvn0AglmauXPnYsOGDVixYgWWLFmCAwcOJOtPoEE0NDRg165dWLt2LfR6PQCgvLwc99xzD55//nkAwH/9139hyZIlWLp0KW688UYEAgGsW7cOR48eRU1NDe67775k/gkUgXvvvRfPPfccPB5P2O3Hjx/H7bffjiVLlmD58uV4//33AQC//vWvsX79evVxHR0dmDt3LhwOR0LHTZFbuHAhbrzxRmzcuBEej0f93a2pqcGDDz6I3t5eAEB3dzceffRR9Tu9bt26JI+cEiFlMnAulwtvvPEG6uvr1R8es9mc7GERnXYOHz4Mu92OefPmoaWlBW+99RYWL1487HOefPJJzJ07Fz/84Q/R0NCAJUuW4OKLL07QiGk0zj77bJx33nm47LLLMHfuXJx//vmoqamBJEl4/PHH8eKLL6KgoADNzc1YsWIFduzYAQDo7OxERUUFHn74YXzyySf413/9V+zZs4dZ2hRRW1uLCRMmqIG5YsaMGXj22WexdetW7N27F6+//josFgs6OjogiiLWrFmDDRs2YMuWLUkaOUVj2rRpmDZtGl5//XXcfvvt6u0/+clPcMMNN+D666/HN998g5tvvhm7du3C8uXLccMNN+Chhx6CRqPBjh07UFVVBZPJlMS/gkYyffp07N27F7/73e+QlZWFzZs3AwCeeuopvPjii3jggQewfv16mEwmbNu2DaIoor29PcmjpkRImSImV199NQCgpKQEVqsVJ0+eTPKIiE5PmzdvRk1NDQRBwMKFC/H555+jqalp2Of89a9/xXXXXQcAGD9+PC688MJEDJXGQBRFvPDCC/jDH/6AuXPnYv/+/Vi6dCn279+P+vp63H333aipqcHdd98NQRBw/PhxAIBWq8XSpUsBAHPmzIHBYMC3336bzD+FQsiyPOz9//u//4ubbroJFosFAJCTk5OIYVEc3H///fjtb3+rZmJkWcY//vEP9bd48uTJqKysxMGDB1FcXIxJkyZh//79AICtW7eqj6PUpXyf9+7di3feeQc1NTWoqanB3r178f333wMIfqfvvPNOiGJwSp+bm5u08VLiJCwDJ0lS2IZbt9sddr+y1EN5rN/vT9TQaIxGOreUPjweD7Zv3w69Xo9t27YBALxeL7Zu3crznKHKy8tRXl6Om2++GVdffTVkWUZFRQVeffXVAY+tr68fcJssyxAEIRFDpQiUl5fj+++/R2dnZ1gW7uDBg6ioqEjiyCjWysrKcOmll+Lll18GMHTwrnw/ly9fjrfffhulpaXo7u7GrFmzEjZWGp0vv/wSU6ZMQX19PR5//HFeHCVVwjJwEyZMwJdffgkA+Oijj9Da2pqoQ1Oc8dxmjj179qCsrAzvv/8+9u7di7179+Kll17Cli1bws5zc3Mz/vrXv6rPmzNnDrZu3QoAaGxsxMcff5yU8VPkmpqa8Nlnn6n/PnnyJNrb2zF58mQcP3487Bx+8cUX6uTQ6/Vi+/btAIADBw7A7XZj4sSJiR08DamkpASLFy/G2rVr1YsstbW1+M1vfoN7770Xl19+OV5//XX09PQACO6FAgCLxaLeRunjRz/6EV577TX09vZCFEVUVlaqv8VHjx7F4cOH1QIYixYtwt/+9je89NJLLH6SBvbs2YPXX38dd9xxB6qqqrBp0ya4XC4AQE9PD44ePQoAuPzyy7Fx40b1N5pLKE8Pcc/A+Xw+6PV6/Mu//AseeeQRvPnmmzj//PNRXFwc70NTnPHcZp4tW7ZgyZIlYbfNnDkTgUAAM2fOxAcffIClS5firLPOwnnnnac+ZvXq1XjooYfw7rvvoqysDOeff766RItSk8/nw3PPPYeGhgYYDAYEAgHcf//9mDp1Kl544QU89dRTWL9+PbxeL0pLS/Gb3/wGAGCz2XD8+HFcf/31cLlcePrpp7n/LcWsXbsW//mf/4mrr74aWq0Wer0eq1evxpw5cyDLMpqamrBy5UpIkgSz2YxXX30VFRUVmDhxIqqrq1FWVoZf/epXyf4zKAJnnHEGampq8NJLLwEAfvnLX2LNmjXYtGkTNBoNfvGLX6hL6oxGI6644gps2bIFf/rTn5I5bBrCfffdB51OB6fTiUmTJuHFF1/EjBkzcM455+D555/HihUrIAgCBEHAvffei0mTJuHRRx/F+vXrUV1dDUmSMGfOHDz22GPJ/lMozgR5pAXzY9Dc3IyrrroKH374IQwGQ7wOQ0nAc0uhXC4XNBoNNBqNWvRi06ZNKCsrS/bQKIbq6+tx3XXXhWVfiYiIKLHiloH7/e9/j9deew0PP/wwJ/gZhueWTvXdd9/h4YcfhizL8Pl8uPfeexm8EREREcVBXDNwREREREREFDsp00aAiIiIiIiIhhezAG7Dhg2oqqpCRUUFamtr1dv37duH5cuXY8mSJbjllltQV1en3nfs2DGsXLkSixYtwsqVK/Hdd99FdB8REREREdHpKGYB3BVXXIFXX30V48ePV2+z2+14+OGH8fTTT2P79u24/vrrsXbtWvX+xx9/HKtWrcLu3buxatUqrFmzJqL7iIiIiIiITkcxC+BmzZqFoqKisNuOHz+OcePGqT2CLr30UnzwwQdob29HW1sbDh06hOrqagBAdXU1Dh06NOJ9REREREREp6u47oGbOHEiWltb8cUXXwCA2vy1sbERjY2NKCwshCRJAABJklBQUDDifURERERERKeruDbyzsrKwjPPPIN///d/h9vtxiWXXAKr1QqNRgOv1xvPQxMREREREWWcuAZwADB//nzMnz8fANDa2oqNGzeitLQUTqcTTU1N8Pv9kCQJfr8fzc3NKCoqgizLQ95HRERERER0uop7G4GWlhYAQCAQwNNPP40bb7wRJpMJeXl5qKysxI4dOwAAO3bsQGVlJXJzc4e9j4iIiIiI6HQVs0beTz75JN577z20trYiJycHNpsNO3fuxOrVq/Hpp5/C6/Xioosuwr/9279Br9cDAI4ePYpHHnkEXV1dsFqt2LBhA8rKyka8j4iIiIiI6HQUswCOiIiIiIiI4ivuSyiJiIiIiIgoNhjAERERERERpQkGcERERERERGmCARwREREREVGaYABHRERERESUJhjAERHRaauiogLHjx9P9jCIiIgixgCOiIhSQlVVFaZNm4b29vaw22tqalBRUYH6+voxvf6tt96KN998M+LHb9myBZWVlZg5cyZmzpyJqqoqPProozh27NiYxkFERDQWDOCIiChljB8/Hjt37lT//fXXX8PlciVtPDNmzMBnn32GAwcOYNOmTdDr9bj22mtRW1ubtDEREdHpjQEcERGljJqaGrz99tvqv99++20sW7ZM/Xd3dzceeughzJs3D5dffjleeOEFBAIBAMGM2U033YQNGzZg9uzZqKqqwv79+wEAzzzzDA4cOIB169Zh5syZWLdunfqaf/nLX7Bw4ULMnj0bTzzxBGRZHjAuSZIwYcIErF27FnPmzMHzzz+v3nfffffhoosuwgUXXICbb74ZR44cAQB88cUXmD9/Pnw+n/rY3bt3o6amJkbvFhERnY4YwBERUcqYMWMGenp6cPToUfj9frz77rtYunSpev/PfvYzdHd3Y8+ePfjDH/6Abdu24a233lLv/+KLLzBx4kR8/PHHuOuuu7B69WrIsowHHngAs2bNwpo1a/DZZ59hzZo16nP27duHzZs3Y9u2bdi1axf+/Oc/DzvGBQsW4MCBA+q/L7nkEuzevRsfffQRpk6dip/85CcAgPPOOw82mw0ffvih+th33nmHARwREY0JAzgiIkopShbuww8/RFlZGQoLCwEAgUAA7777Ln784x/DYrGgpKQEd9xxB9555x31ucXFxbjhhhsgSRKWL1+OlpYWtLa2Dnu8u+++G1arFcXFxZg7dy4OHz487OMLCgpgt9vVf69YsQIWiwU6nQ4/+tGPcPjwYXR3dwMAli1bpo6vs7MTH3zwAaqrq0f1vhAREQGAJtkDICIiClVTU4NbbrkF9fX1Ydmqjo4OeL1eFBcXq7cVFxejqalJ/fe4cePU/zYajQAAh8Mx7PHy8/PDntPb2zvs45uampCdnQ0A8Pv9eOaZZ/A///M/aG9vhyiK6lizsrJQU1ODq666Cr29vdi1axdmzZqFgoKCkd4CIiKiITEDR0REKWX8+PEoKSnB/v37sXDhQvX2nJwcaLVanDhxQr2tsbFRzdAlyp49ezBr1iwAwPbt2/GnP/0JL7/8Mv7+979j7969AKDuoyssLMTMmTPxxz/+Edu2bQtbDkpERDQazMAREVHK+fnPfw673Q6TyaQWARFFEYsXL8YzzzyDDRs2wG634+WXX8add94Z0WuOGzcOdXV1oxqP3+/HiRMnsGnTJnzyySf47//+bwBAb28vdDodcnJy4HQ68fTTTw94bk1NDX7729+ioaEBCxYsGNXxiYiIFMzAERFRypkwYQLOPffcAbf/9Kc/hdFoxJVXXolVq1ahuroa1113XUSvedttt2H37t2YPXs2nnzyyYiec/DgQcycORMXXHABbrvtNvT09GDz5s2oqKgAENzjVlxcjB/84Ae45pprMGPGjAGvsWDBAjV4M5lMER2XiIhoX8rwWwAAAJpJREFUKII8WL1kIiIiipkrr7wS69atw/z585M9FCIiSnPMwBEREcXR7t27IQgC5s2bl+yhEBFRBuAeOCIioji59dZb8c033+AXv/iFWqGSiIhoLLiEkoiIiIiIKE3wciAREREREVGaYABHRERERESUJhjAERERERERpQkGcERERERERGmCARwREREREVGaYABHRERERESUJv4/LjFcZc/wJisAAAAASUVORK5CYII=\n", "text/plain": [ "
    " ] @@ -931,9 +1276,7 @@ "metadata": {}, "outputs": [], "source": [ - "import seaborn as sns\n", - "# Use seaborn style defaults and set the default figure size\n", - "sns.set(rc={'figure.figsize':(11, 4)})\n" + "dd\n" ] }, { @@ -1235,7 +1578,7 @@ }, "hide_input": false, "kernelspec": { - "display_name": "Python [default]", + "display_name": "Python 3", "language": "python", "name": "python3" }, @@ -1249,7 +1592,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.5.5" + "version": "3.7.3" }, "toc": { "base_numbering": 1, From c44b9b6078d5bf6f412effdd78d289bee0ec03d8 Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Tue, 23 Jul 2019 16:51:43 +0200 Subject: [PATCH 064/134] Fixed typo in equation --- Module-03-interactive.ipynb | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/Module-03-interactive.ipynb b/Module-03-interactive.ipynb index 067c934..d7f9773 100644 --- a/Module-03-interactive.ipynb +++ b/Module-03-interactive.ipynb @@ -573,7 +573,7 @@ "\n", "The equation for growth is\n", "\n", - "$$ \\dfrac{dP}{dt} = rx $$\n", + "$$ \\dfrac{dP}{dt} = rP $$\n", "\n", "where $P$ is the number of bacteria in the population, and $r$ is their rate of growth [number of bacteria/minute]. Integrating this equation will show exponential growth. This is not realistic. Eventually the bacteria will run out of space and their food source. So the equation is modified:\n", "\n", From 01c0de26ea96495cfa02e9fc09b8e06303db44eb Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Tue, 23 Jul 2019 16:53:29 +0200 Subject: [PATCH 065/134] Updates to WS10 to add time-series problems --- Module-10-interactive.ipynb | 464 +++++++++++++++++------------------- 1 file changed, 214 insertions(+), 250 deletions(-) diff --git a/Module-10-interactive.ipynb b/Module-10-interactive.ipynb index 97c77fc..4e68bbb 100644 --- a/Module-10-interactive.ipynb +++ b/Module-10-interactive.ipynb @@ -28,7 +28,7 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 1, "metadata": {}, "outputs": [ { @@ -187,7 +187,7 @@ "" ] }, - "execution_count": 33, + "execution_count": 1, "metadata": {}, "output_type": "execute_result" } @@ -318,14 +318,8 @@ }, { "cell_type": "code", - "execution_count": 59, - "metadata": { - "deletable": false, - "editable": false, - "run_control": { - "frozen": true - } - }, + "execution_count": 2, + "metadata": {}, "outputs": [ { "data": { @@ -546,7 +540,7 @@ "11 92.2 " ] }, - "execution_count": 59, + "execution_count": 2, "metadata": {}, "output_type": "execute_result" } @@ -560,7 +554,13 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "deletable": false, + "editable": false, + "run_control": { + "frozen": true + } + }, "source": [ "Click on the column header for ``BlendingEfficiency`` and you can sort from low-to-high, or high-to-low. You can now instantly see that ``ParticleSize`` has the greatest effect. No plotting required. \n", "\n", @@ -581,8 +581,14 @@ }, { "cell_type": "code", - "execution_count": 5, - "metadata": {}, + "execution_count": 3, + "metadata": { + "deletable": false, + "editable": false, + "run_control": { + "frozen": true + } + }, "outputs": [ { "data": { @@ -657,7 +663,7 @@ "Wednesday 17.23" ] }, - "execution_count": 5, + "execution_count": 3, "metadata": {}, "output_type": "execute_result" }, @@ -739,14 +745,8 @@ }, { "cell_type": "code", - "execution_count": 34, - "metadata": { - "deletable": false, - "editable": false, - "run_control": { - "frozen": true - } - }, + "execution_count": 4, + "metadata": {}, "outputs": [ { "data": { @@ -780,48 +780,48 @@ " \n", " \n", " 0\n", - " 6.485\n", - " 6.660\n", - " 4.555\n", - " 2.200\n", - " 2.910\n", - " 3.475\n", + " 6.48\n", + " 6.66\n", + " 4.56\n", + " 2.20\n", + " 2.91\n", + " 3.47\n", " \n", " \n", " 1\n", - " 5.750\n", - " 6.090\n", - " 3.805\n", - " 2.315\n", - " 4.025\n", - " 3.770\n", + " 5.75\n", + " 6.09\n", + " 3.81\n", + " 2.32\n", + " 4.03\n", + " 3.77\n", " \n", " \n", " 2\n", - " 3.935\n", - " 4.120\n", - " 2.445\n", - " 3.625\n", - " 5.770\n", - " 5.395\n", + " 3.94\n", + " 4.12\n", + " 2.44\n", + " 3.62\n", + " 5.77\n", + " 5.39\n", " \n", " \n", " 3\n", - " 6.595\n", - " 6.125\n", - " 4.440\n", - " 1.930\n", - " 3.310\n", - " 4.465\n", + " 6.60\n", + " 6.12\n", + " 4.44\n", + " 1.93\n", + " 3.31\n", + " 4.46\n", " \n", " \n", " 4\n", - " 5.680\n", - " 5.985\n", - " 3.800\n", - " 2.115\n", - " 3.850\n", - " 4.140\n", + " 5.68\n", + " 5.98\n", + " 3.80\n", + " 2.12\n", + " 3.85\n", + " 4.14\n", " \n", " \n", "\n", @@ -829,14 +829,14 @@ ], "text/plain": [ " Flavour Sweet Fruity Off-flavour Mealiness Hardness\n", - "0 6.485 6.660 4.555 2.200 2.910 3.475\n", - "1 5.750 6.090 3.805 2.315 4.025 3.770\n", - "2 3.935 4.120 2.445 3.625 5.770 5.395\n", - "3 6.595 6.125 4.440 1.930 3.310 4.465\n", - "4 5.680 5.985 3.800 2.115 3.850 4.140" + "0 6.48 6.66 4.56 2.20 2.91 3.47\n", + "1 5.75 6.09 3.81 2.32 4.03 3.77\n", + "2 3.94 4.12 2.44 3.62 5.77 5.39\n", + "3 6.60 6.12 4.44 1.93 3.31 4.46\n", + "4 5.68 5.98 3.80 2.12 3.85 4.14" ] }, - "execution_count": 34, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } @@ -851,14 +851,8 @@ }, { "cell_type": "code", - "execution_count": 35, - "metadata": { - "deletable": false, - "editable": false, - "run_control": { - "frozen": true - } - }, + "execution_count": 5, + "metadata": {}, "outputs": [ { "data": { @@ -894,7 +888,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 6, "metadata": {}, "outputs": [ { @@ -926,7 +920,7 @@ }, { "cell_type": "code", - "execution_count": 41, + "execution_count": 7, "metadata": {}, "outputs": [ { @@ -1099,7 +1093,7 @@ }, { "cell_type": "code", - "execution_count": 42, + "execution_count": 8, "metadata": {}, "outputs": [ { @@ -1151,12 +1145,12 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 9, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2oAAAE+CAYAAAD8q+PDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzsvXeYJEd9///uTbe3t3lv927vTqe7k4QSQgKEMCIIDCbZGDC2+JlgCbDlgIVIX4TJxhiTZVtYBAkwIgrJCqcs3Smn00Xp4uYcZmd2ck79+2O6uququ2e6e3pmZ3br9Tz77PRMh+pUVZ8sybIMgUAgEAgEAoFAIBDUDg0r3QCBQCAQCAQCgUAgELAIQU0gEAgEAoFAIBAIagwhqAkEAoFAIBAIBAJBjSEENYFAIBAIBAKBQCCoMYSgJhAIBAKBQCAQCAQ1hhDUBAKBQCAQCAQCgaDGEIKaQCAQCAQCgUAgENQYQlATCAQCgUAgEAgEghpDCGoCgUAgEAgEAoFAUGM0VfNgGzdulHfs2FHNQwoEAoFAIBAIBAJBzXDw4EGfLMv9pdarqqC2Y8cOHDhwoJqHFAgEAoFAIBAIBIKaQZKkKSvrCddHgUAgEAgEAoFAIKgxLAlqkiR1S5J0myRJpyRJOilJ0mskSeqVJOlhSZJGlP89lW6sQCAQCAQCgUAgEKwFrFrU/gvAA7IsnwPgQgAnAXwewF5Zls8CsFdZFggEAoFAIBAIBAJBmZQU1CRJ6gTwBgA/AwBZltOyLAcBvBvAL5XVfgngPZVqpEAgEAgEAoFAIBCsJaxY1HYB8AL4hSRJhyVJukmSpA0ANsmyvAAAyv8Bo40lSbpKkqQDkiQd8Hq9rjVcIBAIBAKBQCAQCFYrVgS1JgCvAPAjWZZfDiAGG26Osiz/VJbli2VZvri/v2QWSoFAIBAIBAKBQCBY81gR1GYBzMqyvE9Zvg0Fwc0jSdIgACj/lyrTRIFAIBAIBAKBQCBYW5QU1GRZXgQwI0nS2cpXbwZwAsBuAFco310B4K6KtFAgEAgEAoFAIBAI1hhWC15fDeA3kiS1ABgH8BEUhLw/SJL0MQDTAP6qMk0UCAQCgUAgEAgEgrWFJUFNluUjAC42+OnN7jZHIBAIBAKBQCAQCARW66gJBIJVxngwhtuHFpCX5ZVuikAgEAgEAoGAQwhqAsEa5Zg3AgDI5YWgJhAIBAKBQFBrCEFNIFijCEuaQCAQCAQCQe0iBDWBYI1C5DQhrgkEAoFAIBDUHkJQEwjWKEJAEwgEAoFAIKhdhKAmEKxxhAekQCAQCAQCQe0hBDWBYI0jC9uaQCAQCAQCQc0hBDWBYI0jxDSBQCAQBJIZRNLZlW6GQCCgEIKaQLDWEZKaQCAQrHkenfLh4QnvSjdDIBBQCEFNIFjjCDlNIBAIBIR4RljVBIJaQQhqAsEaR8SoCQQCgYCQyOZXugkCgUBBCGoCwVpHyGkCgUAgIIgxQSCoGYSgJhCsccSYLBAIBAKCGBMEgtpBCGoCwRpHDMoCgUAg0BCjgkBQKwhBTVD3TIfimAjGV7oZdYssKl4LBAKBQEGMCAJB7SAENUHdc2AxhMOe0Eo3QyAQCASrlLlIArcPLSCdW/2JNoTuTiCoHYSgJhCsccSYLBAIBMUZWo4CAGIidb1AIKgiQlAT1DV5oforG3EJBQKBoDh5pZ9sgLSyDakCYkgQCGoHIagJ6pqkqPfiCDouTQzKAoFAUBxSb1Li5LRMPi8KRAsEgoohBDVBXZPM5la6CasAIaoJBALrHFgI4vn5wEo3o6oQi5rESWpPTC/jgXHvCrSocogEU4J6I5XL49k5/6qMIRWCmqCuyebFgOIE+qqJMVkgENhhOpzAbCS50s2oKqqbPddfhlIFa9pqEm5Wz5kI1gpjgRgWoimMBmIr3RTXEYKaQLDGEYOyQCAQFCevymnGPWZOdKQCwYrRqFi6V2PeAiGoCeqa1fdKVgemLxMXUSAQCIpCBDSz7jKbXz0uV6twritY5RBBLbcKH14hqAnqmtXkblJNaK1wJa9gJpdHIiPiCAWCtUQgmUY4lVnpZriKalHjOkwSsZYRbvgCgSWCyQyemfW7qtxoUKSZVRiiJgQ1gX0OLATx2JRvpZsBQBiDnMIa1Cp3FR+bXsb940sV279AIKguVpRjj04tY89kbYwRbkHOmz/7poaCqLaqLGpiZBVUkNFADIuxFKZCCdf2KVwfBQKK6XAC/uTq0pauOai+rJL9WiQt0lYLBKuJtWo50ixq7Pk3KoJaRgSpCdYAsUwWT8/6kSlDMdG1rgkA4I2n3WqWcH0UCGqVVfhOVoVqXzaRnVMgWB0Ue5ej6eyqTI8NmPeZTRKxqK2ePk6MqwIzTngj8MRSWHAh66ub1i9SNSO3it5DQtNKN0Cw+sjk84AMNDdWXg+w+l7J6kD3j9W4hulcHk0NjVU4ksBN4pks/IkMtnWuX+mmCGqEYpr0hya8WN+0uvW/Zq6P5VgYag0xrgrMaFKCwcqxrFfi+SJzGuH6KBBY4O4RD+4e9Zj+Hktn8fCE16Vi1avvpawGTDKRCnZsyhxm1WrZVztHPGE8vxBcdYkhBM4p5eKXyFb3XU/n8jjiCVVNk853l43KxLXeLWoiMZfAClpMZhmCWgUeNbJL4fooELjAeDCOSDrrSiDpKnwnq0K1svM3K5MYIajVJ62KdWQ+uraKGwvMqbWJ0AlfBOPBOKbD7iUmKAafaIMoo2rtupTD6jkTgdu4IahVAqJoWI1TDSGoCapOc6NzVxFZlpGh3sTa6irqCM71MV6hFPotyr0Wglp90tK4OqwFAvewkxGwmlaalXZ5qnc5jWl+vZ+MoGI0qxZk52N6qZqEzvZZYKX7gUogBDVB1Wkuw8f5yFIYd496VuXLWE3oqze8HMUD40uIViBDo2pRW0XxGwLBWiWeySFlw7WxGlYmkkSgWmOC2WFW04i0ms5F4C6NwvWx6ohkIoKqQ5KMZBxYWWYUd8lcXkZDo+RIYzsejGHYH8PbdvZDIqP8mkO7bqTUQiWsJuTyrsK+c01A7pu4fwIAeMBmTcRsXkalc4s0KCWnq/WMmh2m3mO8qp1gSlCfkBlTWYKaO01h9ymSiQgE7qF4wzmyqGna08J/J6/kC54w4pkcYhVy96sHjPqyhgrKrKuv61xbiPsncEI1XGbVMaFKT2m9C2RmyLw/PABfPI0Rf3RlGiSoSchTUlbWR1I83sV3SXt+V5/yXQhqghXDiUWtgas+7+Q139jWAsDdYov1htF1q+j8Qy64TYlYp/pC3C1BOUTS2YoXvdfGhIoeRoU/jFyG0rCWMEow9dTsMo56I6uq9ICgPIhAVF6MGvvfFZSdrT4xTQhqghWkPIua89FxfVOhnldqDSe4MBTUKnEc9TbJeGB8CfvmAxU4iqDSrFYrgqCyPDsXwMMT3ooeo0F1r66SRc1kuZ5fkbFADP6EvgQHGSuNfhOsUYiLoYNNJ0NxPDzhpdwUXWuV9l6uQklNxKgJXGM8GMOG5tKPFHlJnWjpiPY0V4ZFTWtHHY+s5WJw6pW8GkQoXoqlKngUgdtUIjuXQOAmEqprUeNfBtWNq47fkheWwswyOZeudc2IZXIIpzLYtGHdSjRNUGOU85QfWgwBAAYUryZ3XR9XL0JQE7jGEU+49EoUTt5RYgLOU5YabX+yreQgq/nFLoXRpKKSgmtSyRTXWunMAgJ3oTSfkXQWHS1iyBDUFqpFrYLHoPtGvu9cDRY1HnIu1bi2gvplKZZCJp/H1o71ltZvlCTkZFlV3JbzXOWV/RCrL3lHV6FBTbg+CqqPk5czl5dxz6gHUSUBSDmuj9rAunaHn2qfeSJbuG/rlE5VUB+Q54S4rMQqHG8kENhF4uKWKwETv8Vb1Cp21JWHTHrX8FAp4KAfhadm/dg3H7S8LamhqwpqZTxXhz0h3D+2hFxextByFLORpPOd1ThCUBNUDDcFoWgmyxRNNnJ9tHo02QW3yXrH6NZU8nokFAG7tVF0OfVM0kYNLcHaYqUUX6RHqdThZVlm3Cr1yURW33iSzuWRympZkevZrVPgLuW852pdVdWi5nxfS7FCMrhENofjvggCydUbRyn8WARlE0tnDbUZMozN0E5edD5boFF6ftnsgAbtUtdfo1Q762NCmeCvE4JaXcE/E9VKgS5YXdh1S7eDalGr0LP54lIYY8G4umx2lNXkoXFyOYqTy1Gc1llwaVtFpyZYQZob3LOorW9qQCKbQyi1egU0giVBTZKkSQARADkAWVmWL5YkqRfALQB2AJgEcLksyyKlW5nkZRnhVBbdrc0r3RTLPDXrN6xJlpeNa3M5eTd5QS1nIKnJpqIhd/xVkk7ZKYUJRbXyPhYgFtCGShZrE1QcUV1B4IS8rNXPdItkNoe5SFLNBFwpYYIW0owO5GQ8uX1oAZs3rMOl23rLa5wLFBUwXbQW5mUZubyMZqGsq2vKeRbIvXfDora+uRFIZlTLGmE1zjDsvDFvkmX5IlmWL1aWPw9gryzLZwHYqywLyuSYN4JHpnyI1lEsSMrEHcrNmAG+ZodWR40O8rYG2WY1VrAvRSaXxx3Dixj1x3S/VSQ9fzUOIqgY/EC6Ft8ZgTWKPRm5Cjw3hxZDeGEpjKDi8lStZ1Ofnt+ZMLNYIxlwi7U7ni3f8kE44gnj7lGP6EPqnHJuH7GoqXr2sixqhXh3X2L118MtR7XxbgC/VD7/EsB7ym+OgAw6cQMLVa1iNgibdchO3k2+5pphjJrFHa9lixq5jjOcq2oqEUc8nqj48UWsQ33B3y1hUROYUaz/rYSgRvZIxspqzf/1MWrs/3qjWLsj6cJ8xI1+26MIpv41MLEWGNPIedSUE/FMdhXL1I9RwylWBTUZwEOSJB2UJOkq5btNsiwvAIDyf6ASDVxrNClPX7ZGe30jNwlzn333jmsWo8a6PlpjbWd91J/z8JGDuOLV5+MVZ5+J6elpd4+2hjKkrQXW5jsjKJd8BST89UqpDxL/Wq34SfM+rT7fjWJCWDqnKERdOLWNSu2sZVE8u64pR2jn3RLdeK74rqU+38LiWBXUXivL8isAvAPAxyVJeoPVA0iSdJUkSQckSTrg9XodNXItQQS13AqqrvOybDohYy1YxdtoalFzcGpGro/BZAZRWpticcerMUuXVYzO+Vsf/wgy6RT8/mVcd9116vfT4QQen/Y5PlYgmdbXHFqLF72O0SUTETdQYMBoIMb2xRyVsKi1Kq5PpPRHtYbM1VZHzUq73Ti1xiqUURBUnnJun17J4Xxna+kxsiSoybI8r/xfAnAHgEsAeCRJGgQA5f+SybY/lWX5YlmWL+7v73en1asYYhrmLUjVIpbO4s7hRUyHjd3g7DTLzUTeumQisoxHpnyYDGnt9MRSlgTcSg6subyMEX+0di0PXLNyuRxCy5owdvDgQfXzgYUglhMZR+fiiaXw6NQyQqnV75awlhDJ+QU8mXweLy6F8cT0suk6lRDUmiR2rKxWn6ubbNa54s/KO20Uqzrij9oUuur7OgnKh7/3ubyMyWDc0btr6slle0+1T0lBTZKkDZIkdZDPAN4K4BiA3QCuUFa7AsBdlWpkPXH/2BIeLzJglUJ1fcyvzJTIr8TImQU60y9UqRfCPEbNfofNx6gZ7fvAYgjHvOGS+9JiCsxbkJdlZHL278GwP4qj3ggjQPIcXgxh2B+1vW834M/41MHnmeUNGzbotnGiNDBLhrMaO9G1hNCGr11KTab4PprGQVdaklqJnzTwwq8r+Pt678034ao3vhK//v43kctmlXXYbSaCcRz1RjBikJTK/DjK/7JaK1hpZN0HB9sqZPIyDnlCRYtV5/IyJkPWhbnVOERZSc+/CcAdSq2SJgC/lWX5AUmS9gP4gyRJHwMwDeCvKtfM+iGRzamuGE4gWsJKaCCtQNKmtjQYy/C65B1FcqGaDpxOXnDuepgJD5F06WtvRVAcWo5iJpLAW3c6C70s9gxMhArpnl/S2+5o327yyO23MMt0jFqTJCEry8jkZTQ32tuv2eNbs5ZGgSH8/RLJRNYuRrc+l5ct9efVGM+qlagokc0hlcurNSGtKP5qGbrV0VAQv/zO15HLZnHHjT/E1PBJfPEnv9JdWTL+ZmwolLUJfn1eJ0EBTTHhaCJn+HW6iCbnqDeM8WAcbU2NGNiwjtqVfl/5fB6ZOsqYbpWSgposy+MALjT4fhnAmyvRqLWMJK2s66MqqJkUvcnbsKhZiXMrxYg/inRO3yUkTLJiWqmpaiVLVzKbNy07UIwWrk4IzXIijZEKWtIWo0kMbFiHhiIXgT7lSMCPJ3bfxvw+OTmpFqdtbJCQzcnKYGxPUhOFkVcnwqK2djG69XeNLOL8jR0lt61M1seViX8d9scw7I/hL84eVNpR39DX7dATj6hWNAA49Phe+BbmsKPrLGYbJ7XrtJI6lSWSzqK9ubFiBdbXPGW8aE629MULWUIbufvJ72t+chxf/tB7AVnG0088jvPOO89ZI2sQUXnQRdyYxBDhJpLO4qmZZUfCQjkQ95UWk6KU7CkWP183rsdRbwRD/qiub0g68KVJZHO4fWhBde8sJkzkZWf6Wb6gI83j08uYj1amdo4vnsYzcwEc90aKrkcLz975WeQ5jWg8HsfycsF1t6mMeElTi5rtPQlWklpxL6sER5fCuH1oYaWbUTeY3frJUNzkF41KZH2slYyypE8NJDM44gnZsqzJRRJ3VQv6+CMvHtb9vjA1wQjFI/4o5hVXNfsRapUVqAPJDB6e8GI0YN0lU2CPcu6jk1sfIRayEnL3d6/+WwR9XgSXfbjxxhsdHKl2EYKaixQz31qFPMgL0RSW4mlMhKrb4ZBzMLPKMAWmS7x1lZzUJTkBVpZlzI6PIJcxT/1LatQRIuksjnvDxiZ0WXbUEZEXyo1nwQ7E1TJuw+02FjEW6iYnJwFogpod9xaCmxk/q0U6l3cUl7iaiGdyTA1HvaBWwzfQJiNiMmcLM9WVlb6uGm/VSj2b5KixTA7jwThSNvqQ+8aW8ODEymbDpq/a/MSY7veFqUnGvfOoN6IqO+0JpYX/i7EUHhhfcjWztSzL8MRSiCuZR90uguyNp7B/PrDiQnUtwXjnpLKW3r9yhDv+2tOLmXQa0yOn1OU9e/bYP1ANIwQ1F3FFUOMeZFLHpFqQc4iks5gxyPxI962lWla64LU9zSNNKqdNJvP5PK77zD/imndehn9835/qrERmR4umcxjyx9Q6PDR5m+3jj2FnsC4HWZYxH0mqrkW8e4BufepzPGqceGVqagoAZVFz8Ayaj8G1O9DdM+rB3aOelW7GivLA+BIeGDdM4AtgdQlqBDH5sobZZSqWRETbthKujzUC1xA770gql2cUIysB3VxjQW1c/cyPlfYsapq3UDyTs6VULMV4MI6nZ/1YUDxW3H7cnprxYyaSrJ1nbgXRksJoV+PhSS+OlfDm4bcBgNnxEXjnZy1d12LdzMSJo8zytm3bLOyxfhCCmou4MTnn3fGMhL99cwFMBEu7mziBTPjHg3HsXwjqfpdNPtvCBZM57Y538LGH8fR9uwEAJw4fxKlTp2CITX96J+dHJiRWJi9uMBqI4bn5gCpUN5Ryy6ealYgax8sRi1qjVOgenJyL2dUTA119wU94VrK+Y6VYfWdUHUL+ZTx0y68NJ/fVoBpuuZasBFxLirmKz0eTeHLGeVboSkDmHJl0Gt75Wd3vy4vz6rgWTrFeKXYEIrOyBm5AhF3y3+1HoRpum/UCuQT8Y+6L2wvr2Lfnflzzzsvwz297HY4fOWL5uNqy9s2pwweY3zye1aVwFYKaixDrVymrhhHLibTi315YJnswcjubiyZx2BNy2syyYDrXEr2W2a9ORKBigzL/ko6NGU8c7Bw1L5drpre/rRPCiv82iWUslkgE4CxqEWOLmt/vB1BeqQizuUo9DHSnliMrVh6j9mBvWJUN/FWhHp7JWoCfWF9/7Sfwk69+Dl/5m79EKmlejqSwbUUaxC26fxBeUAsHlvGL//gqfvuf30YuZywUFBPUnpsLwBt31y2vXMgpRgJ+w2sY9HrVc+QVx3bGcv1E2z34Ya9SVvJqZRatZcg14N8NK1eG3uS3130LAJDNpPH1f/mshW3Nj7cwOc785vF4kJdl3Dm8gMkKGTWqiZX0/AKLkAfYSbKhF5fCCCQz6FrH3pJqxzrxkAyABN71sViH6KRLCyQzaGtqwLomLstgkZ3Njg4zy2aCWjmulpa3c3CscsgoM+cGRaiyoySIRzVXhZbWVqSThQDxiBK7Vl4ykfq1qJ3wRZHM5nHRpq6VbkpZZPN5hJJZ9LW1lFw3ms4auq7oFST1cAftUei3RYa4UtB3PpfN4vCTjwIAAl4Pho8cxAV/9DpL21aiPUBl4uDori8aCuKrV1yO6eGTAIBf/9HLccUVV+iE0JXK2OwU0tpwwNjSF/B6TGug2bOo8YK19W1LQRSUTmq02qG+7myFUC6Ck7GAbJFJpzE7NqJ+f2jfc7q5Jo/u/aYO71ucZ35aWlpCJpdDXi7MrXd0t9luay0hLGouUk7H09PaDAAIpZQCk8r31Y5R4ylmbpYNfmfWNbOqFNnm0SkfHpnyGWxjvtXs+CizbC6ombVHv2+L5YGMdmb8dYUmuMTyQ15kOxa1GGVR6900qH6OKi6RssE2VqmzuYqOeptsGXFoMYTHZ5Yt1XU8sBDEfNS86ChhNcRzpXN5PEr1MZU6pXwNZPRzE/pUluZmmN/oSZfxtu5fB36XlVAi0Lu8+5c/VYU0AHj00YKgaseiVouQexPya4La6Wdrqc2DPq+pAGTXS8XptqVo4MoFVOq1W0Wvs2PIJeBtCFauDVln+MhB3W9zc3MltjW3qPk9bPbebDaLQCCgrFf/N00Iai5CHgcnutkmk+CiYhn3quGepetcqeVRfwyPTOqFKmpt429LSABGyT3MXrVsJoOlmSnmO7MX3lRwNPherflis2euVpeQyOZw3BtR48dIbGGpGDX6fOJU1sc+SlAjFjVZvQb222dW+qBeJq710s5ihBWljxWrPFEQ8dRKCnQ3mQjGEaAywFbqnB4cX8L9RRKz1Bv0dZrjlGMTJ49Z3rZSVOKVpSd5Y8deZH47cPCggZVINh2za7VPIa2KBPzqd1t27EJTc0F5HI9GkEjE2ZXJtnayPvLLLl4PiZt1VcryX5t3sLqQa1DK9dE4g3JhrReffVL3i2luAZP9E87s2QA/Z1EDAM+ip+h29YQQ1FykGlpDmmokrCimxRgJxNQYKcNtXWyH2VzTtzivy/Lo9RqnOzZrj1Gn7vTSViuJxv75IIb8UXXCSbS4dlwfEzFaUNusfo5ySUYcxRQ6sKbWEvXSzmIQ66qVBCBWCxLXmbHAED51d6Xmz4lsXldGpJ6h+wEPpxybOKEX1O7+35/iI5degN/84D9Kusk7aw9LJSyY9PO+NDvN/Hbi+HH4ljUr1IvPPokrXn0e/vyP34BEonjMnpssxVK4fWjBcfZINVEIZVHr7O1D98Z+7RgLBYtFORY1/t642ZeoFjWw/12nRoXtqiIz//Q/oKAMu3vUgyg3PyRrTFGWacLJk/rvmG0NlAQbmhuxq60B4aA+8R1JKLIabpkQ1FyknOfB0cNUgQeQn+brhBhbPXNhklhM2LOKmYaMHzwBc0GNZ/iFQ7jn5pvUAs80Tn3d7fjylzOp4LW2RFBrKJn2UYO2qPVuNrKoOW5e3ccy1XnzAQCkZn05EyL9xKz+L4xeE+z+OemOIcvYO+nFbKR6E3i3oU+JdpMDgOmRIWSpGpa5bBa/+69vI+xfxu0/vR7/t+dx3DG86G57uPuWycu4Y3gRc5HSLrxWCCQzmFPulyzL8M6xGRFlWcaehwv1mvL5PP71I+9HLBzCi4cO4qGHHmLWjaSzRV2LyxkLxpVkCYGksyQl5MhhyqLW2dOLzdt3qstTY6PKus7HciPB2i2IUkr1hHFtzyz13/uVj6kymvqavDcxRXmQyObw6JQP/kShj/At6L2eFhYWdN+x+9c/exKAEydOGK6/tLSkrlfvCEHNTVycEFX4cJbh9cF2jpnI5nDXyCLGdFl37Lc8a9Kpe2asC2r0wBD0efGvH7kcv/jmV3DtZz5tum6psSSdy+sKaRthFgfnFF3adOULWkwz0jDTS3TWx74BzaKmCmomx3LSPqPvEytcP4hGf53qv3tXLWouTohWgwCr18y6f4wY92zn5YJ76fPzes1vvUBfpjAnqGUzacyOaUmdPLPTSFFWpW/83YcQj7qcTdXkvk2G3Mny9uiUD0eVBDtBnxfplF7QOnioEGtz6tB+5vuRETZm7+EJL/YVufc5GZgMxh0lD7NaQ9MMMg7xgtq2M85UlyeGC25p5bw7eouai66PEtmn8bHcYhV0f2Vjdg3o74niuEm5Mce9EQSSGfVZ9RqEpxgpzGnoN2Mplip4lEnA0aNHDddfTSn6haDmIuRBrVb+sGpMJsuZwEaVycosVzjbzOpUjLyJVGNkUfP7/chm9S6Z9C6euvdOJOOFAf3W3/+u6LrFeGbWj0emfCXjuYy+L2cCzQ9yRgHsdw4v6mvhUavFqKyPfZu3qJ+1ZCLOtZOmMWrK//lIEvePL8ETs1d7pVJUMtB9pWjktMxOcMMaXmuUYxWwStLFYr41A3WhjDIEjlPuj3PjrKASDQXw4YvPRiDmnkWRvm/5fB4P/v5m3HPzTYgl3e9T/B5ja+DUVMEF9OBjDzPfx2IxW/ufiyRwyBPCqWXj2pbFIK7NjTa8KWjI+8AIar192LrrLHV5atQ4WUw56fnddX3kLGoV6qhWg6KqbMzmONRnVXmgPJN0jeFELIZoKKDbnpQFMmMmnMCTM8vwxdN4atYPTywFCRIjqJG4SgDwLAlBTWCAOqlx0F9a1QDR61UmeJqlnM40TyW6CKVKW52KYWpRMxDUAGPtDD1hXeayBKXTacN1Sw1EJAlDUumI7MSolTOBLnVfyHMyy7kB0ZslKEGtd5OBRa0M7aR5HbXCD37FTceKNbIa8PdiNcRiNVIxatOhuCsuYbWaEMEORrEObqMX/FfBdaPOIbSsTyI1eeq4+tksC+QfARrhAAAgAElEQVT+g4ddbI/Gsw/eg59+7fP4xTe/gtt/9QvXjkEI+rSkMC3rWtXP01OF8ef4/ueY9YnblVVIbTWzpGLFIGNjqYy/PLIs48BCED7l2LSVtKOnF6ed+RJ1eUopgVOeRY1dNlPm2SGTy2MmnFAnspV3faz/97hcTK8A9QOvOKafzGWDxB9AaYuaN56GN57GElVYWwJrUbvgNa9XPy95Vk8iJyGouYj2aNrvbGvl9S+V8thOx0y0KqFUFnsnfSU70WITJrOECEYWNcDY/ZHe/fwEm8J/ZoZNN00Ol87JWCpi9WltKrxCRIOuHsLCgFaOoGZmjSPfpkxcaOiBpmTWR26fduDvZSadwmN33Ybdv/mlmja3lijXPfD+MQ/GAva06JWGxCvmZBkHFkPYNx/AEU/IkrVHNnlXa6WfKodqnNOqtETSFjW/flI1/MIh9fPs2KjudwAYm5x0sUHax1tvuE79/JOvf9G9YygEKEHtrAtfoX6enp5CPp9n0vYD9gU1v5LgZj1fP9QC6tio/Mvk8rh9aEGNEzIjm5cxHU5g2F/ot+isj129fdhGWdROHD6IqfnFsqzRvGDmhjLskCeE/QtBVWFaadfHVfEil0EqmzOdi9HPBhHUVC8zakrsnddiPdvaO9TPpSxqBH7eRAtqL2MENWFRExhQDddH+hE9uBjESZ++SK2b2HUJW16cxyff9SZ88l1vwtwsK/zwcRs8xfZtJtTQFrWBraepn40ENXof9KAEAJPcBIKs++ycH0/N+k1SzQLrlIwNiYxiUTN1C9D/UE6JPNOBSBUwC+0xi1vI5XJIxDQ3m66N/WhoUITOZJJxHV2IpnD3yKKt+kD8mr/63r/j+ms/geu++Flcc801lvdTLfRlKGycqywjkc3jhaVw6ZWrSCMXtwEUEg88N1daUDZXppTfrpWmnPxIlo9R4pj1CH0K4YB+UjV27AUkFJc/Ol6tu39A/Tw7baxYc9YeamKYZi3zmYy7lvqgVxO8zjj/AjQ0FgSqxcVFzI4OM/F4gH1BLVXCI6MYOVWpQhSjhXMfLaE44o9Eu7N29vShu38AGzq71O/e94EPl1UjrpQS2AlE6ZRWYh9FMpHKcu/YEuZMkuLQ10YV1Axi573zWnzaznNfqn4uZVEj0IJicNmrzvVa29rwkgtfrv62JFwfBUaUo8Wxuim93nIig5MOfNqL7l+n9bJ3Tg/d8mvMjAxhZmQI3/n8Z5jfImm2mLedPRtZPCaHTqia3XXr1+P0c7QinYaCGnVEutgzoM84RPoCvgA5T6uiAeWLCstgMzMauj6WMeiZuhYqRyIDf0sjK6iRy5ikhLSOjg40NjaipXW9+l08Hlef50Q2h0xeRqxIKQZdO6j2JWIx3HvzTeryrbfeamqxWSlK1YQpRq2cA49ZMhG/BXdTs1iPes/mCRjEqFXgnFbBZdJBTimbySAa0mJft51RsLzkczlMDZ2ALMtMnbU3/Nl71c/znPLOjfYAQDrFCkoHDhxw7TgAEKAEtb7BrYyr+OEnH9Wtb1dQy5m8b5a25awXWt9vfXqXz+cZ4bujpweSJGFgm6b8HD12RJcMppw6am70JVpsWmG5nOtohdX4Xlul5P2ifubHHHqJtqjtPO8C9bNVixq974XpSfXz4I5d6N6oKYXsvoO1jBDUXKScd7hW3v9S2uZSHfNDt/xK/fzco3uQoywzak0Nk2wi9K6txAz9/r+/q35+1R+/Dd19Wt0XY4ua9pl2+wOgc8ezOogQQYjXiKZyedw94sGkkvHS0PXR0hGMKeXfX2qwjlPxaZ2dnQAKwq76ezzumovYyYP7mOVkMom5aVKHqTaefN3AYqNZtSq8NNqoo8Zjrgiof6qR9VEvDFrfNpXNu5Zi3k1I3x8Jan1lR3cPNm07XV2OBP2IBgOqtX79hnac+TJNy6299260p/A/k05heZFVtD3++OOO9hlIpnH70AKW42zMcsCraed7Nvajf8s2ddmoeK/VSSehHDdAVVBTvSkKH0oJavRYHo+Ekc8VlI1t7R1oblkHAPjMdT9R1wkt+zAxyrq02lJoVSAOmBS6JkpPsk834t+MWMsxakYZSfftuR+f/Yu34o4bf2g4DqpKeeonOjX/aWeehabmFgCFOYeVJDz0eLY4Q3tUbUcXNQdc8nhWRUw1IAQ1VynvmbC2cbU7CruWhta2DczywvSE+jmTYzV/xQSBUi4W4cAy9u99UF1++weuQGdvn7pcyvUxFgkxv9EDqyzrr3Kp8zbL+jjsJ5Yroz1UwqJWIJU1FtTI77Sg2tVVcG9Zt75N/S4Wi5VlTaGv4NSQvs7J0wesJxXYvxDEI1P65AVuUk7yh1pNPEK8Xp2k/J4OJXDYE2KuwyO334LPffivsGfPHreauCK4pYAoRrHnqdTkYd98APvmAzWXOZK0mi+M3NHTqy6HA34mUVPf4BbGJd1NixohYKA5P3ZMX4DbCiSpx1iQnTD6KHetvs1bWEHtmSd0+/H7/Y4miU6eRZJMhLeorSslqFGf+UQihMHTd+KVl71FXT7+whF2HzYaXAnrPMm9Uo6izQ5kt2OBGCZ0ZYdWN3zcuyzLuOnfvoSJE8fw6+9/E888eK9uGyOdPJ1BtW/zVnT3a8KVlZT6dMjIIhX6smnbaVi/YYOqcE6lUoxCup4RgpqLVMOiVuk5od6CZm07v2cR3/qnK3XJPWZGhqklXugznzIV68Tnxkfx0Utfpi5vP+tsnPvKV1sQ1Ar/s5mMLqaAtqgZilQm7eHiuHXbkhIFRptXYjDxxdMYWo6WrK0Tj2qun5qgxlrUyoGcWz6fx4O/u1n3u5ebXMmyjGfn/PDG9YlbZsKJimeHLCdpTq1a1AhmiWWK8aI3jIlgXL0O0VAQ//OFT+HAk4/hPe95T11rKqtRM6/Y9Sl1NOJGXU48UEVQmsPEMvX2obOnR12OBPyMdatv0yAj1MzPuO/6SFu7CHxyKKuQZB4Rzs2bdtfq37qNET7zBrXhstmsWubEDuWFTxS2JYqZ5gYbghqXmp/m9LPPVT8PnzzO/FZeen5n5xpMZjATTuDx6WVdWn6zY7kFOcwLS2Ec9oSKr7zKIMpfQtDnhZ9Syjxx310GW+kV2P4lTVDrHdiEHspdkQ9BMXofaKF8kVL8DGzbDgDo6t2ofhfyGdfUrTeEoOYiRoGT1rdll3O5HOYnx5Hh0sZX2/JudQJ7189/jP2PPKT7fmbklLZtiWPR+zZbV5Zl3PClzzAv8PYzzwYAdFGawGIWNVpIIdCCWjETvhkm3pyWt3eLxVgKx30R0/aQ62ZkUWulLGoF10fnwgtZ9cT+55hJDiEWDqr7HAvEMBdJYiGaspToohKUM9C7LaglszlXJulqPGIZlpmkMjjPjA6p38ViMczPG6dYrgf0iWPcP0Yxq12p4zWoSWBqS1BT62352aQTOosaI6htRlffRjWlfSQcQigUgizL5VsMlevjN0gaMO0waQlJjx+nEl8l43FVkGlqbkZP/yYmRs0MkhyhWvcxm5eRzectW9DpZjHCd3cvs972l5yjfh45wQlqtixq7MpOujhPLIVHpnzYvxDEckKbG/GJuUTBa/fhFX68p8zsuD7Tq2zwiU7M0zuwCd0bNYva4qJxvUIa2vUxRCUg6enfBKCQGE09lkEZkXpECGouoj4+DtM+ks3i0Qi+/MH34Oq3vw5XveU1GKX8wituUdO5J3C/G2yTSacM3T8Afb0y+hhF4+FMTvSpe+/EqUP7me96+/vR29qMdmqAMYoRIOfCx6fx6xsOINx3aSUF8qySAlm1qJkMEBZ26SqlrChGMWp0MhEj10db2lNl40XK9ZUmGi5oI2OZHF5YCuN5vjB3lSkvRq3w32m2V38izTw3940t4ZlZezEuxUhzD7SdUk1xZTK9yMUWHTx4sOx2rRR8/Eol3kOZeyasKKEIfIKEWoE0J0QJal29feikBLVIwA8fVSepd/MgJEnCxsEt6ndTU1OYDCVw39hSWfU1VYvakn5yNzs7i1zOuSCYoS6+b1Fze9y4eQsaGhrQ0d2j26axqUlNrAJoY4qtbLll3PPnF4LYPeKxkflQW4O1qLGCGn1Oc1TyBsDeM8qPSE4E2HHOJZX02+V4RNihnj0JyoVXAEwPn2KW58bHmGzRgF6BnYzH1blHc0sL2rt7VAELKFjUYumsWlrC6GrT7xOdFK6to5Dqv7uPsqgJQU3AI+s+2NuWuKndedMNGDpSmAh5F+bwu9/9Tn8MelsXOw99nZRiumHgvl//HFf+0fmYHjkFI+gBwMjKE0pl1DpljNbZpH0P/+E3uu8uePVrcdn2Pmwb0AaYUEjvlqBa1CLlW9QiNuu2GP5ewT4/YVIKgRySFtS6urogoXQyETuDMlmV1na3dXSqn6PBoLJP+8JfJeC9l+wIpWSyYLPeLABgOZ7GY9PLai0jco6+RLrYZpYgZ5DlBlgzd1gafo35yXFmeWhoCPVKNSxq+mQGVnq3AmbuXCsN7QZLaO/uQQelIJseGcIdN/5QXd582g4AQD/lKjg1NaW6OIdT1jPJau2QccwbRkBxhzay2GezWUfuj0aXPOTTJnu9mwqTyg7O6gTokxk4EtQsr2lhXyXHJO0zH3dI00vV2PR5eKHYuRDqRBHBb5M3E9Sodi1Gk7YyFguM4ZNSTXGCWjaTxtSUcbIgcntoN+WNA5sgSZLOovbwpBf75oPMdsxxZG08IwpfANjQUfAMot/B0LJwfRRwlJVyXJbR2CBBlmU8ff9u5ifGHFzCZ9dtilnU5sZH8bNvfAnJIvFM9ABgNHXZO+nDU7N+LESTOMhYVQzOM5vF6FEtCcUb/vx9+NBnvoBL3vw2SJKEDkoQMBLUyP3hU/MDpS1qpSbumkWt+O+lvjPj4GIQ945arwtC4lzMrJa0sNrV1QVJMkgmUkZ7tY5Zc3M47cyXaPtXOlg7x6hkzE45bp6aRc2+pBZT7lNYsSy4eYrknDI6i5oFQY1bZewom0TAas0bmlAqg+Pe8IprpasTo1b4L0nAXCTBPLv16/pYYF1Wy0i5oaMDXZQGe/ToETV7IADsUtJv03Fqk5OTpqUjrJDOyxj2x9S6nPyEkbBv3z7D74th9CzQWS6JW2BHj96iNrhjJ2NpI2NKOSnsKwl9LLquKLGQksounT29ama+aDjMjPe2xgRubTeebyI88EIEvfTMXAAPTngd9zv0drX1RlYX3iI6NaxPEsa7xD87F8Czc35DxW2/4j5Mu077/X5mDCxtUdMUzqpFjXZ9FDFqAjeRUZhATQ+fwuLUBPMbk5HQYFs3J7AlMzNRi4eeeES3fUtrK7596/3qslFhVKPB8Nm5ABZjWiIJoz51auiEmgRk45atuOY71+O9f/fPaFSKj3Z0FhfUSEdj5Proo7SmRh16UTdN6nezO2FsUDNeO5vPYybMJjuZCiVsJYXQ6roZN5yPUZMArDOpo6Zu6mDCQbslnabEEgKaVt5olzPhBEIGyUN4gcNNSt3fYpB3xIlFTY1rVTbOujk5V3bF9w9W2klvkkmncPLQ88zvTgS1J6aXMeSPrXiSjGq4SZFd5mVg33wQByglVKnD1azrI3lWqZplrRvasXXXmYbrt6xrVd3m+rdqgtrU1FRZVsM45y1Ax8q89p1/rn5+5plnbO/bCFZQ61H+6y1qW3bsQntXt7qsCmo2juWGEkMrgF3iWNTnsJ8W1AoWNXKPJElC74DmnuY3CGewQsm5hQM0ixr/vX7dpIOkSgBnC6/AOdQL9LO5NDuDqaGTunX4GLOcLGMhmlK3DXppQa3wTNFF1YNBPgTCQGFv6vpYmP91CddHQTG0ybr9l1dGQYO1b8/9ut/oSVGlBTWeYha1Ewee061/9kUXo3/LVnU5zKW91+3EBKNViDto4TivpNYtrN3ZrQ2SRS1qYf1vPp8P2WwWx73G8VKlmpyHjLmIeXZCq3fohC+CRyYLwdL+MtzfzIQ61aKmy/ooobWNjVHjseX6qFxrxqJ2FiWokWQiBoLk/oUg9hqk4+eLrbqJXvC2frKqoObkuKo1rkBOOUc7cWSm+1b/lyGFApgZHUY6ydb1ciKo1cqUxkrcbbnwz0+QcvGzKqhV0lPCCaQ1dDbD9Rva0dHdg+7+Ad36b/vrK9DY1ASAtahNTU2p1honQ1c8o13LWDikas1b1rXiNW/9M/W3sbEx2/s2uuSRoN7aZGhRO30n2qkxaG7Ja7rPSkISANlxxw8F9On5aYUOnTzlibtvp/ZhrU1GJW+cYOY+afauMNYwxxY16jN3FiutdKom9Jne9fMfMZZzglkyECOL2sDmgkvtBsoTihfU+FuWSafVay7LMiuotRtY1ITro4BHnRg5eXflguZqdmxE9xMjqBns21WLGrdcLBve/IR+IPyT938I7d09qoUgFg6qRa+1iaPFtnDHPnlQ0+q/5KKLqfUK/9e3rlcnBqlUCklucqkJKXqLmizL8Hq9GPLH1NgHw41NvpAVzblZbJElK50s49RyVE3p76T+Fb9vg6MCAOLUZKuzsxOSxCYTKVjU2C3t1VErQFtUt1Gad+JqY8eSVVmFhPlzXnrbwn8nFjUSy0S2JedoJY6sFLRVx+h7qyxwFn7AmaDm9PhuYlgjsQIz6aK7LHG8Srk+7p304onpMu6b0pwIZY1fv6FQN3M7pYQBgGu++0Nc+fmvqsubtmkxamNjY5pFzcE7TVvUAj5NEdQzsAl9m7V4KisZ5HiMWsNa1AqCWHPLOl3N0MHTd6KDsqgteZWsj3biuGy01QySTdNsX7IsY8QfZTwUaNfHLiVGjXbl3rLzDPXzrTdch7FjL5bdXjfOlXggmApq1GenwwdbA5E7foUFtbtHFnF4sTbKAJB+MpfN4tE7blG/P/eVl6if+fT6PHSM2sDmgvC/odNYUOP76luu/x4+8PIz8N/XXgNZlpFKJNSEQetaW9HcUnDPZWLUhOujgKesGigoaNWjQX168lKTIncH9BITVupYtLXkVW9+Gz78/76ES9/+LjQ2NqouILIsG7o/WmkFfezQsg/P73lAXT73FZfotmloaGC0M7xVjTTdyKIGFC+2qE+y4j5G7htOrUilJum6GDWw6fmNYtScCGr0cegYNf+SB7ls1tZ1rGyMWvHlYmgWNfvClRbLpLg+EkHNTZNamRgJakZZVUvhwhmVjdElqYhFzeFvAGVRc/l5D6WyZSWpUS1qjKBW0GKTWDTCy1/3RmaZnugPDQ2pD74TqyHtLUAn+uju24huKoOcW4IaPSbTJWDoTJYAsHXXmYzrY8BEGVX0+C7ccs2iZvy7L5HGUW+EEQDMCl4T3vb//Q2zfPCxhzE5dAKnXjhoad7DrzEzOoxbfn5jyX7EG0+p8btGkPHRbGygv3Y6T2ItasbHrwSyLCOTlzERqo3C2uTcA16PGoLS2duHN7zrfeo6phY14mFDWdQ2bR7EO88YwGC/5qpoZlHL5XL4w//8APlcDo/ddStOHXqemVvQYS901keRnl+gw67FiN1WhiSx2jsC6/qo37urCQi4fXnjKTwxvaxL+ZtKJlSBp7GpCZ+7/md4z8f+SZ1w9gxorhKkEr0Nz8eCNoVacf+jDyGTLsSwnfHSC7HrfG1iQMcIEfM3YOz+CBhb1ABgZFqfPUxrT+n2Fv3dwnd8p78YS2H3iAcL0SScomuXsmgYo6bL+shua2dIkuXCsRmBsK9fdUvI53IIeD0G101/pUhto6rGqDlwfUzn8hjxRx3F8pGOuFSh8lKEUxnqXTXTMtu7jgsT47rvyrKoraBJzTCjawXaU2xSaFlQW0nToyGFBkWjtKDWDgDYcc75zJr8ZL+zpw/tXQV3wXg8Dq+Swt/JNJe+tCG/NhHr2tiP7o3aJM3j8RgWo7a8c4UII6hpLo9Nzc3Men2bt6jnCGiZhO3cRjccBEvtgSiUYpQLqVHBa7oHOvOCi3DhpW9Ql3f/4if4zLvfgk+89x3YvZtNfmYE3XXPjo/g85e/E9/94ufwwQ9+sOh2T874sWeSnmyzZ5cu8ZLQ7+GjU8vY56BOZ7Ej0GNSLi+7ap2Pl1tn0GXIqfqpzJ8bN29Bz4B5wWqCJuRpyv1NmwfR2tSInm5auRFgtiHvA5/Z9en7djNuj51KLdgGiXV9FFkfBTrUd7SMdzUd0QsX0WgU6XSh1pKTjIR24Pe0EE3Bl0gjmmbdF+kXrntjPxoa2EeJ1jYue7jiuBaay1vUju/TAsMvfce7VIEQ0CY0EiQmMFVnUVP+m1nUpufNzfalmlxsOrAUSyFjwY2R1wouKSms5yJlCGomy3yMmiRJOtdHfmN7FjUZyVhMnSi1trWhqbkZGwe1+EXv/KwlS1Y10pWXYzFVSzQAOOqNGLvOmh2XTyai7KzJgUVtOZHGnkkfxoNxtT3GxzRugxnDLx7SH2t52XnMxwo6P1a6/9T2WeS3Eocjt76SMWqyLOO5OT988VTpldVtCv+jETpGreD+d8lb3o7B03cBAC7/+KcNt9+6c5f6eWa8IPw7cX2kt6CzunX39aNlXatq1cpms7YVCkatobXytLb+Te99v/r55a99AyRJYixqwYD9rI9uYnZU0reQcTOdSiIZL8QkNzU3a8pOrgv62y//u/o5EdOegWuvvdZCW7TW/P6/v6dmjnzggQfMNjHZjz3oMSMny5hzoPSk7186l8dEULNw0eUB7hpZxDGvsRK4GIvRpKEyNpYuCGqtjbUxTSfXgSlov3mQqYNmZlHLKA+bn0outnmw4Kbc0WWcTESWtfs9xxXTnho6ySiB2zuIoCahraNTzVKajMeLZiWvF2rjCVglkM7IkUVNLvSLAcoFgTxsQMHV6JAnhIcn9BqCasSzqpor5R+dvaeXsp4R+qjaK8/cf7eyqY3rI7Od+/iJo+rn81/1GgDA+ib28S1Y1NrV5YhBdkeAtajRAuWSZ8lodUttNnJTGj16BN//1N/jmz+6Cc/Ns5q8gsWQ3YYX1GRqECjF/OQ4bv7uv+HEATYltdmWdIxal9JRlnJ9zOVl04yMPLIMxCilQ1t7wTWBFtSu+8w/IaLL8rQy6IUX69vy98debTjyX8Z9Yx4126eVFPo8RKBP5/KFZ6dIM0b9MeydLK1tDPmX1VhU2oKQTqcNE84UQy3+bGsrd6mWRa34PosfsJz4Laukc3nMR1N4Ysa6CytpjZFFbV3revxg9x5cf/+TeP/VnzXcvnez1tf6ldgyJ8oXJgkGJURtVrLI0Rr1UjEzun0bfEdnORwY1Ma1P7n8g7jwtZdh+1nn4KovfQMAmGQiwRIWtWwmg/t+/XM8+Pub1XNy81k0ExD5noWOT+vt61OVRvx6gzt2MTXVCFZqKtJNiYWd9/l2r48brxC9iwMLQRz2aOMa2T+xrE06cFN8Zi6AZw0sfcSi1tbcaHuflYBch2VK2OrdNKirg2ZERlHY0gr+zYOFeWPr+jY1t0AymUQ6ldSOpxx0dnSY2d/0yClmHteuuD42ShIkSUJXn1YLMLjsvDRDrSAENYpy/Y01g5qMyVCcGYSWYik8Pu0zHZhkAOlUSp38NDY1YYBKaby8vIypUMJ4Wxcewkw+j2zePOyZvGjkdzp7j1HGLzqo+8l77sDU0Ek6JLdke0KpDOJpzfRPa04Htm0HAKxrZDswCWACvHlBjVwm2u1vcIem5fUuFYlR45NNcKdgpP3+yVevxTP3343rr/0EFqniq7/5wX/gyj96KW780f8w6/Op2clSqclMJp3GN/7ug7jrZz/Cv1/1QaYD09eMKkBfg06lkytV8NoTS2H/QhAHFq0NtLEwlZFJOcb5l7xG/W55cQH3/uG3bPsMTlWd4FfUwsAt29i2nGQdpMeJZXJIZvOYVYQtJxY1Yslb19iAO4YXMRU26S8AvOgNI2Sh2PD8hKbJPP3s8xgFjG33R+WUVtb1kbRBxo1f/wK+8Nd/jqMvHCm+kQOKWelWwqJm1g842UeEeq/XU67mLetamVg0ni6qkLLPW+jPnUyk6U3o5ASvPnsnzu5tR/dGbTyyG6em69dzOWZy2U89/+vWt+ErP/sdrrv7EWxWEiV1U66RwRJ11H7xH1/Bz77xJfz0a5/H7T+5Xndu5WJqUeeWA15tbB3cpFlHJE5ZJEkSXnnZmw33mUoVt8zSlyDHufTxSb+Mt3emBDcaO+3GfhaLUeOVqU4UbGbk3IxXdgFy2QKMoLaZSd6xtLSkJvigyeRlpBJx1QrW1NyMPsU63SBJaKc8ocjcZDGaVGsljnB1PKOhIJN4r13JTUAuP61QWF7gPLrqECGoKfjiaewe8cATs+4KwkNe6LwMHFoM4YRPmww/vxDAciJTNJNfmPKF7+juYfz8i02K3AhnvXfUg3tGPaaTCNJuMgGh/ZT7NuktanxtnVt++H21l7PSTR5YDKkp2jPplFp3q6GxUS0qyveJEjQNL8CmkaaPTLs+btmhTSyWiiQT4eHPgbeGZTMZ1QqYz+fx1L13AihYKG7/6fWIhgL4yuc+i2w2a7oP+nkqxt7/+x08M1MACqb+Ky45V820STMRjGN4uRBDpU/Pb1DwmnsYiFU1kSntO8+nziVJXv7k8g8xFtgThw+U3Je6T8tr2kdf8Nr60cqpy0WOw/cLTmLUSDtKuV7S7YumszjuM3fXoctr9PQPoJ0q6Gs/Tq1wTivp+kiu99Dh/Xjgt/+LocMH8Dfve3cFjlPkN4v7cFNQ45VATgWkXDaLhJJIQJIktLa1Fd8I2rNM1zdaVhRvTs6R3sI3P6d+3r59OySp8JwSnCQUoQkv+9Q05O1dPWhtbTVcj1zPgY2UJj/gNw1XiAT8eOC3v1SXf/uf38Lx/c+5G8ZgsKsnZ5bx9CxrRfUvaRbDrVs1jwejHui9V/2z4bGKJeIC2HeeuFkSzGLJaeiU7HYwEtQSNmO/it2TvDpGuy+okaPWhkfkCmoAACAASURBVJimXQcmC2pPH5pbWtQ5WT6fh9dr7KnBh8s0US6d7VQyEDI/e34hiCdmCmPMyAtaaSYCnQW8vbOgMCJ9DV0iyijEot4QgppCIFnIhlWWoMYt0xNa4qPLa6nUbWWZcUFo7+4xLJ5ptm255OXCn1mnpE4klZ+XKXeQHgPXx0ve/HbsPO+l6vLBx/YgTDpkm83l4xBIPJwE4PWn9eKy7UrwMzdx0AtqBWiLE60B9nmLuD5ybeYHAF182ew0szx6rKARmjx5jPn+xAmtWCtv0bVqUdv98x+zbcvn8eQ9d+jafdgTQjidRSqRUCcfra2taFHS2payqGlJW0oPHTJYgZjEDja3tOBffvS/6venbFgzKtnZluMiU05qf7IuL6g5GfBVa3fJzH5aC5+e9WPYb+7CSLuWdfVtVAdkwL6gpllGbW3mGvFMDg8qruMTJ4+r3/u8Xpw8qS/e6pTZcALeIrFfJU9fWcFVQY1XAjl4m2Swk+zWtg2W+oJ1yoSMEdRUi5qDdlCbeBc0Qe30008HAMaiZt/1kW0P7TnSu2mz6Xv52m292NG1Hm1tG9CiCHPZTMbQhRyAzkUdAB6/61ZXOzmjXXnjaV2NTfoct2zZwm+C/rYWXLSpMJHetG07Pqa4edL4fNaz69HxbUAhLskbT2EuYuwBABTe3Wze/lNr1K/bLXtTXOmiWNSUXZZj/NJ77dSOqJbJ5dVrSZTmANCuKHnpOLXZWeOkbLT1u2dgM1VQnS16TSt4gULiOp+BVezUIUpQU2LUiKA2sFUrB7I0N7OiXhxuIAQ1BTcSFvAvGp2QSNZWMt0+HKDrtfSio9uaRc3Nh5Ck9i3sV1aTQRAfbHIoOs2qUYxaU3Mzvnf7Qzj97PMAANlMGsPHjzL7sAojqFH+0JIE9LetQ9/6gqAhAWjdYB6jJqPg752Oad9vpQS15WKCGr/MfcELWROcQLY4XbB4TZw6znx/8KCmKeInU8T1QedaRx08Ho2o1jQaYsELp7O4fWiB0SImomzGR4Leosbu087EUZZZgZgum3DaWeeoE7zF2WnGVaLYESrZ2Zaza31ZBTvXSbGocTtxNDQru0hki09E6COVuqd0Vr3Onr6yBDWj41cTOn4kwpUMoRUm5fL8QpApcM2zEE3i9qEFZfKpv1eagsa1Jpla6+0gy+wkm/ZeKAaRbbp6aUGNxKjZbwe5QrIsw7fAWdRQnkWNvy5Lc5rLet/mQdOJ+EBbC16xuRsSwGR+NEq6Ewn4cdM3vqTbx/iJoy67Pmp7G1qOmialor1jjCxqHS1N2NW9QT33t3/gSvzD17/L7KOUoEZfgmRMb1F7csaPffPmLvV7p3zYPbLoikXN7jUutj5fcLuc+pdmVm8XjXSOyOZl3D2qxU9HKQsoMSZsOm27+t3wMBtPRqAVAj39A4zSo4MW1MKsoBYyebZoJWJ7V2F+QfbZTwlqBYtafUtqQlBTIC+Ym1pMo32Z7V0GEA7StUx6LE+KKlHJI5vJ4GtXXo4PX3w2nn3gHp0WqpTrI2HbGZoL5PwMa2XKZjL45Xe+jmv+9DL86nvfMO2Eg1RRUzoejq9bJUkoaVFrbWzQLHtgY9SWTUz2gIFrHLfMT4Tu+/XPmWXPzCRkWdYFxU5MTJjugzw/xSb+RkIaAIwde4G5nsuUlSVGuT12Ui4H66isj4vBsE7zauTbH0pmmCxYBBkyZ1HTjtPc0oI2SnCLm2ThrCblWKX599wNixp5tBPZHPZMeJkivzzZvIxj3jByMuuebHpMGw2k6yuVa1HTjr8ygyathPItshraubk5fnVHWDk3khnugfEl7B7Ru4zJug/lw/ctjixZkJGgJtnr260JagQ6wJ+4PpZjUQsH/Egr8U1t7R1K9lp2jLBrUePxzEyqnwe378DLBrqwtUPv/kgn4ODfEf4Mb//p9UyCEsLMyBBSSXsePUWfN+qn474I9s0bp6anY462bNmCiwe78arBblVAIKMsmSM1NDTgTy7/IC59x7vU7UoKatRnI4uaVeIllFA0oWTG0FvAfkIS8w3UItCqt4m9fdNkcsbjyErb01KcqyidDIbElm094yz1OzPvBNr1sXdgkyr489m6+WQztLKQzy5OIIpgss/+LVp+B+/crLCorRbIDS4n05bOAmGwL7MHRpZZi1pHtzVB7ff//V2cv20TvvzlL9tvcBFefPZJHNv3NJLxGL73yauQSFCZeKDP/GMGrdlYULSTZB/P730Au3/+Y8yOjeDOm27A4ScfNdwHbfbuHaCDndn1CslEiljUZCCViKtxYS3rWrGRykQW8i8bBsKSbYst05P1VDKBIS72KhmPI+jzYpETrOi6IWZFO/VuSxrEUgcAL3/DH6sCUDjgh5eK36A34muoEWjXxxSV0nZhagKP3XUbAgbFI/dO+ZgsWPTh6PS5bR1dzO90xxy1KKhVNJkIt2xncCxlbWV/k5l+oVR3MxVKIJzOYjxo7p44Gohh2B9DREm+Y7bPpblZLM3OsF+WOD5jUevtY2LUnMb/rNSYmaLebd6Vxsxdxy6OCjjzMTMy+efelTJzq7aDLLPWeCsWtdamBvV9oJMO+MtxfVT+0xp1oiyUIKGTiu22W5idbw3dv27evgNtzY24ZLAbxdAJatxOx45rGYx3nXcBNm/fAaCguBwdsueCW9QDweI+eNfH7Z3rcVrneqi9IPnHdYr0dS7t+qhZQZ3EqBHsuC3unfJh3iDtvd33qqhFTflP+nQ7LuvEsk7gz012QfhzA75+KT1eb1Asatt20YLaKcP9hGjXx/5NjPWxmOsj7VF14WsvY9wa1e2VeQ9JvDLAWdQqV5a8OghBTaGBqy3iBL4DKGZRS+XySHHaIVZQ62VS/RoJasMvHMKtN1yHaCSCb33rWyUzL9lh+AgbvHnwmScBQE0rT2sEe4tY1GjNxuz0NF7whKiAflaYIXFVPHS818BWzcTO91+SJKF1g5b10ciiFmOEhw40NTerrir5fJ6xINDwd5J/8em+bG581FCoWJyegIezKtITCbNJHt1R8oXAPbPaRGJw+w5sP+ts7TdKKKT3zBShNnF9TCULbg6JWAyfv/xPcf21n8DV73ozfAtz6nUvVhtOlvkYtU7m9w4q/pL2eTeiGmndyxICTWML9IwGYrhrZFGdnLshfOYsZKsdfuEQ/vHNl+Af3/JqXH7B6WoB0VJHp5OJdPX2MUmCDh8+bKud1Y5Ri6SzarZagLWoebgYUrcsanyfboVImnWTLKfMixm0cmBoOYoDC85SpNtxfXzj9j68Y9cASC5hNplIYWJfTtZHxtpLCQ3rqTHAbgkJ/n0kpSkAqAJVsbg8SWIFNb/fr5sXLE5rXhSf+v4N2HneBerynb+92WZ7i/1m7eKWcn0knivkP1Fq06EZVl0fk/G4rl1eg7nNiD/KJGNzE7v9T/FrXPjvJJkIn8o/44IypRLw7YoG9Ra1bZRF7dQpY2VDkIlR26RZoSXjZCIEumh1d18/dp3/Mt2+2zs410dq3ulbmDNVwNcLQlBTIK9XWTFq3LKxf3Thu3tHPbh3zMN8HwpQro+cRc1IM/jk3bern7PZrK2A3mLIsoxDTzzCfDdyUovhiIVDqstJa1ubViCTgnTmtGZjbGgIY8E4/MkMZFnGgcf2MNvQAwbN0pym7aZLFhgNmOuLxqjJiFHfkXZ3b9QmEGaV7O1kBXz6/t2G38+MDOtcXmiLmtke9dpwbc0QpW3q3bSZCaSnz4XeN521qbdXG2wZi5qS2W1q6LgqSAW8nkL2TmJ9LuYSAk4obmcFtQ2UgBgtpVGtgkaxnEGR37aYVYW4iabULKrlN8jKqs8+eI/6OZvJ4Jv/cIVpIdDZ8RH86nvfwIkD+xirRWdvH8664CJ1ed++ffYETZKe3/oWZfHwhBdPU3XCiMY6k05hibNsuyao2UxUABhYZMl/Fy8UvavjvghTmsHqPZQBxvWxdcMGdLY0ma4vKTWNyO7b2jvU2qCJeAzJeNzZeKtsQ8cZktT/ksQqnMwSSlkhGgpi6IimTDz97HMtbMUWvfZ6vWzyk/lZtWBwQ2Mj+reehl1U0q3bfvlzxy7FPE4tagSdx4qyTJLD2LGoqQrquF5wHpvVu4Ee9UZwatn5vbPSFiuEUpmizyj5TYtRs75vXknBe2CRfa+02x5t6ctmMqpFtKGhQS3PQSdlGx4eNsw6zcaobVKvlQQ2hp23qIWo96F740ZdRnEAuOzC87Czuw2nKW7JrW1t6vOZzWQwX6YL9EojBDUF8jKUE6NmxfXRrJdw4vp45OnHmeWlJfNkGHY4efB5jB17gfluTHHJkMEKVL0Dmw0FJmLWPuuCi9TfR48eRiTgRzqXxwtPP47FqQlmGzNrlpcK6KZdKXUWNZSOUaPN9lv6+9DS2MC45NBmdppSro/ZTAZLszMI+ry471c/09pEXZuffO1a3X5pAdxswsRY1GAudHV09zDJVphzofZNb9NHxY3QMWqpREHzybhPAti/90GmLUaQ86BdLHmLWjtjUTOOndDv19JqjtDtuwzhsJiVgASMExcNs3VlALF0Vu8WZ/N4hAXuXZsePok7bvwhI/TLslyIGX3nZbjzphvwb3/715ge0dxYuvo2YnDHLlUZ4vP5HPU51YxR8xuUKliYmlSTJBHc6jsdCWpmkpqLuHHJZVlmLGr9Pd24uIgbIHmFtPgdthBt2L9cnkUtqPWdnYrCia+laVdQo5tz4sBzyGYKz88ZL70QGwe3Gm9EIQHYOKgJO5OTk6r3hSzL+O4n/k79bWDraWhuacFr3vZnzD7uueceWKVovT4Ax71hJj6ZJ5VMqP1vU1MT+vv7deuQ+9igfGpW4oTaKHc1q3Fmqbj+fiyZKGgrhdX+J5zKYO+kr6hlL5eXkc3nVU8sK1lQzdqh6wZqxKSWptzMYlw4A4kZ29DRqSaVy2QyhrHz+hg17Vo1b9CU/TFOcRukFM5dG/sZ6x1QyFx90csuwMs3dTE152ir2vSUcSx/vSAENRQmRCQrnpsWNTvJRAAgRA08pZKJHH7yMcYtA3BvsjFx4qjuu7GhwoRNloFlT+n4NPISdvT04qyXvQJAwbXw5KHnkc3LOP78s7pt6HgYGg8VVzOw9TRVCNRr/KTiFjWZdfvr6e5GU4PEWNSCBnFY85PjCHEDEV0aPJNO4fOXvxP/+JZX42Ovu1C1Ng6evgtXfv5rhudEYAW1oqtq61DrMYJaT6+poEa79EYNBDVJKhRZJxpvWZaRSaeYrGrkeLxrAllf/az8j0Uo18cOTlDr1CZ4RvszopKZm+j7eerQfux/dI9ldwn+vhXrQ0i84TOzARzxhIqsK+PBCS/GDBK16I9f+rqkDYrKHnj0Iabth554hCn1wG/T2dOLhoYGRns6NDRU8tiEaoZaFLsmc+Ojuu+MPBZkWcYJXwTRdOnC4AS7qb+BYha16szUrB5FBhujtmOgD13rmrBpwzrD9Y28VOjMjyG/r6wYNVqxR7vhlSWoUc2hFZI7zz3fdBs61kaSgMHTd6rLIyMj6n2cPHWcUYD+6Yc/BqCw/l/+0yfV76+7/n8QThWvhWjUXqPfhvwxPD5tbqGjJ8+Dg4NMsgbV9VEy/r+hQ5tcl4oz01wf9Ra1xYUqC2oW1yOu0r4igu4xXwS7RzxUjJr1dpRSUsjc/5WC7tNiBqn5CfS44OFjocHOG3v6NUFNAlTLHKBPNsO4PvZuxNadrEXtwgsvRFMTsexrN4D2LvK6NDdeKda8oCbLhQnRUSUTV1kxalyvabQv82kZEKImCx3dvYzVgRfUnrn/Lt0+zAoN2mV+clz33RJlWaHrYdDJPcw468KXq58nTxVcKEmMDE0kGNBpumPhkKrxa1nXiu7+AVVrosv6CH2KeZqCO5420ejs7IQENsiddiWUZRk/+eq1uPrtr8OrX3oOc33pW334yUeZukyE91/9Gew896W672nIBDGRzVmatETSWWbyTrv/dHT3sudCdXC0+yQt3G1UhFRyLWmLZDIe0wlqALCgBNibW9QK/+k0u3SwML9cKpmI1Ri1vCzjwEJQF/NjBdLm4RcO4YsfeDe+ftWHcfPN9uJF6HaYQQS1SDqL8aA+XkNtj43jWVmXLqdBmDx1AiFqsnvq0H7T7ds6OtHcUpiQb6EypZqlYi5GNeQPo0OQ52huQi+oGaVRT2bzOLUc1RUItnvcUpjV4XPzMrmh5JBl1vWxo6MDkiThtdt6cem2Hv0Gqou09hUdpxb0eRkFiZ12AIWESYQNiqBWqKVZRowa9Zkp0EtlkqS5cKAT734JG6O9ebsmqI2Ojqr7pPvScy9+Nd6pCGoA8NbLP4Sm5mYAwAsH9+P3j2s1oqy2FwAy6TSOPvcUFqcnLXkH0ePdpk3cWM5pQvkskLQ7e0lBTWlpMqYXnL1L1baoWVuPnK+V9Z3EqOnee53XzkqLaAXoGDU6npwf0zsoV1jeSyaVTKjjfGNTEzp6ejWhVpKYuFJdVlDKrbanv58RCAHgZS/TYtboq99FKeBLFWSvdda8oBbj0l6XlfWRWzbO+mg+MSvm+uj3+5ltvQYTaLcsauPH9RY1v8+LdDoNGTJjkaFfzl3d2iSf7q92nKNpI0l9MSNBLZ/LMRobgA36H9h2GhoaGjSLGre9JLHue0aDdIKKy+lQNIIkvgFghZjH7rwVD93yKwBAOBTCfffdp/5G38UDjz6sO05Tcwte+ca3YPPpO3S/7TjnPPVzIBBAIJ7C/WNLlqwnj06xrhh610etcwpQgzDtvmDk+qhqSWkBKhg0LDRJ3OjoR5l8zOVldQCi3SR0FjUqUU7UottMqXErlMpiOpzAfpM01Fb2ffN3/0397qMf/ai1bbllO11IOYoh7Xild0LHB2w67XT181HKsh3nYgNoOql3hBbURkZGLLeTvLHVqGljdA/IM25kUctmszoLPOlgzLKxGmKw6rF9z+Dx3f9nnlFW94VstquKYHU+KIOdRHVQFhVeaQYU6m/x0Bb/wJLHoetjYSPaotbeo7k+0rG2sVhMp/wrtXcCXRamp38TzunTJ08xcr+n+/zx8XF1TkErRTZtO53Zrm/zFpxBJUnwWnQHpC+fb2EOn3jH6/G1Ky/H1e94PX5/048M20gTpyyO3d2sGyu/HXF9JO59bdT9D4fN+w66nXwNNQDweth5SzkCiizLePbBe3HvzTfpYt4PPrYHP/na53Hk0AGTrU32aWEduo5aXkm4Zne/5pZ1Cw2oIPQ8llaq0oYEgE0QxnvJMEqPjf1oaGigktSwuQV0dfYoT6vuvn5GqAOAzZs1RQk97+ymlNZuzY1XCsuCmiRJjZIkHZYk6R5leackSfskSRqRJOkWSZJaKtfMyhHgYhjKK3itfY5FwvApHYWRW5jRxkwykZ4erFvfhpZ1heDIdDrNBP8vG0yg3bCojR17EcMvHDT8bX5+HrKsFw4A4G07+3HRJm2ST3fy9AB0/Plnkc1kGEGN9uumrwEAJksiGdyaTJ5aCcA6yiIU55IlyACSCa0T2LBhQ6HuDSVsRhT304B3CT/8l08y209Rfs70PV2cmtS15WWXvh5t7R0FE39jI/Pbp77/I1Xrm8/n8eKsdY0i//zw94IuPu73LGJxehLhwDLjvmAkqDVQ+yBEQ0FDi9o8F+8EaM/+XSOL2DtV6Fhpa187NwloL1I3xSnNioqOTydsBTL5M7I82cVOnKtZf8N/XWyyVepw6VRS1XA2NDbi0rdr9Y9efO4p9TNdoJyHzqrX3a9p3u0kPqhG9k6C8USp0ALeZZzAn4uT9vLrHnxsD7525V/hvz93NW78139R0pNz/RKvSTfbWRkU25Vl10dZVrPBAkA7VUeNdvm6eLAbb93Zr7MuNEoFgYSwvLRQVh01un+hE1s0NDQwwho/DljZNwAEqMndOy86B+dt1CfNMopJ2tDRiZbWwridTCZVBUCYer7oWD0CbbWLBq1Zcenn/DtX/61aoDufy+GGf/sK5ifGiqZ3T8RYDxMaXdZHaj9v2bERpw9QbqylEkIpzUwl9PfC73VnEv3sA/fgL8/diu9d83f4+Te/gmv+7I2YHim4Zu97+H588x/+Bg/9/mZcefn7kEgkSuzNHkSYkSTgzuFFHFos7c6vf/Zl7nfj76sNfXTe9ZF+tIp5yQQZL6zCHIXuM2hBTef6SCmciaLnDe/6CwAF69yVV15p2O4uSim0lixq1wCg825+G8B1siyfBSAA4GOGW9U4/MtSXnr+AovTk/jb11+Eq950Mfbu3cuuY7L/bDaLqKKVkiQJG5QYHrpuEZlgy7JsaOlwQ2swdFhzfzr/kktx1ss0t8XZ2VnIYM3fZGKvHwy0L7a/5Bxs3FIIxI6FQzjy1GPqhFiSJJxJZZLjJ8p0+vlNpxVS8zeajDySJKG1iOsjONed9vZ2SJKETiq+gbjTHHnqMd3+Jycn1c+0LBDw6a87CRBvaGhQ0zoDhYny1l1ncqUXjC1Ay4vzePgPv8GyQXFUAMjlcsy9aO/qZgJop4ZO4ONvvRR//6ZXYZSyfNATHN6iRmvJIsGAiUVtEgBrGaEf63gmh1QyoWrV6BIIWlup57pEen6rlhgrZQPMMHsvPbHSJS/4dtmZfJq6j1reQ+l1aW3mxoFNOOcVr1KXaTdnOv5oF5UyHAAGtmllMejEMHTW0pLYcCUql2KHoF236cmFac0tW/eTXffXP/gPdTL98B9+jX9+++vw4VedjQd++7+mrdVcH6skqVk8jgwgTQlq6ylhiO6R+1qb0W5gTWtqaGBKufg9i0Uv7QlfBHMR8wk1k0ykh+3HnLo/sq6P2nNCa+1pjOKkAdYC7VfinmmLGv07gY6zo/toK+1NJRO6BGD5fB4//MKnit5eelKsE9R0sWmaBaRzXTMGN2p9eGnXR/3xCMlEHOlUUrduMbKZDB676zaMHi2ccyqZwPc+eRWzTjwSxqfe9SZ84OVn4DtXa9NT79ISbrvttpLHsBNTS5RzRCE6FU7gjqEFJIskg+L1iXqxrTzLot34WiswNdQ6uxlhi45Z471kaI+Ol5x+Gv5oSw+aleyhEsCUVaLnaNlMRp33SpKErp7CM3fFtV/F5R//NH7wv7/Frl2ahwd9z7opN+slFxSwK4klQU2SpG0A/hTATcqyBOCPAZCn/ZcA3lOJBlaaMjwddZAB+af/+i9IJ5PI53L4+Mc/zrxuZocLU1aOzu5uNCpWGCY7njIwhQN+pmMjOLWomblUXnjpG5iBlaSwpi0yWvuM/dkLnyVc8ua3q8t3/uwG1R1lYNt2RpDxzs0ik9Ymx4xFTVmvUStpzx4TrOuj3qIm6wU1cBY1ZYAceVFfI4qxqDEuMtp1P/eVl+D9V38Wl737L9XvLn7jW9TPH/3C1yFJEuMmQN97QjqVxJc//D78+Cv/D1dd9krc9uP/0q0T8nnVe9fZ04um5mZ09vapVlh1X8kk7v7Db7VzNHJ9VC4mbVHzzs8a1jhbmJ4kF4GCfbLpa9LX388EqQNcgcsSg7xq2SjxrpKf044sagWyGTZw/JFRC2nbucO50acYZow1WMcTS5UUDANUDMjmwS1MXCntPkZn6XzN29lMdNvPOkf9TFtDbQlqCitlUSPvLH2emyk3UN6iJnP/rR1X+xxa9mF6mK0ptDg1gXwuhxu//gW1DzRTrLt5nYpa1GwcKEVZItraaFd3usM33raxQdJZ/ItZn08tR7FvXt//kC3oZ/dtF+xSDl04uNMU/XRr6D5scNA4aZbZZL6rRxPElpVxOUy5cNFJVQidjGeHxfdKaTBJ+c8zdPiAqYcMACSi5oIaD+nBya2my/KEw+GiLqaaoGYsNFs+XxTe7R98+h9w/bWfwFf+5i+wODOFF5U6r0akDKxnL774ItK5PGJFBBmjJ3NmdBjf/ueP4oYvfQaZtDZWkO6aKXsBYKmIok/XR/GLZfQD0UxOeX/s98889PEZxXBnF+g3oJ1xfWTfW1oBv33bVmzpoOYoEmdRozKDLs5Mqp8HBwfR1FSI4+ze2I/3X/1ZvP7Nb2UbS72QPZTnx8S4Pu9CPWHVovafAD4Hrc5vH4CgLMvkqZwFUDp3bQ3CT3LKqQJP9vQClTZ/aGiIGwg57anyI51IhHYz6jCwqPnmjSePTi1qdItoV7eNW7aij8rqODs7a+r6qNMscsd49VveoX4+eWCf+nnrrjOZtMf/88VP44OvOAv3/frnAICHfq8ldNi0rYRFDUAL5/LCd4aJOCuoAewASSxqowaCGm1RI7tNJRNqbE9TczO+/qvbcfnHP60K2gDwoc98EV/48c24bvcjeMcHP1I4NmVRMhLUntj9f0yK29/957dx189+xAjovkXN2tW3uXCfJEli0kMTnntUq1lXLEaNft7oBCn0RIy4PjIKCG40CVJWnL5+fcIZRvtmYlEj987JhNkupJB7iJusm71rzLbcsi2Lmsm6fO08I15cCuPpWT+CJTLEMfFpmzcz2nz6fONRLc7kgj96HbOPTds1gWaDg7TcAC1wV15UM7p6slywQjMp5qlyHzpBrUyB6fh+fWZbGmIBMXOAWunYFB5Zlpn+hxHUqPWM4tUAoEmS0Ecp/pY9Tl0fC+9qhFISnLltK9MOx5kflfbkcjkmLbiZRY137yRL9Du2TCxqXE1CHlZhaLFkCTkGNRac+8pLGE8YM1dfgHV31gtqbCy4lkyk8KGluVl1MZVluajlkrzzMRP3atqCWOqRGHnxMPY9fD+AghD2zH27cesN1xXfiGNhYQGPTfnw4IS5cpvXlWUzGXzz7z+M5/c8gL23/Q5P36cldFNL0nA5D4xOhTy/JS1qZXQAVhR9lqF2Rdc8be/qZuZ9G6hMzrzro5+yTvNKD32Mmva+Tp3S6vfSSUPUbXXzTu2Lnee9VFUQHz96tLR7bg1TUlCTJOnPACzJskyrZYx68WNEvAAAIABJREFUYsMnQ5KkqyRJ+v/Ze+/wSKorffitTlKr1a2W1MoaTc7DzDDDkGHIYBMM2IATNvaCsw2LwzritY2x13gX2DW2MWAb/APjtUkmLGATTVjiAJOYPKMJyqmlbsXu+v6ourfOvXVvdbUk83kWzvPoUXd19a1b1Tec8J73vGIYxivTxUo4nfL39lo6tKH2OdJJDGo5SAZ2gngm5JwhAOhud5THekIFPPmImvO6+4Cz4KcamrgBAFgRNROmwOjDDbUC15i7bIXyePOceRwWySQ3MYE7r/sx7r/1F8JxRoLA1qCwxIVrGAaCwSBnpzNN04VFd0Mf3RG1sdER7N6yCbK0trZyQgCmCA4QRqKK6pQrcgRYOOrVJ5yClgVOVIIqu2mFobL1jddcx26/9gd48Lc38/fUi0pzP1jkkcrOLZsxPjaG8bExrqgGAgFU2AaTKqK2d7tDvb5g5WoE7bHc29mhZNSkIsDtbDYx+msJkWIN66MMrCw0V6cyl/OwNn0azQXUpDeFpJgcNd2Zfggsekcsj26hU2lSfW1Dg6Akpvt6uCc8I9S9q8A5n/wMAKAyVYNVx50kfMbkHzei5rzOE4OfKgGlZTFJoVbn2xWjL9FTN770vOe5993yc6F/gKVgmT7HezHiGVEroo2xYQ300YeHMxgwBAhtx949mJhkOYORrAOXKy0tdYxGuxvRAvU0vdoGrBImeXutL69IoqTEuwSBLMK4sveINMm/VkXU6Nqb7vOX+8nGCq13mWpowopj1vL3qhxqJhTuTMlhABVRipSrZhgC86Mfp43OUEv7hHoCwIt/eVh4f8d1PxJgnxd87p8LtnHgwAEMjXuXX5ENpb3bt/AcQAB44p4/OOdq2lCtzfdubce6jrSL8XQ6HTaTYaHUCb08jZTFKioQCTr6jhf0sZ8EEWhRdUtEptaRbJbvSbuJobZixYqCgRT6cVl5nLNu5/N5PPvss+ovHQTiJ6J2DIBzDMPYDeAuWJDH6wEkDcNgVkgzAHcyCwDTNH9lmuZhpmkepiqm+P+3yJPRz7DuzIxiz4A7KdY0TRezVzwe1+byAM6Eol7ecrJgFoqozV3q5JJMNqJGFYWeDjFKUyVF1Gg/ACcypGJgpBKNxYTIFZOGmXNQoygkOpwZEhj4wpESnqM2Yj/jhnIR4scuSWEvFP5omuqImlh8uR87N65HbsIKFjfOmsM33YmJCbTZFe7ZuKHMYKxuh59aKuUC9NG9wbW37nEdA6xNiQn1otIo2vmf+qLre7mJCbS37nbltDHDkueokfHWRvKXkqla1DY5StaOHTu8I2o9FPpoPRdhUafeN03Ba6pgKy8iyxQ0W9NU96Nzf2FDTe5WUSSBmnPdhpp7ULF8iEKLOI3M1tU3IFJSymFLuYkJnktIlbZYPIGPXvlNXH3Hvbj3by8iSogjyicZUWPy9uSoicaPdV1TMEbL4gkXs66qjWJyReh+skFRK5LKhhefs9t3+nn/tna0DRXOiyxaPB66b0PNhL+Img76aBgor0jyfWBsZAQ97QeKjhyYphiBSaVSQv4UMIUcNbsrND+tUkPND6hy1Kz/CQJ97O1mETXvHDVauqBbA2XU9ZciYaobGgVm1wN79LCvrA/oI7sneV8zACnXWm9csl84O1QY+ug13wZ6uvE/d/xG+/nqtafgg1/6qrK+6/wVq/jrA8QhrYvqykuwvCdvfOl5bFlnMUjqhrDuXnYPZBWQZ+fAWC5flMNPFspCOXVx+iGwPiaSiIaooaZ2vubzeTx1/x/5e1VELRAIuEoDAQ7DNAAsXbpUybLqJYsPOxIAUFJSgtbW1gJn/+NKQUPNNM1vmKbZbJrmLAAfBPCEaZofAfAkAJaI83EA7sJeB4FMJkL87L5evKph9ZGxuf39/RifILhlV0TNhgRQbzZViiRyB0BclGcuWMKjdkNDQ5NiMxI9Jg78KZ6sVEIfVWQirporihpnFGbEpLZ5RsFaYwDw5etv4vlny1IJLEvFUS8VWmVdKIk6Bpy8SavIRMKRCFdc8/m8kJ82a/FS1JJ+M/gj39C7RdpZwKEx9hK6waUVDF8dBJutE0oyUl3nGGpLDjsCJ51/kev8fTu2KWGrgLPgCblzEqsapZ3esWOHxGYqDmyad8agvNRQK43FeIRubGREmTxfCBoiy5SSr2EqIZhd+92FO93fld5PgyUy4aMNVnKh0BpG66MtWW5FthNEKUz3WjXEKAyqLB5HMBTC4tVHoKqqGrMryjDbLr9RRkotDAwM+KY/d1gU//6WmurxmaYI7yyLxz1rVXLo4yS6Ozw0hP07LAKfQDCIz3z/Wtc5QwP9GOzrdWDUUnRpOiGini35vI4Jrxy1wt9n5zSQ8g4Hdu+c1B6sgm8DxFk3yYgakz6CTvGqFSpHEtk7yurYY+cSixE1t9Oyec58/nrnW5uKonin6IpUfSOa5zhFgde/+Dx3PMrixfrIxImkSVBIiAapJ6LH7igteE2ZOf2Sp7z2zBPKnDMmhxxlQbZp0XHAcmR+9YZf8ffUUNOhF+R1SgUhfeHRhwDoURSuNDRyQFc/MTM2gQe3d3CHzWTWS6cA9/RG1OQ6aqUkxYNCH6keTNNXAEVEjREAKZgfqZNx7ty5kE0z1/yTbve0iz6Kq++4FzvauvDZz34WB6tMpY7avwC40jCM7bBy1m6dni69vcIUNEaZPJVhbZpAWvbKmia6OukCJk46VmMlSyJqtOaUKqLWRZj4Uo1NqJwiDSlbMHITE3whNQwD0Vi5i0xkdGSEL5ThcJiz9bDnFg4YSJaEXc8xFDAEg4dJ3YyZqKqr50q7SlafcArWnOQkjcYiQSyoLtduktqIGkRDjdHzAyL8kdV6A4CaxmaRSdEmFGG/Ik04Z57XULDwKBINItFAGB8bFTZeChcCnHFAN7cVc2YgFnYWzUu+8T2c/6kvCorozk3rJUPNuWf2LMuTbgXCOrdSIF7YsUPctOStZIgs1BV2H6ihZhiGANe85KhlgvcMIBG1KSjMfsXKvVQQp0h90nzb412hb6rPdikPZEht78tgYHScKwdeeT59XZ3Y/ZaVa2gYBlYfcQQACEyng/29GBsZ5spcOFLC4cPW94BD6yvQaEewg6EQzykwTbNgDSVZ3m7WR5P8zwoOsbiwvmqhjwWulR3PuaK/e7Zu5kpZ05x5OPXCj+Df7/8rrrj2Z2iet4B/d/+uHXwMjEsG79vwmIq6jgmRnl/H+lho9Wue6xgk3//kB3Hf/ff57IHTj8yg4wiqrCSMsvY6NtkcNfYsaEStKqWPqLkVKAXrY3c3soNpTIyP230rE/YoJjVNzdwJMjjQzxEsfjrcI+Urzz1kJaf77+/pxtcvPNMF6wb8RdTEOxOVY3qfzFAby+WxtXdIWZZIlx9KDQCv9YGy1J543oUCDDuerMQJ514AAFi99mThe1f85L9QVdfA17XBwUGuC+gMNXp448v/izuv/7HrnD1bN9nn6ow9dk8mtvdmMEKcMXIZGb52pKdeOoBH1KahUjK9NeqAjSeTKA0F8N65tZiTLBN0GvZ75vN5PHjbLUJ7ixYtEt6z0UTJadg6TaGms2fPLgr6CFhr7+LVRyBSclBWD+NS1M9omuZTpmmeZb/eaZrm4aZpzjNN8wLTNP8OeI2/v7z8wgv4p2NX4rK1q9C5f9+UNkcTIgUvk34yuHuGx3HvFkcJZxOKsi/R+jS0tgobtLSGWqqhCSni8WPQvKL6bd809ahHy+MIBAICc057ezs2tTrRvKqqKsfLZs+Qs+fX46RZbvx9KGBg5sLFwjGL+MKCPZ73qS9o+zef0PcDHuF8gzF+6YpemxgmdVwY6yMgEopQEo1UfaNQpLWtoxPP7+vltLuUNKPCLrBYHtYbnfzaZFEbkMhEOvft5ZtcTWMTrn/gCeFz5mWiRtf85gYBmhKLJ/CRK7+BT3/v3/ixLa+9LBQrTxAFh32XKq5U4pVVAmNbZ2enOFekiUOLJ8eT1mZaIhmwNP8RAO74jx+hr6uTO02KVeinOneHFKQuu314tj0QLIWvW+w9mibe7Ezj8d1ObqSc60Dlibvv4hGvY445BhU2VLk0RmEmWcGAoTBHKsL4mgxFv/39t8MAUSmJpmkK49IL+pgeHff124xO5PHIzk6s70rb17CO7yFsj7MWLuH/jzv7fCFy8tgffse/MzaJfC2/Mh3P3DSt6DcTGlGjnnt5da6OhoXj1OkGAB+/+GJtMXBdP6jCSA21YshEqIHN27afFF3XvSJqQTlP2v4vQB97uiVqfvf+CFj7Ycv8hfz9W2+9pb2u3F85ohYMBnHKBR/mx3ZuWo/XnnnC9X0K3a9W1HYDVGQiznsaGWSG2mvtA9jQNYieYYcVkfWTFjOmaB2qe3iNVQrHX3bEMbj9pc34yg034/izz8e3b76Dz+fjzz6fG3HLjz4Oi1etgWEYAoyV1fbSETfRsfHAb29SnrNjw5vITUx4RNSs44NjE3izK40X93uslab7ulYb+q/ohNmA0wN9dESk569AsjSM0lAQiZIQSmMxXjOW5Xuve+YJtBHo7caNG1Faqk5ZKZcickMD/dzgKy0tRX19vQ/oo/p+/9GImYqVabC3D275/EcvxMT4GLKDafzupz8ozhvumlCmQBnMJD3gKAdbe4eEa6zvGsRfdnWJETXiWaDGDYv0UOhjTUMTqslG8ub23UXcgd1vu0cy9AmwvH/Mez42NoY9u5wIgwpywt9LB0IBQ6jfBFiKejhieTou/NyV+NAV/4I1J52Gb998Bz+ntKwMp0gwPl04n2/SmlpqpumGPjKhETVKqV1d3ygyIR7oQHtmFPsGLYWlX1GMMeLDjeVVR6ydhPvrZ8xESbQMq4iHkEEeqaFWVVUF1SK16FDnmW95/RXsISQpSuhjpcZQS1YKz6inp0dY/OR5I0Bo7Q1Tfi5jEoTlhUcfxKXHrcSXzz3FqrEktVlwbk5hMTZNU1nPrW3PTqQH1Qnw+m7470ixsC/V6V76/YaXnuOvL7vsMv6aevRHh4eRGRINGJXQ0UVhLsxQe3x3F7b16qMXHPr4drA+CiE1J9olr3GqiFrfyDj+ursbWzzuhQnLl+3MjPFrAKLiLMOwDj3+RP76hUcfRC6Xw3gu7zLUpuMxpUfH8Upbv2fU1X9EDb4iavLif9yMarxvfj0/61BCTANYa/SWLVuEY15jxASEiFqSwMgdQ82jniaAgdFxPLKzEzv71cXHaUQt5WGoudZ6uwMVJNLU19MtUfOLBlGIGHsUveEnosaeksgAbCEVPvCZK4RzVQy29NjMmTNdnwPg9yRD+g0YSugjG8eKKYjAuGPoUwbQrM81tnWbY7w22hDao04/E5df+zOhHmtlbR1ueOhpXPP7P+PbN9+JcDjMjzMZ6GaGWmHYIiVkOv6c93NncCY9gMf+8DvtGiw3PeKxWJuwaoBOx7xn0MfpNtQopPHkxbPQkrCegwEDhmEI+ctDAwN46HYnmvbJz38RS5Ys0bZNnX+ZdBqd+5ycslmzZ8MwdHyyjug+P8jttHcNtUHimdu3fVtRv6g8CXOmmq1pgAxu2fPSkRnF4NgEMkMU+ugYas1z5vNwffeB/ejr7OCbiGEYqKqrR4oseK9s21W0IsTuQ/A2EzYn6oWiTIBVxJtWaAqFAgHMO+RQ4ViSQEqCoRA+8JnL8fWf/xaHHncivnnT73DcWefhO7f8HnVNzcL3dGQdTo6aGvoIiBBTlqMGiFAwKtX1jUL0q0/6fWmOWqV9P37WRoH1UYrksNwWAGhomQUArvpDgCpPw/27V9XVY+GhhwGw6IUf+p2DUBaNMhv6SO6VSjxZKSi13YTtEgCnHGYiQJNsRSokMWKedYlYoJRJe+tu/MeXP4sJG4rHSR2KjGwVIybEOkdUtm7d6v1d0/u9l/hOGPeAf+qU8Fwuh21vOPmWa9eu5WMzSiIOw9mMENGnjiLAnaMCqAlFBkYnsL7LS+Ey6K38XUUFfcyb7jVOlaPGFE0/xc7Zs3eCxdZ7qtDIc+qk8z+IiO1VHhsZwVvbd+CB7R3Y2iszqU79Sb3aPoDW9DD6R/QlHHyPV9NfHTV5+QsYBoIBg4+9kK00U3ntNZHlVqU7p0fH0ZUdtaLfaU1EjeW7FKijtss20BgyYngih43dg8RQc9b1FfM0BgyAEslQ4xE1wVDrwZ9+4dTBTEnkWfR5VRNSqL17feTHmhYaxykRE+HXDkciuOiLX+HnUqciYEXS2R4SCof1Rb3Zf0P8D6ihj2xOqHQCyvpYJUTUWERaP+rb9uzC/p3b7XsrQcuCxZozLamsqcXCQw8TSuXQfZQxEWqhj6QnNM3gws9fiTM/5ji9Hrvrd5jQRITZ3TDnct7DMzc8kcMD2zuwrc+bUdmPsH0l4IfZrICwfXd8bJTP/2AwiLl1bhIfQVfq6sD6/7WYFg3DwEcv/bSyfdYG1YmG0gPo2OeM/5mzbWeXhrzHOaC5h4PcVHvHG2pUWre9hSsvPMvXAgm4J3jeNNGvqICeTg+Sc9RtDRKPEo30hMJhIfn6rdde5hOnsqYOoXBYgGb0dXUWDaHh0Eeav0GMRWpQtW5zDDUhouZihBIPhAIGoqT6PACMDLuZM5msXnsyrvjpjVhkQxaoFIqoydDHjd2DeHh7B7ITORfroypHjUksUYEZ8+YLnw1IMC/qaaustVkfAayqq8DsCnceApM48QL39Tpt5vN5XkMOABrsvDDqfWTXHJIMNZ3CRYtv01wAapyy9bysPK7MF0ymat0RNfK5V0StuspSpOQcnKPPOBvnfPIzCIXd+PHNr7yIRx95xGqbGSnuW5s2yZtA2+5dys/27/NR9JpIMf2k9W7y+Tx+8Z2v4iOr5uGbHzoHo8M0v7L4iMj+Hdt4TkhVbR1aWlqUeZyjw1kXJFAQCfIEAGWTgT4W6O90ihL6CFNY48riccFZwQw1VvZDJvdQCTuFQeDYZYV6QxKcOBAICOiCN9evB2BF8sR7KHj5gsKiNeO5qTV2z5Y27BrI+mJ91Ak95/xPf0n4bL39DJioxvtfd3fjb3t7LfZOsr7QiBqTQtDHYdtAKw1ZSvy69gFs6RlCtw3XoxG1xbP1hpoOPUENmAN7W7Hub0/y98uOPEY4lz6XVH2RhhokUqn6BmG/pHs3hTkCElNkfaOytIzQT66UO+kOKugw++WojcCOZYY00EcaUdMMfGrsrjjmeCFqWkhY36nTua/Lf0RNINaqqsY5n/g03ydbt72F//nTXZ5tsJ/EyzEn12Cbikwn6yPrMV3TkpVVol5mv4wRQ+2aT3+Mw+7rWmZhhu101gml988M9KNjn4MsmjVrtn0Z7/vRRtQObjvtXUNNls2vvYwbb7zR17kTpriR501TCM0z8ZNsPyJAH8UcEWqIbX3T8TymGpoQMIBwhbMp9Hd3IjtRnKHGPEcCIxqNqNWSiJrOUJPalNcHZlxRb2pDgYnLr18qemD1Ba9ZjpoYUdvSM4SRXB65vOkmE/HIzTrlgg+jJFomRdREshjKCshgK4ZhYFayDPOqRMOUilwSgMmODW8ItbuOPPlUABBIXXo72pHP54XvVSlYxJjQvAcqi2c4G6XjLTWUUbW6GS2KiJqoDNP9LkMU/5Tdt7FcHstrE5hjsweGwmF8/GtX4Q/rd+Obv7xdoJQGgE2bNgrvx3J5DI6p2ctYHyYrpmli/26HIIX2ZZ8Pin4mOza8iVv//ccushWd0I371af+ir/+8Q6MZLPYsu4VvP7s06R/9v8i7nLrG07py4UrVgsbK50jI5mMZ46aikRgMhT9DvTR1+lTElPxxjThgnjGEkl+X/39/cjlcr5qgjGR6xU5Sg2JqJFnxaRlvpNQv3XDetfnrnuYpIRt5XtMcpLsfmsjfvz5T+DB226GaXrvF8zBMjE+zglngsEgh5MB4npfCPEAAOd84tPCc962bZtwrhckeHQiz0tKAHKOmtVmaczbUONjUHICsXulETVdpAnQF7yOxsqVDigAOOyEU8QDpA1aZsUX9NE0xTIt9SKjXiUpidTfIyIGqK6iIvqiewIgsj0yiZLoO3M2MycJfTRs3RoiETWao8wgySb04/7lJx7lr8/48Cc0Z6mFdYXm3PvNURsbHeEka8FQCGU2CdHRZ5zNz32VrNVUcqaJ1zsG8MK+PqFNr+vJMpn10oE+Fv9dndA5VyE5R5w8M1Jjkzg7Zi5YpEUascNyweyOvSL0kZ7rfNffDR7kdto721DTJTBff/31yuNP7unGM60O9E2u/p4zTc6wRsWPoTacUUMfAdELRKnjU42NCAcCUgHbXmTH9cqsSthCkBl056gBDkkGAOzftZ2/9jIOdNPnKzZFrmEY+OCXvuqrfytqE5waHPABfSxVk4mMj43y3zwSiSAScTZSVURt/nKr7go1UGhEbSSb5Z62YCiEpL0JyEnXKqE5alSpY3VZAGDFMWsxzy5dQGEiPR1tGOzv496q8ngckUhEuxhR8gLh/pqJoUZ6m5RYzmKJCsSTlQLhipyjBlM0IrJkUU/ZitToRB7zKmOoi7mLx64+4RT8/C8v4J++fTU/tmP7dtY0AGDf4Aj+ssurqPvkl+O8aQr0y4cQr/f+/coSkc5VCTTk6k99BL+5/lpccMEF2vOo0DXkUYnG+AAxHCW90pe8/twz/PXCldZY5jk8MTGiltE4aaiIOWqTL3r99tDzqyJqoue+rDyOYDCIeMXk70XnuaZKjcrxMXfZCv56/cv/W9Q1ixEWHaQoi9GRYfzoc5fg5ccfxW9+9F3cdeednm2M2I4/mp9WJkUz6Prhx4sfT1biR394kL+nhloubyI96t7D2L2M5ERDTchRY9BHn3XU2FhkkceJvAXhptEnue6TlzjkWoZA0c/kiFPfy6GPh9TEcWxzlQh9JOu8X2RPt8T4SIXu3VRxBoDXn32Kv1646jBt+6x/bN+l+5sqcmny74khNdM0hRQPmi/GDTVTvcZlBtP8Nw9HSrDy2LXa/noJjW4zFEEh1kcKe4yTSNKJJHe+XePMy5vAzv4s0raD0SuwrTfiil8vHQfgdEbUCJOzxlCr1ORzztA4i6lQtvNMekDIUZs920KV6eoWMtGtPW9HXvTfU97Rhppc4JTJsmXqul59I+McGgGIE9w0TYyOjqGdeAGYDPow1CiUIxEXPbCVBFe97Q0xohYJBgQjI93bg+FiI2r2INbBnwRDhXjlqqurMb/SpufXTJBUNILDG5OE8et0XPfAk7jxLy9g1qKlvvoXDgZwaJ3zTHTXUsG66CY9oih2zXMKFIYai0RRRaufjBkKHUk1NHEsPEu69qphUhKNImQbimOjIzzSR2teHX7y6XxzrJYMte3rX+fv5y+w+ikvRRUlISyssgqNU08i73PKYR+jXa1pFHMoGC0/fQ69vb1C/SwTJt/YrMLCzliqTTkRNQBCGQFZKPECM9TkG9MtulNZi4ezGa4IhMIRzF3mJKbvLxBRY5ft2NvKyYTWrVuH7du3679kC6uX1nVgH14n8ChALLBqOiG1grLub0/isrWr8cIjD/Bjq20CCzZ3aA7PyHBWyFEri8s5avZ/MkZiUyh6/bZH1ODkT6rWuIREKFLMpi4bapzljdYbqnBH1BasXM1fv/7Cs2jd6kZimCbQmRlFL9lzipWwDc2jVOBvPv83gUTi1ltu9myD5XHpGB8BcWwUWp+Z0Lm+fft2jI1Z9/lyWx+e2evO9abrhi6ixqRQjpos7PebyJsYzgzxXJxoNFqQtl4nqqLWp174Uf56RiKKWslpVU3y1woZavdtbcPG7kGBuKZaiqjRCFvb7l2Cc5o6BVceU9jwcddGFdMZWESNDTV6tgnLscnmR2m0TGD5Y/NSN/Nkputiot6AMz6pE5ztUVrGRrs3AuyRpAvQKGSnZo+Qnfleojt1Mssl002nxSnG4dzOmpaU55z9gJtI/T4qS9ccpY+ocdikSEQiRtRm+epqqUa3OLjNtHe4oTaoYRoaIRuSl1BDLW+KmwcVPxG1AUJkUEXgCoAYUWO1WABrEY6GAoKRMdjX6xleVwk7myox1LuhMmIAy1A7pDaB8xe6PY5s8iVKQmiOR4VJ2jJ/Ieqk2mBewoyVJalybTTNuiaDPjoRNUomMpJ1PMKxmGhgyhG1SEkJ6m1oJjVQ0mSxEiAnNgzVatP6H/bAHRiGwfPPAGDLupexf+d2vPCo42VetGoNN/Zk6KNg0B15lPIaJcEAltYkkCqLYIEdUaGig67KMBhGRhIKh7lym8/nBQXdhKOAj2SzHCIVjUaRKLN+D5bPEfMoX0CVt102fFAezZMpkFtI+gX67GrBM71hx27sHtDnUzKhhjsAPP7448J7r26/8fwzLgOBFvv0G1HrOrAPP/7cJ9BL8lYWrlyNuYtFp4gAfczKOWqSoWYPDsr6RtcHv1Eo1s7bsWnSMUK99JT1MRaPI2gAFYo8Nd/XYYVlWY6afTxD1ol4hduQqGtuQePsufz90w/c7TrHhIln9/Xiqdbi+kQlzHPUHKdKb2e7cM66V1/lRpJKhhURNcr4CPgjUJJ/90QyyeHiIyMjePjhhwGAF/qVhTq+dDlqPGJcoOC1PJ8o82IfyTNvaGhQGgWnz67BabNrXMepUEZEJrMIi7PKkZeorEKkxCKaSafTnrpD3gS6smOSoSbuxZW1ddxJN5LN4JpPX4zf/vh7GM5khJpksxcf4nkvgBsKCUMTUZNqClrH3OkddJ1xIt2m0pHTRZ2icsFkH8KedFmcElZ462VsDUlLETXeDwJT7eloE3QzJr7JouCOqKX7evCr730Dd/zsukkQxE3fKssjajSKLRlq7Pmq0DuR0lIsXn14QZhiBSlb8dR9/y3Q+s+bO1e4jnxdfi2NgniQB9Te2YbasKbCfaFaZGws0EmYN03B40DFl6FGIlUpl6GmDidX1zdaNSwqtsIvAAAgAElEQVQE6GPfJGozWf9pFOTwOU1ojlsbhgoWCBSCPoq4dvfn/oW1tag6jnMX6GEofJMuIqLGRDZGZ81bwJOFaSHGzOAgjyTRBXxucyNm2uQhnN2sgPay6rgT+es3X/gbbr/2B/x9NBbDYStXoDluKUTlFUm+gY9kMwJe/4ijjgagX4wMAAtWuA21ujpnXFFlJBgScwIv+Pw/89cCnTlhfjQJ9DErUWdHggEc2ViJI5us78q1h6jUNDbz597WdsD+/cQbk0lJAGBb7xA2dZNaPEVOgv4e57esqKoSyFu62tvwWrvaCQPSOwpBAtw5Jl5dot5tJvsJFJNHK/VNALDy3CbGRaXbgtmJ85EqWKPZrLB2xXTQRxpRE/I2i4Q+vg27pgx9ZG/zZA0oK08gFBAdXTqUhU4YlIn6ZPJ5EZoXU+SoGYaBUy/4CH/PGOioTIdDgs1rGlGjNcgAy0h69PmXoRMeUdMwPgJu6naVyPcTNAwcd9Z5/P0jjDxI8306/oYIq6bI+mhHjH0WvDb570cMta7CsMdYJITyiNvhRPso0/CvWnuyAA1TLYOGYaCKGFt+8tREh6FoxBiGITjpXn/2KTzw25vwuVOPRN6OrtXNmOlJzMEdNYpcNVa6ByA5aoo2TEAg8orGYkJ+23BmCPm8npqewuBqJNZMP8J0CEoBzwwPLeCQRcdpRI2sFeFICU9JyOfzAnSeSTEGkzw/7r35Rjz6+9vwm3//Ee6+2+3I8RLuiJiWpdZqhDqfkkmNoTZvgevbl//kZwhHSgrqgqo8SQCoqE6hKmGPFTkn1AWF1BhqmmsfLPKONtRk6nYmvb29GB3VUzNTmASTnGliaECtsOgid0zGx8a4ohQIBJCUDCBdwc1kKoXSUADliQo+QDPpfoxP+M9RG8/nebSA5m9UVDht6oog6wpkUpGZopzjvrvoGUVTtRnRRtT8Qx/nLnI8n8FQiG9IpmnyfEKq3DbWphwsv4LOXCULyQZ6YPdOYaFvnjUHx8+s4VE5VoqBCSN1MQwDxx5/vNU3aTlyrm/wfDsm4XBYG1E79LgT+Ou1p79X8AyLSq3j6TfhbDQqb3djvJQzrAFW3qFKgqEQasiCfcczr7hw/aqcgvVdg+jMTh4i1k8i2vHKKlcE01NMyyiX6xQxumo/sn39G65jvR1tfIz5LVGwToJPAsCM+YuIN9z6TxWz4WxGYI6j9w6onS6TIRNh8nZsmvI1nFqRYuQwHDBQQeBMMptpIXFDHx2lE7AMBhUdPSDChGiZj7HRETxx91144Rn3b1m8uO9mULFPPfPmZtcxJgy+pWN8BHxG1KSxGzQMLFnjoAFef+ONAjBP5yI0AlyI9dErR433hUbUusSIWjFCH4MMfTzrY5cK73XQeApzp4bagF2eABCfpRBRq3P3d/7yQ13HaL1XWquVCjNEGWOoCgKtMojVTiXTFVELBoPC94czQzaZiHvMvvq0g07QkWN5Coc+Kgw1zYRXRdTk33QhgTA/98ifXW34jaiZpomc5ID8869/yV9/4Qtf8NWO02Bxp/tpSoQbSzlq9vOVkVKLDzsCR572XvskzQXsL9dqUFZzli53EdowKQnq0yiovJujdhCLLqIGAB0dbpp9JmxQ5oWIGjCoUVgKRdRo7bWamhqEpMGni6glKqtREgwgGApxxhzTNIU8qkLyRkcarWnrOVAlpqKiwjN/C/A21Nx0/fJ7/5aaXzy6E1FTk4koDTX7S3LC/2FHHyu8l4sxAnCxLqo2Mi+pbXIWprY9u9BBvIY33nWv3ZbTmFw4FwBmL16GajvXTBtRM0TyAsCCflI6ZmoMLz/6eHzgs1fguLPOw/d+KhLrlCvomK1rm3yD1RWjpTK3MoYZdsRWFjl3RZZxH6GGYpflvh7qNa1GPFnF6xdmhwaFHC7VtYIBQ/BsA25DTaWAmKaJB2+/RSiyTove7rFzl/zsM9vXv4FXnvyLcCwYCmH5Uce6NziJnp8qe7JXngkdizGJnr+YjfBtyVGj0EcQYoA0NdQSCBiGEB3s6ekpavAwI4ayPgqMj4r8NCaU6GGgxxkrd9/0n7jxW1fiu5dchLt/+Z++HVUqUT1rFUSfGuquNuz/tIaaC/rooy+uiFrAEKCAb7y5Hk/s1js32DVM0xSowkXWR0tKCkEfJWOCoh/8Mj5699KKBFCZvWSZ5kxRqDFA19jH7fIEgDhEBTIRRbRJdtIJfTAMvO+Tn1F+lopaOdRDNjkZh/Tb+4ZhWA4fti4MDw9jYmKCrHNiVDtL82BtxydFq2QH09Y3pHHy1P1/wrpnnuDvl61RQ/29xIE+kn3cw4HePzKOXrtcBjVq4xLkj5ZaeOi2W5BJD+DArh34ynmn4kMr5+COXxZmEP/9f/4EH1w+C/90xlq0t+5WntPR0SHkhBcSv1B5X22xtdMjosbEMAyc9P4P8vfv+fAlzmea9tlxuXwTk4/889e1bZRH3IbaYQ1JVJSI0e6D20x7hxtquogaALS3673oTqKmI3nTFAoQU2WrEJkIhT3W1tZyI4Z5aSk9PpWK6hQ/N0mIIToLRQCIsHoygCqiZr2eHPRR/C/PsGko76G4ptVoMWQiTIKhEPc81jbNwJnvv1D4nGLbGbTPZahpooc6qWl2Ikf7tm/leV1VdQ08qkon6IWfv9LVxvKjj+PXdUXUyH8Z2iJHQWifDcPAhy7/Gq746Y2Y2Sxu/ELdHFfRa+t/oRpH9DoqoV45WqqAiY5OWdUXv0Ijagmb2YvClHo6veDQJkIBwwV9dBlqij699swT+M01VwnXXnr40fz9ppdfwMT4uDLvQ5a//vEO/rplwWJ84UfX44d33o/6lllkLFivKGRpeGhQ6HtVnQyfEv8DIpVy0fT8vs6emtC5QIvoCoZaeRyGAZSTMfri9lZkJwrXM9rYNYjX2vudwrJkDmYEQ00//nXU6c8/7Hjm77z+x9paXX5E9ayHBhSGWrue2ZQbal6sjz4WdHl9ChoGkjW1/BmNZDMY6PYw1OxLjI2OcHhvJBJBaWmp65xoQeijpMqS7k9XRO3I0860nAHBID5+5TdcOWu6Z0ajPgOK3wpw1pLhTEYsdq3Yq+cdslKY71SuvedRLFp1uPKzpngp5lfGsLha/G4k6OxzhmG4opfcCBaS1ERHMGNadeWpSQWvx8fGcOvV3+bvk6kaLD5kubK/XsKetAx9pA5GJqO5PJ7Y040eO7o72K8mEwGAtWe/n6ckDGeGsH3DG7jv1p9j1+aNGBsZwW9vuNbTidXX2YG7f3EDJsbHsWvLZtx788+sa/a5ne1vvvmm/xu2ZToZdqmDp6FWdEJQ/eFDX/oajjj1vTjjw5fgyNPPIucUlhVHHy+8v+Tr/4rZix0HhzxlVPnuLYkoFlSJY/YgD6i9sw01r4iaV55aXuGuyEk5ahRvmx70NtRo8nJ9fT0f0Wx/DkdKBDp3wCF2YIsmZXtqUyi3OqED2GWoMSOwuoZHF5gEAgGBNVAnOqr6spC/kHUxwun5tdBH57UDfXR69o1f3o7P/uBafO/2u1EmeYwFtigWUesXDTW5HyqpKAlhgV1fLV5ZJfSVSUPLLELz7Byfr8gzW3PS6cTTLH4mK9g6RiYAaCh3U+YDQJnEoqTL56F5QJkCsKRCQhPiexWefh2dMpVi1+UBwWtq3SNlTOvyYH40YSmd3W2FImpu+Z87fiO8b5g5G4tXO8WQ7/rPa/HxI5bggT9YFOq6Dcc0Tbz0+CP8/ae+ew1OPO9CB/YkeU4EJtOebq4gG4bhgloHuQPCEVdETd0tSRg88O+/a8pDxDRNK3eMkIl8eJWV+F5Gjc6+Puwb1O8LTLb0DmH3wLCb1c2UGB8T+vGfIMnz6Z5u5HI5F8kD6/tkRfVVVS41jajqGvFiffQjqoiaYRhCBGlQ0Tdel8t+T3PskslKweDhqIoCETWnbfE/APT7yFHTCpkkjbPm4JdPvITbX9yMj37hn/XfkYQaLzonCHc8EIW+orpaCRErLSvDN35xGw478VRXO7MXL8OCqhjWtrjRMQHDwCG1CZTZyjBbd0NSYWxqqA0ODirHqwnRgRe3odO0FMhwZtC1jnTs3SPAXK+69S7Eo+q9ylNYWkRJKddlJsbHMTYy7Joj6VGRFCStyVEDrJqTx575Pv5+3/at2LnJqYuYGRwUvi/LC489JDyvlx5/FLlcDt0KHe6xxx7TtiNLMSzBBduy/9N1o0ZGU5EBV1VXj6/91y247KprOBM2oHdM0KP/9O2rcfR7zsZRZ5yNn/zpEZx9yac8zgaiIbUJI1/p7SgJ8/eUd7ShRpX4Y888VwjZekXUmMgRNWEgE0NtMO2do0bZ3WbPns0HGU1wlpWneNLy+s9IRLG8JiHAldp9JCCrhELWaEQtGAqhZcEi4dzFixejpES/YBbysMoGwHSKNqKW0UMfASv5+5QLPoLapmaBBQyQIRPWc6IRVAoD9YIqnTyrBstqEjAAmDBcdMqANXZYEzSPwTAMLD7sCP7+6PecjUWr1vBzdfYL+/xzV/+UH7vuuuuEc+rLS3HWPDfENir9TgKZSI9IJsIKp+tqHLn6pXlOcs04WWRDTa0Y+FuYx3N5dGRGhfo+7LemrHz7FYni8hVl1sduKeKokjGJYXbe8kOx7IhjhGMj2Qx+cOUXtHUfAWDfjm08Mh9PVmLhoWuEz+UIN/0dO/bu4c+wsbHRlVPF5oJXwWtftoT99bc7R820/4YzQ/w+Y7EYwuEwDBgoI0brYH+fJ6V2Lm8KkHcWUeM5hChcQ41JOBLhRko+n0dfZzv279zmOi9bwNHnJap5kEm7lX8d5MpqwxIv1kcmC6vVkRtAnaMGAHHyjFR9k++AOoLkek5skEVKo3y8joyMeM4dWfomWUPNubojsXgC0fJy137iJYXyP3f0ZThElJKqNNXWkLkqfmfp4UfhG7+4TZlGsawmgeqoujg3FcdQE68RlYqLM7yDMAdNUxjHcdvRUxYXibpM6Xv7dzrQ9xXHrMXMhYsRnYSTlzpkVWkMXpImDkmKLmI/adNch+nw19dchT1bxHzP9j27tG1vePE56Vo9OLBrBzK97sjyo48+6jqmk6lAH9Oj48iMuXkOvEpi+Bndfs5pmjMPX77uJnzl+pswd5kVOa0tc/RM1sasiihOnpnSG3/S4Xcjagex0IhapLRUWMQKMT8C4iY4NJYTFiJKITtYYKOluUlz5szhr6mSLkdDElVWfhoz1oR6KftFhVElu/qzrslII2rJZFKYWLMleu/Vq1fDS5x8LbeHzzoOnDmvDkc3qbHOkxFOz18qRtTYtSn0kdPza9qSmQkpcxt7TpQ8pqqqio+HYvLvKlNuWGuqsVEbiTzrY5chUlKK2YuX4jPf+wkAcJIOdn1eJoCTQFj/F606HFf9+i5cfu3P8LnPfc51XZUuEQoYnOIbEDcqmtdlElplOg9UNY6Y6J4STYinRB57t2/F688+hTGidPUMj/FcAkF8Lsw7+7N4bl+vMDaY4kHnHFUYXJcyLQVfNrp6e3tF9kGpT/l8XshNi8bK8YHPXo76llmCQc7EIrpQ39imV5yiyUvWHCnkH1Jhz1xnQKhqSLK5QH+vSGkUobCl3I2OjnqiE7hMg5O3d3gMW3sL18WSn7tpWhBPJhU29MowxIjaUH+fJwHA/dva8VdSdF0+1wQwIhhq+hw1wIqeM2nbs1uAwTOhOVPTIdTBxGTXpvV4/K092NildyqOerA+AsD5CxuwNBV3HWci279sf6NoEVW0T2bOo+uujtTAMAytww5wK7J0XvlhfdSJbk3zqqkpS7wA9PGNzjSGxq01UKc8665XbP0xKi5DzT6ui6iNTuTx3L5ejE7kLAcGNdTs9Scq56hJlhpdd9l6XKqJongJvWvR6Zp2Ew9JBygUNply4MrsGc9ZIpY2yEtOgTaNE8Q0TWx+9SXX8V2bNwhRXSbPP/98UXlqk5W/7u7Go2SNY78nnZuTMtQ0J3kNybUt1TimudJ1biQYQEWpmqTJ6o/Y6EFup71rqDGJlJQKk9BXRI38+i+39QuEA9W1zgI/mE57wleoN5MaajSiRnG6AHDIwvm8jothANUN1FDzjqjlTRPrOgbwVKvDcGYVKRYjanSxX0byZgBg7dq1ntdgIhtsVEqCAYEJcKrCN46YOj9hZNgNfdSJvNHRvAG2OWYJi1UikXDSHchXT5qZUiov7JxkjbsWTw0p6Cn348jT3ovbX96Ma+95jBuPJfbGxYaYTKNM16wVRx+P488+H5GI24OqMjADMHD2/HrMswub6yJqgKPsDA34jKhplncKfWSQrL3bt+JrHzgDP7j0w/jOlVfwz59u7cHTijpTfhdm9ngpLJYpHk0kotYmwdHka/UpGB7z+bygIMpG1rq/PSkozbe9uInnsVzw2SsgS1dXl/bGdm508hcWrjxM21c2rsKRiKBgMVm+3J3/EeJjUWxHgD8qlH+32FGnKbg3n2rtwQYPY4JfSQF9lKHdgDU14iTvZGigD7kCuhBTkgGniDuF0A35jKgBQD0hzmlv3S1AcJkUY6j1ZMewN+3sa/JzyOVyQnst8y2kRD6fx1PPPoctCiOYteHF+uhHWFfYOGIKP80RVBFyySyC/d1iTjcVAfKn2QcAN5nItEEfbQlK63YxhDAJ8jwK5X9S+H1lZSW/IR08nELJTrvoYv+dIm3KZWdkin525R39GXRkRrGz31pbBeijPf9oSkF2aBAv7O9FN2H+7NjnoI0YyZT8bAs92ngkKObXkr1cFa2WI4E0f7OhycnZZvvsIUeKxGOydGgMtXRvj0BUwmTnxvXoVcz5kZERX3opoB7XUxW6rrn4CXyMb63zwOPLAcNQQpsLOcPdEbWD21R7RxtqFPpYEo0WHVGTZTjrbAbxSoc1bmJiAmMjHgyTUkSNUz6T1Z2FgZkcvmYNwnYSmwExn6ajQI4aG7OjuTzYlB7JZHhEoKS0FOXl5cJUOOzE0zjuv6w8jgsuuMDzGrqIEBOe9zJ5B5/2mmUxZ/FPp9NEGVdBH9UdkDdW2QsHAOOS4ccVEXLXydIwZiTUMCFAzeiZamjim6Gqe+FIibLf7PpB6eFP5REHpDaoUtsnsD7SHDV/hpquY/SZ9Hd3wTRNPHLnb/n4/P1vb8XOnXrDifWnGKFjgxkw1GDs79GTHAAic6twXAOtMU1TqJt3/Nnn8/pxgMW8ecL7xDnW3d2tNUB3bnTyIuYsLVy8FlCX3Vi6dKnrmBNRE38wGl1tKxIqPlUptPHmydWYk56SGSSIkUmfw2CBiJosIxOyVWdiiBit5R45agBQTyJqv7zqq3jrNbeHffsGfyQCpmni6b09eLlNLERPJd3TzT3+8WQl5i1fyT/r3L9X3a79f8yD9dGPsMgYW9u4oUaMWVVEbWd/Brv6nbWWMmQ2eLAyetVS404TyWCTa+B5EWaphK3LMiLDMAyc0FLN85O9JJ4oTCbCRFae2dhljI21ZaJD7j0f/QROOv8iHHX6Wfjg5V8r2BcqOdMa6yxHTRVRGxoa4oY1gxAbhmHNP7IvsKghZX0cHhrEwOgE1nU459HcyZYZM7Coutyl8HtFK9c0JHHcDDGfyhVRk506ZNZkhwa5Ey8ajeL8lU6dMKY8G4aB93/mcm0ftEyOJOWFys5N69HbqWYdL7TvMZnGFDXeRkbDtAr4QxEVE1V22tUcL9AU+5hNw4PbTHuHG2pyRI2ycBWbowZYk5pJWXk5oiRqk9UkNJumKUzYOXPm8IWOeo6WHn40Uo2ON+foo50Il2FYyj3v+/79eGJPN3b0Fa4fw4QqojU1tTAMQ5gM0fJyXHndTTjq9LNw1Y23IB7XQ1wAWkvM7qP0uQyfmA5hbdHnThVlNZmIWrwjalabw6S9WCzGF0d5EVEWNuVsne6IWqqxSascUzm8MYn3zHVDJ2Xjyu8zVi1+AclgpPTEvT3+66gpr6c5Ho3FOMnK2OgI2lt346n7/ls4Z+PGjdp2rf74W5od9jRnfjLFgxoig329WuPANIEBTcI4VbTot3dtWo9927fy9+dIFNmGYeCL/3YDDj3+JH6sq6tLeVemaWIfyW2atchtbLHv0WeuMtTmz5/vOhYidNxUKGHSnt27FT1zhMLXpsO5WYhPRqDnNy1YbkYVUTMMF/NcMYbaKIuosWuhuIgai2gxefxPv3edc+9vbsLYmHeNwM7MKO7f5t6z5Hkg1strEGDGMhmOLF6sj36ER/wDxRlqm7qHsK5jgH+/nzBD1tWJji7qwIqWeUAfuSJrR3nt4zSPsbQshlDIzSrnR4LSXDEAVEUjWFztvW8CDtEG4COiJsBAK/l9LKwux3kL6l2IlXCkBJ+/5jp85YZfuQpyFxJGKsKhh/azppFLWjOWuTACBlzzL5G0I2rkXlVspJSNdsWCuViSirv2U/lZU6kti6A0FPTIURtw7xXkLTUUm5ubBb2Avq6boa4BBuihj1Tvo+Vzdm3egN5OZy5TGPuuXbu01xFFBvdOTUZHhjE+ZtXwi0QikyrPoYsqe33XrZP40xtlBu6DPKD2zjbU5IhastiIGoe7WC8o9DFaHnd5i1TS393FIwWJiiQqKyu5UkO9cuFIBF+94WbMX7EKZ3z4Ehy3ltKYGgKZSEfbAfRmR/FGp8abr5i8NDcipSkHsHrtyfjKDb/CYcefqPycitN1taXmeOWmz1Rjk5M+93Q6DdPW6rzo+WWRJwZd3JlncEQy1Hg/5H553GNSlaNW38SNdC/ITCISUiZWyyx9U8lL4Eaf3UZCG1FzaI4LFaNl4tWrCsKI99DttwjPGgBaW1vlrwjid11mc03IUbMVPMrwle7rxZiWtt1Euk8N/WOOgq29QxgiOaGvP/s0f33Me9/ngjYzoYr073//e6WxOETy48rK49oC9YC48anKbsydO9d1LGSoN8faJqcEya5du7XXHMvlcd/WdgyMWvc/HXtmIWNK/jQPkcyAQh8pdGskm8GEAvuoM9JHpDFhmqLCGSuQo0YL5uqkp6MdDzzwgOc5L7X1CcYrL+cgdZsaatX1DcK+0athfmRtjU3RUGNRTgdK6zbUVPlzvB/29yk81Av6SHPUWETNNE3s6Mu4x4/pXrto5MWvsOvLETX+uY+lmMIBi42oMQkFjCmt+yo5tC6BY5qreCFs7hjVQEzzrMagfaZIJmLNC+qo7FNEkXra3LBD2Yka9ihfoWJPjpFSO5kC0EfKOtzU1CS0Q19TmLwsOjKRDhLBXrrmSL5uZwfT2PDqy/yzhYc6UPbdBRxiTKbTTLPWNBFiO5mxpY2oeTQ12RHsjqgd3JbaO9pQc0XUpBy1QvAa9uOzDZJG1KKxcmEBG7Y9etmhQfzyqq/hy+eegvtu/TkOEDa55pmz7PbsDU1a7OcdshI//sODuOyqa0Q2QFibEkvKnhgf96xHI2Kwrf/UUKu2I4uTCVXzPsnGgvQ5jxhNJ/SRtR0K8YiMaZoYtZV8r4LXssj1OcTFfRC5XM7lYeZkIjKGXhVRs4/JRazjyUqUlpWR56N/QDoDkP9uRT5c1dny70gjan29PUJ9Lw599M36qO9fBZmLzzxwj+vzPXvUsBEuPtdldpqQo2Yr7uFICVfi87kc+jyUpgEP6ON4Lo8NXYO8WC0A7N2+hb+WWR6pUOrye+65RwmlpMp3jaZYtUrkJPhYeblL8QWgHYuU2faVTVuhk95hMRo0mU1zPJ/Hs3udZ+zFzAhIZCKwxmZWQyYSDIV4LaR8Pi9EygsJz58i16NRjkIRtcraOsyYv1D5GYVFbtiwwbOdsZz4PHKax9Ox13FwVNc1CKyzch1AJqypUUKWMxnoI3tEbDyx7Y1GdlRkKkxYPiCFPsoRNSoq6OO+wRG80Zl2nAYSRIzmMZYVQI14iZxH5UdW1iZw9rw6ARHiVVoA0MPR5DyyqRRN520GAqiLuRn4SsvEHDUmeb4f2jnwZF9g8E6B4VeqVZkdGuRzNhwpQbVdQFzWS7zqDKpuW3S6qqCPjlDHgbU2qiNq81esFhAGrM+sDVWR+bZdDoyxbsZMoSA6dUbMXLiEv6YlcbxEVXZiKkLHmQoO7Ge463PU9KLTcQoZiuxjXt/y4LbT3tmGmhxRK4mW8WjM+Ph4wUnBce32KJggOUtl5eVc4QMcI+HB227GX/77/2H3W5vwu2uvxlUfez8/Z5btzWabvxelr0jbbv1PkcRn3aYrdJyIDH0Epje3SZ5wOi/9VIS2ReuzDLIImIqeX/Hdc+bXoVrC9pdJi/uYxIAWCAS06qfSULP/N88VoWZs42IbvResQ7dWBSRY6XQYw6yJcKSEK0ATExN8IzVB6PmnIaKWrHYiaqpNrlBE7em9Pdjvox4WW8DFiJqj4FFDqatTTepgQqRwpjIwMKAcF5TNTB4DVFokJf6Zp59ynUPhOTX1IvmBV3R32REiQdCq1YcpN0DdOkQVk1279ZAcFyvnJDbN9qFRdGYdg6+YiJppWu8zCpIbrmwSp1omoyDUKNA/7sE2TRH6WCBHDQC+9OMblMcpSYFfEgEmrCi8/Jj2vLWJv26Zv1BiWNVE1Oz/hVgfCwkzZp38ZOs/RbKooipMhsas6KU39NF5raqnOV6ANY/mMcbKizfU2PV1hprXmhcMGAgHAygrEw21sVzexXzJPyeRDjmiBji6yWQMx4JiN6mNqDGoK8tRI46ShO3AqKpzcgzlWn70fXV9AwzJwGfiaagpAD1UN1BF1Ohkl52OtB3aj2AwiK/97FbOhHvUGWejrmUm/7y91e1YpHD1GXPnuxxn/DOyB/g11KZTTIhrmorJ2V+OWvHXdg9b2/gvdC0JInmQ22nvbENNpOe3FvVimB/Z2smUBlpMNVoeFzx6LAfmzRf+pm3v2JNOAeAsrmENxTYAV0QNEPPUvPINVIOWRuBq6ixDTQff8OOdkHOb3NDHv0NEjbSlyqXk3VgAACAASURBVA9URtQgwnDoMSoy6yNlkOSwR5ajJn034LGslFckkaxxohi1zZbyGwq4++VX3PkR/trwjN6RzwTyBZabZdKImk96frvJUMBAJGBwZkkAqKj2LqZeKKKWHc/hxQPe+R2AE91R5agBIvxRLmDN2zCBtAaylU676Z/z+Tz273LTTqvkqNPPEt4/+/QzrnOoQpOSImryFKZvlx5+NFcOSqJRfOf7Vyv7oFPyapucvIxOD6ZZmXBjMpumDDEsaKgJH5swTROD/Y6S49Q9tO6Nwh8ziiiGX4+sCZG5sBD0EQDmLF2OGx973nV8yZoj+eviDTUW6RY7vustJ7dz5qKlwjzTwXdZE2OjU4U+WsIjavZ7WiOUUqFruiFE3VyGGnlNy7Toykc4Brb1n0bUYpOAPjJxk4n4/25ZuWj4PLi9Q5tvTuuo0bWWXZ/dVzF13PyKyskhRNQ4mYj1nho9zFCrrnUMNVqKBRB1mOr6RuVeDeiLHlt9dOsZNKKW7nETNNE5I+9lAvRR2ldnL16GH955Hz75ze/jM9/7N9TPoIaa6MgyTRP7djiG2sx5C5WGWnkigWpqzPaokRuyTDf0MaMZZ0z8jK7JlIzQfVKQTETSO9+NqB3E8p73vAdf+tKXcMHFH0fjLIsWfzLMj3nToj2mG3xpWUzwNI1kM5gYH8eO9W9o2znx9PfY7RXnBWMDnSppPR4RNVPxeqCXQB/tvCnd9f2MefmrcktsI/HyhhUvzlVUFLwjZLPmxhXzgJJuqG5bZooaVVD98+ci37tHRA0A1p5jRVWTqRp87CvfBuAo2F6Gmu4T2Uieji2atkGNFwYNyZkmBscmkM/nBXavCh+KasgwcNb8ejSUO7Ca5rkLXOfVNjuGQWtrq9bLTKU7O4Yn93TzCIMspj13abSgJun81jSi1tGuVyIpVKWO9DOdTrt2ib3btnCoZUV1ij9PlcIRCofxlRtu5u93Kuq5UehjrVRAPSg7e8gPGY5EcM1dD+D7v7sH/37fX7Hm8MOV96bT8WqbnRy1rv179WQr06AuDEvGnhf0cWvvEDZ2OwqjCWZAuQvUszkiwtRVETXve8iZJoZtY5Iqz/EC0Ecm9S2zhAhlbXMLagh5VLGG2jg31BzZufFN7NliRdQCwSBmLVoiEXn0ITfhLnTL7n10mlgf2XBi6xTdc/u6OgumHHhF1KhESt0RNV3TDvSRRNQSk8lR83aw+VFKIyWlnEBidHQUE+Pj2pIUutpWPKJm35k2Z07bGz/idnIIETWwHDXrt88oCl6XJyt55HMkm0HrNgcS3tPu1INNNTS64GxMvEr8OHug851Gkk9GHRcqkQ1hXUSNybxDVuLMj12K8ook6ltm8+MHpPIufZ0d3HEcS1SgIpXCbIWhlqqtF+ZosdDH6bJQBuUyELL4GEiT0vQ07Ra6HNV9DLybo3ZQy8UXX4wbbrgB19xwI+YdYtEUJ4tgfnRy1EyJ3tuCwokRtQy6DuwTatFQ+frPf4MqWyn0A31UCc036DqgL3qt2ghpbZoaO09Fd30/g55FkXTrhEPRPH1DcHIRNUtUEUoqlJ0qk06rI2qa77P3y2oIlIZc76Nf/hauvfsR3PjYC3wTYf3xhj6qP3STiejbcLVp/6+PleCkmY63nbZRLtGZA8DrHQPY0DWITHqAF+VMJBIIh30UpVQYlMeddZ7r/MNPPoPfc1tbG0ZGRwvez3P7etE3Mo7MmJoIJA9TgLHGYjEsIMxsdE7t00SNTIisj5QBTAV93PiSEz1ZsuYofk/VUXdtOwCoaXQMolZFJJF6nuUcNT6HNdHecCSCpWuORMPM2R7eS/Un8WQVL9kxnBkSaOmpaHgbipJiImqyUmuaVoRVaajZ7+W1WpZCfd4zMIz/2dGJ4dExvt4YhsEL+p42uwaHN3obbV++/ldcaT3+nPMFoqFiy8WooI8vPf4of33U6WciFk8gGAoJBadVZB6siSnXUWNjUCJKKi1zUg4mxse04wgARoezfB2PRCIuaDXNzYuUlvLXWU3eocP66EbFlE8mojYF5xitnUkdB6PDWe2Oq8sdYnsA1yU05FRTykO3/8sFr5nkye+dzWR4WYhoNIqSkgj/bOWxJ/Dv/Opf/4XrJyL0sdFFEMEk4qFDqO5u7lKn1FHr1rdcOal0zugKirO+e0nLAgeyuIPUuQTEUhj1M2YiYBiob5klGL0AkKqrE+anf+ij21EzWTGBgiUrfEXUJuEskKOWMptjoe8ZMHBYQxLN8eIdS/9I8o421JjQn7yYiBqFPopsUZZSL7OJde5T59UsPfxorDnpdO710pGJFLoHCn30iqiphCZo19hQFF1EzU+kj53CE4rt46WhAFoSUTSUO5vomoYkZla4J9LymgQv6u1HaK8oDp1FeCjzpmyoFbqnWDzBF4lMul8oNMoMNbYougw1w8D5CxuwoMoZD4JnLhDAnKXLudJL+6Nb3LzE2XxFg43JmobCXv7SUADJUsfI0kXU0raBMp43sWXdK7j5+9/kn9UoinlTkSN+dPFNpmrwuR/+u9OfsjK89+JPotKGypimida93vUCAUeh121Ypqkw4MnN0vqE+/ap60wBJgbIBkoNq2w261Lyd25yap4tXrUG9bESHNlYqVWaaORqb2ury9HS0+HM9VqpQK9MKuAp0qnHNFfh5Fl6CKphGAKhSFeB+o1MJqM8yAV8C5GJUNnZn8XLbf0FImpkrZ5EjhqTtm4nspqsrOSRkfJIqKCyMO+QFbjhoafxnVvuxAc+c4VgqE02okaFjrvVJ5zKXyeq3PNZEAZ9nGJEjfVIZpIFxFwlLxhtP4E91tbWupTlPLlvP9BHh7nZ+k/38fJJRdTs/1OEMdA8WeoUlEWXO8SeC1srAsQIpDIVRKQqGi3mqDm/RdqVH+pc+Nx/+hzv7+ZXX8KODRbqiObZV9c3aPdqXbTQ6qOILgEspytDUOUmJvAWqUEJiHN9SOo3HW+Fnt2CFQ6j67Y3XhPW7S5iqNU0zYABSw+YtVgsrVJTN8mImvR/qqKD2BYjXikgOpHnEdeJCzRlkBczElFBlzkY5V1DDeJvXkyOGpO8aSrZouQcNboBLVy5Gs1z56O6vgGf/Nb3ATgLUL1txFRF1YOLQsT4PRhAJcl1UlW8Z6LMUaMbYIEcNT+GGtsQqFcNAMpCQRzWkBTanpGIYkWte1OMl4Q4FbAfoZsQhayxosk0mVn2xNJ7kjf/oGFB0JgyYZqmkGPk5KhNX3jdiah5bULq4ywKxw0hHr00cN6Ces8C3CqoCG0DEHPUmPd7OJPBDy79MJ57+H7+WUFDTX4l3c/J7/8Qrn/wKZx72edx9R33oU6Cg7UqErR1ooNJmiYwLBlqtBu0duHeVk1BYBNIk/wn6jDJZDKu+dZG6Jqb585HZWkYjfFS7e8ZT1bxSMvQ4KAr4iCQiZBrA25nTzH5ACXBACpKvDc4WkZBqeRDFcEvfp7I3WYGeN40cWBwxBMu156xIkGeETViqKmgj7m8iT6ZFMUWq2iudf0uYqhVKIh0QgEDC0nRY3mJrWlsxspjT0A4EkFpWRlCdkR6dHQUIyNqNIZKWIkB+lx2bXKYI2k5CMq6mCZMrkzYu6nWUYuFLYiaKjJC4WiUZEGWgQKwx4gNH64oCQkRtTf2deK5fe7xKY8auo9PJqJmSP/l476+a4jGz4giwgtYkG1mWBqGoYSZO/uv9b+YYtF+pVBEzTRNwVCrqKgQnseClatx7Jnn8vcs8kup+VP1jULEkYofh7Z8BkNQAcDG11/Tfo8a7rKBUujZNc2Zx5E4/d1d3AAFgOu/+gX+urapmf9Acp5aqrYO5eR37e3V1/OcbunMjGJvetjKUfModg2o9xX5yKTqqEnvwz7r705n2sc/grxrqEGMhBQTUUuPTeDB7R1oHRgW8NeMLUrOUaMRteVHH4/rH3wKv3rqVcyy6VeZ8dKSiOJ98+uVStJxM6pweIOadUcoHqlgymOimueCp7LGO0fNz8LITpEVZJ2iqAplFzvJaL+o0drX1Ymx0RFMjFuKViQSQam9iTteXv3V2Gc0h2QvwdLLOWp+aowUOsOP40j3mcz6SM8vSGvL/hvq44BYf4sp5/t3bnMpuCqqd89rKj6bMW8BLv7yt7hiSckPurv9JVYDehs6DxP5EXe+IRMaUdu2dQtUMjE+jiE76TwQCPCoH8AiauLFqaHWMHNOwU3FMAzUkihdDymGms/nheh5rQ76yNrSXEMlXtOcKd2C0W7ny+gUfd17Knk711EW+fdjELfN3UP43wN9AiOkcF4uh+ceeQivPfOE4LxyDDXrJlWlVKi81jGAJ/e4qeMf/t2tuOSIJfjOR89DPp+XoFJuiNA58+uxiEBrvSA8VjFux1goVPyYCns+3MgazvIiusFQSKj7JM7nHm0x8bGRqUEfj2+pxtFNTlFm6mFvnuMwn1KSBVn6uh3mVZWhFo+EcMqsFJak4kJELZsdRkdmVDsWeUSNOPPik4ioTUWok0yIqGlgm9m0aPwEg+5cLScvkDn+xM+nwgbJvqnLUWNiAkiTXDqZPREA1px0Gn/NIr8095bm37sLXhuYES/Fwipx7faSudRQWycaakKpDY9IUiE1KBAIYM1Jp/P3L/7lfwAAnRIyY9G8Ofx5uAy1ujqbadmab7lcTjCGdTId9PzP7uvFy239FuujJheSiepRyHvPdNRRYwR7MsLC9b3pZKn7B5B3DTU4i1nAMISIGjXUVF6M/YMjGMvl0TM8LkIfbYNJznugnsL6llmKyI3zPhhQb+HRUFAZ6TIg5VEN6g01Kias3APW/0AwiFSqmvdBJV5QAyZyjpqXMq6TYucaXQjkBPVsWk0Z79T2KdwuhXnt2bKZvy5UPFspBe5tOuqoyc/c3+KlMaTJYQH6aCu/HQpYr1/oYzEGLoWBdPf4pyrOa8wDC/ooGmq0Fy3zF/Koxob167F+/XrIQvPTklVVgtKfzYr5JcNDQzx6HQpHUN3gsJl5Ke2C44FQmP/up1dzkodUKoW45FVnZD2FWBIB9/P3+j1OnV2DhdXlIgOoHbEqaJh5dOXp1h78ZVdXQa8xgz4yAg85h43JA7+9CT+9/DL88FMf5cpGKBRyWB/tWywjVOwUIs2kR2MI3vrD7yCfz2Pzqy9h86svYVBSSFVCH2uhtZTWbyzGUHNyryzpIYx6VbX1CIZCSNhohUQliaj19brGCvstaERtMtDHaCjI0SKA+Bwo8yl1ZMhCx35TU5PynERJGIYh0vPz/DrN4GSHVUWZixHnnqYSU3M7eVUyqFCea8siPOoAOEyb+oiaj27pemu3pYuoMTEBof5jRUWF63E0kRIlbXt2wTRNN+uj5h6CAQNrGiuxtEZfTkFey+YtW8Ffb3x9nau/TFTOHSZRDxITJiuOOZ6/3m/XzJUh4p//6Af560WrRUInNgZpXrhf5kdLpif6pius7iXy2qaPqHk7q6iEbU+DjhzM3fb/DXnXUIMTog8aooLvOy/AED1xbNMvLRMXWxr6ptATJm5KX/9RJsMAyqmh5lGcl5KBmKYpwB4rqlII2545bUStKOijyftH/6v6P50iRtQ6kBmSNgpb2LMoNqK2e4tTj4htkrocNZUUOqeYPEBZ+KSWnnkx/XJH1IgRTOi0mddTlX8pb2zuaxUf7aGGWlcRG5bOAWcCGCWKUDweF2GelVVCPs/zz7tp1AcIpC5ZWSUoiDL0kdYrrKqtQzAY9JXXUkWidExZfe2ZJ/DnX/+SHz/55JNdawZTJsZz4jxUifyR1+YQMAwEDUNJLFOIPESfL+jACwsZe/K6omozn8/j0Ttvcx0/7rjjEInYZAb2sUJoBJWhu/X1V4X3Az1dYt0lHwpNwdzYxOQiarJHncJjq+rqcUxzFVbWWW0nJOijy1Cz/48OTy2iJvctYBhceaNrihdsnxqcOkMNsNYWVsQccBgrZSIsJ5fHeqViJixOit/I5lXGkIpGUBtjBBtSjprGUFMRPBw7oxpnz3fWCpNH1Cz5e0Afoxp6fqcTQJagLWRnGAA0tMzirzv3tSLd18vvuyQaRXlFktyD+F0/+ggzXtl8m71kGQK2nrNnxzYMKPQl0zSF+pgyQqShvBRHNXnna1GK/o69uwGAR7YBYO3Jp6ClpYWvY/UzZgrsxguXWRG2eJF5arKjZqpSGPro/o78u0xHlItF1FQ5uIIUo4wdBPKuoQYSUQsYQk0rIaLm8f1c3hQWTUYNTyEBHa27+WYZKS1VFrn1s+B4nRItd5TM4cwQ8gqqZUBUnPImMEAU3orqar4QTiWi5pCJ+BNVi37rf6lErM3jEVGz/3spTAwuQvOjqOeVG35FLA66e1tRm8CyVJxDyyYjMjOSH0OAdEzZP/rdVD2p12ezi6oKeq5atcrPpcAenJ/+xQkDVl8RxT/1OWqmkg2UypwljlNl2zY3LIsmnCcqKly04AKUhnjBeTTKx33LUF4AeO6h+4VzLrroIldTzFCbkBQ2P+IHJquKqLFnPTKRwyM7O5EeVed2yUJ/IbexJx5g0Bc2TlU/b/ueXQK7GpOLLrpIuAcAEk29aBC99dpLeOC2m13H/+sbVwjv+7s6hfxBbUSNvPYoAQVALDNSjKE2ODaBPQNZsKdKlcPq+gbUxUq4ki5HyPMaJWiqddSYOHBz4Ox59VhQFVOOo4nxcdfvTmttNTaKMF8qBsSIGo0GKnvDoI9kXU/4KC2iui7970cWVpfj+JZqoW5qoXIRgJ6an4r8U8pbt45p1o+wpvxAH7MZkSVZXltKomWorreIkPK5HF587GH+WU3TDBiG4exnsrHpQx9ZUVeBxdXlqLfz+0tKo0IJmI2b3xL6C1i5geNjo/x8FbtzQ3mpZ1SyjhigHXstIigaFZ43fwFvi8k3fnEbjlx7Er75zW9i6YpDAaBo5sfpgD4yyZuFyURUj8CPnggUcB7KRrndZiFDjRmq/0fstHcNNUBU1uPJSoRCFiRkYGCAs0V5DfhcXiITYTVCyOa/hXhfZ8xbiGDITZLhj+FPfY5hGAgEAkJOQ5ZEkXSSN02B8bGiuoZPMC3ro68cNaZAiRPG65slwQD38gJTi7JRxrR0bzcy5PcRImrEu6uT6jJrM6PQR+FatkJWlBNHc1I8EsKC6nJf3qdC3njHQBMNNl/f0RwHxHyB7vYD+NMvrsdf/3gHP7bksCNx8Ve+hQ984APe13JF7QqLwIClIa9QiReZiBf0EbBgykyooZY3TUzk8wKldzxRgdKoo8TK0EeqXLF78WNIyxFiAOjY70QxL/rYJ3DuuedCfoqlhSwBIq7fvMAPIhtqQxL0sTU9jOx4DkPjFixxsL8Pt179bfzp9l8r26M/kS7yIX+uy4UFRArskmgUZ37sUvzHddfj0ksvde7Bvkm5nhiTrgP78L1PfBC/+dF3cdu/fY8fHx3Ool2C6PV0tkssfFOPqJWRSJ/K66+Tnf1ZvNrulIageYxVtZZCzO5diKipoI+wopM0R62UEHVMVgzDQDBg8H2XyVB/Hza/+iI+ecxyXH7mWgHx0dfpL6IGiHXUxkZYRE0UU/pP9/HEZKCPPo5XlYaxUkGeRc+lkFddvjldS3RwNNnQpfvciTNTWFE3+Tw81hRFDg0NDSlyVE1kiTMsFospn9OshQ7j4U3/+i/89aJD19gXtP7JK5qqhM2JM6txaJ3zDEuCASxOxYX5RtfUh97cxuHUrPu0tmxCRUmvcWrSfiUqq/jzGc4MYbC/VyjqXs9Zep02WuYvxM/uuhs//OEPleuTf4p+f7K9L4N7trRp4ebj+byPHDX3M/AbQfM6S/6MR9Ry3iEA507+b5hq7xpqEHPUAoEAauvc8Eev2mE50xSMophNDZ/QbNQNM2crj/uKqBU4LhR6TqsNNXoneVOEYyVTNXwxmxrro9O+1UG1Nwz8YwNnzqvDnKSz6E9lisXJYpLu60Umrc4d4Ua6h/G5srYCq+oqBOgjFcdQ82+q6c4oJrm7eBYl/23L3aiNlaA0FLA2n6pqhCOWZzI7mMbvb/gJPy8cKcG3b7kD5176eWVyu+c1ffSvnPx2fb0i+6Fpmvjjz6/Dz75xhVAUF9BDH/MwMZIVYTlyNxpmzuGvt2932D7/trcXf97WwetmAUCsvNwNfSTXphEXdi9+asNQgpJe2yNL4aaXfvFyy+ssNSHnUXhuntJHheiUDcM7ojYk1a676bv/gof/36/xb1//Mu69915XeyIk2/PSrtxXejqbF91tTi3Jo047C5/85vdx+eVfUo5L0VBzFOMbv3Ulz2964p4/8OO7Nm/k9QKZ9LQdEJglk5W6HDXnucoFySNSsqyfiJpXPh8b9xTClUxZhDysF2KOmptMxDSB8VHRSAtMof4lp4y331vjSCQouu+WnyOTHsD+ndvxyWOW48+//iVyExMCkY5nRM0Q66hxI7NQjhrZx+urJ0FDzoyJgIEqSglOptIJM1OYUylGZ+RG4mSd09WV86rxxcQZoW7na2VpeFqgj8FQiMNMLYNejF5azLr6uqNMFhy6Wnl82eFHAXA7Hvn1yfvjZ1ThqKZKVJZGMDvpjvrSPZPqZ4N9vRiX5jOF4CarvcqUqI+HAgEYhojSSvf1CvncdfX1yjZkh2mxhhobz+2ZUdyzpU3rqASANzvTwndkGZuQSZL8FbyeDuNC3hNTZRGUBANYWO3NC1AeDqE0GMAhHnmLB5O8a6iBRlWs/xSL3NnZKZzDZGign284E3kTmTQlE7E213iRhloxkELXcft/rKIwoQjd2POmiQFS7LqiOsUXPp3h6CeJli2meSmi9naJxZRkbQj5XE5Q2gRIkt0/lYHEce0BA1XRMFINjUpFlxtqkvLoR2RvYDF10/RGr/Qf4n/vNtXHo6Eg3ju3DotTFryWwkCpHH7KGQLbmve1RAPFj85AN6z+PlGBee2ZJ3DXf16LJ+/9b9zwtS+4xrlKTFOkv47H467nVEM89/v2OYngPcMWwURWKpLrgj6StgaFiJq14fn5fehm39/VgfGxUQ4DMwwDDc0zlG2USBE1r2vIhpkvKKoHmUhmfEL47IVHH+Tvr776aldbYkRN/5nYR8P+nPpQrWNdB5w5z8osyIope0vze5n3eP/O7Vj/wrPK69J8YyZ7tmzGLlKrbObMWXZ/9CIzo5XYhhpfz33kqHmhgBhEVHAkxsVIUQWto9bbq4xeTpXxUWzPEjr/S6JR7vyZGB/DK0/+RfjObT/5Pp645w++yESY0HWI5ajJpEL8nT1+aERt5UyxJqEfYb9bOGDghJkpHO6jZqWrDQOICUXI1b+7H+gjMxbZMjAV8hBZaFO0BqiKNZUe00XUVh1/kmtPS6ZqsObkM4TruXLUyIFUWYlQo1UWXQmfdG+PE1GzR8UAMdRoCQsmcmqBLEyfo/llbbt3Yd3fnuTvV6xcpWxDNlAma6gx8UMmpTslk8kgZ6fRRKNRZTRd9QymElFbkipHwFAUNw8GcOa8uoKQ3WDAwHvn1QnkRQezvGuowVHimLJOlY++PjeT2T03/RcuOXIprrr4/cgMphURtbirHSq0ZgyVKVHl2l+l1xyQogoqyZumkL+QrK4hxTHFc0MBAytqE0pPlSy8YLOsGBX8Jjl3it4+6jFjjEuAuKk5ETX390+cmcLqekepCUdKBLIZJq76NT66zU6pkhYcFYxjqlLMYyy0+TBpmDXHdSxSUorLrrqmiGvZ/yWD0kuoQt0veZpfeeIx/vrN5/+GA+Q39yITkeuoyRJPVnHmx3Q6jaxElz1ElLt4PC5E1KxznYtTRju6+QLevxOF8vZ1daLrwH5unFTXN6CkxF1bEXAbAl6lNWSYpOrUE1qqcYpdBNuQIGsymcjwuBNRa93q5IAAwP79lhGVy5vcmKA/0f7BEaFumYxoyE7ksKMv4xlRo+xqOseCymPNFOCHfner63ymcO7c6Gb/bN32Fja/+hJ/f9qJa7GiNoHTZuvZT+U1n7FXsgKtlI1SB33UMZoCDjumqs4nu3JciiyofOtTZXxUCXVQGIahdWwyefr+P3LPfjgc9iQrYsYfE9Z/r3Ugn88L+WCqumSFhI1lBtGabIpQhERSdRE1GvnVQR9X1ydx8swUQnZ/piOC5ojTFq1DKJOfmCaENTMWiykX+zlLDsFl3/2RsG9ffu3PuBHI9IFIMIBwwMDy2gSObKxEiQ/HMRPBUCPXGejr4XlPbP2iTgG6/jLRRfiYxG1WVUpU9OtrruJOj+Z5C7Bk2VLld2VnK0WS+II+uphbfXxFc5xCwZMah4DqCfh2Cij0zUXVcZy7oOH/HM3+ZOVdQw3gixiDnUyUOKF5laH26F23wTRNbHrlf3negrgRWotsKBwWJimTqUXUdOdYxyk8T5VID7ihj/S82qYZTg0vvjA6E2luZczXYt9YXoKFVTEcYmPxJzPdpjpF6ca/d/tW/prW36H5ibKUR0KYWWFvEnZvVAofi6iV2QQgET+wIPtysXAQ5y2o5/fqZayvrE1wJVklRzVVYllNHKM2frs0xArMFv8k9fXuLGlSOBt+9thzWueEV1uyweYlUaK4DkkMY1vfEFn4aDkMVUQtb5rIK8hEVMW+dSRDgEg9XR6PCzlqFPo4MT6Oh4nyz3PU7Mt5zSu53ASFPdY2tWifoTyeZGgdFRc9v2LcVEUjSNj1HQ2ICoRMtqHLzQOAjo4OjI6O4uEdHfjztnb0j4yjm1Dgr7PrljEaZvnn2zMwjDc609ywoZ+z2+imEbUGnaFmnay6j3XPPOE6v6+rw6Ljf+0l12dU5s2bh/r6esytjCEWcecjM5HXfIZWqLHzYmn+T0ZT+Ngzf9q0np9QPoYZAfalxRw1N5mIaYoRkXh8anAijjyQlNFCawc1ghsbGz3hlwZEkgtmgMnrAM1RG844+VXl5eU8V70Y4YZaUJ5L/sWAOlItXJMobQAAIABJREFUC1WgdRG1YMBARWnYgZtOo+JLmxJLEYmEIiZMDFJ4eCym3ZNO/+DH8JsXNuDutw7g7rcOYPlRxznXs/8HDANnz6/HvMoYGuPFRUxE6KMz7gf7el21uaheVEfqWModku9kQVUMZ86tQ7mtD1AnEF23P/CZy12ldKSmudA2/NDzy0uCF/TR+Y76HD8QW9XP6dtOs/9PrxPh/5a8a6gBWFRdjuU1CbRUWB44GqrmhhoZ6LS+x3MP349cLidAHylcReUl1BpqRURiXMftD2qbHGpXVW0rQGZ9NNG13/E81za3CArb+QsbsLi6+I3ZMAwsrUk4UJ5JzMGpTlvqMdunM9Q47LXA1eyPVYQizFA7pCaBIxqTSJUVZtKitbMMw3CY0DyM9TmVMW58qaShvBQLqsoxu6IMcyvLMCfJPJEFu+NbWL8bZ89zfUYp5H02Zv3jHdR3lBkcZYKhJuZgdu4X69O079nNX7sUNNPEfVvb0ZUdQzYjRdQU3aCG0oEDB4TPMkQJKU/EtdBHajgC4Cxn7JnqmD4NANHycq4MjY+NChEdSucsdz0YMHDyzBTOmGNFdVTjfGZFFO+Z6/YY+/GIxhJJ/vtl0gPI/X/svXecJEd99/+pyWEn7M7mfHu3l3RROgWUM5KQhCSMAYMQQgIRbGwMtgEHBEYYbANOPwcwfqwX2PjBPDZgnH6I+BAMSEISkg6ddKeLuru9293bnLefP6aru6q6e6Znpme2Z/b7fr32tTM9Haqrq6vqW9+0vGw74M9MWCebJ06cMFaxv3nkLP7nJes+B8dn8dLUvONqL0/sLD5fbsI5Kpg7t9lNtGC+G8l01tCazkxOYPTUS7YLXeMjp/HYtx/B6WNHAOS1yK/7td+y7Ld7927LNjvUAfiy3hZc1ttivOeiSZldRD2g8CRsWXe7Ec1zs7qmiD/eaCxuXGd5aQlTim8zF2I4lQpqTtgJauFIFKGwtT8tZvYIJi/q8IVUiwmYZmpRbCP5lsiivrAQrsCHjzE5yp+ToHZOCLJSLGdlezKvcc/GShc+nRC7h0J536YXVzA6aba/fNTHMq7nwTgm9n/i3GxiVFgU0reJGvmOXuu477Q4Fg0G8ibnXBuWsZq/RuNxvOzlt5rmv8o51ABgqRKjPqq4EdT2n53Gqel5y3ZJc+ug9a4kmAiHhBFnqG6Qn8xsakkaA7yoBeMvBW/my0tyqOn52Vkc+fkzkuljoskU1MTIQkB+MLJ7cQF3DbuwPg1oFzqU08fcaNQ0nBU6pPYe+wlN4au7wf2xRsLOCjtmceAXJxqiDyKfVLqNoGg34evSIzcFAww9KZf+Wfx/EQ2I5TgXddISj2B3e8a6WldCfTruqv+w7+rrpc12CdyLX0MuX6HDua9VXDBNnJ6akpLxziqC27OP/o/xWTV5EidsxXzUAPk95ho13k7nZkTTxzRC4bCRo2d5eRkLC3lN0ZQSpXLfNfn8bMZg7KB54W1CFBZ//tOfGJ87+vqFust/GMjEcc1AKwIsv6KeCDtP0FpiEVd+pyoMQDAYtOYgs5kTzNpErjvm0D+JPHN2ylaA49jlC2IMaI2FcFaIdChGKhUxNNnBoKR1+x8hPLhU5oMHcOjJR43v19z1Gtzw6tdLgSsAYMcOa55M2+srjT4eDqIjGTWFKEU7a0chHzXezsX8YLkW7hspTFqFYB5nBQGAIyYBT5eVX8zEDJ3NJ6lML4NVULv05tvw5t/+sGV7oUAi+XMDiSZRo5bvK3g+Qc65hWXsPzsFQI7cXK6gtrzCTR91C4xEBAGWz5VWCm40aqLfdX9/v+0+xu/pOG7d1GFow71G1l7K7XR+ZQULc0p4/qqUojhNQh8r9gmnjx81Q77r/86IlkYOCz12xBVLFrv53qadexEKh4V6cNDAlhn1UZXLVorLaXhhfAY/OGFta1JuSIcASXbwadzmliQu63U2azbHf9KoOUGCmghfAclaNWpGnhWbkPeHnv2ZrQ8AYJ3Q2uVPG3Lh82UU0aEt882itu7AU49bIpPlMd/a2alJIxllLJGQEtiq16yNmAaEFYf6UkhFzAlnJme/yminUXOb86Ozf0D6ns1mK1phLllQK+caZZk+Fr5+c3sH3vunnzG2v+zlt5Z9DTfti2tm8yvs+cnG8tKSkedGjfIIAI99+xEjIbe6oihObov5qAGykGQKavkyScFEmvKpFcSJy5Q+SRYnXBffcLMR7MDwQ3AS1AJcUDOFxed+app5tvf2Qw3IEg4E0BxzNylzfNYutcxy0usxPDkyiZ+NTErCkxh1lSMGZimGGJhExJhbSYFjgJnRM1jWHeDTLTlJ4LG7B0Be5HryB9+13f25x3+CqdOmALh59/nI5Frxunf9prTf5Zdf7ngvIrzbycUjuLjbOglSQ5/bUSjq44re/4tttJWPb8K9i+aPo2dlQU3TNCmyacWCmhJ0yViosBl70s05KScmp6hGDfm+gvturiwvY3Fh3tCacKYWl7F/dBormjy2lyuo8ciBfAyLhYK4Y3OXxRe5EAyyL65dUDBN03Ds+eeM78UENcYYIsFicVxLw8n0UdWoMTApBUoy6c59wnI9D0rfl4phqx4xUIwVcPLwi5hfzC/C84UEPnYAQJvNArZT2hvT5SCPnaC24+JL9XPA9hzqdvHdKCeYiBuNmhNTkomtg0bN5tHw59UcC6Mjae9DLeJloJtGgwQ1AePFEjrJs7o9MG/ms4pfDAAcfPopqTMVo2pdc+drpH0v0iMYiezpyOCuLW4jTNm3Zv6ibNi2w3ipR0+fwte//nXLvuI7OyUl4G2xnZx50UGWcgbu46XajLvhqv5WIxeb3QAPuPdRE+G/9g9vlbYXGyAdz6efUB067Tqrm4bazAAO5TyLsg4pftDLXv4KfPQLX8U7HvoEfuHtv1Z0f6dimf+drxkxTGhlIWhOn0CKjt8cTdOw/9EfASisUVMFNbtSiG2Jmz6GDI2aoJHTJ7F2QSBEQc1uUhrRwwl3NcmDGm8TzUIZRP+Ujt4+m7p0T7lvN39eag6sUzMLeH58BrNCMJGZCaugxlOfuGHRYUmYCymqlcCokBg51+Fskiu2uY5ecxHmmR//wPi894prjM8HnnwcxwWTWm52evub34YH//6fcfENN+NXfu8juO666wrfEL8+f7axsKSN59uLCWr/8txJfO+488SNV5uobe5rzwtl4nMXBbWzZ6yLHt5q1HSUhmfnJpBuaZF8iThFNWp8EUFMVzM1ZUmUu7gwj/EzI1he9UajxhdVCvmCFodJi712cw7R1zUSiTgGE7Ge2UvMsxVK0L2iaRaNWjmB0yIeRNpijKFTFxqSqbSxALe8tIjDh/OBnngLEU3+Mi7rFzCDMhnvdpvVrHzXy/ILOU7WJOqdlp5HzXlhslRmJNNHB2swm22WFE0OGG4fpFFzhAQ1Ad5MkmmzMb7wUn4CyCcEqnkVAPzokf80wv8GAgHEhE4rk2vFfb/9+wDyqzJX3/lq47e2RARbWkoziXBqynzCEQyFcPENtxjbH3rooYLnE1/CpMMA7MXrwwcwNys7uUReE1DOixsJBpDRzTuabQS19s5OyZ5fTc3gBC9K36Yt0vbeXvcmEYXOa363FiQRDpkBHGojp7lmy959uO5Vr5N8adyimjwUNH0UJj6S74k+gRw/M2J73Kfe8w6MnnrJqlETRo85xUfNNgWDMNgeP/GSVN45KeG1LqgJE0QebGRKyqFmCjfi9YZbmoz2y7EzfRRp7+0v6SG3KT6UZQtq+oFi6OpzZ61mc4C8IMQ5fdoqXJcKF7jFycCqJmuQeH/eabOqK95776bNxmdRA3DB1dcjqAeWOHX0MH7+zNPGbx195kLNzksuw2/++Wfx2re83bUZD1+osayo61vE98rJ9HFmacV2O2d5acmINBcMBrGr1zpxzDSLgpqiUUN1fNTUSaqtRq0lZyvAFdeo5U+azpjv4dz0lGT6OHLiON544Tbcf8Ue/Ovn/s4TH7XzOzLY05FGNlq+Lxhj+WTdpuXAopHLj/MfnzeTxjc3N7s3G/NwMBBPJWnUlHa6smojqJWhPnGyOCgVsa56N5kWTk8/qafc0PIaWK4ZVBcHOU63oEbP3XvltZZ9Nu7YYymLXRmNOWlGdscppEUHrKaPlWjUxITrbhcEALPsxcuqm0KTnOYICWoCdlngz43nJxi8qc3YrG5NCDb96XTa8vLdcvd9+Otv/hh/8bVvSauDGzIJnNdW2uqks5mS+fmO+99hfH78cav5o2SSJGoC0/arJaUIWU5w7YMbLdnOtjSu6GsxQlSXi93E9jVvvFdJeOvOR413O/GmJmzaucfY6jZogP3ZTK4ZyLlKzlhOX1bWMU7trIxzFbuIGy2Q6L8l+Z7oE/ITL5qJqHnyVc7fPPg+PD8+o/ui5JE0ajNKwmsbpGAiJ09iVIhQKJqFpfTjxRXxSa5RE3zU0oJPULE6NUwf260TbJ4ywqJRK3DSy3tbcOsm837K9Q3gR4l1I6b6ELHzszlVhqD22LcfwVuvvgCf/PW3QdOE0P7C89SgSc80nkxia64Jl9r4SYi3LkaYE+ka2ICeIXNCt7SYf/ZO6TpKqU7V/NfYrv93Y/pYjIkxc3xqaWkxoiXKGjWzbkYVM+J81EfvTB8364uTfOJtp5nltHX12OawKiaoGdYxokZtesqIgnngycfx9usuMkyn//0Ln8fMdOUatWgoiKFssiJ/G4b8Oylq5WcmJ6FpGsZHTmNueloKdPO2t72thHN714OLZ5KsHBTTxxVNw/ysmd4hmUw65mgthFcaF3HSO7xzr/H51++/B0tLS9AgL8gn0xnbCKNq8KehbALnd2aMKOJGkKhUGm/+gOlnecFV1yMciej7QPoPh+/RWNzwg11aWnJctOF4afo440JQszMDNXJcFjm/oVFbM89F/0OCmoDRuQudNA/VbJo+WjVqItlsFjcPtWN3uzyYtXX3IpctPd/WNQM56VxumnJn/6ARNWpmZsbIWaRpGp4fmzbCtwOyRq2jtQUDGWswDD5RdJM00YlQCecIMIa2RHGbZid4HdmZPp63SxasDNPHElb43vMnn8Ytd9+HNz7wDrz3ve+tqJR88GmORTDcYi8kVEopkwZeH45HVGFF1mmyKtIUCeKGwTYkw0FFo5afQD77EzNwyLWvks2NH/v2IwCA/aPmZFO0pJstMZjIkeMn8J1jo5hYyPtASRo13ey5FNPHYoM0byN2UTUzuRwCgYBQl8UfEGNMWg2u9JGK75mdCSoAnLbxRyvF9BHIa7k++rY3YvTUSXz/P76KA088ZsnBpmla3kdNeCbxppQr/4e+TZul58Zp7erB4Nbtlu3tPb22E7hS6tMI+KOmRtC/utGoiTz27Ufw7tuvwz988g8M4XV8xNQ288BH4jUAxfTRRis666HpY08qjru2dAnmzNYyAPlUMedddCkSqbSlnouZPnKaUrL2nQ99n/+EnO/xhWee8kSj5iUJyWxzEp//xEO4/8q9eMO+zVhdyWtRW1tb8eCDD7o+p5dTYVFwqqZGbTATN9wZvEBs95v1hNOc//zP/4QGWYskPgeRkNImk+EgBjPm+ype58bX3o0rb7sLG8/bhdf+6m8Y2wPqIKh8FTeLkUDdhOgXqWTu5iYNBC+m+FhLNX0kjZozJKjZICU/1V9YPuiJ0bMuu+V2KQQ8kO844+GgkVNL5KKuZuxoNQcON+2yORZBuwuhRVwpY4yhZ8h0lN2/fz8AYGJhGT87M4WfCFHUxA5poKMNF3RatWp89asSO+dwBX5n5ZLr6jbMRzi9SjAQI5hICdEW23t6cd9v/z5++6GPl2QKYHveUvcvywm7FLgZgoNJRhVWZMVUBc77MqSiIQSUlWYecfHg008Z215x9/2W4+cUbcSqpFErLZjIWUUYkX3U8mVLFjF9TDWLpo+2l0QuHkFfOm4M/h29Vn/IK297lX4OZaAv8pyk38t8pPywrFA3j37L6hO7sryM0zah7ks1fXzie9+Wvv/u3XeZAQDkgG2SBijR1ORqtZYxZjGXDoZC6OgbwIat1sS0ds9DP1PRaxXbkz9PMSefG43a333093D0wH78y6f/HN/61y8CAM6dtRfUxKtnWsz8jGcVM2INmvT+VCqoqfBSnHfRywyfv0QqjXd+9FP5yHiMWaxCNm605nGUzsmFv7Tso8YnrEcP7Lccc0bIu7eWghqvD7GfGzlxHF97+DOWfd/xK79So1JZESflxXzUxAAjpQpqwy1NGMqW5iJSCFHA3H3ZVdJvjz/+OADNkm7JTWmtfbBJOBLFr/7RX+AP/89/YWj7Tste1sU6q66tFD81i0bNLqacS0RfPcc8ajpiHfB7cGumST5qzhQV1BhjMcbYjxljTzLGnmGMfUjfvoEx9iPG2POMsf/NGHMf1sinGA7IggngtJL/R1pZbM5h58vk6F7c/8muyUVDAWzOiRNBdw1TbL/ONs3y966BIePzkSNHAIiaMXM/0fTR6SUMeRCOpxTTx0rhdRSNxbHzEvn59CrBP4xQ0UVu0e7nyvqVGtplM+lfKYdUFUvUx0IXFe4hoWjUFuZmjfc0FA6jc2ADLrzu5dLhak6sFb0drqysYF5Y7U0kErblELXsM1OTZhALTZPD8+uCmmj6eOCl/MRX1qgVCFfMtSnBAC7syhrJczfusJrZcjNndVgv2p490Kjx90zUqB19/uc4cegFab/RUyexsmL1oxoZsfcrdOKFnz0hfV9ZXsY3v/ovAIBVcF81vqBmPpNYsslxErC4Is9gVFPG7g0bEY5EMLjNRlDrsxfUyjF9VGdWfGAW/Z2LCWpT42M4dfSw8f0H//VvAGT/zc5O+8AqmZwoqFlNH2clrbG3edR4FURjcfzZf3wXf/il/8Lf/t+fGpHxAOBN73vQ+Py2t71NMV93Pqdq+riqaViYn7M1xX3hqZ8an3M5q7llzdAbhajJ+d6/f9mSGiiZzuDdv/6eck7tCeJcpJBGbXl1VepjSw0m4vVYJF46Eo3hnQ990vj+xBNPQNPkeVGT4hJyQWfGNtx8OeXk8yKLoGYzZqdKEdRUH7WiBojOuEl4bQhbwjaeTzZdxF+Tz8Eo6qMzbjRqCwCu1TRtN4A9AG5ijF0C4OMAPqVp2jCAcQD3Va+YtcFw4E4mDefxxfl5LCwsGA1RNI9IpNKWBMitra38ZDbnL/zduVyl75MRBpoz+sBrt7Ihmj5ms/Y+al4Kaiu1ENSEzze+9m7jc9/wFqSVULlmqOhyNFXl14tpYljeObqb3JuG8iu4eo5FHo+b8XVzSxLbW91M5uRByoWcBkAOJjI3PYUxQcOVbWtHIBDAG9/7O9Lxn//kRzEmRALkE/rFOdl3ws6UDciviIYj+TpfXVkxggctLsxjRQ8DH4lEENP948RciuPn8ubTzqaPDj0Dk38PhcO49q7X6J8j+Otv/tjMYeamEq1XcLh+aagpR1TN1+njR43Pwzt2GZ/PjIw4pA+x5+AzT1q2feXv/hqA+R7z7kVMQp5IphzbLTcD5xHl1MAV/cP54EF2po8dfQOWbUB5EzY1STgvbygcMcaipaUlLC4uqocaHNr/tPR99GQ+6M3//dq/GtvcmD6K4fmnF5exqmmSf6XnQoxQkHAkgo07dhmpKzg3v/5e3HrPW3Hznb+AD33oQ65PLZo+zk3nNWqjp07a7nvoWTOJfLEE0tWE14YY3EssG2fvFdcgHneXt9M8t3ezYVmj5uyjtrCwYJhqBoNBRCIRVxo1vkcl/lX255WvvWG7mfPwsaeexv7RaUk4UU0fBzIJKdw873NU4dPNWOk0JtslTBfTRhWP/OgcPKtUJsdMM0un94LfxxZBEdGXjuOmoXa0FrEIUzVqYZLYLBQV1LQ8fNQL638agGsBfEnf/jCAO6pSwhpirkYzKYnr+Pi4GUxkUhTUUpYEyKZGrbik5npRqYx2Kw68hqBms9+0i9WSciI0qXB77mWPO91iXHTdTfjYF/8d937gw/idT3/eUuf9uk9eU8TdCm3xje4wfVNKP/bWTR24qLuwCYJISYIaP6aCe9vRljZy1bi5RinmnIzJwURmp6ckASyn+3F1b9iIl7/uHmP749/5Bv7oXW8xvnMTKLtodk6TmYQy6QPk1eO0YCIj7svNpcXJbiHTR1XmEh/bm97/Idz3Ox/Bhx7+otT3mPvar9CqSCYqZT5rflhn/6AkrB185ilpv0khmEVXXz+a9AnoysqKxWKhEMdfeN6ybfTUS9A0zViEMjRqoo9agbxNC8t5QS2qa2hGBKESAG55Q379Md2cQ65TTqHSO2TNiQmUqrl2sJDgixiMSWa0Rl5PG15UJvMjJ45i9PRJKdXAwIApXIpXtjN9nFtewf//4hmcW1jG1HjxyVq5uKmvUDiMe9//ID7+159Fu01QHes5dcE7rWrU4CioiayloMYRLQeOPf9z6bdgKIRXv+PdpZvOe1AujuSjJghq84rpo+hbmUzmA624CSZiZwHkBeowKPajZ0+fhKZZTR8LwfsedZ7kRih2mgcYIf6FbRWZPlZQh5Mu3v1ggOGuLV0WP3s7FyAn+L3aCanrHVc1whgLMsaeADAC4OsADgI4p2kaz0J6HIBtGCbG2FsZY48yxh49Y5OfxU/IjpvyS2EEExGSYiZTGYugxjVqdq9ouatZbo5TX3QxuqSpUbMe52q1hFX+4tRylUS90vCuvbj1jfejtcvaRDdkErhzc6eRpNL5pNbyV3JHJSpAJCLBQEn23HxS7sbcpJimz9OnaGgz9f825eMd/fyyqXmRNWrTUqTBZiHgBteGcA48+ZiRZJkPXPM2ya6d7lHUks3o/YBqEsabeULJ37SyvGys0uYXgsz+xel6doN4MpXGLW94M7aef5G0r6F1q6Gdv3ipd3zkE8bng0/Lmi9Rk5hpbkFzq9nPOIXzV5mfnbWNKDk9cQ4To2eFYCL5/6LpY6FgIlyjxidG1/3C64zfLrjqemw9/0Lj+6Dip9Y9tMn+pB48A/EUova1UBABVesyPzuLb/3L/za+B0MhvPrVr1YPy19D0CSO6dcQ3zk340S5VKXF6idVTR8B4IyNv6TKmmrU9LK3Cz6QojVM76bN+J3P/AN6Nw6X3tQ8rGxxDBJ91MQ+EQDmlGTX+WPVc1nPn9XTlHiQPk1CHWeS6YwRKXh+dhaz01OK6WMGuQIJy/lbot5DJcU2Qvw79ANOgtrC8goeefGM9O4C5QcTWZifM1KVhMNhV/6pezrSuLrfvdadl4yXMez1A28AXM3ANU1b0TRtD4BeABcB2Ga3m8Oxn9Y0bZ+mafv8sErlFtEuWcxbISafTKRSFrMfw/TRBgcDp6KUkzwz41KjJoZudlqp9NL0sSYUuJTlGTDmLlKe3TZPNGrVrxd+BS80o17iFO1pKGsGUNiqr9A166kaGBgSSVmjJkYaFP2l+jdbu6nvfe/7AMxBwU5Qc2o/dklo1UTAXGCS/egmJc11JtuMVwwL2hmHAZ4vbrgKW8xN5XgqjeJHmIcqp9/VnsZwsxvnffPAwa3bDbPRE4dekIJPiIJaWhHUJkbdLd6dOnbY+Nw1MCT565049IIheBuWD9NieH5nH7W+dF6jntAXaq689S5cfMPN2HP51XjnH3xK2nfP5Vcbn5PJJFq77XMolvOWqfMoadHQraD2zNOWbV/40z80Pr/1/Q9KZotiOWOJhGFiOT8/j3966kWMzi3qZdNwrpqCWgkV5nZfvltKCSYCAEeEQCJqMDCOG61dtdl96ZW229/5kU8YqSRKXfz1cggQzyXW46RgOTBy/Bj+6c/+yPjOBTV13LN7P/fqvmDpaGVpelTU2RRjDC0d5gLf+MhpySVkZ38X9nY4B5fhWnzLQmgJda2+/zFdw1+qRu341DwmF5ct28s1HxWtQFpbW13NV4aySbQUEGxV+Nya3zPvkwmTkiQATdPOAfg2gEsAZBlj3EuwF8BL3hat9siDo/lSjI6O2mrUEk1pdPT248rbX2Vsu+iiiyznsjt//ru7N7kcIUd0Di/koybmgHManLzo3GshkBjXqtE5K7H353Vai1rhnXQp2hanXb0trx5QRTjrXVu6sEcYFHOJCO7a0mXk1GNM0ajNTGNCMM3ICELAhq3nWfwLvvcDXVDTZ/biam9xjZrV9FHKoZYyfaFUjdrUOdnHRzQJUQUxLkRyc2E37x/fpRxfULUdb2pOYmd78ZVT8ahoPIFePRm8pmk48NTjxm+yRq0Zza1mP3PurDtB7eThF43PnQOyqeXxQ88bbZz3cdOCL3G8qcmxPW/LNeGVw51GvcWbmvCbf/5Z/O7f/qMlf9eNr7kbN772jWjJteKjH/2oEdCikv7R+T0zfxBX0u1C5wP5+x49VXgIftl1NzpeXDX3n5mcxMHx/CLG7PSUEcgimUwiUUZy+8JUrxeUfNT0oD8v7n/G2CYK35xgMFg0ul014bWxaeceQ3gWESOTltr2Ih6alYmXFucbfE6xsrKChx54gxF9FDAFtULn4gQZk3zBvMJOKBRTn4yePilF9+5szRVc5DR81Cymj+5Re+toyPqcRCsMpwWbhRX7JbpyTR+rqUnn8KIlwkG8YlOHy0XC9YWbqI9tjLGs/jkO4HoA+wF8C8Av6LvdA+Ar1SpkrXAeHEeN1iTZLuuDwC9/9FP4wJ/8Fb7zne8YCZDdvKTVnKSLpo+n9ehqdu+q+CI6CWpeCVkXd2dxw4bqa1ULh3n38joVHFuBj1qpLDvY0BfCcU8PC8wHj0KnbLKxcZe1VVOOiaTjTU347b/5nBQO+Qff/4F+7QIaNZ0AA/pSZvJsO40az7MI5JOB8ntJKvueFUJ/t3fI71lcuUceGZVr1ErR+PJnvFxCkI5yn6harM27zeSx//b3nzY+W0wfBa2O2P8U4tRRU1DrGtgg+YcdP/hVVbDIAAAgAElEQVS8RaM2LVo+NKUctZKMMQQD7rTqoXAYDzz4MTx56Aje9a53GdtVnwo3r8jejgwu7TXHGLVvFl9VN6aPC3NzWFyYd7xe76bN6OoflMup7NMkCWqmRqHak7WSNGouWyvfqyll1agde+E5Y5sanh0Acm1tjkGFagG/x2AoZDHXT2WbJaGi1Hc3YiMAlIv4ziRSaSMVzvzsDBbmZvHk97+D4wdlv1InQc32/N4U03pemxM3K7kg3UQ6VLEGE6lkIdfa94uRh8+dO2c5BjB9bjkry8sYPX2ybI3ahKC5q5qgJhQtGgzUdFG/XnDz1nYB+BZj7CkAPwHwdU3TvgbgtwD8OmPsBQA5AJ+tXjFrg9g8pMFxbNSIyiWZPupmFcFQCDfc8Qu48krRVMHa2GrZ/KQEpmfO6A738j5Li4vGRDMQCFQ9JHFPKo5UpHCoVk+oQkW70ZCWAp+IuTJrqxCuXVETdNpRLOG1l6UtdK1sLIyeVMw2N01cEKjmpqeliaSaNHfr+Rfiww9/0TjPU08+genpacNBfd4umAh/NoxhX1cWN+qLC6KAyH3URCEkl8sJpo+ib8wkjr1wwPi+ZctWqYwJxT9yyXhezLjnYvD741rTUtJgeDUu8sAbAPDT737TSHIrCWrZZklzo/qzOHHyiCCo9Q+iR/APO3HoBaN/djZ9dH8fxWCKz65q8eDGf3RDNoHOZKzAe2a/aOgkqIka20gsZvl93zU3OAat4YjPRVyAOH3siPHZbaLpUijp0bg1fdT3U4OJiP1FKBzB7kuvtAhlg0OFc7RVHeEeWzvl+r7jLe9EMBTCjrYUzmtNlTyprZYPK2MM6RZRqzaKJ7//Xct+oqCWLRK2vVpDo91pRY3g5PiYJKg5RcNWUd/7kjRqese1uz2Nu7Z02e6jBrizQ9SoLczP4dduvRoPXL0PH/+9DxTNZ2bHySOHjM89PbZhKCqGEl4Xx03Ux6c0TduradouTdN2aJr2YX37IU3TLtI0bZOmaa/WNG2h+sWtLqLGQdKoOZg+JoXJmOUltZ3YF9/HiesGW3FRV/EOg/thxhIJY8BeXFzE1NSUJQS0GM2ntbW16CpiS8xbW/FqUahay49+5G0vYkZ18/S0tvBJe0m5axz29VRQ05yTa1870IqLbSJb5qM+yiaIk1I0RavPSTqTRZ9ulreysoIf//jHxgrjnK1GLV+eADM1LoDVnBGAxaSR34mqfTsqRG3btl0O9a5qOrk2LBTkpo/uNWpcGC/FebxsjZryfWDLNskk8X2vuQ2A7OeQbs5JUQxVQW12egqnjh2xTCpOHTlsfO4aHELPRlNQe+nFgxbTxynF9LFYHZZSB+qpVEEtVoZPcaFriDn3HAU1oY67BobQlJHfnfOvuLboNZMOGjVRK7J9uzVNQaWUVPcl7pmUIrVO4/QJM6pne08vmts7sFepm74qCKOlIN5j9wZZaLzuVflgN5loWAqF7vrcVRxwxJRAE2NncUiJ/grIgtq1g23YVcDEunoaNeuZRTPnybFRKQ2TW0GtEh9wI5+rsl38nkwV16iJeSGf+sF38dLhQ9A0DQ//1V/gq1/9qvW6RcaJI8+Z/pw7d+4ssGf5DGbiaI6FsdHDpOaNBsXBFBAHXNGBe2x0VMijJgcT4ZTiR1osFLwdmWgYvS6cLMUJiahd2H/kOF6akk1jeJ4dAOjttXeM59yxuRNXlhDJx29wAbZcEwC751lJ8u5a+qiZPk/+WrIqpr2zh8maralJaZKq+hUBeQFVjN73wx/+0NAyzhfwUePaTsOMSnDm5hoHi0ZN31kS6hSN2nk7zLw9dqimj6VMAEzTx1LaZnntwm7Cs+2Ci43PRw/sx/FDz0tCand/v2y6KvSn4yOn8Z47bsA7b3gZvvbwZ4ztq6ur0jk6+welaLujp09iaTmfp8lJo1Zsfur0u13Vq5vUBZBoCYIaX7Cx5FETPouLD06C2qQkDLcgqwS12rTTmixdvWdJUJuaNMY8se1WRVArZQGpxHOnpHuakNIvdOl58N78O78vHdPXWx3NQTlccPX1xud7fuuDxgKyv3ryPGKKh7GRU7a539SogX65D/Edmzo35pHpo/1+vSmrxts8xrlGRNNHJ42aKKi98DM5+u4f//EfW/YvNkwcPWD2u7t27SqwZ/nEQkFcM9BqcQEgTEhQEwg5aNR4eP7FhXksLeYVh8FQCBEhKWcpgSW4+Z+T42cliIJaRvBT+9azh3Dw3Ky075mTpt9MX5+cuNvuvKWEhF9L7ErJy+5ljc/pk8Ny4OWpRVa57qb8wNDlJkm2EjJfpVAT2NuRwU1D7u3YjWTjJTQrBvndnBwfkwJS2GnUAgGGDdtM4ejnzz1n1HshHzXDj1D/LkU2082nRBOxvKCW3zuWSBqf52dnceS5Z439tm3Ph3m/pLsZl9hoDVXTRzcCNq/DUBmCmpev9a1veov0/SP3vx6L8/kFosHBQbR2dEoaNR7gAQD+18ceNCbSX/nsXxnbDz3zlCEQZ3Kt6OgbQDQWNxaiVldWcFbPpadpea3prJC7KZZwzqNWjJ6UdXFMPZN6brtAAI7wQy1RH0s0fVRy9F3/6tcb34d37UU0bhcARC63uhCxrOV7S9H0cetW2WzXC6oxqvDqa5Y0JWM4c+K48b2nPx/+vrNvAL/8B38CIO8CcP/991ehRO4R62PfNTfgoX/8Mj7+z/+B2+99wNzHh0OxmE7gwJOPS30rpxTzOS+TczvBu1bRp39ibFSK0uve9FH+blf+awdasa8ri4u7m3H9oCnYOo2FkkYtXVyjJrL/0R9J35955hnLPuoCkYi6QFYtjRpRnBo4DNUP4oqIOGiNjubD84urv8lUWhpMLS9pgT5mMJPAyekFNIW9r37xHtJiJCYbp30xwEF/f7/l93rFru6DAYalVa2gRi3A7HPNqefMREOYWFiuSEPFz1dJIkq3tMQjjnbvKpXYi7clIkiU0KZNc49STDKBRDoDxpj+TpomKrFEQnpvOUEGtPeaCxGP7zdNuewTXucxtJ56ZYgaam42bPVR048NBBBvShnl48JKU6YZnR15x/Vuh5VVnkOHa2bc5CA08qjx8PxrYPoI5JNA/95nv4AP35c30Trzkjkxvuyyy8CgJCzX+1RN0ySflvEzp/H+19yG86+6FmcFzf8V116PYCAADUBbV48hMP/T3/wFrh/+AwSbMtIEMZ5sQiAQKOqjZvfzjRvaEAwwHJuck/ct8nKUkk7FQU6TVlDdRH0U22Eq24Jb7r4PZ0++hOeeeBT3vu/B/DVUYVA5hyhAz0xOYFF35Bw/Y6a/qJafiltKDc9/chGIxeOYn5vD0uICTgsatRYhQuw1d/4izt+1A1dsHsCmTQ758WqEnIyeWXImApUJMRuzCUueLS8Qg9V8+TP/n+0+quVOobuohTAaZAyrmib37aNnJQ11S4t9CgfLuVxEfUyEgwgwhh6l74+FAphctDlAOIlopTExMYGVlRUj8qzKqaOH8cxPfihtGx8fx/j4uKQhLDRMjJw4ZvSlzbkcOjs7nXcmqgoJagJOq5hjuo+aOClUw35bOxXnXqarKYZXDndWJa+V6GYmatREfzTOiGCv30iCml3dcwG20AT2tk3OHZF4xs6mGLa3hisKHczN6gqtaK0F3EzSuW06t9lSWzMPUZ8p5lSuEAwG0ZTJSpNTALj0pttsB64AY9Jq78hLxwzb/PkZ5zxqqqZE9BXiA/m0g6CW379Z6jMAoG94M1iR9/78jgx6UzEjf5Ab30JD6xcJYWM2gaESQhyXOyFyOm73ZVehrbtXEtIAXVBjiv+e7qN2/ODzmJ6Qn+eBJx/DgScfk7b92gP3YzUSwtTiMlq7e3BQ94P5ysN/i5EDz+Dfv/ltKbddXM+5VzRoj83NNEVCWLDRmqt7qu9w0gMTHtlHrbhGTdTsprLNCAaDuPf9D5Z0zWRGDs/PETXW1Zis2bWjtkQEG5uT+J8TcpsoVUCZWlpBqjmH+bl8WxT97VQz6fP2nI9NNhpuP1KJELO7QE6wSugcGCy6j0XQX2PNYL6P16S2cOzg81hdyb/3LS0tiNkE57GjkjxquXgEI7OLmFZyoIntPRgMItGUMvrMiYkJRyHyxWetORUB4NChQ7jggguM74VmH0eFfIPD286jaIxrCJk+OmCN+ig7vicVQU2dCBRr0tVKPixp1FqsplqclZUVPPbtbxjf13oVsdoYpo8FeqZggLl6Lgx5YbsSU1B+aJkuc1VHDTnOKbwCWlp9dCZjuKo/JyW4Lga/gp2J4y6HBLEBxtDWbU4Qxk6dxMJiPi+UnY8abyOmRi3/X3U4B4BR3eQOALq6uqQ6yOZkPyEg78NVrJbCwYBkcucqPL+g/dvdkSkxump57bjQUWJURs5ll10GAEg2WQW1Z378g6LX27x9B6699lrjur0bN0u///CHP8TExKSU245HCC3qo+a03eZAdRNvL7vb07hmoLUkrTJH7QZKNX0UTbVEE6lCqPchh+fPC35LiwuGEBgMBtHaam3TlWInfO1qT6OrgoUw8YxiRL8Th0xBLasIan6Zhroph1/KKjKwpbj/ourvVatUOk7w+ZLYRsTFtVKinLqJ+uh0T0PNSbTGIxjIFB4LE4KPXyHzx3Oj9vkpDx06JH1XF641TcNj3/kGfvY/38Opo6bJ88Zhua8lagsJag6Iq+djo6NYXlmVHEybVKfY8hdTPMEURMwXL20zseT84D+/aqx4t7Tk8PKXv7wGpawNdpMyPukuO5iIaI5S1hnU8pRuolZLHM06C9x8OWsPuXikRAEvv684eeX0D9v7zwQZQzgSNfIPra6u4tixYwBk3x4+ieDaNiOXDb+m6HA+PoaVlRUpyXBfX5/U9rJt1ryEuy+90neTrAqWGxx/6ewfkL5v27kbO3fuzJs+ij5quqD29I9MQW3vFdfg9nsfQK5TNtd9zb33gTFm1PHlr7jDct1jR49KKRcMjZqHUR85O9tS6E/HjcWWUIChucTIuGldm6weJ5anSfWXtukzRI1akyKoudWNi1HluOA3fsac8HV0dFQlv5hthGQ4CMllnFQMciGa0WYVbYTfNQZi6fxY1o7eftzzWx90/D0ajRp5Zl1Rg1vkzbkpk7VNa1FJOgpbQc3hnqLBAK7sz1kW2NTdm4qE6Ofn50nHVcaEvGiAdYHoh//9NXz0gbvx4Jt+EQ9//EPG9m6lPydqCwlqDkTjcYQj+RW9hYUFTE3PSD5qTapGbY0ltS0t+QlJKmIO+GnFkZozdW4cf/Ledxrfb7/rLsTjxSNK1gt2VW+aPta2LE7wMvqlPCpOflFeatTKgV8irWjUgsEgujcM2R7Db0X0UztyOJ+Xa+yMqRHjg7JFowbzmvwep86N4+zJE1hZzpuqtLS2Ih6PKyv5cmCVWCKBLXsv8NT5guciKiUcv4rXpo8AjHQI+f0YHvzkn+p1p0Tt1E3sDgqhvN/wng/gnt/6IB78X1+UznndzbdK3/uHt0Dl6JHDkuUD16iVq/22FyLyG4dbmrCvK2uYPpZzjbZEFDdsaMOAEtFXfP3CkQhiibwp68rKCsZsJmiioCaaMAKm9UYhrZ163MxEXlA7d3bE2FYtH5WSas3lzuJuaQfzMFWj5hecmlFMyLfoPzEtz+33PoC//+HTxtwpmc7goX/8Mm593d340pe+hIzSNgu9MrXUqDHGkOuwCmVdXe58u+3wZDxUTiEupoyMjsEJUVDjzwIAJidlU3x12Pjpd79pe77ehnKNqT9IUHOAMabkUjtrJLkF/KdRa09GcftwB7qFyH5SJCPBR+2pH8iJKG+6RZ4ANSJh3cHfi+fiRf/LJ2J+81HjuEmOzeHVUYvOhF8ro5gV9vT2SgOSdIz+wNp7TEHtuG7WMX7GnIjyQXlV1ajpFw2GQmjWtXKapuG5nz5qHqufWzTlaW6VBbXtF74M4UjU076B51KKh8r3iyq3PIWOu/L2V+HSm2/D3iuuwYce/hJ27jk/fwzLa9S4ZmZuZhpzMzM4q2v3GWNG7qjuDRtx+5vfhkg0hjvf8sto14OwiIh52wDg6JEjmBP8DrlQWCwgi9M7bWea5WT6WK41eyoSsknsLn9v6zGDMHzlez+2nEOy9lByqLnNn9ikhLIH5Alfh039V4tK8zg6mT6KqD5qfhV+OHEhmqgPFWoGqeYWvPsTf4lLbnwFfvPPP4ut51+E3/jYp3DrraXOM6p/k+K7oWrwAXfBc/rTcduS2m8r7Z4sWm9B0P3xwWNYWdVwbn7Jcpxo+tg1aC5gTkxMSPup2vkzQoA5kd4+0qitJSSoFaBJirY1KmvULOYlhQfaWhAKBKQBzs6nBgAOPPlT6bjrG8jsEbCv+4FMHJtbkthaRpJQN+cvlYweKKIakT+9wMn0sdCd1zJ9Q0evPHD0FTDN4IOxGFDkxLGjWFlexoRNoISUrqUa1P0FxLtqFybMP3/8J2Z5dG2cbPooT2wvuOo6y/kqpScVx52bO9FUkk+aTDU0oYmmFN7zqb/B73zmH3DeRS8zfeiQT5eQE5LjvvCzJ7CqJ/lu7epBJGqaIN3zm7+Hzz/+PN7wng8I5zDL+6t/+OfSdY8eOSIHE0nk3/fiEVrdt3d1m2oq6wXqqYa2m6GxH33sccv+05JZvqJRM05WeFEokbaaPoqmwdXwTwNKM3Esp+8VTR9Fsi2K+bRPhB+ne2wXfPZ8UlRHLr7hZvzGn30GOy6+FIDzIkZBCw3vi2UhUERQc+O7v68rizvtoipX4QbEd/vM2DieGJnAN4+ctaQKEhdYugY2mNtVQU38rGl44WdPWK4ZCocxsHGjZTtRO0hQK4Aa+XHs9Enje05ZLbd0RGvUk4rlEE0fJ8bMF/dFIRHl+/7yfyHgs0TIlWIbnp8x7GhLG5q1taY3Hce1A62WML1+wXHSabM5F4/kf6pBM+LXEAcfAOgrYJrBm7eolTh17CgmRs8ak+y2tjaEw3nhOR4K4q4tXeizSTAvJlp+4SlzwaO1vUMqH5CfrHAfqVA4gguvvdGyjxdUKmiVrVEr4UBx8qlp8qT/wBNmZMfuQav5Ko/kyc8hXnfovF14x0OfML4fO3IEszN2wUSKaNScttuZPirb+GTHU0FNKZEoqB36eT4fkrgaLvmoKeZlXDleTHcvadT0CZ0YLbitzX2OxFJwq40o/IOymzgO2mjU4vE4YkpuubVYXLVDbUbpSAg3bmiTEiX70UetEOVoSGsSnl+Y+/RssAplw8PDlm1usW3XJd7Tkp4ig6dsSQimj5MT53BmNh/T/5kzUzh0zrQkECMii/7CVo0a/6/hE+9+m5SuhnPL3fchY5P2hqgd/lzOX0NePtSGc/PL+NFL47KgNj6OMyeOGd97BuQVfPUFXCtxQNKoCT4y586MYHlpCaFwGKOCwNk1OOSbAape8Kq2siUGHvADdm3lZT3NmF5arolGjV9BDQVdWFDLH9Uhhug/cQxjI2Z+qEK+COI71SaYT4p+VTld8BDrJ9OSw0e/8FU88qV/xO7LrkKuk/tAlF5PLx9qw/HJeTxzNq8t2tuRQYtH7af8p+b+SCb81wAEm8wJh2RCOigL4G6u1jtkTqaOHj2C9AYzQhkXlN2Wz912eWulpo+2V1DOJS4yjAnmupyZCTHqozypcmv6mNBzg2qahrmZaSwvLUn5pKqmUXO9sZwWZ69Ra21ttbGC8SeM5VNFTC6YJm5+LasTztle1vZOxHJt23ex5ffNm8uPdujFvGpeTxMQDwUxv7wqLcLMTExgRe98jk7O4ejknJHqRvTTbe0yzTetGrX88S+9eBA//K9/s1w/lkjirrf8cv01uAbDH+oFH5EMh4wIXGLy3LHRUYwIyTK7++SJoRqevxQfHy8RrxpPJg0NwPLSEo4fPABN0zA2YgZQaGnvXOu+0nNKWqH16gLrlBBjCAcDaI5FanTFfOX3DG0yojgCwBVXXV30SFHIGjl+TErk6za6l13YeQDItbcLpTPp37wVb/7Ahw2zRyCfgLtUkuGQJNhvyCaQ8UrQL7M9l3KY0cfoH5LCIthzgkata8A+IIx4QfW6ku/hkSO2wUSKF9BhswuzvEqCiTihTmyzwqLbuG6uyzVkC/P5ZM5A3kwpqgSGMgS1Iiq1QCAgRTadHBuVTOarpVGzq/tKJ7ni0ZmcNWhIXlBTjvFJv+5knON15GEvcJsD0ymPoZ9MHzfttEakrKjN27br0uCJybl/opSUfmrSMYiUmGKgtcsc21RBjS8yHXvhgLQ9Go/j5tffi9/9239AqrnFN+1tvUIaNRv4IClq1I6dHsGpY0eM7139A1gQj1FG1nA5szEPUCcLG7bvMMLwH3rmZ2jr7sXi/DyAfBS6eLKp8V7CKktqDVdfAlzjUeh3kWrlA3S8vn65SDSGD/79/8bj3/hvvPb6K3Dp1VfjkcP2IYk5rZ3dCAQCWF1dxdjIKZx9ydSQu43utWHrefbnbrOaPjrfQ3l1Vq2aLndSXI7pI29fYvoTMdG1atIqn8P+upnWNoQjUSwtLmB8fAxjQm67SjVqtvuqpo/V0KgpJRIDYqiht0VtWlMma2lfpbyj2VybIZydGz0jRQuulqAWctGQAiw/qSynitWgIYCuHVStYPwiqSnw58lstq011wy0YnpxuWjf66a4N2xow8jMAp4cmSy+s0eIco7oGwtATwVSC3sDZ/rTcRydnENHMoaXpheQFJQH0xPjhkaNo2n5RXk+xwsEAtKCpiXqo/7/+EFTULvgquvx/r9+2DdtjCCNmi28gYqC2snDLxqJVKPxOJoVu3d1sFmrTl+97MYd5irR/sd+JJl7Nbd1VtwZ+RF7Oa2x7rFavGJTB16x0Zr/y4niQRq8Rbxa79AwfvHt78JNN93kqhyhcBjN7WaAjxcF08VSNGqhsFV7aJo+Vo9qvablnrak44SdVzXNNg8eIEcos5zCVMtJ2wOBgJTQ/MiBnxuf9/R34qah4u25lP5B3dOIEurh07cIo4JGbWJ0FJqmGZPMYsmu+VjkJr5splUUCEcxea76po92gqR6/8b46rKKpaA+re2WHFm2GjV3p6460ZD9tCzgQ41agDFXprVO8yEm/J6KhOSAKTWYl6h5TF/3q79pfP7Upz5V0blt5yEl3lN7Moq7tnQZGrWsMO8cHxmxvNPLmoZZITp5vCkl5a10ivp44tALxrZ9195olJNHy/VrGqH1AglqNvBKEScTLzzzpPG5o3fA8sLVesLqhNoh7rrkcuPzE9//rpSgt0WftDZaI7ANqe3l+RtMsBWJBAOIFgj1bplArXG7Fwd6N0ha8heeNz671aiFwmHsufwqy/b+wcF8earYNqq12FCTIDDC/6WVVSSV9CYAEAgGJTPGQucAZN8r0az16IH9xufethwSYRepC8rQDnKqE0xEJpZIGMLG4sI8pqdNp/9Cya4B9z5qgOzPNTF6piamj3ZuAk6ae7fvgLhXMBTC8K7zpd9zNuaQfunW+1Ky6arZ3oVtPikr4NaKoPB28/nWFlVQe8Ub34LrX/1LuO31b8IDDzxQ0bm9lG0WV/ImkC0d5jg1Jpjuc+aWVqTo5ImmlGQueXbc7CsmF5ZwcjqveeNWVwDQJfh/87Qv80pUSaK2NNoc3RP4gJtqNid1xwUb3vbePkuiwGIT1lp1QOp1Nu7YbQzwY6dPYv/jZg6eDj0akJ86/XpgPVeXqjUoZRLoBZZVcP36hd4/8ZdEkzloHRXMPUpJbHrrPW81rxsO49XveDcGCgQz2dGW8iTwh9/aXSlCqagMW9EgrfJy2nv7EQoXryd+LvGZOwl4qVTKdrvlnK72kq/PMcPzl3CSotdglu+in9rp06eNieDMpJjs2hqdjZvhu0mKnhWiGZ8bPVOT8PxuvAR4P+M276Raf9uVQBFDQ0M2GjV/vGHhYAC3D3dgY1ZPD6IXy48atTwuNGpF9jEST3tSHvesKM0pnkzi7b//x/jVj/whYrHKIjJH9QjT2zxICcSL2dJhmjGOnT5pyYOmQQ4kkkilkRD6wJmpSeOYRw6fxXNj+UiRoqAmBh+Jh7mgtlrxPRDlQ4KaDXY+aiJiPiZOMUGtVooHdVU3GApJIcV//Mh/G595yGe/DFBe4SakNlEeIWFWFQ0GcF6bu4mwV1gTA+dxKzCKmpz52Vnjs1vTRwDYecll+Og//Rt+5WN/ir/8+g/x2nf9BsIFggcNZBK4uMe+LymFqpk+1sBnTvRRA8xE1CJ2ofmlcygXFJ+5k6CWzZYWVtrunra3yhMtta/nZkHV1rSLwa3Gx8fBp2/TE8451ABzVXzBxWSruc00E/3cH33EmPQFg8GS69It9gFblHGsDBOs1rhponzNXa8xkqwHg0G89rWvtTQoP40RoUDAGMt5XUiCmo8K66YkzsXN/2CYv9b4trhGrRqXbY6FcfPGdmxqTlZ8rr50HDvbUtjV12kEC1qcn5cS3XMkjVoqhXAkikg0b1K6sryMubk5af+V5WXJr1fMJ2f0HSskqK0lJKjZwDvBtEOizI7efovKvFiUx0SNEhvbdYjiColoFrRh2w7HYwjCDlEgecWmDrQlogX2rh1uJy52mhygNI0aAGzefT6uvuPVRsj9QsGDAvDbCrhMLcpmPp78B7vnUCiQSP5IWdgTfZvE8PUi/QU0nXblszNf3JpL4S4hoa0qlJumj64uVTZNWVlQMzVqcjARFT7ZciPj9AzZ543KtuQMQacWOAnl6rhbiEt7W5CL5zW0Hb39eMsHP4bBrdvxkU/9Gbq6uizt3ifeCwaGW57RNoXfal8cZ1wUppiPWkgRSmsFb0/q4osXpWCMIR4KemISHWAMwy1NCAUCaGkXzB8FAYsj+qglkvkFMXFhTPVTGxs5hdXVvCCWbW2Tgqq0xsMYSMexp8N+3CRqAwlqBWjr7rUdnDr6BjC1uE5SJNIAACAASURBVCxtK7Sif2FXFpf3tTj+7iV2nYKoUeOEI1EMncc1ao2F3f14OQCsZ8E27BOfNKfvxUg6CGqdnZ22291SSKPGmDftr1qr6OWetZTjTO1AnqSNSWJxQU3+VEyjFo/HbX2R7M/NtRbF93Xap9oBpMT8aGNjY4bkJfqoJWx8/+Jh98P84NbtttubXdZjtTA1au4FtVCAIRs1TWlvfM0b8IkvP4JfeuObbPf3m2WJ2p6k8Pw+KqorjVqRH2odfG1PexpD2YQRNdES0KaKqTYqgTHZ/HHURlCblnIq5vsDsb+dnJyUTCbHhbyMYoRIIB/N/IKuLNLR+sv52kiQoFaAcCSCVhsh55eu3Ic53Ywkotsh25k+chvlvnTcWNWsNnYP1G61eev5FxorJ34NS+wlXt6h3wb0WrLWwUPUqnfVdIV97CayuVwO0WhhzSBfmXciUkCjxsA8GferVfPllk2cOIYYw+YWZxMfXj38ENFXkFNUUFPOESzio9bf31+ycOumL3Q6Z7X7UdGsUdSoiSa8dukIokH3Y09rVw+ybdYomWqU42qj1iRfIFJ9ioph90yMcPfVm5t7Am/e9rKpfwpbqCR8vHAaNjRDo6Wfq0a3NdScxJ6OjNGe1AVIT+cLHt9UTvRTGzlp+X36nJnuhOdFTCqRH0VTRnGhR8yjCPipla1vSFArgjp5YIxheONGbG5JIhRgxgTEbgJ7w4Y2vHyoSklCHbDrFHptzFl2CtEgG01Qs+0YG+sW14y19o2watRKK0/STkBwYfZ4WW8LdhTwxyuuUauc6oXnL+/EfJLVHAvj9s2d2FrAaV7tYxI2GrXuwY0lXV/UqPFcaiJuzR4B8/lUUsfVXsNIZmRBjbMwZwpqsXjCclyhYB2W94kxvOP3/9iyX6611uOY/D2puw6slhgnXM1vanduY3tJZ64+ZloF6z37qqwFXhrDpNFhn2Wu0VqjYCJcQxtU+m9f1a8Ag6xRGx+xRn6cFAIApXXBSzV9XBbeoylBsFNNp9fzorSfIEGtCGKoUgDo6elBLBbDjrY0bh/uNCJp2QlqkWDAGGBqhd1koX94i2XbzksuK3hMo+HtCpmHJyNKotKBw06j1ttr798kEgoE0KuEzZZ/L6RR86bN+K3ZJcJB7GpP41IjUIpzCdWJmOqjFgpHkOuyD+jC69YQpozt5j6BQABD23dIx23evLnYLZgw6V9ZVPv5OGnU4tqSsT2WsGo1A4yhIxnFsE1Qg4u6myXzQAC44OrrceNr7pa2tXV0oJao73lMf9ilmD4C9hMc1dfR2NdnHTuPlGh3y34qaqGiBIpo1FY02fRwrQQ1N0nX/YJonmhn+jhlo1GLN8kaNbFJSRo4JWBQHVVLQ0OCWhG6BuRIZBs3yqu+XINsl7RzLbBbueroHzQiBQFAZ/8gNu7cU/AYgvAlFZorZVqsvjaDg4PuLm1zLT6BLPQO5X+r/B2rmo9aBaaPm5qTRt69QqcxtF/6P1WgSDQ1IehgoqeavRmmj0rBf+nd75e+79ghC26F8EbjWd1+VPRRGx8fN2bwc7MzxvaojUYtwPIa4Z3t1kWKnlQM1w5azRrFxPAA0F5jQU2FP+tSTR/tfMfNAIPVM3fzAl50u1v2U1nDAYatuSZc3G0NZBN0qGuOxUesxnMRp4V2v06J8j5qpgWImBeXMyUkqU9ndUEtJWvURB81KQ+jEuncp9Ww7iBBrQid/YPSd1VQ46Gb/bIiY/dAg8EgfvGdv45QOIxYIol3PPRJx0lRo+Ll4/HHk16flFP34jEdfYOW390KanZc0ZvDrZuKT2I9EQQ8OEc1z1voHQsYK+b6CrtiaiSa66hws9LlVTlEtLo4tv3CS6TvmzZtKlxggUrq4Or+HM5rrX6aiibB9HFsbMyM+jhtCmqxhJ2gVvrdieZVANDRWVpU1FK5oDMj+TiqRebtp2SNmm3of3v8tmBpmD7aatT8U1bGGLa3piyaWcC8B6fnZmjU1sz0Mf/fGvXRP/Wr0tZtRvE+89IJy+9iX8oFr7SwQHn8+HFZoyb6qGVkQc1vWub1CglqRVB91NTBf7ilCXdt6fJNx+n0Yt1x/zvx8I/24+EfPYvzlAlNoyKvpnr3fPzxpNeOTDRUs+A4KhafmhKfRkef1W9pYGCgrGsD+SAiPKBQwWM9NH30Snm/uz2NAPNu0ldYo2bd54ZffIPx+ZY3vNnxWD6J4n4V/JmrKVECgYBxnqGNG3HFFVe4LDkqekAt8Qi2eJDUVmVjcwJdTabfXTJt76M2JwQTuWigE01h+d0sZ9I5tE3WRlYr2TVnIJPAjjZT48dLvDGbwLZcE3J6TrSeVGlJiG3dlZ1CxfusY+fvjLpA4Vfs6s/0s7OHu4ZkdCFvrR6BXyyiisHA0N5rBk4aOX7EkvR6ysZHTVygPHjwoPRAJB81VaNWH9XS8JCgVoTuDRtx3kWXAgBCoRBuuummNS5RYQq9WLFEAqHw+gizekl3M64XTHo87W/Wee913WAbbt5ojQxXEyo0fYzG4lJCT8CqJXd5aQDF8ycWOrZUjGh1HrXmjc1J3LG5upoSjt0C0ut//f3Yvu9ibNq5B6+87+2Ox4Z1QXhFSU5rFyTj3g98GB//5//Eo489XjSSpwg/VSF9zcXdzbh2oHbRD3e3ZzCYMTVkqYx9HjXR9LG3tRnTSyvyicpoLhu275S+Dw0VTkZeLXZ3ZLCtNYVUJIS7tnShq6k0Qc2u3RnRFNXtZZaxWrQm8sKp5Xn6Fru6LqxR603FcHV/Dn3pvGvGWg2tqomsn4f4VLbFiO46PztrsUYYEwKMZPUgQJ395mLk5z73OWmhRzw+RcFEfInf+ibfwRjDB//un/CZr/wX9u/fj7179651kQrCkLcZLxShbj3QnYohGalOIBfqutaOQn4lqibBibTip7Znzx6HPa1XVym2EutlW/Fao+Y1hTRzRrAAYZdUthl/+IWv4OP//B9o7eqxpDjgmjRVo8Yrwq7uA4EANu3cjVSqNA1XWL2GDT2pGLKx2i50iXeYVAQ1zqygUUsmk4jrfpPXDrRiU3MSkTIaDGMMv/Fnf4vWrm7c+Jq7sW3bttILXwGeaXltTsMn5TNLy8q+/nqxEuEQWuORmpjVeoFdMyucYiBf5y26trTYuarBNQN5s2V/PXlnGPJ11t5rWoacPnbE+DwzOYHZqXzC62gsbox1nYrJ/xf/6QvGZzGPWrOSmsOvY816o7YhCeuUYCiEPRdejE1dVmdZv8EYw23DnVhZ1fD0mam1Lo5viLucxBP+ptC4cd1gG1Y1Df/2grmimLB57ne99VfwiV97AABw8803I+xSy1zJPI5PAitKGG7429ff6GkX1AGQn+d1g22YXlzG/z2WX+ENBRiWVzX0pmJYWlnF5pYm6Rinc+b3Ka2OoiHuB1ditIoqIz5rS9RHvaizM9PG9mQyiavaWzG7tIJsLFy2YBlgwCU33oJLbrwFgA/yJ5aJ3Uo0z286OrcIIP9OLq1qvpysX9m/tonGS8Gu/oqZPjrtL2qSq0lzLILmWARPjUzW5HoVo1dya2c3jjz3LADg3FlT0Bo5ccz43NNn5pFsFfzaAODokcPgTjxjQuTIZiXhdT2ONY0ICWouqbdxqt7KWy32dmQQDQWMwdkLqGrXjiXFX0McR4IBhqDwdK4ZaEUiHMTy6iqmFpcxOpcPY37Jja/Aza+/FycPHsDHPvaxqpZXLN++zozha1PROSs+Q+0JGGabMmL9xENByfdRzMF0eZ85YTUEtUIpEUo1ifWwf/AS8TbiTSkwxqBpGqamprC0lG/Pc4pGLREO2i5QlEKQMclcrVaCWjoSwuTicvEdXWI30eRC+YVdWRyemMP88gomFpZ9be5WD9jVNVeSuw0CE2AMtw131Dw4m3o1vwbR4KXK5Mz+cGJ01PgsCWpCHslAIIB7fuuDePjjHwIAnD17FgCwuDCP6Ym8dj4YDCKjJLb3Z6+4/iBBzSX1ZqtLKyF5NmS9X5mjql07phdlf41C72U2GgJjDNFgAFf1t+KrB05hWdMQCARw/+8+hM5kFLt6W1xf2+1j39GawvGpOZxbWJaO6a9wlZjPdepxEca0alRNV4ubS1qSHOsvYKHJXKlVFPFpFFxxwhgIBJBMZ4wobefOjUPTNMzOmD5qyaQ1V1r51629oHZlfw4zHvpk2RWba2J7UnH0pOL4xuEzAGjMrJSCGrUSFNVhl36/XqI+er+3hLQgUE2OmYLaycOHjM+9/XKQLDEw3uiZfJsXzR67uros0XjplfAHJKi5hBosQaw9U/pqeyYaKnkVXJ0rlPxOC/vvbk87mudszjUhFGR44vQkvBzyo8EAAgxSdLx6wQiEok6IWD68/fyyNbJdV1MMEwvTFl9TNxq1UvGraZ9aLFFQGx8fx9JKHKu6ljkSibg247VDFM3CAYYFQV4K1mjyHAkGXEVRdYud8KVuMxZAPLvq+sSuPw3Z+KbWA/7VqOXLlWkxBbWJsbPG58M/f9b4vF3JIynmEOUatfER0+yxq8saWMqv9bDeIEHNJY3WXLldPlEOjdYa6ofuVAwvnptFMhzExEJhE6liK+QVyGkIMFbY9A72pn6VEAywmkVprJRXbOoAA/A1wV/QCbtgAkDeT2Uom0DMIRVEQR+1BplgqBOlpkzWCB4wNjqKhYipEa5Em3b9YCtCgQD+61B+hb0tEcVAOIhnzub9nCvyrVxDShG+GqXNrBV22vG+dBzhQKAq6Su8RC27b5u7Xi7RRHFi1BTUXtz/tPF5x67dEJe/Us1mX3F6JP+eTwjauA6bpPZ+rYb1Bi0iOaCa1TRaJ76p2RsTmfVIY7WE+mJPexq3bepw9HkqhdLNmcu42jptLFEHzUghHzU77IQ0foyToFxulXcmoxj2Wb+oCqPZXJvx+fTpEYt/Wrmko2HEQubzYgzS5LpeV9bVcTsesrZJvlxZD3d4w2AbLivBXLuWiFUtBvzZ2Z72VEtaDerF9NHwUWsRfdTygtroqZdw/ODzAPIB8HYoGjUx2vGYfoyYQ80uV2KjzXvrFdKoOXDdYCtOTi/gqTP5aED12Fyz0TDOLSxZtr9yuBMBBuwfnbY5inAiwIBVrf7MOBoJxhjCQVHEKuVhqL5OJV5bKkeRfVlZl1h3FBKWi9axw7Hl2glcqk+AI8EAFlf8kWRYlUWb283w2SOnTwEJc3LllX+ayJV9OYzMLnh+3loh1t9NQ+2SMFpoX7+SioaQivpz2iZWXyIcxMzSChZ88h4Vw7qA5G1juKKvxTDb94LmNlP79bP/+R7+4O334IWnnzS27bjoUmTSKWDCzJGWaEohEothcX4eC3NzmJmckJJj2wlq9fBOrAf8vcyxhiQjIXSnSkuu6TeuHWzFVsXkIKibbNFKSenU66pyI+Lk8wSYuXFULD5qJV/T/bH89/X+nsWC5TunO+3Kt1drErEl14Sd7f7wA1T7nGyrKag9cfAIFua80agBykKE/r81EcH2OsnjZUdAuKtQgDn04TyR+vp+VytF7OuG9CBeTWF/CpUqarPwum9pS0QxlK18IYUXS8yjBgCPfuvrOCcEBtl75bU2SbwZ2rp7je9nXjouJbu21ajRO+EL6uMtWiOkiVmdtle12BmfrsbVA0HGsAx/5ttZbzDlvwjPjeP2HJVcv5rXaARu2NCGFSHkm5uBPxoMYGFl1VEzZvj/rYPKVSeM2VbT9PGlk6ewQTB9bGry0A+oQepWbCPFFtrWQ3uqFd2pGDY2J+tocVP1UfNpufVixZNJpFtyUsRHkS17LrBdJGzv6cOJQy8AyIfyFzVquZw1Zx9p1PwBadQKIK8w1meLVV/W89rqd3V0rQmSPZtvMB5FBc+iVG2XtLfLQCXrfaALBwOOwUDyWMWxy3pbMJCOW7RxBsZr2PiVW0ijNn52BPOz3oXmF9+HRqlb8Z6c3kXNZl+iMhictJf+pFTf2bVCfC87+gZs9wmFIxjcdp7t5L6tp8/4PHLChUbNp/Ww3iBBrQCSJ0ydNlhe7FgogLu2dKEtEZV+70xGrQcRtvAI1Y0yialn1voZFDV9FJI1EyZqbdhpzbKxMC7oyjrWnWlW6mXJ/Ik62W1uMzVq586e8dT0UaRRqlYUzhwFB70RNso9E5UTqIPW0LNhk2VbUyaLt3/kjxGJxmz7x45eU1A7efigpJGz91Hzfz2sB8gOrgCl+KT4lULv2a2bOnybP8iPFAoHTtQWU7np/pmoSVdLfZyyxsEdtBKm4MErZGgr9U+5eBijc9agSY2A1fTR1KidOzOC+SoJao1CKRNuGgq9o96GSh70hKct8mv5xWJdeO2N+PaXv5jfzhi+8OSLCASDGMgm0ZOK2S509W/eZnw+/PNnjVQfADA4OIiRGXl/n1bDuoPmEQWQTB/rtMUWGqgiwQCtmJQAF9SoxtaecrQqlQYTkY4tcjAFE7HHUhvlhGgUzF7v3NyJK/usvhWNgtp+MjlFo+axj1qjaSvd3AeZPnpPvdXk3FI+uzuPCurbeZFQrAuvvRF7Lr8aoXAY9//uQwhHIggGg8jFI+hJxW2fwYat5xmff/74TwzTx2g0iu7ubuvl/FoP6wzSqBVC0qjVZ4Ol98w7CiU4JmoL80Rort7z5O/demsyl/W22Oaq4qj9aHlymhlMZL1NJOLJJGKJJOZnZ7C0uIDRkVPGb6RRs1LK+7e+WlJ14Bop1XrB73CNWiwUxNTiim/bgliuYCiE3/3bf8TiwjwiUWuEcru2n21rRybXKiXJBoANGzYgECC9jV8p+mQYY32MsW8xxvYzxp5hjP2qvr2FMfZ1xtjz+v/m6he3tjSCjxrhHXyVbaXeRqEGpJLXMRyoPGqg24Wbel3gKZeOZBTpaNh5Bw9NH9db3XKybab546kjh43PXghqjRYvyY0gT725d1zYlUUqEkK0wGKNH9nbkcGGTAJZve/yrUbNBlVIK9Q/MsbQP7zVsn14eLgaRSM8ws3btAzgPZqmbQNwCYB3Msa2A3gfgG9omjYM4Bv694aCOXyuJ4wOh0ajignqVblKgtqaU8mEMqpHE6yu6WN+h/WmUSuGl9WxXuu2WQjRf/rYYeOzpxq1OpqoFqK+xIX6p7Mphhs2tNWVoAPkE4nv7cwIZrBrWhxH3BSrUI5RAGgXAopw3vjGN1ZQKqLaFO3HNE07qWna4/rnKQD7AfQAeCWAh/XdHgZwR7UKuVbIedR8+uYWoT5L7U+4j9rKKglqa00lPmBhDwS1ogh+VIQzZZk+GnVrX7mNLsCJAUVOvHjQ+JzJZCo+N1P+1zul9A+Ncs9E+Wj6IqxvBc1S2rPDvlfceqf0/bY3PYBXvepVFRWLqC4l+agxxgYB7AXwIwAdmqadBPLCHGOsvcChdUkjaNRIoeYdgQA3fVzjghDGIFROJE4vAn0UO9KITOjXAX+NUP08I0650lzgdGSjR7IVk14vzs+b27NZD87O0Eijhaum0Di3S1TIqs9TNbjTqOX/O/WPOy+5HO//q4cxMzWJK269E+FgsG4VEesF14IaY6wJwP8B8Guapk26fbCMsbcCeCsA9Pf3l1NGogLo9fOOSKAGmhjCFfwZhINlCGpe+Em5THhNbUUmpNRbomAybHvEYCL212hMg7e2RARnZhclHzURLzRqXGpplHbrxo+xOR7G7NRKwwv4RHFyiQhenJhFNlbAz9bnOEVujYcCWFrRsKxp2HfNDcZ2avf+x5WgxhgLIy+k/YOmaf+ibz7NGOvStWldAEbsjtU07dMAPg0A+/btq6u1KylvUp22ZVop8Y5trSmEAgz9mfhaF2Xds6r/L0WjdnF3FsurGg5PzAGo0EetyO8U8tsedVKQCJcuqBlmpQ5PoVEnHpf3tuDI5BweETRqIt5o1PI0SrN10xQu6MxiuHkJ0TIWDYjGoj8dR1sigrhP24IrjZrxX957VQNuHe7As2encGDMTJgmjqFN4SAysTBOTM2D8A9uoj4yAJ8FsF/TtE8KP30VwD3653sAfMX74vmHeo0w1igDrh8IBRi2tabInM0HcD/BUiblPak4BjKJmuSK4vFmGlRmKBv1eaUipWeIMc1KzW0twgp4o6bRYIwhAKC51V6j5oWgZq6kNkYdulkoCQUYWuKRGpSGqAf8KqQBcPVa8jbPu0GeLmVF0xBgzDJ/GcyaC883DrXj4u6GC+Be97gZJS8DcDeAnzHGntC3fQDAxwB8kTF2H4CjAF5dnSL6g3qfm0fKMBEjCL+yvJrXqYXKyP3ijelj4d9XDRMyeu9EgsLz2t2exmAZ2umOZNTIe8S5eqAVp2cW8P3jY0b6hYaEMTQ7mD56qlHz7EwEQXhFKe8lYwyvHO7E2blFfP/4mLG4KXaPN25oQ7IcqwaiphQV1DRN+x6c28d13hbHv9TrwMVfzoF0Yo1LQhDesVyGRo1TKM9MqedwgjRq9ojPa2NzeeHkc/EIcjYakNZ4BJ3JKHa2p8sunx+5cUObaUoLoLW7x3Y/b3zUCIKoZ8QhJxhgxsKV2Ycw6Xcyz/c/pdudrFPqtTH3puIIMIbelDVzPUHUK1xQK8fMrViemVLO4QTPtVev/Ua1UIOJeEkwwHBpb0vVzr9WNAnmoQxAKtuCWCKB+dlZY3s8Hkck4p35HjVbgvAfbhYX1XdXXcyU0k55USii6jRmeKwqUK8NOhhg6EvHacJINBQruiBUycS/kjeimJ8iX72kDlamUQN91AyWF/5bu3ulzblczuvLEARRl8hvr+oeEBB+p/e8PqB5hEtIziEI/8AFpXAFebgqu37h302NWg0KU0c0aqCPWsFrr00R1Hbs2FH7wtQRXU3RtS4CQVSMm/FE3aWQRo0GqPqATB9dQs2ZIPzDBZ0ZHJ2cQzZafhdWiZa5WFoA7qNGmmwZiphaKfn6UwW1PXv2eHuVBnpOd27uXOsiEETNUF9dNbiSG9PHWza2Ux54H0GCmksoehtB+IdYKIjNLU0VnaOapo9pXYBspbDfhIfwVtfeIwtqu3fvrn1h6oRGEjqJ9U0pedSM70r7Zy5MH2N+TlGwDiFBzSXU1xNEY1GZoFb497ZEFDcNtZeX0LnB6UxG0Z4gU7Ry4ONQtTRqhibYk7MRBOEp5UhqOlHdTUAcu2heWx+QoOYSas8E0VhUMki5MeEjIc2eRozMWGvSLXLwkOHh4TUqCUEQtcJV1EebfW7Y0IaIHlRE1rDRzLYeoGAiLiHzCYIgOBQTg1gLeLMb3nU+UtlmAMCtr7wDwaC3iwI03BFEfWI3NqUiIURDukZN2E6veX1AGjWXUIMmiMZA0+27KglsQUExiLWALxjGk0l85B++jGcf/RHe++Y3eH8dGvEIwne4eSuT4cLTekamj3UHCWouoQZNEI3B3PIqACBegWkidQfEWtO7cRi9G4fR4nEONYIg/E88FMTc8orN9sKGcm6CiRD+gkwfXUINmiAag9ml/OCWrERQo5UbYg2wa3XVaIrUugnCf4jv+pV9LdjdngYgp4spNjbR0FV/kEatCAyABjIFIYhGYUU3faxEUCMI/0CSGkGsN5KREDZGQuhMRhEOBjC1uOzqtQ2UINQR/oAEtSIwlg9ZTO2ZIBqDXDyM0bklhAJkUEDUF3bjkJdDE09yS8MdQfgPO4VBMpKfxudc5uykd7v+IEGtCMzQqREE0Qhc1pvD8urqWheDIEqmVpMsmswRRGNCSof6gwS1IjBdTiMVMUE0BqEAQyhAZo9EPWIdh2hkIoj1gRfT0AD1GHUH2f4UgSn/CYIgCGItsJ2oVcNFjRYmCaIhoVe7/iBBrQiGoEaNmyAIglhDaiSnEQThQ7x412kRpv4gQa0YeqOmpk0QBEGsB2i8I4jGJEgvd91BgloRTI0atW6CIAhi7bCP+uj92ETDHUH4Dy/ey1CAXu56gwS1IvAXg5o2QRAEsbZUOT4/QRA+pvKXPUirMHUHCWpFoGAiBEGIxELUbRJrQ+181GjEIwi/4cVbGaT8oXUHhecvgmFWQuMWQax77tjcudZFINYxlEeNIIhKIB+1+oMEtWLojVqjnNcEse4JkNkIsZbUyPKRmjlB+A+K+rg+IR1oEXiTJjmNIAiCWEtoikUQ6xjqANYlJKgVIRXJKx1JXUwQBEH4jWoskNNwRxD+g97L9QmZPhbhwq4szs4tIhGmqiIIgiDWDnuzJZLUCGI9QRH21xekUStCOBhAV1NsrYtBEARBrHNqF0yEZoIE4Tf4e0m+0usLEtQIgiAIgkBYX6qnaSBB+BD9xaRcaOsLEtQIgiAIog4Qp2f96TgAIOyhA3VzLAwAWF6l8FkE4Tf4m06mj+sLcrwiCIIgiDpAXEjf1JzEBZ0ZT8Nt96XjGJldRJBmggThWyo1fYwGA1hYWfWoNES1IUGNIAiCIOoCJn3yOifSQCaBllgEqShNDQjCb6zoCX0rFdRePtQGUprXD9QbEwRBEEQdIE7PquWmQkIaQfgTLlxVqvAOBcjrqZ6gp0UQBEEQ9QATP5J5IkGsJ/iEPUnpotYV9LQJgiAIog6ohUaNIAh/komFsa8zQymj1hkkqBEEQRBEHcAcPhMEsT7ozyTWughEjSHTR4IgCIKoBwQ1mteBRAiCIAj/QYIaQRAEQdQBpFEjCIJYX5CgRhAEQRB1APmoEQRBrC9IUCMIgiCIOoPkNIIgiMaHBDWCIAiCqAMY+agRBEGsK0hQIwiCIIg6ICjlUSMIgiAaHRLUCIIgCKIOkDVqa1gQgiAIoiYUFdQYY3/HGBthjD0tbGthjH2dMfa8/r+5usUkCIIgCILDSKdGEATR8LjRqP09gJuUbe8D8A1N04YBfEP/ThAEQRBEDSCNGkEQRONTVFDTNO27AMaUza8E8LD++WEAd3hcLoIgCIIgHCA5jSAIovEp10etQ9O0kwCg/2/3rkgEQRAEQdgR0CU0ivpIEATR+ISq+0IhMwAADXJJREFUfQHG2FsBvBUA+vv7q305giAIgmhYrh9sw9m5xbUuBkEQBFEDytWonWaMdQGA/n/EaUdN0z6tado+TdP2tbW1lXk5giAIgiCaIiEMZhJrXQyCIAiiBpQrqH0VwD3653sAfMWb4hAEQRAEQRAEQRBuwvN/AcAPAWxhjB1njN0H4GMAbmCMPQ/gBv07QRAEQRAEQRAE4QFFfdQ0TXudw0/XeVwWgiAIgiAIgiAIAuWbPhIEQRAEQRAEQRBVggQ1giAIgiAIgiAIn0GCGkEQBEEQBEEQhM8gQY0gCIIgCIIgCMJnkKBGEARBEARBEAThM0hQIwiCIAiCIAiC8BkkqBEEQRAEQRAEQfgMpmla7S7G2BSA54RNGQATZZ7Oy2NbAZyt8TX9dqxdHZR7Xb/fqwi/73oqs9fXdNv+vb5uLY51c5zT/dfbvVZybCltwKtr+ulYGgPW7xigHlvOu9Ao9eTm3v3aj3t5bL3OCyo5di3av5+PrcW8YIumaamiR2maVrM/AI8q3z9dwbk8O1YtVy2u6bdj7eqg3Ov6/V7t7rueyuz1Nd22/0atJ6f7r7d7rbCeXLcBP5TX62NpDFi/Y4B6bDnvQqPUk5t792s/7uWx9Tov8KKOa9n+/XxsLeYFbut6rU0f/63Ojq238q7VsfVW3no8tt7Ku1bH1lt51/LYtbhmvR1bb+Vdq2PrrbxrdWy9lXetjq238tbjsfVW3rU6tubXrLXp46Oapu2r2QVd4tdy1ZL1Wgfr9b5F1nsdrPf7B6gO1vv9A1QHnPVcD+v53kXWcz2s53sXqUU9uL1GrTVqn67x9dzi13LVkvVaB+v1vkXWex2s9/sHqA7W+/0DVAec9VwP6/neRdZzPaznexepRT24ukZNNWoEQRAEQRAEQRBEcdbaR40gCIIgCIIgCIJQIEGNIAiCIAiCIAjCZ6wrQY0xNr3WZVgrGGMrjLEnhL/BAvtezRj7Wu1KVx0YYxpj7HPC9xBj7Ewj3Fs5MMbu1Otk61qXpRbQ87eynvtATrE6YIx9mzHWkM70660PsIMx9tuMsWfY/2vv3oOuqso4jn9/4RVR8j5eULQBnSS8JYzGKJg2ajZeS4hJSTMvqanZZczSbDTHvOIlL4ipY6SOmtioQIahUYqgvogaGF4gHZEwFS8o9vTHWq8cXt/zJnDOPufs9/eZYd5z1t7nzHP2Pqy9nr3WWUtqy9fCwY2OqUiStpR0j6Q5kv4p6XJJa3Sx/6mSehYZYz3l7//FFc/PkHROA0MqVEVbcJakpySdLqlb5QKVWuGa2G1PTjf0XkTsVPHvxUYHVIB3gAGS1s7P9wX+tSJvIGm1mkfVOCOAR4DhK/IiST3qE07drfL5NyuZlaoDykLS7sCBwC4RMRDYB5jX2KiKI0nAXcAfIqIf0B/oBZzXxctOBUqTqAFLgEMlbdToQBqkvS24A+maeABwdoNjsi50u0RNUi9JD0qaIWmmpINyeV9Jz0q6Pt9pmFjRwCslST0k/VrStHx38biKzetJulvSM5KuaeE7LvcDX82PRwDj2jdIGiRpqqQn8t/tcvkoSXdIuheYWHzItSepF/Al4BhyIy33nE7p7DxLWizpXEmPArs3LvJVtjLn/2FJO1Xs91dJAwuNuo469phLulLSqPz4RUm/qKgfS9nz0tUxKKsu6oBq34UDJD0n6RFJo0vSE70ZsDAilgBExMKIeEXSrpL+Imm6pAmSNoOPe1cvy/XD05IGNTT6Vbc38H5E3AgQER8BpwFHS1pH0kX5/32bpJMlnQJsDkyWNLmBcdfSUtJse6d13CBp69w+bMt/t5LUO9eL7dfGnpLmSVq96MBrLSIWAN8FTlJStU0o6Uf5u/GUpAsaF3XtNXte0KqN71XxPnBIROwCDAMuzneZAPoBV+U7Df8BDmtQjPWwtpYNe7w7lx0DvBkRuwG7AcdK2iZvGwT8APgC8Dng0MIjro3fA8MlrQUMBB6t2PYcsGdE7Az8HDi/YtvuwFERsXdhkdbXwcADETEbWCRpl1xe7TyvAzwdEYMj4pHCo62dlTn/Y4BRAJL6A2tGRFthETfewlw//gY4o9HBWM1UqwM+If9/uRbYPyKGABsXFGO9TQT6SJot6WpJe+UG9xXA4RGxKzCW5XuY1omIPYAT87ZWtgMwvbIgIt4CXga+A2wD7Jx7G2+NiNHAK8CwiBhWdLB1dBUwUlLvDuVXAje3f35gdES8CTwF7JX3+RowISI+LCzaOoqIuaRcYBOqtAkl7U+qPwZHxI7AhQ0LuD6aOi/ojomagPMltQF/ArYANs3bXoiIJ/Pj6UDf4sOrm8qhj4fksq8AR0p6ktSA3ZD0pQR4LCLm5jtu44AhxYe86nIDuy+pN+W+Dpt7A3dIehq4lHQRazcpIhYVEmQxRpCSFvLfEflxtfP8EXBnsSHW3kqe/zuAA3MD7mjgt4UE2zzuyn/LVgd2d9XqgM5sD8yNiBfy83Fd7NsyImIxsCupF+F14DbgOGAAMClfC88Ctqx42bj82imkkSafLTTo2hLQ2ZpMAvYEromIpQAlu/4tJyenNwOndNi0O/C7/PgWll0PbwOOyI+H5+dl0p6UVGsT7gPcGBHvQim/G02dF5Tp9zef1kjS3cFdI+JDSS8Ca+VtSyr2+wgo9dBH0pfz5IiYsFyhNJRPVuatvODeeOAiYCip4mn3S2ByRByiNLnKQxXb3ikotrqTtCFpyMsASQH0IJ3P+6h+nt/PyVsZrND5j4h3JU0CDgK+AZRtYomlLH+Tbq0O29vrwY8o7zXi/x2DUumiDhhP58dBlFSu1x4CHpI0E/geMCsiqg3xLtO1cBYdegQkrQf0AebS2p9tRV0GzABu7GKf9uMxHviVpA1Iif6f6xxbYSRtS6rrF1C9Tbgf5f5uNHVe0B171HoDC/LJGAZs3eiAGmgCcEL7WGtJ/SWtk7cNyl3enyHdSWrl4W9jgXMjYmaH8t4sm1xiVKERFetw0nCOrSOib0T0AV4g3S0s03muZmXO/xhgNDCthHcPXwI+L2nNPPTny40OqAG62zGoVgdA58fhOWBbLZsd+AhKQNJ2kvpVFO0EPAtsrDTRCJJWl1Q5uuKIXD6ENCzszcICrr0HgZ6SjoSPJ4q6mDRqYCJwvPIEWjkpAXgbWLf4UOsr1+u3k4b7tZvKsol2RpKvh7kn9jHgcuCPZbmJKWlj4BrgyogIqrcJJ5J+x9gzl29Q7T1bVFPnBWW9W/oJufJZQhp3fK+kx4EnSRek7moMqRt3Rh6P+zppHDLA34ALSL9dmgLc3dkbtIKImE+qYDu6ELhJ0umU6A5ZJ0aQzmWlO4ETKNF5rmZlzn9ETJf0Fl3fbW0p7XVgRMyTdDvQBswBnmhsZMXpxsegWh3wTVJjdbnjEBHvSToReEDSQlIjtQx6AVfk4YtLgedJwyCvA0bnZHU1Um/LrPyaNyRNBdYjDYVuWRERkg4Brpb0M9LN+vuAM0m9Bf2BNkkfAteTfrN1HXC/pFdL9js1SEnqSRXPTwHGSvohqT307Yptt5GGxQ8tLLr6WDsPbVyd9H/gFuCSvK3TNmFEPKA0wdbjkj5g2XempbVKXqCURJefpB2B6yOi1WdtMquJPMT1jIg4sNGxNBtJm5OGR20fEf9tcDg14TrQx2BFSOoVEYtzg+0qYE5EXNrouIok6SFSHfl4o2Mxs9pqletBtxj6KOl40g+Cz2p0LGbW3PKwoEeBn5YoSev2daCPwQo7Nt95n0UaGnRtg+MxM6uJVroedJseNTMzMzMzs1ZRyh41SX0kTVZaqG6WpO/n8g0kTZI0J/9dP5ePVFrcr01pYcsdK95rP0n/kPS8pJ806jOZmZmZmdmKqXFeMFbSAqWlfeofexl71CRtBmwWETMkrUta++Bg0sxuiyLigpx0rR8RP5a0B/BsRLyhtLDfORExOM+INBvYF5gPTANGRMQzjfhcZmZmZmb26dUqL8jvtSewmDST7oB6x17KHrWIeDUiZuTHb5Om392CtC7STXm3m8gzHEbE1Ih4I5f/nWWLXQ4Cns8LAn9AWiT0oGI+hZmZmZmZrYoa5gVExBSgsGV7SpmoVcrrwOxMmhxg04h4FdJJAzbp5CXHAPfnx1sA8yq2zc9lZmZmZmbWQlYxLyhcqddRk9SLtFbMqRHxVppluMv9h5FOyJD2ok52K99YUTMzMzOzEqtBXlC40vao5ZXV7wRujYi7cvFreZxq+3jVBRX7DyQt9ndQRPw7F88H+lS87ZbAK/WO3czMzMzMaqNGeUHhSpmo5QU6byD9EPCSik3jgaPy46OAe/L+WwF3Ad+KiNkV+08D+knaRtIawPD8HmZmZmZm1uRqmBcUrqyzPg4BHgZmAu0L1p5JGo96O7AV8DLw9YhYJGkMcBjwUt53aUR8Mb/XAcBlQA9gbEScV9gHMTMzMzOzlVbjvGAcMBTYCHgNODsibqhb7GVM1MzMzMzMzFpZKYc+mpmZmZmZtTInamZmZmZmZk3GiZqZmZmZmVmTcaJmZmZmZmbWZJyomZmZmZmZNRknamZmZmZmZk3GiZqZmZmZmVmTcaJmZmZmZmbWZP4Hy8saEzuIqMcAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3AAAAFDCAYAAAB7m+z9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsnXeYJEd5/7+zOd3mvb29pFPOQggFosFgggwIGzDGsg02YBthgwALJMMPgSSQrGQQCCGCyTIgkREoBzhJp9PlfHu6u023eWd2cu7u3x8z1fNWd3VPz0zP7OxsfZ5nn+2Z6VBdXV1Vb73Jo2maBolEIpFIJBKJRCKRVD11S10AiUQikUgkEolEIpE4QwpwEolEIpFIJBKJRLJMkAKcRCKRSCQSiUQikSwTpAAnkUgkEolEIpFIJMsEKcBJJBKJRCKRSCQSyTJBCnASiUQikUgkEolEskyQApxEIpFIJBKJRCKRLBOkACeRSCQSiUQikUgkywQpwEkkEolEIpFIJBLJMkEKcBKJRCKRSCQSiUSyTJACnEQikUgkEolEIpEsE6QAJ5FIJBKJRCKRSCTLBCnASSQSiUQikUgkEskyoWGpC7C4GIGqaktdjKqkr68DXm94qYtRFci6sEfWjxhZL/bI+hEj68UeWT/2yPoRI+vFHlk/YlZCvdTVedDT017QMY4EuEQigZtvvhlbtmxBc3MzLrzwQtx0000YGRnBddddB7/fj+7ubtx6663YtGlTQQVQVU0KcDbIuskh68IeWT9iZL3YI+tHjKwXe2T92CPrR4ysF3tk/YiR9WLGkQB3++23o7m5GY888gg8Hg8WFhYAAJ///Odx5ZVX4h3veAd+85vf4Prrr8cPf/jDshZYIpFIJBKJRCKRSFYqeX3gIpEIfv3rX+Pqq6+Gx+MBAPT398Pr9eLgwYN429veBgB429vehoMHD8Ln85W3xBKJRCKRSCQSiUSyQsmrgZuYmEB3dzfuvvtubN26Fe3t7bj66qvR0tKCwcFB1NfXAwDq6+uxevVqTE9Po7e3t+wFl0gkEolEIpFIJJKVRl4BLp1OY2JiAueccw6uvfZa7NmzBx/+8Idx1113uVKAvr4OV85TqwwMrFrqIlQNsi7skfUjRtaLPbJ+xMh6sUfWjz2yfsTIerFH1o8YWS9m8gpwa9euRUNDg24q+ZKXvAQ9PT1oaWnB7OwsFEVBfX09FEXB3NwchoaGCiqA1xuWzokWDAyswvx8aKmLURXIurBH1o8YWS/2yPoRI+vFHlk/9sj6ESPrxR5ZP2JWQr3U1XkKVmjl9YHr7e3FZZddhmeffRYAMDIyAq/Xi02bNuHss8/Ggw8+CAB48MEHcfbZZ0vzSYlEIpFIJBKJRCIpE46iUN5www34zGc+g1tvvRUNDQ247bbb0NnZiS984Qu47rrrcM8996CzsxO33nprucsrkUgkEolEIpFIJCsWRwLchg0b8KMf/cj0/amnnooHHnjA9UJJJBKJRCKRSCQSicRMXhNKiURSvSRVFd5keqmLIZFIJBKJRCKpEI40cBKJpDrZG4whpmo4U5OBgCQSiUQikUhWAlIDJ5EsY2LZCK5SfJNIJBKJRCJZGUgBTiKpAaQCTiKRSCQSiWRlIAU4iaQGkPKbRCKRSCQSycpACnASSU0gRTiJRCKRSCSSlYAU4CSSGkCaUEokEolEIpGsDKQAJ5HUAFJ+k0gkEolEIlkZSAFOIqkBpAZOIpFIJNXMn8a9mIwnl7oYEklNIAU4iaQG0KQOTiKRSCRVzEIsiePRJDS54iiRlIwU4CSSGkAOhxKJRCJZDqSkACeRlIwU4CSSWkCOhxKJRCKpUqjWTcpvEknpSAFOIqkB5HgokUgkkuWAHK8kktKRApxEUgNInwKJRCKRVCtyhJJI3EUKcJKKoGgakqq61MWoWeTgKJFIJJJqRbPYlkgkxSEFOElF2BOMYas/utTFqFnkgCiRSCTVj6ZpmE2koEqrCYlEUgJSgJNUhIgitW9uw5lNyrmARCKRVD3zyTSORBKYjKeWuigVRQ5XEom7SAFOIlmmUJFY5oGTSCSS6iepZvrqlRZKf2XdrURSfqQAJyk7MsBGeVDliqZEIpEsK9jC20qefMk5gURSOiu5D5FUCEX21WWBat3keCiRSKqVmKIinFaWuhhVARNePILfTsSSmEnUpmmltBKRSICEqiKtuvMuSAFOUnaSUrooO7KGJRJJtbI9EMWuYGypi1EVsL7a4zGLcCOxJF6MJCpboCVAjleSlcoL/ii2B9wJ6CcFOEnZkeYS5YELyyzrWCKRSKoeZkIp0sDVMnKEkkgyuOX/KgU4SUWRgoZ7yKqUSCSS5QXrt+tWmAQno1BKJO4iBThJ2ZGddfmRdSyRSCTVjwrmA7fCJDiJZJkQSivLQtkgBbgaYiGZhlKFjU6z2JaUBm9CWf7rqZqGw+E44jKnn0QicZkti2GMx5JLXYyyo/vALWkpKo+cB0iWAwlVxe5gDMPLwBdVCnA1Qiit4FA4jmPR6m50suMuD5WI8BVIK5hPpleEk71EInEH1eHqUloDxlaCAJetDjsBzmmdLSc0yw8SSekkVRVJtfTFZRY1fT6ZLvlc5UYKcDVCOtvhJ6owZn/1lag2qHS9NmSjpqVrcHIhkUjKQ1p2Fxya4b+IWq+zGr89yRKw1R/FVr870R2XC1KAqxGqek5NnZeruZzLjEqbULLOwq0IShKJpPaxM+uPKyp2B6JIupQXaTnAtGt2d1yNrhClshx8iiSS5dROpQBXYwhSy+jEFBXHIom8DTSYVlw14ZC272WCPKNK1Cu7hltJKCXVzb5gDAdCMneXpDTsNPaT8RRCioq5JUxerWhaRa0KnPTatW7lUNt3J1nOVKptujHHlgJcjeDEMXo4HMdUIoWwTRCKuKJiTzDmqp+T7KzLQ6XzwLErKGW/kqQa8KcV+FKKK34FkpWLnTBSnx2wlrKFPb8YwZbFSMWu58yEsvZGTc3mk0RSLVRqXuXGOrgU4FYQTgYORiDt5jSdrjnKjrscyFqVlItYFfrVSpYPdnOguqzJyFKaDFZaeGQTN9tbrvFXrsZvT7KELJcAQIoLb4EU4GoEJxo4/TebdsP2KcVMbi6Rgo9E8JEmlOWB1qWiangxEkeijNqSZdIvSlxGLrpISsGu9bAJyEpaI3DyPtViddTiPUmqj1IDAFUq4bwbfZ4U4FYQzD/OycJfKfq34UgCB8Jx+ws4QNM0zCVSy2ZFpdLQWhkNRDGTSGMyVj5fEvkUJBKJUzRNw6FQDP6U9WhSx0woV1Afz251pSngZBoBSSUoVZtfToUDNcl0w+qgoeQzSKoCJ02BadcqvaJe7IpGMK1iOJJAIK1g0PVS1QCkMgOJjMazuX6lpYeVlBs515IUgwZgIaXAbjlQN6Gkx2kaPHbRuJY5zEZixb1XgnmApmlIaRqa6qQuQeIOpfqPmqJ7u9gVuS0cyremVsg2WruBz5NtiUu58lfI+dmdzCeqP6HiUkDrMpENTNNYxomPNKVbocjHLikCJ82GTUCoBq7WgyQ5qZdafOVE9+RNKdjqjyJgo6WVSAqh9ABAFYruLU0oJYxC2kKlrVWKvZyMelg45Xy09NwpVcOhcBwpmVKg5pFPWFJuqD/IeCyJQ1Ym+DWE8b2i5lW19s6lVU2ofWA+27PJpUsjIaktivWBS6sa/CnF0E7dfROlBk5ii0j/omgaFE2zzRHHKMfAUWyjrbVBzG1EnUul6mwilsRCMo3ZJczfJKkM8j2UFEMhC4VUAzcZT2EhWXmri0ol8GXXMV6v0mlhKoU3mcYWfwQhQWTrpuykJCg1cBKXKPbdORyJY18oxi1Ku+4D5/L5pA9cjWAXhXLLYgQagN7Gem7fpaCQl0ua7NkjrJ0yVhl9dInsh6a62vVVkUgkxVNIV1QN03eX3V0ssYoTXKujXTAruC2mzJGp2f9UDQmskqVH1TR4YO9SZCSedUNJUgHO5WbJx4OQaQQkDjAKd+UKNJ9UVeFKWtHNVPbpBVOpKmPJnRtqONiAJEMgpeBoJLHUxZAsMwrx9aqGKJSVyge30qJQskW+pDS3l1QADcCzixHsCsYKOo7NZdIumjIH0wpGown9vG6neZIauBqBtTkneeDstGCcHX6B0cB2BKJi++MiXwjZ3dsjeoyV8oGTg/HKYTJrJntqW1NNRweUuI3zPkKUE6nS0SjVCqngjNon/fsa7VJZYK2EwDStRm9ZUgVElMKEpYY6D6Dw2uBS2+f+YAwKgA2tTdjhjyLpsp+rFOBqBL0xkAFI0zR+VTHbkZZrpdHKeVT6wFWS8tWaSICTz2jloAKoX+pCSJYNhWjgRDmRKt3eNLdjhhuIKipCacXSdMrtAAfVgq5lJd8tJNNIKCoapQm+xGWKfXeYBs5NH7iGOg8UVUNcUTnhzS2kAFcjqNmmRrvD49EkpkiQiZwGrjJlKnUFtZYGsXIgVHZW6NqVMjeSVA+qBsg0gxKnOBpnsvuI+pNytzejJUq5+7QdgSiAnFBqrB8q2BU6RnuTaTTVebCqofqWWES3spBMYwHA6e3NlvtIJJWE9TWcdVGJk+XmOg8Sqoa4wGLJjXm4IwHu9a9/PZqamtDcnHnZrrnmGrzmNa/B7t27cf311yORSGDdunW4/fbb0dfXV3qpqoAXI3F0NdRjdXPjUhfFEaLGMGWIEJjzgbMxoTRslzJ+suP56FqFHS8xk1RVzCfTaK5w8tOlFBglS49asTAPklrFuKhn138omobGMrU3VdPw7GIEG1ubuO8qQTkSeR/Mpl14TW+Hi2d1B7tqTRRo5uaEuKJiOpHCSa1NeqJ4ycqh2NdY18C5aObYUleHIFQEBBFY3cCxBu6rX/0qzjjjDP2zpmn41Kc+hVtuuQUXX3wx7rnnHtxxxx245ZZbylLQSjOTSGMmkV4+Alz2vzMfuDIXJosKc5ScgkwoDf54kgwTsRSmEin0N5lf33JWk3wGKxvp9igphFKbSzk1Yuzc47FkRa5HsZoe8ountfOy2d2J7qfk4u1OxjPjY2t9HdYsk/mbpHpIumlCmRUKRSk03GjyRS/h79u3D83Nzbj44osBAO9973vx8MMPu1AkSTHkGoO1CMcWo+wGKjft8NmKphvnrJ3hrHSas34DxlxJj91/H+665QZ4vd6KlUUKdSuHaogUKFk+ONHY27WosrY3wakrvUBhF8Sklt40O2E0VgZf6pasLZxvCXIJSpaeUueYdH7sVhdUrqBvjjVw11xzDTRNw8te9jJ88pOfxPT0NNauXav/3tvbC1VV4ff70d3dXZbCSqxxooHT962UqYjGrsdd3fHxxZpe1joiv++9Wzbj3us/BQBo0RTcdNN/67/FFBUeAC31pZlcShPKlY30e5QUgl3foGlsWm+9lygypVuITm3nWlAJVmJfWo65CBseZaTklUmx2utyRPVmx4vaYsWiUN53330YGhpCMpnEl770Jdx444144xvf6MLlgb6+6rPZBgD4wgCAgYFVS1qMgYFViKYUTIZiON3Gvn1uPgTEkmhpbcyVOXsPjJaWJiCRRktbk+V91ceSQDZ/Rl9fBxodTvoVVTNdr7u3HTum/Zyde1dXGwayjsv5CPujQDb/lAptyZ9FtRBcjADRJPfd/37x/+nb3/zmPbj33q/rn385PA0AeOeZQ0Vfc+dMAFFBD7eqsxUDna1Fn7cSyHZjj2X9GN7nzq5W9Lc5e3drAdlu7MlXP02JFJAN3MHo61+FhjoPNk94MR9N4oLVnaa+jLGqq9XxWFEoibQK+CPcd52drRjoaHHtGqb6MbxPzc2N3D6hZFqvr7b2ZgwU4s9WJfMVEYu+sOUz9tTXAaoCeNwre8CXGR8bG+ursj7ysRzLXAny1kv2HWhrb9bbWyF1OaWqgCFuRFd3KwZKGPMms+cULX52drZgYFVpcydHAtzQUGbi19TUhCuvvBJXXXUV3ve+92Fqakrfx+fzwePxFKx983rDUF1cKZlPptFeX4e2ErUN+vnmQ66cpxgGBlZhfj6E7f4IYqqGtpSCJovAFZFsssBYLGlZ5lg8md3Xeh+aiHthIZzJjeGApCBB4YI3DF+cfyGeO+HD2pZGnOzgpQiRYzWtfM9iOBzHXDJt6wCuaRqCaRVdjUsf5SsU5wdDRVFw4tiL3Heiuiql/kYNEzFGMBjDfKJ6TVXYOyQRU0j9+PxRaBHxRKzWkO3GHif1Exb4fSwshFDv8WA+O8EKZ4NviFj0R1FnMfEvFdF4tRiIoT6WEuxdOE7qJxZPcftEyUJnOJzAfBEqyGpss+EY/wx9szPY+acn8NLX/Dma164DIB7fF5JpHArHcUlXW0HWI6Hs9VJppSrrww7Z74gppF5C4YS+XUhdRgXv/uYJH3ob63FukYJWNGbdfwWCcTTFc3OnujpPwQqtvG9FNBpFKJSpBE3T8Ic//AFnn302zjvvPMTjcWzfvh0A8NOf/hSXX355QRd3G03TcDgcx+6geLJZyHmqiZia30BSM/wX7sNCNtvsVKy/mmisSQnqUQVwIu5skOTDKluXJqVqOBZJFO0zMZe1lbe7xlQihb2hWFXa1e/bstn0XSQSEewpkRSPtEiSFEKpJtei3HDlpNI+nmYfuNp8wehdqaqKm/7l7/GNz30Kn7jiDXjm4Qctj5vLakPCBUaqLMSdRFJ7FP8ei4/zpfJHkNyyGMaYjbAmvlzp73teDZzX68VHP/pRKIoCVVVx6qmn4vOf/zzq6upw22234fOf/zyXRmApYYmkS7Wd5zocTauiULTWYbydtIVc+GL3BgpFyyQpFOV7i5f4ILjnYLNfIK1gKpHCYHMDOkrIg6NoQIOgeiNpBZF0pgRxwcptpTE+65997U7TPmNjozjnnHPLX5ayX0FSLVR6Qi2pPWbiKXQTKwa7JlXOnlbsA1dZQmkFRyJxnN7WDI/HU7uJvMlDHt61DeNHDgEAIsEAbvv4v+GbT21H3+Aa6+MLvV4xhZTUDMUuNBbbblKqhrSWiWh7EklLYnXO4wf34flH/4D3vedvMXDeeUVeNUNeAW7Dhg349a9/Lfztoosuwu9+97uSCuAmTOMjmoQXAq30uKrBAw2tLplkloJtxC7mEm43IGr59+GvZy0wMobDcXhTCi4U+EElShB2fMk0YkQAdHRfRV8tQ1LT0GC435iiYmfWJ9CNa1gxn0zjeCSBS7rbClowCC56cWTPDtP3o6MjJgGu2MTqtitacrRcMdT6o05rGmYTKayVocddQdRtjMSSQMz8vYhKR6Gs9PpEXNUQT6RxcmszGg3dsppdGC018FQ1QKt125OPcr+pqorjB/eh1yDAxYjWrVDNZKU1maG0gplECqdlBXHJ0lJsMKJiW01YyWjomkXuRoaTRsMh3PiB9yLkX8TuJx/Glme2FXnVDMu/dyCksqJ3Y4kvEX3/dwai2G7h/1NxHLQw+7DM2f+2xxfWjFmCQtHqfClRoA6E45gmDqUpRbUc0Evtrll7EZXXl+JNJstlRnY0EkdS0xxpj+kuocVF4T6joyOm74oVp52mnZDUDqJJUDmjAlYDxyIJHI8m4S9T0tWVhpPm4mS8Kgdi887yXdBOqBAtQE7EU9gWiBYsxEYVFTMJd/z43ILewdjwIdPvk8ePcp9jiortgSi8DkzX8l0vkFKQLrNAtz8Uw0wirVuAuU1azQjzEmcU3W8UeRyzzhLF3TCe8ulfP4CQPzNnO3ZkGLGYw9UsC2pLgGMaOIeBN6wQmTJUg316IYOdqONnKxNOBwUne3myGivRS5M0XMe/MI9vfv5a/PjOm6EohXXOT4wtYFdQ3NjF6Qqc05htLymBxjCU5r8rVytg91Boy40EA8LvjwsEuGIHMqc+k9WMpmk4HkkgIifnQnzJNPaHYo4mmrUKGz+kr587lCrAVfoxlPO5202/WY8ker0KXTTZFYjixUiiKuYrDFqSE8eOmH4/cZwPwBUw9NHFmlCmVA17QzEM2wTKKYUj4TiORxP6HKhcCwDbA1FsqxYlwjKAvmuHwnHHY36xT4/NqxocKI62P/UY93lubrbIq2aoKQEu6ZYGTvAoRQE5kqpa9gkh7Yh3BaN4zhCKWN/P8F80GDkZoAptxHU2ycFT5IKqquLmD78Pj/7sR/jVt+/Gb3/7K+syWAw+UYtVqPwZhezRNXCC67JvWItye2A8FI7jaCRO/BPzQ/eJhILCfUQauHSRMxT7iXv1TBTsSGkaJhMp7AuVZzBf7hwIx7FIVrxFT7XW14Cl8ZPb5O8b7PqWcvYsYg1c+bDzH1UEGjgnxwHmOUgh40ilYLcQDYewMD1l+n169Dj3OVLioinbn9WKcRHWLWaTaUzGU7m5QVmuIp57SqyhfcpCMo3hSMJm7xzGWn74Jz/AF//l73F45wtFHW/8Lp1Kmc41OysFOJ1UAZKwFVFFbEGbEkx+dwdjnH9UOeAagJbrlOz2E30GCu/cnfQbrKbFGr8cxw/sw7H9e/TPu3bttL6uw/Lp1ymxf6vP3oST1U63h4KFZBrTJYThpxq4dSefqm9PTZ4w7VusiUctmFCy5ulBdWjTqw39PbbZp9Y1cBJ3MbaW4V3bcdVfvBxf/Nd/QDqVEu5TKSq9QCEao1LJJOYmT5QkwL3gjwrnINWkRWZFmZuc0L+jvmLe2Rluf2OgsEK7HeP+5TSNBQB2K7J7rA6M73Exj2V6bATfufEz2LX5KXz5Pz+CdNp6jubUSm/8yCEkDCaTs7Mz0DQN84lUUfOSmhLg2ASjWPEtmFKwIxDFpCDMvUg7k8j2ksVqNpzgXNjiBwFRp+VoAlbgrbC6Fgk/tEGOHTnI/XbcYPdOKXQgtbvnYs7Df8m3qXL30YWen2rg1mw4Sd8Oh835T4qNIlgLAg9rU0lNwzOLEWGOqpUKt4LPzJEF+9W6Bk7iLsZu4+uf/STmToxj15+exFO/uh9AHvPsSof1L+P1jGc+fnAfPvLGV+CqN1yKb93zVYu98i8qWv2sVNHSGhuXA94F/btTzr1A316cm3W17nMTatdOaUul5gYSa2j7cSMK5fanHtPPuTA9hSeffEx8EOj80/6csycmTL/Pzk5jPpnG4UgCM0Us5NeUAGdXkU5gnZ5IgBNp4Fgw5Fg1hJZn/+18WAz72p1HtJ+iadjmjyBATK3YSppIb0lrxei8fOyYtQBXaMfrVu2L6k43oSzDKpv4WeW/AGdCGchp4PqH1unb4ZBZgCu2nuxEneUi2xmLGaxRAc6bTGO7P+J4QjQWyKzgO1kEqaZVfbcJpJSaD9Ky1NBgFTv++DgA+4hxZTWhtOnry3I9sh3wLuDad18O3+w0AOAnP/yu5fXtFt3s/VWLKWV5YEWhAtyajSehrWMVACCVTCDk91neT6ELszmXiuz/MteFFOCqC6OiwvHiANmP9U+MF17Ymv/wPOdcmBIJcLO6D51ISZSP2hLgyvAGsZQEIjtkFuI3VsYIQY41cGQ7klYQFcxGCk0jYCSiqIirGo5HczbFdho4OoiMHznM/TY2NmoZyKTQMLBG7WOhOBFoc520O40srWpIFV3g3IGRUE6AGxhaq2+HwyGoRlOUIi9XK0FMuM9LVI5yczSSQEzVHA8GE0HeJ9D+sNqstcVUGntDMVPwhHKhahrGYsmyWm5UA/TuogaLgHg0ktmniqqgrFEvyY0+9/DvuL55cmIcs7OzwrqwW5NP2BS4msydWVGoANfV28+lDvDNzlj2LoXeCdvfzpqgHNSCpcpyhdZ8sbNxdo5oOISD257nfjt8+KD5AHacxv+3Kld4xuz/OTs7A5QQBKe2BDjDfzdgOblE/kMs74NdR1oyBS4eaAB2BmPYFzLbxRdqQWncnWkc6Qti5wNHG+TU6DHut3Q6DZ/PJy5DsRq4YlXnDjp6to8bonpCVbHFH8Fo1Oxc6+QWOGE9mDOh7OzuQUtbm/45mp0k6cdJE0qdGrglIXpQIYf35zeEHLfT0tdolRVlulIKs4k0xmNJnIgnK3rdSkPby4ljfKTBiaOZaITG99I7O42H7vseZibGaiqICT33zPio6fcXXtjC7ZNKJvD7H34Hjz/8e8tz2kUVdmMpQsnmRSy1/2dH+73z+ndd/QPoWT2of/YSAa7U52Acz8vdb+WskCTVgEkDZ/h9NpGCX5Cigu13aMcLUAw+b4cPm9NfGI+zamdt9XW4rLsNC1PmuASzszMlBc+qMQGuxFfVrlcXdGKVUJ27eW49XHGRx7OOipp1ONHAJeIxeGemTb/Pz88JryPqCDVNszaxcGmlzfbxG65VCvFsZc0mS584Ug1ce2cXWttX6Z9DAjPKYrA1oXTlCuXHKNAsl3IXCltwcroCn1QstLSi1cQarbRkhU3gI9k6p8G2/Kl0VWlN3IDezbxh8uKfn8Pi/Jzpnm+56v34zk2fxef+/q8RCAYxEUtWrF4SqooTsaTrC1aaxs9MpsdGTPs8/jif4Pq7X7oe3735elz9oX/E3r27xee1uaYbdTYSTeBIJFFyXkRWksACEeB6+zGwdr3+mdaJKQhJsQuzhv/lIhehuswXklhSiAbuSCTBKTg0TYMvmdbPMSN4P8fHxxCPW0WwZhZgIiVGpn001dVhVBD3YXZ2tiT3nJoS4BhumtI56QSq4b0trLPSEFVUTOZZAbY6F50Ms8YnMntk38yOjwnPYyXAGQfQY/v34l9fdzGuffflwuAchZpcWpVTqAI3aN7ceNa2fh8FakmpD1xHZydaOzr0z0YBrtiy18LE0ljny/+OxLAOveik7TbmyLVaZ+aodeWFmdw3ZdWlcUXFvlAcLzoMd71sIBW7KMh3NHr4ANdOAz4vRg7uBwD45mbwrXu/htFYErNl0JCKnrEvpWAklnTdlPaZxQj2kwmjSAP35JOP62Xyzkzh0Z/9SP9ty5ZnTftv9oVxzKa9uGEUFGOrsi6pxAI+r/5Vd38/TjrjbP3z+JFDlmNfsUHNKkUugm+t9pDLi0IXa0eiSS6NDo2WSvGR9is6v1X79QAIh8MYO37M9Nvs7HRJiqCaEuBKnWeKJy1OZtTle3Gdnzk78XIoAOwORHE8al5t5D5Z/MZr4JhWzqpE4hXifRN8AAAgAElEQVRHwLkG7ivXfAS+2WkcO7AX3/ve/5qvU8A4k1BV7AhEESeaB7tnbPzFDWHG6Sm8yTT8KfvJC41C2dHZpTuGA0DIkCPOzYUN42+qpuHFSLzi2gyn1Li7kQ4zoSw64miRvy1nKn1fxqBXuoaixgLr0Hr1zc2Yfj+6b7fBT5o3U/r5PV/BHR//N0Ty9IFukUzEoWka4mXoLJgLhqZpmBNGo5vR++vnHn6Q+83KkiJk43uvABgOx7HdH7HcJx9MIKkrOa9uBk4D1zeAjWecpX8eGz5kuQhdqEa00ib/ugaloleVUHgNnN0Cufm3aYMbweyEWOHg9YoFOFqGqKLqf8/6wnpfcuDAfv3a6045Tbdm83q9SCeTpntwSm0JcOy/myFpHQgH5X1xBZotFyJoFWVOmb2uUx84xvS4lQA3L/zeeKopkujzT396yrR/IdqxuUQaUUXFVMIcaVQsyLmvuXEq4hwMx/MmnqY+cB2dXbYauGKxi87H2qI3mcZMIo3j0er06zH7wNXmcFsHZkKZeSdF0XPtsHP8r80aq/x9GYVr1ofa+TQtR+jdiDRwe5/bzPW5Y4ZAVwCw5eHf4cnHHnK/bIaq3vr4Q/inl5+La999OYKR4oUe83X4CwUXfUglM5qzto5VWHfKafpvE2OjAIBtTzzCHWNM9utkEVHVNMwl04iVIIyyfr+uSPktpWqIk7y6nA9cXz9OOvMc/fPE0WGklYygbhyHl4sGrsZe3+UFqXuTBo58Fs1ljOsTNNx/S1u7vu0lQXhE549nlQO7g1FMx1NQkRHoPAD27cuZQZ92/oXo6h/QPy9kFzZWvABXKqIKrEanfrvrOsn/Qvc4EU9hjATT0Cz2s7quR1/xt77e9GhOgOvq69e3rTVwuZP5F3ghr7W11bR/IZNxZraUJG+5nZDupA4KxW4AdnJ+ug/1gTNr4AwmlEUW3okW2mr1tFrI59jshEha0f2XqpV6ooE7GI7jeX8EiqY51shpNk+yVoXepe7Hc5YNS1SQCuATCHBH9uxAOBTWP48NiyO9vThsFuxKxVjV377hM0jEYjh2YC9+9uPvu3YdY/CzRaKJ7B1cg0GSu3NiPBOZ+eh+3udtzlB3TtpJ0gUtoijBeCStICgIACFiTzCKbYEoNGT6jgDRYHT19qOrtw/d2YlsIhbDWFaANVJot1PO1yilatjsC2OB+K/rVihlvC5Qu/2vGzidt4oWyaj8ltGQ5zRwp1/wUn07nwkle9cVzTxn2rdvr759yjnno2dgtf55gSWyX/FpBAz/3Tyn3Uk1ZJzQy/GC2QmVov3sOvex4UN4+P++jyCJ/jgWS2Kc5r0r8B5yPjfWx1Gb/7MuukTftvaBEx8LABMTZvMTKmS/4I9gWpDHj8ECByRUakLJ/+fKYlO2YnFyCttVViZwahoiQRLEZNUqLoiJ0V8wrWl5TTLFZTF/97vvfwvvu/RsvOvPL8MxQ4S5asQNP6edwRh2BqKulKdcMHMnBdBt+rf7o9i66EyrUAspIwplqVNM1Gy9ku3F+ZwQwsyH0qkU9rzwnP69MdUMY8rCpMktNE3jyrf5sYddO7dxwuidNQhw6zfqn0+MjWHy+FEkYnwEabMAl7/FuLHQpLvAkcvtDMawRxDhWgTT/qVUDdFQEOlUxjqjpa1Nj5ZM/eD+/M8ugz+ZNvXV1aSBY+bPJ2I5SxONjMflpFb7iVIJpRWMxJz5D4veHQ8R4YKLPsSjmTG+tb0Da08+Vf/NSoATYYwTsXfvHv3zyeecj56BXATWhew8eMVr4Ept4HbH203up+Ip7AvF4XW4MlVqoYT9hC79i+8iEgzg//3DX+PbN34Gt3zyI6bfRatthWifrCZ+6VSK820466U5Ac44MOnnMpSbIlql0wUwTUNC1XBUEJ7fuK/QtMyBBOeGo7KTSbIo76Bxn0Qspoe7bWlpQXNLK1rbcyp/ow/caCyJfaHC/dSMe89PncD3//sLiAQDmBg5jq9+9cslhcKtBCvFwVxfUCHtJ6lpUOAsX2Uhixk1S4UmYrVen7QaqfbltVe8W9/evWUzAEBRFEwcHda//9htX9O3Z8ogwNEVcqN559ixF12bjBsFOB8V4FYPcRq4YyPHcfzgPtM5jAudTgS4Yn1gKaX6e7O+KKKonCVNV1/OfOykM3MCnJJO4/e79gjmHYWVo5yvr12QqFp/n6uV3cGYbaAj2n6YlowKPtREeO7EuL49uGEjOnt69c8LCxYmlILvaPtQFAUvvpjr2zaddQ6ngZsTRGh3Sm0JcDYR1ByeoKjD2MMqR0JvceMQmDdl/1v5URzZsxPR7IR+xzNPY9RgrlJs2XNpBMTX/dNvf4HgYkbj1zMwaNDAWfjAkW2jABcOh5BI8AJaIQk7deGHmlBm/6c1DSPRBHcv5dDAOREmnJjAUPPJnp4eeAA0c3ngxNqigq1rDDf91K/u5z7v3Lm9wBNWnpWWRkCkiXfyjtvtUasWPIUsVJXjgjVarTmrkHQa4cAigIz27aV/9uf6PjMTmQnT/NQJXfPU3T+A08+/kOxTXg3cxLEj3OfFhXkcOmSduNcJ89EEgilFIMDlJmu9g2uwZmNOgBsZG+WEWP1cJgEu//XdMMfN+ckXd7K2+rrs8XwEyq7enBvFa//qb7hj9mYFekqh41U53ydRxEC2XQ4TSs1mLiKxJrTow9bHH0LM4M/K3sd64vhGF59pAJPV63kBziqIiXCOTp7bwvQkktlAJd0Dq9G+qpPTwM1bKDKcUFMCXKkUrIEzfOnGqpcT7C5j1XGPHNrPfd759BPcZ1HkLSfCi13nlUom8MPbb9I/v/5d70U3bbhWPnDkQpGA3/T74iKfAJwNMI46ekEgFnaYN6XgRDyFcWoe4eCUhcJuT6S1stUQGvahAUy6u7sBAK3E6dZKgCtYfjN8Ht7FC2xHjgxjkZXF4TuQUFQsupAHzykrJZF3vgWVfGiahlBaMdVPIhbFgZ3bkE5XNul1Jai0AJezGDBuOGMqnsJmX3gZ+MRkyhfyL+rfdHR1o2f1Gv2zPzuxn5/M5Ykb3HASBtatR119PQBgYXrKsi8rrWTIXttslr9lyzMlnX/zhA97QjFTP07z4fWtGcLg+pwAN3tiHJMCc/RYLMbdf6U0cAxq4VIIjUS1QSNQdvfnBLhNZ56Df7zms/rnAy88Z3r/CjehLN974RHk2SzyNXaESFBUNI2Loi3h0TQNt1z1ftz2Hx/Ep975ZoSIEkDRBTjxsTSFwOp1G9FNNGWzs+ZIutkLmr8i25PEamxo4yYA4JLYMwGumOZTUwJceV+k/CctywqMw+vYlS7gXcD2J/lEoaPDB/jjRdpLByvFtFOhpJIJ/OrbX9cH79a2drzjAx/mOu+FhXmoAnM+Ow0cAPh8vADHxkgnmi27Pdg77SemsOWY3LE7FvUhiqYhrWq6CWWDsKPJ/BYJ5oTb7u7ujAauNaeBi0TEk7xSBDhN07D3uT/xv2sadrz4omnftJbJNyhidzCG/WH7CJtu4kYQk+WEUwthI6G0it3BGMbIIoaiKLjub9+Oj73nbbj6arP59XJnqbWzhV5vLOvvYQyQUW2w4gWJ9qWztw9dfX36Z382shsVbAbWrkdjUzPWZM0LNU0rq5+tV2DCNDJyXLBn4Rif0ewEMdFafxJWEx+4+ckJjL9o1sAB/KKlkyUUV5tG9mR2Zv35CPhy5mcscAkb2i589ev030YO7hcsHBd23XLM/xRNQzCtCOdJ7LtymOlzC83Z0+8PxbCtyn2xlxLvzBSGd+8AAEyPHcfvf/Rd/TeRBo4/NtcXDKxdh16y2DQzMyU8RqyBy21PEwFucMMmAOBMKHUBrojmU5MCXKWON60UVUwD53xSPjp8EB96zYV6g2aMHDIIcKLrOClL9r9xEnTXpz+Gn33tDv3zuZe+Au2dXWhqbtEjJSqKgsXFRRih5xIJcGYNHH+cnT+WWJPKd8rljjRo1072BGPY4o8QLZ35bqw0cB7wYW+j0ajt/TqF7n3/3XcKhW4/eSaapkHTNBwIxbDDYqBJskGvQu+MSQNXoyKcvqBS5P2xhRgaZW38yCHdj/WBB35qMmFe7hjbQrmbpGb4XyisT6h2v05Wj9R8rrOnlzOhY8LdwvSk/l3/2nUAgPWnnaF/N+xyJEr6jBcEE7PxcXfMNo0mlHOTvI9NS1ubLtAo6bRuwuXxeLAmu1oP8AEUnGjX3GwZ7FylRLakPnDd2efPtCDrTz0DDY1NADKCfNAwvi9lEJOEquJAKIZ9wRj2BGNk3DJfryyKA8E5g2k1W4bqfv+XCqMfKZ37iuaItBa9xMS5b3AIvYND+ufpaee+arRvnjH41QHgTCjnspo9qYHL1oBbzTqdSuHn996Fr133cWx/zmybzQb+nNmSSxfmruHsOys2/+6Xwgn39OhxpFPW0RrFZbG+Mr3Crs1PY8vDv+N+H9q4SbeJp07MCwtmPzja+J1p4HhhwEqA8ybTnO8bw07LVo4IdU7y1jm5Dk3i3dPTA3iAFpJmIRoVRx4s+B7IAbueeVq4CzWTOhiO47nFiD7QiATGSue+qtZE3lPxJObLYEparAZOP55s0zyMALBv3x7UEkungbNezbeDWaYtl/lbcJHXwLV3dqG+oQEAEA2HkEzETRo4IDOxZ7AgAIvJtG2U4WLwTpsFuLExdwQ4auqWSib0FX6Px6PfZzfJCcUYWLse/UPrcmX0FijAudg4/GkFk/FkaRo4L9XAZQQ4lrOyobERJ5Gk3iPDfEL3pUwjcDgchy+l6EnTmUksnQuVuiBjh8pdh79CLacdcYqonR8/wAtwY0cOmfbhz5Hb9hENXP+aIV5TNj8ndCHIp4ELETegzt6M9QGfRoD5wBX+QGtLgBNsFXd8hm/dcB1+8pVb8fSv78cn/vFvMDU1KTyOsaQmlMZwxTNTuP/uO/HQfd8Tn1fTONMWUSfkSANnnPxoGr71hWtN+20840ycv6oF7fV16Mj6awGA32/2caPnLEgDl/0v9C3TMnmxqGmYE8rSKTtYaFBhHiiMUP9AXQNHolBGIhHH7ccOboWKdHBnv+xSfTtINKm+lCL0MaTk8pUVWJgiqbSWRcRiKo19wRj3rh6LJnHYRVNS3R+0yONFcXRPHOWDPOzatUOw1/LFuT2Du9cr9ips0C5DzGNXYfcXIv11Z08f6urq0NmTM6MM+ryYJosETLBhq9UAcOJERsDbH47bRhl2QkrVuIUjKw2cG0JQjCyeemem9XMOrBlCY1NG68QmdZR1p56OVSSAAq+By39dN1vwZDyF49Fk4YIU2T9ITCiZBpZG/1tz0iZ9mwrzQOmWUaUQSfM9aVqkgctul2P+J9L0sbGzUouf1YzIjNyogfPOTMOfXWDOV2NUAzcwlHlHWe5iVVUxNzeLo5E4Nvty+SvzzbHCZKG9o7MLANDdnxPgfN55KEpxNjM1JcCJVjSLOBxAZtWQRttTVRUHDphD/NLDyqLSFplL5rlMwOfFp//mL/Gzu+805ZSh+L2CKJDk3DFFxWZfGP5UGnFFNSS/Ftf15PGjnCMokFEXv/wNb0FTXR3WtzTqjRgAAgGBCSXZDgfyC3C6DxwrjECCK1XbVcy+jGBaQSidm245aSciTaFehuxPVAPHgphQHzgrE8pio3op6TT8JF/S6S+5SN82mr2IjqcwG/Sl0sAtxdB3KBSHP61UZOKddqBpBsyviqhtGlcwCzElMZJStaoy/dE08xJJpUtX6KJZnSCQQjXCSkdNvTu6Mv0U9YO75q/fhEM7XtA/n3L2eQCA/jVr9e8mJ/lJfSk8749gOJIRApOJOJdrlAWpiETCrvjB0deQLpj2kRV4alLKWH/K6VwEPCrAOXnu5WgZpQRG8ZMQ7D1ZjWMd8UOi2sa5aeNCeWHXFbqYuJYWIvOfzlH0xVZyjSPhOA6GYiVfVxN8qAeLNFzd738lEC1wjxzcb/qOpZ+iey8k01BI/59KJnVT37q6OvT1Z8wcuZD/c7OYNqQsED0G+o6GyUJ7e3bu29TUhO7swo2qqgh6F6QAV2pzpse/8PjDUBV+qmUMI2p8cJUy08rn+/DkL34CvyDC4+vf9V6cdOY5+meam0e0KryYTfq8kExjWyCqD3oU4wt0YNsWffuSN7wZP9h6EF9/9FmsyjZWD3KNGAACAgGNdnrhoFlDZ8zHkdPAafo1zOW0xi3hzoo9wRh2B3OCtJOVOjsBjmH2gfNwPnCRSFh4AwXn1cnu71+Y081xu/sHODtuakJpOl4zD6D1nsoOQqVO0t2YANisL7iGLmwLQ8bmvwdjs0unUthniMjn9Yrz4TjheX8Ee4LOEgFXAlGNVGpe5EsqeNYX5oRtJ5dm7adazYIZrHg96dzzZv7PNP8Z7Tv6h9bqEdqYLxzgrgBHGT9yWM+lueakk3HRn71B/+3ZZ81uE4VC+3rqC9hDhDaRBm79qadhVXeP/pm6DTh57OVow07GJK4MZDtAFou7+wbgAd8PUgFu3mDS6oYGzq3qEPWruflHjtlkGl5ielksomiXUgOXQ6RA8M2Zo0UaFx1jiopD4TiORBL6/Ibmg+wdGERjY8bMe1V3biFFZDEmgjehzM1x2dzXA6CfRKJcnJ8tqpHWpADnRrs25roCBAKc4fdiAwfY4XSCQb/aY4gSCGQGzo988U5sII7hAZEGjsBMNeosIvaIOPBCToA795JXoKOrO6MVyp7L4/Ggo4sKcAITSrIdFphQzmbV3AlVRSSt6IKbbYLsIqU0kYmoiLSaiR652RfGRB4zTUcaOJuOX1/ZFuSBaymDBo5BzSf7Boe4FWI7AS6sqHhmMQIv8fXKDULFlaVQShXg3DCPMfZPZQkDL1ghNl7fDuPi0LH9exANh7jvShHggEx7qBbKOdnLhz+dMTUOpAvTyTLTs2rXwLGGHg7l2k/bqowAt4ksJFLOu+zV+nb/mtykfmpqkvPlLvbdMYb1p/4yp557Ps699BX6ZzfyW9JyUl/AXqKBFAtwvAnlvGCx1Q7Od8qldlK4AJfb30994Pr6BQJcTts6n8dVJf91y4dIaMr154L9S1xlEWnn621yfa40jHX+s7vvEO43nV0UMCoqIqTv9c7mFg761wzp815mNQBAN8XkyiC4Hn3/6ByWWp9RLbxvblZq4Ep9c9nh4YAfh3duM/1OzRhEVGpF1G7SoWmaKU8XALziLW+Dx+PhHKapCaUoAIydQCoSljVNw6HtW/XP517yctP+GQ1cHh84si0yoWSrKS/4o9gZjJls0O0iN1LmEpl8SkmbAc7pI93ij2CLPxM0ZJTmkSsyjH8uiao11D9QN6Fso2kExD5whWufMv+9JA9Kz+pBboWYmVCKzh3MdpKcAFdhMxBTMJoCr+vGu20cPMrpM+u0uMa1GeN9jh0xR/8rVYCrJkoN9uIGIeJn4+TaLPhDuUxxI4qqW1+UAruXEDH1bs1q4E46yyzAveHdf4d/+M/P6J9b2trQ0ZXpY1KpFJeHqdh3J24I6EXN/defcjrWnnyq/jmfz7sT6PMMchq4nNAmMqFcZzChHJ/LWdQ46bpEE/9SsRsn7UjEY4hFMj5D9Q0N6Oju5vzfgJzfIwDs2PwUfn7vXfpnN4KYFFsHRqsJ0YJjrs8tbqx3cn1Kpd0PgMxcKSkIhrfU0BqYmRjDcw/lgue95FWvzf2W9XNl4z5rfwrI/IYsUK8eWqsLR1SAE0VNp89984O/wi+/+TUubyMV4KgGro/TwM1JAa7QyYvVGXwWmdGNExfjdcqxIiqW7q0J+X1IxnNBETIO4714579+FAB0h0yAT64puiJb4bGb5NCfhndt09XXbas6cdJZ55qO8wBoX9WZK4NAA8dIJZOIx8xh6I3qcFYfdlEoRZ3rbKLwSUqhT1gUucvJOewEDH31yGhC6TGmEYgIr1ZoO6ULG4zO3j7OEZc6/+Y7D1B5M5DSB1L3ysnOVE7hteiFA8Nxk8ePmvYxWiIsZyqdToI+F5bjMUJM9Z00CU+ZNXA7A1HsD5UeWEdDpi8Okn6KmVCedt5LuH1PPvtcfOSLd3L+JgAwtOlkffvIkVyOtGLfHWMC5EXiatA7uAZ9gzTvU/G+ngx6Neon3Ec0cMYolN19/VjV3cOZbgUWq8GE0tkEfrMvjBcj8VwaCdJfdPf1o87jgcewzLrx9LM4Ldz9d9+JWEQcRTkf5bh3fbyy8S0W1U6pIg+3QG4sS4XGzriiYjiSwHC4+tLH0Bo4tH2r3r+ed9mr8PI3vVX/zThnpGMw26bBjAbWDOGsjhZ01Nfl1cAxhndtx1eu+Xfc9+Vb8J0vfQ5Axr9NJMDBYxTgxDJHPmpSgCv1+KCFpi3fynOlpgKqpulaDeO16SrChtPPxDee2Iq7H3lWzylD/ZaoRkVUdjZI2g2W9JfffPdeffvSN7wF9fX1pv08HqC9K48PXPY/1TA1NjXr2zMkmhdFz/EhCmIiuAVnib+Le6r+VDq7aiXo8AtZQbXZl5pQ6lEoSRoB1zRw7HzEH7Gjswur12/QP8+dGM+r1eIFuMqagRgvU+hl+ahjWolmSey9KuEUtmcufcWZMXncnEC5lgQ44eJUhRcVCtXuskG7+tbDzXgAhKgJZVaA6yMBSgCgqaUVIjZwueBywXSK1YgbtZaLxF+mZ2CQy/s0JUgvUCh8JEYqwOUWUk8593zuGBbEhWrguDybjsYt8bZTRO9AIeaAM4m0fl3qqpELYAJupbW+oQEf+MxN+mclncbuZ57GzR9+H67/8PsRFLhSWJad3PH+rc/hw6+/FO+44i0IG0zBjTCLHDvByO430U8JReVyahYKl64ge4FKj53R7KJHpS0TnEDbKc0ledoFF3KLMSYTyuwGrUOjBq61vg5ntDdzLj92FmM7/viE/t0TP/8JFudmEY9GdNPvtrZ2NDQ2Asg0/QGSJHxRELPCCTUpwJXa0NoiuRVDap+ezweuHIiuMRpLYk8wxkU2ZDsa/ZT6h9ZxQUOoqcICF65XM12PCW6ilV5jXaeSCewlvnd//S//DgCoN+zngQcdeUwo2c40gEnf0Fq0tncAAJLJhHASaSeQCQWZQgSpAtkXimM4kig6+andUSINXE9PxtSoqaVVj6SWSCSQFphCFRuFkuYz6ejqQUdXtz4hS8RilgsfovcylzuxQpNlw2UKFuDI9jOLEc5MtuCyZP+7ce+LqTSOCoILOfWBMwVi4n7TMHLIHNErFArWTDJvNxY4ir2eyGzdyeS80lEo06qmT+IKQV8QpRq4rA8cALzlyn/St9/+T/8mPMfG03P5wQ4fzglwRb87hsPoxKlnYDU6e/v0HHUBvx8xmyjOzi6Xu2CAhNKnAlwfERoBYGM2Jxr1gQsWGsTEYrsUil0woEm8e/szAUzqYLaUueyNl+Pi1/2F/vmOq/8FO55+HM8/8Qi+973vFHzdRCyKz7//3ZifOoEXtm7BE088Zrv/VDa/oDF1AJAbM20FOMF3I7EkDoXjJt9Lp4iOEo2daVXDaDRR9OKTpllHB2apMFrrRbZNSwstMRXgBobWoddGmy56PzgBjiww5TOhZCeYN0RfP7TzBc4FqIukzwKAFpIPeXF+tijNcW0JcKWGbM0engrmOssNJJko08ClVA3jsWRlVmoFl2BCQUwx+05wmeTX8AMDAAysywlwcySyl1gDl/kvTOBp+OrInl2IZ+1+12zchPWnng4AaK3nm5g5CqX1ikYkwDt/0hdyUpC7R9fACe7FqXmDpmmYPPYitsz5MBlPmu6z0CfOOnxaC6JzqKoKRWBKZXc9ow+cB5kgMTSVQESQzNuJ5pEjWxj6PNq7uuDxeLB6XU4L98ff/sL2eNpDubXY4hSTBq7gKuAPOFFCMmFNA3zJdEmJcRn7Q3FMJ3JlMa4wGq8bSiu2plD0uImjR/TJV0dXD7rIYlY+f+DlQrHBXopFNHEo9Hp6HrgKvTyHwnHsCEQLN73WMtYQVPPBfOAA4D3/8Z94/Tv/Fu/68NW47I2XC89BfdLGx8f17WL9/4x3QE2XelavQV1dHWfGWaoZJa0ymjB8aIjXQDIBtqm5BW/KCrbdPbwJpZ66x+YxKIqiR9XMFaKIcou+K3Lhjwqug4MZCyCPRWC0117xTuH3d9zx386vm73w0f17ue/nLFxjGE1ZxyiRrx/7xonZomhe6NT81PLCyAQ92uwL6/M+KhOOxBKYiKcwX6S270A4jmcXxSar8WxH01xXfeICrWka/KZ/aB2nTWcmlKI+l237ZqkAlz3W49H9cAFgkZhQGlNpjb/I+4uPHNzPWS11knmvBx60E9PpRRnEJIdVRUTSiiMzAC8JU7/+NCrAZSYtL0YyCaFjhnOVYzy1O6doAmjUwBmh3y3Oz+Lp3/ycvx45JdsUmgHq+2e2ZkkunTNIfrAWg7eyBzkzGgAIh8Owwmg7zAlwUwIBjlzDqrzc/oL6+/5/34CPvfW1uPrdf4lhf4i7z+cf/QP++OCvuGho7LdCMK6yJ2JR3PjB9+LKC0/Rn4etBk7ToKoqoiQ4QBdR89Nk3tSZlqFowK5AFHuC5t/E5c1AfeBWZVelhjadon/3g1tvwPNPPW55vBuTgmIxJfIu8G1101wtkFZwIBzHSDSjxSt2XZO2X1XTMBlP6quyVve3OxjDdn/uuZsEW/LNYZKb67zLXsn5zxpTeSxX6LsbWvRhx9OPZ31Hy3U9si363cE5dB84NwrkgEh2whgpUAunwewD1076/q7ePvz7zV/GlR+/FnWGySH7RIWpeSJsFat9pEelkgk9em5dXR0u2bAWHfV16FudGyNLFeBojVEfm3Xr13P7/d3HP42P3343bv7JbzC4PpPAvLO9DU3NLXpZI9lAIFZ3vjg/h2v/5nJc+dLTsPWxh/Tvi6kp4XgpMOdzcg6qgTtz4zqigTP3fC99zet1MzNKc3OL43GWtd1FEG4AACAASURBVDs6PgL5Q8DrApxA2HKy2MLKJ3pL4i5o4JiGMCQwaSw1mvNiynpJxI2FxnJBi0Y1cP1r16GzpxcNjU0AgGAwkHEpsbkVOncezKYw8cCogTPnu9UAxKNRTBw9wn0/cmg/ZyVF52hAZsGIXntZCnCallH9Fmtqxp0r+58loA6kqEZDw85gDPtD1iYRuhaL+Lqt3XSKPrgEgwGkUinLVRg323lSVbFnNiDUljDnd6qWZxMvusrXKxDgGhobOc3c1679GGbGR23LLuqQjkcTOBZJ5FYviC9BLzm/MQWBxwO0EgFDZJeua+Bo+NWuLm5gFfkn6EFMBKt7os7fuIKtaRoe/MG3AACjhw9i62MP6WXZ/tSjuP1jH8Ltn/wI7r//J7bn4cpk/ZPOz+/9KvZteQbpVApfu/ZjmBo9bjkBj6QzsUFjkbB+T+3tHWhoaNDvm6YSCAscwROqirCiIigwFRGhC3BBc0LKd3zwKm7fPz3yYN7zVAOFlsXNCLNsIsxWZYu1TKF95mQ8hePRpD4Q2ynNVWTeFdFiFv2KavM3nn4mOntqTwPHbldJp3Hte96Kmz/8Pnzuo2JzPjevV/wOOSplQrmqITv+FZjuAMj4ioqiUOajOTuZ7unnk+gyitc+5g6kK/ar1wxhqK0FrfV16BH4zpR6tUgoqAsUTc0t6DekDmhuacVr3v5OnHxOzh+uqb4Oq3rMueCsbv3e6z+FkYP7kU4lcdtHP4hjBg1UMeXmvstT5+G0gqBAEKBzkvVZwdUYhZLRuqoTl77hLabvg8EAlwvPDibAsciXDLuAaQDQmJ3n2Zk72tWB3r8K9jEGz3EKPRXr79n8T+QfV0jKJxF2ee6qafxm0Fqledz6Vq+Bx+NBLwkUMiOw2mKkUyldG+/xeLgcbR3E9JHGbNgZjOFQOBPs6cieHSbNd0aAE5tQepBRptRl40Qszs8ikSg8cNSSC3AhRcVEPIWjEXeiXtH/s8S0iD1oJ4kVqQDX1dePDi6hptdyMudmA5+IpXDMHxVGSmywCSM7T+2ASSJUysV//ibu8yM/+YFtWUSd1lwyjSlSvz5DEkRKR32dPgkA+EGcOrgb4TPYd3MaOGNUISBPHjjBd0bhOGAIUrPjj0/oe3z/1hv17z/xif/g9rPzx7DrEIFMp/NbEvwFAD76llcjGoma9g2nFewMxuBLKaYIlEBOk9PSRnPBmQW4Qic/Ig0cMys4/YKX4sM33q5/f3DXjrznoduVGhRMvl4FXrhgs1Mb2EDMBtu6InVwXDtKiYMaUeiE/0Aorqe9sDrOv5DzD+rO+gcxaiGVgKJp8GfrbWr0OGYnxgAAzzzxCHbt2uX69TRNy+u7VUgrq1TamkZdM1GopQGQiMZ0i4WmlhahdkUEM9fq7OvXF1C9Xi/SyYzWulgfOHrU3ImcSeb6bGJxD5B3nCkGKsQMDK01aRwpjWQSTgOZsHdOtBgZi0Sw/Snex+v2j30os79LNpSq/c/YFYxhD1kgZ/0N1Txu2LABHkMUSna/TAP2sVvvEi7CLgijZouLXueBKX8l08CpFkGo2BOxa+e2Grjsf9FY4YYGjtU/Gy/oLeR+Kw1hlM1q1sBlayidSunPu66uDu1ZrZnxXba6k8DCnH6fXf0DaGrKaO484HO30SiU0WyAGg3AkT07Tef0L8zjxLFcELCuTl4D19DYyMekmC48bcmSC3DsNXZDTWs8A53SsFUVu9VuXQO3kFtd7uzt4zrRhYUFS62KmyGpW7IFDQlWPdlVUpr5Oy/pLPuHcgIcve0PfvYmXPHPuVXmZx/6re2E2m7yyjomaj/cS1TDHg/w0q42XNjZppejraND/10cGSpzznjQ2gdOtDLKyunUhNIoyEwcHeY+j5GoZ9RBVVEUrlOzjVqVJ9HUjj8+jnTKHBDj0Qfu03f1JtNIqRpnsmtlWw2A94GLmE1Ui12553wSiTnAn13xTt3xf+zoEcQMZrH2g15lBodSr+LmGMY0b2whpthFU1okYz8h6qNoO/VbaFN4AS43YeruG0Bnr3kyuZwZDsf1YDRzBgf03//+965f72g0gW0Be7NlDZloeHbvKPvJzUUFhjBgVZGX0QDEwjSASaf1zgbYOF1fX88tHIQWM+2uWPNRei9zJ0gOuI0n6dt8KoHSI1ECwDwJGEZzTIl4WVcbLu1qgwdwrPX+0+/M/sfzUycQXPS6ZkJpdZ64ogrbDZvTLUzzAhyQEbBYv9dU58Gretqxrjkj3Dc2t+Bz//sTztUCcC7AAZl5Zcwwt2CRLJ9djGB30NoSK6VpGIkmuBgDDEcCnFD4LV2AM37HCXfZDyUq4Ozn4VUmyM0mUlhMZsYxfrG/S18goXPg0dERy/mGn0Rk7xsc4sx7qQ+cMJG3pnELNJR9W5/Rt7uIIog9p8ENG/Xv5orIO7nkAhxTpbuymmhaZTdPshtsWrguBJGwt119/aZO1KqobrZvtspiXLnZtflp/OI730AsEuFV/VomEAbtLGmoZjYg1iETsvcf/vOz+qTbOzONmCDfmqqq2P3M09j6xCN5V2E4DdzgGr1hGWvbg0ykRPaCxeNxpFJ8QAgNmVW5jkSuTO1dvABHk7rqx7FOTFA+B3FY8EeDP+D06HGoqopUMgHNmACWmvMIrsewS/wJAJMjx4TH7Xs+9+IfDMdxKBzn2rPItjqngcuZqE4GzAKy1eTHamWSfWXsJBnNLa2cbyV1WgfIgCNYcKgUpV7PTX8jtsLLnhdtr3FFdWRuoxqihjm5v0IXyTgBrn+A6wdrQYDzEa0l1cYAwNjYmOvXm3GQd3I2kcJwJIGjkQSOW0SVE71PbiHSzhetLdfATaLb2jtsduahGhiaJy0wn2mTbkRwnT2Re8YbNuY0cNQ3xS0N3NTocX173cZNtvOQxjoPmuszXmJUeGV+p8Y737X5aXzrC9cJz/Xi3t1FlTdf7bLfFU3DtkAURwSRcFlboovKGzduRKPHgyZy/x5krBFolbzklX+G7289yAW3cSLAsffFAyBqWEikPnBhG+EsqWo4EU9hZyBaUJvXtMz1hQu6xS6CCN//zHeq4LtirTl0t5xlZEJ5JJLAZNYKLEQEq1VEUNpw+pn69qFDByzP5TME/2Nt0QOgubUVjVmNXCIeRyJuFv5DxFqFuijt25Kbx3V38VEoAWDNhk36Ng0q6JQlF+AYbkyQjA2Myjfspaq3W6JgK0bEQb+rp89kOmS1Orrn+Wfw3e9+Wxg4olBEVzhx7EXc/G//gO/ddiO+/tlPmiZwAe+Crs3p6OrmfM3YigITmOsbGjj17eTEuOm6X/+vT+CmD12Jmz/yz/jJXbfZlpd20j2r15AXwOgD54HH40HHKhrIRGxGSW3WOzq70E3CrvoEE0g7QSqfpicWDpuiKCYTcSxMTWJmfMwUuGR+PjeY2E0mRJ05/WaaDOx/85FP6NtHdu/gOu+YonLtmeaAMwtwOQ3clJ935AasVtk1PLsYwbGoWRuoIeMjxEwUPB6PaTWddpohwyoVKzd3VUMEp3JjvE6h13XTjCSRrRDRc9gWiObV0gDmVWQnpWOLCU597vx0Iat/gAtrvrBQuA9ctZni0NIYNXA04mElYRPL2WQak/EUJ2QaKUdtCk2+SzBXjFABzkIDJ2qO9Duau9SfDftfilaQQX3g1rGVcA9vQSJaKCyGKbJQt/GU09BQ58HFXW0YbG6wPMYDPpUAC6JmvPWnfvUz7vMr3vw2ffvInh1F1pX9QUZtk9ci+mEsEtH9gJqamjAwMICzO1pwanuz6blT4aPek9G+dpExvyANnAcmDVw+HziGfm+Or5bjYDgu1O4V+64KNXBsPOWCWLH9C7tSWtMwHU/p82K7ROXVjJUAd9IZuTQkhw4dtLwXToAbHOLapsfj4bRnEUPuYg18OpK3/N0/Ca9B52ns/INE8z8/sww1cLmOoPRmYmy8CvnMzA0b7OQ3ZLRONNLMqp5egx26WAO3d8tmfOGf/xbXXfefuOWWGwV7FIboRdzx9OO6ILHl4d9hnES90WA0n+TDFLPzUQGWRbsCgBNjo1yo20Qsiqd/84D++Tf/+w0ELEw44tGovlpf39CAvsE1Qu0CpT2PH5wH/IpZe2c3FwXPZxMFz6kJJWXsyCGoinmyNDlyDFOjZi0ZNWex8ynLt1JMNXCXvP7NumYruOjjnqcG3gyDdiJdbGUne+NUAxfPalY1TcO9138aV/3Fy/Gju79MQlJnFy2yE8X5pDk8vgaNExjbVnVySdoBcH6iJgEOTFgTaIwqNDqUnGKkiOuNx5JFRzRzq0yP3X8fbvrQlfjt976JWDyzSl7vYJVW0zT453kTSrqy+OKLw6LDli1zE7zAtlQCHNO+tmZX2nyCPI7lfGXogpOmafCncgmZC32FNPCT6NYOsQaOtsZzO1pwwSo+qTfVwC1mV7qLNqEk2zTowWDWuiOT5iYnaNr5aBfCpEGAAzIpdvJpTESpO4zPYWrkqL79L9ffjMv+IhcE5NC2rUWVN68GzrCD1fOgY9hQ1vevsc7DzUP0uQKpCqaho/dPF00ty0XOaTTlX/T7hfNMVdOQVFVhv1yQBg6a5YKLm++sqJyq4DsnHIskcDSa0BcVU4ITVNm6GwCzvBDy5+bsHd09epvacDoV4A5AszD1o+20b82Qaf7aSVxGwoaFAFUDfCRC7isvfztnocToMsQqAIDB9USAW44mlLo9fxkaCaeB0yP45KpvPJY0rRyFA4u6kNTe2YWGxkaBBs58rRs/8F59kvib3/yq5LKLXppDO1/gPu/d9jz3eXGaz4PBnS/7nz7wwQ25xrPv6FG84I/q5l3GHCrpVBKjh8UqaOb8DwAD6zagvqHBcmBi37a3Uz84g8+UltmR08B1dXHPweddsJ6UCy6drxM6bKhbxtTIUU5LxqBCvp1wYGdCqWka5onafO2mU7CGPBMfWf3VoHHtjgpJxiAm1Acung1iMjZ8EI/d/2PMnRjHD75yKx792Y+4MrGJY1cDL5gxwpz/m9kUgK56BQ2hdvUVQ8F5l4sGrlACaQVjsaQwyXbFyuBdwLe+cC12P/M0fnDrDXj/G1+BgM9rq4FLJuJQ0mlEggFdm9/S1o7WtjaccUEuPciuXTsKTua9lPOAmUQKI9FceU15/Y7xIaDHx8eXRGPI/FyZCaHd4lA5Skcn4ifiKewLxW21gHZoAKJEAGrryAhGJrN68kVvUwO6Gvklhm4SiVIX4Fx4NnTVfPWanNat1WZsKoZELIrjB3Lj6UmnnqZv24lvHg+EZst0IUxVVYwQ07BXXX4FTr/wZfrnA9u24Nln/1RwmZ1Wbz6NDw3MsG4dnzpB5F7BYIFzik1dUufxIBrhhe+FhQVhhMmD4Ti2+qPwZxdLStE4F/Ob7Tnt5g/cfsVdwRiwRRx0jS3AVg9GyyZeA9erz3NXr9ugWyR5vV54iakjhUu/tWZtri1mNzqJH1zIIMAlFAVe0pf0Dq7BRmK6yRjILkQNNDfo519DNXDL0YQyp652QQNnXBUS+MDRlZ+xWBIHw3z0yxAJVcs6T2MkKGNZQ/5F7gVyqqq3w1gbo8MHsf3JR7nvjh3cz+2/SBqhSQOXPSG9/w0kx93eLZsBAPGs8Pqrb33NVCZjlEbGzMSovs0EEGaqabRY1QW4VYVp4AZ6e9Ha3oHGpmYAQCIe0xOHm7Dp9ESEFn34xTdz90sFxUM7t+FHd3zJdAwzZ8l3bqEJZfa7eCSCVDIzqWxqaUFrRwd6SPhanyHxKJ1cBRdz1+8jgxzAm1Amsho4Y46SX9x7FzRNEw4G5vIaUjoIVpeoABc2aeCsL7JUAly5j3eSl8fOZ9MNpkaPcaa/s5MncNt/fAB1gjYZj0bxjc9dg797ySn4wKsuwJ5n/6j/1j2wGnUAelYPYs3GTZn943EcOLCvTCV3nxcjCcvk66lkAlNjI9x30WhU6LBeLAXnirQxMXZLg5sPljag6OtpGiIkhUBbRwfWNpujUOY3ocwJcD5mQlloWfQi5Y6kSbxXr2YaOA8nwEUipWvgdvzxCT2k/dBJp2D9ppP13/IFnegeyGkfJ7MTPHrv9/3Pzfr2qu4erOrpxeD6jdz4f/ddd5ZQejEaNMSV/LM2GoFyrUVUbOpvxGCRKQuNfGungUunkpj3mq2IWAAoJswU27ZsF1sKfP8XU2kcCcft33/yoyr4zgnGJ7iUi6yFYBTEwwYTSj3Cc10dp4U7dvgQRCwYTShZgLHsd21EA0cDyAFA0L+opxDo7OpCU3MLd00gsyD3sotehsu623B6W7P+PVWiLBSRc7IKBLjMg3BDA2c8BV03ZBNpuxvWwAspXX1mAc7n85lekl8ahJ26OrEWoxCM97L10T+YOoGjB/kJlHfGgQaO9JI0ncDe5zYjHo0ipWrwzkxh1+anTGXyW9igz47nNHBsRaHO8AIwxBo43k+LlTVIhIbLTlufsUXuy3XoVIgRHW/33eL8HL7xuWvwy299DT+/9y49R09zayvni7bl4d8Jr0FNKO2arp0JJQ32wQYq6u9Bc+sB/IJE0GcW4Ji/Ic0DF8tq4KYNE1TvzDR3Djs0GFMI2GvgzD5w5oGx0oOC8TGUW7vCnrsHgM/CP4QOnr5k2jZHJcVp2RcEkbEO79yGAwbNvaZpuOWq9+PxB/4PQOZZ/88nc/n9uvv69UkWzVM1PHzYUTn06xS0d3mhZZkcOSY0n7aK+pdWxcF+7Cg2dYd4CV6z/q1UyClThmA7xZyK5uI6ua8Xp7Q1obWeH4VFCZ0p3USAYz5wxc4X2GGxcFi3TmhsakZnV86Kgc9TWroGjmrIXv6mv+RydbEtViPUxcMDYO2mU/XPx45lTCXZY584egS//s49+u9nvCSjefN4PPjQ53KC3ZZnN2N0bLSgMuerXl9SwbZAVDe9s4JG5zNp4Iw5Ysk208C1E79JmhDeCirAGdMIAMCkIFQ7a3+lLowkBObyxnI5ZX8ojtlk2lbDqWgajkUSSKta8e+DcVy02aea+m9jsBWjDxxtWtQPbuSIeMyanzYEMTH83tiRa4dhgw8cXQhi+ePoNQHg7LPPRU9PL5rq6rh239axSp9PiaKR52PJBTg2uSlPEBNiauCgEWrgJ8ZsUm0yoSTHpJIJPPTj73HniUTCJXf8xgnCBMknwZjMmvbpfkyks+xfY/SBy0A1cKvXb8D6U08HkGk8I4f2IaVpmBrlJ/sMv4X6eYaYUDKbXibCmobm7BdtDnzgaNLE7qwKu6s3p20yagSVdBq//d43ceO/fxC7d/N5OYz1+d2bP4fHH/g/3Pc/t+DBH3xb//4jX7wTF7zyNabyGOFMKG324wKFZiMH6gIqaWtdWW0vTTxJTXw0jT9XQCDAMeG8mWjg4tl8ckYBDuD9MvK9F1wESkPQFKCIICYOrktJqKptuoZ8sCPDAT+u/8d34ZPveVvJSXrtYGVdSCk4EI4jLEoHQm7nQDhuyuVmhdNa8FqEQN+2+Unu8/ED+7B/67OW5+nuX62bRG/I9hdA4QJcNSDSbE1YDOqiQC2KpmGLP4LjgmA/dhRqYeLknSnHhIqeM2Woq0IDJGiAvjAGAN2dnfB4PDh/VQtOa2tGW1aQEyV1ZmNsvcdoQjlfVFmM0ElXz+pBTqiiUZITiYQpSnI+jGPNAkkhMHTSJs69gPranNXejJd2tnHHDm44SU/2OzExjkgkot/54Z3b9P36h9biqpty+Tgvef2bcN5lrwKQMbP8r1tvEfZBlveQ53dmqWOX9BoAvESzYaWBY9CJLdPA0cVCR5ZNzKpBEMQEAKamMuUR+smXuC5SbjcgIyFFxVQihfF4smgzR9P+eYKuVQvGdmcU4KgKZfW6XKyHhXneqgnIpIVaIIvlvSSGA4POV43tanEuN08byGryjRq4iy++lPvMRdklC1SFsuQC3EKyOPt6EWYBLv8+RqhWRzehtFHjz52Y0M3gKPPzYmHHKcZyGn00ACAcDCBEBshFImDRUMgU4wM/7fyX6ttH9+1BStUwNyl24A9Y2KBTH7hBhxq4dFOL/p0xaqeGzKBDo1Ou6sy8QPRZGAW4//vKf+MHt96AZx/9Pf7rv64xnZMRCQbw3ENmzVrv4BBeefkVGFyfGzQpZxLfAq/XCzW7AhZJWy8/0InbRDyFZxcj+uSeCmGdWSGMPrfFOeoDx5+L+pnpAlz2cxtZLYpmtZuz46Omsk2NHLVf6SfXFiXxthbgDD5wgsFFnxQ6HC1f8Eex20F0RitYGR6458s4sG0LDu/egRtu+FwBxxeGUeOSLxppITidKFC7/nMufrm+ve1PvHbdO2svyHb35zRw64nZ9fCw2BzFimpwhmejDS3LuEVAFpHJFqv7OUGwHzuKnVjlW1gpJ4Um7hZBQ7mzfJVNdXUYamm0XuRDrl+o93g4E0omEJSqgfOTZ9vdN8AF0vB4PGhpz5er1DnzROszuHa9UGD1eICB5ka0EO2kB0BjUxPnF338eK7Ppguqr37bX3Pm9wDw9n/6V317ePcOYeh8p8yMj+KWq96PL/zze7Br81N6/5bvjHTc6CfBaAAqvJrnCixWAY1c6kSAy6eBm84uaonSOLDxtVh3Hqu6CPkXC/YXZjiZHRsXdwvBWGbbRdYq6L8ZRhcFowDXQF4yO/98AAh6F3ImkD29aGpuMUVRb6UCnCG3Ll0MGsi+g0YfuPPOOx9W9CxnAa6c8Hky8qNpFho4QShfhlXuBicRk+ygZR85tB8TZJJBo3KdOHEi16ELyn5ORwte1pVb1TOmUTjt/Jfo28O7tkMFMEsisp18znn6Ng0rTqEaOJbXIjcgGs0ksmZ+REsUzZqyUBJEqGtra0NDVqDiNHDEBHHLI7/nzEl27NjO+f/Q539kzy7hfbzq8isyUbKamrjoQADwire8He+66uP658VFH6YTKUxl/6ygE8WZ7H6s86GLBSINHF29BPhOmrbT/n5mQpk9FxFy2X7zAm3T5PFc9DLRhHE+kcJi1rGbdpDMB45ORGi469CihQauxBl8rIQJJTuSBm/55S8fEO9sdwKHGE1nRbde7HTK6QSD+p+89q/ejYbGjP/RsUMHuAA5kTymSRkNXIa1m07Rv58s0Om6Gsb/tMDPZfzFnAaO+dgC9omTC0Zw88cP7MVH3/JqfOa9b+eeR2Z36xX1ctYjPXepVjEa+El0hyEKJU3k3F5fh7Pac3Wva+DA51Xyzs5AUZSi64AdFyITOZqgnlGKGaWxbDSJ96WnnYoh4gdoHB9FDG7cpG9PTk4KBThqes849dwL9O2gz1vQZI/21dufegz//qZXYvtTj2Hflmdw87/9I17IBkbJF0yG9i2dnXwaCbsgJh4P0F5fx0Xzoy4V+aiDRyjAzWRN5ejYxTaL0WxPj43guzdfjw+86gL86+tehofu+55ed3XQ8OM7b8YHXnk+/v51l2CqiCiDToL1ZBZ3c9vT8RSiDoV1J2NyOTX+xWIsCzc/6e7h8gxSAS6waPZr9hpywAHmtkljNlC/XiBn1g0Aq7PzN3pNIGNCSaHn77VQtjihIAHu7rvvxplnnokjRzLaoN27d+OKK67Am9/8ZnzgAx8wCTeVhDZETdPwwD1fxr3Xf5oIUs5UzFQoYBGQOg2hfOm1rLRVc3NmVW0h0Pfq0Z/mJp1nXXQJl5xwkuQv8pMALGwS39tYr5uqAGZzlXMveYW+vWvzU0glE5gh2hqqdTIG1QAyZovzpAzUKVMEu3wLGSAjEV6AMw781F+us88snGiahu/efL3pWrOzvAYrdx9iZ9FXv/Ud+vbak0/hfnvNW//K5Avpz5q8NYmWVLPYLSLwiwWZc9PcfEf37sb/fulzuOvTH8XiwjwnFPA+cJk6YZMBKkwFfT6kUylOm8eYHDlmKhP9fDiSwP5QHJqmcSG32YoR9V1Z1U0EOIMGTjSUVNqu3mqccmqWWWg5jed18z4da+CI0L7+lNNx1kU5Mw4a0ZYOSC9/01tN5+lZPai3LfoOLAoGw2qHvUPUBI8mWT7nkpym0i5oQjEh9SnpVAp3fvIqTI0ex/DuHbj3+k/jwLbn8aM7v4TpsRGy6OH8nO5go4kv9J41IBHL+XW2tbUJ96v3eHBRVxsGiGDD7r/B40FzS6s+FquKAv/8rK1wqWma9QRWXzyjAlwfksRnFXAvEqWSTnPC+bmbTjJp2TL/rceQbhKkan5+Tp9/+IlFTI9BuwUYF9V8plymdtBH/evvfJ37TVVV3PbZaxAO+PP2RdSE1ijAMaj2k353UVcbTusnFjeBQN57YO+1kk4hGY+bfme55NwwoRwbPoT/ePOr8PsffgcB7wK8M9P4zk2fxSM/+QGe/s3P8eAPvo1ffftuqKoK79ws/ud/bs9/UgNO+nral6VUDUejCRwMxbCQTOcV0OzGf/07F0wnFE3Lm1KpMPhzcRq4nh7dhxLgUxwFBYGpqKXK2mzsiJ7GTH5GvT/gTChtNHCDuYWUD372JtQ3NODVb3gTLr30Mss7qYgG7sCBA9i9ezfWrs34Vmmahk996lO4/vrr8cgjj+Diiy/GHXfcUXRBSoU+zi2PPIiffvV2PHb/j/H1r9/F/W7XGDXwZm1d2Q6wsalZ79DT6TTXKc2dEAtwbppQ0gnGW9/3IQyQACVMA6coCtc4me24cYXPqIHbcPqZuchy0Qh2PP0EThB/uwte8Wf69vzkhKn+Zk+M6+rnnoFBTrMGWPvA0UAbIg0cVVN3dHTo90HDCgeyCwazE2NcIkbGKPHlo8U2rnYDwEWvfh1OPS+njTzpzHP07abmlv9P3nsHSlKV6cNPde6+3TfnO3MnMnkGGIYMMoCwEoVFEX8GRBTFxBpX3VXC6iKoiJgDKgsqCyoogkqSnGYIA8zA5LkTbpib7+2c6vuj6px6z6lT1dU9dxD3e//p6srhhDc87/PisBNOErwqAomJ1KSm211HOQAAIABJREFUxkdxzQcvwrtWzsHvf/I95LKmEiPtR0lh2HO1k9p86eQ07rv1Zjz2p9/jt9+9nisthXyOvx+/38/rwLHOTD3KUxNjGNs/pGz3+3Zu96QF6hC9VM0ddi+VWw7cm8GD53Ttp8aSB4XQRIZQzkSOLz+3x/3oN2vr6hZgHbQPpIlne9bCQwTPPQDMXbycty2akzIhse9WkjeDB5dFv+m9UJhXL8ldUNGWz1SuycbnnsJgnzU+Pf/og7jy/Rfg7p/9ADd8+qP/MOjkTKtYrA4lAMRIfUrA3WhhUWYGxaekXMP9+1wjE3uzBTw/mVbnnZq/QgSuqRl1plGlMuBSqdojcJOjI5wgp6G5BZFIRNjXLf7G5zxinA0P71dG4GjBayaBYJDD3XVdV8LHvMiAAn6/r28nbrn+mopoAOqIrSYCx/4Fg0GuU5TLZc/fQoa5MRkbc3HKSL9Utr2yAVecdRKuvPidnP36T7/8ifI8P7vmy/jev38KN197lbD+nnuqLy8lGz39O7djt0POLgAkzbaWKet4LZnFgAs6CPA2L83E/P3UeArPjNv1vFpFvheZhZJCZBNNlQw4y9G5cPZsnNgct4iWGGcDGQ/kyC6FSLeRaNqZ77sUt67fjBtu/rUrYY8qeu5VPBlw+Xwe11xzDa688kp+I6+88grC4TDWrFkDALjooovw17/+teYbOVChH5TSvv/whzdVdZapMdEzx6SBeLOokTe014o+0ejJAUfgyBNRI7F30RLhOnvN6ycnJ7gy1dTUBH8goDyv/ME1TcMJZ53H/z94568FaN2Ko4/jA2gmlcQD/3sb7vjBDdxrv2+HZezNIgQH/PwO/2mxaTkCB13n7IkAEI8nrIKKTTQCZwzGrz2vruHWR5i36PukkcQLPnoFvnXX/bj65t8Inext/+9irDzmBKw4+nh8+Se3IhyNCR7NMdJO5Ens1m99HRueegzFQgG//s61uO3b/y1Q9jPZTyKXTEGJxGKCkcrk2Qf/goIJZ6QTcUNTM0+4Z7dfL0TgRoVaPFRB3b93N7ImNt9ycNguDR1i0dtmVvSWQihrZKF8wyJwMAxf2Ss7MTLMve+VjretczlOnnjdFE6v7yBfLuPp8SSnvXaTQj7HHQQ+nw9NbR0CGQRV/pLEgKtLNGD5UVZUHgB6Fy3m9xiKRK1SHrmcLX/VXf7xJhyLjFredl0okdFFKN7dIJQH+iQvkTIN/JzmTe3Y9Ar2mOOqiqzjYJJQukn1l9MlA07t3HOLhjBWRmrAjQ72u94LK3+gYkhka+gYuqq7y8aMGZkhCCXtZy0KT7sXhs9GYpzt3z9EDDjLAUjLDVChrM3jDikQKmHXyGUzHCLm8/tx7iUf4fts2fBCxQgR7Vv19RJ7McszkvKNyCYAxpjEZHLSHUbJbkcFnwSAMYVThl3faU7KZTO49mMXY+/2rXj12SfxwB23YXJsFM/cf6/rvcgyPj6OZDKJvnQOAw4lTWShBtY9v/opPnnGifj0uafg+UcfUu4/LeXjV2IJ9cRC6eE+vchMOjGp6LpuZ6Ek2+sJOkjlxBCJdrpt2wExF1NuWztfs8p5HSKxT4YjUfebB9A1d37FfZxEreVL8t3vfhfnnnsuZs+ezdcNDAwID9vc3IxyuYyJiQleWLhaaWtLVN7JQYrlMmBa+OOS8dTWlsDuUgnIFREMBazrjCWF6+4tlUUSE2rAtbRg0DSkpsZGeS4IhQ8uOmw1x7tPT48f0POw+y0WCkIuS3vPbGEyGxkZREtLHNPrrYbZRgZz+Vnr4xFAGjxOOud8/O5HNwKAUD6gtasbdfUNaOuZzXPwfnLVvwMw8qc+ce138I2PXcL3pwacP+gDiiUkEhG0NVmTYamsA+MpwYArlfLCu9qeLyJPJv6mpgYrv4tG4EwFi7JxUdm/fx8/7+RYCjCZ42i0bt7SFZi3dAVCAT/yhAWwpaMLV/3qDgAG7LSsG0xE/kDAKHScSgK6WCcJAAr5PB7+/e3Cfdx3683Y8MQj+Notd6KeeGhobkR7j9W32mf12ghapsbHsHPLRrQtWiHAJ5taW/kz1iciQDqPeEMTfD4fyuUy0tNTAslM97wFyKSSGO7fi3KphMnJIczrXYHB/TqQLSAY8tvajM+nCSUNWJ5ewO9Drmy8g0hdHQLBIIoFA7qSy2aswct8gT6fxs8dzOSBYgnBoN9bPzHvpbU17ilvhEpraxwYSyrLJgzt2YWmo5ejLug+FE6Np4C0mIje2pYQ2Ouo+LN5gLSnaDwMOBT19vt9QFk0ylTvZPt4CkUd2O/BgBslEbbu7m4EgwFByZsgObo0TyVe34CVxxzPvcvLDj0coXAErBCCpmmINzRy2IjfX/A8zmWKJWAi7fh8B1MCEykUyzpiiQja6qNI5YvAZBq5TIYjCELhCFo6rHyr6ekJ231mCrU9w7R5PSYbKhRX/sttv8CHv3otAor+EcqafSfkse9UIeVUDpi2Q88AIBwJCterdO1AJodCzjpXd3ercEw4VwCKJYTDAdu5fKksUCojFg1htJARnJaDu/uU74VJKFcACiXU10fRlhAjXnvLZSBXECJwc+f28HMNjwDIFoT5ye8vVfWeCyWiixAjq62j03aeibEkkMkLYyOTnYUikC8KOe9TU+PQzPGUGnBNrWoYVn1zC3fI5rPTnp/Dn8kDUxmhuHBrVw/e+fHP8LFhsG8XgiEf4FD9RNd1QdldsMDQW9g97DF1nJCpk/kzecAspZJIRNDWGMOAriPe0MCVbJ/PfbxJm/2zlFe34Unzu/v8Pn4e31TGNv5SeeHRh4U8p1994yo8/dd7eBkKwKjvN9C3Q3W4ILncJHZrhkG6arY99xIw34853wVCfiBfRDadxq++cRXf56n7/oQjTjoVgNEvkTPGMJlePxIN2d5Xqaxj63gShzTFgYmUoMBEFftrk2kAOiJS/69KJF27FqHHUn0uk0ryMTwSjSEUjgh6rhCBMwMdVIegEMrFixcI12F2RdSBhXJydAQjZm5jJBLBEUcdjmcHxRy5urow2lrF5w6mc4AJ8152xNGOAZdKUvGoF198Ea+88go+97nPVdr1gGV4uDLbk67rKMHOIlQkSQMyK+Tw8DQyGeNj5vJF23XY/0w2L+SDUM8PjfzQHB8aHVt02Bo8ed+fAAC7d+/z9DxOwu53ZLCfQzCa2joQCkfQRuqpbN++EyMjSRH6SarGy/eQSduVyJ4587jyTWX2QgNy1U4MOCZP3Hs3AsGQsI4acKPm/fuyBeEemJc5ErU8E2NjE8I+uVwBSVJaIBKJcZccJTFhEbjXST7P2vMuxCN3G4bXpk2v8/NOZyzab2rgt5jRpLKLp0ozN2mahkRjE584h/cPw9/cJnghnSC1+3Zux12/+DEu/uJVfB2dHNuIAbfy6OOxdYNYBgEAtrz6qs2Aa2hqwfCwMTGnksa39fl8SDQ28TZBGUwbW9vQPW8BNx6fX78BPZ1zkDbfT17RPzLZHDcoNU3jkRyNPLimaYg3NvGJLjkxjnCn8Y2L5kBVLOn83HkzmpjPl6rqJ0PD0zYYsJu0tSX4+ScVBtzg7j6MjqaQ9ruDEaazdtr4oeFpJZsZYDwXlSkHpRiw3g8V1TsZN/tu2UOCOs1/6+joAnSZjt1SSFLTJAJX34B5S1fgfZ//T7z0+CO44vNfAgDkyDUTjU3cgNu2bQ8iEW8OO1on6UDGxlqE9eHxyQyiuSLPkZKfnUavBwaGbPeZNY/TUd0z0Jys8f1D6Nu8yXX/B+/8Dd73ua8g74/z65R1HbszecOIhLqvHqhMONQsBIAsGctpv3KSfKGENEFX5HLiOyuY18rn7M/BnGlFEwLWM38h37Z3x1blPM6PNc87OZVBUHJWZsxxborM4cFgHT8XGwcphHLfvv1VvWdKcU4jcM2tbbbzpMxxRS/rtm05UykXScv6USrpyKRS3IAIBENChIAKnS937dzj+TmmzPdPUSIds3oRiyfQ1NaB8eEhFAt5bN28FeicrTxHPkudI2FMTeXR1hbm95A1v03B/JYU8ppMZjFcKCGTyQtEJjt27EV3t3PEgvXPyTErItMxew53Yo6ac3epVLb6lUteXblcxj2/skMlN7/0PF++4pvfx5Enn473rllk2w8A5i5Zhl2vG/391Ve3wLfySADq8UPuV5ms8f76d20X9nvkj3fi7Zdejt5FS5DNWG28JOkxqXTedp2hXAFbUjlMJnO2/dOK/dk+max9W7VS6/Hye6H6nBx9A4Ai2R4MhRGJxZBNp1EqFpFOTgv1Bbe9soEvx+PNwnUYkiYWpxBKKyK/63WrxuPy5SuQStn1BOU7LVLnbhyHnbAWIzvtpcIqSUUI5bp167Bjxw6ceuqpOOWUUzA4OIhLL70UfX196O+3lISxsTFDuasx+uZVtqZyeHo8ZYMv8ZC/AtLjFQKhA0gTwyFGmGfqFRDKTCrFQ7KBYBDzllqMjcOKehPVCIdJEM8PY8hpFXLg9kCHiOlvUUDwmKjyDvyBANq67YMwC+2qoJEAuKHE5KhT38aX20KGbyDuoBi7kZgAihw4c1koIzA2hnRymufs+QMBgYhEyIEj56YQSka97J6LYC3ThNgJhUFA8xVluf+O2/hyJpnkuTfBUFiILF70qc8rj99p0rZTA66RtEv6pml7pTmNDc0t6JlnFYfdxrYpcoOYjI+N8f7W3NzC2QyDEnmLE13vTBIxVKo75HaNaQV8YnD3rtoZ7ao4sNpCziopmOfwewBebX3ZcgDMmzcf0ESiA+q9TxFYElMEz7v0Y7jqV3fguKMNOCUlQpLz4LzKP7KMgMU0J8J56bPX1dfbCKtmSuh89epzT/HlXqleEJNioSCW+QAwkCtgT7aAaWJEvqlFl0lMRDiRWyu26sCZ9QcXWnPQ3m1bXKF7budVjQVNZKyciRw4KrSWZ4si18V13jF/aX6bkQOnY3JUhE86oRLaZ1nz+tYq6jay90QNOOY47ibzxyai/MoiMlA22LbLuoimWNYA1DeLJC5e7psq2R2zrbzy6YlxblSqrivLS088gs0vrnfc7g8EcOTJpyMaj9uYBwHgI1dfzx3hAKquPcoMiAGFXnHrt41UIdoV7GUB7B2F1dibKLizuaZLZexI5TwxYf4jhbJes28Q9ol6Z9whxWPDU48JkVO5ViFrG6rSTIBYX/eQQxYr25IXd/Pl//UtnHPxhz3sKUpFA+6yyy7DE088gYcffhgPP/wwOjs7cfPNN+NDH/oQstks1q83Gvftt9+OM844o+obqFaGHAp/c2z7mB3nPTg44J7jY64sl8qC4UDDpmLulTGx02hLa/csgQJ+//4DIzFhnUblXWjtsqCrAwP9KBSLSlZClagbmIbOOXNt67vmGPkgy486ruL93vLsJp4bBQCL68I4vqnOnrypsTIC7iyUlOmnri5hMSwS5TE1NWHzEFKiBpUBVyoWxcnPjEq4dQQ60VA89aTCIFANtEyidVZ7opDE9s4uBMmA4w8E8I077kU4Kio82za9YrtuI1E46bumpQSoAVff0ip4s7dvNaJzbkP0NCF5aCYEKUHp21JP8bWXX8xz7yyKY1VOSnWTQy1MVqq8FyaDigR97+f1fi8HMgmyY1n+lgvpKZeXn3qcL59wwlugAY45cALqQCIaiPl9WF0fxdyoFW2PEyfdeI3ECG+02N6++S6FCFyi3rXmp/I8NQj1+B512ttw+8s7cdwZ56B77nwh2kBzkYGZqct2IFLt1XVUIDFxiaSzR2Wj4qz5lgG3Y9MreOHpJ6piVRRuCuK82jzjZQRIBI4YHK3KHLjKnZk6Xphe4QU+CYilBF595aWK12LCnoGmiDAY61JSlPimr18ppAJQofDJhEOEEFCXHKIGXGOr2oDTdd0xD3mKjGnxhkaBzEXO0XaTbS9bJYdUBZdXn3QqomZ0ZukakWnwE1/5Gk5/13uFMhjVll4pw9CF7jRTXKi8/JQBw1bllqtEfl+pkp2Chv5/fjKNfbmCVTuzivuWrzvTQs9Iv2edOTeFfRrmREPwmw2JGteM8ETXddxy3TV8vd/vR1eXOgcuSiNwJMhDDbgFCxZ66s8qaWprx1nvPwgGnOOBPh+uv/56XH311Tj99NOxbt06fPazn636PA/+7jf8A3v50Kz4p12RM/6rik2PkMFOhxFmp0QAbBpIp6zIXixWBz8p5kwndjZ4CsZDz2zBgBscHKhtgpGEMqSxRkgjNuVyGfsGBwRIiCoCt7ohhsV1Ycfm1a1IpOyaY6xbdoQzBSoArDryGMErDxiDsVN+kAYgXC0LpbkcqavjeOFcJoOBnZbB1NYzG03tnTxCNDY2hnQ6jVSpzJXgidFh/l0aWloRDBmKadgFQifWO3MvCkkjcB/896/i3A9+lP8fHx7iyjLNtexsa8URjWKC/yGrDsctz27CD+63vPWvb3gR+VxWjMCRby1E4Eh7pUZKQ1MLZx0FLBIcJqouSNtgIxkI5QhczzzLMBwdHMDVH7xIIG8RJpoax/RaDmPXUkXgdr6+0VstHJXjp4p7cIvAuV2+pOt4cjyFLcksjz5W0uMH+nbi5actA+4tb1kLAKhrsIwDOgnJMEJZ6gJ+sQ+QNlBNKYE3gx9XLl+RpBG4hkZE6+J8/Ein0zaSFq/PUNZ1bEllOWyUHrd9o2XALVxxKIKhMD77nZ/ge399Aqe/631827MP/U04zlaa4iC8UNdTVnlBuwHnQGKimCeY4sUicImmZiHy86X3vwPf/Oa1Vd0PuyfAeUyb6TICFO1BKcZlUU2VbFVdQyOf86anp5DLZkUCE6mEQICcizIrb3rlZc/3zd6TKk/75PMu5N9seHAAV178TpRK9hwymmpS36CKwLn/ZyJGIK3nfnoihecn1f1zmhiPsXhCcDqlqqgnt4ekH7zn376Inz/2It5yzr8CMFJaPvglywA48ezz+bI/EMBxp5wGAGjptIwCilrzIiVdxy+/caUthQUwovSVjFHaZV9P5fDEeKoCw+0MwmUO7DDPkiTtzIrAaeiNhnBIXURYD1gG3/q/PyBA2T/+8StQVycz5RoSS9TzNp+enuJR3AESJJg/fwFU4hQ0mQmp2oB7+OGHsWiRgfVdvXo17rnnHtx///345S9/yQsKVyO/+9GNgrJRSZhRICtE7O+kgmlpYmKCKJE61k2m8dKUBe3IlMoYLxSRcqG8pexkOzcZrDM0Atc5uxfhaAwN5kBRKBQOqJg3M/3kAoVMaLTrsW07BaW+udkegavz+9AeDipbkwZgqcJI6zKjctF4HB+5+nregGntOAA4+uS3Vnoc2/UqRuBSlIUyLkz21FjcQRiA2rpnmflflkd108AQXphMc3YmSp9ODe6YiwEn0uW7R+CoAde7YBEu/sJXBcWDJbxStlMnyGswFEZn71xuSBfyOWxa94xIYkIjcORYGimkUt/cIhh3LIKiMrKYJCetNthEDNiQpHXMXijmAPTv3I7vfPZj+MGXP41dr288YCOolv3pMSqDe9/2rUg6MJZVPK+7tiv8c6PbVm1jRiVT2ofyRZ6gXqmM8eN/vosfv/bkt2KWCaMKhSPwmU6pQj7Hc17TEokJFRVToApCqes6Rj3UHfpHiayYcAilkPNsTNINChhlplTG68ms50jqaL6IoVwRO8xEe3oUVcbmL1spHDd3iVW+5NkH7sMgcRIWHea8mZCSrvP8ISep9nplXUeWQCij0QolZoisSEQxLxpCgHgOTrvwvcI+3/72da7XV92vDqPkDlXiadqH5SikBpx6fChKRrrquhRp0aHw7muSoaoSn88n5LKNj4y4lhCg8LGO2XM4a+zY6EjVY93wPkKRbkbgOnvn4rwPfZyvH9rTp6wzup9Em7okaJpKVBBKQGThpBG4km7Q5SvPlbH0h2hdQhjXqjHg9m4jLNsLF6GpvQNXfPP7+PHDz+GmvzwmQFSPOf0snH3xZTjshLX4z5/9GrNMBBONwA0MVFfMu6wDrxOW7UAwKCCw7vnVTysYZJaMuOS3HkyZifQBWegpaQmBWa2taAj4ua7K2pFswOm6jt//xGKov+Syj+E///Mqx+v5/X7BucmcnhR+OW/eghkyy7xLzRG4mZR7fvVTAN4mCDae22m6jV+1Aeder+ilqQxenc5imkzmCZL/pgFYsPJw/n/7xg0oFYu2CBwAdBBvy182i4mn1Qi7XVUEDhCrt48ODUo5cNVBKKEBKyTqcEAsi3D6u96Ln/x9Hb7/tydxza2/x/FnGrlmS9ccjXd+4LJKj2MT1zICkCNwCeHGqQL52vpnrPs1Mfo0/2ufaURnzUmWTqhN5B26GXA+MhjQbzCpiD5QCOVs0yND6/YxWOGUlLPo1vEPPd6qxXf3zT8UondN5FvTKEm9wogHjKijKoLi5nmjUYoG8u5lAg8GuaXy5H1/xMN/+F9c9YELMUQcHrpt4eAJezZVBE7XdWx8tbJn2kkZ9Lq/2ySm2qbanRlzlSJwm9ZZfeKCd74LgOHx0zRN6HfZdAqlUolDnTRNE2DjVKjHkPY/1n5GCyVsSmaxz4Ue+81g2nFHhbmQIuMrm6Dp+MFglDvSOQznixgvVGYABSwHnDyqlIpFPqZrmoZGKS/qmNPP4tcvl0rYuP5ZJIsl7MvmLaKugyCvJbNYN5me0W9UyOc5AVcgEEAoJJJeuZURiPp9mBUNCdsOP/Fk236uTlKHOT89PcX1gfr6BgQUDHBeIJQ70jkM5YoYJYpxUdeFy1KGu9kqA878leHogBiVa2ilBtx+gVlYLiEQIhOBz+cTcub37BERF07CnmF/v7pM0ns+8yVhf1VtVaH8Ue8c23ZePoDNr5p9owbx2SvmwJk3TlMwYomEQFpBnTZuMjY0iD3bNvN7pFwAbd2zEJPGSp/Ph0u+dBW+8vPfYNWxJ/Jv29KhjsB5cQaVoAt5lN/7yxM49YJ38/9/ue0XVp1ZhahcMpWuOpYvYlhRP67WsWFmC3jbhTqYZ7W1YlW9nbpfMODGx7D91Q2cKC4YCuOSj3zcdowsQh7duJFLSXUalmsuS615cV7kTWHADfTtNOpcFSt7CNgNOxXKlenXAWCSTNJuitgoUVRpBE6DEfFinpRcJoOB3TuFj9dpFmCmXrax/QM1e6Q5FEBRnBuAQHc9NjQgMOy5GXAq0QChxhkTmdq0pbObK+lXXP893HTfY7j6V3ciKhUnrXg9DYiQhHYGocyUyhjIFqDrQNoGoVQrkLQGHLs3IcIkERE4ReD8qCwBTRPJbCSDYO+OrdxADASD6DSN+lbifWRFH8WcRffI9TnEQN743NOCUtBEPLNCrp4ir4Otp88wPjYqtFF1BM7qPzQC55dGoWVHHquE4gJGO77uk5faYMVvZASOKhQMJgcAu3ermUNn8l5Uk9jQ3t340y9/gqf++mdHUia6mi27TfyFfB6bX7KS7o8+xshftaBhlmKaSSWRJspMLJ7gNQVlESNw1AFg9AGWn5WZAdj4wRQ50izm/xkGXIOQB2f0U+as8JqHxuYnpkuroHt19Y0CTB8w2uXpF72f/9/+2ka8OJXBjnTe1oZmUi1ihqmbsuX1eiVdR382L9Csy/lvgBo2aNuHLNPcXSYvKggmLMIaS7Yks3jeNFCd4JP0nrxAKMdMptkgbxtlPD2ewh6TWbJUKgmRsqWzZ9nOYRlwyktY90ny3NY/8qBQRHrhisOEfWVkRDthrd7rwJKsknwua9WA8/kE1I+maThirYW8GVPUvaVGZq8ix94NQsmXNU2qg+eNWyAlQShjLhE4p3b9l9/8io/LK44+3mawVRL2GWjErJ9AUt2ceuz5M+k0d7AFgkG09czC+Zd9khvT6eQ0fnnjNx3Po9I/3XRSXQc2JrN43aHkTS1yMGYE+gTTE1Q/EfUe9h5lEhNaxuXo085AJ4mSCsfTguBE70xOGvwLDErZ1tGJurq6/39G4Ab7duL6T1yKm266oeK+fg6hlPMBjP97tm2xHTNBPrCqt7KXME6hRKSzsm/YOXsuXzc6OCAk+HbNNjxMjTQyNjhQsZCik/CogYLEBBAhlGP75QicGwuls4SqMMT8gQB65i+EPxBwpFJ3uwdVBG79ZBrb0jlMF0uOOXAAEJcLgsIoB7DGnFBontrkuGjAUSWeUvdrGnBUYwyHKrw3TPwapGLe4rl/8x0L0tM1dz737LaSqCyHUI7LBpzzO+zsnYtO0zgtl0rYRpLR29tIDpyQp6RKzI8j0diMsFkrBQDy+bzAsmYZDla7dVJ4ImbUMmJeOBgK4YY/PYTv3vco3vmxT9uuv/O1jdi9u0+8juNTO0gN3Yk9yu5tFnTtsBPW8uV+D4nl8mWLhULFiZCKPAxMT4zji+88E7dcdzW+9W+X4flHHnS9Hl3n9gp2bHyZFyvvmD0HPd2i0ihG4NKCASPDJwGap2StU0VwvYwA/0h4pXxlNr5SZY49f0OTnciE5XvKdZachBnZPvZmzMOcxnMqlM1428ZX+LItB87TnXgT5oxRsbxOjAxjtyIHx0m2pXLYns5jkuQPRqPO46rX2cPn8+GcD3xEWPf6687MivRJhvJG6QiZxII6pKhEPUAoZUZTxhI7ZNL/T44M8whka2srIor5lcFiAxWYiWiu8+8kQotVx54g/JenY1p2yKuzSgcwQhgTmzu7BKcXIDmRFRBKSvAwu3eu47WsSKymWCc6bKcqRM+445vsF43HbRG4Sn0nnZzGPcRIPunt76hwhF2YXllPmJsnJiaQNfuF3J9VMiblOmqahmAohLe95wN8/e9+9TPkMnb2dSZlE97O/7tcrxpUiVc5KBE4qp8I/dnBcU30oTt/+B385sZv8P+HrDrcU06abATS9t07z3BcK6NtB9Gqe1MYcEy+ed3XHbdNFIpIFUsWhFLazrwZWxS0tpOTE67KT9hnJScyobS3PBROrPSxNQPeAAAgAElEQVTRgX7sJwQQ3WaR8wjxFo2P7OfQvWrFglB6MeCGBINAlQPnJuz53n3Fv/N1b7/0cs/HNwUNL3JdhVpaVIKhMM/HyefzKJAadGUoSEwohFJRqmLt2edxYhTKGDoxJkbJBolXsGOWRS+sQUPY51NCWZji6TfrwDGhikCxUMCGJx/l/8+95KP8vbaqIJRSxLRSH5+zSE03vqSTeEXJ+nqFEd89d77F5kkUl7GxMYvcQReVEsA5AhfSNBzTWIc5hKEwGApj1vxDcNGnPo9v/v6vuPxr3xJKJGyTHCxFXceGqbRr/k2lCGEl0WFMyEwhCQSDWHmMpfR4MeCobH35RXzoxMOw9rjVnj3Cct7aA/97mwCjlYvRy2QbxrL928iycd3TfHkZYUVTRRYyqSTSxIBJKIgG+PFkWZUDp4p6uMkbbsxJ75NH4Mjzx+rr4YMaQhmsMgLHIZRSBG5akXAvy3zCHLjl5Rd4rqKcAzeTwpxwsoHav3M7rjhrLT59zsn4+bf+29O5UmZfzqadCUwAS2F3y/+St7z/C1/Bqf96Ef+/VWVYmudTfap0qSw5pCTyLfO3FhZKFkvliJ4hCynR2almt2PvWwmhJE/fIBGVMDn5/Av5vBcksEMqFPook1Y5iQ41AyWVJoJgkSGU6eS04GhcsmSp7XhbBM6hGdDIF60PqxIrsk4icHUJxMnYlpqcFAYqVbfq37mD1xNu6ejCW869wPW6KmHfz+fzicXYzbnfi2EzQcpRNRG49dnv/zB3whbyOSHfkIoOYFcmj01Jqw7pwchJc5ODYcCJEThrTJUZZVmTqncw7ABg7pLlrtfieXRSBI6my/Q6II+cZKbeyJvKgHOTV6azeGEqwz2athw46EhNT2GAKOhMRBITu6g6Pc2BY9dsJgZc35bXeWg7HI2i1eygVFmdGh1Ftsbewu+JwDqp4kRhBVNjo7acKiexDe4hCyZ5xns+gFMuuAjH/ctZOPeSj8Kr+DTg2KY6rEo4e1nFezDzcRyYKHVAKAAbl6ALMuMlACxcapEB0M7KarWx5x7aQ2CvxCvolo/BvoVfE89N3/mOjS9zyFBrdw9OPv9CC0LRbTfg9pBokFP4nk7qcxbZJ0BAhMtS1s9WxYRLyVTqXSKJgLMBR3PgoBmRCbnmCpP5y1fhre/4fzj6rVZ5ka1btwrnz5V1TBXLHHZUSaotO8Cu1U/YSrvmzkeHGTEHqo/A/e5HN2J6Yhx9u3biq1/9UsX9AVGZLOTzuO+2Xwjb5UKtrp5QxcZMMokn7/sj7vzhd/i6ZUcea2vPcg5ckkagFFTfPE+FrEs02g04Lxac7rD8Rgi/Hmc8Nv6KJCYNBkxaIDEx+rjfwcBxEh6BM4+zDDjikHOI/rT3zOJjRjadxmP3/ME8hxp1MhPCDTjJ6rn121/nTsRf/+i72LRpo+1YWZiRS3NzZAITwGoyAQfF3dhJ3Ojz+XDK2y1lmjqEyrqOjdMZpEyGafq+2FiaKevCeGYvIWDsF6mhDpz8NahR09WlHuNZXqPM6CuLqlSApmn46DUWfG51QxTHNdVBnsUo0mTPHvcInK7rGMwWUNZ1gYFSZcAJZZP2iYbhy089zh0P85atcKRnB9RzL11H83KnPZKwUAilEYETCSiEb6XoRkN7LT1ywbKVNqizFxGczgQ1lJwy2p8XCOU4cRDSMgaBYBBLj7DKOTiVw9FhOC2ouEHwD04ErsYDPcqUSwSOvcfueXb4NZP5y1d6QgFQvVOOwM0x+Q685rvJY16thtibyoBzqwvDhEE97BBKdSItUDkHjs1ZU2NW/lyzUF/L+KWQgdeef5Yvt/XM5kosNawmRoc9T/i2ezJ/0xKWmwk1FPfv3c1hU+FwGHV1dTi8PoplcQUkkrzjoxpjWBKPWDj8UBgf//oN+PL3fm6jJnYTDRoCmsZhICpvori/IW5EJvYInHVOGn1ksnCZBTtKCHlqhnGiw5icKC6fFvhk86ebNzigaUJka6BvJ5+kHrjz13z9iqOOh6Zp3ANHI3DDA/uQnJzArtcN+lqfz4cjjlij7OQRn4bjm+qwIBbCosOOsG1vamoSEvDpOVQTLk3CpnCAsbExm4ODNls5AsdyLNg+UTkZThKauyJH4JgczBJXuq4LuSitnd1oI0Z1f/9ervR5kfV/f4Av/+EPd6qvKf2n49VLT/wd48Nizsi+nTLhkT3axpZl1sqJkWF8+txTcMNnLufjQKKxCceefhZvFKrIQiaVFIrtxt0icKRf0ImMGThVR+A87jdTYmvf5q/oIGuwOWloCRrAyHPyIqw9W2qfsYI6fVQwZyarSIT49puuN86geGlbU1k8PlY7zT0TpwicHBl++GER6qsSdo6cSwkBwGrHbhB81ZY5ZBx79dVXuAMqWSpjrFDizIR0TKEGEoVc2XLgzF+xkLedZAuoDGmmEbiuLjULY1ckiIhPExyp8r0A4nzPZM7ipQKs0QcNfs0OBhMjcO4G3FC+iK3pHPZmCxjutxgTWQkBeu5e4lTcuuEFTIwM8/IG21+1kFCHHvcW1zIJqv/UcRSORnlubjaTQdGFK4F9CxqpM3LgCIRyaqqiI5CmWnTMnu2yp7OIqAVrbGXzqRdnJE0BoUykxn1ZTsghh+9a1u26sveZzpL9e/egkPfmZLXfw8Ed7afdIJTmR5i1YKHSvojEYojFE64wRx6BI+d+/YV12EkY0Ocw57jyRPZ1Icnp7aW2q0reVAacruvIZJwZdQDnMgIliLA0KhMTE66U32wioUpVB6nZooJQ0gGqo6cXURM+SBV8FaGKV2HeVQrrXNHRyuGKFCZIqetbWloNqv2AHy0VJoWZgubSxrc8HsHhDe6RONbGaS04eZKkJCZ1dXFX4yQUjnDGR0AMdbMEVx1ANpXiUbJQOIJDu+3wQ5U32IrAaeiY1cuTktPTU3jt+Wexaf2zePj3t/P9Vxx9HDSo283Y0CBefvpx/n0XLV9lFDlVTXCa0d590LD48DU2golWycim3yEoMb4BIo6/1ghcY2MT5sWMcwc9GuzUgNvKCofLk4pDB82XdYEqulYI5QRhp21oaROM6v59e231hOwnsa4sQ98o/NdJqDL5yjNP2rYP9u3iCdH0coIBp1gHAH++5We2YrpHrD0NUSl3FFDkwE1Z3zaecMmBI+vo8zOGXy8G3BtttLldm/1PS2UEAlIZgRHeN4wjvMIYGWTWRmLiIQcOAN5BckhHBweQy6RtuSs6gMHczFCDs3GPRuDKZRFuCACPPfm458hfNm3N5SoSEzaHV5tD3dbRyQtU53I53HXX78zzSU5dskyv4JYDp4ZQOkR9dNe/kgGnjsDF/D4c2VhnU+hkUTlU15xyuvDfSQlsryIHjr3CTKksRNWYw4ve5bylKxA28/r279uDS084FB8+aTU2Pvc0nrjvj8J+yluTIJ9OrUDTNE9lHYwHsO8TjYsslEkPJCY0PaaTpFpUI/RdUacXcxp56UVUp5WZpakDmsL5qOjQ7YR/VUbg7v75D3D5W4/GJWec5OjMcJODMe4LEErCBu4EoQxHY+jsnWc7z6eu+57na1K985n77xWcWwuqjMCFpc7qFjhwkzeVAQcAQw5RNCbsMeVGqOu64N2k8DjamVWTD2vg44SSuKPDrtxTOlgqLZ1dCGoafAAaCKRtcmy05sbLIkY0AregtUVIjFVJpfw3ZQOTGk+1TYnu3xwKOELq5P0jdc7FvNNJGoFLuBpw8xcvERgzhWRTNljqEIqdt7W2ojtiGTl8ElHlwJm/fs3YfuTa0/i2zS89j2cfuE/Y/z1vPRVHN9bxCTUciVqF10sl/P7H3+X7HnniWuH6StEML6KM1Za9uvI5KHTz5DPOEd6bSEShiMCRlivnjLSHgzixOc4HnUqRc1rge+vWLZhQULE7xTWelYu11tChdBhwZiYNLS2oq2/gxkw2nbYpqqpzAAYNvExDPapw1NgglGTNJpKnxqRYyGPfjm3245UsYuL/V555wrbPguUGpFhWjuQcOMoe1+wSdadfOBSJ8tpSuVyuotNNJW9kCpwqh5L95mgR84ZGBHya4BwbGx0V9vcqlh0kWnBeSEwAIz+X9t/x4f2SMV8LmNhZVBG49PQUJ+Fg8vIrL2PAo9GYz1IDzu7UYwaX38X9rNri04C1572T/1+37jnzfOJ+Tu/HjYWSXbCaQt5OkTgRQukMIXQSOqw2ShDKQDCIiz75eXF/xXGAUS6HzY8jI8Ou/ZU55cqAEkJJzx0MhbDoUBEZUi6V8NX3XyBEsOYuXa4kiWBOg7zZDug8Ij9LLG59j+npaUcnAneU0DIC8bhgQKWnJiv2HRpd6VGUx/Ei9HloDbHpCnMNFUpOR52uGsQI6KvP2p2CgNEnbBE4Vy+bfeOt3zK4Kfbs3I4777zdtv0fKYV8njv7fT6fwF0hyyGrRLbWL3z/Zhx9mpHe4abBsG1dCiZVAPD5/VgwzzkHTjW8haSV/ycglAAwNGSno6XCFSmbV0Fs7JSgYnp62pNneEKIwFkGHFNUWxxylRpb2+DXjEGPhrknR4arzlMolnU8PpZEtqwjn8tyiF4oFBJYrCKxGCIKWEo1JQS8MO94aSBeoK8qcYVQJp1JTNokw2XxSrFjCoOlGWEoQxfaR3OzSBzi9gzsE7J20EsIRYZ27xKYT+cvW4n5vb0I+jRHo5PBJwHg+FPsRdBlpZv9Ll0jFlvv6RHfg0/6nhd+/DMADEXxc1/9mrCNwrdGiXFjkZlY+4pFb9Wwr2Ma69AdDiq3tXb3cIbT0dERPLV7n60Aq9dE51qU1rIuRuAaWww2L1VuoptoMGouykptpdpE7B4AY4yi33/ZmmP4Mi1Kr1IKVes2rX9WIAtgQokwqNAxI5tOCUQFnaanXuXOkfuKTGRSbQTujYzGKa9ltrfpKXsELqEgMalWLIeELtyDVwMOAJrbrDmIokO2vbIBHz31KHzmnWehb/NrNd2fk1BmPHqv9D4mM1nbepVkK0AorQic8zlUm/yahoWrrLqsL254Cc9Ppm118qiTl57HtYyA+RsIhrjRUygUkMvZadV1eUEaww7UgKPSKEEojzrpVLvj1YHExO/3C4Qjg6QMzUShaOgbZp4Une8FA86EUMpzzLI1R8FN2rpnoWuOWrltCPjNe7A79OSIhJAH56LPsfWUz0COwKWmp4RBQXaFrHv4fmx9+UUAxjtdcYT4jF61HRFCSSJwpk7ijgozRIBck3HJrwHLjzyGO9L2bt+Kp//6Z/O8Otb//QHc9bPvY++uHZ4icKmpSfzhp9/DXbf9UiAfktktH33078437SAHMwJH+3K8odGGUqJa2LIjxVrHR536NrKfi5gbVRE8ADjx7PMRN1l2VeeJKsj94n4ZQvl/JAK3X0FHS8XJ21WGLkRYKD7Y6PC6uZ+z0IKJFELJjOWGllZbbTTAYIhiA068oZHj0jOpJDIu9K4qoayVaYFUxRiA6KBd32zHxVcy4LyEeOl/L9jcahsRj8AJEErLYCvk8ygUDLy1z+czKaitG2lobRMU0bMvfI/QUSkdOodQ6qJC4hRqdxP2nJ2kbQ3u7sPe7ZYBd8W3vk8Kk1pnPfZfzrKdL9HYhGVmbpv6nYsTMlX2AaC7W4rASQ9x6gXvxvf+8ji+99cn0DtLjFo6ReCYcEdJqSQYcA0OeVJBn+aYiO/z+YT6cP0KuIfXHLiaDDjoApyZwZzlAuteoCX7FbkGKgNOVdftxcf/jg8cu4Jva+nswoqjj+P7bCeGmOpOVGPfrd8UDfPWrm6c9PZ3YPHhawDYI8tyBI7muXQq8lw024IhlAl2bGyMNz5Xh5WL0nQwxckILpVKnG5c0zTEEvVGDhwZG8ZGR20kAG4yWSihpOu8LclP6aSQqaSp3Yq60EjpH356E0b692HLhhdw3Sc+6Pne3ETVtlQGnK7rGBqs7OwAjHqpTNQQSjMCV6Xy4oOR/8VYjHft2Iax6aSN8dkRQulKYmLur2meo3BOOgmt11lTBI78xhubBBbC49/6NuUxTkLTCignAIPgTnHiF0OKhQLGyP2ztAH5Uy1e7W7AXXXLnY4EIIy1ujlo3y7DamN1YgTOhbMYxUKB6xM+nw+RWJ0iB04t+3Zsw/WfvJT/n798lY2plOo7bi2XTod1lMTEJQI3mMziuQnLme0UgfNBQzgaE2rx3X3zDwEAD//hdlx7+cW47dv/jf+45F0oSv1ClQP3/S9/Gr++4VrceOUX8aOvfI6v37Ntq7DfE0885ill4I0SwYCr4BA74cy3c6ftuZd8xHPgge2lykNt7erGB798DY+oKQ04BSKtLuDHEQ0xtJht//9EDhxQGUJZ4hOj7G0TG3v7LCvxdHp6iisWToqiQXRgeenb2+0ROJ/Ph+Z2O4FGY0ubACdrJmQng/u8TXYqEcsamAYc2d6kgDxVU0LAS5vxEqWrGnJpvisagUsTr0+WGHOJRL1JCGKJz+fD//u3L6K5vRMXfvwzWLLyUNHbRQZchncvAxJTZ4sSsqGSmEnSwSaVDgKp2Pnaq3yiDgSDQq1Aes63X/ox23kPP/FkBPx2h4AP6sFg+VGiB0lm51R15u55C5BobLKF7MUcuDHuDpSVkTTpO/X1DQJpSjXSTiLiqmjXQakVY0pZF/NRmTdbIJfZt9dTfpPMtgZ4Ky6rw4KiMJk1/xCBnOa+236BX157FTY+97SynIMse7dvxZYNzwMwYBzfvfdR/OTv6/Gp625ynJxodDo5MS542VkEjjYVFQslACQaxDw4L2PAGxl1q3RdHeL4mkgksDgRhQZ7dPG5sWlPkM9CWcfL0xlsTmZt8wz3GFcRgaMK+7hpwJXLZbz67FN8/dCePo7SOBBRBZFUBhwADOz1VnaDeu9VdeC8GHAyCoHtH45EeX1NRlJkg1CS//QSIomJsyMv4iUPzkF0XcfY/so5cF5EgzFnfvbGH+PUd7wbn73xJzjzne923Z/+AkBc6K+W0sscDWy8YK9scnQYZVPxb2hp5ZT18hyz/KjjcAiJhlK54Y8Podt0dqoUVE3TcGxjHZYoyNYCUjRRzIGbcuyPOkRm2fqGBvh8PpGFcmrCdgyTJ+69W0BYvOPyK2z5ibQtsS2VHON1AomJcw7cU/vGhdrBNCghGHDmyd/z6S/ydbu3vI5SqYSn/3YvXze0dw9GSC4mYI/AjQzsw3MP/pX/f/K+P3LDaO8O0YCbnJzAs8/aUwDc5KBE4BiihfTlTkXwgn6DaDyOb9/1AL5xx7143+e/Iu7nwZjTNA1nX3wZ/x+JxXD1//zeiPy5HOfk2I75ffy6cmTbq/zDDbiVx5yAI0/9F/6/EoRSVWgUMBV0kvDZ2NqOsDlplMtlHglzUhTH9g8inzOgIY2NjYgTzDWdYFQMiI2trfBrwHyT3KGd0Pb2V2B9chOa/6Yy4OYo6lcsWOBMlwqIg4+TcqaTdV48A7UWKqRRNAqhzAglBOLKa5z1/g/hZ4+9gHd98nPwaeJ2cbCeRLlsZCDJEEqvz7A0HsXyeIR3xNauHh6JpWyZ7T2zBVYwGXbWLdUKOecDlznmeAj3Zv7KCt/SpWJpAU3TsDAWRkIRspcnoXijSGJiGW5ipNqtZpIsbs1AZuKUxWuMozYIpS7V3zKevZNg2vfu2FbRiNQg1kZiMjw8bFtni2jqOvo2bxLWzVq4CMvWHM1hMADw51t+iisvfgce8wBVWf+IxYZ55Cn/wllG5XZH19Hc2fHhYcGYtiCU1hmYb1x25FAnyThJIvf6fd7YHDj7sqzoNTY2oTMchAbAHwxyI07XdUHhd72O+fQTxZKNKbQmCCVxFrIahv27tgsRcQACw+qBSqUIHAD0e6wlJrJQ2iNwbDx1LyNg/FCiWzY+0vc3NT6mKC1kifBcDnUtZakUgZOdXfQa6ekpHoGMxmKuuTlOYkXPDUVt6RFH42Nf+zaOe9s5NoecSuiITx03ExP2/uoDMFUocf2KfvvWllbOkikruoFgEF//zR/xzT/8DYcef5KwrWf+QiyqC+OohpijkR7waUr4mNUmjAWhFlwyaetfVFKKsjd19SKEUjBiyCItWH/Jl67GUae+DTLJMlW2nXQoY521NiFAKCcVe6tl2iFiz95Z97wF3NGTz2XxwqMPYctLzwvnkBmOZUfHcw/9Tfiv6zqef/QhAMDYYD9k+dvf/uL5/o0TVrd7NULn9VZVNF1GjjQ0YtGqwxVQS29yyZeuwrfvfgA33fcYbnt+K0djWagra9+WoB+dYXeHdzV6tkr+4Qbc3KXLsfotp/L/lSJwRQfPtKGkWYNOvKFRwE2np40B2ElRHNi1ky/LRhAN8HcoGIkazAhcTySEFYmIwPq0r0LdFSa6rtsS01WFxel3XrjyUNt51lTApHu6FwCrG2JoDQWU4V9ZqvUesL3DDhBKuYQAPUZ9Pk1oyP5AgE++uq7z9zjlZsC5nD/o09BMGD39gQCa2ux1edqltiHPS5QF8iNXfQPzl6/iHVeIMMrHkxNd+cv/RUtnF05469tw0kmn2O6hKxJUYq7D0s3YInCymP1MzH9zVzhV75BNxAJcsd9bBE4Fx6t2Lnh63xj6MnnBKRAzazz2HmLlMu7e+rqrAcchlIqacV5y4MYkL6g/EMCpF7wb4WgMh524VryWruOJx/4uXFcltHD8EWutMdStLdPv/tr6Z3j0Ztas2ZwoQGkAKiZCJiqFUCV0dJuJOd1rUW1lBE4XSwgI46tur/fodqVcuYy+dI5H3Uq6hfSQm1SGKJdOBhyHahMHA6sTOKxofxReWauojBAnw/XV55/DRLZQsaQChVCqInBL4xEsrgu7kl6xZkcNADbfUIV2enxMyN8DJJQOWUxOVM6BA4BozCuRib11UPhkW2dXzXni7J5s/c+lLpli2hBo7MUInPHrA7BhOoNtaSPXj+pS7S0ttogYFX8ggPnLVgqlWQDDuPNpGsKK+aiSyI6nqI3ExNq3rOsc5qzrIssk+76hcIRHEUvFIrKkbdKvt3vr63x56RFGzrms3whOcKjHR3mdgHzgZQTcpVwuY5Lkp9cTpyv9+jQn/xsf+4DNQKTkWIA9Avfy04/brr35xfUAgAlp3gKA+++vzoA70LG+rOv46479GMkTlmbz17WEANTttfqUH/Esc5csR898oyzBrEhQiCDTPbsjQRxSpyjlpbi/f1oSk3AkKhSE9GrA0VaRL5exJ1sQKaHrGwTcdKoCBILm5cyfLxlwpCcuWGE3mhb1dCNCTGhaOHPAo7fyifEUdqbzQmPPJFU5cNb2xYetsZ1nGamHphJNsaxq5DG/D0vjEW8RuMq7KPenEBUxAmc34NzEiMBJEYIGO4zSrbPTTurkNaFXaFJAaWnepbw/AJx98WV43+f+Ax//+g047V3vA2DlAVCRPZL036pjT8RPH3ke1//s1qqKiwZ8GpbFI+gyiUYSQh24UZsCx1SzaRdlx9N1zWehJC406vPI3Xfi0+eeij/c/GPhuMfHktiZUdSdqTJ0M5DMIVPWhTbFjPvZCxfxdXu2brGRIIjXNb5DesjukZxSeFTlM734xCPC/6/9+m7MWWxEUBnZDJURM6rn9LilYpFPsoBRa4mJEq5k/iYcCtGvJDBkt+OZVMqhVInusFyLDOeLeHYihUkFAYL9unbDUYeO1LQit1Mz9hHek0N5GuZg2J7KYXe2IJAx2CKw5v4TgkfdwYAzX3bPPKs0CvOijyucBeP7h6omy1KxOMsyRvLRV594Ml9+5tGH8NCuYaybcM/vrkRiEvL50O5AfGQJgxhZwiIispEt17Cj3ZktFvJ5Xphc0zR7GQEy9kaF+clZf1DBT0eJHtPWUTt8kt+X9F+mIRd3tm+jBgTNgeORLOkQea70omiq0ktqN1vF42MSiQl1HWxJ5QwSG/MDOKFGhDy46UlMF0tCPyjk8xjsMxz5mqZhlunI91IjrJKhIOoj3lgoJ0dHUMgbBnW8vkEwYqmOcMzp9vx6Kv1yBI4s67qO19Y/C1kYNH9KwUmxc+eOqsoJHOhYX9R1pAslbEvZiYSSNRhwqu9ZawSsIeBX1nA0ru39pP+0ZQRC4bCA9a8EoeSeTbKOJeJSIy2WSIgRuAoG3MAuq5HPJzXFAPHjLpQYD2f1zsVh7S2Cx6hdMOAqR+DY5LkvVxBzEIjioCInmbXgECHf7vQzz0Yw6G1CFJY8DFCuZ6yy7fFBuU4clJnQaEmduY9bvpoGOxZdKJxpGiGFNM2tE/PH6DMsjIVxQpMd8kOFOh2Y0LxLwO65i8RiOO9DH8cpF1zEn6feZOKiz8cUFLfJwT0iqZaWUIBDb6iCOj4+ZuVcSf2LKTuAO9wIULcDzuBKkviZATc1PooffeXz2L3lNdxy/TW4554/mvdg9oesPben1smAspqyibC1q4fDrJOT45ggjITK62oimyWTyUl3SEw6OY3bSP7b+z//FSw6dDX/P3/ZSiE6C9gLSMuyZ9tmHuFo6ewSIKpuE0eDQ47sypUWa6WX9kYVktHRUSuH0uMHOtBJfco0lpIlDwaccDELwUEjcAxqpcFwXlCo6ZRDORi2jvVdmUSD7gMTCVAy7zdaV4dgKKycgNn365ozj597sG8nRgf7Malof05FfJ0kVSrjyfEUhnPuuXPU0XLiGedyyPvo0CCSE+MVYc9iGQH38dRJVBE4tixE4CbGlWUEsqWyoKTT99fS2uaa0xupopQAux4TCmttU6RdeBFr/Lf3SG9GhbVTvJ5GzC0DQsU6DDgTfrkpmme89xLuHLv4C1+teJ+exDw+KpCYTAkOh/GCof/pOuvXdgglAJGJcnISL01l8Hoyy7/b6GA/z/trau9EOBpD1Ke5Ksns+ehcH9Q0zI+FpBxEYsBNeIvA0fzk3tm9WJWI8nuhOunp73qv63lkCCXtD1PjY4LBy8abvtc3ITk5ITgiqOwiiA/H3KwAACAASURBVLXKcmCjPWvHIj7NDvV1IiRyOl+lddY2t3NVs7ddOIS5xn7yJjDgIgIcbUgRsqWiagpMKaWsjbF4veC1SVUYgGkEzgahFCJwIj336iNlilnNFoHLlMqemcwotnuCeFvbTYNBbmgXf8FIxozWxfHpfxcTM1XixbvudzGWlOf0sI9wPfOkFJdOleBshQicfD0frOfy83PbaXuzQm6dZMAJ96dVhLyovI0dPe4QSiqtoQCagn6lJ1X+xgc6B6rOFYnFeO5VNpu1saWyMT7pMBm6nZsKi8BRg5dFEf722/9BsWBF2e655y4A3vPhKgmb5Av5PPdk+vx+DqXRNA0NLRYR0P5hd+eRBrVhpYzAkYHq/tv/h080gWAQR59+pm3/j1z1DV6TBgBGzHfkNPXR0gGHrFotbHMzwJyYD5csWcbbnSonRV5DDcbdu/scmfgEUSPaahLWbbygKFWRP12HMgLH3xOtJTkx7mrAsUL2OZeC8zpEZYPBodzGiHA0Jswll61dgyfuvdu23wN33IZi0VtttpF8EaMmFGlYAUmiMkwIuLp7e9FOxjcVlFgWSkeuglBWIzQPiS0L32h8zBZVLOs61k2mBSWdRjA7FYYV/Rxec+BUIjD31oBcMG7GuXH4oOHYpjqsrre/V9VRlERDjMAZIrtBbBE486QRv2GcHNlgRVStiGgLvv+3J/GNO+7FOZd8xNh2gLMXOzrqwkIpR1qTU3bHDCDmxrN9RknUnBpM7T2zsLo+isMaYq4U77Z0BwDHNNWhJxJyrAPH20YFb5dowM1GQ9B6mzL2hrJRymKLwJHLsogjAMxdsgyHmAizcrmMV555EkMDFuKE1p3bsUM8p5vMBFwekHKZzd9aIJTKaGmtzVRz/luN8+KflsQkZBY5Zo19dHQU+bwCOmWKSlFgDyFAKBMJIeRcCUI5QBqy3YCzloOhMD5x7Y38/zkXvMt2LpoDN7B3N9ZPpsVixJLQZ6GD0fiIvS6d/JlPOOs8/PDBZ/CjB5/BgoWHOF6DiUCB69DC/IpWyD0/Fa/gXahHbIrACipBKOXbNlgqjZW0nAMTZoRk0jSyJ3qEPUUaybLKgLPlwLmcqyXox4pEVPkNVHlxbvdi2+bFO6tpIgmAORBSiBkgKiKVInCqu7JKcFiG0tTYKKYnxnH3z38g7NvXtwuAu1Jey2SQleCT9J03kvsaHnau+aXDgC2q8gWp86Fk5rJSecqszwMA537wcqEMBZNwNIZLvnQ1/79tC8vFUD/xwO5dfJlBMZm45WOEwhGB/ZXJQjJ2KKNC0knpM4jeWPX9ThZKgsFwoCwm7G6qhW7SdU6KHmA4AJlkUklliQm2ijkQBQNOkastGnBGX6qkYMiQfVpDkEn/zu24++4/KM4kykShiNeSWfSZ0OSSQiGiQiNwHd2z0EbmNRUbKyBCMSuRmHgRHuGoEIFT5Smy56NKOoWFdna6R8aiHlkoLdSCdQfU8ZVwKL1SSYRpWJGHFdA0G92+k8TrnXLgWORcfHuUPINCKANmrn+EQP+pkdbY2oZDVh1usetVqZc2B/3oUcBqKZoqlUoqlXm+nebAkTmLlgeZVDjiaJtu656FiN+HgFYpAifqR8I28hsz2bQBA5FRKharisDNYugeRX8A4Fhrj52H9kU6llG9t2vOfBxGiGheeuIRjJrvyefzYRmpQ7tzp3cDbqZE5ditKQKnaJNeoqzKbS7/vTT9f/4IXCQCfyAg1FjwQgpAG39JN2r6ZImCHqmLCxA9CqHUdR17d2xFJplEqVRCqVjE0J4+vn2eVFVdto5PPv9CXPu/f8Z1d/4Fx7/lZGGbpgHNHV2cpXB8dMRWDNHtWejy+H5al66Tn1+Wjlm95mRWuRV48a7TAZkt+TTxVzi+SpwEm4xiAi7fGnQrGXDyM4gROGbA2b1ttH3I5/X0BOS6csI2YIdQzpBTRz2A1Hhyei6qAE2MGhO27CCpJgfO7TaDoRDPWSmXy3j0T78XPPSAEckxru08tVWj9rN9KSQ3Kn33BgJNHqkw7jix8rEIXFnX8dR4CjtILms2ncaOjS8DMCbB8y693FhWnIeOgYVCAXfd9TvH56VkFjS/EKjcNCjEm93XvHnzXXPgZKEEGzt2bnese8bk5ekMhipEfLxKqliycjU9GILC+EogwikCmZUjcHUJce5QkuyYv8zhlSMQykoRuAZT2VB5XmkfpUqTLIcQGO699/7RcT8mLEcvan5gNya/Qj7Hi4drmob2zi6hnVHl0klyAoTSngPnRXjEQWHA0Ry4ybER29PQ51NF4DpqjMD1ZfJ4fMw9IidS2bsjF2oRPn6o5mPzN6ABvZEgDk1EESPRpynS7tk9y/BT2lZp+oYKQsnavyoju9rcnuWJKObXWay87OhYXI7A2b+tbs4cwpxF3r0TEzI7XhhTe2YTZ6fz/VqQRoXzkjyD3+9HLCHm4FUSqv91mffuNEbTeqJMOnvn8mVqqNFoK0We9cydhyWrj+T/n3/kQb7c1NYunI8Wgz/YwvQBlZ5cMQLn8l2E/Wq8Nxv0slZD7J82By5iQABEGKWIu1UmaJN1ZegC4Ue0Lg6/3y8oaxReeftN38QVZ56E965ZhCvOPAl3/fwHnI2tua3dXl9L8W4XHboaC6X6Y4DVWYXBQsG65yRUIRkbphE4BqF0Fi9NQP3BxSNpBM7yIokRrgMRS0myBrRRMuhm0s5QR0CcKObHQmgLBfhzMdZDAbJgGofpJI3ASQach+eie8xZvEzYFosnbPVA3Dql17ojXu6lVlFF4JioIJQHUkYAABpJrutDv/utbfvo6CiSyWnXCFyhrCNVrJz3BFiDfDoljg1UaGRw1CXvTIcuMoJR7/+UWNenP1fgk87e7Vv5+NU5Zx5vl6pPGwpHEAiG+P/vfvcGx/sZ6a/dgFtFCE8AYPacuQiHLaXJy2SSaGzmEPVMOu367mayxl+hrOOFqQz2mvmRns7sYHypCtTzgudx2YBTnFY6PY3AybnaOkTSGBaBcyOj0ACcePb5ymg/AJxyvoX+2OdhjmHmJfu+QgROer7dWzbzdtvWMxvhUFgw/FXlNADxe+QECGVtBhwTOuaz+Ym+l7GhQdszqMaRccWc6iQ0Uk1JG3ZL5EqqNkjbVqKGEgKAuzdfc1gvy5xYGDG/z5GQhb0j2ZiXFWPWVmRKfWMdi7Y5IzAOVKICiYm6ELcOALou1HlraKQGnJWHPaqgx6cGXDsx4NzgbezZVe/Fih4bvyITZWUDLulgRKvuac3Jp+GwE9by/4edsBY9hIxPzoNjsnvLa3x57sJFmLdsJf9P+0pbZ5eQFzzmQOykkoNSMsY8ZyUDTiUqvepAWGKF8zgsOwkbY73T0YnyDzfgYvE4NIjKXSUiE8DuVRXy30zvqTAJm4OWruu4//b/4esH+nbgtzdex/8vP9zO7Oj2IWQIA/tHJzsnuAm/f4dlSg/NvIUH+sFqzYFTeUIPVOiANlpjBK47HETY7+Pr2MBGIZTTJhGHWwSuWumeJxLdxBsaoGma8H5dw/JVbKv2jbuf29pKI3CT49aATMtZUBKTiiyUFdoWddLQiYNKX1+faw7crkweL0xlXPawhE0cFEIZsxlwVtRrTEEQQWVyzIJYdvbOs9ZPTtpKgDChtNRzSA6Bk1Jwyr9aSvmmTa9i2KFIOHUKtUrRYOUERa53FKm7CQAXXvRe8zi2b2XRNE3wyO42YZSqyTqlyP+tdU6XiUJqzYGDrruWFaHOv4xDBA6SZ5juwRViEvKjChnLi1KV/KBe9kRjE75//5NYe96Fwj6BYBArjz2B/x8cqOwR58q6eU/0meSn2/7qBr68cOWh8GtiDdTxCiQ7gBiBq6s7sAicAKE017Z0WgReo0MDyqgnE/asYl65M4TSDyBMooZyjrBKaBMRHV+1GXBMlMgGV+eg/QRCDlkyie2pHHKlMm+ncj+SFeMyVzSdjTSlcTdDGdy2HDiH7qhDhEZT2H8lp/qw4BSz9pV1JtpjmcNYBWXlJQbM34SU1lFp6JpWzL1WnrJ0LU3Dv33rBzj0uLegvWc23vXJzwkstnIeHJO+Ldb8tGDxMtS3tgnEeExaO7oqlx46SOI88opjqgpC6YYK8iq1Bk2quc4/LYSyZ/5C+DS4lhKo1NBLANJJmv9mDJgxIQfOUOL2bNsiTNyyrD3zXNs6N4+0kwfVS74AF/KAvJZQqYSJUUthbDOVX/eojvtlKh3PRDDgNPG3Vk8BFU5ikhCLazKphsRErhfDPkdcIDExI3DkvHIOnKf7JsuBYFCAG5xx0fvNfay9DtT7KEc/qz/SfQuNwAkGHKwmWU0OHD33sngEq+ujwjqqcDHxBwJYfpQF/+jr2+UJFgcYDHNu0TgegSPwp4hkwDUSA64ShJLSybd0diFiogdKpRJSqZTSeGHwSUAsW+BUvPgjV18n5DO8+vJLtn0K+bwAb2uRJtxKEJFlRx6DD195LZasPhJnvu9SXHb5J8XjK4wRbGuHyoBT7O+xXJsnyUrGoBvcFjAU99G8neBDh8zya7QD9mwxIQKXdI/AKa6risAJOXCmMuQ2RjAjPxyJ4u0m9JZJc4fIPDo8vL8ikYkMRRKfSXyKFx57iC8vWHEoNE2zMXOqr2EJrbVVK4SSiYrEpKmtg4//kyPDKBScI2PMgFOlJVBho4lP0xAhxCvptLccdr4/mc8a6muDUGqOf+hfb8gRagBNTU2hP1fAusk0H7NkF4ucW2S9F/v5fdyomPkInNUfRTirq1I/qYZQUqOsf5fdoKF6WnvPbJtuwUSVj6nOG2b7m/dCHJj9O7dX1Gvpc8jGieq1Jhqb8NVf3I4fPfQsFh26Gt3zSAROqgUHGKkF+00GW5/fj7kLjDzo+YpSVK2dXUg01mbAHYwAHGA4mmuKwM3gPdj4GNw2usg/LYTSKMKsSaUEKhtwYgROrxiBYxDLLS+th5P4AwGc9LazFffoLCFphFJF4JzgJkxUntup0RFOaVvf1IxQyIBWqbxcXu6TidtAw4RegxUMZfCgGYVQEhbKNMHlZ1zYIgH3KCL7jTdK3i5dl0hMDiwCBwAf/PJ/Yc3Jp+F9n/sPXHjZJ2z35mpsu5xXnjhU+3qN7oU0DQtiFiyP3hI1XkZJ1Hu8UMIOs6ArdXZUkwMX9ftQF/ALF1xz8mm2Y3oXLcGsBRaBxu7duzyxUOomw5xbNI4prDSiO6upEXOj1vto6bRgNUMuMDRdByZIBK6hpQXxekrCI0JiWJ+mxbapwR9zKW67/Khj+fJuBV3z6NAAh150dHYhGAoJ2ysRG2iahre9+2J8/Td/xKX/8V+cSp07QVyPtvbrIgZcH8mlsIsawliLZCRrsFJb2WrWaJOvq0N0WsgGXJTkT2dSDjlwLg/B7itTKmNbKgcdorLRQDzqDQG/0B5U/b73kMU4lBAMrDr2RCOv1DSqyuVyxdITcokQpwjc4O5dWPfw/fz/6hNPMe6ZjBc0Gu0kMwGhVEbgzOVAMIjGVkMp1nUdo1JBc5p6wRbHht1JTHikSTMMZybpdOW6V/QdClGgWlkoidiNCPV6Y519rQihNMZDHVY7lZ1mcn0ttl2ZQ+/i3K1VMbXObRxPdTkDZq8eU3SI5UEo7L9n3kL4TH1mz9bNQhsvFYsYJQzorUIETnwGHywHHNeHXHKt2C8tHfP6C+ts+8tCx4tGF9IjJ5lFyPh2vvaqbftAnzVmd/bORThiwOgXLF9l27ets1uKwFUBofS8p8PxDs6zTCqJkum0isViiETsRbOVulOVTdLrvChfz8tl2KMFNA1NoerDI/9wAw4wXiiFV+3fXxlCSaWsAxmSFMqSRcUyAoYBR5M5qcQS9bh1/WabMsTuz/nebbFsAGIx76EKxbxlOCgg4o8pvNTNgPLSYLzsw2qTAUCz2ajYgEXfRX3Ah8ZA9Y2OnSIUiSJg1q3L57LI57IARMIZlaHlNomwAZ/CM6fHx1HI53hnD4VC3CB2k0Prozic0DTLV12wYhW+9KNbcN6HPg6/z+hKQg6cy7mrCr0rdm51KB4py6r6KLojxIAj22ju1BCBj2xKZpEr6yiVSphURIG9iEoJXXPy6Zi3dLmw35Enn44Owt7Z17fLE2beS1kOdhqaH1ufSAgGDo2U9+9xr6dFow71TS2IJ2hexrQQDdJ1Iy+HJYmHwhEsNQkpWoLufaazdw5f3q0Yr2iuRo9EnAO452OoRBXFbgj4sTRunxDpuTrIfe5xicApP2eNs3pOglBWaisZW8QO2J8rYChXFCOqUo5JTIBQJm006+xc9FclI4USBnJGkW/qDGH1+DQYffSIBruBI887n/72D3HcGedg+VHH4YKPXmHcN4kiDQzY83qosDfhFHVhsokU9j30+JPQu2gJNAANzZYBNzWqNuDou5gJEhPW2MQcOOvF0Kg+JaYAxOdjy5VITJh/wKdpEoTSzVFkF0qQUyuEshr2O7dtGkTkQSqZtLGkUr9IqVQSmRwbG/l25dhi/h6oseYmMbkOnMu+1HimEbhEUzNOPPt8/v+H//lZXl5mdGgQZbNGY2NbOy81AyjKFmma5URwNaTNX3PfxSQ9Z/OL6yuOXTQCx6NLLteTZf6ylVy/2rt9K6bGRaNryCQNA4Cu3nn8nDQPjklrR6eA2KnGgDtYUkv0Dag9CKFKMbD1NUX6kadzw6g/XK28OQw4wD0C5wJfAYASdGHAZJS5FDbAYFSDpNE2tloEBu/46BUIR6JKL1I1EDa2J1WORwYqJZhbT6OaaJrIfbp9MC+Uwur8GPM6QT+OaIihhRgHYZ8Pq+uj6I2yCKB1fG80hJWKOjQV74HcS5wSaZiDQlrBDkfFDSLGtrWSyMr+/j1C/ptX+GR9wI+4RwOVTWx0Ejtg76P0CwA9kSCWxiNGdKvCcfKy/J8aL0NSXafvfuGTuGjVXD6J+P3+ijS9bpMYO8fXf/snHG/ClFcddyLOv+wT6CCU9H19u1zZ8Zio8qpkYeMGjejKBdyp8di/d4+aMAlmxGaURuBaESUkB+l0ypZrtWfbZv5/3tLlCIUjOLIhhqXxiGsOS+fsuXx5j1lagYqSXprIgUbJNWhYVR91dBIoUQbmmK004CqM39WIDMes1ApUzrfNqRxypZIEEzMNKnP/mATvdiNicWozVNKlspgD5wBHFuDh0rZEYxM++52f4Jr/+R06zL7LIlBAZfZmFrVQ9S/6CLTG4LIjjxGuz2R6YpwXJXc6D2VfPtAInMhCaW0X8jC3bXW8Fx2GYUINz/Z2O4kJezd+GKU9mCRTKQxmHQqfKxhYKZFGUwXyp1rEyq/yJsFQCCGTqKhcLgtF1gGxTaSmJnibbmhoRCAQ4NuVrKnmrxs6qFZhp4xIOXCqPscjcPTdS/3svZ/5Ms+PnxobxUtPGAiJYamEABVbDpxm17VUI4BcYmDhysOtCOC2zZhyITLRdV0y4KQInIcxPhyNYf4yK5q24cnHhO2Pk5qS1BnnFIGL1NVxkq10Ou0KK6ZywBE4slzWdZTNfPPp8coGXLUlA9zEp+hzB9rk2bPVep43hwGnaRILpQSFUByj60CyWMJYvmiQmJBOy6IvMYlJDAAGd1se7c/f9HN88rqb8Ilrb8S5H/wovxcmy+MRLI9HlEpARyiAxXV2i5ntSunJnejHVcIGJhqBa/IYgQvMAOWTCtpVF/DP6CBN33EzebYxUwlMTqkhEKrjmcjJve2zLAz76EC/0NlVsEwv4u4RFQdrebm6c4kLdNeoz1c5+qYpF21CJypamHfv9q147E+/5x5JAGhuaYXfX8GYdSG/YRKORPGZG36M37y0HV/5+W8RCkeEXJ6BgQFPOVOqnCRZ2C7BnKWsxE3SJCZ19Q1cWc9lMxgedoahCQZccyuixEOfSqWEgUqH8R6Z9JgwUU2DWbfQWYTIFqn3xoQyUPb0zLJtV40R1Xrs3YQVrqY5UeNvkEdW/uxUkevP5rElmRW20zetkf1TkxO8fScS9ZyFk+1ti8ApFMairuOlybTSmbBn2xb88tqrsPG5p41zlHVMT5AInKKQ94pERIjEeYFgU7ImWt9LJW4RQ7pux6ZX+PJCsw6dBgOyGG8wFEld15GcGHc0XouFAkc8+P1+T4gHlYR8GqI+DXUBO8QUEImBZGIk+c5oWkJzc7PynjpCQbQE/ZgdDQkQyvFUClvTOWXOrfxeC/k8cmbEzuf3o75GuD6dB+SW4HMaYGGfW3ibJvdBnVqA6BgRyX2MdurGQskOPZgRuGAohGDI6KOlUgmZrD0iqus6ctkcf/eBQMCG4Gnu6MRpF76X/3/hUSPXUy7iTUUerX0AEmZ7ZIacanxgLZa9s2hdHeYvWc7v9eUXndN50slpPj7F6upsbdXrmz6clLl65O47+fJw/148+8B9/H9X71zLkd/eIQQ3AKCtq9vIgyWG0rgLl4QgApT5wMy5dRNpPDVutF0vETjVe6rWwSnXNBQOP8hM4ZXkzWHAQWahrJwDV9B1vDiVwcZkFiWIuOc6M2ojlBEwa74NEoWoe958rH37O3Dy+Rfyj0QHqOZQAM2Eop5KZziIdkXBSXZ4osHy/CQ9TqyAOgLX2G4Zt242Wq0EIy5zgXVfDFoiKUS1iBMEZtSsLSLQACtq6Ljl8bHxIRgKo8WkDdZ1HbsJ21ItBCZehU5iBwqBUUa0PLx0zfGPGIFt6eyyjNz9g7yUhirBu7WtzbbO7bpWlFW9bzgS5bBTgZ54fMxTDpwXanquUAnkNQnbO6FFqR988G+O55qkEMrmFkSizhE4ANhLEsdnzTcNuIp3DbQRg3ZIgsXpuo7H7rnLOu9ssXg84EyQUkkqfTMmyxNRdIYDqCdJ7cyAc/KMVyO6rmNLMoupQuVyEbStTBXLmJAUbCECrAG3/fBGfOrMt+DqSy/i60X4pHGEWEZgShlFnCiUMF0qY0xxnzd+7mP48y0/xXWf+CCPRIkkJvYIXFMwgIjfZynE9kvavlGdUEvTowFX4YPQaATNTwVEx+TkqL32GvsvF/GulaY7oGlY01iHBM0RJOeiRez7NosGnBxpHCHU8V1d9jqegOEEXZaIIuzTEKEQSjPa4Oo4Ml8sJTCpS9Qj4KtVzXKOsnmZs2WpEww4sY4dzSlTMfsFuH5kvyKHV1ZxL15FcF5SUrppex0+AJiSyt6o2h2NKu/ZvgWAvYg3FVnn8msaFsTCWJmIIG4acqqcPJ4bSO5hGcmD3vD8s/IhXKYVJUeqFR+AtW9/J/+/ad0z3IGx7ZUNwr7/cqQF79Q0DfOlKFyrWXIjUUMe3IFG4KjkGduzriM5YXc0eJFaESq0rh8Uy7J4uQprNv8HInCWgmhn1LI3AUonreu6ELVhDIQxicRk77YtvHhwY1u7wKrDxLP3usIbF+qQTU3wjqMSAerBc+AsA67Zaw7cQfSAMRVF9MDVdj3BSCYMeqP7zQicQxIyE7di5LSlUCjato3WgKUyCmdKxDICM/M9DiRk7xZdCYbCIgmAmcQ9qIDtNXioZVRt02C7UK/e6Oioa19hUvRiwLFoC1FWEomE7daOJcRFd9xhr0/HZIJMWA0trYjVUQMubRulhvb08eXueYxZ0lkpYxJvbELYzMFIJZMcPaDrOr75qQ8LyedHH32s7fiwQmH0NNE4sK7JEvX70BsNCZP51PgYymU1+FW9zvn77c8XMZQvYm82b9tmj8CJ2+ToLR0q9mx+DT//9rXYt2Mbdm6ykvqXEdY1tnskVsfhTrlMBjkzV4aKUysdHRrArtc3ATBYXFkepEBKYL471bt2i2jI5BWUrGl83B3pYdX8cr5mPpfFhEmG4vP7saC7G22hgOWYpDDKyQlFtNxYkRXgk9XD7GVxmtu65lqMrXJxcXmIGCHOkJ4etQFHhUIomd7gBu9mWyj0ra6hcUZL7zBxOyMzpGQ0TUwqjUGFtglVZGNJPIxDYmFl2Ys3IgIHiPpcUrp/dh/TtIC6w5zFnGkAsM9ESQglBHpEWLo9B8541sZggH9blWHP3gaFWy4heXAvrXtOeX8AeB8EgBZF7rmGynnwfk1D+6zZvM/mc1mMmXM8JWwBgJOOPU5oU6vfcoqwnTEuy3N1tVKLMec0p4jtVG3kqrAu1To42e4+Pj96DGJUc50au86bxIAzlMl2U5kvlUrYQwgFKuVVlAGkCYkJo6eXi7Fu2fAC/7/4sCM8V2l3Mxhs680NgWCQDzgGS+aUwxGiWBE4C0LZTDrwwfhg3iJwJga+xiRNKkIEjhpwg/0oFgo8X03TNCRILgoTNxZKwYAjUDRa16hSQWoncVW6TU9cGxlU3aKlbiA6OVm22sRYzfM/0dvIyDEGFLA9VaTHyz24Pqf5G45GedJ4PpdFygO2vhoIZYpM9qqyFCecZSW2b96srk+nQ4QWJZqabTTj8i1RLyozlL30NU3T0KaITG948lEB9tLbOweLFi+xHe9WHNpNqvXqB0MhDj8tl8tIKSJA08USClXWEZgyo2h1KmVR0splhVo2DOkZHrrrDuX1zj7bKh3DJ2ufT4AnTimMo5KDo+Gr73+H8H9koB+5TBr5rAHvDIVCPH/SzYBTwdWsPAzjl5ZLqRyBU+W+6UINQ9bWAANutri+DkviEX6jcaGW1bji/RuSm8ESAipZEAujPuATmDFlkgb5aWnx5u5udwNOg8hCyQhZVE1ZXpWSInC1ph24Oe5k3YX+awkFsDQewWKThIjtSx1OMoSSjqdJRW5RyPf/sffdgZIUdf6f7sn55bjv7b6NbGYDLLtkJCmgGFFMp4eYD73Tn4onRvTUM+udd3rKKZwYQcWAAUWiomQWWNgcX9qX57038fdHd1V/q7q6p2fezNtZ1s8/09Ohqrq7uqq+6fPV0RG2exwBVr+qZQwcIFrgJifUAlxaSEGkDpVo6epGyBy7x0eOYnxkWCC3s1vgxBujilk2vqhG8f6dcAAAIABJREFUAp+mwa+JgjQlMnns4QclplRrWxDgWuzeLxqAlfEw+iLOrslMUOkiSg52n/RbeO8HPmT0EXKf5730lfy6V77y1Xx/orF+iEzkVBdeUTGJiflLp9c5W+AqaomF+hDgzN9Fi63Eg7uI+5FK2U4/mHyxKFhtmAuloLEZHxMW8cvWbVC2xasFzlGAI9tCMmmXODjRhZLFwBELXJs3C1zF8FAmS5cQJr23cgHO2qbJYY/2HxEmv1QqBV1hTXBzLaLPkpJj7HzcysdVuQXO+Y5jPh3bGmNoJ261lbJQlntWOSXYBLhumtz0AA7t2YU//ezHwjnBUBivIIO417qc9vFjTFCVyGy8TAx5h4mPwhLgqAUuaWtTS2cXn9CHh4eVmkVZCRNPJKUYOHtuovFRUeADqLVL2WSOtk5LgGNa011PPCac85GPXA9ds/cylQDnZaIpZzLh1lPi/jo2MmwLOH94fBrPpi3rVS6bxfCRQ665/mS6ezfQBXWxWFRY4Kw736Wg0t60aTMuuYTk/iQPimqb5fH7hn/7KM5b04db/+c/hP39B/bhiMQcOnT4oM2q4WatYPevGuvZq2W/1NPDqwWO4u6RKTw+McO/IcES0dnNnwe3+NHQAKUFzoDsQlltdIUDSPp9iMYTnGlvdnoas9NpPPPoQ/j+V/4dRw6IrLKiBc4eOyqDslAyi6KbbwAfbwRvoFRNLVPcMkpiBHVNQ0vQb+s/cYGYR0574u5C6QbWX+lI1BLwCelaKga5hWiMsoqrFeJTHsjKdF3HgiVWTs5H7vkTnibxaItXinnQ5LenShVUKBYR0DThGfg0DVsaYmgPWUrdlq5uhM3vYTo9he396pjr0WFrf4sL+7Nb12Lvv3MRSehtegNQRU2H6U5MiwqFI/jkzT/H93/yC3zhC19VestU4kLpdY4ZnM3yOV41vxcwjzFw5q9b6g6x/LKK91SmE+pDgDMf6EIiwO3caU886IRiEUoXykAwiISZq6mQz+Oph6zcG70k+Flsi7d9XiBqK921owxsQhQtcJYAVwWeEhtUlh4ZXaEAToqHBQtT5WZf60LKojZ2dEjQ4jsJWkoh29xXLBbRGQrAp4kMZXTxXSohtRPcbldXtMtt4na3zql/S7XBrSyGgFQx1Tbe/Ytb8c6Lz+AWUN3nwzf/9BC+dc+j2LbtzNJ1CZqp0i2l5yRLaPZy2SwGCEskdaF0WlSxU0pZ4HRdR1efNfY8S9jsRrI59M9mMT05yV07o9EoAoGAxEKZtmmahDiGMmmg2wiLKptsDxMCpnd8+JOC5YgiqIq5kRjRxGPmr9n+cpQLNA5u/OhRYYKWKfwLhQI++ZbX4epzNuMjH3iPY8muYUYlWiX3BXovR4hL65d+eSd+8pcn8Mtf/l5w8aPny6yLDP0H9uHnN/wX0lNT+O5nPyEsMHYoiAkGDx1w1BarLXDOFg05DiPRUI4FTg0aN0gXds0dXbb20WcyOTpqS6/AHgW1wFXDhVIFDTCJFSwlQv+B/fj4VVfiB1/7PD74qhfhwM5n+HdL2aBLCnCaJljgZtJpU0HgHOOpEuCiHlzPXZpg/AIIO+SN1DUN6xMRrI67P2MNQMpFIUEtcBNj5dGzs2+OzneLoiH0VEGAo/0vTASyCZULZVG0LLrFuq/cdCrf/uJ73s4JQ3qXr0SjxE5qZ6G0djDFdnsogFMbotjaGLOdS10oC0WR/fyxA5Yyi/assVIulB7mEbYeaSfeM0NmrlNqgevs6oIKiYZGnLb1dIG8jIYdeXWhpPc1lMnZUsHImMjl8dTULHZO2d3WGfJek3grHlClMeJKBlZFWSnOEF66oog5yHthkFe3qQ7AGrGwzzL17tplESl4mbSpABcj1PPU/Lz/GYvWWw7OZlBb4LxrtOm5cjJpJ9D7y5suLaOEDa+l1hY4E+7WEs2IhaiCCyUdEFNkMTM2PCwmQHWi2lZUTHctjYXQEw4K5BQU1YiBkxdXbvEq6uu9G98FAc7D+9cc/wAJvw+r4mGe3JsKcA/f/Ufh3JUbT0VjWzsiEnNjOfBK5ELjqUaOiuxWhUIB17/5NXjr+VvwtWvfjWKxKCw4nKwAaguc2q2mi2gpd++2xp7HJ2awY2pWiK1gVrywSxqB2em0xYYWCPCUJm7COci+NupCaVrgqJtP18I+x+vdcjWp3ofNAldGH0s2UQFuWBjMZHbGR+75E09sfvN3v40HH1SzsMkLYjeotLsqjW0um8UgscC0dfegobnF1RWN9kkmjOfzebzncjEhPbVYUDd9hsN7d6OfhAQ0N7e4PmvuQql4u2zByI7EkuXEwJUXv5VsarbNffKc5mT9rrUFjoL2wb/87ldcgBoZ7Mc1l5yNa195GTKzMwKJSSkBToPx3TLrXqFQQC6b8USwROewpiqkEPBpGlbEwkrWawBIBnyeGKgbqLuppCSjfUOVXsMNVgycta8WqxSRVdxOYlKEyQZsQpVDlmHV5tOU+087/2LbPhULJYNP03BGYww94QB0TSsZblOAlQMSAEaHh5BTfEKlXCjVpYtg8wD1kpgYHcHU+JjgzdFjCnhOcxFFpcm8GXZMzeLRceecioClnJ0t2AVbhmyh6MmFshYWOMDyRFOVdFI8jLWJMB+r3bAkGsKaRNhzuioZ9SHAmffZ2ma501Hpnr7A8ZFh3PT5T+H3P/4e16wVikVMkIknTrRezWTQYgiGwzY/Z94Wl/YJ8NAJqAVuzKWz0/vLFQ266VzWCOCPxOJCDIHTC2v1mNhZhYoX5xVeRwc5OYZhskILHIuXoYG97cQCR1GNGLiIZOVQWm5dnpAnC1wVpCZVEc1BP9cSURIAGa/+5w/wbS+WX3qKF3cDen9u9MS7tz+OR++9CwDwh1t+gIfu+oNggXMixGD7JyULnKpNrSQm5tAhe97GKSE4PgloQDgiphGgrZgQcn412ZJlsy2nSbO1026Bo+QyC9h7K6HMYFAxaDHI35PTO0v5fWiSkpDTxcG49N5YsnVW9323/1w4/qtf/cKhJgNF2IUxT26VivOHDh+0KOTbOxEMhUuOXyoL3P2/+QUnlWGghABPP/w3WzlP/OU+LrgCwKZNpyDu16FDndSdu6QpGpgxFzVscSDMMRVa4CgmaToe4m7MY+5KeJWwOmYEAa5GFjhFOov7SYwowzOPPoS//uG3GD7sPQaOgc69M+m0OgauKP7SPKZ9LaUFICewZ+/XNAR0Tcl6XU5ZWsJaF8nfqsDmqkgjoEJvOIBFkSD/RqtF2kVBhSfKaTDlIMClPVrgNp79PFsYTUtnF174hjfbzuVuy+b/ZmmtpWmaq2JVPpYiAtn48JDlKkjOGRmyQmhcXSgdj1hWnaRENnXzlz+LzKwRj9u3cjUWOqyTjLaL9YgslN7SCMg6npkSMdGcmdHl5nJFUXFWTiLvSr3Y6Irv5GQUy2IhpbeLzyS48dYWDY0ez1Wh8iurCPbhh8nk4CTd3/LfX8XPvv1fAIDDe3bjNf9yreEPS2PgiFZSzmcBAN19S2yxVRqMD8hNQ11qH6TraTJpSs1sA3UHKwIDB0RKW8HqpWjgqakoQg4uFipEfTpfXFHUzrYngrZUWAAeHcbRASuFRKvDwKXSVYR9Os5ssjRuGowFSKKh0eYuUrEFjjyg7nAAM4Ui+mezmCkUlZOXPFAsj4Www3QLUGnXASN+KSe5somuiWU1s+T5vUtXKPd/808PCa4k3uq1znITGFRl0m92YlyMz3jo7j8I/x+++484/Zzn8f/lWODi8aTyI6dkOrsOHLAdnyBB88kks8BZizs5qem9v7KElQbF5CK8W6n9umYkTmU42n8EM+k0d6v2+f1oNxVQat2SfW+AawztFTIBju11emfrksTVUKHdlUkkZKIZ6p4HAPtMspyRTA6ZYpHHj7LL0vkC7h6ZwvJYyDomlVkEcNfRSXSE/CJNvtk+ZlnoJ/FQ7Yrk5/y+yLZKgLv9e9+xXTN85DAWnbQas9Np7HnqCb4/GA4jMzODqfEx/Ob73+X7zzrrHHSHg+gOq13MuAVO8R6nzc7eGPBjLJcRmAUnFMQOFG7rJv7MifARTzXYPpUEjet2ERhn0lSAqz6JCUCswMSFkrKLUvzuh//Hvx9N09DZqXYbk8uORGM84fL01JQreyoDFYIrVRZSVOryJUNYyMteDtSF0uPCeGHUsAgemTXSzwgWuBosJqIlSEyAItIeYuAAI7zmo//7Q9z769sweHA/kk3N2HLBCxBPJm3jlk/TDCuJz2cLQagEDc3WmnR0eFDJqEwt9l0Ka7GbkndhJIh8sYigrmEgI45jAwf24oE7rFQ5F7/6Da7umHyfQhisFYmJPA+pvricRxdKtTKzTAscE+DJww7oGjrmoFCpFupCgEsFfDg4mwWIhohK90KMAXFRueUbX8WLr34HEApxjYLf7xcWVoGU/cV29S217fNrGrJF9UK8LAGObHcutKwbKmp2BtkNiLpKdSxcZLO6rY6HkS0WuTBQruS1ISlqROffAmdtB4IhROMJnrjyIEl+3E4ITijKMYG39yy0CXB0Um0M+DyXJ1qYNPRGAhgwJy+3eBUAOKPRyIXE3plqHtjSEIVP03Bg2rC+MmtiOQJZuWhobUM81YhJEvew/vSzbXEAc61XIaeYz93YGyWujeNjogBHyYcA4NDuncIkqxrgR7M5DGWMVCSyBU7FcdlMBKbDUu41ABglQqXhQqlJAtyUIFx893PX8+0YuTf2HJkFRbWo1qAhSZ7/cP8hHCHxb23dvfD73YfurlBAIHphybcpa6APwPr2FGDmMfMaYE7vQ4yBG7aNZfR3QtL679tnLFIeN5Nvz+QLGMzkeBqEGVPJtGNqFs1Bv2ueqSOzOTSa1izjHkWhlC6I2heoXasBUfilgsHo0ABy2SyeedTuIskE0z/+9Ec8efWCJcuwavNpguDGyt+4cbOtDApLgLMfWxQJYiiT4/0nQtzEJhVWCVW5bseEUIRkyqaIESxwoyP2tA7mb1qwWNcubQsgKhGcQC2gbW3tnhOLJ5IpnosxPTmuZL+1+rmxRWPgnKjsvYCNDdUQGjRIrnQ2C5x1Y9S90otlQ5N+qwlaptjX7QJcoQgcGiX9t0QC9VAkinNf/AoAhpCcKzrfw1ysJDKSzdSF0hLgqAv4wIG9/JzeRX2KUpw9OGI+Hc1BPw7PGGsTKsDtftJSMC1YsgzPe+mriJBWuu2JCtIIlDOvyOfLcdT0nEpdKCv9nGqcJaMiHHMXylMaotz9Ld6gdqMSYktmRP/ZP//2V4LGXk7emFAM7qr4N6blUlrgynhz9MyOhYv49uG9uzxloS8Ui0L+qI7eRbY2NQX9CBMLYrn9yuar7aKBcUXFgZfidUniRrnn6e18u71dFCL49R6qZU1rV9DfU7faNYkIVpp0y+WANUEVwG21wdlyqrqFoK7Dp2noiQSxpSGKhMIvuloWOO7Sp2lYfvJG4ZhTfGhZ9ZLyndpBfcRjhCFN1q7KlpuDu54VhBNVbM9jEzM4MptDLptFZtYUmnXdkVCBsqHKybMBYHycLkhT0ADMBKyYFDmNACVAWL1+k608Ri2tGhE0AMFmIsAdOYzDRAHUuahPqTVtDPjQYgoxS2IhLCf9msXI0AXo2mQEixqIdYS5rija5ATZgk7BFrRcgJMUKQcOiF4J+2aymC4UeZA7fTb3MbZEqX6Rhlv8BaxFcL7fcottd4n5oGhbYI0dR/bvxb5nnuKpACiO7N8DAPjtD27k+05/wYvwvJddaTu3t3ehq2WAQqVY6okEsSEV5W2ncZhTU5Ouc4xbDjN2aErwZEm6un9RIgSpGKQli3UtwFqWchDgvvbb+7B+21m2/V7cJ1nZCdL2qfFxBxKTIrIFyzY3RcaKuVjg2MK+UoIDAZpkgRtVW+CKxSIGCBOpl3x5qxMR9EaCc1qTOIIURAW4KYUFbiKXx7RHC5wMH5+nar9KbySkdMOHD1ljsvk7NjzELdjRRNLdg0NRvsxCnHAQwjee/Tzz+3aeozXpWKJMtuhKwMawo9k8/jqWVnqLZTMZnoxe1/WyFCWy0NMR8ujuOG8+at5xzAU4CkpRLMfBMMj5S5786/2C+6T8IhedtNpWhmqBylievIYSenmVHb2W5uTg7p3I5WXOLgOy1nrIXBAYZSwq2XHmOui4meNV8OIe53q9dCGdgPcQDZGTBa6c+20nybwZel18vt2gEoxUFMqeynJlqNQE32rhfmswhrzmn68V/i9cYWdo9USeolJ+uByjE02UCnDjomvW0f4jwv+Bg/vx9KMP8f9uapHpKSmFgKbuPdSFcoDUx97CxLgYA6dp4uJ5YmKCCyyZ2Rmh3ms++BG+zXMyubg8a5qh1PCZVraJ0RHs22Hlp6PsqvReukIBrEyoBdSASsEg/eeuK14UJOavHANXRBETuTxmFUm95bib/v4jmFEIRAXpl2E0l7e5sKksfmIMXBEpv09wYaeCmQzRg2IR3z68Zzd2kzQE9Ht48q9/QRBFHCbEWxde8VosXbsem845Xyh/40a7MO8EWYBTLTR8fj/PoVgsFm2uvBRu+kMufEyoQxG4QqzbenYDBw/Yc+GZlaQnpZjRGsDqg/Y4d8BwVVt1ip2swksKAYYEWU+kJ8aUFvMjszncPzrF8x3S8WsuFjiVALc5FbV50HiBBtGibFe2WPsZ+VIikURDQ2nG5ohPx8JIsCYWCsECR2PgpuzWZk3TMOMxBk4Ge8auSo45oIu423UTD7D9z+6wWeCoAr+9p7fsNBSc6Mi8LOHwDtdtNZil3UqXj8kulF6MEl7cjsXzRUzm7AKcwJXQ0KhMN+UEOnaf2RTHspi7Ap+tGGrBAD9X1IUAx55nKBblrE/T09OYNgcS+kLlZLE7HnlQ8MWXNV6bz71A0NwAwMpNW2xtWBELY1kshJhHNhhHywbZbuns4jF4k2OjuPvuO9UXERQAjFAGSgWVs1zPfPerubp0xHw6kn6dM/k0E8Y9ushra6vcAsfQu0yM8YpGo2hurjywnMGywBVd25T061gcnRudcrnvWmUJc8PCFSvx4W9/H23dPVi56VSc8YIXldvEkm1RWuBI22I0ZyPRruZzOYwN23Pl/OQbX+PbbrE900L8m7NLTaqlFbpJlzw6PMQFCzax04UtY6GMUVKA8XFhEcTQ2Nou0DAzsL6vim/RAPh8PsGN9YkH7ufbnQv7HGLfHG/Pkxa/kqVLShED9/D4NP4ymhasfZnZGZ6egkLlrmpZA+z1zUovW/XuC9JxXbPi7QC1VZ5B8KAgCriBg/tweI/lxnrBFa/l288+/jAO7d6JGdM7JJ5q4OP+Oz71BZ68V/f58PrX/6Nj3TJor9nSEMPSqGXxpe2k9OoqN8rhTA4TuXyJHGZM+BBzmMmIxON8QZjLZgRlBwW1wCUStRHgGFQWuEg0hnA0qhTuvAhwTha4vMtXwghm0jW0wEV8esWMdTHi/jolxRkz/OnnP+Hbvb0Ly/I+oqiFJSsqkJioXCiLQuxlKRdKCuauXIJfo2IsiYXQZoZE9C4/ie/f/+zTyEqKfYGBsr1TOf9zDwxVvLPk9RIMhXmeU5B9TLlheXMolHySp0coEkUwbAg8mUxGKUjPFfIryCgmAurNobJQMqieT6VCT10ISxLqok0a2VIl9KW+wZQNDgAO7HwG+57dwf/LBBX+QAD/8P4P8/+nnHchGhXkGGUHJXoYn3Rdx9aLLuX/P/6x65QaC0GLXBTzsCQaGtW0+Zp6uxLIZvJSYANE3oP2RQVd07A+GUXSnIia29UB5U6uLuUIMYtXrRX2z21Ssv+xGOPUZa5PRh3JCiqpuFoTo1zKuq1n4hu//zM+cdOtCEUqIx1w1+TZj1Lqa5oviS4iR4cGOHsgxa4nHkXenPjctKaiBS7h2E6fz4cmIjAdMd022cROF6SplOFCGSOLO8oASAW4ZFOzOvG8pmFbYwxLonZqcNY+ahV84i/38m0nAc4NKkpj+56iud+DtdX8pVr9saEhUdlG8ovJ7pMM/f39tn3sfao0t/KYQ989d9kUGEqNSW542FIMsdyTynx5BOFoFE3mO8jncvjrH3/Ljy1Zsw4LzYVYIZ/Hn375M36sc6El+CUbm/HJ7/0M3/3r0/jOfY9h27YzXOukoGOKBmeXbMG1bMq+sN0+OYOHS1B38+uJN8v6TmuepD2CWjD3S7HdliVvHixwZqOSivgXJkA3tKgEOA8MlGbZccECN65c4N912y34zw+9F7t3GblrJ6WQjkrRbMZdpRRMpZWAuqmnJ8Zt42o+l8MN//YR/r/HRdGhQi0UyaIFzp3EpAAISiI3hZ0MmchJdkOsBliJqaZmzr49Oz2NPaZiiI1f8vqPtkTufmpFnn3vsnVimMTqLdu4m385FjhAtsKVZqKcSwwcAGQU878owJWX17fcV2sJzfVngqsLAY6hANHcO2gGSbL5eHpqkidcpPjW9R/i26oB83kvuxKvf9+H8aIrXo23fOyzwrG1iQhObSh/wepogZNe8gte80au2X/88cfwzDM77BfRmA0UMTFKUiKkGtQLwDLb6wbLCuCt1CXREKI+3dUNrBy0KBjBVp+8CX0kLyCFN5cC4xyZJr/cScm5dKP8VtOtqZYfUtkWuAo7h2+Ok5abpbgUkxol+pgki79BEo+xYOly/i0NHjqAN521AWPDQ5jKF7j7koxpsqAtpZGlApNsGVK5hNHF3djYGB+nxsiklmxqcpwwfA7unKx/U8s0heBCWSJlBENY19AXCWIRSa4rj1XchdKlHBmNbdYif3RoAPlszlYe4CbAHbbtU8WyMdDX/Lc7f497fv0L20JUtMAVoWkaJogFNZpIYnE0iD6FZVz+dlZttrw1aB7R9gW9WLpmPf9/5y9u5dtUgON1xhMCg6MXUBITt2+auvKWIjJxQhGG4Etdkxa3ql0TqQB3UIpjVJOY1NiFstFugWMCXGqOFjjqAjk1MS4oEDKzM/jie96OL77n7fjdD2/CF657n3HeeHUIXJqCfpzZFK/KPKtBgz8Q4H2lUCgIyi0AgoswAKxff/Kc660mBEWFwgKXLxYFAY65UMqfjlKBJ31g8SqtbYR6SRVLyNjxk5tEZlv6DdKwIgB8npOtbIAxxgcd5oM3XvsxoZyTzzjHdp5XQa5sJsoyJTh53M8o5vZJjxY4FSpVgteVsGSiLtrEHmgRQIJ02CFJup8cU5v9GQMlYFjgFoQDQr4iTdPwwje8Gdd95ku2tAIhXeOsZ27wa0BEWIl56wRdfUuw9jRL6/rUU9uF48ViUWGBsz7gREOjcgD3eVy4eQEry6v/dzLgw6ZUdM5JxbmlocMuwF36sleWvM5L2bqu47Xv+SB0XYeu67jiCjuxgGconvnSaAhbG2Jl+6mXVa3jnyqVaaIWgwF7LCq3Ww1AXySIuE9HNEEtcNYCaPsDf+bbS1avExbHY8NDuO0738SudAYPjatjf2jMrJsFDgC3tgDAM/v24/GJaSUpA4ulo3F74+NjPB6I0uknG+3JkAW4xKapLNM+vx9t3T1ldwNN07AgEuSum3MFE/4CwRDXJhcKBRwl+YvovCvHMTIcOWLf7xQDR/f94ZYf4JNvfi0+c82bcOdPfwSAempY5xcBaMWiQEITjSfQFQp4Gr82SzFsDK3dPViy1lrgHjCtL4BagKsEbmO8YJko4UKpwu4nH8eDf7qDWysLRWNRlM0YhD+JRFKIIaL1UUv14OAAVKgFC+X6ZAQbhfgvo1UqFsq1pntYSpFGyGsOOEC0Wk0RN2kA+Nb11+Gu227h/x+89y4UCgWkibIglao8Bq4WoF4DU2NjyOdy+P5X/h3/98VP4/c/+p5w7tVXv7WssstfHZVXZqlE3oWiaIGLRg2BT57X1AKc+L9lDnl1nUDngZWbTuXbN33ja9i9e5fFBEsV+JJBgo1/bE1Im70hGXU0RixcsRIXvOI1AAzPgm0XXULa5dZmOxIN5Qlwc7fAqVwoSahNmSExZVvgNPG6ua57q4m6EOAoBJpS7kJp+paTgbFn2Qqs23am7fqmpmb0RUPoiSi0qzBuuJKBZmtjHKsIQUA5r3DRSav49vbtFknH0UwOd49MYYqw7GTzecEF49TudvQq7kXQzpbRFhWYj72KInk+oLLA9Sipcw2U+wFeftXb8T/3PIJf/vkxvPCFLy63eRxCv9HYrya4AtYataxprkKom4uBOgbLECo6QgFHC9yj99/Ft9dtPRNL14pa4Sf+fA8Ae2wUQ1pIIZBg1SpBLV6P7N2LkWyeazxFlzDDhdLn93OtcLFY5G49Y8ND/NxUU7OnpO0MUZ9FWaSywHUu7DPITZSCX+n352ax85JAVQWa73KIWC6pQujwnl3Kaw87CHaA88Sfz+fx1Q+8i///6gfeZbjTFu31ForA7Eyau9sGQ2EEgkHHvirvXbB0ue0cfyCAlo4uLFmjtlB0OAhw5Wp+3cZ4UYCjLpSlBbj9z+7A+19xCa6/+jX4n0/8KwDj0Q2THJydnWrrLyDmVh2SBDjuQjlZfRbKpN8nxKizZxBLptDUZhFepZpb8PI3vsVoa7NdgFu8eImH2ozShRg4QmJSLBZx589+ZLuqf/9ebhGORmMIBI59riiAPiuSBmJ8FLf97zfwg699Hj/++peElBdf/vJ/zi12sUoTFZ2TqAulkwVuWkFiIs9rqvGY5WWN+nRsSEbmlDTdCbTeDWeeKxy7/fZf8o9HtMCplR8qRZymuY/v//ivn8B7v/xNfOZHv0YrUVZajNH2enh55FglqQTKgew6r1LkCSkEyrTAVR4DZzyEqrDCVgme7uVtb3sbXvjCF+Lyyy/HlVdeiSefNBjRdu/ejSuuuAIXXXQRrrjiCuzZs6eiRtDHQV0oh00LHNdMEAtcPNWAl1z9TltZLPmz0yPe1hjDxtTcY3zKeYW9y6xJXIgdAAAgAElEQVSg1R07LDecETP/0lHidpQeH+Na0YaGBrSEQ8rFhqCdnWOHsgJ451eCY83uXX6SjWimmzDA2a4ro2yGZGMzWh1IUSrBfH7C5fa7Ss+phTaHKQVKDXpOFriDhNlvxYbNgjUbAEIlkgRTN6FSMRF0YTomxd+mpQWptSCyFjnDI8ak4iUGToUtDVGcnIzwvrt8/UbbOa/5F4MxtBr9zybAOewvdX0TETT/++MWoymVqQ8RAa6rz1pA97sIcE7Y/8xTtn03f+kzSgtcAUXBehpNJFzfhyxkqYTonmUr4A8EsHDFSZx0i6JaFjg5Bk5oJ9kRLiMXHADc/5tfIJc1ckT96qZv87yjNF1Hh+QVQeunQtHggGSBM5/9fKYR0HUd7/78f+K0Cy/BBa94Da7/v5+i0bQKh6NRdC+2WP82bTqlrNxmlIVyanycKwfGjw4rU0o8/fDf+HY1knhXDeYNxYX7GcPtN9sT0y8+aTVe8pKXl19FFb2CVOVEYyVITAClC6Us66hYvf1kDVQpSUwp0Fr7Vq7BMjK+P/zwQ2SdSzywJAEuwhkmnYUuXp90MBAM4rQLX4DuxUtdGaNLtb1cF8pyV5VeiGS85IBzQrnrZT7OmBuB+pHfvK0tPv3pT+NnP/sZbr31VrzxjW/Etdcak/SHP/xhXHnllbj99ttx5ZVX4rrrrquoEfR5CnkmGCOh+UKnJIasxavX2cpqbTUmF6W+39RQVMXUX8aFrV2Wzz1dsIRNyWmGWOCo+6Rbx6zmYpstrnPzLMAxhMIRbCUm/UAwhI5OZzeXSvNxzPW7q4WLiKd6yQfizXzv4RzFKUqyHA+1uZ3LYkZou+U0FBqMhRaLb5udmUY2k0Eum8XooEFyoWkaWjq7cNqFVj8BgAEpBkcGZaEs5UJJtdPMBUzlQikKcNY1TwwY7GHUhTLV1OI6YdAjLA8gG6GWrtsgnPuyt70Lp553kaey5nKOV7CyqAVu9/bH+eRKRxMmJADAqs0WtbvKhbIUdjxsT6b9k//+CkbMxYSYRkB8d9F4wn3RI/2n7kIMjBgpEAxh4YpVtuNVc6Gk7ZIaLVrgLFfHkXH7wlbGMyQFB2DFPh0gZGBdXZJXBKm/gZCADQ2KJDQ8lo7GqNRKkCEPYdXmLXjvl7+Bt3zsM+hc2CeMZe/41BcRjsbg8/nw/vf/a1lVJCQSE6aQorG5FE/97S98u1VBlnaswMcr4tJ5cNezAmU9w0ve+GbPic5rDfoeQ9Eo/w6m05ZVncEeA6d2oVRa4FgYSQ2XQHK1NC7t4Uce4gp9moZCtsBtTEWxrVHt2lzOmnAuZGiJcmPgyoQbWy4DVZI2OeSBdMPKeBjLFARibmB9Yz49rkrB0ztPUPemyUlomobh4WFs374dl15qsCxeeuml2L59uydWGte6BBZKyQJHOnYs2YBYImkL8ix70CzjXZS7gGcPl2r2acwAE5xmyKgx6VGAqyYjznwMXqXwyn96L9ZvOwuxZAqveMc/KzXbDOXkqaomqiHALYuGsCZRfuJwBi8CXKVtU7lQntoQw2aPFmtVvRYVNq3HfqGmaYjGCUva5ASODvRzd6RUSysCwRAisRj++49/5ecd2bcH/3jGejz+Z4ulkbIQlmOBi0mU4YCalMGIgTOvEWJkDAWTbIEr931wX3ufD+/41BcRS6Zw1gtfile+872C0GtDmd+F/LorITEBYBOqmYBAhxO64KXxHwMD5QtwOx97SLn/wfsMd1rqSVAoiu6v0UTSXQGkCT/KcZZagWWX3tbWNke3p3LzIbkL/tYxGht0qMT8WywWbQLckb17kM1kcPNXLIIv2YVSsMBRF0pCeT4wm8X+GSPBLotLj0QiZdG5lwO3fkoXNsvXb8RXfnUXfnb3gzj77HPLKjuRkpgbzb41eFAtwO164lG+3dZWPwIcA019sneH3ZINAGdedIlyfynUQsFJ+7mu6wJhz4zkLizHwDm7UNpbVy4PQCWQv2fqmbVv317smDSYYt1ITHRNk2JjybaLkkfGXJS1ScGFsgYslB4MCaMkTKHUmn9VPGxbw7QE/egIe3eT1aBO63Gs4TlS84Mf/CDuueceFItFfPOb38Thw4fR3m7lOPL5fGhra8Phw4fLN2mSbSrAjUhuTFOCC6UxELX39GKS0K62tLhY4BT1VWph8KTt1gAUxQlvgLicFKVfQIyfaVFQINcCbHFdaVqASkEHn+aOLlz3rZsR0DRki0Xl812biKBQLFZsfZzrdye4NFVYWDmDhgql2By9QlWM6rka9POVV8o01pTEJO7zYTSX5/2NHYkmEvxbTk+MY5QQYlArT3NHFzp6F+GImdtrdGgQN37uerz1+RcadZL6p4UYuKRZn/p+BGFsQiRMkl0o2VGq0WZCXzkCnNs4BQDnvvgVOOfyl1suMx6vc6yPnCSfX+7Xz65fs2Ubtl50Ke67/TYAwNMP/xUbzzpPOHeC5HfsW7mGbw8q0giUAiUModi9Yzu2XHypLbm3KMC5W+DYAj3s92E6Z2c8BoAzLrmcby9ZI3qBnLTSssjp8KZNrgSC1wpZUI2OuC+ohg7utyVxPrxvNx6990+CS+Cpp9oTYDM0thALHJnPnp4yCFBoHqvW1raa0W+7fldSnU3tHehQxJKXKjwWp2OCRWLiZIHbtf0xvl2PFjiacuHx++8WzglHY/jnL3xdEJKONWRBIxJPcKVcenICMWIhzeRyPAk5YOR8VZWhmudqnQdOVW84GkU81YjJsRHkslmMDQ2isa3dlcSkWig1J9nTFVhXiBa4IbhhPJcvOzTHy5g5Jowx9jhXimaTkCbl92HMYUx3gwbj3R3XAtz1118PALj11lvxmc98Btdcc01VGtDcHDde8IihOUmQnA7jE6NobU0gOzEDTM4IEzFbbLX39GLn44/w/StXLkZjYwLB2Swg5b5JxMNobYwhnc0DY2lef9ijz/NszrqutTXhTPpw1BhgfLqOfL6AaCIJfyCIXDaDdHoK0aiOWCyGydE0YE56DHTy6+zsRGtrAo4w63E9xwNi2TwwPo2Cps25rHJwsFAAZrPCPr9PRzaXRywWRGuz2JZlXWQwM/uLU3unx+zPlr3/SpErFIBRo97mphjiNWCqcoT5rtvbnONJ2LOYHE0D6Vlhn4yZXB4YFZkbI+EAkBUHuHL6w3RW/D4AYF8uD2RyaE5FsSudAQAsao7h4f5xBCIBtLYm+LuSLWCUEENmKk01NXMBDjCsPsFgAalUyrg3s3/QoPbOzha0tiagpTPAhD0vVixpF8YAQyNIBcHFi7sxcGQcyGUEjTbzEBgjC+TO9lakUhFgckZ4Lgz5yRnbsXAmK7wHwYXWpyGfLyJsPjsAvG80NsbQWEpBkJ4FJoz6mpvjQr1HdQ1DQxPoaI6j2cNiVx+dQt5c8Ww5/2IuwD0juTjm83lBq9zVtwQ+nw/5fB6joyPIzM4gGPJmlS4WizhIBLgNZ52Hh/50BwDLohCLh9HaEDU0uUcnkcuQRV08iYBPd+zX2YkZYGIG8aAlwL363R/ATV/4FMLRGD7/s98L70POr7Rxg2WRC/p1zOSs5YjmdXyl47rDGO+fyfD5jdLoT46P2Os4alkqnn3Ubr088OwzuK9wG/9/2vkX45WvfKlYxPAkMG18vzRX6+jIUeTDfjREgryesWFrDuvqKjGHzQEz49O2MZ4hGg4AmZywLx4PobXJmzUwVygAI1NoJ7nwpsbHuFZ2H4nDPGnjKXjqwQcAiNaDhQsXzOt86gbfxDRQyGPlplPxs299HYAYl3rhK1+Hqz50PXw+H3x+5+/DDelsjo//ba0JR8G9nLLp2hAwXAqPmqlHJkaOCuEpszPWdx6LxdDebozN4ZkMJnIZfiwU9GNy2voPAI0NUURnc1jVEkdrhRwJpTBy1PqGGFq7urjScujIIUOAI2PlwvZWLOlscHTb801bc5nb3CIj4Ncxk8kL1w0OAZjJwqdryJnjOjtG12rUAjc+Meb4PqcyOdy1e1B5zK0PHOwvADNZx+OAaIE76aTFnvrUuS1xFIrlu0CGMjno+QJC4QAwk0VTMoLWClKP1QJlr0Avv/xyXHfddejo6EB/fz/y+TyfjAcGBlzZq1QYHp5EnsSA0ZiD4cEhDA5OYMwciGnHZoutzedeiHt/9XMABstcNuvD4OCEwOzIMDk5i8FcQUgMeHR4SklxrgIdnIcGJ0prFs2PQNM0NLS08AXp9u07sWhRHyYUnZRaHTo6OjA4WDqmwcs5bmAfay5fmHNZ5WBmWvGRmu9maiqDwYLVltbWhLJtTu2dmLWXzd5/paDvf+ToFKZrkCumFJzulz6fSXLvTuerqHmzsznbvnL6A/2u2HWdug5fNAgfedfh2TyWRUNoKhjnsXclulCOY4S4Gze3WyxzALDxnPMFwgAAuO2223Hhhc8XYkrFXEcBDA5OYDyr1sKp3CEBYGZqijDLRTE6OoOsOfnFiQUurbDAndHTjYkxa2EhP082tvk161gm46wlLJq3NjuTtZU1OjKFXAll1Bi596PDU+hqT/JyGotFnJyMoDA5i8FJ9cJYaAv5HpZv2My3n3n0IRQKBehmepbJ0RF+bqqhAYFgEE0trRg044FHBwfRtqCnZH2A8WxZnHA4GsOV1/w/LsDtM/O0jU1MYzCb53UeJW4+0UQCBZdxzl8soiccwIq2JH63x1gkXP6mt2PZ+g1o6exGO8mBBgC9y1bgtAsvwf2/+QUAYOvpZ/NjmvSNFQrFsr4neq583STRJKcIjfZQ/4BrHXt3PGnbt+ORv2HHI9a39Iq3XGMrY4osPAPBIMLRGGbSxnfx26f3oY1YCkaHrMVVQ0NzzeYU1RjPkFEcm5qcxaBHqmXuHaBbcTJTE+PI5vMANDxLlMannHchF+Ao4vGGeZ1P3VAwx8R1W8+CPxDgJDYMLR1d3JtqfDZXUbtpLs5Bh/WR0zzuFY0trdhn9mE6P3zz4x/Er276Nv8fjcZ4PTlpvM8rxv+JsWlsSkaATL5m7yw9k7Hta+nsxu4nDWbyoUMH0bdyDZ+zdF3HptZmjAw7ExNNkHFAbvd41j6fM+Tz4rsCgDT7xs2+H9Q0foyu1aiX3JHD/Y7Pa8SlfrdnnJ62PyeKYrGIcWL50/VoTb+zzGwWKAKt0DAdCiCSqez7KAVd17hS1fM1pU6YmprC4cMWO9Udd9yBVCqF5uZmrFy5ErfdZmjubrvtNqxcubJs90lA1DDTnC6jsgslWVTFzDiDsy57CV7x9n9G14IefOhDH7W5Ggn1lN0y53Z6O9/abiBuJywOThUTQQeljo4O2/FagLkPLCjHxaRGYFbNWngyVPP9148R3Q5PrnSKfbXIZRfQNXSHg8K34NcMV1JZcSJb4KgmX87ndN6LrxDcKgHg7ruNlANURKckJqo0Akm/NQTGJIY2BkosxBL7qmLgJsfHMDszzd0tfT4fGhoaXV8IK8drXse5xk/T622hiJqGRIUMbG3dPdxVPD05gT//5pf8GLVINpvsgK1EIB8Z9O5GSd0nuxcvRfeSZVxQ7N+3BzPptJUI3DxvUsgBl3Tt55qmYVE0hABRzui6jrWnneFITvLuz/0Hrv38f+A737kZ55xtuY4yVxtWktcxzUsSYXoHKTJnjpQgFRgbcnd5au1agGVr19v2y0+MLuImRkcwTZQmVAlZSzdCt/lYFedYzvDGTg2GQohEjPRBhXwe6ak0ZtJpHNz5jFGPrmPjWc9TllFPLpQM4WhU2Y9buxdwhsNK517q3l8rt9nGVotJesTsZzse/psgvAEQchh6ITGZDwjxauYv9SwZPHxQmHcaGhr42OZcZmVQlcrKYu/fKYE8daEcIWRFMlRKYga3OLdSbqxT42NcARGPJ/j3WTOYxIcBXcOSWKimOX/LRcmZYnp6Gtdccw0uu+wyvOhFL8INN9yAr3/969A0DR/5yEdw44034qKLLsKNN96Ij370o3NuEDXP8hg482VPSiyUgDFQXPHO9+C39z+CN7zhKn5c+Yg19jP3hbiXAYo+XJbsFgAGB42Fqaqf0smvXGtmpdA0DWc2xZX55mpbr30fG1y9BLK6lu2xvqpWcJxjrhObG7MV+xZ8mnOwtWyBo/GgDc1iPGhTewe+fcef8b6vfYvvu+eePwEQSSyoBU7FQrk6EUFvOICkX0eUkDVNTYzzPjiuEEBYGbLQt/8Zi8lvQe8i6Lq1lAx4zJPnTnPPfhULVJfrlOdU8X1rmoYtF7yA///pt7/Ot1XPr5G8zwmXRYCMg5IAFwpHeN61YrGIAzt3cAGeC3CEhTKWSMyZrVOOQ/UHAjj/RS/FxRe/QEkS4ytTKbU+GcHWBndXb0HpSVwojw67C2hjRHO9fP0m2/GtF13iaYFCY3MmR0eFsYMmbS8Vn1IrVGuRXoSltAGAyclxHN67i1vk23sWoXNRn3KhvdAlFc58g/YXOU9hPNWADWeey8eghL8yz5JaCW0UDaQ/sXCTO37yfdt5cULsE5EEkWO1AKe1sv7ZTPKxjQz2Y2KMsreKBCalyiznWNh8JnICc8AQ3JZEgzgprnZrpyRNY8S7QkZWksQGDuzHf37ovfjN9290jYsr5SM1dMQKrZiv8aWOZDYBJV0oW1pa8IMf/EB5bMmSJfjhD39YlYawgO9YMgWf3498LofpqSnMzMwAmqEVVpGY0OtLgS9+NMVOj+gKBXDIxXVDqI+xmEAmMjE0zqo+PDIw/xa4egJb7s45+F/xxZ0o8lvFFrga1qtrGlbEQkgFFBYe811RC1x6fFzwc0812wl9goEAVp+6Dbquo1Ao4PHHH8Po6Aj0mFXO9BQlMRHdE3QYgtPCaAiTE9MIBEMIhsPIzMygkM9jJp1GJBbDxKjlgldKgNvz1OP8/0mrGVmHcXbIZVUpJG2WTqNB5Zr0CxgCRc6jdDCHoa8kXv62d+M3N3/HYDp85EFs/+ufsWrzFiGtAnt+YoLkcVtZTpAFOABYuHwlDu028gXu3fEkiqecAoB4bsgslB5u3O2UoK4jp3DRd4JuvkDVYkl9vlayjfQw9VoZKSXAkeOrTtkiuE4CwNaLLvXURrqImxwbgU/TeJA/ddNctsyeCL1aqHTxWm7ZyWSSp/+ZGh8XUmJ0LVqMQDCE9Wecw115GWp573OBbIF78ZvejkRDIzTNyJNbz3ObYIEz11FPPWR3X6UWuIWRIGI+HYdnsxjPFdTWp3m4afpN69CQRxEpQlQ3PjwsEJg0NpYW4Nwb7nwsajbGR5Vw5LcrLCrzaTWhcATBUBiZ2RlkMhmk02nheTNkpAXutz75ITxwx2/wux/ehMjoEK79gDqlRynl/e7t1hy7YsVK13OrAb9WX8QlFPMfxOMApqXUNM2WZ8KaiC0Bjib+BRTuQIo62D5fifPcsDgaxBkeiTDow5VdKPNFNan0cL+lXbDl4pGwPhHB8lh5uSzqCUohglvgql92NTGXPCp1gVo0v0SZbaEAQgpNtWWBs7SmM5PjGBcEuFblNx5LJHk+yGKxiPvuu1eggqYkJkyAUyly2Gac5HVjliHqAtjSIuacEQS4iXHseWo7/79ytZEvLGt2ZpUAx3PLOFBD07YB7hTYXjTg1XQDlq9vbG0TGCY/9JoXI5uZFchmWkyNacLBXRUwyBW++J6349f/d4OtzgM7LQtnd58hwHUvsRI1H9m7x1L+mM92kgpw8YS3b9flWQZdlEOqd8B6fLCEO1Q5oLUwpScApJnS0wGjggC3VTjmDwSxdN0GT94LsgslBRXgVq1ag1qhlMKonPOdIFvgpsZHcXiPJcB1LzKEoZe9xU7qRq1Axxr03hcutxa9Pr8fF7zsSuu/ptWVi5gMqggfGRzA1MS4kL+QgTFQAkZfaAtZ5E7H6u5UFrhUkyXAjQ4PCjwPtbTAsbFIpVTy8nyoAmfEgfmWulDmczk8cMdv+P8vfuEzePbZZ5TXlVKNUabXdevs7t7VxsJICCsdrJHHGnUkwFnb1CVkeHhIGQMXT0oCnIdep5ex0HGCpmmer6frNeoC1j8wgHtHpnBACmrNZma5+4mmaejpcQ/sTwZ8aA/NjZa+3sCE62rmY2Gua7JJfy6o4znOE9wUHICxSF0cLc+ldq6PhLLbTY2OCO5eqeYWRcyW8bvqFIvy/KGH/ib40KcVaQQYVHEylBCCBUorXSi51ZAs7sZGseepJ/j/FebilcWWtCq+VRU1seyipxI06T7uoudB61FVK7SisLNeKLIX/ubm72L7A/fz/xtNshM5QTLD7HQaH7/qStx12y34xseuxc7HrbxaszPTeOpBK1HyQlP72t5tEYsMHNxvj4GTLHCVWqgZggpB3O189n7cXGjLhdAnJKXnsIsVboxYQ5etE3PYrTvt9JIxNww0P9Xk2KiVL3FyAkOHDgIAgsEgli5d5qm8akN9FxU8/2JRiOsfHzmKI/ssAa63bzEAg4nyVe96H99/2WWXlV/XPOH0F7wQp114CVZuOhWfuvk2pExLz/GglGzusFwOBw7uw96nn1SOe21t7bZ9/P4qFFrmClUdVCAdmwcBrjHgQ0fIjxaTQbubWNrcVHvyHjpXj4yoXeCpmyRlbWX47W9vV15XahrbPc8CXFDXbG649YJ55EF3h5+4G9I4uKGhIbQuMxYnk2OUxKR8C5wubRcczqsW6AKRkjAcMU3/stvT4KGDfDDq6upGMBgEUJoN7niF2gJn7J2rrEXLDusasvmikDB9rpjvqW5NIqy0XqlQcdvIqnBLBekWKq2XXUfJGPbvehbDRyzypFRTC8gQYV5nXNmzdAXft32nmCNsRmGB49dLi2DAsPQxsBgLKsA1mW20LHbWODQxNsrdegDL+hD3+7C1MaZ0w2ACnE8Q4JwtcNzaRveZv14I9jSH7Wrhktddhbt+/hPsNBMa3/i5T/KkzgBw+hln4gCAeFLN+Hnvr2/DwIF9/P9dt92CVHMzmju68OAff4+ZtEFT3rVoMXcFayPMkAMH9pMYODN2msTARROJil0oYz4dUZ+OvmgQAxlnhjUGthBh7VEJfpVCLinZ2IxRkwBreHgI3d0LbNfMTqe5RdofCCDR0IR3fvrL+Or7r0GxWMT5L32V5/qoBW5ybJR/l0x4A4Cenl4EArVTMLrJw3NJVGyUbc5DEMlIxoaGMExi/NoJjf1L3/xPmBkfx9Az2/Hxj3+8jNpqD3rvgWAI7/3yN/h/3XTSrkbvDGqazXWummBu04DhSnfHj7+nPk/R/xmOmQVO4f1AQwNGh4YwTqxZXlwoXe9FcTDq07E4anhtndmkng+95G1LEAvcqIcY5jt/+mPbvp071fk83WovFArY/aTlQrlOUkKdaKgbAY4OuDTZJLPAZWamkcsaFqtAMIRQWGSesWmPFJ2X1rExFcXRbK6m7gKiBc5aGPaTODcKunDp7V1Ys3bVM7gLZYnzVsRCnv2SW0N+TE9n0BGqXnef70mgMVBG212YWF0vK/P8aoPG8jx8n5VkdvGqtQhHo45Kmo7eRXzfzt27ed/JZbNceNB1nbvVsOuoOKyaUJkF0DUGjiiSWBwWYCih2om22KmvGu9V7Js+mwBnSa6qlCdNQT8mpjOe0qFUc7hTKmB0HR/9zo/x5nM3Y2p8TBDeenp60du7EAdGpkQXSmIhe+iuPwjl/fyG/8LPb/gv9C5fyfM/AcDLLn8JFkSCODiTFQS4HY/8Da++6Ex87t/+HadsOwOA7ELpzQKnOsmngQf2S7oEpVcGO84o6atqgZMaSJUfQw5Mk3RxmGxshqZpOOdFL8OCxcuQzcxg/ebTXBbfYn3UhWpidITf6zB5R52d7iEAtQCzXlfLmnRgJotMkiRKHxoQYjobiWJW0zS88X3XYUtjbM50+fMJFqNZje65IRXBtMdUDZUg2diMREMjd9v9wy1qfoYFirQk7taq2s9+qhrofDM+MoxhQtDR0VGaxM6rBY6NV27nJ00G4glFfK/dAldagKO94O5f3Go7vmuXkwDn3H8O79nFlXhNLa1obz/xeCIo6tIuKLBqmTFwlIEyIVnfALvGTW2Bs/ZGfLpgPq4FqHBITeVDQ2oB7hmSZPVEEODc3lEpLVBbKIAml0TatOyQrmNrYxzxCinSS5Vfb2BtcyNNqEX7NRguGqvL9BdXCU8UF1zxWvM8SbAx/3YSAe7Ivj18wUwZKONxe2LZUhMqo1ynxEIt5ndsWQ1blIv3JWvWQ/MgUEV9Os5sEvumzYWSbLN3Svf1hAM4JRX15OYhTOo1Ul5FYjGsPe0M2/5t26x9cUXS9Hw+j0dMJlEZ+3Y8yd2LQqEwrr7qLVzQbe7ohJ9YenbveApXX/0GKwaOphFIJDwp7VRnuC3yVEfYCNYeCiDh17EgUj1rlHwLstJTBRqrRl2glq5dj5Wbtrgu4G0LOIHEZJR/c1SA87IAnQtUze0KBbAhqU6yW2535984jbsaGsTYMBXgxDGrXl3r3ZqlV6jwUyGo62qiqiqCWuGc4MYfcKxekSqFSzAU5rHf+VxOiKH2pABRzAdyHU7HZbD0JRGXeYsdoRb4o0fVMXAM2UxGmSrGyQLnBoEgafXaeWE+rWfUpQBHtYmGBa7IJ3nAHv8GeOug853/QyQxsSaBo0P27PT5fB63f+87/D9d7DxnoQr4Z2b8eW7KcxGyJacU5vp5aJqGNYmIq2DthlRjs3L/8pM3muVL9Zm/Da1tCJm5YKbGxzBkWhqoZSdBUgSwhbWucGmhlvJRMw9d/0FqGe8V2uIPBJSC58az1bmhvMD23shfn+ItaZrGaaFLoZqaZreSuhYttu173vMusBYAggXOUM7teuJRTBIa7WBYrQh40atei7a2NktR4fNh7dYzhXOGhgbVMXBxr2kE3M8qZWPwa9Y5IV3DycmoZxdoL5BbJ8eNq0AFuIQivqac1skkJmy8pikEam2BU70jn/ktVNgCGXcAACAASURBVHNd10gIyEYG+4UkwnStcrzieFsCe2FKVeXgs/qEYgydY5u8wKmOZvKdPP3QX/m2mxuoXGapb5fdu6vFTtOwKRXFuqRzXjV2fdyDCyUb/2hqLBoedfjwIeTz9qTqsu7+wT/dgbddsBVfed812LfDiqXr9SDIP9dRNwIcfWdJwR1kGPmiwf7EkPAgwKkG9/liV4qZiylaWzSRhD9gWPymp6YwO50Wrrn+Ta/mWoqmlla85CUvn5e2HksoLXA1iIGribWpjjU/lgWuPIvBsQJrJiViYAgEApxtUB6s2D1omob2nkV8/65duwCIi0makoMtNlV9RIxJGESxWMTgwf18H7OM02sbFQHzm8+5oOJn7BYDx3I0pcugsRfKmqcX3ykJcCs3bMZll13O/1MlXNpUzj1G3GbPedHLccN9j+N7j+zCSyWGv5e8+vW2+s4nTHoMY+NjRuz0hGyBK91+1XPy6q60MRXFplSMxzPPZZJdHgspyYRsApyg9BxWnjtZSoBzGy+kQwkpDxyDKMDNTx5TFUpZJMopg1rgDu3eyZMIx2JxRShHfcLLd1+vbZdxyeuuwqd/+EubIHfZP7wZALB16+lYs2ad4/XK+5yHm5fzZjK0kjjKbMbiPChHAVJqvPJ6e1GfrmTL5YKiuSGyUDoIcOYabmTQEuCaO7sEtukJRQoZeen3g69+Dv379+KPP/0hfvgfX+D7u4nnzYmKuhHg6FuTGbXyxSLSY9SFsgEyyk2sXUusTUSwIBxAA3El0DQNDS2UMtbS4h3Y9QweuddyHTrv4ksQCh2/6QHmAvaO3PygPeF4mY1qCNkVrxSO9SPzBwLCxAAAi5csQyBoLGDlBSb95jtJ0ty9Js03jSfo7Ozm22xi0RUzHGU5Gzp0AGPDQ5idngYAxBNJwgxmXUxzEwFA77KT0Lagp2Jrl99FwkiYrpbZCokCqvmO3cbc9dvORDBkWNC6+pbgg1/+Bnw+y36YJG7wzDJE3WNWbDwFoUgUwVAYl7z2HxGJGQH3y9ZvxOJlK2z3sm6baIEDjH6QmZlGLmcQjgSCQQRDYSX76FxBS4z5dAR1zcrdNwepuT0UULr6yyVSy/Fju3YpmflKWeDcXK7luVNkobTKpa5S7e01dqFULVprMIhR7xmah7ClRcGMW/3qawLV4v64abumYenak/G6934IycYm6D4f3vXvX8M/vP/D+ME9D+OWW36h/Oa8KmBqBae+2ULmJopyBLiwyrpPKqzWmMfmYDp+PDNg9yijoGNCY2s7ooTAamxszHa+PHLR0CKKbjLnn6ioGxITCtkdJFcsIk1ywCUVMXBeBtL5cqEM6Br6oiGMZEWmslRzK4YOG4vK0cEBtJvB99v/cr9w3ite+8b5aegxhup1sDie5nJIOyqo50RAuS6UboJDLUFrbe3qFqiUF5l5luTzAHFR2d5jxYzu3bMb6yDG49CYCFYO1TSyfdSSd2T/XoFYqLOn13Y+ADRJFrjN516AuUBeSNO/YV3DkmgIjRXGmczXG27u6MKXfnEnBg7ux4oNm9EQEd0hG4nAwUghDu6y8gL1EPr5VHMLPvq/P8Ij996Jsy57ifIeovEE1p9+Nh65506+b+/ePQhFrLkinjAWDp7IXlT7ylwBMhtpLRSH8gJ10crVfHv7Iw+hADHfKeDFhdIoU6UakMcSpzxwNFG4isq9mih3QV6pBY66UFIY8bDHx+wiv1PN3OfXRE+G4wltC3rw1dvvwUx6Cs0dxvje1tFZMhXGsbpL2iqqYGntsgtwHR2dCDu4kFMEdR3LY+r5QBDSzRde6b1zd3BNQwZFQYEzaoYs7Js2SAZ7I0HhGmqBa2xtw/CRwxiCwVY7RuZ6uS7AniOUovsE4IkohbqxwPG4FIh+5UePGi6UE4TKO6WYfGwdU2lSnt9PV65PFV8DAE+S3EaXvO4qrCCT8YmGkK5hW2MM3eG5BfzX6k2vioerymZZCzACGLclvmqy9srqWX1Y9Xb1iX7tvUTLZnOhJM3t7LUEvf17DRdKmoaAWuASfh1LokEsi1pWblYUJcQYGx7CQcIs2UbKEOpeaNUNAFsvvlS6q/Lg5kKpaRq6woGK89LM5xtuW9CDNVu2IRAM2uqNxeNmmhRgJm3Q29NnvWCxmD9syZp1eMnV7zS01Q6kC2/52GeF/3t37xLyADLXnXLp/L08aVWJbI02H8+8b+Vq7qJ/ZN8eDBImSja3lhTg3Cxw0rGYlIi9UDDEVSrAtbaqSYlqiVo863AshnDEHhfU2tpqVxzXqxAkSXABXUNnyI91iUjdEq94QSyZ4sIbUMIN2LYxv3Cqtp2w6DIsW7ZCcabD9aGAq9ujsF3hy2YeHyFz3pFJjIrFIvZOZ7B3OoN0voB8sci9qEaJANfQ0ia4zystcGZd2UwGN/zbR5Tt6Vm2Ar19f4+BqxsBblE0iICmIebTJX9+w4XyyL49fF93j13y9sRCOc8frvxwU8SFkmolDjy7g29vveiS43pALQdOWlJfGcnSvZRezcfZHPRjWaw8lsX5BmNxLtcC59MMRsPOeU4OT1u5YIm4cBcscNLtULeQDiLoHd67B4AowAkWOE1DVzgoWRyNbZ/Ph9Yui4L6qQcf4NvNbWpN/EWv+gdsPOs8AMCp51+MvpVr7DdWBnQYlraQNGA1V4Hd7VgtMG1afk1DM3FN2/n4I8jMGCkHkk3NynhIuSwZbd0L8I8ftPJv7d27RxDgYiaRTcgLCyUluKnwkbEFzHzMO4FgCD3LlvP/O3fvsp1DLduyqzLgvviVXbD8gQB3ay0UCkhPjKNYLAqKSRWRRDWhbq0p3JfpQqcCj5XVNKUVroX033qHygK3NBZGjLDfPheWHV7uoRrW2UpA+yR9H0vXbbCdu3z5ctu+OdUt/ZaLjElKwOYkOQ8kjcj+21gaj09M8//UipZsbPLsQvnbH9yIO37yfWV73vmpL8FXRVKo4xV18wQaA36c1hiDX9dsAZKzuRwOEwGut6/Pdr1s7VLd2HzfrDyHdBD3rL1PW/Ee1NWrrbvnOTGQHmtojn+e+8jDnhzaC/yahkXREJbG5jf+kraSJuUGgMVLLC2bvIikC2P6bR0yx4qj/WoLXKk2UAbFR++7i2+3OLiERWIxXPffN+KG+x7H//vK//CJutLxRtM0nNIQQwcRpE9vjGFlmekZ6glyVywCiBJX+Sf+ci/flq1vtrIUZbJn3U4C2/fs2YU0CZKPxI2FQ/kWOLXFT2yT/WjR5Vgt0NRmEfX0EzIRBsECp0gS7KYeUMXHUUXr6PAgZqamuBAeCocRJ2QFtYDbQpwe499hmeMhXWQ3KoTR5uYWR2bceoNKgJO367Xt5aCe78FZ8dSDJiledPnyk6pa31wVd0yAC5tjZ1wiMcpKrHPjuQLvc1MCiVQSsQS1wDm7UD7xl/uUbXnBlf+AJS4kNScS6kaAY9AgkhkUi0UcPXoUh/bu5uf0LrRTVHtxZZhv7bNc21KSNf5ZMzAzm5nlbie6rqOhpa2uB6Fq4kSxNM43LAtcedcdMxdKUu3mcy/A+m1nQdd1PP/5l+L008/ix+R1Nx28mju7uOvj6NAgpqemHC1wyiaQsvtWr+HbNAau2SWmR9MM8iU6xlST9VavilW6uqiUZVGD4ZKTJIyfTzxgxQHLVlgvYMoKmhNw357dSE9YFriIaYELlKm5Vcl7bnGKDEqynBqCChn9/f1mG6yFVWkXShcLnOIYrW9kYIAnvgeAlmZ1fsRqQrCSupzHnv9cWqO2wNldROvrC/UKZrU8xs1wwPpkBMs8KhVdcxkS1+vWoB8Bj/2nWqB1UIuVpmlYe9rpwrmnnLKlqvW57fMCNr4yshRqZJkYHUG2oGBFNoceaoGLJZOIlbLAmddRI8eSNevxjTsfxLfvewxv/fAnARyv31p1UXfBPOylJBubuMvHwcOHMHDICHrUNA09vb04IPWXcher8wF5Alu6Zj3f3rvjSaQnJzBOYvsa29rh8/tPuI6pgWqrq1emavtEQGcogHS+gAVlJqo/VgIcrTUQDOK6b92MloAPKxMRniBYPg8Qvy+fz4e27h4c2mO4jh3avVNgvyqVVJiWvXTNycpzmh3IDIzraS82MFftmM3tsE6ha6XTfshWqFyhiFSTtQDe/oClbe0uIcAprSzm42/t7oGu6ygUCjhy+JAgVLQ3NEAHECjzcVrMuBYCmoZ8scjfulKAk66vNRoEAc7dAhd3iYFTvUrVPVD21dHBfs4WC9TefRJQz/mqfFeqb7NcyERFgOFCaRuT5lTL/EFUNB3DhnhA0u9D0u/DM1OzJc/1au0+KR5GrljEfSNTc22eZ9DnXJBYYtdtPRN3/vRH/P+qVVXgQVB4KFSKk+IhjOUK3IUyFI4gFIlgdnoauWwGR8fGAF0UsrkFjghw8WSDEAM3Pq62wM2k0ziyzzDa6LqOT9x0C2c1Dvt0ZHIF7ml0IqP+LHDmwELdM5597BEeJN3c2YVw2B5QXI+LHPnhxpIp9JkEJflcDo/cfadgJWhuN6wE9XgvtURN7vYE9qEM6BpOiofLZpUsN+1ALaFyQ5StAPL3RYPZ9zz9BLc+tLa2ccIML1h+8iboPrtDWQtxUbO1V7FvrgsjdnndDdISvFBUywqVbLEoWIGopWhBiQStckJeDdYzCgSDaDHpt4vFIvY8tZ1f197YgNOb4mWPr6zf0TUX097zd6woshppBMoBtRINDPTbjot54Owxhm79rKQFblCywM2LAGe3oDgK95jbLLB8vT1OSRUDV69TtxtrLXvv803yVgu4jblsjPERS5x1Xe3vnT5fbp03/5924SXoML0H3vy2fyrJpOmtPgtznYuCuo7WoF/o4HS+3X/ggO0aS4CzXChjySSiRIAbHlEJcEUc3mulQunoXcSFN8CyAmbmmiz4OYC6WxuwBlEBbsfDVnZ6yjZX71B9M5sIxfij998tMK+1dnc7XvdcBLtPYSKu0kB6IlvgKsWxJrhQ7XNzk3JjxqPuF10Kmma3NqSamnHq8y4Wjje0tmH5ypXO12t2AXiuuXdU1oR6RCWJsbOFIuKKdDCAdxdKulin/YTGQ+564lG+nUhYrjvlQJWbkilH2BrC1YWvolrLB7WIMQGOtTifz0uacPuzZ+OwOo2Ae30jg/0YI8yXKvfCaoOKJK4MmlWoa/WWbbZ9ra32cId6FYIWRoLoCQe4ICfMjw6srscTXPQoHG7kXvPhwUWryPN6TdfEaBSfu/V3+NxPf4f3ffAjVa+R9cu53ia1HLaSuPJ9B/bbzmXMlVMkBVg0kUKMjMMHho/y7YMzGdx1dBKFIjBAymuXSAtZHN7s3wW4OhTgzB6WJCxkTz/8N77d0bvouFnYqNbD1D2rf98ePPuYlaRw8aq1xnU1b1m9wLjTerL8/B31AS8WLXmxRP3y9+14im+XkxCV4fXv+zBWnLwJHQv7cNnrr8ZnfvQrJKJRx/ZpADanYtiUss6plmtSvWr1GcptHrPARRUCVTgaEzS7XurTNHEio4ykO4kAl1QILV6gKwSbiKkF9uImOV/vL0ViCoeHxOS66fExrtGOJVPw+e3RE8w9KqdYGKnuj7ps7nl6u2CBmw8XSsENUFqgCgQ3FQooCZKqo7GtE50k9l7TNCxfbqd6r9dPVTcJqtjiV7DOmL/1Ps64wZMAx8m97OfOiwVOUQUVHMPRKBatWAWtSuyKAQ3oCgWwMRmp2lzExoiOkB/NZF49aIY4UTBhT1AcpVKC4m6SCHe70kYeuQKAfhJ73ialWQib3+WsKu7uBEPdxcCxgZgm8z5ErFR0ctYwV8/22kKlgafahP4D+zBCJtqlaw03jeN4HC0LogWuKOyrVtnVLPO5ipPiYUSOYSCEsmbFzlIWODox7N1BLXClBTjZ+tjWvQCfvPnnwj63GEENhutqQNB6zg3WoqS+e7CulR6JNelPrqimsu9evLSkJZhrk8lCjF4ia2wZOjqcXWDdwGPDyC0uigYR0jWMZPMYzeVd3ZXnaon1CuqSOjpiuEt6zQEHACFz4ahaFqneCXP5AoBH770Lj95rMbbOhwBHobt0wUqXwyviYfx1LA3AeCZvuu56fOLq16CQz+NTn/p3+P1+AFnhmnoXglRjSTVcTI81WByu29hRkCxw9My5J2gpDVXLfIqxs2prIE3DEpP8RaXYqARBXceZTXGMZnOCBe7wQYULZRHIZbOYSRvfkK7rCEdjiBIWykkFiQkgkoe1LegRjjEW4ZR/Pt5afaP+BDizg7V29yiPd/b28c7o1zVPfrAxn24LGp0PqL6VdtIZaW47n9+PJavXOV/4HEa5dPdl4wR7nuUirGuI19lgqHplpVKFUBdKSg5UrgulE1wFuBqw3lbL7aVWYC5JjGgm4dMxkVdrRVUKlZjCAie7T3pR0mnQSBwP0E5cKCl6e9WCXSmwsumd+TQNCyJBDGeNxYl736io2rJBUwOME4EN8CrAlddQnu9QgfnOkcaUCCpLDBdQynwPEZ+OlfEwnpw0UiOsP/1sfOrmnyM9OYE3XvJ8Wz2q//UGlbA2XwqGWkI3Rwo3YT1fFC1wFPMRPsBqSPp1jOeM0UTlfVSLllTf1U4TLHBHDtkFuALsKQR0XRdYKCfJcYpBUl57t2iB06HhlFQUgXpn35kH1J8AZ/52OwSybzlpBc85kfTpGCrklecBhlYlD2BtInJMXrZqTAhFomhoacWo5OKy4uTNiMSNxKj1rnGvFlimEDqI/d0CN/841s/H6+RpS+Qt7Ygn7RYdwJsLZcJfeoorZYGrFep1nsqYC6KIT8dMIY9UwGcT4HQYE7nKRSmmcGlkOeCY4KbDihfxm5Y72YVe16wxU9eADgdBrZdYjMqByoWSwS2uhl9fUa3lI5ZsgKZpKBaLmBgfQy6Xg2aS8cgLKRXKFeAisZjjsbbWeRbg2Aa3rlj3oiKhKbtcE0vXSgy10nuv00+VQ2WJea5Y4FAsLwZu3tNKaRo2JiMI+XTOfllz5TWpu6rlAWghFrh+hQtlEcDEiBXjxoiTaPwtda+kGJPY2eW6w766i/46Jqi7p8AGW6dA9k3LlnJNSkPAXf5cnYigNeg/ZjFWTg+3kyQKZthw1rl8ux5TItQCskvD3zG/qOenrlJilNJ2xxxIMbxY4Br8PkR9uutY4XasFs/yeIn1XRELY3kshCbFeMzuQSUbqFwoF5iJ29nYSQU/lesT+8/K16EJJCYM0WisYmINTmKikADYXDTffUMFn88nCMWjo6Nc6JxJW3TpkVhceX0li7xX/tN7lfuPiQslHGJnzd9KImZKPRJbX6zzuUzpKSD9Ho/gcY4uN1GQWCiPBWJ+n6AIVLWlJnNJDcpuIbHKA4ftAhwAnuMYAFLNRlgUTeQ9aQpwsoccFfwoHwaA47ujVhl1KMAZv8nGJpurR2dnF6LRKLojQSyLhdAachfgUgEfToqH625QVbmebDzrPL5ddy+lRrAWP9b7qdqbmucknccjVMHcxwJe65fPs8XAOZBUdHa654ADjIXNplQUnaGA4zlucU7Hy6RbTTQGfPBrRuxfu8NzY+5Z1E2LCecqF8qFS5Yb55inU8FItoDS50OtcZF4XGBIBIBFi/oqngfcLHA5xRgmYz7nH5rfbWTkKG90cHaG73eznJWLl731Xbj8qrfZ9lcab1gpZIUPfeTs+VcSRlGue2G9fqsMljKC7HPp38cLrLHA+Q1wS37NW+Md86Wst6au6lRoWOAsAW64/wjyebs3HA1lYMzy4ViMp+mZmZ5GJpOx9T16XUIS4Or9G5tP1J2sYAWoa7Z8QEtM7axf09ARCtT9i3SauGUBrqWzCwtXrCp53XMNlksD2VmlWz8xnuDc4Nesb63eoGqR3fIiuVCmFMmJdR0LJBarcutlmO84J8vdqf7eDwCsSURwWoMlDCitH+ZO1UJFtpjquo6Fi/rMsjTzOutC3l+lcjRN44tQNqE97+WvEs5Zvdo5XqsU3BJcszHMrW/MJxLEqnn06FHe5ty0ZYELR50FuI3JiMCkSrEpFcWaRFjYp2katl50qbAvGA4jpbCu1hKyBY79hnQrPrISAaWUV2kpr4B6A2tfscS+ekTcp8OnWe7u9FlbFvjSmA/GSa/wqTxNajKXVPkta0Y4EDOy5LJZjElhQQAEZtpUk+EBoWmaoGwdGxsTWpXNZJCenAAAM2ZOnCfq5+0de9SdAEcHTFmAW7HiJOE/O/VYMuhVgjWnboM/YGmsX/Wu90uUyCcGCrC7NNTSkvF3iPDNQTNdTXgR1gC7ICOfI7NVAUBPT09ZSbxVs+f6RAS9kaCr600t4lZ5Iuiql1w9CHn6FA31S4IVYN0PTc4KAIVCAWFzXFTdM7PGMaGJLtZll8uXv/XdwrXNzZXnJVNZLRjYLpUAl/IQV1lt2CxwJqY9uFAChotX1CG+JOrTeRJdCjntQ1N7Z1USEXsBo8WXhTTm3RHSNb6mqCRtlKrfuqGOZAMlVMqI40WAW5eMYGtDjAs9ggDHFf+ly6mrtEXz1JZqv2NWXmvXAr5v4OA+23miC6U1BlMBbmhoUGjYJCFcSjY02saSenp9xxp1JyvQBi3oEwW45ctFAU7XNKyMh7EuGZmHllUPbQt68K/f+D9c8rqrcM1nv4pzXvQy4fhxJo9WjFpqr0+QRzgnsMVPXU7cihdot7yI/xMNjTZ/+SVLlsy1WiT8OhZG3IXAWvQ3JjDU+6LQDczy5qT17iLxwImGRk42xRbg9Co2TuSlB6NZm/x8fyCADWeey6994Qsvn8M9mIoOly9FZWGULZTzASGVAFkIpScn+XZbKoEFYWdX4XLRLMUWph2ICWqBDckoTklFef8q8H5j/G/w+xDwEB/lhFKK1ePPAmcf89ktHmM9Xkn4NM1RYVQOEUs9eTR4VV7OFXNRYrihnRBDHd67x3Z8fMRyhUw1WanB2nssr5jdu3cJ/XGcKJ4ayDUM9fT+jjXqyR0YgDjRL123QTi2bt162/ktwbq7BU9Ye9rpWHva6cpj9WTiryXagn4MZnJIBiiFfS38B06M51kulsXCSGWyiB9jRifV6/HmQmlHV98SYQIoV4BTwcuEUYsuxkgXql30xmSkJkK7qp1M+KFKKZr66C0f+yyue91LAQCv+ZdreY6fPD3XBBfgpPoMC5y9nn/4wEfgDwRw5qbN2Lz51IruiZapemYdIT+OzOaUfUTXtJoq47Y0RFEE8JfRNN9HBTjDhdJodZpY4HoaUuiNBHFgRsxh5gWq2wn4fAhHozzfk5uLZrXh1zX4odmISlIBH9YmIkj5dRRh9J32CtYK9H4VKbsU59f3XMOYRtOELfZ4scAxqMid+FjgMhCvjIcxnMnVrF2VQN3a2im0q/2OOxf28e3De3fbjo8MWm6VSSKMdS1ajIfuvhMA8Pvf/wbnX3wJP0bn78YmicAE9a8kmU/UnfRDl5IrNm/BG679GB6949fYuvlUbNy4+Zi1q1ZgNNvyvhMBTUE/zmyKWxp1VO/jVA3uf4eIgK6hO1yGe+E8Qn5/RdiFJNV7XbBkOZ568AH+f9OmTRXXOx/XuYEtvqudpyk2jzn/aH42FVafuhX/dtNPMDo2ho1nn8+tJSr4Jescg6ZZfYM+qwWLl+H9/3EDTnGI6fIKVqbKQrEsFsay+TWycQQVbooJBxfK9JQlwMXjCeEa1RzkBCch/f999Vv42BtfCQB48Zve4bG06oG9f2phaDAVgxqABSUs6E6gArjORyIL1FJcRP3PNeyZiK6hzCp3fIhwluLGeh+adEyFlqC/bhT+YV3DjIM5rBZ9aC5EPsryzF8qwB3ZZxfgBg7s5dvU3bJzkaVY/e53b8A73/UeIGYIayOD/fxYc4udzfZEWR97QX30ZgJRU6vh0tddhXe/9e3ocGGHq2esT0YQ1DQ8MJZWHtc1u1m73ieBasOm5fw7TiiUeuUbkhEMZfM2QUZ13ZYLno/f/fAm/v/CCy+cewM94O8ulCUscOSofN7aU7byxUxL0I890xk0B3wYzoqsZsxSHNFFEgOayFtl8Zrr83OzwNUbZAscA3WhjMVi0AEEdQ294SBag37v96Z4ln4NWL/tLFz3rZsxNT6GLRe8oLLGzwF6jYQQlQWOusuOmQmZk34fxnL5uv9WdU3DycmIGHd+nLhQMqiENSagqFJ91CM2pgzr+cHpzLzUNxciHzd0EBfKgQP7hWPFYhFH9u1Vntu7fKVw7v1/vg/d5xlWuCGSkqBDkQKo3r+x+UTdCXAqF4TjWeJOltB2q7R6J5qPL7vbpF+vWjycQCNdlRL/jtrB/Q3F/D7E/D4cNl2+IrrBOhjx6Uj5db6IAoD1p5+NvpWrsfvJJ7B16+no6+vD4OBElVricp3Ub5sCc7dyHQ8kJgIqZOmkh0K6hjOb4tg/nbEJcI0BHzYkI4j57EHtMgulU/nlIKBp/7+9O49vqsr/Bv652ZO2dAfaAgKFVhahdLDV58eohJFNSlkFF4ZHR2eUQdwQEHxRVEARB0dZBpkBfeYloKOAvAABh0HHR2dc0GGER7GKUChLF0pLF7omzx9Jbm/akCZptnvzef+hJbk3Offkbt97vuccNFmtAbv5CYS2LXCOMktTKKOioiAIAnJ96J/nOrXZ9urQ/3WL15/nL4Hq4yO4ePAgbSXWqwQ0tVjRRaOyBXD+/fqAiGlzTyK/FErB/n+IhfZ1G/qZ9IgKwWBD7iYTD0Tatb9/Y8fnJUgm2b5cXuq0zJXLFbhaa3twFBUd7ZRCOfDGm5yWLS8thSNUu3TxvPi6ywBOFkdZcIRfAOfyCapyfzCV5Klei1zOoH4mCAJuiosKr9GhKGhc3hS6muDU/lIXjRoZ0bYRDAfFGNFgseJrewu3Wq3Gsjffxclv/4P/PWpkoIrsMohw+GXCtUf584bcAjhX5XTVj8/d9rh9TxAQjL1CRwAAIABJREFULbn5bO330vq3P/sPa+0353Lqk3yteeCu1koDuJi2q3nBxXHZiU/zlxS9FmWNzUj2c4qc80AZtou1NIAbFGNAk8WKiqb2c2DJhewCuDb/B3yfrD3Fj4P5+EsgwklXKcb+EJuYLP5dWVYGq9UqXrsvSvrE9bzOeR5OQRBw16MLsP3VlwAAZZIpCMrOS1rgUtgC507YNW65fsKnXK6e6kUirUrwa6Du6Q0jhSd35wHpNUgtCO2GPY+OjcMvbhmJ6GjvAynpLtjHqMMNbea9ckjWaZDdxYg4TWs/G39znBP0QRqSvbNc1YEjpcldECQIAlLtKfLi03UvvlcFySh0rh4A+vjryPGc3H4QE5vaWucUSt/ZJy5300wQvB6WrQxqFXLiomDw84BM0k9z7MtaybbrVKqg9ikNBLmlH7pOobT9XyabIPL04WVn+T3F2F5GY1SUOGhRc1MjaiUj0P783THx7779Mtp9hDT4Ky9rbb1zaoFLc56iBOD9nFTY3Rn4MwVGTuR4s0DkD2LrSUhL0V6yToM4resn+oIgON24BeLw7a7X4PpoA7rrwy5RokOZUXr0M+nFJ+LuflsBQF+TDiPiJZOCS/qdZXUxupzGwTlNun1fO+nn+0JrX7HtoCnhzLNBTHxvIdYKArpoVMhNbf0ex++gE0ccVc61TLolzWE2abu/yLUFThqsx9vP09EhSIfsjGDtSf4OcKXljk9uTaOslLSk/XTsv+LfQ7KcR5QHgDjJ9COlkgDusuTvbt1T3H53pAu7vd1l6lQIyhEsjhscfSDHm45ATn0XWLVhTS0AvQxaDJOMFuhpC9y1+CVP3oOPcDWktb8IgoBknUY2KeTSUnbVa5Fi0LociMV1eqxzC7zjgVaTxYoYjRq93IwiKB2u3+Vp1Mfqc6RryikgkfYzKS8vg8Viu8LUObXA+R7ACYKAoV1M6Gpy/j1GxEeJ87Eq6VIm3ScdrReurtVyS3eWirEHPd1kMlCc4yeRPvRO0mlwc3xUu/594S5YpxZfU0w9EZfc2pLmCL6sViu+//oL8fUbhrYP4KQtcBdLbetZLBZUSx48JUqWcZDjMRYoYfdo1zEPkKMDOaCMH0wjtD7Bk4rTqqEXBKQadCivrG2/APlERvdcEU8QBFxn0ju/5mZ5zwI4H8vi42ewY7Vrjsmv3dWPq3cM9rTRBjedNqSpVOIolB5+vid6GLQwqlVItA9I07bfYzjSG4yIjo1DTVUlmpubUX6pHNBFO7XAdS6Fsj0BtmPYMTpj4jVareUuxR7g9PRxSoJwpVep/NZvN5jaHtdKaxn1J8e5K84Pg2sBznUfJxnq//SJ/4fYxCQ0NTSg5GwRAMAYFY1hWdn4vtH5XC5dr6zUNnVATdVl8aFTbGwcdDod0NTg/N38nUVhd6bVCLZRyIrqGnDGMdGoAn6v7FgT6potOF5T7/S6zsXNK3VegKcGpxAQL0IBfcrqXQjnqj9GpHJ1XXW0wDnPO9VmPRefpVc7+my4/Ubxv2Iarh8zOARBEOeNyo41QS+TG4eErt1RU1UJACi+cB4tPdJRX38VgG2bTKbOzYvn+Jy2dCoBObEm8SGs0mgEwef55Mh/lPSwLFhbEqVRB2yguG49e4l/v/nisnbv5/xqLIxGI9DoPJVWQtduUKnVsLS0oKK0BA31V1F16ZL4fpIkxZJcC99HitIRa0JYDH/Rq1SIdfH0o6NpBsg3fEojb65+viiNGrlxJo/6hPn68/vaAqfQe1avuKqCzGgDuuk1YpqWy/VcrKjz4AcUg2chMNMISEWpVW4H7ggn8ZKhvb/4uQj1TlMIRPv93Cj9NL1apdhzr0I3S3akx31WFyMyo+T8ADx4O5W/B4pzkE7m7crQ/7nV5cBGGq0WSZJRJkuLz6LqUrn476SkZMWeS/wlbAM45xspZfyIrrZCbp1u5UkZ+w/ZRn0L1kndk28J1wFYwoVRrUJGlMF5CGkP1nMs70nfYEFyhYjE633bTU7s1l38u6K0xCmA68wAJpHO1QA5DnIZAEQJpMd4jEaNrjLpu+eKXDM4pOVN7Z3udtmBw3OdJ46XvNe913Xi3xfPnMaVy60tcImJSbKrl2ALuxRKB6X/cD0NWsRo1NDJZIhwOVP6vqREnf3N/PKbe/Ahjhs3OQ10ESi+Pmi71no5cSaoPeg7J6C1BdTlKJQK/20E2PZDFWyDFMR3lQRwJRdQH6D+b47vjRRunyUoqL9+uFNSHQvieQuQ60yCqb37XvO967NvRHJqD6djR3re6N6zN77F/wUAXCg6Ba2uNUU5Kan9ACbkLGwDOCmlXH+lNxJ6lQqJbSYd7R+l9yh1iEj5Oncc+N7vybvPcIyxwaO2VUePpDzpAwd4MP+dfUVBaA3cZJLl6FdOrY9WIEHSAne5rKTNJN7+b4FTeoDswEet4cHRx9LVoHBy4zhyDGoValsCMUZkYEgP+bg2gVZi9xSMu+c+6A1GjJwyE8C1+0D3SO8v/n3q++NOn5WSksLragfCNoDztS+KXLjapu4yTgUIZ0rcf5ROLr9ZawtcSIsRVoJVF9IWuGiNCr2MOr+NsiYnjsBNBQEtsCJB0gfuUsnFgKVQRloLnLtA1dq6UFDKEsmM9gc7V2UU8FxLs73l1qgSUCvXJjgADy5diT8/txgAMO3hxzF6xr0AgD5GHdIMWucUesmJo98NWeLrPx07irQ+remY6en9ZHMfECrhG8B5+SRcdhS5UWGKdS07vv5kjuk6fG0V8PbBkWNuKKZQQhxG3t2cbUD7e9zOVp0thVLAdUadrCbd9jeVowVOkkJ5ufQirjrNAeffKQSAyDm9etICFyl1EUpGtXICuPoW2/nKoFYBTfKJ4Nru56Nn/hoWiwWWlhaYp8xoXU5wfy3uff1AcSTK86dOiqPnArYAjtwL2wBOSoknRSVuU7hiXcuQjz+aTqVCs58u7B4FcC6GyY9UKvsUMN7yOd3V8X+FjVjsLcHeFqYVBDTA6hTAtR3EJBABXKRgK3t4MNh/CKMM5mXsiEkyNU4xmkJcGt+pVCqMv/f+dq+7OmQESdu93mhCr/6ZOH3iOwDAlYrWQUz69ElHE485tzo8Ai5fvowHH3wQY8aMQV5eHubOnYuKCttM6UePHsXEiRMxZswY3H///bgkmcOhs5T+uyl9+4g6w9fjw9GHtLNBgacc7T2R0g8oEDodwPnhs+TMsc2OETtjE5OgsqeZXam4hOrKy+Ky0dExfv/eSKlzd6NQUvAIgoCsLkYMjjGEuiid1l2vwY2xJsQodjopF4NKtfl3r/7Xt1tm4MDBHDHXAx0GcIIg4IEHHsDBgwexZ88e9OzZEy+//DKsViueeuopLF26FAcPHsTw4cPx8ssv+61g0pHJlHhzpLwtCl+s68jhmKvLH7+5J+cdR1uf/J8FB4+/p4VxCuAUeK3oiGOTHYO+qDUaxCd3Fd8/f+qk+LdfBzGJsKqOwF0rbCllBG9BEGBQq2S3b3l6DnfZAtfmxUE5Nzv9W6VSYdmy5U7r6xTQ2hoIHdZKXFwccnNzxX9nZWXh/PnzOHbsGPR6PYYPHw4AmDlzJg4cOBCQQsps3/ZIJN5oEHkqWC1onWW151Dy8uK5dqNQ+jzrescjT0bCWbZtCxwAJEoGMjn7U6H4d1xcnN+/NxLqGHB/jIst8cEoCJFMuDoe2vZS/p/xk5CZ9Qskdk/Bnb9/Ai/+7QPcdpvZvr49XZbzJbvkVR84i8WC7du3w2w248KFC0hNTRXfS0hIgMViQWVlpV8uEoofxISChvuP/Gg6OQgJUyjDl7pNVRl87FzkyVptv0uJXAZw3VKAY/8FAJz58YT4elxcfDCLpigcqIgCxbFnqWWyj3lcSjcRXLJOg7LGZhijorDy7T0uV3eM0mnQqFHV0Ox1OZXOqwDu+eefh8lkwr333ou///3vfilAYqLrlI66qjqgtkFcxqSU4aErbCOCxcUakRzdcQ53crL/+izInbd1kW614OTlOiQnx0TEDbYi9hX78ZGcEIWEDkYzdLWewaAFGpuh1arF+vCmXhqrr4rnHU/WE65cBSwtSIw3eVfeMBLs/cbU1IxLkhHXkroYkRzv/eAa1Y3NQFUdusQYkBwnWb+iddRFnUbt8/bJ5XjS1FwFGlvQIzkGWpMOZ69cRVL31oFMpAMD9OqV4rftUqkEoMUKo1Erm7ryiX1/SnJzHxLVZETl2QoMSI2D0d6fSdF10gmsF9euVwlIizYg1hD+00k1tViAytoOl+sSY0ByrMn2D/txpFbbhoruHmtEmkpA8ZV6lF9tdFrPsY80Vl8FauoRq9egxIvrcqTwOIBbtWoVioqKsHHjRqhUKqSkpOD8+fPi+xUVFRAEwevWt0uXamCxtB/6ubqhdUSeiooa1Cog31nqStVVaK66H3UoOTkGZWXVQSpRePOlLlIgICU+CuXlNR0vLHNK21eqq66ipabB4+VvtgcAP9fZ1mlubkFZWbXX9XKlsfUpnyfrtdhHvKyqrPOqvOEiFPtNY6Pzk9TmukaUNXs/cqhjGPHa6gaUNbleX7BYfdo+OR1PLfahyCsqahGnUeO8xYr4pG4ul1Wp9H7ZruTkGPG6XV/fJJu66ozLFbWoddNaPCzGiJrLdaiBvPafYGK9XFsygFiDVhb10yyZrsXdfJA11fUoa2wzPYL9vFFX24BUgw56F1O/OOpAa7Win0mPgUkxKKyodXpPaVQq4ZoNWtdcx5OFXnnlFRw/fhzr16+HTmd7yjx48GDU19fjyJEjAIC3334b48aN87LI16b0kcUioEEo5ARBiIiWNyXSePmzaQQBGkEIer8ci/3Sxf3Mc47R/KLsHdOjfRyBzZEeqWlzUz0o2oB+Jr3TMkrm2ETpbVBit+6uFkVsrD/7wEVA5UpwGgEiG+mh4GnTSlYXIzKi9GIqsuP8If2sNIMWQ2OMrd8jCEgxaJm+fA0dtsD9+OOP2LhxI3r37o2ZM2cCAHr06IH169fjpZdeQkFBARoaGpCWlobVq1cHpJBKvFBEqxWSEkoUAL72gWsVuH5VUo6bZmXlBwSWI6hK1mmQ3Ym0U51KhexYE0xt7qwTdBrUNtue+sYqdnjuVn1MOhTWNojzYgkAklPSXC4biD5wSrw+u8JjnKg9tSCgxUUrGuB8PY3RqBGjUeOCPbvOcdqWLtNVp/H5gV4k6jCA69+/P3744QeX72VnZ2PPHtedDztLqU+0u+psVa7l4zyia/L1iZurp3qBJE7kzcPZY44bYcs1LvreiLrG8NJRGjWGdTFe830liddqkBsnuZQLArr26u1yWf+2wEWWSNteomuRHgtqdzmULq7jqjbXaOm9Po8x73g1iEkwOc/tE7Ji+F2mBwOXEJFvWi8KnVvfU60tcAo6SQWYIzj3vtebdyL1Sa4AIKFbd6g1GrQ0O/c39Oc0AtLviwRKfahM1BkalSD2a2vL1RHjyMBwHE9Oj9h4jHklbB9PSgvGn5SIPBH0eeAc38uTlMccrZXXuOaTP6g1SE7t4fRSamoatFo/jnDHfZ4oIkkPfXfdHVy9I97b2zMwlD7eRSCFbQDHeeCIIo9RJXg9gIkTF3n1PqzutbA9kYYhR2ul5Zp5N9QZjoymbj2vc3o9Kyvb798DKP/hRXYXIzKj9KEuBlFY8nbuurYZGJ7e66fqtTwO2wjbFEppSpLCrw9EZPcLx5wxPur0KJRBSr2MZI4WuBbGbwHVPoAbFqKSyFuURo2oCE3HJeqIuweuLlvg2mRgeHrtTGfw1k7YBnBKf6pHRO11tp9JsE8bWV2MuNTYzP4xXjDY5/Q0cOSXgHDUavcAt8C1/T4iigzS6533KZS2V1vEFEo21vgqbAM4pz5wvDkiIi8EK4XSMTQyeS5Wq8YNMQZ0Yb0Fhn0nTuye4vTy0KFZgfgaIopgblMoXbyVZtDiSnMLuupt4Qdv730XtgEcf1Mi8pZ43pBZS16kidOG7aVH9hz7bmqfdKfX4+MTAvp9RBR5vG2BM6hVGCbpKqHUEeeDIWz73nPmdSLyVudTMIM7jxxRoPQdeAN+Nf0eJHTtjvV//j9+/3weI0SkdnMi0HpwPeYolL4L28eg/CGJyFedGskSfBJI8iXddR9+fjUAW1/NYHwfEUUWd8e/Ud1xGxG7SPkujFvgQl0CIpKbZnvHaMdAGb7ixNwkX+333YDuzbwBI4pYjqNfb79pN0pu3j3JpHNugeO5xBth3ALHH5KIvFPfYptdxuDBkz9XOj0NAVGIBXvf5bFCFMEEASPio2ABcKKmHn1MevxQUy8GdB2uHtjSKVrYBnBsgSMibzXaJ5cx+noCcUwEzvMPKQh3ZyIKBAG2NEg1gEExtlTtYV7M58o+cL4L2wCOPyQReat/lB4XG5oR1ckWuLDNLSfqQLAfPvBaTUS+kp6v+ODUOwzgiEgxojRqpPthfjF2rCYiInKvs1dKdpfyXdg+aOYNFBGFCs8+JFeu9t1AXk95rBBFrs4HcP77rEgTtgEcEVGwWe3/54mRyD1rx4sQEbnF8S58x/sUIiI7+ywEzMUn2Qr6KJQ8VogiVmePf7bA+Y4BHBGRncXersC8fFIS7s1EFAidnTNVzSdAPmMAR0RkJ7bAhbYYRD7jvktEwdLZFEi10yiUPHt5gwEcEZGd4/KhYWI+yZWLm6BA7s08UogiV2db0FQM2nwWttMIEBEFW5xWjZ4GLdIMulAXhcgnwb8d4g0YUaTqbCtQ5yf9iVwM4IiI7ARBQG+TPtTFIJINhm9EkauzySpMm/QdUyiJiIgUwvU8cEEvBhFFAKZAhg4DOCIiIvIJ79+IIhdTIEMnrFMok7RqThZKRETkIZctcAH4Hl6biYgpkKET1gHcgBhjqItAREQkG8G+n+LtGxFR8DGFkoiIiLzCwI2IKHQYwBERESmQzt4cJwQg3IpS224frMylJCIKOgZwRERECiEN1YbFGpFu0kMbgInpu2hswxfUWSx+/2wiInIvrPvAERERkTdagzWdSoVUQ2Ce06YYtKhtsSBVrw3I5xNRZBgcY0BdCx8EeYsBHBERkUIEq2+aWhCQGW0I0rcRkVLFazWI53MgrzGFkoiIiIiISCbYAkdERKQQnJaJiALNpFbBEIC+teQ5BnBEREQKwVsqIgq0X8SaQl2EiMcUSiIiIiIiIplgAEdERKQQbIEjIlI+BnBEREREREQywQCOiIiIiIhIJhjAERERKQRTKImIlI8BHBERkUKoOY8AEZHiMYAjIiJSCB3nZiIiUjwGcERERAqhZQBHRKR4HQZwq1atgtlsRmZmJgoLC8XXT506hRkzZmDMmDGYMWMGTp8+HchyEhERUQe0TKEkIlK8DgO4UaNGYevWrUhLS3N6vaCgAHfffTcOHjyIu+++G0uXLg1YIYmIiKhjKgZwRESK12EAN3z4cKSkpDi9dunSJXz33XeYMGECAGDChAn47rvvUFFREZhSEhERERERETS+rHThwgV069YNarUaAKBWq9G1a1dcuHABCQkJXn1WYmK0L0WIGMnJMaEuQthgXbjH+nGN9eIe68c1OdeL6cpVqITAboOc6ycYWD+usV7cY/24xnppz6cAzp8uXaqBxWINdTHCUnJyDMrKqkNdjLDAunCP9eMa68U91o9rcq+X7BgDBEEI2DbIvX4CjfXjGuvFPdaPa5FQLyqV4HWDlk+jUKakpKCkpAQtLS0AgJaWFpSWlrZLtSQiIqLgEtgPjohI0XwK4BITEzFgwADs3bsXALB3714MGDDA6/RJIiIiIiIi8lyHKZTLly/Hhx9+iPLyctx3332Ii4vDvn37sGzZMixatAgbNmxAly5dsGrVqmCUl4iIiIiIKGJ1GMA988wzeOaZZ9q9np6ejnfffTcghSIiIiIiIqL2fEqhJCIiIiIiouBjAEdERERERCQTDOCIiIiIiIhkggEcERERERGRTDCAIyIiIiIikgkGcERERERERDLR4TQCgaZSCaEuQlhj/bRiXbjH+nGN9eIe68c11ot7rB/3WD+usV7cY/24pvR68WX7BKvVag1AWYiIiIiIiMjPmEJJREREREQkEwzgiIiIiIiIZIIBHBERERERkUwwgCMiIiIiIpIJBnBEREREREQywQCOiIiIiIhIJhjAERERERERyQQDOCIiIiIiIpkIeABnNptRWFgY6K+RHbPZjLFjxyI/Px/5+flYuXKl2+VnzZqFjz76KEilCy6z2YwRI0agpaVFfG3Hjh3IzMzEW2+9FcKShZeqqirccMMNWLFiRaiLEnLcZzzHc7B7ntRPpNUhzzXu7d+/H5MmTUJ+fj7Gjh2LJ598MtRFCguNjY148cUX8atf/Qpjx47FpEmTcOjQIbfrFBcX45133glSCUPHbDZjwoQJsFgsTq9F0nmlLcd98MSJE3H77bfj4YcfxjfffBPqYsmGJtQFiGSvvfYaMjIyQl2MsJCcnIxPP/0Ut956KwDg/fffx6BBg7z6jObmZmg0yt2l9+zZg6ysLOzbtw9PPfUUdDqdx+taLBYIggBBEAJYwuDyxz5DRO115lyjdKWlpXj22Wexa9cupKSkwGq14sSJE6EuVlhYtmwZ6urqsG/fPuj1ehQWFuKBBx5AbGwsbrzxRpfrnDt3Du+88w5mzJgR5NIGX11dHXbv3o3JkyeHuihhQ3of/OGHH+K3v/0tNm/ejKFDh4a4ZOEvaCmUW7ZswdSpUzFp0iTMmDED33//vfheZmYmNm7ciKlTp2LUqFE4ePBgsIoVVmpqarBkyRJMmzYNeXl5WL58uVMLw7/+9S/MmjULt99+O9asWRPCkvrf5MmTsXPnTgDA2bNncfXqVfGg/ve//40ZM2Zg0qRJyMvLw759+8T1Zs2ahTVr1mD27NmYM2dOSMoeLDt27MCcOXOQkZGBw4cPAwDWrl2LRx99FA8++CDuuOMOPPLII6iurhbfmz9/PubMmYP8/HxcuXIllMX3O1/2mW+//RYTJkxw+pyJEydGxFO/tk97pf82m8149dVXMWPGDJjN5ohsxXRXP5HG1blm0aJFTvuF9N8lJSWYPXs27rjjDjz00EN46KGHFLsPlZeXQ6PRIC4uDgAgCAIGDBgAAPjvf/+LWbNmYcqUKZgyZQo+/vhjALZWptzcXKxatUq8vh85ciRUmxAQ586dw/79+7Fs2TLo9XoAQEZGBh566CGsW7cOAPD6668jLy8PEydOxMyZM2GxWPDcc8/h5MmTyM/Px7x580K5CQE3d+5crF27Fo2NjU6vFxUVYfbs2cjLy8PkyZPxySefAADWr1/vlJ11+fJl5Obmoq6uLqjlDpbRo0dj5syZ2Lx5MxobG8XjJT8/H0899RRqa2sBANXV1Xj66afFfem5554LcclDI2jNFZMmTcL9998PwBaIFBQU4G9/+5v4fnR0NHbs2IGvv/4ajz32GMaMGROsooXMvHnzxBPd/PnzceDAAdx4441YsWIFLBYL5s+fjx07duDOO+8EAJw8eRJvvPEGGhoaMHPmTAwbNgwjR44M5Sb4TW5uLrZt24aqqirs2rULkyZNwvHjxwEAAwcOxLZt26BWq1FeXo4pU6ZgxIgRiI2NBQAUFhZi8+bNim59O3HiBKqqqnDTTTehrKwMO3bswNixYwEAX3/9Nd5//30kJSXh6aefxoYNG7Bw4UIAwJEjR7Bz504kJCSEsvgB4cs+M2TIEJhMJnz55ZfIycnBkSNHoFKpkJ2dHeKtCb36+nq88847KC4uFm8koqKiQl0sCjJ355prWb58OXJzczFnzhycO3cOeXl5GDFiRJBKHFzXX389hgwZgttuuw25ubnIzs5Gfn4+1Go1CgoKsGnTJnTt2hWlpaWYNm0a9u7dCwCorKxEZmYmFi5ciC+//BJPPPEEDh06pJjWzcLCQvTq1UsMbB2ysrLw6quvYteuXTh8+DC2b9+O6OhoXL58GSqVCkuXLsWqVavEh3FKNnjwYAwePBjbt2/H7Nmzxdfnz5+PO++8E9OnT8dPP/2Ee+65B/v378fkyZNx5513YsGCBdBoNNi7dy/MZjNMJlMItyKwhg4disOHD+Mvf/kLYmJi8N577wEAVq9ejU2bNuHxxx/HypUrYTKZsHv3bqhUKlRUVIS41KERtDve48eP4/XXX0dVVRUEQcDp06ed3h8/fjwA28FeWlqKhoYGMbhRqrYplAsWLMC3336LN954A4Dthqpbt27i+5MmTYJGo4FGo8H48ePx+eefKyaAEwQB48aNw759+/DBBx9g+/bt4s14RUUFFi9ejKKiIqjValRVVeHUqVPIysoCAOTl5Sk6eAOA9957D/n5+RAEAaNHj8by5ctRUlICALjtttuQlJQEAJg2bRqWL18urnfLLbcoMngDfN9nZs2ahW3btiEnJwdbt27FPffcE+ItCQ+Oc3CPHj3QpUsXXLx4Eenp6SEuFQWbu3PNtXzxxRd45plnAABpaWm4+eabg1HUkFCpVNiwYQMKCwvx1Vdf4dChQ9i8eTMWLFiA4uJiPPjgg+KygiCgqKgI8fHx0Gq1mDhxIgAgJycHBoMBP//8M66//vpQbYpfWa1Wt+9/9NFHuOuuuxAdHQ0AiI+PD0axws5jjz2GX//615g2bRoAW719//33mDp1KgCgX79+GDBgAI4ePQqz2Yz09HT885//xKhRo7Br1y4sXrw4lMUPOMd+dPjwYdTU1IgZeY2NjeKx8tFHH2Hnzp1QqWxJhEq9x+lIUO56LRYLHn30Ubz11lsYNGgQSkpKcMsttzgt4wjW1Go1AFt/JqUHcG1ZrVZs2LABPXv29GhZJfVnAoApU6Zg+vTpyMnJcTq5L1u2DGazGevWrYMgCBgzZgwaGhrE95X8NAqwnbj27NkDvV6P3bt3AwCampqwa9eudsu23S+U3oLiyz4zduxYrFmzBt999x2++OKLDgep4VsKAAAHlklEQVQQUgq1Wu3UgV56DAFwOt+q1Wqn9O1I0FH9RAJ35xrWj7OMjAxkZGTgnnvuwfjx42G1WpGZmYmtW7e2W7a4uLjda0q7hmdkZODMmTOorKx0aoU7evQoMjMzQ1iy8NK3b1/ceuut4oP6awW+jn1j8uTJeP/999GzZ09UV1dj+PDhQStrKBw7dgz9+/dHcXExCgoKFP0wqLOC1geuubkZKSkpAIBt27YF62tlxWw2Y9OmTeKNU0VFBc6ePSu+v3v3bjQ3N6Ourg4HDhxAbm5uqIoaED179sTjjz/eri9bdXU10tLSIAgCPvvsMxQVFYWohKFx6NAh9O3bF5988gkOHz6Mw4cPY8uWLWLKyccffyymEOzatUtx+4U7vuwzWq0WU6dOxcMPP4y8vDwYjcZgFzskevXqhWPHjgGw9REsLy8PcYnCC+vH/blGWj+lpaX44osvxPVycnLEB0oXLlzA559/HpLyB0NJSQn+85//iP++ePEiKioq0K9fPxQVFTlt+7fffiveoDc1NWHPnj0AbKntDQ0N6NOnT3ALH0A9evTA2LFjsWzZMjG4LywsxMaNGzF37lyMHDkS27dvR01NDQBbfy7A1n3G8VqkeOSRR7Bt2zbU1tZCpVJhwIAB4vFz8uRJnDhxQhzEY8yYMfjqq6+wZcsWxQ9+cujQIWzfvh333XcfzGYz3nzzTdTX1wOwjRFx8uRJAMDIkSOxefNm8dhiCmWANDc3w2g0Yt68eZg2bRpSUlLatb6RzeLFi7F69WoxfUWr1WLx4sVii9ygQYNw3333oaSkBGPHjlVM+qSUq5GonnzySTz77LP485//jMzMzIh7mrdz507k5eU5vTZs2DBYLBZ89dVXuPnmm7F48WKcPXsWffr0waJFi0JU0tDwZZ+ZPn061q1bh7vuuitYxQwZRzbDo48+ikWLFuHdd99FdnY2UlNTQ120sMD6aeXuXDNs2DB8+umnmDhxInr37o0hQ4aIyyxZsgQLFizABx98gL59+yI7O1tMlVOa5uZmrF27FufOnYPBYIDFYsFjjz2GgQMHYsOGDVi9ejVWrlyJpqYm9OzZExs3bgQAxMXFoaioCNOnT0d9fT3WrFmjmP5vDsuWLcMf/vAHjB8/HlqtFnq9HkuWLEFOTg6sVitKSkowY8YMqNVqREVFYevWrcjMzESfPn0wYcIE9O3bF6+99lqoNyPgunfvjvz8fGzZsgUA8PLLL2Pp0qV48803odFo8NJLL4lpgUajEaNGjcLOnTvxj3/8I5TFDoh58+ZBp9Ph6tWrSE9Px6ZNm5CVlYVBgwZh3bp1mDZtmjiC9ty5c5Geno6nn34aK1euxIQJE6BWq5GTkyOmcEcSwdpR4nInlJaWYty4cfjss89gMBgC9TVEEWvt2rWoq6sTBy0hz+zevRv79u3Dpk2bQl2UgOI52D3Wj3/U19eL/bMdg3e8+eab6Nu3b6iLFhaKi4sxdepUp1ZLIqLOCFgL3F//+lds27YNCxcu5IWRiMLGb37zG5w5cwZ/+tOfQl2UgOI52D3Wj/+cPn0aCxcuhNVqRXNzM+bOncvgjYgogALaAkdERERERET+E7RBTIiIiIiIiKhz/JZCefnyZSxYsABnzpyBTqfDddddh+eeew4JCQk4evQoli5dioaGBqSlpWH16tVITEzEqVOnsHTpUpSVlUGj0eCGG25AQUGBmM5y+PBhvPTSS2hpacGgQYPwwgsvRMyIcURERERERG35LYWysrISP/zwgziE+apVq1BVVYUVK1Zg9OjReOGFFzB8+HBs2LABZ8+exQsvvIDi4mJcuXIFAwcOhMViwRNPPIH+/fvj97//PWprazF69Ghs3boVvXv3xpIlS5CSkoK5c+f6o7hERERERESy47cUyri4OKf5p7KysnD+/HkcO3YMer1enHxw5syZOHDgAADbvCEDBw60FUSlwpAhQ3D+/HkAwCeffILBgwejd+/e4nr79+/3V3GJiIiIiIhkJyB94CwWC7Zv3w6z2YwLFy44zaeTkJAAi8WCyspKp3Xq6+uxY8cOmM1mAGi3XmpqKi5cuBCI4hIREREREclCQAK4559/HiaTCffee69Hyzc3N+Pxxx/HTTfdhFGjRgWiSERERERERLLn9wBu1apVKCoqwh//+EeoVCqkpKSIaZEAUFFRAUEQEBcXBwBoaWnB/PnzERsb6zSTetv1zp8/j5SUFH8Xl4iIiIiISDb8GsC98sorOH78ONavXw+dTgcAGDx4MOrr63HkyBEAwNtvv41x48YBsKVaLlq0CGq1GitWrIAgCOJn/fKXv8SxY8dw+vTpdusRERERERFFIr+NQvnjjz9iwoQJ6N27tzgNQI8ePbB+/Xp88803KCgocJpGICkpCR9//DF+97vfISMjAyqVLZbMzs5GQUEBAODQoUNYvXo1LBYLBgwYgBdffBEmk8kfxSUiIiIiIpIdvwVwREREREREFFgBGcSEiIiIiIiI/I8BHBERERERkUwwgCMiIiIiIpIJBnBEREREREQywQCOiIiIiIhIJhjAERERERERyQQDOCIiIiIiIplgAEdERERERCQT/x8xHfI4fUL6CgAAAABJRU5ErkJggg==\n", "text/plain": [ "
    " ] @@ -1213,14 +1207,14 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 20, "metadata": { "hide_input": true }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA34AAAFDCAYAAABlUtxOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3XdgU+e5+PHv0bYsyZZtee+9DWaZTcJIIGRvkiZtRm/b9PZ23Htzb5O26cyvI2lzu5tmtGmzaBKyICRA2GAw4L333rZsy7ZkSef3h8AJAQNm2Ia8n/8kHR29R7aPz3Pe530eSZZlGUEQBEEQBEEQBOGKpZjuAQiCIAiCIAiCIAiXlgj8BEEQBEEQBEEQrnAi8BMEQRAEQRAEQbjCicBPEARBEARBEAThCicCP0EQBEEQBEEQhCucCPwEQRAEQRAEQRCucKrpHsDF5HS66Osbnu5hnMJs1s/IcQmCIAiCIAiCcGU4EXNYLMbTvn5FzfipVMrpHsJpzdRxCYIgCIIgCIJwZThbzHFFBX6CIAiCIAiCIAjCqaYl8CsoKOALX/gCAA0NDdx9991s2LCBH/zgB7jdbgB+97vfcdttt3HXXXdRWFg4HcMUBEEQBEEQBEG4Ikx54Pfss8/y+OOPY7fbAXjyySf55je/ycsvv4wsy2zfvp2SkhIOHTrExo0befrpp/nhD3841cMUBEEQBEEQBEG4Ykx54BcZGclvf/vb8cclJSXMnz8fgGXLlrF//36OHDnCkiVLkCSJ0NBQXC4Xvb29Uz1UQRAEQRAEQRCEK8KUB37XXHMNKtUnxURlWUaSJAC8vb0ZHBxkaGgIg8Ewvs2J5wVBEARBEARBEITJm/Z2DgrFJ7GnzWbDZDJhMBiw2WwnPW80nr4s6WdNVL50us3UcQmCIAiCIAiCcGU4U8wx7YFfamoqubm5LFiwgN27d5OTk0NkZCS//OUvefDBB2lvb8ftduPn53dO++vqmnkzgxaLcUaOSxAEQRAEQRCEK8OJmGOi4G/aA79HH32U733vezz99NPExsZyzTXXoFQqmTt3LnfeeSdut5vvf//70z1MQRAEQRAEQRCEy5Yky7I83YO4mGbizJqY8RMEQRAEQRAE4VI624yfaOAuCIIgCFc4q81BQ/sgV9i9XkEQBGESpj3VUxAEQRCES6N3YJQXPyinpK4XWYb5KYF8cW0yOo349y8IgvB5I878giAIgnCFenVHNcW1vcSEmACZQ2WdtHTb+O69c/DSiksAQRCEzxOR6ikIgiAIV6D23mGOlHcSFWTk8fvm8L/3zmFpZggtXTbe2FUz3cMTBEEQppgI/ARBEAThCuF0udlX1EZrt43NBxuQgesWRiFJEiqlgnvXJBHir+fjoy1Ut1ine7iCIAjCFBKBnyAIgiBcAVxuN395p4Tn3i/j8b/msq+wjWA/PdlJlvFt1CoF91+bjAz8bUs5bvfJxV4OlrZT3tA3xSMXBEEQpoII/ARBEAThMjc86uSv75WRV9FFXJiJxAhfZOCmpTEoJOmkbRMjfFmcHkxLt43iut7x5ysa+/jLO6X88tVj7C1swy3LdPQOk1vawTv76ugbtE/xUQmCIAgXk1jZLQiCIAiXKVmW2Xywgc0HGxmxO4kLNfHtO2bhpVUx6nBOWL1z5dxw9hW3s/NYC5lx/rjdMi9vqwJAp1Hx/OYyXtleyYjdNf6e8oY+/uvu2UifCSQFQRCEy4MI/ARBEAThMnW4vJM3dtVi8FJz6/JYVs2JQKtRApyxZUN0sImYECMFNd30DoxSWNtDU+cQi9ODuXZBJM++W8qYy01WvJGoICPFtT2U1Pexp7CNMaebgyXtBJr1ZMT5sSAlSASDgiAIlwFJvsK6uXZ1DU73EE5hsRhn5LgEQRCEy9fw6BjffTaXEbuTHz84n0CzflLv31PQygtbyokKNtLcOYRKpeDJL+fga9Cesm3vwCiP/TUXh8PFZy8aHrwuhcUZIRdwJIIgCMLFcCLmsFiMp31drPETBEEQhMvI4LCDvPJOnnu/jAGbg+sXRU866AOYnxKEl1ZFQ/sgZqOWR25OP23QB+Bn0nHnVfHIwKz4AJ56ZDHfu38uGpWCjTtrGLE7L/CoBEEQhEtNpHoKgiAIwmVi1OHkhy8epnfAU2gl3OLNtQsiz2tfWo2Sr9yYRmffCMuyQlCrlGfcfsXsMGYnBGDy1iBJEmajlusWRvHWnjre3lvHXSsTzmscgiAIwtQQgZ8gCIIgzGCjDieDw2NYfL3YfLCB3gE7C9OCmJsUSHKUGZXy/JN3MmL9J7W9z2dmBK9dEMneoja25TWTnWghMcL3vMciCIIgXFoi1VMQBEEQZihZlnlmYyH/86cDvLytkq2HmvA1aLjvmmRmJ1rw0k7v/Vu1SskD61IA+MNbRaLlgyAIwgwmZvwEQRAEYYY6WtlNRVM/ErAtrxmAW5fHjVfunAmSIs3ceXU8r2yv4kcvHsbHoCEpwszdq0TqpyAIwkwiZvwEQRAEYQZyutz8a2c1Ckni8fvnsiwrhIVpQSxMD57uoZ1i1dxw1syLYMzpprXbxkd5TRTW9Ez3sC6YbXSMHUebGR4dm+6hCFcYp8vNwLBjuochfM6IGT9BEARBmIH2FLTS0TfCVdlhxISYiAkxTfeQJiRJEnetTOCulQk0dw7xgxcO8dqOKlKjL2wN4nQaGHbw9Kv5NHYOUd7Yz9duSp/uIc1YblmmtcuGr1GLwUs93cOZ8UYdTn7x8jFaum18585ZYm2sMGVE4CcIgiAIM4xbltl6qAm1SsENi2OmeziTEh5oYHlWKDvzW9mV38rKOeHTPaRJGbA5yK/uZuuhRtp6hvHSqsgr7+RYVRcZsf509o2gUinw1qnw1okg56O8Jt7bX8/g8BheWhX3XZPEgtSg6R7WjOV0ufnDpmLq2z39nX/7RiGP3zeXIL/Jt2QRhMkSgZ8gCIIgTKO6tgH++l4p2YkW1uVE4aVVUVzbQ2f/CEsyQ/Dx1kz3ECftpqWx5JZ1sGlPLTlpQWcNkGparOSWdnDDkphpnTE6VtnFn94pYczpBmDNvAiWZobwxAuHef79MgBso5/0LPTx1pAZ588Xrkm6bGc2L8SI3cnrO6rRqBXMTwmkoLqHP79TQmVzP/esTkQhSad9X02rlYLqbq6dH4Ve9/m6FH11exXFtb1kxPozKyGAl7ZW8Jt/FfKDL85Fp/l8fRfC1FM+8cQTT0z3IC6m4RmYL+3trZ2R4xIEQRCm15jTza83FtDWM0xVs5V9RW1EBBr4KK+Jzr4RHliXckoLhcuBVqNEoZDIr+7B6ZTH20aU1vfyuzeLaOocIszijV6n5lhlF8+8UUh1i5X23mHmpwTSP+SgoKabli4bkiRh0l+a4FeWZbYfaeZoZTfVzVb+8WElKqWCW5fHce+aRHLSgj19C4HC2l68dSrmJFmICjLia9RitTmobLIiSZAcZb7g8ViH7Hx4qIn86m4SwnyxjTr53ZuFvLOvnrq2QQxeKgJ8vC78wC+Swppucss6WZcTxb1rkpiXHEhlUz8F1T30DIwyKz4ASZIoa+jjl68co6lziJZuG8+9V0ZFYz8ldb3MSbKgVZ++WNG2vCZso06CzFfGbNihsg427qwh3OLNt+/MIiHclxG7k8KaHobtTtJj/Nh1rAXb6BiBV8gxC1PrRMzh7X36/xuSLMvyFI/pkurqGpzuIZzCYjFO2bh6RvrY33aIVZHL8VLppuQzBUEQhHPXYx3lV6/lE+Knx8egYVd+K0szQ/A36XjvQD0ut4wsQ0K4D/9775zpHu55G3O6efyvB+kdsPNvN6RR02rlw0NNnLjokAClUoHT5UajVhDoq6e5a4jFGcEcrexixO4CQKmQ+M6dsy5KYPVZHx9r4aWtFeOP9VoV37wji/gwn5O2k2WZzv4RLL5eJ81iDY86+cHzufQNOvjfL2QTF3ry+yZjX1EbL24px+X2fENhFm/GnG46+0bQqpXYx1woJIkNqxO4OntmpM8+/34Ze4vaePy+ucSGetag2kbHePq1fOraBpmdEMDNS2P5xSvHGBr5pECOUa8mMdyXI5VdhAZ48593zcL3Mzc4Sup7eerVfHy8NfzqkUUoFTN7RtXldrP5QAMRgUZmJQSc8npH7zBPvHgYgO/fP5cQf28AxpwufvRiHi3dNsIt3jR32dCoFPzwgfki/VOYtBMxh8ViPO3rYsZvCkzljN/rlZvY3bIfq32ALItYiC4In3f9Q3be29+A2ajFeIlmTYRzJ8syf9xUTF3bIO29wzS0D2I2avnGbZmkx/qTGu1HYU0Pow4Xd16dQFiA93QP+bwpFRJ+Ri25ZZ0cLu+kpmUAf5OOb92eRXKkGdvoGAa9mlB/PQ+tT2PF7FD2FbVR0zqAUqngxsUxpMf4UdbQx7GqLmYnBFzU3+HqFit/2lSMt07NV25KJzXKzK0r4ogINJyyrSRJGLzUSJ9JXVSrFEQGGtlX1EZlk5UVs0MnTG88mz+9XcKow8U9qxII8NFRWNODbdTJ+kXRfOeuWSRFmimq6eZweRetx4OEli4b+4rbCTLrJ+zpKMsyL22tYPvRZnJSg045hvPllmX+vrUCrVrBnSsTxverUSmZlxxEbauV4rpedh5rweF084U1iVydHYavQcsD61JYlhXKqMNFfnU3xyq7mRUfgP54SrDbLfP7N4sZGHZgH3MRG2IieIYHQXsKWnl1RzW5ZR209dhIjjKj+dRM5otbymnuHOKBdSmkRPmNP69UKIgL9WFvYRtWm4O4MBPd1lEaOwZZnBFy0X5ewufD2Wb8ROA3BaYq8BseG+Yf5f/CLbtpGWojWB9IqGHmlf0WBOHSc8syRyu7+c3GAkrqe+nqH2VhmjgfTLfdBa18lNdMRqw/G1YlYB/zBHgnLmr9TDoWpgWTFOnL7ISAy/6iL8Rfj0IhERVsZPXcCO5amUCQn56IQAOLM0JYlhXKovQQzEYtXloV0cGeu9RfuSGN2YkWEsJ98TfpyC3rJL+6m7QY/4uS9ul0ufnFy8cYtjv5j1szyYj1JyrYeF7FWgJ8vegfslNS10vw8WObrLYeG+/sqycrzp87VyaQGRdAVJCR2YkBrJobgSRJWHy9mJsUSHWLlZL6PnYcbWFfcTsVjf1Ut1hZlB6MQuH5fWloH+SD3Eb8fXRsP9LM1sOe1OHZCZZTZtbOV337IB8dbmJuciBzEgNPek2tUpCTFoTd4aKmdYBlWaHctDSGYD9v0mL88NKqkCSJtBhPAHS0qpsjlV1kJ1rQ69TsKWxjd0ErcaEm+gbtOJ1u5qfMnIIxdW0D9FhH8TN5MqvsYy5+91YRslsmOthIcV0vhTU9zEm0oNOoaO4c4uVtVcSGmtiwKuGUv2tfg5aYEBNzEgO546p4WrptFNf1otepiQs7/SzymNM142dBz1Vz1xC1bQMoFBL6478bwvkRgd8McCkDvzZbBz899DReSh1Ng60U95SxOHQBHbZOSnsrWBKag1opqo4JwufFmNPN1kONPPd+KTvzW3HL4GPQ0NgxyJKMkM9dIYWZpNs6wm/fLEKjUvLtO2cRHWxiQWoQ/j4np+VrNUqC/fRXxMWPJEkkRZpJj/EnzGJArTrzharF14vsRAvenyrwEhlkRKNWcKSii9ySDkIDvAny87qg7ye3tIO9RW1cnR3GyjkR572fE8IDvNlxtIWWbhtXZYdNemx7C9sore9jXU4UkUGe4DfYX0+Y5eQgUq9TsywrlHCLAdvoGGnRfvgatJQ19OF0u0mL9sMty/z69XyOVXXz8bEWKhr70agUuNwyPt6a8ZRZp8vNqzuqGB51Em6ZfLC6K7+FiqZ+rl8UTehpZqYVkkR6rD/LskInnGmUJInkKDMqpcTRym4Ka3pwumT+tbMGpULif+7JprS+j+oWK4vTQ6hq7sekV6NWnX5N4FRo7BjkZy8dZX9JO4vTg/HSqth6qJFjVd2szYnk4fVpDNudFFT3kF/dQ2K4D+8fbKCl28Z91yQR7H/6Wfwgs57QAG/PdxJpZm9RG4U13WTGBZwUrMuy5/v57ZtFBPh6ndeNhplkb2Ebv95YQG5pB9vymjla2YXZpKN3YJS88k78TboJZ7OFU4nAbwaYKPCTZZl+u3VSa/EcrjFeKH0Ft+wm1BDMtsZdlPdWUdxTTtNQC063i69mfQmn20Vlfw1p/sn4e138dRGCIJy//iE7T72az8GSdtJj/C64ktur26vYfLCBbusor2yrIre0A6fLzYLUIB5cn0KwWc+x6m68tEpso2M8868CRu1OYkNNV8wd45lOlmX+8FYx7b3D3H9tkujbNUkJ4b5YfHXkVXRxsLSDvIouvDQqwizedFlH2fhxDe/ur+PtvXU0dw1hNmoxG09/4SPLMs++V8rQiJOv3Jg2nl54IfQ6Nd39o5TW9xFuMRAa4M2Y08X2Iy3IMuMzQxPZ+HENfUN2vrg2ecJCJydIkkRogDeL0kPIig8gM86fvPJOCqp7iAg00NJtY8fRFpIjfdFplLhl+PZdszhQ3I5txMmK2WEA/GtnDR8ebiK/qpuMWH/MRi29A6PoNMqzBq4jdid//6ACx5iL+69NPmNA73UOMziJEb6MOd3kV3dTUt+LTqPkwetSiQvzYczlpqi2h+1HmjlY2kFn3wjzLvLsnyzLFNf18v6BBt7aXUeXdQSLr+6kGxDgOe6nXitgcNiB2y0zYvcUnnl+cxk6jYqv3JiORq0kPcYPp0smv6qbnfmttHTbiAwycOfV8ed0U0CrURJmMbC/uJ2yhj78fXQU1fTQ2mNjd0EbH+U145ahqLaH2BATWw818u7+ehLCfU5Jh27vHeb3bxZR2dxPeozfjDrnbz/SzN+3VuCtU7F2QSTeXmoqm/rJLe1gf3E7pfV9DA6PMSfJMt1DvWyIwG8GmCjw+7h5L78veI4hh40UvwQU0tn/GLc37mZn8z4aBppYEbGY1yo3MeZ2opAkRpyjzLKkszB0Hl0jPZT0lJPsl0CYIeRSHJYgCOeho294vHFvt3WUw+WdJEeaz7ty47GqLl7ZVkW3dZSKxn4Gh8e4anYY37p9FgtSgzB5awj207P9SDMNHUPklnYwNOKkvLGfQ6WdzEkKFHdTp8DO/Fa2H2kmM86f21fEXRGzeVMtItBIVlwA9jEXlU395FV0cayqm3f21lPXNsDQyBhKpYLqlgF2F7Si16qIDTWxcWcNz75bQk2rZ5ua1gH2F7ezIDWIpVmhF218IQHe7DjaTGl9L7aRMV77uIYDJe3sK2rH20tNRKABt9uNUqHALct8eLiJf2ytwOlys7uglYRwn/OafVSrFCSE+3KwpIPD5Z1Ut/Rjd7j59l2zWL8wmjXzIgjw8aKq2UpVi5XFGcFUNVv550eV+Bo0jNpdlDX0Ud7Yz98+qMDhdI+nYIJndvSPm4qJDTWNB9MvfVhBRWM/63KiyIw7tZDJ+UiJMuOWweKj45FbMsaLxQSavdhT0IqXToVBp6a2dYC5yYEXtdLrpj11/O2DCho7hhgaGaOq2cr2o81IEsSF+XCwtJ139tWzaU8dXf0jrJkXwYjDRWl9L8equhkcHuP+a5PHxyxJEqnRfsSFmuiyjtI34AnqJ5rtO50gPz2OMRcF1T0cKuukuK6X/Kpu6tsHCQ3w5rYVcRyt6GJ/STv17YP0Ddo5VNZJcpQZs1GLW5bZW9jG794soqNvhMaOISqbrGTF+5/15sJUaGgf5PdvFWPy1vBfG2YzPyWI+SlBzEm0MOZykxJlpnfATnPXEGvmRcyogHUmE4HfDHC6wM/pdvJc8T+xu+w0DDZRP9DE7MBMlGcI/gYdQzxX/E+cspNR1ygahZpjXYXMsqSzLnoVtdYGbku4HrPOlwHHIHkd+USZIojzvbya/wpXvjGnmxG786SF7+dqZ34LP//nMapbrKiUitOmGIHnzizIM+qfhXXIzpP/PErPgJ0bFkeTHuvH0cpucss6SIzwrGWajBG7k99sLGTM6ebRDdlkxvlz7YJIls8KO+kOvEqpoGfATmVTP5Ik8bWbMjB4qSmp72V41MnsRHE39WIbc7oYdbjQqJQU1nTz/Pvl6DRKvnXHLBFoXwBfg5Y5SYEsSg+mb9BOeWM/Jm81X1ybzMPXp3Ltgijiw3wobegjr6KL2uNBnssNLV02Cmt6KK7tBeCh9akXtVWGwUuNSa+mrKGP0gbPTMXi9GD6huzkVXTx3v563tvfwMHSDvYXtbOvuB2rzUHR8fGsnBNBfPj5VQU9sUbsYEk7w6NOFmeGsDQzFEmSxtf9jTo8bQN6B+1szm1EQuK/N8zGS6eioLqHtp5hlAqJ2tYB5iUHYtRrGBoZ49ev59M7aKe4roec1GAOlrbz7r56ooKMPHx96vj+L5QkSaREmck+vi7uBK1ayao54Vy7IJJAXy9yyzoZtTuZkxR4hr2du53HWti4swaLr45v3pbFhtUJhAR4U9c2wLGqbrYdaeJQWSdtPcO4ZZk5SYHcuyZxfO3pqMPFTUtiWDX31KA90KxnSUYIa+ZHEn4eKZlJkb4oFJ4g8qrZYaTH+JEcZeaulfEkhHtmdJs6BrlxSSzZSRaOVHSyu6CVquZ+th5qYndBK2qVgi+uTUapUFBU28OOo830DowSEWiYtnOR0+XmNxsLsdocfP3WjJOq6Jq8NcxOsJAe4491yEF5Yz8xwabxKqjCmYnAbwY4XeCX15FPbvsRFoXMx6gxUNZbia/WRJRp4rt979RsodpaR07wXJqHWqnqr0VGZm30SrKDslgZuQyzzpM+5HCNsbf1IMHegaT5J1/S4xOEyXC7ZX7+8lHe2FVLRoz/pAoNdPWP8Ns3CnG5ZNp7hzlc3kl8uA+Bvl6nbPeD5w9RWt/H4oypmfFu7baxaW8dQWb9aRtQjzldPP16Aa3dw9y8LJYbl8SQGOFLsJ+ew+WdHCztwM+kJSzAcNbZoLq2AT7IbeSd/fW09w5z3cJolmSGEBrgPWF6W6DZi7KGPjasTmReciAZsf4creyipN7TR8t0GTYJv1DDo076BkdPSef6rG7rCL2D9vG2A2er2ijLMk+9ls8/PqyksqmfLQcbUSokHrklY3z9lnBh9Do181KCmJccyPWLYogKNqKQJCRJItCsJy3aj9zSDlq7bYQGePPDB+azfFYo0cFGAny8WJASRPYluOERE2JiZXY4gb5eXDM/gtXzIpmfHITVZsfHoMHfpKOjd5iegVFmJwTw8PWp9A/ZGbY72bAq8YLW4AaavYiwGBixu7jr6vhTLup9vDV8eLhpPMD78vVppESZSYrwRZJg5Zxw5iUHkVvWQbd1lJy0YDburKGiqZ/oYCNtPcN8nN/CkYouNGoF375j1pT1mFQqPX93QX56jlR2UdbQR05q0GnPtZNxqKyD5zeXYfBS8+iGbCKDjCiVCiICDSxKD6G120ZbzzDLs0L5txvTuOOqeOYmB6JQSAT76bGNOsmI9eOGJTETnrclSTrr2taJKBSe9X5JEb6EBXgTFWwkLsxnfMYuPszHc7Mj3IeYEBPRwUa6rCNUNlkZHHawKD2Yr96UTlKkmTlJnsI5zZ02yhr6yC3tICXKPOH/4AGbg9Ye24T/Uy7Ee/vrOVTeybKsENbMi5xwO71Oxe6CVhSSNGGgX1bfy9+3VrDx42re2lPLzuPrWn0NmvF0WI1Kcdbz/JVC9PGbAT7bx0+WZX6R9380DbbyxMJHUSvUfP/Ak/hojPwg579RKjx/0H2j/Yy5nQTqA+gb7ecHB36OWevD93L+k6eO/J7GwRZUChU/X/J9dJ9ZJzjksPHo3h+SFZDGlzPvn9LjFYQz2X6kmX9+VAl4io587765Z13/Ap9cTJfW9/Hw+lT8TFp+/vIxUqLM/NfdszlQ0k5jxyALUoN47v0yWrpsAPzkoQUTzgqejtXm4LXtVfQN2vnmHVnnlBJzrLKLZ98rZdThwteg4dEN2Z4qZa0DrM2JQqdR8pd3Ssir6CInLYiH16eedJGQX93NHzcVM+Z0E+ynZ/msUJIjzVS3WD1331MCyYrzZ9Th4r0D9XyQ28iJM3dypC/fuiPrvIodFNZ085uNhcSH+RARaMDhdDEvORClQsH2I81461Tcd20SapUSWZY5XN7JltxGVmaHsyTz8k0h7x+y8/beOg6UtDM25mbdwihuXBKDSnnqxVlT5xA/evHweG81hSThZ9KyLCuU1XMj0Go833tZfS8HSzu48+p4alsHePr1Ary0KkbsTrRqJd+8PZOkSLHeeirVtFrZX9TODUti8JlBNzZcbjcDtjF8DZrx84Asy1OS/vvbNwrp6h/lyzeknragiyzL/OrVfMoa+ogKMtLUOYTFV8ePHlzAX94t4UhFF/NTArlpaey0tVc4VNbBn94u8czQ3Z513jNBeeWd/OntErQaBf9512xiQkyn3W7M6ZrWYjLno9s6AkCAj9cpr7ndMtvymnhtRzUatZJv3ZF1yprj5q4hnnotn4EhBz96aMFFbSvT0TvM957LxeCl5icP5ZzxZocsyzz6pwMMjozxzL8vGc8SOvH30j9k57FncxmxO/E36TDq1QwOO+gZsJ+0H7NRy/e/OI/u/hFe+rCC1XMjpuym8FQ7Wx8/EfhNgc8GfrXWep468gdmWdJ5OOM+AF6r8PTfuy/lThaEzKF1qJ2nj/4Bl+zm+wv+kx1Ne9jRtId7km9nUeg89rXk8nLFG2QEpPCVzC+d8pmyLPOtXY8R4h3Eo/P+Y8qOVRDOxDpk57vPHgQkrs4O4/0DDQT46Lj9qnhC/PSUNvThrVORFuN3yl3IDw818uqOajJi/fnm7ZlIksSvXj1GaX0fNy2J4e29dXz6ZBYZZKCxY4hr50dyx9Xxpx1PWX0vO462kJ1kIS3Gj4PF7bx3oGG80fBtK+JYlxM14fHUtw/wzt568qu70agUzEsJZF9ROwpJwn381BrgoyPYT09xXS+J4T58565Zp72I6Owf4f399cfT0k49LVt8dfRY7bhlmQAfHRtWJ5IU4XtBqTqyLPOLl49R0dQ/4Tap0WaWZYWyLa+Z6hYr4Gm+/MuvLjqvVN3JjK2rf4RA88W9uHS63Dz5j6PYppUkAAAgAElEQVTUtQ3gb9IiSRLd1lFiQoz82w1pJ32eLMv88pVjlDf2szAtCJdbpnfQTkvXECN2Fz4GDY/clIHFV8fjf83FNuokPdYP24iTurYBnvjSPNQqBSqlAovvqRdggjDVziXAbOux8ed3SmjtHsbldvOt27NIj/XH7ZYZHBmb9iBalmU27anj3f316LUqvnFb5qSKJXX0DfPW7loOlXWi1Sj5zp2zTko1/Lw4UtHFHzcVYzZq+OEDC8YDsIrGPn73ZhG2UScA1y2M4tblcRflM2VZ5unXCyip6+VrN6UzN/ns6bobd1az5WAjUcFGAnx0NHUMMTgyxk1LY6hqtpJX3sm9axK5Ojt8/D01LZ41mk6XjEalYH9xO5FBBjr7Rhh1uFBIEt+4LQOLrxeNHUPMOz6L+1mOMRdOl/uiFICaKqKB+wzw2VTPva25VPfXcVP8OoL0nlSTEO8gdrXsp3moDY1SzcvlbzA0ZsMlu2izdVDQXYJRY+CelNtQSgqCvYNwuB1cFbEUH+2pd6kkSeJgWx5DYzZWRS6fsmMVhInIsszzW8pp7Bji7pXxrM2JQj6ehnGorJOPj7VQXOdZKL/1UBM1rVaC/fSYjVryyjt5cUs5Pt4avnFb5vhJ2GzQsr+4nfLGftQqBXdcFY/T5SYmxMQ3bs1kV34rzV1DrJobcdJJfdThZPOBBl7YXE5rzzBHK7v4ILeR4rpekOCWZbE0tA9S1WRl+exQNKcJ1Bo7BvnJ34/Q1jNMfLgPj9ycwVWzw9GoFFQ297MwNYiMWH8Ka3ro7B8hNdrMf9yWNWGw5K1TMzvBwopZYQT7e5oxL80KYf3CaGyjY9S3DxIdYmTFrFAeWu+5W3++6UMnnOijFeKv5/pFMSzNCkGjUhIR6M2G1YkMDY9RVNtLXkUXvYN2ZicEkBDuQ1WzFV+jdsI75BdKlmWe31zGC5vL8TFoiA6e3Oc0dQ7xyrZK7GMuIgJPTp19e28duWUd5KQG8eiGbJZmhdI3aKeotpc9RW1oVUr8fXToNCqOVnaxJbeRzDh/Hrk5g7nJgSzNDOWq2eEoFFBS20dueQfljX109I3gb9LS0D5E/5CdOUkWVs+NwKjXnFdvOEG4FM5lVtGo17BidhjrF0WxLid6fEZNkiR0mumf+TqxFvBEldfcsg5iQ03ndHPFOmTn+88fpqF9kKhgI1+7KZ240M9f0AcQGuCNW5bJr+6hf8hObKiJHUdbeO69MpwumS9ck0R5Uz9d/SOsmht+UWak8yq62HywgfQYP25ZHntO+7T46Cht6KOla4jW7mFkGSTgWFU3rd024sN8uPeapJP25WfSMScpkHnJgcxOCKC9d5jS+j5kGW5YHENNq5WDJR1sP9LMkYou/Ew6ooJPDpRqWq08+Y8jbDvSwqL04PHsjpnubKmeYoX5NKjpr0NCIs4nevw5fy8zS8MWsqt5Hy+XvwHAjXFrKe4up6zXkxa3PmYNaoXnR6ZRqrkt4YYzfo6v1oeq/lqcbicqhfhRC9PrYGkHecfX5C2f5elzdfOyWBZlBLP5QANjLk8PKtvIGHmVXRTX9lJc24tSIeF2y2g0Sr55e9ZJaaHJUWZiQ03Utg7wpbXJ5KQFs2beJ+tkc9KC2JbXTGFND9mJFgaHHbz0YSUF1d2MOd34mbTcsyqRssY+6loHmJ1oYWlmCEa9JwXr9Y+ref9AA3dcdeqM4dt763C5ZR6+PvWkHlVrc6K4dkHk+OOUKDNVzf1ctzDqnNKFTN4almWFsuxT1QYTI3wvWSqY2ahl+ayw8cefvgiKudnEG7tqkGVYPiuUEH9vBmwODpZ28EFuI8tnhU6qeI7T5cblls+aPrslt5F9Re0AvLajmvQYv9OmLH2WLMu8taeWLQcbcbllDpV1cqSiiwfXp+CtU1PTauW9A/X4m3TcuyYJhULCS6vi4etTSY/146WtFbyyvYpXtldh1KsZsbtQKiTuWplw0ufodSpuWRZHZKCRP71dQk3LAMmRvjxySwY/+fsROvuGuXGxKKolXN48a9NmbvXZRekh6LVq/rCpiF+/XkBypC9pMf5clR024Tlm0946RuxObl0ey7qcqM99dd31i6IprOlhf3E7+4s951xfg4av3JhOYoQvVc1WDpS0U91iJSH8wlrQuNxu3jjen/GeNYnn/N0HmvX85KEFOF1uBmwOfI1aBmwOnnu/jLrWAe5fm3zGddeSJPGltSn4GrSkx/qRHuNPZKCB5zeXER1spKS+jwPF7Sf9z80r7+Qv75bgdHmyb/7xYQVfuznjgo5/phAzflPg0zN+LreL1yvfJkhvYWXkspO2S/VLIi0gmTBDCNmWTJaHLyLaFMG+1ly8VDruT71rUgFceW81rbY2FoXMQ68WaUbCxeNyu3n5o0r2F7fT1mPDbNKdcVaju3+E/3ujCKVS4jt3zjppQb7ByzPTNScpkMggz8L1pZmhJEb4MmJ3otOq8DNp+eLalFMq3kmSxOyEAOYkWk5bUtzXoGXnsRbq2wdJCPflz++UUFrfR5DZixWzw3jwulSigo1kHG8ynBDuO37BEBXs6aFUXNeLv0l3UlGOxo5BXt1eTVyoibtXJZzyD+zTjwPNXiRHmS+4uuh0XKAoFBLpMf6kx/qP94bSapT0D9kpre9jwOYgwmIYTxFyyzLNXTYOl3XwUV4zm/bUsa+ojcggI70Do/zk70c4Ut7FslmhEx5PfnU3L2wux2zUsn5RNEU1PTR32UiK9EWvU+N2y5TU9/LajmpPK4wo8/jPbOuhJt7aU4e/Scc9axIZsTsprvOU1p+VYOHFzeV09o3w77dkEPKZNSsnijn4mXS43DJuWfb0lsqJYlb86cvVhwZ4ExFkwO5wcf/aZHwNWhalBZGTFnxeFfwEQZicYH89sWE+1LcPUtM6QEl9L4fLO4kINJxys6i128aLW8oJ8dcfr0Y6cyo+T5cTxWO6+keIDDKSFefPQ+tTx9fFa9UKDpR0oFYqyJrgPHiuDpa0s6ewjeWzwlicPvn1dSdu1HlmnlUsSg9mzfyIcyoQp1IqSI/1H0/lD/H3Zl1OFIvSQyhr6KOyqZ+lmSF4aVUMj47xq1fzQZL4xq2Z9FpHKarrJcRfT9hp1sXONGLGb4ZpGmphzD1GrG/0Ka9JkkS0KZJo0ycVjkINwTyS9SAapeaUAi5nY9Z5LpL77Fb8vfzOsrUgnLt39taz42jL+OMPDjXx1RvTSI/1R5ZldhxtYfPBBmbFBxAZZOCNXbWM2J18aW3yKRU4J5ISZSYl6uzFMIx6zSkNa0+ICDRw3cIo3j/QwA9fPAzA4oxgHliXctZASq1S8sjNGTz9Wj7Pby7DarOzdkEUkgTv7KsH4PrFE1dyu5KtWxBFflU3u/Jb2Z3fSrC/Hj+Tjvq2gfF1IeAJEh0OFz976QiSJI3fsS2q6SEh3IdfvZrP7IQArj8+O9bVP8Jf3y1FrVLwjVsziQwyUNnUT2FND//9xwPoNErsDtdJaznr2wfYsCoRlVLijV01+HhreOy+ufh4a1iQEsRjf81lX1E7sxMsFNf1khThS/IEv1dmo5Y18yJOmjU+m9kJFmYnfFIdUq9TX1brQQThcpcW7cePH1zAgM3BltwGPjzcxM9fPsbK7HBuXRGLTqNClmVe21GNLHvWbs+kNj/TLchPzzdvzzrtaynRZkx6NYfKOrhtRdyk15Qfq+ripa0VXLsgio+PtaBUSKzLmbiK52SdriDXZOWkBY03jV+bE8Xmg43YRp3ctiKOjFh/An29+MHzh3hpawWxISYCLvP12mLG7xJzuV146dWMHC8WcbSjgLLeSq6KWHLOjdUDvPzH2zRMRudwFyU95aSYEwgVTdyFi6Skvpe/bSknwEfH/96bTZjF25MqUtJOTauV3NJOth1pZtThor59kILqHgDuuCqeFbPDpjxQSo32w8+kpbi2h1kJlknd6TUbtWTG+XO0ytMouqi2h535rZQ39BETYvzcNuLW61RcnR1OkNmLYbuTjr5hWruHMenVZCd41rbdcXU8t18VT0KEL8W1vciyzK3L4yip62XA5qC5a4hjVd1Ut1hZmB6MWqXg6dcL6LaOcv81SWTGByBJErMSAjDqNePrGYP9vUmNNnPfNckE+Og4VtnNoTJPOwyAf781c7xaoSRJeGmUHKns4mhlF263zD1rEqetGqEgCJeOVqP0ZCjE+FHdYqWwtofDxxua7y5oY1d+KylRZm5Zdm5rywRPFWP7mJui2l5kZNKiJzeJ8PzmMtp6hsczL5ZmhrDoPGb7LqUAHy8+PNxE/5CduDAfXvzAU0/gy9enolQqPP05vTUcLu+kstnK4vRgpOOtY2Yi0c5hGrncLr63/2cMOYcJ0PlxXcxqjnYWkt9VzI8W/s8ln4Ur7Crhz0V/46a4dayOWnFJP+ty45bdbG/cTaI57oy9E4WTjTnd/M+fDzBgc/DdL8wZL+5R02rl+fc9J3iAuDAT/3Z9GrVtA9S3D7I8K5Sgab7YHrE70WmU53WyHrA5eHV7FQdLO5CAeSmB3L4iHn+fyc3CX6lkWcY26pywp5bd4WLM5cbgpeaXrxyjrKEPCdAcn8FbnBHMmNPNobJOFmcE8+B1qef82TWtVopqemjpto2n7H6a0+Xmu385SLd1lBB/PT9+aMFZ+/AJgnB5G3O62LSnji25jWjUChxjbvxNWh6/f960VyW93NjHXDz+7EH6hxz8+KEF53zjrL13mO/+5SDx4T74eGuobrHy3XvnzMgKx799o5BjVd3jj7+0LpmlmSf/L3n+/TL2FrWNZ7JcuyCS20+z/n+6na2qp0j1vISUCiULQuZSN1RPfV8zL5a+ikqhwlfrg59u4hQ2p8vNqMN1wY1JfT+V6vlpsizT2jOMQaeasuarM8Gh9qOoFCqyAzMp7algU81mEn3j+I/sf8MtuynoKiHVPwmtUvxTmMiBknb6Bu2smRdxUkXHuFAffvpwDkMjY/RYRwmzeKNSKgjw9WJ+StA0jvgTF9L2wOSt4cs3pHH1nHD0WtWk+gJ+HkiSdMbzlVajRItnHd7qeRGUNfQhA/9+SwavbKsaL+SSEO7DfdckTeqz40J9zliVT6VUcP3iaF7YXM66nCgR9AnC54BapeT2q+KJCTHx1/dL0agV/PutmSLoOw9atZI7r07gD5uKeWVb1Xg7pbPZV9QGwNXZYeSkBk9Zr8rzceOSGDRqJQrJMwN4ujWI965JZNThpKXbRv+Qg21HmlmbE3XB1+pTbUYHfm63myeeeIKKigo0Gg0/+clPiIqauKfWTHRj3FosFiO51cX837G/4HA5iDMk8JO/HyElysxVs8NOmjXo6BvmNxsL6R+0n7ap5mSYtZ739n8q8NuV38IHuY109I2gVim4LieKlXPDL7ty4x3DXVi8/FFI55ayN+q084+yjUhAlDGcXc37AagdaMDhGqOwu4QXSl5mfcwa1sasuoQjv3y5ZZmthxpRKqQJ10AZvNSX3UlwMj6PvZ4utsw4f2YnBBDspyc12o9blsXy2zeLCPLT8++3Zl6SRslLM0NJijSf8/pSQRCuDHOTA4kJMeF0uwm6yD1BP0/mJFlIiTJTVNtDQXUPsxJOX+iltdvGC5vLSIn240BJO15aJdnH10DP1KAPIDLI08f1TDRq5XhlzxN9hXflt3DdwugpGOHFM6PX+H300UdUV1fz5z//mdjYWJ555hnWr19/xvfMtDV+zZ1DGI06jAoD4YZQSnrKkTrjqa2TqWq28lFeE9uPNJNX0UVZQy9v7qqlb9DTpPlweScJYT7nVMb800bsTv6+tZw3dtbjtlSjUWhYHLaA3QWt/O2DCsZcbmYlBDA4MkZBdQ9bDjay/Ugz3l7qU/qYzER11kaePPwbtEoNcacpknM6Zb2VHO44hhuZpqEWKvqqAU/KZ6I5jkMdx2i3dSAjkxMy9xKO/vKVX93N9iMtLEoLZnHGzMrRFy4fkiSxIDWItBhPqnuwn574cB/WL4yesEjPxXC53dwSBOHi0OtUV/QNyakgSRLRISZ2HWulptXKitO08nG63Px6YwH17YNUNvUzYnexKD2EOUlnb9J+uQnx92b70Waau2ysnBN+2ubv0+WyXuP35JNPkpmZyXXXXQfA0qVL2bNnz4Tbz+S7CYIgCIIgCIIgCJfaROHdjK5nOzQ0hMHwSc8MpVKJ0+k8wzsEQRAEQRAEQRCEz5rRa/wMBgM2m238sdvtRqWaeMiyLM+oqp4A/UN2Hv9rLrIMy7NC+fBwEyH+en744PxzLjIwPDqGfcyNyVuNUqGgq3+EX7x8lJ4BO9fMj+DW5XGolAo2flzNltxGVswO475rkugfsvPYB38Cvxa8alfz1XXzz1gE4Q+biskr7xx/vGFVAqvmzryKl4/t++n4usUV4Yu5PfFGAP5S9HcKuor5SuYXyQj4pCpg90gvPzjw/8gISOErmV9iX0sugfoAEsxxPH3kD9RY6wFYHbmCjxp3sjZ6Fetj15z0mR22Top7ygnSW4jxicJb/flYK/Du/nre2l3LtfMjuf2qz2frAkEQBEEQPAaHHYw4XLR123jmX4XEhZroHhhl0DbGf2+YfUG1KS43TpcbpWJmtXY4UdVzIjN6xi87O5vdu3cDkJ+fT2Ji4jSPaPJ8DVruW5fKiN3JB4caUasU3Hl1/KQqy+l1asxG7Xg+tcXXi//akE2g2Yuth5r40YuHeeq1fD7IbSTQ14s7roob/+x5cZ7GyPesDztj0Adw7+pEMmI9hRc0KgUf5TXhds+sTGCrfZB+u5VUvyQMam/yOvJxuV0Mjw1T0l0GQHlv1UnvKeutBCDFz1MtcHHYAhLMnu8oyewpxWtUG1gVtRwJicq+mlM+97XKTbxZ/R5/LHyBH+f+CpfbdcmOcbocreziFy8fpaHdc8IYsDnYcrABg5ea9YuiZ9SJTRAEQRCEqWfUawj09SIrPoBZ8QHUtA5gHXJw64rYz1XQB56q0ZfbtdGMnvFbvXo1+/bt46677kKWZX72s59N95DOy9qF0YwM2/Hx1pIabUajvvCqdYG+XjzxpXm8vK2KvYVtNHfZsPjq+PINaeg0n/xYU0PCOdwHg07rGfbmYfLW8K07sgB4cUsZuwvaKKrtISv+9NWbpkPjYBMAsT5RBHj5s7tlP4XdpQw7h3HKnmDss4FfSU85ACl+p944SPFPYnP9NjItaRjU3oQbQ6kfaOSdmg+o6q/hS2kb8FJ5UdVfS5A+EJPGQFV/LS1DbUSawi/x0U4dT+GfcmQZnnotnweuS2HLwQZGHS7uWR2HXjejTxWCIAiCIEyxu1bGU9XcT1qMH9fOj5zu4QjnYEZfzSkUCn70ox9N9zAumEIhsXxW2EXfr06j4oF1Kdy8NBadRnnaPmUWL0/Q1jXSfcprZ3J1dji7C9rYfrR5RgV+DQOewC/KFIGv1od9rbm8XrkJX61nNjPMEELLUBt9o/2Ydb4c6SigqLuUMEMIgfpTjyPWJ4qvZz003sQ9wTeWpsEWtjbsAGBX836iTZG4ZTdzAjPx9/Kjqr+WWmvDeQd+fYN2qpr7mZccOCPuFB0u7+TFLeUYvNQsywpl88EG/u9fhQDMTghg+azQs+xBEARBEITPm0CznqceWXxRJjSEqTGjUz2Fc2M2aidsTm3x8gega6RnUvuMDDKSEO5DcW0vr26voqB6coHjpVJ/PPCLNIUTaghmfewaBhyDNA42E+cTPd6Kobyvmtahdv5RvhGtUsMDaRsm3GeKfyJ6tadlRk7IXEK9g1kXsxpvlZ7ctiMUdJUAkB6QQqxPNAC1x9cFno+XP6rkT2+X8P6Bhkm/1+5wsfVQI32DdgBGHU7yq7opb+jDavuklcm+oja25J59//1Ddv7+QTkatYJHN8zmthVxfGFNIuEWA1+7KZ2v35KBSilOE4IgCIIgnEoEfZeXGT3jJ1w4b7UeL5Vu0oEfwA1LYnhmYyEfHm7iw8NNPHJzBnOSLBNuX1rfi16nIjrYhN3h4t399cxJshATYrqQQxgnyzKNA80E6PwwqL0BWBW5nJKecqr765gXPJs4H8+axgOth3h35AMcLgcPpt9LsHfQOX1GmCGExxZ8G4CRsRE+bt5LXscxjBoDEcYwJCQMam9qrZMP2gCGRsbIPx5Ev7W7lvBAA7MmMaP6/sEG3ttfz+6CVr5+SwZ/fqeExo4hwJNr/p07s9BqlLywuRy3LBMZaCQ12szmgw2UN/TRP+TAS6ci2E9PiJ+e4rpebKNO7l2TSJjFU0H3quxwrsq+ctJYBUEQBEEQBBH4XfEkScLi5U+rrQO37EYhnfvsTVq0H898YwkVjf383xuFfHi4ccLAr6bVylOv5aOQJB5cn8KegjbKGvrIK+/kJw8vuCizRj2jfdicwyT7JYw/p5AUPJT+BQ63HyUnZB4qSYmPxjReqfPW+PVkB2ae1+ctCp3Px817kZFJ80se/+7ifKIp6C4ZTyedjNzSDlxumUXpweSVd/Lnt0u4/9okctKCz/pe+5iLj482I0nQ1jM8Xi12fkog/j46PjzUxB82FWPwUuOWZSTg5W2VZCdaxmcXvbQq7D3DVDd/suYzNdrMitkXPxVZEARBEARBmDnOGvj9+Mc/5nvf+95Jzz366KP8/Oc/v2SDEi4ui1cAjYMtWO0Dkw5UvLQqZiUEkBHrT1FtD3VtA6fM4Dldbl7c4ikMolRJ/OWdUgC8dSo6+0fYld/KyjkXPoPUMexpNRHifXKQZNQYuDpy2fjjDEsq+1sPcU/ybeOpn+cj1BBMjCmSuoFG0gKSx5+P8YmioLuEWmsDcyb5fe4vbkeS4LYVccxNCuTP75bwl3dLKW/s4+5ViQzYHPz+zSLae4cx6NVcMz+S1cdbauwrasM26mT9omj6BkfZV9TOyuxwNqxOQJIk/Iw6/vlRJYPDY+OB3M5jLbx/oIEAHx3f/cIcfA1anC43nX0jtPcO0zswyoLUoElVmRUEQRAEQRAuPxMGfo899hhNTU0UFxdTVfVJlUSn08ng4MzqlSec2afX+Z0u8HO4HPwu/znmBc9maVjOafexel44RbU9bMtr4uHr0wBP6mVrt41tR5pp6bKxYlYoizNCeOZfhcSGmrjvmiQe+2su7+6rY0FqEHqdiubOIUrr+yhr6GPA5uCGJdHMTrDQP2RnzOnG4us14XF0DntSJAP1/mc83tsSbmBt9Mrxgi8X4ub49RxsyyPDP2X8uU+v85sTlHXO+2rrsVHXNkBGrD++Bi2zErQ88cV5/HFTMbsL2qhpGWBoZAyrzUG4xZuegVFe3VZFaIA3yZG+fHi4CZVSYuWccEx6NesXRhNo9hovEHN1dhh9g3ZqW63cviIOp8vN4bIO3DJ88/YsfA1awJMSGhrgTWiA9wV/P4IgCIIgCMLlYcLA76tf/SotLS389Kc/5etf//r480qlkri4uCkZnHBxBOg/qeyZaD71Z1drbaDGWkfDYBNJ5vjTVr9Mi/YjxF/PobJO5qUEERVk5I+biqlu8aQM+pm03LYiHr1OxdNfXzze0PLa+ZG8vbeObzyzB7VKwZjTPb5PSYLfvlFERKCB5s4hVCoFP314AQE+pw/+TlQmtXxmfN3WEbbkNtJrHcXplokLNZGdaMH33Jb1nVGcbzRxvtEnPRdpDEMlKSntqcBqH8RHazzjPpwuNx8dbuKDQ40ALEr/ZMYyyE/PY/fN4bUd1ew42gLA3asSWD03grq2AX720hGefbcUk15DZ98ISzJD8PHWjL/30yRJ4rYVJ/98f/jAfCRJwmzUntfxC4IgCIIgCFcG5RNPPPHE6V4wmUyEh4dz99134+Pjg06nw2QyYTQaGRsbw2g888XudBkedpx9oynm7a2d1nHZXXYOtuURrA86aX3cCUc7Cqnoq8Ytu+mwdTI/OPuUNgOSJBFo9uJweScHitvZV9RGR98IGbH+XJcTxV0rEzB4qQFP+4oT748JMeGWZbQqBRqVkvRYP66ZH8E9q5NYkhFCTauVps4hgv30DNgcOJzuCYudfNy0l+6RHm6Ovw61wnPPYnh0jJ+/fIzi2l46+kbo6h+hoqmfPYVtzEkKxKTXXMyvEgClQknXSA+V/TXsbztMgJc/IWcoHvPPbZW8f6ABpUJi/cJorsoOO+n7VSoUZMYFEB/uw+L0YHJSPYGh2ahFq1ZytLKLwWEHSzJCuGtlPGrVuVfQ8vr/7N13eJzllfj97zNNGmlGvfdebMmWu40NNsZ0DDhgSAIhbEgISbxkA2Q3C/nRFpOEN20hLElYlsSUhGoCoWNscO+SLVnVsnqXRmUkjaa+f4w0trDlkW01W+dzXb7QPPU88gBz5r7vc3w0I1Z8FUIIIYQQF46hnMPf/9Rf+Hv9RPinP/2JP/3pTwQFHZ8iqCgKmzZtGrsoxbg63svv1JU9q3qO98YrMZWzt/kgC6PmnnRcbkooD94+j2c3Hqaje4CvX5bO5fPjTtuLzkerZu2KtFPuCzb68PCdCxiwOtBpVfz8+d1sO9TItUsSTznq19rfjlFroKXNxi9e2UV8hLsKZVNHH1csiOf6pck4XS52HG7k759X8OGuar573YzT/3LO0u3Za0kKiOedox+w4cjfSTDGEqY/eQrqwfJWNh+oJzbcn5/dNhd/X+2I15yZFHLStssXxBPgpyM23J+EyKn5ZYsQQgghhJj6vJZafOONN/jss8/4/PPPPX8k6Tu/BOgM6NS6EZu4V3fXEqgzctfM29CqtLxV/h69tj5cLhc9VvOwYxOjjPzXXYv45fcXc8WCeK8NyF0uF6UdFVgdpx7xVCkKeh8NapWK1UuTcDhdvP55BR3dlmHHOZwOOiwmwv3C+Me2Y1htTo7Wd3O0vpvZqaHccql7mqlBr2XVgnhiwvzZfaSZtq7+M/hNjZ5KUXFJ3EXclHIjNqedDYVv4nAen3xeBQMAACAASURBVMY6YHWws6iJFz8oQaNW8f3rZ5426Rv5PgpLcqIk6RNCCCGEEOfE64hfdHQ0gYHnXiRDTJ6hlg6t/e3YHDa06uMJSOdAF50DXeSGzSBUH8K1yZfzztEPeL3sHQYcVg63HeH7ud9mVvhMzzk+OjU+upGLsJyozHSUp/P/TE5oFvfM+pfTJoqLZkTywa4a9pW2sq+0lYy4QL55eQYJkUbaLB04XU78lUD2VLSRGhvAPdfnUFJjYn5mBCrV8euqFIVrFifwv/8s5n/fO0J3nw29j5oHvj7njKY9Ol0u3tlaSX55O/fenHvSKKTFauetdy04YkI5ylEeeesdHlx9PceaunluYyF9A3YA7rgqk7jBHnlCCCGEEEJMhhHX+A05ePAgf/7zn6mtrWX//v3s2bOHPXv2sHDhwgkK8czIGr9Ta+83Ud55lECfABID4j3bS01H2d9SwKKouaQFpZAUEM+htiOUmipo6WsFoMPSyUUxZ/f3/UXddo5119DS34Ze40tyYOKIx6oUhflZEQQbfHA4XZTWdvJFQQNFxzrYV1uK2bcae3sUPa1G7rgyk+SYABIijafsERgd6s+OwibqWnvp7bdhMltp6ugjMz6I93dW02keIC7cMGIiarM7eOH9YjYfqKe7z0qzqZ9FMyKHHf/+zmoKKtpJCUqkW19BHyb279Dz+f46HE64ZkkC374qi9yU01chFUIIIYQQ4lyd8xq/yMhIIiPHoDyimFSXJVzClrrtfFy9mSUxCz3FUaq7j6/vA3fhktuybuavR15jYdRcKruqKGov4VhXDcmBCWd83yMdZWhVWnw1Prxz9EPSg9OIN8aMeHyAn47LF8Rz+YJ4Co+189rnFRxt6EIV0YwuEJoaISHCwKzU0ydTGrWKdV/L5VhTN3PTw/njPwo5UNZKQUUbDqcLgIKKdr59VSZ+X5mCWXisnVc+KaPZ1E9abCAatcKho+3sLWlhYbb734Uu8wAf7a4hwF/HT25YzEslVeS3FdLY14hOHcK9N80iOzH4jH9fQgghhBBCjAevid+JrRzE+cuoM3Bx7GI+r93K1rodLItdgk6tPZ74GY83WE8MiOfhxQ8AUNJRTlF7CVvqtpEc+M0zuqfJ0klTbzMzQ7NYHncR/1Pwf7xb+SE/mn3XqM7PSQ4l565QXC4XrxZvZEcTzEtM4spZWV7XFoJ7PWJilHtt3A9uzGH9S/sZsDq4elEC+8ta2VvSQmmNia8tT2VpbhROJ/x9UzmbD9ajKLBqXhw3r0il0zzA/3thD69+Vk5abCDBRh/e+rKSAZuDW1am4avTsDhmPvltheTO6+fmjHkytVMIIYQQQkwpIyZ+a9asYePGjWRlDf+Q7XK5UBSF4uLiCQlQjJ1VCSvYWr+Ttyr+yVsV/0Sv8WXAYSVCH4af1u+U52QGpxHjH8WBlkOsSbv2jJqiF3eUAZAdksHM0CzSg1I40l56xqOHiqJgsnYAcOdl8/DV+I763CFGPx3/ddciVCp3+4TL5sfx0e4a3ttRxV8+LOHvm8ox+mlp7bQQF+7Pd6+b4SmoEhHsx83LU/nbpnJ+90YBM5NC2Haokdgwfy6eFQ3AjJBMDFp/Gp3lRIeObv2jEEIIIYQQE2XEqp4bN24EoKSkhOLiYs+fodfi/BPoY+TOGd9gYdRcsoLTCfYJwl/jx6LoeSOeoygKi6Ln4XQ5Odp57Izud2Qw8ZsRkgHANcmXA/BB1adnHHtLXxsBOuNZJX1DtBoVapX7La9Wqbh2SRK/uHsJl82LI9BfR2unhYtyonjojvknVdFcNT+Oy+bFUd/ayyd7a4kM8eO+W/M86wvVKjULIudgtvVypKP0rGMUQgghhBBiPHid6tnf388f/vAHdu7cicPhYPHixfz4xz/Gz+/UI0RiasuLyCUvIveMzokzuNfkNZibmDfK5Z5Ol5PSjnJCfIOJ8AsHICM41TPqV9lVRUpgktfr7GrcR3FHGR0WEymnKQxztoKNPtx2uTsxtdkdIzZHVxSFb1yWjs3uoKGtjx+uySHIMHzh7MLouWyu28aX9TvJDRuf/oFCCCGEEEKcDa99/B5//HH6+/t58skn+dWvfoXNZuORRx6ZiNjEFBFjiAKgobd51Oc09jbTZ+8nMzht2FTh1SlXAfBm+Xs4Xc6RTgeg19bHy8VvsK85H0VRmB2ecxbRj95ISd8QlUrhzquzefBb805K+gASjHGexHZo7aQQQgghhBBTgdfEr6ioiIcffpisrCyysrJ4+OGHKSoqmojYxBRh1BowaP1p6G0a9Tlt/e0ARPlHDNueGpTEvIjZVHfXsqfpwGmvUdFZiQsXlyes4PfL13NZwiVnHvwEuzppFQAfVm2a5EiEEEIIIYQ4zmvi53K56O7u9rzu7u5GrT79yIi4sCiKQox/FO39HQw4RtePsK3fXYwlzDfkpH03pl2DVqXlnYoP+LR6CwWthRS1l3jOGVLeWQnAzNBM1Krz4z2XEZxKSmASh9uOUNtTP9nhCCGEEEIIAYxijd+dd97JzTffzMqVK3G5XGzevJm77757ImITU0i0IYqyzqM09TYPawA/kqEkLlR/cr+9EN9grku5go0V7/PO0Q8829WKmn/N+y7pwakAlJsq0ag0JAWcef/AyaIoClclXcb/FLzAlrrtfCv7lskOSQghhBBCCO+J30033URubi579+7F5XLxzDPPkJmZORGxiSkk1t+9zq/e3DTKxM891TNMf/KIH8CqhOXkhedS11NPm6UDi32Aj6s/5/nDL/HA/HX4a/2oNzeSFpSMVq095TWmquyQdIJ8AiloLeLrmXa0Kq//mgkhhBBCCDGuvH4itdls7Nixg127dqHRaNDpdGRkZIyqgba4cEQPFnhp7G2itqee6u5alsYsGvF90GZpx6D1R3+a9gth+pBhiWGIbxCvlLzJHw+9yKqE5bhweUb/zicqRcXciFl8XruVko4yqfAphBBCCCEmndfE7+c//zkWi4VbbrkFp9PJP/7xD8rLy3nooYcmIj4xRUT7u/s4lJuOsqfpAGZbL239HdyYds1JxzpdTjr6TcQaY87oHhfFLKS5r5XPar7gb6VvA5ARlHLuwU+C+ZF5fF67lX3N+ZL4CSGEEEKISec18SsoKOCjjz7yvF65ciXXXXfduAYlph69xpcQ32BqzQ2e15/WbKHd0kHnQBdRfhGszbgRnVpL10A3dpfjlIVdvLkh9Wp6rGZ2N+0/79b3nSjBGEeYbwiH2o5gdVjRqXWTHZIQQgghhJjGvFb1jIuLo7q62vO6ra2NyMhRdvEWF5SYwXV+2SEZ/GzBjwnQGTnQcojKrmp2NO7luYL/w2IfOGF938mFXbxRKSpuy7qZi6IXsir+kvNufd8QRVGYF5mH1WHlcNuRyQ5HCCGEEEJMc15H/Ox2OzfccAPz589Ho9Gwf/9+wsPDueOOOwDYsGHDuAcppoYFUXMw23q5PXstQT6B/MeCe2nr7yDGP4qXS96goLWQDcWvkRuaDYxc2MUbtUrNbdk3j2Xok2Jh1Fw+rv6cL+t3Mi8yb7LDEUIIIYQQ05jXxO+HP/zhsNff+c53xi0YMbXNj8xj/gkJTJBPIEE+gQDcNfM2frP/fzjUWoRO5Z7WeLaJ34Uiyj+CrOB0Skzl1PY0EH+Gax7PhN1pp9fWT6CPcdzuIYQQQgghzl9eE7+FCxdORBziPKdWqbkkbgkvFb/OvuaDwNlN9bzQXBq/jBJTOVvqto1rT79/Vn7Clrrt/NdF/4lRZxi3+wghhBBCiPOT1zV+QozW3IhZ6DW+uHChVtSe0cDpbEZoJhH6MPY159Nt7Rm3+5SYyrE5bTT2No3bPYQQQgghxPlLEj8xZnRqHQsi5wAQ6huMSpG3l0pRcWn8MuxOO3889Bf6bP1jfg+7006D2Z3wtfWbxvz6QgghhBDi/Od1qufevXuHvVYUBR8fHxITEwkICBi3wMT56aKYRXxZv5Nwv7DJDmXKWBa7mOruOnY17eMPBf/Lv825B51ay86GvRzpKOVfZn7znJLkht4mHC4HAO2WjrEKWwghhBBCXEC8Jn7PPvsshYWFLFmyBJfLxZ49e4iNjcVsNvPjH/9YevqJYeKNMdyVcztRfhGTHcqUoVJU3JZ9M3aXnX3N+RS0FrIgag6f1Gympa+NG1KvOadCOLU99Z6fh1ppCCGEEEIIcSKviZ/L5eLdd98lJsZdkbC5uZkHH3yQl156iW9961uS+ImTzI2YNdkhTDkqRcWqhOXsa86nuKOM1KAkWvraADBZOs8p8as5IfFrl6meQgghhBDiFLwmfi0tLZ6kDyAyMpKWlhYMBgMul2tcgxPiQhJriMaoM3Cko5TUoCTPdtNA5zldt7anHrWixqgzyFRPIYQQQghxSl4Tv7lz53L//fezevVqnE4n77//PnPmzGHLli34+flNRIxCXBBUiorskAz2NB1gc+02z/ZOS9dZX9PhdFBvbiTGPxJ/rT8lpnKsDis6tW4sQhZCCCGEEBcIrxUlHnvsMfLy8njttdd4++23mTt3Lg8//DCKovDUU09NRIxCXDBmhGQC0Njb7Cnoci4jfk19LdidduKNcYTqgwFot8h0TyGEEEIIMZzXET+NRsOaNWtYtWqVZ2pnS0sLy5cvH/fghLjQZIWko6DgwkVOaDaH2orOKfGr6a4DIN4YS7/d3Sqivb+DaP/IMYlXCCGEEEJcGLwmfn/84x/585//TFBQEIqi4HK5UBSFTZs2nfVNP/30Uz766CN+85vfAJCfn8/69etRq9UsW7aMdevW4XQ6efTRRyktLUWn0/HEE0+QmJh41vcUYiow6gzEG2Oo6alnbsQsSjrKMJ3lVM/OgS7eP/YpAKlBSTT2NgPQ1i/r/IQQQgghxHBeE78333yTzz77jJCQs686eKInnniCbdu2kZ2d7dn2yCOP8MwzzxAfH8/dd99NUVER9fX1WK1WXnvtNfLz8/nlL3/Jc889NyYxCDGZLo5dwubabcwIzSTYN+iMRvxcLhd15kZa+9v48NhnmAY6WZ1yFbGGaGxOGyC9/IQQQgghxMm8Jn7R0dEEBgaO2Q3nzp3LqlWreO211wAwm81YrVYSEhIAWLZsGTt37qS1tZWLL74YgLy8PAoLC8csBiEm00UxC7koZiEAwT5BNPe1jrogS1F7Cc8detHzenncRVyZeCkAob7uL2faZcRPCCGEEEJ8hdfELykpiW9+85ssWrQIne74B9N169ad9rw33niDv/71r8O2Pfnkk1xzzTXs3r3bs81sNmMwGDyv/f39qa2tPWm7Wq3Gbrej0Zw+5PBwo7dHmhRTNS4xuaKCwigxlaP42wk3hno9vry6AoCvzbiKrLB0ZkVleYrEhLkM+Gh86LR1yvtNCCGEEGIaOt1nQK+JX2RkJJGRZ14oYu3ataxdu9brcQaDgd7eXs/r3t5eAgICsFgsw7Y7nU6vSR9Aa2vPGcc63sLDjVMyLjH59C5/AI421KMN8d4eJb++CL3GlxURy1Gr1LS39Q7bH+oTTGNPC2/nf0pGcCqRfuHjErcQQgghhJhahnKOkZI/r5mUt5G9c2UwGNBqtdTU1BAfH8+2bdtYt24dTU1NbN68mWuuuYb8/HwyMjLGNQ4hJkOwr3satWmgi25rD722PiL9wj2jeCdq62+nzdLB7LCZqFXqU14v3hhLQ28Tfy99G61Kw/3z1hFvjBnXZxBCCCGEEFPfiInfmjVr2LhxI1lZWSiK4tk+VNWzuLh4zIJ47LHHeOCBB3A4HCxbtozZs2eTm5vL9u3b+frXv47L5eLJJ58cs/sJMVUE+wQB0N7fzq/3/YF2iwl/jR9XJ6/i0vhlw44t7igH3C0hRvKNrJu4KGYhVd01bKx4n+cPb+A/FtyLv9b7aKIQQgghhLhwKa6h5nxnwGq1DlvvN5VMxSmVMtVTjKSxt5kndv8Go9ZAj81MjH8UpoEubA4rTyx9CKPu+DrX5w+/RH7rYR5Z/FMiRjGF85+Vn/Bh1WfkhefyvdxvjedjCCGEEEKISeZtqufJ88m+4tZbbx322ul0ctNNN41NdEJMc8E+7qmePTYzCgrfn3Unq1OuxO5ysLV+J+AeZe+z9VNmqiDEN5hwfdiorn1N8iriDDEcaiui324Zt2cQQgghhBBT34hTPe+44w727NkD4Om553K50Gg0rFy5cmKiE+IC56vxRa/xpd9uIS8ilzB9CIui5vFe5Ud8Wb+TBGMcL5e8QY/VDEBeeO6wqdeno1JU5IbNoM7cQJmpgtnhOeP5KEIIIYQQYgobMfHbsGED4F5/98gjj0xYQEJMN8E+QfTbm7gs/hIAfDU+XBSzkE01X/LcoRfRKGpyQrMw6oxcnrj8jK6dHZLBh1WfUdxRPmaJn8PpwIULjcp7lV0xvRS1l7K1fie3ZtxIsG+QZ3t1dy2H24qxO+2kBSWTE5Y9iVEKIYQQ05PXT267du2aiDiEmLauTl5FS18byYEJnm3LY5fyRd0O/DR6vpd7BymBiWd17aSAePQaX4rbS8cqXH69/w/4qn358dzvj9k1xfmvqbeFFwpfYsBhxWK3cO+cuz3VaV8qfp3G3mYAttRt49El/0GQT6CnWBhAv93Cxop/siR6Acln+X4XQgghxMjUjz766KOnO2D//v1YLBZ0Oh39/f309PTQ09OD0Tg1G0T39VknO4ST+Pv7TMm4xNQQ7R9JWlDysG1+Wj3zImZxecLyURVyGYlKUVHdXUtldzULIufgq/YBGPV00a8yW3t5q+I92i0m5oTnDis+I6Yvi93CM/nP02XtJsY/iuqeWjQqDWlByVjsA7xd8U8SjLFcHHsRJaZy7E47EX5hPLXvaXqsvWSGpLGrcS8fVm1iX0sBKYGJhOpDJvuxhBBCiPPKUM7h7+9zyv1eR/wKCgooKCgYtk1RFDZt2jQ2EQohTulcEr4TZYVkkN9ayN9K3uJYdw1LYxayNuOGs7pWnbnB8/OepgPcmHbNmMR4LszWXjoHuoiTfoWTZnvDHpr6Wrg0bhlXJ6/iyT2/4/1jn7Aoai7tFhMuXKQFpXBF4gr2NO1nW8NuCttL6LCY+LJ+B1cnXUZ+SyHgnkr8PwUv8JO5PyAxIH6Sn0wIIYS4cHit6vn555+f9EeSPiHOHzNCMgAo6zyKzWlje8Me+u39Z3Wt2p56z897mg7gdDnHJMZz8Wb5u/x/+56ha0BapkyWEpO7x+SqxOX4a/1YlbAcp8tJSUe55z0Tb4xFrVJzbfLlOF1OOiwmwnxD6Ldb2NN0gLLOoyQa47kr53ZsTjvvVX48mY8khBBCXHC8jvhVVVXx8ssv09fXh8vlwul0UldXxyuvvDIR8QkhzlGoPoSrk1YBLhwuJ59Ub2Zfcz4Xxy4542sNjfhlBqdRaqqg1FRB9mBiOVkaepuwuxwc7TrG3IhZkxrLdORwOqjoPEakXzhBg+1JMoPTACg1VXjW+SUY4wCYGzmb4o5ygnwDmRcxm/V7fsvbFe/jdDnJC89hdvhMMoPTKO4o41hXtaz3E0IIIcaI1xG/++67j4CAAIqLi8nOzqahoYH09PSJiE0IMUauS7mC61KuZHncRSgo7GjYe1bXqetpwFftwzXJlwPuUb/J5HK5aO83AVDRWQlAvbmRup6G050mxlB1Tx1Wh5WMwWQP3OtWjToDpaYKanrq0Kl1RPi5+0+qFBXfmnELq1OuJMYQRZwhBovD3WdydoS78uzVSZcB8GGVzC4RQgghxorXxM9ms3Hvvfdy8cUXM2PGDJ5//nn27j27D41CiMkV5BPIzNBManrqqDc3ntG5VoeV5r5WYg0xpAYmEagL4Eh76aRO9+yz93uShnJTJTannacP/plnC17A5XJNWlzTSZmpAoCM4FTPNkVRyAxOo9vaQ2NvM/GGGM/I31ctiJoDuJPFyMF1renBqaQFJVPUXkJVd804P4EQQggxPXhN/PR6PVarlaSkJIqKivD19Z2IuIQQ42RJzEIAdjXuO6Pz6s1NuHARZ4xBURSyQtIx23qpNzeNR5ij0m7p8Pzc0NvEzoa9mG29dFt7aO5rmbS4ppMy01EA0oNShm3PPGEEcGia56ksippHuD6U5XFLh22/LvkKAN4q/6ck8UIIIcQY8Jr4XX/99dxzzz2sWLGCl19+me9+97tERkZORGxCiHGQE5qFr9qX/NbCM/pAPbS+L97grp55fB1X+dgHOQKrwzbs9dA0T4PWH4B3Kz/07KvoPDZhcU1XNqedyq4qYvyjTmrtcWLiF2+MHfEaRp2BR5f8BxfHLh62PT04ldnhOVR2VXGg5dDYBi6EEEJMQ14Tv9tvv52nn36akJAQXnrpJW699VaeffbZiYhNCDEONCoNOWFZdFhMw9ozeFM3WJ1xqG1CVoh7rW9Jhzvx67dbxnVkZnfjfu7/8v9xuO2IZ9vQiN+8yDxPDME+QQBUdFaNWyzC7VhXNTanfViSNyRUH0KYr7sX3+kSv9NZk3otakXNO0c/wPaVpF8IIYQQZ8Zr4nfrrbdiMLi/yY2KimLlypXccsst4x6YEGL8zA53F9EoaC0c1fEDDqunQmO0v3vEP9AngGj/SCo6j3G47Qg/2/oYn1ZvGZd4u609vFH+Lk6XkzfL38PutAPHR/zmR+ahVtQAXJt8Of5aP0+xFzF+DrYcBiA7NPOU+y9PXMG8iNlE+Uec1fXD/UK5OHYxHRYTxR1lw/bltxay8wynKwshhBDT2YiJ3x133EFWVhYFBQVkZWWRnZ1NVlYWs2fPJjk5eSJjFEKMsRkhmWhUGgpai7we63Q5+WvR32jtb2dpzCI0quNdYLKC07E5bTx/+CXsLgf5baNLJM/UW+Xv0W/vJ8IvjLb+dr6s2wEcH/GL8osgIzgVg9afuZGzSQtMxjTQSYfFNC7xCHcbh4MthzBo/ck6xYgfwLLYxXwn57YRC7uMxtCXFGWdRz3brA4rLx15jb+VvIVt8EsAIYQQQpzeiP833rBhAyUlJdx+++2UlJRQXFxMSUkJhYWFPP300xMZoxBijPlqfMgKTqeht4mWvrbTHvuPox9S0FZERnAaN6evHrYvM8T9gd/hcqDX6Knprjvr5vAjOdZVzb7mfBID4rlv7g/Ra/R8ULWJXlsf7f0d6DV6/LR67sq5nZ8vuh8ftY7UIPeXU7LOb/yUmY7SYzMzN2IWapV63O6THJCAVqXxFJEB92ifxTGAw+WgcRKLCwkhhBDnE69fw/7oRz9ixw73t+t/+tOfuPfee6mtrR33wIQQ42toJOXENXNftb1hN5/VfEGkXzjfy7l92GgfQHpQKpF+EVwWfwkr4i7ChWvMk62i9lIArkxciVFn4IrEFfTb+9nbdJB2i4kw32AA9BpfT4GRNEn8xt2+5nzg+PrK8aJVa0kJTKLe3EiP1Qy413sOqempG9f7CyGEEBcKr4nfAw88QHFxMTt27OCjjz5i5cqVPPjggxMRmxBiHGUEu8vvV3cP/yKnc6CLD459yutl7/D30o34a/34wazv4Kf1O+kavhofHl78AF9Lv87TwLt0sK/bWDnaeQwFhfTBZG5x9HxUiorNdduwOW2E6kNOOifOEIOv2pei9hIcTseYxjOduVwu9jUd5KOqTeS3FhLsE0RKYOK433fovVXeWUmHxUSpqYIAnRGAmsGiQyey2C08c/D5YV9q9Nn6pC2EEEKIac1r4tfV1cVdd93Fpk2bWLNmDTfeeCO9vb0TEZsQYhyF+oag1/ieVNnz46rNvH/sU76o24FaUXN37rcJ9wv1er0Tp+SZrb18XvMlFrvlnGK0O+0c664mxhDlSTwDdEaygtNp628HIGRwxO9EapWaBVFz6BzoorC95JximK5KOso9FVuHbK3fxYtH/sZ7lR9jcVhYGDX3nNbvjVbmYHP4UlMF2+p348LF1Umr0Chqak+R+JWYKigxlfPu0Y9wuVwcaDnET7c+yv8WvuwZNRRCCCGmG423A5xOJ4WFhXz22We8/PLLFBcX43DIN+hCnO8URSHOEENF5zEsdgu+Gl/APXVOrai5b94PCPMNxaDzH9X1tGotqYHJlJjK+fX+P9Da344TF6sSlo86pqERGUVRPLHYnHbP1M0hC6LmcKTDPQX0VCN+ABfHLmZr/U621u9kdvjMUccgoLKrmmcLXkCj0vCLpT/HV+NLS18bGyv+iZ9Gzx0zbkWj0pAWODGFvhKMcfiqfdjVuA+7046fRs+CqDnsbNxLg7kRu9M+bBpyVVcNAA29TVT31PLhsc8AyG89TElHOeF+oUT6hXN71lq0au2EPIMQQggx2bx+VfvTn/6Up556iu985zvEx8fzyCOP8J//+Z8TEZsQYpzFG2Nx4aLO3Ai4KzXWmxuI8Y8kKSBh1EnfkIzBkZnWwdG4wrbiUZ+b33KYn+94kldK3vRsqzC51+ilBaUMO3Z2eA46tQ6A0FOM+AHEGqJJDUyiuKPMawEbcVyP1cwLhS/jdDmxOqwcaDmM0+XkpeLXsDpt3Jq5htywGWSHZExY0qRWqUkLSsHutBNriOa+eT9Er/El3hiL3eWg3tzI/xW+wue1WwGo6q7xnPtK8Zs09DYxL2I2N6Vdh7/Wj8beZvY153O0q2pC4hdCCCGmAq8jfkuWLGHJkiWe16+//vq4BiSEmDhDjbXrehpIC0qmqa8Fm9N+1g238yJy+bJ+J5fGLyO/5TBHu6ros/Wdcn3gid4o+wdb6rYDsLNxLzlh2eSF51De5e7Fl/qVkSUftY654bPY3bSfKL/IEa97cewSjnZVsa1hF19Lu+6snmm6ebP8XToHurgk9iK21u9kZ+NenC4HlV3VzImYxfxxLuYykrUZ1zPLNIOFUfPQDo7uJRhj2Q68XPwGDb1NFHeUsSxmMdXdtUT5RTDgsNLQ6676eXniCuKNsaxMuIS9TQf5y5G/0dTXQlZIKNrligAAIABJREFU+qQ8jxBCCDHRxn9xhhBiyhpK8IbWSQ3982wTv0i/cNYvfYhVCcvJCcvG6XJyZLAq50j67Ra+qNtBmD6U7+d+G41Kw2ulG2kwN1HZWU2EPoxAH+NJ563NuJ775v3wtOsP8yJy0Wt8OdB8SAp7jFJF5zECdQGszbierJB0Kruq2FjxPr5qn5PaeUykMH0oS2MWeZI+OP4+HUru+uz9bKndhtVpIyUwiSXR8wHIDE4b9p6O8nd/WdDU2zJR4QshhBCTThI/IaaxSL9wtCotteaxSfxOlBOaDcDhdvd0T5vTTn7LYXY37h+WhFV31+LCxZzwXGaFz+SapFV0W3tYv+e3WByWk9b3DfHV+HqtKKlVacgJzcY00Ol5RjGyfns/nQNdxBiiUCkqT+JkcQxwbfLlBPkETnKEw8UYolEr7h6CVyVdBsDH1ZsBSA5M4JK4i5gTMYs1XxntjfQLR0Ghqbd5YgMWQgghJpHXqZ4AfX191NTUkJmZSX9/P35+p5+2JYQ4P6gUFXGGaKoHi6jU9tSjoBBriD7na8caogn2CeJIeyl/L93I/uZ8+gabu4f7hZISmAQcX4+VHJgAwKqE5fTa+jDbetFrfFkRt+yc4pgVPpO9zQc51FpEgjHunK51oRsaAYseHBGbFTaTQF0ARp2B5XFLJzO0U9KqNFyTfDkqRWFVwnJ2Ne6jc6ALgKSABIw6A9/Nuf2k83RqLaH6EBol8RNCCDGNeB3x27lzJzfccAM//OEPaWtr49JLL2Xbtm0TEZsQYgLEGWNxupw0mBupNTcQ5R/hKZxyLhRFIScsmz57P1vrd6JRaTzrw76s2+U57thgBcakAHfip1ap+Vr6ddwx41bWZtwwqlYSpzMjJBONSkNBa9E5XWc6GEr8ovwiAHel1gcX/YSfzP0BapV6MkMb0VVJK7ki8VJUioq88BwAfNU+RPlHnPa8aP8IzLZezFZpTySEEGJ68Jr4/fa3v+XVV18lICCA8PBwXnnlFZ566qmJiE0IMQESB0fBXil5E6vDOqajYlckrmBl/MX8YNa/8MRFD3LnjG8Q6RfOwZYCzNZeXC4XVd01hPgGE+gTMGb3PZGvxoes4HQaepukuqcXjX3uEbChNXAABq0/vhqfyQrpjMyJmAVAQkC81/6CQ0WBmvpknZ8QQojpwWvi53Q6CQ8P97xOS0sb14CEEBNrfmQes8NmUj/Y0mEs1vcNCfEN5qb01eSEZaNWqVEUhWWxi7G7HOxs3Eu7pQOzrZekgPgxu+epDPXxO9Q2PUb9ugZ6sNgHTrnP5XKNWNTEM+LnZbRsqkoJTOSGlKu5PuVKr8cOPaNM9xRCCDFdeE38oqKi2Lx5M4qi0N3dzXPPPUdMTMxExCaEmABatZbv5n6L65KvJMgnkOyQjHG93+KoeWhVWr6o20FhWwkAyYPTPMdLbtgMFBTyWw6P632mggGHlSd2/5pXSt445f5djfv4r92/5uApfhdNvc0E6Iz4e2m/MVWpFBVXJF1KspeiP3B8HaMUeBFCCDFdeE38Hn/8cd577z0aGxtZtWoVxcXFPP744xMRmxBigqgUFVcnX8b6pQ+N+2iPn9aPS+OXYRro5M3ydwFIGsUH9XNh1BnICE7lWHcN7f2mcb3XZKvurqHP3k9pR8UpW1jsatoHwO6m/cO2DzistFtMnvV9F7pIP/dMFmnpIIQQYrrwWtUzNDSU3/72txMRixBimlidciX9dgtb63eiVtTEG8Z/FsHciFmUmio42HqIVQnLx/1+k+VoZxUAvfY+WvvbifAL8+wzWTo9+4vbS+m3W9BrfAFo7hua5hnJdOCr8SXYJ0imegohhJg2vCZ+W7Zs4dlnn8VkMg379njTpk3jGpgQ4sKlUlTcmnEjQT6BqBUVWrV23O85OzyH18re4UDLBZ74dVV5fq7urh2W+B1sOYQLF2H6UNr62zncdoSFUXOBE1s5TI8RP3BP9zzSUUqvre+8nd4qhBBCjJbXxG/9+vU89NBDpKWloSjKRMQkhJgGFEXhqqSVE3Y/o85ARlAqJaZy2vs7CNWHTNi9z5TZ1svfSzdyTdIqYgxRoz7P6XJyrKsataLG4XJQ1V3Dgqg5nv37WgpQKSq+lX0LvzvwHAdaDnkSv6GRr+ky4geQFJjAkY5SyjsrPa0ghBBCiAuV1zV+RqORFStWEBcXR2xsrOePEEKcb+ZGusv972k6OMmRnN7+5gIOthxiR+OeMzqvwdyExTHAnIhcVIqK6u5az762/naqu2vJDE4jLSiZGP+oweme/bhcLspNR4HjRU+mg+yQdABKOsonORIhhBBi/I2Y+O3du5e9e/eSlpbGE088wc6dOz3b9u7dO5ExCiHEmJgbMQs/jZ7Pa7+kz9Y/2eGMqGwwCavtqT+j84ameWYGpxNniKbW3IDdaQfwNLCfO9jrbn5kHnaXg001X1LeWcmx7hpyw7Ix6gxj9BRTX6IxHl+1L8UdZZMdihBCCDHuRpzq+fTTT3t+bmxspLS01PNaURQ2bNgwvpEJIcQY02v0XJ64gn8c/ZDPar7g+tSrzuo6zb0tGHVG/LT6MY7QPV1zaPStrqcBp8vptRn5kKOdxwBIDUqipqeOmp566s2NJAbEU9hWDEBOWDYAy+OW8mX9Tj6t3sKhtiMAXJV02Vg/zpSmVqnJDE6loK2Itv52wvShkx2SEEIIMW5GTPxeeuklAMrLy0lPTx+2Lz8//6xu1tPTw09/+lPMZjM2m42f/exnzJkzh/z8fNavX49arWbZsmWsW7cOp9PJo48+SmlpKTqdjieeeILExPEt+S6EuPCtiFvKltptbK7dSmpQMqmBifgOVrb8qnLTUYraS/FR+5AVkk5yYAK9tj5+sfe/yQvP4c6Z3xjz+BrMTfTa+wCwOAZo628nYrD1wOk4nA4qOisxaP2J0IeRGBDP1vqdVHXXEq4Po6LrGIkB8QTojAD4any4Of16/rfwJerNjWSHZJA0zv0Up6KskHQK2ooo7ijn4tiTEz+rw8YfD71IhF84N6ZePeJ7RQghhJjqRkz89u/fj9Pp5Oc//znr16/3VPS02+08+uijfPzxx2d8sxdffJHFixdz5513UllZyf3338/GjRt55JFHeOaZZ4iPj+fuu++mqKiI+vp6rFYrr732Gvn5+fzyl7/kueeeO/snFUIIQKfWcW3yFbxa+hb/U/ACCgoxhiiygtO5NuUKfNQ6z7GvlLxJa387ANsbdvPE0gep7anH5rRR3lk5LvGVdbpH+2IN0dSbG6ntaRhV4re76QBd1h4uiV2CoigkDyZxB1sOYdD64XQ5yQ3NHnZOXngOM0OzKGovmXajfUOyTljnd3Hs4pP2V3ZVUWqqoNRU4f49Ja4kN3wGnQNd1JubsDms+Kh9WBA1Z9jIrNVhw+Gyo9eM/aiwEEIIcTZGTPx27NjBnj17aGlp4b//+7+Pn6DRcOutt57Vze688050OveHKofDgY+PD2azGavVSkKC+0PKsmXL2LlzJ62trVx88cUA5OXlUVhYeFb3FEKIr1oau4gQfTBlpqMc7ayipqeWenMjLf2t3J37bVSKim5rD6397aQGJqMoUNF5jK6BHurNjQB0DnTROdBFkE/gWcfhcrn4W+nbxPhHsSJ+KXB8fd9l8Zewofg1anvqmRc5+7TXsTvtfFT1GRqVhisHK6VG+oWTE5pFYXuJJ3kdmuY5RFEUvjPzNpr6mqflaB9AuD6MUN9gSk0Vp5xWO7RuMic0iyMdZbxa+haUvnXSdXw1PswerAzqdDl5+uCfaext4kd53yUlUGarCCGEmHwjJn7/+q//CsA777zDjTfeeMYXfuONN/jrX/86bNuTTz7JrFmzaG1t5ac//SkPPvggZrMZg+F4MQF/f39qa2tP2q5Wq7Hb7Wg0XjtQCCGEV9khGWSHZABgc9j446G/cLitmDfL3+OWjBuo7KoGYEZoBg6Xk4rOY9T21HkSP4Cq7lryws8+8eu197G9YTcaRc3s8JkE+gRQ0VlJmG8IuWEzgNEVeNnVuI92i4lL45Z5ElFFUbg1cw1lu39D50AXgboA4gwxJ53rq/GZtkkfuH9PKYHJ7G0+QGt/O5FfGV2tHGx4/60Zt2J1WNnfXECpqYIQ32ASjLFYHANsrHifw23FnsRvb9NBjnW73z/P5r/AvXO+R2JA/IQ+lxBCCPFVXrOos0n6ANauXcvatWtP2l5aWsp9993Hv//7v7Nw4ULMZjO9vb2e/b29vQQEBGCxWIZtdzqdo0r6wsONZxXveJuqcQkh3H4W8gP+3+e/5ou67VydfTFN1gYA5iRkM+Cw8sGxT2l3ttFkafac02pvJjx8yWmv29HXSVVnHXNjTu4T19XuHomzuxx82bKNxMA4+u0WliTMIzEmgkj/MOp7GwgLM4zYR7W9z8T7VZ+gU2v5xtzrCNIf/29NOEa+2X8Dfzn4BgviZxMREXDGv5fpIDs6hb3NB+hS2skJT/FsdzqdVPfUEmuMIjnG3U8xM354kux0OdlU+wVHTKWEhvljc9j5586P0aq1fCP3el4qeJvnizbwzDWPo9PoEEIIIcbT6XKOCR0+q6io4Mc//jG///3vycrKAsBgMKDVaqmpqSE+Pp5t27axbt06mpqa2Lx5M9dccw35+flkZGSM6h6trT3j+QhnJTzcOCXjEkIMd23iFfzx0F/4qHgr1d11qBQVQa4wLE4LAEWN5dR1NRLpF05zXytHmo7SGn36f7efzf8LRzpKuX/ej06a8lfRXOf5edPR7bhw4a/145KIZbS29hDjF83B1sOU1dUS4ht80rXtTju/P/BHugfMrE2/AZtZRat5eDzzguahzNSSGZwm/x0aQYjiLupypL6SDH2WZ3ttTwP9dguJhvjT/u5mBGexq2kfBypLKGwvoaO/kysSL2VRyCIa49v5tGYL7xzaxKXxy8b9WYQQQkxfQznHSMnfhCZ+v/nNb7Baraxfvx5wJ33PPfccjz32GA888AAOh4Nly5Yxe/ZscnNz2b59O1//+tdxuVw8+eSTExmqEGIamhGSiUHrz77mfCx2C3GGaHzUOnzUOgJ1Roo7ynC6nKQGJgMKNd21p2230DnQ5ekR90Xd9pMSv/b+DgDmhOdysPUwGkXN3bnfJtzPnYjEG2M52HqY2p76UyZ+71V+zLHuGuZH5rE87qJTxqBSVMyPzDvbX8m0EGd0T4H96rTaysH1fSmBSac9Pycsm11N+/i4ejOFbcUE6oxckXgpAKsSlvNl/Q4+qd7M0phF6NTaMY9fCCGEGA2viV9lZSWvv/46XV1dw7b/4he/OOObjVSVMy8vj9dff33YNpVKxeOPP37G9xBCiLOlVqmZH5nHlrrtACSf8IE/3hhHYbu7F16sMRqHy8Huphaa+1qJ9o885fX2Nh3EhQuVouJAyyG+lnYdgT7Hp1u2WdxTPa9OXkWkXzgpQcmkBSV79scaogFo7G32rB8bYnPY2Fa/myCfQL6ZdfOIU0GFd3qNnjB9KLU99bhcLs/v8njid/riLNkh6agVNQWt7iJkt2Xfgn6w7YNB58/yuKV8Ur2Z7Q27ZdRPCCHEpPHaFXjdunUYDAYWLlw47I8QQlyIFkXN8/x84gf+BGOs5+c4QwxJg8U6qrprT3kdl8vFrqb9aBQ1q5OvxOlysq1+17Bj2gZH/ML1oaxOvYqZoZnD9kcNJpSNvc18VVF7CRaHhQWRc4a1oBBnJ94YS6+9jw5LJ+D++zvaWeXui+ilnYavxpf0IPfawGWxi0/6e7ws4RJ0ah2bar7E6XKOzwNMAIfTQX5rIQ6nY7JDEUIIcRa8jvgFBASwbt26iYhFCCEmXbwxlij/SJp6m4cnfgFxnp9j/KPQqdxT9io7q1gSPf+k69T01NHU28yc8FyWxy/lk5otbG3YxdXJqzxTQ9v6OwjQGdGNkLiF+AahVWlp7m05ad/e5nwA5sk0zjGRYIjlYMsh6sz1hOqDOdBSgGmgk3kRs0c1mnp18irC/EJZk3rtSfsMWn/mR+Sxo3EPpaYKTzXZ882uxn28WvoWd2TfyqLoed5PEEIIMaV4TfzWrFnD7373OxYvXjysquaCBQvGNTAhhJgMiqJwR/YtNPQ2D1tXFz844hfiG4yfVk+cJgaD1p8jHaXDpgcO2d9cAMCi6Hn4qHXkheews3Ev9eZG4o2xOJwOTAOdnpHDU1EpKqL8wmnqaxm2lrDfbqGwvZgovwjiBqeDinMz9Pdb21NPelAqb5S/i1alYXXKVaM6P+0r03S/aknMAnY07mFnw97zNvErMZUD0NDbNMmRCCGEOBteE7+DBw9y4MABDhw44NmmKAobNmwY18CEEGKyJAbEn9R3LcgnkMVR84k2uKdfqhQV2SGZ7G0+QJ25kXjj8B55xR1laFUasoLTAUgPSmFn414qOo8Rb4zFNNCF0+Uk1Df0tLFE+kdQa26gw2IiTB+K2drL1vpd2J125kfOkbV9Y2SowEtRewm1PQ30WM2sTrnKU2jnXCUHJBDpF0FBWxG9tj78tX5jct2J4nK5KO+sBKC1r22SoxFCCHE2vCZ+RUVFfPLJJxMRixBCTGnfmnHLsNe5YVnsbT5AYVvxsMSv29pDQ28TWcHpaAerOA6NBlV0VnJp/DLa+t2FXcL0Iae951DhmKbeForaS3m97B0AFBSp1jmGjDoDwT5B1PTUA/XEGWJYlXDJmF1fURSWRM/nnaMfsK85f8QqrFNVc18rPVYzAC39kvgJIcT5yGvil56eTklJiafvnhBCCLfskExUioqi9mKuTr7Ms72sowKAzJA0z7YQ32CCfAKp6DyGy+XytHII9ZL4nVjgZU/TATSKmssTV5AZnD5mo1HC7dszvu5u2G6IJjUwCY1qbDseLYyax7uVH7GldhvLYhahVqnH9PrjaWi0D6Ctv/20bUyEEEJMTaNq57BmzRrCw8PRarWetSybNm2aiPiEEGLK8tPqSQlM5GhnFT1WM0adAYASkzvxG5rmCe4Rn7SgZPY159Pc10qbxZ34hfl6Sfz8IgA41FZEQ28TuWEzuC7lyvF4nGkvPTiF9OCUcbt+oI+RJdEL2N6wm33N+cwOz+GLuu3Mj8zz+gXAZCs3HQXcFW3rzA10DnSdsrekEEKIqctr4vfss89ORBxCCHFeygnNpqLzGEfaS1kUPQ+Xy0VJRzn+Gj/PurEhaUEp7GvOp6Kz0jPi522qZ7g+FLWiprKrGnA3exfnr6uSVrKrcR8fHPuUbQ27qOyqptvaw9qMGyY7tBG5XC4qOisx6gzkhGVTZ26gpa9NEj8hhDjPeJ2nERMTwxdffMGvfvUr1q9fz6ZNm4iOlipyQggBMGOwZ1vp4Chfa38bpoFOMoJTT5oKN7TOr7C9mIbeJjSKelhD91NRq9SE+4W5f1bUzAqfMdaPICZQiG8wS2MW0mbp8CTzdeaGSY7q9Fr6Wumy9pARlEqE3v1ebJV1fkIIcd7xOuL31FNPUV1dzU033YTL5eLtt9+mtraWhx56aCLiE0KIKS3aPxJ/jR8Vg2ugijvcJe8zQ9JPOjbKLwKD1p/DbcWAux/gaNZJRftF0NTbTHZIOnqNfgyjF5PhyqSVHGkvJSsknbLOo9T1NJ6yJchUsa1hNwDZoZmeLyFa+9onMyQhhBBnwWvit337dt555x1UKveHkxUrVrB69epxD0wIIc4HKkVFalAyh9qK6LCYONx2BICZgyOBJ1IUhZvSV1PSUU6UXwS5oxy9izFEcbD1MHkRs8Y0djE5gnwCeXTJf6AoCv9X+Ar7+wpot5i8TvudDD1WM1vrdxHkE8j8yDwG7AOAVPYUQojzkdfEz+FwYLfb0el0ntdq9flTiUwIIcZb2mDid7itmFJTBQnG2BHXPy2MmsvCqLlndP3lcUsJ0BlZGDlnLMIVU8DQ6F6cMYb9LQXUmxumROLXYzXjo9ahU7v/n/957VZsThuXJ65Aq9Kg0arRa/TSy08IIc5DXhO/1atXc8cdd3DttdcC8P7773PdddeNe2BCCHG+SA9yV4L8sOoznC4ns8JyxvT6/lo/lsUuHtNriqkh1uAuAFTX08Ds8LF935wJu9POJ9Wb+bjqc0L0wdybdzd99n6+qNtOoM7I0uiFgDthjdCHUW9ukJYOQghxnvGa+H3ve99jxowZ7Ny5E5fLxT333MOKFSsmIDQhhDg/xBqi8VX7eBpczw6fOckRifNF3FDiZ26c1Dj+eOgvFHeUodf40tLXxq/3P0uvrReb087a9BvQqrWeY8P9QqnuqcVk6ZzybSiEEEIc5zXxu/nmm9m4cSOXXHLJRMQjhBDnHbVKTUpQEkfaSwnThxI92HRdCG8CfYwYdQbqJ7GyZ7e1h+KOMhKN8fzrnO+yuXYb7x/7FL3Gl+/MvI1ZX/kiY6iyZ2NvsyR+QghxHvE6RyMsLIx9+/ZhtVonIh4hhDgvpQe6p3vODps5ZasziqkpzhBDu8VEn61/Uu4/1Jw9LyIHvUbPNcmXc2/e3Ty08L6Tkj6AlKAk4HgLkzNhtvXybMELlAxWvxVCCDFxvI74FRYWcvvttwPuuf1DJaeLi4vHPTghhDhfLI6ZT1NfC5fGL5vsUMR5Js4QQ3FHGfXmBtKDUyf8/mWDrUjSg47fOzMkbcTj0wKT0aq0HOko46YzvNfWul0caS9FQSHrFC1PhBBCjJ8RE7+//OUv3Hnnnbz44otkZWVNZExCCHHeCdAZuWPGrZMdhjgPxRqiAag3N01K4lduqsRHrSPBGDuq47VqLRnBqRS1l9BhMRHiG4zD6WB/SwEul4tF0fMAsDpsqBQFjcr9UcPhdLC1ficAZaaj2By2YWsHhRBCjK8RE78NGzZw6aWX8sADD/D888/jcrmG7Y+JiRn34IQQQogLXcRgU/S2/olvit410ENzXwszQjJRq0bfqmlGSCZF7SUUt5cR6BPA30s3YhroBCApIJ4wfSi/3Pt7DFoDP5l7D4qikN96mC5rNzqVFqvTRnlnJTNO0e9SCCHE+Bgx8bvxxhu56667aGpq4rbbbhu2T1EUNm3aNO7BCSGEEBe6cH0oAK2TkPhVdLrX92Wc4UjjjNAMKIcv6nfQ0tcKQHZIBsUdZexo3EtiQDzNfa0008rRrirSgpLZUrcdgK+lr+bvpW9zpL1UEj8hhJhAIyZ+9957L/feey+PPPIIjz322ETGJIQQQkwbflo//DT6SRnxGyrQkh6cckbnhevDCPMNod7ciILCPbPuJDMknYe2PcGuxn0c7TzmOXZL7Ta6rT1UdlUzMzSLJdHz2VjxT4o6SriZ68f0eYQQQozMa1VPSfqEEEKI8RWmD6HN0oHT5ZyQ+7X0tfJswQtsb9iDv8aPeMPo1vcNURSF3LAZANyUvpqcsGy0Kg0Lo+ditvVyrLuGGSGZxBliyG8t5NWSN9GptHwt7To0Kg2Zwem09LVNSrIrhBDTldfETwghhBDjK0wfit1pp2uge0Lu92rJWxxpLyU9KIUf5d11Ruv7hlyXcgUPzPsRK+KWerZdFL3Q8/OK+KWsiFuKCxf9dgtrM24gyj8CwDPF83CbVAgXQoiJIomfEEIIMcnCBtf5TcQImM1p51h3DbGGaP5t7j0kBsSf1XV8Nb4kByYO61sZY4giJzSbpIAEskMymB+ZR6whmsXR81kSvcBz3KywmSgo7GvOP+fnEUIIMTpe+/jZ7Xa2bdtGZ2fnsO033njjuAUlhBBCTCfHC7x0jHtLh9qeeuxOO6mByeNy/R/M/hfPzyq1igcX/uSkYwJ9jGSFpFPcUUZzXyv15kbeq/yIH82+y5MECyGEGFteE7/777+fhoYGUlNTh32rJ4mfEEIIMTbOZcRvX3M+Mf5RxBiiTtpX0FrEi0Wv8m9zv09SQAIAlV1VAKQGJp59wGNgYdRcijvK2Fy7jQMtBfTa+thSu52bM6TgixBCjAeviV9paSkfffTRRMQihBBCTEvhZ5n4dQ308GLRq0T6RfDzRfehUoav4NjRsBub08bm2m38y8xvAlDZWQVASlDSOcd9Lv7/9u48Pqry7P/4Z2aSyTKTfV9JCPu+CYiAuBb3XajiUh+X2lrrQtWnttJa3H4tPs9Tra1aq1VrK4riVjeUgiAgAkG2kLBkIWTfM1kmM3N+fyQZjCyBmGRI8n2/Xr5e5Mw5Z657joFcue/7usbHjMFqsXqbupswsb54ExdnzMVqsfo0NvEtwzCocdZS0VhFvC0Wm3+wr0MS6Rc63eOXkZFBaWlpb8QiIiIyIIUFhOJnslDeWHlC15U2tP77XNJQyvbvFEppcjWR1dauIbNsO46WBgzDYG9NLuEBYUQGRnRP8F0UYLEyIWYMAMn2RM4ZNIdGVyObSr/xaVzie3/a+gIPrn2EJzc/w0s7/+nrcET6jU5n/Jqampg7dy7Dhg3Daj30G7iXX365RwMTEREZKMwmM1FBkSc841faUO7986f5/2FM9EgK64tItMWzszIbl8dFeEAY1c01fFW8mdFRw6lvcTA5dnx3D6FLzkqZTUlDGT8cfjnBfsF8mvcf1hau59SEKb4OTXzE7XGzu2oPYdZQ3Iab/TV5GIbRYbuRiHRNp4nfbbfd1htxiIiIDGjRQVGUNJTR0NJIsH/QcV1T2tia+IUHhLGvJo9F656gsqmKiTFjvS0arh1xJX/55iXWHNxAs9sJwOCwtB4Zw4lKDknkvik/8349Kmo4OyqyKHGUEtfW+kEGloq2fpYjIofS4mlhc+k3VDZVExXk2xlqkf6g06WeU6dOpbGxkZUrV/Lpp59SW1vL1KlTO7tMRERETkBXCryUtc34XTXsEgBqm2uJCoxkS9k2vi7JJCIgnJGRwxgXM5piRwnv7Wvdsz843LeFXY5mbPRIAPa2FaCRgad9FjsmKJokeyIAhfUHfRmSSL/R6Yzf888/zyeffMJFF12c5ZZCAAAgAElEQVSEYRj85S9/IScnh9tvv7034hMRERkQDrV0KCc1NPm4riltLCfQEsj46NHcN+VnhAeEYzGZ+X9fP0VFUyXjY0ZjMpm4LON8YoKicLqdhAeEkWJP6smhdFn7TOS+mjxmJOqXzAOF0+2k2e0kxGqnrO0XH7HBUQRYAgAorC9iXMxoX4Yo0i90mvi9++67vPHGGwQGBgJw9dVXc/nllyvxExER6Ubxwa1LG4sdx1dQzWN4KG+sIMEWh8lk6tCI/Sfjf8R7+z7m9OQZAEQFRXJJxnndH3Q3S7DFEWgJYF9Nnq9DkV706q43yKrM4Xen/ZKyxkMzfiFWOwAH6ot8GZ5Iv9Fp4mcYhjfpAwgICMDPr9PLRERE5ATEt+1pK2o4vsSvurmGFo+LmKDoI9wrjlvGXt+t8fUGs8lMWmgqWVU51Lc4sPvbfB2S9DCXx8W2il043U7yaw9Q1tA64xcTHEWgJRCbX7CWeop0k073+E2fPp2f/exnfP7553z++efcddddTJs2rTdiExERGTDCA8IItARQ7Cg5rvPb90LFBh+e+PVlg9say+fW5Ps4EukN+2vycLYVHdpfm0dpYzl2fxtBfkGYTCaS7AmUN1bS5Gr2caQifV+nid+DDz7IqaeeyvLly3n77beZNm0aDzzwQG/EJiIiMmCYTCbibXGUNpTj9ri9x0sbyg7r0dd6/NCSuP7k2/v8PIbHmxQMVNvLd7HvKMVuKhqr+Ofut7yzZH3Rrsoc75/3Vu+nsqmqwy8zkkISMDA46Cj2RXgi/cpR12yWlZURExNDUVERc+bMYc6cOd7XSktLSUxM7I34REREBox4Wyy5tfmUNVZ4l34uzX6HXZXZ/GzCLYyIHOo9t30vVH+b8UsLS8GEicy2yqQew8Ovpy8kwGLt/OJ+oNntpNndTKg1hM2l3/DC9leJCAjndzP+u0Mvu5rmOp7KfI6yxgrqnfV9cmkvQFZlDmaTGZtfMLsqc/AYng6/zPh2Zc/22WAR6ZqjJn6/+tWvePbZZ1mwYEGHv2jam2h+9tlnJ/xmDQ0N3HvvvdTU1BAUFMTvf/97IiMjyczM5JFHHsFisTBz5kzuuOMOPB4Pv/nNb9i9ezdWq5XFixczaJC+4UVEpP9KsMUBUOwoId4Wi2EY5NUWAPB69tv8cuo9+Jtb/+n2zvj1s8QvyC+IBFtchxmeDUWbmJ18qg+j6mhP9X6+KdvBxRlz8TN3b92D57e9TFZlDuNjRrOjIguAquZqyhsriQlurfzqaGng6cznKWuswGqxsrVsB5VNVUQG9q1ed46WBvLrDjA4LI3QgBC2lH4DHKpwC5BsTwDgQJ32+Yl8X0dd6vnss88C8NZbb/HZZ595//v888/5+9//3qU3W7p0KaNHj+a1117jggsu4JlnngFg0aJFLFmyhH/+859s3bqVHTt2sGLFCpxOJ6+//jr33nsvjz/+eJfeU0REpK9or+xZ1FbZs7KpigZXI2aTmdKGcv6x603e2fsh7+z9kIK6AwT7BfXLAiizk2cwOGwQt4y9Hj+ThZUFX+AxPL4Oy+v9fR/zWcFq1h78qlvvW1BXyK7KbCwmM5ll23F53EyIGQNATvVeAJpcTfxp6wscdBRzevIMrh56CQYGXxSuP+x+Nc117K3O7dYYu9Puqj0YGIyMHMrg0FTv8W//MiPBFoe/2Y/9tdrzKfJ9HfXXVEVFRRiGwa233srzzz+PYRgAuN1ubrnlFj766KMTfrMbb7wRt7t138LBgweJjo6mvr4ep9NJamrrN/zMmTNZt24dZWVlzJo1C4AJEyawffv2E34/ERGRvsQ749fQWuCloK4QgLNTT2d90ddsLNnc4fwh4em9G2AvmZU0nVlJ0wE4JX4S64o2sr1810nRy63J1extN/Hh/hVMi59MoF9At9z784IvALh13A2ACT+ThdCAEDLLtpNdtZdp8ZN5dtvL5NUWMC1+MlcOvRiXx83bez9g7cENnJd2NlaLP9Da7uMv37xIQV0hD8944KSbDfQYHr5sS5xHRA7F+NZr357x8zP7kR46iJzqfThaGrD5B/dypCL9x1ETvz/+8Y9s2LCB0tJSrr322kMX+Pl12O93NG+88cZhM4OPPvoo48aN4/rrryc7O5sXX3yR+vp67Ha79xybzUZBQcFhxy0WCy6Xq9NWEjExIZ3G5gsna1wiInLyiDJsBHxlpaypjJiYECqKywCYmjaW80bNZn9VPpFBEZhNJqqbasmIHESMrX//+3KF/w9YV7SRd/d/iDXYzLSUid7kxhc2H8zFbbgJCwihprmODZUbuHL0Bd/7vlWNNWwq3UpSSDyzh0/GbGpdlGUYBmGZIeyp3UdWwy6yq/YwOXEsd532IyxmCwDnDJnF8l0fs69pD7PSWhvfr83fSH7dAQAKnHkMT0nF5XZR39KA3T+YfVX5bC7axujY4YyNG/G94z9RS7e/z67KbMbFjeSUjNG4PC78tvjh8rgYmZKGzXoowRuXNILs6r2UGyWkxYwDYGdpDiv2fsH8cZcQa4s62tuIDDjHyjmOmkU99thjADz33HPceuutJ/ymV111FVddddURX3v55ZfZu3cvt912G8uXL8fhcHhfczgchIaG0tTU1OG4x+M5rv6BZWV1JxxrT4uJCTkp4xIRkZNPXHAMhXUlFJdUk1WyH4AQTwTWZhvDg0d6z4sKjIMGKGvo3/++BBHK7KRTWV24jqc2vMia/Zu4ecwCn8WzYX/rPrQfDr+identrk+YGnkKQX5BJ3QfwzCocdYSHhAGwPv7PsXtcTMrcQYV5Y4O52aEpbO59Bv+vuVN/EwWLku7iMqKBu/ro0NGs5yPWbN/EyNsI2nxuHh1y3LMJjMew8OGvG8YFzKe32962rtntN2/d6/kgVPu8u4f7A07KrJ4c8cHRAVGcu2wqykvrwdgZOSw1uXNNW4aOPT/dZI1CYBN+TtI8R/EB/s+4eO8lRgYeFpMXDvyyl6LXeRk1p5zHC3567SdwxVXXMFLL73En/70J55++mn++Mc/ct9993UpmGeffZbly5cDEBwcjMViwW634+/vT35+PoZhsGbNGqZMmcKkSZNYvXo1AJmZmQwbNqxL7ykiItKXxNvicHlclDdWUFBbSGRgRL/cx3ci5g2/jEXTf0FMUBTby3d2aHfR23ZVZmO1WBkROYwzUmbS7HayoXhz5xd+x3v7PubBtY+QXbUXwzDYWLwFq8XKtPhJh507LCIDaC2GMjNpOhGB4R1eT7DFER0Yya6K3bR4XKwpXE9FUyWnJ88gOiiK3ZU5ZFXlkFdbQGxwNMPCM5gWP5m5aWfR5G7mxZ2vUeIoZVv5zh7vl+cxPCzLeR+zycwtY6/v8P/2LWOu474pPzvsmrTQVCwmC3uq9rOmcD0f5X1OZGAE4QFhfF2yhUZXY4/GLNJfdDqFdvfdd5OQkEBmZiZnn302//nPfxg7dmyX3uyKK67g/vvvZ9myZbjdbh599FEAfvvb37Jw4ULcbjczZ85k/PjxjB07lrVr1zJ//nwMw/CeKyIi0p8NCUvnq+LNvLnnPepa6hkfPsbXIZ0UYoNjGBYxhLUHN1DoKCI1JLnXY6hqqqa4oZQxUSPwN/sxI3Eq/97/KV8cWMfpSTM6VEH/roaWBl7b/RajI4cTERjOJ3krAVhTuJ4gv0DKmyqZHDse6xHaVgwNb038/M3+nDvozMNeN5lMjI0ZxcqCNeyq2M0neSsJsFiZO+gs3B4Pqwu/5F9ZbwGwYMTVZISnea+taKxiY8lmHt7wBwDmpp3FRYN/0OXPqDMbi7dQ0lDKaYlTSQnp2Bqsfenqd1ktVgaFJpNbW0D5vgoCLQHcO/mnrC/ayLv7PuKr4i2cnjyjx2IW6S86TfxKS0t5+eWXeeKJJzj33HO5+eabueGGG7r0ZtHR0bzwwguHHZ8wYQJLly7tcMxsNvPwww936X1ERET6qukJU1hduI6dFbsBSLEn+Tiik0daaAprD24gr7bAJ4lfVluz8RGRrauQQqx2JsaOY2PJFnKq9zIsYshRr/2mfCdbSr9hS+k3mE1mTCYTof52tpbvILitYMmk2HFHvDYuOIbZSaeSHJJIWMCRl3CNi25N/P61+y1qnXWckzoHu9XGqKhhrC78kvKmSpLtiYf1wps3/FJaPE4sJgubS79hXw9WAXV5XHyw/1P8TBbmpp11QtcOCR/Mvpo8HK4GLs04n7CAEE5NPIX393/CmsL1zE469ZiJt4gcx1LPsLDWtefp6elkZWUREXFyVYUSERHpTyxmC9eMuAITrT/EfndWZCBLayv5n1tT0MmZPSO7raXC8G8leO39BVcfWHfMaw/Ut/ahS7In4DE8XJJxHnOSZ+LyuPiicB1Wsz+jooYf8VqTycS84ZdxWuK0o94/IyydIL8gapx1+Jv9OSt1NtA6W+hnap1JOz358FnJIL9Abhl7PTeNuZbY4Bjy6wp7rHXGxuItVDRVMjNp+glXGR0SPhiA6MBI5qTMBCDUGsKEmDEcdBSTW+ub/ydE+pJOE7/p06dz5513ctppp/G3v/2Nhx56iMDAwN6ITUREZEAaFJrC3LSzCLWGHDZDM5DF22IJsFjJ9VFPt301eQT7BRFvi/UeSw8dRJI9ga3lO6hurjnqtQfqDmLCxD2TfsLiGb/k7NTTmZowyZvgj4keecRlnsfLYrYwui1xnJk0jRBra2X0QL8AxkaPIiIgnClxE495j0GhyTS5myhrKO9yHMfyZdFGTJg4O/X0E752eEQGpyefxo2jr8HffGjB2uTY8QDsqtzdbXGK9FedJn533303CxcuJCkpiSeffJLBgwfz9NNP90ZsIiIiA9aFg8/l0dN+5V0GKGA2mRkUkkJJQ1mvF/SoddZR3lhBetggb6sFaJ2Nm510Kh7Dc9SG7oZhUFhfRExQFIF+Ad7iLOEBYYxsWzY68SjLPE/E2alzmBw7nh98Zx/gj0Zfw0PTf9FpG4z25bN5bW0gulNpQxn7anIZHjHksOI0x8PP7MfVwy4hPSy1w/EhEYMxYSK7am93hSrSbx018Vu5snXT8fLly9m8eTPLly8nJyeH8PBwvvzyy14LUEREZKDSnqXDpYWlYmCQV9v9ycmxtO99GxyWdthrU+ImEmgJZG3h+g4VR1cf+JL8ugNUNVfT4Gok6QjLdi8bcgFzB53JuOhR3zvGlJBEbhpzrXe2r53FbDmu3oeDQlsTv/we+Gw3FG0CWvewdie7v40kewL7a/Npcbd0671F+pujFnfZtm0bZ5xxBhs2bDji65deemmPBSUiIiJyJGmhKQDk1uYzInJor73v3ppcADKOsPQ20C+AaQmTWXVgLVvLdzApdhzFjhJez15Oij2RCwafC0CyPeGwaxPt8STa5/Zo7Mcr2Z6I2WTu9hk/j+FhffEmAi2BjI8Z3a33htZ2FwfqD7K/Nu+YBXZEBrqjJn533nknAGeddRZz5sw5rubpIiIiIj2pvcDLx3krqXXWc17aWYfNcB1Ji7uFZrcTu7VrPRH31eS1LjVtSzy/a3bSdFYdWMuawvVMih3H/prWfYgF9QdZ3zbblWw/uQv1WC1WEmxxFNQV4va4j9pe4URlV+2lurmG0xKnfq99jEczLCKDzwu+ILvq2JVVRQa6Tvf4vfvuu5x55pksWrSITZs29UZMIiIiIkcUFhDKtSOuItgviFUH1vLKrqWdXwT8K/ttfrv+/9HQcvx7A/PrDvDfa37HJ7krKagrJMWedNTEJd4Wx6DQFHKq99HkaupQgCazbBsAyX2gQuugkGRaPC1kVe0hr7aAHRW7yarMwTCMI56/tzqXfW2zoUezqWQrAKd0Ulymq4aEp2ufn8hx6HQa749//CP19fWsWLGC5557jvz8fObOncvPf/7z3ohPREREpIMZiacwLX4S/7flWXZUZFFQd/CYbS8Mw2BnxW4aXI1kVeUctV/ed20t20Gts4539n0IwODwY1dYHRkxlLzaAnKq97G/Nh9/sz8BFiv1LQ5s/sGEWUOPf5A+khqazJdFG3lma8e+yz8edyNjv7MP0WN4eHbbS1jNVhaf9ssj3s/tcbO1fDuh1hAywtN7JOYgvyBSQpLIrS3A6Xb2yKyiSH/Q6YwfgN1uZ/LkyUycOBF/f3+2bNnS03GJiIiIHJXFbOEHbU3AP8n7/JjnVjVXU+usA2BHRdZxv0d7QZektr15Q8Mzjnl++57DrWU7OFhfTGpIElPjJwGtyzz7QrGeibHjmBo/iWnxkzkzZRbnDjoDgP8UrD3s3GJHKY6WBqqaq2nxuI54v+yqvThaGpgYO7ZDNdTuNjRiMG7D7V1iKyKH63TG78UXX+T999/H6XRy8cUX89xzzxEfH98bsYmIiIgc1ajIYaTYE9lSuo2ShjLigmOOeN63k4FdFbsxDKPTJMztcZNbm0+CLY6Fk3/Kvpo8hkUcO/FLDxuE1ezPV8WbMTBIC0tlRsIprC5c1+m1Jwu7v40bRs3vcGxfTS5ZVTmUOEqJ+1YPwz3V+71/rmqqIvYIn//m0m8AmBjz/dtVHMvgsDQ+YzX7a/MZHql9fiJH0umvXkpKSli8eDHvvfcet9xyi5I+EREROSmYTCbOTTsTA4Pnt7181Abq7fvtooOiqHHWcaC+qNN7F9YX4fS0MDgsDavFyojIoZ3OWPmZ/RjSNvMErc3d421xLJ7xS85JnXNigzuJnJ58GgCrC9d1OL635lDiV9FUddh1bo+brWXbCbOGkBGe1qMxprcV/dlfk9ej7yPSl3Wa+D3wwAPs2bOH//mf/6GxsZHly5f3RlwiIiIinZoYM5Y5yadR5ChhyaZneG/fx3xRuI6vijezt22pZm5tPmaTmXMHzQFg53Es99zXlkAMPkL7hmMZGXGoxUR7s/EQq73bKmT6wvjo0YRZQ1lf9HWH5Lr98wWoPELit6d6Pw5XAxN6eJkntBb9iQyMILc2/6iFaEQGuk6/C//whz+watUqPvnkE1wuF8uWLePxxx/vjdhEREREjslkMnHl0Iu5MP0HVDZV8VHuZ/xr99v8fee/eHLzM3xRuI78ukKSbPGMjx6DCdNx7fNrr1R5pIbtxzIichgA4QFhhAeEnehwTkoWs4VzBs2hyd3M/215lurmGiqbqqhqrsbu39oeo7Lx8MRvV2U2AKOjRvZKnOmhqdS3OChvrOyV9xPpazpN/NasWcPvf/97AgICCAkJ4cUXX2T16tW9EZuIiIhIp0wmE+eln8XiGb/k5xNv5YZR85k//HICLQEszX4Hl8dFWtgg7FYbqaHJ7K/Np9ntPOY999XkYfe3ERMUdUKxJNjimBgzltOTZnyfIZ105iSfxrmDzqC0oZz/2/wsaw9+BcCUuAnAkZd6ZlXl4GeyMKSHqnl+V3rb7Oz+Wi33FDmSTou7mM2tuWH7Jmin0+k9JiIiInKyiAgMJyIw3Pu12WTitaxlwKE9YEPC0smrLSCvtuCoBVcqGltns8ZHjz7hSpwmk4mbx17XxRGcvEwmExcPnosZEx/lfc5HuZ8BMDluPKsL1x2W+NU7HRyoO8iQ8HQCeqm9Qpp3n1++t5qqiBzSaQY3d+5c7rrrLmpqanjppZdYsGABF154YW/EJiIiItJlMxKmMjJyGCZM3h5y7Xv29h2lCIjb4+a1rDcBGBk1vHcC7SNMJhMXZczl5jHXEWgJwO5vY1BICuEBYYft8dtdtQcDw7v0tTekhCTiZ/bTjJ/IUXQ643frrbfyxRdfkJiYSFFRET/72c8444wzeiM2ERERkS4zmUzcOvYGyhsriA6KBL61HLBtD993Ld/7b7KqchgbPZLTEqf2Vqh9ysTYsQwJT6fF04LFbCEqMII91ftxeVz4mVt/tMyqzAFgZOTQY92qW/mZ/UixJ5FXV0Cz29lrM40yMG0v30VaWKp3n2tf0OmMX3Z2Ng6Hg2nTprFgwQIlfSIiItJnWC3+JNoPtaIKCwglKjCS/TX5eAwPzW4nbk9r+4UNRZv4vOAL4oNjuWHUD3u8EmVfFmK1ExkYAUBkYAQGBlVNrRU/DcMgqyqHYL8gUkKSejWuweGD8BgetXWQHnWwvpg/f/MiKwvW+DqUE3LUGb+KigruvPNOcnJyGDRoECaTif379zNx4kSWLFlCSEhIb8YpIiIi0i0Ghw1iY8kW9tfk87cd/8CEiTkpp/Hevo8J8gvitnE3EOQX6Osw+4yotgSwoqmSmOAoVheuo7KpigkxPd/G4buGhWfwWf5qdlftYUQvzjbKwFLkKAHoU7N9cIwZvyVLljB58mTWrl3LG2+8wdKlS1m7di3Dhw/nkUce6c0YRURERLpN+z6/F7a/SnVzDVXN1by95wPcHjc3jb6G2OAYH0fYt0R+K/F7Z++HLM1eToi/nfPTz+71WIaEp2M2mcmp2tvr7y0DR1ljOcAJV/31taPO+G3ZsoUPP/ywwzGr1co999zDJZdc0uOBiYiIiPSE9LbefDXOWlLsiVw/aj4f5X7GyKjhjFJBlxMWFdSa+H2a9x/KGiuIDY7mp+P/i2gf/FAc6BdIakgyeXUHaHI1EaiZW+kBpQ2tiV9scLSPIzkxR53xCwgIOOJxk8mkdg4iIiLSZyXa4giwWDFh4poRV5Joj+emMddyasIUX4fWJ0UGthbOKWusINQawp0TbvVJ0tduWEQGHsPD3qMU8BH5vsoayzGbzES1/b/fVxw1gztW35oT7WkjIiIicrKwmC0sGHk1N46aT2posq/D6fMiAsKwmCz4mSzcOvb6Dr0UfaG9P+Puqj0+jUP6r9KGcqICI7CYLb4O5YQcdalnTk4OZ5111mHHDcOgrKysR4MSERER6UmTYsf5OoR+w2K2cMOoedj97d52Gb6UEZaGxWTRPj/pdoZh0ORuor7F0Sd/aXTUxO/jjz/uzThEREREpI+aHDfB1yF4WS1WBocNIqd6H1mVOaruKd+bx/Dw2Ff/S2poMrOTTgUgNqhv7e+DYyR+SUm923dFRERERKQ7XDbkApZseoaXdv6T/z7lbsIC1IZMuq6qqZqDjmJKGsoYFJICQEwfK+wCx9HAXURERESkLxkUmsKlGedR56znpR2v4fa4fR2S9GEHHcUAuA03Kw98AfTNGT8lfiIiIiLS75yRMovx0aPJrt7La7uXYRiGr0OSPupgfbH3z321lQMo8RMRERGRfshkMnHD6B+SGpLM+qKv+Thvpa9Dkj6qfcbP7m8DwGKyEBkY4cuQukSJn4iIiIj0SwEWK7eP/xGh1hA+zVuJ093i65CkDypylGA1+zMraToA0UFRmE19L43qexGLiIiIiBynUGsI0+In0+RuZmdFFoZhsKV0GxWNlb4OrUe4PW5aPC5fh3HS8BgeVuSv6rBc80S4PW5KHKUk2OKZFDsegHhbbHeG2GuU+ImIiIhIv9bebuLr0q1sr9jFX7e/wmtZy3wcVffzGB7+b8uzLN6whGa309fhnBSyKnN4e88H/Gv3W126vrSxHJfhJtEeT6I9nlvGXs+lGed1c5S9Q4mfiIiIiPRryfYE4oJj2F6+k2U57wGwu2oP1c01Rzy/rxaCWVe0kb01uZQ3VvBp3n98Hc5JYVPJVgD21uRSWF90wte3zxQm2uIAmBAzhtjgmO4LsBcp8RMRERGRfs1kMjE5djwtHhdljRVEBIRjYLCxeMth564+8CW/+OI3FDlKfBBp1zW0NPDu3o+wWqyEWkNYkf8fKhqrfB2WT7V4XGwt347FZAFan+2JKmor7JJgj+/W2HxBiZ+IiIiI9HuT41r3ZwX5BfKzibdgMVnYWLKFJlcTaw9uoLyxgr3VubyR8y6NrkbWFm44rvu6Pe6Tok/gh7mfUd/i4Py0s7k043xaPC7e2ftvX4fVLZzuFjYUbaLJ1XxC1+2q2E2jq4nZyacSGRjBVyVbaHQ1ntA9Ds349f3Ez8/XAYiIiIiI9LR4WxxXDr2YuOAY4oJjGBM1gq3lO3h4/e+pcdZhNpkJsFgxDINASwAbS7Zw2ZALsJgtHe7T7HbiMTwE+QVS3+Lg0Q3/Q42zFpt/MBcPnsvMtsqPx8PlceE2PARYrN9rbO0Fa2z+wZyRMhOzycx/DqxlU+lWflB/Jkn2hO91f197b99HfF7wBcOKvuYn428iqyqHgrpCfjDozMOez7dtKm1d5nlK3ERC/UN4Z9+HbCzewuzkGcf1voZhcKC+CJtfMKHWkG4Ziy/5ZMZv7969TJ48mebm1qw9MzOTq666ivnz5/P0008D4PF4eOihh5g3bx7XXXcdeXl5vghVRERERPqJM1JmMipqOABT4ycBUNfiYFbSqcQFx9DoauKSjPOYljCF+hYHuyqzO1y/vyafRese53fr/0BVUzXv7v2IGmctSfYEnO4W3t330QkVVfnbjtd4ZMOT33vGsLSxnKrmaoZFDMHP7IfZZOaC9HMA+HD/iu91b1+rb3Gw5mDr7Gt29V5+s/7/8ZdvXuKD/Z+yvvjrI17jdLewIn8VW8u2Ex0URWpIMpPaZnyzq/cd93sXOUqoaKpkSMRgTCbT9x+Mj/X6jF99fT1PPPEEVuuh32wsWrSIp556ipSUFG699VZ27NhBYWEhTqeT119/nczMTB5//HH+/Oc/93a4IiIiItIPjYsZzQ+HX05aaCrJIYl4DA+VTVVEB0WRV1vAqgNr2VC8iTHRIylvrCSzbBvv7/vY2yrhqcznKW0oJ8EWx/1T7uTD3BV8mPsZXx78ijNSZnZ4L4/hodZZR3hAmPeY2+NmZ8VuWjwtZFftZWTUsC6PZXflHgCGRwzxHhsdNYLUkGS2lG2jsL6oT836eQwP28p3kRqSxJdFG3G6nVwy+Dx2V+0hqyqHjLB08uoK+Cj3c6bFT2Z7RRZNriamJ0zBY3h4cvMzFNQVEuQXyGUZ52MymYgKjCDE305uTf5xx7Gl9BsAJsWM7amh9uw9MW0AABqOSURBVKpeTfwMw+DXv/4199xzDz/5yU+A1kTQ6XSSmpoKwMyZM1m3bh1lZWXMmjULgAkTJrB9+/beDFVERERE+jGzydxhWabZZCY6KAqA1JBk4oNjySzbzsLVD9HoagLaGsKP+xGZZdtZV7QRgKuHXYrFbGFO8kw+y1/NZ/mrmZU0HT/zoR+zVxas4e09H3DHhJsZETkUgIOOYlo8rQ3lN5du/X6JX1Vr4jciYqj3mMlk4oL0c/jzNy/yYe5n3DxmQZfv35s8hodXd73BhuJN+JksmM0WbH7BzE6ewZmpsyisLyI1JJk3c97lPwfW8uetL5JVlQPAiMih1DTXUlBXyIiIodw05lps/sFA6+eRFpbCtvJd1DTXEhYQ2mksW8q24Wf2Y0z0yB4dc2/pscTvjTfe4O9//3uHY4mJiZx//vmMGDHCe6y+vh673e792mazUVBQcNhxi8WCy+XCz0/bEkVERESk55hMJs4ddAbv7P03Nn8bQ8IjGR01gnHRowkLCGF45FBcHjdRQREMi8gAwG61cVriNFYeWMOagxuYk3ya935fl2RiYPDO3g8ZHjEEk8lEbu2hmaetZTuYP/zyY+5XOxqP4SG7ag+RgRFEB0V2eG101AhS7Ilklm6jrKGCmOCoLn4ivcMwDF7e+TobS7aQZE+gydVMRVMl56SfTqBfAACDQlMAOHfQGaw9uIGsqhzMJjMew0Nm2XbqnfUAzEya7k362qWFprKtfBe5tfmMjxlzzFiKHSUUOUoYHz2aQL/AHhht7+uxLOqqq67iqquu6nDsnHPOYdmyZSxbtoyysjJuuukmnn32WRwOh/cch8NBaGgoTU1NHY57PJ7jSvpiYk7OjZcna1wiIiIicrgLY+Zw4bg5R339F3G3HHbsatv5fFW6mWU57zEkPpmJCWOobKwmv+4AAPl1B8h17mNq8gSK97VWixwTO5ztpbsp9hxkQtyow+7pMTyszt1AeGAYI2IyvAlQu32VeTS4GpmWMpHY2MNnsS4bM5c/rv8b68rX81+T55/IR9DrcqsOsLFkCxmRg/j1nJ9jtVjZU5HLsKh0zOaOpUliCGHB+Mv5+uBW5o25mF999nt2Vu/C4WzAz+zHrGGTCPLvmLBN8IzgvX0fU+oqISbm1GPGsqp0NQCzM6b2qZ/jjxVrr06fffrpp94/n3nmmfztb38jICAAf39/8vPzSUlJYc2aNdxxxx0UFxezcuVKzj//fDIzMxk27Pimv8vK6noq/C6LiQk5KeMSERERke7kx21jbuSpzOdYsuY57pn8E/JqCwCYnTSDNQfX82rmcgZZ09lVupdASwBnJ81he+luVuasJ8kv5bA77qzYzTNbXwbA3+zPj8fd6F0uCrAur7VyZVrQoCP+vDkkcCiRgRF8vu9Lzoyfg91q64mBd0lNcy2rDnxJckgik2LHsblwFwDTYqfgqHbhwEUUsVRUOI54/ZSIKUyJmAIGpIcOYmdpDgYGIyOHUV/dQj0tHc4P80RhwsSOohzKEo79s/m6vC34mSwMCkjvMz/Ht+ccR0v+Too+fr/97W9ZuHAhV155JaNGjWL8+PGcc845WK1W5s+fz2OPPcZ///d/+zpMEREREZFjyghP40ejr8XpaeGlnf9iS+k2AM5Knc30+MkUO0pYkbeKkoZSUkNTyAhPJ9QawrbynRiGcdj99te0VrafEDMWl8fFspz38BgeoHU2cF3RRswmM8O/lQx+m8Vs4cyUWbR4WviicH23j7fJ1cSft77oLTDTGbfHza7KbF7LWsaidY/zcd7nvL77bTyGx7v8NS009YTjmBA7BoPWz29c9OEzp9DawzHeFkte3QHvZ3gkja5GDtQdJC0slaB+sswTfNjH7/PPP/f+ecKECSxdurTD62azmYcffri3wxIRERER+V7Gx4xmdtKprC5cR7GjhARbHNFBkVw4eC6bS7/h3X0fAZAWmoLZZGZYRAZfl2RS0lBGvC22w71y22YMfzj8cgIsVjYUb2JL6TdMjpvAltJtlDaUc2rCKYRY7YfF0e7UhCksy3mPXZW7OS/9rG4da071PrZX7CLAYmV45JBjntvoauJPmS+wv7Y1mY0ICCfEaiO/rpDC+iJyawsIsFhJsMWdcBwTYsby9p4PAI5ZjCUtNJUiRwn/u/kvFDeUclriNM5LOwvrt3op7qvJx8AgIyz9hOM4mZ0UM34iIiIiIv3JJRnnExUYAcDYthmosIAQzk8/xzszld42szUkvDXB2POdHnOGYZBXW0B0YCR2q43z08/GbDLz/v5PcLqdfJz3OSZMnDtozjFjCfQLJM4WS2F90TFnurriYH3rXsVCR/Exz3O6nfx564vsr81jXPRo7pp4G7899X7OTJkNQGbpNkocpaSGJGM2nXiKEh0Uybjo0YyNHkVk2+d+JOlhrZ/53ppc3B43n+St5JGv/oda56HlnHur9wOQEd6/Ej+VyBQRERER6WaBfgHcOPqHvJXzAacmnOI9Pif5NL48+BWljeWktSUh7TNLe6pzO7SYKGuswOFq8LZ6iA6K4tSEU1h7cAO/WL0Il+FmStwEYoNjOo0n2Z5AsaOEisaqbq3uebAt4SttKKPF3YK/xf+I57215wP21uxnUuw4bhz1Q28F0/b9iqsKv8TA6NIyz3a3jbuh03Omxk2i0dXEkPB0EmzxvL3nA74oXMcneSu5cujFAOyt2Y8JE4PDuh7LyUgzfiIiIiIiPWBwWBoLp/yU2OBo7zGL2cIdE27mzgm3EGptLcIRb4vF5h982Ixfe2GY9hYGAJcPuYBzB51BVFAUVouVuWnHt3Qz2Z4IwIH6g99rTN/VPuPnMTwUN5Qe8RyP4WFL6TeEWO0dkj6AEKudZHuit1diWujhBW66k7/Fn7NTTyctNJUAi5Urh15EREA4awrXU9NcR4vHRW5tAUn2BIL8gno0lt6mxE9EREREpBdFBIYztK3/H7Q2j88IS6equZrKpirv8SMVOwn0C+SSjPN4aPpClsx++Lj3wyWHdH/i5/a4KWko8359oL7oiOfl1x2gvsXB6KgRR+xV+O0qpWm9PMvmZ/bj3EFn0OJx8VnBKvJrD+DyuMgIT+vVOHqDEj8RERERER87tM9vv/dYXm0BZpPZO1v3XSeyF84741fXfYlfSUMZbsNNXHBrQZqDR0n8tpdnATAm6shFV9oTv/CAMMIDwrotvuN1auIphAeEserAlyzb8x5AvyvsAkr8RERERER87rsFXlo8LgrqD5JsT8B6lH1zJyLEaifMGtqtM35Fbfv7psSNB6DwKInfjoosLCZLh5m9b8sISyciINxbBKe3+Zv9mD/8MgItAd7ltf1xxk/FXUREREREfCzZnojNP5j1RZsYHjGUzLJtuDwuhoQP7r73CElkR0UW9U5HtzRyb9/fNzgsjejASArrizAMA5PJ5D2nprmO/LoDDIsYctSeeFaLP7899f4O1/W2sdGjeOS0B9le0To76YuZx56mGT8RERERER+zmC3cOvYG/MwW/rbjH2wu/YaMsHQuSD+n296juwu8HHSUAJBgiycpJJH6FkeHtggAOyt3AzA6avgx72UxW7rUxqE7+Zn9mBAzhgkxY3waR09R4iciIiIichIYEp7OHRNuweYXzIiIofx0wn8ReJRZsq5oL/DyTflO3B73977fwfoi7P42Qq12kmzxABTUFXY456vizQA+W8Yph2ipp4iIiIjISWJw2CAemfkr/EyWbl/6mBGWRqAlkFUH1vJN2Q5uH/8jkuwJXbpXk6uZ8qZKhoYPxmQykRySBMCz2/7OqMjhzB9+GQ2uRrKr9jA8Yghxx9FrUHqWZvxERERERE4i/ma/HtnvFhYQyi+n3sXMpOlUNVfzef4XXb7X3ppc4FCPwTFRI7hiyIUk2eLZXrGL57e9wor8VQCckTLze8cu359m/EREREREBoiooEjmDbuUzNJt7KrMxjAM8uoKeCP7XcwmM1GBkVw74gr8O6kkuqtt797IyGFA6x69M1Nnc0bKLF7e9TpfFW8mr66A6KAoRkeN6PFxSec04yciIiIiMoCYTWZGRA6lxlnLQUcxH+V+Tm5tPvtr8thYspl9NXkdzn911xs8nflXDMPwHttZkY3V7E9GeMd+dyaTiR8Ov5zEtj1/pyfP8HnRFmmlpyAiIiIiMsCMimytsrm+6Gt2VGSREpLEdSOvBqCssdx7nmEYbCn9hl2V2eTXHQCgsqmKkoZShkVk4G8+fAGh1WLl9vE/4qLBP2BW4vReGI0cDyV+IiIiIiIDzIi2JZorC9bgMTzMSDiFmOAoAMoaK7znVTVX0+RuBmBjyRYAdlVkAzDyGC0aIgMjmJt2VqdLRqX3KPETERERERlgwgJCSLInYGDgb/ZjStxEYoKigY6JX1Fbrz6ATSVb8Rgedla2Jn6j2pJH6RuU+ImIiIiIDEDtyz0nxIwj2D8Iu7+NQEsAZQ2Hlnq2J37hAWHUOuv49/4V7KzcTVRgpDdRlL5BiZ+IiIiIyAB0auIpZISlce6gOUBrYZaYoCjKGivwGB7gUOJ3ftrZAHyYuwKXx8X56Wf3SMsJ6Tlq5yAiIiIiMgDFBcdwz+SfdDgWExxNQf1Bap11hAeEUeQowWKyMC1hMmsOrqfJ1cwNo+eTFprqo6ilq5T4iYiIiIgIwKF9fg3lhFlDKXaUEBscjZ/Zj4WT78BsMmumr4/SUk8REREREQEgJuhQZc+q5mqa3U4SbHFAa5N2JX19l2b8REREREQEaF3qCVDaUE5YQCiAN/GTvk2Jn4iIiIiIAB1n/OxWGwAJtnhfhiTdRImfiIiIiIgAEGoNwWqxUtZYjp/ZAkCCLdbHUUl3UOInIiIiIiLAoZYOhfVFFNYXEWoNUb++fkLFXURERERExCs2OAaA1JAk7pp4G5a2mT/p2zTjJyIiIiIiXhemn8vwiCGcmjAFP7PShf5CT1JERERERLzibbHEa19fv6OlniIiIiIiIv2cEj8REREREZF+TomfiIiIiIhIP6fET0REREREpJ9T4iciIiIiItLPKfETERERERHp55T4iYiIiIiI9HNK/ERERERERPo5JX4iIiIiIiL9nBI/ERERERGRfs5kGIbh6yBERERERESk52jGT0REREREpJ9T4iciIiIiItLP+fk6ABFf8Xg8/OY3v2H37t1YrVYWL15MVVUVjzzyCBaLhZkzZ3LHHXd0uKayspKFCxfS1NREbGwsjz32GEFBQd7X5s+fz3vvvUdAQIAvhjRgdeezfOmll/jggw8AOP300w+7TnpOdz7Hf/zjH7z11luYTCZ++tOfcsYZZ/hoVANPd//d6vF4uPXWWznrrLP44Q9/6IshDVjd+SwXL17M5s2bsdlsADzzzDOEhIT4YlgDTnc+x1WrVvGnP/0JgFGjRrFo0SJMJpMvhiVdYYgMUB9//LFx//33G4ZhGFu2bDF+/OMfGxdffLGRl5dneDwe4+abbza2b9/e4Zrf/e53xrJlywzDMIxnn33WePHFFw3DMIzVq1cbl1xyiTFx4kSjqampV8ch3fcs8/Pzjcsuu8xwuVyG2+025s2bZ+zatavXxzNQdddzrKioMM4//3zD6XQadXV1xuzZsw2Px9Pr4xmouvPvVsMwjCVLlhhXXnml8dprr/XaGKRVdz7L+fPnGxUVFb0av7TqrudYV1dnXHDBBd7n+Nxzz+mZ9jFa6ikD1qZNm5g1axYAEyZM4Ouvv8bpdJKamorJZGLmzJmsW7eO6upq72/Cvn3N7Nmz+fLLLwEwm828+OKLhIeH+2YwA1x3Pcv4+Hj++te/YrFYMJvNuFwuzd72ou56jpGRkbzzzjv4+/tTXl5OaGiofiPdi7rz79aPPvoIk8nE7NmzfTOYAa67nqXH4yEvL4+HHnqI+fPn8+abb/psTANRdz3HLVu2MGzYMJ544gmuueYaoqOjiYyM9Nm45MQp8ZMBq76+Hrvd7v26rq7Ou7QIwGazUVdXR3h4OE8//bT3mvalKe2vA5x22mlERET0YvTybd31LP39/YmMjMQwDJ544glGjRpFenp67w5mAOvO70k/Pz9effVV5s2bxw9+8INeHIV013PMzs7m/fff5+c//3nvDkC8uutZNjQ0sGDBAn7/+9/z17/+lddee42srKzeHcwA1l3Psaqqig0bNrBw4UKef/55/v73v7N///7eHYx8L0r8usDj8fDQQw8xb948rrvuOvLy8sjMzOSqq65i/vz53m+ab6usrOSmm27immuu4a677qKxsRGApUuXcvnll3P11VezcuXK3h7KgGa323E4HN6vQ0NDaWpq8n7tcDgIDQ096jVHel18ozufZXNzMwsXLsThcLBo0aJeiF7adff35IIFC/jiiy/YuHEj69ev7+HopV13Pcfly5dTUlLCDTfcwNtvv81LL73E6tWre2cQAnTfswwKCuL6668nKCgIu93O9OnTlfj1ou56juHh4YwdO5aYmBhsNhtTpkxh165dvTMI6RZK/LpgxYoVOJ1OXn/9de69914ef/xxFi1axJIlS/jnP//J1q1b2bFjR4drnnnmGS688EJee+01Ro0axeuvv05ZWRmvvPIK//rXv3jhhRd48skncTqdPhrVwDNp0iTvDxGZmZmMGzcOf39/8vPzMQyDNWvWMGXKlMOuWbVqFQCrV69m8uTJvR63HK67nqVhGPzkJz9h+PDhPPzww1gsll4fy0DWXc9x37593HHHHRiGgb+/P1arFbNZ/9z1lu56jvfddx9vvPEGr7zyCpdddhk33nijlnz2su56lrm5uVxzzTW43W5aWlrYvHkzo0eP7vXxDFTd9RzHjBlDdnY2lZWVuFwutm7dypAhQ3p9PNJ1qurZBUdaKx0dHU1qaiqAd610UlISv/rVr3j66afZtGkTt912G9C6VvrJJ58kJSWFiRMnYrVasVqtpKamkpWVxbhx43w2toHknHPOYe3atcyfPx/DMHj00Uepq6tj4cKFuN1uZs6cyfjx46murvY+x9tvv53777+fpUuXEhERwZIlS3w9DKH7nuWKFSv46quvcDqdfPHFFwDcc889TJw40ccjHBi66zkGBwczYsQI5s2bh8lkYtasWUydOtXXwxsw9Hdr/9Gd35MXXXQRV199Nf7+/lxyySUMHTrU18MbMLrzOd57773cfPPNAMydO5dhw4b5eHRyIkyGYRi+DqKvefDBBzn33HM5/fTTARgxYgSjRo3irbfeAuDNN9+koKCAu+++23vNOeecw3vvvUdgYCAFBQXcd999zJ8/n+zsbH7xi18AcN9993HppZcyY8aM3h+UiIiIiIj0W1r70gXdtVb6u/dxOBzqaSMiIiIiIt1OiV8XdNda6XHjxrFp0yaam5upq6tj7969mjIXEREREZFup6WeXeDxePjNb35DdnZ2h7XSjz76qHet9N13391hrXR5eTn3338/Doejw1rppUuX8vrrr2MYBrfddpvKjouIiIiISLdT4iciIiIiItLPaamniIiIiIhIP6fET0REREREpJ9T4necPB4PDz30EPPmzeO6664jLy8PALfbzZ133ukt9nI0GzZs6NDeQUREREREpLco8TtOK1aswOl08vrrr3Pvvffy+OOPk5+fz4IFC9i2bZuvwxMRERERETkqP18H0Fds2rSJWbNmATBhwgS2b99OQ0MDixcv5vnnnz+he7366qt88sknuFwuQkJCeOqpp3j//fdZtWoVTU1N5Ofnc8stt3D55Zf3xFBERERERGSAUeJ3nOrr67Hb7d6vLRYLQ4YMwc/vxD5Cj8dDdXU1L730Emazmf/6r//yzhjW19fzwgsvkJuby49//GMlfiIiIiIi0i2U+B0nu92Ow+Hwfu3xeI6Y9L366qt8/PHHAPzhD38gODiYkJAQAEwmE2azGX9/f+655x6Cg4MpLi7G5XIBMGLECAASEhJwOp09PSQRERERERkgtMfvOE2aNMlbwCUzM5Nhw4Yd8bwFCxbwyiuv8Morr1BdXc3tt98OQGlpKZGRkWRlZbFixQr+93//l1//+td4PB7aWymaTKbeGYyIiIiIiAwomvE7Tueccw5r165l/vz5GIbBo48+2uk1w4cPJzk5mfnz5xMQEMDjjz9OeHg4QUFBXH755VitVmJiYigtLe2FEYiIiIiIyEBlMtqnm0RERERERKRf0lJPERERERGRfk6Jn4iIiIiISD+nxE9ERERERKSfU3GXLmppaeGXv/wlhYWFOJ1Obr/9doYMGcIDDzyAyWRi6NChLFq0CLPZzBNPPMHmzZtxuVzMmzePq6++msrKShYuXEhTUxOxsbE89thjBAUF+XpYIiIiIiLSD6m4SxctW7aMrKwsHnzwQaqqqrjssssYMWIEP/rRj5g2bRoPPfQQs2bNIiQkhFdeeYU//elPOJ1OLrjgAt58802eeuopRo0axeWXX85zzz2H1Wrlxhtv9PWwRERERESkH9JSzy6aO3cuP//5z71fWywWduzYwdSpUwGYPXs2X375JRMnTuzQ+sHtduPn58emTZuYNWtWh3NFRERERER6ghK/LrLZbNjtdurr67nzzju56667MAzD24TdZrNRV1dHQEAAYWFhtLS08MADDzBv3jxsNhv19fWEhIR0OFdERERERKQnKPH7HoqKirj++uu55JJLuOiiizCbD32cDoeD0NBQAGpqarj55pvJyMjgtttuA8But+NwOA47V0REREREpLsp8eui8vJybrrpJn7xi19w5ZVXAjBq1Cg2bNgAwOrVq5kyZQpNTU3ceOONXHHFFfz0pz/1Xj9p0iRWrVrlPXfy5Mm9PwgRERERERkQVNylixYvXsyHH37I4MGDvccefPBBFi9eTEtLC4MHD2bx4sW88sorPP3004wcOdJ73qOPPkpQUBD3338/DoeDiIgIlixZQnBwsC+GIiIiIiIi/ZwSPxERERERkX5OSz1FRERERET6OSV+IiIiIiIi/ZwSPxERERERkX5OiZ+IiIiIiEg/p8RPRERERESkn1PiJyIiIiIi0s8p8RMREREREennlPiJiIiIiIj0c/8fxSSyudQU9PQAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4sAAAFOCAYAAAAvqYhNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xl4XdV59/3v2vuco8marMEaPMsDxiPYzGEyg3EYQtukUJpAk6ZpQqE8tJCHJ1BMocTF0KZJCvWboSEhBJoBKBBiQzAETMBgjEF4wtjGgyRLsubxDHuv949jHxAafCRrsOzf57p8Ie1h7XvLwpdurbXu21hrLSIiIiIiIiKf4Ix0ACIiIiIiInL0UbIoIiIiIiIi3ShZFBERERERkW6ULIqIiIiIiEg3ShZFRERERESkGyWLIiIiIiIi0o2SRREREREREelGyaKIiIiIiIh0o2RRREREREREulGyKCIiIiIiIt0oWRQREREREZFulCyKiIiIiIhIN4HhfuD111/Pvn37cByH9PR0/umf/olZs2axePFiQqEQKSkpANxyyy2cffbZAGzcuJE777yTcDhMaWkp999/P3l5ef16bkNDG75vB/19REREREREjmaOY8jNzej3fcZaO6wZVEtLC5mZmQD8/ve/58EHH+TJJ59k8eLFrFy5khkzZnS53lrLxRdfzPLly1m0aBEPPfQQe/fuZfny5f16bl1dq5JFERERERE57jiOIS9vTP/vG4JY+nQoUQRobW3FGNPn9eXl5aSkpLBo0SIArr76alatWjWkMYqIiIiIiBzvhn0ZKsDtt9/Oa6+9hrWWH/3oR4njt9xyC9ZaFi5cyD/8wz+QlZVFVVUVJSUliWvGjh2L7/s0NjaSk5OT9DMHkkmLiIiIiIgcr0YkWbz33nsBeOqpp1ixYgU//OEPefTRRykuLiYSiXDvvfdy991388ADDwzaM7UMVUREREREjkejZhnqJ1155ZWsW7eOhoYGiouLAQiFQlxzzTVs2LABgOLiYiorKxP31NfXY4zp16yiiIiIiIiI9M+wJottbW1UVVUlPl+zZg3Z2dmkpKTQ0tICxAvaPPfcc8yaNQuAOXPm0NnZyfr16wF4/PHHWbp06XCGLSIiIiIictwZ1mWoHR0d3HTTTXR0dOA4DtnZ2axcuZK6ujpuvPFGPM/D933KyspYtmwZAI7jsGLFCpYtW9aldYaIiIiIiIgMnWFvnTFStGdRRERERESOR6Nyz6KIiIiIiIgcnZQsioiIiIiIHMOs7w/oPiWLIiIiIiIixyhrLZ2rvjOge5UsioiIiIiIHKNsywH8pqrDX9gDJYsiIiIiIiLHKK9mx4DvVbIoIiIiIiJyjPJqdoIbHNC9ShZFRERERESOUV7tTpzc8QO6V8miiIiIiIjIMch6MfwDH+HkTRjQ/UoWRURERERERjnr+0R3voX1vcQxv34feDHc/EkDGlPJooiIiIiIyCgX/eBVOn//ILFdbyeOHSpu4+RNHNCYShZFRERERERGMet7RN55FgCvenviuFezE5OWhUnPGdC4ShZFRERERERGsdiOddiWWgim4VV/3CrDr9mBW1iGMWZA4ypZFBERERERGaWs9Ym88yxO7niCs87Dr9uNjUXw2xvxm/bjjCsb8NhKFkVEREREREYpr2ILfmMloZMuxS2aBr6Hd2A3sZ3rAQhMPnnAYwcGK0gREREREREZXn5zNQBu8Qlg4nOBfvWHxPZsxMktxc0pGfDYmlkUEREREREZpWx7E2AwaVk46dmYzAJiH23Aq/qAwNRTjmhsJYsiIiIiIiKjlG1vxKRlYhwXAHdc2cGKqJbAFCWLIiIiIiIixyW/vbFLawy3MF7QxskpwR1bekRjK1kUEREREREZpeynk8Vx0wEITF10xGOrwI2IiIiIiMgoZdubcPMmJj538ieRcs6XCU5RsigiIiIiInJcsr6P7WjqMrNojCF0wrmDMr6WoYqIiIiIiAwjG+2k46Uf4rc1HNk4nc1gLSY9e5Ai60rJooiIiIiIyDDy9m8ntv01YjvfPKJx4m0zwKTnDkZY3Qx7snj99ddzxRVXcOWVV3LNNdewZcsWAHbt2sVVV13FkiVLuOqqq/joo48S9/R1TkREREREZDTxm6qBeNJ4JGx7fGbSOVZmFu+77z6efvppnnrqKb7yla/wrW99C4Bly5ZxzTXXsHr1aq655hruvPPOxD19nRMRERERERlN/OaPk0Vr7cDHScws5hzmyoEZ9mQxMzMz8XFrayvGGOrq6ti8eTOXXXYZAJdddhmbN2+mvr6+z3MiIiIiIiKjzaGZRdvRhG2pHfA4tr0RYMj2LI5INdTbb7+d1157DWstP/rRj6iqqmLcuHG4rguA67oUFhZSVVWFtbbXc2PHjk36mXl5Y4bkXURERERERPpjT2sNwfzxRA/sI71tL5llZQMa54DfTixtDIVFyedF/TEiyeK9994LwFNPPcWKFSu46aabhvyZdXWt+P7Ap3hFRERERESOlPVjxBprCc2/BJrraNxeTmfxwgGN1VFfC6k51Na29Hmd45gBTZ4ltQz1xz/+cY/Hf/KTn/T7gZ905ZVXsm7dOoqKiqiursbzPAA8z6Ompobi4mKKi4t7PSciIiIiIjKa2JY6sB5OdhHuuOl41R8MeCy/rXHIlqBCksnigw8+2OPx//qv/+rXw9ra2qiqqkp8vmbNGrKzs8nLy2PWrFk8++yzADz77LPMmjWLsWPH9nlORERERERkNDm0X9Fkj8Mtmo7fUIntbD3sfbH9HxDZ8nKXY7a9cciK28BhlqG+/vrrAPi+zxtvvNGlUs++ffvIyMjo18M6Ojq46aab6OjowHEcsrOzWblyJcYY7rrrLm677TYeeughsrKyuO+++xL39XVOREREREQGl9/eSPj1xwhOOwN34nyMMSMd0jHjUCVUJ2sc+D4AXvWHBCYt6PUe6/t0/uHH2KZq3PxJuAVTsNZiO5qGrG0GHCZZvP322wEIh8OJFhcAxhgKCgq44447+vWw/Px8fvnLX/Z4rqysjF/96lf9PiciIiIiIoPL27eJ2I51xHaswy2aQdol/wcTSh/psI4JftN+CKZi0rJwQ6lgHLyaHX0mi7Fd67FN1WBcwm/8D2mX/V9suBV8b+RmFtesWQPAN7/5TVasWDFkQYiIiIiIyNHDP9iSIbToT4msf4LY7o0Ep585wlEdG/ymapzscfHZ2kAKztgJeDU7e73eWktk4zOY7CJCsy8g/MdH8fa8i8nMA8BkDF2ymNSexU8mir7vd/kjIiIiIiLHFtvWAME0QvMuAQx+c81Ih3TM8Juq40tQD3ILp+DV7sTannMrb285ft1eUuZ/luCJ52Oyx9H5x0eJ7XwLYEhnFpNKFjdt2sRVV13FggULmD17NrNnz+bEE09k9uzZQxaYiIiIiIiMDNvWgJORiwmEMBm5iaIscmSsF8O2HsDJ/mSyWAaRjvjy1B5ENq/BZOQSmH4mxgmQes5XwI8R2fA0AM5ILUM95LbbbuP888/n29/+NqmpqUMWjIiIiIiIjDy/vRGTkQuAkz0Ov6V2hCM6NtiWA2Btl2TRKZgKgF+zEzenhOgHa3FySw8WsfHxqrcTnLIQ48ZTt0DxTDKuuo/oB2vx6/dhxuQPWbxJJYsVFRXcfPPNqoIkIiIiInIcsG0NOKWzAHCyCol9tGGEIzo2xPaVA+DkfNwz3skphmAqXs1O3KIZdL78Y9wJc0hf+o/4jfsh3IY7bnqXcUwgROjExUMeb1LLUC+66CLWrl071LGIiIiIiMgIs9bHtjfhpMdnFk3WOGxnCzbSMcKRjW5+037Cb/4Kt3Q2TsGUxHHjOLgFU/BqdhIpfx6weJXbsF4Ur3o7AO64aSMSc1Izi+FwmBtuuIGFCxeSn991mlNVUkVEREREjh22oxmsl6iy6WQVAOA31+DmTxrJ0EYt63t0vPQDcIOknvdVjOk6Z+cWTiXy7ir8xipMZj625QDe/u341TsgJQOTXTQicSeVLE6bNo1p00YmmxURERERkeFjD7bN+OSeRYg3k1eyODCxHevwa3aSesE3cA5+XT/JKZwK1oOYR+r5/0jHM/fhVWzCq/4Qd9y0EdsOmFSyeMMNNwx1HCIiIiIichSwbQ0AiWWoTlYhAH6T2mcMlF+/D5wAgSmn9HjePVjkxi09kUDRDNxxZUR3rsc2VxOadvpwhtpFr8niW2+9xSmnxF/m9ddf73WAM844Y/CjEhERERGREeEfTBYPzSyaYComLQs7Cnot+h3NdL7wnzjZRQSmLMKdMPeoKNLpN1bhZBdinJ5LxjgZuaScdhXuhLkAuOPn4K1/Iv5x0fQe7xkOvSaL//zP/8yzzz4LwO23397jNcYYXnzxxaGJTEREREREhp1tbwRjMGlZiWNO1jj85qO/12Jk42/xqrfj1e0huu0VUs76EqHZF4x0WPhN1Tg5fe87DM1fmvg4MH42kfVPgIkXvxkpvSaLhxJFgDVr1gxLMCIiIiIiMrJsWwMmLRvjuIljJrsQr2LzCEZ1eH5bA9HNawhMP4vUs6+j/Ym7iO1aP+LJovV9/OZqApMWJH2Pkz8FQuk4mQWY4Mj1uU9qzyJALBbjnXfeobq6mqKiIhYsWEAgkPTtIiIiIiIyCvhtDYklqIc4WYXEPngNG4tgAqF+j2l9r0vyORQiG58F3yfl5CswbpDAxPlEyldjIx2YUNqQPrsvtvUA+B5OPyqaGsch9awvYlLShzCyw0sq29uxYwff+MY36OzspLi4mKqqKlJSUli5ciVlZWVDHaOIiIiIiAyh2J53ie3bRMoZV2PbGhPtMg5xsg5VRK3FHVvar7HD658k8u7vCJ10KaH5n8W4wUGL+xC/rYHolj8QnPmZREEed8JcePc5vMqtBCafNOjP/DRrbY/7I/2m/QCYwyxD/bTg9DMHJa4jkVSy+M///M/8+Z//OX/913+d+AL8+Mc/5q677uKRRx4Z0gBFRERERGToxPZtouP574MfIzBxHn57A27xjC7XJCqiNlf3K1mMbn2FyIb/xckuIrL+SaJbX8HNm4jJzCdl0Z8O2oyfV/0h+DGCs85LHHPHTYdgKrG97w1psug1VNL54kO4BVNJPfcr3c77TfG9nv2ZWTxaJJUsbt26lZ/85CddMuXrrruOlStXDllgIiIiIiIytLzaj+h4/ns42UXYjiYi5ash3IZJz+ly3aHiLH79Pph8clJjx6q20fnqT3HHzyHtkv+DV7mVyPsv4DdX4+9+B3fcNIJlpw3Ke/jNtfE4P5GQGTdAoGQWsX3lvc76DYSNhYm8tyq+vDWQEv+aRTvxm2tJ+cyXus2c+o37IZSGSc0clOcPp55rt35KYWEhb775Zpdj69evp7CwcEiCEhERERGRoRfZ+CwmECLt0lsIzjwbb285QLfG8SaUjpNTjFezI+mxo5tfwqRmkHbh32GcAIHxc0i/5GbS/+QuMAa/oXLQ3sM212BSM7vNVLoT5mFbDmAPLgXt8d7O1kSyeTheQwXtT94dnyXdtCY+a5pbSspnroVYGG//9m73+E37cbKLjooWHv2V1MzizTffzPXXX895551HSUkJlZWVvPzyy9x///1DHZ+IiIiIiAwBay1e1TbcCfNw0nMIzjqfyLu/A2y3AjcATuFUvD3vJTVLZ63Fq9yMWzq7WwJnAiFMViF+Q8WgvYvfUoP51D5LgMCEuYSB2N73COUUfypGn+jWVwi/+SsMhowvfa/XPogQTyrbn/oXTCBI2mdvwS2dDdEOCKZBLEz4j48S21tOoPTErrE17cctmtHLqEe3pGYWL7jgAp544gmmT59OW1sb06dP54knnuDCCy8c6vhERERERGQI+E1V2M6WxP5EJ6sg0RTepHdPFt3CMmxnC7blwOHHbqzEdjQTKJnV43k3pwS/cfBmFv3mmsS+yk9yMvMxmQV41d1nRMN//AXhVx/GuEFsuDVRiKY3sb3vQbSDtItuJDB+DsYYTCg9/t9gKm7RjMTM7CE2FsG21o3K/YrQj9YZU6ZM4Rvf+AYNDQ3k5uaOymlUERERERGJ86o+ACBQNDNxLGXhlYSNwcnunni5hVPj99Xs6FYttdvYFVvi95T2nCw6uaXE9ryH9WMY58ja8VkvFk/Ieqke6uZPwqvb3fWeSAfRba8QmHYGoQWX0v7rO/Brd+HmlvT6nNjujZi0LJxxPXeDCEyYS3jdL/Fb63HGjAXiBYEAnOxxA3m1EZfUzGJzczO33nor8+bN46yzzmLevHnceuutNDY2DnV8IiIiIiIyBLyqbZi0LMwnEhm3cCrpl9zcY3sLZ+x4cIN4NTsPP3blFkxmAU5mz0mlk1sC1sNvqhn4CxxkWw+AtT3OLAI4+ZOwTdXYSEfiWHTnmxCLEJp9AU5OCQRCeAc+6jruoUI2sTDWjxHbV05g4nyM6TmFcifMAyC2rxzvwG6iO98itufgHtBPLYEdLZJK4//f//t/uK7LU089ldiz+L3vfY9vfetbPPTQQ0Mdo4iIiIiIDILYnvfADRAoPTG+X7F4ZtIrBo0TwM2fjFfbd7JofZ9Y1VaCkxf2eo1zcAbPb6joczYvGX5zPOE0vSSmbv4kALy6PQSK47Oo0W2v4uQU4xSWYYzBzZuEX/tRl/tiH20g/Mbj2I5m3PFzINKBO2lBH+9UisnIJfzaI+DFPj5hTK+J7NEuqWRx3bp1rF27ltTUVADKysr413/9V84+++whDU5ERERERAaHtZbOV/4bG24n7aLrsW31uEWf7dcYTuFUoptfxHoxjNs1lYhs/QN+QyWBCXMh3NbrElQ4NNNmBmXf4qFksdeZxbx4sugf+AiKZ+I3VuFXf0jKaX+eSJSdgslEt/4B63sYxwXAq9kVf6/3VuM2VIATIFA6u9c4jDGE5l5CbO+7BKacgls4Bb/lACaQMmj9JIdbUsnilClTqKiooKzs4/W5lZWVTJkypV8Pa2ho4Jvf/CZ79uwhFAoxadIk7r77bsaOHcvMmTOZMWMGzsEKRCtWrGDmzHjmv2bNGlasWIHnecyePZvly5eTljY6v+AiIiIiIkPNb60jtu99/NpdBGeeg1s4Fb9hH7a9ETB0vPCfAIniNslyx5URLV+NX7cnsYcRwG9vIvzao+BFiJavjl/bS3EbIJ5AZeYPSvsMv7kW3FC33pCHOOnZmIxcvAPxfYvRD9aCcQh8Yo+jWzCF6Psv4DdW4Y4dD4BXuxMntxS/rQFvz7u4E+Zigql9xhKat4TQvCUfj5s/+QjfbmQllSyeccYZfOUrX+Fzn/scRUVF7N+/n6effprPfe5z/PrXv05c9/nPf77PcYwxfPWrX+W00+LNN++77z4eeOABvv3tbwPw+OOPk5GR0eWetrY2/umf/olHH32UyZMnc/vtt/PjH/+YG264oV8vKiIiIiJyPPDqK2h/clliKaTfWkf60n/E2/c+AKnn/w2dL/8QQuk4ueP7NbZbGJ888mp2dkkWI++tAj9K6sV/T3TLS2AcnF6St0Oc3JJBSRZtcw1OVkGfy2mdvEn4B3Zjo2GiW/5AYOL8LvE5B5M6/8BHuGPHY30P/8AegrPOI5hTRHjtzwhM7H0J6rEqqWTxnXfeYeLEibzzzjuJYxMmTGDDhg1s2LABiCeCh0sWc3JyEokiwIIFC3jsscf6vOeVV15hzpw5TJ48GYCrr76a2267TcmiiIiIiMinWGsJv/4LcEOkX7mM2I43iLz7HH57I7F9m3BySwhOPxN8DxsL99lXsCcmYywEUxNVPgH8jmaim18kUHY6wcknE5x8clJjOTklRCs2dVn6ORC9tc34JDd/EpG97xLZ9HtsuJXg/K7Lb53sIgim4tXuIjjjM/EekF4Et3AKgbLTMKmZBPrYr3isSipZfOSRRwb9wb7v89hjj7F48eLEsS996Ut4nsc555zDjTfeSCgUoqqqipKSjze9lpSUUFVVNejxiIiIiIiMdt6ed/EqNpFyxjW4eRPAcYls/C3Rba/iVW0jOOt8AIIzB1Z7xBiDM2YstrU+cSxa/jzEooROurxfY7m5JUS9GLalFnOwD2GkfDVOwVQCRdPj71Ozg+iHb2A7W3ELphCae3GXMay1+M218QI0fXDyJ4G1RN5+CrdoRmL8xHs5TrzFxsEiN4cqvroFUzHGITj1lH6927HiyJqaHIF77rmH9PR0vvjFLwLw8ssvU1xcTGtrK7feeisPPvggN99886A9Ly9vzKCNJSIiIiJytLFejH2//iXBvBJKzv1cvABNwUz2FZUR3fgseFHy5pxKekHmET0nlluI195IwcFx9u55m7SykyiaMfMwd3bVGZlO5R9gTKyejILpeO3N7H79cUKFEyj66r9jvSh7H/0efrgD4wbwPnqbknOuwAQ+busRa6mn1YuQVTKB7D7eK5Yymz3PA16UgnM/3+PXoG7CdJo3PE9epkNdyz6iqWMoLCs7rvvLj0iyeN9997F7925WrlyZKGhTXBzvPTJmzBi+8IUv8JOf/CRxfN26dYl7KysrE9f2R11dK75vByF6EREREZGjT2zfJqL1laRe+HccqP+4p6CZchp2/w5wArSmT6CttuXInhPKJla5g9raFqzvE22swUw8mdp+jmudseCGqN+6gfa8E4nueAuwRGr2sH/jOvyWWry2JtIu+78Q6aTj+e+yf9NGAiUnfBzL/njF0nYni0gfz7c2hEnNxKRn05o1vcevgTd+EfbN31Kx+hG8qg8weZM4cKC1X+90tHIcM6DJs/4tUh4E3/nOd3j//fd58MEHCYVCADQ1NdHZ2QlALBZj9erVzJoVr5509tlnU15ezkcffQTEi+AsXbp0uMMWERERETmqeZVb4lU+J8ztcjww7XQwDm7xDEwg5YifY8bkYTtbsLEItr0BfK/XHod9jhMI4ZbOIrZnI9ZavIpNEEzDpGURee93RN77HU7BFNziE+JVW42Jv+Mn+PX7gIN7Dvt6ljGkXnQDqRdc3+tMoZs/meCJ5xPd9Hv8+r1dCvgcr4Z1ZnH79u2sXLmSyZMnc/XVVwMwfvx4vvrVr3LnnXdijCEWi3HSSSdx0003AfGZxrvvvpu//du/xfd9Zs2axe233z6cYYuIiIiIHPViVVtxCqZ0a+/gpGWRes6XD/Y2PHLOmLEA2LZ6/LaG+LEBNp0PTFxAeM+7+A2VxCo2EyidhZM/mcj6JwBIufBgcpeSgZM3Ca9qa5f7vX2bMGPykkpWA8WHXyabcsqfEdu1HtvRjFPQvzaBx6KkksW9e/f2eDwUClFQUJBYSno406dPZ9u2bT2ee+aZZ3q978ILL+TCCy9M6hkiIiIiIscbGw3j1+wiNP+SHs8PtKBNT8yYPAD81nr8lloAnAHMLAIEJi0gvPanRN9/HttSiztvCYGy04i88ywmPZvA5EWJa92SE4i+//t4FddACtb3iFVuJjjllEHbV2hSMkg560uEX/s57qeK4ByPkkoWL7roosRfgLW2y1+G4zgsXryYZcuWkZ+fPzRRioiIiIhIr7zq7WA93OITDn/xEXIOJou2tQ7bXAvGxRycbez3WBm5OHmTiG57BYBA6Wyc1EzSLrwek5bZpbVHoGQW0fdW4e3/kMD42fi1uyDSgTt+9pG/1CcEp55y3FY//bSkpgTvueceLr/8clavXs17773HqlWruOKKK1i2bBlPP/00sViMu+++e6hjFRERERGRHniVW+P7EodhNsxk5AIfzyyazLwj6pMYmLQArMVkjE200AhMWoBbWNblOrdoBhgnsW8xVrEJMLilJw742dK3pGYWv//97/PCCy+QkhLfEDtp0iTuuusulixZwiuvvMK//uu/cvHFFx9mFBERERERGQq97VccCsYNYtKysG11+M21A16Cekhg4nwiG/4Xt3R2n8tJTSgNp2AyscotpBDfr+jkT8JJPbJWINK7pGYWfd9n3759XY5VVlbi+z4A6enpeJ43+NGJiIiIiEifbLQTv2ZXl5YSQ82MycNvrce21OJkHVmy6BRMJjh3CaE5h69REph0En7NDjpfewSvegeBQV6CKl0lNbN43XXXcd111/Fnf/ZnFBUVsX//fp544gmuvfZaAP7whz+wYMGCIQ1URERERES68yq3Dtt+xUOcjLF4tTuxnS2YzIFVQj3EGIfUM/4iqWtD8y/FtjcS3fQiAG6pksWhZKy1SXWqf+WVV1i1ahU1NTUUFBSwdOlSzjnnnKGOb9DU1bXi+0m9qoiIiIjIqNHxwn/iVW0j4y+/g3GHpzNe5x9/QfT95wFIvfDvhrUgjLWW6KbfE9vzLmlLbsK4wWF79mjlOIa8vDH9vi/p76ZzzjlnVCWHIiIiIiLHguiHb+A3VpGy6E+6nfM7W4jtfofgiRcMW6IIH1dEBY54GWp/GWMIzbmI0JyLhvW5x6OkvqMikQhPPvkkW7Zsob29vcu5FStWDElgIiIiIiIC0W2v4FVsxskpJjjt9C7nYh++Ab5H8ITB66OYjE+2yjjSAjdy9EoqWbztttvYunUr559/vnopioiIiIgMI7+1HoDOtT/DLZqBczBRs9YS3foKTv5k3LEThjWmxMxiSgYmJWNYny3DJ6lk8dVXX+XFF18kKytrqOMREREREZGDrLXY1joCk04iVrGZzld/QvrSfwTAr9uNX7+XlLO+NOxxHZpZ1KzisS2p1hnFxcVEIpGhjkVERERERD7BhlvBi+KWzCI0/7N4e8vx2xsBiO16G4xDsOy0YY/LpGWB4+JkHVklVDm6JTWzeOWVV3L99ddz7bXXkpeX1+XcGWecMSSBiYiIiIgc7+zBJahmzFjczAIibz8Zb0Y/4yxi+97HLSzDpPa/yuWRMsYhtOAy3MKyYX+2DJ+kksWf//znAPz7v/97l+PGGF588cXBj0pERERERPBb64B4X0MnbwImNZPYvnLcCXPxaz8i1EOF1OHSU3VWObYklSyuWbNmqOMQEREREZFP+XhmMQ9jHNzxc/D2vY+3733AEhg/Z2QDlGNaUnsWRURERERk+Nm2enACmLRMAALj52A7W4i8+xwmNROnYPLIBijHtF5nFpcuXcrvfvfbWyKFAAAgAElEQVQ7AM4991yMMT1e9/LLLw9JYCIiIiIixzu/tQ6TkYsx8Tke9+BMol+/j8C00xPHRYZCr8niPffck/j4/vvvH5ZgRERERETkY7a1/uOehoCTno2TNxG/bg+B8XNHMDI5HvSaLC5atCjxcV1dHUuXLu12zapVq4YmKhERERERwW+rxy2e2eVYYMI8IvX7cMfPHqGo5HiR1Lz17bff3uPxO++8c1CDERERERGROOv72LaGLjOLAKGTLiP9c3fgpOeMUGRyvOizGurevXsBsNYmPv7kuVAoNHSRiYiIiIgcx2x7I1gfkzG2y3ETTMUtnDpCUcnxpM9k8aKLLsIYg7WWiy66qMu5/Px8brzxxiENTkRERETkeGXb4m0znDFjD3OlyNDoM1ncunUrAF/84hf5+c9/PiwBiYiIiIgcj8Jv/QZ3wlwCRTMA8D/RY1FkJBx2z6Lneezfv59IJDIc8YiIiIiIHHe8ur1E3nmGaPnziWO2tQ7QzKKMnMMmi67r4rounZ2dwxGPiIiIiMhxJ7r9NQC8qm1Ya4F4JVSCqZhQ+kiGJsexpKqhXnvttdx88828+eab7Nmzh7179yb+9EdDQwN/8zd/w5IlS7j88su54YYbqK+PT69v3LiRK664giVLlvCVr3yFurq6xH19nRMRERERGc2s7xP78A1wQ9jOFvzGqvjxT/VYFBluxh761UUfTjjhhJ5vNoYtW7Yk/bDGxka2bdvGaaedBsB9991HU1MT9957LxdffDHLly9n0aJFPPTQQ+zdu5fly5djre31XH/U1bXi+4d9VRERERHpp+jWVyCYSrDs1JEOZchYP4Zx+iz3MWCxis10/HYFoVM+T+StX5PymWsJnnAubY/dglswlbSLVVRSjozjGPLyxvT/vmQu2rp1a49/+pMoAuTk5CQSRYAFCxZQWVlJeXk5KSkpLFq0CICrr76aVatWAfR5TkRERERGlt/WQOfanxF573cjHcqQ8VvraH34eqIfvDYk40e3vwbBNEJzL8ak5+BVbcPbW45tayAw/cwheaZIMobm1yNJ8H2fxx57jMWLF1NVVUVJSUni3NixY/F9n8bGxj7P5eQk34h0IJm0iIiIiPStbuOvwY9Bay0FBZkjHc6QaNq9lrZYhMib/8O4hWfjpmYMeCzrxWjbto6Mmadh3AB+uJ3dH71N5olnUVCcR/Xk2XTu2YJxPNyMHIoXfgbjjtiP7HKcS+o7LxaL8Ytf/IK33nqLhoYGPrly9dFHHx3Qg++55x7S09P54he/yAsvvDCgMfpDy1BFREREBpff0UzbhufBDeF3tFKzbz8mZeCJ1NGqffM6TGomfkcLlasfIfXMvxzwWJEtLxN+9WFCp36elAWXEX77f7GRTrypZ1Nb20JsbBne5tdo315PaMGlHKjvGMQ3kePVkC5DXb58Of/zP//DokWL2LRpExdffDF1dXWcfvrp/X4gxPcq7t69m//4j//AcRyKi4uprKxMnK+vr8cYQ05OTp/nRERERGTkRMufh1iU0EmXAeC3HBjhiAafjXbiVWwhMP1MgiecR3TTi0R3vY31vf6PZS3RzWsAiLzzLF5DBZHyVQQmn4xbMBkAt/jjWiHBE84dlHcQGaikksXnn3+eH/7wh1x33XW4rst1113Hgw8+yLp16/r9wO985zu8//77PPjgg4RCIQDmzJlDZ2cn69evB+Dxxx9n6dKlhz0nIiIiIiPDhtuIbHqRwJSFBCbOB8BvrhnhqAZfrGIz+DECE+cTOuVPMek5dL7wfdoevZnI1j/0ayy/did+3R6C8y4BL0b709+GSAehhX+SuMbJKcakZeOWzsbJKhzs1xHpl6SWoXZ2dlJcXAxAamoqHR0dlJWVsXnz5n49bPv27axcuZLJkydz9dVXAzB+/HgefPBBVqxYwbJlywiHw5SWlnL//fcD4DhOr+dEREREZGRENr0I0Q5CJ12eSGr85toRjmrweXs2QjANt2gGxg2QcfV9xPa+R7T8ecKv/ATbWkdo4Z9gjOl6X30Ffs0OgieckzgW2bwGgqmknPw5jHGIvPscgamn4uZNSFxjjCHtsm8ek8t5ZfRJKlksKyujvLycefPmMWfOHL7//e8zZswYxo0b16+HTZ8+nW3btvV47uSTT+aZZ57p9zkRERERGV422km0/HncifNx8ycBYFIzsS3H1syitT6xPe8RmDAnUWTGuEGCkxcSmLiA8Ks/JbLhaTAOKQuv7HJvZMP/Etv5Js7Y8biFU7GdrcR2vElw5tmYUBqhky7HWktozoXdnuvmlg7L+4kcTlLLUL/1rW/hui4At912G5s3b+all17innvuGdLgREREROToE93yEjbcSspJlyeOmcyCY25m0a/bi21vTCyz/STjuKSc82XcifOJbl7TZQ+jtT5eZbzFXHj9E/H/vvUb8KIETzw/fn8ojdTTr8IZkzcMbyIyMEnNLBYXF1NQUADA5MmTefjhhwGorT22/kEQERERkd5Za4ntfJPwO8/ilszCHTctcc7JKsCr2TmC0Q0+v6ECAKdgao/njTEEZ3yGzj3v4lVtI1B6Yvy++gpsZwtO/mS8fe/T+fpjRLe8RHDeUtyxE3ocS+RolNTM4pIlS3o8fumllw5qMCIiIiJydLK+T8fq79L54n/hZOaT+pnrupx3sgqxrXUDqhJ6tPKbqsEYnKyCXq8JTJwPwVRiO95IHPMq4nU90hZ/HZOWRbR8NU7hVFJO/bMhj1lkMCWVLH6yr+Ihra2t3TbyioiIiMixyT+wC2/PRkILLiP9ymU4OUVdzjuZBWB9bGtdt3ut9fHq9/X4M+XRzG+qxozJx7jBXq8xgRCBSSfF22l4MQBilZsx2UU4OUWknHYVJrOAtMXfwDhJLeoTOWr0+R177rnnYowhHA5z3nnndTnX2NiomUURERGR40Rs3yYAgnMvxjjd5xvMwdk3v7m2W8uH6JaXCa/9GU52EcE5FxE8cXGvkw7hjc9hXJfgiRckisqMFL9pP0724Qs6BqedRuzD1/Eq3scdPwevahvBaWfEz804i8D0MzXJIqNSn/8H3n///Vhr+drXvsaKFSsSx40x5OXlMXVqz+u3RUREROTY4lVuwcmbgJOW1eP5RPuMlu41LWIfvoEZkwcp6YRfewSTkkFw2undrvOba4i8+Usg3poj7fyvddkXOZystfhN1QQLyw57rVs6B1IyiLz7O0K+hWgn7sH9i4ASRRm1+kwWTz31VADeeOMN0tLShiUgERERETm62FgYb/92gj20eTjEpOeCE8A2d22f4bc34u3fTmjhlYROvpy2X36LyHu/I1B2WrckKvrBWsCQet5fE37z14Tf/DXpl982FK90WLazBaId3Zbb9sS4AVIW/QnhPz5GR9V3AQiUzBrqEEWGXFJ7Fh9//HG2bImX/924cSPnnXceF1xwARs2bBjS4ERERERk5Hn7t4MfI1ByYq/XGMfBZObjfypZjO16G7AEpi7CGIfQvEvwD+zGq9ra5Trr+0S3rcWdMIfgjM/gjp+D37R/KF4nKYee7WQl11c8NPtC0j9/N27pbAKTF2JSxwxleCLDIqlk8eGHH2b8+PEA/Nu//Rt/9Vd/xde//nWWL18+pMGJiIiIyMjzKjaD4+IWz+jzOiersFuCF9u1HienJNFoPjj9TExqJpH3Vn3qGZuwbfUEZ54dHyt7HLa9ERvtHMQ3SZ5tqo7HkcTM4iFubinpl95K2sU3DlVYIsMqqWSxpaWFzMxMWltb2bZtG1/60pf4whe+wK5du4Y6PhEREREZYbGKzbiFZZhgap/XuePK8Osr8DtbAPA7mvGqthKYsjBxjQmECM6+EG/Pu0TKV2PDbdhIB9HNazApYwhMOgkAJzuepPkHk7bh5jftB+PG91qKHKeSKjFVXFzMhg0b+PDDD1m0aBGu69La2orrukMdn4iIiIiMIL+9Ef/AbkILrzzstYHS2UTWP4lXsQWn7FRiH20AawlMPaXLdaHZFxDbV0749ccIr/slHOzNGJx3SaJNxaEqpH5TNW7+pEF+q8Pzm6oxWQUYRz/vyvErqWTxm9/8Jn//939PKBTie9/7HgAvvfQSc+fOHdLgRERERGTkWN+n86UfgOsSKDvlsNc7BVMglIZX8T7BslOJffAaTk4xztgJXa4zqWPI+NwdeLUfEd2xDpOSjps7HnfivI/HyjqULI7MvkW/qTqpthkix7KkksVzzz2XtWvXdjl2ySWXcMkllwxJUCIiIiIy8iJvP4lXsZmUc76Mm1Ny2OuN4xIomUVs3yb8pv141dsJnfqFXltHuAWTcQsm9zxWMAWTkTsiy1Ct9eNtM0p7L+gjcjxIas9iT4LBIMFgcDBjEREREZEREt35Jm3/cxteY2Xi88g7zxCceTahE85Nehy3dDa2tY7wW0+AMQSnnzngmJzsIvzmEUgW2xrBi2hmUY57A04WRURERGR0srEIna/+lM4//DhxLLLxt/hN++n47QNEP3iNzjU/wB03nZSzvtSvsQPjZwMQ2/km7vg5OBm5A47TyRqHbRz+ZaiHEtRDRXZEjldJLUMVERERkWOD33KAjue/j1+3G4DAjM9ggqn4B3YTnHUe0Q/X0fnyD3Fyx5N2yf/BBEL9Gt9kjcOMycO21hGcftYRxerkjMOGW7GdrcPat9Cv2xt/fu7hl96KHMs0sygiIiJyHOl89WH85hpSL7w+3u/wnWeIbnsVnAApp3yetKU3E5iyiLTP/iMmJaPf4xtjCEycH2+DMfnkI4rVyTrYPqO5GhuL4Lc3Js5ZL4rfXHNE4/fGq92JyRiLk54zJOOLjBZJzyy+9tpr/Pa3v6W+vp6VK1dSXl5Oa2srZ5xxxlDGJyIiIscpb/92Iltfwdu/DZOSQeo5X8bNm4hXtwfbVk9g4oKRDnFU8hsqCEw5meDUU/Gba4m8+Su8/R8QmHwyJnUMgaIZBIpmHNEzUk6/itBJl/d7VvLTTM7BiqiN+wm/9QRe5VaCcy7EHTeN8Ju/wrbWkXHNv+OkZyc1nt9cC4HQYa/3anbhFkw5othFjgVJzSw+8sgj3HXXXUyePJm33noLgNTUVL773e8OaXAiIiJy/Op8/RfEdr2Fm1uKba2n/cm7aX/627T/5k46Vn0XG+kY6RBHHRuLYNsacDILAQiduBhC6RCLEDzhnEF7jgmkHNFexUOczEIwhvDbT+FVbMItnkG0/Hk6f/8gRDrA9/Dr9yU9XscL36dj9X9gre31GtvZim2uximcesTxi4x2Sc0s/vSnP+Xhhx9m/Pjx/PCHPwRg6tSp7Nq1a0iDExERkeOXbTlAsOx0Us/5K/yOZsJrf4Z3YDfuxPl4e97FtjdhQmkjHeao4rceAMDJKgDAhNJIWXglsV3rcUuOvjYRxg1gxuRjW2pxJy4gbclN+PV78RurcMdNo+0X/4jfWAkHi+r0xVqL37gfvAhexSYC4+f0eJ1XuxMAV8miSHLJYltbG8XFxQCJPjmxWEytM0RERGRI2GgY29mCycwDwEnLIu2iGwCI7dtEx5538TuacHJUrbI/bHMtAE5mQeJYaO7FhOZePFIhHZY7djxetJPUc76MMQY3byJu3sT47GBKBn5DRVLj2I4m8CIARN55tvdksWYXYHDzJw/SG4iMXkktQz3llFP4wQ9+0OXYz372M0477bQhCUpERESOb35rHQDOmLxu58zB/Wa2vWlYYxoNrB8jvP4J/F6+Nv7BZNFkFfR4/miUcvZ1pP/Jsm77DI0xuLml+A2VSY1jW+Kzqm7pbLyqrXjVH/Z4nVe7Eye3WLPWIiQ5s3jHHXfw9a9/nV/96le0tbWxZMkSxowZw8qVK4c6PhERETkO2YPLJU1mfrdziWSxQ8nip3n73iey4WlMypgeZwv9llpwQ5i05ArCHA36qkjq5JQQ3fUW1trE6rfe+C3xRDnl1M/T8dxu2ld9ByezABMIYaOdOGPySD33r/FrduJOnD+o7yAyWiWVLBYWFvKb3/yG9957j8rKSoqLi5k3bx6O0//OG/fddx+rV6+moqKCZ555hhkz4tW2Fi9eTCgUIiUlBYBbbrmFs88+G4CNGzdy5513Eg6HKS0t5f777ycvr/tvGkVEROTY4Lf0MbOYkgHG0cxiD2K7NwLgN/Rc9MW21OJk5R82sRotnLGlsPXl+JLltKw+rz00q+rklpJ64fVEP1iL7WwFL4rJyCW2t5z2//0XbGeL9iuKHJR06wxjDPPnz2fu3LmJY77v9zthvOCCC7j22mv5y7/8y27nvve97yWSx0Ostdx6660sX76cRYsW8dBDD/HAAw+wfPnyfj1XRERERg/bWgfGxaR3r6hpjINJyzouZhaTmTH75LWHkkWvlwqhfnMtJnP0LEE9HCenBIi3A3EOkyzalgOYtCxMIESg9EQCpV0L+sT2vEvH898HwC1QsigCSe5Z3LRpE1dddRULFixg9uzZzJ49mxNPPJHZsw9feerTFi1alCiWk4zy8nJSUlJYtGgRAFdffTWrVq3q93NFRERk9PBbD2DG5GJ6+aW0Sc/udV/escJaS+cL/0nHmv8vqev9A7ux7Y2YtCz8hkqs9buN57fU4mQVDkW4I8LJPZQsHn7fot/Sd6IcmDiftCV/T/CE83DyJgxajCKjWVIzi7fddhvnn38+3/72t0lNTR2yYG655RastSxcuJB/+Id/ICsri6qqKkpKShLXjB07Ft/3aWxsJCen9zXsn5aXN2YoQhYREZEhUNHZSCB3HAUFmT2ej2Xn4bU19nr+WNC27U1aP3obE0ojPz8DY/r+HX/9ls20Y8g59VIa/vAYuaEwwZyPE0OvrYnWaCdZxePJPka+bjZ/DLtT0knprCX/MO+0p72O1NIZfX/PFJwFJ581yFGKjF5JJYsVFRXcfPPNQ7q+/dFHH6W4uJhIJMK9997L3XffzQMPPDBo49fVteL7vTdgFRERkaNHpKEGt2QWtbUtPZ6Puhl4Lbt6Pd8bv+UAOO6gNIwfSjYWoW31f4NxsZEOqrd/gJtb2uc9bVvW4YwrI5wdX0J54MNtBCalEX7rN7glszDBeF2IdieLSD+/bke1nBLaqnZj+3gn63vEmg7gTD61398zIscCxzEDmjxLahnqRRddxNq1a/s9eH8cWpoaCoW45ppr2LBhQ+J4ZeXHSwvq6+sxxvRrVlFERERGD+vHsO0NOJm9F7Nz0rOx7c3dlloeTsfz36Xj9w8eaYhDykbDhN/6DballpQz/gIAv2Znn/f4bQ34B3YTmLQgXvQF8Br24TfuJ/LOM3Su/Rl+UzUAJvPYWYYK4OaUHLbXom2rB+uPqpYhIkeDXmcWb7311sRMYiQS4YYbbmDhwoXk53ctYb1ixYojDqK9vR3P88jMzMRay3PPPcesWbMAmDNnDp2dnaxfv55Fixbx+OOPs3Tp0iN+poiIiBydbGsDWIvpoRLqISY9G6yHDbdhUpNbUum3N+HX7Y1/3NZwVM4uhtc/SeS9VRALE5h2BsHZiwm/9Ru82l0EZ57d632xnW8CEJh8MiaUjskYi19fQdSPJ9O2aX98XMDJ6t6OZDRzckuw217B72zB6eV7wT/YY9E5hor7iAyHXpPFSZMmdfl82rRpg/LAf/mXf+H555/nwIEDfPnLXyYnJ4eVK1dy44034nkevu9TVlbGsmXLAHAchxUrVrBs2bIurTNERETk2OQf7LHojOk9qTnUJ9C2N0GSyaJXtTXxcWz3O4ROXHwEUQ4+GwsTeedp3JJZhE7+HG7RdIxxcAun4NXs6PPe6Idv4ORPwj1YHdQZOx6/YR9+/T6ccdMg0o5ftweTlo0JpAzH6wwbZ+x4IF7gxxk/p8dr7KG2GT307RSR3vWaLN5www2Jj2trayko6P6bmNra2n4/8I477uCOO+7odvypp57q9Z6TTz6ZZ555pt/PEhERkdHHth7ssdjHMtRDPfVsexMcTBYOx6vYAsE0TFoWsV1vD3qyGNu9Ea9uD8GZZw9o1tKv3wfWEpx9IYHimYnjbsFUIu/+DhuLYAKh7vc1VuHX7iLl9KsTx5zcUqL7ysFaUs78S0xKBp0v/eCYXIbpFpaBMXj7PyDQS7Lot9SCMZgxY4c5OpHRLak9i0uWLOnx+KWXXjqowYiIiIj4B5NFk9H7D/ZO+sGZxX70WoxVbcEtnklwykK8yq3YcNuRBfoJ1lo6//gokfVP0PaLWwi/9Zt+j+Ed2A2Amzexy3GncApYD79uT4/3RT98HTAEyk5LHHPHjgdr48enLCJQdhpO7njc/Mn9jutoZ0JpOPmT8aq29XqN33IAkzEW4yTdYlxESDJZtLZ7FdHW1tYhrY4qIiIixyfbUndwuWT3WbRDTD+TRb+1DttUTaBkFoHJJ4P1iO15d1DiBfDr92JbauPLR0tOIFK+usefn/oc48AeSMnotlfTLSwD6HEpqrWW6PbXcUtndZnNPLQ00y2egZORi3Fc0v90GSlnXtPfVxsV3KIZeDU7sF60x/N+S632K4oMQJ+/Xjn33HMxxhAOhznvvPO6nGtsbNTMooiIiAw6v7UO08cSVACCaeAG8duTSxa9yvh+Rbd0Fs7Y8Zj0HGK73iY4/cwjDReA2K63AUPwxMWYlHS8ik3YcGvSxXcAvLo9uHkTu/0y3knPwWSMxavZ9fHzKrcQfv0xsBbbUkvw5Cu63pNTjMnMJzjr/MQx4wYH9nKjgFs8k2j5arzaXbjjphHd9iqB4pk42UV4B3bj1+8jOPWUkQ5TZNTpM1m8//77sdbyta99rUvVU2MMeXl5TJ06dcgDFBERkeOL31J72OWSxhhMWlZ8z+JhWGuJVWzGpIyJJ4rGITBpAdEP38B6MYx75EsTYx9twC2ajpOejTlYRMW21CVdfMf6Hn79XoK97KN0C6fiVW1NxBt5+ylsaz1O4VQCOUUEPpUImUCIMX8xeP2qj3aBohkAeFXbsM01hF/5CWHHJTDtTGI712FSxhCcp2r6Iv3V57+Op556KgBvvPEGaWlpwxKQiIiIHL9spAPbXIsz4zOHvdakZ2M7mnsfK9xG58s/Ila1DSLtBKYswpj4Dhx3wjyiW17Gq95OoGTWEcXsN9fg1+9NFJg5VMXVbz2AWzA5uTEa94MX7bZf8ZDgCecQ27We6AdrcQvL8Kq2kXLanxOa/9kjiv1YYVLH4OSW4u0tJ9pcg1MwBSd3PLEPXsUpnEraxX+Pk64e3SL9ldSv0pQoioiIyHDw6vcBttek6ZOctOx4lcse2Eg77c89gH+oOmlOCYEpixLnAyWzwHHx9pYfcbIY+2hDfMzJJ8fjOrjn0B7s7ZcMvy5e3MbJn9TjeXf8XJyCqUQ2PotbfAK4IYIzzzmSsI85bvFMopvXAJB24d/hFk3HX3gFJj13UGaPRY5HSRW4EREZaV5DJdGP3h7pMERkiCWSpiSSRZOe3eMyVOtFaX/u3/Dr9pB20Q2knv1XhOZejPOJtgkmlIZbNIPY3vIjitdGOohuewVn7AScrML4wZQMCKYmqromw6vbA24AJ6eox/PGGFIWXoFtOUDsg7UEp5+OSR1zRLEfa9yDS1EDZafhFk0HwMksUKIocgSULIrIqBB+43E6X3hoUEvdi8jRx6/bg0nNxCTRp9CkZWM7W7F+rMvxyLu/w6/ZQerivyUw6aRe7w9MmItfvxe/rWFAsdpomI5V38FvrCbl1M9/HJcxOGPy+jmzuAdn7IQ+Wzu4E+bjHNzLGZx90YBiPpYFJs4nOOu8Lv0mReTIKFkUkaOejYbxKjcPeql7ETn6eHV7cXqoCNqTePsMi1f9cUsJv6mayDtPE5h6KsGpp/Z5vzthLgCxve8NKNbOl36AV72d1MVfIzBxftfYxuQlPbNorcU7sBs3b0Kf1xljSD3ny6Sc+cXDXns8MqE0Us/+qy4tRETkyCQ1L9/S0sLPfvYztmzZQnt7e5dz//3f/z0kgYmIHBKr2AReDIwzqKXuReTokqgIOvvCpK4PTDqJyMbf0vHcv5F63ldxsgsJr/slOEFSzviLw97v5I7HZOTi7S2HE87tX6zRMLHdGwjOXUKw7LTuY2fmE+2hL2KPY7XWwf/P3n3Hx1Wdif//3DJNzeq9WJKb3CvYBmMTQ+i9lywhbYM3wJKFfPltSCCVBHZhU2DZBEISQkIJ3QYM2Ljg3rtkS1bvvU675ffHlcYWkuyRrGqf9+vll+17Z+55ZMkz89xzzvN425Fjet+veDIlNgOlj32NgiAIgy2oZPHBBx9E13UuvfRSHA7HUMckCILQjV6yF2wubNnn4T+2BVPzIqnitUgQzjZWRVAtqOI2AHJoFCHX/xj36v/Bs+b5wHHHBV8LanZJkiTU9Nn48zailR1ETZ0edKx6fTGYJmrSlN6vHRYD3nZMnxvJfupCgXqt1T9RicsMenxBEIThEFSyuHfvXrZt24bNdvY2cxUEYXQyTQOteB9q2nTU7PPx565HKz2ILXPeSIcmCMIgO1HcJviZMzlkHCHXPIp2fCfYnMgR8f1aoulYcBN6TT7u1b/FdcX3UZN7T/56xFpjJXhyH60xuiqiGm31KNGpp75WXRFICvJpHicIgjDcgtqzOG/ePAoKgltKIQiCMJiM2iJMdzNq+myUpMngCEUr3DnSYQmCMAROVxG0L5LqwDbpAmyZ8/q9l09yhuG68hHk8FjcHz+Dv2B7cLHWFSKFRvfZu08Ot3otmm2nL3Kj1xYhR6ciqfbgAxcEQRgGQc0s/upXv+Lb3/42s2bNIiYmptu5733ve0MSmCAIAoBWshckCTV9FpKsoGbMQSvahWlop6waKAjC2HOiIqgyrOPKrghcV/8A96e/x7PmeYz6EuwLbjplkR29thClj1lFAKkzWTRaT13kxipuU4TtpB6QgiAIo0VQM4vPPvssVVVV1NfXU1xcHPhVUlIy1NIDz8QAACAASURBVPEJgnCO02uOI0enB/qJqekzwefGqC0a2cAEQRhURnsjek3hiFX5lEMiCbn6UdRJF+DbuxKjobTPx5redszmauRT7DGUXBEgq1bxmt6u4bMKBpqttVZxG7FfURCEUSio2/KrVq1i9erVxMfHD3U8giAI3ZgdzYHlXABKcg4AWvlhlIQJIxWWIAiDyPR14P7oGcAc0f6BkqLimH8T2tFN6OWH+yy0o9dZeytPVZBGkmSrfUYvvRb9RzfhWf8SzuX3gWla1+rsnygIgjCaBDWzmJaWhqqK5V6CIAw/s6Ops5eaRXaGI8eko5cfHsGoBEEYLKZp4v70OYzGClyXfm/E+wfKYdFI4xLRTvEaE6heepoETw7v2WtRry/Fs/EvYBp4t7+JXlMAsoocnXLGsQuCIAy2oDLA6667jhUrVnD33Xf32LO4aNGiIQlMEATBNDRMTyvSlwpIKClT8R/8TLTQEISzgNlai15+CPt5N/erdcVQUlOm4j+2uc+90UZtIVJ4XGB5fF/ksBi00gOBv5s+N+5Pf4fkCMEx/248G/6E//Aa5Jg0JEVUnBcEYfQJKll89dVXAXjmmWe6HZckiTVr1gx+VIIgCIDZ0QKA5BrX7biaPBX//o/Rq46Nmg+XgiAMjN5QBoDaucR8NFCSc/AfXoteU4iaOLHHeb22ECU++7TXkcLjMDuaAje2tOI9mC01uK58GCVlGsqxTeiVeWIJqiAIo1ZQyeLatWuHOg5BEEYZ09DRjm1Gnbh42CsTBmLoaALoUZpeSZoEkoJeflgki4IwxhmdyaIcmTzCkZxgJa6S9RrzpWTR1LyYbfXIU5ae9jryOKsFiNFcgxKThtFUCZKEkjQZSZJwnH8rHe/9HKWXhFQQBGE0CGrPIoCmaezYsYOVK1eyc+dONE0byrgEQRhhetlBPOtfQivZN2IxmB3NAN32LAJINidKQvYp9xQJgjA2GA1l1pJOu2ukQwmQnGHIsenoFT1fY7pel+Sw6NNeRx6XAIDRXNn5e5X1tXYuOVXiswm9/WnUCQsHK3RBEIRBFdTMYkFBAffddx8ej4ekpCQqKytxOBy88MILZGeffhmGIAhjj9FUYf1eVwzj545MDJ0zi1/eswjWvkXfrvcwOpr6bIotCMLoZzSUoUSnjnQYPSjJU/Ef/ATT70WyndgbbbQ3Ar2/Ln1ZYGaxqcr6vbkqcCzwmJOqPQuCIIw2Qc0s/uQnP+HWW29l/fr1vP7662zYsIHbb7+dJ554YojDEwRhpBhN1p1wva5oxGKwlqFKSCERPc7ZsheCBL79q4c/MEEQBoWp+60EahQmi2ryFDD0Hq+BZuAmVtRpryHZHEih0RjNVZimgdFc3SNZFARBGM2CShZzc3O59957kSQpcOyee+4hNze33wP++te/5itf+QqTJ0/m6NGjgeOFhYXcdtttXHbZZdx2220UFRUFdU4QhKERuBNeXzJiMZgdzUjOsF6rEcqRiahZ5+M/vBbD0zoC0QmCcKaMpkowDeSo0dc2oiumrhtnXcz2zr3UocGtaJAjE61ksb0RNB9ypEgWBUEYO4JKFuPj49m+fXu3Yzt37iQ+Pr7fAy5fvpxXX32VlJTubwyPP/44d955J6tXr+bOO+/kxz/+cVDnBEEYGkZzFUgKZnsjhrtlZGLoaDrlUi/7nGtA8+I/8Ammpw2tZC+mLvZTC8JYEShuEz2yvRV7I4VFg2rHaKzodtzoaATFBvaQoK4jj0vEaKoK3IATM4uCIIwlQe1ZfOihh1ixYgXLli0jOTmZiooK1q1bx9NPP93vAefPn9/jWH19PYcPH+bll18G4Oqrr+ZnP/sZDQ0NmKbZ57no6NNvLhcEof9MbzumuwUlbSZ66X6MumLktBnDH4e7uUdxm5Mp0SmomfPx7fsI394PwdRR0mbiuvR7SKp9GCMVBGEgjIYykBXkyISRDqUHSZKRxyUFitN0MTtvYp282upU5HEJ4OtAr863/h6ZNOixCoIgDJWgksXly5fzzjvv8OGHH1JTU8PEiRN54IEHyMzMHJQgKisrSUhIQFGs8vyKohAfH09lZSWmafZ5rj/JYkzMqRvnCoJwgqe8kjYges5Sakv343RXERW3eMDX8zfX4C7cT/is5UF/wALo8LTgShpPXFx4n4/xffVr1K5qw5k2BdkRSuO6v6N//hwJt/w/5JOKUgiCMDIMnxt/fSWOpKwe5yrbKrHHphKfcPr9fyPBSEzDW3a022tQhb8VNTL2lK9LJ+tIz6JqC0gV+5FsTuIz0vr1OigIgjCSTpss6rrO17/+dV566SVWrFgxHDENifr6NgzDHOkwBGFM8BcVANDhTEEKj6O15CjapIHtC9QqcvF89hymp5UOWxxKfM8PjL0xTQO9rQmfHEpt7anGHof9ykcxAANw4sK97iXKP/gDziVfH1DMgiAMnKlroHmRHKEYzdW4V/8Go6kC1+X/jpo+u9tjPVXFKEmTTvN/fOT4nXFozZuoqaxDUq2bT96mepSY9KBjNiRrdYS3sgA5JoO6urYhi1cQBKEvsiwNaPLstMmioiiUlZVhGMaAAgtGUlIS1dXV6LqOoijouk5NTQ1JSUmYptnnOUEQhobRZO1XlCJiUWIz0OuKB3Qdrfww7g//G6mzEIReVxR8suhpA1M/5TLU3tgmXYjeUIZ//8eomQtQU6f1O25BEAbOu+kV/LnrkaPTMNobAGufnmfdS4Tc9FPkUGsW0fS2Y7Y3jMpKqF3kqCTAxGiqQonNADqXoabPCvoaUlgsyAoYeqDvoiAIwlgRVIGbf/u3f+OJJ56gvLwcXdcxDCPwazDExMSQk5PDypUrAVi5ciU5OTlER0ef8pwgCEPDaKpEHhePJKvIsRmYLTWYvo7uj2mpwbvrPbSKI31eRyvaDYpK6E0/RXKGY9QWBh1DV+PrYHqZfZlj/o3Wh9MNf8L0ufv9fEEQBsY0TbSSfcjRaUiucJSYdEJveBznZQ9gal48n/8B07Q+O2hlhwCrMf1o1bW/sKsiqulzg9/Tr96ukiwjRyR0u54gCMJYEdSexcceewyA9957L3DMNE0kSeLIkb4/KPbm5z//OZ988gl1dXXce++9REZGsmrVKp544gkeffRRnn/+eSIiIvj1r38deM6pzgmCMPiM5spAxT4lxrqbrpUdwpa1AKO9Ee8Xf0Ur3gOAHJmMcssvet2DYzRVIEclIzlCkePGo9cWBR3DiV5m/U8WJdWOc9m36Hj/F3Ssegrnxd9GiUzu93UEQegfo7kSs6MJ+7zrsecs63bOsehOvBv/jFa8F9v4uWgF25BCIlESJ49MsEGwkjzpRLLY9boUZNuMwHUiE63XQzGzKAjCGBNUsrhmzZpBG/Cxxx4LJJ8ny87O5s033+z1Oac6JwjC4DINA6O5JrC3SEmciBQWg2fN8+hlS9CK9mBqXuxzrwNZwbfzbYza473ODhiNFSgp1jJQJXY8vrJVmJo3sPen27h+Dyh2JNla8ND1oUzu5zLULkrCBJyXfA/Phj/R8dbjuC79t8DX5C/Yjla4A8nuQkmeim3CwgGNIQw9reoYaF7U1OkjHYoQBL3cuoGspkztcc42eQm+3e/jP/gpavIUtNJ92HIuDvyfH40k1Y4UHhtIFo0B3sTquvkmZhYFQRhr+nyFvvDCCwN//v3vf09KSkqvvwRBOLuYbXVgaIEPN5LdRejNP8M2aQn+3A1IIZGE3PgEjvk3YJ9+KSh2/Hkbe17H14HZ0YQcZc3oyXGZYBoYdSU9H+ttp/0fj+Db/2HgmBFYhjqwZBHAljmP0Ft+geSKwHf488Bx394P0EoPoBXuxrP2/9Brjg94DGFoeTf9Dfcnv8NobxzpUIQg6BVHkMJikMLjepyTZAXbtOXoFUfw7n4fdG1M3KiRo5JPzCx2/hzKIf2r3qqkTEOOSkEWKxwEQRhj+kwWNU2jsdF6UVy9evWwBSQIwsgymqwG1CffAZfsITiXfoOQW39JyA0/DizplOwu1Kz5+Au2YWq+7tfpbGTd9Vglzmq1o9cV9RjTn7se09OK3rmHCTpnFm2uXmch+0MOiURJmoLRWaTH1HwYDRXYp11C6B1PI7ki8Gz6W2AflTB6mJoXo6EUNC/ebW+MdDjCaZimgV6Ri5I8pc/WEPYpS60bTPs/RgqPQ44LruDVSJIjkzCaqzAN46Tl8f27iaWmTrNuXIl2PoIgjDF9LkO97bbbWLZsGVFRUXg8HpYtW9br49atWzdEoQmCMBK0skOg2JBj0nqc623fn23yErRjm9GKdmGbsChwvOtOfGBmMTQKKSQS/UtFbkxdw3fwUwD0muOYho4kK9as5BnMKnaLOzYD7dgmjI4mzLYGMHXk2AwkuwvH+bfiWfdHtKObsE1eMijjCYNDrysG00COy0TL34I+bTlKwoSRDkvog9FQhultQ03uuQS1i+QMwzZxEf7c9diyzx8T/QblyCTQ/Zht9RjtTWBzItldIx2WIAjCsOgzWXzooYe44447KCsr45vf/CZPPfXUcMYlCMIgME0T76a/IUfEYZvxVSTp1HuDTNNAK9yFmjodyeYMagwlaTJSeBy+A5+gZp0f2H+kN5aDonZbjibHjsf4UpEb7fh2zPZG1AmL0PK3YDSUocRmYLQ1DKi4TW/kuPEAGHVFGG1WKX+l85g6cTHKkXV4t7+JOumC0/4bCcPHqLH6fbqW30fH+7/Es/U1Qq/rvufd9LnRK/NQ0meNicTjbKZ3VkZWkqec8nH2mVeg1xZhm3LRcIR1xrqWjuo1BZ03sQbndUkQBGEsOGWBm8TERBITE3nhhRc477zzhismQRAGiV56AP9hq0CVVn4Y57JvIbsi+ny8UVuE2d6AuuCmoMeQJBnHgpvwrH0B/4GPsc+60rpWk1VR9eTiFUpcJr6SfZg+N5LdhWma+PZ/hByVjGP+jdbsUXU+Usg4jNpC7HOvHeBX3p0Skw5I6LXFmO314Ai1ep8BkiRhm3IRnvUvYTbXIEUmDsqYwpnTa44jhcciR8Rjn3kZ3q2vY7TUIEfEA2C01eP+6FmMxjJcl38fNX3mCEd87jJaavAfWY8UkYAcFnPKx8qRiYTe9JNhiuzMKfFZSOMS8O1bBaoDKbR/+xUFYSTphsGHW0uYmRVDRmL4SIcjjEFB3UJftGjR6R8kCMKoYpom3t3vIoXF4Fh8F3r5YdpffxTv3pWYmrfX52iFO0FSUDNm92ssNft81PHz8O5825pRxNqz+OViDkpCNmDiz99ijZe3EaO+FPusK5HCY5Fc49Cr8604MFGzBucmlWRzWqXr64rQ64pRYsd3m4WSY9IB0OuLB2W8c5XpaQsUJhoMes1xlM49bWrmAgD8x3cA1s2Ijnd/htFWD3YX/qNfDNq4Qk96YwVtrzyAVrq/xzn/8R20v/VjjI4mnIvvHIHohpYkKzjmXItRX4pRUzBoKx4EYbCZpkl9s4eDhfW4vRqGafLyh7m8s+E4v397Px0ebaRDFMYgsd5KEM5SevkhjJrj2GdfjX36pYTc+BOUxIn4tv+Tjvd+YbWqOIlpmvgLd6Gk5CA5Qvs1liRJOJbcg2Rz4Vn3IqbPjdlaF9iv2EVJmYqSMhXv1tfQKvPwbP0HStJk1ImLkSQJJWECek0B2vEdyFEpKNGDV3FZjh2PXlMQWOba7VxUCsgKRn3PSq1C8NzrXsT96e8G5VrW/tL6QEsWOTwWOS4LrTNZ9Gz5O6buJ+S6H2KbuBiteDemt31Qxha6Mw0dz7o/Yrpb8B9Z3/2caeD94q/I4xIIvflnqOmzRijKoaVOWIg0LgFMUySLwqh0tLSJh5/fzCP/u5lnXt/Hw89v4um/72HzwSoWT0+kodXLa2uPjXSYwhgkkkVBGMMMdwvene9g6t3vFpqaD++ud5FCo7FNttrgKNEphFz+EM6v3o/RUIrn8z90qwBqNJRhtlSjZs4fUCyyKwLHhV/DqC3Es+FlwOyRLEqSjHPpt0Cx4V75K9A1nBfdG9gnqCRkY7bUoFceHbRZxS5KbAamuwUMPbCHMRCXoiJHJVsFVYQBMU0DvepooArumepqZ6LEn6iWactagFFXhP/oJvTSA9hnXYUSnYpt0oWga/gLtg/K2EJ3vn0fYdQWIkenopVay8i7GPWlmJ5W7DMuO+3y07FMkhUcc68DQA4VyaIwupTXtfPbf+7Hrsrcdekk/v2WmczKjiW/vJkrzk/nm1flcOXCDL7YX8ne/LqRDlcYY0SyKAhjmHfra/h2v4defqLlhF5znI63n8Cozscx73okxdbtObbx83AsvAOtaDfera9jmgam7se75e8gK6gZcwYcjy3rPNSs89COWx/ae+spJodF47zwHjBNHPNvCPRzBJATJnb+yUTNWjDgOHojx44P/Fk56c+B8zEZYmbxDJjN1eDrAF9Ht2RioIya4yApyCfNAnfdyPBs+BOSaxz26csB63srRyXjP7bpjMcVujNaa/Htegc1awHOJV8HXUMr2h04r5cfBkBJzhmhCIePmr0Qx8LbUbPPH+lQBCGguc3L/7yxF1WV+f5ts1k+L5WZ2bF859ppPP/9pdxy8QQkSeK6CzNJjg3l9bX56IZoFSUE75QFbrr4fD7eeecdjhw5QkdHR7dzokqqIIwMva4I7dhmALSKI6jpszDa6ul4/5dIrghcV3wfNa33gh+26ZdiNFfjP7Aao6EMyeZArziC8+LvnHG7CseFX0OvzMX0tCGPS+h9/OzzUBIm9CgUocRmgKwgRyahRA1u8+rA0lN7SK8Nw5WYdLSjX2CIaocD0jUTCGC01aFE92y90r/rFSDHpCGp9sAxOSIOOS6zs/jRNYEenJIkYZt0Id5tb2A0V3W7AXE2M1pq8B1ag2Putf1eOh4srfQAGDqOBTchRSQghcXgP74d26QLrPPlh5CjkpHPgaIvkixjn3n5SIchCN28vjaflg4//3n3POIiu7d0sakn5oRUReaGJVk8984Bth6q5oIZSV++lCD0Kqhk8dFHHyU3N5eLL76Y2NjYoY5JEITTME0T75bXkBxhSOEx6JV5AGiFu8DQCLnqB8inqOopSRKOC+5GjknDu/lV0P04Ft2BbeLiM45NdobjvOTfMGqLesxqdntcWHTPuFQ79vk3DXqiCCDZXciRSUih0b22WOiawTLqipHTRbLYXycni2ZrPZxBsmiahtVaYcLCHufs0y/Fn7cR25Sl3Y4rGbNh2xvoVcfOymTR1DV8+1ZhultwLL4bSZLwbn0drWgXetVRQq58eEgSRr3yKFJIpJUoShJq1nn4D3yC6WkDmwO96ii2yWOjBYYgnG3yy5rZeriaqxePD6rS6dxJsaQnhPHBpiLOn5qAqogFhsLpBZUsbty4kTVr1hAR0XfJfUEQho9efgi9MhfH4rsxPa349ryP6etAK95j3eUPov2DJEnYc5ahJE7CaKrANsC9ir1RkyZD0uQBPdcx+8pBi+PLnJd8D0ntPYFVYqzkRq8vOWuLdAwlvfY4cmQSRlMlRtuZ7YkxW2rA7+6xtxTANnFxrzc15IhEUGzoDWX0fYtibNLrS/Cs/QNGYxkASuJka/9g0S6U1OnoFbl0rHwKx8LbUJKnDFqvUNM00avyrF6qnTdYbBPOx7//I3xH1qEkTADNh5oybVDGEwQheIZp8vfPjhIV7uCqhRmnfwLW+/71F2bx27f2s/lgFRfNGvwbs8LZJ6h3lKSkJHw+31DHIghCkPTaQgBsU5ZYDbBNE61oN3plHmrG3H5dS4lKHtREcTRTolMCPfq+TOpcnmqIIjf9Zmo+jPoSlPTZIKsYrfVndD29tgjofW9pXyRZRo5OxWgoPaOxRxvT14H742cxvW24LnsQOSbd2qu8611Q7Dgv/g6ur96P0VaHe9VTtL/+KEZ74+CM3VqL2d6IctKNHzkmAzVjDr4db+Hb+TZIEkrywG4MCYIwcJsPVFFU1crNS7Nx2JWgnzdrQgxp8WGs31s+hNEJZ5OgksXrr7+eFStWsHLlSrZs2dLtlyAIw890t4DNiaQ6rNYCiop3x9tgGqjjB16g5lynxGag159dycZwMOpLwNBRErKRwmIw284wWawrAkW1Wpr0gxKdalXnNM0zGn808W59DbOjCddXH0DNmINj8V2Y7Q1ox7djm7IE2RWBmj6LsLuexbHk61Y14bKDgzJ21/J2JfFEMihJEs7l30WOz0SvOoocl4VkDxmU8QRBCI7bq/HW+gKykyM4f1rvtQH6IkkS8ybFUVTZSmuHmAgSTi+oZah/+9vfAHjmmWe6HZckiTVr1gx+VIIgnJLpbkFyWYVoJNWOkjARveIIUkgkclzmCEc3dskx6WiFOzF9HeIDcD90zXQr8dnI4TFnvAzVqCtGjk5DUoJ6iwqQo9Mw8zZiupvPil54WtlB/LkbsM+6MtBCRE2ajJq9EO34jm7FViTVjm3yhXi/+AtGa+3gjF+Zh+QIQ47qXghDUh24Ln8Izye/s9qWCIIwrFZtKaa53cf9N81E7mUP/ulMy4rm3S8KOVzUyPlT+5dsCueeoN6J165dO9RxCILQD1ayeGIzu5I8Bb3iCGr67EHbr3Qu6vpArtccR02dPsLRjH6+g59iNJaj1xRaNypCo5DDYtBK9g/4mqZpotcVYcvuWdzmdOTOfadGQ9lZUdHWu+MtpHGJ2Odd3+24c+m9GHOuRv5SVV9JVpHCYjBaagZlfL0yDyVpUq+vKbIznJBr/3NQxhEEIXg1jR18sqOExdMTyUoeWC2RzMQIQp0qB4/Xi2RROK2gP1VqmsaOHTtYuXIlO3fuRNO00z9JEIQhYbpbkV0n3iTUtFmAhJo9uI3szzVKfDZIEnrV0ZEOZdQzDQPvtjfwH/0Co7440KZFCovFdDdjagNb3mS21ICv9+I2pyNHpwJWo/ixzvR1YNQVYcs+v1v7ELBm9pTOr/XL5Ih4jJYzm1k03C1olXmYrbXdlqAKgjD4mtt9QS+dr6xv59k396PIMjctzR7wmLIsMS0zmoNFDWfVsn1haAQ1s1hQUMB9992Hx+MhKSmJyspKHA4HL7zwAtnZA/9hFQRhYExPC1LChMDflbjxhH7tN90SSKH/JLsLOTodverYSIcy6pmtNaD7cS79JuqERSBbBRbkcKu9ktnegDSAFhZ6XRHQv+I2XWRnOFJIJPpZUORGry4A00RJnNSv58nhcWjFewY8rj9/C561/xf4u5KSM+BrCYJwap/uKOUfa45xybxU7rhkYqDqsKYbbD9SjcenkxQdgmaYFFe18uHWYmyqzL/fMpOocMcZjT0tM5rtR2ooq20nLT5sML4c4SwVVLL4k5/8hFtvvZVvfvObgR/kl156iSeeeIJXXnllSAMUBKE70zAwPa1IId0TQ5EoDg4lcSL+vA2YhoYk92/P3LlEb7Qq6clRKd32FkphMQAYrfWn7XdomgZGbZHV/9JuNZPWa4tA7n9xmy5yTNpZURFVrzoKkoyS0L8bslJEHKa7BdPvQbI5+z2uVrgLKSQSx+I7kcPjUGLS+30NQRBO7+NtJbzxeT6x45x8tqsMp0Pl/Jx4ckuaWL29hLpmT4/nZKdEcN9104mO6P//7S+bnmm9Vh88Xi+SReGUgvoklJuby8svv9ytkfU999zDCy+8MGSBCYLQO9PbBqaJ5BTJ4VBQEifiP/QZRn0pyhgpFmRqvkCj+v4WhRkoo6ErWezep0sO70wWeylyY5qmVTlV92O0N+Lb84H1d5sL+9SLkeMy0SuOIMf0v7hNFyU6DV/54TGf7OtVR5FjM/qd8MnhVmsYo7UWJTqtX881DQOt4ghqxlxsWWJJuyAMlbySRt74PJ8FU+L59jVT+dsneazcXMTKzUUAjE8M5+6vTiYtPozK+nYUWSIlLoww1+B1kY0Kd5AaF8r+gnquCLJPo3BuCuqdND4+nu3bt7No0aLAsZ07dxIf33u/MkEQho7pbgFAEjOJQ0JJmAhYH9bHSrLoz9+Cd9MrSM4wbNnnD8uYRmM5Unhsj2RGCo0CSeq1fYZWuBPPZ8+deGx4HI4LvoZemYdv/0fQuXfGNv3SAcclR6eCoWM0VfW5r2+0M3UNveY4tpyL+/1cOcIqemO01PQ7WTTqS8Dbjpo6td/jCoJwgl/T8fh0wkPsvZ7fergah03hG1floCoy/3LZFDKTIlAVmeyUcSREuQITNGe63PRU5k2O5/0vCqlrchMb6RqycYSxLahk8aGHHmLFihUsW7aM5ORkKioqWLduHU8//fRQxycIwpeIZHFoyWHRSGEx1r7FGZed9vGe9X9CGpeAY/ZVwxBd77Si3dbvpQeGNVnsbamoJKtIIVEYrXV4d7yFXpmH66ofICkqWsE2JFcEzqXfAllBSZpszSBOW47R0Wz9bOu+QKGagZBjrDvk/oOfIi+5Z0xWBzbqikD3oyT1b78iWAVuAMwBFLnRyg8BoCSLZFEQBso0TZ59Yx+V9R388jsLcTm6f9TWDYNdebXMmhCDw9a511uWWDp7YEvvz8SFM5J4/4tCvjhQyfVLsoZ9fGFsCOpddPny5bz99ttMnDiR9vZ2Jk6cyNtvv80ll1wy1PEJgvAlIlkcekriJPSqY6etEme01uHP24A/b+MwRdaT6XOjd37I10sPDFllO9PTRttf78d/fAemoWE0VaL0sa9QDo9Fy9+Gb88H6FVHrd6Vfi9ayX7UzPmo6TNRU6d1W2oqh4xDiUlDic9GUgd+J12JTsE283L8uevxrHkBU/cP+Fojpasab9csd39IjlCwhwyoIqpefhg5OhU5ZFy/nysIgmVnXi25JU00t/tYtaW4x/nckiba3H4WTBn51Xkx45xMy4pm4/5KDKP39w5NN4Y5KmG0CXpDR2ZmJitWrBjKWPjKV76C3W7H4bA+KDz88MMsWbKEvXv38uMf/xiv10tKSgpPe7zmTgAAIABJREFUP/00MTExQxqLIIxWXcmiKGgzdJTEiWj5W/DtfBv7zMutD+C98OdvBcBsrsJwt4zI90QrOwi6hjppCdrRjRgNpUNSlEQrP4zpacV/eK01o2jofRahkcJjoeoo9rnX4j+2Bf/htVa1VN2HmrVg0GP7MufC25FDxuHd+jr++EzsM68Y8jEHk151DGlcwoCTNjkiDqO1f8miqfnQq/Kw5XxlQGMKgmAtP31jbT6pcWGkxofyyY5Sls1O7rbEc2duDQ6bwoys0fE59qKZyTz/7kEOFjYwM7t7TLvyanhx1REevGkmUzKiRihCYaT1mSz+6Ec/4mc/+xkAjzzySLfiNid76qmnBjWg3/72t0yadGLpjWmaPPLIIzz55JPMnz+f559/nv/6r//iySefHNRxBWGsMN0tIMngCBnpUM5atgmL0MsO4dvzAb5DnxFy9aMosd0LAJimiZa/GckRhultQ686hpw5b9hj1Yp2IznCcMy/Ae3oRrTSA0OSLOrlB63fK3LRS/cDIEf3niw65lyLLXMB6vg5SDYn3m1vYGpeJGf4sPXts8+8An/uRrSK3FGdLJq6hmfdH1Ez52PLWoBenY9WdgDbpAsHfE05PA69oaxfz9Gr862bDmK/oiAM2Cc7Sqlv8fDIHXNIjA5hd14tf/k4l+svyiIzMQITM7AE1d65BHWkzZ4YS5jLxoZ9Fd2SRa9P5++fHcPr0/nLx7n89JvnYVNHR8zC8OpzGWpq6ok9IxkZGaSnp/f6a6gdOHAAh8PB/PnzAbj99tv5+OOPh3xcQRitTHcLkitiTO7FGiskuwvXV+8n5KafIik2PF/8BdPsvhTHqC/BaKzAPvdaUGyBpYPDyTQ0tJK9KBmzkcOikWPS0EsPDP44polWdgg5djxg4tu7CpCQI5N7fbwcmYg6fg4A6uQloKgYdcWomfOQ5OH7uVUSJ6BX5we+d3pNAUZz1bCNHwyjvgStYBuez57Hu/t93Kt/gxQajX3BTQO+phwRj9lah2kEv3xMKz0AkjJsybwgnG38ms7q7aXMzI4hJyOKqHAHNy7N5nBRI7/46y7ue2Y93//9plGzBLWLqsgsmZnE3mN1VDd2BI6v2lpMY6uX6y7MpLrRzcrNPZfUCueGPmcW//Vf/zXw59tuu424uLgej6mt7f+eiNN5+OGHMU2TefPm8f3vf5/KykqSk098IImOjsYwDJqamoiMjAz6ujExooeMcHaoMjqQwiKJiwsf6VDOfnHTaPXfQ+37v8NZsZOI2csDp+r37QJZIXHhV6ku34tZVzCs3xOttYGmLe+Az03MrAsJjQtHnjSP5m0fEBOhIjsGr7Kdr76CtrZ6Yi68idaDG/CW5aJGJRKfFMwyqnBqchbTdnADsXOW4hrGf6PWCTOozd1ApNSMLTqJ4r8+iyN5Agl3/GjYYjidlrIaOgBH8gS8O99GdoaSfOdj2GN6T8SDumZyGnX7NKJdftSI2KCeU1q+H9f4acSnjJ4PsYIwlqzZUUKb28+tl04OvBfcdeVUrr4om33HajlW2oTbq2FTZJYvHD+qZuluvzyHz3aVsXZPBQ/cNoeKujZWby9h6ZxUvnXDTFrcfj7aVsxVF2WTEic+T59rgtqzeNlll7F79+4ex6+66iq2b98+aMG8+uqrJCUl4fP5+MUvfsFPf/pTLr104CXUT1Zf39bn5l1BGEs8zQ1ItlBqa1tHOpRzgpkwFyVhIvVrXsETOw3JEYppmrQf/AIldQYN7WBEZ+Hb9yE1FXVItqErc95FK9mH+5PfgmGgZp1He0Q2HbWtaDGTwXiX6gM7UDPmDNp4voPbAHBHToDxHijLhYikoH8GzelXY1cjaA3JoG0Yf26NUKt1RO2RfcihpRieNtxledTUNI+amXlP0VGwubBd8QPMPStR02bQbETAGfw7aZK1d7a2sBA1+fQ/j0ZTFf76cuTJy8TriiAMgGmavLMun6SYEJLGOXr8P8pJHUdO6ok9yE0nzeCNFhfNTGbtzlIW5sTzhw8Ooyoy1yxKp7a2lWsWZbBuVxkffXGc6y4cGy2lhJ5kWRrQ5FlQ75a9Vddra2vrcx/jQCUlJQFgt9u588472b17N0lJSVRUVAQe09DQgCRJ/ZpVFISzSdcyVGF4SJKE44K7rOIuxzYDYLbVYbY3oKbPBKzqqZgGek3BsMTkO7wWyTWO0Nt/jeuSFUiK1ahZicsCJPS6wV0upJcfQgqPQ46It5q1q3bkfvSglCPicZx387AuQQWQIhKQnOHoVcfwH99hHfS5MRorhzWOU9HrS1Bi0pAUG475N6AkTDjja3a1zzCaKk7zSItWsgdgUG8wCMK55HhFC8VVrSyflzron42HyxUL05Ek+OUru2ho8fDgzTOJjrD66EaGOchOGceeY4O/olAY/U45s7h06VIkScLr9bJs2bJu55qamrjqqsHrK9bR0YGu64SHh2OaJh9++CE5OTlMnz4dj8fDzp07mT9/Pq+99hpXXDF6ixUIwlATyeLwU2LHW70XK3Jh+qVWMRBAic+2fk+cAEjoVUdRU4a2QIjp96KXH8aWsyyQFHSRbA6kcfEY9aVBX89fsB29Oh/n4jt7H8/Q0CqOYJuwyBrDGUborU8iOUf/MmhJklASJ6JX5mL6PcjxWRg1x9Fr8lH6KM4znEzDwKgvxTZ5yaBeVwqPRQqPQyveg33q6aubakV7kGPSkMODW7IqCMIJpmmyekcpLofC4umJIx3OgEVHOFkyK5n1eyq477rpTErrPikzZ2Isb64roKHFE0gi+0PTDbYcrGLPsTrK69p48OZZJMf2XmlcGF1OmSw+/fTTmKbJd77znW5VTyVJIiYmhqyswWvgWV9fz/3334+u6xiGQXZ2No8//jiyLPPUU0/x+OOPd2udIQjnItPvBc0nksURoCRNQS/dj2ma6FX5YHMGmsdL9hDkmFT0iiMw7/ohjUMrPwi6v89ZICU6Db2+pM/nGy01IEnI4XEY7hY8G18Gnxv77CuRQ3qu2DAaysDvQUnOCRyTw0ZHyfdgKIkT0YqsbRSO2dfgXv8iRnU+TFk6wpGB2VIDmrdHpd0zJUkStqwF+PavxvS2d2v9YrTUgGJDDrXK4BueVvTqY9jnXDOoMQjCueK9LwrZmVvD1YvH47QH3ZFuVLrzkolccV56t1YfXWZ3Jot7jtWxfF5qL88+tVdW57FxfyUxEU7cXo0XVx7mP782D1UZHVsChL6d8qf6vPPOA2Dr1q24XINXLKE3aWlpvPvuu72emzt3Lh988MGQji8Io4F374fIYdHYJizs9bzosThylKRJaMc2YTRVolfno8RnIcknChSo4+fj2/UORkstckTPgmBnoquxvKTY0Ir2gj0EJWlSr4+VY9LQCndi+j2g2ul4/5fYJizCPm05pu6n44MnMf0eQq76Af7Dn4PPDYBecQS5c/bwZEZrvXXdcWOz8Emgsb3NhZI2HSVhAnr18CwXPp2upF4eglYnauZ8fPs+RCve060Nh3v1bzB9HYRc9yPksGj0kv1gmmIJqiAMwMrNRby/qYgLZyZx/ZKxv5dPkeVeE0WApJhQEqJD2Jvf/2RxX34dG/dXcvn56dyyLJtdebU8/+5BPtxSzLViD+SoF9QtEJfLxZEjR9i5cyeNjY3d9jA++OCDQxacIJxLjLZ6fNvfsP7cXI197rU99j6Y7mYAJNfoXwJ4tlGTpuAF9NJ9GA0lPWZibJMvxLf7Xfx5G3CcQduD3ng3vYpWvBvXVY+gl+xFTZ+JJPf+8q1EW4mH0VAGsoJRnY+3oRxb9vn4j2/HbG9EcoTRseop8HmwTf8q/mObrKWtvSSLZnsDAFJo9KB+TcNFjh0PNifq+LlIig0lPhtfyT5MbzuGuxnT046aOHFEYjPqS0BSkKMGXvm0L3JcJlJYDP7jOwLJoulzYzSWA+D++BlsU7+Cd9ub1n7UQZ7dFISzXUuHj3c3FrJgSjxfv2IK8hjdq9gfcybE8unOUjo8GiHO4GZR29x+/vxRLilxodywJAtJkpg/JZ6FUxP4YHMR6YnhzJ4QS3FVK3/68Ag3XpTFrAliSfxoEtTc7+uvv84dd9zB1q1b+eMf/8jRo0d5+eWXKSnpe6mTIAj9ox3fCYCSPhvfrnfw7Xqnx2NMt1VhTXKN63FOGFpSRDxSSCS+A5+CafYoRCKHxaCkzsCftxHT0AdtXNM00Ur3Ybpb6Hj3Z5ieVtSMuX0+Xo6x7vjq9aVW7zwAzYN393v49q5Cjs8i5IbHkewhSK4IHPNvQE3OQSs71GsxM6OtARR1TOxR7I2kqIRc+0Oci+4ACHzf/Mc2437vl3g+/X2vX3ew9JrjGC0DK/qg15cgRyUHChQNJkmSUDPno5cdxPRZlRe7Ch/ZZl6O0ViJ94u/osSmE3LVI6OmOqwgjDZ+TWfLoSq8vu6v67vyajFMk6sXjz8nEkWwlqLqhsm2wyf61bZ7/Gj6iZ6ubq9Gu8cf+Pt7XxTS5vbzraumYlNPvM7c9dVJpMaF8bt/7udvn+Txq7/vprSmjZ15NcPzxQhBC+rd4cUXX+TFF1/kueeew+l08txzz/Gb3/wGVR3ba7MFYTTxF+5AjknHddmD1hKyA59aexRPYnisZahiz+LwkyQJJWlyYKatq7jNyWw5SzE7mtBL9w/auGZbPWZ7I7bplyLZQ0BWUdOm9x1nWCzYXRgNpeilB5DjMlEnXoD/4KeYbfU45l6LHBFH6E0/JeSmnyDZXSgpUzHbGzBbqnuO396AFBo9Ziv8AVa1UadVLlyJzwJJwrv5VUxvG6a7OfA97S/T0On46L/xbnt9QM836kuGZAlqF1vWAjB0tCKr2qlRVwiAfdaVuC57AOfSb+K6+v/1KJQkCILFMEz+7/3D/PGDwzz75j7cXi1wbvvhapJiQkiNO3eKtExIHceU9EheW5tPSXUrR4oaeOT5zfz8rztpbPVSUt3KD/+4lZ//ZSd+zaDN7Wfj/goWTksgI7H7DcdQp41H75rLvMlxrN1dTkKki8ykCIqr2kboqxP6ElSyWF9fz/z5860nyDKGYbB06VI+//zzIQ1OEM4VRls9RnU+atZ5VnGK6ZeC341WuKPb48yOzmWoY3SWZ6xTkiYDIEeldCsa0kVNn4XkisCfu2HQxtSrjgJgm7yEkOt/TMg1j1pJYx8kSbKK3FTmodfko6bNwDH/BlBU5JgMlLRZ1uMcoYGCNl0VXLXywz2uZ7Y1BIqhnA0kmxM5Og0UG45FVgVYvbZoQNfSa46Dtx29H9VnuxgdzZgdTShDmCzK8VlIIZGBAj96bTFSWAyyKwI1fRa2yUvEjKIg9MEwTP66Oo/dR2tZNC2B/LJmnn3DShgbW70cLW3ivJyEMX0jrb9kSeK7100nzGXj2Tf38eyb+xgX5qC60c1P/7KDJ1/djaabVDe6+WxnKZ/vKcfnN7jsvN5f5xx2he9eP52Hbp3Fo3fPZer4KCrr2/Frg7c6RzhzQU0NJiYmUlZWRmpqKuPHj2fNmjVERUVhsw3+0hlBOBdpnT3gbFkLAKtvnzQuEX/uhm7FKczWOiRnOJJqH5E4z3VdyaKS0HNWEUCSVdTs8/EfWYep+fr9ffLueg8leQpq5zgAetUxsLmQo1KtPoVhp987KEen4T+8BgA1dQZyWAyuKx5GDons9YONFJFgtQYpPwxfarVgtDdYfSTPIs6l3wBDR45Ow7v1dYzaQsic1+/rdM0gmy01mH4Pki34cvJGg5VgyjFp/R43WJIko2bMwX9sM6bmQ68rRIkdP2TjCcJoUdfk5p2NhVyxMJ3UuN6bkDe0eNh0sIoDBfU4HQr33zgTmypTVtvGW+sKOFrWhNurc/XiDG68KJs5E+P4v/cP8V+v7WVmdgwmcF7OuTcrHxFqZ8X10/n133eTmRTBAzfPpKHFy2//uY/4SBf/fsssXlmdx/ubi7CrMjOyYvr8HoCVgM7IsipsZySEoxsmZbXtZCaJFVSjRVDJ4re+9S0KCgpITU1lxYoVPPjgg/j9fn74wx8OdXyCcE7wH9+BHJOBPC4BsGaH7FMuwrvtDfTGCpTOAhh6U8WQFMM4lbomN0/9Yw8Ou0JyTCjXL8kkKebcWXZzMjkyGdv0S3stBNNFTZmK/+Cn6DXHUZOnBH1tva4Y3653UKqn90gWlYTsfjW0DyQg9hDkeKvF0alikSTJirtwF6bmRVIdgNUH0GxvGlOtMoJxcsIkR6eg1xYO6Dpa6QGQFTB0jMbyXpcm98VoKOscv/8l6PtDHT8H/5HP0Yp2YzZXI59080kQzkZHihv533cP0ub2U9vs5v+7a26Pm2Qen8avXt1NXbOH1Lgw8subeePzfK5cmMGzb+zDrxmcl5PA9Mxo5k6yqlvPnxKPIks8/+5BCitbSIsPO2ffC7NTxvHUfYsJc9lQFZlQp40n/3URsiQhyxK3fWUCj724Da9P5/Lzgr8hlt65VLWkulUki6NIUJ8+brzxRpYutXpSLV26lO3bt7N9+3buvLP3Js6CIARPrynAqCnANuH8bsfViReApODPXQ9YhU6MxnLkqOFtJv7GugJa2n3ERjg5WFjPH94/jG4Yp3/iWUiSJJyL77L2vfXBmoWT0Ctzux3XG8ro+OBJjI6mXp/nP2It69crcjE721mY3nYrCennzJ7SmSyqqdO6tfc4FXXyEvB14Nv1XuCY6W4GU0cKYjZzrFLiMtHrivpd5MboaMaoK8I2cTFgfX+7mKaB/9hmfEfW9fl8vaEcyRUx5G1wlOQcsDnx7ba+r2JmUTibldW08d+v7SU8xMZVizLIL2tm91GrAFVucSM1jVaxp7fXH6eu2cMP7pjDT795HpfOT2PNrjKe/NsuOjwaD98+m3sun8K8yfHdEs05k+K4/6YZ2FSZi2YN743b0SYyzNGtR6KqyMiy9W+VEB3C9UsymTspjikZwW9jiBvnxOVQKa4W+xZHkz6TxZPfOA3D6PZLVVVcLhfGOfqBURAGi2maeLe9geSKwJZzcbdzcsg4lLTpaMVWcQqzowl8buTI4XuDOlraxM7cGq5YmMGDt8zi61fkUFzdyppd5cMWw1gjOUKRY9PRK450O67lb0WvzMO3s2c/WdPnxn9si3UjwNDQyg4CoFfnAyZKP1s7yNFpyNGp3ZYwn46aOAnb5Ivw7f84UDWzq/DL2bRn8cvkuEzwtmO29q+iqd75PbLlXAyqA6Nz36LeUE7Hez/H8/kf8G56BbOP90mjsWzIZxXB6s2ppk7HaKoEQI4bP+RjCiOrw6Px0srD7C+oH+lQuqmsb+cfnx2j46RKmYNt7Z5yFEXi0bvmcv2STFJiQ3lzXQF/+OAQT/1jD4+9uI0/f5TLml1lLJ+bGkhkbrk4m8ykCOqbPXzn2qmkJ/RdF2Bmdiy/fXAJX5k7vDdux5qrFo3nezfO6NeeTkmSyEgIo7iqddDiOJNq14Klz2Rx3rwT+zemTp3KtGnTuv3qOiYIwsDppfvRK/Osnor2no1wlcTJmC01GO4WjMYKgGFbhmqYJv9Yc4yocAeXn29tTp8/OY6Z2TG8s+E49c2eYYljLFKSc9BrCjA1X+CYVmEVj/HnrUfv/F528edvAc2L86J7wRGKVrIX6NyvKCmnnMnsjaTaCb3556jps/r1PMf5tyI5w/Bs/DOmaVhtMxi7PRaDocRZDaH7uxRVKz1gzQzGjUeOTg0sK/VseAmzuQZ1/FwwdOsmz5eYpoHRUI4cNfTJImDFAlZxG1Ec66z33heFbDpYxf+8uY9XPzmKz3/6YiFev05Nk3vIYvJrOs+/c5BPd5byP//cjzeImPrL49PYeqiKBVPiCQ+xo8gyt1ycTU2jmx1Harhm8XjmT45nw74KYsY5uWnZiddVVZH5j9tm8dg985kzMe60YzlsyjlV2GY4pSeEU1bbdsoVTDWNHezLrwv8/UhRAz/438288N5B1u8tZ/fRWrYfqeaF9w7y3f9ez6c7exYhK65qpbRGzGAGo889i6tWrQr8ec2aNcMSjCCcS0zTwLv9TaSIeGxTlvX6mK5CKkbNcYzOmY/hWob6yfZSiqta+fbVU3HYrKWMkiRx96WTeOylbfzkzzu4cWkW2cnjKKttIyU29JR3Y88latIU/Ps/Rq8pQE3OwfR1YNQWYstZhj9/G77tb+K67EGgc8ni4bXIsRnI8dmoaTPRS/ZjuFvwF2xFjhsf2EM41CRnGPYFN+Hd8DJGbeGJmcWzbM/iyeSoFFBU9NpCbNndl4Kbfg/+vI3YcpZ164VoGgZ62UGUtBlIkowSnYa/cAdGUyVGzXEcC29DjkpFK9qN0VqL/KVlvGZLLeg+5Ojh+b+sps0ESRZLUM8BZbVtrNlVxoUzkghxqnyyo5Ti6lYeuHkmYa4TP8P55VZl7Qkp4zBMk9+/tZ/DRY0sn5/KjRdl4bQPbmu0t9Yfp7yunUvmp7JmVxnPvX2A7904A7stuGXywdh+pAaPT2fZ7BP/r2ZkxXDvFVNITwgPtG64ZH4aYSG2Hl9jiNNGZpIo3DjSMhLC8WsGlfUdpMaF4dcM1u0tR9dNls1JpqKug2ff2Eu7R+M/bpvNpLRI/ro6D59fJ6+kie1HTvRpDHPZiIt08da6AmZlxxAfZVUSb27z8tQ/9mBTZX793UWBzzhC7/p8NUhKSgr8uaWlhZycnGEJSBDOFUZdCUZDGc6LvoGk9P5fUYkbD5KCXp2P6W0DR+iAeywWlDdjmlafpN6UVLfy+Z5yLp2fRmuHj3+uK2De5DgWTkvo9rjYSBf/efc8/v7pUf76cV7geFS4g19/d1G3PQznKiVpEkgSekUuanIOeuVRME3U7PORwmLw7XgL35F12HOW4d32hvVzcPF3rEIzGXPQ8rfQ8e7PMDuacF38r8Mauzp+Lt4NL6OVH8b0tIFig17ahJwtJEVFjk63KqKexDRNPBv+jFawFTksFnX8nMA5vfoYprcNNcM6JkenQu46fPs+BElCnbAIfNbMu9laBycVLIIT+xuV6KGrhHoyyRmGc+k3hmXZqzAyTNOkze3n758exeVQuPUrEwhz2ZiQMo4/fHCIJ/+2iwdvmUV8pIvc4kaeecNavfDAzTOprOvgUFEjORlRfLazjP0F9fz4nvmEOHsmToZpsn5vBTOyookd13M1TG/yShr5ZEcpF89N4c5LJpEWF8bLH+Xy1D/2cP+NM3A6VPLLm/H5dCRZIic9Coe9/x/e1+8tJyU2lOyUE++RkiSx5Et7C7OSReGU0ayryM22w9Uci2hm9baSwKz3x9tL8Pp0IkJthIXY+dOHR1g8PZHqRjcP3TqL6ZnR1DS58Xh1DNMkLT6M1g4/j724lb98nMfDt89GkiRe/zwfr0/H7dX4fHd5YPWU0Lugbh3de++9REdHc/XVV3PNNdeQljY8b3CCcDbTK61ES0mb0edjJNWBHJOGXlMAho4SlTKgpS9ev84znf2hcjKiuPXiCT0a5L625hi5JU1s3FeJw64QF+nkG1fm9DpeekI4/++uuRw4Xk+HV8PnN/jzR7lsOVjV4435XCTZQ5BjxweK3GgVR0BRUeKzUeKz0auO4t34Z7Si3eil+7FNu8RKMAA1bTpICmZrLc5LVvR7v+KZkp3hyDHp6OWHkZxhSGHRZ/1yKyU+C3/ueoy2+sAsqj93PVrBVgD0+pJuyaJWvAdkBbXz/25X9Vn/0S9QUqYhh0RiOvyAFFgRcDKjsbMS6jBWNu7P/lVhbNl8sJJ/fHaMdo/VMP5rX50UmEWcPyWeMJeN3719gB+9uI2L56SwcX8FcZEuVEXm928dwDBhVnYMD9w8k8PFjTzz+l7eWn+cr102uedYB6p4ZXUeKbGhPPYv84NK6tbsKiMixMatF08AYMmsZEKcNv648hA/emk7Xr+OXzux5HBCyjgevn02dptCbZOb3OJGKurbSYkN48KZSd2u7dcMDhU2cOB4PYWVrdxxycSz/vXqbJcUHYLTrrBqi7V3Pjk2lP+4bTZOu8LbG47j8encf9MMGlq8/OKVnazaUszsCbGB9hsJUd37EEeFO7h52QReWZ3Hnz48wvjECLYequaaxeM5XtnCh1uLWTo7GZfj1ClRfbOHZ97Yy7eunnrOVWoNKlnctGkTGzduZOXKlVx33XVMnDiRq6++miuvvJKYmLN3eZIgDCW9Kg8pIv60xUOU+Gz8xzaBrGDLXDCgsXbm1uD2alw8N4VduTU89Y/dPPYv8wNlvwsqmsktaeKqRRm4vRr78utYccOMU754SpLEzOxYwLqrvXZ3GR9uLeaCGUmBimiDqaHFQ0uHj/GJY+NFWk2Zhm/fKrSKI+gVR1ASJgb6Lroue9CatTr6Ber4uTgW3Rn4gCPZQ3CcfzOSM+L/Z+88A+Oo7/z9zGyVtFr13rtkdVuSLRdcsMHGYGOaAUNCSEIIuQsk5BKOkAv5hyRHQnIXciGFkAAhgKk2Nhjce5NkWVbvvfe62jbzf7G2sJBkS27YMM8b8O7szG92VzvzbZ8Pmsisz2XtqqBZWIt2InoEIH6B5xXPoE2+EWv5AUYPvIzTyu9jb6/EfPhfqIISkQa7kLobxraVZRlbfT6qwISxOWPVmYqdLI+powoqDYKLO9Jg14TjST1NCK4+M/JlVPjy0tE7gsUmTepVtz2nkTd3VRId7EZGnC9B3i7MCh9/TYkP8+DnX8/irT1VbM9pxMNVx+Pr01CrRP77XycYGbXywOnEYGK4J8vnhLAzt5HsJH+igz7tRBkZtfHO3ip83Z1o6Rrm1U/K+cbNkycUz2C22DlV3c2ClIBxrX5z4nzwdpvD+wdq8PVwIiXSC1dnLfXtg7yyrYwXt5YQ6ufKlkO12OwyAoAA/l7ORAe5MTJqZWduE7vzmxkYtqBVi8yO9WFhcsCUa1G4NhBFgR/em86QyYqvuxPe7k6Ip79j/3HPp0mf+UCbAAAgAElEQVQ7d4OOtQsi2J7TyN3Lz51UXZwWSEP7IIeL2jhU2IaPu57V2WE0dQ7zzKu57Mpr4ub54efcx868Rlq7R9hzopmI1dfGfcilYlrBokqlYsmSJSxZsoTR0VF27drFG2+8wbPPPktRUdHlXqOCwhcOWZawt1agCks/77Yqv6gxg/ULrUTsO9mCv6cz962I5aa5Yfz8lRyef+cUT301Axe9ho+O1OOiV3PTvDCcdGruu2FiRvlcCILAzdnhvLCpiLyKTjLjL61R8ZFiRzbbapN4+sEsgryv/rZIbdpqbHV5mHb8H5iH0WbcNvacIKrRL/469tiFqHwjJ3goalNWXenljkMdlIj11MdI3Y0OC5cvOKLRB13WnZgPv8bonr9iqzmOYPBGv/QhzIf/NU78RuprRe5vR510w9hjgs4FwcUT2TyMOvxTcTjR4D2pyqrU0/xpgKmgcA5MZhvPvp5P35CZ1dnhrFkQjlolMmqx8dbuKvaebGF2rA/fWjMLjXrqKp+nUc/Da5NYNXcQV2cNnkZHouKnD2RittkxOmvHtr11UQS55R28+nEZ//VA5thowQeHahkcsfK9u9LIr+zkg0N1RAUZWTZ76u/yqZpuLDaJzLiJ14Qwf1ceuzN1wmOjZhtv7q4ir7yTjHhfbl0YgbtBy0//nsNLW0t4ZF0yL2wqor1nhJQoL5bNDiYhzP2c569wbTHdpPCahRGsmhd63s9eFAS+ujKeu5ZGU1jTTbCPAa1GRWSgkbRobz48Ws+8RL8JrdWyLCMIAiazjf0FrQhAXkUH998YO63vW2efiebOYVKjva7piveMJpjNZjN79uzho48+oqioiIyMjMu1LgWFLzRSb6tj5ing/P55Kr/osf+/kGCxqXOIquZ+1i+LRhAEvNz0fOe2ZH79ej7//doJUqK8yK/sYs2C8PO2YZyL2bE++Hs68/aeKkL9DBNaQWaKJMsU1/awK88xQxMd7EZr1zCvbCvjiftmj2Uaz0XfkBlXZw0qUUSWZV79pJyG9iF8PZyYm+BHWoz3uO1tdomaFofZ8sW8FwCC1gmnGx5l+P2fAaAOHD/3LckyJwc8SfVVcbVJKqj8Y0FUg2SbIM7yRUWTuAxbzXFsVUdQBSXidP23EfQGRK9QbDXHkS0jCFpnbPUnAMbmFcdeP2spCAKC5lMxIsHVG3tbxbjtZLsVqb8NdcQcFBTOx/sHaugbNJMa7c3Ww3UcKmwl7LRaZHf/KCvnhnL74khU4vRmxT87fqDTqia0kjrp1Ny3IpY/vFfI9pxGbpoXRl3bALvymrguLZAwf1dCfA3UtQ3yrx0VeLjqplQQzSltx+iiJTbEfdrnvCIzBK1WhbuLbtxv9IOrE/jNG/k8/ffjuDhpeGLD7BntV+GLyUySBE46NVkJ43UY7l0Rw09eOs7L28p4fH3aWFBXWNPNSx+W8sDKeLoHRjGZbaxbFMH7B2opqOomYxpJ8X98VEpZQx9L0gK5d0XsNavpoHr66aefPt9G+/bt4//+7/946qmnaGhoYMmSJfz85z9nw4YNV2CJlwaTyYJitaJwMcg2MwiXRi7bVpuLvaEAXfY9COcTD9E6Yy3ZDTYLuqw7J7XY+CyjFht/2lREcV0PBVXddPWb+MZZqqZeRj1B3i5UNQ+QV96JXqvioTWJF6UIJggC4f6uHCpsY//JFqICjecVQDCZbfzytTw8XXX4eY4PLv+0uZj39tVgMtu4eX44D6yKx92gc8y/uGjPOzNwsqqLX7yaR23rIJkJvhwsbGPzwVrcDFqaOoY4XNRKZoLfOIXADw7V8tKHpXx8rIHyxj7SYrzRXkS2WtAbHCJFdhuapOUIguNCYbVJ/HlzMR8cqsNFrxnX6nU1IKjU2JuLkYe6UUdnj9lLfJERBAFVSDIqjyCHhciZFlGrCVvVUVQhKYiu3mO+qLrU8dVfdUAcav/xyR+puwF7QwHa9JvHPnuppwlr6R40idcr1UWFc1LfNsjL28pYkh7EQ2sSCfUzYDLbaO0ZQatR8e1bk7guNXBaibOZEuDlQkP7IAdPtZIS5cULm4rQalQ8cqtDwVQQBNJjfCiu62HPiWZigt0m/N6bLXZe+biMuYl+pEV7T3GkiTiuJUb8vcZfE3zcnbBLEmarxOPrUxX1bYVLgrNeg0GvYWdeE+4GHeGn7y1e2VZGc9cwx8vax5LID66exb6TLZjMNjLjfSmt78Vqk3A9qzJ/htbuYd7aU02on4GC6m4qm/rIiPP9XANGQRBwnmSt52NaweIjjzxCVlYWP/3pT/nGN75BWloaLi5XfxvY2SjBosLFIJkGGH79cUQ3P1SXwLrCcupjZMsI2ozbzht8CoKArbUC2dSPLvP2aQWrr35cTk5pB519Jpo6h8lK8GN+0vhZjkBvF5akB7FsdhBL0oJwN1y8PYOnUc/sOB/yK7vYkdOEKApEB7lNueaDp1rYX9BKS/cwi9MCx7brHTTzyrYyls0O4vvr04gP9UAUBEJ8DVQ197PvZCujFhvhAa6TBnNFNd3833uFuBu01LUN0tY9wq4TTcQEufGf981hfqI/e0+20NA+yPwkfwRBwGqTeHFLMaF+rmTN8uVIcTvOOvVFZ65Foy+ayMyxYMFitfOHd09xqrobJ50Ks1ViwVU4ZyMN92JvKUU7aymim//nvZwrgqDRo/IOG/usAFDrsBZ+4njcyQ3L0Y1oZi1FHRB/3v3JA53Y6vPRxC4cSwrZavOwN55yJH70E2fQLhZJlhketTEwbMFJp76mW5++zAyPWnn+3VMICPzbbclo1CoCvFzIiPdl2exglqYH4eV2eWdeY4Ld2J3fzL6TLYyM2njsztRxAZxaJZIe40NueQfbcxoZMlmJCXZDo3b8/Zyo6ORYaQd3LYnG2316yqnnIyHMkyVpQbg4XW39GArXMmH+rlQ193OgsJUFSQH0D1vYuLuK1dlh6DRqmjqHWL8smmBfA72DZo6WtFHZ1M/mg7XsPtFMXesAoX6u44LGD4/UU9c2yE+/lkWwjws785qobx8iM973sug6TIfLGixu2LCBrKws3Nyuruz3TFCCRYWLwVaXh636GKLRF3VQ4kXtS5Zlh3hGQDyayOkJ1oieIaiDElG5n/+m/WhJG+8fqOXm+eE8dmcqyVFeLEj2n7JVQ6dRXXTL5dkYnDRkJ/rR2W9iZ14TVc39zJvlP+GmVZZl/rGtnBGzjd5BM7Eh7vicvqHYd7KF4roeHlqTOG6WRhAEkiK86B00s/f0TYyfhzOBZ80w9g6a+dVreQR4ufDjr2QgILDvZAtatcjj69Nx0Tv8tZx0KnafaMbP05kQXwNHi9s4WtLO11YlsCQ9iIrGPopqe7h+TvAlzdy/tqOCnLJOHrwpAS83PTmlHazICBm7wbpaEJ3dsXfVoU1ZOa618kuHRo+1ZDeC1gmptwV7RzX6Jd9A0J6/zVq2jGCrOIQ6LB3R6GjTs5zcimy3op2z7pIHcm09I/zkpeNsOlDLjtwmfD2cCPFVqi/XGiazjd9uLKCla5hH1iUT5H3pkwrTwUmnRqdRcaq6mzuWRDF3lt+EbXRaFQuSAzBZHBYEx0rbiQw00tU/yt+2lmJw1nD39YpCqcLVjSAIRAe7szuvic7+UTp6R6hrHeThtYksTAkgOcqLpAiHMrjBScPe/Bb6h83cuTSaqCA3css7OFnZxeK0QFSiiMVq529bS0iJ8mZhSgChfq64G7Rsz2mks8/E7Fifz+Vv4rIGixaLheeff56nnnqK559/nm9961scPHiQ/fv3k5KSciHrveIowaLCxWApdIh9CC5eaCIvblZXHuzEkr8FTeKyabf3iU5GRLeJF+rP0j9k5ncbCwj3N/L1mxNQq0Q8jforPvivUauYE+eDs07NnvwWQnwN4wI6gJqWAT48Us/666NpaB+is89EdpIjGH5tezmeRj03zQubsG+d1rHv9BhvKpr62ZHbyOCIhcQIT0RBYGduI8V1vTxx32w8XPXEh3mgVonckBk6bl4nzM+VwpoeDhe1EuLr6hD5cdKMzXY66dTsO9lCqK/rhLVfKMdK2nl3Xw03zQtj5dxQVKLAwcJWIgKM0zrGwVOtvLmrElEUCPByvqzZSUFvQBt/3Zc6ULTa7OSWd+I7Wovc34qttRx1SArahCXT30fRDlQBsai8w5ElO6MHXkUTlo4m/PziVjPlnb1V1LYOcteSKOrbBwGYc5awyPColb9sLqa6pX/sxkfh6mJk1Mrv3zlFXdsgj6xLGlOc/ryIDDCSEe97zptbjVokJcqbWeEe5JV3siO3iSPFbbi5aPn++rRJW/QUFK42XPSa08ruzTS2D5Ea7c2i1EBEUcDTqB/7/rsbtAT5GFh3XSQpUV7Eh3oQ7u/KjtwmQCAhzIMjxe0cL+3gvhWxY1X1cH8joiiwM7cJT6N+wvzwleBCg8VppbJ/8YtfUFFRwXPPPTf2ZsXExPDGG2/M+IAKCtcasixjbyoGQBqaKIM/U8b8FQNmpjg6bh+SRHPX8ITHPzneiNlq58HVCdMWPLhcCILA8owQvN30fJLTOOH5vfnN6LQqFiYHsHxOMEW1PTS0D9LcNUxDxxDzJslin02onys/vn8OKzJC2H2imb35LUiyzIFTrSSEeYwJ7IiCwM3zw0mMGC/UIooC31mXhLebE79/u4D69kGWzwke+41LjfbCy6hjV97EtV8ILV3DvPJxGdFBbty6yJEkiA52w0mnorDm/N+r3kEz/9pZQXXLAC9uKeFHfz7CsZJ25Gs4C2ax2nl9R8WY4fLVxmvbK/jLB8Wc6NQj9baAeRhN4vJpv15w8QRBRB5wKKJKHTVgNaEKvrjuhMnoH7ZwuKidBckB3JAVSnyoB+UNfWPfj84+E7/8Zx4nK7vYmds05mGmcPXQO2jmV/86QU3LAA+tSZxSNOZKIggCwT6GaSUWYoLd+dmDmcxL9CMpwosffyUDf8+LEzpTULiSrJobhp+nMxabxOK0yQUFBUEgM94X37Naq2eFe5Kd6M+2o/W88nEZr3xcRpCPC3Gh48dYVmeHERfizsbdlfQOmi/ruVxKpnU3uWvXLn7729+Snp6OePoG1M/Pj/b29su6uEuJtfIw1rp8jpa0kV85UcpcQWEqpN4W5JE+UGuRJ/FMmym21nIEvSui+4Ubcm/cXcVP/naMHbmfBjJDJit78puZm+B31VygRVFgRUYIVU39VLf0jz3eMzDK8bIOshP9cdKpWTo7CCedmmdfz+efn5QjCJCVcH6lMbVK5O7ro0kI82DTgRpyyzro6h9lUer0ZgA9jXqevG8OGfG+eLvpyU78tM1XJYosnR1MWUMf+RUX95vR2j3Mb97IR6tR8a01iWMD7mqVSGK4J6equ88b9L25qxJJkvn517N47M5UjM5a/vJBMc+9eRKz1T7pa2x2iZ+/kstTfzvGnzcX8eGROk5Vd0+5/ZVAOus8Pz7ewM68Jg4UtHxu65mKA6daOHCqleRIL4r6HFVf2T0IVUAcfUNm/ry56LzXEkFUIRg8x5JMtqYiQEAdOOuSr3fPiSZsdokVGQ7RnNgQd3oHzXT1jyJJMs+9mc/AsIX/uCed7EQ/3ttfw/HSa+ca/kVn1GLjV6/l0d0/yvfuSr3k9kNXCme9hm/cPIvv3pEyTjxMQeFaQKMWeeiWWdyQGcKs8Jkpga+/PhonnZr9J1uYn+TPD+5On5BkEQWBB26Kx2aX+ecn5WPX/f5hC//516OcrPz0HvNqSgRPa1BJo9Fgt4+/uejp6cHd/dqRLLbkbaZlRMNf25bipFPx3CMLLumclsLniyzZEcTL02ppb3Z4iaojs7BVHEK22xBUF/7dsbeWo/KPnXYLmCzLvLe/hsaOIb61JpGeQTO785oxOGl4Y2clyHB9RjA7cx1VxdXZE1s3P08WpgSw6WANO3IaiVrrxsCIhd9uPIlKFMZubF30Gp76yhxe31lJcW0PiRGeuE1TcEcQBO6+Poan/3Gclz4sxUWvZk7s9DPyOq1DVVCS5QmziUvSAjle0s4f3ivkpnlhXJcagKdRP07NzGqzc6iojR05jYT4Gnh4bdK4fbT3jPDr1/ORcRgKf1aUIjnKi9zyTho7hiZV97NLEsdLOsgp6+DWRRH4ejjj6+FMUoQnu0808frOSvbmN3NjVuiE156s7KK2dYCYYDeqm/s5XtoBQGKEJ4+vT5v2e3SpKG/o5ffvnGLDiljiQt356HR1q7yh74qv5Vy0dA3z2vYKEsI8ePSOFEpOaZGOHeTd9gg8D9ay72QL/cMWKhr7SAz3RHsOFWHR1QfpdJLJ1lyM6BM+Y2GbLaf97e5dMV5t9WhJG4cL2wj2MXCwsJW0aG8CvByB7ZmMdkVjH0YXLZ19o3z71iTiwzyICnIbmynzNOqvOjXeLyPbjzfS1T/Kj+5NJy7U4/NejoLCl5aIAON51dYnw+is5YkNs5FkmWCfqX/j/TycWbcokrf2fOol+vGxetp7Rnh3XzUp0V5YbY5Eb3qMN7cvjjrncU1mG63dI0QGznzN02VaM4vt7e288847pKSk8NZbb7F27VqeeeYZMjMzyc7OvmyLu5T0H9+CbagXc/T11LQO4m7QEhmoXCC/CNg7qhne+CPUwYmILpfeE8584gMQQBszH1v9CTRxC89vdzEF0lAPlrz30SQsReV37h+AM2w+WMvWw/W095qoaemnqKaHYZOVn39jLp19o+zIbWTvyRbKG/pIjfZmeUbIBa3tcqFRiwybbOwvaKGotpu9+c109Y/yvTtTxySqAVydtWQn+pEQ5sGC5IAZJXPcXLT0DZmpaRlgSVoQqTOQaT/DZMG7Rq1ifpI/AyNWduY1sTPP0b7n7qojzN8VuyTxi3+eYP/JFmRZpr59kCXpQehP+5aZzDZ+82Y+oxY7P7x3NkGTzCW6uziG3odNNjLixs8F7TnRxP++fYqjJe0EervwjZs/bS8WBIHIQDcqm/o4Ud7J0tnBiKJAcW0PHq46VKLIa9vLkWV4+mtZ3JgVyvLTwfnhojbmxPlgdLmys0SbD9ZS2zpIfmUXRbU9DvnxBF+Ka3u4ITPkqvGgentPNS3dwzyxYQ5OOjW+/j70+2dwtNPIoaI23A1ablscxfHSDpz1GqKDp76W2FvLkTpqUEfPcyipxi5EHTT9ymJlUx8vbi2lpnWAWeEeeBn1jFpsvLytjE0HarFLEqX1vYxa7DywKn4sGWFw1rArrwmNRkVNywADwxYeWBWPKAqoRIG0aG9yyzo4VNRKRpwvLnqlCvR5MTBi4U+bi0mL8mbVJHPaCgoK1wauztppXVcjAl05WdnFiYpO0mN9+MeHpXi46mjvNRHsY+BYaTv5FV00dQ5x/ZzgKa+N/cMWfvNGPlsP15EZ73ve+eDLKnCTlZVFYWEhP/nJTxgeHubNN98kKyuLxx57DJXqyghn1NbW8vDDD/O3v/2NrVu3kpmZOaPKZs+xD9Fa+pm77h6KGwcpq+9j2VnzSQqfH1J/G6i1F1wZNOe8h9RVh2wZnba66HSRzcOYD7+OJiIDlX/0BGXDmWJrKMBWm4su6w5E5/N/f/ecaOLtvdUsTA7gxqxQduQ00tk/yh1LokiM8GR2rA/+ns5j3lP33xCH2xUOAKZDZKARQYSu/lEGR6x885ZZJEZ4TdhOEAS83ZwuqOofGWikZ2CUWxaE43wJb3xVKpG0GG+SI72ICjIyOGLlcFEb85MCOFTUxsFTrXztpnhuzg5nT34zPu56IgKMyLLMX7eUUNnUz6N3pE6Z9dNr1ahVAjvzmlCrxDGrjuFRK7/bWECgjwv3XB/DnUuiJ61gebs5setEM3qtit15zby7r4bWrhECvVx4e281q7PDxvapVasI9TWwM7cJWZanJZ5hs0vsymvCw1V3Ud0YNrvEK9vKSI32xs/Dicqmfm6ZH05qtDeHitqIC3HH1+PKtk9vOVzHrtxGMs8yaR4yWfn7R6XMT/Ifp/5oMBqZn+RPfKgHaxZEEBvifrpa286StKAp1WztfW3Y609gLfwEkNFm3Ibo+un7PjBi4X82nuTdfTV8dLQem10aqyzZ7BK/f+cUWrWIRq2iqWOIeYl+/P6dU5ys6mLNgnC+c1uyo+qdEkjIWZVpQRCobu6norGPhvZBFqYEjEui6DQqkiK92H+yhX0nW2juHMYuSfh6OH3u885fNt7dW0118wDfuS1JEYNRUPgSIAoCIT4GduQ2klPagcli48n75lBc10tRTTfFtT1EBhrp6B3F06iftNLZ0WfiN2/k0z0wil2ScTPoiDuP1ddlDRZVKhXXXXcdDz/8MPfeey+PPfYY11133RULFAEeffRR1q9fzzPPPINWq+WFF15g3bp10359dU0rTr1VqMPScfL0ZV9By6Smr9cqsnkY084XUPlGXnDV6/NAGuhg+K0nEbROqPxjZvx62TrK6L6XQBCRelvQxF83qWm9pXgXsmkAcRrWEwCyzYL50D8Z3fs3sFnQZd2J6OqNtWgH6sB4VN4Xlv21Fu9C6m9Hl33PeRMVQyaHKl5ciDsP35pIqJ8rnkYdWrXI7YujEEUBUXR4D2bE+7J8TvBVGSiCo7qYEObJdamB3JgVit9lmKnUaVRkxPte0kDxbDxcdYT5uRIX6s7OvGaaO4c5XNRKXKgH65dFY3TRknN6ZnJhSgA7chrZkdvEXUujx81CTkZMsBsdfSZ25DYR6mcgwMuF3XnNnKrp5tE7UkgI95wys+jlpqeyqc/hV9k1TGqUF/lVXeRXdmKzy3zzllnozgoydRoVbT0j5JR1nDNjeYbc8g5e3lbG0ZJ2ooKMeBkvzNuttKGXfSdbuO26SG5ZEE50kBvzk/zxMOj4+FgD7gbdtGZEzFY73QOjFz0PZZckXni/iLq2QTLOqrLuPtFMYU03D96UMOHvSRAEvN2dxgLDQG8XduQ2YbLYSIn0QhAEOvtM9A1ZxixfVN5hiD7hiJ6hqPxj0MQsGPvbl2WZF7eUUN7YR2a8Lzqtiv0FrQgCBHi78N6+Gk5Vd/PNWxIJ8TWwJ7+Z0vpeKhr7+PrqBG7IDEUUBFSiOOn3vn/ITG55J5IMX7kxbkJrt8FJQ2K4J4MjVopqezhc1MaeE830D1mICjRecRXlLyMN7YO88nE5C1MCWJRy4XPsCgoK1xaeRj3d/aNUNvWTnejPkvQgnLQqDhW24aLX8OP7Myiu66GmZYCl6UHUtA5Q1dSPm0FHcW0P//tWAVabxOPr02jpGqa5a5glaef2Ab/QYFGQpzFBWVVVRW5uLv39/bi5uZGRkUF0dPSMD3ahdHd3c+ONN3Ls2DFUKhV2u525c+eyfft2PD2n13Y4d+5cmpqaLvNKFRQUFBQUFBQUFBQUri6Cg4M5duzYjF93zp4iWZZ58skn2bRpE/7+/vj6+tLe3k5HRwdr167ll7/85RVp42xtbcXPz2+skqlSqfD19aW1tXXawaKCgoKCgoKCgoKCgoLC9DlnsLhx40aOHz/Oxo0bSUlJGXv81KlTPP7447z55pvcc889l32Rl4KPPtrF4FtPIRg8cV75PYZMVn7wwiGyEvx48KaEse1GLTbe21/DzlxHFTIx3IPvr08bC4qbu4bZuLuSYB8DaxdEoNN+/m06siQx/M/vItvMYLfics9z42Zixm0ry+SVd2KX5HHzOFcKW0sppq3PogqahSowAUvOu6jD0rHV52N44E+TtpBOhb2rnpH3foo24zZ0s9dgayzEtO236Bd/HU3corHtTDtfwN5ahv76b2P68Ddo4q9Dv+iBKfcrS3aGXv13NBFz0C/++rjnhjc/gyCqcb7liZmfe30+pk9+j9OaH6M+T8vtv3ZUsOdEM7/45tzL0rKpcPn4r5eO09Q5xL/flkz6DFRZz3C0uI2/binBw1XHr7+dfdnmx1q6hnl/fw0nKjuRZQj1NZAW4012ov/Yd+5wUSt/21rKk/fNITrYjT9tKqKiqY/ffWfBeROFkiRT2dRHTcsA7b0m9he08PDaRLISJv7ulNT18NybJ1k1LxQ/D2dmhXng7e6E2WLn9+8U0NU/yvKMED48UoeXUY8oCoyM2vjFN+deUMLSapN47A8HSY/xJj3Ghz++X8idS6PYergeD1cdT38tc0ZiO7Issye/GUmSWTYnmC2H6th8sJbvr08laZLZ3Krmfv7nrQKcdSqe2DBngkLu1YDVJp22B+niKyvjztveBPD8O6ew2Oz84O70K7DCa5sPj9Tx7r4a7lkew4qrTJRMQUHh6qGyqQ9ZZkx7YCp+8tIxDHoNP9owG4BNB2rYcriOtGhvTlZ2YXDW8MBN8Re0hnMGi5s3b+app54aFygCpKSk8OSTT/KXv/zligSLAQEBtLe3Y7fbx9pQOzo6CAiYnpfaGUT3AOydtYBjVmN+UgAHT7Vyx+IoDE4aDha28v7+GvqHLVw/OxgvNz1v7anicFEbs2N92JHbyNbDdahVIkU1PeSUdvCttYkXJDsuy/KMbnJkmxnZYppUFEXqqkM2D6GdvRbLic3Y6k+iTfrUOHpk67OogpMYjVnBqx+XkX/ax6W1e5i1CyOuqMiP1OMIwu0tpdibSxD9otEkLMZWn4+9pxG1f+x59uCYzxw9/Dq2qsOgdUITuxAAVXASoncY5hMfoI7ORlCpke1WbI2n0ERloQ5MQB0+G1tT8bnX2FkLlhFUwckTnhMN3tg7qi/gzMHe2+xYp2fwObc7Vd3N7rwmlqQHKYHiNcj6ZdG0dA1fUKAIMC/Rn8ERK/5ezpdVaCTQ24Xv3JZMV5+JnLIOCqq62HK4jg8O1RET7MY9y2M4XtqBp1FHZJBjuD450oucso4pbT7OcKCghbf3VjNksgKOmdUQXwPJkRMDJ4CoIDecdWq2HW0AHHYm962I5UhxG+WNfYT4GHhzVyUqUeAHdyfQ0D7ISx+WUt7QR0yIGxi0C5YAACAASURBVK3dI/h7Ok87wCs+rcSaleDHrHAPDE4a3t5TjbtBy/fuTJ2xKqsgCCyb/enf9U3zQjla3MZLH5by1RvjSYv5NHnX3DXMb988iZtByw/uTrsqA0VwfGYPr03ij+8X8urH5ZTU9rBqXtiUkvKjFhuFNd3YJZmOPtM4w2qF8ZTU9fDe/hqyEhyz5goKCgpTERM8PTHP2TE+bD1SR/+QGTeDjryKTmKD3fn321NoaB/kn5+Us3FXFTdkR854DecMFqurq8nMnFxdMjMzkx/+8IczPuCF4OXlRUJCAlu3bmXt2rVs3bqVhISEGbegiu4B2GpykG0WBLWW5XOC2ZvfzOs7K2juGqa5c5joIDf+7bZkooLckGSZExWdvL6zkjd3VTI8aiMj3pf7VsTS1jPCXz4oZuPuSn58f8a01yDJMrtym9h0sIa0aB/WXReBt9v5L6rmoxux1ebisuF/ET5zA2lrLASgxnU2wcaj2Bo+DRalgQ5HYGYa4ldHPekZNHPn0ihau0b44FAdwyYb96yImeAvd7mQ+lpB64TT0ocY3fd3dOm3IHo5/OGkrgaYRrBoKdmNrfIQmuQb0abehOjsCNYFQUCXcTumj3+HtfwA2llLsbeUgnUUdbgj0yJ6hWKrzUW2mKasYtoaC0EQJpW3F129Hd8hSZrwOZz33HtbEVw8zlk97ewz8eKWYoJ9Ddy17MrNBStcOhIjPEmMuLj2+BWZV67S4O3uxKp5YayaF0bvoJmjJW1sz2nkmVfyALghM2Ts9yE50nFehTXdUwaLJXU9vPJxOVFBRpZnhDAr3ANnnfqcSSmdRsWvvz0fk9mGyWLj1U/KeenDUgTgwdUJzE/yp6KxD7skE+JrwM/DiTd2VvLe/hpMZhvNXcPoNCpmhXtw/41xuBt02OwS7++vITvJf5znlc0usetEEy56NbPCPVCrRK5LDWRPfjOP3Zl6SYI3jdrh3fnXLSU8/+4pMuJ8+NbaRFSiyJZDtSDAj+6djYfr9LxEPy80apHvrEvig0N17D7RTG55J+uXRU/q6Vla34tdckggHCtu45YFEZd0LVabHYtNuuYtPvqGzPx5czEBXi48sCpeUWRXUFC4JMxP8mfrkTq2HWtgSXoQzZ3D3LPc0cUW6ufKf94/54I9jc8ZLNrtdgyGyY0lDQYDkiRd0EEvhKeffponnniCF154AaPRyLPPPjvjfYgegYCM1N+OyiuEQG8XkiI9OV7agY+7nkduTWLOWT5noiDw1VXxPPuvE8QEu3FTdhhRp70ZjS5aFqcGsvlg7VgU/1kkWaa+bZD69kE6ekzYJYcPW0VjH5GBRnLKOk4rEgaxOjt8SnU/WZax1Z9ENg0gddej8vn0ItzRZ6Iz9wiC3ZPn3q9mnYs3iwZKGO3uxdPLA1uTw1Be7m1kaGCAH9wzl9gQd2RZxsVJzSfHGxkatfL11QlXxONM6mtFdA9EHZaOy/3PIwiCo8qqd0XqbpjePnpbEAxe6LMnVrVVIcmIftFY8j9AE5ONre4EqHWoAh2Bn8rLcRMu9TRNqb5qaypE9ImY1DhbMHiBbEce6XX8/wxwnPvU1XBZlvnrB8XIMnxnXdI4BUsFhSuBh6uOVXPDWJwayFt7qjhS3M78pE+VXN0MOkL9DBRWd7M6O5zeQTMN7YP0DppRiQIGJw1//6iUAC9nHrszdUZWG856Nc56x/Y/ujed7ccb8XLTj7Wtnm1UrtWomJ/sz87cJnzdndiwIpaW7mEOFbby4pYSHl+fxvv7a9h2rIHmrmEeuzMVAIvVzp83F1Nc28Pd18eM/ebdtjiSW+aHX9KxglA/V57+WiYfHa1n04Fawo83MjvWh5zSDlbOC73qA8UzaNQqbl8cxU3zwvj7R6Vs3F2Fl1FPRrzvuO0Ka3rQaVUE+7hwpLidm+eHX7JASJJlnnvzJB19Jp75xtxrOmD86Gg9JrONJzbMRq+9cCsaBQUFhbPx83RmQXIAu080Y7M74rM5Z3U4iYJwwYnsc/5S2Ww2jh49ylSCqXa7/YIOeiFERUXx9ttvX9Q+RHeHLLXU1zIWNHzlhjjKG/vISvCb1CcryNuF5x9dNOFxgPRYHzYdrOVkVReL04Lo6jPR3msiLtSd/iELL24toaLREcVr1CJqlYBOo+KBVfEsSgmgd9DM+wdq2H68kQMFrWTE+xAZ6EZGnM84GXSptwV5uAcAW3PJuGDxaH4t19FOW9AivrcyleZiCVVrMXu3bWfthruwNxYiIyIgsSHtUw83QRC4a2k0rs5a3tlbjcls47t3pFx0hVGWJZDsCKrJL+ZSXyuq4KSxNZz5r+gVir27flrHkAbaEd0mtyIQBAFd5u2Ytj7L0D8eBkAdkYGgdkgFn6li2nsaJw0W5dEhpM5atOlrJt2/6OoIEKWhbsQZBIuyLCP1taCJXTDlNg3tQ1S3DHDfDbFX3G9OQeFsnPUaHliVwFdudJi4n01ypBfbjjawJ7+ZjbsqsdjGJw2ddWr+7fbki/JkVIniec3J1y2KJDbYnbQY77GgL9zPlX9sK+PPHxSTW9aB0VlDYXU3Xf0mvIx6/vh+EYU13WxYEcv1Z7X/iYJwWebP1SqRNQsiaOwYYtOBWkrqelCrRW7InFiZu9px0qn55s2z6BvK58WtJahEYazVWpZlCqu7mRXmQWq0Ny9vK6OubXDKltWZcqSojcqmfgA27q4apzMwGVab/aq0/RgyWdlf0MLcWX4Eel87FlcKCgrXBmsWhHO0uI3dJ5qJCHDF8wKtrj7LOa/mXl5ePPnkk1M+f60pkYpufoDgaIU8jbe7E94XOFsR7OOCt5ue/MouFiQH8D9vF9DaPYKLXo0kO7Kh990QS1KkFz5u+glZVk+jnq+vnsUNmaF8cKiWvPJO9he0su9kM0/ePweVKLIrrwld5S5SAcHZHXtzCaStBhyze6FVb6ESZKLnLkLt70VS+FK6Xv2QqIEcCiqXENFUQp4lgtnaWtLdescdXxAEbpoXhkYt8sbOSvbmN4+bu5kpsiRh2v575JE+XG772cTnLSPII32TVtdEr1CsRTuQJRuCOPXX0hF0taGJnjflNurABJxueBR7T6OjBfWsAE1w8QStM1J346SvtTUUgCyjPh3QfhbB4Jg9kge7ptUyO7bukT6wjo4lLCbjSHEbapXwuQgPKShMxmcDRYCUKC8+PFLPPz8pJybYjTuXRONp1GGXZLr6TPh5Ol+yC9S5cNKpJ1S3FqYEUFTbQ05ZBwFezvzbbck89eIx9he04uvuRGFNN/csjxkXKF4J7lsRS1n9MUrqeq9qP9TzodWo+PfbU3jujXz+8F4hadHe3HdDLKMWh/fl6vlhZMT58Nr2co4Ut12SYNFktvHO3moiA43Ehbqz7WgD82b5TfDkNJlt7MxtJK+ik4b2IR5fn3bR7eCXgqaOIU5WdbEiM4Q9J5qwWCVWTtLGq6CgoHCxeLs5sSQtiJ15Tcy+QN2EyThnsLh79+5LdqCrAUGtRXD1RuptOe+2smTHVnUUdWTmWFVKNg+DII7NnAmCQHqMD3vym9l2tJ7W7hFuXRhBW88IZqud9cuip1UhCvE18J11yUiyzJEihyjCx8caCPRy4V87KnjEtYxWwZ1eKYKEtiJkmwV5pI+hrb8mXOqmOmglaaerZIKowjXjZvSH/8meXW8TpTLTpIsm0xvsbRWTHn/5nGBOVnbx7r5q0mN8Lrg9ynz8bewNBYAwNhd6NlJfG8CkwaLKOxSrZHNUHj2nnteSzUNgGTkd+E+NOjwddfhERT5BEFB5hTgCyc/uW5axnPoY0c0f0Tdq0v2OVRYHu855/M9yJkExVRuqXZI4WtJOSpT3Nd1ipfDFJzLQSHSwG+F+rty1LHpc+7rP5yxqIggCX10Zh7NezfI5wQR4uZAc5cX+ghYkSSY6yO2KB4rgaN/96sp43ttfw8q513agYHTW8l8PZLI9p5EPDtXy078fJyHM0SKcEumFs15DeowP+wtayErwuyABuLPZfLCWgWEL370jhSBvF06Ud/LSh6V89/YUwvwdc7MN7YP8aVMRHb0mooLc0GtVHC1u+9yDRZtd4i8fFNPcNcyxknYGRiykRHkR7Dv5eI+CgoLCxXLzgnBMZhsLk2cmAnouLv+Q2lWGyj8WW20u1pocAKT+dqwVh7DW5GDv+rQN0laXx+jeFxnd/w/HzGBTMUP/fJShl7/N0Js/wlZ/EoDZsd4OIYUDtSRFeHLLgnAeWpPIv9+eMuNWQlEQmOs3yqJoHZsP1vLi1hKi/fTE6jqx+sZzvNcTwW7l4K6DjO77O3bTEM8PrsRn3i3j9qOLX4Rda2CxmIckC9y8biXawDikjlqHvcZnEASBr9wYh9Um8/qOCqQp2o4nw97diOXUNnp2v4z11LbTwZCMNNA+YdszAZNqisoinBa5OQfymYBzijbU6SB6BiP1NDlaZs/C3lCA1NOINv3mKcVrBLUOwcmIPNg5o2OeSVA45mYnUlLXy8CwhezECz8vBYUrgUoUefK+Ody7IvaKzDnPFGe9hq+ujCfotKjNkrQgBoYtmMw2vrIy7oqJeX2WjHhffvnQvCtSdb3cqFUiN80L42dfy8LTqCe3vJMgb5exc7t3RSzuBh2/f7uA5s6hCz7Oqeputuc0sjg9iIgAI1qNQzgI4Jev5fHO3mr++H4hz7yah9lq50cbZvPk/XNIi/GmoLob+xXUVZiMPfnNNHcNc9O8MAZHLAyOWFl1jScLFBQUrm6Mzlq+fvOsSbVULpSr70p/mdEvuA+VbxSju/7EyMf/w/BbTziCwp1/ZOT9p5FOBwG2hlOO/1YdwXzoNUw7/oDo7o824zYwD2OtPAxAdLAbBicNKlHgnuUxFzXQL5kGMG39Fbfrj6LXqtGqRb6drUGQbMTNW8h9992ChIBv9QfYW8s4plvAkEsIgV7jg1JBrcUpbSWiICN7R+Lp7YEqIA5kO/aOmkmP7efpzNqF4eRVdPLfr52gqWPqC7zNLpFX3klHRw8jW36F+ehGNFV7KbeHoFro8CU8u9V37Pz6WkFUIRgnlsZFtwBQabF31Z37Peq/BMGiVyhYRx2tpKeRZRlz/hYEV2/U52hxPXNsaaBjRseU+lpA44TgNHmW/UhRGy56NSlRMxPNUVBQODcpUV5EBLiyZkH4OFVUhYvHz9OZH98/h5vnh3Hrok/l2N1ctDy+Pg21WuSZV/N4YVMRBVUz68boGRjlb1tLCPYxcPdZytChfq789IFMooPc+OhoPXWtA8xP8ufpr2WNzeSnx/gwZLJSdXrO8fNgYMTCpgO1JEZ4cvviSH729bk8dmfqeb3SFBQUFK42vnRSXILWCadV38e07XfYW8rQJK9EE7cQ2TSAaeuzWKtz0KauxN54CnVkFkh2rCW7EAxeOK16HNHFA6mrHvtp5U6VKHLnkijsskyA1/iBdWmoG2vZflBrEd0DUIelnzOYtBZuB5sFob2Up+59EFGrx6noHawqLSr/WDzUWoZ9IwnsqKbO5sP7rUFcl+Y96T61s5ZhLdyBc+xcxzr9YwABe2s56sDJxQFumheGu0HHxt1V/OzlHG7IDGHNggjae0fILe887Q0JR4ra6R4Y5RbXIpZrRthivIc99WrsssD9zSIZTBUstiAa/SadSRREEZVvBPb2c3sYSv3tIKgQXL3Pud25ONPmau9uRDQ6Zp7srWVIHdXoFn7lnDOTAILRF/tpldnpIvW1InoETPpZmcw2TlR0Mj85YFKRJQUFhQtHFAV+8tXJLaAULh6tRsVt101s2/dxd+KJe2fz8fEGTlZ2kVvWwU8fyBxrHT0Xsizz1y0lWO0Sj6xLQvsZZWiji8OjcshkxdV54vxnUoQnapVAfmXXOBXdK8nmg7VYrHbuud6RRHZz0SrJQAUFhWuSL12wCKcDxlueALsNQXO6TOsRhOgbia36GOqgBGTTAOqwNNRh6Vjy/dDEXYfo4rjoiF4h2OpOIFvNCBodi1Inby205G/FWrpn7N9ONz6KOmziHB04VDgtxTsRjL7IAx14DNei9kxhuPo46pDksfk/dUgyls5adqgWY7VDWvTkQZOgdcZlw+9AEMf+LfqEY6vJQZu+ZtI2S0EQWJAcQGq0N+/srWLbsQZ25zdjttgRBQFBALskEx3sxrp5AUTnbKTIGsLOOg13L4smt6KTD3NayXT3mrKyeC6BF5VfNJaCjyeddxzbR38botEHQbxwpTvRMwgQkHoaIWIOANaSPQg6A5rYhVO+zmaXUKtERKMvtpG+sc9/OpytAvtZTlR0YrFJzFdaUBUUFL5A+Hk689WV8dy5xMrjLxzmk+MNPLQmcdJtG9oH8fN0RqdRcay0nYrGPh5YFY+/5+TjHIIgTBoogkP8KD7Mg5OVXaxfFn3FvQx7B80cKGhhYUqAonqqoKBwzfOlLWMIomrCjb4mai5Sdz2Wwk8AAVVwEoLWCd3cuxDdP72Rd8zXyUi9TVPuX5YkbHV5qCMzMTzwJwRXH8z5W6a0IbEU7QDrKE7XPwIaJ+z1J7HV5yOPDqKJXzy2nTb1Jlzu+iX33LGUG7NCiAuduqVFEFXjLpLa5BuRepux1Rw753tjcHLI5j+xYTbp0d5sWBHL/353IX/9jyX89T+W8OR9c5gjFOEkmDkiZpAY4cnyzBBuzg6nZ8BMv8pzQrAoSzak/g4kVz/q2gYmfR9UftGOVtnO2inXJvW3IVxECyo45g6tzt5011U51mYexlZ/AnX03EmDVLPFzjt7q/n2b/dxqLB1TFxHGpxeK+q5VGABDhe14eOuJyro0sjMKygoKFxNOOs1LE4N5HhpB139pgnPHy9t5+l/5PDcm/n0DZl5e081YX6uLEy5cIGG2TE+dPSZaOkavpilXxCfHG9AkhzdOgoKCgrXOl/aYHEy1JFZgICt6iiiTwSi0+Q372c8Gu1T2C+AQ3lUNg041FS1TmjTViN11DisLz6DbDFhKdqBOnw2Kp9w1CHJ2BpOYi3di2DwGleREtRaRDd/ArxcWL8sZkYCE+qoLETPEMy5m5Al23m3jw1x56E1iVw/JxiDkwZBEFCrRGRZwlq0A1VICt996Ba+d2cqoiCQHOlJmJ8rJT067L2tYwIyVpud3JwSkO28dnSA//dyLsdLJwZaop9jLsXeXgnA6JE3GNn2O+x9DnEYWZaQ+tvHBe4XQlFtNwV9rqi7KrAM9mKtzQW7DU3MAoZHrWw7Vs+HR+rYfLCWFzYV8cRfjvDR0Xo0aoeViWg8HSz2Ty9YPCNuo5qkqto7aKasvpfsRP8rnv1WUFBQuFLckBmCIMDO3PFJ1vq2Qf7+YSkBXs7UtQ7y4xeP0Tto5p7lMRclRpQW440gwOHitotd+owYGLGwN7+ZeYl+n7s6sIKCgsKlQAkWz0J0OS0EA6hDU6bcTjB4g9YJqXtq5U5bbQ6otKhDHPvRxC5AcPHAkv/BhG0txTvBMoJ2tsMIXh2WhmwawN5cjCZu0ZTKnDNFEER0GbchD7RjPv4OlsJPsDUWzng/Uk8TsmkATdRcR1vmaS82QRB4YFU8rTYjgt1CU10T7++v4YkX9tN7zHHe4fGx+Hk689HR+gnVRVHviujmj72tyjHvWbQDe+MpRt75L8wnP0Ie7gW79aLEbRraB/nj+0UclNLRYqVr7+vYKg8juPkj+kSwI6eRt/dU8+6+GjYfrKW+bYDoIDf+877ZrFsUSV3bIK1mR1uUPIni62ScmW8VPSZmyY+WtCGDooKqoKDwhcbTqCcrwZd9BS0MjFgAh0n98++ewuCs4Yf3zuaRdUlYrHayEnwvWgjG3aBjTqwPe/NbMJnPnxy9VOzIacRqk1idrVQVFRQUvhh8KWcWz4U6Jht7axnqsLQptxEEAZVnyFgQ8FlkWcJWm+eYNdQ4pMQFlQZt6k2YD/8LW3MJ6qBZjm2to1hPfYIqNBWVd7hjDSEpcDqjqolbdAnPDlRhaYh+0VhPfXzmbHC65QnUp4Pk6WBvKXXsKzB+wnNh/q4sXjwbjh7m9Xf30yUZ+a7XfjztXWiSbuCG7EU4F7byj4/KKK7tISly/MC/6BeDvT4fa8kekGWcb/0JloJtWI6/hdThEL85n8fiVMiyzEsfluKsU/OtDcvZ/1o5S1tzsIND5RbIKesgLsSd769PQxAYV7n193TmrT1VHCjr52a9gbrKaj4sL6B3cJQ5cb6sXRgx6TGtpfsQPYIQjBPXfaSojahAI35TzOUoKCgofFFYnR3O8dIO3txVyUO3JPLGzgoGhi089ZUM3Fy0pMf48OzD2RhdJp9FnCkr54aRW97JgYIWbsi6/JYVoxYbe040MzvOZ4LgnYKCgsK1ilJZ/AyauEU43/azscBtKkSv0Em9+gDs7dXII32oI8cr8GniFyO4emM+/DqyZAfAWrIb2TyE7nRVEUDQG1CFpKKOyEQ0XFr1NEEQcF71fZxv/zku9/4WwejD6N4XkS0T50imwt5ShmD0m3JtIdExACyLVvHjhAo8xSGcVn4f/fx7EQSB7ER/PFx1fHS0fsJrVf7RyOYhLIXbUYelofKNQn/9I6jD52CrywMu3DajoX2Ixo4hbp4fjq+7E22BS+mXHUGaJiabps5hWrtHyJrlh0YtTmjxdXXWkh7jzZHiNrolI4PtzfQOjiLJsPVw3aSzOPb2SqTuejRJKya0me472UxT5zDzL6FxqoKCgsLVSqC3C6uzwzha3M7rOys4UtzO6uywcQqpnkb9JfPvjAw0EhvizvbcRmx2CUmSx3yEewfN7MprIq98ZjZI5+LAqVZGzDZWXoHAVEFBQeFKoQSLn0EQRFTe528fEb1CJnj1ncFWlweiGnVo6vh9q7Xo5t2N1NuEtXQP9o5qLAXbUAUlovIdLz3udOOj6K//9sWdzBQIWmdUXiGIBi+clnwTeaib0f3/mJZ3oCxJ2FrLUE9SVRzbv5MRtM7Mspeiai1Cm37LuLZetUpkRUYIZQ19HChoGdeOqvI97adlt6BJXO7YnyiiX/YtVP6xCHpXBOfztye19YxMMGQ+WNiKWiWSleCwy0iODeLlwUUMzlqH6OrD8dJ2REFgTtxEH8gzLEwJYMhkpWZQT4iTiZ89mMX370pFEOCjI47gVxrpx95ZB4C1aAfoXNDEZI/bT3lDL69tryAp0pPrUpVgUUFB4cvB6uxwgrxd2JnbRJC3CzfPD7+sx1s5N5SeATNP/OUI33puLw/9ei+PPn+AH/zxEP/aUcFft5QwMGy56ONIksyOnEaig9yICprcT1dBQUHhWkRpQ71AVF6OzKG9q37Mq+8M9rZKVL6RCNqJw+3q8DmoAhMwH30L7FYEFw908+6esN2VEjtR+cegnb0WS94mbDXHEVy9EY1+iO4B6ObeNUEdVOquB4sJ1RRejeBYu+gegNRRjeDiiTZpxYRtlqQHklPWwT+2lXGwsJUVGSFEBbmxcX8Pt0pahmQnege9OVObFdRanFb/B/Lo0DnfG7PVzlu7q9iT38yNWSGsX+aoctrsEsdK2pkd642LXgNASrQXL9n9OWwL5XZZJqe0g4RwD4xTyLEDJEZ4khbtjZ8mDKf2WrBb8TTqWZgSyIGCFlaEjqI58iI6+zBDnvEYeivQpqxEUDuUd2VZpqCqm79/VIqvhxMPr0lCdYlmUhUUFBSudjRqkQdXJ/DytjIeWBV/yaqIU5ES5cXC5ABMFht+Hs6IIgyNWHF31RHm58rz75xiR24jty+e6BU5E05UdNLVP8r6ZdGXaOUKCgoKVwdKsHiBiB5BIJz26jur3VS2WZC66tAm3zjp6wRBQDd/A6Yt/406biG6rDsnDSqvJLo5t6KJnoetsRB7WyVSXyvW5mKHz2RwErLFxMi236KJWQBWR6vlZPOKZ3MmWNRlrJvUjkKvVfPj++dwsLCV9/bX8MImh8m9IEBSyh2Ud9g4/EExvUMWls8JRhQFBJUGweVTg+WG9kF25TVx07ww/DydaewY4i8fFNPSNYy/pzM7c5tYOjsYX/f/3969R0dVnnsc/85MSEIukAskmRAEUYghQJDEgseFp02QSxIIkWBcID2FSi9qtXIspdomokVAV22PR1hWXbjEG1pZAaEKCHgreAOkDQbBYAKR3EgCRC65zMw+f0TmFCckAZxb8vusxYLZe8+e9+GZmeTZ77vftzf/LK3n1NlWbvi3IZ+hwb1IvCKC9/9ZyamzLdSeONvppAQWs5m780bR+uUpmmrewfFNHZbIeLLGDeKbkh30/mA19Y5wSoxrGVe/DzsG//OvKDi0hz6hgTSebuGLIyewRodwd94oQoL1ERSRnuVKax8Wz/uBR17LbDIxL+vCFzdTr4lh+56vmTJ20CV/Hze12Fj/jzJiInpz7dALj0wREfFH+k31EpkCAjFHxLusCWivOwwOu3MZiPZYohII/fH/+tRSCea+cQT2jYMRN2E0neLU6rvaZntNGIG99iscNaU015RiCg7HHBGPuZOhoL2uvr5tqY2hN1z4Nc0mbkyJ54aRcXxV2cgXR06QODCCYQMjuK7Vzun1n7Nm25f8419VZI67gtioEGIjQwgJDuBIzTc89spnnG6y8fH+Gq5PjmNHcRWhwb347/zRxPcL5XdPf8jadw/x48mJvP3pESLCAkkeHHVeG27+zyG8ur2UHcXVBPWyMKaDIajn/3+1TVZjNNZAZDzRfYPJjf6SE63R9Jq0kMz4fuwrOUx5WQWhrZGcPNPC4epvsNkd3JoxlPQxA9x+RV1ERDqWNW4Qu76o5Z3Pvibr+sEX/Xy7w8FT6z+nqv4M98wc5ZwdXESku1CxeBksccNoLf0Qw+FwLm/h+HaNQEsHxSJ4bpjppTAFh2EKjXKuI2mvKwdwTjLz3Yl72hOQkExAQnKXXs9iNjM0IYKhCf9fgAb1svCrGSPZfeAYr71TytMb2tanNAEDY8Ko91UHFgAAElBJREFUb2wisJeFX80YxYad5by3t5KUq6KZm5XkHEY6+QdX8MaOcj4va+Bss43ZE4e5/CC/Kr4v99+WSnOrneYWu3OIame+u9ai0dpEeHMNgddmE5TQNiw5ZcSVpIxwnSFVRER8w6C4cEYMiWLzJxXcmBJPeAe3IZzjMAw+3FdNdcMZDtd8w76vGvjxpERGDvl+J6QTEfEFKhYvg8WaSOv+d3A0HHHOnmqvKW2bKbR3H+827jKZowc615F01B3GFN6f4JvuxHZwB5aBIz3SBpPJRNo1MYwe2o+jx05T39jE17WnOFBxgl4BZuZPHU5MZAgLbknhaN1pBvQLPa8Inzz2Cj79opaoPsHc8qOrGRgTdsHXCuplIaiXpeuNCwqFwBAcJyoBsNd+BYaj04sEIiLiW2750dUsfu5T1mwrZf7U4R0ee7bZxrMbS/jsyzosZhO9gwKYPv5KfnjtAA+1VkTEs1QsXgbLt2sT2qsOYOk3GMMwsNeUYknwTDHlTpboK2ipKMawtWCvK8fSbxAmk/l7X/exKwIsZgbFhTMoLpwxw1yHiZpMJhL6uxaCwYEBLJk/zi1tMplMBFgTsVUUO/MOuMxqKyIivi2hfxiZ4waxYWc51yfHuqz/e05Lq51HXtxNVd0Zbs0Yyk1pCT49SkhE5Pugm6Yugzk0ElOfGOxVBwAwvjmGcbaxW/QumaOvAMOBvaYUo7EWcyfrTvZEAYPHYJxuwFFXjr2mFHPkAExBWohZRMTfZP/HYKzRITy/6QAtrfZ2j/m8vIGjx04zf+pwJl43UIWiiPQIKhYvkyUuEXvVQYxvCyvo/H5Ff2CJHghA64EP2h53Ye3JniZg0LVgMmMr29XWo9wN8i4i0hP1CjAzZ2Ii9Y1NbP607X794q/qeeCZj6hpOAPAZwfr6B1k6XAtXhGR7kbF4mUKsA7DaD6F43gltrLd0Cu4bVkNP2fqEwMBQdjKdgFg7j/Yuw3yQabgMCzWRFpK3oGWM1jihnq7SSIicomuGRTJmGH9efPDw3xV2cjTb7TNcvr2rgocDoN/Hqpj5JBozWQtIj2KvvEu07n7FpvefhJb+W4CR050zozqz0wmM+bogWBvxRQWjTk43NtN8kkBV6ZCS9tVZ/Usioj4t5k/ugqb3cHSF3djcxgkDYpkx75q9pU18M2Z1nbvmxcR6c78v6rxMlN4f0yhkThOVhOYkklgaq63m/S9sURf0fa3hqBeUMDgVABMweGYvl1OQ0RE/FNsZAg3pQ3E7jD4r8mJ5P3wKppb7Dy/6QssZpOWxxCRHscnZkNdtGgRO3fuJDIyEoDJkyfzy1/+EoC6ujoWLlzI0aNHCQoK4uGHHyYlJcWbzT2PyWQi6Lo8jJYz9Eqe0K1ueDd/WyxqcpsLM4dGYhmQjCmkb7fKvYhITzXjh0O4fkScc7mlK619KKtqJPnKKHoH+cSvTSIiHuMz33o/+9nPuO2221y2/+lPfyItLY1Vq1axa9cu7rvvPrZs2eJTv5j3GnaDt5vgFpbYq8Fkcg61lfb1nrIAfOj9KCIil85iNp+3Lm9G6gCe3djItUP7ebFVIiLe4TPF4oVs2rSJbdu2AZCWlkZQUBDFxcWMGjXKyy3r/ixRCYTOeUL3K3bCZLZ4uwkiIuImY4fHYrMbjBuuWw1EpOfxmXsWn3vuOaZOncodd9zBoUOHADh+/DiGYRAVFeU8zmq1Ul1d7a1m9jgqFEVEpCezmM3cmBJPYC9dGBSRnscjPYu5ublUVla2u2/nzp3ce++99O/fH7PZzLp167j99tvZunXr99qG6Oiwzg8SERERERERwEPFYlFRUYf7Y2P/f2jH9OnTWbp0KdXV1QwY0LZeYUNDg7N3saqqiri4uItuQ339KRwO46KfJyIiIiIi4s/MZtMldZ75xDDUmpoa578/+OADzGazs4CcPHkya9asAWDXrl00NTUxYsQIr7RTRERERESkpzAZhuH17raf/OQn1NfXYzKZCAsLY+HChYwePRqAY8eO8Zvf/IbKykqCgoJYvHgxY8aMuejXUM+iiIiIiIj0RJfas+gTxaInqFgUEREREZGeyK+HoYqIiIiIiIhvUbEoIiIiIiIiLlQsioiIiIiIiAsViyIiIiIiIuLCI+ss+gKz2eTtJoiIiIiIiHjcpdZCPWY2VBEREREREek6DUMVERERERERFyoWRURERERExIWKRREREREREXGhYlFERERERERcqFgUERERERERFyoWRURERERExIWKRREREREREXGhYlF8XllZGfn5+UyaNIn8/HzKy8s73N6e1157jZtuuokJEybw0EMP4XA4AKipqWHOnDmkpqZy8803eyAa6Sp35n3r1q3cfPPNZGdnk5WVxapVqzwQkXTGnTnfv38/ubm55OTkkJWVxR/+8AdaWlo8EJV0xp15P6e5uZnMzEx9z/sQd+b9448/JiUlhZycHHJycpg5c6YHIpKucPfnff/+/cyePZvMzEwyMzN577333BxRD2CI+Lg5c+YY69atMwzDMNatW2fMmTOnw+3fdeTIEWP8+PFGfX29YbfbjXnz5hlFRUWGYRhGY2Oj8cknnxjbt283cnNzPRCNdJU78753716jurraMIy298CECROMTz/91N0hSSfcmfOzZ88azc3NhmEYht1uN+666y7j+eefd3dI0gXuzPs5S5cuNX73u9/pe96HuDPvH330kXLto9yZ99OnTxvp6enGZ599ZhiGYbS2thoNDQ3uDqnb86ueRXdfjejsyqR4Xn19PSUlJWRnZwOQnZ1NSUkJdXV17W5vaGhwOcfmzZuZMGECUVFRmM1mZs6cyZtvvglAeHg41113HSEhIZ4LSjrl7rynpKQQGxsLtL0HrrrqKo4ePeqh6KQ97s55cHAwgYGBANhsNpqamjCb/epHYLfk7rwD7Nq1i/LycnJycjwTlHTKE3kX3+PuvG/cuJHU1FRGjx4NQEBAAJGRkR6Krvvyq5+UhYWFzJo1i82bNzNr1iwKCgo63P5dFRUVPPnkk7z66qts2bKFw4cP88Ybb3S6T7ynqqqK2NhYLBYLABaLhZiYGKqrq9vdXlVVBcADDzzAtm3bnOeIj493njM+Pt55nPgmT+b90KFD7N27l3Hjxrk7LOmAJ3JeU1NDTk4OY8eOJTQ0lFtuucVT4ckFuDvvZ86c4ZFHHmHx4sWeDEs64YnPe3l5Obm5ucycOZOioiJPhSYdcHfeS0tLCQgIYP78+eTk5HD//fdz8uRJT4bYLflNsejuqxG6QtW9LFmyhIyMDG83QzzsYvNeW1vLHXfcQUFBgbOnUfzLxeQ8NjaW9evXs2PHDlpbW3n77bfd3Dpxl67m/dFHH2XWrFn6fHcTXc17cnIy7733HkVFRTz++OOsWLGCnTt3eqCF4g5dzbvdbuejjz5iyZIlFBUVERoayrJlyzzQwu7Nb4pFd1+NUO+Tb7JardTU1GC324G2L4La2lri4uLa3W61Wts9R2VlpfNxZWVlu8eJ7/BE3uvr65k7dy633347mZmZbo5IOuPJz3pISAiZmZls2LDBTdFIV7k777t372blypWkp6ezYMECDh48yNSpUz0QmXTE3XkPCwsjPDwcgIEDBzJhwgT27Nnj7rCkE+7Oe3x8PGPHjiUmJgaz2czUqVMpLi72QGTdm98Ui5dKPUz+LTo6mqSkJDZu3Ai0jUdPSkqiX79+7W6PiopyOcekSZPYunUrDQ0NOBwO/va3vzFlyhSPxiEXx915P378OHPnzmX27NmaJc9HuDvnFRUVztlPW1pa2LZtG8OGDfNQdHIh7s77hg0b2L59O9u3b+fxxx9n2LBhukjgA9yd99raWgzDAODEiRPs2LGDa665xkPRyYW4O+9TpkyhuLiYU6dOAfD++++TmJjooei6MW/PsNNVdXV1RmpqqmGz2QzDMAybzWakpqYax44da3d7fX29yzmeeeYZY/Hixc7Hb731ljF//vxO94l3lZaWGnl5ecbEiRONvLw849ChQx1uNwzDuP/++42tW7c6H7/yyitGRkaGkZGRYRQUFJz3fhk/frwxduxYIzk52Rg/frzxxBNPeDZAaZc7875s2TJj5MiRxrRp05x/Xn/9dc8GKC7cmfN169YZ2dnZxtSpU42srCzjwQcfNM6ePevZAKVd7sz7v9MMmb7FnXl/4YUXjMzMTGPatGlGVlaW8fTTT3s2OLkgd3/ei4qKjKysLCM7O9v4xS9+YRw7dsxzwXVTJsP49tKLH5gzZw55eXnk5OSwfv16Xn/9dV544YULbv+uiooKZs+ezbp164iIiGD+/PlkZ2eTm5vb4T4REREREZGexq+KxUOHDrFo0SIaGxvp06cPy5cvZ8iQIRfcDm33LKanpzuHoq5Zs4Znn30WgBtuuIGCggLn/Y4d7RMREREREelJ/KpYFBEREREREc/o9hPciIiIiIiIyMVTsSgiIiIiIiIuVCyKiIiIiIiIC78oFsvKysjPz2fSpEnk5+dTXl4OwPLly0lPTycxMZGDBw92eI709PROjxEREREREZE2flEsFhYWMmvWLDZv3sysWbMoKCgAICMjg5deeokBAwZ4uYUiIiIiIiLdi88Xi/X19ZSUlJCdnQ1AdnY2JSUlNDQ0kJaWhtVqvehzrlq1ihkzZjB9+nTy8/PZv3+/c19iYiJPPfUUM2bMICMjg82bN39vsYiIiIiIiPiLAG83oDNVVVXExsY61zu0WCzExMRQVVVFVFTUJZ1z+vTpzJs3D4CdO3dSWFjIa6+95twfFhbG2rVr2b17N7/+9a+ZNGnS5QciIiIiIiLiR3y+WHSHffv28de//pWTJ09iMpmc90Cek5mZCcDo0aOpra2lubmZoKAgL7RURERERETEO3y+WLRardTU1GC327FYLNjtdmprazscfrp27VpWr14NwE9/+lOmTZvm3NfS0sI999zDiy++SHJyMjU1Ndx4443nPf9cYXiuN9Nms6lYFBERERGRHsXni8Xo6GiSkpLYuHEjOTk5bNy4kaSkpA6HoM6YMYMZM2a0u6+lpQWbzeYsNl9++WW3tFtERERERMSf+XyxCPDggw+yaNEiVq5cSZ8+fVi+fDkAf/zjH9myZQt1dXXMnTuXiIgI/v73v7d7jnO9g2FhYdx9993k5eVhtVpdehVFREREREQETIZhGN5uhLvV1tYyZcoUduzYQXBwsLebIyIiIiIi4vP8omfxcqxevZqXX36Z3/72tyoURUREREREuqhH9CyKiIiIiIjIxTF7uwEiIiIiIiLie/xuGOrx48dZuHAhR44cITAwkEGDBvHQQw8RFRXF3r17KSgooLm5mQEDBvDYY48RHR1NWVkZBQUFHDt2jICAAEaOHElhYaFzWOr27dt59NFHsdvtJCcns3TpUnr37u3lSEVERERERLzH74ahnjhxggMHDjB27FgAli9fzsmTJ1myZAkTJ05k6dKlpKWlsXLlSioqKli6dClff/01jY2NDB8+HIfDwYIFCxg6dCh33nknp0+fZuLEibz00ksMHjyYBx54AKvVyl133eXlSEVERERERLzH74ahRkREOAtFgNGjR1NZWUlxcTFBQUGkpaUBcOutt7Jp0yYAEhISGD58OABms5lRo0ZRWVkJwPvvv8+IESMYPHiw83lvvfWWByMSERERERHxPX5XLP47h8PBK6+8Qnp6OlVVVcTHxzv3RUVF4XA4OHHixHnPaWpqYu3ataSnpwO4PC8+Pp6qqirPBCAiIiIiIuKj/LpYfPjhhwkJCeG2227r0vE2m417772XcePGkZGR4ebWiYiIiIiI+C+/LRaXL1/O4cOH+ctf/oLZbMZqtTqHlgI0NDRgMpmIiIgAwG63c99999G3b19+//vfO4/77vMqKyuxWq2eC0RERERERMQH+WWx+Oc//5l9+/axYsUKAgMDARgxYgRNTU3s2rULgDVr1jBlyhSgbbjqokWLsFgsLFmyBJPJ5DzX+PHjKS4upry83OV5IiIiIiIiPZXfzYb65Zdfkp2dzeDBg51LXyQkJLBixQr27NlDYWHheUtn9OvXj3fffZef//znDBs2DLO5rT4eM2YMhYWFAGzdupXHHnsMh8NBUlISy5YtIyQkxGsxioiIiIiIeJvfFYsiIiIiIiLifn45DFVERERERETcS8WiiIiIiIiIuFCxKCIiIiIiIi5ULIqIiIiIiIgLFYsiIiIiIiLiQsWiiIiIiIiIuFCxKCIiIiIiIi7+D1DPXfEHuc78AAAAAElFTkSuQmCC\n", "text/plain": [ "
    " ] @@ -1233,7 +1227,7 @@ "from scipy.stats import norm\n", "\n", "N = 400\n", - "regular_steps = norm.rvs(loc=0, scale=5, size = N)\n", + "regular_steps = norm.rvs(loc=0, scale=5, size = N)\n", "deviating_steps = norm.rvs(loc=0, scale=12, size = N)\n", "\n", "datetimes = pd.date_range('1/1/2020', periods=N, freq='1S')\n", @@ -1248,7 +1242,13 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "deletable": false, + "editable": false, + "run_control": { + "frozen": true + } + }, "source": [ "#### ➜ Challenge yourself: reaction kinetics of bacteria\n", "\n" @@ -1258,21 +1258,145 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Time-series: plot some of the integrated curves in pybasi03\thttps://www.coursera.org/learn/python-data-analysis/lecture/KjG8R/distributions\n", + "Back in [module 3](https://yint.org/pybasic03#Challenge-4) we integrated an equation for bacteria growing on a plate:\n", "\n", - "Labelling plots: titles, axes; legend\thttps://www.coursera.org/learn/python-data-analysis/lecture/xhEIo/hypothesis-testing-in-python\n", + "$$ \\dfrac{dP}{dt} = rP $$\n", "\n", - "Time-series: monod kinetics\tRegression: https://jakevdp.github.io/PythonDataScienceHandbook/05.06-linear-regression.html\n", + "where $P$ is the number of bacteria in the population, and $r$ is their exponential rate of growth [number of bacteria/minute]. This is not realistic. Eventually the bacteria will run out of space and their food source. So the equation is modified:\n", "\n", + "$$ \\dfrac{dP}{dt} = rP - aP^2$$\n", + "where they are limited by the factor $a$ in the equation.\n", "\n", - "bacteria multiplication problem\n", + "The differential equation can be re-written as: \n", + "$$P_{i+1} - P_i = \\left[\\,rP_i -a\\,P_i^2\\,\\right]\\delta t$$ \n", "\n", - "MUST COVER: time-series of stability data from which a database was built on" + "which shows how the population at time point $i+1$ (one step in the future) is related to the population size now, at time $i$ over a short interval of time $\\delta t$ minutes. \n", + "\n", + "Starting from 500 cells initially with a rate $r=0.032$ and the coefficient $a = 1.4 \\times 10^{-7}$ we can generate the growth curves and plot them." ] }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    bacteria
    0.0500.000
    1.0515.960
    2.0532.428
    3.0549.420
    4.0566.954
    \n", + "
    " + ], + "text/plain": [ + " bacteria\n", + "0.0 500.000\n", + "1.0 515.960\n", + "2.0 532.428\n", + "3.0 549.420\n", + "4.0 566.954" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4wAAAE3CAYAAADhWM89AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xl8VOXd///3LJnJnslCIAl7kBCJEEosdQE1WiItCFYRpOptrb3v2kqrFvuz1Rt+t8tNEVttb/Hmbu1mS6FaVAQUcKnWXTEsYREQ2UKGhOyZ7DPnfP8IjKARsp9M8no+HnnMOdd1nTOfGcLMvHPOXMdmmqYpAAAAAAA+x251AQAAAACA3onACAAAAABoFYERAAAAANAqAiMAAAAAoFUERgAAAABAqwiMAAAAAIBWERgBAAAAAK0iMAIAAAAAWkVgBAAAAAC0isAIAAAAAGgVgREAAAAA0CoCIwAAAACgVQRGAAAAAECrnFYX0NMqKmplGKbVZQAAAABAj7LbbYqPj2rXNv0uMBqGSWAEAAAAgDbglFQAAAAAQKsIjAAAAACAVvW7U1I/LxDwq6LiuPz+JqtL6ROcTpfi4wfI4ej3v1oAAABAyOv3n+orKo4rPDxSUVGDZLPZrC4npJmmqdraalVUHFdSUorV5QAAAADopH5/Sqrf36SoqFjCYhew2WyKiorlaC0AAADQR/T7wCiJsNiFeC4BAACAvuOsgbGiokLf+973lJeXpxkzZuj2229XeXm5JGnr1q266qqrlJeXp1tuuUVlZWXB7Xq6DwAAAADQtc4aGG02m2699VZt3LhRa9eu1ZAhQ/TII4/INE3dfffdWrhwoTZu3KicnBw98sgjktTjfX3JxRfnqK6urkv2VVNToxUr/tzh7T/+eJf+67/u65JaAAAAAISes0564/F4NGnSpOB6dna2Vq5cqYKCArndbuXk5EiS5s6dq8svv1yLFy/u8T60zuer0d/+9pS+/e1/a/e2fr9fY8acq0WLHuyGygAAALqOaZoyTFOBgKmAccpPwFDAaOkzDFOGKZkn1k1Tp7S33AbbTFOGoRPjWpZNs5Vxre5LLWP02bpOjDFP1Nqy3HIrtWwrU6e1nzbGlAydHGN+bj8tyzLVcl9q7b5OHWOeeM5O3dep93WiP/jcnv48n/6867SxX9hWpy+YMj+3/vn7ME9bP7W5zdt+4T47Vvvna/7c5md15vGtd37ZJu2975ZtWt9oYEKkHvnxJe3aV7tmSTUMQytXrlRubq68Xq9SU1ODfQkJCTIMQ5WVlT3e5/F42vWge7uVK/+iDz98X1VVlfqP//ihLr30cknSf/3XfTp8+JCam5uUljZEP/vZQsXGxkqS1q1bo2eeWSVJCgsL08MPP6pf/WqJfD6fbr55nsLDw7V8+R9UWlqqxx57WMXFx9TY2KgrrsjTTTfdIkm69toZmj59pj766EOlpqYpL+8bWrbs1/r97/8iv9+vn/70DlVVVamxsVHnnjtWd9/9c4WFhVnzJAEAgB7jDxhqajbU5A+o2W/IHzBO3JotywFDfr/xWV/gRN9p64b8flPNgc/G+QOf7cP4XMj7ws8p7S1jjdMCYiixqeUsPptNapn+4bNlWyvLOm287cT2n80dYf+SfchmO9En2Vs6PrvvE7entZ1Y1sn7/Gzh5FLw9mRhtuDj+aztZL2nPebPdvWF7U9dOHmfn58WI1hvK/v8/H1+cZ+t32e7t9fnNviS/Zx59Jk7bV/e0d5dtVpXfGz4mapqVbsC4wMPPKDIyEjdcMMNevnll9t9Z6Hg7QKv3tru7ZZ9XzwuRRedd/bLTdjtdi1f/gcdPnxQ3//+dzV+/ATFxyfoxz9eEAzHv/3tE1qx4s+67bb5ys/frL/85Y964oknlZiYpLq6OjkcDt111/+nW2+9UX/609+C+37wwYW6+eZblZ39FTU3N+vHP75NmZnn6vzzvyZJKi0t1f/8z/9JkvLzNwe3czgcWrToQcXFeWSaph58cJHWr1+jWbOu7cqnCAAAdJBhmmpsCqi+0a/6poAamvxqaGy5rW8MqLE5oKbmk7eGGv0t603NxmftfiPYdmp/VwQym00Kc9jldNjldNpblp12OR02Oe122e02ORw2Oe02hTntstvtcpxoc9hP/tiD63Z7y3anrn9+zMl1u70lMNntNtltNtlsNtntLQHBfmLZHlxuCU6nj9eJ9pYAdrK99fEn9nvq8ueCGWAVu739v39tDoxLlizRoUOHtHz5ctntdqWkpKioqCjYX15eLpvNJo/H0+N9fc306TMlSUOHDtfo0RnaubNAF198iTZsWKdNmzbI729WfX2DhgwZKkl69923deWV31RiYpIkKTIystX91tfXa8uWj1RZWRlsq6ur1cGDB4OB8corv9nqti1Hl/+q9957R4YRUE1NjcLD2/8XCgAA0Dp/wFBdg1+1Dc2qrffL19Cs2vpm1Tb4VVvfrLoGv+qb/Kpv9Kuh6bMg2NDUEhAbmwJtvi9XmF0up0PuMLtcYQ65nA65wuyKcDvliXYH+11hdrnDHHI5T4wLc5wIerYvhj9HS/gLOy0M2oPjHXYm5wdCUZsC46OPPqodO3bot7/9rVwulyQpKytLDQ0N2rx5s3JycrRq1SpNmzbNkr6udNF5bTsK2FNaTj+2adu2LXr++dX63//9g+Lj47Vp0wa98MKzJ8a07a9+pmnIZrPpySefktPZ+j99ZGREq+0vv7xB27dv1RNP/E6RkVF66qk/6MiRwx15SAAA9Hmmaaq2wa+auiZV1zapqrbltrquWTV1TacFwdqGZvka/GcMfDZJEW6nItwOhbudinA5FRURpsS4CEW4HIpwOxXucijc1TKmZb2lLcLtVITLIZfLEQx/HOUC0FZnDYz79u3T8uXLNXz4cM2dO1eSNHjwYC1btkwPP/ywFi1apMbGRqWlpWnp0qWSWk6p7Mm+vmb9+hd088236siRw/rkkz0aOzZLO3fuUFRUtOLi4tTU1KT1618Ijr/oosn6xS8e0MyZ31JCQqLq6urkdDoVFRWlhoYG+f1+OZ1ORUZGafz4CfrrX/+km2++VZJUXHxMTqczeHTyy/h8NYqL8ygyMko+n08vv7xBY8ac263PAwAAvU3AMFTla1JFTaMqahpVXtOoSl+jamqbVHUiHNbUNau6tqnV0zhtNikmIkxREWGKCg9TfIxbg5OjFRUepqgIZ/A2OrxlTGR4S1uk29mhU8kAoLNsZlsPT/URZWU+Gae8gB87dkiDBg2zsKLTXXxxjn7wgx/pzTdfV2XlZ5Pe+P1+3X//f2rv3j1KTk7WmDGZ2rVrpx5//LeSpHXrntfTT6+UzWaXyxWmJUseVUJCopYseVDbt29VTEysli//g8rKSvWb3/xKBw7slyRFRkbpZz9bqGHDhuvaa2fo4Ycf1ciRoyS1fIfx5KQ3Pp9P9977U5WVlWrAgAFKSxusxsZG3Xvv//+Fx9DbnlMAANrCNE1V1zbpeFWDSivrg4GwIvjToKrapi/MWOh02BQb5VJspOtzt2Ett1GftUdHhBH8AFjGbrcpMTG6XdsQGAk3XY7nFADQW9U3+lVa1aDjlfUqrazX8ZPLJ0Jik984bXyE26mEGLc8MW7Fx7iDywkxbsXHhCs+xq2ocCeneAIICR0JjO2aJRUAAKC3CxiGSqsadKysTsfK6+Q9cXusvE7VtU2njY1wO5QUF6GB8RHKGpGgAZ4IJcWFK8kToYQYtyLcfFQC0L/xKggAAEKSYZgqqaxXYYlPhcd9Onq8Vt7yOpVU1Mkf+OxsouiIMA1KjNS49EQNSogMhsIBngiODgLAWRAYAQBAr+erb9aRE8Hw1IB48hRSm01Kjo9UamKkxqcnalBipFISojQoMVLREWEWVw8AoYvAqJYvufPXxa7Rz74SCwDoBg1Nfh06VqMD3hodPFatT4uqVVrVEOyPjgjTkORoXZKdpsHJURqSHK3UxCi5whwWVg0AfVO/D4xOp0u1tdWKioolNHaSaZqqra2W0+myuhQAQIgIGIYKS2q1v6hKB7zVOuitUVFZbXAm0sTYcI1IidGlE9I0dGC0hgyIVmyUi/dsAOgh/T4wxscPUEXFcfl8lVaX0ic4nS7Fxw+wugwAQC/V2BzQp0XV2ldYqX2FVfrkaFXwgvWxkWEanhKrnDHJGpESo+GDYhUbxR8hAcBK/f6yGgAAoPs0Nge0r7BSuw9WaM+RSh06VqOAYcomKW1AtEYPidM5gz1KT4tVYmw4Rw4BoBtxWQ0AAGApwzB18FiNdh0s166D5frkaJX8AVMOu00jUmOV99WhGj0kTqPS4hQZzmQ0ANDbERgBAECnVNU2qWB/mbbtL9XugxWqa/RLkoYmR+vyiYN17vAEjR7skdvFpDQAEGoIjAAAoF1M09ThYp+27S/Vtk/KdNBbLVNSfIxbEzMGaOyIBI0ZFq/YSL5/CAChjsAIAADOKmAY2nO4Upv3HNfWfcdV6WuSTdKI1FjNmjxC40claUhyNN9BBIA+hsAIAABaFTAMfXy4Ups/LlH+3uOqqWuWK8yu80YkavyoJJ2Xnqg4ZjEFgD6NwAgAAIIMw9THhyv0we5i5e8tla++We4wh8aPSlRORrLOS0+UO4zvIgJAf0FgBAAA8pbV6p0dx/TOjmOqqGmU2+VQ9qiklpA4MkEuQiIA9EsERgAA+ilffbPe31Wsd3Yc0wFvtew2m7JGJmhO7ihlj0oiJAIACIwAAPQnpmlq96EKvb7lqLbsK1XAMDUkOVpzckfpa+cOVFy02+oSAQC9CIERAIB+wFffrLcLvHp9a5GKy+sUHRGmyycO1oVZgzR0YIzV5QEAeikCIwAAfZRpmvrUW63X84/qg49L1Ow3NCotTldNP1c5YwYozMkppwCAMyMwAgDQxwQMQx/tOa4N7x/WwWM1crscuui8FF2ancrRRABAuxAYAQDoI+ob/Xpru1ebPjyisuoGDYyP0A1TR+uCsYMU4eYtHwDQfrx7AAAQ4ipqGvXqR4V6fctR1TX6NXpwnOZ9/RyNH5Uku81mdXkAgBDWpsC4ZMkSbdy4UUePHtXatWs1evRoFRYW6oc//GFwTE1NjXw+nz744ANJUm5urlwul9zultnWFixYoMmTJ0uStm7dqoULF6qxsVFpaWlaunSpEhMTO9UHAEB/U1JZr/XvHNQ7O47JME1NzEhW3leHKD01zurSAAB9hM00TfNsgzZv3qy0tDR9+9vf1vLlyzV69OgvjHnooYcUCAS0cOFCSS2BsbWxpmlq6tSpWrx4sXJycvTEE0/oyJEjWrx4cYf72qOszCfDOOtDBgCg1your9O6dw/q3R3FcjhsmjwuRVO/OlTJngirSwMA9GJ2u02JidHt26Ytg3JycpSSkvKl/U1NTVq7dq2uueaas+6roKBAbrdbOTk5kqS5c+dqw4YNneoDAKA/OFZep9+t3aWf/+49fbi7RFfkDNaS71+gG6ZmEBYBAN2iS77D+Nprr2ngwIEaO3bsae0LFiyQaZqaOHGi7rrrLsXGxsrr9So1NTU4JiEhQYZhqLKyssN9Ho+nKx4GAAC9Unl1g9a8dUBvFXgV5rRr6vlDdOVXhyou2m11aQCAPq5LAuPq1au/cHRxxYoVSklJUVNTkx566CHdf//9euSRR7ri7gAA6Bd89c1a/+5BvfrRUUmmrpg4RN+8YJhio1xWlwYA6Cc6HRiLi4v14Ycf6uGHHz6t/eQprC6XS/PmzdNtt90WbC8qKgqOKy8vl81mk8fj6XAfAAB9SWNTQJs+PKwNHxxWQ1NAF2YN0syLRygpjtNOAQA9q9OB8bnnntMll1yi+Pj4YFtdXZ0CgYBiYmJkmqZefPFFZWZmSpKysrLU0NCgzZs3KycnR6tWrdK0adM61QcAQF9gmKbe31msf7yxXxU1jZpwTpK+NWWk0ga0b4ICAAC6SptmSX3wwQe1adMmlZaWKj4+Xh6PR+vXr5ck5eXl6d5779WUKVOC448cOaL58+crEAjIMAylp6frvvvuU3JysiQpPz9fixYtOu3yGElJSZ3qaytmSQUA9EafHK3Sylf26YC3WsMGxej6y8/R6CGcRQMA6DodmSW1TYGxLyEwAgB6k/LqBj3z+n69v6tYcdEuXXtJui7IGiS7zWZ1aQCAPqYjgbFLJr0BAADt4w8YemVzoda8dUCGaWrGhcM17WtDFe7irRkA0HvwrgQAQA/be6RSf9m4R0dLa5U9KknzrjhHSVxHEQDQCxEYAQDoIdV1TXrmtU/09o5jSowN1/xrztOEcwZYXRYAAF+KwAgAQDczTVPv7SzW317Zq4amgL55wTBNv2C43C6H1aUBAHBGBEYAALpReXWDntq4R9v3lyk9NVY3fyNTaUlRVpcFAECbEBgBAOgGhmnqjS1H9czr+2WYpq6//BxdPnGw7HZmPwUAhA4CIwAAXay0sl6/X79be45U6tzh8fq3K8doAJPaAABCEIERAIAuYpqm3irwauUr+yRJN08bo8njUmTjmooAgBBFYAQAoAtU1zbpzxs+1pZ9pRoz1KNbvpmppDiOKgIAQhuBEQCATtqy97j+tOFj1TcGNCd3lL5+/hDZOaoIAOgDCIwAAHRQU3NAf3/tE/1zy1ENTY7W3defq8EDoq0uCwCALkNgBACgA4pKa7V8zQ4VHq/VlV8dqm9dMlJOh93qsgAA6FIERgAA2sE0Tb253au/vbxXbpdDd8wer3HpiVaXBQBAtyAwAgDQRvWNfv15w8f6YHeJMofF69bp5yo+xm11WQAAdBsCIwAAbVB43KdlzxaopLJeV08ZqW9+bZjsdia2AQD0bQRGAADO4r2dx/SnDR8r3OXUT6+foIyh8VaXBABAjyAwAgDwJfwBQ39/9RO9ml+ocwbH6fszszgFFQDQrxAYAQBoRXl1g/73+R3aX1StqecP0bWXpjMLKgCg3yEwAgDwOZ8UVunx5wrU2BzQbbOydP6YZKtLAgDAEgRGAABO8ea2Ij21cY8SY8N199xspQ2ItrokAAAsQ2AEAEBSwGj5vuIrHxXq3OHx+v7MLEVHhFldFgAAlmrTlzGWLFmi3NxcZWRkaO/evcH23NxcXXnllZo5c6ZmzpypN998M9i3detWXXXVVcrLy9Mtt9yisrKybu0DAKCjfPXNevTpbXrlo0JdkTNYd143nrAIAIDaGBgvv/xyrVixQmlpaV/o+81vfqM1a9ZozZo1mjx5siTJNE3dfffdWrhwoTZu3KicnBw98sgj3dYHAEBHFZfX6cGnNmvP4Up9Z9oYzbtitBx2JrcBAEBqY2DMyclRSkpKm3daUFAgt9utnJwcSdLcuXO1YcOGbusDAKAj9hVW6qG/fKS6Br9+Om+CJo9PtbokAAB6lU5/h3HBggUyTVMTJ07UXXfdpdjYWHm9XqWmfvamm5CQIMMwVFlZ2S19Ho+nsw8DANDPfLC7WE+u263EWLfuuG68BsZHWl0SAAC9TqfOuVmxYoVeeOEFrV69WqZp6v777++qugAA6BamaerF9w5p+ZqdGpESo3tvyiEsAgDwJToVGE+epupyuTRv3jzl5+cH24uKioLjysvLZbPZ5PF4uqUPAIC2CBiGntq4R/94fb8mnTtQC+ZmM7kNAABn0OHAWFdXp5qaGkkn/lr74ovKzMyUJGVlZamhoUGbN2+WJK1atUrTpk3rtj4AAM6mvtGvXz+zXW9sLdL0C4fpezPOVZjTYXVZAAD0ajbTNM2zDXrwwQe1adMmlZaWKj4+Xh6PR8uXL9f8+fMVCARkGIbS09N13333KTk5WZKUn5+vRYsWqbGxUWlpaVq6dKmSkpK6ra+tysp8MoyzPmQAQB9S5WvUr57epqPHa3XTlRmawuQ2AIB+yG63KTExul3btCkw9iUERgDoX0oq6/XLVVtUXdusH34rS1kjEq0uCQAAS3QkMHZ6llQAAHqrIyU+/ervW+UPGLr7+gkamRprdUkAAIQUAiMAoE/ae6RSv/7HdoW7HPrZ9ROVmhRldUkAAIQcAiMAoM/Z+kmp/vf5HUqMDddP5mQrMS7c6pIAAAhJBEYAQJ/ydoFXf3zxYw0dGK07rhuv2EiX1SUBABCyCIwAgD5j0weHteq1T5Q5LF63f+s8Rbh5mwMAoDN4JwUA9Alr3zmo5/71qSZmDNC/zxirMGeHLzUMAABOIDACAEKaaZp67s0DWvfOQV0wdpBu+eYYOeyERQAAugKBEQAQskzT1DOv79eG9w9ryvgU3ZQ3Rna7zeqyAADoMwiMAICQZJqm/vbKPr36UaFyv5KmeV8fLbuNsAgAQFciMAIAQo5hmvrLxj16Y2uR8r46RNddNko2wiIAAF2OwAgACCmGYeoPL+7WOzuOafqFw3T15JGERQAAugmBEQAQMgKGoSfX7db7u4p19eQRmnHRCKtLAgCgTyMwAgBCgmGY+v2JsDj70nRN+9owq0sCAKDPY95xAECvZximfr9+t97bVaxrCYsAAPQYAiMAoFczTFN/fGm33t15TFdPGalvEBYBAOgxBEYAQK9lmKb+/NLHervgmGZePEIzLhxudUkAAPQrBEYAQK908tIZb273asaFwzXzYia4AQCgpxEYAQC9jmmaWrFpr97YWqRvXjBMsyYTFgEAsAKBEQDQq5imqb+9sk//3HJUV04aqm9N4TqLAABYhcAIAOhVnv3Xp3r1o0JNPX+IZl+aTlgEAMBCBEYAQK+x/t2DWv/uIU0Zn6o5uaMIiwAAWIzACADoFV79qFCr3/hUk84dqJvyMgiLAAD0Am0KjEuWLFFubq4yMjK0d+9eSVJFRYW+973vKS8vTzNmzNDtt9+u8vLy4DYZGRmaMWOGZs6cqZkzZ2rPnj3Bvtdee01XXnmlvv71r+uOO+5QfX19p/sAAKHr7QKvVry8V9mjkvTdb2bKbicsAgDQG7QpMF5++eVasWKF0tLSgm02m0233nqrNm7cqLVr12rIkCF65JFHTttu1apVWrNmjdasWaOMjAxJUm1trf7zP/9Ty5cv18svv6yoqCj9/ve/71QfACB0bf64RH94cbcyh8Xrtllj5XRw8gsAAL1Fm96Vc3JylJKSclqbx+PRpEmTguvZ2dkqKio6677+9a9/KSsrS8OHD5ckzZ07Vy+99FKn+gAAoWnHp2X6vxd2amRqrOZfc57CnA6rSwIAAKdwdsVODMPQypUrlZube1r7jTfeqEAgoClTpmj+/PlyuVzyer1KTU0NjklNTZXX65WkDvcBAELP3iOVevzZAqUlRenO2eMV7uqStyQAANCFuuS8nwceeECRkZG64YYbgm2vv/66nn32Wa1YsUKffPKJli1b1hV3BQDoAw54q/XYM9uUEBuuu+ZkKzI8zOqSAABAKzodGJcsWaJDhw7psccek93+2e5OnsIaHR2t2bNnKz8/P9h+6qmrRUVFwbEd7QMAhI6jpbV69OltigoP04K52YqNclldEgAA+BKdCoyPPvqoduzYoWXLlsnl+uwNv6qqSg0NDZIkv9+vjRs3KjMzU5I0efJkFRQU6ODBg5JaJsaZNm1ap/oAAKGhtKpev/r7VjnsNt19fbYSYsOtLgkAAJyBzTRN82yDHnzwQW3atEmlpaWKj4+Xx+PRY489punTp2v48OEKD295wx88eLCWLVumLVu2aOHChbLZbPL7/ZowYYJ+/vOfKyoqSpL0yiuvaOnSpTIMQ5mZmfrFL36hyMjITvW1VVmZT4Zx1ocMAOhi1XVNWvzXfFXXNumeb39FQ5KjrS4JAIB+xW63KTGxfe+/bQqMfQmBEQB6XkOTX0tXblHh8Vr9ZE62Rg/xWF0SAAD9TkcCIxe7AgB0K3/A0LJnC3TomE+3zcwiLAIAEEIIjACAbmOYpp5ct0s7D1bo36ZlKPucJKtLAgAA7UBgBAB0C9M0tfLlffpgd4lmX5quyeNSz74RAADoVQiMAIBuse6dg3o1v1B5Xx2iKycNtbocAADQAQRGAECXe33rUT335gFdMHaQZl82SjabzeqSAABABxAYAQBd6qM9JfrLxj0al56o73xjjOyERQAAQhaBEQDQZfYcrtD/vbBT6alxum1WlpwO3mYAAAhlvJMDALpE4XGffrO6QAM8EfrRtePkDnNYXRIAAOgkAiMAoNPKqxv06NPb5Aqz667rshUdEWZ1SQAAoAsQGAEAnVLX0KxHn9mm+ka/7pw9Xolx4VaXBAAAugiBEQDQYc1+Q48/W6BjZXW6/VvnaejAGKtLAgAAXYjACADoEMM09fv1u/Tx4Urd8s1MnTs8weqSAABAFyMwAgA65B//3K8Pdpfo2kvTdcHYQVaXAwAAugGBEQDQbi9/eEQbPjis3K+kadqkoVaXAwAAugmBEQDQLps/LtGqV/fpK6MHaN4Vo2Wz2awuCQAAdBMCIwCgzfYeqdRv1+5Selqc/n3GubLbCYsAAPRlBEYAQJscLa3Vb/6xXUlx4frRtePkCnNYXRIAAOhmBEYAwFlV1DTq0ae3Ksxp113XjVd0RJjVJQEAgB5AYAQAnFFdg1+PPr1NtQ1+3TF7vJI8EVaXBAAAegiBEQDwpfwBQ8ueK5C3rFY/vDpLwwbFWF0SAADoQQRGAECrDNPUH17crd2HKnTztDHKGpFodUkAAKCHERgBAK1a/cZ+vbezWFdPGamLzkuxuhwAAGCBswbGJUuWKDc3VxkZGdq7d2+w/cCBA5ozZ47y8vI0Z84cHTx40LI+AEDXevWjQr303mFdmp2q6RcMs7ocAABgkbMGxssvv1wrVqxQWlraae2LFi3SvHnztHHjRs2bN08LFy60rA8A0HU+2lOiv728V9mjkvTtqaNls3GtRQAA+quzBsacnBylpJx+KlJZWZl27dql6dOnS5KmT5+uXbt2qby8vMf7AABdZ19hpX67dpdGpsbqP2aOlcPONxcAAOjPnB3ZyOv1auDAgXI4Wi7a7HA4lJycLK/XK9M0e7QvISGh008CAEDyltXqN//YroQYt3507Ti5wxxWlwQAACzGn44BAKr0NepXf98mh92mO+dkKybSZXVJAACgF+jQEcaUlBQVFxcrEAjI4XAoEAgf2yMpAAAc9klEQVSopKREKSkpMk2zR/sAAJ1T3+jXY09vk6++WT+dN0HJngirSwIAAL1Eh44wJiYmKjMzU+vWrZMkrVu3TpmZmUpISOjxPgBAx/kDhp54rkCFx2t126wsjUiJtbokAADQi9hM0zTPNODBBx/Upk2bVFpaqvj4eHk8Hq1fv1779+/XPffco+rqasXGxmrJkiUaOXKkJPV4X3uUlflkGGd8yADQL5imqSfX7da7O4/pO98Yo8njUq0uCQAAdCO73abExOh2bXPWwNjXEBgBoMXqN/Zr/buHNGvyCF110QirywEAAN2sI4GRSW8AoB/6Z36h1r97SFPGp2rGhcOtLgcAAPRSBEYA6Gfy9x7XX1/eq/Hpiboxb7RsNpvVJQEAgF6KwAgA/cgnhVX6vxd2avigWH1/ZpYcdt4GAADAl+OTAgD0E96yWv36H9sUH+PWj2ePk9vlsLokAADQyxEYAaAfqPI16tGnt8lht+mu68YrNtJldUkAACAEEBgBoI+rb/Tr0We2qaauWT+ePV7J8ZFWlwQAAEIEgREA+jB/wND/Pr9DhSW1um1WlkakxFpdEgAACCEERgDoo0zT1J9f+lg7DpTr367M0Lj0RKtLAgAAIYbACAB91HNvfqq3dxzTrItHaPL4VKvLAQAAIYjACAB90OtbjmrdO4c0ZXyqZlw03OpyAABAiCIwAkAfs2Xfcf1l0x6NT0/UjXmjZbPZrC4JAACEKAIjAPQhe49UavmanRo+KFbfn5klh52XeQAA0HF8kgCAPqKwxKff/GO7EmPDdcfscXK7HFaXBAAAQhyBEQD6gNLKev3y6a1yuxy6a854xUS6rC4JAAD0AQRGAAhx1bVN+uXft8rvN3TXdeOVFBdhdUkAAKCPIDACQAirb/Tr0We2qaKmUT++drzSBkRbXRIAAOhDCIwAEKKa/YYef7ZAR4p9um1WlkYNjrO6JAAA0McQGAEgBBmGqSfX7dLuQxX6zjfGaPyoJKtLAgAAfRCBEQBCjGma+tsre/XhxyW67rJRuui8FKtLAgAAfRSBEQBCzNq3D+q1/KO6ctJQXTlpqNXlAACAPozACAAh5J/5hXr+rQO66LxBmn1putXlAACAPo7ACAAh4p0dXv1l015lj0rSzdPGyGazWV0SAADo45yd2biwsFA//OEPg+s1NTXy+Xz64IMPlJubK5fLJbfbLUlasGCBJk+eLEnaunWrFi5cqMbGRqWlpWnp0qVKTEzsVB8A9GUf7TmuP6z/WJnD4nXbrLFy2Pl7HwAA6H420zTNrtrZQw89pEAgoIULFyo3N1fLly/X6NGjTxtjmqamTp2qxYsXKycnR0888YSOHDmixYsXd7ivPcrKfDKMLnvIANDtdh4o16//sU3DBsboJ3OzFe7q1N/6AABAP2W325SY2L5rNnfZn6ibmpq0du1aXXPNNWccV1BQILfbrZycHEnS3LlztWHDhk71AUBfta+wUv/z7HalJEbpjuvGExYBAECP6rJPHq+99poGDhyosWPHBtsWLFgg0zQ1ceJE3XXXXYqNjZXX61VqampwTEJCggzDUGVlZYf7PB5PVz0MAOg1Dh2r0WPPbFN8TLjumpOtqPAwq0sCAAD9TJcdYVy9evVpRxdXrFihF154QatXr5Zpmrr//vu76q4AoM8rKq3VL/++VZFup+6em624KJfVJQEAgH6oSwJjcXGxPvzwQ82YMSPYlpLSciFpl8ulefPmKT8/P9heVFQUHFdeXi6bzSaPx9PhPgDoS45X1uuXf98qh92mBddPUEJsuNUlAQCAfqpLAuNzzz2nSy65RPHx8ZKkuro61dTUSGqZ5ObFF19UZmamJCkrK0sNDQ3avHmzJGnVqlWaNm1ap/oAoK+oqGnUI6u2qKk5oJ/MydbA+EirSwIAAP1Yl8ySmpeXp3vvvVdTpkyRJB05ckTz589XIBCQYRhKT0/Xfffdp+TkZElSfn6+Fi1adNrlMZKSkjrV11bMkgqgt6qpa9KSv21RWXWD7p47QSNTY60uCQAA9CEdmSW1Sy+rEQoIjAB6I199s5au3KJj5XW6c/Z4jRkWb3VJAACgj7H0shoAgI6pbWjWI6u2yFtWpx9dM46wCAAAeg0CIwBYqK6hWb9ctVVFpbWaf815GjsiweqSAAAAggiMAGCRuga/fvn3bTpS4tMPrz5P541MtLokAACA0xAYAcAC9Y1+PfrMVh0urtEPrs7S+FHtm8ALAACgJxAYAaCHNTT59dgz23SgqEbfn5mlCecMsLokAACAVhEYAaAHNTYF9Ngz27X/aLX+Y+ZYTcwgLAIAgN7LaXUBANBf1De2HFn85GiV/n3GWJ0/JtnqkgAAAM6IwAgAPaCuoVm/enqbDh1rOQ2VsAgAAEIBgREAupmvvuXSGYXHffrBrCxNGM1pqAAAIDQQGAGgG1XXNumRVVt1rLxO8685T+PSmQ0VAACEDgIjAHSTSl+jHlm1VaWV9frx7HEaOzzB6pIAAADahcAIAN2gvLpBS1dtVWVNo+68brwyhsZbXRIAAEC7ERgBoIsdr6zXI6u2yFffrJ/MydaowXFWlwQAANAhBEYA6EKFx3365d+3yu839JM5EzQyNdbqkgAAADqMwAgAXeSTo1X69TPbFOa0655vf0VpA6KtLgkAAKBTCIwA0AV2fFqmx58rkCfarQVzspXkibC6JAAAgE4jMAJAJ32wu1i/W7tLaUlRunNOtuKiXFaXBAAA0CUIjADQCf/ML9RfN+3VOUM8+tE14xQZzssqAADoO/hkAwAdYJqm1r1zUM+9eUDZo5L0/Zlj5QpzWF0WAABAlyIwAkA7BQxDK17ep9e3HNUFYwfpO98YI6fDbnVZAAAAXY7ACADt0NDk1/I1O7V9f5mmfW2orrkkXXabzeqyAAAAugWBEQDaqNLXqF8/s12HS2p0U16GLp2QZnVJAAAA3arTgTE3N1cul0tut1uStGDBAk2ePFlbt27VwoUL1djYqLS0NC1dulSJiYmS1C19ANCdjh736bFntslX79ePrx2ncelJVpcEAADQ7WymaZqd2UFubq6WL1+u0aNHB9tM09TUqVO1ePFi5eTk6IknntCRI0e0ePHibulrj7IynwyjUw8ZQD+z+2C5Hn9uh1xOu+6YPV7DBsVYXRIAAEC72e02JSZGt2+b7iikoKBAbrdbOTk5kqS5c+dqw4YN3dYHAN3l7QKvfvX0NiXEuHXfTTmERQAA0K90yXcYFyxYINM0NXHiRN11113yer1KTU0N9ickJMgwDFVWVnZLn8fj6YqHAQBBhmnq+Tc/1bp3DilzWLx+eHWWIsPDrC4LAACgR3X6COOKFSv0wgsvaPXq1TJNU/fff39X1AUAlqlv9GvZswVa984hTRmfojuvG09YBAAA/VKnA2NKSookyeVyad68ecrPz1dKSoqKioqCY8rLy2Wz2eTxeLqlDwC6yvHKev33Xz/Stk/KNO+Kc/RvV3KNRQAA0H916lNQXV2dampqJLVMdPPiiy8qMzNTWVlZamho0ObNmyVJq1at0rRp0ySpW/oAoCvsOVyhB/68WRXVjbpzznhdkTNENq6xCAAA+rFOzZJ65MgRzZ8/X4FAQIZhKD09Xffdd5+Sk5OVn5+vRYsWnXYJjKSklmnou6OvrZglFcDnmaapf245qpWv7FNyfIR+dM04DUyItLosAACALtWRWVI7fVmNUENgBHCqxuaAntqwR+/uPKZx6Yn69xljFRneJfOBAQAA9CodCYx8KgLQb5VU1OnxZ3fo6HGfZl08QtMvGi47p6ACAAAEERgB9EtbPynV79bukt0m/Xj2eI1LT7S6JAAAgF6HwAigXwkYhta8dVDr3jmoocnR+sG3zlOyJ8LqsgAAAHolAiOAfqOiplH/98JO7T1SqYvOG6Qbp2bIFeawuiwAAIBei8AIoF/Y9kmpfr9+t5r9hm6dnqkLs1KsLgkAAKDXIzAC6NP8AUOr39ivjR8c0eAB0bpt1lilJEZZXRYAAEBIIDAC6LOKy+v027W7dMBbrcsmpGlO7ihOQQUAAGgHAiOAPsc0Tb2xrUirXt2nMIddP5iVpZwxyVaXBQAAEHIIjAD6lKraJv3pxd3atr9M5w6P13e/ea7iY9xWlwUAABCSCIwA+oyt+0r1x5d2q74xoLmXn6MrcgbLbrNZXRYAAEDIIjACCHm++matenWf3tlxTEOSo3X39edq8IBoq8sCAAAIeQRGACFty97jemrjHtXUNWv6hcM048IRCnParS4LAACgTyAwAghJNXVNWvHyXn2wu0RDkqN1x+zxGjYoxuqyAAAA+hQCI4CQYpqm3t9VrJWv7lNdg1+zJo/QN742TE4HRxUBAAC6GoERQMgoLq/TXzbt0a6DFRqREqPvzM3U4GS+qwgAANBdCIwAer1mv6GX3jukde8eUpjTpm9/fbQum5Amu50ZUAEAALoTgRFAr7bzYLn+ummvisvr9NXMZM29/Bx5ormuIgAAQE8gMALolUoq6/X3V/dpy75SJXsidNd145U1MtHqsgAAAPoVAiOAXqWhya/17x7Sxg8Oy2G365pLRmrq+UMU5nRYXRoAAEC/Q2AE0CsYpql3dxzTP97Yrypfky4YO0jXXpqu+BhOPwUAALAKgRGApUzT1I4D5frH6/t1pMSnESkxuv3q85SeFmd1aQAAAP0egRGAZQ4eq9Yz/9yv3YcqlBQXrv+4aqzOz0yW3cbspwAAAL1BpwJjRUWFfvrTn+rw4cNyuVwaNmyY7r//fiUkJCgjI0OjR4+W3d5yMe2HH35YGRkZkqTXXntNDz/8sAKBgMaOHavFixcrIiKiU30AQoe3rFZr3jqgD3aXKDoiTNdfcY4um5Amp8NudWkAAAA4hc00TbOjG1dWVmrPnj2aNGmSJGnJkiWqqqrSf//3fysjI0P5+fmKioo6bZva2lpNnTpVK1as0PDhw3XvvfcqJSVFt99+e4f72qOszCfD6PBDBtAJxeV1euHtg3pv1zGFOe2aev5QTZs0VBFuTnYAAADobna7TYmJ0e3bpjN36PF4gmFRkrKzs1VUVHTGbf71r38pKytLw4cPlyTNnTtXL730Uqf6APRuJRV1+v26Xbr3d+/roz0lyjt/qB7+/oX61pSRhEUAAIBerMs+qRmGoZUrVyo3NzfYduONNyoQCGjKlCmaP3++XC6XvF6vUlNTg2NSU1Pl9XolqcN9AHqnwhKfXnr/kN7fVSKHw6YrcgZr2qShiotm5lMAAIBQ0GWB8YEHHlBkZKRuuOEGSdLrr7+ulJQU+Xw+3X333Vq2bJnuvPPOrro7AL2UaZrae6RSL71/WNv3l8kd5tDlEwdr2teGykNQBAAACCldEhiXLFmiQ4cOafny5cFJblJSUiRJ0dHRmj17tv74xz8G299///3gtkVFRcGxHe0DYD3DNLV1X6leeu+Q9hdVKyYyTFdPHqHLvjJY0RFhVpcHAACADuj0lISPPvqoduzYoWXLlsnlckmSqqqq1NDQIEny+/3auHGjMjMzJUmTJ09WQUGBDh48KElatWqVpk2b1qk+ANZpaPLrn1uO6j+ffF+PP1ugqtom3TB1tB6+7ULNuGgEYREAACCEdWqW1H379mn69OkaPny4wsPDJUmDBw/WrbfeqoULF8pms8nv92vChAn6+c9/Hpwx9ZVXXtHSpUtlGIYyMzP1i1/8QpGRkZ3qaytmSQW6xrHyOr2WX6i3C7yqbwxo2MAYXTlpqHLGDJDDzuUxAAAAepuOzJLaqcAYigiMQMcZhqnt+8v0an6hdh4ol8Nu0/mZybr8K4M1MjVWNpvN6hIBAADwJToSGJnPHsBZlVc36O0Cr97c7lVpVYM80S5dPXmEpmSnKS7KZXV5AAAA6CYERgCtavYHtGVfqd7c7tWuA+UyJY0Z6tF1l41S9jlJcjo47RQAAKCvIzACCDJNU4eKa/TWdq/e31Ws2ga/EmPdmn7hcF00LkXJngirSwQAAEAPIjACkLesVu/vKtYHu0t0rLxOToddEzMG6OJxKcocFi87300EAADolwiMQD9VUlmvD3e3hMQjJT7ZJGUM9Wjq+UN0fmayosK5HAYAAEB/R2AE+gnTNOUtq9OWfceVv7dUB7zVkqT0tFhdf8U5yslIVnyM2+IqAQAA0JsQGIE+zDBMfXK0Slv3lWrLvuMqrqiXJA0bFKPZl6Xr/DHJSorje4kAAABoHYER6GNqG5q162CFCvaXadv+UtXUNcthtylzWLy+fv4QZY9KUkJsuNVlAgAAIAQQGIEQFzAMHSiq0Y4DZdp5oFyfeqtlmlKk26lx6YnKPidJ541MVISb/+4AAABoHz5BAiHGME0VldZqz+FKfXy4QrsOVqi+0S+bTRqZEqsZFw5X1ohEjUiNkcPOtRIBAADQcQRGoJczTFOFJT7tOVKpvYcrtedIpXz1zZKkxFi3zh8zQGNHJCpzWLyiI5jZFAAAAF2HwAj0MnUNzfrUW61Pj1Zrf1G1Pi2qUm2DX5KUFBeu8aMSlTEkXmOGepTkYcIaAAAAdB8CI2ChgGHo6PHaUwJilbxldZIkm6TUpCh9ZfQAZQz1KGNIvBLjmKwGAAAAPYfACPSQpuaACo/X6nBJjY4U+3S4uEZHjvvU1GxIkqIjwpSeGquvjR2k9NRYjUiJZaIaAAAAWIpPo0AXM01TFTWNKiqrVWFJS0A8XOyTt6xWptkyJsLt1NDkaE0Zn6qRKbEamRanAXHhstls1hYPAAAAnILACHSQYZoqq2qQt6xWRaV1KiqtVVFZrYpKa9XQFAiOi49xa9jAGE0cPUBDB8Zo6MBoJREOAQAAEAIIjMAZGIap8poGHa+oV3FlvY5X1Kukol7FFfUqqawLnk4qSXFRLqUmRemirBSlJkUqNSlKqUlRiol0WfgIAAAAgI4jMKJfM01TvvpmlVc3qry6QaXVDTpe2RIKj1e2/PgDZnC802HTAE+Ekj0ROnd4fEsoTIxSSlKkosK5pAUAAAD6FgIj+izTNFXX6FeVr0mVvkaVVTeovLrltqK6QWUnQmKT3zhtO3eYQ8nxEUpNjFL2qCQlx0coOT5SyZ4Ixce4ZbdzKikAAAD6BwIjQo4/YKimrlmVvkZV1TapKnjbdNp6pa9J/oDxhe3jol1KiAnX4AFRGpeeqMTYcCXEhish1q2E2HDFRobx/UIAAABABEZYrNkfUF2DX7765uBPTX2zfHXNp7fVNctX3yRffbPqGwOt7is6IkxxUS7FRbt0Tnyc4qLdwXVPlFsJceGKj3YrzGnv4UcJAAAAhCYCIzrENE01NRtqaA6oscmvhqaAGpsDqm/0q67Br7oTt/WNny231tbaEcCT3C6HosPDFB0ZppiIMA1MiFB0RMtyTGRLEIyLcssT7VJslEtOB0EQAAAA6EohFxgPHDige+65R5WVlfJ4PFqyZImGDx9udVm9imma8gdMNfsDavIbavYbJ24Damo+uR5ouW02guOa/IaamgNqbAqcCIKBliDY5P9s/cRtY1NA5tlLkdNhU2R4mCLdTkWGOxUV7lRSXLgiw53Btgi3U9ERYcGfmEiXoiOcCnM6uv25AgAAAPDlbKZptuVzf69x00036ZprrtHMmTO1Zs0arV69Wk899VSbty8r88kw2vaQTdOUabZcby9gmDKME7dmy3Jw/URba2MCgZZ1f8CQP3Dy1jitLXCizR8w5TcMBQKmmgPGifaWcYGT2xrmae3+wKmB8LMg2NF/VZtNCnc5Fe5yyB3mULjLEVx2B5edcrscinC1tJ0c5w5zKOJkEDwRBgl9AAAAQO9gt9uUmBjdrm1CKjCWlZUpLy9P77//vhwOhwKBgCZNmqRNmzYpISGhTfv4+RNvqaSiXoZhnAh6OmMY7GlOh11Oh01Oh10Oh01O+4l1pz247Dh1jN2mMKddYU67XE5Hy22YXWFOh1xOu1zOE8thZx8T5mzZLxO+AAAAAH1PRwJjSJ2S6vV6NXDgQDkcLUetHA6HkpOT5fV62xwYkz0RinA55LDbZLfZZLfbWpZbWW/LGLvtc+M/P8amlrB3ItydGghPLp8MgHYbYQ0AAABA7xFSgbEr3JiX0eZTUgEAAACgPwupaSVTUlJUXFysQKDlsgqBQEAlJSVKSUmxuDIAAAAA6HtCKjAmJiYqMzNT69atkyStW7dOmZmZbT4dFQAAAADQdiE16Y0k7d+/X/fcc4+qq6sVGxurJUuWaOTIkW3evj2zpAIAAABAX9HnZ0ntCgRGAAAAAP1RRwJjSJ2SCgAAAADoOQRGAAAAAECrCIwAAAAAgFYRGAEAAAAArSIwAgAAAABa5bS6gJ5mt9usLgEAAAAAelxHslC/u6wGAAAAAKBtOCUVAAAAANAqAiMAAAAAoFUERgAAAABAqwiMAAAAAIBWERgBAAAAAK0iMAIAAAAAWkVgBAAAAAC0isAIAAAAAGgVgREAAAAA0Kp+ERgPHDigOXPmKC8vT3PmzNHBgwetLgmQJC1ZskS5ubnKyMjQ3r17g+1n+p3l9xm9QUVFhb73ve8pLy9PM2bM0O23367y8nJJ0tatW3XVVVcpLy9Pt9xyi8rKyoLbnakP6Ak/+MEPdNVVV2nWrFmaN2+edu/eLYnXXYSOxx9//LTPDbzmotuZ/cCNN95oPv/886Zpmubzzz9v3njjjRZXBLT48MMPzaKiIvOyyy4z9+zZE2w/0+8sv8/oDSoqKsz33nsvuP6LX/zC/NnPfmYahmFeccUV5ocffmiapmkuW7bMvOeee0zTNM/YB/SU6urq4PLLL79szpo1yzRNXncRGnbs2GF+97vfNS+99FJzz549vOaiR/T5I4xlZWXatWuXpk+fLkmaPn26du3aFfxLOGClnJwcpaSknNZ2pt9Zfp/RW3g8Hk2aNCm4np2draKiIhUUFMjtdisnJ0eSNHfuXG3YsEGSztgH9JSYmJjgss/nk81m43UXIaGpqUn333+/Fi1aJJvNJunMr6u85qKrOK0uoLt5vV4NHDhQDodDkuRwOJScnCyv16uEhASLqwO+6Ey/s6Zp8vuMXscwDK1cuVK5ubnyer1KTU0N9iUkJMgwDFVWVp6xz+PxWFE6+ql7771Xb7/9tkzT1JNPPsnrLkLCr3/9a1111VUaMmRIsI3XXPSEPn+EEQDQvR544AFFRkbqhhtusLoUoE0eeughvf7667rzzjv18MMPW10OcFZbtmxRQUGB5s2bZ3Up6If6fGBMSUlRcXGxAoGAJCkQCKikpOQLpwH+v3bt3/W0OI7j+ItBJj9iIAYZ1Im/gkkZ/A9k8A+wWSwysCiL3R9wLIYzWUQmmygLhpNBCZPv9p1ObveW69zvfT6203s5w6tXveoDuMWrzJJnuE2n09F+v1e/35fX61U8HtfhcPi+n89neTwehUKhlzfgE8rlsubzuWKxGL0LV1ssFtrtdioUCsrn8zqdTqpUKtrv93Qu3u7HD8ZIJCLDMGSapiTJNE0ZhsEzErjWq8ySZ7hJr9fTer3WYDCQz+eTJOVyOd3vdy2XS0nSeDxWsVj85Q34G67Xq47H4/e3ZVkKBoP0LlyvVqtpNpvJsixZlqVYLKbRaKRqtUrn4u08z+fz+emfeLftdqtms6nL5aJAIKBOp6N0Ov3p3wLUbrc1nU5l27bC4bBCoZAmk8nLzJJnuMFms1GpVFIqlZLf75ckJZNJDQYDrVYrtVotPR4PJRIJdbtdRaNRSXp5A97Ntm3V63Xdbjd5vV4Fg0E1Gg1ls1l6F/+UfD6v4XCoTCZD5+Lt/ovBCAAAAAD4fT/+SSoAAAAA4M8wGAEAAAAAjhiMAAAAAABHDEYAAAAAgCMGIwAAAADAEYMRAAAAAOCIwQgAAAAAcMRgBAAAAAA4+gKFuV8eYbVLzgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "from IPython.display import display\n", + "\n", + "p_initial = 500\n", + "r = 0.032\n", + "a = 1.6E-7\n", + "delta_t = 1 # minutes\n", + "time_final = 8*60\n", + "\n", + "# Create the two outputs of interest\n", + "time = np.arange(start=0.0, stop=time_final, step=delta_t)\n", + "population = np.zeros(time.shape)\n", + "population[0] = p_initial\n", + "\n", + "for idx, t_value in enumerate(time[1:]):\n", + " population[idx + 1] = population[idx] + delta_t * (r*population[idx] - a * population[idx]**2)\n", + "\n", + "bugs = pd.DataFrame(data = {'bacteria': population}, index=time)\n", + "display(bugs.head())\n", + "ax = bugs.plot(figsize=(15,5))\n", + "ax.grid()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Answer these questions:\n", + "\n", + "1. Add an x-axis label, y-axis label and title to your figure. Hide the legend\n", + "2. Add another time-series plot (as a subplot) to figure out at which point in time is the rate of growth the steepest. Estimate it from the plot, and also find it in the data frame.\n", + "3. What steady-state population is reached?\n", + "4. If you start with 1000 bacteria, do you end up with a different final colony size?" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -1323,7 +1447,6 @@ "\n", "* ShOULD show: correlations numerically calculated for the film thickness dataset, but then also visualized with ``data.plot('TopRight', 'BottomRight', kind='scatter')``\n", "\n", - "* SHOULD CHECK: correlations between the 6 values of the peas (judges). Should we do PCA on this data?\n", "\n", "* MUST COVER: look at the goal to determine if students who took a longer time to finish actually scored a higher. Correlation plot and correlation value. Linear regression? R2 = correlation!\n", "\n", @@ -1364,11 +1487,13 @@ "source": [] }, { - "cell_type": "code", - "execution_count": null, + "cell_type": "markdown", "metadata": {}, - "outputs": [], - "source": [] + "source": [ + "##### TO DO\n", + "\n", + "* MUST COVER: time-series of stability data from which a database was built on" + ] }, { "cell_type": "markdown", @@ -1389,170 +1514,9 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" - ], - "text/plain": [ - "" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# IGNORE this. Execute this cell to load the notebook's style sheet.\n", "from IPython.core.display import HTML\n", From 4ef317d472e405f25fa47c9429978248e7a29c6e Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Wed, 24 Jul 2019 07:07:19 +0200 Subject: [PATCH 066/134] Tweaks to the order of content --- Module-10-interactive.ipynb | 178 +++++++++++++++++++----------------- 1 file changed, 95 insertions(+), 83 deletions(-) diff --git a/Module-10-interactive.ipynb b/Module-10-interactive.ipynb index 4e68bbb..32b16c5 100644 --- a/Module-10-interactive.ipynb +++ b/Module-10-interactive.ipynb @@ -28,7 +28,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 31, "metadata": {}, "outputs": [ { @@ -187,7 +187,7 @@ "" ] }, - "execution_count": 1, + "execution_count": 31, "metadata": {}, "output_type": "execute_result" } @@ -201,13 +201,7 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": false, - "editable": false, - "run_control": { - "frozen": true - } - }, + "metadata": {}, "source": [ "# Module 10: Overview \n", "\n", @@ -238,13 +232,14 @@ "\n", "In the [prior module](https://yint.org/pybasic09) we covered:\n", "1. Box plots\n", - "2. Time-series, or a sequence plot\n", - "3. Bar plots (bar charts) \n", + "2. Bar plots (bar charts) \n", + "3. Histograms\n", "\n", "while in this module we will cover:\n", - "4. Histograms\n", - "5. Scatter plot\n", + "4. Time-series, or sequence plots\n", + "5. Scatter plots\n", "6. Data tables\n", + "7. Pointers to some other interesting plots\n", "\n", "In between, throughout the notes, we will also introduce statistical and data science concepts. This way you will learn how to interpret the plots and also communicate your results with the correct language." ] @@ -256,7 +251,7 @@ "## Five main goals with data science\n", "\n", "\n", - "In the [prior module](https://yint.org/pybasic09) I described my approach for any data analysis project. The first step is to define the goals. When I take a look at various projects I have worked on, the goals always fall into one or more of these categories, or 'application domains'.\n", + "In the [prior module](https://yint.org/pybasic09) I described my approach for any data analysis project. The first step is to **define the goals**. When I take a look at various projects I have worked on, the goals always fall into one or more of these categories, or 'application domains'.\n", "\n", "1. Learning more about our system\n", "2. Troubleshooting a problem that is occurring\n", @@ -264,7 +259,7 @@ "4. Monitoring that system in real-time, or nearly real time \n", "5. Optimizing the system\n", "\n", - "I will describe them shortly. But why look at this? The reason is that certain goals can be solved with a subset of tools. The number of tools available to you is large. Knowing which one to use for which type of goal helps you along the way faster.\n", + "I will describe these goals shortly. But why look at this? The reason is that certain goals can be solved with a subset of tools. The number of tools available to you is large. Knowing which one to use for which type of goal helps you along the way faster.\n", "\n", "
    \n", "Goals 1 and 2 take place off-line, using data that has been collected already.\n", @@ -309,7 +304,7 @@ "\n", "Data tables are an effective form of data visualization. Some tips:\n", "\n", - "* align numbers in the column, all at decimal, so trends can be scanned when reading from top to bottom.\n", + "* align numbers in the column, all at the decimal point, so trends can be scanned when reading from top to bottom.\n", "* alternate the background shading of each row\n", "* sort the table by a particular variable, to emphasize a particular message.\n", "\n", @@ -319,7 +314,13 @@ { "cell_type": "code", "execution_count": 2, - "metadata": {}, + "metadata": { + "deletable": false, + "editable": false, + "run_control": { + "frozen": true + } + }, "outputs": [ { "data": { @@ -745,7 +746,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 33, "metadata": {}, "outputs": [ { @@ -780,63 +781,63 @@ " \n", " \n", " 0\n", - " 6.48\n", - " 6.66\n", - " 4.56\n", - " 2.20\n", - " 2.91\n", - " 3.47\n", + " 6.485\n", + " 6.660001\n", + " 4.555\n", + " 2.200\n", + " 2.910\n", + " 3.475\n", " \n", " \n", " 1\n", - " 5.75\n", - " 6.09\n", - " 3.81\n", - " 2.32\n", - " 4.03\n", - " 3.77\n", + " 5.750\n", + " 6.090000\n", + " 3.805\n", + " 2.315\n", + " 4.025\n", + " 3.770\n", " \n", " \n", " 2\n", - " 3.94\n", - " 4.12\n", - " 2.44\n", - " 3.62\n", - " 5.77\n", - " 5.39\n", + " 3.935\n", + " 4.119999\n", + " 2.445\n", + " 3.625\n", + " 5.770\n", + " 5.395\n", " \n", " \n", " 3\n", - " 6.60\n", - " 6.12\n", - " 4.44\n", - " 1.93\n", - " 3.31\n", - " 4.46\n", + " 6.595\n", + " 6.125000\n", + " 4.440\n", + " 1.930\n", + " 3.310\n", + " 4.465\n", " \n", " \n", " 4\n", - " 5.68\n", - " 5.98\n", - " 3.80\n", - " 2.12\n", - " 3.85\n", - " 4.14\n", + " 5.680\n", + " 5.985000\n", + " 3.800\n", + " 2.115\n", + " 3.850\n", + " 4.140\n", " \n", " \n", "\n", "" ], "text/plain": [ - " Flavour Sweet Fruity Off-flavour Mealiness Hardness\n", - "0 6.48 6.66 4.56 2.20 2.91 3.47\n", - "1 5.75 6.09 3.81 2.32 4.03 3.77\n", - "2 3.94 4.12 2.44 3.62 5.77 5.39\n", - "3 6.60 6.12 4.44 1.93 3.31 4.46\n", - "4 5.68 5.98 3.80 2.12 3.85 4.14" + " Flavour Sweet Fruity Off-flavour Mealiness Hardness\n", + "0 6.485 6.660001 4.555 2.200 2.910 3.475\n", + "1 5.750 6.090000 3.805 2.315 4.025 3.770\n", + "2 3.935 4.119999 2.445 3.625 5.770 5.395\n", + "3 6.595 6.125000 4.440 1.930 3.310 4.465\n", + "4 5.680 5.985000 3.800 2.115 3.850 4.140" ] }, - "execution_count": 4, + "execution_count": 33, "metadata": {}, "output_type": "execute_result" } @@ -851,12 +852,12 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 34, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0MAAAE7CAYAAAAfLlpqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xl8U1X+//F3ulCUWnAplXUGcVpEhcIIlYFhH0SsdEGUGQUUhEE2RVGgOLIp6w9RQFQYlUVRB2URKOIXq6LI5siq7CKbUpYCbVm6nt8fPJppSKEngZaWvJ488ng0N++cnNzk3uTDuffEYYwxAgAAAAAf43e1OwAAAAAAVwPFEAAAAACfRDEEAAAAwCdRDAEAAADwSRRDAAAAAHwSxRAAAAAAn0QxBAAAAMAnUQwBAAAA8EkUQwAAAAB8EsUQAAAAAJ9EMQQAAADAJ1EMAQAAAPBJAVe7A6XN2X8/a53N/uFn6+yiz26xznYYW806m/XND9bZg1+Xsc7+sV9V66wkKSPTOjpnSpZ19u/3H7HO+lcLtc5OfMc6qmc7ptuHJZkz9uti4tKbrLODRtq/L7I3/GSd/ew/5a2zcQPs30Mn5v9qnZWkJQcqW2e7zG1tnc364EPr7Mjl9q/HiG4e/F9Tbq59VtJj79q/597+U6p19pOd9u+hTvUPWGevi29knc34fK11VpIOri1nnb2tbyXrbO7vx6yzjhuut8/efKN1NnvjTuusJO1ItF8XdzzmsO/Hryessy+urWidnfBiFevsuWU/Wmc/XufZ59OjHU5ZZ/1C7V+/edPst+uHn7Hfd2bvPGidvS/R/vNUkpImtbDO5v68zTqb/s1v1tmQns3t+7DV/nvWincCrbOS1Ob/1bDOZv+w2To761P7z1RJ6nvgfY/yV0PWsV+8ul/gLbdd4Z54h2IIAAAAgHdyc652Dy4LxRAAAAAA7xjPjm4oaSiGAAAAAHjHw0O9SxqKIQAAAABeMYwMAQAAAPBJjAwBAAAA8EmMDAEAAADwScwmBwAAAMAnlfKRIQ9+FRAAAAAArh2MDAEAAADwThFPoHDw4EH16dPHeT0tLU3p6elat26dS27KlCmaO3euKlasKEmqX7++hg0bVmj7FEMAAAAAvFLUU2tXrVpVixYtcl5/5ZVXlJNT8HlKsbGxGjRokEftUwwBAAAA8I6XI0OpqalKTU11Wx4SEqKQkJAC75OZmanFixfrnXfe8eoxC0IxBAAAAMA7Xo4MzZo1S1OnTnVb3rdvX/Xr16/A+yQlJSksLEx33nlngbcvXbpU3333nUJDQ9WvXz/Vq1ev0H5QDAEAAADwjpdTa3ft2lVxcXFuyy82KiRJn376qTp06FDgbZ06dVKvXr0UGBioVatWqXfv3kpMTNSNN954yX5QDAEAAADwjpcjQ5c6HK4gycnJWr9+vcaPH1/g7aGhoc6/GzdurEqVKmnXrl1q2LDhJdtlam0AAAAA3snN9e7ioQULFqhZs2YXHelJTk52/r1t2zYdOnRINWrUKLRdRoYAAAAAeKeYfnR1wYIFGjp0qMuyHj16qH///rr77rv16quv6qeffpKfn58CAwM1fvx4l9Gii6EYAgAAAOCdIv6doTzLly93WzZjxgzn3+PGjfOq3WIthlq2bKkyZcooKChIkhQVFaXU1FTdddddeuyxx4qzKwAAAAAukzHeTaBQUhT7yNDkyZMVHh7uvD548ODi7oKb7OxsBQQwSAYAAAB4pJgOkysqJWoChdWrV+uRRx5RbGysHnzwQS1dulSS9MMPPyg2NtYlGx8fr3Xr1kmSpk+frujoaEVHR2vIkCE6ffq0pPOF1vvvv++8T/7rgwcP1qhRo9S9e3c9/PDDxfH0AAAAgGtLMU2gUFSKfTikf//+zsPkBg4c6HJb7dq1NXfuXPn7++vYsWOKj49XkyZNdM899+jMmTPavn27atWqpZ07dyo1NVUNGjTQN998o88++0wfffSRypUrp0GDBmnatGl6/vnnC+3Lhg0b9P777+v6668vkucKAAAAXNNK+cjQVT9MLm/0R5JSUlKUkJCgffv2yd/fX6dOndLevXsVGRmpmJgYLViwQEOGDNH8+fMVFxcnh8Oh1atXq127dgoODpYkPfzwwxo9erRVX9q2bUshBAAAAHjLyx9dLSlK1GFyw4cPV8OGDbV48WItWrRIt956qzIyMiRJcXFxWrp0qTIyMrRkyRLnYXPGGDkcjgLb8/f3V26+Ybi8tvJQCAEAAACXweR6dykhSlQxlJaWpipVqsjhcGjVqlXat2+f87bKlSurZs2aevnll3X77berSpUqkqS//OUvSkxMVHp6uowx+uSTT/SXv/xFklS9enVt2bJFknTkyBGtXbu2+J8UAAAAcK3inKEr57nnntOIESM0Y8YMRUREKCIiwuX2+Ph4vfDCCxo/frxzWbNmzbRjxw516tRJknTXXXfpqaeeknT+kLn+/furffv2+uMf/6g6deoU35MBAAAAUKIVazGUlJTktmzs2LHOvxs3bqwvvvjiovePiYlRTEyM2/KePXuqZ8+ebstvvPFGzZkzp8C28j8uAAAAAC+UoEPevFGiRoYAAAAAlCIl6JA3b1AMAQAAAPAOxRAAAAAAX2RM6Z5am2IIAAAAgHcYGQIAAADgk5hAAQAAAIBPYmQIAAAAgE9iZAgAAACAT2JkCAAAAIBPYmQIAAAAgE9iZAgAAACAT6IYAgAAAOCTOEwOAAAAgE9iZAgAAACAT2JkCAAAAIBPKuUjQ35XuwMAAAAAcDUwMuSpcjdYR/0q32ydDfagqs7df8C+DxVDrLPZOZnWWZN+2jorScqwbzvIlLHOBtx1m3XWnEqzzp505FhnHSHB1llJOrfloHX2rKOCfcO33God9Qv73TpbU/brzXH7XdbZm14IV9rUZdb5YA/+4yn36/+zzmb8cs6+YQ/43fZH66w5csTD1tOtk4E3OayztTLtt9PME/btXmedlHLPePY/jLm59v1w1G1gnTW/fmbfh9Rj1tnAymHWWeUa+6yksEqp1lm/MPt9Z+724/Z9MB58rbihvHXUZNuvi4frH9B/19jvD89usV9vNwy63zorfW+dzNl32Dqbst5+XeR4evhSUFnrqCf7uOzlyfZ98OD7kONm+8/Iu27Zb98HSQr9i3XUv6r98yuXWzSfOVcVh8kBgOc8KYQAwJYnhRCAK6CUHyZHMQQAAADAOxRDAAAAAHyS8eyQ3pKGYggAAACAdxgZAgAAAOCTKIYAAAAA+CRmkwMAAADgkxgZAgAAAOCTmEABAAAAgE9iZAgAAACAT6IYAgAAAOCTmEABAAAAgC8yuZwzBAAAAMAXcZgcAAAAAJ/EYXIAAAAAfFIpP0zO72p3AAAAAACuBkaGAAAAAHiHc4YAAAAA+CSKIQAAAAA+yZTuc4ZKTDG0bNkyvf322zLGKCMjQ3feeacmTpxYZI938OBBrVq1So888kiRPQYAAABwTWNk6PIdOXJEI0aM0IIFC1SpUiUZY7R9+/YifcxDhw7p448/phgCAAAAvMVscpfv2LFjCggIUIUKFSRJDodDd9xxhz766CONGDFCkrR582ZFRERo8+bNkqThw4fr448/liRt2rRJnTt3Vnx8vOLj4/X111872/7mm2/UqVMnxcfH65FHHtHGjRslSSNHjtSePXsUExOj/v37F+OzBQAAAK4RJte7SwlRIkaGatWqpTp16qh58+aKiopS/fr1FRMTo0aNGmnmzJmSpNWrV6tevXpas2aN6tSpo9WrV6tbt25KTU3VsGHDNH36dFWsWFFHjhzRQw89pCVLlujkyZOaNm2a3nnnHQUHB2vXrl3q0aOHvv76a7300ksaN26c5s+ff3WfPAAAAFBalfKRoRJRDPn5+WnatGnauXOn1q9frxUrVuidd97R4sWLlZGRocOHD2v16tV69tln9eabb+rBBx9UVlaWqlevrm+++UYHDx5Ujx49nO05HA7t27dPmzdv1v79+/Xoo486b8vOztaxY8euxtMEAAAArimGc4aunPDwcIWHh+vRRx9Vu3bttG7dOt177736+uuvdfz4cTVs2FAjR47U119/raioKEmSMUYRERH64IMP3NrbvHmz/vrXv2r8+PFut+3Zs6fInw8AAABwTSvlI0Ml4pyh5ORkbdiwwXn98OHDSklJUdWqVXXvvfdq+vTpqlevniSpfv36mjFjhho1aiRJqlevnvbt26c1a9Y4779582YZY9S4cWN9++232rVrl8ttkhQcHKz09PTieHoAAADAtYlzhi5fdna2pkyZokOHDqls2bLKzc3VM888o9q1a+vmm2/WCy+84Cx+7r33Xn388ce69957JUnly5fXtGnTNGHCBI0ePVpZWVmqVq2a3nrrLf3xj3/UhAkTNHToUJ07d05ZWVmqX7++6tSpo4iICNWoUUPR0dG67bbbNHny5Ku5CgAAAIDSp5SPDJWIYqhKlSp69913C7wtLCxMO3bscF5v166d2rVr55KpU6eO5syZU+D9mzRpoiZNmrgtDwgI0Ntvv30ZvQYAAAB8XDGcM5SRkaHRo0dr9erVCgoKUmRkpEaNGuWSycnJ0csvv6xvv/1WDodDPXv2VMeOHQttu0QUQwAAAABKoWIYGZowYYKCgoK0fPlyORyOAidDW7x4sfbv368vvvhCJ0+eVGxsrBo1aqSqVatesm2KIQAAAADe8fL8n9TUVKWmprotDwkJUUhIiPP66dOntXDhQn3zzTdyOBySpFtuucXtfomJierYsaP8/Px00003qXXr1vr888/15JNPXrIfFEMAAAAAvOPlyNCsWbM0depUt+V9+/ZVv379nNcPHDigChUqaOrUqVq7dq3KlSunp59+Wvfcc4/L/X7//XdVrlzZeb1SpUo6fPhwof2gGAIAAADgFW9/Z6hr166Ki4tzW55/VEg6P9HagQMHVLt2bQ0aNEibNm1Sr1699H//938KDg726rHzoxgCAAAAUKwuPBzuYipXrqyAgABFR0dLkurWrasbb7xRe/fu1d133+3MVapUSb/99pvq1KkjyX2k6GJKxO8MAQAAACiFco13F0s33XSToqKitGrVKknS3r17dfz4cf3hD39wybVt21bz5s1Tbm6uUlJStGLFCt13332Fts/IEAAAAADvFMNsciNGjFBCQoLGjRungIAAjR8/XiEhIerRo4f69++vu+++WzExMdq0aZPatGkjSerTp4+qVatWaNsUQwAAAAC84+Vscp6oVq1agb8pOmPGDOff/v7+GjFihMdtUwwBAAAA8E4xjAwVJYohAAAAAF4xFEMAAAAAfBLFEAAAAACf5OXvDJUUFEMAAAAAvMPIEAAAAACfRDEEAAAAwBcZQzEEAAAAwBcxMgQAAADAJ5XyYshhSvvYVjFbXyXOOrvRUc46+7HjqHV2RNYN1tmfA8paZ78LOGudHRxon5WkjEz7urtPdrp1trNfZets+Rz7t/rgjC3W2bFBd1tnJSnD4bDOjsvaaZ1deNPN1tkfUu2z0xy/WWeHZVe0zn52nWe7njUZ9v1Y8id/6+z8vVWts5Mzdlhnpzhus84e8/fs/6W6nfjOOvtixSbW2YVZB6yzsYHVrLMx/qess19lVbDOStJXfqnW2Qk3ZFhn/+9UqHXW34O3clSA/br4KTPEvmFJH3nQ9mNZ5a2zRwPs91ljT2+yzi6/2f49NNOD/n6Vab+vkKTH/e370fK6FOtsl/TT1tmXcypZZ1dcZ/96vPrbSuusJO2uXds6u/Gw/Tay1v6riHqHJltnv/rNfr194HfcvhOSZoRlWmfXHbrVOvu632GP+vHtoS89yl8Np55o7dX9yr+34gr3xDuMDAEAAADwTikfGaIYAgAAAOCd0v0zQxRDAAAAALxjGBkCAAAA4JNKeTHkd7U7AAAAAABXAyNDAAAAALzDOUMAAAAAfBHnDAEAAADwTYwMAQAAAPBFjAwBAAAA8E2MDAEAAADwRYZiCAAAAIBPohgCAAAA4IsYGQIAAADgmyiGAAAAAPgiRoYAAAAA+CSKIQAAAAA+iWIIAAAAgG8yjqvdg8vid7U7cKGWLVuqbdu2iomJUUxMjEaPHu3R/ZOTk9W5c2fn9SlTpigzM/NKdxMAAADweSbXu0tJUSJHhiZPnqzw8PACb8vOzlZAwMW7HRYWpjlz5jivT506Vd26dVOZMmWueD8BAAAAX2ZyGRkqcoMHD9aoUaPUvXt3Pfzwwzp48KCioqKct+e/nv/vESNGSJI6deqkmJgYJScnq0mTJsrIyHDet1evXlq8eHExPhsAAADg2sDIUBHo37+/goKCJEkDBw6UJG3YsEHvv/++rr/+eh08eNCqnWHDhmnu3Ln66KOPVK5cOUlSgwYNlJiYqLi4OB06dEhbt27V5MmTi+aJAAAAACixSmQxdOFhckuXLlXbtm11/fXXX3bbnTt31pgxYxQXF6cPP/xQHTp04BA6AAAAwAumlE+gUCKLoYLkL4QCAgJkjHFez3/YW2Hq16+vnJwc/fe//9XChQs1b968K9pPAAAAwFeUpEPevFEqzhm60C233KKsrCzt27dPkrRkyZKLZsuVK6f09HSXZZ07d9azzz6ryMhIVapUqUj7CgAAAFyrTK7Dq0tJUSqLoYCAAA0dOlRPPPGEOnfuLH9//4tmu3Xrpi5duigmJkapqamSpAceeECpqan6xz/+UVxdBgAAAK45xnh3KSlK3GFySUlJbsvGjh3rtuyhhx7SQw895Lzet29fSVLVqlW1du1al+V5t+XZvHmzqlSpokaNGl2pbgMAAAA+pySN8nijxBVDRS0hIUHff/+9xo0bJ4ejdL94AAAAwNVEMVTKjB49+mp3AQAAALgmlKRD3rzhc8UQAAAAgCuDkSEAAAAAPonfGQIAAADgk0r77wxRDAEAAADwSi4jQwAAAAB8EYfJAQAAAPBJTKAAAAAAwCcxtTYAAAAAn8TIEAAAAACfVNonUPC72h0AAAAAgKuBkSEAAAAAXmE2OQAAAAA+iQkUAAAAAPik0n7OEMUQAAAAAK+U9sPkmEABAAAAgFeM8e7ijalTpyoiIkI7d+50u23w4MFq2rSpYmJiFBMTozfffNOqTUaGPNTbHLfOllWqdTber5J19omc7dbZcgqyztYLsO9DzMkj1llJOpeTYZ3tfUNd6+w3SrfO/pSVbJ1dFPxH62yf7N+ts5KUY3Kts+8FVLXOxqQcsM7eEHDaOvu0qW6dHRNov44b6hbrrCT9v9xbrbN/3vKzdbbm9f7W2Rl+f7DOjitj/95Mzk6zzkrSsSFNrLMD382yzg7JtX+/Tcmx3wd8knHGOhsamG2dlaS7HBWss91P2vcjJXuPdfZcjv06Ds4pa539Q6B19Hzer5x1drzDfn9xu99N1tmkWytbZ/9x0n4/VKfM9dbZl3PsP8skaaK//ef6orP27b5g7LenQY5frbPVc2+0zqZOfdg6K0n3jdhsnb0uMMU6e7Oxf9//bZ/9d6dg/0zrbIcA+/23JMUc3Gudvd7f/nvA8zn2n2WlRXEdJvfTTz9p48aNqlz54vuZnj176rHHHvOoXUaGAAAAAHjFGIdXF09kZmZq5MiRGjZsmByOK1t8MTIEAAAAwCvejgylpqYqNdV9JDAkJEQhISEuy15//XW1b99e1apVu2Sb7733nj7++GNVq1ZNzz33nGrWrFloPyiGAAAAAHjF25m1Z82apalTp7ot79u3r/r16+e8vmHDBm3ZskUDBw68ZHsDBgxQaGio/Pz8tHDhQj355JNasWKF/P0vfTg8xRAAAAAAr3g7MtS1a1fFxcW5Lb9wVGj9+vX65Zdf1KpVK0nS4cOH1b17d40ZM0ZNmvzvHNqwsDDn37GxsRozZowOHz6sKlWqXLIfFEMAAAAAvOLt1NoFHQ5XkJ49e6pnz57O6y1bttRbb72l8PBwl1xycrKzIPr222/l5+fnUiBdDMUQAAAAAK/Yz5F75cXExGj69OkKCwvToEGDdPz4cTkcDgUHB+vNN99UQEDhpQ7FEAAAAACvGBXvj64mJSU5/160aJHz75kzZ3rVHsUQAAAAAK/kejuDQglBMQQAAADAK7nFPDJ0pVEMAQAAAPBKcR8md6X5Xe0OAAAAAMDVwMgQAAAAAK9czdnkrgSKIQAAAABeKe2HyVEMAQAAAPAKI0MAAAAAfBLFEAAAAACfxGFyAAAAAHxSbumuhSiGAAAAAHiHH10FAAAA4JPM1e7AZbIqhjIzM/Xqq69qxYoVCggIUNmyZdW3b1+1bt1akjRkyBBt3rxZf/rTn/Taa6+5Xb9Q/tubNm2qr7/+WpMnT76yzwwAAABAkfKJCRSGDx+uM2fOaOnSpQoKCtLOnTv15JNPqnz58qpRo4aWL1+uH374QX5+fjp27JjL9QtdePv8+fOv+JPyRk5Ojvz9/a92NwAAAIBSI9dRug+Tc69WLnDo0CEtW7ZMw4cPV1BQkCQpPDxcvXr10tSpU9WlSxedO3dOcXFxeuONN1yuz5w506Wt9PT0S95+9OhRde7cWfHx8XrggQc0fvx4SdLZs2cVFRWllJQUZ3bs2LGaOnWqJGnlypWKjY3Vgw8+qK5du2rfvn2SpPnz56t///7O++S/Pn/+fHXv3l3PP/+84uPjtXPnTg9XHQAAAODbjJeXkqLQkaGdO3eqevXqqlChgsvyyMhIvf766/r000/VoUMHLVq0SJIUExPjcj2/4OBgTZ8+3eX2/CNDISEheuutt1SuXDllZWWpe/fuWrlypZo2bapWrVppyZIl6tKli7Kzs7VkyRJ99NFHOn78uF544QW9//77uv322zVv3jwNHDhQ8+bNK/TJ//jjj1q0aJGqV69eaBYAAACAq9J+mFyhI0PGFF/tlpOTo/Hjx6t9+/aKj4/Xrl27tH37dklSfHy8FixYIOn8SFDNmjVVtWpVbdq0SbVq1dLtt98uSerQoYO2bdum9PT0Qh+vfv36FEIAAACAl3Id3l1KikJHhsLDw7V//36dPHnSZXRo48aNioiIKPQB+vTpo4MHD0qSPvjgg0tm33vvPaWmpmrevHkKCgrSv/71L2VkZEiS7rnnHp0+fVo7duzQggULFBcXJ+l8sea4yLGK/v7+ys39X72a11aecuXKFdp/AAAAAAUr7VNrFzoyVLVqVbVt21bDhw93FhM7d+7UW2+9pb59+xb6AG+88YYWLVqkRYsWKTg4+JLZtLQ0hYaGKigoSMnJyfryyy9dbo+JidF7772n9evX67777pMk1atXT9u2bdOePXskSQsWLFDt2rUVHBys6tWra8eOHcrMzFRmZqaWL19eaH8BAAAA2LnmzxmSzs8mN3HiRLVr106BgYEKCgrS0KFD1bBhQ+eoz5XQuXNnPf3004qNjdWtt96qRo0audweFxenVq1aKT4+Xtddd50k6aabbtL48eM1cOBAZWdn66abbtKECRMknS+UGjVqpOjoaFWtWlU1a9bU0aNHr1h/AQAAAF9Wkg5584ZVMRQUFKSEhAQlJCS43Va1alWtXbv2otcLy8fHxys+Pl6SVKVKFX3yyScXvW/lypW1bds2t+VNmzZV06ZNC7zPyJEjC1ye/3EBAAAA+B6rYggAAAAALlTaZ5OjGAIAAADglZJ0/o83KIYAAAAAeMUnzhkCAAAAgAtxmBwAAAAAn0QxBAAAAMAnGQ6TAwAAAOCLGBkCAAAA4JMohgAAAAD4JKbWBgAAAOCTmFobAAAAgE/iMDkAAAAAPoliCAAAAIBP4pwhAAAAAD6Jc4YAAAAA+CQOkwMAAADgkzhMzsfcVSbUOtsuo6x1tm3McevsscRw6+ztWX7W2fgWh62z3ZMqW2clqbLjOuts/z5lrLNfTrRvN8j8wTob3vd66+w/XwuxzkrSLTnZ1tm7/2nfbqPZ1a2zf8m2X2/xT9u/HvOmBFlnt+em6d8Radb5ch3rW2frvXzGOvv37Buts38eaL9N15oaaJ192GHfB0ny+1NN6+yA69ZaZ6v96y7rbNjQTOvsB2Xtn19vP/vXTpJu/dPv1tn7t9h/ZD/rb7+O/6Rz1tnpQfZ96H7Ofv8tSfU62a+7Rf+x31/UDzhhna3c1f6zIWPSDuvsqKr2n5GSFNLGvh+H3r7ZOpsUYL+O7+9mv42s+8D+9eiYZf9+c5SvYJ2VJH+H/fFOtfzLW2eflP166xto/5k6UfbZ2+46YJ2VpK8327f9XKb9umj8jP1nQ2mRW8rLIc/2tABwhXhSCAGALU8KIQBgZAgAAACAVzhnCAAAAIBPKt0HyVEMAQAAAPASI0MAAAAAfBK/MwQAAADAJ5X22eQohgAAAAB4pXSXQhRDAAAAALzEOUMAAAAAfBKHyQEAAADwSaW7FKIYAgAAAOAlDpMDAAAA4JM4TA4AAACATyrdpRDFEAAAAAAvcZgcAAAAAJ9kSvnYEMUQAAAAAK8wMgQAAADAJxXHBAq9e/fWwYMH5efnp+uvv17/+te/dMcdd7hkcnJy9PLLL+vbb7+Vw+FQz5491bFjx0LbphgCAAAAUGKNGzdON9xwgyRpxYoVSkhI0IIFC1wyixcv1v79+/XFF1/o5MmTio2NVaNGjVS1atVLtk0xBAAAAMAr3o4LpaamKjU11W15SEiIQkJCXJblFUKSlJ6eLofD4Xa/xMREdezYUX5+frrpppvUunVrff7553ryyScv2Q8/bzrfsmVLNWnSRDk5Oc5ln376qSIiIvT+++9706Sz3Z07d0qShg4dqh9++MHrtgAAAAAUrVwZry6zZs1Sq1at3C6zZs0q8HGGDh2q5s2ba9KkSRo3bpzb7b///rsqV67svF6pUiUdPny40P57PTIUGhqq7777Ts2aNZMkLVy4UHfeeae3zbl55ZVXrlhbAAAAAK48bydQ6Nq1q+Li4tyWXzgqlCevNli4cKHGjx+vGTNmePnIrrwuhuLi4jR//nw1a9ZMBw4c0NmzZxUeHi5JyszM1KRJk7R+/XplZWUpPDxcw4cPV7ly5bR48WLNnj1bWVlZkqRBgwapUaNGbu137txZ3bp1U4sWLTR48GCVKVNGv/76qw4fPqyFL4K/AAAfAUlEQVTIyEiNGzdODodD6enpGjNmjHbs2KGMjAxFRUVpyJAh8vf319SpU7VkyRIFBQXJ4XBo9uzZCgwM1KBBg7R7924FBASoRo0aev31171dDQAAAIDP8nZq7YIOh7MRGxurl156SSdOnNCNN97oXF6pUiX99ttvqlOnjiT3kaKL8boYioqK0ty5c3Xq1CktWLBAsbGx2rp1qyTp3//+t2644QZ98sknkqQJEyZo+vTpGjBggJo0aaLo6Gg5HA798ssvevzxx7Vy5cpCH2/Xrl2aOXOmHA6H4uLi9P3336tx48YaM2aMGjRooFdeeUW5ubkaOHCgPv30U91333165513tHr1apUtW1bp6ekqW7asvvrqK6WmpioxMVGSdOrUKW9XAQAAAODTinpq7dOnTys1NVWVKlWSJCUlJal8+fKqUKGCS65t27aaN2+e2rRpo5MnT2rFihX64IMPCm3f62LI4XDo/vvv19KlS5WYmKgPP/zQWQwlJSUpPT1dy5cvl3R+pKhWrVqSpAMHDui5555TcnKyAgICdOzYMR09elShoaGXfLzWrVsrKChIklS7dm3t379fjRs3VlJSkjZv3qz33ntPknTu3DmFhYUpODhYNWrU0PPPP6+//vWvat68uYKDg1WrVi398ssvGjFihBo2bKjmzZt7uwoAAAAAn1bUP7p69uxZPf300zp79qz8/PxUvnx5vfXWW3I4HOrRo4f69++vu+++WzExMdq0aZPatGkjSerTp4+qVatWaPuXNZtcfHy8OnbsqIYNG7oMUxljNGzYsAIPf3v22Wc1ePBgtW7dWrm5uapbt64yMjIKfay8QkiS/P39nZM3GGM0bdq0Ap/sf/7zH/34449as2aN4uPj9e9//1u1atVSYmKi1qxZo5UrV2rSpElavHixS/sAAAAAClfUI0O33HKL/vOf/xR4W/7zhvz9/TVixAiP2/dqNrk81apV04ABA9S7d2+X5S1bttTMmTN17tw5SeenwNuzZ48kKS0tzTnf9yeffKLMzMzL6YJatmyp6dOnO4ujlJQUHThwQOnp6UpJSVHDhg3Vv39/hYeHa9euXTp8+LD8/f3VunVrDRkyRCkpKTp58uRl9QEAAADwRbnGeHUpKS77d4YeeeQRt2U9e/bU1KlT9dBDD8nhcMjhcKhv376qWbOmhgwZot69eyssLEwNGzZ0O97PUwkJCZowYYJiYmLkcDgUGBiohIQEBQYGql+/fjp37pyMMapdu7batGmjNWvWaOLEiZKk3Nxc9ezZU2FhYZfVBwAAAMAXlZyyxjteFUNJSUkFLh87dqzz7wEDBmjAgAFumdjYWMXGxrrkCmp3zpw5BbZ74fXg4OCLDonNmzfPbVmzZs2c04EDAAAA8F5uKS+HLntkCAAAAIBvKuoJFIoaxRAAAAAArxT1BApFjWIIAAAAgFc4TA4AAACAT+IwOQAAAAA+icPkAAAAAPgkU4J+M8gbl/WjqwAAAABQWjEyBAAAAMArTKAAAAAAwCdxzhAAAAAAn8RscgAAAAB8EofJAQAAAPBJpX02OYohAAAAAF7hnCEAAAAAPolzhgAAAAD4JM4ZAgAAAOCTOGcIAAAAgE9iZMjH3G7KWmdT/B3W2cwDZ6yzD2Rcb509aoKss37XBVpnazrKWWcl6Q85/tbZ7N2HrLPH/UOts7dmZ1tn/ds9ap29a/Jk66wk3VTJ/rX2v+9x6+wfZiVaZ1tWOGqdVXC4dfQ2v2DrbG52mn0fJDmC7N/L4X43WGf/HJxinfVr0dM6mzxltnW2YnYZ66wkBbT8h3V2x4Cd1tmqp05ZZ/90p/176NbdVa2zf2ibY52VJEe5m+z7sS3LOms864a1O8x11tmt9rtkSVLVL+1fv2QPPv1v+WO6ddYR1cE6WyfIvr8Z6fb7C0ew/WekJFXNTrXO3hJov606QstbZ4ON/Tq+LdJ+nxXQqrN1VpJu9PvBOlvBg6+QNR+1/+4U8YF99tA5+43krkf+Yp2VpApbt1lnj/vbf8fxu/Nuj/pRGnDOEAAAAACflMthcgAAAAB8UekuhSiGAAAAAHiJc4YAAAAA+CSKIQAAAAA+qbRPre13tTsAAAAAAFcDI0MAAAAAvMJhcgAAAAB8Er8zBAAAAMAnlfZzhiiGAAAAAHiFw+QAAAAA+CRGhgAAAAD4JEaGAAAAAPgkJlAAAAAA4JNyOUwOAAAAgC9iZAgAAACAT2JkCAAAAIBPYmQIAAAAgE8q7SNDfpdz55YtW2rnzp0uy+Lj47V27drL6tTatWsVHx9/WW0AAAAAKFrGy38lxVUfGcrOzlZAwFXvBgAAAAAPlfaRoSKrQhYvXqzZs2crKytLkjRo0CA1atRI0vkRpQ4dOmjNmjWqVq2aRo8erUmTJikxMVFhYWG6++67ne2sXbtWo0ePVt26dbVhwwY5HA5NmjRJNWvWlCQtWLBAc+fOVU5OjoKDgzV8+HDddttt+vHHHzVq1Cjl5uYqOztbTz31lKKjo/Xxxx9r5syZKlOmjHJzc/Xaa6852wIAAABgrySN8njjsouh/v37KygoyHn9119/lSQ1adJE0dHRcjgc+uWXX/T4449r5cqVztzRo0c1Z84cSVJSUpKSkpK0cOFClS1bVn369HF5jN27d2vMmDEaOXKk3nzzTU2bNk0TJ07UDz/8oGXLlumDDz5QmTJl9M033yghIUEfffSRZsyYoa5duyo2NlbGGKWlpUmSxo8fryVLlqhSpUrKzMxUTk7O5a4CAAAAwCcZk3u1u3BZLrsYmjx5ssLDw53X8871OXDggJ577jklJycrICBAx44d09GjRxUaGipJio2Ndd5n7dq1ateuncqVKydJeuihhzRt2jTn7TVq1FDt2rUlSZGRkfrqq68knS+itm/fro4dO0qSjDFKTU2VJEVFRWn69On67bff1LhxY9WtW1eSdO+992rIkCFq1aqVmjdvrmrVql3uKgAAAABQChXZYXLPPvusBg8erNatWys3N1d169ZVRkaG8/brr7/e+bcp5FjDMmXKOP/28/NTdna2834dOnTQ008/7Xafxx9/XC1bttT333+vUaNGqXHjxhowYICmTp2qLVu2aM2aNerSpYuGDx+uZs2aXe7TBQAAAHxObik/TO6yZpO7lLS0NFWtWlWS9MknnygzM/Oi2UaNGmnZsmU6c+aMcnJy9Omnn1o9RsuWLbVo0SIdPnxYkpSTk6OtW7dKkvbu3avq1aurU6dO6tKli7Zs2aLs7GwdOHBAderUUc+ePdW4cWNt27btMp8pAAAA4JuMMV5dSooiGxkaMmSIevfurbCwMDVs2FAVKlS4aLZFixbauHGjYmNjVbFiRUVFRSk5ObnQx2jQoIGeeeYZPfXUU8rJyVFWVpbatm2ru+66S3PmzNHatWsVGBioMmXK6MUXX1Rubq4GDx6stLQ0ORwOVapUSc8999yVfNoAAACAzyjtI0OXVQwlJSW5LZs/f77z7/znBQ0YMOCS9xswYIBLpl+/fpLOn/uTv80Lr7dv317t27d3a++ll14qsM9z584tcDkAAAAAz5SkUR5v8AM/AAAAALzC7wwBAAAA8Ek+/ztDAAAAAHwTh8kBAAAA8Ek+PYECAAAAAN/FyBAAAAAAn1QcEyiMGzdOy5cv16FDh7R48WKFh4e7ZaZMmaK5c+eqYsWKkqT69etr2LBhhbZNMQQAAADAK8UxMtSqVSt16dJFjz766CVzsbGxGjRokEdtUwwBAAAA8EpxnDN0zz33FFnbFEMAAAAAvOLtyFBqaqpSU1PdloeEhCgkJMSrNpcuXarvvvtOoaGh6tevn+rVq1fofSiGAAAAAHjF23OGZs2apalTp7ot79u3r/r16+dxe506dVKvXr0UGBioVatWqXfv3kpMTNSNN954yftRDAEAAADwirc/utq1a1fFxcW5Lfd2VCg0NNT5d+PGjVWpUiXt2rVLDRs2vOT9KIYAAAAAeMXbkaHLORyuIMnJyQoLC5Mkbdu2TYcOHVKNGjUKvR/FEAAAAACvFMdsci+//LK++OILHTt2TE888YQqVKigpUuXqkePHurfv7/uvvtuvfrqq/rpp5/k5+enwMBAjR8/3mW06GIohgAAAACUWC+++KJefPFFt+UzZsxw/j1u3Div2qYYAgAAAOAVb88ZKikohgAAAAB4pTgOkytKFEMAAAAAvFLaiyGHKe3PAAAAAAC84He1OwAAAAAAVwPFEAAAAACfRDEEAAAAwCdRDAEAAADwSRRDAAAAAHwSxRAAAAAAn0QxBAAAAMAnUQwBAAAA8EkUQwAAAAB8EsUQAAAAAJ9EMeSjvv/++6vdBQAAAOCqohjy0okTJ7Rt2zZt27ZNJ06cuGJtDh06VN26ddMHH3zgclu/fv0Kvf+pU6cKXL579263y5AhQ7Rnzx7t3r3bJbtq1Srn32lpaXr++efVunVr9evXT8eOHbvk458+fVo//fST0tPTC+2rp86ePautW7cqNTX1opmTJ09q27Zt2rVrl86dO3fF+4CSJTU19ZLvh5Jqz549Rdb2yZMni6Rdm31camqqTp8+bdXWld53Xq6L7TsLUhT/kVRU+06b/abk2b6ztG53UtFte0W13UlXdtvLy/L6uSpNrx+KiIFH9u3bZ7p06WLuuece065dO9OuXTtzzz33mC5dupi9e/deVtv9+vUz48aNM8uXLzePP/646dOnj8nKyjLGGBMTE+OS3bZtm4mLizMdOnQwu3fvNj169DB16tQxTZs2NT///LNLNiIiwrRo0cLlUrt2bdOiRQvTsmVLl2xsbKzz7xEjRphhw4aZHTt2mFdffdU8/fTTLtl//etf5vjx48YYY3744QfTqFEj065dO3Pvvfeab7/91iXbsGFDM2rUKLe+XcwXX3xh6tWrZ+677z6zceNG07x5c3P//febhg0bmi+//NIle/DgQdO9e3cTERFhatWqZRo2bGjq1KljxowZYzIyMgpsPyUlxfz888/m559/NikpKVZ9KmonT560zq5ateqKP356errZunWrSUtLu+JtnzlzxmzZssWcOnXqopkTJ06Yn3/+2ezcudOcPXu2wMzx48fNkCFDTGRkpImMjDR169Y1kZGRZsiQIc73oo3u3bu7XM/IyDDTpk0zL774ovnqq69cbhs5cqTL9UOHDpm+ffua/v37myNHjpjhw4ebevXqmU6dOpkDBw64Pe8LLy1atDBnz541Z86cccnu3LnT+XdmZqZ57bXXTJcuXcyYMWPcssYY88Ybbzif865du0zr1q1N3bp1TbNmzcyWLVtcsnFxcea9996zWkfr16837dq1M926dTP79+830dHRpm7duqZx48bmxx9/dMmeOnXKvPTSS6ZevXqmVq1aplatWqZZs2Zm9uzZbu1eqX1ndHS027KUlBSTkJBgnnjiCfP++++73Na3b1+X657sO3ft2uV2adq0qdm9e7fZtWuXS/a7775z/p2ammoGDhxoWrVqZfr27WuOHj3qki2qfacn+01j7PedV2q7M6b0b3uebHfGlIxtj9fvf4pqv2lM0b1+KHoUQx565JFHzKJFi0xOTo5zWU5Ojlm4cKF5+OGHPWrrwg/19u3bO//Ozc01w4cPN926dTPnzp1zK4YeffRRs2LFCrNgwQLTvHlzs2jRImOMMV9++aXp2rWrS3bKlCnmySefNAcPHnQua9GiRYF9yv847du3N5mZmRft74MPPuj8u3PnzmbTpk3GGGN++eUXExcX55Jt0aKFeeWVV8y9995rYmNjzZw5cy755b99+/Zm+/btZt26daZhw4bmv//9rzHGmN27d7uti8cee8wsWrTInDx50syePdu8/vrr5tixYyYhIcEMHz7cJcsXsv8pjcVst27dzLRp01wK2OPHj5s33njDdOvWzSVb0Idp3qVp06Yu2SFDhphnnnnGvPvuu+aBBx4wL7/8svO2/P9BYIwxTz75pJk1a5Z54403THR0tHnrrbfM0aNHzezZs81TTz3lks17ThEREW6XWrVquWTzP87EiRPNU089ZZKSksygQYPMiy++6LaO878He/bsab744gtjjDHr1q0zjzzyiEu2SZMmpnfv3qZu3bqmT58+5quvvnLZh+XXoUMH8+WXX5oFCxaYZs2amcTERGOMMatXrzYdO3Z0yfbq1ctMmzbN/PTTT2bs2LHm7bffNps2bTJPPvmkef31112ynuw7C3rP510aN27s1mdP/iPJk31nUf1HUlHtOz3Zbxpjv+/0ZLsz5tre9jzZ7owpGdser9//FNV+05iie/1Q9CiGPHTfffd5dJsnH+pt27Z1u//YsWNNly5d3G7Lv/E3b97c5baCPvR++ukn88gjj5i5c+caY4zbB3me+++/3/kl+8J28hdrxhjTpk0b59/x8fEut11YLOT1NzMz0yxbtsz06NHDREZGmmeeecblC3xBz+HCwu3CfuX/YmHM+R2SMee/aP3tb39zuY0vZAWvt9JSzF5q+8v/fjSm4A/TvOsXfpjmf7+ePXvWPPXUU2bIkCEmNzf3ktvBhe+DC9+LgwcPNgkJCS6jbTb/EREbG2vS09ONMcZkZWWZBx544JLP98LX68I+510/duyYeeedd8wDDzxgGjdubCZMmGD27Nlz0fsWtu1duJ3nbUPnzp1zez082XdGRESYli1bur3vW7RoYe688063+3vyH0me7DuL6j+Simrf6clrZ4z9vtOT7c6Ya3vb82S7y7+spG57vH4Ft5P/us1rd+H9r+Trh6LHOUMeqlChgpYsWSJjjHOZMUafffaZQkJC3PLR0dH65z//qZ49e7pdLjxOtVq1alq/fr3LskGDBikyMlK//vqry/L8j9+4cWOX23Jzc936Ubt2bc2ePVuHDh1S165dlZWVVeDzO3funLN/qampSk5OliSlp6fLz8/17dKoUSONHTtWZ8+eVVRUlBITEyWdP++oQoUKBbYfGBiotm3bavr06Vq+fLkiIiI0atQot5zD4dCePXu0YcMGnTlzRhs3bpQk7d27Vzk5OS7ZgIAA7d+/X5K0detWlSlTRpLk5+engIAAl+zJkyfVvn17l+fi5+enmJgYt/MGPHntJGnfvn164YUX1KZNG7377rsKDQ3VP//5T2VkZLhlT58+rVatWik2NlaS1L59e0lSy5Yt3dru27evatasqTlz5igpKUlJSUkKCwtTUlKSvvzyS5ds/vfFf//7Xw0dOlTh4eEaMGCA2/HW+ft1+vRp1alTR5JUo0YNt/dH+fLllZCQoJUrV+qf//ynVq5cqebNm2vAgAEu55nlcTgcioiIUIMGDVSuXDnVr19fklSzZk237KlTp9S+fXuVL19enTt31sqVK3XzzTdr1KhRbm0HBQVpw4YNbm38+OOPztc9T2hoqFatWqXt27c7L9u2bdP27dtVsWJFl2z+91TZsmU1ZcoUnT17Vs8//7zb9uRwOJx/165d+6K3SdKYMWPUunVrPf744/rmm28KzOQxxujcuXM6e/as/P39Va5cOUnn398Xvo8l6a677tKcOXMkSXfccYd+/PFHSefPEQwMDCywXzfffLO6deumJUuWaOrUqTp16pQ6derkti5SUlK0f/9+nTx5Uvv27ZMkpaSkKDMz063dvPfroUOHnOsqKCjIrc+e7DurVKmiuXPnOt/v+S8333yz27rI3y+Hw6Fhw4YpPDxcPXv2dNv+PNl39u3bVwMGDNBzzz2nDz/80GVdFtSHvPMwHQ6Hy2tQXPtOT/abkv2+05PtTrq2tz1Ptrv8j3k1tz1ev/8pqv1m3rooitcPRY817qGxY8dq2LBhGjlypMLCwiRJycnJqlWrlsaOHeuWz/tQz8vm16xZM5fr48ePL3BjHzBggB588EG3dtPT0xUcHKyXX37Zufzw4cO67rrrCux7mTJlNHDgQG3cuFHr1q0rMJOUlFTgcn9/f02ePNllWUJCgsaPH6+mTZuqQoUKevfdd/XCCy8oKipKo0ePdsnm/wKSp2LFiurVq5d69erldlv//v3197//XX5+fpo0aZJef/11HT16VIcPH9bw4cPdsg8//LBCQ0N19OhRTZo0SZJ07Ngx55fwPHlfyB544AHnujbGaPHixRf9Qmbz2kkFfyEbN27cFflC9vPPP+u5555TTEyM/v73vxf6hcwYY/2F7Omnn3Z+IWvXrp3VF7K2bdvqyJEjmj9/vkaNGqXPP//cJZf3pSw1NdX5pSwyMvKSxWz16tULLWZHjBihF154QUFBQapSpYqk8x8kGRkZGjdunEs2KipKu3btUlRUlNvzyCv88txyyy3avn27atWqJen8+33ixIkaNGiQdu3a5ZItW7asc9ubPn26c/nJkyfl7+/v9lgtWrRQZGSkRo0apWXLlhX4pVSSduzYoXr16jlfu+TkZIWFhSkjI6PA/+B46aWXNHjwYM2cOVNhYWHq0qWLKlWqpOuuu85q+4uMjFRkZKRefPFFl+Vdu3bV3/72NzkcDo0YMUKDBg1S+fLl9fPPP6t79+5u2fbt26t27draunWrEhISJJ3f9ipXruySvXDfaYxRcnKy7rjjDrd9Z5s2bXTo0KECt72//e1vbsvy/iOpQYMGzmWDBg3SpEmT9Pbbb7tkPd135v1H0uTJkwv9j6QePXo4r+e9fgX9R1JR7TsL2m8eOXJEycnJbvvNvLzNvvNS29348ePd2i2J215iYuIV2fYu3O46d+6sypUrF7jdSSVj2+P1+x9PXj9PXjup6F4/FIPiHIa6lhw/ftxs3brVbN269ZIn140dO9Z5iNCFRo0adcX7dfr0aXPs2LEr3m5hj7lt2zazdevWi05GkP8wE29kZ2ebLVu2uJ33kufUqVNm8+bNhZ78v3fvXtOlSxfToEEDEx0dbaKjo02DBg1M586d3Ya9PX3tevToYdatW+e2/NVXXzUREREuy3r37l1gX3///feLnnuWkZFhJkyYYLp06WL++te/FpjJO3Qu75Ciw4cPG2OMSUtLczt+OyMjw4waNcrcc889pnXr1iYiIsLceeedzpM/8yvo8I9LSUpKMg0aNDBRUVHm+++/N48//rh54IEHzJ///Gfz2WefuWS/+uorExUVZaKjo515Y4w5evSoGTp0aIHtb9682SxfvtwsX77cbN682eTm5nrUvwvt3bvXHDp0yG15bm6u+frrr92WFeT48eNmx44dl3ycxMREt0P/CnPq1CmzYcOGi97+66+/mhUrVpjly5cXeAK3Mcbt5N3CnDhxwrktp6Wlmc8//9xs3bq1wOzu3bvNsmXLrM+5s913XuhSh2WeOHHCbXKOvPyF59VdrG2bfeeGDRvMW2+9ZdHb/7V79uxZt+0pT/5958XWRUH7TtvJVrKzs82mTZsuut80xn3feam28293M2bM8Gi7u9ikL3v37nV7jqtWrbLe9latWmVSUlKstr2CDje9VH9TU1Mvuu3l3+7+/e9/X7Sdgra9S02Ac+G2l5iYaL3tFTaxTv7Xb8uWLZe93zSm4NfPGM/2nTav37Jly8yIESM86pvt63ex9evpftOYot13ouhQDMEnefuF7FJOnDhx0S8SNl/IjDn/5aiw/mzYsMG8/fbbHvXtzJkzbrP15H/M0lLMpqSkmKFDh5onnnjCzJkzx+W2CyepyJ8tbEILTya/yJ+16YMn7dr298J8Yf04fvx4kfTDk6wnk4ZcKrtt2za3deFJ/kplL9bnhx56yLrd/Nm6det6vC4upw+erIsLz5ncuXPnRSdxKSh/qUlfiit7qT4XVbslZV1cbGKdfv36FbhP9mQiHk/a9rbdtLQ0M3DgQNOyZUvrbHH3t6B+PP/881ekzyh6DmMKGAcEfNCDDz6oxYsXX/FsUbZd2rKX23b//v1VtWpVRUZG6sMPP1S5cuX02muvKSAgQLGxsVq4cOEVz8bFxWnBggUlqg9Xqx+Xk33sscf0xBNPKC0tTa+//roGDBig9u3bKykpSbNnz9bMmTO9yhZl29dy1pN8rVq13A7dyTsUyeFwuJ276Em+OLNHjhxRxYoVi60PJWVd5N9/jBw5Urm5ufrHP/6hpUuXat++fXrttddc2vEkX9KyI0aMkDGm2PtQ1G2jiF3lYgwoVhebHW7nzp1us9t4OpucJ/mSnC3J68KTWcOu5WxJ6UdRzeLm6WyZRdX2tZz1JO/JrHqe5q/lbEnphyczHXqaJ1s8baNoMYECfEp0dLSqVKlS4ImRF87i5km2KNsubdmibNuTSSqu5WxJ6UdRTRriSbYo276Ws57kPZnExdP8tZwtKf3wZGIdT/Nki6dtFC2KIfgUT2aI83Q2uaJqu7Rli7LtS80aln92oms9W1L64UnWk1ncPJ3xrajavpaznuZtZ9XzJn8tZ0tCP/J+MiOv+L3UTIee5skWT9soYkU36ASUPJ7MEOfpbHJF1XZpyxZl255MUnEtZ0tKP67UpCG2M2B6OltmUbV9LWdt8p5O4uJJ/lrOlqR+GHN+Yp2LzXR4uXmyxdM2rgwmUAAAAADgkxiLAwAAAOCTKIYAAAAA+CSKIQAAAAA+iWIIAAAAgE+iGAIAAADgk/4/CQQR68y+BwUAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAy4AAAEwCAYAAABR8CVpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xd8FNX+//F3EhIMSQCRXqVdQbigokZUQAIoKEUCoQdRUGlXpSggqFFE4Fq4CiKgUoxIE1DhigUpgkhMKOKlKT2AdCIkgdTz+8Mf+zVkQ84iIRP29eSxjweZvPfsmZndnf3knJn1McYYAQAAAICD+eZ3BwAAAAAgNxQuAAAAAByPwgUAAACA41G4AAAAAHA8ChcAAAAAjkfhAgAAAMDxCuV3B/LDuQ8GW2fT47ZZZz//oqR1tsO4StZZSUpbHWedPbgqwDp7478q2nciJdU6Gj0xzTrbtdUx+z5I8qtUyjr75of27Q6OSLTOmmT7bfHmf0tYZ4e94tnzIn3TVuvsF/OLWWfbD7J/Dp1etM86uzS+vHW25yfNrbNps+dYZyXpla/t98nLj3nw953MTOtoj+n2z7epNc9YZz/91bPnUJfb4q2zgeENrbMpX8VYZw/GBFlnqw0sZ53N/P2EdVaSfEKK2GdvuN46m775V+vszi/tt0XtHj72fdh32jorSaNiSltnXx9VwTp7ftlG6+y8n+yPT907/GGd9S1lv+8WTLZ/TUtSp2fs3zvTfz1onX3gS/tj6ooJTa2zmdu2W2cTVx+2zkpS0Sfus+/H/+w/ay3/0N86e/8bVa2z6XFbrLOzFtofTyVpYPzHHuXzS9qJPR7fx79ktTzoSc68snABAAAA8BeZGfndg1xRuAAAAADezng2wpgfKFwAAAAAb+fBdOf8QuECAAAAeDlTAEZcuKoYAAAAAMdjxAUAAADwdkwVAwAAAOB4BWCqGIULAAAA4O24HDIAAAAAx2PEBQAAAIDj5cE5LosWLdLixYslSSkpKdq+fbt++OEHFS1aVJL06quvauPGjQoKCpIkTZ48WSEhITm2R+ECAAAAeLm8uBxyeHi4wsPDJUkvv/yyOnTo4CpaJGnr1q364IMPVKJECav2uBwyAAAA4O0yMz2/Wfrll1+0a9cude7c+S8Pl6n9+/frxRdfVJcuXfTpp5/m2g4jLgAAAIC3y8NzXKZOnaoBAwZkWZacnKwePXro0UcfVUZGhnr27Km6deuqVq1aObbDiAsAAADg7TIzPL9ZOHPmjPbs2aO77rory/LAwED17NlTgYGBCg4O1l133aUdO3Zcsi0KFwAAAMDbmUzPbxZiY2N19913Z1u+b98+devWTRkZGUpLS9PGjRtVp06dS7bFVDEAAADA2+XBVcUkae/evapYsaLr5xkzZqhy5cpq1qyZ2rRpo06dOsnf31/t2rVTzZo1L9kWhQsAAADg7fLoHJc+ffpk+fnRRx91/f/xxx/X448/bt0WhQsAAADg7fJoxOVKyrPC5eDBg2rbtm2WuWqhoaHavXu3JkyYkFcPCwAAAMBDxtidbJ+f8nTEpUaNGoqOjnb9HBMTo927d+flQwIAAADwVB5eDvlKyberin388cfq2bOnunXrpieffFKpqakaOHCgfvrpJ0nSli1b1K9fP6WlpenZZ59Vly5dFBERoS+//FKSFBkZ6SqC5syZo4kTJ+rgwYNq06aNIiMj9f777+fXqgEAAAAFSx5+AeWVkqcjLrt27VJkZKTr54iICEl/flNmQkKCZs6cKV9fX/Xu3Vu//PKLIiIitHjxYt15551avHixOnXqpHnz5un666/X66+/rsTERIWHh2e7DvRfHT9+XAsXLlRAQEBerhoAAACAq+iqTxWTJF9fX/n7+2vw4MEqUqSIjhw5ovT0dDVq1Eivv/66EhISFBcXp1GjRunVV191Xfs5ODhY1atXV3x8fJbHMca4/l+xYkWKFgAAAMATTBVzb8eOHVq+fLn+85//6IUXXlBmZqaMMfL19VXLli0VFRWl5s2by8/PT9WrV1dcXJwkKTExUb/++qurODl+/Lgkadu2bf+3Qr58pyYAAADgkcwMz29XWb5cDrlKlSoKDAxUeHi4AgICVKpUKR07dkyS1KFDBzVv3lxff/21JKlTp0564YUX1LVrV6WkpGjgwIG64YYb1LNnT73yyisqV66cSpcunR+rAQAAAFwbCsCIS54VLhUrVtT8+fOzLAsNDVVoaKgk6aOPPnJ7v3Llymnr1q2unwMCAjR+/PhsuSZNmqhJkybZll/8mAAAAABy4c3f4wIAAACggPDmERcAAAAABQQjLgAAAAAcj8IFAAAAgNMZc/WvEuYpChcAAADA2zHiAgAAAMDxODkfAAAAgOMx4gIAAADA8RhxAQAAAOB4jLgAAAAAcDxGXAAAAAA4HiMuAAAAAByvABQuvvndAQAAAADIDSMuAAAAgLfjHBcAAAAAjlcApopRuAAAAADejhEXAAAAAI7HiAsAAAAAx2PExaGCQqyjvuVvsM4Ge1CpZh6It85Kkm/potbZ9IxU66xJTLLvRIp9u4VNgHW2UN1q9n2QZP44a51N8MmwzvoUDbbOnv/loHX2nE9x66xKlrXPSvIt87t1trrst5tPjbrWWf8iu62zwR68J2au+tY6m7LnvH3DHvKtdqN11hw75kHLidZJ/xI+1tlaqfavU0lKPW3fdqAH7WYme/B+mGnfB5/6d1hnzb4vrLOSlHnmhHXWv3wZDxo21tEy5c5YZ33L2L93Zu44aZ2VpDLGg48HIcWsoybdfltUT02zzp77xX67hQxrZZ2V1nmQlTL2H7HOnoq13xYZnnygLHydddST97f0r4/a90Hy6K/3PjfYHyfrljxg34dSd1tH/Srar19QZt4dc/IVIy4AAAAAHI/CBQAAAIDjGftRwPxC4QIAAAB4O0ZcAAAAADgehQsAAAAAx+OqYgAAAAAcjxEXAAAAAI7HyfkAAAAAHI8RFwAAAACOR+ECAAAAwPEKwMn5vvndAQAAAADIDSMuAAAAgJczmZycDwAAAMDpOMcFAAAAgOMVgHNcKFwAAAAAb8dUMQAAAACOx1QxAAAAAI5H4QIAAADA8QxTxQAAAAA4HSMu2U2bNk3r1q2Tr6+vfHx8NGjQINWtW/eKtJ2QkKA1a9aoTZs2V6Q9AAAAwCtwcn5Wu3bt0ooVKzRnzhz5+Pho+/btGjZsmL744osr0v7OnTu1YsUKChcAAADAEwXgcsi+V/PBSpQoocOHD+vTTz/V0aNHVbt2bY0ePVpPPvmkJGnp0qVq27atJCkuLk4vvPCCzp49q6eeekqRkZGKjIzUzp07JUnLli1T586d1bVrV73xxhuSpClTpmj9+vWaN2/e1VwtAAAAoGDLNJ7frrKrXri899572rhxozp37qyWLVvqyJEjOnz4sFJSUrRmzRr5+PjoxIkTWrFihVq0aKEpU6borrvuUnR0tEaPHq2oqCglJCRo4sSJmjlzpubMmaOjR4/qhx9+UN++fXXXXXepc+fOV3O1AAAAgALNZGZ6fLvarupUsf379ys4OFhjx46VJP3yyy964okndN999ykmJka///672rRpo3Xr1ikuLk6DBg1SdHS01q9fr2XLlkmSzpw5owMHDujUqVN64oknJElJSUmKj49X1apVr+bqAAAAANcGznHJaufOnZozZ46mTJmiwoULq2rVqgoJCVH79u01ceJE1apVS/fee69eeuklValSRf7+/qpWrZratm2rNm3a6OTJk1qwYIEqVqyocuXKafr06fL399eiRYtUu3ZtJSYmKrMAXBEBAAAAcJQCcI7LVS1c7r//fu3evVsREREqUqSIjDF67rnndMcdd2jv3r3q06ePatWqpUOHDqlPnz6SpL59+2rkyJGaP3++EhMTNXDgQJUoUUK9evVSZGSkMjIyVKFCBbVq1UpnzpzRr7/+qpkzZ6pXr15Xc9UAAACAgosRl+z69eunfv36ZVu+du1at/+//vrrNXny5Gz5du3aqV27dlmWBQYGuqaUAQAAALBUAGYtXdWT8wEAAAB4j6lTp6pz584KDw/XggULsvxuxYoV6tChgzp37qz58+fn2tZVH3EBAAAA4DB5MFUsJiZGmzZt0pw5c3Tu3DlNnz7d9bu0tDSNHTtWn376qQIDA9W1a1c1bdpUpUqVyrE9RlwAAAAAb2cyPb/lYu3atfrHP/6hAQMGqG/fvrrvvvtcv9u9e7cqV66sYsWKKSAgQA0aNFBcXNwl22PEBQAAAPB2eTDicvr0aR0+fFhTpkzRwYMH1a9fP3311Vfy8fFRYmKiQkJCXNmgoCAlJiZesj0KFwAAAMDL5cUXShYvXlzVqlVTQECAqlWrpsKFC+vUqVO64YYbFBwcrKSkJFc2KSkpSyHjDlPFAAAAAG+XaTy/5aJBgwZas2aNjDE6evSozp07p+LFi0uSqlevrv379yshIUGpqamKi4vTrbfeesn2GHEBAAAAvF0eTBVr2rSpYmNj1bFjRxlj9OKLL+rLL79UcnKyOnfurOHDh6t3794yxqhDhw4qU6bMJdujcAEAAAC8ncXJ9pfjueeey/F3YWFhCgsLs26LwgUAAADwdnkw4nKlUbgAAAAAXs5QuAAAAABwPAoXAAAAAI6XB5dDvtIoXAAAAABvx4gLAAAAAMejcAEAAADgdMZQuAAAAABwOkZcAAAAADheAShcfExBGBe6wmIrtLfObvYJss7O8zlunX05LcQ6K0nbCl1nnV1b6Jx1dri/fTYl1b7OHZCeaJ2N9C1vnZWkYhn2T9nhKb9YZ8cV/qd1NsXHxzo7Pu1X6+xnJW6wzkpS3Bn7/GSfw9bZl9JLW2e/CLTfH+tT7PuwtKafdXbR3orWWUl6J2WndXaiTzXr7Ak/+9fIY6fXWmdHlb7XOvtZWrx1VpIe9q9knW3n94d1dmVacfus7xnr7OshKdbZb/8oZZ2VJD8Pjoahhey3xdbUotbZuR602yOtmHX2eCH79yxJGpf0s3X26xvsn0MzPejzylT794tefvZ9CAs8ZZ3tmZhknZWkVzPKWWeXB9rvk7cOf2+d3XXzzdbZzUfsXyMx9h9DJEn9Sx21zq48bL/dZvuetM6+XybVOvvTobLW2bd9j1hnJWnNoe88yueXPx5t7vF9is1Yngc9yZnvVX00AAAAALgMTBUDAAAAvF0BmCpG4QIAAAB4O+d//ySFCwAAAODtDCMuAAAAAByPwgUAAACA4zFVDAAAAIDTMVUMAAAAgPMx4gIAAADA6RhxAQAAAOB8jLgAAAAAcDpD4QIAAADA8ShcAAAAADgdIy4AAAAAnI/CBQAAAIDTMeICAAAAwPEoXAAAAAA4XkEoXHzzuwMAAAAAkBtGXAAAAABvZ3zyuwe5yrfC5eDBg2rbtq3q1KnjWhYaGqqBAwde8n7bt2/Xd999p4EDB+rbb79VvXr1VKZMmbzuLgAAAHDNKghTxfJ1xKVGjRqKjo726D61a9dW7dq1JUkfffSRoqKiKFwAAACAv8FkOn/ExVHnuMTExCgiIkLdunXTZ599prCwMKWkpEiS3njjDS1atEgxMTEaNGiQVq1ape3bt2vYsGGaN2+exo8fL0nKyMhQmzZtlJqamp+rAgAAABQYJtPz29WWryMuu3btUmRkpOvniIgIpaSkaMGCBZKkd955J8f73nfffapdu7ZrxCU8PFxDhw7VmjVrFBoaqoCAgDzvPwAAAHAtMJzjcmkXTxWLiYlR1apV3WaNMTm2ExwcrDvuuENr167VokWL1L9//yveVwAAAOBaVRDOcXHUVDFJ8vX9vy4FBATo2LFjMsZox44d2bI+Pj6ugqZTp05asGCBTp48qVq1al21/gIAAAAFncn08fh2tTmucPmrPn366IknntDjjz+uokWLZvv9rbfequeee04JCQmqX7++9u/frzZt2uRDTwEAAICCyxjPb1dbvk0Vq1ixoubPn59lWWhoqEJDQ10/d+zYUR07dsx23wuZQYMGadCgQZKkzMxMFSlSRK1bt87DXgMAAADXHq4qdpXEx8erffv2ateunYKDg/O7OwAAAECBUhCmiuXryflXSqVKlfT555/ndzcAAACAAik/pn556pooXAAAAABcvoIwVYzCBQAAAPByfI8LAAAAAMcrCN/jQuECAAAAeLlMRlwAAAAAOF1BmCp2TVwOGQAAAMC1jREXAAAAwMtxVTEAAAAAjsf3uAAAAABwPEZcAAAAADgeVxUDAAAA4HgF4apiFC4AAACAl+McFwAAAACOx1QxAAAAAI7HVDEAAAAAjsdUMYfqb05aZ6/TGetsuG856+yjGTuss5IUpMLW2VsL2fejXcIx6+z5jBTrbP+Q+tbZ1Uq0zkrS1rSj1tnPg2+0zg5I/906m2EyrbMzClW0zrY7FW+dlaSQQknW2adNZevsWH/7bXynSlpn38gsa51t8Ms262z1In7WWUl637eKdXZ8gP3z82j6WevsiRH3WmeHTk+zzo7ItH++SdLEDPv3gE9Tkq2zpfzTrbN1fYpbZ3sn2PfhVPpu66wknc+w387BGddZZ6v42/ehim+QdfbfPvbvFzV8S9h3QtKKsuWts90S7N+H6gUUsc6+mmF/LHvTz/64/vk566ieM569nob57LPOVs683jp7ZlIn6+wDL2+xzgb6n7LO3mDsn/OS1GK//eenYL9U62yHQvbv3+0O7rXOFvGz/wzwbIb9sawgycupYidPnlR4eLimT5+u6tWru5bPmDFDn376qUqU+PM96uWXX1a1atVybMcrCxcAAAAA/yevpoqlpaXpxRdf1HXXZS9+t27dqvHjx6tu3bpWbfle6c4BAAAAKFgyjY/HNxvjx49Xly5dVLp06Wy/27p1q6ZNm6auXbtq6tSpubZF4QIAAAB4OXMZt9wsWrRIJUqUUKNGjdz+/qGHHlJUVJRmzZqlDRs2aOXKlZdsj8IFAAAA8HJ5MeKycOFCrVu3TpGRkdq+fbuGDRum48ePS5KMMXrkkUdUokQJBQQEqEmTJtq27dLnt3KOCwAAAODl8uIcl9mzZ7v+HxkZqaioKJUqVUqSlJiYqNatW+vLL79UkSJFFBMTow4dOlyyPQoXAAAAwMvZXy/171myZImSk5PVuXNnDRo0SD179lRAQIAaNmyoJk2aXPK+FC4AAAAA8lR0dLQkZbkc8sMPP6yHH37Yug0KFwAAAMDLGeXd97hcKRQuAAAAgJfLtLlMWD6jcAEAAAC8XCYjLgAAAACcjqliAAAAABzval1V7O+gcAEAAAC8HCMuAAAAAByPERcAAAAAjkfhAgAAAMDxmCoGAAAAwPEynV+3ULgAAAAA3o7vcQEAAADgeCa/O2DBqnCJj4/Xv//9byUkJCgtLU21atXS0KFDdfr0aQ0cOFC1atVS9+7dNWLECIWFhWnIkCGu+545c0aPP/64goKCVLp0aT344INq3Lhxnq0QAAAAAM8UhJPzfXMLnD9/Xv3791efPn0UHR2tuXPnqn79+hoyZIg2btyohg0bavz48Vq7dq26dOmSpWiRpF9//VWlS5fW9OnT82wlAAAAAFy+TB8fj29XW64jLqtWrdIdd9yh+vXru5a1b99ekyZN0siRI1WyZEkFBwdr0aJF8vf3V9myZdWiRQtJUmpqqkaPHq1jx47pnXfecd0/MTFRI0eO1NmzZ3X69GlFRESoZcuW6t69u7788kv5+Pjo5Zdf1t13360KFSpo9OjR8vPzU+HChTV69GhlZmZq8ODBmj9/viSpU6dOeuutt7R48WJt2rRJycnJGjNmjKpXr36ltxcAAABwzbkmporFx8ercuXK2ZbXr19f9957r/bs2aOBAwfKGKOSJUu6ihZJCggI0PPPP6+5c+fqqaee0vDhwyVJ+/fv10MPPaT7779fR48eVWRkpLp166abbrpJcXFxql+/vn766SeNHDlSnTp10pgxY1S7dm0tX75c48aN03PPPZdjf6tVq6ZRo0ZdzrYAAAAAvFJBmCqWa+FSpkwZbdmyJdvyffv26e677862fP/+/a7CoW3btm6LnpIlS2rWrFn65ptvFBwcrPT0dEl/jpwsXrxYx48fV1hYmAoVKqRjx46pdu3akqQ77rhDb775Zrb2jPm/GrFq1aq5rRIAAACAAibXc1yaNWumdevWZSleFixYoBIlSsjXN/vdq1SpoujoaEVHRysiIsJtm9OnT9ctt9yiN954Qy1btnQVHg0bNtT27du1cOFCdezYUZJUunRp7dixQ5IUGxurG2+8UYULF9bJkyeVkZGhM2fO6ODBg/+3Qm76BAAAACBnmT6e3662XEdcgoKCNGXKFL322mtKSEhQRkaGbrrpJr311ltavnz5ZT1o06ZNFRUVpSVLlqh48eLy8/NTamqqAgIC9MADD2jdunWqUqWKJOnVV1/V6NGjZYyRn5+fXnvtNZUqVUr33HOPOnbsqMqVK7uyAAAAADx3zXyPS+XKlTVlypRsy8PDw13//9e//uX2vqGhoQoNDZUkjRs3zrX8q6++cpvv27ev+vbt6/r55ptv1uzZs7PlXnnllWzLcuoDAAAAgJxdEyfnAwAAALi25cfUL09RuAAAAABe7pq4qhgAAACAaxtTxQAAAAA4HlPFAAAAADgeU8UAAAAAOB6FCwAAAADHM0wVAwAAAOB0jLgAAAAAcDwKFwAAAACOx+WQAQAAADgel0MGAAAA4HhMFQMAAADgeBQuAAAAAByvIJzj4pvfHQAAAACA3DDiAgAAAHg5Ts4HAAAA4Hic4+JQdQNKWWcfTLnOOtuy3UnrbB+V0rgvr7fO10izn9UX3vSIdbb3ivLW2fI+gdbZpwYEWGe/e9O+XUkqbKpYZ/8xsIh19sn/FLXOlsxIt87+80nrqBp+VNk+LOnudPttF/60/T5ZMLGwdXZozcPW2aCI26yzt76abJ2VpK7p9q+nBkPtX9e1JvlbZzv52PfBt2Z16+ygwBjrrAKlSkPrWsfLjEy1zs6+zn79+vva77+yNX+3zrb6xX4W9mA/+20sSTV13jo7rbB9P3qft3//vrWL/Xb7fL79+8VthU5bZyWp/CP2x4aUCTuts6Mr2h8ni95v34dDU2+wzq4o5ME2DjinKT38rPM/zbbfJxFp9s83n2LFrbN+PvZ/Nq/lV8w6K0l9ZL/tBvrbH1PflH22Wt146+yqLfbtDkm13xb3PGN/XChICsI5Ll5ZuDiBJ0ULgEvzpGi51nlStAC4NE+KlmudJ0ULCqbMAlC6ULgAAAAAXo6pYgAAAAAcz/njLRQuAAAAgNdjxAUAAACA43E5ZAAAAACOx8n5AAAAABzP+WULhQsAAADg9TjHBQAAAIDjMVUMAAAAgOM5v2yhcAEAAAC8HlPFAAAAADgeU8UAAAAAOJ7zyxbJN787AAAAAAC5YcQFAAAA8HKc4wIAAADA8UwBmCxG4QIAAAB4ubwYccnIyNCoUaO0d+9e+fn5aezYsapcubLr9ytWrNC7776rQoUKqUOHDurUqdMl2+McFwAAAMDLZcp4fMvNypUrJUlz587VU089pbFjx7p+l5aWprFjx2r69OmKjo7WvHnzdPz48Uu2R+ECAAAAeDlzGbfcNG/eXKNHj5YkHT58WCVLlnT9bvfu3apcubKKFSumgIAANWjQQHFxcZdsj6liAAAAgJfLq+9xKVSokIYNG6Zvv/1W77zzjmt5YmKiQkJCXD8HBQUpMTHxkm1Zj7jExMTopptu0pdffplleZs2bTR8+HDbZiRJYWFhSklJ0bRp07RlyxaP7gsAAADgysq8jJut8ePH6+uvv9YLL7yg5ORkSVJwcLCSkpJcmaSkpCyFjDseTRWrVq2ali5d6vp5586dOnfunCdNZPHEE0+oXr16l31/AAAAAH+fuYx/ufnss880depUSVJgYKB8fHzk5+cnSapevbr279+vhIQEpaamKi4uTrfeeusl2/NoqlitWrW0b98+nTlzRkWLFtUXX3yhNm3a6Pfff9eyZcs0c+ZM+fr6qkGDBho6dKiOHDmiqKgopaSkKCEhQQMGDFDz5s1d7Q0fPlwPPvigTpw4odWrV+v8+fM6cOCAHn/8cYWHh2vnzp169dVXJUnFixfXa6+9prS0ND3zzDMyxigtLU0vv/yybrzxRj399NNKTEzU+fPn9eyzzyo0NNSTVQMAAAC8Vl5cVez+++/XiBEj1L17d6Wnp+v555/XN998o+TkZHXu3FnDhw9X7969ZYxRhw4dVKZMmUu25/E5Li1atNC3336r8PBwbdmyRY8//ri2b9+uiRMnauHChQoMDNSzzz6rH374QT4+Pnr00UcVGhqqjRs3auLEiVkKl79KTEzUhx9+qH379qlv374KDw/XCy+8oNdee001atTQggUL9MEHH+jWW29VSEiI3nzzTe3atUuJiYk6cOCATpw4oZkzZ+rkyZPat2+fp6sFAAAAeK28+B6XIkWK6O23387x92FhYQoLC7Nuz+PCpU2bNoqKilKlSpV0++23S/rzGs2nTp3SE088IenPOWrx8fFq0KCB3nvvPX366afy8fFRenp6ju3WqlVLklSuXDmlpqZK+vNqAy+//LKkPy+ZVrVqVTVu3Fj79u1T//79VahQIfXr1081a9ZU9+7dNXjwYKWnpysyMtLT1QIAAAC8Vl6MuFxpHhculSpVUnJysqKjozV48GDFx8fLx8dH5cqV0/Tp0+Xv769Fixapdu3aevvttxUREaEmTZpo4cKFWrx4cY7t+vj4ZFtWtWpVjR8/XuXLl9eGDRt0/PhxxcTEqHTp0po+fbo2bdqkt956S6NGjVJSUpKmTZumY8eOqUuXLmratKmnqwYAAAB4pUyTN1cVu5Iu63LIDz74oD7//HNVrVpV8fHxKlGihB566CFFRkYqIyNDFSpUUKtWrdSyZUuNGTNGU6dOVbly5XT69GmPHicqKkrDhg1TRkaGJGnMmDEqXry4Bg0apFmzZsnX11cDBgzQjTfeqHfffVefffaZ/P399dRTT13OagEAAABeyflliweFS2hoqOuE98jISNd0rMaNG6tx48aSpHbt2mW5T+ugnFDPAAAdBklEQVTWrdW6detsba1YsUKSNG7cuGy/K1y4sOv3devWVXR0dLbMzJkzsy3763WhAQAAANjLq+9xuZL4AkoAAADAy+XFyflXGoULAAAA4OUKwsn5Hn0BJQAAAADkB0ZcAAAAAC/HOS4AAAAAHI9zXAAAAAA4XkE4x4XCBQAAAPBy5lr9AkoAAAAA1w7OcQEAAADgeEwVAwAAAOB4nJwPAAAAwPGYKgYAAADA8Tg5HwAAAIDjcY4LAAAAAMfjHBcAAAAAjsc5LgAAAAAcj3NcAAAAADgeIy4OVcNcZ5095edjnU2NT7bOPpRSxDorScdNYeusb6C/dba6T5B1tkqGn3U2fdch6+xJv1LWWUkqm55unfV7sLt1tu4771hnS5Sz39d+D/SyzlaZ9aV1VpLCih+3Dwf/wzpazTfYOpuZftY661PY/nn8D98Q62yD4FPWWUnybfqEdfboxI+ss6XTA6yzhcK6WWd3DvrVOlvxjz+ss5JUs479c6jsrorW2SotM6yzPkEl7PuwPc06a+y74LHaJtA6+z/7t2RV/M5+/x314Ahe8sZE+7Akn9AO1tl6he37nJLowftFsP1xsmL6GetsSX/716lPqWLWWUkKNvbbudot9u9bhZpFWmev942zzhb34GNg9e72n50k6abZ9vlD5+1fJHU7322dLf6/7dbZk372n3F86/zTOluQcI4LAAAAAMfLLABTxXzzuwMAAAAAkBtGXAAAAAAv5/zxFgoXAAAAwOtxcj4AAAAAx6NwAQAAAOB4fI8LAAAAAMdjxAUAAACA4/E9LgAAAAAcj6liAAAAAByPqWIAAAAAHI8RFwAAAACOx4gLAAAAAMfj5HwAAAAAjpfJVDEAAAAATseICwAAAADHY8QFAAAAgOMx4gIAAADA8QrCiItvfncAAAAAAHLjceESExOjQYMGZVn2xhtvaNGiRR4/+D333OPxfQAAAABcWeYy/l1tTBUDAAAAvFxBmCp2xQqXjIwMjRw5UkeOHNHp06fVuHFjPfPMMxo+fLgSEhKUkJCg9957T6+//rp27dqlSpUqKTU1VZI0fPhwBQQE6NChQzp27JjGjRunOnXqaNmyZZo5c6Z8fX3VoEEDDR06VBs2bND48eNVqFAhFS1aVG+88YaOHz+uESNGqFChQvLz89O///1vlSlT5kqtGgAAAHBNu2ZPzl+/fr0iIyNdP8fHx+upp57SLbfcooiICKWkpLgKF0m666671KtXL61cuVIpKSmaP3++Dh8+rK+//trVRvny5fXKK69o/vz5mjdvngYPHqyJEydq4cKFCgwM1LPPPqsffvhBa9euVYsWLdS7d2+tWLFCZ86c0bp161SnTh0NHz5ccXFx+uOPPyhcAAAAAEvGZOZ3F3J1WYXLXXfdpQkTJrh+fuONN5SYmKhdu3Zp/fr1Cg4Odo2mSFLVqlUlSb/99pvq1asn6c9CpVy5cq5M7dq1JUlly5bVxo0bdeDAAZ06dUpPPPGEJCkpKUnx8fHq27evpkyZokceeURlypRRvXr11LFjR73//vvq06ePQkJCsp2DAwAAACBnmQVgxOWKXlUsJCREb775ph577DGdP39e5v/PlfPx8ZEkVatWTZs3b5YkHT16VEePHnXd90LmgooVK6pcuXKaPn26oqOj1aNHD9WvX19LlixR+/btFR0drZo1a2r+/Pn67rvv1KBBA82aNUstW7bUBx98cCVXCwAAALimGWM8vl1tV+wcFz8/P33//ffasGGDAgMDVaVKFR07dixLpnnz5tqwYYMiIiJUvnx5XX/99Tm2V6JECfXq1UuRkZHKyMhQhQoV1KpVK6Wmpmr48OEqUqSI/P399corr8gYo2effVYTJ06Ur6+vRowYcaVWCwAAALjmFYQRF48Ll9DQUIWGhmZZNnToUElS9+7ds+XHjRuX5edhw4ZdMtO4cWM1btxYktSuXTu1a9cuS7Z+/fpuL708b948yzUAAAAA8Ff5MYLiKS6HDAAAAHg5r7ocMgAAAICC6Zq9HDIAAACAawdTxQAAAAA43jV5cj4AAACAawsjLgAAAAAcryCcnH9Fv4ASAAAAQMGTl19A+fPPPysyMjLb8hkzZuihhx5SZGSkIiMjtWfPnku2w4gLAAAA4OXy6hyX999/X1988YUCAwOz/W7r1q0aP3686tata9UWIy4AAACAl8urEZfKlStr4sSJbn+3detWTZs2TV27dtXUqVNzbYvCBQAAAECeeOCBB1SokPtJXg899JCioqI0a9YsbdiwQStXrrxkWxQuAAAAgJfLNMbj299hjNEjjzyiEiVKKCAgQE2aNNG2bdsueR8KFwAAAMDLmcv493ckJiaqdevWSkpKkjFGMTExuZ7rwsn5AAAAgJe7WpdDXrJkiZKTk9W5c2cNGjRIPXv2VEBAgBo2bKgmTZpc8r4ULgAAAICXy8svoKxYsaLmz58vSWrTpo1r+cMPP6yHH37Yuh0KFwAAAMDL/d2pX1cDhQsAAADg5fJyxOVKoXABAAAAvByFCwAAAADHc37ZIvmYglBeAQAAAPBqfI8LAAAAAMejcAEAAADgeBQuAAAAAByPwgUAAACA41G4AAAAAHA8ChcAAAAAjkfhAgAAAMDxKFwkZWZm5vljpKam5po5f/68VU6STp48af3YmZmZOnr0qPV6njp1KsdvT01MTLR+3Iulpqbq/Pnzueb4aiEAAABczC8qKioqvzuRH+Lj4zVixAiNHz9eH3/8sWbMmKF169apbt26uv766y+73RUrVuixxx7T7NmzVbJkSdWsWVOS9Oijj6p9+/Zu+xATE6PChQurd+/e+uSTT1SpUiVVrVo1S3bv3r1KSEhw3Z555hndfvvtSkhIcNvf559/Xs2aNdPPP/+snj17asWKFZo1a5bq1KmjsmXLZskuXLhQK1asUFBQkHr27KmlS5dq5syZql69uipVqpQle8cdd6hkyZKqU6dOrtti7969eumll7R8+XKVKVNGjz32mD7++GOVKlXKtV0uOHDggAYPHqz//Oc/ev3117V69WqtX79et912m4KCgnJ9LBQsy5cv1+zZs/Xf//5XMTExSkpKUo0aNeTj43PZbZ46dUpvv/22YmNjVatWLQUGBkqSJk2apDvvvDNb3hij7777TmfOnFFgYKCioqK0YsUK1a9fX0WKFLnkY40dO1aNGjVy+7tly5apZs2aSk5O1ltvvaUPP/xQu3btUv369RUQEJAlGx8fr82bN6ts2bKaPHmypk+frh07dqhevXoqXLhwluyQIUN0++2359q3C1atWqWDBw+qbNmyGjNmjJYsWaK6desqJCQkW3bJkiWaM2eOli1bpg0bNigzM1NVqlTJse383n95te+ka3//5fe+k3jt/ZWnr73t27dryZIl+v7777V9+3b5+fmpTJkyVv3KSUpKiubOnaudO3eqZs2a8vPzkyTNnTtXdevWzZbfsWOH0tPTFRAQoPfee0+xsbH65z//KX9//1wf6/3331eDBg3c/i4uLk7ly5dXZmamPvnkE82fP19Hjx7VzTffLF/frH9n/+OPP7Rz506VKVNGixcv1oIFC3To0CHVrl07W/att97SLbfcYtU/Sfrtt9+UkJCgEiVK6MMPP9Tq1atVt27dbM8LSdq4caOWLl2qH374Qb/++quCg4NVokQJq8fB5fExXvrn7Z49e2rIkCGqX7++a9nmzZs1btw4zZ0797Lb7dSpk6ZNmyZjjJ5++mm1b99e7du3V2RkpKKjo7NkIyMj9a9//UuHDh3SmDFj9PXXX6tw4cLq06dPtj7cd999uu6661S6dGkZY7Rjxw7VqlVLPj4++uijj9yu30cffaRevXopKipKN954o44ePaohQ4bo448/zpLt0KGDoqOj1a9fP0VFRalq1ao6evSo+vfvr4ULF2bJdu7cWXXq1NGuXbs0cOBAtwelC3r06KH+/fvr7NmzevHFF/XFF18oJCREjz76qObNm5cl27t3b40aNUpVq1bV5s2btWrVKjVv3lzvvPOOpk2b5rb95cuX68cff9TZs2dVtGhRNWjQQC1btvxbB2Dpz4PwtGnTVLhwYfXq1ctVGE6aNEkDBw7Mkr1wAC5ZsqSqVq2qsWPHytfXV4MHD1bJkiUv+Thjx47ViBEj3P5u2bJlatWqlZKTkzVx4kTt2LFDderUUb9+/bIVcvHx8dqzZ49CQ0M1bdo0bd26VTVq1FDfvn2zHSiHDBmi559/XjfccIP19li1apUKFSqkO++8U+PGjdOZM2c0ePBglS9fPlt2yZIl2rBhg86dO6frr79ed999txo3bpwl8/LLLyszM1ONGzdWUFCQkpKS9P333ys9PV1jxozJkr34efJXnTt3zvJznz591KJFC6Wnp+uTTz7RtGnTVKFCBddr4WKvvPKKzp07p+PHjyshIUGdO3dWUFCQvvjiC02ZMiVLtkuXLq7/G2O0e/du1ahRQ5KyvVYvPN7IkSNVqVIltWjRQj/++KM2bdqkN998M0u2W7duevrpp7V06VKVLVtWYWFhio2N1dq1a7M978PCwlSsWDH16NFD4eHhl3yejxw5UikpKUpKStKpU6fUtm1blSlTRnPmzNGHH36YJfvqq68qJCREt956q1auXKkbbrhBCQkJCg4O1jPPPJOtbSfsv7zad9K1vf+csO8kXnsXePramzRpkrZs2aJ7773Xtf/Wrl2rm2++OVt+7dq1Ofbx3nvvzfLz008/rSpVqig9PV0//fSTPvzwQxUrVszt/ps8ebLWr1+vxMRElSpVSrVr11ZQUJB27NiRbRtL0uDBg13byxijmJgY3XXXXZKULX/h8caPH6+kpCQ1a9ZM69ev1/nz5/XSSy9lyfbu3VtdunTR5s2blZCQoKZNmyo2NlYnTpzI1u69996rsmXLaujQoa7Hzsnbb7+tmJgYpaSkqHz58qpcubJKlSql2NhYvfvuu1myU6ZM0e7du3Xbbbdp9erVqlatmg4cOKCGDRuqe/ful3wcXL5C+d2B/JKampqlaJGkW265Jcd8ZGSk0tLSsiwzxsjHxyfLm6e/v7+KFy8u6c8X+COPPKJy5cq5faNLT093ffCPiYlxfZgsVCj7blm4cKFeeuklde3aVffcc4/bQsgdPz8/3XjjjZKkMmXKuJ0u5u/vryJFiigoKMg1wlKmTBm3fS5cuLBefPFF/fLLL5o2bZpeeeUVNWzYUJUqVVLPnj2zrd/dd98tY4zeeust11+F3K1fYmKia5Tplltu0VtvvaVnnnlGZ86ccbteOR2A165d+7cOwJL03HPPuQ7CPXr0cB2Ef/rpp2zZ0aNHuz0Ajxo1yuoA/PPPP0vKfgCeM2eOWrVqpTFjxqhSpUoaNWqUfvzxR7344ovZ3pSHDRump59+WmPGjFHZsmX1zDPPKDY2VkOGDMl2AN60aZP69OljdQCWsh6EJ06c6DoIv/DCCzkehMPCwrRy5UoFBwfr+++/18aNG7McVH/77bdsxXOzZs2ybJ8L9uzZo5UrV6pt27aX7Kf052v6wv6sXbu2+vfvr+jo6BynHu7YsUOffPKJUlNT1aZNG0VEREhy/3zp3r27Fi5cqJEjRyowMFBDhgxxe5D+q/3797uei9WrV9c333yTLePn56fQ0FBNmTJFo0ePdvV92bJl2bIVKlTQu+++q3feeUdt27ZV69at1bhxY1WqVEnBwcFZsvv27dPs2bNljNFDDz3kOojOmjXL7Xa4sD8aN26svn37asqUKeratavb9XLC/svrfSddm/vPCfvuQp957Xn+2lu3bp0++eSTLMsiIyPVqVOnbIXL/Pnz9b///U+hoaHZ2rm4cLkwYiZJ3377rfr166eZM2e63X/ff/+95s6dq6SkJLVp00ZTp0519cOdmjVras2aNfrXv/4lX19f7dmzx+1x96+2bNmi2bNnS5KaNGnitu3U1FS1aNFCH330keuzUPPmzd0+l6tWrarXXntNr732miZPnqxOnTqpUaNGKlasWLbsjz/+qLlz5yo1NVWtW7fWxIkTJUnfffddtuyaNWtc/bywDyZNmqQuXbpQuOQhry1cbrrpJo0YMUKNGjVSSEiIkpKStHr1at10001u80OHDtWoUaP07rvvuoZR3alQoYLGjh2rp59+WsHBwZo0aZJ69+7t9gN41apVNXLkSI0ePVrjxo2TJE2bNs3tX+pvuOEG/ec//9H48eP1yy+/5Lp+Z8+eVXh4uJKTk7VgwQK1bdtW48aNc/tX8rCwMPXr10//+Mc/9OSTT6pRo0Zas2aN279MXHgj++c//6mJEyfq7Nmzio2N1d69e91ui0GDBikjI0NBQUGaMGGCgoODVapUqWzZihUr6sUXX1Tjxo21atUq1a5dW998841rysHF8uoALDnrA1R+HoClvDkIZ2ZmKi4uTrfffrtrWWxsrNth/BEjRmjPnj1q3Lix6tWrl+N2kqSMjAzt3LlTN910k2677TY9+eST6tevn5KTk3O8z4YNG9SgQQPNmDFD0p/b2915Zm3atFGNGjX073//WyNGjFDhwoVVoUIFt23u27dPM2fOlJ+fn7Zt26abb75Zv/zyi9t2Q0JC9NVXX6lJkyb67LPP1LRpU61evdrt897Hx0dFixbVqFGjdOrUKX311VeaPHmy9u3bpyVLlmTJpqen6/vvv1dCQoJOnjyp3bt3Kzg4WOnp6dnaTUlJ0c8//6z69esrLi5O6enpOn78uM6dO+d2/dztv59++umq77+82HeS+/23ZcsW6/23atWqK7L/1qxZo9OnT7v2X1BQ0N/ef97y2itUqJCj9t2Veu2lp6fr4MGDqlixomvZwYMHs02NkqQJEyYoMjJSjz/+uKpVq+a2vQvS0tJ06tQplShRQi1atNChQ4c0ZMiQbH+slf58Dh0+fFjly5fXhAkTJElnzpzJ8fzcfv366eabb9bs2bP1yiuvqGjRojnO1Pj999/17bffKiQkxLWeR48edXtubKFChbRlyxbddtttio2N1R133KG4uDi328LHx0eVKlXSe++9p507d+qLL77Q9OnTdfLkSa1evTrbttizZ49Onz6t06dP6/jx4woMDFRKSkq2dpOTk3Xo0CFVqFBBBw4cUEJCgs6fP291Li/+BuOlMjMzzTfffGPGjh1rRo4cacaOHWu+/vprk5mZmeN93n//ffPNN99cst20tDSzcOFCk5yc7Fp2/Phx8+qrr2bLZmRkmG+//TbLss8++yzLfd1ZuHCh6d69+yUzxhiTkpJifv75Z7Nz506TkpJiPvnkE5Oamuo2GxMTY958800zatQo88Ybb5iVK1e6zS1atCjXx70gLS3NLF++3Ozatcv8/vvvZuzYsWby5MkmKSnJbV8//vhjExUVZebNm2fS09PNpk2bzKlTp9y23bVrVxMbG5tl2U8//WR69OjhNt+nTx/z888/W/W7W7duZseOHa6f//vf/5pu3bqZhx9+2G0/4uLijDHGHDp0yBhjzL59+0yXLl3ctr1t2zbTp08fs3v3bhMZGZljHxo1amRmzJhhHnnkEbN161ZjjDFbtmwxnTt3zpbt16+fWbZsmZkxY4ZZvHixSUhIMJ9//rl59NFHs2X/+pgnT540s2fPNgMHDjStW7d2249OnTqZ77//3nz++efmzjvvNLt27TJHjhxxu34dO3Y0mzdvNsYYExsba3r37m2OHTtm2rVrlyW3f/9+07dvX9O4cWPTqFEj06RJE9O3b98s2/yvTp06ZQ4ePJhlWUpKSrbc9u3bTY8ePcyJEydcyz777DNz5513um13165dZsCAAVmW9e3b12zcuNFt3hhjTp8+bfr37+/aXu76sXXrVrNgwQITFRVlFi1aZM6cOWMiIiLctnvy5EkzfPhwc//995s6deqYe+65xzz11FPm8OHD2bKDBg1y26fz589nW7Z9+3YzcOBA8+6775qlS5eahg0bmlatWrmeqxf3t0OHDuaee+4xXbp0MXv27DEzZszI8T3g4v135513mscee8zs27fPbf7kyZOu/Xfu3Dm328yYP18bPXr0MMePH3dlLzzvLvbbb7+ZAQMGuN6vz507Zx577DGzadMmt20b83/7rlmzZjm+D17YHvPnzzcvvfSSWbRokTl69Kjp1KmT2bZtm9t1++v+a9iwofX+u9S2cLf/HnzwQbNhwwa3/Q0PD3ftvx07dpipU6eaFStWZMv+dd/de++9pk6dOqZv375m7969bvvx133319fVxS7edydOnLjka++3334z/fv3d+2/48ePm759+1rtvxYtWuSYuXjfnThxwkRERFjtu3r16pmnnnrK9T7+Vxfvu0tti+3bt5sBAwa49l2dOnVMq1atrPZdbGysmTFjhtt9Z4wxmzdvNu3atTMPPvigCQ8PN82aNTOtW7fO8dh24MABs2PHDpORkWGOHDliMjIy3ObWrVtnWrZsaY4fP+7KTpw40dSpUydbNjY21oSHh5uMjAxXtnPnzua7777LcZsY8+dzr1evXqZFixY5fs765ptvzIQJE0yfPn3Mhx9+aI4cOWIaNWpkfvjhB7ft9ezZ07Ru3drUqlXL1KpVy3To0MHtceSvnwtstsXDDz9snn/+efPBBx+YWrVqmRYtWmT7rGaMMWvXrjX33XefadeunWnWrJmJi4szEyZMMPPnz7/ktsDf47WFCwq2CwfgRo0amXvvvdc0btw41wNwfHy8VdsXH4SNyfkD8MUHYGNy//B76tSpLB9+3bn4AHzhw++FIubidXP34dfmAJybbdu2mQEDBphJkybl+gH4f//7X5aD8IUPwBcfhL/77jtz3333mWbNmpmlS5e6lrsr5C5kmzdvbv773/9eVrZbt25u1+1y216yZInrg0JuWdv1y8ttcSX7YMyfH4b69etnXnjhBdeBOywszO2Hrb9mf/jhB9O0aVPTrFkzj7LuPhC5y4aFheWaXbNmjalXr16OfbhU27n1OS+3xYV2c1u/tWvXXnK77dmzx+zZs8fs3r3b7N6923Ts2NG1LKfshVtERMQls7t3786W/e2339xuY0/bvnD77bffTO3atc3evXtzze7evdu63cvZFrZ9yK3dC/sit/4aY8yIESOMMX8WD82bNzft27c3LVu2dFvwXchu3rzZNG/e3HTs2NG0atXKo+zFfxzMKfvAAw/kWHRenL///vs96kdObV/Ibtq0yYSFhZkOHTpYb4uIiAjTqlUr1x/acutvWFhYju1mZma69seltjGuHAoXwFJOf6G53La2bNlyxdorSCIiIkxCQoI5deqUiYyMdI3iuRsti4iIMKdPn7bO2rab1/1wQtaTdfNku/Xo0cPExMSYxYsXmwYNGpgTJ06Ys2fPuh0NvJBdtGhRgchebttO2BY2fWjSpIl54IEHTGRkpOnRo4e54447TGRkpNsi9eLs7bffbnr06PG3sznl86oftu3m1ba4Uu0a839/THjkkUdcf6Q7cuSI2xkYTsg6pR9OyOLK8dpzXFCwubtYwgUXn+hue2GFK9X2leiHE/qQV/3w9/d3nRSZ2wUsPLnYhSft5nU/nJD1ZN082W5/vajI+vXrL3lREU8uQOKE7N9p2wnbIrc+uLvIi7urfuWUzemCMJ5ePOZq9sOTdp3Qhyt10R0nZZ3SDydk8fdRuKBAsr1YgqfZvGy7oGXzqm1PLmCRV1mn9KOgZSXPLipS0LJO6UdeZT25yEteZZ3Sj4KWlTy76I4Tsk7phxOyuILyecQHuGw2F0u4nGxetl3QsnnRticXsMirrFP6UdCyxnh2UZGClnVKP/Jy/S6wvchLXmad0o+ClPXkojtOyDqlH07I4srw2i+gBAAAAFBwZL/gNQAAAAA4DIULAAAAAMejcAEAAADgeBQuAAAAAByPwgUAAACA4/0/Tf0V37jC4XgAAAAASUVORK5CYII=\n", "text/plain": [ "
    " ] @@ -911,11 +912,13 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "What a difference! Very quickly we see the opposite trends occurring: ***how would you describe the trends***?\n", + "What a difference! Now the visualization is greatly improved, and actually tells a story. That's the purpose of a plot.\n", + "\n", + "Now we quickly see the opposite trends occurring which took us much longer to realize in the prior plot. ***How would you describe the trends to someone?***?\n", "\n", - "Note that you could not have seen these trends from a box plot! \n", + "Note also that you could not have seen these trends from a box plot! \n", "\n", - "Next we can calculate the ***correlation*** of the data. We will visualize what a strong a weak correlation is in the next section, but here we already see how the columns are correlated to each other: in a table, and a heat map. Heat maps are great way to visualize correlations." + "Next we can calculate the ***correlation*** of the data. We will visualize what a strong a weak correlation is in a next section on scatter plots, but here we already see how the columns are correlated to each other: both in a table, and a heat map. Heat maps are great way to visualize correlations." ] }, { @@ -1036,11 +1039,12 @@ } ], "source": [ - "pd.set_option('precision', 3)\n", "from IPython.display import display\n", - "display(judges.corr())\n", - "\n", "import numpy as np\n", + "import pandas as pd\n", + "pd.set_option('precision', 3)\n", + "\n", + "display(judges.corr())\n", "corr = judges.corr()\n", "\n", "# Create a mask for the upper triangle\n", @@ -1067,6 +1071,27 @@ "* It would be very unusual to find a pea that had high values in all 6 attributes. Think about that: it makes sense! Flavour and off-flavour cannot be simultaneously high.\n" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Challenge yourself: correlation plot on\n", + "\n", + "```python\n", + "cheese = pd.read_csv('http://openmv.net/file/cheddar-cheese.csv')\n", + "pd.set_option('precision', 3)\n", + "from IPython.display import display\n", + "display(cheese.corr())\n", + "cheese.head()\n", + "\n", + "\n", + "# Draw the heatmap with the mask and correct aspect ratio\n", + "sns.heatmap(cheese.corr(),#, mask=mask, cmap=cmap, \n", + " square=True, linewidths=.2, \n", + " cbar_kws={\"shrink\": 0.5});\n", + "```" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -1277,7 +1302,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 48, "metadata": {}, "outputs": [ { @@ -1343,7 +1368,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4wAAAE3CAYAAADhWM89AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xl8VOXd///3LJnJnslCIAl7kBCJEEosdQE1WiItCFYRpOptrb3v2kqrFvuz1Rt+t8tNEVttb/Hmbu1mS6FaVAQUcKnWXTEsYREQ2UKGhOyZ7DPnfP8IjKARsp9M8no+HnnMOdd1nTOfGcLMvHPOXMdmmqYpAAAAAAA+x251AQAAAACA3onACAAAAABoFYERAAAAANAqAiMAAAAAoFUERgAAAABAqwiMAAAAAIBWERgBAAAAAK0iMAIAAAAAWkVgBAAAAAC0isAIAAAAAGgVgREAAAAA0CoCIwAAAACgVQRGAAAAAECrnFYX0NMqKmplGKbVZQAAAABAj7LbbYqPj2rXNv0uMBqGSWAEAAAAgDbglFQAAAAAQKsIjAAAAACAVvW7U1I/LxDwq6LiuPz+JqtL6ROcTpfi4wfI4ej3v1oAAABAyOv3n+orKo4rPDxSUVGDZLPZrC4npJmmqdraalVUHFdSUorV5QAAAADopH5/Sqrf36SoqFjCYhew2WyKiorlaC0AAADQR/T7wCiJsNiFeC4BAACAvuOsgbGiokLf+973lJeXpxkzZuj2229XeXm5JGnr1q266qqrlJeXp1tuuUVlZWXB7Xq6DwAAAADQtc4aGG02m2699VZt3LhRa9eu1ZAhQ/TII4/INE3dfffdWrhwoTZu3KicnBw98sgjktTjfX3JxRfnqK6urkv2VVNToxUr/tzh7T/+eJf+67/u65JaAAAAAISes0564/F4NGnSpOB6dna2Vq5cqYKCArndbuXk5EiS5s6dq8svv1yLFy/u8T60zuer0d/+9pS+/e1/a/e2fr9fY8acq0WLHuyGygAAALqOaZoyTFOBgKmAccpPwFDAaOkzDFOGKZkn1k1Tp7S33AbbTFOGoRPjWpZNs5Vxre5LLWP02bpOjDFP1Nqy3HIrtWwrU6e1nzbGlAydHGN+bj8tyzLVcl9q7b5OHWOeeM5O3dep93WiP/jcnv48n/6867SxX9hWpy+YMj+3/vn7ME9bP7W5zdt+4T47Vvvna/7c5md15vGtd37ZJu2975ZtWt9oYEKkHvnxJe3aV7tmSTUMQytXrlRubq68Xq9SU1ODfQkJCTIMQ5WVlT3e5/F42vWge7uVK/+iDz98X1VVlfqP//ihLr30cknSf/3XfTp8+JCam5uUljZEP/vZQsXGxkqS1q1bo2eeWSVJCgsL08MPP6pf/WqJfD6fbr55nsLDw7V8+R9UWlqqxx57WMXFx9TY2KgrrsjTTTfdIkm69toZmj59pj766EOlpqYpL+8bWrbs1/r97/8iv9+vn/70DlVVVamxsVHnnjtWd9/9c4WFhVnzJAEAgB7jDxhqajbU5A+o2W/IHzBO3JotywFDfr/xWV/gRN9p64b8flPNgc/G+QOf7cP4XMj7ws8p7S1jjdMCYiixqeUsPptNapn+4bNlWyvLOm287cT2n80dYf+SfchmO9En2Vs6PrvvE7entZ1Y1sn7/Gzh5FLw9mRhtuDj+aztZL2nPebPdvWF7U9dOHmfn58WI1hvK/v8/H1+cZ+t32e7t9fnNviS/Zx59Jk7bV/e0d5dtVpXfGz4mapqVbsC4wMPPKDIyEjdcMMNevnll9t9Z6Hg7QKv3tru7ZZ9XzwuRRedd/bLTdjtdi1f/gcdPnxQ3//+dzV+/ATFxyfoxz9eEAzHv/3tE1qx4s+67bb5ys/frL/85Y964oknlZiYpLq6OjkcDt111/+nW2+9UX/609+C+37wwYW6+eZblZ39FTU3N+vHP75NmZnn6vzzvyZJKi0t1f/8z/9JkvLzNwe3czgcWrToQcXFeWSaph58cJHWr1+jWbOu7cqnCAAAdJBhmmpsCqi+0a/6poAamvxqaGy5rW8MqLE5oKbmk7eGGv0t603NxmftfiPYdmp/VwQym00Kc9jldNjldNpblp12OR02Oe122e02ORw2Oe02hTntstvtcpxoc9hP/tiD63Z7y3anrn9+zMl1u70lMNntNtltNtlsNtntLQHBfmLZHlxuCU6nj9eJ9pYAdrK99fEn9nvq8ueCGWAVu739v39tDoxLlizRoUOHtHz5ctntdqWkpKioqCjYX15eLpvNJo/H0+N9fc306TMlSUOHDtfo0RnaubNAF198iTZsWKdNmzbI729WfX2DhgwZKkl69923deWV31RiYpIkKTIystX91tfXa8uWj1RZWRlsq6ur1cGDB4OB8corv9nqti1Hl/+q9957R4YRUE1NjcLD2/8XCgAA0Dp/wFBdg1+1Dc2qrffL19Cs2vpm1Tb4VVvfrLoGv+qb/Kpv9Kuh6bMg2NDUEhAbmwJtvi9XmF0up0PuMLtcYQ65nA65wuyKcDvliXYH+11hdrnDHHI5T4wLc5wIerYvhj9HS/gLOy0M2oPjHXYm5wdCUZsC46OPPqodO3bot7/9rVwulyQpKytLDQ0N2rx5s3JycrRq1SpNmzbNkr6udNF5bTsK2FNaTj+2adu2LXr++dX63//9g+Lj47Vp0wa98MKzJ8a07a9+pmnIZrPpySefktPZ+j99ZGREq+0vv7xB27dv1RNP/E6RkVF66qk/6MiRwx15SAAA9Hmmaaq2wa+auiZV1zapqrbltrquWTV1TacFwdqGZvka/GcMfDZJEW6nItwOhbudinA5FRURpsS4CEW4HIpwOxXucijc1TKmZb2lLcLtVITLIZfLEQx/HOUC0FZnDYz79u3T8uXLNXz4cM2dO1eSNHjwYC1btkwPP/ywFi1apMbGRqWlpWnp0qWSWk6p7Mm+vmb9+hd088236siRw/rkkz0aOzZLO3fuUFRUtOLi4tTU1KT1618Ijr/oosn6xS8e0MyZ31JCQqLq6urkdDoVFRWlhoYG+f1+OZ1ORUZGafz4CfrrX/+km2++VZJUXHxMTqczeHTyy/h8NYqL8ygyMko+n08vv7xBY8ac263PAwAAvU3AMFTla1JFTaMqahpVXtOoSl+jamqbVHUiHNbUNau6tqnV0zhtNikmIkxREWGKCg9TfIxbg5OjFRUepqgIZ/A2OrxlTGR4S1uk29mhU8kAoLNsZlsPT/URZWU+Gae8gB87dkiDBg2zsKLTXXxxjn7wgx/pzTdfV2XlZ5Pe+P1+3X//f2rv3j1KTk7WmDGZ2rVrpx5//LeSpHXrntfTT6+UzWaXyxWmJUseVUJCopYseVDbt29VTEysli//g8rKSvWb3/xKBw7slyRFRkbpZz9bqGHDhuvaa2fo4Ycf1ciRoyS1fIfx5KQ3Pp9P9977U5WVlWrAgAFKSxusxsZG3Xvv//+Fx9DbnlMAANrCNE1V1zbpeFWDSivrg4GwIvjToKrapi/MWOh02BQb5VJspOtzt2Ett1GftUdHhBH8AFjGbrcpMTG6XdsQGAk3XY7nFADQW9U3+lVa1aDjlfUqrazX8ZPLJ0Jik984bXyE26mEGLc8MW7Fx7iDywkxbsXHhCs+xq2ocCeneAIICR0JjO2aJRUAAKC3CxiGSqsadKysTsfK6+Q9cXusvE7VtU2njY1wO5QUF6GB8RHKGpGgAZ4IJcWFK8kToYQYtyLcfFQC0L/xKggAAEKSYZgqqaxXYYlPhcd9Onq8Vt7yOpVU1Mkf+OxsouiIMA1KjNS49EQNSogMhsIBngiODgLAWRAYAQBAr+erb9aRE8Hw1IB48hRSm01Kjo9UamKkxqcnalBipFISojQoMVLREWEWVw8AoYvAqJYvufPXxa7Rz74SCwDoBg1Nfh06VqMD3hodPFatT4uqVVrVEOyPjgjTkORoXZKdpsHJURqSHK3UxCi5whwWVg0AfVO/D4xOp0u1tdWKioolNHaSaZqqra2W0+myuhQAQIgIGIYKS2q1v6hKB7zVOuitUVFZbXAm0sTYcI1IidGlE9I0dGC0hgyIVmyUi/dsAOgh/T4wxscPUEXFcfl8lVaX0ic4nS7Fxw+wugwAQC/V2BzQp0XV2ldYqX2FVfrkaFXwgvWxkWEanhKrnDHJGpESo+GDYhUbxR8hAcBK/f6yGgAAoPs0Nge0r7BSuw9WaM+RSh06VqOAYcomKW1AtEYPidM5gz1KT4tVYmw4Rw4BoBtxWQ0AAGApwzB18FiNdh0s166D5frkaJX8AVMOu00jUmOV99WhGj0kTqPS4hQZzmQ0ANDbERgBAECnVNU2qWB/mbbtL9XugxWqa/RLkoYmR+vyiYN17vAEjR7skdvFpDQAEGoIjAAAoF1M09ThYp+27S/Vtk/KdNBbLVNSfIxbEzMGaOyIBI0ZFq/YSL5/CAChjsAIAADOKmAY2nO4Upv3HNfWfcdV6WuSTdKI1FjNmjxC40claUhyNN9BBIA+hsAIAABaFTAMfXy4Ups/LlH+3uOqqWuWK8yu80YkavyoJJ2Xnqg4ZjEFgD6NwAgAAIIMw9THhyv0we5i5e8tla++We4wh8aPSlRORrLOS0+UO4zvIgJAf0FgBAAA8pbV6p0dx/TOjmOqqGmU2+VQ9qiklpA4MkEuQiIA9EsERgAA+ilffbPe31Wsd3Yc0wFvtew2m7JGJmhO7ihlj0oiJAIACIwAAPQnpmlq96EKvb7lqLbsK1XAMDUkOVpzckfpa+cOVFy02+oSAQC9CIERAIB+wFffrLcLvHp9a5GKy+sUHRGmyycO1oVZgzR0YIzV5QEAeikCIwAAfZRpmvrUW63X84/qg49L1Ow3NCotTldNP1c5YwYozMkppwCAMyMwAgDQxwQMQx/tOa4N7x/WwWM1crscuui8FF2ancrRRABAuxAYAQDoI+ob/Xpru1ebPjyisuoGDYyP0A1TR+uCsYMU4eYtHwDQfrx7AAAQ4ipqGvXqR4V6fctR1TX6NXpwnOZ9/RyNH5Uku81mdXkAgBDWpsC4ZMkSbdy4UUePHtXatWs1evRoFRYW6oc//GFwTE1NjXw+nz744ANJUm5urlwul9zultnWFixYoMmTJ0uStm7dqoULF6qxsVFpaWlaunSpEhMTO9UHAEB/U1JZr/XvHNQ7O47JME1NzEhW3leHKD01zurSAAB9hM00TfNsgzZv3qy0tDR9+9vf1vLlyzV69OgvjHnooYcUCAS0cOFCSS2BsbWxpmlq6tSpWrx4sXJycvTEE0/oyJEjWrx4cYf72qOszCfDOOtDBgCg1your9O6dw/q3R3FcjhsmjwuRVO/OlTJngirSwMA9GJ2u02JidHt26Ytg3JycpSSkvKl/U1NTVq7dq2uueaas+6roKBAbrdbOTk5kqS5c+dqw4YNneoDAKA/OFZep9+t3aWf/+49fbi7RFfkDNaS71+gG6ZmEBYBAN2iS77D+Nprr2ngwIEaO3bsae0LFiyQaZqaOHGi7rrrLsXGxsrr9So1NTU4JiEhQYZhqLKyssN9Ho+nKx4GAAC9Unl1g9a8dUBvFXgV5rRr6vlDdOVXhyou2m11aQCAPq5LAuPq1au/cHRxxYoVSklJUVNTkx566CHdf//9euSRR7ri7gAA6Bd89c1a/+5BvfrRUUmmrpg4RN+8YJhio1xWlwYA6Cc6HRiLi4v14Ycf6uGHHz6t/eQprC6XS/PmzdNtt90WbC8qKgqOKy8vl81mk8fj6XAfAAB9SWNTQJs+PKwNHxxWQ1NAF2YN0syLRygpjtNOAQA9q9OB8bnnntMll1yi+Pj4YFtdXZ0CgYBiYmJkmqZefPFFZWZmSpKysrLU0NCgzZs3KycnR6tWrdK0adM61QcAQF9gmKbe31msf7yxXxU1jZpwTpK+NWWk0ga0b4ICAAC6SptmSX3wwQe1adMmlZaWKj4+Xh6PR+vXr5ck5eXl6d5779WUKVOC448cOaL58+crEAjIMAylp6frvvvuU3JysiQpPz9fixYtOu3yGElJSZ3qaytmSQUA9EafHK3Sylf26YC3WsMGxej6y8/R6CGcRQMA6DodmSW1TYGxLyEwAgB6k/LqBj3z+n69v6tYcdEuXXtJui7IGiS7zWZ1aQCAPqYjgbFLJr0BAADt4w8YemVzoda8dUCGaWrGhcM17WtDFe7irRkA0HvwrgQAQA/be6RSf9m4R0dLa5U9KknzrjhHSVxHEQDQCxEYAQDoIdV1TXrmtU/09o5jSowN1/xrztOEcwZYXRYAAF+KwAgAQDczTVPv7SzW317Zq4amgL55wTBNv2C43C6H1aUBAHBGBEYAALpReXWDntq4R9v3lyk9NVY3fyNTaUlRVpcFAECbEBgBAOgGhmnqjS1H9czr+2WYpq6//BxdPnGw7HZmPwUAhA4CIwAAXay0sl6/X79be45U6tzh8fq3K8doAJPaAABCEIERAIAuYpqm3irwauUr+yRJN08bo8njUmTjmooAgBBFYAQAoAtU1zbpzxs+1pZ9pRoz1KNbvpmppDiOKgIAQhuBEQCATtqy97j+tOFj1TcGNCd3lL5+/hDZOaoIAOgDCIwAAHRQU3NAf3/tE/1zy1ENTY7W3defq8EDoq0uCwCALkNgBACgA4pKa7V8zQ4VHq/VlV8dqm9dMlJOh93qsgAA6FIERgAA2sE0Tb253au/vbxXbpdDd8wer3HpiVaXBQBAtyAwAgDQRvWNfv15w8f6YHeJMofF69bp5yo+xm11WQAAdBsCIwAAbVB43KdlzxaopLJeV08ZqW9+bZjsdia2AQD0bQRGAADO4r2dx/SnDR8r3OXUT6+foIyh8VaXBABAjyAwAgDwJfwBQ39/9RO9ml+ocwbH6fszszgFFQDQrxAYAQBoRXl1g/73+R3aX1StqecP0bWXpjMLKgCg3yEwAgDwOZ8UVunx5wrU2BzQbbOydP6YZKtLAgDAEgRGAABO8ea2Ij21cY8SY8N199xspQ2ItrokAAAsQ2AEAEBSwGj5vuIrHxXq3OHx+v7MLEVHhFldFgAAlmrTlzGWLFmi3NxcZWRkaO/evcH23NxcXXnllZo5c6ZmzpypN998M9i3detWXXXVVcrLy9Mtt9yisrKybu0DAKCjfPXNevTpbXrlo0JdkTNYd143nrAIAIDaGBgvv/xyrVixQmlpaV/o+81vfqM1a9ZozZo1mjx5siTJNE3dfffdWrhwoTZu3KicnBw98sgj3dYHAEBHFZfX6cGnNmvP4Up9Z9oYzbtitBx2JrcBAEBqY2DMyclRSkpKm3daUFAgt9utnJwcSdLcuXO1YcOGbusDAKAj9hVW6qG/fKS6Br9+Om+CJo9PtbokAAB6lU5/h3HBggUyTVMTJ07UXXfdpdjYWHm9XqWmfvamm5CQIMMwVFlZ2S19Ho+nsw8DANDPfLC7WE+u263EWLfuuG68BsZHWl0SAAC9TqfOuVmxYoVeeOEFrV69WqZp6v777++qugAA6BamaerF9w5p+ZqdGpESo3tvyiEsAgDwJToVGE+epupyuTRv3jzl5+cH24uKioLjysvLZbPZ5PF4uqUPAIC2CBiGntq4R/94fb8mnTtQC+ZmM7kNAABn0OHAWFdXp5qaGkkn/lr74ovKzMyUJGVlZamhoUGbN2+WJK1atUrTpk3rtj4AAM6mvtGvXz+zXW9sLdL0C4fpezPOVZjTYXVZAAD0ajbTNM2zDXrwwQe1adMmlZaWKj4+Xh6PR8uXL9f8+fMVCARkGIbS09N13333KTk5WZKUn5+vRYsWqbGxUWlpaVq6dKmSkpK6ra+tysp8MoyzPmQAQB9S5WvUr57epqPHa3XTlRmawuQ2AIB+yG63KTExul3btCkw9iUERgDoX0oq6/XLVVtUXdusH34rS1kjEq0uCQAAS3QkMHZ6llQAAHqrIyU+/ervW+UPGLr7+gkamRprdUkAAIQUAiMAoE/ae6RSv/7HdoW7HPrZ9ROVmhRldUkAAIQcAiMAoM/Z+kmp/vf5HUqMDddP5mQrMS7c6pIAAAhJBEYAQJ/ydoFXf3zxYw0dGK07rhuv2EiX1SUBABCyCIwAgD5j0weHteq1T5Q5LF63f+s8Rbh5mwMAoDN4JwUA9Alr3zmo5/71qSZmDNC/zxirMGeHLzUMAABOIDACAEKaaZp67s0DWvfOQV0wdpBu+eYYOeyERQAAugKBEQAQskzT1DOv79eG9w9ryvgU3ZQ3Rna7zeqyAADoMwiMAICQZJqm/vbKPr36UaFyv5KmeV8fLbuNsAgAQFciMAIAQo5hmvrLxj16Y2uR8r46RNddNko2wiIAAF2OwAgACCmGYeoPL+7WOzuOafqFw3T15JGERQAAugmBEQAQMgKGoSfX7db7u4p19eQRmnHRCKtLAgCgTyMwAgBCgmGY+v2JsDj70nRN+9owq0sCAKDPY95xAECvZximfr9+t97bVaxrCYsAAPQYAiMAoFczTFN/fGm33t15TFdPGalvEBYBAOgxBEYAQK9lmKb+/NLHervgmGZePEIzLhxudUkAAPQrBEYAQK908tIZb273asaFwzXzYia4AQCgpxEYAQC9jmmaWrFpr97YWqRvXjBMsyYTFgEAsAKBEQDQq5imqb+9sk//3HJUV04aqm9N4TqLAABYhcAIAOhVnv3Xp3r1o0JNPX+IZl+aTlgEAMBCBEYAQK+x/t2DWv/uIU0Zn6o5uaMIiwAAWIzACADoFV79qFCr3/hUk84dqJvyMgiLAAD0Am0KjEuWLFFubq4yMjK0d+9eSVJFRYW+973vKS8vTzNmzNDtt9+u8vLy4DYZGRmaMWOGZs6cqZkzZ2rPnj3Bvtdee01XXnmlvv71r+uOO+5QfX19p/sAAKHr7QKvVry8V9mjkvTdb2bKbicsAgDQG7QpMF5++eVasWKF0tLSgm02m0233nqrNm7cqLVr12rIkCF65JFHTttu1apVWrNmjdasWaOMjAxJUm1trf7zP/9Ty5cv18svv6yoqCj9/ve/71QfACB0bf64RH94cbcyh8Xrtllj5XRw8gsAAL1Fm96Vc3JylJKSclqbx+PRpEmTguvZ2dkqKio6677+9a9/KSsrS8OHD5ckzZ07Vy+99FKn+gAAoWnHp2X6vxd2amRqrOZfc57CnA6rSwIAAKdwdsVODMPQypUrlZube1r7jTfeqEAgoClTpmj+/PlyuVzyer1KTU0NjklNTZXX65WkDvcBAELP3iOVevzZAqUlRenO2eMV7uqStyQAANCFuuS8nwceeECRkZG64YYbgm2vv/66nn32Wa1YsUKffPKJli1b1hV3BQDoAw54q/XYM9uUEBuuu+ZkKzI8zOqSAABAKzodGJcsWaJDhw7psccek93+2e5OnsIaHR2t2bNnKz8/P9h+6qmrRUVFwbEd7QMAhI6jpbV69OltigoP04K52YqNclldEgAA+BKdCoyPPvqoduzYoWXLlsnl+uwNv6qqSg0NDZIkv9+vjRs3KjMzU5I0efJkFRQU6ODBg5JaJsaZNm1ap/oAAKGhtKpev/r7VjnsNt19fbYSYsOtLgkAAJyBzTRN82yDHnzwQW3atEmlpaWKj4+Xx+PRY489punTp2v48OEKD295wx88eLCWLVumLVu2aOHChbLZbPL7/ZowYYJ+/vOfKyoqSpL0yiuvaOnSpTIMQ5mZmfrFL36hyMjITvW1VVmZT4Zx1ocMAOhi1XVNWvzXfFXXNumeb39FQ5KjrS4JAIB+xW63KTGxfe+/bQqMfQmBEQB6XkOTX0tXblHh8Vr9ZE62Rg/xWF0SAAD9TkcCIxe7AgB0K3/A0LJnC3TomE+3zcwiLAIAEEIIjACAbmOYpp5ct0s7D1bo36ZlKPucJKtLAgAA7UBgBAB0C9M0tfLlffpgd4lmX5quyeNSz74RAADoVQiMAIBuse6dg3o1v1B5Xx2iKycNtbocAADQAQRGAECXe33rUT335gFdMHaQZl82SjabzeqSAABABxAYAQBd6qM9JfrLxj0al56o73xjjOyERQAAQhaBEQDQZfYcrtD/vbBT6alxum1WlpwO3mYAAAhlvJMDALpE4XGffrO6QAM8EfrRtePkDnNYXRIAAOgkAiMAoNPKqxv06NPb5Aqz667rshUdEWZ1SQAAoAsQGAEAnVLX0KxHn9mm+ka/7pw9Xolx4VaXBAAAugiBEQDQYc1+Q48/W6BjZXW6/VvnaejAGKtLAgAAXYjACADoEMM09fv1u/Tx4Urd8s1MnTs8weqSAABAFyMwAgA65B//3K8Pdpfo2kvTdcHYQVaXAwAAugGBEQDQbi9/eEQbPjis3K+kadqkoVaXAwAAugmBEQDQLps/LtGqV/fpK6MHaN4Vo2Wz2awuCQAAdBMCIwCgzfYeqdRv1+5Selqc/n3GubLbCYsAAPRlBEYAQJscLa3Vb/6xXUlx4frRtePkCnNYXRIAAOhmBEYAwFlV1DTq0ae3Ksxp113XjVd0RJjVJQEAgB5AYAQAnFFdg1+PPr1NtQ1+3TF7vJI8EVaXBAAAegiBEQDwpfwBQ8ueK5C3rFY/vDpLwwbFWF0SAADoQQRGAECrDNPUH17crd2HKnTztDHKGpFodUkAAKCHERgBAK1a/cZ+vbezWFdPGamLzkuxuhwAAGCBswbGJUuWKDc3VxkZGdq7d2+w/cCBA5ozZ47y8vI0Z84cHTx40LI+AEDXevWjQr303mFdmp2q6RcMs7ocAABgkbMGxssvv1wrVqxQWlraae2LFi3SvHnztHHjRs2bN08LFy60rA8A0HU+2lOiv728V9mjkvTtqaNls3GtRQAA+quzBsacnBylpJx+KlJZWZl27dql6dOnS5KmT5+uXbt2qby8vMf7AABdZ19hpX67dpdGpsbqP2aOlcPONxcAAOjPnB3ZyOv1auDAgXI4Wi7a7HA4lJycLK/XK9M0e7QvISGh008CAEDyltXqN//YroQYt3507Ti5wxxWlwQAACzGn44BAKr0NepXf98mh92mO+dkKybSZXVJAACgF+jQEcaUlBQVFxcrEAjI4XAoEAgf2yMpAAAc9klEQVSopKREKSkpMk2zR/sAAJ1T3+jXY09vk6++WT+dN0HJngirSwIAAL1Eh44wJiYmKjMzU+vWrZMkrVu3TpmZmUpISOjxPgBAx/kDhp54rkCFx2t126wsjUiJtbokAADQi9hM0zTPNODBBx/Upk2bVFpaqvj4eHk8Hq1fv1779+/XPffco+rqasXGxmrJkiUaOXKkJPV4X3uUlflkGGd8yADQL5imqSfX7da7O4/pO98Yo8njUq0uCQAAdCO73abExOh2bXPWwNjXEBgBoMXqN/Zr/buHNGvyCF110QirywEAAN2sI4GRSW8AoB/6Z36h1r97SFPGp2rGhcOtLgcAAPRSBEYA6Gfy9x7XX1/eq/Hpiboxb7RsNpvVJQEAgF6KwAgA/cgnhVX6vxd2avigWH1/ZpYcdt4GAADAl+OTAgD0E96yWv36H9sUH+PWj2ePk9vlsLokAADQyxEYAaAfqPI16tGnt8lht+mu68YrNtJldUkAACAEEBgBoI+rb/Tr0We2qaauWT+ePV7J8ZFWlwQAAEIEgREA+jB/wND/Pr9DhSW1um1WlkakxFpdEgAACCEERgDoo0zT1J9f+lg7DpTr367M0Lj0RKtLAgAAIYbACAB91HNvfqq3dxzTrItHaPL4VKvLAQAAIYjACAB90OtbjmrdO4c0ZXyqZlw03OpyAABAiCIwAkAfs2Xfcf1l0x6NT0/UjXmjZbPZrC4JAACEKAIjAPQhe49UavmanRo+KFbfn5klh52XeQAA0HF8kgCAPqKwxKff/GO7EmPDdcfscXK7HFaXBAAAQhyBEQD6gNLKev3y6a1yuxy6a854xUS6rC4JAAD0AQRGAAhx1bVN+uXft8rvN3TXdeOVFBdhdUkAAKCPIDACQAirb/Tr0We2qaKmUT++drzSBkRbXRIAAOhDCIwAEKKa/YYef7ZAR4p9um1WlkYNjrO6JAAA0McQGAEgBBmGqSfX7dLuQxX6zjfGaPyoJKtLAgAAfRCBEQBCjGma+tsre/XhxyW67rJRuui8FKtLAgAAfRSBEQBCzNq3D+q1/KO6ctJQXTlpqNXlAACAPozACAAh5J/5hXr+rQO66LxBmn1putXlAACAPo7ACAAh4p0dXv1l015lj0rSzdPGyGazWV0SAADo45yd2biwsFA//OEPg+s1NTXy+Xz64IMPlJubK5fLJbfbLUlasGCBJk+eLEnaunWrFi5cqMbGRqWlpWnp0qVKTEzsVB8A9GUf7TmuP6z/WJnD4nXbrLFy2Pl7HwAA6H420zTNrtrZQw89pEAgoIULFyo3N1fLly/X6NGjTxtjmqamTp2qxYsXKycnR0888YSOHDmixYsXd7ivPcrKfDKMLnvIANDtdh4o16//sU3DBsboJ3OzFe7q1N/6AABAP2W325SY2L5rNnfZn6ibmpq0du1aXXPNNWccV1BQILfbrZycHEnS3LlztWHDhk71AUBfta+wUv/z7HalJEbpjuvGExYBAECP6rJPHq+99poGDhyosWPHBtsWLFgg0zQ1ceJE3XXXXYqNjZXX61VqampwTEJCggzDUGVlZYf7PB5PVz0MAOg1Dh2r0WPPbFN8TLjumpOtqPAwq0sCAAD9TJcdYVy9evVpRxdXrFihF154QatXr5Zpmrr//vu76q4AoM8rKq3VL/++VZFup+6em624KJfVJQEAgH6oSwJjcXGxPvzwQ82YMSPYlpLSciFpl8ulefPmKT8/P9heVFQUHFdeXi6bzSaPx9PhPgDoS45X1uuXf98qh92mBddPUEJsuNUlAQCAfqpLAuNzzz2nSy65RPHx8ZKkuro61dTUSGqZ5ObFF19UZmamJCkrK0sNDQ3avHmzJGnVqlWaNm1ap/oAoK+oqGnUI6u2qKk5oJ/MydbA+EirSwIAAP1Yl8ySmpeXp3vvvVdTpkyRJB05ckTz589XIBCQYRhKT0/Xfffdp+TkZElSfn6+Fi1adNrlMZKSkjrV11bMkgqgt6qpa9KSv21RWXWD7p47QSNTY60uCQAA9CEdmSW1Sy+rEQoIjAB6I199s5au3KJj5XW6c/Z4jRkWb3VJAACgj7H0shoAgI6pbWjWI6u2yFtWpx9dM46wCAAAeg0CIwBYqK6hWb9ctVVFpbWaf815GjsiweqSAAAAggiMAGCRuga/fvn3bTpS4tMPrz5P541MtLokAACA0xAYAcAC9Y1+PfrMVh0urtEPrs7S+FHtm8ALAACgJxAYAaCHNTT59dgz23SgqEbfn5mlCecMsLokAACAVhEYAaAHNTYF9Ngz27X/aLX+Y+ZYTcwgLAIAgN7LaXUBANBf1De2HFn85GiV/n3GWJ0/JtnqkgAAAM6IwAgAPaCuoVm/enqbDh1rOQ2VsAgAAEIBgREAupmvvuXSGYXHffrBrCxNGM1pqAAAIDQQGAGgG1XXNumRVVt1rLxO8685T+PSmQ0VAACEDgIjAHSTSl+jHlm1VaWV9frx7HEaOzzB6pIAAADahcAIAN2gvLpBS1dtVWVNo+68brwyhsZbXRIAAEC7ERgBoIsdr6zXI6u2yFffrJ/MydaowXFWlwQAANAhBEYA6EKFx3365d+3yu839JM5EzQyNdbqkgAAADqMwAgAXeSTo1X69TPbFOa0655vf0VpA6KtLgkAAKBTCIwA0AV2fFqmx58rkCfarQVzspXkibC6JAAAgE4jMAJAJ32wu1i/W7tLaUlRunNOtuKiXFaXBAAA0CUIjADQCf/ML9RfN+3VOUM8+tE14xQZzssqAADoO/hkAwAdYJqm1r1zUM+9eUDZo5L0/Zlj5QpzWF0WAABAlyIwAkA7BQxDK17ep9e3HNUFYwfpO98YI6fDbnVZAAAAXY7ACADt0NDk1/I1O7V9f5mmfW2orrkkXXabzeqyAAAAugWBEQDaqNLXqF8/s12HS2p0U16GLp2QZnVJAAAA3arTgTE3N1cul0tut1uStGDBAk2ePFlbt27VwoUL1djYqLS0NC1dulSJiYmS1C19ANCdjh736bFntslX79ePrx2ncelJVpcEAADQ7WymaZqd2UFubq6WL1+u0aNHB9tM09TUqVO1ePFi5eTk6IknntCRI0e0ePHibulrj7IynwyjUw8ZQD+z+2C5Hn9uh1xOu+6YPV7DBsVYXRIAAEC72e02JSZGt2+b7iikoKBAbrdbOTk5kqS5c+dqw4YN3dYHAN3l7QKvfvX0NiXEuHXfTTmERQAA0K90yXcYFyxYINM0NXHiRN11113yer1KTU0N9ickJMgwDFVWVnZLn8fj6YqHAQBBhmnq+Tc/1bp3DilzWLx+eHWWIsPDrC4LAACgR3X6COOKFSv0wgsvaPXq1TJNU/fff39X1AUAlqlv9GvZswVa984hTRmfojuvG09YBAAA/VKnA2NKSookyeVyad68ecrPz1dKSoqKioqCY8rLy2Wz2eTxeLqlDwC6yvHKev33Xz/Stk/KNO+Kc/RvV3KNRQAA0H916lNQXV2dampqJLVMdPPiiy8qMzNTWVlZamho0ObNmyVJq1at0rRp0ySpW/oAoCvsOVyhB/68WRXVjbpzznhdkTNENq6xCAAA+rFOzZJ65MgRzZ8/X4FAQIZhKD09Xffdd5+Sk5OVn5+vRYsWnXYJjKSklmnou6OvrZglFcDnmaapf245qpWv7FNyfIR+dM04DUyItLosAACALtWRWVI7fVmNUENgBHCqxuaAntqwR+/uPKZx6Yn69xljFRneJfOBAQAA9CodCYx8KgLQb5VU1OnxZ3fo6HGfZl08QtMvGi47p6ACAAAEERgB9EtbPynV79bukt0m/Xj2eI1LT7S6JAAAgF6HwAigXwkYhta8dVDr3jmoocnR+sG3zlOyJ8LqsgAAAHolAiOAfqOiplH/98JO7T1SqYvOG6Qbp2bIFeawuiwAAIBei8AIoF/Y9kmpfr9+t5r9hm6dnqkLs1KsLgkAAKDXIzAC6NP8AUOr39ivjR8c0eAB0bpt1lilJEZZXRYAAEBIIDAC6LOKy+v027W7dMBbrcsmpGlO7ihOQQUAAGgHAiOAPsc0Tb2xrUirXt2nMIddP5iVpZwxyVaXBQAAEHIIjAD6lKraJv3pxd3atr9M5w6P13e/ea7iY9xWlwUAABCSCIwA+oyt+0r1x5d2q74xoLmXn6MrcgbLbrNZXRYAAEDIIjACCHm++matenWf3tlxTEOSo3X39edq8IBoq8sCAAAIeQRGACFty97jemrjHtXUNWv6hcM048IRCnParS4LAACgTyAwAghJNXVNWvHyXn2wu0RDkqN1x+zxGjYoxuqyAAAA+hQCI4CQYpqm3t9VrJWv7lNdg1+zJo/QN742TE4HRxUBAAC6GoERQMgoLq/TXzbt0a6DFRqREqPvzM3U4GS+qwgAANBdCIwAer1mv6GX3jukde8eUpjTpm9/fbQum5Amu50ZUAEAALoTgRFAr7bzYLn+ummvisvr9NXMZM29/Bx5ormuIgAAQE8gMALolUoq6/X3V/dpy75SJXsidNd145U1MtHqsgAAAPoVAiOAXqWhya/17x7Sxg8Oy2G365pLRmrq+UMU5nRYXRoAAEC/Q2AE0CsYpql3dxzTP97Yrypfky4YO0jXXpqu+BhOPwUAALAKgRGApUzT1I4D5frH6/t1pMSnESkxuv3q85SeFmd1aQAAAP0egRGAZQ4eq9Yz/9yv3YcqlBQXrv+4aqzOz0yW3cbspwAAAL1BpwJjRUWFfvrTn+rw4cNyuVwaNmyY7r//fiUkJCgjI0OjR4+W3d5yMe2HH35YGRkZkqTXXntNDz/8sAKBgMaOHavFixcrIiKiU30AQoe3rFZr3jqgD3aXKDoiTNdfcY4um5Amp8NudWkAAAA4hc00TbOjG1dWVmrPnj2aNGmSJGnJkiWqqqrSf//3fysjI0P5+fmKioo6bZva2lpNnTpVK1as0PDhw3XvvfcqJSVFt99+e4f72qOszCfD6PBDBtAJxeV1euHtg3pv1zGFOe2aev5QTZs0VBFuTnYAAADobna7TYmJ0e3bpjN36PF4gmFRkrKzs1VUVHTGbf71r38pKytLw4cPlyTNnTtXL730Uqf6APRuJRV1+v26Xbr3d+/roz0lyjt/qB7+/oX61pSRhEUAAIBerMs+qRmGoZUrVyo3NzfYduONNyoQCGjKlCmaP3++XC6XvF6vUlNTg2NSU1Pl9XolqcN9AHqnwhKfXnr/kN7fVSKHw6YrcgZr2qShiotm5lMAAIBQ0GWB8YEHHlBkZKRuuOEGSdLrr7+ulJQU+Xw+3X333Vq2bJnuvPPOrro7AL2UaZrae6RSL71/WNv3l8kd5tDlEwdr2teGykNQBAAACCldEhiXLFmiQ4cOafny5cFJblJSUiRJ0dHRmj17tv74xz8G299///3gtkVFRcGxHe0DYD3DNLV1X6leeu+Q9hdVKyYyTFdPHqHLvjJY0RFhVpcHAACADuj0lISPPvqoduzYoWXLlsnlckmSqqqq1NDQIEny+/3auHGjMjMzJUmTJ09WQUGBDh48KElatWqVpk2b1qk+ANZpaPLrn1uO6j+ffF+PP1ugqtom3TB1tB6+7ULNuGgEYREAACCEdWqW1H379mn69OkaPny4wsPDJUmDBw/WrbfeqoULF8pms8nv92vChAn6+c9/Hpwx9ZVXXtHSpUtlGIYyMzP1i1/8QpGRkZ3qaytmSQW6xrHyOr2WX6i3C7yqbwxo2MAYXTlpqHLGDJDDzuUxAAAAepuOzJLaqcAYigiMQMcZhqnt+8v0an6hdh4ol8Nu0/mZybr8K4M1MjVWNpvN6hIBAADwJToSGJnPHsBZlVc36O0Cr97c7lVpVYM80S5dPXmEpmSnKS7KZXV5AAAA6CYERgCtavYHtGVfqd7c7tWuA+UyJY0Z6tF1l41S9jlJcjo47RQAAKCvIzACCDJNU4eKa/TWdq/e31Ws2ga/EmPdmn7hcF00LkXJngirSwQAAEAPIjACkLesVu/vKtYHu0t0rLxOToddEzMG6OJxKcocFi87300EAADolwiMQD9VUlmvD3e3hMQjJT7ZJGUM9Wjq+UN0fmayosK5HAYAAEB/R2AE+gnTNOUtq9OWfceVv7dUB7zVkqT0tFhdf8U5yslIVnyM2+IqAQAA0JsQGIE+zDBMfXK0Slv3lWrLvuMqrqiXJA0bFKPZl6Xr/DHJSorje4kAAABoHYER6GNqG5q162CFCvaXadv+UtXUNcthtylzWLy+fv4QZY9KUkJsuNVlAgAAIAQQGIEQFzAMHSiq0Y4DZdp5oFyfeqtlmlKk26lx6YnKPidJ541MVISb/+4AAABoHz5BAiHGME0VldZqz+FKfXy4QrsOVqi+0S+bTRqZEqsZFw5X1ohEjUiNkcPOtRIBAADQcQRGoJczTFOFJT7tOVKpvYcrtedIpXz1zZKkxFi3zh8zQGNHJCpzWLyiI5jZFAAAAF2HwAj0MnUNzfrUW61Pj1Zrf1G1Pi2qUm2DX5KUFBeu8aMSlTEkXmOGepTkYcIaAAAAdB8CI2ChgGHo6PHaUwJilbxldZIkm6TUpCh9ZfQAZQz1KGNIvBLjmKwGAAAAPYfACPSQpuaACo/X6nBJjY4U+3S4uEZHjvvU1GxIkqIjwpSeGquvjR2k9NRYjUiJZaIaAAAAWIpPo0AXM01TFTWNKiqrVWFJS0A8XOyTt6xWptkyJsLt1NDkaE0Zn6qRKbEamRanAXHhstls1hYPAAAAnILACHSQYZoqq2qQt6xWRaV1KiqtVVFZrYpKa9XQFAiOi49xa9jAGE0cPUBDB8Zo6MBoJREOAQAAEAIIjMAZGIap8poGHa+oV3FlvY5X1Kukol7FFfUqqawLnk4qSXFRLqUmRemirBSlJkUqNSlKqUlRiol0WfgIAAAAgI4jMKJfM01TvvpmlVc3qry6QaXVDTpe2RIKj1e2/PgDZnC802HTAE+Ekj0ROnd4fEsoTIxSSlKkosK5pAUAAAD6FgIj+izTNFXX6FeVr0mVvkaVVTeovLrltqK6QWUnQmKT3zhtO3eYQ8nxEUpNjFL2qCQlx0coOT5SyZ4Ixce4ZbdzKikAAAD6BwIjQo4/YKimrlmVvkZV1TapKnjbdNp6pa9J/oDxhe3jol1KiAnX4AFRGpeeqMTYcCXEhish1q2E2HDFRobx/UIAAABABEZYrNkfUF2DX7765uBPTX2zfHXNp7fVNctX3yRffbPqGwOt7is6IkxxUS7FRbt0Tnyc4qLdwXVPlFsJceGKj3YrzGnv4UcJAAAAhCYCIzrENE01NRtqaA6oscmvhqaAGpsDqm/0q67Br7oTt/WNny231tbaEcCT3C6HosPDFB0ZppiIMA1MiFB0RMtyTGRLEIyLcssT7VJslEtOB0EQAAAA6EohFxgPHDige+65R5WVlfJ4PFqyZImGDx9udVm9imma8gdMNfsDavIbavYbJ24Damo+uR5ouW02guOa/IaamgNqbAqcCIKBliDY5P9s/cRtY1NA5tlLkdNhU2R4mCLdTkWGOxUV7lRSXLgiw53Btgi3U9ERYcGfmEiXoiOcCnM6uv25AgAAAPDlbKZptuVzf69x00036ZprrtHMmTO1Zs0arV69Wk899VSbty8r88kw2vaQTdOUabZcby9gmDKME7dmy3Jw/URba2MCgZZ1f8CQP3Dy1jitLXCizR8w5TcMBQKmmgPGifaWcYGT2xrmae3+wKmB8LMg2NF/VZtNCnc5Fe5yyB3mULjLEVx2B5edcrscinC1tJ0c5w5zKOJkEDwRBgl9AAAAQO9gt9uUmBjdrm1CKjCWlZUpLy9P77//vhwOhwKBgCZNmqRNmzYpISGhTfv4+RNvqaSiXoZhnAh6OmMY7GlOh11Oh01Oh10Oh01O+4l1pz247Dh1jN2mMKddYU67XE5Hy22YXWFOh1xOu1zOE8thZx8T5mzZLxO+AAAAAH1PRwJjSJ2S6vV6NXDgQDkcLUetHA6HkpOT5fV62xwYkz0RinA55LDbZLfZZLfbWpZbWW/LGLvtc+M/P8amlrB3ItydGghPLp8MgHYbYQ0AAABA7xFSgbEr3JiX0eZTUgEAAACgPwupaSVTUlJUXFysQKDlsgqBQEAlJSVKSUmxuDIAAAAA6HtCKjAmJiYqMzNT69atkyStW7dOmZmZbT4dFQAAAADQdiE16Y0k7d+/X/fcc4+qq6sVGxurJUuWaOTIkW3evj2zpAIAAABAX9HnZ0ntCgRGAAAAAP1RRwJjSJ2SCgAAAADoOQRGAAAAAECrCIwAAAAAgFYRGAEAAAAArSIwAgAAAABa5bS6gJ5mt9usLgEAAAAAelxHslC/u6wGAAAAAKBtOCUVAAAAANAqAiMAAAAAoFUERgAAAABAqwiMAAAAAIBWERgBAAAAAK0iMAIAAAAAWkVgBAAAAAC0isAIAAAAAGgVgREAAAAA0Kp+ERgPHDigOXPmKC8vT3PmzNHBgwetLgmQJC1ZskS5ubnKyMjQ3r17g+1n+p3l9xm9QUVFhb73ve8pLy9PM2bM0O23367y8nJJ0tatW3XVVVcpLy9Pt9xyi8rKyoLbnakP6Ak/+MEPdNVVV2nWrFmaN2+edu/eLYnXXYSOxx9//LTPDbzmotuZ/cCNN95oPv/886Zpmubzzz9v3njjjRZXBLT48MMPzaKiIvOyyy4z9+zZE2w/0+8sv8/oDSoqKsz33nsvuP6LX/zC/NnPfmYahmFeccUV5ocffmiapmkuW7bMvOeee0zTNM/YB/SU6urq4PLLL79szpo1yzRNXncRGnbs2GF+97vfNS+99FJzz549vOaiR/T5I4xlZWXatWuXpk+fLkmaPn26du3aFfxLOGClnJwcpaSknNZ2pt9Zfp/RW3g8Hk2aNCm4np2draKiIhUUFMjtdisnJ0eSNHfuXG3YsEGSztgH9JSYmJjgss/nk81m43UXIaGpqUn333+/Fi1aJJvNJunMr6u85qKrOK0uoLt5vV4NHDhQDodDkuRwOJScnCyv16uEhASLqwO+6Ey/s6Zp8vuMXscwDK1cuVK5ubnyer1KTU0N9iUkJMgwDFVWVp6xz+PxWFE6+ql7771Xb7/9tkzT1JNPPsnrLkLCr3/9a1111VUaMmRIsI3XXPSEPn+EEQDQvR544AFFRkbqhhtusLoUoE0eeughvf7667rzzjv18MMPW10OcFZbtmxRQUGB5s2bZ3Up6If6fGBMSUlRcXGxAoGAJCkQCKikpOQLpwH+v3bt3/W0OI7j+ItBJj9iIAYZ1Im/gkkZ/A9k8A+wWSwysCiL3R9wLIYzWUQmmygLhpNBCZPv9p1ObveW69zvfT6203s5w6tXveoDuMWrzJJnuE2n09F+v1e/35fX61U8HtfhcPi+n89neTwehUKhlzfgE8rlsubzuWKxGL0LV1ssFtrtdioUCsrn8zqdTqpUKtrv93Qu3u7HD8ZIJCLDMGSapiTJNE0ZhsEzErjWq8ySZ7hJr9fTer3WYDCQz+eTJOVyOd3vdy2XS0nSeDxWsVj85Q34G67Xq47H4/e3ZVkKBoP0LlyvVqtpNpvJsixZlqVYLKbRaKRqtUrn4u08z+fz+emfeLftdqtms6nL5aJAIKBOp6N0Ov3p3wLUbrc1nU5l27bC4bBCoZAmk8nLzJJnuMFms1GpVFIqlZLf75ckJZNJDQYDrVYrtVotPR4PJRIJdbtdRaNRSXp5A97Ntm3V63Xdbjd5vV4Fg0E1Gg1ls1l6F/+UfD6v4XCoTCZD5+Lt/ovBCAAAAAD4fT/+SSoAAAAA4M8wGAEAAAAAjhiMAAAAAABHDEYAAAAAgCMGIwAAAADAEYMRAAAAAOCIwQgAAAAAcMRgBAAAAAA4+gKFuV8eYbVLzgAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA38AAAEuCAYAAAA++qv0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3Xl8VPW9//H3bFlnspGwBBIMO2ERMQLWiLaKsdZdFKTFe8XbVitY2l/7UPlV0AuKXi1dsNKW2t+9l9ZKEbW01tpKpSlLQdEQCYuAIUAIkJB1Jsss5/z+CIRFMAsJZ5J5PR+PPGbO93wn+YTHh0neOed8j800TVMAAAAAgB7NbnUBAAAAAICuR/gDAAAAgAhA+AMAAACACED4AwAAAIAIQPgDAAAAgAhA+AMAAACACOC0uoALUV5eZ3UJ55ScHKeqqnqry0AEovdgFXoPVqH3YBV6D1Y5u/fS0jxtfi1H/rqA0+mwugREKHoPVqH3YBV6D1ah92CVC+k9wh8AAAAARADCHwAAAABEAMIfAAAAAEQAwh8AAAAARADCHwAAAABEAMIfAAAAAEQAwh8AAAAARIBWb/IeCAQ0b948lZaWyu/366GHHtKQIUP02GOPyWazaejQoVqwYIHsdrtefPFFrVu3Tk6nU/PmzdPYsWNVUlJywXMBAAAAABem1WS1Zs0aJSUl6ZVXXtHy5cu1cOFCLV68WHPnztUrr7wi0zS1du1aFRUVacuWLVq1apWWLFmip556SpIueC4AAAAA4MK1euTvxhtvVF5eXsu2w+FQUVGRJkyYIEmaPHmyNmzYoKysLOXm5spmsyk9PV2hUEiVlZUXPHfKlCld8X0DAACgmzJNU4ZpyjB04tE8MSYZRvM+0zw1T6ZkNL9QJzZb5p891vz85OvPNdb8WFbTqKqq+jbMbx6TdKouNX9Bs+UbOvnQvP/M7/XUvlPzPvvv8dnPdeYnME/7XKe/rmVue1532mSzZfqZk8zTP9/pX+dc38DnDJ/9eVtzvunnHj7P6Hk+R3yMS9fnDJDT0X3PTGw1/MXHx0uSvF6vHnnkEc2dO1fPPfecbDZby/66ujp5vV4lJSWd8bq6ujqZpnlBcz9PcnKcnE5HO7/liyMtzWN1CYhQ9B6sQu/BKvRe60KGqUAwpEDQkD9w5mMgaMgfDMkfaH4eDBkKhQwFQ6ZCRvPjGWMhQ0HDVDBoKGgYCp3Y3zznxFzjxFjw1POTocwwToW2kGG0bIda9p0+77PPQ8ZnAxJwsUzOyVC/MHjP6ej7XqvhT5LKysr08MMPa8aMGbrlllv0/PPPt+zz+XxKSEiQ2+2Wz+c7Y9zj8ZxxzV5H5n6eqqr6tpR/0aWleVRe/vnBFegK9B6sQu/BKt2990zTlD9oqMkfUlPgtI/Ttv2B5v2NgZD8Z+1r8ofkDxoKhE4EtxNh7uR24LQAZjWH3SabzSa7XbLbbKdt22S36cSjTU67TTa7XY6T4zabbCf2nXyt/eTrTo6f9nrb6a+zSbaTjzq5fWJMn92nE6+TTjyemH9y7NTrJHd8tOob/GeMfeZrnf41bKfGdOK5dGL7xLyTbGc9senk1z/172k7a59sbX2d7cyvccbnO3P+6Z/v9K9zZt2f/7qWOs5+nc7D9tk955t7jqmfy9aOF5xranyMS3EOm+XvOWe/77UnCLYa/ioqKjRr1izNnz9fV155pSQpOztbmzdv1sSJE5Wfn69JkyYpMzNTzz//vB544AEdOXJEhmEoJSXlgucCAACEK8MwVd8UVF29X/WNQTU0BVV/4qPh5Edj6MztM/aHmk9LvEA2m+Ry2uVy2JsfnXbFRkfJ6bCdNu6Qy2k/NeZ0nDHf6bDJ5bDL4bDL4WgOZ077yefNj0578/jJOc4TIc3haB47Y7/dJueJ19rt7fwtvRvo7n94QGSyma2cSLto0SK9/fbbGjRoUMvY//2//1eLFi1SIBDQoEGDtGjRIjkcDi1dulT5+fkyDEOPP/64cnJyVFxcrCeeeOKC5p5PuP6H480AVqH3YBV6D1bp7N5r8odU7WtSrc8vb31A3obmj7oTj6ePeRsC8jUEznf50nnFRDkUG+1UXLRTsdFOxUQ7FONyKNrlUFRU82OMy6Eol0PRUQ5Fu+yKPrnf5VBM1KnnzY/2bn0NUnfF+x6sciFH/loNf+EsXP/D8WYAq9B7sAq9B6u0tfcamoKqrGtSjbdJNV6/qn0nHlu2/arxNqnRH2r1c9ltNsXHOuWOdckT65I7LkruWKfiY1yKPRHoTga72OgTQS+meSwmytkjj4JFIt73YJUuPe0TAAAgnBmmqRqvX8drG1VZ26jjNY063vLYpOO1jWpoCn7u53DHupSaGKNEd7SS4qOU4I6SJzZK7liX3HEnQt6J57HRzpZrwACgOyH8AQCAsGcYpirrGnW0qkHHKuubH6saVFHbqCPHfQqGzn0iU7TLoV6JMRrSP1HJnmgluaOU5I5W4snH+CglxEdx2iSAiED4AwAAYaMpEFLZcZ9Ky306XOFT2fF6Ha2qV3l1o4Ih4zPz42NdGpDmVmpSrHolRKtXQkzzR2KMUhJiFB/jbNcKfwDQkxH+AADARRcyDJUdr9fBY14drjgV9sqrGz6zgEpctFMZvePVOzlOfZJj1Ts5Vn2S49QnJU6XZCSrosJryfcAAN0N4Q8AAHSpYMjQ4Qqf9h+pU8nROh04UqeDx7zyB888kueOdWl4ZpLSU+PVPzVe/dPc6tcrTu5Y13mP3nFUDwDajvAHAAA6jWmaOl7TqL2lNdpTWqNPD9eqtNx7xjV5DrtN6anxGtjXo8zebvVPc6t/arwS4qMsrBwAej7CHwAA6LBgyFDJ0TrtO1TTEvhqvP6W/U6HTf3T3Lqkr0cD+3g0sK9HA9Li5XKe/z6+AICuQfgDAABtFjIM7S+r046SKu0qqdLe0hoFTjt9MzE+SpcPT9OQ/oka0j9RmX08cjlZSRMAwgHhDwAAnJdpmiqt8GnH/irt3F+p3Qerz7gR+oC0eA0dkKQhA5rDXmpiDNfhAUCYIvwBAIAzNPlD2llSpcJPj+vjfRU6XtvUsq9PcqwmZSdr5CUpGp6ZpIQ4rtMDgO6C8AcAAFRZ26gPPylX4b7j2nWguuWeenHRTk0Y2Vujs3pp5MBk9UqMsbhSAEBHEf4AAIhQx6obtHX3MW3dXa5PD9e2jA9Ic+vSIb00ZlAvDe6fIIeda/YAoCcg/AEAEEGOVdVry87mwFdytE6SZLfZNHJgsnKGp+nSIalKSeDoHgD0RIQ/AAB6OG9DQO/vOqZN249ob2mNpOZ77Y0elKKc4b112dBUebh2DwB6PMIfAAA9UDBkqHDfcW3afkTb9lUoGDJlkzRyYLKuHNVXlw1LVXyMy+oyAQAXEeEPAIAe5GhVvf5RcFjrC8vkbQhIkvqnxesLo/pqYnYfTukEgAhG+AMAoJsLhgwV7KnQPwpKVbS/SpLkjnXphisy9IXRfZXR28299wAAhD8AALqrqromvfdRqf657bBqfH5J0rCMJF17WbouH9ZbLierdAIATiH8AQDQzRw85tVftxzQv3YcVcgwFRvt1PWXD9A1l/VX/9R4q8sDAIQpwh8AAN2AaZoqKq7UO1sOtJza2a9XnKZckaErR/VVtMthcYUAgHBH+AMAIIyFDENbdhzT25tLdKjcJ0kakZmkGyZkauzgXrJzLR8AoI0IfwAAhKGQYWjzjqP644b9OlrVILvNpknZfXTDhAxd0jfB6vIAAN0Q4Q8AgDASMgz9q+io/rhxv45VNchht+macen6yqSBSk2Ktbo8AEA31qbwt23bNr3wwgtasWKFvvOd76iiokKSVFpaqksvvVQ/+tGP9OCDD6q6uloul0vR0dH61a9+pZKSEj322GOy2WwaOnSoFixYILvdrhdffFHr1q2T0+nUvHnzNHbs2PPOBQAgEhiGqU1FR84IfdeOS9dNVw5UaiKhDwBw4VoNf8uXL9eaNWsUG9v8g+dHP/qRJKmmpkb33XefHn/8cUnSgQMH9NZbb51xH6HFixdr7ty5mjhxoubPn6+1a9cqPT1dW7Zs0apVq1RWVqY5c+Zo9erV55w7ZcqUrvieAQAIK9uLj+v3f9+nQ+Xe5tB3WX99ZdJA9UrkhuwAgM7T6qG1zMxMLV269DPjS5cu1de+9jX17t1bFRUVqq2t1YMPPqh7771X7733niSpqKhIEyZMkCRNnjxZGzdu1NatW5Wbmyubzab09HSFQiFVVlaecy4AAD3ZgaN1+uHKAi1ZuU2l5V59YXRfLf7mJN2XN5zgBwDodK0e+cvLy9OhQ4fOGDt+/Lg2bdrUctQvEAho1qxZuu+++1RTU6N7771XY8eOlWmaLUcC4+PjVVdXJ6/Xq6SkpJbPdXL8XHNbk5wcJ6czPJe2TkvzWF0CIhS9B6vQe21XUd2gFW/v1HtbD8o0pXFD03T/LaM0qH+i1aV1S/QerELvwSod7b0OLfjyl7/8RTfffLMcjubglZqaqunTp8vpdKpXr14aOXKkiouLz7hmz+fzKSEhQW63Wz6f74xxj8dzzrmtqaqq70j5XS4tzaPy8tbDK9DZ6D1Yhd5rG38gpLc3H9Cf/1WiQNDQgLR43f3FIRqdlSKbzca/YQfQe7AKvQernN177QmCHVpRZdOmTZo8eXLL9saNGzV37lxJzcFtz549GjRokLKzs7V582ZJUn5+vnJycjR+/HitX79ehmHo8OHDMgxDKSkp55wLAEBPUbCnQj/41Wb9YX2x4mKcuv+mEXry/gkaM6jXGdfLAwDQVTp05K+4uFgZGRkt29dcc43Wr1+ve+65R3a7Xd/97neVkpKiRx99VE888YSWLFmiQYMGKS8vTw6HQzk5OZo2bZoMw9D8+fMl6ZxzAQDo7o5VN+h3f/tE2/Ydl8NuU96EDN16VZZio7nbEgDg4rKZpmlaXURHheuhdk4DgFXoPViF3vusYMjQO1sO6A/r9ysYMjQiM0lfvWG4+qfGW11aj0LvwSr0HqxyIad98mdHAAA6WXFZrf777V06eMyrhPgoTb9uiCaO7MPpnQAASxH+AADoJE3+kN5c/6n++n7zKp5Xj+2ne740RPExLqtLAwCA8AcAQGf45GC1Xn5rh8qrG9U7KVb/duNwjbwkxeqyAABoQfgDAOACBIIhvfHPYr2z+YBkk26cmKnbc7MU5QrP+9ACACIX4Q8AgA4qOVKnX/1ph0orfOqdFKv/uDlbQwZwo3YAQHgi/AEA0E6GYerP/yrRH9YXK2SY+uL4/rrn2iGKjuJoHwAgfBH+AABoh6q6Ji3/Y5F2HahWsida9980QqOzelldFgAArSL8AQDQRtv2Vujlt3bK2xDQZUNTdf9NI+WOZSVPAED3QPgDAKAVgaCh19bt098+OCinw66vThmmL43vz337AADdCuEPAIDPcbymUS+9uV3FZbXqmxKnB28bpcw+HqvLAgCg3Qh/AACcx/bi4/rlmh3yNgR05ai+ui9vOIu6AAC6LcIfAABnMUxTb23crzf/WSy73aaZecN17bh0TvMEAHRrhD8AAE5T3xjQ8j/u0LZ9x5WSEK1v3T5Gg9ITrC4LAIALRvgDAOCEI5X1+ulrhTpSWa/sS5L1zVtHyRMXZXVZAAB0CsIfAABqvr5v2ZtFamgK6sYJmZp67WDZ7ZzmCQDoOQh/AICIZpqm/vbBIa38+x457DY98JWRumpMP6vLAgCg0xH+AAARKxgy9L/v7Nb6wjIlxkdp9p1jNLh/otVlAQDQJQh/AICI1NAU1M/e+Fg79ldpYF+P5tw5RikJMVaXBQBAlyH8AQAiTmVto368qlCHyr0aNyRV37x1FPfvAwD0eIQ/AEBEOXjMqx+v2qaquiZ9cXx/ffX6YSzsAgCICIQ/AEDEKNpfqZfe+FgNTSHd/cXBunFCJjduBwBEDMIfACAibPi4TP/99i7ZbNI3bx2lidl9rC4JAICLivAHAOjx3v5XiVat26e4aKfm3DVGwzOTrS4JAICLzt6WSdu2bdPMmTMlSUVFRbr66qs1c+ZMzZw5U3/+858lSS+++KKmTp2q6dOnq7CwUJJUUlKie++9VzNmzNCCBQtkGEa75wIA0FGmaeq1dfu0at0+pSREa97Mywl+AICI1eqRv+XLl2vNmjWKjY2VJO3YsUP333+/Zs2a1TKnqKhIW7Zs0apVq1RWVqY5c+Zo9erVWrx4sebOnauJEydq/vz5Wrt2rdLT09s8d8qUKV33nQMAejTDNPWbv36idR+Vqk9yrL43/TL1SuRWDgCAyNXqkb/MzEwtXbq0ZXv79u1at26dvvrVr2revHnyer3aunWrcnNzZbPZlJ6erlAopMrKShUVFWnChAmSpMmTJ2vjxo3tmgsAQEcEQ4Z+9ccdWvdRqTJ6u/XY1y4n+AEAIl6rR/7y8vJ06NChlu2xY8fq7rvv1ujRo7Vs2TL97Gc/k8fjUVJSUsuc+Ph41dXVyTTNllXUTo55vd42z21NcnKcnM7wvC9TWprH6hIQoeg9WCVces8fCOm5//1AW3Yc1YiByVrwH5Pkjouyuix0oXDpPUQeeg9W6WjvtXvBlylTpighIaHl+cKFC3XdddfJ5/O1zPH5fPJ4PLLb7WeMJSQkyO12t3lua6qq6ttb/kWRluZReXnr4RXobPQerBIuvdfQFNTS1YXadaBaoy5J1uw7x6rB16QGX5PVpaGLhEvvIfLQe7DK2b3XniDYpgVfTvfAAw+0LNKyadMmjRo1SuPHj9f69etlGIYOHz4swzCUkpKi7Oxsbd68WZKUn5+vnJycds0FAKCt6huD+uHKAu06UK3Lh6XpkamXKjoqPM8OAQDACu0+8vfkk09q4cKFcrlcSk1N1cKFC+V2u5WTk6Np06bJMAzNnz9fkvToo4/qiSee0JIlSzRo0CDl5eXJ4XC0eS4AAG1R3xjUkt8X6NPDtbpyVB/N+spIOezt/vsmAAA9ms00TdPqIjoqXA+1cxoArELvwSpW9l59Y0A/XLlNxWW1+sLovpp100jZ7TZLasHFx/serELvwSoXctonN3kHAHRbzcGvQMVldbpqdF/dT/ADAOC8CH8AgG7pjOA3pq/u/zLBDwCAz0P4AwB0O6cHv9wx/fTvXx5B8AMAoBWEPwBAt1LfGNQLrxZo/5ETwe+mEbLbCH4AALSGpdAAAN1Gkz+kH7+2jeAHAEAHEP4AAN1CIBjSi68Xau+hGk3M7tN8qifBDwCANiP8AQDCXjBkaNmbRSraX6VxQ1L1wFdY3AUAgPYi/AEAwpphmHr5rZ0q2FuhkQOT9dDto+R08OMLAID24qcnACBsmaap/31nlzbvOKohAxL1yF1j5XI6rC4LAIBuifAHAAhLpmnq1bV7lb+tTAP7eDR36qWKjiL4AQDQUYQ/AEBY+uOG/frbBweVnhqv7067VHEx3J0IAIALQfgDAISddR+V6s31xUpNjNH/mTZOnrgoq0sCAKDbI/wBAMLK1t3HtOKvu+WJc+n/TBunZE+01SUBANAjEP4AAGFj94Eq/WLNDkU5HZp796XqkxJndUkAAPQYhD8AQFg4cLROP11dKNM0NfvOMcrql2B1SQAA9CiEPwCA5cqrG/Sj329TQ1NID9w8UqOyUqwuCQCAHofwBwCwVG29X0tWFqjG59e91w3VpOy+VpcEAECPRPgDAFimKRDST1YV6mhVg26aNFBTrsiwuiQAAHoswh8AwBKGYeqXa4pUXFarL4zuq7uuGWR1SQAA9GiEPwCAJVb+fa8+2lOhkQOT9e9fHiGbzWZ1SQAA9GiEPwDARffuBwf1tw8OKj01Xg/fMVpOBz+OAADoavy0BQBcVB/tKdfv1u5RYnyU5t49VnExLqtLAgAgIhD+AAAXTXFZrX6xpkgup12PTB2r1MRYq0sCACBiONsyadu2bXrhhRe0YsUK7dy5UwsXLpTD4VBUVJSee+45paamatGiRfrwww8VHx8vSXrppZcUCAT0ve99T42Njerdu7cWL16s2NhY/f73v9err74qp9Ophx56SF/84hdVWVl5zrkAgJ6hoqZBP3mtUIGAodl3cRN3AAAutlaP/C1fvlw/+MEP1NTUJEl6+umn9cQTT2jFihWaMmWKli9fLkkqKirSr371K61YsUIrVqyQx+PRSy+9pJtvvlmvvPKKsrOztXLlSpWXl2vFihV69dVX9fLLL2vJkiXy+/3nnAsA6BnqGwP68apC1fr8uvf6obpsaJrVJQEAEHFaDX+ZmZlaunRpy/aSJUs0cuRISVIoFFJ0dLQMw1BJSYnmz5+v6dOn67XXXpMkbd26VVdffbUkafLkydq4caMKCwt12WWXKSoqSh6PR5mZmdq1a9c55wIAur9gyNDP3tiuwxU+TcnJ0PU53MsPAAArtHraZ15eng4dOtSy3bt3b0nShx9+qN/85jf67W9/q/r6en3ta1/T/fffr1AopPvuu0+jR4+W1+uVx+ORJMXHx6uuru6MsZPjXq/3nHNbk5wcJ6fT0b7v+CJJS/O0PgnoAvQerHKu3jNNUz9Z+ZF2llRp0ui+enjaZXLYuaUDOhfve7AKvQerdLT32nTN39n+/Oc/a9myZfrlL3+plJSUlsB38hq9SZMmadeuXXK73fL5fIqJiZHP51NCQkLL2Ek+n08ej+ecc1tTVVXfkfK7XFqaR+XlrYdXoLPRe7DK+Xrv7c0lWvv+QV3S16N/yxuuyuNeC6pDT8b7HqxC78EqZ/dee4Jgu1f7/MMf/qDf/OY3WrFihTIymk/d2b9/v2bMmKFQKKRAIKAPP/xQo0aN0vjx4/WPf/xDkpSfn6/LL79cY8eO1datW9XU1KS6ujrt27dPw4YNO+dcAED39dGecr323j4le6I1566xinaF55kaAABEinYd+QuFQnr66afVr18/zZkzR5J0xRVX6JFHHtEtt9yie+65Ry6XS7fddpuGDh2qhx56SI8++qh+//vfKzk5WT/84Q8VFxenmTNnasaMGTJNU9/5zncUHR19zrkAgO7p4DGvfrlmR/MtHe4aq2RPtNUlAQAQ8WymaZpWF9FR4XqondMAYBV6D1Y5vfdqfH4t+p/3dby2Sd+6fbRyRvS2uDr0ZLzvwSr0HqxyUU/7BADgfALBkH72+sc6XtukO67OIvgBABBGCH8AgE5hmqb+++3d2ltao4nZfXTzFy6xuiQAAHAawh8AoFO8vfmANhUdUVa/BN3/5RGy2bilAwAA4YTwBwC4YJs+LtPqdSdX9hyjKFb2BAAg7HToPn8AAJx04GidlrzyoVyu5pU9k9ys7AkAQDjiyB8AoMNq6/1aurpQjf6Qvn5ztgb2bfuKYwAA4OIi/AEAOiQYMvTzN7freG2TZuSN0OXDWdkTAIBwRvgDAHTIyr/v1a4D1Ro/LE3Trh9mdTkAAKAVhD8AQLv9s/Cw1m49pP6p8XrgKyNlt7OyJwAA4Y7wBwBol32Ha7Tind2Ki3Zq9l1jFBvN2mEAAHQHhD8AQJtVe5v0s9c/Vsgw9eDto9QnOc7qkgAAQBsR/gAAbRIIGvrZGx+r2uvX3dcO0eisXlaXBAAA2oHwBwBolWma+u3fdmtfaa0mZvdR3oQMq0sCAADtRPgDALRq3Uelyt9Wpsw+bv37l0fIZmOBFwAAuhvCHwDgc+0+UKVX3t0jd6xLs+8co2iXw+qSAABABxD+AADnVVnbqJfe3C5JeviO0UpNjLW4IgAA0FGEPwDAOfkDIS1d/bHq6gOaft1QDc9MtrokAABwAQh/AIDPME1T//OXXSo5Wqfcsf30pfH9rS4JAABcIMIfAOAz/vr+QW0qOqrB6QmaecNwFngBAKAHIPwBAM5QVFyp37+3V4nuKH3rjjFyOflRAQBAT8BPdABAi2PVDfr5H7bLYbdp9h1jlOyJtrokAADQSQh/AABJUqM/qKWrC+VrDGrmDcM1uH+i1SUBAIBORPgDAMg0Tb381k6Vlvt03fgBuvrSdKtLAgAAnaxN4W/btm2aOXOmJKmkpET33nuvZsyYoQULFsgwDEnSiy++qKlTp2r69OkqLCzstLkAgK73p00l2rq7XMMzkjTtuiFWlwMAALpAq+Fv+fLl+sEPfqCmpiZJ0uLFizV37ly98sorMk1Ta9euVVFRkbZs2aJVq1ZpyZIleuqppzplLgCg6xXsrdCb+Z+qV0K0HrpjtJwOTgoBAKAnavUnfGZmppYuXdqyXVRUpAkTJkiSJk+erI0bN2rr1q3Kzc2VzWZTenq6QqGQKisrL3guAKBrlR33afkfi+Ry2jX7zrFKiIuyuiQAANBFnK1NyMvL06FDh1q2TdNsud9TfHy86urq5PV6lZSU1DLn5PiFzm1NcnKcnE5HG7/ViystzWN1CYhQ9B7aytcQ0Esvb1FDU0jf++rlyhlzYdf50XuwCr0Hq9B7sEpHe6/V8Hc2u/3UwUKfz6eEhAS53W75fL4zxj0ezwXPbU1VVX17y78o0tI8Ki9vPbwCnY3eQ1sZpqmfvlao0nKvbpyYqeyMxAvqHXoPVqH3YBV6D1Y5u/faEwTbfWFHdna2Nm/eLEnKz89XTk6Oxo8fr/Xr18swDB0+fFiGYSglJeWC5wIAusab//xUhfuOa1RWiqZeM9jqcgAAwEXQ7iN/jz76qJ544gktWbJEgwYNUl5enhwOh3JycjRt2jQZhqH58+d3ylwAQOf7YNcx/WljiXonxerB20bJbrdZXRIAALgIbKZpmlYX0VHheqid0wBgFXoPrTl0zKunV2yVJP3gvsvVP83dKZ+X3oNV6D1Yhd6DVS7qaZ8AgO7J2xDQT1cXqikQ0n/cPLLTgh8AAOgeCH8AEAFChqFlb25XRU2jbr3qEl0+vLfVJQEAgIuM8AcAEWDl3/dqZ0mVLhuaqltzs6wuBwAAWIDwBwA93PrCMr37wSH1T43Xf9ycLbuNBV4AAIhEhD8A6MH2Ha7R/76zS3HRTs2+a4xio9u9yDMAAOghCH8A0ENV1TXpxdc/Vsgw9eDto9QnOc7qkgAAgIUIfwDQAwWChl5642PVeP26+9ohGp3Vy+qSAACAxQh/ANDDmKapFe/s1r7DtbpyVB8fxqhxAAAdU0lEQVTlTciwuiQAABAGCH8A0MOs3XpI6z8u0yV9Pfq3G0fIxgIvAABAhD8A6FF2llTp1bV7lRAfpdl3jlGUy2F1SQAAIEwQ/gCghyivbtCyN7fLZpMevmO0UhJirC4JAACEEcIfAPQATf6Qlq7+WN6GgL52wzANHZBkdUkAACDMEP4AoJszTVMvv7VDh8q9+uL4/rpmXH+rSwIAAGGI8AcA3dwfN+7XB7vLNSwjSfdeN9TqcgAAQJgi/AFAN/bBrmN685/F6pUQo2/dPlpOB2/rAADg3PgtAQC6qf1HavWrP+1QdJRD3546VgnxUVaXBAAAwhjhDwC6oaq6Ji1d/bECQUPfvGWUBvR2W10SAAAIc4Q/AOhm/IGQXny9UFV1TZr6xcEaNzTV6pIAAEA3QPgDgG7ENE39+s87VVxWp6vG9NWNEzKtLgkAAHQThD8A6Eb+uGG/tuw8pqEDEnVf3gjZbDarSwIAAN0E4Q8Auon3dx3Tm+uLlZoYo4fvHCOXk7dwAADQdvzmAADdwP4jtXr5xMqej0wdq4Q4VvYEAADtQ/gDgDBXVdekn75W2Lyy562jNCCNlT0BAED7OTvyotdff11vvPGGJKmpqUk7d+7UD3/4Q/3Xf/2X+vXrJ0maM2eOcnJy9OSTT2r37t2KiorSokWLNHDgQBUUFOjpp5+Ww+FQbm6uZs+eLcMwzjkXACJZQ1NQP1m1TdVev+754hCNG8LKngAAoGM6FP7uvPNO3XnnnZKkp556SnfddZeKior0/e9/X3l5eS3z/vrXv8rv92vlypUqKCjQs88+q2XLlmnBggVaunSpMjIy9I1vfENFRUUqLS0951wAiFQhw9Av1hTpwDGvrhmXrrwJGVaXBAAAurELOu3z448/1t69ezVt2jQVFRVp9erVmjFjhp599lkFg0Ft3bpVV199tSRp3Lhx2r59u7xer/x+vzIzM2Wz2ZSbm6tNmzadcy4ARCrTNPXK3/aocN9xjR6Uoq/dMIyVPQEAwAXp0JG/k37xi1/o4YcfliRdddVVuv766zVgwAAtWLBAr776qrxer9zuU9emOByOz4zFx8fr4MGD55wbDAbldJ6/xOTkODmdjgv5FrpMWprH6hIQoei9nuGNdXv13keluqRfgp54YJLiYlxWl9Qqeg9WofdgFXoPVulo73U4/NXW1urTTz/VpEmTJEl33XWXEhISJEnXXXed3nnnHXk8Hvl8vpbXGIYht9t9xpjP51NCQoIaGxs/M/fzgp8kVVXVd7T8LpWW5lF5eZ3VZSAC0Xs9wwe7junXfyxSkjtKs+8YLV9do3x1jVaX9bnoPViF3oNV6D1Y5ezea08Q7PBpn++//76+8IUvSGo+PenWW2/VkSNHJEmbNm3SqFGjNH78eOXn50uSCgoKNGzYMLndbrlcLh04cECmaWr9+vXKyck551wAiDT7Smu0/MQtHebefalSEmKsLgkAAPQQHT7yV1xcrAEDBkiSbDabFi1apNmzZysmJkaDBw/WPffcI4fDoQ0bNmj69OkyTVPPPPOMpOZFYr73ve8pFAopNzdXl156qcaMGXPOuQAQKY5V1eunqwsVCpl6+I4xyuzD6UQAAKDz2EzTNK0uoqPC9VA7pwHAKvRe9+VtCOjpFVt1tLJe9+UN17WX9be6pHah92AVeg9WofdgFUtO+wQAdI5A0NCLqwt1tLJeN07M7HbBDwAAdA+EPwCwkGGYWv6nHfrkUI1yhqdp6rWDrS4JAAD0UIQ/ALCIaZr63bt79MGuYxo2IFH/cXO27NzLDwAAdBHCHwBY5K1NJVr74SH1T4vXI1PHKsoVnvctBQAAPQPhDwAskL/tsF7P/1S9EqL13XvGdYubuAMAgO6N8AcAF1nBngr9z192yR3r0nenjVOyJ9rqkgAAQAQg/AHARbT3UI2W/WG7XE67vn33WPXrFW91SQAAIEIQ/gDgIimt8Oknr21TKGTqW7eP0eD0RKtLAgAAEYTwBwAXwbHqBv3w1Y/kawzq/ptGaOzgXlaXBAAAIgzhDwC6WFVdk1743Ueq9vo17UtDdNWYflaXBAAAIhDhDwC6UG29Xy+8+pEqahp1W26W8iZkWl0SAACIUIQ/AOgi9Y0BLVlZoLLj9cqbkKFbr7rE6pIAAEAEI/wBQBdo8of041WFOnDUq2vGpeueLw6RzWazuiwAABDBCH8A0MkCwZB+urpQe0trNCm7j2beMJzgBwAALEf4A4BOFAwZWvZmkXaWVGnckFTN+spI2e0EPwAAYD3CHwB0kmDI0M//UKSCvRUaOTBZD90+Sk4Hb7MAACA88FsJAHSCk8Hvw0/KNSIzSY9MHSuX02F1WQAAAC0IfwBwgc4Oft+++1JFuwh+AAAgvBD+AOACEPwAAEB3QfgDgA4Khgz9guAHAAC6CcIfAHTAyeC39WTwm0rwAwAA4c1pdQEA0N0EgiEte7N5Vc+W4BdF8AMAAOGN8AcA7dDQFNTS1YXadaBaoy5J1uw7xxL8AABAt9Dh8Hf77bfL4/FIkgYMGKBp06bp6aeflsPhUG5urmbPni3DMPTkk09q9+7dioqK0qJFizRw4EAVFBS0eS4AhAtvQ0A/XrVNnx6u1fhhafrmraPkcnL2PAAA6B46FP6ampokSStWrGgZu+2227R06VJlZGToG9/4hoqKilRaWiq/36+VK1eqoKBAzz77rJYtW6YFCxa0eS4AhIMab5N+uLJAh8p9unJUX836ygg57AQ/AADQfXQo/O3atUsNDQ2aNWuWgsGg5syZI7/fr8zMTElSbm6uNm3apPLycl199dWSpHHjxmn79u3yer1tngsA4eB4TaNeePUjHa1q0JfG99eMKcNkt9msLgsAAKBdOhT+YmJi9MADD+juu+/W/v379fWvf10JCQkt++Pj43Xw4EF5vV653e6WcYfD8Zmxz5sbDAbldJ6/xOTkODmd4XmtTVqax+oSEKHovc5VWu7Vc7/7SBXVDbr7uqGa+eWRshH8zoneg1XoPViF3oNVOtp7HQp/WVlZGjhwoGw2m7KysuTxeFRdXd2y3+fzKSEhQY2NjfL5fC3jhmHI7XafMfZ5cz8v+ElSVVV9R8rvcmlpHpWX11ldBiIQvde59h2u0U9WFcrbENDUawfry1dkqKLCa3VZYYneg1XoPViF3oNVzu699gTBDl2w8tprr+nZZ5+VJB09elQNDQ2Ki4vTgQMHZJqm1q9fr5ycHI0fP175+fmSpIKCAg0bNkxut1sul6tNcwHAKh/tKdfzr3wkX2NA9904XDdNYgEqAADQvXXoyN/UqVP1+OOP695775XNZtMzzzwju92u733vewqFQsrNzdWll16qMWPGaMOGDZo+fbpM09QzzzwjSXrqqafaPBcALrb3Pjyk3/ztE7mcds25a6zGDUm1uiQAAIALZjNN07S6iI4K10PtnAYAq9B7F8Y0Tb2e/6ne2lQiT5xLc+++VFn9Elp/Ieg9WIbeg1XoPVjlQk775CbvACApGDL0//68U5uKjqpPcqy+c8+l6p0cZ3VZAAAAnYbwByDi+RoDeumN7dpZUqXB6Ql6ZOpYeeKirC4LAACgUxH+AES0I5X1+slrhTpaWa/LhqbqG7eOUrQrPG8hAwAAcCEIfwAiVtH+Si17Y7vqm4L68sRM3XXNYNnt3MMPAAD0TIQ/ABFp7dZD+t27e2S3Sw98ZaSuGtPP6pIAAAC6FOEPQEQJhgy98u4erfuoVAlxLs2+c6yGDEi0uiwAAIAuR/gDEDEqaxu17M3t2ne4Vhm93Zpz1xilJsZaXRYAAMBFQfgDEBF2lVTp53/Yrtr6gK4c1Uf33TiChV0AAEBEIfwB6NFM09Q7Ww7qtXX7ZLNJX50yTF8a3182Gwu7AACAyEL4A9Bj1TcG9P/e3qWtu8uV6I7St24fraEDkqwuCwAAwBKEPwA90r7DNfrFH4pUUdOoYRlJeui2UUp0R1tdFgAAgGUIfwB6FMM09dctB7X6H/tkGKZuveoS3XLVJXLY7VaXBgAAYCnCH4Aeo9bn16//vFOF+44rMT5K37glWyMvSbG6LAAAgLBA+APQIxTsqdB/v71TtfUBjcpK0ddvzlZCfJTVZQEAAIQNwh+Abq3RH9Sra/cqf9thOR12TfvSEE25IkN2VvMEAAA4A+EPQLe191CNlv+pSOXVjcro7dbXb8nWgDS31WUBAACEJcIfgG6nKRDSG/mf6m8fHJRM6aZJA3VbbpZcThZ1AQAAOB/CH4BuZWdJlf777Z0qr25U7+RYzbpppIZlcO8+AACA1hD+AHQL9Y1BrVq3V/8oOCybTbpxYqZuy81StMthdWkAAADdAuEPQFgzTVPv7zqmV9fuUbXXrwFp8br/ppHK6pdgdWkAAADdCuEPQNg6Ulmv3/51t4r2V8npsOv23CzddOVAOR1c2wcAANBehD8AYccfCOmtTSV6e3OJgiFTo7NS9NUbhqlPcpzVpQEAAHRbhD8AYcM0TW3ZeUyvrdun47WNSvZE697rhury4Wmycd8+AACAC9Kh8BcIBDRv3jyVlpbK7/froYceUt++ffXggw/qkksukSTde++9uummm/Tiiy9q3bp1cjqdmjdvnsaOHauSkhI99thjstlsGjp0qBYsWCC73X7OuQAiw97SGq1cu0f7DtfK6bDpxomZuuULlyg2mr9RAQAAdIYO/Va1Zs0aJSUl6fnnn1dVVZXuuOMOPfzww7r//vs1a9aslnlFRUXasmWLVq1apbKyMs2ZM0erV6/W4sWLNXfuXE2cOFHz58/X2rVrlZ6efs65AHq2iuoGvfaPfdqy85gkKWdEb029drB6J8VaXBkAAEDP0qHwd+ONNyovL69l2+FwaPv27SouLtbatWs1cOBAzZs3T1u3blVubq5sNpvS09MVCoVUWVmpoqIiTZgwQZI0efJkbdiwQVlZWeecm5KS0jnfKYCw4m0I6O1/lehvHxxSMGQoq59H068bqqEDuGcfAABAV+hQ+IuPj5ckeb1ePfLII5o7d678fr/uvvtujR49WsuWLdPPfvYzeTweJSUlnfG6uro6mabZcv3OyTGv13vOuZ8X/pKT4+R0huc9vtLSPFaXgAgV7r3nbQjozX/s1Zr8T9XQFFRqUqz+7SvZmjyuv+x2ruvrzsK999Bz0XuwCr0Hq3S09zp8MU1ZWZkefvhhzZgxQ7fccotqa2uVkNB8360pU6Zo4cKFuu666+Tz+Vpe4/P55PF4ZLfbzxhLSEiQ2+0+59zPU1VV39Hyu1Ramkfl5XVWl4EIFM6919AU1LsfHNQ7Ww6qvimohDiXbvvSEF17WX9FuRw6ftxrdYm4AOHce+jZ6D1Yhd6DVc7uvfYEwQ7dLKuiokKzZs3S97//fU2dOlWS9MADD6iwsFCStGnTJo0aNUrjx4/X+vXrZRiGDh8+LMMwlJKSouzsbG3evFmSlJ+fr5ycnPPOBdC9NfqDevtfJXr055v0xj+LZbfbdPe1g/Xcg1/QDRMyFeUKz6P3AAAAPU2Hjvz9/Oc/V21trV566SW99NJLkqTHHntMzzzzjFwul1JTU7Vw4UK53W7l5ORo2rRpMgxD8+fPlyQ9+uijeuKJJ7RkyRINGjRIeXl5cjgc55wLoHuq9fn17tZDeu/DQ/I1BhUb7dQdV2fp+pwMVvAEAACwgM00TdPqIjoqXA+1cxoArBIOvXesql7vbDmo9R+XKRA05I516frLB+i6nAGKj3FZWhu6Tjj0HiITvQer0HuwyoWc9smf3wF0iuKyWv1l8wF9sPuYTFNKTYxR3oRM5Y7tp2hO7QQAALAc4Q9AhwWCIW3ZeUx///CQisua/wKV2dutL08aqJwRaXLYO3RZMQAAALoA4Q9Au1VUN+i9j0r1z8IyeRsCstmkcUNSdd3lA5R9SXLLrVwAAAAQPgh/ANokGDK0be9xrS88rMJ9x2VKcse6dNOkgbr2snSlJsZaXSIAAAA+B+EPwOc6cLRO6z8u07+KjsrbEJAkZfVL0JfG99eEkb3lcnI9HwAAQHdA+APwGTU+v7bsPKoNhWU6cKz55uueOJduuCJDV43pp4zebosrBAAAQHsR/gBIkurq/dr6Sbne33lMuw5UyTQlh92my4am6qox/TR2cC85HSzgAgAA0F0R/oAI5m0I6KNPyvX+rmPasb9Kxonbfg7un6ArRvTRpOw+SoiPsrhKAAAAdAbCHxBhjlbVq2BPhQr2VGjPoZqWwJfVz6MrRvRRzog0Fm8BAADogQh/QA8XMgztK63Vtn3Nga/seL0kySZpUHqCxg1N1RUj+6h3EoEPAACgJyP8AT2MaZo6Vt2gHcWV2l5cqV0HqtTQFJIkRTntumxoqsYNSdXYIalK5JROAACAiEH4A3qAqromfXKwWiXln+qDHUdUUdPYsq93UqwmZqdo7OBeyh6YrCgXt2YAAACIRIQ/oJsxTVPHqhq0+2C19hys1ieHqlVefSrsxUY7dfmwNI3KSlF2VgqncwIAAEAS4Q8Ie43+oEqO1Km4rE6fHq7RJ4dqVOvzt+yPi3bq0sG9NCwzSRPHpCsxxiGHnVsyAAAA4EyEPyCMBEOGDpV7VVxWp+LDtSo+UqvDFT6dWJBTkpTojtIVI3prWEaShmUkqX9avOw2myQpLc2j8vI6i6oHAABAOCP8ARaprffr4DGvDp34OFju1eEKn4KhU0kvymXXkP6JyuqXcOLDo7SkWNlOhD0AAACgrQh/QBcyTVN1DQEdOV6vI5X1Kjvu06Fynw4d86rmtFM3JcnltKt/mrs55PX1KKtfgvqlxnEKJwAAADoF4Q/oBIFgSMeqGnSksjnknQx7Ryrr5WsMfmZ+amKMxg1J1YDebmX0dmtAWrz6JMfJbueIHgAAALoG4Q9og5BhqKq2SeU1jaqoblB5TaOO1zS0bFd7/Z95jcNuU+/kWA3LSFLflDj1TYlTv17xSk+NV1wM//UAAABwcfEbKCJeIGio2tukqrqmlsezn1fWNsk4fdWVE2w2KcUToxGZSUpLilW/XvHNQa9XnFITY+R0cMomAAAAwgPhDz1SMGSorj6gunq/auv9zc99ftXWB1Rb71etz98S7LwNgfN+HptNSoyP0qD0BKUmxSg1MVapiTFKS4xRalKskj3RBDwAAAB0C4Q/hLWQYai+Maj6xqB8jUH5GgPyNQaatxsC8rXsC8jXEFDticB3ruvszhbtcijJE60BafFK9kQryROtZHf0Gc8T3VEsuAIAAIAegfCHThcMGfIHDPmDITUFQmpsCqnRH1SDP6TGpqAa/SE1+kNqOPG8wX9yLHhqblNI9U0BNTSF2vx1bTbJE+tSkidamX088sS55ImLUkKcS574KCXERckT5zrxGKXYaAe3TAAAAEDECKvwZxiGnnzySe3evVtRUVFatGiRBg4caHVZ3Y5pmgqGTAVDhgIhQ6GQqUDIUDBoKBgyztpnKBA0T4yf2h8INu/3B0ItQe7U8xPjwebtpkCoZSwQNBQyPnttXFvZbTbFRDkUE+1Qr4RYuWOdiotxKT7GqfgYl+JinIqPbd6OOzEWf2IsNsrJapkAAADAeYRV+Hv33Xfl9/u1cuVKFRQU6Nlnn9WyZcusLqtdAsGQ/rq5REfLvTJMUyHDlGE0P4YMo+W5cdr4qf2njZ3+2pChkHn++WcHvAsJX+3hctoV5bQryuVQbLRTSfFRinI55HLaFe1yKMplV5SzOcjFRDkVe/IxqvkxJqr5dc1hr/kxymnnaBwAAADQBcIq/G3dulVXX321JGncuHHavn27xRW13+4D1Vr6+22d/nkddpscdpvspz2efB7tcsgZY5fTYZPLYZfT0fzc6bDL6Ty17XLY5XDYm+c4bXLaT+13OWyn7bPLabedM8hFuewt43ZCGgAAANBthFX483q9crvdLdsOh0PBYFBO57nLTE6Ok9PpuFjltcnklHglJcUpEDRawpnDYZPDbm8JbU7Hqeen72uee/pzm+x2u+w2cTQMbZaW5rG6BEQoeg9WofdgFXoPVulo74VV+HO73fL5fC3bhmGcN/hJUlVV/cUoq90uG95b5eV1bZtsmlIoJDMkBdX8AXRUWpqn7b0HdCJ6D1ah92AVeg9WObv32hMEw2oN+/Hjxys/P1+SVFBQoGHDhllcEQAAAAD0DGF15G/KlCnasGGDpk+fLtM09cwzz1hdEgAAAAD0CGEV/ux2u/7zP//T6jIAAAAAoMcJq9M+AQAAAABdg/AHAAAAABGA8AcAAAAAEYDwBwAAAAARgPAHAAAAABGA8AcAAAAAEYDwBwAAAAARwGaapml1EQAAAACArsWRPwAAAACIAIQ/AAAAAIgAhD8AAAAAiACEPwAAAACIAIQ/AAAAAIgAhD8AAAAAiABOqwvoSQzD0JNPPqndu3crKipKixYt0sCBA60uCz3Qtm3b9MILL2jFihUqKSnRY489JpvNpqFDh2rBggWy2+168cUXtW7dOjmdTs2bN09jx461umx0Y4FAQPPmzVNpaan8fr8eeughDRkyhN5DlwuFQvrBD36g4uJiORwOLV68WKZp0nu4aI4fP64777xTv/71r+V0Ouk9XBS33367PB6PJGnAgAGaNm2ann76aTkcDuXm5mr27Nkdyh6Ev0707rvvyu/3a+XKlSooKNCzzz6rZcuWWV0Wepjly5drzZo1io2NlSQtXrxYc+fO1cSJEzV//nytXbtW6enp2rJli1atWqWysjLNmTNHq1evtrhydGdr1qxRUlKSnn/+eVVVVemOO+7QiBEj6D10uffee0+S9Oqrr2rz5s0t4Y/ew8UQCAQ0f/58xcTESOJnLi6OpqYmSdKKFStaxm677TYtXbpUGRkZ+sY3vqGioqKWP8i2J3tw2mcn2rp1q66++mpJ0rhx47R9+3aLK0JPlJmZqaVLl7ZsFxUVacKECZKkyZMna+PGjdq6datyc3Nls9mUnp6uUCikyspKq0pGD3DjjTfq29/+dsu2w+Gg93BRXH/99Vq4cKEk6fDhw0pNTaX3cNE899xzmj59unr37i2Jn7m4OHbt2qWGhgbNmjVL9913n95//335/X5lZmbKZrMpNzdXmzZt6lD2IPx1Iq/XK7fb3bLtcDgUDAYtrAg9UV5enpzOUwftTdOUzWaTJMXHx6uuru4zvXhyHOio+Ph4ud1ueb1ePfLII5o7dy69h4vG6XTq0Ucf1cKFC5WXl0fv4aJ4/fXXlZKS0vLLtcTPXFwcMTExeuCBB/Tyyy/rqaee0uOPP95yxpd0/t5rS/Yg/HUit9stn8/Xsm0Yxhm/pANdwW4/9d/Y5/MpISHhM73o8/lazhsHOqqsrEz33XefbrvtNt1yyy30Hi6q5557Tu+8846eeOKJllOiJHoPXWf16tXauHGjZs6cqZ07d+rRRx8944gevYeukpWVpVtvvVU2m01ZWVnyeDyqrq5u2X++3mtL9iD8daLx48crPz9fklRQUKBhw4ZZXBEiQXZ2tjZv3ixJys/PV05OjsaPH6/169fLMAwdPnxYhmEoJSXF4krRnVVUVGjWrFn6/ve/r6lTp0qi93BxvPnmm/rFL34hSYqNjZXNZtPo0aPpPXS53/72t/rNb36jFStWaOTIkXruuec0efJkeg9d7rXXXtOzzz4rSTp69KgaGhoUFxenAwcOyDRNrV+/vqX32ps9OCzViaZMmaINGzZo+vTpMv9/u3aMqjAQhWH0j+5Ea7GxtNYNCEHchiBRtJKUlsF1plbz1vCKZ3jMOSu4A5cZPphhSNu2Y49EAU6nU67Xax6PR2azWbbbbabTaVarVeq6zufzye12G3tM/rnn85m+79N1XbquS5JcLpfc73e7x5/abDZpmiaHwyGv1yvn8znz+dy9xyi8uXzDbrdL0zTZ7/epqipt22YymeR4POb9fme9Xme5XGaxWPy6PaphGIYvnAEAAIAR+fYJAABQAPEHAABQAPEHAABQAPEHAABQAPEHAABQAPEHAABQAPEHAABQAPEHAABQgB/USJhrp5iZOAAAAABJRU5ErkJggg==\n", "text/plain": [ "
    " ] @@ -1371,10 +1396,11 @@ "for idx, t_value in enumerate(time[1:]):\n", " population[idx + 1] = population[idx] + delta_t * (r*population[idx] - a * population[idx]**2)\n", "\n", + "# Now plot the data\n", "bugs = pd.DataFrame(data = {'bacteria': population}, index=time)\n", "display(bugs.head())\n", - "ax = bugs.plot(figsize=(15,5))\n", - "ax.grid()" + "ax = bugs.plot(figsize=(15,5), legend=False) \n", + "ax.grid(True)" ] }, { @@ -1389,20 +1415,6 @@ "4. If you start with 1000 bacteria, do you end up with a different final colony size?" ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "dd\n" - ] - }, { "cell_type": "markdown", "metadata": {}, @@ -1542,7 +1554,7 @@ }, "hide_input": false, "kernelspec": { - "display_name": "Python 3", + "display_name": "Python [default]", "language": "python", "name": "python3" }, @@ -1556,7 +1568,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.3" + "version": "3.5.5" }, "toc": { "base_numbering": 1, From 5b7aee78e9462c6e034690a83ed9683431ca0bfc Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Wed, 24 Jul 2019 07:20:40 +0200 Subject: [PATCH 067/134] Moving content around --- Module-10-interactive.ipynb | 169 ++++++++++++++++++++++++++++-------- 1 file changed, 134 insertions(+), 35 deletions(-) diff --git a/Module-10-interactive.ipynb b/Module-10-interactive.ipynb index 32b16c5..db6460b 100644 --- a/Module-10-interactive.ipynb +++ b/Module-10-interactive.ipynb @@ -7,7 +7,7 @@ }, "source": [ "

    Table of Contents

    \n", - "" + "" ] }, { @@ -236,9 +236,9 @@ "3. Histograms\n", "\n", "while in this module we will cover:\n", - "4. Time-series, or sequence plots\n", - "5. Scatter plots\n", - "6. Data tables\n", + "4. Data tables\n", + "5. Time-series, or sequence plots\n", + "6. Scatter plots\n", "7. Pointers to some other interesting plots\n", "\n", "In between, throughout the notes, we will also introduce statistical and data science concepts. This way you will learn how to interpret the plots and also communicate your results with the correct language." @@ -1084,6 +1084,7 @@ "display(cheese.corr())\n", "cheese.head()\n", "\n", + "cmap = sns.diverging_palette(220, 10, as_cmap=True)\n", "\n", "# Draw the heatmap with the mask and correct aspect ratio\n", "sns.heatmap(cheese.corr(),#, mask=mask, cmap=cmap, \n", @@ -1303,7 +1304,13 @@ { "cell_type": "code", "execution_count": 48, - "metadata": {}, + "metadata": { + "deletable": false, + "editable": false, + "run_control": { + "frozen": true + } + }, "outputs": [ { "data": { @@ -1419,13 +1426,104 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Scatter plot\n", + "## Scatter plots\n", + "\n", "\n", + "Scatter plots are widely used and easy to understand. ***When should you use a scatter plot?*** When your goal is to draw the reader's attention between the relationship of 2 (or more) variables.\n", "\n", + "* Data tables also show relationships between two or more variables, but the trends are sometimes harder to see.\n", + "* A time-series plot shows the relationship between time and another variable. So also two variables, but one of which is time. \n", + "\n", + "In a scatter plot we use 2 sets of axes, at 90 degrees to each other. We place a marker at the intersection of the values shown on the horizontal (x) axis and vertical (y) axis.\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Regression\n", "\n", "In fact, if there is one thing we can guarantee that you will see in your career being ***misused***, it will be this model. Misused by others when they intrepret the results, misused when they build this model, misused when making predictions.\n", "\n", - "### Why use linear regression at all?\n", + "##### Why use linear regression at all?\n", "\n", "You use this type of model when you **need to interpret and quantify the relationship between two or more variables**.\n", "\n", @@ -1442,33 +1540,7 @@ "* *You*: The yield can be predicted from sucrose purity with an error of plus/minus 8%\n", "* *Colleague*: And how about the relationship between alcohol percentage and glucose purity?\n", "* *You*: Over the range of our historical data, there is no discernible relationship.\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "Seaborn: https://engmrk.com/module7-introduction-to-seaborn/\n", - "\n", - "* PCA loadings are orthogonal. Plot a scatter plot, and see the correlation is zero\n", - "\n", - "* Bubble plots from this notebook: https://nbviewer.jupyter.org/github/engineersCode/EngComp2_takeoff/blob/master/notebooks_en/2_Seeing_Stats.ipynb\n", - "\n", - "* regression: https://towardsdatascience.com/simple-and-multiple-linear-regression-in-python-c928425168f9\n", - "\n", - "* MUST COVER: qq-plot in Pandas\n", - "\n", - "* ShOULD show: correlations numerically calculated for the film thickness dataset, but then also visualized with ``data.plot('TopRight', 'BottomRight', kind='scatter')``\n", - "\n", - "\n", - "* MUST COVER: look at the goal to determine if students who took a longer time to finish actually scored a higher. Correlation plot and correlation value. Linear regression? R2 = correlation!\n", - "\n", - "* MUST COVER: https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.probplot.html\n", - "\n", - "* Regression model:http://localhost:8888/notebooks/Notebooks/Thermocouple%20-%20linear%20regression.ipynb\n", - "\n", - "\n", - "PCA plots: \n", - "PCA: https://jakevdp.github.io/PythonDataScienceHandbook/05.09-principal-component-analysis.html\n" + "\n" ] }, { @@ -1504,7 +1576,34 @@ "source": [ "##### TO DO\n", "\n", - "* MUST COVER: time-series of stability data from which a database was built on" + "* MUST COVER: time-series of stability data from which a database was built on\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "Seaborn: https://engmrk.com/module7-introduction-to-seaborn/\n", + "\n", + "* PCA loadings are orthogonal. Plot a scatter plot, and see the correlation is zero\n", + "\n", + "* Bubble plots from this notebook: https://nbviewer.jupyter.org/github/engineersCode/EngComp2_takeoff/blob/master/notebooks_en/2_Seeing_Stats.ipynb\n", + "\n", + "* regression: https://towardsdatascience.com/simple-and-multiple-linear-regression-in-python-c928425168f9\n", + "\n", + "* MUST COVER: qq-plot in Pandas\n", + "\n", + "* ShOULD show: correlations numerically calculated for the film thickness dataset, but then also visualized with ``data.plot('TopRight', 'BottomRight', kind='scatter')``\n", + "\n", + "\n", + "* MUST COVER: look at the goal to determine if students who took a longer time to finish actually scored a higher. Correlation plot and correlation value. Linear regression? R2 = correlation!\n", + "\n", + "* MUST COVER: https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.probplot.html\n", + "\n", + "* Regression model:http://localhost:8888/notebooks/Notebooks/Thermocouple%20-%20linear%20regression.ipynb\n", + "\n", + "\n", + "PCA plots: \n", + "PCA: https://jakevdp.github.io/PythonDataScienceHandbook/05.09-principal-component-analysis.html" ] }, { From 21b2dfd9df86bbc143218065c49c06b57620e96c Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Wed, 24 Jul 2019 07:31:03 +0200 Subject: [PATCH 068/134] Added scatter plot theory --- Module-10-interactive.ipynb | 24 +++++++++++++++++++----- 1 file changed, 19 insertions(+), 5 deletions(-) diff --git a/Module-10-interactive.ipynb b/Module-10-interactive.ipynb index db6460b..120e2bc 100644 --- a/Module-10-interactive.ipynb +++ b/Module-10-interactive.ipynb @@ -28,7 +28,7 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 1, "metadata": {}, "outputs": [ { @@ -187,7 +187,7 @@ "" ] }, - "execution_count": 31, + "execution_count": 1, "metadata": {}, "output_type": "execute_result" } @@ -1075,7 +1075,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "#### Challenge yourself: correlation plot on\n", + "#### ➜ Challenge yourself: correlation plot on\n", "\n", "```python\n", "cheese = pd.read_csv('http://openmv.net/file/cheddar-cheese.csv')\n", @@ -1434,8 +1434,22 @@ "* Data tables also show relationships between two or more variables, but the trends are sometimes harder to see.\n", "* A time-series plot shows the relationship between time and another variable. So also two variables, but one of which is time. \n", "\n", - "In a scatter plot we use 2 sets of axes, at 90 degrees to each other. We place a marker at the intersection of the values shown on the horizontal (x) axis and vertical (y) axis.\n", - "\n" + "In a scatter plot we use 2 sets of axes, at 90 degrees to each other. We place a marker at the intersection of the values shown on the horizontal (x) axis and vertical (y) axis. \n", + "\n", + "\n", + "* Most often **variable 1 and 2** (also called the dimensions) will be continuous variables. Or at least [***ordinal variables***](https://en.wikipedia.org/wiki/Ordinal_data). You will not seldom use categorical data on these axes.\n", + "\n", + "* You can add a **3rd dimension**: the marker's size indicates the value of a 3rd variable. It makes sense to use a numeric variable here, not a categorical variable.\n", + "\n", + "* You can add a **4th dimension**: the marker's colour indicates the value of a 4th variable: usually this will be a categorical variable. E.g. red = category 1, blue = category 2, green = category 3. Continuous numeric transitions are hard to map onto colour. \n", + "\n", + "* You can add a **5th dimension**: the marker's shape can indicate the discrete values of a 5th categorical variable. E.g. circles = category 1, squares = category 2, triangles = category 3, etc.\n", + "\n", + "In summary:\n", + "\n", + "* marker's size = numeric variable\n", + "* marker's colour = categorical, maybe numeric, especially with a grey -scale\n", + "* marker's shape = can only be categorical" ] }, { From cc38aad3e505fa46965684c1c964ac063bf8d8f8 Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Wed, 24 Jul 2019 08:31:58 +0200 Subject: [PATCH 069/134] WIP: figuring out the colour and shape options for scatterplots --- Module-09-interactive.ipynb | 2 +- Module-10-interactive.ipynb | 333 +++++++++++++++++++++++++++++++++--- 2 files changed, 310 insertions(+), 25 deletions(-) diff --git a/Module-09-interactive.ipynb b/Module-09-interactive.ipynb index 573944f..a92bab6 100644 --- a/Module-09-interactive.ipynb +++ b/Module-09-interactive.ipynb @@ -1315,7 +1315,7 @@ "Following the 6 data science steps of **Define**, **Get**, **Explore**, **Clean**, **Manipulate**, **Communicate**\n", "we want to look at a data set where students were allowed unlimited time to write an exam. \n", "\n", - "In a later notebook we will look at the goal to determine if students who took a longer time to finish actually scored a higher grade. For now, our objective is quite simple: visualize the distribution (spread) of the two variables:\n", + "In a [later notebook](https://yint.org/pybasic09#Scatter-plots) we will look at the goal to determine if students who took a longer time to finish actually scored a higher grade. For now, our objective is quite simple: visualize the distribution (spread) of the two variables:\n", "1. the time to write the exam\n", "2. the grade (out of 100) achieved on the exam\n", "\n", diff --git a/Module-10-interactive.ipynb b/Module-10-interactive.ipynb index 120e2bc..4299a76 100644 --- a/Module-10-interactive.ipynb +++ b/Module-10-interactive.ipynb @@ -918,7 +918,9 @@ "\n", "Note also that you could not have seen these trends from a box plot! \n", "\n", - "Next we can calculate the ***correlation*** of the data. We will visualize what a strong a weak correlation is in a next section on scatter plots, but here we already see how the columns are correlated to each other: both in a table, and a heat map. Heat maps are great way to visualize correlations." + "Next we can calculate the with the [***correlation*** value](https://learnche.org/pid/least-squares-modelling/covariance-and-correlation#correlation), which is a number between $-1$ and $+1$ that shows how strongly variables are related. A value of 0 is no correlation. A value of $-1$ is a perfect negative relationship, and $+1$ is a perfect positive relationship.\n", + "\n", + "We will visualize what a strong, or a weak, correlation is in a next section on scatter plots. Here we already see how the columns are correlated to each other: both in a table, and a heat map. Heat maps are great way to visualize correlations." ] }, { @@ -1075,7 +1077,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "#### ➜ Challenge yourself: correlation plot on\n", + "#### ➜ Challenge yourself: correlation plot for cheese taste!\n", "\n", "```python\n", "cheese = pd.read_csv('http://openmv.net/file/cheddar-cheese.csv')\n", @@ -1449,50 +1451,326 @@ "\n", "* marker's size = numeric variable\n", "* marker's colour = categorical, maybe numeric, especially with a grey -scale\n", - "* marker's shape = can only be categorical" + "* marker's shape = can only be categorical\n", + "\n", + "\n", + "Let's get started with some examples. We will start off the example from the [prior module](https://yint.org/pybasic09#Histograms) where we considered the grades of students, and how long it took to write the exam." ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 14, "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfEAAAHjCAYAAAAzLCbtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3X9w5Hd93/HXe32yTlhHTujOriPZOcMZkpTKwmwY4AKTYDctTCJDBK6TNNwQNw5pCIRMx+dMZjIwbWbgGpLSmQzUQNojQ4gdFHqeyZSBcWgy7RSMDt8JgvlhiPHpuJ4PoaMnrBM677t/7FdIJ3a1K+1+9/t57/f5mNFI+molvT/fj7770n73/dmvubsAAEA8laILAAAAO0OIAwAQFCEOAEBQhDgAAEER4gAABEWIAwAQFCEOAEBQhDgAAEER4gAABLWr6ALasW/fPj9w4EDRZQAA0BMnTpz4trvvb3W7ECF+4MABzc7OFl0GAAA9YWbfbOd2nE4HACAoQhwAgKAIcQAAgiLEAQAIihAHACAoQhwAgKAIcQAAgiLEAQAIihAHACAoQhwAgKAIcQAAgiLEAQAIihAHACAoQhwAgKAIcQAAgiLEgTYtLK3o1OkLWlhaKboUAJAk7Sq6ACCC4yfP6MjMnAYqFa3Wajo6PaGpybGiywJQcjwSB1pYWFrRkZk5XVqt6eLKZV1arenemTkekQMoHCEOtDC/uKyBypWHykClovnF5YIqAoA6QhxoYXxkSKu12hXbVms1jY8MFVQRANQR4kALo8ODOjo9od0DFe0Z3KXdAxUdnZ7Q6PBg0aUBKDka24JbWFrR/OKyxkeGCJUcTU2O6dDBfexrAEkhxAOjY7q3RocHCW8ASeF0elB0TAMACPGg6JgGABDiQdExDQAgxIOiYxoAQGNbYP3UMU2XPQBsHyEeXD90TNNlDwA7w+l0FIouewDYOUIchaLLHgB2jhBHoeiyB4CdI8RRKLrsAWDnaGxD4fqpyx4AeokQD6rflmT1Q5c9gP6U8v0tIR4QS7IAoDdSv7/lOfFgWJIFAL0R4f6WEA+GJVkA0BsR7m8J8WBYkgUAvRHh/pYQD4YlWQDQGxHub83di66hpWq16rOzs0WXkZSUuyW7aatxlmUftMJ+iIl5i6OIuTKzE+5ebXU7utODKsOSrK26QlPvGO0V9kNMzFssKd/fcjodSdqqKzRCx2gvsB9iYt7QTYQ4krRVV2iEjtFeYD/ExLyhmzidjiS16gpNvWO0FyJ0zuKHMW/oJh6JI0lbdYVG6BjtBfZDTMwbuonudCSN7vTW2A8xMW/YCt3p6AtbdYWm3DHaS+yHmJg3dAOn0wEACIoQBwAgKEIcAICgCHEAAIIixAEACIoQBwAgKEIcISwsrejU6Qu8vjSA5BR5/8Q6cSSPKz4BSFXR9088EkfSuOITgFSlcP9EiCNpKV7xiVP7AKQ07p84nY6kpXbFp6JPnQFIRwr3TzwSR9JSuuJTCqfOAKQjhfunXB+Jm9nbJP26JJP0AXf/T2b2HEkPSDog6QlJd7r7Yp51ILapyTEdOriv8Cs+rZ06u6T1/7zXTp1xIQugnIq+f8rtkbiZvVD1AH+JpFsk/byZ3SzpPkkPu/vNkh7OPge2NDo8qFtu2FtoWKZw6gxAeoq8f8rzdPpPSPqMuz/t7pcl/Z2k10m6Q9Kx7DbHJL02xxqArknh1BkAbJTn6fQvSvpDMxuVtCzpNZJmJV3n7mclyd3Pmtm1jb7ZzO6RdI8k3XjjjTmWCbSv6FNnALBRbiHu7o+Z2bslfUrSkqRTki5v4/vvl3S/JFWrVc+lSGAHRocHCW8ASci1O93dP+Tut7r7KyV9R9LXJJ0zs+slKXv/VJ41AADQr3IN8bVT5WZ2o6RflPRRSQ9JOpzd5LCk43nWAKBuuy9Sw4vaAOnL+8VeZrLnxFcl/Za7L5rZuyQ9aGZ3S3pS0htyrgEove2+SA0vagPEkGuIu/srGmxbkHRbnr8XwLqNL1Kztsb93pk5HTq4r+Fz+9u9PYDi8IptQJ/b7us7p/B60ADaQ4gDfW67L1LDi9oAcRDiQJ/b7ovU8KI2QBzmnv4S7Gq16rOzs0WXAYS2sLSyrRep2e7tAXSPmZ1w92qr23EpUqCFosKs2793uy9Sw4vaAOkjxIEtFLXUiiVeANrBc+JAE0VdP5zrlgNoFyEONFHUUiuWeAFoFyEONFHUUiuWeAFoFyEONFHUUiuWeAFoF0vMgBY2d4n3qludJV7dldf+ZJ6QB5aYAV2ycalVL7vGWeLVPXnNG6sIUDROpwNtoms8przmjb8HpIAQB9pE13hMec0bfw9IASEOtImu8Zjymjf+HpACQhxoE13jMeU1b/w9IAV0pwPbRDdyTHSnIxK604PjjgHorry6/VlFgCIR4gli2Uq6mBsAKeE58cSwbCVdzA2A1BDiiWHZSrqYGwCpIcQTw7KVdDE3AFJDiCeGZSvpYm4ApIYlZomiOz1dzA2AvLHELDiWraSLuQGQCk6nAwAQFCEOAEBQhDgAAEER4gAABEWIAwAQFCEexMLSik6dvsBLfAIAfoAlZgFw0Q0AQCM8Ek8cF90AADRDiCeOi24AAJohxBPHRTcAAM0Q4onjohsAgGZobAtganJMhw7u46Ib6Atlu4BM2caL3iLEg+CiG+gHZVtpUbbxovc4nQ6gJ8q20qJs40UxCHEAPVG2lRZlGy+KQYgD6ImyrbQo23hRDEIcQE+UbaVF2caLYpi7F11DS9Vq1WdnZ4suA0AXlK1bu2zjRXeY2Ql3r7a6Hd3pQJ9LLUTyWmmR2jjXsLIEeSLEgT5WliVOZRknsBnPiQN9qixLnMoyTqARQhzoU2VZ4lSWcQKNEOJAnyrLEqeyjBNohBAH+lRZljiVZZxAIywxQ99JtUu5KGXZH2UZJ8qBJWYoJbqUf1hZljiVZZzARpxOR9+gSxlA2RDi6Bt0KQMoG0IcfYMuZQBlQ4ijb9ClDKBsaGxDX5maHNOhg/uS7lJu1kXdbnc1Xdh17AeAEEcfSrlLuVn3fLtd9XTf17EfgDpOpwM90qx7/vFzF9vqqqf7vo79AKwjxIEeadY9f/L0hba66um+r2M/AOsIcaBHmnXPT96wt62uerrv69gPwDpCHOiRZt3zB6/b01ZXPd33dewHYB2vnQ70GN3p3cF+QD/jtdPRF/rxjrpZ93y7XfUpd9/3EvsBIMSRMJYRAcDWeE4cSWIZEQC0RogjSSwjAoDWCHEkiWVEANAaIY4ksYwIAFrLtbHNzN4u6d9IcklfkPQmSddL+ktJz5H0eUm/6u7fz7MOxBThYiYAUKTcHomb2Zikt0qquvsLJV0l6S5J75b0J+5+s6RFSXfnVQPSs7C0olOnL7TdoDY6PKhbbthLgCdku3PYL8o6bqQt7yVmuyQNmdmqpGdJOivpVZJ+Ofv6MUnvkPS+nOtAAlgyFl9Z57Cs40b6cnsk7u5nJP2RpCdVD+/vSjoh6YK7X85uNi+JI6EEWDIWX1nnsKzjRgx5nk4fkXSHpJsk/aikayS9usFNG77uq5ndY2azZjZ7/vz5vMpEj7BkLL6yzmFZx40Y8uxOv13SP7r7eXdflfTXkl4uaa+ZrZ3GH5f0rUbf7O73u3vV3av79+/PsUz0AkvG4ivrHJZ13IghzxB/UtJLzexZZmaSbpP0JUmflvT67DaHJR3PsQYkgiVj8ZV1Dss6bsSQ61XMzOydkv6VpMuSHlV9udmY1peYPSrpX7v7lk8ucRWzzqVyIZHHz13UydMXNHnDXh28bk9hdWDnOr0KW1QpjC+FGtAb7V7FjEuRlkAqnbWp1IHuY27zxz4ul3ZDnFds63OpdNamUge6j7nNH/sYzRDifS6VztpU6kD3Mbf5Yx+jGUK8z6XSWZtKHeg+5jZ/7GM0Q4j3uVQ6a1OpA93H3OaPfYxmaGwriVS6WlOpA93H3OaPfVwe7Ta25f3a6UjE6PBgEgd9KnX0QtnucMs0t0VhH2MzQhzIAcuBAPQCz4kDXcZyIAC9QogDXcZyIAC9QogDXcZyIAC9QogDXcZyIAC9QmMbkIOpyTEdOrivVN3piK9sKyr6ASEO5ITlQIiEFRUxcTodAEqOFRVxEeIAUHKsqIiLEAeAkmNFRVyEOACUHCsq4qKxDT3Vbvfr5tvRNds+9lV3lWV/sqIiJkIcPdNu9+vm291ZHdeDs/N0zbaBDuPuKtv+ZEVFPJxOR0+02/3a6HYf/j9P0jXbBjqMu4v9iQgIcfREu92vjW63GV2zjdFh3F3sT0RAiKMn2u1+bXS7zeiabYwO4+5ifyICQhw90W73a6PbvfFlN9I12wY6jLuL/YkIzN2LrqGlarXqs7OzRZeBLqA7PX/sq+5if6IIZnbC3autbkd3Onqq3e7Xzbeja7Z97KvuYn8iZZxOBwAgKEIcAICgCHEAAIIixAEACIoQBwAgKEIcAICgCHEAAIIixAEACIoQBwAgKEIcAICgCHEAAIIixAEACKp0Ib6wtKJTpy9oYWklxM/tVKp1YR1zlK+i92/Rvx/9rVRXMTt+8oyOzMxpoFLRaq2mo9MTmpocS/bn9mtdWMcc5avo/Vv070f/K80j8YWlFR2ZmdOl1ZourlzWpdWa7p2Z6/i/47x+bqdSrQvrmKN8Fb1/i/79KIfShPj84rIGKlcOd6BS0fzicpI/t1Op1oV1zFG+it6/Rf9+lENpQnx8ZEirtdoV21ZrNY2PDCX5czuVal1Yxxzlq+j9W/TvRzmUJsRHhwd1dHpCuwcq2jO4S7sHKjo6PaHR4cEkf26nUq0L65ijfBW9f4v+/SgHc/eia2ipWq367OxsV37WwtKK5heXNT4y1NWDKa+f26lU68I65ihfRe/fon8/YjKzE+5ebXm7soV4r6R24KZWDzrXbE6LmuvU/sZSqwfYjnZDvFRLzHoltWUlqdWDzjWb06LmOrW/sdTqAfJSmufEeyW1ZSWp1YPONZvTx89dLGSuU/sbS60eIE+EeJeltqwktXrQuWZzevL0hULmOrW/sdTqAfJEiHdZastKUqsHnWs2p5M37C1krlP7G0utHiBPhHiXpbasJLV60Llmc3rwuj2FzHVqf2Op1QPkie70nOTdGbvdn0+n7g9LbZ90a07pTk+zHmA7WGLWx+i87Vxq+zC1egAUq90Q53R6MHTedi61fZhaPQDiIMSDofO2c6ntw9TqARAHIR4MnbedS20fplYPgDgI8WDovO1cavswtXoAxEFjW1BRO2/X6r7m6qv0ve8/U2j9qe3D1FY0ALhSL4+hrr52upk9X9L7JF3n7i80swlJU+7+HzqsEzs0OjwY7o54rQPba66VZ1y7B+ongorqxE5tH+ZZD93vQGdSPYbaPZ3+AUm/J2lVktx9TtJdeRWF/rOxA3vlmfrZn0urNTqxe4Dud6AzKR9D7Yb4s9z9kU3bLne7GPSvRh3Ya+jEzhfd70BnUj6G2g3xb5vZ8yS5JJnZ6yWdza0q9J1GHdhr6MTOF93vQGdSPobaDfHfkvRfJP24mZ2R9DuSfjO3qtB3NnZgD15lkqTdAxU6sXuA7negMykfQ9vqTjezayRV3P1ifiX9MLrT+0dK3ellQ3c60Jlw3elm9rtNtkuS3P2Pd1QdSiu1jvAyYd8DnUnxGGq1xGxP9v4Fkn5K0kPZ578g6e/zKgoAALS2ZYi7+zslycw+KenWtdPoZvYOSX+Ve3UAAKCpdhvbbpT0/Q2ff1/Sga5XAwAA2tbWK7ZJ+nNJj5jZx1VfZvY6SR/OrSoAANBSWyHu7n9oZp+Q9NPZpje5+6P5lQUAAFpp95G43P2EmZ2WtFuSzOxGd3+y2e3N7AWSHtiw6bmS/kD1R/APqH46/glJd7r74rYrBwrCUi0AqWj3AihTkt4j6UclPaX6c+RflvRPm32Pu39F0mT2/VdJOiPp45Luk/Swu7/LzO7LPj/SwRiAnkn1IggAyqndxrZ/L+mlkr7q7jdJul3S/97G77lN0tfd/ZuS7pB0LNt+TNJrt/FzgMKkfBEEAOXUboivuvuCpIqZVdz908oeZbfpLkkfzT6+zt3PSlL2/tpG32Bm95jZrJnNnj9/fhu/CshHyhdBAFBO7Yb4BTMbVv0FXj5iZu9Vm1cxM7OrJU1pm+vK3f1+d6+6e3X//v3b+VYgFylfBAFAObUb4ndIelrS2yV9QtLXVX/Vtna8WtLn3f1c9vk5M7tekrL3T7VfLlCclC+CAKCcWja2ZU1px939dkk1rT+f3a5f0vqpdKn+0q2HJb0re398mz8PKMzU5JgOHdxHdzqAJLQMcXd/xsyeNrMfcffvbueHm9mzJP1zSb+xYfO7JD1oZndLelLSG7bzM4Gi5XURBJauAdiudteJX5L0BTP7lKTvrW1097du9U3u/rSk0U3bFlTvVgeQYekagJ1oN8T/JnuT6i+7KknW/XKA8tm4dO2S6o1z987M6dDBfTwiB7ClVtcTv0PSuLv/afb5I5L2qx7kvEAL0AVrS9fWAlxaX7pGiAPYSqvu9Hu1fg1xSbpa0osl/YykN+dUE1AqLF0DsFOtQvxqdz+94fP/5e7fyV4z/Zoc6wJKg6VrAHaq1XPiIxs/cfe3bPiUV2ABuoSlawB2otUj8c+a2a9v3mhmvyHpkXxKAsppdHhQt9ywlwAH0LZWj8TfLum/m9kvS/p8tu3FkgbFhUsAACjUliHu7k9JermZvUrrlx39G3f/29wrAwAAW2prnXgW2gQ3AAAJafcCKAAAIDGEOAAAQRHiAAAERYgDABAUIQ4AQFCEOAAAQRHiAAAERYgDABAUIQ4AQFCEOAAAQRHiAAAERYgDABAUIQ4AQFCEOAAAQRHiAAAERYgDmYWlFZ06fUELSytFlwIAbdlVdAFACo6fPKMjM3MaqFS0Wqvp6PSEpibHii4LALbEI3GU3sLSio7MzOnSak0XVy7r0mpN987M8YgcQPIIcZTe/OKyBipXHgoDlYrmF5cLqggA2kOIo/TGR4a0WqtdsW21VtP4yFBBFQFAewhxlN7o8KCOTk9o90BFewZ3afdARUenJzQ6PFh0aQCwJRrbAElTk2M6dHCf5heXNT4yRIAjSQtLK/yN4gqEOJAZHR7kjhHJYgUFGuF0OgAkjhUUaIYQB4DEsYICzRDiAJA4VlCgGUIcABLHCgo0Q2MbAATACgo0QogjCSyd6dzmfZjqPk21rghYQYHNCHEUjqUzndu8D+988bgePDGf3D5lroHu4jlxFIqlM51rtA8//Jknk9unzDXQfYQ4CsXSmc412oebpbBPmWug+whxFIqlM51rtA83S2GfMtdA9xHiKBRLZzrXaB++8WU3JrdPmWug+8zdi66hpWq16rOzs0WXgRzRsdw5utOB/mFmJ9y92up2dKcjCSyd6dzmfZjqPk21LiAiTqcDABAUIQ4AQFCEOAAAQRHiAAAERYgDABAUIQ4AQFCEOAAAQRHiAAAERYgDABAUIQ4AQFCEOAAAQRHiAAAERYgDABAUIQ4AQFCEOAAAQRHiAAAERYgDABAUIQ4AQFCEOBDcwtKKTp2+oIWllaJLAdBju4ouAMDOHT95Rkdm5jRQqWi1VtPR6QlNTY4VXRaAHuGROBDUwtKKjszM6dJqTRdXLuvSak33zszxiBwoEUIcCGp+cVkDlSsP4YFKRfOLywVVBKDXCHEgqPGRIa3WaldsW63VND4yVFBFAHqNEAeCGh0e1NHpCe0eqGjP4C7tHqjo6PSERocHiy4NQI/k2thmZnslfVDSCyW5pF+T9BVJD0g6IOkJSXe6+2KedQD9ampyTIcO7tP84rLGR4YIcKBk8n4k/l5Jn3D3H5d0i6THJN0n6WF3v1nSw9nnAHZodHhQt9ywlwAHSii3EDezZ0t6paQPSZK7f9/dL0i6Q9Kx7GbHJL02rxoAAOhneT4Sf66k85L+q5k9amYfNLNrJF3n7mclKXt/baNvNrN7zGzWzGbPnz+fY5kAAMSUZ4jvknSrpPe5+4skfU/bOHXu7ve7e9Xdq/v378+rRgAAwsozxOclzbv7Z7PPP6Z6qJ8zs+slKXv/VI41AADQt3ILcXf/v5JOm9kLsk23SfqSpIckHc62HZZ0PK8aAADoZ3m/dvpvS/qImV0t6RuS3qT6Pw4Pmtndkp6U9Iaca0AAC0srLJNKFHOTL/YvOpFriLv7SUnVBl+6Lc/fi1i4iEe6mJt8sX/RKV6xDYXiIh7pYm7yxf5FNxDiKBQX8UgXc5Mv9i+6gRBHobiIR7qYm3yxf9ENhDgKxUU80sXc5Iv9i24wdy+6hpaq1arPzs4WXQZyRIduupibfLF/0YiZnXD3Ro3hV8h7iRnQltHhQe7AEsXc5Iv9i05wOh0AgKAIcQAAgiLEAQAIihAHACAoQhwAgKAIcQAAgiLEAQAIihAHACAoQhwAgKAIcQAAgiLEAQAIihAHOrSwtKJTpy9oYWml6FIAlAwXQAE6cPzkGR2ZmdNApaLVWk1Hpyc0NTlWdFkASoJH4sAOLSyt6MjMnC6t1nRx5bIurdZ078wcj8gB9AwhDuzQ/OKyBipXHkIDlYrmF5cLqghA2RDiwA6NjwxptVa7YttqrabxkaGCKgJQNoQ4sEOjw4M6Oj2h3QMV7Rncpd0DFR2dntDo8GDRpQEoCRrbgA5MTY7p0MF9ml9c1vjIEAEOoKcIcaBDo8ODhDeAQnA6HQCAoAhxAACCIsQBAAiKEAcAIChCHACAoAhxAACCIsQBAAiKEAcAIChCHACAoAhxAACCIsQBAAiKEAcAIChCHACAoAhxAACCIsQBAAiKEAcAIChCHACAoAhxAACCIsQBAAiKEAcAIChCHACAoAhxAACCIsQBAAiKEAcAIChCHACAoAhxAACCIsQBAAiKEAcAIChCHACAoAhxAACCIsQBAAiKEAcAIChCHACAoAhxAACCIsQBAAiKEAcAIChCHACAoAhxAACCIsSRtIWlFZ06fUELSytFlwIAydlVdAFAM8dPntGRmTkNVCpardV0dHpCU5NjRZcFAMngkTiStLC0oiMzc7q0WtPFlcu6tFrTvTNzPCIHgA0IcSRpfnFZA5Ur/zwHKhXNLy4XVBEApIcQR5LGR4a0WqtdsW21VtP4yFBBFQFAeghxJGl0eFBHpye0e6CiPYO7tHugoqPTExodHiy6NABIRq6NbWb2hKSLkp6RdNndq2b2HEkPSDog6QlJd7r7Yp51IKapyTEdOrhP84vLGh8ZIsABYJNePBL/WXefdPdq9vl9kh5295slPZx9DjQ0OjyoW27YS4ADQANFnE6/Q9Kx7ONjkl5bQA0AAISXd4i7pE+a2Qkzuyfbdp27n5Wk7P21jb7RzO4xs1kzmz1//nzOZQIAEE/eL/ZyyN2/ZWbXSvqUmX253W909/sl3S9J1WrV8yoQAICocn0k7u7fyt4/Jenjkl4i6ZyZXS9J2fun8qwBAIB+lVuIm9k1ZrZn7WNJPyfpi5IeknQ4u9lhScfzqgEAgH6W5+n06yR93MzWfs9fuPsnzOxzkh40s7slPSnpDTnWAABA38otxN39G5JuabB9QdJtef1eAADKgldsAwAgKEIcAICgCHEAAIIixAEACIoQBwAgKEIcAICgCHEAAIIixAEACIoQBwAgKEIcAICgCHEAAIIixAEACIoQBwAgKEIcAICgCHEAAIIixAEACIoQBwAgKEIcAICgCHEAAIIixAEACIoQBwAgKEIcAICgCHEAAIIixAEACIoQBwAgKEIcAICgCHEAAIIixAEACIoQBwAgKEIcAICgCHEAQFsWllZ06vQFLSytFF0KMruKLgAAkL7jJ8/oyMycBioVrdZqOjo9oanJsaLLKj0eiQMAtrSwtKIjM3O6tFrTxZXLurRa070zczwiTwAhDgDY0vzisgYqV8bFQKWi+cXlgirCGkIcALCl8ZEhrdZqV2xbrdU0PjJUUEVYQ4gDALY0Ojyoo9MT2j1Q0Z7BXdo9UNHR6QmNDg8WXVrp0dgGAGhpanJMhw7u0/zissZHhgjwRBDiAIC2jA4PEt6J4XQ6AABBEeIAAARFiAMAEBQhDgBAUIQ4AABBEeIAAARFiAMAEBQhDgBAUIQ4AABBEeIAAARFiAMAEBQhDgBAUIQ4AABBEeIAAARFiAMAEJS5e9E1tGRm5yV9cxvfsk/St3Mqp5cYRzr6YQwS40hNP4yjH8YgpTeOH3P3/a1uFCLEt8vMZt29WnQdnWIc6eiHMUiMIzX9MI5+GIMUdxycTgcAIChCHACAoPo1xO8vuoAuYRzp6IcxSIwjNf0wjn4YgxR0HH35nDgAAGXQr4/EAQDoe4Q4AABBhQxxM/szM3vKzL64YdtzzOxTZva17P1Itt3M7D+b2eNmNmdmtxZX+bomY/iPZvblrM6Pm9nebPsBM1s2s5PZ2/uLq/xKTcbxDjM7s6He12z42u9lc/EVM/sXxVT9w5qM44ENY3jCzE5m25OcDzO7wcw+bWaPmdk/mNnbsu3Rjo1m4wh1fGwxjjDHxxZjiHZs7DazR8zsVDaOd2bbbzKzz2bHxgNmdnW2fTD7/PHs6weKrH9L7h7uTdIrJd0q6Ysbth2VdF/28X2S3p19/BpJ/0OSSXqppM8WXf8WY/g5Sbuyj9+9YQwHNt4upbcm43iHpH/X4LY/KemUpEFJN0n6uqSrih5Ds3Fs+vp7JP1ByvMh6XpJt2Yf75H01WyfRzs2mo0j1PGxxTjCHB/NxrDpNhGODZM0nH08IOmz2d/8g5Luyra/X9JvZh//W0nvzz6+S9IDRY+h2VvIR+Lu/veSvrNp8x2SjmUfH5P02g3bP+x1n5G018yu702lzTUag7t/0t0vZ59+RtJ4zwvbpiZz0cwdkv7S3Vfc/R8lPS7pJbkVtw1bjcPMTNKdkj7a06K2yd3Puvvns48vSnpM0pjiHRsNxxHt+NhiPppJ7vhoNYZAx4a7+1L26UD25pJeJelj2fbNx8baMfMxSbdlY01OyBBv4jp3PyvV//AkXZttH5N0esPt5rX1gZSKX1P9UdKam8zsUTP7OzN7RVFFbcNbstOef7Z2+lZx5+IVks65+9fBwJxlAAAD1klEQVQ2bEt6PrLTfy9S/RFH2GNj0zg2CnV8NBhHuOOjyVyEOTbM7KrstP9Tkj6l+pmOCxv+Mdy4v38wF9nXvytptLcVt6efQryZRv89Jb2uzsx+X9JlSR/JNp2VdKO7v0jS70r6CzN7dlH1teF9kp4naVL12t+TbQ83F5lf0pWPNJKeDzMbljQj6Xfc/f9tddMG25KZj2bjiHZ8NBhHuONji7+pMMeGuz/j7pOqn8F5iaSfaHSz7H2yc7FZP4X4ubVTgdn7p7Lt85Ju2HC7cUnf6nFtbTOzw5J+XtKvePaETHZ6bSH7+ITq/0E+v7gqt+bu57IDpibpA1o/JRhqLiTJzHZJ+kVJD6xtS3k+zGxA9Tvbj7j7X2ebwx0bTcYR7vhoNI5ox8cWcxHq2Fjj7hck/U/VnxPfm41DunJ//2Ausq//iNp/2rCn+inEH5J0OPv4sKTjG7a/0epeKum7a6cWU2Nm/1LSEUlT7v70hu37zeyq7OPnSrpZ0jeKqbK1Tc+rvk7SWsf3Q5Luyjo/b1J9HI/0ur5tul3Sl919fm1DqvORPWf3IUmPufsfb/hSqGOj2TiiHR9bjCPM8bHF35QU69jYb+urGYZUr/0xSZ+W9PrsZpuPjbVj5vWS/nbtn8bkFN1Zt5M31U/fnJW0qvp/THer/nzFw5K+lr1/jq93Jf6p6v8RfkFStej6txjD46o/D3Mye1vrjpyW9A+qd65+XtIvFF1/i3H8ebav51Q/GK7fcPvfz+biK5JeXXT9W40j2/7fJL15022TnA9JP636Kb+5DX9Drwl4bDQbR6jjY4txhDk+mo0h+1qkY2NC0qPZOL6o9W7656r+j9Ljkv5K0mC2fXf2+ePZ159b9BiavfGyqwAABNVPp9MBACgVQhwAgKAIcQAAgiLEAQAIihAHACCoXa1vAqBfmNnacjNJ+ieSnpF0Pvv8aXd/eSGFAdgRlpgBJWVm75C05O5/VHQtAHaG0+kAJElmtpS9/5ns4hUPmtlXzexdZvYrVr8e8xfM7HnZ7fab2YyZfS57O1TsCIDyIcQBNHKLpLdJ+meSflXS8939JZI+KOm3s9u8V9KfuPtPqf5KXR8solCgzHhOHEAjn/PsddTN7OuSPplt/4Kkn80+vl3ST264zPKzzWyP1687DaAHCHEAjaxs+Li24fOa1u83KpJe5u7LvSwMwDpOpwPYqU9KesvaJ2Y2WWAtQCkR4gB26q2SqmY2Z2ZfkvTmogsCyoYlZgAABMUjcQAAgiLEAQAIihAHACAoQhwAgKAIcQAAgiLEAQAIihAHACCo/w9FgtTdDFDa0QAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Standard imports required to show plots and tables \n", + "from matplotlib import pyplot\n", + "from IPython.display import display\n", + "%matplotlib inline\n", + "import pandas as pd\n", + "\n", + "# Modify the code if you are behind a proxy server\n", + "grades = pd.read_csv('https://openmv.net/file/unlimited-time-test.csv')\n", + "\n", + "ax = grades.plot.scatter( x='Time', y='Grade', figsize=(8, 8))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Remember our objective from the [prior notebook](https://yint.org/pybasic09#Histograms)? Do students score a higher `Grade` if they have a longer `Time` to finish the exam? The idea was they will have less stress, they had any books and notes with them, so in theory it was ideal exam conditions.\n", + "\n", + "The scatter plot however shows there isn't anything conclusive in the data to believe that there is a relationship. Let us also quantify it with the correlation value we introduced above." + ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    GradeTime
    Grade1.000000-0.044229
    Time-0.0442291.000000
    \n", + "
    " + ], + "text/plain": [ + " Grade Time\n", + "Grade 1.000000 -0.044229\n", + "Time -0.044229 1.000000" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "display(grades.corr())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The correlation value is -0.044, essentially zero. So now you get an idea of what a zero correlation means.\n", + "\n", + "* The correlation value is symmetrical: a value of -0.044 is the correlation between time and grades, and also the correlation between grades and time.\n", + "* Interesting tip: the $R^2$ value from a regression model is that value squared: in other words, $(-0.044229)^2 = 0.001956$.\n", + "\n", + "Think of the implication of that: you can calculate the $R^2$ value - *the* value often used to judge how good a linear regression is - without calculating the linear regression model!! Further, it shows that for linear regression it does not matter which variable is on your $x$-axis, or your $y$-axis: the $R^2$ value is the same.\n", + "\n", + "If you understand this, you will understand why $R^2$ is not a great number at all to judge a linear regression model." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's look at some other correlations. If you completed the Cheese Challenge above, you have already seen what the correlation values are for that dataset.\n", + "\n", + "* Strong relationship between `Taste` and the amount of `H2S` present (correlation of 0.756), while \n", + "* the amount of `Lactic` acid present is also quite strongly correlated with the amount of `H2S` (0.644)." + ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 18, "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    AceticH2SLacticTaste
    Acetic1.0000.6180.6040.550
    H2S0.6181.0000.6440.756
    Lactic0.6040.6441.0000.703
    Taste0.5500.7560.7031.000
    \n", + "
    " + ], + "text/plain": [ + " Acetic H2S Lactic Taste\n", + "Acetic 1.000 0.618 0.604 0.550\n", + "H2S 0.618 1.000 0.644 0.756\n", + "Lactic 0.604 0.644 1.000 0.703\n", + "Taste 0.550 0.756 0.703 1.000" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "cheese = pd.read_csv('http://openmv.net/file/cheddar-cheese.csv')\n", + "cheese.set_index('Case', inplace=True)\n", + "pd.set_option('precision', 3)\n", + "from IPython.display import display\n", + "display(cheese.corr())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we will like to visualize these pairwise relationships. We can draw 6 scatter plots to show all the pairwise combinations of `Acetic`, `H2S`, `Lactic` and `Taste`.\n", + "\n", + "The [Seaborn library](https://seaborn.pydata.org/), based on matplotlib, does this in a single line of code, using their ``sns.pairplot(...)`` function. \n", + "\n", + "##### Confirm your knowledge\n", + "\n", + "Visually relate the scatter plots below, with the numeric correlations in the table above.\n" + ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 27, "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArwAAALACAYAAABxWqH5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3X98VNWdP/7XTH4RmGAm+UwSKkwMqECG7acSpU2tDWBdy1qrLiiFLnbFh0VXt1s/tghVqWutYK2P/rA/0K60Nm0Vi7Zqv67uSkBbzWIEfywJoRVihgTyw2RoMiSGkJnvH3TiZDI/7szcc+85976ej8c+tmaGmTNz3+d933PuOec6wuFwGEREREREFuU0uwFERERERCKx4CUiIiIiS2PBS0RERESWxoKXiIiIiCyNBS8RERERWVqu2Q3Qqrd30OwmpOR2T0UgMGR2Mwwj4+f1eIrMbgJ6ewel/G5iqdBGQI12ZtJGs2NVdE5V4bilw66fx+w4BVLHqirHhu3UV2w7U8UqR3h1lJubY3YTDGW3z5sOFb4bFdoIqNFOFdpoNKt9J/w88lLls7Cd+kq3nSx4iYiIiMjSWPASERERkaWx4CUiIiIiSxO6aO3hhx9GQ0MDRkdHsWrVKlx99dXjj/385z/Hjh07UFJSAgD493//d8yePVtkc4iIiIjIhoQVvHv27MGbb76Jxx9/HMPDw9i2bduEx5ubm3H//fdjwYIFoppARJJzOh0IhcJmN4PIVOwHlAhjQz/CCt4//elPOPfcc3HzzTcjGAxi/fr1Ex5vbm7GI488gt7eXixevBjr1q0T1RRlrN3SkNbzt21YKqglRGL5e4JobO5Ca/txzKssRq2vAt4yV1qvwRMBqU6PfhCL/cIaRMSGqvSKaUc4HBbSM+68804cPXoUW7duRUdHB2666Sa88MILcDgcAIAf/ehHWL16NVwuF2655RasWrUKS5YsSfh6p06NKbNVRqYuv+2ZtJ7/3INXCGoJZcMOsZqNlrY+bHq4ESOjY+N/K8jLwT3ralFdVarp37+8rwPNbf3wVZWgbuFMTf+OJmKcmivbfhDv9azaL+wWq3rHhqr0jmlhI7zFxcWYPXs28vPzMXv2bBQUFKC/vx+lpaUIh8P40pe+hKKi05sE19XVoaWlJWnBq8ImyB5PkaE3yDD7ZhxGf14tZNgkPRAYkvK7iWVWGxua/BMSOQCMjI6hoekIPK78Sc+Pbqe/J4jN9XvH/337sQHsbDqCjWtqTB39yOS7NDtWRedUFfpAOvT+POn2g2Qy6RdaP4/ZcQqkjlVVYk1rO/WMjUzI8H1qienYdpp244mamhr88Y9/RDgcRnd3N4aHh1FcXAwACAaD+NznPocTJ04gHA5jz549nMtLZANOpwOt7cfjPnbQH4DT6Uj67xubu+KeCBqbu3VrI5Fo2faDWOwX1qF3bKhKREwLG+FdsmQJmpqasGLFCoTDYWzatAnPP/88hoaGsHLlStx666249tprkZ+fj9raWtTV1YlqChFJIhQKY15lMdq7BiY9NtfrTjpPS8uJgHMXSQXZ9INY7BfWomdsqEpUTAvdlix2oVq0K6+8EldeeaXItyciCdX6KrB7X+ek+Wm1vvKk/87sEwELB9JTpv0gltn9gvSnV2xky6ycJyqmhRa8RESxvGUubFxTg8bmbhz0BzDX60atr1zTHFwzTgRcLU0iRPeD1vYAZpW74CrMx/+0dAFIL8ZkKZBIH9nkSD20tPWhoclvas4TEdMseInIcN4yF7xlrrRHEIw+EUxaONE1gN37Ok1fJEfW4C1zweEADrzXj6aW7vE427U3vRgzu0Ai/WWaI7MlS84TEdMseInINJkkciNPBMkWTrCYID28tr8L/u6JK+IziTGzCiQSy+hjKVPO0zumhe3SQEQkkhFzdrlamkQSEWMsdilTsuY8vWKaBS8RURyRhRPxcDEQ6YExRjKxejyy4CUiSqDWV4GCvIl3eOJiINITY4xkYuV45BxeIqIEuBiIRGOMkUy8ZS7cs64WDU1HLBePLHiJiJLgYiASjTFGMqmuKoXHlW+5eOSUBiIiDayU+ElOjDGSidXikQUvEREREVkaC14iIiIisjQWvERERERkaSx4iWyEN0sgq2FMUzoYL/bFXRqIbMDfE0Rjcxda249jXmUxan0V8HiKDG+H1Vb9knnixbRRWycxjtVjZryQdiL7FgteIovz9wSxuX7v+P3R27sGsHtfJ+5ZVwuPK9+wNvBkQ3pJFNMb19QIjSvGsZrMihfSzoi+xYKXyOIam7vGE33EyOgYXt7XgRWfni38/XmyIb0liunG5m5hMdXS1sc4VpQZ8ULaGXWO4BxeIgtzOh1obT8e97GWtn5D5rMlO9kQpStZTB/0B4TF9Mv7OhjHCjIrXkg7o84RLHiJLCwUCmNeZXHcx6qrSoTPQ+TJhvSWLKbnet1CYtrpdKC5rT/uY4xjuZkRL6SdkecIFrxEFlfrq0BBXs6EvxXk5aBu4Uzh7y36ZMNCw54SxXStr1zI+4VCYfiqSuI+JrpoYoxnz+h40YrH1tgfJJzDS2Rx3jIXNq6pQWNzNw76A5jrdaPWV47qqlL09g4Kf/9aXwV27+uccMkq25MNFw/ZW6KYFhkDdQtnYmfTEV3jOBnGuH7MiJdkeGwnEnGOiIcFL5EERG9z5C1zwVvmMmU7Jb1PNlwER4D4mI593eqqUsOKJsa4/rKJFz1jjMd2MqN+kLDgJTKR0b/0zZqvpmdxwhXXFE3vmE7WJ4364cgYFyed4yYiP/PYxmdE32LBS2QSO/7S12PObqoFDlyEQplK1iejb9Qies4uY9x8ovIzj21yQvuWsFcmoqS4XVf6uOKaRJKhTzLG5SAqFnhszcOCl8gE3K4rc7KuuCa1peqTRmKMm0tkfuaxNY/QKQ0PP/wwGhoaMDo6ilWrVuHqq68ef6yhoQE//vGPkZubi+XLl+Oaa64R2RQiqURGcdq7BiY9xl/6ycm24pqsIVWfNBJj3Fwi8zOPrXmEFbx79uzBm2++iccffxzDw8PYtm3b+GOjo6PYvHkzduzYgcLCQqxatQpLliyBx+MR1Rwi6Ri1FYsVmbnrBFmXTH2SMW4ukbHAY2sORzgcFvJtP/jgg3A4HPjLX/6CYDCI9evX4+/+7u8AAK2trXjggQfw6KOPAgDuu+8+nHfeeVi2bFnC1zt1agy5uTkJH7eCy297Jq3nP/fgFYJaQtlIJ1Zb2vrw8r4OtLT1o7qqBHULZ6K6qlRwC4nskVMzwT4pH7NilbFgLcJGeAOBAI4ePYqtW7eio6MDN910E1544QU4HA4Eg0EUFX244nXatGkIBoMpXm9IVFN14/EUGbKRf4SR7xWP0Z9Xi+iV1GYJBIY0fzceVz5WfHo2nIvnjP/SN+o7lfH4xaNCOzNpo9mxKjqnqnDc4knUJ1X9PIlozlGS5NRkRB0bvfOzKjGkajtTxaqwgre4uBizZ89Gfn4+Zs+ejYKCAvT396O0tBQulwsnTpwYf+6JEycmFMBEdsPLWkRyYZ+kCMaCNQjbpaGmpgZ//OMfEQ6H0d3djeHhYRQXn96OY86cOWhvb8fx48dx8uRJvPHGGzjvvPNENYWIaBx3wLA+HmOi1OzWT4SN8C5ZsgRNTU1YsWIFwuEwNm3ahOeffx5DQ0NYuXIlNmzYgOuvvx7hcBjLly9HeTkX6hCROLx/vfXxGBOlZtd+InRbsvXr1yd8bOnSpVi6dKnItyciAmDsXe248tocdrxzIVG6VOsneuZT3lqYiCzPiPvX23XURBZGHGMrGI9T/3HM8zJO7UaVfiIin7LgJSJL03LXpGxHEFra+pQaNbEaI46xFUwa3TvGOLUTVfqJqFFoFrw2snZLQ1rP37aBU05IfUbc1e7lfR1KjJpYFe9cqI0qo3skhir9RFScCtulgYgompkrgkXev97pdKC5rT/uY5FRE4pPz+9G5DG2Ai2je6SNyt+V7P1EZJxyhJeIhJJhbqvI+9eHQmH4qkrQfkzuUROZiIgJkcfYClQZ3ZOZDLksW7L3E5FxyoKXiISRaUWwyPvX1y2ciZ1NRyZchpNp1EQmImNC5DG2glpfBXbv62ScZkCmXJYt2fuJqDhlwUtEwsg4Z1BEgq+uKpV61EQmRsSEjCdxPWRboMg+uiczGXNZtkT1E1njlAUvEWUtXoLLdkWwatsnyT5qIgNVVomLlu7n1PNSeiROPZ4i9PYOZvQadmOFuDWijSLilPvwEpEUkiW4bOZiqbx9kuwnPjPZfR5pJgWBlS6lq0rluDVq3rGoONXzu+UuDUSUkUiCe3GPH+1dA3hxjx+b6/fC3xMcf06mK4KTXT4ktcm+SlwULf0lHvYFOagYt5nGXCZUiFOO8BJRRrTMactkLlbs5cOCvBy4pxcgMDCizOVDSiw2JuZVuvGJauvPI81kDqgVLqVbhRnzn7M9vkbNO1YlTlnwElHa0klw6c7Filw+PNIziNoFM/DByVPoDQxjwZxS6S8fkjbeMhccDmD6tDy8+ef3EQ6HAcg9RzsbmRYEKl9KtyKj5unrMQ3ByCJUlThlwUtEacskwaWT9Gp9FRgeOYU9zd3jIxT+7kHsP9SHc2eeYdnCyC5i5/u923Hc0vNSsykIuJWYfEQXu3rMhTW6CFUhTjmHl4gyInJOm7fMhbzcHOnnhFFmVJjvp7dM+0vkUvqlH6/EWTOm49KPV1r2hwHp2zeMnHesQpxyhJeIMiJyTpvT6cC7HX+N+5hMc8IofarM99NbNv2FW97Zg959w+h5x7LHKQteIsqYqASnypwwSp+dj222/cXK3w2J6RtmFKGyxmnKKQ0HDx7ErbfeCgA4dOgQvvjFL+Lw4cPCG0ZE6hCR4FTcBoi0sfuxlbUgIPOJ6huMOQ0jvHfddRduvvlmAMCcOXPwL//yL7jjjjvw+OOPC28cEdlX5HLc6609aGnr521QLYS3uCWKj31DnJQF7/DwMOrq6sb/+8ILL8QDDzwgtFFERMDp5F/jm4G+viBHKCxG9vl+RGZh3xAj5ZSGkpISPP744zhx4gROnDiB3/72tygtLTWibUREAHg5zsp4bIniY9/QV8qCd/Pmzdi9ezc+9alPYcmSJdi9eze+/e1vG9E2IiIiIqKspZzS8JGPfAQPP/ywEW0hIiIiItJdwoJ33bp1ePjhh7F06VI4HI5Jj+/cuVNowzK1dktDWs/ftmGpoJaclm57iIiIiEhfCQveb33rWwCA+vp6wxpDRERERKS3hAVvWVkZAGDLli146KGHJjz2pS99CY899ljKF7/yyitRVFQEAJg5cyY2b948/ti9996Lffv2Ydq0aQCAn/zkJ+PPJSIiIiLSS8KC95ZbbsGBAwfQ09ODiy++ePzvY2NjqKioSPnCIyMjABKPEDc3N+M//uM/UFJSkm6biYiE4VZA9sbjTypj/CaWsODdsmULjh8/jm9/+9u48847P/wHubmatiVrbW3F8PAw1q5di1OnTuH//b//h4997GMAgFAohPb2dmzatAnvv/8+VqxYgRUrViR9Pbd7KnJzc5I+JxMej76jynq/npnvpeX1jfy8qnC7pwJQ47tRoY2AMe1saevDy/s60NzWD19VCeoWzkR1lfYtGFX5LiNE5dRoKn0nWo6/Sp9HC1U+j5ZYVeWziGpntvkrlhW/z4QFr8vlgsvlwk9/+lPs3bsXf/7zn7F8+XK8/fbbKC9PfYu7KVOm4Prrr8fVV1+N9957DzfccANeeOEF5ObmYmhoCP/0T/+E6667DmNjY7j22muxYMECzJs3L+HrBQJDmj9UOnp7B3V7LY+nSNfXS0X0e6V6faM/rxYydNJAYEjK7yaWCm0ExLbT3xNEY3MXHA4ndu09gpHRMQBA+7EB7Gw6go1rajTd4SiTNpodq6JyaoQq8QWcjoPN9XuTHn+VPk8ikXhvbT8O3+wSLJpXljK+zY5TIHWsqnJsRLVTS/ym+veRuJhXWYylF3jhceXr3k69xX6fqWI15bZkjz32GF566SX09PTgs5/9LDZt2oQVK1bg+uuvT/rvqqqqUFlZCYfDgaqqKhQXF6O3txczZsxAYWEhrr32WhQWFgIAPvGJT6C1tTVpwUtEmeNlrskiJwkAWDCndPxkETEyOobG5m7e0tMGGpu7kh5/p3PyTkWqmVQUdaVXFFmNlXJiqvhNJl5c7N7Xacm4SHnjid/97nd49NFHUVhYCLfbjR07duCpp55K+cI7duzAli1bAADd3d0IBoPweDwAgPfeew+rV6/G2NgYRkdHsW/fPvh8viw/ChHF8vcEsX3Xu/jmtiZs3/Uu/D1Bs5skjchJwj29AL2B4bjPOegPWKLYocScTgda24/Hfay1PYD/fN2Pb25rwk+felvp/pOsKLITq+XEZPGrJX/ZKS5SjvA6nU7k5384tF1QUICcnNTzvlasWIGNGzdi1apVcDgcuO+++1BfXw+v14uLL74Yl19+Oa655hrk5eXhiiuuwDnnnJPdJyGiCez0yz1d0SeJwMAIFswphb978qXGuV63ZUaBKL5QKIx5lcVo7xqY9JineAqe/WMbRkbHlB4R1VIU2SHOrZgTk8Vvqvxlt7hIWfAuWrQI999/P4aHh/HSSy9h+/bt+MQnPpHyhfPz8/Hggw9O+NvChQvH//cNN9yAG264IYMmE9lLpkknm8tc2byvCqJPEiOjY5iSn4uCvJwJ31dBXg5qfanXK5C8tMZwra8Cu/d1Tjr+Bfm5E/6WrP/I3F+yKYqsJNucqIUZcZAoflPlL7vFRcqCd/369XjyyScxd+5c/P73v8fixYuxcuVKI9pGZGuxCwlqfRWak3I2l7myeV+VRJ8kGvcfQ+2CGRg5eQq9xz/AvEo3an3llvzcdpBuDHvLXNi4pgaNzd046A9gXqUbgAP/9Xr7pOfGjnyp0l8yLYqsQvRopplxEBu/c73a85ed4iJlwTs8PIyxsTH88Ic/RHd3N5544gmMjo4iNzflPyWiDGV76S3TX+5WvOSXSOxJwlWYh7+/YCYqy4ssN7JhJ5nGsLfMNb5ALRQKY/uud+PGQXT/Uam/xMZ7dZW2XRqsQuRopgxxEBu/6fi4rxwnPjiF3sAwPO5CTJtizfou5ae67bbbMHfuXADAtGnTEAqFsH79+kl3XyMi/WhZNZ4qqWXyy92IS34yiXeSYLGrlti+kG0MR15LS/9Rrb9Ex3tpqUuJrby0EpUTtZApDtLNX43NXXjlraMoyMuBe3oB9h/qw8joGAoL8qSM4WykLHiPHj2KrVu3Aji9N++tt96KK664QnjDiOwq0aU3p9MBh9OB7bsOobU9kPKyWbqXuey2gCGaVT+XlcW7hHxWRZFuMZxqRFTl/iJruzLh7wlixyuH0Xy4X/ecqIXKcRDd9pHRMXT1fbjfsextz0TKgtfhcODgwYPjo7yHDh3idAYigRJdeqtdMAO73jiS1mWzdC9zLZjtts0CBlJXskvIel62TjYiarcFPzLKZCpBNpf+4zkdB2rmTbvFcMrK9fbbb8fatWtRXl4Oh8OB/v5+PPDAA0a0jci2Yi+9FeTlYOTkqYwvmyVLXNEjZXNmnoFPf+wj+NM7x8b/jVUXMJC6kl1C/uSC+JetS88ogL8nmNFoXqL+Y6cFPzLKZiqBHsVc9J0aVd3lxU4xnLLg/eQnP4ldu3ahtbUVr7zyCv74xz/ihhtuwJtvvmlE+4hsKfbS2wXzy7GnpSvuc7O59BRvhKQgLwdf+My5eO1/j+lyyY9IT6kuIa+6+GxsXFODP71zDH8+chwedyGm5OfiiZf+grwcp64LiURcIidtzJ5KEJ07nU6Hsru8xIvhpRfMUuLWwulKWfAeOXIETz75JJ566ikMDAzgxhtvxE9/+lMj2kZka7GX3gZOjMDfFf/mCJlKNELS99cPcPd1F6R1wrDafC+Sk5bLsN4yFwrynTh5amx8EQ4AjIT0X0gU3U8j7YvGfiGG2Zfjo3NnKBTGq++cXvj1+YtmY9miWQASH3vZYiL2XOPxFFlqQWNEwoL3v//7v/HEE0+gubkZl1xyCR544AHcdddduOWWW4xsH5HtpVo1XnpGAb65rSmtvR8jJ+dkIyRaqbIPKVlHqsuwTqcD+w8HJizCiRAx+hevDwBgvxDMrMvxiUaXR0bH0HSgG+ed83/w8ludk459S1sfGpr8mmPC6MJYpiJchIQF77/+679i2bJl2L59OyorKwGcXsBGROaIvfR09pln4OSpMTzx0l8QCoU1LdiIPjH/33NKMWfmGVmNkMiw/yTZT7KpBP6eIJpau1FeOtWQ0b94fWB45BT2NHezXwgWiYPXW3vQ0tZv2JSSZKPLZ595BjbXv4HBoVEAHx77m1d8FD/e8Y6mmOAgghgJC95nn30WTz/9NFavXo0zzzwTl112GcbGxhI9nQhrtzQIff1tG5YKfX0VRF96+u3ud/HSG0cmPJ5swUa8E/OnP/aRrBZbyLT/JNlLvNX20TF+4Uezi22tYvtAQV4OTnyQ+QJTSo+3zIUa3wz09QUNHaFMNLpcVlI4XuxGjIyO4fWW7kmvES8mOIggTsKC99xzz8WGDRvwta99Dbt378bTTz+N999/H1/+8pfxxS9+EXV1dUa2k4hi7D8cf9pBoku28YrTP71zDF/4zLno++sHaS+6MXvRCBEw8TJsdIxHbhf9wclT6D0+jPmVJbqP/sXrA+7pBegNDMd9PvuFOEZ/p3GvMiwox2PPH4z7fH/XINzTCyZNs4mNCQ4iiJNy0Vpubi4+85nP4DOf+Qz6+/vx+9//Hg8++CALXiITpbtgI1FxGgqF8dr/HsPd110w/t+i2kAkUmyMRy8k+rs5pVh18dm6x2S8PhAYGMGCOaXwd8dfYMp+YR3xrjKc6z0Dbcf+Ovm5FUVoijPKGx0THEQQy5nOk0tKSrB27Vo8++yzotpDRBrV+ipQkJcz4W+JLtlGTszxRBJuJok0nTYQiZQoxkdGx1B6RqHuhUJk4WdsHxgZHcO0KbnsFzYSHVuJcuKi6snHPjYmtORpyhxvmUakqHT3AE22y0OmG/JzH1KSiRGr9uMtKIrXB5YunMl+YUPJcuK/feE8vPbOUfi7BuGtKMKi6skxYacbQRiNBS+RwtK5TWYkEeu9Ib/et+okypToH2DJFhStXDJnUh9gv7CnRAsqf/DE6Rt2uacXoKmlG00t3ZPyLgcRxGHBS2QBWk+oIjfk50mdZCDyB1iqBUXx3o/9wr4SLaiMXrgWL+9yEEGMtObwEpHaojfkjz1xRxZFEFmBiEIh1YIioni0LEaLh8WuvljwEtkIF0UQZY59hzLBvCsHFrxENsOdFYgyw75DmWLsmI9zeIlsxqzbcRKpjguKKFPeMhfuWVeLhqYjjB2TsOAlsiGzbsdJpDouKKJMVVeVwuPKZ+yYhFMaiGyMSZcoM+w7lCnGjjlY8BIRERGRpQmd0nDllVeiqKgIADBz5kxs3rx5/LEnn3wSTzzxBHJzc3HTTTdhyZIlIptCRERERDYlrOAdGRkBANTX1096rLe3F/X19XjqqacwMjKC1atX48ILL0R+fr6o5hARERGRTQmb0tDa2orh4WGsXbsW1157Ld56663xx9555x2cd955yM/PR1FREbxeL1pbW0U1hYiIiIhsTNgI75QpU3D99dfj6quvxnvvvYcbbrgBL7zwAnJzcxEMBsenOgDAtGnTEAwGk76e2z0Vubk5SZ+TCY+nKPWTTHw9M99Ly+tb6fPqxe2eCkCN9qrQRkCNdqrQxmiicmo01b6TVPh5zKElVlX5LGynvtJpp7CCt6qqCpWVlXA4HKiqqkJxcTF6e3sxY8YMuFwunDhxYvy5J06cmFAAxxMIDCV9PFO9vYO6vZbHU6Tr66Ui+r1Svb6Mn1eGThoIDBn+3WRChTYCarQzkzaaHauicmqECsctHXb9PGbHKZA6VlU5NmynvmLbmSpWhU1p2LFjB7Zs2QIA6O7uRjAYhMfjAQB89KMfxd69ezEyMoLBwUEcOnQI5557rqimEFlGonuuE9GH2E9IBoxDuQgb4V2xYgU2btyIVatWweFw4L777kN9fT28Xi8uvvhirFmzBqtXr0Y4HMatt96KgoICUU2hDK3d0mB2E+hv/D1BNDZ3obX9OOZVFqPWV8E79BDFYD8hGTAO5SSs4M3Pz8eDDz444W8LFy4c/9/XXHMNrrnmGlFvT2QZ/p4gNtfvxcjoGACgvWsAu/d1YuOaGiZRor9hPyEZJItDGaaH2BlvPEEkucbmrvHkGTEyOobG5m6TWkQkH/YTkgHjUF4seIkk5nQ60Np+PO5jB/0BzhEjAvsJySFVHJK5WPASSSwUCmNeZXHcx+Z63bwnOxHYT0gOqeKQzMWCl0hytb4KFORN3IOyIC8Htb5yk1pEJB/2E5IB41BewhatEZE+vGUubFxTg8bmbhz0BzDX60atr5wLcYiisJ+QDBiH8mLBS6QAb5kL3jIXnE4HQqHw+P8nsrJ04zy2nxAZJTrmGIdyYsFLpJD3uga5vyNZXrb7mLLIIKMki1XGoVxY8BIpgvuMkh0wzkkVjFW1cNEakSK4vyPZAeOcVMFYVQsLXiIFcJ9RsgPGOamCsaoeFrxECuA+o2QHjHNSBWNVPSx4iRTB/R3JDhjnpArGqlq4aI1IEdzfkeyAcU6qYKyqhQUvkULOqiji/o4kvWznL3IfUxJJz7hirKqDBS+RArLdl5TICNFx6ptdgkXzyrKKUxYQpCeReZSxKj8WvESS416PpIJ4cbqz6QjjlKTAPEpctEYkOe71SCpgnJLMGJ/EgpdIYtzrkVTAOCWZMT4JYMFLJDXu9UgqYJySzBifBHAOL9ZuaTC7CURJ1foqsHtf54TLcdzrkWSjd5xy1TvpifFJti94icyWKnHqvdfj+Epl/3HM83LHB0pO64k9Nk6rqzLbpYE7kpAIeuRRp9OB97oGGZ+KYsFLZJJ0Tux67fU4aaXyMa5UpvgyKTyj47S01IXe3sG035Mr6UmUTPNopC84HE7s2nuE8akoFrxEJsj0xJ7tJbRkK5WZsCki28Iz0zhlfJIR0i12N9ePkd+2AAAgAElEQVTvBQAsmFPK+FQYF60RmcCMLXK4Upm0YnwSnRbpC+7pBegNDMd9DuNTDSx4iQxm1omdK5VJC8Yn0WnRfSEwMAKPuzDu8xifahBa8Pb19aGurg6HDh2a8Pef//znuOyyy7BmzRqsWbMGhw8fFtkMIqmEQmEsqi5DQV7OpMdEJ85aX8Wk9+WODxTNiMIzUdHM+KRMifghFt0XRkbHMCU/l/GpMGFzeEdHR7Fp0yZMmTJl0mPNzc24//77sWDBAlFvTySlyOKHA+0BLJhTiin5uWjcfwyhUNiQxKn3jg9kTaK2wku1EI7xSeny9wSx45XDaD7cL2TXhOi+0Lj/GGoXzMDIyVPoPf4B5lUyPlXiCIfDQoaT7r33XtTV1eGRRx7B3XffjTlz5ow/tmzZMpxzzjno7e3F4sWLsW7dupSvd+rUGHJzJ4+Ixbr8tmeyardKnnvwirSer/p3k+7nNUuiWG1p68OmhxsnFRFLzp8FpwOoWzgT1VWlRjaVbCxVTm1p68PL+zrQ0taP6qqSrOMzUfzfs66WcU9JpZtT9Y6p2L6wuGYm5p/FmFWNkBHep59+GiUlJbjooovwyCOPTHr8sssuw+rVq+FyuXDLLbdg165dWLJkSdLXDASGRDRVaelu+aM6LZ/X4ykyoCXJBQJD8HiKJrW3ockfdyEQwmGsqDv9g9DIYxqvjTJSoZ2ZtNHsWE2VUz2ufKz49Gw4F88Zn8aQzmeM/U4SxX9D0xF4XPnaG24SFeIwHVo/j9lxCiSOVaNiKtu+MP46isSQqu1MFatC5vA+9dRTeO2117BmzRocOHAAt99+O3p7ewEA4XAYX/rSl1BSUoL8/HzU1dWhpaVFRDOIpJFsIVBrO1f4krz0mrPLHRhIT2bEFBemqU1IwfvrX/8av/rVr1BfX4/58+fj/vvvh8fjAQAEg0F87nOfw4kTJxAOh7Fnzx7O5SXL4wp0sjPGP+mNMUXpMmxbsueeew7bt29HUVERbr31Vlx77bVYvXo1zj77bNTV1RnVDCLTcAU62Rnjn/TGmKJ0CL/TWn19PQBMWLR25ZVX4sorrxT91kRS4Qp0sjPGP+ktElOvt/agpa2fMUVJ8dbCRAbK9F7uRFbA+Ce9ectcqPHNQF9fkDFFSfFOa0QmYGImO2P8k94YU5QKC14iIiIisjQWvERERERkaSx4iYiIiMjSWPASERERkaU5wuEwZ3oTERERkWVxhJeIiIiILI0FLxERERFZGgteIiIiIrI0FrxEREREZGkseImIiIjI0ljwEhEREZGlseAlIiIiIktjwUtERERElsaCl4iIiIgsjQUvEREREVkaC14iIiIisjQWvERERERkaSx4iYiIiMjSWPASERERkaWx4CUiIiIiS2PBS0RERESWxoKXiIiIiCyNBS8RERERWRoLXiIiIiKyNBa8RERERGRpLHiJiIiIyNJyzW6AVr29g2Y3ISW3eyoCgSGzm2EYGT+vx1NkdhPQ2zso5XcTS4U2Amq0M5M2mh2ronOqCsctHXb9PGbHKZA6VlU5NmynvmLbmSpWOcKro9zcHLObYCi7fd50qPDdqNBGQI12qtBGo1ntO+HnkZcqn4Xt1Fe67WTBS0RERESWxoKXiIiIiCyNBS8RERERWRoLXiIiIiKyNBa8FJfT6TC7CURERGRjetYiymxLRsbw9wTR2NyF1vbjmFdZjFpfBbxlLrObRUREOhjP8f7jmOdljic5iahFWPDSOH9PEJvr92JkdAwA0N41gN37OrFxTQ0TIhGR4ibl+GPM8SQfUbUIpzTQuMbmrvEAixgZHUNjc7dJLSIiIr0wx5MKRMUpC14CcHqeTGv78biPHfQHOKeXiEhhzPGkApFxaljB+/bbb2PNmjUAgPb2dqxatQqrV6/GN7/5TYRCIaOaQQmEQmHMqyyO+9hcrxuhUNjgFhERkV6Y40kFIuPUkIL3Zz/7Ge68806MjIwAADZv3oyvfvWr+M1vfoNwOIydO3ca0QxKodZXgYK8ibfqK8jLQa2v3KQWERGRXpjjSQWi4tSQRWterxcPPfQQ1q9fDwBobm7GokWLAACf/vSn8eqrr+KSSy4xoimUhLfMhY1ratDY3I2D/gDmet2o9ZVzMQMRkQUwx5MKRMWpIQXvpZdeio6OjvH/DofDcDhOz8OYNm0aBgcHU76G2z0Vubk5KZ9nNo+nyOwmZMXjKUKNb0Zaz6eJ3O6pANT4blRoI6BGO1VoYzQjcqpq30kqVvg86eZ4GWiJVVWODdup/f21xGk67TRlWzKn88OZFCdOnMD06dNT/ptAYEhkk3Th8RShtzd18W4VMn5eszspcDpWZfxuYqnQRkCNdmbSRrNjVXROVeG4pcOun8fsOAVSx6oqx4bt1FdsO1PFqim7NFRXV2PPnj0AgFdeeQXnn3++Gc0gIiIiIhswpeC9/fbb8dBDD2HlypUYHR3FpZdeakYzSFLcHoeI7Ii5j2RitXg0bErDzJkz8eSTTwIAqqqq8Ktf/cqotyZF8LbGRGRHzH0kk5a2PjQ0+S0Xj7y1MEmBtzUmIjti7iOZWDkeeac1kgJveUlEdsTcRzKxcjyy4CXT8ZaXRGRHzH0kE6vHIwteMh1veUlEdsTcRzKxejyy4FWY6r+2ovGWl0QkA6PzKnMf6Snb+LVyPHLRmoKsuKKXt7wkIjOZlVeZ+0gPesWvt8yFe9bVoqHpiOXikQWvYqy8gtJb5oK3zAWn06H8pRMiUofZeZW5j7Khd/xWV5XC48q3XDxySoNirLyCMsJKHYyI5CdLXjUq91lpOhzpF7+xcWG1czFHeBXidDpwoD0Q97HICkqrBSgRkUhaVqZbJa9GX/b2zS7Bonllyl8ZtDs94jd2OsTSC7zwuPJFNNdULHgV0t49CE9xIfxdg5Mes8IKSiIio0VWprd3DUx6zEp5Nd5l751NRywxHc7Oso1fs6fzGIlTGhTy2v4uTMnPtewKSiIiM1h5ZXqELNM2SH/ZxK+d4oIjvIqIXLY40jOI2gUz8MHJU+gNDMPjLoTHPRVnVRRZZiSCiMhIVt8pwU7TNuwo0/i1W1yw4FVE9GWLV985ioK8HLinF2D/oT4sXlhoqaAkIjKalXdKsMu0DTvLJH7tFhec0qCQ6MsWI6Nj6Oob+tvfxV5244peIlJJNjnLaif5CDtM26D04tfpdNgqLjjCqxCjL7tZ8QYXRGRdzFmJxZ4/qqu4S4NdRfeT+WcV4+YVH0Xz4f7xumLpBbO4SwOZz6jLbnZauUlE6mPOSi36/FFa6kJv7+Qdf8ja4vWTXXs78Y1ra7Dq4rMRCoXh8RRZMjY4pUFRoi+72WnlJhGpjzlLO6tO26DUEvWT1/Z3Wz4uWPDSJFpWbhIRyYI5iyg1u/cTFrw0SWTlZjxWXLlJRGpjziJKze79hAUvxWWnlZtEpD7mLKLU7NxPuGiN4rL6RuxEZC3MWUSp2bmfsOClhKy8ETsRWQ9zFlFqdu0nnNJAKdmpQxCR+piziFKzWz9hwUtERERElsaCl4iIiIgsjQUvEREREVkaC14iIiIisjQWvKQrq9+phYjISMyp1sVjayzTtiUbHR3Fhg0b0NnZCafTiW9961uYM2eOWc2hLPl7gmhs7kJr+3HMqyxGra9C13397LZ9Sqy1WxqEvv62DUuFvj4RpSfTnGr3XKkC0edLq9Erpk0reF9++WWcOnUKTzzxBF599VV8//vfx0MPPWRWcygL/p4gNtfvxcjoGACgvWsAu/d1YuOamqw7MRMDEdlNJjmVuVINIs+XVqN3TJtW8FZVVWFsbAyhUAjBYBC5ucmb4nZPRW5uTtLnyMDjKTK7CYbyeIqw45XD4503YmR0DK+39qDGNyPj125p64ubGO5ZV4vqqtKs2i2S2z0VgFqxIHtbZW8foEYboxmRU1X7TlIx6vOkm1MzzZWqHB8tsarKZ3m9tUfI+VJvZn+fWmM6nXaaVvBOnToVnZ2dWLZsGQKBALZu3Zr0+YHAkEEty5zHU4Te3kGzm2EYj6cIfX1BNB/uj/t4S1s/+vqCGV+KaGjyx00MDU1H4HHlJ2yT2QKBIeViQea2qvBdZtJGs2NVdE5V4bilw6jP43Q60s6pmeZKLZ/H7DgFUseqKrHm8RQJO1/qSYbvU0tMx7YzVayatmjtF7/4BT71qU/hxRdfxDPPPIMNGzZgZGTErOZQhkKhMOZVFsd9bK7XnXHndTodaG0/Hvexg/4AJ/sTkSWlm1OZK9Ui4nxpNaJi2rSCd/r06SgqOl2Nn3HGGTh16hTGxsZS/CvSg94JsNZXgYK8iZebCvJyUOsrz/g1RRXSRCQXFmSTpZNTmSvVks6xtWvfEBXTpk1p+Od//md84xvfwOrVqzE6Oopbb70VU6dONas5tiBqUYO3zIWNa2rQ2NyNg/4A5nrdqPWVZ/3atb4K7N7XOeGyRraFNBHJgYusEks3pzJXqkPLsWXfEBPTphW806ZNww9+8AOz3t52kq0MPauiKOtRAG+ZC94yl65b4ogqpInIXFypnlq8nJoovzJXqiXZ+dIKfUOPOkBETJtW8JKxGpu74k4Af2lvB7r6hjDnzOm6/IrU+/KZiEKaiMyVKB81Nncrc1I3SigU1jTix1ypnnjHSeW+offItN4xzYLXBpJNAPd3DeLkqTG8uMcv9a9IJnAia9CyIIX9/UPpjvjxu1OXyn1D5Mi0Xp+Ztxa2gWQTwD3uQgQGTu+OEfkVSUQkChdZpSfZiB9Zi8p9Q4U4ZcFrE4lWhk7Jz50QpNzGhohEE7GzixVxyzH7UbFvqBKnnNJgE7ETwGeWuRAOA437j014nuy/IolIfVxkpU1kxK+9a2DSY8zV1qRi31AlTlnw2kj0BPD27kHc98u9EwJR9l+RRGQdXGSlDbccsx8V+4YKccqC14ZCoTBmedT7FUlE1qPKCd0sKo74kT5U6hsqxCkLXhtT8VckEZHdMFeTCmSPUy5aIykDk4iIJmKuJhXIGqcseEkZsqz0JCLSE3MbJcLY0A+nNJD0eF9xIrIi5jZKhLGhPxa8JDUr3FeciCgWcxslwtgQI60pDbt27cKRI0cAAC+99BJuvPFG/OAHP8Do6KiQxpH6sr0co8LdW4jIXvS4zMzcRonYOTZETuHQPML76KOP4vnnn8f999+P1tZWfO1rX8Mdd9yBAwcO4Dvf+Q7uuOMOYY0k9ehxOUbl+4qnsnZLg9lNkFo638+2DUsFtoToQ3pdZrZybqPs2DU2jJjCobngfeaZZ7B9+3YUFhbiu9/9LpYuXYqrr74a4XAY//AP/6Bro8gcenUkvS7HqHL3FiLKjEon75a2Pt0uMzO3qU1k3NoxNoyawqF5SoPD4UBhYSEAYM+ePbjooovG/05q8/cEsX3Xu/jmtiZs3/Uu/D3BrF5Pz8sxKt5XnIiS0zvnGOHlfR26XmZmblOPUXFrt9gwagqH5hHenJwcDAwMYGhoCAcOHMCFF14IAOjs7ERuLte+qUrvX1Z6X45R4e4tRKSdigtynE4Hmtv64z6W6WVm5ja1GBm3dooNI6dwaK5Uv/zlL+PKK6/EqVOnsGLFCpSVleH555/H9773Pdx88826NIaMl+yXVSadS8TlGNnv3kJE2umdc4wQCoXhqypB+zF9LzMzt6nD6Li1S2wYOYVDc8H72c9+Fueddx4CgQDmzZsHAJg2bRruvfdefPzjH9etQWQcUb+san0V2L2vc0Jy0ONyjJU7PZEdqLwgp27hTOxsOqJ7XgOY22RnZtzaITZE1Qyx0pqL0N/fj2PHjuHMM89EUVER6urqAJzermzJkiW6NozEE/XLyk6XY4hIO5UX5FRXlTKv2ZTKcasCo2oGzQXvY489hieffBKzZs3CXXfdhe9+97uora0FAPzwhz9kwasoUb+s7HI5hojSY9RojgjMa/alctyqwIi+pbng3bFjB3bs2IHCwkLs27cPX/nKV/D9738f559/PsJhdnxVif5lxZMCEUWzwhUg5jX7sULcqkBk30prSkNkW7KFCxfie9/7Hr761a9i27Zt3JpMcRy1ICIjMeeQihi3atO8D+/ChQtx66234t133wUAXHDBBdi0aROuu+46HDt2TFgD7ULk7fS0vi87MBEZyQ45J15uNyvfkz60xq1Mx1mmtphF8wjv3XffjaeeegpDQ0Pjf/v7v/97zJgxA1u3bhXSODsw4nZ6Mr0vEZEdxMuxAJh3bUCm86tMbTGb5oJ3/vz54/87egpDOBzmlIYMmbUBu4obvxMRqSJRjv24rxyvvHV0wt+Yd60l2fnV4ymSpi12jDnNUxpaW1vH/2/u3Lk4cOAADhw4gNbWVhw4cEBkGy3LqNvpyfK+RER2kCjHnvjg1IRbxjLvWo9M51eZ2iIDzQVvNL1GdB9++GGsXLkS//iP/4jf/va3urymKrRsZG2l9yUisoNkObY3MAz39IIJf2PetY5U51eZ2mLHmMuo4NVjG7I9e/bgzTffxOOPP476+np0dXVl/ZoqiWxkHY/IjazNel8iIjtIlmM97kIEBkYm/I151zpSnV9laosdY860Ed4//elPOPfcc3HzzTfjxhtvxOLFi7N+TdXU+iomXN4CjNnI2qz3JSKyg0Q5dtqUXN64wOJkOr/K1BYZOMIah2uXLl06Xuh2d3ejvPz0FxZZtLZz58603vjOO+/E0aNHsXXrVnR0dOCmm27CCy+8kLCYPnVqDLm5OXEfU1lLWx9e3teBlrZ+VFeVoG7hTFRXlVr2fe1AS6xeftszBrVGm+cevMLsJkyQzvcjW9tVYdWcKot4ORYA824GVItVmc6vMrXFbJoL3s7OzqSPn3nmmWm98Xe/+12UlJRg7dq1AIDPf/7z+PnPf47S0vgHord3MK3XN4PHU5RxO83ayDqb983m84pi9CrYeHp7B1N+N2u3NBjYotS2bVhqdhMmSOf7kaHtmfQFs2NVdN+VMT9kI9PPEy/HynDjAq2fx+w4BVLHqqyxFnuczWxnOjEn6/cZK7adqWJV87Zk6Ra0qdTU1OCXv/wlrrvuOvT09GB4eBjFxfHnm9iBWcnP7KRLRGRl8XIs8649yHScZWqLWdK6tbCelixZgqamJqxYsQLhcBibNm1CTo46lyyISDvZRrSJiMheTCt4AWD9+vVmvj0RERER2UBGuzQQEREREamCBa8C7LhBNBGRSpinSXVWj2FTpzRQcv6eIBqbu9DafhzzKotR66uw5f2viYhkxTxNqouN4aUXeOFx5ZvdLN2x4JWUvyeIzfV7xzcpb+8awO59ndi4pobJlIhIAszTpDo7xTCnNEiqsblrwh15AGBkdAyNzd0mtYiIiKIxT5Pq7BTDLHgllJvrxKHOgbiPHfQHLD/PhohITyJyptPpQGv78biPMU/bi6rH2m4xzCkNEomeRzOzzIXykqlo3H9swobRc71ubiBNRKSByPm1oVAY8yqL0d41eXCCedoeVJ+/bbcYZsEriXjzaAryclC7YAZefecoAJz+b1+5mc0kIlKCEXMTa30V2L2vc8IlYeZpe7DK3Fc7xTALXhPEu6d1onk0DgdwzqxizP7IGaj1lSvVkYiIzJJsbqIeedTpdMBb5sLGNTVobO7GQX8Ac71u5mmbyCa+4tUAZokXw0svmMVdGig7iS5/JJtH09ETxD3XL8KpUyGDW0tEpCYtcxMzLTji5fGVS+ZIVcSQWJnGV0tbHxqa/NJNgfCWucZrkVAoDI+nCL29g2Y3S3e2KHhlSESJLn9849oaVJYXJZ1Hw2KXiOwmm7x9em6iW/e5iVa5jE3ZySS+Mokdo2sXs+sk0Sxd8Mo0oTz28ofT6cD588vxX00d6OgJ4sKPVqAgL8cW82iIiBLJNm9H/r3D4dQ9p4qeJkHyyzS+0okdmWoXK7FswSvTL/F4lz9qF8zAGwe6x9t3pGcQn/roDOTn5uDdzr9abi6YDKPsRCS3bEfBov+90+lA7YIZGDl5Cr3HP8C8yuxzqqhpEmScbKezZBJf6UyBkKl2sRrLFrwy/RKP3fqjIC8HH5w8NaF9oVAYr7x1FJd98izcfd0Flkmc/KVKRFplOwr2Py0f/vtQKIxX3zmKgrwcfP6i2Vi2aFbW7bPTFk5Wo8e5KDo+04mvdLb/kql2sRpL3nhCxs2Ua32npywAgHt6AXoDw3Gf19zWn/R1VNoIOvJL9cU9frR3DeDFPX5srt8Lf0/Q7KYRkWTSyduJcku8U9rI6BiaDnRnlTsj/zY6j0dw6pn89DgXJYpPrfGlJXZkrF2sxJIjvDJuphy99cfho39FmXsq/N2TV0Emm/Cu2kgpf6kSkVZ6jIIFh09OmlcZ799rFZ13fbNLsGheGbchU1CieHlpbwcuOX8mZnlSH79s6wpvmQv3rKtFQ9ORhLEjY+1iJZYseAE5N1OO3vrjva7BCXN4k7VPxTk9IrcFIiJr0pK3k+WWI91BlJdMHEzINO/Hy7s7m45g45oabkOmkGTx4u8axKN/OIC1l83XdC7Ntq6oriqFx5WfNHZkrF2swrIFr8wbgodC4bTap+JIKX+pElG6tOTFZLllXqUbn1xQjtf2Z5/3U+Vd5jA1JIsXj7sQ+w/1aT6X6lVXJIsdmWsX1Vm24AUmb6YsGy3tU3mklL9U1bF2S4PZTTCM6M+6bcNSoa9vdVryYrLcMsvjwsol2eV9lfMuTZYoXqbk52JkdCytY2pEXSF77aIqSxe8EbIHTLL2qTxSyl+qRJSpbEfBssmNKuddmiwSLy/t7YC/axAedyGm5Oeicf8xAJkdUyNigHGmL1sUvKpTeaSUv1SJSATRuUXlvEuTectcuOT8mXj0Dwew/1Df+HHlMbUPFrwKsMJIKYtdIhJB5GXl6LxbXXV6lwaV8i5NNMvjwtrL5it9LqXMseBVBEdKiYiMFZ13S0td6O2dvJUkqYXnUvuy5I0nVKR1Q2l2UCIiY2nNu7wxgDrMPJcyTszBEV6TqXhDCSIi+hDzOGnR0taHhiY/48QkLHhNpOINJYiI6EPM46QF48R8nNJgomQbmxMRkfyYx0kLxon5WPCaRMvG5kREJC/mcdKCcSIH0wvevr4+1NXV4dChQ2Y3ZRKRQRjZ2DyeyCbY7AREZGdacqCZeVJLHidjmH2+TPb+jBM5mDqHd3R0FJs2bcKUKVPMbMYkqRYg6LWdSbyNzQsLcuGbXYLtu97lxHYisiUti8CSPcfILad4gwpz+XuC2PHKYTQf7jflfKk1Dhkn5nOEw2HTflrce++9qKurwyOPPIK7774bc+bMSfjcU6fGkJubI7xNLW192PRw46SgvGddLQDg5X0daG7rh6+qBHULZ6K6qjTr93t5Xwda2vpRXVWCBXP+D37wxJtx3z/b9yJjaInVy297xqDWWN9zD16R1vNFf/fptscsRuXUdCXLwZEcmOg5//aF87D/0Pu65mitbY7O40a9r10kilUtsSJSunHIODGXaSO8Tz/9NEpKSnDRRRfhkUceSfn8QGBIt/dO9ousockfd2L5f/9PO/a0dGFwaBQA0H5sADubjkxYYenxFKW9MbnHlY8Vn54N5+I5CIXC2L7r3bjv39B0BB5XfoafWIxMPq9oHk+R2U1AIDAk5XdjVbJ9z1rbY3as6plTI6Jzq292ZncmS5SDo3Ng4uf48b9/u21svBydjWR9OjaPA/LFZSytOcrsOAUSx6qWWImm9/Zx6cZhjW8GPK58yB4nqpy/YtuZKlZNK3ifeuopOBwONDY24sCBA7j99tvx05/+FB6PR+j7Jtsa5KyKooQTy//ccRzTCvPGC17gwxWWeiTTyJzdVBPbOdeHiGQUL7emW3BqXdyT6Dk9gWG4pxegq28IBXk5cE8vQFNrj2GXuJmfjZPu+VLvbcHivX8k5gKDI+NxCHxYK9T4ZgBgnJjFtEVrv/71r/GrX/0K9fX1mD9/Pu6//37hxS6QfGuQZBPLZ5ROQ2BgZNLf9Vxhmez9Z5a50N4t/y8uIrInPbZd0rK4J9lzPO5CHA+exIUf/QgWzClFfm4Oev/6Afy9Qe0fhJSQ7kIwvbcFi35/p9MxIebKSgpx7qziCbXBQX8go/ch/Zi+S4ORtPwirPVVoCBv4lyhgrwczDlz+qTOAui/wjLR+4fDwH2/3At/DxM3EclFz22XEuXA6MU9iZ4zJT8XNXPL8MaBbuxt7YG/exCvN3dhM3OnJWmJFUDctmCR969dMGNCzDX+bxf2NHejdsGM8efO9bozeg/SjxR3WquvrzfkfSK/yNq7BiY9FilcvWUubFxTg8bmbhz0BzDX6x7vPAV5OcJXWEbe/6W9HfB3DcLjLsSU/Fw07j+GUCis2xQKIiK9aMmtWiXKwdF5L95zfLNL8OhzzTh7ZnHCkTzmTmuJxMHrrT1oaeuPGyuAvvEZ+/7fuLYG//1GR9yY++DkqfGCnLsxmE+KgtdIWrYG8Za54C1zTZoDlCoJ6+WsiiJ09Q3h5Kkx7P/bxPcIzuUlIhnpue1Sohyc6jm3f7EGW3+/P+7zmTutyVvmQo1vBvr6gkmPrahtwSrLi3CkO/7Vg97AMD5/0Wz4znLzx5YEbFfwahk9iIjtPFqSsB5CoTDmnDkdL+7xT3qMm1QTkYxic2t1VWa7NETTkuuin1PhLsT8s9zwx1nvwNxpbamObTrn/nTfN9HocXVVCZYtmpXV65N+bFfwAtkXrkYkTW5STaTN2i0NZjeB/iY6t5aWukzZ2oi5kxIRNWiVKOY+Uc2Yk4ktC94ImX/ti/o1SkQkmpm5lbmTUtE7PhlzarB1wSs7o6ZQ6EGFNhKRPeiRO5nTKEJLLKh0vrYrFrwKkLnz6H3nGiIivWSSO5nTKCKTWJD5fG13li94+WtLnJa2Pl3vXENE8rFTDk12Ny4ZbrFLxtH7zmxkPssWvPyVLt7L++LvPcj9LonUZ8ccmuxuXFXvAbIAACAASURBVJHbwpI9JIqFl/Z24JLzZ2KWx9p9wYosV/A6nQ60dw/yl5lgTqcDzW39cR/jfpdEahM9uiVjfkh1Ny6Sm54xlSwW/F2DePQPB7D2svmsJxRjmYI3ejRiZpkL588vH787GcCRR72FQmH4qkrQfkzfO9cQkfmSjXRmk0NlHjVOdTcukpO/J4gdrxxG8+F+3WIqWSx43IXYf6iP9YSCLFHwxhuNiNzf+tV3jo4/jyOP+qpbOBM7m45wv0siC0k10plpDlVhTiT38FWLyJhKFAtT8nMxMjrGekJBlih4E41GRO5jHXmMI4/6qq4q5d6DRBaTaqQz0xwqatRYT9xPVS0iYyoSCy/t7YC/axAedyGm5Oeicf8xAKwnVKR8wZtsNKI3MAz39AJ09Q3xV7og3HuQyHr0HukUNWosAnOaGoyIKW+ZC5ecPxOP/uEA9h/qG+8PrCfUpHzBm2w0wltRhO7+Ifzfsz38lS4YTwxE1qH3SKeoUWORZGwTfciomJrlcWHtZfM56m8Byhe8QOLRiM/UzMRZFUVMXEREadJ7pJPzY0lvRsUUR/2twRIFb7LRCAYnEVHm9MqhnB9LeovE1OutPWhp6xceU6wn1GaJghfgLzAiItkxT5PevGUu1PhmoK8vyJiipJxmN0BvDHgiIrkxT5PeGFOUiuUKXiIiIiKiaCx4iYiIiMjSWPASERERkaWx4CUiIiIiS2PBS0RERESW5giHw1zaSERERESWxRFeIiIiIrI0FrxEREREZGkseImIiIjI0ljwEhEREZGlseAlIiIiIktjwUtERERElsaCl4iIiIgsjQUvEREREVkaC14iIiIisjQWvERERERkaSx4iYiIiMjSWPASERERkaWx4CUiIiIiS2PBS0RERESWxoKXiIiIiCyNBS8RERERWRoLXiIiIiKyNBa8RERERGRpLHiJiIiIyNJY8BIRERGRpeWa3QCtensHzW5CSm73VAQCQ2Y3wzAyfl6Pp8jsJqC3d1DK7yaWCm0E1GhnJm00O1ZF51QVjls67Pp5zI5TIHWsqnJs2E59xbYzVaxyhFdHubk5ZjfBUHb7vOlQ4btRoY2AGu1UoY1Gs9p3ws8jL1U+C9upr3TbyYKXiIiIiCyNBS8RERERWRoLXiIiIiKyNBa8RERERGRpLHiJiIiIyNJY8FJcTqfD7CYQKYl9h4hIH3rmU2H78I6OjuIb3/gGOjs7cfLkSdx00024+OKLxx9vaGjAj3/8Y+Tm5mL58uW45pprRDXFkpxOB0KhsO6v6+8JorG5C63txzGvshi1vgp4y1y6vw+RTPToT+w7RKQyUXVFJkTkU2EF77PPPovi4mI88MADCAQCuOqqq8YL3tHRUWzevBk7duxAYWEhVq1ahSVLlsDj8YhqjmWIPKn6e4LYXL8XI6NjAID2rgHs3teJjWtqeOImS9KrP7W09bHvEJGSYvPg0gu88LjyTW2PiHwqrOD97Gc/i0svvXT8v3NyPtwg+NChQ/B6vTjjjDMAADU1NXjjjTewbNkyUc2xBNEFaWNz1/hrR4yMjqGxuZsnbbIcPfvTy/s62HeISDkyDnSJqkWEFbzTpk0DAASDQXzlK1/BV7/61fHHgsEgioqKJjw3GAwmfT23e6oSd/8QeRvGHa8cjhsEr7f2oMY3I+vXb/Ufj/v3g/5Aws8lw20nZeN2TwWgxnejQhsBMe3Usz81t/XH/XuyvmM2I3KqrJ89U/w85tASq6p8FtnaKbquyEQ6tUg636ewghcAjh07hptvvhmrV6/G5ZdfPv53l8uFEydOjP/3iRMnJhTA8ahwX2ePp0jY/emdTgeaD8c/qba09aOvL5j13Jt53mK0HxuY9Pe5XnfczyXy82ZKhmQSCAxJ+d3EUqGNgJh26t2ffFUlafUdwPxYFZ1TVYkvrez6ecyOUyB1rKpybGRrpxF1RSa01iKx32eqWBW2S8P777+PtWvX4utf/zpWrFgx4bE5c+agvb0dx48fx8mTJ/HGG2/gvPPOE9UUSwiFwphXWRz3sblety5BWeurQEHexF/RBXk5qPWVZ/3aRDLRuz/VLZzJvkNESjGirsiEqFpE2Ajv1q1bMTAwgJ/85Cf4yU9+AgC4+uqrMTw8jJUrV2LDhg24/vrrEQ6HsXz5cpSX88SQSq2vArv3dU64/KDnSdVb5sLGNTVobO7GQX8Ac71u1PrKOQeRLEnP/lRdVcq+Q0TKEV1XZEJULeIIh8Ny7EGRgkyXARIx4nLF6dWU4k+qWrYnke3yDCDH5bfe3kEpv5tYKrQRENtOvfpTdBu1bu1jdqyKPvaqxJdWdv08ZscpkDpWVTk2srYzNg8uvWCWqbs0REuWT9Od0iB0Di/pz1vmgrfMJXy/PFn24iMSSUR/Yt8hIpXE5kGZCnM98ynvtKYonlSJ9MP+RER2Z/U8yIKXlMDbtVIsxgQRkfXples5pYGkxtu1UizGBBGR9emd61nwkrRkvAMMmYsxQURkfSJyPac0kLSS3V6Q7IkxQURkfSJyPQtekpLT6UBre+LbC3L+pv0wJoiIrE9UrmfBS1KS9Q4wZB7GBBGR9YnK9Sx4SVq81THFYkwQEVmfiFzPRWskLd7qmGIxJoiIrE9ErmfBS1Iz6s5ypA7GBBGR9emd6zmlgZTAwoZiMSaIiKxPr1zPEV7iSBkRKWHtloa0nr9tw1JBLSGiRGStKVjw2hjvWEUyG49P/3HM8zI+iYhkJntNwYLXpnjHKpLZpPg8xvgkIpKVCjWF0Dm8b7/9NtasWTPp788++yyuuuoqLF++HL/5zW9ENoESEHXHKm7+T3rQGp+MNyJSlZXylwp3wRQ2wvuzn/0Mzz77LAoLCyc99p3vfAd/+MMfMHXqVFx22WW47LLLcMYZZ4hqCsXQcheTdOffyH4pg9ShJT7f6xpkvBGRkqx2vhRRU4ggrOD1er146KGHsH79+kmPzZ07F4ODg8jNzUU4HIbDkfpXjts9Fbm5OSmfZzaPp8jsJmjim12C9q6BSX+vripBaan2jufxFKGlrS/upYx71tWiuqpUtzarwu2eCkCNWJC1jcnis3tgRMp4k/W7TMSInGr2d6L3+5v9efSmyufREquqfJbe4Ekp81esdL9PvWqKdKXTTmEF76WXXoqOjo64j51zzjlYvnw5CgsLcckll2D69OkpXy8QGNK7ibrzeIrQ2ztodjM0WTSvDDubjky4BFGQl4NF88o0f4bI521o8se9lNHQdAQeV76u7dbSJrMFAkNKxILMbUwUnx+fXyZVvEVk8l2aHauic6oM8aXn+8vwefSk9fOYHadA6lhV5dh4PEVS5q9YmXyfetQU6YptZ6pYNXzRWmtrK3bv3o2dO3di6tSp+PrXv47//M//xLJly4xuiq3pdRcTVS5lkFoSxWdleRG2/X+tcf8N442IZGfV86UKd8E0vOAtKirClClTUFBQgJycHJSUlGBgYPIwOImnx11MQqEw5lUWx72UMdfrzuh1Ve70pJ9IfEb/ihcRb1oxLokoW2blr0ykm/NkvwumYQXvc889h6GhIaxcuRIrV67E6tWrkZeXB6/Xi6uuusqoZlAc2QZmra8Cu/d1TrqUUesrT+t1rDaRn8TQK960YlwSkV6Mzl+ZaGnrQ0OTP+OcJ2OxCwCOcDgsZ8tiqDI/R4V26iX6854uCjK/lBG7hx9wOglE7+Gn5VejDPPNensHlYgFGdqo9ZjGtjPbeNNKS1wmamMqZseq6GMvIr7MvNOaDP1FTyrN4U3VTlWOTaSd6eQvo0dLteY8GUg/h5esKdtLGYn28Puflu7xxznCZh3Zjpoadeks2d6SjEEiyoSW/GXWlSUr5zwWvKSrTOfsJprID4dD+ru3UHr0vCOP6Dm7Vl1gQkTmS1bsmnHes3rOE3qnNSItIguRYhXk5SA4dFL6u7dQelS4Iw+QOC4BOReYEJE1mJUjrZ7zWPCSFGp9FSjIm7ixeHnJVPi748/LivzaJLVoGUGQSby4lG2BCRFZh9k50so5j1MabE6WSxTx9vD75IJyvLa/C/6uyUWvFX5tWonWODJzW7FMqLC3JBFZh6gcqTVHe8tcuGddLRqajlgu57HgtSkZt1qKN5FfhS1c7CyTOFLtmMq+tyQRWYueOTKTHF1dVQqPK99yOY8Frw2ZNSFeq+gOxhE2eWUaR6oeUyslfiKSl145MttzvdVyHgteG1Jt2xGOsMkpmzjiMSUiSkyPHKnauV40LlqzGbMnxGeDhZE89IojHlMiosSymbOr6rleFI7wSsKokS7VFg2RnGLjqCAvB+7pBQgMjDCOSFlm3smNrMfMK1g810/GgtdkZiweU23REMmp1leBV946ioVzy/DByVPoDQxjwZxS+GaXmN00IiLTyLIonOf6iVjwmsisxWOqLhoiuXjLXLjpH/8OP97xzngM+7sHsf9QnzQLIImIjJTsvO7xFBnaFp7rJ2LBayIzJ5Rz0RDpoflwHxdFEBH9TbLzeo1vhuHt4bn+Q1y0ZhJZJpTbvQNQ5mSJYSIiGaTKiWbiuV5wwfv2229jzZo1k/7+zjvvYPXq1Vi1ahW+8pWvYGRkRGQzpGT1e1aT9TGGiYg+lConkrmEFbw/+9nPcOedd04qZsPhMO666y5s3rwZjz/+OC666CJ0dnaKaobUrHzPajKWWaOpjGEiog9pyYm8+mUOYXN4vV4vHnroIaxfv37C39va2lBcXIzHHnsMf/7zn1FXV4fZs2eLaobUvGUu3Lzio3i9pRv+rkF4K4qwqHryhHLOvaFERK4G1hJ3XBRBRPShZDmxpa0PDU1+03dvSMTqtYawgvfSSy9FR0fHpL8HAgG8+eabuOuuu1BZWYkbb7wRCxYsQG1tbdLXc7unIjc3J+lzZJDOKsyWtj78eMc7AAD39AI0tXSjqaUb96yrRXVVKVra+vDyvg40t/XDV1WCuoUzUV1VKqrpGTF61akK3O6pAMR/Ny1tfXFXA0fiR4t4bUw37jyeIuGLMVSIMxXaGM2InGr2dyL6/c3+fNlSpf1aYlWmzxIvJ7a09WHTw41Z5WtRVKg1EknnuBu+S0NxcTEqKytx9tlnAwAuuugi7N+/P2XBGwgMGdG8rHg8RejtHdT8/IYm/3jwd/UNRf39CD4YPon7fhlVzBwbwM6mI1Jt95Tu5zWCDEkvEBgy5LuJjp+IkdExNDQdgceVn/Lfx2vjpC11JIg7GeMsViZtNDtWRedUGY6b6Pc3+/NlQ+vxMTtOgdSxKkOspZJtvhZFxpyvVexxTxWrhu/SMGvWLJw4cQLt7e0AgDfeeAPnnHOO0c0wXarVnPvb+hNubUIkaoeEZFvqEBFR+mTe0cZOOd+wgve5557D9u3bkZ+fj29/+9u47bbbsHz5clRUVGDx4sVGNUMayVZzzqt0480/vx/3MbM7B8lBxA4JMidlIiJVybqjjd1yvtApDTNnzsSTTz4JALj88svH/15bW4sdO3aIfGupRSaGJ7rt3yeqyxEOh/Fux+RA5HZPFKHHbSOjFynw3utERGLIeJtfu+V83mnNQPFW1Cde4S5f58iE1Vd9mimbHRL8PUHseOUwmg/3T1gtLDopMx6IyI68ZS782xfOw2vvHE26K5PRZCvERZ4jWPAaJNn9tVcumTPpIKu+3ZPI7bLoQ5ncNjJZLIqKO8YDEdmZvyeIHzzxJoCJuzKZvTgsXs5fesEswxfSGXGO0FTwjo2NYffu3bj44ovR39+PhoYGLF++HA6HteZ3iJRsYri3zBW3WFH1HtipCirSXzrxkSoW9Y47xgMR2V103o3elSmSd80Um/ON3vXCqHOEpkVrd955J/7rv/5r/L/37NmDb37zm7o1wuqynRgeXXSoMIncTqs+VRGJm3RiUa8fWYwHIpKNkedSVRaHmTWwZtQ5QtMI7/79+/Hcc88BAEpKSvDAAw9MWIRGyekxMVyVS8JaOrZKo9Wqixc3888ybpEC44GIZGLGudRui8PSYeQ5QtMIbygUQk9Pz/h/9/X1wek0fAtfpWm5v3YikeH+F/f40d41gBf3+LG5fi/8PUFRzc2YrNuv2FGiuKmuKs04FtPFeCAiWZh5Ls2mBrAyI88RmkZ4b7zxRlx11VWoqakBALz99tu44447dGuEHWSzGCjVnEsZRP8Kk23VpwpEjHQmipvmw/34xrU12HOgBy1t/cIXRDIeiEgGmZ5L9cjP3jIX7llXi4amI0ouRBfJqHOEpoL38ssvx6JFi/DWW28hNzcXd955J8rKynRtiB1kshhI9kvCiS4PqbzDhJFEXV5LFTerLj4bC6tnoK8vKDx+GA9EZLZMzqV65+fqqlJ4XPmmn7dlY9Q5ImnBu337dqxcuRI/+tGPJvz9wIEDAIBbbrlF18bYRTqBLvPcn5a2vqQrK1XcYcJIIlemao0bo44N44GIzJTuuVR0fqaJjDhHJJ2IGw7zoMgg3tyfoql5qPvYR0xq0Wkv7+tIubKSHTsx0StTZZwzpkI8yLJimoj0lU5OVHV3GdXzl8hzRNIR3i984QsAgDPPPBNXXXXVhMd+/etfC2sUTRQ93P+XI8fxiQUV6OofwsPPNJu2Y4PT6UBzW3/cx2SYaiE7I6aqcCpBelTZCYWIMqM1J8o+lTAe5q/Ukha8v/jFLxAMBvHEE0+gs7Nz/O9jY2N47rnn8MUvflF4A+m0yHC/vzeIzb80fxP/UCgMX1UJ2o/JN9VCBUZNVeFUAm14cwwie9CSE2WeShgP85c2Sac0nHXWWXH/np+fjy1btohoD6XQuF+eyyx1C2dKd8lcJUZOOZAtQctG1cuXRJSZVDlRxilhiTB/aZN0hHfx4sVYvHgxli1bhpGREVRXV2NwcBD79+/H+eefb1Qb6W9ku8xSXVXKS+ZZ4JQDOcjWr4jIfKrkZ+Yv7TRtS/a73/0OLS0t2LZtG4aHh///9u48PKry7B/4dyYbIQtMcMJiHAwgW6jVBIFYBQExVkSURZK0SSu8bnUpVmVpIaCigKK14oJioa/BIrwRWtCrbgGMQkzZlbApS2KALCYD2dc5vz/4ZcwymfXs8/1cl9clmWTmPufczz33nHnOc/Dmm29i3759eOyxx6SOj9pQ49cs/MrcN9x/ylPjuCIi5WmhPrN+uc+t26Xt2rULa9euBQBER0dj/fr1+Oyzz1z+3eHDh5GWltbl44sXL8aqVavcDJUA9X7NwkHlG+4/Zal1XBGR8tRen1m/3OPWGd7m5mbU19cjLCwMANDU1OTyb9auXYtt27YhNDTU4eMffPABTp48iRtuuMGDcEkrX7MQaQnHFRFpFeuXe9xqeJOTkzFt2jRMmDABAJCTk4PU1FSnf2OxWLB69WrMmzev02MHDx7E4cOHMWvWLJw+fdqtQE2m7ggMDHD9iwozmyNkeY2EuL6Sv4475NherTGZugPQxr7RQoyANsaVVvZlKzlqqtL7ROrXV3r7fKWV+N3JVa1si1Rxit0X6HF/utXw/v73v0dCQgL27t2LwMBAvPTSSxg+fLjTv0lKSkJRUVGnn5eWluL111/H66+/jv/85z9uB2q11rr9u0oxmyNQVlaldBiyUeP2qmGQWq21qtw3HWkhRkAbcXoTo9K5KnVNVcNxk/r1ld4+X7h7fJTOU8B1rqoh19zBOMXVMU5XuepWw9vY2Iji4mJERUUBuHxr4c8//xx//OMfPQ7wk08+gdVqxQMPPICysjLU19djwIABmDZtmsfPRURERETkilsN75/+9CdcunQJhYWFGDlyJPLy8hAfH+/VC6anpyM9PR0AsGXLFpw+fZrNLhERERFJxq1VGk6cOIH33nsPkyZNwv/8z/9g48aN7e685o7t27dj06ZNXgXpb7R+L2zSJuYdEZHnWDu1wa0zvL169YLBYEBsbCxOnDiBu+++G42NjS7/LiYmBps3bwYATJkypdPjPLPbHu+FTUpg3hEReY61U1vcanivueYaPPfcc0hJScFTTz2F0tJSGAz8RCOmru6F/ef0BPTvHaH6dQBJOlIues57sBMRec5R7dzz3QUsTBuJPibHy7GSstxqeJcuXYqDBw9i0KBBePzxx7Fnzx706tVL6tj8htFo6HQvbKPRgJHDeuOzvUUoKq3mp0c/JOXZg9av4Jzdg525RkTkWNvaaTQakDiiL+obm7HmX0cw7GqTKPVazXd40yK3Gt6AgACMHDkSADBhwgRMmDDB64vW6GetDc1Pl+pRZq1r91jiiL7Yd6yEZ978lFRnXts20Ym/6INjBVaHv8d7sBMROWY0GnC84KL93x3frwtLqnyq15wqIQ23Gl5HBMF/3wjFaATaNjQhQQEYMbAXCksurycXEhSA+sZm1Zx5Y+Mjv67OvH5z1Pvj37GJLi6vuZx3xZ3XW9TzPdiZz0TkC5tNwND+PVFQXOn0/dqbei3nNDN/q4VeN7z+OIdXzE9dbRuahqYWdAsOREhQABqaWmCKDOl0xreVnGfe+ClTGR3PHrR19EwF/tM9CHFXR3l8LDo20R3zrpVe78HOfJbH7BU7lA5BNlJv67oFEzz6fU/i2f7yVE/DoTYS4/pg14FzTt+vvanXckwz89da6LThTUtLc9jYCoKAhoYGyYJSIzE/dTlqaHKPXEDiiL5obrGhorIe0abu9jO+bcl15o0XMymn7dmDjsymUGz76gy2fXXGo2PRVROde+QCbhvdHxAEHC/Q7z3Ymc9EJCZLdDgWpiVg7/FSlF2qd/h+3bFeu7oTmLOTHWKd7PLnWui04X3sscfkikP1xPzU5aihsdkE7P72PCbfeDUenhqHs8VV7eYEAfKeeePFTMpqPXvQ8fh3Cw60/8yTY9FVE22zCRBsAmaNH6jrr7eYz0QkNkt0OCzR4Sgsq8bhk2Uu63VCXF+nz+fsZIdYJ7v8uRY6bXhHjRolVxyqJsWnrq4amhuGRsNmE2CJDseS2aOw+7sLyD9TIeuZNym2V8/NlBRazx58c7QER89UwGwKRbfgQOQeuYCQoACYIkNw+vwlj/brjSP64NhZK0oqau151/ZDlF6PjxxnTYhIWe6OYynGu8Xcdb1udaLQ8QXCHXXVG4hxssvfa6HXc3j9iRSfulobmtz8EpwobP9Vcsf5Nb+/YygsZvk+eYm5vf46V0gMrWcP/tM9CNu+OoOmFpt96Zsyax2iTd1xtrjKrf3ZehxgAEYO642IsGAEGIEbhkTr/njIcdaEiJRRWFqNrJzTyD9d4fQ9Rur3oo71uuNZ1CEWk9vP01Vv4Ct/r4VseN0kxaeu1gHS9lOVWubXiLG9atkWrYu7OgrbvjrjcOmbfcdKXO7PjsehsLgKIUEBePbBRJjDg2XZBqVJedaEiJTh7nuMnO9FrfW6LU9rjaPeQCz+XAvZ8LpJ6k9drdQyv0aM7VXLtmidJTocf05PwOf7irzan10dhy8PFGHG2AGSxKw2Uo5fIlKGu+8xcr4XiVlrpDjj6s+1kA2vB6T81AWob36NL9urtm3Ruv69I/BjSbXDx5ztT1dLnBlvGeg3x0Hq8UtE8nH3PUaJ9yK11xq1xycVo9IBaJFUCdI6v8YRJefXePO6at0WrfJ2fzr7u+GxUX55HPxxm4n0xt2aqOR7kdprjdrjExsbXpVJjOuDkKCAdj/T6vwaPW2LGni7P7v6u3HxMaLHSEQkF3drIt+LCJB4SsPhw4exatUqZGZmtvv5Rx99hP/93/9FQEAABg8ejKVLl8JoZO8N6Gt+jZ62RQ283Z9d/d3w2F4oK+u8WDoRkRa01rb/Hi/FUSfLd/K9iAAJG961a9di27ZtCA0Nbffz+vp6vPrqq9i+fTtCQ0Pxpz/9CTt37sTEiROlCkVz9DS/Rk/bogbe7k8eByLSI0t0OBLi+qK8vNppbWMNJMlOq1osFqxevbrTz4ODg/HBBx/YG+Hm5maEhIRIFYam6WlQ6mlb1MDb/cnjQER65G5tYw30X5Kd4U1KSkJRUVGnnxuNRlxxxRUAgMzMTNTW1uJXv/qVy+czmbojMDDA5e8pzdW9svXG37bXHSZTdwDa2DdaiBHQRpxaiLEtrdRUX2jtmHQkdfxa2T/u5KpWtoVxisuTOBVZlsxms+Gll17CmTNnsHr1ahgMBpd/Y7XWev16nn6F4e0dWczmCL+aE6nG7VXDILVaayXbN2LeLUiNx88RLcTpTYxK56ovNVUr1J43rkgdvzvPr3SeAq5zVYka0dpXeFKTtVDLAO3G6SpXFWl4MzIyEBwcjDfffFPSi9W8aQ54dzBSK7Fy0z4uCi9iqIW3eyYiclfbvmJgTA80N7fg628vwGYT2C+onGwN7/bt21FbW4sRI0YgKysLI0eOxO9+9zsAQHp6OiZNmiTq63nbHPDuYKRWYuRmp3FxgQWaiMgdjvqKkKAAJI7oi93fngfAfkHNJG14Y2JisHnzZgDAlClT7D8/fvy4lC8LwLvmgHcHI7USKzf5gY6IyDtd1c/6xmaEBAXYH2O/oE66XPzWnebAEd4djNRKjNz0dlwQEfk7Z/WzzFoHU+TPq02xX1AnXTa8vjQHvCMLqZWvuckPdERE3nFWP82mUFgrGwCwX1AzRS5ak0NiXB/sOnCu3dcP7iQi78hCaiVGbno7LoiI/F1X9XOIxYTyS/XsF1ROtw2vL82B3u/Iotft8ge+5qZWP9AxZ8kfzV6xQ+kQqA1n9fO2kTGi1yjWPXHptuEFfG8O9JZorpZp4+DSDl+OU+u4kHutRW/yq7C0Glk5p5F/usLndYeJiHxliQ7H1X0ur/fatp6J+d4p5nrr9DNdN7yt2MQ5X6YNAAcXScbb4s01sYlITeRoRFn3pKO7hpdnKR3rajmVk0WX8OHOHzi4ZOYveepL8eYSakTkLqlrqlyNKOuedHTT8PIrgK51tZxKSFAATp27xMElI3/LU2+LN9fEJiJ3yDXtSY5GlHVPeymbiAAAIABJREFUWrpoePkVgHOty6kUFFe2+7kpMgQXfqpx+DccXOLztzz1pXh3lbMAl1AjosvkqqlyNaKse9LSxTq8zj550WWO1nCtqWvCoKu4Lqtc/C1PfV33l2tiE5EzctVUOdcwZ92TjubP8PIrAPd0tZwKAOw+fJ7rskrMX/PUl3V/W3P2v8dLcfRMhWaWUCMi6cldU+Vaw1yrS0dqgeYbXn4F4L6ulmnj4JKev+apr8XbEh2OhLi+KC+v1u0+IiLPyV1T5WxE9X4vAKVovuEFePcoT3UcQBxc8vDXPBUjv5iXRNSR3DVV7vdK1j1x6aLh5VcA4uDgkpa/5ynzi4jEpNS0J9YybdJFwwt498mLZzRJbr6eIWDOEhH9zJtpT6yj/knShvfw4cNYtWoVMjMz2/18x44deOONNxAYGIjp06fj3nvvFe013Ulif1sLldTHm1vsMmeJiBzjez+5IlnDu3btWmzbtg2hoaHtft7U1ITly5cjKysLoaGhSElJwfjx42E2m6UKpR1/WwuVtI85S0TkG9ZRkqzhtVgsWL16NebNm9fu56dOnYLFYkGPHj0AAAkJCdi3bx9+/etfO30+k6k7AgMDnP6OO7JyTjtct++/x0uRENfX5+c3myN8fg4t8bftdYfJ1B2AePtGypzVyvHTQpxaiLEtsWqqmmntmMhNK/vHnVx1tS1Sv/e7Syv7XI9xStbwJiUloaioqNPPq6urERHxc4BhYWGorq52+XxWa63PMRmNBuSfrnD42NEzFT4vfWQ2R6CsrMrrv9caNW6vGgap1Vor2r6RMmfVePwc0UKc3sSodK6KUVPVTu15ozR39o/SeQq4zlVX40/q9353aaGWAdqN01Wuyn6ntfDwcNTU/Hw725qamnYNsJTkvFsKkRiYs0REvmEdJUCBhnfgwIEoKCjAxYsX0djYiH379uH666+X7fV52z7SGuYsEZFvWEdJtmXJtm/fjtraWsyaNQsLFizAnDlzIAgCpk+fjt695Us4f18LlbSHOUtE5BvWUZK04Y2JicHmzZsBAFOmTLH/fMKECZgwYYKUL+0U7yxGWsOcJSLyDeuof9PNjSe8wYQnrWHOktxmr9ihdAhe03LsJB3WUf8k+xxeIiIiIiI5seElIiIiIl1jw0tEREREusaGl4iIiIh0jQ0vEREREema7hteo9GgdAhETjFHiYjUj7Va23S7LFlhaTVy84txvOAihvbvicS4PlxgmlSFOUpEpH6s1fqgy4a3sLQayzP3o6GpBQBQUFyJXQfOYWFaApOUVIE5SkSkfqzV+qHLKQ25+cX25GzV0NSC3PwShSIiao85SkSkfqzV+qG7htdoNOB4wUWHj50otHIODimOOUpEpH6s1fqiu4bXZhMwtH9Ph48NsZh4S0FSHHOUiEj9WKv1RXcNLwAkxvVBSFBAu5+FBAUgMa63QhERtcccJSJSP9Zq/dDlRWuW6HAsTEtAbn4JThRaMcRiQmJcb04wJ9VgjhIRqR9rtX5I1vDabDYsXboUJ06cQHBwMJYtW4b+/fvbH//73/+Ojz/+GAaDAQ899BAmTZok6utbosNhiQ6H0Wjg1w6kSsxRIiL1Y63WB8ka3i+++AKNjY3YtGkTDh06hBUrVuCtt94CAFRWViIzMxOfffYZ6urqcPfdd4ve8LZicpLaMUeJiNSPtVrbJJvDu3//ftx8880AgOuuuw5HjhyxPxYaGop+/fqhrq4OdXV1MBh4pSMRERERSUOyM7zV1dUID/95jktAQACam5sRGHj5Jfv27YvJkyejpaUFDz74oMvnM5m6IzAwwOXvKc1sjlA6BFn52/a6w2TqDkAb+0YLMQLaiFMLMballZpK0tFKzrqTq1rZFsYpLk/ilKzhDQ8PR01Njf3fNpvN3uzm5OSgtLQU2dnZAIA5c+YgPj4e1157bZfPZ7XWShWqaMzmCJSVVSkdhmzUuL1qGKRWa60q901HWogR0Eac3sSodK5qoaaStNzJWaXzFHCdq1qoEQDjFFvHOF3lqmRTGuLj45GTkwMAOHToEAYPHmx/rEePHujWrRuCg4MREhKCiIgIVFZWShUKEREREfkxgyAIkszCbl2l4eTJkxAEAS+88AJycnJgsVgwceJEvPbaa/jqq69gNBoRHx+PefPmcS4vEREREYlOsoaXiIiIiEgNdHmnNSIiIiKiVmx4iYiIiEjX2PASERERka6x4SUiIiIiXWPDS0RERES6xoaXiIiIiHSNDS8RERER6RobXiIiIiLSNTa8RERERKRrbHiJiIiISNfY8BIRERGRrrHhJSIiIiJdY8NLRERERLrGhpeIiIiIdI0NLxERERHpGhteIiIiItI1NrxEREREpGtseImIiIhI19jwEhEREZGuseElIiIiIl0LVDoAd5WVVSkdgksmU3dYrbVKhyEbNW6v2RyhdAgoK6tS5b7pSAsxAtqI05sYlc5VqWuqFo6bJ/x1e5TOU8B1rmrl2DBOcXWM01Wu8gyviAIDA5QOQVb+tr2e0MK+0UKMgDbi1EKMctPbPuH2qJdWtoVxisvTOGU5w/v2229jx44daGpqQkpKCkaNGoUFCxbAYDDgmmuuwZIlS2A0svcmIiIiIvFJ3mXm5eXh4MGD2LhxIzIzM1FcXIzly5dj7ty5+Oc//wlBEJCdnS11GERERETkpwyCIAhSvsDLL78Mg8GA77//HtXV1Zg3bx7+8Ic/ICcnBwaDAV988QV2796NJUuWOH2e5uYWzZxmJ//GXCUtYJ6SVjBXSQyST2mwWq04f/481qxZg6KiIjz88MMQBAEGgwEAEBYWhqoq1xdPaGECtdkcoYmL68Sixu1VwwUWVmutKvdNR1qIEdBGnN7EqHSuSl1TtXDcPOGv26N0ngKuc1Urx4ZxiqtjnK5yVfKGt2fPnhgwYACCg4MxYMAAhISEoLi42P54TU0NIiMjpQ6DNM5oNMBmk/TLCNIY5gRRZxwXRI5J3vAmJCTgvffew3333YfS0lLU1dUhMTEReXl5GD16NHJycjBmzBipwyAPqaVoFpZWIze/GMcLLmJo/55IjOsDS3S40mGRgtSeE2oZO+Rf1D4uiJQmecM7fvx47N27FzNmzIAgCMjIyEBMTAwWL16MV155BQMGDEBSUpLUYZCb1FQ0C0ursTxzPxqaWgAABcWV2HXgHBamJbCQ+yk154Saxg75F0/GhT1PCy9iqIV5Sv5DlmXJ5s2b1+lnGzZskOOlyQNqayZy84vtsbRqaGpBbn4JC7SfUmtOHD1TrqqxQ/7F3XHRqcZfYJ6S/+Dit2TnrGjKzWg04HjBRYePnSi0wmg0yBwRKU3NOfHlgSLVjB3yL56MCzXVeCK5seElAOprJmw2AUP793T42BCLiXMk/ZBac8JoNCD/TIXDx5RuxEn/3B0XaqvxRHJjw0sApGsmfCmiiXF9EBLUfu3FkKAAJMb19vo5SVm+vqmqMSdsNgFxsVEOH+OHM31SW3PozrhQ6wdGIrnIMoeXtCExrg92HTjX7isvb5sJMS7gsUSHY2FaAnLzS3Ci0IohFhMS43pzrpkGiXVBl1pzYlx8DLL3/ijK2CH1UuuFie6OCzFrPJHWSH6nNbFocRFkLbpc0N1rJrra3o4XRgCXi6ovF0a4u9STGhZJLyur0kQuyBWjr/nQVZxqWv7LbI7A/vwLHjXiSueq1MdeC2PAE2XVjch4O1fUuiYFV+PCkxoPKJ+ngOtc1UquMU5xqe7GE6QtluhwWKLDfWompLiSXi2NDXlOqpUV1JYTYowdUi9nFyaqqeF1lXuteaqVpoZILJzDSw75MmeXF0ZQK3/MBza7+sMLE4m0jw0viYoXRlBbzAfSA16YSKR9bHhJdGq8kp6Uw3wgPRgXH8M8JtIwzuEl0an1SnpSBvOB9GB4bC/mMZGGseElSfACHmqL+UB6wDwm0i5OaSBJ8U2B2mI+kB4wj4m0hw0vEREREekaG14iIiIi0jXZ5vDefffdiIi4fBeMmJgYzJo1C88//zwCAgJw00034dFHH5UrFCIiIiLyI7I0vA0NDQCAzMxM+8+mTp2K1atX46qrrsIDDzyA/Px8xMXFyREOEREREfkRWaY0HD9+HHV1dZg9ezbS09Oxd+9eNDY2wmKxwGAw4KabbkJubq4coRARERGRnzEIgiD55aYnTpzA4cOHMXPmTJw9exb3338/IiMjsWXLFgBAVlYWfvzxRzzxxBNdPkdzcwsCAwO6fJxILZirpAXMU9IKNeTqlCf/7dHvb395qkSRkLdkmdIQGxuL/v37w2AwIDY2FhEREbh48aL98ZqaGkRGRjp9Dqu1VuowfWY2R6CsrErpMNxWWFqN3PxiHC+4iKH9eyIxro9Hi6ircXvN5gilQ4DVWqvKfdOR2mO052fhRQy1eJ6fcvJmXyqdq1LXVLXnl6eU3B5fa7Uj7m6P0nkKuM5VNeaao3jUGKcjWo3TVa7K0vBmZWXh5MmTWLp0KUpKSlBXV4fu3bujsLAQV111Fb7++mtetCazwtJqLM/cj4amFgBAQXEldh04h4VpCaptKsh/dMrPC8xP8k+s1UTikKXhnTFjBhYuXIiUlBQYDAa88MILMBqNeOqpp9DS0oKbbroJv/zlL+UIhf6/3PxiewFt1dDUgtz8EhZRUhzzk+gyjgUiccjS8AYHB+Pll1/u9PPNmzfL8fLUgdFowPGCiw4fO1Fo5W0zSVHMT6LLOBaIxMMbT/ghm03A0P49HT42xGJiASVFMT+JLuNYIBIPG14/lRjXByFB7a96DQkKQGJcb4UiIvoZ85PoMo4FInHIdqc1UhdLdDgWpiUgN78EJwqtGGIxITGuN+eEkSowP4ku41ggEgcbXj9miQ6HJTqc88BIlVrzUytL5BBJhbWayHec0kAsoEREGsBaTeQ9NrxEREREpGtseImIiIhI19jwEhEREZGuseElIiIiIl1jw0tEREREusaGl4iIiIh0jQ0vqY7RaFA6BKJOmJckNeYYkXR44wlSjcLSauTmF+N4wUUM7d8TiXF9eDchUhzzkqTGHCOSHhteUoXC0mosz9yPhqYWAEBBcSV2HTiHhWkJLPykGOYlSY05RiQPTmkgVcjNL7YX/FYNTS3IzS9RKCIi5iVJjzlGJA/ZGt7y8nKMGzcOp06dQkFBAVJSUpCamoolS5bAZrPJFQapkNFowPGCiw4fO1Fo5bw2UgTzkqTGHCOSjyxTGpqampCRkYFu3boBAJYvX465c+di9OjRyMjIQHZ2NiZNmiRHKJpkNBo63UPd0c+0ymYTMLR/TxQUV3Z6bIjFpJvt1Bo95ZgrjraVeUme8Ga8KJVjbKSlN3vFDo9+f92CCRJFQq1kaXhXrlyJ5ORkvPPOOwCA/Px8jBo1CgAwduxY7N6922XDazJ1R2BggOSx+spsjhDtuY6eKceXB4qQf6YCcbFRGBcfAwCdfjY8tpdor+kpsbZ3wg0W7Dpwrt1XeyFBAZhww1Wi7lM5mEzdAYibC1JxFKOjvFMyxwDp9qWrbfUkL7VwvNuSo6ZqbZ+4IsV4kbP2qXFsu8OdXNV6rqktfrXF0xVP4pS84d2yZQuioqJw88032xteQRBgMFz+hBkWFoaqqiqXz2O11koapxjM5giUlbneFnd0upDhQiWqaxuRl1/S7mfZe39U7OIGMbfXHB6MhWkJyM0vwYlCK4ZYTEiM6w1zeLBHr6GGQWq11oq6b6TiKEZHeadkjgHi5llb7myru3npTYxK56rUNVULY8ATUo0XsWqfK97GqnSeAq5zVQ+5pqb4tbI/O8bpKlclb3g//PBDGAwG5Obm4tixY5g/fz4qKirsj9fU1CAyMlLqMDSn44UMIUEBqKlv7vLiBj1czWuJDoclOtyvvkpXG2cX0Oghx9pyd1uZl9QVscaLHDnmT2ObyBHJL1p7//33sWHDBmRmZmLYsGFYuXIlxo4di7y8PABATk4ORo4cKXUYmuLoQgZTZAjKrHUOf1/qixvknu/FpkIZ/nIBjdFo8GpbmZfaIUeuSjFepJyz6w9jm8gZRdbhnT9/PhYvXoxXXnkFAwYMQFJSkhJhqJajCxmslQ0YMbAXCks6f80g1cUNXAzdv+j9Iq22+TxigAkDY3rodlv9lZw1S0vjRUuxEklF1oY3MzPT/v8bNmyQ86U1JzGuT7sLGRqaWhDWLRAhQQGdpjokxvUW/fW5GLp/6ph3gHQ5JidH+Tz2un6yjSeSnhI1S0vjRUuxEkmBd1pTKUt0uMMLGSbEx3T6mRTFnPO9/FNXeaf1Y+4on7/+9gKSbx2M8kv1utpWf6VEzdLSeOkY6/DYKIwaGq3KWImkwIZXxbq6kEHqixvcme/Fr8D0S28XaXWVzzabgD3fXcDS+26w/5u0ScmapaXx0jbWXr3CNXElPpFYeGthDXBURMUqrF1dnDO0f0+Hv8/5Xv7Dk+Os5ote3Mln5rS2qaFmaWm8MN/JH/EMr59ydXEH53uRO7RyYSPzWf+0cIy1Ml6I9IgNrx9y5+IOLc1NI2Vo6cJG5rP+qf0Ya2m8EOkRG14/xAX3SQxau7CR+ax/aj7GWhsvRHrDObx+hgvukxi0vJA981n/1HaMtTxeiPSCDa+fUcPFHaR9zCMi93G8ECmPDa8fSozrg5CggHY/U9vFHaR+zCMi93G8ECnLozm8Fy5cwOLFi3Hu3Dm89957mD9/Pp577jlceeWVUsVHTng7T03tF3eQNug1j9Q4/5PkI9Xx1+t4IdIKjxrexYsXIy0tDX/9619xxRVX4NZbb8WCBQva3TKYpCfG0jZqvriDtENPecQlo/ybHMdfT+OFSGs8mtJQUVGBcePGAQAMBgNSU1NRWVkpSWDkWOvSNp/mFaKguBKf5hVieeZ+FJZWe/V8LLokBq3nkdjjirRF7uOv9fFCpEUeNbwhISEoKSmBwXD5itKDBw8iKChIksDIMWdL2xCRdziu/BuPP5H+eTSlYcGCBbj//vvx448/Ytq0afjpp5/w6quvShUbdaDk/eKJ9Irjyr/x+OvD7BU7PPr9dQsmSBSJ+ni6b7a/PFWiSJTlUcM7cOBAZGVl4fTp02hpacGgQYNgtVqlio06aF3apqC48zQSLm1D5B2OK//G40/kH9ya0lBaWoqSkhKkpKTg4sWLMJlMuOKKK1BeXo777rvP5d+3tLRg4cKFSE5Oxm9+8xsUFhaioKAAKSkpSE1NxZIlS2Cz2XzeGH/ApW2IxMdx5d94/In0z60zvKtWrUJeXh7Ky8sxc+ZM+88DAgIwfvx4l3+/c+dOAMAHH3yAvLw8LF++HIIgYO7cuRg9ejQyMjKQnZ2NSZMmebkZ/oNL2xCJj+PKv/H4E+mfWw3viy++CABYs2YNHnroIY9f5NZbb8Utt9wCADh//jyuuOIK7Nq1C6NGjQIAjB07Frt373ba8JpM3REYGNDl42phNkfI8hoJcX0lfx13yLG9WmMydQegjX2jhRgBbYwrrezLVnLUVC3tE3eOv5a2xx1a2R4pclVt2854vONJnB7N4Z08eTI+/vhjTJ48Gc888wyOHj2KJUuWYPjw4a5fKDAQ8+fPx+eff47XXnsNO3futK/2EBYWhqqqKqd/b7XWehKqIszmCJSVOd8OPVHj9qphkFqttarcNx1pIUZAG3F6E6PSuSp1TdXCcfOEv26P0nkKuM5Vb2JU27FkPJ7rmMOu8sCjZckWLlyIhoYGZGdn4+TJk3jiiSfw7LPPuv33K1euxKefforFixejoaHB/vOamhpERkZ6EgoRERERkVs8anjr6+sxbdo07Ny5E1OmTMGYMWPaNa5d+de//oW3334bABAaGgqDwYARI0YgLy8PAJCTk4ORI0d6ET4RERERkXMeNbxGoxFffPEFdu7cifHjx2PXrl0wGl0/xW233YajR4/iN7/5DebMmYM///nPyMjIwOrVqzFr1iw0NTUhKSnJ640g/2A0GpQOgUTGY0rEcUAkB4/m8D7zzDNYv349/vKXv6B37954/vnn8fzzz7v8u+7du+Nvf/tbp59v2LDBk5fXLbkXNtfaQupy3OPe3yj9BuvpMdVazpL7pDq2WsgZ1jYi+XjU8A4bNgyLFy9GXV0dSkpKsHDhQhQVFUkVm+7JXey0WFxb73HfetvPguJK7DpwDgvTElQfuxq1zYG4AVEYNTRa9v3oyTEtLK1GVs5p5J+u0EzOknukqkdaqXOsbUTy8qjhff3117Fu3To0NzcjMjIS5eXlGDZsGLZs2SJVfLold7HTanF1do97NcetRo5yIHvvj7LngLvHVKs5S65JdWy1lDOsbUTy8mgO75YtW7Br1y5MnjwZGzduxOuvvw6z2SxVbLrmrNjp4fXE4M497sl9asgBT46pGuIlaUh1bLWSM6xtRPLzqOE1m82IjIzEoEGDcPz4cUycOBHnz5+XKjbdkrvYabW4tt7j3hHe494zaskBd4+pWuIl8Ul1bLWUM6xtRPLzqOENDw/H9u3bMXz4cGzfvh3fffcd6uvrpYpNt+QudlourrzHvTjUlAPuHFM1xUvikurYai1nWNuI5OVWw7t161YAwPPPP48LFy4gMTER0dHRWLBgAR5//HFJA9QruYudVotr6z3uk0b3x9V9I5E0ur8q5+NpgVpywN1jqpZ4SXxSHVst5QxrG5G83Lpo7b333sM999yDPn364IEHHgAALFq0SNLA9K612OXml+BEoRVDLCYkxvWWrNjJ/XpiskSHwxIdrollhtSsYw4Mj1VmlYbWWFwd09Z4/3u8FEfPVGgqZ8k5qeqR1uocaxuRfDxapYHEJXex03px1WLMatM2B3r1Clf8fumujqklOhwJcX1RXl7N468zUtUjLdY5rcRJpGVuNbzff/89Jk6c2OnngiDAYDAgOztb9MD8idzFTsrX09KbjD/T2jHqKl7mm/ZJdfz0khfMcSJxuNXw9u/fH++8847UsZCGaWWxd9IH5hvpHXOcSFxuNbxBQUG48sorpY7Fr2n5U7yWFnvXKy3nj6eYb6RWYo1D5rj/mb1ih0e/v27BBIkikZ5S2+pWwxsfHy/Ki9FlbYuiHj7F845ByvE1f7TYKDPfSA2krOPMcSLxudXwZmRkSB2HX+hYFOMG9MIbWd9q+lO8O4u9a62h0gpfzgIVllYjK+c08k9XaOqDFvONlCZ1HWeOE0mDqzTIpGNzUlxeg/JL9Zr/FN+62HtBcWWnx9S42LueeHsWSMtflzLfSEly1HHmOJE0PLrTmjeamprw9NNPIzU1FTNmzEB2djYKCgqQkpKC1NRULFmyBDabTeowFNexOTFFhqDUWufwd9V2G0xXtLTYu174chtVZ42yFjDfSCly1XHmOJH4JD/Du23bNvTs2RMvvfQSrFYr7rnnHgwdOhRz587F6NGjkZGRgezsbEyaNEnqUBTjqDmxVjZgxMBeKCzpvA6q1j7Fa22xdz3w9iyQHr4uZb6RUuSq48xxIvFJ3vDefvvtSEpKsv87ICAA+fn5GDVqFABg7Nix2L17t64bXkfNSUNTC7oFByIkKKDdGQOtforX4mLvWpcY1we7DpzzKH/08nUp842UIGcdZ44TiUvyhjcsLAwAUF1djccffxxz587FypUrYTAY7I9XVbm+25PJ1B2BgQEuf09pZnOEw59PuMHSqTk5cKIUf0y+HsfPluN8WQ36mcPwq19eieGxveQK12ddba8/M5m6A5B+35jNEXj2wUR8eaAIR89UYHhsFMbFx7jMH0e5GBIUgAk3XKXa46nWuNrSQoxtyVFTtbZPXHFWx4+c+smjcagGWjk+UuSqVra9K3K8v6iFs1g8iVOWi9YuXLiARx55BKmpqZgyZQpeeukl+2M1NTWIjIx0+RxWa62UIbrF1dIzZnNEl7dqNYcHO/yKCgAaGltQdrEevXp0Q11to+K3e3WXs+1VihoGqdVaK/q+6Sr3zOHBmDF2AIy3DLSfBXL1uq25+N/jpTh6psKei+bwYK9ilnppPTXmWUfexKh0rkpdU5U4blLmotkc0WUdt0SHY+iVkWg7DvfnX1D1kpPuHh+l8xRwnavexKj2muKK1PGraf902Vd1yGFXeSB5w/vTTz9h9uzZyMjIQGJiIgBg+PDhyMvLw+jRo5GTk4MxY8ZIHYbPxLiyveNXVFq+Wp7k406eePqVpyU6HAlxfVFeXu3T16XMYVILuXLR2VSDtuvyclwQqYvkqzSsWbMGlZWVePPNN5GWloa0tDTMnTsXq1evxqxZs9DU1NRujq9aiXlle2tRdPc5tbRiA4kv/2xFp5+JtaqCr3MDtb7iA+lHx1wMCQqAKTIEe4+XSvJ6zsYOxwWR+kh+hnfRokVYtGhRp59v2LBB6pcWjRRXtrvznGeLq1T9lRhJ6/LXsyU4drYCIwb2QrfgQOQeuWDPNaVXVdDDig+kD21z0Wg0IHFEX9Q3NqPMWoeyS/UoLKuGxSxP7eS4IFIn3njCidbCJMWV7a6e82xxFb8S82MdvxItLKm6fOX3iL7Yd6wEpsgQxMVGKfrGqZcVH0i93G0O2+Zi6xhpO3YOnyyTrXZyXBCpk+RTGrSosLQam3b+gCXr9mLTzh9QWFotyULgXT3njSN68ysxP9fV8Rcg4PrBZgQHBqCusQWFpdUKRXgZF8gnKTiqwa4kxvVBRPcg1Dc2K147OS6I1IdneDtwdrGB2AuBO1pc/MYRvRHbNxLrPj7u8G/4lZj+OftKtKikGo3NLSgur0VhSRV2Hz4v2pkrb/KKC+ST2Ly94OtyLo7Emn8dcfi4nLWT44JIfdjwduDszOqs8QNFXwi87RW/Z4ursOdIMTI/PYmY6HB+JeannH0lajaF4sipcvu/W3PTlzdSX5dy4gL5JCZnNdhVXvYxhWLY1SaHdz6LiQ5HQUkVrpJpLi/HBZG6+MWUBndXOXDnYgPA9yvbHWmpGKLxAAAa0UlEQVSds/tpXiF+KLocA78S819dfSXaLTiwUzPQNjc91Xo27dO8QhQUV+LTvEIsz9zv1VQJvqmTr1prcEhQAPr06t5uDLib512NHUEAXnjPu9z2BccFkTro+gyvp2eulLzYoONZjdwjF5A4oi8MBqCotJpfifkZR1+J9uoRgg+++L7T73qam63j4tT5SvSJ6u712TQisdlsAn51bR+cKLyIMmtdu9VJ3M3z1rHzxf4iFBZXwWwKbbfCCXObyD/ptuH1dh5YYlwfh7ddlfLMqqMzyzabgN3fnsc1V/XEs3NGobnZJtnrt42DZyPUw9GNSoICjGiweZ+bbcdFn17dUdjY4vD3pJjvyPyijjrmRGFpNT7cearT6iQ3XdvXozy/uk8Eistr0djcgiOnytvVc14HQeSfdNvwejsPTImLDZydWR7Qr4fkza7Ut4Yl37S+MYuRm23HhbWyASMG9nI431HMbzSYX9RRVznRVd0ODgzwKGdsNgEDr4zEp3mFnR7jdRBE/kmXDa+vC38rcbGBEmeWAd4CUw08yTNfcrPjuGhoakG34ECEBAVIlnfML+0Tuw52mRPpCV3W7R/OXfI4DqVqKmnD7BU7lA6BZKbLhtdmEzAwpofPc3HlPAug1DI2vlwRTb7x5cynWDc7kXquOPNLu6Q6M99lThwpwYgBJtGuoeDSYETUli4b3sLSajQ3t0h65koKcp9ZFvMWmJwT55m2Z7ku52kz9nx3AU8mXy/pG3LHs142m4B9x0rw5/QE9O8dIfqcXd5iVZukOjPvKiceuCsOX+wtEq1u+/qNCPOTSD902fDm5hfj628vtLufutkUiiEWkyY+3ctVZMVYlYLzM72Tm1+MphYbfnVtP3uOXmkJx8miS5Luv67Oel1lDhc973iLVe2S6sy8q5zoYwqV5KysN6uYsKYR6YvuGt7WMwitqxyEBAXAFBmCI6fKUX6pHreNjOEbbRu+zHM7eqac8zO90JqjiSP6Yt+xknZXpB85VY7BV/WARcLF8VvPepnNESgr63zBmpg4j1J7pD4z7yonlLxhg7Mz22ZzhKyxEJG4dNfwdjyD0NB0+TasAM8qOeLLPLcvDxRxfqYXbDYBIwaYUFxR1+VcRst4few/zqPUHqnPzLubE0rUamdnthPi+soeDxGJR3cNL8CzSp7y5oyK0WhA/pkKh49xfqZrv/pFP6z51xGHj+lt//EWq9ojdQ1VY064OrNNRNom262FDx8+jLS0NABAQUEBUlJSkJqaiiVLlsBmE3ed2dYzCEmj++PqvpFIGt2fX7O7wZM3HptNQFxslMPHeCbdtT6mUAy6qqfDx/S6//S4TXolVw1VU060ntl2ZIjFJHM0RCQ2Wc7wrl27Ftu2bUNoaCgAYPny5Zg7dy5Gjx6NjIwMZGdnY9KkSaK+phrPIOjNuPgYZO/9kWfSvTT22r7Yffg89x+pkj/WUH47SKRfsjS8FosFq1evxrx58wAA+fn5GDVqFABg7Nix2L17t8uG12TqjsDAAMlj9ZU/XdhgNgPPPpiILw8U4eiZCgyPjcK4+BgMj+2ldGiKMpm6A3CdC2ZzhOL7Tyv5qoU4tRBjW3LUVK3tE1djUmvb44pWtkcr7/9ykvrYqSk3nMXiSZyyNLxJSUkoKiqy/1sQBBgMBgBAWFgYqqpcXylutdZKFp9Y5LjqXU3M5giYw4MxY+wAGG8ZaD8LpOQ+UMMgtVpr3c4FJfefVvJVC3F6E6PSuSp1TdXCcXOkqzGp1e3pits1SiU11Rk1xCg3qXNRTbneVSwdc9hVHsg2h7fdixp/ftmamhpERkYqEQaJyF++8pQK9x+RunBMEumLIg3v8OHDkZeXBwDIycnByJEjlQiDiIiIiPyAIg3v/PnzsXr1asyaNQtNTU1ISkpSIgwiIiIi8gOyrcMbExODzZs3AwBiY2OxYcMGuV5aV/zpimkSD/OGyHtGo0HpEIjIR7q88YS7tNQE8P7uBHies8wbUoJeGsS24yduQBRGDY3m+CHSKL9seLXWBDi7v7ua425LSx8u1MibnO2YN8XlNTh21oo5dw7DVWZt5A1pixINolS1xVHdzd77o6bqLhH9zO8aXi02j87u767WmFtp7cOFGnmbs615YzQakDiiL+obm1FmrcNne4swaWSMXy7lQ9KRu0GUurZoue4SUWd+1/BqrYi5ur+7ms+cavHDhRp5k7Nt8yZxRF/sO1Zif47CkirsO1aCZx9MhDk8WNrgyW/IWVulri1arrtE5JgiqzQoxZ0ipjau7u+u5qLr7A2Q3ONtzrbmTUhQAOobmx0ehy8PFDn8WyJPyV1bpa4tWq67ROSYXzW8Wi1iiXF9EBLU/raKar+/uxY/XKiRLzmbGNcHvaO6o8xa5/Dxo2cqeBxIFHLWVrlqixbrLhF1ze+mNCTG9cGuA+fanR1QexGzRIdjYVoCcvNLcKLQiiEWExLjeqt6WkDrG2BBcWWnx9T84UKNvM1ZS3Q45tw5DJ/tLUJhSedbMw6PjeJxINHIVVvlqi0d6+7wWK7SQOoxe8UOyZ57ypP/luy5leR3Da8Wm0fgctyW6HBNzR3T4ocLNfIlZ68yh2PSyJh2c3iBy8dhXHyMlGGTn5GzQZSrtrStu716haOsrPMHRyLSBr9reAFtNo+ttBSvVj9cqJEvOdvVcRge24tv4CQquRpEuWuLluouETnmlw1vKxYx6Wn5w4UaebsPeRxITnLkGHOaiDzhVxetkXL4hqQOPA6kN8xpInIHG14iIiIi0jXdNbx6WmZJT9tC7fl6bJkbpGVi5i/HAhG5QzdzePV0C1s9bQu15+uxZW6QlomZvxwLROQJXTS8erqFrZ62hdrz9dgyN0jLxMxfjgUi8pRiUxpsNhsyMjIwa9YspKWloaCgwOvn0tMtbPW0LdSer8eWuUFaJmb+ciwQkacUa3i/+OILNDY2YtOmTXjyySexYsUKr55HT7ew1dO2UHu+HlvmBmmZmPnLsUBE3lBsSsP+/ftx8803AwCuu+46HDlyxOnvm0zdERgY4PCxuAFRDm8zOTw2Cr16yfv1ltkc4dPfq2lb3OHr9uqRydQdQOd94+uxlSI3tHL8tBCnFmJsy1lNFUvbfSJm/ipVJ7V2jF3RyvbIkaukXs7y1JMcVqzhra6uRnj4z4UpICAAzc3NCAx0HJLVWtvlc40aGo3svT92us3kqKHRst5JymyO8Pn11LIt7hBje8WmhgJutdY63De+Hluxc0ONx88RLcTpTYxK56qzmiqGjvtEzPxVok5qIQ894e72KJ2ngOtcVUOMJJ2u8rRjDrvKA8Ua3vDwcNTU1Nj/bbPZumx2XdHTLWz1tC3Unq/HlrlBWiZm/nIsEJGnFGt44+PjsXPnTtxxxx04dOgQBg8e7NPz6ek2k3raFmrP12PL3CAtEzN/ORaIyBOKNbyTJk3C7t27kZycDEEQ8MILL4jyvHoqfHraFmrP12PL3CAtEzN/ORaIyB2KNbxGoxHPPvusUi9PRERERH5Cd7cWJiIiIiJqiw0vEREREekaG14iIiIi0jWDIAic8U9EREREusUzvERERESka2x4iYiIiEjX2PASERERka6x4SUiIiIiXWPDS0RERES6xoaXiIiIiHSNDS8RERER6Vqg0gHoxd13342IiAgAQExMDJYvX65wRNJ6++23sWPHDjQ1NSElJQUzZ85UOiRFNDU14c9//jPOnTuHxsZGPPzww5g4caL98fXr1yMrKwtRUVEAgGeeeQYDBgyQPU5n+bl582Z88MEHCAwMxMMPP4zx48fLHt+WLVuwdetWAEBDQwOOHTuG3bt3IzIyEgCwbNkyHDhwAGFhYQCAN9980749cjh8+DBWrVqFzMxMFBQUYMGCBTAYDLjmmmuwZMkSGI0/nzuor6/H008/jfLycoSFhWHlypX2469nbfdRWzt27MAbb7yBwMBATJ8+Hffee69CEXqmq+1Ry5h2l6sapdXjY7PZsHTpUpw4cQLBwcFYtmwZ+vfvr3RYdo72+6BBg5zWDqWUl5dj2rRpWLduHQIDA1UZI9C57xg1apRnsQrks/r6emHq1KlKhyGbb775RnjwwQeFlpYWobq6WnjttdeUDkkxWVlZwrJlywRBEISKigph3Lhx7R5/8sknhe+++06ByH7mLD9LS0uFO++8U2hoaBAqKyvt/6+kpUuXCh988EG7nyUnJwvl5eWKxPPOO+8Id955pzBz5kxBEAThwQcfFL755htBEARh8eLFwmeffdbu99etW2cfEx999JHw3HPPyRuwAjruo1aNjY3CrbfeKly8eFFoaGgQpk2bJpSWlioUpfu62h5BUMeY9oSzGqXV4yMIgvDpp58K8+fPFwRBEA4ePCg89NBDCkfUnqP97qp2KKGxsVH4wx/+INx2223CDz/8oMoYBcFx3+FprOpo2zXu+PHjqKurw+zZs5Geno5Dhw4pHZKkvv76awwePBiPPPIIHnroIdxyyy1Kh6SY22+/HX/84x/t/w4ICGj3eH5+Pt555x2kpKTg7bffljs8AM7z89tvv8X111+P4OBgREREwGKx4Pjx44rECQDfffcdfvjhB8yaNcv+M5vNhoKCAmRkZCA5ORlZWVmyxmSxWLB69Wr7v/Pz8zFq1CgAwNixY7Fnz552v79//37cfPPN9sdzc3PlC1YhHfdRq1OnTsFisaBHjx4IDg5GQkIC9u3bp0CEnulqewB1jGlPOKtRWj0+QPtxdt111+HIkSMKR9Seo/3uqnYoYeXKlUhOTkZ0dDQA1/VNKY76Dk9j5ZQGEXTr1g1z5szBzJkzcfbsWdx///345JNPEBioz91rtVpx/vx5rFmzBkVFRXj44YfxySefwGAwKB2a7Fq/Yq+ursbjjz+OuXPntnt88uTJSE1NRXh4OB599FHs3LlT9ikDzvKzurq63dSAsLAwVFdXyxpfW2+//TYeeeSRdj+rra3Fb3/7W9x3331oaWlBeno6RowYgaFDh8oSU1JSEoqKiuz/FgTBnuthYWGoqqpq9/tt96mjx/Wo4z5qpbb8cldX2wOoY0x7wlmN0urxAS7HHh4ebv93QEAAmpubVfO+62i/r1y50mntkNuWLVsQFRWFm2++Ge+88w4A1/VNKY76Dk9j5RleEcTGxuKuu+6CwWBAbGwsevbsibKyMqXDkkzPnj1x0003ITg4GAMGDEBISAgqKiqUDksxFy5cQHp6OqZOnYopU6bYfy4IAn73u98hKioKwcHBGDduHI4ePSp7fM7yMzw8HDU1NfbframpkXVubFuVlZU4ffo0xowZ0+7noaGhSE9PR2hoKMLDwzFmzBhFz0K3nSNWU1Njn2fcqu0+dfS4P1FTfolBLWPaU13VKC0fn46x22w21TS7rTrud1e1Q24ffvgh9uzZg7S0NBw7dgzz589v916uhhhbOeo72ja47sTKhlcEWVlZWLFiBQCgpKQE1dXVMJvNCkclnYSEBHz11VcQBAElJSWoq6tDz549lQ5LET/99BNmz56Np59+GjNmzGj3WHV1Ne68807U1NRAEATk5eVhxIgRssfoLD+vvfZa7N+/Hw0NDaiqqsKpU6cwePBg2WMEgL179+LGG2/s9POzZ88iNTUVLS0taGpqwoEDBxAXF6dAhJcNHz4ceXl5AICcnByMHDmy3ePx8fH48ssv7Y8nJCTIHqNaDBw4EAUFBbh48SIaGxuxb98+XH/99UqH5TW1jGlPOKtRWj4+8fHxyMnJAQAcOnRIsbrVFUf73VXtkNv777+PDRs2IDMzE8OGDcPKlSsxduxYVcXYylHfkZiY6FGs6vo4pFEzZszAwoULkZKSAoPBgBdeeEF1nzTFNH78eOzduxczZsyAIAjIyMjoNHfVX6xZswaVlZV488038eabbwIAZs6cibq6OsyaNQtPPPEE0tPTERwcjMTERIwbN072GB3lZ2ZmJiwWCyZOnIi0tDSkpqZCEAQ88cQTCAkJkT1GADhz5gxiYmLs/16/fr09xilTpuDee+9FUFAQpk6dimuuuUaRGAFg/vz5WLx4MV555RUMGDAASUlJAIDZs2djzZo1SElJwfz585GSkoKgoCC8/PLLisWqlO3bt6O2thazZs3CggULMGfOHAiCgOnTp6N3795Kh+exttujhjHtCVc1SqvHZ9KkSdi9ezeSk5MhCAJeeOEFpUNqx9F+/8tf/oJly5Z1qh1q0lV9U5qjviMmJsajWA2CIAgyxUtEREREJDtOaSAiIiIiXWPDS0RERES6xoaXiIiIiHSNDS8RERER6RobXiIiIiLSNTa8KnLy5EkMGTIEn376qVd/X1VVZb9LVUlJCe6//34xwyPqpKioCBMmTOj08yFDhqClpQVLlizBnXfeicmTJ+Mf//iH/fFPPvkE06ZNw1133YUpU6bg3XfflTFq8gd5eXlIS0vz6Tl27tyJ9evXAwA2btyIjRs3ihEakd0zzzyDqVOn4o477sCIESMwdepUTJ06FR9++KFHz/P000+jpKREoij1Qb+LxWrQhx9+iNtvvx2bNm3yau27S5cu4dixYwCA3r17Y+3atWKHSOS2LVu24OLFi9i2bRvq6+sxY8YM3HDDDbjiiiuwcuVKbNmyBSaTCTU1NUhLS0NsbCwmTpyodNhEdkeOHLH/f0pKioKRkF4tWbIEwOWTB+np6fj3v//t1fPk5eWBq8w6x4ZXJZqamrB9+3a8//77SE5ORmFhISwWC/bs2YMVK1ZAEAT069cPL7/8MkJDQ/Hiiy/iv//9L1paWjBt2jT8/ve/x7Jly1BaWopHHnkECxcuRHp6Onbs2IFz585h4cKFqKioQLdu3bBs2TIMHTpU6U0mnbvmmmvwy1/+EkajEd27d8dVV12FCxcuICAgAE1NTaivrwdw+R7oK1asUOyGF+Q/mpubsXTpUnz//ff46aefMGTIELzyyivo1q0b/vGPf2Djxo0ICAjA+PHjcc899+CDDz4AAPTr1w/nz58HADz22GPYvn073nrrLRgMBvziF7/Ac889h6CgICU3jXTmwoULWLRoESorK/HTTz9h+vTpePTRR3H06FEsWbIELS0t6NatG1auXImPPvoIFRUVmDNnDjZu3IgzZ85g+fLlaGhoQFRUFJ599llceeWVSm+S4jilQSW+/PJL9OvXD7Gxsbj11luxadMmNDY24qmnnsLKlSuxfft2DB48GFu3bsXmzZsBAFu3bkVWVhays7Oxb98+LFq0CNHR0XjjjTfaPfczzzyDpKQkfPTRR3jsscfw1ltvKbGJpFOlpaX2r+Fa/wOA6667zn67zwMHDuDbb7/FDTfcgKFDh2LixIm49dZbMWPGDLz00kuw2Wzo37+/kptBfuDgwYMICgrCpk2b8Pnnn6Oqqgpffvklvv32W/zzn/9EVlYWtm3bhvz8fNTX1yM5ORnJycmYPn26/TlKSkqwfPlyrFu3Dh9//DFaWlrst5ImEsv27dtx11134f/+7//wr3/9C3//+99x6dIlrF+/Hg888AC2bNmCadOm4dChQ3j44YcRFRWFv//97+jWrRsWLVqEV199FVu3bkVaWhoyMjKU3hxV4Blelfjwww9x5513AgDuuOMOPPXUU0hKSkLv3r0xbNgwAMCTTz4JAHj88cdx7NgxfPPNNwCA2tpanDhxAn369HH43Hv37sUrr7wCABg3bpzqb4VJ2hIdHd3pa7ghQ4bY/3/v3r144oknsGrVKvTo0QPA5Q9hf/jDH/D111/j66+/xr333otVq1bhtttukzV28i833HADevbsiffffx+nT5/G2bNnUVtbi71792L8+PGIiIgAAPt88507d3Z6joMHDyI+Pt5eb1966SXZ4if/cf/99+Obb77Bu+++ix9++MH+rdgtt9yCJUuWYNeuXRg/fnynayhOnTqFoqIiPPjggwAAQRDQ0NCgxCaoDhteFSgvL8dXX32F/Px8vPfeexAEAZWVlcjJyYHBYLD/XlVVFWpqatDS0oKnn37a3hxUVFQgLCwMZWVlDp8/MPDnwywIAk6dOoVBgwZJu1FEAD777DMsXboUf/3rXzF69GgAwK5du1BbW4s77rgD06dPx/Tp07F582ZkZWWx4SVJZWdn47XXXkN6ejqmTZsGq9UKQRAQGBjYrtaWlJQgNDTU4XN0/N2KigoAQFRUlLTBk195/vnnUVJSgsmTJ+O2227DV199BUEQMHnyZCQkJGDHjh1Yt24dvvrqKzzzzDP2v2tpacHVV1+NrVu32v9dXl6u1GaoCqc0qMC///1vjBkzBjk5OdixYwd27tyJhx56CDk5OSgvL8cPP/wAAHj33XexceNGjBkzBps3b0ZTUxNqamqQmpqKQ4cOITAwEM3NzZ2ef+TIkfj4448BAHv27MHixYtl3T7yT99++y2WLl2KdevW2ZtdAOjWrRtefvllFBUVAbj8IezYsWP2bzKIpJKbm4tf//rXmD59OiIjI5GXl4eWlhaMHDkSX375JWpqatDc3Iwnn3wSR44cQUBAQKea+otf/AKHDh2yn2B44YUXkJ2drcTmkI7t2bMH999/P26//Xb7nPOWlhY89thjOHbsGFJTU/HYY4/h6NGjAGB//x80aBDKyspw4MABAMCmTZswb948JTdFNXiGVwW2bt2KJ554ot3PfvOb3+Ddd9/F2rVrMW/ePDQ1NcFiseDFF19EcHAwCgoKcM8996C5uRnTpk3D6NGj0dTUhH79+iEtLQ3Lly+3P1dGRgYWLVqEf/7znwgNDcWyZcvk3kTyQ2+99RZaWlowf/58+88ef/xxTJw4EY8++igeeughNDU1AQBuvvlm+5J6RGLZt28frr/+evu/r732WuTl5eHjjz9GUFAQ4uPjUVRUhJkzZ+K3v/0tkpOTYbPZMGnSJNx4440ICgrC/PnzccUVV9ifo3fv3vjLX/6COXPmwGaz4brrrsO0adOU2DzSsQcffBB/+tOf0K1bN/Tt2xfDhw9HUVERHn74YSxatAh/+9vfEBISYp+fe8stt2DOnDlYv349Xn31VTz//PNobGxEZGQkVqxYofDWqINB4DoWRERERKRjnNJARERERLrGhpeIiIiIdI0NLxERERHpGhteIiIiItI1NrxEREREpGtseImIiIhI19jwEhEREZGu/T+++fTgxuVdTAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.set(rc={'figure.figsize':(15, 5)})\n", + "sns.pairplot(cheese);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "\n" + ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 64, "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "ename": "KeyError", + "evalue": "'[ 82 80 83 64 73 60 60 101] not in index'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 12\u001b[0m yields.plot.scatter(subset['temperature'], subset['yield'], \n\u001b[1;32m 13\u001b[0m \u001b[0ms\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0msubset\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'speed'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m3300\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m/\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 14\u001b[0;31m \u001b[0mmarker\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmarkers\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mbaffle_type\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 15\u001b[0m )\n\u001b[1;32m 16\u001b[0m \u001b[0;31m#plt.show()\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda/lib/python3.5/site-packages/pandas/plotting/_core.py\u001b[0m in \u001b[0;36mscatter\u001b[0;34m(self, x, y, s, c, **kwds)\u001b[0m\n\u001b[1;32m 2853\u001b[0m \u001b[0maxes\u001b[0m \u001b[0;34m:\u001b[0m \u001b[0mmatplotlib\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mAxesSubplot\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0marray\u001b[0m \u001b[0mof\u001b[0m \u001b[0mthem\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2854\u001b[0m \"\"\"\n\u001b[0;32m-> 2855\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkind\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'scatter'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0my\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mc\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0ms\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0ms\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2856\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2857\u001b[0m def hexbin(self, x, y, C=None, reduce_C_function=None, gridsize=None,\n", + "\u001b[0;32m~/anaconda/lib/python3.5/site-packages/pandas/plotting/_core.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, x, y, kind, ax, subplots, sharex, sharey, layout, figsize, use_index, title, grid, legend, style, logx, logy, loglog, xticks, yticks, xlim, ylim, rot, fontsize, colormap, table, yerr, xerr, secondary_y, sort_columns, **kwds)\u001b[0m\n\u001b[1;32m 2675\u001b[0m \u001b[0mfontsize\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mfontsize\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcolormap\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcolormap\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtable\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mtable\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2676\u001b[0m \u001b[0myerr\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0myerr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mxerr\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mxerr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msecondary_y\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0msecondary_y\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2677\u001b[0;31m sort_columns=sort_columns, **kwds)\n\u001b[0m\u001b[1;32m 2678\u001b[0m \u001b[0m__call__\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__doc__\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mplot_frame\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__doc__\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2679\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda/lib/python3.5/site-packages/pandas/plotting/_core.py\u001b[0m in \u001b[0;36mplot_frame\u001b[0;34m(data, x, y, kind, ax, subplots, sharex, sharey, layout, figsize, use_index, title, grid, legend, style, logx, logy, loglog, xticks, yticks, xlim, ylim, rot, fontsize, colormap, table, yerr, xerr, secondary_y, sort_columns, **kwds)\u001b[0m\n\u001b[1;32m 1900\u001b[0m \u001b[0myerr\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0myerr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mxerr\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mxerr\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1901\u001b[0m \u001b[0msecondary_y\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0msecondary_y\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msort_columns\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0msort_columns\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1902\u001b[0;31m **kwds)\n\u001b[0m\u001b[1;32m 1903\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1904\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda/lib/python3.5/site-packages/pandas/plotting/_core.py\u001b[0m in \u001b[0;36m_plot\u001b[0;34m(data, x, y, subplots, ax, kind, **kwds)\u001b[0m\n\u001b[1;32m 1685\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mDataFrame\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1686\u001b[0m plot_obj = klass(data, x=x, y=y, subplots=subplots, ax=ax,\n\u001b[0;32m-> 1687\u001b[0;31m kind=kind, **kwds)\n\u001b[0m\u001b[1;32m 1688\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1689\u001b[0m raise ValueError(\"plot kind %r can only be used for data frames\"\n", + "\u001b[0;32m~/anaconda/lib/python3.5/site-packages/pandas/plotting/_core.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, data, x, y, s, c, **kwargs)\u001b[0m\n\u001b[1;32m 835\u001b[0m \u001b[0;31m# the handling of this argument later\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 836\u001b[0m \u001b[0ms\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m20\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 837\u001b[0;31m \u001b[0msuper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mScatterPlot\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__init__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0ms\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0ms\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 838\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mis_integer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mc\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcolumns\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mholds_integer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 839\u001b[0m \u001b[0mc\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcolumns\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mc\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda/lib/python3.5/site-packages/pandas/plotting/_core.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, data, x, y, **kwargs)\u001b[0m\n\u001b[1;32m 809\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mis_integer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0my\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcolumns\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mholds_integer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 810\u001b[0m \u001b[0my\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcolumns\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0my\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 811\u001b[0;31m \u001b[0;32mif\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_get_numeric_data\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 812\u001b[0m \u001b[0;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_kind\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0;34m' requires x column to be numeric'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 813\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0my\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_get_numeric_data\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda/lib/python3.5/site-packages/pandas/core/frame.py\u001b[0m in \u001b[0;36m__getitem__\u001b[0;34m(self, key)\u001b[0m\n\u001b[1;32m 2131\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mSeries\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mndarray\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mIndex\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlist\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2132\u001b[0m \u001b[0;31m# either boolean or fancy integer index\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2133\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_getitem_array\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2134\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mDataFrame\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2135\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_getitem_frame\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda/lib/python3.5/site-packages/pandas/core/frame.py\u001b[0m in \u001b[0;36m_getitem_array\u001b[0;34m(self, key)\u001b[0m\n\u001b[1;32m 2175\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_take\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mindexer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mconvert\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mFalse\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2176\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2177\u001b[0;31m \u001b[0mindexer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mloc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_convert_to_indexer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2178\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_take\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mindexer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mconvert\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2179\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda/lib/python3.5/site-packages/pandas/core/indexing.py\u001b[0m in \u001b[0;36m_convert_to_indexer\u001b[0;34m(self, obj, axis, is_setter)\u001b[0m\n\u001b[1;32m 1267\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mmask\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0many\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1268\u001b[0m raise KeyError('{mask} not in index'\n\u001b[0;32m-> 1269\u001b[0;31m .format(mask=objarr[mask]))\n\u001b[0m\u001b[1;32m 1270\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1271\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0m_values_from_object\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mindexer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mKeyError\u001b[0m: '[ 82 80 83 64 73 60 60 101] not in index'" + ] + } + ], + "source": [ + "\n", + "yields = pd.read_csv('http://openmv.net/file/bioreactor-yields.csv')\n", + "#sns.pairplot(yields);\n", + "\n", + "markers = {'No': 'x', \n", + " 'Yes': 'o'}\n", + "\n", + "\n", + "for baffle_type in markers:\n", + " subset = yields[yields['baffles'] == baffle_type]\n", + " subset.head()\n", + " yields.plot.scatter(subset['temperature'], subset['yield'], \n", + " s = (subset['speed']-3300)/2, \n", + " marker = markers[baffle_type]\n", + " )\n", + "#plt.show()\n", + "#yields.plot.scatter(x='temperature', y='yield', figsize=(15,5), s=()\n" + ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 61, "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 61, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#yields.plot.scatter(x='temperature', y='yield', figsize=(15,5), s=()\n", + "yields['baffles']\n" + ] }, { "cell_type": "code", @@ -1503,10 +1781,18 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 24, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "# Standard imports required to show plots\n", + "%matplotlib inline\n", + "import pandas as pd\n", + "import seaborn as sns\n", + "grades = pd.read_csv('https://openmv.net/file/unlimited-time-test.csv')\n", + "?sns.regplot\n", + "#(x = \"Time\", y = \"Grade\", data = grades, figsize=(15,5))" + ] }, { "cell_type": "code", @@ -1609,7 +1895,6 @@ "* ShOULD show: correlations numerically calculated for the film thickness dataset, but then also visualized with ``data.plot('TopRight', 'BottomRight', kind='scatter')``\n", "\n", "\n", - "* MUST COVER: look at the goal to determine if students who took a longer time to finish actually scored a higher. Correlation plot and correlation value. Linear regression? R2 = correlation!\n", "\n", "* MUST COVER: https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.probplot.html\n", "\n", From 71b766bdccfee68ca0c32297955fecb89baca346 Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Wed, 24 Jul 2019 10:53:52 +0200 Subject: [PATCH 070/134] Scatter plots with colour, shape and size --- Module-10-interactive.ipynb | 317 +++++++++++++++++++++++++++--------- 1 file changed, 241 insertions(+), 76 deletions(-) diff --git a/Module-10-interactive.ipynb b/Module-10-interactive.ipynb index 4299a76..3dcd71f 100644 --- a/Module-10-interactive.ipynb +++ b/Module-10-interactive.ipynb @@ -28,7 +28,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 4, "metadata": {}, "outputs": [ { @@ -187,7 +187,7 @@ "" ] }, - "execution_count": 1, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } @@ -1707,78 +1707,75 @@ }, { "cell_type": "code", - "execution_count": 64, + "execution_count": 98, "metadata": {}, "outputs": [ { - "ename": "KeyError", - "evalue": "'[ 82 80 83 64 73 60 60 101] not in index'", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 12\u001b[0m yields.plot.scatter(subset['temperature'], subset['yield'], \n\u001b[1;32m 13\u001b[0m \u001b[0ms\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0msubset\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'speed'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m3300\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m/\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 14\u001b[0;31m \u001b[0mmarker\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmarkers\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mbaffle_type\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 15\u001b[0m )\n\u001b[1;32m 16\u001b[0m \u001b[0;31m#plt.show()\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/anaconda/lib/python3.5/site-packages/pandas/plotting/_core.py\u001b[0m in \u001b[0;36mscatter\u001b[0;34m(self, x, y, s, c, **kwds)\u001b[0m\n\u001b[1;32m 2853\u001b[0m \u001b[0maxes\u001b[0m \u001b[0;34m:\u001b[0m \u001b[0mmatplotlib\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mAxesSubplot\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0marray\u001b[0m \u001b[0mof\u001b[0m \u001b[0mthem\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2854\u001b[0m \"\"\"\n\u001b[0;32m-> 2855\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkind\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'scatter'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0my\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mc\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0ms\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0ms\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2856\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2857\u001b[0m def hexbin(self, x, y, C=None, reduce_C_function=None, gridsize=None,\n", - "\u001b[0;32m~/anaconda/lib/python3.5/site-packages/pandas/plotting/_core.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, x, y, kind, ax, subplots, sharex, sharey, layout, figsize, use_index, title, grid, legend, style, logx, logy, loglog, xticks, yticks, xlim, ylim, rot, fontsize, colormap, table, yerr, xerr, secondary_y, sort_columns, **kwds)\u001b[0m\n\u001b[1;32m 2675\u001b[0m \u001b[0mfontsize\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mfontsize\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcolormap\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcolormap\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtable\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mtable\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2676\u001b[0m \u001b[0myerr\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0myerr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mxerr\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mxerr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msecondary_y\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0msecondary_y\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2677\u001b[0;31m sort_columns=sort_columns, **kwds)\n\u001b[0m\u001b[1;32m 2678\u001b[0m \u001b[0m__call__\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__doc__\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mplot_frame\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__doc__\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2679\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/anaconda/lib/python3.5/site-packages/pandas/plotting/_core.py\u001b[0m in \u001b[0;36mplot_frame\u001b[0;34m(data, x, y, kind, ax, subplots, sharex, sharey, layout, figsize, use_index, title, grid, legend, style, logx, logy, loglog, xticks, yticks, xlim, ylim, rot, fontsize, colormap, table, yerr, xerr, secondary_y, sort_columns, **kwds)\u001b[0m\n\u001b[1;32m 1900\u001b[0m \u001b[0myerr\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0myerr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mxerr\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mxerr\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1901\u001b[0m \u001b[0msecondary_y\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0msecondary_y\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msort_columns\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0msort_columns\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1902\u001b[0;31m **kwds)\n\u001b[0m\u001b[1;32m 1903\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1904\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/anaconda/lib/python3.5/site-packages/pandas/plotting/_core.py\u001b[0m in \u001b[0;36m_plot\u001b[0;34m(data, x, y, subplots, ax, kind, **kwds)\u001b[0m\n\u001b[1;32m 1685\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mDataFrame\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1686\u001b[0m plot_obj = klass(data, x=x, y=y, subplots=subplots, ax=ax,\n\u001b[0;32m-> 1687\u001b[0;31m kind=kind, **kwds)\n\u001b[0m\u001b[1;32m 1688\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1689\u001b[0m raise ValueError(\"plot kind %r can only be used for data frames\"\n", - "\u001b[0;32m~/anaconda/lib/python3.5/site-packages/pandas/plotting/_core.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, data, x, y, s, c, **kwargs)\u001b[0m\n\u001b[1;32m 835\u001b[0m \u001b[0;31m# the handling of this argument later\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 836\u001b[0m \u001b[0ms\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m20\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 837\u001b[0;31m \u001b[0msuper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mScatterPlot\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__init__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0ms\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0ms\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 838\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mis_integer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mc\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcolumns\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mholds_integer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 839\u001b[0m \u001b[0mc\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcolumns\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mc\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/anaconda/lib/python3.5/site-packages/pandas/plotting/_core.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, data, x, y, **kwargs)\u001b[0m\n\u001b[1;32m 809\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mis_integer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0my\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcolumns\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mholds_integer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 810\u001b[0m \u001b[0my\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcolumns\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0my\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 811\u001b[0;31m \u001b[0;32mif\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_get_numeric_data\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 812\u001b[0m \u001b[0;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_kind\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0;34m' requires x column to be numeric'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 813\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0my\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_get_numeric_data\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/anaconda/lib/python3.5/site-packages/pandas/core/frame.py\u001b[0m in \u001b[0;36m__getitem__\u001b[0;34m(self, key)\u001b[0m\n\u001b[1;32m 2131\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mSeries\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mndarray\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mIndex\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlist\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2132\u001b[0m \u001b[0;31m# either boolean or fancy integer index\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2133\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_getitem_array\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2134\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mDataFrame\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2135\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_getitem_frame\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/anaconda/lib/python3.5/site-packages/pandas/core/frame.py\u001b[0m in \u001b[0;36m_getitem_array\u001b[0;34m(self, key)\u001b[0m\n\u001b[1;32m 2175\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_take\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mindexer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mconvert\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mFalse\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2176\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2177\u001b[0;31m \u001b[0mindexer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mloc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_convert_to_indexer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2178\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_take\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mindexer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mconvert\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2179\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/anaconda/lib/python3.5/site-packages/pandas/core/indexing.py\u001b[0m in \u001b[0;36m_convert_to_indexer\u001b[0;34m(self, obj, axis, is_setter)\u001b[0m\n\u001b[1;32m 1267\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mmask\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0many\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1268\u001b[0m raise KeyError('{mask} not in index'\n\u001b[0;32m-> 1269\u001b[0;31m .format(mask=objarr[mask]))\n\u001b[0m\u001b[1;32m 1270\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1271\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0m_values_from_object\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mindexer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mKeyError\u001b[0m: '[ 82 80 83 64 73 60 60 101] not in index'" - ] + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmoAAAH1CAYAAABGCtJ0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xl4TGf/P/D3mUxmyYKIhFhKq40GRWSzr6UoCQ21lLaWorWV0nr6WPpQ3Si1PrqoelRLi6qgaK1ttcFPKbooastCREIymcx6//7wNRUkmclsJ5n367pcl8w5930+Z+5Z3nNWSQghQERERESyo/B2AURERER0bwxqRERERDLFoEZEREQkUwxqRERERDLFoEZEREQkUwxqRERERDLFoCYzy5cvx7///W+75h0yZAi+/PLLe067dOkSGjRoALPZ7MrynHL16lU89dRTiI6OxltvveXRZUdHR+PixYseXWZhYSFGjx6NmJgYjB8/3qPL9gVTp05F48aN0alTJ9tjJb0n3GXz5s0YNmyY0/0YjUZER0ejUaNGWLBggV1tnFnfe70+FyxYgISEBLRu3dotnyGpqal4+OGHER0djf379zvV19SpU+1+nhx14MABREdH4+GHH8aBAwfcsozbbdy4EQMHDnT7csrKntfCu+++i08++aTUvh5//HGkpqY6VU/fvn3x119/OdVHeaL0dgG+5qWXXoJKpcKbb75pe+zgwYMYN24cUlJSMHr0aC9W517r1q1DSEgIjhw5AkmS3LacIUOGIDExEf369bM99ssvv7htecXZvn07rl69itTUVCiVd7/VFi9ejPPnz2PevHker83VLl26hM6dO+PkyZP3XFd3GT58OCZOnOix5d1rPRMTE5GYmOh03yqVCr/88gumTp3qdF/2uPP1mZGRgZUrV2LPnj0IDQ3FpUuX3LLc8PBwp0Oau7Vq1Qq//PJLkR8BVLxr165h06ZN+Pbbb0udd+vWrU4vb9iwYVi0aBEWL17sdF/lAbeoedi0adOwf/9+/PjjjwAAg8GA6dOn45VXXkF4eLiXq3Ov9PR01K9f360hTU7S09NRr149jwYXd7FYLG7tXwgBq9Xq1mVQUXe+PtPS0lClShWEhoZ6uTLvktNeiPJi48aNaN++PTQajUeW17lzZ6SmpuLKlSseWZ63Mah5WEhICKZNm4bp06ejoKAAS5YsQZ06dfDEE08AuLmVZfLkybb5jx49igEDBiA2NhaJiYnFbjK2WCx4++23kZCQgM6dO2Pfvn0l1vHBBx/g0UcfRXR0NHr06FHkl9D58+cxePBgxMTEICEhAS+++GKx/YwfPx6tW7dGTEwMnnrqqWI3R0+dOhWbNm3CihUrEB0djQMHDty16yI1NRXt2rWz/d2pUyesWLECvXr1QkxMDF588UUYDAbb9O+++w5JSUlo3rw5Hn30Uezfvx8LFizA4cOHMWvWLERHR2PWrFkAgAYNGuD8+fMAgLy8PLz88sto0aIFOnbsiGXLltlCwq1dEG+//Tbi4uLQqVOnEp/LM2fOYMiQIYiNjcXjjz+OXbt2AQAWLVqEZcuW4ZtvvkF0dPRdu6f279+P999/3zb91haZvLw8vPrqq2jTpg3atm2LBQsW2ELSxo0bMWDAALzxxhuIjY1F586dceTIEduHZMuWLfHVV18Vec5nzJiBoUOHIjo6GoMHD0ZaWlqR2ocOHYr4+Hg89thj2LZtW5G2M2fOxHPPPYdmzZohNTUVe/fuRe/evdG8eXO0b9++yK/ZwYMHAwDi4uIQHR2NX3755a7X8p27T4YMGYIFCxZgwIABaNq0KS5evFji+jvKarVi2bJl6NixI1q2bImXX34ZeXl5tumHDx+2vbfat2+PjRs3AoDD63nnbqsjR44gOTkZMTExSE5OxpEjR2zThgwZgvfeew8DBgxAdHQ0hg0bhmvXrpVp/W65cOEC+vbti5iYGDz//PPIzc21TSvu/Xnn63Pt2rUYNmwYrly5gujo6Htu1StpbBz5zLiXL774At27d7d9Hp08eRJA8e+v4vro0qUL4uPjMXr0aFy+fBnAvXfb3b7L+Pb3VXx8vN1baTZs2GCruXPnzli7dq1t2q3Pso8//hgtW7ZEmzZtsGHDBtv0nJwcjB49Gs2bN0ffvn1x4cKFYpdjMBgwefJkJCQkIDY2FsnJybh69aptPd59991ix7+k74+SxtPR75P9+/cjLi7O9ve1a9cwatQoxMbGIj4+HoMGDbJ9xnbq1Mm2Ozk2NhbR0dGIjo5Gs2bN0KBBA9uW3D179iApKQmxsbEYMGAA/vjjD1v/arUajRo1sm3wqPAEecW4cePEqFGjRHx8vEhLS7M9vmjRIvHSSy8JIYTIzMwU8fHxYu/evcJisYgffvhBxMfHi+zsbCGEEIMHDxZffPGFEEKIzz77TDz22GMiPT1d5OTkiMGDB4vIyEhhMpnuufxt27aJzMxMYbFYxNatW0XTpk3F5cuXhRBCTJw4USxbtkxYLBZRWFgoDh06VOx6fPnllyIvL08YDAbx+uuvi8TExGLnfeWVV8T8+fOL/fvnn38Wbdu2tf3dsWNHkZycLDIzM0VOTo7o1q2b+Oyzz4QQQhw7dkw0b95c/PDDD8JisYjMzExx+vTpu56XWyIjI8W5c+eEEEJMmTJFjB49WuTl5YmLFy+Krl272ubfsGGDaNiwoVi3bp0wm81izZo1onXr1sJqtd61PkajUTz66KPiv//9rzAYDOLAgQOiWbNm4syZM0KIomN5L/ea/vzzz4vp06cLnU4nrl69KpKTk8Xnn39uqy0qKkqsX79emM1mMX/+fNG+fXvx2muvCYPBIL7//nvRrFkzkZ+fb3t+mzVrJg4ePCgMBoOYPXu2GDBggBBCCJ1OJ9q1ayfWr18vTCaTOHHihIiPjxenTp2ytW3evLk4fPiw7XXw888/iz/++ENYLBbx+++/i5YtW4pvv/1WCCHExYsX73q93bl+d84zePBg0b59e3Hq1ClhMpmE0Wgscf3vdOfr51aft8byyy+/FI8++qi4cOGCyM/PF2PGjBGTJ08WQgiRlpYmmjVrJlJSUoTRaBTXrl0Tv/32mxBCOLyeGzZssD2vOTk5IjY2Vnz11VfCZDKJlJQUERsbK65du2arr3PnzuLs2bNCr9eLwYMHi7lz55a6XsUZPHiwaNOmjfjzzz+FTqcTY8eOLfKcl/T+vHN87nz/3bmuJY2NvZ8Zdy5DiJufRW3atBHHjh0TVqtVnDt3Tly6dKnU99ftz9OBAwdEfHy8OHHihDAYDGLWrFli0KBB91yPW8/b7e/5qKgo8b///U+YTCah1+tt83Xs2FH8+OOP91yXPXv2iPPnzwur1SpSU1NFkyZNxIkTJ2zrGRUVJd577z1hNBrF3r17RZMmTURubq4QQogXX3xRjB8/Xuh0OvHnn3+KNm3a2F5Dd/r888/FqFGjREFBgTCbzeL48eMiLy/Pth7FjX9p3x8ljaej3ycJCQni2LFjtr/nzZsnpk+fLoxGozAajeLQoUO2z9DintN3331XDBo0SBiNRnHixAnRokULcfToUWE2m8XGjRtFx44dhcFgsM0/e/Zs8cYbb9yznoqGW9S8ZMaMGUhNTcULL7yAmjVr3nOer7/+Gu3atUP79u2hUCjQunVrNG7c+J6/br755hs888wziIiIQJUqVTBq1KgSl9+9e3dUr14dCoUCPXr0QN26dfHrr78CAJRKJdLT03HlyhWo1WrExsYW20/fvn0RFBQElUqFcePG4Y8//iiy1cJZQ4YMQfXq1VGlShV07NgRv//+OwBg/fr1SE5ORuvWraFQKFC9enXUr1+/1P4sFgu2bduGl156CUFBQahduzaGDh2KzZs32+apWbMmnnzySfj5+aFPnz7Iysqy/YK93bFjx1BQUICRI0dCpVKhZcuW6NixY5mPwbh69Sr279+PV199FQEBAQgNDcWzzz5bpL/atWsjOTkZfn5+6NGjBzIyMjBmzBioVCq0adMGKpWqyK/zDh06IC4uDiqVChMnTsTRo0eRkZGBvXv3olatWkhOToZSqUSjRo3w2GOPYceOHba2nTt3RkxMDBQKBdRqNRISEtCgQQMoFAo8/PDDePzxx3Hw4MEyrestffr0wUMPPQSlUonr16+Xuv6OSElJwbPPPos6deogMDAQkyZNwrZt22A2m5GSkoJWrVqhZ8+e8Pf3R0hICKKiogDAqfXcu3cv6tati969e0OpVKJnz5544IEHsGfPHts8TzzxBO6//35oNBp069bN9pouq6SkJERGRiIgIAATJkzA9u3bbVtGXPX+LO216chnxp3Wr1+PESNGoEmTJpAkCXXr1kWtWrUcen+lpKQgOTkZjRo1gkqlwqRJk3D06FG7j7MLDw/HkCFDoFQq7d5916FDB9x3332QJAnx8fFo3bo1Dh8+bJuuVCoxZswY+Pv7o3379ggICMDff/8Ni8WCnTt3Yvz48QgICEBkZCT69OlT7HKUSiVyc3Nx/vx5+Pn5oXHjxggKCrJNL278S/r+KG08Hf0+ycvLQ2BgYJGas7KykJ6eDn9/f8TGxpZ4yMu2bduwZcsWLF68GP7+/vjiiy/Qv39/NG3a1PY57O/vj6NHj9raBAYG4saNGyXWVVGU/4Nnyqlq1aohJCQEDz30ULHzpKenY/v27UU+5M1mMxISEu6a98qVK4iIiLD9XVz4u2XTpk1YuXKlbVdYQUEBcnJyAABTpkzBwoUL0bdvX1SuXBlDhw5F37597+rDYrFgwYIF2L59O65duwaF4mbuz8nJQXBwcInLt1dYWJjt/1qt1nZMQkZGBtq3b+9wfzk5OTCZTEWen5o1a9p2kwA3x+b2ZQI3n587XblyBTVq1LCt9736ckR6ejrMZjPatGlje8xqtRYZ19uPH7r1hXJ7vWq1GjqdzvZ3jRo1bP8PDAxE5cqVceXKFaSlpeHXX38t8oVqsViKHBR/+3KBm8F03rx5+Ouvv2AymWA0GtGtW7cyreu9lmHP+jviypUrqFWrlu3vWrVqwWw2Izs7GxkZGbjvvvvu2c6Z9bxy5cpd7707XxN3vqbv9dpyxJ3ve5PJhJycHISEhLjs/Vna2Nj7mXEvxY2FI++vK1euoFGjRra/AwMDUaVKFVy+fBnVq1cvtYbb3yf22rdvH5YuXYpz587BarWisLAQkZGRtulVqlQpcnzqrbG+du0azGaz3Z/XSUlJyMzMxKRJk3Djxg0kJiZi4sSJ8Pf3B1D8+Jf0/VHaeDr6fVKpUqUinzvDhw/HkiVLbGdD9+/fHyNHjrxn299++w2zZs3Cxx9/jKpVqwK4+XrbtGkTPv30U9t8JpOpyDFpOp0OlSpVKrGuioJBTcYiIiKQlJSE119/vdR5w8LCkJGRYfv79v/fKS0tDdOmTcMnn3yC6Oho+Pn5ISkpqUhft5Z5+PBhDB06FHFxcahbt26RflJSUrBr1y6sXLkStWvXRl5eHuLi4iCEsGv9tFotCgsLbX/fa6tVcSIiIko8rqM4ISEh8Pf3R3p6Oh588EEAN58rez7M7xQeHo7MzExYrVbbl0lGRgbq1atnV/s7f2HWqFEDKpUKP//8s8tOQMjMzLT9X6fT4fr16wgPD0dERATi4uKwcuVKu/t66aWXMHjwYHz00UdQq9WYM2eOLdzf69eyPeN7eztXr394eHiRY/LS09OhVCoRGhqKiIgI2xbkOzm6nncuMz09vchjGRkZaNu2rZNrU7w73/e3thA6+/68XWljY+9nxr0U91525P1151gXFBQgNzcX1atXR0BAAICblyO5tSUqKyurSHtHT3AyGo0YP3483n77bXTu3Bn+/v544YUX7Hpuq1atajvL9tZegJI+r/39/TF27FiMHTsWly5dwsiRI3H//ffbzmovbvxL+v64cuVKqeNp7/cJcPMY4HPnzqFJkyYAgKCgIEydOhVTp07FX3/9haeffhqPPPIIWrZsWaTdtWvXMHbsWMyYMQMNGza0PR4REYHRo0fj+eefL3aZZ86cccnZ1uUBd33KWGJiIvbs2YPvv/8eFosFBoMBqampRb58b+nevTtWr16NzMxMXL9+HR988EGx/er1ekiSZPv1smHDhiInAXzzzTe2ZVSuXBmSJBX5VXuLTqeDSqVCSEgI9Ho95s+f79D6RUVFYd++fcjNzUVWVhZWrVpld9u+ffti48aN+Omnn2C1WnH58mWcOXMGwM0tTMVdM83Pzw/dunXDggULkJ+fj7S0NKxcubJMb/gmTZpAq9Xio48+gslkQmpqKnbv3o0ePXrY1T40NBRpaWm2g2zDw8PRunVrvPXWW8jPz4fVasWFCxec2r24b98+HD58GEajEQsXLkTTpk0RERGBDh064Ny5c9i0aRNMJhNMJhN+/fVX23N4LzqdDpUrV4Zarcavv/6KLVu22KZVrVoVCoWiyPMeFRWFQ4cOIT09HXl5eXj//fdLrNXV69+zZ0+sWrUKFy9ehE6nw4IFC9C9e3colUr06tULBw4csO0KzcnJse2CdHQ9b9e+fXucO3cOKSkpMJvN2LZtG06fPo0OHTqUaR1uHQhf0i68zZs34/Tp09Dr9Vi4cCEee+wx+Pn5Of3+vF1pY2PvZ8a99O3bFx9//DFOnDgBIQTOnz+PtLQ0h95fvXr1wsaNG/H777/DaDRi/vz5aNKkCWrXro2qVauievXq+Prrr2GxWLB+/Xqnr6loNBphNBptoWvfvn12H9ju5+eHLl26YMmSJdDr9Th9+nSRk4Du9PPPP+PPP/+ExWJBUFAQlEol/Pz8bNOLG/+Svj9KG09Hvk+Am6/7Q4cO2f7es2cPzp8/DyEEgoKC4Ofnd9frwWw2Y9y4cejVq9ddY9qvXz+sXbsWx44dgxACBQUF2Lt3L/Lz823P/8mTJ9GqVSu7nvPyjkFNxiIiIrBs2TK8//77aNmyJdq3b48VK1bc8zIGTz75JNq0aYOkpCT06dMHXbt2LbbfBx98EMOGDcOAAQPQqlUrnDp1Cs2bN7dNP378OPr164fo6Gg8//zz+Pe//406derc1U/v3r1Rs2ZNtG3bFo8//jiaNWvm0PolJSXh4YcfRqdOnTBs2DC7Aw5wMyS9+eabeOONNxATE4PBgwfbtmQ8/fTT2LFjB+Li4u75a3L69OnQarV49NFHMWjQIPTs2RPJyckO1Q7cvO7Vf//7X+zfvx8tWrTAf/7zH7zzzjt2HSsHwLY7LSEhwXaMyjvvvAOTyYQePXogLi4O48ePv+vXvyN69uyJpUuXIiEhASdPnsTcuXMB3PzFu2LFCmzbtg1t27ZFmzZtMG/ePBiNxmL7mjlzJhYtWoTo6GgsXboU3bt3t03TarUYPXo0Bg4ciNjYWBw9ehStW7dGjx49kJiYiCeeeAIdO3YstV5Xrn9ycjISExMxePBgdO7cGSqVCtOnTwdwc1fOhx9+iJUrVyI+Ph69e/e2nVXm6HreLiQkBMuXL8fKlSuRkJCAjz76CMuXL7f9KHJUZmYmatWqVeIW36SkJEydOhWtW7eG0Wi0XTDb2ffnnUoaG3s/M+6le/fuGD16NF566SU0b94cY8aMwfXr1x16f7Vs2RITJkzAuHHj0KZNG1y8eLHIGeWzZ8/GihUrkJCQgNOnTyM6Otqp5yIoKAjTpk3Diy++iLi4OGzZssWha67NmDEDBQUFaN26NaZOnWo76/9erl69ivHjxyMmJgY9evRAfHx8kR+WxY1/ad8fJY2nI98nt2rYt2+fbQv6+fPnbWeb9+/fHwMHDrzrkJ3MzEwcPnwYq1atsp35GR0djfT0dDzyyCOYPXs2Zs2ahbi4OHTt2tV2VjYA7Nq1C/Hx8WXaE1IeSaIs28GJSPamTp2K6tWre/SCsJ40bdo0bN26FaGhofjuu++8XY7TjEYjWrVqBbPZjBEjRmDs2LFYtmwZqlatigEDBni7PJc4dOgQhg8fDpVKhQULFrh1l7AzfvrpJ4wbNw5GoxEffPABWrRo4e2S7uleF/f2lvnz56Nq1ap49tln3b6sfv36Yc6cOUWOCazIGNSIKqiKHtSIfJ2cghq5D3d9EhEREckUt6gRERERyRS3qBERERHJFIMaERERkUxViAve5uToYLW6bw9uaGgQsrPz3dY/yQvH27dwvH0Hx9q3yHG8FQoJISGBpc94mwoR1KxW4dagdmsZ5Ds43r6F4+07ONa+pSKMN3d9EhEREckUgxoRERGRTDGoEREREckUgxoRERGRTDGoEREREckUgxoRERGRTDGoEREREckUgxoRERGRTFWIC966mtFoxDffbMGqVR8jIyMDFosJgYFBaNmyNUaMGI0HHqjv7RKJiIjIBzCo3aagoAALFszFypUfwmKxQqcreuuJU6f+xOrVq9CkSVNMm/YaWrZs7aVKiYiIyBdw1+f/yc7ORvfunbF8+VLcuHHjrpAGACaTCQZDIQ4dSkX//k9g9epPPF8oERER+QwGNQA6nQ5JSd1w+vQpGAyFdrUpLNRj2rRXsH79OjdXR0RERL6KQQ3Av/41GefPn4PJZHKonV6vx6RJ43Hhwnk3VUZERES+zOeD2vXrudi0aQMMBkOZ2lutFqxY8b6LqyIiIiJiUMO6dZ9Bksr+NBiNRqxe/UmZgx4RERFRcXw+qH344XLo9QVO97Nz53YXVENERET0D58PapcvZzrdh8FgwMWLF1xQDREREdE/fD6oGY1Gp/swmUwoKNC5oBoiIiKif/h8UFOrNU73oVKpEBwc7IJqiIiIiP7h80Ht/vvvd7oPlUqFhx5q4IJqiIiIiP7h80HthRfGIzAwyKk+NBot2rfv6KKKiIiIiG7y+aCWmNjHqfYajRajRo2Bn5+fiyoiIiIiusnng5pGo8HIkc8jICCgTO2VSiUGD37GxVURERERMagBAF5++VXEx7eARqN1qJ1Wq8Vnn32J0NBQN1VGREREvoxBDYCfnx9Wr16HDh062bVlTan0R2BgINas+RItWrTyQIVERETkixjU/o9arcYnn6zBggVL0LjxI9BotHcddxYYGAitNgBDhjyDvXt/Qps27bxULREREfkCpbcLkBOFQoE+ffqiT5+++O23k/jii89w8eIFWCwmBAVVRqtWbdC7d3KZj2cjIiIicgSDWjEaNmyE116bAwAICwtGVlaelysiIiIiX8Ndn0REREQyxaBGREREJFMMakREREQyxWPUKrj09DQcO3YUN25ch0ajQc2atRATEweFghmdiIhI7hjUKiCr1Yr9+/di6dKF+PnnA1Cp1LBaLZAkBYQQCAoKwvPPj8OgQYNRpUqIt8slIiKiYkhCCOHtIpyVnZ0Pq9V9q1GezvrMzc1B//59cOrUn9DpdMXOp9VqIUkSVqz4Hzp37urBCuWvPI03OY/j7Ts41r5FjuOtUEgIDQ1yrI2baiEvuH49F126dMDJkydKDGkAoNfrUVBQgKFDh2DLls0eqpCIiIgcwaBWQQghMHBgX2RkpMFoNNrdrrBQjzFjnsPx47+6sToiIiIqCwa1CiI19Sf89ttJh0LaLYWFhXjnnTluqIqIiIic4bGgZjAYMHPmTHTt2hW9evXC9OnTAQB///03+vfvj8ceewz9+/fHuXPnPFVShbJ06ULo9QVlaiuEwN69u3H58mUXV0VERETO8FhQmzt3LtRqNXbs2IGUlBRMmDABADBz5kwMGjQIO3bswKBBgzBjxgxPlVRhZGVlYc+e3XD2vJDVq1e6qCIiIiJyBY8ENZ1Oh02bNmHChAmQJAkAUK1aNWRnZ+O3335Dz549AQA9e/bEb7/9hmvXrnmirArjjz9+g1qtdqoPg8GA1NSfXFQRERERuYJHrqN28eJFVKlSBUuWLEFqaioCAwMxYcIEaDQaVK9eHX5+fgAAPz8/hIeHIyMjA1WrVvVEaRXCjRs3XNLP9eu5LumHiIiIXMMjQc1sNuPixYto2LAhXnnlFRw7dgyjR4/GwoULXdK/o9ckKYuwsGC3L6OsIiJCoVBITvdTuXIlWa+nJ/F58C0cb9/BsfYtFWG8PRLUatasCaVSadvF2bRpU4SEhECj0eDy5cuwWCzw8/ODxWLBlStXEBER4VD/vn7B26Cg0DKd7Xk7hUKB2rXryno9PUXu402uxfH2HRxr3yLH8ZbtBW+rVq2KhIQE/PjjjwBunumZnZ2NevXqISoqClu2bAEAbNmyBVFRUdzt6aDIyAaoU+c+p/pQq9UYOnSEiyoiZ504cRxjx45Cgwb1ULt2NdSpE4aoqPsxceJY/PnnH94uj1zs4sULmD17JpKSuqNjx9Z4/PEuePHFF/Drr0e9XRoReZnHbiF18eJFvPrqq8jNzYVSqcSLL76I9u3b48yZM5g6dSpu3LiBSpUq4e2338YDDzzgUN++vkUNANat+wxTp75U6h0JihMZ+TB++OGgi6sqn7w53gcPpuLll1/E33+fhdFohMViKTJdqVRCqVSiQYOHMW/eQjRtGu2VOisSb473oUOpeOut13Hw4M8QAjAaDbZpfn5+UKnUqFPnPkye/Ap69072So0VSXn4LCfXkeN4l2WLGu/1aQc5DvadCgsL0bRpA+Tk5DjcNiAgAPPnL8YTT/RzQ2Xlj7fGOyVlE8aOHQW9Xm/X/FqtFitW/A+PPvqYmyur2Lw13p9//ileeeUlFBaWPt5abQD69x+It956FwoFr1NeVuXhs5xcR47jLdtdn+R+Go0Ga9duhFYb4FA7rVaL3r2T0adPXzdVRvbYt28PxoyxP6QBN+/XOnz40zh4MNWNlZE7bNq0AVOn2hfSAECvL8AXX3yO6dOnurkyIpIbBrUKJDo6BuvWbURQUJDtkiclCQgIQHLyk3j33UW269uR5xkMBgwbNsTuL+3b6fV6PPPMAJjNZjdURu6QmZmB8eNfcCiUA0BBQQHWrPkfdu3a6abKiEiOGNQqmBYtWmH37h8xYMBT0Gi0CAgouoXNz88PGo0WjzzSBIsXv493311kV6gj90lJ2QSr1Vrm9oWFBnz3Hb+8y4uVKz+CEGUb74KCArz33rsuroiI5IzHqNlBjvu57ZGfn4f169fhxx9/wLVr2dBERzSUAAAgAElEQVRqA1Cv3v146qmnERXV0NvlyZanx7t9+xb4/fffnOojLi4BW7d+66KKfIsnx9tkMqFhwwdw/fr1MvehVqvx/fcHUa/e/S6szDeU189yKhs5jndZjlHzyHXUyDuCgoLx7LMj8OyzvOyGXJ0/fw5//33W6X6OHTuKrKwshIWFuaAqcpfvv98Hi6XsW08BwGq14osv1uLll//loqqISM6465PIiy5fvgyVSuV0PyqVCllZV1xQEblTZmYGrFZL6TOWwGQy4fz5v11UERHJHYMakRcZDIUu6UeSpDKdjECeVVhY6NTxiLcUFBS4oBoiKg8Y1Ii8qFKlSnDFYaJWqwWVK1d2QUXkTpUrV4ZS6fwRJ6GhoS6ohojKAwY1Ii+qX/8hmEyuuLSGhNq1nbuNGLlfdHSM0+MdGBiEli1bu6giIpI7BjUiLwoKCkKfPslOXSLF31+Fp556Gmq12oWVkTs88EB9PPJIE6f6kCQJPXsmuagiIpI7BjUiLxs1agz8/ct+QoFCIWHEiFEurIjcady4iQgMDCxTW39/FZ5+eihDOZEPYVAj8rKGDRuhRYtWZfry1Wg06NKlG6+pVY506fIY6ta9H/7+/g63DQgIwOjRY9xQFRHJFYMakQx8/PFq3HdfXYcu1aFWq/HQQw2wbNmHbqyMXE2pVGL9+s0ID69u95ZUSZIQGBiIDRs2o0aNCDdXSERywqBGJANBQUH45ptdaNKkmV27xQIDAxEXl4DNm7dDo9F4oEJypWrVqmHXru/RqFFjBAYGlniv3aCgIFSrFoZvvtmNJk2aebBKIpIDBjUimahUqTI2b96OpUs/RExMHDQajS2ESZJk+7tFi1b44IOVWL9+c5mPdSLvq1o1FDt27MHnn29A167doFarUalSJds/jUaDZs2isXDhMhw9+jsefjjK2yUTkRfwXp92kOP9wsh95DLeZ878hT17diEnJwcAULVqVXTq1AX33/+AlyurWOQy3llZWThz5i/cuHEdAQGBqF27Do89dDG5jDV5hhzHm/f6JKpA6td/CPXrP+TtMshDwsLCeK9WIroLd30SERERyRSDGhEREZFMMagRERERyRSPUbsHIQR++ulHrFnzP1y6dBFmsxHBwZXRqlUbPPXUM7whMhEREXkEg9ptzGYzVq36GEuWvIfc3BwUFBTg9pNiDxz4EXPnvomuXbvjpZdeQcOGjbxYLREREVV0DGr/Jz8/H0891Q9Hj/4Cvb7gnvMUFuoBAFu3bsZ33+3A8uUfo3v3xz1ZJhEREfkQHqMGwGg04skne+PIkcPFhrTbWa1W6PV6jBo1DLt27fRAhUREROSLGNQAzJo1HSdPHofBYHCoXWGhHsOHP43LlzPdVBkRERH5Mp8PajqdDqtXfwK9Xl+m9larFZ988rGLqyIiIiJiUMPGjV9Cksr+NBQWFmLFiuUwm80urIqIiIiIQQ3Lly9BQYHOqT7MZjN27frWRRURERER3eTzQe3SpYtO92EwGPH332dcUA0RERHRP3w+qDl6AsG9mExG5OXluaAaIiIion/4fFBTqdRO9+Hvr0JQULALqiEiIiL6h88HtVq1ajndh1qtxv33P+CCaoiIiIj+4fNBbfTosQgICHSqDz8/BTp37uKiioiIiIhu8vmglpz8JISwlrm9Wq3G0KHPwd/f34VVERERETGoISgoCIMGDYFGoy1Tez8/PwwdOsLFVRERERExqAEAXnttDqKioqBWO3ZigVarxQcfrERERE03VUZERES+jEENN3dfrl+/Gc2aRUOrLX3LmiRJ0Gq1WLLkfXTt2t0DFRIREZEvYlD7P8HBlbBx41b8618zUKNGBAID7z7BQK3WQK1Wo1u3Htiy5Vv06tXbC5USERGRr5CEEMLbRTgrOzsfVqvrVkMIge+/34dPP/0EaWlpMJuNCAqqhNat22LIkKEICwtz2bJIfsLCgpGVxQsY+wqOt+/gWPsWOY63QiEhNDTIoTZKN9VSrkmShHbtOqBduw4A5DnYREREVPFx1ycRERGRTDGoEREREckUgxoRERGRTDGoEREREckUgxoRERGRTDGoEREREckUgxoRERGRTDGoEREREckUgxoRERGRTDGoEREREcmUx24h1alTJ6hUKqjVagDA5MmT0bZtWzRo0ACRkZFQKG5mxnfeeQcNGjTwVFlEREREsuXRe30uWrQIkZGRdz2+du1aBAYGerIUIiIiItnjrk8iIiIimZKEEMITC+rUqROCgoIghEBMTAwmTZqESpUqoUGDBmjUqBEsFgvatWuHcePGQaVSeaIkIiIiIlnzWFDLyMhAREQEjEYj5syZA51Oh3nz5tkez8/Px5QpUxAZGYmJEyc61Hd2dj6sVvetRlhYMLKy8tzWP8kLx9u3cLx9B8fat8hxvBUKCaGhQY61cVMtd4mIiAAAqFQqDBo0CEeOHCnyeFBQEPr162d7nIiIiMjXeSSoFRQUIC/vZqoVQmDbtm2IiorC9evXUVhYCAAwm83YsWMHoqKiPFESERERkex55KzP7OxsjBs3DhaLBVarFfXr18fMmTNx9uxZzJgxA5IkwWw2Izo6GhMmTPBESURERESy55GgVqdOHWzatOmux8PDw5GSkuKJEoiIiIjKHV6eg4iIiEimGNSIiIiIZIpBjYiIiEimGNSIiIiIZIpBjYiIiEimGNSIiIiIZIpBjYiIiEimGNSIiIiIZIpBjYiIiEimGNSIiIiIZIpBjYiIiEimGNSIiIiIZIpBjYiIiEimGNSIiIiIZIpBjYiIiEimGNSIiIiIZIpBjYiIiEimGNSIiIiIZIpBjYiIiEimGNSIiIiIZIpBjYiIiEimGNSIiIiIZIpBjYiIiEimGNSIiIiIZIpBjYiIiEimGNSIiIiIZIpBjYiIiEimGNSIiIiIZIpBjYiIiEimGNSIiIiIZIpBjYiIiEimlN4ugIioIjGbzdix4xusWrUCaWlpMBoNqFSpMtq374hhw55D7dp1vF0iEZUjDGpERC5gMpmwaNF8vP/+MphMJuh0+UWm//nn7/jww/8iIaEFZs58HY880tRLlRJRecJdn0RETsrPz0OfPj2waNF85Obm3BXSAMBoNMJgMGD//n3o2bMrtm/f5oVKiai8YVAjInKCyWTCwIHJOHbsKPR6vV1t9Ho9Ro0aih9+2O/m6oiovGNQIyJywrJli/Drr8dgMBgcaqfX6/HMMwPtDndE5JsY1IiIyshisWD58iVlDltWqxVff73RxVURUUXCoEZEVEa7du1EYaFjW9Jup9PpsHjxey6siIgqGgY1IqIy+t//Vt7zxAFHXLp0AWfPnnFRRURU0TCoERGVUVpamtN9+Pv748qVKy6ohogqIgY1IqIyMhqNLuqn7LtPiahiY1AjIiqjKlWqON2HEAKVK1d2QTVEVBExqBERlVHHjp2hVmuc6sNisSAy8mEXVUREFQ2DGhFRGT399DAAoszt/f39MXDgYGi1WtcVRUQVCoMaEVEZhYeHo2PHzpAkqUzt/fz88Nxzo11cFRFVJAxqRERO+Pe/X4NWG+BwO61Wi8TEPnjggQfdUBURVRQMakRETmjQ4GGsWvWZQ7svtVotYmLisGDBEjdWRkQVAYMaEZGT2rfviA0bUhASEoLAwKBi5/P3V0GtViMp6QmsW/cV/P39PVglEZVHSm8XQERUEcTGxuPEidP45pstWLx4Af744w+oVCpI0s17egoBDB78DEaMGIW6det5u1wiKic8FtQ6deoElermr0kAmDx5Mtq2bYujR49ixowZMBgMqFWrFubOnYvQ0FBPlUVE5DL+/v5ITOyDxMQ+SE9Pw+XLmTAYDKhUqTIeeKA+NBrnLuVBRL7Ho1vUFi1ahMjISNvfQghMmTIFb775JmJjY7Fs2TLMmzcPb775pifLIiJyuZo1a6FmzVreLoOIyjmvHqN2/PhxqNVqxMbGAgAGDBiA7du3e7MkIiIiItnw6Ba1yZMnQwiBmJgYTJo0CRkZGahZs6ZtetWqVWG1WpGbm+vQrVlCQ4s/eNdVwsKC3b4Mkg+Ot2/hePsOjrVvqQjj7bGgtmbNGkRERMBoNGLOnDmYNWsWunTp4pK+s7PzYbWW/ergpQkLC0ZWVp7b+id54Xj7Fo637+BY+xY5jrdCITm8ccljQS0iIgIAoFKpMGjQIDz//PN4+umnkZ6ebpvn2rVrkCTJJTc6JqJyyGqF//f74P/Tj1BczYLQaGCtVQeGpD6wuuh4r4KCAmzZ8jX++ON35ObmICIiHHXqPIBevXojMDDQJcsgInIVjwS1goICWCwWBAcHQwiBbdu2ISoqCo0bN0ZhYSEOHz6M2NhYrF27Ft27d/dESUQkI1LeDWg+/R+0/10MKe8GJJ0Ot27KJNRqBL7xHxhbtIZ+/ESY2rYv0zLOnfsb77+/FJ9//ikkSYJOp7NNCwwMxCuvTEK/fgPwwgvjeLcAIpINSQjhvn2G/+fixYsYN24cLBYLrFYr6tevj2nTpiE8PBxHjhzBzJkzi1yeo1q1ag71z12f5Eocb89SXDiPKr17QJF9FZJeX+x8AgC0AdAPfhq62W8BCvvPhdq1ayeGD38aJpMJJpOp2PmUSiX8/f2xfPnH6N79cQfWgsoDvrd9ixzHuyy7Pj0S1NyNQY1ciePtOYqMdIR0ag0pJweS1WpXG6ENQGHfJ5E/byFgx83Qd+/+Ds8++xQKC4sPgXfSarUMaxUQ39u+RY7jXZagxltIEZF3CIHK/ftAun7d7pAGAJK+AOr1X0D9xeelzpuenoZhwwY7FNIAQK/XY/To4Th37m+H2hERuRqDGhF5hX/qT1BcuADJbHa4rUJfgMC5bwCl7BBYseIDmMvQPwCYzSZ88MGyMrUlInIVBjUi8grt0oWQ9AVlbi9dzYYy9edipxuNRqxatQJGo7FM/ZtMJnz22WroSzhujojI3RjUiMjjpJxrUO3dDcmJQ2QlfQG0JWzx2rlzO6wO7FK95zIkBbZu3exUH0REzmBQIyKPU1y6BKFSOdWHJASUf/1Z7PS//z6LwsJCp5ah0+Xj77/POtUHEZEzGNSIyOMknc6uMzbt6qcYOl1+mY9Pu93167lO90FEVFYMakTkcSI4uNQTAezupxjBwZWgVPo71b8kSQgJqepUH0REzmBQIyKPs953H6QyHuR/i/Dzg6lxk2KnR0ZGQqNRO7WMwMBAREY+7FQfRETOYFAjIo8TwZVg6N4LwoG7C9xFpUbhqBeKndypUxeoVM4FNYVCgcce423tiMh7GNSIyCv0Y8YBak2Z21vq1IG5SbNip/v5+WHkyOeh0ZRtGWq1Gs8+OwIqJ096ICJyBoMaEXmFuWk0zI80KdPZn0Krhe7VmaXO9/TTw8octPz9/TF8+MgytSUichUGNSLymuufroM1vDqEv/0H/Vu1ASh4YTyMPXqWOm+1atWwbt1X0GoDHKpLq9VizZovERFR06F2RESuxqBGRF4jqoQgZ+c+WB5qAGtgYMnz+vlBaDQomPIvFLz8qt3LiImJw8aNKahUqRI0Gm2J82o0GgQHB2Pduq/QsmVru5dBROQuDGpE5FWiWjXk7NyL/AVLYGr8CIRWC6tGezOY+atgDQqC0GhR2H8QcnbshX7sBIevwRYTE4eDB49hypSpCAsLR1BQENRqNRQKBdRqNYKCghAaGoqJE6cgNfUYWrRo5aa1JSJyjCSECy5m5GXZ2fmwWt23GmFhwcjKynNb/yQvHG/v8vvtJPwP/gzpei6gUsMaHg5j124QwZVc0r/VasW+fXtw5sxfyMvLQ40a1RAeXgsdOnSGn5+fS5ZB8sT3tm+R43grFBJCQ4McasOgZgc5Dja5D8fbt3C8fQfH2rfIcbzLEtS465OIiIhIphjUiIiIiGSKQY2IiIhIphjUiIiIiGSKQY2IiIhIphjUiIiIiGSKQY2IiIhIphjUiIiIiGSKQY2IiIhIphjUiIiIiGRKWdLEp556yq5O1Go1Pv74Y5cUREREREQ3lRjUjh8/jv/85z8ldiCEwJw5c1xaFBERERGVEtSio6PRp0+fUjvZsmWLywoiIiIioptKPEZt1apVdnXC3Z5ERERErlfiFrXinDlzBn/99Rfq1KmDRo0aubomIiIiIkIZgtqaNWuwdu1aREZG4sSJE+jcuTNefvlld9RGRERE5NNKDWonT54sstVs+/bt+Oqrr6BUKqHT6dCpUycGNSIiIiI3KDWoLViwAPfddx8mTZqEoKAghIeH4+OPP0bjxo2RmpqKunXreqJOIiIiIp9T6gVvP/roI8TGxmLIkCHYtGkTZs6cievXr2PlypW4ceMGFi1a5Ik6iYiIiHyOXceo9ejRA+3atcPChQvx1VdfYfr06XjwwQfdXRsRERGRT7MrqJ08eRIXL15E//79YTKZMGPGDDRr1gzjx4+HRqNxd41EREREPqnUXZ9vv/02XnzxRezcuRNjxozBoUOHsGbNGtSpUwdPPvkkdu7c6Yk6iYiIiHxOqUFt48aN+OqrrzB//nx8+eWX2LhxIyRJwsCBA7Fy5Urs2rXLE3USERER+ZxSg1q9evWwdetWnDt3DikpKbj//vtt00JDQ/H222+7tUAiIiIiX1VqUFu4cCH++OMPzJkzB+np6Xjttdc8UBYRERERlXoyQY0aNTBz5kxP1EJEREREtylxi9qXX35pVyf2zkdERERE9isxqL355psQQsBqtRb7z2KxYO7cuZ6ql4iIiMhnlLjrs6CgAA0bNiyxAyEE1Gq1S4siIiIiolKCmr2X3pAkySXFEBEREdE/SgxqtWrV8lQdRERERHSHUi/PQURERETewaBGREREJFMeD2pLlixBgwYNcOrUKQBAgwYN0KtXLyQlJSEpKQl//vmnp0siIiIikqVSL3jrSidPnsTRo0dRs2bNIo+vXbsWgYGBniyFiIiISPY8tkXNaDRi1qxZmDlzJs8SJSIiIrKDx7aoLVy4EImJiahTp85d04YMGQKLxYJ27dph3LhxUKlUDvUdGhrkqjKLFRYW7PZlkHxwvH0Lx9t3cKx9S0UYb48EtV9++QXHjx/H5MmT75q2d+9eREREID8/H1OmTMHSpUsxceJEh/rPzs6H1SpcVe5dwsKCkZWV57b+SV443r6F4+07ONa+RY7jrVBIDm9cKnHXZ0m3jrr9X2kOHTqEs2fPonPnzujUqRMyMzMxfPhw/PDDD4iIiAAABAUFoV+/fjhy5IhDK0BERERUUZW4Ra1hw4Z2HU/2+++/lzh95MiRGDlypO3vTp06Yfny5ahevToKCwuh0WhgNpuxY8cOREVF2Vk6EZFMWa3w/2E//M6egWQ0wFolBKb2HWGtXsPblRFROWP3LaT27t2LHTt2YNSoUahZsybS09Px4YcfomvXrmVe+NmzZzFjxgxIkgSz2Yzo6GhMmDChzP0REXmTdOM6NJ+sgPb9ZZD0BYDFAslqhVAqIZnNMLbrgILxL8Gc0MLbpRJROSEJIew6uKtLly7YsGEDKlWqZHvs+vXrSE5Oxnfffee2Au3BY9TIlTjevsVV4624cB5VkrpDys6GolB/z3mEJAEaDXSTXoZ+wktOL5Mcw/e2b5HjeLv8GLXb5eXlQa8v+uFTWFiIvDx5PQlERJ4mZWWhSo9HochILzakAYAkBCS9HoHz50K7bLEHKySi8srusz779OmDoUOH4plnnkGNGjWQmZmJ1atXo0+fPu6sj4hI9oKmToLi2jVIdpxcBQCSvgCBb82G4fFesNat597iiKhcszuoTZkyBffddx+2bduGK1euICwsDE899RSefPJJd9ZHRCRrUnY21Du3QzKbHGtosUL70fvQzX7TPYURUYVgd1BTKBQYOHAgBg4c6M56iIjKFc2nqyAkCY7eb0UyGaH5dBV0/54JaDRuqY2Iyr8Sg9r69evt6qRv374uKYaIqLxR7dsNRWFh2RpLgN/fZ2GJaujaooiowigxqH399deldiBJEoMaEfksyZkTqhQK59oTUYVXYlBbvXq1p+ogIiqXRJAT9xq2Cojg8n8vQiJyH7svzwEAOTk52LRpEz766CMAwOXLl5GZmemWwoiIygNTi1YQanWZ2koWMyw865OISmB3UDt48CC6deuGlJQULF26FABw/vx5vPbaa+6qjYhI9gqfGVamdkKpRGG/AUBAgIsrIqKKxO6g9sYbb+C9997DihUroFTe3GPatGlT/Prrr24rjohI7qw1ImBs0w7Cz8+xhkol9KPGuKcoIqow7A5qaWlpaNmyJQDYbtTu7+8Pi8XinsqIiMqJ/HcWQAQHw94b2VkDAlDw3POwPBTp1rqIqPyzO6jVr18f33//fZHHDhw4gMhIftAQkW+z1rkPuV9vh6haFcLfv+R5AwJQOGgICqa95pniiKhcs/uCt1OnTsWoUaPQoUMHFBYWYsaMGdi9ezeWLVvmzvqIiMoFS1RD5Oz7GdrFC6BZ8z9AkiDpdJCEgPBXAX5+MD/8MAomvgxj98e9XS4RlROSEMLerfW4fPkyNm/ejPT0dERERCAxMRE1atRwZ312yc7Oh9Vq92o4LCwsGFlZvNaRr+B4+xa3jLdeD/U3W+D391mgsBAipCqMj3aFJbKBa5dDDuF727fIcbwVCgmhoY5d0sfuLWoAUL16dTz33HMOLYCIyOdotTA80c/bVRBRBVBiUJs+fTpmz54N4OZN2W+dRHCnd955x/WVEREREfm4EoNa7dq1bf+vW7eu24shIiIion+UGNRGjRqFq1evolq1ahg7dqynaiIiIiIi2HF5jscffxybNm3yRC1EREREdJtSTyZYvHgxpk+fjm3btmH27NmoXr26J+oiIiIicqvc3Bzs2vUtsrOvwmQyo0qVKmjZshUeeOBBb5dmU2pQi4+PR0pKChYvXoykpCSMHTsW9evXLzLPrTsWEBEREcndr78exbJli7F1awqUSiVMJiOEEP93xyUrGjd+BOPGTUTXrt1st830Fruvo6bX6zFp0iT8/PPPCAkJ+acDScKuXbvcVqA9eB01ciWOt2/hePsOjrVvudd4W61W/Otfk7F27RoYjcYSb4MZGBiIevUewPr1mxEaGuqSmtx2HbWffvoJ06dPR6NGjfDdd9+5rGAiIiIiTxBCYOTIofj22x3Q6/Wlzq/T6XDq1J949NG22LXre1St6p3sU2pQe/XVV7F//35MmzYN3bp180RNRERERC41b95b+O67HdDrC+xuYzIZceXKFfTv3wc7d+4r9nqy7lTqWZ9GoxFbtmxhSCMiIqJySafTYcmS91BQYH9Iu8VkMuL06b/w/ff73FBZ6UoNavPmzUOVKlU8UQsRERGRy23Y8AUkqdTIU6xbQc8byl41ERERUTlwc2uazqk+fvrpR6Snp7moIvsxqBEREVGFZTAYcOHCeaf7UanUOHr0FxdU5BgGNSIiIqqwcnNzoVKpnO7HarXgxo3rLqjIMQxqREREVGGp1SpYrVan+5EkySWBz1EMakRERFRhVapU2UUXxZcQFhbugn4cw6BGREREFZZCoUD37o9DoXAu8iiVfmjRopWLqrIfgxoRERFVaGPGjIdGoylze7VajeHDR8Hf39+FVdmHQY2IiIgqtOjoGNSsWcuJHiQ888wwl9XjCAY1IiIiqtAkScKHH65CQECgw221Wi1mzXoDNWpEuKGy0jGoERERUYXXqFFjfPbZlwgMtD+sabVajBs3EUOHjnBjZSVjUCMiIiKf0KpVG2zbtgtNmjSDRqOFUqm853xBQUEICwvHggVLMHnyVA9XWRSDGhEREfmMqKiG+O67/di5cy/69x+E4OBgSJIESZKgVqvRunVbfPTRKhw/fgpPPNHP2+VCEkK44uIiXpWdne+ia6TcW1hYMLKy8tzWP8kLx9u3cLx9B8fatzgy3larFVartdgtbK6iUEgIDQ1yqI17KyIiIiKSOYVC4fR11txFnlUREREREYMaERERkVwxqBERERHJFI9RIyIir1Ae+wWaD5dD+cfvkAp0EMHBMMXEQT9iNKwP1Pd2eUSywKBGREQepfpmKwJfnwm/S5cAQyEkq9U2TXniOLSfroLpkabQzXwd5vgEL1ZK5H3c9UlERB4T8M4bqDR6GJR/nYKkLygS0gBAMpkgFRZCdSgVVfomQr1+nZcqJZIHBjUiIvII7bJFCFi6CJJeb9f8UqEewZPGQ7XzGzdXRiRfDGpEROR2irNnEPjW65D0BQ61kwr1CB45DNDp3FQZkbwxqBERkdtpP1oOWCxlbq/ZtMGF1RCVHx4PakuWLEGDBg1w6tQpAMDRo0eRmJiIxx57DMOGDUN2dranSyIiInfS66H5/FNIJlOZmisKdNAumg+U/zseEjnMo0Ht5MmTOHr0KGrWrAkAEEJgypQpmDFjBnbs2IHY2FjMmzfPkyUREZGb+f/0I+Dk7Xn8MtKhuHTRRRURlR8eC2pGoxGzZs3CzJkzIUkSAOD48eNQq9WIjY0FAAwYMADbt2/3VElEROQBiuyrgNW5rWHC3x+Ka9zjQr7HY9dRW7hwIRITE1GnTh3bYxkZGbatawBQtWpVWK1W5ObmokqVKnb37eid6MsiLCzY7csg+eB4+xaOt5tV0gKSc10oJAkhIYGAk2PFsfYtFWG8PRLUfvnlFxw/fhyTJ092S//Z2fmwOvlrrSRhYcHIyspzW/8kLxxv38Lxdj9//wBUkiSnduEIownXoIbVibHiWPsWOY63QiE5vHHJI0Ht0KFDOHv2LDp37gwAyMzMxPDhwzFkyBCkp6fb5rt27RokSXJoaxoREcmbqUVrSE6c8QkA1urVYa1zn4sqIio/PHKM2siRI/HDDz9g9+7d2L17N2rUqIEVK1ZgxIgRKCwsxOHDhwEAa9euRffu3T1REhEReUpAAAqfHAih9C9Tc2tAIArGvghITu4/JSqHvHqvT8/InisAABeZSURBVIVCgXfeeQczZ86EwWBArVq1MHfuXG+WREREbqAf9QI0a9cAZscv0SFBoDD5STdURSR/Xglqu3fvtv2/efPmSElJ8UYZRETkIZb6D0E36WUELpjn0N0JhEaLG8s+AoLcf9IYkRzxzgREROQR+gkvoWDEKAit1q75hUaDvLffhbFHTzdXRiRfDGpEROQZkoSC6f9B3ntLYalbD9aAAIg7jjsTSiWERgNT02a4/vkGGAYO9lKxRPLg1WPUiIjI9xj69IWhdzKUhw9C+8F/ofzzd0gFeoigIJhiYqEf+QIsDR72dplEssCgRkREnidJMMclIC8uwduVEMkad30SERERyRSDGhEREZFMMagRERERyRSPUSMiIioj5S//D9rlS+H//w5Dyr8B+PnBWqkyDN17onDYc7DWruPtEqmcY1AjIiJyhBBQf/E5Aha+C0V6GqTCQkhWq22yIisLfh8sQ8CH/4UpoSV0k/8Fc4uWXiyYyjPu+iQiIrKX0YjgEc8g+JVJUJ7+C4qCgiIh7RbJaIRkMMB//15U6d8bmo/e90KxVBFwixoREZE9LBZUemYQVAe+h6TX29VEAgC9HoGzZwIWMwpHjXFriVTxcIsaERGRHQJfnwnVTz/YHdJup9AXIGjOLPjv2eWGyqgiY1AjIiIqhXTjOrQrPoBUYP8N5e/qo1CPwNkzXFgV+QIGNSIiolKo134GoXD+K1N55jT8fjvpgorIVzCoERERlUQIBCxbCIUTW9NsTCZo31/qfD/kMxjUiIiISuB39jQUubku6Usym6HemuKSvsg3MKgRERGVQMq+BqF03UUSJF0+IITL+qOKjUGNiIioBJKh0LUdWq03/xHZgUGNiIioBKJyZcCVG8BUKsDPz4UdUkXGoEZERFQCy311IRkNruuvbj2X9UUVH4MaERFRCUSVEBi7dHPJ5TmsgYEoGDPBBVWRr2BQIyIiKkXBC+MAjcb5joSAIekJ5/shn8GgRkREVIr/3969B0dZ33sc/+xuyCZLNiEJkAQORaVeAhWNiUkBaQawZGTAoNaGWsEOOhwK2KBwLAfGqqekDowUCojxEm2xLY4IBEicgYPg2EakRHOwHjhauZyGEi6JXHIjye7+zh8cMqTKJZDs/rJ5v2Yy8OS5fR+++yQfnt+zz/rS75Q/pd813apmIiPV9KOHJY+nw+pC+COoAQBwOQ6HzhS9KePpeVWrm4gI+fv/i+rn8xFSaB+CGgAAV8A/eIjO/OFtBTw923VlzfSIVKBvkk4Xvyvjje20+hCeCGoAAFyhlhEjdWrzFgWSkxWIibnkssblkomOVkvaHTq5o0yBlH5BqhLhpOMetQwAQDfgv3WovqrYp8gd2xS9Ypl6fFIuE+mW/H7J4ZCcTjlamnV2wn1qnD5T/luHhrpkdGEENQAA2svlUvPdOWq+O0fOv/+vIv77MzlOn5JcLpn4eLXcmSUT1yvUVSIMENQAALgGgW8NVPO3Boa6DIQp7lEDAACwFEENAADAUgQ1AAAASxHUAAAALEVQAwAAsBRBDQAAwFIENQAAAEsR1AAAACxFUAMAALAUQQ0AAMBSBDUAAABLEdQAAAAsRVADAACwFEENAADAUgQ1AAAASxHUAAAALEVQAwAAsBRBDQAAwFIENQAAAEsR1AAAACwVEawdzZgxQ4cPH5bT6ZTH49HTTz+t1NRUjR49WpGRkXK73ZKkuXPnauTIkcEqCwAAwFpBC2qLFi2S1+uVJG3btk3z58/Xhg0bJEnLly/XTTfdFKxSAAAAuoSgDX2eD2mSVFdXJ4fDEaxdAwAAdEkOY4wJ1s4WLFigsrIyGWP02muv6cYbb9To0aMVExMjY4zS09P15JNPKjY2NlglAQAAWCuoQe284uJilZaW6tVXX1VVVZVSUlLU3NysgoIC1dfX64UXXmjX9mpq6hQIdN5h9Onj1YkTtZ22fdiFfncv9Lv7oNfdi439djodSkyMad86nVTLJU2cOFG7du3SyZMnlZKSIkmKjIzUQw89pE8++SQUJQEAAFgnKEGtvr5eVVVVrdPbt29XXFyc3G63amvPpV1jjN59912lpqYGoyQAAADrBeVdn42NjcrPz1djY6OcTqfi4uJUWFiompoaPf744/L7/QoEAho0aJCeeeaZYJQEAABgvaAEtd69e+vtt9/+xnnFxcXBKAEAAKDL4ZMJAAAALEVQAwAAsBRBDQAAwFIENQAAAEsR1AAAACxFUAMAALAUQQ0AAMBSBDUAAABLEdQAAAAsRVADAACwFEENAADAUgQ1AAAASxHUAAAALEVQAwAAsBRBDQAAwFIENQAAAEsR1AAAACxFUAMAALAUQQ0AAMBSBDUAAABLEdQAAAAsRVADAACwFEENAADAUgQ1AAAASxHUAAAALEVQAwAAsBRBDQAAwFIENQAAAEsR1AAAACxFUAMAALAUQQ0AAMBSBDUAAABLEdQAAAAsRVADAACwFEENAADAUgQ1AAAASxHUAAAALEVQAwAAsBRBDQAAwFIENQAAAEsR1AAAACxFUAMAALAUQQ0AAMBSBDUAAABLRYS6AAAAOpUxUkOD1MMvBRySk2sU6Dp4tQIAwpLz2FF5FhUo8eaB6n3jACkpSb0H9JH3X6cqYk9FqMsDrghBDQAQdqJWv6GEO4fKs3KZnKdOyeHzSc3NcrS0yL1xvXrde49ipz4sNTWFulTgkghqAICwEvW71xXz9Dw5zp6V4xuCmCMQkKOxQZHb/lOxUyZJfn8IqgSuDEENABA2nIcrz4W0xsbLLus426jIj3Yq6g+rg1AZcHWCFtRmzJihe++9VxMnTtRDDz2kffv2SZIOHjyovLw85eTkKC8vT4cOHQpWSQCAMBNV9IoUCFzx8o7GBnmWLz33hgPAQg5jgvPqrK2tldfrlSRt27ZNL774ojZs2KApU6bogQceUG5urjZu3Kh169Zp9er2/e+mpqZOgUDnHUafPl6dOFHbaduHXeh390K/w4jfr8SbviVnbfv6GfD01Ol3NsqXkdlJhSEUbDy3nU6HEhNj2rdOJ9XyNedDmiTV1dXJ4XCopqZGe/fu1fjx4yVJ48eP1969e/XVV18FqywAQJhwfPWVHM3NV7Wu629fdHA1QMcI6nPUFixYoLKyMhlj9Nprr6mqqkpJSUlyuVySJJfLpb59+6qqqkoJCQlXvN32ptOr0aeP9/ILIWzQ7+6FfoeJ5jPS//8+aQ+nCSjW7ZR4HYSdcDi3gxrUCgoKJEnFxcVavHix8vPzO2S7DH2iI9Hv7oV+hxF/D/VubpajnasFXBGqdXvVzOsgrNh4bls99HmhiRMnateuXUpOTtaxY8fk//+3Rvv9fh0/flwpKSmhKAsA0JVFR6t5xPfU3v+2O/x+NY8a0yklAdcqKEGtvr5eVVVVrdPbt29XXFycEhMTlZqaqpKSEklSSUmJUlNT2zXsCQDAeY2z8mV69rzi5U1EhM7m/UjyeDqxKuDqBWXos7GxUfn5+WpsbJTT6VRcXJwKCwvlcDj07LPPat68eVq1apViY2O1aNGiYJQEAAhDLSOz5bv1NvWo+PgbH3b7z0zPGDXMnhuEyoCrE7THc3Qm7lFDR6Lf3Qv9Dj+OulrF3T9BEf+zT46z3/zgW+NyycTE6NT6UvlvHRrkChEMNp7bXeYeNQAAOouJ8erU5i2qn/OUAom9FYiJkXG7pcjIc3+PitbZvB/p5I4PCWmwXlDf9QkAQFC43WrMn6PGWbPV44P35dr/N3ndLtV54tScc49MTNd/bAO6B4IaACB8uVxqGTVGLaPGyNvHqybLhsKAy2HoEwAAwFIENQAAAEsR1AAAACxFUAMAALAUQQ0AAMBSBDUAAABLEdQAAAAsRVADAACwFEENAADAUgQ1AAAASxHUAABfZ4wiNxer15iR6j0wWYmDB8lT8KwcJ78KdWVAt0JQAwB8Tc9n5sv7+HT1+OseORob5Kw+Ic9LKxU/+i45qqtDXR7QbRDUAABtuP76qaJ/97qcDQ1tvu9obpbz+DH1LHg2NIUB3RBBDQDQRvTq16Xm5m+c52hpUdS6tyWfL8hVAd0TQQ0A0Iaz8u9y+P0XX8Dvl6Ox4eLzAXQYghoAoA3/LakyPXpcdL6JipLpGRPEioDui6AGAGij8SePSS7XN84z7ig1PvKo5OTXBxAMnGkAgDYC112vuv94XiY6WuaCQGY8PeUbPEQN//bvIawO6F4iQl0AAMA+Z3/yqHzpGYpetUIR/1UhkxCvxp88pqbc+6XIyFCXB3QbBDUAwDfy3Xqbal96LdRlAN0aQ58AAACWIqgBAABYiqAGAABgKYIaAACApQhqAAAAliKoAQAAWIqgBgAAYCmCGgAAgKUIagAAAJYiqAEAAFiKoAYAAGApghoAAIClCGoAAACWigh1AR3B6XSExT5gD/rdvdDv7oNedy+29ftq6nEYY0wn1AIAAIBrxNAnAACApQhqAAAAliKoAQAAWIqgBgAAYCmCGgAAgKUIagAAAJYiqAEAAFiKoAYAAGApghoAAIClCGoAAACWIqj9k6amJj3zzDMaO3asJkyYoKefflqSdPDgQeXl5SknJ0d5eXk6dOhQaAvFNTt8+LByc3Nbv0aPHq3MzExJ9Dsc7dixQxMnTlRubq4mTJigrVu3SqLX4er999/XfffdpwkTJujhhx9WZWWlJPodDhYtWqTRo0fr5ptv1hdffNH6/Uv1tkv33aCNX/7yl6agoMAEAgFjjDEnTpwwxhgzefJkU1xcbIwxpri42EyePDlkNaJzLFy40Dz33HPGGPodbgKBgMnIyDCff/65McaYffv2mdtvv934/X56HYZOnTplMjMzzYEDB4wx5/o6depUYwzndjjYvXu3OXLkiBk1alTrOW3MpXvblftOULtAXV2dSU9PN3V1dW2+X11dbdLT043P5zPGGOPz+Ux6erqpqakJRZnoBE1NTSYrK8t89tln9DsMBQIBk5mZacrLy40xxvzlL38xY8eOpddhas+ePWbcuHGt0ydPnjQ33XQT/Q4zFwa1S/W2q/c9ItRX9GxSWVmpXr16aeXKldq1a5d69uyp/Px8RUVFKSkpSS6XS5LkcrnUt29fVVVVKSEhIcRVoyNs375dSUlJGjJkiD777DP6HWYcDoeWLVumGTNmyOPxqL6+Xi+//LKqqqrodRi6/vrrVV1drU8//VRDhw7V5s2bJYl+h7FL9dYY06X7zj1qF/D5fKqsrNTgwYO1fv16zZ07V48//rgaGhpCXRo62bp16/TAAw+Eugx0Ep/Pp5dfflmrVq3Sjh079NJLL+mJJ57g3A5TXq9XS5cu1fPPP6/7779fNTU1io2Npd/okriidoF+/fopIiJC48ePlyTddtttio+PV1RUlI4dOya/3y+XyyW/36/jx48rJSUlxBWjIxw7dky7d+/W4sWLJUkpKSn0O8zs27dPx48fV3p6uiQpPT1d0dHRcrvd9DpMDR8+XMOHD5ckVVdXq6ioSP3796ffYepSP7eNMV2671xRu0BCQoKysrJUVlYm6dy7RGpqanTdddcpNTVVJSUlkqSSkhKlpqZ2iUumuLwNGzYoOztb8fHxkqTExET6HWaSk5N19OhRHThwQJK0f/9+VVdXa+DAgfQ6TJ04cUKSFAgE9Otf/1qTJk1S//796XeYutTP7a7+M91hjDGhLsImlZWVmj9/vk6dOqWIiAjNnj1b2dnZ2r9/v+bNm6czZ84oNjZWixYt0g033BDqctEBcnJytGDBAn3ve99r/R79Dj+bNm3Sq6++KofDIUn62c9+prvvvpteh6kFCxbok08+UUtLi0aMGKH58+fL7XbT7zCwcOFCbd26VdXV1YqPj1evXr1UWlp6yd525b4T1AAAACzF0CcAAIClCGoAAACWIqgBAABYiqAGAABgKYIaAACApQhqAGCJNWvWaPDgwUpLS1NlZeU1bau2tlZpaWkaMmSIVq1a1UEVAgg2ghqAa5KWltb6dcstt2jo0KGt05s2bQp1eddkxIgRKi8vD+o+MzMzVVFRoQEDBkiSGhoaNH36dN11110qKipqs+yXX36pWbNmKSsrSxkZGcrNzdXq1atljJHX61VFRYXGjh0b1PoBdCyCGoBrUlFR0frVr18/FRYWtk7fe++9oS7vonw+X5fYx7p165SZman33ntPZWVlOnr0qKRzD/DMy8vT9ddfr5KSEpWXl2vJkiUqLy9Xc3PzNe8XgB0IagA6ld/v14svvqgxY8YoKytLc+bM0ZkzZySdCxuDBw/W2rVrNXLkSGVlZemdd95RRUWFxo8fr4yMDD3//POt21qzZo2mTJmiX/ziF7rjjjs0btw47d69u3X+qVOn9NRTT2nEiBHKzs7WypUrFQgE2qz73HPP6c4779Qrr7yi/fv3a/LkycrMzNR3v/td/fznP1ddXZ2kc59cUFNTo0cffVRpaWlavXq1PvjgA33/+99vc3wXXnV74YUXNGfOHM2ePVtpaWkqLS295PFf6b9fIBBo86ck/eY3v9Hw4cM1Z84c9enTR5L07W9/W8uXL5fb7W5vmwBYiqAGoFMVFRWprKxMf/zjH/XBBx+oR48ebcKX3+/X559/rvfee0+/+tWvtHDhQr3++ut68803tWnTJq1fv1579uxpXb68vFw333yzdu3apWnTpmnmzJmt4Wru3Lnyer3atm2b1q5dq23btmnjxo1t1k1NTdVHH32kqVOnSpJmzJihP//5z9q8ebMOHjyowsJCSdLy5cuVmJiooqIiVVRUaMqUKVd0vFu2bNF9992njz/+WDk5OZc9/sv5wQ9+oJ07d7YGvf79+0uSPvzwQ+Xk5FzxdgB0TQQ1AJ3qrbfe0pw5c5SUlCS3262ZM2fq3Xff1YWfXjdz5kxFRkZqzJgxkqTc3FzFx8erX79+SktL0969e1uXTU5O1o9//GP16NFDEydOVFJSkv70pz/pH//4h8rLyzVv3jxFR0erb9++mjx5skpLS1vXHTBggH74wx/K5XIpKipKgwYN0rBhwxQZGak+ffrokUceaXOF7mpkZmYqOztbTqdTUVFRV3T8lxITE6OioiLt3LlTP/3pTyWdC7e1tbWtV9IAhK+IUBcAIHwZY3T06FFNmzat9cPQJSkQCOjkyZOSJJfLpfj4+NZ5brdbvXv3bp2OiopSQ0ND63RycnKbffTv31/Hjx/XkSNH1NTUpGHDhrXZz8CBAy+67rFjx1RQUKCKigrV19fLGHPN4efCfVzu+BMSEq5qHy6XS16vVydOnLimWgHYj6AGoNM4HA4lJSVpxYoV+s53vvO1+efDWnucv5n+vCNHjqhv375KTk6Wx+PR7t2724Sif67nQosXL5bH41FJSYni4uJUWlqqZcuWXXR5j8ejxsbG1umWlhadPn36ovu43PFfi+HDh2vr1q0aP358h24XgF0Y+gTQqSZNmqQlS5aoqqpKklRTU6Pt27df9faOHj2qNWvWyOfzaePGjaqqqtJdd92lAQMG6Pbbb9fixYtVV1enQCCgQ4cOXfLxGvX19fJ4PIqJidGRI0f0xhtvtJmfmJiow4cPt07fcMMNOn36tHbu3KmWlhatWLGi9c0KwTr+8/Lz81VWVqalS5equrpaknTgwAHNnj1bTU1N17x9AHYgqAHoVI899piGDRumRx55RGlpaZo0aVKbe87aKyMjQ/v27VNmZqYKCwu1cuVKeb1eSdKSJUtUW1ure+65R5mZmXriiSdUU1Nz0W3l5+fr448/VkZGhmbNmvW1Z45Nnz5dS5cuVUZGhn7/+98rISFBCxYs0Ny5c5Wdna3evXu3GbYNxvGfN2jQIL311lv68ssvNW7cOGVkZOjJJ59URkaGIiMjr3n7AOzgMFd6RysAhNiaNWu0ZcsW/fa3vw11KZ1i7dq1KigoUEREhDZs2ND60NurUVtbq1GjRsnn82nGjBmaNm1aB1YKIFi4Rw0ALPHggw/qwQcf7JBteb3eoH+qAoCOx9AnAACApRj6BAAAsBRX1AAAACxFUAMAALAUQQ0AAMBSBDUAAABLEdQAAAAs9X9NNwb/ITIWFQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" } ], "source": [ - "\n", + "from matplotlib import pyplot\n", "yields = pd.read_csv('http://openmv.net/file/bioreactor-yields.csv')\n", - "#sns.pairplot(yields);\n", - "\n", - "markers = {'No': 'x', \n", - " 'Yes': 'o'}\n", - "\n", - "\n", - "for baffle_type in markers:\n", - " subset = yields[yields['baffles'] == baffle_type]\n", - " subset.head()\n", - " yields.plot.scatter(subset['temperature'], subset['yield'], \n", - " s = (subset['speed']-3300)/2, \n", - " marker = markers[baffle_type]\n", - " )\n", - "#plt.show()\n", - "#yields.plot.scatter(x='temperature', y='yield', figsize=(15,5), s=()\n" + "baffles = yields['baffles'].values\n", + "\n", + "# Idea: [f(x) if condition else g(x) for x in sequence]\n", + "colour = ['red' if b == 'Yes' else 'black' for b in baffles]\n", + "size = (pd.np.sqrt((yields['speed']-3200))-4)*10\n", + "ax = yields.plot.scatter(x='temperature', y='yield', figsize=(10,8), \n", + " s = size,\n", + " c = colour)\n", + "ax.set_xlabel('Temperature [°C]')\n", + "ax.set_ylabel('Yield [%]');\n", + "ax.set_title('Yield as a function of temperature [location], baffles [colour] and speed (size)');\n" ] }, { "cell_type": "code", - "execution_count": 61, + "execution_count": 102, "metadata": {}, "outputs": [ { "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmoAAAH1CAYAAABGCtJ0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xl4VOXd//HPmWwkmbBFCAFxAQtGrBIJQQREghVBSEBQFqFVtILKoogtPxVQEC2IIoiIFqTWx5a6YBSkYBUQFY1QFllcQRBI2LJg9klm7t8fPMxDWLKQzOQkeb+ui+tiZs65z/fMPWfmk/tsljHGCAAAALbjqO4CAAAAcHYENQAAAJsiqAEAANgUQQ0AAMCmCGoAAAA2RVADAACwKYKazSxcuFCPPfZYuaYdMWKE3n777bO+duDAAbVt21bFxcVVWV6lHDt2THfccYdiY2P1l7/8xa/Ljo2N1f79+/26zIKCAo0ePVodOnTQuHHj/LrsumDSpEm68sorlZCQ4H2utG3CVz744AONHDmy0u24XC7FxsaqXbt2mjNnTrnmqcz6nu3zOWfOHHXq1EldunTxyXdISkqKLr/8csXGxmr9+vWVamvSpEnlfp8qasOGDYqNjdXll1+uDRs2+GQZp1q2bJmGDh3q8+Wcr/J8Fp577jn97W9/K7OtW265RSkpKZWqZ9CgQfrxxx8r1UZNEljdBdQ1Dz/8sIKDg/XMM894n/v66681duxYLV++XKNHj67G6nzrX//6lxo1aqTNmzfLsiyfLWfEiBFKTEzUbbfd5n1uy5YtPlveuaxatUrHjh1TSkqKAgPP3NRefPFF7du3T7Nnz/Z7bVXtwIED6tmzp3bu3HnWdfWVu+++Ww899JDflne29UxMTFRiYmKl2w4ODtaWLVs0adKkSrdVHqd/PtPS0rRkyRKtXbtWkZGROnDggE+W27Rp00qHNF+77rrrtGXLlhJ/BODcMjIylJycrP/85z9lTvvhhx9WenkjR47UvHnz9OKLL1a6rZqAETU/e/zxx7V+/Xp98cUXkqTCwkJNnjxZf/7zn9W0adNqrs63UlNT1bp1a5+GNDtJTU3VJZdc4tfg4itut9un7Rtj5PF4fLoMlHT65/PgwYNq2LChIiMjq7my6mWnvRA1xbJly9S9e3fVq1fPL8vr2bOnUlJSdOTIEb8sr7oR1PysUaNGevzxxzV58mTl5eVp/vz5atmypW699VZJJ0ZZJk6c6J1+69atGjJkiOLi4pSYmHjOIWO3262ZM2eqU6dO6tmzpz799NNS63j11Vd14403KjY2Vn369Cnxl9C+ffs0fPhwdejQQZ06ddKDDz54znbGjRunLl26qEOHDrrjjjvOORw9adIkJScna/HixYqNjdWGDRvO2HWRkpKi66+/3vs4ISFBixcvVr9+/dShQwc9+OCDKiws9L7+8ccfKykpSddcc41uvPFGrV+/XnPmzNGmTZs0bdo0xcbGatq0aZKktm3bat++fZKk7Oxs/elPf9K1116rHj16aMGCBd6QcHIXxMyZM9WxY0clJCSU+l7u3r1bI0aMUFxcnG655RZ98sknkqR58+ZpwYIF+ve//63Y2Ngzdk+tX79er7zyivf1kyMy2dnZevTRR9W1a1d169ZNc+bM8YakZcuWaciQIXr66acVFxennj17avPmzd4vyc6dO+u9994r8Z5PmTJFd911l2JjYzV8+HAdPHiwRO133XWX4uPj1atXL61cubLEvFOnTtUf//hHtW/fXikpKVq3bp369++va665Rt27dy/x1+zw4cMlSR07dlRsbKy2bNlyxmf59N0nI0aM0Jw5czRkyBBdffXV2r9/f6nrX1Eej0cLFixQjx491LlzZ/3pT39Sdna29/VNmzZ5t63u3btr2bJlklTh9Tx9t9XmzZs1cOBAdejQQQMHDtTmzZu9r40YMUIvvPCChgwZotjYWI0cOVIZGRnntX4n/fLLLxo0aJA6dOig++67T1lZWd7XzrV9nv75XLp0qUaOHKkjR44oNjb2rKN6pfVNRb4zzuatt95S7969vd9HO3fulHTu7etcbfzud79TfHy8Ro8ercOHD0s6+267U3cZn7pdxcfHl3uU5t133/XW3LNnTy1dutT72snvstdee02dO3dW165d9e6773pfz8zM1OjRo3XNNddo0KBB+uWXX865nMLCQk2cOFGdOnVSXFycBg4cqGPHjnnX47nnnjtn/5f2+1Faf1b092T9+vXq2LGj93FGRoZGjRqluLg4xcfHa9iwYd7v2ISEBO/u5Li4OMXGxio2Nlbt27dX27ZtvSO5a9euVVJSkuLi4jRkyBB999133vZDQkLUrl0774BHrWdQLcaOHWtGjRpl4uPjzcGDB73Pz5s3zzz88MPGGGMOHTpk4uPjzbp164zb7Taff/65iY+PN+np6cYYY4YPH27eeustY4wx//jHP0yvXr1MamqqyczMNMOHDzdt2rQxRUVFZ13+ypUrzaFDh4zb7TYffvihufrqq83hw4eNMcY89NBDZsGCBcbtdpuCggKzcePGc67H22+/bbKzs01hYaF56qmnTGJi4jmn/fOf/2yef/75cz7+6quvTLdu3byPe/ToYQYOHGgOHTpkMjMzzc0332z+8Y9/GGOM2bZtm7nmmmvM559/btxutzl06JD56aefznhfTmrTpo3Zu3evMcaYRx55xIwePdpkZ2eb/fv3m5tuusk7/bvvvmuuuOIK869//csUFxebN99803Tp0sV4PJ4z1sflcpkbb7zRvPzyy6awsNBs2LDBtG/f3uzevdsYU7Ivz+Zsr993331m8uTJJjc31xw7dswMHDjQ/POf//TWFhMTY9555x1TXFxsnn/+edO9e3fzxBNPmMLCQvPZZ5+Z9u3bm5ycHO/72759e/P111+bwsJCM336dDNkyBBjjDG5ubnm+uuvN++8844pKioyO3bsMPHx8eaHH37wznvNNdeYTZs2eT8HX331lfnuu++M2+023377rencubP5z3/+Y4wxZv/+/Wd83k5fv9OnGT58uOnevbv54YcfTFFRkXG5XKWu/+lO//ycbPNkX7799tvmxhtvNL/88ovJyckxDzzwgJk4caIxxpiDBw+a9u3bm+XLlxuXy2UyMjLMrl27jDGmwuv57rvvet/XzMxMExcXZ9577z1TVFRkli9fbuLi4kxGRoa3vp49e5o9e/aY/Px8M3z4cPPss8+WuV7nMnz4cNO1a1fz/fffm9zcXDNmzJgS73lp2+fp/XP69nf6upbWN+X9zjh9Gcac+C7q2rWr2bZtm/F4PGbv3r3mwIEDZW5fp75PGzZsMPHx8WbHjh2msLDQTJs2zQwbNuys63HyfTt1m4+JiTF///vfTVFRkcnPz/dO16NHD/PFF1+cdV3Wrl1r9u3bZzwej0lJSTFXXXWV2bFjh3c9Y2JizAsvvGBcLpdZt26dueqqq0xWVpYxxpgHH3zQjBs3zuTm5prvv//edO3a1fsZOt0///lPM2rUKJOXl2eKi4vN9u3bTXZ2tnc9ztX/Zf1+lNafFf096dSpk9m2bZv38ezZs83kyZONy+UyLpfLbNy40fsdeq739LnnnjPDhg0zLpfL7Nixw1x77bVm69atpri42Cxbtsz06NHDFBYWeqefPn26efrpp89aT23DiFo1mTJlilJSUnT//ferefPmZ53m/fff1/XXX6/u3bvL4XCoS5cuuvLKK8/6182///1v/eEPf1B0dLQaNmyoUaNGlbr83r17KyoqSg6HQ3369NHFF1+sb775RpIUGBio1NRUHTlyRCEhIYqLiztnO4MGDZLT6VRwcLDGjh2r7777rsSoRWWNGDFCUVFRatiwoXr06KFvv/1WkvTOO+9o4MCB6tKlixwOh6KiotS6desy23O73Vq5cqUefvhhOZ1OXXjhhbrrrrv0wQcfeKdp3ry5br/9dgUEBGjAgAE6evSo9y/YU23btk15eXm69957FRwcrM6dO6tHjx7nfQzGsWPHtH79ej366KMKCwtTZGSk7rzzzhLtXXjhhRo4cKACAgLUp08fpaWl6YEHHlBwcLC6du2q4ODgEn+d33DDDerYsaOCg4P10EMPaevWrUpLS9O6devUokULDRw4UIGBgWrXrp169eql1atXe+ft2bOnOnToIIfDoZCQEHXq1Elt27aVw+HQ5ZdfrltuuUVff/31ea3rSQMGDNBvfvMbBQYG6vjx42Wuf0UsX75cd955p1q2bKnw8HBNmDBBK1euVHFxsZYvX67rrrtOffv2VVBQkBo1aqSYmBhJqtR6rlu3ThdffLH69++vwMBA9e3bV61atdLatWu909x666269NJLVa9ePd18883ez/T5SkpKUps2bRQWFqbx48dr1apV3pGRqto+y/psVuQ743TvvPOO7rnnHl111VWyLEsXX3yxWrRoUaHta/ny5Ro4cKDatWun4OBgTZgwQVu3bi33cXZNmzbViBEjFBgYWO7ddzfccIMuuugiWZal+Ph4denSRZs2bfK+HhgYqAceeEBBQUHq3r27wsLC9PPPP8vtduujjz7SuHHjFBYWpjZt2mjAgAHnXE5gYKCysrK0b98+BQQE6Morr5TT6fS+fq7+L+33o6z+rOjvSXZ2tsLDw0vUfPToUaWmpiooKEhxcXGlHvKycuVKrVixQi+++KKCgoL01ltvafDgwbr66qu938NBQUHaunWrd57w8HD9+uuvpdZVW9T8g2dqqAsuuECNGjXSb37zm3NOk5qaqlWrVpX4ki8uLlanTp3OmPbIkSOKjo72Pj5X+DspOTlZS5Ys8e4Ky8vLU2ZmpiTpkUce0dy5czVo0CA1aNBAd911lwYNGnRGG263W3PmzNGqVauUkZEhh+NE7s/MzFRERESpyy+vJk2aeP8fGhrqPSYhLS1N3bt3r3B7mZmZKioqKvH+NG/e3LubRDrRN6cuUzrx/pzuyJEjatasmXe9z9ZWRaSmpqq4uFhdu3b1PufxeEr066nHD538QTm13pCQEOXm5nofN2vWzPv/8PBwNWjQQEeOHNHBgwf1zTfflPhBdbvdJQ6KP3W50olgOnv2bP34448qKiqSy+XSzTfffF7rerZllGf9K+LIkSNq0aKF93GLFi1UXFys9PR0paWl6aKLLjrrfJVZzyNHjpyx7Z3+mTj9M322z1ZFnL7dFxUVKTMzU40aNaqy7bOsvinvd8bZnKsvKrJ9HTlyRO3atfM+Dg8PV8OGDXX48GFFRUWVWcOp20l5ffrpp3rppZe0d+9eeTweFRQUqE2bNt7XGzZsWOL41JN9nZGRoeLi4nJ/XyclJenQoUOaMGGCfv31VyUmJuqhhx5SUFCQpHP3f2m/H2X1Z0V/T+rXr1/ie+fuu+/W/PnzvWdDDx48WPfee+9Z5921a5emTZum1157TY0bN5Z04vOWnJys//mf//FOV1RUVOKYtNzcXNWvX7/UumoLgpqNRUdHKykpSU899VSZ0zZp0kRpaWnex6f+/3QHDx7U448/rr/97W+KjY1VQECAkpKSSrR1cpmbNm3SXXfdpY4dO+riiy8u0c7y5cv1ySefaMmSJbrwwguVnZ2tjh07yhhTrvULDQ1VQUGB9/HZRq3OJTo6utTjOs6lUaNGCgoKUmpqqi677DJJJ96r8nyZn65p06Y6dOiQPB6P98ckLS1Nl1xySbnmP/0vzGbNmik4OFhfffVVlZ2AcOjQIe//c3Nzdfz4cTVt2lTR0dHq2LGjlixZUu62Hn74YQ0fPlyLFi1SSEiIZsyY4Q33Z/truTz9e+p8Vb3+TZs2LXFMXmpqqgIDAxUZGano6GjvCPLpKrqepy8zNTW1xHNpaWnq1q1bJdfm3E7f7k+OEFZ2+zxVWX1T3u+MsznXtlyR7ev0vs7Ly1NWVpaioqIUFhYm6cTlSE6ORB09erTE/BU9wcnlcmncuHGaOXOmevbsqaCgIN1///3lem8bN27sPcv25F6A0r6vg4KCNGbMGI0ZM0YHDhzQvffeq0svvdR7Vvu5+r+0348jR46U2Z/l/T2RThwDvHfvXl111VWSJKfTqUmTJmnSpEn68ccf9fvf/16//e1v1blz5xLzZWRkaMyYMZoyZYquuOIK7/PR0dEaPXq07rvvvnMuc/fu3VVytnVNwK5PG0tMTNTatWv12Wefye12q7CwUCkpKSV+fE/q3bu33njjDR06dEjHjx/Xq6++es528/PzZVmW96+Xd999t8RJAP/+97+9y2jQoIEsyyrxV+1Jubm5Cg4OVqNGjZSfn6/nn3++QusXExOjTz/9VFlZWTp69Khef/31cs87aNAgLVu2TF9++aU8Ho8OHz6s3bt3SzoxwnSua6YFBATo5ptv1pw5c5STk6ODBw9qyZIl57XBX3XVVQoNDdWiRYtUVFSklJQUrVmzRn369CnX/JGRkTp48KD3INumTZuqS5cu+stf/qKcnBx5PB798ssvldq9+Omnn2rTpk1yuVyaO3eurr76akVHR+uGG27Q3r17lZycrKKiIhUVFembb77xvodnk5ubqwYNGigkJETffPONVqxY4X2tcePGcjgcJd73mJgYbdy4UampqcrOztYrr7xSaq1Vvf59+/bV66+/rv379ys3N1dz5sxR7969FRgYqH79+mnDhg3eXaGZmZneXZAVXc9Tde/eXXv37tXy5ctVXFyslStX6qefftINN9xwXutw8kD40nbhffDBB/rpp5+Un5+vuXPnqlevXgoICKj09nmqsvqmvN8ZZzNo0CC99tpr2rFjh4wx2rdvnw4ePFih7atfv35atmyZvv32W7lcLj3//PO66qqrdOGFF6px48aKiorS+++/L7fbrXfeeafS11R0uVxyuVze0PXpp5+W+8D2gIAA/e53v9P8+fOVn5+vn376qcRJQKf76quv9P3338vtdsvpdCowMFABAQHe18/V/6X9fpTVnxX5PZFOfO43btzofbx27Vrt27dPxhg5nU4FBASc8XkoLi7W2LFj1a9fvzP69LbbbtPSpUu1bds2GWOUl5endevWKScnx/v+79y5U9ddd1253vOajqBmY9HR0VqwYIFeeeUVde7cWd27d9fixYvPehmD22+/XV27dlVSUpIGDBigm2666ZztXnbZZRo5cqSGDBmi6667Tj/88IOuueYa7+vbt2/XbbfdptjYWN1333167LHH1LJlyzPa6d+/v5o3b65u3brplltuUfv27Su0fklJSbr88suVkJCgkSNHljvgSCdC0jPPPKOnn35aHTp00PDhw70jGb///e+1evVqdezY8ax/TU6ePFmhoaG68cYbNWzYMPXt21cDBw6sUO3Sietevfzyy1q/fr2uvfZaPfnkk5o1a1a5jpWT5N2d1qlTJ+8xKrNmzVJRUZH69Omjjh07aty4cWf89V8Rffv21UsvvaROnTpp586devbZZyWd+It38eLFWrlypbp166auXbtq9uzZcrlc52xr6tSpmjdvnmJjY/XSSy+pd+/e3tdCQ0M1evRoDR06VHFxcdq6dau6dOmiPn36KDExUbfeeqt69OhRZr1Vuf4DBw5UYmKihg8frp49eyo4OFiTJ0+WdGJXzl//+lctWbJE8fHx6t+/v/essoqu56kaNWqkhQsXasmSJerUqZMWLVqkhQsXev8oqqhDhw6pRYsWpY74JiUladKkSerSpYtcLpf3gtmV3T5PV1rflPc742x69+6t0aNH6+GHH9Y111yjBx54QMePH6/Q9tW5c2eNHz9eY8eOVdeuXbV///4SZ5RPnz5dixcvVqdOnfTTTz8pNja2Uu+F0+nU448/rgcffFAdO3bUihUrKnTNtSlTpigvL09dunTRpEmTvGf9n82xY8c0btw4dejQQX369FF8fHyJPyzP1f9l/X6U1p8V+T05WcOnn37qHUHft2+f92zzwYMHa+jQoWccsnPo0CFt2rRJr7/+uvfMz9jYWKWmpuq3v/2tpk+frmnTpqljx4666aabvGdlS9Inn3yi+Pj489oTUhNZ5nzGwQHY3qRJkxQVFeXXC8L60+OPP64PP/xQkZGR+vjjj6u7nEpzuVy67rrrVFxcrHvuuUdjxozRggUL1LhxYw0ZMqS6y6sSGzdu1N13363g4GDNmTPHp7uEK+PLL7/U2LFj5XK59Oqrr+raa6+t7pLO6mwX964uzz//vBo3bqw777zT58u67bbbNGPGjBLHBNZmBDWglqrtQQ2o6+wU1OA77PoEAACwKUbUAAAAbIoRNQAAAJsiqAEAANhUrbjgbWZmrjwe3+3BjYx0Kj09x2ftw17o77qF/q476Ou6xY797XBYatQovOwJT1ErgprHY3wa1E4uA3UH/V230N91B31dt9SG/mbXJwAAgE0R1AAAAGyKoAYAAGBTBDUAAACbIqgBAADYFEENAADApghqAAAANkVQAwAAsCmCGgAAgE3VijsTVFarVs2Vk1O520w4nU7t2ZNaRRUBAAAwoiZJlQ5pVdUGAADAqQhqAAAANkVQAwAAsCmCGgAAgE0R1AAAAGyKoAYAAGBTBDUAAACbIqgBAADYFEENAADApghqAAAANkVQAwAAsCmCGgAAgE0R1AAAAGyKoAYAAGBTBDUAAACbIqgBAADYFEFNktPptEUbAAAApwqs7gLsYM+e1FJfb9IkQkePZvupGgAAgBMYUQMAALApghoAAIBNEdQAAABsiqAGAABgU5xMUEu0atVcOTk5lWrD6XSWeWIFAADwH0bUaonKhrSqagMAAFQdghoAAIBNEdQAAABsiqAGAABgU347maCwsFBPP/20vvzyS4WEhKh9+/aaPn26fv75Z02aNElZWVlq2LChZs6cqUsuucRfZQEAANiW34Las88+q5CQEK1evVqWZenYsWOSpKlTp2rYsGFKSkrS+++/rylTpujvf/+7v8oCAACwLb/s+szNzVVycrLGjx8vy7IkSRdccIHS09O1a9cu9e3bV5LUt29f7dq1SxkZGf4oCwAAwNb8MqK2f/9+NWzYUPPnz1dKSorCw8M1fvx41atXT1FRUQoICJAkBQQEqGnTpkpLS1Pjxo39URoAAIBt+SWoFRcXa//+/briiiv05z//Wdu2bdPo0aM1d+7cKmk/MtJZJe2UpkmTCJ8vww7qynqWhfehbqG/6w76um6pDf3tl6DWvHlzBQYGendxXn311WrUqJHq1aunw4cPy+12KyAgQG63W0eOHFF0dHSF2k9Pz5HHY3xRuqQTHX30aLbP2reTurKepalL/Q36uy6hr+sWO/a3w2FVeHDJL0GtcePG6tSpk7744gt17dpVP//8s9LT03XJJZcoJiZGK1asUFJSklasWKGYmBh2e6JOqYrbf0ncAgwAaiPLGOO7oahT7N+/X48++qiysrIUGBioBx98UN27d9fu3bs1adIk/frrr6pfv75mzpypVq1aVahtRtSkpk3rV0k7R478WiXt1GT+7u+q6juJ/jsf/u5v7stbfWrCdzmqjh3727YjapLUsmVLvfHGG2c837p1a7399tv+KgMAqhX35QVQEdyZAAAAwKYIagAAADZFUAMAALApglot4XRW/lpyVdEGAACoOn47mQC+xRlgAADUPoyoAQAA2BRBDQAAwKYIagAAADZFUAMAALApghoAAIBNEdQAAABsiqAGAABgUwQ1AAAAmyKoAQAA2BRBDQAAwKYIakA1q6p7rHKv1pqB+/ICqAju9QlUM+7TWrfQ3wAqghE1AAAAmyKoAQAA2BRBDQAAwKY4Rk1Sq1bNlZOTU6k2nE4nx54AAIAqxYiaVOmQVlVtAAAAnIqgBgAAYFMENQAAAJsiqAEAANgUQQ0AAMCmCGoAAAA2RVADAACwKYIaAACATRHUAAAAbIqgBgAAYFMENQAAAJsiqAEAANgUQQ0AAMCmCGoAAAA2RVADAACwKYIaAACATRHUAAAAbIqgJsnpdNqiDQAAgFMFVncBdrBnT2qprzdpEqGjR7P9VA0AAMAJjKgBAADYFEENAADApghqAAAANkVQAwAAsCmCGgAAgE0R1AAAAGyKoAYAAGBTBDUAAACbIqgBAADYlN/uTJCQkKDg4GCFhIRIkiZOnKhu3bqpbdu2atOmjRyOE5lx1qxZatu2rb/KAgAAsC2/3kJq3rx5atOmzRnPL126VOHh4f4sBQAAwPbY9QkAAGBTljHG+GNBCQkJcjqdMsaoQ4cOmjBhgurXr6+2bduqXbt2crvduv766zV27FgFBwf7oyQAAABb81tQS0tLU3R0tFwul2bMmKHc3FzNnj3b+3xOTo4eeeQRtWnTRg899FCF2k5Pz5HH47vVaNIkQkePZvusfdgL/V230N91B31dt9ixvx0OS5GRzorN46NazhAdHS1JCg4O1rBhw7R58+YSzzudTt12223e5wEAAOo6vwS1vLw8ZWefSLXGGK1cuVIxMTE6fvy4CgoKJEnFxcVavXq1YmJi/FESAACA7fnlrM/09HSNHTtWbrdbHo9HrVu31tSpU7Vnzx5NmTJFlmWpuLhYsbGxGj9+vD9KAgAAsD2/BLWWLVsqOTn5jOebNm2q5cuX+6MEAACAGofLcwAAANgUQQ0AAMCmCGoAAAA2RVADAACwKYIaAACATRHUAAAAbIqgBgAAYFMENQAAAJsiqAEAANgUQQ0AAMCmCGoAAAA2RVADAACwKYIaAACATRHUAAAAbIqgBgAAYFMENQAAAJsiqAEAANgUQQ0AAMCmCGoAAAA2RVADAACwKYIaAACATRHUAAAAbIqgBgAAYFMENQAAAJsiqAEAANgUQQ0AAMCmCGoAAAA2RVADAACwKYIaAACATRHUAAAAbIqgBgAAYFMENQAAAJsKrO4CAKAma9WquXJycirVhtPp1J49qVVUEYDahBE1AKiEyoa0qmoDQO1EUAMAALApghoAAIBNEdQAAABsiqAGAABgUwQ1AAAAmyKoAQAA2BRBDQAAwKYIagAAADZFUAMAALApghoAAIBNEdQAAABsiqAGAABgUwQ1AAAAmyKoAQAA2BRBDQAAwKYC/bWghIQEBQcHKyQkRJI0ceJEdes1zFJvAAAgAElEQVTWTVu3btWUKVNUWFioFi1a6Nlnn1VkZKS/ygKASnE6ncrJyal0GwBwNn4LapI0b948tWnTxvvYGKNHHnlEzzzzjOLi4rRgwQLNnj1bzzzzjD/LAoDztmdPanWXAKAWq9Zdn9u3b1dISIji4uIkSUOGDNGqVauqsyQAAADb8OuI2sSJE2WMUYcOHTRhwgSlpaWpefPm3tcbN24sj8ejrKwsNWzYsNztRkb6frdBkyYRPl8G7IP+rlvo77qDvq5bakN/+y2ovfnmm4qOjpbL5dKMGTM0bdo0/e53v6uSttPTc+TxmCpp62yaNInQ0aPZPmsf9kJ/1y30d91BX9ctduxvh8Oq8OCS33Z9RkdHS5KCg4M1bNgwbd68WdHR0UpN/b/jOzIyMmRZVoVG0wDULo7Ugwr+4D3Ve+NvCln6poLWfiIVFVV3WQBQLfwyopaXlye3262IiAgZY7Ry5UrFxMToyiuvVEFBgTZt2qS4uDgtXbpUvXv39kdJAOzE41HQZ58qbP4LCvpqg0xQsOR2S5YlBTgky6H8O+9Wwcg/ytO8RbmbbdWqeZWckckJAwCqi1+CWnp6usaOHSu32y2Px6PWrVtr6tSpcjgcmjVrlqZOnVri8hwA6g4rJ1v1h92mwO3bZOXmypJkFRaeMV3YwvkKe3WBsmc+r8Khw8vVdmVDWlW1AQDnyzLG+O7gLj/hGDVUJfrbj3Jz1ejmBAXs3XPWcHY2JjRUOY8/oYI/3lfmtE2b1q9shZKkI0d+rZJ2UL3YtusWO/a3rY9RA4DT1b97hAL2/lzukCZJVn6+nNOfUNC6NT6sDADsgaAGoFoEfLtLwRu+kFVYUOF5rYJ8hT811QdVAYC9ENQAVIvQV16SilznPX/gDz8o4Ltvq7AiALAfghoA/8vNVb1l78hyu8+/jeIihf715aqrCQBsiKAGwO8C9u2VCazcSedWcbGC/ruxiioCAHsiqAHwO+vXXyWHVfl2su11RhcAVDWCGgD/Cw+TquCKOiY0tPKNAICNEdQA+J07uoUsV/kvyXE2RpL70lZVUxAA2BRBDYDfmQsuUFGnays1qGbCw5V/z+gqqwkA7IigBqBa5D3woEx4xa7QfSoTUV9F3bpXYUUAYD8ENQDVoqh7D5nISBlHxb+GPGFhyhs/QTqPeQGgJuFbDkD1cDiU9VayjNMpY5X/DFATGipXwu9UMPJeHxYHAPZAUANQbTytWitrxX9kGkfKBAeXPX1YmAp791X2K69JFQh3AFBTEdQAVCv35THKWJ+ivFEPyBNRX57TjlszAQEyoaEq+u1Vypm7QNkvL5KCgqqpWgDwr8pdGhwAqoBp0kR5k59U3p8fU8jK5Qpat0aOY8dkQuvJc+FFKrh9qNwxV1S4XafTqZycnErV5nSe/wkPAFBZBDUA9hEcrML+A1XYf2CVNLdnT2qZ0zRpEqGjR7nDAQB7YtcnAACATRHUAAAAbIqgBgAAYFMENQAAAJsiqAEAANgUQQ0AAMCmCGoAAAA2RVADAACwKYIaAACATRHUAAAAbIqgBgAAYFOl3uvzjjvuKFcjISEheu2116qkIAAAAJxQalDbvn27nnzyyVIbMMZoxowZVVoUAAAAyghqsbGxGjBgQJmNrFixosoKAgAAwAmlHqP2+uuvl6sRdnsCAABUvVJH1M5l9+7d+vHHH9WyZUu1a9euqmsCAACAziOovfnmm1q6dKnatGmjHTt2qGfPnvrTn/7ki9oAAADqtDKD2s6dO0uMmq1atUrvvfeeAgMDlZubq4SEBIIaAACAD5QZ1ObMmaOLLrpIEyZMkNPpVNOmTfXaa6/pyiuvVEpKii6++GJ/1AkAAFDnlHnB20WLFikuLk4jRoxQcnKypk6dquPHj2vJkiX69ddfNW/ePH/UCQAAUOeU6xi1Pn366Prrr9fcuXP13nvvafLkybrssst8XRsAAECdVq6gtnPnTu3fv1+DBw9WUVGRpkyZovbt22vcuHGqV6+er2sEAACok8rc9Tlz5kw9+OCD+uijj/TAAw9o48aNevPNN9WyZUvdfvvt+uijj/xRJwAAQJ1TZlBbtmyZ3nvvPT3//PN6++23tWzZMlmWpaFDh2rJkiX65JNP/FEnAABAnVNmULvkkkv04Ycfau/evVq+fLkuvfRS72uRkZGaOXOmTwsEAACoq8oManPnztV3332nGTNmKDU1VU888YQfygIAAECZJxM0a9ZMU6dO9UctAAAAOEWpI2pvv/12uRop73QAAAAov1KD2jPPPCNjjDwezzn/ud1uPfvss/6qFwAAoM4odddnXl6errjiilIbMMYoJCSkSosCAABAGUGtvJfesCyrSooBAADA/yk1qLVo0cJfdQAAAOA0ZV6eAwAAANXD70Ft/vz5atu2rX744QdJUtu2bdWvXz8lJSUpKSlJ33//vb9LAgAAsKVy3ZS9quzcuVNbt25V8+bNSzy/dOlShYeH+7MUAAAA2/PbiJrL5dK0adM0depUTj4AAAAoB7+NqM2dO1eJiYlq2bLlGa+NGDFCbrdb119/vcaOHavg4OAKtR0Z6ayqMs+pSZMIny8D9kF/1y30d91BX9cttaG//RLUtmzZou3bt2vixIlnvLZu3TpFR0crJydHjzzyiF566SU99NBDFWo/PT1HHo+pqnLP0KRJhI4ezfZZ+7AX+rtuob/rDvq6brFjfzscVoUHl/yy63Pjxo3as2ePevbsqYSEBB06dEh33323Pv/8c0VHR0uSnE6nbrvtNm3evNkfJQEAANheqSNqHo+nXI04HKXnvXvvvVf33nuv93FCQoIWLlyoqKgoFRQUqF69eiouLtbq1asVExNTrmUCgF1Zx7MUsuwdBfzwvaz8PHmaNpXrdzerOC5e4hhdABVQalC74oorynXg/7fffnteC9+zZ4+mTJkiy7JUXFys2NhYjR8//rzaAoDq5ti3V+F/eUohH34gYznkyM+TJBnLUtirL8sd1Ux5E/6kwtuHEtgAlEu5byG1bt06rV69WqNGjVLz5s2Vmpqqv/71r7rpppsqvNA1a9Z4/798+fIKzw8AdhO45b9qMChJVm6OLI9Hp8YwyxgpL0+BP+9RxJ8nKHj9OmXPe1kKCKi2egHUDOW+hdTf/vY3vfvuu6pfv74k6dJLL9WVV16pgQMHatiwYb6tEgBsLGD3j2owMFGOnLIPXLby8hSy4gMZp1M5M5/3Q3UAarJyn0yQnZ2t/Pz8Es8VFBQoO9teZ1QAgL85H5kgKzen3NNb+Xmqt/RNBezc4cOqANQG5b48x4ABA3TXXXfpD3/4g5o1a6ZDhw7pjTfe0IABA3xZHwDYmmP/Lwra+NWJ3ZsV4XIpdOFLynnxZd8UBqBWKHdQe+SRR3TRRRdp5cqVOnLkiJo0aaI77rhDt99+uy/rAwBbq/e3xVJFQ5oky+1WvfffVe4zs2ScNf+inAB8o9xBzeFwaOjQoRo6dKgv6wGAGiXovxtluVznNa8JCpJj3z65211ZxVUBqC1KDWrvvPNOuRoZNGhQlRQDADWNlZtbiZktWXmVmB9ArVdqUHv//ffLbMCyLIIagDrL/O+Z8OfF7ZGp36DqigFQ65Qa1N544w1/1QEANZLrppsV+N+NcuTlVXzmgAC5W7Wu+qIA1BoVutdnZmamkpOTtWjRIknS4cOHdejQIZ8UBgA1QcGQO2SV83Z7pzIhIcq/6x4pKMgHVQGoLcod1L7++mvdfPPNWr58uV566SVJ0r59+/TEE0/4qjYAsD3ToKEK+ybJBAdXbEbLUsFd9/imKAC1RrmD2tNPP60XXnhBixcvVmDgiT2mV199tb755hufFQcANUHOM8/KE9VMJrB8J9Kb0FBlPzNbnuYtyp4YQJ1W7qB28OBBde7cWZK8N2oPCgqS2+32TWUAUEOYBg2VufITuS+5VJ6wsHNPFxAgExqqnGlPq/CO3/uxQgA1VbmDWuvWrfXZZ5+VeG7Dhg1q06ZNlRcFADWNiYpS5iefK3f6X1R8yaUyYeHyOCPkCQuXJyJCpl49FQy8XZn/XqOCP9xd3eUCqCHKfcHbSZMmadSoUbrhhhtUUFCgKVOmaM2aNVqwYIEv6wOAmiM0VAUj7lTB8D8ocNsWBez9WSoslGnYSEWdr+NSHAAqzDKm/Pc+OXz4sD744AOlpqYqOjpaiYmJatasmS/rK5f09Bx5PBW/hUt5NWkSoaNHufl8XUF/1y30d91BX9ctduxvh8NSZKSzQvOUe0RNkqKiovTHP/6xQgsAAADA+Sk1qE2ePFnTp0+XdOKm7CdPIjjdrFmzqr4yAACAOq7UoHbhhRd6/3/xxRf7vBgAAAD8n1KD2qhRo3Ts2DFdcMEFGjNmjL9qAgAAgMpxeY5bbrlFycnJ/qgFAAAApyjzZIIXX3xRkydP1sqVKzV9+nRFRUX5oy4AAIAq0apVc+Xk5FS6HafTqT17UqugovIrM6jFx8dr+fLlevHFF5WUlKQxY8aodevWJaY5eccCAAAAu6mKkFaV7VREuS7PERwcrPvvv18//fSTnnvuOTVq1Mj7mmVZ+uSTT3xWIAAAQF1VrqD25ZdfavLkyWrXrp0+/vhjRUZG+rouAACAOq/MoPboo49q/fr1evzxx3XzzTf7oyYAAACoHEHN5XJpxYoVatiwoT/qAQAAwP8qM6jNnj3bH3UAAADgNGVeRw0AAADVg6AGAABgUwQ1AAAAmyKoAQAA2BRBDQAAwKYIagAAADZFUAMAALApghoAAIBNEdQAAABsiqAGAABgUwQ1AABQqzmdTlu1UxFl3usTAACgJtuzJ7W6SzhvjKgBAADYFEENAADApghqAAAANsUxagCA6pOXJ8ehNFl5eTIREfJEN5eCg6u7KsA2CGoAAL8L2P6NwhbOV8gHyTKBAZLDIcvtlrEcKrjj98q/Z5Q8l1xa3WUC1Y6gBgDwG+t4lur/fqiCtm6WXC5ZbreswlNelxS6ZJFCX1+swr5Jyp67gBE21GkENQCAX1gZ6WrUq4ccaamyXK5zT1d04rWQlcvlOLhfx99ZTlhDncXJBAAA33O71eD2AXKklh7STmXl5yto21ZFjLvPx8UB9kVQAwD4XPAnHylg94/e0bLysvLzFbJyuQL2/OSjygB783tQmz9/vtq2basffvhBkrR161YlJiaqV69eGjlypNLT0/1dEgDAx0JffEGO3Nzzm7nYrdBXX67agoAawq9BbefOndq6dauaN28uSTLG6JFHHtGUKVO0evVqxcXFafbs2f4sCQDgY459exW0bct5z28VF6neP9+U8vOrsCqgZvBbUHO5XJo2bZqmTp0qy7IkSdu3b1dISIji4uIkSUOGDNGqVav8VRIAwA8Ct38jExRUqTZMgEMB+3+pooqAmsNvQW3u3LlKTExUy5Ytvc+lpaV5R9ckqXHjxvJ4PMrKyvJXWQAAH7NysiW3p5KNOGT9erxqCgJqEL9cnmPLli3avn27Jk6c6JP2IyOdPmn3VE2aRPh8GbAP+rtuob99rFmkFBhQqSYcMmrUMkqqZF/R13VLbehvvwS1jRs3as+ePerZs6ck6dChQ7r77rs1YsQIpaameqfLyMiQZVlq2LBhhdpPT8+Rx2OqtOZTNWkSoaNHs33WPuyF/q5b6G/fC2zcTA2K3ZXahWNcLqXXayBTib6ir+sWO/a3w2FVeHDJL7s+7733Xn3++edas2aN1qxZo2bNmmnx4sW65557VFBQoE2bNkmSli5dqt69e/ujJACAnxT/9mp5oqLOe35jWXL16CnToGJ/xAO1QbXemcDhcGjWrFmaOnWqCgsL1aJFCz377LPVWRIAoKpZlvLHPqTwyZPO6xIdJjRMeQ886IPCAPuzjDG+22foJ+z6RFWiv+sW+ttPcnMVGfdbWRnpsirws2MCA+W+PEaZn3wu/e8VA84XfV232LG/bbvrEwBQx4WHK+vd5TLh4SpvTDOBgfI0jlTW0vcqHdKAmoqgBgDwC/cV7ZS14j8ykZEyYWGlTusJD5f74kuU9fF6maZN/VQhYD/VeowaAKBucV/RThkbv1HI20sV9uILsjIzJFmS2y0FBshyu1Xc6jLlj3tIhbckSsHB1V0yUK0IagAAvzLOCBXc9UcV3HmPAv+7UQF7dsvKy5OJiFDxFVfKHXNFdZcI2AZBDQBQPSxLxXHxKo6Lr+5KANviGDUAAACbIqgBAADYFLs+AQCohIDdPypw+zeysrKkwEB5GjZSUecuMpGR1V0aagGCGgAAFVVcrOBVKxU2f44Cd+2UCQyS3MUnrvcWECDL5VLhTb2Vf/9YFV8Tx3XgcN4IagAAVEDg1s1qMHSQVFggR06OJMlSwRnThXz4gUI++UjFv2mr4/98V+aCC/xdKmoBjlEDAKCcgtatUcOk3nKkH/OGtHOxPB5ZeXkK3LVDjXpcJ8eB/X6qErUJQQ0AgHII/GarGtw5TFZ+foXms4qK5Dh2VA3795F1PMtH1aG2IqgBAFAWY1T/nj9IeXnnNbvldstxKE3hM56s4sJQ2xHUAAAoQ+DXKbKOHFFlTgmwXC7V+9c/pdzcKqsLtR9BDQCAMoQtmCsr//xG005lHJbqvfdOFVSEuoKgBgBAKazMDAWv+ViWMZVuy5Gbq9CX5lVBVagrCGoAAJQiYP8vMsEhVdfegV+qrC3UfgQ1AABKYR0/rkodnHY6l0tyu6uwQdRmBDUAAEphQupVbYMOx4l/QDnwSQEAoBTmgkhZRcVV157TyS2lUG4ENQAASuG+tLU8VXSDdRMYqMJ+/aukLdQNBDUAAEpjWcobM14mLKzybQUGKn/UA5VvB3UGQQ0AgDIU3jZE8lT+8hzFbS+Xu+3lVVAR6gqCGgAAZTAR9ZU36n55KjGqZkJDlTtlehVWhbqAoAYAQDnk/b/JKuqeIE9oaIXnNaGhynlihoq6dfdBZajNCGoAAJSHw6FfF70u1y2J5R5ZM5Z1IqTNmKWCu+7xcYGojQhqAACUV1CQsl96VTlzF6joyt/K1AuVCQg4YzJTr55MSIhcN92srPc+VMHwP1RDsagNAqu7AAAAahTLUmHSrSpMulUBu3YqdOFLCvrv17J+/VUKCJBp0FCFfROV//uRMlFR1V0tajiCGgAA58l9RTvlzFtQ3WWgFmPXJwAAgE0R1AAAAGyKoAYAAGBTBDUAAACbIqgBAADYFEENAADApghqAAAANkVQAwAAsCmCGgAAgE0R1AAAAGyKoAYAAGBTBDUAAACbIqgBAADYFEENAADApghqAAAANkVQAwAAsCmCGgAAgE0R1AAAAGyKoAYAAGBTBDUAAACbCvTXgu6//34dOHBADodDYWFhmjx5smJiYpSQkKDg4GCFhIRIkiZOnKhu3br5qywAAADb8ltQmzlzpiIiIiRJH3/8sR599FG99957kqR58+apTZs2/ioFAACgRvDbrs+TIU2ScnJyZFmWvxYNAABQI1nGGOOvhT322GP64osvZIzRokWL9Jvf/EYJCQlyOp0yxqhDhw6aMGGC6tev76+SAAAAbMuvQe2k5ORkffjhh/rrX/+qtLQ0RUdHy+VyacaMGcrNzdXs2bMr1F56eo48Ht+tRpMmETp6NNtn7cNe6O+6hf6uO+jrusWO/e1wWIqMdFZsHh/VUqr+/fsrJSVFmZmZio6OliQFBwdr2LBh2rx5c3WUBAAAYDt+CWq5ublKS0vzPl6zZo0aNGigkJAQZWefSLvGGK1cuVIxMTH+KAkAAMD2/HLWZ35+vsaPH6/8/Hw5HA41aNBACxcuVHp6usaOHSu32y2Px6PWrVtr6tSp/igJAADA9vwS1C644AK99dZbZ30tOTnZHyUAAADUONyZAAAAwKYIagAAADZFUAMAALApghoAAIBNEdQAAABsiqAGAABgUwQ1AAAAmyKoAQAA2BRBDQAAwKYIagAAADZFUAMAALApghoAAIBNEdQAAABsiqAGAABgUwQ1AAAAmyKoAQAA2BRBDQAAwKYIagAAADZFUAMAALApghoAAIBNEdQAAABsiqAGAABgUwQ1AAAAmyKoAQAA2BRBDQAAwKYIagAAADZFUAMAALApghoAAIBNEdQAAABsiqAGAABgUwQ1AAAAmyKoAQAA2BRBDQAAwKYIagAAADZFUAMAALApghoAAIBNEdQAAABsiqAGAABgUwQ1AAAAmyKoAQAA2BRBDQAAwKYIagAAADZFUAMAALApghoAAIBNBVZ3AQAA+JTbLSsrSyrOkdxBUkhIdVcElBsjagCAWsmxb6/CJ/8/RV7WUpHtL5dat9YFrZqr/ojBCvpqg2RMdZcIlIkRNQBArVPvlZfkfOpJyeORVeTyPm9JCv5olYI+W6+iazvr19f+RwoLq75CgTIwogYAqFVCF86X8+npsgoLSoS0kyxj5MjLVdAXn6vBsEFScXE1VAmUD0ENAFBrOPb+rPCnp8nKzyt72sICBW7ZrHqvv+aHyoDz47egdv/99ysxMVH9+/fXsGHD9O2330qSfv75Zw0ePFi9evXS4MGDtXfvXn+VBACoZUIXvSK5PeWe3pGfp7CX5nK8GmzLb0Ft5syZ+uCDD5ScnKyRI0fq0UcflSRNnTpVw4YN0+rVqzVs2DBNmTLFXyUBAGqT4mLVe/PvZ93dWRorM0OBX6f4qCigcvwW1CIiIrz/z8nJkWVZSk9P165du9S3b19JUt++fbVr1y5lZGT4qywAQC1hZWbKOp/jzYxRwJ6fqr4goAr49azPxx57TF988YWMMVq0aJHS0tIUFRWlgIAASVJAQICaNm2qtLQ0NW7cuNztRkY6fVWyV5MmEWVPhFqD/q5b6O9awvWr5LAqPJvDGNUPcUh8Dmqd2rBt+zWozZgxQ5KUnJysWbNmafz48VXSbnp6jjwe3x1f0KRJhI4ezfZZ+7AX+rtuob9rEXeQLiguVkWjmicgUNmhDeTic1Cr2HHbdjisCg8uVctZn/3791dKSoqaNWumw4cPy+12S5LcbreOHDmi6Ojo6igLAFCThYbK1b2HjFXBqGY8ct2Q4JuagEryS1DLzc1VWlqa9/GaNWvUoEEDRUZGKiYmRitWrJAkrVixQjExMRXa7QkAwEn5D4yXqcAFbE1gkAqGjZBCQ31YFXD+/LLrMz8/X+PHj1d+fr4cDocaNGighQsXyrIsPfHEE5o0aZIWLFig+vXra+bMmf4oCQBQCxVd11XFcZ0U+NUGOQoLSp3WSDL1I5Q/boJ/igPOg2VMzb94DMeooSrR33UL/V0L5eaq4ZABCvhmmxz5+WedxAQGydSPUFbyv+W+PMbPBcIf7Lht15hj1AAA8JnwcGUt+1C5jz0hd/Pm8oQ75QkLk0JD5YmIkCcsTPl3jlTmp18R0mB73JQdAFD7BAWp4N77VPDH0QpK+VIBu39SRL2AE2d39ujJMWmoMQhqAIDay7JUdO11Krr2OkU0ieASHKhx2PUJAABgUwQ1AAAAmyKoAQAA2BRBDQAAwKYIagAAADZFUAMAALApghoAAIBNEdQAAABsiqAGAABgUwQ1AMC5FRfLOnxYysmp7kqAOomgBgA4U1GRwv7ylCIvv0SRHX+rC9perPpDblXATz9Wd2VAncK9PgEAJRmj+r8fouAvPpdVkO99OnjtJwrqdYOy/vOp3K0uq8YCgbqDETUAQAlBX3ymoC83lAhpkmQZIysnR+FPTq6myoC6h6AGACih3j/ekJWXe9bXLGMU/J/Vksvl56qAuomgBgAowcrIkFX6FLIKC/xUDVC3EdQAACUUdbpWpl69c77uadxIxhnhx4qAuougBgAooWD4nZLj7D8PJixM+WMekqzSx9wAVA2CGgCgBNOkiY6//k95wsLkCQ098ZzDIRMaqsJbEpV/733VXCFQd3B5DgDAGYq691DGll2q9883Fbh5o8wFTVQwdLiKr46t7tKAOoWgBgA4K9OosfLvH1vdZQB1Grs+AQAAbIqgBgAAYFMENQAAAJsiqAEAANgUQQ0AAMCmCGoAAAA2RVADAACwKYIaAACATRHUAAAAbIqgBgAAYFMENQAAAJsiqAEAANgUQQ0AAMCmCGoAAAA2RVADAACwqcDqLqAqOBxWrVgG7IP+rlvo77qDvq5b7Nbf51OPZYwxPqgFAAAAlcSuTwAAAJsiqAEAANgUQQ0AAMCmCGoAAAA2RVADAACwKYIaAACATRHUAAAAbIqgBgAAYFMENQAAAJsiqAEAANgUQe00hYWFmjp1qm666Sb169dPkydPliT9/PPPGjx4sHr16qXBgwdr79691VsoKu3AgQNKSkry/ktISFB8fLwk+rs2Wrt2rfr376+kpCT169dPH330kST6urZat26dBgwYoH79+mn48OHav3+/JPq7Npg5c6YSEhLUtm1b/fDDD97nS+vbGt3vBiVMnz7dzJgxw3g8HmOMMUePHjXGGDNixAiTnJxsjDEmOTnZjBgxotpqhG889dRT5sknnzTG0N+1jcfjMXFxceb77783xhjz7bffmvbt2xu3201f10JZWVkmPj7e7Nmzxxhzol9HjhxpjGHbrg02btxoUlNTTY8ePbzbtDGl921N7neC2ilycnJMhw4dTE5OTonnjx07Zjp06GCKi4uNMcYUFxebDh06mPT09OooEz5QWFhoOnXqZHbs2EF/10Iej8fEx8ebTZs2GWOM+frrr81NN91EX9dS27ZtM3369PE+zszMNG3atKG/a5lTg1ppfVvT+z2wukf07GT//v1q2LCh5s+fr5SUFIWHh2v8/2/v/kOrqv84jj/XnbvXi9e6m+7OjWFqUJui3bzdtc26hNVIRvbLGoQKFUM3dbONEgdBoEmjNVOzmdwKlSYsFecWKGpgrRW7eilCCZwGq/3yXlLnFra7e79/iJfdbzjN/bq7vB5wGZ+dcz6f92dvdnjzOeeeU1KCyWTCZrNhMN3+LSAAAAhZSURBVBgAMBgMJCcn09HRQWJi4jhHLSPh5MmT2Gw25s6dy6+//qp8x5i4uDi2bt1KUVERZrOZ3t5edu3aRUdHh3Idg2bNmoXP5+OXX35h/vz5HDlyBED5jmFD5TYUCk3ovOsetUECgQBtbW1kZmZy8OBBysvLWbt2LX19feMdmoyyAwcO8NJLL413GDJKAoEAu3btYufOnXz77bd8+umnrF+/Xv/bMcpisVBdXc2WLVt48cUX8fv9TJ06VfmWCUkraoOkpqYSHx9Pfn4+AAsWLMBqtWIymejq6mJgYACDwcDAwADd3d3MmDFjnCOWkdDV1UVLSwuVlZUAzJgxQ/mOMefOnaO7u5uFCxcCsHDhQiZPnozRaFSuY1ROTg45OTkA+Hw+3G43aWlpyneMGuq8HQqFJnTetaI2SGJiIllZWTQ1NQE3viXi9/u5//77ycjIoKGhAYCGhgYyMjImxJKp3N6hQ4dwuVxYrVYAkpKSlO8Yk5KSQmdnJxcuXACgtbUVn8/HzJkzlesYdenSJQCCwSAfffQRBQUFpKWlKd8xaqjz9kQ/p8eFQqHQeAcRTdra2ti4cSOXL18mPj6e0tJSXC4Xra2tbNiwgatXrzJ16lQ++OADZs+ePd7hygjIy8ujoqKCJ554Ivw75Tv21NfXs3v3buLi4gBYt24dTz31lHIdoyoqKjhz5gz9/f3k5uayceNGjEaj8h0DNm3axLFjx/D5fFitVu677z4aGxuHzO1EzrsKNREREZEopUufIiIiIlFKhZqIiIhIlFKhJiIiIhKlVKiJiIiIRCkVaiIiIiJRSoWaiEiUqK2tJTMzE7vdTltb27D66unpwW63M3fuXHbu3DlCEYrIWFOhJiLDYrfbw5+HHnqI+fPnh9v19fXjHd6w5Obm4vF4xnRMp9OJ1+slPT0dgL6+PlatWsWiRYtwu90R+54/f541a9aQlZWFw+Fg6dKl7Nmzh1AohMViwev18swzz4xp/CIyslSoiciweL3e8Cc1NZWamppw+7nnnhvv8G4pEAhMiDEOHDiA0+nkxIkTNDU10dnZCdx4gOerr77KrFmzaGhowOPxUFVVhcfj4Z9//hn2uCISHVSoicioGhgY4JNPPmHx4sVkZWVRVlbG1atXgRvFRmZmJnV1dTz++ONkZWXx9ddf4/V6yc/Px+FwsGXLlnBftbW1rFixgnfffZdHHnmEJUuW0NLSEt5++fJl3n77bXJzc3G5XOzYsYNgMBhx7Hvvvcejjz7KZ599RmtrK8uXL8fpdPLYY4/xzjvvcO3aNeDGmwv8fj9vvPEGdrudPXv2cOrUKZ5++umI+Q1edfvwww8pKyujtLQUu91OY2PjkPO/079fMBiM+Anw8ccfk5OTQ1lZGdOnTwfggQceYNu2bRiNxv+aJhGJUirURGRUud1umpqa+Oqrrzh16hSTJk2KKL4GBgb47bffOHHiBO+//z6bNm3i888/Z+/evdTX13Pw4EF+/vnn8P4ej4cHH3yQn376icLCQoqLi8PFVXl5ORaLhePHj1NXV8fx48c5fPhwxLEZGRn8+OOPvP766wAUFRXx/fffc+TIES5evEhNTQ0A27ZtIykpCbfbjdfrZcWKFXc036NHj/LCCy9w+vRp8vLybjv/23n55Zdpbm4OF3ppaWkA/PDDD+Tl5d1xPyIyMalQE5FRtX//fsrKyrDZbBiNRoqLi/nmm28Y/Pa64uJiEhISWLx4MQBLly7FarWSmpqK3W7n7Nmz4X1TUlJ47bXXmDRpEs8//zw2m43vvvuOP//8E4/Hw4YNG5g8eTLJycksX76cxsbG8LHp6em88sorGAwGTCYTc+bMITs7m4SEBKZPn87KlSsjVujuhtPpxOVycc8992Ayme5o/kOZMmUKbreb5uZmVq9eDdwobnt6esIraSISu+LHOwARiV2hUIjOzk4KCwvDL0MHCAaD/PXXXwAYDAasVmt4m9FoZNq0aeG2yWSir68v3E5JSYkYIy0tje7ubtrb27l+/TrZ2dkR48ycOfOWx3Z1dbF582a8Xi+9vb2EQqFhFz+Dx7jd/BMTE+9qDIPBgMVi4dKlS8OKVUSinwo1ERk1cXFx2Gw2tm/fzrx58/61/Wax9l/cvJn+pvb2dpKTk0lJScFsNtPS0hJRFP1/PINVVlZiNptpaGjg3nvvpbGxka1bt95yf7PZzN9//x1u9/f3c+XKlVuOcbv5D0dOTg7Hjh0jPz9/RPsVkeiiS58iMqoKCgqoqqqio6MDAL/fz8mTJ++6v87OTmprawkEAhw+fJiOjg4WLVpEeno6Dz/8MJWVlVy7do1gMMjvv/8+5OM1ent7MZvNTJkyhfb2dr744ouI7UlJSfzxxx/h9uzZs7ly5QrNzc309/ezffv28JcVxmr+N5WUlNDU1ER1dTU+nw+ACxcuUFpayvXr14fdv4hEBxVqIjKq3nzzTbKzs1m5ciV2u52CgoKIe87+K4fDwblz53A6ndTU1LBjxw4sFgsAVVVV9PT08Oyzz+J0Olm/fj1+v/+WfZWUlHD69GkcDgdr1qz51zPHVq1aRXV1NQ6Hg3379pGYmEhFRQXl5eW4XC6mTZsWcdl2LOZ/05w5c9i/fz/nz59nyZIlOBwO3nrrLRwOBwkJCcPuX0SiQ1zoTu9oFREZZ7W1tRw9epQvv/xyvEMZFXV1dWzevJn4+HgOHToUfujt3ejp6eHJJ58kEAhQVFREYWHhCEYqImNF96iJiESJZcuWsWzZshHpy2KxjPlbFURk5OnSp4iIiEiU0qVPERERkSilFTURERGRKKVCTURERCRKqVATERERiVIq1ERERESilAo1ERERkSj1P1+uOOPYRB1VAAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "
    " ] }, - "execution_count": 61, "metadata": {}, - "output_type": "execute_result" + "output_type": "display_data" } ], "source": [ - "#yields.plot.scatter(x='temperature', y='yield', figsize=(15,5), s=()\n", - "yields['baffles']\n" + "markers = {'No': 's', \n", + " 'Yes': 'o'}\n", + "\n", + "colours = {'No': 'black', \n", + " 'Yes': 'red'}\n", + "\n", + "# Create an empty axis to plot in\n", + "ax = pyplot.subplot(1,1,1)\n", + "for baffle_type in markers:\n", + " subset = yields[yields['baffles'] == baffle_type]\n", + " subset.plot.scatter(ax = ax,\n", + " figsize = (10,8),\n", + " x = 'temperature', y='yield',\n", + " s = (pd.np.sqrt((subset['speed']-3200))-4)*10,\n", + " c = colours[baffle_type],\n", + " marker = markers[baffle_type]\n", + " )\n", + "ax.set_xlabel('Temperature [°C]')\n", + "ax.set_ylabel('Yield [%]');\n", + "ax.set_title('Yield as a function of temperature [location], baffles [colour] and speed (size)');\n" ] }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, { "cell_type": "code", "execution_count": 24, @@ -1796,24 +1793,77 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 71, "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "data": { + "text/plain": [ + "0 82\n", + "4 80\n", + "7 83\n", + "8 64\n", + "9 73\n", + "10 60\n", + "11 60\n", + "12 101\n", + "Name: temperature, dtype: int64" + ] + }, + "execution_count": 71, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "subset['yield']\n" + ] }, { - "cell_type": "code", - "execution_count": null, + "cell_type": "markdown", "metadata": {}, - "outputs": [], - "source": [] + "source": [ + "➜ Challenge yourself: pairplots and the peas\n", + "\n", + "Generate a pairplot set of scatter plots for the 6 taste attributes of the peas. Now you can visually confirm just how correlated the data are.\n", + "\n", + "##### Compare and contrast\n", + "\n", + "1. You have seen in the above plots a correlation of nearly zero: grades vs time for the exam.\n", + "2. In the cheddar cheese data you saw correlation of around 50 to 60%.\n", + "3. In this data set you see correlations of above 90 and 95%.\n", + "\n", + "This is done intentionally for you to get a visual idea of what the correlation coefficient means." + ] }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] + "execution_count": 3, + "metadata": { + "hide_input": true + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABCIAAAQxCAYAAAD7kyxmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xt4XNV5L/7v2nPTaCRZQh7ZgETsUCNQqIiRudl9WlMXQ3644Tg2pIfYJhCwHTd1kwZjeg4+SR83LQ6knPCkrgWUi21oIb40KTQJlB+0pzY3CycOFVF8HEMtsC1ZSLY0Gs1tr/OHvMdz2Xtumj0ze8/38zzzWJbmsmfmXZe99lrvElJKEBERERERERGVglLuAyAiIiIiIiKi6sGBCCIiIiIiIiIqGQ5EEBEREREREVHJcCCCiIiIiIiIiEqGAxFEREREREREVDIciCAiIiIiIiKikuFABBERERERERGVDAciiIiIiIiIiKhkOBBBRERERERERCXDgQgiIiIiIiIiKpmKGoi46aabJADeeJvqrWQYs7wV8VYSjFneingrGcYtb0W6lQxjlrci3kqCMctbEW85qaiBiFOnTpX7EIjywpglq2HMkhUxbslqGLNkNYxZKrWKGoggIiIiIiIiInvjQAQRERERERERlQwHIoiIiIiIiIioZDgQQUREREREREQlw4EIIiIiIiIiIioZZ7kPgIio1FRVYigQRjgag9vpQLPPDUUR5T4sorKyarmw6nET5YuxTlbEuCUjHIigNLPufynvx3zw4M0mHAlR8amqRN/JUdyz/QD6h4NobfLi8VXz0D6jng0jVS2rlgurHjdRvhjrZEWMW8rEtKUZQoh2IcTPE25nhBBfN+v1iIhyMRQIxxtEAOgfDuKe7QcwFAiX+ciIyseq5cKqx02UL8Y6WRHjljIxbUaElLIPwGcBQAjhAPARgL1mvR4RUS7C0Vi8QdT0DwcRjsbKdERE5WfVcmHV4ybKF2OdrIhxS5mUKlnlIgBHpJQfluj1iIh0uZ0OtDZ5k37X2uSF2+ko0xERlZ9Vy4VVj5soX4x1siLGLWVSqoGIPwLwDyV6LSIiQ80+Nx5fNS/eMGrrFZt97jIfGVH5WLVcWPW4ifLFWCcrYtxSJkJKae4LCOEG8DGAz0gpT+r8fTWA1QBw0UUXdX34ISdNlJsNklWamv2GMWt9FZrB2bQDYMxSLgooFxVR11ZoeabKVBExWyjGetWydP+AcVuVcvqCSzEj4nMA3tUbhAAAKeVjUsp5Usp5fr+/BIdDNDWMWetTFAF/vQcXNtXCX++xfYPImKVcVFq5yDVuK+24qXqZXdcy1qnYStE/YNySkVIMRPx3cFkGEREREREREcHkgQghRC2AGwDsMfN1iIiIiIiIiMgaTNu+EwCklOMAms18DSIiIiIiIiKyDlMHIoiI7I5JmMhqGLPJ+HlQJWJcUqVibFKxcCCCiCgPiQ2wy6lgbCKKVU++jf7hYHxbqvYZ9WyUqSKpqkTfyVHcs/0A+oeDWNzRggdu7oBDEbbrUObSWU79PFiGqRJEoyo+Ph3EwGgIQ4EwdvccwzduaGdcUtllqzM5SEH5KEWySiIiW9Aa4KVb92HBltfwha37cfLMBPx1HgBA/3AQ92w/gKFAuMxHSqRvKBCOdyDntjXijvmzcfsTb2HBltewdOs+9J0chaqau613KaSWVaP3lvh5ACzDVH6qKtE3MIrbn3gLy7e9gc0v9uKO+bPxyCt9jEsqu0x1Zq71LpGGAxFEVJVUVWJwNISPhscxOBrKqaHUa4A37DqEtQsvjt/HX+dBOBrL63mJclFIzKYKR2PxQYjvLu+Ex6lg05IOzG1rtNVJ+KlAKK2sPvJKH06cmUj6/LTPI1H/cBDhaKwch02EoUAYa3b0JMXuM/uPYsONl2I8HC1qu1KMOoWqS2KdObetEd0ru/C9W69AOBrDSLAyB3YZ55WLSzOIqOoUMh1bVSWCkajuSUuj1wVgslG+76Z2fPGxNznNm4oq15hNnRbb5HVhOBiJ/9/lVLC4owV3zJ+NO59+J/5cW5Z14uGf9eHgsRHLn4SrqsR4KHmAQZv9cVv3G0mf34wGD1qbvEn3bW3ywu10lOPQidIGx7TYTSyvubRXWj3gdTsQVSUiUTVpqjyXJVEh3E4HWpu88Nd5cO+N7di4+1A8frpXdMFf50mKX6OBXVWVGAmGEQzHEJMSNS4Hpvs8RY89xnll44wIIqo6+U7H1hqyIwMBtDZ5k/7W2uTFeHiykV2/aA427DpUcVcDyPpyiVm9abG/OjmK/7n3UPz/YxNRPHBzR7zzqD3Xxt2TM3vscBI+FAjjxJmJpLK6duHFae/5nu0HEI1JPL5qXvy+Wie12ecuy7ETaSd6GqPYzdZeLd26D1977iD6ToziC1v3p02V57IkKkSzz43HV83D+kVz0uJyzc4erF80J+n+em2Kqkp8MBRA34lRfPGxN/G7330dX9i635RlHIzzysaBCCKqOvlOx9YaskdfPYwtyzqTTlq6V3bhMxc0YNfa69B2njev5yXKlVHMBiPnlgElLkeY29aITUs6MBGJYcONl8aXXqx68m0IAd3n0jqYVj8JD0djkFLioeXnymqzz234+TX73Njz1fnYt/F67F23gFfKqCSMpotr5TBb7Bq1K4n1wNqFFxsOjnNZEhVCUQTaZ9Tj4hafbvzMmu7LOrA7FAjjw6Fx3dg8cWaiqIMRjPPKxqUZRFR1tCtOuU7H1hqy/uEgfnTwI2y/62p8EghjKBDG9//11/jTRZfgOy+9H7+izGneVGxGMXtkYAx3Pv0OWpu82PmVa+KDEKlTZhOXXihC6D7XBY1ezGyosfxJuNvpgMuh4DsvvY9NSzrQ6HVhRkON7nv+1YlRbH6xF9tWdOHSGfVwOnl9hsyXbbp4+4x67F23AOFoDMKgvOq1K6nLkhq9LsOTsHzbQSKNogh4XU7d+PloeBybb7kcs6f7UOvRX24RjsZQ63boxubHI0GcDkaKNiDMOK9sbHGJqOqkXnHKNh07carsoo4ZWPXk21i+7Q2s2dGDl3sH4tMRt71+JG3GhB2uMFP56cXsQ8s78eirhwFMduCOnppcOqQ3lTtx6YXX7dCNfzsMQgCTn1VLvQeDYyGs2dFzNmfLeNIMCW1wZtvrRyavHO/swcBYqMxHTtUi23RxRRHw13twYVMtZjbU5NxeDQXC8XoAAEaCEd3lhFquCC5LokLpxc+WZZ343su/xp1Pv4MVf/8WBIRum+J2OjAejunGplY2irV0gnFe2TgjgoiqTuoVp0x7XauqhITEzq9cg6OnAmis1b/CNHu6D4NjITz8s76sVwOI8pUaswDwtecO4uCxkfh9fvLL43j27msQU2XGpReNXjcave6c4t+KFEXggmmTy6a03Qee2ncU9910KR6+9QrMnFaDvhOj8RkiwOTnE42pZT5yqhb5TBfPp70KR2P4yS+Px2ftTURi+Nvb5+KPnzuYNPNCe3yuz0uUKjF+guEo3tepU42WPzT73PhUcy0eWt4ZX56xuKMFf/65yzASjGDTkg6oanHqY8Z5ZeNABBFVJe2KUyZ602efvfsa3Wl+tR4HGzoyVWLMDo6GMJhwBX9uWyOWXnkhvvTEW9i0pCOnpRfZ4t/KnE4Fl81sSCqTjTVOhKIqjg4GsPnF3rTPx+ngJFEqjXyni+fSXgGA1+3A0isvxKon3463WX/3pSux56vzEYmpaW1Trs9LpEeLn8FR6NapmeJ5VrMPjbUu/OPqayGlxPB4BCsT4rZ7ZRf89cWZpcc4r1xsdYmoKuWyr7Te9NnvvNSLrV+6Mm2a33SfJz6V1l/PWRBkrtTppok7tugtEepe2YWWuuqJy9RtTJt9boxMRLFmR49u0tltKyY/H6JSKNZ08dR2LBqTaQkAv/rsu4AA2yYyTa7xnBivQ4EwGr1uXDDNCymBdc++m7wDx44e7mxRBTgjgoiqTq77SutNn325dwB/ccvleH71tYhJoMal6C6/0DsRYgeQiiV1umlMnluOcfDYCB7+WR82LenAnJY6HB4Yw/f/9de4/3OXoa7GiUg0/cqonRiV74YaZzzprPb5NHpduLDJi5lnr7wNjoZYZsl0egkpHWJy8DvXuNOLcy1hbaL+4SAiUS47oqkz6tfksvwhU7/LoQjubFGlOCOCiGwn22yHXPeVTt3PHTg7hVtRcGFTLS46rxbTfR4MBcJJr5W4j3vq3u1E2USjKj4eCeLDoQA+HgkianASkZjQTstgrjl4bASbX+zF4YExrNnRg8HRME6emcAXtu63fUwalW8hBBZ3tKB7ZRfu/9ylAIC//4/fwON0QFEEyyyVlKIINPvcODMRxW3db+Cav/7/c4o7rX3rHxnHidMT8J+dyZOYsDaR3hT5XGYEEiXK1q9JbI9SZ96oqsSJMxMIhKLYtKQjvp30I6/04cSZCcSkxFNfvgpz2xrjj+HOFtWBAxFEZCuZGkut8zUePtcYavRG37NNNzR6rcR93LXnLmYWaLKvaFTFr06O4rbuN/B7D72O27rfwK9OjhoORmiavC50r+zS3RUCANYuvFh3z3a7xGTiiVU4GoufnGn6h4NwOwTWL7oEm1/sxRcfexObX+zF+kWXoMnrMiyzpwLcSYPMk+uguCaxzfnd776OTT96D/fe2B5vyx599TC6V3TptllaGTl5Ooj3T5zhoBvlJd9Y1Wgxe1v3G1i+7Q1sfrEX997Yjtu6WnHH/Nm4rfuNeCzfd9NkLGtx2+R1ccDM5rg0g4hsxaix3LNuPobGwknTArcs64xnedYbfc823dDotX649tr4tO+RYATbXj+Cg8dGOM2QshoYC2Htzp6kmFq7swcvrLkOFzR6dR+jqhKHByeXX2xa0oFmnxv+eg9ee/8E1i68GI1eF1rqPfDXeZKmv9pl6qvelN+Hlnfiuz89l8G9tcmLcEzqfrZ71y3ARCR5GdbctkasXXgxguEYBkdDXKZBpshn9wxAv83ZuPsQNi3pwJodPfDXu3Gez43n7rkGDiHgdTvQ6J0cONfKyKYlHUmJBbV2a++6BUzoR4byjVXNUCCMR17pS+oTPbP/KDbceCnufPqdpDjcsOsQnl99LdxOB5q8LhweHMu6hJasjQMRRGQrRo3lREQ17MBtfrHXMFFYYrbl1PWRqqqmvZa/zoNPxiLxjp424PHM/qOcZkhZRWLpMaVtLamqUrcDlnhy8nLvAABgcUcL1i+6JH7ibXRyboeY1Ds527DrEDbfcjnufPqdeAdWSv1tTcPRGBxCxHcxmNvWiHtvbMfG3YfOZXBf0YXzG2vQ6OWABBVPvrtnGLVvjV5XvMzf2v1G0olbo9edVEZa6j0FnVBSdcsWq0b5I1RVxR3zZyfVp1uWdcLp0M8LAeDsThz6s9Q4YGYvXJpBRLahqhLi7AlFotYmLxziXCM3t60R3Su78L1br8BnLmjAj7+2AHP8dWm5HhJFoyr6h8fx4VAA7318Bv9z7yGcCoSxuKMl6X7rF83BmpSrrht3H8IDN3fknRGdrMtoDXZq/odIJJZ0P69LPy/JkcGA4fRpvZOTZV1taVf/N+w6hPWL5sSfs5As/ZVI7/376zyYM6MO/7ZhIV5Ycx1+a7rPsG5wORV43Q48tHxyJ437bmpHOKrie7deMbmFXJ0Ha3b24BfHTnMKOxVVvrtnGOUtam3y4tufvzytzGtT57XlSju/cjWafO6irsfPNd+E3v2Yq8I6MsVqpiWxMYn4IARwrk9U63LgqS9fhedXX4vulV3xJRlaHBYyA0MvvxJjrLJxRgQR2YLWED7ySh+2LOtMGn1/fNU8eN2THTh/nSftauf2u67GyTMhwymAqirRNzCKNTt6kkb0v/+vv8YDN3eg9/ho/Pezp/t0G0/H2czSZH9G2cF/a7oPfQNj8ZOFxR0t+JNFl+CrCbMWHl85D0/feRW+/NQ7aUuIBsdCuleD9K5UNfvcunF4cUsd9m283la7QqS+/7ltjbjvpnb80WNvxj/DbSu68M8/78f3br0C3/zhL5JmiYxNRHFRUy1mNNTgkds+C6/bgQ27etI+/1q3g1fkqKhy2W0gkXYymFq3nD/Ni+Ong4Ynbl63A/fd1B7PE5M4Q2pwLITulV0FDUrmugOV3v2233U1QlGVU+8tIlOsZpq9oDcTzV/nwalAGJt+9F5SPM5oqInHYb6zhbT8SomzAJ++8ypEohL37GCMVSpTByKEEI0AngBwOQAJ4C4p5RtmviYRVafEqaeDo+H4WvkLGr2Y2VADAHh81TycOD2RNjr/4dA4/uHtD5PWMD7ySh++s7QT/vrJXTG0QQjtMdqyDocikhpmCZlX40n2o7dU4JFX+vCtP/wMJiIxbFrSgW2vH8Gyrrb4IIR2v3t2HMCer87HP66+Fh8NBzESjMTzmADQvRqkd3LSUu/RjUOvy2G7k+jU979+0Zy0xJxrd/Zg05IOqFLikds+i+l1bsSkxInTE3jwJ+/jO0s7MavZhxqXA7edndquPXbj7sllHiPBCKewU9ElLv/L5b5GJ4OZTtyiqkwrExt2HcKOu67GrwfGML3AQUmjPEmpg3V69/twaDx+IqrlZAmEojhxZgIzG2p4oliBjGI10+wFvbhcv2hOWp9qw65D2LNufvx7Nxp0Sx0w05aEjIejGBwNxXMh9Q8HceyTYDzGtNfhYHJlMXtGxPcB/FRKuVwI4QZQa/LrEVGVSmwIDx4bwZodPQCAfRuvjzds7TPq4fM40hrM6XVu3TWMqqqmPbemfziIZp8bbmfyiZ2qypwaT7Kv1HiZ29aIO+bPxhcTrtBvWdaJhhqnblxFYio8Tkf8yr3GaEBL7+SkyeuqmjhMff8xg1wQjV4Xat0OnJmIYuWTb6eVdUURhnkkLmquxb0v/IKDilR2RieDmU7cjGZLDIyGsPnFXuxdt6CgY8l1+rze/WrdDsOcLLxqbS2ZBsH04tJo5mgkYXeoXGYL6c20SUxCrsVY6utwMLlymDYQIYRoAPC7AL4MAFLKMAB77BNGRBUnl2l8iiLgdTnT7ud1O/HVZ99Nuwr6wprrMj53S70n7cQu36m2ZD+p8bJ24cW6a2Sfu+favDpvmQYS9E5OqikOE9//4GhI93MdCUZwns9dUFk/PhLE4FjItoM5ZH2FzJYYD8emFNNupwOLO1qwrKstPptwd8+xtME6vdcfD8fQ2uTVrR951dpaMrVXenGZaeaoUdJLPdl2kdFijDNUK5eZySo/DWAQwFNCiINCiCeEEL7UOwkhVgshDgghDgwODpp4OETFwZitTHqJlLpXdkFV1aQERXr3cxlkb5bS+DHdK7twwTSvbgOpnRRd2FQLf72n7Cd/jNnSavK60L2yKx4vRvkahgNhbFnWqZv8K7Hztm/j9di7bkHeVwgrLQ7zVWjc6pXXbSu6cF6tu+CyPqelrqDvgKpLuetaozKvG9crunBF27QpxXRjjRPrF12CzS/24ouPvYnNL/Zi/aJL0OR1Jd1P7/U/1Vwbr+941bp8ihGz2dqr1Lic7vPoJr5s8roMk17qJZ3MtItMa5MXbedN5l3KNRkslZ7QGt+iP7EQ8wC8CWCBlPItIcT3AZyRUm4yesy8efPkgQMHTDkeyt2s+1/K+zEfPHizCUdSsJL1Ehmz5spnZDz1/jFV4i9f6sXLvQNpUz2jURUDYyEAElICTkWg9/goat0OjAQj2Pb6EQyOhfDCmutwQaO3oGMpQEniljFrrmhUxcengxgej6DW7UA4pmKa1xVPnKjRknPFVImZ02rgUAR8biem11lqwKBi69rE8upyKhibiGLVk2/jqS9flbR3/dy2RqxfNAef9vvgcihoOfv5nwqEMBFR4RCA1+3gtp32UbExa7ZitmGqKnFmIoyxUAwnTk9gKBDGtteP4OCxEbQ2eXVnM2jtbiSmJpW1E2cmkvKyADB8jipmu/6BXjwOBcJYunVfWizsWTcfQ2PnZj8s7mjBAzd3AAI4MhDAo68eTtqW+vnV1wKYTE7odipwKgLB8Llli8PBiG45KEE/r5rk9MGZmSOiH0C/lPKts//fBeB+E1+PiGwk12zcibRR98HRUFJjljjVs9nnxuHBMTzySh/umD8bz+w/ij9ZdEla9mav2wGHSH9uIiNGu6v8+GA/uld2Jf3+B7fPRSiiYsOec+uiu1d0YXodY6wYUpdqrDqbE2IiEovvquOv86TtJLBtRRfaW+qSOr1cs052UKw2TFUlPhgKYCwUxbqzy5xS1+anzmZQVYnDg2O6ZWpmQ03V5LOhc/Ti0WiGw0Tk3O4qWs6l2594K6nPpu0A8/iqeQhF1XidnxhrAAz7lZn+xnrfPKYtzZBSngBwTAjRfvZXiwD0mvV6RGQvRtm4hwLZU81kSqClPe+yrjZs3H1Id+eCDbsOYSKiQlHMXL1GdmO0u8qVs5pxns+NzbdcjudXX4unvnwVJiJqUjLK/uEg1uzsySm+KT+J9cHHpyfwzP6j2LSkA39z2xW6u2sMjOlvRcfvhmiynvtwaDw+CAGcq+vWLrwYrU1eCCHSHmNUpoqxDI3sQcslkqi1yQuHQMacSxt2HcIPbp+LvesWYEaDJz4Iof1di7VMcTiVPicVzuxe9p8AeFYIcQjAZwH8lcmvR0Q2YTSYEIzE4vkejBg1Zm6nI/68jV5X0r+przMzYT9rolxk2l0lpkrc+fQ7+OJjb+K+XYfgr/dwXXSJJNYH214/gjvmz8bmF3sxMBrS/Q6iqv7OGfxuiCbrOaPdCJp9bvzt7VdCQMbX8auqRDASzVimrJ7PhopDL5fI46vmweVQ4r8z6rMBgL/eg2DY+EJUpotUU+lzUuFMHYiQUv5cSjlPStkppfxvUsphM1+PiOzDaDDh45FgPHmREaPGrNnnhsupxDPoJ/6b+jq1Hgc7Q5QXo5j113twfGQi/reDx0ZwfCRoOFhGxZVYHxw8NoJn9h/F9ruuxoyGGt3vwKkIfjdEBtxOR3w3gkStTV7MnFYDpyLwwdA4lm7dhw+GAug7OYojAwGWKcoqdXbMnnXz4XEqeOCffhlP7GzUZ9NiKdOFKKO/ed0OCCGwa+116F7ZhbltjfG/HRkYy9rnpMJx3jERlY1eFmSN3mDCQ8s7UeNS8MgrfWnT5RKfaygQxhx/XdJUzzn+OgwFwoipKrZ+6Urs7jmGLcs64/+mZsmXqkw7JrK/TDGZTZPXhW0rupJiaduKLrz2/gn81b+8jy3LOrG4owXdK7vQ5HOn3Zfros2hdW73rJuPf7/venz7Dz8DVUr81b/04nu3XpFWxwQj0aRdTxZ3tOC5u6/BRCSKj4bH8UkghGhULThOiKys2efGp5pr8dDy5HZz65euxKP/ehhrdvZAEQL+Og8GRieXOT366mHddlbb1YrliTSJs2OcisCHQ+P4yu98Gh6ngmfvvgYd59ejW6ftdCjAR8PjcCgwvBCl16/cftfVOHkmhNu638DybW9g84u9uPfGdizuaMGWZZ149NXDuks0ptJXoHPMTFZJRGQoWzJKRRGY0eDB5lsuj+9moSUj2rSkI2madLbnSv374o4W3P+5yxCOxrDhxksRU9V4luVMu22QvRWSIDXRcDCCR1/9NTYt6UCj14WRs/9f1tWGg8dG8KODH+GPr5+DP37u3XgcPnv3NXAqghm6SyAxAeVL638Hy7racGFjjW4ds3vtddi7bgFUVcWpQDgtMZq/3oPv/vRXrCeo6iiKwEVNtfC6FOz4ytVQhMBvBgP41o/+M75zwTd/+As8+IXfji9B6x8O4uGf9WHTkg601Htwns+N75xtZxd3tGD9okuwdmdPQfUu2ZOqShwfmUhLJP7dn/bBX+/Gc3dfA4ci4rsiff4H++L3237X1dizbj4iUTWtbdVmXGg7Y0hIrNq6Py3fyVNfvgr37ToUj+l8+pyUO86IIKKyyCUxUDAci6+rX7OjBwePjcTXoSZO6cz2XKl/f7l3AKuefBsffhLEDY/8O+7e3hOftnf7E2/h5d4Bw2Mi+5pqsqpwNIaXewewZkdPPGZf7h2Iz3JY1DEjPggBTMbhl554C26ng+uiTab33W5+sRcfjUzo1jGhmDz7nShpCUg37DqEY58EsayrLf471hNUTYaDEdza/Sauf/jfcOL0ZBnSTtiAs3mWptXgv4bGk5akrdnRg5HxCL6U0M4u62qLD0Joj2V5oqFAGGt0EomvXXgxXu4dwO1n204BkZacctWTb0NA6OYcSc1HEomqurkhPgmEk7YEzafPSbnjQAQRlUWmpEEao/V8LfWepCns2Z7L6O+NXlfStL1cjonsa6rfv1G8nudzo7XJa5hki/FlvtTvdtvrR7BlWafhWvcal6L7OGDyO6t1O9DodSX9jt8jVYvEcmG0Zt+hCN0lGbOm1yaVKdaLpCdTv037OVsCylwYtdvj4Vj859Rlk+wrFg8HIoioLDIlFNKkrufTprIrisBQIBxfk5ftuYz+3trkTdoqLJdjIvuayvevqhISEju+cjWe+vJVmNvWiNYmL7Ys68Tzb3+Ip++8GheejblCnp+mJvW71ZJWfuaChrT1xtvvuhrA5HpjIfQTV46HYxgJRpJ+x++RqkXqTjRp+R9WdMHndmJwLBRfkvH86mux+ZbLUZNSFo0GMlxOhWvwq5hRe6zVu9kSUOZaHxslN7+ibZrhdrL5vibzSRgTUlbOhzFv3jx54MCBch9G1Zt1/0t5P+aDB2824UgKVrL5zYzZwuW6xk5V5dlBBxWjoSiOfTJ5NXI8HMOnmmsxq9kHAHnliMj0WmVc91eSuGXMGiv0+098nL/Og/WL5mDW9FpICTz/9odYeOkMzGiowUVNtTg8OGandaWWqWszfbfA5FTbcDQGr9uBk2dCSflkUtevP7S8Exc2efHxyAQEkFQXWfR7rCaWidlKppd36YGbO+BIyHcD6LfLc/x1SfWgUY4Ij1PBgz95H8u62tDsc6Ol3oMLpnnhdFblNdSq6x/o1dlajojBsVBS/T3VfpvWz9TyRmTK16SqEiPBMI6PTMSXjmR6zSrOJ5HTm+NABKXhQETuGLNTk0/l/0kghGP43TYKAAAgAElEQVSfjOOTQCQ+EHGez4W282pxns+T9blyfa18jqnIqq6jUYlUVeJUIISJiAqHALxuBxq9mWNgcDSEpVv3wV/nwb03tmPj7kPxDkf3ii5c2FSDhhp3fFCsTPFlBkvVtbl89tp3mTjtdnFHC/7i85cjoko4BODzOHB8JIR7dqSfYA0HI3b5bu3KUjFbyXIpT0b3Sf19k9eVVHYcCnD/7kO4Y/7s5Pp0ZRcum9lQaW13KVRl/yDxO3U5FTgVgWA4/fst9nefKW5TLzrMnu5DrceB6T79PE96bYo2G9df7yn4GC0gpy+Au2YQUdloSYNS6TUCkaiK8XAsLYNyJKpmfK5sr1Xo/ci+EndXMLpyntg50daLblrSEe80A5NrRtfs7MHedQviHRTGV/lk++xVVSIYiaat/X25dwDf+kOJi86rBTDZsdQGIYDJ7/mRV/rwp39wSTyxZRVd9aIqlUtdZnQfRRFo9rnj9elwEEknjx8Nj2NZV1t6fbqjR/cEroqvOtuabvz4crxfgTLFUmKSyv7hIO58+p34oIJRnDGfRGZVOb+JiCqX1ggs3boPC7a8hqVb96Hv5CgiqsSGXcmdkg27DiHCtXZUREbZsE8FQrpxqaoyvl6USdesS6t3jgwEsq791etYLutqS9tdg1nUifQZtfOJeZ+afe6c61PuYkDFkimWChlUYO6xzDgQQUQVxagRUFWp2wCoFbS8jKzPqKMxEVENOydasiujHRjY4ah8Wr2jl+U/NWO6Xscyn5MmomqXbeBAywmRa33Kq85ULJliySh5sRDGs26MkmEmtinVjAMRRFRRjBoBp6LfANS4eJJHxWN09cIhYNg5URSB9hn1uKJtWtoODOxwWINW7xw8NpKU5f/51demTe/W61jmc9JEVO2yDRwoisAF0yZzQuRSn/KqMxVLplhyCKQNVG9Z1glHhtU/Wv9g77oFhrtwVDPmiCCiiqI1AqmJfWrcDjy+al7aur3pPq63p+LRTjJT48zr1o9LraOrKALn+Txo9Lqxd90CuyZMs63EeufgsRGs2dFjuPY3sWOZmGxPL244CEWUzqidTxw4cDoVXDazIaf61KjeZvmjfGWKpaFAGM/sP4pNSzrQ6HVhJBjBM/uP4jtLOzM+J3NDGeNABBFVDFWVkJDY+ZVrcPRUAI++eji+TVOj1510kieEgEMgPjWeJ3tUDNpJ5o+/tgDBcAwxKVHjcqDBk9uJJjsc1jTVExktbvasm5+04woRpctW3lITVp8/bfIKtNHOCHqDg+wXVI9i7pqRKZaafW5844b2ogx42XyXl5xxIIKIKoJepuLuFV04v7EmafvEZp+b2bHJdCfPhNJirM7jwOZbLo9vH+upzv3sbSmfExmjrOpz/HWGO66wbiI6J1N5MypfHqeCVU++bVi2OAhcnczYMSXTbi/FGPDiLi/nZO1FiUltpTgYIqpeesmr1uzsQUxFUsXM7NhkNqMY+78DAdz59Dv44mNv4s6n38GqJ99m3NmI1vm8sKkW/nr9PeEB4/gYGAuxbiLKkVF5MypfHw6Ns2xRmlL3CXNtJzJhP/acrDMipJRSCPFPALpKcDxkUbPufynvx3zw4M0mHAlZVa5Zr5kdm8xmFGO1KVPtGXfVySg+ojGVdRPRFLH+pXxYsU9oxWM2S67zSt8UQlxl6pEQUVUzylQshMBHw+MYHA1BVSWzY1PRqKrE4GgoKb4A41gcD8fSfse4qz5G8eF0KBnrJqN4I6JzilX/srxVh1L2CYsVU+zHnpPrQMT1AN4QQhwRQhwSQvxSCHHIzAMjouqityXethVd+PaP38OCLa9h6dZ96Ds5Gs9Ozy0SaSq0NZpLt+5Lii9VlYb7fn+quZZxR4bx0VLnMaybMsUbEZ1TjPqX5a16GMVLsdvmYsZUqY7ZCoSU2T9AIcSn9H4vpfwwy+M+ADAKIAYgKqWcl+n+8+bNkwcOHMh6PGSuQpZZFMLEpRkly/TCmC2uxCzCQgh8+8fv4eXegfjfte30tG2UbJZtuCRvgDE7aXA0hKVb96VtH7d33QL46z26Ga0B46ztVapq61qjjOdGv88Wb1QyVRuzVjLV+teG5Y39gwxKsQNFsWOqCnbNyOnN5LprxlSGEK+XUp6awuOJqEokZir+aHg8aRACOLeGjtmxaaqyrdE0ijHGHQGZs6rr/Z5rgolyN9X6l+WtupSiT1jsmGI/dlKuSzNeAvDi2X9fBfAbAD8x66CIiLiGjszE+KJSYrwRlQ7LGxUbY8ocOQ1ESCl/W0rZefbfOQCuBvAfuTwUwMtCiB4hxOqpHCgRVReuoSMzMb6olBhvRKXD8kbFxpgyR045InQfKMS7Usors9znAinlx0KIFgCvAPgTKeW/p9xnNYDVAHDRRRd1ffhhxrQTVALMEZHlyRmzJVMFa+gSmfbGGLP6qiy+zMC6Ng+Mt4rAmK0SNitv7B9UAJvFlNmKlyNCCPFnCf9VAFwJYDDb46SUH5/9d0AIsReTMyn+PeU+jwF4DJhMkpLL8RCVE2O2dLiGrjgYs/oYX5XNbnHLeLM/u8WslbG85YYxmzvGVPHlmiOiPuHmwWSuiFsyPUAI4RNC1Gs/A1gM4L3CD5WIiIiIiIiIrC6nGRFSyr8AgLMDC1JKOZbDw2YA2CuE0F7nOSnlTws9UCIiIiIiIiKyvlyXZlwOYAeA887+/xSAO6SUhjMcpJS/AXBFMQ6SiKyJ6+mo3BiDVAqMMyJrYtklMzG+MstpIAKTa4f+TEr5GgAIIRae/d18k46LiCxOVSX6To7ikVf6sKyrDc0+N4LhKC6Y5oXTmeuqMKLsjBp6LQbv2X4A/cPBeJbr9hn17AhQ0WSKMwDshBKVSbaTQLYRZCa9+Np+19Woq3EiElXZJiD3HBE+bRACAKSUrwPwmXJERGQLQ4EwHnmlD3fMn43NL/Zi+bY3cPsTb6FvYBSqynxIVBxaQ7906z4s2PIalm7dh76To/EOqNYBAID+4SDu2X4AQ4FwmY+a7MQozkaCYcPYJCJzZWobNGwjyEyp8eWv8+DkmQl8Yet+tgln5ToQ8RshxCYhxKyztwcAHDXzwIjI2sLRGJZ1tWHj7kNJjfyaHT1s5KloMnUkw9FY/Pea/uEgwtFYOQ6VbMoozoLhGE9yiMokl0EGthFkptT4WrvwYmzYdYhtQoJcByLuAuAHsAfAXgDTAdxp1kERkfVpU87YyJOZMnUk3U4HWpu8SX9rbfLC7XSU8hDJ5oziLCYl6z+iMsllkIFtBJkpNb4avS62CSlyHYiYJaVcL6W8Uko5V0r5dSnlsKlHRkSW1uxzo6Xew0aeTJWpI9nsc+PxVfPif9fW/zb73OU4VLIpozircfEkh6hcchlkYBtBZkqNr/FwjG1CilyTVf6NEOJ8AD8E8I9Syv808ZiIyAYUReCCaV50r+zCmh09SYmgUht5ZhWmQjV5XXju7mswMBrCUCCM3T3H8I0b2uMx1D6jHnvXLWBskWmM4kxVpWFsEpG5tJPA1ESUieUvUxvBfkl1Kub3nhpfXrcja0xWm5wGIqSU1wshZgK4DcBjQogGAM9LKf/S1KMjIktzOhVcNrMh44kgs1ZToVRV4vDgWFLsdK/swhx/XTx2FEXAX+8p85GS3aXGWS6xSUTmyXUgWq+NYL+kOpnxvafGV6PXzYsjCXLeQ09KeUJK+SiAtQB+DuB/mXZURGQbWiV8YVMt/PWetAqXWaupUHqxs2ZHD4aDkTIfGVU7xiZR+WXrfxhhv6Q6leJ7LzQm7SqngQghxGVCiG8LId4D8AMA+wG0mnpkRFQVmLWaCsXYoUrF2CSyLpbf6sTvvfRynRHxFIBhAIullL8npfw7KeWAicdFRFWCWaupUIwdqlSMTSLrYvmtTvzeSy+ngQgp5bVSyu9LKT82+4CIqLowazUVirFDlYqxSWRdLL/Vid976eWUrFIIMQfAXwPoAFCj/V5K+WmTjouIqgR3NqBCMXaoUjE2iayL5bc68XsvvVy373wKwLcAPALgegB3AuC3QkRFwZ0NqFCMHapUjE0i62L5rU783ksr1xwRXinlqwCElPJDKeW3Afy+eYdFRERERERERHaU64yICSGEAuCwEOJrAD4C0GLeYRERERERERGRHeU6I+LrAGoBrAfQBWAlgDvMOigiIiIiIiIisqecZkRIKd85++MYJvNDEBFNiapKDAXCTAhEOWPMkB0xronMw/JFdmK3eM44ECGE+GcA0ujvUsrPF/2IiMj2VFWi7+Qo7tl+AP3DwfgWSe0z6i1doZJ5GDNkR4xrIvOwfJGd2DGesy3NeBjA9zLciIjyNhQIxytSAOgfDuKe7QcwFAiX+cioUjFmyI4Y10TmYfkiO7FjPGdbmnFUSvlfU3kBIYQDwAEAH0kpl0zluSrZrPtfyvsxHzx4swlHQlT5wtFYvCLV9A8HEY7GynREVOkYM2RHjGsi87B8kZ3YMZ6zzYj4J+0HIcTuAl/jTwG8X+BjiciG3E4HWpu8Sb9rbfLC7XSU6Yio0jFmyI4Y10TmYfkiO7FjPGcbiEhccPLpfJ9cCNEK4GYAT+T7WCKyFlWVGBwN4aPhcQyOhqCqhull0Oxz4/FV8+IVqrbOrdnnLtXhUgXTiyXGDNlRIXGdT11LVM1K0W6wPJKZEuPLocB2/aBsSzOkwc+5+t8A7gNQX8BjiahCZMvSm28CHUURaJ9Rj73rFtgm8y8Vh1EszfHXYUaDB8+vvhYxCdS4FEz3eRgzZGmpdaHLqcCpCBw/HSxKXUtUzfLta+S7IwHLY3UzewcLvfjaftfV2LNuPiJR1RZ952wzIq4QQpwRQowC6Dz78xkhxKgQ4kymBwohlgAYkFL2ZLnfaiHEASHEgcHBwTwPn6j0qi1mtYpw6dZ9WLDlNSzdug99J0eTRv0LSaCjKAL+eg8ubKqFv54nlGayUswaxdLHp4P4/A8mY/D2x9/E0Jh1kzNRbqwUt1Oh1YXnT/NiaCwcj/Ni1bVUOtUSs1aSa18jl75OKjuUR8ZsYQqJl3zpxdeqJ9+GgLBN3znjQISU0iGlbJBS1kspnWd/1v7fkOW5FwD4vBDiAwD/COD3hRA7dV7jMSnlPCnlPL/fX/AbISoVu8as0fTCXBpaOybQsROrxKyqSoSjMXzv1ivQvbILc9saAUzG0sBoyNKdPcqfVeK2WAqpa+e2NWLTkg6Mh6OcFl4Bqi1m7SRb+dPrI9mh78OYLYzZg1CZ+kNWiq9ssi3NKJiU8s8B/DkACCEWArhXSrnCrNcjosJlml6YS0OrJdBJvJ/VE+hQaenF4JZlnXj4Z30YHAulNe52a4yJ8q1r57Y14t4b27Fx9yFOCyeaokzlz6iPNKPBw75PlTJzECpbf8hO8ZVtaQYRVQGjkd3jp4MQQmBxR0vS/VMbWiYSpKlQVYkTZybSYnDj7kNYv2gOuld2YXfPsaTHsLNHdqKqEkII7Fp7XdLVr0x17dqFF8cHIQD9K3JMpEeUm0w7Ehj1kaKqzNj3Yfmzr1x2sCj0+9eLt427D2Hj5y7Fc3dfg3A0Zpt4Mm1GRCIp5esAXi/FaxFR/oxGdvuHg/jmD3+BbSu6AAAv9w7Ek+VISHw0PB5PlsPkk1QIbeQ/HFV1Y/Ci82ohBHD/5y5D7/HRpKtRHOgiOzC6+vXM/qP4xg3tSXGemHxvPBzNeAX3VCCE8VAMR08F8OirhzE4FuKMCSID2iBf6qyHZp8bx08HdcvaRCSGOo8Dm2+5HLVuB8bDMXick9d4mcjS3jLFCzC179+oTz6joQa3P/GWreKpJAMRRFTZtFkPy7ra0Oh1YSQYwe6eYxgJRtA/HMTanT14Yc11+NYfSnjdDpw8E8KqrfvjlWH3ii6c31jDwQfK21AgjEde6cOff+6ypCmuc9sasX7RHEhI/NdQEJ1tDRzoIlsyuvr1wprrMLOhJi3OteR7g6OTV+D8dR6sXXgxGr0ujIdjqHErhtN679l+AHvXLYC/3lOOt0pUsTLtsGG0/PTk6RCa69xorHVhYDSEba8fweBYCHvXLQAA3LP9APx1Hmxa0oFGrwsnTk9gRoMH5/lY/qwu244sRrNostW/qioRU6VuvH1wKmD4fGbv4GEWDkQQEdwOga/9/hyse/bdeMd165euxM43PgQwWeFJKXFhUy0GR0NpleuanT3YfMvlmDmtxvKjs1Ra4WgMq66bhb/+yfvYsqwTG3cfgr/Og/tuaseGXYeSBrsuO7+BsUW2Y3T1S0qZMd6bvC48fedVGBwNJZeVlV34/r/+Om1gY9OSDqzZ0cPcKkQGtEG+VHpXv39w+1yEIipWPfl22oCfVsb8dZ60PC7dK7rQ6LXGSSJlZhQvQOE5JE4FQvjLl3rj/aHEuHngn97TfT4rz75hjggiQjgm44MQwGTltu7Zd7GoYwaA5HVvRpVrrdvBnQwob26nAzOnefFy7wAe/lkfNi3pwN/cdkX8xAo4N9jF2CI7ymWtsZ7hYASnxsLpZWVHD5Z1tSXdt384iEavi7lViAqgXf1+fvW1eH71tdi0pANjE1F884e/0M1r5HY64HY6sH7RnLQ8LmzLqkOh9fpEJJbUH9Li7TyfC4NjId3ns/I2shyIICJIKXUHF7SOa+K6N6PKVVvGwattlI9mnxs1TgWtTV4cPDaCNTt6krbq1DC2yK4KTfYbjsYgAN2ykvrY1iYvxsMx5lYhKpC2ROObP/wF1uzogcuh6Ja92dN9aPa50exzY/Z0H9uyKlVove4QIqk/9MXH3sTmF3uhShg+n5W3keXSDCIyXP/Y2uTF3nULktaa6U1R1KYj8mob5UtRBLweBQ8t74xf2R0Px7glGlWNbGuNjbidDsOy0lJ/blvBxDw+nBJOVLjE/s9IMKJb9mo9jngZq/Vwa/NqVWi97nU7kvpDrU1ePLS8E163A+dP8+aVw8QKccaBCCIyzP57/jSvbqK09hn12LNufjwju7a3Ma+2USGavB7MaIjGM48rQmDbii6s3dnDXTKoKmRaa2yk2efGp5pr0zqtj6+ahwsMOqxEVLjEk0tVVdG9sgtrdiS3U9MTElFO93ky7qxA9lZIvd7odWNGQ03STiwzGs4NIueaw8QqccaBCCLKe+RWUQRa6mug+iR8Hid+cPtcdnapYIoiMKvZh/oaVzz+mrwunkgRZaCVm8ZaF55ffS1iEqhxKZju8xTUASai7BLLlr++JmM7VehVcapeev2hbDFj5TjjQEQVmHX/S+U+BLKAQjqu7OxSsejFEmOLKDNFEZNbAfrKfSRE1SeXPhD7SZSvauqPcyCCyOKsuncw2RdjksgaWFaJpoZliKyunDHMgQgiC0vcO9hf58H6RXMwe7oPtR5HfHouUSll2s8aADtsRGWU2OF0ORWMTUSx6sm3Lbf3PFE5pJ6wNXldODw4ptvesQxRJTEabMjUZytFDHP7TiIL0/YO9td5cO+N7dj0o/ew8OHX8YWt+9F3chSqKst9iFRljPazHgmG0XdyFEu37sOCLa9h6dZ9jFGiEtI6nFoZ/MLW/Th5ZgL+usnpvFbae56o1FLLz9Kt+9A3MIpHXulLa+9YhqiS6Mbu2f6XUZ+tVDHMgQgiC9P2Dl678GJs3H2IjSGVndF+1sFwrKyNHVG10+twbth1CGsXXhy/j1X2nicqNb3ys2ZHD5Z1tSXdj2WIKk2mwQajPlupYpgDEUQWpu0d3Oh1lbUiIdJoMZmotcmLmJSMUaIyMupwNnpd8f9bZe95olIzKj+pWySyDFGlyTTYYNRnK1UMcyCCyMK0vYPHw7GyViREGi0mtXjU1hvWuMrb2BFVO6MO53g4Fv/ZKnvPE5WaUflpqfektXcsQ1RJMg02GPXZShXDTFZJZGHa3sHnT/Pg2buvweBoCEOBMHb3HMM3bmhnY0glZ7SftapKPHf3NRhgjBKVnKpKSEjs/Mo1OHoqgEdfPYzBsRAeXzUPMxo82LfxeiaQJcpAO2FLTep3wTQvfvy1BQiGY4hJiRoXB9epsqTG7uKOFjxwcwfC0RiGAmHM8del9dm4awYR5ez46VBS49i9sgtz/HXsUFJZpO5nraoyLbM4Y5SoNPSyonev6ML5jTVo9J7tcPrKfZRElc1okB0ATp4JcecMqliJsauqKk4Fwrj9ibcqIl65NIPI4owSKA0HI2U+MqJJjFGi8tEtfzt7EFPBEyWiPGiD7Bc21cJfP7lFerl3HSDKhRa7iqJgzY6eiolXzoggsrhMSWiM9g0mMlNq3KmqykSVRGVSSFZ0th1EuVFVFZuWdKDR68JIMIJtrx/BwWMjbN+oIlR6f4wDEUQWpyWhSaxYWpu88LodadNxOV2QzKY7DXxlFxZ3tODl3oH4/Ziokqg0jNoIo/KnV4bZdhClU1WJU4EwNr/YGy8rW5Z14pn9R9m+UdlZoT9m2tIMIUSNEOJtIcQvhBD/KYT4C7Nei6iaGWW8jaqS0wWp5IyWYTxwcwczixOVQb5Z0TnVnCg3Q4Fw2jT3jbsP4YGbO9i+UdlZoT9m5oyIEIDfl1KOCSFcAP5DCPETKeWbJr4mUdUxSqB0/HSwoqZfUXUwmgbuUETZsjITVTOjNsKo/BWylIOoGmVq79i+UblZoT9m2kCElFICGDv7X9fZmzTr9YiqWeouBUD+03GJiiFT3KXGKBGVhl4bYYRtB1FuWFaoklmhP2ZqjgghhANAD4DfAvC3Usq3zHw9spZZ97+U92M+ePBmE47Enoz2vOZ0QTIT447I2liGiXLDskKVzArxaepAhJQyBuCzQohGAHuFEJdLKd9LvI8QYjWA1QBw0UUXmXk4REVhlZjNdzou2VcpY5ZxR8VilbrWbliGC8eYrS52KCuMWfuyQnyalqwykZRyBMDrAG7S+dtjUsp5Usp5fr+/FIdDNCVWilm9Pa+p+pQ6Zhl3VAxWqmvthmW4MIzZ6mP1ssKYtbdKj08zd83wn50JASGEF8AfAPiVWa9HRERERERERJXPzKUZ5wN45myeCAXAC1LKF018PSIiIiIiIiKqcGbumnEIwFyznp+IiIiIiIiIrKckOSKIiIiIiIiIiACTd80gotypqsRQIFyxmW2pOjEuiagcWPeQHTGuyWrMjFkORBiYdf9L5T4EXZV6XDQ1qirRd3I0ba/f9hn1bKCobBiXRFQOrHvIjhjXZDVmxyyXZhBVgKFAOF7IAaB/OIh7th/AUCBc5iOjasa4JKJyYN1DdsS4JqsxO2Y5EEFUAcLRWLyQa/qHgwhHY2U6IiLGJRGVB+sesiPGNVmN2THLgQiiCuB2OtDa5E36XWuTF26no0xHRMS4JKLyYN1DdsS4JqsxO2Y5EEFUAZp9bjy+al68sGtrsJp97jIfGVUzxiURlQPrHrIjxjVZjdkxy2SVRBVAUQTaZ9Rj77oFzKRMFYNxSUTlwLqH7IhxTVZjdsxyIIKoQiiKgL/eU+7DIErCuCSicmDdQ3bEuCarMTNmLTcQwe0riYiIiIiIiKyLOSKIiIiIiIiIqGQ4EEFEREREREREJWO5pRlEVqKqEkOBMJMSkWUwZonISlhnkdUwZslqzIpZDkQQmURVJfpOjuKe7QfQPxyMb3nTPqOeDQ5VJMYsEVkJ6yyyGsYsWY2ZMculGUQmGQqE44UWAPqHg7hn+wEMBcJlPjIifYxZIrIS1llkNYxZshozY5YDEUQmCUdj8UKr6R8OIhyNlemIiDJjzBKRlbDOIqthzJLVmBmzHIggMonb6UBrkzfpd61NXridjjIdEVFmjFkishLWWWQ1jFmyGjNjljkiymjW/S+V+xDIRM0+Nx5fNS9tTVWzz13uQyPSxZglIithnUVWw5glqzEzZjkQQWQSRRFon1GPvesWMDMyWQJjloishHUWWQ1jlqzGzJg1bSBCCNEGYDuAmQBUAI9JKb9v1usRVSJFEfDXe8p9GEQ5Y8wSkZWwziKrYcyS1ZgVs2bOiIgC+KaU8l0hRD2AHiHEK1LKXhNfk4iIiIiIiIgqmGnJKqWUx6WU7579eRTA+wAuNOv1iIiIiIiIiKjylWTXDCHELABzAbyl87fVQogDQogDg4ODpTgcoilhzJLVMGbJihi3ZDWMWbIaxiyVk+kDEUKIOgC7AXxdSnkm9e9SyseklPOklPP8fr/Zh0M0ZYxZshrGLFkR45ashjFLVsOYpXIydSBCCOHC5CDEs1LKPWa+FhERERERERFVPiGlNOeJhRAAngHwiZTy6zk+ZhDAhwCmAzhlyoGVD99T6ZySUt5UihdKiFlNpX4mU8H3VBoliVudmC2HSvz8y8Hqn0M569p8Wf2zNmLX9wWY894qJWb5vVlXOd5fNfUP8mGHWLPre8gpZs0ciPgdAP8HwC8xuX0nAPwPKeW/5PDYA1LKeaYcWJnwPVUHO34mfE9UbPz8J/FzKB27ftZ2fV8A35tV2fm9AfZ/f1Zih++i2t+Dadt3Sin/A4Aw6/mJiIiIiIiIyHpKsmsGERERERERERFQuQMRj5X7AEzA91Qd7PiZ8D1RsfHzn8TPoXTs+lnb9X0BfG9WZef3Btj//VmJHb6Lqn4PpuWIICIiIiIiIiJKVakzIoiIiIiIiIjIhjgQQUREREREREQlw4EIIiIiIiIiIioZDkQQERERERERUclwIIKIiIiIiIiISoYDEURERERERERUMhyIICIiIiIiIqKS4UAEEREREREREZUMByKIiIiIiIiIqGQ4EEFEREREREREJcOBCCIiIiIiIiIqGQ5EEBEREREREVHJcCCCiIiIiIiIiEqGAxFEREREREREVDIVNRBx0003SQC88TbVW8kwZnkr4q0kGLO8FfFWMoxb3op0KxnGLG9FvJUEY5a3It5yUlEDEadOnSr3IRDlhTFLVsOYJSti3JLVMGbJahizVGoVNRBBRERERERERPbGgQgiIiIiIiIiKhj9GLQAACAASURBVBkORBARERERERFRyXAggoiIiIiIiIhKhgMRRERERERERFQyTrOeWAjRDuD5hF99GsD/klL+b7Nek8pPVSWGAmGEozG4nQ40+9xQFFHuwyIiqnqsnzPj50PlwLgjq2CsUrGZNhAhpewD8FkAEEI4AHwEYK9Zr0flp6oSfSdHcc/2A+gfDqK1yYvHV81D+4x6VlRUkWbd/1Je9//gwZtNOhIic7F+zoyfD5UD446sgrFKZijV0oxFAI5IKT8s0etRCamqxOBoCP0j4zhxegL+Og8AoH84iHu2H8BQIFzmIyQiqj5a3fzR8DhOnJnAI6/0oX84CID1c6qhQDjewQYAf50HJ05PoH9kHIOjIaiqLPMRkh2lxt1Uy2VimWfcUjFNJVYZl2TEtBkRKf4IwD+U6LWohPRGSLcs68TDP+vDwWMj6B8OIhyNpT2GU7uIiMxjVDcPjoZx8NgI5rY1Yu3CizEejmJwFFVRD2dqe8LRWLyDPbetEffe2I6Nuw/xyh+ZKjHuNIX2m3jFmsykF6v+Og/C0Rg+Gh5nXFJBTJ8RIYRwA/g8gB8a/H21EOKAEOLA4OCg2YdDRaY3Qrpx9yGsXXgxAKC1yQu30xG/fzSq4v0TZ7B06z4s2PIalm7dh76To5YaHWXMktUwZqtPprpZO9He/GIvfu+h1yu2Hp5q3CZehfskEELfyVHDtsftdKC1yQsAWLvw4vggBMDZI5S7fGM2Me40qf0m7UQuW7/J6Ir1iTMTFVe2qXLkGrOpsTq3rRH33dSOLz72ZkFxeSoQ4iwJKsnSjM8BeFdKeVLvj1LKx6SU86SU8/x+fwkOh4rJaDS/0euKj3o2+9wAJhvTj08HsWZHj6U7eIxZshrGbPUxqpubfW7LnGhPJW5TT95+cex0xmnFzT43Hl81D61NXjR6XTldpSZKlW/MJsYdgLR+E5D7lHijMv/xSLAiBxqpMuQas6mxun7RHGzYlb0dMYrL8VDM0hclqThKsTTjv4PLMmxLGyFNrGRam7xobfJi77oFSdO0hgJhDIyGdCukYBVNDyYiMptR3dxY60ZLvcf2J9qpJ2+1bofhe9amvTfUOPHCmuvgEND97BKvUhMVg6IItM+ox951C9KWXWhxOR6O5lRejcr8UCCMrz//c+xdtwD+ek9J3hfZT2KsqqqKiag6pbg8eiqQNojBGK0+ps6IEELUArgBwB4zX4fKR280v3tFF7zu9LVi4WgMQ4Gw7jTE90+MckSUiAjFSezV7HOje0VXUt28ZVknHvu3I5Bn/5/IbifaqVfhRoIR3ffscipJMydu634DpwJhPH3nVRmvUhMVi6II+Os9uLCpFv56T3wQQovLX50Y1Y1dAEn1g15/bMuyTmx7/YjtBhqpPBRFoNnnxifjEfxmMJBTO6J7nrCyC4++ejjpfozR6mTqjAgp5TiAZjNfg8pLGyHds24+xkMxHD0VwAP/9B4Gx0JpyWjcTgd29xzDlmWdSUnAtOSWHBElompXrMReiiJwfmMNNt9yOWrdDowEI3j4Z31Yv2gOvvNSb1o93L2yy1Yn2qlX4ba9fgQPLe+MTyXWPlenItKmva/Z0YOHb70Cz919DRyKYFJlKrnEGT3bXj+SVl4fWt6Jrz13MK2v1T6jHi+suQ4fjwQxFAjHE4fbbaCRykeLTX+dJy0ujQZsPU4l3haNh2PwOBX465PvxxitTqXaNYNsTFEEBARW/P1bSVegUgcVmn1ufOOGdjzySh82LenAnJY6HB4YizeUAEdEiai6Ga0HL2SAttHrxsxpNUmDGrOn+/By7wAGR8PYtKQDjV4XRoIRTLfZibZ2FU5774NjIcxoqMGedfMRiarxwYXjp4O604sFgNufeIsD41QWiTN6Dh4bwcM/m+w3XTqzHr8ZDOC7Pz3Xb0qsHxRFYGZDDU4HI/j68z/PeoJIlC8tNvuHg/G41PLCnT/Nm9aODAXCWPXk22lLM567+xr0Hh9ljFY5DkRQUWTbgipxDe63P385HAKISWDzi71ch0tEdFau2/llo5f3QFEUSEi0Nnlx8NgI1uzoAYB4Th87ybT2Hjj3+QD6+SBGghEOjJOpMm3JmTqj5+CxEWx+sRfPr74Wdz79TtLzpMZpttgnmorE2NTakdYmL/asm68bz0ZtmkMRjFHiQAQVh1EyGrfTYTjV+Lem+/Dc3ddgYDSEoUAYu3uO4Rs3tHNElIiqVqa6NJXRiUym5R0AkmYKLO5owQM3dyAcjWFwNFQVncHEz8df50lbsqEtF+TAOJkl2xKsJq9Lt3/kdWevHzINcBBNVepsMy12xyaiWPXk2/DXebB+0RzMnu5DrceRMWa12WaM2eolpKycxIDz5s2TBw4cKPdhUI5UVeJUIISJSAwOIaAI4Fs//k+83DuQ1KieCoTwha37kyqhxR0t+NM/uCS+lae2Rrm9pR5O55RzqJas9mLMWtus+18y/TU+ePDmXO9akrhlzFaW1A5Yk9eFw4Nj8ZPkxA7ddJ8n6Yq+0YnMUCCMpVv3pXX8tOnb2muqqopTgXBSPZxnPoqKrWszfT6pbdLctkasXzQHn/b78JvBAH7yy+P43G+fP/m5ux1wOgSCYXaQbaIiYnZwNGRYRpt97rTY1fpHiiIyDmBkG4TU6hohRHyWFGPaEiqqf5DabjkU4PM/2Ad/nQf33tieljfC41TiyzO0383x12E4GEE4GkNMlfjLl3rTzh8Yl5aW05fHGRFUEL3G7qHlnbjvpkux+ZbLkxq3iUj6tKxlXW3xzi9wLkEY1+MSUbUwOmmY46/Dj7+2AMdHJrBmp/4ggVEuiR9/bQGCkczb/WlZ+gdHQ2n1sF0SBht9Pi+suQ6RWPK2cwePjeDOp9/B/7nvelzRNg0t9Z6kz/2h5Z347k/7dJMwExUi0xIsvdhN7B9lWnah99hHXunDX/63354s7wlxvWVZJ57ZfxTfuKGdMU150doQzUfD4+gfDmLTko74IARwrt7ds25+UswmDrhr8fi3t1+JRq8bL/T026YdouxM3b6T7Euvsduw6xCOfRKEoijxpEkA4BAibYufZp/b9vvYExFlYnSyPByMIKYiftKQ+Dctr4HeiYy/zoPjIxM4MpDbtmrFykdRiYze28cjQcPtEBUB3c99w65DWLvw4rTvgKhQ2hKsRFoZzVYu9bb71KQ+dm5bI+6YPxv/+fGZtLjeuPsQlnW1MaZpysTZfn6j16Ubu5GomhSzw8FIWtv3x8+9i7ULL8bctkbbtEOUHQciqCBGDWWt25GUoHJwNARFAbal7Gd/ns9t+33siYgyyXTCke1kRO9E5n/8f5dhYDSE6XVu/O3tVybVuXoZyTOdDFmd0XubiMTQUOPE330p+fN5aHknvG7jk8BGryv+MzvINFXaOnu9MjqVcul2OrC4owXdK7vw/Opr8d3lk7Meat0Ow7hmTNNUOQSwZVknxsOxKQ2CSwk8dGsnnvryVfC6rd8OUXZcmkEFMUqoNn52HW3qlOPFHS3YftfVOB2MYGA0pLsvNrfuIaJqki0xZaa/pSYMW9zRAq/bgW+88PO0Orel3qO7rZpR0jE71MN67+17t14Bj0vB1547CH+dB5tvuRyzptfi5JkQWuo9aPS6EVPDhrtoaD/bYaCGyivTzhZTKZdNXhfWL7oEa1OWYERiqmFcM6ZpqhRFwTP7j+LOBbPxd1+6El999t2MsWvU9v3XJ+O48+l34o9r9DJ/id0xWSUVxChHxIyGGsxq9hkmS9u0pCO+ZdzijhZ8+/OXQ0pZ7CRgFZGMiiofk1VSOWVLLJcpKZ32+MTkc7d1v5FW526+5XJcfuE0w7W2U8xWXtF1bern89FwMD5Qo2lt8uKFNddhZkONYbI/5oiwlYqOWU2h5dIoCeZDyzuhSiRd/GGOCEup6P5B6k5ERkmWE+///okzSYmStXr24LERAMkJlsmSmKySzKON5u9ZNx8TERUOAXjdjvjopdG0K21UtLXJi2/c0B7v/BERVZtMV0UBZPyb9nitk6YlC0vUPxzE7Om+jFdSU5OO2Unie1NViXBUNZgOLOOfa+p34nIqcCoCP7h9LnfNoJIptFwa9b1cDgXfeel9bL7lcsye7oPHqUARwHeWdjKmacqytWW692+pj29R2+xz489e+EV8EALgMrhqwYEIKpiiCLTU1+j+zWja1QWNXuzbeD07dEREyHzCkc/JiFGdW+txsJ7F5GdZ68m8FCbxvmmfu68UR0k0NZn6XhxMIzPlO3jmdCpobaqF1+1EOBrD4Fgo6e9cMlQdmKyS0mhJJj8aHsfgaAiqmv/yHaNETDMbanQzPRMR2UUx6tB8GdW50332nO1QiOk+j2GCwHyV4zsmyqbS+l4sJ5SJNnhx/jRv1rqZsWRPnBFBSTKtWdbWz44EwwiGY4hJCZcyOb1PUZSkUfZ8p2kREdmBUR06x1+H4WAknq/A7RAIx2TRcuSwzs1O+4z++U/mYzykIqpKOBWBWEyFouR+5e3/sXf30VFVed7ov7teU6kEEkOCL4nKMBjNOHEwiErm8WI7otMw+tAwOq3g2yihadseryLOalnjeui+V8S5Tvs4DEG7tUGZRwVpXfp0q2PL9B18ayItw40dGVrtgEhCTCCpVKpSdfb9I5xDVeWcqlMvp6pO1fezVpaSVKVOpX77t8/ZZ+/fTtVPEhVKIfJAJKKgbySE8agCt9OBhiovXC5HWu0ky1o1ZHOxcasoCqISkHIiJtTBiGT1lNTYUZfSBcOMI7vgQATF0dvX/vG3erSikooEvg6E8N1te+Mqkf/kP34/qeBRKa89JiLSY5RDv/8X58UV5tp488V4/ePDuPjcOtT5PQiGIzhzqg8uV+YTFZlzU4tGFRwaDOE7J3cVWNDSgB8sbIHTIeA1eeKq9xnftWUPC6tRUchnHohEFPzu6HDcLh2blrXh/OnVGAyOx7WT+iovvjo+Br/XCZ/bpbU1DuwRAG3HGL1YmD7FqxtLVV4npAR++Ho33uzuY3FhG+LSDIqTWOhodlMNbp03Azd0vof29e/g20+9j9FwFPVVE53cocEg7nvpYyxpa8JdW/ZgIBAu1KETERWcXrG4JW1N2iAEMJE3n/zVAXyz9Syse60bSze9h5ue/gA9fcOcbmqxvpFTgxBq/3bz0x/gz9e/g8Ubd6PnaOrPwKggIAurUbnpGwlpgxDARDtY+VwX+kZCce1kdlMN7r+mGWtf2Y8rHt0V19aMBvZ4Pll+jGIhGNaPpf/26C7c9PQHuHXeDMxuqsGhwSBWb9+HlfNnMo5sggMRFEctdKRaOX+mtt0TgLhGrjo0GESNz80TMSIqe4k5FJhYt603OPHdbR/F5daOrV08abJYRJHa31yvfzNz4qr3GbOwGpUTdb3+eFR/J5pIVIlrJ8naGgf2SGUUC1GJpLG0Zsep6xL1mkT9/3TiiHUo8o8DERQnsdDR6VMqdJOC2siBieQwFBzXTsTYkImoXOkVi2uo9poanMj1yXc552Kj9+5yCO2zUAfQY5n5DIwKAmZS9JIoG4Vo4+pSisUbdyMcUXQH5VxOR1w7SdbWOLBXPlLFq1EsVLgdKWNJvS5Rr0nU/zcbR7Fx3Z7GDDnKDmtEUJzEQkcAdLeCGg2f+plaI6JzeRtqKlwp1/qxKBERlSq9YnG1Pjc6l7fF1YioPzk4kWoryVjp5M5yXnet99633DEXVRUu+DwO/MuyNnznuS5tAD2dzwBgYVAqDrlo45mcj8VOn3/q17/HxpsvxqrnP4qrEdFQ5Z3UTozamjpgkfg+OLBXWszEq1EsTPN7Mc3vTRpLaj5Xa0TExpGZOGftn8IQUhbPSM+cOXPknj17Cn0YhFOd03g0is+OjWrToNQiaw3VXoSjCpxCYCg4jkODQezo6sX3/+I8/PjfPsWb3X3a72qs9WkNOdOOM83OMm9ng4xZezv3wdctf43PH1lo9qF5iVvGbH4k5ixFUfDbQ8fRUO1FldcFj0tgeCwaV+QtWS5MN3f2D4eweOPuSSdryU6qMrgoKYpcm3jcDofE9U++G7em+IFrm7F6+0Q/9usH5gMQcDmArwPjcZ9B5/I2NDdUZ1U0lIpaUcRspmJjXQiBh1/db3i+ZeZ3ZXI+dnhwFO3r39H+fUNbI+664o/gObljQVWFEyNj8TkkWVFLdYcN3qBKytbnB4oi8dWJMXw5FMRAIIxNuw5ib++QbrwmxkKtz63tOKX++0D/SFzcdi5vwzS/B+GoxFfHx6BIidFwFOfUVeLs2sq4xy9oacBDJwsUx8ZaYlyrdq+5EmfVVub8b1IGTMWspTMihBA1AJ4GcCEACeAOKeV7Vr4mZS+2c1q7qAU7unqxdlELanxuDAXH8eSvDuChhS2oqnDhuifjT3S7jwxj7aKWuI4xdqprJiOO5Xxnj4jsRy9nbbvzUqx7rTsuXy5oacCzt8+F0yHg9zoxze81zGnp5s50113bNc/qHfemZW2or/LG1YJQByEA4JMjw9pnMbupBmsXtaDO70FNpQeB0Dj+MDiKc+v8Rf2+qfzoxfr6Ja3oHw5jb+8QgPSWd2V6B1idPq8+78WuQ3j39wNYu6gF617r1t21YDA4jife/jTuXPKJtz/Fjxa3or7ayx1/SphR3D72Rg/29g5NitfYWEi2HXbijLSBQBjf3jR58P3Fjsu156sFim96+oNJ/VxiXKvP5xIha1k95P9jAL+UUp4P4CIAn1j8epQlddQyEIpg7aIWvN19FN+9chbWvdaNGze/j3WvdePWeTPww9e746rYqg4NBvHH9VWY3VSjfS+2IWdSlIgVlYnITgYCYTz+Vg/WLmrBCysuw9pFLXj+/c+xaVlbXF2BW+fNwOqXPsbyn3wAAZH0wjdV7kxce+vzpLfu2q55Vu+4Vz7XhTV/eb72mMQ1xZt2HcT6Ja1orPVhb+8Q1r3WjVBEweqXPsZ3t+3FFwOjRf++qfzoxXpskT4geRufvD5fv9BkJjVS1i9pxaZdBw13LQhHonizuw8dW7tw4+b30bG1C29297EgZRlIFrepLvSHgmF8dXwM//jXF6Fz+cQA811b9mAwOI76ai/Oqq3UBi2C4xHDwqlmChSz9k9hWDYjQggxBcAVAG4DACllGAB79iJmNGrpdYm4UWx1FPOhRX+iO3r4h69H8cC1zXEj4mpDzmTEkRWVichOFEXBrfNmxC1pW7+kFQ1VHmz927noOxGKy6UAUuazZLnT6K7Rljvm4paffmhq3bVd86zRcU+f4sWClga82d2H0XD8muK9vUP42buf4X+tuAyHB4OTPotKj7Po3zeVH6NYV9t0sjaulyM6l7dpbURltkbKrPoqbLvzUkQUiQN9I3HtR2/XAt5tLl/J4jZZn6QoEkeGxrD2lf2TZlLE5mc1tr86PqYbYy6nQ/t+sqKprP1TGFbOiPgjAP0AnhFC7BVCPC2E8Fv4epQlo1FLp8OhzYjo2NqlreuKrWILnBoVf+LtA1i9fR+evGk2dq5q1y1Ek86IIysqE5GdRCV0txeDEHAKgfte+ljLpYC5fJYsdxrNZqiqcGHnqnbsXnPlpFycyK551ui4Pz82igeuvQAvrLgMVV4XOnVmoxwaDOp+FqPhaNG/byo/RrF+Zo0vZRvXyxEdW7vw0MKWjO4ADwbHcdPTH+BA3wjWvdattR/19yTuWsC7zeUrWdwm65MGAmF0nKwpApzqR++5alZcflZj+4m3D2gz3dTXeOqWOWio8mqxpxa0TDwW9fepy0LUmRYchLCelTUiXAAuBvA9KeUHQogfA3gQwNrYBwkhVgBYAQBnn322hYdDqRjeEYsq2LSsbVJRNbWK7QsrLsMhnbtKACat+ctkxLHYKiozZsluGLP5JaXUzaXjUQVnTvVN2kHDTD5LljuNcvd4RDFdZKvY8ixgLm7r/B50LmvTTlhj75r9+NuzY2aNKJNm9gGY9NwNS1sxfUoFL5AoI1bmWqM2evqUipQXTEY5wukQGd0BVn+fuswpdvaX3q4FvNtcvKw+P8g0bo1idsY0f1x+Vh93aDCIx97o0fJ8Y60PZ0z1xcWeoigZ9b9kHSsHIg4BOCSl/ODkv7djYiAijpRyM4DNwES1VguPh1IwmjpXW+lBQ5XXsAPxuJy476WPTU+5S7coUbF1YIxZshvGbH4lm4bscjlwwelTMspnRrkzF9Oeiy3PAubi1uEQOKOmAuuuvxCVHqc2yNA/EoLP7dT+Xv3DoUnFQhtrfTijpgIvr5qHsXEFTgH4PE7U+HiBRJmxMtdm00aT5YhMikSqv29v75B28Vfn9+DMmonZsk/eNHvS8bEgZXGy+vwg07g1itlKrzPuubGP29s7hI6tXdpuHHqxV19dUVT9XLmzbCBCSvmVEKJXCNEspewBcBWAbqtej7KXatRSnQIcjkS1wi7q962+k8YOjIjsotbnxrY7L0XfcAgDgTB2dPXi3qubtZyY63yWqxxs1zxb4/Pg9KkVSd+/0WfCQQeyk0zbaK7P09Tf9/hbPVjS1oQ6vwcN1V40VHkntr7lQmyKkUncJsasuu3meERB/3Ao42sQu/ZzpcrS7TsBfA/A80IID4DfA7jd4tejLCQbtUy1tVvz9Gq8enc7guEoolKiws31tURUfhRF6u5xPqu+yvQFb+I+6qnu2BTjbIZ8SvX+Yz+T+iov7rlqFv7+mxfA77H6FIioOCS2EZ/HiYgiceR4MKN8oRas/P5fnDdpmnuxb/lLxSNZX5e4pOJYIKy77Wa59392Z2kvLKX8LYA5Vr4G5ZbRSKGZ/aaPngjZbg96IqJcMioKF5srk0k16Guk3O/yJHv/6mdSX+XF/dc0x61nZz9F5UJtI5nmmESDwXFtEALQPy8kMmImDtWY7R8OJY21cu//7MzKXTOohOgVjamv8iIcieLw4Ci+OjFmyz3oiYhySc2Vs5tq0Lm8DS+suAxrF7VAURRTzzca9GUuTY+iSPQPh3B4cBThSBT1Vd6ke8gTlYtc5ZhcbPkb2077h0NQFJYwKhfpxGE2scYYK26cl0iT6E2VSiwaM7upBg9c24wbN7+PQ4NBbF95uS33oCciyiWPy4kFLQ24dd6MuDvvncvbUF9dAQBJl13k4uS+3OndaduwtBUVbmdWJ7PpLJchKla5yjHZFMlVFIljgRBGQ1F8diyAJ94+gP6REGcolREzcajm3aiUeOa2S/DE2wfS2vY6V7N/yDqcEUFx1Ea7eONutK9/B4s37kbP0WHU+txxe0Dfc9UsrN5+6s7SQCBsyz3oiYhyqc7vwUMLWybdee/Y2oWhYFg3v8beoTHac5251Dy9O22rt+9DdYU7o7+tUb/IO2tkR7nKMWqRQPV3mS2Aqbanb218F/Mf24W1r+zH/dc0o77KyxlKZSRVHMbm3SsenYiTB65txuymGtOxxhmGxY8DERTHqNEOBse1YjC711yJmQ3+uJFMdS/pdDskIqJS4nAIOB1C905PMBxNeVKU6ck9nWJ0p83vdaJzWVvaf1uezFIpyVWOiS0SuHvNldi5qt3UnWa99rRmxz6snD+Ts7/KSKo4NBpQfvKm2aZjjTMMix+XZlCcZI02thhM/3Aobkre3t4h/Ozdz/Bix+WQUnLqKhGVLaMpy1EpU54UsQJ49oz+/i6HAxecMSXtvy1PZqmU5DLHZFIk0Kg91fjcnP1VRlLFoVGcADAdc9ksH6L84IwIimN2yp7eSOa9Vzfj9CkVOKu2UqtiS0RUbozu9FS4zeVX9eSeuTQzye60ZfK35XIZKjWFzDFG7Wk0HOXsrzKTLA5zkXc5w7D4cUZEGUinyJbaaBMLuyQ2Wt61I6JyYzaXGuVHAKbyK2Un1/2T2X4RYFFLolT02lPnsjacUVOBGp9xe2HbKi+5yLu8Vil+HIgocelWjE2n0XLfXiIqF5nkUr38yJOi/Mhl/2S2X2SFdqLUMrk4ZNsqP7nKu7xWKW5cmlHikhXZUhSJvuEx/OHrAA4NjuLo8SC+DoQAgNOCiahs6e07nqpgofqco8eD+HIoaLhnOZddFD+9zz/xcwMw6TFDwTC+Oj6Gf/zriya2a+UuAES6zORBRZH4OjDRxnoHR3E8OI76qom2p1cwVq/dkr2ZiRMrigkni6VM4oyxaYwzIkqcUbEXRVF091mv9DgxVDGOc+v8PEGmgjn3wdfTfs7njyy04Eio3BjdXTmt0m1YsFB9zuNv9eDWeTO0rTt5185+zNx51XvMljvmIjgexdpX9mvfW7+kFY+90cOilkRpUhSJzwcCOHpiTNsqvrHWh3/864vwyC9+h729Q3EFYzljonzluphwslgCkHacMTaT44yIEmdU7CUqobstzteBcXwxMMo7OERUlozurkQlDAtnqc9Z0takDULEPpf51D7M3F3Te8wXA6Po2No1aUvCe66axaKWRGkaCITxxcCoNggBTLSp+176GCvnzwQQX7iQW+yWr1wXE04WS5nEGWMzOQ5ElDijirHSYBu5So8TlR6ndpePU4mIqJwY3V2RUhpW31afU+MznjXBXFp89Po4M3fX9B5T6XHqPm/GND+LkVJZy+RcMhyJGrYpdZvP2MKF3GK3fOV6Z4xksZRJnDE2k+PSjBJnVOxlIBDW3Vt3NDzRMIQQ+MPXo/jsWAC/+M8j+Ms/PQMzpvlR6XVimp/rmomoNCXbd7x5uk+3cJb6nKHgOBa0NGBJWxNqfG4MBcexo6sXUUVi8cbdnJZZRGKny9ZXeXHPVbMwY5ofHpcDjbU+1Fd5sXL+TNT43BgNR+HznLq7phcjo+GobtxUep38nKkkxe5U4HY54HIIBMPxuTHTaekel9OwTTXWTuTh2MKFyfI2lTa965xanzutHVZiY1kIoRtLbpcDAvo/SxZnjM3kOCOiBCWOPgOTi0/qjSBuWNqK0/xuNJ3mw8Ov7sf8x3bhXz/8AssuPwdrD63TyQAAIABJREFUX5n497c2voueo8O8o0dEtqd3py7Z3RWjwlnqcz76fAB3f2MW1r3WjRs3v491r3Xje1edh1998hWnZRYZdbpsfZUX91/TrPVxD7+6H8/efgkeuLZZ+xzXvrIfR0+cupOrFyPn1FXqxs00/6lq7ZxlSKVCHWBYvHE32te/M3Fu+NUw7t62F4s37tbOEzOdll7n9+CcukpsWNo6qU2dMdU3qXChUd52OsD2VgZi++Y6vwcH+ke02IyNRz2Jsfzwq/ux8eaLJ10fuRwCtT43Ope3pTX7ItczNkoNZ0SUmHRGn6dP8eLFFZchcrIiuNshIITAQz//T7zZ3QcAWNLWhFXPfzSpE9m5qp3b4RCRbSXLlUZbhqXaq/yWeTNw4+b34/Lld57rwjO3XQLgd9prc1pm4anTZdcuatHqesxuqsGStia4nY5Ja9Nj+z2jmYYADLeaY8EyKiV6Awyrt+/D2kUt6NjapbWXZNPSjfIpMHFheW6dHzWVbryw4jJEJVDhdhjOyE1sk26XAyNjEVz3JGeilRujwS+j65bEx6vXP8/cdgm+DoQxFBzHo7/swaZlF+PAiRG8uvcQnrntEjgdAh6XA9Orks8Sz2S72nLCGRElxszos3pCdN2TuzFv/Tu46ekPMDwWQX11BcajitYIASRd80xEZFfJcqXezIfEuyaJd1kcDoGIol97x5lwwsFpmYWnTpdV+7jZTTW4/5qJWRBfHR9L2e/pxUiyreZYsIxKidEAQ43Prf2/etGlV0jQ53EmzafARBs7zT/Rns4+rRIN1RUpL/jU9icgcMtPP2R7K0Pp1mTQe/yb3X34OhDGjZvfR8fWLvSPhBCVwONv9eCK5um4/dnf4Bv/+O/4m83v49P+kZSzbbhttzEORJQYMw0w2QlRYqcxFBzPaTVaIqJikO7JipkLSbfTYZAvHZyWWWTU6bLqOvSV82dqMyOs6PdYsIxKidEAw1BwXPt/9c6v3rT0iCItHZhjeytf6e6iYfR4tWZebJF/vZ2xOrZ2cYArCxyIKDF6DWpBSwOEEDHr5BTDBJ3Yaezo6sW/LEtvPRQRUbFLdbIyeT2/cd5UNVR5sSkhX25a1obpVV7sXNWO3WuuxM5V7ZweXATU6bIXNU1F57I21Pk92ue7addBrF8yeW16bL+Xbr2HXG8xR1RIRnXGNu06OKmujjotPTb/jUeS59Ns66mwvZWvdGsyGD3+oqapcTGrDqzlaoCLNYMmsEZEiVEblDrSvKClAfdcdR5u6HxPWyfXubwNC1oa4pZgqAnaqPos1zYRUSlJzJWxJyt66/mT5U2Vy+XA+dOr8WLH5YhEFbicDjRUeeFyOVDv5glwsVGnftf4PPjqxJhW2Xxv7xAee6MH666/EDMbquBzZ1/vIVm8EdmNXk0Gl0PgyZtm69Z7SFybn2wngVzUU2F7K1/p1mRI+nj/qcfV+T0IhiM52QGDNYNOMTUQIYRol1LuTvU9ned9DmAYQBRAREo5J9MDLTfJivgkk9ighBDaIARwahrRtjsvRfeRYd0ErddpsDAlERWjXOXK2Of2D4cmTRtOlTdVLpcDZ9b49F6SipTDIXD6lIq4C5f+kRBOn1qBxhrfpHgyWwwtMTZn1VdxUJ9Kht65YuyFWzLJBgrSLTZodGzZFgjMtG+hwtONTZOPT1aU+sypEzclOrZ2ZTXAlYsYLxVmZ0T8TwAXm/ieniullMfSOqoyl+1IWWyDOjw4alg8LVl1byZfIip2ucyVsb8zOB5JO2+SvSW7cEnsE82sP+cdLyJjie3N53EiokgcOR5EVOoX/U13+nu6F6Ox2H7LU6rP3eVy4ILTp2DnqnYoioKoBKSc6B/SOR9gDZNTktaIEEJcLoS4D0C9EOL/jPl6GADnmVokl9W1k62T06vgmqoyPBFRscj1TgRq/jvYF0grb1JpMLtbSlSRKdefc5cMouTU9nbGVB+OngjhWxvfRfv6d5Lm33xh+y1PZj53h0Ogzu/B16PjuKHzvYyulVjD5JRUxSo9AKowMXOiOubrBIClJn6/BPCmEKJLCLEimwMtFWaKk+RypCzdoi1MvkRUrDIpIJkONf898faBlMUKqTzo9Yk/fL0bncuTF3FOpx9n0TIqZ4lt7Im3D2DD0tzl30zaF+9Ylyezn3u210rpXpvFKrX+IunSDCnlvwP4dyHEs1LKL4QQfillII3f3y6l/FII0QDgLSHE76SUv459wMkBihUAcPbZZ6d7/LZidqpXsiI+6Up3nRyTb2rlFLNUGkohZjMtIJkONf8dGgzisTd6sHZRC2p8bjTW+nDG1Mm1AshaxRC3RnvMr7v+wqT9qtl+nFPAS0sxxKzdJLaxvb1DePSXPXhhxWUAkNUyuEzbVy7Pw4sdY/YUs597ttdKmdYwKcX+wuz2nWcKIboBfAIAQoiLhBAbUz1JSvnlyf/2AdgJYK7OYzZLKedIKefU19ebP3IbMjuCls1ImR696aZGOF0otXKKWSoNpRCzevmzY2sXHlrYkrNcGZv/9vYOoWNrF+576WNtRyHKr2KIW6M+0eFwJO1XzfbjnIVYWoohZu1Gr431j4TgcTmzXgaXafvK9Xl4MWPMnmL2c8/FtVI612aqUuwvzBar/CcA1wB4FQCklB8LIa5I9gQhhB+AQ0o5fPL/FwD4H9kcrN2ZHUHLRbXfTHHLIyIqRkb5M5cFJJn/KFGmMWG2H+csRCp3VubdTNtXIc/DqXDMfu6FOlcoxf7C7EAEpJS9QsR9EKne9XQAO08+xwVgm5Tyl2kfYQlJZ6pXNtV+s8HkS0TFKFn+zFWuZP6jRNnEhJl+vJymgBPpsTLvZtO+CnUeToVl5nMv1LlCKfYXZpdm9Aoh5gGQQgiPEOJ+nFymYURK+Xsp5UUnv/5ESvmjrI/W5uwy1SuT6UJERFbKV/5k/qNEVsaEXc4LiKxkVRtj+yKrFOJcoRTj2eyMiJUAfgzgLACHALwJ4LtWHVSp4t02IqLMMH9SKWJcE1mH7YtKSSnGs6mBCCnlMQA3W3wsZSGbqV6KInEsEMLYeBROIeDzOFHjs3cAEhGZZZQ/FUViIBDW7ZiT/YwoV4zizEz8cQo4kTXMtD/2EWSlxPiq9bkxGBzPON5Krb8wNRAhhDgPwL8AmC6lvFAI0QrgOinlDy09OtLobdmyYWkrpk+pwLl1fiZNIipLybazAlByW11R8TGKwVn1VTjQP8L4IyoAM1sdluJ2iFQ8EuNrQUsD7rnqPKx8rovxdpLZGhFPAfh7AOMAIKXcB+BvrDoomkxvy5bV2/fhi4FRW2/bQkSUjWTbWZXiVldUfIzirG8kxPgjKhAz+Z99BFkpMb6WtDVpgxAA4w0wXyOiUkr5YcKuGRELjocMGG3ZUulx2nrbFiKibKTazqrUtrqi4mMUg+NRhfFHVCBmtjosxe0QqXgkxleNz814S2B2RsQxIcRMABIAhBBLARyx7KhoEnXLlliNtT6MhqO23raFiCgbRrnR43Im/RlRrhjFmdvpYPwRFYiZ/M8+gqyUGF9DwXHGWwKzAxHfBdAJ4HwhxGEAf4eJnTQoCUWR6B8O4fDgKPqHQ1AUmfHv0tuyZcPSVpxTV2nrbVuIiBKlkzuTbWdViltdUfExirOGKq8l8ZfLcwuiUmUm/+eij2B7JCOJ8bWjqxeblrWlFW+lHl9md834PYC/EEL4ATiklMPWHpb95boAjrply8ur5mFsXIFTgLtmEFHJSTd3ptrOqtS2uqLikywGcx1/LK5HZI6Z9pdtG2V7pGT04qvW5zYdb+UQX6ZmRAghDgohngewHECTtYdUGqwogONwCDRUV+Ds0ypxVm0lTvN7SyYQiYiAzHKnup3VWbWVqK/2TjrRNPoZUa4YxVmu44/F9YjMM9P+smmjbI+USmJ8uVwO0/FWDvFldmlGCyaWZtQBeEwI8XshxE7rDsv+WACHiCh9zJ1Extg+iIoH2yNZqRziy+xARBQTW3dGASgAjgLos+qg7EZv/Q4L4BARmafm0aiUeOa2SzC7qUb7GXMn0YTEc4vZTTV45rZLEJWyJNcPExUzM+f6pb7Gn3KvnM6HzA5EnADwTwA+A3CrlPJyKWWHdYdlH4oi8flAAPsPH8ehwSD2Hz6OzwcCqPW5WSSNiMiE2Dx6ZGgMAPDwdS2Y3VTD3EkUI7b42eymGjxwbTPWvrIfVzy6C4s37kbP0WEoiuTFD5FFYtuWhMSWO+Yanuura/wXb9yN9vXvxLVRIj3ldj5kqlglgG8D+HMAqwDcKYR4F8CvpZRvW3ZkNjEUDOPoiTGsfWW/Vkhkw9JW1FS6WSSNiMgEozy6adnFcDgczJ1EJyUWP7tx8/uT1g+/enc7jp4IlXSBM6JCMCoe+Ord7QiGJ5/rG63x37mqHfXV3kK+FSpS5XY+ZGpGhJTyFSnlagAdAP43gNsAvGbhcdlGMBzF6u374pLM6u37EAxHWSSNiMgEozwaUSRzJ1EC9dwCgO764WA4WvIFzogKwWhgIapA91y/HNb4U26V2/mQqRkRQogdAP4MwH8B+H8xsXvGhxYel21EpdRNMlHOuiICAJz74Osl9TqUe8yjROlT16fHtp3GWp9he+LFD1F20h1YMGqjpbTGn3Kr3M6Hks6IEEJcIoQ4HcAjAM4DsA3AXABLAVRaf3jFr8KtX6imwm22/AYRUXljHiVKX2y9CODU+nSj9sSLH6LspFuI3qiNltIaf8qtcjsfSvWuOgGEpZS/AdAO4P8G8DMAxwFstvjYbGGa36ubZE7zeVgoiojIBKM8Os1/ag0ti+9ROUgnzmPrRexecyV2rmpH8/Rqw/bEix+i5FK1v3QHFozaaKlNry9XVpyXmDkfKiWplmY4pZRfn/z/GwFsllLuALBDCPFbaw/NHhILR3lcTtT63DjQP8JCUUREJujl0diCTEYFwphTqZRkEuex9SJisVg2UXrMtL9UfZUeozZK9mbVeUkmMWZnqWZEOIUQ6mDFVQB+FfMzsztulLzEopSDwXEWiiIiSkOy4r5GBcKYU6mU5DLOWSybKD1m2x/bFgHWnpeUU4ylGkz4VwD/LoQ4BiCIiUKVEEL8MSaWZ6QkhHAC2APgsJRyURbHahuskktElDvMqVQOGOdEhcP2R+lgvORG0hkRUsofAbgPwLMA/lxKqS5+cQD4nsnX+D6ATzI9QLuIXSckhMCCloa4n7NQFBGRvlTrLNMtEEZkR1bEOWurEJnD9kfpKMR5SSnGU8oSnFLK96WUO6WUgZjvfSql/CjVc4UQjQAWAng6u8Msbuo6ocUbd6N9/Tu4ofM93HPVedpgBAtFERHpS8yfizfuRs/R4bgOlpXHqRzkOs7NtC0imsD2R+nI93lJqcaTODXJwYJfLsR2TOy0UQ3g/lRLM+bMmSP37Nlj2fFYpX84hMUbd0/aJ/jFjsshpSz5QiNFKG9/aLvGbD6d++DrhT6Egvr8kYVmH5qXuC22mDXKnztXtccV+FIUiYFAuCyKN9kIc22O5TLOzbatMsOYJUNF3P7K8vyg2OXzvMSG+dzUH8KygpNCiEUA+qSUXUKI+UketwLACgA4++yzrTocyyiKRDgSxT/+9UUYCo7j7e6juKplOmp8bkgpccZUH0+WS4zdY5bKTzHHbOw6y9lNNVg5fyZqfG5EFQVfDo4iIiUq3E5M83uLtbMlixRz3OZa4gmt2XMHRZEYCoYRDEcRjWkrDofgGuYCKKeYLUXJdrjQu+gEgGOBEMbGo3AKAZ/HiRqfx1btjzGbuVQ7omQzUJH4XEVRksaTXW/WWLnzRTuA64QQ3wRQAWCKEOI5KeWy2AdJKTcD2AxMjMRZeDw5p7d1y8abL8aTvzqAN7v7uMVcibJzzFJ5KuaYVddZ1ld5cf81zVizYx/qq7x44NpmrN6+j9t1lrFijttcynQbOEWR+HwggKMnxnTbitq2Eu+gsbaKdcolZsuNXhvdcsdchMYV3LX11Pc2LG3F9CkVOLfOb5v2x5i1Rjbbe+o9t3N5Gxa0NODN7j7tcWo82XmL85Q1IjIlpfx7KWWjlPJcAH8D4FeJgxB2p7d1y6rnP8KStibt39xijojImLrO8p6rZmHNjomLqZXzZ2oXVgBzKZW2TLeBGwiE8cXAqGFbYW0VotzQa6NfDIxqgxDq91Zv34cvBkbZ/iir7T31ntuxtQsPLWzRjSc7b3Fu5YyIkmc07arG5477d7FNwyJSZVK/IY2aB0QpORwCzdOr4fc6tXxa43PbYkorUS5kOoU7HImi0uM0fK7atnauarfddF2iYqLXRo3aXqXHyfZHWS3NMXqu0yF048kuy4D0WDYjIpaUcleqQpV2ZLR1y1BwPO7fxTYNi4iomDgcAj63S8unQ8FxbtdJZSPTbeA8LidGw9Gkz1XXMJ9VW4n6ai8vgogyoNdGjdreaDjK9kdZbe+Z7Ll68WTnLc7zMhBRqvSmXW28+WLs6OrV/s1pWEREqcXm0027DmLD0lZOaaWykOkU7jq/B+fUVbKtEFlMr42eU1eJp5bHf2/D0lacU1fJ9kdZLc1J97l2XgZk6fad6bLjtjGxVUqFEPA4BcJRyW07C4vbc5mUj6UZ3L6T23eaFZtP3U4HIlEFEQlUuB3aTgBUVJhrcyTTiufxu2awrZjAmKWMJN81Q4FTIG7XjBwr+/MDO8rlrhmpnluEu2YUdvvOcpFq6xYiIjKH+ZTKVaax73AInOb3An4LDoqINEZttKG6ogBHQ3aQzTlNus+16/kTl2YQERERERERUd5wIIKIiIiIiIiI8oYDEURERERERESUNxyIICIiIiIiIqK8KftilUVYZZSIyNaYV4nsjW2YyBy2FSpmxR6fZT0QoSgSPUeHcdeWPTg0GNT2XW2eXl1UHxIRkV0wrxLZG9swkTlsK1TM7BCfZb00YyAQ1j4cADg0GMRdW/ZgIBAu8JEREdkT8yqRvbENE5nDtkLFzA7xWdYDEeFIVPtwVIcGgwhHogU6IiIie2NeJbI3tmEic9hWqJjZIT7LeiDC43KisdYX973GWh88LmeBjoiIyN6YV4nsjW2YyBy2FSpmdojPsh6IqPN78NQtc7QPSV07U+f3aI9RFIn+4RAOD46ifzgERZGFOlwioqKXLK8ynxIVlpk2aObciKgcJbafWp+bbYWKll4u71zWBqcDRXP+VdbFKh0Ogebp1di5qh3hSBRulwMuh8CR40F4XE7U+tw40D9S1EU+iIiKSWJeVas0K4rEl8eD6BsOYSAQxo6uXtx7dTPzKVEeKIrEsUAIo6EoPjsWwBNvH0D/SEj3nMaoDbOdUjkzKvw3q74KL6+ah7FxBU4B+DzFc7eZypuay19eNU/L/Q/9fD/qqz14aGELnA5R8Pxe1gMRwMSHVF/t1U0wncvb8ON/+3RSkY+dq9pRX+0t8JETEdmDokj09A2jY2uXll/XL2nF42/14EeLW5lPiSykd36zfkkrHnujB3dt2YMXOy6HlDLuhFQ9NyKiCUaF/165ex76h0Nx/RtvWlKxcDgEBASW/eQDHBoMYnZTDW6dNwM3Pf1BXLxOn+JFMJz/geeyXpoRSy/BdGztwpK2prjHFVuRDyKiYqJe9CzeuBvt69/B4o278eXxoHaSBkzk0TU79mFJWxPzKZHF9M5v1uzYh5XzZ+LQYBBfDgW1ttpzdLhopuwSFROjwn/BkDKpfyu2nQmovMXG7sr5M7Fmx75J8fpx7/GC9AMciDjJKMEkrvNqrPVBCI5wEhHp0bvo6RsOGebXYiqaRFSKjM5vanxuNNb6tAsmXkARGTMq/DcWUYp+ZwIqb7GxW+Nz68Zr5cklRfnuBzgQcZJRgjnN74kr8rF+SSucHIcgItKld9EzEAjr5teGai+LehFZzOj8ZjQcxfolrdi066D2fV5AEekzKvz31fFg0e9MQOUtNnaHguO68ToUHNf+nc9+gAMRJ+kmmOVteOHDL7B2UQteWHEZ1i5qwc/e/QwOB/9sRER69C56dnT1onN526T8euZUH9fQElnM6ALqT86cgp+9+xn29g5pj+UFFJG+2CKuu9dciZ2r2nFGTQW2vPc51i9pndS/cZCdikVs7P5Z49RJ52MblsYPSOezH7CsWKUQogLArwF4T77OdinlP1j1etnSqxJd63Pjv1/cNKlCLpMLEZE+9aInNm/ee3UzZtVXsQo/UQEY7YIBAPde3YzuI8M8xyEyIbGIq6JI3Ht1Mx5/qwdrF7Wgzu9BQ7WXg+xUdGJjt766Im7HyJGxCPpHQgDyvwWtlbtmhAB8Q0o5IoRwA/gPIcQvpJTvW/iaWdGrEs0trMguzn3w9ZJ6HbKnZFv/sQo/UWEYtT+e4xBlTu3vfrS4lW2IbCOxP5jmlwXrBywbiJBSSgAjJ//pPvllu1LMPHkmIkoP8yaRPbCtEmWHbYjsrpAxbGmxAyGEUwjxWwB9AN6SUn6g85gVQog9Qog9/f39Vh4OUU4wZsluGLNkR4xbshvGLNkNY5YKydKBCCllVEr5ZwAaAcwVQlyo85jNUso5Uso59fX1Vh4OUU4wZsluGLNkR4xbshvGLNkNY5YKKS/bP0gphwDsAnBtPl6PiIiIiIiIiIqTZQMRQoh6IUTNyf/3AfgLAL+z6vWIiIiIiIiIqPhZuWvGGQB+JoRwYmLA40Up5WsWvh4RERERERERFTkrd83YB2C2Vb+fiIiIiIiIiOwnLzUiiIiIiIiIiIgAa5dmFISiSAwEwghHovC4nKjze+BwiEIfFhGRLTGnElEhMPdQKWJck91YGbMlNRChKBI9R4dx15Y9ODQYRGOtD0/dMgfN06vZyImI0sScSkSFwNxDpYhxTXZjdcyW1EDEQCCs/aEA4NBgEHdt2YOdq9pRX+0t8NFROTv3wdfTevznjyy06EiIzGNOJaJCYO6hUsS4JruxOmZLqkZEOBLV/lCqQ4NBhCPRAh0REZF9MacSUSEw91ApYlyT3VgdsyU1EOFxOdFY64v7XmOtDx6Xs0BHRERkX8ypRFQIzD1UihjXZDdWx2xJDUTU+T146pY52h9MXcdS5/cU+MiIiOyHOZWICoG5h0oR45rsxuqYLakaEQ6HQPP0auxc1c5qtEREWWJOJaJCYO6hUsS4JruxOmZLaiACmPiDseALEVFuMKcSUSEw91ApYlyT3VgZsyW1NIOIiIiIiIiIihsHIoiIiIiIiIgobzgQQURERERERER5w4EIIiIiIiIiIsob2xSrVBSJgUCYVWaJiCzEXEtEdsKcRXbDmCW7sSpmbTEQoSgSPUeHcdeWPTg0GNT2MG2eXs2GSyXp3AdfL/QhUBliriUiO2HOIrthzJLdWBmztliaMRAIa28eAA4NBnHXlj0YCIQLfGRERKWDuZaI7IQ5i+yGMUt2Y2XM2mIgIhyJam9edWgwiHAkWqAjIiIqPcy1RGQnzFlkN4xZshsrY9YWAxEelxONtb647zXW+uBxOQt0REREpYe5lojshDmL7IYxS3ZjZcxaNhAhhGgSQrwjhPhECPH/CSG+n+nvqvN78NQtc7Q/gro2pc7vydnxEhGVO+ZaIrIT5iyyG8Ys2Y2VMWtlscoIgPuklB8JIaoBdAkh3pJSdqf7ixwOgebp1di5qp0VZomILMJcS0R2wpxFdsOYJbuxMmYtG4iQUh4BcOTk/w8LIT4BcBaAtAcigIk/Qn21N4dHSEREiZhrichOmLPIbhizZDdWxWxeakQIIc4FMBvAB/l4PSIiIiIiIiIqTpYPRAghqgDsAPB3UsoTOj9fIYTYI4TY09/fb/XhEGWNMUt2w5glO2Lckt0wZsluGLNUSJYORAgh3JgYhHheSvmy3mOklJullHOklHPq6+utPByinGDMkt0wZsmOGLdkN4xZshvGLBWSlbtmCAA/AfCJlPL/sep1iIiIiIiIiMg+rJwR0Q5gOYBvCCF+e/Lrmxa+HhEREREREREVOSGlLPQxaIQQ/QC+ADANwLECH06u8T3lzzEp5bX5eKGYmFUV698kG3xP+ZGXuNWJ2UIoxr9/Idj971DIXJsuu/+tjZTq+wKseW/FErP83OyrEO+vnM4P0lEKsVaq78FUzBbVQIRKCLFHSjmn0MeRS3xP5aEU/yZ8T5Rr/PtP4N8hf0r1b12q7wvge7OrUn5vQOm/Pzsphc+i3N9DXrbvJCIiIiIiIiICOBBBRERERERERHlUrAMRmwt9ABbgeyoPpfg34XuiXOPffwL/DvlTqn/rUn1fAN+bXZXyewNK//3ZSSl8FmX9HoqyRgQRERERERERlaZinRFBRERERERERCWIAxFERERERERElDcciCAiIiIiIiKivOFABBERERERERHlDQciiIiIiIiIiChvOBBBRERERERERHnDgQgiIiIiIiIiyhsORBARERERERFR3nAggoiIiIiIiIjyhgMRRERERERERJQ3HIggIiIiIiIiorzhQAQRERERERER5Q0HIoiIiIiIiIgobzgQQURERERERER5U1QDEddee60EwC9+ZfuVN4xZfuXwKy8Ys/zK4VfeMG75laOvvGHM8iuHX3nBmOVXDr9MKaqBiGPHjhX6EIjSwpglu2HMkh0xbsluGLNkN4xZyreiGoggIiIiIiIiotLGgQgiIiIiIiIiyhsORBARERERERFR3nAggoiIiIiIiIjyhgMRRERERERERJQ3rkIfAJEZiiIxEAgjHInC43Kizu+BwyEKfVhkU4wnotLB9kzlgrFOdsS4JSMciKCipygSPUeHcdeWPTg0GERjrQ9P3TIHzdOrmcgobYwnssK5D76e9nM+f2ShBUdSXtieqVww1smOGLeUDJdmUNEbCIS1BAYAhwaDuGvLHgwEwgU+MrIjxhNR6WB7pnLBWCc7YtxSMhyIoKIXjkS1BKY6NBhEOBIt0BGRnTGeiEoH2zOVC8Y62RHjlpKVD8drAAAgAElEQVThQAQVjKJI9A+HcHhwFP3DISiK1H2cx+VEY60v7nuNtT54XM58HCaVmGzjyWzcEpH1krVntlWyK73Y5bkQ2UFi7Po8jFsyxoEIKgh1zdjijbvRvv4dLN64Gz1Hh3VPFOv8Hjx1yxwtkanry+r8nnwfNpWAbOIpnbglIusZtedan5ttlWzJqJ+p9bl5LkRFTS92j54IYcsdcxm3pEtIaV2nLIT4HMAwgCiAiJRyTrLHz5kzR+7Zs8ey46HioCgSX50Yw5dDQQwEwti06yD29g6hsdaHnavaUV/t1X1OGhV381b9hjFrT5lWcO4fDmHxxt1x0wwT4zaL6tB5iVvGrDXKtFhlUeRavTY3EAhPaqsLWhrw8HUXQkrJyu3lqyhiNhm9fiY2doUQcArA4XAwhstHUZ4fJOZepwO47snJ50gvr5oHAcFdM8qLqQ84H7tmXCmlPJaH1yEb0Kueu35JKx57owd7e4cM14w5HEJ3gIIoE5nGk9Fax+B4FIcHR+HzOHH0RIjVoYnySK89J7bV2U01uHXeDNzQ+d6ktgmAW8tR0UgndhmnVAiKIjEUDOPI0Bg6nuvS4rJzWRvqq7xx8XtoMIjxiIKzaisLeMRUrLg0g/JKr3rumh37sHL+TDTW+hBVJKfOUtEyWqN7sG8E7evfwce9x1kdmqgIJLbVlfNnYs2OfZPa5rFAiEs4qKiYjV32K1QI6g3Fj3uPa4MQwERcdjzXhXuumhX3eNaDoGSsHoiQAN4UQnQJIVboPUAIsUIIsUcIsae/v9/iw6FCM7qjXOf3YP2SVvzw9e6i71wZs+VLbz36hqWteOLtAwCASo+zKKtDM2bJjrKJ28S2Wuf36LbNsXGFg4eUM7nItXV+DzqXt6WM3UL3K1Qa0o1Z9Yai0fnOjGl+1oMg06xemtEupfxSCNEA4C0hxO+klL+OfYCUcjOAzcDE2iSLj4cslmp9vDrSn7h+bKrPjQe278Pe3iH8w18Vd+fKmC1fDodA8/Rq7FzVrp0E3r1tL/b2DgEAhoLjuvEthICiyIJNo2XMkh1lE7eJbVUIods2nQKGy60K2WbJnjKJWb3zpml+D9YuakGNz42pPrdu7PIuM+VCOjGrKBLB8QgODQYNz3cqvU4t73KpG6Vi6YwIKeWXJ//bB2AngLlWvh4VlpkdBfTuKK9f0qoNQrBzpWKnrkc/q7YSHpcT/SMh7Webdh3EhqWtk+L74Vf3c7o3UZ7FttXTp1To7jhgtLXcwb4RtlmynNF5k3AIrHutGzdufh8PbN+H9UtaeZeZCkqN1YN9ATTW+rBp10HduJzm92p5t77ay0EISsqyGRFCCD8Ah5Ry+OT/LwDwP6x6PSo8vfoPd23ZM2knjOlTvHhhxWVQJCClxA9f79YGIdi5kp2oA2tq3PePhFBf7cWLHZdru8KohVi7jwwb7gpDRLmXeKd5Vn3VpDt1AOLacGwB5f6RENssWcrovOnVu9u1uNzbO4SfvfsZtt15KZwOYeoucxa7NxHpUmO1vsqL9UtasWbHPjz2Rg/WXX8hZkzzo9LrxDS/+YEHxigB1i7NmA5gpxBCfZ1tUspfWvh6VCBqMhkNR7B2UYu2HScQv45Rb8eMLXfMxQ8X/yn+4a8UJiKyHXX698ur5mE0FMVnxwJY/dI+/HDxhRgIhFHjc2Pl/Jlam+CaXqL80OtvjHYaaJ5ejRdWXKZNN37sjR4AwNpFLRgNR9A/DPZNZAnDnZjC0bilRWbPjxRF4lggpPVHT7x9AP0jIe6yQVlTY/XQYBCPvdGjLR1qrPXhjKm+tAbGan1uHOgf4Q5jZN1AhJTy9wAusur3U3FItR1nY60PbpcDiiLx1YkxBELxgxW3/PRD7FzVzm19KO+yGY1PfK7LIbDsJx/g0GAQs5tqEIlKrHutO65N/Ozdz7jsiChPjgVCSWfoJbZhn8eJ+176WGvD91/TrO1UwJNksoKiSAghsH3l5RgIhLXzInWJqpltpmPjWG/7aPV8TG92KlE6Ymu87e0dQsfWLjTW+rBzVTscDmF4TqV3ndC5rA0/fvvTlDOoqfRx+07KSqrtODcsbUVoPIqeo8O4ofM9LN30Hta91o37r2nG7KYaVn6mgjBTzySd5x4ZGkN91UTnuXL+THx320eT2sRDC1u47IgoDxRFYjSkf6c5HInqtuGjJ0LYcsdcNNb6uF0iWU6NwcTzogUtDaaXqCbGsd720er5GM+1KFt6Nd7UWE12TqV3ndDxXBeWtDXF/X7GaHniQARlxWha4ayGKqxd1IJHf9mD/+oL6HaO9y04j8UpqSCM1uUmu9BQFIn+4RCOHA/qdqrq3tk1Prdum3A6BO+mEuXBQCCMz44FJhWhXNDSACGEbhu+a8seVFW4sHNVO84/vZrbJZKljG7iPHzdhaZn3iT+DqPtFBuqvXjmtksQlRN9GAuwUiZidyLaveZK7FzVrsVqsnMqo+uEOr8Hs5tq0Lm8DS+suAzP3HYJfB5eD5QbDkRQVtSpWrEaa3040DeCTbsOYuX8mTinrlI3CZ1ZM1EjgneJKd+MOka9Cw1FkegbHsMfvh7F/sPH0TccSrp3trqlVSwOuBHlTzgSxRNvH4ir6L6gpQHfu+o8PPzqfgTH9dv/eERBfbUXlR4X2zBZyqgPktL8lrGJv8Oo76mt9GDtK/txxaO70pr9R5Qodiei2B0xkp1TGV0nTKvy4oFrm7XdYf71wy8wMhbB4cFRDpiVEQ5EUFb0pmptvPlifHrkBO6/ZiLBHOgb0U1CXwyMoqrCxbvElDfqrIaolHjmtkswu6lG+5nehYY63fBbG9/F/Md2Ye0r+7U93WPF7p39Z41T0bm8jVutEeWR2rYPD45CCIH6ao9WUO2FFZfhgWsvwP98+1PcOm8Ger8OJh1oSDYFmSgXjC7O0hnsSvwdm3YdxOM3XBQXtxuWtuJ4MKwtHVTvVH91YowXepQzyeJZL5+uX9KKwdEQVm/fp9XluXXeDNz09AdxSzsiEUXL6xycKE1W7ppBZcDhEJhVX4Vtd16KvuEQBgJhPPmrA3jwLy/ALT/9EIcGg9pew7GFv9QCSk/eNLvQb4HKhF7BpA1LW/HoL3u0quKJFxp60w0f+cUn+OebLtbqQMTuna0OqtVXV6Rd7ZyIMqPXtjcta8MTb3+qFVR77m8vxZK2JqzZsS9u+7nYNqy2/9gpyGzDZIXErZ8zGezS2z66sdaHdddfiEqPE0PBca1/W7uoBR1buwBM9GNfDgVxPDjOAqyUE8niWW93scfe6MEPFl6gnVsZ1eXZdueluOnpD1g0uIRxIIKyNhgc1xKFasUVM7V/7+0d0u5MzWqowoG+EW2Pdk51pXzRG1RYvX0fXlhxmeGFht50wze7+/C9b8zCuusvxMyGKvjck59rpto5EeWGXtte+VwXXuy4HP/wVxIelxMSEnV+j+nt59iGyUq5GOzS+x3hSBS3P/ubSY+t8bm1/2+s9WEgEMbfvfBb7lJAOZEqnh0OgYbqCih+Cb/XhSdvmg0hhLYLh1FtrdilsNxZozRxaQZlTe9ibSAQjpumtbd3COte68YXA6Po2NpleAeayCpGaxgBxK11jGU03fDYSBinT61AY43P8LlElB/J1tura5mn+b1oqPZq7Vndfu6+lz7Wtkokyiej9fbZ/A6jPms0HNX+f/2SVmzadZAFWCmnzMRz7GNOn1KhLdkwqm+SWECcMVt6OBBBWdPr+HZ09U5aJ9+5vA0tZ1Tj1w9ciZdXzeP0KsqrTNbk6q1t7FzWhj85cwpOq3RjIBDmmkWiAjPTth0OgTOn+ib3S8va4HSA7ZhKgm59k+Vz8CdnTsH2lZdj7aIWPPZGD/b2DrEAKxVU7CyKP2ucis5lk68ZdnT1xj2HMVt6uDSDsqa3Nuzeq5sxq75Km6YVVSR++Ho33uzui1tTT5QvmazJTZxu6HY5MDIWwbf+5V2uWSQqEmbbtsvlwAWnT4lbq/zQz/drM/TYjqkUeF0OrU7EaDgKr9uB0yo92nKMTGtSEOWawyFQ5/eg5+gwfvz2p1i7qAV1fg8aqr04Y0oF7r26Gd1HhhmzJYwDEZS1ZGvD6qu96B8OYfHG3VznRQWV6Zrc2LXi/cMhrQgrwFgmKgbptG2HQ0BAYNlP4usasR1TKRgIhOP6KGDiLvLOVe0swEpFKbbGz5vdfQAYs+WEAxGUE8kKeyXbX5gon7ItQMdYJipO6bRttmMqVclimwVYqRgxZssba0SQ5RLX785uqsEzt12CqJTcF5gKRlFk2vtT52LvdyKyXrL2zXZMpSrd2M6kHyTKpXzkY8Z58eJABFkutnjS7KYaPHBtM9a+sh9XPLoLizfuRs/RYSYFyitFkeg5OozFG3ejff07puNQtxAY1ywSFZVU7ZvtmEpVOrGdaT9IlEtW52PGeXETUhbPBzFnzhy5Z8+eQh8GWUBRJAYCYYQjUdy4+X3d9Ys5nH6VtwVkjFl7SqxbApiPw9hYzvGaxbzELWPWGuc++Hraz/n8kYUWHEleFWWuNdO+LWzHVNyKMmZzyWxsZ9MPUt6V9PmBlfmYcV4wpj5A1oigvFDXeR0eHOXaXCq4bNaIc80iUXEz077ZjqlUmY1t1kqhYmFlPmacFzcuzaC84tpcKgaMQ6LSxfZNlBrbCZUDxnlx40AEZSXdAjBcm0vFINM4ZMEjouKXy36GbZ5KjRrT4UgU2+68FAtaGgDwfIyyU6y5ktcdxY1LMyhjagEYdf/fBS0N+MHCFggALqcDDVVeuFzxY13p7PdOlKlU6w0zicPEeFc7s1n1VRgMjjOeiYpEsvadLDck/qzW58aB/pFJbb55ejXbOBVMNuvp1X7s8bd6sKStCXV+D36wsAX/1+I/hYRg/0UZMTo/UnOlUczmo1YPrzuKGwciKGMDgbCWdGY31eDWeTNw89MfaElo07I2nD+9WncwgmtzySqpOkRVunEYG+/AxBrDu7bswbY7L8VNMXHPCxWiwtNr38lyA4BJP9t256W6bZ5FzqhQzPZvRgYCYTz+Vg9unTcDa3bs035H5/I2XHD6FPZblBGj86Odq9pR5/cY3sTJ10AvrzuKF5dmUMZiC8CsnD9T69SAiSS08rku9I2ECnmIVIaMOsSBQDir32tU8KhvOJTz1yKi3EuWG/R+Ftu2VSxyRoWUbf8WjkSxpK1p0vlax9Yu9luUsWQFIY1itm8kZMm5GtkLByIoY7EFYGp8bt0kFIkqhTg0KmNWVUg2KniU2GnyQoWoOCXLDXo/GwiEWeSMikq2/Zs6LZ0DbJRLyQpCGsXseFRhHBIHIihzsQVghoLjuknI5WSIUX5ZVSFZr+BR5/I27OjqzflrEVHuJcsNej/b0dWLzuVtLHJGRSPb/q3O70FDtZcDbJRTyQpCGsWs2+lgHBJrRFB26qo82HbXpXAJgWdvvwS3PfObuBoRDVVck0X5pXaIiesOc3HxoMa7Uwj4PE5M8bpx79XN6D4ynPPXIqLcSpUb1J/VV3lxz1WzMGOaH5UeJ169ux3BMIucUeFl07+phQEdDoHn77wUP3q9G29297HfoqwlKwhpFLP1fg+23Xkp+oZDGAiEsaOrF/de3cw4LDMciKCM6BZMWj4HL39nHsbGo4a7ZhBZzYoKyUYFwmqme1iNmcgmUuWG5unVePXudhwZGkPHc10sQEtFJ9P+Ta8P61zehnXXXwiHw8F+i7JmVBBSL2b1diTqXN6GWfVVjMMyw6tESil2b+C+4TF8HQjhyPHg5CIzW/dACIGz6/w4s8bHQQgqGLVDPKu2EvXVXlMnaX3DY/jD1wEcHhzF14H4PbCTFQhL97WIqHDUO3Tq2uWhYBh9w2M4PDiq1XtRByEAFlCj4pNJn6PXh3Vs7YLD4ci634o9R+wfju87M3kclZ7EmB0MjuvG42Bw3FScMJZKh+UzIoQQTgB7AByWUi6y+vUot/RG0TcsbUWV18UiM1QSjGJ8+pQKnFvnh8MhLCuASUT5Fdve66u8eODaZqzeHrON4bI21Fd549o72zrZnVV9mNntRLPddpRKS7J4TBUnjKXSko9b1t8H8EkeXocsoDeKvnr7PlS4DYrPcBYE2UAkouDLoSC+GAjozu5ZvX0fvhg4dYfUqgKYRJQf6h202Pa+cv5MbRACOHlX7rku3HPVrLjnsq2T3VnVh5ndTtSqbbXJnoziUQiRMk6SxVLsud2XQ0FEIpN37uNsiuJi6VWjEKIRwEIAT1v5OpRbsY00OB7RHbUcCUWwfklrXIXcjTdfjNB4lI2aCsJs5xKJKPjd0WHc0Pke/o8Nu3Dk+JhujFd6nNrdomQVoYmouKl30BZv3I2+4ZDW3o22nZ4xzT+prdf63Dx5Jduyqg8LmZxpYXQHPBiOsD2VIaN4dAqkjJNksyliz+1u6HwPvzs6HDcYEdsXtK9/B4s37kbP0WHGXwFZvTTjnwA8AKDa4tehHEmc8vTMbZegsdYX1+gba33oGw5h066DWHf9hWg6zYeD/QE8+asD+Pbcc1DhdukWrCGySjpT9fpGQlh5cg347KYaTPW5dWN8NByFEBPPtaIAJhHlR+wdtCqvS2vv6rbTiW3f63KkLKzGqcBkJ7nuw9QdOASg24YSCSF0H/fJV8NY91o321OZMYrHgUA4ZZzUVXkMY25lQn2flc914cWOy3FmzcTPjWZT7FzVjvpqrxbXPM/LH8tmRAghFgHok1J2pXjcCiHEHiHEnv7+fqsOh0xKbKRPvH0AG5bGz3x4/IaLMKXChR8svADn1FVi87//Hh1bu/Bmd1/cXeRSxZgtPulM+xyPKtogxP3XNGPDG7/DvyxrmzS754waL5wx/Y+di1IyZsmOchW3sXfQxsajePKm2Xjmtktw5tQKbLz54ri2v35JKxwCKQurcVo56SnmXJurPiz2rvLXgfCk2bFqG4rlFNB93KZdB3FoMIjH3+rBVyfGOOOoAAoVs3rxqDdTIjZO7tqyBy6HmPSYzuVtEAJYu6gFs5tqtNc4NBhEJHpqRkSy2RScLVEYVs6IaAdwnRDimwAqAEwRQjwnpVwW+yAp5WYAmwFgzpw5/LQLLLGR7u0dwqO/7MHWO+aibzgEp0Ngis+FO549dWdo/ZJWHOgbQf9ICKMn91ovZYzZ/Es1Sp1OIS6304HGWh9Wzp+JNTsm1od/98o/xta/nYuBkTAGAmE8+asDuOu//REaqissf2/5wJglO8pV3KrrkdVlhS6HwNpX9uPQYBALWhqw9W/nQkpAAlj/i0/wo8Wtcc9nsVoyqxxybezA/5fHx7CjqxdrF7WgxufGUHAcP3v3Mzx83YXa4xVFIiqBmko3nrntErgcAp/2jeCxN3qwt3cIs5tqcOu8Gbih8z3OOCqAYorZ2JkSwXAEn3w1rMUJoC7TiMbNpogqEj98vRtvdvdp1yTqcxprfXA5T91zj+0LVGqtFKMbWi92XI7Tp1QwFi1i2YwIKeXfSykbpZTnAvgbAL9KHISg4qNXQKZ/JIRP+0Zw4+b3MRAIa4MQwERDXbNjH+65ahY2LG3FOXWVXDdPOWVmlDqdQlwNVV5sWtaGOr9Hi+PhsQiW/+RDLN30nja7594XP0aEI+FEthd7ly2qSNz74sda23+zuw/Lf/IhvhwKQgB48C8vmNSHsVgt0SmxA3Obdh3ErfNmYN1r3bhx8/tY91o37rnqPDRUTSzPVfvvGzrfw8In/gO3P/sbSADrXuvWLi5jbwoAnHFU7tSZEj6PKy5OgFN5V32Mx+XETU9/gDe7+wCcuiZZOX8mGmt92LSsTYtFIHmtFKMB5y+HgpwZYSFucUBx9BrphqUT06IA4+JeM+v9aD69WtvukChXzCy7SKcQl8vlQHNDFc6YWqE93u106Mb1uE7FZSKyl9i7bE2nVeq29Qq3E18MjMLnnjy4wGK1RKfEDszt7R3CY2/0YN31F+LXq+fjxY7L0VhbgaPDY+gfDuFYIDSp/37kF5+gM2Y5ZOxNARVnHJFe3u1c3oZan1t7jNHgwfmnV+PFjstx/vRquGJ284vtC3avuRI7V7VrM2+MBpzVc1AOjFnD6mKVAAAp5S4Au/LxWpS9hike/K8Vl+HwYBDjUQU+jxP9IyEAwGg4qjutyeV0oMbHoi6Ue2amRaudy8ur5mFsXIFTAD5P/AVF7PKOqCLx/PufY/2SVqzZsc+waB3veBLZk95yrjq/B+NRRbetn+b34Eevf4IfLLwAQ8HxuGnhLFZLdIp6gagOMPSPhNAwxYszplTgv44FcEPnqaW7z/3tpZP67ze7+7Du+gu19gToF7xk/1veHA6BWfVV2HbnpegbDmEgEMaP/+1T3Ht186TBg8TY8Xmc2tJavb5Ar6B+YlzHLvPgwJh18jIQQfagTqF7/K0erL7mfNz30sdaUb+1i1rQWOvDNL8Hncva0HGyMq3aUB9+dX9cciDKlWRr+hINjITjOpHO5W2Y5vdAOARGxiK45acfxsXtK3sPa7GdGNedy9rgdEy0C8Y0kX3o7qKzfA5qKl0YHB3HP990Mb677SPtZ/9808XYtOsg+kcmTnb/7oXfalXUVepU4NjX6B8OcWCCyk7sBeJwKAKP04HRcBRfnhjDzz/qjZv98NWJMd3+2+FwoM7v0c451ZsCsTUiOOOIBoPjuOnpD3BoMIgb2hqx+prz4XQIHDkexPTqCt3Bgw1LWzEyFsE0/8RSCrM7qqkDzi92XI4vh4IYCITjak1wYMwaHIgoc7EjhUII/PyjXqy68o8xEAjjZ3fMxR8GRvGL/zyCqT43Kj1OdB8Zxi/+8wievX0uhkbDcQ21+8jwpJM3omwoioSUEs/feSkUKXEiOI7guILTp1RAQsYNEugt4ejY2oW1i1qw7rVubFjaivoqLw4NBrV1hGsXtaBj68TGPh/8/Tfw8qp5GA1F8dmxAB76+X70j4RYNIvIZnSXc23dg3XXX4jbn/3NRIHKO+YCAvj82Cief/8L/OWfnoGO+TNxZCiI+iovFEUxHGhQFInPBwL4YmAUlR4nRsNRnFNXyaWJVDYGg+N4/v3PcePcc/B1YOJc8J/fOYB7rjoP88+fjkd/2QMAqHA7sGFpK1ZvnzzIENtO+4fDWLuoBXV+D86s8WnFAbmdYnlTZ8Te0NaIZZefg9uf/Y0WR5uWteH86dWYPsWLdddfiEqPE0PBcTz6yx7UV3vw8HUXIqIo+Or4WNy5X+x2narYOHO7HDjN78HfvfBb3YExxmRucSCijOndNdp488WQUuL+k7MhFrQ04HtXnYfvJMyACIYjWLrpvbjfx6lLlEtG8fnT//i9Vh05dpDAaAmHWtdk9fb4gQf1Z8CpOzQAsOwnH8T9Hr1Oi4iKl1EuqDy5XOvN7j50HxnGI9/6U1xwRjWmVXnwnedjZ0jMxrFAGB1bu3Tvog0Fwzh6YkzbeUO9C1dT6cZpfuYJKn2KouCbrWdNmmX4xNuf4ttzz8H91zTDIYC7t+1FfZVX21VjNBzF9CneSX323t4hrW/eveZKbRDC7N1sKk3qjNi7rvgjbRACmMjnK5/rwosdl0NKiduf/Y32HL1dWGJ30ki8VjGKs1fvbkcwHD/YwJjMPRarLGN6d41WPf8RguOK9r0lbU3aIIT6mDU79qHCzSriZC2j+FzS1qT9O7aAkFGhoaHguPb4mpgiR+rPzFRN5gAbkX2kygXAqQKVioQ2CKF+PziuaIMQ6vdic00wHNXu8Ko/X719H4Jh5gkqD1EJbXkTcOrccElbEyo9TqzZsQ+nT63AocGgNshw4+b3cfuzv9HaSardaPQKXbJoYHlRl144HUL33CwSVSbFkd4uLOpOGsDkaxWjguhRBTirthL11d6kM2/NxKS6lO/w4Oj/z979x8dV3Xf+f5+Z0UhjSbaELJkfNoGwjlN/qQnIgYD325KQEHahYYkJ2Sa2Gwhg15smmzYJdFs/0sfXzRYHWLbZ1LEhTYhN6IZi2HSh+UFJnDzKr2DFjcOaOCwJ1OaHLSuSLUtjjTT3fP+QZjyauXd+ae7M3JnX8/HQAyxpZq6k9z33zLnnfI4GRyfYgSMDAxFNzOtNV29nqy5c0iXJe5eMExNTuvP6FVQRh2/yzXDI/HdqkMCtwvKW1ad2fFncHdN44lRhrO1r+/WOxQuKqprMABsQHIV2f0p9rq+zVdbaWe3MhUu61NvZmndAMpn1mNTXk/Qt0SSyzxtp+hzoaY9qJD6pQ8NxhY3Jez3NtxuN41iNT3BjoNml6ja0RkKuWYqEQzk58tqFpSvW4vpepZQbUOXcrCpmC/pmxtKMJuZVBPBfh8a14fLztH7ngOduAiPjk3pLzzw9svEyTU45rJNCxXnlM/Ou5uLumIxxr2yfdKz+8vH96UJD961bqUXzW/XUbe/2zKtb4SMG2IBgyW4LWiIhnTg5ld79KTUQeeaCmIazrnEbLj9P/zo0nrdAbmpGYPbX21q4t4Pm4HV9Tu0+s7g7prZoOO/1NN9uNIOjE/r10TF204BCIaNFnW3atqZfGzKWiW9b06++jtacHJmZAbDs3CzujunRjaty+n6lFEQv5XtTvGZRsOR3GgMRTazHYweMu753QH929W9JknYNHMw5+bev6dcZXW1s1wlfuQ0KbP3oRfryD16SdGrGQzgjgpmV7R3H6gvXrdDnfy+roFC792uyTR/QGLJ3uVjYbl3P6+x2pmfmjVR2Ff/ta/rTb6AWtre6vsFaSH0INAmv63Nq95nU+bCwvTXv9TT7PE1JTCX1pSdfynseonlEIiG9fWZHi6mko0g4pL6OVkUi04O/2X0/t/b5jAUx175cKTegyrlZxZLf/Iy19TM1ZOXKlXbPnj21Poym8puxCf3s4LF0tdnURSRVACYaCas71qLh+GSQ3phV7eDIrL8cx+ro2IROTjoKG2nH07/WRef0qCvWopH4pHYNHN86A1oAACAASURBVNQXrlvRKKPKVcktmfXHObc/XvJjXrnjah+OpKoaoq3N3j3qhu3PqLejVRsuPy9dYO+CJQtmFaKkcnpgNURm60H2TgORkMkp7leuwdEJXbf1qYLnYROhf1CCUtvnUr6/1OdOZTl7FkUTzIgoKrPMiGhyXbGoTl/QljO6l9o6KaXBTxbUqVDIqK+zTdJ04/8fLlrCsgkAFeV1N239zoF0O9MVi3o+BmhGrudAnhmHpci885zvPATclNo+l/L9pT43S37zK2ogwhjzCUnftNYO+3w8qDKmoiMoyCoAv9HOALXHeYhGQZbzK3ZGxOmSnjfG/FTS1yR9z9bTmg7k5TaNSBLTSlG3vKa+pUaiU19/41ic/AKoiOx2x2tNcSnPQdsEuCt0rmTfeU5tgci5hWzVbHfLeS1m0HkraiDCWvvnxphNkq6UdKOkLxtjHpL0t9bal/M/GrWU2jYmc0rQjpsu1sSUkzNNKLWFIVBLbpnNzGehrwNAqSrRrtA2AcUp9Vzh3IKXamaDHFZe0XtNzcyAeHPmY0pSt6SHjTFf9OnYUAFu28a8OjTuupXM0FiilocKSPLe6iiVz0JfB4BSVaJdoW0CilPqucK5BS/VzAY5rLxia0R8UtIfSDoq6auSPmutnTTGhCS9JOlz/h0i5sJt25h50TBbyaBuFdrqiK2QAFRaJdoV2iagOKWeK5xb8FLNbJDDyit2RsRCSR+01r7fWvv31tpJSbLWOpKu8e3oMGfRSFiLu2OzPjeeSOZ8bnF3TNFIuJqHBrhyy2xmPgt9HQBKVYl2hbYJKE6p5wrnFrxUMxvksPKKHYg411r7auYnjDE7Jcla+2LFjwoVk9o2JnXiLO6O6S0983I+x1YyqBdumc3MZ6GvA0CpKtGu0DYBxSn1XOHcgpdqZoMcVp4pZvMLY8xPrbUXZfw7LOnn1trllTyYlStX2j179lTyKSFpasrRkRMTmkw6agmH1NfRqlDINHJl76r9IGS2sjKrERtjFDZSKBTKyWeDVqavyg9AZv1xzu2Pl/yYV+642ocjqaqGamtLaVe8vrdB26ZG0lCZDbJ85wq7veWgf5BHve+a4efz1LGifpi8NSKMMX8q6b9Iihljjmc8cULSvXM6PFSF41i9NHjCtcJrT3s0fRIMjSUa8SRAgBRTjbgS2+sBgJtit1jzaquW9nZoOD7ZyB1LoGK8zrd8fYF852cTvLGDh0pvj5kvS5V4LXbfOCXv0gxr7V9Zazsl3WmtnT/z0Wmt7bHW/mmVjhFz4FXh9ejYhA4cHtV1W5/Sqi0/1HVbn9KBw6NyHJveq/m14XENjk7IcQrPmgHKkZm1N4+fzFuNONVwu2UWAPySfU08Ojbh2la9fixO+wSUoZS+gNfj6R+gEorN0lzeK7H7xil5ByKMMW+f+d+/N8ZclP1RhePDHHlVeD056bieBCPxBI05qiK7sX99JJ63GjENN4Bqc+uUjk+4X1ePjE7QPgElKrUv4Ib+ASqlmCzNdeCL3TdOKVSs8o9n/nu3y8ddPh4XKsSrwmvYyPUkiCeSNOaoiuzGfmgskbcaMQ03gGpz65T++uiYa1uVfZ2kfQIKK7Uv4Ib+ASqlmCzNdeCL3TdOKbQ049aZ/77b5eM91TlEzIVXhddY1P0kSFpLY46qyG7st+1+WVtWr/CsRkzDDaDa3DqlX3ryJW1f0z+rrdq+tl+7Bg7O+j7aJ6CwUvsCbugfoFKKydJcB77YfeOUvMUqU4wx69w+b63dUdnDQaWFQkbLFnXq0Y2rcqoP37duZU6hlLaW6RMw8wSjMYcfUo19Kmt7D47oG0//Wg+tv1TW2pwCQamGOzuzzdhwA6iO7HZKkgZPTOiMrrZZ19XuWIs+/b5l2v/GKO0TUIJS+wJu6B+gUorJktt1oZT3Sl7vzZqtUKVU5ECEpHdm/H+bpCsk/VQSAxF1yK3aq1uF11IGKGjMUWlujf2n37dMp89vm7VLxuDoRDqjS3s7aLgBVI1Xp7Qrltv2FOpYUtUfyFVMX6AQtzd23bEWzjeULN8gQaoNdxxH29f2a/3OgbLfK1V6p4+gKmogwlr7R5n/NsYskLTTlyPCnJSyJYzXScAoHaqh0Igw2xsBqLVS7lzl61jSngHuKnV3OPP843zDXLi15dmZunJ5nx68+RKFQ4b3SnNQ7IyIbOOSlub7BmNMm6QfS2qdeZ2HrbWfL/P1UCSvAiqPblxV9Mgbo3SolnxZq0SWUd/Ouf3xkh/zyh1X+3AkgLdKXBNpzwBvle53cr6h0rIz9f39R7T/jVEyNUfF1oj435JSe5KEJC2X9FCBh01Ieo+19oQxpkXSPxtjvmOtfbbso0VBVA5GoyDLABoF7RlQPZxvqDQy5Y9iZ0RkbtU5JelVa+2hfA+w1lpJJ2b+2TLzUdwGqyjbXAuoAPWCLANoFLRnQPVwvqHSyJQ/8m7fKUnGmLCkTdbaH818PFVoECLzscaYf5F0RNIT1trn5ni8KIAtYdAoyDKARkF7BlQP5xsqjUz5o+CMCGtt0hgzboxZYK09VsqTW2uTkt5hjOmS9Kgx5nxr7QuZ32OMuVXSrZJ09tlnl/L0cMGWMP4js9VBliuHzCKIGim3tGfNoZEyG2Scb8Ujs8UhU/4odmnGSUk/N8Y8IWks9Ulr7SeLebC1dsQYs1vSVZJeyPravZLulaSVK1eydKOAYrb/otikv8hs8ea6XR1ZrgwyiyAKUm65NkMKVmYbXbHnW7Nvq0tmi1dOG97s+Sqk2IGIx2c+imaM6ZU0OTMIEZP0XklbSjw+ZGA7IgQJeQXQDGjrgGDi3IWfyFdheWtEGGPOliRr7TfcPgo89xmSfmiM2SfpeU3XiHisMofdnLy2IxoaS9T4yIBc5BVAM6CtA4KJcxd+Il+FFZoR8b8kXSRJxphd1trVxT6xtXafpAvncGzIwtYxCBLyCqAZ0NYBwcS5Cz+Rr8IKDURkzht5q58HgsLYOgZBQl6Byjvn9pJWSZbllTuu9v01GgltHRBMnLvwE/kqrND2ndbj/1EDbB2DICGvAJoBbR0QTJy78BP5KqzQjIgLjDHHNT0zIjbz/5r5t7XWzvf16DALW8cgSMgrgGZAWwcEE+cu/ES+Css7EGGtZe5IHWELGARNKGTU0x5N53ZoLEFuATQcr23duG4DtcO2uqi17Hw5jtXg6ATXhBnFbt+JGmMLGAQRuQXQrGj/gNrh/EO9IZO5CtWIQI2kRsxeGx7X4OiERuJsAYPgKXbrouy8Ow4laQAE20g8oTePndTdH7pA29f2q7ejles2UCVz3TqRfklz8vPvznaeuZgRUYfcRsy2r5nuxGRWXmULGNS7YrYuYoQYQKNxHKs3Rk5q07dfSLdrW1av0F3fO8B1G6iCuWydSL+kOfn9d2c7z1zMiKhDbiNm6x8Y0CevWDrr+9gCBvUutXVRpuzcMkIMoNEMjSW0/oGBWe3abbv26ZNXLOW6DVRBMf0PL/RLmpPff/e5ZLJRMRBRh7xGzM5d2M4WMAiUYrYuYoQYQKPJdx3nug34by5bJ9IvaU5+/93ZzjMXSzPqUGrELPNkWNwd07zWMFvAIFCK2brIK+/NPEKM5nDO7Y/X+hDgk3zXca7bgP/msnUi/ZLm5Pffne08czEjosqKKYLiNWK2sL1VvZ2tOqt7nno7W5s6uAiO1NZF2bnN3MLowZsv0ZXL+yQxQgwg+PJdx7NRFA/wR2oL8WgknN5CvJjzizvXzakaf3evPnGxGu16wYwIn7jtXSypqCIojJih3hSzF3epz5dTkHVtvzZfe75CoRB5BxBoxV7HvdrChe1R2kJgjkotPpjZ11k0v1WPbLxMk1MO/fAmUer7r0r3jQtpxCKqzIjwQSoo1219Squ2/FDXbX1KBw6P6ujYRNFFUOY6YgZUilee5zIK61qQdeeAQqEQeQfQEIq5jnu1hf9y6FhF2lqgmZVSfDC7r/OBLz+loRMJnbEgRr+kiRT7/suPvnEhjVhElYEIH3gF5eQkxW8QPH40fBSCAgDvtrAr1tIQnUyglkrpazTimzz4pxZ5acS+MwMRPvAKStgYtm1B4PjR8LGFEQB4t4Uj8UlJwe9kArVUSl+jEd/kwT+1yEsj9p0ZiJgjt6IhXkGJRcMUv0Hd8iqA40fDRyEoAHBvC7esXqFtu19O/7tQW9toxcuASimlr1FOX4dzr3nVYlAgX56DmkWKVc6Ba5GpNf06vatVO266WHd850Wt7l+invao+jpbNb+1RV2LohShRN3JVwAn1fBlfy37Ql5K0R4KsgLAqbbwkY2X6eRkUiEZvXHspCTvN02ZbW0sGtbh4xMNVbwMqJRS+hrF9nVSvN4DvK2vQy0twb1DjeIUk5dKFLPMfo6lvR05eZaK2wyhHjEQMQeuRaYeGNDma8/XW3rm6VPvfZvW7xzICUVvZ+72XUAteRVSfWTjZerrbCt4IS+nkm+qIBAANLuhE4mcNzRndLWpK5a/rf36x96pTd9+IaftfnTjKtpXQMX3NUq9QeL1HuCbN1+isxbEFIkw6byRFcpLJXa4KPY5Bkfd+/BBuA4wEDEHXuuD5kXDenVonM4BAsOrkOrJSUdS4Qu5V9Ee8o6gOuf2x2t9CGgSXm9oHt24KqfDmv2986Jh1rUDFVLKDRKv9wCDoxNqCYd0ZlfM45FoFPnyUol+cbHPEeT6JgzXzYHX+qC++a16S888bbpmuS5c0pX+WlBCgebjVUg17DFom7kW7fWRuCaTSfIOAGUopROZ/b3hkHvb3RIJBXK9MFCvsvs9RnI994bGEppKOq6P41xsHnMZHJiacnTk+ElNTCX1wMcv0cMbLk33r92eI8hFLBmImIOe9qjuWzu7aMjWj16kv/rHF/Weu3+kzY/t12fevywdnqCEAs2nvTWsrR+9aFaWv7KmXy0Rk3PhzN47+Ybtz+jXR8e1a+AgeQeAEpXSicz83hv6F2t+LKI7r18xu3jZ2pU6cXJq1v72L75xXL8Z400QUA63fs+RExO654YLcgrN7ho4qEh4+u3V1JSjF988PutcPHB4lPOwCZQ7ODA15eiV34zp5cET+o/3PqvL79qt//ytf9GfXf1buqF/sb7+sXcqae2svnmQC8CzNGMOQiGjno6oNl97vuZFwzqtPao7v/cLfX//EUnTo1a37dqnTdcs1+bH9gcmFGg+iaTVl3/wkjZds1xdsRaNxCf1P578pVb3L0lnN7UmzW2qWCrn5B0ASlNKkbzM773ld96qG+9/Xr0drem2ezyR1GntLVq97RnX+lWnL2gLRAEzoJ649Xs+8eBe3Xn9Cm2+9nydfdo8/d/BE/rG07/WJ694m/o6WuU4Vq8fi6drxaUex7LV5lBq8dOUIycmdPA38Zzl/f/5W/+iHTddrHVf+4lrvYigFoBnIGKO4pNJ3Xj/85Kkb936rvQgRMqh4bh+6/TpcAQlFGg+k1OOvr//SE5+P/5v35pz4fSabtYVayHvAFCiUjqRmd87npjSoeH49EDDzoH09/zos5d71q/iTRBQOq9+T8gY3Xj/8/rxZy/Xb53eqb/4wPnq62hVZGZp1JHRicCu3cfclDs4MJl0PGv//GYs4TmoFdQC8CzNmKOWcCg9FWYkPuk6DScWjaRDAtQjrylkI/FJSbMvnPm+l7wDQOlSncizuucVbD9T35vZ/0hZ3B1TxKNuxEh8kjdBQBmK6fec3dOuM7tO7ZaRmEpqaCwR2LX7mLtS2vWUlnBI44mkZ/2RTI3QnjMQMUd9Ha36ypp+Le6Oadvul3PXajI9HQHgtr5sy+oV2rb75fS/UxdOr+/dNXCQvANAlfR1tGrbTP9Dmm6Lt63pV19Hq2d7zpsgoHTl9HuikbB2DRzUltWz3xdsX9tPPwme+jpateS0WM77yXvX9mvXwMFZ39sI7TlLM+YoEgnp7X0d+p+3vkuJKUfhkNGXf/9Cdc2Lal5rWAvbuTOM+pc9hSzpWP3l4/u19+BIzoBa9vcaYxQ20heuW8FyDACokkgkpLcv6tRD6y/VVNJRJBxKTwtftqhTj2y8TOMTSf366Jju+t4BDZ6YYLAYKEM5/Z6e9qg+/b5luueJA9p0zXL1tEfV19mqMxfE6CfBUyQS0jmntWt+W4v+563vkuNYtbWEddq86Tztf2O0pJoT9c63gQhjzBJJOySdLsmRdK+19q/9er1aamkJ68wF01NmElNJndU9jzdkCJzM9WWOY/WF61bo87/nvq4tqGvRAKCRRCIhndkVy/l8KGTU19kmp92qvTWiL3/kwkAVMAPqTan9ntTgxReuWxG4AoKorUgkpL75bTmfD2pBynz8nBExJelPrLU/NcZ0Showxjxhrd3v42tWnOPY9ABDoQJSvDFDLRWb1WKQZ5TjnNsfr/UhAMiQ3ZY7zvS2b43UkQWqpdR+Fn0pVNJc8lTJ9wiV5NtAhLX2DUlvzPz/qDHmRUlnSarbgYjsP1J3rEUvDZ7I2XqFra9Qb6amHL1+LK4joxMaGkto18BBffp9y8gqAECOY3V0bCK9VONLT76UXqrBdQIozHGsDhwedX1PIKku3+QBUm52r1zepz+/ernCIVPzvFalWKUx5hxJF0p6zuVrtxpj9hhj9gwODlbjcFyl/kjXbX1Kq7b8UNdtfUoHjozqnicO5GyVkl21FM2lXjKb4jhWB46M6iNffU7Xb3tGmx/brz+47Fzd88QBsgpJ9ZdZoBjktjJS/ZsPbn1al9+1W5u+/YI+8/5l6u1opU9TYWS2cQ2NJdJv5KRT7wlG4onc9w+HR+U4tsZHXBwy2/gys3vhki79wWXn6iNffa4u8ur7QIQxpkPSLkn/2Vp7PPvr1tp7rbUrrbUre3t7/T4cT24NzPqdA1rdv2TW9zXCVimYm3rJbMrQWELrdw7Myu5tu/Zpdf8SsgpJ9ZdZoBjktjLc+je37dqnDZefR5+mwshs40pMJdPnUMqh4bjiiaTrAEVQBvjIbOPLzO6Gy8/Tbbv21U1efR2IMMa0aHoQ4pvW2kf8fK258mpgsquRNsJWKWgs+bJLVgGguXldI7piLfRpgCJFI+H0doopi7tjSlrren4xwId6kZndrlhLXeXVt4EIY4yR9LeSXrTW/je/XqdSvBqYvs7WWfu4NsJWKWgs+bJLVgGguXldI8YTSfo0QJF62qO6b93KnPcEbS3u5xcDfKgXmdkdiU/WVV793DVjlaS1kn5ujPmXmc/9F2vtP/r4miXLLFD54M2X6C8f36/v7z+SbmDOmN+Ws0c3BWhQT7pjLdq+tj+9PGNxd0zb1/brzAXTDQ0V0gGgeaU6oZlF9rav6dcZXW2a39riWmSvXiusA7WS2o4ze/vEZNLRN2++RINZxcIZ4EM9SLXl89siemj9pYqGTc57hvvWrVQ4JL02PF719t7PXTP+WVJdX7XcKuBuX9uvzdeer1AoxK4ZqHuOY/XS4An99T/9UpuuWa6e9qj6Olt15oKYQiHjWeGZ/AJAc/B6AyXJ9RqxtLeDvg/gInv7xKkpRweOnNCGB069qdu2pl//ZmE75wpqznOnl75T14OWSEgnTk7pA19+qibtfVV2zahXXgUqQ6GQejtbNRyfDHQBGjS+VIa/v/+I1u8c0PXbntFHvvqchuOTnhWeyS8ANJfUG6izuuept3N6ZqfXNeLIiQmuHUARjpyYSA9CSNPnyoYHBjTIuYI64NXGD8cn09cDI6N1X/tJzdp7P5dm1D2vAk6pgh2Fvg7UWqGMkl80mnNuf7zkx7xyx9U+HAkQbF7Xj8mkw7UDKILXuTKVdGp0RMApxbyPrfV73aaeEeFVwClVsKPQ14Fay5dR8gsA8OJ1jWgJh7h2AEXwOlci4aZ+e4U6Ucz7gFq/V2jqM8WrAm5q7WShrwO1li+j5BcA4MXrGtHX0cq1AyhCX0ertq3pn3WubFvTr76O1gKPBPxXzPuAWr9XaOqlGV4FnFLFOQp9Hai1QhklvwAAN/muH1w7gMIikZDevqgzZ3e9SKSp7/OiThTTlte6vW/qgQgptwJuqV8Hai1fRskvAMCL1zWCawdQnEgkpDO7YoW/EaiBYtryWrb3DNkBAAAAAICqYSACAAAAAABUDQMRAAAAAACgahiIAAAAAAAAVdP0xSoBALnOuf3xWh9CxTTSzwIAANAIGm4gwnGshsYSbDmFwCG7AABM45qIRkSuETR+ZrahBiIcx+rA4VHdsmOPDg3Htbg7pvvWrdSyRZ2c5KhrZBcAgGlcE9GIyDWCxu/MNlSNiKGxRPoXJUmHhuO6ZcceDY0lanxkQH5kFwCAaVwT0YjINYLG78w21EBEYiqZ/kWlHBqOKzGVrNERAcUhuwAATOOaiEZErhE0fme2oQYiopGwFnfHZn1ucXdM0Ui4RkcEFIfsAgAwjWsiGhG5RtD4ndnA1IgoplBGT3tU961bmbOOpac9WqOjRrMrtsAL2QUAYFop10SK/yEoUrm+54kDWt2/RD3tUfV1tqo71lLrQwNc+Z3ZQAxEFFsoIxQyWraoU49uXMUFCTVXSoEXsgsAwLRir4kU/0OQhEJGS3s79Kn3vk3rdw6QWdQ9vzMbiKUZpRTKCIWMejtbdVb3PPV2tnJSo2ZKLfBCdgEAmFbMNZHifwia4fhk+g2dRGZR//zMbCAGIijugiAitwAA+IfrLIKGzCJo/MxsIAYiKO6CICK3AAD4h+ssgobMImj8zGwgBiJShTJSvwQK+SEIyC0AAP7hOougIbMIGj8zG4hilRTyQxCRWwAA/MN1FkFDZhE0fmY2EAMR0qmiRUCQkFsAAPzDdRZBQ2YRNH5lNhBLMwAAAAAAQGPwbSDCGPM1Y8wRY8wLfr0GAAAAAAAIFj9nRNwv6Sofnx8AAAAAAASMbwMR1tofS/qNX88PAAAAAACChxoRAAAAAACgaoy11r8nN+YcSY9Za8/P8z23Srp15p/LJB2QtFDSUd8OrDb4marnqLXWt2VBHplNqdffyVzwM1WHb7ktkNlaqMfffy0E/fdQy7a2VEH/XXtp1J9L8udnq5fM8ncLrlr8fM3UPyhFI2StUX+GojJb84EIj8ftsdau9OWgaoSfqTk04u+EnwmVxu9/Gr+H6mnU33Wj/lwSP1tQNfLPJjX+zxckjfC3aPafgaUZAAAAAACgavzcvvPvJD0jaZkx5pAx5uN+vRYAAAAAAAiGiF9PbK39/Tk8/N6KHUj94GdqDo34O+FnQqXx+5/G76F6GvV33ag/l8TPFlSN/LNJjf/zBUkj/C2a+mfwtUYEAAAAAABAJmpEAAAAAACAqmEgAgAAAAAAVA0DEQAAAAAAoGoYiAAAAAAAAFXDQAQAAAAAAKgaBiIAAAAAAEDVMBABAAAAAACqhoEIAAAAAABQNQxEAAAAAACAqmEgAgAAAAAAVA0DEQAAAAAAoGoYiAAAAAAAAFXDQAQAAAAAAKgaBiIAAAAAAEDVMBABAAAAAACqpq4GIq666ioriQ8+5vpRNWSWjwp+VAWZ5aOCH1VDbvmo0EfVkFk+KvhRFWSWjwp+FKWuBiKOHj1a60MASkJmETRkFkFEbhE0ZBZBQ2ZRbXU1EAEAAAAAABobAxEAAAAAAKBqGIgAAAAAAABVw0AEAAAAAAComkitD6BYjmM1NJZQYiqpaCSsnvaoQiFT68MC8iK3CBoyCwCAf7jOImj8ymwgBiIcx+rA4VHdsmOPDg3Htbg7pvvWrdSyRZ2cuKhb5BZBQ2YRZOfc/njJj3nljqt9OBIAcMd1FkHjZ2YDsTRjaCyR/uEl6dBwXLfs2KOhsUSNjwzwRm4RNGQWAAD/cJ1F0PiZ2UAMRCSmkukfPuXQcFyJqWSNjggojNwiaMgsAAD+4TqLoPEzs4EYiIhGwlrcHZv1ucXdMUUj4RodEVAYuUXQkFkAAPzDdRZB42dmAzEQ0dMe1X3rVqZ/Cam1KT3t0RofGeCN3CJoyCwAAP7hOoug8TOzgShWGQoZLVvUqUc3rqLCLAKD3CJoyCwAAP7hOoug8TOzgRiIkKZ/Cb2drbU+DKAk5BZBQ2YBAPAP11kEjV+ZDcTSDAAAAAAA0BgYiAAAAAAAAFUTmKUZxXIcq6GxBOuuEDhkF/WIXAIAUBlcUxE0fma2oQYiHMfqwOFR3bJjjw4Nx9NVPZct6uQkR10ju6hH5BIAgMrgmoqg8Tuzvi7NMMZ0GWMeNsb8whjzojHmUj9fb2gskf5FSdKh4bhu2bFHQ2MJP18WmDOyi3pELgEAqAyuqQgavzPr94yIv5b0XWvt9caYqKR5fr5YYiqZ/kWlHBqOKzGV9PNlgTkju6hH5BIAgMrgmoqg8Tuzvs2IMMbMl/Q7kv5Wkqy1CWvtiF+vJ0nRSFiLu2OzPre4O6ZoJOznywJzRnZRj8glAACVwTUVQeN3Zv1cmvFWSYOSvm6M2WuM+aoxpt3H11NPe1T3rVuZ/oWl1rH0tEf9fFlgzsgu6hG5BACgMrimImj8zqyx1lbkiXKe2JiVkp6VtMpa+5wx5q8lHbfWbsr6vlsl3SpJZ599dv+rr746p9elGi0k+foHr3RmU8hu0/Ptjz2XzJJL5FFXbe05tz/u5+GkvXLH1VV5HfiirjKL5lPmNbUu+wdoDn5m1s8ZEYckHbLWPjfz74clXZT9Tdbae621K621K3t7e+f8oqGQUW9nq87qnqfezlY6zKi4Smc2hezCL3PJLLlErfjV1gJ+IbMopN6uqWQWhfiZWd8GIqy1b0o6aIxZNvOpKyTt9+v1AAAAAABA/fN714w/kvTNmR0zfiXpRp9fDwAAAAAA1DFfByKstf8iaaWfrwEAAAAAAILDzxoRAAAAAAAAszAQAQAAAAAAqoaBCAAAAAAAUDUMRAAAAAAAgKphIAIAAAAAAFQNAxEAAAAAAKBqGIgAAAAAAABVw0AEAAAAAACoGgYiye+xfQAAIABJREFUAAAAAABA1TAQAQAAAAAAqoaBCAAAAAAAUDUMRAAAAAAAgKphIAIAAAAAAFQNAxEAAAAAAKBqGIgAAAAAAABVw0AEAAAAAACoGgYiAAAAAABA1TAQAQAAAAAAqoaBCAAAAAAAUDUMRAAAAAAAgKqJ+PnkxphXJI1KSkqastau9PP1AAAAAABAffN1IGLGu621R6vwOgAAAAAAoM6xNAMAAAAAAFSN3wMRVtL3jTEDxphbfX4tAAAAAABQ5wouzTDGhCXdYa39bBnPv8pa+7oxpk/SE8aYX1hrf5z1/LdKulWSzj777DJeYm4cx2poLKHEVFLRSFg97VGFQqbqx4HgqHVmS0G+IVU/s+QOlRCkthaQyGwzCvr1jsw2tnrPZ8GBCGtt0hjTb4wx1lpbypNba1+f+e8RY8yjki6W9OOs77lX0r2StHLlypKef64cx+rA4VHdsmOPDg3Htbg7pvvWrdSyRZ119UdCfallZktBvpFSzcySO1RKUNpaIIXMNpdGuN6R2cYVhHwWuzRjr6RvG2PWGmM+mPrI9wBjTLsxpjP1/5KulPTC3A63sobGEuk/jiQdGo7rlh17NDSWqPGRAXNHvlEL5A4A0Ay43qGeBSGfxe6acZqkIUnvyficlfRInscskvSoMSb1Og9aa79bzkH6JTGVTP9xUg4Nx5WYStboiIDKId+oBXIHAGgGXO9Qz4KQz6IGIqy1N5b6xNbaX0m6oOQjqqJoJKzF3bFZf6TF3TFFI+EaHhVQGeQbtUDuAADNgOsd6lkQ8lnU0gxjzNeNMV/L/vD74PzW0x7VfetWanF3TJLSa2d62qM1PjJg7sg3aoHcAQCaAdc71LMg5LPYpRmPZfx/m6TrJL1e+cOprlDIaNmiTj26cVXdVhMFykW+UQvkDgDQDLjeoZ4FIZ/FLs3YlflvY8zfSfonX46oykIho97OVs+v1/u2J0C+jBbKNwAAAIDGU8z7gFq+1y12RkS2pZIafrPZIGx7guZGRlFvyCQAoBlwvUPQ1TrDxdaIGDXGHE/9V9L/lnSbv4dWe0HY9gTNjYyi3pBJAEAz4HqHoKt1hotdmtHp94HUoyBse4LmRkZRb8gkAKAZcL1D0NU6w0UvzTDGfEDS78z8c7e19rF8398IopGwrlzep9X9S9QVa9FIfFK7Bg7W1bYnaG6ZW/NcuKRLGy4/Tz3tURlj5DiWqYGounzbRVFzBwAQVNnXsFi0/rdHBCTvOhC13uKzqIEIY8wdkt4p6Zszn/qUMWaVtfZPfTuyOtAda9Enr3ibNjwwkF43s21Nv7pjLbU+NEDSqa157nnigP7gsnN12659rFNETaUymb3esDvWwlpaAEAgea2l33HTxVr3tZ/M+lw9bY8I5KsD4dVnq1aGi50R8e8lvcNa60iSMeYbkvZKaqiBiOzRonBI6UEIaXqqyoYHBvToxlXsRIC6kNqa5y//w2/r/7x+XHd/6AKNxCe1bffLumXHHrKKqvPaLmokntCbx06SUQBA4HitpX9k42X6h0+sUjyRVNJatbUwGwL1JTu7vR2tevPYSbW3hhVriWhpb0fNtvgsZdeMLkm/mfn/BT4cS025jRZtX9Ov3o7WWdNVvNbNMOUYtTQ4OqFN334hnd0tq1foru8dKHuNF3nGXGRvF+U4Vm+MnPTMKHkDANQzr7X01rE6fCLherdZEtc2VEy5faXM7F64pEufef+yuplBXdSuGZL+StJeY8z9M7MhBiT9V/8Oq/rcRjrXPzCgT16xdNb3ua2bSQ1iXLf1Ka3a8kNdt/UpHTg8KsexVTt+NK+hsYTWZ83cuW3XPn3yiqVlrfEiz6i0fBmNRcPkDQBQ11Jr6TMt7o4paeU6U+Lo2ATXNlTMXPrmmdndcPl56UEIqfY7vRQ1EGGt/TtJ75L0yMzHpdba/+nngVWb10jnuQvb0388r3Uztd76BM0tX3bLWeNFnlFp+TI65VjyBgCoa6m19NnvCay1rte3k5MO1zZUzFz65pnZ7Yq11NVOL8UWq/wHSX8n6R+stWP+HlJteFUNndcaLrhuxnEcbbpmeXpnjW27X9begyNs34OqyJfdcqZZFbOVD1PpUYp8GZ2ccmbt+pJqRx3HqeERAwBwSqr+UXY9iEjIuF7fwkZ19YYPweHWx57LNpvZtbvqaaeXYpdm3C3p/5W03xjz98aY640xbT4eV9V5jXQubG9Vb2erzuqep97OVpdBCKujYwltfmy/Pnzvs9r82H595v3LdOXyPrbvQVXky245vKYfpvLM0g2UKl9GU9skf+b9y2a1o0fHEmQKAFBXDh+f0IfvfVa/88Xd+uDWp3X4+IR23HRxzvUttbVnJrb2RCFefey55ilVu+uMBTHX/litdnox1hbf0TPGhCW9R9Itkq6y1s6v5MGsXLnS7tmzp5JPWZJy7vIOjk7ouq1P5YwsPXjzJVrcPY+7xLVRtV96rTObUskZCvm2+QmFjGfm2f1gzqqS21pl1iujjmN1aHhcH/nqc2QqeOqqrT3n9serciyv3HF1VV4HvqirzCJYvPo/j2y8TEZm1vVNUiW3rG7o/gFOyZexIY+iqKXmqUqzmot6wqJ3zTDGxCT9nqQPS7pI0jfKO676lV3pvRheU2XCIcMgBKqmnOzmey637RdTeZ7L9DA0L6+MhkJG4ZAhUwCAuubV/5mccnRW97yc78/XlwLc5MtYpfJUyfcMc1VsjYhvSbpE0ncl/Y2k3dZaFvDKe+0zU68QZPkaKTKPSiNTAIB6V+q1qp7e8CEY8mWsEfNUbI2Ir0s6z1q7wVr7AwYhTumOtejBmy/Rwxsu1fa1/bpyeV9N19oA5XIcq8HRCb02PK7B0QnP9fle6/3JPMrllqkdN10sK1swjwAAVEP2terK5X168OZLlJhKcp1CRZTbxy62D19vipoRYa39rjHmfGPMckltGZ/f4duRBYDjWL00eGLWep3ta/vV1xnVG8fiTMNCYBSqC5Epe+mGMUZhM721EHlHOUIho6W9HXrkDy9TIukoZKTh8Umt+9pPKrG2FgCAOUmtq5/fFtFD6y9VNGx0eHQiXd/I6zrFLmMoRXZ/KOlYxVryzw4tpQ9fb4qaEWGM+byk/zHz8W5JX5T0gSIfGzbG7DXGPFb2UdYptz1d1+8c0L5Dx9lNAIFydGzCdX/io2MTrt8fChn1tEd1/OSUbtj+jC75qx+Qd5TNcaz+dXhcLw+e0H+891n9/LXjWr9zgP3XAQA1l72TwQ3bn9F4IlnwOsUuYyhVdn/od+/crQ9+5em8uXF7PxqUPlOxSzOul3SFpDettTdKukBSsYtUPiXpxTKOre55FRSZFw2n/z8oQUBzOznpnuWTk96rsILc8KG+DI0l9OrQuD778D4dGo6rK9ZC8UoAQF1w6+8cGZ0oeJ2in4RSZfeHpMK5CXIR+WIHIuIzdSGmjDHzJR2R9NZCDzLGLJZ0taSvln+I9StVUCTT4u6YRuKT6X8HJQhobmFjXLMczjOjK8gNH+pLYiqpedFwOk8j8Un2XwcA1AW3/s7QWKLgdYp+EkqV3R9KyZcbr/ejQegzFTsQsccY0yXpPkkDkn4q6SdFPO6/S/qcpIYsbtnTHtX2tf2zCorcef0Kbdv9cvp7Ul8LUuEQNJ9YNKw7r1+Rk+VY1LsR82r4JPKO0kQjYY0nkun8bNv9srasXkFBVABAzbn1d3YNHMx5D7B9bb+6Yy15HxeUN4iojez+UMri7piMMa596yAXkTfWlvZmwRhzjqT51tp9Bb7vGkn/3lq70RhzuaTPWGuvcfm+WyXdKklnn312/6uvvlrS8dTa1JSj149NT9E6OZlUZ1tE/+nBveliIXdev0Jf/O4BDZ6YCEzhkAbg6y846Jl14zhWrwyN6dWhcc2LTjeCb+mZp3N62j3z6lYch7zPiW+/qHrPbCp/h4+fTE9HvHJ5n/703/2Wjp+cUve8Fp25IKZIpNixc1RJXbW159z+uJ+Hk/bKHVdX5XXgi7rKLILBqxjgv1nYrjeOn9SR0QkNjSW0a+CgPv2+Zem+TwWLCDZt/6DZuPWHFnfHdPeHLtDf/vOvZuUr+3F1VhS1qBfPOxBhjLko34OttT/N89i/krRW0pSmd9qYL+kRa+0ar8esXLnS7tmzp9Ax153MP34sGtaUY3Vy0tHLR07oS0++pL0HRyRNj1A9unFVw+0BW4eqduYFNbNuymnEUo+JTybJ+9xVJbf1mlnHsRqJJzSeSGpi0tEbx+K6+/u/1N6DI2SpftVVW8tABIpQV5lFcLj1kYbGErpu61OzptFnX68q9AaxqfsHzaZB+kNFZbbQ9p135/malfQezy9a+6eS/lSSMmZEeA5CBFkoZHIC8drwuG68//lZn2NdGOqZW46LfQx5x1yFQkantbcqnhjXFf/tR7O+RpYAALXk1kcqpgZEOX0rNLdm6g8VGoj4irX2IWPMW621v6rKETWI1Lqw7FFS1oWhEZF3VApZAgAEAdcr+KkZ8lVowe3tM/99eC4vYq3d7VYfopEFuXAIUCryjkohSwCAIOB6BT81Q74KzYgYMsb8UNK5xph/yP6itfYD/hxW8IVCRssWderRjavqqXAI4AvyjkohSwCAIOB6BT81Q74KDURcLekiSTuVv14EXLAuDM2EvKNSyBIAIAi4XsFPjZ6vvAMR1tqEpGeNMZdZawclyRhzurX2zaocHQAAAAAAaCiFZkRIklKDEDP+UdOzJJBHHe7nCpSNPKPWyCAAwE9cZ1AK8jJ3RQ1EZOE3XIDjWB04PKpbduzRoeF4urjIskWdBBSBQ55Ra2QQAOAnrjMoBXmpjLy7ZhhjznX59H0+HUugOY7V4OiEXhse15vHT+qeJw6kt1s5NBzXLTv2aGgsUeOjBLxlZnhwdEKOYyVJQ2OJdEMrkWf4LzuLI3EyCADwT7l9Ha++ExpbMXkhG4UVmhHxsKR+Y8yT1torJMlau9X/wwoWt1GxLatXaHA0ob0HRyRNBzQxlWQaD+pSvpHdxFRy1h7G0qk8z/U1OReQzS2L29f0q7ejVb0drdpw+XnqirVoJD4px3FqfbgAgDpWbF+jnL4Od8WbV6G8+JWNRus7FxqICBljPi/pbcaYP87+orX2v/lzWMHiNip226592nTNcq3fOSBpeu/XWDRMg4W65DWy++jGVYpGwlrcHZvV4C7ujikaCZf9ely84cUti+sfGNA9N7xDiaSj23btOzVAsbZfvZ1tZAYAkKOUvkY5fZ18fadG3ukAhfPiRzYase+cd2mGpP8o6aSmByw6XT4g71GxnvaoJKWDMuVYphejLuUb2e1pj+q+dSu1uDsm6VSeU/kuB8s94MUri2csaEsPQqQ+t37nAJkBALgqpa9RTl/HrxmjqH+F8uJHNhqx71xoRsRV1totxphWa+3/V5UjCiCvUbEzu2J66rZ3p6fOvHEsToOFupRvZDcUMlq2qFOPblxVsalgXLzhxSuLjiyZAQAUrZS+Rjl9HT9mjCIYCuXFj2w0Yt+50IyIG2f++x/8PpAg8xoVO31+m87qnqfezlaFQiYdykw0WKgHhUZ2QyGj3s7WWXmeC84FePHKYlsLmQEAFK/UvkapfR0/ZowiOPLlxY9sNGLfudCMiBeNMa9I6jXG7Mv4vJFkrbUrfDuyACl2FDUVyuy1PTRYqDU/Zj3kw7kAL15ZlERmAABF87uvUe2+E4LDj2w0Yt8570CEtfb3jTGnS9ot6SMzn56SFPd8UJNKjYoV+h4aLNSrYjJcydfiXIAXryySGQBAsarR16hm3wnBUulsNGLfOe9AhDEmIumPJS2U9A1NL+VYLOnrkv7M96NrQNVosBptaxc0pmLOBbKMTJVuP8kXADSm7Pb9jAUx2nfMST30GRpt4KvQ0ow7Nb07xrnW2lFJMsbMl3TXzMen/D08lKoRt3ZBcyLL8BP5AoDGRPuOSiNT/ig0EHGNpLdZa23qE9ba48aYP5T0CzEQUVXFjMSxpzHqTbkjyGQZxSonY+QL5Trn9sdLfswrd1ztw5EAcJNq33s7WrXpmuXqirXozWMntWh+q05rp31H6SrVZ6iHWRX1pNBAhM0chMj4ZNIYk/N5+KfYkbhG3NoFwTWXEWSyjGKUmzHyBQCNKTGVVG9Hqz7z/mW6bde+9LVh+5p+dcWa+40fylOJPgOzKnIV2r5zvzFmXfYnjTFrND0jAj5xHKvB0Qm9NjyuwdEJjcTdR+KGxhKzHteIW7sguLxGkLNzm513x7FkGUUZiSf05rGTuvtDF2j72n71drS6Ziwb+QKAxhSNhPXJK5amByGk6f7H+gcGCl4bUtz6JWh8Xn/3SvQZiu0TN5NCMyL+k6RHjDE3SRqQZCW9U1JM0nU+H1vTchsx275muoOdORrnNhLXiFu7ILiKGUH2GiFe2ttBlpGX41i9MXJSm779QjojW1av0F3fO1DwLgVtJQA0pp72qM5d2F72HWzuXDenfH/3SvQZmImZq9D2na9JusQY8x5J/48kI+k71tonCz2xMaZN0o8ltc68zsPW2s/P/ZAbn9uI2foHBrT52vN14/3Pp7/PbSTObWuX7lgL65FQE6kR5MyGNzu3+dbdeW1TxBo7SNPZWf/AwKzs3LZrnzZfe37BuxTlbINF7gCgNkppf0Mho3mthfsfXqghFCyVujYX+rvPdevMYvrEzabQjAhJkrX2B5J+UOJzT0h6j7X2hDGmRdI/G2O+Y619ttSDbDZeI2bnLmxPBzjfSFzm1i6M6qKWihlBzjdC7LZNEZlGSr62spi7FKVsg0XuAKA2yml/F7a3ln0HmzvXwVHJa3Ohv/tct85kJmauogYiyjFT5PLEzD9bZj5YYFUErxGzea3hkkfi8o3u9bRHubsHXxVz17mUEWLHsXrz+EmNTUxp0zXLtW33y9p7cIQ7FU0qX1s5l7bM7e4Kd8gAoDaKaX/d2u1y72Bz5zo4KnltTv3deztateHy89QVa9F4IqlYtDJ/93JmYjY63wYiJMkYE9Z0bYl/I+lvrLXP+fl6jcJrxGzhzJZDqYZ2aCxRMMBeo3uO43B3D74rZrpcsSPEbqPeqXoAew+OcKeiCRVqK6XSp2x63V05bV4Ld8gAoAYK3anOd1e80JtRt2sEd66Do5KzV3rao9px08U6fPykPvvwvll/+3J3W3HLFzcvTvF1IMJam5T0DmNMl6RHjTHnW2tfyPweY8ytkm6VpLPPPtvPwwkMrxEzSSUPHniN6iatuLtXJjJbnGKnyxU7Quw26n3brn3adM1ybX5sP3cq8mjUzBbKTjlTNr3urjy0/lLukFVZo+YWjYvM+qPQDIVy74rnu0Y0y53roGe2krNXQiGjjraI1n1tX0XeH7Gks7BC23dWhLV2RNJuSVe5fO1ea+1Ka+3K3t7eahxOIKTWIZ3VPU+9na0KhUxZ276kRnVTW86kTgJrLXf3ykRmi1NKXt3yns1r1DuVce5UeGvkzObLTjltplfOrLWubSm5808j5xaNicz6w6svm2p/y70rnu8aUUy/pBEEPbOFslGqySmnYu+P2K6zMN9mRBhjeiVNWmtHjDExSe+VtMWv12sG5TS0XncMh8YS3N2Drypd7Mlr1PvMrphOn9/WsJ0ElK+cDOa7u7JsUawp7pABQD0pNPut3LviFKUMvkrXXajkDAvyVZifSzPOkPSNmToRIUkPWWsf8/H1Gl4lTw639W/b1/arO9bCFnWoiHLymi97Xms2Kz0IQf4bRzkZTOXsnicOaHX/EvW0R9XX2aruWEtRFbMdx+ro2IROTiYVNkaxaLjstaUAEGTlXk8zH2eMUdhIoVDI8/Hl1nSgKGVw5MvSXHezyFQoS6VkOl++6GtO83PXjH2SLvTr+ZtROQ1tvvVJS3s79ODNl+jI6ISGxhL663/6pT79vmVqjYS07ms/YT0T5qTUvBazlq41EtLma8/XvGhY44mkWiOVXV3Ger7GUk6bGQoZLe3t0Kfe+zat3zlQUg7c8nPn9Su0aH6bzulpJ0MAmka511OvwtTfePrX+vT7lrk+vty74hSlDIZq9s3yZanU4/DKV3eshb7mDDO9y2Z9WLlypd2zZ0+tD6OulTqCNjg6oeu2PpUzGvfoxlWS5Pq1zdeerxvvfz7n+wNUxLJqZzGZza+UvObLam9na8GvV0I1XiOPquS22TJbzl2HcnPg9bjN156v889aEKQ2tFh11daec/vjVTqa0r1yx9W1PgRMq6vMNrJKt6OpwtSVvh4H5M50U/cPatw3m9NxeG0HXg8/j8+Kyqyvu2ag8kqdflRofZLb1+Zl7ZfLeiaUq5S8FspqNdbasZ6v8ZQzZbPcHHg9bl40TIYANJVKt6NdsRZfrseVnNYPf9RL36zcWn3Z+aqXn6ceMBDR4Aqtf3P7mpW0fW2/umItGolPatfAQdbLwXeFslro65W4q8F6UUjl58DrceOJZEVziuApdbZGOTMoypkRwkwN+KXc9fFejxuJT3I9bjKpnCSt1dc/9k596cmXtPfgiKTa9M0q1Uekr3lKVbbvRO3k29bG9WtrV+rMrjZFw9PRiIZD+txVb1d3rKVmPwMal+NYDY5O6LXhcYVDyrsFU74sp9btXbf1Ka3a8kNdt/UpHTg8KscpbelZpbeBQvA4jlU4JG1f019yDtzyc+f1K/SWnnkVzSkA1Duv62lqfXxmO/jK0JiOjJ707AtsWb1CuwYOcj1uIpnXy9/54m5t+vYL+txVy3Thkq6a9c0yM33hki59/WPv1AMfv0RWtqTrOH3NU6gR0QTyjTxnf60lLL34xqg++/C+WcXWlp3eqdPac6eu1endPdaABoBb0Z8dN12sjraIJqcc1zx55a2S6wdLOV8qnPemXgNaDzIz2dvRqk9esVTnLmzXvNawFrYXt4/8qV0zHIWNZu2aUWpO67R9zVRXbW0914goFTMifFNXma2FarYrxayPv3BJlz531bJZ/c7MvkAxu2Y0gbrvH1Q6V17Xy2/d+q6aXg8dx2okntAbIye1/oHSClpnP0+dX9/nihoRmJZv/Vv2114bHk9fDKTpNUuffXifvnXru6T22Y9lhwHMxdBYIp0daTpr6772Ez26cZXO6p7n+hivLFdyvZ3Xa5D3xpeZyUPDcd14//PpgYJi/8ahkFFfZ5vr10rJKXkDUGnVbleKWR+/4fLzcvqdhfoCqC9+5MrreimppjU9QiGjpKP0IETquG7Zsaekm1/UJpnG0gzMkrTW9cRPukycSXXaeztatX1tv+7+0AV689hJjcQTVTpaBFklBw9S6+0yVXq9ndvAyS079mhoLDfvmUtOBkcnmHofEH4XkColp6XkzQs5BJpLoXO+Eu3KXGW3g6kilJmatXBfUBXKVTnXomr068pFscnKYUYEZk0PagmFXAuoREJGrw2PZ+2n6+iOD/62zuiK6V+HxnXHd36hwRMT2r6mPz0VGfBSTLGe7Klr3bEWDccnc6ayVWMvcMdxtOma5ekirtt2v6y9B0dyLjzcyQ6uuRSQSmXVcRwlrWStzZlu6ZbTHTddLCub077OtaNDDoHmUuicdxyrxFRSd3/oglnXsHLfQJU7tTy7HRxPJF3b3ZZISIOjE408db1h5LteeeVyaW+Ha38uZS79Or+XPZTaV2iCZRhlYyCiyWU3EFcu79O2Nf3akLHuaduafv3FP7yg7+8/MqsBOTqW0O2P/Dz9fVtWr9Bd3zug9Q8MNNpeuPBBoYuM28Vr25p+fenJX87KYqqTtWxRpx7duMqXhn563X9Cmx/bPyvv33j61zkXHq87A5wT9a/cjk8qq/c8cUB/cNm5um3XPtc3Atk5jUXDOnx8Quu2Pp3z/XOtqk0OgeaS75zvaY/mXE9TfbbBExMl32Wey0CnWzvo1u6eODmldV/7CQOpAZDveuWWy3ueOKBPvfdtWr/Tu8ZCuf26agzCl9JX4KZAfhSrbFKZo3MfvvfZWY3Hlcv79BcfOF/WWhlj0oMQKYu7Y3po/aW6YfszOY3OpmuWa/3OAf34c+/W4q5YrU6ypi9GFRReo8SOY/Xm8ZN5M5b6dzXeWHkVTXrw5kt05oLYrFH9xFRSq7b8MOc5nrrt3YXWu9Z9MapmUE6x0lQ+Nl2zPD1YlZIvo165emTjZYqEzJyKYb02PF5uDktRV20txSopVlmEuspsObzaoXznfDQSdm1rNl97vk5f0Fbym6JKFIjO/Dli0bCmHJsuVB0OSR/4cmUKUDeIuu4f5Huz/caxeE4ut6/tL+laWYpKFi93U8zsx2oeTx2jWCXcZTYYd3/ogpzpVN/ff0Sf/z2rs7rn6bXh8VmDENL0aOZk0nGdhtUVa9Hi7piSjqNDw+M6c0FMkQilSODOrVhPKp9jE1OeGcv8dzXW5HlNOwyHjF4aPDHr4vvgzZd4TjNF/SunWGkqH6WudfbK1fhEUmv+9jn1drRq87Xnl7xzh+R9h8qY3GV2AGqnlGnb+dqhfHelvdqa8/o6yrpp5PfSsdeGx1mDX4e8sppv9kJLJHfJd0971Le/r5/1G7xz630OUU8iP3rGTShzmtRIfNK1GEyqs2qMcf16Szjk+vnxRFJ3Xr9Cf/ytn+kjX31OB46MUiANJUnlc2gs4ZqxkfjkrH9Xo3CRV9EkY0zOlMO/fHy/tq/tn7U/9J3Xr9CJk1OcCwGWrxhXKh9e7alXRr1y9eujYzo0HNfegyO68f7nteZvn5ORKenNgts+5alldqu2/FDXbX1KBw7TPgO1lHpjc93Wp4o6L/O1Q27nfGq6uFdbE2sJlzUY6fV8kooqRliouGE9FypsVoWymhrEP6t7nno7Tw2aR0JGd16/YlYuT2uP+vb3LSc7xRbTLKfYK1nOjxkRTShzdG7b7pe1ZfWKWWuaM2tCXLm8T1+/8Z069Ju45kXDGk8kteS0mHpd1kfcImZjAAAgAElEQVRtW9OveCKp//qPL2rvwRFJ0vqd+etFUMAF2VL5dMvm1o9epC//4CVJsztZpZqacnTkxIQmk45awiH1tkc1cnKq5KJJYSP1drTmFLFc2B7V5mvP17xoWCPxSX3xu9PrcJtgKl7DyndX44wF03m454kDOZn9ypp+tYSn27rsJR5GVt+8+RINjk5oaCyhXQMH9akr3qY//18vuL5OKbLvUGUus7twSZc2XH6exiam9Obxkzp9fhvtLlADheo6ZPeP8rVD+e5KV7qgs9vz3Xn9Cn3iwb3pouVndLXNKlye2d+Tpq+dmT9LZjtXjQLUKE1mVku5hsQTSX3xuwdy+knb1/TnLD30qrGQfR6kjsetz1ZM/bHsIujZM1u9lkGWM7uBLOfHQEQTypy+t/fgiO763gFtvvZ8ndfXoUhodk2IwdGERsYS2vTtF9In0D03XKCQMVra2zGrkzs8ntCHtj8z67XynaAUcIGbVD5T2dx0zXL1tEe1INai+378K/3+xW/Rn1+zXLGWSFkDV1NTjn5xeDRdkPXK5X36oyvepj/Msxbfq4M3Ek/oc1ctS++BnuqMObK68f7nc16bqXjBlW/acyoff/GB8zU8ntDXP/ZOnZiY0pHRCf2PJ3+pm/7tW3XmgjaFZ6apnjg5pTu+82JOYcvta/t1VlebBk9MzHrtcu+eZC4zSS2zu3BJlz7z/mWeBTUBVI/XGxvHcVz7R4vmt+YtYuu1tKzSBZ1Tz/fIxssUTyT1q8ExffG7B07dhHpgIF1/Ymlvh45PTObUvLnz+hWzHpP9c/hZgBqlS2W11GtINBLW4ImJdG0vafpvffu/f3vBv6/b+4QdN12siSnH871Dvuy4Pd+DN1/iOhj40PpLc+o/lFNEmiznx9KMJpQ9fW/wxIROX9CmxV0xWWtn1YTYcPl5+vRDP5t1gn76oZ/p1aFxDccn09OwTp/fps7WiOf0I7dpT/WwnzXqT2Y+9x4c0ebH9mtiytHnHt6nhwYO6cb7n5fjqOyG/MiJifQghCSt7l+SHoSQvHOYOe0wdacqnkimByFSj/3sw/tkrfuSJqbiBVe+ac/SdD6stbr6S/+s993zY1239Wmt3zmg7+8/ot7OVn3kq89p1ZYf6oNbn9bh4ye17tJz0h05aTo763cOKJG0eV+nWNltbiw63YHacPl5Oa9LuwtUn+NMFwR/eMOl2r62Xxcu6ZI0fc4nrVz7R1NO+e2D19T5coVCRkbTxXpvvP/59IBC6njnRcO654kDOnBkVD87eCw9CJH6+mcf3qdPXrHU8+eo9PFiblJvwr2uIUfHJlyXN3hdO7ti0YJ/X7f3Ca8OjRd87+CVHbfnOzI64ToY+PpIPGcJSqF+gBey7I0ZEU0o3+hc9mifV/G1t/a2azwxpTdGHIWMFAqFdMb8Nm1f25+zHU93rMV1ZH9+W4QCLsiRmc/4ZFIvHzmhu743+67Jr4+Oqb01UtYyh8xCqxcu6dJ5ve2uOZzwyOHUlKMDR0a1fueAa7HXQ8NxWWuZitdgirmr4XW35F+HxtXb0ao7PvjbOqMrpmg4JGuta3Ymp5yi757k23XGrc3dcdPF+s1YgnYXqDG3czS1JfSn37dsTu1DNZa8pl5jPDGlM7va9E9//LsKGSnpWN3341/p6V8NaSQ+qdX9S/JeK8/r69BTt707vWvGG8fi3DGuU6k34V6FxFNFlt1mKZSS2cwdVKTcJTzzomHX148npnRk1CoSMoon3F/HbQZSqh5Z9nV7QaxFFy7p0t6DI7O2vmZ2Q2UxI6JJeY3O9bRHZxXaG08kXe/s/mpwTL975259aPszemVoXH/26D7936NjWtY3fYI+ddu79ejGVVq2qFO/ibvPfPAqhMldY6Tyubgrpr7O1vRU9VRn7UtPvlT2G6dUodXU9MKDv4m75jDpWE1Ozn4Nx7F6/Vg8PdiWrzhh6mKVeS5wsQq2Qnc13O6WfOWjF+k7P39Dt/+7t+v2R36uK+7+kX7/vmdlJc/sFHP3JF/hMK/ZZh1tEZ3ZFaPdBWrM7Ry9bdc+/cUHzp+1A0amYtqHUotfliPzNf7mB/9XQycS+tjXf6L33P2j6eK6l75FOz9+sbbtfjm9O4LXtTLWEtYZC2I6fHxCH9z6NIV061hqQMHrGpIqsizlzlIoNrOfeHCvDrw5ms7Ch+99Vp+7all6tpDk/b7kxZnHHXhzVJ94cK9rjtzOq10DB3MKjG9ZvUJ3fu8X+sz7p187c7Ce2Q2VxUAEcpy+oFXfuvVdenjDpXprb7vuueGCnB0AvvTkdMHAQ8Nx/cnf/0yr+5fonicO6MiJiVkFYFLT1zNHGi9c0qVN1yzXVNLRgzdfoiuX96Wfm7vGyBQKGZ3R1abN156vb936Lm26Zrnu+t504cdSKyCnPhc20rY1/frkFUt12659+tKTL2nbmtyL0Bce368jJyZmPdcbx+JKZtypShXUzHzsjpsultX0nR1JOmNBjItVk8hcN/2jz16u+2+8WN3zWvTvfvsM/cnfz17i9oXH9+tvPnLRrOxsX9uvnvZoURW83d7I3PPEAR0+flLjCfc7VpNTjk6f36b71q3Ulcv7tH1tvx7ecKkevPkSdWdsiwvAX161Iay1s4pLptqHK5f36cGbL1FiKlmwqv89T0zXVkpdM//XTw/qzeMnXa+HhXYJ8HqNVNtzy++8VX/4zZ/Oaoc2fvOnkqaX/fZ1Tte0cLtWpvp7LNMNjlDIpK8hqRs6X//YO7Xz4xerJWxmDRgUM9NuasrRG8fiao2EtOOmi/Wl33+H63LXzCU8b+mZlzPgv2X1Cm3b/XL6+zdcfp5rjtxuFnz6fcu0rK9TD62/VA9vuDTdz/z+/iO6bdf0czFY7x+WZiAtc6pgb0erPnfVMg2OTui//uMvtOma5Vra1yEj6Y8f+lnOWsC+zlb9wWXn6obtz6SnZW1b068vPflLre5fkp725FbkZvvafm2+9nyFQiGmOCFHVyyq0xe0Fb3MwWtaemskpHVf+0m6QOWfXb1ch4bjOjQcV3d7y6yKzqmlIH929XLXQklexV47WsM6fHxC67Y+TSHAJhUKGS1sb9WBE6fa0rtuyJ2W/P39R/RH71k6K3cLZzJdTBHf7DcyFy7p0sf/7Vv1oe3PaNM1y/MW1lza26FPvfdtOcvoyGn9OOf2x2t9CPBRoaJ3mdPZHcfR0bGEPvJV92nvmRzHySmCu/WjF6WLkBdT7K+QzLYnHDKuAyohY/ToxlXqjrWklymmrpXnLmzXvNawFrZPD9CXsxMBaieVzX/4xKqcAqRbVq9I958KvXnPLhyemkHotptKaglP5q4Zj25cpXhiSi++OTpr+e6h4bi6ZgbWs3OUb5mItVbXb8stuJ8avOAmqT+YEYG0zFHpvQdH9MXvHlDXvGi62u3rI3G9MjTuWtG9ozWSU7xmwwMDWt2/ZNZIuFuRm/U7BxQKhbhrDFeZF45iljl43V3JLEg0OJrQZNKmR8WTjrT5sf368L3Pav3OgfRFNBIyOc91x3denHUne/DEhPrmTy8jSTruBca4s9NcRuIJvXnspO7+0AXacPl5Gp5Zg5ppcXdMrx87qfU7B/The5/V5sf2KxQKFX13MHuK6YbLz0vPush391GShuOT6UGIfK8BwB/FFL1LTQEPhUJFn69Jq5w+1sZv/lSr+5ek/11Msb98stset7atJTzdp4tEQunr95c/cqGWnd6pWEtIRrm1dbKfgzvQ9SsUMko6yilAmjmDoNCb9+zC4YeG4/rDb/40PfshJXMJjyS9cSyuobGEetqjikUj2vzY/lk3Rxd3xzQSn0z/f3aOvJZWeOXwzK4Yg/Q+8m0gwhizxBjzQ2PMi8aY/2OM+ZRfr4XKyB6V3ntwRJ/9+59p+5p+Xbm8Tx1tEZ3W3qI7r5/dwb37QxcokVEAMCU1Kpm5DeOy0zsZ+UbJSlmT53V3pbezVRcu6UrPyvnid19Mv1n79k8P6StZyzO+sqZfrZGQ653skJE2XbNcP/iT39WDN1+iZX2d3NmBpOkZOW+MnNSmb7+QHmCIhI3++4ffMStfWz96kXYNHEz/O9VpKzZD2W9kUmuxJc1qc3/wJ7+rb936rlkdKXIK1FYpA+ylnK9eRS67MpZeeRX7K/b872mPpvuFYxNTOX3CbWv61ddxqpB0aqnJ8ZNTumH7M7rkr35QkZ0IUFteufyt0zuLqos16fG+4f9n7/7j26ruPOF/jn5alp3YOHYIOGkylHrqyZoGGwLJa2ehDCktadlsAp2hSfixNM5mGPow/RFmpnmgm/IsacKwk+1k4tCWQiB9oIQMLOxAGBY6rwm/GhPIkzE1LIXUgRA7rp3ItixZuuf5w7mKftwrXUn3Xl1Jn/frpVeLox9X0vd+z7lH53zPvKbajFhQi96n1z5pDHjRk9Z327pqepmGGotGlx3qxeG5M2o4CGEhK5dmxAB8W0r5lhCiHkCvEOJFKWWfha9JRdCaKjg0FsGchhrc87WFuKHntcSSjd23XgpFAn6vCyPjUfjOFABMn2aojkqq2zA+dPMlWacjEhUr284F66+4AMDZX4yGQlFsWt6OpqAPrQ3TtVFiynTV5ZY6P0YnY5rP9cmpSWx+tg9PdF+e0kgVssc0VZbh8WjGr0S37zmEB274Ap7ovhyTU3F43S543MDGL38ef37lhWiu9yfiyGgMpU8xVYv/Jg9GbH62D5uvW4iF5880tLsH45TIPuoAey75nK9691X7YsDZYn+Fnv9q7abvXfN53PzQm2iu8yeWmE1E45jTMD0TIpneTC/uRFC+9GIt4DO2o5lX57rh+Gg40S87ryGAc2fUZI0ftY7Y3HMCODkWhZQSd335DzEansL2l97DvSs6DB2Pkd09yHyWzYiQUh6XUr515v+HALwL4HyrXo+Kl22vX3WU/dDAKP7swTdw5f2/wnd++Q6mYgomonGcHIvg/utTi1r+w+rOlF/8dq7uxJMHf5cxZbhndSfcLrBCMhVNUSTcLmgWn9z+0vtoCvpStqQ9NDCK7t29WLXzNUxEFZzfWIvPNAVxfmMtvF635jnx4xsXYWbAi0f/82J43CLjtdNH5/nLTnVRfyVaNLcBPWs6EwXjzmuogZQSX7z/V/j3P3oZl/+3l3HV/b/CdX9/IFGgDjA2ZVuVPFMouYCY+ritqzow95wAFEXB734/jsHQpO4vkMzDRM6RXEzS7YJuTkgvOqnWZMjWF9Mq9pdvO9UQ8MFzpj6E2o5+fdfruOXnv8ZkVMm4v96v54qiYCgUYXHnMqTXVjUGvLqFUJPjNeh3ZcxE3bqqA/fvfw+bn+1D0O9JDNBnmxWk1hEbnZjCn+56HX/24BuJZbb7+wYTMWakMCt3xLCfLcUqhRDzASwC8IYdr0eFyTYamD7yuWhuA753TRvWnCn+p16gbbv+IsyZWYPfDo1j96sf4c8u/Qz++ivtqPW70VjjxYzL5iMUieGRWy8FABwdnsD3//EIhsYiLJZGRUkvtrr5uoWY11SL46PhxE4b5zUEIKXUHIWPn6kknhx/6eeE1+3C0FgEt+85lFLk68LmOrw/NJby2ukFuag6+DxuLGtvySgY17OmE3Nm1uT8JTJbHk7eaz3915rkHTsmpxS4xfTfBk9P4uaHfp1RlE6970Qkjg9PjjMPEzmEVsHlR269FE9tWIKpmJJSsE+rsO1nZwWx57bFGAxFMDwexbNvH8P3r23H3V/9o4xif+psKrdAYt29kXPf5RKo9Rc3U2NZewtOjkdZNLdMabVVjQFvoi+U/p0CyCiI/8pvTuChmy+B2yXg97hQ43Xhxzcuymjfss0KUo/j09OThmKsZ00n2lrqM2btUGkIKa399UMIUQfgVwDulVI+pfHv6wCsA4B58+Z1Hj161NLjocKkN4wP3XwJNj19JCMpPHbbYtz7XB/29w2m/H3fhqUAgBU7DuDYSHh6p4xn+zIer07TK5KlLRhj1pmGQpFEfKlaGwPYtLwdm5/tS2kM3/30dErDtGVlBx5+9UP8cMW/Q0t9Td6v8UT35YkdY5L/nmc8Wxa3jFn7KIrEsZGJRIV7VWtjAE9tWILhsWhB1er1doPRe+xQKIIjH5/SzNNqXOrFcx5x66hcy50m8vfRfdeW+hDs5qiY1WL0vCy2Pco3p6TL5/Fa991z22LNPGlSP7DSlEX/IFvsAoVfAxiJtXxibM9ti9HaWMsBL2sZ+nAtnREhhPAC2AvgMa1BCACQUu4CsAsAurq6OCfUodJHPuM6BZEEkDIIof5dLYKkPiZ5erzW/ZyMMetMuQonJY+un6OzXef3l2dOKTXyGjGdoktOiWfGrH1cLqG7pd1UTCl4DWquNdbporF4zqJ0Ti9aybi1XiGDN3YMXjj1uHIxI2aNnpd699MrApj++HxzSrp81tRr3dfp+adamJlnc32nhV4DGIm1fGJsMBQxXMuCrGXZQIQQQgD4KYB3pZR/a9XrkH2SCysNhSKa06Q8OsVn1Kl66r+NhqdYLI1MlU/hJOXMdp3p93XnuB7Ue41ccU/VJdc00kI6P/l22n0ed86idCxaSeQ8Rs9LvfvpFQFMf7wZAwH55LP0++r1I5l/yleu2C3mGsBIrBmNseHxKObM1J/9SvaxcoHMUgBrAHxRCPH2mdtXLHw9spFmsbM1nXALYM9ti7GsvSXxd7UIUlPQh54104Vpdr7yQcaWTyzqR8UwUuRPLZSkSIlHbr00JU63rupAwJe9A6T3Gi11fm4/RglWbEent8e52nHTKlr3mabarHmW2+YROY/R8zLf9ii9iGDAlz2nWI35p/Jk+06T/83oNUB6u5ZvMeXk6w71dbas7MDe3gEOeDmE5TUi8tHV1SUPHjxY6sMgg5ILp8UViR+eqQ2hDkrMCvrgcrlSpk/FYgo+OTU9LWoqrkAIgXNn1OQs6petSJsG2xZ9MWadJVucpBezvOOqCzF/Vi1cQmDwdARNdT7MbwoaWquv9Rp5xqgWW+KWMWsPE+Ih4/n01sgC2kXrLmyuw+nIFMLROOISqPG6MvJs8nF6PS54XALhqOFjdlSuZY0Ie5T50gxHxaweo+1MY8CLkfCUoftpFRH0e1xYm1R03O5ikWbnyQpWNv0Dre8UQOJvanFUr8eFmCJTCrCmt03F1DBRJV93DI9Hsbd3AHde3caiqNYrfY0IqmzqFKj04jTHRsLo3t2ruc7Q43GhtbEWAZ/HcMNjVjKiypdt6p66Hra5zo/vfKktY0eDeQYLF+m9RqFT7qkymR0P2dbIDoUi2dd6B3MfJ/MskXNo5Y98zlGtKepaOeKpDUsKqlljFrablSf9Oy20bSm2hokq+bpjzswaXDyvgwNeDsK9S6ho+a4zzHefXr1kNDweNecNUFVQ43T9FRckBiGAswNnI+GpEh8hUXZ6udOMtd7Ms0TOVsw5qlvYMqbk1R8jylehcWtmMdN8rzvIPhyIoKLlWrtcLFZWJjOocVrOO7YQaTEjBzPPEjlbMeeo1f00Ij2Fxi1jtjpwIIKKZnXBISYjMoMap+pOAskYT1TOzMjBzLNEzlbMOcrCkFQqhcYtY7Y6sEYEFS2fvaQLoSaj9PVlTEaUDzVOZ8/wo2d1J7of7WU8UUUwIwczzxI5WzHnqNX9NCI9hcYtY7Y6cCCCTGFlwSEmIzKLyyVwTtCPhoCP8UQVpdgczDxL5GzFnqMsDEmlUEzcMmYrHwciqCwwGZGZGE9EmXheEDkbz1EqR4xb0sMaEURERERERERkGw5EEBEREREREZFtOBBBRERERERERLbhQAQRERERERER2YYDEURERERERERkGyGlLPUxJAghhgAcBTALwMkSH47Z+J7sc1JKeY0dL5QUsyqnfibF4Huyhy1xqxGzpeDEz78Uyv1zKGWuzVe5f9Z6KvV9Ada8N6fELL+38lWK91dN/YN8VEKsVep7MBSzjhqIUAkhDkopu0p9HGbie6oOlfiZ8D2R2fj5T+PnYJ9K/awr9X0BfG/lqpLfG1D576+cVMJ3Ue3vgUsziIiIiIiIiMg2HIggIiIiIiIiIts4dSBiV6kPwAJ8T9WhEj8TvicyGz//afwc7FOpn3Wlvi+A761cVfJ7Ayr//ZWTSvguqvo9OLJGBBERERERERFVJqfOiCAiIiIiIiKiCsSBCCIiIiIiIiKyDQciiIiIiIiIiMg2HIggIiIiIiIiIttwIIKIiIiIiIiIbMOBCCIiIiIiIiKyDQciiIiIiIiIiMg2HIggIiIiIiIiIttwIIKIiIiIiIiIbMOBCCIiIiIiIiKyDQciiIiIiIiIiMg2HIggIiIiIiIiIttYNhAhhGgTQryddDsthPi/rHo9IiIiIiIiInI+IaW0/kWEcAP4GMBiKeVRy1+QiIiIiIiIiBzJrqUZVwH4gIMQRERERERERNXNroGIPwXwi1x3uuaaayQA3ngr9mYbxixvJt5swZjlzcSbbRi3vJl0sw1jljcTb7ZgzPJm4s0Qj9E7FkoI4QPwNQB/pfPv6wCsA4B58+ZZfThERWPMUrlhzFI5YtxSuWHMUrlhzFIp2TEj4ssA3pJSntD6RynlLilll5Syq7m52YbDISoOY5bKDWOWyhHjlsoNY5bKDWOWSsmOgYg/g4FlGURERERERERU+SwdiBBC1AK4GsBTVr4OEREREREREZUHS2tESCknADRZ+RpEREREREREVD4sL1ZpFkWRGB6PIhqLw+dxoynog8slSn1YRFkxbqncMGaJqJwwZxERWcuqPFsWAxGKItF/IoRvPnIQx0bCaG0M4MG1XWibXZ/xIbBBIqfIJ27V+zN2qZT0Ynb2DD/CUcYlEdnHSJuYbztLzjL/rufyfsxH911rwZFkyvfY7DouIrvFYgr6B0Po3t1rep61o1hl0YbHo4lGBgCOjYTxzUcOYng8mnI/tUFaseMAlm55GSt2HED/iRAUxfB2pkSmMRq3AGOXnEEvZt8ZOMW4JCLbGG0T82lniYgoP4oi8cmpcGIQAjA3z5bFQEQ0Fk+8edWxkTCisXjK39ggkZMYjVuAsUvOoBeztT534v8zLonIakbbxHzaWSIiys/weBSDoYhlebYsBiJ8HjdaGwMpf2ttDMDncaf8jQ0SOYnRuAUYu+QMejE7Gp5K/DfjkoisZrRNzKedJSKi/ERjcQyPRy3Ls2UxENEU9OHBtV2JD0Fdm9IU9KXcjw0SOYnRuAUYu+QMWjG7dVUHdr7yQeI+jEsisprRNjGfdpaIiPLj87ixt3cAW1Z2pOTZnjWdpuTZsihW6XIJtM2ux74NS7MWLVIbpPSiRVY3SCwySFqMxi1QutgtFmO/sqTHrNfjwthkDENjEQDWdvIZS0T5q9TzxmibmE87S0RUDpyU15uCPtx5dRseeLEfm5a3oynoQ0u9H+fNDFTPrhnAdGPTXO/PeR+7GyStis09azrR1lIPj6csJpyQhYzErXo/J3WmWK28eqXH7KygtDwurazITFSpjORgJ3Vo85FPm2i0nSUicrpseR2A7flczcX3ruiw5HUr7kpZbZDOb6xFc73f8i9Iq6BS9+5efHIqzMrylBe7Y1cPq5VTMqvj0uqKzESVKlcOLvfdmJzSJhIR2UUvr58cj5Qsn1uZiytuIMJuegWVBkMRdqKpLLFaOdnJ6orMRJUqVw7mYDERUXnRy+uTU0pF5nMORBRJr6CSOnWGqNywWjnZyeqKzESVKlcO5mAxEVF50cvrboGKzOcciChSU9CHnjWdKZVEt6zswN7eAXaiqSyxWjnZyeqKzESVKlcO5mAxEVF50cvrAV9l5vOyKVbpVC6XQFtLPfbctjixHOPhVz/EnVe3sRNNZYnVyslOVldkJqpUuXJwue7GRERUrfTyOoCKzOcciDCBx+NCa2MtAj4P5syswcXzOnhBRmWL1crJTlZXZCaqZNlyMAeLiYjKj15er8R8zoGIJFrbXAGFb5VSrttmUXlRFInRcBThaBxxKVHjdWNWMP+qtsXGK+OdVPnm0vRGNxZT8OnpSUzFFXjdLrTU+bkdMlW0fPJnPvdVzy31McdPhVMew7xNRGQNM/KrFTk6/TkbA16MhKdK0g5U/UBE8pcRVyR++Fwf9vcNJqa8+D0urP3Zm1n3ttfa8/WRWy9FJKZk3d+bqFiKIvHR8DhOnJ7Ed588XPCew0b2o891HMU8niqHGpNHhydQ63NjIhrHZ1uCGIvEDcVHLKbgNydCWP9ob+K+O1d34g9n13MwgipSPvmzkFyr95gLm+vw/tCYY/arJyKqFGb0i816jvRBh/S8v3N1J7a/9F7K9a9d/feq7tWl77F940/ewE1LFmDR3IbEtihHhyeybpWiKBKfnp7EeCSGTcvbE489OjxRkduskLMMj0dxdHgiMQgBnI210XDU8J7Dw+PRxBr9x9ddhk3L2/HAi/2G45XbxJFqNBzFidOT2PT0EXx91+vY9PQRjExM4YEX+w3Fx+BYBOsf7UVznR89azpx//UXYSgUwe8nGEtUmfLJn1r3feDFfnx6ehIfj0xgKBTJyPF6zz84FtH8ez5tBxERZTKjX5zPcyiKxFAoktIOpF/nrthxAP2DoYz+2PpHe7Gyc27Bx1mMqh6I0PqCN+49jPVXXJD471pfajXS5K1S1C/4hp7XsGrna9j8bB++86U2LJrbgFqfuyK3WSFnicbiurEWjsbzSGAKblqyAJuf7cPXd72Ozc/24aYlC6AoiuHjYLwTAISj8YyBsQ2PvZVo5FR68TEVV9Bc58d3vtSWiMdNTx/BoMYFFlElyCd/pt930dwG3LRkAW7oeU130EDv+WNxpei2g4iIMpnRLzb6HJoDDidCGA1nXud27+7V7I81BLwFH2cxqnogQu8LVr+M1sYAJqKpX0TyVil6AxnfXvY5TETjFbnNCjmLz+PWjbW4lIaTYFwCG/cezvGKrRsAACAASURBVIjluM51X/rIa6VuK0T504u79MrO6fGhxhQAbL3+oox4XP9oLy+EqCLls81m+n3XX3FBxrnyzUcO4uR4JJGjhRBY1t6S8fwet6votoOIiDIVs32y2h+KS4mHbr4Ei+Y2ZH0OvZkT4aj2da5Wf2w0PJX3cZqhqmtEqEGS/CWpX4a6RqbO78ZDN1+SWOv8mabaxBeoN5BxXkMAXreoyG1WyFmagj58pqkWW1d1pNSI6FnTiRqd+NZKLlKn4yll5kiE3pq1R269NKOeCuO9+tR4teOupd6f+Lsao41nBn3TY+rJ9ZfzQoiqRj7bbKbftyno0zxXJiJxrP7pGylrgAEk1gD3rO6E3ys087beOcyBZWeYf9dzeT/mo/uuteV1iGhaodsna/Wxt67qwI+e78fQWETzOfSuR+MSmrm8Oa0/ptaIUP/dzv67pQMRQogGAD8BsBCABHCrlPI1K18zH1pB0rOmE7OCPuzbsDRR0GPT00dSgkilN5BxdHgCf3T+DJzfUFtx26yQs7hcAvObgjgn6MVjty3GUCiC4fEo/u6f38NdX/684SSoF8taHU+9kdenNixhvBNmBf2acTdnRg323LYYg0kxeufVbWibXZ8RU8PjUV4IUdXId8vk5PsKITTPlQ9PjmfMKHqi+3L89VcUfHhyHN//xyOJTu0zty9FOFr5+9UTEdml0O2TtfrY333yMB5fd5nuc+j14Wu8roxcvmVlB/a8/hH23LYYbpdIFLC8d0UH7v5q5e2a8XcAnpdSrhJC+ADUWvx6eckVJEMh7UJO+zYsRXO9H01BH3pWd6I7qbr7/ddfBEVKhKNxDCPKizGynMslMBUHvvGTN1KSUN/xEJ65famhJJjPyK3eyOtUTMH5jY46xakE9PLq8HgUN2rEqHq/YyNhLJrbgPVXXIDzZtbg72+8GH++5y1eCFFV0Ns3Ptd9YzEFPWs60b37bD+kZ3Unvv+PR1Iec2wkjJgiE7MkVGqfJj13V+J+9UREdsonr6vS+0MNAS9Gw1PwZHkuvT78rKAfs4J+PNF9OT4ZDWN4PIptL/Tj0MAonjtyInE9CyDv4zSLZQMRQogZAP4YwM0AIKWMAnDcAt9sQZKrSIjLJTCnoQabr1uIWp8bU3EFfq8Lt+85lBII3MKQrKYXq+Fo3PDggN/jSsTyRDQOv85WifnMnqDqpJVXs+VTn8eNZe0tuGnJgsR692XtLXjstsXwnBmx54UQUSpFkXh/aAx/98/vYdPydjQFfWip92NGwIOhsUjKfVsbA3ALGF7yVEgHmoiIiqPVH1Jn7DfX1xiaKZfeZ5JSYtXO1AUJTlnuamWxyj8AMATgISHEISHET4QQQQtfz3RGCo00BHw4d2YNvv3LdzAejScGIQBWmib7FFMUB5ieCrb2Z2/ilp//Gl/f9Tpu+fmvsfZnb2rGrjryqr4ef60mI7LFaFPQh+9f255SdG9/3yC+8ZM34PO40Vzv5yAEURp1Cu/+vkF07+7Fqp2v4cafvIFoXGrmaBYVJiJyNq3+kLrbRbbrSXXw+PzG2ow+U7HXCFayciDCA+BiAP8gpVwEYBzAXel3EkKsE0IcFEIcHBoasvBw8mfkgit5FOoPz61ngbUq4MSYLXZwIJ9thpJj/sDGK7Fvw1LO+nE4J8Rsthh1uQTcLsH8SSmcELdOlm2ZnFaObghwENlqjFkqN4xZZ7GiP+TkHxCtrBFxDMAxKeUbZ/77SWgMREgpdwHYBQBdXV2O2iTeaKERdRRqKKRdnbSQESdFkRgej3J9pgM5MWYLLYqjyne5hdnTdhnv1nJCzOaK0UKX/DB2KpcT4rYYVsdmtnNGL0ez9oO1yj1mqfowZlM5oU9h9hLoYq8RrGTZjAgp5acABoQQbWf+dBWAPqtezyrZprqkM2vESd26ZcWOA1i65WWs2HEA/SdCUJSqzw+URT6xmq6Uo6WM9+qRLUYLiUHGDjmVHbFZyDlTTDtBRFTJnNKnsKJP7tTcb/WuGX8B4LEzO2b8FsAtFr9eSWltq+UW0+s48xl50tseMbm6KZGZco2WWjlCzHgnoLAYZOyQUxUam/nkWif/ykVEVG7yzdtW9Y2rKbdbOhAhpXwbQJeVr+E0LpdAU9CH/hOhjG1UjK6jz2e9PpFZ9KbyqiPEhcZzLox3UuUbgzNqPIwdcqRC8lohuZa7WxARmSOfvG1137hacruVxSqrlt6ImtHdM5xc3ZSqT7HxnAvjnXLRi0EhBGOHHKmQvGZ1riUiIn355G3ma3NwIMICxf7C6+TqplR9rJ6xwHinXPRi0C3A2CFHKiSvcXYYEVHp5JO3ma/NYXWNiKpUbLXTbGuDnFDNlapLMfFsJF6raS0cFUYvBl0uV87YYc4kO2jFWb55zexK6UREZFw+/VGj+Zp9kOw4I8ICZvzCq1Xd1CnVXKm6FBrP+cSrU6v5kjNki8FsscOcSXbQizMAeeU1zg4jIioto/1RI/mafZDcOCPCAlb9wssK8VQKhcYz45XMwhgkJzMrzjg7jIioPBjJ1+yD5MaBCItYUe2U65GoVAqJZ8YrmYkxSE5lZpxVS6V0IqJylytfsw+SG5dmlBHuLkDlhPFKpcYYJDswzoiIKB3bhtw4EFFGuH6UygnjlUqNMUh2YJwREVE6tg25cWlGGeH6USonjFcqNcYg2YFxRk43/67nSn0IFa+Qz/ij+6614EjIKdg25MaBiDLD9aNUThivVGqMQbID44yIiNKxbciOAxE2436yRNN4LlC+GDNUiRjXRERkRKW1FxyIsJG6n6y6lYu6Vqhtdr2hIKq04KPqoBW3AIo6F6j6ZMufAJgbyZFytdvF9guIiKh8FHMtV4ntBYtV2khvP9nh8WjOx6rBt2LHASzd8jJW7DiA/hMhKIq0+rCJCqYXtyfHIwWfC1Sd9PLnyfEIcyM5kpF2u5h+ARERlY9ir+Uqsb3gQISNitlPNp/gUxSJoVAEH49MYCgUYYecSkYvbienjJ0LjGVS6eXPySmlqAFexhdZRS//HT8VTsQb95knIioPxfYZih1IqMT2gkszbKTuJ5scREb3kzUafJU4bYfKl17cuoXIeS4wlimZXv50CxTUMDO+yGp6+e/YSBjf/uU709u41fkK7hcQEZE9zOgzFDuQUMx1pFNxRoSNitlPVg2+ZFrBV4nTdqh86cVtwOfOeS4wlimZXv4M+IzlxnSML7KaXv4bDU8l4s3jEtxnnojI4czoMxi9ltNTzHWkU3FGhI2K2U9WDb70kbj04MtntI3FL8lqenHbEPChIeDLei5oxXJznR/RWBwfj0wwZquMXv4EYCg3psuWK5kbqRDpcdMY8GbE5paVHdj2Qj+A6XgLR+PcZ56IyEG0+gBmLIswei2np5jrSKfiQITNCt1P1mjwGZ22w2nJZIdccZvtXEiP5UVzG/C9a9rw9V2vM2arlF7+LKRh1suVAZ+buZHyptemXthch30bliI8FccHg2PY9kI/Dg2MAjjbNnOfeSIiZ9DL5bNn+IteFmHGQEKltRd5L80QQriEEDOsOBjKTg2+8xtr0Vzv1wxco9N2OC2Z7GIkbrWkx/IdV12I7z55mDFLGQqJMb1cGVMkcyPlTa9NHQlPobnej9aGAM6dWYOhsQiAyphSS0RUafRyeUyRpiyLKLRPXKkMzYgQQuwBsB5AHEAvgJlCiL+VUm618uAof0ZH2yqx8ipVlvRYjkvJmCXT6OXK46fCjDPKW642tRKn1BIRVRq9XD4VU5jDLWB0aUa7lPK0EOIbAP4XgI2YHpDIOhAhhPgIQAjTAxgxKWVXEcdKBhmZtlOJlVep8iTH8lAowpglU2nlSuZGKoSRuKm0KbVERJUmWy5nDjef0aUZXiGEF8B/BPC0lHIKgNHNU6+UUn6BgxDOUomVV6myMWbJDowzKgTjhoio/DGX28vojIgeAB8BeAfAvwghPgPgtFUHRdbjNFEqN4xZsgPjjArBuCEiKn/M5fYyNBAhpdwOYHvSn44KIa408lAA+4UQEkCPlHJXAcdIFuEUIyo3jFmyA+OMCsG4ISIqf8zl9jG0NEMI8S0hxAwx7adCiLcAfNHAQ5dKKS8G8GUAfy6E+GON514nhDgohDg4NDSU39ETlQBjlsoNY5bKEeOWyg1jlsoNY5ZKyWiNiFullKcBLAPQDOAWAPflepCU8pMz/zsIYB+ASzXus0tK2SWl7GpubjZ84GScokgMhSL4eGQCQ6EIFMVoeQ/SwpgtPcZ0fhiz5mDc2asc45YxUt3KMWapulVCzDLvli+jNSLUhTFfAfCQlPIdIUTWxTJCiCAAl5QydOb/LwPwXws/VCqEokj0nwgl9sRVi660za7neicqS4xpKgXGHeXCGCEishfzbnkzOhDRK4TYD2ABgL8SQtQDUHI8ZjaAfWfGKzwA9kgpny/4SKkgw+PRxMkJTO+F+81HDmLfhqVc/0RliTFNpcC4o1wYI1SI+Xc9V+pDICpbzLvlzehAxH8G8AUAv5VSTgghmjC9PEOXlPK3AC4q8vioSNFYPGUvXGD6JI3G4gCmRxKHx6OsDEtlQVEkorE47r/+IoyGp7DzlQ9waGA0JaaJrJArl6qYU6uD1vdsNEaIiMgcduddtvHmMjoQIQG0A1iO6eUVQQA1Vh0UmcfncaO1MZBykrY2BuDzuDWnM/Ws6URbSz08HqPlQ4jsoRWv919/Ee77p99gaCwCn8dd6kOkCpYtlwLT8TkajuL46CS6H+3lFNEylqujqTcVePYMf9YYISIic+Vqm81U6DIQDl7oMzoQsQPTSzG+iOmBiBCAvQAusei4yCRNQR8eufVSHB2eQK3PjYloHJ9pqkVT0Kc5nal7dy/23LYYrY21PEnIdtmS9cnxSEa8fvuX72Db9RdhZsCLpqCvlIdOFSY9FhsDXjy4tiujA9IU9CU6J5+emsSmp49wimgZM9LRHB6P4oEX+7FpeTsaAl6MhqfwwIv9+OGKf6cbI0REZL6moM+2vFvIMhC9NuXC5jqMhKeqfnDC6EDEYinlxUKIQwAgpRwRQrBlLRORmJLoHKsnAKA/nWkwFEHA52HHmWyV6wJgcko7Xs+bWcOBMzJVto7Dvg1LMzoOQ6HpQbL7r7+IU/PLnJGOpqIouGnJAmzcezgRH1tWdkAqEm2z6zVjhIiIzOdyCdvybiHLQLTalAde7Me3/uRz6N7N2ZNG599PCSHcmF6iASFEM3IXqyQH0OtUDY9HE9OZkrU2BhK/AhLZKVusAoBbCM14dbtE1SVuspZeLI6Ep9Bc78f5jbVorvcn4k7tnIyGpzRjlFPzy4eRjmZcIjEIof77xr2HEZfTnWKtGCEiImvYlXf1rpuytfFabcrKzrmJQQggs79bTYwORGwHsA9AixDiXgD/CuD/seyoyDTZOlVNQR961nQmTir1V529vQPsOJPtcl0ABHxubF3VkRKvW1d1IOBjrJK58v3VQ+2c7HzlA2xZmRqjnJpfXox0NKWUmvEhJfeuJyKqVOoykHzaeK02pSno4+zJMwwtzZBSPiaE6AVwFQAB4D9KKd+19MjIFNmKuLhcAm0t9dhz22IMhiIYHo/i4Vc/xF1f/jwkJD4emdAt1MWiK2SG5FgSZ2Y86BUcagj4MHtGDTZftzBR72T2jBo0BMy5yGNcEzAdB7liMV3yGtVtL/Rj83ULsWBWELV+N2YFp3+dYXw5R7bvQmu98SO3XprSJno9LhalJCJyADvb1uRlIIqiIC6nB6aHx6O6r6vVprTUs7CxymiNCAB4H8Bp9TFCiHlSyt9ZclRkmlxFXDweF1obaxHweTBnZg0umd+BE6cjWLvjVc11S4VWjCVKlx5Ly9pbsHN1J9an7TigxqrLJTC/KYj6Gq/pDQ7jmoCzcfDAi/3YsrIjpQZAtl89cq1RZXw5R67vIv27DPjcGW3iI7deyqKUREQlVoq21eUSaAr6DL+uVv8gW/HraiOMTCUUQvwFgLsBnAAQx/SsCCml7DDzYLq6uuTBgwfNfEpCfqOFQ6EIVuw4kDFKpxbqyvXvDmFbz54xWzitWFrW3oJ7vrYQUkpbfzV2SFzbEreMWX3JcbBobgPWX3EBmoI+nNcQwLkzagqORYfElxXKLtfm+13o3f+Z25ciroAzXMqP42J2/l3P2XA0leOj+6615XXs+F7yeC/sH2goVdtqxutWwSxJQ2/G6IyIbwFok1IOF348VCpqEZdkeidArrXRev8enopDUWSlnURkIa1Y2t83iLu/KjFn5nTR1OOnwnkl6EITeyGVkKnyJMfBoYFRdO/uBQAc2Hhl3ssrku8b16kpwPiyTiFtnNZjdNu8aBznN9ba+ZaIiCiJkb6b2Rf8iiIRnooV3aZrXZtVI6MDEQMATll5IGSfbFOZstWUAPRrTnwwOIbxSIxTjckwvVjyelwFTbWLxRR8ciqcqHeyt3cAd17dZigmc8U9VYdscZDPFND0+z508yWazyuE4ACuBQpp4/TyTlOdT/f+RERknVyDCLn6bmYv3VCf79NTk+wzmsRoS/pbAK8IIf5KCPGX6s3KAyPrZNsmsTHgxc7VqTtp7FzdicaAF4B2xdgtKzuw/aX3q3brGSqMXvVhj0tk3cZTi6JI9A+GcONP3sCqna9h87N9uGnJAjzwYr+hmCykEjJVnmxxkGt72WTp993+0vsZO75sWdmBe545gv4TISgKd1swU7bvKt+843GJjPtvXdWBsckYvzciIouoF/0rdhzA0i0vY8WOAxntZa6+Wz7tthHq821/6X3ukGUSozMifnfm5jtzozKWbSrTSBjY/tJ72LS8HQ0BL0bDU9j+0nu4d0VHYm/ettn1eHzdZTg2EsZoeArbXujHoYHRxHMTGaFX4O/4qXDeU96Gx6MZezJv3HsYm5a3G4rJXMUGqTpki4N8lu+k3/fQwCh+9Hw/Hl93GY6fmsTweDSRN/uOhyqhVoSjZPuu8s074Wgcs2f4E7v1jIan8KPn+zE0FuH3RkRkEb1BhOS8m6vvZvayW/X5jo2Ese2F/sS1UmtjAHNmBthnLIDR7Tt/YPWBkH2yTWWKxuLY3zeI/X2DKY+5+6tnT1qXS8DncePbv3yH05KoKFpr5ApZJqHX2DQFfYZjkuv1CNCPg3ziUuu+Q2MRxKXEqp2vpdyXtSLMl+u7yjfvhKNx3PLzX2e8Dr83IiJrGB1EyNZ3M3vZbfLzqXWk1CKVHIQoTNalGUKI/37mf/+nEOKZ9Js9h0hmyzaVST3Jki1rb4EQAh+PTGAoFIGiSM3n6FlzdgkHUaEKWSahFbfqXs1aj1MUiaFQJBHTsZiS8t+cck3p8olLvfvWeFPjdNHcBjx08yWIS8m4M5He5+92IeMcV3NBNBbHntsWY1l7S8pj9NpFDrwTEVknW95N78Ol53P17+o2mWYtoeAyXvNl3b5TCNEppewVQvwHrX+XUv7KzIMpt21jypleAZj0wi7L2lvwF1d9Dv/l0d6MQi+KIgsuDmgxx23PRflJj8/GgBcj4SndZRNaBYl61nSiraUenrSicloxfsdVn8N6jRi3OY65PZfDFbprhtfjgsclMBVTMDQWxfpHe9Fc58f3rmnDd588XOq4K4Zjc2365z82GcPan72Z8ll/dlYQ7w2NJZZ1qXljVtAHl8ul2y6W6XdF0xwXs9y+Mz/cvtM6Tuof6OXdC5vr8P7QWF5/z9Z/1Httvba+CrbdNIuhDyXrQITdnHQCVDNFkTg5HsFEJI6YInHzQ29q7pULoCT79xrguI4GFc7oRYDRxiF9/+eeNZ3Y/GyfE+K46joa1UBr4OuuL38eLiGw+qdvOCHuilEWuVZrz/dl7S34m2vb8Y2fGPsO2PmsGI6LWQ5E5IcDEdZxWv9AK+8Oj0c1rz2e6L4cN/S8VnSbyoFn0xj6sLLWiBBC/H8AdEcqpJQdeR4UlYlYXGL1T9/A/ddflHWNlplFYIi0GClYBBiv8ZC+7rAh4NUpUhfDUAi84KC8JXeehEjdjWF/3yD6jofw81suYf60idZa45WdczEUihj+DtLzS/KSDg5MEDkbB3vKU3LeVdvViWhMM2/H4oopbarRPieZI9f2ncsBfDXLjSqMOhL4yWg4sSuG3hotrpslO5hd9Tg9bvVi/N1PQ5rbRRFlk77lmJpLkx0bCcMtBPOnTbTaKvWXtUK+AyPbyhERkTmSc+5vPg1p5m2P22VKm2p2n5OyyzoQIaU8mu1m10GSfdSRQLWDtvOVD3T3ymXRFrKD2QNe6XG7t3cAO1d3psTxlpUd2PnKB0XvOU3VJ/3XFL2L3U9PT2LrKu5Dbgettqql3o+9vQMZ7VvPms6c34HZe9MTEZG+5Jyrd13SUuc35ZqEP7Lay9D2nUKIywD8DwCfB+AD4AYwLqWcYeGxUQmoI4Hqib5x72Fse6Efm69biAWzgqj1uzEr6E9MQc22fy+RGdSLiPT1eoVesGntO90Y8GLfhqUIR2N499MQtr3Qj0MDowA4Ek75Sf81JTmXphdE9HpceGrDEkzFFOZPC+md83de3YYHXpzeC74p6ENLvR/nGdgLnr+YERHZJznnHhoYxbYXpvP258+tR8DnSbSdZlyTmN3npOwMDUQA+DGAPwXwSwBdANYC+KyRBwoh3AAOAvhYSrm8kIMk+6gjgcknelPQh/MaAjh3Rk3GCW10XT5RocxqXHK9RnO9H0MhaBau5Eg4GZW+b/mhgVE8/OqHeKL7ckgpOeBQIlptVdvsety7oiNRy8MtgJHwVM7vx+y96YmISJuiSIgzSxmT29XNz/YVXCssGzv6nHRWrhoRCVLK/wPALaWMSykfAnClwYd+C8C7hRwc2S95Cqt6ok/FFUxO8ZceKh21cTm/sRbN9f6iGoRs67u53IiKpRVDtyxdgMmpOObMDBQdv2Qel0ugKejD6ckYbuh5DYv/2/82VO+BeYKIyHpqf+2eZ47oLhO3gpl9TsrO6IyICSGED8DbQogfATgOIJjrQUKIVgDXArgXwF8WfJRkG5dLYM5MP35+y6VwCSCuSDz4L7/Fq78dZsVYKgmzt83LVRGZI+FUrIaAFz+/5VK4BfDp6Un86Pl+DI1FmEMdaHg8mlie0RDwYjQ8hQde7Me9Kzp0vyv+YkZEZL3k/tpQKJpzlnahuD1z6RgdiFiD6dkTtwO4E8BcACsNPO6/A/gegPqCjo5spygSH49MovvR3sTaqC0rO/D+4BiisThPVrKVFfs5663vVhQlZTu+OQbWihMl04rXLSund7lOryHAXFo6KdurAthw5Wdx+55DKd+ZoihZn4PLEomIzJecnwGguc6PYyNhHBoYRffuXgDAgY1XmjoIYXY/k4wzNBAhpTwqhAgAmCOl/IGRxwghlgMYlFL2CiGuyHK/dQDWAcC8efOMPDVZaHg8mhiEAKY7zxv3Hsa26y9CjdeFd4+fThmkUIuuuVyuqulIM2btU8x+znoXej6PG8vaW7Cyc27iF9C3PhrGyfEounf3VmRDxJi1hxqvzXX+xC/sE9E4vndNG7775GH4PG4oisRIOILjoxGsf7Qy480sZsatmg8URck41x+44aJEZ1dt857ovtyMt0BVhrmWyo2TYlZrUGDrqg786Pl+AMD6Ky5AU9AHIQQURWa0l0YG+NPvIyEL7mdS8QzViBBCfBXA2wCeP/PfXxBCPJPjYUsBfE0I8RGA/xfAF4UQj6bfSUq5S0rZJaXsam5uzuvgyXxavxY31/kxtzGAUCSOwVAEzXXTJ+axkTC6d/fi7WOnqmofdcasfRRFwabl7Xh83WXoWdOJRXMbDFWn16sD8fvxCBRFwR1XfQ6bn+3D13e9js3P9mH15QsSFybA2Ybo5HjEjrdpOcasPaKxOJb8QRPuv+EiNAV9GA1P4RdvHkV9jRe/+OZiNAa86D8RwuGB04lBCIDbP+oxK26T88Hbx05lnOt3PvEOvr3sc4n7HxsJwy2AoVAEH49MYCgUqYq2jYrHXEvlxkkxq/Xj03efPIyNX/5DfOdLbdj8bB9W7XwNN/S8lnLNoSgSvx+P4N3jp7FixwHcvucQjnx8Cr/7/QQGQ5Mp90vvG05EuAtSKRktVnkPgEsBjAKAlPJtAPOzPUBK+VdSylYp5XxM77jxv6WUqws+UrKcokjEFZmyf+6iuQ343jVt+Pqu13HF1lew6ekj+M6X2rBobgOA6ZO1IeBlR5pMpygSJ8ejKQMG3/lSG5a1t+SsTq83k+KdgVN4+9ipxEXgorkN2LS8HYqUmg3R5FT26dlEyQI+N1Zf/hms/dmbWLXzNWx+tg83LVmA7S+9BymB309Mx2Wtz82Oj42S84HaXiU7NhLGuTNrEv+9rL0FJ8ejmgVtiYjIGnpLZ8+bWZPYAlv9m3rNoQ4uvDNwCt2P9qK5zo/vfKkNm54+giu2vYL/tOPVRP7W6ht+eHI85boHmC6Gqc66IGsZHYiISSlPWXokVHLD41H88Lm+lMq0d1x1Ib77ZOrJv3HvYay/4gIA0yfraHgq8W/sSJNZhpOmTwNnY+/717bnrJSs15jV+tyJC5FFcxsSI+xK2gAcMB3bbs6SpzzEFIkNj72VEbMrO+diZGIK49EYjo2EMRqe0ow3bv9ojeR8oPfZu89M321tDOBvrm3XnCHFgXYiIuuoWyMnU/Oz3uC9OrigDvCvv+IC3UELrb7h9pfeR8/qzpQdObas7MA9zxzhALQNjA5EHBFC3AjALYS4UAjxPwC8avRFpJSvSCmXF3SEZJtoLI79fYPY9kJ/Yjr8gllBzZO/IeBFa2MAf3/jxdj5ygcA2JEmc+kNJrhdIuc6er3GbDQ8lbgQSW6sPj09ia2rUreG2rqqAwEf45mMm4opmjHbFPSh1ufGRycn0NoYwM5XPsjYiqxnTSe3f7RIcj7Q+uy3ruqA2yXwz3/5x9h83UK4BDhjhYjITsYAaQAAIABJREFUZnpbIwd82n06n8ed6CuqfTu9WW9qTYj05xkai2BOQw2e6L4cT66/HJuWt2PbC/3Y3zfIAWgbGN014y8A/A2ACIBfAHgBwGarDopKQz1BkyvTvvyd/4DWxkDKSd3aGEDLDD8eu20x9rz+EQ4NjHIfdTKdGo/psWdksEttzPQKHm1Z2QG/x5V47h8934+7v9aOzdctRK3PjYloHLNn1KAhwHgm4/Ri9pygD+GpOLa/9D62rOyYLgD8Qj82X7cQ82fVwuNyYY6JW5FRqqagDz1rOtG9uxeHBkbx8Ksf4pFbL8Wp8BRGJ6YQ8LnxrV+8jb+59vM4d2YN/N7Ccw8RERVGb2tkABl9OvWaY3g8mjLAPxGN6+Zvrb7hg2u70BDw4Xg0jFU7X0s5Hg5AW8/orhkTmB6I+BtrD4dKSesErfG4sHVVR2J5RmtjAP/wjYsR9HlwTq0Pt/3xZ7F2yQJuP0em02swjAx2pTdmXo8LY5MxDI1FcGwkjIdf/RD/91f/KNFYHRoYxQ+e6cMdV12IOQ0BBLyMZ8qfVsz+/Y0X4/E3j+Ibl83H0FgkMeNM3VEj6PNgVp2fsWYhl0ugraUee25bjMFQBOcEfRgei0KREtG4gh8804ehsUhib3pAv9NLRETW0dsaWWuAwuUSKe3uthf68ddf+Tx2ru7M2JVKvb/e8xTz4xcVLutARK6dMaSUXzP3cKiUtE7QxoAX4Skl5ZfioP9sx5lb25BVsjUYRh+fHJ+zgjIjtpMvNobGIjh3Zg1aGwK8KKSCpMesEAJuAdz2x59Nibfu3b2JzhEHIezh8bjQ2liLgM8DRVEQ9rsztus9N2lWSjG5h4iIzKV3zaF37aKXv/Wep5gfv6hwuWZEXA5gANPLMd4AwFa4wmmdoPObgqiv8bJDRrYzc7BL67l4sUFmyxazjLfSSv5umutrsn4XHGgnIioPWvk63/xd7I9fVJhcAxHnArgawJ8BuBHAcwB+IaX8N6sPjJyDHTKqVIxtshPjzTn4XRARUTK2C/bLumuGlDIupXxeSnkTgMsA/B8Arwgh/sKWoyMiIiIiIiKiipKzWKUQwg/gWkzPipgPYDuAp6w9LCIiIiIiIiKqRLmKVT4MYCGAfwLwAynlEVuOioiIiIiIiIgqUq4ZEWsAjAP4HIA7hEgU7BAApJRyhoXHRkREREREREQVJutAhJQyaw0JIiIiIiIiIqJ8cKCBiIiIiIiIiGzDgQgiIiIiIiIisk3OXTOIzKYoEsPjUURjcfg8bjQFfXC5RO4HEpmIcUjlhjFrHD8rIiIC2B44GQciyFaKItF/IoRvPnIQx0bCaG0M4MG1XWibXc+kQLZhHFK5Ycwax8+KiIgAtgdOx6UZZBpFkRgKRfDxyASGQhEoisy4z/B4NJEMAODYSBjffOQghsejdh8uVbBcscg4JCfTil/GrHHZPisj7RQREVnPjnzMttPZOCOCiqJ2kBVFwcnxKLp392YdcYzG4olkoDo2EkY0Frf70KlCGRn9LjQOOb2PrKYVvz2rOzGrzofmOn9K3DJ3atM7vxVFyfuXMZ7zRES55Zsr7ZqpwOsOZ+OMCCqYmkRW7DiAt4+dSgxCAPojjj6PG62NgZS/tTYG4PO4bTtuqmxGRr8LicPkeF+65WWs2HEA/SdC/EWVTKUVv92P9qLveAjfu6YNi+Y2JO7L3KlN7/yOS+T1yxjPeSKi3ArJlXbNVOB1h7NxIIIKNhqO4tNTk7j/+ovwuZY6NNf5U/5da8SxKejDg2u7EklBHQFtCvpsO26qbNlGv9VpgNFYHHtuW4xl7S0AjMVhcrz3rOlEc52f0/uoaJlTUxXN+K31ufHdJw/jjqsuBJAZs9W+5CD5/UtIPHLrpRntjJTS0C9j6nMdG53Ap6cmE20bp/QSEWUqZFBBURRsWt6Ox9ddhp41nVg0tyEjH5vRrvG6w9m4NIMKoigSx0cnsenpI4kpVVtXdeBHz/fj0MAoAO0RR5dLoG12PfZtWMqprmQJdfQ7+YKjtTEAr8eVOeV9TSc2X7cQLpcraxxqxfuWlR3Y9kI/p/dRwTSXYazpxLL2FuzvG0zcr7UxgNHwFI6NhHFBSx0ObLwyJXdWezEuvff/zO1LEY6ebWeGx6OauSG5ndJ6LvVcPzQwyim9RERp8l3+oCgSJ8ej2PxsX0qeffjVDxP52Kx2jdcdzsYZEVSQ4fEouh9NXYqR/mtdz5rOlBFHdWTz+Knpx8yZGUBzvZ/JgEylN/rtcYnMKe+7e+FyuXLGoVa8b9w7He+c3keF0lyGsbsX37+2PSV+t6zswM5XPkBrYwABrxvnN9amxGzy8yya24BNy9sxHonh09OTVTEzQu/XuLiClM+qMeBFz5rOrL+MaT3Xxr2Hsf6KCxKP4TlPRHRWvssfhpNqygFn8+z3r21P5GMzl264XALN9f6MtpNKz7IZEUKIGgD/AsB/5nWelFLebdXrkb30Rj//oDmIfRuWYDAUwaykEcdq/8WO7KM3+n38VLjggkXZ4p3T+6hQenHldgk8tWEJJiJxfHhyHNte6MfQWER3Oqn6PIvmNuA7X2rDxr2HqyrPGvk1TlEk3h8aw9/983vYtHy6s9tS78d5MwOGCio3BLyc0ktEpEH9ASi9j6+XK/XyrDRwH85IqyxWLs2IAPiilHJMCOEF8K9CiH+SUr5u4WuSTfSmvw/8fgKrf/omWhsD2LdhaeLf9EY2921YiuZ6f8bzExVDHf1OphezRn7dFEJoL/dwuyr6Ao+slS0mm+v9UIISQb8HP75xUdbppOrzrL/igsQgBFA9edbIuZ3cBqnLXtR2Kvmz0Xsu9b6c0ktElCrf5Q96efa3Q+Oo9XnQXO8vqs9G5cOypRly2tiZ//SeuVX+HNEqoTX9feuqDty//z3NkVCObFKpFVOwyC2ALSs7MqbLu3k9QkXIFZNGp5Oqz9MU9FVlnjVybhttg/Sei0sJiYj05bP8oSnoQ8/qzow+1faX3k/kZBaZrA6WFqsUQrgB9AL4LIC/l1K+YeXrkX3SRz+9Hhc8LqH7y53X49ItIEhkh2IKFrlcLjz86ofYtLwdDQEvRsNTePjVD3HP1xZCUWSiYGA+e2gTFVtEKznmZs/wY3LKq5lnhRD4eGSiYuNS73MEkNglR29Wk3of9XNhYTMiZ5t/13OlPgQqksslcG6DH5uvW4hanxuj4anEEkQhRKJfxVxc+SwdiJBSxgF8QQjRAGCfEGKhlPJI8n2EEOsArAOAefPmWXk4ZDKt6e8Inv2/yZ1kRQI9qy9G96NvpeyyMTYZw6ygLKvEwpgtX5oxm4OiSEhI/PVX2vHhyXHc90+/wdBYBFtWduCeZ47gzqvbcGFzHd4fGnNsDRTGrHMVEpOAdt2dX3xzMfbcthiDoQiGx6PY2zuAO676HO555gj29w06Li5zySdu0z/H9M9nWXsLdq7uxPaX3sPKzrloCvpwTtCHv/vn9/Hqb4dTPpdCvxMi5loqN6WIWUWRODURQ43XhW//8p1Ejv7bGy7CUCiCWFzBeTMD8HhczMUVTkhpz2oJIcTdAMallNv07tPV1SUPHjxoy/GQebR+CQaQ0Une8Y2LEZlSoEiJ0fAUdr7yAYbGIlasX7ath82YrWxaF3v/8I2LMRaJJbaqbW0M4Inuy3FDz2uJX1sXzW3AHVddiAtaggh4PUZH8W2JW8ZsZRgKRbBix4GUmPveNW347pNnC1X+/JZLMDYZQySmWJVzHZtr0z8fAOj+9/PxtS+0JnbASd6aM/1z4QyniuW4mOUv/NXro/uuNXrXsu4fpOdTtwv42o8PoLnOj/VXXIDzZtZAAtjw2NkfK3vWdOLz585g3i1fhr44K3fNaAYwJaUcFUIEAPwJgC1WvR6Vht5uGLNn+DOKU2547C1sWt6O7t29Kc9R6euXqXxpFVn9L2fi+NDAaOJvU3El5YKwGncuIHul1zxYf8UFiUEIAGiu82MoFEkZmFAvuqsh52rVhLh4fpPmNrxqu6R+LtzliYjIHFr5tGd1J5rr/Dg0MIru3b3oWdOJzc/2ZWxlXemFlsnCYpUA5gB4WQhxGMCvAbwopXzWwtejEtDbDSMc1S4Mll5khhVwycmybeWnUnfPUNeb6+1cUMje10R60vdtbwh4sw5MqBfdd1x1YVXkXK197fWKeapbc6qfi5n71xMRVTOtfNr9aC/uuOrCxH3S2y/1ftUwaF7trNw147CUcpGUskNKuVBK+V+tei0qHb0LtbhERiewtTGAc4I+VsClsqF1MdPaGMBENJ74/w+u7UJLnT9R3ZkNKtkhvaL4RDSedWACmI7DBbOCVZFztSqut9T7dc/n5LaIuzwREZlDL58umBXUbb8A/lBZLSwtVkmVT2+fX69LoGd1Z8pa3J41nZhR48ET3ZdDSsl1t1RSRtaAqxczWkuPDmy8MuVxydWdufc1WS095gI+d0qsqh279Dis9burJufOnuHH4+suQ1wCNV4Xzglkns89qzsxp6EGDYGz5z/3ryciModePvV7XHhqwxJMxRTU+FzoWdOJ7t29KX2tahg0r3YciKCiaF2o7VzdibufOYKhUBSbr1uIBbOCqPW7MSvIPdjJGYyuAc+6fVQw9TnVSvuKIjUHL9igktnSd3doCPgSsVrjc2Hn6k6sTxoM3rm6E+cEKj8O9c7vWUG/oe3g9AYgeQ4TEeVHK59uWdmBu8/sOqb2uxoDfm7VWYU4EEFFSb9QA4DR8BRWds7Fzlc+wC0//zVaGwPYt2EpEwo5ht4acK3CSLm28tOaWcG9r6kYhe7YkByrQ6EItr/0HjYtb0dDwIvR8BS2v/Qe7l3RUfHFv3Kd33rvP/lznz3Dn/i1jucwEVFhXC6BC5vr8Pi6yxCJKYgrEg/+y2+xv28QfcdDibzMbZOrEwciqGgul0BT0JfxC5Raof3QwCjX1pKjmLUGPNvMCjaoVAizdmyIxuLY3zeI/X2DKX+/+6uVn4sLOb+5UwYRkfkUReL9obGM64P3B8d4fUCW7ppBVUTrF6iNew9j/RUXmLK2VlEkhkIRfDwygaFQBIoizThsqlIBnxsP3XwJHl93GXrWdGLR3IaC4pTV9clsZsWUXqHVbDFernk2/bgDvvzfO89lIiLzDY9H8cCL/di0vB2Pr7sMm5a34+FXPzTt+oDKG2dEkCn0foFS14YVs7aWv1SRmRRF4sTpCDY9fSQRT1tXdWD2jJq845TV9clsZsVUvnUOyjXP6h33I7deirU/e9NwjQeey0RE5lMUBTctWZDY1lydEdFQ62XtHeKMCDKH3q9v5zUEMjqy+f7qxl+qyExa8fTdJw+jrsaT9wWXVtwva2+BEKLsflUmZyhkJoOW5Po9BzZeiX0blqbk4vQ8PBouzzyr1z7U1Xgy3jsA3bbHrM+diKhaGOnPxyUSgxDA2RnTDQGv4we6yXociCBTaO3Z/uDaLpw7oyZjEKL/RAgrdhzA0i0vY8WOA+g/Ecp6scZfqshMevE0FVPyfq70uF/W3oI7rvocbuh5zXB8EyXTy6WF/GqkFv86v7E2UQwM0M7Dx0cn0VyXWtekHPJstvM5+b0DyNr2mPm5ExFVOqP9eSmlZo4GwEEI4tIMMkfWbQ6T5LNbgYp7upOZzIyn9LgXQuCGntfyim+iZEZzaTG08nD3o73YfN1C3PLzXyfuVw551uj5nKvtseNzJyKqFEb78+zDUzacEUGm0fv1LZner1fhaEx3Whd/qSIzWRlPMUXh7B0qmpFcWgy9PLxgVrDs8qzR8znbzDp1evHxU9P/PmdmwJLPnYioEiiKRHgqZqi/wz48ZcMZEWQrvZHRSEzBD587jDuvbstYM8ZfqshMxcaTokgMj0cRjcXh9bgwNhlLFMV76OZLOPJPjqYoEnFF6sSpC8/cvhThaPnk2Wznc/K5KoTQfM9ej6ssi3QSEZWCuiTj01OTujl1KBRJycfsw5MezoggW2mNjG5Z2YGtL/wGNy1ZgAde7Ncsjmb1L4RUXQqNp/Q1kf9px6s4cfrs2vrtL72Pras6OPJPjjU8HsUPn+vDlpUdGXn4nmeO4MTpSNnNCNA6n9PP1XueOYKdqzszzk2PS5RlkU4iolJQl2Rsf+n9jHbkwbVdGJuMZdSNAMA+PGnijAiylfrr1RPdl+OT0TCGx6PY9kI/Dg2Mou94CJuWt3MaOzmW3o4bm5a3o3t3Lw4NjOJHz/fj8XWXAQBH/slxorE49vcNYigUxUM3X4JT4amMPFwJNU3Sz9X9fYMAgCe6L4eUMnFuHj8V5nIqIiKD1GVux0bC2PZCPzYtb0dDwIvWxgACPje+9uMDrJNFhnEggmzncglIKbFq52spfz82EkZT0Mdp7ORYeuvMGwLexH8PjUXg87jZ6JIjqcvjDg2M4vfjUXx91+sp/14pF+Fa5+r+vkHc/VWJ8xtrE39jITUiIuOSc+ahgVF07+5Fa2MA+zZML+vjwC7lg0szqCT09mxvqfdzGjs5ll7cTkTjif/PpRjkZMnL40bDU5rxXAkX4Xrnavp7YyE1IiLjsuVMo3mXSMUZEWSq5OJg2aalq4ksuUBYz5pOnDczwGns5Fhacfvg2i7MnuHHgY1X6hbK4xINcgI1Js+p9eKJ7svhFkDPmk507+5NiedKuAjXO1fT35vWFrxuMb20g+csEdFZ6W1I8jI3l0sYzrtEKg5EkGnU4mBGqo9zJwwqR1njNnj2fvmcC0R20I3JlsrMw/m0MWoHmucsEZE2/X7N2R8Q2benfHFpBplGq5Bfturj3AmDypGRuM33XCCyml5MjoSnKjYP59PG8JwlItJnNEeyb0/54IwIMo1eIb9oLM5p6lRRcsVztnOByA7pMaooCmMyCT8fIiLjcvVr2M+nQnAggkyjV3084HNzyitVDCPLLliJn0pJK0Z71nRiWXtLYhtLoHpjkp8PEVF+svVruByVCmXZ0gwhxFwhxMtCiHeFEP8mhPiWVa9FzqBXSTemSE55pYphZHoiK/FTKWnFaPfuXnz/2nbGJPj5EBHlK1u/hkvbqFBWzoiIAfi2lPItIUQ9gF4hxItSyj4LX5NKSK9IzfFTYU55pYphZNkFCzZRKenFqNslGJPg50NElK9s/RouR6VCWTYQIaU8DuD4mf8fEkK8C+B8AByIqGBqkZpknKZOlcRoPGudC0R2yBajjEl+PkREhdDr17CfT4WyZdcMIcR8AIsAvGHH65GzcJo6VRLGMzkdYzQ7fj5EROZhTqVCCSmltS8gRB2AXwG4V0r5lMa/rwOwDgDmzZvXefToUUuPh0rD5mq6ls6lZcySRfFs3QnBmK06NuXcss21rPBetRwXs/Pves7KQyIH++i+a43e1fH9A+ZUSmPoy7d0IEII4QXwLIAXpJR/m+v+XV1d8uDBg5YdD1UN2zIfY5ZMZEvcMmbJRMy1VG4cF7MciKheThiISMY8SyYyFLNW7pohAPwUwLtGBiGIiIiIiIiIqPJZWSNiKYA1AL4ohHj7zO0rFr4eERERERERETmclbtm/CtsnAJHRERERERERM5ny64ZREREREREREQAByKIiIiIiIiIyEaWb9+ZDyHEEICjAGYBOFniwzEb35N9Tkopr7HjhZJiVuXUz6QYfE/2sCVuNWK2FJz4+ZdCuX8Opcy1+Sr3z1pPpb4vwJr35pSY5fdWvkrx/qqpf5CPSoi1Sn0PhmLWUQMRKiHEQSllV6mPw0x8T9WhEj8TvicyGz//afwc7FOpn3Wlvi+A761cVfJ7Ayr//ZWTSvguqv09cGkGEREREREREdmGAxFEREREREREZBunDkTsKvUBWIDvqTpU4mfC90Rm4+c/jZ+DfSr1s67U9wXwvZWrSn5vQOW/v3JSCd9FVb8HR9aIICIiIiIiIqLK5NQZEURERERERERUgTgQQURERERERES24UAEEREREREREdmGAxFEREREREREZBsORBARERERERGRbTgQQURERERERES24UAEEREREREREdmGAxFEREREREREZBsORBARERERERGRbTgQQURERERERES24UAEEREREREREdmGAxFEREREREREZBsORBARERERERGRbTgQQURERERERES24UAEEREREREREdnGUQMR11xzjQTAG2/F3mzDmOXNxJstGLO8mXizDeOWN5NutmHM8mbizRaMWd5MvBli6UCEEOJOIcS/CSGOCCF+IYSoyXb/kydPWnk4RKZjzFK5YcxSOWLcUrlhzFK5YcyS3SwbiBBCnA/gDgBdUsqFANwA/tSq1yMiIiIiIiIi57N6aYYHQEAI4QFQC+ATi1+PiIiIiIiIiBzMsoEIKeXHALYB+B2A4wBOSSn3W/V6REREREREROR8Vi7NaARwHYAFAM4DEBRCrNa43zohxEEhxMGhoSGrDofINIxZKjeMWSpHjFsqN4xZKjeMWSolK5dm/AmAD6WUQ1LKKQBPAViSficp5S4pZZeUsqu5udnCwyEyB2OWyg1jlsoR45bKDWOWyg1jlkrJY+Fz/w7AZUKIWgBhAFcBOFjokymKxPB4FNFYHD6PG01BH1wuYdaxElmCcUvlhjFLROWEOYvKTTXG7Py7nsv7MR/dd60FR0JOYtlAhJTyDSHEkwDeAhADcAjArkKeS1Ek+k+E8M1HDuLYSBitjQE8uLYLbbPrM07cajy5yZnyiVv1/oxdKiW9mJ09w49wlHFJRPYx0ibm284SlVospqB/MITu3b2MWap6lu6aIaW8W0r5h1LKhVLKNVLKSCHPMzweTTQyAHBsJIxvPnIQw+PRlPupDdKKHQewdMvLWLHjAPpPhKAosvg3Q5Qno3ELMHbJGfRi9p2BU4xLIrKN0TYxn3aWqNQUReKTU+HEIATAmKXqZvX2naaIxuKJE1Z1bCSMaCye8jc2SOQkRuMWYOySM+jFbK3Pnfj/jEsisprRNjGfdpao1IbHoxgMRRizRGeUxUCEz+NGa2Mg5W+tjQH4PO6Uv7FBIicxGrcAY5ecQS9mR8NTif9mXBKR1Yy2ifm0s0SlFo3FMTweZcwSnVEWAxFNQR8eXNuVOHHV9VRNQV/K/dggkZMYjVuAsUvOoBWzW1d1YOcrHyTuw7gkIqsZbRPzaWeJSs3ncWNv7wC2rOxIidmeNZ2MWapKVu6aYRqXS6Btdj32bViatWiR2iClFy3iyU2lYDRuAcYuOUN6zHo9LoxNxjA0Nl3eh3FJRHYw2ibm084SlVpT0Ic7r27DAy/2Y9PydjQFfWip9+O8mQHGLFWlshiIAKYbm+Z6f877sEEiJzESt+r9GLvkBOkxOysoGZdEZKt82kSj7SxRqalxfe+KDrapRCijgQij2CDR/9/e/cdHVd/54n+9J8kkQxJIigFUsFouoikPFENVZLdLa6vdK9VLoXVXwaprgaWtbW/91d3lar+495Zi29VtKVhrraKtFmX14q6ytbLdxZ9EKqVpqZdqGxRJiATyYzKTzLy/f8wPZibnzJyZOWfmzJnX8/HwYUjmx5mZ1+dzPvM5nx+VitklN2IuiagcWPeQFzHXRCdUxBoRREREREREROQNnhsRYbdoVNE3FOYQKnItZpTchpkkqgwsq0TFYRkiKhw7IrKIRhX7Dw+MWyxp9tRmVjLkCswouQ0zSVQZWFaJisMyRFQcTs3Iom8onKxcgNge1p97cDf6hsJlPjKiGGaU3IaZJKoMLKtExWEZIioOOyKyCI9FkpVLwsGjQYTHImU6IqJ0zCi5DTNJVBlYVomKwzJEVBxOzUiROc8r4K/B9NZAWiUzvTUAf21NGY+S6AR/bSyjbU31WL1oJloCdRgORxDwM6NUHolMZtabAX8NegdCnEdLVAZG89jNyirbOETWsA1GVBx2RMSZzfN68Przcc39r6T9bnKjv9yHSwQAmNzox4PXn4/Dx0dw89a9aTltCfCLHpXe5EY/fnDN/LS6NJbREOfREpWBWftmVlvTuLLKNg6RdWyDERWHHRFxZvO8nlhzEbatWcireORKPp+gqaEW19y/d1x2t61ZyL2qqeR8PsHsqc1p9aZCcc3GF5hRojIwa99sW7NwXFllG4fIOrbBiIrDjog4s3leo2NRDlMkVxsdi3KOIrmKzydpDbC3jw4zo0RlYta+CY7Gyh+/LBFZYzTFiW0wosKxIyLObK5kJKpYsnEXhxOTa2XLbjSqzCqVHTNKVD5m5e9AzyCGQmNs0xBZYDbFaXKTn2utEBWo6nfNiEY1uYDaIzdcgEvapwCIVSKbV3Tgzqe7uC0PudrkRj82r+jA9NYAgFh21y+dizuf7kJ/MIzegRDePjqM3oEQolEt89FSNUjUq4nctQbqTDPK+pTIWYl1WzLL3z3PvWHapskswzx3ULUzm+LkrxE8csMF2Lp6ATav6MAl7VO41gqRRY6NiBCR2QAeTfnVBwD8L1X9J6eeM19GvZubV3Rg3RVz4PP5EI1GsaOrJ+0+HG5FbuPzCU5q9GPt4na0BOrQHxzFXc/uBwAc6h/Bqi2dHNFDJWN21Whqc/24jO7p7sftn2R9SuSkxLotj668EAePBtPKH4BxbRqzMsxzB1UzoylObU31ePtoejtr84oOzGprYlkhssCxjghV3Q/gXAAQkRoAbwPY5tTzFcKod3PVQ53JBWZ6B0IcbkUVwefzYd32rrSs/ujaDyVPjgAXUKLSMLtq9NiqBeMyyvqUqDR8PoG/tgZf/dnrOctgtsUtee6gamU0xenGi2eNa2elfo8gouxKNTXjYgAHVPWPJXo+S8wWcEpcHTAazsjhVuRGRlk946RGLqBEJWdWr6oq61OiMrLapsnVNiKqRmxnEdmvVItV/hWAn5TouSwzW8ApcXXAaBs6bm1FbmS2ZSJH9FCpZatXZ08NsD4lKhOrbZpcbSOiasR2FpH9HB8RISJ+AJcD+JnJ31eKyG6bAzDnAAAgAElEQVQR2d3b2+v04aSxcnUgsQ3dqa0T0NZcz0YzlTWz2WRm9aTGel6BJgClzWy2epX1KeXDrXVtJbNSBjkatHDMrLd5sZ3FzFI5iaqzKyGLyBUAPq+ql+S67fz583X37t2OHk8moz2B82kcF3t/ckTJPoByZDYf+eSTWS67krzZpcisHVliHisC61oXcKKseLj8MbNkm2hUcWQohJHRCGpEEPDXoCXgSFmp+PbB6bc9nfd93vrGZQ4cCZWIpcyWYmrGX8OF0zISEr2bheDK0uR2VvPNLJOdiqlXAeaRyCqnykqxZZjI68zKXkugckZDEJWbo1MzRGQCgI8DeMLJ5ykXs5WljfbkJnIzZpnchHkksoZlhag8WPaIiufoiAhVHQYw2cnnKCeuLE1ewSyTmzCPRNawrBCVB8seUfFKtX2nJyVWlk7F1XKpEjHL5CbMI5E1LCtE5cGyR1Q8dkQUgStLk1cwy+QmzCORNSwrROXBskdUvFIsVulZVvfkTuXhlaipghWS5WKxLJAZszwCQO9AiJkhTymmLixH3U1USZxqa7DsERWPHRFFSqwsnajoDh0LmlZGXAme3Cx1lXSnOwlYFiiVWd5SV+1nZsiL7Mh1th0u2OFL1czp80au3WVY/oiy49QMGyQquiUbd2Hh+uexZOMu7D88gGhU027HFXapEljNczFYFiiB9SdVMydzXYq6nMjNynneYPkjyo0dETawWtFxhV2qBKU4cbMsUALrT6pmTuaanXdU7cp53mD5I8qNHRE2yFbR9Q6E8PbRYfQOhFBX6+MKu+R6hZ64o1FNy3u2Xn+uNk0JZnkLjkbSssTMkBcVkmurdS0776jaleK8YVYeWf6IcmNHhA3MKrpIVNOGZA2OjHGFXXK9QhvG+QxB5GrTlGCWtwM9g2lZag3UMTPkOfnWhfnUtey8o2rndFsjW3lk+SPKTVTdM1dp/vz5unv37nIfRt6MFsPZvKIDd//899jR1ZO83fTWAJ76wkJEouDCNc4q2RtaqZnNppDFnXoHQliycVda7//01gC2rVnIRdSsK8mLd1tmjfK2YdlcfPOZ/djT3Q/gRJYmN/qZGXdhXWuDfOrCfOpaLvBqiJmtMk62NbKVx8mNfjvLX8W3D06/7em87/PWNy5z4EioRCxllrtm2CB1C59oNIqIAmORKJZ2zEDvQDjZmD54NIhgOIJTWyeU+YiJxks9WU9u8uOpLyxEMGztxF3IEMRcq01TdcisP8eiip6BEFYvmolNOw9gT3d/MkvMDHlRPrnOrGvnzWjB6kUzMRweQ+8A0upqbi9IZF9bw6hDI1vbh+WPKDd2RNhgbCyKnsEQAMXRoVGs2tKZ7P1cv3Qu7no2dmWPQ7LIrfK9cpZ6QhYR+HzAj679EO557o20q9jMO1nh8wlaGmrx+55Bw/qzdzDELBHhxHSLg0eDmDejBbf95Vn46s9eH1dvA0j70nTypAC/ABEVyHDk8/IOtDXX45L2KeNGPyfOVz6fpI3k6xsKszOCKAU7Ioo0NhbF7w4PYPWWTqxd3I5127vSVsi99fG9yd9zPjO5ldnqzlaH+65fOhc/eeWPuOUTs/HNZ2JfHJl3smpsLIp3jo8kOyGAE/XnuivmYNqkBmaJCCfmvH/uwd346iVnJjshgBP19hN/e1Fanc4pGUTFMWojrdrSiXVXzMGNF58JANjR1TNuDQpOjypOvtM5OJWj8rAjokg9gyGsjjeeWwJ1hkO0zp7WnJwvxoqH3CifqRVGJ+REh9vNW/fi0ZUXcggi5aVnMITegZBhBmdOacL0Fl7NJQLSp1sMh8cMy8zIaMRyxzIR5WbWRprgr8HqLZ14bNUC3P5JHdf2yeciD1E14q4ZRRqNRJMVTH9w1HCF3IC/Fm3N9WxIk2vls7qz2Qk5tSOOead8jEai6BsKG9efdTXMElGKxJz3Wp8YlhmfT7htIJGNzNpI/cFRHDwahKri1NYJ49o+3MKTKDt2RBSprsaXrJw27TyA9Uvncns5qjj5bHGV7YTMdSGoEHU1Pjze2T2u/ty8vIP1J5GJgL8GG5all5kNy+bCn9IuSWDdTFQ4ozbS+qVzsWnngaxli1t4EmXHqRlFmtJUj03LO7B6Syf2dPfjxy+8iYdvuAC1PuHwdKoY+azunDpHOXWNiB+/8CY73qggU5rqcePFZ+Ke536PtYvbMbnRj7bmepwysYH1J5GJloAfUyc2YN0VczDBX4PhcARTJzbgfRPG19Gsm4kKl2gjPbHmIgyHInjzyFByIeVsZcuovcSySHSCox0RItIC4D4AcwAogOtV9UUnn7PUamt9OGtqMx5btQBjkShqa3yY0lSP2loONqHKYnWLq8xOCxFBjQD/uGQuO96oIIl69I7L57AeJbLI5xOcPrkRzQ114zqQuW0gkb18PsGU5gZEGxWN9bX47lXzcpYtlkWi7JweEXE3gGdUdZmI+AFMcPj5yqK21odTWgK5b1gmRnsfsxKkYti1L3cmZrV6ua0eZRYpG7fkw6wudqqOJioFt5QvI/mWLZZFInOOdUSIyEQAHwZwLQCoahhA2KnnI2PcOogqBbNKbsEsUjbMB5FzWL6Iqoelca8islBEGuM/LxeRb4vI+3Pc7QMAegH8SET2iMh9icegwkSjit6BEN4+OozegRCiUc15H7Otg/qG2CdEpWE1t8wqFaqQujEbZpGyyScfdmeTyOvsrH9Z/ojczeqIiO8DOEdEzgFwC4AfAngQwF/keOzzAHxRVV8WkbsB3AZgbeqNRGQlgJUAcNppp+V39FWk0B5ibh1kP2bWunxyy6w6x8uZdeLqGbPoDm7NrdV88Mpu9XFrZiuJXfUvy581zCyVk9WVwMZUVQFcAeBuVb0bQHOO+xwEcFBVX47/eytiHRNpVPVeVZ2vqvPb2tqsHnfVKbSHmFsH2Y+ZtS6f3DKrzvFyZp0YvcAsuoNbc2s1HxxZU33cmtlKYlf9y/JnDTNL5WS1I2JARL4GYDmAp0WkBkBdtjuo6rsAukVkdvxXFwPoKvhIq1yhPcRGex9z6yAqlXxyy6xSIZwYvcAsUjZW88GRNUT5s6v+Zfkjcj+rUzOuBHAVgL9R1XdF5DQAGyzc74sAHo7vmPEHANcVdpiU6CFOrVSntwZQl2N7OytbB7l5dWKqbHW1PsPcGl3ZYFapEGZ1YyJjhWSmkC3XmE3vyPVZGuWjNVA37j65sklE4yXK1xNrLsLIaBQ1AgT8+ZcZq+WPdTdR+VjtiBhAbEpGRETOBHAWgJ/kupOq/grA/CKOr2I4XZEleohT57ptWDYXgyNjOKlRsz5Xtq2DOIeOEuzOcDSqGBwZw4Zlc3Hz1r1p+TK7ssGsEpBfFo3qxkTGislMPluuMZveYfWzTM2H2X1mtTWZZtPoeflliOiEvsFwUXVqtnNDgh11N8uue5x+29N53+etb1zmwJGQVRJb+iHHjUQ6Afw5gFYALwHYDWBYVa+282Dmz5+vu3fvtvMhS6JUjdD3hkJ4vfsYJvhr0B8cxaadB9A7GMK2NQsL3qO4dyCEJRt3jesxLuYxXaBkZ4BKzWwmJzKcyFZbUz1WL5qJlkAdhsMRnDNjEt7XmH+2PJrVVCXJrdszW0gWzRqCpcpMFWTTjOfq2kI+y2z3mdzoz/klhR1ZJeW5zHqRXXVqrk6CYp+nhGW34tsHhXQSlAI7IhxjKbNW14gQVR0G8CkA/6yqSwB8sNAj85pSLYgTDEdw3QOv4sp7X8Kqhzqxp7u/6PlunENHgDMZTmRrT3c/Vj3UiSvvfQnXPfAqguHCssWsVodCspi4On1q6wS0NdcnG4Clygyz6R2FfJbZ7mOWzVRcVI8onV11aq7yV+zzsOwSFcdyR4SILABwNYBElxYnOcaVqhHqxEruXB2eAGcybHe2mNXqYGcWS5UZZtM7Cvksi/382ZFFlK5S6m6WXaLiWO2I+DKArwHYpqq/EZEPAHjeucOqLKWqMJ1YyZ2rwxPgTIbtzhazWh3szGKpMsNsekchn2Wxnz87sojSVUrdzbJLVBxLa0QkbyzSqKpDTh1Mpc6nK+X8TicWxfHgQjucA5onpzLsxAKYHstqqoqfA2oHu7NYqsx4PJtmPFnXFvJZFvP5c42IkvJkZr2oEupurhFhHdeIqDqWMmtp14z4tIwfAmgCcJqInANglaquKfz4vKOQrd6KeS67Fz9z4jGpsjiVYbuzxax6n91ZLFVmmE3vKOSzLObzL2UbgqhSVELdzbJLVByr23f+E4BLATwFAKr6uoh82LGjqkBshFKlY4bJLZhFqjbMPFFlYtklKpzVjgioardIWg8fV2LJokqH6ZJHMc9UbswgVQPmnKh8WP6ISstqR0S3iFwEQEXED+BGAL917rAqW6XP92RFTKmczDOzRlZU+jo8VNlKOVe9ktsORIVyQ73L8kdUelZ3zVgN4PMATgVwEMC58X+TgUreVzhRES/ZuAsL1z+PJRt3Yf/hAUSj1hc1JW9xKs/MGllVqjqVmaRMpcxEJbcdiArllnqX5Y+o9Cx1RKjqEVW9WlWnquoUVV2uqn1OH1ylquR9hVkRUyan8syskVWlqlOZScpUykxUctuBqFBuqXdZ/ohKz+quGW0APgfg9NT7qOr1zhxWZUvsK5xaobltX+HEMLhoNIqIAqoKf20NK2Iax6k8Z8ua2TBNNwzfpNIrVZ2aq/6zkj9mtHIZfXbZMtE7ELL1c66EtgORXRLlbTg8lndbwAksf0SlZ3WNiCcB/CeAn4OLVOY0udGPH1wzf9w8s8mN/pI8f66KOzEM7jv/vh+fvegM3Pr43uRxPnLDBayIKY1TeTY76dfV+sbN09y8vAOntjbg0LEQ529WIacymFlX1tX6TOs/K/OHOce4cpl9dpOb/IaZiEQVSzbuyutzznVuLnfbgahUUsvb2sXtltsC+dSn+XZisPxZd/ptT5f7EMqqkNf/1jcuc91zuIGo5p6DJSK/UtVznT6Y+fPn6+7du51+mpIo11UxKw3h3oEQlmzchbWL27Fue1da5X9J+xR86WNnYtVDnZXckC7ZgXops9k4kWezrE6dWI/Lv7trXKPkgevOx7U/emXc77etWeiVrbNKkttKzazdGTTK34PXn4/QWNSw/uwbCie/eCZk5i9Rt3o4o5k8U9eafXZPfWEhDh9P7wDdvKIDd//899jR1ZN222yfs9VOKo6ocZxnMlvJUsvbvBktuOnS2WkXxbK1BazUp4V2Cru4/LmqfeCljohCvryzI8ISS5m1OiJiu4j8d1X91yIOqKqUa19hs7l2qRV3YqhpS6Bu3HC4HV09WHfFHGxbs9CNFTGViRN59vkEs6c2j8vaoWNBw2GaPgGnDVUxuzNoVFdec/8reOoLCw3rPyvT1ji1rXKZfXbBcGRcPRWNRtM6IRK3zfY5Wzk3A+VrOxCVUmp529Pdj7ue3Y+1i9tx9rRmBPy1WdsCVupTq+UtE8sfUWlZ3TXjS4h1RgRF5LiIDIjIcScPjApjpSGcGBLfHxzF9NZA2m2ntwbg8/nQ1lyPU1snoK25np0Q5JjEST81a4l8pkoMhTb6PacNUSGyffE0qv/McpmaPyu3IXfK9tmNr6d8eX/O7KQiOiGzvO3p7se67V0I+GtztgWs1Kcsb0SVwequGc2q6lPVgKpOjP97otMHR/mzUnEn5sE93tmN9UvnJm/P+XDkBol8puZy/dK5+MEv/4ANy5hXske+jVyjXGbmz8ptyJ3y+ewK+ZzZSUV0gtP1KcsbUWXIukaEiJyX7c6q+lrWBxd5C8AAYgtcjqnq/Gy353y64uU7DzVz1wyPTMPgHNAKF40qjgyFMByK4M0jQ7jnuTfQOxjCg9efj6aGWoyORb2U1wRXzQH1ukLmEHPXjHE8Vdfm89nl+zlzIVPX8FRmK5mT9akHy5ur2gdcI4JrRFhgyxoR34r/vwHAfACvxx94LoCXAfyZhef4iKoesXIwVDyzefeZFa/PJ5jc6EffUBhjWXbXqKIGNbmIzyeY0tyAaKOisb4W371qHkQE/hpBOJJ7gV2iXLLVlWZ1n5X5w0a3YV3qTkafi9X54fl+zlbPzUReY3d9avV5ZrU1sbwRuVzWjghV/QgAiMhPAaxU1V/H/z0HwE3OHx4VwkrFnau32IO9yVSBEh1mZtvNMpNUDLMvk3bWfaxL3akcnzMXwqNqU6r6j/UsUWWyuljlWYlOCABQ1X0ArGznqQB2iEiniKws5ACrVTSq6B0I4e2jw+gdCCEatfcqsNmKwn1D4XF/nzejBWsXt2MoNIZ3j4/YfixE2fKeyOLSjhnJTghgfGbtfl6qDHZ/hrnqxmIej3Wpe/QHw3j32Ai+9elzsHlFB9qa6m37nIETuXn3+AjrF/Icq/Wu3fWpGSeeh+0DIudZ3b7zdyJyH4AtiHUuLAfwWwv3W6iq74jIFAD/LiK/U9Vfpt4g3kGxEgBOO+0060fuYaXo2c21onDi72b7O1dzLzMza69cec+23Wwxq2BX0xUUr2bWic/Q7tXWWZcWzqncRqOKQ/0jWPvkvuRnsX7pXNz17P6iP+dUB48G8U5/EMs2vcjPu0p4ta5NlU+9W6rdK+x+HrYPiErD6oiIawH8BrFtPL8MoAvAdbnupKrvxP/fA2AbgPMNbnOvqs5X1fltbW0WD8fbStGDnGtF4cTfVy+aaftV6ErHzNorV95zbTdb6CrYpbpS4wZezawTn6Hdq62zLi2cU7ntGwpj1ZbOtM/i1sf34saLZxX9Oaea3hpIfr78vKuDV+vaVPnUu6XavcLu52H7gKg0cnZEiEgNgPtU9TuquiT+33dUdSTH/RpFpDnxM4BLAOyz5ag9rhQ9yNm2RYpGFQrFlr+5AGdObUJbU/qcVu7FTHbKlffWQB0eueECTG8N4HtXnWfb1ojcZ7zyOfEZFrsFZ+Zw3tZAXfL+zJs7ZOYmMWXmA22NUGhBQ7DNth3etPNA8jb8vMkLjOrdtqZ6hMci46YxlGpLY7ufh+0DotLIOTVDVSMi0iYiflXNpytwKoBtIpJ4nkdU9ZkCj7OqJHp2UytBu3uQzVbwBjBuONqGZXPxzWf2Y093vyPHQtUtW96jUcUbvYPJPF7SPgUP33ABan1S9CrYpShn5CwnPsNidjcwG847q60JPYMh5s0lUnNj15SZzNyICO54al/yvAnw8yZvyKx3581owS2fmI0r733JsAyVYrcYu5+H7QOi0rC6RsRbAHaJyFMAhhK/VNVvm91BVf8A4Jyijq5KJXp2MxuzdvcgG63g3TsQGjcc7eate7Huijm47oFXHTsWql7Z8p45PHJHVw+6Dg1g25qFRa8+X6pyRs5x6jMsdHcDs+G829YsxLSJDcybS6TmxmzKTCF1TGpuolHFVz4+G12HBvh5k6dk1rs3XjwLN281L0Ol2i3Gzudh+6B6nH7b0+U+hKpmtSPinfh/PgDNzh0OAeXdb9xsONrMKU3YdetHuBcz2S5b3p0cHlnOckb2cNtnmC2vbjvWapb6WQyHxxypY/h5k1dlZjui6rlpDCy/RKVhqSNCVb/u9IFQunLtN242HC1QV8P9z8kxZnl3enhkucoZ2cdNn2GuvLrpWKtd4rPoHYBjdQw/b/Kq1Gz3Dnhz2hnLL5HzLO2aEV8jYoOI/KuI/CLxn9MHR6VntuBPa6CO+ylTyTm10BX3BycnWM0r8+cerYE6bF7R4fhiekRexTJERIWyOjXjYQCPAlgMYDWAzwLodeqgqHyMhqO1BurSFgz08n7K5C5ODI+spv3BqbSs5JX5c4/EYrh3//z3WLu4HZMb/ZjSXI9TJgX4WRBZwDJERMWw2hExWVV/KCJfUtX/APAfIvIfTh4YlU/mcDSjBSwLXcyLKF92D4/MtqAg80zFypVX5s89Uj+LHV09AGJXc/lZEFnDMkRExbDaETEa//8hEbkMsYUrpztzSOQ2di8YGI0q+obCXACIyoL7g1M5FZM/1p3WWXmvWBdQtSu2TmEZIqJiWO2IuFNEJgH4KoB/BjARwFccOypyFdMFLP016B0I5XUC47BkcpKVRpVZniNRRTSqzCHZwiyLhS7AyrrTumhU8VbfEP7YN4wJ/hoMhyN4/+QJOH1yY9p75fRiuERuZkedUmwZYucqUXWztFilqm5X1WOquk9VP6KqHar6lNMHR+5gtADbg9efj8PHQ1iycRcWrn8eSzbuwv7DAzkXXTMbltw3FHb8dZC3JRpVuTI5udE/bmGt9Uvn4s6nu5hDskW2LBa6ACvrTuv6g2EcPj6CtU/uw5X3voS1T+7D4eMj6A+mv1dOLYZLVAnsqFOKKUNWz9lE5F1ZR0SIyD8DMK0RVPVG24+IXMdoATaF4pqNL+Q9z5nD+MgpVufe+3yCkxr9WLu4HS2BOvQHR3HXs/uxp7sft3+SOaTi5cpiIQuwsu60LhiO4Oate9Pe/5u37sWjKy8EGk/czonFcIkqhR11SjFliOvlEFGuqRm7U37+OoDbHTwWcimjoXOHjgULOoFxKCzlI59hm/k0qnw+H9Zt72IOyXbRqCI8FsG3Pn0O+oOj2LTzAPZ096dlsZAFWFl3WhdRNawLIgaXVcw+Cw4ZJ6+ze1rFyXnulMHOVSLK2hGhqj9O/CwiX079N1UHszmEUyfWF3QCSwzjy3w8DoWlTPnOX82nUcUckhOMMrt+6Vzc9ex+9A6Giuo0YGata6gzrgsa6izNRuV6HFQViqlT3LC+BBFVPlG1NhdLRF5T1fOcPJj58+fr7t27c9+QSqZ3ILYOROaJ4ok1F6FvMJx2Etq8ogOzpzSjtjZ7Y68EV5pK1lJkZp1jlj2zYZv5NIyiUcWRoRBGRiOoEUHAX4OJ9XU4Ghwt5xXQkjwZM+scs8yuu2IOpk1qwOypzYhGFT2DIYxGoqir8WFKU33OOjPBhVfpXVnXGtYFK+Zj6qR6BMMRBPw1GIsqRseihu9jvnUPVRRXZrZcCq1TzMrIY6sWYNrEBsPHyHyu1kAd3ugdZIefNa5qH5x+29MlOBpveesbl+V1+0Le43yfw2GWMmt11wyqUmZD50bHoqiv9WHdFXOSq5KPRaL409HhcSuTZypkWDJVn3yHbVqdq2r0JSWx+CobRFQMs8zOnNKE6S0BRKOK3x0ewOotncmcbVregbOm5u7ABVh3WpVZF9TV+jA4MobLv7sLbU31uOUTs5NrSBiVdQ4Zp2pRaJ1iVkbe6Q/iWHB03LnT7ELBrLYmrtFCVMVyLVY5gBOLVU4QkeOJPwFQVZ3o5MGRPfLp8c68bV2tz3DonIjgmvtfMbzy19xQx8YyFS3bsE2zTGdrVKXeJ3OBrD/2DWPtk/u4aBZllasuNctsbfw2PYOhZCcEEMvZ6i2deGzVApzSEijti/G41LqgdyCUPF+tXdw+biHLzLJezJBxF45aIbKdWRnpGwrjy4/+aty5046FKVm2qJKVYhRJJY6iyHoJRlWbVXVi/L/alJ+b2QlRGfLZHsnotoMjY4Zbd0IV3/r0Odi8ogPzZrQAiJ1YJvhreNWIbGG2LVhroC7vLb9Ss33w6PiFVif4a9DWVI/NKzrw6MoLsXlFB9qa6pllSrJSlxpldv3SubjjqX14q28IUZN6cywSLctrqhapV29bAnU5y3qhWxJyO0KqFq2BOmxaPn4b7E07DxiOHso1yigaVfQOhPD20WH0DoTGlRmWLSJv4tQMj8unF9rottfc/wqe+sLC5NC5gL8Gh4+fuLqUuRjbcDjChYbIFmZTLQq5spJ6n/7g6LgrOT6RccO1Nyybi4CfWaYYK7lLZPaxVQvwTn8QfUNh3PXsfgDA4eMjaflKrTdra6ytEUGFSb16G1XNWdYL3ZKQ2xFStTgaHMU9z/0eP7r2QzgWHE3WdXu6+w1HD+Ua4ZhrfSeWLSJvcrz1IyI1IrJHRLY7/Vw0Xj5zXc1uGwxH0NZcj1NbJyASxbiTwa2P78WNF8/ChmVz8f7JE7iKO9kmMbz61NYJaGuuh88nBc3fTr3Ppp0HsH7p3LQrOdMmNYwbrn3z1r0Y49UWirOaO59PoKpYtulFrHqoE3u6+7F60cxx+UrUm5uWd2BKExvSTprc6Mfm+NXbSFQtlXWjuicXri1B1SI8FsGOrh7csnUvQmNRrNveleyEMBo9lG2UkVknQ99QOO35WLaIvKcUIyK+BOC3ADiVowzymetqdtuAvwa9A6Fkhd/WVJ92m4NHg5jZ1oimhlq0BDhnj5xVyPzt1Pvs6e7HXc/ux7or5mDmlCYE6moQjUaxdnE7WgJ16A+OYtPOA9jT3Y/RMQ6Zp5hi6tKWQJ1hI/qsaU2o8flweGCEc54d5PMJTm5pwLor5uCUlvTPcN6MFqxeNBPBcAS9A6GiPgNuR0jVIpH1xPl07eJ2TG7045SWgOGuGT6fYFZbEx5btSBtxyCrFxdYtoi8ydERESIyHcBlAO5z8nnIXD5zXY1um9hNIDEv78p7X8Itn5idnN+cuF3AX4v3NVq7akRUjELmb2fep3cwhGmTGjC9JYDJjX4cGQpj3fYuXHnvS1i3vQs3XTobl7RPYSOHkoqpS4fDkeTPCZe0T8F7w6P41Pdf4JznEmgJ+DFtUgP+2Dec/CzmzWjBTZfOxrrtXfiLDTuL/gwKXVuCqNKkZn1Pdz/Wbe9CY31t1q073+gdxGc2v4i/2LATn9n8It7oHUQ0qslOhlSZnQwsW0TeJKrONXpEZCuA/wOgGcBNqro42+0rYc/lSlTMrhkKxac2vmC4O8Z1D7zq1m0OuU+4xxWyerbZfcz2Q3/khgswvXVCKXPtqn3CabxC69LE2jqpc6AfueECXHXfy+NyV2Fzniuqro1GFf3BMA71j2DVlk6sXdyOddu7bP0MuLK/61VUZt0sn6ybnWe3rVmIyY3+nGtE5Pt8HuSq9kEpdoCg0nBw18z7XkYAACAASURBVAxLmXVsaoaILAbQo6qdIrIoy+1WAlgJAKeddppTh1PV8tkn2ueT5Jy98FgEEVXDIXMz2xqx69aPVOPJgJl1ASuZNmq0GN3HbFgoEFsgywv5ZmbtYbUuHRuLomcwlByCPLG+Di1T/WmLH3LOc2525ja1Pji5pQFPrLkIwXDhn0EhWwiT91VTXZvZXjQ6XybKyXB4zLSsWV0clmXLGdWUWXIfJ6dmLARwuYi8BeCnAD4qIlsyb6Sq96rqfFWd39bW5uDhkBWZWyQd6BkyHDJ3oHcIx0fGPPElLV/MrPvls9WX2bDQ37474Jnh8sxs6YyNRfG7wwNpQ5B/F89Q6uKHVoYjVzu7cptZH1z+3V3oGwwj4C/sM+BWgmSmmuraXOUg9e+/e3cga1krZHFYskc1ZZbcx7GOCFX9mqpOV9XTAfwVgF+o6nKnno/skbl68T3PvYENy9J3GFi/dC7uee6NcasaE7mFlVW4E4zmnqbuh86cUz56BkNYvaUzLXurt3SiZzCUdjvOeS4ds/qg1icFfQb51C9EXpWrHKT+3Wi3KtZ3RFSKXTOogmQOF97T3Y9vPrMfP115Id4+GkR/cDS5V3Ti9kRuk2vYe+aw6lltTdi2ZiGC4TH89t2BtIxzuDzlYzQSNczeWCR9Bxarw5GpeNm2pp49tRlPrLkII6NR1AgQ8OcekcJpNURZytVoBG8fHU6b2pu6u8bZ05oR8NeyviOi0nREqOpOADtL8VxUHH9tDS5pn4KlHTOSWxk+3tkNAPjqz1433TqpyhcRIhdIzaCI4JL2KdjR1ZP8+/TWAOpqfegZGMFwKII3jwzhnufeQO9gKLkwVh9guHgdh8uTVXU1PsNt5nw+SQ5ZdqKurPY6ONvrz7X1X99gOK+F8szqF9YT5GZ21xFm5epAzyCue+BV/OjaD6X9PbG7RmKBymqur4goxtHtO6nytAbq8MWLz0zbyvALH52Fn//mEDav6DAcVsf5slRumRn8zOYXcePFZ+KS9ikATuR1cGQMn9r4AhbdtRNrn9yHmy6djbam+uRwUg6Xp2JNaarH95en15Ubrz4PD73wJvqDYUfqymqvg3O9/mzl2so0C6v1C+sJcisn6gijcrVhWWzqLmA8tfcH18xHa6CuqusrIjrB0e078+X1rY4qgdkWS2sXt+Pc6ZPg8/ksb39Yxm3ouD1XlTHL4GOrFkA1tk95jQ+4/LvG2V71UCd23foRnNo6oZxXll21PRcV7sjACI4Oj6LGJ4hEFT/45R/wWOdB7Lr1I7jy3pdsryvLWAe7oq618vrNyvXbR4excP3z4x4zUR9ke/zU+oVXdCuGKzJbak7VEanlCgC+8Mie5LRGAJg3owXfvWoeACTLSd9Q2G1txkrgqvYBt++sXnls91ne7TupMpnN+Ys1snyGWzVxviyVm1kGVTX5ZeLto8OGt2kJ1GF6awABfw16B0LJLyonTwrwiwUVRCG47oFXxzW0U+dMz5vRgtWLZqIlUIfwWATRqBact2qvg628/tSt//KdZmGlfiFyM6fqiNQtPIOjY7jx4lm457k3kp0RvYMh+Gtr0joYqr2+IqIT2BFBaczm/E1prk8Op8ucSzt1Yn3W+bdETss1BzzbbYbDETx4/fk4fDyUc544kRWJIcuZeWqoi2WwrakeN106G7c+vteWvFnJv5fl8/oTQ9RTP5tNyzsAADu6egynWVT7+0uVz6kMG5WnDcvm4pvP7E+uv5Q5ZYnliYgSODWD0hidVDav6MDsKc04Ghw1HE73xJqLDBf7mtXWhKPBUc8OcQeYWbcwym3mFzvDbC/vwMktDRiLKj618QXDoaIlXFTLVUMvqThGUwEAYP/hAbx7bARrn9xn29DkRLa/8+/7sbRjBiY3+jGluR6nTAqgttbRpaBcUddaKf8JPQMjhmU92zSLfB6fXM8VmXVStrrH7gybTfl4dOWFpudLlqeCuKp9wKkZ1YtTM8hR2baUMxtONzoWHXef1kAd3ugdHNehcVLKFA+ecMguVrZCzHYbs2kb4bGI6SigYJirfZO51KkAqWZPbUZjfY0tQ5NTv3CcPKkeX/rYmVj1UGfVNe6tboUajSqGQ/lPs+BWq1Qpsn3JdyLDZu1CAKadqixPRJTAXTNonEQD+tTWCWhrrh+3BVqqxHC6zPscDY6OW4l81UOd+NXBY1whmRxhllsrtzHLtogYrqj/evcxrvZNBfH5BIG6WtO61KrMVfD3/OlYshMCMN79wcuslP++oTDePDJk+N5Hopq1HFt5fKJyOzIUMjxnHRkKOZLhbO3CbFieiAhgRwTlIdfWhtGooncghLePDiM8FkFbU3pv+MGjQcxsa8S3Pn0O3j02gv5gdTSQqfRSs9g7EMrZUWCW7RqB4dWeGe8LYN6Mlqr7skf2yKcuNctv5raTE/z2jLLwsvBYBP/260N48PrzsXX1Amxe0YFL2qfg+1efhzuf7mI5poo3Mmo8QmEkHEmrT/I9R5rhltdEVAxOzSDLMofTBfw1GIsqDh0Loq7Wh8GRMVxz/yvjFixKrJ48vTWA7veCuO6BV5Pz8yfW1zk9h5mqTCHzT82GivYNhZOLaiV2OYg1sAS3X96Orz/VhT3d/cldD8q07SdVmNS8RaNRRBRQjeXHaFqbUX4zh0T3B0cNF4CLRBXvDYWqcipRapkM+GvgE2DJeaemnac2Xn0eoqrY0dWD2z8ZGXe/anvPqLLViBjWAwd6h3DPc2/gxotn4Yy2RvgA3Pl0V9oCrYVM4+I0CyIqBr8BUl4Sw+lOnhTA4eMhfGrjC1i4/nl8auMLOHx8JDkK4uDRIG7euhc3XjwLAJIdE/c890by76u2dOKdY0EOaydbZV4ptjpqwWioaOJqzyXtU3DTpbOxbnsXlm16Edf+6BUEwxHc8onZya0/U4fJc8oG5ZLI13vDo/jM5hdP5KYntuhkrvxmDonetPMANl59XtqVyfVL5+LOp7uqcipR5tSV17uP4Y/vxc5Lqe/tmodfw8DIWHI4eeb9quk9o8oX8NfgO585J60e2LBsLv7t14dw06WzsfbJfVi0YSeuuu9lfPaiM2wZ2cdpFkRUKHZEUEGMvuzdvHUvVi+ambzNwaNBzJzShF23fgQ//dyFaaMjEn/vGQhxOCzZys49yhNXe27/5AeTWy0mHu/mrXsxbVIDfnDNfIxFtaDOD6puRvXoqoc6sbRjRtrtjPKbOSS6dzCEyY1+rF3cjkdXXoi1i9tx17P7saOrBxP8NcnHqZZcGk1dERhPtWqoq0kOJy+0I5PIDVoCfkxvDWDdFXPw6MoL8dD15+Obz+zHxe1Tx53Dbn38RJuN07iIqBw4NYMKYvZlryVQl/z39NYAan2CaRMbcGQohN7BUNrtp7cG0DcUxsmTGkpyzFQdrO5RbnX4tc8niKga5r1GYh0Vh44FOT+f8mZWj2bOrzbKr9GQaIVi3faucdnvD46mPX415NJo6oq/xmdYN5zSEsC0iQ1Zd4eqhveMKo/ReSyqwHUPvAoA2LyiA72DIbQE6rK22fJdLJeIyA4cEUEFMVspeTgcSf68fulc3PHUPuw/PID3BfzYvKJj3LDhxzu7efIjW1lZPCvf4dcNdcZ5b/DHdowpdOVwqm5muZnSXG9p8bfMIdEnNdaPy/6GZXOxaeeBtMf3ei6jUUUkquOmrryvsQ4bls0d994mOiGAwncBICo1s/NYXa0vmeFNOw9g/dK5GA5HDHOdWFuGC0wSUTmIqnvmPc6fP193795d7sMgC4wWBNy8ogMnNfrx7vEQ3j0+gk07D2BPdz+mtwawbc1CtAbq8M6xE9MxHu/sxlc+PtvSAkl5Lh5WsgmKzKw75crLe0MhvN59DBP8NegPjmLTzgPoHQxh25qFhnuf51oAM/Pvl7RPwT9c1o6aeCeFxcW7SpJbZtY9zHI1q60JR4OjBS3+lsh+cDSC/uEwJjbU4cjgiTr3Sx87E2dPm2j4eAUs0uiKujbzuGt8wG2P78VnLzojORx9emsAD1z3IbQ21mEkHFsgtKHOh5Ma0+e0m53bZk9p5sLK3uCKzBYqNesigjue2ocdXT3Jv1/SPgVfv3wOQmNRvHkktkBlW7MfX7/8g3hvaBSrtnSOa7P5fD4uMOl+rmofnH7b0yU4GnKjt75xmdWbWsosp2ZQQRLDgp9YcxGGQxG8eWQI/7BtH3oHQ/j+1edhYsOJaCWGtdbW1mN66wQE/LU4eVIDzjttrqWTXyG7IFB1S1wpNhKNKg71j2Dtk/uSeVq/dC7uena/6fDrbCuDJxqGExtq8diqBfDXCA4PhHDVfS8zr5SVWa6Kfcy25nocPhbEwMgY1jz8WjKH37vqPEw1WUyuUutZw46D5R3oHQjjrmf3Y+3idrQE6tAfHEVzfS0mNzYAjeaP1TcURluTHw/fcAF6453md//895Y7zYmcYpT17111HloCfjzWeRDzZrTgsxedgU9vfjGtLJzc0oCWgB9TJwa4uwURuQq796lgPp9AIFj+w5dx3QOvYk93Pw4eDeJvH34NI6NR3HTpbMyb0ZI2rLWQ1ZW5eBjZqW8onLwqBJxYtOvGi2dlHX5tlN3MobGf2fwihsMRrHqok3klSzJzBcCWXRsiinGL033+kdcQjhg/TqXWs4YLfm7pxI0Xz8Ke7n6seqgTV977EtZt74LPZ97kSS3LnX/qx9X3vYxlm17Eqoc6saOrpyLeC/I2o6x//pHXsHrRzOT20pllftWWTkSisXqGu1sQkduwI4KKYraw1wR/TfLLXbFzD7l4GNnJLE9nnNSYd06NGoY9AyHmlQpmV4eAmiywajYds1Lr2Wzl2co6Gwmp77vZwn5ufy/I28yy/t5QGKsXzcTkRj9zS0QVxbGpGSLSAOCXAOrjz7NVVW936vmoPMx2KOgPjia375zeEiiq593qLghEVpjlaUJ9Td45NWoY9g2FmVcqmF0dAvnWm5Vaz2Yrz/kMQ0993xML+FXae0HeZpb1vqEwzp7WjFqTXWGYWyJyKydHRIQAfFRVzwFwLoBPiMiFDj4flYHRDgXrl8ZWaZ/eGkCgzvzLXTSq6B0I4e2jw+gdCJkOPbayCwKRVWZ5OqnReE2JTKm5FRFc0j4l7e+Pd3aP2yGGeSWr7Nq1wWq9mchzeCyCR264IJnnSslttvI8udEPf20NwmMR9A2Fs05vSX3fEzsNsAxTuRi1jyY3mu8+FvDXYtrEBraViKiilGTXDBGZAOC/APytqr5sdjuu5l6ZolHFkaFQctHKe557A72DoawLneW7MBp3zSA7FbA7QPJ+mbndtLwD9zz3e+zo6il21wNXrYpN5WHnopG5cp5t9yOLK+m7oq41ep0A8j7H2LDzDbmfKzKbTbY6IBrVrLuPFXpuI9dzVfuAu2ZUL7t3zXC0I0JEagB0AvhvAL6nqrdmuz0byJUtnxNg70AISzbuGjeE0Gz7xDy5vqFBlckst4+tWgBVLbbh56qGBpVPqb5M2FAPu7auLeS18UtcVXBtZhNyZZc5rUquah+wI6J6VdT2naoaAXCuiLQA2CYic1R1X+ptRGQlgJUAcNpppzl5OOQAqyfEzNtV6sJoADNbzcxyq6o4tXVCmY4qN2a2siRWt0/Um4eOBfP+wmGlbnZ7PVxMbnO9NrP3J7OTgl/6KB/5ZNYsW7mym217aiuYaUrF9gGVk6MdEQmq2i8iOwF8AsC+jL/dC+BeINYTV4rjIXtYHUJsdLtHbrigYhdVYmarUzSqiETVMLeRqCIaVdc25pjZylPMFA2r93X7ApXF5Dbbayvm3FXoNBmqDlYzmy1bTpZLZpoysX1A5eTYYpUi0hYfCQERCQD4GIDfOfV8VHpWt5kzut2dT3dxQT+qKH1DYdz5dBe+d9V54xYLu/Pprry3VyTKpphtPK3e18sLAWd7bcWcuwrZSpUoU7ZsOVkumWkichMnR0ScDODH8XUifAAeU9XtDj4flZjVYb2Zt5s3owVLO2agub4Wj61agBqB1YXRiMomPBbBjq4efPGjs7B2cTtaAnXoD47irmf3Y093P27/ZPYh30T5KGbahJX7JnI6scGb9bDPJ5g9tTltC8/WQB36hsIYDo9h7eJ2bNp5AHu6+wFYO3eZ3Y4oX9mylS27xZ5XmGkichPHOiJUdS+AeU49PpWf1eGDqbebN6MFN106G7c+vpfDAqmiJHL8zrERrNveVdSQb6Jcihmeneu+1ZLT1Ln0Rq95/dK5yY7EXOeuBDdNXaHKlStbubJbaHllponITRybmkHeZ3X4YOrtVi+ameyEAE4MCzx0LJjcK5vIjRI5fryzG+uXzk3m/pL2KXjkhgsQHovg3eMjHPZKtihmeHau+x4ZClVdTo2GpN/6+F6sXjQzrQynnoe8PHWFystKtqJRRe9ACIeOBW0rr8w0EblJSRarJG8yGj5oNFww9XbD4THDYYEHjwbx1Z+97smrcuQNiRz/45K5iEajyeHsR4bCuOq+l3HwaBBbVy/gsFeyhdX6Nd/7RqOK4VD1Dc82G5J+9rRmfOljZybLcObV5kI/A6JscmUrdRTEtz59jm3llZkmIjfhiAgqSmL44KmtE5LDCHsHQnj76HDalaXE7Sb4a5M98QnTWwPoD45WxVU5qmyJHE+dFMApLQH4fD6seqgz2UjsGwob5ltEONqH8pZZv+bzZcHovtGo4t3jI3jzyJBhTr08PDsxJD3V9NYAamvSy3DiPPTu8ZHkTjiFfgZE2SSydfKkWC5TR4amjuDpD47aWl6ZaSJyC3ZEkG0SPfhLNu7CwvXPY8nGXdh/eCDtC5jRsMD1S+di084DALx/VY68JfMq66adB9KmbSTyfcdT+8aVBaJSStTP7/QHcc9zb4zL6eblHZ4enm02JL1GYHi1+Z3+IMssOc6s3ZR6bjE6r3A6BRF5AadmkG3MtoXatmZhcrRE6rDA4GgEB3oGk4uFAd6/Kkfekrnw157ufvz4hTfx6MoLcejYCPqGwsl8dx0aSCsLRKWUqJ/XLm5H72AIdz27P7n7y3A4gpNbGjx9ZdRsSHpiFFPm4n19Q2F8+dFfscySo8zaTY+tWpDM5Z7uftz17H6su2IOZk5pQqCO0ymIyBs4IoJsY3VbqMSwwOktAUyb1IDewRAA9vJT5TG6yvqVj89GrU+wbNOLWPVQZ9btAYlKJVE/J66u9g6GsOqhTnz1Z69j2qQGtAS8X+8aDUnPNkqPZZacZtZuqhGk5bJ3MIRpkxowvSXA6RRE5BkcEUG2yXdbKC6aRJUu36usHO1D5ZKonxNXV9cubsfkRj9OaQlg2kRvj4bIJlGGH1u1AO/0B9NGMbHMktPM2k0+n4/tIyLyPI6IINsUsi0UF02iSmf1KitH+1A5pWZyT3c/1m3vQmN9bVV3QiT4fIJpExvQWF+Lddu7kp0QLLPktGznCraPiMjrOCKCbMMRDkQxLAvkNsxkdnx/qByYOyKqZuyIIFslevCJqh3LArkNM5kd3x8qB+aOiKoVp2YQERERERERUcmwI4KIiIiIiIiISoYdEURERERERERUMuyIICIiIiIiIqKSYUcEEREREREREZWMqGq5jyFJRHoB/BHASQCOlPlw7MbXVDpHVPUTpXiilMwmuPU9KQZfU2mUJLcGmS0HN77/5VDp70M569p8Vfp7bcarrwtw5rW5JbP83CpXOV5fNbUP8uGFrHn1NVjKrKs6IhJEZLeqzi/3cdiJr6k6ePE94Wsiu/H9j+H7UDpefa+9+roAvrZK5eXXBnj/9VUSL3wW1f4aODWDiIiIiIiIiEqGHRFEREREREREVDJu7Yi4t9wH4AC+purgxfeEr4nsxvc/hu9D6Xj1vfbq6wL42iqVl18b4P3XV0m88FlU9Wtw5RoRRERERERERORNbh0RQUREREREREQe5JqOCBGZISLPi8hvReQ3IvKlch+TXUSkRkT2iMj2ch+LHUSkRUS2isjv4p/XgnIfUzkxu5WD2S0vL5eVfHmtbLmV1zPnxRx5uZ72eh4Bb2YS8HYuK1WlZ63SMyUiX4nXY/tE5Cci0pDvY7imIwLAGICvqurZAC4E8HkRaS/zMdnlSwB+W+6DsNHdAJ5R1bMAnANvvbZCMLuVg9ktLy+XlXx5rWy5ldcz58Ucebme9noeAW9mEvB2LitVpWetYjMlIqcCuBHAfFWdA6AGwF/l+ziu6YhQ1UOq+lr85wHEPoxTy3tUxROR6QAuA3BfuY/FDiIyEcCHAfwQAFQ1rKr95T2q8mJ2KwOzW35eLSv58lrZcjMvZ86LOfJ6Pe3lPALezCTg/VxWokrPmkcyVQsgICK1ACYAeCffB3BNR0QqETkdwDwAL5f3SGzxTwBuARAt94HY5AMAegH8KD4c6j4RaSz3QbkFs+tqzK6LeKys5MtrZasieDBzXsxR1dTTHswj4M1MAlWUywpS6Vmr6Eyp6tsA7gLwJwCHABxT1R35Po7rOiJEpAnA4wC+rKrHy308xRCRxQB6VLWz3Mdio1oA5wH4vqrOAzAE4LbyHpI7MLuux+y6hJfKSr48WrZcz2uZ83COqqKe9loeAU9nEqiSXFYKj2StojMlIq0ArgBwBoBTADSKyPJ8H8dVHREiUodYxfywqj5R7uOxwUIAl4vIWwB+CuCjIrKlvIdUtIMADqpqogd/K2IFqaoxuxWB2XUBD5aVfHmxbLmaRzPn1Rx5vp72aB4B72YSqIJcVhgvZK3SM/UxAG+qaq+qjgJ4AsBF+T6IazoiREQQmyfzW1X9drmPxw6q+jVVna6qpyO2gMcvVDXv3iI3UdV3AXSLyOz4ry4G0FXGQyo7ZrcyMLvl58Wyki8vli0382rmvJojr9fTXs0j4N1MAt7PZaXxQtY8kKk/AbhQRCbE67WLUcBim7W2H1bhFgJYAeDXIvKr+O/+TlX/tYzHRMa+COBhEfED+AOA68p8POXG7FYOZre8WFao1Ji5yuPlepp5rFxeziWVR8VmSlVfFpGtAF5DbDegPQDuzfdxRFXtPjYiIiIiIiIiIkOumZpBRERERERERN7HjggiIiIiIiIiKhl2RBARERERERFRybAjgoiIiIiIiIhKhh0RRERERERERFQy7IgoERGJiMivUv47XUQWicj2ch8bkVUi8vci8hsR2RvP8QUOPMciEbnI7sel6mRU9+Z5//tEpD3+8985cYzkfSIyXUSeFJE3ROSAiNwd37INIvKTeJ36FRE5K57TPSIyM+Mx6kXk5/G/XykiO0VkfnleEVULEVEReSjl37Ui0lto+zXe/t0X/3m+iNxj17ESJYjIYMa/rxWR7xb5mKxzbVZb7gOoIkFVPTf1F/k2iO0iIoLY1q3Rcjw/VSYRWQBgMYDzVDUkIicB8DvwVIsADAJ4wYHHpuozru5NJSK1qjpm9ndVvSHln38H4H/beXDkffFz7hMAvq+qV4hIDWL7rf+jiHwLwEWq+v74bW8D8KSq3m7wUPMA1CXyLCJ/W5pXkC5XmSHPGQIwR0QCqhoE8HEAb9vxwKq6G8BuOx6LyE6s50qDIyJcQkTOF5EX4ldBXhCR2fHfvywiH0y53U4R6RCR94nIv8SvorwkInPjf79DRG5Kuf2+eO/z6SLyWxHZCOA1ADNK/Rqp4p0M4IiqhgBAVY8AmC4iTwCAiFwhIkER8YtIg4j8If77mSLyjIh0ish/ishZ8d+3icjjIvJq/L+F8c651QC+Er/q9+fleKHkbfErIz8Tkf8LYEfm6DQR+a6IXBv/eWf8qt03AATiuXxYRNaJyJdS7vOPInJjyV8MVYKPAhhR1R8BgKpGAHwFwPUAfglgSjxXtwP4MoAbROT51AcQkSkAtgA4N37bzNES3xeR3fERa1+P/+4vReSxlNssimceIvLXIvLreBthfcptBlN+XiYiD8R/fkBEvh0/ruTtqWr8G4DL4j//NYCfJP4gIo0icn/8PL5HRK6I//70+Dn/tfh/40Y6pta98fbr/fE69w+p9amILBeRV+LZ3ywiNfH/Hohn+Nci8pX4bW8Uka54+/inDr4nVKFE5JPx71d7JDbKbGr893eIyL0isgPAgyISEJGfxrP0KIBAymMMxs/7r8e/hyUeY1zbNv77v5ATIzP3iEiziJwsIr+M/25fNbZ5OSKidAIi8qv4z2+q6pKMv/8OwIdVdUxEPobYVbelAH4K4DMAbheRkwGcoqqdIvLPAPao6v8QkY8CeBCA6VW/uNkArlPVNXa9KKoqOwD8LxH5PYCfA3gUwC7ErtIBwJ8D2AfgQ4jVLS/Hf38vgNWq+obEpnJsRKxhfjeA76jqf4nIaQCeVdWzRWQTgEFVvatUL4w8zazuXQBgrqq+JyKLcj2Iqt4mIl9IuRp9OmJXue8WER+AvwJwvt0HT57wQQCdqb9Q1eMi8icAnwXwSEquBAb1n6r2iMgNAG5S1cXx26be5O/jWa4B8JzELk78O4DNItKoqkMArgTwqIicglhnQgeAo4h1xv0PVf2XHK/jTAAfi3ekUHX5KWLn/+0A5gK4H7FzPgD8PYBfqOr1ItIC4BUR+TmAHgAfV9UREZmFWOdFrmHtZwH4CIBmAPtF5PsA/hti2V2oqqMSu6B2NYDfADhVVecAQPy5AeA2AGfER262jHsGqhap534AeB+Ap+I//xeAC1VV4/XqLQC+Gv9bB4A/U9WgiPxPAMOqOjdep76W8niNAF5S1b8XkW8C+ByAO2HQtgVwNoCbAHxeVXeJSBOAEQArEWv7/mO87p5g/9vgbuyIKJ2sw4MBTALw43hlrQDq4r9/DLHGxO2IdUj8LP77P0OsowKq+gsRmSwik3Icwx9V9aVCXwBVN1UdFJEOxBofH0GsI+I2AP9PRM5G7EvYtwF8GEANgP+MV7YXAfhZSqO5Pv7/jwFoT/n9RBFpLsVroapiVvf+u6q+V+iDwJWTCgAABU1JREFUqupbItInIvMATEWsY7iv4KMkLxPEzutWf1+Iz4jISsTadScDaFfVvSLyDIBPishWxK5o34JYR/BOVe0FABF5GLF6O1dHxM/YCVGd4lk6HbHREP+a8edLAFwuJ0bjNgA4DcA7AL4rIucCiCDWkZXL0/FRlyER6UGsbr0YsS+Hr8bbCwHEOjn+L4APxC/MPY3YxRIA2AvgYRH5F+TONHlX2rlfYqMcEx1h0xHrlD0ZsSnGb6bc76n4FCQgVi/eAyTLwN6U24UBJEZSdiI2ZQkwb9vuAvDteH37hKoeFJFXAdwvInUA/kVVUztOqgI7ItxjHYDnVXVJvLLfCQCq+na8sTsXsR7hVfHbi8FjKIAxpE+5aUj5ecjmY6YqE2+E7gSwU0R+jdjVvP8E8JcARhEbKfEAYh0RNyGWxX6TL4I+AAtSKnwA467yETkltT7MVm9mcx+AawFMQ+wKIZGR3yB+4SBBRCYiNkXS9Iu9iHwesatsAPDfs9zuDMTq2w+p6lGJTadIZPhRAJ8H8B6AV1V1QLJXsqkdI5nlgG2I6vYUgLsQW8dpcsrvBcBSVd2femMRuQPAYQDnIFa/jlh4jlDKzxHEvqcIgB+r6tcybywi5wC4FLGMfwax6U6XIfYF8nIAa0Xkg5zrTxn+GcC3VfWp+IjIO1L+llnPmXUWj6pq4m+JrAImbVsA3xCRpxGry18SkY+p6i9F5MOIZfYhEdmgqg8W9pIqE9eIcI9JOLH4z7UZf/spYlcxJqnqr+O/+yViQ9MQL0RHVPU4gLcAnBf//XkAznDyoKl6iMjs+IidhHMB/BGxLH4ZwIvxK2yTERte+Zt4Jt8UkU/HH0PiDQcgdvXiCymPn+isGEBsWCZRqfwRsSsY9fGRZReb3G40fuUiYRuATyA2HelZh4+RKtdzACaIyDUAEB+C+y3EOm2Hze6kqt9T1XPj/72T5fEnItZ4Phafp/yXKX/biVib4HOIdUoAsWlzfyEiJ8WP5a8B/Ef8b4dF5Oz4dKPMKaRU3e4H8P+ltEMTngXwxUQHV3yUGBBr1x6KL4y+ArELFIV4DsAyia2TAomtkfZ+iS2Y7VPVxwGsBXBePLczVPV5xNrNLQCaCnxe8q7U71yfzXK71O9acxCblpSLYdtWRGaq6q9VdT1iC7SeJSLvB9Cjqj8A8EPEv79VE3ZEuMc3AfwfEdmF8ZX1VsTmHz+W8rs7AMyPDxP6Bk4UpMcBvC8+L+pvAfzeyYOmqtKE2PShrnju2hHL4cuIDZ/8Zfx2ewHsTekpvhrA34jI64hdGbwi/vsbEc+wiHQhtkglEBtuuUS4WCWViKp2I1a/7gXwMIA9Jje9F8De+NBKqGoYwPMAHuOQdTITrwuXAPi0iLyB2Hl5BLFdWOx4/NcRy+xvEPuyuCvlbxHEhg//Zfz/UNVDAL6GWHZfB/Caqj4Zv8tt8dv9AsAhO46PvEFVD6rq3QZ/WofYdOK9EtuWc1389xsBfFZEXkJsWkZBI2pUtQvAPyC2lslexKYrnwzgVMRGZ/4KsU69ryHWft4SH7G5B7G5+v2FPC952h2ITRn+TwBHstzu+wCa4rm7BcArFh7brG37ZYktSPk6gCBiC8AuAvArEdmD2Kg5o/LlaXLiuwIRERFZFb/69hqAT6vqG+U+HiIiIqJKwRERREREeRKRdgD/D8Bz7IQgIiIiyg9HRBARERERERFRyXBEBBERERERERGVDDsiiIiIiIiIiKhk2BFBRERERERERCXDjggiIiIiIiIiKhl2RBARERERERFRybAjgoiIiIiIiIhK5v8Hj6Swd2ALFtEAAAAASUVORK5CYII=\n", + "text/plain": [ + "
    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import pandas as pd\n", + "import seaborn as sns\n", + "peas = pd.read_csv('https://openmv.net/file/peas.csv')\n", + "judges = peas.loc[:, 'Flavour': 'Hardness']\n", + "sns.pairplot(judges);\n", + "#judges.corr()" + ] }, { "cell_type": "markdown", @@ -1924,22 +1974,137 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    Lot numberOutcomeSize5Size10Size15TGADSCTMA
    0B370Adequate13.89.241.2787.318.065.0
    1B880Adequate11.25.827.6772.217.768.8
    2B452Adequate9.95.828.3602.318.350.7
    3B287Adequate10.44.024.7677.917.756.5
    4B576Adequate12.39.322.0593.519.552.0
    \n", + "
    " + ], + "text/plain": [ + " Lot number Outcome Size5 Size10 Size15 TGA DSC TMA\n", + "0 B370 Adequate 13.8 9.2 41.2 787.3 18.0 65.0\n", + "1 B880 Adequate 11.2 5.8 27.6 772.2 17.7 68.8\n", + "2 B452 Adequate 9.9 5.8 28.3 602.3 18.3 50.7\n", + "3 B287 Adequate 10.4 4.0 24.7 677.9 17.7 56.5\n", + "4 B576 Adequate 12.3 9.3 22.0 593.5 19.5 52.0" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABDAAAAQsCAYAAABngGz2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3X1wHeV99//P7h7JkmwZy0YC83CThNSU3hBMcO2kzo0buwMzBWOSJmMgKRgwnoxJw7TQUBslNuBYtwOUuENckx9hnCaElLRDiIHUJOShiZsfpi2kIZTA8BR+gC1bnGLZki2d3f39Yc5Bks/RedqHa3ffr5nMxEfS2evhe313+Z4911q+7/sCAAAAAAAwmB13AwAAAAAAAKqhgAEAAAAAAIxHAQMAAAAAABiPAgYAAAAAADAeBQwAAAAAAGA8ChgAAAAAAMB4FDAAAAAAAIDxKGAAAAAAAADjUcAAAAAAAADGo4ABAAAAAACMRwEDAAAAAAAYjwIGAAAAAAAwXi7uBkRpYOCAPM+v+ntdXR3K54ciaFFjaF/j6m1bd3dniK2ZXK3xGjeT5zsOcY5HWuM1TTFGX96VxnhN0/xWk5W+FvuZxnhtVtZiIEmyFq9JnKNapLVf0vi+1Ruv3IFRRi7nxN2ESdG+xpnctqRiTMdjPIKXpjGlL+mWpTHJSl+z0s9GZGVsstLPJEvrHKW1X1JzfaOAAQAAAAAAjEcBAwAAAAAAGI8CBgAAAAAAMB4FDAAAAAAAYDwKGABgKMex5Tu2CpYl37HlOKRsRI84zAbmOXmYM8AcrMfoZOoxqrXonN4uqfbHuRw6XNDg/uG63r9tSu3DXu/7A0gHx7GVHxrVxm271J8fVk9Xu9aumK+ujha5rhd385ARk8Uh0oN8kzzMGWAO1mO0jCtgbNq0STt27NDrr7+u7du3a86cOZKkw4cPa+PGjfrlL3+pKVOmaO7cubr11lsDP37blJyWXv9Qzb+//Y5lGjTo/QGkQ0EqnQglqT8/rI3bdqlv9UJZ8TYNGTJZHCI9yDfJw5wB5mA9Rsu4AsaSJUt0+eWX61Of+tS412+77TZNmTJFO3bskGVZ2rdvX0wtBIDwuZ5fOhEW9eeH5Xq+eYkbqTVZHCI9yDfJw5wB5mA9Rsu4L+fMmzdPs2fPHvfawYMH9b3vfU/XXXedLOtIHevYY4+No3kAEAnHttTT1T7utZ6udjk2tXxEhzjMBuY5eZgzwBysx2gZV8Ao57XXXtOMGTN011136eMf/7j+/M//XP/+7/8ed7MAIDQ5SWtXzC+dEIvfp6SSjygRh9nAPCcPcwaYg/UYLcv3fSPvA128eLG2bt2qOXPm6JlnntGf/dmf6fbbb9fSpUv1q1/9Sp/5zGf0wx/+UNOmTQv82PXuUWHa+wNIB8/z9fbBwxoteGrJ2Tpm6hTZVPMRMeIwG5jn5GHOAHOwHqOTiMLQCSecoFwupwsvvFCSdNZZZ6mrq0svv/yyzjzzzJrfZ2DggLwq39ut9ekjY+3dW/s2m0G8f3d3Z13HjJrJ7au3bY3MV1BqiVcTmDzfcQhjPCxJhYKrgUOjVY8dlzDjNU0xluS+TIzDZvuSxnhN8vwW1ZNvkt7XWhT7aXK81jpnQctaDCSJyfEaBpPmKMj1aFK/gja2b/XGayK+QjJz5kwtWLBAO3fulCS9/PLLGhgY0CmnnBJzywAAAAAAQBSMuwNjw4YNeuyxx7Rv3z5deeWVmjFjhh555BHdfPPNWrt2rTZt2qRcLqcvf/nLmj59etzNBQAAAAAAETCugNHb26ve3t6jXj/55JP1zW9+M4YWAQAAAACAuCXiKyQAAAAAACDbKGAAAAAAAADjUcAAgIg4ji3fsVWwLPmOLcchBaM5xBRqQZwAycYaNg9zEh/j9sAAgDRyHFv5oVFt3LZL/flh9XS1a+2K+erqaJHrenE3DwlETKEWxAmQbKxh8zAn8aJUBAARKEi6/7HntHLZmepbvVArl52p+x97ToW4G4bEKkiliydJ6s8Pa+O2XeNiik+IouV5vnHjXUucAGheWPmWNRydWueQOYkXd2AAQBQsaen/OVV/949Plar1n1t+tmTF3TAklev5pYunov78sFzPV058QhQ1x7H16u792nDvE0aNd7U4AdC8MPMtazga9cwhcxKv+D8aAIAs8K1S8UI6cqL7u398SvKpYKAxjm2pp6t93Gs9Xe1y7CMxxSdE0SpIpeKFZM54V4sTAM0LM9+yhqNRzxwyJ/GigAEAEfA8r2y13vP8mFqEpMtJWrtifukiqvhpUfHTn8k+IULwTB3vanECoHlhrn/WcDTqmUPmJF6MMwBEwH6nWj/25NjT1S7bluTG1y4kl+t66upoUd/qhXI9X45tKffO69K7nxBNjDnHtiSXIkbQTB3vanECoHlhrn/WcDTqmUPmJF7cgQEAEaBajzC4rifL9ZTzfVmuN+7iiZiLVk5S71ULjBzvyeIEQPPCzres4fDVO4fMSXxMOK8CQOpRrUfUiLloua6nU46fzngDGUS+TT7mMDkoYABARFzXk6V3Eq/r880RhI6Yi5ZtW0c+kZMYbyBjyLfJxxwmA18hAQAAAAAAxqOAAQAAAAAAjEcBAwAM4Ti2fMdWwbLkO7YchxSNZCB2q2OMgMaxflBOMS7680PERYawBwYAGMBxbOWHRrVx2y7154dLu193dbSwgRSMRuxWxxgBjWP9oBziIrsoUwGAAQpS6SQsSf35YW3ctkuFeJsFVEXsVscYAY1j/aAc4iK7KGAAgAFczy+dhIv688NyPT+mFgG1IXarY4yAxrF+UA5xkV0UMADAAI5tqaerfdxrPV3tcmwrphYBtSF2q2OMgMaxflAOcZFdFDAAwAA5SWtXzC+djIvf5WSjIpiO2K2OMQIax/pBOcRFdjHHAGAA1/XU1dGivtUL5Xq+HNtS7p3XAZMRu9UxRkDjWD8oZ2xcyLIk3ycuMoICBgAYwnU9WXonMbu+3JjbA9SK2K2OMQIax/pBOcW46O7u1N69g8RFRvAVEgAAAAAAYDwKGAAAAAAAwHgUMAAAAAAAgPHYA6NJI6Ouurs7425GpDqnt6ttyuShM3ZMDh0uaHD/8CS/DQAAAADA5ChgNKm1xdHS6x+q+fe337EsxNZEo21Kru4+D4bYHgAAAABA+vEVEgAAAAAAYDwKGAAAAAAAwHgUMAAAAAAAgPEoYAAAAAAAAONRwAAAAAAAAMYzroCxadMmLV68WKeddpqef/75o35+1113VfwZAAAAAABIJ+MKGEuWLNF9992nE0888aif/eY3v9HTTz+tE044IYaWAQAAAACAuBhXwJg3b55mz5591OsjIyO65ZZbtG7dOlmWFUPLAAAAAABAXIwrYFSyefNmXXTRRTr55JPjbgoAAAAAAIhYLu4G1OKpp57Sr3/9a91www1Nvc+sWdMCalG0urs7a3rNZCa116S2TCZJ8ZqUMY1KFscj7HhN05jSl/iFGa9JHZNGZKWvcffT5OuBuMcmKlnpZxDiite0zlFa+yU13rdEFDCefPJJvfTSS1qyZIkkaffu3br66qvV19enj3zkIzW/z8DAAXmeP+nvmBgke/cOjvt3d3fnUa9FqZExirO9Y9U7dnHGQy3xaoK44zFMjmOrIMn1fDm2pZwk1/Um/Zs4xyOt8ZqmGEtzX+pdL2mM1zTNbzVJ72ut8VrsZxrjtVHFsZNlSb5f07kxyZIY61mL1yTOUS2i6lcj17vNGtu3euM1EQWMVatWadWqVaV/L168WFu3btWcOXNibBWANHMcW/mhUW3ctkv9+WH1dLVr7Yr56upoSfWFGtAI1guShHhtHGMHpEsS17Rxe2Bs2LBB5557rnbv3q0rr7xSF1xwQdxNApAgjmPLd2wVLEu+Y8txjk5ztfxOQSolc0nqzw9r47ZdRz51QiaVi5taYikLsrxexsZAfvBQ6mOg2N/+/FBiYz7L8dqsgqT7H3tOK5edqb7VC7Vy2Zm6/7Hn5DsWuRCRMjn3JunaIIn50Lg7MHp7e9Xb2zvp7/z4xz+OqDUAkqSWKnKtlWbX80vJvKg/PyzX881LnAhdubhZf82HNDrq6UsJ+tQiLFldL0n85KoZaelvVuM1EJa09P+cqr/7x6dKMfCXl35QQ4cKWv///L+Jjgskh8m5yOS2lZPEfGhuOQgA6lRLFbnWSrNjW+rpah/3Wk9XuxybxzhnUbm42fPWUKl4UXzN9E8twpLV9ZLET66akZb+ZjVeA+FbpeKFdCQG7rz/P7XnraHExwWSw+RcZHLbykliPqSAASA1Jqsi1/M70pHb09aumF9K6sUKuqnVaISrXNy0teZqiqUsyOp6qTWfpEVa+pvVeA2C53llY6CtNXfUa0mLCySHybnI5LaVk8R8aHLbAKAuxSry2BNHqYrs+jX/jnRk9+Wujhb1rV4Y6a7MMFO5uDk0UqgplrIgq+ul1nySFmnpb1bjNQh2hRg4NDL+8+UkxgWSw+RcZHLbykliPgzsDozvfe97pf8/PDysdevW6UMf+pAWLFigm266SUNDQ0EdCgDKqqWKXE+l2XU9Wa6nnO/Lcj2jkznCVS5ujpvZoZsS9qlFmLK4XpL4yVUz0tTfLMZrEMrFwE0r5uu4mR2piAskg8m5yOS2VZK0fBjYWN5yyy26+OKLJUlf+cpX9OKLL+ruu++WJN1xxx268847ddNNNwV1OAA4Si1V5CRWmhG/SnGjFodYyrCJcdE2JSd/1E1tDIztryxL8n1iPmMqxYAkciEiY3Lu5TozfIHdgeH7794S8/jjj2vTpk0666yzdNZZZ2nTpk360Y9+FNShAKCiWqrISas0wwzl4oZYwtgY6OpsS30MFPvb09VBzGdUuRggFyJqJude1kO4AitgWNa7O5UeOnRIJ554Yunfs2fP1v/8z/8EdSgAAAAAAJAxgX2FZHh4WH/8x38sSXr77bf14osv6tRTT5Ukvfnmm+rs7AzqUAAAAAAAIGMCK2B84xvfGPfvY445pvT/X3vtNV111VVBHQoAAAAAAGRMYAWM+fPnT/qzyX4OAAAAAAAwmcD2wCjyfV8PPPCALr/8ci1dulSS9OSTT+rRRx8N+lAAAAAAACAjAi9gbN68Wf/0T/+k5cuX680335QkHX/88brnnnuCPhQAAAAAAMiIwAsYDz74oLZu3aoLLrig9GSSk046Sa+99lrQhwIAAAAAABkReAHDdV1NnTpV0ruPVj148KA6OjqCPhQAAzmOLd+xVbAs+Y4txwk8zURyDGRLLTFF3CHN6olvx7GVHzzEWkAmtbQ68h3nnfh31NLqxN0kRCjOawGuQ44IbBPPokWLFqmvr09r166VdGRPjM2bN+ujH/1o0IcCYBjHsZUfGtXGbbvUnx9WT1e71q6Yr66OFrmul5hjIFtqiSniDmlWT3y/+7s7WQvInJZWR/sGR9Q3Zq2sWTFfx3a2anTEjbt5CFmc1wJch7wr8LLNmjVr1N/fr3POOUeDg4M6++yz9cYbb+iGG24I+lAADFOQSolVkvrzw9q4bZcKCTtGLaiCp0ctMWVK3DWKeE2+MOewnvhO+loAmjHiqlS8kI7Ef9+2XaJ2kX6OY6sgK7b8R+59V+B3YEybNk1btmzRwMCAXn/9dc2ePVvd3d1BHwaAgVzPLyXWov78sFzPDyzZRHGMaiargiN5aokpE+KuUXxqk3xhz2E98Z3ktQA0y/U84j+Dijn48Kgb2/yTe98Vyh0YP//5zzVr1ix94AMfKBUv1q9fH/ShABjGsS31dLWPe62nq12ObSXqGNVQBU+eyT69riWmTIi7RhGvyRf2HNYT32GtBe4SSqe0zatj24k9F6BxxRz89oGR8K9zx6yZ/OCh0ppJ8nVI0ALPItu3b9dNN92kr3/96+Ne//73vx/0oQAYptWxtGbF/FKCLX43tNUJLrnmJK2dcIy1K+ZHWn2erAoO8xQ/OVmzZadW9T2uNVt2Kj80WrooqCWmTIi7RhGvyRf2HNYT32GshWprFMmUxnl1HOlvrvjDcfH/N1f8oRz28Uy1Yg7+5x+/oM8tPzu0a4GJa+aGzf9aWjNJvg4JWuB9bm1t1QMPPKDVq1frueee05e+9CW1trbK97lQasTIqKvu7s6jXi/3WtHhEVdT6tgRud7fj0Ln9Ha1Tak9POvpQ3d3pw4dLmhw/3D1X0ZdRlxf33nsOa1cdqY6O1o0ODSq7zz2nFZdfKaCKmG4rqeujhb1rV4o1/Pl2JZy77welWIVfOx/UGS1Cp4ElT697lu9UJZqiykT4q5Rk8ary7k5CcKew3riu/i7t193rg4dLgSyFqqtUSRTGufVdX39/Kn/T+tWfliOLbme9KNdr+jCj7wvsX1CdcUc/Nvf5fXNR/9bK5edqWOmterYY9qVkx/YtcCkaybB1yFBC6Voc/zxx+vb3/62brrpJl166aXasmVL6ZGqqE9ri6Ol1z9U199sv2NZXX/TyO+HrW1KLvQ+DDbSMEzK9Xw98Zs9euI3e8a9fvVFZwSabFzXk6V3EpjrK+q9s4pV8InfR89iFTwJatrjooaYijvuGjVZvCalD1kXxRzWE9+u66l75lTtPTQYyFrgu93plMZ5zUla9MGTdfM9vySfZsjYHPzb3+V1z0O/fmfegyteSNXXTFKvQ4IWeP4o3mnR1tamO+64Q1/72tf0iU98QiMjI0EfCoBhsvJJb5I/jc+irMRlJcRr8qV9DrO+RtMqjfOa9rWI8qKa9zSumTAE/iW0a6+9dty/V61apQ0bNmjp0qVBHwqAYbL0/TzX9WS5nnK+L8v1uHgxWJbishLiNfnSPIes0XRK67ymeS2isijmPa1rJmiBj8fKlSuPem3RokVatGhR0IcCYBg+mYCJiEvAbKzRdGJegfpMXDNtU3LyR13WzASBFDCuvvrq0lNHLrvssor7Xdx3331BHA6Awfh+HkxEXAJmY42mE/MK1GfsmunqbNPevezaN1EgBYyLL7649P8/+clPBvGWAAAAAAAAJYEUMJYuXapnnnlGra2t+tjHPiZJGhgY0MaNG/XCCy9o7ty5uvHGG4M4FAAAAAAAyKDANvHcuHGj9u3bV/r3F77wBb3yyitavny5XnjhBd12221BHQoAIuM4tnzHVsGy5Du2HCfwvY/RJOYIcSDuAASNvBIexjY9AtvE88UXX9S8efMkSfv379fPfvYzPfzww3rve9+rxYsX65JLLtH69euDOhwAhM5xbOWHRrVx265xz3vv6mhhQyVDMEeIQ6W4mzGDx9wBaAzns/AwtukSWOnJdV21tLRIkp5++ml1d3frve99ryRp9uzZ2r9/f1CHAoBIFKTSyU6S+vPD2rhtlwrxNgtjMEeIQ6W4e/vg4XgbBiCxOJ+Fh7FNl8AKGO9///v1gx/8QJL06KOP6sMf/nDpZ3v27FFnZ2dQhwKASLieXzrZFfXnh+V6fMpqCuYIcagUd6MFPskD0BjOZ+FhbNMlsALGDTfcoHXr1mn+/Pn66U9/qmuuuab0s0cffVQf/OAHgzoUAETCsS31dLWPe62nq12OXf5R0Ygec4Q4VIq7lhzfqQbQGM5n4WFs0yWwM+28efP0k5/8RPfee69+9KMf6X3ve1/pZ4sWLdKaNWuCOhQARCInae2K+aWTXvE7k4FtHoSmMUeIQ6W4O2bqlHgbBiCxOJ+Fh7FNl0Dnbdq0aTrjjDOOen1sMaOaTZs2aceOHXr99de1fft2zZkzR/l8Xp///Of1u9/9Tq2trTrllFN0yy23aObMmUE2HwDGcV1PXR0t6lu9UK7ny7Et5d55HWZgjhCHSnFn82kegAZxPgsPY5suxt3ruGTJEt1333068cQTS69ZlqWVK1dqx44d2r59u04++WTdfvvtMbYSQFa4rifL9ZTzfVmux8nOQMwR4kDcAQgaeSU8jG16GFfAmDdvnmbPnj3utRkzZmjBggWlf8+dO1dvvPFG1E0DYACe442kGRuz+cFDxCxCR55E2hDTMAWxGL/EffXH8zzdf//9Wrx4cd1/O2vWtBBahFp0d5v3FBoT2zRWkuI1qrH0PF+v7t6vDfc+UXqOd+9VC3TK8dONunXb9NgKQ9jxmtQxTUrMNiqp8xJmvMY9JlHGXNx9jUrc/TT5eiCKsTEhj8YdA0kSV7ymNRbTHHuN9i1xBYxbb71VHR0d+vSnP1333w4MHJBX5XE5aQ6SOO3dO1jX70cxD7W0Kc54qCVeTdDd3Vn3/DbKd+zSSUM68gisDfc+ob7VC2UZcitglONR7thxCTNe4xzTZiUhZhvV7LykMV5NiNWoYs6Evkah2M80xmuzooqBuPNoEmM9a/Ga1lhMYuzVamzf6o3XRBUwNm3apFdffVVbt26VbXO7DpA1kz3HO1HJDJlBzCJqxBzShpiGKYhFMySmCnDnnXfqmWee0Ve/+lW1trbG3RwAMeA53kgaYhZRI+aQNsQ0TEEsmsG4AsaGDRt07rnnavfu3bryyit1wQUX6IUXXtDWrVvV39+vSy65RMuWLdO1114bd1MBvCOqDY14jnf2OI6t/OChxG6WRcwiKsU8LIuYQ7okJY+yuWP6VYrFVsdi7iNk2tpXb2+vent7j3r9t7/9bQytAVCN5/nKD41q47ZdpQ2N1q6Yr66OlsAfUcVzvLPFcex3Ymtn6LEVlokx2zYlJ3/UTUz7kQzvrpUjeXjB/z5OGz7zR7JkybZFnkSiJeHcP3ENJvF8herKxWKrY2lgcIS5jxDlIQBNefvg4VLSlo58F3Djtl0qhHQ8nuOdHQUp0tgKy9iY7epsI2YRuIlr5Ynf7FHv1n+TbYs8iVQw/dyflvMVqpsYiyOuz9xHjAIGgKaMFryKGxoBzZhssywA72KtAPFiDWYXcx89ChgAmtKSs9nQCKFgsyygNqwVIF6swexi7qNHAQNAU46ZOiURm2sheZKycRsQN9YKEC/WYHYx99FjbAHUxXFsFaTS5kWSjN9cC8lU3Czr9uvO1aHDhVhia2K8E9uISj2xl4RNDoEwmJKjWYPZVe/cmxKzSUYBA0DNyu2y3XvVAh3TljuyoZEkub7cuBuK1HBdT90zp2rvocHIY4td5RGXRmLPdT1ZEnkYmWFajmYNZletc29azCYVXyEBULNyu2xvuPcJ43Za5lnsCEKQu8oXY7I/P0RMoipTn2gwNrfmBw8RxyiJ47xr6joBKnFlEbMB4A4MADWbbKdlU5IJ1W0EJah4JyZRLxNzLXGMSuKKDRPXCVCJ49g65FZ+ch8xWztK5wBq1uhOy1F+MsMnMgjKZPFeT0wTk6iXibvaJymOuQuvvLDGJa7YMHGdAJUUJL2x70AmYjbsHExGB1Czcjst9161YNKqcfGTmTVbdmpV3+Nas2Wn8kOjoV1Q8jxuBKXSzuKtjlVXTBOTqJeJu9onJY6jPuckRZjjEldsmLhOgEpcz9d3Hnten1t+dqpjNoocnKbxAhCwWp44cuyMDg0MHKj4HpU+melbvVBh1JuLn8iMvZgqVbddsy60Eb/JdgOvtLP4iOvXFdPEZLKYsEO8iU80SEocR33OSYowxyWu2DBxnTTLhPyTNqaMqWMf2Tvom4/+t1YuO1OdHS06NFLQjM5WuSPp2fI1ihyc7XI0gIoqVVAlHXniiO/Lcj3ZVW57i/qTGT6RQa1q+ZTAdb1x8e66Xt0xTUwmh0mf3peLvTglJY6TcqdI1MIclzhjw7R10gyT8k9amDSmxXWSHzykjdt26c77/1NdnW2yDCoAByGKHGzaeQeAIYKqoEb9yUwaP5FBOBqN8XpjemxMyrIk3ycmDcWn95VNzK1tU3LyR13j4jgpd4pELcxx4bwbDPJP8Ewa06yskyhyMCU9AGUFVUGN45OZNH0ig/A0GuONxHQxJnu6OohJg/Hp/eTG5tauzjYj4zgpd4pELexx4bzbPPJP8Ewb0yyskyhycNbzOYAKgqqgZqXijORpNMaJ6fTi0/vkY32Wx7iYj/wTPMY0elHkGu7AAFBWkBXULFSckTzNxDgxnU58ep8OrM/yGBezkX+Cx5jGI+xcw/wBKItPa5B2xDgmIiYAxIX8EzzGNJ0oYACoyHU9WXonUbi+0vOQJ+AIYhwTERMA4kL+CR5jmj58hQRAXRzHlu/YKliWfMeWF9JGSBOPw2PEEIdKcUh8wmSmxqep7UL00hgLaewTymt2romV5nAHBoCaFZ+nXXwkVU9Xu3qvWqBj2nKB3o5X7jhrV8xXV0cLt/0hMpXicFZnqwYGR4hPGMnU/GlquxC9NMZCGvuE8pqda2KleZR7ANSs3PO0N9z7hAoRHGfjtl2BHweYTKU4HHGJT5jL1PxparsQvTTGQhr7hPKanWtipXkUMADULKrnaZv23G5kU+U49IhPGMvU/GlquxC9NMZCGvuE8pqda2KleRQwANSs+DztsUrP007gcYDJVI5Dm/iEsUzNn6a2C9FLYyyksU8or9m5JlaaRwEDQM3KPU+796oFgW+mw3O7YYJKcdjqEJ8wl6n509R2IXppjIU09gnlNTvXxErzGCsAchxbBanqM7LLPU/72BkdGhg4EGh7eG43olAt7ivF4eiIS3zCWPXkz1pzf9TtQjiinO/JpDEW0tgnlFdpriXJd+yGrqWJlfpQwAAyrt7dkCc+T9sO6ZY3ntuNMNUa95XikPiEyWqJzzh2wmfdxMe0Jx+kMRbS2CeUN3Gu1eS1NLFSH75CAmQcuyEji4h7ZB1rIFuYbyA8rK9oUcAAEsZxbPmOrYJlyXdsOU5zy5jdkBGmoOM1KMQ9gjAxvr0ExQ9rIFuSMt+mnjNgDhNjJCnrKy34CgmQIGHcAlrcDXls4i3thuySeNE4025ZHtc24h5NKhffvVct0DFtudjjuxasgWxJwnybfM6AGSrFyIwZ8cZwEtZXmsRfsgJQszBuUYtiN2QTq+UIn8m3VOYkrb/mQ1q3coH6Vi/UupULtP6aD1HVz7h6clW5+N5w7xNGxHct2Ak/W5Iw35OdM7iOSL4g5rBSjLx98HDAra1PEtZXmjCuQIJMdotao4s57N2Q+UQlu8KI1yCNjnr6+3/+r1Jc3rRivtTixN3MtON5AAAgAElEQVQsxKTuDY0Nj+9q2Ak/W5Iw35XWlCwpf5DriCQL6lqwUoyMFo5sihmXJKyvNKF8CSRI8Ra1sUq3qDXBdT1Zrqec78tyvUATrsmfwiNcYcVrEAqSvjQhLr9EXGZavbnK5PiuVZi5H+Yxfb4rrSn5FtcRCRfUtWClGGnJxf+ftKavrzSJf7Yn2LRpkxYvXqzTTjtNzz//fOn1l19+WcuXL9f555+v5cuX65VXXomvkUBMkniLGhsbZZfJ8UpcYqJ6Y6JcfPdetcCI+AaSqNI5w/M88nXCBXXOrRQjx0ydElRTkQDGnWeXLFmiyy+/XJ/61KfGvb5u3TpddtllWrZsmR566CF98Ytf1D/8wz/E1EogHkm8RY2NjbLL5HglLjFRvTFRLr6PndGhgYEDUTYbSI1K54yCRL5OuKDOuZVixE7QnW9onnF3YMybN0+zZ88e99rAwICeffZZXXjhhZKkCy+8UM8++6zeeuutOJoIxCppt6iZ/Ck8wmdqvBKXmKiRmJgY31xEA80pd84gXydfkHNo6nUFopOItf/mm2/quOOOk+Mc2VzNcRz19PTozTff1MyZM2NuHYDJuK6nWZ2t6lv9EbmeJ8e21epIoyNu3E1DhgV9d4jj2CpIxt1pgtoFEROe58t3bOIAqKKenGny3XyoTVRzyLk4GxJRwAjKrFnT4m5CZnV3d8bdhKOY2KaxkhSvk42l5/l6dfd+bbj3idLO071XLdApx09P7aeVpsdWGMKOV5PHtN4YN7kv9UpqX8KIV3JdesXdT5OvBxoZmySulbhjIEniitdZs6YlLq5qkebYa7RviShgzJ49W3v27JHrunIcR67rqr+//6ivmlQzMHBAXpXNYtIcJHHau3ewrt+PYh5qaVOc8VBLvJqgu7tz0rH0Hbt0MpGObNq04d4n1Ld6oawUVsWrjUfYx45LmPEa55jWop4YN70v9Wi2L2mLV3JdOhX7mbZ4DUKjMZC0tZLEWM9avHZ3d2rf/wwlKq5qkcTYq9XYvtUbr8btgVHOrFmzdPrpp+vhhx+WJD388MM6/fTT+foIkAA87QFpR4xDIg6AWrFWEAbiKjuMK2Bs2LBB5557rnbv3q0rr7xSF1xwgSRp/fr1+ta3vqXzzz9f3/rWt3TzzTfH3FIAtaj0zG4nwbfzAWMR45CIA6BWrBWEgbjKDuMKGL29vfrXf/1XPfvss9q5c6ceeeQRSdKpp56q7373u9qxY4e++93v6n3ve1/MLQVQC3YPR9oR45COxEHvVQuIA6AKcibCQFxlB3MKIFTsHo60I8YhHZnvU46fThwAVZAzEQbiKjsoYAAInet6svROwnF98QBVpA0xDkmybUuW6xEHQBXkTISBuMoG475CAgAAAAAAMBEFDAAAAAAAYDwKGAAAAAAAwHgUMAAAAAAAgPEytYmnzXOAY2Pi2JvYprFMb99YSWprFLI4HmH3OU1jSl/iF2a7kzomjchKX+PuZ9zHn4zJbQtSVvoZhLjGKq1zlNZ+SY33zfJ93w+4LQAAAAAAAIHiKyQAAAAAAMB4FDAAAAAAAIDxKGAAAAAAAADjUcAAAAAAAADGo4ABAAAAAACMRwEDAAAAAAAYjwIGAAAAAAAwHgUMAAAAAABgPAoYAAAAAADAeBQwAAAAAACA8ShgAAAAAAAA41HAAAAAAAAAxqOAAQAAAAAAjEcBAwAAAAAAGI8CBgAAAAAAMB4FDAAAAAAAYDwKGAAAAAAAwHgUMAAAAAAAgPEoYAAAAAAAAONRwAAAAAAAAMajgAEAAAAAAIxHAQMAAAAAABiPAgYAAAAAADBeLu4GRGlg4IA8z6/6e11dHcrnhyJoUWNoX+PqbVt3d2eIrZlcrfEaN5PnOw5xjkda4zVNMUZf3pXGeE3T/FaTlb4W+5nGeG1W1mIgSbIWr0mco1qktV/S+L7VG6/G3YGxadMmLV68WKeddpqef/55SVI+n9c111yj888/X0uXLtVnP/tZvfXWW6G1IZdzQnvvINC+xpnctqRiTMdjPIKXpjGlL+mWpTHJSl+z0s9GZGVsstLPJEvrHKW1X1JzfTOugLFkyRLdd999OvHEE0uvWZallStXaseOHdq+fbtOPvlk3X777TG2EgAAAAAARMm4Asa8efM0e/bsca/NmDFDCxYsKP177ty5euONN6JuGgAAAAAAiIlxBYxqPM/T/fffr8WLF8fdFAAAAAAAEBHL933zdgWStHjxYm3dulVz5swZ9/rNN9+sPXv26K677pJtJ67+AgAAAAAAGpCop5Bs2rRJr776qrZu3dpQ8aLWXXG7uzu1d+9gI02MBO1rXL1ty9ouzo0web7jEOd4pDVe0xRj9GX838clrHhN0/xWk5W+FvuZxnhtVtZiIEmyFq9JnKNapLVf0vi+1RuviSlg3HnnnXrmmWf0ta99Ta2trXE3Bwnleb58x5br+XJsSzlJruvF3SwAMJbj2CpI5M2UY56ThzkDzMF6jI5xBYwNGzboscce0759+3TllVdqxowZ+spXvqKtW7fqPe95jy655BJJ0kknnaSvfvWrMbcWSeI4tl7dvV8b7n1C/flh9XS1a+2K+erqaCHBBKRzervaptSXVg4dLmhw/3BILQLQDMexlR8a1cZtu47Km0iPyeaZ86OZmDPAHKzHaBlXwOjt7VVvb+9Rr//2t7+NoTVIk4JUKl5IUn9+WBu37VLf6oWy4m1aarRNyWnp9Q/V9Tfb71imdN4cByRfQSpdkEnj8ybSY7J55vxoJuYMMAfrMVrsgonMcD2/lFiK+vPDcg38XikAmIC8mQ3Mc/IwZ4A5WI/RooAB4ziOLd+xVbAs+Y4txwkmTB3bUk9X+7jXerra5djURgGgnFrzZlh5O01MHiPOj8mTtTkzef0gPsW46M8PxRoXWVuPcWP1wyjF75Ct2bJTq/oe15otO5UfGg0kIeUk9V61oJRgit9PM+57VABgiJyktSvmT5o3w8zbaWH6GNUyzzBLlubM9PWDeIyNi6s3/DDWuMjSejQB4wqjhPkdMtf1dMrx09W3eiE7BANADVzXU1dHy6R5k+/+Vmf6GNUyzzBLlubM9PWDeJgUF1lajyaggAGjTPYdsiCC1bYtWa535L1cX24A7wkAaea6niypYt4MO2+nQRLGqNo8wzxZmbMkrB9Ez7S4yMp6NAH3XsEofIcMAJKFvF0dYwQ0jvWDcoiL7KKAAaPwHTIASBbydnWMEdA41g/KIS6yizmGUfgOGQAkC3m7OsYIaBzrB+WMjQtZluT7xEVGUMCAcfgOGQAkC3m7OsYIaBzrB+UU46K7u1N79w4SFxnBV0gAAAAAAIDxKGAgkRzHlu/Yci1LvuPIzx35N88EB5AlxVxYsKyyObDazxEsz/ONHG/iAAhfmOuMNRyNesaZOYkPXyFB4jiOrfzQaOnZzz1d7frc8rO1/ecv6tLzfl9dHS18/w1A6pXLhWtXzC/lwGo/R7Acx9aru/drw71PGDXexAEQvjDXGWs4GvWMM3MSL0pFSJyCVEoY0pFnPv/dPz6lJX94ijZu26VCvM0DgEiUy4Vjc2C1nyNYBalUvJDMGW/iAAhfmOuMNRyNesaZOYkXBQwkjuv5pYRR1J8fVmdHi/rzw3I9P6aWAUB0KuXCYg6s9nMEy9TxNrVdQJqEuc5Yw9GoZ5yZk3hRwEDiOLZVeuZzUU9XuwaHRtXT1S7HtmJqGQBEp1IuLObAaj9HsEwdb1PbBaRJmOuMNRyNesaZOYkXBQwkTk7S2hXzS4mjuAfG40++qrUr5rOxC4BMKJcLx+bAaj9HsHKSeq9aYNx4EwdA+MJcZ6zhaNQzzsxJvBhnJI7reurqaFHf6oXyPMm2LcnyteriM5V75+cAkHZjc6Hr+XJsa1wOrPZzBMt1PZ1y/HTjxps4AMIX5jpjDUejnnFmTuJFAQOJ5LqeLEmOJLljXo+pPQAQh2IuzEmS6x+VA6v9HMGybUuW6xk33sQBEL4w1xlrOBr1jDNzEh++QgIAAAAAAIxnXAFj06ZNWrx4sU477TQ9//zzpddffvllLV++XOeff76WL1+uV155Jb5GAgAAAACASBlXwFiyZInuu+8+nXjiieNeX7dunS677DLt2LFDl112mb74xS/G1EIAAAAAABA14woY8+bN0+zZs8e9NjAwoGeffVYXXnihJOnCCy/Us88+q7feeiuOJgIAAAAAgIgZV8Ao580339Rxxx0nx3EkSY7jqKenR2+++WbMLQMAAAAAAFHI1FNIZs2aVvPvdnd3htiS5tG+xpnctrHqide4NTumSZmTWqWtP7UIO17TNKb0JX5hxmtSx6QRWelr3P00+Xog7rGJSlb6GYS44jWtc5TWfkmN9y0RBYzZs2drz549cl1XjuPIdV319/cf9VWTagYGDsjz/Kq/193dqb17BxttbuiabZ/j2CpIoT232OTxq7dtcSaNWuM1bmPHtNHxMjVeGhFn/Kc1Xk3OKfWKqy9h5P1m+5LGeA1zfsM+d9crTetyMsV+pjFem5W1GCgybS2Wk7V4jSIW45j3NK+xZv77IREFjFmzZun000/Xww8/rGXLlunhhx/W6aefrpkzZ8bdtMRxHFv5oVFt3LZL/flh9XS1a+2K+erqaDEu+QIAmkfeTz7mEDADazGbmHezGFfA2LBhgx577DHt27dPV155pWbMmKFHHnlE69ev19/8zd9oy5Ytmj59ujZt2hR3UxOpIJUWnyT154e1cdsu9a1eKCvepsFAndPb1TalepqIstJfa5uKDh0uaHD/cIgtql8a+oDkIO8nH3MImIG1mE3Mu1mMK2D09vaqt7f3qNdPPfVUffe7342hRenien5p8RX154fler55wYDYtU3Jaen1D9X8+9vvWBZia45opE2m3XyXhj4gOcj7ycccAmZgLWYT826WRDyFBMFxbEs9Xe3jXuvpapdjUz8EgDQi7ycfcwiYgbWYTcy7WShgZExO0toV80uLsPgdLqqHAJBO5P3kYw4BM7AWs4l5NwvjngL17Irrup66OlrUt3qh0bsnA0CtkrAjfJzI++EoF3dhYQ4BM4S9FjmfhaeZsSUHm4UCRsI1siuu63qy9M7ku77cJo5NkgUQJ3YGr01QeX8yWTonVIq7GTPCe3RgFHOYJVmK16AVx64/PyQ5dubGLqy1yPksPEGMbZpzcNLyIV8hSbhKu+IWQj5uMRGs2bJTq/oe15otO5UfGpXjEFIAohNXDsR4WTsnVIq7tw8ejrdhqEnW4jVIY8fu6g0/ZOwCxPksPIxtZUnMh+a2DDWZbFfcMJEIAJggrhyI8bJ2TqgUd6MFcz+xwruyFq9BYuzCw/ksPIxtZUlc0xQwEi6uXXFJBABMwM7gZsjaOaFS3LXkuKxKgqzFa5AYu/BwPgsPY1tZEtc0Z9qEi2tXXBIBABOwM7gZsnZOqBR3x0ydEm/DUJOsxWuQGLvwcD4LD2NbWRLXNPOWcHHtiltMBBM3wyGgAESJncHNMNk5IU0bnRVVijvb4As+vCtr8Rokxi48nM/Cw9hWlsQ1zX9vpkAcu+KSCACYIs07gydFFs8JxF1yZTFegzJ27GRZku8zdgEir4SHsS0vifmQAgYaRiIAABRxTkCSEK+NK45dd3en9u4dZOyAhEtaPmQPDAAAAAAAYDwKGAAAAAAAwHgUMFA3x7HlO7YKliXfseU4hBGAbCIfImuKMd+fHyLmM4oYACbHtUG42AMDdXEcW/mh0aN2qu3qaDF6sxcACBr5EFlDzIMYACbHGgkf5SDUpSCVFqQk9eeHtXHbLhXibRYARI58iKwh5kEMAJNjjYSPAgbq4np+aUEW9eeH5Xp+TC0CgHiQD5E1xDyIAWByrJHwUcBAXRzbUk9X+7jXerra5dhWTC0CgHiQD5E1xDyIAWByrJHwUcBAXXKS1q6YX1qYxe91sZkKgKwhHyJriHkQA8DkWCPhS9RY/uQnP9HmzZvl+748z9Nf/MVf6Lzzzou7WZniup66OlrUt3qhXM+XY1vKvfM6AGQJ+RBZMzbmZVmS7xPzGUMMAJPj2iB8gRYwfvGLX+jBBx/UCy+8oIMHD2rq1Kn6vd/7PX384x/XwoULm3pv3/f1+c9/Xvfdd5/mzJmj5557Tpdeeqn+5E/+RLbNjSRRcl1Plt4JHteXG3N7ACAu5ENkTTHmu7s7tXfvIDGfQcQAMDmuDcIVWAFj27Ztuueee/TJT35S5513njo7O3XgwAE999xzuvHGG3XNNdfoiiuuaOoYtm1rcHBQkjQ4OKienp5EFi8cx1ZBoioHABlRzPv9+SHJscn7SKSx1y/5wUNyHJs4hiSubYFasE6CEVgB45577tE3vvENnXrqqeNeP++883TBBRfoiiuuaKqAYVmWvvKVr2j16tXq6OjQwYMHdffddzfb7MjxbGAAyBbyPtKAOEYlxAZQHeskOIEVMIaHh3XccceV/Vl3d7eGh4fL/qxWhUJBd999t7Zs2aJzzjlH//Ef/6G//Mu/1COPPKKpU6fW9B6zZk2r+Xjd3Z2NNnVS+cFD2rht51HPBr79unPVPbO2foTZvlp4nq+3Dx7WaMFTS87WMVOnyJ6ws26c7avG5LaNVU+8Jl3YcxL1nIdxPNPjNux4NaH/teS+coLK+yYyYV4aEWS8jo2L/OAhzZo1raa4SJo0x3E1cce5ydcD3d2dmYiNuGMgSaKK16Tl3kbXSZpjr9G+BVbAOO+88/SZz3xG1157rU477TRNmzZNBw4c0G9/+1tt2bJF559/flPv/9///d/q7+/XOeecI0k655xz1N7erhdffFEf+MAHanqPgYED8mp4Bm/xO31hKFhW2WcDHzpc0N5DtR0zzPZVU0v1MM72VVNv2+JMGrXGa5ii6n/YcxJlPNYSY2H1Ia3xakJOaeaTkyDyvomanZc0xGuWPlFLaxxXU4zzNMRr0Ep7YFSIjcOH3VTEhgnnoHqlPV6TmHsbyaFJjL1aje1bvfEa2AYSN998s84++2zdeOON+qM/+iOdddZZWrhwoW688UbNnTtX69evb+r9jz/+eO3evVsvvfSSJOnFF1/Uvn379L/+1/8KoPXRSfqzgQtSKVlI71YPC/E2CwBC1UzuS3reR2VZOicSx6jEtu2ysWHyp+FItiTmXnJocAK7A6O1tVXXX3+9rr/+eu3fv19DQ0Pq6OjQ9OnTA3n/7u5urV+/Xtddd50s68hE9/X1acaMGYG8f1SKzwaeWDHMSYnYodb1/LLVQ9fzk/VMXqCCzuntaptSXzQfOlzQ4P7mviYHszWT+5Ke91FZls6JxDEqsnx9bvnZ+rt/fKoUG59bfrZkmXfXCNIhibmXHBqcUOZ4+vTpgRUuxrrooot00UUXBf6+UUr6s4GL1cOxSaNUPXQ5USH52qbktPT6h+r6m+13LFM6b/BDUTO5b2zel2VJvp+ovI/KsnROnHj90jYlJ3/UJY4h+dL2n7+olcvOVGdHiwaHRrX95y9q1cVnxt0ypFQSc2/S/xvQJJE8g3RkZESnn356FIdKBNf1ZLmecr4vy/USFbjF6mHxFqix1UMASKtmc18x7/d0dSQu76OyrJ0Tx16/dHW2EceQdGQdXHre7+ueh36tNVt26p6Hfq1Lz/v91K4DxC+puTfJ/w1oksDm+Y033qj4s8OHD8v3zayGoT5UDwFkEbkP5XBXAkB+RPTIvdkWWAFj8eLFsiyrYqGiuG8FzOE4tgpS3Scb1/Vk6Z3gcX2+twUAyKyx58SuzrbE7hjf6DUBIGXr2pC1Yoa4ci/zH7/AChjd3d266667dMYZZxz1s8OHD5cef4r6TVwoPPoNAKLVTM4cm8Pzg4fkODZ5FqGq9wKbawKYzpT/aGStZJvj2Do46mrPW0Nqa83p0EhBx83s0NQWh/mPUGB7YJxxxhl69tln5TjOUf/L5XJ8haRBxUS5ZstOrep7XGu27NSru/fLcZqbuiQ+fggA4tJozpyYw2/Y/K/KD402ncOBSspdN1SLOa4JYLJGYjosrJVs8x1L+cHD+vt//i+t2bJTf//P/6X84GH5Dt80iFJgK/+WW27ReeedV/Znra2teu6554I6VKaUS5Qb7n2i6UQ52eOHAADjNZozudhF1BqJOa4JYDKT8ihrJdsKrq/N33lqXCxu/s5TKhj65JO0CqyA0d3drVmzZgX1dnhHWImy+PihsUqPHwIAjNNozuRiF1FrJOa4JoDJTMqjrJVs8yrEose3RyIV+L1Xvu/rgQce0OWXX66lS5dKkp588kk9+uijQR8qE8JKlEl9/BAAxKHRnMnFLqLWSMxxTQCTmZRHWSvZlrPtsrGY45weqcDX2+bNm/Vv//ZvuuKKK7Ru3TpJ0vHHH6++vj796Z/+adCHS71iohy7WVDvVQuObF7UxPvyyCsAqF2jObNcDi9e7KZ5l37Ep5GY45oAJjMpj7JWss2Rr5tWzNeXxsTiTSvmy1G6n7xjmsALGA8++KAefPBBzZw5U+vXr5cknXTSSXrttdeCPpQxwtwZuVyiPHZGhwYGDgTy3ll55BUANGtsznRkHcn7ljVp3udZ9Yia63qa1dmqvtUfket5cmxbrY40OjL5WZ5rAkSpnmtn04oGrJXscl1PMzpa9H9Xf0QFz5dtSznHktgDI1KBFzBc19XUqVMlSZZ15HaagwcPqqOjI+hDGSGKxylNTJQ2tykBQGzqzftxPase2eQ4tgYGR3jMI4zVyLUzRQOYZP8QOTZOge+BsWjRIvX19WlkZETSkT0xNm/erI9+9KNBH8oIJu2MDAAIH3kfJiM+YTpiFElG/MYv8ALGmjVr1N/fr3POOUeDg4M6++yz9cYbb+iGG24I+lBGMGlnZABA+Mj7MBnxCdMRo0gy4jd+gX+FZNq0adqyZYsGBgb0+uuva/bs2eru7g76MMYo7ow8NpBLOyPzfSgASB3yPkxGfMJ0xCiSjPiNXyh3YPz85z/XrFmz9IEPfKBUvChu6Jk2PE4JALKFvA+TEZ8wHTGKJCN+4xf4WG/fvl07d+7UFVdcoauvvrr0+ve///1UFjFM2xkZABAu8j5MRnzCdMQokoz4jV/gd2C0trbqgQce0COPPKK//uu/HreZZ1q5rifL9ZTzfVmuRwADQMqR92Ey4hOmI0aRZMRvvAIvYEjS8ccfr29/+9vyPE+XXnqp9uzZU3qkKgAAAAAAQL0CL2AU77Roa2vTHXfcofPPP1+f+MQnSndiAAAAAAAA1CvwPTCuvfbacf9etWqVTjvtNP3Lv/xL0IcCAAAAAAAZEXgBY+XKlUe9tmjRIi1atKjp9z58+LA2btyoX/7yl5oyZYrmzp2rW2+9ten3BQAAAAAAZgukgHH11Vfr61//uiTpsssuq7jfxX333dfUcW677TZNmTJFO3bskGVZ2rdvX1PvBwAAAAAAkiGQAsbFF19c+v+f/OQng3jLoxw8eFDf+9739LOf/axUIDn22GNDORYAAAAAADBLIAWMpUuX6plnnlFra6s+9rGPSZIGBga0ceNGvfDCC5o7d65uvPHGpo7x2muvacaMGbrrrrv0xBNPaOrUqbruuus0b968mt9j1qxpFX/meb7ePnhYowVP+cFDpd8tvtaSs3XM1Cmy7cafpjL2GM2+X3d3Z8PtiILJ7TO5bWNNFq9pE/acRDHnY48RxvFMj9uw4zWM/jeTkyf+bWd7qwaHR2p6L9Pnsh5J7UuleG32PO15vnJtLYFdN5jO1PkP8npLir+fQeXXoMdFanxs6m1LGG2vR9wxkCRh5ddqurs7Y4+TMCQx9mqdh0b7FtgeGBs3btRnP/tZzZkzR5L0hS98QXv27NHy5cv18MMP67bbbtP69esbfv9CoaDXXntNf/AHf6Abb7xRv/rVr/SZz3xGP/zhDzVtWm2JfWDggDzPP+p1x7GVHxrVxm271J8fVk9Xu9Zf8yGNjnr60pjX1q6Yr66Oloae9VvuGI2+X3d3p/buHay7DVExuX31ti3OpFEpXqMUVf/DnpMo5rx4jFpiLKw+pDVew8gpzeTkiX+74H8fp0vO+3311fBeJufHejXbF9PitdnztOPYevtQQRvufSKQ6wbTmRrLQV5vSe/207R4rVfQ4yI1HgP1tiWMttfD1FifjGnxGvYcdnd36q23DsYaJ2FIYuzVOtdj+1ZvvAb2GNUXX3yxdDfE/v379bOf/Uy33367PvWpT+lv//Zv9ZOf/KSp9z/hhBOUy+V04YUXSpLOOussdXV16eWXX2667QWpNMiS1J8f1p63hkrFi+JrG7ftUiHAYzTzfgCAxjWTkyf+7ZI/PKVUvKj3vWCOZs/TBalUvGjk7xEMrrfKM2lc6m2LSW1HY6KYQ+LEDFHMQ2AFDNd11dLSIkl6+umn1d3drfe+972SpNmzZ2v//v1Nvf/MmTO1YMEC7dy5U5L08ssva2BgQKecckpzDZfken5pkIvaWnNHvdafH5bbYAW83DGaeT8AQOOayckT/7azo4X8ngLNnqc5z5uBeSjPpHGpty0mtR2NiWIOiRMzRDEPgRUw3v/+9+sHP/iBJOnRRx/Vhz/84dLP9uzZo87O5m9luvnmm3X33Xdr6dKl+qu/+it9+ctf1vTp05t+X8e21NPVPu61QyOFo17r6WqX0+D3qModo5n3AwA0rpmcPPFvB4dGye8p0Ox5mvO8GZiH8kwal3rbYlLb0Zgo5pA4MUMU8xBYAeOGG27QunXrNH/+fP30pz/VNddcU/rZo48+qg9+8INNH+Pkk0/WN7/5TW3fvl0PPvigFi1a1PR7Skc2Alm7Yn5psHu62nXczA7dNOG1tSvmN7xpSLljNPN+AIDGNZOTJ/7t40++qjXk98Rr9jydk9R71QLiIGZcb5Vn0rjU2xaT2o7GRDGHxIkZopgHy/f9wO7nOHDggF555RW95z3vGbex5ldLPiQAACAASURBVEsvvaSpU6fquOOOC+pQDZlsEyTHsVXQkdte2qbk5I+6klR6zbEt5aSmNoEZe4xm3q+ZTZPGHr/VsTTi+oH1r9n2RYFNPOvT3d2ppdc/VPPvb79jWV2/X/ybeuek3jaF+f4Tj1HrJp5h9CGt8RpETimXf6V3c3zOtmU70sioV1M+bDSfmpwf65W2TTyl5s/Ts2ZN077/GQr8vGoax7FltTg6dLgQWD+DukYK+r3SsomnFOy4SLXlgErHrLctQbe9HhP7GWdbamVivIY5bsU5SsLcVFPuv0mLfUhK/2ppZzObeAZalJo2bZrOOOOMo15/3/veF+RhQuG6niwdGZCuzrbSgBZfk+vLDfAYQbxfPZrZNR8AkmyyHbEt19MUx1Z+aKSuncsn5vNRN9jzBeLR7Hnati1ZrpfqOHh3Pe0M7Poh6CcUxHm9ZbKox6XavNbTFlPmNO4noiRZFHNoSpw0arL4kpSY2At7HgL7CgmC4zi2fMdWwbLkO7Ycp/lpYtd8AEnkOLbyg4eayofVdsRm53KkQRjXDuWEsV5Yg+mUxnmdrE9RrUGYJ6i5nyy+0rieGsXXggwTVmW3nl3zCQoAJgjqk97JdsTO1fBzwHRRfiocxnphDaZTGue1Up88T8ofSsan4whWkPm32hM80raeGkVp0DBhVdfYNR9A0gSVD6vtiM3O5Ui6KD+ZC2O9sAbTKY3zWqlPtm3x6XhGBZl/J1szaVxPjaKAYZiwnp3LrvkAkiaofFhtR2x2LkfShXXtUE4Y64U1mE5pnNdKfZIV3RqEWYLMv5OtmTSup0Zlsc9GK1bXxi6EUnXNbTwJuq6nro4W9a1eOG7X/LH/NnUnWwDZFFQ+LJf/xua7aj8HTBfWtUM5xfVy+3XnBvYUEtZgOqVxXiv1qeArsjUIswSZfyfG18SnkKRtPTWKOzAME2Z1zXW9I7uj+74s19PoiDvu31lcAADMFWQ+nJj/Jua7aj8HTBb1J3Ou66mrsy3Q9cIaTKc0zmu5PvHpeHYFPfdj46urs23cmknjemoE6yoAjT6Tt9LfUV0DgHA+6a1XS6ujEVdyPU+ObavVkUZHkvZgNiRRPdcWSbl2aPR6CajElJhyXU+zOlvVt/ojnC8ypt78e+SJJZYKri/P85WzbTnyyYV1oIDRpEZ3ng3y2dgAkFau66l75lTtPTQYeT5saXW0b3Ck9Mjpnq52rVkxX8d2tnJRilA1cm1h+rVDlE9KQTaYFFOOY2tgcMSItiB6teZfx7F1cNRV/q3D2vydp0qxctOK+ZpBrNSMr5A0qdGdZ3mWLwCYbcRVqXghHcnTfdt2idoFwpbGa4Q09gnxMimmTGoLzFWQtOetoVLxQjoSK18iVupCAaNJje48G+WO4QCA+rmeVyFP8wkJwpXGa4Q09gnxMimmTGoLzOV6vtpac8RKkyhgNKmWZ/Ie+a6TrYJlyXdsOY7Ns3wBwADl8nPpZ7ZdIU9z6kyzyWIisjak8BohjX1CvEyKqaDaYkL+SRuTxtSxLR0aKRgTt0nFqmhStZ1ni9/PW7Nlp1b1Pa41W3YqPzSqVsdit2IAiFGl/Fy8uGl1pDUT8vSaFfPV6sTZaoSpWkxEJY1PNEhjnxAvk2IqiLaYkn/SxLQxzUk6bmaHrrvk7HGxchO5sC6MVZOq7Txb6TtxfasXJmLHcABIq8nys6Uju8cfy67ymVItJqKSlKeK1CONfUK8TIqpINpiSv5JE9PG1HU9TW1x1NE9VRtXL5TnSTnb4ikkdaKAEYDJdp6d7Dtxlu8bvWM4AKTZZPm5eHIcHXHH5GlXoyTqVKslJiJri+FPFWlEGvuEeJkUU822xaT8kxYmjqnrepJ75GsQtiS5IhfWiXuSQmbS9/MAAO8iP2MiYgJAXMg/wWNM04kCRshM+n4eAOBd5GdMREwAiAv5J3iMaToxfyEz6ft5AIB3kZ8xETEBIC7kn+AxpumUyDsw7rrrLp122ml6/vnnIz1uo4/hcV1Plusp5/uyXI9FAwAGcBxbBYmLGoyTpXO2SY8XRPiYb/NlKf9EJaoxZX1FJ3F3YPzmN7/R008/rRNOOCHS4xYfw1PcybZ4C1JXRwvJBQAShpyOrGMNZAvzDYSH9RWtRJWGRkZGdMstt2jdunWyrGg3X6n0GJ5CpK0AAASBnI6sYw1kC/MNhIf1Fa1E3YGxefNmXXTRRTr55JMb+vtZs6bV/Lvd3Z3j/t2fHyr7GB5Z1lG/G4U4jlkPk9tnctvGqideky7sOYlizsceI4zjmR63Ycdr0P2PM6ebPpf1SGpfwozXpIxJEGsgKX1tVtz9DCJew8p5cY9NVLLSzyDEdf0a5xyFeU2R5thrtG+JKWA89dRT+vWvf60bbrih4fcYGDggz/Or/l53d6f27h0c/6Jjq6erfVxw9nS1S75/9O+GrGz7DGJy++ptW5xJo9Z4DVNU/Q97TqKY8+IxaomxsPqQ1ngNJafElNNNzo/1arYvaYzXRM1vk2sgUX1tQrGfiY/XEHJe1mIgSRIfr3WKfY5CuqaIvV8hGtu3euM1MV8hefLJJ/XSSy9pyZIlWrx4sXbv3q2rr75av/jFLyI5Po/hAYD0IKcj61gD2cJ8A+FhfUUrMeO6atUqrVq1qvTvxYsXa+vWrZozZ04kx+cxPDBN5/R2tU2pbwkfHnE1pdUJqUWNGRl1Q/2kIOz3RzKR05F1rIFsYb6B8LC+opWYAoYJXNeTpXcGzfXlxtweZFvblJyWXv9QXX+z/Y5ldf3N9juW1dusurW2OKG2Kez3R3KR05F1rIFsYb6B8LC+opPYAsaPf/zjuJsAAAAAAAAikpg9MAAAAAAAQHZRwAAAAAAAAMajgAEAAAAAAIxHAQMAAAAAABiPAgYAAAAAADAeBQwAAAAAAGA8ChgAAAAAAMB4FDAAAAAAAIDxKGAAAAAAAADjUcAAAAAAAADGo4ABAAAAAACMRwEDAAAAAAAYjwIGAAAAAAAwXi7uBiSB49gqSHI9X45tKSfJdb24mwUAxiN/Is0mxrfn+XE3CUg0zhmoplyMIFuY8yocx1Z+aFQbt+1Sf35YPV3tWrtivro6WkioADAJ8ifSrFx89161QMe05YhvoAGcM1BNpRiZMYPicZbwFZIqClJpkUhSf35YG7ftUiHeZgGA8cifSLNy8b3h3ieIb6BBnDNQTaUYefvg4XgbhkhRwKjC9fzSIinqzw/L5TZRAJgU+RNpRnwDwWJNoZpKMTJa4A6dLKGAUYVjW+rpah/3Wk9XuxzbiqlFAJAM5E+kGfENBIs1hWoqxUhLjv+kzRJmu4qcpLUr5pcWS/G7VmweAgCTI38izcrFd+9VC4hvoEGcM1BNpRg5ZuqUeBuGSCUqJ+TzeX3+85/X7373O7W2tuqUU07RLbfcopkzZ4Z2TNf11NXRor7VC9kRGQDqQP5EmpWL72NndGhg4EDcTQMSiXMGqqkUIzZ36WRKou7AsCxLK1eu1I4dO7R9+3adfPLJuv3220M/rut6slxPOd+X5XokUgCoEfkTaTYxvrmIBprDOQPVECNIVAFjxowZWrBgQenfc+fO1RtvvBFjiwAAAAAAQBQSVcAYy/M83X///Vq8eHHcTQEAAAAAACFL1B4YY916663q6OjQpz/96Zr/ZtasaTX/bnd3ZyPNigzta5zJbRurnnhF/MbGVRgxZnrchh2vpve/HvQlfmHGa1LHpBFZ6Wvc/TT5eiDusYlKVvoZhLjiNa1zlNZ+SY33LZEFjE2bNunVV1/V1q1bZdu130SSzx+UV8OzpGfNmmb0Jly0r3H1ti3Oi4Zq8WryBU0WFeOqlhhrZO5qiVuT47UZJueUetGX8X8fl7DiNU3zW01W+lrsZxrjtVlZi4EkyVq8JnGOapHWfknj+1ZvvFq+75uXESdx55136j//8z/1ta99Te3t7dX/AAAAAAAAJF6iChgvvPCCLrzwQr3nPe9RW1ubJOmkk07SV7/61ZhbBgAAAAAAwpSoAgYAAAAAAMimxD6FBAAAAAAAZAcFDAAAAAAAYDwKGAAAAAAAwHgUMAAAAAAAgPEoYAAAAAAAAONRwAAAAAAAAMajgAEAAAAAAIxHAQMAAAAAABiPAgYAAAAAADAeBQwAAAAAAGA8ChgAAAAAAMB4FDAAAAAAAIDxKGAAAAAAAADjUcAAAAAAAADGo4ABAAAAAACMRwEDAAAAAAAYjwIGAAAAAAAwHgUMAAAAAABgPAoYAAAAAADAeBQwAAAAAACA8ShgAAAAAAAA41HAAAAAAAAAxsvF3YAoDQwckOf5VX+vq6tD+fxQBC1qDO1rXL1t6+7uDLE1k6s1XuNm8nzHIc7xSGu8pinG6Mu70hivaZrfarLS12I/0xivzcpaDCRJ1uI1iXNUi7T2S/8/e3cfJUd93/n+U1U9jzDS9AwzYjAcyBKTqxjfANKV4pUxu2KPvSSSRS7xMcaxowsc1sh2tAGBkcCSeNJcPbAsXqIFewM62A5cOCxSJIiBGJ8kVrIIJ+DFxk68iUJgERp5NMBIGmmmq+r+IXUzI7pnurrr4VdV79c5nMM8dPfvV7/P71s1P9WDpvYtaF45A6OKQsFJugnTon2NM7ltacU2nYrtEb4sbVP6km152iZ56Wte+tmIvGybvPQzzbI6Rlntl9Rc31jAAAAAAAAAxmMBAwAAAAAAGI8FDAAAAAAAYDwWMAAAAAAAgPFYwAAAAAAAAMbL1WNUES7HsVWS5Hq+HNtSQZLrekk3CwgNGc+2rlkdam8Lths8Nu6qrbX+O2cfPVbS6HtjQZsGIGLU98aVt93QyBHJsdl2QMqlrR6ygIGGOI6tkSMT2rBtj4ZGxtRf7NCa5QtU7GwJ5b3TNImQTdNlPKo8kv14tbcVtPTGHYFes/OeZYFes/OeZRoN2jBkEvPbHEnU96xIatsxf1ANi2nNS2M95BISNKQkVYIuSUMjY9qwbY9KTb5veRKt3rpb1w1+X6u37tbIkQk5DlFFvKLKeC1kH8gu5rdZ4q7vWZLEtmP+oJrJubjmrufJRYPSWA8ZYTTE9fxK0MuGRsbken5T75vGSYRsiirjtZB9ILuY32aJu75nSRLbjvmDashFONJYD1nAQEMc21J/sWPK9/qLHXJsq6n3TeMkQjZFlfFayD6QXcxvs8Rd37MkiW3H/EE15CIcaayHLGCgIQVJa5YvqAS+fL1UszdVSeMkQjZFlfFayD6QXcxvs8Rd37MkiW3H/EE15CIcaayHxrbt/vvv13/5L/9FO3fu1HnnnadXXnlFa9eu1bFjx/ShD31ImzdvVm9vb9LNzC3X9VTsbNHgikWh3lCpPIlOvpFMQZIbRsOBOkWV8VrIPpBdzG+zxF3fs2TytpNlSb4f+bZj/qAachGONNZDIxcwfvrTn+qVV17RGWecIUnyfV833XSTBgcHNX/+fG3dulVbtmzR4OBgwi3NN9f1ZOlEiFw/lGKRxkmE7Ioi49N9FtkHson5bZ4463vWlLddX1+XDhwYjXzbMX9QTRKLaVmVtnpo3CUk4+PjuuOOO7Ru3TpZ1vFTgF599VW1tbVp/vz5kqQrr7xS3/ve95JsJiLkup4s11PB92W5HoUIuUH2gexifgONY/6gmnIu+oud5CJHjDsD47777tOnP/1pnXXWWZXv7du3r3I2hiT19PTI8zy988476u7urvu9e3tPrft3+/q66v7dJNC+xpnctsmC5DVpadmmccnj9og6r2nepie3Pc19OVla+xJlXtO6TRqRl74m3U+TjweS3jZxyUs/w5BUXrM6Rlntl9R434xawHj55Zf16quvatWqVZG8//DwIXl13Jm2fEqcqWhf44K2LcmiUW9ek2byeCchye2R1bxGtU3j2l6T256l+dJsX7KY1yyN70zy0tdyP7OY12blLQNpkre8pnGM6pHVfklT+xY0r0ZdQvLSSy/pn/7pn3TppZdq8eLFevvtt3XNNdfo9ddf11tvvVX5vYMHD8qyrEBnXwCS5Hm+fMdWybLkO7Ycx6gpAEzhODZ5BRAL6k36MGaAOZiP8THqDIzrrrtO1113XeXrxYsX64EHHtCv/uqv6vHHH9ePfvQjzZ8/X4899pguu+yyBFuKNHIcW6+//Z7ueujFKXcrLna2cM0cjOM4tkaOTHzg7trkFUDYqDfpw5gB5mA+xisVS0O2bWvTpk26/fbb9clPflIvvfSSbrzxxqSbhZQpSZXFC0kaGhnThm17VEq2WUBVJamyI5TIK4DoUG/ShzEDzMF8jJdRZ2Cc7IUXXqj8/0UXXaSdO3cm2Bqknev5lcJSNjQyJtfzzZ4IyCXyCiAu1Jv0YcwAczAf45WKMzCAMDi2pf5ix5Tv9Rc75NhWQi0CaiOvAOJCvUkfxgwwB/MxXixgIDcKkm67emGlwJSvT2NlFCYqSFqzfAF5BRA56k36MGaAOZiP8WK7Ijdc19PZp8/S4IpFcj1fjm2pcOL7gGlc11Oxs4W8Aogc9SZ9GDPAHMzHeLGAgVyxbUuW6x0PvuvLTbpBwDRc15MlkVcAkaPepA9jBpiD+RgfLiEBAAAAAADGYwEDAAAAAAAYjwUMAAAAAABgPBYwAAAAAACA8VjAAAAAAAAAxmMBAwAAAAAAGI8FDAAAAAAAYDwWMHLIcWz5jq2SZcl3bDkOMQCCYh4BiBM1BzADczGfGHdzFJJuAOLlOLZGjkxow7Y9GhoZU3+xQ2uWL1Cxs0Wu6yXdPCAVpptHABA29t2AGZiL+cS4m4Wlo5wpSZXJJ0lDI2PasG2PSsk2KzBWQZGkRucRuQWyzfP8SOZ4VvbdQNpNNxfZx6dfrTGkBpuFMzByxvX8yuQrGxoZk+v5qQkDq6BI2nTzqBZyC2Sb49h6/e33dNdDL4Y+x7Ow7wayoNZc9Dxp5Cj7+DSb7jjtGDXYKCwN5oxjW+ovdkz5Xn+xQ45tJdSi4FgFRdIamUfkFsi2klRZvJDCneNZ2HcDWVBrLtq2xT4+5aY9u4YabBQWMHKmIGnN8gWVSVheXUzT6mEj//oNhKmReURugWyLco5nYd8NZEGtuSiLfXzazXSmGzXYHEZu9xUrVujNN9+Ubdvq7OzU17/+dc2dO1eLFy9Wa2ur2traJEmrVq3SxRdfnHBr08V1PRU7WzS4YpFcz5djWyqc+H5alFdBJxeZyiqoy44C0WtkHpFbINuinONZ2HcDWVBrLpZ8sY9PuelqODXYLEaegbFx40b96Z/+qbZv366rr75aa9asqfzsG9/4hnbs2KEdO3aweNEg1/VkuZ4Kvi/L9VI3+VgFhQmCziNyC2RbQdJtVy+MbI6nfd8NZEW1ucg+Pv1mGkNqsDmMnFddXV2V/z906JAsi+uL8D5WQZFG5BbINtf1dPbps5jjQA6xj08/xjA9jFzAkKRbb71Vu3fvlu/7+m//7b9Vvr9q1Sr5vq958+bphhtu0KxZsxJsJZLiup4snQiw68tNuD1APcgtkG22bR3/FzqJOQ7kDPv49GMM08Hyfd/oC7O2b9+up59+Wt/61re0b98+DQwMaHx8XHfffbcOHz6sLVu2JN1EAEBKLb1xR6Df33nPskCv2XnPsqBNAgAAQA3GnoFRdvnll2vt2rUaGRnRwMCAJKm1tVVXXXWVrr/++kDvNTx8SF4ddwPu6+vSgQOjDbU3DrTvfY5jqyTVfapX0Lb19XXN/EsRqTevSTM9j3GbbnsEzWsjn52UKPMaVcbi2l6T256l+dJsX7KYV1PHN4raY2pfw1buZxbz2qy8ZSBJjRzvJiWJvCYxRlEf00lmZC8qk/sWNK/GLWAcPnxY7733XmWx4oUXXtDs2bPV1tam0dFRdXV1yfd9PfPMM5o7d27CrUWSHMfWyJGJyjObyzfbKXa2cL0ajENeASSB2gOkG3PYPIxJsox7CsnY2JhWrlyppUuXatmyZdq2bZseeOABDQ8P6wtf+IKWLl2qJUuWaO/evVq3bl3SzUWCSlKlcEjHn9W8YdselZJtFlAVeQWQBGoPkG7MYfMwJsky7gyM0047TY8//njVn23fvj3m1sBkrudPeVazdLyAuJ5vXrCRe+QVQBKoPUC6MYfNw5gky7gzMIB6ObZVeVZzWX+xQ47NY3dhHvIKIAnUHiDdmMPmYUySxQIGUqsgac3yBZUCUr7+jJVPmIi8AkgCtQdIN+aweRiTZLGdkVqu66nY2aLBFYsivQMwEAbyCiAJ1B4g3ZjD5mFMksUCBlLNdT1ZOhFk15ebcHuA6ZBXAEmg9gDpxhw2D2OSHC4hAQAAAAAAxmMBAwAAAAAAGI8FDAAAAAAAYDwWMAAAAAAAgPFYwAAAAAAAAMYL7Skkvu/LsqzK1y+//LKee+45SdKll16q+fPnh/VRAAAAAAAgZ0I7A2PevHmV/3/uued0zTXX6MiRIxobG9N/+A//QX/2Z38W1kcBAAAAAICcCfUMjLIHH3xQ9957ry655BJJ0r/7d/9OW7Zs0WWXXRbWxwEAAAAAgBwJ7QyMyZePvPnmm7r44osrXy9atEhvvvlmWB8FAAAAAAByJrQzMMbHx3XfffdVvh4dHdXs2bMlSWNjY1MWOAAAAAAAAIIIbQFj6dKlevvttyVJixcv1ltvvVVZwPirv/ornXfeeWF9FAAAAAAAyJnQFjAGBwdr/uxTn/qUPvWpT4X1UQAAAAAAIGdCuwcGAAAAAABAVGJZwBgfH9fcuXPj+CgAAAAAAJBBoV1C8tZbb9X82bFjx6Y8ZnU6K1as0JtvvinbttXZ2amvf/3rmjt3rvbu3atbbrlF77zzjrq7u7Vx40adc845IbUeAAAAAACYLLQFjMWLF8uyrJoLFfU+hWTjxo3q6uqSJP35n/+51qxZo6eeekrr1q3TVVddpWXLlmnHjh1au3atHnnkkbCaHyvHsVWS5Hq+HNtSQZLrekk3C8gM5hgAhG9ybR0ZPSrHsamtkMR+F6gH8yQcoS1g9PX16f7779f555//gZ8dO3ZM8+bNq+t9yosXknTo0CFZlqXh4WG99tprevjhhyVJS5Ys0Z133qmDBw+qp6cnnA7ExHFsjRyZ0IZtezQ0Mqb+YofWLF+gYmdLzQCfHHbPq+9sFiCLZir+jcwxAMiSKA6Sqa2oJY5s8IcfTNFoFqmh4QntHhjnn3++XnvtNTmO84H/CoVC3ZeQSNKtt96qf/Nv/o3uvfdebdy4Ufv27dOcOXPkOI4kyXEc9ff3a9++fWE1PzYlqRJcSRoaGdOGbXtUqvH75bCv3rpb1w1+X6u37tbrb78nx+H+q8ifavNh5MjElPkQdI4BQJbUUycbQW1FLVFnI6pMA0E1k0VqaHhCOwPjjjvukG1XH7zW1lb9/Oc/r/u97r77bknS9u3btWnTJq1cuTKUNvb2nlr37/b1dc38Sw0YGjlSCe773xuTLKvqZ46MHtWGbbunhP2uh17UlpWfUF/PKZG0MQxRbb8wmNy2yYLkNWlxbdNq82HDtj1T5kPQORaFtGQsTFHnNc3b9OS2p7kvJ0trX6LMa9LbpJ462QgTamtSku6fyccDfX1dkWcjqkwHkXQG0iSpvMYxRs1ksdF5kuXsNdq3UC8hCdvll1+utWvX6vTTT9f+/fvluq4cx5HruhoaGtLAwECg9xsePlTX5Rd9fV06cGC00WZPz7HVX+yYEuD+Yofk+1U/s2RZVcN+9FhJB45G1MYmRbr9mhS0bUkWjXrzmrQ4x7uu+RBwjoUtyfxnNa9RbdO4ttfktptcH4Nqti9ZzKsJ4xvZcUPCtTUp5THNYl6bVcl7xNlI+ljYhHkdVN7yGtcYNZXFBuZJGrNXr8l9C5rX0M+98n1fjz/+uL74xS9q6dKlkqSXXnpJzzzzzIyvPXz48JTLQl544QXNnj1bvb29mjt3rnbt2iVJ2rVrl+bOnZu6+19Ix1eM1ixfcDywUuX6p1orSY5tVX63rL/YIceu76aoQJbUMx+CzjEAyJKojhuoragl6mxwLAxTNJNFamh4Qt9m9913n/76r/9av//7v69169ZJkk4//XQNDg7qt37rt6Z97djYmFauXKmxsTHZtq3Zs2frgQcekGVZWr9+vW655RZt3bpVs2bN0saNG8Nueixc11Oxs0WDKxbVdfOXctgn3/DltqsXHn9NnA0HDFBtPpSLf3k+BJ1jAJAl9dTJRpxcW9vbCvInXGorIt/vRpVpIKhmssjxaXhCX8B46qmn9NRTT6mnp0fr16+XJJ155pl64403Znztaaedpscff7zqz84991w98cQTYTY1Ma7rydKJje/60wa+WthP6+7U8PCheBoLGKTe4h9kjgFAlkR5kDy5tha72jN7ajOCi3K/yx9+MEWzWeT4NByhL2C4rqtTTjl+ExPLOn46zeHDh9XZ2Rn2R+XGyWG3OWUOOUbxB4DpUSeRNWQapiCLyQv9HhiXXHKJBgcHNT4+Lun4PTHuu+8+/dt/+2/D/qhQOY4t37FVsiyNjB7l0UxAiCbPL9+xmV8AMsnzfGodUAeOCxAFcpUPoZ+BsXr1at18882aN2+eSqWSLrzwQi1atMjoe1aUn+l78vVMxc4WTk+rwnFslSRO40NdTJxfZBhA2BzH1utvv6e7HnrRmFoXhXL9HBo5Ijk29TOHms2AiccFSD+TcsVxZrRCX8A49dRTtXXrVg0PD+t//+//rYGBgUgesRqmklQJu/T+M30HVywSF2tMZVJxQDqYNr/IMLKka1aH2tuC7cqPHitp9L2xmX+xjs+o9uizoO+fFSWpsnghJV/rokD9RBgZMO24ANlgSq6ok9GL5AyM3/qt39LFF1+s3t7eyvfXr19fuamnaVzPr/pMX9fz69pA9a6yZWE1zpTigPRodH5FNV/IMLKkva2gpTfuCPSanfcsU5BbLwb9jKDvnxXNHkuEKe/1MwvHW1EIY7uEkQHX81XseIBaxwAAIABJREFUate1yz6qrs4WjR6Z0JMv/CKRuYLsiLMGTzeX0lInoxR1DQ69TuzcuVO7d+/W7//+7+uaa66pfP9P//RPjV3AKD/Td3LoK8/0df3pX1vnKltWVuNMOkBDOhRsu+r8Kti25Fa/9VGU84UMA4hCM8cSobYj5/UzK8dbYQtru4SRgdYWW1/87bm677GXK21ZeeWFam2x5Y1zS0Q0Jq4aPNNcSkOdjFIcNTj0O5u0trbq8ccf19NPP62bbrppys08TVV+pm9/sUOSpjzTdya1VtlKDf6e6crFYbJKcQCqsB1p5ZUXTplfK6+8ULZT+zVRzhcyDCAKBUm3Xb2woWOJMOW9fmbleCtsYW2XMDLguaosXpTbct9jL8tj7QJNaObvuSBmmktpqJNRiqMGR3Jr1tNPP11/8id/Is/z9LnPfU779++vPFLVRJOf6fvN1Zdqy8pP1L1KNN0qWyO/Z7q4igOyY3zC0yNP/0zXLvuoBlcs0rXLPqpHnv6Zxidqz68o5wsZBhAF1/V09umzKscSgysWJfKv/nmvn1k53gpbWNsljAyUPK9qW0pefs+QQfNO/nsuqho801xKQ52MUhw1OPRtWT7Tor29Xffcc4+++c1v6nd/93crZ2KYavIzfYtd7TpwoL4reOs9XcmUU0sna+T6JNf11NvVqsEVH5freXJsW62ONMEpf6jBsY8/mnjDtj2V782U/Znmy3TZnSnXk3dwXB8NoFmTa867h4+pIMnyfcn1lcSesdHjjXqOCSbXT1mW5PvG1U8Tj7dMENZ2qZUBSfIdu679atrHiHusmGHyOIyMHpXj2FP+nouqBte6NLqc37wfZ8Yxv0M/A+PLX/7ylK+vu+463XXXXVq6dGnYH2WEelfZTFuNK1+ftHrrbl03+H2t3rpbI0cmZnxesuPYGh4d1+qtPzzxuh9qeHSc5yyjpkayP91rpstuvbl2XU+W66ng+7JcLzc7FQDhOrnmrLrvL+val0apkZob5JigXD/7i51G1k/TjrdMEeZ2OTkDkgIdU6Z5jBo9fka4kqq9jmPr6ETpA5dG33pSfvN8nBnH/LZ8k29OEbLh4UPy6jh9pa+vq+4zMCSppdXRuKsZz0g4ecW21bE07vqBV+eCtq8a37G1euvuD6yODa5YVNkZNfq6MNoXlaBtq/aIwLjUm9e4nZz3nlntGhk5PO1rGvnXilqvmS6DkhrKdZiSzH9W8xrVNu3r62roCR5Bn8gxue1h96XRPgStg830ebr3TUpYeW10X1qPZv6VN+hrG+lHI1mO61+uw/yccj+zkNewt3952zSSn7DaEkemJmd9ur4WJGPOzMhCXqcTZe2t53OLXe26YvGH1dXZoqPjJf3KGbPqvgGt49jyHUsl15fn+SrYthz5VbNi8t9U06lnXk7uW9C8hrIYcs011+iP//iPJUlXXXVVzftdfPe73w3j44xSPiOhnjutTj6tyZFV9+ui0OgdcvN+Z928a2l19MvRcQ1Oyu3q5Qt0WlfrtJcRNXJKX63XzHRtHfkEEJeo9onN3sU9aM2NY98e59NB4jiNPI2i2i6N5CeMtiTxxJlafZUljRzm6TdxServkfLnlm9MWfbN1ZfW9bmOY+vwhKuRg8emPIXn1uUL1J2hrERdg0M5z+byyy+v/P9nPvMZ/e7v/m7V/7Ko0TutJn2X7EbvkJv3O+vm3biryuKFdDy3g9v2KM5boEyXQfIJIE5R1Zy4jxHiqJ1JH/cgOknte5PIVK2+yrfId4ySylyzn1uStP/gkQ88hedushJIKAsYS5cu1U9+8hP9wz/8g37nd35Hv/M7v6NPfOIT+uEPf6iHH35YL7/8sj75yU+G8VHGafROq0nfJbvR65PSfN0imufWuHO4G+Odw6fLIPkEEKeoak7cxwhx1M6kj3sQnaT2vUlkqlZfvZrHR+Q7CkllrtnPdT1f7a0FstKk0MZ5w4YN+spXvqLzzjtPkvT1r39d+/fv12c/+1nt2rVLmzdv1vr168P6OGM0fLfvhO/A3OgdcvN+Z928c2reedmW3HhOw5gpg+QTQFxOrkftbQX5E27TNSfuY4Q49u1JH/cgOkkdGyaRqVp9LZ34bPIdj6hqb9DPDXx/ItvS0fESWWlSaLdq/cd//EfNnz9fkvTee+/pL/7iL7RlyxZ9/vOf13/6T/9JP/jBD8L6KKOk+UyGRu+Qm+c76+ZdqyOtPim3q5cvUKsTbzumyyD5BBCnyTWn2NUeSs1J4hgh6tppwnEPopPEvjexMz+q9JV8xy+K2hv0c4NmvSBpTk/njE8xwfRC21au66qlpUWS9Morr6ivr0+/8iu/IkkaGBjQe++9F9ZHGYUzGZAnE+OuTutq1eCKjwd6CgkAoH5ZPEbIYp+QLJMyZVJbYC7X9XRKi6POvlO0YcUieZ5UsK2aTyFBdaGdgfGrv/qr+rM/+zNJ0jPPPKOPfexjlZ/t379fXV3JPc4namk9k+H4Y3xslSxLvmPzDGvUZWLcleW6J3LrqlCYmhtyBQDNS/oYYTqOY2tk9GjgOm9yn5BOSWSq1nEO+UY9XNeTN+7Kdj0VfE9y67/0hWPs40I7A2PVqlW6/vrrtX79etm2rT/5kz+p/OyZZ57RRRddVNf7jIyM6Oabb9a//Mu/qLW1VWeffbbuuOMO9fT06Nd+7dd03nnnybaPD9amTZv0a7/2a2F1IVeSePQUso9cAUC2vV/nd1PnkTsc5yApZO99oS3bzJ8/Xz/4wQ/00EMP6c///M/1r/7Vv6r87JJLLtHq1avreh/LsnTttdfq2Wef1c6dO3XWWWdpy5YtlZ8/9thj2rFjh3bs2JGaxQsTV8t4nBnqETS75ApA2pm4zzYJdR55FnX+qT/hy8o2pfa+L9T7hZx66qk6//zzP/D9yYsZM+nu7tbChQsrX19wwQV69NFHQ2lfUI5jqyRVrmVrdSyNu36ga9tMXS2b7tFT3EQmf07OejkDQbNbK1eyJN+xuS4UgNFaWh2NTXgaGT2mdw+N6/svva7PffL/SHyfHZVqtX/Ge3hx/JBajYy3KUxpe5T5N/VvhrAkMYZxbtOo+0ftfZ/R/fU8T48++qgWL15c+d4XvvAFua6rT3ziE/rqV7+q1tbWut+vt/fUQL/7+tvv6a6HXqwEfvXyBXrsuZ/rxZ/uV3+xQ7ddvVBnnz5Ltm3VfJ+R0aOV0yyl91fLtqz8hPp6Tqm7PSfr62vuniIjo0erPsKnva2gYld7U+8tNd++KJnctsmC5LUZnud/IOu3Xb1Qs09tqzu75W1aLVcLPzJHh45M6O6H90x5/5nmTpqlJWNhijqvad6mJ7fdhL5E3QYT+jidann1PF//vO/dKbXqDz57oR597uf68mcuqHufbXrfy2rV/nqOa6I8fjBR0mMaRn1tdLxnEse2iartQUx3nBNW/qP6myFutepr1GNYLYtxbdMo+xdH9pLSaP2wfN839oGzt99+u/bv36/7779ftm1r3759GhgY0KFDh3TTTTfpvPPO0x/+4R/W/X7Dw4fkeTN3t6+vS0MHD2v11t0fCMm1yz6qDdv2VL4eXLFI1jSrayXL0nWD3//A97+5+lIVGtz0fX1dOnBgtKHXlkW5IhlG+6IStG1JHrTUm9dm+Y5dNet3felf15Xdydu0Wq7u+tK/1m0P/PUH3n+muZNWSeY/q3mNapv29XVp6Y07Ar1m5z3LAr1m5z3LprQ97L402oegdbCZPk/3vkmpltdatfDaZR/VOQNdde2zTd7/naxWf2eqzVn/V+KTlcfUtLwG1eh4TyeuvEfR9iBmOs4JK/9h/s1gWl6jHsNaWYzi77BqoupfXNlLwuS+Bc2rsWdgbNy4Ua+//roeeOCByk07BwYGJB2/VOUzn/mMHn744cg+v9ZpOl2dLVO+num0Hce2qq6WObYlucmtHfG4J5TVyrrdQHar5crjlDcAKVCrFs4+tTXxfXYUGj0duVznt6z8hI4eK3H8kBJpPv3cpLZHefxs6t8MYUhqDOPapnH0j7/d3mfkXUzuvfde/eQnP9Ef/dEfVS4Reffdd3X06FFJUqlU0rPPPqu5c+dG1oZy4CfrL3Zo9MjElK+dGU4LKkhas3xB5b3Kq2Um7Cx43BOk2lkvOFZD2T05V3aN959p7gBAnGrVwmJXmxH77LDV6m89tdl1PRW72jl+SJFmxjtpprU9quNnk/9maFZSYxjXNo2rf/ztdpxxc+IXv/iFHnjgAZ1zzjm68sorJUlnnnmmrr32Wq1du1aWZalUKunCCy/UypUrI2tHOfCTT9Mp3wNDmjoB3Gnex6TVMlNugASzVMv6muULZLl+Q9mtdvPbau8/09wBgDjVqoUdLbYmxrNXrWr1N6nazDFKtJIa7zDG1bSsRsWkvxnCltQYxrVNw+zf5DkzMnpUjmNnIgNhMm4B48Mf/rD+/u//vurPdu7cGVs7qgW+1bF03eUf1TWfPj/QBHBdT5ZObGzXT+zAIEvXTSE8MxX3INmtlbPertZM7pBhlq5Zx29mZZLxCTfQTTyPHitp9L2xmj9HdGrVwiwuXkhm/bHEMUr0khjvsMbVpKxGzYS/GaKQ5BjGsU3D6h+1sD5mHekZ5uTAT7jB/pgzSa1nBw+uWCTzTx5E1MIq7tPmzPVSOXeQHu1thcA3m4xaa4sTuE3puAVkNmX1j4daTOkvxyjxiHu8wxxXU7KKxmV9DMPoH7WwPkbeAwPhm+7mMkBYyBkAICj2HdnEuALBMGfqwwJGTph2AyRkEzkDAATFviObGFcgGOZMfVjAyIks39kY5iBnAICg2HdkE+MKBMOcqQ/bIyfydAMkJIecAQCCYt+RTYwrEMzJc6a9rSB/wmXOnIQFjBzJ+s1zYAZyBgAIin1HNjGuQDCT50yxq10HDnBr75NxCQkAAAAAADAeCxgZ4Di2fMdWybLkO7Ych2EFwsL8AlANtQFA2Kgr0WHbZgeXkKSc49gaOTJReWZw+WYvxc4WrpcCmsT8AlBNrdrQ3c2j7gA0hmOO6LBts4Wlp5QrSZXJKB1/VvCGbXtUSrZZQCYwvwBUU6s2vHv4WLINA5BaHHNEh22bLSxgpJzr+ZXJWDY0MibX41+BgGYxvwBUU6s2TJT4lzwAjeGYIzps22xhASPlHNuqPCu4rL/YIce2EmoRkB3MLwDV1KoNLQUOqwA0hmOO6LBts4U9bcoVJK1ZvqAyKcvXdHFzE6B5zC8A1dSqDbNPaUu2YQBSi2OO6LBts4VxSznX9VTsbNHgikVyPV+Obalw4vsAmsP8AlBNrdpg8695ABrEMUd02LbZwgJGBriuJ0snBtP15SbcHiBLmF8AqqE2AAgbdSU6bNvs4BISAAAAAABgPBYwAAAAAACA8Yy7hGRkZEQ333yz/uVf/kWtra06++yzdccdd6inp0evvPKK1q5dq2PHjulDH/qQNm/erN7e3qSbHDrHsVWSuEYLqUFmASBZ1GEgWczB/GLs42XcAoZlWbr22mu1cOFCSdLGjRu1ZcsW3X333brppps0ODio+fPna+vWrdqyZYsGBwcTbnG4HMfWyJEJbdi2R0MjY5W75BY7W5gIMJLn+WQWABLEsQOQLOZgfjH28TPuEpLu7u7K4oUkXXDBBXrrrbf06quvqq2tTfPnz5ckXXnllfre976XVDMjU5IqE0CShkbGtGHbHpWSbRZQ07uHj5FZAEgQxw5AspiD+cXYx8+4BYzJPM/To48+qsWLF2vfvn0644wzKj/r6emR53l65513Emxh+FzPr0yAsqGRMbmen1CLgOlNlDwyCwAJ4tgBSBZzML8Y+/gZdwnJZHfeeac6Ozv1e7/3e3r++eebfr/e3lPr/t2+vq6mP68RI6NH1V/smDIR+osdam8rqNjVXvleUu2rl8ntM7ltkwXJa5LqzWyepCVjYYo6r3napnH0NerPMH28osxrEn1Pqg6bPs5hSbqfJh8PJL1t4jJTPzkWel9SeTX9b7dGZXmONdo3YxcwNm7cqNdff10PPPCAbNvWwMCA3nrrrcrPDx48KMuy1N3dXfd7Dg8fklfHalhfX5cOHBhtqN3Nchxba5Yv+MB1VP6EW2lTku2rh8ntC9q2JItGvXlNWm/vqTNmNk+SzH9W81rvNs3KTj6OGhX1Z5g+XlHlNan5X8+xQ9hM3teHqdzPLOa1WXnLwHSSmIPTyVteTf/brVFZnmOT+xY0r0YuYNx77736yU9+om9+85tqbW2VJJ1//vk6evSofvSjH2n+/Pl67LHHdNlllyXc0vC5rqdiZ4sGVyziTrZIBdu2yCxm1DXr+L9GBHFs3FVbqyMpO4sTQBQ4dgCSxRzML8Y+fsYtYPziF7/QAw88oHPOOUdXXnmlJOnMM8/UH/3RH2nTpk1at27dlMeoZpHrerJ0YnBcX27C7QFmQmYxk/a2gpbeuCPQa3besyzQa3besyxos4DMoA4DyWIO5hdjHy/jFjA+/OEP6+///u+r/uyiiy7Szp07Y24RAAAAAABImtFPIQEAAAAAAJBYwAAAAAAAACnAAgYAAAAAADAeCxgAAAAAAMB4LGAAAAAAAADjsYABAAAAAACMxwIGAAAAAAAwXiHpBqSB49gqSXI9X45tqSDJdb2km4WcIo8AYIaT67Hn+Uk3CUg1jnEwk2oZQb4w5jNwHFsjRya0YdseDY2Mqb/YoTXLF6jY2UJBRezIIwCYoVo9vu3qhZrdXqAeAw3gGAczqZWR7m4Wj/OES0hmUJIqk0SShkbGtGHbHpWSbRZyijwCgBmq1eO7HnqRegw0iGMczKRWRt49fCzZhiFWLGDMwPX8yiQpGxoZk8tpokgAeQQAM1CPgXAxpzCTWhmZKHGGTp6wgDEDx7bUX+yY8r3+Yocc20qoRcgz8ggAZqAeA+FiTmEmtTLSUuBP2jxhtGdQkLRm+YLKZClfa8XNQ5AE8ggAZqhWj2+7eiH1GGgQxziYSa2MzD6lLdmGIVbUhBm4rqdiZ4sGVyzijshIHHkEADNUq8endXdqePhQ0k0DUoljHMykVkZsztLJFRYw6uC6niyd2FiuLzfh9iDfyCMAmOHkesxBNNAcjnEwEzICLiEBAAAAAADGYwEDAAAAAAAYjwUMAAAAAABgPBYwAAAAAACA8XJ1E88gN9cy/UZctK9xJrdtsrS0U0pXW+OQx+2Rxz5HJY5tGfVnmJ6HKNtnet/DlJe+Jt3PpD9/Oia3LUx56WcYktpWWR2jrPZLarxvlu/7fshtAQAAAAAACBWXkAAAAAAAAOOxgAEAAAAAAIzHAgYAAAAAADAeCxgAAAAAAMB4LGAAAAAAAADjsYABAAAAAACMxwIGAAAAAAAwHgsYAAAAAADAeCxgAAAAAAAA47GAAQAAAAAAjMcCBgAAAAAAMB4LGAAAAAAAwHgsYAAAAAAAAOOxgAEAAAAAAIzHAgYAAAAAADAeCxgAAAAAAMB4LGAAAAAAAADjsYABAAAAAACMxwIGAAAAAAAwHgsYAAAAAADAeCxgAAAAAAAA47GAAQAAAAAAjJfIAsYPfvADXX755Vq2bJmWLl2q5557TpK0d+9effazn9WnPvUpffazn9U///M/V14z3c8AAAAAAEC2Wb7v+3F+oO/7WrBggb773e/qvPPO089//nN97nOf09/+7d9q+fLluuKKK7Rs2TLt2LFDTz75pB555BFJ0he/+MWaPwMAAAAAANlWSOJDbdvW6OioJGl0dFT9/f0aGRnRa6+9pocffliStGTJEt155506ePCgfN+v+bOenp66P3d4+JA8b+b1mmKxUyMjRxroWTxoX+OCtq2vryvC1kyv3rwmzeTxTkKS2yOrec1SxujL+7KY1yyN70zy0tdyP7OY12blLQNpkre8pnGM6pHVfklT+xY0r7EvYFiWpf/8n/+zVqxYoc7OTh0+fFgPPvig9u3bpzlz5shxHEmS4zjq7+/Xvn375Pt+zZ8FWcCoV6HghP6eYaJ9jTO5bWnFNp2K7RG+LG1T+pJtedomeelrXvrZiLxsm7z0M82yOkZZ7ZfUXN9iX8AolUp68MEHtXXrVs2bN09/+7d/qz/8wz/Upk2bIv/s3t5T6/7dJFcu60H7Gmdy2yYLktekpWWbxiWP2yPqvGZpm9KX5EWZ17Ruk0bkpa9J99Pk44Gkt01c8tLPMCSV16yOUVb7JTXet9gXMH72s59paGhI8+bNkyTNmzdPHR0damtr0/79++W6rhzHkeu6Ghoa0sDAgHzfr/mzIOo9pamvr0sHDow21L840L7GBW1b3k7Ba4TJ452EJLdHVvOapYzRl6mvT0pUec3S+M4kL30t9zOLeW1W3jKQJnnLaxrHqB5Z7Zc0tW9B8xr7U0hOP/10vf322/qnf/onSdI//uM/6pe//KXOPvtszZ07V7t27ZIk7dq1S3PnzlVPT496e3tr/gwAAAAAAGRf7Gdg9PX1af369Vq5cqUsy5IkDQ4Oqru7W+vXr9ctt9yirVu3atasWdq4cWPlddP9DAAAAAAAZFsiTyH59Kc/rU9/+tMf+P65556rJ554ouprpvsZAAAAAADItkQWMJANjmOrJMn1fDm2pYIk1/WSbhYQGjIO1I/5kn5dszrU3lb/oWHXrA6NvjcWYYtgovJcHxo5Ijk2cx1IubTtv1nAQEMcx9bIkQlt2LZHQyNj6i92aM3yBSp2tiTdNCAU02Xc5KIOJIH5kg3tbQUtvXFH3b+/855lyubt5VALcx3IljTO6dhv4olsKEmVoEvS0MiYNmzbo1KyzQJCQ8aB+jFfgHxgrgPZksY5zQIGGuJ6fiXoZUMjY3INfMwX0AgyDtSP+QLkA3MdyJY0zmkWMNAQx7bUX+yY8r3+Yocc20qoRUC4yDhQP+YLkA/MdSBb0jinWcBAQwqS1ixfUAl8+XopbqqCrCDjQP2YL0A+MNeBbEnjnDa5bTCY63oqdrZocMWi1NyxFgiCjAP1Y74A+TB5rsuyJN9nrgMplsb9NwsYaJjrerJ0IkSuLzfh9gBhI+NA/ZgvQD6U53pfX5cOHBhlrgMpl7b9N5eQAAAAAAAA47GAESPHseU7tkqWJd+x5ThsfuQD2UfWkGkAaUPdAhCHqGsNl5DExHFsjRyZqDxnt3yDlGJni9HXGAHNIvvIGjINIG2oWwDiEEetYek1JiWpMpDS8efrbti2R6VkmwVEjuwja8g0gLShbgGIQxy1hgWMmLieXxnIsqGRMbmen1CLgHiQfWQNmQaQNtQtAHGIo9awgBETx7Yqz9ct6y92yLGthFoExIPsI2vINIC0oW4BiEMctYYFjJgUJK1ZvqAyoOXrgbgJCbKO7CNryDSAtKFuAYhDHLWGuhUT1/VU7GzR4IpFcj1fjm2pcOL7QJaRfWQNmQaQNtQtAHGIo9awgBEj1/Vk6cRGd325CbcHiAvZR9aQaQBpQ90CEIeoaw2XkAAAAAAAAOOxgAEAAAAAAIzHAgYAAAAAADAeCxgAAAAAAMB4LGAAAAAAAADjJfIUkjfffFNf/vKXK1+Pjo7q0KFD2rNnjxYvXqzW1la1tbVJklatWqWLL75YkvTKK69o7dq1OnbsmD70oQ9p8+bN6u3tTaILAAAAAAAgRoksYJx55pnasWNH5eu7775brvv+A1a+8Y1v6LzzzpvyGt/3ddNNN2lwcFDz58/X1q1btWXLFg0ODsbWbgAAAAAAkIzELyEZHx/Xzp07dcUVV0z7e6+++qra2to0f/58SdKVV16p733ve3E0EQAAAAAAJCyRMzAme+GFFzRnzhx95CMfqXxv1apV8n1f8+bN0w033KBZs2Zp3759OuOMMyq/09PTI8/z9M4776i7u7uuz+rtPbXudvX1ddXfiQTQvsaZ3LbJguQ1aWnZpnHJ4/aIOq9Z2qb0JXlR5jWt26RReehv0n00+Xgg6W0Tl7z0MwxJ5TWrY5TVfkmN9y3xBYwnn3xyytkX3/3udzUwMKDx8XHdfffduuOOO7Rly5ZQPmt4+JA8z5/x9/r6unTgwGgonxkF2te4oG1LsmjUm9ekmTzeSUhye2Q1r1nKGH2Z+vqkRJXXtI9vI2OS5v7WozymWcxrs9Ke93qlsZ95y2sax6geWe2XNLVvQfOa6CUk+/fv10svvaSlS5dWvjcwMCBJam1t1VVXXaW/+7u/q3z/rbfeqvzewYMHZVlW3WdfAAAAAACA9Er0DIynnnpKl1xyiYrFoiTpyJEjcl1XXV1d8n1fzzzzjObOnStJOv/883X06FH96Ec/0vz58/XYY4/psssuS7L5AAAgg7pmdai9Ldgh0rHx4zcjr/dfko4eK2n0vbHAbQuikX4AAGCyxBcwbr311srXw8PD+upXvyrXdeV5ns4991ytW7dOkmTbtjZt2qR169ZNeYwq6uc4tkqSXM+XY1sqSHJdL+lmIWPIGUxELhFEe1tBS2/cMfMvTrLznmWBXrPznmWK+sTgoP3Yec+yCFuDPKL2AsFMnjMjo0flODZz5iSJLmA8++yzU74+66yztH379pq/f9FFF2nnzp1RNyuTHMfWyJEJbdi2R0MjY+ovdmjN8gUqdrYwKRAacgYTkUsAiB+1FwiGOVOfxB+jiniUpMpkkKShkTFt2LZHpWSbhYwhZzARuQSA+FF7gWCYM/VhASMnXM+vTIayoZExuQbe1RrpRc5gInIJAPGj9gLBMGfqwwJGTji2pf5ix5Tv9Rc75NhWQi1CFpEzmIhcAkD8qL1AMMyZ+rCAkRMFSWuWL6hMivI1VdybHGEiZzARuQSA+FF7gWCYM/Vhe+SE63oqdrZocMUi7gSNyJAzmIhcAkD8qL1AMCfPmfa2gvwJlzlzEhYwcsR1PVk6MeiuLzfh9iCbyBlMRC4BIH7UXiCYyXOm2NWuAweifuB2+nAJSQgcx5bv2CpZlnzHluOwWZFdJ+fd48ZCyDCOv4QIAAAgAElEQVTqOwCgHuwvUC+y0hzOwGgSz+tFnlTL+21XL9Ts9gJ5R+ZQ3wEA9WB/gXqRleax3NMknteLPKmW97seepG8I5Oo7wCAerC/QL3ISvNYwGgSz+tFnpB35Al5BwDUg/0F6kVWmscCRpN4Xi/yhLwjT8g7AKAe7C9QL7LSPBYwmsTzepEn1fJ+29ULyTsyifoOAKgH+wvUi6w0j23VJJ5xjTyplvfTujs1PHwo6aYBoaO+AwDqwf4C9SIrzWMBIwQ84xp5cnLebU55Q4ZR3wEA9WB/gXqRleZwCQkAAAAAADAeCxgAAAAAAMB4LGAAAAAAAADjsYABAAAAAACMxwIGAAAAAAAwHgsYAAAAAADAeCxgAAAAAAAA4xXi/sA333xTX/7ylytfj46O6tChQ9qzZ4/27t2rW265Re+88466u7u1ceNGnXPOOZI07c/QGMexVZLker4c21JBx59LHNXrkA9pyEca2oh4UQ8BoD7lujc0ckRy7NzVPeo+ZhJVRsjecbEvYJx55pnasWNH5eu7775brutKktatW6errrpKy5Yt044dO7R27Vo98sgjM/4sbUwIn+PYGjkyoQ3b9mhoZEz9xQ6tWb5Axc6WadvS6OuQD6bkY7o5ZkobYY446mHeD/gBZEOtutfb1apx18/8H1YcQ2Am02VEUsN/A5K99yV6Ccn4+Lh27typK664QsPDw3rttde0ZMkSSdKSJUv02muv6eDBg9P+LG3K4Vu9dbeuG/y+Vm/drZEjE3KceIeiJFUmgCQNjYxpw7Y9KkX0OuSDCfmYaY6Z0EaYJep6ODmT19z1fGJ1HwCaVa3uPfrczzU8Op74sW0cOIbATGplxHespv4GJHvvS7SyvPDCC5ozZ44+8pGPaN++fZozZ44cx5EkOY6j/v5+7du3b9qfpY0p4XM9v9KGsqGRMbmeH8nrkA8m5GOmOWZCG2GWqOuhKXUfAJpVre5d+n+dnZsaxzEEZlIrIyXXb2qekL33hXYJyS9+8Qs99dRTuvnmm+t+zZNPPqkrrrgirCbMqLf31Lp/t6+vK5I2DI0cqRo+WVagz2y2fSOjR9Vf7JjSlv5ih9rbCip2tTf9uqi2XxhMbttkQfKatPI2bTRXYZppjsXRxrRkLExR5zXKbRp1PQyr7psore03pb6mdftNloU+zCTpPpqSV6l63Zt9amtma1yZScc5pksqr6ZkrVZGfF8NzZMsZ6/RMWtqAePgwYPatWuXtm/frp///Oe6+OKL637t/v379dJLL2nTpk2SpIGBAe3fv1+u68pxHLmuq6GhIQ0MDMj3/Zo/C2J4+JC8Olap+vq6dODAaKD3rptjVw2ffL/uzwyjfY5ja83yBR+4jsqfcKd973peF+n2a1LQtiVZDOvNa9Imb9NGcxWqGeZY1G1MMv9ZzWvU2zTKenj8F5uv+yZqdlxMzmtcbYt6/OPoR5ozXI9yzk3Oa5yq1b1iV1sma1yZccc5dchbXk3626NWRhzLCjxP0pi9ek3uW9C8Bl7AmJiY0A9+8ANt375df/mXf6mBgQENDQ3piSee0Ec+8pG63+epp57SJZdcomKxKEnq7e3V3LlztWvXLi1btky7du3S3Llz1dPTI0nT/ixNClLV8BUkuTG2w3U9FTtbNLhiUaAbyTT6OuSDCfmYaY6Z0EaYJep6aErdB4BmTa57sizJ99XqWLmpcRxDYCa1MiL5Tc0Tsve+QAsYd9xxh55++mm1tLTo3//7f6/vfOc7uuCCC/Txj39cp59+eqAPfuqpp3TrrbdO+d769et1yy23aOvWrZo1a5Y2btxY18/SxKTwua4nSydC4Pp172QafR3yIel81DPHkm4jzBNlPax2wJ/Xgw4A6Veue+V/QZ1wZcyxbRw4hsBMamWk2XlC9o4LtIDx6KOPavbs2frKV76i3/7t31ZXV+OnJz377LMf+N65556rJ554ourvT/eztCF8QLSYYzDNyQf8ZBJAlrDfBWbGPAlHoKeQPP/88/q93/s9/fEf/7EWLVqkr371q3r22WfledlcYQUAAAAAAGYItIBx5pln6itf+Yqef/55PfTQQ5o9e7ZuvfVWHTx4UPfee6/+1//6X1G1EwAAAAAA5FigBYzJ5s+fr7vuuku7d+/W5s2btW/fPl1++eVhtg0RcxxbvmOrZFnyHVuO03AcUsPz/Nz1OYvykt289DMt8joeee03YDrmZjLY7vlWa/zJRXyaeoyqJLW1tWnp0qVaunSp9u/fH0abEAPHsTVyZOIDd8ItdrZk9qZLjmPr9bff010PvZibPmdRXrKbl36mRV7HY7p+A0hOXmtS0tju+VZr/Hu7WjU8Ok4uYhJoaWj//v165plnKl+vXbtWq1evrvyH9ChJlUkmSUMjY9qwbY9KyTYrUiWpsngh5aPPWZSX7Oaln2mR1/HIa78B0zE3k8F2z7da4z/ukos4BVrA+Na3vqVf/vKXla937typOXPmaM6cOTp8+LC+9a1vhd5Ak2Tp1CDX8yuTrGxoZEyu5yfUoujlsc/1SlO28zKOeelnkoLkPq/jkdd+A6ZrZG6maV9vKmpivtUef49cxCjQJSR/9Vd/pUcfffT9FxcK+o//8T9Kkg4ePKjPf/7z4bbOIFk7ZcyxLfUXO6ZMtv5ihxzbktxsTrY89rkeact2XsYxL/1MStDc53U8pu03gMQErUlp29ebKq/7AhxXe/ztqt8v2Lbk8rDUsAVaeh0eHlZPT0/l6/LihST19PRoaGgovJYZJmunjBUkrVm+QP3FDkmq7MiavimKwQqSbrt6Ya76XI+0ZTsv2c1LP5MSNPd5HY+89hswXdC5mbZ9vamoiflWa/xbWiytvPLCKd9feeWFsp0EG5thgeZbS0uL9u/frzlz5kjSlDMu9u/fr5aW7N7Ua7pTxtJYtFzXU7GzRYMrFsn1fDm2pcKJ72eV63o6+/RZuepzPdKW7bxkNy/9TErQ3Od1PPLab8B0Qedm2vb1pqIm5lut8T96zNUjT/9M1y77qLo6WzR6ZEKPPP0z3fj5i5hfEQi0TT/2sY9p27Zt+trXvvaBn23btk2/+Zu/GVrDTJPFU8Zc15OlEyFwfeXhBCfbtmS5Xq76PJM0Zjsv2c1LP5PQSO7zOh557TdguiBzM437elNRE/Ot2vg7jq2R0aPasG1P5feYX9EJdAnJH/zBH+i///f/ruuvv17bt2/XD3/4Qz311FO6/vrr9eSTT2rlypVRtTNxnDKGrCLbyCNyDyBPqHlAdJhf8Qq0Xc855xw9/vjjuv/++7VlyxaNjIyou7tbv/mbv6nHH39c55xzTkTNTB6njJnJcWyVJMakCWQ7PuTVHFnJPZkCUI+s1Ly8otabZ/KY+JJ6u1qZXzEJtICxa9cuLVmyRJs3b46qPUbjlDGzcEft8JDt6JFX86Q992QKQBBpr3l5Ra03z3RjYvk+8ytigS4hWbt2bVTtAALjjtpIE/KKsJEpAMg+ar15GJNkBVrA8H1uQgJzTHdHbcA05BVhI1MAkH3UevMwJskKdAmJ53n6H//jf0y7kPGxj32s6UalTdTXpZ38/h6TQxJ31M66WvMqrdeBktdsCZLDyb87MnpUjmOHklkyBSCtgu7L07rvDwO13iyOY0uWpf9682JZtqXhd8f0yNM/O75/Z0xiEWgBY3x8XLfeemvNBQzLsvT9738/lIalRdTXpVV7/9uuXqjZ7YXcFO5aynf8PXnbFySuO0u5WvOqt6tVw6PjqbwOlLxmR5C6H+U+gkwBSKOgdTHv94Cg1pvDcWy9c2RCd08ai5VXXqjr/u/z1dFaYExiEmgBo6OjI3cLFDOpdQ3U4IpFsiJ6/7seejG0908z7qidXbXn1ccjnW9RIq/ZEaTuR7mPIFMA0ihoXYz6WNt01HpzlKTK4oV0PIv3Pfayrr/i/1RxTrtcl+WLOPB42iZNdw1UGBs36vdPO+6onU21c++lej6Q12wIUpcj30eQKQApE7QucixMrTdFrSy2txZU8rzc5DFp3MSzSeXr0iarXJfW6Hs6tnzHVsmy5Nh26O8PhG1yZn3HPn59YDPvV3NeMR/yxnFsjYweDS1bobQpQN2PYh8BAGkWtC6mpY6GfSwE89TK4tHxkhybsY9LoK378ssvR9WO1Cpfl1YO8+Tr0hpRvs5v9dbdum7w+/rm9v+p1Se9/21XL2SFD8bwPH9KZldv3a2RIxNNFe9a86rVCXe+wWzlerjqvr8MLVthCFL3w95HAEDaBa2LaaijJx+/m7K/QrgKkm49KYsrr7xQ/T2d+ub2/8nYx8SkuZ9KYV+XdvJ1fi/+dL8kaXDFx+V6nhzb0mndnRoePhRSD4DmvHv4WOjXptaaVxPjLteB5oip1z0Hqfsn/257W0H+hEtmAeRW0GPnNNwDwtT9FcLlup66O1v0/674uEqeL9uWCo6t//rkjyt/szH20UtkAePYsWPasGGD/uZv/kZtbW264IILdOedd2rx4sVqbW1VW1ubJGnVqlW6+OKLJUmvvPKK1q5dq2PHjulDH/qQNm/erN7e3iSa/wFhXpdW7dqqF3+6X9d82lPB9yXXl23YKXPIt4lSNPelqDWvuA40P0y+7jlIDif/brGrXQcOjMbRRAAwVtB9uen7fpP3VwhXeeHseBalcc+vLF6UMfbRSmS7bt68WW1tbXr22WdlWZZ++ctfVn72jW98Q+edd96U3/d9XzfddJMGBwc1f/58bd26VVu2bNHg4GDcTY8cz3pG2rQUbDKLSFAPgfd1zepQe1u6D4cb6cPRYyWNvjc28y82+BlB3x+ohv1VfjH28Yt9T3j48GFt375df/EXfyHLOn4mwWmnnTbta1599VW1tbVp/vz5kqQrr7xSl156aSYXMHjWM9Jm9iltZBaRoB4C72tvK2jpjTsCvWbnPcsiak1jGu1DkHOWgn5G0PcHqmF/lV+MffxiX8B444031N3drfvvv18vvviiTjnlFK1cubKyOLFq1Sr5vq958+bphhtu0KxZs7Rv3z6dccYZlffo6emR53l655131N3dXfdn9/aeWvfv9vV11d+pkHV3+9qy8hOaKHlqKdiafUrbBy4bSbJ99TC5fSa3bbIgeU3ar5wxe8bM5klaMhamqPJaTz1MmyzlI619MaW+pnX7TRZHH6L+jJneP+lxMiWv1SS9beJSTz+zuL9qRFJ5Nf1vt0ZleY412rfYFzBKpZLeeOMN/fqv/7q+9rWv6cc//rG+9KUv6fnnn9d3v/tdDQwMaHx8XHfffbfuuOMObdmyJbTPHh4+JM+b+VSevr4uI65RtiSVSq6Gj05M+b4p7avF5PYFbVuSRaPevCatr6+rclPZWpnNkyTzn9W8lrdpFrJlcn0Mqtm+mJzXuNqWlv3RdOLoQ9SfMd37l3Nucl6TkqV6Np2g/TThWChveTUli2GPvSn9isLkvgXNa+zPdznjjDNUKBS0ZMkSSdJv/MZvqFgsau/evRoYGJAktba26qqrrtLf/d3fSZIGBgb01ltvVd7j4MGDsiwr0NkXeB/PqQaaxzxCmpBXAAgH9TSfGHdzxH4GRk9PjxYuXKjdu3fr4x//uPbu3avh4WH19/drdHRUXV1d8n1fzzzzjObOnStJOv/883X06FH96Ec/0vz58/XYY4/psssui7vpmVB+TvXJ12kVO1uMehwVYLLp5hFgGuo+AISDeppPjLtZElk6uv322/Xggw9q6dKluuGGG7Rp0yaNj4/rC1/4gpYuXaolS5Zo7969Wrdu3fFG2rY2bdqk22+/XZ/85Cf10ksv6cYbb0yi6alX6znVpWSbBaQK8whpQl4BIBzU03xi3M2SyPO4zjrrLH3729/+wPe3b99e8zUXXXSRdu7cGWWzcoHnVAPNm24eAaah7gNAOKin+cS4m4WLdxKUxLVU5WcVT1Z5VjFQh5Nza+KNxaLGPMqPLFzzSl4BZFXcNZp6mk9hjnsWjiuSxhZLSPlaqtVbd+u6we9r9dbdGjkyEXmIy88qLk/Cyc8qBmZSLbevv/1e7oov8ygfkqrTYSOvALIoiRpNPc2nsMY9K8cVSWO+JaTWtVSDKxYpyjVc1/VU7GzR4IpFcj1fjm2pcOL7wEyq5fauh16MPLemYR7lQ1J1OmzkFUAWJVGjqaf5FNa4Z+W4ImksYCQkyWupXNeTpROD7/pyI/48ZAfXAL6PeZR9Wco7eQWQNUnVaOppPoUx7lk6rkgS56skhGvokEbkFnlC3gHAXNRopA2ZDQcLGAnhGjqkUbXc3nb1QnKLTKJOA4C5qNFIGzIbDrZXQriGDmlULbendXdqePhQ0k0DQkedBgBzUaORNmQ2HCxgJIhr6JBGJ+fW5rQ3ZBh1GgDMRY1G2pDZ5nEJCQAAAAAAMB4LGAAAAAAAwHgsYAAAAAAAAOOxgAEAAAAAAIzHAgYAAAAAADAeCxgwjuPY8h1bJcuS79hyHGKKfCD7SCuyCyBK1BhUU87F0MgRcpEjPEYVRnEcWyNHJrRh2x4NjYypv9ihNcsXqNjZwjOSkWlkH2lFdgFEiRqDashFfrFMBaOUpEohkqShkTFt2LZHpWSbBUSO7COtyC6AKFFjUA25yC8WMGAU1/MrhahsaGRMrucn1CIgHmQfaUV2AUSJGoNqyEV+sYABozi2pf5ix5Tv9Rc75NhWQi0C4kH2kVZkF0CUqDGohlzkFwsYMEpB0prlCyoFqXw9GzdrQdaRfaQV2QUQJWoMqiEX+cUYwyiu66nY2aLBFYvker4c21LhxPeBLCP7SCuyCyBK1BhUMzkXsizJ98lFTnAGxgmTH880MnqUx/AkyHU9Wa6ngu/Lcr2qhYjHaaUL43XcTNuhnuzDTKZmPK52kV0AQQStTWmoMabuB7KsnIv+YqesE5loZgwYw3RI5AyMY8eOacOGDfqbv/kbtbW16YILLtCdd96pvXv36pZbbtE777yj7u5ubdy4Ueecc44kTfuzZvEYnnRhvNKF8TqO7ZBdpo6tqe3CceMTrvr6upJuBhC7LNamLPYpbZodA8YwPRJZVtq8ebPa2tr07LPPaufOnVq5cqUkad26dbrqqqv07LPP6qqrrtLatWsrr5nuZ83iMTzpwnilC+N1HNshu0wdW1PbheNaWxwtvXFH3f8BWZHF2pTFPqVNs2PAGKZH7AsYhw8f1vbt27Vy5UpZ1vG7xJ522mkaHh7Wa6+9piVLlkiSlixZotdee00HDx6c9mdh4DE8wSR9ehXjlS5xj1fS+ayF3KZfrWyZOramtgtA9gTZ92axNmWxT6Y7+fJ/WWpqDBjD9Ij9EpI33nhD3d3duv/++/Xiiy/qlFNO0cqVK9Xe3q45c+bIcRxJkuM46u/v1759++T7fs2f9fT01P3Zvb2nVv3+yOhR9Rc7poS2v9ih9raCil3t8jxf7x4+pomSp5aCrdmntMlO+BE9SZ126nm+Xn/7Pd310IuV06tuu3qhzj591pRtEmX7ZhqvmaTllN1aeU1bHpsdryDqzWfUqm2POLdDEqLOa9LzdrpsvXv4WKCxjasvcWQu6XFpVK28Irg4MhD1Z8z0/knn3OS89vV1Bd73TlebZp/SZtwxjjRzBrK+jw8i6rx6nq93Dh3T0WMlvfXLQ3rsuX/QyOhR3fr/LNDCj8zRiz/dX/ndIGNg6hgmXX+i1GjfYl/AKJVKeuONN/Trv/7r+trXvqYf//jH+tKXvqT77rsv8s8eHj4kr8oqmuPYWrN8wQeuefInXB08eNi466H6+rp04MDolPaXpFjuzOw7dmUHJR1fmbzroRc1uGJR5eY5J7cvbNON10yfG7RtSRaNank18fq8mbZpM+MVVD35DCro/Kq1PeLYDlnNaz0Zi7oGTpet8qPc6hnbqOvjZFFnrtm+mJbXybJ8wBi2OPapUX/GdO9fzrnJeU1KedsE3ffWqk2W52nvW+8adYwj1Vfrwqq3Ye3PsprXascVf/DZC/XtZ36mux/eo7u+9K+19633qo7BTNs2zuPVesV5zBC3yX0LmtfYFzDOOOMMFQqFyuUgv/Ebv6Fisaj29nbt379fruvKcRy5rquhoSENDAzI9/2aPwvDyY9nam8ryJ9w5bqefMeuej3U4IpFSn49OP4/aKc7vSquMOX5cVq1rs8zJY/VxDleYeczzPmVx9zGkde4auB02bJ838ixzWPmAMQv6L63Vm0ad/3UHeOUhVFvTfxHKtNUO674xv/3sq5d9lFt2LZHlqyqY1DPtmWfmR6xXxze09OjhQsXavfu3ZKOP11keHhY55xzjubOnatdu3ZJknbt2qW5c+eqp6dHvb29NX8WlsmPZyp2tb8fZsOvh4r7hjOObam/2DHle/3FDjkxn96XhsdpRcH0PNYS13iFnc+w51fechtHXuOqgTNly9SxNbVdALKjkX1vtdqU1mOcsmbrLTeRnFmtjHR1tqi/2CHbVtUxqHfbss9Mh0Tubnf77bfrwQcf1NKlS3XDDTdo06ZNmjVrltavX6/vfOc7+tSnPqXvfOc7uv322yuvme5nUTLlD/Za4i725VOly9ukvIKZyPN4c8j0PCYt7Hym/WAqaXHkNa4xovYBQHVh1ce8H+NwzDGzWhk5Ol6aNnNs22xJ5NjrrLPO0re//e0PfP/cc8/VE088UfU10/0sSrWubS5IcmNvzQeVJ/LJN5xxbEtyw5+UnF6VLNPzmLSw8xn3/MqaOPIa1xhR+wCgurDqY96PcTjmmFmtjJzW3S533K2ZObZttvCPRzMw/aA1iWLvup6sE58t18/FTsUUpufRBGHmM+8HU82KI69xjhG1DwCqC6M+5v0Yh2OOmdXKyOxT26e92SXbNltYwKiDyQeteS/2eWRyHrOG+dW8qPPKGAFAduT5GIf9WX0ayQjbNltYwMiAPBd7IGrML/MxRgCALGB/Fh22bXYkchNPAAAAAACAIFjAAAAAAPD/s3fv0VXVd/7/X2fvk4QEAwRMNI5aqTO01GK1IP6UWlfVajsV4TsuR9SpX3Sqo3hbHWmpmFFsgRS03trS+nO0fOuluFyOMAirYLXtdPhNxTpMa61+x6JjrSKBEDEYIDl7798f8RxzOSc5l3357H2ej7VcC0/O5XN57ffZ+eSczwYA47GAAQAAAAAAjMcCxghs25JnW8qkUvJsS7Zd3nD59TxA2DgGkGS2bUm2rUwqJde2ZNXaZBMADFQt5xFJ7mdUfUvymFYrNvEswLYtdfX0DbvcTlNDTUk71vr1PEDYOAaQZLZt6d2ePi0bkMsb5p2opsY6ja2xySYAGKJaziOS3M+o+pbkMa1mLEEVkJFyYZekjq79Wr56qzIRPQ8QNo4BJFlGyi1eSP25vGfNNu3c00M2AcAg1XIekeR+RtW3JI9pNWMBowDH9XJhz+ro2i/H9SJ5HiBsHANIskK5HFObJpsAYJBqOY9Icj+j6luSx7SasYBRgG2l1NJUP+i2lqZ62VYqkucBwsYxgCQrlMsDvRmyCQAGqZbziCT3M6q+JXlMqxkLGAWkJS2ePzMX+ux3pkrdNMSv5wHCxjGAJEtLunlILm+Yd6IOm9hANgHAINVyHpHkfkbVtySPaTVj/gpwHFdNDTVqXzBLjuvJtlJKf3B7FM8DhI1jAEnmOK4mNNTo2ws+o4zrybKktJ1SyvHIJgAYpFrOI5Lcz6j6luQxrWYsYIzAcVyl9MEgOZ6ciJ8HCBvHAJIsewLTn0vJJZgAYKRqOY9Icj+j6luSx7Ra8RUSAAAAAABgPBYwAAAAAACA8VjAAAAAAAAAxmMBAwAAAAAAGK+qNvG0Srjmbyn3jQLtK5/JbRsoLu2U4tXWMFTjeATd5ySNKX2JXlzbbaIwxjLq+hJ1XqJ+/ZGY3DY/VUs//RDVWCV1jpLaL6n8vqU8z/N8bgsAAAAAAICv+AoJAAAAAAAwHgsYAAAAAADAeCxgAAAAAAAA47GAAQAAAAAAjMcCBgAAAAAAMB4LGAAAAAAAwHgsYAAAAAAAAOOxgAEAAAAAAIzHAgYAAAAAADAeCxgAAAAAAMB4LGAAAAAAAADjsYABAAAAAACMxwIGAAAAAAAwHgsYAAAAAADAeCxgAAAAAAAA47GAAQAAAAAAjMcCBgAAAAAAMB4LGAAAAAAAwHgsYAAAAAAAAOOxgAEAAAAAAIzHAgYAAAAAADAeCxgAAAAAAMB4LGAAAAAAAADjsYABAAAAAACMl466AWHq7Nwn1/VGvV9TU4O6unpCaFF5aF/5Sm1bc3NjgK0ZWbF5jZrJ8x2FKMcjqXlNUsboy4eSmNckze9oqqWv2X4mMa+VqrYMxEm15TWOc1SMpPZLGty3UvPKJzDySKftqJswItpXPpPbFleM6WCMh/+SNKb0JdmqaUyqpa/V0s9yVMvYVEs/4yypc5TUfkmV9Y0FDAAAAAAAYDwWMAAAAAAAgPFYwAAAAAAAAMZjAQMAAAAAABiPBQzEmm1b8mxLmVRKnm3Jtok0zEVe4TcyhWKQEwDwF3U1OlV1GVUki21b6urp0/LVW9XRtV8tTfVaPH+mmhpq5Dhu1M0DBiGv8BuZQjHICfzQOK5eY+qG/9pQ6PKHBw5m1P3efl9eo5ByXgPwA3U1WixgILYyUq5wSFJH134tX71V7QtmKRVt04BhyCv8RqZQDHICP4ypS2v2jeuKvv/678xRt4GvAfiBuhotPuuC2HJcL1c4sjq69stxvYhaBBRGXuE3MoVikBMA8Bd1NVosYCC2bCullqb6Qbe1NNXLtlj7hHnIK/xGplAMcgIA/qKuRosFDMRWWtLi+TNzBST7/TO+FwUTkVf4jUyhGOQEAPxFXY1WaOO8YsUKbdq0SW+99ZbWr1+vKVOmSJJ+8Ytf6J577lEmk9H48ePV3t6uo446atjjv/vd7+rRRx9VS0uLJOnTn/60br311rCaDwM5jqumhhq1L5glxyyGt9EAACAASURBVPVkWymlP7gdMA15hd/IFIpBTgDAX9TVaIW2gHHmmWfq0ksv1SWXXJK7be/evVq0aJHWrFmjyZMna926dVqyZIkeeOCBvM8xd+5cLVq0KKwm+8a2LWWkwAIe9PObzHFcpfRBkB1PTsTtSZpqzlaWn2NAXoNRyRzFPeNkyn/FZiLf/UxFTgBUq2ytdl1PlmVJKU/yVPH7PXU1OqG9386YMWPYbW+88YYOPfRQTZ48WZJ0+umn6+tf/7r27NmjiRMnhtW0QAV9mR0u44OgkC3GIA4qmSPmF0MVm4lC95swgQ3cAMAU+Wr19ReeqPW/2q6Lzv447/cxFekeGJMnT9bu3bv1u9/9TpK0fv16SdKOHTvy3n/Dhg2aPXu2Lr/8cm3bti20dlai0GV2MjF5flQvssUYxEElc8T8YqhiM1HofnvfPxhqewEAheWr1fc+tk1nnvQR3u9jLNJPPDY2Nuquu+5Se3u7Dh48qM9+9rMaN26c0unhzZo3b56uuuoq1dTUaMuWLVqwYIE2btyopqamol9v0qRDir5vc3Nj0fcdSUdXT97L7CiVqug1so8N6vkrFeVrj8bktg1USl6DUEq24jKmpSr3+ErqeIwk6LwWGtNKamBU9TNJ+YhrXwrltdhMFLpfX8ZVS0zHpBxxnf9SRd3PqM8HyhXGuIU1N1FnIE6iymu+OSpUqxsbaoz4fakYprevEuX2LfKvbJ566qk69dRTJUm7d+/WAw88kHcTz+bm5ty/Z82apdbWVr366quaOXNm0a/V2blPbhHX521ubtSuXd1FP++IbEstTfWDDp6WpnrJ88p+jUHtC+D5K+Xr+Pms1LZFWTSKzWtgisyWyfNdsTKOryjHI6l5HXFMK6mBEdTPJB0vlfbFyLwWm4kC96tJW4mZ39EkKcsjyfbTyLyGqJz+l5qPMF6jHHHMerXlteAcFajV3T19kf++VIw4Zq9YA/tWal4jv4zqrl27JEmu6+rOO+/UvHnz1NDQMOx+O3fuzP375Zdf1ltvvZXbO8NkQV9mh8v4IChkizGIg0rmiPnFUMVmotD9xo+tC7W9AIDC8tXq6y88Uc88/wbv9zEW2rwtXbpUmzdv1u7du3XZZZdpwoQJ2rBhg+6++27953/+p/r6+jRr1iwtXLgw95grrrhC119/vaZNm6Y777xTL730kizLUk1NjVauXDnoUxmmCvoyO1zGB0EhW4xBHFQyR8wvhio2E4XuZ1mpSNoNABhuYK123Q9qdMrTlXOn8X4fY6EtYLS1tamtrW3Y7cuWLSv4mPvvvz/37xUrVgTSrjAEfZkdLuODoJAtxiAOKpkj5hdDFZsJsgMA5svWalvSwEJNzY6vyL9CAgAAAAAAMBoWMAAAAAAAgPFYwAAAAAAAAMZjAQMAAAAAABiPBQwAAAAAAGA8FjAAAAAAAIDxWMAAAAAAAADGYwEDAAAAAAAYjwUMAAAAAABgPBYwAAAAAACA8VjA8IFtW/JsS5lUSp5tybYrG1a/ny+JGKPoDB171/WYjyIxTqWzbUtd3QciG7O4z1nc2x83rutFNt5xmOs4tBFA9Sq3RpX6OGphZdJRNyDubNtSV0+flq/eqo6u/Wppqtfi+TPV1FAjx3Ejf74kYoyik2/s2y4/WWk7pSX3/5r5GAG5Ld2HY7YlkjGL+5zFvf1xY9uW3njnPS198LnQxzsOcx2HNgKoXuXWqFIfRy2sHMs9FcpIuQBKUkfXfi1fvVUZQ54viRij6OQb+6UPPqede3qYj1GQ29JFPWZRv36l4t7+uMlIucULKdzxjsNcx6GNAKpXuTWq1MdRCyvHAkaFHNfLBTCro2u/HNcz4vmSiDGKTqGxH1ObHnYb8zEYuS1d1GMW9etXKu7tj5soxzsOcx2HNgKoXuXWqFIfRy2sHAsYFbKtlFqa6gfd1tJUL9tKGfF8ScQYRafQ2B/ozQy7jfkYjNyWLuoxi/r1KxX39sdNlOMdh7mOQxsBVK9ya1Spj6MWVo4FjAqlJS2ePzMXxOz3mMrdXMTv50sixig6+ca+7fKTddjEBuZjFOS2dFGPWdSvX6m4tz9u0pLaLj85kvGOw1zHoY0Aqle5NarUx1ELK5fyPK9qPq/S2blPbhEfz2lubtSuXd1FP69tW8qo/yNBtpVSWqpoE5bRnq/U9hV6fttOyXEkx3VlW5Zqbamv1yn7ef1qXzHKHfNS29bc3Fh+IytUbF7DNnTsD53QoHff7cndVltjyXWkjOv6cjwU04YgXqPcNoyUsaDbncS82ralVI2tAwczgc51obkZeHvasmTZUm9f+dkOoz4OlG2/UpK8lFzXleXTOFbalyTmddKkQ7T73Z5AjvHR6kel9aWUx5d7XJpQu0uVzXkS81qK5uZGzb5xXdH3X/+dOSXXhzBeoxxh120/VFte/ZqjkWrUSO+nkkqqbcXWwqH9imMNLWRg30rNK4s9PnAcVyl9MJiOp0qXAPx+voGyO9/+8j/f1GknHqlv/5/nczvg3jR/pg5trPVlESNoQY4RRjZ07C0rlbutzrbU1d0b6M7KJuzePFIbRkJuS+c4rponjtWuA92BjdlomcpluyfYbAfBcVylbUtd77PjeRgsK6WU4/p+jBdT9yqpL6XU1UquDkQNBGCyQjUqW/d+svkVzT7tWN372LZh9a+U2l9OLTTh/NcUfIWkymR3vj1r5jG5xQupf/OY9tVbFYO1CxgsjJ2VTdi92YQ2wD/FzGec5zzObUe/oOewlOcnTwCqTbbunXnSR3KLFxJXm4oKCxhVJrvzrW2pwA641bWCB3+FsbOyCbs3m9AG+KeY+YzznMe57egX9ByW8vzkCUC1yda9xoYarjZlABYwqkx251vHVYEdcIkEyhfGzsom7N5sQhvgn2LmM85zHue2o1/Qc1jK85MnANUmW/e6e/q42pQB+G21ymR3vv3Z1v/RN/73SYN2wL1p/kzV2tG2D/EWxs7KJuzebEIb4J9i5jPOcx7ntqNf0HNYyvOTJ/M0jqtXc3NjSf81jqsf/Ykr0NvnlNwm02THVVLRfRg3vqGkPpd6/6DnDfll694zz7+h6y88katNRSyUq5CsWLFCmzZt0ltvvaX169drypQpkqRf/OIXuueee5TJZDR+/Hi1t7frqKOOGvZ4x3G0dOlS/epXv1IqldKVV16pCy64oOR2BHUVkrD5fxWS/p1s43QVknJxFRL/RbFDsgm7MJdzFZKgJTWvplzZyI/cRZWPII4ZrkIyXJDzG3TdC+MqJHEUh6uQlHr1Dqn0K3iUc4WQctpk0lVIyh3XIMep2D6bnNcghHme8OFVSDxZlgKtf1yFJL9QFm3OPPNMXXrppbrkkktyt+3du1eLFi3SmjVrNHnyZK1bt05LlizRAw88MOzx69ev15/+9Cdt3rxZ7777rubOnatTTjlFRx55ZBjNT5zszreuowE74Ep9bOAJH4Sxy7wJO9mb0Ab4p5j5jPOcx7nt6Bf0HJby/GFcHQgATJKtkVm2JDkKtf7xXt4vlK+QzJgxQ62trYNue+ONN3TooYdq8uTJkqTTTz9d//7v/649e/YMe/zGjRt1wQUXyLIsTZw4UWeddZZ++tOfhtF0AAAAAABggMi+NjN58mTt3r1bv/vd73T88cdr/fr1kqQdO3Zo4sSJg+67Y8cOHXHEEbn/b21t1TvvvFPya06adEjR9zXxu3gD0b7ymdy2gUrJa9TiMqZhqcbxCDqvSRpT+hK9IPMa1zEpR7X0Nep+BpXXqPvlhyT0oVSm9zmq81fTx6VcSe2XVH7fIlvAaGxs1F133aX29nYdPHhQn/3sZzVu3Dil08E1iT0wwmFy+9gDw38mz3cU2APDf0nKGH0Z/PioxHEPDNNUS1/jsgdGOeJyPjSSoPfAMBF7YAyX1HqU1H5JMdgDo5BTTz1Vp556qiRp9+7deuCBB/Ju4tna2qq3335bxx9/vKThn8gAAAAAAADJFullVHft2iVJcl1Xd955p+bNm6eGhoZh9/vCF76gxx9/XK7ras+ePfrZz36mc845J+zmAgAAAACAiISygLF06VJ99rOf1TvvvKPLLrtMX/rSlyRJd999t774xS/q7LPPVk1NjRYuXJh7zBVXXKEXX3xRkjRnzhwdeeSROvvss/W3f/u3uuaaa/J+UgMAAAAAACRTKF8haWtrU1tb27Dbly1bVvAx999/f+7ftm3rtttuC6RtAAAAAADAfJF+hQQAAAAAAKAYLGAAAAAAAADjsYABAAAAAACMxwIGAAAAAAAwHgsYAAAAAADAeCxgAAAAAAAA47GAAQAAAAAAjMcCBgAAAAAAMB4LGAAAAAAAwHgsYAAAAAAAAOOxgAEAAAAAAIzHAgYAAAAAADAeCxgAAAAAAMB4oy5gvP3223riiSfy/uxf/uVf9M477/jeKAAAAAAAgIFGXcD4/ve/r4MHD+b9WW9vr77//e/73igAAAAAAICBRl3A+PWvf63zzjsv789mz56tLVu2+N4oAAAAAACAgUZdwNizZ48aGhry/mzMmDHq6uryvVHVwrYtebalTColz7Zk22xJAvMNza3relE3CQgMdRpRIXsAkDzU9sqlR7tDS0uLXn75ZR133HHDfvbKK6+oubk5kIYlnW1b6urp0/LVW9XRtV8tTfVaPH+mmhpq5Dhu1M0D8sqX27bLT9b4MWlyi8ShTiMqZA8Akofa7o9Rl3zOPfdc/dM//ZN27tw56PadO3dqyZIlBb9egpFlpFx4Jamja7+Wr96qTLTNAkaUL7dLH3yO3CKRqNOICtkDgOShtvtj1E9gXHXVVXrppZd0zjnnaNq0aWppaVFHR4defPFFnXrqqbrqqqvCaGfiOK6XC29WR9d+Oa43+qQAESG3qCbkHVEhewCQPNR2f4z6CYyamhr98Ic/1KpVq3TCCSeooaFBJ5xwgn7wgx9o1apVSqcZ7nLYVkotTfWDbmtpqpdtpSJqETA6cotqQt4RFbIHAMlDbfdH0buGnHrqqbrxxhv1rW99SzfeeKM+8YlPlPRCK1as0BlnnKGPfexj+u///u/c7T//+c81d+5czZkzR7Nnz9bmzZvzPv673/2uTjnlFM2ZM0dz5szRbbfdVtLrmyYtafH8mbkQZ78DxXIQTJYvt22Xn0xukUjUaUSF7AFA8lDb/THqeK1du1aTJk3SaaedJkn6/e9/r2uuuUYdHR06+uij9YMf/EAf/ehHR32hM888U5deeqkuueSS3G2e5+nrX/+6HnnkEU2ZMkWvvPKKLrroIp111lmyrOFrK3PnztWiRYtK6V9FbNtSRv0f97GtlNKSbxusOI6rpoYatS+YNerzD21H0q/6EOS4ozL5cnvohAZ1du4b8XF+zmmS85HkvplotPEupU4X+zpd3Qdk21bi5jUp2Q2yH6U8d6XZS8p8AEiOIOpS9jk7unok2wql1lXSD7/OK6rdqAsYDz74oFauXJn7/7a2Np166qm6/PLL9eijj2rlypX64Q9/OOoLzZgxI+/tlmWpu7tbktTd3a2Wlpa8ixdhC2OXWMdxldIHk+B4copsR5Kv+sDuvOYbmltrlI+9+TmnSc5HkvtmomLHu5g67cfrxFlS+hhkP8p57nKzl5T5AJAcQdSlKGqdH69Z6XkFivgKyY4dOzRlypTcv1999VUtWrRIf/VXf6Ubb7xRv/vd78p+8VQqpbvvvlsLFizQ5z73OV1zzTX69re/XfD+GzZs0OzZs3X55Zdr27ZtZb9uMUzZJbbarvpgyrjDP37OaZLzkeS+mSis8a6GeU1KH4PsR5hjlJT5AJAcQdSlKGod9dUMo34Cw7Zt9fX1qa6uTtu2bdNHP/pRTZgwQZJUX1+vAwcOlP3imUxG9913n1atWqXp06frhRde0Fe/+lVt2LBBY8eOHXTfefPm6aqrrlJNTY22bNmiBQsWaOPGjWpqair69SZNOqT4xqVSeXeJVSql5ubG4p+nQh1dPUa0o1Tlti2M/po8bgOVlNeIjTSmfs5pXI6HctoSl74VEnRe/R6DsMY77vM6mubmxlj2MV9e/epHvvuGOUZhvpap8+u3qPsZVH2Nul9+SEIfSmV6n4Osr0E/p4mvafp8V6Lcvo26gDFz5kzdddddmjt3rh566CF97nOfy/3stddeU3Nzc1kvLEkvv/yyOjo6NH36dEnS9OnTVV9fr+3bt+v4448fdN+BrzNr1iy1trbq1Vdf1cyZM4t+vc7OfUXtH9Hc3Ch5nlqa6geFtKWpXvI87drVXfRrVsy2zGhHCZqbG8tvW8D9LbVtURaNYvMatVHH1M85jcHxUHb+fehbUvNaUU0pJKwsxSCz5crNS5l9NC6vPh2Dee8bZg5Ceq1AjksDZftpXF4HKLdtcTkfGkmQGYxzn43LaxB1KYr315BfM8l1dmDfSs3rqF8hufnmm/XSSy/poosuUn19va644orcz9atW5fb3LMchx9+uN555x299tprkqTt27dr9+7dOvroo4fdd+fOnbl/v/zyy3rrrbc0efLksl97NKbsElttV30wZdzhHz/nNMn5SHLfTBTWeFfDvCalj0H2I8wxSsp8AEiOIOpSFLWO+mqGUcf7sMMO00MPPaRXX31VL7zwgh599FGNHz9e06dP18KFC4t+oaVLl2rz5s3avXu3LrvsMk2YMEEbNmzQkiVLdMMNNyiV6t8IsL29PfcVlSuuuELXX3+9pk2bpjvvvFMvvfSSLMtSTU2NVq5cWdGnP0YzcJdY11X/RoUpTxlPSoe4g3y5V32IK3bnHV3cdpf3c06TnI+k9s3UvIY13kNfZ0xdWl6fY8QY+CUp2S2nH8VeJSzMMUrKfABIDj/rUrbuHnQ9jWuo1crrPiPHleR5gdc66qsZRl3A8DxPN998s9auXavDDz9czc3N2rlzpzo6OjRnzhwtX748t/gwkra2NrW1tQ27/bzzztN5552X9zH3339/7t8rVqwY9TX85jiu0ralrgPR7uZd6lUf4o7deQuL6+7yfs5pkvORtL6Zntewxnvg6zQ1jknkx0GTkt1S+lHqVcLCHKOkzAeA5PCjLhU6r5h8xHh1du4LpdZRX6M36ldIHnvsMT333HNas2aNnn32WT322GP6xS9+oTVr1ug3v/mN1qxZE0Y7I8NuszAJeUSckFckWbVdJQwAolbovGLv+wejbRhCNeoCxrp169TW1jZsU83jjz9eixcv1rp16wJrnAkc18u726wTg80VkTzkEXFCXpFk5BsAwlWo7vZlov9UJ8Iz6gLG9u3bddJJJ+X92UknnaTt27f73iiT2FYqt1FLVktTveyEf40DZiKPiBPyiiQj3wAQrkJ1tyY96q+0SJBRZ9txHB1ySP7rTx9yyCFy3WSveLHbLExCHhEn5BVJVm1XCQOAqBU6rxg/ti7ahiFUo77PZjIZ/frXv5bnFdpZOxlblwzcSbyr+4DsD640Usxus6buso/kievux+UcIxxX8RfXvBZjaD5r7ZR6HS9x/URh+fI9cVy99ry3X04qFWkOqJ8AkqjQeUX2Agdh1T5qbLRGXcCYNGmSFi9eXPDnEydO9LVBURhtp/yRdps1fZd9JE/cdj8u5xjhuEqOuOW1GPnyedP8mVqz+RU999JO8lpFBubbVkpvdnRr6YPPRVq3qJ8AkqzQeUVYtY8aG71Rv0Ly7LPPjvpf3FWyUz677AMjK+cY4biCyfLls331Vp150kdy/09eq09Gyi1eSNHlgPoJoBqFVfuosdFjxxNVtpM4u5ADIyvnGOG4gskK5bOxoWbQ/5PX6mJK3TKlHQAQprBqHzU2eixgqLKdxNmFHBhZOccIxxVMViif3T19g/6fvFYXU+qWKe0AgDCFVfuosdFjAUOV7ZTPLvvAyMo5RjiuYLJ8+bxp/kw98/wbuf8nr9UnLant8pMjr1vUTwDVKKzaR42NHmOt4TvajqlLy+tzitqIJU677LNjLsIwNGeSSj5G4nRcIR78rH/58llrp3Tl3Gn6+/M+SV6rlOO4+sjh4yKvW3Gtn5yjAKhEWLUv6NcpdGVMfIgFjA8M3NG2qXGMdu3qLuuxpu6yz465CMNIOUs5bknHSByOK8RDEPVvaD77HJFXyLJSJde6IMStfnKOAsAPYdW+oF6HWlgcvkJSJdgxF2EgZzARuQTMxjEKANTCYrGAUSXYMRdhIGcwEbkEzMYxCgDUwmKxgFEl2DEXYSBnMBG5BMzGMQoA1MJisYBRJdgxF2EgZzARuQTMxjEKANTCYjEeEYhip20/d8xlp3AUYsLu97ZtybNTyjieXNdT2rJkyyOjVcyvXFZS+7KP7ejqkWyLupkg1bRjfFB9NeG9A0C8xLH2jnYeUcmVMasJCxghi3J3WT92zGV3XIwmyt3vbdvS+32OuvYc1D1rtuUyevP8mZpARqtapbmspPZRN5OrmuY26L7G7copAKITx9pbbJsruTJmteArJCGL++6ycW8/ki0jaeeentzihdSf0WVkFBWqpPZRN5Ormua2mvoKwGxxrEdxbLOpWMAIWdx3l417+5FsjutpTG2ajMJ3ldQ+6mZyVdPcVlNfAZgtjvUojm02FQsYIYv77rJxbz+SzbZSOtCbIaPwXSW1j7qZXNU0t9XUVwBmi2M9imObTcUCRsjivrts3NuPZEtLOmxig26Yd+KgjN5MRlGhSmofdTO5qmluq6mvAMwWx3oUxzabKpQxW7FihTZt2qS33npL69ev15QpUyRJP//5z3XPPffI8zy5rqvrrrtOZ5999rDHO46jpUuX6le/+pVSqZSuvPJKXXDBBWE03Xdx32nbcVxNaqxV+4LPyHFd2ZYl25Yyjqd0DHb/RbI5jquxNbYamsdq+YJZcl0pbaWGXYWk2KtJcMUdZBWq3ZLk2daIGRn4WKVSkuclMkvVeLxU047x2b5+e8FnlHE92XZKtiXJiefHn6sxr0BSmF57C9UXU38HjFs9DGUB48wzz9Sll16qSy65JHeb53n6+te/rkceeURTpkzRK6+8oosuukhnnXWWLGvwB0PWr1+vP/3pT9q8ebPeffddzZ07V6eccoqOPPLIMJrvuzjvtG3bljq7ewftoHv9hSdq/a+266KzP66mhpqom4gq5ziu5PR/vMySJEeDjrFid4GO4w7XCNbQ2q0SMpJ9bHNzo3bt6o5V3S9GNR8v1bZj/Hs9vbGf52rOK5AUptbe0eqLab8DxrEehvIVkhkzZqi1tXX4i1uWurv7w9bd3a2WlpZhixeStHHjRl1wwQWyLEsTJ07UWWedpZ/+9KeBtxvD5dtB997HtunMkz7CTrqIhWJ3gWa3aIyGjHyIsagOSZnnpPQDgHniVl/i1l4ppE9g5JNKpXT33XdrwYIFamho0Pvvv6/77rsv73137NihI444Ivf/ra2teuedd0p+zUmTDin6vs3NjSU/f5iial9HV0/eHXQbG2r6b0/1b0Rj8viZ3LaBSslr1OIyplLhDCuVGtSPYu+XT5zGwy9B59XEMS03Iyb2pVzZvlRyvEQhyLya2F+/xG2eCym1H1H3Lai8Rt0vPyShD6Uyvc9Rnb+aMi5+18mg+xVlXS/3+SNbwMhkMrrvvvu0atUqTZ8+XS+88IK++tWvasOGDRo7dmwgr9nZuU9uEZeqyX7E11SRts+21NJUPyjoLU316u7p69+UxusfX1PHr9Sxi7IYFpvXqJl+vAxTIMPyvMH9KPZ+Q0Q5HknNq7EZKyMjxvalDIP6UuZYRCWovCZpfvMqsy4ap4R+ZOfU5LyW27a4nA+NJMjcxbnPJuc1CEbVXh/rZCj9iqiuD+xbqXmN7CokL7/8sjo6OjR9+nRJ0vTp01VfX6/t27cPu29ra6vefvvt3P/v2LFDhx9+eGhtxYfy7aB7/YUn6pnn32AnXcRCsbtAs1s0RkNGPsRYVIekzHNS+gHAPHGrL3FrrxThJzAOP/xwvfPOO3rttdf00Y9+VNu3b9fu3bt19NFHD7vvF77wBT3++OM6++yz9e677+pnP/uZHnnkkQhajYE76LquZFkpKeXpyrnTjN+xFpCK3wXa5N2iYQYy8iHGojok5Yo65BVAUOJWX+LWXimkBYylS5dq8+bN2r17ty677DJNmDBBGzZs0JIlS3TDDTco9cG+Ce3t7ZowYYIk6YorrtD111+vadOmac6cOfrtb3+bu8TqNddco6OOOiqMpiOP7A66tjTo8g4m7KQLFKPYXaBN3C0aZiEjH2IsqkNSrqhDXgEEJW71JW7tDWUBo62tTW1tbcNuP++883Teeeflfcz999+f+7dt27rtttsCax8AAACA+Ojtc0r67vyBgxl1v7d/9DsCMJrJX28BAAAAgGFqa2zNvnFd0fdf/505MmSbRwAViGwTTwAAAAAAgGKxgAEAAAAAAIzHAgYAAAAAADAeCxgAAAAAAMB4LGAAAAAAAADjsYABAAAAAACMxwIGAAAAAAAwHgsYAAAAAADAeCxgAAAAAAAA47GAUQLbtuTZljKplDzbkm2XNnyVPh4IStDZJPswUSW5JNNIgqTmOKn9AmAu6s6Hgh6LtK/PlmC2bamrp0/LV29VR9d+tTTVa/H8mWpqqJHjuIE/HghK0Nkk+zBRJbkk00iCpOY4qf0CYC7qzofCGIvqXRoqUUbKTYQkdXTt1/LVW5UJ6fFAUILOJtmHiSrJJZlGEiQ1x0ntFwBzUXc+FMZYsIBRJMf1chOR1dG1X47rhfJ4IChBZ5Psw0SV5JJMIwmSmuOk9guAuag7HwpjLFjAKJJtpdTSVD/otpametlWKpTHA0EJOptkHyaqJJdkGkmQ1BwntV8AzEXd+VAYY8ECRpHSkhbPn5mbkOz3eYrdRKTSxwNBCTqbZB8mqiSXZBpJkNQcJ7VfAMxF3flQGGNRjeNaFsdx1dRQo/YFs+S4nmwrpfQHt4fxeCAoQWeT57EFgAAAIABJREFU7MNEleSSTCMJkprjpPYLgLmoOx8KYyxYwCiB47hK6YNBczw5IT8eCErQ2ST7MFEluSTTSIKk5jip/QJgLurOh4IeC75CAgAAAAAAjMcCBgAAAAAAMB4LGAAAAAAAwHih7YGxYsUKbdq0SW+99ZbWr1+vKVOm6M9//rOuueaa3H26u7u1b98+bd26ddjjv/vd7+rRRx9VS0uLJOnTn/60br311rCaDwAAAAAAIhTaAsaZZ56pSy+9VJdccknutiOPPFLr1q3L/f+yZcvkOIW3+Zg7d64WLVoUaDuRbK7rybOtqt8hGPFg25YyEnlFpMhhdWCeAaB81NDwhLaAMWPGjBF/3tvbq/Xr1+uBBx4IqUWoNrZt6Y133tPSB59TR9f+3HWJmxpqKDAwjm1b6urp0/LVW8krIjNSDpEc1BsAKB81NFzG7IHx7LPP6rDDDtNxxx1X8D4bNmzQ7Nmzdfnll2vbtm0htg5JkJFyixeS1NG1X8tXb1Um2mYBeWWk3BuhRF4RDXJYHZhnACgfNTRcoX0CYzRPPPGEzj///II/nzdvnq666irV1NRoy5YtWrBggTZu3KimpqaiX2PSpEOKvm9zc2PR940C7StdR1dPrrB8eNt+KZUysr2l5DVqJo5flPwYD/I6mIl9Llec+jJSDqV49WWgIPMaxzEpt97Esa/liLqfQeU16n5FIQl9Nr0PUZ2/RjkuQZ6zmT7flSi3b0YsYOzcuVPPP/+8Vq5cWfA+zc3NuX/PmjVLra2tevXVVzVz5syiX6ezc59c1xv1fs3Njdq1q7vo5w0b7SuTbamlqX5QgWlpqpc8r2B7oywaxeY1asbOd0R8Gw/ympOkjMWuLyPkUFJFfUliXmM3v1ll1ptY9rVE2X6anNdy21bK/CXll6gk9LmYPpic1yBEXo/KqKHFiLxfARrYt1LzasRXSJ588kmdfvrpI36aYufOnbl/v/zyy3rrrbc0efLkMJqHhEhLarv85P6CIuW+n2bEKh4wRFrS4vkzySsiRQ6rA/MMAOWjhoYrtHFdunSpNm/erN27d+uyyy7ThAkTtGHDBkn9Cxg333zzsMdcccUVuv766zVt2jTdeeedeumll2RZlmpqarRy5cpBn8oARuM4rj5y+Di1L5jFDsEwnuO4amqoIa+IFDmsDswzAJSPGhqu0BYw2tra1NbWlvdnmzZtynv7/fffn/v3ihUrAmkXqotlpZRy3P7gO54KX7QXiJ7juEpJ5BWRIofVgXkGgPJRQ8NjxFdIAAAAAAAARsICBgAAAAAAMB4LGAAAAAAAwHgsYAAAAAAAAONV1dVdLCsVyH2jQPvKZ3LbBopLO6V4tTUM1TgeQfc5SWNKX6IXZLvjOiblqJa+Rt3PoF4/6n5FIQl9Nr0PUbXP9HEpV1L7JZXft5TneZ7PbQEAAAAAAPAVXyEBAAAAAADGYwEDAAAAAAAYjwUMAAAAAABgPBYwAAAAAACA8VjAAAAAAAAAxmMBAwAAAAAAGI8FDAAAAAAAYDwWMAAAAAAAgPFYwAAAAAAAAMZjAQMAAAAAABiPBQwAAAAAAGA8FjAAAAAAAIDxWMAAAAAAAADGYwEDAAAAAAAYjwUMAAAAAABgPBYwAAAAAACA8VjAAAAAAAAAxmMBAwAAAAAAGI8FDAAAAAAAYDwWMAAAAAAAgPFYwAAAAAAAAMZjAQMAAAAAABiPBQwAAAAAAGC8dNQNGOjPf/6zrrnmmtz/d3d3a9++fdq6datef/11feMb39C7776rCRMmaMWKFTrmmGOiaywAAAAAAAhNyvM8L+pGFLJs2TI5jqNbbrlFl156qc4//3zNmTNH69at0xNPPKEf//jHJT1fZ+c+ue7o3W1qalBXV0+5zQ4c7StfqW1rbm4MsDUjKzavUTN5vqMQ5XgkNa9Jyhh9+VAS85qk+R1NtfQ1288k5rVS1ZaBOKm2vMZxjoqR1H5Jg/tWal6N/QpJb2+v1q9fr/PPP1+dnZ36wx/+oHPPPVeSdO655+oPf/iD9uzZE8hrp9N2IM/rF9pXPpPbFleM6WCMh/+SNKb0JdmqaUyqpa/V0s9yVMvYVEs/4yypc5TUfkmV9c2or5AM9Oyzz+qwww7Tcccdp9///vc67LDDZNv9HbVtWy0tLdqxY4cmTpxY9HNOmnRI0feNcuWyGLSvfCa3baBS8hq1uIxpWKpxPILOa5LGlL5EL8i8xnVMylEtfY26nyafD0Q9NmGpln76Iaq8JnWOktovqfy+GbuA8cQTT+j888/39TmL/UhTc3Ojdu3q9vW1/UT7yldq26rtI3jlMHm+oxDleCQ1r0nKGH0Z/PioBJXXJM3vaKqlr9l+JjGvlaq2DMRJteU1jnNUjKT2Sxrct0R8hWTnzp16/vnnNXv2bElSa2urdu7cKcdxJEmO46ijo0Otra1RNhMAAAAAAITEyAWMJ598UqeffrqampokSZMmTdLUqVP11FNPSZKeeuopTZ06taSvjwAAAAAAgPgydgFj6NdHlixZoocffljnnHOOHn74Yd12220Rta58tm3Jsy1lUil5tiXbNnL4Ad+RfSQNmQbMxfGZH+MCIAmM3ANj06ZNw2479thj9fjjj0fQGn/YtqWunj4tX71VHV371dJUr8XzZ6qpoUaO40bdPCAwZB9JQ6YBc3F85se4AP5pHFevMXWl/Rp94GBG3e/tD6hF1cXIBYwkyki5Nw1J6ujar+Wrt6p9wSylom0aECiyj6Qh04C5OD7zY1wA/4ypS2v2jetKesz678xRMrfjDB+fHQuJ43q5N42sjq79cgzcVRrwE9lH0pBpwFwcn/kxLgCSggWMkNhWSi1N9YNua2mql22x7o1kI/tIGjINmIvjMz/GBUBSsIARkrSkxfNn5t48st895Ds8SDqyj6Qh04C5OD7zY1wAJAV1KySO46qpoUbtC2bJcT3ZVkrpD24HkozsI2nINGAujs/8GBcAScECRogcx1VKHwy648mJuD1AWMg+koZMA+bi+MyPcQGQBHyFBAAAAAAAGI8FDAAAAAAAYDwWMAAAAAAAgPFYwAAAAAAAAMZjAQMAAAAAABiPBQwAAAAAAGA8FjAAAAAAAIDxWMAAAAAAAADGYwEDAAAAAAAYjwUMAAAAAABgPBYwAAAAAACA8VjAAAAAAAAAxmMBAwAAAAAAGC8ddQOGOnjwoJYvX67/+I//UF1dnU444QR961vf0hlnnKHa2lrV1dVJkhYuXKjTTjst4tYCAAAAAIAwGLeAcfvtt6uurk6bNm1SKpXS7t27cz+79957NWXKlAhbh4Fs21JGkuN6sq2U0pIcx426WYBvyDhQPI4XxAl5LV927Dq6eiTbYuwAhMqoBYz3339fa9eu1S9/+UulUilJ0qGHHhpxq5CPbVvq6unT8tVb1dG1Xy1N9Vo8f6aaGmqibhrgi5EyzokaMBjHC+KEvJaPsQMQNaP2wHjzzTc1YcIEfe9739Pf/M3f6Mtf/rJ+85vf5H6+cOFCzZ49W0uWLNF7770XYUuRkXJvXpLU0bVfy1dvVSbaZgG+IeNA8TheECfktXyMHYCoGfUJjEwmozfffFOf+MQntGjRIv32t7/VVVddpaefflqPPPKIWltb1dvbq2XLlumb3/ym7rjjjpKef9KkQ4q+b3NzY6nND1XU7evo6sm9eX14237pg0/ORN2+kZjctoFKyWvU4jKmpRgp46P1N4njMZqg85qkMU1iXyo5XqIQZF5N7G9Q4trXUvMadT9NOh+I27HulyT3zW9R5TUOc1ROG+PQr3KV2zejFjCOOOIIpdNpnXvuuZKkT33qU2pqatLrr7+uadOmSZJqa2t18cUX6+qrry75+Ts798l1vVHv19zcqF27ukt+/rAY0T7bUktT/aA3sZamesnrH9/I21dAqWMXZdEoNq9RMyKPQRgh4yP1N8rxSGpek5SxxPaljOMliXlN0vyOJtZ9LSGv2X4mMa9lKfO9Mc7imPVqy2vYc1Tu+Jbaxjhmr1gD+1bqeBr1FZKJEyfq5JNP1pYtWyRJr7/+ujo7O9XS0qLu7v4Oep6njRs3aurUqVE2teqlJS2eP7P/TUvKfQfSqBUxoAJkHCgexwvihLyWj7EDEDXj6s1tt92mxYsXa8WKFUqn01q5cqV6e3v1D//wD3IcR67r6thjj9Wtt94adVOrmuO4amqoUfuCWezgjUQi40DxOF4QJ+S1fAPHTqmU5HmMHYBQGbeAcdRRR+mhhx4advvatWsjaA1G4jiuUvogRI4nJ+L2AH4j40DxOF4QJ+S1fNmxy34EnLEDECajvkICAAAAAACQDwsYAAAAAADAeCxgAAAAAAAA47GAAQAAAAAAjMcCBgAAAAAAMB4LGAAAAAAAwHgsYAAAAAAAAOOxgAEAAAAAAIzHAgYAAAAAADAeCxgAAAAAAMB4LGAAAAAAAADjsYABAAAAAACMxwIGAAAAAAAwHgsYAAAAAADAeCxgAAAAAAAA47GAUcVs25JnW8qkUvJsS7ZNHFA5coU4IrdA8WzbUlf3AY4XVCXeL4BopaNuAKJh25a6evq0fPVWdXTtV0tTvRbPn6mmhho5jht18xBT5ApxRG6B4n14vGzheEHV4f0CiB5LhlUqI+WKryR1dO3X8tVblYm2WYg5coU4IrdA8TheUM3IPxA9FjCqlON6ueKb1dG1X47rRdQiJAG5QhyRW6B4HC+oZuQfiB4LGFXKtlJqaaofdFtLU71sKxVRi5AE5ApxRG6B4nG8oJqRfyB6xi1gHDx4ULfeeqvOPvtszZ49W//0T/8kSXr99dd14YUX6pxzztGFF16o//mf/4m2oTGXlrR4/sxcEc5+h49NUVAJcoU4IrdA8TheUM3IPxA9446322+/XXV1ddq0aZNSqZR2794tSbr11lt18cUXa86cOVq3bp1uueUW/fjHP464tfFi25Yy6v/4mydpUmOt2hfMkuN6sq2U0hIbEKEijuN+kKvPyHFd2ZalWlvq63Wibhqq3MD6N7TeOY6rpoYa6iFQhOzxcscNn9WBgxnfjpeRjlHEV9LmlfcLIHpGLWC8//77Wrt2rX75y18qler/KNahhx6qzs5O/eEPf9CPfvQjSdK5556rb33rW9qzZ48mTpwYZZNjY6Rdk1OeJzme+BUTlbJtS53dvezODaMUs2u847hK6YM3ReohMCLHcdU8cax2Hej25Xjhyg7JlNR55f0CiFbK8zxjdp155ZVXdO211+rzn/+8nnvuOY0dO1Y33HCDxowZo0WLFmnDhg25+/71X/+1br/9dh133HERtjg+uroPaOE9/zZo46GWpnrdccNn1dQ4JsKWIUnIGUxELgGzcYwmE/OKJJt947qS7r/+O3MCakn1MeoTGJlMRm+++aY+8YlPaNGiRfrtb3+rq666Svfcc48vz9/ZuU9uEbsENzc3ateubl9eMwjltC+TSuXdNfnAwUz/X1B8ZPL4ldq25ubGAFszsmLzGrWBYxpmzkwVZf6TmtdKx9SkXJpcH0tVaV+SmNckze9o/OyrScfoUNl+JjGvlRotAybPaynieFxXW17DnqNyx7fUNsYxe8Ua2LdSx9OoTTyPOOIIpdNpnXvuuZKkT33qU2pqatKYMWO0c+dOOU7/h7Qcx1FHR4daW1ujbG6ssGsywkDOYCJyCZiNYzSZmFcAQQhlAePVV1/VypUrR73fxIkTdfLJJ2vLli2S+q880tnZqWOOOUZTp07VU089JUl66qmnNHXqVPa/KAG7JiMM5AwmIpeA2ThGk4l5BRCEwGrInj179NRTT2nt2rV65ZVXdNpppxX1uNtuu02LFy/WihUrlE6ntXLlSo0bN05LlizRN77xDa1atUrjxo3TihUrgmp6IrFrMsJAzmAicgmYjWM0mZhXAEHwdQGjr69PP//5z7V27Vr927/9m1pbW9XR0aHHH3+86M02jzrqKD300EPDbj/22GP1+OOP+9ncqsOuyQgDOYOJyCVgNo7RZGJeAfjNtwWMb37zm9qwYYNqamr0hS98QQ8//LBOOOEEfeYzn9Hhhx/u18sYKWnXuAZGMjTvJm4sBviF+g74h+MJSUa+gXD4toDxk5/8ROPHj9e1116rL33pS2psjG732zBVco1rCh3ixrYtvdvTp2UD8t52+ckaPyZNdpE4+fJ+8/yZmlBEfQcqlbRzhErOl4BCTDlOyDcQHt828Xz66af1d3/3d3rggQc0a9YsXXfdddq0aZNcN9kHbUbKFSup//JQy1dvVWaEx9i2JavWVldPn25atUVXtj+jm1ZtUVdPn2zbqAvDAIM4SuV+mZP68770wefkyKwdxW3bkmdbyqRS8myL4wplyZf3Zau3lpX3bCY7unrIJEaV/WXItHOEgbW1q/tASe0p53wJ8RHF+65Jxwn5BsLj2xF+5JFH6tprr9XTTz+tBx98UOPHj9fNN9+sPXv26K677tIf//hHv17KKI7r5b3GtVPgY/XZYvv62+9R6BA7GdfNm/eMQV8jMemEBvHmV94HZvLvlz5NJjEqE38ZGlpbF97zbyXluNTzJcRHVO+7Jh0n5BsITyCVZcaMGVq6dKm2bNmi22+/XTt27NDcuXODeKnIlXqN62yxHVObptAhdqwCebcM+j3MpBMaxJtfeSeTKJWJvwxVmuNSz5cQH1HVOJOOE/INhCfQXzvq6uo0e/ZsPfDAA3rmmWeCfKnIlHqN62yx7e7po9AhdtJ2SjfMO3FQ3m+Yd6LStjm5NemEBvHmV97JJEpl4i9Dlea41PMlxEdUNc6k44R8A+Hx7bj63ve+N+p9rr32Wr9ezhilXuM6W2yfePZVXX/hibr3sW2DNvtJS1xiCsZKOZ6aGut09fnHa0xtWgd6M5o4boxSjjm/iGWPsYEnU7kTGoPaCfPly3tTY13JeSeTKFX2l6GhGwJGeY5QaY5LPV9CfERV40w6Tsg3EB5fFzAmT56sadOmyfOGF6tUypy/0PqtlGtcDyy2D218WVeff7yOOPQQ1diWbHkUOhjNcVyNrbF19GGNuTfoQyc0qLNzX9RNyzHphAbxli/v5ZyQkkmUysRfhvzIcSnnS4iPqGqcaccJ+QbC4dsCxje+8Q3967/+q37/+99r7ty5mjNnjg477DC/nj4xChdbJzaFzpRLViEaQ9+gLcO+9lTMCQ0ZRrFGOyEtJksDM6lUSvI8ModRmfbLUDbH317wGWVcT7adkm2JTxFVoWzd6+jqkT7YqDOqhQTTjhMAwfNtAWP+/PmaP3++/vjHP+rJJ5/UvHnzdMwxx2ju3Ln64he/qNraWr9eKvbiXGy5zjXiYKRjjAzDL6VkKZvJ5uZG7drVHau6Dwz0Xk8v9bOKjVT3Uo4by3NbAPHi+yaef/mXf6mvfe1revrppzV16lTddNNNeuGFF/x+GUSE3fQRd2QYfiFLqDZkHmQAQNR83xx3+/btevLJJ7Vx40YdddRRWrZsmT796U/7/TKR4GPnI+80zU7L8VVN2SbDyKo092QJcVfqMUDm482P93oyACBqvtWahx9+WE8++aQOHDigOXPm6JFHHlFra6tfTx+5MD92bvIvk3HfTd91PXm2ZeTYRsWPbJuc2aHilOE4jWtQbNtSV/cBZVIpX8fAl9zHKEuVIIfxUOo8DT0GTj7uMP39eZ9UKpWSVeDx1ZL5uChlzv06jyUDhVErg9M4rl5j6kb+tbW5uTH37wMHM+p+b/8I90acpbx8lwwpw8c//nFNnjxZn/zkJwtecWTlypV+vFTZOjv3yS3imtTZ7ygP5NmWblq1ZVjBbl8wSykfi1MxbzD52hcW09s3Etu2tPdARksffK7oN++BxTBsxea1UpVme9KkQ/T623tj853ooBcj/cp/Oe1MWl6DnCs/anq5c2RifSxkpD5OnDi2or4kLa9SdPNbThYHHgMfO7pJX/7rqcMu7T708dW4h1B2Tk3La6lz4dd5bDVnYCSmjYtpea1Uc3OjZt+4ruj7r//OnEBrcantkcprU9zOGUoxsG+l5tW3T2Bce+21fj2VkcL6yFyh7xa2L5glE671YNolq0qRkXKLF5J5YxuVSrO99/2DRmd2qLhk2PRaEIYgx8CPmh6XLFVipDmAOco5VgYeA+ef8Ve5xYuRHs8VdcxR6pz7dR5LBvLjPRsIj2+/ex9zzDE699xz/Xo644T1kbk4fLcwrldRicPYRqHSbPdl3NiNaxwyTF6DHQO/anocslSJkeYA5ijnWBl4DDQ21BT9eK6oY4ZS59zP81gyMBzv2UB4fLsKyS233OLXUxkpLWnx/JlqaaqXpNxHw/wuStk3mIFybzAYxrYtebalTColz7Zk24UjzdjmV2m2a9IW41ok8lqaIMcgrJoetFIyVdbzk8NYGG2e8uVk4DHQ3dPHPMdMqcdmUmqeqYKulUHXeiBOfNsD48QTT9S2bdv8eKrAVLIHhlR4cx4/N+3J9x26JVf8PxpTk1bGdWVbKR06oUGdnfvKev4whPV9rVK/b8geGIVVkuGg9sAI43gLwkj1o9S8sgdGsN8priRLpW6el73vmLq0vD7HmI1IK3kN9sAYzpQ9MP7X6R/Vlz7zUbmuJ9uy5Hiu2n7w/w2bQ6n/o+9KSd3vJ3s/l3IlZQ+M7GP8fP+sJAPlbDob1Xt/1HtgcD7AHhhJVMkeGL4tYHzqU5/Sfffdp5Ge7pRTTvHjpcpW6QJGPkEUrIFFurbG0t7uXi0b8Pxtl5+s8WPSvhTEIN4MwjrYytmQatKkQ7T73Z6i+5y0N4AgNDc3as+e933NUqHjalJjrTq7e/Pe3tdrxodYC+W/nLyWeowmMa+2bSlVY+vAwUzkC1bZ+Sjllz3TNyItRqEcVlrrk5jXqDfZzkiy7ZS6unvVPiBz3/jfJ2njltf1s+fflJQ/JzW1tnodyXFd2ZalWlsj1tUkn1gPZOoChhT9VS/KzUAYC/p+GtrPsP/AUk6tNzGvlWABI3mM2MSzt7dXN998c8EFjFQqpWeeeaao5zrjjDNUW1ururo6SdLChQt12mmn6WMf+5imTJkiy+r/2NTKlSv1sY99zJ8OlCmITXsGfqfacbzc4kX2+Zc++FzFmwJF/Wbgh3K+b2hZKaUcN7HfV4+K3/sAFD6uPpP39qVXnao62zI6u+XkNen7KxTDcVw1TxyrXQe6Ix2DgTXzK3Om6Z/XvVhU3Td9I9KiXoccxkJ2nhzZucULqT8T3/4/z+vWr5ySW8AYmhPbtvIuDsfpnKAaxfXYLLUumrRB5mjnz0HMB/trAIP5lvv6+vqiFyiKce+992rKlCnDbl+zZo3Gjh3r2+tUKuiiEsTz968Qp4x5MygX1yJPrsK5z79haFf3QR06fkyo2S3546/kNdYGnkCXtOGhIRuRRv2XWlSu2DksVCcHfmV+aE5M+gURyVdqXTTpF/gojhXOH4DB2AGmQoFv2uPz82dXjnfv3R/7neXZkCq5Cuc+/4ahe/f1hprd7HF006oturL9Gd20aou6evpG3FSLvMbbwBPoUjY8NGEj0nLyCrOUMoeF6mS2RObLCVebQZhKrYsmbSbsFjhW3ADXgzl/AAbz7ezFp600chYuXKjZs2dryZIleu+993K3f/nLX9acOXP0ne98R729vb6+ZjmCLir5nr/t8pPLfv7syvHefb3GvBmUa+C1yP/fm85U+4JZfNw1IQodV7X28Nuvv/BEPfP8G6Fmt9BfYDIjPIa8xtvAE+gnnn1V1194YlF1P8j3iGIzVU5eYZZS5rDWlm4akrmb5s/UIQ3pgjkx6RdEJF+pddGkX+CtAguEVoDHCucPwGC+beLppx07dqi1tVW9vb1atmyZ3n//fd1xxx252/ft26evfe1rmjJlir761a9G3Vy5rqe97x9UX8ZVTdrS+LF1vhYyP5+/o6tHf7/0aX3s6CZ9+a+n6t7Htg3aHPQjh48LtAgDxSqU+0zG1e69+7XnvQPau69Xzzz/hi75wtRQs5s9joZ6oO3zamlqCKUNCJfrenrjnfdyVzE6+bjD9JU502RZqVHrctDvEaMhr/FX6hxmMq66ug8o43pKWyk1NY5ROl34b1ZD8805AYJWal2Muo5mde7drz937Bt0/nz9hSfqyJZDNGl8/ehPgLKVuoln0MrZxBP+MPLTR62trZKk2tpaXXzxxbr66qsH3X7IIYfoggsu0I9+9KOSnjeIq5AMlJKUyTjqPNBX8mNLeX6rcUz5O9La/SvH//dPXXpo48v6ypxpGn9IrQ4dX6+0PF8uz2ryjrmlti1puzgHIej5zndc1dqWDh0/Rk2Ndbpy7jSlpXAvLfzBcTT0+6j6YD04qvwnNa+m1JTxY9JqXzBr8B4EGafoup+S1NTUEH5fRshrpVcR4SokgwWW1TLnMC1JrtTV9f6oL5Ev3yPVVVOOy6CZfBWSqPmRgVLPnYM+185nYD8929L6X23XV+ZMU2NDjbp7+rT+V9t15dxpRh0PSctrOf0J+iok5eAqJB+q5Cokxn0BtqenR93dHxQJz9PGjRs1depU7d27VwcOHJAkZTIZbdq0SVOnTo2yqbE08GN4//dPXfrndS+qrsZWWh4fRUNsOI7bfzUZz1PKcUPPrkkfZ0V4os5duchr/IUxh3HNNxCmtKSLzv64/nndi7pp1Rb987oXddHZH6eeAiEy7njr7OzUddddJ8dx5Lqujj32WN1666167bXXdMsttyiVSimTyejEE0/UDTfcEHVzY2fg9+jYjR4oD8cR4oS8xh9zCJiBYxGInnELGEcddZTWrl077PaWlhatX78+ghYlT1yvGw6YhOMIcUJe4485BMzAsQhEy7ivkADFsG1Lnm0pk0rJsy0uB4hYILcIG5kLl+t6jDdQpai3QDiM+wQGMBrbttTV05e7pFz2u8BcUgomI7cIG5kLl21bw67kwXgD1YF6C4SHpUFn54tMAAAfxUlEQVTETkbKvUFIUkfXfi1fvVWZaJsFjIjcImxkLlwZKbd4ITHeQDWh3mI0vX2Ompsbi/6vcRyX5S2ET2AgdhzXG3QpOan/jcJxPQINY5FbhI3MhYvxBqoXxz9GU1tja/aN64q+//rvzAmwNfHGJzAQO7aVyl1KLqulqV62lYqoRcDoyC3CRubCxXgD1YvjHwgPCxiInbSkxfNn5t4ost8zZIUbJiO3CBuZC1daUtvlJzPeQBWi3gLh4bhC7HANbsQRuUXYyFy4HMfVRw4fx3gDVYh6C4SHBQzEEtfgRhyRW4SNzIXLslJKOS7jDVQh6i0QDr5CAgAAAAAAjMcCRgLYtiXPtpRJpeTZlmybaQX8wvFlPuYIUSB3APxGXQFGx1dIYs62LXX19OWuPZ3dNKipoYbv3QEV4vgyH3OEKBTK3YQJXtRNAxBTvJ8BxWFZLwRBrqZmpFyhk/qvOb189VZlfHsFVLNq/0sAx5f5Kp2jas84hismE4Vyt/f9gyG3FkBSZCT9ZPMr+sqcaWpfMEtfmTNNP9n8CuccwBB8AiNgQa+mOq6XO4HK6ujaL8f1mFxUhL8EcHzFQSVzRMYxVLGZKJS7vkz/Jn4AULKUNPu0Y3XvY9ty9ef6C08URQUYjD81BSzov+DaVip3zemslqZ62RbVDpXh0wccX3FQyRyRcQxVbCYK5a4mzWkVgDJ5qdzihdRff+59bJvkcc4BDMQ7bcBG+uugH9KSFs+fmTuRyv61iL8Oo1JBZzcOOL7MV8kckXEMVWwmCuVu/Ni6sJoKIGFc181bf1zek4BBOA8PWPavNAMLUu6vg07lBclxXDU11Kh9wSw5rifbSin9we1AJYLObhxwfJmvkjki4xiq2EwUyp3Fp7MAlMkqUH8sS5ITXbsA0/AJjA8M3LSrq/uAbxu5hfEXXMdxlXJcpT1PKcfllyv4ws/sxnmjRI4v85U7R2QcQ5WSiXy5c12PHABFoGYOx6c+geJwTCjYjdz4Cy7iyq/sslEiTEXGMVRFn+ixLb3xznta+uBz5AAYATUzP35nAIrDcqeC38iNv+AirvzILhslwmRkHEOVm4mMlFu8kMgBUAg1szB+ZwBGZ+QnMM444wzV1taqrq5/M6yFCxfqtNNO03/913/plltu0cGDB/UXf/EXuv322zVp0qSKX49LJQLB4fhC0pFxSOQAKBbHCoLW2+eoubmx6Psf7HVUV2sH2KLS9fY5qq2xi+7HgYMZdb+3f/Q7JoCxdeLee+/VlClTcv/veZ6+9rWvqb29XTNmzNCqVat0xx13qL29veLXYiM3s9i2pYzEx+cSguOreGQ/nsg42ZVGzwFjBPQrp2Zy/KAUtTW2Zt+4ruj7r//OnJLvH7Ry+tAdYHtMEpuvkLz44ouqq6vTjBkzJEnz5s3TT3/6U1+em01zShPkxkvZ70XetGqLrmx/Rjet2qKunj42d4qxsI+vuG4MRvbNVyhb1f4eUu3ZzebCdT0tu3qWTj7uMEmDc1DtY4TkK+W9t9SayfEDYCBjz68WLlwoz/M0ffp0/eM//qN27NihI444IvfziRMnynVdvfvuu5owYUJFrzV005wxdWl5fQ4ru3kEvfFSoe9Fti+YJS5OF09hbkoV543ByL7ZRstWNW+8Vs3ZLZSLK//XNMlTLgeebVXtGCH5Sn3vLbVmVnONATCckQsYjzzyiFpbW9Xb26tly5bpm9/8pj7/+c9X/LyTJh1S1uNc19Pe9w+qL+OqJm1p/Ni6yK/1Xsr3uvzU1X1Ay1dvGfYmcscNn1XzxLEVt6+jqyfv9yKVSvnW56jGrlSF8koeCys2n0ErZzzCyH6Qgs5r1GPgZ7ai7oufmpsbY5ndcs8Hhtq774C6dnbrqxd9Wt09fXri2VdzuWhqHJO7XxzHqBhxbnspou6nX3kNQnNzo6/1Md97xu69+yM/fqLOQJyYnNeki1tOy22vkQsYra2tkqTa2lpdfPHFuvrqq3XppZfq7bffzt1nz549SqVSJX36orNzn1x39O8jNzc3ateu/m8RmfgX3YHtC1smlcr7JnLgYEa7DvS3qaL22Vbe70XK83zpc6lti7IQ5MsreRxZMfkMWtnj4UP2k5pXEzLmV7ZM6Itfcn0pM7um5bVU2Xz/4Inf5fJ9/YUn6qGNLw/PRcDvbVFIUpZHku1n3PMahOzY+FUfC71nTGisjfT4iWPWk5bXuP1iHpU45XTgcVXq/Br35bGenh51d/d3xvM8bdy4UVOnTtUnP/lJHThwQL/5zW8kSWvWrNEXv/jFwNvDpZ4Gy268NFBu4yUfVPt3yUdDHkcWdD6DlMTsJymvcc5W0JKY3WLky/e9j23TvLOnDMtFtY4RqoNf9bHQe4brcPwA+JBxx35nZ6euu+46OY4j13V17LHH6tZbb5VlWfr/27v3oKjO8w/g32UJIIqACgKVeMHx2mAMjE4QpS5W64WLZIzWqIkXUke8lPywEjASjYgaGzWKl6aNaaYt6aSRFcR6mYIxXqIQiYTURAuG0OGOoCxycXfP7w/DFpAFQXbPObvfz0xmzNnD7vOe9znPe3jY3bN7924kJCS0uY2qqfFWT221XIS1747bAtD1wvNb+2fJu8J87Jyp89OULDH3LSlf5ZxbpmaJufskjOW316B+j+WFtR4jsg69VR+NnVNaPc8fIvofyV1Dent7Q61Wd/jYCy+8gPT0dLPGw9vjtWWOizCdTg8FfkpOnWD1vxy0xnzsnNx/SbC03LekfJV7bpmapeXukzCW388obaDTPX4ErPEYkXXorfrY2ZrB84eIWkjuIyRSw7d9Pk6n00Oh08NWEKDQ6XkBb0bMx64xP6XD0vKVuUWtdZTfm1dMhhLyas4R9YbeqI+WtmYQkWmwJnSBf3UjKWE+kpwwX8mSdZTfg1wcUV2tETs0IlnimkFET4INjCfAt62RlDAfSU6Yr2TJ2ue32Le0JpI7rhlE1BV+hISIiIiIiIiIJI8NDCIiIiIiIiKSPDYwiIiIiIiIiEjy2MAgIiIiIiIiIsljA4OIiIiIiIiIJI8NDCIiIiIiIiKSPN5GlYiIiIiIiEzOqX8fONjzV1Ap6O5cNDXrYG+nfOL9G5u0qLvf0JPQOsXsISIiIiIiIpNzsLdFyP+d6NbPpP8+zETRWLfuzkX678O6vX9dTwLrAj9CQkRERERERESSxwYGEREREREREUkeGxhEREREREREJHlsYHRCqbSBoLSBVqGAoLSBUsnDRdQTPJdIipiX1B5zgkiaeG4SUQt+iacRSqUNah48xI6PrqGipgHurn0Q99okuDo+A51OL3Z4RLLBc4mkiHlJ7TEniKSJ5yYRtcb2pRFawFAoAaCipgE7ProGrbhhEckOzyWSIuYltcecIJImnptE1BobGEbo9IKhULaoqGmATi+IFBGRPPFcIiliXlJ7zAkiaeK5SUStsYFhhNJGAXfXPm22ubv2gdJGIVJERPLEc4mkiHlJ7TEniKSJ5yYRtcYGhhG2AOJem2QomC2ft+OXhhB1D88lkiLmJbXHnCCSJp6bRNSaZM/9gwcP4sCBA0hPT8eoUaMwevRojBo1CjY2j3ouu3fvxujRo032+jqdHq6OzyBpzRTo9AKUNgrY/rSdiJ4czyWSIuYltcecIJImnptE1JokGxjffvstvv76a3h5ebXZ/sknn6Bv375mi0On00OBnw6SToDObK9MZFl4LpEUMS+pPeYEkTTx3CSiFpL7CElzczO2bduGhIQEKBT8bBsRERERERERSfAdGPv370doaCi8vb0fe2zp0qXQ6XSYNm0a1q1bBzs7u24998CB/Z54Xzc3p249t7kxvp6TcmytdSdfxSaXY2ou1ng8TJ2vlnRMORbxmTJf5XpMesJaxir2OKV8PSD2sTEXaxlnb5Byvlo6KeZpZzH1NF5JNTByc3PxzTffICYm5rHHzp8/D09PT2g0GmzcuBHJycmIjo7u1vNXV2ugf4JbLrm5OaGysq5bz21OjK/nuhubmIXgSfNVbFKebzGIeTwsNV8tKcc4lrY/LxZT5aslzW9XrGWsLeO0xHx9WtaWA3Ii5XyV4i/ZlqK7eWqOuTAWU+vzqrtxSKqBkZ2djcLCQgQHBwMAysrKsHLlSiQlJSEwMBAA0K9fPyxYsADHjh3r9vPbdON2S93ZVwyMr+ekHFtrcokTkFes5mCNx8PUY7akY8qxiM+Uccv1mPSEtYxV7HGK/fqdkXJsvclaxtkbeKzEI8Vj31lMPY1XIQiC9Fq6P1GpVDhy5AgGDx4Me3t7ODg4QKvVIj4+Hs7OzoiLixM7RCIiIiIiIiIyA0m9A8OYwsJCbNmyBQqFAlqtFhMnTsSGDRvEDouIiIiIiIiIzETS78AgIiIiIiIiIgIkeBtVIiIiIiIiIqL22MAgIiIiIiIiIsljA4OIiIiIiIiIJI8NDCIiIiIiIiKSPDYwiIiIiIiIiEjy2MAgIiIiIiIiIsljA4OIiIiIiIiIJM/qGxi7du2CSqXC6NGjcevWLcP2O3fuYOHChZg1axYWLlyIH374QRKx1dTUIDIyErNmzUJISAjWrl2Lu3fvmj02Y/G1dvDgQaOPmYOx+JqampCQkICZM2ciJCQEb731lijxWQKVSoVf/epXCAsLQ1hYGL744guxQzIbKdcOueqsvn399dcIDQ3FrFmzsGLFClRXV4scbdfWrFmD0NBQhIeHY/Hixbh58yYAeedI+7oux3l5GsbWj87mVG7z/d///tdQ08PCwqBSqTBp0iQAljVOAMjKykJ4eDjCwsIQEhKCs2fPArC8cT4tY+udseMnV8bGef78ecyfPx8hISFYsmQJiouLRYySjF17yn096sn6Igc9XVM6JVi57OxsoaSkRJg+fbrw/fffG7YvXbpUUKvVgiAIglqtFpYuXSqJ2GpqaoQvv/zSsM/OnTuFN9980+yxGYuvRX5+vrBy5UrhF7/4xWOPiR3fO++8IyQmJgp6vV4QBEGorKwUJT5L0NHcWwsp1w65Mlbf9Hq9MGPGDCE7O1sQBEFITk4WYmNjxQrzid2/f9/w73Pnzgnh4eGCIMg3R9rXdbnOy9Mwtn50Nqdyne8W27dvF7Zu3SoIgmWNU6/XC/7+/ob6ffPmTeH5558XdDqdRY2zN3S03nV2/OSqo3HW1tYKkyZNEgoLCwVBeDTnK1asEDNMq9fRtaclrEc9WV/k6EnXlM5YfQOjReuToaqqSvDz8xO0Wq0gCIKg1WoFPz8/obq6WvTY2jt9+rTw6quvmjegdtrH19TUJLz88svCjz/+KIlfcFvHoNFoBD8/P0Gj0Ygak6WQwvyKTcq1Q+5a6tuNGzeEuXPnGrZXV1cLzz//vIiRdV9qaqowf/582eZIR3XdEualO4ytH53NqVznu0VTU5MwefJkIT8/3+LGqdfrhUmTJgk5OTmCIAjCtWvXhJkzZ1rcOHtT+wZGR8fPErQe540bN4Q5c+YYHqupqRFGjRplNXMuRR1de8p9PerJ+iJHT7qmdMXWdG8Yka/S0lIMHjwYSqUSAKBUKuHu7o7S0lIMGDBA5Oj+R6/XIyUlBSqVSuxQ2ti/fz9CQ0Ph7e0tdiiPKS4uhouLCw4ePIirV6+ib9++2LBhA/z9/cUOTbZiYmIgCAL8/PzwxhtvoH///mKHJBq51A45aF3fSktL4eXlZXhswIAB0Ov1qK2thYuLi4hRdi0+Ph6XLl2CIAj44x//KNsc6aiuy3leesLY+uHg4GB0TgVBkOV8t8jMzMTgwYMxfvx45OfnW9Q4FQoF9u3bhzVr1sDR0RH19fU4evRop+eoHMdpKsaOn6UZPnw4qqqqkJeXB19fX6SnpwOAVc65lLS/9pT7etST9UWO+feka0pXY7P678CQs3feeQeOjo5YsmSJ2KEY5Obm4ptvvsHixYvFDqVDWq0WxcXFGDduHI4fP46YmBisW7cOGo1G7NBk6a9//SvS0tLw2WefQRAEbNu2TeyQyEJIsb71RGJiIs6fP4/o6Gjs3r1b7HB6ROp13VyMrR8PHjwQOzST+eyzz/DSSy+JHYZJaLVaHD16FIcOHUJWVhYOHz6M6Ohoi57P3mTs+NXX14sdWq9ycnLC3r17kZSUhIiICFRXV6N///6wteXfgMViidee1rK+9NaawgZGBzw9PVFeXg6dTgcA0Ol0qKiogKenp8iR/c+uXbtQVFSEffv2wcZGOtOYnZ2NwsJCBAcHQ6VSoaysDCtXrsTFixfFDg0A4OXlBVtbW8ybNw8AMGHCBLi6uuLOnTsiRyZPLeeEnZ0dFi9ejOvXr4sckbjkUDvkoH198/T0RElJieHxu3fvQqFQyOKvKi3Cw8Nx9epVeHh4yC5HjNX1oqIi2c9LdxhbPxwcHIzOqZxrQnl5ObKzsxESEgKg8/omx3HevHkTFRUV8PPzAwD4+fmhT58+sLe3t6hxmoqx41dQUCByZL0vICAAKSkpOH78OJYsWYLGxkZJvsvYWnR07Sn364SerC9y0501pSvS+c1XQgYOHIixY8fi5MmTAICTJ09i7Nixknmrzt69e5Gfn4/k5GTY2dmJHU4br7/+Oi5evIjMzExkZmbCw8MDf/rTnxAYGCh2aAAevaVs8uTJuHTpEoBH335bXV2NoUOHihyZ/Dx48AB1dXUAAEEQcOrUKYwdO1bkqMQl9dohBx3Vt5///OdobGxETk4OAOCTTz7B7NmzxQyzS/X19SgtLTX8f2ZmJpydnWWZI8bq+qpVq2Q3L0/D2PoxbNgwo3Mqx/lukZqaiqCgILi6ugLovL7JcZweHh4oKytDYWEhAKCgoABVVVUYOnSoRY3TVIwdv2effVbkyHpfZWUlgEcfbXzvvfewaNEiODo6ihyVdTJ27SnH64TWerK+yE131pSuKARBEEwarcRt374dZ8+eRVVVFVxdXeHi4oKMjAwUFBQgNjYW9+/fR//+/bFr1y6MGDFC9Nj27duHefPmYdiwYXBwcAAADBkyBMnJyWaNzVh8GRkZbfZRqVQ4cuQIRo0aJZn4iouLERcXh9raWtja2uK3v/0tgoKCzB6f3BUXF2PdunXQ6XTQ6/Xw8fHB5s2b4e7uLnZoZiHl2iFXt2/fNlrfrl+/joSEBDQ1NeFnP/sZ3n33XQwaNEjkiI2rqqrCmjVr0NDQABsbGzg7O2PTpk0YP3687HOkdV2X27w8LWPrR2dzKtf5njVrFuLj4zFt2jTDNksbZ1paGj744AMoFAoAwPr16zFjxgyLG+fTMrbeGTt+cmVsnPHx8bh+/ToePnyIKVOmIC4uDvb29mKHa5U6u/aU+3rUk/VFTrq7pnTG6hsYRERERERERCR9/AgJEREREREREUkeGxhEREREREREJHlsYBARERERERGR5LGBQURERERERESSxwYGEREREREREUkeGxhWIC0tDStWrBA7DKIOMT9JTpivREREROLhbVQtSE5ODvbs2YPbt29DqVRixIgRiIuLg6+v71M/99WrV/Hqq6+iT58+hm1btmzB/Pnzn/q5yTqYMj8rKiqwZcsW5Ofno7KyEv/6178wZMgQw+PNzc1ISEjAmTNn0KdPH6xatQrLly9/6tclyyVmvsbGxuLkyZN45pln2sSjVCqf+rXJekycONHw74aGBtjZ2RlyaOvWrQgNDcUPP/yA/fv348qVK2hubsagQYMwdepUREZGwsPDw/DzxcXF+OUvf4lFixbh7bffNvdQyEqoVCpUVVVBqVRCqVRi5MiRCAsLw8KFC2FjY4OysjIkJibi2rVr0Gq18PLywvLlyxEREQHg0Vp/9OhRpKeno6KiAgMGDMDkyZMRFRXVpsYSPa2u6mtRUREOHjyI+Ph4LFu2zLDvRx99hKSkJKxduxbr1q0zbGeN7R5bsQOg3qHRaLB69Wq8/fbbmD17Nh4+fIicnBzY2dn12mu4u7vjwoULvfZ8ZD1MnZ82NjaYOnUqfvOb32DRokWPPX7gwAEUFRUhKysLVVVVWLZsGXx8fDBt2rReeX2yLGLnKwCsXLkS0dHRvfJ6ZJ1yc3MN/1apVNi+fTsCAgIM24qKivDyyy9j/vz5UKvV8PDwQHV1NdLT0/HVV19h7ty5hn1PnDgBZ2dnnDp1CnFxcb16bUHU2pEjRxAQEIC6ujpcu3YNiYmJyMvLQ1JSEjZu3IgxY8YgKysLdnZ2uHXrFiorKw0/u379epSXl2PPnj0YN24cGhoakJaWhitXrmDBggUijoosTVf19cCBAxg2bBjUanWbBsaJEycwbNiwx56PNbZ7+BESC3Hnzh0AwLx586BUKuHg4IDAwECMGTMGx48fx69//WsAwAcffICJEyca/hs/fjxiY2MBAHV1dYiLi0NgYCCmTp2KvXv3QqfTiTYmshymzs9BgwbhlVdewXPPPdfh66vVaqxZswbOzs7w8fHBggULkJqaaoaRkxyJna9E5nDgwAG88MILePPNNw3vthg4cCBee+21Ns0L4FEN3bBhA2xtbZGZmSlGuGRlnJycEBwcjH379iE1NRW3bt1Cfn4+IiIi4OjoCFtbW4wbNw5BQUEAgMuXL+Py5cs4dOgQfH19YWtrCycnJ7zyyitsXpAonnvuOTQ0NOD27dsAgNu3b6OxsbHDtZ81tnvYwLAQw4cPh1KpxKZNm/D555/j3r17He4XGRmJ3Nxc5Obm4tSpU3B1dcXs2bMBAJs2bYKtrS3Onj0LtVqNS5cu4dNPPzX87N27dxEQEACVSoUdO3bgwYMHZhkbyZ858tOYe/fuoaKiAmPGjDFsGzNmDP7zn//0zuDI4oiZry1SUlIwadIkRERE4MyZM70yLqLWrly5gpkzZ3a5X05ODsrKyjB37lzMnj0barXaDNERPeLr6wsPDw/k5ORgwoQJ2Lp1KzIyMlBSUtJmv8uXL8PX1xeenp4iRUr0uLCwMEPNTE1NRXh4+GP7sMZ2HxsYFqJfv37429/+BoVCgbfeegsvvvgiVq9ejaqqqg73b2xsRFRUFJYtW4agoCBUVVXhwoULiIuLg6Ojo+GvMBkZGQCAESNGQK1W4+LFi/jzn/+Mb7/9Fjt37jTnEEnGTJ2fnWlptDk5ORm2OTk5ob6+vncGRxZHzHwFgKVLl+LMmTO4fPkyNmzYgNjYWHz11Ve9OUQi1NTUYNCgQYb//8tf/gJ/f39MnDgRmzdvNmxPTU3FtGnT4OzsjHnz5uGLL75AdXW1GCGTlXJ3d8e9e/ewf/9++Pv749ChQwgODkZYWBjy8vIAALW1tXBzcxM5UqK2QkNDkZGRgYcPH+LUqVMIDQ19bB/W2O5jA8OC+Pj4YOfOnbhw4YLhC4x27NjR4b7x8fEYPnw4Xn/9dQBASUkJtFotAgMD4e/vD39/f2zZsgV3794FALi5uWHkyJGwsbGBt7c3Nm7cyL8KUreYMj874+joCODR9xq00Gg06Nu3by+MiiyVWPkKAOPHj4erqytsbW0RFBSEkJAQnDt3rtfGRgQALi4ubb4/YMmSJcjJycGyZcug1WoBPGrOnT59GiEhIQAefXGdp6cn0tPTRYmZrFN5eTmcnZ3h7OyMmJgYZGRk4NKlSxg7diyioqIgCMJj+UwkBV5eXnj22Wfx3nvvYejQoY+9Q4g1tmfYwLBQPj4+iIiIMHzuqrU//OEPuHPnDhITEw3bPDw8YGdnhy+//BI5OTnIycnB9evXjf7FUKFQgDewoZ4ydX625uzsDDc3N3z33XeGbd999x1GjhzZO4Mhi2fOfO0I6y2ZwosvvthlY+zcuXPQaDTYunUrpkyZgilTpqC8vBwnTpwwU5Rk7fLy8lBeXg4/P7822wcMGIAVK1agoqICtbW1CAgIQF5eHsrKykSKlKhj4eHhOHbsWIcfH2GN7Rk2MCxEQUEBPvzwQ0PhLi0txcmTJzFhwoQ2+33++ef4+OOPkZycDAcHB8N2d3d3TJkyBTt37oRGo4Fer8ePP/6Ia9euAXh0G9WSkhIIgoDS0lLs2bMHwcHB5hsgyZqp8xMAmpqa0NzcDODRrdSampoMj4WHh+Pw4cO4d+8eCgoK8Omnn/IWwGSU2Pl6+vRp1NfXQ6/X4+LFi0hLS4NKpTLlkMkKrV27Fjk5OUhKSkJ5eTmAR991VVhYaNhHrVbjpZdeQnp6OtRqNdRqNVJSUnDz5k18//33YoVOVkCj0SArKwtvvPEGQkNDMXr0aLz77ru4desWtFotNBoNUlJSMHToULi6uiIgIAABAQGIiopCfn5+m33+8Y9/iD0csmJz5szBhx9+aPiOrNZYY3uGt1G1EP369cONGzdw7Ngx1NXVwcnJCdOnT8fvfvc7nD171rDfP//5T9TU1GDOnDmGbSEhIdi2bRt2796NPXv2YM6cOaivr4e3tzciIyMBAP/+978RExOD+/fvw8XFBTNmzOAt/uiJmTo/gUdf9NWiZZFoKf7r169HQkICpk+fDgcHB0RGRvIWqmSU2Pn68ccfIz4+HoIgYMiQIdi+fTsmT55s6mGTlRk+fDj+/ve/4/3330doaCiam5vh7u6OwMBArFq1CuXl5bhy5QpSU1PbfLeAm5sbpk6dCrVajU2bNok4ArJEq1evhlKphI2NDUaOHInly5cbbjfd2NiItWvXorKyEvb29pgwYQIOHz5s+Nn3338fR44cQXR0NCorKw2NjaioKLGGQwQHB4c2t1htwRrbcwqB70slIiIiIiIiIonjR0iIiIiIiIiISPLYwCAiIiIiIiIiyWMDg4iIiIiIiIgkjw0MIiIiIiIiIpI8NjCIiIiIiIiISPLYwCAiIiIiIiIiyWMDg4iIiIiIiIgkjw0MIiIiIiIiIpI8NjCIiIiIiIiISPL+HwJmLqy0n4oIAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ - "# IGNORE this. Execute this cell to load the notebook's style sheet.\n", - "from IPython.core.display import HTML\n", - "css_file = './images/style.css'\n", - "HTML(open(css_file, \"r\").read())" + "%matplotlib inline\n", + "import pandas as pd\n", + "pd.set_option('precision', 3)\n", + "import seaborn as sns\n", + "sns.set(rc={'figure.figsize':(15, 5)})\n", + "from IPython.display import display\n", + "\n", + "food = pd.read_csv('http://openmv.net/file/raw-material-characterization.csv')\n", + "food.describe()\n", + "display(food.head()) \n", + "food.set_index('Lot number', inplace=True)\n", + "sns.pairplot(food);" ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": { @@ -1952,7 +2117,7 @@ }, "hide_input": false, "kernelspec": { - "display_name": "Python [default]", + "display_name": "Python 3", "language": "python", "name": "python3" }, @@ -1966,7 +2131,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.5.5" + "version": "3.7.3" }, "toc": { "base_numbering": 1, From 84abb5acc0656f4d78d8877e89398d7cdbee6545 Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Thu, 25 Jul 2019 06:42:32 +0200 Subject: [PATCH 071/134] Improved feedback link --- Module-09-interactive.ipynb | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/Module-09-interactive.ipynb b/Module-09-interactive.ipynb index a92bab6..89ecf4b 100644 --- a/Module-09-interactive.ipynb +++ b/Module-09-interactive.ipynb @@ -1941,7 +1941,7 @@ "metadata": {}, "source": [ ">***Feedback and comments about this worksheet?***\n", - "> Please provide any anonymous [comments, feedback and tips](https://docs.google.com/forms/d/1Fpo0q7uGLcM6xcLRyp4qw1mZ0_igSUEnJV6ZGbpG4C4/edit)." + "> Please provide any anonymous [comments, feedback and tips](https://docs.google.com/forms/d/1Fpo0q7uGLcM6xcLRyp4qw1mZ0_igSUEnJV6ZGbpG4C4/viewform)." ] } ], From f05c7098eaf2c1bcb5ff661de241ede512587c70 Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Thu, 25 Jul 2019 07:56:31 +0200 Subject: [PATCH 072/134] Working on regression; but will move this off into a separate notebook. --- Module-10-interactive.ipynb | 342 ++++++++++++------------------------ 1 file changed, 117 insertions(+), 225 deletions(-) diff --git a/Module-10-interactive.ipynb b/Module-10-interactive.ipynb index 3dcd71f..65fe75d 100644 --- a/Module-10-interactive.ipynb +++ b/Module-10-interactive.ipynb @@ -28,7 +28,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 69, "metadata": {}, "outputs": [ { @@ -187,7 +187,7 @@ "" ] }, - "execution_count": 4, + "execution_count": 69, "metadata": {}, "output_type": "execute_result" } @@ -1459,12 +1459,12 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 80, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfEAAAHjCAYAAAAzLCbtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3X9w5Hd93/HXe32yTlhHTujOriPZOcMZkpTKwmwY4AKTYDctTCJDBK6TNNwQNw5pCIRMx+dMZjIwbWbgGpLSmQzUQNojQ4gdFHqeyZSBcWgy7RSMDt8JgvlhiPHpuJ4PoaMnrBM677t/7FdIJ3a1K+1+9/t57/f5mNFI+molvT/fj7770n73/dmvubsAAEA8laILAAAAO0OIAwAQFCEOAEBQhDgAAEER4gAABEWIAwAQFCEOAEBQhDgAAEER4gAABLWr6ALasW/fPj9w4EDRZQAA0BMnTpz4trvvb3W7ECF+4MABzc7OFl0GAAA9YWbfbOd2nE4HACAoQhwAgKAIcQAAgiLEAQAIihAHACAoQhwAgKAIcQAAgiLEAQAIihAHACAoQhwAgKAIcQAAgiLEAQAIihAHACAoQhwAgKAIcQAAgiLEgTYtLK3o1OkLWlhaKboUAJAk7Sq6ACCC4yfP6MjMnAYqFa3Wajo6PaGpybGiywJQcjwSB1pYWFrRkZk5XVqt6eLKZV1arenemTkekQMoHCEOtDC/uKyBypWHykClovnF5YIqAoA6QhxoYXxkSKu12hXbVms1jY8MFVQRANQR4kALo8ODOjo9od0DFe0Z3KXdAxUdnZ7Q6PBg0aUBKDka24JbWFrR/OKyxkeGCJUcTU2O6dDBfexrAEkhxAOjY7q3RocHCW8ASeF0elB0TAMACPGg6JgGABDiQdExDQAgxIOiYxoAQGNbYP3UMU2XPQBsHyEeXD90TNNlDwA7w+l0FIouewDYOUIchaLLHgB2jhBHoeiyB4CdI8RRKLrsAWDnaGxD4fqpyx4AeokQD6rflmT1Q5c9gP6U8v0tIR4QS7IAoDdSv7/lOfFgWJIFAL0R4f6WEA+GJVkA0BsR7m8J8WBYkgUAvRHh/pYQD4YlWQDQGxHub83di66hpWq16rOzs0WXkZSUuyW7aatxlmUftMJ+iIl5i6OIuTKzE+5ebXU7utODKsOSrK26QlPvGO0V9kNMzFssKd/fcjodSdqqKzRCx2gvsB9iYt7QTYQ4krRVV2iEjtFeYD/ExLyhmzidjiS16gpNvWO0FyJ0zuKHMW/oJh6JI0lbdYVG6BjtBfZDTMwbuonudCSN7vTW2A8xMW/YCt3p6AtbdYWm3DHaS+yHmJg3dAOn0wEACIoQBwAgKEIcAICgCHEAAIIixAEACIoQBwAgKEIcISwsrejU6Qu8vjSA5BR5/8Q6cSSPKz4BSFXR9088EkfSuOITgFSlcP9EiCNpKV7xiVP7AKQ07p84nY6kpXbFp6JPnQFIRwr3TzwSR9JSuuJTCqfOAKQjhfunXB+Jm9nbJP26JJP0AXf/T2b2HEkPSDog6QlJd7r7Yp51ILapyTEdOriv8Cs+rZ06u6T1/7zXTp1xIQugnIq+f8rtkbiZvVD1AH+JpFsk/byZ3SzpPkkPu/vNkh7OPge2NDo8qFtu2FtoWKZw6gxAeoq8f8rzdPpPSPqMuz/t7pcl/Z2k10m6Q9Kx7DbHJL02xxqArknh1BkAbJTn6fQvSvpDMxuVtCzpNZJmJV3n7mclyd3Pmtm1jb7ZzO6RdI8k3XjjjTmWCbSv6FNnALBRbiHu7o+Z2bslfUrSkqRTki5v4/vvl3S/JFWrVc+lSGAHRocHCW8ASci1O93dP+Tut7r7KyV9R9LXJJ0zs+slKXv/VJ41AADQr3IN8bVT5WZ2o6RflPRRSQ9JOpzd5LCk43nWAKBuuy9Sw4vaAOnL+8VeZrLnxFcl/Za7L5rZuyQ9aGZ3S3pS0htyrgEove2+SA0vagPEkGuIu/srGmxbkHRbnr8XwLqNL1Kztsb93pk5HTq4r+Fz+9u9PYDi8IptQJ/b7us7p/B60ADaQ4gDfW67L1LDi9oAcRDiQJ/b7ovU8KI2QBzmnv4S7Gq16rOzs0WXAYS2sLSyrRep2e7tAXSPmZ1w92qr23EpUqCFosKs2793uy9Sw4vaAOkjxIEtFLXUiiVeANrBc+JAE0VdP5zrlgNoFyEONFHUUiuWeAFoFyEONFHUUiuWeAFoFyEONFHUUiuWeAFoF0vMgBY2d4n3qludJV7dldf+ZJ6QB5aYAV2ycalVL7vGWeLVPXnNG6sIUDROpwNtoms8przmjb8HpIAQB9pE13hMec0bfw9IASEOtImu8Zjymjf+HpACQhxoE13jMeU1b/w9IAV0pwPbRDdyTHSnIxK604PjjgHorry6/VlFgCIR4gli2Uq6mBsAKeE58cSwbCVdzA2A1BDiiWHZSrqYGwCpIcQTw7KVdDE3AFJDiCeGZSvpYm4ApIYlZomiOz1dzA2AvLHELDiWraSLuQGQCk6nAwAQFCEOAEBQhDgAAEER4gAABEWIAwAQFCEexMLSik6dvsBLfAIAfoAlZgFw0Q0AQCM8Ek8cF90AADRDiCeOi24AAJohxBPHRTcAAM0Q4onjohsAgGZobAtganJMhw7u46Ib6Atlu4BM2caL3iLEg+CiG+gHZVtpUbbxovc4nQ6gJ8q20qJs40UxCHEAPVG2lRZlGy+KQYgD6ImyrbQo23hRDEIcQE+UbaVF2caLYpi7F11DS9Vq1WdnZ4suA0AXlK1bu2zjRXeY2Ql3r7a6Hd3pQJ9LLUTyWmmR2jjXsLIEeSLEgT5WliVOZRknsBnPiQN9qixLnMoyTqARQhzoU2VZ4lSWcQKNEOJAnyrLEqeyjBNohBAH+lRZljiVZZxAIywxQ99JtUu5KGXZH2UZJ8qBJWYoJbqUf1hZljiVZZzARpxOR9+gSxlA2RDi6Bt0KQMoG0IcfYMuZQBlQ4ijb9ClDKBsaGxDX5maHNOhg/uS7lJu1kXdbnc1Xdh17AeAEEcfSrlLuVn3fLtd9XTf17EfgDpOpwM90qx7/vFzF9vqqqf7vo79AKwjxIEeadY9f/L0hba66um+r2M/AOsIcaBHmnXPT96wt62uerrv69gPwDpCHOiRZt3zB6/b01ZXPd33dewHYB2vnQ70GN3p3cF+QD/jtdPRF/rxjrpZ93y7XfUpd9/3EvsBIMSRMJYRAcDWeE4cSWIZEQC0RogjSSwjAoDWCHEkiWVEANAaIY4ksYwIAFrLtbHNzN4u6d9IcklfkPQmSddL+ktJz5H0eUm/6u7fz7MOxBThYiYAUKTcHomb2Zikt0qquvsLJV0l6S5J75b0J+5+s6RFSXfnVQPSs7C0olOnL7TdoDY6PKhbbthLgCdku3PYL8o6bqQt7yVmuyQNmdmqpGdJOivpVZJ+Ofv6MUnvkPS+nOtAAlgyFl9Z57Cs40b6cnsk7u5nJP2RpCdVD+/vSjoh6YK7X85uNi+JI6EEWDIWX1nnsKzjRgx5nk4fkXSHpJsk/aikayS9usFNG77uq5ndY2azZjZ7/vz5vMpEj7BkLL6yzmFZx40Y8uxOv13SP7r7eXdflfTXkl4uaa+ZrZ3GH5f0rUbf7O73u3vV3av79+/PsUz0AkvG4ivrHJZ13IghzxB/UtJLzexZZmaSbpP0JUmflvT67DaHJR3PsQYkgiVj8ZV1Dss6bsSQ61XMzOydkv6VpMuSHlV9udmY1peYPSrpX7v7lk8ucRWzzqVyIZHHz13UydMXNHnDXh28bk9hdWDnOr0KW1QpjC+FGtAb7V7FjEuRlkAqnbWp1IHuY27zxz4ul3ZDnFds63OpdNamUge6j7nNH/sYzRDifS6VztpU6kD3Mbf5Yx+jGUK8z6XSWZtKHeg+5jZ/7GM0Q4j3uVQ6a1OpA93H3OaPfYxmaGwriVS6WlOpA93H3OaPfVwe7Ta25f3a6UjE6PBgEgd9KnX0QtnucMs0t0VhH2MzQhzIAcuBAPQCz4kDXcZyIAC9QogDXcZyIAC9QogDXcZyIAC9QogDXcZyIAC9QmMbkIOpyTEdOrivVN3piK9sKyr6ASEO5ITlQIiEFRUxcTodAEqOFRVxEeIAUHKsqIiLEAeAkmNFRVyEOACUHCsq4qKxDT3Vbvfr5tvRNds+9lV3lWV/sqIiJkIcPdNu9+vm291ZHdeDs/N0zbaBDuPuKtv+ZEVFPJxOR0+02/3a6HYf/j9P0jXbBjqMu4v9iQgIcfREu92vjW63GV2zjdFh3F3sT0RAiKMn2u1+bXS7zeiabYwO4+5ifyICQhw90W73a6PbvfFlN9I12wY6jLuL/YkIzN2LrqGlarXqs7OzRZeBLqA7PX/sq+5if6IIZnbC3autbkd3Onqq3e7Xzbeja7Z97KvuYn8iZZxOBwAgKEIcAICgCHEAAIIixAEACIoQBwAgKEIcAICgCHEAAIIixAEACIoQBwAgKEIcAICgCHEAAIIixAEACKp0Ib6wtKJTpy9oYWklxM/tVKp1YR1zlK+i92/Rvx/9rVRXMTt+8oyOzMxpoFLRaq2mo9MTmpocS/bn9mtdWMcc5avo/Vv070f/K80j8YWlFR2ZmdOl1ZourlzWpdWa7p2Z6/i/47x+bqdSrQvrmKN8Fb1/i/79KIfShPj84rIGKlcOd6BS0fzicpI/t1Op1oV1zFG+it6/Rf9+lENpQnx8ZEirtdoV21ZrNY2PDCX5czuVal1Yxxzlq+j9W/TvRzmUJsRHhwd1dHpCuwcq2jO4S7sHKjo6PaHR4cEkf26nUq0L65ijfBW9f4v+/SgHc/eia2ipWq367OxsV37WwtKK5heXNT4y1NWDKa+f26lU68I65ihfRe/fon8/YjKzE+5ebXm7soV4r6R24KZWDzrXbE6LmuvU/sZSqwfYjnZDvFRLzHoltWUlqdWDzjWb06LmOrW/sdTqAfJSmufEeyW1ZSWp1YPONZvTx89dLGSuU/sbS60eIE+EeJeltqwktXrQuWZzevL0hULmOrW/sdTqAfJEiHdZastKUqsHnWs2p5M37C1krlP7G0utHiBPhHiXpbasJLV60Llmc3rwuj2FzHVqf2Op1QPkie70nOTdGbvdn0+n7g9LbZ90a07pTk+zHmA7WGLWx+i87Vxq+zC1egAUq90Q53R6MHTedi61fZhaPQDiIMSDofO2c6ntw9TqARAHIR4MnbedS20fplYPgDgI8WDovO1cavswtXoAxEFjW1BRO2/X6r7m6qv0ve8/U2j9qe3D1FY0ALhSL4+hrr52upk9X9L7JF3n7i80swlJU+7+HzqsEzs0OjwY7o54rQPba66VZ1y7B+ongorqxE5tH+ZZD93vQGdSPYbaPZ3+AUm/J2lVktx9TtJdeRWF/rOxA3vlmfrZn0urNTqxe4Dud6AzKR9D7Yb4s9z9kU3bLne7GPSvRh3Ya+jEzhfd70BnUj6G2g3xb5vZ8yS5JJnZ6yWdza0q9J1GHdhr6MTOF93vQGdSPobaDfHfkvRfJP24mZ2R9DuSfjO3qtB3NnZgD15lkqTdAxU6sXuA7negMykfQ9vqTjezayRV3P1ifiX9MLrT+0dK3ellQ3c60Jlw3elm9rtNtkuS3P2Pd1QdSiu1jvAyYd8DnUnxGGq1xGxP9v4Fkn5K0kPZ578g6e/zKgoAALS2ZYi7+zslycw+KenWtdPoZvYOSX+Ve3UAAKCpdhvbbpT0/Q2ff1/Sga5XAwAA2tbWK7ZJ+nNJj5jZx1VfZvY6SR/OrSoAANBSWyHu7n9oZp+Q9NPZpje5+6P5lQUAAFpp95G43P2EmZ2WtFuSzOxGd3+y2e3N7AWSHtiw6bmS/kD1R/APqH46/glJd7r74rYrBwrCUi0AqWj3AihTkt4j6UclPaX6c+RflvRPm32Pu39F0mT2/VdJOiPp45Luk/Swu7/LzO7LPj/SwRiAnkn1IggAyqndxrZ/L+mlkr7q7jdJul3S/97G77lN0tfd/ZuS7pB0LNt+TNJrt/FzgMKkfBEEAOXUboivuvuCpIqZVdz908oeZbfpLkkfzT6+zt3PSlL2/tpG32Bm95jZrJnNnj9/fhu/CshHyhdBAFBO7Yb4BTMbVv0FXj5iZu9Vm1cxM7OrJU1pm+vK3f1+d6+6e3X//v3b+VYgFylfBAFAObUb4ndIelrS2yV9QtLXVX/Vtna8WtLn3f1c9vk5M7tekrL3T7VfLlCclC+CAKCcWja2ZU1px939dkk1rT+f3a5f0vqpdKn+0q2HJb0re398mz8PKMzU5JgOHdxHdzqAJLQMcXd/xsyeNrMfcffvbueHm9mzJP1zSb+xYfO7JD1oZndLelLSG7bzM4Gi5XURBJauAdiudteJX5L0BTP7lKTvrW1097du9U3u/rSk0U3bFlTvVgeQYekagJ1oN8T/JnuT6i+7KknW/XKA8tm4dO2S6o1z987M6dDBfTwiB7ClVtcTv0PSuLv/afb5I5L2qx7kvEAL0AVrS9fWAlxaX7pGiAPYSqvu9Hu1fg1xSbpa0osl/YykN+dUE1AqLF0DsFOtQvxqdz+94fP/5e7fyV4z/Zoc6wJKg6VrAHaq1XPiIxs/cfe3bPiUV2ABuoSlawB2otUj8c+a2a9v3mhmvyHpkXxKAsppdHhQt9ywlwAH0LZWj8TfLum/m9kvS/p8tu3FkgbFhUsAACjUliHu7k9JermZvUrrlx39G3f/29wrAwAAW2prnXgW2gQ3AAAJafcCKAAAIDGEOAAAQRHiAAAERYgDABAUIQ4AQFCEOAAAQRHiAAAERYgDABAUIQ4AQFCEOAAAQRHiAAAERYgDABAUIQ4AQFCEOAAAQRHiAAAERYgDmYWlFZ06fUELSytFlwIAbdlVdAFACo6fPKMjM3MaqFS0Wqvp6PSEpibHii4LALbEI3GU3sLSio7MzOnSak0XVy7r0mpN987M8YgcQPIIcZTe/OKyBipXHgoDlYrmF5cLqggA2kOIo/TGR4a0WqtdsW21VtP4yFBBFQFAewhxlN7o8KCOTk9o90BFewZ3afdARUenJzQ6PFh0aQCwJRrbAElTk2M6dHCf5heXNT4yRIAjSQtLK/yN4gqEOJAZHR7kjhHJYgUFGuF0OgAkjhUUaIYQB4DEsYICzRDiAJA4VlCgGUIcABLHCgo0Q2MbAATACgo0QogjCSyd6dzmfZjqPk21rghYQYHNCHEUjqUzndu8D+988bgePDGf3D5lroHu4jlxFIqlM51rtA8//Jknk9unzDXQfYQ4CsXSmc412oebpbBPmWug+whxFIqlM51rtA83S2GfMtdA9xHiKBRLZzrXaB++8WU3JrdPmWug+8zdi66hpWq16rOzs0WXgRzRsdw5utOB/mFmJ9y92up2dKcjCSyd6dzmfZjqPk21LiAiTqcDABAUIQ4AQFCEOAAAQRHiAAAERYgDABAUIQ4AQFCEOAAAQRHiAAAERYgDABAUIQ4AQFCEOAAAQRHiAAAERYgDABAUIQ4AQFCEOAAAQRHiAAAERYgDABAUIQ4AQFCEOBDcwtKKTp2+oIWllaJLAdBju4ouAMDOHT95Rkdm5jRQqWi1VtPR6QlNTY4VXRaAHuGROBDUwtKKjszM6dJqTRdXLuvSak33zszxiBwoEUIcCGp+cVkDlSsP4YFKRfOLywVVBKDXCHEgqPGRIa3WaldsW63VND4yVFBFAHqNEAeCGh0e1NHpCe0eqGjP4C7tHqjo6PSERocHiy4NQI/k2thmZnslfVDSCyW5pF+T9BVJD0g6IOkJSXe6+2KedQD9ampyTIcO7tP84rLGR4YIcKBk8n4k/l5Jn3D3H5d0i6THJN0n6WF3v1nSw9nnAHZodHhQt9ywlwAHSii3EDezZ0t6paQPSZK7f9/dL0i6Q9Kx7GbHJL02rxoAAOhneT4Sf66k85L+q5k9amYfNLNrJF3n7mclKXt/baNvNrN7zGzWzGbPnz+fY5kAAMSUZ4jvknSrpPe5+4skfU/bOHXu7ve7e9Xdq/v378+rRgAAwsozxOclzbv7Z7PPP6Z6qJ8zs+slKXv/VI41AADQt3ILcXf/v5JOm9kLsk23SfqSpIckHc62HZZ0PK8aAADoZ3m/dvpvS/qImV0t6RuS3qT6Pw4Pmtndkp6U9Iaca0AAC0srLJNKFHOTL/YvOpFriLv7SUnVBl+6Lc/fi1i4iEe6mJt8sX/RKV6xDYXiIh7pYm7yxf5FNxDiKBQX8UgXc5Mv9i+6gRBHobiIR7qYm3yxf9ENhDgKxUU80sXc5Iv9i24wdy+6hpaq1arPzs4WXQZyRIduupibfLF/0YiZnXD3Ro3hV8h7iRnQltHhQe7AEsXc5Iv9i05wOh0AgKAIcQAAgiLEAQAIihAHACAoQhwAgKAIcQAAgiLEAQAIihAHACAoQhwAgKAIcQAAgiLEAQAIihAHOrSwtKJTpy9oYWml6FIAlAwXQAE6cPzkGR2ZmdNApaLVWk1Hpyc0NTlWdFkASoJH4sAOLSyt6MjMnC6t1nRx5bIurdZ078wcj8gB9AwhDuzQ/OKyBipXHkIDlYrmF5cLqghA2RDiwA6NjwxptVa7YttqrabxkaGCKgJQNoQ4sEOjw4M6Oj2h3QMV7Rncpd0DFR2dntDo8GDRpQEoCRrbgA5MTY7p0MF9ml9c1vjIEAEOoKcIcaBDo8ODhDeAQnA6HQCAoAhxAACCIsQBAAiKEAcAIChCHACAoAhxAACCIsQBAAiKEAcAIChCHACAoAhxAACCIsQBAAiKEAcAIChCHACAoAhxAACCIsQBAAiKEAcAIChCHACAoAhxAACCIsQBAAiKEAcAIChCHACAoAhxAACCIsQBAAiKEAcAIChCHACAoAhxAACCIsQBAAiKEAcAIChCHACAoAhxAACCIsQBAAiKEAcAIChCHACAoAhxAACCIsQBAAiKEAcAIChCHACAoAhxAACCIsSRtIWlFZ06fUELSytFlwIAydlVdAFAM8dPntGRmTkNVCpardV0dHpCU5NjRZcFAMngkTiStLC0oiMzc7q0WtPFlcu6tFrTvTNzPCIHgA0IcSRpfnFZA5Ur/zwHKhXNLy4XVBEApIcQR5LGR4a0WqtdsW21VtP4yFBBFQFAeghxJGl0eFBHpye0e6CiPYO7tHugoqPTExodHiy6NABIRq6NbWb2hKSLkp6RdNndq2b2HEkPSDog6QlJd7r7Yp51IKapyTEdOrhP84vLGh8ZIsABYJNePBL/WXefdPdq9vl9kh5295slPZx9DjQ0OjyoW27YS4ADQANFnE6/Q9Kx7ONjkl5bQA0AAISXd4i7pE+a2Qkzuyfbdp27n5Wk7P21jb7RzO4xs1kzmz1//nzOZQIAEE/eL/ZyyN2/ZWbXSvqUmX253W909/sl3S9J1WrV8yoQAICocn0k7u7fyt4/Jenjkl4i6ZyZXS9J2fun8qwBAIB+lVuIm9k1ZrZn7WNJPyfpi5IeknQ4u9lhScfzqgEAgH6W5+n06yR93MzWfs9fuPsnzOxzkh40s7slPSnpDTnWAABA38otxN39G5JuabB9QdJtef1eAADKgldsAwAgKEIcAICgCHEAAIIixAEACIoQBwAgKEIcAICgCHEAAIIixAEACIoQBwAgKEIcAICgCHEAAIIixAEACIoQBwAgKEIcAICgCHEAAIIixAEACIoQBwAgKEIcAICgCHEAAIIixAEACIoQBwAgKEIcAICgCHEAAIIixAEACIoQBwAgKEIcAICgCHEAAIIixAEACIoQBwAgKEIcAICgCHEAQFsWllZ06vQFLSytFF0KMruKLgAAkL7jJ8/oyMycBioVrdZqOjo9oanJsaLLKj0eiQMAtrSwtKIjM3O6tFrTxZXLurRa070zczwiTwAhDgDY0vzisgYqV8bFQKWi+cXlgirCGkIcALCl8ZEhrdZqV2xbrdU0PjJUUEVYQ4gDALY0Ojyoo9MT2j1Q0Z7BXdo9UNHR6QmNDg8WXVrp0dgGAGhpanJMhw7u0/zissZHhgjwRBDiAIC2jA4PEt6J4XQ6AABBEeIAAARFiAMAEBQhDgBAUIQ4AABBEeIAAARFiAMAEBQhDgBAUIQ4AABBEeIAAARFiAMAEBQhDgBAUIQ4AABBEeIAAARFiAMAEJS5e9E1tGRm5yV9cxvfsk/St3Mqp5cYRzr6YQwS40hNP4yjH8YgpTeOH3P3/a1uFCLEt8vMZt29WnQdnWIc6eiHMUiMIzX9MI5+GIMUdxycTgcAIChCHACAoPo1xO8vuoAuYRzp6IcxSIwjNf0wjn4YgxR0HH35nDgAAGXQr4/EAQDoe4Q4AABBhQxxM/szM3vKzL64YdtzzOxTZva17P1Itt3M7D+b2eNmNmdmtxZX+bomY/iPZvblrM6Pm9nebPsBM1s2s5PZ2/uLq/xKTcbxDjM7s6He12z42u9lc/EVM/sXxVT9w5qM44ENY3jCzE5m25OcDzO7wcw+bWaPmdk/mNnbsu3Rjo1m4wh1fGwxjjDHxxZjiHZs7DazR8zsVDaOd2bbbzKzz2bHxgNmdnW2fTD7/PHs6weKrH9L7h7uTdIrJd0q6Ysbth2VdF/28X2S3p19/BpJ/0OSSXqppM8WXf8WY/g5Sbuyj9+9YQwHNt4upbcm43iHpH/X4LY/KemUpEFJN0n6uqSrih5Ds3Fs+vp7JP1ByvMh6XpJt2Yf75H01WyfRzs2mo0j1PGxxTjCHB/NxrDpNhGODZM0nH08IOmz2d/8g5Luyra/X9JvZh//W0nvzz6+S9IDRY+h2VvIR+Lu/veSvrNp8x2SjmUfH5P02g3bP+x1n5G018yu702lzTUag7t/0t0vZ59+RtJ4zwvbpiZz0cwdkv7S3Vfc/R8lPS7pJbkVtw1bjcPMTNKdkj7a06K2yd3Puvvns48vSnpM0pjiHRsNxxHt+NhiPppJ7vhoNYZAx4a7+1L26UD25pJeJelj2fbNx8baMfMxSbdlY01OyBBv4jp3PyvV//AkXZttH5N0esPt5rX1gZSKX1P9UdKam8zsUTP7OzN7RVFFbcNbstOef7Z2+lZx5+IVks65+9fBwJxlAAAD1klEQVQ2bEt6PrLTfy9S/RFH2GNj0zg2CnV8NBhHuOOjyVyEOTbM7KrstP9Tkj6l+pmOCxv+Mdy4v38wF9nXvytptLcVt6efQryZRv89Jb2uzsx+X9JlSR/JNp2VdKO7v0jS70r6CzN7dlH1teF9kp4naVL12t+TbQ83F5lf0pWPNJKeDzMbljQj6Xfc/f9tddMG25KZj2bjiHZ8NBhHuONji7+pMMeGuz/j7pOqn8F5iaSfaHSz7H2yc7FZP4X4ubVTgdn7p7Lt85Ju2HC7cUnf6nFtbTOzw5J+XtKvePaETHZ6bSH7+ITq/0E+v7gqt+bu57IDpibpA1o/JRhqLiTJzHZJ+kVJD6xtS3k+zGxA9Tvbj7j7X2ebwx0bTcYR7vhoNI5ox8cWcxHq2Fjj7hck/U/VnxPfm41DunJ//2Ausq//iNp/2rCn+inEH5J0OPv4sKTjG7a/0epeKum7a6cWU2Nm/1LSEUlT7v70hu37zeyq7OPnSrpZ0jeKqbK1Tc+rvk7SWsf3Q5Luyjo/b1J9HI/0ur5tul3Sl919fm1DqvORPWf3IUmPufsfb/hSqGOj2TiiHR9bjCPM8bHF35QU69jYb+urGYZUr/0xSZ+W9PrsZpuPjbVj5vWS/nbtn8bkFN1Zt5M31U/fnJW0qvp/THer/nzFw5K+lr1/jq93Jf6p6v8RfkFStej6txjD46o/D3Mye1vrjpyW9A+qd65+XtIvFF1/i3H8ebav51Q/GK7fcPvfz+biK5JeXXT9W40j2/7fJL15022TnA9JP636Kb+5DX9Drwl4bDQbR6jjY4txhDk+mo0h+1qkY2NC0qPZOL6o9W7656r+j9Ljkv5K0mC2fXf2+ePZ159b9BiavfGyqwAABNVPp9MBACgVQhwAgKAIcQAAgiLEAQAIihAHACCoXa1vAqBfmNnacjNJ+ieSnpF0Pvv8aXd/eSGFAdgRlpgBJWVm75C05O5/VHQtAHaG0+kAJElmtpS9/5ns4hUPmtlXzexdZvYrVr8e8xfM7HnZ7fab2YyZfS57O1TsCIDyIcQBNHKLpLdJ+meSflXS8939JZI+KOm3s9u8V9KfuPtPqf5KXR8solCgzHhOHEAjn/PsddTN7OuSPplt/4Kkn80+vl3ST264zPKzzWyP1687DaAHCHEAjaxs+Li24fOa1u83KpJe5u7LvSwMwDpOpwPYqU9KesvaJ2Y2WWAtQCkR4gB26q2SqmY2Z2ZfkvTmogsCyoYlZgAABMUjcQAAgiLEAQAIihAHACAoQhwAgKAIcQAAgiLEAQAIihAHACCo/w9FgtTdDFDa0QAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAewAAAHfCAYAAACSxOtjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3X90HWd95/GPrMt1QBY0cK7Z7Sktv9pHu+niNJQ6aYG4FaBEzSpduqasAS+QlDpLmtIkq2KtuyhtqmTVxAWXFnfBgXqLTxvRAKZHQWEFmMAJyYEm2YWsvqQhh/4gEBEcsKMmtzfW/nE1iXx15/6Q7sw8z8z7dU5OrNH98Tzz3JmPZu73melbXl4WAADw26asGwAAANojsAEACACBDQBAAAhsAAACQGADABAAAhsAgACUsm5AK4uLJ7qec3bmmc/S8eNLSTQnNXnog0Q/fJOHfuShDxL98ImPfahUBvuaLc/dEXap1J91EzYsD32Q6Idv8tCPPPRBoh8+CakPuQtsAADyiMAGACAABDYAAAEgsAEACACBDQBAAAhsAAACQGADABAAAhsAgAAQ2AAABIDABgAgAAQ2AAABILABAAgAgQ0AQAAIbKAD1VpV185NqlqrZt0UAAVFYANtVGtVXXJktw4c269LjuwmtAFkgsAGWqjWqtp5cKfmFmYlSXMLs4Q2gEwQ2ECM6Mj66L1HT1tOaAPIAoENNBGFdXRk3YjQBpA2AhtoYnp+KjasI3MLs5qen0qpRQCKjsAOFFXLyRofntDI0GjLx4wMjWp8eCKlFgEoOgI7QFQtJ69cKuvQrsOxoT0yNKpDuw6rXCqn3DIARUVgB6bxu1W+S01OFNpj28ZOW05YA8gCgR2QuEIoQjs55VJZM3tmnjrSJqwBZIXADgRVy9mJjrSvOP9KwhpAZgjsQFC1nK1yqax9I5OENYDMENiByGvVMtXuANAZAjsQeaxaptodADpHYAckLrRDDmuq3QGgMwR2YBpDOw9hHSG0ASAegR2gkKuWqXYHgPUhsAMVatUy1e4AsD4ENlKV12p3AEgagR2Y0KdB5bHaHUA++ba/JbADkpdpUHmqdgeQTz7ubwnsQORtGlQeqt0B5JOv+1sCOwB5nQYVcrU7gHzyeX9LYHsu79OgQq12B5A/vu9vCWzPMQ0KANLh+/6WwPZcUadBtavO9K16Myush/BUa1XtvWUvY+Yh3/e3BLbnijgNql11po/Vm1lgPYQnGrPrb72eMfOQ7/tbAjsARZoG1a4609fqzbSxHsLDmIXB5/0tgR2IIkyDaledefLxk95Wb6bJ5ypWNMeYhcXX/S2BHZA8T4PqpDpz+41ne1u9mRbfq1ixFmMWJh/3twR2YPI6DaqT6szFxx5u+fsiVMv7XsWKtRizcPm2vyWw4YVOqjMrA1tb/j6P1fKNfK9ixVqMGXqFwIYXOqnOvPOqe7yt3kyL71WsWIsxQ68Q2PBGu+rMLWds8bZ6M00+V7GiOcYMvUBgwyvtqjN9rd5MG+shPIwZNqp/cnIy6zbEWlqqTnb7nIGBzVpaCrvaMg99kNbfj/5N/brorDHVTtU0ffH+NTu0dr/vNV/Ho9v14Gs/uhF6H6IxK5+xSX8w+ofBh3Xo4yH52YeBgc3XNFvet7y8nHZbOra4eKLrxlUqg1pcPJFEc1KThz5I9MM3eehHHvog0Q+f+NiHSmWwr9lyTokDABAAAhsAgAAQ2PAad6MC4Ku0908ENrzF3agA+CqL/ROBDS9xZyMAvspq/0Rgwzs+39mIU/RAsWW5fyKw4RWf72zEKXqg2LLePxHY8IqvdzbiFD2ArPdPBDa84uOdjXw+RQ8gPVnvnwhseMW3OxtVa1XtPLjTy1P0ANKV9f4pscB2zm12zh1xzn3ZOXebc+4nnXPnOufudM59yTn3nqTeG2Hz6c5G0/NTOnrv0ZaPyeIUPYBsZLl/SvII+9clnTSzcyX9pqT3SzooaZekV0ra7pw7J8H3R8B8ubPR+PCExraNtXxM2qfoAWQrq/1TkoH9byXdKklmZpJeIWmzmT1gZsuS5iQNJ/j+CFy0UVxx/pWZ3YawXCprZs+MN6foAfghi/1TYnfrcs69Q9J2SZeu/P9Lkv7WzF6x8vu3S3qxme2Le41a7cnlUqk/kfYB3Yi+y159enxs25hm9swQ1gB6rendukoJvuFNkv6NpM+pHtb3ShpY9ftBSY+2eoHjx5e6flMfb5XWrTz0QcpXP35w/An96a/epCeeqFeLjwyN6k9/9Sb94PgTkp7IuoltVWtVvf+OG3T5eVd39AdGtVbV9PyUxocnvPqDJE+fKfrhBx/7UKkMNl2e5CnxV0j6opntkPRxSd+QVHXOvcQ51ydpRNLtCb4/0FM+nKJfj2ha2vW3Xt9RRTsXiAH8lGRg3y/pMufcHZJ+X9KVkvZI+qikuyTdbWZ3Jvj+QM+VS2XtG5kMLqw7veALF4gB/JXYKXEz+56k1zQs/rakc5N6TwBPa3fBl8azBN0+HkC6uHAKkEPdXvM462skA2iPwAZyqNtrHmd9jWQA7RHYQA51e83jrK+RDKA9AhtooVqrau8te1M/FbzR+253e83jrK+RDKA9AhuI0e10qF6/70anVXV7zWOfruEOYC0CG2giq+lNvX7fbq957Ms13AGsRWADDbK6/3VS7xuF8LsvfHdH4RvqBWKAvCOwgVWymt6U9PuWS2Vd9/rrOg7f0C4QAxQBgQ2sktX0JqZVAWiHwAZW6WR604ue92K96/yrU39fplWtz0Yr7tN+XSAOgQ2s0m56U2Vgqx585Ju67OZLe7qjZlpVMpK6kQk3SEEWCGygQVx4Vga2avGxhyUl810206p6K6lKf26QgqwQ2EATjeG5OqwjaYQ2Yb0+SVXcZzWDAJAIbCBWuVTWB97wIb1060vXhHUkydBmWtX6JFVxzw1SkDUCG2jhvcdu0N89/HctH5NE9TbTqtYvqYp7KvmRNQIbaGF8eEJj28ZaPobqbb8kVXFPJT+yRmB7JqubTaC5cqmsmT0zVG8HJKmKeyr5kTUC2yNZ3WwCrUU76te5C05b/jp3ATtoTyVVcU8lP7JEYHuCqSL+W27zM/ySVMU9lfzICoHtAaaK+C0an8/Yp09b/hn7NOPjuaQq7qnkRxYI7IwxVcRv1VpVOw/uZHwCllTFPZX8SBuBnTGmivhten5KR+892vIxjA+ANBDYGWOqiN+Y1gXAFwR2xpgq4jemdQHwBYHtAaaK+I3xAeADAtsTTBXxG+MDIGsEtkeiUHj3he8mDDzEVB4AWSKwPVMulXXd668jDDzFVB4AWSGwAQAIAIHtuWqtqmvnJrkwBwAUHIHtsegqaAeO7edqWgBQcAS2p7gZCABgNQLbQ9wMBADQiMD2DDebAAA0Q2B7hptNAACaIbA9w80mkFdFm/FQtP4ieQS2Z7jZBPKoaDMeitZfpIPA9hA3m0CeFG3GQ9H6i/QQ2J7iZhPIg6LNeChaf5EuAttj3GwCIYsLr0jeQqxo/UX6CGzPcbMJhGp6fio2vCJ5mvFQtP4ifQQ2gESMD0/EFk9G8jTjoWj9RfoIbCDHspxaFFc8GelVXYYv06fS6i+Ki8AGcsqHqUVJz3jwoY+rMcMDSSKwgRxqNrVo58GdXoR2r8Pat+lTzPBAUghsIGfiqpWP3ns08yPtXs148H36FDM8kAQCG8gRn6cW9WrGg899XI0ZHug1AhvIkSJMLSpCH4FmCGzkii8Vw1kpwtSiIvQRaIbARm74VjGchSJMLSpCH4FmCGzkgq8Vw1mIC7SxbWO5CTKmT6GICGwEz/eK4Sw0m1o0s2cmV0HG9CkUDYGNoIVSMZyFIkwtKkIfgQiBjaBRMdxaEaYWFaGPgERgI3ChVQzHVbF3Wt1e9Cp4iXWA4iKwEbSQKobjqtg7rW6nCp51gGIjsBG8ECqG46rYTz5+sqPqdqrg6+tg58GdhV4HKDYCG7ngc8Vwqyr27Tee3ba6nSr4p9fB0XuPnra8SOsAILCRGz5WDLerYl987OGmy+OOwOMel+fAYiYAUEdgI1d8qxjupIo9ztzCrHZ++OLCV8EzEwCoI7CBBHVSxR5nZGhUM2/7ZFBV8EkIbSYAkBQCG17Ky9SddlXslYGtTZdH38FvOWNLMFXwSQlpJgCQJAIb3snb1J1WVex3XnVP2+r2EKrgkxatg7FtY6ctL9I6AAhseCWv05fiqtgbj6DjAsjnKvi0lEtlzeyZKfQ6QLH1T05OZt2GWEtL1clunzMwsFlLS2Hv3PPQB6n7fsRVAz/wvfv19Ye+povOGlP/pv5eN7OtXo1H/6Z+XXTWmGqnapq+eP9TQRO3vNPnp92PLD178Fn6xRddsO514Is8jIWUj3742IeBgc3XNFvet7y8nHZbOra4eKLrxlUqg1pcPJFEc1KThz5I3fWj3dQdKbsjqiKOh6/y0AeJfvjExz5UKoN9zZZzShxeYOoOALRGYMMLTN0BgNYIbKSi3TQtpu74Ly9T7bpV1H7DP6WkXtg59wxJfy7phZKelPTrkmqSPiJpWdLXJL3TzE4l1Qb4YfX30/bdhdjgjUK78btswjp7nY5h3hS13/BTkkfYo5JKZvbzkn5P0h9I2i9pn5m9SlKfpIsTfH94oNtpWkxf8k9ep9q1U9R+w19JBvY3JJWcc5skPVvSv0h6uaRjK7+/VdJrEnx/ZGy9d5ny8SYeRVXUO4UVtd/wW5KBfVL10+ELkj4o6YCkPjOLpmqdkPScBN8fGWq8d3GjTkLbp5t4FFFR75JV1H7Df4l9hy3ptyXNmdle59wLJH1W0uq976CkR1u9wJlnPkulUvcXyqhUBrt+jm9C78PeW/auuXdxo7mFWb3/jht03euvS6lV6xf6eES66cfeW/Z2NNUu7TFMeizS6ncRP1O+CqUPSQb2cdVPg0vS9yU9Q9LdzrkdZvZ5SRdK+lzLFzi+1PWb+jgJvlu97EO1VtX0/JTGhydSPVq9/Lyrdd+372sZ2iNDo7r8vKu9H688fKak7vtx+XlX6+4H/0/bi9m84xVX6Lf+4qpUPmNpjEWn/d7IZ3c9/chqW24lD9uGj32I+wMiyVPifyTpHOfc7aofXU9Ieqeka5xzd6h+tP2xBN+/8LK8iUbjdZ8bUUzmv06m2n3gDR/SZTdfmpsbtUh+TjHM2w1xsD5cmtRDvehDs+/h0t7RVCqDevAfHtL2G8/W4mMPP718YKvuvOoebTljSyrt2Kg8fKak9fcj7rMUhXWan7E0xyLJbWijl+315Q/ePGwbPvaBS5MWiC8VrtVaVZfdfOlpYS1Ji489rMtuvpSjhEA0m2rXLKylfBVk+TDF0JdtGX4gsHPGlwrXjVaJwy+rp9rFhXUkT2Ob5RRDX7Zl+IPAzhlfbqIxPT/VUZU4N/MIRzTV7r3HbvDiM5aWrKYY+rItwx8Eds74chON8eEJjW0by7wd6D1fPmN5x3pGIwI7Z3ypcC16lXiebxjhy2cs71jPaERg51Dchp72Bu5LO9JWhCk4RR3btLGesRqBnVM+VLj61I60FOmGEUUb26ywnhHpn5yczLoNsZaWqpPdPmdgYLOWlsLeOfaqD/2b+nXRWWOqnapp+uL9qW/gUT+ybsdGdToecVW9D3zvfn39oa/porPG1L+p+0vt9koS20baY5uH7Vvqvh++bkN5GA8f+zAwsPmaZsu5cIqH8tAHqVj9aDcFR8r+yCgP45GHPkj0wyc+9oELpwAJYgoOgKQR2EAPMAUHocvzzIa8ILCBHmAKDkJWhJkNeUBgAz3CFByEqEgzG0JHYAM9xBQchISbi4SFwAZ6LMsbRgCd4uYi4SGwgQRkdcMIoFPMbAgPgY1UdFqB2vg4Kle7w/rqnbyvS2Y2hIfARuI6rUBtfNzJx09SudoFKn17pwjrkpkN4SGwkahOK1CbPW77jWdTudohKn17p0jrkpkNYSGwkZhOK1DjHrf42MMtn4c6Kn17p4jrkpkN4SCwkYhqraqdB3e2rUCNTnu3K35pfF4ed5zrQaVv7xR5XTKzIQwENhIxPT+lo/cebfmYuYVZ7fzwxR2H9ernUblaR6Vv7xR9XTKzwX8ENhIxPjyhsW1jLR8zMjSqmbd9sm2larPnUblaR6Vv77Au4TsCG4kol8qa2TPTtgJ1yxlbWlaqxj2Po4A6Kn17h3UJ3xHYSEynFahxj6sMbG35PNRR6ds7rEv4jMBGojqtQG32uDuvuofK1Q5R6ds7rEv4qn9ycjLrNsRaWqpOdvucgYHNWloKu4ozD32Qnu5H/6Z+XXTWmGqnapq+eH/sjq/xcc8sP7Oj5yUtlPFot55D6UcrafWh08/seuVhLKR89MPHPgwMbL6m2fK+5eXltNvSscXFE103rlIZ1OLiiSSak5o89EGiH77JQz/y0AeJfvjExz5UKoN9zZZzShwAgAAQ2AAABIDABgAgAAQ2AAABILABAAgAgQ0AQAAIbAAAAkBgAwAQgEIFdrVW1bVzkz2/n21Sr7sRPrYJazFOycl63Wb9/sifwgR2dHP6A8f29/Qm9Em9bt7ahLUYp+RkvW6zfn/kUyECO9p4opvTzy3M9mQjSup189YmrMU4JSfrdZv1+yO/ch/YjRtPZKMbUVKvuxE+tglrMU7JyXrdZv3+yLdcB3bcxhNZ70aU1OtuhI9twlqMU3KyXrdZvz/yL9eBPT0/FbvxROYWZjU9P+XF626Ej23CWoxTcrJet1m/P/Iv14E9Pjzx1E3o44wMjWp8eMKL190IH9uEtRin5GS9brN+f+RfrgO7XCrr0K7DsRvRyNCoDu063PXN6du97oue+2J94A0f6vlN7zfSpte6C9bVV/RWrz6TcVOGsphK5Mv0pWjdvs5d0PT3693eu33/Xu9vgEiuA1uK34g2uvHEvW5lYKse/P43ddnNl6a+A2u1w2h6N3RkYqOfybgpQ1lMJfJx+tJyk2VphWVS+xtAKkBgS2s3ol5tPI2vWxnYqsXHHpaUXYFJ1KbXNhxl3Gaf9maHivV/JuOmDJ18/GTqU4l8m74Utecz9unTlr8u5bNLSe1vgEIEtvT0RnTF+Vf2dOMpl8r6wBs+pBc978VPhXUkyx1YsyPqrHeoOF23n8lWU4a233h2qlOJfJu+1KpCu9kRd9KS2t+g2AoT2FJ9I9o3MtnTjadaq+qymy/Vg498s+nvs7pow20NRxlZtQetdfqZbDdlqPGPxUgS4+3b9KV27flMRmeXktjfoNgKFdhJ8G0qh2/tQW90Mq5xej3evn3GfGsPkBQCe4PSnsrRriKXqSWd8aWyOdKLcY3T6/H27TPmW3uApBDYG5TmVI5OKnKZWtKeb5XNvRjXysDWpsuTGG/fPmO+tQdICoHdA2lM5eimIpepJfF8rWze6LjeedU9qY63b58x39oDJIHA7pEkp3KspyKXqSVrhVLZvJ5x3XLGltTH27fPmG/tAXqtf3JyMus2xFpaqk52+5yBgc1aWsrmaKl/U78uOmtMtVM1TV+8f907itV9aFcB+8D37tfXH/qaLjprTP2b+hNpz3plORaNNrIek+hHEuPabryT6Efan7F2fcj6M98pn7aNjchDP3zsw8DA5muaLSewe6x/U79e/dIda3ay3Vjdh+s+8/s68tXDLR//wPfuV+1UTa9+6Y5E2rNeWY/FahtZj0n0I6lxbTXeSY1Hmp+xTvqQ5We+Uz5tGxuRh3742Ie4wOaUuOfyUgEbVUGffPxkJtXZvq3HLGYX7L1lb+YFdkCIfJlVQmB7Lg8VsKuroLffeHYm1dm+rccsZhdcf+v1XlTFAyHxaVZJx4HtnBtwzr3MOdfnnBtIslE4XcgVsI3f1WZ5rXXf1qNvswsAnM637aejwHbODUu6V9InJT1f0recc69LsmE4XYgVsL5dwlLybz36NrsAQJ2P20+nR9hTkl4p6VEz+46kV0v6w8RahaZCuqFAtVbVzoM7O7pkZFah7ct6TKI9Pv6xBITC1+2n08DetBLUkiQzuy+h9qCNUG4oMD0/paP3Hu3osVlc59m39djr9nB9bWD9fN1+Og3sf3TOXSRp2Tn3I865/ybp7xNsFwI3PjyhsW1jHT02hCr30PhWFQ+ExNftp9PA/g1Jb5L0AknflHS2pHck1SiEr1wqa2bPTEcfeh9OS+eNb1XxQEh83X46Cmwze9jM/pOZVczsuWa208weSrpxCJuvH/qi8K0qHgiJj9tPqdUvnXMPSlqO+72ZvbjnLUKuRB/6qICjMrBVi489TGikpHH9s96Bzvm2/bQMbEk7JPVJ+u+qnwr/iKSa6qfHX5Rkw5Af0Yd+en5K7zr/ar332A0aH54gNFISrf/333GDLj/vatY70IXV+6+s91t9y8uxB9BPcc59xcx+tmHZV83s5Ym1TNLi4on2jWtQqQxqcfFEEs1JTR76INEP3+ShH3nog0Q/fOJjHyqVwb5myzstOutzzv1S9INz7kLVj7QBAEAKOg3sSyW91zm36Jx7RNK1kt6WXLMAP/lyEwAAxdPuO2xJkpndLellzrnnSVo2s+8n2yzAP6uvfmTfXaB4C0CqOgps59y5kvZK2qL66fF+ST9hZi9s8Zy3Snrryo9nqD53e4ek96l+Ov02M2t6z0/AN3E3ASC0AaSl01PiN0n6hOoB/yeS/lHSx1s9wcw+YmY7zGyHpK9KukLSQUm7VL8u+Xbn3DnrbDeQGh9vAgCgeDoN7CfM7MOSPi/puKTdkkY6eaJz7mclnSXpLyVtNrMHzGxZ0pyk4a5bDKSo3U1MCG0AaenolLikx51zz5Vkks41s8+unBbvxISkayQ9W9IPVy0/IanlhVfOPPNZKpU6fZunVSqDXT/HN3nogxR+P/besrftTUzmFmb1/jtu0HWvvy6lVq1f6OMh5aMPEv3wSSh96DSwb5T0V5JeL+ku59ybJH2l3ZOccz8iacjMPuece7ak1WtlUNKjrZ5//PhSh817mo9z6rqVhz5I+ejH5eddrfu+fV/L0B4ZGtXl513tfV/zMB556INEP3ziYx/i/oDo9JT4P0t6nZmdkPSzkt4s6S0dPO/Vkv63JJnZDyVVnXMvcc71qX5K/fYO3x/IRLubmPTqUoVMFwPQTqeBPb3yvbPM7DEzu9vMTnXwPKf6JU0jeyR9VNJdku42szu7ai2QgaRvAhAVtR04tp/vwwHE6vSU+APOuZsk3an60bYkycwOt3qSmf1hw89flnRut40EspbUTQCYLgagU50eYT+i+k1Atqs+lzr6DyiMKLSvOP/KRMI6QuU5gGbaBrZz7jJJR83sbZJ+WtIvSnqVpKmE2wZ4p1wqa9/IZGJhHSG0ATRqGdjOub2SflXS11cWbdbTVyvbm2jLgBybnp+KDevI3MKspuf5uxhAXbsj7N2SfsXMvrHy8ykz+5bqVyzbkWTDgDwbH56IrTyPjAyNanx4IqUWAfBdu8B+0sxOrvr5Wkkys5rqFz4BsA5xleeRXhW1AciPdoG9yTn31AxuM/trSXLOPUdSJ9O6AMRIeroYgHxpF9gflXR45SplkiTn3BbVbwbyF0k2DCiCxtAmrAHEaRfY10talPRt59xdzrk7JT0k6btmtj/x1gEF0OvpYgDyqeWFU8zsSUnvcM5dI+nnVhZ/xcz+IfGWAQUSTRcDgDgdXenMzP5Jbe5/DQAAktPplc4AAECGCGwAAAJAYAMAEAACGwCAABDYAAAEgMAGACAABDYAAAEgsAEACACBDQBAAAhsAAACQGADABAAAhsAgAAQ2AAABIDABiRVa1VdOzepaq2adVMAoCkCG4VXrVV1yZHdOnBsvy45spvQBuAlAhuFFoX13MKsJGluYZbQBuAlAhuF1RjWEUIbgI8IbBRSXFhHCG0AviGwUUjT81OxYR2ZW5jV9PxUSi0CgNYIbBTS+PCERoZGWz5mZGhU48MTKbUIaI2ZDCCwUUjlUlmHdh2ODe2RoVEd2nVY5VI55ZYBazGTARKBjQKLC23CGj5hJgMiBDYKrTG0CWv4hJkMWI3ARuFFoX3F+VcS1vAGMxnQiMAGVA/tfSOThDW8wUwGNCKwAcBDzGRAIwIbmWKqSm80rkcf16uPbfIZMxnQiMBGZpiq0huN6/Hk4ye9W6+M9fowkwGrEdjIBFNVeqPZetx+49lerVfGemOYyYAIgY3UMVWlN+LW4+JjD5/2c5brlbHuDWYyQCKwkTKmqvRGu/XYaG5hVjsP7kx1vTLWvcVMBhDYSBVTVXqjk/XY6Oi9R1Ndr4w10FsENlLFVJXe6GQ9NhrbNpbqemWsgd4isJEqpqr0Rrv12GhkaFQze2ZSXa+MNdBbBDZSx1SV3ohbj5WBraf9nOV6ZayB3iGwkQmmqvRGs/V451X3eLVeGWugN/onJyezbkOspaXqZLfPGRjYrKWlsKtO89AHqX0/+jf166KzxlQ7VdP0xfu93YH7Ph6N6/GZ5Wc2Xa9Z9qNXY+37WHSKfvjDxz4MDGy+ptnyvuXl5bTb0rHFxRNdN65SGdTi4okkmpOaPPRBoh++yUM/8tAHiX74xMc+VCqDfc2Wc0ocAIAAENgAAASAwAYAIAAENgAAASCwAQAIAIENAEAACGwAAAJAYAMAEAACGwCAABDYAAAEgMAGACAABDYAAAEgsAEACACBDQBAAAhsIGDVWlXXzk2qWvPrfr4Aeo/ABgJVrVV1yZHdOnBsvy45spvQBnKOwAYCFIX13MKsJGluYZbQBnKOwAYC0xjWEUIbyDcCGwhIXFhHCG0gvwhsICDT81OxYR2ZW5jV9PxUSi0CkBYCGwjI+PCERoZGWz5mZGhU48MTKbUIQFoIbCAg5VJZh3Ydjg3tkaFRHdp1WOVSOeWWAUhaKckXd87tlTQmqSzpTyUdk/QRScuSvibpnWZ2Ksk2AHkThXbjd9mENZBviR1hO+d2SPp5Sb8g6XxJL5C0X9I+M3uVpD5JFyf1/kCeNR5pE9ZA/iV5SnxE0v+V9HFJn5L0N5JervpRtiTdKuk1Cb4/kGtRaF9x/pWENVAAfcvLy4m8sHPug5J+QtJFkl4k6aikZ5vZv175/S9JeruZvTnuNWq1J5dLpf5E2gfWf+34AAAMqUlEQVQAgKf6mi1M8jvsRyQtmFlVkjnnHlf9tHhkUNKjrV7g+PGlrt+0UhnU4uKJrp/nkzz0QeqsH9VaVdPzUxofnvD2CLFI49HIt/HJ01j800OPeLVu1yMP4+FjHyqVwabLkzwl/kVJFzjn+pxzPyppQNL8ynfbknShpNsTfH94jmth+43xSQ7rFuuRWGCb2d9IulvSXap/h/1OSVdJusY5d4fqleMfS+r94Teuhe03xic51VpVOw/uZN2ia4l9h90Li4snum6cj6c3upWHPkjx/Wh1eU0fq53zPh6NfB6f0MfC53W7HqGPh+RnHyqVwabfYXPhFKSKa2H7jfFJDusWG0VgI1VcC9tvjE9yWLfYKAIbqeJa2H5jfJLDusVGEdhIFdfC9hvjkxzWLTaKwEbq4nZc7LD8wPgkJ1q3Y9vGTlvOukUnCGxkgmth+43xSU65VNbMnhnWLbpGYCMzXAvbb4xPcli3WI9Eb68JtFMulbVvZDLrZiAG45Mc1i26xRE2AAABILABAAgAgQ0AQAAIbAAAAkBgAwAQAAIbAIAAENgAAASAwAYAIAAENrAB1VpV185Ncg9jAIkjsIF1qtaquuTIbh04tl+XHNlNaANIFIENrEMU1nMLs5KkuYVZQhtAoghsoEuNYR0htAEkicAGuhAX1hFCG0BSCGygC9PzU7FhHZlbmNX0/FRKLQJQFAQ20IXx4QmNDI22fMzI0KjGhydSahGAoiCwgS6US2Ud2nU4NrRHhkZ1aNdhlUvllFsGIO8IbKBLcaFNWANIEoENrENjaBPWAJJGYAPrFIX2FedfSVgDSFwp6wYAISuXyto3Mpl1MwAUAEfYAAAEgMAGACAABDYAAAEgsAEACACBDQBAAAhsAAACQGADABAAAhsAgAAQ2AAABIDABgAgAAQ2AAABILABAAgAgQ0AQAAIbAAAAkBgAwAQAAIbAIAAENgAAASAwAYAIAAENgAAASCwAQAIAIENAEAACGwAAAJAYAMAEAACGwCAABDYAAAEgMAGACAABDYAAAEgsAEACACBDQBAAAhsAAACQGADABAAAhsAgAAQ2AAABIDABgAgAAQ2vFStVXXt3KSqtWrWTQEALxDY8E61VtUlR3brwLH9uuTIbkIbAERgwzNRWM8tzEqS5hZmCW0AEIENjzSGdYTQBgACG56IC+sIoQ2g6AhseGF6fio2rCNzC7Oanp9KqUUA4BcCG14YH57QyNBoy8eMDI1qfHgipRYBgF8IbHihXCrr0K7DsaE9MjSqQ7sOq1wqp9wyAPBDKckXd87dLekHKz8+KOnPJL1PUk3SbWZ2TZLvj7BEod34XTZhDQAJHmE7586QJDPbsfLf2yQdlLRL0islbXfOnZPU+yNMjUfahDUA1CV5hL1N0rOcc7etvM+kpM1m9oAkOefmJA1L+tsE24AARaE9PT+l8eEJwhoAJPUtLy8n8sLOuX8n6VxJH5L0k5JulfSomb185fdvl/RiM9sX9xq12pPLpVJ/Iu0DAMBTfc0WJnmE/Q1Jf2dmy5K+4Zz7gaTnrvr9oKRHW73A8eNLXb9ppTKoxcUTXT/PJ3nog0Q/fJOHfuShDxL98ImPfahUBpsuT7JK/O2SbpQk59yPSnqWpMeccy9xzvVJGpF0e4LvDwBAbiR5hH1I0kecc1+UtKx6gJ+S9FFJ/apXid+Z4PsDAJAbiQW2mVVVrwhvdG5S7wkAQF5x4RQAAAJAYAMAEAACGwCAABDYAAAEgMAGACAABDYAAAEgsAEACACBDQBAAAhsAAACQGADABAAAhsAgAAQ2AAABIDABgAgAAQ2AAABILABAAgAgQ0AQAAIbAAAAkBgAwAQAAIbAIAAENgAAASAwAYAIAAENgAAASCwAQAIAIENAEAACGwAAAJAYAMAEAACGwCAABDYAAAEgMAGACAABDYAoK1qrapr5yZVrVWzbkphEdgAgJaqtaouObJbB47t1yVHdhPaGSGwAQCxorCeW5iVJM0tzBLaGSGwAQBNNYZ1hNDOBoENAFgjLqwjcwuz2nlwJ6GdIgIbALDG9PxUbFhHjt57VNPzUym1CAQ2AGCN8eEJjQyNtnzM2LYxjQ9PpNQiENgAgDXKpbIO7TocG9ojQ6Oa2TOjcqmccsuKi8AGADQVF9ojQ6M6tOswYZ0yAhsAEKsxtAnr7BDYAICWotC+4vwrCesMlbJuAADAf+VSWftGJrNuRqFxhA0AQAAIbAAAAkBgAwAQAAIbAIAAENgAAASAwAYAIAAENgAAASCwAQAIAIENAEAACGwAAAJAYAMAEAACGwCAABDYAAAEoG95eTnrNgAAgDY4wgYAIAAENgAAASCwAQAIAIENAEAACGwAAAJAYAMAEIBS1g1YD+fcdkn/w8x2OOdeKukjkpYlfU3SO83slHPuPZJ+WVJN0rvM7K7MGhyjoR9nS/pjSU9KekLSbjP7rnPugKRfkHRi5WkXm9kPsmlxcw39OEfSpyTdv/LrD5jZXwU4Hn8p6V+t/OqFkr5sZm90zh2V9DxJ/yLpn83swmxau5Zz7hmSblK9vZslXSvpPgW0fcT04e8V2LYR049/VGDbRkw/dim8baNf0gclOdU/R2+T1KeAtg0pwMB2zo1Leoukx1YW7Ze0z8w+75w7KOli59y3JJ0vabukF0j6a0mvyKK9cZr0432SftPM7nHO/Yak35F0paRzJI2Y2feyaWlrTfpxjqT9Znbjqseco8DGw8zeuLL8TEmfk/TbKw99qaSzzMzHCxi8WdIjZvYW59zzJN0t6R6FtX0068ODCm/baNaP31N428aafpjZj0vBbRv/XpLM7BeccztUz40+hbVtBHlK/AFJr1/188slHVv5962SXiPplZJuM7NlM/t7SSXnXCXdZrbV2I83mtk9K/8uSXrcObdJ0k9K+p/OuS85596ediM70Gw8ftk59wXn3CHn3KDCHI/INZL+2Mwecs49X9KPSPqUc+6LzrmLUm1hezOSfnfVzzWFt30060OI20bcWIS2bTTrRySYbcPMPiHpHSs//oSk7yq8bSO8wDazv1b9lEukb9VfdCckPUfSsyWtPjUWLfdGYz/M7CFJcs79vKTLJf2RpAHVTwW+WdIFkv6Lc+5l6bc2XpPxuEvSfzWzV0v6pqT3KMDxkCTn3FZJw6qfNpOksqQbJf2K6uH+RyuP8YKZnTSzEytB8DFJ+xTY9tGsDyFuGzFjEdy2EdOP4LYNSTKzmnPuz1X/3HxMgW0bUoCB3cSpVf8elPSopB+u/Ltxudecc78m6aCkXzazRUlLkt5nZktmdkLSZyVty7KNHfi4mX01+rekn1Gg4yHpP0o6YmZPrvz8HUkHzaxmZg+rfprTZda6JpxzL1D9NOX/MrMjCnD7aNKHILeNJv0IcttoNh4KcNuQJDP7z5J+SvXvs5+56ldBbBt5COy7V76TkKQLJd0u6UuSRpxzm5xzPy5pk6ffcz3FOfdm1Y8edpjZN1cW/5SkLzrn+leKP14p6W+zamOH5pxzP7fy72FJX1WA47HiNaqfKlv9882S5JzbIumnJf2/DNrV1Mppydsk/Y6Z3bSyOKjto1kfQtw2YsYiuG0jph9SeNvGW5xze1d+XFL9D9mvhLRtSAEWnTVxlaQPOufKqn9APmZmTzrnbpd0h+p/lLwzywa2s1LBeED1athbnHOSdMzM3uOc+6ikL6t+uvawmX09u5Z25DJJ73fOVVX/q/sdZvbDkMZjFaf6qUtJkpnd6pwbcc59WfUNfsKnjVnShKQzJf2ucy763vG3JB0IaPto7EO/6jv/bymsbaPZWFwp6b2BbRvN+nGhwts2bpH0YefcFyQ9Q9K7VN8egsoO7tYFAEAA8nBKHACA3COwAQAIAIENAEAACGwAAAJAYAMAEIA8TOsC0IZz7k9Uv1FGWfVrPt+38qs/k7RsZgezahuAzjCtCygQ59wLJX3ezF6YcVMAdIkjbKDAnHOTkmRmk86570j6hOp3KvqO6rdVvELSj0l6q5kdc/Xb2X5A9dsoLql+F627s2g7UDR8hw0g8nxJt5rZz0g6Q9J/MLNXSZpU/cpQkvTnksbN7BzV7370l1k0FCgijrABrBZdH/pbkr646t9nrlwj+hWqX+IxevwW59zzzOyRdJsJFA+BDeApZlZd9WOt4df9kh43s7OjBc65H5P0/TTaBhQdp8QBdMTMfiDp/pW7Z8k591pJX8i2VUBxcIQNoBtvknTQOTcuqSrp18yMqSZACpjWBQBAADglDgBAAAhsAAACQGADABAAAhsAgAAQ2AAABIDABgAgAAQ2AAABILABAAjA/wcwlez9V8QDkwAAAABJRU5ErkJggg==\n", "text/plain": [ "
    " ] @@ -1483,7 +1483,23 @@ "# Modify the code if you are behind a proxy server\n", "grades = pd.read_csv('https://openmv.net/file/unlimited-time-test.csv')\n", "\n", - "ax = grades.plot.scatter( x='Time', y='Grade', figsize=(8, 8))" + "ax = grades.plot.scatter(x = 'Time', y = 'Grade', \n", + " figsize = (8, 8),\n", + " \n", + " # These remaining inputs are optional, but\n", + " # specified below so you can explicitly see them\n", + " \n", + " # Size of the dots: change this to get a feeling \n", + " # for the range of values you should use\n", + " s = 50, \n", + " \n", + " # Specify the colour\n", + " c = 'darkgreen',\n", + " \n", + " # The shape of the marker\n", + " # See https://matplotlib.org/3.1.1/api/markers_api.html\n", + " marker = 'D'\n", + " )" ] }, { @@ -1558,10 +1574,10 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "The correlation value is -0.044, essentially zero. So now you get an idea of what a zero correlation means.\n", + "The correlation value is $r=-0.044$, essentially zero. So now you get an idea of what a zero correlation means.\n", "\n", "* The correlation value is symmetrical: a value of -0.044 is the correlation between time and grades, and also the correlation between grades and time.\n", - "* Interesting tip: the $R^2$ value from a regression model is that value squared: in other words, $(-0.044229)^2 = 0.001956$.\n", + "* Interesting tip: the $R^2$ value from a regression model is that value squared: in other words, $R^2 = (-0.044229)^2 = 0.001956$.\n", "\n", "Think of the implication of that: you can calculate the $R^2$ value - *the* value often used to judge how good a linear regression is - without calculating the linear regression model!! Further, it shows that for linear regression it does not matter which variable is on your $x$-axis, or your $y$-axis: the $R^2$ value is the same.\n", "\n", @@ -1673,7 +1689,7 @@ "\n", "##### Confirm your knowledge\n", "\n", - "Visually relate the scatter plots below, with the numeric correlations in the table above.\n" + "Visually relate the scatter plots below, with the numeric correlations in the table above. Get a feeling for what a correlation of $r=0.6$ or in other words $R^2 = 0.36$ is. It is fairly strong! You can see trends and relationships.\n" ] }, { @@ -1705,14 +1721,31 @@ "\n" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Adding more dimensions to your scatter plots\n", + "\n", + "We saw that we can alter the size (`s = ...`), colour (`c = ...`) and shape (`marker = ...`) of the marker to indicate a 3rd, 4th or 5th dimension.\n", + "\n", + "In the plots above you saw you to specify `s`, `c` and `marker` if the all the values are the same. Below you see how to do that if they are different. You specify a vector for `s` and `c`, the same length as the data.\n", + "\n", + "The vector for the size, `s`, is often a function of the variable being plotted. Remember that a doubling of the circle's area is related to the square root of the radius.\n", + "\n", + "The colour, `c` is often a categorical variable. In the example below we use red for \"Yes\" (baffles are present) and black for \"No\". \n", + "\n", + "We consider changing the markers' shape in the next piece of code." + ] + }, { "cell_type": "code", - "execution_count": 98, + "execution_count": 120, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmoAAAH1CAYAAABGCtJ0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xl4TGf/P/D3mUxmyYKIhFhKq40GRWSzr6UoCQ21lLaWorWV0nr6WPpQ3Si1PrqoelRLi6qgaK1ttcFPKbooastCREIymcx6//7wNRUkmclsJ5n367pcl8w5930+Z+5Z3nNWSQghQERERESyo/B2AURERER0bwxqRERERDLFoEZEREQkUwxqRERERDLFoEZEREQkUwxqRERERDLFoCYzy5cvx7///W+75h0yZAi+/PLLe067dOkSGjRoALPZ7MrynHL16lU89dRTiI6OxltvveXRZUdHR+PixYseXWZhYSFGjx6NmJgYjB8/3qPL9gVTp05F48aN0alTJ9tjJb0n3GXz5s0YNmyY0/0YjUZER0ejUaNGWLBggV1tnFnfe70+FyxYgISEBLRu3dotnyGpqal4+OGHER0djf379zvV19SpU+1+nhx14MABREdH4+GHH8aBAwfcsozbbdy4EQMHDnT7csrKntfCu+++i08++aTUvh5//HGkpqY6VU/fvn3x119/OdVHeaL0dgG+5qWXXoJKpcKbb75pe+zgwYMYN24cUlJSMHr0aC9W517r1q1DSEgIjhw5AkmS3LacIUOGIDExEf369bM99ssvv7htecXZvn07rl69itTUVCiVd7/VFi9ejPPnz2PevHker83VLl26hM6dO+PkyZP3XFd3GT58OCZOnOix5d1rPRMTE5GYmOh03yqVCr/88gumTp3qdF/2uPP1mZGRgZUrV2LPnj0IDQ3FpUuX3LLc8PBwp0Oau7Vq1Qq//PJLkR8BVLxr165h06ZN+Pbbb0udd+vWrU4vb9iwYVi0aBEWL17sdF/lAbeoedi0adOwf/9+/PjjjwAAg8GA6dOn45VXXkF4eLiXq3Ov9PR01K9f360hTU7S09NRr149jwYXd7FYLG7tXwgBq9Xq1mVQUXe+PtPS0lClShWEhoZ6uTLvktNeiPJi48aNaN++PTQajUeW17lzZ6SmpuLKlSseWZ63Mah5WEhICKZNm4bp06ejoKAAS5YsQZ06dfDEE08AuLmVZfLkybb5jx49igEDBiA2NhaJiYnFbjK2WCx4++23kZCQgM6dO2Pfvn0l1vHBBx/g0UcfRXR0NHr06FHkl9D58+cxePBgxMTEICEhAS+++GKx/YwfPx6tW7dGTEwMnnrqqWI3R0+dOhWbNm3CihUrEB0djQMHDty16yI1NRXt2rWz/d2pUyesWLECvXr1QkxMDF588UUYDAbb9O+++w5JSUlo3rw5Hn30Uezfvx8LFizA4cOHMWvWLERHR2PWrFkAgAYNGuD8+fMAgLy8PLz88sto0aIFOnbsiGXLltlCwq1dEG+//Tbi4uLQqVOnEp/LM2fOYMiQIYiNjcXjjz+OXbt2AQAWLVqEZcuW4ZtvvkF0dPRdu6f279+P999/3zb91haZvLw8vPrqq2jTpg3atm2LBQsW2ELSxo0bMWDAALzxxhuIjY1F586dceTIEduHZMuWLfHVV18Vec5nzJiBoUOHIjo6GoMHD0ZaWlqR2ocOHYr4+Hg89thj2LZtW5G2M2fOxHPPPYdmzZohNTUVe/fuRe/evdG8eXO0b9++yK/ZwYMHAwDi4uIQHR2NX3755a7X8p27T4YMGYIFCxZgwIABaNq0KS5evFji+jvKarVi2bJl6NixI1q2bImXX34ZeXl5tumHDx+2vbfat2+PjRs3AoDD63nnbqsjR44gOTkZMTExSE5OxpEjR2zThgwZgvfeew8DBgxAdHQ0hg0bhmvXrpVp/W65cOEC+vbti5iYGDz//PPIzc21TSvu/Xnn63Pt2rUYNmwYrly5gujo6Htu1StpbBz5zLiXL774At27d7d9Hp08eRJA8e+v4vro0qUL4uPjMXr0aFy+fBnAvXfb3b7L+Pb3VXx8vN1baTZs2GCruXPnzli7dq1t2q3Pso8//hgtW7ZEmzZtsGHDBtv0nJwcjB49Gs2bN0ffvn1x4cKFYpdjMBgwefJkJCQkIDY2FsnJybh69aptPd59991ix7+k74+SxtPR75P9+/cjLi7O9ve1a9cwatQoxMbGIj4+HoMGDbJ9xnbq1Mm2Ozk2NhbR0dGIjo5Gs2bN0KBBA9uW3D179iApKQmxsbEYMGAA/vjjD1v/arUajRo1sm3wqPAEecW4cePEqFGjRHx8vEhLS7M9vmjRIvHSSy8JIYTIzMwU8fHxYu/evcJisYgffvhBxMfHi+zsbCGEEIMHDxZffPGFEEKIzz77TDz22GMiPT1d5OTkiMGDB4vIyEhhMpnuufxt27aJzMxMYbFYxNatW0XTpk3F5cuXhRBCTJw4USxbtkxYLBZRWFgoDh06VOx6fPnllyIvL08YDAbx+uuvi8TExGLnfeWVV8T8+fOL/fvnn38Wbdu2tf3dsWNHkZycLDIzM0VOTo7o1q2b+Oyzz4QQQhw7dkw0b95c/PDDD8JisYjMzExx+vTpu56XWyIjI8W5c+eEEEJMmTJFjB49WuTl5YmLFy+Krl272ubfsGGDaNiwoVi3bp0wm81izZo1onXr1sJqtd61PkajUTz66KPiv//9rzAYDOLAgQOiWbNm4syZM0KIomN5L/ea/vzzz4vp06cLnU4nrl69KpKTk8Xnn39uqy0qKkqsX79emM1mMX/+fNG+fXvx2muvCYPBIL7//nvRrFkzkZ+fb3t+mzVrJg4ePCgMBoOYPXu2GDBggBBCCJ1OJ9q1ayfWr18vTCaTOHHihIiPjxenTp2ytW3evLk4fPiw7XXw888/iz/++ENYLBbx+++/i5YtW4pvv/1WCCHExYsX73q93bl+d84zePBg0b59e3Hq1ClhMpmE0Wgscf3vdOfr51aft8byyy+/FI8++qi4cOGCyM/PF2PGjBGTJ08WQgiRlpYmmjVrJlJSUoTRaBTXrl0Tv/32mxBCOLyeGzZssD2vOTk5IjY2Vnz11VfCZDKJlJQUERsbK65du2arr3PnzuLs2bNCr9eLwYMHi7lz55a6XsUZPHiwaNOmjfjzzz+FTqcTY8eOLfKcl/T+vHN87nz/3bmuJY2NvZ8Zdy5DiJufRW3atBHHjh0TVqtVnDt3Tly6dKnU99ftz9OBAwdEfHy8OHHihDAYDGLWrFli0KBB91yPW8/b7e/5qKgo8b///U+YTCah1+tt83Xs2FH8+OOP91yXPXv2iPPnzwur1SpSU1NFkyZNxIkTJ2zrGRUVJd577z1hNBrF3r17RZMmTURubq4QQogXX3xRjB8/Xuh0OvHnn3+KNm3a2F5Dd/r888/FqFGjREFBgTCbzeL48eMiLy/Pth7FjX9p3x8ljaej3ycJCQni2LFjtr/nzZsnpk+fLoxGozAajeLQoUO2z9DintN3331XDBo0SBiNRnHixAnRokULcfToUWE2m8XGjRtFx44dhcFgsM0/e/Zs8cYbb9yznoqGW9S8ZMaMGUhNTcULL7yAmjVr3nOer7/+Gu3atUP79u2hUCjQunVrNG7c+J6/br755hs888wziIiIQJUqVTBq1KgSl9+9e3dUr14dCoUCPXr0QN26dfHrr78CAJRKJdLT03HlyhWo1WrExsYW20/fvn0RFBQElUqFcePG4Y8//iiy1cJZQ4YMQfXq1VGlShV07NgRv//+OwBg/fr1SE5ORuvWraFQKFC9enXUr1+/1P4sFgu2bduGl156CUFBQahduzaGDh2KzZs32+apWbMmnnzySfj5+aFPnz7Iysqy/YK93bFjx1BQUICRI0dCpVKhZcuW6NixY5mPwbh69Sr279+PV199FQEBAQgNDcWzzz5bpL/atWsjOTkZfn5+6NGjBzIyMjBmzBioVCq0adMGKpWqyK/zDh06IC4uDiqVChMnTsTRo0eRkZGBvXv3olatWkhOToZSqUSjRo3w2GOPYceOHba2nTt3RkxMDBQKBdRqNRISEtCgQQMoFAo8/PDDePzxx3Hw4MEyrestffr0wUMPPQSlUonr16+Xuv6OSElJwbPPPos6deogMDAQkyZNwrZt22A2m5GSkoJWrVqhZ8+e8Pf3R0hICKKiogDAqfXcu3cv6tati969e0OpVKJnz5544IEHsGfPHts8TzzxBO6//35oNBp069bN9pouq6SkJERGRiIgIAATJkzA9u3bbVtGXPX+LO216chnxp3Wr1+PESNGoEmTJpAkCXXr1kWtWrUcen+lpKQgOTkZjRo1gkqlwqRJk3D06FG7j7MLDw/HkCFDoFQq7d5916FDB9x3332QJAnx8fFo3bo1Dh8+bJuuVCoxZswY+Pv7o3379ggICMDff/8Ni8WCnTt3Yvz48QgICEBkZCT69OlT7HKUSiVyc3Nx/vx5+Pn5oXHjxggKCrJNL278S/r+KG08Hf0+ycvLQ2BgYJGas7KykJ6eDn9/f8TGxpZ4yMu2bduwZcsWLF68GP7+/vjiiy/Qv39/NG3a1PY57O/vj6NHj9raBAYG4saNGyXWVVGU/4Nnyqlq1aohJCQEDz30ULHzpKenY/v27UU+5M1mMxISEu6a98qVK4iIiLD9XVz4u2XTpk1YuXKlbVdYQUEBcnJyAABTpkzBwoUL0bdvX1SuXBlDhw5F37597+rDYrFgwYIF2L59O65duwaF4mbuz8nJQXBwcInLt1dYWJjt/1qt1nZMQkZGBtq3b+9wfzk5OTCZTEWen5o1a9p2kwA3x+b2ZQI3n587XblyBTVq1LCt9736ckR6ejrMZjPatGlje8xqtRYZ19uPH7r1hXJ7vWq1GjqdzvZ3jRo1bP8PDAxE5cqVceXKFaSlpeHXX38t8oVqsViKHBR/+3KBm8F03rx5+Ouvv2AymWA0GtGtW7cyreu9lmHP+jviypUrqFWrlu3vWrVqwWw2Izs7GxkZGbjvvvvu2c6Z9bxy5cpd7707XxN3vqbv9dpyxJ3ve5PJhJycHISEhLjs/Vna2Nj7mXEvxY2FI++vK1euoFGjRra/AwMDUaVKFVy+fBnVq1cvtYbb3yf22rdvH5YuXYpz587BarWisLAQkZGRtulVqlQpcnzqrbG+du0azGaz3Z/XSUlJyMzMxKRJk3Djxg0kJiZi4sSJ8Pf3B1D8+Jf0/VHaeDr6fVKpUqUinzvDhw/HkiVLbGdD9+/fHyNHjrxn299++w2zZs3Cxx9/jKpVqwK4+XrbtGkTPv30U9t8JpOpyDFpOp0OlSpVKrGuioJBTcYiIiKQlJSE119/vdR5w8LCkJGRYfv79v/fKS0tDdOmTcMnn3yC6Oho+Pn5ISkpqUhft5Z5+PBhDB06FHFxcahbt26RflJSUrBr1y6sXLkStWvXRl5eHuLi4iCEsGv9tFotCgsLbX/fa6tVcSIiIko8rqM4ISEh8Pf3R3p6Oh588EEAN58rez7M7xQeHo7MzExYrVbbl0lGRgbq1atnV/s7f2HWqFEDKpUKP//8s8tOQMjMzLT9X6fT4fr16wgPD0dERATi4uKwcuVKu/t66aWXMHjwYHz00UdQq9WYM2eOLdzf69eyPeN7eztXr394eHiRY/LS09OhVCoRGhqKiIgI2xbkOzm6nncuMz09vchjGRkZaNu2rZNrU7w73/e3thA6+/68XWljY+9nxr0U91525P1151gXFBQgNzcX1atXR0BAAICblyO5tSUqKyurSHtHT3AyGo0YP3483n77bXTu3Bn+/v544YUX7Hpuq1atajvL9tZegJI+r/39/TF27FiMHTsWly5dwsiRI3H//ffbzmovbvxL+v64cuVKqeNp7/cJcPMY4HPnzqFJkyYAgKCgIEydOhVTp07FX3/9haeffhqPPPIIWrZsWaTdtWvXMHbsWMyYMQMNGza0PR4REYHRo0fj+eefL3aZZ86cccnZ1uUBd33KWGJiIvbs2YPvv/8eFosFBoMBqampRb58b+nevTtWr16NzMxMXL9+HR988EGx/er1ekiSZPv1smHDhiInAXzzzTe2ZVSuXBmSJBX5VXuLTqeDSqVCSEgI9Ho95s+f79D6RUVFYd++fcjNzUVWVhZWrVpld9u+ffti48aN+Omnn2C1WnH58mWcOXMGwM0tTMVdM83Pzw/dunXDggULkJ+fj7S0NKxcubJMb/gmTZpAq9Xio48+gslkQmpqKnbv3o0ePXrY1T40NBRpaWm2g2zDw8PRunVrvPXWW8jPz4fVasWFCxec2r24b98+HD58GEajEQsXLkTTpk0RERGBDh064Ny5c9i0aRNMJhNMJhN+/fVX23N4LzqdDpUrV4Zarcavv/6KLVu22KZVrVoVCoWiyPMeFRWFQ4cOIT09HXl5eXj//fdLrNXV69+zZ0+sWrUKFy9ehE6nw4IFC9C9e3colUr06tULBw4csO0KzcnJse2CdHQ9b9e+fXucO3cOKSkpMJvN2LZtG06fPo0OHTqUaR1uHQhf0i68zZs34/Tp09Dr9Vi4cCEee+wx+Pn5Of3+vF1pY2PvZ8a99O3bFx9//DFOnDgBIQTOnz+PtLQ0h95fvXr1wsaNG/H777/DaDRi/vz5aNKkCWrXro2qVauievXq+Prrr2GxWLB+/Xqnr6loNBphNBptoWvfvn12H9ju5+eHLl26YMmSJdDr9Th9+nSRk4Du9PPPP+PPP/+ExWJBUFAQlEol/Pz8bNOLG/+Svj9KG09Hvk+Am6/7Q4cO2f7es2cPzp8/DyEEgoKC4Ofnd9frwWw2Y9y4cejVq9ddY9qvXz+sXbsWx44dgxACBQUF2Lt3L/Lz823P/8mTJ9GqVSu7nvPyjkFNxiIiIrBs2TK8//77aNmyJdq3b48VK1bc8zIGTz75JNq0aYOkpCT06dMHXbt2LbbfBx98EMOGDcOAAQPQqlUrnDp1Cs2bN7dNP378OPr164fo6Gg8//zz+Pe//406derc1U/v3r1Rs2ZNtG3bFo8//jiaNWvm0PolJSXh4YcfRqdOnTBs2DC7Aw5wMyS9+eabeOONNxATE4PBgwfbtmQ8/fTT2LFjB+Li4u75a3L69OnQarV49NFHMWjQIPTs2RPJyckO1Q7cvO7Vf//7X+zfvx8tWrTAf/7zH7zzzjt2HSsHwLY7LSEhwXaMyjvvvAOTyYQePXogLi4O48ePv+vXvyN69uyJpUuXIiEhASdPnsTcuXMB3PzFu2LFCmzbtg1t27ZFmzZtMG/ePBiNxmL7mjlzJhYtWoTo6GgsXboU3bt3t03TarUYPXo0Bg4ciNjYWBw9ehStW7dGjx49kJiYiCeeeAIdO3YstV5Xrn9ycjISExMxePBgdO7cGSqVCtOnTwdwc1fOhx9+iJUrVyI+Ph69e/e2nVXm6HreLiQkBMuXL8fKlSuRkJCAjz76CMuXL7f9KHJUZmYmatWqVeIW36SkJEydOhWtW7eG0Wi0XTDb2ffnnUoaG3s/M+6le/fuGD16NF566SU0b94cY8aMwfXr1x16f7Vs2RITJkzAuHHj0KZNG1y8eLHIGeWzZ8/GihUrkJCQgNOnTyM6Otqp5yIoKAjTpk3Diy++iLi4OGzZssWha67NmDEDBQUFaN26NaZOnWo76/9erl69ivHjxyMmJgY9evRAfHx8kR+WxY1/ad8fJY2nI98nt2rYt2+fbQv6+fPnbWeb9+/fHwMHDrzrkJ3MzEwcPnwYq1atsp35GR0djfT0dDzyyCOYPXs2Zs2ahbi4OHTt2tV2VjYA7Nq1C/Hx8WXaE1IeSaIs28GJSPamTp2K6tWre/SCsJ40bdo0bN26FaGhofjuu++8XY7TjEYjWrVqBbPZjBEjRmDs2LFYtmwZqlatigEDBni7PJc4dOgQhg8fDpVKhQULFrh1l7AzfvrpJ4wbNw5GoxEffPABWrRo4e2S7uleF/f2lvnz56Nq1ap49tln3b6sfv36Yc6cOUWOCazIGNSIKqiKHtSIfJ2cghq5D3d9EhEREckUt6gRERERyRS3qBERERHJFIMaERERkUxViAve5uToYLW6bw9uaGgQsrPz3dY/yQvH27dwvH0Hx9q3yHG8FQoJISGBpc94mwoR1KxW4dagdmsZ5Ds43r6F4+07ONa+pSKMN3d9EhEREckUgxoRERGRTDGoEREREckUgxoRERGRTDGoEREREckUgxoRERGRTDGoEREREckUgxoRERGRTFWIC966mtFoxDffbMGqVR8jIyMDFosJgYFBaNmyNUaMGI0HHqjv7RKJiIjIBzCo3aagoAALFszFypUfwmKxQqcreuuJU6f+xOrVq9CkSVNMm/YaWrZs7aVKiYiIyBdw1+f/yc7ORvfunbF8+VLcuHHjrpAGACaTCQZDIQ4dSkX//k9g9epPPF8oERER+QwGNQA6nQ5JSd1w+vQpGAyFdrUpLNRj2rRXsH79OjdXR0RERL6KQQ3Av/41GefPn4PJZHKonV6vx6RJ43Hhwnk3VUZERES+zOeD2vXrudi0aQMMBkOZ2lutFqxY8b6LqyIiIiJiUMO6dZ9Bksr+NBiNRqxe/UmZgx4RERFRcXw+qH344XLo9QVO97Nz53YXVENERET0D58PapcvZzrdh8FgwMWLF1xQDREREdE/fD6oGY1Gp/swmUwoKNC5oBoiIiKif/h8UFOrNU73oVKpEBwc7IJqiIiIiP7h80Ht/vvvd7oPlUqFhx5q4IJqiIiIiP7h80HthRfGIzAwyKk+NBot2rfv6KKKiIiIiG7y+aCWmNjHqfYajRajRo2Bn5+fiyoiIiIiusnng5pGo8HIkc8jICCgTO2VSiUGD37GxVURERERMagBAF5++VXEx7eARqN1qJ1Wq8Vnn32J0NBQN1VGREREvoxBDYCfnx9Wr16HDh062bVlTan0R2BgINas+RItWrTyQIVERETkixjU/o9arcYnn6zBggVL0LjxI9BotHcddxYYGAitNgBDhjyDvXt/Qps27bxULREREfkCpbcLkBOFQoE+ffqiT5+++O23k/jii89w8eIFWCwmBAVVRqtWbdC7d3KZj2cjIiIicgSDWjEaNmyE116bAwAICwtGVlaelysiIiIiX8Ndn0REREQyxaBGREREJFMMakREREQyxWPUKrj09DQcO3YUN25ch0ajQc2atRATEweFghmdiIhI7hjUKiCr1Yr9+/di6dKF+PnnA1Cp1LBaLZAkBYQQCAoKwvPPj8OgQYNRpUqIt8slIiKiYkhCCOHtIpyVnZ0Pq9V9q1GezvrMzc1B//59cOrUn9DpdMXOp9VqIUkSVqz4Hzp37urBCuWvPI03OY/j7Ts41r5FjuOtUEgIDQ1yrI2baiEvuH49F126dMDJkydKDGkAoNfrUVBQgKFDh2DLls0eqpCIiIgcwaBWQQghMHBgX2RkpMFoNNrdrrBQjzFjnsPx47+6sToiIiIqCwa1CiI19Sf89ttJh0LaLYWFhXjnnTluqIqIiIic4bGgZjAYMHPmTHTt2hW9evXC9OnTAQB///03+vfvj8ceewz9+/fHuXPnPFVShbJ06ULo9QVlaiuEwN69u3H58mUXV0VERETO8FhQmzt3LtRqNXbs2IGUlBRMmDABADBz5kwMGjQIO3bswKBBgzBjxgxPlVRhZGVlYc+e3XD2vJDVq1e6qCIiIiJyBY8ENZ1Oh02bNmHChAmQJAkAUK1aNWRnZ+O3335Dz549AQA9e/bEb7/9hmvXrnmirArjjz9+g1qtdqoPg8GA1NSfXFQRERERuYJHrqN28eJFVKlSBUuWLEFqaioCAwMxYcIEaDQaVK9eHX5+fgAAPz8/hIeHIyMjA1WrVvVEaRXCjRs3XNLP9eu5LumHiIiIXMMjQc1sNuPixYto2LAhXnnlFRw7dgyjR4/GwoULXdK/o9ckKYuwsGC3L6OsIiJCoVBITvdTuXIlWa+nJ/F58C0cb9/BsfYtFWG8PRLUatasCaVSadvF2bRpU4SEhECj0eDy5cuwWCzw8/ODxWLBlStXEBER4VD/vn7B26Cg0DKd7Xk7hUKB2rXryno9PUXu402uxfH2HRxr3yLH8ZbtBW+rVq2KhIQE/PjjjwBunumZnZ2NevXqISoqClu2bAEAbNmyBVFRUdzt6aDIyAaoU+c+p/pQq9UYOnSEiyoiZ504cRxjx45Cgwb1ULt2NdSpE4aoqPsxceJY/PnnH94uj1zs4sULmD17JpKSuqNjx9Z4/PEuePHFF/Drr0e9XRoReZnHbiF18eJFvPrqq8jNzYVSqcSLL76I9u3b48yZM5g6dSpu3LiBSpUq4e2338YDDzzgUN++vkUNANat+wxTp75U6h0JihMZ+TB++OGgi6sqn7w53gcPpuLll1/E33+fhdFohMViKTJdqVRCqVSiQYOHMW/eQjRtGu2VOisSb473oUOpeOut13Hw4M8QAjAaDbZpfn5+UKnUqFPnPkye/Ap69072So0VSXn4LCfXkeN4l2WLGu/1aQc5DvadCgsL0bRpA+Tk5DjcNiAgAPPnL8YTT/RzQ2Xlj7fGOyVlE8aOHQW9Xm/X/FqtFitW/A+PPvqYmyur2Lw13p9//ileeeUlFBaWPt5abQD69x+It956FwoFr1NeVuXhs5xcR47jLdtdn+R+Go0Ga9duhFYb4FA7rVaL3r2T0adPXzdVRvbYt28PxoyxP6QBN+/XOnz40zh4MNWNlZE7bNq0AVOn2hfSAECvL8AXX3yO6dOnurkyIpIbBrUKJDo6BuvWbURQUJDtkiclCQgIQHLyk3j33UW269uR5xkMBgwbNsTuL+3b6fV6PPPMAJjNZjdURu6QmZmB8eNfcCiUA0BBQQHWrPkfdu3a6abKiEiOGNQqmBYtWmH37h8xYMBT0Gi0CAgouoXNz88PGo0WjzzSBIsXv493311kV6gj90lJ2QSr1Vrm9oWFBnz3Hb+8y4uVKz+CEGUb74KCArz33rsuroiI5IzHqNlBjvu57ZGfn4f169fhxx9/wLVr2dBERzSUAAAgAElEQVRqA1Cv3v146qmnERXV0NvlyZanx7t9+xb4/fffnOojLi4BW7d+66KKfIsnx9tkMqFhwwdw/fr1MvehVqvx/fcHUa/e/S6szDeU189yKhs5jndZjlHzyHXUyDuCgoLx7LMj8OyzvOyGXJ0/fw5//33W6X6OHTuKrKwshIWFuaAqcpfvv98Hi6XsW08BwGq14osv1uLll//loqqISM6465PIiy5fvgyVSuV0PyqVCllZV1xQEblTZmYGrFZL6TOWwGQy4fz5v11UERHJHYMakRcZDIUu6UeSpDKdjECeVVhY6NTxiLcUFBS4oBoiKg8Y1Ii8qFKlSnDFYaJWqwWVK1d2QUXkTpUrV4ZS6fwRJ6GhoS6ohojKAwY1Ii+qX/8hmEyuuLSGhNq1nbuNGLlfdHSM0+MdGBiEli1bu6giIpI7BjUiLwoKCkKfPslOXSLF31+Fp556Gmq12oWVkTs88EB9PPJIE6f6kCQJPXsmuagiIpI7BjUiLxs1agz8/ct+QoFCIWHEiFEurIjcady4iQgMDCxTW39/FZ5+eihDOZEPYVAj8rKGDRuhRYtWZfry1Wg06NKlG6+pVY506fIY6ta9H/7+/g63DQgIwOjRY9xQFRHJFYMakQx8/PFq3HdfXYcu1aFWq/HQQw2wbNmHbqyMXE2pVGL9+s0ID69u95ZUSZIQGBiIDRs2o0aNCDdXSERywqBGJANBQUH45ptdaNKkmV27xQIDAxEXl4DNm7dDo9F4oEJypWrVqmHXru/RqFFjBAYGlniv3aCgIFSrFoZvvtmNJk2aebBKIpIDBjUimahUqTI2b96OpUs/RExMHDQajS2ESZJk+7tFi1b44IOVWL9+c5mPdSLvq1o1FDt27MHnn29A167doFarUalSJds/jUaDZs2isXDhMhw9+jsefjjK2yUTkRfwXp92kOP9wsh95DLeZ878hT17diEnJwcAULVqVXTq1AX33/+AlyurWOQy3llZWThz5i/cuHEdAQGBqF27Do89dDG5jDV5hhzHm/f6JKpA6td/CPXrP+TtMshDwsLCeK9WIroLd30SERERyRSDGhEREZFMMagRERERyRSPUbsHIQR++ulHrFnzP1y6dBFmsxHBwZXRqlUbPPXUM7whMhEREXkEg9ptzGYzVq36GEuWvIfc3BwUFBTg9pNiDxz4EXPnvomuXbvjpZdeQcOGjbxYLREREVV0DGr/Jz8/H0891Q9Hj/4Cvb7gnvMUFuoBAFu3bsZ33+3A8uUfo3v3xz1ZJhEREfkQHqMGwGg04skne+PIkcPFhrTbWa1W6PV6jBo1DLt27fRAhUREROSLGNQAzJo1HSdPHofBYHCoXWGhHsOHP43LlzPdVBkRERH5Mp8PajqdDqtXfwK9Xl+m9larFZ988rGLqyIiIiJiUMPGjV9Cksr+NBQWFmLFiuUwm80urIqIiIiIQQ3Lly9BQYHOqT7MZjN27frWRRURERER3eTzQe3SpYtO92EwGPH332dcUA0RERHRP3w+qDl6AsG9mExG5OXluaAaIiIion/4fFBTqdRO9+Hvr0JQULALqiEiIiL6h88HtVq1ajndh1qtxv33P+CCaoiIiIj+4fNBbfTosQgICHSqDz8/BTp37uKiioiIiIhu8vmglpz8JISwlrm9Wq3G0KHPwd/f34VVERERETGoISgoCIMGDYFGoy1Tez8/PwwdOsLFVRERERExqAEAXnttDqKioqBWO3ZigVarxQcfrERERE03VUZERES+jEENN3dfrl+/Gc2aRUOrLX3LmiRJ0Gq1WLLkfXTt2t0DFRIREZEvYlD7P8HBlbBx41b8618zUKNGBAID7z7BQK3WQK1Wo1u3Htiy5Vv06tXbC5USERGRr5CEEMLbRTgrOzsfVqvrVkMIge+/34dPP/0EaWlpMJuNCAqqhNat22LIkKEICwtz2bJIfsLCgpGVxQsY+wqOt+/gWPsWOY63QiEhNDTIoTZKN9VSrkmShHbtOqBduw4A5DnYREREVPFx1ycRERGRTDGoEREREckUgxoRERGRTDGoEREREckUgxoRERGRTDGoEREREckUgxoRERGRTDGoEREREckUgxoRERGRTDGoEREREcmUx24h1alTJ6hUKqjVagDA5MmT0bZtWzRo0ACRkZFQKG5mxnfeeQcNGjTwVFlEREREsuXRe30uWrQIkZGRdz2+du1aBAYGerIUIiIiItnjrk8iIiIimZKEEMITC+rUqROCgoIghEBMTAwmTZqESpUqoUGDBmjUqBEsFgvatWuHcePGQaVSeaIkIiIiIlnzWFDLyMhAREQEjEYj5syZA51Oh3nz5tkez8/Px5QpUxAZGYmJEyc61Hd2dj6sVvetRlhYMLKy8tzWP8kLx9u3cLx9B8fat8hxvBUKCaGhQY61cVMtd4mIiAAAqFQqDBo0CEeOHCnyeFBQEPr162d7nIiIiMjXeSSoFRQUIC/vZqoVQmDbtm2IiorC9evXUVhYCAAwm83YsWMHoqKiPFESERERkex55KzP7OxsjBs3DhaLBVarFfXr18fMmTNx9uxZzJgxA5IkwWw2Izo6GhMmTPBESURERESy55GgVqdOHWzatOmux8PDw5GSkuKJEoiIiIjKHV6eg4iIiEimGNSIiIiIZIpBjYiIiEimGNSIiIiIZIpBjYiIiEimGNSIiIiIZIpBjYiIiEimGNSIiIiIZIpBjYiIiEimGNSIiIiIZIpBjYiIiEimGNSIiIiIZIpBjYiIiEimGNSIiIiIZIpBjYiIiEimGNSIiIiIZIpBjYiIiEimGNSIiIiIZIpBjYiIiEimGNSIiIiIZIpBjYiIiEimGNSIiIiIZIpBjYiIiEimGNSIiIiIZIpBjYiIiEimGNSIiIiIZIpBjYiIiEimGNSIiIiIZIpBjYiIiEimGNSIiIiIZIpBjYiIiEimlN4ugIioIjGbzdix4xusWrUCaWlpMBoNqFSpMtq374hhw55D7dp1vF0iEZUjDGpERC5gMpmwaNF8vP/+MphMJuh0+UWm//nn7/jww/8iIaEFZs58HY880tRLlRJRecJdn0RETsrPz0OfPj2waNF85Obm3BXSAMBoNMJgMGD//n3o2bMrtm/f5oVKiai8YVAjInKCyWTCwIHJOHbsKPR6vV1t9Ho9Ro0aih9+2O/m6oiovGNQIyJywrJli/Drr8dgMBgcaqfX6/HMMwPtDndE5JsY1IiIyshisWD58iVlDltWqxVff73RxVURUUXCoEZEVEa7du1EYaFjW9Jup9PpsHjxey6siIgqGgY1IqIy+t//Vt7zxAFHXLp0AWfPnnFRRURU0TCoERGVUVpamtN9+Pv748qVKy6ohogqIgY1IqIyMhqNLuqn7LtPiahiY1AjIiqjKlWqON2HEAKVK1d2QTVEVBExqBERlVHHjp2hVmuc6sNisSAy8mEXVUREFQ2DGhFRGT399DAAoszt/f39MXDgYGi1WtcVRUQVCoMaEVEZhYeHo2PHzpAkqUzt/fz88Nxzo11cFRFVJAxqRERO+Pe/X4NWG+BwO61Wi8TEPnjggQfdUBURVRQMakRETmjQ4GGsWvWZQ7svtVotYmLisGDBEjdWRkQVAYMaEZGT2rfviA0bUhASEoLAwKBi5/P3V0GtViMp6QmsW/cV/P39PVglEZVHSm8XQERUEcTGxuPEidP45pstWLx4Af744w+oVCpI0s17egoBDB78DEaMGIW6det5u1wiKic8FtQ6deoElermr0kAmDx5Mtq2bYujR49ixowZMBgMqFWrFubOnYvQ0FBPlUVE5DL+/v5ITOyDxMQ+SE9Pw+XLmTAYDKhUqTIeeKA+NBrnLuVBRL7Ho1vUFi1ahMjISNvfQghMmTIFb775JmJjY7Fs2TLMmzcPb775pifLIiJyuZo1a6FmzVreLoOIyjmvHqN2/PhxqNVqxMbGAgAGDBiA7du3e7MkIiIiItnw6Ba1yZMnQwiBmJgYTJo0CRkZGahZs6ZtetWqVWG1WpGbm+vQrVlCQ4s/eNdVwsKC3b4Mkg+Ot2/hePsOjrVvqQjj7bGgtmbNGkRERMBoNGLOnDmYNWsWunTp4pK+s7PzYbWW/ergpQkLC0ZWVp7b+id54Xj7Fo637+BY+xY5jrdCITm8ccljQS0iIgIAoFKpMGjQIDz//PN4+umnkZ6ebpvn2rVrkCTJJTc6JqJyyGqF//f74P/Tj1BczYLQaGCtVQeGpD6wuuh4r4KCAmzZ8jX++ON35ObmICIiHHXqPIBevXojMDDQJcsgInIVjwS1goICWCwWBAcHQwiBbdu2ISoqCo0bN0ZhYSEOHz6M2NhYrF27Ft27d/dESUQkI1LeDWg+/R+0/10MKe8GJJ0Ot27KJNRqBL7xHxhbtIZ+/ESY2rYv0zLOnfsb77+/FJ9//ikkSYJOp7NNCwwMxCuvTEK/fgPwwgvjeLcAIpINSQjhvn2G/+fixYsYN24cLBYLrFYr6tevj2nTpiE8PBxHjhzBzJkzi1yeo1q1ag71z12f5Eocb89SXDiPKr17QJF9FZJeX+x8AgC0AdAPfhq62W8BCvvPhdq1ayeGD38aJpMJJpOp2PmUSiX8/f2xfPnH6N79cQfWgsoDvrd9ixzHuyy7Pj0S1NyNQY1ciePtOYqMdIR0ag0pJweS1WpXG6ENQGHfJ5E/byFgx83Qd+/+Ds8++xQKC4sPgXfSarUMaxUQ39u+RY7jXZagxltIEZF3CIHK/ftAun7d7pAGAJK+AOr1X0D9xeelzpuenoZhwwY7FNIAQK/XY/To4Th37m+H2hERuRqDGhF5hX/qT1BcuADJbHa4rUJfgMC5bwCl7BBYseIDmMvQPwCYzSZ88MGyMrUlInIVBjUi8grt0oWQ9AVlbi9dzYYy9edipxuNRqxatQJGo7FM/ZtMJnz22WroSzhujojI3RjUiMjjpJxrUO3dDcmJQ2QlfQG0JWzx2rlzO6wO7FK95zIkBbZu3exUH0REzmBQIyKPU1y6BKFSOdWHJASUf/1Z7PS//z6LwsJCp5ah0+Xj77/POtUHEZEzGNSIyOMknc6uMzbt6qcYOl1+mY9Pu93167lO90FEVFYMakTkcSI4uNQTAezupxjBwZWgVPo71b8kSQgJqepUH0REzmBQIyKPs953H6QyHuR/i/Dzg6lxk2KnR0ZGQqNRO7WMwMBAREY+7FQfRETOYFAjIo8TwZVg6N4LwoG7C9xFpUbhqBeKndypUxeoVM4FNYVCgcce423tiMh7GNSIyCv0Y8YBak2Z21vq1IG5SbNip/v5+WHkyOeh0ZRtGWq1Gs8+OwIqJ096ICJyBoMaEXmFuWk0zI80KdPZn0Krhe7VmaXO9/TTw8octPz9/TF8+MgytSUichUGNSLymuufroM1vDqEv/0H/Vu1ASh4YTyMPXqWOm+1atWwbt1X0GoDHKpLq9VizZovERFR06F2RESuxqBGRF4jqoQgZ+c+WB5qAGtgYMnz+vlBaDQomPIvFLz8qt3LiImJw8aNKahUqRI0Gm2J82o0GgQHB2Pduq/QsmVru5dBROQuDGpE5FWiWjXk7NyL/AVLYGr8CIRWC6tGezOY+atgDQqC0GhR2H8QcnbshX7sBIevwRYTE4eDB49hypSpCAsLR1BQENRqNRQKBdRqNYKCghAaGoqJE6cgNfUYWrRo5aa1JSJyjCSECy5m5GXZ2fmwWt23GmFhwcjKynNb/yQvHG/v8vvtJPwP/gzpei6gUsMaHg5j124QwZVc0r/VasW+fXtw5sxfyMvLQ40a1RAeXgsdOnSGn5+fS5ZB8sT3tm+R43grFBJCQ4McasOgZgc5Dja5D8fbt3C8fQfH2rfIcbzLEtS465OIiIhIphjUiIiIiGSKQY2IiIhIphjUiIiIiGSKQY2IiIhIphjUiIiIiGSKQY2IiIhIphjUiIiIiGSKQY2IiIhIphjUiIiIiGRKWdLEp556yq5O1Go1Pv74Y5cUREREREQ3lRjUjh8/jv/85z8ldiCEwJw5c1xaFBERERGVEtSio6PRp0+fUjvZsmWLywoiIiIioptKPEZt1apVdnXC3Z5ERERErlfiFrXinDlzBn/99Rfq1KmDRo0aubomIiIiIkIZgtqaNWuwdu1aREZG4sSJE+jcuTNefvlld9RGRERE5NNKDWonT54sstVs+/bt+Oqrr6BUKqHT6dCpUycGNSIiIiI3KDWoLViwAPfddx8mTZqEoKAghIeH4+OPP0bjxo2RmpqKunXreqJOIiIiIp9T6gVvP/roI8TGxmLIkCHYtGkTZs6cievXr2PlypW4ceMGFi1a5Ik6iYiIiHyOXceo9ejRA+3atcPChQvx1VdfYfr06XjwwQfdXRsRERGRT7MrqJ08eRIXL15E//79YTKZMGPGDDRr1gzjx4+HRqNxd41EREREPqnUXZ9vv/02XnzxRezcuRNjxozBoUOHsGbNGtSpUwdPPvkkdu7c6Yk6iYiIiHxOqUFt48aN+OqrrzB//nx8+eWX2LhxIyRJwsCBA7Fy5Urs2rXLE3USERER+ZxSg1q9evWwdetWnDt3DikpKbj//vtt00JDQ/H222+7tUAiIiIiX1VqUFu4cCH++OMPzJkzB+np6Xjttdc8UBYRERERlXoyQY0aNTBz5kxP1EJEREREtylxi9qXX35pVyf2zkdERERE9isxqL355psQQsBqtRb7z2KxYO7cuZ6ql4iIiMhnlLjrs6CgAA0bNiyxAyEE1Gq1S4siIiIiolKCmr2X3pAkySXFEBEREdE/SgxqtWrV8lQdRERERHSHUi/PQURERETewaBGREREJFMeD2pLlixBgwYNcOrUKQBAgwYN0KtXLyQlJSEpKQl//vmnp0siIiIikqVSL3jrSidPnsTRo0dRs2bNIo+vXbsWgYGBniyFiIiISPY8tkXNaDRi1qxZmDlzJs8SJSIiIrKDx7aoLVy4EImJiahTp85d04YMGQKLxYJ27dph3LhxUKlUDvUdGhrkqjKLFRYW7PZlkHxwvH0Lx9t3cKx9S0UYb48EtV9++QXHjx/H5MmT75q2d+9eREREID8/H1OmTMHSpUsxceJEh/rPzs6H1SpcVe5dwsKCkZWV57b+SV443r6F4+07ONa+RY7jrVBIDm9cKnHXZ0m3jrr9X2kOHTqEs2fPonPnzujUqRMyMzMxfPhw/PDDD4iIiAAABAUFoV+/fjhy5IhDK0BERERUUZW4Ra1hw4Z2HU/2+++/lzh95MiRGDlypO3vTp06Yfny5ahevToKCwuh0WhgNpuxY8cOREVF2Vk6EZFMWa3w/2E//M6egWQ0wFolBKb2HWGtXsPblRFROWP3LaT27t2LHTt2YNSoUahZsybS09Px4YcfomvXrmVe+NmzZzFjxgxIkgSz2Yzo6GhMmDChzP0REXmTdOM6NJ+sgPb9ZZD0BYDFAslqhVAqIZnNMLbrgILxL8Gc0MLbpRJROSEJIew6uKtLly7YsGEDKlWqZHvs+vXrSE5Oxnfffee2Au3BY9TIlTjevsVV4624cB5VkrpDys6GolB/z3mEJAEaDXSTXoZ+wktOL5Mcw/e2b5HjeLv8GLXb5eXlQa8v+uFTWFiIvDx5PQlERJ4mZWWhSo9HochILzakAYAkBCS9HoHz50K7bLEHKySi8srusz779OmDoUOH4plnnkGNGjWQmZmJ1atXo0+fPu6sj4hI9oKmToLi2jVIdpxcBQCSvgCBb82G4fFesNat597iiKhcszuoTZkyBffddx+2bduGK1euICwsDE899RSefPJJd9ZHRCRrUnY21Du3QzKbHGtosUL70fvQzX7TPYURUYVgd1BTKBQYOHAgBg4c6M56iIjKFc2nqyAkCY7eb0UyGaH5dBV0/54JaDRuqY2Iyr8Sg9r69evt6qRv374uKYaIqLxR7dsNRWFh2RpLgN/fZ2GJaujaooiowigxqH399deldiBJEoMaEfksyZkTqhQK59oTUYVXYlBbvXq1p+ogIiqXRJAT9xq2Cojg8n8vQiJyH7svzwEAOTk52LRpEz766CMAwOXLl5GZmemWwoiIygNTi1YQanWZ2koWMyw865OISmB3UDt48CC6deuGlJQULF26FABw/vx5vPbaa+6qjYhI9gqfGVamdkKpRGG/AUBAgIsrIqKKxO6g9sYbb+C9997DihUroFTe3GPatGlT/Prrr24rjohI7qw1ImBs0w7Cz8+xhkol9KPGuKcoIqow7A5qaWlpaNmyJQDYbtTu7+8Pi8XinsqIiMqJ/HcWQAQHw94b2VkDAlDw3POwPBTp1rqIqPyzO6jVr18f33//fZHHDhw4gMhIftAQkW+z1rkPuV9vh6haFcLfv+R5AwJQOGgICqa95pniiKhcs/uCt1OnTsWoUaPQoUMHFBYWYsaMGdi9ezeWLVvmzvqIiMoFS1RD5Oz7GdrFC6BZ8z9AkiDpdJCEgPBXAX5+MD/8MAomvgxj98e9XS4RlROSEMLerfW4fPkyNm/ejPT0dERERCAxMRE1atRwZ312yc7Oh9Vq92o4LCwsGFlZvNaRr+B4+xa3jLdeD/U3W+D391mgsBAipCqMj3aFJbKBa5dDDuF727fIcbwVCgmhoY5d0sfuLWoAUL16dTz33HMOLYCIyOdotTA80c/bVRBRBVBiUJs+fTpmz54N4OZN2W+dRHCnd955x/WVEREREfm4EoNa7dq1bf+vW7eu24shIiIion+UGNRGjRqFq1evolq1ahg7dqynaiIiIiIi2HF5jscffxybNm3yRC1EREREdJtSTyZYvHgxpk+fjm3btmH27NmoXr26J+oiIiIicqvc3Bzs2vUtsrOvwmQyo0qVKmjZshUeeOBBb5dmU2pQi4+PR0pKChYvXoykpCSMHTsW9evXLzLPrTsWEBEREcndr78exbJli7F1awqUSiVMJiOEEP93xyUrGjd+BOPGTUTXrt1st830Fruvo6bX6zFp0iT8/PPPCAkJ+acDScKuXbvcVqA9eB01ciWOt2/hePsOjrVvudd4W61W/Otfk7F27RoYjcYSb4MZGBiIevUewPr1mxEaGuqSmtx2HbWffvoJ06dPR6NGjfDdd9+5rGAiIiIiTxBCYOTIofj22x3Q6/Wlzq/T6XDq1J949NG22LXre1St6p3sU2pQe/XVV7F//35MmzYN3bp180RNRERERC41b95b+O67HdDrC+xuYzIZceXKFfTv3wc7d+4r9nqy7lTqWZ9GoxFbtmxhSCMiIqJySafTYcmS91BQYH9Iu8VkMuL06b/w/ff73FBZ6UoNavPmzUOVKlU8UQsRERGRy23Y8AUkqdTIU6xbQc8byl41ERERUTlwc2uazqk+fvrpR6Snp7moIvsxqBEREVGFZTAYcOHCeaf7UanUOHr0FxdU5BgGNSIiIqqwcnNzoVKpnO7HarXgxo3rLqjIMQxqREREVGGp1SpYrVan+5EkySWBz1EMakRERFRhVapU2UUXxZcQFhbugn4cw6BGREREFZZCoUD37o9DoXAu8iiVfmjRopWLqrIfgxoRERFVaGPGjIdGoylze7VajeHDR8Hf39+FVdmHQY2IiIgqtOjoGNSsWcuJHiQ888wwl9XjCAY1IiIiqtAkScKHH65CQECgw221Wi1mzXoDNWpEuKGy0jGoERERUYXXqFFjfPbZlwgMtD+sabVajBs3EUOHjnBjZSVjUCMiIiKf0KpVG2zbtgtNmjSDRqOFUqm853xBQUEICwvHggVLMHnyVA9XWRSDGhEREfmMqKiG+O67/di5cy/69x+E4OBgSJIESZKgVqvRunVbfPTRKhw/fgpPPNHP2+VCEkK44uIiXpWdne+ia6TcW1hYMLKy8tzWP8kLx9u3cLx9B8fatzgy3larFVartdgtbK6iUEgIDQ1yqI17KyIiIiKSOYVC4fR11txFnlUREREREYMaERERkVwxqBERERHJFI9RIyIir1Ae+wWaD5dD+cfvkAp0EMHBMMXEQT9iNKwP1Pd2eUSywKBGREQepfpmKwJfnwm/S5cAQyEkq9U2TXniOLSfroLpkabQzXwd5vgEL1ZK5H3c9UlERB4T8M4bqDR6GJR/nYKkLygS0gBAMpkgFRZCdSgVVfomQr1+nZcqJZIHBjUiIvII7bJFCFi6CJJeb9f8UqEewZPGQ7XzGzdXRiRfDGpEROR2irNnEPjW65D0BQ61kwr1CB45DNDp3FQZkbwxqBERkdtpP1oOWCxlbq/ZtMGF1RCVHx4PakuWLEGDBg1w6tQpAMDRo0eRmJiIxx57DMOGDUN2dranSyIiInfS66H5/FNIJlOZmisKdNAumg+U/zseEjnMo0Ht5MmTOHr0KGrWrAkAEEJgypQpmDFjBnbs2IHY2FjMmzfPkyUREZGb+f/0I+Dk7Xn8MtKhuHTRRRURlR8eC2pGoxGzZs3CzJkzIUkSAOD48eNQq9WIjY0FAAwYMADbt2/3VElEROQBiuyrgNW5rWHC3x+Ka9zjQr7HY9dRW7hwIRITE1GnTh3bYxkZGbatawBQtWpVWK1W5ObmokqVKnb37eid6MsiLCzY7csg+eB4+xaOt5tV0gKSc10oJAkhIYGAk2PFsfYtFWG8PRLUfvnlFxw/fhyTJ092S//Z2fmwOvlrrSRhYcHIyspzW/8kLxxv38Lxdj9//wBUkiSnduEIownXoIbVibHiWPsWOY63QiE5vHHJI0Ht0KFDOHv2LDp37gwAyMzMxPDhwzFkyBCkp6fb5rt27RokSXJoaxoREcmbqUVrSE6c8QkA1urVYa1zn4sqIio/PHKM2siRI/HDDz9g9+7d2L17N2rUqIEVK1ZgxIgRKCwsxOHDhwEAa9euRffu3T1REhEReUpAAAqfHAih9C9Tc2tAIArGvghITu4/JSqHvHqvT8/InisAABeZSURBVIVCgXfeeQczZ86EwWBArVq1MHfuXG+WREREbqAf9QI0a9cAZscv0SFBoDD5STdURSR/Xglqu3fvtv2/efPmSElJ8UYZRETkIZb6D0E36WUELpjn0N0JhEaLG8s+AoLcf9IYkRzxzgREROQR+gkvoWDEKAit1q75hUaDvLffhbFHTzdXRiRfDGpEROQZkoSC6f9B3ntLYalbD9aAAIg7jjsTSiWERgNT02a4/vkGGAYO9lKxRPLg1WPUiIjI9xj69IWhdzKUhw9C+8F/ofzzd0gFeoigIJhiYqEf+QIsDR72dplEssCgRkREnidJMMclIC8uwduVEMkad30SERERyRSDGhEREZFMMagRERERyRSPUSMiIioj5S//D9rlS+H//w5Dyr8B+PnBWqkyDN17onDYc7DWruPtEqmcY1AjIiJyhBBQf/E5Aha+C0V6GqTCQkhWq22yIisLfh8sQ8CH/4UpoSV0k/8Fc4uWXiyYyjPu+iQiIrKX0YjgEc8g+JVJUJ7+C4qCgiIh7RbJaIRkMMB//15U6d8bmo/e90KxVBFwixoREZE9LBZUemYQVAe+h6TX29VEAgC9HoGzZwIWMwpHjXFriVTxcIsaERGRHQJfnwnVTz/YHdJup9AXIGjOLPjv2eWGyqgiY1AjIiIqhXTjOrQrPoBUYP8N5e/qo1CPwNkzXFgV+QIGNSIiolKo134GoXD+K1N55jT8fjvpgorIVzCoERERlUQIBCxbCIUTW9NsTCZo31/qfD/kMxjUiIiISuB39jQUubku6Usym6HemuKSvsg3MKgRERGVQMq+BqF03UUSJF0+IITL+qOKjUGNiIioBJKh0LUdWq03/xHZgUGNiIioBKJyZcCVG8BUKsDPz4UdUkXGoEZERFQCy311IRkNruuvbj2X9UUVH4MaERFRCUSVEBi7dHPJ5TmsgYEoGDPBBVWRr2BQIyIiKkXBC+MAjcb5joSAIekJ5/shn8GgRkREVIr/3969B0dZ33sc/+xuyCZLNiEJkAQORaVeAhWNiUkBaQawZGTAoNaGWsEOOhwK2KBwLAfGqqekDowUCojxEm2xLY4IBEicgYPg2EakRHOwHjhauZyGEi6JXHIjye7+zh8cMqTKJZDs/rJ5v2Yy8OS5fR+++yQfnt+zz/rS75Q/pd813apmIiPV9KOHJY+nw+pC+COoAQBwOQ6HzhS9KePpeVWrm4gI+fv/i+rn8xFSaB+CGgAAV8A/eIjO/OFtBTw923VlzfSIVKBvkk4Xvyvjje20+hCeCGoAAFyhlhEjdWrzFgWSkxWIibnkssblkomOVkvaHTq5o0yBlH5BqhLhpOMetQwAQDfgv3WovqrYp8gd2xS9Ypl6fFIuE+mW/H7J4ZCcTjlamnV2wn1qnD5T/luHhrpkdGEENQAA2svlUvPdOWq+O0fOv/+vIv77MzlOn5JcLpn4eLXcmSUT1yvUVSIMENQAALgGgW8NVPO3Boa6DIQp7lEDAACwFEENAADAUgQ1AAAASxHUAAAALEVQAwAAsBRBDQAAwFIENQAAAEsR1AAAACxFUAMAALAUQQ0AAMBSBDUAAABLEdQAAAAsRVADAACwFEENAADAUgQ1AAAASxHUAAAALEVQAwAAsBRBDQAAwFIENQAAAEsR1AAAACwVEawdzZgxQ4cPH5bT6ZTH49HTTz+t1NRUjR49WpGRkXK73ZKkuXPnauTIkcEqCwAAwFpBC2qLFi2S1+uVJG3btk3z58/Xhg0bJEnLly/XTTfdFKxSAAAAuoSgDX2eD2mSVFdXJ4fDEaxdAwAAdEkOY4wJ1s4WLFigsrIyGWP02muv6cYbb9To0aMVExMjY4zS09P15JNPKjY2NlglAQAAWCuoQe284uJilZaW6tVXX1VVVZVSUlLU3NysgoIC1dfX64UXXmjX9mpq6hQIdN5h9Onj1YkTtZ22fdiFfncv9Lv7oNfdi439djodSkyMad86nVTLJU2cOFG7du3SyZMnlZKSIkmKjIzUQw89pE8++SQUJQEAAFgnKEGtvr5eVVVVrdPbt29XXFyc3G63amvPpV1jjN59912lpqYGoyQAAADrBeVdn42NjcrPz1djY6OcTqfi4uJUWFiompoaPf744/L7/QoEAho0aJCeeeaZYJQEAABgvaAEtd69e+vtt9/+xnnFxcXBKAEAAKDL4ZMJAAAALEVQAwAAsBRBDQAAwFIENQAAAEsR1AAAACxFUAMAALAUQQ0AAMBSBDUAAABLEdQAAAAsRVADAACwFEENAADAUgQ1AAAASxHUAAAALEVQAwAAsBRBDQAAwFIENQAAAEsR1AAAACxFUAMAALAUQQ0AAMBSBDUAAABLEdQAAAAsRVADAACwFEENAADAUgQ1AAAASxHUAAAALEVQAwAAsBRBDQAAwFIENQAAAEsR1AAAACxFUAMAALAUQQ0AAMBSBDUAAABLEdQAAAAsRVADAACwFEENAADAUgQ1AAAASxHUAAAALEVQAwAAsBRBDQAAwFIENQAAAEsR1AAAACxFUAMAALAUQQ0AAMBSBDUAAABLRYS6AAAAOpUxUkOD1MMvBRySk2sU6Dp4tQIAwpLz2FF5FhUo8eaB6n3jACkpSb0H9JH3X6cqYk9FqMsDrghBDQAQdqJWv6GEO4fKs3KZnKdOyeHzSc3NcrS0yL1xvXrde49ipz4sNTWFulTgkghqAICwEvW71xXz9Dw5zp6V4xuCmCMQkKOxQZHb/lOxUyZJfn8IqgSuDEENABA2nIcrz4W0xsbLLus426jIj3Yq6g+rg1AZcHWCFtRmzJihe++9VxMnTtRDDz2kffv2SZIOHjyovLw85eTkKC8vT4cOHQpWSQCAMBNV9IoUCFzx8o7GBnmWLz33hgPAQg5jgvPqrK2tldfrlSRt27ZNL774ojZs2KApU6bogQceUG5urjZu3Kh169Zp9er2/e+mpqZOgUDnHUafPl6dOFHbaduHXeh390K/w4jfr8SbviVnbfv6GfD01Ol3NsqXkdlJhSEUbDy3nU6HEhNj2rdOJ9XyNedDmiTV1dXJ4XCopqZGe/fu1fjx4yVJ48eP1969e/XVV18FqywAQJhwfPWVHM3NV7Wu629fdHA1QMcI6nPUFixYoLKyMhlj9Nprr6mqqkpJSUlyuVySJJfLpb59+6qqqkoJCQlXvN32ptOr0aeP9/ILIWzQ7+6FfoeJ5jPS//8+aQ+nCSjW7ZR4HYSdcDi3gxrUCgoKJEnFxcVavHix8vPzO2S7DH2iI9Hv7oV+hxF/D/VubpajnasFXBGqdXvVzOsgrNh4bls99HmhiRMnateuXUpOTtaxY8fk//+3Rvv9fh0/flwpKSmhKAsA0JVFR6t5xPfU3v+2O/x+NY8a0yklAdcqKEGtvr5eVVVVrdPbt29XXFycEhMTlZqaqpKSEklSSUmJUlNT2zXsCQDAeY2z8mV69rzi5U1EhM7m/UjyeDqxKuDqBWXos7GxUfn5+WpsbJTT6VRcXJwKCwvlcDj07LPPat68eVq1apViY2O1aNGiYJQEAAhDLSOz5bv1NvWo+PgbH3b7z0zPGDXMnhuEyoCrE7THc3Qm7lFDR6Lf3Qv9Dj+OulrF3T9BEf+zT46z3/zgW+NyycTE6NT6UvlvHRrkChEMNp7bXeYeNQAAOouJ8erU5i2qn/OUAom9FYiJkXG7pcjIc3+PitbZvB/p5I4PCWmwXlDf9QkAQFC43WrMn6PGWbPV44P35dr/N3ndLtV54tScc49MTNd/bAO6B4IaACB8uVxqGTVGLaPGyNvHqybLhsKAy2HoEwAAwFIENQAAAEsR1AAAACxFUAMAALAUQQ0AAMBSBDUAAABLEdQAAAAsRVADAACwFEENAADAUgQ1AAAASxHUAABfZ4wiNxer15iR6j0wWYmDB8lT8KwcJ78KdWVAt0JQAwB8Tc9n5sv7+HT1+OseORob5Kw+Ic9LKxU/+i45qqtDXR7QbRDUAABtuP76qaJ/97qcDQ1tvu9obpbz+DH1LHg2NIUB3RBBDQDQRvTq16Xm5m+c52hpUdS6tyWfL8hVAd0TQQ0A0Iaz8u9y+P0XX8Dvl6Ox4eLzAXQYghoAoA3/LakyPXpcdL6JipLpGRPEioDui6AGAGij8SePSS7XN84z7ig1PvKo5OTXBxAMnGkAgDYC112vuv94XiY6WuaCQGY8PeUbPEQN//bvIawO6F4iQl0AAMA+Z3/yqHzpGYpetUIR/1UhkxCvxp88pqbc+6XIyFCXB3QbBDUAwDfy3Xqbal96LdRlAN0aQ58AAACWIqgBAABYiqAGAABgKYIaAACApQhqAAAAliKoAQAAWIqgBgAAYCmCGgAAgKUIagAAAJYiqAEAAFiKoAYAAGApghoAAIClCGoAAACWigh1AR3B6XSExT5gD/rdvdDv7oNedy+29ftq6nEYY0wn1AIAAIBrxNAnAACApQhqAAAAliKoAQAAWIqgBgAAYCmCGgAAgKUIagAAAJYiqAEAAFiKoAYAAGApghoAAIClCGoAAACWIqj9k6amJj3zzDMaO3asJkyYoKefflqSdPDgQeXl5SknJ0d5eXk6dOhQaAvFNTt8+LByc3Nbv0aPHq3MzExJ9Dsc7dixQxMnTlRubq4mTJigrVu3SqLX4er999/XfffdpwkTJujhhx9WZWWlJPodDhYtWqTRo0fr5ptv1hdffNH6/Uv1tkv33aCNX/7yl6agoMAEAgFjjDEnTpwwxhgzefJkU1xcbIwxpri42EyePDlkNaJzLFy40Dz33HPGGPodbgKBgMnIyDCff/65McaYffv2mdtvv934/X56HYZOnTplMjMzzYEDB4wx5/o6depUYwzndjjYvXu3OXLkiBk1alTrOW3MpXvblftOULtAXV2dSU9PN3V1dW2+X11dbdLT043P5zPGGOPz+Ux6erqpqakJRZnoBE1NTSYrK8t89tln9DsMBQIBk5mZacrLy40xxvzlL38xY8eOpddhas+ePWbcuHGt0ydPnjQ33XQT/Q4zFwa1S/W2q/c9ItRX9GxSWVmpXr16aeXKldq1a5d69uyp/Px8RUVFKSkpSS6XS5LkcrnUt29fVVVVKSEhIcRVoyNs375dSUlJGjJkiD777DP6HWYcDoeWLVumGTNmyOPxqL6+Xi+//LKqqqrodRi6/vrrVV1drU8//VRDhw7V5s2bJYl+h7FL9dYY06X7zj1qF/D5fKqsrNTgwYO1fv16zZ07V48//rgaGhpCXRo62bp16/TAAw+Eugx0Ep/Pp5dfflmrVq3Sjh079NJLL+mJJ57g3A5TXq9XS5cu1fPPP6/7779fNTU1io2Npd/okriidoF+/fopIiJC48ePlyTddtttio+PV1RUlI4dOya/3y+XyyW/36/jx48rJSUlxBWjIxw7dky7d+/W4sWLJUkpKSn0O8zs27dPx48fV3p6uiQpPT1d0dHRcrvd9DpMDR8+XMOHD5ckVVdXq6ioSP3796ffYepSP7eNMV2671xRu0BCQoKysrJUVlYm6dy7RGpqanTdddcpNTVVJSUlkqSSkhKlpqZ2iUumuLwNGzYoOztb8fHxkqTExET6HWaSk5N19OhRHThwQJK0f/9+VVdXa+DAgfQ6TJ04cUKSFAgE9Otf/1qTJk1S//796XeYutTP7a7+M91hjDGhLsImlZWVmj9/vk6dOqWIiAjNnj1b2dnZ2r9/v+bNm6czZ84oNjZWixYt0g033BDqctEBcnJytGDBAn3ve99r/R79Dj+bNm3Sq6++KofDIUn62c9+prvvvpteh6kFCxbok08+UUtLi0aMGKH58+fL7XbT7zCwcOFCbd26VdXV1YqPj1evXr1UWlp6yd525b4T1AAAACzF0CcAAIClCGoAAACWIqgBAABYiqAGAABgKYIaAACApQhqAGCJNWvWaPDgwUpLS1NlZeU1bau2tlZpaWkaMmSIVq1a1UEVAgg2ghqAa5KWltb6dcstt2jo0KGt05s2bQp1eddkxIgRKi8vD+o+MzMzVVFRoQEDBkiSGhoaNH36dN11110qKipqs+yXX36pWbNmKSsrSxkZGcrNzdXq1atljJHX61VFRYXGjh0b1PoBdCyCGoBrUlFR0frVr18/FRYWtk7fe++9oS7vonw+X5fYx7p165SZman33ntPZWVlOnr0qKRzD/DMy8vT9ddfr5KSEpWXl2vJkiUqLy9Xc3PzNe8XgB0IagA6ld/v14svvqgxY8YoKytLc+bM0ZkzZySdCxuDBw/W2rVrNXLkSGVlZemdd95RRUWFxo8fr4yMDD3//POt21qzZo2mTJmiX/ziF7rjjjs0btw47d69u3X+qVOn9NRTT2nEiBHKzs7WypUrFQgE2qz73HPP6c4779Qrr7yi/fv3a/LkycrMzNR3v/td/fznP1ddXZ2kc59cUFNTo0cffVRpaWlavXq1PvjgA33/+99vc3wXXnV74YUXNGfOHM2ePVtpaWkqLS295PFf6b9fIBBo86ck/eY3v9Hw4cM1Z84c9enTR5L07W9/W8uXL5fb7W5vmwBYiqAGoFMVFRWprKxMf/zjH/XBBx+oR48ebcKX3+/X559/rvfee0+/+tWvtHDhQr3++ut68803tWnTJq1fv1579uxpXb68vFw333yzdu3apWnTpmnmzJmt4Wru3Lnyer3atm2b1q5dq23btmnjxo1t1k1NTdVHH32kqVOnSpJmzJihP//5z9q8ebMOHjyowsJCSdLy5cuVmJiooqIiVVRUaMqUKVd0vFu2bNF9992njz/+WDk5OZc9/sv5wQ9+oJ07d7YGvf79+0uSPvzwQ+Xk5FzxdgB0TQQ1AJ3qrbfe0pw5c5SUlCS3262ZM2fq3Xff1YWfXjdz5kxFRkZqzJgxkqTc3FzFx8erX79+SktL0969e1uXTU5O1o9//GP16NFDEydOVFJSkv70pz/pH//4h8rLyzVv3jxFR0erb9++mjx5skpLS1vXHTBggH74wx/K5XIpKipKgwYN0rBhwxQZGak+ffrokUceaXOF7mpkZmYqOztbTqdTUVFRV3T8lxITE6OioiLt3LlTP/3pTyWdC7e1tbWtV9IAhK+IUBcAIHwZY3T06FFNmzat9cPQJSkQCOjkyZOSJJfLpfj4+NZ5brdbvXv3bp2OiopSQ0ND63RycnKbffTv31/Hjx/XkSNH1NTUpGHDhrXZz8CBAy+67rFjx1RQUKCKigrV19fLGHPN4efCfVzu+BMSEq5qHy6XS16vVydOnLimWgHYj6AGoNM4HA4lJSVpxYoV+s53vvO1+efDWnucv5n+vCNHjqhv375KTk6Wx+PR7t2724Sif67nQosXL5bH41FJSYni4uJUWlqqZcuWXXR5j8ejxsbG1umWlhadPn36ovu43PFfi+HDh2vr1q0aP358h24XgF0Y+gTQqSZNmqQlS5aoqqpKklRTU6Pt27df9faOHj2qNWvWyOfzaePGjaqqqtJdd92lAQMG6Pbbb9fixYtVV1enQCCgQ4cOXfLxGvX19fJ4PIqJidGRI0f0xhtvtJmfmJiow4cPt07fcMMNOn36tHbu3KmWlhatWLGi9c0KwTr+8/Lz81VWVqalS5equrpaknTgwAHNnj1bTU1N17x9AHYgqAHoVI899piGDRumRx55RGlpaZo0aVKbe87aKyMjQ/v27VNmZqYKCwu1cuVKeb1eSdKSJUtUW1ure+65R5mZmXriiSdUU1Nz0W3l5+fr448/VkZGhmbNmvW1Z45Nnz5dS5cuVUZGhn7/+98rISFBCxYs0Ny5c5Wdna3evXu3GbYNxvGfN2jQIL311lv68ssvNW7cOGVkZOjJJ59URkaGIiMjr3n7AOzgMFd6RysAhNiaNWu0ZcsW/fa3vw11KZ1i7dq1KigoUEREhDZs2ND60NurUVtbq1GjRsnn82nGjBmaNm1aB1YKIFi4Rw0ALPHggw/qwQcf7JBteb3eoH+qAoCOx9AnAACApRj6BAAAsBRX1AAAACxFUAMAALAUQQ0AAMBSBDUAAABLEdQAAAAs9X9NNwb/ITIWFQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlwAAAHtCAYAAADMYqD9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3XecHHX9x/HXXku9hAAHihSpXwQJvYUWCIggIir8kN6LgAioKCAIgoqFJiAdQhOU3ou00DukCHwRpArIASHkLuVyd/v7Y+bkSK7fzpXd1/PxyCO3O/P9zmf3uzP73pnZ2Vw+n0eSJEnZKevvAiRJkoqdgUuSJCljBi5JkqSMGbgkSZIyZuCSJEnKmIFLkiQpYwauLgohnBtCeDKEUN7qvvIQwmMhhFNCCOuEEK7vQj9vhhDWaeP+HUMIDxW47G4JIZwXQngjhPCbAve7bAjhhvTvJUIIjxey/w6W2+bjaV3PYBBCGB1CeCDjZeRDCFNDCNuGEB4KIeyYwTL2DyEckv59cAjhFz3sZ6kQwoshhIa21qX55t07hHB7D5ZxXAjh7RDCpSGENUIIr4cQnutpf+0s48QQQm0I4dZC9NdG/xNDCD/Nou9u1NDm9q6HfX03hPBSCKGuEP21s4y6EMJXs+q/u0II00II49u4f2II4T8hhPMzWm4m24A2lvPrEMKePWx7WQjhgxDCOYWuKysGrq77CTACOKbVfccATcCvYozPxhgzf4Fm7CBgkxjjcQXudxkgAMQY34sxjitw/+1p7/H8r55BYgywXh8sZ/MY450Z9r8xMBwgxnh+jPHUnnQSY3wnxrgG8F4hi5vPfsCuMcZ9ge2BB2OMa2ewnL/FGLfPoN+iE2O8Cdi2v+sYQM6IMR7c30X0RozxhBjjFT1suw+QSeDMSkV/FzBYxBjnhBB2BR5LP+HmgEOAdWOMTemnkHNijF8PIVQBvwc2A8qBF4DDY4yfte4zhPBrYDfgY+BfbS03hFAGnAFsAFSny90/xvhYCGFj4PR0GXngdzHGG7rafr75Hkmn3ZXuhbgS2DHG+Gw6/U1gR+Aj4H7gTmB9kjBwdIzxphBCBfAHYDugEXgcOBS4GPhKCOEekhA0LcY4MoRQmdY/gSS4PgUcGWOcmS5vYjptaeCKGOPxbTw/qwLnAIukz8FpMcYr5n88McZH0vnLW9cTY9w6hDCOZLxGpHWcFGO8PYSwN/B9kg8mywDvAhcBhwErAafHGE9L59up1Xz/AfaKMb4XQhgNnAWsBlSmz93PYoyNIYS5wC3A6iSvg7Hp81MFLAycGmM8D7gMGBZCeBFYO31ua2KMH6WPKQ/UAF9Pl1UPjATWBb4B/DLtcxbw0xjjE/M/j+0JIewA/Cp9bDOBo2KMT7cz1oeQvB4uABYHvgS8BfwfsBFJcNkqhDA7rXfRGONhHYzheOA3wL/Tx1YJHDT/a7cLvhxCuBtYIq3ngBjjByGEDdLHMAT4MvCPGON+IYS/AUsCl4QQfps+rvIQwjDgH62em47G9iTgu0ADyfq9d4zx/Q6e5/HA74C3ST4M1AOnAoent2+IMR7ZyfZgIsnrZnng9vn6P4Pk9fWdtKY2t0/pevdUOu+xachp6aO9Mc/Tzno8Xw0Hpo+nCfgvcFiM8dW07mkxxj+l8/3v9vz1pLW29xwemz6+YSTr8k/T7dKJwFdJxrhl/dw9xvh+CGET4Oz0MTxDOzshQgg/BA5On7s5JK/Dl9L6rgG2AhYiee2el7b5Nu2seyGE4/h82/ImcEi6vVgFuJTkg8kr6ePoUDe2UyOA84AVSda1mSQfKmJ6dOUTYOV0npa+K4C/AvOAvdJ6urQ9a3nvSPtp872qZayBR0i2Gy2WBv4ZY9wkhPC1dJmLpO3/HGO8tLPnZSByD1c3xBinAseRvGFfCuwXY/xPG7P+gmSDtHaMcXWST+Jf+DQfQvgOyUqyBjAOGN3OYtcneaPYMMa4CnB52j/ASSQr09rAvsAW3Wzf+rFtkv65eUs46cBywD0xxvXSvs5M7z+EJBCsTvIGWU3yZrs/8HqMcev5+vllWtvq6b8y4I+tpo9M6xoH/DSEsGzrxunG4Fbg7BjjWGAb4LchhA3bezwxxqbW9YQQxpAEmj1ijGuRbLDPCyEsnTbZhGRDOxZYCvgByRvLtsAp6RsgJG9eP06f4+eAP6f3nwE8l47RmsCiwFHptCrgthhjINm4HgBsG2NcE9iZ5M0NYB9gdoxxjbT+jnwd2CV9PpYGftuqzwOBG9MNb6dCCCuTfIL8fvo6PgG4JYQwirbHeuf0+XkixrghyetkFslzexPJWJ0RYzy31TLaHcN0lvVJ3sTWJBmn33al9vmsRPLmPhaYSrLxBvgxcEKMcX1gFWD7EMLaMcadSdbZ3WKMl6fPwd9ijLvN12+bYxtCWAo4guTD2DrAvenj6My6JCF7DeAzkj3o3wLWAg4NISxB5+vz8BjjqjHGn6e3c+khl2VIXgd1dL59mhZj/FrrsJVqb8w7W48JIWwBHE2yPq5O8iZ+cwgh14Xnpb16Wve/DLAlMD4d5+OAX7eaZRNgpxjjyiRh9uD0g/F1wE/S19eDJGFt/r7LSbZx34wxrgtcSLK3tsXCJGM3Hvh1CGG1EMKKtLPupYfQVgPWS8f6TpL3FICrgYvSx3AWybh1RVe2U9sAn8YYN4wxrkQSMA9r1cf0GOMqMcaz09stz8+HJAG1kS5uz1qHrVSH71UxxqfS7dsaJNvBOuCAdPtwPfCLtO1mJO8FG3TxeRlQ3MPVTTHGs9Nj2y/FGO9qZ7btSD7tbBVCgOSF+OF882wJ3NjyKTCEcCnJp7/5l/dECOGXwEEhhOVJVuqWT45/B85NP0ndR/IJsDvte2oeyUYC4HmSDU7LY7oyxjg7vb1z+tjGt9PPNsBxMcZ56XxnAze3mn5L+hj+E0L4MF3OG62mrwQMjTHemM73XkjOzfom0NW9OBuSfPK9OR0rSD6BjU3/fibG+E5a3xvAvTHG5hDC68BQ0kNk6f2vpn9fBLyY/r0dsF4IYb/09vwb9EfS2utCCNsB30o31muQ7KXqrndijG+lf2+VPrb7Wz22ZmAFYHIX+toCuD/G+O+0xgfScVibdsYaIISwSQjhKJJP0l8n2UPRno7G8EHgrRhjy3P5PLB3F+qe330xxtfSvy8heaOB5BP7tumekZVJxqY7z3l7Y/snkuf3+RDCXcBdMcb7u9DfGzHGlj04rwMzYowNwEchhM+AhbuwPj86X59HAYsBa8QY57aqu6PtU3sfuNpbv5+m4/UYkvH8W4yxFiDGODGEcBbJnqfOdPYBkBjjW2mQ2S2EsALJHsDWY/lQ/PwIwwsk25LVgHktYxNjvCaE0HovS0vfTSGE64DHQwh3APeQBMYW58YY88C76Z7UbwCzaX/d247kFIFn02nlwPAQwiIk250r0uU+FkKY1tljT3W6nYoxXh9C+HcI4UdpHeP54nZy/uf5NJJQvXz6+KCL27M2dPpelda+AnAjScB7Jd3jtzxwaavncRhJ2HuynWUNWAaunnmDZIPYnnKSvR13AYQQRpK86OfX+tNdY1sdhRC+RfJJ5zSSAPIKsDtAjPGCEMJtJCv4N4ETQwghxjinK+07kZ+vvqpWfzfEGJvbmK8xvd2y7MXpeC9qy+7lFmUku6lbzG719/z1tNW+rT46Uw68nO7lAJIT+4FaksN8c+ebf147/bQevzKSwyYt/e8UY3w57Xuh+WquS+9fkmTjdyHJm+b1JBu39uTSdlXz3d/6hOJyksDUOgwtRdfPfero+W1vrI8geTO5lCQwVbLguHV1GdD5a6ArWu8VLOPzMXwYmALcTfKGsH43+29zbNM3us2AdUhCyhkhhLtjjEd30l+nr7UurM/zn1A+CXgMmBhC2CANRZ1tn9o7Kb29Me9sPSadp2G++3LpfB1tazqq539CCGuRPB9nkOxRnESrQ2O0/zqaf7zb3A7HGHcPIXydZDx/AexBsvd+/jYt635H61458Pv4+aHHISSH4lt0+r7Qhq68dn5IsqftHJLA+AnQ+qjB/M/zlWktF5GcDgBd3J7Nr733qvnqWwy4i2Rv1qRWy5uR7vlqmW9xYEZbyxnoPKSYjXuAw0IIVemu3ItIzs9o7S5gpxDCQuk8e7TT11Yku2nPA54FdiB5ERKSb/utGWOcSLIiLURy3kyX2neiluQNo2UP1Ze70OY+YNcQwpD0MZ0H7EKy0WgrBN0N/DCEUJnOfyitzpHpgleAeSGE76V1LkFymLazPlrX8ySwYghh07SPNUjOp/tKN+oAmBBCaGlzMHBb+vc9wJEhhFy6Yb2VL+7Gb7EOyXN+CskbxnZpPeVpveWtDr/8b2yAXTuo6X7gGyE5NEgIYVuSgLHAYZMO2m8dQlgubb8FyeGKp2h/rLcGzowxXkmy12QrPn+9tfU66OkYdsfm4fNDxAeTnNe3EMlhoJ+ne9eWJPnU35V1o0WbYxtCWJ3kvJSXY4y/IwkB6xbosXR3fX6W5A32U+DEVnV3tn1qS3tj3pX1+G7gByGEGoAQwj4k57a9xhe3NUuQHDbqrk2BZ2OMp5OEra5s56aQHHLdNl329nwx+JDev2gI4R3g4xjjmSSHUFuP557pfEuTBIq76HjduwfYPySH5iE59HlljPFjktMR9k/brEWyF65QtgYmxhgvASLwbTp+jp4GjgdWCCEckN7X1e3ZF3T2XpWG/juAS2KMV7dqGoHZIYTd0/mWIlm3svgCS+YMXNk4meREyBeAl0g+Jfyk9Qwx+TbYpSQbxKdoP7GfD4wPIUwlOaTyOrBsumE7muScgReAh0hO9n6zG+078nPgxyE5UXsPkg1BZy5I53uO5FyZ90nOZXoJmJMeemj96e0U4AOSw28vk7wZ/7gLywEg/bS+Q1rnFJI3hF/HGB/spGnrej4ieYP/YwhhMsmnuj3aeB478y5wZQjhZZLDJEek9x9OcqLpVJIN7lQ+PzertXvTPiLJc7E0yRvRCiTP49PAP9PDDoeT7J5/HvhaOn0BMcaXSDZu16aP7WRg+/Q8nk6l7Q8hOfdkGsl5Pt+OMc6g/bH+NfCndDxuJdlbt0La5V0k584c02oZPR3DLwgh3Jm+YbZlCskhiWkkz+tRMcZPSULG8+n9vyDZE7RCO320pc2xjTFOJtlj9mwI4VmSc1aOareX7un2+pweDtoXOCQkXxDpdPvUjvbGvNP1OMb4D5Lg+UAI4Z8kh3O3S/eUn03yxYZIcp5eTy6Bcg2waLr+vUSyp2XhEEJ1ew1avfZOTrdz32PBUz+IyZdTTiE5PPgcyXpwQKtZlk3vv5vkywexk3XvYpIvNTyZPhdj+fxQ+S4kwXQqSdh5uQfPRXv+RHIoegrJob/n6eT1nh4t2Ztk+7g8Xd+eza+z96ofkZz/990QwgshuezLi+kh9e+QBNQpJNvJ42P3vzgzIOTy+fn35kvqjpB8S2jHGGNHhwAHtJB+0zF9cxkUQvrN2Rjjs+kn8HdijHf3b1VdF5Jvzy0aY+x0D4ESIblG1rQYY0/Obyy41q/BPl7uRFp9s7NUDbZ1yD1cklo82HJ4ZSAL6YVPSb4Z16KR5DDOYLNzyOjCp8UmhPBdPv+yjpJDe4PqOlSFFEK4jOQUgUHDPVySJEkZcw+XJElSxgxckiRJGTNwSZIkZWxAX/i0tnZmn5xgNmbMcKZPn9UXi9IA4HiXDse6tDjepWOgjnVNTXW7F092DxdQUdGdax1qsHO8S4djXVoc79IxGMfawCVJkpQxA5ckSVLGDFySJEkZM3BJkiRlzMAlSZKUMQOXJElSxgxckiRJGTNwSZIkZazkA1dTUxP5fJ9c0F6SJJWoAf3TPlnI5/Pce+9dXH/935k2bTJ1dfVUVlZQXT2Kddddn7322o/VVhvb32VKkqQiUlKB66677uDPfz6dF198nqampgWmv/zyS9xww3VssME4Tj75d6ywwor9UKUkSSo2JXNI8eqrr+DIIw/jueeeaTNstaivr+P+++9lzz1/wHPPPdOHFUqSpGJVEoHr7rvv4OSTf8Unn3zc5TavvfYvjjjiMN56660MK5MkSaWg6ANXPp/nz38+o1thq0WML3PGGX/IoCpJklRKij5w3XvvPbz44vM9bv/www9SVzezgBVJkqRSU/SB6/rrr6WxsbHH7d99910uvPC8AlYkSZJKTdEHrn/+c2qv+5g6dXIBKpEkSaWqqANXc3Mz9fV1ve6nrq73fUiSpNJV1IErl8tRVlbe637Ky0vqcmWSJKnAij5wjR69UK/7GTVqVAGqkSRJpaqoAxfA+utv0Os+Nt98QgEqkSRJparoA9fee+/PyJEje9x+lVW+zk47/aCAFUmSpFJT9IHra19bhQ033LjH7bfc8htUVHgOlyRJ6rmiD1wAp5xyKiutFLrdbvz4LTj66GMzqEiSJJWSkghcyy67HOeeeyFf+9oqXW4zfvwWXHjhZVRVVWVYmSRJKgUlEbgAVl99Ta6++jp2220vllpq6XbnW3XVr3P44Udx1VV/Z6GFxvRhhZIkqViV1MlJSy65FGeccTZ1dXVceumFvPjiC9TV1TFsWBXDho1g880nsOOOP6C8vPfX7pIkSWpRUoGrxciRIzn88KP+d7umppraWn+gWpIkZaNkDilKkiT1FwOXJElSxgxckiRJGTNwSZIkZawkT5ovFp99NoPLLruEDz/8Lw0Ncxk2bDhrrLEWO+zwPcrKzNKSJA0UBq5B6MUXn+eyyy7m4Ycf4j//efcL03K5HH/5y1lsscWWHHbYEYwaNbqfqpQkSS0MXIPMNddcxSmnnEht7YdtTs/n80yZMpkpUyYzadJDnHvuhaywwop9WqMkSfoijzsNItdf/3eOP/4X7Yat+b3wwnPsv/+efPDB+xlXJkmSOmLgGiRqa2s5+eQT+Oyzz7rV7qWX/snRRx+ZUVWSJKkrDFyDxIUXnsv777/Xo7aPPfYIr7zycoErkiRJXZXpOVwhhGOA7YEq4C/AJGAikAemAYfGGJuzrKEYNDU18cAD9/e4/cyZM5k48WJOPfW0AlYlSZK6KrM9XCGE8cA4YCNgM2Ap4HTglzHGTYAc8J2sll9MHnzwfqZOndyrPp544vECVSNJkrory0OKWwNTgZuA24DbgbVJ9nIB3AVsmeHyi8bbb7/V6z4+++xT8vl8AaqRJEndleUhxUWBZYDtgGWBW4GyGGPLu/5MoMOLRI0ZM5yKivIMS/xcTU11nyynJ4YNK8wwLbroSC+ImhrI463CcqxLi+NdOgbbWGcZuD4GXokxNgAxhDCH5LBii2rg0446mD59Voblfa6mppra2pl9sqyeGDZsVAH6GM7HH9cXoJrBb6CPtwrHsS4tjnfpGKhj3VEIzHJ3x6PAN0MIuRDCEsAI4P703C6AbYBHMlx+0fjGN7bhq19drld9rL76mgWqRoXS2NjI+++/xyuvvMy7777DnDlz+rskSVJGMtvDFWO8PYSwKfA0SbA7FHgDuCiEUAW8DFyf1fKLyfDhwxk/fnMmTvx3j9pXVVWx8867Frgq9dRbb73JxRefz6RJD/Lmm28wZ84cqqqqWHzxL7HJJpux++57sc466/V3mSqQTz+dzkUXnc8jjzzMJ598RGPjPIYNG8Eqq6zKzjvvyqabju/vEiX1gdxAPpG6tnZmnxQ3UHdNtvbSS//k29/+BjNndr/ODTYYxy233EUul8ugssGnv8Z73rx5HH30Udx5561Mnz693fmGDh3Gxhtvylln/YWampo+rLD49Oe6PXfuXI477mjuu+9e3nvvP23OU1VVxdprr8uRR/6M8eO36OMKi89g2JarMAbqWNfUVLf7RusZ1IPEKqusyn77HdTtk96//OUlOOaYEwxb/ayhoYF99tmNq6++vMOwBTBnzmzuu+8edt31++2+UWtgq6urY7fdduKKKy7rcAwbGhp44onHOOywA7n++r/3YYWS+pqBaxA55pjjOeCAgxkyZEiX5l9yySU59dTT2HDDcRlXps4ceeRh3Hvv3d1qM3nyixx00L6e2zXINDU1cfDB+/Lwww91uc2HH37IiScey6RJD2RXmKR+ZeAaRHK5HCeffCqnnPJ71l9/QyorK9ucb8yYMWy33Xe4+OIr2Gabb/VxlZrfCy88xx133Nqjtk899QSXX35JgStSlv7+92u6Ha4hCV1nn31mBhVJGggy/WkfZWOvvfZlzz334YEH7uemm67no49qaWiYy/Dhw1luueXZf/+DWXrpZfq7TKWuuGIis2b1/BInd999JwcddGgBK1KWbr/9lh63ffrpJ3n66SdZb70NCliRpIHAwDVI5XI5JkzYkgkTvFj/QFZXV8fDDz/Yqz6effZpHn/8EcaN26RAVSkrL730z179jNacOXO4+urLDVxSEfKQopShZ555knfeebtXfcydO5fHH3+sQBUpS/fffy91db375lSMsUDVSBpIDFxSht5///2C9DNrlr8SMBj05tDx53041lIxMnBJGaquLsxvfVVWdu2bqepfVVVVve6jvS/DSBrcDFxShlZaaWWGDh3W634WW2yxAlSjrC255FKdz9SJRRbxYrdSMTJwSRkKYWXWW2/9XvXx1a8uxy677F6gipSlHXb4PiuvvEqv+th88wkFqkbSQGLgkjL2zW9u26v2m222OcOHDy9QNcpSZWVlr36iZ9lll2PvvfcrYEWSBgoDl5SxPfbYp8d7PcaMWdg34EHmwAN/yFe+smSP2m6zzXYMG9b7Q9CSBh4Dl5SxIUOG8Nvf/pHFF/9St9oNHTqMn//8WFZd9esZVaYsLLnkUpx88u9YeOFFutVum22+xfHHn5RRVZL6m4FL6gMbb7wJZ555Dssss2yX5l9ooTH88pe/Yt99D8y4MmVhu+2+w+mn/7lLJ9GXl5fz3e/uyEUXXU55eXkfVCepP3ileamPTJjwDa69djkuvPA8Hnroft54498LzLPYYouzySbj2X33PdloI68sP5htu+23WXvtdbnwwvN58MF/MG3a1C9MX3jhRdh4403Zccf/Y+uttyWXy/VTpZL6Qi6fz/d3De2qrZ3ZJ8XV1FRTW9u7q0Nr8BgI4z179myuvPIyXn/9NerrZzF06BAWW2xx9t33QBZddNF+ra2YDISxBmhqauKOO27lnXfeprGxkeHDR7Dtttv1+FwvtW2gjLeyN1DHuqamut1PTu7hkvrBsGHDOPDAQ/q7DPWR8vJytt/+u/1dhqR+5DlckiRJGTNwSZIkZczAJUmSlDEDlyRJUsZK8qT5yZNf4IorJjJt2hTq6+uoqqpkxIiRrLfehhx00KH+ULAkSSqokgpcTz75BGec8QeeeupJZs2qX2D6U089ybXXXs3GG2/GySf/zuAlSZIKomQOKd5xx60cfPA+PPjg/W2GrRa1tR9y003Xscsu3+PVV2MfVihJkopVSQSuJ554jGOO+Rnvvfdel9tMnTqFQw89kI8//jjDyiRJUikoicD1+9//hg8+eL/b7SZPfoHf//6UDCqSJEmlpOgD16OPPsyzzz7d4/aTJj3I7NmzC1iRJEkqNUUfuK655ioaGhp63P6NN/7NxIkXF7AiSZJUaoo+cL344gu97uPpp58qQCWSJKlUFXXgyufz1NX1/tfE6+vrClCNJEkqVUUduAByuVwheilAH5IkqVQVdeDK5XJUV4/qdT+jRlUXoBpJklSqijpwAay99jq97mPDDTcuQCWSJKlUFX3g2n33vRg2bHiP26+44krsscfehStIkiSVnKIPXOussx7rrbd+j9uPHz+BqqqqAlYkSZJKTdEHLoDjjz+JpZf+arfbrbfeBhx77AmFL0iSJJWUkghcY8euwemn/5lll12uy23WXXd9LrzwMkaMGJFhZZIkqRSUROAC2HTT8Vx66VV8+9s7sPDCi7Q739JLL8Oee+7DtdfewBJLfKUPK5QkScWqor8L6Eurrvp1LrnkCt599x0uvvh8pk6dQn19PUOGVDJ8+EjGjduYffc90L1akiSpoEoqcLVYcsmlOPHE3/zvdk1NNbW1vb8ivSRJUltK5pCiJElSfzFwSZIkZczAJUmSlDEDlyRJUsYMXJIkSRkzcEmSJGXMwCVJkpQxA5ckSVLGDFySJEkZM3BJkiRlLNOf9gkhvADMSG++AdwG/BF4J73vVzHGSVnWIEmS1N8yC1whhKEAMcbxre47BTg6xnhDVsuVJEkaaLLcw7U6MDyEcG+6nGOBtYE1QwhHAE8DP48xNmZYgyRJUr/L5fP5TDoOIawGbABcDKwI3AVcAFxPcnjxfGBqjPGc9vpobGzKV1SUZ1KfJElSgeXam5DlHq5XgddijHng1RDCx8A1McZ3AEIItwDf76iD6dNnZVje52pqqqmtndkny1L/c7xLh2NdWhzv0jFQx7qmprrdaVl+S3Ff4DSAEMISwGjgqRDCkun0CcBzGS5fkiRpQMhyD9clwMQQwqNAHtgHGAncGEKYDbwEXJTh8iVJkgaEzAJXjLEB2LWNSfdmtUxJkqSByAufSpIkZczAJUmSlDEDlyRJUsYMXJIkSRkzcEmSJGXMwCVJkpQxA5ckSVLGDFySJEkZM3BJkiRlzMAlSZKUMQOXJElSxgxckiRJGTNwSZIkZczAJUmSlDEDlyRJUsYMXJIkSRkzcEmSJGXMwCVJkpQxA5ckSVLGDFySJEkZM3BJkiRlzMAlSZKUMQOXJElSxgxckiRJGTNwSZIkZczAJUmSlDEDlyRJUsYMXJIkSRkzcEmSJGXMwCVJkpQxA5ckSVLGDFySJEkZM3BJUg81NzeTz+f7uwxJg0BFfxcgSYNFPp/nwQcf4Lrr/srkyZOpr6+jvLyc0aMXYoMNxrHffgeywgor9neZkgYgA5ckdcGjjz7C739/Cs8//yzz5s37wrR3332Hf/5zKtdffy0bbbQpf/jDGSy22GL9VKmkgchDipLUidtvv4VDDtmPp556YoGw1dqMGTO4887b2GWX7/Hmm2/2XYGSBjwDlyR14JlnnuKXv/w5H3zwQZfbTJ06hUMO2Y+6uroMK5M0mBi4JKkD55xzFu+991632z377DOcd97VmzHUAAAgAElEQVTZGVQkaTAycElSO15//TUef/yRHre/7757/RajJMDAJUntuvTSC5kxY0aP20+e/AJ33nlbASuSNFgZuCSpHa+99lqv2jc3N/P8888VqBpJg5mBS5LaMXv2rF73MWtWfQEqkTTYGbgkqR1VVVUDog9Jg5+BS5LaUVPT+4uXfulLSxSgEkmDnYFLktqx/fY7UF5e3uP2Sy21DHvuuU8BK5I0WBm4JKkd3/zmt1h99bV63H6zzcYzYsSIAlYkabAycElSO3K5HDvuuBOVlZXdbrv44ouzzz4HZFCVpMHIwCVJHdh//4PZffe9yeVyXW4zevRoTjjhZFZbbWyGlUkaTAxcktSJU0/9E4ce+mNGjBjZ6bxLLPEV/vCHM9hppx/0QWWSBouK/i5Akga6XC7HCSf8mh12+D6XX34pkyY9wNtvv/WF6auttjpbbDGBAw88lEUXXbQfq5U0EGUauEIILwAtv4vxBnABcBbQCNwbYzwpy+VLUiGNHbs6p512FvX19dxzz53U1tZSWVnJMst8lc03n0BZmQcNJLUts8AVQhgKEGMc3+q+F4HvA/8G7gghrBVjfD6rGiQpCyNGjOB739upv8uQNIhkuYdrdWB4COHedDknAkNijK8DhBDuASYABi5JklTUsgxcs4A/ARcDKwJ3AZ+2mj4TWK6jDsaMGU5FRc8vOtgdNTXVfbIcDQyOd+lwrEuL4106BttYZxm4XgVeizHmgVdDCDOAhVtNr+aLAWwB06f3/odju6Kmppra2pl9siz1P8e7dDjWpcXxLh0Ddaw7CoFZnuG5L3AaQAhhCWA4UB9CWD6EkAO2Bh7JcPmSJEkDQpZ7uC4BJoYQHgXyJAGsGbgaKCf5luJTGS5f0gBT8exTDL3maso+eB/mzoVhw2laemlm73cQzcst3+v+m5qauPHG67jvvnuZMWMG5eVQVTWUsWPX4IADDmbkyMF1CEJS8cjl8/n+rqFdtbUz+6S4gbprUtlwvPvekJtvYMhVV1D19JPk5sxeYHrz6NHMG7cJsw46hMZxG3e7/+bmZk4//Q/cddcdTJs2hba2a0suuRSbbro5xxxzPIsvvniPHocGNtft0jFQx7qmprrdn6QwcDFwB07ZcLz71rDT/8Dws8+krL6u03mbFluc+l+dzNxuXKV97ty5HHzwftxxx61dmn+11cZy7rkXsfLKX+vyMjQ4uG6XjoE61h0FLq/SJykzQy84lxFn/LFLYQug/MP/MuKEY6m89+4uzd/c3Mxhhx3c5bAFMHXqFA45ZH/++9//drmNJPWWgUtSJnK1tQw/+0xyc+d2q135xx8x4tRToKmp03mvueYqbrnlhm7XNm3aVE455YRut5OknjJwScrEsAvPpfzDnu1Fqpg2haobr+t0vttvv6VH/QM8/PAkPv10eo/bS1J3GLgkFV5TE1UP3N/j5jlg6K03dzjPlCmTefLJJ3q8jPfff48LLzyvx+0lqTsMXJIKrnzqFCqmTelVHxWTn4fGxnan33nnbdR38dyw9rzwwnO9ai9JXWXgklRwZe++Q66X34DO1deTmzGj3el1db3/hlJvA5skdZWBS1LhVVb2vo+yMihvfxNVVtb731nN5frmt1olycAlqeCal12OfFVVr/rIV48iP2p0u9NHj25/WleNHj2q131IUlcYuCQVXNOKKzFv7XV71UfD+hsme7nascsuu7PIIov0ahmbbjq+V+0lqasMXJIKL5ejYaute9w8X1XF3P/bpcN5lljiK2y00aY9Xsbyy6/IHnvs0+P2ktQdBi5JmZi974E0Lt+zH6Set856zBu/Rafz7bzzrgwdOqxHy9hyy60YMmRIj9pKUncZuCRlY/hw6k76LU2LLNqtZo3LLc/MU0+DXLs/SfY/W221NQceeDBlHRx6bMtmm23O8cf/ulttJKk3DFySMjPvG9tQ9/vTaVziK12bf+WvMfMvF9HcjR+WPu64EznkkMMZOnRol+bfYostueSSK6jq5Un9ktQdFf1dgKTi1rD9DjQuvwLDL72QqoceoPydtxeYZ15YmXnjJzDr0MPJf+nL3eo/l8txwgm/Zu211+H66//Oo48+zIwZn35hnqqqKtZcc2223nobDjroUCoLcdkKSeqGXL6XFyfMUm3tzD4prqammtra3l9EUYOD492P6uoYNvFiyt5/D+bMgWHDaVwpMHeX3Qtz7S7gzTff4Oqrr+Czzz6jqqqMXK6SzTefwPjxW5DrwmFKDV6u26VjoI51TU11uxsZAxcDd+CUDce7dDjWpcXxLh0Ddaw7ClyewyVJkpQxA5ckSVLGDFySJEkZM3BJkiRlzMAlSZKUMQOXJElSxgxckiRJGTNwSZIkZczAJUmSlDEDlyRJUsYMXJIkSRkzcEmSJGXMwCVJkpQxA5ckSVLGDFySJEkZq2hvQgjh3520zQHNMcblC1uSJElScWk3cAGzgW07mJ4D7ihsOZIkScWno8B1UIzxrY4ahxAOKnA9kiRJRafdwBVjfLT17RDC+sDpwBDgpBjjbfPPI0mSpAW1e9J8CKFqvrtOAL4HfAv4U5ZFSZIkFZOOvqV4Ywhh91a3Pwb2AfYAPsu0KkmSpCLSUeD6NlAVQrg9hPAN4IfAdGAuyV4uSZIkdUFH53DlgUtDCH8FjgIOAn4TY3y+r4qTJEkqBh2dw7VBCOEG4FLgZuBAYM8QwmUhhGX7qkBJkqTBrqPLQlwC7AmMAi6OMY4DjgghLA+clE6TJElSJzoKXM3AssBIYF7LnTHG1zFsSZIkdVlHJ81/HxgHBGD3DuaTJElSBzraw/WNGONRHTUOIRwWYzynwDVJkiQVlY4C189CCB1dbysH/BQwcEmSJHWgo8D1ALB5J+0fLGAtkiRJRamj63Dt05eFSJIkFauOTpqXJElSARi4JEmSMtbROVy9FkJYDHgO2AoYDtwG/CudfF6M8W9ZLl+SJGkgyCxwhRAqgQuA2eldawGnxxhPy2qZkiRJA1GWhxT/BJwPvJfeXhv4Vgjh4RDCJSGE6gyXLUmSNGDk8vl8wTsNIewNLBljPCWE8BBwMLAhMCXG+FwI4ThgTIzxpx3109jYlK+oKC94fZIkSRnItTeh3UOKIYQ3gHbTWIxxuQ4WuC+QDyFsCawBXAFsH2P8IJ1+E3B2RxUDTJ8+q7NZCqKmppra2pl9siz1P8e7dDjWpcXxLh0Ddaxrato/eNfROVzjSZLaCcC/gYlAI7AbyY9atyvGuGnL3632cN0SQvhRjPFpYALJyfSSJElFr6MLn74FEEIYG2Pct9Wk00IIPQlLPwTOCSE0AB8AB/agD0mSpEGnK99SzIUQtogxPgAQQtiGZE9Xl8QYx7e6Oa575UnSwFPx+KMMue1mcjNnQlk5zTU1zNlrX5qXXqa/S5M0QHUlcO0PXB5C+DLJtxrfBPbIsihJGoiG3HgdQ66cSNWzT5ObO/cL04ZedTnzNtqEWUf8hKaxa/RThZIGqk4DV4zxBWBsCGERIB9j/CT7siRpYBl21mkMP/M0yurr2pxePv0Tym+/hcopLzLzj2cyb/MJfVyhpIGso28pPkgb31IMIQAQY9wiu7IkaeAYcvWVDD/jT5TNqu903vK336L66KP49MpraV75a31QnaTBoKM9XCf2VRGSNGA1NzPs8ku6FLZalL/1BsPPP4e6M8/NsDBJg0lH31Kc1PJ3CGEjYDXgUmCDGOPDfVCbJPW7qttupmLKi91v99AD5GZ+Rr56VOGLkjTodPrTPiGEHwOnAEcB1cAFIYQOrxAvScViyN13kmtu7na78vf+w9ArLsugIkmDUVd+S3FvYGugPsb4MbAuyZXkJano5T7p+feEcp98XMBKJA1mXQlcTTHGhla35wBNGdUjSZJUdLoSuCaFEP4EjAgh7ADcCtyfbVmSNDA0L7xwj9vmF1m0gJVIGsy6Erh+BvwLmAzsCdwJeA6XpJLQsM125Mu6sqn8oqavLMmcPfYufEGSBqV2tyIhhC+lfy4J3AX8BDiCZA/XEtmXJkn9r2G77WnswZXjGzbb3G8oSvqfjj62XZz+Pwl4qNW/ltuSVPzKypi9z/40jxjR5SaNX12WWT/8UYZFSRpsOrrw6c4AMcZl+6gWSRqQ5u6yO2Uf1SZXm6+b2eG8Tct8lbo/nkFzWLmPqpM0GHS0h2tyCGGTPqtEkgaw2T86krrT/8zcTTYjP3ToAtObFlmEOdt/lxmXXsm8zfzlM0lf1NEerkOAy0IItwDHxhjn9lFNkjQgzd3h+8zd4ftUPPUEQ265idxnn0FFOc2L1jBnn/1p/sqS/V2ipAGqo5/2uTeEMBY4GXg6hHAY8Far6W/3QX2SNOA0rr8hjetv2N9lSBpEOtrDRYxxVgjheJJvKt4KTAdyQB5YLvvyJEmSBr8OA1cIYTvgHOAeYOkYY8dni0qSJGkB7QauEMJ1wFrAfjFGrywvSZLUQx3t4foAGBtjrO+rYiRJkopRRyfNe9U+SZKkAujwHC5JkqTBaO7cuVx11eVMnTqZWbNmUVlZyZgxY9hppx+w+upr9nk9Bi5JklQ03n//Pc4++0wmTXqAf/3r1QWmX3XVFay//gbssMP32WWX3fusLgOXJEkqCpMnv8CPf3wIL730z3bnmTWrngcfvJ9HH32YF154jlNPPY2yso5+eKcwDFySJGnQe/XVyA9/uD+vvfavLs0/b948Jk68hHwe/vjHMzKuruPfUpQkSRoUfvGLn3Q5bLX2179ewbXXXp1BRV9k4JIkSYPaI49M4umnn+xR23nz5nHzzTcUuKIFGbgkSdKgdu21V9PQ0NDj9k8++QRTpkwuYEULMnBJkqRBq6GhgSeeeKxXfcyaVc/f//7XAlXUNgOXJEkatD799FOmT/+kIP1kycAlSZIGrYaGucybN6/X/RSij44YuCRJ0qA1evRohg8f0et+hg8fXoBq2mfgkiRJg9bIkdWEEHrdz9ixaxSgmvYZuCRJ0qCVy+XYcstv9qqPFVdcid1227NAFbXNwCVJkga1/fc/iKWWWqbH7ceP34KqqqoCVrQgA5ckSRrURowYwR577E1lZWW3266yyqr86EdHZlDVFxm4JEnSoHfEET9h330P6FboWmGFFTnrrL/wpS99OcPKEgYuSZJUFE4++VSOPvrYTg8vVlVVsfHGm3HFFdey+upr9kltFX2yFEmSpD7w4x//hP33P5hLLrmQ++67hxhfYdaseiorK1looYUZN24jfvCD3dh44037tK5cPp/v0wV2R23tzD4prqammtramX2xKA0AjnfpcKxLi+NdOro61vl8nvr6OmbMmEFV1RAWWmihHp3n1Y26cu1Ncw+XJEkqSrlcjpEjqxk5srq/S/EcLkmSpKwZuCRJkjJm4JIkScqYgUuSJCljnjQvSSq4stdfY9glF1D59JPkPp1BjjzNI6tpXGddZu+1H02rje3vEqU+ZeCSJBVM7pNPGPmzH1P18EOUzZjxhWnlQOVL0xhyw3XM23Aj6n73J5qX6fnv30mDiYFLklQQufffY/Seu1A5+YUO5yurr2PIffdQ9u7bfHbhRJpX/lofVSj1H8/hkiT13ty5jDpo307DVmuVr7zMqMMOJDfj0wwLkwYGA5ckqdeGXnEpVU8+3u12lVMmM+y8szOoSBpYMj2kGEJYDHgO2ApoBCYCeWAacGiMsTnL5UuS+kbV3Xf2vO39/2DW0cdBmfsAVLwye3WHECqBC4DZ6V2nA7+MMW4C5IDvZLVsSVLfqXj2Kaqeearn7adMpuq2WwpYkTTwZPlx4k/A+cB76e21gUnp33cBW2a4bElSH6l89hlyc+b0uH0un6filX8WsCJp4MnkkGIIYW+gNsZ4TwjhmPTuXIwxn/49ExjdWT9jxgynoqI8ixIXUFPT/z9sqb7jeJcOx7oPFOCdZESumREFGCvHu3QMtrHO6hyufYF8CGFLYA3gCmCxVtOrgU6/ljJ9+qxsqptPTU01tbUz+2RZ6n+Od+lwrPvGsKYyRvayj3oqmNXLsXK8S8dAHeuOQmAmhxRjjJvGGDeLMY4HXgT2BO4KIYxPZ9kGeCSLZUuS+lbDhuNoHj6ix+3z5eU0jl29gBVJA09ffiXkJ8BJIYQngCrg+j5ctiQpI01j12De+hv0uH3jGmvRsPW2BaxIGngyv9J8uperxWZZL0+S1PcavrU9Qx68v2dtJ2wFuVyBK5IGFi96IknqtTm77M7c8Zt3u13DOusx64c/yqAiaWAxcEmSeq+ykpkXXEbD+ht2ucm8sasz87xLYETPz/+SBgsDlySpIPJjFmbGtTcye+ddaVps8Xbna1p4EeZ853vMuPYmmpdZpg8rlPpP5udwSZJKyIgR1J19PrnaWoZddB6VTz5O7rMZkId8dTXz1l6XOQccTPOSS/V3pVKfMnBJkgouX1PDrGNP6O8ypAHDQ4qSJEkZM3BJkiRlzMAlSZKUMQOXJEmdmTOH3EcfwZw5/V2JBilPmpckqQ1l/3qVYZdcQOVjj1D28cfk5swmP3QYzYsuyrxxmzB7/4NoXmHF/i5Tg4SBS5KkVsriy4z8za+pfOJRymbM+OLEujrKP6ql8pWXGXrD35i34cbUHXcCzeFr/VOsBg0PKUqSlKp49BFG77UrQ+6+Y8GwNZ+yGTMYcvcdjN57NyoefaSPKtRgZeCSJAkonzaF6qMOo+Lfr3erXcXrr1F91GGUTZuaUWUqBgYuSZLyeUYe8zMq3nyjR80r3nyD6mN/Bvl8gQtTsTBwSZJKXuV991L53DO96+O5Z6i8794CVaRiY+CSJJW8odddS66xsVd95ObNY+j11xaoIhUbA5ckqaTlPvqIykcfLkhflY9MSq7XJc3HwCVJKmkVU1+k/KPagvRV/tFHVEybUpC+VFwMXJKkklb2wQcF7u/9gvan4mDgkiSVtHz1qIL211zg/lQcDFySpJLWtOxy5CsrC9JXvrKS5q8uW5C+VFwMXJKkkta0yqrMW3OtgvQ1b621aVpl1YL0peJi4JIklbZcjoYtv1mQrhombA25XEH6UnExcEmSSt7s/Q+iaamle9VH01LLMHv/gwpUkYqNgUuSpJEjmb3Xvj0+lytfWcnsvfaBkSMLXJiKhYFLkiRg9uFHMXufA8hXVHSrXb6igtn7HMDsw4/KqDIVg+69qiRJKmL1J/+O/EILMeyCv1A249NO528evRCzDjqE2T/9RR9Up8HMwCVJUotcjlk//QVzvrcTwy6+gKqH7qfitX8tMFvjiivRMH4Cs/c/iOZll+v7OjXoGLgkSZpP83LLU//bP1A/d27yw9bv/4fc7Nnkhw0j/+WvMGenH8CQIf1dpgYRA5ckSe0ZMoQ5u+/V31WoCHjSvCRJUsYMXJIkSRkzcEmSJGXMwCVJkpQxA5ckSVLGDFySJEkZM3BJkiRlzMAlSZKUMQOXJElSxgxckiRJGTNwSZIkZczAJUmSlDEDlyRJUsYMXJIkSRkzcEmSJGXMwCVJkpQxA5ckSVLGDFySJEkZM3BJkiRlzMAlSZKUsYqsOg4hlAMXAQFoAvYBRgO3Af9KZzsvxvi3rGqQJEkaCDILXMC3AWKMG4UQxgOnk4St02OMp2W4XEmSpAEls0OKMcabgQPTm8sA/wXWBr4VQng4hHBJCKE6q+VLkiQNFJmewxVjbAwhXA6cDVwPPA38LMa4KfBv4FdZLl+SJGkgyOXz+cwXEkL4EvAUMC7G+J/0vlWAs2OME9pr19jYlK+oKM+8PkmSpALItTchy5Pm9wCWjDH+DpgFNAM3hhB+FGN8GpgAPNdRH9Onz8qqvC+oqammtnZmnyxL/c/xLh2OdWlxvEvHQB3rmpr2z5TK8qT5G4HLQggPA5XAEcA7wDkhhAbgAz4/x0uSJKloZRa4Yoz1wP+1MWlcVsuUJEkaiLzwqSRJUsYMXJIkSRkzcEmSJGXMwCVJkpQxA5ckSVLGDFySJEkZM3BJkiRlzMAlSZKUMQOXJElSxgxckiRJGTNwSZIkZczAJUmSlDEDlyRJUsYMXJIkSRkzcEmSJGXMwCVJkpQxA5ckSVLGDFySJEkZM3BJkiRlzMAlSZKUMQOXJElSxgxckiRJGTNwSZIkZczAJUmSlDEDlyRJUsYMXJIkSRkzcEmSJGXMwCVJkpQxA5ckSVLGDFySJEkZM3BJkiRlzMAlSZKUMQOXJElSxgxckiRJGTNwSZIkZczAJUmSlDEDlyRJUsYMXJIkSRkzcEmSJGXMwCVJkpQxA5ckSVLGDFySJEkZM3BJkiRlzMAlSZKUMQOXJElSxgxckiRJGavo7wIkSeqxfJ7yKZMpf+Pf8KWFya24GvlFFunvqqQFGLgkSYPPnDkMO/9cqv5xN5UvPEeusRGAMYstTsMm45mz2540brxJPxcpfc7AJUkaVHKffMKo/fag6rFHFphW/uF/GXbD3xjyj7uoP/Jo5hx6eD9UKC3Ic7gkSYPHvHmMOmCvNsNWa2WffcaIP/6OIVdf2UeFSR0zcEmSBo2h11xF1SOTujRv2ax6hl16ATQ3Z1yV1LnMDimGEMqBi4AANAH7ADlgIpAHpgGHxhhdEyRJXVJ1523dmr9i2lSqbryOhh13zqgiqWuy3MP1bYAY40bACcDp6b9fxhg3IQlf38lw+ZKkIpKb/gmVzz3bvTb5PFWTHsqmIKkbMgtcMcabgQPTm8sA/wXWBlr2Bd8FbJnV8iVJxSX36afk6mZ2u11ZfV0G1Ujdk+m3FGOMjSGEy4HvAjsC28UY8+nkmcDojtqPGTOcioryLEv8n5qa6j5ZjgYGx7t0ONZFpHExGDoU6uu71WzIqBG+DorQYBvTzC8LEWPcK4Twc+ApYFirSdXApx21nT59Vpal/U9NTTW1td3/1KTByfEuHY51kSkbzkIrrEjl5Be71axumeWZ7eugqAzUdbujEJjZIcUQwh4hhGPSm7OAZuDZEML49L5tgI6/1ytJUouyMhq26N6ZKE1LLsWcAw7OqCCp67I8af5GYM0QwsPAPcARwKHASSGEJ4Aq4PoMly9JKjKzDzqUxuWW7/L8c7fdjvzIwXXoScUps0OKMcZ64P/amLRZVsuUJBW3/MKLMPMPZzLqqMMof/utDueds913qD/xN31UmdQxL3wqSRpUGjfdjBmXXMHcbbajefSC372aF1am/sc/YeZFE6HCX7DTwOArUZI06DStviafXf5Xyl5/jaHX/pXcZ58yfNQIZi61HHN22R0qK/u7ROkLDFySpEGrefkVmHXcCQAMr6lmzgD85poEHlKUJEnKnIFLkiQpYwYuSZKkjBm4JEmSMmbgkiRJypiBS5IkKWMGLkmSpIwZuCRJkjJm4JIkScqYgUuSJCljBi5JKmG5GZ9S9vZb0NDQ36VIRc3AJUklqOytt6jeb0/GbLgWC2+wJmM2H8fw354Ezc39XZpUlPzxakkqNXV1jNp3NyqnTvnfXRX/epXyM08jV1dH/W//2I/FScXJPVySVGKGXXTeF8JWixww5JabyNXW9n1RUpEzcElSiamYNrXdaeW1HzLktpv7sBqpNBi4JKnUVHR8Nkl++PA+KkQqHQYuSSoxDeO3IN/OtMbllmfuDt/v03qkUmDgkqQSM/f/dqFh620XuL95xEhmH/BDGDq0H6qSipvfUpSkUlNezmeXXsnws06j8uGHyM2cSfPSyzBn511p2Ha7/q5OKkoGLkkqRZWVzPrpL+Cnv+jvSqSS4CFFSZKkjBm4JEmSMmbgkiRJypiBS5IkKWMGLkmSpIwZuCRJkjJm4JIkScqYgUuSJCljBi5JkqSMGbgkSZIyZuCSJEnKmIFLkiQpYwYuSZKkjBm4JEmSMmbgkiRJylgun8/3dw2SJElFzT1ckiRJGTNwSZIkZczAJUmSlDEDlyRJUsYMXJIkSRkzcEmSJGWsor8L6A8hhGOA7YEq4C/AJGAikAemAYfGGJv7rUAVTAhhb2Dv9OZQYA1gPHAW0AjcG2M8qT9qU2GFECqBy4GvAk3AASRjPBHX7aITQhgCXAYsB3wGHAosgut2UQkhrA/8PsY4PoSwAm2szyGEXwHfIhn3I2KMT/dbwR0ouT1cIYTxwDhgI2AzYCngdOCXMcZNgBzwnX4rUAUVY5wYYxwfYxwPPAccDpwP7ApsDKwfQlirH0tU4WwLVMQYxwG/Bn6D63YxOwCoizFuAPwIOAfX7aISQjgauJjkwzK0sT6nY7wZsD7wA+Dc/qi1K0oucAFbA1OBm4DbgNuBtUn2cgHcBWzZP6UpKyGEdYBVgWuBITHG12OMeeAeYEK/FqdCeRWoCCGUAaOAebhuF7NVSMaUGGME1sV1u9i8Dnyv1e221ueNSfZm5mOMb5NsA2r6tsyuKcXAtSiwDrATcDBwNVCWrqAAM4HR/VSbsnMscBLJG/Fnre53vItHHcnhxFeAi/j/9u42xKoijuP4dxW3wDR7U2SklebPTFMLTQnFYE3LHqAiRAJ70gghsCykF5pUFkWUgUJEShmE2dMLoUxTyY0yJSuf+JOVwloYamYPipXbi5nNm667e2Xv3t27v8+rvWfOOTO7w9z9n5k5M/ASUOW2XbG+Am6UVCVpFKlufy9Id313cBHxDunBqUFj7bkn8GvBOe223jtjwLUfWBkRR/NT0RH+Xzk9gINlKZmVhKRewMCIWEsKtnoUJLu+K8dMUtseAAwlzeeqLkh3XVeWxaT2vBa4Cfga6F6Q7vquPIXzLxvqt8N8p3fGgKsWmJifinqTGujHeW4XwPXA+nIVzkpiLLAaICIOAUcl9ZNURRpidn1Xhl84/qR7AOgGbHbbrlgjgNo8P/M90pCy23Zla6w9fwpMkNRFUh/SiNW+chWwKZ3uLcWIWCFpLPAFKeCcAfwAvCKpGtgBvF3GIlrrE/B9weeGoeSupLH/DWUplbW2F4DFktaTerYeAzbhtpo1Q1UAAAPeSURBVF2pvgWekDSL1KNxL9AHt+1K9jAntOeI+Ce3+c84/j+9Xaqqr69v/iwzMzMzO22dcUjRzMzMrE054DIzMzMrMQdcZmZmZiXmgMvMzMysxBxwmZmZmZVYp1sWwsxKR9JC0j6l1UB/YHtOWhARS8pWsCZIWgrMjog9rXzfOtK6YPcAA4FZpIVZZ+X0C4DngCtICzruAh6MiF35NffhwMSIqG3NcplZeTjgMrNWExEzACRdBKyLiGHlLVGLXEvaCLcUJkREnaR5wJXAUkk9gXrSnnBPR8QUAElTgY8kDYqIMZIcaJlVEAdcZtYmJPUAFpI2Ee9CCjbeknQfMB44FzgfWARcCowD9gKTgAuB5aTNbC8jLVZ8Z0QclDQJeJz0ffYdMD0iDuQeplpgGKnX7RFScHUOsAe4A5ie810p6RpgKzAqB0k1pJ6vmhz87AUGA7eTFtg8Kc8mfv1lwGZgVUQcknQ/UBcRrzacEBGvSfoTOAP4u8g/r5m1c57DZWZtZS7weURcRQqm5krqm9NGADeTgqsFwPsRMYQUfNTkc4YCL0bE5cBOYI6k84AngfERMZy0r978gjxXRMRA0qb1lwCj816LPwFTIuIp4GdST1Rz+69tjgjl85vK8yQRsSQiBkfEzHxoOPBlI+ctj4g/mimHmXVA7uEys7ZSA1RLmp4/dwcG5Z9rI+I3SYdJw21r8/HdpB4pgB0F85leJ21e/AnQF1gnCdJ32t6CPDcARERImg1MkzQAGAlsK7L8DdvEjG4mz5Y4Bhwp8hoz68AccJlZW+kKTI6IbwBy79QBYCpwtOC8YxFxrJHrC4fZuuTPXUlzxW7N9zwTOKvgvMP5+EjgDeB50tBkFY3P26ovON7thLTDBb9HU3m2xCZg8okHJS0Bno2IHUXez8zaOQ8pmllbWQM8AP+9obcF6F3E9YMkDck/3w18QNqwdoykfvn4POCZRq4dB6yOiJdJc65uIAVOkAK3hofPfaQ5ZgC3nKIcLc2zKcuAAZLuajggaRpprtnOIu9lZh2AAy4zaytzgLMlbQFWAQ9FxO4irt8HzJe0HehFmnT/IzANeFfSVtKk9kcbufZNYETOew2wEbg4p60gTZrvk8u4SNJGYH9jhSgiz1PK87RqgNskbcv3mQRcFxF/FXMvM+sYqurr68tdBjOzJknqD3wYEf3LXZaWym9JjoqIutO8vpb0lqSXhzCrAO7hMjMrnZWSri72orzwaUdYw8zMWsg9XGZmZmYl5h4uMzMzsxJzwGVmZmZWYg64zMzMzErMAZeZmZlZiTngMjMzMysxB1xmZmZmJfYvHLpLpjqffNIAAAAASUVORK5CYII=\n", "text/plain": [ "
    " ] @@ -1734,17 +1767,28 @@ " c = colour)\n", "ax.set_xlabel('Temperature [°C]')\n", "ax.set_ylabel('Yield [%]');\n", - "ax.set_title('Yield as a function of temperature [location], baffles [colour] and speed (size)');\n" + "ax.set_title('Yield as a function of temperature [location], baffles [marker colour] and speed [marker size]');" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "From the above visualization we quickly see how the red points (baffles are present in the reactor) have a reducing effect on the yield. The yield also drops off with temperature.\n", + "\n", + "What can you say about the marker size, which represents the speed of the impeller in the bioreactor?\n", + "\n", + "We don't actually have a 5th dimension to visualize in this data set, to also change the marker shape. Marker shapes must be associated with a categorical variable. We will show how you could do it, based on the `baffles` column. The idea is to iterate over each unique category, taking the colour and shape from a dictionary." ] }, { "cell_type": "code", - "execution_count": 102, + "execution_count": 125, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmoAAAH1CAYAAABGCtJ0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xl4VOXd//HPmWwkmbBFCAFxAQtGrBIJQQREghVBSEBQFqFVtILKoogtPxVQEC2IIoiIFqTWx5a6YBSkYBUQFY1QFllcQRBI2LJg9klm7t8fPMxDWLKQzOQkeb+ui+tiZs65z/fMPWfmk/tsljHGCAAAALbjqO4CAAAAcHYENQAAAJsiqAEAANgUQQ0AAMCmCGoAAAA2RVADAACwKYKazSxcuFCPPfZYuaYdMWKE3n777bO+duDAAbVt21bFxcVVWV6lHDt2THfccYdiY2P1l7/8xa/Ljo2N1f79+/26zIKCAo0ePVodOnTQuHHj/LrsumDSpEm68sorlZCQ4H2utG3CVz744AONHDmy0u24XC7FxsaqXbt2mjNnTrnmqcz6nu3zOWfOHHXq1EldunTxyXdISkqKLr/8csXGxmr9+vWVamvSpEnlfp8qasOGDYqNjdXll1+uDRs2+GQZp1q2bJmGDh3q8+Wcr/J8Fp577jn97W9/K7OtW265RSkpKZWqZ9CgQfrxxx8r1UZNEljdBdQ1Dz/8sIKDg/XMM894n/v66681duxYLV++XKNHj67G6nzrX//6lxo1aqTNmzfLsiyfLWfEiBFKTEzUbbfd5n1uy5YtPlveuaxatUrHjh1TSkqKAgPP3NRefPFF7du3T7Nnz/Z7bVXtwIED6tmzp3bu3HnWdfWVu+++Ww899JDflne29UxMTFRiYmKl2w4ODtaWLVs0adKkSrdVHqd/PtPS0rRkyRKtXbtWkZGROnDggE+W27Rp00qHNF+77rrrtGXLlhJ/BODcMjIylJycrP/85z9lTvvhhx9WenkjR47UvHnz9OKLL1a6rZqAETU/e/zxx7V+/Xp98cUXkqTCwkJNnjxZf/7zn9W0adNqrs63UlNT1bp1a5+GNDtJTU3VJZdc4tfg4itut9un7Rtj5PF4fLoMlHT65/PgwYNq2LChIiMjq7my6mWnvRA1xbJly9S9e3fVq1fPL8vr2bOnUlJSdOTIEb8sr7oR1PysUaNGevzxxzV58mTl5eVp/vz5atmypW699VZJJ0ZZJk6c6J1+69atGjJkiOLi4pSYmHjOIWO3262ZM2eqU6dO6tmzpz799NNS63j11Vd14403KjY2Vn369Cnxl9C+ffs0fPhwdejQQZ06ddKDDz54znbGjRunLl26qEOHDrrjjjvOORw9adIkJScna/HixYqNjdWGDRvO2HWRkpKi66+/3vs4ISFBixcvVr9+/dShQwc9+OCDKiws9L7+8ccfKykpSddcc41uvPFGrV+/XnPmzNGmTZs0bdo0xcbGatq0aZKktm3bat++fZKk7Oxs/elPf9K1116rHj16aMGCBd6QcHIXxMyZM9WxY0clJCSU+l7u3r1bI0aMUFxcnG655RZ98sknkqR58+ZpwYIF+ve//63Y2Ngzdk+tX79er7zyivf1kyMy2dnZevTRR9W1a1d169ZNc+bM8YakZcuWaciQIXr66acVFxennj17avPmzd4vyc6dO+u9994r8Z5PmTJFd911l2JjYzV8+HAdPHiwRO133XWX4uPj1atXL61cubLEvFOnTtUf//hHtW/fXikpKVq3bp369++va665Rt27dy/x1+zw4cMlSR07dlRsbKy2bNlyxmf59N0nI0aM0Jw5czRkyBBdffXV2r9/f6nrX1Eej0cLFixQjx491LlzZ/3pT39Sdna29/VNmzZ5t63u3btr2bJlklTh9Tx9t9XmzZs1cOBAdejQQQMHDtTmzZu9r40YMUIvvPCChgwZotjYWI0cOVIZGRnntX4n/fLLLxo0aJA6dOig++67T1lZWd7XzrV9nv75XLp0qUaOHKkjR44oNjb2rKN6pfVNRb4zzuatt95S7969vd9HO3fulHTu7etcbfzud79TfHy8Ro8ercOHD0s6+267U3cZn7pdxcfHl3uU5t133/XW3LNnTy1dutT72snvstdee02dO3dW165d9e6773pfz8zM1OjRo3XNNddo0KBB+uWXX865nMLCQk2cOFGdOnVSXFycBg4cqGPHjnnX47nnnjtn/5f2+1Faf1b092T9+vXq2LGj93FGRoZGjRqluLg4xcfHa9iwYd7v2ISEBO/u5Li4OMXGxio2Nlbt27dX27ZtvSO5a9euVVJSkuLi4jRkyBB999133vZDQkLUrl0774BHrWdQLcaOHWtGjRpl4uPjzcGDB73Pz5s3zzz88MPGGGMOHTpk4uPjzbp164zb7Taff/65iY+PN+np6cYYY4YPH27eeustY4wx//jHP0yvXr1MamqqyczMNMOHDzdt2rQxRUVFZ13+ypUrzaFDh4zb7TYffvihufrqq83hw4eNMcY89NBDZsGCBcbtdpuCggKzcePGc67H22+/bbKzs01hYaF56qmnTGJi4jmn/fOf/2yef/75cz7+6quvTLdu3byPe/ToYQYOHGgOHTpkMjMzzc0332z+8Y9/GGOM2bZtm7nmmmvM559/btxutzl06JD56aefznhfTmrTpo3Zu3evMcaYRx55xIwePdpkZ2eb/fv3m5tuusk7/bvvvmuuuOIK869//csUFxebN99803Tp0sV4PJ4z1sflcpkbb7zRvPzyy6awsNBs2LDBtG/f3uzevdsYU7Ivz+Zsr993331m8uTJJjc31xw7dswMHDjQ/POf//TWFhMTY9555x1TXFxsnn/+edO9e3fzxBNPmMLCQvPZZ5+Z9u3bm5ycHO/72759e/P111+bwsJCM336dDNkyBBjjDG5ubnm+uuvN++8844pKioyO3bsMPHx8eaHH37wznvNNdeYTZs2eT8HX331lfnuu++M2+023377rencubP5z3/+Y4wxZv/+/Wd83k5fv9OnGT58uOnevbv54YcfTFFRkXG5XKWu/+lO//ycbPNkX7799tvmxhtvNL/88ovJyckxDzzwgJk4caIxxpiDBw+a9u3bm+XLlxuXy2UyMjLMrl27jDGmwuv57rvvet/XzMxMExcXZ9577z1TVFRkli9fbuLi4kxGRoa3vp49e5o9e/aY/Px8M3z4cPPss8+WuV7nMnz4cNO1a1fz/fffm9zcXDNmzJgS73lp2+fp/XP69nf6upbWN+X9zjh9Gcac+C7q2rWr2bZtm/F4PGbv3r3mwIEDZW5fp75PGzZsMPHx8WbHjh2msLDQTJs2zQwbNuys63HyfTt1m4+JiTF///vfTVFRkcnPz/dO16NHD/PFF1+cdV3Wrl1r9u3bZzwej0lJSTFXXXWV2bFjh3c9Y2JizAsvvGBcLpdZt26dueqqq0xWVpYxxpgHH3zQjBs3zuTm5prvv//edO3a1fsZOt0///lPM2rUKJOXl2eKi4vN9u3bTXZ2tnc9ztX/Zf1+lNafFf096dSpk9m2bZv38ezZs83kyZONy+UyLpfLbNy40fsdeq739LnnnjPDhg0zLpfL7Nixw1x77bVm69atpri42Cxbtsz06NHDFBYWeqefPn26efrpp89aT23DiFo1mTJlilJSUnT//ferefPmZ53m/fff1/XXX6/u3bvL4XCoS5cuuvLKK8/6182///1v/eEPf1B0dLQaNmyoUaNGlbr83r17KyoqSg6HQ3369NHFF1+sb775RpIUGBio1NRUHTlyRCEhIYqLiztnO4MGDZLT6VRwcLDGjh2r7777rsSoRWWNGDFCUVFRatiwoXr06KFvv/1WkvTOO+9o4MCB6tKlixwOh6KiotS6desy23O73Vq5cqUefvhhOZ1OXXjhhbrrrrv0wQcfeKdp3ry5br/9dgUEBGjAgAE6evSo9y/YU23btk15eXm69957FRwcrM6dO6tHjx7nfQzGsWPHtH79ej366KMKCwtTZGSk7rzzzhLtXXjhhRo4cKACAgLUp08fpaWl6YEHHlBwcLC6du2q4ODgEn+d33DDDerYsaOCg4P10EMPaevWrUpLS9O6devUokULDRw4UIGBgWrXrp169eql1atXe+ft2bOnOnToIIfDoZCQEHXq1Elt27aVw+HQ5ZdfrltuuUVff/31ea3rSQMGDNBvfvMbBQYG6vjx42Wuf0UsX75cd955p1q2bKnw8HBNmDBBK1euVHFxsZYvX67rrrtOffv2VVBQkBo1aqSYmBhJqtR6rlu3ThdffLH69++vwMBA9e3bV61atdLatWu909x666269NJLVa9ePd18883ez/T5SkpKUps2bRQWFqbx48dr1apV3pGRqto+y/psVuQ743TvvPOO7rnnHl111VWyLEsXX3yxWrRoUaHta/ny5Ro4cKDatWun4OBgTZgwQVu3bi33cXZNmzbViBEjFBgYWO7ddzfccIMuuugiWZal+Ph4denSRZs2bfK+HhgYqAceeEBBQUHq3r27wsLC9PPPP8vtduujjz7SuHHjFBYWpjZt2mjAgAHnXE5gYKCysrK0b98+BQQE6Morr5TT6fS+fq7+L+33o6z+rOjvSXZ2tsLDw0vUfPToUaWmpiooKEhxcXGlHvKycuVKrVixQi+++KKCgoL01ltvafDgwbr66qu938NBQUHaunWrd57w8HD9+uuvpdZVW9T8g2dqqAsuuECNGjXSb37zm3NOk5qaqlWrVpX4ki8uLlanTp3OmPbIkSOKjo72Pj5X+DspOTlZS5Ys8e4Ky8vLU2ZmpiTpkUce0dy5czVo0CA1aNBAd911lwYNGnRGG263W3PmzNGqVauUkZEhh+NE7s/MzFRERESpyy+vJk2aeP8fGhrqPSYhLS1N3bt3r3B7mZmZKioqKvH+NG/e3LubRDrRN6cuUzrx/pzuyJEjatasmXe9z9ZWRaSmpqq4uFhdu3b1PufxeEr066nHD538QTm13pCQEOXm5nofN2vWzPv/8PBwNWjQQEeOHNHBgwf1zTfflPhBdbvdJQ6KP3W50olgOnv2bP34448qKiqSy+XSzTfffF7rerZllGf9K+LIkSNq0aKF93GLFi1UXFys9PR0paWl6aKLLjrrfJVZzyNHjpyx7Z3+mTj9M322z1ZFnL7dFxUVKTMzU40aNaqy7bOsvinvd8bZnKsvKrJ9HTlyRO3atfM+Dg8PV8OGDXX48GFFRUWVWcOp20l5ffrpp3rppZe0d+9eeTweFRQUqE2bNt7XGzZsWOL41JN9nZGRoeLi4nJ/XyclJenQoUOaMGGCfv31VyUmJuqhhx5SUFCQpHP3f2m/H2X1Z0V/T+rXr1/ie+fuu+/W/PnzvWdDDx48WPfee+9Z5921a5emTZum1157TY0bN5Z04vOWnJys//mf//FOV1RUVOKYtNzcXNWvX7/UumoLgpqNRUdHKykpSU899VSZ0zZp0kRpaWnex6f+/3QHDx7U448/rr/97W+KjY1VQECAkpKSSrR1cpmbNm3SXXfdpY4dO+riiy8u0c7y5cv1ySefaMmSJbrwwguVnZ2tjh07yhhTrvULDQ1VQUGB9/HZRq3OJTo6utTjOs6lUaNGCgoKUmpqqi677DJJJ96r8nyZn65p06Y6dOiQPB6P98ckLS1Nl1xySbnmP/0vzGbNmik4OFhfffVVlZ2AcOjQIe//c3Nzdfz4cTVt2lTR0dHq2LGjlixZUu62Hn74YQ0fPlyLFi1SSEiIZsyY4Q33Z/truTz9e+p8Vb3+TZs2LXFMXmpqqgIDAxUZGano6GjvCPLpKrqepy8zNTW1xHNpaWnq1q1bJdfm3E7f7k+OEFZ2+zxVWX1T3u+MsznXtlyR7ev0vs7Ly1NWVpaioqIUFhYm6cTlSE6ORB09erTE/BU9wcnlcmncuHGaOXOmevbsqaCgIN1///3lem8bN27sPcv25F6A0r6vg4KCNGbMGI0ZM0YHDhzQvffeq0svvdR7Vvu5+r+0348jR46U2Z/l/T2RThwDvHfvXl111VWSJKfTqUmTJmnSpEn68ccf9fvf/16//e1v1blz5xLzZWRkaMyYMZoyZYquuOIK7/PR0dEaPXq07rvvvnMuc/fu3VVytnVNwK5PG0tMTNTatWv12Wefye12q7CwUCkpKSV+fE/q3bu33njjDR06dEjHjx/Xq6++es528/PzZVmW96+Xd999t8RJAP/+97+9y2jQoIEsyyrxV+1Jubm5Cg4OVqNGjZSfn6/nn3++QusXExOjTz/9VFlZWTp69Khef/31cs87aNAgLVu2TF9++aU8Ho8OHz6s3bt3SzoxwnSua6YFBATo5ptv1pw5c5STk6ODBw9qyZIl57XBX3XVVQoNDdWiRYtUVFSklJQUrVmzRn369CnX/JGRkTp48KD3INumTZuqS5cu+stf/qKcnBx5PB798ssvldq9+Omnn2rTpk1yuVyaO3eurr76akVHR+uGG27Q3r17lZycrKKiIhUVFembb77xvodnk5ubqwYNGigkJETffPONVqxY4X2tcePGcjgcJd73mJgYbdy4UampqcrOztYrr7xSaq1Vvf59+/bV66+/rv379ys3N1dz5sxR7969FRgYqH79+mnDhg3eXaGZmZneXZAVXc9Tde/eXXv37tXy5ctVXFyslStX6qefftINN9xwXutw8kD40nbhffDBB/rpp5+Un5+vuXPnqlevXgoICKj09nmqsvqmvN8ZZzNo0CC99tpr2rFjh4wx2rdvnw4ePFih7atfv35atmyZvv32W7lcLj3//PO66qqrdOGFF6px48aKiorS+++/L7fbrXfeeafS11R0uVxyuVze0PXpp5+W+8D2gIAA/e53v9P8+fOVn5+vn376qcRJQKf76quv9P3338vtdsvpdCowMFABAQHe18/V/6X9fpTVnxX5PZFOfO43btzofbx27Vrt27dPxhg5nU4FBASc8XkoLi7W2LFj1a9fvzP69LbbbtPSpUu1bds2GWOUl5endevWKScnx/v+79y5U9ddd1253vOajqBmY9HR0VqwYIFeeeUVde7cWd27d9fixYvPehmD22+/XV27dlVSUpIGDBigm2666ZztXnbZZRo5cqSGDBmi6667Tj/88IOuueYa7+vbt2/XbbfdptjYWN1333167LHH1LJlyzPa6d+/v5o3b65u3brplltuUfv27Su0fklJSbr88suVkJCgkSNHljvgSCdC0jPPPKOnn35aHTp00PDhw70jGb///e+1evVqdezY8ax/TU6ePFmhoaG68cYbNWzYMPXt21cDBw6sUO3Sietevfzyy1q/fr2uvfZaPfnkk5o1a1a5jpWT5N2d1qlTJ+8xKrNmzVJRUZH69Omjjh07aty4cWf89V8Rffv21UsvvaROnTpp586devbZZyWd+It38eLFWrlypbp166auXbtq9uzZcrlc52xr6tSpmjdvnmJjY/XSSy+pd+/e3tdCQ0M1evRoDR06VHFxcdq6dau6dOmiPn36KDExUbfeeqt69OhRZr1Vuf4DBw5UYmKihg8frp49eyo4OFiTJ0+WdGJXzl//+lctWbJE8fHx6t+/v/essoqu56kaNWqkhQsXasmSJerUqZMWLVqkhQsXev8oqqhDhw6pRYsWpY74JiUladKkSerSpYtcLpf3gtmV3T5PV1rflPc742x69+6t0aNH6+GHH9Y111yjBx54QMePH6/Q9tW5c2eNHz9eY8eOVdeuXbV///4SZ5RPnz5dixcvVqdOnfTTTz8pNja2Uu+F0+nU448/rgcffFAdO3bUihUrKnTNtSlTpigvL09dunTRpEmTvGf9n82xY8c0btw4dejQQX369FF8fHyJPyzP1f9l/X6U1p8V+T05WcOnn37qHUHft2+f92zzwYMHa+jQoWccsnPo0CFt2rRJr7/+uvfMz9jYWKWmpuq3v/2tpk+frmnTpqljx4666aabvGdlS9Inn3yi+Pj489oTUhNZ5nzGwQHY3qRJkxQVFeXXC8L60+OPP64PP/xQkZGR+vjjj6u7nEpzuVy67rrrVFxcrHvuuUdjxozRggUL1LhxYw0ZMqS6y6sSGzdu1N13363g4GDNmTPHp7uEK+PLL7/U2LFj5XK59Oqrr+raa6+t7pLO6mwX964uzz//vBo3bqw777zT58u67bbbNGPGjBLHBNZmBDWglqrtQQ2o6+wU1OA77PoEAACwKUbUAAAAbIoRNQAAAJsiqAEAANhUrbjgbWZmrjwe3+3BjYx0Kj09x2ftw17o77qF/q476Ou6xY797XBYatQovOwJT1ErgprHY3wa1E4uA3UH/V230N91B31dt9SG/mbXJwAAgE0R1AAAAGyKoAYAAGBTBDUAAACbIqgBAADYFEENAADApghqAAAANkVQAwAAsCmCGgAAgE3VijsTVFarVs2Vk1O520w4nU7t2ZNaRRUBAAAwoiZJlQ5pVdUGAADAqQhqAAAANkVQAwAAsCmCGgAAgE0R1AAAAGyKoAYAAGBTBDUAAACbIqgBAADYFEENAADApghqAAAANkVQAwAAsCmCGgAAgE0R1AAAAGyKoAYAAGBTBDUAAACbIqgBAADYFEFNktPptEUbAAAApwqs7gLsYM+e1FJfb9IkQkePZvupGgAAgBMYUQMAALApghoAAIBNEdQAAABsiqAGAABgU5xMUEu0atVcOTk5lWrD6XSWeWIFAADwH0bUaonKhrSqagMAAFQdghoAAIBNEdQAAABsiqAGAABgU347maCwsFBPP/20vvzyS4WEhKh9+/aaPn26fv75Z02aNElZWVlq2LChZs6cqUsuucRfZQEAANiW34Las88+q5CQEK1evVqWZenYsWOSpKlTp2rYsGFKSkrS+++/rylTpujvf/+7v8oCAACwLb/s+szNzVVycrLGjx8vy7IkSRdccIHS09O1a9cu9e3bV5LUt29f7dq1SxkZGf4oCwAAwNb8MqK2f/9+NWzYUPPnz1dKSorCw8M1fvx41atXT1FRUQoICJAkBQQEqGnTpkpLS1Pjxo39URoAAIBt+SWoFRcXa//+/briiiv05z//Wdu2bdPo0aM1d+7cKmk/MtJZJe2UpkmTCJ8vww7qynqWhfehbqG/6w76um6pDf3tl6DWvHlzBQYGendxXn311WrUqJHq1aunw4cPy+12KyAgQG63W0eOHFF0dHSF2k9Pz5HHY3xRuqQTHX30aLbP2reTurKepalL/Q36uy6hr+sWO/a3w2FVeHDJL0GtcePG6tSpk7744gt17dpVP//8s9LT03XJJZcoJiZGK1asUFJSklasWKGYmBh2e6JOqYrbf0ncAgwAaiPLGOO7oahT7N+/X48++qiysrIUGBioBx98UN27d9fu3bs1adIk/frrr6pfv75mzpypVq1aVahtRtSkpk3rV0k7R478WiXt1GT+7u+q6juJ/jsf/u5v7stbfWrCdzmqjh3727YjapLUsmVLvfHGG2c837p1a7399tv+KgMAqhX35QVQEdyZAAAAwKYIagAAADZFUAMAALApglot4XRW/lpyVdEGAACoOn47mQC+xRlgAADUPoyoAQAA2BRBDQAAwKYIagAAADZFUAMAALApghoAAIBNEdQAAABsiqAGAABgUwQ1AAAAmyKoAQAA2BRBDQAAwKYIakA1q6p7rHKv1pqB+/ICqAju9QlUM+7TWrfQ3wAqghE1AAAAmyKoAQAA2BRBDQAAwKY4Rk1Sq1bNlZOTU6k2nE4nx54AAIAqxYiaVOmQVlVtAAAAnIqgBgAAYFMENQAAAJsiqAEAANgUQQ0AAMCmCGoAAAA2RVADAACwKYIaAACATRHUAAAAbIqgBgAAYFMENQAAAJsiqAEAANgUQQ0AAMCmCGoAAAA2RVADAACwKYIaAACATRHUAAAAbIqgJsnpdNqiDQAAgFMFVncBdrBnT2qprzdpEqGjR7P9VA0AAMAJjKgBAADYFEENAADApghqAAAANkVQAwAAsCmCGgAAgE0R1AAAAGyKoAYAAGBTBDUAAACbIqgBAADYlN/uTJCQkKDg4GCFhIRIkiZOnKhu3bqpbdu2atOmjRyOE5lx1qxZatu2rb/KAgAAsC2/3kJq3rx5atOmzRnPL126VOHh4f4sBQAAwPbY9QkAAGBTljHG+GNBCQkJcjqdMsaoQ4cOmjBhgurXr6+2bduqXbt2crvduv766zV27FgFBwf7oyQAAABb81tQS0tLU3R0tFwul2bMmKHc3FzNnj3b+3xOTo4eeeQRtWnTRg899FCF2k5Pz5HH47vVaNIkQkePZvusfdgL/V230N91B31dt9ixvx0OS5GRzorN46NazhAdHS1JCg4O1rBhw7R58+YSzzudTt12223e5wEAAOo6vwS1vLw8ZWefSLXGGK1cuVIxMTE6fvy4CgoKJEnFxcVavXq1YmJi/FESAACA7fnlrM/09HSNHTtWbrdbHo9HrVu31tSpU7Vnzx5NmTJFlmWpuLhYsbGxGj9+vD9KAgAAsD2/BLWWLVsqOTn5jOebNm2q5cuX+6MEAACAGofLcwAAANgUQQ0AAMCmCGoAAAA2RVADAACwKYIaAACATRHUAAAAbIqgBgAAYFMENQAAAJsiqAEAANgUQQ0AAMCmCGoAAAA2RVADAACwKYIaAACATRHUAAAAbIqgBgAAYFMENQAAAJsiqAEAANgUQQ0AAMCmCGoAAAA2RVADAACwKYIaAACATRHUAAAAbIqgBgAAYFMENQAAAJsiqAEAANgUQQ0AAMCmCGoAAAA2RVADAACwKYIaAACATRHUAAAAbIqgBgAAYFMENQAAAJsKrO4CAKAma9WquXJycirVhtPp1J49qVVUEYDahBE1AKiEyoa0qmoDQO1EUAMAALApghoAAIBNEdQAAABsiqAGAABgUwQ1AAAAmyKoAQAA2BRBDQAAwKYIagAAADZFUAMAALApghoAAIBNEdQAAABsiqAGAABgUwQ1AAAAmyKoAQAA2BRBDQAAwKYC/bWghIQEBQcHKyQkRJI0ceJEdes1zFJvAAAgAElEQVTWTVu3btWUKVNUWFioFi1a6Nlnn1VkZKS/ygKASnE6ncrJyal0GwBwNn4LapI0b948tWnTxvvYGKNHHnlEzzzzjOLi4rRgwQLNnj1bzzzzjD/LAoDztmdPanWXAKAWq9Zdn9u3b1dISIji4uIkSUOGDNGqVauqsyQAAADb8OuI2sSJE2WMUYcOHTRhwgSlpaWpefPm3tcbN24sj8ejrKwsNWzYsNztRkb6frdBkyYRPl8G7IP+rlvo77qDvq5bakN/+y2ovfnmm4qOjpbL5dKMGTM0bdo0/e53v6uSttPTc+TxmCpp62yaNInQ0aPZPmsf9kJ/1y30d91BX9ctduxvh8Oq8OCS33Z9RkdHS5KCg4M1bNgwbd68WdHR0UpN/b/jOzIyMmRZVoVG0wDULo7Ugwr+4D3Ve+NvCln6poLWfiIVFVV3WQBQLfwyopaXlye3262IiAgZY7Ry5UrFxMToyiuvVEFBgTZt2qS4uDgtXbpUvXv39kdJAOzE41HQZ58qbP4LCvpqg0xQsOR2S5YlBTgky6H8O+9Wwcg/ytO8RbmbbdWqeZWckckJAwCqi1+CWnp6usaOHSu32y2Px6PWrVtr6tSpcjgcmjVrlqZOnVri8hwA6g4rJ1v1h92mwO3bZOXmypJkFRaeMV3YwvkKe3WBsmc+r8Khw8vVdmVDWlW1AQDnyzLG+O7gLj/hGDVUJfrbj3Jz1ejmBAXs3XPWcHY2JjRUOY8/oYI/3lfmtE2b1q9shZKkI0d+rZJ2UL3YtusWO/a3rY9RA4DT1b97hAL2/lzukCZJVn6+nNOfUNC6NT6sDADsgaAGoFoEfLtLwRu+kFVYUOF5rYJ8hT811QdVAYC9ENQAVIvQV16SilznPX/gDz8o4Ltvq7AiALAfghoA/8vNVb1l78hyu8+/jeIihf715aqrCQBsiKAGwO8C9u2VCazcSedWcbGC/ruxiioCAHsiqAHwO+vXXyWHVfl2su11RhcAVDWCGgD/Cw+TquCKOiY0tPKNAICNEdQA+J07uoUsV/kvyXE2RpL70lZVUxAA2BRBDYDfmQsuUFGnays1qGbCw5V/z+gqqwkA7IigBqBa5D3woEx4xa7QfSoTUV9F3bpXYUUAYD8ENQDVoqh7D5nISBlHxb+GPGFhyhs/QTqPeQGgJuFbDkD1cDiU9VayjNMpY5X/DFATGipXwu9UMPJeHxYHAPZAUANQbTytWitrxX9kGkfKBAeXPX1YmAp791X2K69JFQh3AFBTEdQAVCv35THKWJ+ivFEPyBNRX57TjlszAQEyoaEq+u1Vypm7QNkvL5KCgqqpWgDwr8pdGhwAqoBp0kR5k59U3p8fU8jK5Qpat0aOY8dkQuvJc+FFKrh9qNwxV1S4XafTqZycnErV5nSe/wkPAFBZBDUA9hEcrML+A1XYf2CVNLdnT2qZ0zRpEqGjR7nDAQB7YtcnAACATRHUAAAAbIqgBgAAYFMENQAAAJsiqAEAANgUQQ0AAMCmCGoAAAA2RVADAACwKYIaAACATRHUAAAAbIqgBgAAYFOl3uvzjjvuKFcjISEheu2116qkIAAAAJxQalDbvn27nnzyyVIbMMZoxowZVVoUAAAAyghqsbGxGjBgQJmNrFixosoKAgAAwAmlHqP2+uuvl6sRdnsCAABUvVJH1M5l9+7d+vHHH9WyZUu1a9euqmsCAACAziOovfnmm1q6dKnatGmjHTt2qGfPnvrTn/7ki9oAAADqtDKD2s6dO0uMmq1atUrvvfeeAgMDlZubq4SEBIIaAACAD5QZ1ObMmaOLLrpIEyZMkNPpVNOmTfXaa6/pyiuvVEpKii6++GJ/1AkAAFDnlHnB20WLFikuLk4jRoxQcnKypk6dquPHj2vJkiX69ddfNW/ePH/UCQAAUOeU6xi1Pn366Prrr9fcuXP13nvvafLkybrssst8XRsAAECdVq6gtnPnTu3fv1+DBw9WUVGRpkyZovbt22vcuHGqV6+er2sEAACok8rc9Tlz5kw9+OCD+uijj/TAAw9o48aNevPNN9WyZUvdfvvt+uijj/xRJwAAQJ1TZlBbtmyZ3nvvPT3//PN6++23tWzZMlmWpaFDh2rJkiX65JNP/FEnAABAnVNmULvkkkv04Ycfau/evVq+fLkuvfRS72uRkZGaOXOmTwsEAACoq8oManPnztV3332nGTNmKDU1VU888YQfygIAAECZJxM0a9ZMU6dO9UctAAAAOEWpI2pvv/12uRop73QAAAAov1KD2jPPPCNjjDwezzn/ud1uPfvss/6qFwAAoM4odddnXl6errjiilIbMMYoJCSkSosCAABAGUGtvJfesCyrSooBAADA/yk1qLVo0cJfdQAAAOA0ZV6eAwAAANXD70Ft/vz5atu2rX744QdJUtu2bdWvXz8lJSUpKSlJ33//vb9LAgAAsKVy3ZS9quzcuVNbt25V8+bNSzy/dOlShYeH+7MUAAAA2/PbiJrL5dK0adM0depUTj4AAAAoB7+NqM2dO1eJiYlq2bLlGa+NGDFCbrdb119/vcaOHavg4OAKtR0Z6ayqMs+pSZMIny8D9kF/1y30d91BX9cttaG//RLUtmzZou3bt2vixIlnvLZu3TpFR0crJydHjzzyiF566SU99NBDFWo/PT1HHo+pqnLP0KRJhI4ezfZZ+7AX+rtuob/rDvq6brFjfzscVoUHl/yy63Pjxo3as2ePevbsqYSEBB06dEh33323Pv/8c0VHR0uSnE6nbrvtNm3evNkfJQEAANheqSNqHo+nXI04HKXnvXvvvVf33nuv93FCQoIWLlyoqKgoFRQUqF69eiouLtbq1asVExNTrmUCgF1Zx7MUsuwdBfzwvaz8PHmaNpXrdzerOC5e4hhdABVQalC74oorynXg/7fffnteC9+zZ4+mTJkiy7JUXFys2NhYjR8//rzaAoDq5ti3V+F/eUohH34gYznkyM+TJBnLUtirL8sd1Ux5E/6kwtuHEtgAlEu5byG1bt06rV69WqNGjVLz5s2Vmpqqv/71r7rpppsqvNA1a9Z4/798+fIKzw8AdhO45b9qMChJVm6OLI9Hp8YwyxgpL0+BP+9RxJ8nKHj9OmXPe1kKCKi2egHUDOW+hdTf/vY3vfvuu6pfv74k6dJLL9WVV16pgQMHatiwYb6tEgBsLGD3j2owMFGOnLIPXLby8hSy4gMZp1M5M5/3Q3UAarJyn0yQnZ2t/Pz8Es8VFBQoO9teZ1QAgL85H5kgKzen3NNb+Xmqt/RNBezc4cOqANQG5b48x4ABA3TXXXfpD3/4g5o1a6ZDhw7pjTfe0IABA3xZHwDYmmP/Lwra+NWJ3ZsV4XIpdOFLynnxZd8UBqBWKHdQe+SRR3TRRRdp5cqVOnLkiJo0aaI77rhDt99+uy/rAwBbq/e3xVJFQ5oky+1WvfffVe4zs2ScNf+inAB8o9xBzeFwaOjQoRo6dKgv6wGAGiXovxtluVznNa8JCpJj3z65211ZxVUBqC1KDWrvvPNOuRoZNGhQlRQDADWNlZtbiZktWXmVmB9ArVdqUHv//ffLbMCyLIIagDrL/O+Z8OfF7ZGp36DqigFQ65Qa1N544w1/1QEANZLrppsV+N+NcuTlVXzmgAC5W7Wu+qIA1BoVutdnZmamkpOTtWjRIknS4cOHdejQIZ8UBgA1QcGQO2SV83Z7pzIhIcq/6x4pKMgHVQGoLcod1L7++mvdfPPNWr58uV566SVJ0r59+/TEE0/4qjYAsD3ToKEK+ybJBAdXbEbLUsFd9/imKAC1RrmD2tNPP60XXnhBixcvVmDgiT2mV199tb755hufFQcANUHOM8/KE9VMJrB8J9Kb0FBlPzNbnuYtyp4YQJ1W7qB28OBBde7cWZK8N2oPCgqS2+32TWUAUEOYBg2VufITuS+5VJ6wsHNPFxAgExqqnGlPq/CO3/uxQgA1VbmDWuvWrfXZZ5+VeG7Dhg1q06ZNlRcFADWNiYpS5iefK3f6X1R8yaUyYeHyOCPkCQuXJyJCpl49FQy8XZn/XqOCP9xd3eUCqCHKfcHbSZMmadSoUbrhhhtUUFCgKVOmaM2aNVqwYIEv6wOAmiM0VAUj7lTB8D8ocNsWBez9WSoslGnYSEWdr+NSHAAqzDKm/Pc+OXz4sD744AOlpqYqOjpaiYmJatasmS/rK5f09Bx5PBW/hUt5NWkSoaNHufl8XUF/1y30d91BX9ctduxvh8NSZKSzQvOUe0RNkqKiovTHP/6xQgsAAADA+Sk1qE2ePFnTp0+XdOKm7CdPIjjdrFmzqr4yAACAOq7UoHbhhRd6/3/xxRf7vBgAAAD8n1KD2qhRo3Ts2DFdcMEFGjNmjL9qAgAAgMpxeY5bbrlFycnJ/qgFAAAApyjzZIIXX3xRkydP1sqVKzV9+nRFRUX5oy4AAIAq0apVc+Xk5FS6HafTqT17UqugovIrM6jFx8dr+fLlevHFF5WUlKQxY8aodevWJaY5eccCAAAAu6mKkFaV7VREuS7PERwcrPvvv18//fSTnnvuOTVq1Mj7mmVZ+uSTT3xWIAAAQF1VrqD25ZdfavLkyWrXrp0+/vhjRUZG+rouAACAOq/MoPboo49q/fr1evzxx3XzzTf7oyYAAACoHEHN5XJpxYoVatiwoT/qAQAAwP8qM6jNnj3bH3UAAADgNGVeRw0AAADVg6AGAABgUwQ1AAAAmyKoAQAA2BRBDQAAwKYIagAAADZFUAMAALApghoAAIBNEdQAAABsiqAGAABgUwQ1AABQqzmdTlu1UxFl3usTAACgJtuzJ7W6SzhvjKgBAADYFEENAADApghqAAAANsUxagCA6pOXJ8ehNFl5eTIREfJEN5eCg6u7KsA2CGoAAL8L2P6NwhbOV8gHyTKBAZLDIcvtlrEcKrjj98q/Z5Q8l1xa3WUC1Y6gBgDwG+t4lur/fqiCtm6WXC5ZbreswlNelxS6ZJFCX1+swr5Jyp67gBE21GkENQCAX1gZ6WrUq4ccaamyXK5zT1d04rWQlcvlOLhfx99ZTlhDncXJBAAA33O71eD2AXKklh7STmXl5yto21ZFjLvPx8UB9kVQAwD4XPAnHylg94/e0bLysvLzFbJyuQL2/OSjygB783tQmz9/vtq2basffvhBkrR161YlJiaqV69eGjlypNLT0/1dEgDAx0JffEGO3Nzzm7nYrdBXX67agoAawq9BbefOndq6dauaN28uSTLG6JFHHtGUKVO0evVqxcXFafbs2f4sCQDgY459exW0bct5z28VF6neP9+U8vOrsCqgZvBbUHO5XJo2bZqmTp0qy7IkSdu3b1dISIji4uIkSUOGDNGqVav8VRIAwA8Ct38jExRUqTZMgEMB+3+pooqAmsNvQW3u3LlKTExUy5Ytvc+lpaV5R9ckqXHjxvJ4PMrKyvJXWQAAH7NysiW3p5KNOGT9erxqCgJqEL9cnmPLli3avn27Jk6c6JP2IyOdPmn3VE2aRPh8GbAP+rtuob99rFmkFBhQqSYcMmrUMkqqZF/R13VLbehvvwS1jRs3as+ePerZs6ck6dChQ7r77rs1YsQIpaameqfLyMiQZVlq2LBhhdpPT8+Rx2OqtOZTNWkSoaNHs33WPuyF/q5b6G/fC2zcTA2K3ZXahWNcLqXXayBTib6ir+sWO/a3w2FVeHDJL7s+7733Xn3++edas2aN1qxZo2bNmmnx4sW65557VFBQoE2bNkmSli5dqt69e/ujJACAnxT/9mp5oqLOe35jWXL16CnToGJ/xAO1QbXemcDhcGjWrFmaOnWqCgsL1aJFCz377LPVWRIAoKpZlvLHPqTwyZPO6xIdJjRMeQ886IPCAPuzjDG+22foJ+z6RFWiv+sW+ttPcnMVGfdbWRnpsirws2MCA+W+PEaZn3wu/e8VA84XfV232LG/bbvrEwBQx4WHK+vd5TLh4SpvTDOBgfI0jlTW0vcqHdKAmoqgBgDwC/cV7ZS14j8ykZEyYWGlTusJD5f74kuU9fF6maZN/VQhYD/VeowaAKBucV/RThkbv1HI20sV9uILsjIzJFmS2y0FBshyu1Xc6jLlj3tIhbckSsHB1V0yUK0IagAAvzLOCBXc9UcV3HmPAv+7UQF7dsvKy5OJiFDxFVfKHXNFdZcI2AZBDQBQPSxLxXHxKo6Lr+5KANviGDUAAACbIqgBAADYFLs+AQCohIDdPypw+zeysrKkwEB5GjZSUecuMpGR1V0aagGCGgAAFVVcrOBVKxU2f44Cd+2UCQyS3MUnrvcWECDL5VLhTb2Vf/9YFV8Tx3XgcN4IagAAVEDg1s1qMHSQVFggR06OJMlSwRnThXz4gUI++UjFv2mr4/98V+aCC/xdKmoBjlEDAKCcgtatUcOk3nKkH/OGtHOxPB5ZeXkK3LVDjXpcJ8eB/X6qErUJQQ0AgHII/GarGtw5TFZ+foXms4qK5Dh2VA3795F1PMtH1aG2IqgBAFAWY1T/nj9IeXnnNbvldstxKE3hM56s4sJQ2xHUAAAoQ+DXKbKOHFFlTgmwXC7V+9c/pdzcKqsLtR9BDQCAMoQtmCsr//xG005lHJbqvfdOFVSEuoKgBgBAKazMDAWv+ViWMZVuy5Gbq9CX5lVBVagrCGoAAJQiYP8vMsEhVdfegV+qrC3UfgQ1AABKYR0/rkodnHY6l0tyu6uwQdRmBDUAAEphQupVbYMOx4l/QDnwSQEAoBTmgkhZRcVV157TyS2lUG4ENQAASuG+tLU8VXSDdRMYqMJ+/aukLdQNBDUAAEpjWcobM14mLKzybQUGKn/UA5VvB3UGQQ0AgDIU3jZE8lT+8hzFbS+Xu+3lVVAR6gqCGgAAZTAR9ZU36n55KjGqZkJDlTtlehVWhbqAoAYAQDnk/b/JKuqeIE9oaIXnNaGhynlihoq6dfdBZajNCGoAAJSHw6FfF70u1y2J5R5ZM5Z1IqTNmKWCu+7xcYGojQhqAACUV1CQsl96VTlzF6joyt/K1AuVCQg4YzJTr55MSIhcN92srPc+VMHwP1RDsagNAqu7AAAAahTLUmHSrSpMulUBu3YqdOFLCvrv17J+/VUKCJBp0FCFfROV//uRMlFR1V0tajiCGgAA58l9RTvlzFtQ3WWgFmPXJwAAgE0R1AAAAGyKoAYAAGBTBDUAAACbIqgBAADYFEENAADApghqAAAANkVQAwAAsCmCGgAAgE0R1AAAAGyKoAYAAGBTBDUAAACbIqgBAADYFEENAADApghqAAAANkVQAwAAsCmCGgAAgE0R1AAAAGyKoAYAAGBTBDUAAACbCvTXgu6//34dOHBADodDYWFhmjx5smJiYpSQkKDg4GCFhIRIkiZOnKhu3br5qywAAADb8ltQmzlzpiIiIiRJH3/8sR599FG99957kqR58+apTZs2/ioFAACgRvDbrs+TIU2ScnJyZFmWvxYNAABQI1nGGOOvhT322GP64osvZIzRokWL9Jvf/EYJCQlyOp0yxqhDhw6aMGGC6tev76+SAAAAbMuvQe2k5ORkffjhh/rrX/+qtLQ0RUdHy+VyacaMGcrNzdXs2bMr1F56eo48Ht+tRpMmETp6NNtn7cNe6O+6hf6uO+jrusWO/e1wWIqMdFZsHh/VUqr+/fsrJSVFmZmZio6OliQFBwdr2LBh2rx5c3WUBAAAYDt+CWq5ublKS0vzPl6zZo0aNGigkJAQZWefSLvGGK1cuVIxMTH+KAkAAMD2/HLWZ35+vsaPH6/8/Hw5HA41aNBACxcuVHp6usaOHSu32y2Px6PWrVtr6tSp/igJAADA9vwS1C644AK99dZbZ30tOTnZHyUAAADUONyZAAAAwKYIagAAADZFUAMAALApghoAAIBNEdQAAABsiqAGAABgUwQ1AAAAmyKoAQAA2BRBDQAAwKYIagAAADZFUAMAALApghoAAIBNEdQAAABsiqAGAABgUwQ1AAAAmyKoAQAA2BRBDQAAwKYIagAAADZFUAMAALApghoAAIBNEdQAAABsiqAGAABgUwQ1AAAAmyKoAQAA2BRBDQAAwKYIagAAADZFUAMAALApghoAAIBNEdQAAABsiqAGAABgUwQ1AAAAmyKoAQAA2BRBDQAAwKYIagAAADZFUAMAALApghoAAIBNEdQAAABsiqAGAABgUwQ1AAAAmyKoAQAA2BRBDQAAwKYIagAAADZFUAMAALApghoAAIBNBVZ3AQAA+JTbLSsrSyrOkdxBUkhIdVcElBsjagCAWsmxb6/CJ/8/RV7WUpHtL5dat9YFrZqr/ojBCvpqg2RMdZcIlIkRNQBArVPvlZfkfOpJyeORVeTyPm9JCv5olYI+W6+iazvr19f+RwoLq75CgTIwogYAqFVCF86X8+npsgoLSoS0kyxj5MjLVdAXn6vBsEFScXE1VAmUD0ENAFBrOPb+rPCnp8nKzyt72sICBW7ZrHqvv+aHyoDz47egdv/99ysxMVH9+/fXsGHD9O2330qSfv75Zw0ePFi9evXS4MGDtXfvXn+VBACoZUIXvSK5PeWe3pGfp7CX5nK8GmzLb0Ft5syZ+uCDD5ScnKyRI0fq0UcflSRNnTpVw4YN0+rVqzVs2DBNmTLFXyUBAGqT4mLVe/PvZ93dWRorM0OBX6f4qCigcvwW1CIiIrz/z8nJkWVZSk9P165du9S3b19JUt++fbVr1y5lZGT4qywAQC1hZWbKOp/jzYxRwJ6fqr4goAr49azPxx57TF988YWMMVq0aJHS0tIUFRWlgIAASVJAQICaNm2qtLQ0NW7cuNztRkY6fVWyV5MmEWVPhFqD/q5b6O9awvWr5LAqPJvDGNUPcUh8Dmqd2rBt+zWozZgxQ5KUnJysWbNmafz48VXSbnp6jjwe3x1f0KRJhI4ezfZZ+7AX+rtuob9rEXeQLiguVkWjmicgUNmhDeTic1Cr2HHbdjisCg8uVctZn/3791dKSoqaNWumw4cPy+12S5LcbreOHDmi6Ojo6igLAFCThYbK1b2HjFXBqGY8ct2Q4JuagEryS1DLzc1VWlqa9/GaNWvUoEEDRUZGKiYmRitWrJAkrVixQjExMRXa7QkAwEn5D4yXqcAFbE1gkAqGjZBCQ31YFXD+/LLrMz8/X+PHj1d+fr4cDocaNGighQsXyrIsPfHEE5o0aZIWLFig+vXra+bMmf4oCQBQCxVd11XFcZ0U+NUGOQoLSp3WSDL1I5Q/boJ/igPOg2VMzb94DMeooSrR33UL/V0L5eaq4ZABCvhmmxz5+WedxAQGydSPUFbyv+W+PMbPBcIf7Lht15hj1AAA8JnwcGUt+1C5jz0hd/Pm8oQ75QkLk0JD5YmIkCcsTPl3jlTmp18R0mB73JQdAFD7BAWp4N77VPDH0QpK+VIBu39SRL2AE2d39ujJMWmoMQhqAIDay7JUdO11Krr2OkU0ieASHKhx2PUJAABgUwQ1AAAAmyKoAQAA2BRBDQAAwKYIagAAADZFUAMAALApghoAAIBNEdQAAABsiqAGAABgUwQ1AMC5FRfLOnxYysmp7kqAOomgBgA4U1GRwv7ylCIvv0SRHX+rC9perPpDblXATz9Wd2VAncK9PgEAJRmj+r8fouAvPpdVkO99OnjtJwrqdYOy/vOp3K0uq8YCgbqDETUAQAlBX3ymoC83lAhpkmQZIysnR+FPTq6myoC6h6AGACih3j/ekJWXe9bXLGMU/J/Vksvl56qAuomgBgAowcrIkFX6FLIKC/xUDVC3EdQAACUUdbpWpl69c77uadxIxhnhx4qAuougBgAooWD4nZLj7D8PJixM+WMekqzSx9wAVA2CGgCgBNOkiY6//k95wsLkCQ098ZzDIRMaqsJbEpV/733VXCFQd3B5DgDAGYq691DGll2q9883Fbh5o8wFTVQwdLiKr46t7tKAOoWgBgA4K9OosfLvH1vdZQB1Grs+AQAAbIqgBgAAYFMENQAAAJsiqAEAANgUQQ0AAMCmCGoAAAA2RVADAACwKYIaAACATRHUAAAAbIqgBgAAYFMENQAAAJsiqAEAANgUQQ0AAMCmCGoAAAA2RVADAACwqcDqLqAqOBxWrVgG7IP+rlvo77qDvq5b7Nbf51OPZYwxPqgFAAAAlcSuTwAAAJsiqAEAANgUQQ0AAMCmCGoAAAA2RVADAACwKYIaAACATRHUAAAAbIqgBgAAYFMENQAAAJsiqAEAANgUQe00hYWFmjp1qm666Sb169dPkydPliT9/PPPGjx4sHr16qXBgwdr79691VsoKu3AgQNKSkry/ktISFB8fLwk+rs2Wrt2rfr376+kpCT169dPH330kST6urZat26dBgwYoH79+mn48OHav3+/JPq7Npg5c6YSEhLUtm1b/fDDD97nS+vbGt3vBiVMnz7dzJgxw3g8HmOMMUePHjXGGDNixAiTnJxsjDEmOTnZjBgxotpqhG889dRT5sknnzTG0N+1jcfjMXFxceb77783xhjz7bffmvbt2xu3201f10JZWVkmPj7e7Nmzxxhzol9HjhxpjGHbrg02btxoUlNTTY8ePbzbtDGl921N7neC2ilycnJMhw4dTE5OTonnjx07Zjp06GCKi4uNMcYUFxebDh06mPT09OooEz5QWFhoOnXqZHbs2EF/10Iej8fEx8ebTZs2GWOM+frrr81NN91EX9dS27ZtM3369PE+zszMNG3atKG/a5lTg1ppfVvT+z2wukf07GT//v1q2LCh5s+fr5SUFIWHh2v8/2/v/kOrqv84jj/XnbvXi9e6m+7OjWFqUJui3bzdtc26hNVIRvbLGoQKFUM3dbONEgdBoEmjNVOzmdwKlSYsFecWKGpgrRW7eilCCZwGq/3yXlLnFra7e79/iJfdbzjN/bq7vB5wGZ+dcz6f92dvdnjzOeeeU1KCyWTCZrNhMN3+LSAAAAhZSURBVBgAMBgMJCcn09HRQWJi4jhHLSPh5MmT2Gw25s6dy6+//qp8x5i4uDi2bt1KUVERZrOZ3t5edu3aRUdHh3Idg2bNmoXP5+OXX35h/vz5HDlyBED5jmFD5TYUCk3ovOsetUECgQBtbW1kZmZy8OBBysvLWbt2LX19feMdmoyyAwcO8NJLL413GDJKAoEAu3btYufOnXz77bd8+umnrF+/Xv/bMcpisVBdXc2WLVt48cUX8fv9TJ06VfmWCUkraoOkpqYSHx9Pfn4+AAsWLMBqtWIymejq6mJgYACDwcDAwADd3d3MmDFjnCOWkdDV1UVLSwuVlZUAzJgxQ/mOMefOnaO7u5uFCxcCsHDhQiZPnozRaFSuY1ROTg45OTkA+Hw+3G43aWlpyneMGuq8HQqFJnTetaI2SGJiIllZWTQ1NQE3viXi9/u5//77ycjIoKGhAYCGhgYyMjImxJKp3N6hQ4dwuVxYrVYAkpKSlO8Yk5KSQmdnJxcuXACgtbUVn8/HzJkzlesYdenSJQCCwSAfffQRBQUFpKWlKd8xaqjz9kQ/p8eFQqHQeAcRTdra2ti4cSOXL18mPj6e0tJSXC4Xra2tbNiwgatXrzJ16lQ++OADZs+ePd7hygjIy8ujoqKCJ554Ivw75Tv21NfXs3v3buLi4gBYt24dTz31lHIdoyoqKjhz5gz9/f3k5uayceNGjEaj8h0DNm3axLFjx/D5fFitVu677z4aGxuHzO1EzrsKNREREZEopUufIiIiIlFKhZqIiIhIlFKhJiIiIhKlVKiJiIiIRCkVaiIiIiJRSoWaiEiUqK2tJTMzE7vdTltb27D66unpwW63M3fuXHbu3DlCEYrIWFOhJiLDYrfbw5+HHnqI+fPnh9v19fXjHd6w5Obm4vF4xnRMp9OJ1+slPT0dgL6+PlatWsWiRYtwu90R+54/f541a9aQlZWFw+Fg6dKl7Nmzh1AohMViwev18swzz4xp/CIyslSoiciweL3e8Cc1NZWamppw+7nnnhvv8G4pEAhMiDEOHDiA0+nkxIkTNDU10dnZCdx4gOerr77KrFmzaGhowOPxUFVVhcfj4Z9//hn2uCISHVSoicioGhgY4JNPPmHx4sVkZWVRVlbG1atXgRvFRmZmJnV1dTz++ONkZWXx9ddf4/V6yc/Px+FwsGXLlnBftbW1rFixgnfffZdHHnmEJUuW0NLSEt5++fJl3n77bXJzc3G5XOzYsYNgMBhx7Hvvvcejjz7KZ599RmtrK8uXL8fpdPLYY4/xzjvvcO3aNeDGmwv8fj9vvPEGdrudPXv2cOrUKZ5++umI+Q1edfvwww8pKyujtLQUu91OY2PjkPO/079fMBiM+Anw8ccfk5OTQ1lZGdOnTwfggQceYNu2bRiNxv+aJhGJUirURGRUud1umpqa+Oqrrzh16hSTJk2KKL4GBgb47bffOHHiBO+//z6bNm3i888/Z+/evdTX13Pw4EF+/vnn8P4ej4cHH3yQn376icLCQoqLi8PFVXl5ORaLhePHj1NXV8fx48c5fPhwxLEZGRn8+OOPvP766wAUFRXx/fffc+TIES5evEhNTQ0A27ZtIykpCbfbjdfrZcWKFXc036NHj/LCCy9w+vRp8vLybjv/23n55Zdpbm4OF3ppaWkA/PDDD+Tl5d1xPyIyMalQE5FRtX//fsrKyrDZbBiNRoqLi/nmm28Y/Pa64uJiEhISWLx4MQBLly7FarWSmpqK3W7n7Nmz4X1TUlJ47bXXmDRpEs8//zw2m43vvvuOP//8E4/Hw4YNG5g8eTLJycksX76cxsbG8LHp6em88sorGAwGTCYTc+bMITs7m4SEBKZPn87KlSsjVujuhtPpxOVycc8992Ayme5o/kOZMmUKbreb5uZmVq9eDdwobnt6esIraSISu+LHOwARiV2hUIjOzk4KCwvDL0MHCAaD/PXXXwAYDAasVmt4m9FoZNq0aeG2yWSir68v3E5JSYkYIy0tje7ubtrb27l+/TrZ2dkR48ycOfOWx3Z1dbF582a8Xi+9vb2EQqFhFz+Dx7jd/BMTE+9qDIPBgMVi4dKlS8OKVUSinwo1ERk1cXFx2Gw2tm/fzrx58/61/Wax9l/cvJn+pvb2dpKTk0lJScFsNtPS0hJRFP1/PINVVlZiNptpaGjg3nvvpbGxka1bt95yf7PZzN9//x1u9/f3c+XKlVuOcbv5D0dOTg7Hjh0jPz9/RPsVkeiiS58iMqoKCgqoqqqio6MDAL/fz8mTJ++6v87OTmprawkEAhw+fJiOjg4WLVpEeno6Dz/8MJWVlVy7do1gMMjvv/8+5OM1ent7MZvNTJkyhfb2dr744ouI7UlJSfzxxx/h9uzZs7ly5QrNzc309/ezffv28JcVxmr+N5WUlNDU1ER1dTU+nw+ACxcuUFpayvXr14fdv4hEBxVqIjKq3nzzTbKzs1m5ciV2u52CgoKIe87+K4fDwblz53A6ndTU1LBjxw4sFgsAVVVV9PT08Oyzz+J0Olm/fj1+v/+WfZWUlHD69GkcDgdr1qz51zPHVq1aRXV1NQ6Hg3379pGYmEhFRQXl5eW4XC6mTZsWcdl2LOZ/05w5c9i/fz/nz59nyZIlOBwO3nrrLRwOBwkJCcPuX0SiQ1zoTu9oFREZZ7W1tRw9epQvv/xyvEMZFXV1dWzevJn4+HgOHToUfujt3ejp6eHJJ58kEAhQVFREYWHhCEYqImNF96iJiESJZcuWsWzZshHpy2KxjPlbFURk5OnSp4iIiEiU0qVPERERkSilFTURERGRKKVCTURERCRKqVATERERiVIq1ERERESilAo1ERERkSj1P1+uOOPYRB1VAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlwAAAHtCAYAAADMYqD9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3XecHXW9//HXZjeNJCLIiiIlEvGjiBSDNAUiRWyABXsDFSz4Q0SseBW8WK5XQS9YuHSxXxQLVwSlo1EkooDlowjx2sAIMaSyye75/TGzsoTds7vJ+W59PR8PHmTPmfnO58x3Zs57vjPnnLZGo4EkSZLKmTLaBUiSJE10Bi5JkqTCDFySJEmFGbgkSZIKM3BJkiQVZuCSJEkqbFwGroj4TET8JCLa+zzWHhE/iohTI2L3iLh4CO0sjojd+3n8iIi4psVlD0tEfC4i7oyID7e43cdGxDfqf28VET9uZftNltvv6+lbz3gQEZtGxFWFl9GIiFsj4jkRcU1EHFFgGW+IiLfU/35TRLxnA9vZJiJ+ERFd/e1L6017ZERcugHLOCki/i8izouIXSPiDxGxaEPbG2AZJ0fEkoj4zgbOf0FEnNiKWkqIiC0iYkS+A6iV/TLIchZExG0jsJwhb+MbsYxLI+LIEm1viIg4MyJO7ufxIyNiWUTcVGi5J0fEmSXaXm85h0XEf23gvMdGxO0bsu2Ny8AFvAOYBby3z2PvBbqBD2bmTZnZ8jepEfZGYN/MPKnF7W4HBEBm/jUz92lx+wMZ6PX8q55xYjNgjxFYzjMy83sF2386sAlAZn4+Mz+2IY1k5p8yc1fgr60sbj2vB16Rma8DDgOuzsz5BZbztcw8rEC7GsdGaBsfT67PzCLBc6Rk5ncy87gNnPczwBs2ZN6ODZlptGXmmoh4BfCj+kyqDXgL8NTM7I6IBcCZmblTREwD/gPYH2gHbgaOy8z7+rYZER8CXgncA/y+v+VGxBTgdGAvYE693Ddk5o8i4unAafUyGsBHM/MbQ51/vemur5+7rB6FuAg4IjNvqp9fDBwB/AO4EvgesCdVGHhXZl4SER3Ax4HnAeuAHwPHAucAj4mIy6lC0G2ZOTsiptb1H0gVXH8KvD0zl9fLu6B+blvgC5n5b/2snycBZwKPqNfBJzPzC+u/nsy8vp6+vW89mXlIROxD1V+z6jpOyczes78XUZ0kbAf8GTgbeCvweOC0zPxkPd2L+0z3F+C1mfnXiNgU+DTwZGBqve7emZnrIuJ+4NvALlTbwc71+pkGbA58LDM/B5wPzIyIXwDz63XbmZn/qF9TA+gEdqqXtRKYDTwVeCbw/rrNVcCJmblw/fU4kIh4PvDB+rUtB07IzBsH6Ou3UG0PZwFbAo8C/gi8BHgaVXA5OCJW1/VukZlvbdKHC4APA3fUr20q8Mb1t90heHREfB/Yqq7n6My8KyL2ql/DdODRwA8y8/UR8TVga+DciPhI/braI2Im8IM+66ZZ354CvADootq/j8zMvw2yrl9HdWLXTbWfvTYz/xQRxwDH1Y/fDbw1M3+33rz7Av9JFWi7gPdn5vfrbfOIzHxePd2//o6IC6i2s3nApZn57j7tNTvuXADcV7/ubYBbgNdk5oqIeCFVn60Cftbkta6h2vcPotpWT6bah55MFTIOzcyV9Tp5yD5Rv47XU+2zy4AL+7R9BNX+/JzMzIh4PVUfTqHqi7dm5m8Hef2zqfa7HYAeYFFdB8DsiPgq8ARgBtX2dH1EPB74TL2+Hg38Anhp/d6xDvgY8Oy65vdl5jfrZfVb30Drrp7necD76vXySODCzPy3ZvtMRGxVr6fe/eCRA7Td7/tKvb5WA7vW815B9b62NiKeSLUvPKKe778y87y6vUPp5xgUEQ+jOhbvAvyN6jhywyCvey5wFdV+OJ8qT3yAqm+eANwEvDwzeyLifcDhwEyqdX5i/T51MrB3vR5+Cdzep/3jgaOAQ+pjxEk88B6wGHhLfVy/Bri3XubnMvOMPm08CvgCsEX90P/WfXMk1Xvo4VTbU6/N6/X5iPr19HtMabZemhmvI1xk5q3ASVQbyXnA6zPzL/1M+h6qjWd+Zu5CdQB50Nl8RBxO1ZG7AvsAmw6w2D2pNoy9M3NHqh2m91LMKVRv+vOB1wEHDHP+vq9t3/qfz+gNJ01sD1yemXvUbX2qfvwtVDvBLlQ7+xyqN9s3AH/IzEPWa+f9dW271P9NoXrT6DW7rmsf4MSIeGzfmes3/e8AZ2TmzlQHs49ExN4DvZ7M7O5bT0RsRnVgfXVmPoVqZ/hcRGxbz7Iv8CaqMLQN8DKqEPgc4NT6jQmqcP22eh0vAnqHjk8HFtV9tBvVTnhC/dw04LuZGcBvgaOp3iR2A15KFQagOgCszsxd6/qb2YnqgLMzVVD9SJ82jwG+GRGzBmkDgIh4AvB54EX1dvwB4Nv1gbK/vn5pvX4WZubeVNvJKqp1ewlVX51en631LmPAPqwn2ZMqgO1G1U8fGUrt63k81ZvYzsCtVAc0gLcBH8jMPYEdgcMiYn5mvpRqn31lZl5Yr4OvZeYr12u3376NiG2A46lOxnanemPas1mBEbELVUh4Vl3nd4CTIuIA4F1U2/EuwJeBb0VEW595HwFcTLX97Qy8Fvji+vvLADbJzCf1DRu1wY4b84FnAU8E5gIvjogtqY6LL6rXyR+bLHc6cFd9DLmQ6ph6PFU/bAocXoeegfYJgCcBCzLzGX3WxcupwtuCOmztX6+Pfes2Pg5cMoTX/wJgTj3K9NT6se3r/29NtR3vSnVycXL9+NFUwWcv4HHAY4Hn1s+1A6vq9fIS4LyI6BxCfQ9R9/07qAL57lSh+L0R0fsGP9A+8xngJ5n5JKoA/4QBFtHsfWVP4GCqftoReGO9D18MvKeeZ3+q4/VeEbEDAx+DTqEKcE+gCttDverwWKoQszuwkGp/fjnV9rAvsFdEbEcV5hfU+8RJwIf6tLEdsFtmvqr3gYh4V13H/nXYeg1V8Nmj7uvvUW2nvZZm5o59w1btaOCO+v1kX2CH+uQMqN6D6mP5rvW6XU51QraS5u8XG2RcjnD1yswz6jOoX2fmZQNM9jzg4VRn81C9sf59vWkOAr6ZmcsBIuI8qp1g/eUtjIj3U23Y84AFVB0E8HXgM/UZxA+pzniGM/+GWku18QH8nCqh976mizJzdf33S+vXtmCAdp4NnJSZa+vpzgC+1ef5b9ev4S8R8fd6OXf2ef7xwIzeM8X6zOMbVG8EQx3F2ZvqbPRbdV9BdVa3c/3vn2Xmn+r67gSuqM+e/kB1drtJPd0VfUYdzqY6u4VqW9ijPouF6myrr+vr2lfUZ63PrQ9Su1Kd+Q/XnzKz943u4Pq1XdnntfVQvRn8cghtHQBcmZl31DVeVffDfAboa6hGWyLiBKrRgZ2oRi4H0qwPrwb+mJm96/LnwJFDqHt9P8zM3rPYc3lg5OW1wHPqM+EnUPXNcNb5QH37Car1+/OIuAy4LDOvHKStA6lOYv4EkJmfAoiIj1OFvSX14xdExKepQk6vPYHbM/On9TS/iogfUe3rg91D1e+IwhCOG9/PzPvrGm+l2jefDtyamb+upzmL5gG5dzT+D/V8f6nbuxPYfAj7xC354KsGT6Xabo7vXY9UgedxwI/77AObRUTvMWugEZUbqIL/NVSjKZ/KzNsjYmuqk7XebfoXVKEE4N1Ux/x3UW3XW61X75kAmXlLvc72o+q7fuvLzHv7KywzG/Ux/3lRXXV5ItUIZO+J1ED7zEHAiXUbt8fA94U2e1+5IDNXAETEF4DnU404zaMKkb3TzaQKDG0MfAw6iKqvGsCSiGgaNPtYC3y3/vcfgB/3bgcR8VeqbefHdWB6ZUQ8jiqU9u2Ln+SDR41eWNd5aGb+s37seVS3ctxU197OA8d7qI/d/fg+8L36pP2HVEF0WZ/XT13rzPp1XJSZX+27zCbvF8M2bke4+riTqqMH0k51ttmbYvegGkpcX1uff/c7ZBgRzwX+t/7z21Rn220AmXkWVQL/AXAIcEtEzBjq/INorDfdtD7/7srMnn6mW0efA3xEbBkRj26yjHYe/IYwhWoYtdfqPv9ev57+5u+vjcG0A7/p7au6v/YCLq+fv3+96dcO0E7f/ptCdfmnt/0X92l7T6pLkr16D15bUx28t6M62L9/kLrb6vmmrff4ivVe25X9vLah3njZbP3229cR8R9UZ5JLgP+mGt1ptr0N1oeDbQND0XdUcAoP9OF1VCOVv61r/ssw2++3b+t9Y3+qN7p7gNPr4NTM+utzZj3C2N/6aePB23izddhsP4YHby//MoTjxkD9MugxrY+++9ZD9qsh7BPr1/5PqkvoJ9eXnqBaNxf16aOnALsDSwdoA4DMvJMqFHwUeBjwwzqArF9r39f+FaoRnD9SjVT8nIHXR+8xYrD6HqIeHbq5nvbnwDvrmnqXNVDfrL8t9Ns/g7yvDPQalvVznDmfwY9Bw9leenXVIa1Xf9vOU6hOuh9GdQz6j/WWtX6/3071Hv3ZiHh4/Vg78B996t6d6taIgdoAIDN/RjUK999UJ0Y3RsSD7v+M6taWL1PdXtP36tdg7xfDNhEC12AuB94aEdPqS05nU+24fV1GNQz/8HqaVw/Q1sFUl50+R3V9+vlUnUJUn/bbLTMvoNrRH05138yQ5h/EEqoNrHeEqllw6vVD4BURMb1+TZ+jGupdR/8h6PvAmyNiaj39sfS5R2YIfgusjeq+EaK6R+FFQ2ijbz0/oRry3a9uY1eq++keM4w6AA6MiN553sQDZ2CXA2+PiLaImE51qai/HWh3qnV+KtUBoveem/a63vY+l5H+1TfAK5rUdCXwzPqNm4h4DtX9NkM9a7oSOCQitq/nP4DqsupPGbivD6EaDbiIalT3YB7Y3vrbDja0D4fjGfHAJeI3Ud3X93CqEZF316NrW1O9wQ5l3+jVb99GdXnwNqog/1GqN9+nNmkHqtG8g/qcoLyR6vLS94GXRUQnQEQcRRXibu8z70LgCRGxRz3Nk6hGT66h2lZ2iogZUd0zOdQP9mzIceM64En164cNG43sq9k+0Z/fZ+ZVwBnAF+rt8nLg5X3W65uotuumIuLNVIHhivpy4+VUAaeZQ4APZebX6r/35MHr7DV120+hGlG9dgPr24EqSLw/M79LNfo4ncH75/tU7xPU+8Mz+ptokPeVl9b7/AyqEeLvAgmsjohX1fNvQ7X9z6f5Megy4PURMSWqWzsOH6T+4dgPuCkzT6Naz4Ntv7dkdf/zlVSXXqHqmzdEdQsFVCdlFw224Ij4GPBvmfktqtsWfkU10t/XmVTHwmPXe3yo7xdDNhkC179T3WB3M/BrqmT9jr4TZPVpsPOoDmY/pbrxsz+fBxbUQ9A/pxpZe2x9MHkX8KGIuJnq4HpKZi4exvzNvBt4W1Q3ar+aB9/kN5Cz6ukWUd0r8zeqe5l+DayJiBt58FnGqcBdVGexv6HaAN82hOUAUF+KfH5d5y1UIeBDmXn1ILP2recfVG/w/xkRv6TaoV7dz3oczJ+BiyLiN1RnNcfXjx9HNdR/K9WB5lYefB9KryvqNpJqXWxL9WbzOKr1eCPwq6ju1zmOasj/51SXE/q9Gbu+tHMM8NX6tf07cFjvJYHB1PO/heqei9uo7kM8NDOXMXBffwj4RN0f36EamXhc3eRlwJsi4r19lrGhffggEfG9iBjo0363UF3uuI1qvZ5QXzb4KNVlv9uo7k/6UZ9ah6Lfvs3MX1Jdlrkpqo+yv45B7sPI6v7QdwLfr/vqWcCbMvMHVIHtqoj4FdWb3PP6jDCT1YcnXgycUe/nXwaOqi9xX0H1hvNbqkA01I/WD/u4UV/2fAXwpXrbHMo9ZM002yea+TBVv7wzM3tHN35Qb1+vAF643ghJf75A9Qb964hYRHVf2WAf6X8fcEm9zs6iWu99a31avV7Oo7qZfukG1ncLcCnw2/p4cyjVMW2w9XIssGM9z7k8cNvD+pq9r6yiupR2a/3/8zOziyosvaF+DVdQBY4fDXIMOplqdOq3VMHt1kHqH46vAFvUr/XXVKNRm0fEnEHmOx7YLyJeQnW/1qXAT+p9b2eGdhLxKWDX+rhyE9UVsd5LhkR1f+qbqE5efxbV13/8Iqqv/xjq+8WQtTUaI/LVLNKIiPU+CTYeRf1Jx/rNe1yI+pOzmXlTRBxNdf/a90e3qqGL6tNSW2TmRp3Bauzb0P2r7zZeoq7hiOpTirdl5idGeLlHMs6Pr60Qfb4JYTjzTYYRLmk8uroe8h/Tov5SSKqbknutYwiXisagl8YGfvGpJq4BtvHJbN8o9MWn40FE9H690rA5wiVJklSYI1ySJEmFGbgkSZIKM3BJkiQVNqa/aX7JkuUjcoPZZpttwtKlq0ZiURoD7O/Jw76eXOzvyWOs9nVn55wBv7DZES6go2M436+o8c7+njzs68nF/p48xmNfG7gkSZIKM3BJkiQVZuCSJEkqzMAlSZJUmIFLkiSpMAOXJElSYQYuSZKkwgxckiRJhY3pb5rfWN3d3SxefMeg0y1dOpt7713RdJq5c7envX38fdGaJEkafRM6cC1efAd77z2/JW0tXLiIefN2aElbkiRpcvGSoiRJUmEGLkmSpMIMXJIkSYUZuCRJkgozcEmSJBVm4JIkSSrMwCVJklSYgUuSJKkwA5ckSVJhBi5JkqTCDFySJEmFGbgkSZIKM3BJkiQVZuCSJEkqzMAlSZJUmIFLkiSpMAOXJElSYR2jXUBJc+duz8KFiwadbvPNZ3PvvSsGbUuSJGlDTOjA1d7ezrx5Oww6XWfnHJYsWT4CFUmSpMnIS4qSJEmFGbgkSZIKm9CXFCeK7u5uFi++Y6PbmTt3e9rb21tQkSRJGg4D1ziwePEd7L33/I1uZ+HCRUO6p02SJLWWlxQlSZIKM3BJkiQVZuCSJEkqzMAlSZJUmIFLkiSpsKKfUoyI9wKHAdOAzwLXAhcADeA24NjM7ClZgyRJ0mgrNsIVEQuAfYCnAfsD2wCnAe/PzH2BNuDwUsuXJEkaK0peUjwEuBW4BPgucCkwn2qUC+Ay4KCCy5ckSRoTSl5S3ALYDnge8FjgO8CUzGzUzy8HNm3WwGabbUJHx8h8M3pn55wRWc6GWLp0dkva2Xzz2WP6dY4k18PkYV9PLvb35DHe+rpk4LoH+G1mdgEZEWuoLiv2mgP8s1kDS5euKljeAzo757BkyfIRWdaGuPfeFS1rZyy/zpEy1vtbrWNfTy729+QxVvu6WQgsGbhuAN4WEacBjwZmAVdGxILMvAZ4NnB1weVLo87fwZxc7G9JAykWuDLz0ojYD7iR6l6xY4E7gbMjYhrwG+DiUsuXxgJ/B3Nysb8lDaTo10Jk5rv6eXj/ksuUJEkaa/ziU0mSpMIMXJIkSYUZuCRJkgozcEmSJBVW9KZ5tcbcuduzcOGilrQjSZJGnoFrHGhvb/cj4pIkjWNeUpQkSSrMwCVJklSYgUuSJKkwA5ckSVJhBi5JkqTCDFySJEmFGbgkSZIKM3BJkiQVZuCSJEkqzG+alwryZ5kmF/tb0kAMXFJB/izT5GJ/SxqIlxQlSZIKM3BJkiQVZuCSJEkqbELfw9Xd3c3ixXcMOt3SpbO5994VTaeZO3d72tvbW1WaJEmaRCZ04Fq8+A723nt+S9pauHCRN8NKkqQN4iVFSZKkwgxckiRJhRm4JEmSCjNwSZIkFWbgkiRJKszAJUmSVJiBS5IkqTADlyRJUmEGLkmSpMIMXJIkSYUZuCRJkgozcEmSJBVm4JIkSSrMwCVJklSYgUuSJKkwA5ckSVJhHaNdQElz527PwoWLBp1u881nc++9KwZtS5IkaUNM6MDV3t7OvHk7DDpdZ+cclixZPgIVSZKkychLipIkSYUZuCRJkgozcEmSJBVm4JIkSSrMwCVJklSYgUuSJKkwA5ckSVJhBi5JkqTCDFySJEmFGbgkSZIKK/rTPhFxM7Cs/vNO4LvAfwJ/qh/7YGZeW7IGSZKk0VYscEXEDIDMXNDnsVOBd2XmN0otV5IkaawpOcK1C7BJRFxRL+d9wHxgt4g4HrgReHdmritYgyRJ0qhrazQaRRqOiCcDewHnADsAlwFnARdTXV78PHBrZp45UBvr1nU3Ojrai9QnSZLUYm0DPVFyhOt3wO2Z2QB+FxH3AF/JzD8BRMS3gRc1a2Dp0lUFy3tAZ+cclixZPiLL0uizvycP+3pysb8nj7Ha152dcwZ8ruSnFF8HfBIgIrYCNgV+GhFb188fCCwquHxJkqQxoeQI17nABRFxA9AAjgJmA9+MiNXAr4GzCy5fkiRpTCgWuDKzC3hFP09dUWqZkiRJY5FffCpJklSYgUuSJKkwA5ckSVJhBi5JkqTCDFySJEmFGbgkSZIKM3BJkiQVZuCSJEkqzMAlSZJUmIFLkiSpMAOXJElSYQYuSZKkwgxckiRJhRm4JEmSCjNwSZIkFWbgkiRJKszAJUmSVJiBS5IkqTADlyRJUmEGLkmSpMIMXJIkSYUZuCRJkgozcEmSJBVm4JIkSSrMwCVJklSYgUuSJKkwA5ckSVJhBi5JkqTCDFySJEmFGbgkSZIKM3BJkiQV1jHaBUjSWNTd3c3ixXdsdDtz525Pe3t7CyqSNJ4ZuCSpH4sX38Hee8/f6HYWLlzEvHk7tKAiSeOZlxQlSZIKM3BJkiQVZuCSJEkqzMAlSZJUmIFLkiSpMAOXJElSYQYuSZKkwgxckiRJhRm4JEmSCjNwSZIkFWbgkiRJKszAJUmSVJiBS5IkqTADlyRJUmEGLkmSpMIMXJIkSYV1lGw8Im4GltV/3gmcBXwaWAdckZmnlFy+JEnSWFAscEXEDIDMXNDnsV8ALwLuAP43Ip6SmT8vVYMkbai5c7dn4cJFLWlHkkqOcO0CbBIRV9TLORmYnpl/AIiIy4EDAQOXpDGnvb2defN2GO0yJE0QJQPXKuATwDnADsBlwD/7PL8c8NRPkiRNeCUD1++A2zOzAfwuIpYBm/d5fg4PDmAPsdlmm9DR0V6wxAd0ds4ZkeVobLC/Jw/7enKxvyeP8dbXJQPX64AnA2+JiK2ATYCVETGP6h6uQ4CmN80vXbqqYHkP6Oycw5Ily0dkWRp99vfkYV9PLvb35DFW+7pZCCwZuM4FLoiIG4AGVQDrAb4EtFN9SvGnBZcvaYxpW34fM847myl//Qtt999PY+YmdO/weNa88jUwffqw2uru7mbx4juaTrN06WzuvXdF02nmzt2e9vaRGUmXNHkVC1yZ2QW8op+n9iq1TEljU/utv2Tmuf/NtGuvpv0vf37I8zPP+Txd+x/AqmOPo7H1NkNqc/HiO9h77/kbXdvChYu8OV5ScUW/h0uSpl9yMbM+eBLtd/1twGk6bv89Hbf/nmnXX8vy089g3VP3HMEKJak8v2leUjHTvncps95zYtOw1VfH737LnGOPYcqvf1W4MkkaWQYuSWWsXMmsU95P+9J7hzVbx+I7mfPeE6HRKFSYJI08A5ekImaedzYddza/qX0gU2+6kalXX9XiiiRp9Bi4JLVeo8G0Ky7b4Nnb1q5l+te/3MKCJGl0GbgktVz775KpP79po9qYduNPoKenRRVJ0ugycElquSmL76Rt7dqNaqNt+X203besRRVJ0ugycElqvY0MW0A1utXtCJekicHAJanlerbdjkZb20a10Zg1i8amm7aoIkkaXQYuSS3XvdOTWbfTzhvVxrpdngIdfjezpInBwCWp9aZMoevAgzZ49kZbG2sOf0ELC5Kk0WXgklTE6mOOpXvLR23QvOuevDNdL3xxiyuSpNFj4JJURGOLLVj1tnfQmDFjWPN1b9HJyvd9AKZ4eJI0cXhEk1TMmje8kZXveDc9s+cMafruRz2Klad+jLUHHFy4MkkaWd6RKqmo1W97B93bP44ZX7qQqT9ZyJRVKx8yTfdmm7H2afuy+o1vZd2ee41ClZJUloFLUnFdhx5O16GH0/6Lm5n5pS8w5e67YM0a2GQTurfdltVveBM922432mVKUjEGLkkjpnvX3Vix624taWvu3O1ZuHBR02k233w29967YtB2JKk0A5ekcam9vZ1583ZoOk1n5xyWLFk+QhVJ0sC8aV6SJKkwA5ckSVJhBi5JkqTCDFySJEmFGbgkSZIKM3BJkiQVZuCSJEkqzMAlSZJUmIFLkiSpMAOXJElSYQYuSZKkwgxckiRJhRm4JEmSCjNwSZIkFWbgkiRJKqxjoCci4o5B5m0DejJzXmtLkiRJmlgGDFzAauA5TZ5vA/63teVIkiRNPM0C1xsz84/NZo6IN7a4HkmSpAlnwMCVmTf0/Tsi9gROA6YDp2Tmd9efRpIkSQ814E3zETFtvYc+ALwQeC7wiZJFSZIkTSTNPqX4zYh4VZ+/7wGOAl4N3Fe0KkmSpAmkWeA6FJgWEZdGxDOBNwNLgfupRrkkSZI0BM3u4WoA50XEl4ETgDcCH87Mn49UcZIkSRNBs3u49oqIbwDnAd8CjgFeExHnR8RjR6pASZKk8a7Z10KcC7wGeBhwTmbuAxwfEfOAU+rnJEmSNIhmgasHeCwwG1jb+2Bm/gHDliRJ0pA1u2n+RcA+QACvajKdJEmSmmg2wvXMzDyh2cwR8dbMPLPFNUmSJE0ozQLXOyOi2fdttQEnAgYuSZKkJpoFrquAZwwy/9UtrEWSJGlCavY9XEeNZCGSJEkTVbOb5iVJktQCzS4pbrSIeCSwCDgY2AT4LvD7+unPZebXSi5fkiRpLCgWuCJiKnAWsLp+6CnAaZn5yVLLlCRJGotKXlL8BPB54K/13/OB50bEdRFxbkTMKbhsSZKkMaOt0Wi0vNGIOBLYOjNPjYhrgDcBewO3ZOaiiDgJ2CwzT2zWzrp13Y2OjvaW1ydJklRA20BPlLqk+DqgEREHAbsCXwAOy8y76ucvAc4YrJGlS1cVKu/BOjvnsGTJ8hFZlkaf/T152NeTi/09eYzVvu7sHPji3YCBKyLuBAYc/srM7Zs8t1+fdq6hGuH6dkT8v8y8ETiQ6mZ6SZKkCa/ZCNcCqqGxDwB3ABcA64BXUv2o9XC9GTgzIrqAu4BjNqANSZKYFD1cAAAYbElEQVSkcafZF5/+ESAids7M1/V56pMRMeTRqcxc0OfPfYZdoSSNJV1dzPjSF5h2/TWwbBm0d9DT2cn9LziCtQceDG0D3sIhaRIbyj1cbRFxQGZeBRARz6Ya6ZKkyaPRYOanP8mM//kqHb//3UOennHJxazdbT6rj30bXc953igUKGksG0rgegNwYUQ8muprJBYDry5ZlCSNKY0Gs959AjMvuoC27u5+J2lbt45pP/spHW8/lhXL/sn9L3/VCBcpaSwbNHBl5s3AzhHxCKCRmfeWL0uSxo6Z/3Va07DV15SlS5n17x+ke7u5rNvn6SNQnaTxoNmnFK+mn08pRgQAmXlAubIkaYxYu5bp3/j6kMJWr/Z/LGHm+eew3MAlqdZshOvkkSpCksaqGV/5IlN/+5thzzf1hutou+tvNB716AJVSRpvBvxpn8y8tvc/qpvknwgspLqseO1IFShJo2nqddds0Hzt9/yDGV/5YmuLkTRuDfpbihHxNuBU4ARgDnBWRDT9SR5Jmija7rtvg+edshHzSppYhvLj1UcChwArM/Me4KlUP90jSRNf+1AOk/1rdJT69TRJ481QjiTdmdnV5+81wNDvHpWkcaznkVtu+LyP2bqFlUgaz4YSuK6NiE8AsyLi+cB3gCvLliVJY8OaF7+MxrRpw55v3bwdWON3cUmqDSVwvRP4PfBL4DXA9wDv4ZI0Kax7+n6snf/UYc/XteAZMH16gYokjUcDBq6IeFT9z62By4B3AMdTjXBtVb40SRobVr3tBLq36Bzy9Gt3ejKrjn9nwYokjTfNRrjOqf9/LXBNn/96/5akSWHtAQez8tSP0b3lowaf9sk7c99nz6Gx5Ybf+yVp4mn2EZqXAmTmY0eoFkkas+5/4Yvp3nY7Zpx3NtOuu4b2v9/9oOfXPT7o2v8AVr3tHTQe+chRqlLSWNUscP0yIo7KzOtHrBpJGsPW7b4HK3bfg7Z77mHGVy6ibdkymDKFnm22Zc1LXg4bcHO9pMmhWeB6C3B+RHwbeF9m3j9CNUnSmNZ4xCNY/dbjR7sMSeNIs5/2uQLYuf7zxojYNyK27f1vZMqTJEka/5p+DXJmroqIf6P6pOJ3gKVAG9AAti9fniRJ0vjXNHBFxPOAM4HLgW0zc/mIVCVJkjSBDBi4IuJ/gKcAr89Mv1lekiRpAzUb4boL2DkzV45UMZIkScPR3d3N4sV3tKStuXO3p729vSVtrW/AwJWZ/6/IEiVJklpk8eI72Hvv+S1pa+HCRcybt0NL2lrfUH5LUZIkSRvBwCVJklSYgUuSJKkwA5ckSVJhBi5JkqTCDFySJEmFGbgkSZIKM3BJkiQVZuCSJEkqzMAlSZJUmIFLkiSpMAOXJElSYQYuSZKkwgxckiRJhRm4JEmSCjNwSZIkFWbgkiRJKqxjtAuQJEnaUHPnbs/ChYta1lYpBi5JkjRutbe3M2/eDqNdxqC8pChJklSYgUuSJKkwA5ckSVJh3sMlSSqjq4vpl36bKXf9DRoNejZ/BPc//0Uwc+ZoVyaNOAOXJKmlpixezMyzP8e0a66i4/f5oOfWfeoTrN3/Gaw66mh6nrjj6BQojQIDlySpZaZ/9cvMOvVk2v9+V7/Pd9x5Bx133sH0S77ByhPexZo3v3VkC5RGiYFLktQS07/6ZWaf9E6mLF8+6LRTlv2T2R85BXp6WHPscSNQnTS6vGlekrTRptx5B7NO/eCQwlavtvvvZ9bpH6dj4Y8KViaNDQYuSdJGm3nO52n/+93Dnm/Kffcx40sXFahIGluKXlKMiEcCi4CDgXXABUADuA04NjN7Si5fkjQC7r+faVdftcGzT7vuatqW3ktjs81bWJQ0thQb4YqIqcBZwOr6odOA92fmvkAbcHipZUuSRs70b3+Tjtt/t8Hzt9/1N2Z82VEuTWwlLyl+Avg88Nf67/nAtfW/LwMOKrhsSdIImbIBlxLX17Z0aQsqkcauIpcUI+JIYElmXh4R760fbsvMRv3v5cCmg7Wz2Wab0NHRXqLEh+jsnDMiy9HYYH9PHvb1CNhk2kY3MWtGB7Na0Ff29+Qx3vq61D1crwMaEXEQsCvwBeCRfZ6fA/xzsEaWLl1Vprr1dHbOYcmSoX+yRuOb/T152NcjY0bHTDb2rW9F+3RWb2Rf2d+Tx1jt62YhsMglxczcLzP3z8wFwC+A1wCXRcSCepJnA9eXWLYkaWTd/8Ij6N5m2w2ev3uzzbn/xS9rYUXS2DOSXwvxDuCUiFgITAMuHsFlS5IKacyeQ9f+z9jg+dfuux89W2/Twoqksaf4N83Xo1y99i+9PEnSyFv9mtcx/TuXMOW++4Y1X2P6dO4/4qWFqpLGDr/4VJK00bp33Y1Vx51AY9rQb6BvtLWx+qij6XrWcwtWJo0N/paiJKklVh93AnR3s8kZn2LKiuY3NDemT2f1UUez8pQPj1B10ugycEmSWmb129/J2t3mM/OrX2Lq9dfQvmTJg57vefhmdD19X+5/0Uvoeu5ho1SlNPIMXJKkllq34ACWLziAtrvvZsZXLmLKsmXQaNAzZw73H/FSerabO9olSiPOwCVJKqKx5ZasPv7E0S5DGhO8aV6SJKkwA5ckSVJhBi5JkqTCvIdLkqQBtN19FzMvOJe2e+6hbfVqGjNn0thiC1a/9vU0ttxytMvTOGLgkiSpr0aDqVf9kBlf/wpTb7j2IV9tATDjwvNYu+/+rHnxy1l7wIHQ1jYKhWo8MXBJktSru5vZ73o7M772Zdq6ugacrH3J32n/5v8w/dJvs+alr2DFx0+H9vYRLFTjjYFLkiSAnh7mvOUNzLjkG0Oepa2ri5kXXUDbihUs/9w5MMVbo9U/twxJkoBNTvk3pg8jbPU1/ZKL2eSUf2txRZpIDFySpEmv7R//YMY3vs6G3onVBtX899zTyrI0gRi4JEmT3sz//iztf797o9po//vdzPzvz7SoIk00Bi5J0uTW08O0q37QkqamXfVD6OlpSVuaWAxckqRJrf2XN9Nx6y0taavjll/S/subW9KWJhYDlyRpUmv/vz/S1mi0pK22RoP2P/+pJW1pYjFwSZImtbY197e2vVWrW9qeJgYDlyRpUut59KNb295jtmppe5oYDFySpElt3W5PoXurx7Skre6tHsO6XXZrSVuaWAxckqRJrTHnYXTtt6AlbXXtv4DGnIe1pC1NLAYuSdKkt+ZVr6UxY8ZGtdGYMZM1r3xtiyrSRGPgkiRNeuv22IuuvZ+2UW107f001u2xV4sq0kRj4JIkCVh++pms3XGnDZp37Y47sfz0M1pckSYSA5ckSUBjq8dw31nnsXbnXYc139pdduW+s86l0aIb7zUxGbgkSar1xBNY9pVvsPqVr6F7m22bTtu9zbasfuVrWPblb9ATTxyhCjVedYx2AZIkjSWNzk5WnH4mbSuWM+Ocs5h27dW0/eMftK1ZTWPGTBpbbEHX/gew5g3H0Jg9Z7TL1Thh4JIkqR+N2XNYffyJrD7+xNEuRROAlxQlSZIKM3BJkiQVZuCSJEkqzMAlSZJUmIFLkiSpMAOXJElSYQYuSZKkwgxckiRJhRm4JEmSCjNwSZIkFWbgkiRJKszAJUmSVJiBS5IkqTADlyRJUmEGLkmSpMIMXJIkSYUZuCRJkgozcEmSJBVm4JIkSSrMwCVJklSYgUuSJKmwjlINR0Q7cDYQQDdwFLAp8F3g9/Vkn8vMr5WqQZIkaSwoFriAQwEy82kRsQA4jSpsnZaZnyy4XEmSpDGl2CXFzPwWcEz953bA3cB84LkRcV1EnBsRc0otX5IkaaxoazQaRRcQERcCLwCOAB4D3JKZiyLiJGCzzDxxoHnXretudHS0F61PkiSpRdoGfKJ04AKIiEcBPwX2ycy/1I/tCJyRmQcONN+SJcvLFwd0ds5hyZLlI7EojQH29+RhX08u9vfkMVb7urNzzoCBq9glxYh4dUS8t/5zFdADfDMi9qgfOxBYVGr5kiRJY0XJm+a/CZwfEdcBU4HjgT8BZ0ZEF3AXD9zjJUmSNGEVC1yZuRJ4ST9P7VNqmZIkSWORX3wqSZJUmIFLkiSpMAOXJElSYQYuSZKkwgxckiRJhRm4JEmSCjNwSZIkFWbgkiRJKszAJUmSVJiBS5IkqTADlyRJUmEGLkmSpMIMXJIkSYUZuCRJkgozcEmSJBVm4JIkSSrMwCVJklSYgUuSJKkwA5ckSVJhBi5JkqTCDFySJEmFGbgkSZIKM3BJkiQVZuCSJEkqzMAlSZJUmIFLkiSpMAOXJElSYQYuSZKkwgxckiRJhRm4JEmSCjNwSZIkFWbgkiRJKszAJUmSVJiBS5IkqTADlyRJUmEGLkmSpMIMXJIkSYUZuCRJkgozcEmSJBVm4JIkSSrMwCVJklSYgUuSJKkwA5ckSVJhBi5JkqTCDFySJEmFdYx2AZIkbbCeHqb+6HraF98BnZsx5cm70/OYrUe7KukhDFySpPFn5Uo2OeN0pl31Azpu+SVtPT0APHyzzVm7736sedkrWXvQIaNcpPQAA5ckaVxpu/suHvb61zDtxp885Ln2pffS/p1vMe3KH7LquLez+u3vHIUKpYfyHi5J0vjR1cXD3vi6fsNWX1NWrmDW6f/JjAvOHaHCpOaKjXBFRDtwNhBAN3AU0AZcADSA24BjM7OnVA2SpIllxhcvZNqPbxjStG1r1jDjwnNZ8+ojob29bGHSIEqOcB0KkJlPAz4AnFb/9/7M3JcqfB1ecPmSpAlm2mX/O6zpO351G9Mv/mqhaqShKxa4MvNbwDH1n9sBdwPzgWvrxy4DDiq1fEnSxNJ27z1M/cWi4c0DTL3+ujIFScNQ9B6uzFwXERcCZwAXA22Z2aifXg5sWnL5kqSJo23ZMtpWrBj2fFNWrixQjTQ8xT+lmJmvjYh3Az8FZvZ5ag7wz2bzbrbZJnR0jMx1987OOSOyHI0N9vfkYV9PIOseCTNmwDAD1PRNZ7sdTEDjrU9L3jT/amDrzPwosAroAW6KiAWZeQ3wbODqZm0sXbqqVHkP0tk5hyVLlo/IsjT67O/Jw76eYNpn8fDHP4GpNw/vsuKK7YPVbgcTyljdt5uFwJIjXN8Ezo+I64CpwPHAb4CzI2Ja/e+LCy5fkjSRtLXRdeDBwwpc3dvOZfXrjxl8QqmwYoErM1cCL+nnqf1LLVOSNLGtPubNTP/2JXT8PgedtgGsed5hMGtW+cKkQfjFp5KkcaPx8M1Yftp/se6x85pPB9z/wiNY9YEPjUxh0iAMXJKkcWXdnnuz7PwvsubwF9L9iC0e9FwDWLvTzqx890ks/+w5MMW3OY0N/paiJGnc6dnxSSw/+wLa/vZXZnzpC0xZ9k822XQ2983dga4XHOE3y2vMMXBJksatxqO3YvWJ7wFgk845dI3BT65J4CVFSZKk4gxckiRJhRm4JEmSCjNwSZIkFWbgkiRJKszAJUmSVJiBS5IkqTADlyRJUmEGLkmSpMIMXJIkSYX50z6SNFk1Gky9/lqm/N8fWbvv/vRsN3e0K5ImLAOXJE1CHT++gVmnnszUmxfR1t1Nz6YPp+uAg1h+2hkwa9ZolydNOAYuSZpk2u6+i4cd9xba/2/xvx6bsuyfzLjkYujpZvnZF45ecdIE5T1ckjTJzPz8Zx8UtvqadvWVTPldjmxB0iRg4JKkSabjj3cM+NyU++5j2nXXjFwx0iRh4JKkSaZnk9kDPtcAerbccuSKkSYJA5ckTTJdhx5Oo6P/W3jXPenJdD3n0BGuSJr4DFySNMl0PfNZrH71kTTa2x/0ePejHsXK95wE6z0uaeP5KUVJmmza2lj5sU+y9mn7Mf2yS2lbfh/d22zL6te/kZ7H7TDa1UkTkoFLkiajtja6Dns+XYc9f7QrkSYFLylKkiQVZuCSJEkqzMAlSZJUmIFLkiSpMAOXJElSYQYuSZKkwgxckiRJhRm4JEmSCjNwSZIkFWbgkiRJKszAJUmSVJiBS5IkqTADlyRJUmEGLkmSpMIMXJIkSYUZuCRJkgozcEmSJBXW1mg0RrsGSZKkCc0RLkmSpMIMXJIkSYUZuCRJkgozcEmSJBVm4JIkSSrMwCVJklRYx2gXMBoi4r3AYcA04LPAtcAFQAO4DTg2M3tGrUC1TEQcCRxZ/zkD2BVYAHwaWAdckZmnjEZtaq2ImApcCMwFuoGjqfr4Aty3J5yImA6cD2wP3AccCzwC9+0JJSL2BP4jMxdExOPoZ3+OiA8Cz6Xq9+Mz88ZRK7iJSTfCFRELgH2ApwH7A9sApwHvz8x9gTbg8FErUC2VmRdk5oLMXAAsAo4DPg+8Ang6sGdEPGUUS1TrPAfoyMx9gA8BH8Z9eyI7GliRmXsB/w84E/ftCSUi3gWcQ3WyDP3sz3Uf7w/sCbwM+Mxo1DoUky5wAYcAtwKXAN8FLgXmU41yAVwGHDQ6pamUiNgdeBLwVWB6Zv4hMxvA5cCBo1qcWuV3QEdETAEeBqzFfXsi25GqT8nMBJ6K+/ZE8wfghX3+7m9/fjrVaGYjM/+P6hjQObJlDs1kDFxbALsDLwbeBHwJmFLvoADLgU1HqTaV8z7gFKo34vv6PG5/TxwrqC4n/hY4G/gvoM19e8L6BfC8iGiLiL2o+nZFn+ft73EuM79BdeLUq7/9+WHAsj7TjNl+n4yB6x7g8szsqs+K1vDgzpkD/HNUKlMREfFw4AmZeTVV2JrT52n7e+J4O9W+/XhgF6r7uab1ed6+nljOo9qfrwYOBX4JzOrzvP098fS9/7K3f8fNMX0yBq4bgGfVZ0VbUe2gV9b3dgE8G7h+tIpTEfsBPwTIzPuAroiYFxFtVJeY7e+JYSkPnOneC0wFbnbfnrCeCtxQ3595CdUlZfftia2//flHwCERMSUitqW6YvWP0SqwmUn3KcXMvDQi9gNupAqcxwJ3AmdHxDTgN8DFo1iiWi+AO/r83XspuZ3q2v9PR6UqtdrpwHkRcT3VyNb7gJtw356ofg/8e0ScSDWi8XpgW9y3J7J3sN7+nJnd9T6/kAfe08ektkajMfhUkiRJ2mCT8ZKiJEnSiDJwSZIkFWbgkiRJKszAJUmSVJiBS5IkqbBJ97UQksqJiM9Q/U7pNOBxwK/rpz6dmeePWmFNRMRFwHsy8y8tbvfPVN8L9jrgCcCJVF/MemL9/GOA/wR2pvpCx8XAcZm5uP6Y+27AszLzhlbWJWl0GLgktUxmHgsQEXOBazJz19GtaEieQfVDuCUckpl/johTgKcAF0XEw4AG1W/CfTQzXwEQEa8FroiIHTNz34gwaEkTiIFL0oiIiDnAZ6h+RHwKVdj4ekS8ATgYeCTwaOCzwA7AAuBu4LnANsD/UP2Y7ROpvqz4VZn5z4h4LnAy1fHsD8AxmXlvPcJ0A7Ar1ajbO6nC1WbAX4CXAMfUy708Ip4G3AbsVYekg6hGvg6qw8/dwE7AEVRfsPmQZTZ5+V8DbgZ+kJn3RcQbgT9n5rm9E2TmhRGxCpgOrBvm6pU0xnkPl6SR8kHgJ5k5nypMfTAitqufeypwGFW4+jTwrcx8MlX4OKieZhfgU5n5JOB24AMRsSVwKnBwZu5G9bt6H+mzzEsz8wlUP1q/PbB3/VuLfwNekZkfBv5ONRI12O+v3ZyZUU/fbJkPkZnnZ+ZOmfn2+qHdgJ/3M93/ZObKQeqQNA45wiVppBwETIuIY+q/ZwE71v++ITOXR8RqqsttV9eP/5FqRArgN33uZ/oC1Y8XXwdsB1wTEVAd0+7us8yfAmRmRsR7gKMj4vHAHsCvhll/78/E7D3IMoeiB1gzzHkkjWMGLkkjpR14WWbeAlCPTt0LvBbo6jNdT2b29DN/38tsU+q/26nuFXth3eYMYHaf6VbXj+8BfBH4JNWlyTb6v2+r0efxqes9t7rP62i2zKG4CXjZ+g9GxPnAxzPzN8NsT9IY5yVFSSPlKuDN8K9P6N0KbDWM+XeMiCfX/z4KuIzqB2v3jYh59eOnAB/rZ94FwA8z8yyqe66eQxWcoApuvSef/6C6xwzg8AHqGOoym/ka8PiIOLL3gYg4mupes9uH2ZakccDAJWmkfADYNCJuBX4AnJCZfxzG/P8APhIRvwYeTnXT/V+Bo4FvRsRtVDe1v6ufeb8CPLVe9lXAz4DH1s9dSnXT/LZ1jZ+NiJ8B9/RXxDCWOaD6Pq2DgBdFxK/qdp4LPDMz1w6nLUnjQ1uj0RjtGiSpqYh4HPD9zHzcaNcyVPWnJPfKzD9v4Pw3UH1K0q+HkCYAR7gkqZzLI2LP4c5Uf/HpePgOM0lD5AiXJElSYY5wSZIkFWbgkiRJKszAJUmSVJiBS5IkqTADlyRJUmEGLkmSpML+Pw8c8Nj31/19AAAAAElFTkSuQmCC\n", "text/plain": [ "
    " ] @@ -1754,15 +1798,15 @@ } ], "source": [ - "markers = {'No': 's', \n", - " 'Yes': 'o'}\n", + "markers = {'No': 's', # square\n", + " 'Yes': 'o'} # circle\n", "\n", "colours = {'No': 'black', \n", " 'Yes': 'red'}\n", "\n", "# Create an empty axis to plot in\n", "ax = pyplot.subplot(1,1,1)\n", - "for baffle_type in markers:\n", + "for baffle_type in yields['baffles'].unique():\n", " subset = yields[yields['baffles'] == baffle_type]\n", " subset.plot.scatter(ax = ax,\n", " figsize = (10,8),\n", @@ -1773,67 +1817,35 @@ " )\n", "ax.set_xlabel('Temperature [°C]')\n", "ax.set_ylabel('Yield [%]');\n", - "ax.set_title('Yield as a function of temperature [location], baffles [colour] and speed (size)');\n" + "ax.set_title('Yield as a function of temperature [location], baffles [colour and marker shape] and speed [marker size]');" ] }, { - "cell_type": "code", - "execution_count": 24, + "cell_type": "markdown", "metadata": {}, - "outputs": [], "source": [ - "# Standard imports required to show plots\n", - "%matplotlib inline\n", - "import pandas as pd\n", - "import seaborn as sns\n", - "grades = pd.read_csv('https://openmv.net/file/unlimited-time-test.csv')\n", - "?sns.regplot\n", - "#(x = \"Time\", y = \"Grade\", data = grades, figsize=(15,5))" - ] - }, - { - "cell_type": "code", - "execution_count": 71, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0 82\n", - "4 80\n", - "7 83\n", - "8 64\n", - "9 73\n", - "10 60\n", - "11 60\n", - "12 101\n", - "Name: temperature, dtype: int64" - ] - }, - "execution_count": 71, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "subset['yield']\n" + "##### To investigate yourself\n", + "\n", + "If you have a sliding scale for colour, then you need to use a colour map. See the [matplotlib colormap reference](https://matplotlib.org/3.1.1/api/cm_api.html).\n", + "\n", + "A colour map takes an input value between 0 and 255, and relates it to a particular colour. On that webpage you see various colour maps." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "➜ Challenge yourself: pairplots and the peas\n", + "#### ➜ Challenge yourself: pairplots and the peas\n", "\n", "Generate a pairplot set of scatter plots for the 6 taste attributes of the peas. Now you can visually confirm just how correlated the data are.\n", "\n", "##### Compare and contrast\n", "\n", - "1. You have seen in the above plots a correlation of nearly zero: grades vs time for the exam.\n", - "2. In the cheddar cheese data you saw correlation of around 50 to 60%.\n", - "3. In this data set you see correlations of above 90 and 95%.\n", + "1. You have seen in the above plots a correlation of nearly zero (grades vs time for the exam).\n", + "2. In the cheddar cheese data you saw correlation of around 50 to 60% (the cheese dataset).\n", + "3. In this data set you see correlations of above 90 and 95% (this dataset for peas).\n", "\n", - "This is done intentionally for you to get a visual idea of what the correlation coefficient means." + "This is done intentionally for you to get a visual idea of what the correlation coefficient $(r)$ means, as well as $R^2$." ] }, { @@ -1869,30 +1881,53 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Regression\n", + "### Regression and scatter plots\n", "\n", - "In fact, if there is one thing we can guarantee that you will see in your career being ***misused***, it will be this model. Misused by others when they intrepret the results, misused when they build this model, misused when making predictions.\n", + "In fact, if there is one thing we can guarantee that you will see in your career being ***misused***, it will be this model. Misused by others when they interpret the values from the model, misused when they build this model, misused when making predictions.\n", "\n", - "##### Why use linear regression at all?\n", + "We already saw above that, counter-intuitively, we can calculate the $R^2$ value from a linear regression before even fitting the intercept and slope! That is because $R^2$ is just the square of the correlation coefficient, $r \\times r = R^2$. And since $r$ is just the correlation between two variables, the $R^2$ number just tells how strongly they are correlated.\n", "\n", - "You use this type of model when you **need to interpret and quantify the relationship between two or more variables**.\n", + "$R^2$ **never** indicates how ***well does the linear regression model fit my data***. The only way to see how well the model fits is to first fit it. And then calculate the residuals and see how small they are. \n", "\n", - "That sounds vague. Here are concrete examples:\n", - "\n", - "* *HR manager*: We use a least squares regression model to relate education level (one variable) to salary (another variable). There is a strong relationship.\n", - "* *HR worker*: We have a different regression model to relate \"number of years of experience\" (a variable) to \"salary\". What do the model coefficients mean?\n", - "* *HR manager*: can we combine these two regression models into a single model and get improved predictions?\n", - "* *HR worker* : We can combine these models, yes, but we notice some really strong outliers, particularly the CEO and the other Cxx staff. What should we do with these outliers?\n", + "Let's take a look, and along the way we introduce the Seaborn library's tools for regression plots." + ] + }, + { + "cell_type": "code", + "execution_count": 130, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEFCAYAAAAPCDf9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3X+cJHdd5/FX9Y/5PbszOzub3ZBfuxG+KOsqCyQBFhJMFHOgeHIP9RA8jlM8L+edP059wKGS0/t94OGPMx4ag4o/iUiQi4lJIGQjsIQE4/Ljm5jdsITsj9nZmd35PdNddX9UV091T/VMz0xXV3XX+/l4JNtd3T317ZqaT1V96vP9fh3P8xARkWzIJd0AERFpHwV9EZEMUdAXEckQBX0RkQxR0BcRyZBC0g1Yz8TETFOlRaOjA0xNzcfdnE1Rm5qXxnapTc1Rm5rXznaNjw87jV7rijP9QiGfdBPWUJual8Z2qU3NUZual5Z2dUXQFxGR5ijoi4hkiIK+iEiGKOiLiGSIgr6ISIYo6IuIZEiq6/Sl+x0/Ocnn/8by3NlLjI/0c+TQPg7uH0u6WSJdS0FfEnP85CR3P3yCYiGH68HZqQXufvgEgAK/SEyU3pHEHH3y9KaWi8j26Uy/zY6fnOTok6eZmF7IfDpjYnqhwfLFNrdEJDsU9NsoSGcEsp7OGB/p5+zU2sA/PtKXQGtEskHpnTZSOqPWkUP7NrVcRLZPZ/ptlNZ0RlIpp2Adj9nzfP3sDOMjfZlOd4m0g4J+G6UxnZF0yung/jFed901TEzMxL4uEVF6p63SmM5QykkkW3Sm3yZBCmVxucRKyaVYyHP1ZUOJpzPSmnIS6XZJpVUV9NsgnELp6ynQ1+MvTzrgQzpTTiLdLsm0qtI7bZDmFEoaU04i3S7JmKAz/TZIcwolOKvwLzMXVUEj0gZJxgQF/TZIewrl4P6xmiB//OQkd3zs+JpcYzf0Ju6G75AGwXacml1mdKhH23GTkowJCvptcOTQvpr8XXh52jTKNT57ZoYv2Ik1y6FzehMnXZ7aLcLbsVjIaTtuQZIxQTn9Nji4f4w333iAy0b7yTkOl4328+YbD6TyD6RRTvFTT3xjU+9PozTfW+kk2o7bl2RM0Jl+m9SnUNKqUa5xdmGF4YGeiPcnf1+iWWm+t9JJtB1bI6mYoDN9qTE+0h+5fKi/2OD96bgv0YxG362TvkMaaDt2NgV9qdEop3jTS1+wqfenkcpTW0PbsbMpvSM1wiWcp87OslwqUyzkeO7cLC8z4zx3brZjSztVntoa4e04PbfMZaOqgmqluCvMFPRljWAHu/vhE/T25AG/0uXs1EJqb0A3q1PuraRdsB3Hx4c1WF4LtaPCTEFfIq1XoRFH0FT9vEh7/u4U9CVSOys0HrfnVD8vQnv+7mIL+saYXuD3gQPAJeA2YAz4AFAC7rfW3h7X+mV72tlj8IFjpyKXx3VVIZJW7fi7i7N658eAWWvtDcBPAr8J3AG8BTgCXG+MORzj+mUb2lmhcWZyLnK56r4la9rxdxdneudbgHsBrLXWGPMK4Ky19hkAY8x9wM3A441+wOjoAIVCvqmVjY8Pb7vBrdbJbXrd+DA7dw7w4LFTnLkwx95dg9x83VUcNnta3qa9Y4OcPj+7Zvnlu4favg0ft+d44NgpzkzOsXdskFsivnMz74lLJ+9T7ZTGNsHG7WrH353jeV7LfliYMeadwPXAj1b+fRR43Fr7isrr7wAOWGvf0+hnTEzMNNW4NFYQqE3N+/qFBe685/ia5e2uFKofU2al5K5pR311RTvbmsbfn9rUvHa2a3x82Gn0WpzpnTvxc/mfBL4H+HtgMPT6MDAd4/qlQxw2e1IxNlEzY8po3BnpdHGmd14BHLXW/rQx5uXAtcCLjTHXAieA1wO6kStAOurnm6mc0Lgz0uniDPpPA79ijPkP+Gf0/wq4CvgwkMev3vlcjOuXlItrTPat1vw3UzmR9rkRRDYSW9C31p4Hbqlb/DxwQ1zrlM4R15js2+nR2MwY5500N4JIFHXOkkTE1fNwOz+3mTFlNH6PdDoFfUlEfW58canEzMIKZybnuONjx7ccSLebc29mTJk03H+I0oqhLDQcRvdT0JdEhHPj84slpmaWAChsM9WT1Zx7Kwbq0nSS2aDx9CUR4Rz4pbnl6uPwZC1bKYPM6ljvrSglVTlqNuhMv8XiqkjpNuHc+JkL8ziOA3hMzy75UzP2F7dUBpnVnHsrSklVjpoNCvotFFdFSrcKcuPv//O/56lTU9XlpZLL1MwSI8O92/q5WdKKtFZWU2NZo/ROC+nyuMViGiKkG7UirZXV1FjW6Ey/hXR5vDVLK2VGhnuZXVihVHYp5HMM9RdZLinoN6sVaa2spsayRkG/hXR5vDV7xwZZXinT31u7O2q7bU4r0lpZTI1ljdI7LaTL46255bqrIpdru4m0ns70W6iZHp2y1mGzh4s3HlBaQaQNFPRbLNyj85PHnuXok6f56KdPqHfjBpRWEGkPBf2YaLJvEUkj5fRjst5k3yIiSdGZfkw02bc00omDmnVimyVaqoP+pfllXNejkM+RzzkU8jkKeafSZT/d9o4NcurMpTXLVYaYbZ04qNl6bX5dSicgl8ZSnd4plz0Wl8vMLqxwcW6ZyUuLnJta4Pz0AlMzS8zML7OwVGKlVCauCd63SmWIEqUTe213YpulsVSf6UfxgJLrUXLLLK34y/JTC1yYWqi5Ggj+zedz5BK4MlAZYmepT1+84TXXcuWu/pavpxW9ttudalFP887huh5ld/0T4I4L+uspux7l0MEgkMs5FPM58nn/3+CgEHeaSGWInSEqffGH/+/LfO+rr2n572+7vbaTSA+pp3myPM/D88D1vGpQd73Kv25omesRhPvL9+1s+PO6Kug34roeS24Z6g4GhZxDoZCjkM9VDwr5XGfcM5DWiWvqxijbnWO3nW0NaF7gePjB2qVUXg3iXiWAV4N8JeC3UiaCfiMl16O0XAbKNctzOcc/IIRSRPmcDghRuqGqo53pi+0OapZEqkUDsW2N63mUy6tn4hdnl5ieXaJUdquBPQmZDvqNuK7HsuuxXHJrljtUDggJpIrSqBMrUaK0O32xnbRfUqkWpSpXeaHUSlSqxXU9yhFn6IW+IovL5egf2kYK+pvgsXrfICpVlM/nKBb8q4KVkovneV19MEgi1RCHTkpfdFJbO43rBukUD9dlTUAvu27lPUm3dHsU9FtktaLIP5Lnp+aZCiqKCjlyOYec4/+Xzzldcf8gqaqOqJQS0DDNtFEKKip9EVf1znY8bs9x9MnTLC6XWCm59BTyXHXZkFItTWh0dl4u+8E8yXRLuynox6haXrrOJV1wryBf7YDm0FPIk8ul/2CQRKohKqX0R/c/hQP0VcbjD6eZgKZSUPXpi/HxYSYmZuL6Gpt2/OQk9zz6LCsll76eAn09/nIFfGqqV8qux6W5ZS7OLXfV2XkrKegnrBzU1dbdP8jnnGqqyP8vfdVFSaQaolJKswt+rq2vbhKW9ToPdVoKqltSaZsRBOzaM3Rq8+ahMsVAoa/IwlIpkTZ3AgX9lCq7HuWIKwQHqlcGxYJfalqspI/aLYmqjqiUUqnsRrwzSDNFn+J1WseiiekF8vm1Heg77Xt4lTJE112tO69PvdTXnEtrKeh3mNoeyasHhaADWk1v5NzWDgabKcNsd1VHVEqpEBEM/ff6aaZu6Fg0PtLPhZmliOXp+B5eXY68VHnsVQK7C5Fn5dJ+CvpdIuiAVt8b2XEg7zh+qWlvkZn5ZfI5/3k+l6s+DqS9DDMqpTTUXyTq0Bakmbqh2uXIoX3c8+izkcu3a/WMu9L7E6DSOcjzwGO1s5DnAZ6fZvE8D6+QZ2J6AVdJ846hoN/lPA9K/l8s80sl5hbX5jqD/gf5nMNDX3iOsuviVMJocPsgLbnjRimlqGXh9nZ6x6KD+8fYuXOATzzyzIbfIyg79Cr579WA7QfrcqVzUCvSKCslVwG/w8QW9I0xReBDwDX4XV5/DCgBd+FnKY4Dt1lroxOyEounn5vmsa+eY2pmidHhXl7+4j288IqRahA4f3GxUulQ+4f8/Pl5Llxa9MtPHYecA06lBDWXCz+O/95Co5RSUimouHol19SNe/DN1+xibKBYPTN3PY+pmaUtp1Aa7QvS3eI80/8nQMFa+ypjzHcC/xkoAu+x1n7KGHMH8CbgozG2QUK+dGKS+459vfp88tJS9Xnwxz463MvkpbW549HhHpZL7ppeyvXCVw3VvgmVfx2HymP/IOFU/u1k66XDvuXqXTUBOkifBKkRYE0qJXhv1Bm4UyxwaX65Je1++rnpDfcF6U5xBv2ngIIxJgfswO/DegPwcOX1e4HvQkG/bf7uyecjlz/21XPVP/SXv3hPTTAIvPzFe5pax2qv5eYv+UtOjqmpef9qAcABh9WDguP4BxOn8iB47NS8j2pKqu6fmoOL41DTCcerRF0/d+1/AQ+P+cUVFpZK1feG89pU3ut5Hg994bna6qHKa3/7+a+ze2e6OneFPfbVcw2XK+h3tziD/ix+auerwG7gjcBrrbXBn9wM0Hj8T2BkpJ+VcnPBY9euwS03NC6bbdOXTkzyd08+z/npBXaP9POqQ5fzkgOtS0ucn16gVHaZnV9hpexSzOcYGigys7BSbev1uwYZGurjM08+z/mLC+ze2c8rW9yOKKOj8f3+PBoVbtZyQv9OzSyR7y1u+JmpWf/GeL2zUwvc/ekTLf9dtmo/vzS/QiG/tt3hfaFVbYp7v95Km5KShnbFGfR/GrjPWvsuY8yVwENAT+j1YWB6vR8wPb1QU5bYyK5dg1y4ED0nbVI226b6y+3T5+e4+6GnmZ1dbNmZV08hz/MTs9XnK6UyU5fKDPYN1bR130gf3//aAzWfjXP7dvLvb8dAcU06bHG5xPxiidPn/c+36nfZyu0U1W6AscGeTa1joza1Y7/ebJuS0s52vWB8qOFrcU6XOAVcrDy+gJ/Pf8IYc1Nl2a3AIzGuv6Osd7kdu6wMOhKDqLTX/GKJwb6151Nt+V02qVG6rtk0XrMS3a8lUpxn+r8G3GmMeQT/DP/dwGPAB40xPcBXgI+s9wP+9rGvUyq7NZ2Ngs5H+aAjUi7H6Nwy83PL1bHv68fCL+SDG4npvWk4FdHxZr3lW7FcKjM82MP8Yomy65LP5RjoKzSdQpO1grPVcBXM0kqJ3uLaP61W/i63K6rdcVTvtGO/ls2JLehba2eBH4h46cZmf8bffO5Uy9rjAPnwASM0Ln70QcU/oIQPHIXqoGjhz+WqwyqHPzs1v8L83FLjz9b1lm1cNdPbsm2we6S/OmBXXOuIQ9pLC194xUhNe/7kgadi/122Qn2749CO/Vo2JzOdszygVPYoldfOlJWUnEP1oACwvOJWO0M5jl+L4nked9371eiDUoMDjn+wWntAO/CCnZw6cwlYrYjBcTh07RilspuqwdwCnVhauN0KqG6ibZE+qQ76v/T2lzO7sEKp7FEu+3NJllyXctmjVHleLrv09he5eGkxtNzvcRh+T+RnK/NTlsqh5W7wfn9ZnIkP1wO35LISOSCgv+bTk/OcnpyPsRXw4b99uvp4zZVMw4OKU5NiqznA5HM17wmGjK5Jy4U+O19ymZtdqq47/LM//5WzkW1Oc2lhu1InnUDbIn1SHfR3DvauSUVEieuueDAiYPXA4YYOIOW6A4YbPsC49PYVuTSzuM5BZfWgU/szgwPW6jrDn99M/ftWNJoZLElO5X9BTT7Aual5fvMv/2HTablmD2gLZY+52cXIz+aauBpqR+qkU7RqW6Q9zdcpUh30k+Y4DnnHIZ8DivlNfTbOA9Gaq5i6A0Ojq5ieviKXLi3WHmya+WzNFdLag1zcQ6+EO02FL72eP59MWV7OcdY5qERfAYUPHOteJeVW51+u/+yi6zE3u7T2YJXCtFyrdWKaL60U9DuM46ymSjYrrgOR60an3dYeUOrSbpXHvb3BVdHaz07NLFWDe3jEx+GBIoV8bs1VUHvSch7LpbUT3yQpfMBodBVTzOdC79k4LdfMAW3Zg7nZxciUXiupB3HrKOhnzEaXyOHXi/kc4LFS9ta9nM7lHHpy+S3vTc108NnMZX04LdcotVYqu5w6O8NXT00xO7/CQF+Bq/cOM7ajn7Lr0lM5EDX6bOQV0Dr3keJOy1WLFFKSlnMcGhxUoqvmqqm1QvR7Tp2tdCoMD8MBnJ4sceL5izVVeSs4dfeImk/LZYGCfoZsNOBa+BJ6abnE2Tl/cK/hwR5cj8QupzebEw6n5XobpOWefm6afzhxAYDengJlF048P1NdV6uvilwvNMHIOsUD66XdenoLzMwuRV7dNCxMCP384EC1UvLfFyfPg5Wyi9+hPt5qud/966809b6tpOVW7xk1U7zQqAzcf+wU88wtrlQ/m1RaTkE/QzYacC18CR0ed39+sVS9od4tl9PtThfkHIdcwaG4jU7wrToQBf0IwhOmeHiMDPbwhldes3FaLnQV09NTZGZ2sYl7RM3dR4pTmtNyG5ZiV1Nn6/cPClJs32oua7zONn4/Sdj5iPllYbV3ZLiXZNl1Ix93S0/KLPcUDb5jkCIJ/je3WGL3yOZGBm3lFVF4ysVSRGXbs2cu8eWTF7g0v8JgX4EDl+9gfHRgTTVcsce/IoquuIuqtlt7T6jdabn6Ge+26x3fd6jhawr6GbJ7pL86CFhY0Dsy3Hsyn8tRrgwZnM/l1ry302W5p2hav/tqkQL0sjYtd/nuQV51cOPpIVt5IArScmsOCptIy60ejPLMzi43KGpYL+1XezDa7lBZCvoZ8qpDl3P3Q0+vWR70jgz3nhzsK3CpktMfCA0e1i09KbPcUzTL332zqmm5wvbHpmzVwajs1hcKrD0wrEdBP0NecmCM2dnFhpUwtb0nYcdgD3gbV+90oiz3FM3yd+8G+ZxDPpenZ+PpHiIp6GfMRpUwG72ec4LpEHPVKRGD5cGYPrnQDFfBDFOVV2tnw6r0st09NkghdHYSTBdYdkOTeVcm8YbVkszqTFmsTuDuv75azx9MEB51RZzlXrNZ/u5Zp6CfQcE8tjlnNQjXz1tbP/H56vtbX2IWPngA5HCISOluSxD8qxONu6vz0oanQvRc/yDTU8hTzOeqFS7Be0U6XVcG/e2O0ZHEGB+tWqcDOLlKnXreqU5Sns85jI/0k3fLNTdmO93xk5McffI0E9MLjI/0c+TQPg7uXzsVX3BAy9HcQWt8tB9KtSPhBdUlwVWIG3peXRYxoXk7xL3Patyb7tF1QX+7Y3QkMcZHo3U6DrzoylEg6IXoV9IEgTw4Cw86eQRn4430FPNdF/DvfvhE9fnZqYXq86jAv11BdclGVyHlULlf9b+yu5qyanG74t5n1/v516dgzlfZnK4L+tvtdNOOTjtBeiVf6VzxxafPk8utZqiDuH38xAWOfOvlLVlnNzr65OmGy+MI+s3y73c0fj18UAhK9/zxi/z00mYPCnHvs+v9/OsPvWDbP1/aq+uC/nY73Wzn8w6r+emBvgJLfYXqWXiwPOfU5q8BpivjhNSbmF5sqs1ZNdGgs1nat9tGB4XgQFAdNmHFr+tuJO6OZlnuyNaNui7ob7fjSfjzDrC4UmZ+cQUH+ItP/iOvPLiXg/t3VYN3UIES3ABd/Tl9lBab62Y3PtLP2akFFpZKlUlj/HmBrxzXpfN6gu22dnlf5Pvr8/9X7BniuXOzG94P2Ipm7zVE8bvZA6GSPM/zGBnpp7y0Uk0XlV2Pr5yaYmZhhfnFFfK5HIN9BXorQ2a0qrNVWjtzydY0neA1xgwaYw4ZYxxjTGqjUaMOJq/45j0U8g49hRx9PXkG+goM9RfZMdDDyFAPu4Z72b2zj5tfdgXFQo5iIcdK2WVmbply2WN4oIcLM0t84jNf4x+/cZGeYr46JkZumwMnHTm0j4WlEtMzS5RKLnhQKrlMzy5z/OTkln9utztyKLp3ZtTyIP9/dmoB14Nnz8zw148+y9fOzOB6q/cDWrG969fVip/tOA49xTz9vf5+u3Ool+cn53jgsef8QeU8KJddLs0ts7JSJufADS/Z25Ihjhv9TakzV2dq6kzfGHMz8Dv4t7BeCRw3xrzFWnt/nI1rJKhQyVVqwgd6Cyz2Fcg5Di970R6G+gt85vhZzl9cZHykj9d82+VNn2UdunY3uZzD0SdP86WTFygUcgz3F+nrXd1Urc4ZH9w/xuhQb81ZfrDOpPPTaRZsF/+M2v9dNzqjrs//zy74V2EzCyst/922615DsJ7+3gLs6KvuP2XP4we+45uq6/LCw0y7tWPQNHP/QJ25ukuz6Z3/AhwB7rXWnjHGvBb4EyDWoN/fm6e3mPfrxIPqlIgKldEdfZRCIxa99IV7eOkLt34WcnD/GAf3j/ErH/p85KxQW8kZb3S5v1wqMx4x2FXa89Pr2U6Ko1nB7ypY10c/fYKjT55es676/H+QI6/Plbdie7frXkN4Pf29BT/44/+thL+74zgUGwwlUDMAWcllpcHBQJ25ukez6Z2ctfZM8MRa++WY2lOjr6fAQF+Bvp5CNZ3SzokQooKwvzw6Z9xIM5f7rVpXWsSR4tjOuuq3bzDzWP0MZK3Y3u36XbZiPYV8jt6ePIN9fspo985+9oz2M7ajlx0DRfp78i2fBUuS1WzQf84Y80bAM8aMGGP+I3AqxnalwmZyxutZ73K/1etKi2a+czvXVb8dh/r9u6TD/bUDmLRie7frdxnXevwrgzwDlQPB+Ih/INg13MuOgR4Gegv0FFo/JaK0R7PpnR8HPgBcCZwAHgTeGVej0mIzOeP1NHO536p1bSRIg3zt7AwrJZdiIcfVlw23fF3tLKfcyva9Zu8wVxzaV6neWd3eAHd87DhTs8uMDvVsabu063fZrvWAnzLqKa4d5Gv37kFy5XJNT+WVSprIjcqNSo0kejo3FfStteeAfx5rS1IqyBlvR7Olha1Y13oet+e4++ET1UqhqkpKJGhDK2y2nLId69po+4Z7+BYLuW318I37d9nu9TTi91KulJjWcSPGiw9KTXU4SKb3P2wQ9I0xJ4keoBAAa+2BlreoCx05tK9muIDw8nZ64JifkQsqVwJBBUsrq0va+Z1bta609vDtVLmcQ0/EEMCNZ8hyIwsnulW7p+wMbHSmfxN+heQv4ad17gJKwA8D+2NrVZdp52X4es5M+hM41FesBM9bmXpp53duZxpOtm+9GbLCM0iVyh6lktuS2aLSKKmezusGfWvt1wCMMYeste8IvfQ+Y8wXYm1Zl0n6Mhxg79ggp85copDP+Z3AKoIKllanXtr5nduZhpP4BENU9BajDwY189dWphTsVEn1dG62escxxnxH8MQYcyv+Gb90kFuuuwpYrVwJBBUsnVop1CrdVkHVTfK5HL1Fvyf9joEeRod72R2qKhqulJcW8k6Tg2cnL6mezs1W7/wo8CFjzD78A8WzwNviapTE47DZw8UbD/jVO47DSqlMTyHPVZcNJZJuSptwmmh6bpnLRuPpUCats1pVtHplsHv3IN5KiZWyy/KKy0qpnMp7BUn1dG62eucJ4JAxZgzwrLUXNvqMMebtwNsrT/uAb8e/R/AB/KuE+621t2++ybIdaUgzRWlH791mBNtnfHyYiYmZtq9fts8JHQgGK5m5UtllpeSyXPIPAqVyOo4CSfR0bnbsnRuAdwFD+KmePHC1tfaaRp+x1t6Ff+MXY8xvAXcCdwBvxr8p/AljzGFr7ePbaL90gaCUNBD3ZCiSPX5ZaY7+Srrc9Sr9CUpu9YBQTuPlQAyazenfCfwV/kHit4DngI8280FjzMuBlwB/CvRaa5+x1nrAfcDNm26xdJ2glLReHL13RcBPC/UW8wz1FxlZ0+u48+4PbEazOf0la+3vG2OuAaaAHwH+ocnPvhu4HdgBXAotnwHWrfMfHR2gENXrI8L4+HCTzWkftak5ZybnIgcDm55bbrq9j9tzPHDsFGcm59g7Nsgt113FYbO9G2Jp3FZqU3Na1SZ/hFK35qog6FewleuCXSmYXrLZoL9ojNkFWOAGa+1DlRTPuowxI8CLrbWfNMbsAMK/iWFger3PT03NN9W4NOZf1abmBaWk9S4b7W+qvfVz5Z46c4k77znOxRsPbDk9lMZtpTY1J+425QDH80LDVAedy7x1+xTs2jXIhQtzsbUr7AXjQw1faza98z7gz4CPA28zxnwJeKyJz70WeADAWnsJWDbGXGuMcYDXA480uX7pYkEpab1mSyXbObibCKwOP9HXszqpzdjOPi4bHWB8pI/RSppooK9AbzFdI5U2e6a/AHyXtdar5OhfBPx9E58z+DdtA/8a+DD+ZCz3W2s/t5nGSncKl5JupUetetJKmlTnQK7rYLZ79yBOqbx2MhvXa2uP42aD/v+w1n4CwFo7BzzRzIestf+z7vlngRs21ULJhO2UkqonrXQCf8jqXOT9q7Jblyaq9DaOY6TSZoP+M8aYO4HP4Z/1A2Ct/YOWt0hkk9IyoJ3IVjW6OnA9rzqjWXVms21eGTQb9CfxB167vm65gr4kLi0D2om0WlSPY6hcGZQ2nuYyyoZB3xjzE8A91tqPGmOOAeP4PWpv3cqXEIlDWnsai8Qhn8uR76kdpXS1vHT90L9u9Y4x5l34PWi/VFnUy+pQCu/aRptFRKSFVqe5XP9cfqOSzR8Bvs9a+1TluVsZbvkO/OAvIiIdZKOgX7bWzoae/yqAtbaE36NWREQ6yEZBP2eMqfaitdbeDWCM2Qm4DT8lIiKptFHQ/zDwB5UhFAAwxgzhD8D2R3E2TEREWm+j6p3/Bvw28Lwx5sv4k6R/C/CH1tr3x9046R5pGS9fJOs2miO3DLzTGHM7cF1l8WPW2q/H3jLpGvUDomm8fJHkNDtz1jdocvx8kXrrDYimoC/SXs32yBXZMg2Ilm1K7aWLgr7ETgOiZZdSe+nT7Hj6IlvWaOAzDYjW/TTXQfroTF9iv/xO44Bo4e/cU8gBDsulcvX7vy7GKQCzlO5Qai99FPQzrl2X32kaEC38nReWSnxjZgmA0eHe6vffuXOAK3f1x7pu6P50h1J76aMfTrG2AAALlklEQVT0TsZl8fI7/N1mF1aqj2dCjx88dir2dTezvNMptZc+OtPPuCxefoe/c6nsRj4+E9ME1lnb3mlM7WWdgn7GZfHyO/ydC/kcpZJbfRzYu2sw9nXXLu/e7Z2m1J4ovZN5Wbz8Dn+3of5i9fFw6PHN110V+7qbWS7SajrTz7gsXn7Xf+fRoR5wHJZX3Or3P2z2MDHR+tHDs7i9JV0U9CWTl99Jfucsbm9JD6V3REQyREFfRCRDFPRFRDJEQV9EJEMU9EVEMkTVO5IpWRrsTCSKgr5kRtYGOxOJovSOZEbWBjsTiaKgL5mRtcHORKLEmt4xxrwL+F6gB/g/wMPAXYAHHAdus9a6DX+ASAtlcbAzkXqxnekbY24CXgW8GrgRuBJ4P/Aea+1rAAd4U1zrF6mnwc5EwPE8L5YfbIz5r/hn9C8BdgA/B3wMuMJa6xlj3gR8l7X2tkY/o1Qqe4VCPpb2yarH7TkeOHaKM5Nz7B0b5JbrruKw2ZN0s2LxuD3Hg8dOcebCHHt3DXLzFr9rlrbZerQdUstp+EKMQf+DwNXAG4H9wD3ADmvtvsrr3wG8w1r71kY/Y2JipqnGjY8PxzIi4nZ0SpvqK1oCb77xQNsqWjplWwWS2mZp207HT05yz6PPslKqzdC2c9+JkrbtFGhnu8bHhxsG/Thv5E4C91lrl621FlgEdoZeHwamY1y/NEEVLZunbebTduhMcQb9o8B3G2McY8zlwCDwYCXXD3Ar8EiM65cmqKJl87TNfNoOnSm2oG+t/WvgCeAY8HHgNuBngduNMZ/Br+j5SFzrl+aMj/Q3WK6Klka0zXzaDp0p1pJNa+3PRyy+Mc51yuYcObQvMj+tipbGtM18Rw7t455Hn41cLumlYRgyTtP3bZ62me/g/jF27hzgE488k+nt0GkU9EXT922BtpnvsNnDlbui0zySThqGQUQkQxT0RUQyROkdSR2NeS8SHwV9SRWNeS8SL6V3JFXUy1MkXgr6kirq5SkSLwV9SRX18hSJl4K+pIrGvBeJl27kSqqot6tIvBT0JXXU21UkPkrviIhkiIK+iEiGKOiLiGSIgr6ISIYo6IuIZIiCvohIhijoi4hkiIK+iEiGKOiLiGSIgr6ISIYo6IuIZIiCvohIhijoi4hkiIK+iEiGKOiLiGSIxtOXNY6fnKxMYrLA+Ei/JjER6SIK+lLj+MlJ7n74RPX52amF6nMFfpHOp/SO1Dj65OlNLReRzhLrmb4x5gngYuXpSeB3gA8AJeB+a+3tca5fNm9ieqHB8sU2t0RE4hBb0DfG9AFYa28KLfsi8GbgBPAJY8xha+3jcbVBNm98pJ+zU2sD//hIXwKtEZFWi/NM/9uAAWPM/ZX1vBfotdY+A2CMuQ+4GVDQT5Ejh/bV5PTDy0Wk88UZ9OeB/wX8LvBC4F5gOvT6DHBgvR8wOjpAoZBvamXj48Nba2WMOrFNrxsfZufOAR48doozF+bYu2uQm6+7isNmT6LtSoLa1By1qXlpaFecQf8p4B+ttR7wlDHmIrAr9PowtQeBNaam5pta0fj4MBMTM1ttZyw6uU1X7urn7d9tapbF+V06eVu1k9rUnDS2CdrbrvUOLnFW77wDeB+AMeZyYACYM8Zca4xxgNcDj8S4fhERqRPnmf7vAXcZY44CHv5BwAU+DOTxq3c+F+P6RUSkTmxB31q7DLwl4qUb4lqniIisT52zREQyREFfRCRDFPRFRDJEQV9EJEMU9EVEMkRBX0QkQxT0RUQyREFfRCRDFPRFRDJEQV9EJEMU9EVEMkQTo4tIxzp+cpKjT55mYnqB8ZF+jhzax+tSMGZ9minoi0hHOn5ysmaWt7NTC9z98Al27hzgyl39CbYs3ZTeEZGOdPTJ05HLHzx2qs0t6SwK+iLSkSamFyKXn7kw1+aWdBYFfRHpSOMj0SmcvbsG29ySzqKgLyId6cihfZHLb77uqja3pLPoRq6IdKSD+8cAKtU7i4yP9HHk0D4Omz2pnBg9LRT0RaRjHdw/Vg3+0hyld0REMkRBX0QkQxT0RUQyREFfRCRDFPRFRDJEQV9EJEMcz/OSboOIiLSJzvRFRDJEQV9EJEMU9EVEMkRBX0QkQxT0RUQyREFfRCRDFPRFRDKko4ZWNsZcD/x3a+1NxphvAu4CPOA4cJu11jXG/DLwBqAE/JS19lgb2/TtwG8AZWAJ+BFr7VljzK8DrwaCQb7fZK292KY2HQY+Djxdefm3rbV/lvB2+lNgb+Wla4DPWmt/yBhzDzAGrAAL1tpbY2xPEbizsv5e4FeBL5PgPtWgTadIcJ9q0KbnSHCfatCmt5D8PpUHPggY/N/XvwQcUhCnwjom6Btjfh54GxBMgPl+4D3W2k8ZY+4A3mSM+RpwI3A9cCVwN/CKNrbpA8BPWmu/aIz5ceAXgJ8BDgOvt9aej6st67TpMPB+a+37Qu85TILbyVr7Q5Xlo8AngZ+uvPWbgJdYa9vRY/CtwKS19m3GmDHgCeCLJLtPRbXpJMnuU1Ft+k8ku0+taZO19qpKO5Lcp74HwFr7amPMTfgxyiHhOFWvk9I7zwDfH3r+MuDhyuN7gVuAI8D91lrPWnsKKBhjxtvYph+y1n6x8rgALBpjcsALgf9rjHnUGPOOGNsT1aaXAW8wxnzaGPN7xphhkt9OgduB37DWnjbGXAaMAB83xhw1xrwxxvYA/AXwi6HnJZLfp6LalPQ+1Wg7JblPRbUpkNg+Za39K+CdladXA2dJfp9ao2OCvrX2bvxLtIATOnrPADuBHUD4EjdY3pY2WWtPAxhjXgX8W+DXgEH8y/O3At8N/BtjzKF2tQk4Bvyctfa1wAngl0l4OwEYY/YAN+Nf+gL0AO8Dvg//APFrlffE1aZZa+1MJWB9BHgPCe9TUW1Kep9qsJ0S3acatCnxfarStpIx5kP4v5+PkII4Va9jgn4EN/R4GJgGLlUe1y9vG2PMDwJ3AG+w1k4A88AHrLXz1toZ4CHg29rYpI9aa78QPAZeSgq2E/DPgD+21pYrz88Ad1hrS9bac/hpBBNnA4wxV+KnAv7QWvvHpGCfimhT4vtURJsS36eithMp2KcArLX/AngRfn6/P/RSKuJUJwf9Jyp5M4BbgUeAR4HXG2NyxpirgFw78ugBY8xb8c/GbrLWnqgsfhFw1BiTr9yAOgI83q42AfcZY66rPL4Z+AIJb6eKW/Avd8PP/xzAGDMEHAS+EtfKK5f+9wO/YK29s7I40X0qqk1J71MNtlOi+1SDNkHy+9TbjDHvqjydxz+JeCxtcapjbuRG+Fngg8aYHvxf5EestWVjzCPAZ/APaLe1qzGVO/e/jl9t8ZfGGICHrbW/bIz5MPBZ/BTHH1hrv9SudgE/AfymMWYZ/8znndbaS0ltpxCDnxoAwFp7rzHm9caYz+L/sbw75j+EdwOjwC8aY4L88L8Hfj3Bfaq+TXn8QPU1ktunorbTzwD/O8F9KqpNt5L8PvWXwO8bYz4NFIGfwt+PUhOnQEMri4hkSiend0REZJMU9EVEMkRBX0QkQxT0RUQyREFfRCRDOrlkU6SljDG/hT+IWQ/+mC1frrz0O4Bnrb0jqbaJtIpKNkXqGGOuAT5lrb0m4aaItJzO9EU2YIx5L4C19r3GmDPAX+GPkHgGf4jffwdcAbzdWvuw8Yf9/m38IX3n8UfJfCKJtovUU05fZHMuA+611r4U6AP+qbX2NcB78XtgAnwI+Hlr7WH8URf/NImGikTRmb7I5gXju3wNOBp6PFoZ4+UV+N3xg/cPGWPGrLWT7W2myFoK+iKbZK1dDj0t1b2cBxattd8eLDDGXAFcaEfbRDai9I5IC1WmLHy6MjomxpjvBD6dbKtEVulMX6T1fhi4w/jTRC4DP9im6fpENqSSTRGRDFF6R0QkQxT0RUQyREFfRCRDFPRFRDJEQV9EJEMU9EVEMkRBX0QkQ/4/8Wz6+ICzDk0AAAAASUVORK5CYII=\n", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Standard imports required to show plots\n", + "%matplotlib inline\n", + "import pandas as pd\n", + "import seaborn as sns\n", "\n", - "Or another scenario:\n", + "# Load the data\n", + "grades = pd.read_csv('https://openmv.net/file/unlimited-time-test.csv')\n", "\n", - "* *Colleague*: How is the yield from our beer fermentation related to the purity of the sucrose substrate?\n", - "* *You*: The yield can be predicted from sucrose purity with an error of plus/minus 8%\n", - "* *Colleague*: And how about the relationship between alcohol percentage and glucose purity?\n", - "* *You*: Over the range of our historical data, there is no discernible relationship.\n", - "\n" + "# Fit a regression model between Time and Grade, showing the model's prediction boundaries\n", + "sns.regplot(x = \"Time\", y = \"Grade\", data = grades);" ] }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, { "cell_type": "markdown", "metadata": {}, @@ -1928,12 +1963,6 @@ "\n", "* MUST COVER: time-series of stability data from which a database was built on\n", "\n", - "\n", - "\n", - "\n", - "\n", - "Seaborn: https://engmrk.com/module7-introduction-to-seaborn/\n", - "\n", "* PCA loadings are orthogonal. Plot a scatter plot, and see the correlation is zero\n", "\n", "* Bubble plots from this notebook: https://nbviewer.jupyter.org/github/engineersCode/EngComp2_takeoff/blob/master/notebooks_en/2_Seeing_Stats.ipynb\n", @@ -1944,15 +1973,11 @@ "\n", "* ShOULD show: correlations numerically calculated for the film thickness dataset, but then also visualized with ``data.plot('TopRight', 'BottomRight', kind='scatter')``\n", "\n", - "\n", - "\n", "* MUST COVER: https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.probplot.html\n", "\n", "* Regression model:http://localhost:8888/notebooks/Notebooks/Thermocouple%20-%20linear%20regression.ipynb\n", "\n", - "\n", - "PCA plots: \n", - "PCA: https://jakevdp.github.io/PythonDataScienceHandbook/05.09-principal-component-analysis.html" + "* PCA plots: https://jakevdp.github.io/PythonDataScienceHandbook/05.09-principal-component-analysis.html" ] }, { @@ -1961,7 +1986,8 @@ "source": [ "#### Some tips\n", "\n", - "* https://www.marsja.se/python-data-visualization-techniques-you-should-learn-seaborn/" + "* Great blog post about [various visualizations](https://www.marsja.se/python-data-visualization-techniques-you-should-learn-seaborn/)\n", + "* [Interactively create Seaborn visualizations](https://engmrk.com/module7-introduction-to-seaborn/) within this webpage (if you can handle all the advertising!)" ] }, { @@ -1969,141 +1995,7 @@ "metadata": {}, "source": [ ">***Feedback and comments about this worksheet?***\n", - "> Please provide any anonymous [comments, feedback and tips](https://docs.google.com/forms/d/1Fpo0q7uGLcM6xcLRyp4qw1mZ0_igSUEnJV6ZGbpG4C4/edit)." - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
    \n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Lot numberOutcomeSize5Size10Size15TGADSCTMA
    0B370Adequate13.89.241.2787.318.065.0
    1B880Adequate11.25.827.6772.217.768.8
    2B452Adequate9.95.828.3602.318.350.7
    3B287Adequate10.44.024.7677.917.756.5
    4B576Adequate12.39.322.0593.519.552.0
    \n", - "
    " - ], - "text/plain": [ - " Lot number Outcome Size5 Size10 Size15 TGA DSC TMA\n", - "0 B370 Adequate 13.8 9.2 41.2 787.3 18.0 65.0\n", - "1 B880 Adequate 11.2 5.8 27.6 772.2 17.7 68.8\n", - "2 B452 Adequate 9.9 5.8 28.3 602.3 18.3 50.7\n", - "3 B287 Adequate 10.4 4.0 24.7 677.9 17.7 56.5\n", - "4 B576 Adequate 12.3 9.3 22.0 593.5 19.5 52.0" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABDAAAAQsCAYAAABngGz2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3X1wHeV99//P7h7JkmwZy0YC83CThNSU3hBMcO2kzo0buwMzBWOSJmMgKRgwnoxJw7TQUBslNuBYtwOUuENckx9hnCaElLRDiIHUJOShiZsfpi2kIZTA8BR+gC1bnGLZki2d3f39Yc5Bks/RedqHa3ffr5nMxEfS2evhe313+Z4911q+7/sCAAAAAAAwmB13AwAAAAAAAKqhgAEAAAAAAIxHAQMAAAAAABiPAgYAAAAAADAeBQwAAAAAAGA8ChgAAAAAAMB4FDAAAAAAAIDxKGAAAAAAAADjUcAAAAAAAADGo4ABAAAAAACMRwEDAAAAAAAYjwIGAAAAAAAwXi7uBkRpYOCAPM+v+ntdXR3K54ciaFFjaF/j6m1bd3dniK2ZXK3xGjeT5zsOcY5HWuM1TTFGX96VxnhN0/xWk5W+FvuZxnhtVtZiIEmyFq9JnKNapLVf0vi+1Ruv3IFRRi7nxN2ESdG+xpnctqRiTMdjPIKXpjGlL+mWpTHJSl+z0s9GZGVsstLPJEvrHKW1X1JzfaOAAQAAAAAAjEcBAwAAAAAAGI8CBgAAAAAAMB4FDAAAAAAAYDwKGABgKMex5Tu2CpYl37HlOKRsRI84zAbmOXmYM8AcrMfoZOoxqrXonN4uqfbHuRw6XNDg/uG63r9tSu3DXu/7A0gHx7GVHxrVxm271J8fVk9Xu9aumK+ujha5rhd385ARk8Uh0oN8kzzMGWAO1mO0jCtgbNq0STt27NDrr7+u7du3a86cOZKkw4cPa+PGjfrlL3+pKVOmaO7cubr11lsDP37blJyWXv9Qzb+//Y5lGjTo/QGkQ0EqnQglqT8/rI3bdqlv9UJZ8TYNGTJZHCI9yDfJw5wB5mA9Rsu4AsaSJUt0+eWX61Of+tS412+77TZNmTJFO3bskGVZ2rdvX0wtBIDwuZ5fOhEW9eeH5Xq+eYkbqTVZHCI9yDfJw5wB5mA9Rsu4L+fMmzdPs2fPHvfawYMH9b3vfU/XXXedLOtIHevYY4+No3kAEAnHttTT1T7utZ6udjk2tXxEhzjMBuY5eZgzwBysx2gZV8Ao57XXXtOMGTN011136eMf/7j+/M//XP/+7/8ed7MAIDQ5SWtXzC+dEIvfp6SSjygRh9nAPCcPcwaYg/UYLcv3fSPvA128eLG2bt2qOXPm6JlnntGf/dmf6fbbb9fSpUv1q1/9Sp/5zGf0wx/+UNOmTQv82PXuUWHa+wNIB8/z9fbBwxoteGrJ2Tpm6hTZVPMRMeIwG5jn5GHOAHOwHqOTiMLQCSecoFwupwsvvFCSdNZZZ6mrq0svv/yyzjzzzJrfZ2DggLwq39ut9ekjY+3dW/s2m0G8f3d3Z13HjJrJ7au3bY3MV1BqiVcTmDzfcQhjPCxJhYKrgUOjVY8dlzDjNU0xluS+TIzDZvuSxnhN8vwW1ZNvkt7XWhT7aXK81jpnQctaDCSJyfEaBpPmKMj1aFK/gja2b/XGayK+QjJz5kwtWLBAO3fulCS9/PLLGhgY0CmnnBJzywAAAAAAQBSMuwNjw4YNeuyxx7Rv3z5deeWVmjFjhh555BHdfPPNWrt2rTZt2qRcLqcvf/nLmj59etzNBQAAAAAAETCugNHb26ve3t6jXj/55JP1zW9+M4YWAQAAAACAuCXiKyQAAAAAACDbKGAAAAAAAADjUcAAgIg4ji3fsVWwLPmOLcchBaM5xBRqQZwAycYaNg9zEh/j9sAAgDRyHFv5oVFt3LZL/flh9XS1a+2K+erqaJHrenE3DwlETKEWxAmQbKxh8zAn8aJUBAARKEi6/7HntHLZmepbvVArl52p+x97ToW4G4bEKkiliydJ6s8Pa+O2XeNiik+IouV5vnHjXUucAGheWPmWNRydWueQOYkXd2AAQBQsaen/OVV/949Plar1n1t+tmTF3TAklev5pYunov78sFzPV058QhQ1x7H16u792nDvE0aNd7U4AdC8MPMtazga9cwhcxKv+D8aAIAs8K1S8UI6cqL7u398SvKpYKAxjm2pp6t93Gs9Xe1y7CMxxSdE0SpIpeKFZM54V4sTAM0LM9+yhqNRzxwyJ/GigAEAEfA8r2y13vP8mFqEpMtJWrtifukiqvhpUfHTn8k+IULwTB3vanECoHlhrn/WcDTqmUPmJF6MMwBEwH6nWj/25NjT1S7bluTG1y4kl+t66upoUd/qhXI9X45tKffO69K7nxBNjDnHtiSXIkbQTB3vanECoHlhrn/WcDTqmUPmJF7cgQEAEaBajzC4rifL9ZTzfVmuN+7iiZiLVk5S71ULjBzvyeIEQPPCzres4fDVO4fMSXxMOK8CQOpRrUfUiLloua6nU46fzngDGUS+TT7mMDkoYABARFzXk6V3Eq/r880RhI6Yi5ZtW0c+kZMYbyBjyLfJxxwmA18hAQAAAAAAxqOAAQAAAAAAjEcBAwAM4Ti2fMdWwbLkO7YchxSNZCB2q2OMgMaxflBOMS7680PERYawBwYAGMBxbOWHRrVx2y7154dLu193dbSwgRSMRuxWxxgBjWP9oBziIrsoUwGAAQpS6SQsSf35YW3ctkuFeJsFVEXsVscYAY1j/aAc4iK7KGAAgAFczy+dhIv688NyPT+mFgG1IXarY4yAxrF+UA5xkV0UMADAAI5tqaerfdxrPV3tcmwrphYBtSF2q2OMgMaxflAOcZFdFDAAwAA5SWtXzC+djIvf5WSjIpiO2K2OMQIax/pBOcRFdjHHAGAA1/XU1dGivtUL5Xq+HNtS7p3XAZMRu9UxRkDjWD8oZ2xcyLIk3ycuMoICBgAYwnU9WXonMbu+3JjbA9SK2K2OMQIax/pBOcW46O7u1N69g8RFRvAVEgAAAAAAYDwKGAAAAAAAwHgUMAAAAAAAgPHYA6NJI6Ouurs7425GpDqnt6ttyuShM3ZMDh0uaHD/8CS/DQAAAADA5ChgNKm1xdHS6x+q+fe337EsxNZEo21Kru4+D4bYHgAAAABA+vEVEgAAAAAAYDwKGAAAAAAAwHgUMAAAAAAAgPEoYAAAAAAAAONRwAAAAAAAAMYzroCxadMmLV68WKeddpqef/75o35+1113VfwZAAAAAABIJ+MKGEuWLNF9992nE0888aif/eY3v9HTTz+tE044IYaWAQAAAACAuBhXwJg3b55mz5591OsjIyO65ZZbtG7dOlmWFUPLAAAAAABAXIwrYFSyefNmXXTRRTr55JPjbgoAAAAAAIhYLu4G1OKpp57Sr3/9a91www1Nvc+sWdMCalG0urs7a3rNZCa116S2TCZJ8ZqUMY1KFscj7HhN05jSl/iFGa9JHZNGZKWvcffT5OuBuMcmKlnpZxDiite0zlFa+yU13rdEFDCefPJJvfTSS1qyZIkkaffu3br66qvV19enj3zkIzW/z8DAAXmeP+nvmBgke/cOjvt3d3fnUa9FqZExirO9Y9U7dnHGQy3xaoK44zFMjmOrIMn1fDm2pZwk1/Um/Zs4xyOt8ZqmGEtzX+pdL2mM1zTNbzVJ72ut8VrsZxrjtVHFsZNlSb5f07kxyZIY61mL1yTOUS2i6lcj17vNGtu3euM1EQWMVatWadWqVaV/L168WFu3btWcOXNibBWANHMcW/mhUW3ctkv9+WH1dLVr7Yr56upoSfWFGtAI1guShHhtHGMHpEsS17Rxe2Bs2LBB5557rnbv3q0rr7xSF1xwQdxNApAgjmPLd2wVLEu+Y8txjk5ztfxOQSolc0nqzw9r47ZdRz51QiaVi5taYikLsrxexsZAfvBQ6mOg2N/+/FBiYz7L8dqsgqT7H3tOK5edqb7VC7Vy2Zm6/7Hn5DsWuRCRMjn3JunaIIn50Lg7MHp7e9Xb2zvp7/z4xz+OqDUAkqSWKnKtlWbX80vJvKg/PyzX881LnAhdubhZf82HNDrq6UsJ+tQiLFldL0n85KoZaelvVuM1EJa09P+cqr/7x6dKMfCXl35QQ4cKWv///L+Jjgskh8m5yOS2lZPEfGhuOQgA6lRLFbnWSrNjW+rpah/3Wk9XuxybxzhnUbm42fPWUKl4UXzN9E8twpLV9ZLET66akZb+ZjVeA+FbpeKFdCQG7rz/P7XnraHExwWSw+RcZHLbykliPqSAASA1Jqsi1/M70pHb09aumF9K6sUKuqnVaISrXNy0teZqiqUsyOp6qTWfpEVa+pvVeA2C53llY6CtNXfUa0mLCySHybnI5LaVk8R8aHLbAKAuxSry2BNHqYrs+jX/jnRk9+Wujhb1rV4Y6a7MMFO5uDk0UqgplrIgq+ul1nySFmnpb1bjNQh2hRg4NDL+8+UkxgWSw+RcZHLbykliPgzsDozvfe97pf8/PDysdevW6UMf+pAWLFigm266SUNDQ0EdCgDKqqWKXE+l2XU9Wa6nnO/Lcj2jkznCVS5ujpvZoZsS9qlFmLK4XpL4yVUz0tTfLMZrEMrFwE0r5uu4mR2piAskg8m5yOS2VZK0fBjYWN5yyy26+OKLJUlf+cpX9OKLL+ruu++WJN1xxx268847ddNNNwV1OAA4Si1V5CRWmhG/SnGjFodYyrCJcdE2JSd/1E1tDIztryxL8n1iPmMqxYAkciEiY3Lu5TozfIHdgeH7794S8/jjj2vTpk0666yzdNZZZ2nTpk360Y9+FNShAKCiWqrISas0wwzl4oZYwtgY6OpsS30MFPvb09VBzGdUuRggFyJqJude1kO4AitgWNa7O5UeOnRIJ554Yunfs2fP1v/8z/8EdSgAAAAAAJAxgX2FZHh4WH/8x38sSXr77bf14osv6tRTT5Ukvfnmm+rs7AzqUAAAAAAAIGMCK2B84xvfGPfvY445pvT/X3vtNV111VVBHQoAAAAAAGRMYAWM+fPnT/qzyX4OAAAAAAAwmcD2wCjyfV8PPPCALr/8ci1dulSS9OSTT+rRRx8N+lAAAAAAACAjAi9gbN68Wf/0T/+k5cuX680335QkHX/88brnnnuCPhQAAAAAAMiIwAsYDz74oLZu3aoLLrig9GSSk046Sa+99lrQhwIAAAAAABkReAHDdV1NnTpV0ruPVj148KA6OjqCPhQAAzmOLd+xVbAs+Y4txwk8zURyDGRLLTFF3CHN6olvx7GVHzzEWkAmtbQ68h3nnfh31NLqxN0kRCjOawGuQ44IbBPPokWLFqmvr09r166VdGRPjM2bN+ujH/1o0IcCYBjHsZUfGtXGbbvUnx9WT1e71q6Yr66OFrmul5hjIFtqiSniDmlWT3y/+7s7WQvInJZWR/sGR9Q3Zq2sWTFfx3a2anTEjbt5CFmc1wJch7wr8LLNmjVr1N/fr3POOUeDg4M6++yz9cYbb+iGG24I+lAADFOQSolVkvrzw9q4bZcKCTtGLaiCp0ctMWVK3DWKeE2+MOewnvhO+loAmjHiqlS8kI7Ef9+2XaJ2kX6OY6sgK7b8R+59V+B3YEybNk1btmzRwMCAXn/9dc2ePVvd3d1BHwaAgVzPLyXWov78sFzPDyzZRHGMaiargiN5aokpE+KuUXxqk3xhz2E98Z3ktQA0y/U84j+Dijn48Kgb2/yTe98Vyh0YP//5zzVr1ix94AMfKBUv1q9fH/ShABjGsS31dLWPe62nq12ObSXqGNVQBU+eyT69riWmTIi7RhGvyRf2HNYT32GtBe4SSqe0zatj24k9F6BxxRz89oGR8K9zx6yZ/OCh0ppJ8nVI0ALPItu3b9dNN92kr3/96+Ne//73vx/0oQAYptWxtGbF/FKCLX43tNUJLrnmJK2dcIy1K+ZHWn2erAoO8xQ/OVmzZadW9T2uNVt2Kj80WrooqCWmTIi7RhGvyRf2HNYT32GshWprFMmUxnl1HOlvrvjDcfH/N1f8oRz28Uy1Yg7+5x+/oM8tPzu0a4GJa+aGzf9aWjNJvg4JWuB9bm1t1QMPPKDVq1frueee05e+9CW1trbK97lQasTIqKvu7s6jXi/3WtHhEVdT6tgRud7fj0Ln9Ha1Tak9POvpQ3d3pw4dLmhw/3D1X0ZdRlxf33nsOa1cdqY6O1o0ODSq7zz2nFZdfKaCKmG4rqeujhb1rV4o1/Pl2JZy77welWIVfOx/UGS1Cp4ElT697lu9UJZqiykT4q5Rk8ary7k5CcKew3riu/i7t193rg4dLgSyFqqtUSRTGufVdX39/Kn/T+tWfliOLbme9KNdr+jCj7wvsX1CdcUc/Nvf5fXNR/9bK5edqWOmterYY9qVkx/YtcCkaybB1yFBC6Voc/zxx+vb3/62brrpJl166aXasmVL6ZGqqE9ri6Ol1z9U199sv2NZXX/TyO+HrW1KLvQ+DDbSMEzK9Xw98Zs9euI3e8a9fvVFZwSabFzXk6V3EpjrK+q9s4pV8InfR89iFTwJatrjooaYijvuGjVZvCalD1kXxRzWE9+u66l75lTtPTQYyFrgu93plMZ5zUla9MGTdfM9vySfZsjYHPzb3+V1z0O/fmfegyteSNXXTFKvQ4IWeP4o3mnR1tamO+64Q1/72tf0iU98QiMjI0EfCoBhsvJJb5I/jc+irMRlJcRr8qV9DrO+RtMqjfOa9rWI8qKa9zSumTAE/iW0a6+9dty/V61apQ0bNmjp0qVBHwqAYbL0/TzX9WS5nnK+L8v1uHgxWJbishLiNfnSPIes0XRK67ymeS2isijmPa1rJmiBj8fKlSuPem3RokVatGhR0IcCYBg+mYCJiEvAbKzRdGJegfpMXDNtU3LyR13WzASBFDCuvvrq0lNHLrvssor7Xdx3331BHA6Awfh+HkxEXAJmY42mE/MK1GfsmunqbNPevezaN1EgBYyLL7649P8/+clPBvGWAAAAAAAAJYEUMJYuXapnnnlGra2t+tjHPiZJGhgY0MaNG/XCCy9o7ty5uvHGG4M4FAAAAAAAyKDANvHcuHGj9u3bV/r3F77wBb3yyitavny5XnjhBd12221BHQoAIuM4tnzHVsGy5Du2HCfwvY/RJOYIcSDuAASNvBIexjY9AtvE88UXX9S8efMkSfv379fPfvYzPfzww3rve9+rxYsX65JLLtH69euDOhwAhM5xbOWHRrVx265xz3vv6mhhQyVDMEeIQ6W4mzGDx9wBaAzns/AwtukSWOnJdV21tLRIkp5++ml1d3frve99ryRp9uzZ2r9/f1CHAoBIFKTSyU6S+vPD2rhtlwrxNgtjMEeIQ6W4e/vg4XgbBiCxOJ+Fh7FNl8AKGO9///v1gx/8QJL06KOP6sMf/nDpZ3v27FFnZ2dQhwKASLieXzrZFfXnh+V6fMpqCuYIcagUd6MFPskD0BjOZ+FhbNMlsALGDTfcoHXr1mn+/Pn66U9/qmuuuab0s0cffVQf/OAHgzoUAETCsS31dLWPe62nq12OXf5R0Ygec4Q4VIq7lhzfqQbQGM5n4WFs0yWwM+28efP0k5/8RPfee69+9KMf6X3ve1/pZ4sWLdKaNWuCOhQARCInae2K+aWTXvE7k4FtHoSmMUeIQ6W4O2bqlHgbBiCxOJ+Fh7FNl0Dnbdq0aTrjjDOOen1sMaOaTZs2aceOHXr99de1fft2zZkzR/l8Xp///Of1u9/9Tq2trTrllFN0yy23aObMmUE2HwDGcV1PXR0t6lu9UK7ny7Et5d55HWZgjhCHSnFn82kegAZxPgsPY5suxt3ruGTJEt1333068cQTS69ZlqWVK1dqx44d2r59u04++WTdfvvtMbYSQFa4rifL9ZTzfVmux8nOQMwR4kDcAQgaeSU8jG16GFfAmDdvnmbPnj3utRkzZmjBggWlf8+dO1dvvPFG1E0DYACe442kGRuz+cFDxCxCR55E2hDTMAWxGL/EffXH8zzdf//9Wrx4cd1/O2vWtBBahFp0d5v3FBoT2zRWkuI1qrH0PF+v7t6vDfc+UXqOd+9VC3TK8dONunXb9NgKQ9jxmtQxTUrMNiqp8xJmvMY9JlHGXNx9jUrc/TT5eiCKsTEhj8YdA0kSV7ymNRbTHHuN9i1xBYxbb71VHR0d+vSnP1333w4MHJBX5XE5aQ6SOO3dO1jX70cxD7W0Kc54qCVeTdDd3Vn3/DbKd+zSSUM68gisDfc+ob7VC2UZcitglONR7thxCTNe4xzTZiUhZhvV7LykMV5NiNWoYs6Evkah2M80xmuzooqBuPNoEmM9a/Ga1lhMYuzVamzf6o3XRBUwNm3apFdffVVbt26VbXO7DpA1kz3HO1HJDJlBzCJqxBzShpiGKYhFMySmCnDnnXfqmWee0Ve/+lW1trbG3RwAMeA53kgaYhZRI+aQNsQ0TEEsmsG4AsaGDRt07rnnavfu3bryyit1wQUX6IUXXtDWrVvV39+vSy65RMuWLdO1114bd1MBvCOqDY14jnf2OI6t/OChxG6WRcwiKsU8LIuYQ7okJY+yuWP6VYrFVsdi7iNk2tpXb2+vent7j3r9t7/9bQytAVCN5/nKD41q47ZdpQ2N1q6Yr66OlsAfUcVzvLPFcex3Ymtn6LEVlokx2zYlJ3/UTUz7kQzvrpUjeXjB/z5OGz7zR7JkybZFnkSiJeHcP3ENJvF8herKxWKrY2lgcIS5jxDlIQBNefvg4VLSlo58F3Djtl0qhHQ8nuOdHQUp0tgKy9iY7epsI2YRuIlr5Ynf7FHv1n+TbYs8iVQw/dyflvMVqpsYiyOuz9xHjAIGgKaMFryKGxoBzZhssywA72KtAPFiDWYXcx89ChgAmtKSs9nQCKFgsyygNqwVIF6swexi7qNHAQNAU46ZOiURm2sheZKycRsQN9YKEC/WYHYx99FjbAHUxXFsFaTS5kWSjN9cC8lU3Czr9uvO1aHDhVhia2K8E9uISj2xl4RNDoEwmJKjWYPZVe/cmxKzSUYBA0DNyu2y3XvVAh3TljuyoZEkub7cuBuK1HBdT90zp2rvocHIY4td5RGXRmLPdT1ZEnkYmWFajmYNZletc29azCYVXyEBULNyu2xvuPcJ43Za5lnsCEKQu8oXY7I/P0RMoipTn2gwNrfmBw8RxyiJ47xr6joBKnFlEbMB4A4MADWbbKdlU5IJ1W0EJah4JyZRLxNzLXGMSuKKDRPXCVCJ49g65FZ+ch8xWztK5wBq1uhOy1F+MsMnMgjKZPFeT0wTk6iXibvaJymOuQuvvLDGJa7YMHGdAJUUJL2x70AmYjbsHExGB1Czcjst9161YNKqcfGTmTVbdmpV3+Nas2Wn8kOjoV1Q8jxuBKXSzuKtjlVXTBOTqJeJu9onJY6jPuckRZjjEldsmLhOgEpcz9d3Hnten1t+dqpjNoocnKbxAhCwWp44cuyMDg0MHKj4HpU+melbvVBh1JuLn8iMvZgqVbddsy60Eb/JdgOvtLP4iOvXFdPEZLKYsEO8iU80SEocR33OSYowxyWu2DBxnTTLhPyTNqaMqWMf2Tvom4/+t1YuO1OdHS06NFLQjM5WuSPp2fI1ihyc7XI0gIoqVVAlHXniiO/Lcj3ZVW57i/qTGT6RQa1q+ZTAdb1x8e66Xt0xTUwmh0mf3peLvTglJY6TcqdI1MIclzhjw7R10gyT8k9amDSmxXWSHzykjdt26c77/1NdnW2yDCoAByGKHGzaeQeAIYKqoEb9yUwaP5FBOBqN8XpjemxMyrIk3ycmDcWn95VNzK1tU3LyR13j4jgpd4pELcxx4bwbDPJP8Ewa06yskyhyMCU9AGUFVUGN45OZNH0ig/A0GuONxHQxJnu6OohJg/Hp/eTG5tauzjYj4zgpd4pELexx4bzbPPJP8Ewb0yyskyhycNbzOYAKgqqgZqXijORpNMaJ6fTi0/vkY32Wx7iYj/wTPMY0elHkGu7AAFBWkBXULFSckTzNxDgxnU58ep8OrM/yGBezkX+Cx5jGI+xcw/wBKItPa5B2xDgmIiYAxIX8EzzGNJ0oYACoyHU9WXonUbi+0vOQJ+AIYhwTERMA4kL+CR5jmj58hQRAXRzHlu/YKliWfMeWF9JGSBOPw2PEEIdKcUh8wmSmxqep7UL00hgLaewTymt2romV5nAHBoCaFZ+nXXwkVU9Xu3qvWqBj2nKB3o5X7jhrV8xXV0cLt/0hMpXicFZnqwYGR4hPGMnU/GlquxC9NMZCGvuE8pqda2KleZR7ANSs3PO0N9z7hAoRHGfjtl2BHweYTKU4HHGJT5jL1PxparsQvTTGQhr7hPKanWtipXkUMADULKrnaZv23G5kU+U49IhPGMvU/GlquxC9NMZCGvuE8pqda2KleRQwANSs+DztsUrP007gcYDJVI5Dm/iEsUzNn6a2C9FLYyyksU8or9m5JlaaRwEDQM3KPU+796oFgW+mw3O7YYJKcdjqEJ8wl6n509R2IXppjIU09gnlNTvXxErzGCsAchxbBanqM7LLPU/72BkdGhg4EGh7eG43olAt7ivF4eiIS3zCWPXkz1pzf9TtQjiinO/JpDEW0tgnlFdpriXJd+yGrqWJlfpQwAAyrt7dkCc+T9sO6ZY3ntuNMNUa95XikPiEyWqJzzh2wmfdxMe0Jx+kMRbS2CeUN3Gu1eS1NLFSH75CAmQcuyEji4h7ZB1rIFuYbyA8rK9oUcAAEsZxbPmOrYJlyXdsOU5zy5jdkBGmoOM1KMQ9gjAxvr0ExQ9rIFuSMt+mnjNgDhNjJCnrKy34CgmQIGHcAlrcDXls4i3thuySeNE4025ZHtc24h5NKhffvVct0DFtudjjuxasgWxJwnybfM6AGSrFyIwZ8cZwEtZXmsRfsgJQszBuUYtiN2QTq+UIn8m3VOYkrb/mQ1q3coH6Vi/UupULtP6aD1HVz7h6clW5+N5w7xNGxHct2Ak/W5Iw35OdM7iOSL4g5rBSjLx98HDAra1PEtZXmjCuQIJMdotao4s57N2Q+UQlu8KI1yCNjnr6+3/+r1Jc3rRivtTixN3MtON5AAAgAElEQVQsxKTuDY0Nj+9q2Ak/W5Iw35XWlCwpf5DriCQL6lqwUoyMFo5sihmXJKyvNKF8CSRI8Ra1sUq3qDXBdT1Zrqec78tyvUATrsmfwiNcYcVrEAqSvjQhLr9EXGZavbnK5PiuVZi5H+Yxfb4rrSn5FtcRCRfUtWClGGnJxf+ftKavrzSJf7Yn2LRpkxYvXqzTTjtNzz//fOn1l19+WcuXL9f555+v5cuX65VXXomvkUBMkniLGhsbZZfJ8UpcYqJ6Y6JcfPdetcCI+AaSqNI5w/M88nXCBXXOrRQjx0ydElRTkQDGnWeXLFmiyy+/XJ/61KfGvb5u3TpddtllWrZsmR566CF98Ytf1D/8wz/E1EogHkm8RY2NjbLL5HglLjFRvTFRLr6PndGhgYEDUTYbSI1K54yCRL5OuKDOuZVixE7QnW9onnF3YMybN0+zZ88e99rAwICeffZZXXjhhZKkCy+8UM8++6zeeuutOJoIxCppt6iZ/Ck8wmdqvBKXmKiRmJgY31xEA80pd84gXydfkHNo6nUFopOItf/mm2/quOOOk+Mc2VzNcRz19PTozTff1MyZM2NuHYDJuK6nWZ2t6lv9EbmeJ8e21epIoyNu3E1DhgV9d4jj2CpIxt1pgtoFEROe58t3bOIAqKKenGny3XyoTVRzyLk4GxJRwAjKrFnT4m5CZnV3d8bdhKOY2KaxkhSvk42l5/l6dfd+bbj3idLO071XLdApx09P7aeVpsdWGMKOV5PHtN4YN7kv9UpqX8KIV3JdesXdT5OvBxoZmySulbhjIEniitdZs6YlLq5qkebYa7RviShgzJ49W3v27JHrunIcR67rqr+//6ivmlQzMHBAXpXNYtIcJHHau3ewrt+PYh5qaVOc8VBLvJqgu7tz0rH0Hbt0MpGObNq04d4n1Ld6oawUVsWrjUfYx45LmPEa55jWop4YN70v9Wi2L2mLV3JdOhX7mbZ4DUKjMZC0tZLEWM9avHZ3d2rf/wwlKq5qkcTYq9XYvtUbr8btgVHOrFmzdPrpp+vhhx+WJD388MM6/fTT+foIkAA87QFpR4xDIg6AWrFWEAbiKjuMK2Bs2LBB5557rnbv3q0rr7xSF1xwgSRp/fr1+ta3vqXzzz9f3/rWt3TzzTfH3FIAtaj0zG4nwbfzAWMR45CIA6BWrBWEgbjKDuMKGL29vfrXf/1XPfvss9q5c6ceeeQRSdKpp56q7373u9qxY4e++93v6n3ve1/MLQVQC3YPR9oR45COxEHvVQuIA6AKcibCQFxlB3MKIFTsHo60I8YhHZnvU46fThwAVZAzEQbiKjsoYAAInet6svROwnF98QBVpA0xDkmybUuW6xEHQBXkTISBuMoG475CAgAAAAAAMBEFDAAAAAAAYDwKGAAAAAAAwHgUMAAAAAAAgPEytYmnzXOAY2Pi2JvYprFMb99YSWprFLI4HmH3OU1jSl/iF2a7kzomjchKX+PuZ9zHn4zJbQtSVvoZhLjGKq1zlNZ+SY33zfJ93w+4LQAAAAAAAIHiKyQAAAAAAMB4FDAAAAAAAIDxKGAAAAAAAADjUcAAAAAAAADGo4ABAAAAAACMRwEDAAAAAAAYjwIGAAAAAAAwHgUMAAAAAABgPAoYAAAAAADAeBQwAAAAAACA8ShgAAAAAAAA41HAAAAAAAAAxqOAAQAAAAAAjEcBAwAAAAAAGI8CBgAAAAAAMB4FDAAAAAAAYDwKGAAAAAAAwHgUMAAAAAAAgPEoYAAAAAAAAONRwAAAAAAAAMajgAEAAAAAAIxHAQMAAAAAABiPAgYAAAAAADBeLu4GRGlg4IA8z6/6e11dHcrnhyJoUWNoX+PqbVt3d2eIrZlcrfEaN5PnOw5xjkda4zVNMUZf3pXGeE3T/FaTlb4W+5nGeG1W1mIgSbIWr0mco1qktV/S+L7VG6/G3YGxadMmLV68WKeddpqef/55SVI+n9c111yj888/X0uXLtVnP/tZvfXWW6G1IZdzQnvvINC+xpnctqRiTMdjPIKXpjGlL+mWpTHJSl+z0s9GZGVsstLPJEvrHKW1X1JzfTOugLFkyRLdd999OvHEE0uvWZallStXaseOHdq+fbtOPvlk3X777TG2EgAAAAAARMm4Asa8efM0e/bsca/NmDFDCxYsKP177ty5euONN6JuGgAAAAAAiIlxBYxqPM/T/fffr8WLF8fdFAAAAAAAEBHL933zdgWStHjxYm3dulVz5swZ9/rNN9+sPXv26K677pJtJ67+AgAAAAAAGpCop5Bs2rRJr776qrZu3dpQ8aLWXXG7uzu1d+9gI02MBO1rXL1ty9ouzo0web7jEOd4pDVe0xRj9GX838clrHhN0/xWk5W+FvuZxnhtVtZiIEmyFq9JnKNapLVf0vi+1RuviSlg3HnnnXrmmWf0ta99Ta2trXE3Bwnleb58x5br+XJsSzlJruvF3SwAMJbj2CpI5M2UY56ThzkDzMF6jI5xBYwNGzboscce0759+3TllVdqxowZ+spXvqKtW7fqPe95jy655BJJ0kknnaSvfvWrMbcWSeI4tl7dvV8b7n1C/flh9XS1a+2K+erqaCHBBKRzervaptSXVg4dLmhw/3BILQLQDMexlR8a1cZtu47Km0iPyeaZ86OZmDPAHKzHaBlXwOjt7VVvb+9Rr//2t7+NoTVIk4JUKl5IUn9+WBu37VLf6oWy4m1aarRNyWnp9Q/V9Tfb71imdN4cByRfQSpdkEnj8ybSY7J55vxoJuYMMAfrMVrsgonMcD2/lFiK+vPDcg38XikAmIC8mQ3Mc/IwZ4A5WI/RooAB4ziOLd+xVbAs+Y4txwkmTB3bUk9X+7jXerra5djURgGgnFrzZlh5O01MHiPOj8mTtTkzef0gPsW46M8PxRoXWVuPcWP1wyjF75Ct2bJTq/oe15otO5UfGg0kIeUk9V61oJRgit9PM+57VABgiJyktSvmT5o3w8zbaWH6GNUyzzBLlubM9PWDeIyNi6s3/DDWuMjSejQB4wqjhPkdMtf1dMrx09W3eiE7BANADVzXU1dHy6R5k+/+Vmf6GNUyzzBLlubM9PWDeJgUF1lajyaggAGjTPYdsiCC1bYtWa535L1cX24A7wkAaea6niypYt4MO2+nQRLGqNo8wzxZmbMkrB9Ez7S4yMp6NAH3XsEofIcMAJKFvF0dYwQ0jvWDcoiL7KKAAaPwHTIASBbydnWMEdA41g/KIS6yizmGUfgOGQAkC3m7OsYIaBzrB+WMjQtZluT7xEVGUMCAcfgOGQAkC3m7OsYIaBzrB+UU46K7u1N79w4SFxnBV0gAAAAAAIDxKGAgkRzHlu/Yci1LvuPIzx35N88EB5AlxVxYsKyyObDazxEsz/ONHG/iAAhfmOuMNRyNesaZOYkPXyFB4jiOrfzQaOnZzz1d7frc8rO1/ecv6tLzfl9dHS18/w1A6pXLhWtXzC/lwGo/R7Acx9aru/drw71PGDXexAEQvjDXGWs4GvWMM3MSL0pFSJyCVEoY0pFnPv/dPz6lJX94ijZu26VCvM0DgEiUy4Vjc2C1nyNYBalUvJDMGW/iAAhfmOuMNRyNesaZOYkXBQwkjuv5pYRR1J8fVmdHi/rzw3I9P6aWAUB0KuXCYg6s9nMEy9TxNrVdQJqEuc5Yw9GoZ5yZk3hRwEDiOLZVeuZzUU9XuwaHRtXT1S7HtmJqGQBEp1IuLObAaj9HsEwdb1PbBaRJmOuMNRyNesaZOYkXBQwkTk7S2hXzS4mjuAfG40++qrUr5rOxC4BMKJcLx+bAaj9HsHKSeq9aYNx4EwdA+MJcZ6zhaNQzzsxJvBhnJI7reurqaFHf6oXyPMm2LcnyteriM5V75+cAkHZjc6Hr+XJsa1wOrPZzBMt1PZ1y/HTjxps4AMIX5jpjDUejnnFmTuJFAQOJ5LqeLEmOJLljXo+pPQAQh2IuzEmS6x+VA6v9HMGybUuW6xk33sQBEL4w1xlrOBr1jDNzEh++QgIAAAAAAIxnXAFj06ZNWrx4sU477TQ9//zzpddffvllLV++XOeff76WL1+uV155Jb5GAgAAAACASBlXwFiyZInuu+8+nXjiieNeX7dunS677DLt2LFDl112mb74xS/G1EIAAAAAABA14woY8+bN0+zZs8e9NjAwoGeffVYXXnihJOnCCy/Us88+q7feeiuOJgIAAAAAgIgZV8Ao580339Rxxx0nx3EkSY7jqKenR2+++WbMLQMAAAAAAFHI1FNIZs2aVvPvdnd3htiS5tG+xpnctrHqide4NTumSZmTWqWtP7UIO17TNKb0JX5hxmtSx6QRWelr3P00+Xog7rGJSlb6GYS44jWtc5TWfkmN9y0RBYzZs2drz549cl1XjuPIdV319/cf9VWTagYGDsjz/Kq/193dqb17BxttbuiabZ/j2CpIoT232OTxq7dtcSaNWuM1bmPHtNHxMjVeGhFn/Kc1Xk3OKfWKqy9h5P1m+5LGeA1zfsM+d9crTetyMsV+pjFem5W1GCgybS2Wk7V4jSIW45j3NK+xZv77IREFjFmzZun000/Xww8/rGXLlunhhx/W6aefrpkzZ8bdtMRxHFv5oVFt3LZL/flh9XS1a+2K+erqaDEu+QIAmkfeTz7mEDADazGbmHezGFfA2LBhgx577DHt27dPV155pWbMmKFHHnlE69ev19/8zd9oy5Ytmj59ujZt2hR3UxOpIJUWnyT154e1cdsu9a1eKCvepsFAndPb1TalepqIstJfa5uKDh0uaHD/cIgtql8a+oDkIO8nH3MImIG1mE3Mu1mMK2D09vaqt7f3qNdPPfVUffe7342hRenien5p8RX154fler55wYDYtU3Jaen1D9X8+9vvWBZia45opE2m3XyXhj4gOcj7ycccAmZgLWYT826WRDyFBMFxbEs9Xe3jXuvpapdjUz8EgDQi7ycfcwiYgbWYTcy7WShgZExO0toV80uLsPgdLqqHAJBO5P3kYw4BM7AWs4l5NwvjngL17Irrup66OlrUt3qh0bsnA0CtkrAjfJzI++EoF3dhYQ4BM4S9FjmfhaeZsSUHm4UCRsI1siuu63qy9M7ku77cJo5NkgUQJ3YGr01QeX8yWTonVIq7GTPCe3RgFHOYJVmK16AVx64/PyQ5dubGLqy1yPksPEGMbZpzcNLyIV8hSbhKu+IWQj5uMRGs2bJTq/oe15otO5UfGpXjEFIAohNXDsR4WTsnVIq7tw8ejrdhqEnW4jVIY8fu6g0/ZOwCxPksPIxtZUnMh+a2DDWZbFfcMJEIAJggrhyI8bJ2TqgUd6MFcz+xwruyFq9BYuzCw/ksPIxtZUlc0xQwEi6uXXFJBABMwM7gZsjaOaFS3LXkuKxKgqzFa5AYu/BwPgsPY1tZEtc0Z9qEi2tXXBIBABOwM7gZsnZOqBR3x0ydEm/DUJOsxWuQGLvwcD4LD2NbWRLXNPOWcHHtiltMBBM3wyGgAESJncHNMNk5IU0bnRVVijvb4As+vCtr8Rokxi48nM/Cw9hWlsQ1zX9vpkAcu+KSCACYIs07gydFFs8JxF1yZTFegzJ27GRZku8zdgEir4SHsS0vifmQAgYaRiIAABRxTkCSEK+NK45dd3en9u4dZOyAhEtaPmQPDAAAAAAAYDwKGAAAAAAAwHgUMFA3x7HlO7YKliXfseU4hBGAbCIfImuKMd+fHyLmM4oYACbHtUG42AMDdXEcW/mh0aN2qu3qaDF6sxcACBr5EFlDzIMYACbHGgkf5SDUpSCVFqQk9eeHtXHbLhXibRYARI58iKwh5kEMAJNjjYSPAgbq4np+aUEW9eeH5Xp+TC0CgHiQD5E1xDyIAWByrJHwUcBAXRzbUk9X+7jXerra5dhWTC0CgHiQD5E1xDyIAWByrJHwUcBAXXKS1q6YX1qYxe91sZkKgKwhHyJriHkQA8DkWCPhS9RY/uQnP9HmzZvl+748z9Nf/MVf6Lzzzou7WZniup66OlrUt3qhXM+XY1vKvfM6AGQJ+RBZMzbmZVmS7xPzGUMMAJPj2iB8gRYwfvGLX+jBBx/UCy+8oIMHD2rq1Kn6vd/7PX384x/XwoULm3pv3/f1+c9/Xvfdd5/mzJmj5557Tpdeeqn+5E/+RLbNjSRRcl1Plt4JHteXG3N7ACAu5ENkTTHmu7s7tXfvIDGfQcQAMDmuDcIVWAFj27Ztuueee/TJT35S5513njo7O3XgwAE999xzuvHGG3XNNdfoiiuuaOoYtm1rcHBQkjQ4OKienp5EFi8cx1ZBoioHABlRzPv9+SHJscn7SKSx1y/5wUNyHJs4hiSubYFasE6CEVgB45577tE3vvENnXrqqeNeP++883TBBRfoiiuuaKqAYVmWvvKVr2j16tXq6OjQwYMHdffddzfb7MjxbGAAyBbyPtKAOEYlxAZQHeskOIEVMIaHh3XccceV/Vl3d7eGh4fL/qxWhUJBd999t7Zs2aJzzjlH//Ef/6G//Mu/1COPPKKpU6fW9B6zZk2r+Xjd3Z2NNnVS+cFD2rht51HPBr79unPVPbO2foTZvlp4nq+3Dx7WaMFTS87WMVOnyJ6ws26c7avG5LaNVU+8Jl3YcxL1nIdxPNPjNux4NaH/teS+coLK+yYyYV4aEWS8jo2L/OAhzZo1raa4SJo0x3E1cce5ydcD3d2dmYiNuGMgSaKK16Tl3kbXSZpjr9G+BVbAOO+88/SZz3xG1157rU477TRNmzZNBw4c0G9/+1tt2bJF559/flPv/9///d/q7+/XOeecI0k655xz1N7erhdffFEf+MAHanqPgYED8mp4Bm/xO31hKFhW2WcDHzpc0N5DtR0zzPZVU0v1MM72VVNv2+JMGrXGa5ii6n/YcxJlPNYSY2H1Ia3xakJOaeaTkyDyvomanZc0xGuWPlFLaxxXU4zzNMRr0Ep7YFSIjcOH3VTEhgnnoHqlPV6TmHsbyaFJjL1aje1bvfEa2AYSN998s84++2zdeOON+qM/+iOdddZZWrhwoW688UbNnTtX69evb+r9jz/+eO3evVsvvfSSJOnFF1/Uvn379L/+1/8KoPXRSfqzgQtSKVlI71YPC/E2CwBC1UzuS3reR2VZOicSx6jEtu2ysWHyp+FItiTmXnJocAK7A6O1tVXXX3+9rr/+eu3fv19DQ0Pq6OjQ9OnTA3n/7u5urV+/Xtddd50s68hE9/X1acaMGYG8f1SKzwaeWDHMSYnYodb1/LLVQ9fzk/VMXqCCzuntaptSXzQfOlzQ4P7mviYHszWT+5Ke91FZls6JxDEqsnx9bvnZ+rt/fKoUG59bfrZkmXfXCNIhibmXHBqcUOZ4+vTpgRUuxrrooot00UUXBf6+UUr6s4GL1cOxSaNUPXQ5USH52qbktPT6h+r6m+13LFM6b/BDUTO5b2zel2VJvp+ovI/KsnROnHj90jYlJ3/UJY4h+dL2n7+olcvOVGdHiwaHRrX95y9q1cVnxt0ypFQSc2/S/xvQJJE8g3RkZESnn356FIdKBNf1ZLmecr4vy/USFbjF6mHxFqix1UMASKtmc18x7/d0dSQu76OyrJ0Tx16/dHW2EceQdGQdXHre7+ueh36tNVt26p6Hfq1Lz/v91K4DxC+puTfJ/w1oksDm+Y033qj4s8OHD8v3zayGoT5UDwFkEbkP5XBXAkB+RPTIvdkWWAFj8eLFsiyrYqGiuG8FzOE4tgpS3Scb1/Vk6Z3gcX2+twUAyKyx58SuzrbE7hjf6DUBIGXr2pC1Yoa4ci/zH7/AChjd3d266667dMYZZxz1s8OHD5cef4r6TVwoPPoNAKLVTM4cm8Pzg4fkODZ5FqGq9wKbawKYzpT/aGStZJvj2Do46mrPW0Nqa83p0EhBx83s0NQWh/mPUGB7YJxxxhl69tln5TjOUf/L5XJ8haRBxUS5ZstOrep7XGu27NSru/fLcZqbuiQ+fggA4tJozpyYw2/Y/K/KD402ncOBSspdN1SLOa4JYLJGYjosrJVs8x1L+cHD+vt//i+t2bJTf//P/6X84GH5Dt80iFJgK/+WW27ReeedV/Znra2teu6554I6VKaUS5Qb7n2i6UQ52eOHAADjNZozudhF1BqJOa4JYDKT8ihrJdsKrq/N33lqXCxu/s5TKhj65JO0CqyA0d3drVmzZgX1dnhHWImy+PihsUqPHwIAjNNozuRiF1FrJOa4JoDJTMqjrJVs8yrEose3RyIV+L1Xvu/rgQce0OWXX66lS5dKkp588kk9+uijQR8qE8JKlEl9/BAAxKHRnMnFLqLWSMxxTQCTmZRHWSvZlrPtsrGY45weqcDX2+bNm/Vv//ZvuuKKK7Ru3TpJ0vHHH6++vj796Z/+adCHS71iohy7WVDvVQuObF7UxPvyyCsAqF2jObNcDi9e7KZ5l37Ep5GY45oAJjMpj7JWss2Rr5tWzNeXxsTiTSvmy1G6n7xjmsALGA8++KAefPBBzZw5U+vXr5cknXTSSXrttdeCPpQxwtwZuVyiPHZGhwYGDgTy3ll55BUANGtsznRkHcn7ljVp3udZ9Yia63qa1dmqvtUfket5cmxbrY40OjL5WZ5rAkSpnmtn04oGrJXscl1PMzpa9H9Xf0QFz5dtSznHktgDI1KBFzBc19XUqVMlSZZ15HaagwcPqqOjI+hDGSGKxylNTJQ2tykBQGzqzftxPase2eQ4tgYGR3jMI4zVyLUzRQOYZP8QOTZOge+BsWjRIvX19WlkZETSkT0xNm/erI9+9KNBH8oIJu2MDAAIH3kfJiM+YTpiFElG/MYv8ALGmjVr1N/fr3POOUeDg4M6++yz9cYbb+iGG24I+lBGMGlnZABA+Mj7MBnxCdMRo0gy4jd+gX+FZNq0adqyZYsGBgb0+uuva/bs2eru7g76MMYo7ow8NpBLOyPzfSgASB3yPkxGfMJ0xCiSjPiNXyh3YPz85z/XrFmz9IEPfKBUvChu6Jk2PE4JALKFvA+TEZ8wHTGKJCN+4xf4WG/fvl07d+7UFVdcoauvvrr0+ve///1UFjFM2xkZABAu8j5MRnzCdMQokoz4jV/gd2C0trbqgQce0COPPKK//uu/HreZZ1q5rifL9ZTzfVmuRwADQMqR92Ey4hOmI0aRZMRvvAIvYEjS8ccfr29/+9vyPE+XXnqp9uzZU3qkKgAAAAAAQL0CL2AU77Roa2vTHXfcofPPP1+f+MQnSndiAAAAAAAA1CvwPTCuvfbacf9etWqVTjvtNP3Lv/xL0IcCAAAAAAAZEXgBY+XKlUe9tmjRIi1atKjp9z58+LA2btyoX/7yl5oyZYrmzp2rW2+9ten3BQAAAAAAZgukgHH11Vfr61//uiTpsssuq7jfxX333dfUcW677TZNmTJFO3bskGVZ2rdvX1PvBwAAAAAAkiGQAsbFF19c+v+f/OQng3jLoxw8eFDf+9739LOf/axUIDn22GNDORYAAAAAADBLIAWMpUuX6plnnlFra6s+9rGPSZIGBga0ceNGvfDCC5o7d65uvPHGpo7x2muvacaMGbrrrrv0xBNPaOrUqbruuus0b968mt9j1qxpFX/meb7ePnhYowVP+cFDpd8tvtaSs3XM1Cmy7cafpjL2GM2+X3d3Z8PtiILJ7TO5bWNNFq9pE/acRDHnY48RxvFMj9uw4zWM/jeTkyf+bWd7qwaHR2p6L9Pnsh5J7UuleG32PO15vnJtLYFdN5jO1PkP8npLir+fQeXXoMdFanxs6m1LGG2vR9wxkCRh5ddqurs7Y4+TMCQx9mqdh0b7FtgeGBs3btRnP/tZzZkzR5L0hS98QXv27NHy5cv18MMP67bbbtP69esbfv9CoaDXXntNf/AHf6Abb7xRv/rVr/SZz3xGP/zhDzVtWm2JfWDggDzPP+p1x7GVHxrVxm271J8fVk9Xu9Zf8yGNjnr60pjX1q6Yr66Oloae9VvuGI2+X3d3p/buHay7DVExuX31ti3OpFEpXqMUVf/DnpMo5rx4jFpiLKw+pDVew8gpzeTkiX+74H8fp0vO+3311fBeJufHejXbF9PitdnztOPYevtQQRvufSKQ6wbTmRrLQV5vSe/207R4rVfQ4yI1HgP1tiWMttfD1FifjGnxGvYcdnd36q23DsYaJ2FIYuzVOtdj+1ZvvAb2GNUXX3yxdDfE/v379bOf/Uy33367PvWpT+lv//Zv9ZOf/KSp9z/hhBOUy+V04YUXSpLOOussdXV16eWXX2667QWpNMiS1J8f1p63hkrFi+JrG7ftUiHAYzTzfgCAxjWTkyf+7ZI/PKVUvKj3vWCOZs/TBalUvGjk7xEMrrfKM2lc6m2LSW1HY6KYQ+LEDFHMQ2AFDNd11dLSIkl6+umn1d3drfe+972SpNmzZ2v//v1Nvf/MmTO1YMEC7dy5U5L08ssva2BgQKecckpzDZfken5pkIvaWnNHvdafH5bbYAW83DGaeT8AQOOayckT/7azo4X8ngLNnqc5z5uBeSjPpHGpty0mtR2NiWIOiRMzRDEPgRUw3v/+9+sHP/iBJOnRRx/Vhz/84dLP9uzZo87O5m9luvnmm3X33Xdr6dKl+qu/+it9+ctf1vTp05t+X8e21NPVPu61QyOFo17r6WqX0+D3qModo5n3AwA0rpmcPPFvB4dGye8p0Ox5mvO8GZiH8kwal3rbYlLb0Zgo5pA4MUMU8xBYAeOGG27QunXrNH/+fP30pz/VNddcU/rZo48+qg9+8INNH+Pkk0/WN7/5TW3fvl0PPvigFi1a1PR7Skc2Alm7Yn5psHu62nXczA7dNOG1tSvmN7xpSLljNPN+AIDGNZOTJ/7t40++qjXk98Rr9jydk9R71QLiIGZcb5Vn0rjU2xaT2o7GRDGHxIkZopgHy/f9wO7nOHDggF555RW95z3vGbex5ldLPiQAACAASURBVEsvvaSpU6fquOOOC+pQDZlsEyTHsVXQkdte2qbk5I+6klR6zbEt5aSmNoEZe4xm3q+ZTZPGHr/VsTTi+oH1r9n2RYFNPOvT3d2ppdc/VPPvb79jWV2/X/ybeuek3jaF+f4Tj1HrJp5h9CGt8RpETimXf6V3c3zOtmU70sioV1M+bDSfmpwf65W2TTyl5s/Ts2ZN077/GQr8vGoax7FltTg6dLgQWD+DukYK+r3SsomnFOy4SLXlgErHrLctQbe9HhP7GWdbamVivIY5bsU5SsLcVFPuv0mLfUhK/2ppZzObeAZalJo2bZrOOOOMo15/3/veF+RhQuG6niwdGZCuzrbSgBZfk+vLDfAYQbxfPZrZNR8AkmyyHbEt19MUx1Z+aKSuncsn5vNRN9jzBeLR7Hnati1ZrpfqOHh3Pe0M7Poh6CcUxHm9ZbKox6XavNbTFlPmNO4noiRZFHNoSpw0arL4kpSY2At7HgL7CgmC4zi2fMdWwbLkO7Ycp/lpYtd8AEnkOLbyg4eayofVdsRm53KkQRjXDuWEsV5Yg+mUxnmdrE9RrUGYJ6i5nyy+0rieGsXXggwTVmW3nl3zCQoAJgjqk97JdsTO1fBzwHRRfiocxnphDaZTGue1Up88T8ofSsan4whWkPm32hM80raeGkVp0DBhVdfYNR9A0gSVD6vtiM3O5Ui6KD+ZC2O9sAbTKY3zWqlPtm3x6XhGBZl/J1szaVxPjaKAYZiwnp3LrvkAkiaofFhtR2x2LkfShXXtUE4Y64U1mE5pnNdKfZIV3RqEWYLMv5OtmTSup0Zlsc9GK1bXxi6EUnXNbTwJuq6nro4W9a1eOG7X/LH/NnUnWwDZFFQ+LJf/xua7aj8HTBfWtUM5xfVy+3XnBvYUEtZgOqVxXiv1qeArsjUIswSZfyfG18SnkKRtPTWKOzAME2Z1zXW9I7uj+74s19PoiDvu31lcAADMFWQ+nJj/Jua7aj8HTBb1J3Ou66mrsy3Q9cIaTKc0zmu5PvHpeHYFPfdj46urs23cmknjemoE6yoAjT6Tt9LfUV0DgHA+6a1XS6ujEVdyPU+ObavVkUZHkvZgNiRRPdcWSbl2aPR6CajElJhyXU+zOlvVt/ojnC8ypt78e+SJJZYKri/P85WzbTnyyYV1oIDRpEZ3ng3y2dgAkFau66l75lTtPTQYeT5saXW0b3Ck9Mjpnq52rVkxX8d2tnJRilA1cm1h+rVDlE9KQTaYFFOOY2tgcMSItiB6teZfx7F1cNRV/q3D2vydp0qxctOK+ZpBrNSMr5A0qdGdZ3mWLwCYbcRVqXghHcnTfdt2idoFwpbGa4Q09gnxMimmTGoLzFWQtOetoVLxQjoSK18iVupCAaNJje48G+WO4QCA+rmeVyFP8wkJwpXGa4Q09gnxMimmTGoLzOV6vtpac8RKkyhgNKmWZ/Ie+a6TrYJlyXdsOY7Ns3wBwADl8nPpZ7ZdIU9z6kyzyWIisjak8BohjX1CvEyKqaDaYkL+SRuTxtSxLR0aKRgTt0nFqmhStZ1ni9/PW7Nlp1b1Pa41W3YqPzSqVsdit2IAiFGl/Fy8uGl1pDUT8vSaFfPV6sTZaoSpWkxEJY1PNEhjnxAvk2IqiLaYkn/SxLQxzUk6bmaHrrvk7HGxchO5sC6MVZOq7Txb6TtxfasXJmLHcABIq8nys6Uju8cfy67ymVItJqKSlKeK1CONfUK8TIqpINpiSv5JE9PG1HU9TW1x1NE9VRtXL5TnSTnb4ikkdaKAEYDJdp6d7Dtxlu8bvWM4AKTZZPm5eHIcHXHH5GlXoyTqVKslJiJri+FPFWlEGvuEeJkUU822xaT8kxYmjqnrepJ75GsQtiS5IhfWiXuSQmbS9/MAAO8iP2MiYgJAXMg/wWNM04kCRshM+n4eAOBd5GdMREwAiAv5J3iMaToxfyEz6ft5AIB3kZ8xETEBIC7kn+AxpumUyDsw7rrrLp122ml6/vnnIz1uo4/hcV1Plusp5/uyXI9FAwAGcBxbBYmLGoyTpXO2SY8XRPiYb/NlKf9EJaoxZX1FJ3F3YPzmN7/R008/rRNOOCHS4xYfw1PcybZ4C1JXRwvJBQAShpyOrGMNZAvzDYSH9RWtRJWGRkZGdMstt2jdunWyrGg3X6n0GJ5CpK0AAASBnI6sYw1kC/MNhIf1Fa1E3YGxefNmXXTRRTr55JMb+vtZs6bV/Lvd3Z3j/t2fHyr7GB5Z1lG/G4U4jlkPk9tnctvGqideky7sOYlizsceI4zjmR63Ycdr0P2PM6ebPpf1SGpfwozXpIxJEGsgKX1tVtz9DCJew8p5cY9NVLLSzyDEdf0a5xyFeU2R5thrtG+JKWA89dRT+vWvf60bbrih4fcYGDggz/Or/l53d6f27h0c/6Jjq6erfVxw9nS1S75/9O+GrGz7DGJy++ptW5xJo9Z4DVNU/Q97TqKY8+IxaomxsPqQ1ngNJafElNNNzo/1arYvaYzXRM1vk2sgUX1tQrGfiY/XEHJe1mIgSRIfr3WKfY5CuqaIvV8hGtu3euM1MV8hefLJJ/XSSy9pyZIlWrx4sXbv3q2rr75av/jFLyI5Po/hAYD0IKcj61gD2cJ8A+FhfUUrMeO6atUqrVq1qvTvxYsXa+vWrZozZ04kx+cxPDBN5/R2tU2pbwkfHnE1pdUJqUWNGRl1Q/2kIOz3RzKR05F1rIFsYb6B8LC+opWYAoYJXNeTpXcGzfXlxtweZFvblJyWXv9QXX+z/Y5ldf3N9juW1dusurW2OKG2Kez3R3KR05F1rIFsYb6B8LC+opPYAsaPf/zjuJsAAAAAAAAikpg9MAAAAAAAQHZRwAAAAAAAAMajgAEAAAAAAIxHAQMAAAAAABiPAgYAAAAAADAeBQwAAAAAAGA8ChgAAAAAAMB4FDAAAAAAAIDxKGAAAAAAAADjUcAAAAAAAADGo4ABAAAAAACMRwEDAAAAAAAYjwIGAAAAAAAwXi7uBiSB49gqSHI9X45tKSfJdb24mwUAxiN/Is0mxrfn+XE3CUg0zhmoplyMIFuY8yocx1Z+aFQbt+1Sf35YPV3tWrtivro6WkioADAJ8ifSrFx89161QMe05YhvoAGcM1BNpRiZMYPicZbwFZIqClJpkUhSf35YG7ftUiHeZgGA8cifSLNy8b3h3ieIb6BBnDNQTaUYefvg4XgbhkhRwKjC9fzSIinqzw/L5TZRAJgU+RNpRnwDwWJNoZpKMTJa4A6dLKGAUYVjW+rpah/3Wk9XuxzbiqlFAJAM5E+kGfENBIs1hWoqxUhLjv+kzRJmu4qcpLUr5pcWS/G7VmweAgCTI38izcrFd+9VC4hvoEGcM1BNpRg5ZuqUeBuGSCUqJ+TzeX3+85/X7373O7W2tuqUU07RLbfcopkzZ4Z2TNf11NXRor7VC9kRGQDqQP5EmpWL72NndGhg4EDcTQMSiXMGqqkUIzZ36WRKou7AsCxLK1eu1I4dO7R9+3adfPLJuv3220M/rut6slxPOd+X5XokUgCoEfkTaTYxvrmIBprDOQPVECNIVAFjxowZWrBgQenfc+fO1RtvvBFjiwAAAAAAQBQSVcAYy/M83X///Vq8eHHcTQEAAAAAACFL1B4YY916663q6OjQpz/96Zr/ZtasaTX/bnd3ZyPNigzta5zJbRurnnhF/MbGVRgxZnrchh2vpve/HvQlfmHGa1LHpBFZ6Wvc/TT5eiDusYlKVvoZhLjiNa1zlNZ+SY33LZEFjE2bNunVV1/V1q1bZdu130SSzx+UV8OzpGfNmmb0Jly0r3H1ti3Oi4Zq8WryBU0WFeOqlhhrZO5qiVuT47UZJueUetGX8X8fl7DiNU3zW01W+lrsZxrjtVlZi4EkyVq8JnGOapHWfknj+1ZvvFq+75uXESdx55136j//8z/1ta99Te3t7dX/AAAAAAAAJF6iChgvvPCCLrzwQr3nPe9RW1ubJOmkk07SV7/61ZhbBgAAAAAAwpSoAgYAAAAAAMimxD6FBAAAAAAAZAcFDAAAAAAAYDwKGAAAAAAAwHgUMAAAAAAAgPEoYAAAAAAAAONRwAAAAAAAAMajgAEAAAAAAIxHAQMAAAAAABiPAgYAAAAAADAeBQwAAAAAAGA8ChgAAAAAAMB4FDAAAAAAAIDxKGAAAAAAAADjUcAAAAAAAADGo4ABAAAAAACMRwEDAAAAAAAYjwIGAAAAAAAwHgUMAAAAAABgPAoYAAAAAADAeBQwAAAAAACA8ShgAAAAAAAA41HAAAAAAAAAxsvF3YAoDQwckOf5VX+vq6tD+fxQBC1qDO1rXL1t6+7uDLE1k6s1XuNm8nzHIc7xSGu8pinG6Mu70hivaZrfarLS12I/0xivzcpaDCRJ1uI1iXNUi7T2S/8/e3cfJUd93/n+U1U9jzDS9AwzYjAcyBKTqxjfANKV4pUxu2KPvSSSRS7xMcaxowsc1sh2tAGBkcCSeNJcPbAsXqIFewM62A5cOCxSJIiBGJ8kVrIIJ+DFxk68iUJgERp5NMBIGmmmq+r+IXUzI7pnurrr4VdV79c5nMM8dPfvV7/P71s1P9WDpvYtaF45A6OKQsFJugnTon2NM7ltacU2nYrtEb4sbVP6km152iZ56Wte+tmIvGybvPQzzbI6Rlntl9Rc31jAAAAAAAAAxmMBAwAAAAAAGI8FDAAAAAAAYDwWMAAAAAAAgPFYwAAAAAAAAMbL1WNUES7HsVWS5Hq+HNtSQZLrekk3CwgNGc+2rlkdam8Lths8Nu6qrbX+O2cfPVbS6HtjQZsGIGLU98aVt93QyBHJsdl2QMqlrR6ygIGGOI6tkSMT2rBtj4ZGxtRf7NCa5QtU7GwJ5b3TNImQTdNlPKo8kv14tbcVtPTGHYFes/OeZYFes/OeZRoN2jBkEvPbHEnU96xIatsxf1ANi2nNS2M95BISNKQkVYIuSUMjY9qwbY9KTb5veRKt3rpb1w1+X6u37tbIkQk5DlFFvKLKeC1kH8gu5rdZ4q7vWZLEtmP+oJrJubjmrufJRYPSWA8ZYTTE9fxK0MuGRsbken5T75vGSYRsiirjtZB9ILuY32aJu75nSRLbjvmDashFONJYD1nAQEMc21J/sWPK9/qLHXJsq6n3TeMkQjZFlfFayD6QXcxvs8Rd37MkiW3H/EE15CIcaayHLGCgIQVJa5YvqAS+fL1UszdVSeMkQjZFlfFayD6QXcxvs8Rd37MkiW3H/EE15CIcaayHxrbt/vvv13/5L/9FO3fu1HnnnadXXnlFa9eu1bFjx/ShD31ImzdvVm9vb9LNzC3X9VTsbNHgikWh3lCpPIlOvpFMQZIbRsOBOkWV8VrIPpBdzG+zxF3fs2TytpNlSb4f+bZj/qAachGONNZDIxcwfvrTn+qVV17RGWecIUnyfV833XSTBgcHNX/+fG3dulVbtmzR4OBgwi3NN9f1ZOlEiFw/lGKRxkmE7Ioi49N9FtkHson5bZ4463vWlLddX1+XDhwYjXzbMX9QTRKLaVmVtnpo3CUk4+PjuuOOO7Ru3TpZ1vFTgF599VW1tbVp/vz5kqQrr7xS3/ve95JsJiLkup4s11PB92W5HoUIuUH2gexifgONY/6gmnIu+oud5CJHjDsD47777tOnP/1pnXXWWZXv7du3r3I2hiT19PTI8zy988476u7urvu9e3tPrft3+/q66v7dJNC+xpnctsmC5DVpadmmccnj9og6r2nepie3Pc19OVla+xJlXtO6TRqRl74m3U+TjweS3jZxyUs/w5BUXrM6Rlntl9R434xawHj55Zf16quvatWqVZG8//DwIXl13Jm2fEqcqWhf44K2LcmiUW9ek2byeCchye2R1bxGtU3j2l6T256l+dJsX7KY1yyN70zy0tdyP7OY12blLQNpkre8pnGM6pHVfklT+xY0r0ZdQvLSSy/pn/7pn3TppZdq8eLFevvtt3XNNdfo9ddf11tvvVX5vYMHD8qyrEBnXwCS5Hm+fMdWybLkO7Ycx6gpAEzhODZ5BRAL6k36MGaAOZiP8THqDIzrrrtO1113XeXrxYsX64EHHtCv/uqv6vHHH9ePfvQjzZ8/X4899pguu+yyBFuKNHIcW6+//Z7ueujFKXcrLna2cM0cjOM4tkaOTHzg7trkFUDYqDfpw5gB5mA+xisVS0O2bWvTpk26/fbb9clPflIvvfSSbrzxxqSbhZQpSZXFC0kaGhnThm17VEq2WUBVJamyI5TIK4DoUG/ShzEDzMF8jJdRZ2Cc7IUXXqj8/0UXXaSdO3cm2Bqknev5lcJSNjQyJtfzzZ4IyCXyCiAu1Jv0YcwAczAf45WKMzCAMDi2pf5ix5Tv9Rc75NhWQi0CaiOvAOJCvUkfxgwwB/MxXixgIDcKkm67emGlwJSvT2NlFCYqSFqzfAF5BRA56k36MGaAOZiP8WK7Ijdc19PZp8/S4IpFcj1fjm2pcOL7gGlc11Oxs4W8Aogc9SZ9GDPAHMzHeLGAgVyxbUuW6x0PvuvLTbpBwDRc15MlkVcAkaPepA9jBpiD+RgfLiEBAAAAAADGYwEDAAAAAAAYjwUMAAAAAABgPBYwAAAAAACA8VjAAAAAAAAAxmMBAwAAAAAAGI8FDAAAAAAAYDwWMHLIcWz5jq2SZcl3bDkOMQCCYh4BiBM1BzADczGfGHdzFJJuAOLlOLZGjkxow7Y9GhoZU3+xQ2uWL1Cxs0Wu6yXdPCAVpptHABA29t2AGZiL+cS4m4Wlo5wpSZXJJ0lDI2PasG2PSsk2KzBWQZGkRucRuQWyzfP8SOZ4VvbdQNpNNxfZx6dfrTGkBpuFMzByxvX8yuQrGxoZk+v5qQkDq6BI2nTzqBZyC2Sb49h6/e33dNdDL4Y+x7Ow7wayoNZc9Dxp5Cj7+DSb7jjtGDXYKCwN5oxjW+ovdkz5Xn+xQ45tJdSi4FgFRdIamUfkFsi2klRZvJDCneNZ2HcDWVBrLtq2xT4+5aY9u4YabBQWMHKmIGnN8gWVSVheXUzT6mEj//oNhKmReURugWyLco5nYd8NZEGtuSiLfXzazXSmGzXYHEZu9xUrVujNN9+Ubdvq7OzU17/+dc2dO1eLFy9Wa2ur2traJEmrVq3SxRdfnHBr08V1PRU7WzS4YpFcz5djWyqc+H5alFdBJxeZyiqoy44C0WtkHpFbINuinONZ2HcDWVBrLpZ8sY9PuelqODXYLEaegbFx40b96Z/+qbZv366rr75aa9asqfzsG9/4hnbs2KEdO3aweNEg1/VkuZ4Kvi/L9VI3+VgFhQmCziNyC2RbQdJtVy+MbI6nfd8NZEW1ucg+Pv1mGkNqsDmMnFddXV2V/z906JAsi+uL8D5WQZFG5BbINtf1dPbps5jjQA6xj08/xjA9jFzAkKRbb71Vu3fvlu/7+m//7b9Vvr9q1Sr5vq958+bphhtu0KxZsxJsJZLiup4snQiw68tNuD1APcgtkG22bR3/FzqJOQ7kDPv49GMM08Hyfd/oC7O2b9+up59+Wt/61re0b98+DQwMaHx8XHfffbcOHz6sLVu2JN1EAEBKLb1xR6Df33nPskCv2XnPsqBNAgAAQA3GnoFRdvnll2vt2rUaGRnRwMCAJKm1tVVXXXWVrr/++kDvNTx8SF4ddwPu6+vSgQOjDbU3DrTvfY5jqyTVfapX0Lb19XXN/EsRqTevSTM9j3GbbnsEzWsjn52UKPMaVcbi2l6T256l+dJsX7KYV1PHN4raY2pfw1buZxbz2qy8ZSBJjRzvJiWJvCYxRlEf00lmZC8qk/sWNK/GLWAcPnxY7733XmWx4oUXXtDs2bPV1tam0dFRdXV1yfd9PfPMM5o7d27CrUWSHMfWyJGJyjObyzfbKXa2cL0ajENeASSB2gOkG3PYPIxJsox7CsnY2JhWrlyppUuXatmyZdq2bZseeOABDQ8P6wtf+IKWLl2qJUuWaO/evVq3bl3SzUWCSlKlcEjHn9W8YdselZJtFlAVeQWQBGoPkG7MYfMwJsky7gyM0047TY8//njVn23fvj3m1sBkrudPeVazdLyAuJ5vXrCRe+QVQBKoPUC6MYfNw5gky7gzMIB6ObZVeVZzWX+xQ47NY3dhHvIKIAnUHiDdmMPmYUySxQIGUqsgac3yBZUCUr7+jJVPmIi8AkgCtQdIN+aweRiTZLGdkVqu66nY2aLBFYsivQMwEAbyCiAJ1B4g3ZjD5mFMksUCBlLNdT1ZOhFk15ebcHuA6ZBXAEmg9gDpxhw2D2OSHC4hAQAAAAAAxmMBAwAAAAAAGI8FDAAAAAAAYDwWMAAAAAAAgPFYwAAAAAAAAMYL7Skkvu/LsqzK1y+//LKee+45SdKll16q+fPnh/VRAAAAAAAgZ0I7A2PevHmV/3/uued0zTXX6MiRIxobG9N/+A//QX/2Z38W1kcBAAAAAICcCfUMjLIHH3xQ9957ry655BJJ0r/7d/9OW7Zs0WWXXRbWxwEAAAAAgBwJ7QyMyZePvPnmm7r44osrXy9atEhvvvlmWB8FAAAAAAByJrQzMMbHx3XfffdVvh4dHdXs2bMlSWNjY1MWOAAAAAAAAIIIbQFj6dKlevvttyVJixcv1ltvvVVZwPirv/ornXfeeWF9FAAAAAAAyJnQFjAGBwdr/uxTn/qUPvWpT4X1UQAAAAAAIGdCuwcGAAAAAABAVGJZwBgfH9fcuXPj+CgAAAAAAJBBoV1C8tZbb9X82bFjx6Y8ZnU6K1as0JtvvinbttXZ2amvf/3rmjt3rvbu3atbbrlF77zzjrq7u7Vx40adc845IbUeAAAAAACYLLQFjMWLF8uyrJoLFfU+hWTjxo3q6uqSJP35n/+51qxZo6eeekrr1q3TVVddpWXLlmnHjh1au3atHnnkkbCaHyvHsVWS5Hq+HNtSQZLrekk3C8gM5hgAhG9ybR0ZPSrHsamtkMR+F6gH8yQcoS1g9PX16f7779f555//gZ8dO3ZM8+bNq+t9yosXknTo0CFZlqXh4WG99tprevjhhyVJS5Ys0Z133qmDBw+qp6cnnA7ExHFsjRyZ0IZtezQ0Mqb+YofWLF+gYmdLzQCfHHbPq+9sFiCLZir+jcwxAMiSKA6Sqa2oJY5s8IcfTNFoFqmh4QntHhjnn3++XnvtNTmO84H/CoVC3ZeQSNKtt96qf/Nv/o3uvfdebdy4Ufv27dOcOXPkOI4kyXEc9ff3a9++fWE1PzYlqRJcSRoaGdOGbXtUqvH75bCv3rpb1w1+X6u37tbrb78nx+H+q8ifavNh5MjElPkQdI4BQJbUUycbQW1FLVFnI6pMA0E1k0VqaHhCOwPjjjvukG1XH7zW1lb9/Oc/r/u97r77bknS9u3btWnTJq1cuTKUNvb2nlr37/b1dc38Sw0YGjlSCe773xuTLKvqZ46MHtWGbbunhP2uh17UlpWfUF/PKZG0MQxRbb8wmNy2yYLkNWlxbdNq82HDtj1T5kPQORaFtGQsTFHnNc3b9OS2p7kvJ0trX6LMa9LbpJ462QgTamtSku6fyccDfX1dkWcjqkwHkXQG0iSpvMYxRs1ksdF5kuXsNdq3UC8hCdvll1+utWvX6vTTT9f+/fvluq4cx5HruhoaGtLAwECg9xsePlTX5Rd9fV06cGC00WZPz7HVX+yYEuD+Yofk+1U/s2RZVcN+9FhJB45G1MYmRbr9mhS0bUkWjXrzmrQ4x7uu+RBwjoUtyfxnNa9RbdO4ttfktptcH4Nqti9ZzKsJ4xvZcUPCtTUp5THNYl6bVcl7xNlI+ljYhHkdVN7yGtcYNZXFBuZJGrNXr8l9C5rX0M+98n1fjz/+uL74xS9q6dKlkqSXXnpJzzzzzIyvPXz48JTLQl544QXNnj1bvb29mjt3rnbt2iVJ2rVrl+bOnZu6+19Ix1eM1ixfcDywUuX6p1orSY5tVX63rL/YIceu76aoQJbUMx+CzjEAyJKojhuoragl6mxwLAxTNJNFamh4Qt9m9913n/76r/9av//7v69169ZJkk4//XQNDg7qt37rt6Z97djYmFauXKmxsTHZtq3Zs2frgQcekGVZWr9+vW655RZt3bpVs2bN0saNG8Nueixc11Oxs0WDKxbVdfOXctgn3/DltqsXHn9NnA0HDFBtPpSLf3k+BJ1jAJAl9dTJRpxcW9vbCvInXGorIt/vRpVpIKhmssjxaXhCX8B46qmn9NRTT6mnp0fr16+XJJ155pl64403Znztaaedpscff7zqz84991w98cQTYTY1Ma7rydKJje/60wa+WthP6+7U8PCheBoLGKTe4h9kjgFAlkR5kDy5tha72jN7ajOCi3K/yx9+MEWzWeT4NByhL2C4rqtTTjl+ExPLOn46zeHDh9XZ2Rn2R+XGyWG3OWUOOUbxB4DpUSeRNWQapiCLyQv9HhiXXHKJBgcHNT4+Lun4PTHuu+8+/dt/+2/D/qhQOY4t37FVsiyNjB7l0UxAiCbPL9+xmV8AMsnzfGodUAeOCxAFcpUPoZ+BsXr1at18882aN2+eSqWSLrzwQi1atMjoe1aUn+l78vVMxc4WTk+rwnFslSRO40NdTJxfZBhA2BzH1utvv6e7HnrRmFoXhXL9HBo5Ijk29TOHms2AiccFSD+TcsVxZrRCX8A49dRTtXXrVg0PD+t//+//rYGBgUgesRqmklQJu/T+M30HVywSF2tMZVJxQDqYNr/IMLKka1aH2tuC7cqPHitp9L2xmX+xjs+o9uizoO+fFSWpsnghJV/rokD9RBgZMO24ANlgSq6ok9GL5AyM3/qt39LFF1+s3t7eyvfXr19fuamnaVzPr/pMX9fz69pA9a6yZWE1zpTigPRodH5FNV/IMLKkva2gpTfuCPSanfcsU5BbLwb9jKDvnxXNHkuEKe/1MwvHW1EIY7uEkQHX81XseIBaxwAAIABJREFUate1yz6qrs4WjR6Z0JMv/CKRuYLsiLMGTzeX0lInoxR1DQ69TuzcuVO7d+/W7//+7+uaa66pfP9P//RPjV3AKD/Td3LoK8/0df3pX1vnKltWVuNMOkBDOhRsu+r8Kti25Fa/9VGU84UMA4hCM8cSobYj5/UzK8dbYQtru4SRgdYWW1/87bm677GXK21ZeeWFam2x5Y1zS0Q0Jq4aPNNcSkOdjFIcNTj0O5u0trbq8ccf19NPP62bbrppys08TVV+pm9/sUOSpjzTdya1VtlKDf6e6crFYbJKcQCqsB1p5ZUXTplfK6+8ULZT+zVRzhcyDCAKBUm3Xb2woWOJMOW9fmbleCtsYW2XMDLguaosXpTbct9jL8tj7QJNaObvuSBmmktpqJNRiqMGR3Jr1tNPP11/8id/Is/z9LnPfU779++vPFLVRJOf6fvN1Zdqy8pP1L1KNN0qWyO/Z7q4igOyY3zC0yNP/0zXLvuoBlcs0rXLPqpHnv6Zxidqz68o5wsZBhAF1/V09umzKscSgysWJfKv/nmvn1k53gpbWNsljAyUPK9qW0pefs+QQfNO/nsuqho801xKQ52MUhw1OPRtWT7Tor29Xffcc4+++c1v6nd/93crZ2KYavIzfYtd7TpwoL4reOs9XcmUU0sna+T6JNf11NvVqsEVH5freXJsW62ONMEpf6jBsY8/mnjDtj2V782U/Znmy3TZnSnXk3dwXB8NoFmTa867h4+pIMnyfcn1lcSesdHjjXqOCSbXT1mW5PvG1U8Tj7dMENZ2qZUBSfIdu679atrHiHusmGHyOIyMHpXj2FP+nouqBte6NLqc37wfZ8Yxv0M/A+PLX/7ylK+vu+463XXXXVq6dGnYH2WEelfZTFuNK1+ftHrrbl03+H2t3rpbI0cmZnxesuPYGh4d1+qtPzzxuh9qeHSc5yyjpkayP91rpstuvbl2XU+W66ng+7JcLzc7FQDhOrnmrLrvL+val0apkZob5JigXD/7i51G1k/TjrdMEeZ2OTkDkgIdU6Z5jBo9fka4kqq9jmPr6ETpA5dG33pSfvN8nBnH/LZ8k29OEbLh4UPy6jh9pa+vq+4zMCSppdXRuKsZz0g4ecW21bE07vqBV+eCtq8a37G1euvuD6yODa5YVNkZNfq6MNoXlaBtq/aIwLjUm9e4nZz3nlntGhk5PO1rGvnXilqvmS6DkhrKdZiSzH9W8xrVNu3r62roCR5Bn8gxue1h96XRPgStg830ebr3TUpYeW10X1qPZv6VN+hrG+lHI1mO61+uw/yccj+zkNewt3952zSSn7DaEkemJmd9ur4WJGPOzMhCXqcTZe2t53OLXe26YvGH1dXZoqPjJf3KGbPqvgGt49jyHUsl15fn+SrYthz5VbNi8t9U06lnXk7uW9C8hrIYcs011+iP//iPJUlXXXVVzftdfPe73w3j44xSPiOhnjutTj6tyZFV9+ui0OgdcvN+Z928a2l19MvRcQ1Oyu3q5Qt0WlfrtJcRNXJKX63XzHRtHfkEEJeo9onN3sU9aM2NY98e59NB4jiNPI2i2i6N5CeMtiTxxJlafZUljRzm6TdxServkfLnlm9MWfbN1ZfW9bmOY+vwhKuRg8emPIXn1uUL1J2hrERdg0M5z+byyy+v/P9nPvMZ/e7v/m7V/7Ko0TutJn2X7EbvkJv3O+vm3biryuKFdDy3g9v2KM5boEyXQfIJIE5R1Zy4jxHiqJ1JH/cgOknte5PIVK2+yrfId4ySylyzn1uStP/gkQ88hedushJIKAsYS5cu1U9+8hP9wz/8g37nd35Hv/M7v6NPfOIT+uEPf6iHH35YL7/8sj75yU+G8VHGafROq0nfJbvR65PSfN0imufWuHO4G+Odw6fLIPkEEKeoak7cxwhx1M6kj3sQnaT2vUlkqlZfvZrHR+Q7CkllrtnPdT1f7a0FstKk0MZ5w4YN+spXvqLzzjtPkvT1r39d+/fv12c/+1nt2rVLmzdv1vr168P6OGM0fLfvhO/A3OgdcvN+Z928c2reedmW3HhOw5gpg+QTQFxOrkftbQX5E27TNSfuY4Q49u1JH/cgOkkdGyaRqVp9LZ34bPIdj6hqb9DPDXx/ItvS0fESWWlSaLdq/cd//EfNnz9fkvTee+/pL/7iL7RlyxZ9/vOf13/6T/9JP/jBD8L6KKOk+UyGRu+Qm+c76+ZdqyOtPim3q5cvUKsTbzumyyD5BBCnyTWn2NUeSs1J4hgh6tppwnEPopPEvjexMz+q9JV8xy+K2hv0c4NmvSBpTk/njE8xwfRC21au66qlpUWS9Morr6ivr0+/8iu/IkkaGBjQe++9F9ZHGYUzGZAnE+OuTutq1eCKjwd6CgkAoH5ZPEbIYp+QLJMyZVJbYC7X9XRKi6POvlO0YcUieZ5UsK2aTyFBdaGdgfGrv/qr+rM/+zNJ0jPPPKOPfexjlZ/t379fXV3JPc4namk9k+H4Y3xslSxLvmPzDGvUZWLcleW6J3LrqlCYmhtyBQDNS/oYYTqOY2tk9GjgOm9yn5BOSWSq1nEO+UY9XNeTN+7Kdj0VfE9y67/0hWPs40I7A2PVqlW6/vrrtX79etm2rT/5kz+p/OyZZ57RRRddVNf7jIyM6Oabb9a//Mu/qLW1VWeffbbuuOMO9fT06Nd+7dd03nnnybaPD9amTZv0a7/2a2F1IVeSePQUso9cAUC2vV/nd1PnkTsc5yApZO99oS3bzJ8/Xz/4wQ/00EMP6c///M/1r/7Vv6r87JJLLtHq1avreh/LsnTttdfq2Wef1c6dO3XWWWdpy5YtlZ8/9thj2rFjh3bs2JGaxQsTV8t4nBnqETS75ApA2pm4zzYJdR55FnX+qT/hy8o2pfa+L9T7hZx66qk6//zzP/D9yYsZM+nu7tbChQsrX19wwQV69NFHQ2lfUI5jqyRVrmVrdSyNu36ga9tMXS2b7tFT3EQmf07OejkDQbNbK1eyJN+xuS4UgNFaWh2NTXgaGT2mdw+N6/svva7PffL/SHyfHZVqtX/Ge3hx/JBajYy3KUxpe5T5N/VvhrAkMYZxbtOo+0ftfZ/R/fU8T48++qgWL15c+d4XvvAFua6rT3ziE/rqV7+q1tbWut+vt/fUQL/7+tvv6a6HXqwEfvXyBXrsuZ/rxZ/uV3+xQ7ddvVBnnz5Ltm3VfJ+R0aOV0yyl91fLtqz8hPp6Tqm7PSfr62vuniIjo0erPsKnva2gYld7U+8tNd++KJnctsmC5LUZnud/IOu3Xb1Qs09tqzu75W1aLVcLPzJHh45M6O6H90x5/5nmTpqlJWNhijqvad6mJ7fdhL5E3QYT+jidann1PF//vO/dKbXqDz57oR597uf68mcuqHufbXrfy2rV/nqOa6I8fjBR0mMaRn1tdLxnEse2iartQUx3nBNW/qP6myFutepr1GNYLYtxbdMo+xdH9pLSaP2wfN839oGzt99+u/bv36/7779ftm1r3759GhgY0KFDh3TTTTfpvPPO0x/+4R/W/X7Dw4fkeTN3t6+vS0MHD2v11t0fCMm1yz6qDdv2VL4eXLFI1jSrayXL0nWD3//A97+5+lIVGtz0fX1dOnBgtKHXlkW5IhlG+6IStG1JHrTUm9dm+Y5dNet3felf15Xdydu0Wq7u+tK/1m0P/PUH3n+muZNWSeY/q3mNapv29XVp6Y07Ar1m5z3LAr1m5z3LprQ97L402oegdbCZPk/3vkmpltdatfDaZR/VOQNdde2zTd7/naxWf2eqzVn/V+KTlcfUtLwG1eh4TyeuvEfR9iBmOs4JK/9h/s1gWl6jHsNaWYzi77BqoupfXNlLwuS+Bc2rsWdgbNy4Ua+//roeeOCByk07BwYGJB2/VOUzn/mMHn744cg+v9ZpOl2dLVO+num0Hce2qq6WObYlucmtHfG4J5TVyrrdQHar5crjlDcAKVCrFs4+tTXxfXYUGj0duVznt6z8hI4eK3H8kBJpPv3cpLZHefxs6t8MYUhqDOPapnH0j7/d3mfkXUzuvfde/eQnP9Ef/dEfVS4Reffdd3X06FFJUqlU0rPPPqu5c+dG1oZy4CfrL3Zo9MjElK+dGU4LKkhas3xB5b3Kq2Um7Cx43BOk2lkvOFZD2T05V3aN959p7gBAnGrVwmJXmxH77LDV6m89tdl1PRW72jl+SJFmxjtpprU9quNnk/9maFZSYxjXNo2rf/ztdpxxc+IXv/iFHnjgAZ1zzjm68sorJUlnnnmmrr32Wq1du1aWZalUKunCCy/UypUrI2tHOfCTT9Mp3wNDmjoB3Gnex6TVMlNugASzVMv6muULZLl+Q9mtdvPbau8/09wBgDjVqoUdLbYmxrNXrWr1N6nazDFKtJIa7zDG1bSsRsWkvxnCltQYxrVNw+zf5DkzMnpUjmNnIgNhMm4B48Mf/rD+/u//vurPdu7cGVs7qgW+1bF03eUf1TWfPj/QBHBdT5ZObGzXT+zAIEvXTSE8MxX3INmtlbPertZM7pBhlq5Zx29mZZLxCTfQTTyPHitp9L2xmj9HdGrVwiwuXkhm/bHEMUr0khjvsMbVpKxGzYS/GaKQ5BjGsU3D6h+1sD5mHekZ5uTAT7jB/pgzSa1nBw+uWCTzTx5E1MIq7tPmzPVSOXeQHu1thcA3m4xaa4sTuE3puAVkNmX1j4daTOkvxyjxiHu8wxxXU7KKxmV9DMPoH7WwPkbeAwPhm+7mMkBYyBkAICj2HdnEuALBMGfqwwJGTph2AyRkEzkDAATFviObGFcgGOZMfVjAyIks39kY5iBnAICg2HdkE+MKBMOcqQ/bIyfydAMkJIecAQCCYt+RTYwrEMzJc6a9rSB/wmXOnIQFjBzJ+s1zYAZyBgAIin1HNjGuQDCT50yxq10HDnBr75NxCQkAAAAAADAeCxgZ4Di2fMdWybLkO7Ych2EFwsL8AlANtQFA2Kgr0WHbZgeXkKSc49gaOTJReWZw+WYvxc4WrpcCmsT8AlBNrdrQ3c2j7gA0hmOO6LBts4Wlp5QrSZXJKB1/VvCGbXtUSrZZQCYwvwBUU6s2vHv4WLINA5BaHHNEh22bLSxgpJzr+ZXJWDY0MibX41+BgGYxvwBUU6s2TJT4lzwAjeGYIzps22xhASPlHNuqPCu4rL/YIce2EmoRkB3MLwDV1KoNLQUOqwA0hmOO6LBts4U9bcoVJK1ZvqAyKcvXdHFzE6B5zC8A1dSqDbNPaUu2YQBSi2OO6LBts4VxSznX9VTsbNHgikVyPV+Obalw4vsAmsP8AlBNrdpg8695ABrEMUd02LbZwgJGBriuJ0snBtP15SbcHiBLmF8AqqE2AAgbdSU6bNvs4BISAAAAAABgPBYwAAAAAACA8Yy7hGRkZEQ333yz/uVf/kWtra06++yzdccdd6inp0evvPKK1q5dq2PHjulDH/qQNm/erN7e3qSbHDrHsVWSuEYLqUFmASBZ1GEgWczB/GLs42XcAoZlWbr22mu1cOFCSdLGjRu1ZcsW3X333brppps0ODio+fPna+vWrdqyZYsGBwcTbnG4HMfWyJEJbdi2R0MjY5W75BY7W5gIMJLn+WQWABLEsQOQLOZgfjH28TPuEpLu7u7K4oUkXXDBBXrrrbf06quvqq2tTfPnz5ckXXnllfre976XVDMjU5IqE0CShkbGtGHbHpWSbRZQ07uHj5FZAEgQxw5AspiD+cXYx8+4BYzJPM/To48+qsWLF2vfvn0644wzKj/r6emR53l65513Emxh+FzPr0yAsqGRMbmen1CLgOlNlDwyCwAJ4tgBSBZzML8Y+/gZdwnJZHfeeac6Ozv1e7/3e3r++eebfr/e3lPr/t2+vq6mP68RI6NH1V/smDIR+osdam8rqNjVXvleUu2rl8ntM7ltkwXJa5LqzWyepCVjYYo6r3napnH0NerPMH28osxrEn1Pqg6bPs5hSbqfJh8PJL1t4jJTPzkWel9SeTX9b7dGZXmONdo3YxcwNm7cqNdff10PPPCAbNvWwMCA3nrrrcrPDx48KMuy1N3dXfd7Dg8fklfHalhfX5cOHBhtqN3Nchxba5Yv+MB1VP6EW2lTku2rh8ntC9q2JItGvXlNWm/vqTNmNk+SzH9W81rvNs3KTj6OGhX1Z5g+XlHlNan5X8+xQ9hM3teHqdzPLOa1WXnLwHSSmIPTyVteTf/brVFZnmOT+xY0r0YuYNx77736yU9+om9+85tqbW2VJJ1//vk6evSofvSjH2n+/Pl67LHHdNlllyXc0vC5rqdiZ4sGVyziTrZIBdu2yCxm1DXr+L9GBHFs3FVbqyMpO4sTQBQ4dgCSxRzML8Y+fsYtYPziF7/QAw88oHPOOUdXXnmlJOnMM8/UH/3RH2nTpk1at27dlMeoZpHrerJ0YnBcX27C7QFmQmYxk/a2gpbeuCPQa3besyzQa3besyxos4DMoA4DyWIO5hdjHy/jFjA+/OEP6+///u+r/uyiiy7Szp07Y24RAAAAAABImtFPIQEAAAAAAJBYwAAAAAAAACnAAgYAAAAAADAeCxgAAAAAAMB4LGAAAAAAAADjsYABAAAAAACMxwIGAAAAAAAwXiHpBqSB49gqSXI9X45tqSDJdb2km4WcIo8AYIaT67Hn+Uk3CUg1jnEwk2oZQb4w5jNwHFsjRya0YdseDY2Mqb/YoTXLF6jY2UJBRezIIwCYoVo9vu3qhZrdXqAeAw3gGAczqZWR7m4Wj/OES0hmUJIqk0SShkbGtGHbHpWSbRZyijwCgBmq1eO7HnqRegw0iGMczKRWRt49fCzZhiFWLGDMwPX8yiQpGxoZk8tpokgAeQQAM1CPgXAxpzCTWhmZKHGGTp6wgDEDx7bUX+yY8r3+Yocc20qoRcgz8ggAZqAeA+FiTmEmtTLSUuBP2jxhtGdQkLRm+YLKZClfa8XNQ5AE8ggAZqhWj2+7eiH1GGgQxziYSa2MzD6lLdmGIVbUhBm4rqdiZ4sGVyzijshIHHkEADNUq8endXdqePhQ0k0DUoljHMykVkZsztLJFRYw6uC6niyd2FiuLzfh9iDfyCMAmOHkesxBNNAcjnEwEzICLiEBAAAAAADGYwEDAAAAAAAYjwUMAAAAAABgPBYwAAAAAACA8XJ1E88gN9cy/UZctK9xJrdtsrS0U0pXW+OQx+2Rxz5HJY5tGfVnmJ6HKNtnet/DlJe+Jt3PpD9/Oia3LUx56WcYktpWWR2jrPZLarxvlu/7fshtAQAAAAAACBWXkAAAAAAAAOOxgAEAAAAAAIzHAgYAAAAAADAeCxgAAAAAAMB4LGAAAAAAAADjsYABAAAAAACMxwIGAAAAAAAwHgsYAAAAAADAeCxgAAAAAAAA47GAAQAAAAAAjMcCBgAAAAAAMB4LGAAAAAAAwHgsYAAAAAAAAOOxgAEAAAAAAIzHAgYAAAAAADAeCxgAAAAAAMB4LGAAAAAAAADjsYABAAAAAACMxwIGAAAAAAAwHgsYAAAAAADAeCxgAAAAAAAA47GAAQAAAAAAjJfIAsYPfvADXX755Vq2bJmWLl2q5557TpK0d+9effazn9WnPvUpffazn9U///M/V14z3c8AAAAAAEC2Wb7v+3F+oO/7WrBggb773e/qvPPO089//nN97nOf09/+7d9q+fLluuKKK7Rs2TLt2LFDTz75pB555BFJ0he/+MWaPwMAAAAAANlWSOJDbdvW6OioJGl0dFT9/f0aGRnRa6+9pocffliStGTJEt155506ePCgfN+v+bOenp66P3d4+JA8b+b1mmKxUyMjRxroWTxoX+OCtq2vryvC1kyv3rwmzeTxTkKS2yOrec1SxujL+7KY1yyN70zy0tdyP7OY12blLQNpkre8pnGM6pHVfklT+xY0r7EvYFiWpf/8n/+zVqxYoc7OTh0+fFgPPvig9u3bpzlz5shxHEmS4zjq7+/Xvn375Pt+zZ8FWcCoV6HghP6eYaJ9jTO5bWnFNp2K7RG+LG1T+pJtedomeelrXvrZiLxsm7z0M82yOkZZ7ZfUXN9iX8AolUp68MEHtXXrVs2bN09/+7d/qz/8wz/Upk2bIv/s3t5T6/7dJFcu60H7Gmdy2yYLktekpWWbxiWP2yPqvGZpm9KX5EWZ17Ruk0bkpa9J99Pk44Gkt01c8tLPMCSV16yOUVb7JTXet9gXMH72s59paGhI8+bNkyTNmzdPHR0damtr0/79++W6rhzHkeu6Ghoa0sDAgHzfr/mzIOo9pamvr0sHDow21L840L7GBW1b3k7Ba4TJ452EJLdHVvOapYzRl6mvT0pUec3S+M4kL30t9zOLeW1W3jKQJnnLaxrHqB5Z7Zc0tW9B8xr7U0hOP/10vf322/qnf/onSdI//uM/6pe//KXOPvtszZ07V7t27ZIk7dq1S3PnzlVPT496e3tr/gwAAAAAAGRf7Gdg9PX1af369Vq5cqUsy5IkDQ4Oqru7W+vXr9ctt9yirVu3atasWdq4cWPlddP9DAAAAAAAZFsiTyH59Kc/rU9/+tMf+P65556rJ554ouprpvsZAAAAAADItkQWMJANjmOrJMn1fDm2pYIk1/WSbhYQGjIO1I/5kn5dszrU3lb/oWHXrA6NvjcWYYtgovJcHxo5Ijk2cx1IubTtv1nAQEMcx9bIkQlt2LZHQyNj6i92aM3yBSp2tiTdNCAU02Xc5KIOJIH5kg3tbQUtvXFH3b+/855lyubt5VALcx3IljTO6dhv4olsKEmVoEvS0MiYNmzbo1KyzQJCQ8aB+jFfgHxgrgPZksY5zQIGGuJ6fiXoZUMjY3INfMwX0AgyDtSP+QLkA3MdyJY0zmkWMNAQx7bUX+yY8r3+Yocc20qoRUC4yDhQP+YLkA/MdSBb0jinWcBAQwqS1ixfUAl8+XopbqqCrCDjQP2YL0A+MNeBbEnjnDa5bTCY63oqdrZocMWi1NyxFgiCjAP1Y74A+TB5rsuyJN9nrgMplsb9NwsYaJjrerJ0IkSuLzfh9gBhI+NA/ZgvQD6U53pfX5cOHBhlrgMpl7b9N5eQAAAAAAAA47GAESPHseU7tkqWJd+x5ThsfuQD2UfWkGkAaUPdAhCHqGsNl5DExHFsjRyZqDxnt3yDlGJni9HXGAHNIvvIGjINIG2oWwDiEEetYek1JiWpMpDS8efrbti2R6VkmwVEjuwja8g0gLShbgGIQxy1hgWMmLieXxnIsqGRMbmen1CLgHiQfWQNmQaQNtQtAHGIo9awgBETx7Yqz9ct6y92yLGthFoExIPsI2vINIC0oW4BiEMctYYFjJgUJK1ZvqAyoOXrgbgJCbKO7CNryDSAtKFuAYhDHLWGuhUT1/VU7GzR4IpFcj1fjm2pcOL7QJaRfWQNmQaQNtQtAHGIo9awgBEj1/Vk6cRGd325CbcHiAvZR9aQaQBpQ90CEIeoaw2XkAAAAAAAAOOxgAEAAAAAAIzHAgYAAAAAADAeCxgAAAAAAMB4LGAAAAAAAADjJfIUkjfffFNf/vKXK1+Pjo7q0KFD2rNnjxYvXqzW1la1tbVJklatWqWLL75YkvTKK69o7dq1OnbsmD70oQ9p8+bN6u3tTaILAAAAAAAgRoksYJx55pnasWNH5eu7775brvv+A1a+8Y1v6LzzzpvyGt/3ddNNN2lwcFDz58/X1q1btWXLFg0ODsbWbgAAAAAAkIzELyEZHx/Xzp07dcUVV0z7e6+++qra2to0f/58SdKVV16p733ve3E0EQAAAAAAJCyRMzAme+GFFzRnzhx95CMfqXxv1apV8n1f8+bN0w033KBZs2Zp3759OuOMMyq/09PTI8/z9M4776i7u7uuz+rtPbXudvX1ddXfiQTQvsaZ3LbJguQ1aWnZpnHJ4/aIOq9Z2qb0JXlR5jWt26RReehv0n00+Xgg6W0Tl7z0MwxJ5TWrY5TVfkmN9y3xBYwnn3xyytkX3/3udzUwMKDx8XHdfffduuOOO7Rly5ZQPmt4+JA8z5/x9/r6unTgwGgonxkF2te4oG1LsmjUm9ekmTzeSUhye2Q1r1nKGH2Z+vqkRJXXtI9vI2OS5v7WozymWcxrs9Ke93qlsZ95y2sax6geWe2XNLVvQfOa6CUk+/fv10svvaSlS5dWvjcwMCBJam1t1VVXXaW/+7u/q3z/rbfeqvzewYMHZVlW3WdfAAAAAACA9Er0DIynnnpKl1xyiYrFoiTpyJEjcl1XXV1d8n1fzzzzjObOnStJOv/883X06FH96Ec/0vz58/XYY4/psssuS7L5AAAgg7pmdai9Ldgh0rHx4zcjr/dfko4eK2n0vbHAbQuikX4AAGCyxBcwbr311srXw8PD+upXvyrXdeV5ns4991ytW7dOkmTbtjZt2qR169ZNeYwq6uc4tkqSXM+XY1sqSHJdL+lmIWPIGUxELhFEe1tBS2/cMfMvTrLznmWBXrPznmWK+sTgoP3Yec+yCFuDPKL2AsFMnjMjo0flODZz5iSJLmA8++yzU74+66yztH379pq/f9FFF2nnzp1RNyuTHMfWyJEJbdi2R0MjY+ovdmjN8gUqdrYwKRAacgYTkUsAiB+1FwiGOVOfxB+jiniUpMpkkKShkTFt2LZHpWSbhYwhZzARuQSA+FF7gWCYM/VhASMnXM+vTIayoZExuQbe1RrpRc5gInIJAPGj9gLBMGfqwwJGTji2pf5ix5Tv9Rc75NhWQi1CFpEzmIhcAkD8qL1AMMyZ+rCAkRMFSWuWL6hMivI1VdybHGEiZzARuQSA+FF7gWCYM/Vhe+SE63oqdrZocMUi7gSNyJAzmIhcAkD8qL1AMCfPmfa2gvwJlzlzEhYwcsR1PVk6MeiuLzfh9iCbyBlMRC4BIH7UXiCYyXOm2NWuAweifuB2+nAJSQgcx5bv2CpZlnzHluOwWZFdJ+fd48ZCyDCOv4QIAAAgAElEQVTqOwCgHuwvUC+y0hzOwGgSz+tFnlTL+21XL9Ts9gJ5R+ZQ3wEA9WB/gXqRleax3NMknteLPKmW97seepG8I5Oo7wCAerC/QL3ISvNYwGgSz+tFnpB35Al5BwDUg/0F6kVWmscCRpN4Xi/yhLwjT8g7AKAe7C9QL7LSPBYwmsTzepEn1fJ+29ULyTsyifoOAKgH+wvUi6w0j23VJJ5xjTyplvfTujs1PHwo6aYBoaO+AwDqwf4C9SIrzWMBIwQ84xp5cnLebU55Q4ZR3wEA9WB/gXqRleZwCQkAAAAAADAeCxgAAAAAAMB4LGAAAAAAAADjsYABAAAAAACMxwIGAAAAAAAwHgsYAAAAAADAeCxgAAAAAAAA4xXi/sA333xTX/7ylytfj46O6tChQ9qzZ4/27t2rW265Re+88466u7u1ceNGnXPOOZI07c/QGMexVZLker4c21JBx59LHNXrkA9pyEca2oh4UQ8BoD7lujc0ckRy7NzVPeo+ZhJVRsjecbEvYJx55pnasWNH5eu7775brutKktatW6errrpKy5Yt044dO7R27Vo98sgjM/4sbUwIn+PYGjkyoQ3b9mhoZEz9xQ6tWb5Axc6WadvS6OuQD6bkY7o5ZkobYY446mHeD/gBZEOtutfb1apx18/8H1YcQ2Am02VEUsN/A5K99yV6Ccn4+Lh27typK664QsPDw3rttde0ZMkSSdKSJUv02muv6eDBg9P+LG3K4Vu9dbeuG/y+Vm/drZEjE3KceIeiJFUmgCQNjYxpw7Y9KkX0OuSDCfmYaY6Z0EaYJep6ODmT19z1fGJ1HwCaVa3uPfrczzU8Op74sW0cOIbATGplxHespv4GJHvvS7SyvPDCC5ozZ44+8pGPaN++fZozZ44cx5EkOY6j/v5+7du3b9qfpY0p4XM9v9KGsqGRMbmeH8nrkA8m5GOmOWZCG2GWqOuhKXUfAJpVre5d+n+dnZsaxzEEZlIrIyXXb2qekL33hXYJyS9+8Qs99dRTuvnmm+t+zZNPPqkrrrgirCbMqLf31Lp/t6+vK5I2DI0cqRo+WVagz2y2fSOjR9Vf7JjSlv5ih9rbCip2tTf9uqi2XxhMbttkQfKatPI2bTRXYZppjsXRxrRkLExR5zXKbRp1PQyr7psore03pb6mdftNloU+zCTpPpqSV6l63Zt9amtma1yZScc5pksqr6ZkrVZGfF8NzZMsZ6/RMWtqAePgwYPatWuXtm/frp///Oe6+OKL637t/v379dJLL2nTpk2SpIGBAe3fv1+u68pxHLmuq6GhIQ0MDMj3/Zo/C2J4+JC8Olap+vq6dODAaKD3rptjVw2ffL/uzwyjfY5ja83yBR+4jsqfcKd973peF+n2a1LQtiVZDOvNa9Imb9NGcxWqGeZY1G1MMv9ZzWvU2zTKenj8F5uv+yZqdlxMzmtcbYt6/OPoR5ozXI9yzk3Oa5yq1b1iV1sma1yZccc5dchbXk3626NWRhzLCjxP0pi9ek3uW9C8Bl7AmJiY0A9+8ANt375df/mXf6mBgQENDQ3piSee0Ec+8pG63+epp57SJZdcomKxKEnq7e3V3LlztWvXLi1btky7du3S3Llz1dPTI0nT/ixNClLV8BUkuTG2w3U9FTtbNLhiUaAbyTT6OuSDCfmYaY6Z0EaYJep6aErdB4BmTa57sizJ99XqWLmpcRxDYCa1MiL5Tc0Tsve+QAsYd9xxh55++mm1tLTo3//7f6/vfOc7uuCCC/Txj39cp59+eqAPfuqpp3TrrbdO+d769et1yy23aOvWrZo1a5Y2btxY18/SxKTwua4nSydC4Pp172QafR3yIel81DPHkm4jzBNlPax2wJ/Xgw4A6Veue+V/QZ1wZcyxbRw4hsBMamWk2XlC9o4LtIDx6KOPavbs2frKV76i3/7t31ZXV+OnJz377LMf+N65556rJ554ourvT/eztCF8QLSYYzDNyQf8ZBJAlrDfBWbGPAlHoKeQPP/88/q93/s9/fEf/7EWLVqkr371q3r22WfledlcYQUAAAAAAGYItIBx5pln6itf+Yqef/55PfTQQ5o9e7ZuvfVWHTx4UPfee6/+1//6X1G1EwAAAAAA5FigBYzJ5s+fr7vuuku7d+/W5s2btW/fPl1++eVhtg0RcxxbvmOrZFnyHVuO03AcUsPz/Nz1OYvykt289DMt8joeee03YDrmZjLY7vlWa/zJRXyaeoyqJLW1tWnp0qVaunSp9u/fH0abEAPHsTVyZOIDd8ItdrZk9qZLjmPr9bff010PvZibPmdRXrKbl36mRV7HY7p+A0hOXmtS0tju+VZr/Hu7WjU8Ok4uYhJoaWj//v165plnKl+vXbtWq1evrvyH9ChJlUkmSUMjY9qwbY9KyTYrUiWpsngh5aPPWZSX7Oaln2mR1/HIa78B0zE3k8F2z7da4z/ukos4BVrA+Na3vqVf/vKXla937typOXPmaM6cOTp8+LC+9a1vhd5Ak2Tp1CDX8yuTrGxoZEyu5yfUoujlsc/1SlO28zKOeelnkoLkPq/jkdd+A6ZrZG6maV9vKmpivtUef49cxCjQJSR/9Vd/pUcfffT9FxcK+o//8T9Kkg4ePKjPf/7z4bbOIFk7ZcyxLfUXO6ZMtv5ihxzbktxsTrY89rkeact2XsYxL/1MStDc53U8pu03gMQErUlp29ebKq/7AhxXe/ztqt8v2Lbk8rDUsAVaeh0eHlZPT0/l6/LihST19PRoaGgovJYZJmunjBUkrVm+QP3FDkmq7MiavimKwQqSbrt6Ya76XI+0ZTsv2c1LP5MSNPd5HY+89hswXdC5mbZ9vamoiflWa/xbWiytvPLCKd9feeWFsp0EG5thgeZbS0uL9u/frzlz5kjSlDMu9u/fr5aW7N7Ua7pTxtJYtFzXU7GzRYMrFsn1fDm2pcKJ72eV63o6+/RZuepzPdKW7bxkNy/9TErQ3Od1PPLab8B0Qedm2vb1pqIm5lut8T96zNUjT/9M1y77qLo6WzR6ZEKPPP0z3fj5i5hfEQi0TT/2sY9p27Zt+trXvvaBn23btk2/+Zu/GVrDTJPFU8Zc15OlEyFwfeXhBCfbtmS5Xq76PJM0Zjsv2c1LP5PQSO7zOh557TdguiBzM437elNRE/Ot2vg7jq2R0aPasG1P5feYX9EJdAnJH/zBH+i///f/ruuvv17bt2/XD3/4Qz311FO6/vrr9eSTT2rlypVRtTNxnDKGrCLbyCNyDyBPqHlAdJhf8Qq0Xc855xw9/vjjuv/++7VlyxaNjIyou7tbv/mbv6nHH39c55xzTkTNTB6njJnJcWyVJMakCWQ7PuTVHFnJPZkCUI+s1Ly8otabZ/KY+JJ6u1qZXzEJtICxa9cuLVmyRJs3b46qPUbjlDGzcEft8JDt6JFX86Q992QKQBBpr3l5Ra03z3RjYvk+8ytigS4hWbt2bVTtAALjjtpIE/KKsJEpAMg+ar15GJNkBVrA8H1uQgJzTHdHbcA05BVhI1MAkH3UevMwJskKdAmJ53n6H//jf0y7kPGxj32s6UalTdTXpZ38/h6TQxJ31M66WvMqrdeBktdsCZLDyb87MnpUjmOHklkyBSCtgu7L07rvDwO13iyOY0uWpf9682JZtqXhd8f0yNM/O75/Z0xiEWgBY3x8XLfeemvNBQzLsvT9738/lIalRdTXpVV7/9uuXqjZ7YXcFO5aynf8PXnbFySuO0u5WvOqt6tVw6PjqbwOlLxmR5C6H+U+gkwBSKOgdTHv94Cg1pvDcWy9c2RCd08ai5VXXqjr/u/z1dFaYExiEmgBo6OjI3cLFDOpdQ3U4IpFsiJ6/7seejG0908z7qidXbXn1ccjnW9RIq/ZEaTuR7mPIFMA0ihoXYz6WNt01HpzlKTK4oV0PIv3Pfayrr/i/1RxTrtcl+WLOPB42iZNdw1UGBs36vdPO+6onU21c++lej6Q12wIUpcj30eQKQApE7QucixMrTdFrSy2txZU8rzc5DFp3MSzSeXr0iarXJfW6Hs6tnzHVsmy5Nh26O8PhG1yZn3HPn59YDPvV3NeMR/yxnFsjYweDS1bobQpQN2PYh8BAGkWtC6mpY6GfSwE89TK4tHxkhybsY9LoK378ssvR9WO1Cpfl1YO8+Tr0hpRvs5v9dbdum7w+/rm9v+p1Se9/21XL2SFD8bwPH9KZldv3a2RIxNNFe9a86rVCXe+wWzlerjqvr8MLVthCFL3w95HAEDaBa2LaaijJx+/m7K/QrgKkm49KYsrr7xQ/T2d+ub2/8nYx8SkuZ9KYV+XdvJ1fi/+dL8kaXDFx+V6nhzb0mndnRoePhRSD4DmvHv4WOjXptaaVxPjLteB5oip1z0Hqfsn/257W0H+hEtmAeRW0GPnNNwDwtT9FcLlup66O1v0/674uEqeL9uWCo6t//rkjyt/szH20UtkAePYsWPasGGD/uZv/kZtbW264IILdOedd2rx4sVqbW1VW1ubJGnVqlW6+OKLJUmvvPKK1q5dq2PHjulDH/qQNm/erN7e3iSa/wFhXpdW7dqqF3+6X9d82lPB9yXXl23YKXPIt4lSNPelqDWvuA40P0y+7jlIDif/brGrXQcOjMbRRAAwVtB9uen7fpP3VwhXeeHseBalcc+vLF6UMfbRSmS7bt68WW1tbXr22WdlWZZ++ctfVn72jW98Q+edd96U3/d9XzfddJMGBwc1f/58bd26VVu2bNHg4GDcTY8cz3pG2rQUbDKLSFAPgfd1zepQe1u6D4cb6cPRYyWNvjc28y82+BlB3x+ohv1VfjH28Yt9T3j48GFt375df/EXfyHLOn4mwWmnnTbta1599VW1tbVp/vz5kqQrr7xSl156aSYXMHjWM9Jm9iltZBaRoB4C72tvK2jpjTsCvWbnPcsiak1jGu1DkHOWgn5G0PcHqmF/lV+MffxiX8B444031N3drfvvv18vvviiTjnlFK1cubKyOLFq1Sr5vq958+bphhtu0KxZs7Rv3z6dccYZlffo6emR53l655131N3dXfdn9/aeWvfv9vV11d+pkHV3+9qy8hOaKHlqKdiafUrbBy4bSbJ99TC5fSa3bbIgeU3ar5wxe8bM5klaMhamqPJaTz1MmyzlI619MaW+pnX7TRZHH6L+jJneP+lxMiWv1SS9beJSTz+zuL9qRFJ5Nf1vt0ZleY412rfYFzBKpZLeeOMN/fqv/7q+9rWv6cc//rG+9KUv6fnnn9d3v/tdDQwMaHx8XHfffbfuuOMObdmyJbTPHh4+JM+b+VSevr4uI65RtiSVSq6Gj05M+b4p7avF5PYFbVuSRaPevCatr6+rclPZWpnNkyTzn9W8lrdpFrJlcn0Mqtm+mJzXuNqWlv3RdOLoQ9SfMd37l3Nucl6TkqV6Np2g/TThWChveTUli2GPvSn9isLkvgXNa+zPdznjjDNUKBS0ZMkSSdJv/MZvqFgsau/evRoYGJAktba26qqrrtLf/d3fSZIGBgb01ltvVd7j4MGDsiwr0NkXeB/PqQaaxzxCmpBXAAgH9TSfGHdzxH4GRk9PjxYuXKjdu3fr4x//uPbu3avh4WH19/drdHRUXV1d8n1fzzzzjObOnStJOv/883X06FH96Ec/0vz58/XYY4/psssui7vpmVB+TvXJ12kVO1uMehwVYLLp5hFgGuo+AISDeppPjLtZElk6uv322/Xggw9q6dKluuGGG7Rp0yaNj4/rC1/4gpYuXaolS5Zo7969Wrdu3fFG2rY2bdqk22+/XZ/85Cf10ksv6cYbb0yi6alX6znVpWSbBaQK8whpQl4BIBzU03xi3M2SyPO4zjrrLH3729/+wPe3b99e8zUXXXSRdu7cGWWzcoHnVAPNm24eAaah7gNAOKin+cS4m4WLdxKUxLVU5WcVT1Z5VjFQh5Nza+KNxaLGPMqPLFzzSl4BZFXcNZp6mk9hjnsWjiuSxhZLSPlaqtVbd+u6we9r9dbdGjkyEXmIy88qLk/Cyc8qBmZSLbevv/1e7oov8ygfkqrTYSOvALIoiRpNPc2nsMY9K8cVSWO+JaTWtVSDKxYpyjVc1/VU7GzR4IpFcj1fjm2pcOL7wEyq5fauh16MPLemYR7lQ1J1OmzkFUAWJVGjqaf5FNa4Z+W4ImksYCQkyWupXNeTpROD7/pyI/48ZAfXAL6PeZR9Wco7eQWQNUnVaOppPoUx7lk6rkgS56skhGvokEbkFnlC3gHAXNRopA2ZDQcLGAnhGjqkUbXc3nb1QnKLTKJOA4C5qNFIGzIbDrZXQriGDmlULbendXdqePhQ0k0DQkedBgBzUaORNmQ2HCxgJIhr6JBGJ+fW5rQ3ZBh1GgDMRY1G2pDZ5nEJCQAAAAAAMB4LGAAAAAAAwHgsYAAAAAAAAOOxgAEAAAAAAIzHAgYAAAAAADAeCxgwjuPY8h1bJcuS79hyHGKKfCD7SCuyCyBK1BhUU87F0MgRcpEjPEYVRnEcWyNHJrRh2x4NjYypv9ihNcsXqNjZwjOSkWlkH2lFdgFEiRqDashFfrFMBaOUpEohkqShkTFt2LZHpWSbBUSO7COtyC6AKFFjUA25yC8WMGAU1/MrhahsaGRMrucn1CIgHmQfaUV2AUSJGoNqyEV+sYABozi2pf5ix5Tv9Rc75NhWQi0C4kH2kVZkF0CUqDGohlzkFwsYMEpB0prlCyoFqXw9GzdrQdaRfaQV2QUQJWoMqiEX+cUYwyiu66nY2aLBFYvker4c21LhxPeBLCP7SCuyCyBK1BhUMzkXsizJ98lFTnAGxgmTH880MnqUx/AkyHU9Wa6ngu/Lcr2qhYjHaaUL43XcTNuhnuzDTKZmPK52kV0AQQStTWmoMabuB7KsnIv+YqesE5loZgwYw3RI5AyMY8eOacOGDfqbv/kbtbW16YILLtCdd96pvXv36pZbbtE777yj7u5ubdy4Ueecc44kTfuzZvEYnnRhvNKF8TqO7ZBdpo6tqe3CceMTrvr6upJuBhC7LNamLPYpbZodA8YwPRJZVtq8ebPa2tr07LPPaufOnVq5cqUkad26dbrqqqv07LPP6qqrrtLatWsrr5nuZ83iMTzpwnilC+N1HNshu0wdW1PbheNaWxwtvXFH3f8BWZHF2pTFPqVNs2PAGKZH7AsYhw8f1vbt27Vy5UpZ1vG7xJ522mkaHh7Wa6+9piVLlkiSlixZotdee00HDx6c9mdh4DE8wSR9ehXjlS5xj1fS+ayF3KZfrWyZOramtgtA9gTZ92axNmWxT6Y7+fJ/WWpqDBjD9Ij9EpI33nhD3d3duv/++/Xiiy/qlFNO0cqVK9Xe3q45c+bIcRxJkuM46u/v1759++T7fs2f9fT01P3Zvb2nVv3+yOhR9Rc7poS2v9ih9raCil3t8jxf7x4+pomSp5aCrdmntMlO+BE9SZ126nm+Xn/7Pd310IuV06tuu3qhzj591pRtEmX7ZhqvmaTllN1aeU1bHpsdryDqzWfUqm2POLdDEqLOa9LzdrpsvXv4WKCxjasvcWQu6XFpVK28Irg4MhD1Z8z0/knn3OS89vV1Bd73TlebZp/SZtwxjjRzBrK+jw8i6rx6nq93Dh3T0WMlvfXLQ3rsuX/QyOhR3fr/LNDCj8zRiz/dX/ndIGNg6hgmXX+i1GjfYl/AKJVKeuONN/Trv/7r+trXvqYf//jH+tKXvqT77rsv8s8eHj4kr8oqmuPYWrN8wQeuefInXB08eNi466H6+rp04MDolPaXpFjuzOw7dmUHJR1fmbzroRc1uGJR5eY5J7cvbNON10yfG7RtSRaNank18fq8mbZpM+MVVD35DCro/Kq1PeLYDlnNaz0Zi7oGTpet8qPc6hnbqOvjZFFnrtm+mJbXybJ8wBi2OPapUX/GdO9fzrnJeU1KedsE3ffWqk2W52nvW+8adYwj1Vfrwqq3Ye3PsprXascVf/DZC/XtZ36mux/eo7u+9K+19633qo7BTNs2zuPVesV5zBC3yX0LmtfYFzDOOOMMFQqFyuUgv/Ebv6Fisaj29nbt379fruvKcRy5rquhoSENDAzI9/2aPwvDyY9nam8ryJ9w5bqefMeuej3U4IpFSn49OP4/aKc7vSquMOX5cVq1rs8zJY/VxDleYeczzPmVx9zGkde4auB02bJ838ixzWPmAMQv6L63Vm0ad/3UHeOUhVFvTfxHKtNUO674xv/3sq5d9lFt2LZHlqyqY1DPtmWfmR6xXxze09OjhQsXavfu3ZKOP11keHhY55xzjubOnatdu3ZJknbt2qW5c+eqp6dHvb29NX8WlsmPZyp2tb8fZsOvh4r7hjOObam/2DHle/3FDjkxn96XhsdpRcH0PNYS13iFnc+w51fechtHXuOqgTNly9SxNbVdALKjkX1vtdqU1mOcsmbrLTeRnFmtjHR1tqi/2CHbVtUxqHfbss9Mh0Tubnf77bfrwQcf1NKlS3XDDTdo06ZNmjVrltavX6/vfOc7+tSnPqXvfOc7uv322yuvme5nUTLlD/Za4i725VOly9ukvIKZyPN4c8j0PCYt7Hym/WAqaXHkNa4xovYBQHVh1ce8H+NwzDGzWhk5Ol6aNnNs22xJ5NjrrLPO0re//e0PfP/cc8/VE088UfU10/0sSrWubS5IcmNvzQeVJ/LJN5xxbEtyw5+UnF6VLNPzmLSw8xn3/MqaOPIa1xhR+wCgurDqY96PcTjmmFmtjJzW3S533K2ZObZttvCPRzMw/aA1iWLvup6sE58t18/FTsUUpufRBGHmM+8HU82KI69xjhG1DwCqC6M+5v0Yh2OOmdXKyOxT26e92SXbNltYwKiDyQeteS/2eWRyHrOG+dW8qPPKGAFAduT5GIf9WX0ayQjbNltYwMiAPBd7IGrML/MxRgCALGB/Fh22bXYkchNPAAAAAACAIFjAAAAAAPD/s3fv0VXVd/7/X2fvk4QEAwRMNI5aqTO01GK1IP6UWlfVajsV4TsuR9SpX3Sqo3hbHWmpmFFsgRS03trS+nO0fOuluFyOMAirYLXtdPhNxTpMa61+x6JjrSKBEDEYIDl7798f8RxzOSc5l3357H2ej7VcC0/O5XN57ffZ+eSczwYA47GAAQAAAAAAjMcCxghs25JnW8qkUvJsS7Zd3nD59TxA2DgGkGS2bUm2rUwqJde2ZNXaZBMADFQt5xFJ7mdUfUvymFYrNvEswLYtdfX0DbvcTlNDTUk71vr1PEDYOAaQZLZt6d2ePi0bkMsb5p2opsY6ja2xySYAGKJaziOS3M+o+pbkMa1mLEEVkJFyYZekjq79Wr56qzIRPQ8QNo4BJFlGyi1eSP25vGfNNu3c00M2AcAg1XIekeR+RtW3JI9pNWMBowDH9XJhz+ro2i/H9SJ5HiBsHANIskK5HFObJpsAYJBqOY9Icj+j6luSx7SasYBRgG2l1NJUP+i2lqZ62VYqkucBwsYxgCQrlMsDvRmyCQAGqZbziCT3M6q+JXlMqxkLGAWkJS2ePzMX+ux3pkrdNMSv5wHCxjGAJEtLunlILm+Yd6IOm9hANgHAINVyHpHkfkbVtySPaTVj/gpwHFdNDTVqXzBLjuvJtlJKf3B7FM8DhI1jAEnmOK4mNNTo2ws+o4zrybKktJ1SyvHIJgAYpFrOI5Lcz6j6luQxrWYsYIzAcVyl9MEgOZ6ciJ8HCBvHAJIsewLTn0vJJZgAYKRqOY9Icj+j6luSx7Ra8RUSAAAAAABgPBYwAAAAAACA8VjAAAAAAAAAxmMBAwAAAAAAGK+qNvG0Srjmbyn3jQLtK5/JbRsoLu2U4tXWMFTjeATd5ySNKX2JXlzbbaIwxjLq+hJ1XqJ+/ZGY3DY/VUs//RDVWCV1jpLaL6n8vqU8z/N8bgsAAAAAAICv+AoJAAAAAAAwHgsYAAAAAADAeCxgAAAAAAAA47GAAQAAAAAAjMcCBgAAAAAAMB4LGAAAAAAAwHgsYAAAAAAAAOOxgAEAAAAAAIzHAgYAAAAAADAeCxgAAAAAAMB4LGAAAAAAAADjsYABAAAAAACMxwIGAAAAAAAwHgsYAAAAAADAeCxgAAAAAAAA47GAAQAAAAAAjMcCBgAAAAAAMB4LGAAAAAAAwHgsYAAAAAAAAOOxgAEAAAAAAIzHAgYAAAAAADAeCxgAAAAAAMB4LGAAAAAAAADjsYABAAAAAACMl466AWHq7Nwn1/VGvV9TU4O6unpCaFF5aF/5Sm1bc3NjgK0ZWbF5jZrJ8x2FKMcjqXlNUsboy4eSmNckze9oqqWv2X4mMa+VqrYMxEm15TWOc1SMpPZLGty3UvPKJzDySKftqJswItpXPpPbFleM6WCMh/+SNKb0JdmqaUyqpa/V0s9yVMvYVEs/4yypc5TUfkmV9Y0FDAAAAAAAYDwWMAAAAAAAgPFYwAAAAAAAAMZjAQMAAAAAABiPBQzEmm1b8mxLmVRKnm3Jtok0zEVe4TcyhWKQEwDwF3U1OlV1GVUki21b6urp0/LVW9XRtV8tTfVaPH+mmhpq5Dhu1M0DBiGv8BuZQjHICfzQOK5eY+qG/9pQ6PKHBw5m1P3efl9eo5ByXgPwA3U1WixgILYyUq5wSFJH134tX71V7QtmKRVt04BhyCv8RqZQDHICP4ypS2v2jeuKvv/678xRt4GvAfiBuhotPuuC2HJcL1c4sjq69stxvYhaBBRGXuE3MoVikBMA8Bd1NVosYCC2bCullqb6Qbe1NNXLtlj7hHnIK/xGplAMcgIA/qKuRosFDMRWWtLi+TNzBST7/TO+FwUTkVf4jUyhGOQEAPxFXY1WaOO8YsUKbdq0SW+99ZbWr1+vKVOmSJJ+8Ytf6J577lEmk9H48ePV3t6uo446atjjv/vd7+rRRx9VS0uLJOnTn/60br311rCaDwM5jqumhhq1L5glxyyGt9EAACAASURBVPVkWymlP7gdMA15hd/IFIpBTgDAX9TVaIW2gHHmmWfq0ksv1SWXXJK7be/evVq0aJHWrFmjyZMna926dVqyZIkeeOCBvM8xd+5cLVq0KKwm+8a2LWWkwAIe9PObzHFcpfRBkB1PTsTtSZpqzlaWn2NAXoNRyRzFPeNkyn/FZiLf/UxFTgBUq2ytdl1PlmVJKU/yVPH7PXU1OqG9386YMWPYbW+88YYOPfRQTZ48WZJ0+umn6+tf/7r27NmjiRMnhtW0QAV9mR0u44OgkC3GIA4qmSPmF0MVm4lC95swgQ3cAMAU+Wr19ReeqPW/2q6Lzv447/cxFekeGJMnT9bu3bv1u9/9TpK0fv16SdKOHTvy3n/Dhg2aPXu2Lr/8cm3bti20dlai0GV2MjF5flQvssUYxEElc8T8YqhiM1HofnvfPxhqewEAheWr1fc+tk1nnvQR3u9jLNJPPDY2Nuquu+5Se3u7Dh48qM9+9rMaN26c0unhzZo3b56uuuoq1dTUaMuWLVqwYIE2btyopqamol9v0qRDir5vc3Nj0fcdSUdXT97L7CiVqug1so8N6vkrFeVrj8bktg1USl6DUEq24jKmpSr3+ErqeIwk6LwWGtNKamBU9TNJ+YhrXwrltdhMFLpfX8ZVS0zHpBxxnf9SRd3PqM8HyhXGuIU1N1FnIE6iymu+OSpUqxsbaoz4fakYprevEuX2LfKvbJ566qk69dRTJUm7d+/WAw88kHcTz+bm5ty/Z82apdbWVr366quaOXNm0a/V2blPbhHX521ubtSuXd1FP++IbEstTfWDDp6WpnrJ88p+jUHtC+D5K+Xr+Pms1LZFWTSKzWtgisyWyfNdsTKOryjHI6l5HXFMK6mBEdTPJB0vlfbFyLwWm4kC96tJW4mZ39EkKcsjyfbTyLyGqJz+l5qPMF6jHHHMerXlteAcFajV3T19kf++VIw4Zq9YA/tWal4jv4zqrl27JEmu6+rOO+/UvHnz1NDQMOx+O3fuzP375Zdf1ltvvZXbO8NkQV9mh8v4IChkizGIg0rmiPnFUMVmotD9xo+tC7W9AIDC8tXq6y88Uc88/wbv9zEW2rwtXbpUmzdv1u7du3XZZZdpwoQJ2rBhg+6++27953/+p/r6+jRr1iwtXLgw95grrrhC119/vaZNm6Y777xTL730kizLUk1NjVauXDnoUxmmCvoyO1zGB0EhW4xBHFQyR8wvhio2E4XuZ1mpSNoNABhuYK123Q9qdMrTlXOn8X4fY6EtYLS1tamtrW3Y7cuWLSv4mPvvvz/37xUrVgTSrjAEfZkdLuODoJAtxiAOKpkj5hdDFZsJsgMA5svWalvSwEJNzY6vyL9CAgAAAAAAMBoWMAAAAAAAgPFYwAAAAAAAAMZjAQMAAAAAABiPBQwAAAAAAGA8FjAAAAAAAIDxWMAAAAAAAADGYwEDAAAAAAAYjwUMAAAAAABgPBYwAAAAAACA8VjA8IFtW/JsS5lUSp5tybYrG1a/ny+JGKPoDB171/WYjyIxTqWzbUtd3QciG7O4z1nc2x83rutFNt5xmOs4tBFA9Sq3RpX6OGphZdJRNyDubNtSV0+flq/eqo6u/Wppqtfi+TPV1FAjx3Ejf74kYoyik2/s2y4/WWk7pSX3/5r5GAG5Ld2HY7YlkjGL+5zFvf1xY9uW3njnPS198LnQxzsOcx2HNgKoXuXWqFIfRy2sHMs9FcpIuQBKUkfXfi1fvVUZQ54viRij6OQb+6UPPqede3qYj1GQ29JFPWZRv36l4t7+uMlIucULKdzxjsNcx6GNAKpXuTWq1MdRCyvHAkaFHNfLBTCro2u/HNcz4vmSiDGKTqGxH1ObHnYb8zEYuS1d1GMW9etXKu7tj5soxzsOcx2HNgKoXuXWqFIfRy2sHAsYFbKtlFqa6gfd1tJUL9tKGfF8ScQYRafQ2B/ozQy7jfkYjNyWLuoxi/r1KxX39sdNlOMdh7mOQxsBVK9ya1Spj6MWVo4FjAqlJS2ePzMXxOz3mMrdXMTv50sixig6+ca+7fKTddjEBuZjFOS2dFGPWdSvX6m4tz9u0pLaLj85kvGOw1zHoY0Aqle5NarUx1ELK5fyPK9qPq/S2blPbhEfz2lubtSuXd1FP69tW8qo/yNBtpVSWqpoE5bRnq/U9hV6fttOyXEkx3VlW5Zqbamv1yn7ef1qXzHKHfNS29bc3Fh+IytUbF7DNnTsD53QoHff7cndVltjyXWkjOv6cjwU04YgXqPcNoyUsaDbncS82ralVI2tAwczgc51obkZeHvasmTZUm9f+dkOoz4OlG2/UpK8lFzXleXTOFbalyTmddKkQ7T73Z5AjvHR6kel9aWUx5d7XJpQu0uVzXkS81qK5uZGzb5xXdH3X/+dOSXXhzBeoxxh120/VFte/ZqjkWrUSO+nkkqqbcXWwqH9imMNLWRg30rNK4s9PnAcVyl9MJiOp0qXAPx+voGyO9/+8j/f1GknHqlv/5/nczvg3jR/pg5trPVlESNoQY4RRjZ07C0rlbutzrbU1d0b6M7KJuzePFIbRkJuS+c4rponjtWuA92BjdlomcpluyfYbAfBcVylbUtd77PjeRgsK6WU4/p+jBdT9yqpL6XU1UquDkQNBGCyQjUqW/d+svkVzT7tWN372LZh9a+U2l9OLTTh/NcUfIWkymR3vj1r5jG5xQupf/OY9tVbFYO1CxgsjJ2VTdi92YQ2wD/FzGec5zzObUe/oOewlOcnTwCqTbbunXnSR3KLFxJXm4oKCxhVJrvzrW2pwA641bWCB3+FsbOyCbs3m9AG+KeY+YzznMe57egX9ByW8vzkCUC1yda9xoYarjZlABYwqkx251vHVYEdcIkEyhfGzsom7N5sQhvgn2LmM85zHue2o1/Qc1jK85MnANUmW/e6e/q42pQB+G21ymR3vv3Z1v/RN/73SYN2wL1p/kzV2tG2D/EWxs7KJuzebEIb4J9i5jPOcx7ntqNf0HNYyvOTJ/M0jqtXc3NjSf81jqsf/Ykr0NvnlNwm02THVVLRfRg3vqGkPpd6/6DnDfll694zz7+h6y88katNRSyUq5CsWLFCmzZt0ltvvaX169drypQpkqRf/OIXuueee5TJZDR+/Hi1t7frqKOOGvZ4x3G0dOlS/epXv1IqldKVV16pCy64oOR2BHUVkrD5fxWS/p1s43QVknJxFRL/RbFDsgm7MJdzFZKgJTWvplzZyI/cRZWPII4ZrkIyXJDzG3TdC+MqJHEUh6uQlHr1Dqn0K3iUc4WQctpk0lVIyh3XIMep2D6bnNcghHme8OFVSDxZlgKtf1yFJL9QFm3OPPNMXXrppbrkkktyt+3du1eLFi3SmjVrNHnyZK1bt05LlizRAw88MOzx69ev15/+9Cdt3rxZ7777rubOnatTTjlFRx55ZBjNT5zszreuowE74Ep9bOAJH4Sxy7wJO9mb0Ab4p5j5jPOcx7nt6Bf0HJby/GFcHQgATJKtkVm2JDkKtf7xXt4vlK+QzJgxQ62trYNue+ONN3TooYdq8uTJkqTTTz9d//7v/649e/YMe/zGjRt1wQUXyLIsTZw4UWeddZZ++tOfhtF0AAAAAABggMi+NjN58mTt3r1bv/vd73T88cdr/fr1kqQdO3Zo4sSJg+67Y8cOHXHEEbn/b21t1TvvvFPya06adEjR9zXxu3gD0b7ymdy2gUrJa9TiMqZhqcbxCDqvSRpT+hK9IPMa1zEpR7X0Nep+BpXXqPvlhyT0oVSm9zmq81fTx6VcSe2XVH7fIlvAaGxs1F133aX29nYdPHhQn/3sZzVu3Dil08E1iT0wwmFy+9gDw38mz3cU2APDf0nKGH0Z/PioxHEPDNNUS1/jsgdGOeJyPjSSoPfAMBF7YAyX1HqU1H5JMdgDo5BTTz1Vp556qiRp9+7deuCBB/Ju4tna2qq3335bxx9/vKThn8gAAAAAAADJFullVHft2iVJcl1Xd955p+bNm6eGhoZh9/vCF76gxx9/XK7ras+ePfrZz36mc845J+zmAgAAAACAiISygLF06VJ99rOf1TvvvKPLLrtMX/rSlyRJd999t774xS/q7LPPVk1NjRYuXJh7zBVXXKEXX3xRkjRnzhwdeeSROvvss/W3f/u3uuaaa/J+UgMAAAAAACRTKF8haWtrU1tb27Dbly1bVvAx999/f+7ftm3rtttuC6RtAAAAAADAfJF+hQQAAAAAAKAYLGAAAAAAAADjsYABAAAAAACMxwIGAAAAAAAwHgsYAAAAAADAeCxgAAAAAAAA47GAAQAAAAAAjMcCBgAAAAAAMB4LGAAAAAAAwHgsYAAAAAAAAOOxgAEAAAAAAIzHAgYAAAAAADAeCxgAAAAAAMB4oy5gvP3223riiSfy/uxf/uVf9M477/jeKAAAAAAAgIFGXcD4/ve/r4MHD+b9WW9vr77//e/73igAAAAAAICBRl3A+PWvf63zzjsv789mz56tLVu2+N4oAAAAAACAgUZdwNizZ48aGhry/mzMmDHq6uryvVHVwrYtebalTColz7Zk22xJAvMNza3relE3CQgMdRpRIXsAkDzU9sqlR7tDS0uLXn75ZR133HHDfvbKK6+oubk5kIYlnW1b6urp0/LVW9XRtV8tTfVaPH+mmhpq5Dhu1M0D8sqX27bLT9b4MWlyi8ShTiMqZA8Akofa7o9Rl3zOPfdc/dM//ZN27tw56PadO3dqyZIlBb9egpFlpFx4Jamja7+Wr96qTLTNAkaUL7dLH3yO3CKRqNOICtkDgOShtvtj1E9gXHXVVXrppZd0zjnnaNq0aWppaVFHR4defPFFnXrqqbrqqqvCaGfiOK6XC29WR9d+Oa43+qQAESG3qCbkHVEhewCQPNR2f4z6CYyamhr98Ic/1KpVq3TCCSeooaFBJ5xwgn7wgx9o1apVSqcZ7nLYVkotTfWDbmtpqpdtpSJqETA6cotqQt4RFbIHAMlDbfdH0buGnHrqqbrxxhv1rW99SzfeeKM+8YlPlPRCK1as0BlnnKGPfexj+u///u/c7T//+c81d+5czZkzR7Nnz9bmzZvzPv673/2uTjnlFM2ZM0dz5szRbbfdVtLrmyYtafH8mbkQZ78DxXIQTJYvt22Xn0xukUjUaUSF7AFA8lDb/THqeK1du1aTJk3SaaedJkn6/e9/r2uuuUYdHR06+uij9YMf/EAf/ehHR32hM888U5deeqkuueSS3G2e5+nrX/+6HnnkEU2ZMkWvvPKKLrroIp111lmyrOFrK3PnztWiRYtK6V9FbNtSRv0f97GtlNKSbxusOI6rpoYatS+YNerzD21H0q/6EOS4ozL5cnvohAZ1du4b8XF+zmmS85HkvplotPEupU4X+zpd3Qdk21bi5jUp2Q2yH6U8d6XZS8p8AEiOIOpS9jk7unok2wql1lXSD7/OK6rdqAsYDz74oFauXJn7/7a2Np166qm6/PLL9eijj2rlypX64Q9/OOoLzZgxI+/tlmWpu7tbktTd3a2Wlpa8ixdhC2OXWMdxldIHk+B4copsR5Kv+sDuvOYbmltrlI+9+TmnSc5HkvtmomLHu5g67cfrxFlS+hhkP8p57nKzl5T5AJAcQdSlKGqdH69Z6XkFivgKyY4dOzRlypTcv1999VUtWrRIf/VXf6Ubb7xRv/vd78p+8VQqpbvvvlsLFizQ5z73OV1zzTX69re/XfD+GzZs0OzZs3X55Zdr27ZtZb9uMUzZJbbarvpgyrjDP37OaZLzkeS+mSis8a6GeU1KH4PsR5hjlJT5AJAcQdSlKGod9dUMo34Cw7Zt9fX1qa6uTtu2bdNHP/pRTZgwQZJUX1+vAwcOlP3imUxG9913n1atWqXp06frhRde0Fe/+lVt2LBBY8eOHXTfefPm6aqrrlJNTY22bNmiBQsWaOPGjWpqair69SZNOqT4xqVSeXeJVSql5ubG4p+nQh1dPUa0o1Tlti2M/po8bgOVlNeIjTSmfs5pXI6HctoSl74VEnRe/R6DsMY77vM6mubmxlj2MV9e/epHvvuGOUZhvpap8+u3qPsZVH2Nul9+SEIfSmV6n4Osr0E/p4mvafp8V6Lcvo26gDFz5kzdddddmjt3rh566CF97nOfy/3stddeU3Nzc1kvLEkvv/yyOjo6NH36dEnS9OnTVV9fr+3bt+v4448fdN+BrzNr1iy1trbq1Vdf1cyZM4t+vc7OfUXtH9Hc3Ch5nlqa6geFtKWpXvI87drVXfRrVsy2zGhHCZqbG8tvW8D9LbVtURaNYvMatVHH1M85jcHxUHb+fehbUvNaUU0pJKwsxSCz5crNS5l9NC6vPh2Dee8bZg5Ceq1AjksDZftpXF4HKLdtcTkfGkmQGYxzn43LaxB1KYr315BfM8l1dmDfSs3rqF8hufnmm/XSSy/poosuUn19va644orcz9atW5fb3LMchx9+uN555x299tprkqTt27dr9+7dOvroo4fdd+fOnbl/v/zyy3rrrbc0efLksl97NKbsElttV30wZdzhHz/nNMn5SHLfTBTWeFfDvCalj0H2I8wxSsp8AEiOIOpSFLWO+mqGUcf7sMMO00MPPaRXX31VL7zwgh599FGNHz9e06dP18KFC4t+oaVLl2rz5s3avXu3LrvsMk2YMEEbNmzQkiVLdMMNNyiV6t8IsL29PfcVlSuuuELXX3+9pk2bpjvvvFMvvfSSLMtSTU2NVq5cWdGnP0YzcJdY11X/RoUpTxlPSoe4g3y5V32IK3bnHV3cdpf3c06TnI+k9s3UvIY13kNfZ0xdWl6fY8QY+CUp2S2nH8VeJSzMMUrKfABIDj/rUrbuHnQ9jWuo1crrPiPHleR5gdc66qsZRl3A8DxPN998s9auXavDDz9czc3N2rlzpzo6OjRnzhwtX748t/gwkra2NrW1tQ27/bzzztN5552X9zH3339/7t8rVqwY9TX85jiu0ralrgPR7uZd6lUf4o7deQuL6+7yfs5pkvORtL6Zntewxnvg6zQ1jknkx0GTkt1S+lHqVcLCHKOkzAeA5PCjLhU6r5h8xHh1du4LpdZRX6M36ldIHnvsMT333HNas2aNnn32WT322GP6xS9+oTVr1ug3v/mN1qxZE0Y7I8NuszAJeUSckFckWbVdJQwAolbovGLv+wejbRhCNeoCxrp169TW1jZsU83jjz9eixcv1rp16wJrnAkc18u726wTg80VkTzkEXFCXpFk5BsAwlWo7vZlov9UJ8Iz6gLG9u3bddJJJ+X92UknnaTt27f73iiT2FYqt1FLVktTveyEf40DZiKPiBPyiiQj3wAQrkJ1tyY96q+0SJBRZ9txHB1ySP7rTx9yyCFy3WSveLHbLExCHhEn5BVJVm1XCQOAqBU6rxg/ti7ahiFUo77PZjIZ/frXv5bnFdpZOxlblwzcSbyr+4DsD640Usxus6buso/kievux+UcIxxX8RfXvBZjaD5r7ZR6HS9x/URh+fI9cVy99ry3X04qFWkOqJ8AkqjQeUX2Agdh1T5qbLRGXcCYNGmSFi9eXPDnEydO9LVBURhtp/yRdps1fZd9JE/cdj8u5xjhuEqOuOW1GPnyedP8mVqz+RU999JO8lpFBubbVkpvdnRr6YPPRVq3qJ8AkqzQeUVYtY8aG71Rv0Ly7LPPjvpf3FWyUz677AMjK+cY4biCyfLls331Vp150kdy/09eq09Gyi1eSNHlgPoJoBqFVfuosdFjxxNVtpM4u5ADIyvnGOG4gskK5bOxoWbQ/5PX6mJK3TKlHQAQprBqHzU2eixgqLKdxNmFHBhZOccIxxVMViif3T19g/6fvFYXU+qWKe0AgDCFVfuosdFjAUOV7ZTPLvvAyMo5RjiuYLJ8+bxp/kw98/wbuf8nr9UnLant8pMjr1vUTwDVKKzaR42NHmOt4TvajqlLy+tzitqIJU677LNjLsIwNGeSSj5G4nRcIR78rH/58llrp3Tl3Gn6+/M+SV6rlOO4+sjh4yKvW3Gtn5yjAKhEWLUv6NcpdGVMfIgFjA8M3NG2qXGMdu3qLuuxpu6yz465CMNIOUs5bknHSByOK8RDEPVvaD77HJFXyLJSJde6IMStfnKOAsAPYdW+oF6HWlgcvkJSJdgxF2EgZzARuQTMxjEKANTCYrGAUSXYMRdhIGcwEbkEzMYxCgDUwmKxgFEl2DEXYSBnMBG5BMzGMQoA1MJisYBRJdgxF2EgZzARuQTMxjEKANTCYjEeEYhip20/d8xlp3AUYsLu97ZtybNTyjieXNdT2rJkyyOjVcyvXFZS+7KP7ejqkWyLupkg1bRjfFB9NeG9A0C8xLH2jnYeUcmVMasJCxghi3J3WT92zGV3XIwmyt3vbdvS+32OuvYc1D1rtuUyevP8mZpARqtapbmspPZRN5OrmuY26L7G7copAKITx9pbbJsruTJmteArJCGL++6ycW8/ki0jaeeentzihdSf0WVkFBWqpPZRN5Ormua2mvoKwGxxrEdxbLOpWMAIWdx3l417+5FsjutpTG2ajMJ3ldQ+6mZyVdPcVlNfAZgtjvUojm02FQsYIYv77rJxbz+SzbZSOtCbIaPwXSW1j7qZXNU0t9XUVwBmi2M9imObTcUCRsjivrts3NuPZEtLOmxig26Yd+KgjN5MRlGhSmofdTO5qmluq6mvAMwWx3oUxzabKpQxW7FihTZt2qS33npL69ev15QpUyRJP//5z3XPPffI8zy5rqvrrrtOZ5999rDHO46jpUuX6le/+pVSqZSuvPJKXXDBBWE03Xdx32nbcVxNaqxV+4LPyHFd2ZYl25Yyjqd0DHb/RbI5jquxNbYamsdq+YJZcl0pbaWGXYWk2KtJcMUdZBWq3ZLk2daIGRn4WKVSkuclMkvVeLxU047x2b5+e8FnlHE92XZKtiXJiefHn6sxr0BSmF57C9UXU38HjFs9DGUB48wzz9Sll16qSy65JHeb53n6+te/rkceeURTpkzRK6+8oosuukhnnXWWLGvwB0PWr1+vP/3pT9q8ebPeffddzZ07V6eccoqOPPLIMJrvuzjvtG3bljq7ewftoHv9hSdq/a+266KzP66mhpqom4gq5ziu5PR/vMySJEeDjrFid4GO4w7XCNbQ2q0SMpJ9bHNzo3bt6o5V3S9GNR8v1bZj/Hs9vbGf52rOK5AUptbe0eqLab8DxrEehvIVkhkzZqi1tXX4i1uWurv7w9bd3a2WlpZhixeStHHjRl1wwQWyLEsTJ07UWWedpZ/+9KeBtxvD5dtB997HtunMkz7CTrqIhWJ3gWa3aIyGjHyIsagOSZnnpPQDgHniVl/i1l4ppE9g5JNKpXT33XdrwYIFamho0Pvvv6/77rsv73137NihI444Ivf/ra2teuedd0p+zUmTDin6vs3NjSU/f5iial9HV0/eHXQbG2r6b0/1b0Rj8viZ3LaBSslr1OIyplLhDCuVGtSPYu+XT5zGwy9B59XEMS03Iyb2pVzZvlRyvEQhyLya2F+/xG2eCym1H1H3Lai8Rt0vPyShD6Uyvc9Rnb+aMi5+18mg+xVlXS/3+SNbwMhkMrrvvvu0atUqTZ8+XS+88IK++tWvasOGDRo7dmwgr9nZuU9uEZeqyX7E11SRts+21NJUPyjoLU316u7p69+UxusfX1PHr9Sxi7IYFpvXqJl+vAxTIMPyvMH9KPZ+Q0Q5HknNq7EZKyMjxvalDIP6UuZYRCWovCZpfvMqsy4ap4R+ZOfU5LyW27a4nA+NJMjcxbnPJuc1CEbVXh/rZCj9iqiuD+xbqXmN7CokL7/8sjo6OjR9+nRJ0vTp01VfX6/t27cPu29ra6vefvvt3P/v2LFDhx9+eGhtxYfy7aB7/YUn6pnn32AnXcRCsbtAs1s0RkNGPsRYVIekzHNS+gHAPHGrL3FrrxThJzAOP/xwvfPOO3rttdf00Y9+VNu3b9fu3bt19NFHD7vvF77wBT3++OM6++yz9e677+pnP/uZHnnkkQhajYE76LquZFkpKeXpyrnTjN+xFpCK3wXa5N2iYQYy8iHGojok5Yo65BVAUOJWX+LWXimkBYylS5dq8+bN2r17ty677DJNmDBBGzZs0JIlS3TDDTco9cG+Ce3t7ZowYYIk6YorrtD111+vadOmac6cOfrtb3+bu8TqNddco6OOOiqMpiOP7A66tjTo8g4m7KQLFKPYXaBN3C0aZiEjH2IsqkNSrqhDXgEEJW71JW7tDWUBo62tTW1tbcNuP++883Teeeflfcz999+f+7dt27rtttsCax8AAACA+Ojtc0r67vyBgxl1v7d/9DsCMJrJX28BAAAAgGFqa2zNvnFd0fdf/505MmSbRwAViGwTTwAAAAAAgGKxgAEAAAAAAIzHAgYAAAAAADAeCxgAAAAAAMB4LGAAAAAAAADjsYABAAAAAACMxwIGAAAAAAAwHgsYAAAAAADAeCxgAAAAAAAA47GAUQLbtuTZljKplDzbkm2XNnyVPh4IStDZJPswUSW5JNNIgqTmOKn9AmAu6s6Hgh6LtK/PlmC2bamrp0/LV29VR9d+tTTVa/H8mWpqqJHjuIE/HghK0Nkk+zBRJbkk00iCpOY4qf0CYC7qzofCGIvqXRoqUUbKTYQkdXTt1/LVW5UJ6fFAUILOJtmHiSrJJZlGEiQ1x0ntFwBzUXc+FMZYsIBRJMf1chOR1dG1X47rhfJ4IChBZ5Psw0SV5JJMIwmSmuOk9guAuag7HwpjLFjAKJJtpdTSVD/otpametlWKpTHA0EJOptkHyaqJJdkGkmQ1BwntV8AzEXd+VAYY8ECRpHSkhbPn5mbkOz3eYrdRKTSxwNBCTqbZB8mqiSXZBpJkNQcJ7VfAMxF3flQGGNRjeNaFsdx1dRQo/YFs+S4nmwrpfQHt4fxeCAoQWeT57EFgAAAIABJREFU7MNEleSSTCMJkprjpPYLgLmoOx8KYyxYwCiB47hK6YNBczw5IT8eCErQ2ST7MFEluSTTSIKk5jip/QJgLurOh4IeC75CAgAAAAAAjMcCBgAAAAAAMB4LGAAAAAAAwHih7YGxYsUKbdq0SW+99ZbWr1+vKVOm6M9//rOuueaa3H26u7u1b98+bd26ddjjv/vd7+rRRx9VS0uLJOnTn/60br311rCaDwAAAAAAIhTaAsaZZ56pSy+9VJdccknutiOPPFLr1q3L/f+yZcvkOIW3+Zg7d64WLVoUaDuRbK7rybOtqt8hGPFg25YyEnlFpMhhdWCeAaB81NDwhLaAMWPGjBF/3tvbq/Xr1+uBBx4IqUWoNrZt6Y133tPSB59TR9f+3HWJmxpqKDAwjm1b6urp0/LVW8krIjNSDpEc1BsAKB81NFzG7IHx7LPP6rDDDtNxxx1X8D4bNmzQ7Nmzdfnll2vbtm0htg5JkJFyixeS1NG1X8tXb1Um2mYBeWWk3BuhRF4RDXJYHZhnACgfNTRcoX0CYzRPPPGEzj///II/nzdvnq666irV1NRoy5YtWrBggTZu3KimpqaiX2PSpEOKvm9zc2PR940C7StdR1dPrrB8eNt+KZUysr2l5DVqJo5flPwYD/I6mIl9Llec+jJSDqV49WWgIPMaxzEpt97Esa/liLqfQeU16n5FIQl9Nr0PUZ2/RjkuQZ6zmT7flSi3b0YsYOzcuVPPP/+8Vq5cWfA+zc3NuX/PmjVLra2tevXVVzVz5syiX6ezc59c1xv1fs3Njdq1q7vo5w0b7SuTbamlqX5QgWlpqpc8r2B7oywaxeY1asbOd0R8Gw/ympOkjMWuLyPkUFJFfUliXmM3v1ll1ptY9rVE2X6anNdy21bK/CXll6gk9LmYPpic1yBEXo/KqKHFiLxfARrYt1LzasRXSJ588kmdfvrpI36aYufOnbl/v/zyy3rrrbc0efLkMJqHhEhLarv85P6CIuW+n2bEKh4wRFrS4vkzySsiRQ6rA/MMAOWjhoYrtHFdunSpNm/erN27d+uyyy7ThAkTtGHDBkn9Cxg333zzsMdcccUVuv766zVt2jTdeeedeumll2RZlmpqarRy5cpBn8oARuM4rj5y+Di1L5jFDsEwnuO4amqoIa+IFDmsDswzAJSPGhqu0BYw2tra1NbWlvdnmzZtynv7/fffn/v3ihUrAmkXqotlpZRy3P7gO54KX7QXiJ7juEpJ5BWRIofVgXkGgPJRQ8NjxFdIAAAAAAAARsICBgAAAAAAMB4LGAAAAAAAwHgsYAAAAAAAAONV1dVdLCsVyH2jQPvKZ3LbBopLO6V4tTUM1TgeQfc5SWNKX6IXZLvjOiblqJa+Rt3PoF4/6n5FIQl9Nr0PUbXP9HEpV1L7JZXft5TneZ7PbQEAAAAAAPAVXyEBAAAAAADGYwEDAAAAAAAYjwUMAAAAAABgPBYwAAAAAACA8VjAAAAAAAAAxmMBAwAAAAAAGI8FDAAAAAAAYDwWMAAAAAAAgPFYwAAAAAAAAMZjAQMAAAAAABiPBQwAAAAAAGA8FjAAAAAAAIDxWMAAAAAAAADGYwEDAAAAAAAYjwUMAAAAAABgPBYwAAAAAACA8VjAAAAAAAAAxmMBAwAAAAAAGI8FDAAAAAAAYDwWMAAAAAAAgPFYwAAAAAAAAMZjAQMAAAAAABiPBQwAAAAAAGC8dNQNGOjPf/6zrrnmmtz/d3d3a9++fdq6datef/11feMb39C7776rCRMmaMWKFTrmmGOiaywAAAAAAAhNyvM8L+pGFLJs2TI5jqNbbrlFl156qc4//3zNmTNH69at0xNPPKEf//jHJT1fZ+c+ue7o3W1qalBXV0+5zQ4c7StfqW1rbm4MsDUjKzavUTN5vqMQ5XgkNa9Jyhh9+VAS85qk+R1NtfQ1288k5rVS1ZaBOKm2vMZxjoqR1H5Jg/tWal6N/QpJb2+v1q9fr/PPP1+dnZ36wx/+oHPPPVeSdO655+oPf/iD9uzZE8hrp9N2IM/rF9pXPpPbFleM6WCMh/+SNKb0JdmqaUyqpa/V0s9yVMvYVEs/4yypc5TUfkmV9c2or5AM9Oyzz+qwww7Tcccdp9///vc67LDDZNv9HbVtWy0tLdqxY4cmTpxY9HNOmnRI0feNcuWyGLSvfCa3baBS8hq1uIxpWKpxPILOa5LGlL5EL8i8xnVMylEtfY26nyafD0Q9NmGpln76Iaq8JnWOktovqfy+GbuA8cQTT+j888/39TmL/UhTc3Ojdu3q9vW1/UT7yldq26rtI3jlMHm+oxDleCQ1r0nKGH0Z/PioBJXXJM3vaKqlr9l+JjGvlaq2DMRJteU1jnNUjKT2Sxrct0R8hWTnzp16/vnnNXv2bElSa2urdu7cKcdxJEmO46ijo0Otra1RNhMAAAAAAITEyAWMJ598UqeffrqampokSZMmTdLUqVP11FNPSZKeeuopTZ06taSvjwAAAAAAgPgydgFj6NdHlixZoocffljnnHOOHn74Yd12220Rta58tm3Jsy1lUil5tiXbNnL4Ad+RfSQNmQbMxfGZH+MCIAmM3ANj06ZNw2479thj9fjjj0fQGn/YtqWunj4tX71VHV371dJUr8XzZ6qpoUaO40bdPCAwZB9JQ6YBc3F85se4AP5pHFevMXWl/Rp94GBG3e/tD6hF1cXIBYwkyki5Nw1J6ujar+Wrt6p9wSylom0aECiyj6Qh04C5OD7zY1wA/4ypS2v2jetKesz678xRMrfjDB+fHQuJ43q5N42sjq79cgzcVRrwE9lH0pBpwFwcn/kxLgCSggWMkNhWSi1N9YNua2mql22x7o1kI/tIGjINmIvjMz/GBUBSsIARkrSkxfNn5t48st895Ds8SDqyj6Qh04C5OD7zY1wAJAV1KySO46qpoUbtC2bJcT3ZVkrpD24HkozsI2nINGAujs/8GBcAScECRogcx1VKHwy648mJuD1AWMg+koZMA+bi+MyPcQGQBHyFBAAAAAAAGI8FDAAAAAAAYDwWMAAAAAAAgPFYwAAAAAAAAMZjAQMAAAAAABiPBQwAAAAAAGA8FjAAAAAAAIDxWMAAAAAAAADGYwEDAAAAAAAYjwUMAAAAAABgPBYwAAAAAACA8VjAAAAAAAAAxmMBAwAAAAAAGC8ddQOGOnjwoJYvX67/+I//UF1dnU444QR961vf0hlnnKHa2lrV1dVJkhYuXKjTTjst4tYCAAAAAIAwGLeAcfvtt6uurk6bNm1SKpXS7t27cz+79957NWXKlAhbh4Fs21JGkuN6sq2U0pIcx426WYBvyDhQPI4XxAl5LV927Dq6eiTbYuwAhMqoBYz3339fa9eu1S9/+UulUilJ0qGHHhpxq5CPbVvq6unT8tVb1dG1Xy1N9Vo8f6aaGmqibhrgi5EyzokaMBjHC+KEvJaPsQMQNaP2wHjzzTc1YcIEfe9739Pf/M3f6Mtf/rJ+85vf5H6+cOFCzZ49W0uWLNF7770XYUuRkXJvXpLU0bVfy1dvVSbaZgG+IeNA8TheECfktXyMHYCoGfUJjEwmozfffFOf+MQntGjRIv32t7/VVVddpaefflqPPPKIWltb1dvbq2XLlumb3/ym7rjjjpKef9KkQ4q+b3NzY6nND1XU7evo6sm9eX14237pg0/ORN2+kZjctoFKyWvU4jKmpRgp46P1N4njMZqg85qkMU1iXyo5XqIQZF5N7G9Q4trXUvMadT9NOh+I27HulyT3zW9R5TUOc1ROG+PQr3KV2zejFjCOOOIIpdNpnXvuuZKkT33qU2pqatLrr7+uadOmSZJqa2t18cUX6+qrry75+Ts798l1vVHv19zcqF27ukt+/rAY0T7bUktT/aA3sZamesnrH9/I21dAqWMXZdEoNq9RMyKPQRgh4yP1N8rxSGpek5SxxPaljOMliXlN0vyOJtZ9LSGv2X4mMa9lKfO9Mc7imPVqy2vYc1Tu+Jbaxjhmr1gD+1bqeBr1FZKJEyfq5JNP1pYtWyRJr7/+ujo7O9XS0qLu7v4Oep6njRs3aurUqVE2teqlJS2eP7P/TUvKfQfSqBUxoAJkHCgexwvihLyWj7EDEDXj6s1tt92mxYsXa8WKFUqn01q5cqV6e3v1D//wD3IcR67r6thjj9Wtt94adVOrmuO4amqoUfuCWezgjUQi40DxOF4QJ+S1fAPHTqmU5HmMHYBQGbeAcdRRR+mhhx4advvatWsjaA1G4jiuUvogRI4nJ+L2AH4j40DxOF4QJ+S1fNmxy34EnLEDECajvkICAAAAAACQDwsYAAAAAADAeCxgAAAAAAAA47GAAQAAAAAAjMcCBgAAAAAAMB4LGAAAAAAAwHgsYAAAAAAAAOOxgAEAAAAAAIzHAgYAAAAAADAeCxgAAAAAAMB4LGAAAAAAAADjsYABAAAAAACMxwIGAAAAAAAwHgsYAAAAAADAeCxgAAAAAAAA47GAUcVs25JnW8qkUvJsS7ZNHFA5coU4IrdA8WzbUlf3AY4XVCXeL4BopaNuAKJh25a6evq0fPVWdXTtV0tTvRbPn6mmhho5jht18xBT5ApxRG6B4n14vGzheEHV4f0CiB5LhlUqI+WKryR1dO3X8tVblYm2WYg5coU4IrdA8TheUM3IPxA9FjCqlON6ueKb1dG1X47rRdQiJAG5QhyRW6B4HC+oZuQfiB4LGFXKtlJqaaofdFtLU71sKxVRi5AE5ApxRG6B4nG8oJqRfyB6xi1gHDx4ULfeeqvOPvtszZ49W//0T/8kSXr99dd14YUX6pxzztGFF16o//mf/4m2oTGXlrR4/sxcEc5+h49NUVAJcoU4IrdA8TheUM3IPxA9446322+/XXV1ddq0aZNSqZR2794tSbr11lt18cUXa86cOVq3bp1uueUW/fjHP464tfFi25Yy6v/4mydpUmOt2hfMkuN6sq2U0hIbEKEijuN+kKvPyHFd2ZalWlvq63Wibhqq3MD6N7TeOY6rpoYa6iFQhOzxcscNn9WBgxnfjpeRjlHEV9LmlfcLIHpGLWC8//77Wrt2rX75y18qler/KNahhx6qzs5O/eEPf9CPfvQjSdK5556rb33rW9qzZ48mTpwYZZNjY6Rdk1OeJzme+BUTlbJtS53dvezODaMUs2u847hK6YM3ReohMCLHcdU8cax2Hej25Xjhyg7JlNR55f0CiFbK8zxjdp155ZVXdO211+rzn/+8nnvuOY0dO1Y33HCDxowZo0WLFmnDhg25+/71X/+1br/9dh133HERtjg+uroPaOE9/zZo46GWpnrdccNn1dQ4JsKWIUnIGUxELgGzcYwmE/OKJJt947qS7r/+O3MCakn1MeoTGJlMRm+++aY+8YlPaNGiRfrtb3+rq666Svfcc48vz9/ZuU9uEbsENzc3ateubl9eMwjltC+TSuXdNfnAwUz/X1B8ZPL4ldq25ubGAFszsmLzGrWBYxpmzkwVZf6TmtdKx9SkXJpcH0tVaV+SmNckze9o/OyrScfoUNl+JjGvlRotAybPaynieFxXW17DnqNyx7fUNsYxe8Ua2LdSx9OoTTyPOOIIpdNpnXvuuZKkT33qU2pqatKYMWO0c+dOOU7/h7Qcx1FHR4daW1ujbG6ssGsywkDOYCJyCZiNYzSZmFcAQQhlAePVV1/VypUrR73fxIkTdfLJJ2vLli2S+q880tnZqWOOOUZTp07VU089JUl66qmnNHXqVPa/KAG7JiMM5AwmIpeA2ThGk4l5BRCEwGrInj179NRTT2nt2rV65ZVXdNpppxX1uNtuu02LFy/WihUrlE6ntXLlSo0bN05LlizRN77xDa1atUrjxo3TihUrgmp6IrFrMsJAzmAicgmYjWM0mZhXAEHwdQGjr69PP//5z7V27Vr927/9m1pbW9XR0aHHH3+86M02jzrqKD300EPDbj/22GP1+OOP+9ncqsOuyQgDOYOJyCVgNo7RZGJeAfjNtwWMb37zm9qwYYNqamr0hS98QQ8//LBOOOEEfeYzn9Hhhx/u18sYKWnXuAZGMjTvJm4sBviF+g74h+MJSUa+gXD4toDxk5/8ROPHj9e1116rL33pS2psjG732zBVco1rCh3ixrYtvdvTp2UD8t52+ckaPyZNdpE4+fJ+8/yZmlBEfQcqlbRzhErOl4BCTDlOyDcQHt828Xz66af1d3/3d3rggQc0a9YsXXfdddq0aZNcN9kHbUbKFSup//JQy1dvVWaEx9i2JavWVldPn25atUVXtj+jm1ZtUVdPn2zbqAvDAIM4SuV+mZP68770wefkyKwdxW3bkmdbyqRS8myL4wplyZf3Zau3lpX3bCY7unrIJEaV/WXItHOEgbW1q/tASe0p53wJ8RHF+65Jxwn5BsLj2xF+5JFH6tprr9XTTz+tBx98UOPHj9fNN9+sPXv26K677tIf//hHv17KKI7r5b3GtVPgY/XZYvv62+9R6BA7GdfNm/eMQV8jMemEBvHmV94HZvLvlz5NJjEqE38ZGlpbF97zbyXluNTzJcRHVO+7Jh0n5BsITyCVZcaMGVq6dKm2bNmi22+/XTt27NDcuXODeKnIlXqN62yxHVObptAhdqwCebcM+j3MpBMaxJtfeSeTKJWJvwxVmuNSz5cQH1HVOJOOE/INhCfQXzvq6uo0e/ZsPfDAA3rmmWeCfKnIlHqN62yx7e7po9AhdtJ2SjfMO3FQ3m+Yd6LStjm5NemEBvHmV97JJEpl4i9Dlea41PMlxEdUNc6k44R8A+Hx7bj63ve+N+p9rr32Wr9ezhilXuM6W2yfePZVXX/hibr3sW2DNvtJS1xiCsZKOZ6aGut09fnHa0xtWgd6M5o4boxSjjm/iGWPsYEnU7kTGoPaCfPly3tTY13JeSeTKFX2l6GhGwJGeY5QaY5LPV9CfERV40w6Tsg3EB5fFzAmT56sadOmyfOGF6tUypy/0PqtlGtcDyy2D218WVeff7yOOPQQ1diWbHkUOhjNcVyNrbF19GGNuTfoQyc0qLNzX9RNyzHphAbxli/v5ZyQkkmUysRfhvzIcSnnS4iPqGqcaccJ+QbC4dsCxje+8Q3967/+q37/+99r7ty5mjNnjg477DC/nj4xChdbJzaFzpRLViEaQ9+gLcO+9lTMCQ0ZRrFGOyEtJksDM6lUSvI8ModRmfbLUDbH317wGWVcT7adkm2JTxFVoWzd6+jqkT7YqDOqhQTTjhMAwfNtAWP+/PmaP3++/vjHP+rJJ5/UvHnzdMwxx2ju3Ln64he/qNraWr9eKvbiXGy5zjXiYKRjjAzDL6VkKZvJ5uZG7drVHau6Dwz0Xk8v9bOKjVT3Uo4by3NbAPHi+yaef/mXf6mvfe1revrppzV16lTddNNNeuGFF/x+GUSE3fQRd2QYfiFLqDZkHmQAQNR83xx3+/btevLJJ7Vx40YdddRRWrZsmT796U/7/TKR4GPnI+80zU7L8VVN2SbDyKo092QJcVfqMUDm482P93oyACBqvtWahx9+WE8++aQOHDigOXPm6JFHHlFra6tfTx+5MD92bvIvk3HfTd91PXm2ZeTYRsWPbJuc2aHilOE4jWtQbNtSV/cBZVIpX8fAl9zHKEuVIIfxUOo8DT0GTj7uMP39eZ9UKpWSVeDx1ZL5uChlzv06jyUDhVErg9M4rl5j6kb+tbW5uTH37wMHM+p+b/8I90acpbx8lwwpw8c//nFNnjxZn/zkJwtecWTlypV+vFTZOjv3yS3imtTZ7ygP5NmWblq1ZVjBbl8wSykfi1MxbzD52hcW09s3Etu2tPdARksffK7oN++BxTBsxea1UpVme9KkQ/T623tj853ooBcj/cp/Oe1MWl6DnCs/anq5c2RifSxkpD5OnDi2or4kLa9SdPNbThYHHgMfO7pJX/7rqcMu7T708dW4h1B2Tk3La6lz4dd5bDVnYCSmjYtpea1Uc3OjZt+4ruj7r//OnEBrcantkcprU9zOGUoxsG+l5tW3T2Bce+21fj2VkcL6yFyh7xa2L5glE671YNolq0qRkXKLF5J5YxuVSrO99/2DRmd2qLhk2PRaEIYgx8CPmh6XLFVipDmAOco5VgYeA+ef8Ve5xYuRHs8VdcxR6pz7dR5LBvLjPRsIj2+/ex9zzDE699xz/Xo644T1kbk4fLcwrldRicPYRqHSbPdl3NiNaxwyTF6DHQO/anocslSJkeYA5ijnWBl4DDQ21BT9eK6oY4ZS59zP81gyMBzv2UB4fLsKyS233OLXUxkpLWnx/JlqaaqXpNxHw/wuStk3mIFybzAYxrYtebalTColz7Zk24UjzdjmV2m2a9IW41ok8lqaIMcgrJoetFIyVdbzk8NYGG2e8uVk4DHQ3dPHPMdMqcdmUmqeqYKulUHXeiBOfNsD48QTT9S2bdv8eKrAVLIHhlR4cx4/N+3J9x26JVf8PxpTk1bGdWVbKR06oUGdnfvKev4whPV9rVK/b8geGIVVkuGg9sAI43gLwkj1o9S8sgdGsN8priRLpW6el73vmLq0vD7HmI1IK3kN9sAYzpQ9MP7X6R/Vlz7zUbmuJ9uy5Hiu2n7w/w2bQ6n/o+9KSd3vJ3s/l3IlZQ+M7GP8fP+sJAPlbDob1Xt/1HtgcD7AHhhJVMkeGL4tYHzqU5/Sfffdp5Ge7pRTTvHjpcpW6QJGPkEUrIFFurbG0t7uXi0b8Pxtl5+s8WPSvhTEIN4MwjrYytmQatKkQ7T73Z6i+5y0N4AgNDc3as+e933NUqHjalJjrTq7e/Pe3tdrxodYC+W/nLyWeowmMa+2bSlVY+vAwUzkC1bZ+Sjllz3TNyItRqEcVlrrk5jXqDfZzkiy7ZS6unvVPiBz3/jfJ2njltf1s+fflJQ/JzW1tnodyXFd2ZalWlsj1tUkn1gPZOoChhT9VS/KzUAYC/p+GtrPsP/AUk6tNzGvlWABI3mM2MSzt7dXN998c8EFjFQqpWeeeaao5zrjjDNUW1ururo6SdLChQt12mmn6WMf+5imTJkiy+r/2NTKlSv1sY99zJ8OlCmITXsGfqfacbzc4kX2+Zc++FzFmwJF/Wbgh3K+b2hZKaUcN7HfV4+K3/sAFD6uPpP39qVXnao62zI6u+XkNen7KxTDcVw1TxyrXQe6Ix2DgTXzK3Om6Z/XvVhU3Td9I9KiXoccxkJ2nhzZucULqT8T3/4/z+vWr5ySW8AYmhPbtvIuDsfpnKAaxfXYLLUumrRB5mjnz0HMB/trAIP5lvv6+vqiFyiKce+992rKlCnDbl+zZo3Gjh3r2+tUKuiiEsTz968Qp4x5MygX1yJPrsK5z79haFf3QR06fkyo2S3546/kNdYGnkCXtOGhIRuRRv2XWlSu2DksVCcHfmV+aE5M+gURyVdqXTTpF/gojhXOH4DB2AGmQoFv2uPz82dXjnfv3R/7neXZkCq5Cuc+/4ahe/f1hprd7HF006oturL9Gd20aou6evpG3FSLvMbbwBPoUjY8NGEj0nLyCrOUMoeF6mS2RObLCVebQZhKrYsmbSbsFjhW3ADXgzl/AAbz7ezFp600chYuXKjZs2dryZIleu+993K3f/nLX9acOXP0ne98R729vb6+ZjmCLir5nr/t8pPLfv7syvHefb3GvBmUa+C1yP/fm85U+4JZfNw1IQodV7X28Nuvv/BEPfP8G6Fmt9BfYDIjPIa8xtvAE+gnnn1V1194YlF1P8j3iGIzVU5eYZZS5rDWlm4akrmb5s/UIQ3pgjkx6RdEJF+pddGkX+CtAguEVoDHCucPwGC+beLppx07dqi1tVW9vb1atmyZ3n//fd1xxx252/ft26evfe1rmjJlir761a9G3Vy5rqe97x9UX8ZVTdrS+LF1vhYyP5+/o6tHf7/0aX3s6CZ9+a+n6t7Htg3aHPQjh48LtAgDxSqU+0zG1e69+7XnvQPau69Xzzz/hi75wtRQs5s9joZ6oO3zamlqCKUNCJfrenrjnfdyVzE6+bjD9JU502RZqVHrctDvEaMhr/FX6hxmMq66ug8o43pKWyk1NY5ROl34b1ZD8805AYJWal2Muo5mde7drz937Bt0/nz9hSfqyJZDNGl8/ehPgLKVuoln0MrZxBP+MPLTR62trZKk2tpaXXzxxbr66qsH3X7IIYfoggsu0I9+9KOSnjeIq5AMlJKUyTjqPNBX8mNLeX6rcUz5O9La/SvH//dPXXpo48v6ypxpGn9IrQ4dX6+0PF8uz2ryjrmlti1puzgHIej5zndc1dqWDh0/Rk2Ndbpy7jSlpXAvLfzBcTT0+6j6YD04qvwnNa+m1JTxY9JqXzBr8B4EGafoup+S1NTUEH5fRshrpVcR4SokgwWW1TLnMC1JrtTV9f6oL5Ev3yPVVVOOy6CZfBWSqPmRgVLPnYM+185nYD8929L6X23XV+ZMU2NDjbp7+rT+V9t15dxpRh0PSctrOf0J+iok5eAqJB+q5Cokxn0BtqenR93dHxQJz9PGjRs1depU7d27VwcOHJAkZTIZbdq0SVOnTo2yqbE08GN4//dPXfrndS+qrsZWWh4fRUNsOI7bfzUZz1PKcUPPrkkfZ0V4os5duchr/IUxh3HNNxCmtKSLzv64/nndi7pp1Rb987oXddHZH6eeAiEy7njr7OzUddddJ8dx5Lqujj32WN1666167bXXdMsttyiVSimTyejEE0/UDTfcEHVzY2fg9+jYjR4oD8cR4oS8xh9zCJiBYxGInnELGEcddZTWrl077PaWlhatX78+ghYlT1yvGw6YhOMIcUJe4485BMzAsQhEy7ivkADFsG1Lnm0pk0rJsy0uB4hYILcIG5kLl+t6jDdQpai3QDiM+wQGMBrbttTV05e7pFz2u8BcUgomI7cIG5kLl21bw67kwXgD1YF6C4SHpUFn54tMAAAfxUlEQVTETkbKvUFIUkfXfi1fvVWZaJsFjIjcImxkLlwZKbd4ITHeQDWh3mI0vX2Ompsbi/6vcRyX5S2ET2AgdhzXG3QpOan/jcJxPQINY5FbhI3MhYvxBqoXxz9GU1tja/aN64q+//rvzAmwNfHGJzAQO7aVyl1KLqulqV62lYqoRcDoyC3CRubCxXgD1YvjHwgPCxiInbSkxfNn5t4ost8zZIUbJiO3CBuZC1daUtvlJzPeQBWi3gLh4bhC7HANbsQRuUXYyFy4HMfVRw4fx3gDVYh6C4SHBQzEEtfgRhyRW4SNzIXLslJKOS7jDVQh6i0QDr5CAgAAAAAAjMcCRgLYtiXPtpRJpeTZlmybaQX8wvFlPuYIUSB3APxGXQFGx1dIYs62LXX19OWuPZ3dNKipoYbv3QEV4vgyH3OEKBTK3YQJXtRNAxBTvJ8BxWFZLwRBrqZmpFyhk/qvOb189VZlfHsFVLNq/0sAx5f5Kp2jas84hismE4Vyt/f9gyG3FkBSZCT9ZPMr+sqcaWpfMEtfmTNNP9n8CuccwBB8AiNgQa+mOq6XO4HK6ujaL8f1mFxUhL8EcHzFQSVzRMYxVLGZKJS7vkz/Jn4AULKUNPu0Y3XvY9ty9ef6C08URQUYjD81BSzov+DaVip3zemslqZ62RbVDpXh0wccX3FQyRyRcQxVbCYK5a4mzWkVgDJ5qdzihdRff+59bJvkcc4BDMQ7bcBG+uugH9KSFs+fmTuRyv61iL8Oo1JBZzcOOL7MV8kckXEMVWwmCuVu/Ni6sJoKIGFc181bf1zek4BBOA8PWPavNAMLUu6vg07lBclxXDU11Kh9wSw5rifbSin9we1AJYLObhxwfJmvkjki4xiq2EwUyp3Fp7MAlMkqUH8sS5ITXbsA0/AJjA8M3LSrq/uAbxu5hfEXXMdxlXJcpT1PKcfllyv4ws/sxnmjRI4v85U7R2QcQ5WSiXy5c12PHABFoGYOx6c+geJwTCjYjdz4Cy7iyq/sslEiTEXGMVRFn+ixLb3xznta+uBz5AAYATUzP35nAIrDcqeC38iNv+AirvzILhslwmRkHEOVm4mMlFu8kMgBUAg1szB+ZwBGZ+QnMM444wzV1taqrq5/M6yFCxfqtNNO03/913/plltu0cGDB/UXf/EXuv322zVp0qSKX49LJQLB4fhC0pFxSOQAKBbHCoLW2+eoubmx6Psf7HVUV2sH2KLS9fY5qq2xi+7HgYMZdb+3f/Q7JoCxdeLee+/VlClTcv/veZ6+9rWvqb29XTNmzNCqVat0xx13qL29veLXYiM3s9i2pYzEx+cSguOreGQ/nsg42ZVGzwFjBPQrp2Zy/KAUtTW2Zt+4ruj7r//OnJLvH7Ry+tAdYHtMEpuvkLz44ouqq6vTjBkzJEnz5s3TT3/6U1+em01zShPkxkvZ70XetGqLrmx/Rjet2qKunj42d4qxsI+vuG4MRvbNVyhb1f4eUu3ZzebCdT0tu3qWTj7uMEmDc1DtY4TkK+W9t9SayfEDYCBjz68WLlwoz/M0ffp0/eM//qN27NihI444IvfziRMnynVdvfvuu5owYUJFrzV005wxdWl5fQ4ru3kEvfFSoe9Fti+YJS5OF09hbkoV543ByL7ZRstWNW+8Vs3ZLZSLK//XNMlTLgeebVXtGCH5Sn3vLbVmVnONATCckQsYjzzyiFpbW9Xb26tly5bpm9/8pj7/+c9X/LyTJh1S1uNc19Pe9w+qL+OqJm1p/Ni6yK/1Xsr3uvzU1X1Ay1dvGfYmcscNn1XzxLEVt6+jqyfv9yKVSvnW56jGrlSF8koeCys2n0ErZzzCyH6Qgs5r1GPgZ7ai7oufmpsbY5ndcs8Hhtq774C6dnbrqxd9Wt09fXri2VdzuWhqHJO7XxzHqBhxbnspou6nX3kNQnNzo6/1Md97xu69+yM/fqLOQJyYnNeki1tOy22vkQsYra2tkqTa2lpdfPHFuvrqq3XppZfq7bffzt1nz549SqVSJX36orNzn1x39O8jNzc3ateu/m8RmfgX3YHtC1smlcr7JnLgYEa7DvS3qaL22Vbe70XK83zpc6lti7IQ5MsreRxZMfkMWtnj4UP2k5pXEzLmV7ZM6Itfcn0pM7um5bVU2Xz/4Inf5fJ9/YUn6qGNLw/PRcDvbVFIUpZHku1n3PMahOzY+FUfC71nTGisjfT4iWPWk5bXuP1iHpU45XTgcVXq/Br35bGenh51d/d3xvM8bdy4UVOnTtUnP/lJHThwQL/5zW8kSWvWrNEXv/jFwNvDpZ4Gy268NFBu4yUfVPt3yUdDHkcWdD6DlMTsJymvcc5W0JKY3WLky/e9j23TvLOnDMtFtY4RqoNf9bHQe4brcPwA+JBxx35nZ6euu+46OY4j13V17LHH6tZbb5VlWfr/27v3oKjO8w/g32UJIIqACgKVeMHx2mAMjE4QpS5W64WLZIzWqIkXUke8lPywEjASjYgaGzWKl6aNaaYt6aSRFcR6mYIxXqIQiYTURAuG0OGOoCxycXfP7w/DFpAFQXbPObvfz0xmzNnD7vOe9znPe3jY3bN7924kJCS0uY2qqfFWT221XIS1747bAtD1wvNb+2fJu8J87Jyp89OULDH3LSlf5ZxbpmaJufskjOW316B+j+WFtR4jsg69VR+NnVNaPc8fIvofyV1Dent7Q61Wd/jYCy+8gPT0dLPGw9vjtWWOizCdTg8FfkpOnWD1vxy0xnzsnNx/SbC03LekfJV7bpmapeXukzCW388obaDTPX4ErPEYkXXorfrY2ZrB84eIWkjuIyRSw7d9Pk6n00Oh08NWEKDQ6XkBb0bMx64xP6XD0vKVuUWtdZTfm1dMhhLyas4R9YbeqI+WtmYQkWmwJnSBf3UjKWE+kpwwX8mSdZTfg1wcUV2tETs0IlnimkFET4INjCfAt62RlDAfSU6Yr2TJ2ue32Le0JpI7rhlE1BV+hISIiIiIiIiIJI8NDCIiIiIiIiKSPDYwiIiIiIiIiEjy2MAgIiIiIiIiIsljA4OIiIiIiIiIJI8NDCIiIiIiIiKSPN5GlYiIiIiIiEzOqX8fONjzV1Ap6O5cNDXrYG+nfOL9G5u0qLvf0JPQOsXsISIiIiIiIpNzsLdFyP+d6NbPpP8+zETRWLfuzkX678O6vX9dTwLrAj9CQkRERERERESSxwYGEREREREREUkeGxhEREREREREJHlsYHRCqbSBoLSBVqGAoLSBUsnDRdQTPJdIipiX1B5zgkiaeG4SUQt+iacRSqUNah48xI6PrqGipgHurn0Q99okuDo+A51OL3Z4RLLBc4mkiHlJ7TEniKSJ5yYRtcb2pRFawFAoAaCipgE7ProGrbhhEckOzyWSIuYltcecIJImnptE1BobGEbo9IKhULaoqGmATi+IFBGRPPFcIiliXlJ7zAkiaeK5SUStsYFhhNJGAXfXPm22ubv2gdJGIVJERPLEc4mkiHlJ7TEniKSJ5yYRtcYGhhG2AOJem2QomC2ft+OXhhB1D88lkiLmJbXHnCCSJp6bRNSaZM/9gwcP4sCBA0hPT8eoUaMwevRojBo1CjY2j3ouu3fvxujRo032+jqdHq6OzyBpzRTo9AKUNgrY/rSdiJ4czyWSIuYltcecIJImnptE1JokGxjffvstvv76a3h5ebXZ/sknn6Bv375mi0On00OBnw6SToDObK9MZFl4LpEUMS+pPeYEkTTx3CSiFpL7CElzczO2bduGhIQEKBT8bBsRERERERERSfAdGPv370doaCi8vb0fe2zp0qXQ6XSYNm0a1q1bBzs7u24998CB/Z54Xzc3p249t7kxvp6TcmytdSdfxSaXY2ou1ng8TJ2vlnRMORbxmTJf5XpMesJaxir2OKV8PSD2sTEXaxlnb5Byvlo6KeZpZzH1NF5JNTByc3PxzTffICYm5rHHzp8/D09PT2g0GmzcuBHJycmIjo7u1vNXV2ugf4JbLrm5OaGysq5bz21OjK/nuhubmIXgSfNVbFKebzGIeTwsNV8tKcc4lrY/LxZT5aslzW9XrGWsLeO0xHx9WtaWA3Ii5XyV4i/ZlqK7eWqOuTAWU+vzqrtxSKqBkZ2djcLCQgQHBwMAysrKsHLlSiQlJSEwMBAA0K9fPyxYsADHjh3r9vPbdON2S93ZVwyMr+ekHFtrcokTkFes5mCNx8PUY7akY8qxiM+Uccv1mPSEtYxV7HGK/fqdkXJsvclaxtkbeKzEI8Vj31lMPY1XIQiC9Fq6P1GpVDhy5AgGDx4Me3t7ODg4QKvVIj4+Hs7OzoiLixM7RCIiIiIiIiIyA0m9A8OYwsJCbNmyBQqFAlqtFhMnTsSGDRvEDouIiIiIiIiIzETS78AgIiIiIiIiIgIkeBtVIiIiIiIiIqL22MAgIiIiIiIiIsljA4OIiIiIiIiIJI8NDCIiIiIiIiKSPDYwiIiIiIiIiEjy2MAgIiIiIiIiIsljA4OIiIiIiIiIJM/qGxi7du2CSqXC6NGjcevWLcP2O3fuYOHChZg1axYWLlyIH374QRKx1dTUIDIyErNmzUJISAjWrl2Lu3fvmj02Y/G1dvDgQaOPmYOx+JqampCQkICZM2ciJCQEb731lijxWQKVSoVf/epXCAsLQ1hYGL744guxQzIbKdcOueqsvn399dcIDQ3FrFmzsGLFClRXV4scbdfWrFmD0NBQhIeHY/Hixbh58yYAeedI+7oux3l5GsbWj87mVG7z/d///tdQ08PCwqBSqTBp0iQAljVOAMjKykJ4eDjCwsIQEhKCs2fPArC8cT4tY+udseMnV8bGef78ecyfPx8hISFYsmQJiouLRYySjF17yn096sn6Igc9XVM6JVi57OxsoaSkRJg+fbrw/fffG7YvXbpUUKvVgiAIglqtFpYuXSqJ2GpqaoQvv/zSsM/OnTuFN9980+yxGYuvRX5+vrBy5UrhF7/4xWOPiR3fO++8IyQmJgp6vV4QBEGorKwUJT5L0NHcWwsp1w65Mlbf9Hq9MGPGDCE7O1sQBEFITk4WYmNjxQrzid2/f9/w73Pnzgnh4eGCIMg3R9rXdbnOy9Mwtn50Nqdyne8W27dvF7Zu3SoIgmWNU6/XC/7+/ob6ffPmTeH5558XdDqdRY2zN3S03nV2/OSqo3HW1tYKkyZNEgoLCwVBeDTnK1asEDNMq9fRtaclrEc9WV/k6EnXlM5YfQOjReuToaqqSvDz8xO0Wq0gCIKg1WoFPz8/obq6WvTY2jt9+rTw6quvmjegdtrH19TUJLz88svCjz/+KIlfcFvHoNFoBD8/P0Gj0Ygak6WQwvyKTcq1Q+5a6tuNGzeEuXPnGrZXV1cLzz//vIiRdV9qaqowf/582eZIR3XdEualO4ytH53NqVznu0VTU5MwefJkIT8/3+LGqdfrhUmTJgk5OTmCIAjCtWvXhJkzZ1rcOHtT+wZGR8fPErQe540bN4Q5c+YYHqupqRFGjRplNXMuRR1de8p9PerJ+iJHT7qmdMXWdG8Yka/S0lIMHjwYSqUSAKBUKuHu7o7S0lIMGDBA5Oj+R6/XIyUlBSqVSuxQ2ti/fz9CQ0Ph7e0tdiiPKS4uhouLCw4ePIirV6+ib9++2LBhA/z9/cUOTbZiYmIgCAL8/PzwxhtvoH///mKHJBq51A45aF3fSktL4eXlZXhswIAB0Ov1qK2thYuLi4hRdi0+Ph6XLl2CIAj44x//KNsc6aiuy3leesLY+uHg4GB0TgVBkOV8t8jMzMTgwYMxfvx45OfnW9Q4FQoF9u3bhzVr1sDR0RH19fU4evRop+eoHMdpKsaOn6UZPnw4qqqqkJeXB19fX6SnpwOAVc65lLS/9pT7etST9UWO+feka0pXY7P678CQs3feeQeOjo5YsmSJ2KEY5Obm4ptvvsHixYvFDqVDWq0WxcXFGDduHI4fP46YmBisW7cOGo1G7NBk6a9//SvS0tLw2WefQRAEbNu2TeyQyEJIsb71RGJiIs6fP4/o6Gjs3r1b7HB6ROp13VyMrR8PHjwQOzST+eyzz/DSSy+JHYZJaLVaHD16FIcOHUJWVhYOHz6M6Ohoi57P3mTs+NXX14sdWq9ycnLC3r17kZSUhIiICFRXV6N///6wteXfgMViidee1rK+9NaawgZGBzw9PVFeXg6dTgcA0Ol0qKiogKenp8iR/c+uXbtQVFSEffv2wcZGOtOYnZ2NwsJCBAcHQ6VSoaysDCtXrsTFixfFDg0A4OXlBVtbW8ybNw8AMGHCBLi6uuLOnTsiRyZPLeeEnZ0dFi9ejOvXr4sckbjkUDvkoH198/T0RElJieHxu3fvQqFQyOKvKi3Cw8Nx9epVeHh4yC5HjNX1oqIi2c9LdxhbPxwcHIzOqZxrQnl5ObKzsxESEgKg8/omx3HevHkTFRUV8PPzAwD4+fmhT58+sLe3t6hxmoqx41dQUCByZL0vICAAKSkpOH78OJYsWYLGxkZJvsvYWnR07Sn364SerC9y0501pSvS+c1XQgYOHIixY8fi5MmTAICTJ09i7Nixknmrzt69e5Gfn4/k5GTY2dmJHU4br7/+Oi5evIjMzExkZmbCw8MDf/rTnxAYGCh2aAAevaVs8uTJuHTpEoBH335bXV2NoUOHihyZ/Dx48AB1dXUAAEEQcOrUKYwdO1bkqMQl9dohBx3Vt5///OdobGxETk4OAOCTTz7B7NmzxQyzS/X19SgtLTX8f2ZmJpydnWWZI8bq+qpVq2Q3L0/D2PoxbNgwo3Mqx/lukZqaiqCgILi6ugLovL7JcZweHh4oKytDYWEhAKCgoABVVVUYOnSoRY3TVIwdv2effVbkyHpfZWUlgEcfbXzvvfewaNEiODo6ihyVdTJ27SnH64TWerK+yE131pSuKARBEEwarcRt374dZ8+eRVVVFVxdXeHi4oKMjAwUFBQgNjYW9+/fR//+/bFr1y6MGDFC9Nj27duHefPmYdiwYXBwcAAADBkyBMnJyWaNzVh8GRkZbfZRqVQ4cuQIRo0aJZn4iouLERcXh9raWtja2uK3v/0tgoKCzB6f3BUXF2PdunXQ6XTQ6/Xw8fHB5s2b4e7uLnZoZiHl2iFXt2/fNlrfrl+/joSEBDQ1NeFnP/sZ3n33XQwaNEjkiI2rqqrCmjVr0NDQABsbGzg7O2PTpk0YP3687HOkdV2X27w8LWPrR2dzKtf5njVrFuLj4zFt2jTDNksbZ1paGj744AMoFAoAwPr16zFjxgyLG+fTMrbeGTt+cmVsnPHx8bh+/ToePnyIKVOmIC4uDvb29mKHa5U6u/aU+3rUk/VFTrq7pnTG6hsYRERERERERCR9/AgJEREREREREUkeGxhEREREREREJHlsYBARERERERGR5LGBQURERERERESSxwYGEREREREREUkeGxhWIC0tDStWrBA7DKIOMT9JTpivREREROLhbVQtSE5ODvbs2YPbt29DqVRixIgRiIuLg6+v71M/99WrV/Hqq6+iT58+hm1btmzB/Pnzn/q5yTqYMj8rKiqwZcsW5Ofno7KyEv/6178wZMgQw+PNzc1ISEjAmTNn0KdPH6xatQrLly9/6tclyyVmvsbGxuLkyZN45pln2sSjVCqf+rXJekycONHw74aGBtjZ2RlyaOvWrQgNDcUPP/yA/fv348qVK2hubsagQYMwdepUREZGwsPDw/DzxcXF+OUvf4lFixbh7bffNvdQyEqoVCpUVVVBqVRCqVRi5MiRCAsLw8KFC2FjY4OysjIkJibi2rVr0Gq18PLywvLlyxEREQHg0Vp/9OhRpKeno6KiAgMGDMDkyZMRFRXVpsYSPa2u6mtRUREOHjyI+Ph4LFu2zLDvRx99hKSkJKxduxbr1q0zbGeN7R5bsQOg3qHRaLB69Wq8/fbbmD17Nh4+fIicnBzY2dn12mu4u7vjwoULvfZ8ZD1MnZ82NjaYOnUqfvOb32DRokWPPX7gwAEUFRUhKysLVVVVWLZsGXx8fDBt2rReeX2yLGLnKwCsXLkS0dHRvfJ6ZJ1yc3MN/1apVNi+fTsCAgIM24qKivDyyy9j/vz5UKvV8PDwQHV1NdLT0/HVV19h7ty5hn1PnDgBZ2dnnDp1CnFxcb16bUHU2pEjRxAQEIC6ujpcu3YNiYmJyMvLQ1JSEjZu3IgxY8YgKysLdnZ2uHXrFiorKw0/u379epSXl2PPnj0YN24cGhoakJaWhitXrmDBggUijoosTVf19cCBAxg2bBjUanWbBsaJEycwbNiwx56PNbZ7+BESC3Hnzh0AwLx586BUKuHg4IDAwECMGTMGx48fx69//WsAwAcffICJEyca/hs/fjxiY2MBAHV1dYiLi0NgYCCmTp2KvXv3QqfTiTYmshymzs9BgwbhlVdewXPPPdfh66vVaqxZswbOzs7w8fHBggULkJqaaoaRkxyJna9E5nDgwAG88MILePPNNw3vthg4cCBee+21Ns0L4FEN3bBhA2xtbZGZmSlGuGRlnJycEBwcjH379iE1NRW3bt1Cfn4+IiIi4OjoCFtbW4wbNw5BQUEAgMuXL+Py5cs4dOgQfH19YWtrCycnJ7zyyitsXpAonnvuOTQ0NOD27dsAgNu3b6OxsbHDtZ81tnvYwLAQw4cPh1KpxKZNm/D555/j3r17He4XGRmJ3Nxc5Obm4tSpU3B1dcXs2bMBAJs2bYKtrS3Onj0LtVqNS5cu4dNPPzX87N27dxEQEACVSoUdO3bgwYMHZhkbyZ858tOYe/fuoaKiAmPGjDFsGzNmDP7zn//0zuDI4oiZry1SUlIwadIkRERE4MyZM70yLqLWrly5gpkzZ3a5X05ODsrKyjB37lzMnj0barXaDNERPeLr6wsPDw/k5ORgwoQJ2Lp1KzIyMlBSUtJmv8uXL8PX1xeenp4iRUr0uLCwMEPNTE1NRXh4+GP7sMZ2HxsYFqJfv37429/+BoVCgbfeegsvvvgiVq9ejaqqqg73b2xsRFRUFJYtW4agoCBUVVXhwoULiIuLg6Ojo+GvMBkZGQCAESNGQK1W4+LFi/jzn/+Mb7/9Fjt37jTnEEnGTJ2fnWlptDk5ORm2OTk5ob6+vncGRxZHzHwFgKVLl+LMmTO4fPkyNmzYgNjYWHz11Ve9OUQi1NTUYNCgQYb//8tf/gJ/f39MnDgRmzdvNmxPTU3FtGnT4OzsjHnz5uGLL75AdXW1GCGTlXJ3d8e9e/ewf/9++Pv749ChQwgODkZYWBjy8vIAALW1tXBzcxM5UqK2QkNDkZGRgYcPH+LUqVMIDQ19bB/W2O5jA8OC+Pj4YOfOnbhw4YLhC4x27NjR4b7x8fEYPnw4Xn/9dQBASUkJtFotAgMD4e/vD39/f2zZsgV3794FALi5uWHkyJGwsbGBt7c3Nm7cyL8KUreYMj874+joCODR9xq00Gg06Nu3by+MiiyVWPkKAOPHj4erqytsbW0RFBSEkJAQnDt3rtfGRgQALi4ubb4/YMmSJcjJycGyZcug1WoBPGrOnT59GiEhIQAefXGdp6cn0tPTRYmZrFN5eTmcnZ3h7OyMmJgYZGRk4NKlSxg7diyioqIgCMJj+UwkBV5eXnj22Wfx3nvvYejQoY+9Q4g1tmfYwLBQPj4+iIiIMHzuqrU//OEPuHPnDhITEw3bPDw8YGdnhy+//BI5OTnIycnB9evXjf7FUKFQgDewoZ4ydX625uzsDDc3N3z33XeGbd999x1GjhzZO4Mhi2fOfO0I6y2ZwosvvthlY+zcuXPQaDTYunUrpkyZgilTpqC8vBwnTpwwU5Rk7fLy8lBeXg4/P7822wcMGIAVK1agoqICtbW1CAgIQF5eHsrKykSKlKhj4eHhOHbsWIcfH2GN7Rk2MCxEQUEBPvzwQ0PhLi0txcmTJzFhwoQ2+33++ef4+OOPkZycDAcHB8N2d3d3TJkyBTt37oRGo4Fer8ePP/6Ia9euAXh0G9WSkhIIgoDS0lLs2bMHwcHB5hsgyZqp8xMAmpqa0NzcDODRrdSampoMj4WHh+Pw4cO4d+8eCgoK8Omnn/IWwGSU2Pl6+vRp1NfXQ6/X4+LFi0hLS4NKpTLlkMkKrV27Fjk5OUhKSkJ5eTmAR991VVhYaNhHrVbjpZdeQnp6OtRqNdRqNVJSUnDz5k18//33YoVOVkCj0SArKwtvvPEGQkNDMXr0aLz77ru4desWtFotNBoNUlJSMHToULi6uiIgIAABAQGIiopCfn5+m33+8Y9/iD0csmJz5szBhx9+aPiOrNZYY3uGt1G1EP369cONGzdw7Ngx1NXVwcnJCdOnT8fvfvc7nD171rDfP//5T9TU1GDOnDmGbSEhIdi2bRt2796NPXv2YM6cOaivr4e3tzciIyMBAP/+978RExOD+/fvw8XFBTNmzOAt/uiJmTo/gUdf9NWiZZFoKf7r169HQkICpk+fDgcHB0RGRvIWqmSU2Pn68ccfIz4+HoIgYMiQIdi+fTsmT55s6mGTlRk+fDj+/ve/4/3330doaCiam5vh7u6OwMBArFq1CuXl5bhy5QpSU1PbfLeAm5sbpk6dCrVajU2bNok4ArJEq1evhlKphI2NDUaOHInly5cbbjfd2NiItWvXorKyEvb29pgwYQIOHz5s+Nn3338fR44cQXR0NCorKw2NjaioKLGGQwQHB4c2t1htwRrbcwqB70slIiIiIiIiIonjR0iIiIiIiIiISPLYwCAiIiIiIiIiyWMDg4iIiIiIiIgkjw0MIiIiIiIiIpI8NjCIiIiIiIiISPLYwCAiIiIiIiIiyWMDg4iIiIiIiIgkjw0MIiIiIiIiIpI8NjCIiIiIiIiISPL+HwJmLqy0n4oIAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
    " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "%matplotlib inline\n", - "import pandas as pd\n", - "pd.set_option('precision', 3)\n", - "import seaborn as sns\n", - "sns.set(rc={'figure.figsize':(15, 5)})\n", - "from IPython.display import display\n", - "\n", - "food = pd.read_csv('http://openmv.net/file/raw-material-characterization.csv')\n", - "food.describe()\n", - "display(food.head()) \n", - "food.set_index('Lot number', inplace=True)\n", - "sns.pairplot(food);" + "> Please provide any anonymous [comments, feedback and tips](https://docs.google.com/forms/d/1Fpo0q7uGLcM6xcLRyp4qw1mZ0_igSUEnJV6ZGbpG4C4/viewform)." ] } ], @@ -2117,7 +2009,7 @@ }, "hide_input": false, "kernelspec": { - "display_name": "Python 3", + "display_name": "Python [default]", "language": "python", "name": "python3" }, @@ -2131,7 +2023,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.3" + "version": "3.5.5" }, "toc": { "base_numbering": 1, From 1be58371dd2d5da02e22f68870e7e24ee9f57565 Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Thu, 25 Jul 2019 07:59:44 +0200 Subject: [PATCH 073/134] Move the regression parts to Module 11 --- Module-10-interactive.ipynb | 44 ---- Module-11-interactive.ipynb | 408 ++++++++++++++++++++++++++++++++++++ 2 files changed, 408 insertions(+), 44 deletions(-) create mode 100644 Module-11-interactive.ipynb diff --git a/Module-10-interactive.ipynb b/Module-10-interactive.ipynb index 65fe75d..2426eb6 100644 --- a/Module-10-interactive.ipynb +++ b/Module-10-interactive.ipynb @@ -1877,50 +1877,6 @@ "#judges.corr()" ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Regression and scatter plots\n", - "\n", - "In fact, if there is one thing we can guarantee that you will see in your career being ***misused***, it will be this model. Misused by others when they interpret the values from the model, misused when they build this model, misused when making predictions.\n", - "\n", - "We already saw above that, counter-intuitively, we can calculate the $R^2$ value from a linear regression before even fitting the intercept and slope! That is because $R^2$ is just the square of the correlation coefficient, $r \\times r = R^2$. And since $r$ is just the correlation between two variables, the $R^2$ number just tells how strongly they are correlated.\n", - "\n", - "$R^2$ **never** indicates how ***well does the linear regression model fit my data***. The only way to see how well the model fits is to first fit it. And then calculate the residuals and see how small they are. \n", - "\n", - "Let's take a look, and along the way we introduce the Seaborn library's tools for regression plots." - ] - }, - { - "cell_type": "code", - "execution_count": 130, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEFCAYAAAAPCDf9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3X+cJHdd5/FX9Y/5PbszOzub3ZBfuxG+KOsqCyQBFhJMFHOgeHIP9RA8jlM8L+edP059wKGS0/t94OGPMx4ag4o/iUiQi4lJIGQjsIQE4/Ljm5jdsITsj9nZmd35PdNddX9UV091T/VMz0xXV3XX+/l4JNtd3T317ZqaT1V96vP9fh3P8xARkWzIJd0AERFpHwV9EZEMUdAXEckQBX0RkQxR0BcRyZBC0g1Yz8TETFOlRaOjA0xNzcfdnE1Rm5qXxnapTc1Rm5rXznaNjw87jV7rijP9QiGfdBPWUJual8Z2qU3NUZual5Z2dUXQFxGR5ijoi4hkiIK+iEiGKOiLiGSIgr6ISIYo6IuIZEiq6/Sl+x0/Ocnn/8by3NlLjI/0c+TQPg7uH0u6WSJdS0FfEnP85CR3P3yCYiGH68HZqQXufvgEgAK/SEyU3pHEHH3y9KaWi8j26Uy/zY6fnOTok6eZmF7IfDpjYnqhwfLFNrdEJDsU9NsoSGcEsp7OGB/p5+zU2sA/PtKXQGtEskHpnTZSOqPWkUP7NrVcRLZPZ/ptlNZ0RlIpp2Adj9nzfP3sDOMjfZlOd4m0g4J+G6UxnZF0yung/jFed901TEzMxL4uEVF6p63SmM5QykkkW3Sm3yZBCmVxucRKyaVYyHP1ZUOJpzPSmnIS6XZJpVUV9NsgnELp6ynQ1+MvTzrgQzpTTiLdLsm0qtI7bZDmFEoaU04i3S7JmKAz/TZIcwolOKvwLzMXVUEj0gZJxgQF/TZIewrl4P6xmiB//OQkd3zs+JpcYzf0Ju6G75AGwXacml1mdKhH23GTkowJCvptcOTQvpr8XXh52jTKNT57ZoYv2Ik1y6FzehMnXZ7aLcLbsVjIaTtuQZIxQTn9Nji4f4w333iAy0b7yTkOl4328+YbD6TyD6RRTvFTT3xjU+9PozTfW+kk2o7bl2RM0Jl+m9SnUNKqUa5xdmGF4YGeiPcnf1+iWWm+t9JJtB1bI6mYoDN9qTE+0h+5fKi/2OD96bgv0YxG362TvkMaaDt2NgV9qdEop3jTS1+wqfenkcpTW0PbsbMpvSM1wiWcp87OslwqUyzkeO7cLC8z4zx3brZjSztVntoa4e04PbfMZaOqgmqluCvMFPRljWAHu/vhE/T25AG/0uXs1EJqb0A3q1PuraRdsB3Hx4c1WF4LtaPCTEFfIq1XoRFH0FT9vEh7/u4U9CVSOys0HrfnVD8vQnv+7mIL+saYXuD3gQPAJeA2YAz4AFAC7rfW3h7X+mV72tlj8IFjpyKXx3VVIZJW7fi7i7N658eAWWvtDcBPAr8J3AG8BTgCXG+MORzj+mUb2lmhcWZyLnK56r4la9rxdxdneudbgHsBrLXWGPMK4Ky19hkAY8x9wM3A441+wOjoAIVCvqmVjY8Pb7vBrdbJbXrd+DA7dw7w4LFTnLkwx95dg9x83VUcNnta3qa9Y4OcPj+7Zvnlu4favg0ft+d44NgpzkzOsXdskFsivnMz74lLJ+9T7ZTGNsHG7WrH353jeV7LfliYMeadwPXAj1b+fRR43Fr7isrr7wAOWGvf0+hnTEzMNNW4NFYQqE3N+/qFBe685/ia5e2uFKofU2al5K5pR311RTvbmsbfn9rUvHa2a3x82Gn0WpzpnTvxc/mfBL4H+HtgMPT6MDAd4/qlQxw2e1IxNlEzY8po3BnpdHGmd14BHLXW/rQx5uXAtcCLjTHXAieA1wO6kStAOurnm6mc0Lgz0uniDPpPA79ijPkP+Gf0/wq4CvgwkMev3vlcjOuXlItrTPat1vw3UzmR9rkRRDYSW9C31p4Hbqlb/DxwQ1zrlM4R15js2+nR2MwY5500N4JIFHXOkkTE1fNwOz+3mTFlNH6PdDoFfUlEfW58canEzMIKZybnuONjx7ccSLebc29mTJk03H+I0oqhLDQcRvdT0JdEhHPj84slpmaWAChsM9WT1Zx7Kwbq0nSS2aDx9CUR4Rz4pbnl6uPwZC1bKYPM6ljvrSglVTlqNuhMv8XiqkjpNuHc+JkL8ziOA3hMzy75UzP2F7dUBpnVnHsrSklVjpoNCvotFFdFSrcKcuPv//O/56lTU9XlpZLL1MwSI8O92/q5WdKKtFZWU2NZo/ROC+nyuMViGiKkG7UirZXV1FjW6Ey/hXR5vDVLK2VGhnuZXVihVHYp5HMM9RdZLinoN6sVaa2spsayRkG/hXR5vDV7xwZZXinT31u7O2q7bU4r0lpZTI1ljdI7LaTL46255bqrIpdru4m0ns70W6iZHp2y1mGzh4s3HlBaQaQNFPRbLNyj85PHnuXok6f56KdPqHfjBpRWEGkPBf2YaLJvEUkj5fRjst5k3yIiSdGZfkw02bc00omDmnVimyVaqoP+pfllXNejkM+RzzkU8jkKeafSZT/d9o4NcurMpTXLVYaYbZ04qNl6bX5dSicgl8ZSnd4plz0Wl8vMLqxwcW6ZyUuLnJta4Pz0AlMzS8zML7OwVGKlVCauCd63SmWIEqUTe213YpulsVSf6UfxgJLrUXLLLK34y/JTC1yYWqi5Ggj+zedz5BK4MlAZYmepT1+84TXXcuWu/pavpxW9ttudalFP887huh5ld/0T4I4L+uspux7l0MEgkMs5FPM58nn/3+CgEHeaSGWInSEqffGH/+/LfO+rr2n572+7vbaTSA+pp3myPM/D88D1vGpQd73Kv25omesRhPvL9+1s+PO6Kug34roeS24Z6g4GhZxDoZCjkM9VDwr5XGfcM5DWiWvqxijbnWO3nW0NaF7gePjB2qVUXg3iXiWAV4N8JeC3UiaCfiMl16O0XAbKNctzOcc/IIRSRPmcDghRuqGqo53pi+0OapZEqkUDsW2N63mUy6tn4hdnl5ieXaJUdquBPQmZDvqNuK7HsuuxXHJrljtUDggJpIrSqBMrUaK0O32xnbRfUqkWpSpXeaHUSlSqxXU9yhFn6IW+IovL5egf2kYK+pvgsXrfICpVlM/nKBb8q4KVkovneV19MEgi1RCHTkpfdFJbO43rBukUD9dlTUAvu27lPUm3dHsU9FtktaLIP5Lnp+aZCiqKCjlyOYec4/+Xzzldcf8gqaqOqJQS0DDNtFEKKip9EVf1znY8bs9x9MnTLC6XWCm59BTyXHXZkFItTWh0dl4u+8E8yXRLuynox6haXrrOJV1wryBf7YDm0FPIk8ul/2CQRKohKqX0R/c/hQP0VcbjD6eZgKZSUPXpi/HxYSYmZuL6Gpt2/OQk9zz6LCsll76eAn09/nIFfGqqV8qux6W5ZS7OLXfV2XkrKegnrBzU1dbdP8jnnGqqyP8vfdVFSaQaolJKswt+rq2vbhKW9ToPdVoKqltSaZsRBOzaM3Rq8+ahMsVAoa/IwlIpkTZ3AgX9lCq7HuWIKwQHqlcGxYJfalqspI/aLYmqjqiUUqnsRrwzSDNFn+J1WseiiekF8vm1Heg77Xt4lTJE112tO69PvdTXnEtrKeh3mNoeyasHhaADWk1v5NzWDgabKcNsd1VHVEqpEBEM/ff6aaZu6Fg0PtLPhZmliOXp+B5eXY68VHnsVQK7C5Fn5dJ+CvpdIuiAVt8b2XEg7zh+qWlvkZn5ZfI5/3k+l6s+DqS9DDMqpTTUXyTq0Bakmbqh2uXIoX3c8+izkcu3a/WMu9L7E6DSOcjzwGO1s5DnAZ6fZvE8D6+QZ2J6AVdJ846hoN/lPA9K/l8s80sl5hbX5jqD/gf5nMNDX3iOsuviVMJocPsgLbnjRimlqGXh9nZ6x6KD+8fYuXOATzzyzIbfIyg79Cr579WA7QfrcqVzUCvSKCslVwG/w8QW9I0xReBDwDX4XV5/DCgBd+FnKY4Dt1lroxOyEounn5vmsa+eY2pmidHhXl7+4j288IqRahA4f3GxUulQ+4f8/Pl5Llxa9MtPHYecA06lBDWXCz+O/95Co5RSUimouHol19SNe/DN1+xibKBYPTN3PY+pmaUtp1Aa7QvS3eI80/8nQMFa+ypjzHcC/xkoAu+x1n7KGHMH8CbgozG2QUK+dGKS+459vfp88tJS9Xnwxz463MvkpbW549HhHpZL7ppeyvXCVw3VvgmVfx2HymP/IOFU/u1k66XDvuXqXTUBOkifBKkRYE0qJXhv1Bm4UyxwaX65Je1++rnpDfcF6U5xBv2ngIIxJgfswO/DegPwcOX1e4HvQkG/bf7uyecjlz/21XPVP/SXv3hPTTAIvPzFe5pax2qv5eYv+UtOjqmpef9qAcABh9WDguP4BxOn8iB47NS8j2pKqu6fmoOL41DTCcerRF0/d+1/AQ+P+cUVFpZK1feG89pU3ut5Hg994bna6qHKa3/7+a+ze2e6OneFPfbVcw2XK+h3tziD/ix+auerwG7gjcBrrbXBn9wM0Hj8T2BkpJ+VcnPBY9euwS03NC6bbdOXTkzyd08+z/npBXaP9POqQ5fzkgOtS0ucn16gVHaZnV9hpexSzOcYGigys7BSbev1uwYZGurjM08+z/mLC+ze2c8rW9yOKKOj8f3+PBoVbtZyQv9OzSyR7y1u+JmpWf/GeL2zUwvc/ekTLf9dtmo/vzS/QiG/tt3hfaFVbYp7v95Km5KShnbFGfR/GrjPWvsuY8yVwENAT+j1YWB6vR8wPb1QU5bYyK5dg1y4ED0nbVI226b6y+3T5+e4+6GnmZ1dbNmZV08hz/MTs9XnK6UyU5fKDPYN1bR130gf3//aAzWfjXP7dvLvb8dAcU06bHG5xPxiidPn/c+36nfZyu0U1W6AscGeTa1joza1Y7/ebJuS0s52vWB8qOFrcU6XOAVcrDy+gJ/Pf8IYc1Nl2a3AIzGuv6Osd7kdu6wMOhKDqLTX/GKJwb6151Nt+V02qVG6rtk0XrMS3a8lUpxn+r8G3GmMeQT/DP/dwGPAB40xPcBXgI+s9wP+9rGvUyq7NZ2Ngs5H+aAjUi7H6Nwy83PL1bHv68fCL+SDG4npvWk4FdHxZr3lW7FcKjM82MP8Yomy65LP5RjoKzSdQpO1grPVcBXM0kqJ3uLaP61W/i63K6rdcVTvtGO/ls2JLehba2eBH4h46cZmf8bffO5Uy9rjAPnwASM0Ln70QcU/oIQPHIXqoGjhz+WqwyqHPzs1v8L83FLjz9b1lm1cNdPbsm2we6S/OmBXXOuIQ9pLC194xUhNe/7kgadi/122Qn2749CO/Vo2JzOdszygVPYoldfOlJWUnEP1oACwvOJWO0M5jl+L4nked9371eiDUoMDjn+wWntAO/CCnZw6cwlYrYjBcTh07RilspuqwdwCnVhauN0KqG6ibZE+qQ76v/T2lzO7sEKp7FEu+3NJllyXctmjVHleLrv09he5eGkxtNzvcRh+T+RnK/NTlsqh5W7wfn9ZnIkP1wO35LISOSCgv+bTk/OcnpyPsRXw4b99uvp4zZVMw4OKU5NiqznA5HM17wmGjK5Jy4U+O19ymZtdqq47/LM//5WzkW1Oc2lhu1InnUDbIn1SHfR3DvauSUVEieuueDAiYPXA4YYOIOW6A4YbPsC49PYVuTSzuM5BZfWgU/szgwPW6jrDn99M/ftWNJoZLElO5X9BTT7Aual5fvMv/2HTablmD2gLZY+52cXIz+aauBpqR+qkU7RqW6Q9zdcpUh30k+Y4DnnHIZ8DivlNfTbOA9Gaq5i6A0Ojq5ieviKXLi3WHmya+WzNFdLag1zcQ6+EO02FL72eP59MWV7OcdY5qERfAYUPHOteJeVW51+u/+yi6zE3u7T2YJXCtFyrdWKaL60U9DuM46ymSjYrrgOR60an3dYeUOrSbpXHvb3BVdHaz07NLFWDe3jEx+GBIoV8bs1VUHvSch7LpbUT3yQpfMBodBVTzOdC79k4LdfMAW3Zg7nZxciUXiupB3HrKOhnzEaXyOHXi/kc4LFS9ta9nM7lHHpy+S3vTc108NnMZX04LdcotVYqu5w6O8NXT00xO7/CQF+Bq/cOM7ajn7Lr0lM5EDX6bOQV0Dr3keJOy1WLFFKSlnMcGhxUoqvmqqm1QvR7Tp2tdCoMD8MBnJ4sceL5izVVeSs4dfeImk/LZYGCfoZsNOBa+BJ6abnE2Tl/cK/hwR5cj8QupzebEw6n5XobpOWefm6afzhxAYDengJlF048P1NdV6uvilwvNMHIOsUD66XdenoLzMwuRV7dNCxMCP384EC1UvLfFyfPg5Wyi9+hPt5qud/966809b6tpOVW7xk1U7zQqAzcf+wU88wtrlQ/m1RaTkE/QzYacC18CR0ed39+sVS9od4tl9PtThfkHIdcwaG4jU7wrToQBf0IwhOmeHiMDPbwhldes3FaLnQV09NTZGZ2sYl7RM3dR4pTmtNyG5ZiV1Nn6/cPClJs32oua7zONn4/Sdj5iPllYbV3ZLiXZNl1Ix93S0/KLPcUDb5jkCIJ/je3WGL3yOZGBm3lFVF4ysVSRGXbs2cu8eWTF7g0v8JgX4EDl+9gfHRgTTVcsce/IoquuIuqtlt7T6jdabn6Ge+26x3fd6jhawr6GbJ7pL86CFhY0Dsy3Hsyn8tRrgwZnM/l1ry302W5p2hav/tqkQL0sjYtd/nuQV51cOPpIVt5IArScmsOCptIy60ejPLMzi43KGpYL+1XezDa7lBZCvoZ8qpDl3P3Q0+vWR70jgz3nhzsK3CpktMfCA0e1i09KbPcUzTL332zqmm5wvbHpmzVwajs1hcKrD0wrEdBP0NecmCM2dnFhpUwtb0nYcdgD3gbV+90oiz3FM3yd+8G+ZxDPpenZ+PpHiIp6GfMRpUwG72ec4LpEHPVKRGD5cGYPrnQDFfBDFOVV2tnw6r0st09NkghdHYSTBdYdkOTeVcm8YbVkszqTFmsTuDuv75azx9MEB51RZzlXrNZ/u5Zp6CfQcE8tjlnNQjXz1tbP/H56vtbX2IWPngA5HCISOluSxD8qxONu6vz0oanQvRc/yDTU8hTzOeqFS7Be0U6XVcG/e2O0ZHEGB+tWqcDOLlKnXreqU5Sns85jI/0k3fLNTdmO93xk5McffI0E9MLjI/0c+TQPg7uXzsVX3BAy9HcQWt8tB9KtSPhBdUlwVWIG3peXRYxoXk7xL3Patyb7tF1QX+7Y3QkMcZHo3U6DrzoylEg6IXoV9IEgTw4Cw86eQRn4430FPNdF/DvfvhE9fnZqYXq86jAv11BdclGVyHlULlf9b+yu5qyanG74t5n1/v516dgzlfZnK4L+tvtdNOOTjtBeiVf6VzxxafPk8utZqiDuH38xAWOfOvlLVlnNzr65OmGy+MI+s3y73c0fj18UAhK9/zxi/z00mYPCnHvs+v9/OsPvWDbP1/aq+uC/nY73Wzn8w6r+emBvgJLfYXqWXiwPOfU5q8BpivjhNSbmF5sqs1ZNdGgs1nat9tGB4XgQFAdNmHFr+tuJO6OZlnuyNaNui7ob7fjSfjzDrC4UmZ+cQUH+ItP/iOvPLiXg/t3VYN3UIES3ABd/Tl9lBab62Y3PtLP2akFFpZKlUlj/HmBrxzXpfN6gu22dnlf5Pvr8/9X7BniuXOzG94P2Ipm7zVE8bvZA6GSPM/zGBnpp7y0Uk0XlV2Pr5yaYmZhhfnFFfK5HIN9BXorQ2a0qrNVWjtzydY0neA1xgwaYw4ZYxxjTGqjUaMOJq/45j0U8g49hRx9PXkG+goM9RfZMdDDyFAPu4Z72b2zj5tfdgXFQo5iIcdK2WVmbply2WN4oIcLM0t84jNf4x+/cZGeYr46JkZumwMnHTm0j4WlEtMzS5RKLnhQKrlMzy5z/OTkln9utztyKLp3ZtTyIP9/dmoB14Nnz8zw148+y9fOzOB6q/cDWrG969fVip/tOA49xTz9vf5+u3Ool+cn53jgsef8QeU8KJddLs0ts7JSJufADS/Z25Ihjhv9TakzV2dq6kzfGHMz8Dv4t7BeCRw3xrzFWnt/nI1rJKhQyVVqwgd6Cyz2Fcg5Di970R6G+gt85vhZzl9cZHykj9d82+VNn2UdunY3uZzD0SdP86WTFygUcgz3F+nrXd1Urc4ZH9w/xuhQb81ZfrDOpPPTaRZsF/+M2v9dNzqjrs//zy74V2EzCyst/922615DsJ7+3gLs6KvuP2XP4we+45uq6/LCw0y7tWPQNHP/QJ25ukuz6Z3/AhwB7rXWnjHGvBb4EyDWoN/fm6e3mPfrxIPqlIgKldEdfZRCIxa99IV7eOkLt34WcnD/GAf3j/ErH/p85KxQW8kZb3S5v1wqMx4x2FXa89Pr2U6Ko1nB7ypY10c/fYKjT55es676/H+QI6/Plbdie7frXkN4Pf29BT/44/+thL+74zgUGwwlUDMAWcllpcHBQJ25ukez6Z2ctfZM8MRa++WY2lOjr6fAQF+Bvp5CNZ3SzokQooKwvzw6Z9xIM5f7rVpXWsSR4tjOuuq3bzDzWP0MZK3Y3u36XbZiPYV8jt6ePIN9fspo985+9oz2M7ajlx0DRfp78i2fBUuS1WzQf84Y80bAM8aMGGP+I3AqxnalwmZyxutZ73K/1etKi2a+czvXVb8dh/r9u6TD/bUDmLRie7frdxnXevwrgzwDlQPB+Ih/INg13MuOgR4Gegv0FFo/JaK0R7PpnR8HPgBcCZwAHgTeGVej0mIzOeP1NHO536p1bSRIg3zt7AwrJZdiIcfVlw23fF3tLKfcyva9Zu8wVxzaV6neWd3eAHd87DhTs8uMDvVsabu063fZrvWAnzLqKa4d5Gv37kFy5XJNT+WVSprIjcqNSo0kejo3FfStteeAfx5rS1IqyBlvR7Olha1Y13oet+e4++ET1UqhqkpKJGhDK2y2nLId69po+4Z7+BYLuW318I37d9nu9TTi91KulJjWcSPGiw9KTXU4SKb3P2wQ9I0xJ4keoBAAa+2BlreoCx05tK9muIDw8nZ64JifkQsqVwJBBUsrq0va+Z1bta609vDtVLmcQ0/EEMCNZ8hyIwsnulW7p+wMbHSmfxN+heQv4ad17gJKwA8D+2NrVZdp52X4es5M+hM41FesBM9bmXpp53duZxpOtm+9GbLCM0iVyh6lktuS2aLSKKmezusGfWvt1wCMMYeste8IvfQ+Y8wXYm1Zl0n6Mhxg79ggp85copDP+Z3AKoIKllanXtr5nduZhpP4BENU9BajDwY189dWphTsVEn1dG62escxxnxH8MQYcyv+Gb90kFuuuwpYrVwJBBUsnVop1CrdVkHVTfK5HL1Fvyf9joEeRod72R2qKhqulJcW8k6Tg2cnL6mezs1W7/wo8CFjzD78A8WzwNviapTE47DZw8UbD/jVO47DSqlMTyHPVZcNJZJuSptwmmh6bpnLRuPpUCats1pVtHplsHv3IN5KiZWyy/KKy0qpnMp7BUn1dG62eucJ4JAxZgzwrLUXNvqMMebtwNsrT/uAb8e/R/AB/KuE+621t2++ybIdaUgzRWlH791mBNtnfHyYiYmZtq9fts8JHQgGK5m5UtllpeSyXPIPAqVyOo4CSfR0bnbsnRuAdwFD+KmePHC1tfaaRp+x1t6Ff+MXY8xvAXcCdwBvxr8p/AljzGFr7ePbaL90gaCUNBD3ZCiSPX5ZaY7+Srrc9Sr9CUpu9YBQTuPlQAyazenfCfwV/kHit4DngI8280FjzMuBlwB/CvRaa5+x1nrAfcDNm26xdJ2glLReHL13RcBPC/UW8wz1FxlZ0+u48+4PbEazOf0la+3vG2OuAaaAHwH+ocnPvhu4HdgBXAotnwHWrfMfHR2gENXrI8L4+HCTzWkftak5ZybnIgcDm55bbrq9j9tzPHDsFGcm59g7Nsgt113FYbO9G2Jp3FZqU3Na1SZ/hFK35qog6FewleuCXSmYXrLZoL9ojNkFWOAGa+1DlRTPuowxI8CLrbWfNMbsAMK/iWFger3PT03NN9W4NOZf1abmBaWk9S4b7W+qvfVz5Z46c4k77znOxRsPbDk9lMZtpTY1J+425QDH80LDVAedy7x1+xTs2jXIhQtzsbUr7AXjQw1faza98z7gz4CPA28zxnwJeKyJz70WeADAWnsJWDbGXGuMcYDXA480uX7pYkEpab1mSyXbObibCKwOP9HXszqpzdjOPi4bHWB8pI/RSppooK9AbzFdI5U2e6a/AHyXtdar5OhfBPx9E58z+DdtA/8a+DD+ZCz3W2s/t5nGSncKl5JupUetetJKmlTnQK7rYLZ79yBOqbx2MhvXa2uP42aD/v+w1n4CwFo7BzzRzIestf+z7vlngRs21ULJhO2UkqonrXQCf8jqXOT9q7Jblyaq9DaOY6TSZoP+M8aYO4HP4Z/1A2Ct/YOWt0hkk9IyoJ3IVjW6OnA9rzqjWXVms21eGTQb9CfxB167vm65gr4kLi0D2om0WlSPY6hcGZQ2nuYyyoZB3xjzE8A91tqPGmOOAeP4PWpv3cqXEIlDWnsai8Qhn8uR76kdpXS1vHT90L9u9Y4x5l34PWi/VFnUy+pQCu/aRptFRKSFVqe5XP9cfqOSzR8Bvs9a+1TluVsZbvkO/OAvIiIdZKOgX7bWzoae/yqAtbaE36NWREQ6yEZBP2eMqfaitdbeDWCM2Qm4DT8lIiKptFHQ/zDwB5UhFAAwxgzhD8D2R3E2TEREWm+j6p3/Bvw28Lwx5sv4k6R/C/CH1tr3x9046R5pGS9fJOs2miO3DLzTGHM7cF1l8WPW2q/H3jLpGvUDomm8fJHkNDtz1jdocvx8kXrrDYimoC/SXs32yBXZMg2Ilm1K7aWLgr7ETgOiZZdSe+nT7Hj6IlvWaOAzDYjW/TTXQfroTF9iv/xO44Bo4e/cU8gBDsulcvX7vy7GKQCzlO5Qai99FPQzrl2X32kaEC38nReWSnxjZgmA0eHe6vffuXOAK3f1x7pu6P50h1J76aMfTrG2AAALlklEQVT0TsZl8fI7/N1mF1aqj2dCjx88dir2dTezvNMptZc+OtPPuCxefoe/c6nsRj4+E9ME1lnb3mlM7WWdgn7GZfHyO/ydC/kcpZJbfRzYu2sw9nXXLu/e7Z2m1J4ovZN5Wbz8Dn+3of5i9fFw6PHN110V+7qbWS7SajrTz7gsXn7Xf+fRoR5wHJZX3Or3P2z2MDHR+tHDs7i9JV0U9CWTl99Jfucsbm9JD6V3REQyREFfRCRDFPRFRDJEQV9EJEMU9EVEMkTVO5IpWRrsTCSKgr5kRtYGOxOJovSOZEbWBjsTiaKgL5mRtcHORKLEmt4xxrwL+F6gB/g/wMPAXYAHHAdus9a6DX+ASAtlcbAzkXqxnekbY24CXgW8GrgRuBJ4P/Aea+1rAAd4U1zrF6mnwc5EwPE8L5YfbIz5r/hn9C8BdgA/B3wMuMJa6xlj3gR8l7X2tkY/o1Qqe4VCPpb2yarH7TkeOHaKM5Nz7B0b5JbrruKw2ZN0s2LxuD3Hg8dOcebCHHt3DXLzFr9rlrbZerQdUstp+EKMQf+DwNXAG4H9wD3ADmvtvsrr3wG8w1r71kY/Y2JipqnGjY8PxzIi4nZ0SpvqK1oCb77xQNsqWjplWwWS2mZp207HT05yz6PPslKqzdC2c9+JkrbtFGhnu8bHhxsG/Thv5E4C91lrl621FlgEdoZeHwamY1y/NEEVLZunbebTduhMcQb9o8B3G2McY8zlwCDwYCXXD3Ar8EiM65cmqKJl87TNfNoOnSm2oG+t/WvgCeAY8HHgNuBngduNMZ/Br+j5SFzrl+aMj/Q3WK6Klka0zXzaDp0p1pJNa+3PRyy+Mc51yuYcObQvMj+tipbGtM18Rw7t455Hn41cLumlYRgyTtP3bZ62me/g/jF27hzgE488k+nt0GkU9EXT922BtpnvsNnDlbui0zySThqGQUQkQxT0RUQyROkdSR2NeS8SHwV9SRWNeS8SL6V3JFXUy1MkXgr6kirq5SkSLwV9SRX18hSJl4K+pIrGvBeJl27kSqqot6tIvBT0JXXU21UkPkrviIhkiIK+iEiGKOiLiGSIgr6ISIYo6IuIZIiCvohIhijoi4hkiIK+iEiGKOiLiGSIgr6ISIYo6IuIZIiCvohIhijoi4hkiIK+iEiGKOiLiGSIxtOXNY6fnKxMYrLA+Ei/JjER6SIK+lLj+MlJ7n74RPX52amF6nMFfpHOp/SO1Dj65OlNLReRzhLrmb4x5gngYuXpSeB3gA8AJeB+a+3tca5fNm9ieqHB8sU2t0RE4hBb0DfG9AFYa28KLfsi8GbgBPAJY8xha+3jcbVBNm98pJ+zU2sD//hIXwKtEZFWi/NM/9uAAWPM/ZX1vBfotdY+A2CMuQ+4GVDQT5Ejh/bV5PTDy0Wk88UZ9OeB/wX8LvBC4F5gOvT6DHBgvR8wOjpAoZBvamXj48Nba2WMOrFNrxsfZufOAR48doozF+bYu2uQm6+7isNmT6LtSoLa1By1qXlpaFecQf8p4B+ttR7wlDHmIrAr9PowtQeBNaam5pta0fj4MBMTM1ttZyw6uU1X7urn7d9tapbF+V06eVu1k9rUnDS2CdrbrvUOLnFW77wDeB+AMeZyYACYM8Zca4xxgNcDj8S4fhERqRPnmf7vAXcZY44CHv5BwAU+DOTxq3c+F+P6RUSkTmxB31q7DLwl4qUb4lqniIisT52zREQyREFfRCRDFPRFRDJEQV9EJEMU9EVEMkRBX0QkQxT0RUQyREFfRCRDFPRFRDJEQV9EJEMU9EVEMkQTo4tIxzp+cpKjT55mYnqB8ZF+jhzax+tSMGZ9minoi0hHOn5ysmaWt7NTC9z98Al27hzgyl39CbYs3ZTeEZGOdPTJ05HLHzx2qs0t6SwK+iLSkSamFyKXn7kw1+aWdBYFfRHpSOMj0SmcvbsG29ySzqKgLyId6cihfZHLb77uqja3pLPoRq6IdKSD+8cAKtU7i4yP9HHk0D4Omz2pnBg9LRT0RaRjHdw/Vg3+0hyld0REMkRBX0QkQxT0RUQyREFfRCRDFPRFRDJEQV9EJEMcz/OSboOIiLSJzvRFRDJEQV9EJEMU9EVEMkRBX0QkQxT0RUQyREFfRCRDFPRFRDKko4ZWNsZcD/x3a+1NxphvAu4CPOA4cJu11jXG/DLwBqAE/JS19lgb2/TtwG8AZWAJ+BFr7VljzK8DrwaCQb7fZK292KY2HQY+Djxdefm3rbV/lvB2+lNgb+Wla4DPWmt/yBhzDzAGrAAL1tpbY2xPEbizsv5e4FeBL5PgPtWgTadIcJ9q0KbnSHCfatCmt5D8PpUHPggY/N/XvwQcUhCnwjom6Btjfh54GxBMgPl+4D3W2k8ZY+4A3mSM+RpwI3A9cCVwN/CKNrbpA8BPWmu/aIz5ceAXgJ8BDgOvt9aej6st67TpMPB+a+37Qu85TILbyVr7Q5Xlo8AngZ+uvPWbgJdYa9vRY/CtwKS19m3GmDHgCeCLJLtPRbXpJMnuU1Ft+k8ku0+taZO19qpKO5Lcp74HwFr7amPMTfgxyiHhOFWvk9I7zwDfH3r+MuDhyuN7gVuAI8D91lrPWnsKKBhjxtvYph+y1n6x8rgALBpjcsALgf9rjHnUGPOOGNsT1aaXAW8wxnzaGPN7xphhkt9OgduB37DWnjbGXAaMAB83xhw1xrwxxvYA/AXwi6HnJZLfp6LalPQ+1Wg7JblPRbUpkNg+Za39K+CdladXA2dJfp9ao2OCvrX2bvxLtIATOnrPADuBHUD4EjdY3pY2WWtPAxhjXgX8W+DXgEH8y/O3At8N/BtjzKF2tQk4Bvyctfa1wAngl0l4OwEYY/YAN+Nf+gL0AO8Dvg//APFrlffE1aZZa+1MJWB9BHgPCe9TUW1Kep9qsJ0S3acatCnxfarStpIx5kP4v5+PkII4Va9jgn4EN/R4GJgGLlUe1y9vG2PMDwJ3AG+w1k4A88AHrLXz1toZ4CHg29rYpI9aa78QPAZeSgq2E/DPgD+21pYrz88Ad1hrS9bac/hpBBNnA4wxV+KnAv7QWvvHpGCfimhT4vtURJsS36eithMp2KcArLX/AngRfn6/P/RSKuJUJwf9Jyp5M4BbgUeAR4HXG2NyxpirgFw78ugBY8xb8c/GbrLWnqgsfhFw1BiTr9yAOgI83q42AfcZY66rPL4Z+AIJb6eKW/Avd8PP/xzAGDMEHAS+EtfKK5f+9wO/YK29s7I40X0qqk1J71MNtlOi+1SDNkHy+9TbjDHvqjydxz+JeCxtcapjbuRG+Fngg8aYHvxf5EestWVjzCPAZ/APaLe1qzGVO/e/jl9t8ZfGGICHrbW/bIz5MPBZ/BTHH1hrv9SudgE/AfymMWYZ/8znndbaS0ltpxCDnxoAwFp7rzHm9caYz+L/sbw75j+EdwOjwC8aY4L88L8Hfj3Bfaq+TXn8QPU1ktunorbTzwD/O8F9KqpNt5L8PvWXwO8bYz4NFIGfwt+PUhOnQEMri4hkSiend0REZJMU9EVEMkRBX0QkQxT0RUQyREFfRCRDOrlkU6SljDG/hT+IWQ/+mC1frrz0O4Bnrb0jqbaJtIpKNkXqGGOuAT5lrb0m4aaItJzO9EU2YIx5L4C19r3GmDPAX+GPkHgGf4jffwdcAbzdWvuw8Yf9/m38IX3n8UfJfCKJtovUU05fZHMuA+611r4U6AP+qbX2NcB78XtgAnwI+Hlr7WH8URf/NImGikTRmb7I5gXju3wNOBp6PFoZ4+UV+N3xg/cPGWPGrLWT7W2myFoK+iKbZK1dDj0t1b2cBxattd8eLDDGXAFcaEfbRDai9I5IC1WmLHy6MjomxpjvBD6dbKtEVulMX6T1fhi4w/jTRC4DP9im6fpENqSSTRGRDFF6R0QkQxT0RUQyREFfRCRDFPRFRDJEQV9EJEMU9EVEMkRBX0QkQ/4/8Wz6+ICzDk0AAAAASUVORK5CYII=\n", - "text/plain": [ - "
    " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Standard imports required to show plots\n", - "%matplotlib inline\n", - "import pandas as pd\n", - "import seaborn as sns\n", - "\n", - "# Load the data\n", - "grades = pd.read_csv('https://openmv.net/file/unlimited-time-test.csv')\n", - "\n", - "# Fit a regression model between Time and Grade, showing the model's prediction boundaries\n", - "sns.regplot(x = \"Time\", y = \"Grade\", data = grades);" - ] - }, { "cell_type": "code", "execution_count": null, diff --git a/Module-11-interactive.ipynb b/Module-11-interactive.ipynb new file mode 100644 index 0000000..c7bc125 --- /dev/null +++ b/Module-11-interactive.ipynb @@ -0,0 +1,408 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "toc": true + }, + "source": [ + "

    Table of Contents

    \n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "> All content here is under a Creative Commons Attribution [CC-BY 4.0](https://creativecommons.org/licenses/by/4.0/) and all source code is released under a [BSD-2 clause license](https://en.wikipedia.org/wiki/BSD_licenses). \n", + ">\n", + ">Please reuse, remix, revise, and [reshare this content](https://github.com/kgdunn/python-basic-notebooks) in any way, keeping this notice." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Run this cell once, at the start, to load the notebook's style sheet.\n", + "from IPython.core.display import HTML\n", + "css_file = './images/style.css'\n", + "HTML(open(css_file, \"r\").read())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Module 11: Overview \n", + "\n", + "In the prior [module 10](https://yint.org/pybasic10) you ...\n", + "
    \n", + " Check out this repo using Git. Use your favourite Git user-interface, or at the command line:\n", + "\n", + ">```\n", + ">git clone git@github.com:kgdunn/python-basic-notebooks.git\n", + ">\n", + "># If you already have the repo cloned:\n", + ">git pull\n", + ">```\n", + "\n", + "to update it to the later version.\n", + "\n", + "\n", + "### Preparing for this module###\n", + "\n", + "You should have:\n", + "\n", + "\n", + "### Summarizing data visually and numerically (statistics)\n", + "\n", + "In the [prior module](https://yint.org/pybasic09) we covered:\n", + "1. Box plots\n", + "2. Bar plots (bar charts) \n", + "3. Histograms\n", + "\n", + "while in this module we will cover:\n", + "4. Data tables\n", + "5. Time-series, or sequence plots\n", + "6. Scatter plots\n", + "7. Pointers to some other interesting plots\n", + "\n", + "In between, throughout the notes, we will also introduce statistical and data science concepts. This way you will learn how to interpret the plots and also communicate your results with the correct language." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Regression and scatter plots\n", + "\n", + "In fact, if there is one thing we can guarantee that you will see in your career being ***misused***, it will be this model. Misused by others when they interpret the values from the model, misused when they build this model, misused when making predictions.\n", + "\n", + "We already saw above that, counter-intuitively, we can calculate the $R^2$ value from a linear regression before even fitting the intercept and slope! That is because $R^2$ is just the square of the correlation coefficient, $r \\times r = R^2$. And since $r$ is just the correlation between two variables, the $R^2$ number just tells how strongly they are correlated.\n", + "\n", + "$R^2$ **never** indicates how ***well does the linear regression model fit my data***. The only way to see how well the model fits is to first fit it. And then calculate the residuals and see how small they are. \n", + "\n", + "Let's take a look, and along the way we introduce the Seaborn library's tools for regression plots." + ] + }, + { + "cell_type": "code", + "execution_count": 130, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEFCAYAAAAPCDf9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3X+cJHdd5/FX9Y/5PbszOzub3ZBfuxG+KOsqCyQBFhJMFHOgeHIP9RA8jlM8L+edP059wKGS0/t94OGPMx4ag4o/iUiQi4lJIGQjsIQE4/Ljm5jdsITsj9nZmd35PdNddX9UV091T/VMz0xXV3XX+/l4JNtd3T317ZqaT1V96vP9fh3P8xARkWzIJd0AERFpHwV9EZEMUdAXEckQBX0RkQxR0BcRyZBC0g1Yz8TETFOlRaOjA0xNzcfdnE1Rm5qXxnapTc1Rm5rXznaNjw87jV7rijP9QiGfdBPWUJual8Z2qU3NUZual5Z2dUXQFxGR5ijoi4hkiIK+iEiGKOiLiGSIgr6ISIYo6IuIZEiq6/Sl+x0/Ocnn/8by3NlLjI/0c+TQPg7uH0u6WSJdS0FfEnP85CR3P3yCYiGH68HZqQXufvgEgAK/SEyU3pHEHH3y9KaWi8j26Uy/zY6fnOTok6eZmF7IfDpjYnqhwfLFNrdEJDsU9NsoSGcEsp7OGB/p5+zU2sA/PtKXQGtEskHpnTZSOqPWkUP7NrVcRLZPZ/ptlNZ0RlIpp2Adj9nzfP3sDOMjfZlOd4m0g4J+G6UxnZF0yung/jFed901TEzMxL4uEVF6p63SmM5QykkkW3Sm3yZBCmVxucRKyaVYyHP1ZUOJpzPSmnIS6XZJpVUV9NsgnELp6ynQ1+MvTzrgQzpTTiLdLsm0qtI7bZDmFEoaU04i3S7JmKAz/TZIcwolOKvwLzMXVUEj0gZJxgQF/TZIewrl4P6xmiB//OQkd3zs+JpcYzf0Ju6G75AGwXacml1mdKhH23GTkowJCvptcOTQvpr8XXh52jTKNT57ZoYv2Ik1y6FzehMnXZ7aLcLbsVjIaTtuQZIxQTn9Nji4f4w333iAy0b7yTkOl4328+YbD6TyD6RRTvFTT3xjU+9PozTfW+kk2o7bl2RM0Jl+m9SnUNKqUa5xdmGF4YGeiPcnf1+iWWm+t9JJtB1bI6mYoDN9qTE+0h+5fKi/2OD96bgv0YxG362TvkMaaDt2NgV9qdEop3jTS1+wqfenkcpTW0PbsbMpvSM1wiWcp87OslwqUyzkeO7cLC8z4zx3brZjSztVntoa4e04PbfMZaOqgmqluCvMFPRljWAHu/vhE/T25AG/0uXs1EJqb0A3q1PuraRdsB3Hx4c1WF4LtaPCTEFfIq1XoRFH0FT9vEh7/u4U9CVSOys0HrfnVD8vQnv+7mIL+saYXuD3gQPAJeA2YAz4AFAC7rfW3h7X+mV72tlj8IFjpyKXx3VVIZJW7fi7i7N658eAWWvtDcBPAr8J3AG8BTgCXG+MORzj+mUb2lmhcWZyLnK56r4la9rxdxdneudbgHsBrLXWGPMK4Ky19hkAY8x9wM3A441+wOjoAIVCvqmVjY8Pb7vBrdbJbXrd+DA7dw7w4LFTnLkwx95dg9x83VUcNnta3qa9Y4OcPj+7Zvnlu4favg0ft+d44NgpzkzOsXdskFsivnMz74lLJ+9T7ZTGNsHG7WrH353jeV7LfliYMeadwPXAj1b+fRR43Fr7isrr7wAOWGvf0+hnTEzMNNW4NFYQqE3N+/qFBe685/ia5e2uFKofU2al5K5pR311RTvbmsbfn9rUvHa2a3x82Gn0WpzpnTvxc/mfBL4H+HtgMPT6MDAd4/qlQxw2e1IxNlEzY8po3BnpdHGmd14BHLXW/rQx5uXAtcCLjTHXAieA1wO6kStAOurnm6mc0Lgz0uniDPpPA79ijPkP+Gf0/wq4CvgwkMev3vlcjOuXlItrTPat1vw3UzmR9rkRRDYSW9C31p4Hbqlb/DxwQ1zrlM4R15js2+nR2MwY5500N4JIFHXOkkTE1fNwOz+3mTFlNH6PdDoFfUlEfW58canEzMIKZybnuONjx7ccSLebc29mTJk03H+I0oqhLDQcRvdT0JdEhHPj84slpmaWAChsM9WT1Zx7Kwbq0nSS2aDx9CUR4Rz4pbnl6uPwZC1bKYPM6ljvrSglVTlqNuhMv8XiqkjpNuHc+JkL8ziOA3hMzy75UzP2F7dUBpnVnHsrSklVjpoNCvotFFdFSrcKcuPv//O/56lTU9XlpZLL1MwSI8O92/q5WdKKtFZWU2NZo/ROC+nyuMViGiKkG7UirZXV1FjW6Ey/hXR5vDVLK2VGhnuZXVihVHYp5HMM9RdZLinoN6sVaa2spsayRkG/hXR5vDV7xwZZXinT31u7O2q7bU4r0lpZTI1ljdI7LaTL46255bqrIpdru4m0ns70W6iZHp2y1mGzh4s3HlBaQaQNFPRbLNyj85PHnuXok6f56KdPqHfjBpRWEGkPBf2YaLJvEUkj5fRjst5k3yIiSdGZfkw02bc00omDmnVimyVaqoP+pfllXNejkM+RzzkU8jkKeafSZT/d9o4NcurMpTXLVYaYbZ04qNl6bX5dSicgl8ZSnd4plz0Wl8vMLqxwcW6ZyUuLnJta4Pz0AlMzS8zML7OwVGKlVCauCd63SmWIEqUTe213YpulsVSf6UfxgJLrUXLLLK34y/JTC1yYWqi5Ggj+zedz5BK4MlAZYmepT1+84TXXcuWu/pavpxW9ttudalFP887huh5ld/0T4I4L+uspux7l0MEgkMs5FPM58nn/3+CgEHeaSGWInSEqffGH/+/LfO+rr2n572+7vbaTSA+pp3myPM/D88D1vGpQd73Kv25omesRhPvL9+1s+PO6Kug34roeS24Z6g4GhZxDoZCjkM9VDwr5XGfcM5DWiWvqxijbnWO3nW0NaF7gePjB2qVUXg3iXiWAV4N8JeC3UiaCfiMl16O0XAbKNctzOcc/IIRSRPmcDghRuqGqo53pi+0OapZEqkUDsW2N63mUy6tn4hdnl5ieXaJUdquBPQmZDvqNuK7HsuuxXHJrljtUDggJpIrSqBMrUaK0O32xnbRfUqkWpSpXeaHUSlSqxXU9yhFn6IW+IovL5egf2kYK+pvgsXrfICpVlM/nKBb8q4KVkovneV19MEgi1RCHTkpfdFJbO43rBukUD9dlTUAvu27lPUm3dHsU9FtktaLIP5Lnp+aZCiqKCjlyOYec4/+Xzzldcf8gqaqOqJQS0DDNtFEKKip9EVf1znY8bs9x9MnTLC6XWCm59BTyXHXZkFItTWh0dl4u+8E8yXRLuynox6haXrrOJV1wryBf7YDm0FPIk8ul/2CQRKohKqX0R/c/hQP0VcbjD6eZgKZSUPXpi/HxYSYmZuL6Gpt2/OQk9zz6LCsll76eAn09/nIFfGqqV8qux6W5ZS7OLXfV2XkrKegnrBzU1dbdP8jnnGqqyP8vfdVFSaQaolJKswt+rq2vbhKW9ToPdVoKqltSaZsRBOzaM3Rq8+ahMsVAoa/IwlIpkTZ3AgX9lCq7HuWIKwQHqlcGxYJfalqspI/aLYmqjqiUUqnsRrwzSDNFn+J1WseiiekF8vm1Heg77Xt4lTJE112tO69PvdTXnEtrKeh3mNoeyasHhaADWk1v5NzWDgabKcNsd1VHVEqpEBEM/ff6aaZu6Fg0PtLPhZmliOXp+B5eXY68VHnsVQK7C5Fn5dJ+CvpdIuiAVt8b2XEg7zh+qWlvkZn5ZfI5/3k+l6s+DqS9DDMqpTTUXyTq0Bakmbqh2uXIoX3c8+izkcu3a/WMu9L7E6DSOcjzwGO1s5DnAZ6fZvE8D6+QZ2J6AVdJ846hoN/lPA9K/l8s80sl5hbX5jqD/gf5nMNDX3iOsuviVMJocPsgLbnjRimlqGXh9nZ6x6KD+8fYuXOATzzyzIbfIyg79Cr579WA7QfrcqVzUCvSKCslVwG/w8QW9I0xReBDwDX4XV5/DCgBd+FnKY4Dt1lroxOyEounn5vmsa+eY2pmidHhXl7+4j288IqRahA4f3GxUulQ+4f8/Pl5Llxa9MtPHYecA06lBDWXCz+O/95Co5RSUimouHol19SNe/DN1+xibKBYPTN3PY+pmaUtp1Aa7QvS3eI80/8nQMFa+ypjzHcC/xkoAu+x1n7KGHMH8CbgozG2QUK+dGKS+459vfp88tJS9Xnwxz463MvkpbW549HhHpZL7ppeyvXCVw3VvgmVfx2HymP/IOFU/u1k66XDvuXqXTUBOkifBKkRYE0qJXhv1Bm4UyxwaX65Je1++rnpDfcF6U5xBv2ngIIxJgfswO/DegPwcOX1e4HvQkG/bf7uyecjlz/21XPVP/SXv3hPTTAIvPzFe5pax2qv5eYv+UtOjqmpef9qAcABh9WDguP4BxOn8iB47NS8j2pKqu6fmoOL41DTCcerRF0/d+1/AQ+P+cUVFpZK1feG89pU3ut5Hg994bna6qHKa3/7+a+ze2e6OneFPfbVcw2XK+h3tziD/ix+auerwG7gjcBrrbXBn9wM0Hj8T2BkpJ+VcnPBY9euwS03NC6bbdOXTkzyd08+z/npBXaP9POqQ5fzkgOtS0ucn16gVHaZnV9hpexSzOcYGigys7BSbev1uwYZGurjM08+z/mLC+ze2c8rW9yOKKOj8f3+PBoVbtZyQv9OzSyR7y1u+JmpWf/GeL2zUwvc/ekTLf9dtmo/vzS/QiG/tt3hfaFVbYp7v95Km5KShnbFGfR/GrjPWvsuY8yVwENAT+j1YWB6vR8wPb1QU5bYyK5dg1y4ED0nbVI226b6y+3T5+e4+6GnmZ1dbNmZV08hz/MTs9XnK6UyU5fKDPYN1bR130gf3//aAzWfjXP7dvLvb8dAcU06bHG5xPxiidPn/c+36nfZyu0U1W6AscGeTa1joza1Y7/ebJuS0s52vWB8qOFrcU6XOAVcrDy+gJ/Pf8IYc1Nl2a3AIzGuv6Osd7kdu6wMOhKDqLTX/GKJwb6151Nt+V02qVG6rtk0XrMS3a8lUpxn+r8G3GmMeQT/DP/dwGPAB40xPcBXgI+s9wP+9rGvUyq7NZ2Ngs5H+aAjUi7H6Nwy83PL1bHv68fCL+SDG4npvWk4FdHxZr3lW7FcKjM82MP8Yomy65LP5RjoKzSdQpO1grPVcBXM0kqJ3uLaP61W/i63K6rdcVTvtGO/ls2JLehba2eBH4h46cZmf8bffO5Uy9rjAPnwASM0Ln70QcU/oIQPHIXqoGjhz+WqwyqHPzs1v8L83FLjz9b1lm1cNdPbsm2we6S/OmBXXOuIQ9pLC194xUhNe/7kgadi/122Qn2749CO/Vo2JzOdszygVPYoldfOlJWUnEP1oACwvOJWO0M5jl+L4nked9371eiDUoMDjn+wWntAO/CCnZw6cwlYrYjBcTh07RilspuqwdwCnVhauN0KqG6ibZE+qQ76v/T2lzO7sEKp7FEu+3NJllyXctmjVHleLrv09he5eGkxtNzvcRh+T+RnK/NTlsqh5W7wfn9ZnIkP1wO35LISOSCgv+bTk/OcnpyPsRXw4b99uvp4zZVMw4OKU5NiqznA5HM17wmGjK5Jy4U+O19ymZtdqq47/LM//5WzkW1Oc2lhu1InnUDbIn1SHfR3DvauSUVEieuueDAiYPXA4YYOIOW6A4YbPsC49PYVuTSzuM5BZfWgU/szgwPW6jrDn99M/ftWNJoZLElO5X9BTT7Aual5fvMv/2HTablmD2gLZY+52cXIz+aauBpqR+qkU7RqW6Q9zdcpUh30k+Y4DnnHIZ8DivlNfTbOA9Gaq5i6A0Ojq5ieviKXLi3WHmya+WzNFdLag1zcQ6+EO02FL72eP59MWV7OcdY5qERfAYUPHOteJeVW51+u/+yi6zE3u7T2YJXCtFyrdWKaL60U9DuM46ymSjYrrgOR60an3dYeUOrSbpXHvb3BVdHaz07NLFWDe3jEx+GBIoV8bs1VUHvSch7LpbUT3yQpfMBodBVTzOdC79k4LdfMAW3Zg7nZxciUXiupB3HrKOhnzEaXyOHXi/kc4LFS9ta9nM7lHHpy+S3vTc108NnMZX04LdcotVYqu5w6O8NXT00xO7/CQF+Bq/cOM7ajn7Lr0lM5EDX6bOQV0Dr3keJOy1WLFFKSlnMcGhxUoqvmqqm1QvR7Tp2tdCoMD8MBnJ4sceL5izVVeSs4dfeImk/LZYGCfoZsNOBa+BJ6abnE2Tl/cK/hwR5cj8QupzebEw6n5XobpOWefm6afzhxAYDengJlF048P1NdV6uvilwvNMHIOsUD66XdenoLzMwuRV7dNCxMCP384EC1UvLfFyfPg5Wyi9+hPt5qud/966809b6tpOVW7xk1U7zQqAzcf+wU88wtrlQ/m1RaTkE/QzYacC18CR0ed39+sVS9od4tl9PtThfkHIdcwaG4jU7wrToQBf0IwhOmeHiMDPbwhldes3FaLnQV09NTZGZ2sYl7RM3dR4pTmtNyG5ZiV1Nn6/cPClJs32oua7zONn4/Sdj5iPllYbV3ZLiXZNl1Ix93S0/KLPcUDb5jkCIJ/je3WGL3yOZGBm3lFVF4ysVSRGXbs2cu8eWTF7g0v8JgX4EDl+9gfHRgTTVcsce/IoquuIuqtlt7T6jdabn6Ge+26x3fd6jhawr6GbJ7pL86CFhY0Dsy3Hsyn8tRrgwZnM/l1ry302W5p2hav/tqkQL0sjYtd/nuQV51cOPpIVt5IArScmsOCptIy60ejPLMzi43KGpYL+1XezDa7lBZCvoZ8qpDl3P3Q0+vWR70jgz3nhzsK3CpktMfCA0e1i09KbPcUzTL332zqmm5wvbHpmzVwajs1hcKrD0wrEdBP0NecmCM2dnFhpUwtb0nYcdgD3gbV+90oiz3FM3yd+8G+ZxDPpenZ+PpHiIp6GfMRpUwG72ec4LpEHPVKRGD5cGYPrnQDFfBDFOVV2tnw6r0st09NkghdHYSTBdYdkOTeVcm8YbVkszqTFmsTuDuv75azx9MEB51RZzlXrNZ/u5Zp6CfQcE8tjlnNQjXz1tbP/H56vtbX2IWPngA5HCISOluSxD8qxONu6vz0oanQvRc/yDTU8hTzOeqFS7Be0U6XVcG/e2O0ZHEGB+tWqcDOLlKnXreqU5Sns85jI/0k3fLNTdmO93xk5McffI0E9MLjI/0c+TQPg7uXzsVX3BAy9HcQWt8tB9KtSPhBdUlwVWIG3peXRYxoXk7xL3Patyb7tF1QX+7Y3QkMcZHo3U6DrzoylEg6IXoV9IEgTw4Cw86eQRn4430FPNdF/DvfvhE9fnZqYXq86jAv11BdclGVyHlULlf9b+yu5qyanG74t5n1/v516dgzlfZnK4L+tvtdNOOTjtBeiVf6VzxxafPk8utZqiDuH38xAWOfOvlLVlnNzr65OmGy+MI+s3y73c0fj18UAhK9/zxi/z00mYPCnHvs+v9/OsPvWDbP1/aq+uC/nY73Wzn8w6r+emBvgJLfYXqWXiwPOfU5q8BpivjhNSbmF5sqs1ZNdGgs1nat9tGB4XgQFAdNmHFr+tuJO6OZlnuyNaNui7ob7fjSfjzDrC4UmZ+cQUH+ItP/iOvPLiXg/t3VYN3UIES3ABd/Tl9lBab62Y3PtLP2akFFpZKlUlj/HmBrxzXpfN6gu22dnlf5Pvr8/9X7BniuXOzG94P2Ipm7zVE8bvZA6GSPM/zGBnpp7y0Uk0XlV2Pr5yaYmZhhfnFFfK5HIN9BXorQ2a0qrNVWjtzydY0neA1xgwaYw4ZYxxjTGqjUaMOJq/45j0U8g49hRx9PXkG+goM9RfZMdDDyFAPu4Z72b2zj5tfdgXFQo5iIcdK2WVmbply2WN4oIcLM0t84jNf4x+/cZGeYr46JkZumwMnHTm0j4WlEtMzS5RKLnhQKrlMzy5z/OTkln9utztyKLp3ZtTyIP9/dmoB14Nnz8zw148+y9fOzOB6q/cDWrG969fVip/tOA49xTz9vf5+u3Ool+cn53jgsef8QeU8KJddLs0ts7JSJufADS/Z25Ihjhv9TakzV2dq6kzfGHMz8Dv4t7BeCRw3xrzFWnt/nI1rJKhQyVVqwgd6Cyz2Fcg5Di970R6G+gt85vhZzl9cZHykj9d82+VNn2UdunY3uZzD0SdP86WTFygUcgz3F+nrXd1Urc4ZH9w/xuhQb81ZfrDOpPPTaRZsF/+M2v9dNzqjrs//zy74V2EzCyst/922615DsJ7+3gLs6KvuP2XP4we+45uq6/LCw0y7tWPQNHP/QJ25ukuz6Z3/AhwB7rXWnjHGvBb4EyDWoN/fm6e3mPfrxIPqlIgKldEdfZRCIxa99IV7eOkLt34WcnD/GAf3j/ErH/p85KxQW8kZb3S5v1wqMx4x2FXa89Pr2U6Ko1nB7ypY10c/fYKjT55es676/H+QI6/Plbdie7frXkN4Pf29BT/44/+thL+74zgUGwwlUDMAWcllpcHBQJ25ukez6Z2ctfZM8MRa++WY2lOjr6fAQF+Bvp5CNZ3SzokQooKwvzw6Z9xIM5f7rVpXWsSR4tjOuuq3bzDzWP0MZK3Y3u36XbZiPYV8jt6ePIN9fspo985+9oz2M7ajlx0DRfp78i2fBUuS1WzQf84Y80bAM8aMGGP+I3AqxnalwmZyxutZ73K/1etKi2a+czvXVb8dh/r9u6TD/bUDmLRie7frdxnXevwrgzwDlQPB+Ih/INg13MuOgR4Gegv0FFo/JaK0R7PpnR8HPgBcCZwAHgTeGVej0mIzOeP1NHO536p1bSRIg3zt7AwrJZdiIcfVlw23fF3tLKfcyva9Zu8wVxzaV6neWd3eAHd87DhTs8uMDvVsabu063fZrvWAnzLqKa4d5Gv37kFy5XJNT+WVSprIjcqNSo0kejo3FfStteeAfx5rS1IqyBlvR7Olha1Y13oet+e4++ET1UqhqkpKJGhDK2y2nLId69po+4Z7+BYLuW318I37d9nu9TTi91KulJjWcSPGiw9KTXU4SKb3P2wQ9I0xJ4keoBAAa+2BlreoCx05tK9muIDw8nZ64JifkQsqVwJBBUsrq0va+Z1bta609vDtVLmcQ0/EEMCNZ8hyIwsnulW7p+wMbHSmfxN+heQv4ad17gJKwA8D+2NrVZdp52X4es5M+hM41FesBM9bmXpp53duZxpOtm+9GbLCM0iVyh6lktuS2aLSKKmezusGfWvt1wCMMYeste8IvfQ+Y8wXYm1Zl0n6Mhxg79ggp85copDP+Z3AKoIKllanXtr5nduZhpP4BENU9BajDwY189dWphTsVEn1dG62escxxnxH8MQYcyv+Gb90kFuuuwpYrVwJBBUsnVop1CrdVkHVTfK5HL1Fvyf9joEeRod72R2qKhqulJcW8k6Tg2cnL6mezs1W7/wo8CFjzD78A8WzwNviapTE47DZw8UbD/jVO47DSqlMTyHPVZcNJZJuSptwmmh6bpnLRuPpUCats1pVtHplsHv3IN5KiZWyy/KKy0qpnMp7BUn1dG62eucJ4JAxZgzwrLUXNvqMMebtwNsrT/uAb8e/R/AB/KuE+621t2++ybIdaUgzRWlH791mBNtnfHyYiYmZtq9fts8JHQgGK5m5UtllpeSyXPIPAqVyOo4CSfR0bnbsnRuAdwFD+KmePHC1tfaaRp+x1t6Ff+MXY8xvAXcCdwBvxr8p/AljzGFr7ePbaL90gaCUNBD3ZCiSPX5ZaY7+Srrc9Sr9CUpu9YBQTuPlQAyazenfCfwV/kHit4DngI8280FjzMuBlwB/CvRaa5+x1nrAfcDNm26xdJ2glLReHL13RcBPC/UW8wz1FxlZ0+u48+4PbEazOf0la+3vG2OuAaaAHwH+ocnPvhu4HdgBXAotnwHWrfMfHR2gENXrI8L4+HCTzWkftak5ZybnIgcDm55bbrq9j9tzPHDsFGcm59g7Nsgt113FYbO9G2Jp3FZqU3Na1SZ/hFK35qog6FewleuCXSmYXrLZoL9ojNkFWOAGa+1DlRTPuowxI8CLrbWfNMbsAMK/iWFger3PT03NN9W4NOZf1abmBaWk9S4b7W+qvfVz5Z46c4k77znOxRsPbDk9lMZtpTY1J+425QDH80LDVAedy7x1+xTs2jXIhQtzsbUr7AXjQw1faza98z7gz4CPA28zxnwJeKyJz70WeADAWnsJWDbGXGuMcYDXA480uX7pYkEpab1mSyXbObibCKwOP9HXszqpzdjOPi4bHWB8pI/RSppooK9AbzFdI5U2e6a/AHyXtdar5OhfBPx9E58z+DdtA/8a+DD+ZCz3W2s/t5nGSncKl5JupUetetJKmlTnQK7rYLZ79yBOqbx2MhvXa2uP42aD/v+w1n4CwFo7BzzRzIestf+z7vlngRs21ULJhO2UkqonrXQCf8jqXOT9q7Jblyaq9DaOY6TSZoP+M8aYO4HP4Z/1A2Ct/YOWt0hkk9IyoJ3IVjW6OnA9rzqjWXVms21eGTQb9CfxB167vm65gr4kLi0D2om0WlSPY6hcGZQ2nuYyyoZB3xjzE8A91tqPGmOOAeP4PWpv3cqXEIlDWnsai8Qhn8uR76kdpXS1vHT90L9u9Y4x5l34PWi/VFnUy+pQCu/aRptFRKSFVqe5XP9cfqOSzR8Bvs9a+1TluVsZbvkO/OAvIiIdZKOgX7bWzoae/yqAtbaE36NWREQ6yEZBP2eMqfaitdbeDWCM2Qm4DT8lIiKptFHQ/zDwB5UhFAAwxgzhD8D2R3E2TEREWm+j6p3/Bvw28Lwx5sv4k6R/C/CH1tr3x9046R5pGS9fJOs2miO3DLzTGHM7cF1l8WPW2q/H3jLpGvUDomm8fJHkNDtz1jdocvx8kXrrDYimoC/SXs32yBXZMg2Ilm1K7aWLgr7ETgOiZZdSe+nT7Hj6IlvWaOAzDYjW/TTXQfroTF9iv/xO44Bo4e/cU8gBDsulcvX7vy7GKQCzlO5Qai99FPQzrl2X32kaEC38nReWSnxjZgmA0eHe6vffuXOAK3f1x7pu6P50h1J76aMfTrG2AAALlklEQVT0TsZl8fI7/N1mF1aqj2dCjx88dir2dTezvNMptZc+OtPPuCxefoe/c6nsRj4+E9ME1lnb3mlM7WWdgn7GZfHyO/ydC/kcpZJbfRzYu2sw9nXXLu/e7Z2m1J4ovZN5Wbz8Dn+3of5i9fFw6PHN110V+7qbWS7SajrTz7gsXn7Xf+fRoR5wHJZX3Or3P2z2MDHR+tHDs7i9JV0U9CWTl99Jfucsbm9JD6V3REQyREFfRCRDFPRFRDJEQV9EJEMU9EVEMkTVO5IpWRrsTCSKgr5kRtYGOxOJovSOZEbWBjsTiaKgL5mRtcHORKLEmt4xxrwL+F6gB/g/wMPAXYAHHAdus9a6DX+ASAtlcbAzkXqxnekbY24CXgW8GrgRuBJ4P/Aea+1rAAd4U1zrF6mnwc5EwPE8L5YfbIz5r/hn9C8BdgA/B3wMuMJa6xlj3gR8l7X2tkY/o1Qqe4VCPpb2yarH7TkeOHaKM5Nz7B0b5JbrruKw2ZN0s2LxuD3Hg8dOcebCHHt3DXLzFr9rlrbZerQdUstp+EKMQf+DwNXAG4H9wD3ADmvtvsrr3wG8w1r71kY/Y2JipqnGjY8PxzIi4nZ0SpvqK1oCb77xQNsqWjplWwWS2mZp207HT05yz6PPslKqzdC2c9+JkrbtFGhnu8bHhxsG/Thv5E4C91lrl621FlgEdoZeHwamY1y/NEEVLZunbebTduhMcQb9o8B3G2McY8zlwCDwYCXXD3Ar8EiM65cmqKJl87TNfNoOnSm2oG+t/WvgCeAY8HHgNuBngduNMZ/Br+j5SFzrl+aMj/Q3WK6Klka0zXzaDp0p1pJNa+3PRyy+Mc51yuYcObQvMj+tipbGtM18Rw7t455Hn41cLumlYRgyTtP3bZ62me/g/jF27hzgE488k+nt0GkU9EXT922BtpnvsNnDlbui0zySThqGQUQkQxT0RUQyROkdSR2NeS8SHwV9SRWNeS8SL6V3JFXUy1MkXgr6kirq5SkSLwV9SRX18hSJl4K+pIrGvBeJl27kSqqot6tIvBT0JXXU21UkPkrviIhkiIK+iEiGKOiLiGSIgr6ISIYo6IuIZIiCvohIhijoi4hkiIK+iEiGKOiLiGSIgr6ISIYo6IuIZIiCvohIhijoi4hkiIK+iEiGKOiLiGSIxtOXNY6fnKxMYrLA+Ei/JjER6SIK+lLj+MlJ7n74RPX52amF6nMFfpHOp/SO1Dj65OlNLReRzhLrmb4x5gngYuXpSeB3gA8AJeB+a+3tca5fNm9ieqHB8sU2t0RE4hBb0DfG9AFYa28KLfsi8GbgBPAJY8xha+3jcbVBNm98pJ+zU2sD//hIXwKtEZFWi/NM/9uAAWPM/ZX1vBfotdY+A2CMuQ+4GVDQT5Ejh/bV5PTDy0Wk88UZ9OeB/wX8LvBC4F5gOvT6DHBgvR8wOjpAoZBvamXj48Nba2WMOrFNrxsfZufOAR48doozF+bYu2uQm6+7isNmT6LtSoLa1By1qXlpaFecQf8p4B+ttR7wlDHmIrAr9PowtQeBNaam5pta0fj4MBMTM1ttZyw6uU1X7urn7d9tapbF+V06eVu1k9rUnDS2CdrbrvUOLnFW77wDeB+AMeZyYACYM8Zca4xxgNcDj8S4fhERqRPnmf7vAXcZY44CHv5BwAU+DOTxq3c+F+P6RUSkTmxB31q7DLwl4qUb4lqniIisT52zREQyREFfRCRDFPRFRDJEQV9EJEMU9EVEMkRBX0QkQxT0RUQyREFfRCRDFPRFRDJEQV9EJEMU9EVEMkQTo4tIxzp+cpKjT55mYnqB8ZF+jhzax+tSMGZ9minoi0hHOn5ysmaWt7NTC9z98Al27hzgyl39CbYs3ZTeEZGOdPTJ05HLHzx2qs0t6SwK+iLSkSamFyKXn7kw1+aWdBYFfRHpSOMj0SmcvbsG29ySzqKgLyId6cihfZHLb77uqja3pLPoRq6IdKSD+8cAKtU7i4yP9HHk0D4Omz2pnBg9LRT0RaRjHdw/Vg3+0hyld0REMkRBX0QkQxT0RUQyREFfRCRDFPRFRDJEQV9EJEMcz/OSboOIiLSJzvRFRDJEQV9EJEMU9EVEMkRBX0QkQxT0RUQyREFfRCRDFPRFRDKko4ZWNsZcD/x3a+1NxphvAu4CPOA4cJu11jXG/DLwBqAE/JS19lgb2/TtwG8AZWAJ+BFr7VljzK8DrwaCQb7fZK292KY2HQY+Djxdefm3rbV/lvB2+lNgb+Wla4DPWmt/yBhzDzAGrAAL1tpbY2xPEbizsv5e4FeBL5PgPtWgTadIcJ9q0KbnSHCfatCmt5D8PpUHPggY/N/XvwQcUhCnwjom6Btjfh54GxBMgPl+4D3W2k8ZY+4A3mSM+RpwI3A9cCVwN/CKNrbpA8BPWmu/aIz5ceAXgJ8BDgOvt9aej6st67TpMPB+a+37Qu85TILbyVr7Q5Xlo8AngZ+uvPWbgJdYa9vRY/CtwKS19m3GmDHgCeCLJLtPRbXpJMnuU1Ft+k8ku0+taZO19qpKO5Lcp74HwFr7amPMTfgxyiHhOFWvk9I7zwDfH3r+MuDhyuN7gVuAI8D91lrPWnsKKBhjxtvYph+y1n6x8rgALBpjcsALgf9rjHnUGPOOGNsT1aaXAW8wxnzaGPN7xphhkt9OgduB37DWnjbGXAaMAB83xhw1xrwxxvYA/AXwi6HnJZLfp6LalPQ+1Wg7JblPRbUpkNg+Za39K+CdladXA2dJfp9ao2OCvrX2bvxLtIATOnrPADuBHUD4EjdY3pY2WWtPAxhjXgX8W+DXgEH8y/O3At8N/BtjzKF2tQk4Bvyctfa1wAngl0l4OwEYY/YAN+Nf+gL0AO8Dvg//APFrlffE1aZZa+1MJWB9BHgPCe9TUW1Kep9qsJ0S3acatCnxfarStpIx5kP4v5+PkII4Va9jgn4EN/R4GJgGLlUe1y9vG2PMDwJ3AG+w1k4A88AHrLXz1toZ4CHg29rYpI9aa78QPAZeSgq2E/DPgD+21pYrz88Ad1hrS9bac/hpBBNnA4wxV+KnAv7QWvvHpGCfimhT4vtURJsS36eithMp2KcArLX/AngRfn6/P/RSKuJUJwf9Jyp5M4BbgUeAR4HXG2NyxpirgFw78ugBY8xb8c/GbrLWnqgsfhFw1BiTr9yAOgI83q42AfcZY66rPL4Z+AIJb6eKW/Avd8PP/xzAGDMEHAS+EtfKK5f+9wO/YK29s7I40X0qqk1J71MNtlOi+1SDNkHy+9TbjDHvqjydxz+JeCxtcapjbuRG+Fngg8aYHvxf5EestWVjzCPAZ/APaLe1qzGVO/e/jl9t8ZfGGICHrbW/bIz5MPBZ/BTHH1hrv9SudgE/AfymMWYZ/8znndbaS0ltpxCDnxoAwFp7rzHm9caYz+L/sbw75j+EdwOjwC8aY4L88L8Hfj3Bfaq+TXn8QPU1ktunorbTzwD/O8F9KqpNt5L8PvWXwO8bYz4NFIGfwt+PUhOnQEMri4hkSiend0REZJMU9EVEMkRBX0QkQxT0RUQyREFfRCRDOrlkU6SljDG/hT+IWQ/+mC1frrz0O4Bnrb0jqbaJtIpKNkXqGGOuAT5lrb0m4aaItJzO9EU2YIx5L4C19r3GmDPAX+GPkHgGf4jffwdcAbzdWvuw8Yf9/m38IX3n8UfJfCKJtovUU05fZHMuA+611r4U6AP+qbX2NcB78XtgAnwI+Hlr7WH8URf/NImGikTRmb7I5gXju3wNOBp6PFoZ4+UV+N3xg/cPGWPGrLWT7W2myFoK+iKbZK1dDj0t1b2cBxattd8eLDDGXAFcaEfbRDai9I5IC1WmLHy6MjomxpjvBD6dbKtEVulMX6T1fhi4w/jTRC4DP9im6fpENqSSTRGRDFF6R0QkQxT0RUQyREFfRCRDFPRFRDJEQV9EJEMU9EVEMkRBX0QkQ/4/8Wz6+ICzDk0AAAAASUVORK5CYII=\n", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Standard imports required to show plots\n", + "%matplotlib inline\n", + "import pandas as pd\n", + "import seaborn as sns\n", + "\n", + "# Load the data\n", + "grades = pd.read_csv('https://openmv.net/file/unlimited-time-test.csv')\n", + "\n", + "# Fit a regression model between Time and Grade, showing the model's prediction boundaries\n", + "sns.regplot(x = \"Time\", y = \"Grade\", data = grades);" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### TO DO\n", + "\n", + "* MUST COVER: time-series of stability data from which a database was built on\n", + "\n", + "* Bubble plots from this notebook: https://nbviewer.jupyter.org/github/engineersCode/EngComp2_takeoff/blob/master/notebooks_en/2_Seeing_Stats.ipynb\n", + "\n", + "* regression: https://towardsdatascience.com/simple-and-multiple-linear-regression-in-python-c928425168f9\n", + "\n", + "* MUST COVER: qq-plot in Pandas\n", + "\n", + "* MUST COVER: https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.probplot.html\n", + "\n", + "* Regression model:http://localhost:8888/notebooks/Notebooks/Thermocouple%20-%20linear%20regression.ipynb" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Some tips\n", + "\n", + "* One\n", + "* Two" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + ">***Feedback and comments about this worksheet?***\n", + "> Please provide any anonymous [comments, feedback and tips](https://docs.google.com/forms/d/1Fpo0q7uGLcM6xcLRyp4qw1mZ0_igSUEnJV6ZGbpG4C4/viewform)." + ] + } + ], + "metadata": { + "gist": { + "data": { + "description": "Module-10-interactive.ipynb", + "public": true + }, + "id": "" + }, + "hide_input": false, + "kernelspec": { + "display_name": "Python [default]", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.5.5" + }, + "toc": { + "base_numbering": 1, + "nav_menu": {}, + "number_sections": true, + "sideBar": true, + "skip_h1_title": true, + "title_cell": "Table of Contents", + "title_sidebar": "Contents", + "toc_cell": true, + "toc_position": { + "height": "calc(100% - 180px)", + "left": "10px", + "top": "150px", + "width": "221.984px" + }, + "toc_section_display": true, + "toc_window_display": true + }, + "varInspector": { + "cols": { + "lenName": 16, + "lenType": 16, + "lenVar": 40 + }, + "kernels_config": { + "python": { + "delete_cmd_postfix": "", + "delete_cmd_prefix": "del ", + "library": "var_list.py", + "varRefreshCmd": "print(var_dic_list())" + }, + "r": { + "delete_cmd_postfix": ") ", + "delete_cmd_prefix": "rm(", + "library": "var_list.r", + "varRefreshCmd": "cat(var_dic_list()) " + } + }, + "types_to_exclude": [ + "module", + "function", + "builtin_function_or_method", + "instance", + "_Feature" + ], + "window_display": false + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} From c6bf8a9d7914aea62495f918712b28224d6b983e Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Thu, 25 Jul 2019 08:24:37 +0200 Subject: [PATCH 074/134] Added violin and swarm plot; raincloud plot still to be added --- Module-10-interactive.ipynb | 107 +++++++++++++++++++++++++++++++++--- Module-11-interactive.ipynb | 4 +- 2 files changed, 102 insertions(+), 9 deletions(-) diff --git a/Module-10-interactive.ipynb b/Module-10-interactive.ipynb index 2426eb6..984c2b2 100644 --- a/Module-10-interactive.ipynb +++ b/Module-10-interactive.ipynb @@ -1890,26 +1890,116 @@ "source": [ "## Other noteworthy plots\n", "\n", - "### Violin plot / beeswarm plot\n", + "Here we will consider alternatives, or additions, to the box plot, which we saw in the prior module. These alternatives are:\n", "\n", - "* See engmark7 for sample. Alternative to box plot\n", + "* violin plot: shows the distribution\n", + "* swarm plot: shows the raw data, and how it is distributed\n", + "* raincloud plot: combines elements of the both of the above\n", "\n", - "### " + "All 3 options improve the box plot, by showing the distribution of the underlying data and raw values from the column being visualized." ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 153, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "# Get the data\n", + "\n", + "import pandas as pd\n", + "ammonia = pd.read_csv('http://openmv.net/file/ammonia.csv')\n", + "# You might need the proxy server settings" + ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 158, "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2UAAAExCAYAAAD89gqbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3Xd0Vded9//3uVW9gQDR+wHTe8cYjEtsx467jZM4bSaJ83gyyUpmJuPMxDOZzO+J55nJZCWTeOzEiR3H3XHHxtiABQIBAoxpB7AkehGot1vP748LF2QJEKicK+nzWssL7X32ufdrkLTv9+xm2LaNiIiIiIiIOMPldAAiIiIiIiI9mZIyERERERERBykpExERERERcZCSMhEREREREQcpKRMREREREXGQkjIREREREREHeS7VwDTNB4EHzxSTgMnAIuC/gTCwwrKsRzsmPBERkcSk/lFERNqLcTnnlJmm+WvgY+DbwB1AMfA28IhlWVs6JEIREZEEp/5RRETaotXTF03TnA6MA54H/JZlfWpZlg28ByzpoPhEREQSmvpHERFpq0tOXzzPj4BHgQyg+rz6GmD4xW4MhyO2x+O+/OhERKQrMpwOoJNdcf8I6iNFRHqQC/aPrUrKTNPMAsZYlrXKNM0MIP28y+lA5cXur6iob83biIhIN5Cbm37pRt1EW/tHUB8pItJTXKx/bO30xYXASgDLsqqBoGmaI0zTNIDrgfy2BikiItIFqX8UEZE2a+30RZPYouWzvgk8C7iJ7S5V2N6BiYiIdAHqH0VEpM0ua/fFK1VWVtPxbyIiIgkhNze9p60paxP1kSIiPcPF+kcdHi0iIiIiIuIgJWUiIiIiIiIOUlImIiIiIiLiICVlIiIiIiIiDlJSJiIiIiIi4iAlZSIiIiIiIg5SUiYiIiIiIuIgJWUiIiIiIiIOUlImIiIiIiLiICVlIiIiIiIiDlJSJiIiIiIi4iAlZSIiIiIiIg5SUiYiIiIiIuIgJWUiIiIiIiIOUlImIiIiIiLiICVlIiIiIiIiDlJSJiIiIiIi4iAlZSIiIiIiIg5SUiYiIiIiIuIgJWUiIiIiIiIOUlImIiIiIiLiICVlIiIiIiIiDlJSJiIiIiKdxrJ289vf/pING9Y5HYpIwvA4HYCIiIiI9Ay2bfP447+isrKCjRs3MHbsODIzs5wOS8RxGikTERERkU4RiUSorKyIl0+fPuVgNCKJQ0mZiIiIiHSKUCj4mXLIoUhEEouSMhERERHpFIFA4DPlRociEUksSspEREREpFM0NDRctCzSUykpExEREZFOUV9f16RcV1d3gZYiPYuSMhERERHpFNXV1U3KNTXVF2gp0rMoKRMRERGRTlFdXdWkXFVV6VAkIomlVeeUmab5D8DnAR/wP8Aa4A+ADewAHrIsK9pBMYqIiCQk9Y8il+ezW+CXl592KBKRxHLJkTLTNBcBc4F5wNXAIOA/gUcsy1oAGMCtHRijiIhIwlH/KHL5Tp062aRcVlbmUCQiiaU10xevBz4B/gK8CbwFTCP2NBBgOXBth0QnIiKSuNQ/ilymo0ePNCmfPHmccDjsUDQiiaM10xd7A0OAm4FhwBuAy7Is+8z1GiDzYi+QnZ2Cx+NuS5wiIiKJps39I6iPlJ4jHA5z7NjRJnWRSIRAoIq8vKHOBCWSIFqTlJ0G9liWFQQs0zQbiU3ROCsduOgqzYqK+iuPUEREupTc3HSnQ+gsbe4fQX2k9BwlJcWEQqFm9Zs3f0xqai8HIhLpXBfrH1szfXEtcINpmoZpmv2BVOCDM3PpAW4E8tsapIiISBej/lHkMuzfb7VYv29fy/UiPcklR8osy3rLNM2FwEZiSdxDQAnwhGmaPmA38HKHRikiIpJg1D+KXJ7t27fFv/ZkDiVcVQrAjh3biUajuFw6qUl6rlZtiW9Z1g9bqL66nWORBPbii8+yaVOh02F0KXV1dQCkpqY6HEnXMWPGLO6+e5nTYYi0mvpHkdZpaKhnz55d8XKk9hgYbrAjVFdXUVy8n5EjRzsYoYiz9EhCpIMEgwGCwYDTYYiIiDiusHA9kUgkXrYjAbDPHeFXUKCZvtKzGbZtX7pVG5WV1XT8m4gkmB/84GEAHnvslw5HItK5cnPTDadj6ErUR0p3Z9s2jz76jxw8WHrBNn5/Ev/5n78mOTm58wIT6WQX6x81UiYiIiIiHWbnzk/OJWRG0+MfXL4MAAKBRlater+TIxNJHErKRERERKRD2LbNq6++GC97M4c2ue7NObeObPnyN6mvr+us0EQSipIyEREREekQ+fmrKS0tjhUMN77e45pc92YNx/CmAbENsl555cXPvoRIj6CkTERERETaXXn5aV544U/xsi9nNC5vSpM2huHC32divLxq1fvs3r2z02IUSRRKykRERESkXYXDYR5//Fc0NDQAYPjSm42SneVJH4Q7rX+8/OSTv6GqqrJT4hRJFErKRERERKTd2LbNM8/8nn37rHhdUt5MDFfLx+MahkFSvxng8gFQUVHOr371X4RCoU6JVyQRKCkTERERkXbz5pt/IT9/dbzs6zMJT0ruRe9xeZNJHjAbiO0Y/umn+3jiiV83OdtMpDtTUiYiIiIi7eKNN17ltddejpc9mUPx5Yxp1b2etP74+0yOlzdv3sjjj/+KcDjc7nGKJJqWx5FFRERERFopGo3yl7+8xNtvvx6vc6f2JanfDAyj9efJe3NGEw3VEarYC8DmzYVEIhH+6q8ewu/3t3vcIolCI2UiIiIicsWCwSCPP/6rZglZ8sAFGC73Re5szjAM/H2n4M0+d37Z1q2b+b//91+prKxot5hFEo2SMhERERG5IuXlp/n5z3/Kpk0b4nXu1LwzCdmVTciKJ2Y5ZryutLSYn/70nygpKW5zzCKJSEmZiIiIiFy2bdu28M///A8UF++P13mzR5E86MoTsrMMwyCp7xT8/aZxdvOP8vLT/Oxn/8z77y/Htu02vb5IotGaMhERERFptVAoxCuvvMCKFe+cVxsb3fLljL7gfVfClz0KlzeNhiMFEA0RiUR47rln2L17F1/5yjdIT89o1/cTcYpGykRERESkVUpKPuXRR3/UJCEzPMkkD1nc7gnZWZ60PFKHXYcrKTtet21bET/+8Q8pKtrYIe8p0tk0UiYiIiIiFxUKhXjjjVdYvvwtotFovN6d1p+kvFm4PB27M6LLl07KkGsJnPw4vjNjdXU1v/71L5g5cw7Lln1Zo2bSpSkpExEREZEL2rnzE/70p6c4ceL4uUrDg7/PJLzZIy9ry/u2MFxukvpNxZPWj8Zjm7DDDQBs3LieXbs+4a677mfevIW4XJoIJl2PkjIRERERaaaiooIXXniGjRs3NKl3p/QhKW8mLl+aI3F50vqTOvxGGk9sJVxVAkBtbS1PPfW/5Oev5otf/CqDBg12JDaRK6WkTERERETiQqEgK1a8y9tvv05jY8O5Cy4v/tyJnTo6diGG20dy/1mEMwbReHwzdqgegP379/Looz9i0aIl3HrrHZrSKF2GkjIRERERwbZtNm0q5OWXn+PUqbIm1zwZQ/D3nYzLk+xQdC2LjZp9juCpnQRPW0CUaDTKhx++z4YN67jlli+wZMn1eDz6yCuJTd+hIiIiIj3c3r17ePnl59m/f2+TepcvA3+/aXhS+zoU2aUZrtj6Nk/mUALHi4jUnwSgvr6eF154llWrVvKFL9zFjBmztd5MEpaSMhEREZEe6sCBUl555QV27Pi4Sb3h9uHrPQFv9ggMo2skMm5/JsmDryFce4TAiW3YoVoATp48weOP/4rly9/k9tvvZsKEyY5PvxT5LCVlIiIiIj3MkSOHeeONV9m0acNnrrjw5ozC33schtvnSGxtYRgG3vSBeNLyCJXvJ3BqB0RDABw8eIBf/OIxRo0yue22Oxkz5iolZ5IwlJSJiIiI9BAHDpTw1luvUVS06TNXDDyZQ/D3Hu/YrortyTDc+HqZeLOGETy9m2D5XrAjAOzbZ/HYY//GyJGjufnm25gwYZKSM3GckjIRERGRbm7//r289dbrbN++tdk1T/pAfLkTcPszHYisYxluX+w8tZzRBE/tIlTxKRA7/Hr//r384hc/Z8iQYdx8821MmTJNa87EMUrKRERERLqhSCTCli2bWLHiHT79dH+z6560Afh6j8OdnONAdJ3L5Ukmqd80fDkmwdO7CVWWcDY5O3CghF//+r/o06cvS5feyPz5C/H7k5wNWHocJWUiIiIi3UhDQz35+WtYufLdZlvbA3jSB8WSsaQsB6JzlsuXRlLeDHy9xxE8vYdQ5afxaY0nT57g2Wf/wGuvvcSiRUtYvPh6srOzHY1Xeg4lZSIiIiLdwOHDh1i16n0KCtYSCDQ2vWi48GYMwdtrTLecpni5XN4UkvpNxdd7LKHyvQQr9sc3BKmrq+Ptt9/g3XffZsqU6SxevBTTHKt1Z9KhlJSJiIiIdFHhcJgtWzbx4Yfvs3fvnmbXDbcPb/YovNkjE+7g50Tg8iTj7zMJX++rCFWWECy3sEN1QGz65+bNhWzeXEhe3gAWL76WuXMXkJyc4nDU0h0pKRMRERHpYo4fP0Z+/mrWrVtDdXV1s+suXwbenNF4M4diuPRx71IMlxdfzmi82SMJ1xwhVL6XSMO5qZ/Hjh3h2Wf/yMsvP8+MGXNYuHARI0aM0uiZtJtW/ZSaprkVqDpTLAEeB/4bCAMrLMt6tGPCExERSVzqH6UzBQIBNm8uJD9/dYujYmDgSR+IN3sk7pQ+ShiugGG48GYMwpsxiEhjJaGK/YSqSyEaBmL/BmvXrmbt2tX07z+AhQuvYc6c+aSnZzgbuHR5l0zKTNNMArAsa9F5dduAO4Bi4G3TNKdalrWlo4IUERFJNOofpTPYtk1x8X7WrfuIwsICGhoamrUxPMl4s0bgzRqBy6spiu3FnZSFO286/j6TCFWVEqrcTzRQFb9+9OgRnn/+T7z00nNMmTKN+fOvZty4ibjdbgejlq6qNSNlk4AU0zRXnGn/E8BvWdanAKZpvgcsAdTpiIhIT6L+UTpMRUU5BQVrWbduDcePH2uhhYEnrT/erOG40/IwDJ2v1VEMtxdfTmxdXrThNKHKTwlVHwI7NnoWW3u2kc2bN5KZmcWcOfOZN28hAwYMdDhy6Upak5TVA/8BPAmMApYDleddrwGGX+wFsrNT8Hj01EB6Frc71kHm5qY7HImIdJA294+gPlLOCQQCFBYW8sEHH7Bt2zai0WizNoY3LTYqljlUo2KdzDAM3Cm9caf0xt93KqHqg4Qqi4k2no63qaqq5N133+Ldd99i1KhRLFmyhAULFpCRoemNcnGtScr2Avsty7KBvaZpVgHnnzKYTtNOqJmKivorj1Cki4pEYp1pWVmNw5GIdK4e9CCizf0jqI/s6WzbZt8+i4KCfDZt2tDi9ERcHjzpg/BmDsOdkqu1YgnAcHvxZY/Alz0itvasqpRwVSl25NxRBPv27WPfvn088cQTTJ48lblzFzJhwiQ8Hm280lNdrH9szXfFV4EJwLdN0+wPpAB1pmmOIDZn/npAC5lFRKSnUf8oV+zUqTIKCvIpKMjn5MkTLbZxp/TBmzUMT/og7aCYwNxJWbiTJmP3mUik7jihyhLCtUfAjj2cjUQiFBVtoqhoE+npGcyaNZd58xYyePAQJdgS15qf8N8BfzBNcy1gE+uEosCzgJvY7lKFHReiiIhIQlL/KJelsbGRzZsLKSjIZ8+eXS22MbxpeDOHxqYn+tI6OUJpC8Nw4UnrjyetP3YkQKjqIKGqEqKN5fE2NTXVrFz5LitXvsvAgYOYN28hs2fPJzNTB3r3dIZt2x3+JmVlNR3/JiIJ5gc/eBiAxx77pcORiHSu3Nx0Pfq9DOoju7doNIpl7Wbt2jUUFW0iGAw0b+Ty4s0YhCdzGO7k3t1+9KRm9/Pxr9PH3utgJJ0jEqgiXFVKqKoUO9x8eqrL5WL8+EnMm7eAyZOn4vX6HIhSOsPF+keNhYuIiIi0s5MnT7Bu3UcUFORz+vSpFloYuFP74c0ciid9gKYndmNufybuPpPw5U4gUneSUFUJ4ZrDYEeAWOK+fftWtm/fSmpq6pnpjVczdOiwbp+gyzn6DSAiIiLSDs5OT1y7ds0FDncGly8jtk4sQ7sn9jSx6Y398KT1w46ECNUcJFxZSqShLN6mrq6ODz98nw8/fJ8BA2LTG+fM0fTGnkBJmYiIiMgVsm2bvXv3sHbtGjZvLiQQaGF6otuHN2MI3sxhuJKyNfohsd0bs0bgyxpBNFgTO5y6qgQ7dG431iNHDvHii8/y8svPMXHiZObNu5pJk6Zo98ZuSv+qIiIiIpfp7O6J69Z9RFnZyRZaGLjT8vBmDsOT1h/DpbPopGUuXzr+3An4eo8nUn9memP1oSbTG7dt28K2bVtIS0tn9ux5zJ+/kMGDhzobuLQrJWUiIiIirRAINFJUtIl16z5iz55dtLRZmqYnypUyDANPal88qX2x+04jXHOIUGUxkYZzaxJra2viuzcOHjyEefMWMmvWXDIyNL2xq1NSJiIiInIBZ3dPLCjIv/D0RJc3Nj0xaxiupBxNT5Q2M9xevFnD8WYNj01vrCyJTW88b/fGgwcPcPDgM7z44p+ZMGESc+cuZNKkKXi9XgcjlyulpExERETkM44dO8r69WtZv37txXdPzBqGJ22ApidKh3H50vH3mYgvd3yLuzdGIpH49MbU1FRmzpzDnDnzGTFilB4QdCFKykRERESAqqpKCgvXs2HDOkpLi1ts4/Jl4Dl7uLM3pZMjlJ6s6e6NQULVhwhXlTSZ3lhXV8eqVStZtWolffr0ZfbsecyePY9+/fIcjFxaQ0mZiIiI9FgNDQ1s2bKJDRvWsWvXjhbXiZ3bPXGopidKQjDcPnzZI/BlX3j3xpMnT/DGG6/yxhuvMnTocObMmcfMmXPIzMxyMHK5ECVlIiIi0qMEg0G2b9/Kxo3r+fjjrYRCoeaNDBeetP54MoZo90RJaE13bywjXFVCqOYwRM99X5eWFlNaWszzz/+JMWOuYtasuUydOoO0tDQHI5fzKSkTERGRbi8cDrNjx3Y2blzP1q1FBAKNLbZzp+TiyRiKN2MQhtvXyVGKXLnY7o198KT2wR+dTrj2KOGqUsK1x4AoEDtXb/funezevZNnnvk948ZNYObMOUyZMo3kZE3HdZKSMhEREemWwuEwe/bsZOPGQrZu3URdXV2L7Vz+zFgiljkYlze1k6MUaX+Gy403YxDejEHYkUBs/Vn1ASL1ZfE2kUiE7du3sX37NjweLxMnTmbGjFlMmjSVpKQkB6PvmZSUiYiISLcRiUTYs2cXmzZtoKhoE3V1tS22M3zpeDMG48kYjNuvM56k+zLcfnzZI/FljyQaqo+df1Z1kGjj6XibcDjEli2b2LJlEz6f70yCNpuJEyfj9ytB6wxKykRERKRLi0aj7NtnUVhYwObNG6mtrWmxneFNwZsxBE/GYFz+LG3YIT2Oy5uCL8fEl2MSDdbGR9Cigcp4m2AwyObNG9m8eSM+n5/Jk6cwc+YcJkyYhNerKb0dRUmZiIiIdDm2bVNcvJ/CwvVs2rSBqqrKFtsZnmQ8GYPxZgzWzoki53H50vD3Hou/91iigWpCNYcIVx8kGqiKtwkGA2zcuIGNGzeQnJzM1KkzmDFjNlddNR6PR2lEe9LfpoiIiHQZR44cpqAgn02bNnDqVFmLbQxPMp70QbFELLmXEjGRS3D5M/D7x+HvPY5IoIpw9UHC1YeIBqvjbRoaGli37iPWrfuItLQ0pk2byZw58xk1ytTPWDtQUiYiIiIJrba2hsLCAtaty7/goc6G248nY1BsjVhyrj4kilwhtz8T95kt9qNnErRQ9UHs0Ln1mbW1taxZ8yFr1nxIbm4f5s5dwNy5C8jN7eNg5F2bkjIRERFJOGd3hlu37iM+/ngLkUikeSOXF2/6mUQstQ+G4er8QEW6KcMwcCdl4U7Kwpc7gWhjBaHqA4SrD2KHG+LtyspO8vrrr/D6669gmmOZO3cBM2fO1gYhl0lJmYiIiCSM+vo6PvpoFR98sILTp081b2C48KQNwJs5FHdaPwxDhzqLdDTDMHAn5+BOzsHuM5lIwynCVaWEqg82OaTasnZjWbt58cVnWbhwMYsXL6VXr94ORt51KCkTERERxx07dpSVK9+joOAjAoFAs+uu5F54M4fhzRisQ51FHGQYBp6UXDwpufj7TiVce4RQZQmRuuOADUBdXR3Ll7/Je++9zdSpM1i69AZGjhytacUXoaRMREREHFNefppXXnmB9evXNrtmuP14s4bjzRyGy5/hQHTSnuxohFBV0zWBwYp9eDOHY7g04tkVxQ6pju1uGg03EK46QLBif3z9WTQaZfPmQjZvLmTMmKu4555lDBkyzOGoE5OSMhEREel0DQ0N8SfpoVCoyTWXPxNvzmi8GUMwXPqo0h3YdpSGw2uJ1B1rUh84XkS45ijJgxZoTWAX5/Ik4+s1Bm/OaCK1xwiWW0TqT8av79mzi3/5l0eYO3cBt99+N9nZOQ5Gm3j0m05EREQ61fbtW3nqqSeanS3mTs3D12sM7pQ+mubUzQTLrWYJ2VmRutgHeH+vsZ0clXQEw3DhSR+AJ30AkcZKQuUWoapSwMa2bdat+4hNmwq54457uPba6/WzfoZh23aHv0lZWU3Hv8ll+tnPfkJFRbnTYUg3dvb7S0+CpKNkZ+fwox/9xOkwmsnNTVcPexkSsY/sKLZt8847b/Dqqy9y/ucPV1I2/j5T8KRqO+3uqq70faINpy943ZXcm9Sh13ZiRNKZIoFqAie3Eak92qR+3ryFfOlLX8Xr7RnrRC/WP/bYkbKKinJOnz6N4U12OhTppmxi0zDKq+sdjkS6IzvUcOlGIgkkFArxu9/9ho0bN8TrDE8S/txJeDKH6ml5NxdtrLjEdT0o787c/gxSBi0kXHecwImtRANVAKxb9xFHjx7h4Ye/T2ZmlsNROqvHJmUAhjeZtJGfdzoMEZHLVrv/DadDEGk127Z5+unfNUnI3Cm5JA2Yh8ujs4x6BDvatuvSLXhS++Eeeh2NxzcTrioBoKTkU375y//H3//9j3vMiFlLtKJSREREOtSHH65g3bqP4mVv9kiSB1+jhEykBzJcbpLyZuLvOxWIjZCXlHzKM8/8gc5YVpWolJSJiIhIhzl8+BDPP/+neNmTORR/32naaU+kBzMMA1/OaPx9p8Tr1q5dTWHhegejcpZ+I4qIiEiHsG2bP//5j0QiEQBcSTkk9Zuh9WMiAoA3exSezKHx8ksv/ZlAoNG5gBykpExEREQ6RFHRRvbs2XWmZJDUf5YOCRaROMMwSOo7DcMdm8pcUVHOW2+95nBUzlBSJiIiIu2uvr6eZ5/9Y7zszR6F25/pYEQikogMtxd/n4nx8rvvvs2RI4cdjMgZrdp90TTNPkARsBQIA38AbGAH8JBlWdoyR0REug3TNA1gmGVZxa1oqz6yBS+//Fz8cGjDnYQ/d7zDEYlIovJkDsNVWUy04RSRSIQ//vFJfvjDR/B4es5G8ZccKTNN0ws8Dpw9FOc/gUcsy1pAbMuUWzsuPBERkY5nmuZfm6ZZbZpmxDTNCLHk6v1W3Kc+sgUrV77H6tUfxMv+flMx3D13q2sRuTjDMEjqN52zuzHu37+Xp5/+fY/ajbE16ed/AL8F/uFMeRqw5szXy4HrgL9c7AWys1PweBJrDrnbrZmbItK1ud0ucnPTnQ6ju/h7YBLwU+Afgc8B81pxX7fsI9ti3bp1PPfc0/GyJ30QnvRBDkYkIl2BOykLX+54gmWfALHdGAcM6MuyZct6xOZAF03KTNN8ECizLOs90zTPdjiGZVln09Ya4JITxCsq6tsUZEeIRHrkbBIR6UYikShlZTVOh9FMF00UT1qWVWKa5ifABMuy/sc0zW9f7Ibu3EdeCdu2effdt3j55efjT7ddyb1im3v0gA9UItJ2vl5XEQ3Wxg+WfuGFFzhy5Dhf/OJX8Xq9DkfXdhfrHy81UvZVwDZN81pgMvA00Oe86+lAZVsDFBERcVidaZrXANuB20zT3AQkX+Ie9ZFnBINBnnnm900OiDa8aSQPXIDh6jlrQkSkbQzDIClvBg3hBiJ1xwFYu3YNJ04c59vf/i6Zmd13s6CLzuGzLGuhZVlXW5a1CNgGfAlYbprmojNNbgTyOzRCERGRjvcw8HngXaAXYAG/utgN6iNjSkqKefTRHzVJyNzJuaQMvRaXJ8nByESkKzIMF8kDFzQ5v2zfPosf//iHFBVtci6wDnYlj6++DzxhmqYP2A283L4hiYiIdC7LsnYAf3umeEcbXqrH9JHhcJh33nmDN9/8S/xwaABv5jD8edMxjO6zTk5EOpfhcpOUN4uQP4vAyW0A1NbW8Otf/xdz5y7g/vu/REpKqsNRtq9WJ2VnngSedXX7hyIiItK5TNN8y7Ksm03TLCG2jX0TlmUNb83r9LQ+8tChg/z+97/lwIHSc5WGB3/fKXizhmsNmYi0mWEY+HqNwZWURePRQuxwbJPbgoJ8du/eyZe//HUmTpzscJTtRxO9RUSkJ/vGmT8XORlEV3Gh0TF3cm+S+s/G5UtzMDoR6Y48qf1IHX4jjceLCFcfAKCiopxf/OLnzJ9/Nffe+0C3GDVTUiYiIj2WZVnHznx5BLgeyOHsQTkxTze7qYc6efIEv/nNLzlwoORcpeHCnzsBb46JYeioGRHpGIbbR/KAOYTSBxI4vhk7EgBim4Ds3PkJf/3X32H06DEOR9k2SspERETgz8AQYuvAzk5jtFFSBsCWLZv43e8ep6Hh3Pb9ruReJOXNwu3PcDAyEelJvBmDcKfkEjheRLjmEBAbNfv5z3/KnXfey/XX39Rlp08rKRMREYGJlmV17cesHcC2bV599UXefvv182pd+PtMxJszWqNjItLpXJ4kkgfOI1R9iMbjmyASJBqN8uKLf2bfvr1885vfwev1OR3mZdNvUxEREdhtmmae00EkmjfeeLVJQmZ4U0gZugRfrzFKyETEUd6MQaQOux5Xcq943datm/nf//11kzWvXYVGykRERCAFsEzT3AH5rlR2AAAgAElEQVQ0nq20LGuxcyE564MPVvD666/Ey+7UPJIHzMZw+x2MSkTkHJc3lZQhiwmc+JhQxV4Aioo28fTTv+PBB7/RpaYyKikTERGBnzkdQCI5daqM559/Jl52p/YjedB8nT0m7WL48OH079+fo0ePUlxc7HQ40sUZhht/3ylgGITKLQDy81czZcp0Jk+e6nB0raekTEREejzLstaYpnkjsIRY37jKsqzXL3Fbt/Xhh+/Hp/+4/NkkD1RCJu3j1ltv5atf/Soul4toNMpTTz3Fa6+95nRY0sUZhoG/z2TscAPh6oMArFz5rpKyrqCurg471Ejt/jecDkVE5LLZoQbq6pqddSxXyDTNHwJ3AM8S2xL/H03THG9Z1r85G1nni0aj5Oevipf9ueMxXD3244K0o+HDh8cTMgCXy8WDDz7I9u3bNWImbRZLzCYRrj4E2OzatYOTJ0/Qp09fp0NrFa3SFRERgQeARZZl/dKyrP8mdpj0A86G5IyGhnrq6upiBcONO037n0j76N+/fzwhO8vtdtO/f3+HIpLuxuVNxZWcEy+fPn3KwWguT4999JWamkogYpA28vNOhyIictlq979BamqK02F0Jy7LshrOKzcCYaeCcZLfn3SuYEdoepa2yJU7evQo0Wi0SWIWiUQ4evSog1FJt2NH418mJSVdpGFi0UiZiIgIfGCa5iumad5imuYtwIvAh04H5QSPx0Nqamq8HKk/6WA00p0UFxfz1FNPEY3GPjRHIhH+8Ic/aOqitJtouJFooCpeTk/vOofb99iRMhERkfN8F/gW8CViDyw/BB53NCIHzZgxm9WrPwAgVL4XT2rXWJMhie+1115j+/bt2n1ROkSoYn98pGz48JH07p3rcEStp6RMRER6PMuybNM0nwHeOq+6P3DQoZActWTJ9fGkLFx7hHDtUTxpWvcj7aO4uFjJmLS7aLCG4Ond8fK1117vYDSXT9MXRUSkxzNN8z+Aw8DqM/+tOfNnjzRgwEBmzpwdLzce24gdDjgYkYjIhdl2lMajhWfWwUL//gOYPn2Ww1FdHo2UiYiIwK3AAMuyap0OJFEsW/Yge/bsprq6CjvcSMORApIHX41h6HmuiCSWwMltRBpiOy263W6+8Y1v4/F0rTRHv1lFRERgO+B3OohEkp6ewYMPfiNejtSfIHB8C7at8/FEJHEEK/YTKt8bL3/+87czZMgwByO6Ml0rhRQREekYzwD7TdP8hPO2wrcsa7FzITlv8uSp3Hbbnbz22ssAhCr3Y3iS8OeOdzgyEREIVR8icLwoXp42bQY33XSrgxFdOSVlIiIi8G/A3wAHnA4k0dxyyxc4duwohYUFAARP7QDDhb/3VQ5HJiI9WbjmCI1HCoDY6P3gwUP5+te/1eyA8q5CSZmIiAhUWZb1tNNBJCLDMPjqV/+KurpaduzYDkCwbDtEQ/hyJ2IYOlxaRDpXqKqExqObOJuQ9e2bx9/+7Q/x+7vOYdGfpaRMREQEtpim+QqwHAierVSiFuP1+vjOd77Hf//3Y+zevROA4OndRIO1JPWfheHSxwkR6Xi2bRM8tYPgqZ3xuj59+vLDH/4jmZlZDkbWdl1zfE9ERKR9pQLVwDzgmvP+kzN8Ph8PP/x9Jk6cHK8L1xyi/sAHRAJVDkYmIj1BNNxI45F1TRKyAQMG8oMf/CPZ2TkORtY+9GhLRER6PMuyvuJ0DF2B35/E//k/3+f555/hgw9WABBtrKC+5D38uRPx5piazigi7S5Uc5jAsU3YkXPnJY4bN4FvfetvSElJcTCy9qOkTEREejzTNO8E/gHIPr/esqzhzkSUuNxuN8uWPUi/fnm88MKzhMNhsKMETm4jXHMYf9+puJO7/lNrEXFeNFhLoGw74eqDTeqXLLmOe+55oMudRXYx3ef/RERE5Mr9P+CLaPfFVluy5HpMcyxPPvkbDh6M/bVFGk5RX7oCT8Zg/LkTcPnSHY5SRLqiaDhA8PQuQhX7wI7G67OysvnKV/6KCRMmORhdx1BSJiIiAvuBtZZlRS/ZUuIGDhzMI4/8K2+99RpvvfUa0Wjsry9cfZBw9SG8WSPw9RqDy5fmcKQi0hXY4QDBin0Eyy2Ihppcmz17HsuWfZnU1O75+0RJmYiISGykbJVpmmtoenj0vzgXUtfg8Xi47bY7mTVrLq+++iJFRRvPXLEJVe4nVPkpnvQBeHNG407O1ZozEWkmEqgmVG4RqioFO9Lk2ogRo7jrrvsYPXqMM8F1EiVlIiIi8AiwB4gAyhquQF5efx566Lt8+uk+XnrpOfbu3XPmik245jDhmsO4knLw5YzGkz4Iw+V2NF4RcZZtR4nUnSBYvpdI3bFm1/Py+nPHHfcwZcr0HvEwR0mZiIgIeC3L+qrTQXQHI0aM4u/+7sfs3PkJK1a8Ez9wGiDaWE7j0Q3gKsKbORRv5jBcSdk94gOXiMREg7WEqkoIVZZgh+ubXR88eCjXXXcjs2bNxe3uOQ9vlJSJiIjA+6Zpfgd4l6aHRx+88C1yIYZhMH78RMaPn8iRI4d5//3lrF+/llDozBqRaIhQxT5CFftw+bPwZg3HkzEEl8fvbOAi0iHsaJhwzWFClcVE6k82u24YBpMnT+W66z7H6NFjeuSDGiVlIiIicN+ZP78P2Ge+9gMDnAmn+xgwYCAPPvgNbr/9Htas+ZD8/FWcOlUWvx4NVBI4sYXAia240/LwZgzBkz4Aw6WPKCJd2dnpiaHqA4RrDkM03KxNWloac+YsYPHipfTt28+BKBPHJX/jmabpBp4ATGJz7b9CbL79H4h1XDuAh7rijlV2qIHa/W84HYZ0U3Yk9rDdcPscjkS6IzvUAHSPAzMTgWVZwwBM0/QCtwPfBGZe7J7u3D92hIyMDG655TZuuunz7N27h/z81RQVbSQYPDswaROpPUqk9igYntjmIJlDcaf2xTBcjsYuIq1j2zbRxnJCVQcIVx/EjjQ2a2MYBhMmTGL+/EVMnjy1W5011hat+Vu4BcCyrHmmaS4C/pNYp/OIZVmrTdP8LXAr8JcOi7IDZGfrYEvpWBUVsV9E2Rn64CwdIUW/x9qRaZrDgL8illhlA/8G3HWJ27pl/9jRXC4XY8ZcxZgxV7Fs2YNs3LietWvXUFy8/1wjO0y4+gDh6gMYbj+ejMF4MgbjTu7dI6c1dQuGq8l5Uy1ely4rEqgiXHWAUPVB7FBti2369s1j/vyFzJ27QP1XCwzbti/ZyDRNj2VZYdM0vwzMA24CBlqWZZumeStwnWVZD13o/nA4Yns8PWehngjA1772NQB+97vfORyJSKfrMp+aTdP8AvDXwDRiydNLwBOWZQ1t5f1t6h9BfeRZx44dY82aNaxevZojR4602MbwpODNHIInYzAuf5YStC6krvR9og2nL3jdldyb1KHXdmJE0lbRUB2hqoOEqw8QDVS22CYnJ4cFCxawaNEiRowYoZ/Zi/SPrRovPNPh/BH4AnAncLNlWWezuRog82L3V1Q031lFpLuLRGJPBMvKahyORKRz5eamOx3C5XgFeBGYY1nWfgDTNFs93bCt/SOojzzL40ljyZKbWLz4cxw8WMqGDQUUFhZQWVkRb2OH6wme3k3w9G5cvgw8mUPwZg7F5U11MHJpDU/6QIIXSco86Vq+2RXYkQCh6kOEq0qJNJxqsU1ycjLTps1k9ux5jBlzFS5XbBT01KmWR9B6kov1j62exGlZ1pdN0/w7oBBIPu9SOtByeiwiIpLYJhKbsrjWNM1S4DkucxMs9Y/tyzAMhgwZxpAhw7jrrvvYu3cPGzaso6hoI3V1dfF20WA1wbJPCJZ9gjulD97MobHzz9xeB6OXC/HlmETqTrZ4HpU7NQ9fjulAVNIath0hXHuMcFUp4dqjLU5D9Xq9TJo0hVmz5jFx4iS8Xq2nv1yt2ejji8SmYvw7UA9Egc2maS6yLGs1cCOwqkOjFBER6QCWZe0Avn8mqboZeBDoa5rm28CvLct650L3qn/seOevP3vgga+wY8d2Nm4sYMuWIoLBQLxdpP5kbJvt40WxDUKyhuNO6aupUgnEMFwkD5xPqKqEwPHN8Xp/v+l4M4dpM5cEFGmsIFRZTLj6QHzzsvO5XC7GjZvArFlzmTJlGsnJWkPfFq15Gvgq8JRpmh8BXuC7wG7gCdM0fWe+frnjQhQREelYlmWFgdeA10zTzAW+BPw7cMGkDPWPncrj8TB58lQmT55KINDI1q1FFBSsZefO7cTXx9sRwtUHCVcfxPCl48saEfvAr/PPEoLhcuPLHtkkKfNlj3QwIvksOxomXH2IYOX+C64BHDZsBHPnzmfGjDlkZGR0coTdV6s2+mirsrKajn8TkQTzgx88DMBjj/3S4UhEOldubrqGJy6D+si2qaysYMOGAgoKPuLw4UPNGxguPBmD8WWPxJ3cu/MDlGZqdj8f/zp97L0ORiJnRYM1BCv2E6osgWjzUbGcnF7MmTOfuXPnk5en9X9X6mL9ow4GEBERkS4rKyubG264iRtuuImDBw+Qn7+agoJ8GhrObKBiR2NrYapKcafk4us17szZZ3p2IBJprCB4ahfhmuYPNNxuN9Onz2LhwmswzbHxDTukYygpExERkW5h8OAhLFv2Ze688x4KC9ezatVKDhwoiV+P1JfRUL8aV1IO/t7jcKf1V3ImPVKk4TSBUztjh7V/Ru/euSxatIT5868mI+OSG8hKO1FSJiIiIt2K35/EwoXXsHDhNZSUFPPhhyvYsGEdkUgEgGhjOQ2H83ElZZPUdxruFE1rlJ4hGqyh8cTWFpOx8eMnsXTpDYwbN0GjYg5QUiYiIiLd1rBhw/na177JrbfewfLlb5Gfv5pwOARAtLGC+gMr8WQMwd9nMi5v8iVeTaRrsqMhgqd2ESy3mmxpbxgGU6fO4Oabb2XIkGEORihKykRERKTb6907ly9+8SvccsttrFjxDh98sIJQKJachasPEK49gj93It7sUZrSKN1KuOYIjcc3Y4cb4nWGYTBr1lxuuulWBgwY6GB0cpaSMhEREekxsrKyufvuZSxefB0vvPAsRUUbYxeiYQInthCuPUpS3iyNmkmXZ0fDBE5sI1S5v0n98OEjWbbsywwbNsKhyKQlSspERESkx+ndO5eHHvouO3d+wp///DTHjh0BIFJ3nPqS5STlzcKTrq2/pWuKNFbQeKSAaLAmXpeRkcGdd97H3LkLtGYsAelfRERERHqsceMm8JOf/IwbbrgpPm3RjgRpOJxP4OTH2OetvxHpCkKVJdSXrmySkE2bNoOf/vQx5s+/WglZgtJImYiIiPRoXq+Xu+9exoQJk3nyyd9QUVEOQPD0biKN5ST1n4vL43c4SpGLs+0IgRNbCVWcm67o9/u5//4vM3/+1VormeCUKouIiIgAY8eO49FH/53x4yfG6yJ1J6gveY9Iw2kHIxO5uGiojvrSD5okZP37D+Cf/unfWLBgkRKyLkBJmYiIiMgZaWnpfPe7P+Tmm2+L19nheupLPyBYbmHbtoPRiTQXrjlKXfF7RBvL43XTp8/ikUf+lby8/g5GJpdD0xdFREREzuNyubj99rsZPnwETz75G+rr64EogRNbCdceJylvOi5vqtNhSg9nR0IEyrYTqtgXr3O73dx1130sXXqjRse6GI2UiYiIiLRg8uRp/OQn/87QocPjdZG6Y9QVLydYsV+jZuKYcG3s+/D8hCw7O4e/+7sfc911n1NC1gUpKRMRERG5gN69c/mHf/hnrr32hnOV0TCB45tpOPAhkYZTzgUnPU40WEvDkQIaDq3BDtfH6ydPnspPfvIzRo4c7WB00haavigiIiJyEV6vl/vv/xLTp8/kqaee4MSJYwBEGsqoL12JJ30gvtwJuP2ZDkcq3VU03Ejw1M4zG3mcG6FNS0vj/vu/zKxZczU61sUpKRMRERFphdGjx/Doo//O66+/wnvvvU00GjvDLFxzmHDNETyZQ/H1GqPkTNpNNFRPqGIfwfJ9YIebXJs5czb33/9lMjL0/dYdKCkTERERaSWfz8ddd93HwoWL+MtfXmLjxg1nrtiEq0oIV5XgTu2HL8fEndpPoxdyRSIN5QTLLcLVBzl/ZAxiDwfuvPNeTVXsZpSUiYiIiFymvn3z+OY3H+bGG2/hlVdeYMeO7fFrkbrjNNQdx+XLwJszGm/GEAy318FopSuw7QjhmqOEKvYSqS9rdn3gwMHceec9TJgwWcl+N6SkTEREROQKDRkyjO997+/Zt89ixYp32LJlc3xXxmiwmsDxzQRObMWTMQhv5nDcKbn6QC1NRBorCVWVEK4qxY4Eml0fNcrkuutuZMqU6bhc2qOvu1JSJiIiItJGo0aZjBplUlZ2kpUr3yM/fzWNjQ2xi3aEcFUp4apSDG8a3qxheDOH6qyzHsyOBAlVHyRUWdzk0Oez3G43M2bMYunSzzFs2PAWXkG6GyVlIiIiIu0kN7cP9933RW677Q7Wrv2I/PxVHD58KH7dDtUSLPuEYNknuFNy8WQMwZsxCMPtdzBq6Qx2NEy49ijhqgOE646BHW3WJienF/PmLWTRoiVkZ+c4EKU4RUmZiIiISDtLTk5h6dIbuPba6zlwoIT8/DVs2LCOhoZzZ0tF6suI1JcROL4Fd1o/vBlD8KQPwHDp41l3YdtRInUnCFUfIFxzGKLhZm08Hg9Tp05n/vxFXHXVeE1R7KH0Uy8iIiLSQQzDYOjQ4QwdOpx77lnGli2bWbduDbt27YivPYMokdqjRGqPguHBk94fb8aQ2O6NLrej8cvls22bSMMpwtUHCVcfbHGdGMTWI86fv5BZs+aRlpbWyVFKolFSJiIiItIJfD4fs2fPZfbsuVRVVbJx4wYKCwsoLt5/rpEdjn+Yx+XFmz4QT+YQ3Cl9MAyNoCQq27aJNlbERsSqD2KHG1ps17dvP2bPnsesWXPp1y+vk6OURKakTERERKSTZWZmsXTpDSxdegMnT56gsLCADRvWcezY0XONoiFCVSWEqkow3H48GYNjG4Qk5WgHxwQRDVQTqj5AqOoAdqi2xTaZmVnMmjWH2bPnMWTIMP3bSYuUlImIiIg4qE+fvtxyyxe4+ebbOHToIBs3rmfjxvWcOnXurCo7EiBUsY9Qxb7YDo6ZQ2IJmi/dwch7pmi4kXD1QUJVpS3unAiQlpbG9OmzmDlzDqNHj9E6MbkkJWUiIiIiCcAwDAYPHsLgwUO44457KC7+lMLCAjZt2kBVVWW8nR2qJXhqJ8FTO3El5eDNHIo3cyiG2+dg9N2bHY0QrjlMqKqUSN1xwG7WJikpmalTpzNr1lzGjh2Hx6OP2dJ6+m4RERERSTCGYTBixEhGjBjJvfc+gGXtZv36dRQVFdLQcG69UrSxnEBjOYGT2/CkD8KbNfzM+jNNkWsPkcYKQpXFhKoOQDTY7Lrb7WbixCnMmTOfSZMm4/UqMZYro6RMREREJIG5XC7Gjh3H2LHjeOCBB9m+fSvr169j+/atRCKRWCM7Srj6AOHqAxjeVLxZw/FmDsflTXY2+C7IjoRi68QucLAzwOjRY5g9ex7Tp8/SzonSLpSUiYiIiHQRPp+P6dNnMX36LGpra9m0aT0ffbSaAwdK4m3sUN2ZA6p34skYhC/HxJ2sg4gvJRqsJVixj1BlMURDza737p3LggWLmDNnPr175zoQoXRnF03KTNP0Ar8HhgJ+4KfALuAPxCbT7gAesiyr+ZHkIiIi3Zj6SHFaWloa11yzlGuuWcrBg6Xk569m/fq11NefPaD63OiZK7k3vpzReNIHamv989i2TaT+JKHyvYRrjzS77vF4mTZtBgsXXoNpjtWGHdJhLjVS9gBw2rKsL5qm2QvYCmwDHrEsa7Vpmr8FbgX+0sFxioiIJBr1kZIwBg8eyrJlD3L33fdTVLSJVatWsm+fFb8ebThF45FTGN5UfL3G4s0ahmH03IOpbdsmUnuUwKmdLU5R7Ncvj2uuWcqcOfM1PVE6xaWSspeAl88rh4FpwJoz5eXAdajDERGRnkd9pCQcr9fH7NnzmD17HqWlxbz//rts3Lg+vvbMDtUROL6Z4KldZ5Kz4RiunpOc2bZNuOYwwVM7iQYqm10fP34SS5fewLhxEzQqJp3qokmZZVm1AKZpphPreB4B/sOyrLP7gNYAmZd6k+zsFDyenvMDLwLgdsd+mefm6gwZke5IfaQkutzcScyYMYmKigqWL1/OW2+9RU1NDQB2uJ7AiSKCp3fh6z0ulpx142mNsZGxYwTKPiYaqGpyzefzsWTJEm655RYGDRrkUITS011yow/TNAcRe8r3P5Zl/dk0zZ+fdzkdaP6Y4TMqKuov1USk24lEYstIyspqHI5EpHP1pAcR6iOla/CwdOktLFiwlNWrV/Luu29RXV0NgB1uIHB8M6Hyvfj7TMKd1r/bbacfaYgdGRCpP9mk3ufzc80113LDDTeRmZkFqM+WjnWx/vFSG330BVYA37Es64Mz1VtN01xkWdZq4EZgVTvFKSIi0mWoj5SuJikpiRtuuJlrrlnKmjUfsnz5m/FDqaPBahoO5+NOycXfdyrupGyHo227aKiewMlthKsPNqn3+/0sXnwd11//OTIyLjmYLdIpLjVS9iMgG/ixaZo/PlP3N8AvTdP0AbtpOp9eRESkp1AfKV2S3+/nuutu5OqrF/P++8t55503aWyMHUgdqS+jvmQF3uyR+HMnYLi73mHIth0hVL6XQNlOsMPxepfLxdVXL+HWW29XMiYJx7Bt+9Kt2qisrKbj30QkwfzgBw8D8Nhjv3Q4EpHOlZub3r3mPnUw9ZHitOrqat5881VWr/7g3GHUgOH24+8zGU/m0Had0liz+/n41+lj72231wUI150gcLyIaLC6Sf20aTO4/fZ7yMvr367vJ3I5LtY/6vBoERERkR4sIyODZcseZPHi6/jzn//Izp2fAGBHAjQeK8RdfYCkvBm4vKkOR3phdiRI4OTHhCo/bVI/YMAgHnjgQUxzrEORibSOkjIRERERIS+vP9/73t9TVLSJ5557moqK2Pldkbrj1BUvx99nEt6skQm3EUi49iiNxzZhhxvidX5/El/4wp0sXnwdHo8+7kri03epiIiIiABgGAbTp89k/PiJvPbaS7z//rvYtg3RMIHjRYRrjpDUfxYuT7LToWJHwwRObCNUub9J/ZQp03ngga+Qnd31NyuRnkNJmYiIiIg0kZSUxL33fpHp02fx1FP/y7FjR4HYqFl98bsk9Z+FJ8259VmRxkoaj65vcuZYWlo6DzzwIDNmzE640TyRS+m+pwSKiIiISJuMHDman/zkZ9xww83xOjsSoOHQRwROfoxtRzs9plBlCfWl7zdJyKZNm8FPf/oYM2fOUUImXZJGykRERETkgrxeH3fffT/jxk3gySd/Ez/bLHh6N5FAFcn952C4vR0eh21HY5t5lFvxOp/Px333fYmFC69RMiZdmkbKREREROSSxo2bwKOP/n+MHz8pXhepPUr9gZVEQ3Ud+t52NEzDofwmCdmAAQP58Y9/ytVXL1ZCJl2ekjIRERERaZWMjAy++90fcOONt8TrooEq6g98SDRY2yHvaUdCNBxcQ6TuWLxuypRp/OhHjzJgwMAOeU+RzqakTERERERazeVycddd9/H1r38rvt28HarrkMTMjoSoP7SGSENZvO6mmz7PQw/9LcnJzu8AKdJelJSJiIiIyGWbO3cB3/nO9/B4YuvJ7HA99YfWYEeC7fL6th2l4UgB0YZT8bp77lnGHXfci8ulj7DSveg7WkRERESuyMSJk3n44e/j9Z5JzII1NBwpaJddGYNl25tMWbzvvi9x/fU3tfl1RRKRkjIRERERuWLjx0/k61//VrwcqTtO8NSuNr1muOYIwdN74uWbbrqVpUtvaNNriiQyJWUiIiIi0iYzZszm5ptvi5eDp3cRDVRf0WvZkRCNxzfHy5MmTeELX7irzTGKJDIlZSIiIiLSZrfddifDh4+MFewojcc3Y9v2Zb9O4NQO7HADAOnpGXzta9/SGjLp9vQdLiIiIiJt5nK5+NKXvhZPoCL1J5vsmtga0XAjoYr98fK99z5AWlpau8YpkoiUlImIiIhIuxg8eAjz518dLwdP7b6s+0Ple8GOADBkyDBmz57XrvGJJColZSIiIiLSbm644WYMwwAgUneMaLCmVffZdoRQ5blRsptu+nz8dUS6OyVlIiIiItJu+vXLY8KEyfFyqOpAq+6L1B6Pn3GWnZ3D1KkzOiQ+kUSkpExERERE2tW8eQviX4eqD7Rqw49QVWn86/+/vbuLkbOq4zj+nbLv3drubnebdqG8lHKWbbfb8pIqwUBUUBu1BJPeVC9IiGgwYqIoFyZGvSIB40uiJmJCRGMCEuRKbgwq0VSJFLS2e9DGC1+KLtDCLru0zM7jxUynM6X7NuzMM7PP93Mz5zxzZp7/Ntuc/PY8z3luuOFGN/dQpvjbLkmSpBW1e/c1dHZ2AcUHShfOLLw9flKYI1/xoOi9e72XTNliKJMkSdKKam/vYGxsvNzPT/1rwfFzM/+FQh6AoaFNDA9fXNf6pGZjKJMkSdKK27Pn2nI7P/2fBcfmp869v2fPdW7wocwxlEmSJGnFjY3tLoerwuwrFPJvXnBckiRVoW337msaUp/UTNrSLkCt4dFHf8qzz/4h7TJaysmTrwJw772fS7mS1nH99Xs5cOBg2mVIklZAb28v27cHXnxxAoC56ROs2XD528YVTr9Gkp8BoLu7h23btje0TqkZuFIm1UlHRycdHZ1plyFJUmrGx/eU2+XVsDVtVa+Vq2RjY+O0tblmoOzxt15LcuDAQVcwlmli4igAIyOjKVciSVI6du3aw2OP/QyA/BsnSJI5Ojfu5MyrE3T0jxSPT/+7PL4yxElZYiiT6uTJJx8HDGWSpOzasmWYjRsHefnlSSjkmZuZpGNghI6BYiAr5GG1obIAAAcOSURBVN+kMPsKALlcrmrHRilLvHxRqoOJiaPEeIwYj5VXzCRJyppcLsf4+LmNOyp3WYTifWZnXXnlVfT2rmtYbVIzMZRJdXB2lez8tiRJWVN1X1nFA6Kh+n6yXbu8dFHZZSiTJElS3YQwUt74KjkzReHMVLGdFMi/8VJ53Pj47lTqk5qBoUyqg/37P37BtiRJWdPe3sHo6I5yPz9dDGKF2Veh8BYAfX39DA9fkkp9UjNY0kYfIYS9wP0xxptDCFcCDwMJcAS4O8ZYqF+JUusZGRmlu7un3Ja0ejlHSosbHR3j+eefA2DujZegf3vVKtmOHWPlB01LWbToSlkI4UvAQ0BX6dA3ga/EGN8L5ID99StPak0TE0eZnZ1hdnbGjT6kVcw5Ulqa0dGd5XZ+ZpIkSZib+d8F35eyaCmXLx4Hbq/oXwv8ptT+JfCBlS5KanVu9CFlhnOktASbN285t7Ni4QyF06eYK22FD3DVVSMpVSY1h0UvX4wxPh5CuKziUC7GmJTaU8D6xb6jr6+HtraLaqtQakHt7RdVtQcH3eJXWo2cI6Wl27lzB4cOHQLgrZPHIZkDYGhoiOr/RlL21PLw6Mpr49cBpxb7wMmTMzWcRmpd+/bdxpEjR8rtycmplCuSGifjf4RwjpTmMTx8KVAKZaeOl49v3Xq586QyYaH5sZbdFw+HEG4utT8MPFPDd0ir2sjIKCFcTQhXu9GHlC3OkdI8LrvsiopeUnH88sYXIzWZWlbKvgD8MITQARwDfr6yJUmrg1vhS5nkHCnN4+KLt17w+CWXXNrgSqTmk0uSZPFR79Dk5FT9TyJJagqDg+vc13oZnCOVFUmScM89dzE9PV11/IEHvkt//0BKVUmNs9D86MOjJUmSVHe5XI5NmzZXHWtvb6evrz+liqTmYSiTJElSQwwODr2t70OjJUOZJEmSGmRgYGNVv79/4zwjpWwxlEmSJKkhNmzoq+r39fXNM1LKFkOZJEmSGmL9+g0L9qWsMpRJkiSpIXp7exfsS1llKJMkSVJDrF1bHcJ6etamVInUXAxlkiRJaoju7u7z+j0pVSI1F0OZJEmSGqKzs7Oq39XVlVIlUnMxlEmSJKkhOjo6z+t3pFSJ1FwMZZIkSWqI9vb2qn5bW/s8I6VsMZRJkiSpIdasWcO2bduB4qYfW7ZsSbkiqTnkkiSp+0kmJ6fqfxJJUlMYHFyXS7uGVuIcqayZmnqdw4f/xMjIKENDm9IuR2qYheZHQ5kkaUUZypbHOVKSsmGh+dHLFyVJkiQpRYYySZIkSUqRoUySJEmSUmQokyRJkqQUGcokSZIkKUWGMkmSJElKkaFMkiRJklJkKJMkSZKkFBnKJEmSJClFhjJJkiRJSpGhTJIkSZJSZCiTJEmSpBQZyiRJkiQpRYYySZIkSUqRoUySJEmSUmQokyRJkqQUGcokSZIkKUVttXwohLAG+B4wDpwG7owx/n0lC5MkqRU5R0qSlqvWlbLbgK4Y43uA+4AHV64kSZJamnOkJGlZag1lNwJPAcQYDwHXrVhFkiS1NudISdKy1HT5IvAu4LWK/lwIoS3GmL/Q4MHBdbkazyNJUqtxjpQkLUutK2WvA+sqv2e+yUaSpIxxjpQkLUutoex3wD6AEMK7gb+sWEWSJLU250hJ0rLUevniE8AtIYTfAzngjpUrSZKkluYcKUlallySJGnXIEmSJEmZ5cOjJUmSJClFhjJJkiRJSpGhTDpPCOHLIYQTIYSulM7/rRDC1jTOLUmSpMbznjLpPCGEPwO/Al6IMT6ccjmSJEla5WrdfVFalUIINwPHgR8APwEeDiH8GngB2AlMA88AHwQ2ALcC+4GPAt3AZuDbpWM7gS/GGJ8MIRwEPg+cBv4GfAo4SHHb7B5gG3B/jPHs+T5dOtf3gS5gAPh6jPEXdf0HkCRJUsN5+aJU7U7goRhjBE6HEPaWjv8xxvh+oBOYiTHeAhwFbiq9vy7GuA+4H/gMcDvF4HVHCGEA+BrwvhjjjcAp4K7S59bHGD8CfAy477xaRoAHS+f6LHD3yv+4kiRJSpuhTCoJIfRRXLm6J4TwFLCeYhgCeK70eopiGAM4SXEVC+BwxfvHYoxJxftXAH+NMU6VxvwW2FFqP196/WfFd511ArgrhPAIxZWz9nf0A0qSJKkpGcqkcz4B/CjGeGuM8UPAXoqXJw4Ci918udD7/wBGQwhrS/2bgBeX8LlvAD+OMX4SeJriQ2glSZK0yhjKpHPuBB4524kxzgCPA9vfyZfGGF8Gvgo8HUI4BGykeK/YYh4DvhNCeAa4pfQ5SZIkrTLuvihJkiRJKXKlTJIkSZJSZCiTJEmSpBQZyiRJkiQpRYYySZIkSUqRoUySJEmSUmQokyRJkqQUGcokSZIkKUWGMkmSJElK0f8BlXve+v5Li9cAAAAASUVORK5CYII=\n", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from matplotlib import pyplot\n", + "%matplotlib inline\n", + "import seaborn as sns\n", + "\n", + "# Change the default figure size\n", + "#sns.set(rc={'figure.figsize':(15, 5)})\n", + "\n", + "fig = pyplot.figure(figsize=(15, 5));\n", + "axis1 = pyplot.subplot(1, 2, 1)\n", + "axis2 = pyplot.subplot(1, 2, 2)\n", + "\n", + "sns.boxplot(data=ammonia, ax = axis1)\n", + "axis1.set_ylim(0, 70)\n", + "sns.violinplot(y='Ammonia', data=ammonia, ax=axis2,\n", + " \n", + " # Play with these settings\n", + " inner = \"box\", # the default\n", + " # inner = \"quartile\"\n", + " \n", + " linewidth=3)\n", + "axis2.set_ylim(0, 70);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Swarm plots can compliment a violin plot, as they show all the raw underlying data. Not just the distribution." + ] + }, + { + "cell_type": "code", + "execution_count": 156, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2UAAAExCAYAAAD89gqbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3XlgXHd16PHvnV2j0b7vkiV75H1fYmffFyDQhATCXlpoaYG2PHiltK+lvEILFF5poYUQ1iRAEkhIYsfBdpx4XyRvkiyNrH1fR9KMZl/u+2OkK12NCQ6Joxifz39zdWfuT+NJ7hyd8ztHUVUVIYQQQgghhBCLw7DYCxBCCCGEEEKIq5kEZUIIIYQQQgixiCQoE0IIIYQQQohFJEGZEEIIIYQQQiwiCcqEEEIIIYQQYhFJUCaEEEIIIYQQi8j0u05wOp0fBj4889AGrANuBP4DiAK/cblcX7w8yxNCCCHemuT+KIQQ4o2ivJY5ZU6n89vAWeATwH1AB7AT+HuXy3XqsqxQCCGEeIuT+6MQQojX45LLF51O5yZgJfBzwOpyudpdLpcKvAjccpnWJ4QQQrylyf1RCCHE6/U7yxfn+Tvgi0A64Jl33AssebUnRqMx1WQyvvbVCSGEuBIpi72AN9nvfX8EuUcKIcRV5LfeHy8pKHM6nZlArcvl2u90OtOBtHk/TgMmX+35ExP+S7mMEEKIPwB5eWm/+6Q/EK/3/ghyjxRCiKvFq90fL7V88XpgL4DL5fIAYafTWe10OhXgDuDg612kEEIIcQWS+6MQQojX7VLLF50kNi3P+jPgMcBIorvU8Td6YUIIIcQVQO6PQgghXrfX1H3x9zU66r38FxFCCPGWkJeXdrXtKXtd5B4phBBXh1e7P8rwaCGEEEIIIYRYRBKUCSGEEEIIIcQikqBMCCGEEEIIIRaRBGVCCCGEEEIIsYgkKBNCCCGEEEKIRSRBmRBCCCGEEEIsIgnKhBBCCCGEEGIRSVAmhBBCCCGEEItIgjIhhBBCCCGEWEQSlAkhhBBCCCHEIpKgTAghhBBCCCEWkQRlQgghhBBCCLGIJCgTQgghhBBCiEUkQZkQQgghhBBCLCIJyoQQQgghhBBiEUlQJoQQQgghhBCLSIIyIYQQQgghhFhEEpQJIYQQQgghxCKSoEwIIYQQQgghFpEEZUIIIYQQQgixiCQoE0IIIYQQQohFJEGZEEIIIYQQQiwiCcqEEEIIIYQQYhFJUCaEEEIIIYQQi0iCMiGEEEIIIYRYRBKUCSGEEEIIIcQikqBMCCGEEEIIIRaRBGVCCCGEEEIIsYgkKBNCCCGEEEKIRSRBmRBCCCGEEEIsIgnKhBBCCCGEEGIRmS7lJKfT+XngHYAF+A7wCvAjQAUagb9wuVzxy7RGIYQQ4i1J7o9CCCHeCL8zU+Z0Om8EtgM7gBuAMuAbwN+7XK7rAAW49zKuUQghhHjLkfujEEKIN8qllC/eATQATwPPAc8DG0n8NRDgBeDWy7I6IYQQ4q1L7o9CCCHeEJdSvpgLVABvA6qAZwGDy+VSZ37uBTJe7QWysuyYTMbXs04hhBDireZ13x9B7pFCCCEuLSgbB1pcLlcYcDmdziCJEo1ZacDkq73AxIT/91+hEEKIK0peXtpiL+HN8rrvjyD3SCGEuFq82v3xUsoXDwF3Op1Oxel0FgOpwL6ZWnqAu4CDr3eRQgghxBVG7o9CvEadgx6+/asGvvGLM5xqHV3s5QjxlqGoqvo7T3I6nV8FbiIRxP0d0Ak8TKLbVDPwpy6XK/bbnj866v3dFxFCCPEHIS8vTVnsNbxZXu/9EeQeKa4eU74wf/s/RwlFEv9JKMDnHlqPszxrcRcmxJvk1e6Pl9QS3+Vyfe4ih2/4vVckrjhPPPEYJ08eX+xlXFF8Ph8Aqampi7ySK8fmzVt54IH3LfYyhLhkcn8U4tI1doxrARkk5kbUu0YlKBMCGR4txGUTDocIh0OLvQwhhBDiLSE3w5Z8LDNlEVYixFvPJZUvvl5SmiGuRp/97KcA+NrXvrXIKxHizXU1lS++EeQeKa4mP3qhhYNnB1ABZ1kmf/XutVgt0n1UXB1ed/miEEIIIYQQr9eH76rlbdsrCEfiFOdKeb8QsyQoE0IIIYQQb7jDDYM8fbCDQCjGjeuLuf+GahRFITdDShaFWEiCMiGEEEII8YYadvv5wc5mZmtzXzjWQ0luKgXZdnYd7SYUiXHT+hI2OvMXdZ1CvFVIUCaEEEIIId5Qbf1TLNws2dTp5qcvtmodGJu7JqQlvhAzpPuiEEIIIYR4Q1WXZLCwo4HJaEhqiV/nkgHSQoAEZUIIIYQQ4g1WmG3nw3fXkumwYLUYuXNLOdtXFSadly8t8YUApHxRCCGEEEJcBtetKea6NcUAjEz4GfeEuH5tsdYSP91uYd+pPgbGfTxwUw0pVvlaKq5e8ukXQgghhBCXza8OtLPzSDcqkJVm5X+/bz1PvNRGx6AXjx9GJgKEI3H+9O0rFnupQiwaCcqEEEIIIcRrFo3FqXeNMu4Jsn5pLkU5yXPH3J4gO492a00/JrwhDpwZpGPQqzuvoWP8TVixEG9dEpQJIYQQQojX7DtPN3KmbQyAZw528JkH1+Esz2I6EMEfjJCfZWfKF0Zd0IZxyh8iPzOFkcmAdmx2kLTHH8ZoUEi1mYFE4Hfmwhhef5gNy/LIcFjfnF9OiDeZBGVCCCGEEOI1GRjzaQEZQDSm8puTvbT2TfHsoU5icZWa0gw+ed9qinLsDI77tXNbeyeJxVQsZgPhSJyCrBQeurWGh59r4ljTMAaDws0bSnnPLTV884mzNHdPAPDUKx184QMbtQBOiD8k0n1RCCGEEEK8bqFIjGcOdBCLJ1JjbX1T7DnZx2ffu57bNpVRW54JQCSqElchHInz7puq+fLHttE36uNo0zAqEIur7KnrZV99nxaQAQRCUfbV9y3GrybEZSdBmRBCCCGEeE2Kc1NZV5OrPTYZFVZWZScNjB5y+8l0WHnvrUu5ZmVyS/zxqSCKojAw5k/62bA7+VgkFtc9jsXjSecIcSWS8kUhhBBCCPGqGjvHeam+H5NR4Y6t5VQXZ/CJd62i3jXK2FSADcvyyEqz8sKxHqYDEe15oXCU/tFpSvIcLCvPxKAoxOdtMltekQXAyqosdh3r1o4bDQo3bSylrd9D93CiKYjJaOCm9SVAojHIT190zTQZyeOj9yyXlvriiiaZMiGEEEII8Vt1DXn4f0+c40zbGHWuUb72s9O4PUFMRgNbVxRwzzWVFOWkYrOY+MyD61hTnYPRoADQ0OHmSz+uY2DMR0GWnY+/YwXZ6VbsVhO3bSpjozOfQCjKz/Ze0K5nNRv5s3tXUpyTyuceWs8911SQn5VCpsPC6Quj+IMR/ufXTYxNBVFVONU6yjMHOxfr7RHiDSF/UhBCCCGEEL9VXcuoLrsVjsQ5fWGMguwUVBVWVGZhNCT+zl9RmMbWFQWca59rcR+OxjncOMi7b6yhtXcKtycEwN76XpaVZeDxR+gb9WnnhyIxguEYABazgaNNQ9pznj/SjT8YJRCK6tbYOei5PL+8EG8SCcqEEEIIIa5C0Vic35zspaVngqrCdO7eVoHVYkw6LzfDlnRsX30vQ+5ES/uyfAd/+74NpFhNBEJRDIqSdL5BUfAHI7x8pl87pqqw61gPG515Sef7glFGJgNM+8NaQDara9iLI8WsK5Msy3fQNzpNaZ4DgLiqcrp1jMFxH2uqcygvSLvEd0WIxSFBmRBCCCHEVeiJ/W3srUt0M2zscDPo9vOJd65KOm/7qkJOtoxonRCrS9Jp75/LTPWOTHOsaYiBMT8vn+lHVVUyHBampsMAKMDOo9209U2iLhhaFovHGZ8KYjAoxGe6NqZYjeyp6+Xn+y7gSDFhMhqIzmvwUZ7n4MGbanh8zwVGJwOkp1rYf7qf/af7WVqawV+9ey0/23eBQ+cGAXj6YAd/8a7VbFiWHPwJ8VYhe8qEEEIIIa5w4UiM7iEv4Ujskp9z/Pyw7nG9a4RAKMrguE/X1dBiNvLXD6zlf71nHV/5+Da2Li9Ieq0LfVPsO9VHLJ5odz81HeaOLWUYDGgdGV29U7oZYwoQj6nsP92vBWQ1JRmU5qYyPhUEYDoQxWI2YJ9p4lFdks691y1haWkm//iRzXzq/jUMzevSeKFvihdP9HC4YVA7pqqw+0TPJb8vQiwGyZQJIYQQQlzBWron+PbTDfiCUVJtJj7xzlUsr8z+nc/LSrPi9c+VAKbazHzuv4/gC0bJSrPyyftWU1mYTmPnON9/vhmPL0xxbiofvNOJ3WrCP7Ovy2I2kG43J71+MBxjYcd6R4qZ69cWMz4VZPvqQh5+7rzu595AJCmw9AejfPMvd6ACmQ4rI5MBfvqii+lAhJx0a9J1JxaUOwpxJZBMmRBCCCHEFezRPa34gokAyReM8uie1kt63oM3LyXFmthDZjYZUBS015nwhnhsTyvxuMoPdiYCMoCBMR+7jnbz4C01GI2JvWMKkJORwvydZAqwY1UhjhR9sNY/5uPA2QGautw89htX0h62LIeFtfPmnwGkppj4wa4Weoa9hCIxvvJoPftP93OyZYTdJ3qxmOa+zirA9tWF7FhdNHdMgbu2lF/SeyLEYpFMmRBCCCHEFWx0MqB7PDIR4DcneugdmWZFVbY2tDkcidE15KUg205GqoXlFVl8/RM7ONc+RnFuKv/4g5O61xka9+MLRpic2Rs2q3/Ux+hkgFgsUXIYisR56XQ/b99RyXNHulDVRCA0Ohnkrx9Yy1Mvt+P2BCnLd1DnGtVexx+KsXpJNue7JojFVVJtJu6/sYaSvFTMRgPnOsYYnQjgC0Rp6BinsXOcd99Yo+1Vm7WiMhuzyUAgHOWmdSU4y7NYWpbJuppcBsd9VBWlYzIaiERjmE2JILCxc5ymTjeleQ6uWVmIwaDQ3OXmUMMgqTYzt28uIzcz5Y35BxLiEkhQJoQQQghxBdvozONY09z+sAyHhZ+/1AbA4cYhJrwhVlZm840nzuD1RzAaFN5/+zK2rSjkO8800tTpxqAo5GbYGJvZywWQl5lCLK5SVZRG56BXO76mOke3ZwtgfCpAU5eb2T4ecRV+tu8C3/zkDj773vUMjvs4OzPnbL6KwjQ+cvdyBsf9ZKVZ+eUr7XQMeFhamsH1a4t5cn+7dq6qQu+Il4VK8lK574ZqRiYD7D7ew5GmIXasLmLDsjxeORPmm0+cJRZXSbOb+ZsH1tEx6OGnL7q057f2TrJ9VSFf/8UZbf11rhG+8vFrsJqTu1EKcTlIUCaEEEIIcQX70B21ZDqstPVNUVGYxr76Pt3PD5wdoLl7Qts/Four/OKlNqYDEZo63UCihfzYVJA11Tk0dbqJxVW6hrz84w9O8On717J7JvO2qiqb+2+oJhyJcbhxSLvG5toCXL0Tuuv6AhFC4Rg/3n2eky0jQGL/WTiS2GhmNCi8eKKH5q4JPnhnLY/+xsX5rsRrnGge0Zp9zFdTmonBoHC4IXHtvEwbt2wsJRyJ8a+P1mtZvXrXKJ/8o9X84qU2YjNNRLz+CE+90s6EV7/n7HDDELG4yvzGkJPTYc53ulkvHRvFm0SCMiGEEEKIK5jVYuSBm2oAiETjHG4Y1IYvA6TaTEmBSDAcY2DMx0JZDqsWxEAikDnfNU5VYRpD435GJgIMuf184A4nDruZo03DRKIxQpEY62pyeenU3ByyquJ02vqntIAMEoOnr1lZwOC4n64hL7E4tA94+PbTDYxO6Mswe0a8LK/I0lrx15ZnsmNVITetL6EsP42nD3QwOhnk3x4/zZ1bypLKLI80DuneBwC3J4jFpM9+mYwK6amWpPfiYseEuFyk0YcQQgghxB+ACW+IIbefd15XpTXdMBkNvOv6JWxdnq8711mWydYVhbpjVrOR0vxUFuoa9PLky+30jU7T0DHOv//iDABuTwiPL0wgFONU6ygDYz42zsssdQx4krJ2AFlpNt3gZ0jsgyvK1V87O82mBWSQyKxZzEaisTjPH+kiNNOlcdjt52iTvr0/QH52CrXlmbpjW1cU8PYdlboB13duLeeOLeXkZ6XozqsuydA9Nx5Xaepy09I9QXzBvDUhXi/JlAkhhBBCXOF+daCdXUd7iKsq5QUOPv+BjYxPBWYyXROsrsrmvbcupaF9nJK8VO65phJHipmP3F3LwbOD2G0m3ra9krI8B/vq+7XZXxkOS1K2aToQoWPAQ2PnuO54S89kUot6V88kVrOBUGSuN/6xpiEURXcauRk2Mh1mBsYSj9NTLdgWdGZs6ppgZDKA2WhICuqmfGFuXFfMy2cGACjMtnP7pjKMRgM7j3bRP+pjdXUOt2wsxaAo/N8/3Upzl5uy/DRsViMnm4f58F21xOIqDpuZuKrys70XSE81c8O6EkxGhX977DTdw4k9bUtLM/hf71mP2ST5DfHGkKBMCCGEEOIKNuT28/yRbu1xz/A0py+MMukNaRmk3cd7+Og9y/mbB9cBEI3F+cGuZo42DmGzGLnvxmpqSjKIx1Xuv3EJrp5J8rNS2LqikF3Hujk/L2NlUGBvfS8pVhOB0FzAVpRjJxLVDyZTFPjMe9axt66PC72TTEyHcc+UUjpsJnzBKCV5qayozOY3J3u153l8YQqz7brXMigKA2PTHGkcxm4z4Z9p3w+wriaHB29eSkleKsfPj5CfacMfilKUk8rKqmw6BjwcbhjEajZy/dpiCrPtFGbbOXZ+iIefPa8NuH7XdVUsr8jm3x4/pZVxHm0a5qb1xVpABokh1adaR9m6InmQthC/DwnKhBBCCCGuYGMLWuJDop39mQtjumN76/u0+V2vnBng0LlEB0VfMMpPd7uoKc7ghy+00DnoAaA838GO1UXcva2Cjv4pWvumMBkVojGVU62J1zabDESicbLTrGyuzScai7PrWI92zXAkzn/9soEHbq6hocOtW890MMq/fXwbg7+l/LAwK4W2/iniM8HR9lUFfOfpRqIzrfgVJZERW780j3uvraKxY5zH9lwAoK1/ioZON//7ofV866lz2nN+9EIL2WlWVi3JAeC5w13ML0TcdayH4YmAbl/dwJiPrqHkro8Ls3VCvB6XFJQ5nc7TwNTMw07gu8B/AFHgNy6X64uXZ3lCCCHEW5fcH8WbIRRJNOUozk29aIv2pWWZpNvNePxzQcL6pbmcax/XBRdm41ypXddM4DVLBfaf7tcCMoCekWmOnR/mxnUl/O37N+L2BPmfZxppG5g7JxKN89CtS3lifxvPHu4CYPuqQjy+MI2dblTA44/ww10tlOU7dMFNRqqFv3v4OLG4itGgr2c0GRUONw4Sn0m8Wc0GMhxWLbiCRIv8a1cXcde2CgCON+sDO68/wv5T/brnAJxtH9eCsoU/i8XjumHUs9ZU53CyZUTrHJliNbHRKZ0ZxRvndwZlTqfTBuByuW6cd+wMcB/QAex0Op0bXC7Xqcu1SCGEEOKtRu6P4s1wvsvNd55uxB+KYrea+PN3rWJlZbbuHKvZyOce2sBTL7fjD0W5bk0RO1YX0T/m48UTcyWBwXCMjgEPS4rTqa3I0rW0NxoU0u3J3QYHRhPzxWorsshOt5Hh0O8ZMxoUTjQP64KbE83DrJ4JembF4ioVhekMuf0EwzGyHFaCkagWNMbiKpkOCzaLiVSbidzMFI6fnwuyQpF4UndFAEeKmZ/vu0D7wBRcpPdGZWE60K87VpKbyonmYX6+7wJTPv1r3rCuhFs3lVLnGtUyYetqctlcW0BBlp29db2Eo3Hetr2CzJn3IhqL0z/qIz8rhRSrFKGJ38+lfHLWAnan0/mbmfP/CbC6XK52AKfT+SJwCyA3HSGEEFcTuT+Ky+6xPa34Q4m9U/5QlMf3tPIvf7pNd04gFOWxPa00d09gNCg4yxIdBx+8eSmqirZXq290mm8+cYavf2IHW5bn0zno4VTrKKkpZv7o+iVUFqazp65Xu57RoLC3vo+99X1kpFr42/dtYFNtPmfaxrRg6q5t5TS068sSozE1qQGG0aDwypm54CgrzULXkD4gUoF331RNXcuINlNtPmdZJs3dbtyexJ60FZVZNHSOU9cyN5DabjVp679pQwk71hQxNOHnxRM9xGIqG5x5rK7O4W//56gui+gsy+SmDSVsqs3HoCjctKGYXcd6iMdUUqyJjo+9I9OcaB4hHI3T3u/hrx9YSzQW5/89eZbJ6TBWi5E/vns5m2v1nS6FuBSXEpT5ga8D3weWAi8Ak/N+7gWWvNoLZGXZMZlkIrq4uhhnykTy8tIWeSVCiMvkdd8fQe6R4tUtHKA8Ohmk1x3AoMCamjwMBoUn97VqreNjcZXnjnRx+/YqKovSmVoQ3PiCUerbxvnl/gtMeEPkZNj46/duwFmRTe+wl7t3VNE34iXFamL/vHb2U74we0/3c/L8sC6YWVqRTWVJJv/15FntmNVs5ERzYjaZ0aBQku/AaFDonFf22DHoZdPyAurmlRzWVmTzn79s0L3ObNv7Dc58WvomtYAMICsjheONg7rfLxKN8e+fvp5YXGVZeRZGg8I911VT7xplyO3H1TNJ/YUx3e8AkJ2ZwvZ1paSnWuga9PDc4bnGKUebhlm9NJ/H914gPNPIZNwT5Lmj3QRCUS2DFwrHeGxPK7dvr8JklK6M4rW5lKCsFWhzuVwq0Op0OqeA+XnzNPQ3oSQTE/7ff4VCXKFiscT/uEdHkzcHC/GH7Cr6Q8Trvj+C3CMXg8cX5sUTPYx7gmyuLdD2Bnl8YbqHvVQWppE2r5TP7QmSmmK+6H6uy22jM0/XBMNiMvCP3zsKQHVxOp97aD3tPRNJz3ulroeXVZV4TN/O3qAoPHugTRsmPT4V5Fu/OM07r13Cf/2qQZu/tWlZ8n6proEpPAvK/V6p7+Pa1UVsX1VIKBIjFlM50zbXYCQWV3n7NRUcOz9M57znKQr0Dk5pj2tKMvD69AOuQ5EYH7m7lpJcB0uK0/nY1/brfn68cZC8zBQGx+f+G8pKt/H1R+sYHPeTnW7lY29fya5j3VqL/+lAhOcPdWgNSmad7xjng198kQyHhW0X6ajYcGGEQCiqO9Y/4k0aF+Dxhentn8SRYk56jVdz+sIonYNenOWZSeWpr8XYZGK4d01pBjZL4mu+xx/mQu8UZfmp5GclOlq+cqafw41DZKRauHdHFaX5jt/7muLSvdr98VKCsj8GVgOfcDqdxYAd8DmdzmoSNfN3ALKRWQghxNVG7o9XoLiq8vWfn6Zv1AfAieYRPv6OlRgNCt97rkkrvfvzd66iqiid//zlOToGPNgsRt5761KuW1NMz7CXA2cHsJiM3LyhhNzMFAKhKIfODeINhNm6vICSvIt/yW0fmMLVM0llYRorfsuX77GpANGYSmG2nQ/eUUtmmpX2vinMZiNNne55r+WhzjXKqiU5uv1hZpOBp15u1x5np1lxe0PYLEbuv7Gax/a06q43NO5n1/Fu3UDk+tZRCrPtWjADsGNVER39Ht3WrbGpAN/65TkgEWitX5oczB1qGOR8lz5wrCxMo3Nw7o+Wbf1TrF6ifz9muyvuq+/j5y8FSLWZdXvAcjJsKPMGntmtJmwWIz3D00BiuPUPdjYnrWc6EOVP3raCnUe7mJoOY7eZGJvJSE5NhznaOITRoOiyaRud+QyO+3WNSjY68wmFY+w+MddtsrY8UwvIwpEY3cNeCrPtuiDf658N/tNxpJh56uV2dh1LZOaePwLvuWUpt28u084fGPNxqGEQi8nADetKyEqzMjUdYt+pfqb9Ya5ZVcjS0kx2H+/hyZfbUFVItZn4zHvW4QtG+c+nzhGOxlGA9966FIfdzI93u7TXb+2d5Kt/vn1R/ugg5lxKUPYI8COn03mIRLnvHwNx4DHASKK71PHLt0QhhBDiLUnuj1egnmGvFpDNOtw4SP+oT2tWEYnGeeKlNpZXZNExU3IXDMd49DetFGWn8rWfn9ayLEcaB/nnj27lG784Q89IIhjYfbyXz79/A1VF6brrvHKmX/dl+N5rq7j32irtsaqq/HBXC4cbBlGBVVXZfPK+1bz7xhoAnj/SpQvKAM61jXGuIzHE2WoxUl2czuhkkNF5bfI9/jBfeP8GWnonicdVVlXl0NAxN/h5dXUObo++TBIF/vydKzjRPIrbEyI3w8a++j5sFiOhSJy4qrKkKJ2uobmSRFWFkQm/ruww1WbibJt+yPRH7qqltW9SF5QB2CxGreU+wG2bynhkZzMjEwHdOcFwLDFc2mzSzQ7LzbRpGcBZI5MBbt5Qwkun5vazVRWls21FAel2Myrwkxdduud4/BFu3lDCieYRFAXu3FrO+qW5tPRMMDCW+Oxsrs3n1o2lfPvpuXLLysI0/vydqwDoHPTwzSfOMh2IYDIa+NCdTnasLqLeNcp3n20iGkt0efzYO1ayt75Xd/0XT/RoQdmQ28+XflynvZ8Hzg7wTx/ZwlceO6W9LwfODvLpd6/h6YMdzMbVvmCUZw52Mh2IaCWXKvD0wQ6WV+iDX68/woXeSa0jpVgcvzMoc7lcYeChi/xo20WOCSGEEFcFuT9emRwpZhT0jfrS7RZa/PpMzpQvrH0BnxWJxjlwtl9X9ubxR9h9okcLyCDRjW//6f6koGw2GzJr94ke3ra9AqMhsf/ofNcEhxrm9kg1dro53DDEjetLANiwLJdnD3cRjc22ZTdS5xrVMjqhcIyinFQ8Pv0+MlWFb/3yHN5AovwuO93KjtWFdA95UVU43TqqyzgBKIrCv/z0FLdtKuOPrl/C335X3xjjPTfXsGNNEZ/+j9m/SSTE4ippdjOhqRg56VZqy7M5vGDf18hkgEBQX/ZnMRs4Oa9hx8ZluWxfVagbKA1Qlu/goVuXkeGw8PnvHtP9rGd4mk3OPOpcc69TXZyuZcEMClQVp/Mn96zgX35apwWFjhT91+FMh1UXxHUPeTl4bpC9dXN77I43j5DhsNLSM1eh3DXkZcoXJs1u4cn9bVr3xmgszs/3XWDrigJ+8dIF7d8vHI3zxEsXMCS994lgvzg3lVOto1pABjA5HeaF4926QDWuqhw8O5A0uHtyOkQwpH+fg+EYuRk2/fVZoNaJAAAgAElEQVSAvKwUxOKSXYhCCCGEuGrkZqRwx5Zy7XFGqoW3ba9k28pC3XnbVxWypkafOchKs1KQbU96TYctef/QpDfEzqNd9M0L1tQFLdvVuMqQe+7L9ehFhkDPHpsORPjPXzZoX+jT7Rbef7szqWFF77CXjFT9eiqL0rSADBJlfcvKMrn7mgr6x3zEVbTXWVmVyKLE4yrhSJydR7vZW9+bdJ3OQQ8/2NmM0TgXUCjAtD+iBUHjnhAjk8l7Jvef6uPUhVHtORuW5WEy6L+Snm0fx2EzJ80vC0VifOXRej7zX4exWfTldvlZKdp+NoOS6M5YWZTGufZEpi6uQtegl3Md47os3XQgirM8k/zMlMRajPprnmwZoalTn+2LxuK090+x0LDbj8cXZtyjz9j5glGC4VhSW/8pX4RrVuk/e5PeMN9/vpl//lHdRa+RlpI8uiA73aZ13Zy1fVUR164p0h3b6MznbdsrtT8YGA0K915bRUFW8udavLlkmIIQQgghrioP3FzDtWuKcHuCLCvLxGI28oHbnRRl22kf8LCsNINbNpWioBCJxDnpGiEvI4X7blhChsPK4YYhba+VsyyTO7aW0dztpmlm35TJqNDY6aax083TBzr55H2rWVuTyx1bynX7uSKxOP/w/eNUFaXx6XevZU11DhaTQSs3A+gY8FDXMsK4J8jwhL4kEVXFkWLWMjIAE9MhRifnShE3OfOoLEyjvV8/LNrjC1+07fzFBieHwrGk7GLXkFe3nqIcO++9ZSnfeOKs7rluT5C11Tk0dbkxmwysq8nVNS5RSQRTg+M+rZU9JEoxv/STOl0wmJth0/aLQSKbWZxjZ9wTorIoja4hr1b6GFfBYFB07wUkgs+h8eRAcc2SHO7aVoHHF+brPz+94D0xUlGYrsvkKQqU5qfi6p3LlFnNRn59qJO+UV9SwOgsz+Tpgx2kWI14/XP/vioq+0/1YzQqbFyWx5Dbr/sdW3unyEm3MT5TXlpdnM7tW8roGvJoGcFMh4VbN5Vit5rYfaKHwTE/a2tytYAsK81KU5eb8vw0btlYgtlk5B8+tInBcR+pKeaLzqcTbz5FXfhnm8tgdNR7+S8ixFvMZz/7KQC+9rVvLfJKhHhz5eWlKb/7LDFL7pFXnmgsTmOnG4vJQG1FFgZFIRaPc65tnCG3nyfnNdmARPOHzz20AQBXzwSnWsfYU6cvy7tjSxkP3ryUtr4pdh7r4nzXhK4cbWFZHiT2MM02njAoCteuKeTAWX2pYH5WCp9//0b+6YcnmJrJ0hiURNCSYjUSmFfeppDY5/bMoU7da6TZzXj9ES1rtX1VIQfP6a9jNRv5+w9u5Bu/OMvE9FyWqDg3VVcGWlOaQVufPvuzuTaflp4JLUg0KApZaVYtEIFEyeUfXbeE7y9o3HHjumI+cIeTIbefLzys38JZkJ1CeX4aJ1tGtGMpFiPXrinipVP9WsBnsxj5549u4VjTML8+1JmUFbx1UykD4z46B7wEw1FSbWaqitJo6Jjb31eW58BmNXJh3u+WYjVSVZROWb6DrkEPrt65n+Vm2DAZDbpGKilWE7npNnpH54IyBfi3P7uGjkEPFpOR1dXZWrlra+8kXn+EVUuypUnHFeLV7o+SKRNCCCGEeA1MxkTGx+0J8tT+dqaDEa5dXcT6ZXlMeEM89XI7vy3SdpZnEVdJCsqGZ8oYa0ozuHNLeVJzDH8ohtViJBSea6AxvxNgXFVRFIVUmwlfcC7jZDQoHGkc5K/fvZa2/ileONatldYFQjHS7GbMJgMTnhAq8MyhTlZUZjEyESAeV/EGIlqwFIur3LCumA/dmWjUMTyv9NKRYuYfHjkBJAIJq8XImuocWrr1e/Xa+qZYVpZJ60yGKS/TpguaAB68pYanD3Tojk14Q4SjcS2gnJWXlcLffe8YwxMBLGYD4chcIOv1RbTXNihQUZhOKBxlz7y9YWuqc3jgphoUFF2jDEg0WrnvhiV884mzeOZlFe/cVsazB7t064vE4gS8+pb5gVCMj719JWaTgb/45gHdz2JxFYtZWXB+lK0rC+h9eS4o27Asj9zMFK3D586j3Qy7A6xfmssmGVL9B0X2lAkhhBBCvEbhSIwvP1rP7hM9HDo3yFcfP82Fvkmy0qxsW6mfc9Ux4OF7zzbhnwmWakrSSU/Vl4z1j03z8HNNjE4GyHRYky+oqtx/wxJu31zGPddU8IHbnUmneHxh7thSjnmmBNFgUBgc9/Pk/nb+9bFT1JZn6QI2SOwBK8y264LIlu5J/v5Dm/ird69Nah7RPeTlq4+f0gVkJbmpeObNGFOB8nwHf3bvKtIW/J4pViNtfYmAzGo2sMmZHFgMjPmSmqRkp9n4yYsuLSDLTrPyvtuWcbhhSCujDEfiZDos1JZnstGZpyuHjKuJUtOBBaWLcVWlODeVsalA0p4/o0EhHI3rAjKAps6JpKBbVVUqCvQzqLLSrHz50Xr+70/qSLHq8yD5mSlsXDALrroknf55nUEdKWYeuLlGe/wfT53jmYOdHG0a4jvPNHLg7ACXYsjt50jjICMyE/EtTYIyIYQQQojX6HzXBO55zRziqsrhhsSssI/es4I/u3cl9pkv4uFonGPnh3nqlURZYygS5y/etYqNzjyy0xMB2OhkkKNNw3zzibPkZaVwx5a5OVUGBc53T/DYngt0DHp413VL2FibR1GOvjnDmQtj/OpABwWZKbzr+iri81JKwXCMl0/3Jw0mXluTq8suzf4uzxzo4EcvNGMx678q2m0mXcdBgHdcV6Xt5Zrl8Yf5P4+c0AUZJqNCPD6X6QpF4jR1ullYzzUw5qN5XoZtdVV2Usv+zDQrN6wrTuqQGYrE+dxDG1i2oOnF7PUXXstmNvKT3S1899mmpAYfHYMefrK7Jak7YnGOPWmmWigSo741UV5qt5qoLk5nwhtiZCLA4LifQCiKdea9zHRYeOCmGtr7595Hu9XEbZvKONo0N29uOhDhlTOJwGtkwq9lF2cdWlBCejEHzg7whe8d4/vPN/P57x3j2Pmh3/kcsTikfFEIIYQQVyWPL8zje1tp65+iujiDh25bRkaqhb7RaU63jpKbkcLm5fmYjAbdc05fGNU115iVMtPcwWBQWFKUrsvUQGI/2Q92NXO4YRCDonDj+hKyHFZdcDfk9tPWN0lVUTqfum8NJ1tGdF/U2/qmaOx0U5idwv03LKFraJrhCT8nmke07E3fmI/Cec0iZl3on6J7puTRYjawpTafB25eSkP7OG3zuvxlpVl5+cxcFibVZsJgSDSiMJmUpEHQ3UNeCnPsDM7LQlnMRl3DCqvZwBc+sJF//MFJ/b+BP0yGw6J1JVxVlU3jgllskVgcRVGY3wchFld5/kgXGQ6LtlcOYGlpBl99/BQtPZO6UseMVAs3bSihqWuCzsFE05MUqxGjQdH9rjaLkex0KwNjfrz+ROmmoqDNXqsqSqPONapds6LAQX6mnZOuuRLMQChKab6D9gF9c5V37KiipjSDsnwHrp5JznfPBVn+UFQ3O057f2aGZVstRgwGRRdom4wKu4/3UJybyuol2SiKgtsT5HjzMDaLiW0rCvjVK3OltKoKv3qlg20rCpOuIxafBGVCCCGEuCr9cFczZ2fapbs9IwTDMe7cUsY3njirNXs42TLCp+5fA8DguI9/+Um9Fmyl28260rY9db2EY3Hed9systKtZM4LNgDS7BYtuxFTVfbV97G8Iku3JpNR4RtPnNWyV0sWlPEBHDjbz+nWMVQgJ93KO69bwolm/b6saCxOQVaKVtpnNRu1gAwSpX45GSnsP93Pvrpe0uxmSvMcrF+ayy9f0Tcq8Yei/Pm9q/j14U68Pn1Ld5NRYdfRuflrhdl23nX9Ep473KU7LxSJ09wzSabDwsS898RiNupmbs3fJzcrEI6Rl2XTSiYVBaamQzw77xqOFDMrq7KJxVRdC3ybxcjbtleyY3UR++p7tYAMoCDbTu+CQeLBcIyKgjQGxuYCTFWFB2+uYW1NLs8f7aJzcN4Ms+Fp7AtGIqgkPhsLNXSM89Qr7dgsJtbVJA9qTrWZdJ8ZBbhmVSEX+iZ5+LnzuoDMYjbg6pnUspY3byjhts1lfOlHddrnc29dL4Fw8pwy8dYk5YtCCCGEuCo1dekzMk2dbvbU9em6751pG2NwPPHFfW99ny775fFHuGPzXJlhXIX9p/qpaxnB1TNJbkaK1hVvVVU2VUX6PUcAeRk2rczRbDSQn5miKyfsGvJoe8QgsZfq1ExABolZYC09E0l71Jq6JrSAbMOyPB66ZWnStVt6Jnj6QAeemYxQS/cEtRVZSTOrstOsfPfZJvpHfVoQWl7gYFNtPrkZ+qHDo5MBqgrTycnQ74vLSLXws70XtIDMkWLiPbcsRV3Q6XA6EGFZaYb2WFGgd2RaC8hMRoX7b1iSNO9r1ZJsPv6OlfSP6TOEwXCM9UtzSbWZqGvRd6/sGvRSmK1ff6rNpHu/Z0XjKnWuEcYuMksuKz35d62blzkzGRVWVmbR0jOJqiYyaUebhkm1mXTnLK/I1oZ4K8CN60uoLc/k4efOa7PfAMoL0ijOTdXta3v59AD76vSfz8Fxf1LQf8O64qT1i7cGyZQJIYQQ4qpUlu/QDREuy3egXKRh9eyeooVNLyBRWrdQU6ebI41DWnBnNCi8//ZlTHhDvHhiruuiQYEj54eIRhPnmYxKUkAQV6G6MI0LfVNYTAY21ebzm5P6zo2T3jAfuG0Zda4RPP4I7gUzzZq73bzvthpd90aAFIv+a6AK1LWMYDQoKEoiQ2S3mdhcm8/uE/prVhWlc8O6Yh55Xt+iHuBffnqSKV8ieLOYDKxaks2QO8DUvCzbdCDK0tIM6lpGGJ0XcNhtJlpn2spnOiysqMziSOPcXLNoTGU6oC8LhUTm7Es/rkvKBKVYjfyfR45jMhnJdCQ3HVm/NI/J6TAdAx7sM50rD5wd1D4HFrOR4hw7j8/Ml1swy5r0VAtHGubKS0tyUynKTaVuXkdJVVWxWZO/cr/r+iU0d00QCMe4d0cl+0/3M+FNlLKqwMFzg9yxtVwXkAFM+UJkp9l0x9Tf0u/z+jVFbFiWR8eAh2VlGVyzUkoX36okUyaEEEKIReMPRtlzspenD3RoGak3y4fvWk5hdiIrVJBt5yN313L75jJdwwebxciBcwNEY3FuXFeizeqCRBB3/dripEAuHld12bZYXOVI4xCPzJuxlToT7MwGZJAo0yvMSdW9Vn5mijb7KhyNs7eul/xMfXanpXeCbz/TiKt3kgdvrmHhgoKhGA8/16wFZAYF7r9hSVKXSEg0j+gc8mqdCLcuL2DH6qKk8xrax/nnH9XRv6DRRnmBQwvIZtd83ZpishYERCajwjd+cUbby2Y0KNSUZmgdKgEmp8OEIslB78CYT7fPz2410dw9SeeghwlvCIOSeH8Ls+0EQjFi8cQA7GF3QBuUbDIqBMMxHtnZzOC4j0/fv1rXBERVE6WYX/roFroG548eSOwj276qkLu2lScN2x6dDOD167N4sXgiWJvPYjJwonmY+tZRzne5efj58wwt6I4YjcWJRGKU5umfu7IyO6n8cceqIjbV5unWU5bvYE1NLtevLebDd9WyfVWRlolbDKFwjD0ne3l8b2tS0xIhmTIhhBBCLJJYPM5XHqvXOvTtPtHDFz6wkYJsO0cah5j0hthcm09pvgNIzKrqGfaypDidNPvcl/xoLK77kn6pyvIdfPlj2/D6wzhSzNoX1i/+8Ra+8mg904EowXCMF471YDQo5Gak6IKtNdU5lBek8fF3rOT5I91EY3Fu31yG2WTgcKO+y13fqE+X8fAFo2SmJbe+NygK168tJhyJUVaQaAgxMq9kLq7CvddV0TngYWwqSHP3BKFIItianA7zxP42ti7P1+23qinN0HVMjKswMhkkGI6hkMjKGA0Kd2wpY9exHt16XD0TZKVZSUsx4wtGQFEoy0+le0hfJnjzhhJWVGbR2OHWZR8B9tX30dKjbw6ytDRT12ExFlcpzrEnDZbOsJspmtdEpCArRdsHCIngZk11NsfOz2Wm4iq877ZldA15dcOZAd6+vYLKonT+/RdniMYS71sgFGPn0e6kLJs/GMXtDSXloGwWE/ffWM2FvqmkvXwAyyuycM17v3MzbIzOC7isZiN3bi3j14e6tGNjU0HtDwSzSvJS6Rz06DpYLq/IYmVlNt9//rx2rLIwjbdtr+Cff1RHeCabm2oz8TcPrP29/rv4XcYmAzjsZmwzmda4qtLWN4VBUaguSUdRFAKhKAfODjA1HWbLinwqC9P5f0+exTUTjO2r6+Mv71vN+qV5r3apq4oEZUIIIYRYFM1dE7ovnJFonJfPDNA3Oq19Od91rJvPvnc9bk+QR3Y2E4uriWG871pFTUkG33++mbNtY+Rk2PjgHU5WLcmh3jXKvvpeTCYD92yrwFme9duWAKAL8AAURUkqkTvXPq7L4kBij9ntm8vxBaNct7aIrSsKSLdbiMbinGwZ0RpOVBamJWVUIFE+mJth04I1o0HROi3mZth4/+1OTEaD9jow01Y+pvKeW5biC0b49LcO6V5zZCLApHeum6PVYuTmDSVatm3WlC+km3MVi6ukWExJzUtsFhO/mjfI2WJSKM11JAVlsbjKIzubCYRiWukjJBpwLOym+Jd/tDqp7T2ALxDFaFC0wFdRoH3AowVkORlWcjJsutLMcDROijW5qcaJ5pGksj9FgaVlGYQj8aQAbMoXZkVlFg0dc2uNxVX+9dFT+jWRCHI/999HksYAQGL/3s6jXdrjsvxU7thSoQuiQpEYoxPJe9MKs+3UlmdxqGGQrDQrH7jDyVcerdcFhR5/mIPnBnTHuoa87Fuw39EXjNLQ4ebaNclZzksRCEV5+mAH7f1TVJdk8K7rlhCOxPiPp87RNeTFajHy3luWsnVFAV/72Wk6ZjpN1pZn8lcPrOWrj5+mezgRnO+p6+VDdzq1gAwSfwjYf7pfgrJ5JCgTQgghxKK42F/x/cGILlsSi6u8dKoPV8+k9sU4Eo3z5P52asuzONM2BiQyDd99tolPvHM133m6QfvS2tI9yZc/tpUUq4mzbWOk2S2srMrGoCjEVZXmrgnCkRirluRo+7nisTgWs0HXcKMkN5XWXn1go8ZV/u+PT2p7onYd7eYfP7KZTIeVT963mi/9qI6ekWm6hryMTQV0wYrZZOCZQ50AZKSaWVGZzdGmub1TY1NB6lwj3LKhlKnpMAfODjAdiBCNqTyyq5mmLjcfe8dKnGWZui+7JXmpnG2bC+JC4RhDbj85GTbGZ9ZpMipUF2fozoPEl/sU21xQVlGQRtqCLoLhSJyMBU1F7FYTB88OaO3nVRWqi9NZtzSXYbefQw36rGHnoIfzXW7d+2GzGLU5XwDFuXY2O/P59byM3/hUiIJMfTbJaFA41TqitYs3GhSsZqP2uYBEYJieamH90hy+9rMz+IJRTEZFF1RNTYcZnQyiKIn9crFYnO6Zlv6xuIrFZOCWjaVsdObz490tuufaLEbu2FJGVVE6u4/3EJlXkjrkDhAKJ++Bs1iMZKVZtT1kJqPCiqpsfrCzmelAhCG3n+8/15T0hwCvP0LWggyrQmLv20Imk0L7QOIzW12caJ6iqiot3ROMe0Ksrs4hI9VCPK5y4NwA7f1T1JRkcN3aYn68u0XLAnYOevH4wtitJq07Zigc49HftBIIRbWADKClZ5IXjvVoAdns+1ffOvfvMct6kTVfzSQoE0IIIcSicJZn6oKKVJuJrcsLkkrCjAYlaS7YlC9M55B+DpQvGOVI06AuixCNxTncMMi++n7tNVYvyeFT96/maz87o+1tKchK4Qsf3MTBswM89Uo780ZiUVGYRmmeg+GJAOPzhhjXVmTpslhTvjBHGoe4e1sFjR1uekbmsknTgSg7VhWCkghsTs5rBDHli+hmbc3qGvSgAHduLad7yEPTvPlgx84Pc8P6Yrwzv5PJqHDNykKWliYHW2faxrWADOCmDaXcuL6Ence6dY0/BsZ9DM8r9zObDCwpydCVCyoKurledmuilO8nL7p017RaEnO9hhdkhBQl0aFyflZnXU0OZxasORKNk52hb2YBiUYg5QUOekemcaSY8fojuj1st20qTWpKUlHg4G8eXMfn/vsovpkgJxpTyXJYqCxKZ3Dcr5U5qmqia+HCwCccjbN1RQHeQKJTpe5nkRgWk5H2fk9SV8hINM7IRCApA7jJmU/v8LQWlK2tzqW1Z1L3Oe8Y9LKiMks3F25JUTpZaRZdUFma7+BC3yQpViOBUOLfsyQ3lZdP9WtNU5aVZfKZB9fy490ujsyU1tosRv73Qxs43DjI3ro+AA43DDE47udUq75T5anWMaqL9eMZorG47vMyK3iRIDQj1cx1a4o4ODMSwmoxcve2iqTzrmYSlAkhhBBiUSiKwmfes44zF8aYDkbYsCyPdLuFtdU5WiBgtRi5fXM5BkXR7dPasboQRVF0f6VPT7WwpDiDwwsyMz3D07ovuw0d47x4vEfXbGB4IsC++l52Hu3RBWQrK7MoyXPw5Mtzs7uqi9O5Z3sl0/6ILiiDRNlXXFW1vT3zhaNxSvJSiV2k7G3hXDOTMTHU+OUzA/zyQAeFWSlJz3n6YAcDM402ojGV5u4J7r9xCakzXQQhEej2Duv3eJ1yjbCsNBOryUg4HMNhN/POa6t4fO8F3XkdAx7WVOdog5MtZgPLSjN15Yj+UBSbxaQLCCAx021+MJFqM5Fmt3DNygKePtipu04wHEt6vtlk5MyFMV0wY1CgzpUIFowGuHZVIS8sCMAmpsO650Dic9bY6cbt0ZczRmIqn7xvDZ//3jHd8UAoyqqqbO29hUQ56ZcfrScciWvdOGfZLCbt82FY0J4xzW7mxXndMsvyHdx3wxL6Rn264dL1raNsciaX8t24voRVVTl0DnroG53WMoBmk8KdW8tpH5jiwrwMbm1FJtevKSYSi/PDXS3a8dbeSfbU9WkBGSTe9xeOdycF8QfODpCfZdf9/gVZKaytydVlZbPTrdyyqZTDjUNaZ1Kbxchtm8oYmQhw+kJirXarids2l1OSm8r2VYWMTga1LN3FBEJRrGZj0nv5h06CMiGEEEJcNoFQlAlviKIc+0U7v5mMiTbv833yvjWcaRtjcjrE+qV5ZKVZ+eCdtRTnpdI54MFZnsVN60uIxOL4AhFOtY6Sn5XCQ7cuo7wgjYb2cc60jaEA160tJhZPDpCmgxdrqx4muqDFvT8U45V5e68A+sd8rKvJJRCK8vyRLq0Rh0GBnUe7OX5+mI/eszxpv9jJlhFOznxPtlmMun1NTZ1uVlRlU5qbythUkJdOzQ0o9vjCOMsydeV+G5blaaVps8amgjy+94IWkAFsWZHPsabhpIDnu882ab+r1x/BH4qyrEzffKMwx67bTxaLqRRm25P2iB1tHNReX1FgszOPEwtmglUWpXPD2mLOto0lBU2JoM6kvYbZaMDtCeqCgtryTF2zklgcLvRPaY1KZk14gtSUZHChf0orZ2zsdNPY6dYFqwB5mTb+5r8OaY1SZuVnpugymdXF6XgDEa2cNa6q2G0m1tXkYjEbePn03OcjHldZUZlNlsNCZpqVnfMGa0Pi876mOpeGjlYWKi9Io6HDra3HbDTwP880sqY6l1s3lfL1n5/Rzo1EVSa9waTGKL3D02xbWcju4/qGLQAT3mDSsXAkjt1m0r0HqTYTH7h9Gd9+upHpQIQ0u5n3376MpWWZ2n7J3Awb991QTXFuKp9//wZequ/HYFC4aUMx2ek2/uKPVnO+083kdJi1NTnavk1neRbO8sR1VFVlfCpIhsOK2WRgOhDhu79upKlrggyHhQ/e7mT9sqtnz5kEZUIIIYS4LA6dG+TRPS7CkTiF2Xb+6oG15GemMB2IMDDmo6IwTbevxO0Jkma3YDYZ2DDvy9gLx7u1L5l3b6vglo2lACgxeM8tS/nI3ct11/3U/WsYnQxgMhrISrPSPjDFsaZhLRAozk3lrq3lHGkcwjMzO8tiMnDrpjJ6R6dp75/LYGxfVciuBWV+FpOBf3jkOCMTAdZU53DzxhL2nOxl3JMoRRubCvLonlb+/kOJcshgOMYrZwZ02ToVuHNLOYcaBpkORJicDnOkYYgb1xWzsipbF5RBolRsfgZv2O1nZWW2LvNRWZSWNCD5lGuM69YUa7PNDApsqs3j+SP6YKG1d4r0VDMWk4FoXKWmJIN0u0UXGMXiKnarSVc6l5+VQsO8IE1VIRJXk4KlaX+E7zzTqD02GQ1EY3GWlWVwtm1Md+6tm0p5YUFQkXKROV+qCu++qZoXT/biD0aJRONauV5OupU11bnsPz33PvqCUVYvycbrj5CTYaPepX+vakoyqC5J1z0HEtnA6QUli8FwjKVlGfQO6xueJNalMjoZwBeKJgWgoPLln9YzsqD9vcmo0Dvi5W3XVBCNx9lb16cFkGfaxha8RkJchUzH3L40SDz+n1830tw9gUFB2+dnnvl89wxPa01fFAVuXF+MLxjlkeebiasqBkXhvhuqcZZn8e9/sYOhcR8Ou0Ur57xuTRE9w17a+qd4+mAH779tGZWF6bx9h5mHnzvPF39YR0VBGn/ytuWsWjLXtj8QitI7Mk1pngO7zcSQ289//vIcg+N+HClmPnrPcs51jGslulPTYR5+/jzf+MsdWpfHP3TGf/qnf7rsF/H7w5f/IkK8xezZ8wIAt99+1yKvRIg3V2qq9YuLvYYryR/qPTIQivL1n5/RsgvTM3txotE4//rYaQ6cHeDl0/0sK8tEVeGrj5/iyZfb2X+qj/zMFIpn5jo1d7l5+Plm/j977x1eSX2ffX9mTu9H0lHvK62OtvcC7MKytAUMGIjjbtxiO7HjJ4kTP3Gc4iRO8iR2/D7xm8QkTowrBowxGGM6LCzssla4rhYAACAASURBVL1JK2nVez86kk4vM+8fI43O74xc3jTAnPu69gLNOTPzmyb97rnv7/1NpRVSaYX2/hCtdX6OtU/y1R9e4Imjg0yHNXIkyxJdQ3M8+HwPlwZCVJW4KPbaKfbY2dxUwnQ4jt1qYndrGesaitmzrhxJAqfdwtuuaGB9QzHbW0p1grCztZRb9tbjc1l1K5Ym9knMLSZRFJXx2RhVAReXR8LCxDkSS7OtOYDPZWXf5iqePTUsqBFWs4lPvH2DEF0Pmmp10+5azvbM6MqRzWLC7bAIaYKLsTTX76zh8nCYdEbBapZ558FmLg3MCdZJn9vKpYE5lCVG53JYeN+NQV4+PyaM12E10z4wR1ZRUVXNmrZpTYlBFRubjQoK3x37GoXEQgC33QIS+vg9TgtZRRHUOlVV+fJvXYkpL10SNKvc8JRIdnwurY4qV+maW0zSPjDHuroi6svdjOQkecaTWQI+O2OzIvnZs66cXa1lxJNZwT4IcMOuWjatKeHIhXFyOZDdamLTmhKhRtBhM3Oqc5r+8UVkWdIJs81iYiIUY3YhyUQohsUk6+fZZpFZjGWYDsf1/mvlRQ4cNjOReIaxmRgdg3OrhsqgQk2pW69pNJtk3n9TkOYqL+d6ZlFUFYfNTLHXxsW+EKm0ggp4XRZ2BMv4wE1Bakrd7GgpZXYhiSxJXLejhv1bqqgtc7Om2sfMfJxSv521tX4qS1x0Ds7xtcfaeeyVfi70zrCxsYRvPtXFuZ4ZEqks47MxRmeiXLGhgq8t9ckDrbayd2yeA9uqAWjrm+WL3znNS+fGeP70CHXlbh4/OqC//EhlFDoG50hnFIFgZrIqu1rL8LmNrSPerPh5fx/fGtSzgAIKKKCAAgr4pbEQS2I2yThXiRr/ZTEfTRlsYROzUdr7Q7ptLprI8NCLPZR47fqEN5rI8M0nO9ncVILVYqJ7dN6w7ZOdU4KS9GrbBM01PtbW+PnyA+f0SfC5nlm++NHdlBU5Odkxpdc4DU/1Mx1OcPNeTS2LxNNc7JulY3CO99/UQteQ1oi4Z3SeSwNhPve+7fzNx/30jszjsJv56sMXhPF0j4SpKXUL9W0uh4W/+d4ZQJtMX7+zlh++tFKXZrPInOqaEhL4AEwmic9//bg2oXZa2buhnGu3VfOTYwOG8/DyuTE9nS+VUfjhS33csreeh17sAbT6puqAi6mcsI1IPM35nhnKihyMTEc1u2FrGR0DIrHqHpln/+ZKnDYzsaSWVrhnXbmh/9rwVEToIwZaPVkuedq3qZJLS4l/y7CYZR56oYf5qDHgJKuorK320TM2j6pq1s/lCb/JJLG+vpiLfStE7lzPDOvqjW0PkmlFTLw0yTx+VDuPqylvTxwbIBLPGGqZSv0OXr2oBVQ4bWY2NBZxMkeRVBSVbWsDbG7SAkvO5yQ/pjIK77uhBdkk4bCa+Zcft4vbLnLQmdca4PilScH6CtBY5cVh0xQmj9PCe25owe+28rVH2/TnadvaEkPK4UI0zYdvWacf0yMv93H8kpbyOTwVQZLg4PYa/vXH7bqS2zkU5nfesYX7ftqhX5/+8UUefKGbS3n3ScfSM9WXR3CHJiNkFQWTLHP/c9260pxMZ7n/uW5UVVT+FqIp9q4vF7bjd1v1lzNvBRRIWQEFFFBAAQUUAEAqk+UL3zipJ9FtaCjmM+/aSsfgHD860kc0nmb/5ioO7aljIZrikZd7GZ6KsL6hmNuvatQj5UFTAKoCLsH+trkpoE+KlzG3kBCsgaDZxU50TjG3mMS+Smz2aj2/hqciLMTSgvqTySqcuTzDoT2aTTAXWj8wVbAUvnJxnMoSJ/3jKxPDkekIr7VPMDOf4PkzI8iShNUsC2rU7EJSt0HKklY/lTu5HJmOsM9Uwafu2sg/P9qOoqiEIym++/Rl7tzfyItnRwlHUlQUO4VmxwuxFJIE6axCJqtgMct6oMKBbdWc6hRTKifn4rzatnKciqLq388/9mVVSVVhYjZGTZlHqCcr8ti476edumqYyarUVXgMpGw8FNUJmSTB9dtrePb0iPCdrqEw25oDDE8u6gpUVlU5kTN+kyyhqio2q4nXlkiD1SJzYGu1br0Era5NUY1WvhKvDZ/LqpMIi0nWiZsEbGoq5kLvCqGIJzPUlbuZCMUwyzJuh0WvDVQUFYfVxL7NlZQXO/nuMyv1X7FkBgljbaSqwqWBORbzSKYEnOic4vJwGKtF1lsxLMPvtmKzmMhkV0isy2Fhc1MJRy9OkEhl2dxUjEmGw0u2yvloikde6qO+3CMQ+qNtk9SXe4Q4eo/Twue//hrFXjt3Xd0o9KYDeOHMKBXFTkO66dG2cQNhHp6KUFfuEZ6P2jI3nYNz+N024d6tKXXxw5f6KPbYhMRSgNBCkgNbq3gu5z5prPRw9zVNZBWVM5enKfU7+PWDzbx4dpS2vhA1ZS5u3duA027mxbOjvHxuDKfdzB37Gmmp9XPk/BiPHOkjmcpy7bZqfu1A06o1rG9kFEhZAQUUUEABBRQAwPeevSxMrNoHQjx/epgfvNirk5CHXuzB77Zy+NyYnl7YP75IKq1waE8d336qk8sj8zRVebnnUJDDZ0eZCMVorvZx0+5aBicXBbva7nXlyLIk2NXcDgvfeKJD/3lrc4DukTDprILfZWMxntb7Ui0jlVZwrqJ+lCzFqnucViHK3OWwGHpAAYQjScOy7pF5nSjkbje8mGRNlVdozKyoGHp7ASzG03icVmHMABNzcfasL2cqHKe+zKP3LlvG2EyUv/r2aV11tJplPnnXJjatKWEmHBfshQ0VHr2P1DLmo0mBrLTU+g1pjENTEa7fWU3n0Byqqtn1dgZLefaUSK4mQzFBwSnx2unPIZ+qCoOTi4YQk0Q6ox/XsjKX3/bg4I5qGsu9/GtOk+VUWmE6bGyy7HNZDH3GTnROkUorlPodbG8J8HROKqPK6j3xvC4rGxqK8bmtAvEDiKey3L6vUUjoXIaCKpwHq1kW+qItk3aTLNFc7dNVvlRaQUKL9Y8nMrgcFl65IJJckyxR5LHpEfUApX4np7rE89UzqtUA5uO6HTU8c3KIkekonqWWAYuxNJNzcb768CJWs0gA7VYTxV5j64GqEhdVJU7B/hms86OoKmMzUZLpLJUlTlpq/fzd98/q3zGbJCpLXAxPRXTi73VahJcDe9aV8WsHmpBlifb+ENWlLu66eg3Pnx5hOhzn6i3ai58nXxvU7b0X+2YZmoxwYGsV38lpv9A3tsDvvXML33xy5QXCk8eHyCoqd+xrXFURfaPizTPSAgoooIACCijgvxUD44uGZSc7pwzx7me7ZwyT1TOXp5kIxXR1oq0/RCqj8OFbWvm/P7jAs6dGePnCOO862Ex1wEX7QIhMRiG0mOCmXXUoisq5nhkqS4zpfoOTi1y7vUZPOpwKx6kOuJBlidHpCIqqqVwX+2aElD4JuNAzw9bmALdf1cC//rgdRdWW3331GnxuG2e7V0ImqgMubloKAFm231nMMhaLcUJ/7bZqdgRLheCEZbjtFiHpT5Lg6RNDBPzGWPv2/pCusp29PGNICMxPxktlFCZCMbpH5oXz1FLr4wM3tfIX3zopNL02m2RB8UikMgRzmm4DVJY4ee7UaM53snpaXi56R+cFS12Z325QQSIJrbnxsnrWUOlhMOe+UlUYzan9WsZMOEFmFVWvrNhBc41PTxmUJE0RctnN1JU5kWTtvl0+5ulwXFBnlxGNpwWFU5LgUn+ItqV6uHyCU1Pq4s/vO0loIWEggL2jC7pCVV7kwOuyCvdAKqPwyTs3UhXQ1KJcqMDH3raeUCTBt58SExiv31HDjbtr+dy/iBH9R9vGqa8QVbEij42rNlVyJseuWOZ3sLW5BLNZ0/JeOjcmJFYuxjNcubFCD4eRJK0mMLSQxGE1EV8i0nVlbtwOi96ewWqR2bu+nInZmB6kAloITj6ZtVvNBHx24SXLQizNga1VTIfjNFX7uG57DY8fHWBkOsKudWXcvKeeHxzu0Ynohd5ZJkIxQZED7Vlx28XrlExnea19knzt9JmTwxxtm+Cz79lGTambNwPesqTsr//6C8zNhX7xFwso4D+I5fvrD/7g06/zSAr4VUVRUTF/9EdfeL2HUcCvELY0lxgCFjY1FtM9PC9MeqoCLrxOCws5ylN5sYOuYbE25vJwmIcP9+rqWzKV5aEXe/j47Rt46vgQKjA2G+Nib4i//c0reMe1zSiqyqf+n5cNYzuZZ9UbnYly59WNwnjno2mu31FM90iYrKJNgF9tm6Ay4KJ3dF63zqnAyHSUmjI3ck46ns0iU+S28cf37OTeR9sYnIyQziiGREOAx17p5+HDvVQFXJR4bXq9lCRp+7RaZIJ1fsKRFJOhGJmsysRsDIfVtGRHVGmp9RvIbW2Zm3AkxUQohkmWhHCMZVjMMk++JqYnWkwyVQEXu1vLebVtHFXVLH35Fq6hyQh715VzsW+WrKJiNkmsWWqgnIuJUEyvJwPYGSzlbLd4HrqG51lXXyTYHhPJLKEc8pA/iQatLmzTmmI9IESW0INULCaZ9FKNlCzB4bNjXLGhnJt21fKdZy7rBDaayJBVVT50YytfuO+ksP1YMiOMy2Ez0ZUTnFHmdxDw2bmUM+6FaJp9myoZD0WpKnFx/NKkTuCUrEpliROv04rXZRHqySbn4oZG05IEjx7pZ3QmitshTrW1/nOj2FZLFJTgWNsENqtJUHFtFpOggLodFt55sJmHc3rnVZe6+Oit6/mz+07q5K0oLyDDbJI4c3nlOXLZLdSUuvnCfScE0rm9JcD3n+/Wn4tUWsHtsAiEDDCox6AFuFhXsRzfsKuWyhKtPuxrj7bpz/OlgTnmIynD832yY4rmGp9QD+m0makudUGH8FVa6/0cPjtqIGaReJqfHB3gE3dsNIznjYi3LCmbmwsxOzuLZDG+tSqggP8KqGhvVkMLxm73BRTwn4WaNlp6CijgP4sbd9Xx7MkRQZn54cv9lPntS8EdWsrfY6/0U1HsIJVRSKSy+NxWgnV+4skM/TmqSH2Fh8k58V6NJ41vtmPJDCc7pxiZijA2E6WpyqtHY4NGLiJx0Wpos5gILxqthnORJHmtxugZmRfCFwBOdEwSTYg1aH3ji/SOLeB3WRnKiTqPJzM0VHiYj2qNiecWk7oda2wmyu51ZVy73cOZy9N6LVkqrdAzMq/bJ/VtpbK8/6YWznfPYllSNMTAdHQSm1VULvTOUl7k0M+jJMGZzilDRHosmeHl82NC7ZzbYSHgswv1bbIk8fyZUX39TFZlcMKokHYMzOmEDDQSVFMq1iv5PVaBkOWqMMsYmFhkz/pyYQK/fG6bq7yUFTuFddJZhQNbq3jl4jiZrEoyleXw2TECXjuLMbHGaWI2RlvfrMEuGUtk6J1dQJZg29pS2vrFdMfZhQQttX7DMSuqSrHHTsBnN6jDRR4b7zy4lhfPjBjWKy9y0De2oK8T8DkYXVLrIvEMTpsZr8tKaDFBKq1wbqlZc25cvkmWBMvickCJxSwTT2UEct5c42N4KiIQ6dHpKM+fGRHUtLlIktoyN8NTEZw2M631fkFZi8TTPH9mRCBkgJ7CmYvx2Rg2q0mo/3RYzTRV+YQ6tRKvnam5mECu19b4+M7TXZjNMod21RlaEZzomKTIYxfq2jxOC9uaA4xMRYgttRaoLHHy2Cv9WC0yqbSC2SRTX+7m6493IMsSJpMkqMQA02Fjb7Y3Kt6ypAxAsjhwN9/+eg+jgAIKKOD/NyI9P369h1DAryBeOjdqSEwEmAonePu+Bl44O8pCVJs4TYTibG8ppbnayw9e7OVHL2s1QyVezdJWHXBx5cYKpufigppVXuygdBUb3wunR4RI873ry4klM1zonaVnKTp7ubeVhGZbevHsmGAts1pkJmajBrtZLJHGkaP6gGYLzG8UDVrIw2I8bXjr7nVZ+dMP7mJkOsKf/vsJ4bPZhQSfuGMjXUOi6pVVVMqLHMLbfo/TwneeXrGt5Y7V57ZSXuQwbOfg9hqePjFEaDGJqkLbgBaskFv/trbGz9G8MJPByQhbmgNC/d1Ne2p56jWxB1gokqS+wqOTs7U1PoMlc2hykTVVXv1nl8NCft7G2e4ZakpdwnW0mmWm5mLsDJZiMcsca18hZz1jC9hWqfnxuqwGonB5ZJ7GvAAVi1nm4Rx7YInXRnXAxYUlBU5R4fTlaQI+O8kc26XTbhbIJGi1Vcvk8GQnQqgKaOT7z76hXffcREe71cRL51fOe22Zy/ACIZbM8Km7Ngm1VwB15W79WcgnWajw8ds3UBVw6ftdxvhsDJfdeN4iMWOS5W1XNtBS58csS/z41X7D5+m0YqzPXKqHyyVmk6E4LruZVDqrkUWTTM/oPD2j83icFvasK+No+6TQNuDA1ioqSlw88Hy3vqxzMIzXtWKNBCjy2rh+Rw3ff66bZDqLSZaIJtI8+GIPsgQ376kjnVH0YJCsomK3yrz7+hbu+2mnvp3Verm9maI+jCbpAgoooIACCijgLYnVgi+WMRGK64RsGaPTEQ6fGxMITDKd5dN3b2I6HOf7z3Xz3OkRtjSVUFvmxuO0MBmK88SxAfzulZqlPevLhIk8aApLfr1SJqtw485aYX+ZrMr2llJkSVOnLg2GURSVUp8ds0mbkl0emdffti9jfDbG6a5p/Tug2eW+/MA5jl4cp6ZUjOK+PBzmL791klgiTVmRSCpnwgk+//XXsFtF25bZJDMzn6DUb0eStJq1lhpRoclkVQ7trmXb2gDr6ouoKhH3K6H1DAvlqYKypBG+ZTxzcphM3qRUliWeODYgTLiDtX7WNYjx8ZXFTkEt6x6ZNxx/idcu9COLxtOG0JJMRmHfpkqqAy4kNMISWkzSN77Iqa5p4knj/eV3W4VgFFmCw+dGhWsFMDuf0AmZBGxoLDIkBlaXuikrchr20Vzt05NBrWaZSCwt3FtXbCgXlDbQLLrVpS4cNhP15W6BRKgqbG8p5fqdNdRXeIT1hqei1JeLy0q8dk52TpEfBuiyW8hm1dXJhASdg3P886NtOGzifZXJZDnfI6p/FrNM5+CcsI+AT+vPNxWK87l/fY1nTo4IJEWWtFpMRVGxmmX9nA9OLOrW1uX+cGOzUUIL2kuBA9uqdBUMtJ55U+GE4fdHNJFhPiret5mswpbmANalOk1N8U7xzSc7MZskfu3AGqoCTp2UKyocuTBusFUnUgo9q7TLyIfdZrRSvlFRIGUFFFBAAQUUUAAAV2yoWDWlTvusnMoSccK7vqGYRN5EO5HK8tgr/YL96/LIPNuaA3r6oaJCOJLit+7cyG/fvYmmSi+2PELjcpix5I3FYpZBMk5gs1lFaParqLBvS6Wh35TTbhbIRlZRsZpNHNxRra+XySo8f2aUg9truPWKev37iVSW/vFF/vGRNj515yZ2tZZRtXQ+5qMpxmdjnOyc4qpNFVQFXLiWlLjx2RjT4QT7N1fxlx/dQ22ZMXTgyIVxznbP8Fr7JA+92MuhPXV6LZIK3PtYGz6XGLxRXeo2WEMVRRWI4bp6v8HKeax9goGcAIXqgIu6PBIBWpLjMmH1OC2GuimA9XnkTlFVHnihh7GZKLdd1WAgOuOhmD4ZX8ZMOMG7Dq7l6i2VS9vQ6ruyiorXZcUkS2xtDuh2wOVzIkvG+zSZyjI2K5J7WZZ47dKkrnrtCJYaVFBVxUCY7BYTfpeV9Q3FqzYvritzYzWbyGaN9+N1O2q4alMFRR4bboeF2YUEL54dFZRFj9NCx2CI05enOd01zeRcXBhDZYmLl86PMRmKEU9mcdrMlBc7cNnNzC4kdUJa5ndQUewknVFIpBVUFVx2M2/f38gff2AnVouJ7z9/WX/2VLRna0NDkfDMpDIKGxqLhePIZFUObK82qJZTIaN9fjWF3WYxMbdgtBhHYmluvaKe3/v1LVQHXPqxRBMZXjwzZlAao4k0jTkqLWh95na3lgnLJLTaulxcvaXKsP83Kt7S9sUCCiiggAIKKGAFNWVuPv/+Hbx8foxEKsN8NEU2q3LNtio2NQUI+B3c/1w3o9MRNq0p4R3XNuFxWvTYaoBrtlRxvles30qkMoyHjIl4HQNzvHh2JfVv2TIlS1rCnQRCX6d0RuGZkyOC3cpilnGuYuVaiKQwyzIpVliJ1SwbgjNiyQyBVSLBJ+divPPgWj31bxmReJpURuE3376R50+P8L1nxQQ9r9PKn9yzk9/8+5eE5ee6p3nCb+eJYwPC8nyroKKqRONpgdBkFS0dUF6qZwMILSQEG532PVVYLz+8A2B6Lk4s5xyMzkS5eU+dcB20QIgZfTK+GEuzmKdKyZKWsFlZ4tStj8v7U4Gnjg/hsJmE8+2yW3jXwbW8eHaUSwMhMlmVruEwXcNhdrSUGsZ63Y4aZEmbxOcjkcpQXerSkxytFlmPngftWq+p8tI/vkAyh33k2xZBa/6dex5ddrOwLUteXzybxSS0Lsi1oFrMMn//4DlqSl3ccyjI//2B2Gh8XV0Rt1xZT89ImMdeGdCXK4rKDbtq8DqtVAfc3P9cl7BeLJnh99+1lb/41ilhuRZUIzLvaCLD1Vuq8C4R+fy6qlg8g3OVAJZ85RMwvHQBjVDmB/3kPyfFHpuhN+AyTl+e5vTlaRoqPEKaJ2hW4Jv31vFkjsV2R7CMO/Y1shDVAkECPjvvub6FDY3FfPDmVp46PoQkwS1769m2NrAUrZ9gZ2spm5sCq47hjYgCKSuggAIKKKCAAnTUV3h4f0Vw1c8qS1x85p1bhWV37GukothJ13CYxkov+zZV4nFZePTIyqR1V2sZO4JlQmqd02bm9GUxcc1pN9Nc4+PsUhiBCqCqhgAJRVHZ0FjM6HSEcCTFsfZJQx3Z82dWscAtJA1WMJfdzIXeWQPBWYylmZ1P0FDpESboZpNE98gc5cWOVVUvl8OC1SwLiYwARR67IR795r31bF5TzN/eL9YaOe3mVRQYSbD/jc7EqCxx6kTIapYFKyZoTXp3BEs5c3kaVYVSvwPHKgT2VE7wgkmWuGv/Gh7KSfYDbXJ+x75GXrkwRjqrshBN6T2w4smMoR9UKqPw/oMtPPRir66i9I0t8E8/usihPXVCrzrQGmXn45kTQ3p7gNzrK0kIRLayxEmxxyaEw6QyCndf08SXHhDPraJqdtf2/hBZRcHnsgrXyeu0sHVtqRBekc4oHNxezeRcHLfDQu/oPMn5FbKpKCr3HAryyEt9OnkdmY4aavdAU6nWVvu4NGBMAG+q8gHw2qUJTLJIBH0uK5msYiC6pX47i7E006yQmxKvDa/TytDkIo8fHTA8Bw6bmdN5fc/MJom2/pAQPGO1yHq/t+XlTruZ40s95ixmmZYaHx1DYcGCuaWphJFp0W7osJpoqfVzPue6D0wssqW5RLBibmws5u5rmijx2ukYmKOuwsNNu2qxWkx89G3r+ejb1gvbvXpLlUENu+2qRt6MKNgXCyiggAIKKKCA/zAkSWLvhgruOdTK1VuqkGWJ265s4EO3tLJ3fTnvuLaJj9y6jl2tZdxzKEhTlZetzQF+/91byWTyapKyqiE9TUUjHPko9tiEOp9MVuWqjRWCqpFVVGrL3NSVr5CneDKLw2aibolQRRMZOofCmE0SZUUO3fJ4tG2CP/3GCa7YUM62tYEl1U7bz4Mv9PKFb5ygKuDi9qsahH0+fLiX7zzdxT03t+J2aGqE321lZ6tRCZoOx3j4JZH8lBc5uHlPPZubS4Tl21sCBjug1bxyHJmsYiBysiQxOLGok83pcNww2a8KOIWeZVlFZTIcF+rVlpcvRFN89j3bCeQlSoYjKTauEcfrtJsZnFzkTz+4k2Lviv0vk1U5kkN4VpYrer2T2aRZFnP7tWWyKnvXl/O2K+tprvYJ647Pxgwx7BJw+NyYwY4bjWc4c3maZDpLY6XXUM+1EEsL411GMpVlMhRjdj5hsMWaTDKNFV6Dmjg9n2D3uhWLndUis7O1jP997zFBCQKNyMQSGe59rJ0THVNMzsX1+97rtNBS6+evv3tGIGTlRQ7a+kJCXH55kYOP3b6BZDrLl75/ltNd03qfusoSJy67FnizfNilfjvVAZdOeJeft6s2VgjPogrcvLtOqBtLZxS8LmND9GgyY7A8ZlUV9ypN1W+7soGbdtdSX+7hmq1VfOz2DciSxMHtNXzyrk3cdmXDqhH7v4r4pZSyYDBYBpwGbgAywDfRrk8b8Mmuri5jfFEBBRRQQAEFvEkRDAYloLGrq6vvl/hu4W9kHiRJYv/mKvZvFt9gX7O1mmu2Vus/X7+zRrA+Xr+jhhKfnfacpsilfjsHtlVz5MK4EB+u1UGJ9iiTSTI0IF6NrMSTWSpKnEJSXDqjsrU5IDTDjScznOyc5rfv3swzJ4Z44IUe/bPZhSQnOiZ5+/41RBNpnj+9Yv87fG6MKzZWUOy1EYmnCUdSjM1EDYl+4zMxoVaqvMjBX350j9ZaICdl0G41sX9zFa9enBDsXnabSU9qVFQYmopQ5LExt5hEAvZtruDl8+I5mpqL6QmZABaTccK7EE3x0dvW8+iRfoYmF1mMpZmcizM5N8q5nhk2rykRUhCtFpnrd9ZQV+bmqeNDjM5EiSUyvHx+nMHJyKoBEI2VHr19gt9tFVopZLKqwTKoHaNGDFez2UViaUHlqSlz82pee4D6cregpnWPzLNpTTHhyMr9VlvmFhoug2YxfXVJqZ2ZT2itDHKU1UxW4c+/eVLo6wbQXLOSFinLErdd0cC57hmhmbcE/MF7ttFaV8TffPe0sN9URuGz795KZYmL3//no8JnrXV+oomMUB9nNcv8xUf2YDHLnOuZEUgtaPWD+ZbWVEbBbjWqnPnqGoC6Sj2n1WKivNjJZGhluztaSslkFUEZPri9hqs2VnDm8oyu+O4MlrKmyseaKp9hu29F/EJSFgwGLcC/AMtViCIctAAAIABJREFUfV8B/rirq+twMBi8F7gD+NF/3xALKKCAAgoo4L8XwWDw48CXgNwq8QGg6ResV/gb+Z/A2/evobbMTffIPM3VPnbmFO6f7Jik2GvntisbCPgd/K9f28zTJ4eRgBt31xKsLeK50yP6ZNBiljm4vYbIkhKyjP2bq5icizF1biWcoLLESW2ZmxMdooXLv0qgw9hMdCmq21hbszwpzw8mAK29QG6vs2Ptk7z3hhaOtU+wGEtx3Y4avY3AMibn4siSxImOKaFeJ5HKcqxtgopiJzPzCWRJYktzyaoK4pbmEg6f1RIxX7kwjsNmFmyPVrOJidDKuAYnF3Uit4zzvTOc75nlyo0VeJ0WIcZ+bjFJa72fmYWETp5TaYU//vpxPnnnRkOz6sGJRfbm9Slz2MwCCdvSHOClc6J6ZrOY8LmsOoGxWU3C9cq1MxZ7bHTnJPHVlblJ5pHzSDyNy2FUalRVI4CqqtJY6cXvthpstvk1i+mMZlecDMV56sSQfh/Ekhlqy9wkU1k2rCnWbIVL9VyKovL40QEaKsXAChUtVORcz4xBtZNlic6hefrHFw2fpTKKIVwjq2h93V5tGzfUeIGWKFk5ExWIWXO1j8oSp5BuWFni5LqdNRzLCUgp8ti4ZU8953tm9fXNJpkDW6u5ZW89jx7pZyocY0dLGTfsqkWWJKoCLrqGwqyp8rKrtQxJkvg/H9/L+Z5Zijw2Q1DMWx2/jFL2ZeBe4HNLP+8AlqtXnwRu5Bf8wSkqcmI2v7GkR9PPSJcqoIACCnizwGSSKS01pqYV8B/CHwJbgC8CnwduAa76Jdb7lfwb+T+JQ6UeDuUtu/v6IHdfL9a1XVvq4do9DcKyr/zONTx7fJBIPM21O2qoq/CyMVjOE6/0MTC+wPbWcg5sryGWSGO2mDjdOUV9hYeP37mZEp+dzuF52vtmkWWJO65u4l2H1nGya0pXqawWmbPdK9Y+p92sqz4mWWJgahHZaubQlY0czyEdpUUOnA4jwZtZSDA0GSGTVXjhzCjNtX7a+1bqaXxuK1964By+VZIO+ycXaetf7r+l0j4wx2/etUmv7wGtPi63Ma+igtthxmEzE1pI4HFaKPE7BIUQ4Pb9a4gmMvSNzXOmcwotN0LllYvj7FpfbhiLz+fgbz65j/d/4Snmlyyk6YzCj470U1PuFuqJbBaT3rxZlmHnugpOtIsNpmcXk3oPumWc7JoimcpiNcvcsKeen+b12Cr1O7j7YAvlxQ7++ptiH6+hqQh7N1YI6o3fbWNjc4BTnVO6da/Ia6Otf0U5W4ynDW0FYskM1WUeoe5JliXsdgvVFcZp9MamAJ+4azMz4Th/+52TwmepjMKO1jIu59QoNlR6+d5zl+ld6sWXG2wjS+i9xXLvPYC37VvDYizNfT9p15ddt6uO77/Yw7EchVCWtPsgWF/Euw+t4/q9DXz1oXP0jc6zdW0p/+td2/C4rDgcVk60T1BT5uGeW9dTGXDxld9x8+yJQRxWMzdf2UCJz8HfLz1zC9EU1+6opX6JZK5fKyYhAtxY6uHGK8VlpcCa+hLDdwsASc3v/JeDYDD4QaCmq6vri8Fg8DDwCeCFrq6uqqXPDwIf7urqet/P28n09OLP3snrhD/4g08TWogVmkcXUEABb0pEen5MsdfJl7701dd7KAaUlnreTP06AQgGg8e7urr2BIPBPwTau7q6Hg8Gg21dXV0bf846H+RX8G/kS+dGeer4EBazzK8fbCaWyNDWH6K21M2BbdVYzDILsRRnL0/jslvYujag1+0MTS6SSiusqfYiLykmqqoyt5jE67L+zLj9fKQzWSz/Q0R1IhTDYTXpsefJdJZTnVPEkxkefKFHUCj8biulfocQMtFc7eOP3r+DM5enOHJhnIDXwaE9dUzMxfj7B87p31tuvJvOsVJuXlOMgtYDTZYkoWbMZTfr9rMij42KIgcdeba6Q3vqePbkMFlFU3s+fEsr//aTDmHMXpcVswyhxRXLXO7Efznx0mU3s2lNiaBoAVy3vYa2gZBAcECzz10emReshG6HhZpSl27/s5hkfG6rYLn0uqwsRlOC7a6x0oMsSYQWk7jsZhZjacHiV17kYC6SFGqcakpdeF1WJkIxVBVB6aspddFU7ePI+XEUVcVhM3PT7loeO9Kv79duNeF3W5nIi3fft7mSVy6skBqf28rb9zdysmOKjoE5LBZZH4fEcvrhytG8+7q1PHtqmJn5BHarSbimlSVO0pksM/PaWD1OC7furRdssQAHtlWTSmeFcBtYiXffujbA1uYAX334gl4PKAEfvnUd//5Eh7BOQ4WH37htPZV5/e/eiMhkFabDcUr9Dv13RSyRpn1gjoDPTuMSAYwm0pzo0Pq+7W4tx2k3E4mneeH0CKMzEcZmYiRSGXavK+cd1za/nodkwM/7+/iLlLIPA2owGLwe2Ap8G8ilwh4gvNqKBRRQQAEFFPAmQjQYDF4LXADeHgwGTwKOX7DOr9zfyOOXJvjWUytR3F958Lzwee/YPHddvYYvfvu03luopdbPZ9+9lXsfa9dT/OrK3Xz23duZjyb5x0cuMj4bw+ey8tG3rWdtjY9vPdXJiY4pijw23ntDC1uatdjqrqE57vtpJ1PhOOvqi/jY7Rvwuaz85OgAz50axmyWuf2qRn1yOhWO89NjA4QjKa7YUMGeJVVnMhRjcHKRtTV+vb9WJqswNBkh4LPrUeGgKTm5wQ02i4mrNlWSVRR+dKRPCFawWzXFKRc9o/McPjvKw4d7iSUzrKnyYjZJbGgo5rfv2qRHze/fUsnXHm0X1p2Ppfn03ZsB+Mw/vSp85nZaaKj00N4/x9xi0mBfc9hMvHB6RF+eziic6pzmqk1iHVlLjU9IVwRoqfMT8NkZmlzULZbRRIaTnVO6srKMSCLNp+7axOnOKSEGvnMoTFO1V1d4QCNlufVYJT47sYQYfrEYTbGztYyTnSsJfrlWxiKPjVhSJEqzCwk2NBTryX1mk8x8NCU0HPe6rCxEU1QFXGxuKuGnOUEamUyW8dmoQAQTqSw+t00gZTaLiWxWYUNjEYMTEZw2M1PhON96sgtZkrjn5iAPH+7VSZmKRqzK/A7iqSwHtlVzrG2l7i+RyuJ2mKkocVFR5MTntvLEscGVcxFLM5yXUghQ5LYaGqdrx2hhdj7B4MQifpdVCGhR0cJpcgk3aAqbqmqx/03VPv1lyc/DyFSEgYlFWur8lPkdKIrK0yeHON89Q0WJi7fvb9StvoMTi9z3ZAfDkxHWNxbzkVvXrWoDzsX5nhnuf+4yoYUku9eVcc+hVgYmFvnnR9tYiKbwua188u2bsFlN/N39Z/SXE9dur+bO/Wv4wn0nCC0lZj752iB/cs8u/u7+s4bExyePDxFPZfnATaunyb7R8HNJWVdX19XL/5/zFvBLwWDwQFdX12HgZuDF/84BFlBAAQUUUMD/AD4NfAT4zNJ/u4Av/LwVfhX/Rj5zYvjnfn6ycwqX3aITMtBUnqdPDgsT/6HJCC+fH+PSYEivP5mPprjvyQ6u2lih1yjNzCe497F2/v6TV2Gzytz743bdDtcxOMdDL3Szq7WcR15eCQz45pOdNFR4qCxx8Xf3n9EnZxd6ZzHJEouxFN995jIqWt3Rb925ifIiB3//4DlCC0lMssS7rlvLNVur+Jcft3O6a1pLe9tRzXuub2FkKsJPjg0QTWTY0hzgtaWxSkDAZ2cxlhIi1H0uKw883603y+4bW+BHR/r54M2tmEwyPaPzJFJZescWKPM7mAqvkIDJUIzP/NOrVAWchqhzn8tGe461biGaoqHCw1Q4js1iYt+mSh4/OiBcn+lwnN+4bQcdg3N6LdNq0etmk8RVGyuYy5v4ZxWVu65ew+nL04xMRcgqKscvTXKue4brdtQYtuN1WrFZZJJphaqAi2hcjLWfCMXYv7mSIznKk9Uic7JzCrvVxDVbq+gcCjOYkx7YN7bAlqYSITrd67IKPx/YVsVzp0aEfRW5bfzNx/YCcN9PRbUonVVRV4nbaahwk84o9I0tYDHJJNNZ/d78yK3r+MGLKwqWoqo8cWyQRErcUFZR+djtGzjbPYPHYWFsRuzHF4lnuHFXLYMTiwZCD1BT6sbtWHmmrBaZZ0+NEImnhTCREq+NnxxdIXS5hGwZqqpSVuRgIrRS8yVLEn/8b8cBLejjs+/ZhsdpNay7jGdODvPA892Apqh+4o4NjM9G+dFSi4vLI/MMTi7yZx/chaqq3Pvjdl1Fbe8Pcf+zl/mtOzf9zO0vJ0wu18Mda58k4HNw5vI0C0vq6HwkxXee6dLuqRzL5uEzo3jsFv2ZB60H25PHBw2EbBknOyZ/NUjZz8BngK8Hg0Er0AE8/F87pAIKKKCAAgr4n0VXV1cb8LtLP979n9jUm/pv5GqR1bmwmk1kVyl7WIgYe0yFI0m9se8yQgtJuodF8TCZzjI4sYDHadEJ2TIGJhZ1W2EuukfmicbTwuQMtP5OnYNhXRHJZFV+9HIf5cVO/btZReUHL/agqqpef6WoKs+dGmFjYzFff/ySMBF89/XNnLg0Re/Ygl7T5XFYWIyncTss3HpFPfc/1y2MY3RGmyB+79ku3b4WT2bwuSwc2FrF+GyMoalFnYSNzcSoK3MzMRcjlVawWmQqihxC7RFooROpdJZYIsPjRwfwOC0s5gSCBHx2OgZDQrPgWDJLQ4VHj02XJGjrC9HWFxJaBYCW3lfksXH9jhrBBpdMZ4kn00K4hkmWuNg3q/88NhOlvNjBfHRlPE67mY7BEOVFDhw2zWKWqyIda5ugqdonkDKTLNEzunLcrXV+Qxpix0DIkHTodlr4k38/TmghSalfjOyXJYn1DUWMLFnblvH0iRFMssR7rl9ruIaHz44Sz2tBEEtkqC1zCcretrUBPv9vx0kufdfntkLObVnqt/PPP2rTf86tnfM6LXSPhLGZZfylLlpq/ZzomNIJmqpqLQtu2lXHkfNjwsuAwYlFNjWVcFFXDyWGJheFxuA37KzmyeMrL1pGZ6I8f3qEt+9foy979eI4p7umCfjtHNpTz2M5aqiiqjz2Sr+hBcDgxCLT4TgOm9lga+3NSeVcxuNHBzhyfgyX3cKe9WWGgJK+sXmdSC5jIhTTzmUOVCCZEdcFzSb7s2CzvnnqdX9pUtbV1XUg58dr/uuHUkABBRRQQAH/swgGgz/p6up6WzAY7AcMbKOrq2vNKqsZ8KvyN/Ld1zVzsW8lNGF5LrZsZ7tjXyPrG4p4rW1CV4aqAy4O7anjlYvjApk5cmHMELfeVOWltb6YzuGVmiyzSearP7xAMq3oqssyvC4r1QFjLUxNqWtVi5TfbTNM+KIJrQl0LlIZhaHJRfJxttsYI94/tihMwkEjALfva+CZE8M88nKvoXYokcry09cGhEk0wNxiiqs2V2I1yfzZfWIIRDSRodTnYHQmSiqt8PKFcRxWk0AMFmIpof9TNJ5mQ0ORHvN+pntGUOKW0Vzj4+N3bOD7z3ULTZuHJiNcs6WKs93TLMTSpDIK//5EBy21fsM2xmZjwr73bijn1YtizZPPaSXgc3BpIITHYWEhltbDKcqLHOQ75xZiaRRF0aPsJUkL8MidoC+rWOmcEBBVRdhWU5WX/vEFfV/T4QSlPjuzC0lkWSPn33yqi4piB5+6ayP/+vgl3YKYVVReOjem19YtI5VR8DhFVcYkS8K9cP3OGmLxtE7IQFN5drSUMjYbpbHSy6m8Js2aQliLxSRzsW+WM0uN0llMUlbkEFRo0JIeizw2wy8nWYKRpXvY67JycHu10LAdoHvESJBCi0myioJJljl8bpRv59iVOwbmSOU9P4lUhvoKr5DOaLOa8DqtqKiG5E6zSeY3v/ISxR4b775uLQuxFD9aUrpn5hOMTEewWUzCc7q2xo/dauZ0Tmrq1uYAu9eV0da3ovQ2Vnq5eU89r12a1F/gFHttXL+zltBCklcuiu0fAN52ZYNh2RsV/xGlrIACCiiggAJ+VfAbS/898HoO4o2Ch18S27IpKlyztRKTJLNnQzlra7TJ+p99aBevtU/icljYt6kCp93CH75vB8+cGOLyyDyToRjxZJY4WWwWGb/bRl25h3cebNYmuosJjndM4XNamQrHWX75nUwrBHx2QotJFEWlayjM+EyUa7dVc+TCmE4K/vGRi/zeO7dy8546njo+pDW8tchYLSZ2rysTItx3tZbhc9noH1+ZoJb6HbTUFfFKDqkwyRJVq4QhBPx2TCYJJafRtdkk88DzYghIdcDFfDRFJJ5mdDrKw4f7hH5goBGJv/r2aSRJCw3JbX7dUOkRkhMBqkvdOO1mpufi7F5XxoU+0YqoqhjCU0amo8J+JUlTNhaj6VWb8F61uZKRmYgQwX95OExduVuvNyv22OgbFSPW+8cXhTAS0NIlzSaZO/ev4WSnGOs/ORdnR0tAUPH8bivne1eOyWkzG/pjpTKKQDwtJpnp+YTQ762i2GlQaGxWE7//7q383f1n9WUToTi9owuGvnXJdJZgnZ9LS/swm2SBhFjNMjfuquUnOfVgANNzcRx241T60N461lR6GZxYXErvXBmr1Syzd305TrtFqNED6BoKUx1wCb3rkqkMX3lIq+3MtTM67Wbmlu6fhagWvJOPpmovU3Mx4Tq81jbByY4pbtpdq/e4W8boTJSdwVLBinxgWzVlRQ4u9M6QyarIErzz2ibmYyn+5jun9UAWSYLyIqdOqMdnY/zTo21sbRKTFrOKys17azlzeZrZhQR71pVx7fZqOgbnMJkkJmZjNNf4uOvqJpx2M59551ZOdk4R8Nk5uL0ap93Cn39oN6+1Tyw1ri/H7bDw/ptacNhMPJtna/3psUEO5PRGfCOjkAtfQAEFFFDAWxZdXV3Lr1ZHgY3A1WhK1/K/txQu5qgoy3jp3DgvnB3lH35wgdGluo2KYid37Gvkxl21OO2a5bE64OJDt6zDltc7K5lW+MQdG7nnUJBirx2L2cQHb17H137vGn79oDEZrcRrFxL9FmJprBZZCCiIJjI88nIf77i2mc1Lk75UWuGp40NYzSb2b67UlZRnTw5T5LHynuvX0lTlxWKWmQ7H+cYTHWxuKmZNlRen3UxWUfn+890Ue20s78luNXG8fZI1Ob2lTLLEpjUlhuCN6lKXoeFxaCHBod21tNb5qa/w6GqaqkI4kmJDYzFOmxm71cR8NGlQkhRV5ULvLOOhGI+9OkCxV1QHm6p9q9qzfuP29ezfXKnvq3tkni8/eJadwVJhH1azzAunhw0kRZYgm6NM1VV4yDtcMhmFa7dXU1fupshtQ5Y1e+rUXJxHXu4z9FCzWUwrqhBaGIw/L/o/mshQXSoS4yKPTWj4HKzzCYQMtIbYAZ/Rsnihx3g/T87FKcn7biyZ0QmZw2aipVZsZpzKKFSWOA3bctjNOG1mci9bc7WPgNfOn33jBH/xrVNCjzjQ+pX9yb+f4H/fewxPnl3YbjMzPqsRMrNJIljrFwiVqsI1W6v4wod2GXrjTYUT3LK3Xr++AZ+dM13TZLIqtWVumqq1ezijqCTTWX786oDBlmiSxQRQv9vKlRsruP/Zbv2FiKJqjdOfPTEsJGSqqpYYmotkKos7rzecBFy1sYIvfnQPX/u9a7huRy2f//px7n2snRMdU2xdG+B9Nwb13nAbGov54M2tvO3KBv13jddl5fpdtezbXKnXx33lwfMGQgYIyZ9vdBSUsgIKKKCAAgqA+4F6tDqw5emnipao+JbBavViy4glMzx1Yoi1NX5++FIv8WSGfZureO8NaxmfjfHdp7sYno7idohTC6tZ5q++cwpFgSs2lPPBW1q52Bvi4Zd6mY8mDbaxyhIXXXm1VNF4WrdLLiMc0dS0i3nq0akuLYxk+VAUFR4+3MuXfusqBiYWBUXlYm+Id1zbzEM5gQ6hhSTvONDE468OkEhlSaSyTM8nuGl3LXarmf7xeS4NhATVArQgk3yVx2Y1kVVUDm6v4dWL44g6i1ZTtFwX1TOyIIR9eF1W5hbFCWVbf4gtzSV6z6ye0XmuK6/Bapb182O1yJzqnDIQvFRaIauo/OF7t/PgCz30jS2Qyii8dmmKYq9NSO1rrPQK5+lc9wxbmwNCuMR0OK4HT1y9pYqXz4vNnz1OCxXFmnLidliwW03MzK9M+Kfm4ly1qYKBHDug1SwLDaIrS5x6+MMyOgbnDLV0igqH9tRyqnOa/vFFkuksQ1MRhqYigiVWAl3xAa1v2u5WsbF1PJk1kD5ASHMELWnSLMu8cGZUX1Zb5uYz79rKY6/0C8mQALfsrWN8NsrZbu3aZbIKsYSC320jHNHq4HJVxExWxWQyJiUmU1keebnPcA5sFpne0Xnedd1aKoqc/MPD53UiHZuKsG1twLCtYo9NsIZesaFcUI/DkRRPHB0QyBdA5+AcZUXGcNqA3y7cNyZZ4lz3DE6bmXgqg91qZmNjEV9+QFMvD+2pp3NoTrBsPnFskIPba/SE1CPnx/jRkT6SaYWD26u56+o1tA+E+OaTnYQWkgRr/dy8p87wO+PNiAIpK6CAAgoooADY3NXV1fp6D+L1RlXAxchU9Gd+Ph9J8a0nO3XWevjsKLWlLp49NaLbluLJjD7RzLfovdo2QV25mx8c7hXqk0r9dlJphWQ6y+Fzo1hze0FJ8MrFCUO92dxCkv9z/xncDrOgJhR5bIa348ufL8TEyaUKzMwba7CmwnESebU1E6EYw1MRocbIaTeTSGV1qyVofasURUVCqy179tQIz54aYeta0cbld1sNiXHxZHaprm+WIq/doFwqikpbn7jsXM8Mf/nR3fzVd86wEE2RSis8d2qE4Cp1YZ2Dc+xZXy4okaAR0XcdbOZY+wQOmxmP00KvyLGoLXNRXeokq8CJjknhPJzsmNTrwpYxNhtjak47t1azZKiJSmUUOgZXFDCnzUyx1yaQmYnZGAG/Q7BIOu0WPnnXRn7wYi/DkxFSGYXesQV6xxZ413VrGcyrFZQkiWu3VRNNpLFbTLyckwSpKJBVjARMAj3URJK0hM1cS2FliZM//sBOPv/114T1RqYioGKoYQRNQevLs1hmFfjQLa3MhOOoqsp3nxXDRjIZRSBNFrMsEEhZlvA6tdq9cCRFOJKiazjMoT11RmUzazzOi32zQq1evvoL2oua/NrGSCLNZJ/43NitJo5fmsJs0u5/t1NrUTC7VG8mAe+7cS1ff3wlQOZ7z16mplQMm8kqKtPzcTxOC2OzMb6Z8/vmiWODVBY7efDFHp2Qdg2HV7XlLsPn+vnhRW8kFOyLBRRQQAEFFAAdwWCw8vUexOuNT925WbBiCf8vQX25xzC57hoOG5LTzCaJf/j0Pm7ZW2/Yx6XBOYGQgbbdZVUKNFWnpdZPscemq1HJtILXZdGDP2LJDD0j8yTTWcEqNx2OG1IFS7x2ekbn2bdJvMRFHhsHtlUJtkOzSWLP+jKD6uXKi+IGTVHKt+nZLTK/ffcm7DZxotg1FGb/lpX9hyMprHkNsu1WEz843Etb/xxHzo8TzevxVVPqwpwXnmIySSRTWYOiNB9NsrGxGFi5jkcujPPlB84JfaxAU6gefqmXwckInUNhznbPkHv4Jlni8aODPHFsiLOXpw12x1RWYXuwFItZRgLW1vh0QgZa4+ryPGWlvMghJCEmlpSUfNx6RT3mHMVoMZbm3kfbueOqRsNxPHdq2NB03G41cfc1TbTU+g1EW9tvVti+3Wri8si8fo8GvHYWouJ1mJqLMx2OG8brsJn54rdPGdoQmE0SX/3hRQYnRRLud1v5p0cu8p1nLvPdZ7uxWsR7qXdsQSdNdqtJt+ouQ1FUdrSUGkj27HycfI1t29pS3ntDCz6XFY/Two27aoWXGaBZ/bw5lkpJgrPds8RTWUyyhISm4E6G4rq65XNZCdb69WdXI7ISm9eIY1XBUDMJGJIyLWaZv/r2aT73L69x/NKE4fdN+8CcoBAChBYTrKsvMmxbkuATt280LH+jokDKCiiggAIKKACcQFcwGDwaDAZfWP73eg/qfxoBn50rN2oNmE2yxC1763nHgSau21HD5967gwPbqg1kZUNjMSVecWKlqCq/+/++yg9f7jXY6CQJ8jZBkceYmgjaG/lcLETTejPoZSTTCvs3Vwk/Xx6e58adtXoIxkQoxt9+7wxlRQ5u3lOnf3duMcmPXxngs+/ZphO5TFbl3scucesV9Ths2qTbaTMzO58wjLusyGEgZVaLiS3NAWx5b+8tJllIkgNtcr9cr+aym9ncVCIQ1nRGZWvzyuS2f3zRULc2NRfnz795yjCht5hN7FpXxhc/shtL3mdzi0mdJFnMMpvy9pvJquzbXMnO1jI2rSkWFJTJubihvsokSZzumiadUSgrcqwarJDOKMhLw/C7rYZaI0WF7S2lQu2gy2Ehnszwd5+4gurAyj7DkRTffroTU17IiUmWqMghfxJw6xUN/OW3T/HdZy5zomNKqKMq8ti42BfSj73EZ6esSLyXp+cTNFR4hGUep4Uv3HeSiVBMJz9mk1aPNToT1ZW9qoCLqoBT3348mcFkklhT6WXvhnJKixyCLTeTUdi6NkBLjY919UXCeU+ksoZ7bXkf+agocVFbtvJiYkdLKfu3VNI7Ns98NMViLM2R82MCGQWN+G1aE2B9QxFXbCjHu6R2gaZgbWgsNlg756MpwwuIrKIa6ssA1jcUG5YlUll2rStjR7CUYq9N3/5UOM7xS1MGcrlxTZGByK2rL+J3f30LH7t9vUDOXHbzL2zz8UZCgZQVUEABBRRQAPw1cBvwOeDPc/69pXC0bYJX2zR7VFZReeK1QVrri3jvDS001/go8dn5+O0bKC924nFqPbr2bark43ds0Cfq5UUOQgtJFFUlmVK0XkslTn0yfK57FpNJwu2waImHARdzkSSOvIldwGcnWCu+/W6p9VNTJqpfuoYoAAAgAElEQVRgZpNEPCmSN4B0VhEsW1lF5WjbBL15KYKnuqaxWUyCarMQTTEyHeUjt2qO1lgyQ9dwGEmWdFJqNkm094fYuEacaIYjKf73146yq7VMWF5e7CSREsMZkpkss0t1Y9FEhpmw0faWr2ZE4mnuORRkU44SkVVUUmlFJzqSBMNTEe77aSf/9kQHJlmc7smypNeypTMK03NGC+fcYpKKYidbV6lFCvgdfOBQkANbq9jeEhCIxeRcnHRGEUiXSZboHZ1n2SkYjqQMk22P08J1O6r5kw/uwLl0L0TiaR58oYfTl2dWUXWSrK1ZCeSQJK2P2OWRlev7a9c24XKIvbQURWXfpgr+6H07DKRkdj5BqU8knFaLjIoWHCLLEo2VHsGSq6KRng/c1GpQ7urK3HgcYq+tbFblPTe08OFb1pHJIziKCluaSqgudRvGBlrLh9xAk6YqLw8d7hW+E6z1MxOOM5STHtk3vsD4TExvhA4QT2WpL/foLw+KvRpBfbVtXA89ya8lG52JUpf3/FUUO2koF0mr1SxTVuRgz/pyTLKEzWJifUMRpzqnaKr2YrOY9OPrGJzjZMcUsUTGEIoyHY7zvpta8LmtOGwmbtlbz971Ffz2XZtprfPjc1m5eksVd1/dhNkkE6wtojPHEhuJZ4TG8290FEhZAQUUUEABb3l0dXW9hKaW3QbcCfiXlr2lcLJz0rDs+dMjfPeZLg6fGyWTVdjZWsan797ENVurcS8pGc3VPv7qN/byr39wgOYan2EbLbVFgsUqnVG5ZkslXpeF/4+99w6P6zyvfX97esMMMIPeC4kBeydFNaqRKlZxkezYlousuCRxEvs45zi5SU4c59qpjhM7LilukotsSxFVrF4oir2BBQQxKETvZTCY3va+f2xgY77ZcJzc2KFkzXoePnxmT/t2w3zrW++71thMlFNd08STWap9Dk3xOdIxwfBUmPVNXoocZqp8DoYmF3jhxJDmQuiym7lpay2GPMXEILHipDaeyOjKoSQJ4vGMrudmPpLkfJ+obGWzCnu31wKqmjQVjHO0Y5KP3bWWxqrliensQpLjl6bYt6NO29YzEsKUR44qSxxCYPbl8QWqcxQhh9WExaTfD4Mk6ZQxUPuTrl5fKRiQDEyE2bRKLCWr8jqEErChqQgNORNrSYILl+d4+sgATxzq10wXQFWfjlwY5+HnAiTTWerzJuQAZ/tmBPOGDc1eXY+TyWTgzqsbNJIbjqX5xv6LZLMIAcgAZ7qnaap0C9ucNpOgPF63sZpwXsZX70hIUN60fTBIHFm0VM+FzWIkMBwUHrsdFvrHF5AVBVlWdEoxqAsAI9NhHdGcno8TzutjdNnNnApM8ckvH9QiB5ZQ6XXwvecCvNo+yoXLc4Iy5rKbefb4EDOhBCaTxAf2tXJ5bEHISNu3o47Pvn+rFhS+hGA4yVRQLDFe+sxPvnM9f/GbO3VlnycuTenKgCUgHE/hWbwe3A4zcwsJnjg8gMdlweO0UFJkJZWRefiFbk4Hpvmdd2zgmvWVdA4E6Rqap290gbb6YkHJA5WcraoR/3Y0VhaxEE3znhtX8Y+/dx333tDCbCjBme5p1jf7+POP7OTDt7eRTGfZ//plHn6+a8Xy6jcL3rJGH9FoFCWdINL75JUeSgEFFFDAfxlKOk40+vOd8gr4r8Hv9/8f4F3AD1DnHn/s9/vXBwKBL1zZkf3PIr8XBlRytISe4RC37qzjiw+f1tSRg+fG+POP7CQrK3T2z+EtEkuLjAaJ4iJRLQB1FT4YFieslT4HY7PLk8f5SIrNq2zce0MLn8sJW55bSHL/3la6R+d54eSw9j1LNtrhWJoXT41ophugEo3DHRMYFssnNZKgwFcfv0CpxyYYhATDCV2vDqApTEtQgGAkKUyOQVXb8ieE4XiaO66q59LgPOUldlLpjKBoANx3Qwv//MRFEmmZWDJD11BIlwf2nWe7tH1dgskoCU6AuRjIC79eydDh5m01lJc4OHRhjEPnl8/5QjTNu29sIRhOMTYb5WL/nEb6jl6c5L03rxZcI31uG4EctQKga2gen9sqhGk3Vro1R8glnO2dYc/map0jZySeFnLDVtW46R0VTTMGJhZ0ZiOzCwm+/bNLYr6X1cShc+Pa65auEbvFSDork0iJAdkH2kXHk7GZqC5/rqN/jvN9ivZ5sKgO5hh72K0mKr0Odq4p58ev9Aqfub7Jy9pGLwfOiucvnZF54I42MlmFh59fDnnOZBSOdU7qCMhMKMH+1/XKkNtp4eXTw5hNBq08UFoc97m+WbXML6+c1GiUuGt3IwfPjzMyFSESTzEXTsLipfSO65p46siAVpoZiqS4flOVoMZlsjI/OzagU4DP982yrklUmI0Gies3VWM2GekfX8DrtnJ5dEEjmGd6Znj34t+BpXvwlTMj/NmHd/KXPzgjqKG5iOWFwb+RUVDKCiiggAIKKADuB24IBAJfCQQC/4gaJn3/lR3S/zxWMGgTcKxzglfOjAjlauOzMY53TvL//MsxvvrvF3jqyADVpU7Kim247GayssL+1/ux5eRp5U8Al5CvJIFK3vJX/gH6xkKc6Fy2T8/KCs1Vbo0cgFqq1lztpsrnECzyrWYjm1epZXkK6qR/NpTg+k1VWnlYMKx+r2Oxr0xCzbBaaSynu6Z0vTYep4V8sc5okHjlzAj94wsc75ykb3RBUFecNhMzoQSJtPhZ65p8PPi2NcK2WCJDU1UR9RUuzSnwYv8cF/vnhL6z2jKnzoglmc4Kio/JKPHtZ7r4x0fPaa6XuRieimAySTTkKScAgeGgcMzdTjOWvOw0q9nIH/zGFmpzMsieOTYoBHov4djFCeFxdalTy8fLRb5ipSjgcS2Tf7fTwtCiO+PSub99Vz3rW7wCmZFlhQ/e6ud3792oM6AZn4np+pesFpNGyHxuK/56j0DeZVnh7dc06q6Hba1l/OmHtuuiHQBW1XpoqirS7ZPZbCCV1pu4LCFfDe4ZmefJwwOMLy5sGA0SdeUukqksl4ZC2pjWNBRjtxo14htNZJAkSVAVJSS+tr+D3tEQN22tIZ13bC70z+mO1+hMVLffsYTqxpoLu9WEySQJ16nVYuRrj3dwtmeGG7bUYDEZhfN0qmuKF08PC4sicwtJnj02+HMJ2ZsNb1mlzOl0ksxKuFbdfaWHUkABBRTwX0ak90mcTn2YaQH/v2EIBAK5jTUJ4M2zxPpLgstmJJLQG24swWw0YDbqidP53lmC4WUVZGwmyv17W/n+i93atkQqy3Ubq+gfDzMyHeHQhQlBwTAZJE50TQkW4ADdw/MEw0ldLthKVubJdFZXhigv9lvlIpHKkr8bCrCppVSXexZLZrh2QxWHLowTT2YZmoxgsxhVlzlUNeDyohIlSapLoyzLhKIpQtGUNm6jQcJfX6z164DaL3bztlpeOztKJqsQTWR49IBe6UgkM4JStgS71cRtO+v5+5+cE7avaSghlc4yPBVBktAdO6vZyAdu9TM8FaFrMKjZvceTWc73zQiqodlk4Oii+mE0SEKeGaCqJznoHw9z1zWNPHV4QNtWU+akyGFhOs8qfno+LqhiJS4rx3NyykBV8B5+vlvYlkzLVJU6tPgGk9EgKGkAa+qLdZ9VUmQVrtMltPdMM3s6IShJAONzMYEQVfkcGuEBtUzVm2dyA/o+QFDvid/6+9d04eoARzsm2P96P4Cg9hkNEj9YtMnPzaKTJLUcdgkel4UNzT4O5dj9A+xeX8nOtnLd9WE1mwQiDeq984WP7uLSUJCXT48wOr10TWR46fSI7ryjKDisJoEkzcwnFonk8jGcC6sq8tL7jYv9jGcX89rWNpZgt5o0Z0ZZUXji9X5dGbQEK/7tcdh+vh3+mw0FpayAAgoooIAC4GW/3/+Y3++/y+/33wX8BHjLuS/+xW9eJTw2GESnxLftbmDvznpB6Wqt9WC16KcT+eoMqAQmN5tLUWBtg+qmllmcmKezMl63VTMOiSYyDEyEsVtNlJfYNTfHE5emdX1VqbSs61WxmA3UlIkOdT6PTddDY5AkxudilBeL1u0el4WhKVEdS6Sy/MkHt3HbrjphNV9RYJu/TOiJUhTYvb6Czz2wg4oS/UJKMpURFIdkOktbfbGmWkjA+cuzPPJyj84MZWAizBOH+nWfmUrLdA3NE01kGJ6KCgrM0oReDd9N6AKKEymZ+/e28v69q7k7T/HJygptDcWCs2Qib3IvAddvrMZfv5yT1jkQ5IcvBVBWKJtcUreMBomWGrfu+ZGpqE6tmg3FhTy9TS16V78VWsl4/OBlIecLVNX2wuU5xmZipDMyRQ4zHqeF1bUenULVukL2W6XXLlyHRoPES6dHxH10Wrg8rvZ/LcTSSCw5PdrZ0VbOZI7RigLs3V7L3u11AnFKZWSu2VDJnbsbsOZdu1aTkT2bqsmHw2oinZV1vW7mRSOOXDRWFvGzY4PEkxndfi9EU7xzT7PW4yZJ0Du6QCyZwWo2UrF4X4YWc/IA2hqKsVmMWlmvrCisaSjBnZcbFhia1xl8yIrCdn+ZcN1eta6SfTvq8bmXVbfaMhf7dtSzc41oqpOLT79748997o2Gt6xSVkABBRRQQAE5+BTwW8AHURcsXwH++YqO6ArA47Lyrc/eyOnuaZw2M2saSpiZj3NpKEhduYvGRbOFL37sKs50T+O0mdi0qpT+8QWOdExqK+mlHht7d9Rx8NzY8uo+qoJz9KI4KbZZTUzn9ZzEkxmd9X0skWFnWzkHciawqbTMVWvLOdk1TVZWuLxYDnf9pioujy0wMh2le1hVFFbXeognM4xMR5kJJZgJJagpdbIQSxGJp5EVhUcP9FHhtWv9T5IEiqzo3AvNJgMvnBxe0aI8tYK1/1Qwzue+c5KsrAh9btWljhWDb5uq3Hz4jjU89GwXnTn9WfFklms2VNIzHGJqPk4skaFvbAG71UQiqZqYVJc6dYQkk1X4yB1ruHB5lpNdy+pRe88MV6+vFAwnbBYj//DoeUDt3cpHIpUV4gsm5mJYcybfPo+NRCpDd14/XXvPDNv85RzNKU8sclg0hSsrK1y4PKtT9U5cmhRUwj2bq3ntrNjnlZ9bBWj7ZDBIFNnNSBKCa6LHaeEjd6zhyz8VVSSDJPHl372Wn77aK6hRoCpt+f1u/eNhGiuLqCsv4vJYiP6c/j0J+J13buBMYIojOde9AuzbXofdaqJ3VG9E4bSZmY/oFT2r2YjXY9P1BKYyWUamVQV3KS/M47IwHYxrPZdL8BZZhWugyuegyufgTPeM8Jpc+Dw2+scWeN/e1fSPhXnt3PLxT6azbGj28tJpsR/O47RoY1nCfCSJw2YWekmtZiM72soFBbm82M5NW2tZ1+TlXO8sFV47m1aVYpAkPv/gLs50T2MyGtjaWorZZOQT96znlm0hQtEk65q8zEdSDE6E2d5Wprt338gokLICCiiggALe8ggEAorf738YeDpnczUwdIWGdMXQMxKivXsai9lIsctCJqswMB5maCKC1WykyqdO+heiKQYnwxQ5LLTWFfOH79/Kk4f7iacy3LSllrJiO3/wG1t45tggkXiKm7bVctXaSk4Fpjnfp5YumYwGbt1ZRyiSFEwR/HUleN1W+nLMHGwWI84VetEsZpNukuqwmnXlfv3jC5TlqWBjs1Gu31gtTDIn5+K895ZV/OilXhRFLUVbiKW10rWlErclA5RKr52JuWWiePTipNbjBSqBy90PWVZYU19CkdPMiUtTjM3EBCIiAc8eH+LguTGqfPoMqlt31DMwcVHYFk9meNeeJl4/P0E8mdb17BkkiZlQfEVHykqvg6vXVzI8pZ7f3pzIgN7RBaFkz2w0YF3B9XF9k1crP5sJJfjKY+cp9dgEsl3ksHCsc5mQVZc6yHOQJ5mWufeGZl46NYqsKKxv8gpGM7CycYOsKJoZiiSphGDJMEaWFUqKrELZIah9hJU+B0V2s+DaWOlz8OiBPk4FpoRSQpNR4qnDA5iMEj6PDZNRYmwmxshimd/ARJj6ctGJUmHR3TOPnEgS/OjlHu1xrvGM0SCxf1H9zN1uNho0I5f887ih2cf3ngsI2+7d08K3fnZJ2Hb9xiqO5PXsAbqSzrlwkpu31tA/EWZyLq4tYpzuntYFWAOUr6AAr64tZngqytjMsqK5vsmHv76Yb+zv0O7Ze65rYs/mGgySxIlLk/g8Nu68upFEKsPYTJS1jSWaw+fUfJxD58cxGSWu26iagoQiSV46PUIokmL3ugqmg3G+9cwlQpEUgeEgH7y1TTe2NyoKpKyAAgoooIC3PPx+/98BHwVmFzctzcear9igrgAGJ8L87Y/atQnTiUuTZLIy6Yz6+MjFCT7/4E6++uh5zTXwQPson75vE90jITr61X6svtFOgpEku9dVMhdOMDQZYXQmgCwrfPKdG3i1fZTzfbM0V7mpKXXx0bvX8b1nu7g8FqK+oogP3NqK2WRkci7GxYEgLruZD9zaSnOVh9fOjml265VeB5tXlXLwnKicJDP6oF2zyagjFGajYUWL8/EZfenlltVlfOY91fyfbxwVtqcyMh+7ay3/8lSnti2TVVjXWEJjlZtKn4NvPS1Ojg0GSVAmFAUaKlzMLCSIxlXSEU1kCMdSQi+P0SDx+e+dErKqQDUI2f/6gHbeguEU9RUuhicjSIvvf/LwABaTQTfRX8pxqit3sb7ZK5AyEPuo0lmZwTwbd5fdrHPXm55PcO2GSmZCEyiKSqiLnRamclTOsZkY122sEspZa0qdHDw3rqlEF/v1bqDRRJqaMqfW8+R2mAUnxiKHWVcONzARZkOzV+gXrCt38Yf/fFQghmXFNsqL7TxzbFDbZreaqC93aU6aWVmNQtjRVi5k26XSMjWlTuH4VfkcfP3xZQJikFQn0kxWZiG6TAStZiNbWstIpLKc6Z7WtsuKqi5X+5y8fGa5JDKTVVjbWEJtmQt/XbGwoLGE/PMI6rWqxgAs77TBIGlmNkswGSV2r6/kuk3VguspQCyRpshh1tTJhooibthSQ1ZWePJwP6m0zO51lVy/qZpKr4Onjwwwu5BgU0sp77i+icDQPHfubsBmNbG+2YfNbOTvf3yWvrEQq2uLuefaZsKxFJ/79rLL4m0767lpaw1//p2T2rl9tX2UP//ITv7qB2e08s9DF8YFJfNA+xjpjMyDb1urOxZvRLx5NL0CCiiggAIK+NXhHqAmEAg0L/5rCgQCbylCBnC8c1JQneLJrEbI1McZXjwxLNi4Kwq8dnaMF0+JZVIvnBzm8YOXtTKyeDLLQ88HGJ4K8/jBy1zsn+OpIwN88fun8RZZ8RZZSaZlekZCfOWxCxgktY/EZJSIxNM88nIv8VSGzz2wgy2rS6kpdbJldSlt9cVcta5C+O5Xz4wyH0kKZXzxZIb5SEqzLAcoLrISjCQFZ0i308LUvD5MeSoYY3Iujs2SP4E1sBBbwR1Pkjh6cYLv/OySrvetvsKlMyRR0KtA0USGP/3Qdm7YrPYLZWWFTFZmYi5GxWJPkNtp5vrN1Tq1sKbUxSfftUEwZ0hlZLasLuO6jVVsbS0TDFWGpyIkU6Iro0HSjymWyPC23Q00VhbhtKkqZTKvZNNiMnDowoRGeBKpLKYVTBr6xpaJg91iZKu/TCBuoWhK6BE0mwx0DgQ1QvbO65upLhXVxIVompoysa+wpMgqELItq0uZmIsKhKyh0sVffny3zhEynsxouXi5WKln7dLg8ndU+RwUOy3CeZEVhT9831bI6/LKyAq3bKulrV7fs1bqsbG1VR/g7XXb+I2bV2M0SkzORXXPhyIpITZBktRSw4qcXjIJVVWMJjKC+qYo8P8+dJqvPd5B/ppFSZGN+/f6edeeZj5651r+6P6ttPfM0DkQZFNLKX/8wW18+I42vvWzS/zdI2fpGpqn0uvkvhtX8dDzAf7x0fM8cXiAx167TDSe5t+e7qSjf27RZGaWbz9ziaeODAgGIs+fHOKV9lGBbIciKdV5MS/4PP8+aM9Z/Hijo6CUFVBAAQUUUACcB6yA3nv7LYTckOCf+xqX/jV2qwmTQSK3CMpklBifFSeLqbTMS6dGhF6TsZkoz58Y4nBOmdrgRJiXTo3w/MkhrQwwGE7y6IE+akqdtPeoE63RmShT83F+5x0buHVHPV94+JT2+mRaxl9fTCyR0fqW5iMpfG4rm1aV8sqZUaaCcaaCcYrsZu7c08Bzx4dZiKboXDQ6MJsMZLMKsqJwKjDNqcA0O9eUcyLH1W8qGOeRl3uFkkUJ6BoKkl18nErL1JY5ycoK0/Nxnj0+JLjpLe1fsUt0BzRIsP/1y0Iw9RKqS52LpgxpXj83rnt+PpKgb0SvliDB5lWlhKIpQZUBlRi+4/pmHjvQh4Kq1OQTLgnYva6C186OaSWi8WQGj9NCKJrCYTWxscWnM9TwuCzCMVpV4xHUnHgqK5S6LaG5ys02fxl2i0ko+QPVmbPS66BraLkvy2SUyOaQzdoyp650UXUEzLduz3KgfVQXKG0xG3TEVJJgLIcIGSR1f7pzjvf4bEwwRFnCTw706vLvnDYTn//eKW38uddRJivz9f0dggJkMhq4cUsN+1+/zJM5LpeSpKpxWVnhbK96j5QUWVld6+F836x23xgkuHlbLR39c0Iv1462Ms72zmrmLtPzcapLHYzPxFBYNEXpU/sSDZLE+/eupnMwyDf2d2ifcXFgjg/s83M85/xfuDzLiyeHdBlmzx0f0vUeBobmdb2MigK6UDZ+frRGLvLz/N7IePOMtIACCiiggAJ+dXgY6PX7/RfIscIPBAI3Xbkh/c/j+k3VHLs4oSlhG1t8zIeT2uNVNR72bq9jdDqiGXY4bSZu21VPdamTn7y6HIp75+5GIvG0UFpVVmzDswLxiyb0Rg3TobjOtnsmlGBoUnRCPNM9TTyVwWySdLlJ8aRaApiL2YUkoTx3uXA8TVZWiOSNY+vqUk4FpoUJ4eBEmC98dBdPHxkQTEsyWYUNzV6sZiONlUU8+ppobV/sstI3FtLGmMrIVPscpDIyM6GEVg5W4rLgsJkZnYmyEEtzrm+WwPC8zgBjcCKsWa9H4mmKnRbSWTVwWlHg0uA8lwbncdnNWrmnwSBxOjDN6cA0xS6LYGkuSaqN/NNHB4X579BkmPJiu6YeVnodBMNJ7TOXUF5iZ/f6SnpHQzoiB3B5bEE4PyUrBIqXF9sodlk0Qw6TUdL6/Vx2sy4cOppI0zOyPKm3mA1U+5xCllx40cQlF4lkhtJisectlszw/Re6tWOxFGOQSsucW+yBdNpMuBwWPE6zZiADanlmbblLIGWgqlC5Yy4psnKqa5kI+9w2Vtd58siKwvpmLzazkfISO88cE9ta92yq5ubttdSUOvnbH7ULzxU5zNSWugRzmGA4SW2ZS1hIUMm2rCOro9MxXc6Y2WjkLz9+FTOhBE8e7tf2W1YUfnqgj015PWbhWHrFstOZBb1xSUaWaaxyC+pkc1UR122qFoj2qhoPd+xu4FRgSotqqC93sW9HHROzMW1Bp9hlweu2cXnxb44kwQf2+XXf+0ZFgZQVUEABBRRQAHwB+H1g8Be98NcZDpuJ//vADnqG57FajDRWupFlhUtDQQySmrNlkCQ+etc69myuIRhOsqHZi8NmprrUyapaD5fHFmit89BY6SYry2RlhdOBaSpK7LzrhhaMBolDFya0SX1jZRG37Wrg9XPjmvIiAddtrGZiNiaQuu3+Ms73zQouenaLiT/91+PMhZOC+xzAbCihczd02c0EV5gg5ptOgBpom++2J0kSVT41dysfZcV2hqYinO6Z0eWt1Za7tJ67JRgMBtJZUYUJRlI013i07DBYzHjbVMWJTjWkelWNW3OaXEI4nuabf7CHP//uScEuPhJP8/69rYzNRnn1zLJD3nwkxdXrKzkdmCKZVgOW//XpSzrSLMsI1XbjczEOnhvTHetURlU+luDz2AhHU8gK7FpTLiihoKowAmGU4Nnjw5SX2Ll5q9qjdCDHZTEST1Nb5tSMNWwWIyPTYljx5lWlunDvUCTFxhafZi4DMBdOaGW5RoPEjjXlAjFSFLh2QyWHLuiDrP/o/m187tsnhO2xZFZn928xGTQyB7CuyUtXDlkC1Y0w32UUYGtrGVetreCxFTLrmqrd1Ja5UBRFp+oZDQZMeb2UEuhIKYCsyJiMBqGMVlZkXfaYoih86cdnaapyC/cdqNel26Uf/5bWMg53TGifbZAk9myqZm4hoZ0HgyRxy7Y6Sj02/vXpTgYnwjRVuXngjjVUeB2L2WVTlBfbuXlbHQ6bib94cBftParz4qZVpZhNBh68cy03baslFEmxtrEEi9lIYCjIwESY6zdWYbf9YjXtjQJJWemv0C8Z09PhX/2X/Bfxv//37zG3ECuERxdQQAFvSkR6n8TrdvC3f/uVKz0UHcrKilbotnhjw+/3HwkEAldfie9+I/5G/qqxEE1xKjCF3Wpiu78Ms8nIyHSE544PEU9m2LO5ho0tPkLRFE8e6md0JsrGFh+37ayne3ierzx2frFPScJiMgi5YFU+B5msLKggS0YGuZPNfLIFaA5+sKyWFBdZmA+Lk9HaMhe37qjj289e0sicJS80F1SSFookMZsMVPochCIpbaUfVNfCdEbWTCRAVU+uXl/BU0fE9QGfx8ZsznurS51CuZ/bYaah0s1MKC4oIEaDxF1XN5DJKjx9VPzM1jqPoPiA2m+1VOa20mNQLdMbq4o0s5KaMrWUci6P7H7o1laOdU5hNhm4NBgUjndztZubt9YwMh2lvWdacLD0uW3cv6+Vf1y05l/ChmYvc+Ek8USGHWvKef6E2MfYUKH2ueUqRQ6bSSs/9LmtrK4rFggYwDUbqjh8QSwB3bejjhdPDQtkfU1DCe/f28p3n+uiN0cVs1uNgqpbX+FidiFJNEdNNBkNVPscQj9mbXi9hBIAACAASURBVJmL3esrePTVPk1Ns5gN+IqsjM/F8RZZdeHcn//ITsLxNA8916Xrp/K4LITyiJPLbiISF4m/1WwgmXet5pZNApR5bFjMRmFxoCxPXVzf5OWjd63lS4+cZWgqggTcsr2O996ymu7heZ4/MUR2sV9ufbOPdEbm2MUJpkNxtraWaREboJYzrtR3+OuG/+j3sUDKCqSsgAIKeBOiQMp+ufD7/f8EVAHPAtqsJhAIPPSr/u432m/kH/3zUW2yt7HZy6fevfkKj0iPeDJD//gCLrtZ5w5XUWJHVhRd9tnudRW6jLTrN1VxMK8f6+atNRy6MC5MWtc1lhCMJAW3vSqfg/fevJoXTg5jMEiUemyaZfnP+06jQaKtvphLg0HNAdHntmI0GpgKqpb1NWUubttZz6vto3QPz2M0SNywpYaX8wKJ68pdrK710DkQFIK6l4wZlj4/t3wudzJukCRu3VnHs8fF8rj1zV46ckwxPny7n2eODQkGHM3Vbq1EbAmNlUWCSmW3mgRjBqNBdYFUFIRSzLWNJUwF4wJZBfj9d23gX57u1MiOakCikOuPklvqCOB2WDTTFUlS+8mGp8Q+te3+MrUkNQcfvt3PCydHNJK7ZFDo89i0cRkNEvfd2MKjB/o08mIySvjrigkMzwuExmU347Sbmcw5Ly67mRs2V/PSabWn0ue2sq7JK1x/S6YluWTb47QQT6khzW+/rplrN1Txma8dFspHW6rdZGVFOP5FDjPrGks41rlctgjq9f2y7jqtFPLjANrqixmcDOtKiO/f18rF/jlqylzcvqseu9WEoigMTUZw2k2UesTYif9pHDgzwsMvdKMARXYzX/7dawVznyuN/+j38defkhZQQAEFFFDAL4YTWACuAW7M+feWwue+c0JYfT9/eY6//sEpRhdty2VF4XjnJI+91kdgSCzF6h0N8dThfs71iqrK6HSEF04M0dG/XMoVS2Q43jnJpYE5cheHh6ciOve7ZDrLdJ4bot1qorHSTW2ZkyqfmJG0ptFLbZ77nsdloXiFMjGXXV+CmMzIOhUhHEvr1Ibx2RhdQ/NcGgxyvm+WC5dnycdCXqhxVlYwm4zkCnSzC0n2bqvVlIrBiTD/8uRF7ruhhbuubsTlMHM6MKXLpjIaJPz1JexcUy5slxXYt7Oe992ymvoKl9CDlUzLXLW2AqvZgKwovHx6RCifKymy0pNnvPDs8WFu3lqjkT2r2Ygvz5IfVLVsybnRYJBozjMnycoK9+5pYff6SkF96hwICo6AoDoO/tPjHRohMBkl9m6vJc+wEn99MeubvNSUqU6cuS6YigK1ZXqDFLvNRE2OY6PVbMBsMvInH9zGB25txWI2oCgqkZ0JJdi8upT3723lCx/dpeuLy2QV7r1hFfY8S3mbxUhj5fI1KKESrqePDmolnzdurRFiEQCC4QQTK+Sp3bqjDoDnjg/y0qlhXT9fJqswtyCS2nAsreuxBJBWIChOu1HnJum0mXUullU+BzdsqeF33rGBd17frO13Ki3jtImELJOVGZmKCGHqWVmme3ieyeDyPsaTGU5cmuTiwJxQZjkyFeHpIwOc7JoSjFEi8TTPnxjiqSMDzITi2ncdvjDOT17p4aFFQgZqSe9vf/k13f6+UVHoKSuggAIKKOAtj0Ag8MCVHsMbAUOTevPJwPACn//eKf74A9t45cyolgn2s6ODPHBHG9dtrObguTG++2yX9p7bd9Vz342rOB2Y5uv7L2iT8H076rhxaw1ffPi0ZmyxtbWM3377er72+AWtTG5VjYfPvGczp7un+P4L3SRSWerLXfzevRtJZ2S+8UQHQ5MRKrwO3nl9E6+dHaNvNERWVggMBrltVz0zoQTDUxHMJgMVxXaaq9z43DZmFyevlV476xpLeO3sqFayqNrwVxAYCgpKW2t9MfORFKe6llWHSq+DZ48tm2JMzyeoLXOq5V7KImFoLNGZHnic+h6X4emoMIFWgBdPDQvmDKASomQ6iySp2Vvf2N8hEIwlGIBrN1bp3BUlIBRNaqQzlZExpTI8cHsbc+EENT4n/5oXOJzJZPnZ0UGNSCbTWebyVC0JON87o5UnyrKyYo/eXDiJnM+sUF0/l9Qzs8lAS42b4zkKTyarYFyhtC0wNM98JIXJaKDKqw8w9rmturLS1TUebtxco7kdJtMy//ZUJ3/yoe2srinWlaDOh5MYJHjuxLAuZBng31/v07LlQFXZSoqswvh3ravgZN65PNA+piPaJqOB5gY3F3McEat8Dq2UNRxL89MDfUJOGEBrXTGReEpQZVfVeljTUCKogkUOM9Veh+D8aTIaqPQ6aahYVjodVhMNlS7O9c1qvYM+t401DSX87j+8TlaWuXlbLffuaeFIxwQ/eHHxHq1w8fv3biIYTvLVx84TiqZw2kx8/O511JS5+JsfLmeK7dtRxy3ba/nCw6e1kssNzT4+/e5NnO+b4SuPXtBI2q61FXz87nUkUhk+/92Tmnr5/PEh/uyBHfz0QJ9wb+Yi/3y+kVFQygoooIACCnjLw+/33+v3+0/7/f7Luf+u9LjeKEhnZF45M8qh82Kp34sn1Z6e5/JK4F46PUI6k+WZY4PC5Pzl0yM8c2xQmFCe6Z7mxVPDQt9S72iIA2dHeej5gKYsDE1FePz1yzz8QkAjj5NzMfa/3s+mllKSaZlMVmF8LsYPXuzmN+9cg8VkIJ2R6R4J8c0nLvLbb19P06KCMzEX50s/Pse9N7SwodmLwSAhK/CVR8+zb3sdbQ0l2qT51TOjVPscbFlditVipLXWw20763Qu3SVFNrWcC+gamudkYErImDIaJNxOC27HMjFz2kzMLOhz0ZIpvYPhbbvq2N5WJhzT0ZkobQ0lwuueOT7EZ795lO1t5YIC0lBZpOv7iiWzdA4GeeLQAF9/4qKOKGzzl+sUv/Ci6QaoZZA715YTzlMSo8kMaxvVcS194sunRzh+SbVTX0Kxy8LJriltn9IZWSiVXMKlAVGZLSu2a6WLmazMme5pwSLdYjawvtnLZ96zGW+OGvi95wKCgQioJPhM9zTdI0GdjX0yleXhF7o50D5Kz0hIyHErK7ZxoW9Z4bGYDfzfD+/QlXZe6JvFbNJPufMDzu++polVtcXa8bJbTToVEeCGzTU0VhZhsxjZva4Sj9PCwEQYt8OM22lha2sZJS4rDy+6STqsJra3ldNS7eGhF7o1Qrah2ctNW2v4/gvdGiFb3+Tlfbe08u8H++kbXSCRyuKym3ngjjZeOaNmhaXSMs8eG+LoxQkefiHnHp1U79EfvtStOZxGExkeej7Ac8fFTLEXTg7z5KF+oQfuwuXZxV60YUE1O945ydxCgvaeGaHMNZbM8NKp4Z9LyN5sKJCyAgoooIACCoAvAZ9GLF18y5Uvbm/Th9QuwWo2YMifNUiSUJ6U96Quj0lRIJHUv34lN8Sx2ahulXt8NsZgnrve+GxM52qXysi82j4m5IBlZYXDHeP0jy+/X1YUTndPM7uQ1MaaSss8d2KY+nKXpl5lZYWnjwzyGzev4toNVUzMxXj17KhmILKE/LDly2NhinJKJLOywlNHBvnkOzdwz7VNGI0S0USGzn7V3XJpMu5ZtLfPx9BkhIWoPj7gndc189n3bRG2hWNp+scW+O13rNeI1sBEWFMFl1Bb5hQypeLJLBtbfNQskq4XTw7r9tNhNWkuiLKi0N49g90ikhlZVvDXl/DHH9iGzSo+57SbuGFzNdtay7h1R52uzE6WEVwgK7x2ndukyy6OSVbggTvWaCQ4lZb56x+20z8eJhhZvr6yskL/uD6/7WTXFN9/oUez8zebDOxoK2d8Tiwn9Lqt3HdjCx+81a9zqkylZaLxlO54Wc1GrDnHxyCpVvVTOWrsvTe0sM1fxtNHBjSyH09mBBObJXQPB6kpdfKnH9rO5tWlPPpaH+OzMRZiaRLJDFetreBkDlGJJTPUljl1pcXpjKxTU7uGgpzrE7dF4ukViU/XUHCFezQq9NKB6oKab1gCrHgtJ1IZ3bal+2KlhYpMVlkxyHsJ5jcR03kTDbWAAgoooIACfmXoBQ4FAoHB3H9XelD/0/jtt29k97oK3Xa308LeHXXs3V4nbB+ZivCprx6iuVoMe3U7zFwaDLJvh/j6tY0l3LS1RlBKSj02btlRlzdplbhxSw3lxaJKsGlVKWsbvcK22nIn1WViCZ/RIFG5Qjlb8Qr23SaDgWBYLMebjySZyAu+lhWFpw4P8PLpERZiaQYnIiiKwrbWMlbVeHjb7ga8bn2v1VQwptsWjKSwLAZT537+1esrF0sMU3QOBDGbDFgtRo1UtffM0D08Lxw/g0HiSz9u53CHPkA6HE/TMxwSSE8knmbXmnLKim1Ueh3460t070umsowuki4FdVLfWFlEeYmd6zdV6dSkVEbmzqsbtf40SVL7Ax8/eJlvPtGh2urnoaN/jtPd0/z41T4seTPn2YWEprQYDWiqXC7yz6/Lbqa1ziOU4CoK/OzowIqllM6cUOEls5Fc7FpbwUfetkY3NqPBwPMnhnno+YDgGAmqUvYPPz1POKfny2w0MBdOCorQnk3VOufPybkYM/MJ3XaDBLdsq8VsMmjENzAc4nDHBH/1gzOc7REJVCoj0zmgzwnLV0iXxyyeS6PRgG8Fs47VOQreEra2qtdRLja1lLK1tUzYtqHFx842sffR67Zy8/ZaclvcykvsNFW5daR2S2sZ39jfwUPPB4TXm00GXm0fXfH8gkpyvvCx3Ss/+QZEoaesgAIKKKCAAlSl7FW/3/8aYnj056/ckK4MPnrXOj561zqyssyFvjmiiTRbVpfisJm578ZVrG/28dSRfroGVUOIRCrL8c5J3r93NT98sQcF1bziK4+e588e2E5ZsV0z6ujon2PP5hpu2lbDS6dUN8GZUIJzvTP85p1r+JcnO0lnZGRF4WTXFJ969yYeO9DHyHSEzatKueOqeuLJLAaDROfAHKl0lpGpKKNTUerKXYzNRNXA34zMIy/3CJbiq2s93LK9lrGZKMcWlSGTUWLvjlqKXRahpG3nmnL89SWcz3Eh9DgtWoDyEuKpLI1Vbp4+MkDvaAi71YR5sWQSVHI4kacaGCSJnx3pX9FkZD6aEkoi0xmZj7ytjYefCwivs1uN7Ggr58DZMWRZISkrHDo/IfTMwaIyuYLyEI6ntZ65ibmYLpvK5dD3vZWX2Lk0GOTguXEduTUZJUamIzxwRxvt3dO82r58LGcXkmxtLRVMLWpKXXTlGMWk0jJrG0tIprJU+ZwcyrGnz8qQSouzbqNB4o6rGqj0Onjy8IAa/B1P88WHT+uUwGRa7UdcsqKXUFWq3NcZVzC/MEgSRzsmsBiXe9JMRomFWEpTQyPxNCUuK+F4Gp/bymwoQSaHVLXVF7Ou0ctjB8VK6PQKLHUhluLh57t0+XYDE2F6RkNct6GKeDrD0Y5lVTMcS6/oLLhzrer6uaT6ScA1GypJZ7Ja35lBkti3s565hQQ/eLFbIzabW3x0Dc5pTp2SpPasffe5LhRUkumwmdi3s47Nq0qpKLbzw5e6mY+k2NFWzh1XNZDMZEllZIanIvjri7ljVz3/8NPleAOn3cSn79vEt5/pElxC79vTwsPPBzido96taSjGYTVypltVSmVFPQ/b/eXafbyEG7fUsG9HHXariWA4SV2FS1jAeKOjoJQVUEABBRRQAPwJ0AdkUecHS//esjAaDGxeXco1G6pw5ASwrmkowWwUV9ezssLwVEQgFLKihv/mOyceOj/G0bwg4aePDnAmMC0EAS9llk3MxZgMxnnp9AjPHB3EZTfz8bvXsd1frhlWKMDIdIT339IqlCzOhZO856ZV3LSYh/XpfzpMWbGN33vXRna0lWMxGfmHn57HIEm84/om2uqLaVrsu0qksrz3ltW0VLvx1xezpbUUZ14QrdVs5KVTQ9rkN57MUOl1aI6IWVkhGEkhSWr/kctuRlYUhqaidA4GBbXGZTcjrbDibzEZsVryyuEsRip9eiVwY4uXq9dXao8vXJ6lvWdG+J6GiiJduafFbKQsx1HxbM+0oEhIEpzvndV6AecjSSpK7NitJs018ujFSb7843M6l0pA6CEE9GWwQEWJgyKHRTuWuagudfDBW1s1hS4rq4HG6YwsKEvjszFW1XiE95Z5bEI22FZ/mW6MU8E4rXXFy8fDZGBVjZuHng8QySFvD96xRihPBTAaJb76qev40G1tAiEDdcEildHvT27GGUB9uYtzvbMMT0dJZ2VMRom6cheSpPZkpdIyr7SPEl6h3K/K56Cu3Im0OO537WkmEkuzebWPlho365u9fPJdG+gfW1D3s9bDrTvr+Oz7tvDiyWG+/0L3Iskp48O3t3Hi0hQDExGSaRmDBB+9cw3dQ/PavZnOyly/qZrbdzUwG0rw9f0dXBwIMh2K43FZSGWy/N2P2jneOcnYTJTpYJyzvTNC3lk0nuHEpSnBaVUBjl2a1DlSDkxEhNw9UEsWV+rRq/I5qPA6cDstNFQWvakIGRRIWQEFFFBAAQUAmAOBwEcCgcCf5/670oN6o2JDs1hC6LKbaVuhDK56BeLgcpiFJn5Q+4/yzSQURXVXW5rMZWWF/Yf6tQDl/FwrRYGhKbHfDNTMpyWDgmQqy1NHBglGkpzqmiKWzKgmJu2jFLuspDIy/RNhAsPzPPJyD8lUlus2VRMYmudA+xjtPTOUeWxIqAYV993QrOuLCUVTOO0ieVMUuOvqJoF0gtp/tqNNLfWKxNN0DMwJBArgm09cpLpUPI5zC0keP6j3oakoceiMOsKxNHde3agZRmTkLGaTSKqtFgPTOcczK0NTlZvWWg81pU7uuaaJRB5ZspiNfPq+TTrXyEQyI5Sf1Ve46MkjIaFISlCnHFYTr7aPcrZ3hpNdU0J/mtEgqZbrdrNA2OYjKXpH9b1hFpOBkiILHqeF23fV6yb03cPz+PLKTFfXFWPP6XtLZ2TBAXEJU6GE7r0+j41PffUQf/Ojdp1xx2QwpjknSov7UlZsE8oe3U4zHpeommayCtv9ZbqyPIvZqMU9SKilv48euMzwVBSz2cBn3rOZWDLD1/d3cLxzir7RBVbXFjMzn+CRV3rpG1ugeyTE2Z4Zzl+e5dIiOU9n1N7Koclw3sKKWiqZv1Ywvljau//1y9r9mUrL/OilHl5tHxX6Njv654TH2j6uoBbazEa8blGFLfPY2NDsE7b53Dau2VAlrJoZDRIbWsTXvdlQIGUFFFBAAQUUAC/6/f5P+v3+VX6/v37p35Ue1BsVN22r5e3XNVHlc7CusYT/9Z5N7FxTwVXrKjSJ8ap1Fdy4pZabttZo73M7zNxxVQP7doiHdt+OOkHhATXXKb/0TlGgc3COiwNzbPOLpiQlRVau21QtNP1LErqeIICOy7O6iealgaDONe/EpSmePyE6SwYjST5130YMEnz/xR7dir1BguEVogUSqQxlJeKEvtzr4NKgmAsWT2a4dafYi9c9HOLDt7exJof4qkqGJDgOPvJKrxBwvYT27mnN+W50OoY175iUrNBrJ0kSA5NhRmei7D/UT1FeSWMyldUdG4B4OiuUQiaSGV15YFZWcNpNWEwG2uqLdbln8VQW/6JylZUVXm0f5YUTw7rvMhklgYS67GZOd08TDKcIRVO82j4iqLxLr3nfLau1Y2CzGFlTX8y53uWcOYVl4pGLl08Pa+WhRoPE1esr6Rme1wwoUhmZap+DVTUe1jaWCMHLCvDRu9fq1JuFaBpvkbj/SyWJ+UJPOJ7CIMGONeV84p51wsJEKi3zavsIr5wWg6FfOjUslAMCTAbjumtdUdD1CgKsqS/BkbdQ0FLtITAU1JXmpn6Oc2al1y5kuTltJvZtr2N7Tp+Z3Wrk1p313L/PrxFkp83Ee29ZzR27G3jbbrVcdWOLj0/dt5HWumI+8fb1rKr10FZfzO/ft5GKEv0i0JsJhZ6yAgoooIACCoD3Lv7/GdDm61agZuWXv7VhkCTuvqaJu69pErZ/7K513LunBUAzvbh/n5/rN1Uzu5BgbYMXq8XIPdc20VhZRN9YiNW1xdpK+Mh0hOeOD6EoMDEb1SbmS7CaDXznGTUPrdRj4903ruJY5wRjM1GC4STffKKD37hpNcc7JxmfixJPZnVZX6Bmo53tnRGUiDUNJbT3zggOb6Uem678UpIkfvxKL3Nh1bghlZHxOC1YzUam5uPMR1LMR1LYrUaSaRlFVlCAH77UQ3WpQ8uYMhlVM5LxmagQBuy0m3WulaCSk/yCWllRKC+2C++/PBYS+viuWltBZ1654kJM7RNciiHoGprH47TkmGtIxBJpwVkvlZbZ0OxlaDJCKJpiaj7O1HxcyLxyO8woeWOfmk+wa22F5vCY32fXNTRPS41oFGMyGhjOUz0vjy1Q6rFpRMRklOjoX94vh9VES7Wbc33L5CqRkrllezUvnx5BUVTCfM+1TRw4O6aVviZSWfYf6tcdb4OEdq6WgrpzDTSyskJJkZX8U+V12/hf79nMT17ppTNPbesfW9CReLvVyPHOCS2DzmI2UOSw8Pjr6pgkSe3j8jgt9AyryuDQVIREUl8mmpXV45LMEW8tJgPlxXa6c0LBTUa1NPlSznVhMkq8eHJI6yUzSBL1FS6+9Uwnsqzgc9tw2U14XFZ+cqAXRUFQFwEqSuzctLWWwxfGNQXVbjVy7cZqdqyp4ODZMSRJYs/majwuK791zzo6N1UzF06wqaUUt9NCbbmLL/3ONYzPxqgpdWpGJO/a08K7Fv+2LGFHWzk78gxE3sz4haTM7/cbgX8F/Ki19g+g/ln4LuoPVwfwO4FA4M2TzrYIJR0n0vvklR5GAb+mULLqj5tk1DdzF1DAfxdKOg68uVcF30gIBAJNAH6/3wy8E/gEsPM/es+v8+/jfwcrORDWVxRRX1EkbNu0qpRNq0S160xgWiNKsgJne2f48O1tHO+cxGIyCBPumVCC+UiSSDytTQCn5xO090xTXebULNTDsTQWkwGnzUwkkUaWFZ47PsSduxs43jlFNJGmptTJQizFPdc08e8H+8hkFRxWE5VeO2saSnjk5R6Nqd+yvZbnjokKUSKVpbzELhiBxJNZbtpSzSs5phdjMzHetaeZxw9eJpNVONc7g9Vs0PqylsZ7OK/nziCBySCxodknTKQdNhPZvDIwWYGbt9Uwt5Bky+pS/PUlfP3xC0KIcG2ZS5ikg1p2efc1jZzrnaXCa9f1PaXSWT5xz3q+91yXQHRTGZnbd9XTNxbCYjKSybPyN0iSloFVUmRlY4uP1/JywmpKnUwH41oJq9kkYbOaBDv44iIr29vK6bg8i89jQ1HgfM71EEtmdIqOJKmmIrnX1MFzY7qQ9On5BBubvZqxi9EgMTQV0Vwjs7KC06ZXkWRF0cjUEja2+BicCDM4GdYCsUEljc/nqH0Ws4Eiu5nZHFdEl83E/fv8fPPJi9o2RYEbtlTz4qIxzhK6R0KsrvVopaFGg8RNW2tYVePhRy/3qPsP7GirIJ2VKSmyEgwnMRkNbGrxcaRjgiqfQ10AkGBysaQyI8sYDRIP3NHGvz29HCQ+u5Dgzqv9fP+FZVOQeDJLXbkLk9FAeYmdd1zfTHmxnc++byuvto9iMkrcsr1OM4a578ZVeedHYl2TWAoNYLOYaKpy67b/uuM/o5TdBRAIBK7x+/03AH+Pep7/JBAIHPD7/d8E7gEe/5WN8leAkhL9RVBAAb9MBIPqal6JuzBxLuBXAUfh79gvEX6/vwn4GCqxKgG+ANz3C972a/n7eCWhCymOpZhbSOBxWvB5bAIpA9VFL9/qe3w2JpTPgUocdjZ5NVe/0ZkooWiKz75vC1/8/mm6R0J0j4Twua38xYM7+drjHYxMR3nuxDA2i5FP3LOOyWCcYDhJOiPTVOUWcrOqfA6hPAvUSXIirefj3cPzgrqSTMu89+bVHDw3pvXnxBIZXHYzNouRmVACWYHvPNvFnbsbuP2qel44MUxWVoglMoTN4jGzWYw88nIvACcuTfJ/P7yDG7fWcr5vllRGnXDfurOOl06PEM3JfCt2WXjm2CCZrMLgZBizUVR0LGYDf/D1IyuGGR9oHyWeozC6nRYWoikMkkSR06zlVgXDSfpW6APb0OyjpcajqaDxZJZ4MovNYiSRUtUjp82khZSPTEfx1xfrPufGrTX0jIQ0NW3r6jJOB0SltHMgyPomLx39y6qXz23TCJnBIHHdxip9wLSC4FLptJl4NoecO2wmbt1Zz651FfzhN48Rz7kGd6+rEL5P/UDwuKwCKYskMizEUuQjGE7hcVq0sGwAl81MTamTKp8Tt9PMttYyLo+HGZ6OcM+1jbjsZuYjKX52dDnZ45oNlTRWuPnBS93Ln2M301Lt1kgZqCQ0n5SDqlbmW/bbrSb+8P1bhW1Ouxm7xUQ6m9X1URbw8/ELSVkgENjv9/ufXnzYAEwCbwNeW9z2LLCP/+BHp6TEgcmkX2G4kvjyl790pYdQwK85HnzwQQC+9a1vXeGRFFBAAT8Pfr//HcDHgW2ov2MfAP71P2OF/8v4fYQ35m/klcItO+t56vVlAwuXw8KThwdyHpuJLBI3SYK7rm8hns7SkUPWrtpQhdNmZmiyV9tWXmJnOiSWIUbiaV7vmBD6fmYXkpzpm9OCkUFVwQamooxMRbjQt+wMt77Fx9h0lGA4oSlBuePLygpHOiYwGJZDtB02ExaLfurldtuI5hHJSDytK3V7+cwI793nFybGc+Ek91zfQiyRJp2ROXBmWVGZj6Q40ztLe/e0VmKYlRWeOT7Ex96+gS9+9wTpRaLmb/By/OKyQpfOyty0vU4NDu6cWCz3kxmYCGuqiyTBtrZyTuWViO5aX8mudZVUeB387t8dEJ6bmk/wwJ1r+cHzXVp55E8O9LGmUb/I9IE71uC0mWmsKuJTXz4oPBdPZSl2WZlf2N9NYAAAIABJREFUDIbesbaCtCIJfVanu6fZuEofiC4t9qIpCrTWlzCYQ7BlWaFvfEFQuQCGp6PEkhk1VHptBVNzMYG4JFJZ7r3Fz4XeGYGQAbicVhw2s+BCaTEbqSx1Cr1dFrOBZ44NYDRI2jk2GiQtCFpCleCtZiOzCwmNOH7wjjUcD8zw3NEB7bPes7dV10t28tIU+RwpEk9TXuqEnHvIbDJw69VNvHZuTDgG+65qZHg6ykDO8dq7q4GysmUVPBRJ8pfff13b16MXJ/nyp/fQUPnWU77+q/hP9ZQFAoGM3+//HvAO4F7gzkAgsHSawoDn574ZCK4QnFhAAb/uyC6WcExP612HCijg1xm5P9BvAjwG/ATYHQgEegH8fv9/emn3v/v7CIXfyFzcvbsel9VIz/A85V4Hz+Ss8gP4iqw0V7kZGF/A57ERjyV58PY2fvhSD4GhIB6Xla2rvDRUuJmbj3Hi0hRWi5F9O+qYCsYJDC2X7DltJmwr2GqnEnrb8elgTCBkAMgKHqeZuZxcsGQyw9XrKzmSU34oy2rA9MWBOWKJDKe7poRJN8A/P35B59hY6rEJ9v4qJGZXuF7mgjEysrJiL1poIcHAmKh6jM9E2f9qj6ZiZGWFkUn9b5XTaqSl0sWJi2I5ZV25E5fNxMh0lKlZ/Xgu9Ezz4vEhjAZJze/KUYNqS51savbyUI5r43QwTpF9Qfc5P3i2i1gyg8tuEko8AYySpBEygPbANNY850mAGp+DroHlvjev28qFHFOPdCpDIiU6S0bjad53Syv/fvAyycXS1KU+uHRG5mTnJNWlYqC1oijMzISxrmCh19E3owsRN0hw5PxyHttST19uH9+21jKBWCnANn8pZ3tExfjJg31CXyHAs0cGBBdLUMsFvXlOj5IEO1b5GJ4I0zcaothl4T03rSadSLO+ycvAeBirxchtu+pRMlmKXWZ8bisuu4Wbt9VS47Xzh//0OiNTEdY1eWmsLBLIZzoj8+yhy7p+sLcq/qPfx/+0+2IgEPgQ0IpaP5+rXRcB8yu+qYACCiiggALe2NgIjAKH/H7/Mb/f//v8F02wCr+PvzwYDQb2bq/jt9+xgdt21utc+0wmA+f7ZlmIpekfD/OlR86SysgMToZZiKUZnorwNz88y8h0VC3vS2YIhpN8/4VurZ8pF9U+JyVFy86DXreVG7fV0ly9vKpvMkrsXluhC61Te4lE0pSRFZR8H3NUhSx34p+VFS3LbAnReJqmqiLNPGEmlCCcX8qmKMyGkthyJts2i5HXL4xz9OIExy9NCm6TBkkikkizPs9SvLWuWFdONz4bpb7cJWx76vAA33s+QN5pYGwmxvB0FAXVdKLYZdGOj9dt1Szfs7LC7EKS5mq35iR4eXyBf/zpOV0ZnCwrbGj2YjapphZup0UrFYzEMzhtZu077FYTFV6xjDKTlTHkBaBJQP/4AqmMGoK8a005sTzS3Tu2wMYWUaXbvbaSidkYLruJTS0+XUxBOiPrjtW1G6oAeGSxn2sJboeZ8dmYpjg5bSZ2r6/UlepuaS0jHy67/k+RhKRzSbSajdjyFFiH1aSzkr96fSWXhnLNPQzcsLmGv/vxOboGg6QzMjvXVFBeYucvHjrFhctzhONpsrLC5lWl/PUPz3C2Z5bZhSSDk2E8Lgtfe/wCF/vnCEVTHOmY4GxP3uIFUOQo9Nb/Z/ALSZnf7/+A3+//o8WHMUAGTi3WzwPcDrz+qxleAQUUUEABBfzqEAgEOgKBwGeAWuCvgBuBCr/f/zO/33/Hf/Tewu/jrxYuu5m7rm7UHjusJl1GVCoj8+LJYcGGW7VQH+HwBVHdOXhuTCB50USGR17p4cE71mjb5xaSfPWx83zq3o2UFavflckqPPpaH7tzLPslSTWeuGFztfAdV62t4NqN1QKBczvMVHr1vcX2FcoYvW6baKOuQGNlkUbC4qkshy6Mc+2GKt62u4G7r2kULPFBdUmsWyQMsqLw6plRFEVh19oKbT/7RkO4neJEudhl5f9j773DJDvLM+/fOZVzVeece2p6cp7RJI00oxxRAgmEAHsBG+MF7wf+zJrFfLsGs9hrGzDYBluYIIICSmiUw0gzmhx7prunc87d1V05nu+P0326TtesEEbSjJj3d126rqm3Tp16K+iqc/fzPPd93zVL+LMPrtZd9CeSGQo8NnxOCwZZYsuy4pyMuFA0xZ/cuZK7d9XTVJ2bV+dzWnRtcN3DQQoW2eAPT0Y40zVFMpWhotChtYHOE0uk+dqntnD9pkpqS11MBvR7APVzmbfIt5gNbFpWROtcdVRR4FDLGCV5+gqXz2XRDENkWeL6TVWEY0leOj6gGsd0TOgqfaB+F1/PqnI1Vnp44IalPPFGN21ZBiomo5QzaxiOpXQOn/N4nbnCZd2SQkqzsv4kYOeaMm68olr3mpdW+3T2+QZZwm4x8uKxAe32/dcuoWNwhp6szLBl1V5GpyO6iuyzh/p49cSgbhZsOhjnucP9hBcFZ+9vHmZwXB8dMDodYVnNwnegotCpCVbBW/N2/hr4GPCg3+/fB5iAzwEtwPf9fr957t+PvHtbFAgEAoHg3aWtrS0FPA487vf7C4GPAl8HnnmLh4nfx3eZW7fXsrGpiNGpKP4qLweaR3Is7osvIHjsFrXdLZFaUAImo8zAuN51LxBK8NqpQV3VpnNwlpeODzKeddE/PBlh5+oynDYjoWgKRYGXjg1w/7VLuHNnHU+/2Us8mWZoIkyhx8rn7lnNs4f6GBgPEU2m6Rya1eawQL1IngnHsVuNRLIudNPp3M5ZWZZy2ut6RoJctbac7uHZnGqi1WxgaEJ/oXyifYL1/kLtdaYzCrORhG5PU8E4f/PT4+xeX05iUVB0Kp3BZTcxHYpz6Nyozj4fVOv4bz96BiAnQNlklHNy0QBW1OUxMKbu02iQac2q4JztmcZf6dUJnHVLCugdCfJsloOhySiTnKuCrVtSqHN1jCfSOcHeAA3lHqaDcWbCCUry7ARCcc14JZNROD8QYDasr1AGQnGu21jJ8fYJCr1WpoNxnZlMR/8MoWiSgTH99yuZUijJt2sZcaB+Povt/q1mA0daxij02pgJxzHIMnVlLr73xFlS6Qz1ZW4qCp1sairiUMso+8+MYDRKrKzNZ9vKUr7z2Bnd+W7fWcujry7MZqYzCi19AfoX7a9rOEihV19xTGeUnFlGgEJvbpZdaZ49pz21usTNZz6wgo7BGZKpDEurfFrumuCteTtGH2HgngvcdeU7vx2BQCAQCC4ubW1t48Dfzf33VseJ38f3gNJ81WEOYMeqUk53TnKmaxJJgqvWlnP1unLOdE1q1Q6P08y1G6uwW008MZc/JUsSt2yt5VzPFK+cWAjXrSxyYrlAxSqRyq1kDE2ECUX1lYLj7RMMT4Y1S/Te0RA/e6mdz3xgJT96tlWbrTl+fpztK0sZnY7QPjBDOqNwsmOSykIHtSVuzs7lX53smMyxWFcURZcFBmoQ9fefPqfdzjYTqSp2MToV0YmmfHdu3lo6rfC5u1fzk+daaR9cmOd65fgQK+ryONO10N5Y4LVyfi4jS0G1z68qdjI4Hqam1EVn1uMTqQzVxU5kWWImlGA6GOfA2VGdcYbZKPPqXFSAQZZYdgGTjwKPhbY5/WU0SGxfWcrLx/XByMlUhj+8aSkuh4XRqQjH2vTGFosFotEg8fLxAU2EeRxmzRlynplQnEKvTVcNdNtNnO2ZYjwQJRhRnRCzkWWJh144z3RIX1EzG2VGJyMUeFQhZzUbCMcWZthcdhOl+Q7O9wc0502b2cAf3baM//PL09p5OodmuW5TFVPBOPtOzVXoMqrYXlxxBHROivMoikJFoVP3h4mGcg9rGwvozjLuWFWfz/WbqznWNq69B/5KL1evq2RsOqZmvgG1pS72bKikqTqPHzx9jomZGPXlbu7d3YgkSTRW5LpjCt4aER4tEAgEAoHgfYHZZODz96zWQovn84/+612rONc7TTiaZGVdPjaLkdu217KiNo/+sRBN1T6K8+ysqM1TA+S6JqkodPKhPY3EE2mOtI5pLWVN1T6u31TF66eGNfMEi8nAjlWlHGge0VXV8twWzi6azeobDTExE81peeseniWa0Iu6/vEwmwv1s0nxZJrtK0vZf2YYBbXVzyBLOG0mQtEky2p8ORljTqsRf5WPI61j2n0Gg0Q6rSBLMBaIUJDRX7zbzGpocWrxbJeiEM2q3hkN0gVbLedt7F02k06UAditJm6+oppv/vyktqYosKzGR1m+Q2urA7UyE44ldeYnRV4bh1sXKqKptMLTb/ZSXqhvPQR46MUO1RXRJGvuhPN0ZRmc+FwW8t0WOrL22tYfYFm1TxeubTIatJZHUO39Kwoc2jGxRJpUOq4TwiajrKvguu0mMorqbDgyVyXb1FSky5gDNZOuoVz/3kYTaY6fz53L6h6ZJZXKnVe8UBVqdX0B49NRrdKoZphV4LKbePCZFnpGgjRV+7j/Oj8+lwW3w8ypjglK8h1cuaYMi8nA//zDzZzpnMRiNrC8Jg9ZlrjvmiVct6mKSDyltcguqfTyjU9fQSyRzmnVFPx2iHdPIBAIBALB+4qiRS1XkiSx/ALVlvpyD/XlCwaYFrOBj17nzznur/9wM8faxvE4zaxbUojRIPPlBzaoszXpDFeuLqO80MkHr27g4Vc7SabUdr4N/iJ6hoO6tjB/lZc8txWP08xMVq5UbZmbwKJcNZ/LgtuunwkDUFB04iKdUbhhSxWypF7Idw3NkkovVNNsFmPOBb9BlijLs9M/HgZFtaIv8lqRZZmRqQjRRJpnDvaR79a3pWUHEoMqiBYHVFtMBl3+1bxgXNiPQYsJyKYs34G/yqcTZaBWcbJnotIZheQiARIIxnVtlZIEbvtCG2UymcFhNeJ2mEkk03icFp3d/HQwfkFRt7TaR2auhFfotelmxQDuvrKel0/oK3SpdIaP3ehncCxMvseq5cLNU1vq5nSX3iHxVMcklUVOgpGF9zbfbaWi0MGJLHMMSYI1DQW8dnJI9x1oqvLlzHTJksSuteXYLUaeOdSHklG4en0F65YUsLIujwPNI0wFY2zwF2nh7V9+YGPOe3ChIHeLycCGpUU5x+Z7rOQvWpOk3Nk5wW+PeAcFAoFAIBBc1uS5rVyzsVK3Vui1cfdVDbq1HavL2Huol+lggmAkybceOc2nb1vOY691MTzXBnesbYxda8r5o9tW8B/PtjIyGWFlfT73XNVAMJLg24+eYWQqgttu4uM3LKUk387h1jFNwK1pKKCxwptjVLL/9DBDc/bz2QJGQm3xzBYgAGajgYFFs2VTwThLKr2avTuo2Wy376hh/5kREsmMzo1yHlmWuX5TFf3jIdx2M51DMzpzlVA0yZqGAk52qOLi+PkJxqZjOdb/r50c4sVjA7oq07y4yra7n5yNUVXkpC9L7EqS2sanfT4eqy6wGtTQ7S/cu5a+0RAHz+nfv/nHZO/J57Lw2L4u7fwFntxg7NHpSI4pit1i5IfPtAGqQcriTLMCr42SPDvDWXEBpfl27rumkW8/eobpYByH1cgD1/upL/fQMThLS+80ZqPMHTvrWNVQwCduauKpAz2k0hmu3VCJ027ie080a+dz2U189Do/xT47t2yr5cYrqlEUdT4P1KryrrXlOa9HcOkiRJlAIBAIBALB26C5a4rp4EL1K51RaO6aYjI7qyyZ4Vevd/HJW5ezfVUpSkZh28pSnDYTTpuJ+69dwumuSZbX5GlW9V//5BZOd07itpvxV3lJpTMcaR3TWiNX1ObpLOwVRW2zDEXVGIB5MZTN8hofY9NRurMqVvVlHtz23JyqA2dGNGOTwy1jeJ1mAnMiUZbgdKc6s+e0mfjzD6/jh8+06ESZySjnWM0PjId44Do/h1pGSaYyjE5HtWpaJqPgc1nYvrIUr9Osaxec5+r15bx6YojJ2RjLavI416NvEx0LxLhieTFvnh3V1iqKnHz1wSPkNvmpZhqvzM2xSRJcu7GS57JMQxQFhiZCujw0WZY4eG5Um62SJWio8OraRwOhODUlLvpGQ2QUhbICBzduqWbj0iK+90QzM6EEeW4L91/np6bEzcduWEpr7zQbm4qpKVGrV3dfVc+RljGqS1xsXFqkZp7NxEinM7hsZsoKHDy1v0fnzBmKJnVVYIP8tlOuBJcoQpQJBAKBQCD4vSCVzjA2HaXIZ9MqBu8kdmvuZZPZJOeEPAdCcb764GFN2LxwdICvfmITB5pH+OUraqvbc4f7uWtXPVetLeffn2nh+Plx8t1WPnKtn1X1+dy7u5EHn2lhfCamyyWbx2Iy5LQs1pa6MRtl2voDHGoZw2iQqCh0MDgRxuOwEImnyPdYcdlNmgnJztVlOtfC+dd5y7ZahiZCvHRsoXUvFE3yzJu93Lq9lm8/eloTL4VeW05mmyTB8fZxbBYjt26r4G9/fkp3fyyRoqV3mo5BtZ1PliStjbCxwsNLRwfU1kvg0LlRygsdulDiAo+Vo1lzZyvr8ugdCeoEmdNmZFlNHlazkX2nFl6jokD30GzODFoqo+B2mJkOxvE6LWxZXszeg33a/RlFfd7z/ejwOi189s5VzIYTVBY7kSWJ3pEgdouRdCrD5qZiqktc/Pyldp4/oj74ucP9fOYDK0ikMvzrk2e1fbT3z1BV7NRMaiZn43z7sTNUF+tDhxUFovGUNlf5TqK2kwrHxPcaIcoEAoFAIBC872nrm+Z7jzczG0nicZj54w+soLbUzWOvdXGkdYwCj5V7rm6gttTNwXMjPH+4H0mSuHFLNev9ucG9F2JplZeVdfmcmZsXyndbuH5zNcNTEZqz3ApL8x0cP7/gBDgTTnDw3CjPHurVnW/vwV6CkYTmGjgxE+Nfnmzmb/94K99+9LRmpX60bZxCr01zUJQlidICO6c69KLCajborOVTaQWv00JZgYPDLWMEQnH6x0JsWFrEthUl9I4GGZ2O5rg7JlMZ3jw7khOQDBCJqWYqf/OpK/inX52hezioWfDPW9TPM+/geLpzkuW1Pp2jY3WJi9behYpTRlG4YnkJ65YUUJpv5y9/cFj3vDKqjX5bX4CaEhczoQTJrJbHvrFQjjBMZxRqS905BivzNFZ4OD83PyfLEiNTERJz55gOxnOcGUFteSzy2XSVQq/LzF//+CiJZIar15Vz1dpyvvv4GU207j3Uh9dp5qWsWbqMovDMwV5Saf384KsnB1nbqJ/vSqYy1Ja6NQELsKTCo7mS/iaGJ8O8eGyAdDrDrrXl1JS46R0J8ouX2xkPRFnvL+KuXfUEgnF+8PQ5zg/MUFPi4g9uXkZ5wdt7DsHvjhBlAoFAIBAI3vf8+PnzzM5VUmbCCX7y/Hk2LC3i2cNqpWNyNsY/PnKaP7p9Od9/8px2Ifzdx8/w1Y9vonc0yOOvd5NIpdm9roJbt9cyHYzzxBtdjExFWdNQwLWbKvnc3ato6wswHYyx3l+E2WTgj29fwQtH+hmcCLO6voB4Mq0TZUBOntg8i2fBovE0bX0BXbaV+ngoK3AwNBEmoyjsPdhHfblbcz5UZ6KsutkmgEQyndMeeLJ9nDyXRavaAJgMMsl0BpNRZjwQYzwQo2NgJieTrKV3mv/xb4e556r6HDMPp83I/dctpa13mueyzp3OKBR6rDrxt3if6prCs4f7SKUUXRshqFWq1t5pUmkFWZIIL2qXDEWSrGks0NnipzMKv3hZrUxmP7ckqc6X0bmssWKfjdt31PIvT57TnXNxlpvTZmJtYwGBYJx0WsFhM3LFihJ++VKH9n16cn8P8WRGt3eA9oEZrRI4z+Jj5qkscnE063VIEuzZUMHSai8n2yco8tm4el0FmYxC72gQn8uC12lBURQef72bV04MYjUbuGNnHU01efz1j45puWoHmkf58gPr+cdHTmmV3OeP9GM1G+gcmtVEas9IkO8/dZa/+vimC+5R8M4jRJlAIBAIBIL3PYurGiNTEc4tsqufDSc4cGZEV5lQFNjfPMLzh/u09cff6FbneA70aM6K5/sDZBSFFbV5/Pj5NoYnIzxzsI9P37ac8kInkiRxtnuKcz3T7NlQQZHXxthcZctokIgn01y/uVprXwQ1Z00Bnduh3WrEX+XFbTdpIhOgJM+RMzumZBTqSt10Dc+iKPD66WFK8uw6I4+r11cQ2t+jC5Qu8tl17XwAkgx/8aF1fP2nx3XrDquJXWvLOX5+jP6xMIlUhoHxEP/8RDN2i1HnCChJEi8c6Ue5gOLqGw/pqnFtfQGsZoOW2WUyyhw6N6r7bOZNObxOs5bjBaqVfX2ZW2f8YbcaNUHmsBpZWuXjWJYwTqQy7FhVis9lYWw6ysFzC7Noo9NR7Bajbj8As6GkJsgkCe6/dgk/3NumZX1NzkJp/mzODFsoksgx/6grcxNNpHURCns2VjA6GaF3dEHcrm0s4FzvFFazgXgijc1q5JoNFXz38WZ6R4LUlLi4fnMV4ViSr/7wCGPTUQyyxO07asl3W3nqQI+6h2iS7z99jtu21+qCrlPpDC8dG9AE2TzneqYZnNCHS/eNhkilM+9KK7AgF/EuCwQCgUAgeN+zZlHL19rGAi1LaR6zSWbJBUJtU+l0zoX1yY4JndU9wNHWMR58plVz1RucCPPDZ1tp7p7ksX1dhGMpQtEkj7/ezb27G7BZDHPnV3jk1U4cViPXZrk8Pnu4n5oSl659MhpLse/UMH9w8zIsJvXxkgQFXktOtc1uM+mCfwHS6QxblhVjMsoYZInz/QHu29OIPcuy3G4x5GSPWUwGTnZMYFoUuGwyytSWunMszyPxNFetK0eemz0yyBJTs3Faeqdp7Qtoewc1fNh0gQv7dY0FeBxmSvJsXLGsOOcz2LOhgk/duowP7KjLeazPZeHqdeUsq/GxeVmRbt4sHEvlVKVArZwlUhldOPc8pzomdKHhS6t9mqgGVWC9cmJQF74M6BwW5znbO42iqJ+bLEtsXFrES8cGNEFWVezki/eu5fVTwzw9Fy3gtpv4g5ubaO2bpq0vQCyhfidv2lJNc9cUvXNVyZ6RIA/ubeWp/T1aC2U6o/Crfd1aW232noNhvfgCVeBbFs0pVhY5cwKf68rcQpC9h4hKmUAgEAgEgvc9H7+hCY/DTOfgLA0VHu7YWUc6ozA0GeZczzQuu4kPX7OEDUuLaB8M8MbpESQJdq0tZ/vKEp2hBajzRkfbxrQZI1Ctzo9lmUuAWk3oyKp0zXOqc1Lnlgdw7Pw4nYPZGWAZntzfQ7FvwYpdAR59rYv79jRq4kFR4MWjg+xcXcq+U2qOls1i4NattXQOzmpteKAGN2dXnF4+PkhFoRObxaBVTDoGZ2ms8BAIx1XxgJp/tveQ2uo5b1kvSdA7GuQfHj5FgUcfPm00SBxtG6ehws36JUUcbR2lPSuYOZ5Mc/uOWl440k9bf0ATqPN4nWYOzDknzoTRzaLNc/z8uOaQuLid8Xx/QKskNlZ4ch5rMxtwWBcqeWaTzIHmBZv8bFv+Ip+aT5Ydx2Yy5LabShI5Nv8FHhtl+Q5OdUyQURQcVhNTc9U1RYECjwWPw6wLE+8bDdE3GtS5OM5GkvSOBAlF9fNv53qm6B7Wt4l2D81iXiSeM4pC4eL8PsDnUrPQBuZMU6qKnFy5powCj5WfPN/GbCRJU7WP23fUkkor/HBvK23909SWuPnYjUtz3gPBu4cQZQKBQCAQCN732K1GPnJtbjD0//OhtURiScwmg/ZX/4/d0MRduxqQJVXEAHz4miU8/noX0XiKjAK/2tfFlmXFHGgeJZXOYDUbMEhq9UCXl+W15YRZAyyr9vHaqSFdC1uh16prXwO1zWxxdSqVztA5lCv0LCaD6vaYzBBPpBkLRLhrVx0/ee48Cqpg8Fd5dO1woLb7ZYsCUOfu/uZTV9A5NMNjr3YykXW/BGzwF3G0bUGATszEaKr20dYXwGY1EI6mGJmMMDKpVotW1ObpRJlBljh4dlQTRdF4mny3hcYKL/keK2e6JnQtdJOzcTY3FXOkVRWUFYVOXaUylVbwV3pJpNTPItt5sn1gBpvFoIlggyxpgs8oS+xYXarZ4c9TWagGWTttJpZWe/naj/Vtm6FokuW1edrnJUtq1TGdJdw8DjMtPVNaXlpTtS+nujoeiDEd0r/36uuN5awZZAmjQSaV9STFeXaiibRu9rCq2JlTuXRYjRxpGaXAY2UmlMBiNqAoCo+81glAWb6dD+1uZFlNHrIssWFpEWuXFBBLpHFYFwLMP3/P6px9Cd4bRE1SIBAIBALB7zV2qymnDctpM2mCDGD3+gp2r69gvggyG0lyoHmUz929CpNRJpZIc6hljP7xECtq87TzDU2E+dFzbVy1thybxcB8feVnL3dw9bpyjIaF9r7OoVmW1+bp9lHss7GqPl+3VjOXV5WNJMG53imtcpdR4OcvdTAxE9OqYumMQnv/jNZSOM+K2rycSpfJKNM5OMOmpcWYTPoqlkGWMJtyLxG3rSzhu/9tJ7Wlbt16MJKkvNChtSzKEtx5Zb3mFjnPTDhBeaGD3tEg6UUdhCaDTFv/NBkFirw28i4QYr3eX8ju9eUXjAj40O5Grt1YyY5VpbqZtlRGYXgyymKHd5fDzAd21DExE+WfHmvGsuj1jkxFONs9hddpZteaMkDRCbLVDfms8xfqAqxbeqepLta3zNaWuihw6997m8XAoZZR3eekitgRzCZZE+nFPhuvnRyka2gWi9mA1WygNN9O93BQm58rzrNRW+oiHEsxPBVlYiaG025kz4YK3bzf0GSERCqDLGc/p6wTZIKLixBlAoFAIBAIBJDjJjgf4pzdWpdIZigrdOiqGYlUhnAsicdh0QTSdDBO5+Ase9ZXAKpg6hkO0j08y41bqrT5sNa+AK+eGOS+PY1UFTuxW4xMzsboGprlQ1c3UOi1Uppv58N7lhCJ6ZX073AJAAAgAElEQVRMOJbMaafsHgmyYenCfJ3LbqKp2scf3b6CqiKnJk4Gx8P861Pn+PdnWrjpimqyNcuyGh9XrS3XzbAZZIkfPN3CF797QDcvNn/fMwf7tHbLjKLaxC+2ds9zWXn0tS6au6YYnAhrc01mo4zFLGuVs9HpaE4lyWyUeejFdn7wdAunFhme5LnVFsFoPIXFZCCzaJwsHEtS7LNrt40GmZu2VPPIa53sOzXMTDhBPKlW4PxVXpw2k1Z1C4QSdA/P5pwznkgTT+TOpq2uL2DrihIKPFYaylXr+XknyqoiJ40VHqLxNLPhJBlFwWCQWN2QTzqjMBNOEomlSKYyfPyGpWqAdGbh+bYsL9HNzoE6g7h4Xm86mGAikFuJu9AsneDSQYgygUAgEAgEAmBplU9322o2UFmYm9W12CQDIJ1WchwghycjulZHUKtKkVhKN5cUCCVIpjIMjIWJxFMEI0me3N+Dy2HmpitqmArG+ckL53Ns5N12M7Ksv5SzW40cbV1wHQxGkjz9Zi+1pW7+6hObqCnRV7nePDvCirp86soW1k92TNI+MMOXH9jA9ZuqKPLatP3ORpJ0Ds3gr1JNIcxGmZ2ry4jE9LNQR1rGtFk3SYKl1V5CUb3pRCKR5i8fWM//+NjGnFmqmXCCu6+qp7bUzQZ/oc4EJKOoc2Ablxaxe10Ft22r5R8fPs3rp4d58dhAjmgcm47qHCn/8OYm/FW+nPDtWCLN/df6CUX1wmdiJpZTaewZCXKgeUQnZg2yxEMvtXOyfYL79iwhlsjoxNz4TDRnb+m0gteRWxXsGJzRfUfU1xHJcbZMZxTKFn1HzUaZXWvLdNVOn8vCmga9SBZcWghRJhAIBAKB4LKiZ2SWl48P6OZ/kqkM1cVOdqwuxe0wU1Xs5LN3rGRjUxG1pS7tuLoyNzdsrqKpekHAGWSJPRsqctoQ1zQWUF3s0q1ZzAa8F2jNm5yN5TgGnuma5CfPt2kVmUAozpJKD765x8+EE4xMRbQLfbNJ5toNlTlVncHxED9/qZ1/+tUZnSkIqLNSoUgiRzzubx6mrMDBLdtqdK6EAIFgQttDIpXhePs4i20xgpEkZ3tU0aMo0N4/g8epf902q5G//8UpvvyDQziseqFrMso8/Eon3cOzzEaSusrkPLvWlnPjFdWc6pzUibZ4Ms3V68rZsaqUGzZX5VSIWnunae6ezKkw2SwGfvpCG06bvqXPZFTnvIrzbNSXuTGbZM06XwHKCxwU+xaEaySe4j+eayW2KLQ6kcxQscgR1GiQWbnoewOqe2j+orbH9UsKde6dANdtquK27bXUlKjfM6vZwP3X+akr8/ClD69n3ZICtq8s5csPbMBmMdLSM8Xf/fwEf/OTYxxZVGUVXFyE0YdAIBAIBILLhheO9POzl9oB1dDiYzcupbHCyzd/doLpYBxJgtu313Lz1hoeerGdv3/4FBJwxfJitq8qw1/lRZYkPnf3Kg6eG2VqNs56fyEVhU7KC5088moHXUOzNFZ6uevKejKKwunOSc1efVVdHletLeeN08NMzKgtZlVFTnauLuOV44M6ceFzWnIChg2yzOwim3NZgnt3N7C/eZTDLaM610FQK0XZWWjZGVoGWeLJN3p04cqgZqD92Xf2E44myVskDqqLXRw8u5DzNRNKUFemtuqlMwo1Ja6cua90RmHbylKePtBDLJFW5/TmTFVAtbEvzbeTTiuqIUrPQhXrfH+AujK3zuwiEIrzzZ+dQJYknWjWXiPQPTx7wapm/1iIV0/qjT9cdhPBSJKW3oD2vvhcFsKxpM6QpGGFN0fAShIkF4nGmVCC27bV8MT+Hm3tihUl3LqthpGpCKfaJ3DaTdy7u5F1Swq5Y2cdew/1klHguo2VrGkspDTfwRNvdDMxE2NjUxG71pYjSRJVxS7OdE2yoi6PNQ2FdAzOaPN7iWSaTEZhOhjn24+d1gxewrEk9+5u5O8fPqV9p9oHZvB+ZF2OFb7g4iBEmUAgEAgEgssCRVF4cn/3wm3gqf09NFR4tJBgRYEn9/fgcVh46diAduybZ0fZsaqM5w73sfdgH5IEN2yu5rbttXQMzPDXPz7K1GyczcuK+crHN2KYayts7p7U5V0daR1n5+pyPrCzlif39yAjcfO2GqqKXdy7p5FHX+simcqwdUUxt26r5UDzCDNZImx1QwEjUxFtv6CaVvzylU5du9uSSi/pdIa6MjcvHF14HQANZR7GAlFmwgkSqQyHW8eoLXXRMxxEQa22jExFNME0ORujttRFPJmh0Gtlo7+IH/y6RXdOm9mIzWokFEkyNBlmU1Ox7n6jQWJsOsLn71lDJpMhHE3ynV81644p8tr4xE1NvH56WCfKAJqqfGxbUUL/WIjO4Vn6R9UqZ0ZR6BsL4bSZtLbD2lIXLx1fiDiwmGTicwYpZQWOnGy3qiIn1SUuXj89rK2lMwrXbarkpy+0647tHApQ5LNpGWGgZnxNzMSYynKwLPBYOdE+QU2Ji0KvlabqPDwOM1/+wWGmgjHWNBbwiRubcMxV5aqKXZTm2Ykn03jnKoqhaJLBiTDDkxG8TjPbVpQwHUrws5faGZuOcqR1jP9ys8zTb/ZqIjyjwC9e7mB4Mqxz3DzRPkGh16YT+Qpwsn1CiLJLBCHKBAKBQCAQXDYsrmgkUhkCQb1leTqjXNCS/kjrGK+cWLjY/+UrHZQXOvjXJ89qF8XPHurDZTdxw+ZqQM2UWszx9nFezaqK/fPjZ/nvH7Xy2qkhrdXubM808WSaazdW8ti+LtIZhQKPlc3LivA6zfzrU+fIZBSMBomVdXk5OWuVRU5WN+QTmKv+ZXdG+twW2gf1r28mlOCDuxvoGQ5SXeziF6906O43Gw2EoklOdUzS1jeN22HWKnYSauUqNGdCkUhmONk+zi1bq3nz7ChTwTiptMK+U8McPDvKVz6+kYpCh2bvP89sJMHnvv0GKGpb5Xw7pyxL9I7OcuBshPoyN6lFmWbJVIbbttXQ2h9gSYWX5kUhyvFkhj++fQVel4WSPDuf+9YbkFWTTKUvHCitKKpAjWUZeigKuGwmDLJEIpmhwGvlzayqoc9lwee00JUl/GbCCe6/zs8Xv/emdq4T7RP8+mAv91zVwEQgyrcfPa2J6h8914bXaeFHz7VqVbqjbeM47WbGpyOaIAxGkjy4tzXHWTQST2kZbtlcyGmxOM+esya4OAhRJhAIBAKB4LJAkiR2r6vQQpIB9qyvwO0w09q3EORbUehg87JiXeVEghxbdYBjbeO6VkGAs91TmI0GOgZn8DjMOY9JpTKLjCsUnj/cx+BcwC+o7o2vnBjk2UN92sX6xEyMJ/f3YJRlLfg4lVZyjCkATndMaJW+7CqSJMHZrknsVqPOnCOjKPz8JVWIHTw3mtPOGIwkGJ9z9IslMshyhj0bKhgYC9FY4WX/mYX3CiAUTXHdpiry3Fb+49k2bT2RyrD/zAhnuxfs/Q0GiZW1eZzsWBBTiqKwpNKDw2piNpyguVutnB1tG6fIp8+F87ksPPJaFwDNXVM5tvRmo0xTjY9UKsOPn2vDZJSIJxc+gaHJCEOTC0YgkgSl+Q4eelFfJbOYDIxORxmdE0Uf2FnHqyf0YjiZymiukvNMB+Mcb5/QiTtQBXsqneFc73SOqceR1jFd2yRAx0Ag57s2HYxzw+Yq3Xd6ZV0+u9aWc+jcqHbefLeV6zdXEgjFefXkIIqizq1tXVGC4NJAiDKBQCAQCASXDXftqqem1E3X0AxLKr2sbSwE1Pa6o63jFHit3LSlGo/Twkev8/P8kX4MBombrqjGbTfz8nH9RfjqhnwONI/ojChC0SQ/feG8dttf5WU8ECUSS2GQJfpG9QHDoAqTxahW7foL+YGxUM7jT3dOcuu2GvYe6iOVztBQ7tHNkIWiSXauLmXfqWEUBcJzdu8eh5mZcILqYie9i85ZMldBGZ+JUl/m0bkXAkRiKc73BegbC9HaF7hgmPHPXmynZlGmGcBEIKoLuE6nlRxnSYA1DQVcu6mKP/6713TrY9NRPrS7gWNt49SUuHKE0cRsjIpCBwPjYYwGiTt21uGwmvi7X5zUhXeX5NkIx1I6m3mPw8Rn7ljJ1xeFSTdVeWnJEu4AR1pGcwxIUukMpfl2nbOj0SBhkuUcoTsWiPLJb75KoVc/swfQUO6mpXdKP89W7gHQzcM1VHi4c1c9PpeF5u4pKouc3LilGpvFyP/74XXsPzOM3Wpi9/oKTEbVBOTWbTWk0gr5ntznFVw8hCgTCAQCgUBw2SBJEhuXFuWEM29dUcrWFaW6tV1ry9m1tly3dteuevYe7EWSJG7YUsXaxkI+ceNSHnqxnXA0ycr6fFp6pnSP6R0Jsn1lKS/OVa7CsSA2i5FYPKVVzA40j+pa5SxmA/5KLyfbx3UX5ksqvUzMxHRizWY2cvuOOm7YXE06k+HQuVGdKAN0M2jzrGnMx2E1q3NZoyFd9c5gkOgfC5NKZ2junsLt0Le+Ffts9GW5V0bjKVbU5jExE2VkKko4lmJ/8witfdM0ViyIRJNRRiFXgRV4bEgsNBVKwBNv9PD4G93YrUYSWe9BodfK4693E0ukGRwPYTQaSKYXKkgWo0HLOUulFZ470s+2laWc69Z/LlOzcaRF5c9EKoPdYsrZoSRJWEwG3fue57bir/LpZg83LytmciamHWsxGagrc/P9p88t7M8kY7eatM9kPBDDaTMRS6RJZzJsbipmx+oyKotc/Oi5VoYnI6xpKODOXfUYDTImo4FzPVNUFTu5a1cDsiSxZ0MlezbonRnryz3Uzwm5bBa7YAouDYQoEwgEAoFAIHib3Lilmhu3VOvWtiwvYWNTEYlkBpvFyH/7p/06EeS0mTizSBBE4ym2Li/mQNY8UiyhWrkfbhkjFE3yL0+epb7cTWm+g77RILFEml+/2UttqYtAKK5Vl6aCcb72k2N8+tbl5LmtpOdmzeZNHSwmAztWlXGmS7+Hg2dHNQMMk1HWQrINsoTdYtJVgWbDSTY3FdE+MIPdamRZjY/nj+gNROrK3CDByNSCCcbkbJy7dtXTOThDRlHb+460jusEjtEgU1fmoqFiOc8f6SeZSjMwHtbuTyQT5LksTAXjlOTZiSVSmniNxFVjjOxMtOoSFyfaFwKmp4NxTnZMUJJvZzirTbGswIHRINExuDD/tW1FKfvPDOsEsgQEo0mdIPM4zERiKU2QFXisfGBnHT9/qV1Xebvzyjp+8bJ+Pq+80KkzCgG1mvn3n92OQZY0S/6GCg//3x9sZjH37mnMWRO8/xE5ZQKBQCAQCAS/IwZZ1lr47rmqAYMsza1L3HNVA5WFDt3xboeZxAWyt+LJtG5GrHNwlk1NRYSzAqe7h4PcsKVal6fVMTDDz15sZ+/BXh56sV0TZAUeK5+/ZxVPHejJ2quEv8qrCTJQxdKutWVsbipiY1PRBatZAxMhpoJxBsbDvHh0QJctJknwxulhzexjHllS2w0XZ6dtXlbMyro8QG35+/7TLfSOBPnyAxvYvqos57nXNhZy55V13LK1OicSIJZIcdeuOuxWI7IkMRPKrQq+cWZYJ8hK8uykMhmdINu1tpxILMneQ32aICvy2tjYVKTLtDPIcNPWajqyzFImZmIMjIV0ggzgbM9UTv5cOq1o4dvz1Ja68DjMORlpgssHUSkTCAQCgUAgeAfZvKyYxgoP3cNB6src+FwWakpdjM/E6B0J4nGa+cSNTaTTCkdbx7XH+VyWnNksgIEsA5B5xqejOQYfPSNBhib1x07MxDh+flwnKtIZhdoSF22LZqTGp2OczWq9zK621ZS46BlZmAPLKNBY4aEk38GLR/tJpRWmgnGmgnGdM2NGgf1nRnL2X1/u5oUjemfKF48NcNv2WurLc+fQXj8zpBmDZBuXAKyqz+dX+7o10do1HNRltRX7bDmvdVNTEU9mZYiprz+Sk0E2MRPLmflKZ2DoAp9JRlF0LZigVuNcNjNvZBmhXLuxkuW1eSiKGmRdXeLio9f7c84nuLwQokwgEAgEAoHgHSbPbdWFLhd4bHzlYxuZDSdw2IxajtlnPrCSA83DuB1mbthcRSyR5pXjg5rAcNlVk4Z9p4a09kKAtUsKGJoM6xwbm6p9jAWiuoqQxWwgEMp1Z0xlFF1+V3mBg7Z+fTaYzWzk5q01JNNp6so8/O+HTujut1tNLK/N49ks5z+AmmIn5wdmtGrTWCBKkc/GeCCqtVw+tb8bWdY3bCmKGnr8r0+e1dbMRpnKIqdOLIWiaitlIJSgscJDZZGTwy1junMtrfbSVJ3HRCCG2STnCLDZSCJHQNmtJoq8+lm5Ao+VFXX5utw0p83EVevKeePMgsGL0SBz5ZpybBYjT+3vUYVvqYsbNldjtxhZXpvH4ESIlXX5Wi7Yn9yxEoFgHiHKBAKBQCAQCN4j3Iss8tf7C1nvL9St/cVH1rPv1CAWk5HdGyoo8tr40ztX8fjrXYRiKXauLmXLshKqi1385PnzDIyHWFGbx4d2NzAwHubvHz5FPJFGAu7YUUdxno3DLQuzazazgRezAqXzXBa+dP86vvi9N0llGWYYjTLPHOxlJpzAYjJQW+Kie65aJgG9o0FW1+djkCWdpXuhz8bpRfNrRoOM12Fheq61cGImTkme3tp+07Ji9p0e0qz3QTXeuJAxxfbVZZzqmOC5I/2YTTKyhK5F0uOw8IuXO3RzcvN7lCTYtrIUoyxr5it2i5GbrqgmlkjzncfOEIomcViN3H+dn6ZqH+FYkkPnRsl3W7lrVwOVRS6+eO9aXjjaD8A1GyopybNz67Zadq0tJxxNUpq/0LK6eVkxoA/UFgiykZQLeZC+w4yPB9/9JxEILjG+8IU/BeCb3/zWRd6JQPDeUljoukCak+D/hviNFLzThGNJ2vtnKCt0UORVhc/R1jHeODOMy2ZibDqaEx79lY9tpH0goGVzSRKU+OwMZ1nhu2xGNi4t5uUsC3qzSeaOHXU88loXqXQGg6xa0C+e4dqzvkITQPO4HWacNiNDE+pxJoNEU00epzv14c/3XbOEh19ZEFhVxU52r6vgwb2tuuPy3RYi8TTbVpbQMRCgZ2Sh4mU2GVha5SWdUdi9roI1jQUA9IzMMh6IsazGp4UrJ1NphicjFOfZsZj0mWMCwe/CW/0+ikqZQCAQCAQCwe8RDqtJEx3zbFhaxIa5GIDvP3VOJ8okCQ6dG6W+3M1XPr6R3pEgjRUe/s8vTurOEYymCIT1JhqJZIaZcEJr40tnFB5+tZPP3rGSn7/cnhU4ncJf5dXNdtWUuHQCLJlWyGT0c1k+l4XtK4t549SQ1lY4HYzrcsDmuX1HHYVeG1OzMZ37IqhC61O3Ls+Z2aspcVNTop9hMxkNVBW7cs4vELybCFEmEAgEAoFAcBlx89ZqzvVMMTNnxqEo8OxhdS5s+8pSPnFTEwDr/UU8f6Rfe9zyGh+1pW6On18QPJJEjuEIwLneKV0b4htnRvjodUsIR1MMjKviKrEoGBvUWbyKIqdmTGIySJzqmNLNeQUjyZxQbUmCE+fHOT4nxkxG/bzaxqVFFzRREQguFYQlvkAgEAgEAsFlRGm+g298+go+f89qqouduvv2Nw8zNas6NlaXOLllaw1LKjzsXl/Bp25bwdIqHw3lHiTAZjHykWv9rKrXV+Uk1BmyxXQNBzVBBtDaF6DYtzBXZjUbqChy6JwixwIxTnfpq16gGnDcsLkKq9mA12nm7l31miAD1eK/odzNluXF3HNVA38wJzQFgkuVt/yTgd/vNwH/DtQAFuB/AeeAH6JWlpuBz7S1teUGbQgEAoFA8HuM+I0UvJ8xmwysrMvn6az8snn+4eFTmg1/kdfGXz6wAafNxE+fP89Lx9W5MLfdxBfuXYvZZODbj57RHuu0mbhrVz11ZW6eP9JPtnWB256bwbWsOo/bdngIhpOsbSzgdNdkzjEuu4kin00LXLaYDCyryePfft1CLJEmlkjT2hu4wOPMfPKW5b/V+7KYTEZhPBAl32O9oNAUCN4pflMd9yPAZFtb2/1+vz8fOAGcBP6yra3tVb/f/8/AbcCv3uV9CgQCgUBwqSF+IwWXDLPhBD/c20pL3zTVxS4euN5Pab6D050THGgewe0wc/2mKp1NP8D1m6roGDyjiacllfq5r7FAlDdOD7N2SYEmyABmI0meP9JPJJ7SVb8AqoqcfO/xZhRFbSMs8Fi5+YoaGis9PHe4X+fUuLIhnzUNBZzqmOBrPzlGIJTQOSUaDTJLK30cb5trSzRI3HNVPcfPj+vaJk93TVJe4GBwQhWTEnDlmvILvleJZJpjbePEkmk2+Atx2c1MB+M8ub+bkckIaxsL2LOxkv7REN957DSTs3HcdhOfunU5TTV5v+UnIxC8PX6TKHsYeCTrdgpYD7w2d3svcC3iB0cgEAgElx/iN1JwyfCT59s42aEKl/P9Af7lybPcsbOOf3j4tHbMyfYJvvbJLXQMzPD66SHsFhPXbKrkrz6+idOdExhlmUA4nhO0nEimCUVy58aCkSQjWe6MoM6XPbi3VXNeTKYyWEwGrlhRAsBn71zJQy+2E44mWVmfz6q6fBLJND94+pwW9pzOKJQVOFhS6eXK1WU8tq+LiRl1Pi2ZVnjijW4aKjw5+/ng1Y20DwYIRhJsWVbCkkovo1MR9p0aQpIkdq0pw+O08LUfH9Nm1J54vYv/8bGNfOuR09paW3+AVEbhZPsEk7OqsclsJMkPn23lG5/e+lt+MgLB2+MtRVlbW1sIwO/3u1B/eP4S+Nu2trb5P3EEgdz/Kxbh89kxGoWlqODywjDX5lBYKBycBILfR8RvpOBSYrHFfd9oiMOt47q1iZkYR85P8G9PNmuZXsfax/neF3ez93AfB5tHAH2mlyzBC0f7CcVTVGYZcIA6E2Y167+7NaVuBsaCurX+sZD2Wzh2fFBrQzx4dpQCr50bt9Vqgmweq8XIbVc2EAjFGQtEdffNRpIUFzggy3CkqsTFK6cGOdE2jsNmYlVjEYrRwP/80VEic+d+/fQwH7t5mc40ZDaS5JVTw7o1gJMdE4xO6wXneCCG12fHJP5/FbwL/EYbGr/fX4n6V77vtrW1PeT3+/931t0uILeJdxHTi77UAsHlQHrOHnh8PPgbjhQIfr+4nP4QIX4jBZcKtSVurVIGUFbgwHEBt8GTbWO6kOVAMM5P957VBBmolaqmai/dw0FiiTThWIoXj/Rz5ZoyVtblc6pzgsHxMLFEilgihckok+eyYDTKJJNp7FYTs3POjqDOhP3Ng4fYs6GSp/d36/bz7MFebtlShdth1j0mHk/x+X9Qi86WRcLP57Kw90CvdruqyIm/wsMLc4HY4WiSf3rkFNdvrtIEGUAwkuBEVoj2PMlECrNJJpFcGP/0OswU+2zsP7PwvqyozSMg/n8V/A681e/jW04s+v3+YuB54M/b2tr+fW75hN/v3zX37xuA19+BPQoEAoFA8L5C/EYKLiU+cu0S/JVeACoKnXzylmVct6mSAs/CDNmuNWWU5ttzHqtcIL7c57ISS+ht53uGg9y1qz7HWj6ZyrCmsYDB8TCDE2FmwwnMRhmX3YQEBEIJ9jeP8PWfHsuxqreaDfzjo6c1QSZLqOeamw0DiCfS1JS4qCxycsXyYjIZ/YYHJ8K6oGpQhWU8kWu5X1/u1jk+2ixGrl5XzoeubtSMPPLdVj6ws44PX7OEPesrqCh0sn1VKf/llmW5b5RA8A7xmyplXwJ8wJf9fv+X59b+K/Atv99vBlrQ99MLBAKBQHC5IH4jBZcMeW4rf/7hdWQyCrIsaetf++QWzvcHcDvMVBQ6mY0kONwyps2CbVhaxHWbqnj1xKDWQmiQJa5cU8bpzkmdmUYskeJ//egoWacHwGYx0D00q1tLpDJsXVnCqyeGFtaSGRrK3EzNxLRw6M1NRbx0fFA7JqOA/QIVvpJ8O3fvauBM1yTtA/pWTavZwIq6fJq7p7Q1h9XIjVuqOdszpQm2qmInW5aXsGFpEQeaR4gn0mxZXkyBx0aRz86GpUVMzESpLHJikFWBdt81S97yfRcI3ikk5UJ/HnmHGR8PvvtPIhBcYnzhC38KwDe/+a2LvBOB4L2lsNAl/eajBPOI30jBe006k6GtL4DdaqSmxA3A8GSYF470E0um2bWmnCWVXs52T/Efz7YyORPDbDLoAptL8+2MTEawWgxUFjoxGGRaeqe1+40GibuvrOdnL3fonru+zE1nloDb1FTE4ZYx3TG711VwumtCC5+WgHv3NPLIa51ai6EkqRU+CbVKeOXacp58o5uDZ0fxuSzctaue+nIPyVSG052TyDKsrMsXtvaCi8pb/T6KaHOBQCAQCASCywiDLLNskbV7ab6Dj16/VLe2vDaPb3z6CgbGQ3zl34/o7rOYDDRWejjfP8P5ucqVz2VhOhjHbJT54NUNLK/N49nD/UyHVAfDpVVeWhc5O3YNzermyYwGiTVLCmjrVwWeLMGuteW09gV0M1+KAvdd08jK2nyK89SWzNt31HH7jjrd+U1GmfX+wv/U+yQQvJcIUSYQCAQCgUAguCCSJFHgsWFZVCnzOi06YxEAj8PMF+9di8tuxmSU+e/fP6gJMoAbNlfRMxLUzaqZjDLB6ILBx1VryznZPqGFV2cUeO3kEI0XsMBfVp2nCTKB4P2OqOEKBAKBQCAQCP6v2CxG7tvTiNmkXjYW59m5fUdNTiug3WqkOM+O3WqktW9ayxab51DLGE3VPu220SBhNMjEEwsVsNdODTGcZfIBqmnH8lp9Za+p2kdZgeMdeX0CwaWAqJQJBAKBQCAQCN6SHavLWO8vYjoYo7TAgSxJ3La9hsde69JMO871TPN3vzjJH922HJfdlHOOmXCCs1lmHGaTIcdJMZHM0FTj41zWfJrHYebwuQUr+/ICB39y58p39gUKBBcZUSkTCAQCgbOJj7YAAAy1SURBVEAgEPxG7FYj5YVOZEn1Krjpihq+dP965KyrybPdU/z6zV7y3VaqSxYymfLdlhzv/UgsRW2pPrdpRW0es+EEsiwhSVBWYGfL8hL6xxeqZ4MTYToXOTAKBO93hCgTCAQCgUAgEPynSKUzZDL6te6RIF/94RF6R4KAak//Fx9ZT02pW3ecJMHJ9oW5tMoiJ1uWFfPC0QEyGQVFgaGJCIFgnMUEQomcNYHg/YwQZQKBQCAQCASC/xQ1pW6cNn2rotNqZGp2QUiFYymOtI4ynSWuDLJEXamb0Fw2GkD/WIi2fr07I4DXZcaQFY7msBpZ01jwTr4MgeCiI2bKBAKBQCAQCAT/KSwmA5+7ezWPvNrBVDDO5qZiPE4zR9vGdcd1Ds7q1tIZBYc19zK0NF9v3iEBW1eUsraxkFdPDmIxGbhmQ2WOEBQI3u8IUSYQCAQCgUAg+E9TV+bmi/et025HYkmePdSnuS/muS3Icm5mbmWxizNdU5pRSFmBg2s3VmKQJZ4/0o/RKHPL1moqi5wALKn0vuuvRSC4WAhRJhAIBAKBQCB4x7BbTdy0tZrnD/djNsnct3sJI9MRDreMacdIEkzNxvjQ7gYGJyJ4nWZ2r69AliWu2VjJNRsrL+IrEAjee8RMmUAgEAgEAoHgHeNk+wT/sbeN4ckIvSMhvvXoadYvKeTmrdW47SaMBhlFgTfPjvLzlzpYt6SQ23fU4bKbL/bWBYKLhhBlAoFAIBAIBIJ3jKNtY7rb4ViKtr4Ad+ys50/vWk0qvWDXqAD7Tg29xzsUCC49RPuiQCAQCAQCgeAdo8BjzVl7/I1u/uXJszm2+AA2s+G92JZAcEkjKmUCgUAgEAgEgneMazZWaqHQkgQum4n+sRCJVIbz/QE1SHoOh9XI9VuqL9ZWBYJLBlEpEwgEAoFAIBC8YzisJr78wEYGxkLIssRf/uCQ7v5kKsNffGQd08E4K2rzsFuFvb1AICplAoFAIBAIBIJ3nIoiJ2UFDsoL9NljZpOBfaeGyHNZhSATCOYQokwgEAgEAoFA8FszEYjS0jtNMpV+y+M+eetyqotdSIBBlpiYibH/zAjfeOg4PSOz781mBYJLHNG+KBAIBAKBQCD4rXjqQA+P7+tCATwOM1+4dy0ep5mHX+mkfSBAfZmHe65uwGkzUVnk5Csf38iBM8P84Nct2jnSGYWDZ0epKck1/xAILjeEKBMIBAKBQCAQvG1mwwmefKMbZe72TDjBk/u7yWQUjraNAzA8GSEUTfKnd63SHud25uaQuewmFEVBAWRJAuB05ySP7eskHE2xY3Upt2ytQZq7TyD4fUWIMoFAIBAIBALB2yYYSZDOKLq1QDBOz0hQt3aqc4I3Tg/zq9e7iCfS7Fpbxur6fE51TgJQVuAglVb47D+8TiqT4ZoNlexZX8F3HjujZZk9/no3+W4r21aWvjcvTiC4SAhRJhAIBAKBQCB425QXOqkqdtI3GtLWtiwvIZ7K0JslzIq8Nh58pkWrqD1zsI9P3rKMm7fVkEikMRpkvv7T49rxv36zl3RG0YVLA5zrmRaiTPB7jxBlAoFAIBAIBILfij+7Zw17D/UyNh1lvb+QrStKqS5x8d1fnWFyNo7PZWHD0iJ+/Wav7nGtfdPEEmliiTTxZK5BSDSeQgKy63DVxc5398UIBJcAQpQJBAKBQCAQCH4r3A4zH7y6UbdWW+rmG5/eytRsjDy3lZGpCM+82asTWKc7p9h3ahgAq9mQc961jYVUFTl59LUuYok0m5cVcdW6infzpQgElwSSoii/+ajfkfHx4Lv/JIJ3lV/+8qccOXLoNx8o0JiengLA58u7yDt5/7Bx42buuefDF3sbgt+RwkKXmMj/LRC/kYLfZ/adGuJXr6sCa1m1jxPtE7r7V9blMTQRIZXOcO3GSm7YUg1AKp0hnVGwmHKFm0DwfuWtfh9FpUwgeJcwmy0XewsCgUAgEFxUdq4uY+fqMgCOto7liLLqEhefv2dNzuOMBhmj0GOCywghygRvi3vu+bCoYPyWtLaeA2Dp0mUXeScCgUAgEFx8VjcUUF7oYHA8DIDTZmLnqrKLvCuB4NJAiDKB4F3iiSceBYQoEwgEAoEAwGSU+dJH1vH0gV4i8RQ3X1FNvsd2sbclEFwSCFEmELwLtLaeo62tRfu3EGYCgUAguNzJKArfe/wszd3qzHVrX4AvfWQdLntuqLRAcLkhX+wNCAS/j8xXyRb/WyAQCASCy5Wz3VOaIAMYnYrw2smhi7gjgeDSQYgygUAgEAgEAsG7TiiafFtrAsHliBBlAsG7wG233XnBfwsEAoFAcLmyur4At92k3TbIEltXlFzEHQkElw5va6bM7/dvBr7R1ta2y///t3cvIXqdZRzA/2MnTWbKNIZ0LEUo9VLeGAtSWohKpfWSqkHb0p1UhUKwSgUFb10URF11UVEXWmiFYF0IWrwg2E1JbVGCC2tqLn1sg4JokEQSG0mMbTouvi/pNDXJzJdJ37n8fpvvXL5z3meGgWf+nPec09pbk2zL4GXru5LcXVUvXbgSYenZsGFjJiYmTy0Dy5ceCXMzuWY8X/rYtfnRY8/mPy+cyC3vvipXXj7VuyxYFM55pay19uUkDyVZM9z0zST3VtV7kowlufXClQdL0zPP7MmxY0dz7NjRU4/GB5YfPRLm7oUXX8oDv9id3X85lH1/ez4P/nJvDh4+1rssWBTmMn1xX5LbZ61fl+TXw+VfJfnAQhcFS50HfcCKoUfCHO187uCpd5Qlg/vJnnjagz4gmcP0xap6pLV21axNY1U1M1w+kmTtuc6xbt1kxr2WnRVk1aqLXrE8PW16BixHeiTM3aV/P/KqbRMTF+uRkNHeUzZ7bvxUksPnOuDQoaMjDANL15Ytt2XXrl2nlg8ceHUjguVqhf+DpUfCGbzpDZO5Yv1k9v9z8Dd/yZrxXHf1ZXokK8bZ+uMooeyp1tpNVfV4kg8n2T5iXbBsbdiwMa297dQysGLokXAGq8Yvyr2fvD479vwjx/97Ips2Xp51U6t7lwWLwiih7AtJHmytXZxkb5KfLGxJsDx4FD6sSHoknMXE6vG899o39i4DFp2xmZmZc3/rPB04cOTCDwLAojA9PTXWu4alRI8EWBnO1h+9PBoAAKAjoQwAAKAjoQwAAKAjoQwAAKAjoQwAAKAjoQwAAKAjoQwAAKAjoQwAAKAjoQwAAKAjoQwAAKAjoQwAAKAjoQwAAKAjoQwAAKAjoQwAAKAjoQwAAKAjoQwAAKAjoQwAAKAjoQwAAKAjoQwAAKAjoQwAAKAjoQwAAKAjoQwAAKAjoQwAAKAjoQwAAKAjoQwAAKAjoQwAAKAjoQwAAKAjoQwAAKAjoQwAAKAjoQwAAKAjoQwAAKCj8VEOaq29Lsl3k7wjyfEkW6vquYUsDACWIj0SgPka9UrZbUnWVNW7ktyT5P6FKwkAljQ9EoB5GTWU3ZDk0SSpqh1Jrl+wigBgadMjAZiXkaYvJrk0yb9mrZ9orY1X1Yv/78vT01NjI44DAEuNHgnAvIx6pez5JFOzz3OmZgMAK4weCcC8jBrKfpNkS5K01t6Z5I8LVhEALG16JADzMur0xZ8m2dxa+22SsSR3LlxJALCk6ZEAzMvYzMxM7xoAAABWLC+PBgAA6EgoAwAA6Egog9O01r7SWtvfWlvTafxvtdau7DE2AACvPfeUwWlaa08neSzJzqra1rkcAACWuVGfvgjLUmvtpiT7kjyQ5IdJtrXWHk+yM8k1Sf6d5MkkH0zy+iQ3J7k1yUeTTCS5Ism3h9uuSfLFqvp5a+2OJJ9PcjzJs0k+leSODB6bPZnkLUnuq6qT4316ONb3kqxJsj7J16vqZxf0FwAAwGvO9EV4pa1JHqqqSnK8tbZpuP13VfX+JKuTHK2qzUn2JLlxuH+qqrYkuS/JZ5LcnkHwurO1tj7J15K8r6puSHI4yV3D49ZW1UeS3JLkntNq2ZDk/uFYn01y98L/uAAA9CaUwVBrbV0GV64+11p7NMnaDMJQkvx++Hk4gzCWJIcyuIqVJE/N2r+3qmZm7X9zkt1VdWT4nSeSvH24/Ifh519nneuk/Unuaq09nMGVs1Xn9QMCALAoCWXwso8n+X5V3VxVH0qyKYPpidNJznXz5dn2/znJxtbaJcP1G5P8aQ7HfSPJD6rqE0m2Z/ASWgAAlhmhDF62NcnDJ1eq6miSR5JcfT4nraqDSb6aZHtrbUeSyzK4V+xcfpzkO621J5NsHh4HAMAy4+mLAAAAHblSBgAA0JFQBgAA0JFQBgAA0JFQBgAA0JFQBgAA0JFQBgAA0JFQBgAA0JFQBgAA0NH/AED0j5BcyRWuAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from matplotlib import pyplot\n", + "%matplotlib inline\n", + "import seaborn as sns\n", + "\n", + "# Change the default figure size\n", + "#sns.set(rc={'figure.figsize':(15, 5)})\n", + "\n", + "fig = pyplot.figure(figsize=(15, 5));\n", + "axis1 = pyplot.subplot(1, 2, 1)\n", + "axis2 = pyplot.subplot(1, 2, 2)\n", + "\n", + "sns.boxplot(data=ammonia, ax = axis1)\n", + "axis1.set_ylim(0, 70)\n", + "sns.swarmplot(y='Ammonia', data=ammonia, ax=axis2,\n", + " \n", + " # Play with these settings\n", + " #inner = \"box\", # the default\n", + " # inner = \"quartile\"\n", + " \n", + " #linewidth=3\n", + " )\n", + "axis2.set_ylim(0, 70);\n", + "?sns.swarmplot" + ] }, { "cell_type": "markdown", @@ -1943,6 +2033,7 @@ "#### Some tips\n", "\n", "* Great blog post about [various visualizations](https://www.marsja.se/python-data-visualization-techniques-you-should-learn-seaborn/)\n", + "* Seaborn tutorial: https://www.datacamp.com/community/tutorials/seaborn-python-tutorial\n", "* [Interactively create Seaborn visualizations](https://engmrk.com/module7-introduction-to-seaborn/) within this webpage (if you can handle all the advertising!)" ] }, diff --git a/Module-11-interactive.ipynb b/Module-11-interactive.ipynb index c7bc125..d6262d5 100644 --- a/Module-11-interactive.ipynb +++ b/Module-11-interactive.ipynb @@ -289,7 +289,9 @@ "execution_count": null, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "sns.lmplot" + ] }, { "cell_type": "markdown", From db9332f5ebc72afdcf7286471cc871065d526aa8 Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Thu, 25 Jul 2019 08:26:55 +0200 Subject: [PATCH 075/134] Added example of raincloud plot --- Module-10-interactive.ipynb | 51 +++++++++++++++++++++++++++++++++---- 1 file changed, 46 insertions(+), 5 deletions(-) diff --git a/Module-10-interactive.ipynb b/Module-10-interactive.ipynb index 984c2b2..9a600e7 100644 --- a/Module-10-interactive.ipynb +++ b/Module-10-interactive.ipynb @@ -1901,7 +1901,7 @@ }, { "cell_type": "code", - "execution_count": 153, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -1914,12 +1914,12 @@ }, { "cell_type": "code", - "execution_count": 158, + "execution_count": 4, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2UAAAExCAYAAAD89gqbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3Xd0Vded9//3uVW9gQDR+wHTe8cYjEtsx467jZM4bSaJ83gyyUpmJuPMxDOZzO+J55nJZCWTeOzEiR3H3XHHxtiABQIBAoxpB7AkehGot1vP748LF2QJEKicK+nzWssL7X32ufdrkLTv9+xm2LaNiIiIiIiIOMPldAAiIiIiIiI9mZIyERERERERBykpExERERERcZCSMhEREREREQcpKRMREREREXGQkjIREREREREHeS7VwDTNB4EHzxSTgMnAIuC/gTCwwrKsRzsmPBERkcSk/lFERNqLcTnnlJmm+WvgY+DbwB1AMfA28IhlWVs6JEIREZEEp/5RRETaotXTF03TnA6MA54H/JZlfWpZlg28ByzpoPhEREQSmvpHERFpq0tOXzzPj4BHgQyg+rz6GmD4xW4MhyO2x+O+/OhERKQrMpwOoJNdcf8I6iNFRHqQC/aPrUrKTNPMAsZYlrXKNM0MIP28y+lA5cXur6iob83biIhIN5Cbm37pRt1EW/tHUB8pItJTXKx/bO30xYXASgDLsqqBoGmaI0zTNIDrgfy2BikiItIFqX8UEZE2a+30RZPYouWzvgk8C7iJ7S5V2N6BiYiIdAHqH0VEpM0ua/fFK1VWVtPxbyIiIgkhNze9p60paxP1kSIiPcPF+kcdHi0iIiIiIuIgJWUiIiIiIiIOUlImIiIiIiLiICVlIiIiIiIiDlJSJiIiIiIi4iAlZSIiIiIiIg5SUiYiIiIiIuIgJWUiIiIiIiIOUlImIiIiIiLiICVlIiIiIiIiDlJSJiIiIiIi4iAlZSIiIiIiIg5SUiYiIiIiIuIgJWUiIiIiIiIOUlImIiIiIiLiICVlIiIiIiIiDlJSJiIiIiIi4iAlZSIiIiIiIg5SUiYiIiIiIuIgJWUiIiIiIiIOUlImIiIiIiLiICVlIiIiIiIiDlJSJiIiIiKdxrJ289vf/pING9Y5HYpIwvA4HYCIiIiI9Ay2bfP447+isrKCjRs3MHbsODIzs5wOS8RxGikTERERkU4RiUSorKyIl0+fPuVgNCKJQ0mZiIiIiHSKUCj4mXLIoUhEEouSMhERERHpFIFA4DPlRociEUksSspEREREpFM0NDRctCzSUykpExEREZFOUV9f16RcV1d3gZYiPYuSMhERERHpFNXV1U3KNTXVF2gp0rMoKRMRERGRTlFdXdWkXFVV6VAkIomlVeeUmab5D8DnAR/wP8Aa4A+ADewAHrIsK9pBMYqIiCQk9Y8il+ezW+CXl592KBKRxHLJkTLTNBcBc4F5wNXAIOA/gUcsy1oAGMCtHRijiIhIwlH/KHL5Tp062aRcVlbmUCQiiaU10xevBz4B/gK8CbwFTCP2NBBgOXBth0QnIiKSuNQ/ilymo0ePNCmfPHmccDjsUDQiiaM10xd7A0OAm4FhwBuAy7Is+8z1GiDzYi+QnZ2Cx+NuS5wiIiKJps39I6iPlJ4jHA5z7NjRJnWRSIRAoIq8vKHOBCWSIFqTlJ0G9liWFQQs0zQbiU3ROCsduOgqzYqK+iuPUEREupTc3HSnQ+gsbe4fQX2k9BwlJcWEQqFm9Zs3f0xqai8HIhLpXBfrH1szfXEtcINpmoZpmv2BVOCDM3PpAW4E8tsapIiISBej/lHkMuzfb7VYv29fy/UiPcklR8osy3rLNM2FwEZiSdxDQAnwhGmaPmA38HKHRikiIpJg1D+KXJ7t27fFv/ZkDiVcVQrAjh3biUajuFw6qUl6rlZtiW9Z1g9bqL66nWORBPbii8+yaVOh02F0KXV1dQCkpqY6HEnXMWPGLO6+e5nTYYi0mvpHkdZpaKhnz55d8XKk9hgYbrAjVFdXUVy8n5EjRzsYoYiz9EhCpIMEgwGCwYDTYYiIiDiusHA9kUgkXrYjAbDPHeFXUKCZvtKzGbZtX7pVG5WV1XT8m4gkmB/84GEAHnvslw5HItK5cnPTDadj6ErUR0p3Z9s2jz76jxw8WHrBNn5/Ev/5n78mOTm58wIT6WQX6x81UiYiIiIiHWbnzk/OJWRG0+MfXL4MAAKBRlater+TIxNJHErKRERERKRD2LbNq6++GC97M4c2ue7NObeObPnyN6mvr+us0EQSipIyEREREekQ+fmrKS0tjhUMN77e45pc92YNx/CmAbENsl555cXPvoRIj6CkTERERETaXXn5aV544U/xsi9nNC5vSpM2huHC32divLxq1fvs3r2z02IUSRRKykRERESkXYXDYR5//Fc0NDQAYPjSm42SneVJH4Q7rX+8/OSTv6GqqrJT4hRJFErKRERERKTd2LbNM8/8nn37rHhdUt5MDFfLx+MahkFSvxng8gFQUVHOr371X4RCoU6JVyQRKCkTERERkXbz5pt/IT9/dbzs6zMJT0ruRe9xeZNJHjAbiO0Y/umn+3jiiV83OdtMpDtTUiYiIiIi7eKNN17ltddejpc9mUPx5Yxp1b2etP74+0yOlzdv3sjjj/+KcDjc7nGKJJqWx5FFRERERFopGo3yl7+8xNtvvx6vc6f2JanfDAyj9efJe3NGEw3VEarYC8DmzYVEIhH+6q8ewu/3t3vcIolCI2UiIiIicsWCwSCPP/6rZglZ8sAFGC73Re5szjAM/H2n4M0+d37Z1q2b+b//91+prKxot5hFEo2SMhERERG5IuXlp/n5z3/Kpk0b4nXu1LwzCdmVTciKJ2Y5ZryutLSYn/70nygpKW5zzCKJSEmZiIiIiFy2bdu28M///A8UF++P13mzR5E86MoTsrMMwyCp7xT8/aZxdvOP8vLT/Oxn/8z77y/Htu02vb5IotGaMhERERFptVAoxCuvvMCKFe+cVxsb3fLljL7gfVfClz0KlzeNhiMFEA0RiUR47rln2L17F1/5yjdIT89o1/cTcYpGykRERESkVUpKPuXRR3/UJCEzPMkkD1nc7gnZWZ60PFKHXYcrKTtet21bET/+8Q8pKtrYIe8p0tk0UiYiIiIiFxUKhXjjjVdYvvwtotFovN6d1p+kvFm4PB27M6LLl07KkGsJnPw4vjNjdXU1v/71L5g5cw7Lln1Zo2bSpSkpExEREZEL2rnzE/70p6c4ceL4uUrDg7/PJLzZIy9ry/u2MFxukvpNxZPWj8Zjm7DDDQBs3LieXbs+4a677mfevIW4XJoIJl2PkjIRERERaaaiooIXXniGjRs3NKl3p/QhKW8mLl+aI3F50vqTOvxGGk9sJVxVAkBtbS1PPfW/5Oev5otf/CqDBg12JDaRK6WkTERERETiQqEgK1a8y9tvv05jY8O5Cy4v/tyJnTo6diGG20dy/1mEMwbReHwzdqgegP379/Looz9i0aIl3HrrHZrSKF2GkjIRERERwbZtNm0q5OWXn+PUqbIm1zwZQ/D3nYzLk+xQdC2LjZp9juCpnQRPW0CUaDTKhx++z4YN67jlli+wZMn1eDz6yCuJTd+hIiIiIj3c3r17ePnl59m/f2+TepcvA3+/aXhS+zoU2aUZrtj6Nk/mUALHi4jUnwSgvr6eF154llWrVvKFL9zFjBmztd5MEpaSMhEREZEe6sCBUl555QV27Pi4Sb3h9uHrPQFv9ggMo2skMm5/JsmDryFce4TAiW3YoVoATp48weOP/4rly9/k9tvvZsKEyY5PvxT5LCVlIiIiIj3MkSOHeeONV9m0acNnrrjw5ozC33schtvnSGxtYRgG3vSBeNLyCJXvJ3BqB0RDABw8eIBf/OIxRo0yue22Oxkz5iolZ5IwlJSJiIiI9BAHDpTw1luvUVS06TNXDDyZQ/D3Hu/YrortyTDc+HqZeLOGETy9m2D5XrAjAOzbZ/HYY//GyJGjufnm25gwYZKSM3GckjIRERGRbm7//r289dbrbN++tdk1T/pAfLkTcPszHYisYxluX+w8tZzRBE/tIlTxKRA7/Hr//r384hc/Z8iQYdx8821MmTJNa87EMUrKRERERLqhSCTCli2bWLHiHT79dH+z6560Afh6j8OdnONAdJ3L5Ukmqd80fDkmwdO7CVWWcDY5O3CghF//+r/o06cvS5feyPz5C/H7k5wNWHocJWUiIiIi3UhDQz35+WtYufLdZlvbA3jSB8WSsaQsB6JzlsuXRlLeDHy9xxE8vYdQ5afxaY0nT57g2Wf/wGuvvcSiRUtYvPh6srOzHY1Xeg4lZSIiIiLdwOHDh1i16n0KCtYSCDQ2vWi48GYMwdtrTLecpni5XN4UkvpNxdd7LKHyvQQr9sc3BKmrq+Ptt9/g3XffZsqU6SxevBTTHKt1Z9KhlJSJiIiIdFHhcJgtWzbx4Yfvs3fvnmbXDbcPb/YovNkjE+7g50Tg8iTj7zMJX++rCFWWECy3sEN1QGz65+bNhWzeXEhe3gAWL76WuXMXkJyc4nDU0h0pKRMRERHpYo4fP0Z+/mrWrVtDdXV1s+suXwbenNF4M4diuPRx71IMlxdfzmi82SMJ1xwhVL6XSMO5qZ/Hjh3h2Wf/yMsvP8+MGXNYuHARI0aM0uiZtJtW/ZSaprkVqDpTLAEeB/4bCAMrLMt6tGPCExERSVzqH6UzBQIBNm8uJD9/dYujYmDgSR+IN3sk7pQ+ShiugGG48GYMwpsxiEhjJaGK/YSqSyEaBmL/BmvXrmbt2tX07z+AhQuvYc6c+aSnZzgbuHR5l0zKTNNMArAsa9F5dduAO4Bi4G3TNKdalrWlo4IUERFJNOofpTPYtk1x8X7WrfuIwsICGhoamrUxPMl4s0bgzRqBy6spiu3FnZSFO286/j6TCFWVEqrcTzRQFb9+9OgRnn/+T7z00nNMmTKN+fOvZty4ibjdbgejlq6qNSNlk4AU0zRXnGn/E8BvWdanAKZpvgcsAdTpiIhIT6L+UTpMRUU5BQVrWbduDcePH2uhhYEnrT/erOG40/IwDJ2v1VEMtxdfTmxdXrThNKHKTwlVHwI7NnoWW3u2kc2bN5KZmcWcOfOZN28hAwYMdDhy6Upak5TVA/8BPAmMApYDleddrwGGX+wFsrNT8Hj01EB6Frc71kHm5qY7HImIdJA294+gPlLOCQQCFBYW8sEHH7Bt2zai0WizNoY3LTYqljlUo2KdzDAM3Cm9caf0xt93KqHqg4Qqi4k2no63qaqq5N133+Ldd99i1KhRLFmyhAULFpCRoemNcnGtScr2Avsty7KBvaZpVgHnnzKYTtNOqJmKivorj1Cki4pEYp1pWVmNw5GIdK4e9CCizf0jqI/s6WzbZt8+i4KCfDZt2tDi9ERcHjzpg/BmDsOdkqu1YgnAcHvxZY/Alz0itvasqpRwVSl25NxRBPv27WPfvn088cQTTJ48lblzFzJhwiQ8Hm280lNdrH9szXfFV4EJwLdN0+wPpAB1pmmOIDZn/npAC5lFRKSnUf8oV+zUqTIKCvIpKMjn5MkTLbZxp/TBmzUMT/og7aCYwNxJWbiTJmP3mUik7jihyhLCtUfAjj2cjUQiFBVtoqhoE+npGcyaNZd58xYyePAQJdgS15qf8N8BfzBNcy1gE+uEosCzgJvY7lKFHReiiIhIQlL/KJelsbGRzZsLKSjIZ8+eXS22MbxpeDOHxqYn+tI6OUJpC8Nw4UnrjyetP3YkQKjqIKGqEqKN5fE2NTXVrFz5LitXvsvAgYOYN28hs2fPJzNTB3r3dIZt2x3+JmVlNR3/JiIJ5gc/eBiAxx77pcORiHSu3Nx0Pfq9DOoju7doNIpl7Wbt2jUUFW0iGAw0b+Ty4s0YhCdzGO7k3t1+9KRm9/Pxr9PH3utgJJ0jEqgiXFVKqKoUO9x8eqrL5WL8+EnMm7eAyZOn4vX6HIhSOsPF+keNhYuIiIi0s5MnT7Bu3UcUFORz+vSpFloYuFP74c0ciid9gKYndmNufybuPpPw5U4gUneSUFUJ4ZrDYEeAWOK+fftWtm/fSmpq6pnpjVczdOiwbp+gyzn6DSAiIiLSDs5OT1y7ds0FDncGly8jtk4sQ7sn9jSx6Y398KT1w46ECNUcJFxZSqShLN6mrq6ODz98nw8/fJ8BA2LTG+fM0fTGnkBJmYiIiMgVsm2bvXv3sHbtGjZvLiQQaGF6otuHN2MI3sxhuJKyNfohsd0bs0bgyxpBNFgTO5y6qgQ7dG431iNHDvHii8/y8svPMXHiZObNu5pJk6Zo98ZuSv+qIiIiIpfp7O6J69Z9RFnZyRZaGLjT8vBmDsOT1h/DpbPopGUuXzr+3An4eo8nUn9memP1oSbTG7dt28K2bVtIS0tn9ux5zJ+/kMGDhzobuLQrJWUiIiIirRAINFJUtIl16z5iz55dtLRZmqYnypUyDANPal88qX2x+04jXHOIUGUxkYZzaxJra2viuzcOHjyEefMWMmvWXDIyNL2xq1NSJiIiInIBZ3dPLCjIv/D0RJc3Nj0xaxiupBxNT5Q2M9xevFnD8WYNj01vrCyJTW88b/fGgwcPcPDgM7z44p+ZMGESc+cuZNKkKXi9XgcjlyulpExERETkM44dO8r69WtZv37txXdPzBqGJ22ApidKh3H50vH3mYgvd3yLuzdGIpH49MbU1FRmzpzDnDnzGTFilB4QdCFKykRERESAqqpKCgvXs2HDOkpLi1ts4/Jl4Dl7uLM3pZMjlJ6s6e6NQULVhwhXlTSZ3lhXV8eqVStZtWolffr0ZfbsecyePY9+/fIcjFxaQ0mZiIiI9FgNDQ1s2bKJDRvWsWvXjhbXiZ3bPXGopidKQjDcPnzZI/BlX3j3xpMnT/DGG6/yxhuvMnTocObMmcfMmXPIzMxyMHK5ECVlIiIi0qMEg0G2b9/Kxo3r+fjjrYRCoeaNDBeetP54MoZo90RJaE13bywjXFVCqOYwRM99X5eWFlNaWszzz/+JMWOuYtasuUydOoO0tDQHI5fzKSkTERGRbi8cDrNjx3Y2blzP1q1FBAKNLbZzp+TiyRiKN2MQhtvXyVGKXLnY7o198KT2wR+dTrj2KOGqUsK1x4AoEDtXb/funezevZNnnvk948ZNYObMOUyZMo3kZE3HdZKSMhEREemWwuEwe/bsZOPGQrZu3URdXV2L7Vz+zFgiljkYlze1k6MUaX+Gy403YxDejEHYkUBs/Vn1ASL1ZfE2kUiE7du3sX37NjweLxMnTmbGjFlMmjSVpKQkB6PvmZSUiYiISLcRiUTYs2cXmzZtoKhoE3V1tS22M3zpeDMG48kYjNuvM56k+zLcfnzZI/FljyQaqo+df1Z1kGjj6XibcDjEli2b2LJlEz6f70yCNpuJEyfj9ytB6wxKykRERKRLi0aj7NtnUVhYwObNG6mtrWmxneFNwZsxBE/GYFz+LG3YIT2Oy5uCL8fEl2MSDdbGR9Cigcp4m2AwyObNG9m8eSM+n5/Jk6cwc+YcJkyYhNerKb0dRUmZiIiIdDm2bVNcvJ/CwvVs2rSBqqrKFtsZnmQ8GYPxZgzWzoki53H50vD3Hou/91iigWpCNYcIVx8kGqiKtwkGA2zcuIGNGzeQnJzM1KkzmDFjNlddNR6PR2lEe9LfpoiIiHQZR44cpqAgn02bNnDqVFmLbQxPMp70QbFELLmXEjGRS3D5M/D7x+HvPY5IoIpw9UHC1YeIBqvjbRoaGli37iPWrfuItLQ0pk2byZw58xk1ytTPWDtQUiYiIiIJrba2hsLCAtaty7/goc6G248nY1BsjVhyrj4kilwhtz8T95kt9qNnErRQ9UHs0Ln1mbW1taxZ8yFr1nxIbm4f5s5dwNy5C8jN7eNg5F2bkjIRERFJOGd3hlu37iM+/ngLkUikeSOXF2/6mUQstQ+G4er8QEW6KcMwcCdl4U7Kwpc7gWhjBaHqA4SrD2KHG+LtyspO8vrrr/D6669gmmOZO3cBM2fO1gYhl0lJmYiIiCSM+vo6PvpoFR98sILTp081b2C48KQNwJs5FHdaPwxDhzqLdDTDMHAn5+BOzsHuM5lIwynCVaWEqg82OaTasnZjWbt58cVnWbhwMYsXL6VXr94ORt51KCkTERERxx07dpSVK9+joOAjAoFAs+uu5F54M4fhzRisQ51FHGQYBp6UXDwpufj7TiVce4RQZQmRuuOADUBdXR3Ll7/Je++9zdSpM1i69AZGjhytacUXoaRMREREHFNefppXXnmB9evXNrtmuP14s4bjzRyGy5/hQHTSnuxohFBV0zWBwYp9eDOHY7g04tkVxQ6pju1uGg03EK46QLBif3z9WTQaZfPmQjZvLmTMmKu4555lDBkyzOGoE5OSMhEREel0DQ0N8SfpoVCoyTWXPxNvzmi8GUMwXPqo0h3YdpSGw2uJ1B1rUh84XkS45ijJgxZoTWAX5/Ik4+s1Bm/OaCK1xwiWW0TqT8av79mzi3/5l0eYO3cBt99+N9nZOQ5Gm3j0m05EREQ61fbtW3nqqSeanS3mTs3D12sM7pQ+mubUzQTLrWYJ2VmRutgHeH+vsZ0clXQEw3DhSR+AJ30AkcZKQuUWoapSwMa2bdat+4hNmwq54457uPba6/WzfoZh23aHv0lZWU3Hv8ll+tnPfkJFRbnTYUg3dvb7S0+CpKNkZ+fwox/9xOkwmsnNTVcPexkSsY/sKLZt8847b/Dqqy9y/ucPV1I2/j5T8KRqO+3uqq70faINpy943ZXcm9Sh13ZiRNKZIoFqAie3Eak92qR+3ryFfOlLX8Xr7RnrRC/WP/bYkbKKinJOnz6N4U12OhTppmxi0zDKq+sdjkS6IzvUcOlGIgkkFArxu9/9ho0bN8TrDE8S/txJeDKH6ml5NxdtrLjEdT0o787c/gxSBi0kXHecwImtRANVAKxb9xFHjx7h4Ye/T2ZmlsNROqvHJmUAhjeZtJGfdzoMEZHLVrv/DadDEGk127Z5+unfNUnI3Cm5JA2Yh8ujs4x6BDvatuvSLXhS++Eeeh2NxzcTrioBoKTkU375y//H3//9j3vMiFlLtKJSREREOtSHH65g3bqP4mVv9kiSB1+jhEykBzJcbpLyZuLvOxWIjZCXlHzKM8/8gc5YVpWolJSJiIhIhzl8+BDPP/+neNmTORR/32naaU+kBzMMA1/OaPx9p8Tr1q5dTWHhegejcpZ+I4qIiEiHsG2bP//5j0QiEQBcSTkk9Zuh9WMiAoA3exSezKHx8ksv/ZlAoNG5gBykpExEREQ6RFHRRvbs2XWmZJDUf5YOCRaROMMwSOo7DcMdm8pcUVHOW2+95nBUzlBSJiIiIu2uvr6eZ5/9Y7zszR6F25/pYEQikogMtxd/n4nx8rvvvs2RI4cdjMgZrdp90TTNPkARsBQIA38AbGAH8JBlWdoyR0REug3TNA1gmGVZxa1oqz6yBS+//Fz8cGjDnYQ/d7zDEYlIovJkDsNVWUy04RSRSIQ//vFJfvjDR/B4es5G8ZccKTNN0ws8Dpw9FOc/gUcsy1pAbMuUWzsuPBERkY5nmuZfm6ZZbZpmxDTNCLHk6v1W3Kc+sgUrV77H6tUfxMv+flMx3D13q2sRuTjDMEjqN52zuzHu37+Xp5/+fY/ajbE16ed/AL8F/uFMeRqw5szXy4HrgL9c7AWys1PweBJrDrnbrZmbItK1ud0ucnPTnQ6ju/h7YBLwU+Afgc8B81pxX7fsI9ti3bp1PPfc0/GyJ30QnvRBDkYkIl2BOykLX+54gmWfALHdGAcM6MuyZct6xOZAF03KTNN8ECizLOs90zTPdjiGZVln09Ya4JITxCsq6tsUZEeIRHrkbBIR6UYikShlZTVOh9FMF00UT1qWVWKa5ifABMuy/sc0zW9f7Ibu3EdeCdu2effdt3j55efjT7ddyb1im3v0gA9UItJ2vl5XEQ3Wxg+WfuGFFzhy5Dhf/OJX8Xq9DkfXdhfrHy81UvZVwDZN81pgMvA00Oe86+lAZVsDFBERcVidaZrXANuB20zT3AQkX+Ie9ZFnBINBnnnm900OiDa8aSQPXIDh6jlrQkSkbQzDIClvBg3hBiJ1xwFYu3YNJ04c59vf/i6Zmd13s6CLzuGzLGuhZVlXW5a1CNgGfAlYbprmojNNbgTyOzRCERGRjvcw8HngXaAXYAG/utgN6iNjSkqKefTRHzVJyNzJuaQMvRaXJ8nByESkKzIMF8kDFzQ5v2zfPosf//iHFBVtci6wDnYlj6++DzxhmqYP2A283L4hiYiIdC7LsnYAf3umeEcbXqrH9JHhcJh33nmDN9/8S/xwaABv5jD8edMxjO6zTk5EOpfhcpOUN4uQP4vAyW0A1NbW8Otf/xdz5y7g/vu/REpKqsNRtq9WJ2VnngSedXX7hyIiItK5TNN8y7Ksm03TLCG2jX0TlmUNb83r9LQ+8tChg/z+97/lwIHSc5WGB3/fKXizhmsNmYi0mWEY+HqNwZWURePRQuxwbJPbgoJ8du/eyZe//HUmTpzscJTtRxO9RUSkJ/vGmT8XORlEV3Gh0TF3cm+S+s/G5UtzMDoR6Y48qf1IHX4jjceLCFcfAKCiopxf/OLnzJ9/Nffe+0C3GDVTUiYiIj2WZVnHznx5BLgeyOHsQTkxTze7qYc6efIEv/nNLzlwoORcpeHCnzsBb46JYeioGRHpGIbbR/KAOYTSBxI4vhk7EgBim4Ds3PkJf/3X32H06DEOR9k2SspERETgz8AQYuvAzk5jtFFSBsCWLZv43e8ep6Hh3Pb9ruReJOXNwu3PcDAyEelJvBmDcKfkEjheRLjmEBAbNfv5z3/KnXfey/XX39Rlp08rKRMREYGJlmV17cesHcC2bV599UXefvv182pd+PtMxJszWqNjItLpXJ4kkgfOI1R9iMbjmyASJBqN8uKLf2bfvr1885vfwev1OR3mZdNvUxEREdhtmmae00EkmjfeeLVJQmZ4U0gZugRfrzFKyETEUd6MQaQOux5Xcq943datm/nf//11kzWvXYVGykRERCAFsEzT3AH5rlR2AAAgAElEQVQ0nq20LGuxcyE564MPVvD666/Ey+7UPJIHzMZw+x2MSkTkHJc3lZQhiwmc+JhQxV4Aioo28fTTv+PBB7/RpaYyKikTERGBnzkdQCI5daqM559/Jl52p/YjedB8nT0m7WL48OH079+fo0ePUlxc7HQ40sUZhht/3ylgGITKLQDy81czZcp0Jk+e6nB0raekTEREejzLstaYpnkjsIRY37jKsqzXL3Fbt/Xhh+/Hp/+4/NkkD1RCJu3j1ltv5atf/Soul4toNMpTTz3Fa6+95nRY0sUZhoG/z2TscAPh6oMArFz5rpKyrqCurg471Ejt/jecDkVE5LLZoQbq6pqddSxXyDTNHwJ3AM8S2xL/H03THG9Z1r85G1nni0aj5Oevipf9ueMxXD3244K0o+HDh8cTMgCXy8WDDz7I9u3bNWImbRZLzCYRrj4E2OzatYOTJ0/Qp09fp0NrFa3SFRERgQeARZZl/dKyrP8mdpj0A86G5IyGhnrq6upiBcONO037n0j76N+/fzwhO8vtdtO/f3+HIpLuxuVNxZWcEy+fPn3KwWguT4999JWamkogYpA28vNOhyIictlq979BamqK02F0Jy7LshrOKzcCYaeCcZLfn3SuYEdoepa2yJU7evQo0Wi0SWIWiUQ4evSog1FJt2NH418mJSVdpGFi0UiZiIgIfGCa5iumad5imuYtwIvAh04H5QSPx0Nqamq8HKk/6WA00p0UFxfz1FNPEY3GPjRHIhH+8Ic/aOqitJtouJFooCpeTk/vOofb99iRMhERkfN8F/gW8CViDyw/BB53NCIHzZgxm9WrPwAgVL4XT2rXWJMhie+1115j+/bt2n1ROkSoYn98pGz48JH07p3rcEStp6RMRER6PMuybNM0nwHeOq+6P3DQoZActWTJ9fGkLFx7hHDtUTxpWvcj7aO4uFjJmLS7aLCG4Ond8fK1117vYDSXT9MXRUSkxzNN8z+Aw8DqM/+tOfNnjzRgwEBmzpwdLzce24gdDjgYkYjIhdl2lMajhWfWwUL//gOYPn2Ww1FdHo2UiYiIwK3AAMuyap0OJFEsW/Yge/bsprq6CjvcSMORApIHX41h6HmuiCSWwMltRBpiOy263W6+8Y1v4/F0rTRHv1lFRERgO+B3OohEkp6ewYMPfiNejtSfIHB8C7at8/FEJHEEK/YTKt8bL3/+87czZMgwByO6Ml0rhRQREekYzwD7TdP8hPO2wrcsa7FzITlv8uSp3Hbbnbz22ssAhCr3Y3iS8OeOdzgyEREIVR8icLwoXp42bQY33XSrgxFdOSVlIiIi8G/A3wAHnA4k0dxyyxc4duwohYUFAARP7QDDhb/3VQ5HJiI9WbjmCI1HCoDY6P3gwUP5+te/1eyA8q5CSZmIiAhUWZb1tNNBJCLDMPjqV/+KurpaduzYDkCwbDtEQ/hyJ2IYOlxaRDpXqKqExqObOJuQ9e2bx9/+7Q/x+7vOYdGfpaRMREQEtpim+QqwHAierVSiFuP1+vjOd77Hf//3Y+zevROA4OndRIO1JPWfheHSxwkR6Xi2bRM8tYPgqZ3xuj59+vLDH/4jmZlZDkbWdl1zfE9ERKR9pQLVwDzgmvP+kzN8Ph8PP/x9Jk6cHK8L1xyi/sAHRAJVDkYmIj1BNNxI45F1TRKyAQMG8oMf/CPZ2TkORtY+9GhLRER6PMuyvuJ0DF2B35/E//k/3+f555/hgw9WABBtrKC+5D38uRPx5piazigi7S5Uc5jAsU3YkXPnJY4bN4FvfetvSElJcTCy9qOkTEREejzTNO8E/gHIPr/esqzhzkSUuNxuN8uWPUi/fnm88MKzhMNhsKMETm4jXHMYf9+puJO7/lNrEXFeNFhLoGw74eqDTeqXLLmOe+55oMudRXYx3ef/RERE5Mr9P+CLaPfFVluy5HpMcyxPPvkbDh6M/bVFGk5RX7oCT8Zg/LkTcPnSHY5SRLqiaDhA8PQuQhX7wI7G67OysvnKV/6KCRMmORhdx1BSJiIiAvuBtZZlRS/ZUuIGDhzMI4/8K2+99RpvvfUa0Wjsry9cfZBw9SG8WSPw9RqDy5fmcKQi0hXY4QDBin0Eyy2Ihppcmz17HsuWfZnU1O75+0RJmYiISGykbJVpmmtoenj0vzgXUtfg8Xi47bY7mTVrLq+++iJFRRvPXLEJVe4nVPkpnvQBeHNG407O1ZozEWkmEqgmVG4RqioFO9Lk2ogRo7jrrvsYPXqMM8F1EiVlIiIi8AiwB4gAyhquQF5efx566Lt8+uk+XnrpOfbu3XPmik245jDhmsO4knLw5YzGkz4Iw+V2NF4RcZZtR4nUnSBYvpdI3bFm1/Py+nPHHfcwZcr0HvEwR0mZiIgIeC3L+qrTQXQHI0aM4u/+7sfs3PkJK1a8Ez9wGiDaWE7j0Q3gKsKbORRv5jBcSdk94gOXiMREg7WEqkoIVZZgh+ubXR88eCjXXXcjs2bNxe3uOQ9vlJSJiIjA+6Zpfgd4l6aHRx+88C1yIYZhMH78RMaPn8iRI4d5//3lrF+/llDozBqRaIhQxT5CFftw+bPwZg3HkzEEl8fvbOAi0iHsaJhwzWFClcVE6k82u24YBpMnT+W66z7H6NFjeuSDGiVlIiIicN+ZP78P2Ge+9gMDnAmn+xgwYCAPPvgNbr/9Htas+ZD8/FWcOlUWvx4NVBI4sYXAia240/LwZgzBkz4Aw6WPKCJd2dnpiaHqA4RrDkM03KxNWloac+YsYPHipfTt28+BKBPHJX/jmabpBp4ATGJz7b9CbL79H4h1XDuAh7rijlV2qIHa/W84HYZ0U3Yk9rDdcPscjkS6IzvUAHSPAzMTgWVZwwBM0/QCtwPfBGZe7J7u3D92hIyMDG655TZuuunz7N27h/z81RQVbSQYPDswaROpPUqk9igYntjmIJlDcaf2xTBcjsYuIq1j2zbRxnJCVQcIVx/EjjQ2a2MYBhMmTGL+/EVMnjy1W5011hat+Vu4BcCyrHmmaS4C/pNYp/OIZVmrTdP8LXAr8JcOi7IDZGfrYEvpWBUVsV9E2Rn64CwdIUW/x9qRaZrDgL8illhlA/8G3HWJ27pl/9jRXC4XY8ZcxZgxV7Fs2YNs3LietWvXUFy8/1wjO0y4+gDh6gMYbj+ejMF4MgbjTu7dI6c1dQuGq8l5Uy1ely4rEqgiXHWAUPVB7FBti2369s1j/vyFzJ27QP1XCwzbti/ZyDRNj2VZYdM0vwzMA24CBlqWZZumeStwnWVZD13o/nA4Yns8PWehngjA1772NQB+97vfORyJSKfrMp+aTdP8AvDXwDRiydNLwBOWZQ1t5f1t6h9BfeRZx44dY82aNaxevZojR4602MbwpODNHIInYzAuf5YStC6krvR9og2nL3jdldyb1KHXdmJE0lbRUB2hqoOEqw8QDVS22CYnJ4cFCxawaNEiRowYoZ/Zi/SPrRovPNPh/BH4AnAncLNlWWezuRog82L3V1Q031lFpLuLRGJPBMvKahyORKRz5eamOx3C5XgFeBGYY1nWfgDTNFs93bCt/SOojzzL40ljyZKbWLz4cxw8WMqGDQUUFhZQWVkRb2OH6wme3k3w9G5cvgw8mUPwZg7F5U11MHJpDU/6QIIXSco86Vq+2RXYkQCh6kOEq0qJNJxqsU1ycjLTps1k9ux5jBlzFS5XbBT01KmWR9B6kov1j62exGlZ1pdN0/w7oBBIPu9SOtByeiwiIpLYJhKbsrjWNM1S4DkucxMs9Y/tyzAMhgwZxpAhw7jrrvvYu3cPGzaso6hoI3V1dfF20WA1wbJPCJZ9gjulD97MobHzz9xeB6OXC/HlmETqTrZ4HpU7NQ9fjulAVNIath0hXHuMcFUp4dqjLU5D9Xq9TJo0hVmz5jFx4iS8Xq2nv1yt2ejji8SmYvw7UA9Egc2maS6yLGs1cCOwqkOjFBER6QCWZe0Avn8mqboZeBDoa5rm28CvLct650L3qn/seOevP3vgga+wY8d2Nm4sYMuWIoLBQLxdpP5kbJvt40WxDUKyhuNO6aupUgnEMFwkD5xPqKqEwPHN8Xp/v+l4M4dpM5cEFGmsIFRZTLj6QHzzsvO5XC7GjZvArFlzmTJlGsnJWkPfFq15Gvgq8JRpmh8BXuC7wG7gCdM0fWe+frnjQhQREelYlmWFgdeA10zTzAW+BPw7cMGkDPWPncrj8TB58lQmT55KINDI1q1FFBSsZefO7cTXx9sRwtUHCVcfxPCl48saEfvAr/PPEoLhcuPLHtkkKfNlj3QwIvksOxomXH2IYOX+C64BHDZsBHPnzmfGjDlkZGR0coTdV6s2+mirsrKajn8TkQTzgx88DMBjj/3S4UhEOldubrqGJy6D+si2qaysYMOGAgoKPuLw4UPNGxguPBmD8WWPxJ3cu/MDlGZqdj8f/zp97L0ORiJnRYM1BCv2E6osgWjzUbGcnF7MmTOfuXPnk5en9X9X6mL9ow4GEBERkS4rKyubG264iRtuuImDBw+Qn7+agoJ8GhrObKBiR2NrYapKcafk4us17szZZ3p2IBJprCB4ahfhmuYPNNxuN9Onz2LhwmswzbHxDTukYygpExERkW5h8OAhLFv2Ze688x4KC9ezatVKDhwoiV+P1JfRUL8aV1IO/t7jcKf1V3ImPVKk4TSBUztjh7V/Ru/euSxatIT5868mI+OSG8hKO1FSJiIiIt2K35/EwoXXsHDhNZSUFPPhhyvYsGEdkUgEgGhjOQ2H83ElZZPUdxruFE1rlJ4hGqyh8cTWFpOx8eMnsXTpDYwbN0GjYg5QUiYiIiLd1rBhw/na177JrbfewfLlb5Gfv5pwOARAtLGC+gMr8WQMwd9nMi5v8iVeTaRrsqMhgqd2ESy3mmxpbxgGU6fO4Oabb2XIkGEORihKykRERKTb6907ly9+8SvccsttrFjxDh98sIJQKJachasPEK49gj93It7sUZrSKN1KuOYIjcc3Y4cb4nWGYTBr1lxuuulWBgwY6GB0cpaSMhEREekxsrKyufvuZSxefB0vvPAsRUUbYxeiYQInthCuPUpS3iyNmkmXZ0fDBE5sI1S5v0n98OEjWbbsywwbNsKhyKQlSspERESkx+ndO5eHHvouO3d+wp///DTHjh0BIFJ3nPqS5STlzcKTrq2/pWuKNFbQeKSAaLAmXpeRkcGdd97H3LkLtGYsAelfRERERHqsceMm8JOf/IwbbrgpPm3RjgRpOJxP4OTH2OetvxHpCkKVJdSXrmySkE2bNoOf/vQx5s+/WglZgtJImYiIiPRoXq+Xu+9exoQJk3nyyd9QUVEOQPD0biKN5ST1n4vL43c4SpGLs+0IgRNbCVWcm67o9/u5//4vM3/+1VormeCUKouIiIgAY8eO49FH/53x4yfG6yJ1J6gveY9Iw2kHIxO5uGiojvrSD5okZP37D+Cf/unfWLBgkRKyLkBJmYiIiMgZaWnpfPe7P+Tmm2+L19nheupLPyBYbmHbtoPRiTQXrjlKXfF7RBvL43XTp8/ikUf+lby8/g5GJpdD0xdFREREzuNyubj99rsZPnwETz75G+rr64EogRNbCdceJylvOi5vqtNhSg9nR0IEyrYTqtgXr3O73dx1130sXXqjRse6GI2UiYiIiLRg8uRp/OQn/87QocPjdZG6Y9QVLydYsV+jZuKYcG3s+/D8hCw7O4e/+7sfc911n1NC1gUpKRMRERG5gN69c/mHf/hnrr32hnOV0TCB45tpOPAhkYZTzgUnPU40WEvDkQIaDq3BDtfH6ydPnspPfvIzRo4c7WB00haavigiIiJyEV6vl/vv/xLTp8/kqaee4MSJYwBEGsqoL12JJ30gvtwJuP2ZDkcq3VU03Ejw1M4zG3mcG6FNS0vj/vu/zKxZczU61sUpKRMRERFphdGjx/Doo//O66+/wnvvvU00GjvDLFxzmHDNETyZQ/H1GqPkTNpNNFRPqGIfwfJ9YIebXJs5czb33/9lMjL0/dYdKCkTERERaSWfz8ddd93HwoWL+MtfXmLjxg1nrtiEq0oIV5XgTu2HL8fEndpPoxdyRSIN5QTLLcLVBzl/ZAxiDwfuvPNeTVXsZpSUiYiIiFymvn3z+OY3H+bGG2/hlVdeYMeO7fFrkbrjNNQdx+XLwJszGm/GEAy318FopSuw7QjhmqOEKvYSqS9rdn3gwMHceec9TJgwWcl+N6SkTEREROQKDRkyjO997+/Zt89ixYp32LJlc3xXxmiwmsDxzQRObMWTMQhv5nDcKbn6QC1NRBorCVWVEK4qxY4Eml0fNcrkuutuZMqU6bhc2qOvu1JSJiIiItJGo0aZjBplUlZ2kpUr3yM/fzWNjQ2xi3aEcFUp4apSDG8a3qxheDOH6qyzHsyOBAlVHyRUWdzk0Oez3G43M2bMYunSzzFs2PAWXkG6GyVlIiIiIu0kN7cP9933RW677Q7Wrv2I/PxVHD58KH7dDtUSLPuEYNknuFNy8WQMwZsxCMPtdzBq6Qx2NEy49ijhqgOE646BHW3WJienF/PmLWTRoiVkZ+c4EKU4RUmZiIiISDtLTk5h6dIbuPba6zlwoIT8/DVs2LCOhoZzZ0tF6suI1JcROL4Fd1o/vBlD8KQPwHDp41l3YdtRInUnCFUfIFxzGKLhZm08Hg9Tp05n/vxFXHXVeE1R7KH0Uy8iIiLSQQzDYOjQ4QwdOpx77lnGli2bWbduDbt27YivPYMokdqjRGqPguHBk94fb8aQ2O6NLrej8cvls22bSMMpwtUHCVcfbHGdGMTWI86fv5BZs+aRlpbWyVFKolFSJiIiItIJfD4fs2fPZfbsuVRVVbJx4wYKCwsoLt5/rpEdjn+Yx+XFmz4QT+YQ3Cl9MAyNoCQq27aJNlbERsSqD2KHG1ps17dvP2bPnsesWXPp1y+vk6OURKakTERERKSTZWZmsXTpDSxdegMnT56gsLCADRvWcezY0XONoiFCVSWEqkow3H48GYNjG4Qk5WgHxwQRDVQTqj5AqOoAdqi2xTaZmVnMmjWH2bPnMWTIMP3bSYuUlImIiIg4qE+fvtxyyxe4+ebbOHToIBs3rmfjxvWcOnXurCo7EiBUsY9Qxb7YDo6ZQ2IJmi/dwch7pmi4kXD1QUJVpS3unAiQlpbG9OmzmDlzDqNHj9E6MbkkJWUiIiIiCcAwDAYPHsLgwUO44457KC7+lMLCAjZt2kBVVWW8nR2qJXhqJ8FTO3El5eDNHIo3cyiG2+dg9N2bHY0QrjlMqKqUSN1xwG7WJikpmalTpzNr1lzGjh2Hx6OP2dJ6+m4RERERSTCGYTBixEhGjBjJvfc+gGXtZv36dRQVFdLQcG69UrSxnEBjOYGT2/CkD8KbNfzM+jNNkWsPkcYKQpXFhKoOQDTY7Lrb7WbixCnMmTOfSZMm4/UqMZYro6RMREREJIG5XC7Gjh3H2LHjeOCBB9m+fSvr169j+/atRCKRWCM7Srj6AOHqAxjeVLxZw/FmDsflTXY2+C7IjoRi68QucLAzwOjRY5g9ex7Tp8/SzonSLpSUiYiIiHQRPp+P6dNnMX36LGpra9m0aT0ffbSaAwdK4m3sUN2ZA6p34skYhC/HxJ2sg4gvJRqsJVixj1BlMURDza737p3LggWLmDNnPr175zoQoXRnF03KTNP0Ar8HhgJ+4KfALuAPxCbT7gAesiyr+ZHkIiIi3Zj6SHFaWloa11yzlGuuWcrBg6Xk569m/fq11NefPaD63OiZK7k3vpzReNIHamv989i2TaT+JKHyvYRrjzS77vF4mTZtBgsXXoNpjtWGHdJhLjVS9gBw2rKsL5qm2QvYCmwDHrEsa7Vpmr8FbgX+0sFxioiIJBr1kZIwBg8eyrJlD3L33fdTVLSJVatWsm+fFb8ebThF45FTGN5UfL3G4s0ahmH03IOpbdsmUnuUwKmdLU5R7Ncvj2uuWcqcOfM1PVE6xaWSspeAl88rh4FpwJoz5eXAdajDERGRnkd9pCQcr9fH7NnzmD17HqWlxbz//rts3Lg+vvbMDtUROL6Z4KldZ5Kz4RiunpOc2bZNuOYwwVM7iQYqm10fP34SS5fewLhxEzQqJp3qokmZZVm1AKZpphPreB4B/sOyrLP7gNYAmZd6k+zsFDyenvMDLwLgdsd+mefm6gwZke5IfaQkutzcScyYMYmKigqWL1/OW2+9RU1NDQB2uJ7AiSKCp3fh6z0ulpx142mNsZGxYwTKPiYaqGpyzefzsWTJEm655RYGDRrkUITS011yow/TNAcRe8r3P5Zl/dk0zZ+fdzkdaP6Y4TMqKuov1USk24lEYstIyspqHI5EpHP1pAcR6iOla/CwdOktLFiwlNWrV/Luu29RXV0NgB1uIHB8M6Hyvfj7TMKd1r/bbacfaYgdGRCpP9mk3ufzc80113LDDTeRmZkFqM+WjnWx/vFSG330BVYA37Es64Mz1VtN01xkWdZq4EZgVTvFKSIi0mWoj5SuJikpiRtuuJlrrlnKmjUfsnz5m/FDqaPBahoO5+NOycXfdyrupGyHo227aKiewMlthKsPNqn3+/0sXnwd11//OTIyLjmYLdIpLjVS9iMgG/ixaZo/PlP3N8AvTdP0AbtpOp9eRESkp1AfKV2S3+/nuutu5OqrF/P++8t55503aWyMHUgdqS+jvmQF3uyR+HMnYLi73mHIth0hVL6XQNlOsMPxepfLxdVXL+HWW29XMiYJx7Bt+9Kt2qisrKbj30QkwfzgBw8D8Nhjv3Q4EpHOlZub3r3mPnUw9ZHitOrqat5881VWr/7g3GHUgOH24+8zGU/m0Had0liz+/n41+lj72231wUI150gcLyIaLC6Sf20aTO4/fZ7yMvr367vJ3I5LtY/6vBoERERkR4sIyODZcseZPHi6/jzn//Izp2fAGBHAjQeK8RdfYCkvBm4vKkOR3phdiRI4OTHhCo/bVI/YMAgHnjgQUxzrEORibSOkjIRERERIS+vP9/73t9TVLSJ5557moqK2Pldkbrj1BUvx99nEt6skQm3EUi49iiNxzZhhxvidX5/El/4wp0sXnwdHo8+7kri03epiIiIiABgGAbTp89k/PiJvPbaS7z//rvYtg3RMIHjRYRrjpDUfxYuT7LToWJHwwRObCNUub9J/ZQp03ngga+Qnd31NyuRnkNJmYiIiIg0kZSUxL33fpHp02fx1FP/y7FjR4HYqFl98bsk9Z+FJ8259VmRxkoaj65vcuZYWlo6DzzwIDNmzE640TyRS+m+pwSKiIiISJuMHDman/zkZ9xww83xOjsSoOHQRwROfoxtRzs9plBlCfWl7zdJyKZNm8FPf/oYM2fOUUImXZJGykRERETkgrxeH3fffT/jxk3gySd/Ez/bLHh6N5FAFcn952C4vR0eh21HY5t5lFvxOp/Px333fYmFC69RMiZdmkbKREREROSSxo2bwKOP/n+MHz8pXhepPUr9gZVEQ3Ud+t52NEzDofwmCdmAAQP58Y9/ytVXL1ZCJl2ekjIRERERaZWMjAy++90fcOONt8TrooEq6g98SDRY2yHvaUdCNBxcQ6TuWLxuypRp/OhHjzJgwMAOeU+RzqakTERERERazeVycddd9/H1r38rvt28HarrkMTMjoSoP7SGSENZvO6mmz7PQw/9LcnJzu8AKdJelJSJiIiIyGWbO3cB3/nO9/B4YuvJ7HA99YfWYEeC7fL6th2l4UgB0YZT8bp77lnGHXfci8ulj7DSveg7WkRERESuyMSJk3n44e/j9Z5JzII1NBwpaJddGYNl25tMWbzvvi9x/fU3tfl1RRKRkjIRERERuWLjx0/k61//VrwcqTtO8NSuNr1muOYIwdN74uWbbrqVpUtvaNNriiQyJWUiIiIi0iYzZszm5ptvi5eDp3cRDVRf0WvZkRCNxzfHy5MmTeELX7irzTGKJDIlZSIiIiLSZrfddifDh4+MFewojcc3Y9v2Zb9O4NQO7HADAOnpGXzta9/SGjLp9vQdLiIiIiJt5nK5+NKXvhZPoCL1J5vsmtga0XAjoYr98fK99z5AWlpau8YpkoiUlImIiIhIuxg8eAjz518dLwdP7b6s+0Ple8GOADBkyDBmz57XrvGJJColZSIiIiLSbm644WYMwwAgUneMaLCmVffZdoRQ5blRsptu+nz8dUS6OyVlIiIiItJu+vXLY8KEyfFyqOpAq+6L1B6Pn3GWnZ3D1KkzOiQ+kUSkpExERERE2tW8eQviX4eqD7Rqw49QVWn86/+/vbuLkbOq4zj+nbLv3drubnebdqG8lHKWbbfb8pIqwUBUUBu1BJPeVC9IiGgwYqIoFyZGvSIB40uiJmJCRGMCEuRKbgwq0VSJFLS2e9DGC1+KLtDCLru0zM7jxUynM6X7NuzMM7PP93Mz5zxzZp7/Ntuc/PY8z3luuOFGN/dQpvjbLkmSpBW1e/c1dHZ2AcUHShfOLLw9flKYI1/xoOi9e72XTNliKJMkSdKKam/vYGxsvNzPT/1rwfFzM/+FQh6AoaFNDA9fXNf6pGZjKJMkSdKK27Pn2nI7P/2fBcfmp869v2fPdW7wocwxlEmSJGnFjY3tLoerwuwrFPJvXnBckiRVoW337msaUp/UTNrSLkCt4dFHf8qzz/4h7TJaysmTrwJw772fS7mS1nH99Xs5cOBg2mVIklZAb28v27cHXnxxAoC56ROs2XD528YVTr9Gkp8BoLu7h23btje0TqkZuFIm1UlHRycdHZ1plyFJUmrGx/eU2+XVsDVtVa+Vq2RjY+O0tblmoOzxt15LcuDAQVcwlmli4igAIyOjKVciSVI6du3aw2OP/QyA/BsnSJI5Ojfu5MyrE3T0jxSPT/+7PL4yxElZYiiT6uTJJx8HDGWSpOzasmWYjRsHefnlSSjkmZuZpGNghI6BYiAr5GG1obIAAAcOSURBVN+kMPsKALlcrmrHRilLvHxRqoOJiaPEeIwYj5VXzCRJyppcLsf4+LmNOyp3WYTifWZnXXnlVfT2rmtYbVIzMZRJdXB2lez8tiRJWVN1X1nFA6Kh+n6yXbu8dFHZZSiTJElS3YQwUt74KjkzReHMVLGdFMi/8VJ53Pj47lTqk5qBoUyqg/37P37BtiRJWdPe3sHo6I5yPz9dDGKF2Veh8BYAfX39DA9fkkp9UjNY0kYfIYS9wP0xxptDCFcCDwMJcAS4O8ZYqF+JUusZGRmlu7un3Ja0ejlHSosbHR3j+eefA2DujZegf3vVKtmOHWPlB01LWbToSlkI4UvAQ0BX6dA3ga/EGN8L5ID99StPak0TE0eZnZ1hdnbGjT6kVcw5Ulqa0dGd5XZ+ZpIkSZib+d8F35eyaCmXLx4Hbq/oXwv8ptT+JfCBlS5KanVu9CFlhnOktASbN285t7Ni4QyF06eYK22FD3DVVSMpVSY1h0UvX4wxPh5CuKziUC7GmJTaU8D6xb6jr6+HtraLaqtQakHt7RdVtQcH3eJXWo2cI6Wl27lzB4cOHQLgrZPHIZkDYGhoiOr/RlL21PLw6Mpr49cBpxb7wMmTMzWcRmpd+/bdxpEjR8rtycmplCuSGifjf4RwjpTmMTx8KVAKZaeOl49v3Xq586QyYaH5sZbdFw+HEG4utT8MPFPDd0ir2sjIKCFcTQhXu9GHlC3OkdI8LrvsiopeUnH88sYXIzWZWlbKvgD8MITQARwDfr6yJUmrg1vhS5nkHCnN4+KLt17w+CWXXNrgSqTmk0uSZPFR79Dk5FT9TyJJagqDg+vc13oZnCOVFUmScM89dzE9PV11/IEHvkt//0BKVUmNs9D86MOjJUmSVHe5XI5NmzZXHWtvb6evrz+liqTmYSiTJElSQwwODr2t70OjJUOZJEmSGmRgYGNVv79/4zwjpWwxlEmSJKkhNmzoq+r39fXNM1LKFkOZJEmSGmL9+g0L9qWsMpRJkiSpIXp7exfsS1llKJMkSVJDrF1bHcJ6etamVInUXAxlkiRJaoju7u7z+j0pVSI1F0OZJEmSGqKzs7Oq39XVlVIlUnMxlEmSJKkhOjo6z+t3pFSJ1FwMZZIkSWqI9vb2qn5bW/s8I6VsMZRJkiSpIdasWcO2bduB4qYfW7ZsSbkiqTnkkiSp+0kmJ6fqfxJJUlMYHFyXS7uGVuIcqayZmnqdw4f/xMjIKENDm9IuR2qYheZHQ5kkaUUZypbHOVKSsmGh+dHLFyVJkiQpRYYySZIkSUqRoUySJEmSUmQokyRJkqQUGcokSZIkKUWGMkmSJElKkaFMkiRJklJkKJMkSZKkFBnKJEmSJClFhjJJkiRJSpGhTJIkSZJSZCiTJEmSpBQZyiRJkiQpRYYySZIkSUqRoUySJEmSUmQokyRJkqQUGcokSZIkKUVttXwohLAG+B4wDpwG7owx/n0lC5MkqRU5R0qSlqvWlbLbgK4Y43uA+4AHV64kSZJamnOkJGlZag1lNwJPAcQYDwHXrVhFkiS1NudISdKy1HT5IvAu4LWK/lwIoS3GmL/Q4MHBdbkazyNJUqtxjpQkLUutK2WvA+sqv2e+yUaSpIxxjpQkLUutoex3wD6AEMK7gb+sWEWSJLU250hJ0rLUevniE8AtIYTfAzngjpUrSZKkluYcKUlallySJGnXIEmSJEmZ5cOjJUmSJClFhjJJkiRJSpGhTDpPCOHLIYQTIYSulM7/rRDC1jTOLUmSpMbznjLpPCGEPwO/Al6IMT6ccjmSJEla5WrdfVFalUIINwPHgR8APwEeDiH8GngB2AlMA88AHwQ2ALcC+4GPAt3AZuDbpWM7gS/GGJ8MIRwEPg+cBv4GfAo4SHHb7B5gG3B/jPHs+T5dOtf3gS5gAPh6jPEXdf0HkCRJUsN5+aJU7U7goRhjBE6HEPaWjv8xxvh+oBOYiTHeAhwFbiq9vy7GuA+4H/gMcDvF4HVHCGEA+BrwvhjjjcAp4K7S59bHGD8CfAy477xaRoAHS+f6LHD3yv+4kiRJSpuhTCoJIfRRXLm6J4TwFLCeYhgCeK70eopiGAM4SXEVC+BwxfvHYoxJxftXAH+NMU6VxvwW2FFqP196/WfFd511ArgrhPAIxZWz9nf0A0qSJKkpGcqkcz4B/CjGeGuM8UPAXoqXJw4Ci918udD7/wBGQwhrS/2bgBeX8LlvAD+OMX4SeJriQ2glSZK0yhjKpHPuBB4524kxzgCPA9vfyZfGGF8Gvgo8HUI4BGykeK/YYh4DvhNCeAa4pfQ5SZIkrTLuvihJkiRJKXKlTJIkSZJSZCiTJEmSpBQZyiRJkiQpRYYySZIkSUqRoUySJEmSUmQokyRJkqQUGcokSZIkKUWGMkmSJElK0f8BlXve+v5Li9cAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2oAAAEzCAYAAABANfAdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3Xl41NXd///nmSWThSUbYQ1rQDaLeKMiKktAFgtuFepdq9be/dGqtVp/XlXbu97Velvb3ndba6uWG63YalsVFRQEE1axqICILGFL2AIJkA1C1lnO94+JAylRAiT5TJLX47pyZeZ8zkxeIuTknXM+5xhrLSIiIiIiIhI9XE4HEBERERERkfpUqImIiIiIiEQZFWoiIiIiIiJRRoWaiIiIiIhIlFGhJiIiIiIiEmVUqImIiIiIiESZMxZqxpgLjDGfnvJx3BhznzEm2RiTZYzZVfc5qSUCi4iIRAuNkSIi0lzM2ZyjZoxxAweBy4C7gRJr7ZPGmIeAJGvtg80TU0REJLppjBQRkaZ0tksfJwK51tp9wHXAvLr2ecD1TRlMRESkldEYKSIiTeZsC7Wbgb/VPe5qrS0AqPuc1pTBREREWhmNkSIi0mQavfTRGBMDHAKGWWsPG2PKrLWJp1wvtdaetgbfGDMbmA2QkJDwb4MHD26a5CIiErU2bNhQZK3t4nSOlnIuY6TGRxGR9qmxY6TnLN5zGvCJtfZw3fPDxpju1toCY0x34EhDL7LWzgHmAIwaNcquX7/+LL6kiIi0RsaYfU5naGFnPUZqfBQRaZ8aO0aezdLHf+fkkg6AhcDtdY9vBxacxXuJiIi0JRojRUSkSTWqUDPGxANXA2+c0vwkcLUxZlfdtSebPp6IiEh00xgpIiLNoVFLH621lUDKv7QVE97hSkREpN3SGCkiIs3hbHd9FBERERERkWamQk1ERERERCTKqFATERERERGJMirUREREREREoowKNRERERERkSijQk1ERERERCTKqFATERERERGJMirUREREREREoowKNRERERERkSijQk1ERERERCTKqFATERERERGJMirUREREREREoowKNRERERERkSijQk1ERERERCTKqFATERERERGJMirUREREREREoowKNRERERERkSijQk1ERERERCTKqFATERERERGJMirUREREREREoowKNRERERERkSijQk1ERERERCTKeJwOICIiIiLtS01NDS+99BLHjx/n9ttvJzU11elIIlFHhZqIiIiItKisrCxefvllAIwx3H///Q4nEok+WvooIiIiIi1qwYIFkccLFy50MIlI9FKhJiIiIiItKhQKOR1BJOqpUBMREREREYkyKtRERERERESijAo1ERERERGRKKNCTURERERa1L/eo6Z71kRO16hCzRiTaIx53Riz3RiTY4y53BiTbIzJMsbsqvuc1NxhRUREoonGR5FzU15eXu95WVmZQ0lEoldjZ9SeApZYawcDI4Ac4CFgmbV2ILCs7rmIiEh7ovFR5Cz5/X6Ki4vrtR05csShNCLR64yFmjGmEzAWeB7AWltrrS0DrgPm1XWbB1zfXCFFRESijcZHkXNz+PBhrLX12goKChxKIxK9GjOj1h84CvzZGLPRGDPXGJMAdLXWFgDUfU5rxpwiIiLRRuOjyDnYu3dvo9pE2rvGFGoe4GLgWWvtSKCCs1jGYYyZbYxZb4xZf/To0XOMKSIiEnU0Poqcg7y8vNPa9uzZ40ASkejWmEItH8i31n5U9/x1wgPTYWNMd4C6zw0uLrbWzrHWjrLWjurSpUtTZBYREYkGGh9FzsG2bdsabPvX5ZAi7d0ZCzVrbSFwwBhzQV3TRGAbsBC4va7tdmBBsyQUERGJQhofRc5eKBRqsFArKiqisLDQgUQi0cvTyH73AC8bY2KAPOAOwkXeq8aY/wD2AzObJ6KIiEjU0vgochZycnI4fvw4ACFPHKH4ZDzHDwLw0Ucfcf312ntH5HONKtSstZ8Coxq4NLFp40i0e/rpp9m9e7fTMVqNgwfDg0/Pnj0dTtJ6ZGRkcM899zgdQ6RRND6KnJ01a9ZEHrsCVbjqijSADz74QIWayCkae46aiJyDqqoqqqqqnI4hIiLiuEAgQHZ29hde37Bhg85TEzlFY5c+igBopuMs3XvvvQA89dRTDicRERFx1kcffcTnO5yGPLG4AtX1rodCIRYvXsy3vvUtB9KJRB/NqImIiIhIs7LW8sorr0Se+1MHNdjvzTffpLKysqViiUQ1FWoiIiIi0qzWrl3L1q1bAbDGhT9tcL3roZgEAI4dO8brr7/e4vlEopEKNRERERFpNtXV1TzzzDOR5/4ug7G+DvX61PQYGXn8yiuvUFBQ0GL5RKKVCjURERERaTbPP/88+fn5AFi3l9oeI07rE0jNIBiXCIQLu1/96leEQqEWzSkSbVSoiYiIiEizWLt2bb2ljDXpl2G9cad3NC6q+16FxQCwcePGeve0ibRHKtREREREpMnt2bOHn//851hrAQh06ok/deAX9g916EJttwsjz+fOnVvv3DWR9kaFmoiIiIg0qcLCQh5++OHIDo6hmASq+48FY770dbU9RxLo2C3y/PHHH2fz5s3NmlUkWqlQExEREZEmU1hYyA9/+EMKCwsBsC4PVQMnNbzk8V+53FQPyCRUt9lIdXU1P/rRj/jss8+aM7JIVFKhJiIiIiJNYt++fdx3332RXRutcVE1YAKh+JRGv4f1xlI1cDIhTywAVVVV/OhHP2LdunXNklkkWqlQExEREZHztmHDBu6+++6TM2nGRVXGRIKJ6Wf9XqG4RKoGTyPkCc/CVVdX8+CDD7JgwYImzSwSzVSoiYiIiMg5s9by1ltv8aMf/YgTJ06E21yecy7SPheKSwoXa9748PNQiN/+9rc8/fTT+P3+JskuEs1UqImIiIjIOTlx4gSPPvoov/vd7wgGgwCEvPFUDr7mvIq0z4XiEqkcei3BU5ZOzp8/nx/84Ac6FFvaPBVqIiIiInLWcnJymD17NitXroy0BeNTqBw6g1BCapN9HRsTLvz8SX3qfe3vfOc79b62SFujQk1EREREGq22tpY5c+Zw9913c+jQoZPtXQZTOeSr2JiEpv+ibi/VAzKpTr8UW7fFf0VFBT/72c947LHHKCsra/qvKeIwFWoiIiIi0ijbt29n9uzZvPLKK4RCIQCsy0vVgPHU9B0DLk/zfXFj8HcbTuXgrxKK6RBpXr58OXfccQerV69uvq8t4oBm/NckIiIiIm3BiRMneP7551mwYEGkQAMIdOxGdb+rsL6OLZYl1CGNimHXEXvgY7xFuwAoLS3lkUce4YorruCee+6hW7duZ3gXkeinQk1EREREGmStZdmyZfzxj3+ktLT0ZLvLQ02vUfjThkDdUsQW5fFR3e8q/El9id37AS5/JQAffPAB69ev57bbbmPWrFl4vd6WzybSRFSoiYiIiMhpdu3axR/+8Ac2bdpUrz3QqSfVfS7HxnZyKNlJwcR0KobfgO/AOmKKdgJQU1PD//3f/7FkyRLuuusuRo8ejXGimBQ5TyrURERERCSiuLiYuXPnsmTJEqy1kfaQN46a3pcRSOrnzCzaF/H4qOl3Jf7UgcTu+yfuqvDM34EDB3j44YcZNWoUd911F/3793c4qMjZUaEmIiIiIlRUVPDqq6/yj3/8g+rq6ki7NQZ/2lBqeo4Ed4yDCb9cqGNXKoddh/fwNnyHNmKC4UOx169fz3e+8x2mTZvG7bffTlpamsNJRRpHhZqIiIhIO1ZTU8Nbb73Fyy+/zPHjx+tdC3ROD2+JH9fZoXRnybjwdxtOIGUAMQc34j26A4MlFAqxaNEi3nvvPa6//npuueUWEhMTnU4r8qVUqImIiIi0Q7W1tbz77rv85S9/oaioqN61YFwSNemXEuzc06F058d646jpOwZ/2hB8Bz7Gc/wgAH6/n9dee4133nmHWbNm8bWvfY1OnZy/106kISrURERERNqR6upq3nnnHf7+97+fVqCFfB2o6XExgZT+YFr/cbuh+CSqLpiC+/ghfPnrcVeE/3urqqqYN28er732Gtdffz0zZ84kKSnJ4bQi9alQExEREWkHTpw4wdtvv82rr75ab6t9CG8UUtvjIvypg8Dldihh8wl26kHlkBl4yvYRk/8J7uoyACorK3nllVeYP38+1157LTNnztQ9bBI1VKiJiIiItGEFBQW88cYbLFq0iMrKynrXQt44artdiL/LBeBu42eOGUMgqS+BxN54SvYQc2hTpGCrqanhtdde44033mDChAnMmjWLQYMGORxY2jsVaiIiIiJt0LZt23jttddYtWoVoVCo3rVQTEJdgTYIXO3sx0HjIpAygEByfzyl+4gp+BR3ZQkAwWCQ7OxssrOzueiii5g1axajR4/G5Wr9y0Cl9Wln/zJFRERE2q6amhqWL1/OW2+9xY4dO067HoxNxN9tOP6UAW1yieNZMYZAcl8CSX1wHztATOEWPOWFkcuffvopn376Kd27d+e6665j6tSp2ilSWpQKNREREZFWLj8/n4ULF/Luu+9SXl5+2vVAp+7Udh1OsHOv6DqsOhoYQzCxN1WJvXFVFIULtpI9GMKHfRcUFPDcc8/x/PPPk5mZyXXXXceQIUMw+nOUZtaoQs0YsxcoB4JAwFo7yhiTDPwD6AvsBWZZa0u/6D1ERETaIo2R4pTa2lrWrFnDokWL2LBhw2nXrXETSO5HbbdhhOJTHEjY+oQSUqkeMB7TaxQxR7bhPboTE6wFwlv7L126lKVLl5KRkcFXv/pVJk2aRMeOHR1OLW3V2cyoTbDWnrqH60PAMmvtk8aYh+qeP9ik6URERFoHjZHSYvLy8li0aBFZWVmnHVAN4S32a7sMIZA6EOuNdSBh62d9HahJv5SaHhfjKckj5kgO7sriyPXdu3fz1FNP8eyzzzJu3Di++tWvMmLECM2ySZM6n6WP1wHj6x7PA1aiQUhERAQ0RkoTKy8vZ/ny5SxZsoScnJzTrlsg2LkXtWlDtLyxKbk9BLoMItBlEK4TR4k5uh1PcR7GBoHwrGZWVhZZWVn07NmTadOmMXnyZG3xL02isYWaBd4zxljgT9baOUBXa20BgLW2wBijv5EiItIeaYyUZhEMBlm/fj1LlixhzZo1+P3+0/qEYjrgTx2IP3Ug1tfBgZTtR6hDF6o7dIH0S/EW5+It2hnZLRLg4MGDzJ07l+eff55/+7d/Y+rUqVx55ZXExmpWU85NYwu1K6y1h+oGmixjzPbGfgFjzGxgNkDv3r3PIaKIiEhUO6cxUuOjfJF9+/axZMkSsrKyKCoqOu26NS4CiX3wdxlEsFMPzZ61NI8Pf9eh+LsOxVVRhPfoTrwluZhguJC21rJ+/XrWr19PQkICEyZMYMqUKQwfPlxLI+WsNKpQs9Yeqvt8xBjzJnApcNgY073uN4XdgSNf8No5wByAUaNG2aaJLSIiEh3OdYzU+CinOnbsGMuXL2fp0qVs395wrR+MT8GfmkEgeYDuPYsSoYRUahJSqUm/FE/ZPrxFu3AfP8Tn5VhFRQXvvPMO77zzDj179mTKlClcffXVdO/e3dHc0jqcsVAzxiQALmtted3jycBjwELgduDJus8LmjOoiIhItNEYKecjEAjw0UcfsXTpUv75z38SCARO6xPyxBJIGYA/dSCh+GQHUkqjuD3hQ7RTBmBqTtQtjdyFq+bkZi8HDx7khRde4IUXXuCiiy5iypQpjBs3jvj4eAeDSzRrzIxaV+DNuqlaD/CKtXaJMWYd8Kox5j+A/cDM5ospIiISlTRGylnbtWsXS5YsYdmyZZSVlZ12Pby0MR1/ysDwxiAulwMp5VxZXwdqe4ygtvtXcJ84gqd4F96SPZGlkXDyMO2nnnqKsWPHMmXKFEaOHIlL/6/lFGcs1Ky1ecCIBtqLgYnNEUpERKQ10BgpjVVSUkJ2djZLly4lNze3wT7BhNTwxiDJ/cCjpY2tnjEEO3Yl2LErNb1H4yndj7d4F+5jhyKHaVdXV/Pee+/x3nvvkZaWxuTJk5k6dSq9evVyOLxEg/PZnl9EREREvoDf72ft2rUsWbKEDz/8kFAodFqfkDcef0oGgdQMQnGJDqSUFuHyEEjpTyClP6a2Ek9xbrhoqzo5o3rkyBH++te/8te//pXhw4czdepUJkyYQEJCgoPBxUkq1ERERESa0OdLG7Ozszl27Nhp161xE0jqgz91IMFO3cFouVt7YmPi8Xe/EH+34bgqi/EW7cJbnIcJ1kT6bNmyhS1btvD0008zduxYpk2bxkUXXaSlke2MCjURERGR81RWVkZ2djZLlixh9+7dDfYJdEgjkDoQf1I/8MS0cEKJOsbU3zXy2AE8RbvxHDuAseGlkTU1NZEDtbt27crUqVOZMmUKPXr0cDi8tAQVaiIiIiLnIBAI8PHHH/Puu++ydu3ahndt9CbgT83An5qBje3sQEppFVxuAkl9CST1xfirwksji3bhriqNdDl8+DDz5s1j3rx5jBgxgqlTp2rXyDZOhZqIiIjIWcjNzWXp0qVkZWVRWlp62nUtbZTzYb1x+LsNx9912Bcujdy0aRObNm3iqaeeYvz48UyZMoURI0ZoaWQbo0JNRERE5AxKSkpYtmwZS5cu/cKljcGEtPDsWXI/8PhaOKG0Of+6NLLsQHiW7Vh+vV0jlyxZwpIlS+jWrRuTJ09m8uTJ2jWyjVChJiIiItKAmpoa1q5dy9KlS/noo4+0a6M4x+UmkNyXQHLfk7tGFu3CXX1y18jCwkJeeuklXnrpJYYPH87kyZMZP348nTp1cjC4nA8VaiIiIiJ1gsEgmzZtIisri9WrV1NRUXFan/DSxt51Sxt7aGmjtKh6u0ZWFOEt/nxpZG2kz+e7Rv7+979n9OjRTJo0icsvvxyfTzO9rYkKNREREWnXrLXs3r2b7Oxsli1bRlFRUYP9Ah26EkjN0K6NEh2MIdShCzUdulCTfhmesgN4iuvvGhkIBFizZg1r1qwhISGBcePGMWnSJEaMGIHb7Xb4P0DORIWaiIiItEv79u1j+fLlrFixgv379zfYJ+TriD9lAP6UDGyslpBJlDp1aaS/Ck9xHt6SXNwVJ3/pUFFRweLFi1m8eDEpKSmMHz+ezMxMhg4dijHGwfDyRVSoiYiISLtRUFDA8uXLWb58Obm5uQ32CXliCST3w58ygFBCF9APsdKKhHeNHIa/2zBM9TG8xbl4i3Nx1ZRH+hQXFzN//nzmz59P165dyczMJDMzk4yMDBVtUUSFmoiIiLRphw8fZtWqVaxYsYKcnJwG+1iXh0Bib/wpAwh26gna5lzaABvbmdqeF1PbYySuiqN4i3PxlOzBFaiO9Dl8+DB/+9vf+Nvf/kZ6ejrjx49nwoQJ9OvXT0Wbw1SoiYiISJtz9OhRVq5cycqVK9m6dWuDfaxxE0jsRSC5P4HO6eDWj0XSRhlDqEMaNR3SqOl9Ge7jBXhK9uAt3VtvE5IDBw7wl7/8hb/85S/06dMnUrT17dvXueztmL4jiYiISJtQUlLCqlWrWL58OZs3b26wjzWGYKde+JP7EUjqDW5tCiLtjHER7NyTYOee1PS5HPfxQ3hL8vCU7sOEApFu+/btY968ecybN49+/foxYcIEMjMzdUZbC1KhJiIiIq3W8ePHWb16NcuXL+fTTz9t8KwziyHYqUddcdZHh1GLfM7lJpiYTjAxHUIBPMfy8ZTswVN2oF7RtmfPHvbs2cMLL7zAoEGDyMzMZMKECXTt2tXB8G2fCjURERFpVaqrq1mzZg3Z2dmsW7eOYDB4Wp9wcdadQHI/Aol9sN5YB5KKtCIuD4GkvgSS+kIwgOfYgXDRduwAJnTy39jOnTvZuXMnzz33HMOHDyczM5OJEyfSuXNn57K3USrUREREJOpZa9m8eTNLlixh5cqVVFZWnt4HCHbsFi7OkvpivXEtH1SkLXB7wv+OkvtB0B8+o60kD8+xfIw9OWv9+cHazzzzDJdffjlTpkxh9OjReDwqMZqC/hRFREQkah0+fJglS5awdOlSDh061GCfYEIX/Mn9CST3xcYktHBCkTbO7SWQ0p9ASn8I1OAp24+3OA/38UMYTh6s/f777/P+++/TuXNnJk2axLRp08jIyHA4fOumQk1ERESiyuezZ/Pnz+f9999v8L6zkK8T/tQM/Mn9dRC1SEvx+AikDiSQOjB8sHbpXrxFu3FXHI10OXbsWOSMthEjRnDTTTcxZswY3G63g8FbJxVqIiIiEhVqa2tZuXIlr7/+Ojt37jztunXH4E/uhz91oA6iFnGY9cbhTxuCP20IpuoY3uJdeItycfkrIn02bdrEpk2b6NatGzfccAPXXHMNHTt2dDB166JCTURERBwVCoXIzs5m7ty5HDly5LTrgU7d8Xe5gEBib3DpR5fWrOO6F87YXn7Jt1sqjjQRG9eZ2l6jqO15Me7jBXiLduIp3Yux4aWRhYWFPPvss8ybN49vfvObfO1rX8Pn0+6rZ6LvdiIiIuKYzz77jD/+8Y/s2LGjXrs1bvypA/CnDSMUn+RQOhE5K6ec0WZqK/AeycF7dAeuQA0AlZWVzJkzhwULFvDd736XCRMmYDQz/oVUqImIiEiLq6ys5De/+Q3Z2dn12kOeWPxdh+HvcoG21BdpxWxMQniWrcdFeItz8RZuwV19DAhvEvTYY4/xxhtv8NOf/lTnsX2Bdl+oPf300+zevdvpGNJGff53695773U4ibRVGRkZ3HPPPU7HEDkrBw8e5Cc/+Ql79+6NtFnjprbbMGq7fwXcMc6FE5Gm5fLg73IB/pSBeIt2EHPwk8gM25YtW/jud7/Lo48+yogRIxwOGn3afaG2e/duPt2SQzA+2eko0ga5asNrszfkHXY4ibRF7soSpyOInLWNGzfyyCOPUF5eHmnzJ/ejptclWF8HB5OJSLNyucKbjyT3x1fwGd7DWzDWUlZWxv333899993HjBkznE4ZVdp9oQYQjE+mavA1TscQETkrcdsXOx1B5Kzk5eXx8MMPU11dDYRn0ar7jiGQOtDhZCLSYjw+atIvIZCYTuzu5bgC1QSDQf73f/+Xzp07M3bsWKcTRg2X0wFERESk7SsvL+c///M/I0VayBtP5eBrVKSJtFPBjt2oHHotwfiUSNsvfvGLekui2zsVaiIiItLsfvvb33Lo0CEArMtD1aAphDp0cTiViDjJ+jpQecFUQr7w2WpVVVX87Gc/IxAIOJwsOqhQExERkWb16aefsnz58sjz6n5Xact9EQnz+KjKmIitOyNx7969vPXWWw6Hig4q1ERERKTZBAIBnn766chzf3I/Asn9HEwkItEmFJ9MbY+LIs///Oc/U1KiDbMaXagZY9zGmI3GmHfqnvczxnxkjNlljPmHMUZ76YqISLuj8fHLzZ8/n9zcXCC85LGm1yUOJxKRaFTbdRghXycAKioqeOaZZxxO5LyzmVG7F8g55fkvgd9aawcCpcB/NGUwERGRVkLj4xfIz8/nz3/+c+R5bY8R2oJfRBrmclPd5/LI0+zsbD788EMHAzmvUYWaMaYX8FVgbt1zA2QCr9d1mQdc3xwBRUREmpsxJtYYc7cx5hljzAuffzTidRofv0BZWRkPPfRQZJfHYFwStV0vdDiViESzYOee+JP7R57//Oc/Jy8vz8FEzmrsjNrvgB8BobrnKUCZtfbzLVnygZ4NvdAYM9sYs94Ys/7o0aPnFVZERKSZ/AXoBkwBVgG9gPIvfUWYxscGVFZW8p//+Z/k5+cDdeel9bsKXLo1XkS+XE3vywh544HwEsgHH3yQgoICh1M544zfMY0x04Ej1toNpzY30NU29Hpr7Rxr7Shr7aguXbQNr4iIRKUMa+1PgQpr7TzCs2RfOv2j8bFhBQUF3H333WzZsgUI/8dX9x9HKCHV2WAi0ipYbxxVgyZjXV4Ajh49yp133snmzZsdTtbyGvOrrSuAa40xe4G/E17S8Tsg0RjjqevTCzjULAlFRESan7/uc5kxZjjQGeh7htdofPwXmzZt4nvf+x579uyJtNWkX0Ygua9zoUSk1QnFJ1OVkYk14VKlrKyM+++/n3fffdfhZC3rjIWatfZha20va21f4GZgubX2FmAFcFNdt9uBBc2WUkREpHnNMcYkAT8FFgLbgF992Qs0Pp5UW1vLnDlz+OEPf8ixY8cAsMZFVb+r8Hcb5nA6EWmNgp17UnXBVEKeWAD8fj+//OUvefTRRyPfZ9q681ks/iBwvzFmN+E1+c83TSQREZGWZa2da60ttdaustb2t9amWWufO8e3a1fjY25uLnfeeSevvPIKoVD4Vr2QJ5bKC6YRSB3ocDoRac2CHbtROXQGwbikSNuKFSu444472sWOkJ4zdznJWrsSWFn3OA+4tOkjiYiItAxjzDettX81xtzf0HVr7W8a8z7tcXwMBAK88sorvPTSSwQCgZPtnbpT3fcqbcMvIk3C+jpSOWQ6vv0fEVO0E4CSkhIeeughrrnmGu688046duzocMrmcVaFmoiISBuTUPe5bY7yzWT37t388pe/ZNeuXZE2a9zUpF+CP20ImIb2VBEROUduLzX9riSQ1JvYPR/gClQBsHjxYj7++GMeeOABRo8e7XDIpqdCTURE2i1r7Z/qPj/qdJbWwFrLq6++ypw5cwgGg5H2YEIXqvtdRSgu0cF0ItLWBRN7Uzk8Dd++f+It3QtAUVERDz30EDNmzOD73/8+Pp/P2ZBNSIWaiIi0e8aYLsD/R3inx8jYaK39tlOZok15eTlPPvkkH3zwQaTNGjc1PS8ObxhidEaaiDQ/642lOiOTQMkefPvW4gpUA/D222+zfft2fvazn9GzZ4PHV7Y6+q4qIiIS3pmxM5ANLDrlQ4D9+/cze/bsekVaMCGVymHX4e9+oYo0EWlxgeR+VA6/AX9S30jbrl27mD17NuvXr3cuWBPSjJqIiAjEW2sfdDpENDp8+DAPPPAAR44cibTVdh1KTa9LwOV2MJmItHfWG0f1gAkEj+TgO/AxxoaoqKjgJz/5Cf/zP//DhRde6HTE86JfgYmIiMA7xphrnA4RbcrKyuoVadbloWpKbo9pAAAgAElEQVTABGp6j1aRJiLRwRj8XYdSOfirhLzh/aFqamp4+OGHycvLczjc+VGhJiIiAvcSLtaqjTHldR/HnQ7ltLlz53LgwAGg7gDrjIkEkvs5nErairi4OIwxxMXFOR1F2oBQhy5UDj55QPaJEyd48sknsdY6nOzcqVATEZF2z1rb0VrrstbG1j3uaK3t5HQuJ5WVlfHee+9Fnlf3u4pg57Zxg744LykpiSeeeIKsrCyeeOIJkpKSzvwikTOwsZ2pGjQFa8Iz/jt37mTLli0Opzp37f4etYMHD+KuPEbc9sVORxEROSvuymIOHgycuaM0ijHmWmBs3dOV1tp3nMzjtKysLGprawEIxqcQSO7vcCJpK+Li4njkkUcYOXIkACNHjuSRRx7hxz/+MVVVVQ6nk9YulJCCP2VA5HDsd955p9Xeq6YZNRERafeMMU8SXv64re7j3rq2dquwsDDyOJDUV4dYS5Oprq4+7QfnCy+8kOrqaocSSVsTSO4beVxQUOBckPPU7mfUevbsSWGNh6rBuodcRFqXuO2L6dmzq9Mx2oprgIustSEAY8w8YCPwkKOpHFTvvqHwH4tIk4iNjWXz5s2RGTWAzZs3Exsbqxk1aRqnfM+Kj493MMj50YyaiIhIWOIpjzs7liJKnHrPkLu89f5GWqJPVVUVjz32GBs3biQQCLBx40Yee+wxFWnSZDzHT37P6ty59X47b/czaiIiIsAvgI3GmBWAIXyv2sPORnLWVVddxR//+EdCoRCe8kJcFcWEElKcjiVtRGlpKT/+8Y+prq7WTJo0rWAt3rr70wAyMzMdDHN+NKMmIiLtnrX2b8Bo4I26j8uttX93NpWz0tLSGDduXOR57L5/agmkNKmqqiqstSrSpEn5DqzDBP0ApKenc8kllzic6NypUBMREQnrUvfZDYwxxtzoZJho8M1vfhO3O7zNtbviKDEFmx1OJCLyxdzH8ok5uiPy/Pbbb8flar3lTutNLiIi0kSMMS8ALwBfA2bUfUx3NFQUGDBgALfffnvkeczBT3AfO+hgIhGRhpnq48Tlroo8Hzt2LBMnTnQw0fnTPWoiIiIw2lo71OkQ0egb3/gGH374Idu2bcNgictdQeWQ6YTiEs/8YhGRlhCoJW5XFiZYA0BycjL3338/ppUfK6IZNREREVhrjFGh1gCPx8Njjz1GamoqACZYS9zOpZiaEw4nExEBgn7idmXhrj4GgNfr5fHHHycxsfX/MkmFmoiICMwjXKztMMZ8ZozZbIz5zOlQ0SI1NZUnnngCn88HgKu2gvgdizG1FQ4nE5F2LRggblcWnhOHI00PPvggQ4e2jd+7qVATEREJ3592KzCVk/enzXA0UZQZNGgQP//5z/F6vQC4ak4Qv30Rrqoyh5OJSHtk/NXE7VyKp7ww0nb33XczadIkB1M1LRVqIiIisN9au9Bau8dau+/zD6dDRZtLL72URx99FI8nfIu7q+YE8Tnv4D5+yOFkItKemOpjxOe8XW8mbfbs2cycOdPBVE1PhZqIiAhsN8a8Yoz5d2PMjZ9/OB0qGo0ZM4bHHnuM2NhY4OQ9azEFn+mcNRFpdp6SPSRsextXTTkAxhjuvPNOvvGNbzicrOmpUBMREYE4oAaYjLbnP6MxY8bw+9///uQGI9biy19PfM5iTN0N/SIiTSpQTWzuCuJyV2CCtQD4fD4effRRvv71rzscrnloe34REWn3rLV3OJ2htRk0aBDPPPMMjzzyCNu3bwfAXXGEhK1vUdvjImq7DgOXfswQkfNkQ3iK8/Dlr8Plr4o0p6Wl8dhjjzF48GAHwzUvfQcVEZF2zxjTD7gH6MspY6O19lqnMrUGaWlp/OEPf+CVV15h3rx5BINBTCiIL38D3sM51Pa8GH9qBhgt4BGRs2Qt7mP5+PLX464qrXdp2rRp3H333XTo0MGhcC1DhZqIiAi8BTwPvA3oRquz4PF4uO2227j88sv5xS9+QV5eHgAufyWxe9fgLdxCbY+LCCT1BZcKNhE5A2txlxcSc2hjvR0dIXyQ9QMPPMCYMWMcCteyVKiJiIhAtbX2906HaM0GDhzInDlzWLx4MS+++CIlJSUAuKvLiMtbSSgmgdq0ofi7DAKPz+G0IhJ1QkE8JXnEFG7FXVVS71JsbCxf//rXmTVrFgkJCQ4FbHkq1EREROApY8x/Ae8R3lQEAGvtJ85Fan08Hg/XXnstV199Na+//jp/+9vfqKysBMKHZMfmr8N3aCP+1IH404YQikt0OLGIOM3UVuIt2on3cA6uQFW9a263mxkzZnDrrbeSkpLiUELnqFATERGBCwkfeJ3JyaWPtu65nKW4uDhuvfVWZsyYwZtvvsmCBQsoKwsfjG1CAWKO5BBzJIdghzT8qYPwJ/cDt9fh1CLSYkIhPMcO4C3aibssH4Otdzk2NpYpU6Ywc+ZMevXq5VBI56lQExERgRuA/tbaWqeDtCWJiYnccccdfOMb32DZsmW89tpr7NmzJ3LdfeII7hNH8O3/kEByP/ypAwl26ArGOJhaRJqLq6oU79FdeIp34wpUn3Y9NTWVG264gRkzZtCpUycHEkaXMxZqxphYYDXgq+v/urX2v+p2yPo7kAx8AtyqAU5ERFqpTUAicORsXqQxsnF8Ph/XXHMN06ZNY8OGDSxcuJAPPviAYDAIhGfZvEW78BbtIhTTAX9KfwIpAwjFJTmcXETOl6mtwFOch7ckF3dlSYN9RowYwYwZMxg/fjwej+aRPteYP4kaINNae8IY4wXWGGPeBe4Hfmut/bsx5jngP4BnmzFrs3FXlhC3fbHTMaQNclUfByAUq98KSdMLD3hdnY7RVnQFthtj1nHyHjVrrb3uDK9r82NkUzLGMGrUKEaNGkVpaSnZ2dksWrSIvXv3Rvq4ak/gK/gMX8FnBOOS8acMIJDcD+tr29twi7QpgRq8pXvxFOfiLi+koTny1NRUpk6dytSpU9v18sYvc8ZCzVprgRN1T711H5+v2/9GXfs84Ge0wkEoIyPD6QjShu3eXQ5ARn/9MC3Noau+hzWd/zrlsQGuBP79TC9q62Nkc0pKSmLmzJncdNNN7Nixg0WLFrFixQpOnDgR6eOuKsGdX4LNX0ewYzcCyf3xJ/cFT6xzwUWkYcEAnmP78RTn4TmWj7Gnn3Ti9XoZM2YM11xzDaNGjcLtdjsQtPVo1NyiMcYNbAAygD8CuUCZtTZQ1yUf6PkFr50NzAbo3bv3+eZtcvfcc4/TEaQNu/feewF46qmnHE4iIl/GWrvKGHMR4eJqFrAHeK4xrz3XMTLax8eWYoxh8ODBDB48mHvuuYePP/6Y7Oxs/vnPf1JbG14tagBPeSGe8kJ8+9cS7NQTf3J/Akl9tAmJiJNCIdzHD+ItzsNTtg8TCpzWxeVyMXLkSCZNmsRVV13V5g+pbkqNKtSstUHgImNMIvAmMKShbl/w2jnAHIBRo0Y12EdERMQJxphBwM2EZ8+KgX8Axlo7obHvca5jpMbH08XExHDllVdy5ZVXUlFRwfvvv8+yZcvYsGEDoVD4t/PGWjzH8vEcy8fucxPo3Bt/agbBTj11oLZIS7AWV8VRvEW78ZTuwRWoabDbBRdcwKRJk8jMzGyXW+s3hbO6W89aW2aMWQmMBhKNMZ663xj2Ag41Qz4REZHmtB14H5hhrd0NYIz54bm8kcbIppWQkBC5f6W4uJhVq1axbNkytm7dGuljQkG8pXvwlu4h5IklkNIff0oGofgU7Rwp0sRM9XG8xbl4i3Nx1RxvsE96enqkOEtPT2/hhG1PY3Z97AL46wagOGAS8EtgBXAT4V2tbgcWNGdQERGRZvA1wjNqK4wxSwiPaY3+CV9jZMtISUnhxhtv5MYbb6SgoIDly5ezbNky8vLyIn1cgWpiDm8j5vA2gnGJBFIy8KcOxHrjHEwu0soF/XhL9uAp2oXnxOEGu6SlpZGZmcnEiRPJyMjA6JckTaYxM2rdgXl1a/BdwKvW2neMMduAvxtjHgc2As83Y04REZEmZ619E3jTGJMAXA/8EOhqjHkWeNNa+94Z3kJjZAvr3r07t9xyC7fccgt5eXlkZWWRlZVFUVFRpI+7qgx3/npiDn5CIKkP/rQhOp8tSpRf8u3I447rXmiwXZznqirFe2Q73uLdmKD/tOsJCQmMHz+eyZMnc+GFF+LSsuNm0ZhdHz8DRjbQngdc2hyhREREWpK1tgJ4GXjZGJMMzAQeAr60UNMY6az+/fvz3e9+l+985zts3LiR9957j9WrV1NdHT5I19gQ3pI9eEv2EIxNxJ82GH9qBrhjHE4uEoVCQTyle/Ee2d7g7JnL5eLSSy9lypQpjBkzBp/P50DI9kUnyomIiJzCWlsC/KnuQ1oBt9sdOZ/tvvvuY/Xq1bz99tv17mdzV5fh3v8hvoOfUJs2BH/XYVivtvkXIRTAe3QnMYWbcdVWnHY5PT2d6dOnc/XVV5OcnOxAwPZLhZqIiIi0GfHx8ZFNSHbv3s3ChQvJysqiqqoKABOsxVewiZjDW/F3GUxtt+HYmHiHU4s4IOjHe2Q7MYVbcAWq6l1yu91ceeWVXHvttVx88cW678whKtRERESkTcrIyOD+++/ne9/7HllZWbz++uscOHAAABMKEHN4C94jOdR2G0Zt9xE6k03aBxsKz6Ad3HDa1vqJiYnccMMNTJ8+XVvqRwEVaiIiItKmxcfHc9111zF9+nRWrVrFyy+/TG5uLgDGBvEVfIa3KJea9EsIJPfTpiPSZrnLC/Ht/xB3ZUm99tTUVG6++WamT59ObKyWBEcLFWoiIiLSLrjdbjIzM5kwYQJr167lxRdfZOfOnQC4/BXE5a0kcHQ71X2vxMZ2cjitSBMK1BC7/yO8xbvrNXft2pVbb72VyZMnExOjTXaijQo1ERERaVeMMYwZM4bRo0ezdOlS5syZQ2lpKQCe8kISti6gus9oAikZml2TVs99vIDYPavrbRQSExPDLbfcws0336zdG6OYCjURERFpl1wuF9OmTeOqq65i3rx5zJ8/n1AohAn5idvzPv6yA1T3vQI8+kFWWiEbIubgJ8QUfMapv24YO3Ysd911F926dXMsmjSOCjURERFp1zp06MDdd9/NxIkTefzxx8nPzwfAW7oXd2UJVRkTCcUnOZxSpPGMv4rY3BV4ygsjbR07duSBBx5g3LhxDiaTs6FjxEVERESAwYMHM2fOHKZPnx5pc9UcJz7nbTzFeQ4mE2k814kjxG9dUK9Iu/jii3nhhRdUpLUymlETERERqRMfH88DDzzAxRdfzK9+9Suqq6sxoQBxeSupPXGYmvRLweV2OqbI6azFeyQH34GPMTYEhO/HvOOOO/jmN7+Jy6X5mdZG/8dERERE/kVmZibPPvssvXr1irTFHMkhfvsiTE25g8lEGhCsJTZ3BbH7P4wUaR07duTJJ5/ktttuU5HWSun/moiIiEgD+vXrx3PPPcfYsWMjbe6KIhK2LsBzdCdY62A6kTD38QISti7AW7o30jZo0CDmzJnDZZdd5lwwOW8q1ERERES+QIcOHXj00Uf5/ve/j9sdXvJogrXE7V1D3M6lml0T5wRq8e1dQ/yOd3Gd8vfw+uuv5w9/+APdu3d3Lps0Cd2jJiIiIvIljDHcdNNNDBkyhP/+7//m0KFDAHiOHyJhy5vUdv8KtV2HgdvrcFJpF2wIT9FufAc/weWvjDR36NCBH/7wh0ycONHBcNKUNKMmIiIi0gjDhg3jhRdeYNasWZF7fkwogO/gJyR89jreIzkQCjmcUtosa/GU7iN+y1vE7V1Tr0gbO3Ys8+bNU5HWxmhGTURERKSRYmNjueuuuxg/fjy/+tWv2Lt3LwCuQBWx+9YSU7iF2u4j8Kf0B5d+zJImYC3uYwfwHdqEu+JovUtJSUnce++9jB8/3pls0qz0HURERETkLA0dOpS5c+eyZMkSXnzxRYqKigBw1ZQTu3cNMfnr8acNxp82BOuNczittEpBP96iXcQc3oar5ni9S/Hx8Xz9619n5syZxMfHOxRQmpsKNREREZFz4PF4mD59OldffTVvvvkmL7/8MuXl4U0dXIFqfIc+JabgMwIpA6hNG0IoPgWMcTi1RDtTfRzv0R3EHN2BCdbWu+b1ern++uu55ZZbSExMdCihtBQVaiIiIiLnwefzcfPNNzN9+nTeeecd3njjDY4cOQKAsSG8RbvwFu0iGJeEP3UQgZT+mmWT+oIBPKV78RbtxFNeeNrlhIQEZsyYwY033khaWpoDAcUJKtREREREmkCHDh24+eabuemmm1i9ejWvvfYaOTk5kevuqlLcBz7C5q8jkNgbf+pAgp17gtHebu2StbgqjoYL+eI8TMh/WpeePXvyta99jalTp2qJYzukQk1ERESkCXk8HjIzM8nMzGTr1q0sXLiQVatWUV1dDdTNspXuxVu6l5AnlkByP/wpAwgldNHSyHbAVVWGpyQPb3FuvfPPItddLi677DKmT5/O6NGjI+f3SfujQk1ERESkmQwbNoxhw4bxgx/8gBUrVvDuu++ydevWyHVXoJqYIznEHMkhFNMBf0p/AikDCMUlOZhampqprcBTnIe3JA93ZXGDfdLT05k2bRqTJ08mNTW1hRNKNFKhJiIiItLMEhISmD59OtOnT2ffvn0sXryYZcuWRXaLBHDVnsBX8Bm+gs8IxiURSO6PP7kfNraTg8nlXBl/FZ7SfXhK8nCXF9LQXGlCQgLjxo1j2rRpDB8+HKMZVTmFCjURERGRFtSnTx/uvPNOZs+ezWeffUZ2djarVq3ixIkTkT7uqlLcBzfgO7iBYEIq/uQBBJL7YmMSHEwuZxSoxVO2D29xHu7jhzDY07p4vV4uv/xyJk2axGWXXYbP53MgqLQGKtREREREHOB2uxk5ciQjR47k3nvv5eOPP2bZsmV88MEH1Nae3JbdXVGEu6IIe+Ajgh27EUgZgD+pL3j0A35UCAXwlOXjKc7Fc+wAxoZO6+JyuRg5ciSTJk3iqquuokOHDg4EldZGhZqIiIiIw2JiYrjyyiu58sorqays5IMPPmD58uWsW7eOQCAAgAE85YV4ygvx7VtLoHM6gZQBBBJ7gUs/0rUoa3GXF+IpzsVbuve0884+N3z4cDIzMxk3bhwpKSktHFJaO/2rFhEREYki8fHxXH311Vx99dUcP36c1atXs3z5cj799FNCofBsjbEhvGX78Jbtw7pj8Cf1xZ86kFCHNO0c2YxcVWV46rbTd/krGuwzaNAgMjMzmTBhAl27dm3hhNKWqFATERERiVKdOnWKbEJSXFzMihUryMrKYseOHZE+JlhLTNFOYop2EoztjL/LIAIpGTpUu6kE/eHDqI/uwHPiSINdevTowdVXX83EiRPp3bt3CweUtkqFmoiIiEgrkJKSwk033cRNN93E/v37yc7OJjs7m0OHDkX6uKuP4T6wDpu/PnyodpcLCHbqqVm2c+CqKMJ7dDve4j0NHkbduXNnMjMzmTRpEkOHDtWOjdLkzlioGWPSgZeAbkAImGOtfcoYkwz8A+gL7AVmWWtLmy+qiIhI9ND4KE7q3bs33/72t7njjjvYtm0b7777LsuWLaOqqgoAYy3e0n14S/cRiu1EbdpQ/KkDwe11OHmUC4XwlO0lpnAb7orTZ8/cbjdXXHEF06ZN45JLLsHj0ZyHNJ/G/O0KAP+/tfYTY0xHYIMxJgv4FrDMWvukMeYh4CHgweaLKiIiElU0PorjjDGRQ7XvuusuVq1axaJFi9iyZUukj6v6OLH7P8R3cAP+1EHUdh2K9XV0MHUUClQTc3QH3sPbG7z3rHfv3lxzzTVMnjyZ5ORkBwJKe3TGQs1aWwAU1D0uN8bkAD2B64Dxdd3mASvRQCQiIu2ExkeJNvHx8UybNo1p06axb98+Fi1axKJFi6ioCBceJugn5vBWvIe3EUjuR22PEYTikhxO7SzjrySmYAveo9sxoUC9ax6Ph8zMTGbMmKHDqMURZzVfa4zpC4wEPgK61g1SWGsLjDFpTZ5ORESkFdD4KNGmT58+3HXXXXzrW9/ivffeY/78+Rw4cAAAg8VbkoenJI9AUl3BFt++ZolMbQUxBZvxHt2BscF615KSkrj22mu59tprtaW+OKrRhZoxpgMwH7jPWnu8sb9VMMbMBmYD2gVHRETaHI2PEs3i4+O5/vrrufbaa1m3bh2vvfYa69evB8LnsnlL9+At3YM/qS81vf4NG9vZ2cDNzPiriTn0aXgG7V8Oph4wYACzZs1iwoQJxMTEOJRQ5KRGFWrGGC/hQehla+0bdc2HjTHd635b2B1ocL9Sa+0cYA7AqFGjbBNkFhERiQoaH6W1cLlcXHbZZVx22WXk5OTw0ksvsXbt2sh1b+lePGX78HcZTG2Pi9re1v6hADGFW4kp/AwTrL+D4wUXXMBtt93GmDFjtLxRokpjdn00wPNAjrX2N6dcWgjcDjxZ93lBsyQUERGJQhofpbUaMmQIv/jFL9i5cycvvfQSa9asAcI7RcYcycFbtJva7l+htttwcLkdTnuerMVTnIsvf8Npm4QMGTKEb33rW1x66aUq0CQqNWZG7QrgVmCzMebTurYfEx6AXjXG/AewH5jZPBFFRESiksZHadUGDRrE448/Tk5ODs899xybNm0CwIT8+A5uwFu0i+o+lxPs3NPhpOfGVVmCb99aPCcO12tPT0/nu9/9LldccYUKNIlqjdn1cQ3hZcwNmdi0cURERFoHjY/SVgwZMoTf/e53rF27lj/96U/s27cPAFfNceJ3Lg3fv9b7MmxMgsNJGynox3fwE7yHt2E4uao4KSmJO+64g2uuuUbnn0mroL+lIiIiIu2cMYYxY8Zw6aWXsnDhQp5//vnItv7e0r14jh2kpvel+FMHQRTPQrmPHSR27xpctSeXObrdbmbOnMltt91GfHy8g+lEzo4KNREREREBwmeH3XjjjYwfP54//elPLF26FAgvh4zd+wGekjyq+14ZfQdmB2rwHfiYmKJd9Zovuugi7rvvPvr27etMLpHz4HI6gIiIiIhEl+TkZB5++GF+//vfk56eHmn3HC8gYcubeIp2O5iuPnd5IQlb36pXpHXq1Ikf//jH/Pa3v1WRJq2WCjURERERadBXvvIV5s6dy80334zLFf6x0YQCxO1ZTWzuKgjWOhfOhog5+Alx29+tt9Rx3LhxvPjii0yePFmbhUirpqWPIiIiIvKFfD4f3/ve9xg7dixPPPEE+fn5AHhLcnFXHKEqYxKh+KQWzWT8VcTmrsBTXhhp69SpE/fffz/jx49v0SwizUUzaiIiIiJyRkOHDmXOnDlMmzYt0uaqKSc+523cpftbLIerspj4bQvrFWkjRoxg7ty5KtKkTVGhJiIiIiKNEh8fz4MPPshPf/pTYmNjgbqlkLuz8RZsbvav7y7bT3zOoshSR2MM3/72t/nNb35DWlpas399kZakQk1EREREzsrEiRN55pln6NatGxA+UDA2fx0xBzc229f0lOwlbvcyTCgAhIvGJ554gttuuw23291sX1fEKSrUREREROSs9e/fn+eee46vfOUrkTbfoY3E5G8Aa7/klWfPU5JHbO4KTN37du/enWeeeYbLL7+8Sb+OSDRRoSYiIiIi5yQxMZFf//rXXHLJJZE2X8EmvEe3N9nXcB8vIDZvFYZwkZaens7TTz+tbfelzVOhJiIiIiLnzOfz8fjjjzN69OiTbfs/xH284Lzf29ScqDeT1qdPH373u9+Rmpp63u8tEu1UqImIiIjIefH5fDz66KMMGjQIAGNtuMDyV5/7m9oQcbnLcQXC75GUlMSvf/1rUlJSmiKySNRToSYiIiIi5+3zmbWkpPCZaq5ANb78def8ft4jObgrigDweDw89v/au9sQuao7juO/39wZY56IycaETbLsrk2amrpRw27MmlqlSWD7yhT7olvpbqkY+6IhFAraFxUVCvoqoJSCFMkGSkWxRS0lNoqNfVFbtSCrWE20WlPzuJqHbczDZk9fzM1k9iHZzc7DvbPz/UCYe86cO/efJcvJj3Pn3EceYWdH1BWCGgAAAMpi0aJFuv/++wvt3NG9ioqedzZZPntKM/a/VWj39PSora2tLDUCtYKgBgAAgLJZt27diAdPT2XL/qsO9he24W9ublZ3d3e5ygNqBkENAAAAZXXfffcpk8n/NzN78oAyg4cnf/LQGeWOvD/is3K5XLlLBFKPoAYAAICyamxs1IYNGwrtqw6/N+lzc0f3FlbTWltbR+wmCdQTghoAAADK7q677iocZ7/4RDp/blLn5QY+HPEZF1bmgHrDv3wAAACU3cqVKwsPpfbwkLLH/jPhOZkvjyk6NSBJyuVyI77rBtQbghoAAADKzvaI2x+zX3wy4TnFYzo7OzVnzpyK1AbUAoIaAAAAKuK2224rHGeP75fi755dSvbYxaBWfC5QjwhqAAAAqIjm5mYtXbpUUv72x8s9U83nThUecJ3JZNhEBHWPoAYAAICKsK1bb7210M4e+/SSY6Nj+wvHq1ev1ty5cytaG5B22aQLQG154okntG/fvqTLqBkXflbbtm1LuJLasXz5cm3dujXpMgAAZdLZ2alnn31WkpQ9/qnOhHWSPWZc9vjFEMdqGsCKGlBRM2fO1MyZM5MuAwCAxLS1tWn27NmSpMyZQWVOHxs7aPi8ssf/W2gWr8IB9YoVNVwRVjquzMDAgB5++GE9+OCDamhoSLocAACqLpfLqb29XXv27JGUv/3x7Mz5I8ZEJw8WHnK9ZMkSNTU1Vb1OIG1YUQMqqK+vT/39/dq5c2fSpQAAkJjOzs7CcRQ/T+1kx48Kf4qfsdbZ2SmPc2skUG8IakCFDAwMaNeuXQohaNeuXRoYGEi6JAAAErFu3bpC+IoGj8jnTl98M4QRm4xw2yOQR1ADKqSvr0/Dw8OSpPPnz7OqBgCoW6+m578AAAdaSURBVNdcc41WrVolSbKCohMXv4+WOX1cmbODkqRZs2Zp9erVidQIpA1BDaiQl19+WUND+fvth4aGtHv37oQrAgAgObfcckvhuHgFLSra7bG9vV25XK6qdQFpNWFQs/2U7cO23ynqW2B7t+298ev8y30GUI82btyoKIokSVEUadOmTQlXBKDcmCOBySvecj868ZkUgiQpe/yzQv/atWurXheQVpNZUdshqWtU3wOSXgkhrJD0StwGUKS3t1chnoRCCOrp6Um4IgAVsEPMkcCkLF++XPPmzZMkZYZOK/Pl59LwkKKTBwtjOjo6kioPSJ0Jg1oI4TVJn4/qvlNSX3zcJ2lzmesCACD1mCOByctkMlqzZk2hHZ04qOh/R+VwXpK0bNkyLV68OKnygNSZ6nfUFocQDkhS/LqofCUB00NfX58ymfyvWCaTYTMRoH4wRwKXULxRSDR4SNHJQ+O+B6AKm4nY3mL7TdtvHjlypNKXA1KDzUQAXA7zI+pRW1tb4TgaPKxo8PC47wGYelA7ZLtRkuLXw5caGEJ4MoTQHkJov/baa6d4OaD2bNy4UdlsVpKUzWbZTASoH5OaI5kfUY9aWlo0Y8YMSVLm3KkROz5ef/31SZUFpNJUg9oLknrj415Jz5enHGD66O3tLdz6GEURm4kA9YM5EriEbDarFStWFNqOX6+++mo1NTUlUxSQUpPZnv93kv4maaXt/bbvkfSopE2290raFLcBFGloaFBXV5dsq6urSw0NDUmXBKDMmCOBK3fdddeN6WttbS080gZAXnaiASGE7ku8taHMtQDTTm9vrz7++GNW04BpijkSuHItLS1j+lpbW6tfCJByEwY1AFPX0NCgxx9/POkyAABIjfFucVy2bFkClQDpVvFdHwEAAIALGhsbx/QtWbIkgUqAdCOoAQAAoGrGe6j1okU8bhAYjaAGAACAqsnlcpo3b96IvoULFyZUDZBeBDUAAABU1fz580e0FyxYkFAlQHoR1AAAAFBVo7fiz2bZ3w4YjaAGAAAAAClDUAMAAACAlCGoAQAAAEDKENQAAAAAIGUIagAAAKiq0dvzAxiLoAYAAICq6u7uLhxv2bIlwUqA9GIvVAAAAFRVe3u7tm/frhMnTmj9+vVJlwOkEkENAAAAVWVbN998c9JlAKnGrY8AAAAAkDIENQAAAABIGYIaAAAAAKQMQQ0AAAAAUoagBgAAAAApQ1ADAAAAgJQhqAEAAABAyhDUAAAAACBlCGoAAAAAkDIENQAAAABIGYIaAAAAAKQMQQ0AAAAAUoagBgAAAAApQ1ADAAAAgJQhqAEAAABAyhDUAAAAACBlSgpqtrtsv297n+0HylUUAAC1jjkSAFCKKQc125GkX0n6tqRVkrptrypXYQAA1CrmSABAqUpZUVsraV8I4aMQwllJT0u6szxlAQBQ05gjAQAlKSWoLZX0aVF7f9wHAEC9Y44EAJQkW8K5HqcvjBlkb5G0JW4O2n6/hGsCtWihpKNJFwFUWXPSBSRswjmS+RGQxByJ+jSpObKUoLZfUlNRe5mkz0YPCiE8KenJEq4D1DTbb4YQ2pOuA0BVTThHMj8CzJHA5ZRy6+MbklbYbrV9laTvSXqhPGUBAFDTmCMBACWZ8opaCGHI9k8kvSQpkvRUCOHdslUGAECNYo4EAJTKIYz5WhmAMrK9Jb7FCQAAFGGOBC6NoAYAAAAAKVPKd9QAAAAAABVAUANitr9jO9j+WtK1SJLtH9vuSboOAAAAVB+3PgIx289IapT0SgjhoYTLAQAAQB1jRQ2QZHuOpPWS7lF+G23ZvsP2HtvP2P7A9qO277b9D9v9tr8Sj9th+9e2X7X9ke3bbT9l+z3bO4qu0R2f947tx4r6B23/0vbbtl+3vTjuf8j2z+Lje22/EY95zvas6v10AAAAUG0ENSBvs6RdIYQPJH1ue03cf6OkbZLaJP1A0ldDCGsl/UbS1qLz50v6lqSfSnpR0nZJX5fUZvsm20skPRaPuUlSh+3N8bmzJb0eQrhR0muS7h2nvt+HEDriMe8pHygBAAAwTRHUgLxuSU/Hx0/HbUl6I4RwIIRwRtKHkv4c9/dLaik6/8WQv4+4X9KhEEJ/CGFY0rvxuA5JfwkhHAkhDEn6raRvxueelfTH+PitUZ97wQ22/2q7X9LdyodAAAAATFNTfuA1MF3YblB+pesG20H5h9MGSX+SdKZo6HBRe1gjf3/OjDOmeNzQZUo4Fy5+WfS8xv+93CFpcwjhbds/lHTHZf9SAAAAqGmsqAHSdyXtDCE0hxBaQghNkv4t6RtlvMbfJd1ue6HtSPkVuz1XcP5cSQds55RfUQMAAMA0RlAD8qHpD6P6npP0/XJdIIRwQNLPJb0q6W1J/wwhPH8FH/EL5cPebkn/KlddAAAASCe25wcAAACAlGFFDQAAAABShqAGAAAAAClDUAMAAACAlCGoAQAAAEDKENQAAAAAIGUIagAAAACQMgQ1AAAAAEgZghoAAAAApMz/AWqRv4ywtQ+hAAAAAElFTkSuQmCC\n", "text/plain": [ "
    " ] @@ -1961,12 +1961,23 @@ }, { "cell_type": "code", - "execution_count": 156, + "execution_count": 2, "metadata": {}, "outputs": [ + { + "ename": "NameError", + "evalue": "name 'ammonia' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 10\u001b[0m \u001b[0maxis2\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpyplot\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msubplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m2\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m2\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 11\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 12\u001b[0;31m \u001b[0msns\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mboxplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mammonia\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0max\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0maxis1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 13\u001b[0m \u001b[0maxis1\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_ylim\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m70\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 14\u001b[0m sns.swarmplot(y='Ammonia', data=ammonia, ax=axis2,\n", + "\u001b[0;31mNameError\u001b[0m: name 'ammonia' is not defined" + ] + }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2UAAAExCAYAAAD89gqbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3XlgXHd16PHvnV2j0b7vkiV75H1fYmffFyDQhATCXlpoaYG2PHiltK+lvEILFF5poYUQ1iRAEkhIYsfBdpx4XyRvkiyNrH1fR9KMZl/u+2OkK12NCQ6Joxifz39zdWfuT+NJ7hyd8ztHUVUVIYQQQgghhBCLw7DYCxBCCCGEEEKIq5kEZUIIIYQQQgixiCQoE0IIIYQQQohFJEGZEEIIIYQQQiwiCcqEEEIIIYQQYhFJUCaEEEIIIYQQi8j0u05wOp0fBj4889AGrANuBP4DiAK/cblcX7w8yxNCCCHemuT+KIQQ4o2ivJY5ZU6n89vAWeATwH1AB7AT+HuXy3XqsqxQCCGEeIuT+6MQQojX45LLF51O5yZgJfBzwOpyudpdLpcKvAjccpnWJ4QQQrylyf1RCCHE6/U7yxfn+Tvgi0A64Jl33AssebUnRqMx1WQyvvbVCSGEuBIpi72AN9nvfX8EuUcKIcRV5LfeHy8pKHM6nZlArcvl2u90OtOBtHk/TgMmX+35ExP+S7mMEEKIPwB5eWm/+6Q/EK/3/ghyjxRCiKvFq90fL7V88XpgL4DL5fIAYafTWe10OhXgDuDg612kEEIIcQWS+6MQQojX7VLLF50kNi3P+jPgMcBIorvU8Td6YUIIIcQVQO6PQgghXrfX1H3x9zU66r38FxFCCPGWkJeXdrXtKXtd5B4phBBXh1e7P8rwaCGEEEIIIYRYRBKUCSGEEEIIIcQikqBMCCGEEEIIIRaRBGVCCCGEEEIIsYgkKBNCCCGEEEKIRSRBmRBCCCGEEEIsIgnKhBBCCCGEEGIRSVAmhBBCCCGEEItIgjIhhBBCCCGEWEQSlAkhhBBCCCHEIpKgTAghhBBCCCEWkQRlQgghhBBCCLGIJCgTQgghhBBCiEUkQZkQQgghhBBCLCIJyoQQQgghhBBiEUlQJoQQQgghhBCLSIIyIYQQQgghhFhEEpQJIYQQQgghxCKSoEwIIYQQQgghFpEEZUIIIYQQQgixiCQoE0IIIYQQQohFJEGZEEIIIYQQQiwiCcqEEEIIIYQQYhFJUCaEEEIIIYQQi0iCMiGEEEIIIYRYRBKUCSGEEEIIIcQikqBMCCGEEEIIIRaRBGVCCCGEEEIIsYgkKBNCCCGEEEKIRSRBmRBCCCGEEEIsIgnKhBBCCCGEEGIRmS7lJKfT+XngHYAF+A7wCvAjQAUagb9wuVzxy7RGIYQQ4i1J7o9CCCHeCL8zU+Z0Om8EtgM7gBuAMuAbwN+7XK7rAAW49zKuUQghhHjLkfujEEKIN8qllC/eATQATwPPAc8DG0n8NRDgBeDWy7I6IYQQ4q1L7o9CCCHeEJdSvpgLVABvA6qAZwGDy+VSZ37uBTJe7QWysuyYTMbXs04hhBDireZ13x9B7pFCCCEuLSgbB1pcLlcYcDmdziCJEo1ZacDkq73AxIT/91+hEEKIK0peXtpiL+HN8rrvjyD3SCGEuFq82v3xUsoXDwF3Op1Oxel0FgOpwL6ZWnqAu4CDr3eRQgghxBVG7o9CvEadgx6+/asGvvGLM5xqHV3s5QjxlqGoqvo7T3I6nV8FbiIRxP0d0Ak8TKLbVDPwpy6XK/bbnj866v3dFxFCCPEHIS8vTVnsNbxZXu/9EeQeKa4eU74wf/s/RwlFEv9JKMDnHlqPszxrcRcmxJvk1e6Pl9QS3+Vyfe4ih2/4vVckrjhPPPEYJ08eX+xlXFF8Ph8Aqampi7ySK8fmzVt54IH3LfYyhLhkcn8U4tI1doxrARkk5kbUu0YlKBMCGR4txGUTDocIh0OLvQwhhBDiLSE3w5Z8LDNlEVYixFvPJZUvvl5SmiGuRp/97KcA+NrXvrXIKxHizXU1lS++EeQeKa4mP3qhhYNnB1ABZ1kmf/XutVgt0n1UXB1ed/miEEIIIYQQr9eH76rlbdsrCEfiFOdKeb8QsyQoE0IIIYQQb7jDDYM8fbCDQCjGjeuLuf+GahRFITdDShaFWEiCMiGEEEII8YYadvv5wc5mZmtzXzjWQ0luKgXZdnYd7SYUiXHT+hI2OvMXdZ1CvFVIUCaEEEIIId5Qbf1TLNws2dTp5qcvtmodGJu7JqQlvhAzpPuiEEIIIYR4Q1WXZLCwo4HJaEhqiV/nkgHSQoAEZUIIIYQQ4g1WmG3nw3fXkumwYLUYuXNLOdtXFSadly8t8YUApHxRCCGEEEJcBtetKea6NcUAjEz4GfeEuH5tsdYSP91uYd+pPgbGfTxwUw0pVvlaKq5e8ukXQgghhBCXza8OtLPzSDcqkJVm5X+/bz1PvNRGx6AXjx9GJgKEI3H+9O0rFnupQiwaCcqEEEIIIcRrFo3FqXeNMu4Jsn5pLkU5yXPH3J4gO492a00/JrwhDpwZpGPQqzuvoWP8TVixEG9dEpQJIYQQQojX7DtPN3KmbQyAZw528JkH1+Esz2I6EMEfjJCfZWfKF0Zd0IZxyh8iPzOFkcmAdmx2kLTHH8ZoUEi1mYFE4Hfmwhhef5gNy/LIcFjfnF9OiDeZBGVCCCGEEOI1GRjzaQEZQDSm8puTvbT2TfHsoU5icZWa0gw+ed9qinLsDI77tXNbeyeJxVQsZgPhSJyCrBQeurWGh59r4ljTMAaDws0bSnnPLTV884mzNHdPAPDUKx184QMbtQBOiD8k0n1RCCGEEEK8bqFIjGcOdBCLJ1JjbX1T7DnZx2ffu57bNpVRW54JQCSqElchHInz7puq+fLHttE36uNo0zAqEIur7KnrZV99nxaQAQRCUfbV9y3GrybEZSdBmRBCCCGEeE2Kc1NZV5OrPTYZFVZWZScNjB5y+8l0WHnvrUu5ZmVyS/zxqSCKojAw5k/62bA7+VgkFtc9jsXjSecIcSWS8kUhhBBCCPGqGjvHeam+H5NR4Y6t5VQXZ/CJd62i3jXK2FSADcvyyEqz8sKxHqYDEe15oXCU/tFpSvIcLCvPxKAoxOdtMltekQXAyqosdh3r1o4bDQo3bSylrd9D93CiKYjJaOCm9SVAojHIT190zTQZyeOj9yyXlvriiiaZMiGEEEII8Vt1DXn4f0+c40zbGHWuUb72s9O4PUFMRgNbVxRwzzWVFOWkYrOY+MyD61hTnYPRoADQ0OHmSz+uY2DMR0GWnY+/YwXZ6VbsVhO3bSpjozOfQCjKz/Ze0K5nNRv5s3tXUpyTyuceWs8911SQn5VCpsPC6Quj+IMR/ufXTYxNBVFVONU6yjMHOxfr7RHiDSF/UhBCCCGEEL9VXcuoLrsVjsQ5fWGMguwUVBVWVGZhNCT+zl9RmMbWFQWca59rcR+OxjncOMi7b6yhtXcKtycEwN76XpaVZeDxR+gb9WnnhyIxguEYABazgaNNQ9pznj/SjT8YJRCK6tbYOei5PL+8EG8SCcqEEEIIIa5C0Vic35zspaVngqrCdO7eVoHVYkw6LzfDlnRsX30vQ+5ES/uyfAd/+74NpFhNBEJRDIqSdL5BUfAHI7x8pl87pqqw61gPG515Sef7glFGJgNM+8NaQDara9iLI8WsK5Msy3fQNzpNaZ4DgLiqcrp1jMFxH2uqcygvSLvEd0WIxSFBmRBCCCHEVeiJ/W3srUt0M2zscDPo9vOJd65KOm/7qkJOtoxonRCrS9Jp75/LTPWOTHOsaYiBMT8vn+lHVVUyHBampsMAKMDOo9209U2iLhhaFovHGZ8KYjAoxGe6NqZYjeyp6+Xn+y7gSDFhMhqIzmvwUZ7n4MGbanh8zwVGJwOkp1rYf7qf/af7WVqawV+9ey0/23eBQ+cGAXj6YAd/8a7VbFiWHPwJ8VYhe8qEEEIIIa5w4UiM7iEv4Ujskp9z/Pyw7nG9a4RAKMrguE/X1dBiNvLXD6zlf71nHV/5+Da2Li9Ieq0LfVPsO9VHLJ5odz81HeaOLWUYDGgdGV29U7oZYwoQj6nsP92vBWQ1JRmU5qYyPhUEYDoQxWI2YJ9p4lFdks691y1haWkm//iRzXzq/jUMzevSeKFvihdP9HC4YVA7pqqw+0TPJb8vQiwGyZQJIYQQQlzBWron+PbTDfiCUVJtJj7xzlUsr8z+nc/LSrPi9c+VAKbazHzuv4/gC0bJSrPyyftWU1mYTmPnON9/vhmPL0xxbiofvNOJ3WrCP7Ovy2I2kG43J71+MBxjYcd6R4qZ69cWMz4VZPvqQh5+7rzu595AJCmw9AejfPMvd6ACmQ4rI5MBfvqii+lAhJx0a9J1JxaUOwpxJZBMmRBCCCHEFezRPa34gokAyReM8uie1kt63oM3LyXFmthDZjYZUBS015nwhnhsTyvxuMoPdiYCMoCBMR+7jnbz4C01GI2JvWMKkJORwvydZAqwY1UhjhR9sNY/5uPA2QGautw89htX0h62LIeFtfPmnwGkppj4wa4Weoa9hCIxvvJoPftP93OyZYTdJ3qxmOa+zirA9tWF7FhdNHdMgbu2lF/SeyLEYpFMmRBCCCHEFWx0MqB7PDIR4DcneugdmWZFVbY2tDkcidE15KUg205GqoXlFVl8/RM7ONc+RnFuKv/4g5O61xka9+MLRpic2Rs2q3/Ux+hkgFgsUXIYisR56XQ/b99RyXNHulDVRCA0Ohnkrx9Yy1Mvt+P2BCnLd1DnGtVexx+KsXpJNue7JojFVVJtJu6/sYaSvFTMRgPnOsYYnQjgC0Rp6BinsXOcd99Yo+1Vm7WiMhuzyUAgHOWmdSU4y7NYWpbJuppcBsd9VBWlYzIaiERjmE2JILCxc5ymTjeleQ6uWVmIwaDQ3OXmUMMgqTYzt28uIzcz5Y35BxLiEkhQJoQQQghxBdvozONY09z+sAyHhZ+/1AbA4cYhJrwhVlZm840nzuD1RzAaFN5/+zK2rSjkO8800tTpxqAo5GbYGJvZywWQl5lCLK5SVZRG56BXO76mOke3ZwtgfCpAU5eb2T4ecRV+tu8C3/zkDj773vUMjvs4OzPnbL6KwjQ+cvdyBsf9ZKVZ+eUr7XQMeFhamsH1a4t5cn+7dq6qQu+Il4VK8lK574ZqRiYD7D7ew5GmIXasLmLDsjxeORPmm0+cJRZXSbOb+ZsH1tEx6OGnL7q057f2TrJ9VSFf/8UZbf11rhG+8vFrsJqTu1EKcTlIUCaEEEIIcQX70B21ZDqstPVNUVGYxr76Pt3PD5wdoLl7Qts/Four/OKlNqYDEZo63UCihfzYVJA11Tk0dbqJxVW6hrz84w9O8On717J7JvO2qiqb+2+oJhyJcbhxSLvG5toCXL0Tuuv6AhFC4Rg/3n2eky0jQGL/WTiS2GhmNCi8eKKH5q4JPnhnLY/+xsX5rsRrnGge0Zp9zFdTmonBoHC4IXHtvEwbt2wsJRyJ8a+P1mtZvXrXKJ/8o9X84qU2YjNNRLz+CE+90s6EV7/n7HDDELG4yvzGkJPTYc53ulkvHRvFm0SCMiGEEEKIK5jVYuSBm2oAiETjHG4Y1IYvA6TaTEmBSDAcY2DMx0JZDqsWxEAikDnfNU5VYRpD435GJgIMuf184A4nDruZo03DRKIxQpEY62pyeenU3ByyquJ02vqntIAMEoOnr1lZwOC4n64hL7E4tA94+PbTDYxO6Mswe0a8LK/I0lrx15ZnsmNVITetL6EsP42nD3QwOhnk3x4/zZ1bypLKLI80DuneBwC3J4jFpM9+mYwK6amWpPfiYseEuFyk0YcQQgghxB+ACW+IIbefd15XpTXdMBkNvOv6JWxdnq8711mWydYVhbpjVrOR0vxUFuoa9PLky+30jU7T0DHOv//iDABuTwiPL0wgFONU6ygDYz42zsssdQx4krJ2AFlpNt3gZ0jsgyvK1V87O82mBWSQyKxZzEaisTjPH+kiNNOlcdjt52iTvr0/QH52CrXlmbpjW1cU8PYdlboB13duLeeOLeXkZ6XozqsuydA9Nx5Xaepy09I9QXzBvDUhXi/JlAkhhBBCXOF+daCdXUd7iKsq5QUOPv+BjYxPBWYyXROsrsrmvbcupaF9nJK8VO65phJHipmP3F3LwbOD2G0m3ra9krI8B/vq+7XZXxkOS1K2aToQoWPAQ2PnuO54S89kUot6V88kVrOBUGSuN/6xpiEURXcauRk2Mh1mBsYSj9NTLdgWdGZs6ppgZDKA2WhICuqmfGFuXFfMy2cGACjMtnP7pjKMRgM7j3bRP+pjdXUOt2wsxaAo/N8/3Upzl5uy/DRsViMnm4f58F21xOIqDpuZuKrys70XSE81c8O6EkxGhX977DTdw4k9bUtLM/hf71mP2ST5DfHGkKBMCCGEEOIKNuT28/yRbu1xz/A0py+MMukNaRmk3cd7+Og9y/mbB9cBEI3F+cGuZo42DmGzGLnvxmpqSjKIx1Xuv3EJrp5J8rNS2LqikF3Hujk/L2NlUGBvfS8pVhOB0FzAVpRjJxLVDyZTFPjMe9axt66PC72TTEyHcc+UUjpsJnzBKCV5qayozOY3J3u153l8YQqz7brXMigKA2PTHGkcxm4z4Z9p3w+wriaHB29eSkleKsfPj5CfacMfilKUk8rKqmw6BjwcbhjEajZy/dpiCrPtFGbbOXZ+iIefPa8NuH7XdVUsr8jm3x4/pZVxHm0a5qb1xVpABokh1adaR9m6InmQthC/DwnKhBBCCCGuYGMLWuJDop39mQtjumN76/u0+V2vnBng0LlEB0VfMMpPd7uoKc7ghy+00DnoAaA838GO1UXcva2Cjv4pWvumMBkVojGVU62J1zabDESicbLTrGyuzScai7PrWI92zXAkzn/9soEHbq6hocOtW890MMq/fXwbg7+l/LAwK4W2/iniM8HR9lUFfOfpRqIzrfgVJZERW780j3uvraKxY5zH9lwAoK1/ioZON//7ofV866lz2nN+9EIL2WlWVi3JAeC5w13ML0TcdayH4YmAbl/dwJiPrqHkro8Ls3VCvB6XFJQ5nc7TwNTMw07gu8B/AFHgNy6X64uXZ3lCCCHEW5fcH8WbIRRJNOUozk29aIv2pWWZpNvNePxzQcL6pbmcax/XBRdm41ypXddM4DVLBfaf7tcCMoCekWmOnR/mxnUl/O37N+L2BPmfZxppG5g7JxKN89CtS3lifxvPHu4CYPuqQjy+MI2dblTA44/ww10tlOU7dMFNRqqFv3v4OLG4itGgr2c0GRUONw4Sn0m8Wc0GMhxWLbiCRIv8a1cXcde2CgCON+sDO68/wv5T/brnAJxtH9eCsoU/i8XjumHUs9ZU53CyZUTrHJliNbHRKZ0ZxRvndwZlTqfTBuByuW6cd+wMcB/QAex0Op0bXC7Xqcu1SCGEEOKtRu6P4s1wvsvNd55uxB+KYrea+PN3rWJlZbbuHKvZyOce2sBTL7fjD0W5bk0RO1YX0T/m48UTcyWBwXCMjgEPS4rTqa3I0rW0NxoU0u3J3QYHRhPzxWorsshOt5Hh0O8ZMxoUTjQP64KbE83DrJ4JembF4ioVhekMuf0EwzGyHFaCkagWNMbiKpkOCzaLiVSbidzMFI6fnwuyQpF4UndFAEeKmZ/vu0D7wBRcpPdGZWE60K87VpKbyonmYX6+7wJTPv1r3rCuhFs3lVLnGtUyYetqctlcW0BBlp29db2Eo3Hetr2CzJn3IhqL0z/qIz8rhRSrFKGJ38+lfHLWAnan0/mbmfP/CbC6XK52AKfT+SJwCyA3HSGEEFcTuT+Ky+6xPa34Q4m9U/5QlMf3tPIvf7pNd04gFOWxPa00d09gNCg4yxIdBx+8eSmqirZXq290mm8+cYavf2IHW5bn0zno4VTrKKkpZv7o+iVUFqazp65Xu57RoLC3vo+99X1kpFr42/dtYFNtPmfaxrRg6q5t5TS068sSozE1qQGG0aDwypm54CgrzULXkD4gUoF331RNXcuINlNtPmdZJs3dbtyexJ60FZVZNHSOU9cyN5DabjVp679pQwk71hQxNOHnxRM9xGIqG5x5rK7O4W//56gui+gsy+SmDSVsqs3HoCjctKGYXcd6iMdUUqyJjo+9I9OcaB4hHI3T3u/hrx9YSzQW5/89eZbJ6TBWi5E/vns5m2v1nS6FuBSXEpT5ga8D3weWAi8Ak/N+7gWWvNoLZGXZMZlkIrq4uhhnykTy8tIWeSVCiMvkdd8fQe6R4tUtHKA8Ohmk1x3AoMCamjwMBoUn97VqreNjcZXnjnRx+/YqKovSmVoQ3PiCUerbxvnl/gtMeEPkZNj46/duwFmRTe+wl7t3VNE34iXFamL/vHb2U74we0/3c/L8sC6YWVqRTWVJJv/15FntmNVs5ERzYjaZ0aBQku/AaFDonFf22DHoZdPyAurmlRzWVmTzn79s0L3ObNv7Dc58WvomtYAMICsjheONg7rfLxKN8e+fvp5YXGVZeRZGg8I911VT7xplyO3H1TNJ/YUx3e8AkJ2ZwvZ1paSnWuga9PDc4bnGKUebhlm9NJ/H914gPNPIZNwT5Lmj3QRCUS2DFwrHeGxPK7dvr8JklK6M4rW5lKCsFWhzuVwq0Op0OqeA+XnzNPQ3oSQTE/7ff4VCXKFiscT/uEdHkzcHC/GH7Cr6Q8Trvj+C3CMXg8cX5sUTPYx7gmyuLdD2Bnl8YbqHvVQWppE2r5TP7QmSmmK+6H6uy22jM0/XBMNiMvCP3zsKQHVxOp97aD3tPRNJz3ulroeXVZV4TN/O3qAoPHugTRsmPT4V5Fu/OM07r13Cf/2qQZu/tWlZ8n6proEpPAvK/V6p7+Pa1UVsX1VIKBIjFlM50zbXYCQWV3n7NRUcOz9M57znKQr0Dk5pj2tKMvD69AOuQ5EYH7m7lpJcB0uK0/nY1/brfn68cZC8zBQGx+f+G8pKt/H1R+sYHPeTnW7lY29fya5j3VqL/+lAhOcPdWgNSmad7xjng198kQyHhW0X6ajYcGGEQCiqO9Y/4k0aF+Dxhentn8SRYk56jVdz+sIonYNenOWZSeWpr8XYZGK4d01pBjZL4mu+xx/mQu8UZfmp5GclOlq+cqafw41DZKRauHdHFaX5jt/7muLSvdr98VKCsj8GVgOfcDqdxYAd8DmdzmoSNfN3ALKRWQghxNVG7o9XoLiq8vWfn6Zv1AfAieYRPv6OlRgNCt97rkkrvfvzd66iqiid//zlOToGPNgsRt5761KuW1NMz7CXA2cHsJiM3LyhhNzMFAKhKIfODeINhNm6vICSvIt/yW0fmMLVM0llYRorfsuX77GpANGYSmG2nQ/eUUtmmpX2vinMZiNNne55r+WhzjXKqiU5uv1hZpOBp15u1x5np1lxe0PYLEbuv7Gax/a06q43NO5n1/Fu3UDk+tZRCrPtWjADsGNVER39Ht3WrbGpAN/65TkgEWitX5oczB1qGOR8lz5wrCxMo3Nw7o+Wbf1TrF6ifz9muyvuq+/j5y8FSLWZdXvAcjJsKPMGntmtJmwWIz3D00BiuPUPdjYnrWc6EOVP3raCnUe7mJoOY7eZGJvJSE5NhznaOITRoOiyaRud+QyO+3WNSjY68wmFY+w+MddtsrY8UwvIwpEY3cNeCrPtuiDf658N/tNxpJh56uV2dh1LZOaePwLvuWUpt28u084fGPNxqGEQi8nADetKyEqzMjUdYt+pfqb9Ya5ZVcjS0kx2H+/hyZfbUFVItZn4zHvW4QtG+c+nzhGOxlGA9966FIfdzI93u7TXb+2d5Kt/vn1R/ugg5lxKUPYI8COn03mIRLnvHwNx4DHASKK71PHLt0QhhBDiLUnuj1egnmGvFpDNOtw4SP+oT2tWEYnGeeKlNpZXZNExU3IXDMd49DetFGWn8rWfn9ayLEcaB/nnj27lG784Q89IIhjYfbyXz79/A1VF6brrvHKmX/dl+N5rq7j32irtsaqq/HBXC4cbBlGBVVXZfPK+1bz7xhoAnj/SpQvKAM61jXGuIzHE2WoxUl2czuhkkNF5bfI9/jBfeP8GWnonicdVVlXl0NAxN/h5dXUObo++TBIF/vydKzjRPIrbEyI3w8a++j5sFiOhSJy4qrKkKJ2uobmSRFWFkQm/ruww1WbibJt+yPRH7qqltW9SF5QB2CxGreU+wG2bynhkZzMjEwHdOcFwLDFc2mzSzQ7LzbRpGcBZI5MBbt5Qwkun5vazVRWls21FAel2Myrwkxdduud4/BFu3lDCieYRFAXu3FrO+qW5tPRMMDCW+Oxsrs3n1o2lfPvpuXLLysI0/vydqwDoHPTwzSfOMh2IYDIa+NCdTnasLqLeNcp3n20iGkt0efzYO1ayt75Xd/0XT/RoQdmQ28+XflynvZ8Hzg7wTx/ZwlceO6W9LwfODvLpd6/h6YMdzMbVvmCUZw52Mh2IaCWXKvD0wQ6WV+iDX68/woXeSa0jpVgcvzMoc7lcYeChi/xo20WOCSGEEFcFuT9emRwpZhT0jfrS7RZa/PpMzpQvrH0BnxWJxjlwtl9X9ubxR9h9okcLyCDRjW//6f6koGw2GzJr94ke3ra9AqMhsf/ofNcEhxrm9kg1dro53DDEjetLANiwLJdnD3cRjc22ZTdS5xrVMjqhcIyinFQ8Pv0+MlWFb/3yHN5AovwuO93KjtWFdA95UVU43TqqyzgBKIrCv/z0FLdtKuOPrl/C335X3xjjPTfXsGNNEZ/+j9m/SSTE4ippdjOhqRg56VZqy7M5vGDf18hkgEBQX/ZnMRs4Oa9hx8ZluWxfVagbKA1Qlu/goVuXkeGw8PnvHtP9rGd4mk3OPOpcc69TXZyuZcEMClQVp/Mn96zgX35apwWFjhT91+FMh1UXxHUPeTl4bpC9dXN77I43j5DhsNLSM1eh3DXkZcoXJs1u4cn9bVr3xmgszs/3XWDrigJ+8dIF7d8vHI3zxEsXMCS994lgvzg3lVOto1pABjA5HeaF4926QDWuqhw8O5A0uHtyOkQwpH+fg+EYuRk2/fVZoNaJAAAgAElEQVSAvKwUxOKSXYhCCCGEuGrkZqRwx5Zy7XFGqoW3ba9k28pC3XnbVxWypkafOchKs1KQbU96TYctef/QpDfEzqNd9M0L1tQFLdvVuMqQe+7L9ehFhkDPHpsORPjPXzZoX+jT7Rbef7szqWFF77CXjFT9eiqL0rSADBJlfcvKMrn7mgr6x3zEVbTXWVmVyKLE4yrhSJydR7vZW9+bdJ3OQQ8/2NmM0TgXUCjAtD+iBUHjnhAjk8l7Jvef6uPUhVHtORuW5WEy6L+Snm0fx2EzJ80vC0VifOXRej7zX4exWfTldvlZKdp+NoOS6M5YWZTGufZEpi6uQtegl3Md47os3XQgirM8k/zMlMRajPprnmwZoalTn+2LxuK090+x0LDbj8cXZtyjz9j5glGC4VhSW/8pX4RrVuk/e5PeMN9/vpl//lHdRa+RlpI8uiA73aZ13Zy1fVUR164p0h3b6MznbdsrtT8YGA0K915bRUFW8udavLlkmIIQQgghrioP3FzDtWuKcHuCLCvLxGI28oHbnRRl22kf8LCsNINbNpWioBCJxDnpGiEvI4X7blhChsPK4YYhba+VsyyTO7aW0dztpmlm35TJqNDY6aax083TBzr55H2rWVuTyx1bynX7uSKxOP/w/eNUFaXx6XevZU11DhaTQSs3A+gY8FDXMsK4J8jwhL4kEVXFkWLWMjIAE9MhRifnShE3OfOoLEyjvV8/LNrjC1+07fzFBieHwrGk7GLXkFe3nqIcO++9ZSnfeOKs7rluT5C11Tk0dbkxmwysq8nVNS5RSQRTg+M+rZU9JEoxv/STOl0wmJth0/aLQSKbWZxjZ9wTorIoja4hr1b6GFfBYFB07wUkgs+h8eRAcc2SHO7aVoHHF+brPz+94D0xUlGYrsvkKQqU5qfi6p3LlFnNRn59qJO+UV9SwOgsz+Tpgx2kWI14/XP/vioq+0/1YzQqbFyWx5Dbr/sdW3unyEm3MT5TXlpdnM7tW8roGvJoGcFMh4VbN5Vit5rYfaKHwTE/a2tytYAsK81KU5eb8vw0btlYgtlk5B8+tInBcR+pKeaLzqcTbz5FXfhnm8tgdNR7+S8ixFvMZz/7KQC+9rVvLfJKhHhz5eWlKb/7LDFL7pFXnmgsTmOnG4vJQG1FFgZFIRaPc65tnCG3nyfnNdmARPOHzz20AQBXzwSnWsfYU6cvy7tjSxkP3ryUtr4pdh7r4nzXhK4cbWFZHiT2MM02njAoCteuKeTAWX2pYH5WCp9//0b+6YcnmJrJ0hiURNCSYjUSmFfeppDY5/bMoU7da6TZzXj9ES1rtX1VIQfP6a9jNRv5+w9u5Bu/OMvE9FyWqDg3VVcGWlOaQVufPvuzuTaflp4JLUg0KApZaVYtEIFEyeUfXbeE7y9o3HHjumI+cIeTIbefLzys38JZkJ1CeX4aJ1tGtGMpFiPXrinipVP9WsBnsxj5549u4VjTML8+1JmUFbx1UykD4z46B7wEw1FSbWaqitJo6Jjb31eW58BmNXJh3u+WYjVSVZROWb6DrkEPrt65n+Vm2DAZDbpGKilWE7npNnpH54IyBfi3P7uGjkEPFpOR1dXZWrlra+8kXn+EVUuypUnHFeLV7o+SKRNCCCGEeA1MxkTGx+0J8tT+dqaDEa5dXcT6ZXlMeEM89XI7vy3SdpZnEVdJCsqGZ8oYa0ozuHNLeVJzDH8ohtViJBSea6AxvxNgXFVRFIVUmwlfcC7jZDQoHGkc5K/fvZa2/ileONatldYFQjHS7GbMJgMTnhAq8MyhTlZUZjEyESAeV/EGIlqwFIur3LCumA/dmWjUMTyv9NKRYuYfHjkBJAIJq8XImuocWrr1e/Xa+qZYVpZJ60yGKS/TpguaAB68pYanD3Tojk14Q4SjcS2gnJWXlcLffe8YwxMBLGYD4chcIOv1RbTXNihQUZhOKBxlz7y9YWuqc3jgphoUFF2jDEg0WrnvhiV884mzeOZlFe/cVsazB7t064vE4gS8+pb5gVCMj719JWaTgb/45gHdz2JxFYtZWXB+lK0rC+h9eS4o27Asj9zMFK3D586j3Qy7A6xfmssmGVL9B0X2lAkhhBBCvEbhSIwvP1rP7hM9HDo3yFcfP82Fvkmy0qxsW6mfc9Ux4OF7zzbhnwmWakrSSU/Vl4z1j03z8HNNjE4GyHRYky+oqtx/wxJu31zGPddU8IHbnUmneHxh7thSjnmmBNFgUBgc9/Pk/nb+9bFT1JZn6QI2SOwBK8y264LIlu5J/v5Dm/ird69Nah7RPeTlq4+f0gVkJbmpeObNGFOB8nwHf3bvKtIW/J4pViNtfYmAzGo2sMmZHFgMjPmSmqRkp9n4yYsuLSDLTrPyvtuWcbhhSCujDEfiZDos1JZnstGZpyuHjKuJUtOBBaWLcVWlODeVsalA0p4/o0EhHI3rAjKAps6JpKBbVVUqCvQzqLLSrHz50Xr+70/qSLHq8yD5mSlsXDALrroknf55nUEdKWYeuLlGe/wfT53jmYOdHG0a4jvPNHLg7ACXYsjt50jjICMyE/EtTYIyIYQQQojX6HzXBO55zRziqsrhhsSssI/es4I/u3cl9pkv4uFonGPnh3nqlURZYygS5y/etYqNzjyy0xMB2OhkkKNNw3zzibPkZaVwx5a5OVUGBc53T/DYngt0DHp413VL2FibR1GOvjnDmQtj/OpABwWZKbzr+iri81JKwXCMl0/3Jw0mXluTq8suzf4uzxzo4EcvNGMx678q2m0mXcdBgHdcV6Xt5Zrl8Yf5P4+c0AUZJqNCPD6X6QpF4jR1ullYzzUw5qN5XoZtdVV2Usv+zDQrN6wrTuqQGYrE+dxDG1i2oOnF7PUXXstmNvKT3S1899mmpAYfHYMefrK7Jak7YnGOPWmmWigSo741UV5qt5qoLk5nwhtiZCLA4LifQCiKdea9zHRYeOCmGtr7595Hu9XEbZvKONo0N29uOhDhlTOJwGtkwq9lF2cdWlBCejEHzg7whe8d4/vPN/P57x3j2Pmh3/kcsTikfFEIIYQQVyWPL8zje1tp65+iujiDh25bRkaqhb7RaU63jpKbkcLm5fmYjAbdc05fGNU115iVMtPcwWBQWFKUrsvUQGI/2Q92NXO4YRCDonDj+hKyHFZdcDfk9tPWN0lVUTqfum8NJ1tGdF/U2/qmaOx0U5idwv03LKFraJrhCT8nmke07E3fmI/Cec0iZl3on6J7puTRYjawpTafB25eSkP7OG3zuvxlpVl5+cxcFibVZsJgSDSiMJmUpEHQ3UNeCnPsDM7LQlnMRl3DCqvZwBc+sJF//MFJ/b+BP0yGw6J1JVxVlU3jgllskVgcRVGY3wchFld5/kgXGQ6LtlcOYGlpBl99/BQtPZO6UseMVAs3bSihqWuCzsFE05MUqxGjQdH9rjaLkex0KwNjfrz+ROmmoqDNXqsqSqPONapds6LAQX6mnZOuuRLMQChKab6D9gF9c5V37KiipjSDsnwHrp5JznfPBVn+UFQ3O057f2aGZVstRgwGRRdom4wKu4/3UJybyuol2SiKgtsT5HjzMDaLiW0rCvjVK3OltKoKv3qlg20rCpOuIxafBGVCCCGEuCr9cFczZ2fapbs9IwTDMe7cUsY3njirNXs42TLCp+5fA8DguI9/+Um9Fmyl28260rY9db2EY3Hed9systKtZM4LNgDS7BYtuxFTVfbV97G8Iku3JpNR4RtPnNWyV0sWlPEBHDjbz+nWMVQgJ93KO69bwolm/b6saCxOQVaKVtpnNRu1gAwSpX45GSnsP93Pvrpe0uxmSvMcrF+ayy9f0Tcq8Yei/Pm9q/j14U68Pn1Ld5NRYdfRuflrhdl23nX9Ep473KU7LxSJ09wzSabDwsS898RiNupmbs3fJzcrEI6Rl2XTSiYVBaamQzw77xqOFDMrq7KJxVRdC3ybxcjbtleyY3UR++p7tYAMoCDbTu+CQeLBcIyKgjQGxuYCTFWFB2+uYW1NLs8f7aJzcN4Ms+Fp7AtGIqgkPhsLNXSM89Qr7dgsJtbVJA9qTrWZdJ8ZBbhmVSEX+iZ5+LnzuoDMYjbg6pnUspY3byjhts1lfOlHddrnc29dL4Fw8pwy8dYk5YtCCCGEuCo1dekzMk2dbvbU9em6751pG2NwPPHFfW99ny775fFHuGPzXJlhXIX9p/qpaxnB1TNJbkaK1hVvVVU2VUX6PUcAeRk2rczRbDSQn5miKyfsGvJoe8QgsZfq1ExABolZYC09E0l71Jq6JrSAbMOyPB66ZWnStVt6Jnj6QAeemYxQS/cEtRVZSTOrstOsfPfZJvpHfVoQWl7gYFNtPrkZ+qHDo5MBqgrTycnQ74vLSLXws70XtIDMkWLiPbcsRV3Q6XA6EGFZaYb2WFGgd2RaC8hMRoX7b1iSNO9r1ZJsPv6OlfSP6TOEwXCM9UtzSbWZqGvRd6/sGvRSmK1ff6rNpHu/Z0XjKnWuEcYuMksuKz35d62blzkzGRVWVmbR0jOJqiYyaUebhkm1mXTnLK/I1oZ4K8CN60uoLc/k4efOa7PfAMoL0ijOTdXta3v59AD76vSfz8Fxf1LQf8O64qT1i7cGyZQJIYQQ4qpUlu/QDREuy3egXKRh9eyeooVNLyBRWrdQU6ebI41DWnBnNCi8//ZlTHhDvHhiruuiQYEj54eIRhPnmYxKUkAQV6G6MI0LfVNYTAY21ebzm5P6zo2T3jAfuG0Zda4RPP4I7gUzzZq73bzvthpd90aAFIv+a6AK1LWMYDQoKEoiQ2S3mdhcm8/uE/prVhWlc8O6Yh55Xt+iHuBffnqSKV8ieLOYDKxaks2QO8DUvCzbdCDK0tIM6lpGGJ0XcNhtJlpn2spnOiysqMziSOPcXLNoTGU6oC8LhUTm7Es/rkvKBKVYjfyfR45jMhnJdCQ3HVm/NI/J6TAdAx7sM50rD5wd1D4HFrOR4hw7j8/Ml1swy5r0VAtHGubKS0tyUynKTaVuXkdJVVWxWZO/cr/r+iU0d00QCMe4d0cl+0/3M+FNlLKqwMFzg9yxtVwXkAFM+UJkp9l0x9Tf0u/z+jVFbFiWR8eAh2VlGVyzUkoX36okUyaEEEKIReMPRtlzspenD3RoGak3y4fvWk5hdiIrVJBt5yN313L75jJdwwebxciBcwNEY3FuXFeizeqCRBB3/dripEAuHld12bZYXOVI4xCPzJuxlToT7MwGZJAo0yvMSdW9Vn5mijb7KhyNs7eul/xMfXanpXeCbz/TiKt3kgdvrmHhgoKhGA8/16wFZAYF7r9hSVKXSEg0j+gc8mqdCLcuL2DH6qKk8xrax/nnH9XRv6DRRnmBQwvIZtd83ZpishYERCajwjd+cUbby2Y0KNSUZmgdKgEmp8OEIslB78CYT7fPz2410dw9SeeghwlvCIOSeH8Ls+0EQjFi8cQA7GF3QBuUbDIqBMMxHtnZzOC4j0/fv1rXBERVE6WYX/roFroG548eSOwj276qkLu2lScN2x6dDOD167N4sXgiWJvPYjJwonmY+tZRzne5efj58wwt6I4YjcWJRGKU5umfu7IyO6n8cceqIjbV5unWU5bvYE1NLtevLebDd9WyfVWRlolbDKFwjD0ne3l8b2tS0xIhmTIhhBBCLJJYPM5XHqvXOvTtPtHDFz6wkYJsO0cah5j0hthcm09pvgNIzKrqGfaypDidNPvcl/xoLK77kn6pyvIdfPlj2/D6wzhSzNoX1i/+8Ra+8mg904EowXCMF471YDQo5Gak6IKtNdU5lBek8fF3rOT5I91EY3Fu31yG2WTgcKO+y13fqE+X8fAFo2SmJbe+NygK168tJhyJUVaQaAgxMq9kLq7CvddV0TngYWwqSHP3BKFIItianA7zxP42ti7P1+23qinN0HVMjKswMhkkGI6hkMjKGA0Kd2wpY9exHt16XD0TZKVZSUsx4wtGQFEoy0+le0hfJnjzhhJWVGbR2OHWZR8B9tX30dKjbw6ytDRT12ExFlcpzrEnDZbOsJspmtdEpCArRdsHCIngZk11NsfOz2Wm4iq877ZldA15dcOZAd6+vYLKonT+/RdniMYS71sgFGPn0e6kLJs/GMXtDSXloGwWE/ffWM2FvqmkvXwAyyuycM17v3MzbIzOC7isZiN3bi3j14e6tGNjU0HtDwSzSvJS6Rz06DpYLq/IYmVlNt9//rx2rLIwjbdtr+Cff1RHeCabm2oz8TcPrP29/rv4XcYmAzjsZmwzmda4qtLWN4VBUaguSUdRFAKhKAfODjA1HWbLinwqC9P5f0+exTUTjO2r6+Mv71vN+qV5r3apq4oEZUIIIYRYFM1dE7ovnJFonJfPDNA3Oq19Od91rJvPvnc9bk+QR3Y2E4uriWG871pFTUkG33++mbNtY+Rk2PjgHU5WLcmh3jXKvvpeTCYD92yrwFme9duWAKAL8AAURUkqkTvXPq7L4kBij9ntm8vxBaNct7aIrSsKSLdbiMbinGwZ0RpOVBamJWVUIFE+mJth04I1o0HROi3mZth4/+1OTEaD9jow01Y+pvKeW5biC0b49LcO6V5zZCLApHeum6PVYuTmDSVatm3WlC+km3MVi6ukWExJzUtsFhO/mjfI2WJSKM11JAVlsbjKIzubCYRiWukjJBpwLOym+Jd/tDqp7T2ALxDFaFC0wFdRoH3AowVkORlWcjJsutLMcDROijW5qcaJ5pGksj9FgaVlGYQj8aQAbMoXZkVlFg0dc2uNxVX+9dFT+jWRCHI/999HksYAQGL/3s6jXdrjsvxU7thSoQuiQpEYoxPJe9MKs+3UlmdxqGGQrDQrH7jDyVcerdcFhR5/mIPnBnTHuoa87Fuw39EXjNLQ4ebaNclZzksRCEV5+mAH7f1TVJdk8K7rlhCOxPiPp87RNeTFajHy3luWsnVFAV/72Wk6ZjpN1pZn8lcPrOWrj5+mezgRnO+p6+VDdzq1gAwSfwjYf7pfgrJ5JCgTQgghxKK42F/x/cGILlsSi6u8dKoPV8+k9sU4Eo3z5P52asuzONM2BiQyDd99tolPvHM133m6QfvS2tI9yZc/tpUUq4mzbWOk2S2srMrGoCjEVZXmrgnCkRirluRo+7nisTgWs0HXcKMkN5XWXn1go8ZV/u+PT2p7onYd7eYfP7KZTIeVT963mi/9qI6ekWm6hryMTQV0wYrZZOCZQ50AZKSaWVGZzdGmub1TY1NB6lwj3LKhlKnpMAfODjAdiBCNqTyyq5mmLjcfe8dKnGWZui+7JXmpnG2bC+JC4RhDbj85GTbGZ9ZpMipUF2fozoPEl/sU21xQVlGQRtqCLoLhSJyMBU1F7FYTB88OaO3nVRWqi9NZtzSXYbefQw36rGHnoIfzXW7d+2GzGLU5XwDFuXY2O/P59byM3/hUiIJMfTbJaFA41TqitYs3GhSsZqP2uYBEYJieamH90hy+9rMz+IJRTEZFF1RNTYcZnQyiKIn9crFYnO6Zlv6xuIrFZOCWjaVsdObz490tuufaLEbu2FJGVVE6u4/3EJlXkjrkDhAKJ++Bs1iMZKVZtT1kJqPCiqpsfrCzmelAhCG3n+8/15T0hwCvP0LWggyrQmLv20Imk0L7QOIzW12caJ6iqiot3ROMe0Ksrs4hI9VCPK5y4NwA7f1T1JRkcN3aYn68u0XLAnYOevH4wtitJq07Zigc49HftBIIRbWADKClZ5IXjvVoAdns+1ffOvfvMct6kTVfzSQoE0IIIcSicJZn6oKKVJuJrcsLkkrCjAYlaS7YlC9M55B+DpQvGOVI06AuixCNxTncMMi++n7tNVYvyeFT96/maz87o+1tKchK4Qsf3MTBswM89Uo780ZiUVGYRmmeg+GJAOPzhhjXVmTpslhTvjBHGoe4e1sFjR1uekbmsknTgSg7VhWCkghsTs5rBDHli+hmbc3qGvSgAHduLad7yEPTvPlgx84Pc8P6Yrwzv5PJqHDNykKWliYHW2faxrWADOCmDaXcuL6Ence6dY0/BsZ9DM8r9zObDCwpydCVCyoKurledmuilO8nL7p017RaEnO9hhdkhBQl0aFyflZnXU0OZxasORKNk52hb2YBiUYg5QUOekemcaSY8fojuj1st20qTWpKUlHg4G8eXMfn/vsovpkgJxpTyXJYqCxKZ3Dcr5U5qmqia+HCwCccjbN1RQHeQKJTpe5nkRgWk5H2fk9SV8hINM7IRCApA7jJmU/v8LQWlK2tzqW1Z1L3Oe8Y9LKiMks3F25JUTpZaRZdUFma7+BC3yQpViOBUOLfsyQ3lZdP9WtNU5aVZfKZB9fy490ujsyU1tosRv73Qxs43DjI3ro+AA43DDE47udUq75T5anWMaqL9eMZorG47vMyK3iRIDQj1cx1a4o4ODMSwmoxcve2iqTzrmYSlAkhhBBiUSiKwmfes44zF8aYDkbYsCyPdLuFtdU5WiBgtRi5fXM5BkXR7dPasboQRVF0f6VPT7WwpDiDwwsyMz3D07ovuw0d47x4vEfXbGB4IsC++l52Hu3RBWQrK7MoyXPw5Mtzs7uqi9O5Z3sl0/6ILiiDRNlXXFW1vT3zhaNxSvJSiV2k7G3hXDOTMTHU+OUzA/zyQAeFWSlJz3n6YAcDM402ojGV5u4J7r9xCakzXQQhEej2Duv3eJ1yjbCsNBOryUg4HMNhN/POa6t4fO8F3XkdAx7WVOdog5MtZgPLSjN15Yj+UBSbxaQLCCAx021+MJFqM5Fmt3DNygKePtipu04wHEt6vtlk5MyFMV0wY1CgzpUIFowGuHZVIS8sCMAmpsO650Dic9bY6cbt0ZczRmIqn7xvDZ//3jHd8UAoyqqqbO29hUQ56ZcfrScciWvdOGfZLCbt82FY0J4xzW7mxXndMsvyHdx3wxL6Rn264dL1raNsciaX8t24voRVVTl0DnroG53WMoBmk8KdW8tpH5jiwrwMbm1FJtevKSYSi/PDXS3a8dbeSfbU9WkBGSTe9xeOdycF8QfODpCfZdf9/gVZKaytydVlZbPTrdyyqZTDjUNaZ1Kbxchtm8oYmQhw+kJirXarids2l1OSm8r2VYWMTga1LN3FBEJRrGZj0nv5h06CMiGEEEJcNoFQlAlviKIc+0U7v5mMiTbv833yvjWcaRtjcjrE+qV5ZKVZ+eCdtRTnpdI54MFZnsVN60uIxOL4AhFOtY6Sn5XCQ7cuo7wgjYb2cc60jaEA160tJhZPDpCmgxdrqx4muqDFvT8U45V5e68A+sd8rKvJJRCK8vyRLq0Rh0GBnUe7OX5+mI/eszxpv9jJlhFOznxPtlmMun1NTZ1uVlRlU5qbythUkJdOzQ0o9vjCOMsydeV+G5blaaVps8amgjy+94IWkAFsWZHPsabhpIDnu882ab+r1x/BH4qyrEzffKMwx67bTxaLqRRm25P2iB1tHNReX1FgszOPEwtmglUWpXPD2mLOto0lBU2JoM6kvYbZaMDtCeqCgtryTF2zklgcLvRPaY1KZk14gtSUZHChf0orZ2zsdNPY6dYFqwB5mTb+5r8OaY1SZuVnpugymdXF6XgDEa2cNa6q2G0m1tXkYjEbePn03OcjHldZUZlNlsNCZpqVnfMGa0Pi876mOpeGjlYWKi9Io6HDra3HbDTwP880sqY6l1s3lfL1n5/Rzo1EVSa9waTGKL3D02xbWcju4/qGLQAT3mDSsXAkjt1m0r0HqTYTH7h9Gd9+upHpQIQ0u5n3376MpWWZ2n7J3Awb991QTXFuKp9//wZequ/HYFC4aUMx2ek2/uKPVnO+083kdJi1NTnavk1neRbO8sR1VFVlfCpIhsOK2WRgOhDhu79upKlrggyHhQ/e7mT9sqtnz5kEZUIIIYS4LA6dG+TRPS7CkTiF2Xb+6oG15GemMB2IMDDmo6IwTbevxO0Jkma3YDYZ2DDvy9gLx7u1L5l3b6vglo2lACgxeM8tS/nI3ct11/3U/WsYnQxgMhrISrPSPjDFsaZhLRAozk3lrq3lHGkcwjMzO8tiMnDrpjJ6R6dp75/LYGxfVciuBWV+FpOBf3jkOCMTAdZU53DzxhL2nOxl3JMoRRubCvLonlb+/kOJcshgOMYrZwZ02ToVuHNLOYcaBpkORJicDnOkYYgb1xWzsipbF5RBolRsfgZv2O1nZWW2LvNRWZSWNCD5lGuM69YUa7PNDApsqs3j+SP6YKG1d4r0VDMWk4FoXKWmJIN0u0UXGMXiKnarSVc6l5+VQsO8IE1VIRJXk4KlaX+E7zzTqD02GQ1EY3GWlWVwtm1Md+6tm0p5YUFQkXKROV+qCu++qZoXT/biD0aJRONauV5OupU11bnsPz33PvqCUVYvycbrj5CTYaPepX+vakoyqC5J1z0HEtnA6QUli8FwjKVlGfQO6xueJNalMjoZwBeKJgWgoPLln9YzsqD9vcmo0Dvi5W3XVBCNx9lb16cFkGfaxha8RkJchUzH3L40SDz+n1830tw9gUFB2+dnnvl89wxPa01fFAVuXF+MLxjlkeebiasqBkXhvhuqcZZn8e9/sYOhcR8Ou0Ur57xuTRE9w17a+qd4+mAH779tGZWF6bx9h5mHnzvPF39YR0VBGn/ytuWsWjLXtj8QitI7Mk1pngO7zcSQ289//vIcg+N+HClmPnrPcs51jGslulPTYR5+/jzf+MsdWpfHP3TGf/qnf7rsF/H7w5f/IkK8xezZ8wIAt99+1yKvRIg3V2qq9YuLvYYryR/qPTIQivL1n5/RsgvTM3txotE4//rYaQ6cHeDl0/0sK8tEVeGrj5/iyZfb2X+qj/zMFIpn5jo1d7l5+Plm/j977x1eSX2ffX9mTu9H0lHvK62OtvcC7MKytAUMGIjjbtxiO7HjJ4kTP3Gc4iRO8iR2/D7xm8QkTowrBowxGGM6LCzssla4rhYAACAASURBVL1JK2nVez86kk4vM+8fI43O74xc3jTAnPu69gLNOTPzmyb97rnv7/1NpRVSaYX2/hCtdX6OtU/y1R9e4Imjg0yHNXIkyxJdQ3M8+HwPlwZCVJW4KPbaKfbY2dxUwnQ4jt1qYndrGesaitmzrhxJAqfdwtuuaGB9QzHbW0p1grCztZRb9tbjc1l1K5Ym9knMLSZRFJXx2RhVAReXR8LCxDkSS7OtOYDPZWXf5iqePTUsqBFWs4lPvH2DEF0Pmmp10+5azvbM6MqRzWLC7bAIaYKLsTTX76zh8nCYdEbBapZ558FmLg3MCdZJn9vKpYE5lCVG53JYeN+NQV4+PyaM12E10z4wR1ZRUVXNmrZpTYlBFRubjQoK3x37GoXEQgC33QIS+vg9TgtZRRHUOlVV+fJvXYkpL10SNKvc8JRIdnwurY4qV+maW0zSPjDHuroi6svdjOQkecaTWQI+O2OzIvnZs66cXa1lxJNZwT4IcMOuWjatKeHIhXFyOZDdamLTmhKhRtBhM3Oqc5r+8UVkWdIJs81iYiIUY3YhyUQohsUk6+fZZpFZjGWYDsf1/mvlRQ4cNjOReIaxmRgdg3OrhsqgQk2pW69pNJtk3n9TkOYqL+d6ZlFUFYfNTLHXxsW+EKm0ggp4XRZ2BMv4wE1Bakrd7GgpZXYhiSxJXLejhv1bqqgtc7Om2sfMfJxSv521tX4qS1x0Ds7xtcfaeeyVfi70zrCxsYRvPtXFuZ4ZEqks47MxRmeiXLGhgq8t9ckDrbayd2yeA9uqAWjrm+WL3znNS+fGeP70CHXlbh4/OqC//EhlFDoG50hnFIFgZrIqu1rL8LmNrSPerPh5fx/fGtSzgAIKKKCAAgr4pbEQS2I2yThXiRr/ZTEfTRlsYROzUdr7Q7ptLprI8NCLPZR47fqEN5rI8M0nO9ncVILVYqJ7dN6w7ZOdU4KS9GrbBM01PtbW+PnyA+f0SfC5nlm++NHdlBU5Odkxpdc4DU/1Mx1OcPNeTS2LxNNc7JulY3CO99/UQteQ1oi4Z3SeSwNhPve+7fzNx/30jszjsJv56sMXhPF0j4SpKXUL9W0uh4W/+d4ZQJtMX7+zlh++tFKXZrPInOqaEhL4AEwmic9//bg2oXZa2buhnGu3VfOTYwOG8/DyuTE9nS+VUfjhS33csreeh17sAbT6puqAi6mcsI1IPM35nhnKihyMTEc1u2FrGR0DIrHqHpln/+ZKnDYzsaSWVrhnXbmh/9rwVEToIwZaPVkuedq3qZJLS4l/y7CYZR56oYf5qDHgJKuorK320TM2j6pq1s/lCb/JJLG+vpiLfStE7lzPDOvqjW0PkmlFTLw0yTx+VDuPqylvTxwbIBLPGGqZSv0OXr2oBVQ4bWY2NBZxMkeRVBSVbWsDbG7SAkvO5yQ/pjIK77uhBdkk4bCa+Zcft4vbLnLQmdca4PilScH6CtBY5cVh0xQmj9PCe25owe+28rVH2/TnadvaEkPK4UI0zYdvWacf0yMv93H8kpbyOTwVQZLg4PYa/vXH7bqS2zkU5nfesYX7ftqhX5/+8UUefKGbS3n3ScfSM9WXR3CHJiNkFQWTLHP/c9260pxMZ7n/uW5UVVT+FqIp9q4vF7bjd1v1lzNvBRRIWQEFFFBAAQUUAEAqk+UL3zipJ9FtaCjmM+/aSsfgHD860kc0nmb/5ioO7aljIZrikZd7GZ6KsL6hmNuvatQj5UFTAKoCLsH+trkpoE+KlzG3kBCsgaDZxU50TjG3mMS+Smz2aj2/hqciLMTSgvqTySqcuTzDoT2aTTAXWj8wVbAUvnJxnMoSJ/3jKxPDkekIr7VPMDOf4PkzI8iShNUsC2rU7EJSt0HKklY/lTu5HJmOsM9Uwafu2sg/P9qOoqiEIym++/Rl7tzfyItnRwlHUlQUO4VmxwuxFJIE6axCJqtgMct6oMKBbdWc6hRTKifn4rzatnKciqLq388/9mVVSVVhYjZGTZlHqCcr8ti476edumqYyarUVXgMpGw8FNUJmSTB9dtrePb0iPCdrqEw25oDDE8u6gpUVlU5kTN+kyyhqio2q4nXlkiD1SJzYGu1br0Era5NUY1WvhKvDZ/LqpMIi0nWiZsEbGoq5kLvCqGIJzPUlbuZCMUwyzJuh0WvDVQUFYfVxL7NlZQXO/nuMyv1X7FkBgljbaSqwqWBORbzSKYEnOic4vJwGKtF1lsxLMPvtmKzmMhkV0isy2Fhc1MJRy9OkEhl2dxUjEmGw0u2yvloikde6qO+3CMQ+qNtk9SXe4Q4eo/Twue//hrFXjt3Xd0o9KYDeOHMKBXFTkO66dG2cQNhHp6KUFfuEZ6P2jI3nYNz+N024d6tKXXxw5f6KPbYhMRSgNBCkgNbq3gu5z5prPRw9zVNZBWVM5enKfU7+PWDzbx4dpS2vhA1ZS5u3duA027mxbOjvHxuDKfdzB37Gmmp9XPk/BiPHOkjmcpy7bZqfu1A06o1rG9kFEhZAQUUUEABBRQAwPeevSxMrNoHQjx/epgfvNirk5CHXuzB77Zy+NyYnl7YP75IKq1waE8d336qk8sj8zRVebnnUJDDZ0eZCMVorvZx0+5aBicXBbva7nXlyLIk2NXcDgvfeKJD/3lrc4DukTDprILfZWMxntb7Ui0jlVZwrqJ+lCzFqnucViHK3OWwGHpAAYQjScOy7pF5nSjkbje8mGRNlVdozKyoGHp7ASzG03icVmHMABNzcfasL2cqHKe+zKP3LlvG2EyUv/r2aV11tJplPnnXJjatKWEmHBfshQ0VHr2P1DLmo0mBrLTU+g1pjENTEa7fWU3n0Byqqtn1dgZLefaUSK4mQzFBwSnx2unPIZ+qCoOTi4YQk0Q6ox/XsjKX3/bg4I5qGsu9/GtOk+VUWmE6bGyy7HNZDH3GTnROkUorlPodbG8J8HROKqPK6j3xvC4rGxqK8bmtAvEDiKey3L6vUUjoXIaCKpwHq1kW+qItk3aTLNFc7dNVvlRaQUKL9Y8nMrgcFl65IJJckyxR5LHpEfUApX4np7rE89UzqtUA5uO6HTU8c3KIkekonqWWAYuxNJNzcb768CJWs0gA7VYTxV5j64GqEhdVJU7B/hms86OoKmMzUZLpLJUlTlpq/fzd98/q3zGbJCpLXAxPRXTi73VahJcDe9aV8WsHmpBlifb+ENWlLu66eg3Pnx5hOhzn6i3ai58nXxvU7b0X+2YZmoxwYGsV38lpv9A3tsDvvXML33xy5QXCk8eHyCoqd+xrXFURfaPizTPSAgoooIACCijgvxUD44uGZSc7pwzx7me7ZwyT1TOXp5kIxXR1oq0/RCqj8OFbWvm/P7jAs6dGePnCOO862Ex1wEX7QIhMRiG0mOCmXXUoisq5nhkqS4zpfoOTi1y7vUZPOpwKx6kOuJBlidHpCIqqqVwX+2aElD4JuNAzw9bmALdf1cC//rgdRdWW3331GnxuG2e7V0ImqgMubloKAFm231nMMhaLcUJ/7bZqdgRLheCEZbjtFiHpT5Lg6RNDBPzGWPv2/pCusp29PGNICMxPxktlFCZCMbpH5oXz1FLr4wM3tfIX3zopNL02m2RB8UikMgRzmm4DVJY4ee7UaM53snpaXi56R+cFS12Z325QQSIJrbnxsnrWUOlhMOe+UlUYzan9WsZMOEFmFVWvrNhBc41PTxmUJE0RctnN1JU5kWTtvl0+5ulwXFBnlxGNpwWFU5LgUn+ItqV6uHyCU1Pq4s/vO0loIWEggL2jC7pCVV7kwOuyCvdAKqPwyTs3UhXQ1KJcqMDH3raeUCTBt58SExiv31HDjbtr+dy/iBH9R9vGqa8QVbEij42rNlVyJseuWOZ3sLW5BLNZ0/JeOjcmJFYuxjNcubFCD4eRJK0mMLSQxGE1EV8i0nVlbtwOi96ewWqR2bu+nInZmB6kAloITj6ZtVvNBHx24SXLQizNga1VTIfjNFX7uG57DY8fHWBkOsKudWXcvKeeHxzu0Ynohd5ZJkIxQZED7Vlx28XrlExnea19knzt9JmTwxxtm+Cz79lGTambNwPesqTsr//6C8zNhX7xFwso4D+I5fvrD/7g06/zSAr4VUVRUTF/9EdfeL2HUcCvELY0lxgCFjY1FtM9PC9MeqoCLrxOCws5ylN5sYOuYbE25vJwmIcP9+rqWzKV5aEXe/j47Rt46vgQKjA2G+Nib4i//c0reMe1zSiqyqf+n5cNYzuZZ9UbnYly59WNwnjno2mu31FM90iYrKJNgF9tm6Ay4KJ3dF63zqnAyHSUmjI3ck46ns0iU+S28cf37OTeR9sYnIyQziiGREOAx17p5+HDvVQFXJR4bXq9lCRp+7RaZIJ1fsKRFJOhGJmsysRsDIfVtGRHVGmp9RvIbW2Zm3AkxUQohkmWhHCMZVjMMk++JqYnWkwyVQEXu1vLebVtHFXVLH35Fq6hyQh715VzsW+WrKJiNkmsWWqgnIuJUEyvJwPYGSzlbLd4HrqG51lXXyTYHhPJLKEc8pA/iQatLmzTmmI9IESW0INULCaZ9FKNlCzB4bNjXLGhnJt21fKdZy7rBDaayJBVVT50YytfuO+ksP1YMiOMy2Ez0ZUTnFHmdxDw2bmUM+6FaJp9myoZD0WpKnFx/NKkTuCUrEpliROv04rXZRHqySbn4oZG05IEjx7pZ3QmitshTrW1/nOj2FZLFJTgWNsENqtJUHFtFpOggLodFt55sJmHc3rnVZe6+Oit6/mz+07q5K0oLyDDbJI4c3nlOXLZLdSUuvnCfScE0rm9JcD3n+/Wn4tUWsHtsAiEDDCox6AFuFhXsRzfsKuWyhKtPuxrj7bpz/OlgTnmIynD832yY4rmGp9QD+m0makudUGH8FVa6/0cPjtqIGaReJqfHB3gE3dsNIznjYi3LCmbmwsxOzuLZDG+tSqggP8KqGhvVkMLxm73BRTwn4WaNlp6CijgP4sbd9Xx7MkRQZn54cv9lPntS8EdWsrfY6/0U1HsIJVRSKSy+NxWgnV+4skM/TmqSH2Fh8k58V6NJ41vtmPJDCc7pxiZijA2E6WpyqtHY4NGLiJx0Wpos5gILxqthnORJHmtxugZmRfCFwBOdEwSTYg1aH3ji/SOLeB3WRnKiTqPJzM0VHiYj2qNiecWk7oda2wmyu51ZVy73cOZy9N6LVkqrdAzMq/bJ/VtpbK8/6YWznfPYllSNMTAdHQSm1VULvTOUl7k0M+jJMGZzilDRHosmeHl82NC7ZzbYSHgswv1bbIk8fyZUX39TFZlcMKokHYMzOmEDDQSVFMq1iv5PVaBkOWqMMsYmFhkz/pyYQK/fG6bq7yUFTuFddJZhQNbq3jl4jiZrEoyleXw2TECXjuLMbHGaWI2RlvfrMEuGUtk6J1dQJZg29pS2vrFdMfZhQQttX7DMSuqSrHHTsBnN6jDRR4b7zy4lhfPjBjWKy9y0De2oK8T8DkYXVLrIvEMTpsZr8tKaDFBKq1wbqlZc25cvkmWBMvickCJxSwTT2UEct5c42N4KiIQ6dHpKM+fGRHUtLlIktoyN8NTEZw2M631fkFZi8TTPH9mRCBkgJ7CmYvx2Rg2q0mo/3RYzTRV+YQ6tRKvnam5mECu19b4+M7TXZjNMod21RlaEZzomKTIYxfq2jxOC9uaA4xMRYgttRaoLHHy2Cv9WC0yqbSC2SRTX+7m6493IMsSJpMkqMQA02Fjb7Y3Kt6ypAxAsjhwN9/+eg+jgAIKKOD/NyI9P369h1DAryBeOjdqSEwEmAonePu+Bl44O8pCVJs4TYTibG8ppbnayw9e7OVHL2s1QyVezdJWHXBx5cYKpufigppVXuygdBUb3wunR4RI873ry4klM1zonaVnKTp7ubeVhGZbevHsmGAts1pkJmajBrtZLJHGkaP6gGYLzG8UDVrIw2I8bXjr7nVZ+dMP7mJkOsKf/vsJ4bPZhQSfuGMjXUOi6pVVVMqLHMLbfo/TwneeXrGt5Y7V57ZSXuQwbOfg9hqePjFEaDGJqkLbgBaskFv/trbGz9G8MJPByQhbmgNC/d1Ne2p56jWxB1gokqS+wqOTs7U1PoMlc2hykTVVXv1nl8NCft7G2e4ZakpdwnW0mmWm5mLsDJZiMcsca18hZz1jC9hWqfnxuqwGonB5ZJ7GvAAVi1nm4Rx7YInXRnXAxYUlBU5R4fTlaQI+O8kc26XTbhbIJGi1Vcvk8GQnQqgKaOT7z76hXffcREe71cRL51fOe22Zy/ACIZbM8Km7Ngm1VwB15W79WcgnWajw8ds3UBVw6ftdxvhsDJfdeN4iMWOS5W1XNtBS58csS/z41X7D5+m0YqzPXKqHyyVmk6E4LruZVDqrkUWTTM/oPD2j83icFvasK+No+6TQNuDA1ioqSlw88Hy3vqxzMIzXtWKNBCjy2rh+Rw3ff66bZDqLSZaIJtI8+GIPsgQ376kjnVH0YJCsomK3yrz7+hbu+2mnvp3Verm9maI+jCbpAgoooIACCijgLYnVgi+WMRGK64RsGaPTEQ6fGxMITDKd5dN3b2I6HOf7z3Xz3OkRtjSVUFvmxuO0MBmK88SxAfzulZqlPevLhIk8aApLfr1SJqtw485aYX+ZrMr2llJkSVOnLg2GURSVUp8ds0mbkl0emdffti9jfDbG6a5p/Tug2eW+/MA5jl4cp6ZUjOK+PBzmL791klgiTVmRSCpnwgk+//XXsFtF25bZJDMzn6DUb0eStJq1lhpRoclkVQ7trmXb2gDr6ouoKhH3K6H1DAvlqYKypBG+ZTxzcphM3qRUliWeODYgTLiDtX7WNYjx8ZXFTkEt6x6ZNxx/idcu9COLxtOG0JJMRmHfpkqqAy4kNMISWkzSN77Iqa5p4knj/eV3W4VgFFmCw+dGhWsFMDuf0AmZBGxoLDIkBlaXuikrchr20Vzt05NBrWaZSCwt3FtXbCgXlDbQLLrVpS4cNhP15W6BRKgqbG8p5fqdNdRXeIT1hqei1JeLy0q8dk52TpEfBuiyW8hm1dXJhASdg3P886NtOGzifZXJZDnfI6p/FrNM5+CcsI+AT+vPNxWK87l/fY1nTo4IJEWWtFpMRVGxmmX9nA9OLOrW1uX+cGOzUUIL2kuBA9uqdBUMtJ55U+GE4fdHNJFhPiret5mswpbmANalOk1N8U7xzSc7MZskfu3AGqoCTp2UKyocuTBusFUnUgo9q7TLyIfdZrRSvlFRIGUFFFBAAQUUUAAAV2yoWDWlTvusnMoSccK7vqGYRN5EO5HK8tgr/YL96/LIPNuaA3r6oaJCOJLit+7cyG/fvYmmSi+2PELjcpix5I3FYpZBMk5gs1lFaParqLBvS6Wh35TTbhbIRlZRsZpNHNxRra+XySo8f2aUg9truPWKev37iVSW/vFF/vGRNj515yZ2tZZRtXQ+5qMpxmdjnOyc4qpNFVQFXLiWlLjx2RjT4QT7N1fxlx/dQ22ZMXTgyIVxznbP8Fr7JA+92MuhPXV6LZIK3PtYGz6XGLxRXeo2WEMVRRWI4bp6v8HKeax9goGcAIXqgIu6PBIBWpLjMmH1OC2GuimA9XnkTlFVHnihh7GZKLdd1WAgOuOhmD4ZX8ZMOMG7Dq7l6i2VS9vQ6ruyiorXZcUkS2xtDuh2wOVzIkvG+zSZyjI2K5J7WZZ47dKkrnrtCJYaVFBVxUCY7BYTfpeV9Q3FqzYvritzYzWbyGaN9+N1O2q4alMFRR4bboeF2YUEL54dFZRFj9NCx2CI05enOd01zeRcXBhDZYmLl86PMRmKEU9mcdrMlBc7cNnNzC4kdUJa5ndQUewknVFIpBVUFVx2M2/f38gff2AnVouJ7z9/WX/2VLRna0NDkfDMpDIKGxqLhePIZFUObK82qJZTIaN9fjWF3WYxMbdgtBhHYmluvaKe3/v1LVQHXPqxRBMZXjwzZlAao4k0jTkqLWh95na3lgnLJLTaulxcvaXKsP83Kt7S9sUCCiiggAIKKGAFNWVuPv/+Hbx8foxEKsN8NEU2q3LNtio2NQUI+B3c/1w3o9MRNq0p4R3XNuFxWvTYaoBrtlRxvles30qkMoyHjIl4HQNzvHh2JfVv2TIlS1rCnQRCX6d0RuGZkyOC3cpilnGuYuVaiKQwyzIpVliJ1SwbgjNiyQyBVSLBJ+divPPgWj31bxmReJpURuE3376R50+P8L1nxQQ9r9PKn9yzk9/8+5eE5ee6p3nCb+eJYwPC8nyroKKqRONpgdBkFS0dUF6qZwMILSQEG532PVVYLz+8A2B6Lk4s5xyMzkS5eU+dcB20QIgZfTK+GEuzmKdKyZKWsFlZ4tStj8v7U4Gnjg/hsJmE8+2yW3jXwbW8eHaUSwMhMlmVruEwXcNhdrSUGsZ63Y4aZEmbxOcjkcpQXerSkxytFlmPngftWq+p8tI/vkAyh33k2xZBa/6dex5ddrOwLUteXzybxSS0Lsi1oFrMMn//4DlqSl3ccyjI//2B2Gh8XV0Rt1xZT89ImMdeGdCXK4rKDbtq8DqtVAfc3P9cl7BeLJnh99+1lb/41ilhuRZUIzLvaCLD1Vuq8C4R+fy6qlg8g3OVAJZ85RMwvHQBjVDmB/3kPyfFHpuhN+AyTl+e5vTlaRoqPEKaJ2hW4Jv31vFkjsV2R7CMO/Y1shDVAkECPjvvub6FDY3FfPDmVp46PoQkwS1769m2NrAUrZ9gZ2spm5sCq47hjYgCKSuggAIKKKCAAnTUV3h4f0Vw1c8qS1x85p1bhWV37GukothJ13CYxkov+zZV4nFZePTIyqR1V2sZO4JlQmqd02bm9GUxcc1pN9Nc4+PsUhiBCqCqhgAJRVHZ0FjM6HSEcCTFsfZJQx3Z82dWscAtJA1WMJfdzIXeWQPBWYylmZ1P0FDpESboZpNE98gc5cWOVVUvl8OC1SwLiYwARR67IR795r31bF5TzN/eL9YaOe3mVRQYSbD/jc7EqCxx6kTIapYFKyZoTXp3BEs5c3kaVYVSvwPHKgT2VE7wgkmWuGv/Gh7KSfYDbXJ+x75GXrkwRjqrshBN6T2w4smMoR9UKqPw/oMtPPRir66i9I0t8E8/usihPXVCrzrQGmXn45kTQ3p7gNzrK0kIRLayxEmxxyaEw6QyCndf08SXHhDPraJqdtf2/hBZRcHnsgrXyeu0sHVtqRBekc4oHNxezeRcHLfDQu/oPMn5FbKpKCr3HAryyEt9OnkdmY4aavdAU6nWVvu4NGBMAG+q8gHw2qUJTLJIBH0uK5msYiC6pX47i7E006yQmxKvDa/TytDkIo8fHTA8Bw6bmdN5fc/MJom2/pAQPGO1yHq/t+XlTruZ40s95ixmmZYaHx1DYcGCuaWphJFp0W7osJpoqfVzPue6D0wssqW5RLBibmws5u5rmijx2ukYmKOuwsNNu2qxWkx89G3r+ejb1gvbvXpLlUENu+2qRt6MKNgXCyiggAIKKKCA/zAkSWLvhgruOdTK1VuqkGWJ265s4EO3tLJ3fTnvuLaJj9y6jl2tZdxzKEhTlZetzQF+/91byWTyapKyqiE9TUUjHPko9tiEOp9MVuWqjRWCqpFVVGrL3NSVr5CneDKLw2aibolQRRMZOofCmE0SZUUO3fJ4tG2CP/3GCa7YUM62tYEl1U7bz4Mv9PKFb5ygKuDi9qsahH0+fLiX7zzdxT03t+J2aGqE321lZ6tRCZoOx3j4JZH8lBc5uHlPPZubS4Tl21sCBjug1bxyHJmsYiBysiQxOLGok83pcNww2a8KOIWeZVlFZTIcF+rVlpcvRFN89j3bCeQlSoYjKTauEcfrtJsZnFzkTz+4k2Lviv0vk1U5kkN4VpYrer2T2aRZFnP7tWWyKnvXl/O2K+tprvYJ647Pxgwx7BJw+NyYwY4bjWc4c3maZDpLY6XXUM+1EEsL411GMpVlMhRjdj5hsMWaTDKNFV6Dmjg9n2D3uhWLndUis7O1jP997zFBCQKNyMQSGe59rJ0THVNMzsX1+97rtNBS6+evv3tGIGTlRQ7a+kJCXH55kYOP3b6BZDrLl75/ltNd03qfusoSJy67FnizfNilfjvVAZdOeJeft6s2VgjPogrcvLtOqBtLZxS8LmND9GgyY7A8ZlUV9ypN1W+7soGbdtdSX+7hmq1VfOz2DciSxMHtNXzyrk3cdmXDqhH7v4r4pZSyYDBYBpwGbgAywDfRrk8b8Mmuri5jfFEBBRRQQAEFvEkRDAYloLGrq6vvl/hu4W9kHiRJYv/mKvZvFt9gX7O1mmu2Vus/X7+zRrA+Xr+jhhKfnfacpsilfjsHtlVz5MK4EB+u1UGJ9iiTSTI0IF6NrMSTWSpKnEJSXDqjsrU5IDTDjScznOyc5rfv3swzJ4Z44IUe/bPZhSQnOiZ5+/41RBNpnj+9Yv87fG6MKzZWUOy1EYmnCUdSjM1EDYl+4zMxoVaqvMjBX350j9ZaICdl0G41sX9zFa9enBDsXnabSU9qVFQYmopQ5LExt5hEAvZtruDl8+I5mpqL6QmZABaTccK7EE3x0dvW8+iRfoYmF1mMpZmcizM5N8q5nhk2rykRUhCtFpnrd9ZQV+bmqeNDjM5EiSUyvHx+nMHJyKoBEI2VHr19gt9tFVopZLKqwTKoHaNGDFez2UViaUHlqSlz82pee4D6cregpnWPzLNpTTHhyMr9VlvmFhoug2YxfXVJqZ2ZT2itDHKU1UxW4c+/eVLo6wbQXLOSFinLErdd0cC57hmhmbcE/MF7ttFaV8TffPe0sN9URuGz795KZYmL3//no8JnrXV+oomMUB9nNcv8xUf2YDHLnOuZEUgtaPWD+ZbWVEbBbjWqnPnqGoC6Sj2n1WKivNjJZGhluztaSslkFUEZPri9hqs2VnDm8oyu+O4MlrKmyseaKp9hu29F/EJSFgwGLcC/AMtViCIctAAAIABJREFUfV8B/rirq+twMBi8F7gD+NF/3xALKKCAAgoo4L8XwWDw48CXgNwq8QGg6ResV/gb+Z/A2/evobbMTffIPM3VPnbmFO6f7Jik2GvntisbCPgd/K9f28zTJ4eRgBt31xKsLeK50yP6ZNBiljm4vYbIkhKyjP2bq5icizF1biWcoLLESW2ZmxMdooXLv0qgw9hMdCmq21hbszwpzw8mAK29QG6vs2Ptk7z3hhaOtU+wGEtx3Y4avY3AMibn4siSxImOKaFeJ5HKcqxtgopiJzPzCWRJYktzyaoK4pbmEg6f1RIxX7kwjsNmFmyPVrOJidDKuAYnF3Uit4zzvTOc75nlyo0VeJ0WIcZ+bjFJa72fmYWETp5TaYU//vpxPnnnRkOz6sGJRfbm9Slz2MwCCdvSHOClc6J6ZrOY8LmsOoGxWU3C9cq1MxZ7bHTnJPHVlblJ5pHzSDyNy2FUalRVI4CqqtJY6cXvthpstvk1i+mMZlecDMV56sSQfh/Ekhlqy9wkU1k2rCnWbIVL9VyKovL40QEaKsXAChUtVORcz4xBtZNlic6hefrHFw2fpTKKIVwjq2h93V5tGzfUeIGWKFk5ExWIWXO1j8oSp5BuWFni5LqdNRzLCUgp8ti4ZU8953tm9fXNJpkDW6u5ZW89jx7pZyocY0dLGTfsqkWWJKoCLrqGwqyp8rKrtQxJkvg/H9/L+Z5Zijw2Q1DMWx2/jFL2ZeBe4HNLP+8AlqtXnwRu5Bf8wSkqcmI2v7GkR9PPSJcqoIACCnizwGSSKS01pqYV8B/CHwJbgC8CnwduAa76Jdb7lfwb+T+JQ6UeDuUtu/v6IHdfL9a1XVvq4do9DcKyr/zONTx7fJBIPM21O2qoq/CyMVjOE6/0MTC+wPbWcg5sryGWSGO2mDjdOUV9hYeP37mZEp+dzuF52vtmkWWJO65u4l2H1nGya0pXqawWmbPdK9Y+p92sqz4mWWJgahHZaubQlY0czyEdpUUOnA4jwZtZSDA0GSGTVXjhzCjNtX7a+1bqaXxuK1964By+VZIO+ycXaetf7r+l0j4wx2/etUmv7wGtPi63Ma+igtthxmEzE1pI4HFaKPE7BIUQ4Pb9a4gmMvSNzXOmcwotN0LllYvj7FpfbhiLz+fgbz65j/d/4Snmlyyk6YzCj470U1PuFuqJbBaT3rxZlmHnugpOtIsNpmcXk3oPumWc7JoimcpiNcvcsKeen+b12Cr1O7j7YAvlxQ7++ptiH6+hqQh7N1YI6o3fbWNjc4BTnVO6da/Ia6Otf0U5W4ynDW0FYskM1WUeoe5JliXsdgvVFcZp9MamAJ+4azMz4Th/+52TwmepjMKO1jIu59QoNlR6+d5zl+ld6sWXG2wjS+i9xXLvPYC37VvDYizNfT9p15ddt6uO77/Yw7EchVCWtPsgWF/Euw+t4/q9DXz1oXP0jc6zdW0p/+td2/C4rDgcVk60T1BT5uGeW9dTGXDxld9x8+yJQRxWMzdf2UCJz8HfLz1zC9EU1+6opX6JZK5fKyYhAtxY6uHGK8VlpcCa+hLDdwsASc3v/JeDYDD4QaCmq6vri8Fg8DDwCeCFrq6uqqXPDwIf7urqet/P28n09OLP3snrhD/4g08TWogVmkcXUEABb0pEen5MsdfJl7701dd7KAaUlnreTP06AQgGg8e7urr2BIPBPwTau7q6Hg8Gg21dXV0bf846H+RX8G/kS+dGeer4EBazzK8fbCaWyNDWH6K21M2BbdVYzDILsRRnL0/jslvYujag1+0MTS6SSiusqfYiLykmqqoyt5jE67L+zLj9fKQzWSz/Q0R1IhTDYTXpsefJdJZTnVPEkxkefKFHUCj8biulfocQMtFc7eOP3r+DM5enOHJhnIDXwaE9dUzMxfj7B87p31tuvJvOsVJuXlOMgtYDTZYkoWbMZTfr9rMij42KIgcdeba6Q3vqePbkMFlFU3s+fEsr//aTDmHMXpcVswyhxRXLXO7Efznx0mU3s2lNiaBoAVy3vYa2gZBAcECzz10emReshG6HhZpSl27/s5hkfG6rYLn0uqwsRlOC7a6x0oMsSYQWk7jsZhZjacHiV17kYC6SFGqcakpdeF1WJkIxVBVB6aspddFU7ePI+XEUVcVhM3PT7loeO9Kv79duNeF3W5nIi3fft7mSVy6skBqf28rb9zdysmOKjoE5LBZZH4fEcvrhytG8+7q1PHtqmJn5BHarSbimlSVO0pksM/PaWD1OC7furRdssQAHtlWTSmeFcBtYiXffujbA1uYAX334gl4PKAEfvnUd//5Eh7BOQ4WH37htPZV5/e/eiMhkFabDcUr9Dv13RSyRpn1gjoDPTuMSAYwm0pzo0Pq+7W4tx2k3E4mneeH0CKMzEcZmYiRSGXavK+cd1za/nodkwM/7+/iLlLIPA2owGLwe2Ap8G8ilwh4gvNqKBRRQQAEFFPAmQjQYDF4LXADeHgwGTwKOX7DOr9zfyOOXJvjWUytR3F958Lzwee/YPHddvYYvfvu03luopdbPZ9+9lXsfa9dT/OrK3Xz23duZjyb5x0cuMj4bw+ey8tG3rWdtjY9vPdXJiY4pijw23ntDC1uatdjqrqE57vtpJ1PhOOvqi/jY7Rvwuaz85OgAz50axmyWuf2qRn1yOhWO89NjA4QjKa7YUMGeJVVnMhRjcHKRtTV+vb9WJqswNBkh4LPrUeGgKTm5wQ02i4mrNlWSVRR+dKRPCFawWzXFKRc9o/McPjvKw4d7iSUzrKnyYjZJbGgo5rfv2qRHze/fUsnXHm0X1p2Ppfn03ZsB+Mw/vSp85nZaaKj00N4/x9xi0mBfc9hMvHB6RF+eziic6pzmqk1iHVlLjU9IVwRoqfMT8NkZmlzULZbRRIaTnVO6srKMSCLNp+7axOnOKSEGvnMoTFO1V1d4QCNlufVYJT47sYQYfrEYTbGztYyTnSsJfrlWxiKPjVhSJEqzCwk2NBTryX1mk8x8NCU0HPe6rCxEU1QFXGxuKuGnOUEamUyW8dmoQAQTqSw+t00gZTaLiWxWYUNjEYMTEZw2M1PhON96sgtZkrjn5iAPH+7VSZmKRqzK/A7iqSwHtlVzrG2l7i+RyuJ2mKkocVFR5MTntvLEscGVcxFLM5yXUghQ5LYaGqdrx2hhdj7B4MQifpdVCGhR0cJpcgk3aAqbqmqx/03VPv1lyc/DyFSEgYlFWur8lPkdKIrK0yeHON89Q0WJi7fvb9StvoMTi9z3ZAfDkxHWNxbzkVvXrWoDzsX5nhnuf+4yoYUku9eVcc+hVgYmFvnnR9tYiKbwua188u2bsFlN/N39Z/SXE9dur+bO/Wv4wn0nCC0lZj752iB/cs8u/u7+s4bExyePDxFPZfnATaunyb7R8HNJWVdX19XL/5/zFvBLwWDwQFdX12HgZuDF/84BFlBAAQUUUMD/AD4NfAT4zNJ/u4Av/LwVfhX/Rj5zYvjnfn6ycwqX3aITMtBUnqdPDgsT/6HJCC+fH+PSYEivP5mPprjvyQ6u2lih1yjNzCe497F2/v6TV2Gzytz743bdDtcxOMdDL3Szq7WcR15eCQz45pOdNFR4qCxx8Xf3n9EnZxd6ZzHJEouxFN995jIqWt3Rb925ifIiB3//4DlCC0lMssS7rlvLNVur+Jcft3O6a1pLe9tRzXuub2FkKsJPjg0QTWTY0hzgtaWxSkDAZ2cxlhIi1H0uKw883603y+4bW+BHR/r54M2tmEwyPaPzJFJZescWKPM7mAqvkIDJUIzP/NOrVAWchqhzn8tGe461biGaoqHCw1Q4js1iYt+mSh4/OiBcn+lwnN+4bQcdg3N6LdNq0etmk8RVGyuYy5v4ZxWVu65ew+nL04xMRcgqKscvTXKue4brdtQYtuN1WrFZZJJphaqAi2hcjLWfCMXYv7mSIznKk9Uic7JzCrvVxDVbq+gcCjOYkx7YN7bAlqYSITrd67IKPx/YVsVzp0aEfRW5bfzNx/YCcN9PRbUonVVRV4nbaahwk84o9I0tYDHJJNNZ/d78yK3r+MGLKwqWoqo8cWyQRErcUFZR+djtGzjbPYPHYWFsRuzHF4lnuHFXLYMTiwZCD1BT6sbtWHmmrBaZZ0+NEImnhTCREq+NnxxdIXS5hGwZqqpSVuRgIrRS8yVLEn/8b8cBLejjs+/ZhsdpNay7jGdODvPA892Apqh+4o4NjM9G+dFSi4vLI/MMTi7yZx/chaqq3Pvjdl1Fbe8Pcf+zl/mtOzf9zO0vJ0wu18Mda58k4HNw5vI0C0vq6HwkxXee6dLuqRzL5uEzo3jsFv2ZB60H25PHBw2EbBknOyZ/NUjZz8BngK8Hg0Er0AE8/F87pAIKKKCAAgr4n0VXV1cb8LtLP979n9jUm/pv5GqR1bmwmk1kVyl7WIgYe0yFI0m9se8yQgtJuodF8TCZzjI4sYDHadEJ2TIGJhZ1W2EuukfmicbTwuQMtP5OnYNhXRHJZFV+9HIf5cVO/btZReUHL/agqqpef6WoKs+dGmFjYzFff/ySMBF89/XNnLg0Re/Ygl7T5XFYWIyncTss3HpFPfc/1y2MY3RGmyB+79ku3b4WT2bwuSwc2FrF+GyMoalFnYSNzcSoK3MzMRcjlVawWmQqihxC7RFooROpdJZYIsPjRwfwOC0s5gSCBHx2OgZDQrPgWDJLQ4VHj02XJGjrC9HWFxJaBYCW3lfksXH9jhrBBpdMZ4kn00K4hkmWuNg3q/88NhOlvNjBfHRlPE67mY7BEOVFDhw2zWKWqyIda5ugqdonkDKTLNEzunLcrXV+Qxpix0DIkHTodlr4k38/TmghSalfjOyXJYn1DUWMLFnblvH0iRFMssR7rl9ruIaHz44Sz2tBEEtkqC1zCcretrUBPv9vx0kufdfntkLObVnqt/PPP2rTf86tnfM6LXSPhLGZZfylLlpq/ZzomNIJmqpqLQtu2lXHkfNjwsuAwYlFNjWVcFFXDyWGJheFxuA37KzmyeMrL1pGZ6I8f3qEt+9foy979eI4p7umCfjtHNpTz2M5aqiiqjz2Sr+hBcDgxCLT4TgOm9lga+3NSeVcxuNHBzhyfgyX3cKe9WWGgJK+sXmdSC5jIhTTzmUOVCCZEdcFzSb7s2CzvnnqdX9pUtbV1XUg58dr/uuHUkABBRRQQAH/swgGgz/p6up6WzAY7AcMbKOrq2vNKqsZ8KvyN/Ld1zVzsW8lNGF5LrZsZ7tjXyPrG4p4rW1CV4aqAy4O7anjlYvjApk5cmHMELfeVOWltb6YzuGVmiyzSearP7xAMq3oqssyvC4r1QFjLUxNqWtVi5TfbTNM+KIJrQl0LlIZhaHJRfJxttsYI94/tihMwkEjALfva+CZE8M88nKvoXYokcry09cGhEk0wNxiiqs2V2I1yfzZfWIIRDSRodTnYHQmSiqt8PKFcRxWk0AMFmIpof9TNJ5mQ0ORHvN+pntGUOKW0Vzj4+N3bOD7z3ULTZuHJiNcs6WKs93TLMTSpDIK//5EBy21fsM2xmZjwr73bijn1YtizZPPaSXgc3BpIITHYWEhltbDKcqLHOQ75xZiaRRF0aPsJUkL8MidoC+rWOmcEBBVRdhWU5WX/vEFfV/T4QSlPjuzC0lkWSPn33yqi4piB5+6ayP/+vgl3YKYVVReOjem19YtI5VR8DhFVcYkS8K9cP3OGmLxtE7IQFN5drSUMjYbpbHSy6m8Js2aQliLxSRzsW+WM0uN0llMUlbkEFRo0JIeizw2wy8nWYKRpXvY67JycHu10LAdoHvESJBCi0myioJJljl8bpRv59iVOwbmSOU9P4lUhvoKr5DOaLOa8DqtqKiG5E6zSeY3v/ISxR4b775uLQuxFD9aUrpn5hOMTEewWUzCc7q2xo/dauZ0Tmrq1uYAu9eV0da3ovQ2Vnq5eU89r12a1F/gFHttXL+zltBCklcuiu0fAN52ZYNh2RsV/xGlrIACCiiggAJ+VfAbS/898HoO4o2Ch18S27IpKlyztRKTJLNnQzlra7TJ+p99aBevtU/icljYt6kCp93CH75vB8+cGOLyyDyToRjxZJY4WWwWGb/bRl25h3cebNYmuosJjndM4XNamQrHWX75nUwrBHx2QotJFEWlayjM+EyUa7dVc+TCmE4K/vGRi/zeO7dy8546njo+pDW8tchYLSZ2rysTItx3tZbhc9noH1+ZoJb6HbTUFfFKDqkwyRJVq4QhBPx2TCYJJafRtdkk88DzYghIdcDFfDRFJJ5mdDrKw4f7hH5goBGJv/r2aSRJCw3JbX7dUOkRkhMBqkvdOO1mpufi7F5XxoU+0YqoqhjCU0amo8J+JUlTNhaj6VWb8F61uZKRmYgQwX95OExduVuvNyv22OgbFSPW+8cXhTAS0NIlzSaZO/ev4WSnGOs/ORdnR0tAUPH8bivne1eOyWkzG/pjpTKKQDwtJpnp+YTQ762i2GlQaGxWE7//7q383f1n9WUToTi9owuGvnXJdJZgnZ9LS/swm2SBhFjNMjfuquUnOfVgANNzcRx241T60N461lR6GZxYXErvXBmr1Syzd305TrtFqNED6BoKUx1wCb3rkqkMX3lIq+3MtTM67Wbmlu6fhagWvJOPpmovU3Mx4Tq81jbByY4pbtpdq/e4W8boTJSdwVLBinxgWzVlRQ4u9M6QyarIErzz2ibmYyn+5jun9UAWSYLyIqdOqMdnY/zTo21sbRKTFrOKys17azlzeZrZhQR71pVx7fZqOgbnMJkkJmZjNNf4uOvqJpx2M59551ZOdk4R8Nk5uL0ap93Cn39oN6+1Tyw1ri/H7bDw/ptacNhMPJtna/3psUEO5PRGfCOjkAtfQAEFFFDAWxZdXV3Lr1ZHgY3A1WhK1/K/txQu5qgoy3jp3DgvnB3lH35wgdGluo2KYid37Gvkxl21OO2a5bE64OJDt6zDltc7K5lW+MQdG7nnUJBirx2L2cQHb17H137vGn79oDEZrcRrFxL9FmJprBZZCCiIJjI88nIf77i2mc1Lk75UWuGp40NYzSb2b67UlZRnTw5T5LHynuvX0lTlxWKWmQ7H+cYTHWxuKmZNlRen3UxWUfn+890Ue20s78luNXG8fZI1Ob2lTLLEpjUlhuCN6lKXoeFxaCHBod21tNb5qa/w6GqaqkI4kmJDYzFOmxm71cR8NGlQkhRV5ULvLOOhGI+9OkCxV1QHm6p9q9qzfuP29ezfXKnvq3tkni8/eJadwVJhH1azzAunhw0kRZYgm6NM1VV4yDtcMhmFa7dXU1fupshtQ5Y1e+rUXJxHXu4z9FCzWUwrqhBaGIw/L/o/mshQXSoS4yKPTWj4HKzzCYQMtIbYAZ/Rsnihx3g/T87FKcn7biyZ0QmZw2aipVZsZpzKKFSWOA3bctjNOG1mci9bc7WPgNfOn33jBH/xrVNCjzjQ+pX9yb+f4H/fewxPnl3YbjMzPqsRMrNJIljrFwiVqsI1W6v4wod2GXrjTYUT3LK3Xr++AZ+dM13TZLIqtWVumqq1ezijqCTTWX786oDBlmiSxQRQv9vKlRsruP/Zbv2FiKJqjdOfPTEsJGSqqpYYmotkKos7rzecBFy1sYIvfnQPX/u9a7huRy2f//px7n2snRMdU2xdG+B9Nwb13nAbGov54M2tvO3KBv13jddl5fpdtezbXKnXx33lwfMGQgYIyZ9vdBSUsgIKKKCAAgqA+4F6tDqw5emnipao+JbBavViy4glMzx1Yoi1NX5++FIv8WSGfZureO8NaxmfjfHdp7sYno7idohTC6tZ5q++cwpFgSs2lPPBW1q52Bvi4Zd6mY8mDbaxyhIXXXm1VNF4WrdLLiMc0dS0i3nq0akuLYxk+VAUFR4+3MuXfusqBiYWBUXlYm+Id1zbzEM5gQ6hhSTvONDE468OkEhlSaSyTM8nuGl3LXarmf7xeS4NhATVArQgk3yVx2Y1kVVUDm6v4dWL44g6i1ZTtFwX1TOyIIR9eF1W5hbFCWVbf4gtzSV6z6ye0XmuK6/Bapb182O1yJzqnDIQvFRaIauo/OF7t/PgCz30jS2Qyii8dmmKYq9NSO1rrPQK5+lc9wxbmwNCuMR0OK4HT1y9pYqXz4vNnz1OCxXFmnLidliwW03MzK9M+Kfm4ly1qYKBHDug1SwLDaIrS5x6+MMyOgbnDLV0igqH9tRyqnOa/vFFkuksQ1MRhqYigiVWAl3xAa1v2u5WsbF1PJk1kD5ASHMELWnSLMu8cGZUX1Zb5uYz79rKY6/0C8mQALfsrWN8NsrZbu3aZbIKsYSC320jHNHq4HJVxExWxWQyJiUmU1keebnPcA5sFpne0Xnedd1aKoqc/MPD53UiHZuKsG1twLCtYo9NsIZesaFcUI/DkRRPHB0QyBdA5+AcZUXGcNqA3y7cNyZZ4lz3DE6bmXgqg91qZmNjEV9+QFMvD+2pp3NoTrBsPnFskIPba/SE1CPnx/jRkT6SaYWD26u56+o1tA+E+OaTnYQWkgRr/dy8p87wO+PNiAIpK6CAAgoooADY3NXV1fp6D+L1RlXAxchU9Gd+Ph9J8a0nO3XWevjsKLWlLp49NaLbluLJjD7RzLfovdo2QV25mx8c7hXqk0r9dlJphWQ6y+Fzo1hze0FJ8MrFCUO92dxCkv9z/xncDrOgJhR5bIa348ufL8TEyaUKzMwba7CmwnESebU1E6EYw1MRocbIaTeTSGV1qyVofasURUVCqy179tQIz54aYeta0cbld1sNiXHxZHaprm+WIq/doFwqikpbn7jsXM8Mf/nR3fzVd86wEE2RSis8d2qE4Cp1YZ2Dc+xZXy4okaAR0XcdbOZY+wQOmxmP00KvyLGoLXNRXeokq8CJjknhPJzsmNTrwpYxNhtjak47t1azZKiJSmUUOgZXFDCnzUyx1yaQmYnZGAG/Q7BIOu0WPnnXRn7wYi/DkxFSGYXesQV6xxZ413VrGcyrFZQkiWu3VRNNpLFbTLyckwSpKJBVjARMAj3URJK0hM1cS2FliZM//sBOPv/114T1RqYioGKoYQRNQevLs1hmFfjQLa3MhOOoqsp3nxXDRjIZRSBNFrMsEEhZlvA6tdq9cCRFOJKiazjMoT11RmUzazzOi32zQq1evvoL2oua/NrGSCLNZJ/43NitJo5fmsJs0u5/t1NrUTC7VG8mAe+7cS1ff3wlQOZ7z16mplQMm8kqKtPzcTxOC2OzMb6Z8/vmiWODVBY7efDFHp2Qdg2HV7XlLsPn+vnhRW8kFOyLBRRQQAEFFAAdwWCw8vUexOuNT925WbBiCf8vQX25xzC57hoOG5LTzCaJf/j0Pm7ZW2/Yx6XBOYGQgbbdZVUKNFWnpdZPscemq1HJtILXZdGDP2LJDD0j8yTTWcEqNx2OG1IFS7x2ekbn2bdJvMRFHhsHtlUJtkOzSWLP+jKD6uXKi+IGTVHKt+nZLTK/ffcm7DZxotg1FGb/lpX9hyMprHkNsu1WEz843Etb/xxHzo8TzevxVVPqwpwXnmIySSRTWYOiNB9NsrGxGFi5jkcujPPlB84JfaxAU6gefqmXwckInUNhznbPkHv4Jlni8aODPHFsiLOXpw12x1RWYXuwFItZRgLW1vh0QgZa4+ryPGWlvMghJCEmlpSUfNx6RT3mHMVoMZbm3kfbueOqRsNxPHdq2NB03G41cfc1TbTU+g1EW9tvVti+3Wri8si8fo8GvHYWouJ1mJqLMx2OG8brsJn54rdPGdoQmE0SX/3hRQYnRRLud1v5p0cu8p1nLvPdZ7uxWsR7qXdsQSdNdqtJt+ouQ1FUdrSUGkj27HycfI1t29pS3ntDCz6XFY/Two27aoWXGaBZ/bw5lkpJgrPds8RTWUyyhISm4E6G4rq65XNZCdb69WdXI7ISm9eIY1XBUDMJGJIyLWaZv/r2aT73L69x/NKE4fdN+8CcoBAChBYTrKsvMmxbkuATt280LH+jokDKCiiggAIKKACcQFcwGDwaDAZfWP73eg/qfxoBn50rN2oNmE2yxC1763nHgSau21HD5967gwPbqg1kZUNjMSVecWKlqCq/+/++yg9f7jXY6CQJ8jZBkceYmgjaG/lcLETTejPoZSTTCvs3Vwk/Xx6e58adtXoIxkQoxt9+7wxlRQ5u3lOnf3duMcmPXxngs+/ZphO5TFbl3scucesV9Ths2qTbaTMzO58wjLusyGEgZVaLiS3NAWx5b+8tJllIkgNtcr9cr+aym9ncVCIQ1nRGZWvzyuS2f3zRULc2NRfnz795yjCht5hN7FpXxhc/shtL3mdzi0mdJFnMMpvy9pvJquzbXMnO1jI2rSkWFJTJubihvsokSZzumiadUSgrcqwarJDOKMhLw/C7rYZaI0WF7S2lQu2gy2Ehnszwd5+4gurAyj7DkRTffroTU17IiUmWqMghfxJw6xUN/OW3T/HdZy5zomNKqKMq8ti42BfSj73EZ6esSLyXp+cTNFR4hGUep4Uv3HeSiVBMJz9mk1aPNToT1ZW9qoCLqoBT3348mcFkklhT6WXvhnJKixyCLTeTUdi6NkBLjY919UXCeU+ksoZ7bXkf+agocVFbtvJiYkdLKfu3VNI7Ns98NMViLM2R82MCGQWN+G1aE2B9QxFXbCjHu6R2gaZgbWgsNlg756MpwwuIrKIa6ssA1jcUG5YlUll2rStjR7CUYq9N3/5UOM7xS1MGcrlxTZGByK2rL+J3f30LH7t9vUDOXHbzL2zz8UZCgZQVUEABBRRQAPw1cBvwOeDPc/69pXC0bYJX2zR7VFZReeK1QVrri3jvDS001/go8dn5+O0bKC924nFqPbr2bark43ds0Cfq5UUOQgtJFFUlmVK0XkslTn0yfK57FpNJwu2waImHARdzkSSOvIldwGcnWCu+/W6p9VNTJqpfuoYoAAAgAElEQVRgZpNEPCmSN4B0VhEsW1lF5WjbBL15KYKnuqaxWUyCarMQTTEyHeUjt2qO1lgyQ9dwGEmWdFJqNkm094fYuEacaIYjKf73146yq7VMWF5e7CSREsMZkpkss0t1Y9FEhpmw0faWr2ZE4mnuORRkU44SkVVUUmlFJzqSBMNTEe77aSf/9kQHJlmc7smypNeypTMK03NGC+fcYpKKYidbV6lFCvgdfOBQkANbq9jeEhCIxeRcnHRGEUiXSZboHZ1n2SkYjqQMk22P08J1O6r5kw/uwLl0L0TiaR58oYfTl2dWUXWSrK1ZCeSQJK2P2OWRlev7a9c24XKIvbQURWXfpgr+6H07DKRkdj5BqU8knFaLjIoWHCLLEo2VHsGSq6KRng/c1GpQ7urK3HgcYq+tbFblPTe08OFb1pHJIziKCluaSqgudRvGBlrLh9xAk6YqLw8d7hW+E6z1MxOOM5STHtk3vsD4TExvhA4QT2WpL/foLw+KvRpBfbVtXA89ya8lG52JUpf3/FUUO2koF0mr1SxTVuRgz/pyTLKEzWJifUMRpzqnaKr2YrOY9OPrGJzjZMcUsUTGEIoyHY7zvpta8LmtOGwmbtlbz971Ffz2XZtprfPjc1m5eksVd1/dhNkkE6wtojPHEhuJZ4TG8290FEhZAQUUUEABb3l0dXW9hKaW3QbcCfiXlr2lcLJz0rDs+dMjfPeZLg6fGyWTVdjZWsan797ENVurcS8pGc3VPv7qN/byr39wgOYan2EbLbVFgsUqnVG5ZkslXpeF/4+99w6P6zyvfX97esMMMIPeC4kBeydFNaqRKlZxkezYlousuCRxEvs45zi5SU4c59qpjhM7LilukotsSxFVrF4oir2BBQQxKETvZTCY3va+f2xgY77ZcJzc2KFkzXoePnxmT/t2w3zrW++71thMlFNd08STWap9Dk3xOdIxwfBUmPVNXoocZqp8DoYmF3jhxJDmQuiym7lpay2GPMXEILHipDaeyOjKoSQJ4vGMrudmPpLkfJ+obGWzCnu31wKqmjQVjHO0Y5KP3bWWxqrliensQpLjl6bYt6NO29YzEsKUR44qSxxCYPbl8QWqcxQhh9WExaTfD4Mk6ZQxUPuTrl5fKRiQDEyE2bRKLCWr8jqEErChqQgNORNrSYILl+d4+sgATxzq10wXQFWfjlwY5+HnAiTTWerzJuQAZ/tmBPOGDc1eXY+TyWTgzqsbNJIbjqX5xv6LZLMIAcgAZ7qnaap0C9ucNpOgPF63sZpwXsZX70hIUN60fTBIHFm0VM+FzWIkMBwUHrsdFvrHF5AVBVlWdEoxqAsAI9NhHdGcno8TzutjdNnNnApM8ckvH9QiB5ZQ6XXwvecCvNo+yoXLc4Iy5rKbefb4EDOhBCaTxAf2tXJ5bEHISNu3o47Pvn+rFhS+hGA4yVRQLDFe+sxPvnM9f/GbO3VlnycuTenKgCUgHE/hWbwe3A4zcwsJnjg8gMdlweO0UFJkJZWRefiFbk4Hpvmdd2zgmvWVdA4E6Rqap290gbb6YkHJA5WcraoR/3Y0VhaxEE3znhtX8Y+/dx333tDCbCjBme5p1jf7+POP7OTDt7eRTGfZ//plHn6+a8Xy6jcL3rJGH9FoFCWdINL75JUeSgEFFFDAfxlKOk40+vOd8gr4r8Hv9/8f4F3AD1DnHn/s9/vXBwKBL1zZkf3PIr8XBlRytISe4RC37qzjiw+f1tSRg+fG+POP7CQrK3T2z+EtEkuLjAaJ4iJRLQB1FT4YFieslT4HY7PLk8f5SIrNq2zce0MLn8sJW55bSHL/3la6R+d54eSw9j1LNtrhWJoXT41ophugEo3DHRMYFssnNZKgwFcfv0CpxyYYhATDCV2vDqApTEtQgGAkKUyOQVXb8ieE4XiaO66q59LgPOUldlLpjKBoANx3Qwv//MRFEmmZWDJD11BIlwf2nWe7tH1dgskoCU6AuRjIC79eydDh5m01lJc4OHRhjEPnl8/5QjTNu29sIRhOMTYb5WL/nEb6jl6c5L03rxZcI31uG4EctQKga2gen9sqhGk3Vro1R8glnO2dYc/map0jZySeFnLDVtW46R0VTTMGJhZ0ZiOzCwm+/bNLYr6X1cShc+Pa65auEbvFSDork0iJAdkH2kXHk7GZqC5/rqN/jvN9ivZ5sKgO5hh72K0mKr0Odq4p58ev9Aqfub7Jy9pGLwfOiucvnZF54I42MlmFh59fDnnOZBSOdU7qCMhMKMH+1/XKkNtp4eXTw5hNBq08UFoc97m+WbXML6+c1GiUuGt3IwfPjzMyFSESTzEXTsLipfSO65p46siAVpoZiqS4flOVoMZlsjI/OzagU4DP982yrklUmI0Gies3VWM2GekfX8DrtnJ5dEEjmGd6Znj34t+BpXvwlTMj/NmHd/KXPzgjqKG5iOWFwb+RUVDKCiiggAIKKADuB24IBAJfCQQC/4gaJn3/lR3S/zxWMGgTcKxzglfOjAjlauOzMY53TvL//MsxvvrvF3jqyADVpU7Kim247GayssL+1/ux5eRp5U8Al5CvJIFK3vJX/gH6xkKc6Fy2T8/KCs1Vbo0cgFqq1lztpsrnECzyrWYjm1epZXkK6qR/NpTg+k1VWnlYMKx+r2Oxr0xCzbBaaSynu6Z0vTYep4V8sc5okHjlzAj94wsc75ykb3RBUFecNhMzoQSJtPhZ65p8PPi2NcK2WCJDU1UR9RUuzSnwYv8cF/vnhL6z2jKnzoglmc4Kio/JKPHtZ7r4x0fPaa6XuRieimAySTTkKScAgeGgcMzdTjOWvOw0q9nIH/zGFmpzMsieOTYoBHov4djFCeFxdalTy8fLRb5ipSjgcS2Tf7fTwtCiO+PSub99Vz3rW7wCmZFlhQ/e6ud3792oM6AZn4np+pesFpNGyHxuK/56j0DeZVnh7dc06q6Hba1l/OmHtuuiHQBW1XpoqirS7ZPZbCCV1pu4LCFfDe4ZmefJwwOMLy5sGA0SdeUukqksl4ZC2pjWNBRjtxo14htNZJAkSVAVJSS+tr+D3tEQN22tIZ13bC70z+mO1+hMVLffsYTqxpoLu9WEySQJ16nVYuRrj3dwtmeGG7bUYDEZhfN0qmuKF08PC4sicwtJnj02+HMJ2ZsNb1mlzOl0ksxKuFbdfaWHUkABBRTwX0ak90mcTn2YaQH/v2EIBAK5jTUJ4M2zxPpLgstmJJLQG24swWw0YDbqidP53lmC4WUVZGwmyv17W/n+i93atkQqy3Ubq+gfDzMyHeHQhQlBwTAZJE50TQkW4ADdw/MEw0ldLthKVubJdFZXhigv9lvlIpHKkr8bCrCppVSXexZLZrh2QxWHLowTT2YZmoxgsxhVlzlUNeDyohIlSapLoyzLhKIpQtGUNm6jQcJfX6z164DaL3bztlpeOztKJqsQTWR49IBe6UgkM4JStgS71cRtO+v5+5+cE7avaSghlc4yPBVBktAdO6vZyAdu9TM8FaFrMKjZvceTWc73zQiqodlk4Oii+mE0SEKeGaCqJznoHw9z1zWNPHV4QNtWU+akyGFhOs8qfno+LqhiJS4rx3NyykBV8B5+vlvYlkzLVJU6tPgGk9EgKGkAa+qLdZ9VUmQVrtMltPdMM3s6IShJAONzMYEQVfkcGuEBtUzVm2dyA/o+QFDvid/6+9d04eoARzsm2P96P4Cg9hkNEj9YtMnPzaKTJLUcdgkel4UNzT4O5dj9A+xeX8nOtnLd9WE1mwQiDeq984WP7uLSUJCXT48wOr10TWR46fSI7ryjKDisJoEkzcwnFonk8jGcC6sq8tL7jYv9jGcX89rWNpZgt5o0Z0ZZUXji9X5dGbQEK/7tcdh+vh3+mw0FpayAAgoooIAC4GW/3/+Y3++/y+/33wX8BHjLuS/+xW9eJTw2GESnxLftbmDvznpB6Wqt9WC16KcT+eoMqAQmN5tLUWBtg+qmllmcmKezMl63VTMOiSYyDEyEsVtNlJfYNTfHE5emdX1VqbSs61WxmA3UlIkOdT6PTddDY5AkxudilBeL1u0el4WhKVEdS6Sy/MkHt3HbrjphNV9RYJu/TOiJUhTYvb6Czz2wg4oS/UJKMpURFIdkOktbfbGmWkjA+cuzPPJyj84MZWAizBOH+nWfmUrLdA3NE01kGJ6KCgrM0oReDd9N6AKKEymZ+/e28v69q7k7T/HJygptDcWCs2Qib3IvAddvrMZfv5yT1jkQ5IcvBVBWKJtcUreMBomWGrfu+ZGpqE6tmg3FhTy9TS16V78VWsl4/OBlIecLVNX2wuU5xmZipDMyRQ4zHqeF1bUenULVukL2W6XXLlyHRoPES6dHxH10Wrg8rvZ/LcTSSCw5PdrZ0VbOZI7RigLs3V7L3u11AnFKZWSu2VDJnbsbsOZdu1aTkT2bqsmHw2oinZV1vW7mRSOOXDRWFvGzY4PEkxndfi9EU7xzT7PW4yZJ0Du6QCyZwWo2UrF4X4YWc/IA2hqKsVmMWlmvrCisaSjBnZcbFhia1xl8yIrCdn+ZcN1eta6SfTvq8bmXVbfaMhf7dtSzc41oqpOLT79748997o2Gt6xSVkABBRRQQAE5+BTwW8AHURcsXwH++YqO6ArA47Lyrc/eyOnuaZw2M2saSpiZj3NpKEhduYvGRbOFL37sKs50T+O0mdi0qpT+8QWOdExqK+mlHht7d9Rx8NzY8uo+qoJz9KI4KbZZTUzn9ZzEkxmd9X0skWFnWzkHciawqbTMVWvLOdk1TVZWuLxYDnf9pioujy0wMh2le1hVFFbXeognM4xMR5kJJZgJJagpdbIQSxGJp5EVhUcP9FHhtWv9T5IEiqzo3AvNJgMvnBxe0aI8tYK1/1Qwzue+c5KsrAh9btWljhWDb5uq3Hz4jjU89GwXnTn9WfFklms2VNIzHGJqPk4skaFvbAG71UQiqZqYVJc6dYQkk1X4yB1ruHB5lpNdy+pRe88MV6+vFAwnbBYj//DoeUDt3cpHIpUV4gsm5mJYcybfPo+NRCpDd14/XXvPDNv85RzNKU8sclg0hSsrK1y4PKtT9U5cmhRUwj2bq3ntrNjnlZ9bBWj7ZDBIFNnNSBKCa6LHaeEjd6zhyz8VVSSDJPHl372Wn77aK6hRoCpt+f1u/eNhGiuLqCsv4vJYiP6c/j0J+J13buBMYIojOde9AuzbXofdaqJ3VG9E4bSZmY/oFT2r2YjXY9P1BKYyWUamVQV3KS/M47IwHYxrPZdL8BZZhWugyuegyufgTPeM8Jpc+Dw2+scWeN/e1fSPhXnt3PLxT6azbGj28tJpsR/O47RoY1nCfCSJw2YWekmtZiM72soFBbm82M5NW2tZ1+TlXO8sFV47m1aVYpAkPv/gLs50T2MyGtjaWorZZOQT96znlm0hQtEk65q8zEdSDE6E2d5Wprt338gokLICCiiggALe8ggEAorf738YeDpnczUwdIWGdMXQMxKivXsai9lIsctCJqswMB5maCKC1WykyqdO+heiKQYnwxQ5LLTWFfOH79/Kk4f7iacy3LSllrJiO3/wG1t45tggkXiKm7bVctXaSk4Fpjnfp5YumYwGbt1ZRyiSFEwR/HUleN1W+nLMHGwWI84VetEsZpNukuqwmnXlfv3jC5TlqWBjs1Gu31gtTDIn5+K895ZV/OilXhRFLUVbiKW10rWlErclA5RKr52JuWWiePTipNbjBSqBy90PWVZYU19CkdPMiUtTjM3EBCIiAc8eH+LguTGqfPoMqlt31DMwcVHYFk9meNeeJl4/P0E8mdb17BkkiZlQfEVHykqvg6vXVzI8pZ7f3pzIgN7RBaFkz2w0YF3B9XF9k1crP5sJJfjKY+cp9dgEsl3ksHCsc5mQVZc6yHOQJ5mWufeGZl46NYqsKKxv8gpGM7CycYOsKJoZiiSphGDJMEaWFUqKrELZIah9hJU+B0V2s+DaWOlz8OiBPk4FpoRSQpNR4qnDA5iMEj6PDZNRYmwmxshimd/ARJj6ctGJUmHR3TOPnEgS/OjlHu1xrvGM0SCxf1H9zN1uNho0I5f887ih2cf3ngsI2+7d08K3fnZJ2Hb9xiqO5PXsAbqSzrlwkpu31tA/EWZyLq4tYpzuntYFWAOUr6AAr64tZngqytjMsqK5vsmHv76Yb+zv0O7Ze65rYs/mGgySxIlLk/g8Nu68upFEKsPYTJS1jSWaw+fUfJxD58cxGSWu26iagoQiSV46PUIokmL3ugqmg3G+9cwlQpEUgeEgH7y1TTe2NyoKpKyAAgoooIC3PPx+/98BHwVmFzctzcear9igrgAGJ8L87Y/atQnTiUuTZLIy6Yz6+MjFCT7/4E6++uh5zTXwQPson75vE90jITr61X6svtFOgpEku9dVMhdOMDQZYXQmgCwrfPKdG3i1fZTzfbM0V7mpKXXx0bvX8b1nu7g8FqK+oogP3NqK2WRkci7GxYEgLruZD9zaSnOVh9fOjml265VeB5tXlXLwnKicJDP6oF2zyagjFGajYUWL8/EZfenlltVlfOY91fyfbxwVtqcyMh+7ay3/8lSnti2TVVjXWEJjlZtKn4NvPS1Ojg0GSVAmFAUaKlzMLCSIxlXSEU1kCMdSQi+P0SDx+e+dErKqQDUI2f/6gHbeguEU9RUuhicjSIvvf/LwABaTQTfRX8pxqit3sb7ZK5AyEPuo0lmZwTwbd5fdrHPXm55PcO2GSmZCEyiKSqiLnRamclTOsZkY122sEspZa0qdHDw3rqlEF/v1bqDRRJqaMqfW8+R2mAUnxiKHWVcONzARZkOzV+gXrCt38Yf/fFQghmXFNsqL7TxzbFDbZreaqC93aU6aWVmNQtjRVi5k26XSMjWlTuH4VfkcfP3xZQJikFQn0kxWZiG6TAStZiNbWstIpLKc6Z7WtsuKqi5X+5y8fGa5JDKTVVjbWEJtmQt/XbGwoLGE/PMI6rWqxgAs77TBIGlmNkswGSV2r6/kuk3VguspQCyRpshh1tTJhooibthSQ1ZWePJwP6m0zO51lVy/qZpKr4Onjwwwu5BgU0sp77i+icDQPHfubsBmNbG+2YfNbOTvf3yWvrEQq2uLuefaZsKxFJ/79rLL4m0767lpaw1//p2T2rl9tX2UP//ITv7qB2e08s9DF8YFJfNA+xjpjMyDb1urOxZvRLx5NL0CCiiggAIK+NXhHqAmEAg0L/5rCgQCbylCBnC8c1JQneLJrEbI1McZXjwxLNi4Kwq8dnaMF0+JZVIvnBzm8YOXtTKyeDLLQ88HGJ4K8/jBy1zsn+OpIwN88fun8RZZ8RZZSaZlekZCfOWxCxgktY/EZJSIxNM88nIv8VSGzz2wgy2rS6kpdbJldSlt9cVcta5C+O5Xz4wyH0kKZXzxZIb5SEqzLAcoLrISjCQFZ0i308LUvD5MeSoYY3Iujs2SP4E1sBBbwR1Pkjh6cYLv/OySrvetvsKlMyRR0KtA0USGP/3Qdm7YrPYLZWWFTFZmYi5GxWJPkNtp5vrN1Tq1sKbUxSfftUEwZ0hlZLasLuO6jVVsbS0TDFWGpyIkU6Iro0HSjymWyPC23Q00VhbhtKkqZTKvZNNiMnDowoRGeBKpLKYVTBr6xpaJg91iZKu/TCBuoWhK6BE0mwx0DgQ1QvbO65upLhXVxIVompoysa+wpMgqELItq0uZmIsKhKyh0sVffny3zhEynsxouXi5WKln7dLg8ndU+RwUOy3CeZEVhT9831bI6/LKyAq3bKulrV7fs1bqsbG1VR/g7XXb+I2bV2M0SkzORXXPhyIpITZBktRSw4qcXjIJVVWMJjKC+qYo8P8+dJqvPd5B/ppFSZGN+/f6edeeZj5651r+6P6ttPfM0DkQZFNLKX/8wW18+I42vvWzS/zdI2fpGpqn0uvkvhtX8dDzAf7x0fM8cXiAx167TDSe5t+e7qSjf27RZGaWbz9ziaeODAgGIs+fHOKV9lGBbIciKdV5MS/4PP8+aM9Z/Hijo6CUFVBAAQUUUACcB6yA3nv7LYTckOCf+xqX/jV2qwmTQSK3CMpklBifFSeLqbTMS6dGhF6TsZkoz58Y4nBOmdrgRJiXTo3w/MkhrQwwGE7y6IE+akqdtPeoE63RmShT83F+5x0buHVHPV94+JT2+mRaxl9fTCyR0fqW5iMpfG4rm1aV8sqZUaaCcaaCcYrsZu7c08Bzx4dZiKboXDQ6MJsMZLMKsqJwKjDNqcA0O9eUcyLH1W8qGOeRl3uFkkUJ6BoKkl18nErL1JY5ycoK0/Nxnj0+JLjpLe1fsUt0BzRIsP/1y0Iw9RKqS52LpgxpXj83rnt+PpKgb0SvliDB5lWlhKIpQZUBlRi+4/pmHjvQh4Kq1OQTLgnYva6C186OaSWi8WQGj9NCKJrCYTWxscWnM9TwuCzCMVpV4xHUnHgqK5S6LaG5ys02fxl2i0ko+QPVmbPS66BraLkvy2SUyOaQzdoyp650UXUEzLduz3KgfVQXKG0xG3TEVJJgLIcIGSR1f7pzjvf4bEwwRFnCTw706vLvnDYTn//eKW38uddRJivz9f0dggJkMhq4cUsN+1+/zJM5LpeSpKpxWVnhbK96j5QUWVld6+F836x23xgkuHlbLR39c0Iv1462Ms72zmrmLtPzcapLHYzPxFBYNEXpU/sSDZLE+/eupnMwyDf2d2ifcXFgjg/s83M85/xfuDzLiyeHdBlmzx0f0vUeBobmdb2MigK6UDZ+frRGLvLz/N7IePOMtIACCiiggAJ+dXgY6PX7/RfIscIPBAI3Xbkh/c/j+k3VHLs4oSlhG1t8zIeT2uNVNR72bq9jdDqiGXY4bSZu21VPdamTn7y6HIp75+5GIvG0UFpVVmzDswLxiyb0Rg3TobjOtnsmlGBoUnRCPNM9TTyVwWySdLlJ8aRaApiL2YUkoTx3uXA8TVZWiOSNY+vqUk4FpoUJ4eBEmC98dBdPHxkQTEsyWYUNzV6sZiONlUU8+ppobV/sstI3FtLGmMrIVPscpDIyM6GEVg5W4rLgsJkZnYmyEEtzrm+WwPC8zgBjcCKsWa9H4mmKnRbSWTVwWlHg0uA8lwbncdnNWrmnwSBxOjDN6cA0xS6LYGkuSaqN/NNHB4X579BkmPJiu6YeVnodBMNJ7TOXUF5iZ/f6SnpHQzoiB3B5bEE4PyUrBIqXF9sodlk0Qw6TUdL6/Vx2sy4cOppI0zOyPKm3mA1U+5xCllx40cQlF4lkhtJisectlszw/Re6tWOxFGOQSsucW+yBdNpMuBwWPE6zZiADanlmbblLIGWgqlC5Yy4psnKqa5kI+9w2Vtd58siKwvpmLzazkfISO88cE9ta92yq5ubttdSUOvnbH7ULzxU5zNSWugRzmGA4SW2ZS1hIUMm2rCOro9MxXc6Y2WjkLz9+FTOhBE8e7tf2W1YUfnqgj015PWbhWHrFstOZBb1xSUaWaaxyC+pkc1UR122qFoj2qhoPd+xu4FRgSotqqC93sW9HHROzMW1Bp9hlweu2cXnxb44kwQf2+XXf+0ZFgZQVUEABBRRQAHwB+H1g8Be98NcZDpuJ//vADnqG57FajDRWupFlhUtDQQySmrNlkCQ+etc69myuIRhOsqHZi8NmprrUyapaD5fHFmit89BY6SYry2RlhdOBaSpK7LzrhhaMBolDFya0SX1jZRG37Wrg9XPjmvIiAddtrGZiNiaQuu3+Ms73zQouenaLiT/91+PMhZOC+xzAbCihczd02c0EV5gg5ptOgBpom++2J0kSVT41dysfZcV2hqYinO6Z0eWt1Za7tJ67JRgMBtJZUYUJRlI013i07DBYzHjbVMWJTjWkelWNW3OaXEI4nuabf7CHP//uScEuPhJP8/69rYzNRnn1zLJD3nwkxdXrKzkdmCKZVgOW//XpSzrSLMsI1XbjczEOnhvTHetURlU+luDz2AhHU8gK7FpTLiihoKowAmGU4Nnjw5SX2Ll5q9qjdCDHZTEST1Nb5tSMNWwWIyPTYljx5lWlunDvUCTFxhafZi4DMBdOaGW5RoPEjjXlAjFSFLh2QyWHLuiDrP/o/m187tsnhO2xZFZn928xGTQyB7CuyUtXDlkC1Y0w32UUYGtrGVetreCxFTLrmqrd1Ja5UBRFp+oZDQZMeb2UEuhIKYCsyJiMBqGMVlZkXfaYoih86cdnaapyC/cdqNel26Uf/5bWMg53TGifbZAk9myqZm4hoZ0HgyRxy7Y6Sj02/vXpTgYnwjRVuXngjjVUeB2L2WVTlBfbuXlbHQ6bib94cBftParz4qZVpZhNBh68cy03baslFEmxtrEEi9lIYCjIwESY6zdWYbf9YjXtjQJJWemv0C8Z09PhX/2X/Bfxv//37zG3ECuERxdQQAFvSkR6n8TrdvC3f/uVKz0UHcrKilbotnhjw+/3HwkEAldfie9+I/5G/qqxEE1xKjCF3Wpiu78Ms8nIyHSE544PEU9m2LO5ho0tPkLRFE8e6md0JsrGFh+37ayne3ierzx2frFPScJiMgi5YFU+B5msLKggS0YGuZPNfLIFaA5+sKyWFBdZmA+Lk9HaMhe37qjj289e0sicJS80F1SSFookMZsMVPochCIpbaUfVNfCdEbWTCRAVU+uXl/BU0fE9QGfx8ZsznurS51CuZ/bYaah0s1MKC4oIEaDxF1XN5DJKjx9VPzM1jqPoPiA2m+1VOa20mNQLdMbq4o0s5KaMrWUci6P7H7o1laOdU5hNhm4NBgUjndztZubt9YwMh2lvWdacLD0uW3cv6+Vf1y05l/ChmYvc+Ek8USGHWvKef6E2MfYUKH2ueUqRQ6bSSs/9LmtrK4rFggYwDUbqjh8QSwB3bejjhdPDQtkfU1DCe/f28p3n+uiN0cVs1uNgqpbX+FidiFJNEdNNBkNVPscQj9mbXi9hBIAACAASURBVJmL3esrePTVPk1Ns5gN+IqsjM/F8RZZdeHcn//ITsLxNA8916Xrp/K4LITyiJPLbiISF4m/1WwgmXet5pZNApR5bFjMRmFxoCxPXVzf5OWjd63lS4+cZWgqggTcsr2O996ymu7heZ4/MUR2sV9ufbOPdEbm2MUJpkNxtraWaREboJYzrtR3+OuG/+j3sUDKCqSsgAIKeBOiQMp+ufD7/f8EVAHPAtqsJhAIPPSr/u432m/kH/3zUW2yt7HZy6fevfkKj0iPeDJD//gCLrtZ5w5XUWJHVhRd9tnudRW6jLTrN1VxMK8f6+atNRy6MC5MWtc1lhCMJAW3vSqfg/fevJoXTg5jMEiUemyaZfnP+06jQaKtvphLg0HNAdHntmI0GpgKqpb1NWUubttZz6vto3QPz2M0SNywpYaX8wKJ68pdrK710DkQFIK6l4wZlj4/t3wudzJukCRu3VnHs8fF8rj1zV46ckwxPny7n2eODQkGHM3Vbq1EbAmNlUWCSmW3mgRjBqNBdYFUFIRSzLWNJUwF4wJZBfj9d23gX57u1MiOakCikOuPklvqCOB2WDTTFUlS+8mGp8Q+te3+MrUkNQcfvt3PCydHNJK7ZFDo89i0cRkNEvfd2MKjB/o08mIySvjrigkMzwuExmU347Sbmcw5Ly67mRs2V/PSabWn0ue2sq7JK1x/S6YluWTb47QQT6khzW+/rplrN1Txma8dFspHW6rdZGVFOP5FDjPrGks41rlctgjq9f2y7jqtFPLjANrqixmcDOtKiO/f18rF/jlqylzcvqseu9WEoigMTUZw2k2UesTYif9pHDgzwsMvdKMARXYzX/7dawVznyuN/+j38defkhZQQAEFFFDAL4YTWACuAW7M+feWwue+c0JYfT9/eY6//sEpRhdty2VF4XjnJI+91kdgSCzF6h0N8dThfs71iqrK6HSEF04M0dG/XMoVS2Q43jnJpYE5cheHh6ciOve7ZDrLdJ4bot1qorHSTW2ZkyqfmJG0ptFLbZ77nsdloXiFMjGXXV+CmMzIOhUhHEvr1Ibx2RhdQ/NcGgxyvm+WC5dnycdCXqhxVlYwm4zkCnSzC0n2bqvVlIrBiTD/8uRF7ruhhbuubsTlMHM6MKXLpjIaJPz1JexcUy5slxXYt7Oe992ymvoKl9CDlUzLXLW2AqvZgKwovHx6RCifKymy0pNnvPDs8WFu3lqjkT2r2Ygvz5IfVLVsybnRYJBozjMnycoK9+5pYff6SkF96hwICo6AoDoO/tPjHRohMBkl9m6vJc+wEn99MeubvNSUqU6cuS6YigK1ZXqDFLvNRE2OY6PVbMBsMvInH9zGB25txWI2oCgqkZ0JJdi8upT3723lCx/dpeuLy2QV7r1hFfY8S3mbxUhj5fI1KKESrqePDmolnzdurRFiEQCC4QQTK+Sp3bqjDoDnjg/y0qlhXT9fJqswtyCS2nAsreuxBJBWIChOu1HnJum0mXUullU+BzdsqeF33rGBd17frO13Ki3jtImELJOVGZmKCGHqWVmme3ieyeDyPsaTGU5cmuTiwJxQZjkyFeHpIwOc7JoSjFEi8TTPnxjiqSMDzITi2ncdvjDOT17p4aFFQgZqSe9vf/k13f6+UVHoKSuggAIKKOAtj0Ag8MCVHsMbAUOTevPJwPACn//eKf74A9t45cyolgn2s6ODPHBHG9dtrObguTG++2yX9p7bd9Vz342rOB2Y5uv7L2iT8H076rhxaw1ffPi0ZmyxtbWM3377er72+AWtTG5VjYfPvGczp7un+P4L3SRSWerLXfzevRtJZ2S+8UQHQ5MRKrwO3nl9E6+dHaNvNERWVggMBrltVz0zoQTDUxHMJgMVxXaaq9z43DZmFyevlV476xpLeO3sqFayqNrwVxAYCgpKW2t9MfORFKe6llWHSq+DZ48tm2JMzyeoLXOq5V7KImFoLNGZHnic+h6X4emoMIFWgBdPDQvmDKASomQ6iySp2Vvf2N8hEIwlGIBrN1bp3BUlIBRNaqQzlZExpTI8cHsbc+EENT4n/5oXOJzJZPnZ0UGNSCbTWebyVC0JON87o5UnyrKyYo/eXDiJnM+sUF0/l9Qzs8lAS42b4zkKTyarYFyhtC0wNM98JIXJaKDKqw8w9rmturLS1TUebtxco7kdJtMy//ZUJ3/yoe2srinWlaDOh5MYJHjuxLAuZBng31/v07LlQFXZSoqswvh3ravgZN65PNA+piPaJqOB5gY3F3McEat8Dq2UNRxL89MDfUJOGEBrXTGReEpQZVfVeljTUCKogkUOM9Veh+D8aTIaqPQ6aahYVjodVhMNlS7O9c1qvYM+t401DSX87j+8TlaWuXlbLffuaeFIxwQ/eHHxHq1w8fv3biIYTvLVx84TiqZw2kx8/O511JS5+JsfLmeK7dtRxy3ba/nCw6e1kssNzT4+/e5NnO+b4SuPXtBI2q61FXz87nUkUhk+/92Tmnr5/PEh/uyBHfz0QJ9wb+Yi/3y+kVFQygoooIACCnjLw+/33+v3+0/7/f7Luf+u9LjeKEhnZF45M8qh82Kp34sn1Z6e5/JK4F46PUI6k+WZY4PC5Pzl0yM8c2xQmFCe6Z7mxVPDQt9S72iIA2dHeej5gKYsDE1FePz1yzz8QkAjj5NzMfa/3s+mllKSaZlMVmF8LsYPXuzmN+9cg8VkIJ2R6R4J8c0nLvLbb19P06KCMzEX50s/Pse9N7SwodmLwSAhK/CVR8+zb3sdbQ0l2qT51TOjVPscbFlditVipLXWw20763Qu3SVFNrWcC+gamudkYErImDIaJNxOC27HMjFz2kzMLOhz0ZIpvYPhbbvq2N5WJhzT0ZkobQ0lwuueOT7EZ795lO1t5YIC0lBZpOv7iiWzdA4GeeLQAF9/4qKOKGzzl+sUv/Ci6QaoZZA715YTzlMSo8kMaxvVcS194sunRzh+SbVTX0Kxy8LJriltn9IZWSiVXMKlAVGZLSu2a6WLmazMme5pwSLdYjawvtnLZ96zGW+OGvi95wKCgQioJPhM9zTdI0GdjX0yleXhF7o50D5Kz0hIyHErK7ZxoW9Z4bGYDfzfD+/QlXZe6JvFbNJPufMDzu++polVtcXa8bJbTToVEeCGzTU0VhZhsxjZva4Sj9PCwEQYt8OM22lha2sZJS4rDy+6STqsJra3ldNS7eGhF7o1Qrah2ctNW2v4/gvdGiFb3+Tlfbe08u8H++kbXSCRyuKym3ngjjZeOaNmhaXSMs8eG+LoxQkefiHnHp1U79EfvtStOZxGExkeej7Ac8fFTLEXTg7z5KF+oQfuwuXZxV60YUE1O945ydxCgvaeGaHMNZbM8NKp4Z9LyN5sKJCyAgoooIACCoAvAZ9GLF18y5Uvbm/Th9QuwWo2YMifNUiSUJ6U96Quj0lRIJHUv34lN8Sx2ahulXt8NsZgnrve+GxM52qXysi82j4m5IBlZYXDHeP0jy+/X1YUTndPM7uQ1MaaSss8d2KY+nKXpl5lZYWnjwzyGzev4toNVUzMxXj17KhmILKE/LDly2NhinJKJLOywlNHBvnkOzdwz7VNGI0S0USGzn7V3XJpMu5ZtLfPx9BkhIWoPj7gndc189n3bRG2hWNp+scW+O13rNeI1sBEWFMFl1Bb5hQypeLJLBtbfNQskq4XTw7r9tNhNWkuiLKi0N49g90ikhlZVvDXl/DHH9iGzSo+57SbuGFzNdtay7h1R52uzE6WEVwgK7x2ndukyy6OSVbggTvWaCQ4lZb56x+20z8eJhhZvr6yskL/uD6/7WTXFN9/oUez8zebDOxoK2d8Tiwn9Lqt3HdjCx+81a9zqkylZaLxlO54Wc1GrDnHxyCpVvVTOWrsvTe0sM1fxtNHBjSyH09mBBObJXQPB6kpdfKnH9rO5tWlPPpaH+OzMRZiaRLJDFetreBkDlGJJTPUljl1pcXpjKxTU7uGgpzrE7dF4ukViU/XUHCFezQq9NKB6oKab1gCrHgtJ1IZ3bal+2KlhYpMVlkxyHsJ5jcR03kTDbWAAgoooIACfmXoBQ4FAoHB3H9XelD/0/jtt29k97oK3Xa308LeHXXs3V4nbB+ZivCprx6iuVoMe3U7zFwaDLJvh/j6tY0l3LS1RlBKSj02btlRlzdplbhxSw3lxaJKsGlVKWsbvcK22nIn1WViCZ/RIFG5Qjlb8Qr23SaDgWBYLMebjySZyAu+lhWFpw4P8PLpERZiaQYnIiiKwrbWMlbVeHjb7ga8bn2v1VQwptsWjKSwLAZT537+1esrF0sMU3QOBDGbDFgtRo1UtffM0D08Lxw/g0HiSz9u53CHPkA6HE/TMxwSSE8knmbXmnLKim1Ueh3460t070umsowuki4FdVLfWFlEeYmd6zdV6dSkVEbmzqsbtf40SVL7Ax8/eJlvPtGh2urnoaN/jtPd0/z41T4seTPn2YWEprQYDWiqXC7yz6/Lbqa1ziOU4CoK/OzowIqllM6cUOEls5Fc7FpbwUfetkY3NqPBwPMnhnno+YDgGAmqUvYPPz1POKfny2w0MBdOCorQnk3VOufPybkYM/MJ3XaDBLdsq8VsMmjENzAc4nDHBH/1gzOc7REJVCoj0zmgzwnLV0iXxyyeS6PRgG8Fs47VOQreEra2qtdRLja1lLK1tUzYtqHFx842sffR67Zy8/ZaclvcykvsNFW5daR2S2sZ39jfwUPPB4TXm00GXm0fXfH8gkpyvvCx3Ss/+QZEoaesgAIKKKCAAlSl7FW/3/8aYnj056/ckK4MPnrXOj561zqyssyFvjmiiTRbVpfisJm578ZVrG/28dSRfroGVUOIRCrL8c5J3r93NT98sQcF1bziK4+e588e2E5ZsV0z6ujon2PP5hpu2lbDS6dUN8GZUIJzvTP85p1r+JcnO0lnZGRF4WTXFJ969yYeO9DHyHSEzatKueOqeuLJLAaDROfAHKl0lpGpKKNTUerKXYzNRNXA34zMIy/3CJbiq2s93LK9lrGZKMcWlSGTUWLvjlqKXRahpG3nmnL89SWcz3Eh9DgtWoDyEuKpLI1Vbp4+MkDvaAi71YR5sWQSVHI4kacaGCSJnx3pX9FkZD6aEkoi0xmZj7ytjYefCwivs1uN7Ggr58DZMWRZISkrHDo/IfTMwaIyuYLyEI6ntZ65ibmYLpvK5dD3vZWX2Lk0GOTguXEduTUZJUamIzxwRxvt3dO82r58LGcXkmxtLRVMLWpKXXTlGMWk0jJrG0tIprJU+ZwcyrGnz8qQSouzbqNB4o6rGqj0Onjy8IAa/B1P88WHT+uUwGRa7UdcsqKXUFWq3NcZVzC/MEgSRzsmsBiXe9JMRomFWEpTQyPxNCUuK+F4Gp/bymwoQSaHVLXVF7Ou0ctjB8VK6PQKLHUhluLh57t0+XYDE2F6RkNct6GKeDrD0Y5lVTMcS6/oLLhzrer6uaT6ScA1GypJZ7Ja35lBkti3s565hQQ/eLFbIzabW3x0Dc5pTp2SpPasffe5LhRUkumwmdi3s47Nq0qpKLbzw5e6mY+k2NFWzh1XNZDMZEllZIanIvjri7ljVz3/8NPleAOn3cSn79vEt5/pElxC79vTwsPPBzido96taSjGYTVypltVSmVFPQ/b/eXafbyEG7fUsG9HHXariWA4SV2FS1jAeKOjoJQVUEABBRRQAPwJ0AdkUecHS//esjAaDGxeXco1G6pw5ASwrmkowWwUV9ezssLwVEQgFLKihv/mOyceOj/G0bwg4aePDnAmMC0EAS9llk3MxZgMxnnp9AjPHB3EZTfz8bvXsd1frhlWKMDIdIT339IqlCzOhZO856ZV3LSYh/XpfzpMWbGN33vXRna0lWMxGfmHn57HIEm84/om2uqLaVrsu0qksrz3ltW0VLvx1xezpbUUZ14QrdVs5KVTQ9rkN57MUOl1aI6IWVkhGEkhSWr/kctuRlYUhqaidA4GBbXGZTcjrbDibzEZsVryyuEsRip9eiVwY4uXq9dXao8vXJ6lvWdG+J6GiiJduafFbKQsx1HxbM+0oEhIEpzvndV6AecjSSpK7NitJs018ujFSb7843M6l0pA6CEE9GWwQEWJgyKHRTuWuagudfDBW1s1hS4rq4HG6YwsKEvjszFW1XiE95Z5bEI22FZ/mW6MU8E4rXXFy8fDZGBVjZuHng8QySFvD96xRihPBTAaJb76qev40G1tAiEDdcEildHvT27GGUB9uYtzvbMMT0dJZ2VMRom6cheSpPZkpdIyr7SPEl6h3K/K56Cu3Im0OO537WkmEkuzebWPlho365u9fPJdG+gfW1D3s9bDrTvr+Oz7tvDiyWG+/0L3Iskp48O3t3Hi0hQDExGSaRmDBB+9cw3dQ/PavZnOyly/qZrbdzUwG0rw9f0dXBwIMh2K43FZSGWy/N2P2jneOcnYTJTpYJyzvTNC3lk0nuHEpSnBaVUBjl2a1DlSDkxEhNw9UEsWV+rRq/I5qPA6cDstNFQWvakIGRRIWQEFFFBAAQUAmAOBwEcCgcCf5/670oN6o2JDs1hC6LKbaVuhDK56BeLgcpiFJn5Q+4/yzSQURXVXW5rMZWWF/Yf6tQDl/FwrRYGhKbHfDNTMpyWDgmQqy1NHBglGkpzqmiKWzKgmJu2jFLuspDIy/RNhAsPzPPJyD8lUlus2VRMYmudA+xjtPTOUeWxIqAYV993QrOuLCUVTOO0ieVMUuOvqJoF0gtp/tqNNLfWKxNN0DMwJBArgm09cpLpUPI5zC0keP6j3oakoceiMOsKxNHde3agZRmTkLGaTSKqtFgPTOcczK0NTlZvWWg81pU7uuaaJRB5ZspiNfPq+TTrXyEQyI5Sf1Ve46MkjIaFISlCnHFYTr7aPcrZ3hpNdU0J/mtEgqZbrdrNA2OYjKXpH9b1hFpOBkiILHqeF23fV6yb03cPz+PLKTFfXFWPP6XtLZ2TBAXEJU6GE7r0+j41PffUQf/Ojdp1xx2QwpjknSov7UlZsE8oe3U4zHpeommayCtv9ZbqyPIvZqMU9SKilv48euMzwVBSz2cBn3rOZWDLD1/d3cLxzir7RBVbXFjMzn+CRV3rpG1ugeyTE2Z4Zzl+e5dIiOU9n1N7Koclw3sKKWiqZv1Ywvljau//1y9r9mUrL/OilHl5tHxX6Njv654TH2j6uoBbazEa8blGFLfPY2NDsE7b53Dau2VAlrJoZDRIbWsTXvdlQIGUFFFBAAQUUAC/6/f5P+v3+VX6/v37p35Ue1BsVN22r5e3XNVHlc7CusYT/9Z5N7FxTwVXrKjSJ8ap1Fdy4pZabttZo73M7zNxxVQP7doiHdt+OOkHhATXXKb/0TlGgc3COiwNzbPOLpiQlRVau21QtNP1LErqeIICOy7O6iealgaDONe/EpSmePyE6SwYjST5130YMEnz/xR7dir1BguEVogUSqQxlJeKEvtzr4NKgmAsWT2a4dafYi9c9HOLDt7exJof4qkqGJDgOPvJKrxBwvYT27mnN+W50OoY175iUrNBrJ0kSA5NhRmei7D/UT1FeSWMyldUdG4B4OiuUQiaSGV15YFZWcNpNWEwG2uqLdbln8VQW/6JylZUVXm0f5YUTw7rvMhklgYS67GZOd08TDKcIRVO82j4iqLxLr3nfLau1Y2CzGFlTX8y53uWcOYVl4pGLl08Pa+WhRoPE1esr6Rme1wwoUhmZap+DVTUe1jaWCMHLCvDRu9fq1JuFaBpvkbj/SyWJ+UJPOJ7CIMGONeV84p51wsJEKi3zavsIr5wWg6FfOjUslAMCTAbjumtdUdD1CgKsqS/BkbdQ0FLtITAU1JXmpn6Oc2al1y5kuTltJvZtr2N7Tp+Z3Wrk1p313L/PrxFkp83Ee29ZzR27G3jbbrVcdWOLj0/dt5HWumI+8fb1rKr10FZfzO/ft5GKEv0i0JsJhZ6yAgoooIACCoD3Lv7/GdDm61agZuWXv7VhkCTuvqaJu69pErZ/7K513LunBUAzvbh/n5/rN1Uzu5BgbYMXq8XIPdc20VhZRN9YiNW1xdpK+Mh0hOeOD6EoMDEb1SbmS7CaDXznGTUPrdRj4903ruJY5wRjM1GC4STffKKD37hpNcc7JxmfixJPZnVZX6Bmo53tnRGUiDUNJbT3zggOb6Uem678UpIkfvxKL3Nh1bghlZHxOC1YzUam5uPMR1LMR1LYrUaSaRlFVlCAH77UQ3WpQ8uYMhlVM5LxmagQBuy0m3WulaCSk/yCWllRKC+2C++/PBYS+viuWltBZ1654kJM7RNciiHoGprH47TkmGtIxBJpwVkvlZbZ0OxlaDJCKJpiaj7O1HxcyLxyO8woeWOfmk+wa22F5vCY32fXNTRPS41oFGMyGhjOUz0vjy1Q6rFpRMRklOjoX94vh9VES7Wbc33L5CqRkrllezUvnx5BUVTCfM+1TRw4O6aVviZSWfYf6tcdb4OEdq6WgrpzDTSyskJJkZX8U+V12/hf79nMT17ppTNPbesfW9CReLvVyPHOCS2DzmI2UOSw8Pjr6pgkSe3j8jgt9AyryuDQVIREUl8mmpXV45LMEW8tJgPlxXa6c0LBTUa1NPlSznVhMkq8eHJI6yUzSBL1FS6+9Uwnsqzgc9tw2U14XFZ+cqAXRUFQFwEqSuzctLWWwxfGNQXVbjVy7cZqdqyp4ODZMSRJYs/majwuK791zzo6N1UzF06wqaUUt9NCbbmLL/3ONYzPxqgpdWpGJO/a08K7Fv+2LGFHWzk78gxE3sz4haTM7/cbgX8F/Ki19g+g/ln4LuoPVwfwO4FA4M2TzrYIJR0n0vvklR5GAb+mULLqj5tk1DdzF1DAfxdKOg68uVcF30gIBAJNAH6/3wy8E/gEsPM/es+v8+/jfwcrORDWVxRRX1EkbNu0qpRNq0S160xgWiNKsgJne2f48O1tHO+cxGIyCBPumVCC+UiSSDytTQCn5xO090xTXebULNTDsTQWkwGnzUwkkUaWFZ47PsSduxs43jlFNJGmptTJQizFPdc08e8H+8hkFRxWE5VeO2saSnjk5R6Nqd+yvZbnjokKUSKVpbzELhiBxJNZbtpSzSs5phdjMzHetaeZxw9eJpNVONc7g9Vs0PqylsZ7OK/nziCBySCxodknTKQdNhPZvDIwWYGbt9Uwt5Bky+pS/PUlfP3xC0KIcG2ZS5ikg1p2efc1jZzrnaXCa9f1PaXSWT5xz3q+91yXQHRTGZnbd9XTNxbCYjKSybPyN0iSloFVUmRlY4uP1/JywmpKnUwH41oJq9kkYbOaBDv44iIr29vK6bg8i89jQ1HgfM71EEtmdIqOJKmmIrnX1MFzY7qQ9On5BBubvZqxi9EgMTQV0Vwjs7KC06ZXkWRF0cjUEja2+BicCDM4GdYCsUEljc/nqH0Ws4Eiu5nZHFdEl83E/fv8fPPJi9o2RYEbtlTz4qIxzhK6R0KsrvVopaFGg8RNW2tYVePhRy/3qPsP7GirIJ2VKSmyEgwnMRkNbGrxcaRjgiqfQ10AkGBysaQyI8sYDRIP3NHGvz29HCQ+u5Dgzqv9fP+FZVOQeDJLXbkLk9FAeYmdd1zfTHmxnc++byuvto9iMkrcsr1OM4a578ZVeedHYl2TWAoNYLOYaKpy67b/uuM/o5TdBRAIBK7x+/03AH+Pep7/JBAIHPD7/d8E7gEe/5WN8leAkhL9RVBAAb9MBIPqal6JuzBxLuBXAUfh79gvEX6/vwn4GCqxKgG+ANz3C972a/n7eCWhCymOpZhbSOBxWvB5bAIpA9VFL9/qe3w2JpTPgUocdjZ5NVe/0ZkooWiKz75vC1/8/mm6R0J0j4Twua38xYM7+drjHYxMR3nuxDA2i5FP3LOOyWCcYDhJOiPTVOUWcrOqfA6hPAvUSXIirefj3cPzgrqSTMu89+bVHDw3pvXnxBIZXHYzNouRmVACWYHvPNvFnbsbuP2qel44MUxWVoglMoTN4jGzWYw88nIvACcuTfJ/P7yDG7fWcr5vllRGnXDfurOOl06PEM3JfCt2WXjm2CCZrMLgZBizUVR0LGYDf/D1IyuGGR9oHyWeozC6nRYWoikMkkSR06zlVgXDSfpW6APb0OyjpcajqaDxZJZ4MovNYiSRUtUjp82khZSPTEfx1xfrPufGrTX0jIQ0NW3r6jJOB0SltHMgyPomLx39y6qXz23TCJnBIHHdxip9wLSC4FLptJl4NoecO2wmbt1Zz651FfzhN48Rz7kGd6+rEL5P/UDwuKwCKYskMizEUuQjGE7hcVq0sGwAl81MTamTKp8Tt9PMttYyLo+HGZ6OcM+1jbjsZuYjKX52dDnZ45oNlTRWuPnBS93Ln2M301Lt1kgZqCQ0n5SDqlbmW/bbrSb+8P1bhW1Ouxm7xUQ6m9X1URbw8/ELSVkgENjv9/ufXnzYAEwCbwNeW9z2LLCP/+BHp6TEgcmkX2G4kvjyl790pYdQwK85HnzwQQC+9a1vXeGRFFBAAT8Pfr//HcDHgW2ov2MfAP71P2OF/8v4fYQ35m/klcItO+t56vVlAwuXw8KThwdyHpuJLBI3SYK7rm8hns7SkUPWrtpQhdNmZmiyV9tWXmJnOiSWIUbiaV7vmBD6fmYXkpzpm9OCkUFVwQamooxMRbjQt+wMt77Fx9h0lGA4oSlBuePLygpHOiYwGJZDtB02ExaLfurldtuI5hHJSDytK3V7+cwI793nFybGc+Ek91zfQiyRJp2ROXBmWVGZj6Q40ztLe/e0VmKYlRWeOT7Ex96+gS9+9wTpRaLmb/By/OKyQpfOyty0vU4NDu6cWCz3kxmYCGuqiyTBtrZyTuWViO5aX8mudZVUeB387t8dEJ6bmk/wwJ1r+cHzXVp55E8O9LGmUb/I9IE71uC0mWmsKuJTXz4oPBdPZSl2WZlf2N9NYAAAIABJREFUDIbesbaCtCIJfVanu6fZuEofiC4t9qIpCrTWlzCYQ7BlWaFvfEFQuQCGp6PEkhk1VHptBVNzMYG4JFJZ7r3Fz4XeGYGQAbicVhw2s+BCaTEbqSx1Cr1dFrOBZ44NYDRI2jk2GiQtCFpCleCtZiOzCwmNOH7wjjUcD8zw3NEB7bPes7dV10t28tIU+RwpEk9TXuqEnHvIbDJw69VNvHZuTDgG+65qZHg6ykDO8dq7q4GysmUVPBRJ8pfff13b16MXJ/nyp/fQUPnWU77+q/hP9ZQFAoGM3+//HvAO4F7gzkAgsHSawoDn574ZCK4QnFhAAb/uyC6WcExP612HCijg1xm5P9BvAjwG/ATYHQgEegH8fv9/emn3v/v7CIXfyFzcvbsel9VIz/A85V4Hz+Ss8gP4iqw0V7kZGF/A57ERjyV58PY2fvhSD4GhIB6Xla2rvDRUuJmbj3Hi0hRWi5F9O+qYCsYJDC2X7DltJmwr2GqnEnrb8elgTCBkAMgKHqeZuZxcsGQyw9XrKzmSU34oy2rA9MWBOWKJDKe7poRJN8A/P35B59hY6rEJ9v4qJGZXuF7mgjEysrJiL1poIcHAmKh6jM9E2f9qj6ZiZGWFkUn9b5XTaqSl0sWJi2I5ZV25E5fNxMh0lKlZ/Xgu9Ezz4vEhjAZJze/KUYNqS51savbyUI5r43QwTpF9Qfc5P3i2i1gyg8tuEko8AYySpBEygPbANNY850mAGp+DroHlvjev28qFHFOPdCpDIiU6S0bjad53Syv/fvAyycXS1KU+uHRG5mTnJNWlYqC1oijMzISxrmCh19E3owsRN0hw5PxyHttST19uH9+21jKBWCnANn8pZ3tExfjJg31CXyHAs0cGBBdLUMsFvXlOj5IEO1b5GJ4I0zcaothl4T03rSadSLO+ycvAeBirxchtu+pRMlmKXWZ8bisuu4Wbt9VS47Xzh//0OiNTEdY1eWmsLBLIZzoj8+yhy7p+sLcq/qPfx/+0+2IgEPgQ0IpaP5+rXRcB8yu+qYACCiiggALe2NgIjAKH/H7/Mb/f//v8F02wCr+PvzwYDQb2bq/jt9+xgdt21utc+0wmA+f7ZlmIpekfD/OlR86SysgMToZZiKUZnorwNz88y8h0VC3vS2YIhpN8/4VurZ8pF9U+JyVFy86DXreVG7fV0ly9vKpvMkrsXluhC61Te4lE0pSRFZR8H3NUhSx34p+VFS3LbAnReJqmqiLNPGEmlCCcX8qmKMyGkthyJts2i5HXL4xz9OIExy9NCm6TBkkikkizPs9SvLWuWFdONz4bpb7cJWx76vAA33s+QN5pYGwmxvB0FAXVdKLYZdGOj9dt1Szfs7LC7EKS5mq35iR4eXyBf/zpOV0ZnCwrbGj2YjapphZup0UrFYzEMzhtZu077FYTFV6xjDKTlTHkBaBJQP/4AqmMGoK8a005sTzS3Tu2wMYWUaXbvbaSidkYLruJTS0+XUxBOiPrjtW1G6oAeGSxn2sJboeZ8dmYpjg5bSZ2r6/UlepuaS0jHy67/k+RhKRzSbSajdjyFFiH1aSzkr96fSWXhnLNPQzcsLmGv/vxOboGg6QzMjvXVFBeYucvHjrFhctzhONpsrLC5lWl/PUPz3C2Z5bZhSSDk2E8Lgtfe/wCF/vnCEVTHOmY4GxP3uIFUOQo9Nb/Z/ALSZnf7/+A3+//o8WHMUAGTi3WzwPcDrz+qxleAQUUUEABBfzqEAgEOgKBwGeAWuCvgBuBCr/f/zO/33/Hf/Tewu/jrxYuu5m7rm7UHjusJl1GVCoj8+LJYcGGW7VQH+HwBVHdOXhuTCB50USGR17p4cE71mjb5xaSfPWx83zq3o2UFavflckqPPpaH7tzLPslSTWeuGFztfAdV62t4NqN1QKBczvMVHr1vcX2FcoYvW6baKOuQGNlkUbC4qkshy6Mc+2GKt62u4G7r2kULPFBdUmsWyQMsqLw6plRFEVh19oKbT/7RkO4neJEudhl5f9j773DJDvLM+/fOZVzVeece2p6cp7RJI00oxxRAgmEAHsBG+MF7wf+zJrFfLsGs9hrGzDYBluYIIICSmiUw0gzmhx7prunc87d1V05nu+P0326TtesEEbSjJj3d126rqm3Tp16K+iqc/fzPPd93zVL+LMPrtZd9CeSGQo8NnxOCwZZYsuy4pyMuFA0xZ/cuZK7d9XTVJ2bV+dzWnRtcN3DQQoW2eAPT0Y40zVFMpWhotChtYHOE0uk+dqntnD9pkpqS11MBvR7APVzmbfIt5gNbFpWROtcdVRR4FDLGCV5+gqXz2XRDENkWeL6TVWEY0leOj6gGsd0TOgqfaB+F1/PqnI1Vnp44IalPPFGN21ZBiomo5QzaxiOpXQOn/N4nbnCZd2SQkqzsv4kYOeaMm68olr3mpdW+3T2+QZZwm4x8uKxAe32/dcuoWNwhp6szLBl1V5GpyO6iuyzh/p49cSgbhZsOhjnucP9hBcFZ+9vHmZwXB8dMDodYVnNwnegotCpCVbBW/N2/hr4GPCg3+/fB5iAzwEtwPf9fr957t+PvHtbFAgEAoHg3aWtrS0FPA487vf7C4GPAl8HnnmLh4nfx3eZW7fXsrGpiNGpKP4qLweaR3Is7osvIHjsFrXdLZFaUAImo8zAuN51LxBK8NqpQV3VpnNwlpeODzKeddE/PBlh5+oynDYjoWgKRYGXjg1w/7VLuHNnHU+/2Us8mWZoIkyhx8rn7lnNs4f6GBgPEU2m6Rya1eawQL1IngnHsVuNRLIudNPp3M5ZWZZy2ut6RoJctbac7uHZnGqi1WxgaEJ/oXyifYL1/kLtdaYzCrORhG5PU8E4f/PT4+xeX05iUVB0Kp3BZTcxHYpz6Nyozj4fVOv4bz96BiAnQNlklHNy0QBW1OUxMKbu02iQac2q4JztmcZf6dUJnHVLCugdCfJsloOhySiTnKuCrVtSqHN1jCfSOcHeAA3lHqaDcWbCCUry7ARCcc14JZNROD8QYDasr1AGQnGu21jJ8fYJCr1WpoNxnZlMR/8MoWiSgTH99yuZUijJt2sZcaB+Povt/q1mA0daxij02pgJxzHIMnVlLr73xFlS6Qz1ZW4qCp1sairiUMso+8+MYDRKrKzNZ9vKUr7z2Bnd+W7fWcujry7MZqYzCi19AfoX7a9rOEihV19xTGeUnFlGgEJvbpZdaZ49pz21usTNZz6wgo7BGZKpDEurfFrumuCteTtGH2HgngvcdeU7vx2BQCAQCC4ubW1t48Dfzf33VseJ38f3gNJ81WEOYMeqUk53TnKmaxJJgqvWlnP1unLOdE1q1Q6P08y1G6uwW008MZc/JUsSt2yt5VzPFK+cWAjXrSxyYrlAxSqRyq1kDE2ECUX1lYLj7RMMT4Y1S/Te0RA/e6mdz3xgJT96tlWbrTl+fpztK0sZnY7QPjBDOqNwsmOSykIHtSVuzs7lX53smMyxWFcURZcFBmoQ9fefPqfdzjYTqSp2MToV0YmmfHdu3lo6rfC5u1fzk+daaR9cmOd65fgQK+ryONO10N5Y4LVyfi4jS0G1z68qdjI4Hqam1EVn1uMTqQzVxU5kWWImlGA6GOfA2VGdcYbZKPPqXFSAQZZYdgGTjwKPhbY5/WU0SGxfWcrLx/XByMlUhj+8aSkuh4XRqQjH2vTGFosFotEg8fLxAU2EeRxmzRlynplQnEKvTVcNdNtNnO2ZYjwQJRhRnRCzkWWJh144z3RIX1EzG2VGJyMUeFQhZzUbCMcWZthcdhOl+Q7O9wc0502b2cAf3baM//PL09p5OodmuW5TFVPBOPtOzVXoMqrYXlxxBHROivMoikJFoVP3h4mGcg9rGwvozjLuWFWfz/WbqznWNq69B/5KL1evq2RsOqZmvgG1pS72bKikqTqPHzx9jomZGPXlbu7d3YgkSTRW5LpjCt4aER4tEAgEAoHgfYHZZODz96zWQovn84/+612rONc7TTiaZGVdPjaLkdu217KiNo/+sRBN1T6K8+ysqM1TA+S6JqkodPKhPY3EE2mOtI5pLWVN1T6u31TF66eGNfMEi8nAjlWlHGge0VXV8twWzi6azeobDTExE81peeseniWa0Iu6/vEwmwv1s0nxZJrtK0vZf2YYBbXVzyBLOG0mQtEky2p8ORljTqsRf5WPI61j2n0Gg0Q6rSBLMBaIUJDRX7zbzGpocWrxbJeiEM2q3hkN0gVbLedt7F02k06UAditJm6+oppv/vyktqYosKzGR1m+Q2urA7UyE44ldeYnRV4bh1sXKqKptMLTb/ZSXqhvPQR46MUO1RXRJGvuhPN0ZRmc+FwW8t0WOrL22tYfYFm1TxeubTIatJZHUO39Kwoc2jGxRJpUOq4TwiajrKvguu0mMorqbDgyVyXb1FSky5gDNZOuoVz/3kYTaY6fz53L6h6ZJZXKnVe8UBVqdX0B49NRrdKoZphV4LKbePCZFnpGgjRV+7j/Oj8+lwW3w8ypjglK8h1cuaYMi8nA//zDzZzpnMRiNrC8Jg9ZlrjvmiVct6mKSDyltcguqfTyjU9fQSyRzmnVFPx2iHdPIBAIBALB+4qiRS1XkiSx/ALVlvpyD/XlCwaYFrOBj17nzznur/9wM8faxvE4zaxbUojRIPPlBzaoszXpDFeuLqO80MkHr27g4Vc7SabUdr4N/iJ6hoO6tjB/lZc8txWP08xMVq5UbZmbwKJcNZ/LgtuunwkDUFB04iKdUbhhSxWypF7Idw3NkkovVNNsFmPOBb9BlijLs9M/HgZFtaIv8lqRZZmRqQjRRJpnDvaR79a3pWUHEoMqiBYHVFtMBl3+1bxgXNiPQYsJyKYs34G/yqcTZaBWcbJnotIZheQiARIIxnVtlZIEbvtCG2UymcFhNeJ2mEkk03icFp3d/HQwfkFRt7TaR2auhFfotelmxQDuvrKel0/oK3SpdIaP3ehncCxMvseq5cLNU1vq5nSX3iHxVMcklUVOgpGF9zbfbaWi0MGJLHMMSYI1DQW8dnJI9x1oqvLlzHTJksSuteXYLUaeOdSHklG4en0F65YUsLIujwPNI0wFY2zwF2nh7V9+YGPOe3ChIHeLycCGpUU5x+Z7rOQvWpOk3Nk5wW+PeAcFAoFAIBBc1uS5rVyzsVK3Vui1cfdVDbq1HavL2Huol+lggmAkybceOc2nb1vOY691MTzXBnesbYxda8r5o9tW8B/PtjIyGWFlfT73XNVAMJLg24+eYWQqgttu4uM3LKUk387h1jFNwK1pKKCxwptjVLL/9DBDc/bz2QJGQm3xzBYgAGajgYFFs2VTwThLKr2avTuo2Wy376hh/5kREsmMzo1yHlmWuX5TFf3jIdx2M51DMzpzlVA0yZqGAk52qOLi+PkJxqZjOdb/r50c4sVjA7oq07y4yra7n5yNUVXkpC9L7EqS2sanfT4eqy6wGtTQ7S/cu5a+0RAHz+nfv/nHZO/J57Lw2L4u7fwFntxg7NHpSI4pit1i5IfPtAGqQcriTLMCr42SPDvDWXEBpfl27rumkW8/eobpYByH1cgD1/upL/fQMThLS+80ZqPMHTvrWNVQwCduauKpAz2k0hmu3VCJ027ie080a+dz2U189Do/xT47t2yr5cYrqlEUdT4P1KryrrXlOa9HcOkiRJlAIBAIBALB26C5a4rp4EL1K51RaO6aYjI7qyyZ4Vevd/HJW5ezfVUpSkZh28pSnDYTTpuJ+69dwumuSZbX5GlW9V//5BZOd07itpvxV3lJpTMcaR3TWiNX1ObpLOwVRW2zDEXVGIB5MZTN8hofY9NRurMqVvVlHtz23JyqA2dGNGOTwy1jeJ1mAnMiUZbgdKc6s+e0mfjzD6/jh8+06ESZySjnWM0PjId44Do/h1pGSaYyjE5HtWpaJqPgc1nYvrIUr9Osaxec5+r15bx6YojJ2RjLavI416NvEx0LxLhieTFvnh3V1iqKnHz1wSPkNvmpZhqvzM2xSRJcu7GS57JMQxQFhiZCujw0WZY4eG5Um62SJWio8OraRwOhODUlLvpGQ2QUhbICBzduqWbj0iK+90QzM6EEeW4L91/np6bEzcduWEpr7zQbm4qpKVGrV3dfVc+RljGqS1xsXFqkZp7NxEinM7hsZsoKHDy1v0fnzBmKJnVVYIP8tlOuBJcoQpQJBAKBQCD4vSCVzjA2HaXIZ9MqBu8kdmvuZZPZJOeEPAdCcb764GFN2LxwdICvfmITB5pH+OUraqvbc4f7uWtXPVetLeffn2nh+Plx8t1WPnKtn1X1+dy7u5EHn2lhfCamyyWbx2Iy5LQs1pa6MRtl2voDHGoZw2iQqCh0MDgRxuOwEImnyPdYcdlNmgnJztVlOtfC+dd5y7ZahiZCvHRsoXUvFE3yzJu93Lq9lm8/eloTL4VeW05mmyTB8fZxbBYjt26r4G9/fkp3fyyRoqV3mo5BtZ1PliStjbCxwsNLRwfU1kvg0LlRygsdulDiAo+Vo1lzZyvr8ugdCeoEmdNmZFlNHlazkX2nFl6jokD30GzODFoqo+B2mJkOxvE6LWxZXszeg33a/RlFfd7z/ejwOi189s5VzIYTVBY7kSWJ3pEgdouRdCrD5qZiqktc/Pyldp4/oj74ucP9fOYDK0ikMvzrk2e1fbT3z1BV7NRMaiZn43z7sTNUF+tDhxUFovGUNlf5TqK2kwrHxPcaIcoEAoFAIBC872nrm+Z7jzczG0nicZj54w+soLbUzWOvdXGkdYwCj5V7rm6gttTNwXMjPH+4H0mSuHFLNev9ucG9F2JplZeVdfmcmZsXyndbuH5zNcNTEZqz3ApL8x0cP7/gBDgTTnDw3CjPHurVnW/vwV6CkYTmGjgxE+Nfnmzmb/94K99+9LRmpX60bZxCr01zUJQlidICO6c69KLCajborOVTaQWv00JZgYPDLWMEQnH6x0JsWFrEthUl9I4GGZ2O5rg7JlMZ3jw7khOQDBCJqWYqf/OpK/inX52hezioWfDPW9TPM+/geLpzkuW1Pp2jY3WJi9behYpTRlG4YnkJ65YUUJpv5y9/cFj3vDKqjX5bX4CaEhczoQTJrJbHvrFQjjBMZxRqS905BivzNFZ4OD83PyfLEiNTERJz55gOxnOcGUFteSzy2XSVQq/LzF//+CiJZIar15Vz1dpyvvv4GU207j3Uh9dp5qWsWbqMovDMwV5Saf384KsnB1nbqJ/vSqYy1Ja6NQELsKTCo7mS/iaGJ8O8eGyAdDrDrrXl1JS46R0J8ouX2xkPRFnvL+KuXfUEgnF+8PQ5zg/MUFPi4g9uXkZ5wdt7DsHvjhBlAoFAIBAI3vf8+PnzzM5VUmbCCX7y/Hk2LC3i2cNqpWNyNsY/PnKaP7p9Od9/8px2Ifzdx8/w1Y9vonc0yOOvd5NIpdm9roJbt9cyHYzzxBtdjExFWdNQwLWbKvnc3ato6wswHYyx3l+E2WTgj29fwQtH+hmcCLO6voB4Mq0TZUBOntg8i2fBovE0bX0BXbaV+ngoK3AwNBEmoyjsPdhHfblbcz5UZ6KsutkmgEQyndMeeLJ9nDyXRavaAJgMMsl0BpNRZjwQYzwQo2NgJieTrKV3mv/xb4e556r6HDMPp83I/dctpa13mueyzp3OKBR6rDrxt3if6prCs4f7SKUUXRshqFWq1t5pUmkFWZIIL2qXDEWSrGks0NnipzMKv3hZrUxmP7ckqc6X0bmssWKfjdt31PIvT57TnXNxlpvTZmJtYwGBYJx0WsFhM3LFihJ++VKH9n16cn8P8WRGt3eA9oEZrRI4z+Jj5qkscnE063VIEuzZUMHSai8n2yco8tm4el0FmYxC72gQn8uC12lBURQef72bV04MYjUbuGNnHU01efz1j45puWoHmkf58gPr+cdHTmmV3OeP9GM1G+gcmtVEas9IkO8/dZa/+vimC+5R8M4jRJlAIBAIBIL3PYurGiNTEc4tsqufDSc4cGZEV5lQFNjfPMLzh/u09cff6FbneA70aM6K5/sDZBSFFbV5/Pj5NoYnIzxzsI9P37ac8kInkiRxtnuKcz3T7NlQQZHXxthcZctokIgn01y/uVprXwQ1Z00Bnduh3WrEX+XFbTdpIhOgJM+RMzumZBTqSt10Dc+iKPD66WFK8uw6I4+r11cQ2t+jC5Qu8tl17XwAkgx/8aF1fP2nx3XrDquJXWvLOX5+jP6xMIlUhoHxEP/8RDN2i1HnCChJEi8c6Ue5gOLqGw/pqnFtfQGsZoOW2WUyyhw6N6r7bOZNObxOs5bjBaqVfX2ZW2f8YbcaNUHmsBpZWuXjWJYwTqQy7FhVis9lYWw6ysFzC7Noo9NR7Bajbj8As6GkJsgkCe6/dgk/3NumZX1NzkJp/mzODFsoksgx/6grcxNNpHURCns2VjA6GaF3dEHcrm0s4FzvFFazgXgijc1q5JoNFXz38WZ6R4LUlLi4fnMV4ViSr/7wCGPTUQyyxO07asl3W3nqQI+6h2iS7z99jtu21+qCrlPpDC8dG9AE2TzneqYZnNCHS/eNhkilM+9KK7AgF/EuCwQCgUAgeN+zZlHL19rGAi1LaR6zSWbJBUJtU+l0zoX1yY4JndU9wNHWMR58plVz1RucCPPDZ1tp7p7ksX1dhGMpQtEkj7/ezb27G7BZDHPnV3jk1U4cViPXZrk8Pnu4n5oSl659MhpLse/UMH9w8zIsJvXxkgQFXktOtc1uM+mCfwHS6QxblhVjMsoYZInz/QHu29OIPcuy3G4x5GSPWUwGTnZMYFoUuGwyytSWunMszyPxNFetK0eemz0yyBJTs3Faeqdp7Qtoewc1fNh0gQv7dY0FeBxmSvJsXLGsOOcz2LOhgk/duowP7KjLeazPZeHqdeUsq/GxeVmRbt4sHEvlVKVArZwlUhldOPc8pzomdKHhS6t9mqgGVWC9cmJQF74M6BwW5znbO42iqJ+bLEtsXFrES8cGNEFWVezki/eu5fVTwzw9Fy3gtpv4g5ubaO2bpq0vQCyhfidv2lJNc9cUvXNVyZ6RIA/ubeWp/T1aC2U6o/Crfd1aW232noNhvfgCVeBbFs0pVhY5cwKf68rcQpC9h4hKmUAgEAgEgvc9H7+hCY/DTOfgLA0VHu7YWUc6ozA0GeZczzQuu4kPX7OEDUuLaB8M8MbpESQJdq0tZ/vKEp2hBajzRkfbxrQZI1Ctzo9lmUuAWk3oyKp0zXOqc1Lnlgdw7Pw4nYPZGWAZntzfQ7FvwYpdAR59rYv79jRq4kFR4MWjg+xcXcq+U2qOls1i4NattXQOzmpteKAGN2dXnF4+PkhFoRObxaBVTDoGZ2ms8BAIx1XxgJp/tveQ2uo5b1kvSdA7GuQfHj5FgUcfPm00SBxtG6ehws36JUUcbR2lPSuYOZ5Mc/uOWl440k9bf0ATqPN4nWYOzDknzoTRzaLNc/z8uOaQuLid8Xx/QKskNlZ4ch5rMxtwWBcqeWaTzIHmBZv8bFv+Ip+aT5Ydx2Yy5LabShI5Nv8FHhtl+Q5OdUyQURQcVhNTc9U1RYECjwWPw6wLE+8bDdE3GtS5OM5GkvSOBAlF9fNv53qm6B7Wt4l2D81iXiSeM4pC4eL8PsDnUrPQBuZMU6qKnFy5powCj5WfPN/GbCRJU7WP23fUkkor/HBvK23909SWuPnYjUtz3gPBu4cQZQKBQCAQCN732K1GPnJtbjD0//OhtURiScwmg/ZX/4/d0MRduxqQJVXEAHz4miU8/noX0XiKjAK/2tfFlmXFHGgeJZXOYDUbMEhq9UCXl+W15YRZAyyr9vHaqSFdC1uh16prXwO1zWxxdSqVztA5lCv0LCaD6vaYzBBPpBkLRLhrVx0/ee48Cqpg8Fd5dO1woLb7ZYsCUOfu/uZTV9A5NMNjr3YykXW/BGzwF3G0bUGATszEaKr20dYXwGY1EI6mGJmMMDKpVotW1ObpRJlBljh4dlQTRdF4mny3hcYKL/keK2e6JnQtdJOzcTY3FXOkVRWUFYVOXaUylVbwV3pJpNTPItt5sn1gBpvFoIlggyxpgs8oS+xYXarZ4c9TWagGWTttJpZWe/naj/Vtm6FokuW1edrnJUtq1TGdJdw8DjMtPVNaXlpTtS+nujoeiDEd0r/36uuN5awZZAmjQSaV9STFeXaiibRu9rCq2JlTuXRYjRxpGaXAY2UmlMBiNqAoCo+81glAWb6dD+1uZFlNHrIssWFpEWuXFBBLpHFYFwLMP3/P6px9Cd4bRE1SIBAIBALB7zV2qymnDctpM2mCDGD3+gp2r69gvggyG0lyoHmUz929CpNRJpZIc6hljP7xECtq87TzDU2E+dFzbVy1thybxcB8feVnL3dw9bpyjIaF9r7OoVmW1+bp9lHss7GqPl+3VjOXV5WNJMG53imtcpdR4OcvdTAxE9OqYumMQnv/jNZSOM+K2rycSpfJKNM5OMOmpcWYTPoqlkGWMJtyLxG3rSzhu/9tJ7Wlbt16MJKkvNChtSzKEtx5Zb3mFjnPTDhBeaGD3tEg6UUdhCaDTFv/NBkFirw28i4QYr3eX8ju9eUXjAj40O5Grt1YyY5VpbqZtlRGYXgyymKHd5fDzAd21DExE+WfHmvGsuj1jkxFONs9hddpZteaMkDRCbLVDfms8xfqAqxbeqepLta3zNaWuihw6997m8XAoZZR3eekitgRzCZZE+nFPhuvnRyka2gWi9mA1WygNN9O93BQm58rzrNRW+oiHEsxPBVlYiaG025kz4YK3bzf0GSERCqDLGc/p6wTZIKLixBlAoFAIBAIBJDjJjgf4pzdWpdIZigrdOiqGYlUhnAsicdh0QTSdDBO5+Ase9ZXAKpg6hkO0j08y41bqrT5sNa+AK+eGOS+PY1UFTuxW4xMzsboGprlQ1c3UOi1Uppv58N7lhCJ6ZX073AJAAAgAElEQVRMOJbMaafsHgmyYenCfJ3LbqKp2scf3b6CqiKnJk4Gx8P861Pn+PdnWrjpimqyNcuyGh9XrS3XzbAZZIkfPN3CF797QDcvNn/fMwf7tHbLjKLaxC+2ds9zWXn0tS6au6YYnAhrc01mo4zFLGuVs9HpaE4lyWyUeejFdn7wdAunFhme5LnVFsFoPIXFZCCzaJwsHEtS7LNrt40GmZu2VPPIa53sOzXMTDhBPKlW4PxVXpw2k1Z1C4QSdA/P5pwznkgTT+TOpq2uL2DrihIKPFYaylXr+XknyqoiJ40VHqLxNLPhJBlFwWCQWN2QTzqjMBNOEomlSKYyfPyGpWqAdGbh+bYsL9HNzoE6g7h4Xm86mGAikFuJu9AsneDSQYgygUAgEAgEAmBplU9322o2UFmYm9W12CQDIJ1WchwghycjulZHUKtKkVhKN5cUCCVIpjIMjIWJxFMEI0me3N+Dy2HmpitqmArG+ckL53Ns5N12M7Ksv5SzW40cbV1wHQxGkjz9Zi+1pW7+6hObqCnRV7nePDvCirp86soW1k92TNI+MMOXH9jA9ZuqKPLatP3ORpJ0Ds3gr1JNIcxGmZ2ry4jE9LNQR1rGtFk3SYKl1V5CUb3pRCKR5i8fWM//+NjGnFmqmXCCu6+qp7bUzQZ/oc4EJKOoc2Ablxaxe10Ft22r5R8fPs3rp4d58dhAjmgcm47qHCn/8OYm/FW+nPDtWCLN/df6CUX1wmdiJpZTaewZCXKgeUQnZg2yxEMvtXOyfYL79iwhlsjoxNz4TDRnb+m0gteRWxXsGJzRfUfU1xHJcbZMZxTKFn1HzUaZXWvLdNVOn8vCmga9SBZcWghRJhAIBAKB4LKiZ2SWl48P6OZ/kqkM1cVOdqwuxe0wU1Xs5LN3rGRjUxG1pS7tuLoyNzdsrqKpekHAGWSJPRsqctoQ1zQWUF3s0q1ZzAa8F2jNm5yN5TgGnuma5CfPt2kVmUAozpJKD765x8+EE4xMRbQLfbNJ5toNlTlVncHxED9/qZ1/+tUZnSkIqLNSoUgiRzzubx6mrMDBLdtqdK6EAIFgQttDIpXhePs4i20xgpEkZ3tU0aMo0N4/g8epf902q5G//8UpvvyDQziseqFrMso8/Eon3cOzzEaSusrkPLvWlnPjFdWc6pzUibZ4Ms3V68rZsaqUGzZX5VSIWnunae6ezKkw2SwGfvpCG06bvqXPZFTnvIrzbNSXuTGbZM06XwHKCxwU+xaEaySe4j+eayW2KLQ6kcxQscgR1GiQWbnoewOqe2j+orbH9UsKde6dANdtquK27bXUlKjfM6vZwP3X+akr8/ClD69n3ZICtq8s5csPbMBmMdLSM8Xf/fwEf/OTYxxZVGUVXFyE0YdAIBAIBILLhheO9POzl9oB1dDiYzcupbHCyzd/doLpYBxJgtu313Lz1hoeerGdv3/4FBJwxfJitq8qw1/lRZYkPnf3Kg6eG2VqNs56fyEVhU7KC5088moHXUOzNFZ6uevKejKKwunOSc1efVVdHletLeeN08NMzKgtZlVFTnauLuOV44M6ceFzWnIChg2yzOwim3NZgnt3N7C/eZTDLaM610FQK0XZWWjZGVoGWeLJN3p04cqgZqD92Xf2E44myVskDqqLXRw8u5DzNRNKUFemtuqlMwo1Ja6cua90RmHbylKePtBDLJFW5/TmTFVAtbEvzbeTTiuqIUrPQhXrfH+AujK3zuwiEIrzzZ+dQJYknWjWXiPQPTx7wapm/1iIV0/qjT9cdhPBSJKW3oD2vvhcFsKxpM6QpGGFN0fAShIkF4nGmVCC27bV8MT+Hm3tihUl3LqthpGpCKfaJ3DaTdy7u5F1Swq5Y2cdew/1klHguo2VrGkspDTfwRNvdDMxE2NjUxG71pYjSRJVxS7OdE2yoi6PNQ2FdAzOaPN7iWSaTEZhOhjn24+d1gxewrEk9+5u5O8fPqV9p9oHZvB+ZF2OFb7g4iBEmUAgEAgEgssCRVF4cn/3wm3gqf09NFR4tJBgRYEn9/fgcVh46diAduybZ0fZsaqM5w73sfdgH5IEN2yu5rbttXQMzPDXPz7K1GyczcuK+crHN2KYayts7p7U5V0daR1n5+pyPrCzlif39yAjcfO2GqqKXdy7p5FHX+simcqwdUUxt26r5UDzCDNZImx1QwEjUxFtv6CaVvzylU5du9uSSi/pdIa6MjcvHF14HQANZR7GAlFmwgkSqQyHW8eoLXXRMxxEQa22jExFNME0ORujttRFPJmh0Gtlo7+IH/y6RXdOm9mIzWokFEkyNBlmU1Ox7n6jQWJsOsLn71lDJpMhHE3ynV81644p8tr4xE1NvH56WCfKAJqqfGxbUUL/WIjO4Vn6R9UqZ0ZR6BsL4bSZtLbD2lIXLx1fiDiwmGTicwYpZQWOnGy3qiIn1SUuXj89rK2lMwrXbarkpy+0647tHApQ5LNpGWGgZnxNzMSYynKwLPBYOdE+QU2Ji0KvlabqPDwOM1/+wWGmgjHWNBbwiRubcMxV5aqKXZTm2Ykn03jnKoqhaJLBiTDDkxG8TjPbVpQwHUrws5faGZuOcqR1jP9ys8zTb/ZqIjyjwC9e7mB4Mqxz3DzRPkGh16YT+Qpwsn1CiLJLBCHKBAKBQCAQXDYsrmgkUhkCQb1leTqjXNCS/kjrGK+cWLjY/+UrHZQXOvjXJ89qF8XPHurDZTdxw+ZqQM2UWszx9nFezaqK/fPjZ/nvH7Xy2qkhrdXubM808WSaazdW8ti+LtIZhQKPlc3LivA6zfzrU+fIZBSMBomVdXk5OWuVRU5WN+QTmKv+ZXdG+twW2gf1r28mlOCDuxvoGQ5SXeziF6906O43Gw2EoklOdUzS1jeN22HWKnYSauUqNGdCkUhmONk+zi1bq3nz7ChTwTiptMK+U8McPDvKVz6+kYpCh2bvP89sJMHnvv0GKGpb5Xw7pyxL9I7OcuBshPoyN6lFmWbJVIbbttXQ2h9gSYWX5kUhyvFkhj++fQVel4WSPDuf+9YbkFWTTKUvHCitKKpAjWUZeigKuGwmDLJEIpmhwGvlzayqoc9lwee00JUl/GbCCe6/zs8Xv/emdq4T7RP8+mAv91zVwEQgyrcfPa2J6h8914bXaeFHz7VqVbqjbeM47WbGpyOaIAxGkjy4tzXHWTQST2kZbtlcyGmxOM+esya4OAhRJhAIBAKB4LJAkiR2r6vQQpIB9qyvwO0w09q3EORbUehg87JiXeVEghxbdYBjbeO6VkGAs91TmI0GOgZn8DjMOY9JpTKLjCsUnj/cx+BcwC+o7o2vnBjk2UN92sX6xEyMJ/f3YJRlLfg4lVZyjCkATndMaJW+7CqSJMHZrknsVqPOnCOjKPz8JVWIHTw3mtPOGIwkGJ9z9IslMshyhj0bKhgYC9FY4WX/mYX3CiAUTXHdpiry3Fb+49k2bT2RyrD/zAhnuxfs/Q0GiZW1eZzsWBBTiqKwpNKDw2piNpyguVutnB1tG6fIp8+F87ksPPJaFwDNXVM5tvRmo0xTjY9UKsOPn2vDZJSIJxc+gaHJCEOTC0YgkgSl+Q4eelFfJbOYDIxORxmdE0Uf2FnHqyf0YjiZymiukvNMB+Mcb5/QiTtQBXsqneFc73SOqceR1jFd2yRAx0Ag57s2HYxzw+Yq3Xd6ZV0+u9aWc+jcqHbefLeV6zdXEgjFefXkIIqizq1tXVGC4NJAiDKBQCAQCASXDXftqqem1E3X0AxLKr2sbSwE1Pa6o63jFHit3LSlGo/Twkev8/P8kX4MBombrqjGbTfz8nH9RfjqhnwONI/ojChC0SQ/feG8dttf5WU8ECUSS2GQJfpG9QHDoAqTxahW7foL+YGxUM7jT3dOcuu2GvYe6iOVztBQ7tHNkIWiSXauLmXfqWEUBcJzdu8eh5mZcILqYie9i85ZMldBGZ+JUl/m0bkXAkRiKc73BegbC9HaF7hgmPHPXmynZlGmGcBEIKoLuE6nlRxnSYA1DQVcu6mKP/6713TrY9NRPrS7gWNt49SUuHKE0cRsjIpCBwPjYYwGiTt21uGwmvi7X5zUhXeX5NkIx1I6m3mPw8Rn7ljJ1xeFSTdVeWnJEu4AR1pGcwxIUukMpfl2nbOj0SBhkuUcoTsWiPLJb75KoVc/swfQUO6mpXdKP89W7gHQzcM1VHi4c1c9PpeF5u4pKouc3LilGpvFyP/74XXsPzOM3Wpi9/oKTEbVBOTWbTWk0gr5ntznFVw8hCgTCAQCgUBw2SBJEhuXFuWEM29dUcrWFaW6tV1ry9m1tly3dteuevYe7EWSJG7YUsXaxkI+ceNSHnqxnXA0ycr6fFp6pnSP6R0Jsn1lKS/OVa7CsSA2i5FYPKVVzA40j+pa5SxmA/5KLyfbx3UX5ksqvUzMxHRizWY2cvuOOm7YXE06k+HQuVGdKAN0M2jzrGnMx2E1q3NZoyFd9c5gkOgfC5NKZ2junsLt0Le+Ffts9GW5V0bjKVbU5jExE2VkKko4lmJ/8witfdM0ViyIRJNRRiFXgRV4bEgsNBVKwBNv9PD4G93YrUYSWe9BodfK4693E0ukGRwPYTQaSKYXKkgWo0HLOUulFZ470s+2laWc69Z/LlOzcaRF5c9EKoPdYsrZoSRJWEwG3fue57bir/LpZg83LytmciamHWsxGagrc/P9p88t7M8kY7eatM9kPBDDaTMRS6RJZzJsbipmx+oyKotc/Oi5VoYnI6xpKODOXfUYDTImo4FzPVNUFTu5a1cDsiSxZ0MlezbonRnryz3Uzwm5bBa7YAouDYQoEwgEAoFAIHib3Lilmhu3VOvWtiwvYWNTEYlkBpvFyH/7p/06EeS0mTizSBBE4ym2Li/mQNY8UiyhWrkfbhkjFE3yL0+epb7cTWm+g77RILFEml+/2UttqYtAKK5Vl6aCcb72k2N8+tbl5LmtpOdmzeZNHSwmAztWlXGmS7+Hg2dHNQMMk1HWQrINsoTdYtJVgWbDSTY3FdE+MIPdamRZjY/nj+gNROrK3CDByNSCCcbkbJy7dtXTOThDRlHb+460jusEjtEgU1fmoqFiOc8f6SeZSjMwHtbuTyQT5LksTAXjlOTZiSVSmniNxFVjjOxMtOoSFyfaFwKmp4NxTnZMUJJvZzirTbGswIHRINExuDD/tW1FKfvPDOsEsgQEo0mdIPM4zERiKU2QFXisfGBnHT9/qV1Xebvzyjp+8bJ+Pq+80KkzCgG1mvn3n92OQZY0S/6GCg//3x9sZjH37mnMWRO8/xE5ZQKBQCAQCAS/IwZZ1lr47rmqAYMsza1L3HNVA5WFDt3xboeZxAWyt+LJtG5GrHNwlk1NRYSzAqe7h4PcsKVal6fVMTDDz15sZ+/BXh56sV0TZAUeK5+/ZxVPHejJ2quEv8qrCTJQxdKutWVsbipiY1PRBatZAxMhpoJxBsbDvHh0QJctJknwxulhzexjHllS2w0XZ6dtXlbMyro8QG35+/7TLfSOBPnyAxvYvqos57nXNhZy55V13LK1OicSIJZIcdeuOuxWI7IkMRPKrQq+cWZYJ8hK8uykMhmdINu1tpxILMneQ32aICvy2tjYVKTLtDPIcNPWajqyzFImZmIMjIV0ggzgbM9UTv5cOq1o4dvz1Ja68DjMORlpgssHUSkTCAQCgUAgeAfZvKyYxgoP3cNB6src+FwWakpdjM/E6B0J4nGa+cSNTaTTCkdbx7XH+VyWnNksgIEsA5B5xqejOQYfPSNBhib1x07MxDh+flwnKtIZhdoSF22LZqTGp2OczWq9zK621ZS46BlZmAPLKNBY4aEk38GLR/tJpRWmgnGmgnGdM2NGgf1nRnL2X1/u5oUjemfKF48NcNv2WurLc+fQXj8zpBmDZBuXAKyqz+dX+7o10do1HNRltRX7bDmvdVNTEU9mZYiprz+Sk0E2MRPLmflKZ2DoAp9JRlF0LZigVuNcNjNvZBmhXLuxkuW1eSiKGmRdXeLio9f7c84nuLwQokwgEAgEAoHgHSbPbdWFLhd4bHzlYxuZDSdw2IxajtlnPrCSA83DuB1mbthcRSyR5pXjg5rAcNlVk4Z9p4a09kKAtUsKGJoM6xwbm6p9jAWiuoqQxWwgEMp1Z0xlFF1+V3mBg7Z+fTaYzWzk5q01JNNp6so8/O+HTujut1tNLK/N49ks5z+AmmIn5wdmtGrTWCBKkc/GeCCqtVw+tb8bWdY3bCmKGnr8r0+e1dbMRpnKIqdOLIWiaitlIJSgscJDZZGTwy1junMtrfbSVJ3HRCCG2STnCLDZSCJHQNmtJoq8+lm5Ao+VFXX5utw0p83EVevKeePMgsGL0SBz5ZpybBYjT+3vUYVvqYsbNldjtxhZXpvH4ESIlXX5Wi7Yn9yxEoFgHiHKBAKBQCAQCN4j3Iss8tf7C1nvL9St/cVH1rPv1CAWk5HdGyoo8tr40ztX8fjrXYRiKXauLmXLshKqi1385PnzDIyHWFGbx4d2NzAwHubvHz5FPJFGAu7YUUdxno3DLQuzazazgRezAqXzXBa+dP86vvi9N0llGWYYjTLPHOxlJpzAYjJQW+Kie65aJgG9o0FW1+djkCWdpXuhz8bpRfNrRoOM12Fheq61cGImTkme3tp+07Ji9p0e0qz3QTXeuJAxxfbVZZzqmOC5I/2YTTKyhK5F0uOw8IuXO3RzcvN7lCTYtrIUoyxr5it2i5GbrqgmlkjzncfOEIomcViN3H+dn6ZqH+FYkkPnRsl3W7lrVwOVRS6+eO9aXjjaD8A1GyopybNz67Zadq0tJxxNUpq/0LK6eVkxoA/UFgiykZQLeZC+w4yPB9/9JxEILjG+8IU/BeCb3/zWRd6JQPDeUljoukCak+D/hviNFLzThGNJ2vtnKCt0UORVhc/R1jHeODOMy2ZibDqaEx79lY9tpH0goGVzSRKU+OwMZ1nhu2xGNi4t5uUsC3qzSeaOHXU88loXqXQGg6xa0C+e4dqzvkITQPO4HWacNiNDE+pxJoNEU00epzv14c/3XbOEh19ZEFhVxU52r6vgwb2tuuPy3RYi8TTbVpbQMRCgZ2Sh4mU2GVha5SWdUdi9roI1jQUA9IzMMh6IsazGp4UrJ1NphicjFOfZsZj0mWMCwe/CW/0+ikqZQCAQCAQCwe8RDqtJEx3zbFhaxIa5GIDvP3VOJ8okCQ6dG6W+3M1XPr6R3pEgjRUe/s8vTurOEYymCIT1JhqJZIaZcEJr40tnFB5+tZPP3rGSn7/cnhU4ncJf5dXNdtWUuHQCLJlWyGT0c1k+l4XtK4t549SQ1lY4HYzrcsDmuX1HHYVeG1OzMZ37IqhC61O3Ls+Z2aspcVNTop9hMxkNVBW7cs4vELybCFEmEAgEAoFAcBlx89ZqzvVMMTNnxqEo8OxhdS5s+8pSPnFTEwDr/UU8f6Rfe9zyGh+1pW6On18QPJJEjuEIwLneKV0b4htnRvjodUsIR1MMjKviKrEoGBvUWbyKIqdmTGIySJzqmNLNeQUjyZxQbUmCE+fHOT4nxkxG/bzaxqVFFzRREQguFYQlvkAgEAgEAsFlRGm+g298+go+f89qqouduvv2Nw8zNas6NlaXOLllaw1LKjzsXl/Bp25bwdIqHw3lHiTAZjHykWv9rKrXV+Uk1BmyxXQNBzVBBtDaF6DYtzBXZjUbqChy6JwixwIxTnfpq16gGnDcsLkKq9mA12nm7l31miAD1eK/odzNluXF3HNVA38wJzQFgkuVt/yTgd/vNwH/DtQAFuB/AeeAH6JWlpuBz7S1teUGbQgEAoFA8HuM+I0UvJ8xmwysrMvn6az8snn+4eFTmg1/kdfGXz6wAafNxE+fP89Lx9W5MLfdxBfuXYvZZODbj57RHuu0mbhrVz11ZW6eP9JPtnWB256bwbWsOo/bdngIhpOsbSzgdNdkzjEuu4kin00LXLaYDCyryePfft1CLJEmlkjT2hu4wOPMfPKW5b/V+7KYTEZhPBAl32O9oNAUCN4pflMd9yPAZFtb2/1+vz8fOAGcBP6yra3tVb/f/8/AbcCv3uV9CgQCgUBwqSF+IwWXDLPhBD/c20pL3zTVxS4euN5Pab6D050THGgewe0wc/2mKp1NP8D1m6roGDyjiacllfq5r7FAlDdOD7N2SYEmyABmI0meP9JPJJ7SVb8AqoqcfO/xZhRFbSMs8Fi5+YoaGis9PHe4X+fUuLIhnzUNBZzqmOBrPzlGIJTQOSUaDTJLK30cb5trSzRI3HNVPcfPj+vaJk93TVJe4GBwQhWTEnDlmvILvleJZJpjbePEkmk2+Atx2c1MB+M8ub+bkckIaxsL2LOxkv7REN957DSTs3HcdhOfunU5TTV5v+UnIxC8PX6TKHsYeCTrdgpYD7w2d3svcC3iB0cgEAgElx/iN1JwyfCT59s42aEKl/P9Af7lybPcsbOOf3j4tHbMyfYJvvbJLXQMzPD66SHsFhPXbKrkrz6+idOdExhlmUA4nhO0nEimCUVy58aCkSQjWe6MoM6XPbi3VXNeTKYyWEwGrlhRAsBn71zJQy+2E44mWVmfz6q6fBLJND94+pwW9pzOKJQVOFhS6eXK1WU8tq+LiRl1Pi2ZVnjijW4aKjw5+/ng1Y20DwYIRhJsWVbCkkovo1MR9p0aQpIkdq0pw+O08LUfH9Nm1J54vYv/8bGNfOuR09paW3+AVEbhZPsEk7OqsclsJMkPn23lG5/e+lt+MgLB2+MtRVlbW1sIwO/3u1B/eP4S+Nu2trb5P3EEgdz/Kxbh89kxGoWlqODywjDX5lBYKBycBILfR8RvpOBSYrHFfd9oiMOt47q1iZkYR85P8G9PNmuZXsfax/neF3ez93AfB5tHAH2mlyzBC0f7CcVTVGYZcIA6E2Y167+7NaVuBsaCurX+sZD2Wzh2fFBrQzx4dpQCr50bt9Vqgmweq8XIbVc2EAjFGQtEdffNRpIUFzggy3CkqsTFK6cGOdE2jsNmYlVjEYrRwP/80VEic+d+/fQwH7t5mc40ZDaS5JVTw7o1gJMdE4xO6wXneCCG12fHJP5/FbwL/EYbGr/fX4n6V77vtrW1PeT3+/931t0uILeJdxHTi77UAsHlQHrOHnh8PPgbjhQIfr+4nP4QIX4jBZcKtSVurVIGUFbgwHEBt8GTbWO6kOVAMM5P957VBBmolaqmai/dw0FiiTThWIoXj/Rz5ZoyVtblc6pzgsHxMLFEilgihckok+eyYDTKJJNp7FYTs3POjqDOhP3Ng4fYs6GSp/d36/bz7MFebtlShdth1j0mHk/x+X9Qi86WRcLP57Kw90CvdruqyIm/wsMLc4HY4WiSf3rkFNdvrtIEGUAwkuBEVoj2PMlECrNJJpFcGP/0OswU+2zsP7PwvqyozSMg/n8V/A681e/jW04s+v3+YuB54M/b2tr+fW75hN/v3zX37xuA19+BPQoEAoFA8L5C/EYKLiU+cu0S/JVeACoKnXzylmVct6mSAs/CDNmuNWWU5ttzHqtcIL7c57ISS+ht53uGg9y1qz7HWj6ZyrCmsYDB8TCDE2FmwwnMRhmX3YQEBEIJ9jeP8PWfHsuxqreaDfzjo6c1QSZLqOeamw0DiCfS1JS4qCxycsXyYjIZ/YYHJ8K6oGpQhWU8kWu5X1/u1jk+2ixGrl5XzoeubtSMPPLdVj6ws44PX7OEPesrqCh0sn1VKf/llmW5b5RA8A7xmyplXwJ8wJf9fv+X59b+K/Atv99vBlrQ99MLBAKBQHC5IH4jBZcMeW4rf/7hdWQyCrIsaetf++QWzvcHcDvMVBQ6mY0kONwyps2CbVhaxHWbqnj1xKDWQmiQJa5cU8bpzkmdmUYskeJ//egoWacHwGYx0D00q1tLpDJsXVnCqyeGFtaSGRrK3EzNxLRw6M1NRbx0fFA7JqOA/QIVvpJ8O3fvauBM1yTtA/pWTavZwIq6fJq7p7Q1h9XIjVuqOdszpQm2qmInW5aXsGFpEQeaR4gn0mxZXkyBx0aRz86GpUVMzESpLHJikFWBdt81S97yfRcI3ikk5UJ/HnmHGR8PvvtPIhBcYnzhC38KwDe/+a2LvBOB4L2lsNAl/eajBPOI30jBe006k6GtL4DdaqSmxA3A8GSYF470E0um2bWmnCWVXs52T/Efz7YyORPDbDLoAptL8+2MTEawWgxUFjoxGGRaeqe1+40GibuvrOdnL3fonru+zE1nloDb1FTE4ZYx3TG711VwumtCC5+WgHv3NPLIa51ai6EkqRU+CbVKeOXacp58o5uDZ0fxuSzctaue+nIPyVSG052TyDKsrMsXtvaCi8pb/T6KaHOBQCAQCASCywiDLLNskbV7ab6Dj16/VLe2vDaPb3z6CgbGQ3zl34/o7rOYDDRWejjfP8P5ucqVz2VhOhjHbJT54NUNLK/N49nD/UyHVAfDpVVeWhc5O3YNzermyYwGiTVLCmjrVwWeLMGuteW09gV0M1+KAvdd08jK2nyK89SWzNt31HH7jjrd+U1GmfX+wv/U+yQQvJcIUSYQCAQCgUAguCCSJFHgsWFZVCnzOi06YxEAj8PMF+9di8tuxmSU+e/fP6gJMoAbNlfRMxLUzaqZjDLB6ILBx1VryznZPqGFV2cUeO3kEI0XsMBfVp2nCTKB4P2OqOEKBAKBQCAQCP6v2CxG7tvTiNmkXjYW59m5fUdNTiug3WqkOM+O3WqktW9ayxab51DLGE3VPu220SBhNMjEEwsVsNdODTGcZfIBqmnH8lp9Za+p2kdZgeMdeX0CwaWAqJQJBAKBQCAQCN6SHavLWO8vYjoYo7TAgSxJ3La9hsde69JMO871TPN3vzjJH922HJfdlHOOmXCCs1lmHGaTIcdJMZHM0FTj41zWfJrHYebwuQUr+/ICB39y58p39gUKBBcZUSkTCAQCgbOJj7YAAAy1SURBVEAgEPxG7FYj5YVOZEn1Krjpihq+dP965KyrybPdU/z6zV7y3VaqSxYymfLdlhzv/UgsRW2pPrdpRW0es+EEsiwhSVBWYGfL8hL6xxeqZ4MTYToXOTAKBO93hCgTCAQCgUAgEPynSKUzZDL6te6RIF/94RF6R4KAak//Fx9ZT02pW3ecJMHJ9oW5tMoiJ1uWFfPC0QEyGQVFgaGJCIFgnMUEQomcNYHg/YwQZQKBQCAQCASC/xQ1pW6cNn2rotNqZGp2QUiFYymOtI4ynSWuDLJEXamb0Fw2GkD/WIi2fr07I4DXZcaQFY7msBpZ01jwTr4MgeCiI2bKBAKBQCAQCAT/KSwmA5+7ezWPvNrBVDDO5qZiPE4zR9vGdcd1Ds7q1tIZBYc19zK0NF9v3iEBW1eUsraxkFdPDmIxGbhmQ2WOEBQI3u8IUSYQCAQCgUAg+E9TV+bmi/et025HYkmePdSnuS/muS3Icm5mbmWxizNdU5pRSFmBg2s3VmKQJZ4/0o/RKHPL1moqi5wALKn0vuuvRSC4WAhRJhAIBAKBQCB4x7BbTdy0tZrnD/djNsnct3sJI9MRDreMacdIEkzNxvjQ7gYGJyJ4nWZ2r69AliWu2VjJNRsrL+IrEAjee8RMmUAgEAgEAoHgHeNk+wT/sbeN4ckIvSMhvvXoadYvKeTmrdW47SaMBhlFgTfPjvLzlzpYt6SQ23fU4bKbL/bWBYKLhhBlAoFAIBAIBIJ3jKNtY7rb4ViKtr4Ad+ys50/vWk0qvWDXqAD7Tg29xzsUCC49RPuiQCAQCAQCgeAdo8BjzVl7/I1u/uXJszm2+AA2s+G92JZAcEkjKmUCgUAgEAgEgneMazZWaqHQkgQum4n+sRCJVIbz/QE1SHoOh9XI9VuqL9ZWBYJLBlEpEwgEAoFAIBC8YzisJr78wEYGxkLIssRf/uCQ7v5kKsNffGQd08E4K2rzsFuFvb1AICplAoFAIBAIBIJ3nIoiJ2UFDsoL9NljZpOBfaeGyHNZhSATCOYQokwgEAgEAoFA8FszEYjS0jtNMpV+y+M+eetyqotdSIBBlpiYibH/zAjfeOg4PSOz781mBYJLHNG+KBAIBAKBQCD4rXjqQA+P7+tCATwOM1+4dy0ep5mHX+mkfSBAfZmHe65uwGkzUVnk5Csf38iBM8P84Nct2jnSGYWDZ0epKck1/xAILjeEKBMIBAKBQCAQvG1mwwmefKMbZe72TDjBk/u7yWQUjraNAzA8GSEUTfKnd63SHud25uaQuewmFEVBAWRJAuB05ySP7eskHE2xY3Upt2ytQZq7TyD4fUWIMoFAIBAIBALB2yYYSZDOKLq1QDBOz0hQt3aqc4I3Tg/zq9e7iCfS7Fpbxur6fE51TgJQVuAglVb47D+8TiqT4ZoNlexZX8F3HjujZZk9/no3+W4r21aWvjcvTiC4SAhRJhAIBAKBQCB425QXOqkqdtI3GtLWtiwvIZ7K0JslzIq8Nh58pkWrqD1zsI9P3rKMm7fVkEikMRpkvv7T49rxv36zl3RG0YVLA5zrmRaiTPB7jxBlAoFAIBAIBILfij+7Zw17D/UyNh1lvb+QrStKqS5x8d1fnWFyNo7PZWHD0iJ+/Wav7nGtfdPEEmliiTTxZK5BSDSeQgKy63DVxc5398UIBJcAQpQJBAKBQCAQCH4r3A4zH7y6UbdWW+rmG5/eytRsjDy3lZGpCM+82asTWKc7p9h3ahgAq9mQc961jYVUFTl59LUuYok0m5cVcdW6infzpQgElwSSoii/+ajfkfHx4Lv/JIJ3lV/+8qccOXLoNx8o0JiengLA58u7yDt5/7Bx42buuefDF3sbgt+RwkKXmMj/LRC/kYLfZ/adGuJXr6sCa1m1jxPtE7r7V9blMTQRIZXOcO3GSm7YUg1AKp0hnVGwmHKFm0DwfuWtfh9FpUwgeJcwmy0XewsCgUAgEFxUdq4uY+fqMgCOto7liLLqEhefv2dNzuOMBhmj0GOCywghygRvi3vu+bCoYPyWtLaeA2Dp0mUXeScCgUAgEFx8VjcUUF7oYHA8DIDTZmLnqrKLvCuB4NJAiDKB4F3iiSceBYQoEwgEAoEAwGSU+dJH1vH0gV4i8RQ3X1FNvsd2sbclEFwSCFEmELwLtLaeo62tRfu3EGYCgUAguNzJKArfe/wszd3qzHVrX4AvfWQdLntuqLRAcLkhX+wNCAS/j8xXyRb/WyAQCASCy5Wz3VOaIAMYnYrw2smhi7gjgeDSQYgygUAgEAgEAsG7TiiafFtrAsHliBBlAsG7wG233XnBfwsEAoFAcLmyur4At92k3TbIEltXlFzEHQkElw5va6bM7/dvBr7R1ta2y///t3cvIXqdZRzA/2MnTWbKNIZ0LEUo9VLeGAtSWohKpfWSqkHb0p1UhUKwSgUFb10URF11UVEXWmiFYF0IWrwg2E1JbVGCC2tqLn1sg4JokEQSG0mMbTouvi/pNDXJzJdJ37n8fpvvXL5z3meGgWf+nPec09pbk2zL4GXru5LcXVUvXbgSYenZsGFjJiYmTy0Dy5ceCXMzuWY8X/rYtfnRY8/mPy+cyC3vvipXXj7VuyxYFM55pay19uUkDyVZM9z0zST3VtV7kowlufXClQdL0zPP7MmxY0dz7NjRU4/GB5YfPRLm7oUXX8oDv9id3X85lH1/ez4P/nJvDh4+1rssWBTmMn1xX5LbZ61fl+TXw+VfJfnAQhcFS50HfcCKoUfCHO187uCpd5Qlg/vJnnjagz4gmcP0xap6pLV21axNY1U1M1w+kmTtuc6xbt1kxr2WnRVk1aqLXrE8PW16BixHeiTM3aV/P/KqbRMTF+uRkNHeUzZ7bvxUksPnOuDQoaMjDANL15Ytt2XXrl2nlg8ceHUjguVqhf+DpUfCGbzpDZO5Yv1k9v9z8Dd/yZrxXHf1ZXokK8bZ+uMooeyp1tpNVfV4kg8n2T5iXbBsbdiwMa297dQysGLokXAGq8Yvyr2fvD479vwjx/97Ips2Xp51U6t7lwWLwiih7AtJHmytXZxkb5KfLGxJsDx4FD6sSHoknMXE6vG899o39i4DFp2xmZmZc3/rPB04cOTCDwLAojA9PTXWu4alRI8EWBnO1h+9PBoAAKAjoQwAAKAjoQwAAKAjoQwAAKAjoQwAAKAjoQwAAKAjoQwAAKAjoQwAAKAjoQwAAKAjoQwAAKAjoQwAAKAjoQwAAKAjoQwAAKAjoQwAAKAjoQwAAKAjoQwAAKAjoQwAAKAjoQwAAKAjoQwAAKAjoQwAAKAjoQwAAKAjoQwAAKAjoQwAAKAjoQwAAKAjoQwAAKAjoQwAAKAjoQwAAKAjoQwAAKAjoQwAAKAjoQwAAKAjoQwAAKCj8VEOaq29Lsl3k7wjyfEkW6vquYUsDACWIj0SgPka9UrZbUnWVNW7ktyT5P6FKwkAljQ9EoB5GTWU3ZDk0SSpqh1Jrl+wigBgadMjAZiXkaYvJrk0yb9mrZ9orY1X1Yv/78vT01NjI44DAEuNHgnAvIx6pez5JFOzz3OmZgMAK4weCcC8jBrKfpNkS5K01t6Z5I8LVhEALG16JADzMur0xZ8m2dxa+22SsSR3LlxJALCk6ZEAzMvYzMxM7xoAAABWLC+PBgAA6EgoAwAA6Egog9O01r7SWtvfWlvTafxvtdau7DE2AACvPfeUwWlaa08neSzJzqra1rkcAACWuVGfvgjLUmvtpiT7kjyQ5IdJtrXWHk+yM8k1Sf6d5MkkH0zy+iQ3J7k1yUeTTCS5Ism3h9uuSfLFqvp5a+2OJJ9PcjzJs0k+leSODB6bPZnkLUnuq6qT4316ONb3kqxJsj7J16vqZxf0FwAAwGvO9EV4pa1JHqqqSnK8tbZpuP13VfX+JKuTHK2qzUn2JLlxuH+qqrYkuS/JZ5LcnkHwurO1tj7J15K8r6puSHI4yV3D49ZW1UeS3JLkntNq2ZDk/uFYn01y98L/uAAA9CaUwVBrbV0GV64+11p7NMnaDMJQkvx++Hk4gzCWJIcyuIqVJE/N2r+3qmZm7X9zkt1VdWT4nSeSvH24/Ifh519nneuk/Unuaq09nMGVs1Xn9QMCALAoCWXwso8n+X5V3VxVH0qyKYPpidNJznXz5dn2/znJxtbaJcP1G5P8aQ7HfSPJD6rqE0m2Z/ASWgAAlhmhDF62NcnDJ1eq6miSR5JcfT4nraqDSb6aZHtrbUeSyzK4V+xcfpzkO621J5NsHh4HAMAy4+mLAAAAHblSBgAA0JFQBgAA0JFQBgAA0JFQBgAA0JFQBgAA0JFQBgAA0JFQBgAA0JFQBgAA0NH/AED0j5BcyRWuAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3IAAAEzCAYAAAB0TDEBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAE4xJREFUeJzt3VGIped5H/D/Y22UUMdxSnYDQbuKVLqus4iC3UG4BBoHu2Wli90bN0hgEgfhhbRKoTEBlRQnKFe1KYaAWmdLjJNALCu+SJawQReJgkOIjMa4EZaMYKq41qCANo6jG2Mrap9enFNnMp7VfGf3zH7n1fx+sHC+c17OPLzMzH//833nnOruAAAAMI63zD0AAAAAq1HkAAAABqPIAQAADEaRAwAAGIwiBwAAMBhFDgAAYDCHFrmq+lRVvVJVX77O41VVv1ZVO1X1bFW9e/1jAsDmkZEAzGXKGblPJzn/Bo/fl+Ts8t+lJP/95scCgCF8OjISgBkcWuS6+/NJ/uYNllxM8lu98HSSH6yqH1nXgACwqWQkAHNZx2vk7kjy0p7j3eV9AHDcyUgAjsSJNTxHHXBfH7iw6lIWl5bkrW9967945zvfuYYvD8Cm++IXv/jX3X1q7jlmICMBuK6bycd1FLndJGf2HJ9O8vJBC7v7cpLLSbK1tdXb29tr+PIAbLqq+t9zzzATGQnAdd1MPq7j0sorSX56+c5c70nyanf/1RqeFwBGJyMBOBKHnpGrqs8keW+Sk1W1m+SXk3xPknT3J5NcTXJ/kp0k30zys0c1LABsEhkJwFwOLXLd/eAhj3eSf7+2iQBgEDISgLms49JKAAAAbiFFDgAAYDCKHAAAwGAUOQAAgMEocgAAAINR5AAAAAajyAEAAAxGkQMAABiMIgcAADAYRQ4AAGAwihwAAMBgFDkAAIDBKHIAAACDUeQAAAAGo8gBAAAMRpEDAAAYjCIHAAAwGEUOAABgMIocAADAYBQ5AACAwShyAAAAg1HkAAAABqPIAQAADEaRAwAAGIwiBwAAMBhFDgAAYDCKHAAAwGAUOQAAgMEocgAAAINR5AAAAAajyAEAAAxGkQMAABiMIgcAADAYRQ4AAGAwihwAAMBgFDkAAIDBKHIAAACDUeQAAAAGo8gBAAAMRpEDAAAYjCIHAAAwGEUOAABgMIocAADAYBQ5AACAwShyAAAAg1HkAAAABjOpyFXV+ap6oap2quqRAx6/s6qeqqovVdWzVXX/+kcFgM0iHwGYy6FFrqpuS/JYkvuSnEvyYFWd27fsPyd5orvfleSBJP9t3YMCwCaRjwDMacoZuXuT7HT3i939WpLHk1zct6aT/MDy9tuTvLy+EQFgI8lHAGYzpcjdkeSlPce7y/v2+pUkH6yq3SRXk/z8QU9UVZeqaruqtq9du3YD4wLAxlhbPiYyEoDVTClydcB9ve/4wSSf7u7TSe5P8ttV9V3P3d2Xu3uru7dOnTq1+rQAsDnWlo+JjARgNVOK3G6SM3uOT+e7Lw15KMkTSdLdf57k+5KcXMeAALCh5CMAs5lS5J5Jcraq7q6q27N4sfaVfWu+luR9SVJVP5ZFULkuBIA3M/kIwGwOLXLd/XqSh5M8meQrWbz71nNV9WhVXVgu+0iSD1fVXyT5TJIPdff+y0sA4E1DPgIwpxNTFnX31SxepL33vo/uuf18kh9f72gAsNnkIwBzmfSB4AAAAGwORQ4AAGAwihwAAMBgFDkAAIDBKHIAAACDUeQAAAAGo8gBAAAMRpEDAAAYjCIHAAAwGEUOAABgMIocAADAYBQ5AACAwShyAAAAg1HkAAAABqPIAQAADEaRAwAAGIwiBwAAMBhFDgAAYDCKHAAAwGAUOQAAgMEocgAAAINR5AAAAAajyAEAAAxGkQMAABiMIgcAADAYRQ4AAGAwihwAAMBgFDkAAIDBKHIAAACDUeQAAAAGo8gBAAAMRpEDAAAYjCIHAAAwGEUOAABgMIocAADAYBQ5AACAwShyAAAAg1HkAAAABqPIAQAADEaRAwAAGIwiBwAAMBhFDgAAYDCKHAAAwGAUOQAAgMEocgAAAIOZVOSq6nxVvVBVO1X1yHXW/FRVPV9Vz1XV76x3TADYPPIRgLmcOGxBVd2W5LEk/zrJbpJnqupKdz+/Z83ZJP8pyY939zeq6oePamAA2ATyEYA5TTkjd2+Sne5+sbtfS/J4kov71nw4yWPd/Y0k6e5X1jsmAGwc+QjAbKYUuTuSvLTneHd5317vSPKOqvqzqnq6qs6va0AA2FDyEYDZHHppZZI64L4+4HnOJnlvktNJ/rSq7unuv/0HT1R1KcmlJLnzzjtXHhYANsja8jGRkQCsZsoZud0kZ/Ycn07y8gFrfr+7/667/zLJC1kE1z/Q3Ze7e6u7t06dOnWjMwPAJlhbPiYyEoDVTClyzyQ5W1V3V9XtSR5IcmXfmt9L8pNJUlUns7iU5MV1DgoAG0Y+AjCbQ4tcd7+e5OEkTyb5SpInuvu5qnq0qi4slz2Z5OtV9XySp5L8Ynd//aiGBoC5yUcA5lTd+y/nvzW2trZ6e3t7lq8NwK1VVV/s7q255xiFjAQ4Hm4mHyd9IDgAAACbQ5EDAAAYjCIHAAAwGEUOAABgMIocAADAYBQ5AACAwShyAAAAg1HkAAAABqPIAQAADEaRAwAAGIwiBwAAMBhFDgAAYDCKHAAAwGAUOQAAgMEocgAAAINR5AAAAAajyAEAAAxGkQMAABiMIgcAADAYRQ4AAGAwihwAAMBgFDkAAIDBKHIAAACDUeQAAAAGo8gBAAAMRpEDAAAYjCIHAAAwGEUOAABgMIocAADAYBQ5AACAwShyAAAAg1HkAAAABqPIAQAADEaRAwAAGIwiBwAAMBhFDgAAYDCKHAAAwGAUOQAAgMEocgAAAINR5AAAAAajyAEAAAxGkQMAABiMIgcAADAYRQ4AAGAwihwAAMBgJhW5qjpfVS9U1U5VPfIG6z5QVV1VW+sbEQA2k3wEYC6HFrmqui3JY0nuS3IuyYNVde6AdW9L8h+SfGHdQwLAppGPAMxpyhm5e5PsdPeL3f1akseTXDxg3a8m+ViSb61xPgDYVPIRgNlMKXJ3JHlpz/Hu8r7vqKp3JTnT3X+wxtkAYJPJRwBmM6XI1QH39XcerHpLkk8k+cihT1R1qaq2q2r72rVr06cEgM2ztnxcrpeRAEw2pcjtJjmz5/h0kpf3HL8tyT1J/qSqvprkPUmuHPSC7u6+3N1b3b116tSpG58aAOa3tnxMZCQAq5lS5J5Jcraq7q6q25M8kOTK/3+wu1/t7pPdfVd335Xk6SQXunv7SCYGgM0gHwGYzaFFrrtfT/JwkieTfCXJE939XFU9WlUXjnpAANhE8hGAOZ2Ysqi7rya5uu++j15n7XtvfiwA2HzyEYC5TPpAcAAAADaHIgcAADAYRQ4AAGAwihwAAMBgFDkAAIDBKHIAAACDUeQAAAAGo8gBAAAMRpEDAAAYjCIHAAAwGEUOAABgMIocAADAYBQ5AACAwShyAAAAg1HkAAAABqPIAQAADEaRAwAAGIwiBwAAMBhFDgAAYDCKHAAAwGAUOQAAgMEocgAAAINR5AAAAAajyAEAAAxGkQMAABiMIgcAADAYRQ4AAGAwihwAAMBgFDkAAIDBKHIAAACDUeQAAAAGo8gBAAAMRpEDAAAYjCIHAAAwGEUOAABgMIocAADAYBQ5AACAwShyAAAAg1HkAAAABqPIAQAADEaRAwAAGIwiBwAAMBhFDgAAYDCKHAAAwGAUOQAAgMEocgAAAIOZVOSq6nxVvVBVO1X1yAGP/0JVPV9Vz1bVH1XVj65/VADYLPIRgLkcWuSq6rYkjyW5L8m5JA9W1bl9y76UZKu7/3mSzyX52LoHBYBNIh8BmNOUM3L3Jtnp7he7+7Ukjye5uHdBdz/V3d9cHj6d5PR6xwSAjSMfAZjNlCJ3R5KX9hzvLu+7noeS/OFBD1TVpararqrta9euTZ8SADbP2vIxkZEArGZKkasD7usDF1Z9MMlWko8f9Hh3X+7ure7eOnXq1PQpAWDzrC0fExkJwGpOTFizm+TMnuPTSV7ev6iq3p/kl5L8RHd/ez3jAcDGko8AzGbKGblnkpytqrur6vYkDyS5sndBVb0rya8nudDdr6x/TADYOPIRgNkcWuS6+/UkDyd5MslXkjzR3c9V1aNVdWG57ONJvj/J71bV/6yqK9d5OgB4U5CPAMxpyqWV6e6rSa7uu++je26/f81zAcDGk48AzGXSB4IDAACwORQ5AACAwShyAAAAg1HkAAAABqPIAQAADEaRAwAAGIwiBwAAMBhFDgAAYDCKHAAAwGAUOQAAgMEocgAAAINR5AAAAAajyAEAAAxGkQMAABiMIgcAADAYRQ4AAGAwihwAAMBgFDkAAIDBKHIAAACDUeQAAAAGo8gBAAAMRpEDAAAYjCIHAAAwGEUOAABgMIocAADAYBQ5AACAwShyAAAAg1HkAAAABqPIAQAADEaRAwAAGIwiBwAAMBhFDgAAYDCKHAAAwGAUOQAAgMEocgAAAINR5AAAAAajyAEAAAxGkQMAABiMIgcAADAYRQ4AAGAwihwAAMBgFDkAAIDBKHIAAACDUeQAAAAGo8gBAAAMZlKRq6rzVfVCVe1U1SMHPP69VfXZ5eNfqKq71j0oAGwa+QjAXA4tclV1W5LHktyX5FySB6vq3L5lDyX5Rnf/0ySfSPJf1j0oAGwS+QjAnKackbs3yU53v9jdryV5PMnFfWsuJvnN5e3PJXlfVdX6xgSAjSMfAZjNlCJ3R5KX9hzvLu87cE13v57k1SQ/tI4BAWBDyUcAZnNiwpqD/nLYN7AmVXUpyaXl4ber6ssTvj4LJ5P89dxDDMR+rcZ+rcZ+re6fzT3AEVhbPiYy8ib5mVyN/VqN/VqN/VrNDefjlCK3m+TMnuPTSV6+zprdqjqR5O1J/mb/E3X35SSXk6Sqtrt760aGPo7s12rs12rs12rs1+qqanvuGY7A2vIxkZE3w36txn6txn6txn6t5mbyccqllc8kOVtVd1fV7UkeSHJl35orSX5mefsDSf64uw/8iyMAvEnIRwBmc+gZue5+vaoeTvJkktuSfKq7n6uqR5Nsd/eVJL+R5LeraieLvzQ+cJRDA8Dc5CMAc5pyaWW6+2qSq/vu++ie299K8m9X/NqXV1x/3Nmv1div1div1div1b0p9+yI8jF5k+7XEbJfq7Ffq7Ffq7Ffq7nh/SpXeAAAAIxlymvkAAAA2CBHXuSq6nxVvVBVO1X1yAGPf29VfXb5+Beq6q6jnmmTTdivX6iq56vq2ar6o6r60Tnm3BSH7deedR+oqq6qY/0uSlP2q6p+avk99lxV/c6tnnGTTPh5vLOqnqqqLy1/Ju+fY85NUVWfqqpXrve2+bXwa8v9fLaq3n2rZ9wk8nE18nF1MnI1MnI1MnK6I8vH7j6yf1m8+Pt/JfknSW5P8hdJzu1b8++SfHJ5+4Eknz3KmTb538T9+skk/2h5++fs1xvv13Ld25J8PsnTSbbmnnuT9yvJ2SRfSvKPl8c/PPfcG75fl5P83PL2uSRfnXvumffsXyV5d5IvX+fx+5P8YRafrfaeJF+Ye+YZ90o+rn+/5OOKe7ZcJyMn7peMXHm/ZOTf78WR5ONRn5G7N8lOd7/Y3a8leTzJxX1rLib5zeXtzyV5X1Ud9AGqx8Gh+9XdT3X3N5eHT2fxuUXH1ZTvryT51SQfS/KtWzncBpqyXx9O8lh3fyNJuvuVWzzjJpmyX53kB5a3357v/gyxY6W7P5/rfEba0sUkv9ULTyf5war6kVsz3caRj6uRj6uTkauRkauRkSs4qnw86iJ3R5KX9hzvLu87cE13v57k1SQ/dMRzbaop+7XXQ1m09+Pq0P2qqnclOdPdf3ArB9tQU76/3pHkHVX1Z1X1dFWdv2XTbZ4p+/UrST5YVbtZvHPhz9+a0Ya16u+4NzP5uBr5uDoZuRoZuRoZuV43lI+TPn7gJhz0l8P9b5M5Zc1xMXkvquqDSbaS/MSRTrTZ3nC/quotST6R5EO3aqANN+X760QWl468N4u/Zv9pVd3T3X97xLNtoin79WCST3f3f62qf5nF54Xd093/9+jHG5Lf939PPq5GPq5ORq5GRq5GRq7XDf2+P+ozcrtJzuw5Pp3vPq36nTVVdSKLU69vdOrxzWzKfqWq3p/kl5Jc6O5v36LZNtFh+/W2JPck+ZOq+moW1xxfOcYv5p768/j73f133f2XSV7IIrSOoyn79VCSJ5Kku/88yfclOXlLphvTpN9xx4R8XI18XJ2MXI2MXI2MXK8bysejLnLPJDlbVXdX1e1ZvFj7yr41V5L8zPL2B5L8cS9f9XcMHbpfy8sgfj2LkDrO12Ynh+xXd7/a3Se7+67uviuL10xc6O7tecad3ZSfx9/L4g0DUlUns7iM5MVbOuXmmLJfX0vyviSpqh/LIqSu3dIpx3IlyU8v353rPUle7e6/mnuomcjH1cjH1cnI1cjI1cjI9bqhfDzSSyu7+/WqejjJk1m8u82nuvu5qno0yXZ3X0nyG1mcat3J4i+NDxzlTJts4n59PMn3J/nd5Wvev9bdF2YbekYT94ulifv1ZJJ/U1XPJ/k/SX6xu78+39TzmbhfH0nyP6rqP2ZxCcSHjvF/tFNVn8nikqOTy9dE/HKS70mS7v5kFq+RuD/JTpJvJvnZeSadn3xcjXxcnYxcjYxcjYxczVHlYx3T/QQAABjWkX8gOAAAAOulyAEAAAxGkQMAABiMIgcAADAYRQ4AAGAwihwAAMBgFDkAAIDBKHIAAACD+X8yLUt7G39CSAAAAABJRU5ErkJggg==\n", "text/plain": [ "
    " ] @@ -2001,6 +2012,36 @@ "?sns.swarmplot" ] }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvUAAAHjCAYAAACjJeCWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3Xd8XNWd/vHPuVM0mlHvxbYkyx3bYLBpMYQWUneTTSMhG6ftpmw2ZVO2JGE3G7YlvxRI27RNMSW0UAIkQAglgDHYxsYNd1u23FSsLk295/fHyMY4gKVRuRrpefPSSyNr7rnfESrPnPmec421FhERERERyV6O1wWIiIiIiMjIKNSLiIiIiGQ5hXoRERERkSynUC8iIiIikuUU6kVEREREspxCvYiIiIhIllOoFxERERHJcgr1IiIiIiJZTqFeRERERCTL+b0uIBuVlZXZ+vp6r8sQERERkUlu3bp1bdba8tPdT6E+A/X19axdu9brMkRERERkkjPGNA3lfmq/ERERERHJcgr1IiIiIiJZTqFeRERERCTLKdSLiIiIiGQ5hXoRERERkSynUC8iIiIikuUU6kVEREREspxCvYiIiIhIllOoFxERERHJcgr1IiIiIiJZTqFeRERERCTLKdSLiIiIiGQ5hXoRERERkSynUC8iIiIikuX8XhcgIq/MdV3a29vp7OwkLy+PgoICwuEwxhivSxMREZEJRKFeZIKJxWKsXr2ahx75IweamvAHgwQiuaRiceL9AxQWF3Pxha9h+fLlVFdXe12uiIiITAAK9SITRCKR4N777uXe++4np7wIX0MVpWdfjBMMnLiPtZZEWyd/3L6B3z34AOeffz7ve897ycvL87ByERER8Zqx1npdQ9ZZunSpXbt2rddlyCSyefNmfvTTn5AIBwgtmY0/P3zaY9xYnIGNe0g2t/K3f/O3nHfuueNQqYiIiIwnY8w6a+3S091PM/UiHnJdl9tuv52H/vgwuUvnkje9YsjHOjlBIsvmEW+o4sf/91MOHTrI2976NvXbi4iITEEK9SIe6e3t5dvXX8eBjlYK3nAuvtycjMYJlhXhu3IZ9z/6MIcOH+YTH/s4jqONrURERKYS/eUX8UBbWxtfuuYrHLID5F+6JONAf5wvHCL/8nN4fs8OfvzTn6C2OhERkalFoV5knB04cIAvX3MNiemlRM6ZixmlWXUn4Cdy0WKee2ELN91886iMKSIiItlBoV5kHO3atYuvXvs1fIvqCM+vG/XxnYCfvEvO5NGnn+T+3/1u1McXERGRiUmhXmScbNu2jf/6+v8QWjaX3IaaMTuPkxMk/5KzuOOuO9myZcuYnUdEREQmDoV6kXGwadMmvvGtbxK+YAGhaUPf4SZTvkgukQsW8J3vXk97e/uYn09ERES8pVAvMsbWrVvHt6+/jshrFpJTXTZu582pLsM/u5ZvfOubJBKJcTuviIiIjD+FepExtOrpp/n+j35I3mvPJFhZMu7nDy+op8PGufmWX4/7uUVERGT8KNSLjJEHHnyQn/7i/8i/9GyCZUWe1GCMIXLufB5/4gk2bdrkSQ0iIiIy9hTqRUaZ67rccNON3P7buyi4YimB4nxP63FCQcLnzed7P/wB3d3dntYiIiIiY0OhXmQU9ff3863vfIc/rXuWgtctxZ8f9rokAHJqynCmlfG/P/6xLkwlIiIyCSnUi4ySpqYm/vFf/pndve3kX7YEJyfodUkvET5zFjv37+WJJ57wuhQREREZZX6vCxDJdslkkt/eey/33n8fuUtmE5k5dnvQj4TxOYTPX8Avb1jJGWecQWlpqdcliYiIyCjRTL1Ihqy1bNy4kc998Qs8+MyTFFy5jNwJGuiPC5QUEJw9je/98AdqwxEREZlENFMvMkypVIq1a9dyx1130tHbTc6imUSmV2CM8bq0IQmfUc/Bh9fx4EMP8YbXv97rckRERGQUKNSLDIHruuzcuZMnVj3F6qdX4+TlEpg7jYLpC7ImzB9nHIfwefO59fbbOHPxYqqrq70uSUREREZIoV7kFbS2trJp0ybWrn+OF7a+gD8SwjetjMjlS/AXRLwub0T8hXmEFjZw/fe/x39+7Vp8Pp/XJYmIiMgIKNSLDEomk2zfvp1n1jzL2ueeY6C/n1BNGZQXUvim8/CFQ16XOKpy50zn2MEN3H3PPbzj7W/3uhwREREZAYV6mfL279/PI489ypNPPokTycVUF5Nz3lyKi/OzrrVmOIwxhM+bx32/v58zFy9m1qxZXpckIiIiGVKolynJWsvmzZu54647OdDcTLChmsjlZ2d9W81w+SK55C6dy7evv45vfv0bhMMT42JZIiIiMjwK9TLlbN26lV/deAPt3V0E5k2j6OzXYHxTd3fX3BlV9B3p4Cc/+ymf/fRnvC5HREREMqBQL1NGc3Mzv1j5K/Yd2E/OogYK6udN6vaa4QifPYdNDz7LI48+ymWXXup1OSIiIjJMCvUy6fX29nLLbbfx5KqnyD2jnsI3XzClZ+ZfjvH7iCxfxA033UjdjBk0NjZ6XZKIiIgMg5KNTFrJZJLf/f73fOYfPsva5p0Uv/kCwvPqFOhfQaAwj/CyeXzjW9+kq6vL01r6+/tpbm6mq6sL13U9rUVERCQbaKZeJh3XdVm9ejU333oL8Rw/kUuXECjO97qsrBCaUUlfRw//79vf4l+//BWCweC4nDeZTLJ+/Xr+8Mgj7N69i0QsTk5+hMRAlFQiQfW0Wi696LVceOGFFBYWjktNIiIi2cRYa72uIessXbrUrl271usy5BSxWIynn36a39x9NzHjElxYT05NmddlZR3rWvpWbWZmcQVf/NzncZyxe2UjkUjw4EMPcfc99+ArCOPUVZBTU4aTm3NivYNNpogdPUZqfwvR5haWL7+Iq971LvLz9URNREQmP2PMOmvt0tPeT6F++BTqJ47e3l527NjBM2vW8OyzzxAsKyYwp5ZgdakWwY6ATbn0Pv48S2bN5eMf/diofy2ttaxZs4Zf3rCSVCRIzuLGIb2akorGiW7eQ7yphXe/6128/sor9f9ZREQmNYX6MaRQPzLWWlpbW9m6dSvbdmznSEsL7e3txKIxIP39mBPKIZSbSyQcIRKJkBeJ4HMcMIZoNEb7sXba29vp7uwkXFEKFQWEGmom3VVfveQmkvQ+sp5zF53JRz704VGbsW9vb+fHP/sZew7sI3T2HHKqS4c9RqKzl4FnXqCusppP/d0n1ZIjIiKTlkL9GFKoz0xbWxuPP/44j/7pcfr6+wlVlWKLI/jyw/giuZiAH2PAWrCJJDaRxE0ksfEEbjyZ/gRgfA5OOIQvHMJfGMGMYXvIVOfGE/Q9sYlZVbV89tOfGVGPveu6/OHhh7n1tlsJzp5G+IyGES1atq5L/8Y9pPYd5XOf/Szz58/PeCwREZGJSqF+DCnUD8/27du585672b59O6G6KgL1VQTKCtU2kSVsyqVv9VZKCPAPn/4MFRUVwx7jwIED/PDHP6J9oJfQ0rkEivJGrb7YoTb6Vm/hPe+6itdfeeWojSsiIjIRKNSPIYX607PWsnHjRm6543Za2loJzp1ObmMtxu/zujTJgLWWga37iG7bz1XvfBdXXnnlkNpx2tvbueW221i7bi2hRTPJnT1tTJ7MJbv76HtiI0sXL+FvPvxh/H5t7CUiIpODQv0YUqh/Za7rsnbtWm6/8zd09PYQXDCDUF2VWmQmiWRXLwNrthNyDW943ZVcfPHF5OW9dNY9lUqxefNmHv3T42zYsIHQrGnkLqjDCQbGtDY3nqRv1WZq84r54uc/TzgcHtPziYiIjAeF+jGkUP/nent7eWrVU/z2/vtJOBb/3OmEZlSqxWYSstYSb+kgufsw/QeOkF9QQHlFBcFAkNa2Vjra2wkW5uFMLydUX40vN2f8anNd+p/bQU7HAF/5ly9RXl4+bucWEREZCwr1YyjbQr21lvb2dnbv3s3O3btoaWujq6uLaCxKIBAgJ5hDSXExVeUVlJeXU1VVRVVVFfn5+a8Yyo/vYLN9+3ZWPbOarVu2kFtTTmB2LYGKYoX5KcKmUiR7B0j19GNTLr68XPyRXJzQ+Fy06mVrspaB7ftJbmvmH7/wBWbPnu1ZLSIiIiOlUD+GsiXUNzc389Sqp3hi1Sr6ensJVRTjFkZwIiGcUBDH78OmXGwqhTsQx+2P4gwkcHv7iXb2YF2XwuIiioqKycnJIRgMEIvF6ezspLOjA9daQpUlUFFIqK5qzNsrRIYj2txC/zMv8Lcf/ggXXnih1+WIiIhkZKihXqvJJhnXdVm/fj133/tbmg8dJKeuisDZjRQPc7eZPNLbGab6onQMxLCpFDaZwkQCOLXTyA/PwgnnaEZeJqzQtAp8kVx+tvKX7Nm3l6vf894xvTquiIiIlxTqJwnXdVm9ejW/vu02YqTwz6mleNnyES1QdYKB9Oz7EK70KTIRBYrzKXz9ufxp1Rp279nD5z7zWfLz9f0sIiKTj9pvMjCR2m+staxbt44bbr6JfpsiZ2EdweoyzaCLnMS6LgPP78ZtbuPTn/x7zjjjDK9LEhERGRK130wBO3bs4Jc3rKSl8xg5i2aSP61cYV7kZRjHIbxkNrHKIr55/XVcevHFXPWud5OTM7Y78wwMDNDa2kp7ezuJRIJkMonf7yc/P5+CggIqKyu1p76IiIwK/TXJQocPH+aGm29i247t5CxsoOD82RhHYV7kdHJqyvG/sZCn1m1i1eee5sMf+CDLli0blSfDruuyf/9+Nm/ezJZtL7B7924G+voJFebjj4TA5wOfgZTFxuIk+6PEevspLi2hoaGBsxYtZv78+VRWaitYEREZPrXfZMDL9puenh4+9elPE1pQT3jeDF2hVSRDsSPtRJ/bSVlBEW9/69tYunTpsBfS9vX1sXHjRp5Zu4bNmzZBwI+/shintIBAeRG+vNxXDeg2lSLZ1UeivQvauokdOUYoFGLZOUs5/9xzmTt3rhb3iohMcdrScgx5GepbW1v552u+TNFbl3tyfpHJxLou0QMtJHc044ulOO/ccznn7LOZM2fOn7XmWGs5duwYzc3NbH1hK+s3buTIocOEq0qhqij9KkD+yK5ia60l2dFDvLmV1KF2iCY4//zz+Our3zfmrUIiIjIxqadeROQ0jOOQW1cFdVUk2rt4+tAenv7Fc/S1HiMnlENBURHWWhLxOH29vRifj5ziAmxxHoFZFZRdMGdUXy0zxhAoKSBQUgCLG0l29bLqyTWcu3QZixYtGrXziIjI5KNQLyICBEoLCZQWwiKIWIsbjZPqj4Ix+P0+inMCODnje6Vcf2EewUjuuJ5TRESyk0K9iMgpjDH4cnPw5arlRUREsoNWYImIiIiIZDmFehERERGRLKdQLyIiIiKS5dRTn4US0Ri963d4XYaIjIN4Z4/XJYiISBZQqM8yJSUlXPWud5NMJr0uRUTGgVloaGho8LoMERGZ4BTqs4zP5+PNb36z12WIiIiIyASinnoRERERkSynUC8iIiIikuUU6kVEREREspxCvYiIiIhIllOoFxERERHJcgr1IiIiIiJZTltaypS2cuVKmpqavC6DI0eOAFBVVeVpHXV1daxYscLTGkRERGT4FOplSmtqaqKpqYm6ujpP64jFYp6eH5gQT25EREQkMwr1MuXV1dVxzTXXeFrDtddeC+BpHcdrEBERkeyjnnoRERERkSynUC8iIiIikuUU6kVEREREspxCvYiIiIhIllOoFxERERHJcgr1IiIiIiJZTqFeRERERCTLKdSLiIiIiGQ5hXoRERERkSynUC+eGEjG2dfTjmut16WIiIiIZD2/1wXI8KxcuRKAFStWeFxJ5hJuiv9a/wAt0V6WVzXy/tnneV3SiGzvPEphMERVuNDrUmSSmQw/7yIiMj4U6rNMU1OT1yWMWH8yTku0F4CmnmMeVzMyDx7Yyp37NuA3Dl85+41UexTs79iznieO7OTSmrm8rf5MT2oYLTs6j+JzHBoLyr0uxXOT4eddRETGh9pvZNwVBnN598yzWVBczVWN53hdzogc6u8CIGldOmL9ntXxyKHtRFNJHjm43bMaRsOzLfv41qY/8o3n/8DmY4e8LkdERCRraKZePHF57Twur53ndRkj5hhz4rbPZPYcOZpK0B0fIOQLZFzHRVWz+NORnVxUPSvjMSaCk58Ydca9e5IkIiKSbRTqZcpqi/ayr6cdC7QM9FCRmz/sMUpywgA4GCKBYEZ1/GL70xwZ6MbBYSAZJ9c//HHeO2sp7521NKPzTySX1sxhT08bAePjgoqZXpcjIiKSNRTqZcpa17afuJs8cfuN088Y9hhvnrGI2kgRxTlhpkWKM6qjPxkHwMWScF1yMxjj3qaN/OnwLi6tmcubZgz/cQC0RnvpT8bZ1nmEeUVVwz6+Pxnn+1seoyPWz0fnLaehoGzYY6xpbWJDezMASyvqOKt02rDHmCju3LuBZ1r2cuW0+SN6VcpqhygRERkC9dTLlLW4pBafcfAZh8UltRmN4RjD2WUzaMgffoA9ri6vGDAEHB/5gZyMxvj9ga10J6I8cGBLRscfHeimI9ZHLJXgt00bMxpjW+cRdne3cSzWz5NHd2c0xkAq8eLtwSc72SjlujzYvJXO+AAPHNia0RjxVJL9vcfY2d3KU0cy+3qKiMjUoVAvU1Z1uJDGgnIaC8qpjRR5Vsfjh3cBloSbZE9PW0ZjnFtRD8B5g++HqzgYJuikX7jLZJYeYFZBOeWhPIKOj3PKZmQ0xiXVs3lb/Zm8s2FJxo9lIvA5DmeXTQdgWUVdRmMcGegmmkoAlmdb941ecSIiMimp/UbEYzXhQjoBg6Emwy0xPzjnfN43axkBx5fR8UGfn7q8EpLW5S/rFmc0RkEwl/9Y9pe41sXJcNGw3/Fl1AZ1sr5EjIcPbqM6XHjiyY4XFpfU0p+MMz/DJ0m14SLy/DlEU0kuq5k7ytWJiMhko1A/xcRTSda3H2B6pISaiC6WNBH801lX8uW7nyLH589okexxmQb644wxBMzIxgAyDvSj5Td71/PU0T0AVIULmJFXMu41pFyXlTuewcVypL+br5/3V8Mew+c41Ay+gnRmFq8tEBGR8aH2mynmxp3P8vPtT/PfGx6gOx71pAZrLSt3PMM/PXMXTw+Gr6nMMQ5hfzDjLTEhfZXeA70dJN3UKFaWnUL+9NagjjEnWorGm89xmJaXDuR1+aWe1CAiIlPLpJipN8Z8EHjIWqur1ZzG7u5WAOJuiu74AAXB0LjX0Bkf4KnBhZR/aN7GBZXD37ownkryoxeeoGWghw/NvWDKX330u5sfZUdXCwuKq/nMwku9LsdTb68/i3x/iBl5xVSFCzyr44uLX8eh/i6mZ7grkoiIyHBMlpn6DwI1Xhcx1vZ2t7Gnu42m3mP0JmIZjVEQfHHDRP8I2zUyFfEHTsyghnyZPa/c0dXClo7DtEZ7efTQjtEsLyvt7WkHYE93ZgttJ5PHDu/k7qbn+b/tT9Pp4VV+gz4/9fml+JzJ8mtWREQmsgk7U2+MiQC3AdMAH3AtsAv4NpAHtJEO868BlgI3GWMGgAuAC4Fvkn58a4BPWGtjxpj/Af4SSJKe2f+CMeYvgK8AQaAdeJ+19uh4Pc7heLplL7GD6Zn2j37gQyMe73PcN+IxRmoDcDW/HNEYjwCP8IPRKMcTG9ub2dvTRsSf2XaWAGeXTmd9ezPnDO64kokXXngBgKuvvjrjMSaSHuDv+I3XZYiIiIyLiTyF9AbgkLX2TGvtQuAB4HvAO6215wA/B/7TWnsHsJZ0GD8LsMAvgaustYtIB/tPGGNKgL8CzrDWLgb+Y/A8TwLnW2uXALcA//hyxRhjPmqMWWuMWdva2jpGD/nVLc1wm0CZ2H6+/WkSborOeD/NvR0ZjXH8Qlpr2/aPcnUiIiKSDSbsTD2wCfimMebrwH1AB7AQ+IMxBtKz94df5ri5wF5r7fGejF8BnwS+D0SBnxlj7h8cE9KvBNxqjKkmPVu/9+WKsdb+BPgJwNKlSz25xOOcokrmz58PwDXXXONFCRPKjs6jtEZ7Oa+iPqNWor5EnC9c8yXA0puIkZfhhZ9GKnTSYs5IILPdb84oqeH59mYWFmfehabvrYnn2muv9boEERHJEhN2pn4wlJ9DOtz/N/AOYIu19qzBt0XW2itf5lDzCuMlgXOB3wBvIz3zD+nZ/+8Pzup/DBj/laMybAd6O/j2pkdYufMZ7snwCqirju6mNxmlNxnjSQ+v2Hl8dxQHh1xfZqE+OLgVZY5H6yRERETEWxM21BtjaoB+a+2NpPvjzwPKjTEXDH4+YIw5fpWaHiB/8PY2oN4YM2vw4/cDjxtj8oBCa+3vgM8CZw1+vhA4OHj7A2P5mGT0JN0UlvQLJrFUMqMxGvLLMIP/zfRw28GeZHrRs4sl5mb2WJ4bbLtZ25p5+01vIkZrtJcODxeXioiISGYmcvvNIuD/GWNcIAF8gvQC1+8aYwpJ134dsIV0D/2PTloo+yHgdmPM8YWyPwJKgHuMMSHSs/n/MHierw7e9yCwGmgYl0cnI9JQUMbfzL2QlmgPl9fMy2iMxoIyykJ5AMwurBjN8oZlxexz+Y/gQ4R9QQpP2p1oOII+PwOpBAFfZjP1HbF+DvV3AZaVO5/xbFvMQ32dfG/LY/iNw2cWXXbi/4+IiIi8ugkb6q21DwIPvsynLn6Z+/4GXrLNxR+BJafc7TDp9ptTj70HuCfzSsUryyrqR3T8HXvW0xrtAeDW3Wt5z6xlo1DV8FWFC6nMHdl+6gHHx0AqkfHFlgKOgyG9yjzXFxhRLSPxbMs+jg2+UrChrZkrpmX2hE1ERGSqmbChXmSsvdB55MTtbZ2Z72K6o6uFwmBoxMF8JAKDvfTBDGfq8wIhZuSVEE0l+MCc80eztGE5uf0oYTNrRRIREZmKJmxPvUx+8Qx74UfLu2a++GLOO2ee+sLO0DzU/ALf2vgw1z73e470d41WacM2kEqk3ycTGY/hMwa/cfB7eLGk6EnfE9GkQr2IiMhQKdTLuHOty7c3/pFPrbqN3x/Y4lkd84urmVNYyZzCShaW1GY0xvF95RNu6kTbiBc+ueBiXls9m08s+LPutCHpT8Zp6j3Gwf5Obtq5ZpSrG7oZecUnbtdGijyrQ0REJNuo/UbGXVc8yvaudLvLmpYm3jj9jNMckSVGcPWChJvCbzJ/jj2rsIJZI1jsO5BMkLIuwIl1Bl54bfVsHNKvFiwrr/OsDhERkWyjUD/FuNayq7uVytz8jHdaGaninDDLqxrZfOwQV06f70kNo6U6Ugit4DMORTnhjMb4zd717O1pI+j4SbipE/3xw3H//s08cXgXl9TM4Q3TFwz7+NJQhMrcAgaSca72aMEwgGMcXlsz27Pzi4iIZCuF+inm9j3reOTQDvIDIb629C2E/cO/2NHa1iYeO7STCyobeE1VY0Z1vH/2eRkdN9G8YdoC6vJKKArmUhMpzGiM44t0426SnniUklBk2GPcv38zKevyu/2bMwr1AIXBXAqDuVSHM3scIiIi4h311E8xB/vSizl7ElF6EtGMxrh511p2drdw0641WDuCnpNJwBjDguJqakbQ/z1t8Fi/8WX86smy8hkALFXLioiIyJSkmfop5qrGc7hv/yZmFZRnvAVjY0EZG48dZGZ+GcaYUa5w6mnuSy+2TdoUHfH+jC649KG5F3L1rHPJ8elHWkREZCpSAsgydXUjm4mtjRTxsfkXjWiMj8+/iCMD3VTk5o9oHEl7w7Qz2O08QNgfpDRn+K03xynQTz4j/XkXEZGpQykgy6xYscLrEvA5jrYbHEXnlM+gIb8MQK98yEtMhJ93ERHJDuqpFxERERHJcgr1IiIiIiJZTqFeRERERCTLKdSLiIiIiGQ5hXoRERERkSynUC8iIiIikuUU6kVEREREspxCvYiIiIhIllOoFxERERHJcgr1IiIiIiJZzu91ASJea2pq4tprr/W8BsDTOpqamqirq/Ps/CIiIpI5hXqZ0iZKiM3JyfG6BOrq6ibM10NERESGR6FeprQVK1Z4XYKIiIjIiKmnXkREREQkyynUi4iIiIhkOYV6EREREZEsp1AvIiIiIpLlFOpFRERERLKcQr2IiIiISJZTqBcRERERyXIK9SIiIiIiWU6hXkREREQkyynUi4iIiIhkOYV6EREREZEsp1AvIiIiIpLlFOpFRERERLKcQr2IiIiISJZTqBcRERERyXIK9SIiIiIiWU6hXkREREQkyynUi4iIiIhkOYV6EREREZEsp1AvIiIiIpLlFOpFRERERLKcQr2IiIiISJZTqBcRERERyXIK9SIiIiIiWU6hXkREREQkyynUi4iIiIhkOYV6EREREZEsp1AvIiIiIpLlFOpFRERERLKcQr2IiIiISJZTqBcRERERyXIK9SIiIiIiWU6hXkREREQkyynUi4iIiIhkOb/XBYiITDSu69La2kp7ezsDAwMMDAwQjUbx+/2EQiFyc3PJy8ujsrKSvLw8r8sVERFRqBcR6ejoYNOmTWza8BwHmpo40tpGXk6QknCAkM8h5EDQgZSFmAvRFPQlUrT2DuDz+agsL6OhcRZz5i9gzpw5VFRUYIzx+mGJiMgUolAvIlNSe3s7jz36CM8+vYr2Y8eYUxJmTsRwXmWQivpKQv7TdydaW0BvwqV1IM7+/RtYvf15bu6KguPjzDMXc/ay81i0aBG5ubnj8IhERGQqM9Zar2vIOkuXLrVr1671ugwRGSbXdVm/fj1/fPD37Ni5iyXluZxTEqSuIIhvlGbWrbW0R1NsOTbAC72WvR39zJ09iwsvvoRly5Yp4IuIyLAYY9ZZa5ee9n4K9cOnUC+SXay1rFmzhjtuuRkn1s9rygKcVZ5Ljm/s9wqIJl22HIuyvjPF7o5+Fi1cyGsvv4LFixfj8/nG/PwiIpLdFOrHkEK9SPbYsGEDt950A25fN2+oCbGgJORZv3tfwmVDWz9rjqXoiLtcdPHFXHLZ5dTU1HhSj4iITHwK9WNIoV5k4mttbWXlz/+P/Xt28hfTwiwq9S7Mv5wjfQmebY2yti1KVVUVl7zu9Zx//vmEQiGvSxMRkQlEoX4BYnrGAAAgAElEQVQMKdSLTFzJZJLf3Xcf9/32Hi6qyuWy2ggBZ+KE+VOlXMuWY1GePZZgT1eMc5ct4+JLL2Pu3LkT6kmIiIh4Q6F+DCnUi0xMzc3N/OC71xGO9fCOughludm1wVdXLMXa1gHWHEvg+oIsf+0lXHDhhdTW1npdmoiIeEShfgwp1ItMLK7r8rv77+e3d93Jm6eHOb8ynNWz3NZa9vcmWNcW4/ljMfILCjj/Ncs5Z+kypk+fjuOM38XA+/v7OXLkCEePHqWtrY2OY+10tLXS2dFBLBYjFo8Ti8exrsXn8+H3+wj4/eTl5VFYVERRSSklZeVUV1dTVVVFZWUlfn92PdkSEfGSQv0YUqgXmTja29v5wfXXkeg4ynsb8rJudv50XGvZ1x1nw7E427oTRFOWhWcsZOFZS2hsbKSmpmbEu+ikUilaW1s5fPgwBw8e5NCBJg4eOMDhoy0kkknK83IpC/ko8lsK/VAQ9JEfcMjxOwQdQ9BncAykXEhaS9K19CVcehIpeuIunQloSxha+uN09EcpLymmvr6B+lmzaGiYycyZMwmHw6P0FRMRmVwU6seQQr3IxLBu3Tp++qP/ZXlFkCtqIzhZPDs/VO3RJNs7ouzqtzT3JugciDO9uoqa2mmUVlRSWlZGUVERwWCQQCCA3+/HdV0GBgZOvB07doz2liO0t7bS2tZGW0cXhbk5lIcDVAShIsdQGfZTGQ6QH3BG9VWPpGs52p+guS/BoX6X5qiluaufksJCGmfPYva8BcyePZvp06dry08RERTqx5RCvYi3kskkN994A88+9QR/3ZjPzMIcr0vyTDTp0tyboC2apDOWoivl0J2EhLWkXEgN/o4P+QwhnyHHgQKfS1HQoSjHR0mOn7Jcv6eLiVPWcqQvQVNPnP0DlqbeFMf6Y9RPr6Vx7jxmzZ5DY2MjZWVlWd1WJSKSCYX6MaRQL+KdlpYWrv/2N8mLdfOehjwigfHrL5fx05902d8TZ39vggNRQ1PXAC6GuunTqJ81m4aZjUyfPp3q6mr16IvIpDbUUK/fhCKSNdasWcPPfvwjLq8O8doZ+Zq1ncTCfod5xSHmFaf37bc2Qnfc5WBfB81bV/Hk+qc53JfgWF+6R792Wi21M+qoqZ1GTU0NVVVV6tMXkSlFoV5EJrxkMsmvb7qRZ578Ex+ZnU99wdRtt5mqjDEU5vgozMllQcmL/55wLS39CY70H6Bl/V5Wr3FoGUjS2hslJxigqrycqppaqqdPp7q6hurqaiorKwkGg949GBGRMaBQLyIT2tGjR/nud75FJNrF5xeVqN1GXiLgGGrzgtTmvTSkW2vpiru0DvTT0vICLQe2sDXh0NKfoL1vgJLCAmqqq5lW18D0ujqmT59ObW0tgUDAo0ciIjIyCvUiMmGtWrWKX/38Z1xRncvFMwrUbiNDZoyhKMdHUY6P2UUv/VzKLaI1muRofwtHtxzkmQ2ruLsvSVvvAOWlx7fbnE1DQwP19fVEIhFvHoSIyDAo1IvIhNPf388Nv/wFLzz/HB+dW8D0PLVKyOjxOYaqcICqcADIPfHvSbeQI/0Jmjt2ceBPO1j9kOVgVz+F+Xk0NDTQOHceDQ0zaWhomLD9+slkkq6uLvr6+ohGo8RiMeLxOMYYfD4fPp+PYDBIfn4++fn5RCIRPVkWmSQU6kVkQtmyZQs/+sH3mRuBzy0sJuRXu42MD79jmJYXZNpJTyJdm09Lf5L9Pfto/tOelwT9uro66hpnU19fz4wZMygpKRnTq/1aa+np6aGlpeXEW9vRI7QePUJbeztdPb3E4gnyc4OEA36CPoegzxB0DNZCyoKLJZ6y9MWT9MQSJJIpSgsLqKysoKqmlqraadTX11NXVzdhn7iIyMvTlpYZ0JaWIqMvGo1y669v5pmnnuTdDREWlOSe/iARD7jW0tKf5GBfgoMDKQ7H4FBPjGgiSWV5GTU1NVTW1FJSWkZpaSklJSWEw+ETb6cGf9d1iUajRKNR+vr66OzspKuri46ODtpajqZDe2srbR2dGKAsL0Rpjo8Sv0tJ0KE45KM4x09B0CHsd4Z1EbaEazkWTdIWTdI2kKQlDgcHXA519VOUn8/MxkbmnrGQOXPmMGPGDF0QTMQD2qd+DCnUi4weay3PPPMMN/7qF8yKOLx1RkSLYSUrRZMuLQNJWgYSHIum6Ew5dCagK55kIJFiIJ4kmkjicwxgOJ69kymXoN9HKOAnN+CjIMdPgd+Q57MUBaAkx09JKH2hsPA4/Wwcf+LS1BNnX7/Lvr4UHf0xGuvrmb9oMfMXLKCxsVG7CImMA4X6MaRQLzI6Dh48yK/+76ccO3yQd9SFaZzCV4aVqcG1lpSF9J/e9N9fv2OGNbvulb6Ey97uGLt7kuzucznaM0D99GksWHwm8+YvYPbs2YRCIa/LFJl0FOrHkEK9jDZrLbFYjFgshrWW4z+Xfr+fnJwcAoHApFrMdvjwYe68/Tae37CBy2tyubg6Mjh7KSLZIpp02dsTZ3d3gj39lubOfmoqy5kzfwFz5y9g1qxZlJWVTarfXSJeUKgfQwr1Mlzd3d0cOnSIQ4cOcfTwYdpbj9Le1kZHRye9AwNEY3H8Poeg34cxhuN/ApOuJZ5MknItoUCAvEgu+Xl5FBQUUFRSSlllJaWDfbsVFRWUlpZO6J7Xffv28bt7f8v69c9xUVWY11aHydVCWJFJIeFaDvTE2dMdpykK+7tjuBhm1tfRMHsO9Q0zqauro7y8fEwXFItMNgr1Y0ihXl5NR0cHu3btYs/u3ezZsY19+w+QTCapys+lIuRQ5ndP7J9dlOMj7HcI+ZxXnal2rSWasvQlXHoTKfoSLl3xFJ1xN923G7e0D8TpHohRUlBARUU51dOmU107jerqaqqqqjz7Q9rf389TTz3Fow89SHdnB+eXB1leHSGsMC8y6XXGUuzvidPcl+RQ3HCwJ8ZAIklNZQXTps9gWn0DtbW1VFdXU15ePqEnJUS8olA/hhTq5WSpVIrHHnuMbZs3sn37DgaiA9QV5jI9BNMjfqblBSkMOuPyEnTStbRHk7RHk7QMJGmLQ2scWvri9MbilBcXU11dRdW06dTUTqOqqoqKigqKi4tHLfC7rsv+/fvZ+PzzPL9uDXua9jOvNML5ZQHmFuVkRe+wiIyd/oTLkf5E+i1qaU1AS1+CroEY5cWFVFZVUVU7jeqaWqqqqqiqqqK0tFSz+zJlKdSPIYV6OVlzczP/fs2XecuMPBoKglTk+idkcI2nXFoHkife2pIOrTGX9v44fbEEJYX5lJWWUlJaSnFZBSWlpeTl5REOh8nNzSU3N/clT0xisRg9PT309PTQ1dVFc9Nemvfv53BLK4W5QeYWBJhX4GdWUQ45Pv0xFpFXF0+lJyVaBwa32EwYWmOWtv70pERZcRHVVVXUTK+jenB2v6amhoKCAq9LFxlTQw31uviUyCjID+VwQdXEvpR80OdQmxek9mWuzhpPWTpiSY5Fu+huP0bX4W3sShkGXEM0BdGUSzTpvuSYgOOQF3CI+CHiuNSGfCwt81M1o0IXjBKRYQv6DNWRANWRwJ99Lp5yaYsmaR04TMuWAzz/vMMfoukdeHw+H9Nqa/jM579IYWGhB5WLTAwK9SJC0GeoDAeoDP/5H1MREa8FfQ41kSA1kZdOSlibT0/C5ftbj9DZ2alQL1OaptNEREQkKxljKAj6COjVQRGFehERERGRbKdQLyIiIiKS5YbUU2+M+QzwC6AH+BmwBPhna+1DY1ibSFZwHIf2vgF+sE37K4uIeKG1J6otL2XKG+pC2Q9ba683xrweKAc+RDrkK9TLlFdVVcWXvvwVksmk16WIiExJPp+P2tpar8sQ8dRQQ/3xzanfBPzCWvu8GY8r6YhkAcdxmDt3rtdliIiIyBQ21Neq1hljHiId6h80xuQD7mmOERERERGRcTDUmfqPAGcBe6y1/caYUtItOCIiIiIi4rGhztRbYAHw6cGPI0BoTCoSEREREZFhGWqo/yFwAfDewY97gB+MSUUiIiIiIjIsQ22/Oc9ae7YxZj2AtbbDGBM83UEiIiIiIjL2hjpTnzDG+Ei34WCMKUcLZUVEREREJoShztR/F7gLqDDG/CfwTuArY1aViIjHVq5cSVNTk9dljNiRI0eA9PUUBOrq6lixYoXXZYiIjLohhXpr7U3GmHXA5aT3rH+btfaFMa1MRMRDTU1NNDU1UVdX53UpIxKLxbwuYcKYDE/SREReyauGemNMgbW22xhTArQAvz7pcyXW2mNjXaCIiFfq6uq45pprvC5jRK699lqArH8co+H410JEZDI63Uz9zcBbgHUM9tMPMoMfzxyjukREREREZIheNdRba98y+L5hfMoREREREZHhGtLuN8aYvzLGFJ70cZEx5m1jV5aIiIiIiAzVULe0/DdrbdfxD6y1ncC/jU1JIiIiIiIyHEMN9S93v6FuhykiIiIiImNoqKF+rTHm28aYRmPMTGPMd0gvnhUREREREY8NNdR/CogDtwK3AQPAJ8eqKBERERERGbqhXnyqD/hnY0yetbZ3jGsSEREREZFhGOruNxcaY7YCWwc/PtMY88MxrUxERERERIZkqO033wFeD7QDWGufBy4eq6JERERkYrOJOLZ5OzY+4HUpIsIwdrCx1h4wxpz8T6nRL0ck+6xcuRKAFStWeFyJiMj4ce++Hg5sg4o6fH/9r57Vod/BImlDDfUHjDEXAtYYEwQ+DbwwdmWJZI+mpiavS8D9403YTY9jzroM55L3eF1O1rNtB7EdRzGhiNeliExc7YdOvLfWcsrE37iZCL+DRSaCobbffJz0bje1wEHgLLT7jciEYTc9Dm4Ku+lPXpcyKbgP/Ax6O7HtB7Gxfq/LEZmQnNd/GBrPwnnj33gW6EXkRUPd/aYNeN8Y1yIiGTJnvw678THMksu9LmVyiBSm3zs+8AUyGsK6LvR1Ql5xxoHHHtmHbT2AmXcuJpCT0RgTgXVdaNoCxVWYovLMxmg/hN3yFKbxLEzt7MwKSSawsX5stB8TCmc2hpxgGhbha1jkdRkiMmiou9/MNMbca4xpNca0GGPuMcbMHOviRGRonIvfhe/vf4Dzmrd7XYrnbCKO+9RduDszvz6e8+aPQ2kNpqIO488s1Lt3fgf3p1/EPvSLjI63Pcdwb/1v7B9+iX3kpozGGA22u53UHd8ide8PM14QaZ+4Hfeu63Bv/Cq2tyOjMdz7/he79gHcO7+DTSWHX0MqiW1pgmNHcO/T5m02lcTueR7b1eZ1KSIySobafnMz6YtOVQM1wO3Ar8eqKBGRTLm/+Tb2mfuw9/4Qd/+2jMYwwRAmnA8ZBnqbSsL+9LIju3dTRmOQTICb3o/AxqOZjTEK7IZHYP9W2LkOuyOzJ0q2szV9Ix6FgQwvdRIMpd8HcsAM9U/XSdwUuG76dqY1TCL2kZtw7/4u7o3/jtXXQ2RSGOpCWWOtveGkj280xvz9WBQkMtXYRBz2Pg8V9Rm3JshJ+jpfvN3dCswb9xKMz4+56B3YF1ZjzrkyszGKK3H+4pPYo3sxS64Y5QqHUce0Odjn/gA+P6aqPqMxnEvegw1FoLIOUz49szHe+insrvWYGfMxzvBDvQnkYMpqsdE+nDd9NKMaJhPb3Z6+EetPv+XmeVuQiIzYUEP9o8aYfwZuASxwFXC/MaYEwFp7bIzqE5n07EM/x25fA6EIzke+jsnJ9bqk7Hbum+CPN6ZDyrzzPCvDWfZGWPbGEY1hZi3BzFoyShVlWMPMM3H+5hvpUJ9p8Os4gj2wDeID2EUXY3xD3k35xTrCBZjFr83s/MeFIphQBFNaM7JxJgHnsvdhn/0d1M7CFFV4XY6IjIKh/ma9avD98emN46u+Pkw65Ku/XiRDtndwZjnWD8k4KNSPzL7N6VaLvi7MoT0wY/xn6icbk1c0ouPd5/4A3W3pt5b9UK0/GSNl2w5CTi4mvySj401xJeb1HxrlqkTES68a6o0xy4AD1tqGwY8/ALwD2Ad8VTP0IiPnXPlB7Lo/pNsKju+6IhkzjWdhdz0HBWVQPi2jMWzHUWxnq+c7pLir78Ue3oOz/O0Zt62MBptMgONgHF9Gx5s5y7BNW6C0FjRLPmLulqewD/4c/EGc912jVx5EBDj9TP2PgSsAjDEXA/8NfIr0PvU/Ad45ptWJTHC2/RC2ZT/4A9hUMrO2guIqzBXvH4PqpiZnwYXYxrPAH8zo/weAe8/3oecYtvcYNjbgSUuUbT2AXXV3uh7XxfeOfxj3GgBs83bcO6+DYAjnPf+SUauGs3A5dt556RYeL/czT8TTW1r296QXQmero4MXW0rG0xeAUqgXEU6/+43vpNn4q4CfWGt/Y629Bpg1tqW9lDHma8aYYa8WM8ZcYoy5byxqErFrfg+xAejrTu/DLROCyQlnHOgB6BlcRGjBJmKjU9Rw5RVDuAAAU1nnTQ2A3f18Ojz2d2MPbM94HOMPeBrobTKR3tKy4yjuvdm9paVZ9kaYfQ7mrMug8SyvyxGRCeJ0f/V8xhi/tTYJXM6LPfVDOXbYTPo3vrHWuqd+zlr7r6N9vleo4fjjFTm9GfOBR8HnAw/bI0aD7TiCbdmPaVyS8d7sE4XtbIFQXubtM9PmwqY14PNhQpHMamjegd29HrPgNZgM2oBMbh7OB74G3e2YyvqMahgNZuFy7L7N6f7tWVkcIK0L1qZvJz16ojZKTH4xvr/4O6/LEJEJ5nTB/NfA48aYNmAAeALAGDML6Hqlg4wxXwearLU/HPz4q0AP6VcG3g3kAHdZa//NGFMP/B54FLgAeJsx5t+BpaQX4f7cWvsdY8wvgfustXcM9vpfD0SAGOknHAngfwePSwKfs9Y+ekpdJcDPSS/s7Qc+aq3dOFhfDVAPtAFXn+brIgKkWz229X4fcHnfx7TL6+TjZvQEx7op3Luug0QMu/t5fB/+r4zObnLzIdfbNhFTWoPvA1/ztIbRYAI5bOtJ7/v//vu3wf36NS8ik8urtt9Ya/8T+DzwS2C5tcenOXBI99a/klt4ccccSAf5VmA2cC7pnvxzBvv0AeYCK621S4AyoNZau9Bauwh4yeUYjTFB4FbgM9baM0n3/A8AnxyseRHwXuBXxpjQKXX9O7DeWrsY+BKw8qTPnQO81Vr7sr/pjTEfNcasNcasbW1tfZWHLiKTiY31D/8g40DO4KsEGc70nzj/4AWopjrbcRR31d3Yw3u8LkVEZEI6bQuNtXb1y/zbjtMcs94YU2GMqQHKgQ5gMXAlsH7wbnmkQ/5+0rP6x8+zB5hpjPkecD/w0CnDzwUOW2vXDJ6rG8AYsxz43uC/bTPGNAFzTjl2Oende7DWPmKMKTXGHN9u5LfW2le8Brq19iekFwezdOlS+0r3k6ln/vz5AFxzzTUeVzIydscabPMOzDlXYgqz9yJYtrUZ99GbMaW1mMvei8ng6qOpO6/jPx9Ym26r8g1/pt4Yg3nnF2DnWjjjomEfD+mLkrm3fQNamjCv+wDOwuUZjTNZuPf+ENqasc89jPOJ6zJaMzHSn1Xbfgj3V/8KWMzCi3Cu/GBG40wEqbuuh70bwRicj/wPpqDM65Iydu1X/w1S6poVGfW++JPcQXp3nCrSM/f1wH9ba3988p0G22/6jn9sre0wxpwJvJ707Pu7Se+Hf+IQ0m05pxrKCqyXu8/xsfpe5nMiY87d/AT28VsxdWdg3vyxjELoaDBzlmHmLPPk3MfZzlbce38AvgDOX34ys/3Re9qhZT82lcAk4hA89QW703Pe8jFYcxATzM14fYF98OdweDemtRne8vHhD3DsMBzdmx5r22qY4qH+xJMrnw+8WnBbUJbeaaarFerO8KaGUWJC4fQfP38w/ZalbFcb9shecF3c5/6Ac/brvC5JxDNjmR5uAd5DOtjfATwIfNgYkwdgjKk1xvzZ3mjGmDLAsdb+BrgGOPuUu2wDagb76jHG5Btj/MCfgPcN/tscYAZw6lYNJ9/nEqDt+Ey/iFfshkcgNoDdsRa6p/alH+zWVdB6AI7sSX89MuBufhLiA3B4DxzZm9EYJpiLCRdApoE+lYQj6TYRe/BVX9h8ZWW10LgEIoU4S4a98deL3BSkEpkfP0E4b/0k5tKrcd79Txnvlz9iR/dB+0FIxtNPtDxkD+/BdhzN+HhzxQcwb/gIznu/lP5ez1adLeAO7q1xfKtPkSlqzGbqrbVbjDH5wEFr7WHgsDFmPvD04LZmvcBfA6c2jNYCvzAvTlf+yynjxo0xVwHfM8bkku6nvwL4IfAjY8wm0gtlP2itjZ2yhdpXB8feSHqh7AdG7QGLZMgsvAj72C1QtwAyvDrkZGEaFmGfewgcH6ZuQUZjOAuX4+5/AUqroaphlCscGuPzYy77a+y21RkHcuPz43vryBZf2/ZD2MO7wVrsrucws06dI8keJq8Ys+Ryb4uomJH+nmo7iLPgQs/KcDc+jn14Jfj8OFd/JaMLk5lAEOPhYxg1M+alf28m45gL3up1NSKeGsv2m+OLVk/++HrSu9acauFJ93meP5+dx1r7wZNurwHOf5lxPnjqP1hrHwMeG7x9DPizn3pr7Vdfrn6R8eCcdRmcdZnXZUwIpnomzsevA2My3mfezDwT399/f5QrGz7nzEvgzEs8rcEebQI33WHoNu/A51Got7s34D70S6isw/nLv8/aLVNNMITv6q9grR3Rnvt2xxpsIo5ZcEFm7Xbth9LvU8n0THWWb6c7EsY4mKL0GqDj70WmqjEN9SIiw5Wtge9U9tAu7K71mAUXYspqvSni5KumBjO7Kq7t6cB9eCUmJxfzug9gAjnDHsN9/lEY6IF9m9PtVdUzM6plohhRoN/5HO59P0p/kIilLyA13POf+yaI9acvTta4JONaRGRyUagXERll1nVxb/8mpBLYF1bj+9i3PKnDJOIv3raZbdpl1z8MezemF1XWLcCcMfwFu2b+BdgD26B8RnqtgFes9XyXlJdsUZrhdqUmUoh5w0dGqSIRmSwU6kVERpl1ky8uTh3o8a6QWUugqALcFObcN2Y2xvFZdcePqajLaAhTdwb2nCtxKuoymukfDda62Jb9EI/iPnwDzhXv96QOZ+4y3EQUEnGMx+1ZE4FNJaG/GzPF1xOJjAaFehGRUeb4g6TKpkPbAU+3PjTGYPKL07czDdMdR9Lv3SR0tmbUv20fvQm2r8HF4HzwWkxJdWa1jEQsCvFoup79W8f//CdxFmZ27YLRZA/uxH3iDkztHJyL3uFNDakk7i3/BUebMMveiHPROz2pQ2SyUKgXETmFTSXTPcsjmFV2rv5yOhCX1oxiZR44eQ/zTNc7HO/n9/kyH2OETCgMhWUw0KPwCLhP3gmHdqXXfiy4AOPF92l/z4ltKO3eTaD/LyIjolAvInIK+8DPsS0HwB/AppIZ7cRj/IFJsSuJWXI5hPIwoTCmYdHpD3i5MS69GqobMWXTPL1yqSkohYJSzOxzPKthojDT56avoVBY7tlWuia/GHPum7B7N+Fc+DZPahCZTBTqRUROYdsOpG8kE5CIQYbba04GxjiYBReMbAx/ADPVr4g7wTgXvg07/wLIK/JsnQOAs/wdsNyb9h+RyWbq/qUSGSV1dZktHpSJy7liBTz3LcjNw4QiXpcjMiZMcaXXJYwK/Q4WSVOoFxmhFStWeF2CjDJTO9u7veVFZFj0O1gkLYNL2YmIiIiIyESiUC8iIiIikuUU6kVEREREspxCvYiIiIhIllOoFxERERHJcgr1IiIiIiJZTqFeRERERCTLKdSLiIiIiGQ5hXoRERERkSynUC8iIiIikuX8/7+9Ow+O7LzPe//99b5hXwYDzAxmXzkzXMY0N1OUKKkia6eoSLZlSvKSm+XG17fKdcu3EqVSYpbrW0klcRJHlhVbZiJvokXb0UrJ3GSKHGq4iuTsCwYY7PvS6P3NH90zhMAZDtAA5uAAz6eqqxt9Tp/+4cUB8PQ573lfrwsQEVmturq6ePjhh70uY0m6uroAfP99LIeuri46Ozu9LkNEZEUo1IuIXMVaCX/RaNTrElaNzs7ONfNzFRGZT6FeROQqHnroIa9LEBERWTD1qRcRERER8TmFehERERERn1OoFxERERHxOYV6ERERERGfU6gXEREREfE5hXoREREREZ9TqBcRERER8TmFehERERERn1OoFxERERHxOYV6ERERERGfU6gXEREREfE5hXoREREREZ9TqBcRERER8TmFehERERERn1OoFxERERHxOYV6ERERERGfU6gXEREREfE5hXoREREREZ9TqBcRERER8TmFehERERERn1OoFxERERHxOYV6ERERERGfU6gXEREREfE5hXoREREREZ9TqBcRERER8TmFehERERERn1OoFxERERHxOYV6ERERERGfU6gXEREREfE5hXoREREREZ9TqBcRERER8TmFehERERERn1OoFxERERHxOYV6ERERERGfU6gXEREREfE5hXoREREREZ9TqBcRERER8bmQ1wWIiIisBs45MpkMExMT5HI5otHoT90CAR0HE5HVS6FeRETWlUKhQHd3N6dPn+bEiZP09vUzOTnJzPQkzkE8kSIYDFEo5inm8+QLeQr5PLFYjLaN7WzZspnOLZvZtGkTnZ2d1NbWev0tiYgo1IuIyNrmnOPChQscPfoCP3n9DXq6L5JI1ZGqbSVe00Ldxptp2ZogEk0QDIWvuY18bpb09Bg9Q6Ocu/gK2fRTTIwP0djYxM2HD3H48CH27t1LNBq9wd+hiIhCvYiIrEGlUolTp07x/NGjHD36AqWSUd+6lbrmfdy24z5C4ciitmdmRKLl4F/f1HHleVcqMTUxyPFzPRx7+U+YGBtga+c27rrrDm6//XYaGhqW+1sTEbkqc855XYPvHDlyxB07dszrMkREZJ6BgQGeeOJJnnrqaYLhKHXNW4+O7fAAACAASURBVGncsI1EqhEzW/H3LxbyjI/0MD50ntGBC7R3dHDP3Xdx++2309TUtOLvLyJrj5m96Jw7ct31FOoXT6FeRGT1yOVyvPDCCzz+/b+lp6eH5vZdtLTvJVnT6GldpWKR8ZFuxocuMDJwnvb2Dt517z3ccccd6ocvIgumUL+CFOpFRLzX39/P9x7/Ps88/TSp+laa2nbT2LqNQDDodWlvUyoWGRvuZnzwLCODXWzftp17772HI0eOkEqlvC5PRFYxhfoVpFAvIuKNUqnEK6+8wre+/V3Onz9HS/seNmw+QCzhnyPfxUKe0cEL5S46Q91s376du+68gyNHjqgPvoi8jUL9ClKoFxG5sSYnJ3nyySd5/PEfQCBMc8d+mjfuJBj093gPxUKeseGLTAx3MTJwgY0b27nt1ls4ePAmduzYQSjk7+9PRJZOoX4FKdSLiKw85xynT5/mO9/9Hi+//DLNG7bRsmk/NfUbvC5tRZRKRSZGLjE5eonp8T5mpsbYvmMnNx8+xK5dO9m8ebO66oisQwr1K0ihXkRk5UxNTfHss8/y/R/8LdPTaZo79tHasZdwJOZ1aTdUPpdhYvQS02N9zM6MMDk2RDyRYNOmzezYvpW2tjYaGxtpaGigoaGBVCp1Q0b4EZEba6GhXuf1RETEc8Vikddee40f/O0TvPHGGzS1bqVp061sb9q0boNqOBKjuW0HzW07gPKZi+zsJNOTI7x6op+XXjtLPpcml5lhNj1NoZAnFo8TjUaJRKJEo+VbJBwmEAwSDATK98EAwWCQYDBIKBSq3AcJh8IkEnHi8TixWIxYLEYikaChoYH6+nqSyeS6/VmI+IFCvYiIeKJUKnHy5El+9NzzHD16lEg0RUPbLm6995cIhTUr63xmRixRRyxRB23b37a8WMxTyOcoFfMUC3mKxUL5calIwZVwzkHB4fIlSqUSuBLOFSiVsjjncKUCpWKhfF/K44oFCoUcuWz5Q0OpWCBVU0dDfT0dHe1s2bKZjo4O2tvbaWlpIRAIeNAqInKZQr2IiNwwhUKB48eP89xzz/PjY8cIRxLUNW9l9y0fJJHSyC9LEQyGCQbDK7b9YjFPLpMmm5mmb2yMC71vkJv9ETNTo+Sys7R3bGbP7l3s3r2LHTt20NraqiP7IjeQQr2IiKwY5xzd3d28/vrrvPTyK5w5fZpUbSO1zVvZe9tHiCfrvC5RFigYDBNP1hFP1lHf1PFTywr5HNOTQ5zsGuC1N7/H5Fg/rlRk1+7dHD50kAMHDrBp0yYdzRdZQbpQtgq6UFZE5OrS6TTnz5/n7NmznDh5mjOnT2GBELWNHdQ0dFDX1LHuLnhdr7Kz00yM9jIz0c/UWC/5XIbde/Zyy82HOHjwIG1tbTqSL7IAGv1mBSnUi8h6l8lk6O3tpa+vj0uXLnGxu4eLF7uZGB+jrqGVWKqZRE0ztQ1tvpoYSlZONjPNxEgv0+O9jA93Ew6HOHTwILfccjP79++ntlb7icjVKNSvIIV6EVlrisUi2WyWdDrNzMwM09PTzMzMMDMzw9jYGEPDI4wMjzA6Osr4xDi5bJZUbQPxZD3haC2xZD2JmkaSqUZMXSzkOpxzzM6MMT7cw8x4L2PDl2huaeHwoUMcOnSQPXv2EIvpjI4IaEhLERHfc84xMzPDxMQEk5OTzM7O/tQtnZ4ll8u9dcvnyeXKo54UiyUKhQLFYvGtW6FAYc7jfCFPPpcjn8/jXIlQKEw4EiMSjREORwmGowRDEQKhGOFIkmisnZatu9kUSxKOJtR1QqpmZiRSjSRSjcAhSqUi0+ODvHn2Ej9+8WtMjA2yadNm9h/Yx/59+9i1a5cm3hK5DoV6ERGPFAoFBgcHGRoaYnBwkP7+AXr7+hkeHmZqcpKZmSmCwRCxeIpINE4wFCEYCmOBMIFgGAuECARDBAJBAoEgFogTCKSwYAALBQnGjHAgABYgEAhgFsQCbz0uj1keIhAIY4GAQrp4JhAIUtu4kdrGjQAUC3mmxgd4/WQfLxz7CeMjfTQ2NbFr5062b99GZ2cnW7ZsIZlMely5LIVzjtnZWbLZLJlM5sotn88TDocrcy5Ersy5UFNTo79T70Ddb6qg7jcishilUomBgQG6u7vp7u7m3Pkuenp6GB0dJpGoIZ6sIxxLEY6kiCVqicZrCEcTRCJxAkEdexFxpRLTk8NMTwySSY+RmRllcmyIRCLJxvZ2NrS2sGFDK83NzTQ1NVFfX39lEq1oNHrNIOicI5/PV858pa+cBbvc9Wx6epqpqWkmp6aYmUlfWSczO0smk6FQLJ8NK5VKlCr3gUCAUChEKBwun/0Kh0nE49TW1VJfV0d9Qz11tbU0NjbS0tJCS0vLmp4N+PLfv56eHnp7e+kfGGRwcIjh4WHGx0ZxQCQSJRQKVw5clA9UuFKJYjFfOcOYp5DLUSzmqatroLGpidaWFtraWtm8eTNbtmyhtbV1zY6upD71K0ihXkSuxTlHf38/58+f58yZs5w+c5ae7ouEwlFq6poJx+uIJxtJ1DSSSNYrtItUyTlHJj3J7PQY2cw0ucw0xXyaXHaa7OwMhUKefC5LsVggFA4TDkUouRKuVJ58y7kSxWKJQDBAJBwlVAmWoVCk0vUsigXCBENRQpWuaOVlkcrj8tkyMyuHSQtgFgDnKJUKlZBfpFSZxCufS5PPzpLPZSgVMhTyabKzU8xMT4BzNDQ2sWFDK1s2b6ajo5329vLNT2cjpqenuXDhAhcuXODsufN0X+xmcGiAWCxJsraJcKyWSDRFLF5DNF5DNJ5a1ERzxUKebGaa7OwU2dlpsplJ8rMTTE0Mk8vNsnFjB9u2bWXP7l3s2rWLjRs3romgr1C/ghTqReSydDrN2bNnOXXqNMdPnOD8uXMEgiFq6jcQTTSSqmshVdtCOBr3ulSRdakc3suz5ZpZOXhX7suBPOh1iRTyGTLpKTLpCdIz4xQyk2TS40xNjBKJRGnbuJHNmzfRuWUz7e3tdHR00NDQ4NnR/blnH7u6ujh77jxdF7pIz6apq28hlmwklmokWdNEItVIMLRyk6JdVshnmJkaZWZymMz0MJNj/RTyWbZu287+/XvZt3cvO3fuJBr132zVCvUrSKFeZH1yzjE4OMjJkyc5fuIkJ06cZHRkmLrGVuKpFpJ1reUwH9MFfSKydM45cpkZ0tNjzM6MkZ2dIJseZ2ZylEIhT1NzCxs3bmTzpnba2tpoamqisbGRpqamJY8e5JxjamqKgYGBK7dLvX309FxioL+XaCxJqraJcLyeRE0TqdpmYom6VdWNKJdNMznWz8zEAOnJQSbGB9m4sYObDuxn//597NmzxxcXYCvUryCFepH1IZfLce7cOU6dOsUbb57g3NkzOIy6xo3EUi3UNrSRrG1eFUf6RGR9KeSzZNITzM5MMJsep5CdJp+dITs7TXpmikAwSF1dHfF4gng8TiKRIJko35tBqeQoOUepWCqPPjSTZnJysjKc7TTpmRkCwSCpmnqi8VpC0RTReC2JZAOJmiZC4YjXTbBoxWKeqfFBpsb6mJ0aZGykj/r6Bvbt28uBSshvaWlZVR9MQKF+RSnUi6w9l/vCnz17lpMnT3Hy1Gn6+3uprWsmUdtKsraVmoY2orG1e0GbiKwNzjmKhSzZzAzFfI5CIUexkKNYyFMs5HBQ6YpkQPk+GIoQjsQIR2KEInHC4dgN6TbjJVcqMTM1wmQl5E+M9hIwY9v2Hezbu5tdu3axfft24nFvu08q1K8ghXoRf3POMTQ0VLmY6xynT53hwoXzBEMRahs2EE02U1PfSqquhWBwbf9TExGRMucc2cw0U+MDpCcGSU8PMTE2yIc/9GE++ckHPatLk0+JiACZTIaenp7KBV0XOXf+Aj3dFwkEQ9TWtxJJNJCs7eTQ3bcTiSa8LldERDxiZsTiNcTiNbBxJwD93W8yMDjocWULo1AvskTOOXp7e3HOXRnaLBAIEAwGCYfDRCIRIpEIwaD6Xa+UYrHI6OgofX199Pf303Opl56eS/T39TE9PUVNXRPxVAOReD3J+l0c2nKnAryIiCyAf7pbKtSLLFF/fz+//du/Taq2AeccrlTCOVcen7hUpFAoUCzkMTNCoTCRaJRYNEY0FiMWixGPx0kmE6RSKVLJJKlUkkQiceWWTP7016HQ+vq1zWazTExMMD4+fuV+ZGSU/oHyTKyjoyNMTU4STyRJpBqIxGqIxGqJJzvZcegwsWRteQg7ERGRNWx9pQORFVAsFknVNnDwzr9/zXWcczhXolQsB/xi8fIFS+WLlkbTOYYmZynkxykV87hSjlIxX7nAKUs+lyWXy5DLZgkGA0SjcWKV2RIvz5qYiMeJx2MkEglisehPTa99+YxBKBQiHA6XZzus3ILBIMFg8MrZhWAweOUCqkAgcOWi0PkXh5a/J1f5AFO6cl8sFq/cCoXClftcLkculyOfz5PP58lkMmSzWdLp2fJtNs309ExlJsdp0jNpZmfTlEol4okk0ViScDRBMBQjGI4TjdeQbDlA05YUkVhKI9CIiMi6plAvskTRaJTJiVGee/zLK/5egUCAQqFAoTDFzMzUir/fahAMhpidnWF2dsbrUkREZJ1xpRJb73+v12UsiEK9yBK1tLTw1T/6IzSSlIiIyNrjl26v/qhSZJULhzXsoYiIiHhHV4+JiIiIiPicQr2IiIiIiM8p1IuIiIiI+JxCvYiIiIiIzynUi4iIiIj4nEK9iIiIiIjPaUhLERHxpUceeYSuri6vy1i0/v5+ANra2jyuZHXo7OzkoYce8roMEd9TqBcREV/q6uqiq6uLzs5Or0tZlGw263UJq4YfP5SJrFYK9SIi4ludnZ184Qtf8LqMRXn44YcBfFf3SrjcFiKydOpTLyIiIiLicwr1IiIiIiI+p1AvIiIiIuJzCvUiIiIiIj6nUC8iIiIi4nMK9SIiIiIiPqdQLyIiIiLicwr1IiIiIiI+p1AvIiIiIuJzCvUiIiIiIj6nUC8iMk8mV+A//O7v8wdf+UOvS5Fl1N0/yTPHuhmbyHhdioj4xCOPPMIjjzzidRkLEvK6ABGR1eZbT53j+MmzBALG5wolwiEd/1iKsxfHefxHF2htSvDR9+wkFFx8e5ZKjqGxNI21McLh4KJfn88XeewHZygUS1zsm+IzH96/6G2IyPrT1dXldQkLplAvIjJPJlcAwDlHqeQ8rsb/Xj01yGy2QFfvJEOjaTa2pBa9jW89c47TXWO0NMb5zIf2Y2aLer0FjHAoQKFYIhJZ/IeC5TI+maF3cBoH9A/P0Nac9KwWEVlbFOpFROb5+Xu389IzEWKRIFEPA+BasW97E919U7Q0JmhuiFe1jYHhGQCGx2YpFB3h0OJCfSgY4NM/v5ee/il2djZUVUOhWOJPv3Wc8aks7797K3u2Ni56Gxd6JylWPiievTiuUC9XvHl2hGeOddPZXsvfu2fboj+4iijUi4jM01Abo74m6nUZa8a+7U3s3da4pJDynju28NKbA+zZ2lh1d6hkPExLY4JoFd13AE6eH2VobBaAZ471VBXqd2yuJxIKUHKwd/viXy9r10tvDpDOFDh+bpS7bumgLqW/QbI4CvUiIqvUj165RN/QDD936yZamxJel7MkSz3quH1TPds31Vf9+lLJ8eWvv0ouX6KlMc4vf/jAorfRVB+78jgZD1dVR00ywobK0fmm+urOWsjatH9HE4OjaTa31VCTiHhdjviQQr2IyCo0NJrm+Vf7Kl/18In37fa0nqW4cGmCHzzXRWtTgg++azvBwI2/8HgqnSOXLwEwUjnavljFOddXxKPV//sslRy6UkPmu3X/Bm7e20ogoG43Uh0N6SAisgqlkpErR4P93u/6peMDTM7kOHNxnMGRtCc11KWitDUnMODAzuaqttFQG7vyM+nsqK1qG4OjafqGpukbmqard6KqbSwH5xzd/ZNMp3Oe1SBvp0AvS6Ej9SIiq1A8GuKhjx5geiZHS6O/u97s2dpIV+8kTfVxmj3scvKLH1zaMJaJWJiHPrKfqZkcrU3VfdDqG5rm8gH/noFpOtvrllRTtZ58oZtXTgwSj4X4/MduIraEMw8isjrot1hEZJWKR0NL6uaxWhzY2cyebY0EA+brET0y2QJ/8u0TTExled9dnRzc1bLobezd1kg8GsI5x+E9i3/9chmdKHdBms0UmM0WFOpF1gB1vxFZorGxMb74xS8yPj7udSkiq1YoGFhSoJ+ayXHsjX6Gq+wPvxyGx2eZmMoCcK67uq4z0UiI5oY4LY0JUh5eDPmuI5vZ3FbD3bd00FAbu/4LRGTV8zzUm1m7mT1axeu+YmbveC7VzP6hmT1UfXUi1/fYY49x8uRJvvGNb3hdisiKmJnNk8kWPK3hr584wzPHeviL753wbEKw9pYUe7c10lQf58hNGzypYbm8fmaY7v4pXj4+cGWytcVKZ/K8eXZE/fIrNFGdeM3z823OuV7gwfnPm1nIOXfNvzTOuV9bwLa/tMTyRN7R2NgYTz/9NM45nnnmGR544AHq66sfdk/WjmKpxNR0jrqaqK+7nJzrGedvnjhLKGR8+gP7qp48aqmcKwcmV4Ly2DE3vk0DAePn791+w993JVw+45HOFJidLRCLLD4OfOP7pxkcTVOXivKrnzi43CX6ymunBvnb5y4SCQf53MduIpmobshTkaW4oaHezH4H6HLO/V7l638JTAGfd87dZGafAz4IxICkmb0X+C/Au4DzlM8s/KFz7lEzewr4LefcMTObBv4T8CFgFvioc26gsv1p59y/M7OdwJeAFqAIfBIYAP4aaADCwD93zv31yreErBWPPfbYlbBRKpX4xje+wa/8yq94XJUsh+PHjwPwi7/4ix5Xsnr86JteV1D27Cqpw8/u+5nNPPdqLx2tKRrqqut+M1s5e5PJFnDOVfXhdS3+nmn/FK/c6O43fwZ8as7Xfx/48bx17gQ+65x7D/AAsBU4CPxaZdnVJIHnnXOHgWeAX7/KOl8D/mtlnbuAPiADfNw5dyvwbuDf2zX+KpnZPzCzY2Z2bGho6LrfqKwPzz77LIVC+R9boVDg2Wef9bgiEVlJxWLpSpj1s+l0npHxWUYmMlcOTCzWh+/bwc17W/nY/Tt9fTZKZK24oUfqnXMvm1mrmbVTPmI+Blyct9r3nXOjlcf3AF93zpWAfjN78hqbzgGXPxu/CLxv7kIzqwE6nHOPVerIVJ4PA//GzO4FSkAHsAHov0rtXwa+DHDkyBF1nBMA7r77bp566ikKhQKhUIi7777b65Jkmezbtw+AL3zhC1W9/qU3Bzh+boTb9m9g7/am5SxNKh5++OEb+n6ZbIGvfes4E1NZ3n/XVm7aVd1496vBCz/pY2wyy9hkltv2b6hqdtu25uSS51BY6u/ZajI2kSEWDRKPedf15kt//grpTIGaZIRff/CQZ3Us1fhkhr964gyhoPGx+3d5elH5jf47sxReXCj7KOU+9J+ifOR+vpk5jxf60T/v3jrUUOTtH1autZ1fovzh4jbn3M2Uu+NoGABZsI9//ONXjlAFAgEeeOABjyuS1eLW/Rv4pQ/tV6BfRU51jfGdH56nf3jm+itfxcic0W/Odvt7tKudW8rX/rQ0xKlNRT2uxnvOuarPWFzWUBfzNNADPPDe3fzswY187P6dntaxVM+92svoRIbB0VlefGPA63J8w4sLZf8M+AOgmXJf+Xf6a/J3wGfN7I8ph+/7gD9Z7Bs65ybNrMfMPuac+ysziwJBoA4YdM7lzezdQOdity3rWzxZw+79t/HGa0e59957dZGsyCqVyxf59tPnKDnH4OgMn/3oTYveRltLkj3bGhkeS/t+9JvbDrRxYGczkXBw3c9iOjI+y9e/dxIHfPL9e6q+GHxoNE08FvL0qHJrU4LWJn9PVgdQLL71AatQLHlYib/c8FDvnHuj0h3mknOuz8y2vsPqfwncD7wOnAKOAtXOq/3LwO+b2ReBPOULZb8G/C8zOwa8ApyoctuyTv3o5V6CDYdI1Xdzxz3v97ocEbmGYNBIJcJMzuSoq/LIdDAQ4IPLMPrNzGwe58pDIHoZqDXhVNm5ngnSmULl8XhVof6VE4M8cfQikXCAz3z4APU1OvuxFKnkW2c8apLefUjyG09+o51zB+c8vgDcVHn8VeCrc5aVzOy3nHPTZtYEvAD8pLLsvjnrpeY8fpRyFx+cc/9yzvOngfdcpZxrXXwrcl2xaJBINMW+n/0ULc2NXpcjItcQDAT4hQ/uY2B4hs0baz2r49SFUUYnMgC8cnKQW/d5c8R/eGyW518rj35zS5U1OOeYnM5Rk4xU/eFkOp1jNltgYCTNBo+OMO/ubODNM8OUHOzqbKhqGwMjaQBy+RJjk5l1HepLJcfTx7qZmsnx7tu3VBXK929v5s2zowQDxq4t1f1M1iM/fEz/ppnVAxHgYefc2y5iFfHKHYfaaaqPU5OM0NLo/1Oesrr0Dk4zMJLmwM4mIuGg1+X4XjIeZvtmj7vIzRklxstOL0/9+CIX+6Y4dWGMrR11Vc0q+61nznHqwhid7bV84n27F/36yanyhboAf/n4Sf7xL9yy6G0sh7qaKJ/92OK7Y811x+GNZHMF6lJRtrZ796FxNTjXM87LxweB8u/c/Xcsvmdza1OCf/SpwwAaWWkRVn2on3tEXmS1CQSMPVt1hF6W3+R0lr/43klKJUf/8Awf+LltXpfke8fPjXDm4ji37d9Ae2vq+i9YAbs7G2iqi+EcHN7T6kkNAI11cS72TRGPhohX2Q2nq3cSgIt9k1WNU+9s7QwkV5eK8pF3+/vi1OXSWBcnFApQKJRoXcLBLoX5xVv1oV5EZD0qubdmUS2WdKHYUuXyRb7zw/MADI2l+ZWPezcDaiJe7i/sZX/6ZLz87z8WCRIMVlfHfT+zmZePD3JgZ3NVAawuFaOhNspsplDVkX5ZnRrrYnz+YzeRyRVoadAZ7BtJoV5EZBWqTUbY3FbD0OgsezqrOxtUKjmee7WXTLbA3bd2EIus3z/5Rrnni3OQzRU9qyOfLzJamfApncmT8GgIxAuXykfZx6ayTE7nqhqn/sDOZg7sXNpY/alEhFQiwoYljncvq0tNMrJmLnCtdrZkL3gxTr2IiFzH0Fiai31TzGYLvHpqsKptnL44xtHX+nj15BA//kl1lyMVSyVePj7Im2dHqnr9ahKo/GNOejiW+PHzo8zM5klnCrxyorqf63K443A7LQ1xDu9pobFO07OIXM3zr/bSMzDN0Fh6yfMY3Ajr97CNiMgq1lAbo6k+xsh4hh2bqxv9oTYZuXJ0uq7K0ThefGOAv3vpEgCRcICdPh2JIhwO8tH37ORczwSHdrd4VkdLQ7x8rayDtibvjk53ttfyyx854Nn7X5YvlMjmimSyBQ2xKVeUSo6fnBoiEDRuqrJ713I4fq58MCOTLTKbLXh2Zm2h9BskIrIKRcJBfvnDB8gVilV3m9nYkuIzH9pPNldkU1tNVduY2+/b75MUbe2oY2tHnac1bGxJsbE5iXN4PxKPx7K5IoMjaUrO8e0fnuOB96pfvZS9enKIJ1+4CEAoGGCfRzNzHznQxgtPGPFYaNUHelCoFxG5qs5O7yeYDgRsyf3glzrU6q37NhANB4lGgmzftL5D6HIJBtXzFaDkHI5yl4Z8QReDy1sCgbmPvTuYcHB3C3f+jPdntBZKoV5E5Coeeughr0tYFQIB46CH3VVk7YpHQzQ3xMlmi3zgHg3ZKm85tLuFUDBAMBjwfNhoP/0vUKgXERERT8QiIWKRELWp9TsDq7ydmS15ZKX1SOcARURERER8TqFeRERERMTnFOpFRERERHxOoV5ERERExOcU6kVEREREfE6hXkRERETE5xTqRURERER8TqFeRERERMTnFOpFRERERHxOM8qKiIhvdXV18fDDD3tdxqJ0dXUB+K7uldDV1UVnZ6fXZYisCQr1IiLiS34Ng9Fo1OsSVo3Ozk7f/hxFVhuFehER8aWHHnrI6xJERFYN9akXEREREfE5hXoREREREZ9TqBcRERER8TmFehERERERn1OoFxERERHxOYV6ERERERGfU6gXEREREfE5hXoREREREZ9TqBcRERER8TmFehERERERn1OoFxERERHxOYV6ERERERGfU6gXEREREfE5hXoREREREZ9TqBcRERER8TmFehERERERn1OoFxERERHxOYV6ERERERGfU6gXEREREfE5hXoREREREZ9TqBcRERER8TmFehERERERn1OoFxERERHxOYV6ERERERGfU6gXEREREfE5hXoREREREZ9TqBcRERER8TmFehERERERn1OoFxERERHxOYV6ERERERGfU6gXEREREfE5hXoREREREZ9TqBcRERER8TmFehERERERn1OoFxERERHxOYV6ERERERGfU6gXEREREfE5hXoREREREZ8z55zXNfiOmQ0BXV7XsQo0A8NeF7GGqD2Xl9pzeak9l5fac3mpPZeX2nN5LbU9O51zLddbSaFeqmZmx5xzR7yuY61Qey4vtefyUnsuL7Xn8lJ7Li+15/K6Ue2p7jciIiIiIj6nUC8iIiIi4nMK9bIUX/a6gDVG7bm81J7LS+25vNSey0vtubzUnsvrhrSn+tSLiIiIiPicjtSLiIiIiPicQr2IiIiIiM8p1Mt1mVnQzF42s29eZdnnzGzIzF6p3H7Nixr9xMwumNlPKu117CrLzcx+18zOmNlrZnarF3X6xQLa8z4zm5izj/4LL+r0CzOrN7NHzeyEmR03szvnLdf+uQgLaE/tnwtkZnvmtNMrZjZpZr85bx3tnwu0wPbU/rkIZvZ/m9kbZva6mf2pmcXmLY+a2Z9X9s+jZrZ1Od8/tJwbkzXr/wKOA7XXWP7nzrn/8wbWsxa82zl3rYkoPgDsqtx+FvhvlXu5tndqT4AfOuc+dMOqu0jf8QAABuhJREFU8bf/BHzXOfegmUWAxLzl2j8X53rtCdo/F8Q5dxK4GcoHm4BLwGPzVtP+uUALbE/Q/rkgZtYB/Aaw3zk3a2Z/AXwa+Oqc1X4VGHPO7TSzTwO/A3xquWrQkXp5R2a2Cfgg8BWva1lHPgo84sqeB+rNbKPXRcnaZ2a1wL3AfwdwzuWcc+PzVtP+uUALbE+pzv3AWefc/NndtX9W51rtKYsTAuJmFqL8Ab533vKPAn9cefwocL+Z2XK9uUK9XM9/BP4foPQO63yicprzUTPbfIPq8jMHPG5mL5rZP7jK8g6ge87XPZXn5Oqu154Ad5rZq2b2HTM7cCOL85ntwBDwR5Uud18xs+S8dbR/LtxC2hO0f1bj08CfXuV57Z/VuVZ7gvbPBXHOXQL+HXAR6AMmnHOPz1vtyv7pnCsAE0DTctWgUC/XZGYfAgadcy++w2r/C9jqnDsE/IC3PoHKtd3tnLuV8mnif2Jm985bfrVP7Rp79tqu154vAZ3OucPAfwb+6kYX6CMh4FbgvznnbgFmgN+et472z4VbSHtq/1ykSjemjwBfv9riqzyn/fMdXKc9tX8ukJk1UD4Svw1oB5Jm9pn5q13lpcu2fyrUyzu5G/iImV0A/gx4j5n9z7krOOdGnHPZypd/ANx2Y0v0H+dcb+V+kHL/xdvnrdIDzD3jsYm3n8KTiuu1p3Nu0jk3XXn8bSBsZs03vFB/6AF6nHNHK18/SjmUzl9H++fCXLc9tX9W5QPAS865gass0/65eNdsT+2fi/Je4Lxzbsg5lwe+Adw1b50r+2eli04dMLpcBSjUyzU55/5f59wm59xWyqfmnnDO/dSnznl9FT9C+YJauQYzS5pZzeXHwPuB1+et9jfAQ5VRHO6gfAqv7waX6gsLaU8za7vcZ9HMbqf8d2/kRtfqB865fqDbzPZUnrofeHPeato/F2gh7an9syq/wLW7imj/XLxrtqf2z0W5CNxhZolKm93P2zPR3wCfrTx+kHKuWrYj9Rr9RhbNzL4IHHPO/Q3wG2b2EaBA+dPm57yszQc2AI9V/kaGgD9xzn3XzP4hgHPuS8C3gZ8HzgBp4PMe1eoHC2nPB4F/ZGYFYBb49HL+EV2D/inwtcop+XPA57V/Lsn12lP75yKYWQJ4H/B/zHlO+2eVFtCe2j8XyDl31MwepdxlqQC8DHx5Xmb678D/MLMzlDPTp5ezBtPPRkRERETE39T9RkRERETE5xTqRURERER8TqFeRERERMTnFOpFRERERHxOoV5ERERExOcU6kVE1hEz+2dm9oaZvWZmr5jZzy7jtu8zs29e5fmtZjZ/PoZlZWa/WRme7/LX0yv5fiIiq43GqRcRWSfM7E7gQ8CtzrlsZWbIiMdlLZffBP4n5bHJRUTWHR2pFxFZPzYCw865LIBzbtg512tmt5nZ02b2opl97/JM0Wb2lJn9RzP7kZm9XplREjO7vfLcy5X7Pe/wntdkZjvM7LuV9/2hme2tPP9VM/vdyrbPmdmDlecDZvZ7lTMN3zSzb5vZg2b2G0A78KSZPTln+//azF41s+fNbMOSWk5EZJVTqBcRWT8eBzab2alKOH6XmYWB/ww86Jy7DfhD4F/PeU3SOXcX8I8rywBOAPc6524B/gXwb6qs58vAP628728Bvzdn2UbgHspnFv6/ynMPAFuBg8CvAXcCOOd+F+gF3u2ce/fluoHnnXOHgWeAX6+yRhERX1D3GxGRdcI5N21mtwE/B7wb+HPgXwE3Ad83M4Ag0DfnZX9aee0zZlZrZvVADfDHZrYLcEB4sbWYWQq4C/h65X0BonNW+SvnXAl4c85R9nuAr1ee7597VP4qcsDl/v0vAu9bbI0iIn6iUC8iso4454rAU8BTZvYT4J8Abzjn7rzWS67y9cPAk865j5vZ1sr2FisAjDvnbr7G8uycxzbvfiHyzrnLtRfR/zsRWePU/UZEZJ0wsz2Vo+uX3QwcB1oqF9FiZmEzOzBnnU9Vnr8HmHDOTQB1wKXK8s9VU4tzbhI4b2afrGzfzOzwdV72d8AnKn3rNwD3zVk2RfkMgojIuqRQLyKyfqQod5t508xeA/ZT7hP/IPA7ZvYq8ArlbjGXjZnZj4AvAb9aee7/B/6tmT1LubvO25jZETP7ypyn9phZz5zbJ4FfAn618r5vAB+9Tv1/CfQArwO/DxwFJirLvgx85zpdckRE1ix76+ykiIjIW8zsKeC3nHPHvK7lMjNLVa4NaAJeAO52zvV7XZeIiNfUx1BERPzkm5WLdSPAwwr0IiJlOlIvIiIiIuJz6lMvIiIiIuJzCvUiIiIiIj6nUC8iIiIi4nMK9SIiIiIiPqdQLyIiIiLic/8bvEGsg/0NocoAAAAASUVORK5CYII=\n", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import pandas as pd\n", + "import ptitprince as pt\n", + "%matplotlib inline\n", + "df = pd.read_csv('https://vincentarelbundock.github.io/Rdatasets/csv/datasets/iris.csv')\n", + "\n", + "ax = pt.RainCloud(x = 'Species', y = 'Sepal.Length', \n", + " data = df, \n", + " width_viol = .8,\n", + " width_box = .4,\n", + " figsize = (12, 8), orient = 'h',\n", + " move = .0)" + ] + }, { "cell_type": "markdown", "metadata": {}, From 8d60381b2dc1fb93790ca1b67e9db4927520ca4a Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Thu, 25 Jul 2019 11:03:19 +0200 Subject: [PATCH 076/134] Added part on the raincloud plot --- Module-10-interactive.ipynb | 133 +++++++++++++++++++++++------------- Module-11-interactive.ipynb | 10 ++- 2 files changed, 94 insertions(+), 49 deletions(-) diff --git a/Module-10-interactive.ipynb b/Module-10-interactive.ipynb index 9a600e7..093fa09 100644 --- a/Module-10-interactive.ipynb +++ b/Module-10-interactive.ipynb @@ -28,7 +28,7 @@ }, { "cell_type": "code", - "execution_count": 69, + "execution_count": 9, "metadata": {}, "outputs": [ { @@ -187,7 +187,7 @@ "" ] }, - "execution_count": 69, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" } @@ -1901,7 +1901,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -1914,17 +1914,19 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 6, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2oAAAEzCAYAAABANfAdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3Xl41NXd///nmSWThSUbYQ1rQDaLeKMiKktAFgtuFepdq9be/dGqtVp/XlXbu97Velvb3ndba6uWG63YalsVFRQEE1axqICILGFL2AIJkA1C1lnO94+JAylRAiT5TJLX47pyZeZ8zkxeIuTknXM+5xhrLSIiIiIiIhI9XE4HEBERERERkfpUqImIiIiIiEQZFWoiIiIiIiJRRoWaiIiIiIhIlFGhJiIiIiIiEmVUqImIiIiIiESZMxZqxpgLjDGfnvJx3BhznzEm2RiTZYzZVfc5qSUCi4iIRAuNkSIi0lzM2ZyjZoxxAweBy4C7gRJr7ZPGmIeAJGvtg80TU0REJLppjBQRkaZ0tksfJwK51tp9wHXAvLr2ecD1TRlMRESkldEYKSIiTeZsC7Wbgb/VPe5qrS0AqPuc1pTBREREWhmNkSIi0mQavfTRGBMDHAKGWWsPG2PKrLWJp1wvtdaetgbfGDMbmA2QkJDwb4MHD26a5CIiErU2bNhQZK3t4nSOlnIuY6TGRxGR9qmxY6TnLN5zGvCJtfZw3fPDxpju1toCY0x34EhDL7LWzgHmAIwaNcquX7/+LL6kiIi0RsaYfU5naGFnPUZqfBQRaZ8aO0aezdLHf+fkkg6AhcDtdY9vBxacxXuJiIi0JRojRUSkSTWqUDPGxANXA2+c0vwkcLUxZlfdtSebPp6IiEh00xgpIiLNoVFLH621lUDKv7QVE97hSkREpN3SGCkiIs3hbHd9FBERERERkWamQk1ERERERCTKqFATERERERGJMirUREREREREoowKNRERERERkSijQk1ERERERCTKqFATERERERGJMirUREREREREoowKNRERERERkSijQk1ERERERCTKqFATERERERGJMirUREREREREoowKNRERERERkSijQk1ERERERCTKqFATERERERGJMirUREREREREoowKNRERERERkSijQk1ERERERCTKqFATERERERGJMirUREREREREoowKNRERERERkSijQk1ERERERCTKeJwOICIiIiLtS01NDS+99BLHjx/n9ttvJzU11elIIlFHhZqIiIiItKisrCxefvllAIwx3H///Q4nEok+WvooIiIiIi1qwYIFkccLFy50MIlI9FKhJiIiIiItKhQKOR1BJOqpUBMREREREYkyKtRERERERESijAo1ERERERGRKKNCTURERERa1L/eo6Z71kRO16hCzRiTaIx53Riz3RiTY4y53BiTbIzJMsbsqvuc1NxhRUREoonGR5FzU15eXu95WVmZQ0lEoldjZ9SeApZYawcDI4Ac4CFgmbV2ILCs7rmIiEh7ovFR5Cz5/X6Ki4vrtR05csShNCLR64yFmjGmEzAWeB7AWltrrS0DrgPm1XWbB1zfXCFFRESijcZHkXNz+PBhrLX12goKChxKIxK9GjOj1h84CvzZGLPRGDPXGJMAdLXWFgDUfU5rxpwiIiLRRuOjyDnYu3dvo9pE2rvGFGoe4GLgWWvtSKCCs1jGYYyZbYxZb4xZf/To0XOMKSIiEnU0Poqcg7y8vNPa9uzZ40ASkejWmEItH8i31n5U9/x1wgPTYWNMd4C6zw0uLrbWzrHWjrLWjurSpUtTZBYREYkGGh9FzsG2bdsabPvX5ZAi7d0ZCzVrbSFwwBhzQV3TRGAbsBC4va7tdmBBsyQUERGJQhofRc5eKBRqsFArKiqisLDQgUQi0cvTyH73AC8bY2KAPOAOwkXeq8aY/wD2AzObJ6KIiEjU0vgochZycnI4fvw4ACFPHKH4ZDzHDwLw0Ucfcf312ntH5HONKtSstZ8Coxq4NLFp40i0e/rpp9m9e7fTMVqNgwfDg0/Pnj0dTtJ6ZGRkcM899zgdQ6RRND6KnJ01a9ZEHrsCVbjqijSADz74QIWayCkae46aiJyDqqoqqqqqnI4hIiLiuEAgQHZ29hde37Bhg85TEzlFY5c+igBopuMs3XvvvQA89dRTDicRERFx1kcffcTnO5yGPLG4AtX1rodCIRYvXsy3vvUtB9KJRB/NqImIiIhIs7LW8sorr0Se+1MHNdjvzTffpLKysqViiUQ1FWoiIiIi0qzWrl3L1q1bAbDGhT9tcL3roZgEAI4dO8brr7/e4vlEopEKNRERERFpNtXV1TzzzDOR5/4ug7G+DvX61PQYGXn8yiuvUFBQ0GL5RKKVCjURERERaTbPP/88+fn5AFi3l9oeI07rE0jNIBiXCIQLu1/96leEQqEWzSkSbVSoiYiIiEizWLt2bb2ljDXpl2G9cad3NC6q+16FxQCwcePGeve0ibRHKtREREREpMnt2bOHn//851hrAQh06ok/deAX9g916EJttwsjz+fOnVvv3DWR9kaFmoiIiIg0qcLCQh5++OHIDo6hmASq+48FY770dbU9RxLo2C3y/PHHH2fz5s3NmlUkWqlQExEREZEmU1hYyA9/+EMKCwsBsC4PVQMnNbzk8V+53FQPyCRUt9lIdXU1P/rRj/jss8+aM7JIVFKhJiIiIiJNYt++fdx3332RXRutcVE1YAKh+JRGv4f1xlI1cDIhTywAVVVV/OhHP2LdunXNklkkWqlQExEREZHztmHDBu6+++6TM2nGRVXGRIKJ6Wf9XqG4RKoGTyPkCc/CVVdX8+CDD7JgwYImzSwSzVSoiYiIiMg5s9by1ltv8aMf/YgTJ06E21yecy7SPheKSwoXa9748PNQiN/+9rc8/fTT+P3+JskuEs1UqImIiIjIOTlx4gSPPvoov/vd7wgGgwCEvPFUDr7mvIq0z4XiEqkcei3BU5ZOzp8/nx/84Ac6FFvaPBVqIiIiInLWcnJymD17NitXroy0BeNTqBw6g1BCapN9HRsTLvz8SX3qfe3vfOc79b62SFujQk1EREREGq22tpY5c+Zw9913c+jQoZPtXQZTOeSr2JiEpv+ibi/VAzKpTr8UW7fFf0VFBT/72c947LHHKCsra/qvKeIwFWoiIiIi0ijbt29n9uzZvPLKK4RCIQCsy0vVgPHU9B0DLk/zfXFj8HcbTuXgrxKK6RBpXr58OXfccQerV69uvq8t4oBm/NckIiIiIm3BiRMneP7551mwYEGkQAMIdOxGdb+rsL6OLZYl1CGNimHXEXvgY7xFuwAoLS3lkUce4YorruCee+6hW7duZ3gXkeinQk1EREREGmStZdmyZfzxj3+ktLT0ZLvLQ02vUfjThkDdUsQW5fFR3e8q/El9id37AS5/JQAffPAB69ev57bbbmPWrFl4vd6WzybSRFSoiYiIiMhpdu3axR/+8Ac2bdpUrz3QqSfVfS7HxnZyKNlJwcR0KobfgO/AOmKKdgJQU1PD//3f/7FkyRLuuusuRo8ejXGimBQ5TyrURERERCSiuLiYuXPnsmTJEqy1kfaQN46a3pcRSOrnzCzaF/H4qOl3Jf7UgcTu+yfuqvDM34EDB3j44YcZNWoUd911F/3793c4qMjZUaEmIiIiIlRUVPDqq6/yj3/8g+rq6ki7NQZ/2lBqeo4Ed4yDCb9cqGNXKoddh/fwNnyHNmKC4UOx169fz3e+8x2mTZvG7bffTlpamsNJRRpHhZqIiIhIO1ZTU8Nbb73Fyy+/zPHjx+tdC3ROD2+JH9fZoXRnybjwdxtOIGUAMQc34j26A4MlFAqxaNEi3nvvPa6//npuueUWEhMTnU4r8qVUqImIiIi0Q7W1tbz77rv85S9/oaioqN61YFwSNemXEuzc06F058d646jpOwZ/2hB8Bz7Gc/wgAH6/n9dee4133nmHWbNm8bWvfY1OnZy/106kISrURERERNqR6upq3nnnHf7+97+fVqCFfB2o6XExgZT+YFr/cbuh+CSqLpiC+/ghfPnrcVeE/3urqqqYN28er732Gtdffz0zZ84kKSnJ4bQi9alQExEREWkHTpw4wdtvv82rr75ab6t9CG8UUtvjIvypg8Dldihh8wl26kHlkBl4yvYRk/8J7uoyACorK3nllVeYP38+1157LTNnztQ9bBI1VKiJiIiItGEFBQW88cYbLFq0iMrKynrXQt44artdiL/LBeBu42eOGUMgqS+BxN54SvYQc2hTpGCrqanhtdde44033mDChAnMmjWLQYMGORxY2jsVaiIiIiJt0LZt23jttddYtWoVoVCo3rVQTEJdgTYIXO3sx0HjIpAygEByfzyl+4gp+BR3ZQkAwWCQ7OxssrOzueiii5g1axajR4/G5Wr9y0Cl9Wln/zJFRERE2q6amhqWL1/OW2+9xY4dO067HoxNxN9tOP6UAW1yieNZMYZAcl8CSX1wHztATOEWPOWFkcuffvopn376Kd27d+e6665j6tSp2ilSWpQKNREREZFWLj8/n4ULF/Luu+9SXl5+2vVAp+7Udh1OsHOv6DqsOhoYQzCxN1WJvXFVFIULtpI9GMKHfRcUFPDcc8/x/PPPk5mZyXXXXceQIUMw+nOUZtaoQs0YsxcoB4JAwFo7yhiTDPwD6AvsBWZZa0u/6D1ERETaIo2R4pTa2lrWrFnDokWL2LBhw2nXrXETSO5HbbdhhOJTHEjY+oQSUqkeMB7TaxQxR7bhPboTE6wFwlv7L126lKVLl5KRkcFXv/pVJk2aRMeOHR1OLW3V2cyoTbDWnrqH60PAMmvtk8aYh+qeP9ik6URERFoHjZHSYvLy8li0aBFZWVmnHVAN4S32a7sMIZA6EOuNdSBh62d9HahJv5SaHhfjKckj5kgO7sriyPXdu3fz1FNP8eyzzzJu3Di++tWvMmLECM2ySZM6n6WP1wHj6x7PA1aiQUhERAQ0RkoTKy8vZ/ny5SxZsoScnJzTrlsg2LkXtWlDtLyxKbk9BLoMItBlEK4TR4k5uh1PcR7GBoHwrGZWVhZZWVn07NmTadOmMXnyZG3xL02isYWaBd4zxljgT9baOUBXa20BgLW2wBijv5EiItIeaYyUZhEMBlm/fj1LlixhzZo1+P3+0/qEYjrgTx2IP3Ug1tfBgZTtR6hDF6o7dIH0S/EW5+It2hnZLRLg4MGDzJ07l+eff55/+7d/Y+rUqVx55ZXExmpWU85NYwu1K6y1h+oGmixjzPbGfgFjzGxgNkDv3r3PIaKIiEhUO6cxUuOjfJF9+/axZMkSsrKyKCoqOu26NS4CiX3wdxlEsFMPzZ61NI8Pf9eh+LsOxVVRhPfoTrwluZhguJC21rJ+/XrWr19PQkICEyZMYMqUKQwfPlxLI+WsNKpQs9Yeqvt8xBjzJnApcNgY073uN4XdgSNf8No5wByAUaNG2aaJLSIiEh3OdYzU+CinOnbsGMuXL2fp0qVs395wrR+MT8GfmkEgeYDuPYsSoYRUahJSqUm/FE/ZPrxFu3AfP8Tn5VhFRQXvvPMO77zzDj179mTKlClcffXVdO/e3dHc0jqcsVAzxiQALmtted3jycBjwELgduDJus8LmjOoiIhItNEYKecjEAjw0UcfsXTpUv75z38SCARO6xPyxBJIGYA/dSCh+GQHUkqjuD3hQ7RTBmBqTtQtjdyFq+bkZi8HDx7khRde4IUXXuCiiy5iypQpjBs3jvj4eAeDSzRrzIxaV+DNuqlaD/CKtXaJMWYd8Kox5j+A/cDM5ospIiISlTRGylnbtWsXS5YsYdmyZZSVlZ12Pby0MR1/ysDwxiAulwMp5VxZXwdqe4ygtvtXcJ84gqd4F96SPZGlkXDyMO2nnnqKsWPHMmXKFEaOHIlL/6/lFGcs1Ky1ecCIBtqLgYnNEUpERKQ10BgpjVVSUkJ2djZLly4lNze3wT7BhNTwxiDJ/cCjpY2tnjEEO3Yl2LErNb1H4yndj7d4F+5jhyKHaVdXV/Pee+/x3nvvkZaWxuTJk5k6dSq9evVyOLxEg/PZnl9EREREvoDf72ft2rUsWbKEDz/8kFAodFqfkDcef0oGgdQMQnGJDqSUFuHyEEjpTyClP6a2Ek9xbrhoqzo5o3rkyBH++te/8te//pXhw4czdepUJkyYQEJCgoPBxUkq1ERERESa0OdLG7Ozszl27Nhp161xE0jqgz91IMFO3cFouVt7YmPi8Xe/EH+34bgqi/EW7cJbnIcJ1kT6bNmyhS1btvD0008zduxYpk2bxkUXXaSlke2MCjURERGR81RWVkZ2djZLlixh9+7dDfYJdEgjkDoQf1I/8MS0cEKJOsbU3zXy2AE8RbvxHDuAseGlkTU1NZEDtbt27crUqVOZMmUKPXr0cDi8tAQVaiIiIiLnIBAI8PHHH/Puu++ydu3ahndt9CbgT83An5qBje3sQEppFVxuAkl9CST1xfirwksji3bhriqNdDl8+DDz5s1j3rx5jBgxgqlTp2rXyDZOhZqIiIjIWcjNzWXp0qVkZWVRWlp62nUtbZTzYb1x+LsNx9912Bcujdy0aRObNm3iqaeeYvz48UyZMoURI0ZoaWQbo0JNRERE5AxKSkpYtmwZS5cu/cKljcGEtPDsWXI/8PhaOKG0Of+6NLLsQHiW7Vh+vV0jlyxZwpIlS+jWrRuTJ09m8uTJ2jWyjVChJiIiItKAmpoa1q5dy9KlS/noo4+0a6M4x+UmkNyXQHLfk7tGFu3CXX1y18jCwkJeeuklXnrpJYYPH87kyZMZP348nTp1cjC4nA8VaiIiIiJ1gsEgmzZtIisri9WrV1NRUXFan/DSxt51Sxt7aGmjtKh6u0ZWFOEt/nxpZG2kz+e7Rv7+979n9OjRTJo0icsvvxyfTzO9rYkKNREREWnXrLXs3r2b7Oxsli1bRlFRUYP9Ah26EkjN0K6NEh2MIdShCzUdulCTfhmesgN4iuvvGhkIBFizZg1r1qwhISGBcePGMWnSJEaMGIHb7Xb4P0DORIWaiIiItEv79u1j+fLlrFixgv379zfYJ+TriD9lAP6UDGyslpBJlDp1aaS/Ck9xHt6SXNwVJ3/pUFFRweLFi1m8eDEpKSmMHz+ezMxMhg4dijHGwfDyRVSoiYiISLtRUFDA8uXLWb58Obm5uQ32CXliCST3w58ygFBCF9APsdKKhHeNHIa/2zBM9TG8xbl4i3Nx1ZRH+hQXFzN//nzmz59P165dyczMJDMzk4yMDBVtUUSFmoiIiLRphw8fZtWqVaxYsYKcnJwG+1iXh0Bib/wpAwh26gna5lzaABvbmdqeF1PbYySuiqN4i3PxlOzBFaiO9Dl8+DB/+9vf+Nvf/kZ6ejrjx49nwoQJ9OvXT0Wbw1SoiYiISJtz9OhRVq5cycqVK9m6dWuDfaxxE0jsRSC5P4HO6eDWj0XSRhlDqEMaNR3SqOl9Ge7jBXhK9uAt3VtvE5IDBw7wl7/8hb/85S/06dMnUrT17dvXueztmL4jiYiISJtQUlLCqlWrWL58OZs3b26wjzWGYKde+JP7EUjqDW5tCiLtjHER7NyTYOee1PS5HPfxQ3hL8vCU7sOEApFu+/btY968ecybN49+/foxYcIEMjMzdUZbC1KhJiIiIq3W8ePHWb16NcuXL+fTTz9t8KwziyHYqUddcdZHh1GLfM7lJpiYTjAxHUIBPMfy8ZTswVN2oF7RtmfPHvbs2cMLL7zAoEGDyMzMZMKECXTt2tXB8G2fCjURERFpVaqrq1mzZg3Z2dmsW7eOYDB4Wp9wcdadQHI/Aol9sN5YB5KKtCIuD4GkvgSS+kIwgOfYgXDRduwAJnTy39jOnTvZuXMnzz33HMOHDyczM5OJEyfSuXNn57K3USrUREREJOpZa9m8eTNLlixh5cqVVFZWnt4HCHbsFi7OkvpivXEtH1SkLXB7wv+OkvtB0B8+o60kD8+xfIw9OWv9+cHazzzzDJdffjlTpkxh9OjReDwqMZqC/hRFREQkah0+fJglS5awdOlSDh061GCfYEIX/Mn9CST3xcYktHBCkTbO7SWQ0p9ASn8I1OAp24+3OA/38UMYTh6s/f777/P+++/TuXNnJk2axLRp08jIyHA4fOumQk1ERESiyuezZ/Pnz+f9999v8L6zkK8T/tQM/Mn9dRC1SEvx+AikDiSQOjB8sHbpXrxFu3FXHI10OXbsWOSMthEjRnDTTTcxZswY3G63g8FbJxVqIiIiEhVqa2tZuXIlr7/+Ojt37jztunXH4E/uhz91oA6iFnGY9cbhTxuCP20IpuoY3uJdeItycfkrIn02bdrEpk2b6NatGzfccAPXXHMNHTt2dDB166JCTURERBwVCoXIzs5m7ty5HDly5LTrgU7d8Xe5gEBib3DpR5fWrOO6F87YXn7Jt1sqjjQRG9eZ2l6jqO15Me7jBXiLduIp3Yux4aWRhYWFPPvss8ybN49vfvObfO1rX8Pn0+6rZ6LvdiIiIuKYzz77jD/+8Y/s2LGjXrs1bvypA/CnDSMUn+RQOhE5K6ec0WZqK/AeycF7dAeuQA0AlZWVzJkzhwULFvDd736XCRMmYDQz/oVUqImIiEiLq6ys5De/+Q3Z2dn12kOeWPxdh+HvcoG21BdpxWxMQniWrcdFeItz8RZuwV19DAhvEvTYY4/xxhtv8NOf/lTnsX2Bdl+oPf300+zevdvpGNJGff53695773U4ibRVGRkZ3HPPPU7HEDkrBw8e5Cc/+Ql79+6NtFnjprbbMGq7fwXcMc6FE5Gm5fLg73IB/pSBeIt2EHPwk8gM25YtW/jud7/Lo48+yogRIxwOGn3afaG2e/duPt2SQzA+2eko0ga5asNrszfkHXY4ibRF7soSpyOInLWNGzfyyCOPUF5eHmnzJ/ejptclWF8HB5OJSLNyucKbjyT3x1fwGd7DWzDWUlZWxv333899993HjBkznE4ZVdp9oQYQjE+mavA1TscQETkrcdsXOx1B5Kzk5eXx8MMPU11dDYRn0ar7jiGQOtDhZCLSYjw+atIvIZCYTuzu5bgC1QSDQf73f/+Xzp07M3bsWKcTRg2X0wFERESk7SsvL+c///M/I0VayBtP5eBrVKSJtFPBjt2oHHotwfiUSNsvfvGLekui2zsVaiIiItLsfvvb33Lo0CEArMtD1aAphDp0cTiViDjJ+jpQecFUQr7w2WpVVVX87Gc/IxAIOJwsOqhQExERkWb16aefsnz58sjz6n5Xact9EQnz+KjKmIitOyNx7969vPXWWw6Hig4q1ERERKTZBAIBnn766chzf3I/Asn9HEwkItEmFJ9MbY+LIs///Oc/U1KiDbMaXagZY9zGmI3GmHfqnvczxnxkjNlljPmHMUZ76YqISLuj8fHLzZ8/n9zcXCC85LGm1yUOJxKRaFTbdRghXycAKioqeOaZZxxO5LyzmVG7F8g55fkvgd9aawcCpcB/NGUwERGRVkLj4xfIz8/nz3/+c+R5bY8R2oJfRBrmclPd5/LI0+zsbD788EMHAzmvUYWaMaYX8FVgbt1zA2QCr9d1mQdc3xwBRUREmpsxJtYYc7cx5hljzAuffzTidRofv0BZWRkPPfRQZJfHYFwStV0vdDiViESzYOee+JP7R57//Oc/Jy8vz8FEzmrsjNrvgB8BobrnKUCZtfbzLVnygZ4NvdAYM9sYs94Ys/7o0aPnFVZERKSZ/AXoBkwBVgG9gPIvfUWYxscGVFZW8p//+Z/k5+cDdeel9bsKXLo1XkS+XE3vywh544HwEsgHH3yQgoICh1M544zfMY0x04Ej1toNpzY30NU29Hpr7Rxr7Shr7aguXbQNr4iIRKUMa+1PgQpr7TzCs2RfOv2j8bFhBQUF3H333WzZsgUI/8dX9x9HKCHV2WAi0ipYbxxVgyZjXV4Ajh49yp133snmzZsdTtbyGvOrrSuAa40xe4G/E17S8Tsg0RjjqevTCzjULAlFRESan7/uc5kxZjjQGeh7htdofPwXmzZt4nvf+x579uyJtNWkX0Ygua9zoUSk1QnFJ1OVkYk14VKlrKyM+++/n3fffdfhZC3rjIWatfZha20va21f4GZgubX2FmAFcFNdt9uBBc2WUkREpHnNMcYkAT8FFgLbgF992Qs0Pp5UW1vLnDlz+OEPf8ixY8cAsMZFVb+r8Hcb5nA6EWmNgp17UnXBVEKeWAD8fj+//OUvefTRRyPfZ9q681ks/iBwvzFmN+E1+c83TSQREZGWZa2da60ttdaustb2t9amWWufO8e3a1fjY25uLnfeeSevvPIKoVD4Vr2QJ5bKC6YRSB3ocDoRac2CHbtROXQGwbikSNuKFSu444472sWOkJ4zdznJWrsSWFn3OA+4tOkjiYiItAxjzDettX81xtzf0HVr7W8a8z7tcXwMBAK88sorvPTSSwQCgZPtnbpT3fcqbcMvIk3C+jpSOWQ6vv0fEVO0E4CSkhIeeughrrnmGu688046duzocMrmcVaFmoiISBuTUPe5bY7yzWT37t388pe/ZNeuXZE2a9zUpF+CP20ImIb2VBEROUduLzX9riSQ1JvYPR/gClQBsHjxYj7++GMeeOABRo8e7XDIpqdCTURE2i1r7Z/qPj/qdJbWwFrLq6++ypw5cwgGg5H2YEIXqvtdRSgu0cF0ItLWBRN7Uzk8Dd++f+It3QtAUVERDz30EDNmzOD73/8+Pp/P2ZBNSIWaiIi0e8aYLsD/R3inx8jYaK39tlOZok15eTlPPvkkH3zwQaTNGjc1PS8ObxhidEaaiDQ/642lOiOTQMkefPvW4gpUA/D222+zfft2fvazn9GzZ4PHV7Y6+q4qIiIS3pmxM5ANLDrlQ4D9+/cze/bsekVaMCGVymHX4e9+oYo0EWlxgeR+VA6/AX9S30jbrl27mD17NuvXr3cuWBPSjJqIiAjEW2sfdDpENDp8+DAPPPAAR44cibTVdh1KTa9LwOV2MJmItHfWG0f1gAkEj+TgO/AxxoaoqKjgJz/5Cf/zP//DhRde6HTE86JfgYmIiMA7xphrnA4RbcrKyuoVadbloWpKbo9pAAAgAElEQVTABGp6j1aRJiLRwRj8XYdSOfirhLzh/aFqamp4+OGHycvLczjc+VGhJiIiAvcSLtaqjTHldR/HnQ7ltLlz53LgwAGg7gDrjIkEkvs5nErairi4OIwxxMXFOR1F2oBQhy5UDj55QPaJEyd48sknsdY6nOzcqVATEZF2z1rb0VrrstbG1j3uaK3t5HQuJ5WVlfHee+9Fnlf3u4pg57Zxg744LykpiSeeeIKsrCyeeOIJkpKSzvwikTOwsZ2pGjQFa8Iz/jt37mTLli0Opzp37f4etYMHD+KuPEbc9sVORxEROSvuymIOHgycuaM0ijHmWmBs3dOV1tp3nMzjtKysLGprawEIxqcQSO7vcCJpK+Li4njkkUcYOXIkACNHjuSRRx7hxz/+MVVVVQ6nk9YulJCCP2VA5HDsd955p9Xeq6YZNRERafeMMU8SXv64re7j3rq2dquwsDDyOJDUV4dYS5Oprq4+7QfnCy+8kOrqaocSSVsTSO4beVxQUOBckPPU7mfUevbsSWGNh6rBuodcRFqXuO2L6dmzq9Mx2oprgIustSEAY8w8YCPwkKOpHFTvvqHwH4tIk4iNjWXz5s2RGTWAzZs3Exsbqxk1aRqnfM+Kj493MMj50YyaiIhIWOIpjzs7liJKnHrPkLu89f5GWqJPVVUVjz32GBs3biQQCLBx40Yee+wxFWnSZDzHT37P6ty59X47b/czaiIiIsAvgI3GmBWAIXyv2sPORnLWVVddxR//+EdCoRCe8kJcFcWEElKcjiVtRGlpKT/+8Y+prq7WTJo0rWAt3rr70wAyMzMdDHN+NKMmIiLtnrX2b8Bo4I26j8uttX93NpWz0tLSGDduXOR57L5/agmkNKmqqiqstSrSpEn5DqzDBP0ApKenc8kllzic6NypUBMREQnrUvfZDYwxxtzoZJho8M1vfhO3O7zNtbviKDEFmx1OJCLyxdzH8ok5uiPy/Pbbb8flar3lTutNLiIi0kSMMS8ALwBfA2bUfUx3NFQUGDBgALfffnvkeczBT3AfO+hgIhGRhpnq48Tlroo8Hzt2LBMnTnQw0fnTPWoiIiIw2lo71OkQ0egb3/gGH374Idu2bcNgictdQeWQ6YTiEs/8YhGRlhCoJW5XFiZYA0BycjL3338/ppUfK6IZNREREVhrjFGh1gCPx8Njjz1GamoqACZYS9zOpZiaEw4nExEBgn7idmXhrj4GgNfr5fHHHycxsfX/MkmFmoiICMwjXKztMMZ8ZozZbIz5zOlQ0SI1NZUnnngCn88HgKu2gvgdizG1FQ4nE5F2LRggblcWnhOHI00PPvggQ4e2jd+7qVATEREJ3592KzCVk/enzXA0UZQZNGgQP//5z/F6vQC4ak4Qv30Rrqoyh5OJSHtk/NXE7VyKp7ww0nb33XczadIkB1M1LRVqIiIisN9au9Bau8dau+/zD6dDRZtLL72URx99FI8nfIu7q+YE8Tnv4D5+yOFkItKemOpjxOe8XW8mbfbs2cycOdPBVE1PhZqIiAhsN8a8Yoz5d2PMjZ9/OB0qGo0ZM4bHHnuM2NhY4OQ9azEFn+mcNRFpdp6SPSRsextXTTkAxhjuvPNOvvGNbzicrOmpUBMREYE4oAaYjLbnP6MxY8bw+9///uQGI9biy19PfM5iTN0N/SIiTSpQTWzuCuJyV2CCtQD4fD4effRRvv71rzscrnloe34REWn3rLV3OJ2htRk0aBDPPPMMjzzyCNu3bwfAXXGEhK1vUdvjImq7DgOXfswQkfNkQ3iK8/Dlr8Plr4o0p6Wl8dhjjzF48GAHwzUvfQcVEZF2zxjTD7gH6MspY6O19lqnMrUGaWlp/OEPf+CVV15h3rx5BINBTCiIL38D3sM51Pa8GH9qBhgt4BGRs2Qt7mP5+PLX464qrXdp2rRp3H333XTo0MGhcC1DhZqIiAi8BTwPvA3oRquz4PF4uO2227j88sv5xS9+QV5eHgAufyWxe9fgLdxCbY+LCCT1BZcKNhE5A2txlxcSc2hjvR0dIXyQ9QMPPMCYMWMcCteyVKiJiIhAtbX2906HaM0GDhzInDlzWLx4MS+++CIlJSUAuKvLiMtbSSgmgdq0ofi7DAKPz+G0IhJ1QkE8JXnEFG7FXVVS71JsbCxf//rXmTVrFgkJCQ4FbHkq1EREROApY8x/Ae8R3lQEAGvtJ85Fan08Hg/XXnstV199Na+//jp/+9vfqKysBMKHZMfmr8N3aCP+1IH404YQikt0OLGIOM3UVuIt2on3cA6uQFW9a263mxkzZnDrrbeSkpLiUELnqFATERGBCwkfeJ3JyaWPtu65nKW4uDhuvfVWZsyYwZtvvsmCBQsoKwsfjG1CAWKO5BBzJIdghzT8qYPwJ/cDt9fh1CLSYkIhPMcO4C3aibssH4Otdzk2NpYpU6Ywc+ZMevXq5VBI56lQExERgRuA/tbaWqeDtCWJiYnccccdfOMb32DZsmW89tpr7NmzJ3LdfeII7hNH8O3/kEByP/ypAwl26ArGOJhaRJqLq6oU79FdeIp34wpUn3Y9NTWVG264gRkzZtCpUycHEkaXMxZqxphYYDXgq+v/urX2v+p2yPo7kAx8AtyqAU5ERFqpTUAicORsXqQxsnF8Ph/XXHMN06ZNY8OGDSxcuJAPPviAYDAIhGfZvEW78BbtIhTTAX9KfwIpAwjFJTmcXETOl6mtwFOch7ckF3dlSYN9RowYwYwZMxg/fjwej+aRPteYP4kaINNae8IY4wXWGGPeBe4Hfmut/bsx5jngP4BnmzFrs3FXlhC3fbHTMaQNclUfByAUq98KSdMLD3hdnY7RVnQFthtj1nHyHjVrrb3uDK9r82NkUzLGMGrUKEaNGkVpaSnZ2dksWrSIvXv3Rvq4ak/gK/gMX8FnBOOS8acMIJDcD+tr29twi7QpgRq8pXvxFOfiLi+koTny1NRUpk6dytSpU9v18sYvc8ZCzVprgRN1T711H5+v2/9GXfs84Ge0wkEoIyPD6QjShu3eXQ5ARn/9MC3Noau+hzWd/zrlsQGuBP79TC9q62Nkc0pKSmLmzJncdNNN7Nixg0WLFrFixQpOnDgR6eOuKsGdX4LNX0ewYzcCyf3xJ/cFT6xzwUWkYcEAnmP78RTn4TmWj7Gnn3Ti9XoZM2YM11xzDaNGjcLtdjsQtPVo1NyiMcYNbAAygD8CuUCZtTZQ1yUf6PkFr50NzAbo3bv3+eZtcvfcc4/TEaQNu/feewF46qmnHE4iIl/GWrvKGHMR4eJqFrAHeK4xrz3XMTLax8eWYoxh8ODBDB48mHvuuYePP/6Y7Oxs/vnPf1JbG14tagBPeSGe8kJ8+9cS7NQTf3J/Akl9tAmJiJNCIdzHD+ItzsNTtg8TCpzWxeVyMXLkSCZNmsRVV13V5g+pbkqNKtSstUHgImNMIvAmMKShbl/w2jnAHIBRo0Y12EdERMQJxphBwM2EZ8+KgX8Axlo7obHvca5jpMbH08XExHDllVdy5ZVXUlFRwfvvv8+yZcvYsGEDoVD4t/PGWjzH8vEcy8fucxPo3Bt/agbBTj11oLZIS7AWV8VRvEW78ZTuwRWoabDbBRdcwKRJk8jMzGyXW+s3hbO6W89aW2aMWQmMBhKNMZ663xj2Ag41Qz4REZHmtB14H5hhrd0NYIz54bm8kcbIppWQkBC5f6W4uJhVq1axbNkytm7dGuljQkG8pXvwlu4h5IklkNIff0oGofgU7Rwp0sRM9XG8xbl4i3Nx1RxvsE96enqkOEtPT2/hhG1PY3Z97AL46wagOGAS8EtgBXAT4V2tbgcWNGdQERGRZvA1wjNqK4wxSwiPaY3+CV9jZMtISUnhxhtv5MYbb6SgoIDly5ezbNky8vLyIn1cgWpiDm8j5vA2gnGJBFIy8KcOxHrjHEwu0soF/XhL9uAp2oXnxOEGu6SlpZGZmcnEiRPJyMjA6JckTaYxM2rdgXl1a/BdwKvW2neMMduAvxtjHgc2As83Y04REZEmZ619E3jTGJMAXA/8EOhqjHkWeNNa+94Z3kJjZAvr3r07t9xyC7fccgt5eXlkZWWRlZVFUVFRpI+7qgx3/npiDn5CIKkP/rQhOp8tSpRf8u3I447rXmiwXZznqirFe2Q73uLdmKD/tOsJCQmMHz+eyZMnc+GFF+LSsuNm0ZhdHz8DRjbQngdc2hyhREREWpK1tgJ4GXjZGJMMzAQeAr60UNMY6az+/fvz3e9+l+985zts3LiR9957j9WrV1NdHT5I19gQ3pI9eEv2EIxNxJ82GH9qBrhjHE4uEoVCQTyle/Ee2d7g7JnL5eLSSy9lypQpjBkzBp/P50DI9kUnyomIiJzCWlsC/KnuQ1oBt9sdOZ/tvvvuY/Xq1bz99tv17mdzV5fh3v8hvoOfUJs2BH/XYVivtvkXIRTAe3QnMYWbcdVWnHY5PT2d6dOnc/XVV5OcnOxAwPZLhZqIiIi0GfHx8ZFNSHbv3s3ChQvJysqiqqoKABOsxVewiZjDW/F3GUxtt+HYmHiHU4s4IOjHe2Q7MYVbcAWq6l1yu91ceeWVXHvttVx88cW678whKtRERESkTcrIyOD+++/ne9/7HllZWbz++uscOHAAABMKEHN4C94jOdR2G0Zt9xE6k03aBxsKz6Ad3HDa1vqJiYnccMMNTJ8+XVvqRwEVaiIiItKmxcfHc9111zF9+nRWrVrFyy+/TG5uLgDGBvEVfIa3KJea9EsIJPfTpiPSZrnLC/Ht/xB3ZUm99tTUVG6++WamT59ObKyWBEcLFWoiIiLSLrjdbjIzM5kwYQJr167lxRdfZOfOnQC4/BXE5a0kcHQ71X2vxMZ2cjitSBMK1BC7/yO8xbvrNXft2pVbb72VyZMnExOjTXaijQo1ERERaVeMMYwZM4bRo0ezdOlS5syZQ2lpKQCe8kISti6gus9oAikZml2TVs99vIDYPavrbRQSExPDLbfcws0336zdG6OYCjURERFpl1wuF9OmTeOqq65i3rx5zJ8/n1AohAn5idvzPv6yA1T3vQI8+kFWWiEbIubgJ8QUfMapv24YO3Ysd911F926dXMsmjSOCjURERFp1zp06MDdd9/NxIkTefzxx8nPzwfAW7oXd2UJVRkTCcUnOZxSpPGMv4rY3BV4ygsjbR07duSBBx5g3LhxDiaTs6FjxEVERESAwYMHM2fOHKZPnx5pc9UcJz7nbTzFeQ4mE2k814kjxG9dUK9Iu/jii3nhhRdUpLUymlETERERqRMfH88DDzzAxRdfzK9+9Suqq6sxoQBxeSupPXGYmvRLweV2OqbI6azFeyQH34GPMTYEhO/HvOOOO/jmN7+Jy6X5mdZG/8dERERE/kVmZibPPvssvXr1irTFHMkhfvsiTE25g8lEGhCsJTZ3BbH7P4wUaR07duTJJ5/ktttuU5HWSun/moiIiEgD+vXrx3PPPcfYsWMjbe6KIhK2LsBzdCdY62A6kTD38QISti7AW7o30jZo0CDmzJnDZZdd5lwwOW8q1ERERES+QIcOHXj00Uf5/ve/j9sdXvJogrXE7V1D3M6lml0T5wRq8e1dQ/yOd3Gd8vfw+uuv5w9/+APdu3d3Lps0Cd2jJiIiIvIljDHcdNNNDBkyhP/+7//m0KFDAHiOHyJhy5vUdv8KtV2HgdvrcFJpF2wIT9FufAc/weWvjDR36NCBH/7wh0ycONHBcNKUNKMmIiIi0gjDhg3jhRdeYNasWZF7fkwogO/gJyR89jreIzkQCjmcUtosa/GU7iN+y1vE7V1Tr0gbO3Ys8+bNU5HWxmhGTURERKSRYmNjueuuuxg/fjy/+tWv2Lt3LwCuQBWx+9YSU7iF2u4j8Kf0B5d+zJImYC3uYwfwHdqEu+JovUtJSUnce++9jB8/3pls0qz0HURERETkLA0dOpS5c+eyZMkSXnzxRYqKigBw1ZQTu3cNMfnr8acNxp82BOuNczittEpBP96iXcQc3oar5ni9S/Hx8Xz9619n5syZxMfHOxRQmpsKNREREZFz4PF4mD59OldffTVvvvkmL7/8MuXl4U0dXIFqfIc+JabgMwIpA6hNG0IoPgWMcTi1RDtTfRzv0R3EHN2BCdbWu+b1ern++uu55ZZbSExMdCihtBQVaiIiIiLnwefzcfPNNzN9+nTeeecd3njjDY4cOQKAsSG8RbvwFu0iGJeEP3UQgZT+mmWT+oIBPKV78RbtxFNeeNrlhIQEZsyYwY033khaWpoDAcUJKtREREREmkCHDh24+eabuemmm1i9ejWvvfYaOTk5kevuqlLcBz7C5q8jkNgbf+pAgp17gtHebu2StbgqjoYL+eI8TMh/WpeePXvyta99jalTp2qJYzukQk1ERESkCXk8HjIzM8nMzGTr1q0sXLiQVatWUV1dDdTNspXuxVu6l5AnlkByP/wpAwgldNHSyHbAVVWGpyQPb3FuvfPPItddLi677DKmT5/O6NGjI+f3SfujQk1ERESkmQwbNoxhw4bxgx/8gBUrVvDuu++ydevWyHVXoJqYIznEHMkhFNMBf0p/AikDCMUlOZhampqprcBTnIe3JA93ZXGDfdLT05k2bRqTJ08mNTW1hRNKNFKhJiIiItLMEhISmD59OtOnT2ffvn0sXryYZcuWRXaLBHDVnsBX8Bm+gs8IxiURSO6PP7kfNraTg8nlXBl/FZ7SfXhK8nCXF9LQXGlCQgLjxo1j2rRpDB8+HKMZVTmFCjURERGRFtSnTx/uvPNOZs+ezWeffUZ2djarVq3ixIkTkT7uqlLcBzfgO7iBYEIq/uQBBJL7YmMSHEwuZxSoxVO2D29xHu7jhzDY07p4vV4uv/xyJk2axGWXXYbP53MgqLQGKtREREREHOB2uxk5ciQjR47k3nvv5eOPP2bZsmV88MEH1Nae3JbdXVGEu6IIe+Ajgh27EUgZgD+pL3j0A35UCAXwlOXjKc7Fc+wAxoZO6+JyuRg5ciSTJk3iqquuokOHDg4EldZGhZqIiIiIw2JiYrjyyiu58sorqays5IMPPmD58uWsW7eOQCAAgAE85YV4ygvx7VtLoHM6gZQBBBJ7gUs/0rUoa3GXF+IpzsVbuve0884+N3z4cDIzMxk3bhwpKSktHFJaO/2rFhEREYki8fHxXH311Vx99dUcP36c1atXs3z5cj799FNCofBsjbEhvGX78Jbtw7pj8Cf1xZ86kFCHNO0c2YxcVWV46rbTd/krGuwzaNAgMjMzmTBhAl27dm3hhNKWqFATERERiVKdOnWKbEJSXFzMihUryMrKYseOHZE+JlhLTNFOYop2EoztjL/LIAIpGTpUu6kE/eHDqI/uwHPiSINdevTowdVXX83EiRPp3bt3CweUtkqFmoiIiEgrkJKSwk033cRNN93E/v37yc7OJjs7m0OHDkX6uKuP4T6wDpu/PnyodpcLCHbqqVm2c+CqKMJ7dDve4j0NHkbduXNnMjMzmTRpEkOHDtWOjdLkzlioGWPSgZeAbkAImGOtfcoYkwz8A+gL7AVmWWtLmy+qiIhI9ND4KE7q3bs33/72t7njjjvYtm0b7777LsuWLaOqqgoAYy3e0n14S/cRiu1EbdpQ/KkDwe11OHmUC4XwlO0lpnAb7orTZ8/cbjdXXHEF06ZN45JLLsHj0ZyHNJ/G/O0KAP+/tfYTY0xHYIMxJgv4FrDMWvukMeYh4CHgweaLKiIiElU0PorjjDGRQ7XvuusuVq1axaJFi9iyZUukj6v6OLH7P8R3cAP+1EHUdh2K9XV0MHUUClQTc3QH3sPbG7z3rHfv3lxzzTVMnjyZ5ORkBwJKe3TGQs1aWwAU1D0uN8bkAD2B64Dxdd3mASvRQCQiIu2ExkeJNvHx8UybNo1p06axb98+Fi1axKJFi6ioCBceJugn5vBWvIe3EUjuR22PEYTikhxO7SzjrySmYAveo9sxoUC9ax6Ph8zMTGbMmKHDqMURZzVfa4zpC4wEPgK61g1SWGsLjDFpTZ5ORESkFdD4KNGmT58+3HXXXXzrW9/ivffeY/78+Rw4cAAAg8VbkoenJI9AUl3BFt++ZolMbQUxBZvxHt2BscF615KSkrj22mu59tprtaW+OKrRhZoxpgMwH7jPWnu8sb9VMMbMBmYD2gVHRETaHI2PEs3i4+O5/vrrufbaa1m3bh2vvfYa69evB8LnsnlL9+At3YM/qS81vf4NG9vZ2cDNzPiriTn0aXgG7V8Oph4wYACzZs1iwoQJxMTEOJRQ5KRGFWrGGC/hQehla+0bdc2HjTHd635b2B1ocL9Sa+0cYA7AqFGjbBNkFhERiQoaH6W1cLlcXHbZZVx22WXk5OTw0ksvsXbt2sh1b+lePGX78HcZTG2Pi9re1v6hADGFW4kp/AwTrL+D4wUXXMBtt93GmDFjtLxRokpjdn00wPNAjrX2N6dcWgjcDjxZ93lBsyQUERGJQhofpbUaMmQIv/jFL9i5cycvvfQSa9asAcI7RcYcycFbtJva7l+htttwcLkdTnuerMVTnIsvf8Npm4QMGTKEb33rW1x66aUq0CQqNWZG7QrgVmCzMebTurYfEx6AXjXG/AewH5jZPBFFRESiksZHadUGDRrE448/Tk5ODs899xybNm0CwIT8+A5uwFu0i+o+lxPs3NPhpOfGVVmCb99aPCcO12tPT0/nu9/9LldccYUKNIlqjdn1cQ3hZcwNmdi0cURERFoHjY/SVgwZMoTf/e53rF27lj/96U/s27cPAFfNceJ3Lg3fv9b7MmxMgsNJGynox3fwE7yHt2E4uao4KSmJO+64g2uuuUbnn0mroL+lIiIiIu2cMYYxY8Zw6aWXsnDhQp5//vnItv7e0r14jh2kpvel+FMHQRTPQrmPHSR27xpctSeXObrdbmbOnMltt91GfHy8g+lEzo4KNREREREBwmeH3XjjjYwfP54//elPLF26FAgvh4zd+wGekjyq+14ZfQdmB2rwHfiYmKJd9Zovuugi7rvvPvr27etMLpHz4HI6gIiIiIhEl+TkZB5++GF+//vfk56eHmn3HC8gYcubeIp2O5iuPnd5IQlb36pXpHXq1Ikf//jH/Pa3v1WRJq2WCjURERERadBXvvIV5s6dy80334zLFf6x0YQCxO1ZTWzuKgjWOhfOhog5+Alx29+tt9Rx3LhxvPjii0yePFmbhUirpqWPIiIiIvKFfD4f3/ve9xg7dixPPPEE+fn5AHhLcnFXHKEqYxKh+KQWzWT8VcTmrsBTXhhp69SpE/fffz/jx49v0SwizUUzaiIiIiJyRkOHDmXOnDlMmzYt0uaqKSc+523cpftbLIerspj4bQvrFWkjRoxg7ty5KtKkTVGhJiIiIiKNEh8fz4MPPshPf/pTYmNjgbqlkLuz8RZsbvav7y7bT3zOoshSR2MM3/72t/nNb35DWlpas399kZakQk1EREREzsrEiRN55pln6NatGxA+UDA2fx0xBzc229f0lOwlbvcyTCgAhIvGJ554gttuuw23291sX1fEKSrUREREROSs9e/fn+eee46vfOUrkTbfoY3E5G8Aa7/klWfPU5JHbO4KTN37du/enWeeeYbLL7+8Sb+OSDRRoSYiIiIi5yQxMZFf//rXXHLJJZE2X8EmvEe3N9nXcB8vIDZvFYZwkZaens7TTz+tbfelzVOhJiIiIiLnzOfz8fjjjzN69OiTbfs/xH284Lzf29ScqDeT1qdPH373u9+Rmpp63u8tEu1UqImIiIjIefH5fDz66KMMGjQIAGNtuMDyV5/7m9oQcbnLcQXC75GUlMSvf/1rUlJSmiKySNRToSYiIiIi5+3zmbWkpPCZaq5ANb78def8ft4jObgrigDweDw89v/au9sQuao7juO/39wZY56IycaETbLsrk2amrpRw27MmlqlSWD7yhT7olvpbqkY+6IhFAraFxUVCvoqoJSCFMkGSkWxRS0lNoqNfVFbtSCrWE20WlPzuJqHbczDZk9fzM1k9iHZzc7DvbPz/UCYe86cO/efJcvJj3Pn3EceYWdH1BWCGgAAAMpi0aJFuv/++wvt3NG9ioqedzZZPntKM/a/VWj39PSora2tLDUCtYKgBgAAgLJZt27diAdPT2XL/qsO9he24W9ublZ3d3e5ygNqBkENAAAAZXXfffcpk8n/NzN78oAyg4cnf/LQGeWOvD/is3K5XLlLBFKPoAYAAICyamxs1IYNGwrtqw6/N+lzc0f3FlbTWltbR+wmCdQTghoAAADK7q677iocZ7/4RDp/blLn5QY+HPEZF1bmgHrDv3wAAACU3cqVKwsPpfbwkLLH/jPhOZkvjyk6NSBJyuVyI77rBtQbghoAAADKzvaI2x+zX3wy4TnFYzo7OzVnzpyK1AbUAoIaAAAAKuK2224rHGeP75fi755dSvbYxaBWfC5QjwhqAAAAqIjm5mYtXbpUUv72x8s9U83nThUecJ3JZNhEBHWPoAYAAICKsK1bb7210M4e+/SSY6Nj+wvHq1ev1ty5cytaG5B22aQLQG154okntG/fvqTLqBkXflbbtm1LuJLasXz5cm3dujXpMgAAZdLZ2alnn31WkpQ9/qnOhHWSPWZc9vjFEMdqGsCKGlBRM2fO1MyZM5MuAwCAxLS1tWn27NmSpMyZQWVOHxs7aPi8ssf/W2gWr8IB9YoVNVwRVjquzMDAgB5++GE9+OCDamhoSLocAACqLpfLqb29XXv27JGUv/3x7Mz5I8ZEJw8WHnK9ZMkSNTU1Vb1OIG1YUQMqqK+vT/39/dq5c2fSpQAAkJjOzs7CcRQ/T+1kx48Kf4qfsdbZ2SmPc2skUG8IakCFDAwMaNeuXQohaNeuXRoYGEi6JAAAErFu3bpC+IoGj8jnTl98M4QRm4xw2yOQR1ADKqSvr0/Dw8OSpPPnz7OqBgCoW6+m578AAAdaSURBVNdcc41WrVolSbKCohMXv4+WOX1cmbODkqRZs2Zp9erVidQIpA1BDaiQl19+WUND+fvth4aGtHv37oQrAgAgObfcckvhuHgFLSra7bG9vV25XK6qdQFpNWFQs/2U7cO23ynqW2B7t+298ev8y30GUI82btyoKIokSVEUadOmTQlXBKDcmCOBySvecj868ZkUgiQpe/yzQv/atWurXheQVpNZUdshqWtU3wOSXgkhrJD0StwGUKS3t1chnoRCCOrp6Um4IgAVsEPMkcCkLF++XPPmzZMkZYZOK/Pl59LwkKKTBwtjOjo6kioPSJ0Jg1oI4TVJn4/qvlNSX3zcJ2lzmesCACD1mCOByctkMlqzZk2hHZ04qOh/R+VwXpK0bNkyLV68OKnygNSZ6nfUFocQDkhS/LqofCUB00NfX58ymfyvWCaTYTMRoH4wRwKXULxRSDR4SNHJQ+O+B6AKm4nY3mL7TdtvHjlypNKXA1KDzUQAXA7zI+pRW1tb4TgaPKxo8PC47wGYelA7ZLtRkuLXw5caGEJ4MoTQHkJov/baa6d4OaD2bNy4UdlsVpKUzWbZTASoH5OaI5kfUY9aWlo0Y8YMSVLm3KkROz5ef/31SZUFpNJUg9oLknrj415Jz5enHGD66O3tLdz6GEURm4kA9YM5EriEbDarFStWFNqOX6+++mo1NTUlUxSQUpPZnv93kv4maaXt/bbvkfSopE2290raFLcBFGloaFBXV5dsq6urSw0NDUmXBKDMmCOBK3fdddeN6WttbS080gZAXnaiASGE7ku8taHMtQDTTm9vrz7++GNW04BpijkSuHItLS1j+lpbW6tfCJByEwY1AFPX0NCgxx9/POkyAABIjfFucVy2bFkClQDpVvFdHwEAAIALGhsbx/QtWbIkgUqAdCOoAQAAoGrGe6j1okU8bhAYjaAGAACAqsnlcpo3b96IvoULFyZUDZBeBDUAAABU1fz580e0FyxYkFAlQHoR1AAAAFBVo7fiz2bZ3w4YjaAGAAAAAClDUAMAAACAlCGoAQAAAEDKENQAAAAAIGUIagAAAKiq0dvzAxiLoAYAAICq6u7uLhxv2bIlwUqA9GIvVAAAAFRVe3u7tm/frhMnTmj9+vVJlwOkEkENAAAAVWVbN998c9JlAKnGrY8AAAAAkDIENQAAAABIGYIaAAAAAKQMQQ0AAAAAUoagBgAAAAApQ1ADAAAAgJQhqAEAAABAyhDUAAAAACBlCGoAAAAAkDIENQAAAABIGYIaAAAAAKQMQQ0AAAAAUoagBgAAAAApQ1ADAAAAgJQhqAEAAABAyhDUAAAAACBlSgpqtrtsv297n+0HylUUAAC1jjkSAFCKKQc125GkX0n6tqRVkrptrypXYQAA1CrmSABAqUpZUVsraV8I4aMQwllJT0u6szxlAQBQ05gjAQAlKSWoLZX0aVF7f9wHAEC9Y44EAJQkW8K5HqcvjBlkb5G0JW4O2n6/hGsCtWihpKNJFwFUWXPSBSRswjmS+RGQxByJ+jSpObKUoLZfUlNRe5mkz0YPCiE8KenJEq4D1DTbb4YQ2pOuA0BVTThHMj8CzJHA5ZRy6+MbklbYbrV9laTvSXqhPGUBAFDTmCMBACWZ8opaCGHI9k8kvSQpkvRUCOHdslUGAECNYo4EAJTKIYz5WhmAMrK9Jb7FCQAAFGGOBC6NoAYAAAAAKVPKd9QAAAAAABVAUANitr9jO9j+WtK1SJLtH9vuSboOAAAAVB+3PgIx289IapT0SgjhoYTLAQAAQB1jRQ2QZHuOpPWS7lF+G23ZvsP2HtvP2P7A9qO277b9D9v9tr8Sj9th+9e2X7X9ke3bbT9l+z3bO4qu0R2f947tx4r6B23/0vbbtl+3vTjuf8j2z+Lje22/EY95zvas6v10AAAAUG0ENSBvs6RdIYQPJH1ue03cf6OkbZLaJP1A0ldDCGsl/UbS1qLz50v6lqSfSnpR0nZJX5fUZvsm20skPRaPuUlSh+3N8bmzJb0eQrhR0muS7h2nvt+HEDriMe8pHygBAAAwTRHUgLxuSU/Hx0/HbUl6I4RwIIRwRtKHkv4c9/dLaik6/8WQv4+4X9KhEEJ/CGFY0rvxuA5JfwkhHAkhDEn6raRvxueelfTH+PitUZ97wQ22/2q7X9LdyodAAAAATFNTfuA1MF3YblB+pesG20H5h9MGSX+SdKZo6HBRe1gjf3/OjDOmeNzQZUo4Fy5+WfS8xv+93CFpcwjhbds/lHTHZf9SAAAAqGmsqAHSdyXtDCE0hxBaQghNkv4t6RtlvMbfJd1ue6HtSPkVuz1XcP5cSQds55RfUQMAAMA0RlAD8qHpD6P6npP0/XJdIIRwQNLPJb0q6W1J/wwhPH8FH/EL5cPebkn/KlddAAAASCe25wcAAACAlGFFDQAAAABShqAGAAAAAClDUAMAAACAlCGoAQAAAEDKENQAAAAAIGUIagAAAACQMgQ1AAAAAEgZghoAAAAApMz/AWqRv4ywtQ+hAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2oAAAEzCAYAAABANfAdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xl8VdW9///XOkNOJiATCVOQIaAMFrGoiAohIFPBqWK9WrW2frFqW60/H3W4t946XGv7uLettbWWohVbsVURQUGQKSAWFRCReUiYCUMmCJnOtH5/JB5IiRIgyT5J3s/HI4+cvfc6OW8gZOVz1tprGWstIiIiIiIiEj1cTgcQERERERGRulSoiYiIiIiIRBkVaiIiIiIiIlFGhZqIiIiIiEiUUaEmIiIiIiISZVSoiYiIiIiIRJnTFmrGmPONMZ+f9HHMGPOAMSbFGLPQGLO99nNycwQWERGJFuojRUSkqZgz2UfNGOMG9gOXAfcBxdbaZ40xjwDJ1tqHmyamiIhIdFMfKSIijelMpz6OAvKstbuBa4HpteenA9c1ZjAREZEWRn2kiIg0mjMt1G4GXq99nGGtLQCo/ZzemMFERERaGPWRIiLSaBo89dEYEwMcAAZYaw8ZY0qttUknXS+x1p4yB98YMwWYAhAXF/fNzMzMxkku0kKEw2FcLq3bI23Ltm3bCq21HZ3O0VzOpo9U/yiiPlLapob2kZ4z+Jrjgc+stYdqjw8ZYzpbawuMMZ2Bw/U9yVo7FZgKMGTIELt69eozeEmRli83N5fs7GynY4g0K2PMbqczNLMz7iPVP4qoj5S2qaF95Jm8hfEfnJjSATAHuKP28R3A7DP4WiIiIq2J+kgREWlUDSrUjDHxwNXA2yedfha42hizvfbas40fT0REJLqpjxQRkabQoKmP1toKIPXfzhVRs8KViIhIm6U+UkREmoLu3hQREREREYkyKtRERERERESijAo1ERERERGRKKNCTUREREREJMqoUBMREREREYkyKtRERERERESijAo1ERERERGRKKNCTUREREREJMqoUBMREREREYkyKtRERERERESijAo1ERERERGRKKNCTUREREREJMqoUBMREREREYkyKtRERERERESijAo1ERERERGRKKNCTUREREREJMqoUBMREREREYkyKtRERERERESijAo1ERERERGRKKNCTUREREREJMqoUBMREREREYkyKtRERERERESijAo1EREREWlW1dXV/OUvf+HQoUMUFhY6HUckKqlQExEREZFmtXDhQl577TWOHj3Kq6++6nQckaikQk1EREREmtXs2bMjj+fMmeNgEpHopUJNRERERJpVOBx2OoJI1FOhJiIiIiIiEmVUqImIiIiIiEQZFWoiIiIiIiJRRoWaiIiIiDSrf79HTfesiZyqQYWaMSbJGPOWMWaLMWazMeZyY0yKMWahMWZ77efkpg4rIiISTdQ/ipydsrKyOselpaUOJRGJXg0dUXsOmG+tvQAYBGwGHgEWW2v7AItrj0VERNoS9Y8iZygQCFBUVFTn3OHDhx1KIxK9TluoGWPaA8OBlwCstX5rbSlwLTC9ttl04LqmCikiIhJt1D+KnJ1Dhw5hra1zrqCgwKE0ItGrISNqvYAjwF+NMWuNMdOMMQlAhrW2AKD2c3oT5hQREYk26h9FzsKuXbsadE6krfM0sM3FwI+ttZ8YY57jDKZxGGOmAFMAMjIyyM3NPZucIi3W8ePH9X0v0jqpfxQ5C0VFRdxyyy0ApKSkcMstt+Dz+fR/QOTfmH8fej6lgTGdgI+ttT1qj6+ipiPKArKttQXGmM5ArrX2/K/7WkOGDLGrV69ulOAiLUVubi7Z2dlOxxBpVsaYNdbaIU7naErqH0XOziOPPMLHH38MwC233MKMGTNIS0vjzTffxBjjcDqRptfQPvK0Ux+ttQeBvcaYLzuZUcAmYA5wR+25O4DZZ5lVRESkxVH/KHLmwuEwmzZtOuV8YWEhBw8edCCRSPRqyNRHgB8DrxljYoB84E5qirw3jDE/APYAk5smooiISNRS/yhyBjZv3syxY8cACHvisC5v5Nonn3zCdddp7R2RLzWoULPWfg7UNzw3qnHjSLR7/vnn2bFjh9MxWoz9+/dTXV3NrFmznI7SYmRlZfHjH//Y6RgiDaL+UeTMrFixIvLYFazk9b9Pjxx/9NFHKtRETtLQfdRE5CxUVlbi9/udjiEiIuK4YDDIokWLvvL6mjVrtJ+ayEkaOvVRBEAjHWfo/vvvp7S0lOeee87pKCIiIo765JNPOHLkCABhTyyuYFWd6+FwmHnz5vG9733PgXQi0UcjaiIiIiLSpKy1zJgxI3IcSOtbb7tZs2ZRUVHRXLFEopoKNRERERFpUitXrmTjxo0AWOMikH5BnevhmAQAjh49yltvvdXs+USikQo1EREREWkyVVVVvPDCC5HjQMcLsL7EOm2quwyOPJ4xYwYFBQXNlk8kWqlQExEREZEm89JLL7Fv3z4ArNuLv8ugU9oE07IIxSUBNYXdr3/9a8LhcLPmFIk2KtREREREpEmsXLmyzlTG6szLsN64UxsaF1U9rsJiAFi7dm2de9pE2iIVaiIiIiLS6Hbu3MlTTz2FtRaAYPuuBNL6fGX7cGJH/J0ujBxPmzatzr5rIm2NCjURERERaVQHDx7k0UcfjazgGI5JoKrXcDDma5/n7zqYYLtOkeOnn36a9evXN2lWkWilQk1EREREGs3Bgwf56U9/ysGDBwGwLg+VfUbXP+Xx37ncVPXOIVy72EhVVRU/+9nP+OKLL5oyskhUUqEmIiIiIo1i9+7dPPDAA5FVG61xUdl7JOH41AZ/DeuNpbLPGMKeWAAqKyv52c9+xqpVq5oks0i0UqEmIiIiIudszZo13HfffSdG0oyLyqxRhJIyz/hrheOSqLxgPGFPzShcVVUVDz/8MLNnz27UzCLRTIWaiIiIiJw1ay3vvPMOP/vZzzh+/HjNOZfnrIu0L4XjkmuKNW98zXE4zG9/+1uef/55AoFAo2QXiWYq1ERERETkrBw/fpwnnniC3/3ud4RCIQDC3ngqLphwTkXal8JxSVT0v4bQSVMnZ86cyU9+8hNtii2tngo1ERERETljmzdvZsqUKeTm5kbOheJTqeg/iXBCWqO9jo2pKfwCyefVee277rqrzmuLtDYq1ERERESkwfx+P1OnTuW+++7jwIEDJ853vICKft/CxiQ0/ou6vVT1zqEq81Js7RL/5eXl/OIXv+DJJ5+ktLS08V9TxGEq1ERERESkQbZs2cKUKVOYMWMG4XAYAOvyUtk7m+oew8DlaboXN4ZAp4FUXPAtwjGJkdNLlizhzjvvZPny5U332iIOaML/TSIiIiLSGhw/fpyXXnqJ2bNnRwo0gGC7TlT1vArra9dsWcKJ6ZQPuJbYvZ/iLdwOQElJCY8//jhXXHEFP/7xj+nUqdNpvopI9FOhJiIiIiL1stayePFi/vjHP1JSUnLivMtDdbchBNL7Qe1UxGbl8VHV8yoCyT2I3fURrkAFAB999BGrV6/m9ttv56abbsLr9TZ/NpFGokJNRERERE6xfft2/vCHP7Bu3bo654Ptu1J13uXY2PYOJTshlJRJ+cDr8e1dRUzhNgCqq6v5y1/+wvz587n33nsZOnQoxoliUuQcqVATERERkYiioiKmTZvG/PnzsdZGzoe9cVR3v4xgck9nRtG+isdHdc8rCaT1IXb3v3BX1oz87d27l0cffZQhQ4Zw77330qtXL4eDipwZFWoiIiIiQnl5OW+88Qb//Oc/qaqqipy3xhBI709118HgjnEw4dcLt8ugYsC1eA9twndgLSZUsyn26tWrueuuuxg/fjx33HEH6enpDicVaRgVaiIiIiJtWHV1Ne+88w6vvfYax44dq3Mt2CGzZkn8uA4OpTtDxkWg00CCqb2J2b8W75GtGCzhcJi5c+fywQcfcN1113HrrbeSlJTkdFqRr6VCTURERKQN8vv9vP/++/ztb3+jsLCwzrVQXDLVmZcS6tDVoXTnxnrjqO4xjEB6P3x7P8VzbD8AgUCAN998k/fee4+bbrqJb3/727Rv7/y9diL1UaEmIiIi0oZUVVXx3nvv8Y9//OOUAi3sS6S6y8UEU3uBafnb7Ybjk6k8fyzuYwfw7VuNu7zmz1tZWcn06dN58803ue6665g8eTLJyckOpxWpS4WaiIiISBtw/Phx3n33Xd544406S+1DzUIh/i4XEUjrCy63QwmbTqh9Fyr6TcJTupuYfZ/hrioFoKKighkzZjBz5kyuueYaJk+erHvYJGqoUBMRERFpxQoKCnj77beZO3cuFRUVda6FvXH4O11IoOP54G7le44ZQzC5B8Gk7niKdxJzYF2kYKuurubNN9/k7bffZuTIkdx000307dvX4cDS1qlQExEREWmFNm3axJtvvsmyZcsIh8N1roVjEmoLtL7gamO/DhoXwdTeBFN64SnZTUzB57grigEIhUIsWrSIRYsWcdFFF3HTTTcxdOhQXK6WPw1UWp429j9TREREpPWqrq5myZIlvPPOO2zduvWU66HYJAKdBhJI7d0qpzieEWMIpvQgmHwe7qN7iTm4AU/Zwcjlzz//nM8//5zOnTtz7bXXMm7cOK0UKc1KhZqIiIhIC7dv3z7mzJnD+++/T1lZ2SnXg+07488YSKhDt+jarDoaGEMoqTuVSd1xlRfWFGzFOzHUbPZdUFDAiy++yEsvvUROTg7XXnst/fr1w+jvUZpYgwo1Y8wuoAwIAUFr7RBjTArwT6AHsAu4yVpb8lVfQ0REpDVSHylO8fv9rFixgrlz57JmzZpTrlvjJpjSE3+nAYTjUx1I2PKEE9Ko6p2N6TaEmMOb8B7Zhgn5gZql/RcsWMCCBQvIysriW9/6FqNHj6Zdu3YOp5bW6kxG1EZaa09ew/URYLG19lljzCO1xw83ajoREZGWQX2kNJv8/Hzmzp3LwoULT9mgGmqW2Pd37EcwrQ/WG+tAwpbP+hKpzryU6i4X4ynOJ+bwZtwVRZHrO3bs4LnnnuNPf/oTI0aM4Fvf+haDBg3SKJs0qnOZ+ngtkF37eDqQizohERERUB8pjaysrIwlS5Ywf/58Nm/efMp1C4Q6dMOf3k/TGxuT20OwY1+CHfviOn6EmCNb8BTlY2wIqBnVXLhwIQsXLqRr166MHz+eMWPGaIl/aRQNLdQs8IExxgJ/ttZOBTKstQUA1toCY4y+I0VEpC1SHylNIhQKsXr1aubPn8+KFSsIBAKntAnHJBJI60MgrQ/Wl+hAyrYjnNiRqsSOkHkp3qI8vIXbIqtFAuzfv59p06bx0ksv8c1vfpNx48Zx5ZVXEhurUU05Ow0t1K6w1h6o7WgWGmO2NPQFjDFTgCkAGRkZ5ObmnnlKkRaqtLSUUCik73uR1u2s+kj1j/JV/H4/x44d49ixYwSDQTp37szkyZMj1y2AOwbricW24L3P/rnqxOO7BiU4F+SMJQApwCUQDmKC1TUftYuPfCk/P59du3bRrl072rdvT1xcnCNppeVqUKFmrT1Q+/mwMWYWcClwyBjTufadws7A4a947lRgKsCQIUNsdnZ2owQXaQlmzZpFaWkp+r4Xab3Oto9U/ygnO3r0KEuWLGHBggVs2VJ/rR+KTyWQlkUwpTfW6wL8tR8t08lLcExbV+5YjkYRcuMp3Y23cDvuYweob+Jp165dGTt2LFdffTWdO3du9ojS8py2UDPGJAAua21Z7eMxwJPAHOAO4Nnaz7ObMqiIiEi0UR8p5yIYDPLJJ5+wYMEC/vWvfxEMBk9pE/bEEkztTSCtD+H4FAdSSoO4PTWbaKf2xlQfr50auR1X9YnFXvbv38/LL7/Myy+/zEUXXcTYsWMZMWIE8fHxDgaXaNaQEbUMYFbtKjYeYIa1dr4xZhXwhjHmB8AeYPLXfA0REZHWSH2knLHt27czf/58Fi9eTGlp6SnXrXERTMokkNqnZmEQl8uBlHK2rC8Rf5dB+Dt/A/fxw3iKtuMt3okJnbjH8MvNtJ977jmGDx/O2LFjGTx4MC79W8tJTluoWWvzgUH1nC8CRjVFKBERkZZAfaQ0VHFxMYsWLWLBggXk5eXV2yaUkFazMEhKT/BoAYoWzxhC7TIItcuguvtQPCV78BZtx330QOR+tqqqKj744AM++OAD0tPTGTNmDOPGjaNbt24Oh5docC7L84uIiIjIVwgEAqxcuZL58+fz8ccfEw6HT2kT9sYTSM0imJZFOC7JgZTSLFwegqm9CKb2wvgr8BTl1RRtlSdGVA8fPszf//53/v73vzNw4EDGjRvHyJEjSUhoSQutSGNSoSYiIiLSiL6c2rho0SKOHj16ynVr3ASTzyOQ1odQ+85gNN2tLbEx8QQ6X0ig00BcFUV4C7fjLcrHhKojbTZs2MCGDRt4/vnnGT58OOPHj+eiiy7S1Mg2RoWaiIiIyDkqLS1l0aJFzJ8/nx07dtTbJpiYTjCtD4HknuCJaeaEEnWMIZyQRnVCGtWZl+I5uhdP4Q48R/dibM3UyOrq6siG2hkZGYwbN46xY8fSpUsXh8NLc1ChJiIiInIWgsEgn376Ke+//z4rV66sf9VGbwKBtCwCaVnY2A4OpJQWweUmmNyDYHIPTKCyZmpk4XbclSWRJocOHWL69OlMnz6dQYMGMW7cOK0a2cqpUBMRERE5A3l5eSxYsICFCxdSUlJyynVNbZRzYb1xBDoNJJAx4CunRq5bt45169bx3HPPkZ2dzdixYxk0aJCmRrYyKtRERERETqO4uJjFixezYMGCr5zaGEpIrxk9S+kJHl8zJ5RW59+nRpburRllO7qvzqqR8+fPZ/78+XTq1IkxY8YwZswYrRrZSqhQExEREalHdXU1K1euZMGCBXzyySdatVGc43ITTOlBMKXHiVUjC7fjrjqxauTBgwd59dVXefXVVxk4cCBjxowhOzub9u3bOxhczoUKNREREZFaoVCIdevWsXDhQpYvX055efkpbWqmNnavndrYRVMbpVnVWTWyvBBv0ZdTI/2RNl+uGvn73/+eoUOHMnr0aC6//HJ8Po30tiQq1ERERKRNs9ayY8cOFi1axOLFiyksLKy3XTAxg2BallZtlOhgDOHEjlQndqQ68zI8pXvxFNVdNTIYDLJixQpWrFhBQkICI0aMYPTo0QwaNAi32+3wH0BOR4WaiIiItEm7d+9myZIlLF26lD179tTbJuxrRyC1N4HULGysppBJlDp5amSgEk9RPt7iPNzlJ950KC8vZ968ecybN4/U1FSys7PJycmhf//+GGMcDC9fRYWaiIiItBkFBQUsWbKEJUuWkJeXV2+bsCeWYEpPAqm9CSd0BP0SKy1IzaqRAwh0GoCpOoq3KA9vUR6u6rJIm6KiImbOnMnMmTPJyMggJyeHnJwcsrKyVLRFERVqIiIi0qodOnSIZcuWsXTpUjZv3lxvG+vyEEzqTiC1N6H2XUHLnEsrYGM74O96Mf4ug3GVH8FblIeneCeuYFWkzaFDh3j99dd5/fXXyczMJDs7m5EjR9KzZ08VbQ5ToSYiIiKtzpEjR8jNzSU3N5eNGzfW28YaN8GkbgRTehHskAlu/VokrZQxhBPTqU5Mp7r7ZbiPFeAp3om3ZFedRUj27t3L3/72N/72t79x3nnnRYq2Hj16OJe9DdNPJBEREWkViouLWbZsGUuWLGH9+vX1trHGEGrfjUBKT4LJ3cGtRUGkjTEuQh26EurQlerzLsd97ADe4nw8Jbsx4WCk2e7du5k+fTrTp0+nZ8+ejBw5kpycHO3R1oxUqImIiEiLdezYMZYvX86SJUv4/PPP693rzGIIte9SW5ydp82oRb7kchNKyiSUlAnhIJ6j+/AU78RTurdO0bZz50527tzJyy+/TN++fcnJyWHkyJFkZGQ4GL71U6EmIiIiLUpVVRUrVqxg0aJFrFq1ilAodEqbmuKsM8GUngSTzsN6Yx1IKtKCuDwEk3sQTO4BoSCeo3trirajezHhE//Htm3bxrZt23jxxRcZOHAgOTk5jBo1ig4dOjiXvZVSoSYiIiJRz1rL+vXrmT9/Prm5uVRUVJzaBgi161RTnCX3wHrjmj+oSGvg9tT8P0rpCaFAzR5txfl4ju7D2BOj1l9urP3CCy9w+eWXM3bsWIYOHYrHoxKjMehvUURERKLWoUOHmD9/PgsWLODAgQP1tgkldCSQ0otgSg9sTEIzJxRp5dxegqm9CKb2gmA1ntI9eIvycR87gOHExtoffvghH374IR06dGD06NGMHz+erKwsh8O3bCrUREREJKp8OXo2c+ZMPvzww3rvOwv72hNIyyKQ0ksbUYs0F4+PYFofgml9ajbWLtmFt3AH7vIjkSZHjx6N7NE2aNAgbrzxRoYNG4bb7XYweMukQk1ERESigt/vJzc3l7feeott27adct26Ywik9CSQ1kcbUYs4zHrjCKT3I5DeD1N5FG/RdryFebgC5ZE269atY926dXTq1Inrr7+eCRMm0K5dOwdTtywq1ERERMRR4XCYRYsWMW3aNA4fPnzK9WD7zgQ6nk8wqTu49KtLS9Zu1cunPV92yfebK440EhvXAX+3Ifi7Xoz7WAHewm14SnZhbM3UyIMHD/KnP/2J6dOn893vfpdvf/vb+HxaffV09NNOREREHPPFF1/wxz/+ka1bt9Y5b42bQFpvAukDCMcnO5RORM7ISXu0GX853sOb8R7ZiitYDUBFRQVTp05l9uzZ3H333YwcORKjkfGvpEJNREREml1FRQW/+c1vWLRoUZ3zYU8sgYwBBDqeryX1RVowG5NQM8rW5SK8RXl4D27AXXUUqFkk6Mknn+Ttt9/m5z//ufZj+wptvlB7/vnn2bFjh9MxpJXasWMH7dq14/7773c6irRSWVlZ/PjHP3Y6hsgZ2b9/P//5n//Jrl27IuescePvNAB/52+AO8a5cCLSuFweAh3PJ5DaB2/hVmL2fxYZYduwYQN33303TzzxBIMGDXI4aPRp84Xajh07+HzDZkLxKU5HkVbI5bd0TUpmTf4hp6NIK+SuKHY6gsgZW7t2LY8//jhlZWWRc4GUnlR3uwTrS3QwmYg0KZerZvGRlF74Cr7Ae2gDxlpKS0t58MEHeeCBB5g0aZLTKaNKmy/UAELxKVReMMHpGNJKDR6UwJp15advKHKG4rbMczqCyBnJz8/n0UcfpaqqCqgZRavqMYxgWh+Hk4lIs/H4qM68hGBSJrE7luAKVhEKhfi///s/OnTowPDhw51OGDVcTgcQERGR1q+srIz/+q//ihRpYW88FRdMUJEm0kaF2nWiov81hOJTI+d++ctf1pkS3dapUBMREZEm99vf/pYDBw4AYF0eKvuOJZzY0eFUIuIk60uk4vxxhH01e6tVVlbyi1/8gmAw6HCy6KBCTURERJrU559/zpIlSyLHVT2v0pL7IlLD46MyaxS2do/EXbt28c477zgcKjqoUBMREZEmEwwGef755yPHgZSeBFN6OphIRKJNOD4Ff5eLIsd//etfKS7WglkNLtSMMW5jzFpjzHu1xz2NMZ8YY7YbY/5pjNFauiIi0uaof/x6M2fOJC8vD6iZ8ljd7RKHE4lINPJnDCDsaw9AeXk5L7zwgsOJnHcmI2r3A5tPOv4V8FtrbR+gBPhBYwYTERFpIdQ/foV9+/bx17/+NXLs7zJIS/CLSP1cbqrOuzxyuGjRIj7++GMHAzmvQYWaMaYb8C1gWu2xAXKAt2qbTAeua4qAIiIiTc0YE2uMuc8Y84Ix5uUvPxrwPPWPX6G0tJRHHnkksspjKC4Zf8aFDqcSkWgW6tCVQEqvyPFTTz1Ffn6+g4mc1dB91H4H/AxoV3ucCpRaa79ckmUf0LW+JxpjpgBTADIyMsjNzT3rsE1hyJAh9L8wQDg2weko0kqlxbu5a5C+v6Txuc4fQ7zPG3U/V1uovwFbgLHAk8Ct1B0l+yqttn88F+FwmP3790f2Q7JAOLYDuLR9a1v3z1Wnb6M+s437xgRcVaUYGwYgNzeXvLw8vF6vw8Ga32l/YhpjJgKHrbVrjDHZX56up6mt7/nW2qnAVIAhQ4bY7Ozs+po55v7772dN/iFteC1N5q5BCUzThtfSBOK2fMA3e2Vw2223OR2lNciy1k42xlxrrZ1ujJkBLPi6J7T2/vFsFRQU8Nhjj7Fz506g5g9f1TuHYEosUO1oNnFeu9M3UZ8puCqOE795LiYcACApKYmnnnqKCy9sW6PyDZn6eAVwjTFmF/APaqZ0/A5IMsZ8Weh1Aw40SUIREZGmF6j9XGqMGQh0AHqc5jnqH//NunXr+OEPfxgp0gCqMy8jmNLDuVAi0uKE41OozMrBmppSpbS0lAcffJD333/f4WTN67SFmrX2UWttN2ttD+BmYIm19lZgKXBjbbM7gNlNllJERKRpTTXGJAM/B+YAm4Bff90T1D+e4Pf7mTp1Kj/96U85evQoANa4qOx5FYFOAxxOJyItUahDVyrPH0fYEwtAIBDgV7/6FU888UTk50xrdy77qD0MPGiM2UHNnPyXGieSiIhI87LWTrPWllhrl1lre1lr0621L57ll2tT/WNeXh733HMPM2bMIByuuack7Iml4vzxBNP6OJxORFqyULtOVPSfRCguOXJu6dKl3HnnnW1iRcgzuqvXWpsL5NY+zgcubfxIIiIizcMY811r7d+NMQ/Wd91a+5uGfJ222D8Gg0FmzJjBq6++SjAYPHG+fWeqelylZfhFpFFYXzsq+k3Et+cTYgq3AVBcXMwjjzzChAkTuOeee2jXriF3P7Y8Wn5JRETasi+Xl2udvXwT2bFjB7/61a/Yvn175Jw1bqozLyGQ3g9MfWuqiIicJbeX6p5XEkzuTuzOj3AFKwGYN28en376KQ899BBDhw51OGTjU6EmIiJtlrX2z7Wfn3A6S0tgreWNN95g6tSphEKhyPlQQkeqel5FOC7JwXQi0tqFkrpTMTAd3+5/4S3ZBUBhYSGPPPIIkyZN4kc/+hE+n8/ZkI1IhZqIiLR5xpiOwP+jZqXHSN9orf2+U5miTVlZGc8++ywfffRR5Jwjy+bbAAAgAElEQVQ1bqq7XlyzYIg5l9veRUQaxnpjqcrKIVi8E9/ulbiCVQC8++67bNmyhV/84hd07Vrv9pUtjn6qioiI1KzM2AFYBMw96UOAPXv2MGXKlDpFWighjYoB1xLofKGKNBFpdsGUnlQMvJ5Aco/Iue3btzNlyhRWr17tXLBGpBE1ERERiLfWPux0iGh06NAhHnroIQ4fPhw558/oT3W3S8DldjCZiLR11htHVe+RhA5vxrf3U4wNU15ezn/+53/yv//7vy1+g2y9BSYiIgLvGWMmOB0i2pSWltYp0qzLQ2XvkVR3H6oiTUSigzEEMvpTccG3CHtr1oeqrq7m0UcfJT8/3+Fw50aFmoiICNxPTbFWZYwpq/045nQop02bNo29e/cCtRtYZ40imNLT4VTSWsTFxWGMIS4uzuko0gqEEztSccGJDbKPHz/Os88+i7XW4WRnT4WaiIi0edbadtZal7U2tvZxO2tte6dzOam0tJQPPvggclzV8ypCHVrHDfrivOTkZJ555hkWLlzIM888Q3Jy8umfJHIaNrYDlX3HYk3NiP+2bdvYsGGDw6nOXpu/R23//v24K44St2We01GklVqy101ceej0DUXOkLuiiP37g6dvKA1ijLkGGF57mGutfc/JPE5buHAhfr8fgFB8KsGUXg4nktYiLi6Oxx9/nMGDBwMwePBgHn/8cR577DEqKysdTictXTghlUBq78jm2O+9916LvVdNI2oiItLmGWOepWb646baj/trz7VZBw8ejDwOJvfQJtbSaKqqqk75xfnCCy+kqqrKoUTS2gRTekQeFxQUOBfkHLX5EbWuXbtysNpD5QW6h1yaRs6gBKatK3c6hrRCcVvm0bVrhtMxWosJwEXW2jCAMWY6sBZ4xNFUDqpz31DNX4tIo4iNjWX9+vWRETWA9evXExsbqxE1aRwn/cyKj493MMi50YiaiIhIjaSTHndwLEWUOPmeIXdZy31HWqJPZWUlTz75JGvXriUYDLJ27VqefPJJFWnSaDzHTvzM6tCh5f44b/MjaiIiIsAvgbXGmKWAoeZetUedjeSsq666ij/+8Y+Ew2E8ZQdxlRcRTkh1Opa0EiUlJTz22GNUVVVpJE0aV8iPt/b+NICcnBwHw5wbjaiJiEibZ619HRgKvF37cbm19h/OpnJWeno6I0aMiBzH7v6XpkBKo6qsrMRaqyJNGpVv7ypMKABAZmYml1xyicOJzp4KNRERkRodaz+7gWHGmBucDBMNvvvd7+J21yxz7S4/QkzBeocTiYh8NffRfcQc2Ro5vuOOO3C5Wm6503KTi4iINBJjzMvAy8C3gUm1HxMdDRUFevfuzR133BE5jtn/Ge6j+x1MJCJSP1N1jLi8ZZHj4cOHM2rUKAcTnTvdoyYiIgJDrbX9nQ4RjW655RY+/vhjNm3ahMESl7eUin4TCcclnf7JIiLNIegnbvtCTKgagJSUFB588EFMC99WRCNqIiIisNIYo0KtHh6PhyeffJK0tDQATMhP3LYFmOrjDicTEQFCAeK2L8RddRQAr9fL008/TVJSy38zSYWaiIgITKemWNtqjPnCGLPeGPOF06GiRVpaGs888ww+nw8Al7+c+K3zMH7tESkiDgoFidu+EM/xQ5FTDz/8MP37t4733VSoiYiI1NyfdhswjhP3p01yNFGU6du3L0899RRerxcAV/Vx4rfMxVVZ6nAyEWmLTKCKuG0L8JQdjJy77777GD16tIOpGpcKNREREdhjrZ1jrd1prd395YfToaLNpZdeyhNPPIHHU3OLu6v6OPGb38N97IDDyUSkLTFVR4nf/G6dkbQpU6YwefJkB1M1PhVqIiIisMUYM8MY8x/GmBu+/HA6VDQaNmwYTz75JLGxscCJe9ZiCr7QPmsi0uQ8xTtJ2PQuruoyAIwx3HPPPdxyyy0OJ2t8KtREREQgDqgGxqDl+U9r2LBh/P73vz+xwIi1+PatJn7zPEztDf0iIo0qWEVs3lLi8pZiQn4AfD4fTzzxBN/5znccDtc0tDy/iIi0edbaO53O0NL07duXF154gccff5wtW7YA4C4/TMLGd/B3uQh/xgBw6dcMETlHNoynKB/fvlW4ApWR0+np6Tz55JNccMEFDoZrWvoJKiIibZ4xpifwY6AHJ/WN1tprnMrUEqSnp/OHP/yBGTNmMH36dEKhECYcwrdvDd5Dm/F3vZhAWhYYTeARkTNkLe6j+/DtW427sqTOpfHjx3PfffeRmJjoULjmoUJNREQE3gFeAt4FdKPVGfB4PNx+++1cfvnl/PKXvyQ/Px8AV6CC2F0r8B7cgL/LRQSTe4BLBZuInIa1uMsOEnNgbZ0VHaFmI+uHHnqIYcOGORSuealQExERgSpr7e+dDtGS9enTh6lTpzJv3jxeeeUViouLAXBXlRKXn0s4JgF/en8CHfuCx+dwWhGJOuEQnuJ8Yg5uxF1ZXOdSbGws3/nOd7jppptISEhwKGDzU6EmIiICzxlj/hv4gJpFRQCw1n7mXKSWx+PxcM0113D11Vfz1ltv8frrr1NRUQHUbJIdu28VvgNrCaT1IZDej3BcksOJRcRpxl+Bt3Ab3kObcQUr61xzu91MmjSJ2267jdTUVIcSOkeFmoiICFxIzYbXOZyY+mhrj+UMxcXFcdtttzFp0iRmzZrF7NmzKS2t2RjbhIPEHN5MzOHNhBLTCaT1JZDSE9xeh1OLSLMJh/Ec3Yu3cBvu0n0YbJ3LsbGxjB07lsmTJ9OtWzeHQjpPhZqIiAhcD/Sy1vqdDtKaJCUlceedd3LLLbewePFi3nzzTXbu3Bm57j5+GPfxw/j2fEwwpSeBtD6EEjPAGAdTi0hTcVWW4D2yHU/RDlzBqlOup6Wlcf311zNp0iTat2/vQMLoctpCzRgTCywHfLXt37LW/nftCln/AFKAz4Db1MGJiEgLtQ5IAg6fyZPURzaMz+djwoQJjB8/njVr1jBnzhw++ugjQqEQUDPK5i3cjrdwO+GYRAKpvQim9iYcl+xwchE5V8ZfjqcoH29xHu6K4nrbDBo0iEmTJpGdnY3Ho3GkLzXkb6IayLHWHjfGeIEVxpj3gQeB31pr/2GMeRH4AfCnJszaZNwVxcRtmed0DGmFXFXHWFt2HnH7S07fWOQM1XR4GU7HaC0ygC3GmFWcuEfNWmuvPc3zWn0f2ZiMMQwZMoQhQ4ZQUlLCokWLmDt3Lrt27Yq0cfmP4yv4Al/BF4TiUgik9iaY0hPra93LcIu0KsFqvCW78BTl4S47SH1j5GlpaYwbN45x48a16emNX+e0hZq11gLHaw+9tR9fztu/pfb8dOAXtMBOKCsry+kI0ort2FHGsdISvtlLv0xLU8jQz7DG898nPTbAlcB/nO5Jrb2PbErJyclMnjyZG2+8ka1btzJ37lyWLl3K8ePHI23clcW49xVj960i1K4TwZReBFJ6gCfWueAiUr9QEM/RPXiK8vEc3Yexp+504vV6GTZsGBMmTGDIkCG43W4HgrYcDRpbNMa4gTVAFvBHIA8otdYGa5vsA7p+xXOnAFMAMjIyyM3NPcfIjevCCy/kwgsvdDqGtFJ//etfCYVCXH/99U5HkVYs2n6utkTW2mXGmIuoKa5uAnYCLzbkuWfbR0Z7/9jcvvnNb3LxxRdTXl5OWVkZx48fp6YOrssCuENYtw/riYF636uXaPXPVadvc9egtrP8emtgQgFMsBpCQQxdgC6ntImPj6d9+/YkJibicrmorKzkww8/bP6wLUyDCjVrbQi4yBiTBMwC+tXX7CueOxWYCjBkyBCbnZ19dklFWqBZs2ZRWlqKvu9FopMxpi9wMzWjZ0XAPwFjrR3Z0K9xtn2k+sevV15ezocffsjixYtZs2YN4fCp785bl5tgh+4E0rIIte+qDbVbgHYNaDNtXXmT55BzYC2u8iN4C3fgKdmJK1hdb7Pzzz+f0aNHk5OT0yaX1m8MZ3S3nrW21BiTCwwFkowxntp3DLsBB5ogn4iISFPaAnwITLLW7gAwxvz0bL6Q+sjGlZCQELl/paioiGXLlrF48WI2btwYaWPCIbwlO/GW7CTsiSWY2otAahbh+FStHCnSyEzVMbxFeXiL8nBVH6u3TWZmZqQ4y8zMbOaErU9DVn3sCARqO6A4YDTwK2ApcCM1q1rdAcxuyqAiIiJN4NvUjKgtNcbMp6ZPa/Bv+Oojm0dqaio33HADN9xwAwUFBSxZsoTFixeTn58faeMKVhFzaBMxhzYRiksimJpFIK0P1hvnYHKRFi4UwFu8E0/hdjzHD9XbJD09nZycHEaNGkVWVhZGb5I0moaMqHUGptfOwXcBb1hr3zPGbAL+YYx5GlgLvNSEOUVERBqdtXYWMMsYkwBcB/wUyDDG/AmYZa394DRfQn1kM+vcuTO33nort956K/n5+SxcuJCFCxdSWFgYaeOuLMW9bzUx+z8jmHwegfR+2p8tSpRd8v3I43arXq73vDjPVVmC9/AWvEU7MKHAKdcTEhLIzs5mzJgxXHjhhbg07bhJNGTVxy+AwfWczwcubYpQIiIizclaWw68BrxmjEkBJgOPAF9bqKmPdFavXr24++67ueuuu1i7di0ffPABy5cvp6qqZiNdY8N4i3fiLd5JKDaJQPoFBNKywB3jcHKRKBQO4SnZhffwlnpHz1wuF5deeiljx45l2LBh+Hw+B0K2LdpRTkRE5CTW2mLgz7Uf0gK43e7I/mwPPPAAy5cv5913361zP5u7qhT3no/x7f8Mf3o/AhkDsF4t8y9COIj3yDZiDq7H5T91IZfMzEwmTpzI1VdfTUpKigMB2y4VaiIiItJqxMfHRxYh2bFjB3PmzGHhwoVUVlYCYEJ+fAXriDm0kUDHC/B3GoiNiXc4tYgDQgG8h7cQc3ADrmBlnUtut5srr7ySa665hosvvlj3nTlEhZqIiIi0SllZWTz44IP88Ic/ZOHChbz11lvs3bsXABMOEnNoA97Dm/F3GoC/8yBwex1OLNIMbLhmBG3/mlOW1k9KSuL6669n4sSJWlI/CqhQExERkVYtPj6ea6+9lokTJ7Js2TJee+018vLyADA2hK/gC7yFeVRnXkIwpacWHZFWy112EN+ej3FXFNc5n5aWxs0338zEiROJjdWU4GihQk1ERETaBLfbTU5ODiNHjmTlypW88sorbNu2DQBXoJy4/FyCR7ZQ1eNKbGx7h9OKNKJgNbF7PsFbtKPO6YyMDG677TbGjBlDTIwW2Yk2KtRERESkTTHGMGzYMIYOHcqCBQuYOnUqJSUlAHjKDpKwcTZV5w0lmJql0TVp8dzHCojdubzOQiExMTHceuut3HzzzVq9MYqpUBMREZE2yeVyMX78eK666iqmT5/OzJkzCYfDmHCAuJ0fEijdS1WPK8CjX2SlBbJhYvZ/RkzBF5z8dsPw4cO599576dSpk2PRpGFUqImIiEiblpiYyH333ceoUaN4+umn2bdvHwDekl24K4qpzBpFOD7Z4ZQiDWcClcTmLcVTdjByrl27djz00EOMGDHCwWRyJrSNuIiIiAhwwQUXMHXqVCZOnBg556o+Rvzmd/EU5TuYTKThXMcPE79xdp0i7eKLL+bll19WkdbCaERNREREpFZ8fDwPPfQQF198Mb/+9a+pqqrChIPE5efiP36I6sxLweV2OqbIqazFe3gzvr2fYmwYqLkf88477+S73/0uLpfGZ1oa/YuJiIiI/JucnBz+9Kc/0a1bt8i5mMObid8yF1Nd5mAykXqE/MTmLSV2z8eRIq1du3Y8++yz3H777SrSWij9q4mIiIjUo2fPnrz44osMHz48cs5dXkjCxtl4jmwDax1MJ1LDfayAhI2z8Zbsipzr27cvU6dO5bLLLnMumJwzFWoiIiIiXyExMZEnnniCH/3oR7jdNVMeTchP3K4VxG1boNE1cU7Qj2/XCuK3vo/rpO/D6667jj/84Q907tzZuWzSKHSPmoiIiMjXMMZw44030q9fP/7nf/6HAwcOAOA5doCEDbPwd/4G/owB4PY6nFTaBBvGU7gD3/7PcAUqIqcTExP56U9/yqhRoxwMJ41JI2oiIiIiDTBgwABefvllbrrppsg9PyYcxLf/MxK+eAvv4c0QDjucUlota/GU7CZ+wzvE7VpRp0gbPnw406dPV5HWymhETURERKSBYmNjuffee8nOzubXv/41u3btAsAVrCR290piDm7A33kQgdRe4NKvWdIIrMV9dC++A+twlx+pcyk5OZn777+f7OxsZ7JJk9JPEBEREZEz1L9/f6ZNm8b8+fN55ZVXKCwsBMBVXUbsrhXE7FtNIP0CAun9sN44h9NKixQK4C3cTsyhTbiqj9W5FB8fz3e+8x0mT55MfHy8QwGlqalQExERETkLHo+HiRMncvXVVzNr1ixee+01yspqFnVwBavwHficmIIvCKb2xp/ej3B8KhjjcGqJdqbqGN4jW4k5shUT8te55vV6ue6667j11ltJSkpyKKE0FxVqIiIiIufA5/Nx8803M3HiRN577z3efvttDh8+DICxYbyF2/EWbicUl0wgrS/B1F4aZZO6QkE8JbvwFm7DU3bwlMsJCQlMmjSJG264gfT0dAcCihNUqImIiIg0gsTERG6++WZuvPFGli9fzptvvsnmzZsj192VJbj3foLdt4pgUncCaX0IdegKRmu7tUnW4io/UlPIF+VjwoFTmnTt2pVvf/vbjBs3TlMc2yAVaiIiIiKNyOPxkJOTQ05ODhs3bmTOnDksW7aMqqoqoHaUrWQX3pJdhD2xBFN6EkjtTTiho6ZGtgGuylI8xfl4i/Lq7H8Wue5ycdlllzFx4kSGDh0a2b9P2h4VaiIiIiJNZMCAAQwYMICf/OQnLF26lPfff5+NGzdGrruCVcQc3kzM4c2EYxIJpPYimNqbcFyyg6mlsRl/OZ6ifLzF+bgriuptk5mZyfjx4xkzZgxpaWnNnFCikQo1ERERkSaWkJDAxIkTmThxIrt372bevHksXrw4slokgMt/HF/BF/gKviAUl0wwpReBlJ7Y2PYOJpezZQKVeEp24ynOx112kPrGShMSEhgxYgTjx49n4MCBGI2oyklUqImIiIg0o/POO4977rmHKVOm8MUXX7Bo0SKWLVvG8ePHI23clSW496/Bt38NoYQ0Aim9Cab0wMYkOJhcTivox1O6G29RPu5jBzDYU5p4vV4uv/xyRo8ezWWXXYbP53MgqLQEKtREREREHOB2uxk8eDCDBw/m/vvv59NPP2Xx4sV89NFH+P0nlmV3lxfiLi/E7v2EULtOBFN7E0juAR79gh8VwkE8pfvwFOXhOboXY8OnNHG5XAwePJjRo0dz1VVXkZiY6EBQaWlUqImIiIg4LCYmhiuvvJIrr7ySiooKPvroI5YsWcKqVasIBoMAGMBTdhBP2UF8u1cS7JBJMLU3waRu4NKvdM3KWtxlB/EU5eEt2XXKfmdfGjhwIDk5OYwYMYLU1NRmDiktnf5Xi4iIiESR+Ph4rr76aq6++mqOHTvG8uXLWbJkCZ9//jnhcM1ojbFhvKW78ZbuxrpjCCT3IJDWh3BiulaObEKuylI8tcvpuwLl9bbp27cvOTk5jBw5koyMjGZOKK2JCjURERGRKNW+ffvIIiRFRUUsXbqUhQsXsnXr1kgbE/ITU7iNmMJthGI7EOjYl2BqljbVbiyhQM1m1Ee24jl+uN4mXbp04eqrr2bUqFF07969mQNKa6VCTURERKQFSE1N5cYbb+TGG29kz549LFq0iEWLFnHgwIFIG3fVUdx7V2H3ra7ZVLvj+YTad9Uo21lwlRfiPbIFb9HOejej7tChAzk5OYwePZr+/ftrxUZpdKct1IwxmcCrQCcgDEy11j5njEkB/gn0AHYBN1lrS5ouqoiISPRQ/yhO6t69O9///ve588472bRpE++//z6LFy+msrISAGMt3pLdeEt2E45tjz+9P4G0PuD2Opw8yoXDeEp3EXNwE+7yU0fP3G43V1xxBePHj+eSSy7B49GYhzSdhnx3BYH/z1r7mTGmHbDGGLMQ+B6w2Fr7rDHmEeAR4OGmiyoiIhJV1D+K44wxkU217733XpYtW8bcuXPZsGFDpI2r6hixez7Gt38NgbS++DP6Y33tHEwdhYJVxBzZivfQlnrvPevevTsTJkxgzJgxpKSkOBBQ2qLTFmrW2gKgoPZxmTFmM9AVuBbIrm02HchFHZGIiLQR6h8l2sTHxzN+/HjGjx/P7t27mTt3LnPnzqW8vKbwMKEAMYc24j20iWBKT/xdBhGOS3Y4tbNMoIKYgg14j2zBhIN1rnk8HnJycpg0aZI2oxZHnNF4rTGmBzAY+ATIqO2ksNYWGGPSGz2diIhIC6D+UaLNeeedx7333sv3vvc9PvjgA2bOnMnevXsBMFi8xfl4ivMJJtcWbPFta5TI+MuJKViP98hWjA3VuZacnMw111zDNddcoyX1xVENLtSMMYnATOABa+2xhr6rYIyZAkwByMjIIDc39yxiirRMpaWlhEIhfd+LtGLqHyXaJSUl8YMf/IDy8nJKSkqoqKg4pY11hwnHxINxN1uuf6468fiuQQnN86LWYgIVmKAbM+Ai4KLIJZ/PR3JyMu3atcMYw/r165snk8hXaFChZozxUtMJvWatfbv29CFjTOfadws7A/WuV2qtnQpMBRgyZIjNzs4+99QiLcSsWbMoLS1F3/cirZP6R2mJNm/ezKuvvsrKlSvrnLfGEOh4Af4uFzXL0v4n3yU3bV39e5I1mnCQmIMbiTn4BSZUdwXH888/n9tvv51hw4ZpeqNElYas+miAl4DN1trfnHRpDnAH8Gzt59lNklBERCQKqX+Ulqpfv3788pe/ZNu2bbz66qusWLECqFkpMubwZryFO/B3/gb+TgPB1XwjbE3CWjxFefj2rTllkZB+/frxve99j0svvVQFmkSlhoyoXQHcBqw3xnxee+4xajqgN4wxPwD2AJObJqKIiEhUUv8oLVrfvn15+umn2bx5My+++CLr1q0DwIQD+PavwVu4narzLifUoavDSc+Oq6IY3+6VeI4fqnM+MzOTu+++myuuuEIFmkS1hqz6uAL4qu/iUY0bR0REpGVQ/yitRb9+/fjd737HypUr+fOf/8zu3bsBcFUfI37bAgLJPajufhk2ppnuIztXoQC+/Z/hPbQJg42cTk5O5s4772TChAna/0xaBH2XioiIiLRxxhiGDRvGpZdeypw5c3jppZciy/p7S3bhObqf6u6XEkjrC1E8CuU+up/YXStw+U9Mc3S73UyePJnbb7+d+Ph4B9OJnBkVaiIiIiIC1OwddsMNN5Cdnc2f//xnFixYANRMh4zd9RGe4nyqelwZfRtmB6vx7f2UmMLtdU5fdNFFPPDAA/To0cOZXCLnwOV0ABERERGJLikpKTz66KP8/ve/JzMzM3Lec6yAhA2z8BTucDBdXe6ygyRsfKdOkda+fXsee+wxfvvb36pIkxZLhZqIiIiI1Osb3/gG06ZN4+abb8blqvm10YSDxO1cTmzeMgj5nQtnw8Ts/4y4Le/Xmeo4YsQIXnnlFcaMGaPFQqRF09RHEREREflKPp+PH/7whwwfPpxnnnmGffv2AeAtzsNdfpjKrNGE45ObNZMJVBKbtxRP2cHIufbt2/Pggw9q71JpNTSiJiIiIiKn1b9/f6ZOncr48eMj51zVZcRvfhd3yZ5my+GqKCJ+05w6RdqgQYOYNm2aijRpVVSoiYiIiEiDxMfH8/DDD/Pzn/+c2NhYoHYq5I5FeAvWN/nru0v3EL95bmSqozGG73//+/zmN78hPT29yV9fpDmpUBMRERGRMzJq1CheeOEFOnXqBNRsKBi7bxUx+9c22Wt6incRt2MxJhwEaorGZ555httvvx23291kryviFBVqIiIiInLGevXqxf/f3v3HVlXecRz/fO8Pys9AuQ21habU8WNhtgppsdfNSYYkXfxDFpdsxaydOuv+GCEzS3R/zKhxiYY/MCFzhiymJZkajVvUhZShE9wfc2OyEDSoFBaxUAWK/OiUwm2f/XEPl9vS0tJ7es+5ve/XPz3P0+ec84Vw8/DJc+5znn/+edXV1WX6So7/R9O635ecu8aZ1y92+oimH35H5l23oqJCzz33nJLJpK/3AcKEoAYAAIAJmTdvnjZv3qyGhoZMX0nPfsVPfuTbPaLnejT9yB6Z0iGtqqpKW7duZdt9THkENQAAAExYSUmJnnrqKTU2Nl7pO/qeoud6cr629fcNWUmrrq7Ws88+q7KyspyvDYQdQQ0AAAA5KSkp0RNPPKFly5ZJksy5dMC6dGHiF3WDmnH4b4qk0tcoLS3V5s2blUgk/CgZCD2CGgAAAHJ2eWWttDT9TrVI6oJKuvdO+HrxEwcV/d8pSVIsFtOTTz7Jzo4oKgQ1AAAA+GLBggV65JFHMu34qUOKZr3vbLzs4lcq6X4/025paVFtba0vNQKFgqAGAAAA3zQ2Ng558fREtuyf9vmBzDb81dXVam5u9qs8oGAQ1AAAAOCrhx56SJFI+r+ZsfM9ivSdGP/JqX7FT3485FrxeNzvEoHQI6gBAADAVxUVFVq7dm2mPe3EwXGfGz91KLOaVlNTM2Q3SaCYENQAAADgu3vuuSdzHPvyU2ng0rjOi/ceHnKNyytzQLHhXz4AAAB8t3z58sxLqW0wpdiZo2OeE/n6jKJf9UqS4vH4kO+6AcWGoAYAAADfmdmQxx9jX3465jnZY5LJpGbPnj0ptQGFgKAGAACASXH77bdnjmNnuyXvu2ejiZ25EtSyzwWKEUENAAAAk6K6uloLFy6UlH788VrvVLNLX2VecB2JRNhEBEWPoAYAAIBJYWa67bbbMu3Ymc9GHRs90505rqur05w5cya1NiDsYkEXgMKydetWdXV1BV1Gwejq6lIqldKmTV+vbZYAAAisSURBVJuCLqVgLFmyRBs3bgy6DACAT5LJpF599VVJUuzsZ+p3jZLZVeNiZ6+EOFbTAFbUgEk1Y8YMTZs2LegyAAAITG1trWbNmiVJivT3KXLhzNWDBgcUO3ss08xehQOKFStquC6sdFyf3t5ePfzww3rssceUSCSCLgcAgLyLx+Oqr6/Xnj17JKUff7w4o3TImOj5zzMvua6srFRVVVXe6wTChhU1YBJ1dHTo6NGj2r59e9ClAAAQmGQymTmOeu9TO99wv370s40633D/kHesJZNJ2QiPRgLFhqAGTJLe3l51dnbKOafOzk719vYGXRIAAIFobGzMhK9o30nZpQtXfunckE1GeOwRSCOoAZOko6NDg4ODkqSBgQFW1QAARWvevHlasWKFJMnkFD135ftokQtnFbnYJ0maOXOm6urqAqkRCBuCGjBJ3nrrLaVS6eftU6mUdu3aFXBFAAAE59Zbb80cZ6+gRbN2e6yvr1c8Hs9rXUBYjRnUzOwFMzthZh9k9c03s11mdsj7WXqtawDF6M4771Q0GpUkRaNRrVu3LuCKAPiNORIYv+wt96PnjkvOSZJiZ49n+levXp33uoCwGs+KWrukpmF9j0p62zm3VNLbXhtAltbWVjlvEnLOqaWlJeCKAEyCdjFHAuOyZMkSzZ07V5IUSV1Q5OvTktI7Pl7W0NAQSG1AGI0Z1Jxz70o6Paz7bkkd3nGHpPU+1wUAQOgxRwLjF4lEtGrVqkw7ei69Jb+5AUnSokWLVF5eHlR5QOhM9Dtq5c65Hknyfi7wryRgaujo6FAkkv6IRSIRNhMBigdzJDCK7I1Con1fSAOXRvwdgDy88NrM2iS1SVJ5ebl279492bcEQmHnzp1DNhPp7OzUypUrA64KQFgwP6IYzZw5Uxs2bJAkOYsoMWdGpn3DDTfwOQCyTDSofWFmFc65HjOrkHRitIHOuW2StklSfX29W7NmzQRvCRSWffv2aceOHUqlUorFYmpqahL//oGiMK45kvkRxSiVSumuu+5Sf3+/JKl5wwa99OKLkqT29nYtXrw4wOqAcJnoo49vSGr1jlslve5POcDU0dramnn0MRqNspkIUDyYI4FRxGIxLV26NNM27+f06dNVVVUVTFFASI1ne/6XJP1D0nIz6zazByQ9LWmdmR2StM5rA8iSSCTU1NQkM1NTU5MSiUTQJQHwGXMkcP1uvPHGq/pqamoyr7QBkDbmo4/OueZRfrXW51qAKae1tVX79+9nNQ2Yopgjges30uONNTU1+S8ECLmJPvoIYBwSiYTuu+8+VtMAAPCM9IjjokWLAqgECDeCGgAAAPKmoqLiqr7KysoAKgHCjaAGAACAvBnppdYLFvC6QWA4ghoAAADyJh6Pa+7cuUP6ysrKAqoGCC+CGgAAAPKqtLR0SHv+/PkBVQKEF0ENAAAAeTV8K/5YbMyNyIGiQ1ADAAAAgJAhqAEAAABAyBDUAAAAACBkCGoAAAAAEDIENQAAAOTV8O35AVyNoAYAAIC8am5uzhy3tbUFWAkQXuyFCgAAgLyqr6/Xli1bdOzYMTU1NQVdDhBKrKgBAAAgr8xMK1eu1OzZs3mHGjAKghoAAAAAhAxBDQAAAABChqAGAAAAACFDUAMAAACAkCGoAQAAAEDIENQAAAAAIGQIagAAAAAQMgQ1AAAAAAgZghoAAAAAhAxBDQAAAABChqAGAAAAACFDUAMAAACAkCGoAQAAAEDIENQAAAAAIGQIagAAAAAQMgQ1AAAAAAiZnIKamTWZ2cdm1mVmj/pVFAAAhY45EgCQiwkHNTOLSvqdpO9LWiGp2cxW+FUYAACFijkSAJCrXFbUVkvqcs4dcc5dlPSypLv9KQsAgILGHAkAyEkuQW2hpM+y2t1eHwAAxY45EgCQk1gO59oIfe6qQWZtktq8Zp+ZfZzDPYFCVCbpVNBFAHlWHXQBARtzjmR+BCQxR6I4jWuOzCWodUuqymovknR8+CDn3DZJ23K4D1DQzOzfzrn6oOsAkFdjzpHMjwBzJHAtuTz6uFfSUjOrMbNpkn4s6Q1/ygIAoKAxRwIAcjLhFTXnXMrMfiFpp6SopBeccx/6VhkAAAWKORIAkCtz7qqvlQHwkZm1eY84AQCALMyRwOgIagAAAAAQMrl8Rw0AAAAAMAkIaoDHzH5gZs7Mvhl0LZJkZj83s5ag6wAAAED+8egj4DGzVyRVSHrbOfd4wOUAAACgiLGiBkgys9mSvi3pAaW30ZaZrTGzPWb2ipl9YmZPm9m9ZvYvMztgZt/wxrWb2e/N7B0zO2Jmd5jZC2Z20Mzas+7R7J33gZk9k9XfZ2a/NbP9ZvaemZV7/Y+b2a+84wfNbK835jUzm5m/vx0AAADkG0ENSFsvqdM594mk02a2yuu/WdImSbWSfiJpmXNutaQ/SNqYdX6ppO9J+qWkNyVtkfQtSbVmdouZVUp6xhtzi6QGM1vvnTtL0nvOuZslvSvpwRHq+5NzrsEbc1DpQAkAAIApiqAGpDVLetk7ftlrS9Je51yPc65f0mFJf/X6D0hanHX+my79HPEBSV845w445wYlfeiNa5C02zl30jmXkvRHSd/1zr0o6S/e8fvDrnvZTWb2dzM7IOlepUMgAAAApqgJv/AamCrMLKH0StdNZuaUfjmtk7RDUn/W0MGs9qCGfn76RxiTPS51jRIuuStfFh3QyJ/LdknrnXP7zeynktZc8w8FAACAgsaKGiD9UNJ251y1c26xc65K0n8lfcfHe/xT0h1mVmZmUaVX7PZcx/lzJPWYWVzpFTUAAABMYQQ1IB2a/jys7zVJG/y6gXOuR9KvJb0jab+kfc6516/jEr9ROuztkvSRX3UBAAAgnNieHwAAAABChhU1AAAAAAgZghoAAAAAhAxBDQAAAABChqAGAAAAACFDUAMAAACAkCGoAQAAAEDIENQAAAAAIGQIagAAAAAQMv8H1Ugwh+QDPLUAAAAASUVORK5CYII=\n", "text/plain": [ "
    " ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], @@ -1942,6 +1944,7 @@ "\n", "sns.boxplot(data=ammonia, ax = axis1)\n", "axis1.set_ylim(0, 70)\n", + "axis1.grid(True)\n", "sns.violinplot(y='Ammonia', data=ammonia, ax=axis2,\n", " \n", " # Play with these settings\n", @@ -1949,7 +1952,8 @@ " # inner = \"quartile\"\n", " \n", " linewidth=3)\n", - "axis2.set_ylim(0, 70);" + "axis2.set_ylim(0, 70)\n", + "axis2.grid(True);" ] }, { @@ -1961,28 +1965,19 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 17, "metadata": {}, "outputs": [ - { - "ename": "NameError", - "evalue": "name 'ammonia' is not defined", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 10\u001b[0m \u001b[0maxis2\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpyplot\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msubplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m2\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m2\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 11\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 12\u001b[0;31m \u001b[0msns\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mboxplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mammonia\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0max\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0maxis1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 13\u001b[0m \u001b[0maxis1\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_ylim\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m70\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 14\u001b[0m sns.swarmplot(y='Ammonia', data=ammonia, ax=axis2,\n", - "\u001b[0;31mNameError\u001b[0m: name 'ammonia' is not defined" - ] - }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3IAAAEzCAYAAAB0TDEBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAE4xJREFUeJzt3VGIped5H/D/Y22UUMdxSnYDQbuKVLqus4iC3UG4BBoHu2Wli90bN0hgEgfhhbRKoTEBlRQnKFe1KYaAWmdLjJNALCu+SJawQReJgkOIjMa4EZaMYKq41qCANo6jG2Mrap9enFNnMp7VfGf3zH7n1fx+sHC+c17OPLzMzH//833nnOruAAAAMI63zD0AAAAAq1HkAAAABqPIAQAADEaRAwAAGIwiBwAAMBhFDgAAYDCHFrmq+lRVvVJVX77O41VVv1ZVO1X1bFW9e/1jAsDmkZEAzGXKGblPJzn/Bo/fl+Ts8t+lJP/95scCgCF8OjISgBkcWuS6+/NJ/uYNllxM8lu98HSSH6yqH1nXgACwqWQkAHNZx2vk7kjy0p7j3eV9AHDcyUgAjsSJNTxHHXBfH7iw6lIWl5bkrW9967945zvfuYYvD8Cm++IXv/jX3X1q7jlmICMBuK6bycd1FLndJGf2HJ9O8vJBC7v7cpLLSbK1tdXb29tr+PIAbLqq+t9zzzATGQnAdd1MPq7j0sorSX56+c5c70nyanf/1RqeFwBGJyMBOBKHnpGrqs8keW+Sk1W1m+SXk3xPknT3J5NcTXJ/kp0k30zys0c1LABsEhkJwFwOLXLd/eAhj3eSf7+2iQBgEDISgLms49JKAAAAbiFFDgAAYDCKHAAAwGAUOQAAgMEocgAAAINR5AAAAAajyAEAAAxGkQMAABiMIgcAADAYRQ4AAGAwihwAAMBgFDkAAIDBKHIAAACDUeQAAAAGo8gBAAAMRpEDAAAYjCIHAAAwGEUOAABgMIocAADAYBQ5AACAwShyAAAAg1HkAAAABqPIAQAADEaRAwAAGIwiBwAAMBhFDgAAYDCKHAAAwGAUOQAAgMEocgAAAINR5AAAAAajyAEAAAxGkQMAABiMIgcAADAYRQ4AAGAwihwAAMBgFDkAAIDBKHIAAACDUeQAAAAGo8gBAAAMRpEDAAAYjCIHAAAwGEUOAABgMIocAADAYBQ5AACAwShyAAAAg1HkAAAABjOpyFXV+ap6oap2quqRAx6/s6qeqqovVdWzVXX/+kcFgM0iHwGYy6FFrqpuS/JYkvuSnEvyYFWd27fsPyd5orvfleSBJP9t3YMCwCaRjwDMacoZuXuT7HT3i939WpLHk1zct6aT/MDy9tuTvLy+EQFgI8lHAGYzpcjdkeSlPce7y/v2+pUkH6yq3SRXk/z8QU9UVZeqaruqtq9du3YD4wLAxlhbPiYyEoDVTClydcB9ve/4wSSf7u7TSe5P8ttV9V3P3d2Xu3uru7dOnTq1+rQAsDnWlo+JjARgNVOK3G6SM3uOT+e7Lw15KMkTSdLdf57k+5KcXMeAALCh5CMAs5lS5J5Jcraq7q6q27N4sfaVfWu+luR9SVJVP5ZFULkuBIA3M/kIwGwOLXLd/XqSh5M8meQrWbz71nNV9WhVXVgu+0iSD1fVXyT5TJIPdff+y0sA4E1DPgIwpxNTFnX31SxepL33vo/uuf18kh9f72gAsNnkIwBzmfSB4AAAAGwORQ4AAGAwihwAAMBgFDkAAIDBKHIAAACDUeQAAAAGo8gBAAAMRpEDAAAYjCIHAAAwGEUOAABgMIocAADAYBQ5AACAwShyAAAAg1HkAAAABqPIAQAADEaRAwAAGIwiBwAAMBhFDgAAYDCKHAAAwGAUOQAAgMEocgAAAINR5AAAAAajyAEAAAxGkQMAABiMIgcAADAYRQ4AAGAwihwAAMBgFDkAAIDBKHIAAACDUeQAAAAGo8gBAAAMRpEDAAAYjCIHAAAwGEUOAABgMIocAADAYBQ5AACAwShyAAAAg1HkAAAABqPIAQAADEaRAwAAGIwiBwAAMBhFDgAAYDCKHAAAwGAUOQAAgMEocgAAAIOZVOSq6nxVvVBVO1X1yHXW/FRVPV9Vz1XV76x3TADYPPIRgLmcOGxBVd2W5LEk/zrJbpJnqupKdz+/Z83ZJP8pyY939zeq6oePamAA2ATyEYA5TTkjd2+Sne5+sbtfS/J4kov71nw4yWPd/Y0k6e5X1jsmAGwc+QjAbKYUuTuSvLTneHd5317vSPKOqvqzqnq6qs6va0AA2FDyEYDZHHppZZI64L4+4HnOJnlvktNJ/rSq7unuv/0HT1R1KcmlJLnzzjtXHhYANsja8jGRkQCsZsoZud0kZ/Ycn07y8gFrfr+7/667/zLJC1kE1z/Q3Ze7e6u7t06dOnWjMwPAJlhbPiYyEoDVTClyzyQ5W1V3V9XtSR5IcmXfmt9L8pNJUlUns7iU5MV1DgoAG0Y+AjCbQ4tcd7+e5OEkTyb5SpInuvu5qnq0qi4slz2Z5OtV9XySp5L8Ynd//aiGBoC5yUcA5lTd+y/nvzW2trZ6e3t7lq8NwK1VVV/s7q255xiFjAQ4Hm4mHyd9IDgAAACbQ5EDAAAYjCIHAAAwGEUOAABgMIocAADAYBQ5AACAwShyAAAAg1HkAAAABqPIAQAADEaRAwAAGIwiBwAAMBhFDgAAYDCKHAAAwGAUOQAAgMEocgAAAINR5AAAAAajyAEAAAxGkQMAABiMIgcAADAYRQ4AAGAwihwAAMBgFDkAAIDBKHIAAACDUeQAAAAGo8gBAAAMRpEDAAAYjCIHAAAwGEUOAABgMIocAADAYBQ5AACAwShyAAAAg1HkAAAABqPIAQAADEaRAwAAGIwiBwAAMBhFDgAAYDCKHAAAwGAUOQAAgMEocgAAAINR5AAAAAajyAEAAAxGkQMAABiMIgcAADAYRQ4AAGAwihwAAMBgJhW5qjpfVS9U1U5VPfIG6z5QVV1VW+sbEQA2k3wEYC6HFrmqui3JY0nuS3IuyYNVde6AdW9L8h+SfGHdQwLAppGPAMxpyhm5e5PsdPeL3f1akseTXDxg3a8m+ViSb61xPgDYVPIRgNlMKXJ3JHlpz/Hu8r7vqKp3JTnT3X+wxtkAYJPJRwBmM6XI1QH39XcerHpLkk8k+cihT1R1qaq2q2r72rVr06cEgM2ztnxcrpeRAEw2pcjtJjmz5/h0kpf3HL8tyT1J/qSqvprkPUmuHPSC7u6+3N1b3b116tSpG58aAOa3tnxMZCQAq5lS5J5Jcraq7q6q25M8kOTK/3+wu1/t7pPdfVd335Xk6SQXunv7SCYGgM0gHwGYzaFFrrtfT/JwkieTfCXJE939XFU9WlUXjnpAANhE8hGAOZ2Ysqi7rya5uu++j15n7XtvfiwA2HzyEYC5TPpAcAAAADaHIgcAADAYRQ4AAGAwihwAAMBgFDkAAIDBKHIAAACDUeQAAAAGo8gBAAAMRpEDAAAYjCIHAAAwGEUOAABgMIocAADAYBQ5AACAwShyAAAAg1HkAAAABqPIAQAADEaRAwAAGIwiBwAAMBhFDgAAYDCKHAAAwGAUOQAAgMEocgAAAINR5AAAAAajyAEAAAxGkQMAABiMIgcAADAYRQ4AAGAwihwAAMBgFDkAAIDBKHIAAACDUeQAAAAGo8gBAAAMRpEDAAAYjCIHAAAwGEUOAABgMIocAADAYBQ5AACAwShyAAAAg1HkAAAABqPIAQAADEaRAwAAGIwiBwAAMBhFDgAAYDCKHAAAwGAUOQAAgMEocgAAAIOZVOSq6nxVvVBVO1X1yAGP/0JVPV9Vz1bVH1XVj65/VADYLPIRgLkcWuSq6rYkjyW5L8m5JA9W1bl9y76UZKu7/3mSzyX52LoHBYBNIh8BmNOUM3L3Jtnp7he7+7Ukjye5uHdBdz/V3d9cHj6d5PR6xwSAjSMfAZjNlCJ3R5KX9hzvLu+7noeS/OFBD1TVpararqrta9euTZ8SADbP2vIxkZEArGZKkasD7usDF1Z9MMlWko8f9Hh3X+7ure7eOnXq1PQpAWDzrC0fExkJwGpOTFizm+TMnuPTSV7ev6iq3p/kl5L8RHd/ez3jAcDGko8AzGbKGblnkpytqrur6vYkDyS5sndBVb0rya8nudDdr6x/TADYOPIRgNkcWuS6+/UkDyd5MslXkjzR3c9V1aNVdWG57ONJvj/J71bV/6yqK9d5OgB4U5CPAMxpyqWV6e6rSa7uu++je26/f81zAcDGk48AzGXSB4IDAACwORQ5AACAwShyAAAAg1HkAAAABqPIAQAADEaRAwAAGIwiBwAAMBhFDgAAYDCKHAAAwGAUOQAAgMEocgAAAINR5AAAAAajyAEAAAxGkQMAABiMIgcAADAYRQ4AAGAwihwAAMBgFDkAAIDBKHIAAACDUeQAAAAGo8gBAAAMRpEDAAAYjCIHAAAwGEUOAABgMIocAADAYBQ5AACAwShyAAAAg1HkAAAABqPIAQAADEaRAwAAGIwiBwAAMBhFDgAAYDCKHAAAwGAUOQAAgMEocgAAAINR5AAAAAajyAEAAAxGkQMAABiMIgcAADAYRQ4AAGAwihwAAMBgFDkAAIDBKHIAAACDUeQAAAAGo8gBAAAMZlKRq6rzVfVCVe1U1SMHPP69VfXZ5eNfqKq71j0oAGwa+QjAXA4tclV1W5LHktyX5FySB6vq3L5lDyX5Rnf/0ySfSPJf1j0oAGwS+QjAnKackbs3yU53v9jdryV5PMnFfWsuJvnN5e3PJXlfVdX6xgSAjSMfAZjNlCJ3R5KX9hzvLu87cE13v57k1SQ/tI4BAWBDyUcAZnNiwpqD/nLYN7AmVXUpyaXl4ber6ssTvj4LJ5P89dxDDMR+rcZ+rcZ+re6fzT3AEVhbPiYy8ib5mVyN/VqN/VqN/VrNDefjlCK3m+TMnuPTSV6+zprdqjqR5O1J/mb/E3X35SSXk6Sqtrt760aGPo7s12rs12rs12rs1+qqanvuGY7A2vIxkZE3w36txn6txn6txn6t5mbyccqllc8kOVtVd1fV7UkeSHJl35orSX5mefsDSf64uw/8iyMAvEnIRwBmc+gZue5+vaoeTvJkktuSfKq7n6uqR5Nsd/eVJL+R5LeraieLvzQ+cJRDA8Dc5CMAc5pyaWW6+2qSq/vu++ie299K8m9X/NqXV1x/3Nmv1div1div1div1b0p9+yI8jF5k+7XEbJfq7Ffq7Ffq7Ffq7nh/SpXeAAAAIxlymvkAAAA2CBHXuSq6nxVvVBVO1X1yAGPf29VfXb5+Beq6q6jnmmTTdivX6iq56vq2ar6o6r60Tnm3BSH7deedR+oqq6qY/0uSlP2q6p+avk99lxV/c6tnnGTTPh5vLOqnqqqLy1/Ju+fY85NUVWfqqpXrve2+bXwa8v9fLaq3n2rZ9wk8nE18nF1MnI1MnI1MnK6I8vH7j6yf1m8+Pt/JfknSW5P8hdJzu1b8++SfHJ5+4Eknz3KmTb538T9+skk/2h5++fs1xvv13Ld25J8PsnTSbbmnnuT9yvJ2SRfSvKPl8c/PPfcG75fl5P83PL2uSRfnXvumffsXyV5d5IvX+fx+5P8YRafrfaeJF+Ye+YZ90o+rn+/5OOKe7ZcJyMn7peMXHm/ZOTf78WR5ONRn5G7N8lOd7/Y3a8leTzJxX1rLib5zeXtzyV5X1Ud9AGqx8Gh+9XdT3X3N5eHT2fxuUXH1ZTvryT51SQfS/KtWzncBpqyXx9O8lh3fyNJuvuVWzzjJpmyX53kB5a3357v/gyxY6W7P5/rfEba0sUkv9ULTyf5war6kVsz3caRj6uRj6uTkauRkauRkSs4qnw86iJ3R5KX9hzvLu87cE13v57k1SQ/dMRzbaop+7XXQ1m09+Pq0P2qqnclOdPdf3ArB9tQU76/3pHkHVX1Z1X1dFWdv2XTbZ4p+/UrST5YVbtZvHPhz9+a0Ya16u+4NzP5uBr5uDoZuRoZuRoZuV43lI+TPn7gJhz0l8P9b5M5Zc1xMXkvquqDSbaS/MSRTrTZ3nC/quotST6R5EO3aqANN+X760QWl468N4u/Zv9pVd3T3X97xLNtoin79WCST3f3f62qf5nF54Xd093/9+jHG5Lf939PPq5GPq5ORq5GRq5GRq7XDf2+P+ozcrtJzuw5Pp3vPq36nTVVdSKLU69vdOrxzWzKfqWq3p/kl5Jc6O5v36LZNtFh+/W2JPck+ZOq+moW1xxfOcYv5p768/j73f133f2XSV7IIrSOoyn79VCSJ5Kku/88yfclOXlLphvTpN9xx4R8XI18XJ2MXI2MXI2MXK8bysejLnLPJDlbVXdX1e1ZvFj7yr41V5L8zPL2B5L8cS9f9XcMHbpfy8sgfj2LkDrO12Ynh+xXd7/a3Se7+67uviuL10xc6O7tecad3ZSfx9/L4g0DUlUns7iM5MVbOuXmmLJfX0vyviSpqh/LIqSu3dIpx3IlyU8v353rPUle7e6/mnuomcjH1cjH1cnI1cjI1cjI9bqhfDzSSyu7+/WqejjJk1m8u82nuvu5qno0yXZ3X0nyG1mcat3J4i+NDxzlTJts4n59PMn3J/nd5Wvev9bdF2YbekYT94ulifv1ZJJ/U1XPJ/k/SX6xu78+39TzmbhfH0nyP6rqP2ZxCcSHjvF/tFNVn8nikqOTy9dE/HKS70mS7v5kFq+RuD/JTpJvJvnZeSadn3xcjXxcnYxcjYxcjYxczVHlYx3T/QQAABjWkX8gOAAAAOulyAEAAAxGkQMAABiMIgcAADAYRQ4AAGAwihwAAMBgFDkAAIDBKHIAAACD+X8yLUt7G39CSAAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2oAAAEzCAYAAABANfAdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xd0HOXZ9/HvbJW06r3Lkiz3XnG3Mb33Hgj1IZSEBEgjT0inJXQSOphiYmMw1QX33nuT1XvvbfvO+8fKI43W7xNDMJbh+pzDsXZ2d3Z2V5yZn677vm5FVVWEEEIIIYQQQvQfhlN9AEIIIYQQQggh9CSoCSGEEEIIIUQ/I0FNCCGEEEIIIfoZCWpCCCGEEEII0c9IUBNCCCGEEEKIfkaCmhBCCCGEEEL0M/8xqCmKMlhRlL29/mtTFOUBRVGiFUVZoShKfve/Ud/FAQshhBD9hZwjhRBCnCzK11lHTVEUI1AJTAbuBZpUVX1cUZRfA1Gqqv7q5BymEEII0b/JOVIIIcS36esOfZwLFKqqWgpcCszr3j4PuOzbPDAhhBDiNCPnSCGEEN+arxvUrgM+6P45QVXVaoDuf+O/zQMTQgghTjNyjhRCCPGtOeGhj4qiWIAqYLiqqrWKorSoqhrZ6/5mVVUDxuArinIXcBdAcHDw+LS0tG/nyIU4Tfh8PgwG6dsjfljy8vIaVFWNO9XH8V35JudIOT8KIedI8cN0oudI09fY5/nAblVVa7tv1yqKkqSqarWiKElA3fGepKrqq8CrABMmTFB37tz5NV5SiNPf2rVrmT179qk+DCG+U4qilJ7qY/iOfe1zpJwfhZBzpPhhOtFz5Nf5E8b19AzpAPgMuKX751uAT7/GvoQQQojvEzlHCiGE+FadUFBTFCUEOBv4uNfmx4GzFUXJ777v8W//8IQQQoj+Tc6RQgghToYTGvqoqmoXENNnWyP+DldCCCHED5acI4UQQpwMMntTCCGEEEIIIfoZCWpCCCGEEEII0c9IUBNCCCGEEEKIfkaCmhBCCCGEEEL0MxLUhBBCCCGEEKKfkaAmhBBCCCGEEP2MBDUhhBBCCCGE6GckqAkhhBBCCCFEPyNBTQghhBBCCCH6GQlqQgghhBBCCNHPSFATQgghhBBCiH5GgpoQQgghhBBC9DMS1IQQQgghhBCin5GgJoQQQgghhBD9jAQ1IYQQQgghhOhnJKgJIYQQQgghRD8jQU0IIYQQQggh+hkJakIIIYQQQgjRz0hQE0IIIYQQQoh+RoKaEEIIIYQQQvQzEtSEEEIIIYQQop+RoCaEEEIIIYQQ/YwENSGEEEIIIYToZySoCSGEEEIIIUQ/I0FNCCGEEEIIIfoZCWpCCCGEEEII0c9IUBNCCCGEEEKIfkaCmhBCCCGEEEL0MxLUhBBCCCGEEKKfkaAmhBBCCCGEEP3MCQU1RVEiFUVZpChKrqIoRxRFmaIoSrSiKCsURcnv/jfqZB+sEEII0Z/I+VEIIcTJcqIVteeAZaqqDgFGA0eAXwOrVFXNAVZ13xZCCCF+SOT8KIQQ4qT4j0FNUZRwYCbwBoCqqi5VVVuAS4F53Q+bB1x2sg5SCCGE6G/k/CiEEOJkOpGKWhZQD7ylKMoeRVFeVxTFBiSoqloN0P1v/Ek8TiGEEKK/kfOjEEKIk8Z0go8ZB9yvquo2RVGe42sM41AU5S7gLoCEhATWrl37TY5TiNNWR0eH/N4L8f0k50ch/ktyjhTi/09RVfX/foCiJAJbVVUd0H17Bv4T0UBgtqqq1YqiJAFrVVUd/H/ta8KECerOnTu/lQMX4nSxdu1aZs+efaoPQ4jvlKIou1RVnXCqj+NkkvOjEP89OUeKH6ITPUf+x6GPqqrWAOWKohw7ycwFDgOfAbd0b7sF+PQbHqsQQghx2pHzoxDfjNvr44VV+Vzz8hbePeykudN1qg9JiH7pRIY+AtwPvK8oigUoAm7FH/IWKopyO1AGXH1yDlEIIYTot+T8KMTX9NTyo7y6vki7fe/83cy/84xTeERC9E8nFNRUVd0LHK88N/fbPRzR373wwgsUFBSc6sM4bVRWVuJ0Olm8ePGpPpTTxsCBA7n//vtP9WEIcULk/CjE17fkQLXu9ubCRlq73ESEmE/REQnRP53oOmpCiG/AbrfjcsmQDiGEEOKYtKgQ3e0Ym4UQq/EUHY0Q/deJDn0UAkAqHV/Tz372M1paWnjuuedO9aEIIYQQ/cIjFw7l1rd3UN/uxGKEP146HLNRagdC9CVBTQghhBBCfGdGpESw6VdncrSmnfIju7lgVPKpPiQh+iX584UQQgghhDgpmjpd3DFvJ4MeWcolL27kYGUrABaTgZGpEYSYlVN8hEL0XxLUhBBCCCHESfHnLw6z8kgtLq+P/RWt3Dd/N063l2dX5nHlvzbzziEnTdKeX4jjkqAmhBBCCCFOip2lTbrbJY1d/PHzQzy7Mp9dpc2sLvdw7/u7T9HRCdG/SVATQgghhBAnxbj0KN3t9OgQ1h6t123bUtRIS5dU1YToS4KaEEIIIYQ4KX5/0TDOHBKP0aAwPDmcl24Yx4BYm+4xMTYLNqv0txOiL/m/QgghhBBCnBQxoVbe/PFEAFweH7tKm7l16gAK6zuobXNiNkCI1cg1r2zh3tkDOWtYwik+YiH6DwlqQgghhBDipCpv6uK6V7dS2WIH4M4ZWWTH2fj1xwcob7JT3mTn7vd28dXPZ5IVF3qKj1aI/kGGPgohhBBCiG+suKGTf60t5NO9lbg8vuM+5qU1BVpIA3h9YxEHulv1H+PxqWzIbzipxyrE6UQqakIIIYQQ4hvZVdrM9a9t1QLaR4Mqeee2SaiqSlFDJ/FhVsKCzNS1O3XPU1WICDYH7C8nIRS310dtm4PkiGAMBv86ayUNnaw9WkdmXCgzc2JRFFl/TXz/SVATQgghhBDfyJubinVVtPV59aw5WsffvjxCfl0HIRYjf7hkOJeNTWF1bp32OKvJwD/XFhJkBJcPjAaFH08dgEFRmPb4auranWTEhPDyTeNp6nTx47e24/aqAFw/KZ3Hrhj5nb9XIb5rMvRRCCGEEEJ8a97dXEp+XQcAXS4vj356iDmD43jphnGcOzyB9OgQnN3hzuGFhPAgdjxyFo9cOIxffbRfq76VNnbx6KeHeHldoRbSABbsKKOuzfHdvzEhvmMS1IQQQgghxDdy27QBWEw9l5MzB8XR1GdNNLvbS02rgwtHJfHKjybg8ernsVW3OvCp4HB7KW3s0t2XV9ceMO/Np/rnsx3j7fWzEN8nMvRRCCGEEEL8R+0ONy+uLmB/RStTsmO4e1Y24zOiWf7ATJYdrCE5MojzRyTx2oYi9pa3aM8LDzKxvbiJAbE2zEYDU7Jj+Wh3hXb/kMQwom0WAMalR7K7rOe5Zw6J55xhCWwvaULtzmPnj0gkOTIYh9vLbz8+wGf7qogJtfD7i4Zz4aik7+bDEOI7IEFNCCGEEEL8R79YuI8Vh2sB2FLUSFOniz9cMpzMWBs/mZ2tPe7uWf6f39taSnWrgzaHh0c+Ocie8hb+fvVofn/xMDqdHtbn1xNl8fHMtWMAWLijXBfSpg2M4Y+XDCcsyMxHd0/lyeW5FNd30mp3s7e8hY359Xy8pxKA2jYnP1+wl8lZ0cSGWr+rj0SIk0qGPgohhBBCiP+Tw+1l5ZFa3bYv9ldR1WLn831VlDf1DFk0GhTunTMQq0l/mbl4TyWdTg/NnS62FDXS5fJS2aHyq4/24/H6eHL5Ud3jy5q6CAvyd4Y8UtPG1qImatudbC5s5JY3t7OrtFn3eJfXx5Hqtm/zbQtxSklFTQghhBDiB+xgZSuvbyjC7VX50ZQMzsiKCXiMxWggPsxKbVtPm/1Qq4mZT67B41MxKPDElaO4ekIaqqpS3+HEZtVfZlpNBnyqyvvbSmm1u7Xt+ytaWZ9fT4fTrXt8m91DS5cLl9fHmtx63X2tdjdJEcG6bcFmIwYUWu1urfV/ZYudL/dXERli4eJRyQRbjN/sQxLiFJCgJoQQQgjxA1XdaueaV7bQ5fICsPxQDZ/dN51hyeG6xxkMCn+8ZAS/WLiXLpeXyBAzDrdXa+rhU+GJZUcZkhjOfR/sprSxi/gwC0aDojX76HJ5mf7EGsakRQQcx8HKNhLDgyjp1UwkM9bGhL+sxONTyY6z6R5vNCj8ZE4WFpOBT/ZWEhFspqXLzY1vbCPIbOCJK0cxLCmcy/+5mQ6nB4D3t5by8T3TMBpkDTZxepChj0IIIYQQ3xPlTV2U9emc+H9ZebhWC2ng76a49GA1Na0O6vssUn3eiESW/mwG790+ia2/mYujTzfGNoebXy7ap3VurGt3kRMfyoycWO0xrXY3mwsbsfWqbGXEhPDMijwtpFmMCnfOyGRveYsWBAvrOxkYFwqAzWLkDxcPIy3Kxh8uGc7e359DalSwVqVzuH384bNDzNtSqoU0gH0VrWwpbDzhz0aIU00qakIIIYQQpzmP18fP/r2XLw9UA/7OiC9cPxaT8f/+m3xin+GDAGty63hhdQEGBa6blM5fLxuB26vy84V7WXKgGrPRwN0zs7huYjovryvUnnfNhFQ+2F6u21dRQycxoRbdNrdX5ednD2RzQSMWZwvxiTG6tvwur0q7w0NfMwbF8sFdZxBqNRFsMbJwRzmrcmvJjgsNaOvf3OXG3WcZACFON1JRE0IIIYQ4zS0/VKuFNIClB2tYerDmPz7vWPv7YzJjbRys8jfk8Kkwf1sZG/IbWLiznC/3V6Oq4PL4eH51AXOHxjE0qWeIZGWznekDY3X7n5kTy8ycON22UKuJJ5cdZWNBA6vLPeTXtQcc14ycWCx9QubmwkZeXleIy+vj9Q1F/PKj/Sw/VMs/1xYGrKU2JSuGO6ZnEtprntzo1AimZgfOvxOiv5KKmhBCCCHEaa6sKXC44/biJrYWNRJiMXLzlAGkRYcAUFTfQbvDw6jUCIwGhVdvnsC+8mYqW+wcqGjjX72qZMceX9TQGbD/T/ZU6bosrjlaz18uHU5+XTtVLQ4AalodXDcpnQ6nh8/3VZESFUx5U5duSOL+8laGJIaRW+MPbJeNSebCUclEhlh4YXU+BXUdNHS4OFrTztGadkoaOqlpc+iOpbrVwd2zsthT1sLQpHB+NjeHKJuF5T+fyZL91USGmMmICaG0qYvMWP98t6ZOFwt2lNPl8nDFuFQyY220Ody8saGYgroOzhwSz5XjU7/J1yHEt0KCmhBCCCHEae7sYfE8veIobq+/smQ0KHywvUyb47V4TxWrH5rFX784woKd/uGJI1LCef/2M9hc2MAvF+2n3ekhIcyKAhyrTxkUsJgMzBkczztbSrXXsxgNWmfF3vZVtGohDeBgVRuLdlXw4DmD+cnsbA5XtfGbjw/onqMYFD76yRSO1nYQZjWxu6yZs55eh1FR+MnsbP665Iju8auP1jFjoL5KF2Q2cO+cgYQFmVm4o5yHF+0nO87G3bOyuWZCGje+sZWDlf5Qee2ENP5wyXAue2mTFnDf2FjMZ/dN59HPDrKpwD+P7csD1bTa3dw2PfPrfBVCfGskqAkhhBBCnOYGxofx9q2TeH1DESoQYjGy5EDP0MeGDidvbCjWQhr4Oy2+tamYeVtKaO+ucNW2OxmRHE67w0NpUxc+FX67+CD3zM7msStG8u6WUmxWIz+dm0NyZDCvbyjG1T0XzGI0kNFdteutptXOjpIm7pi3k1a7G7NR0YVBi9HA9CfWcOPkDGYOiuVXH/UEuZ8v3MughDBdY5P4MCsPnTOIA5UtNHe5MShw72x/SHtrUzF//PwwACuPwI6SJuYMjtdCGsCCneWkRgfrqpBdLi9vbyrWQtoxi3ZVSFATp4zMURNCCCGE+B6YNjCWt26dxNu3TmJ4cmALfJcnsLlGaVMnzV369cs6XT1t9495a1MJY9MiSY4Mot3hYXdpCwNibLx3x2RGp0UQFmQiMcJKiNVEWK95YYoC03Ni+csXh7WujG6vSmSImTu6A1CH00Nzl5sX1xTwxsZi3euqqn9uWbDZ3yUyyGTgj5eMYFRaJCt/MYtRqRH4VHh+dT5PLc/lkz2VuufvLmshv64j4H13HKdZiS3IFLBId2yYNeBxQnxXJKgJIYQQQnxPeH0qBytbOW9EIlmxPWuPTR8Yy12zsogM6RmuqChw9YQ0xqRF6vZx9rCEgLXGDArc+tZ2Vh6pI7emnWdW5vHGxiIigs0cqGil3eGhrMnOn744zC/PH4LN6g9WqgoPLtxPebNdt78Wu5vs+NCA4++9VMAxG/IbsLv9211eH1Hd72Hxnkr2V7QC/vD30ppCLdAdYzEZuHh0MkqvtxMZYuauWVm69x0fZuXWqZn84uxB2mPDg0z84uxBAcdT2WJn2cFqavvMkxPi2yZDH4UQQgghvgdKGjq5+c3tlDV1YTEa+M0Fg8mIsdHc5aa4voOPdlXw5i0TeX9bGW0ON9dNTGNqdiwv32TjiWVHKajrYPbgOO4/M4esWBu/7jWX7NIxKczfXqZ7vVVH6jAoCn2Kb6w9WkensydwNXQ4GZ8RRVOnS9sWHmTmzY1FAe8hJz6UnSXN2N1eFGDu0HhWHqnT7vepsGBHOZOzYiisD6yUzRwcR35dB42dLgwKPHzOYM4elsAbt0zgg+3lhAeZuXtWFjE2Kwv/ZwqrjtTS4fQwa1AcW4oaiQqx8Pl906lvdzIyJYIv9lexeHcFZw9LZHpOLB/vruDhRfvx+lTMRoUXrh/HeSMSv+5XJcQJkaAmhBBCCPE98PSKPG3elcvr4/GlR3nvjknc8/5uHG7/sMfsOBtLfzYTS/cQv82FDfz6owOUNXUxNTuGm6cMwGIyMGNQHA+dM4gOp4eZg+IYlhTOR7srcPYaPtnucLP2aF3AcSQdZ222GQNjOXNIPKuO1LKnrIVWu1sbChkRbMbp8XLdxHQ+3VupVc9U0H7uLdhi5JkVeewrb9FvNxu5ZkIal45O5k9fHKap04XFZEBVVc7IimF9XgMb8ut5blU+j1w4lKSIYM4fmYTD7eWKf27mcHcHy8TwID67fxoPLdrH2qP1AMzbUspz143hsaW52lIAbq/Kk8tzJaiJk+aEgpqiKCVAO+AFPKqqTlAUJRpYAAwASoBrVFVtPjmHKYQQQvRPco4U/UV5s75Fv9Pj4/2tZVpIAyis72RDfj1zhybg7l4k+1ijjs2FjTy25AhzhsTzwIK9eH0qBgVy4sOYmh3Lny8bwZ8+P0yH04PFZOBwdc/6Z6buoZIzB8UyKiWc9OgQLTQaFHh2VT5zBsdx5pB4dpfpA9ZNk9OZkRNLm8PD25tLdPdVtTjIiQ/V5pnF2Cw0dLh4f1tPdS86xMzwlAh+OjeH2FArl/9zE3u6X2NHSTNdLi/lzV3M735OYX0nlS12Ft8zDYCVR2q1kAZQ0+bg9Q3FWkg75t0tJbT2mc/X3KtKKMS37evMUZujquoYVVUndN/+NbBKVdUcYFX3bSGEEOKHSM6R4qQraeik5DjrmR1zwYgk3e3BCWHEHacZxrFqWk2rQ9dNEWB/ZStPLu+pGvlUeGJZLgDXTEhj+yNzef66MQGNSc4eGs/kzGhW59bzy48OYHd7+PnZOQSbDdrQyDVH69ldFvj3is/2VXHda9u4691dhFj0c8wU0DUDuWR0Mmv6VPG63F7evX0yEwdEU9HcpYW0Yz7fV8XaXP1z9pS10NLlD1lOd2CTFZ9PDZinZ7OaA9ZVu2ZCWsBzhfi2/DdDHy8FZnf/PA9YC/zqvzweIYQQ4vtAzpHiW+Px+rh3/m6WH6oF4NzhCbx4wzjMRv3f2++YkYlPVVlyoJohSeE8cFYOHq/Kx7sraeyu/ASZDGwtbGRKVgwpkcG6yhfAlKwYPt2r75zY5nCz6kgtqVEhDE4MY1BiWMAxqihsKuxpbV/f7qKy2Y69TwiqbnUwNi2SfRX+MJUZbqCwV6ORLpeXkSkRNHe5mDUojg/6zIv7fH81yRFBlDT2HHNyRDDr8+p5Y2MxXp+K1WTQDdFMjgwiNsxKVWtP84/E8CBU4K53drLicC1Gg6KF07AgE7dMHYBPhTc3+btQBpkN3HfmQMakRTIoIZQN+fVMHBDN/8zM1vZZ1WLH7vaSHRfYJEWIb+JEK2oq8JWiKLsURbmre1uCqqrVAN3/xp+MAxRCCCH6OTlHipNq2aEaLaQBLD9Uy7KDNQGP+2J/NS+uLmBfRSs7Sppwun2kRYew9IEZRAT7/zbv8Ph4aW0hr6wvwmBQeOyKEYxNjyTaZuHKcan86vwhXDcpXb9jFW6ft5Nzn13PX788zKD4MEYkh2t3x4ZamD1YvwA1+ANeeJC+JlDT6mBPeQs+1V+tiw1WAp538egkLhmdTJfTQ6hV//y4MCuXjU3hWLHLajJw2/RMbnt7B+vy6tlY0IDb69OGYsaFWXno3MH8/qJhZMf5u2BG2yw8edUonluZz1eHa1Hxd8sMMhu4/8yBLPnpDNKiQ7h12gCtc2ZksAWPV8Xu9vL5vipW59bz1PKjPLbUvxj3I4sPMO2J1cz9xzquf3UrXa7A9v9CfF0nWlGbpqpqlaIo8cAKRVFyT/QFuk9adwEkJCSwdu3ar3+UQpymWlpa8Hq98nsvxPfbNzpHyvlRnKh1RYHzoJZsOcCRI4cZGGkgOsiAy6vyyzVd2LvzQVF9Jw++u4H7xwZR2ual1a4PDp9sy2fTgUK2VPm3z0g1cWFcE1s2bUBp9nBGkhGvCg1dPorbeqpTr28oprqinINVPfszeF1EtRcQF6xQb/dXpQzAsoM94dJqhCHRRvbV6+d4tTo8GBUFb/fwyGATvLE2l9pe0+0MgA+wGGFSlIPnV+VrwyldHh9rd+fq1n3zqXBhppHB0UZSwwzU5O4GYLDNSXE9NHW6+Mfnu2h16ttVOtw+oroq2L+rikKzwnO7HRQ1+JuZ1LQ5uPfdbcxMNbG7zK29zmsbivE2V/L+wZ7vaEtRI3+ev4ZzB5gR4r9xQkFNVdWq7n/rFEVZDEwCahVFSVJVtVpRlCQgsO2P/zmvAq8CTJgwQZ09e/a3cuBCnA4WL15MS0sL8nsvxPfXNz1Hyvnx1PvqUA2f7asiOTKYO2dkERdmRVVVdpc1Y1AUxqZHaY/tdHpoc7iP29HwZEsd1sEnz63H3Z1mjIrCshIPKh5MBoXnrx/LyJQI7CvW6J7XpgZTa8ukQ3URZM7XNRVJiI1mY0GDdnt9hYeb5ozm5XWF7C7zp6SIYDM5CeEUt/XMK1OBQkcw/v45fnV2sKWP4qZpTRysaiM+zMrHuyt1HRsz48J46vqxnPPMet0xejDij2H+YZn3zc3hqeVHdY+ZnhPLrdMzGZsWyfvbyvAd7rlfBYIj46CsWvccV1AMz++px6uqXD42hRsmpbFk2Rbt/n31XqZkxVDS1jNcM8Ri5PEdTtw+lYtGJVPn8gE9wzKbHCrekFhA/1resCSgVLfNGp3M7NnD+Tpq2xws3lOJyaBwxbhUom2Wr/X8YzxeH9tLmogKsTA0yV/5VFWVnaXNdDo9TBsYi9looLypi6dX5FHS2Mm5wxO5a0YWBkNghVOcOv8xqCmKYgMMqqq2d/98DvAn4DPgFuDx7n8/PZkHKoQQQvQ3co48fX25v5p75+/Wbq/JrePTe6dx85vb2VnqDyZTs2N4+9ZJ/HtHGY8tycXu9jIpM5pXfzSeEIuJD7aXcaCylWkDY7h8rL/JxM6SJlYcqSUr1sblY1O1xh29tTvcfLG/GrfXx0Wjko97Qe70eMmv7SAz1sbA+FDm3TaJNzcWo6qws7RZa23v8ak8uSyXtQ/P0XVHBH/l6Fcf+ddCC7EYCbWa6HB6GJ8RxfDkcF1QA1idW6fryNhqdwcMPRyeHM6QxDCO9Or4aDUZ+Ml7O2nvXjttaFIYbq9+blpzl4tfLNyr2xZts1Da6tKqaQ6Pj435+k6LAMmRwVS3OPjXml141cDGH4ri7zp5rKo2NTuG5Yd7qnmLdlUc93tIjw4mOTKV5YdqSAi3Uljf06jl831VjM+IorKlJ6gNSwrn8nEpfL6/J6iFB5n48bQBLNxVgb3XYt3nDu9p2V/c0Emn08OIlAjd6+/p/oPA6LRIalodXPD8Bm2tubc2lbD0gRmEB/mrch6vj492V3Cwso1pA2M4r7txzFeHalh5pJbM2FBunpJBl8vLta9soai76cwV41L4+1Wj+fHbO1if5/9ss+JsLPqfKfz4re3ae95T1oIC/M+sbET/cSIVtQRgseJfpt0EzFdVdZmiKDuAhYqi3A6UAVefvMMUQggh+iU5R56mPt5dobudX9fBS2sLtJAG/nb1C3aU8cfPD2uNJrYXN/GvdYU0tLv4qHsfi3ZVUNFkJzs+lHvn70btDh6rc+t45UcTdK/T6fRw6YubtAvpF1cX8MVPpxMfFqQ9Zm95C3fM20lDh5NQq4lnrh3D2cMSmJodi6qqDP7fZbp9Nne5ueaVLeTXdWA0KCSEWxmbFsWXB3oCRZfLy10zMhmaHE5pYxfxYVYMCtoQQqNBYeBxmmCkRAbz2s0TWHKgmrgwK5XNXaw8UkeIxUiXy0uIxcj4jCg25PeEviPV7cwaFMe6vF6hS4WDlT0t8IcmhfHctWM459kNutera3cyKCGUvFp/4IwLs5IZa+O3i3sW37aaDLi6g+CMnFg+26evcGXG2tjcq7EJgFHxNwTpXVU8b2QSOfGhzB4cR3Wrnb8t0Y9aTo4IoisxjLKmLoYlh/P3q0fT4fSQFWujrKmLxIggnrtuDAcq2/ylPSDYbOA35w9lSnYMAA8u3Kf9noxJi+Td2ydhNhq45c3tbCtuAvzB8oysGN2C4JUtdpYeqObaif75gr/75CD/3lEOwLtbS/ntBUOIDLHwy0X7tedsLmxgVGqE9rsF8PHuSkYmR2ghDfzDYl9cU6ALpuCfCylBrX/5j0FNVdUiYPRxtjcCc0/GQQkhhBCnAzlHnr5iQvVVLEU5fpv2vNoOLaQdc7SmXRdMAP69o5yUqGAtpIG/6UdVi53kyOBe22p0F9J17U4W7argntkDtW1//uIwDR3+tvkdTg+/++QAc4fEYzAoKIrCOcMS+KJXVSc9OoTlIi/vAAAgAElEQVTt3Rf9Xp9KfbuTmYNidUENYFdZM69uKNZuXzcxjcL6DjpdXurbnfxlyRFdx0SDAu9vK2NPWQvPXjeGtzaV8OWBniYmqVHBLPnpdJ5fVRDweYCKUVEwGhQuGZPEol36TpIVTXb2V7YRZob2XtPWKprt2uubjQrv3DaJp1fk6Z7r9Ph46YaxDIi1sSGvnvV5+tdWFHQhFCDKZsFq8ge1sCATD50zmHaHh1lPrcXrU1FA1/kRYH1+vTa3b19FK212D3e/t0urslU02/lkTyWf7K3Shnna3T62FDVy89QBbCtq1EIa+AP4B9vLiLZZtZAG/j8IxIYGLqNQWNfJF/urmJIVw6Jd+j8svLu1NOA5G/IbtAqc7rPuVRU8xuPzBQTXzBhbwOPEqfV11lETQgghhPheuGf2QBLCey50b5uWyQ2T07H2GiIXYjFy67QBAUMT5wyOD1jvKyLYrHsu+MPCgh3lfLSrAkf3hXyfzAdAQ4eTNkdPWundLh/8Ye5YeJm3uUQLaQpw4+R0okL0F+dur0pNq113jBHBZg5VteketyG/gQ/vnorD7dXWU3N6fGTF2kiNDNaO9XB1Gw8u3MfWIn2VqqLZznvbylh2qIbeU5uSIoJYl9eAV1VxeX0s2lXJkD4t/ePCrDz04T4tpMWHWbloVJKurb7bq7LicG1AIDEo8PSKfC58fiMvry8K+Dy3FDZqxx4ZYuYPlwzj9Q3FWuhqd3gobujkyWU968Wp+Nvyj0v3t9+/anyqrgGLy+PjnS0luqGQAJsKGml36Bu1FDd0Ynd5KazvoK+qFgd17Y6A7bGhFmJ7/fEg2Gzk1Q1F3Dd/D+c/tz5g6KbNYiIiWP+9m40Kl45JRun1XSSEW7lrRpZu3xajgWsnpvPoxcMJMvv3mxVn4+dnDwo4LnFq/TfrqAkhhBBCnJYGxNpY9/ActhU3kRwRRE6CP0h8ePcU5m0uxWiAH0/NJCsulHdum8RTy49S2+bg0jEp3DwlA0WBRz87hKr6L3wfPGcQwWYj24qatGF5BkXhuVX5AMzfXsaiu6dw3ohEnl+Vr4Uxo0HhzY0lzN9Wxu8uHMZNZ2Rw/ohE3tnS05wi2mbhqeVHuXNmJv/4St9IY1txE1eMTWF9r4pWeJCJZ1YWaLetRgMf3DGZq1/paaYB4FNVSho6KeozBK65y6WrtAAcqGzlgpGJFPeqBkbbLDy5TN/44/4zB1LX7mDBDn0FaEpWDI0dLpq6XIxKjaC2TR9WGjqczBocp6sUAqw5WqdbwNpsVMiIDqGgOwS1dPnn0YUFmfD6VIYlh7P2aM8wv5YuNzaLia5e88fAHz6PzfM7xuH28vE90/D5VN7bWhpQxUqKCCbGZtHWpAMYkRJOp8tDbVvPwuFRIRbG/vkrnG6fbu6cokBsqJWVh2t1FT+TQeHNTSWAf97c3KEJvNV9G6Cu3cWUrBi2dAdlk0HhgbMGER9uZUdxE53d7+1/ZmZzzvBE3rltEgt3VhAVYubOGVkkRASx+J5pvL25hC6Xh2snpjM8OYLhyRFcMDKJ2jYHOfGhKIo0EulvJKgJIYQQ4gcpyGxk1iD9+l+jUiP5xzWRum0jUiKYd9sk3babpwxg+sBYDlW1MSkzmoRw/xyzVQ/OYm1ePWty61id29Psc1dpM9uLm5icFcPn903nk72VfLy7gn0VrYC/NfyfvjjMhSOTeOTCoUQGm/l0XxWljV00drh4c1MxmwrqAwJUc6eLl9b0hLLUqGBGp0bqhj06vT7y6jq4a2Y2z6zsGUZY3epg9t/XEhViprmrJ7RkxtqwWU264YwxNgvLDtZowSMjJoQJ6VF8tEc/pDHIbCSiz/A7o6KwYGe5FpYOVLSSFacfZhdiMbHsQDWKgjZ8ND06RBfSAB69aDivbdRX0TqcHlY/NIswq5k/fH6Ivsqbu7BZjFqgObbvNrub3JqepijXTUynssXOzW9so7C+EwVt6hlpUcE43F6CzAZtyODEAVFszG+gqfuzs5oMXDommYU7ewKex6cyOi2CuNAgJg6I4vFludr7Myj+ANt7ofCyJjvNXYHLMQyMD+V3Fw3lUFUbZ2TGkB4TAsDGX53J5sJGMmNtDOte225GThwzcvS/12nRIfzvRcMC9hsRbA6ozIn+Q4Y+CiGEEEJ8A1lxoVw8OpntxU38fMFeXlpTQLTNwo/OyNCCW2/HLvojQszcMnUAVrN++KTL46OyxY7VZOQX5wwmuc9SAEdrOzhrmH7t9MgQsy6AVLc6yI4PnGu0raiRwYlhvHf7JK4an6K7r7nLzYjkcG3o5u6yFg5VtjI1O4bwIBOZsTYaO134VH/wMCqw4K4zmJYTG/A6b20q1ubBWUwGsuJsXD0hVVfR8vhUBieEYTH6X09RIDvOxqrcei3EJIYHcePktID9FzV06Ibxgb8xyUurCxj1x+UBTWKCTAaeX1WgfUbhQSbOHZ7Aol0VWkiLCDbz18tG8L8XDeP5lflakw0VMBrg71eP4sbJ6by6oYjKFgcOt4/YUIu/AUivgOv0+DAbAy+tR6ZE8PotE6hvd+rmMPpUyDjOvDCzwUBqVM93bzEauGZCGsOTI7hmQhoVLV08/OE+Hl+ai9vr48JRSVpIE98vEtSEEEIIIb6hd7aUcP8He1i8p5Knlh/lJ+/7W/7fPCVDN0fMZFD4zcf7WXawp9J1zrAE3b6CzUYe/fQg87eVAejm0IF/mOTIlAgePncQN0xO58UbxgbM3/L6VLLjQhmdqm8F/8GOcu5+bxdfHqhmSGLgRf3QpHDd/LCmLjeDEsLY/4dzGZygn1/mVeHdLaX89uOeTowWk4GJA6Jo6OipBrk8Pv5y6QimDwwMdLvLWrQhorNy4nTDCcG/wHRmrA1jr+F4BgX+vb2cXaX+KpvFqHD20ASum5jOvC2luL2qttbc6NQILh6dTIhVH4aPN7yv1e5mWHI4RoMSMD/Q64PBCeFsLNDPz2vocFHXa7jjMUkRQZj6rEW2v7yViX9dqWsgcsycIfGEBQUugdB7WOYNk9MZ2f19bipo4MbXt/HhrgpeXlfIVS9vweUJbILTl8vjY8XhWlYdqQ1YOkH0XxLUhBBCCCG+oYU7y3W31+fVU9PqYGhSOMsfmMkFI/zraXl8KsUNXdw3fw/VrXa8PpXzRiTym/OHMColAovRgN3tZVdZC79dfIBP91Zy/9wcEntV5rw+lSeWHeWZFfnMHRLPRaOSuWFyuu71rSYDP/v3Xo5Ut3PP7GyGJetD1oId5YxJj8Ro0AegESmB4a24oZMfv7Wd/Lp23fZgs5EPdpTj6BUQRiSHMywpcB//3lEesH5aSmSwrinH2rx60qL01cPE8CB+sWAf3u4SVESwmTlD4unqtYi2y6ty4xnpx23OccmYFJ69dgyGPsHM51OP2xkxt6aNi1/YSG6NvuFKkNnAHfN2UNNnTp3FaGDW4DjdOnPRNgvPrszD41OxmAxkxISQFhXM/spW6tudHKhsJa47WCsKXD8pvbsTZc97unZCKuvy6nUNSuZvL9OazSzaVaGrypU1dbGtWB8i+2p3uLnohQ3c+c5Obp+3k8v/uUn3mqL/kqAmhBBCiB+0xXsqOPeZ9Zz7zHo+6m4g4fR4WbSrgpfWFAR071NVlU0FDby7pYTgPsMXLUYDwRb/5VVadAjBFn21xONT+XBnOdOfWM30J9bw3rZSrpqQqlWXjll+qIbGDhePXDiUV24ah8Wo6Pbx/OoCXB4f8WFBPHHlSK6flMawpDCtKuby+nhjYzEmJfBS7/75e/wt6RX/fLR/3TSeGyZnkN1r3pjRoLCxoJ61R+u1+VrRNgvDksJ59roxujW/wL/uV4jVpOv+GBdq5bN9Vbi8PcnixsnpnDdcX0kEMBkNWrfCUKuJESnhdPQaLtlqdwd81gD7K1o53KebpaL45+6N/8uKgOO8fUYmZw6Jx9zr87x4VBKPfnaYA5Wt2ly97DgbEcFmHG4fte1OCup6hlyGWU1MHRjDPe/vpsPpIchs4NZpA2i3uzmWXV0eH+PSoyhv1neJdPt8rHpwFssfmMljV4zk718d1aqAAEsP1mgdOI9xeXxacOtbfQPYW97M25uKqesOk6qqsvxQDc+tzGd3WTOf7K3S1qUD/3p2X/Zp2iL6J2kmIoQQQogfrP0VLfxi4T6tSvHgh/vIirPx1PKj2qLJz63K54M7JzM+IxrwLz78fvfwRJNB0a1H5fL6uOTFTTx33VjGpEUyJi1Ct5aWQfFXRapb/RfV5U12PthepmuiAf5Fo6/p7tIYH2bVOgce02Z3M/upNVS1OlAUuHf2QIL6BBmnx8ekrGgOVLVq+06ODKaiOzyoKtS1OUiOCObG17ZR1WInOy6USZlRhFiMvLGxRNuXClw7MY3aVgePLD4Q0IDE5fHxr7WFAJgNCldNSGVUSiS/6bVQNUBjh5Ngs1HXqMNmMeoal3Q4Pdo6cr35VFXXRTE1Kli3xlqw2UhGTAhXj0/lL0uO6D7PWYPi+PG0AYxJjWTmk2t04SgjxhYwfHBoYjhf9FmHzmoysu23c3G6vcz5xzptu8Pto6C2A3ef76iqxU5mrE3XKTM5IpgbXttKbZuTSQOiA0JZh9PDJaOTOdgrfJ6RFU1ieBC//mg/H+4s1312kSFm/vGVv7Po0yvy+PS+6by1qVjrGvrMyjwuHJkY8Fl2OD0B20T/IxU1IYQQQvxgbchv0F3QA3y0u0ILaeAPIW9v9l/41rU7+GB7mXafx6cyJs2/9tYxpY1dPLhwL51OD+XNduLDrBgUf0Xqr5ePDKiylDV2MWdwnFZRyokP1V3c17U7yY4L1T0n2mamqvVYBQX+ubYgYC5YqNXI6xuKUVX/Ol3PXjuaMKv+b/SdLi8PLNjL9pIm7G4fhfUdtNk9TM6MCfisdpc28/GeSho6XDR3uYkMNnNGVjSXjUnWhTa3TyXUaiIlKihg/a9txU0s3lulBY2RsQbumZMd8FqxoVZd1SsyxMySAzVaSJuZExvQsMXu9vLyTeNJiAgK+E5jQy1MHBDNhoIG2p2B6571nboWGmwKaFqSHW/jq0M1rDhSG7AIut3tCZgvGB5sprzXnLdBCaFUNHdprfy3lzQRFaJ/jYtGJdPqcHPscGJsFh67fBSL91Ty7x3leNWekHbH9Exaen3ubQ4Pb24s1uY4HpNb06773iNDzFwwMgnR/0lFTQghhBA/WMebV5UVG9iJ79iQPo9XDVi02qeiW0cLoLC+k4c+3MfSgzXatrOGxHP9pHQW765ge0mztj0m1Mrq3J61v3ISwsiv0w+3jAu1UNtmos3hYURKBEEmffXMp0JOQigPnJXD1qJGgsxG3XpiDR0uKlscTBsYy5FeLemHJoVxpFo/B21bcRNDk8IIsRi1bo3nDk/gUFWr7nEtdjd/uGS4/3X2Vunu213awmvd3R8V/NWvGTlxzN+uDxFRQQbiw4IwGhRd+Nlc2Ijbq2JQ4NIxKXy2V78MwMGqNsalR+m2GRWFx5YeoaCuQ7dOGcC6vHpGPLqcnON0xIwMMXPXzCzmby2j0+Uh1Gri39v9cw8tJgMuj4/BCWHsKmlmfZ6/8hdqNemqUqVNXVojFZNB4bbpmby2vojevyojUyLJq9V3pfSpKr+/aBhfHqhmXHoUV45L4bznNmj3N3a6+GBH2XEbgPSuCvbeX9/QaTUZ+fS+aXywvQyDQeHGSRnEhVkDniv6H6moCSGEEOKU21HSxONLc/lwZ/l32pVuzpB47pieicVowGI0cNu0TG6dlqlbX00Biuo72FXaRHJkMGcOidfd9+OpAwKqWRMyovjqcK1u25KDNby0pkALaQYFzhoaT3WLvsK2pbCB9OgQ7bbRoLCnvJW27nlKBytbAy7Gg8wG7v9gL8+tymdgfCiXj9W34Af/+mXzNpdotzNjbbx96yQGxuurdYnhVv7+VZ4W0sxGhT9fNoJRqfr15SKCzVz8/EYeX5qra04SHmziQGXP+mcqEGWzcNWE1IBjqmj38fCi/VpIS4wIIiMmRHttnwprcmuJtumDRajVRGljJ70/hiibmeWHaims78SnQlSImcTwICKDzVqIyq/rJCUyWAvewWYj728r45V1RUwbGMOvzhuifc7gr6b+/apRTBgQpVsGocPp4erxqVw2Jpnbpg+gvr1nLpzHp9La5aJvjGrudOra7oP/O3h8WS67Spt5bUORtvC17jNq7mJatv73y2hQuGJcsq7ZjM1i5JYpGcwY2Ot3V4G7Z2eTFRfKIxcO4zfnD9XWYDtV9pQ18+cvDvPa+iLaHe7//IQfMAlqQgghhDilPttXxdUvb+HldYU8vGg/v1i4D/AHi78vP8qCHWU4Pd0X7j6VbUWN7Cpt1u1DVVU83zDg/e6iYex79Bz2Pno2v794GIqi8PotE7h5ir+jogocqGzjljd3UN1qp7ihp9oVGWJmwoAo/nr5CC4b479wPntYAs9fP5bkSP3QvKSIIJ5bla/d9qn+eWQRIfouhFaTkfNHJHL52BRumJzO41eOxN6nS1+Xy8sL14/lnGEJTBoQpc2RU1V4b2sZkX0WMjYaFOraHbp5VCWNnZQ2dmJ39wSTnPhQ0qL1F/Jur8qne6poaHdqQxnTooJxeXza/rzda6M9evEw3rplIn2LPc2dLh76cJ9uW0pkMGVt+u/MYjTg6fPkFruHu2ZmaWEw2GykqdNJfl2HFoYuG5OsWxoAIDLEwsoHZ9Fi14cBp8fL5l/P5fbpmbrPddmhWt0C2D2v79a6LvZ2+dgUrpmYhskQeDmdEBFEVJ/vdVhyhC6YzMiJpbrFrpsf99neyoBq19yhCTy7qmcuns1i5Llrx/C7Tw5p3SiNisI/rhnNgp0VrD7as9D67dMzuWR0csDx/bc6nB4qmvVLGdS1OVidW0tjr/mFO0qa+PMXh3lnSwkOt5dNBQ1c9fIW3thYzF+XHOHG17eh9h2nKjQy9FEIIYQQp9Rbm4p1t7/YX8XcIfE8+OE+rdKy9GAN/7xxHNe/upV9Ff4heNMGxvD2rZNYcqCav3x5hOZOF5eMTuZvV4zE7vLyjxVHOVDRyhnZMfz8rEEBzTZ6C7bo7zMbDbR06ecydTg9vLq+iOKGngvU5i43H+2qZOKAKHISwrhyfCozcvwVjT9dOoL75+/ROgNePCaZp7/K0+2zod3JBSOTeG9rKT7VX2WraXPwyvoiAB69eBiXjk7hyWVHdY0ngsxGxqRFcvHoZH7/6UHdUEqAZYdqdGtxXTE2RdcSH/yh7sXVBVQ297Ser2t3ctX4VN2QTUWB1zcW6YZ3zh0Sz9vdDSuOcXt9LD1Ywx8/P4zZqNA7WnY4PTQ39xzP+PQo5t02kfF//gpPrwd6vD6ibBbdsY5OjeCp5Ue134VrJqYyb7P+tStb7ETbLLouj0FmA//z7s6AxidTs2Px+HzHbagRa7Nowx3Bv9zBE0tzcXd3yTyWKUYkh/Pcqjy2Ffs/d7NR0YYixtgs7C5t0V7TYjTwwFk5rM2rp9Xe85qHqtoCwpzT62PBzRN4ankuVS0OrpmQSofDw8HKnuYinS4vRfUdHKjsGYrqVVWWH6xlyUF9A5SlB2r43YXDAt7niVp7tI43Nvr//7x9eiazB8fz1qZinliWi8PtY0JGFK/dPIENBQ08uHAvbq9/aYJ/3TgOt1flJ+/v0j6zFYdrCQsy6Ya47q9oZW95C2P7DGMVflJRE0IIIcQpZTHqL0cMisLCneW6C7q1R+t5ZV2RFtIANhU0smhXOQ99uI/6dicen8rHeyp5c1MxP1uwl/e2lrGvopVX1hXxpy8OA/6/8C/cUU51a08QqG618+neSgp6rRfm8fqw9mmEoSj+Dox97Spt4qqXt/DU8qP86I3tPNPdiXDO4Hgeu2IkRsXfGfDpr/JIi9YPfSuo7+CdLf6QdtmY5IAw+cq6IiwmA6/fPIEJA6K0BhubCxs555n1HKpq5bwR+q5+NouRzX0WaP7yQDVnD03QDRU8a2iC1n3ymFa7m5pWh7Zos8Vk4J7Z2QFz8HaVtQQshB0ebGJ796LObq+Kyahw0+R0Xrh+rC4oAVS12nlxTWHAhWhtu5ND3R0PzUaF26Zl4nD7dMsXfLyrAlufYF3X5qTN7taGNMaFWjlS3c6mgkaau9xYTQZibBYuGpVEu8PN9CfWsGBHue7zsBgNvLaxGJfHR7TNwgUjk3D2qhqqKkzNjuHPlw7nzplZWkg79n7PG57I7y4cyt8uH8HGgp4uli6vjy6Xl6o+Qbmp08UV4/TDQS8YmcSne6vYWNBIUUMnT32Vx46SwIWyew/D1I7fbMDc5/8lq8lAU6eLdXn1ukpXQ4eTD3eWs6mgQatoFdR18MfPD/HHzw9RWN/B0Zp2bp+3kw35DWzIb+COeTvZVNDAX748olVwd5Y28691hfz1y8NaUHV5fPxtyRHe21qqa+qyIb8hoAkLQIhF6kb/P/LJCCGEEOKUumfOQHaX7dAu9H50RkZA9Qf8Len7OlTVFtBUYXdpC+vz6nXbvjpUQ5DJyJvd1TurycC82ybR6fRw93u7tH08evEwLhyZxLWvbtV1Xgw2G7l5agZVLQ7CrCatc2CMzaKrdgC8vqGIn87NwWhQeG1DkW4YYG2rg5+emUNpUyeHKlspqO95jaUHqzH1udD2+lTe2VLCkMRwfnP+EK781xbtPrvbyzubS0mODNYqOimRwbxw/RgeWKAfZujxqTy5PFcbKhgWZOLxK0fyxsZiXeOSjJgQ3uo1j83l8TE2PZKwIJNuEWanx6tbm+vysSkBQ+E8XpWsuFBW59YFVLtiQy28vK5Qux1kMnDOsEQ+29/TlMTtVRmREs7yQzW6/Xa5fFwz0V/1a7W7SQwPorRXd8XkyCAGxYeyNq8nmDg9PubfOZ7C+k5+uWi/tl3F3/7eZjGxKrdnyGBTp0vXdfKYpIhgxqRFBRwT+KuyDR0uXafHY/Lr2okINmtLIwDMHBRHRkyIVsELsxq5bmIat761Q3uM16dSWN+hq/LZrEaCzUaGJYVzuNr/uxdiMVLR1EVKVDBHu4dvKor/jwVTHluF0+PDYjLw/HVjSY8O4dpXtmi/w5eNSebh84Zw+UubtG2LdlZw4xnpumDl8al8vq8qIGzl17YHrFfX0OEiM1Y/91FR4KYzMthc2Kj9Ll00KonBifrAL3pIUBNCCCHEKTVrUBwrfj6LdXn1DIwPZdrAWHaUNLE+r15bwPnSMcnceEYG87eXadvCrCZ+dEYGi3ZVaH/hB5iaHc3hqlatfT3450PN21Ki3XZ6fLy0poDGDpcu6D29Io/KZrsupAE8c+1oHv5wv3YhazUZuHNmFjefkcHl/9yse6wKtDncRIVYsPepfHh9/gvtMWmRHKzUd1F0elRunZbBy+uKtG0NnU5+/+khgOM2CGnocLJgZ7l2u7LFTmF9JxeMTNTtZ3hSOHvKexp8tDs8LD1YQ0mDvyGH2WhgwoAoRiSH8+oG/VDUTQWNZESHcLi6DZ/qH4rYd5HpI9VtnDcikR29hmBGBJu1Sib4w67FZGDmoLiAddIcHh+hx1nMeVtRY8A2gwIfdHdlnJYdE7DcQVWLgylZMQHPOVLVTkF94By080ckERli1gW1Y8+xmgza7xvA4eo2Ln5xI4BuTTezUWHxnp7OlL3X1jMaFFYcrtW6UFpNBm6YnM59cwZy9jPrtQDW7vTywup8fH3mbJkMBj66eyrvbS2lqcvF2tw6nu2e6zg+I4qp2TH8c00Bm7qXlLAYFe6ZM5DzRiRy97u7ehZB9/j4y5eHmZARpVui4JO9VSSEB+m2tTs91LUHrmV3RlYMKw7X0tgrmJ01LIG4MCsLd/Z0tLxyXCoXjkpiU0GDNg/wuonpzMiJY93Dc1idW0dSRBBTswOXgQB/Rdvp8WGz/rCjyg/73QshhBDiO1HS0El4sJlom+W49w+ItTGgV1v8iQOiWfmLWazOrSMtOpjZg+IxGBQ+vHsK724pxWQ0cOu0AQxKCOPlm8bz2JJc6jucXDE2hVumZpIZG8rP/r2HNoeHhHArP52bw+3zdupe0+7yBjSJ6HJ5qW3XDwcEWJNbr7uQdXp8RAabiQ8P4u5ZWfxvd5gCcLi9TPzLSq6ZmMaPzsjg95/13Gc1G3hsaS7gX+esN5vFyNaiJh4+dzAAH++uoLBXxe2L/VWMTo3Qhn9aTAaGJoUHBIwtRY18ub9nrlKIxci0gTG6oAawNrdOe67L6+NQVRv3zM4OCGpfHarVVThHpkZolZye9+zTdZRMjAhiQEwIW4t6hu3Z3V6ev24s+ytbKG3UB2GL0UBLp0sXfjJiQljQ6+I/IthMTryNnaU972NTYSMzB8VS1quKFRFsptPpITHcSk2bE6W7Vf/vPj2IyajoFow2GxU+3VvJ0Zp23Wsr+IfqHQs5QWYDF49O5sNex+PxqczIiSUjJoSdJU3k1vRUGB1uHzdPycDtValrc+i+I6fHx8xBcRgNSkAlqrrVwRXjUlm0q+d18mrauPOdnTx07mCWHazWNYTZVdrMiORwXdXW5VWJDDYzJDE8IGzVtTu1jpq99R3mCzApMxq3119FA7hkdDIXj05mUEIYT684SnWrg0vHJHPDpHSuHp/GwPhQ9pa3MHFANDdNzsBsMrD24dmsPVpHerSNKd2hLNpm4arxPUM+W+1unB4v8WH+5jsLd5bztyVHaLW7OXdYIk9fO/oHOzzyh/muhRBCCPGdaLW7uf3tHewsbcZsVLh3zkAeOGsQ4G8zH2wx6hZz7nB66HJ5iA8LIi06hFumDgD8i0I/vGgfe8paGJ8RxZNXjdK6E45KjWTpz2Zg6NUifs6QeLb99izKmrrIirNhNho4a2g8K4/0XDD/aEoGFc12nlp+VNt22ZgULhmTzOf7eoJOUkQQI1PDWaDPeaw6UsvTK/KIC/pLe0MAACAASURBVLPy8LmDKazr4OM9lfhU/3pW87eV8a8bx/H2rRNZn9dAi93Fx7t7qi4dTi+XjUmmps3B1qImOl1e9pa3cKiqlbUPz9EukI/xqeDo1XnD5fER9//Ye+/4OMp7+/8925t21Xu1ii0Xuck2LriADaE69AABQgjckASSkJBcQgrhpkB6AiGhQ+iEmGLTbePeu2VbtmTJ6r3vavvO749ZjfbZUW7u/ebml0D2vF68zM7OzD47O6t9znM+n3OSTALBAKXkMFYFGg2EsZn0gqnGrIJk+jziJH7IG+RUl5v8FCudQz7sZgM3Ly7mN+vrhP12nu7jrElpbK0b78NKTzJxJoZ8dQ75mDuBQcQ9rx9R3RnHss5S7SYmpdt5J6accHK2A2Ocm+KQN6hO5mNxzuRMJCS21fdiMegY8gZ575gSjfClFZN4dnuT2tMVCssUptrITbZgMijlggeax4lfrsvCjHwXSRajQJZ8wQiRCfqrClNt5CXb2CuLZi56SaLP46dzyK/2+8Xi9QOt3LvmqKak1GUxkmQxcO9Flew83cfG2m78YZnOYR/feu0w80tSNeeKD9oGaBnwct6vNwuxCaCYylw4I4f1J8YVvjmFyXxxeSkbT3arZbwz8lysnpnHZ+YV8p8XTGHUH6Ig1YZeJzE118n507J5dEsDr+5rJcVm4qrqAm5bWsofN5/mVx+e4ufvn+Tzi0v45vmTuWZeofr6tZ3K+adkK/mFv3j/JI9taSAQjnDe1CzuvaiS76w5qt7P7x3rpHKLk6+uLNe8x38HJIhaAgkkkEACCSTwD8OT2xrZF7XSD4ZlfrO+jpWVWfzgrWOqxf7qWbn85ppZ/HFzA7/dcApfMMKKyRk8fN0ctfTpm38+zJ6oqcLOhj6+9doRHryiittf2M+x9mHykq384qqZLCxNwxsI88imeg40DzCvOJUvLivFqIeHr5vD7z+q58PjXeQkWyjNcLB6Vh4FqTbWHm4jxWbmW5+aTLrDzNOfm8efdp4hFJH5yooyZuS7eHF3i6okZTnN7IyqRU19o/x2Qx23L5ukef8HmweYV5LGLWeXsOlkt0DUAGbkJ5PU6xGUp2BYZmtdD+dMyRTs4s+ZksmHcdlsH53s4fxpWbxztBMZpRRuZkEyb8WRvI21PYKhx8rKTEZ8IQ61jJdfOq0Gfvz2cVWdGfIGmV2QTLrDJFjfmw16gaRV5btItk6klMpC8PTZ5enCcREZVhUZ+MNt57LgJxuEI092ujlvWhY1MSWWJoOOUCQihGMb9RL3rT1Oss3IA5fN4O6/HBHOs62uTxNtEI7I3HBWMTkuC5f/QSxb9QTC3HfpNP7w0WniUZGdJJQ0GnQSL+weD/COfa8Oi563j4wTz9iA7LIMO2/FLARYjDrKMhyc7Bqhpn2YmvZhXFYjKyaP56GNXa9ZBcnsOzOgEpmVlZncunQSG2u7VcV0UWma6tQ4huqiFM6tzOKWJSWYDDoeunY2j25pwGU1ct8l07CZDKz54iLuW3ucI62DzClKZjQQQqeDn71Xy9rD7ViMer62spz5JWncHdPnd/drRyjLdBCOyDwQVYsBHv6onlkFyaycmkUwHOG2P+3jo2gI+7KKDO48t5yHP6pX9//geBeZSWZh0QHQBK3/OyFB1BJIIIEEEkggAQ1C4QgdQz5Nptb/Fmfier0AntvVJOSgvXmoncVl6Tz43vgk76OTPTyz4wxfXlEGwL4m0fluf9MAP1x7THUIbBv08o1XD7H12+fwndePqv1C2+v76Bzy8cAVVQx7gzyz4wwjvhC1nSPsqO/jna+ezYGmAT48riht79V08PJtC/EEQmyJutRtr+/lgSuqeOsri9la10soIvPqvmb1GEDtM4otqwN4ZscZHtvaiE6C7100lfwUq2oooddJ7GzoZXaBVnn65fun6HH70UmwoCSVq+cVMLsghfUnugQnvXBE5u2j44Rgf9MAV1fnk+uyqD160/Ocmty5P+9v5dp5hZj0EoGwTJrdxOrZeTwVN8HfUNtNZbaT7ad7ichQmZOkCSQ/0jrEf63OZ/2JcRKZ7bQI47Ia9VxdXSAQNYAOd4Sbn9mLNc7tMstpJtVmVE1I9DqJQCjCB9FrPiU7CW8grJqIDI4G+cUHJwWbfFDu49xkq2Di0TPi58svHgDQmJzYTHoWPbARWUYghBlJZp7f2YQvGEEnKeR02BuiIeb+1knwnxdMwWU18u2/HBXez6QMO7eePQmjQeLpbWcEExlfMEJVvksgpUPeoCbUXCdBWaaDKTlJdA/7OWdKJvevns5DG+tUkpZkMTA1x8mO02Jv36LSNG5fXgoo6vS3/3JUJY6feXwX67++jOd2neHFPQrxrGkf5ljbMJfMzOXNQwrpHw2E+ck7tdy8uJh4bK/vnTD+4lDLICunZvFuTadK0gA2n+rRhH+DUoJrN+kFV8sl5ema/f5dkCBqCSSQQAIJJJCAgOd3neEHbx0nHJGxGvU8ffM8ZhUk8+B7tWw40U1ZpoN7L6qkNMPB2sPtPL+rCZtJz5dXlFFdLJZmnTctS1B3XFYjZr22HybeWGNs2zPbG9HrdVTlJ3MopsdqdmEyJ+L6pNqHfAx5g6w7IqpJaw+388AVVbx/rDPOuTDCi7ubBZORYV+IRzbVc7RtSJ2kR2T42XsnmZ7r4sH3aqntHCEvLszaoJN4aGO9StLSHWbMBom2QZ96jt9urGPjXcv40osH2NXQTzgis/54Nx2DXlbPymXt4XZMBh3FaXZVSYvIsL9pkN9dO5t3azopSbfTEJ3kp9iMVOW7NORnw4luwUiltX8Um1mPxz8++TXqdTwQQ4z7PAHS4jK9QAkdj+1ts5sMWE16wSnSbNAJQd6FqVbKMhxqGDMo/WnBcISiNBtNfQq5cpgN1PSFoE8Zvz06xmSrka5hPy/vVUoPV1VmcqrbrR4HUNftJtUmqnhdI35uOKuQ53YpZMOk13G8Y1yRzHVZSLWbBEI0OBqgPNNBXbebKdlJgoIZjsgsLU9nwaQ0DjYNsD7aZxaR4VSXm6I0cRFDRqJtwMv+aJlvLGE0G3R8780aBkeDmogHi1EH2upIStLsVGQ5aOz14LIa+eKyUr6zpkaNKnh5bwuLy9J5ZNO4+jfiC3GkdVBzrg+Od7L2SAeXVOUgSZKQIdcz4ue9Yx2sOyJmsO1rGtCEto9d13gUptrURZNYDHmD/OSdE/iC2r44p8WoMWu5YHoOl83O54H3aukd8XPZ7Dzml6TyjVcP4/GHuG5BIUsrMmjpH+WB92qp73KzYkomd62qYNgX5O4/H2ZrXS9TcpJ44PIqpue5tBf2Y4QEUUsggQQSSCCBBFSEwxGVpIEywf7yCwe4Ym4+T28/A0Bz/yhnej381+pp3PHSQfXYXQ39bL57OetPdPPIpnpkGb5wdgk/vXwGr+1vxWkxcP2CItIcJp7f3TReJmY2cNPCIv6yv1VYSd9e36sGL+e4LMwpVMhass2EhKJSxBKSjCQzR1oHyXFZBXOJ3GRl5T7Vru3lsRh1xJnsMeQNCmHRACO+IF9/5SAno5b0bYM+sp0WBkYDZCSZkSRo6R9Xbdz+IAadKe4cIWxmgya77Fj7CDctKsEfjJCfamVvo6geBsIRfrj2GOtiSunOm5rFr66ZRUOPm0c2nRbeQ3yQ86A3xKdn5fJGVBkx6CTmF6dSH0O2QCG62U6LSrBWVmZyIE6J29c0wJ3nlrG9XlHYJJRyvN0xY27u97KgROu6+P03a3BHyWJZhoMhb4BY88fRQJgtd6/gP57bx2DM9d94skeT2WbUSywqTePNmEUAp8XAc7uaMRkkLp2Zx94z/QK56xj2kZMsqjgRWbGIdwdCmA16gagBTMpw8KXlparTY+xYV0zOpLZjRCXndpOeZ2NCwMfIWnGajZq2IbzRksnuET/ZLgudQz6cFgO+YIQXd7cIgdqVOUk89FG9Sva8gTBhWRby5EDpk9Rkk0kSX15RypPbGglHZHSSpBqd/G5jPSsrM4mHzWQgx2UR3r/dpGf55EyhTNOk1zElJ4mSdDtNfR70Oolr5xfy4HsnVcMZvQQpdhNWo57ndinXQ0IMBTfpdVxZnc/ZFek8tKEetz/E9QsKyUgy89S2RgpTbXz3okrKMx0s+/km9fv4wfFOXv2PhXz3jRp1rCe7lH/bBr2qalfTNswtz+7liRurmZGfrHm/HxckAq8TSCCBBBJIIAEV7UM+zcRvYDTA5pNiLllDr4c1B8V+K28wzHO7mvjO60dpHfDSNujlh2uPU5RmY3FZOtvqe/nCn/bxwLu1/OH6OayYnEFphp2yTAcfnezhqZvnsag0jSnZSayamslwjPrVMeTj4qpc7GYD/Z4Auxr72Vbfx4rJmSRFbd17Rvx87um9VBenYIsJRB72BtlW18t507KozBmf8Jdm2Ll9eRmzCsSJ3LXzC/lMjAECKOHQJ7tEYjMaCLH+rmW8fefZWAxi2VcwLLNyqjghNht0zP/xeg0xTLIY+NZrR3jvWCdPbG3UELnJ2Um8f0zsTdvd2M+QN8itf9qnns9u0vOTy2YwZwITj30xtvmhiMykDLtmn4PNg4IK1jboozLXKeyT47Lwuw31KsmWgRSbtj/NGwipOWQWo46zJqWpJA2UoG+nVVTwkswGXjvQoimt1EsSty+fJJhy+IIR3jzczuQsB9NznVRmJ6n3SyAks+ZAK66485sNOgIhUdlxWY38en0dj29p5OGN9Zhi3A8lSck/K7/3XZr7xGy0LKeFP24+jYxCfK+qzhfuV4DFZem89ZXF/PLqmSpJi72OR+87D5fVqJIvWYZsp5nnb1nA+VOzBUXOEwjTPaR1I51fksa0uM/oyrn5nD8tm+9dPJWfX1klKFagEPm0GPfVGXkuFpWmEfu1N+gkvr6qQiX3ep3EpHQ7X19VwV2vHqax10NEVj6zwlSb4AoaluGquQVCbIIMzMxP5qKqHC6ckc0Lty6ga9jHszvOkGo38cPV01g2OYOrH93JmoNtrD3cznWP7+KlPc3CoklEhpf2NGsI9YYTXZpFha5hP5c8vJ171ohlqB8n/Nsrag899BD19fV/e8cEEvh/QH19PUlJSXz1q1/9Zw8lgU8oysrKuOOOO/7Zw0jgE4SCVJtgmACQ6bRQlulQV64Bkm1GyjMdmuMHRwOabe8c6eD5GNOF3Y39LClLxxsMq/bzh1oG+eq55bx461kAPLbltNADBnCqa0QoXQTIS7FwoFmsG/uotpvLZuepRg9dI36+8tIBnrixWg0DBmgf9OL2iZNWnaT0KX3r/MkkWQz8bkMd/lCEt492aEw1dJLE2T/7CJNBx4rJGUI5oE6C53c1U5xmoyDVxrb6XtUWfdgXIjPJTPeIn1S7iVyXRSjH6x7xc/mcPN450oEvFCEckUmyGIVeqhSbkWe2N9I1PC5JeQJhJmc7mF2YzEt7munzBJAkWD1zXE0bw94z/czIc3I06vJXle/SZMed6BjmwunZ6uMki4HlkzPUDLMxJNuMgvNkRpKZdTH9ab5ghOQJyirPmZJJx0AjoyGFCAz7QvxuQ716/cbJoMwjmxr49dUz2dHQJ7z+yS43T95UzSt7WzgR89lGZLhgWhanukbwBSNIKOR57P1KElwxO5/XDow7OwJUZieR6bQwGgjhtBhVRXfYpxDP6bkuSjMcvHusQx1fKCJzdIJyw35PgGse3UUgpLhuxtriu30hfrO+TiDGAEO+EC0DoxoiAqimPGO4aEYOHn9ILQE26XV847wK2ge9aqi3QYfGFXTEFxJz0CozeWhjPZtjQuJdViMNPR41OD4ckel1+2nsdQsLDf2jQY0yCzBBdSTZLgsPXzcHUO6tSx7apo5rQ20Xty8rFa5RMCwL36kxFKfbSbYZGYwxxynPciDLCIRxDC/taeaWJSWUTfD36l8d//ZErb6+nkM1JwjbtHanCSTw90IXkMlLTmF/Q9ff3jmBBP6X0I/2/+2dEkjg/wHXVBcIJVydQz421nZRmGqjuX8Us0HHsDfIwxvrKc2wc7rHg06CFZMzJ7RPd00wST/eMSw4HQKsPdJOZU4SL+5pwayXBKMHp8WgyZwC8PhCmvYevU7S9MsMjgZ5dV+LoBp4gxFe298iZFxFZMWpcvnkTBp7PYIa0esOUF2UwsmuEdIdJhp7FZUlEIrw4fEufnnVTA61DPDSnhZVDTnTN0phqk2joi0oScVpNdIyMCpMOEEhEfsa+/FFX7u+2015poMhb1BVO93+0IR9fX3uAF97+5A6EZdlqC5O0RC1EV9IJS2gGILMKhD7AIvSbLxT0ykcU5CiNZfZWtejTridFgPLJmfw2j6RABWl2jWOiY9vbcSsgzvPKeUPmxqI1boKUmwUpFnZVtdHMCxzomOY7711jOsXiEonwKaTPYzE5eHZzXoe3dKAL6hEGJw7JYuX944TPFlWCGZsueEYzAYdxWlONa9uDMGwzJ3nlmMz6VlzUHx/I74wc4tSVNOWdIeJIzHHjwbCTM5OYsAToHvET123m7puNw6zgWB4fPHBrNepClAsWS1Os2nGc/PiYj775G51n0A4wo7TfeyKCQkPRaAw1cLgaJBhX4hFpWnsPSN+717c06yx+O/zBDQGNMM+pTw0HvkpVnXhAZR7YFdDv9CPaDPpCUVkVj+8jbNK0zTk0ReMTEiyspIsLImq8aDck3/e24I7SpyD0biFmrYhmvu92KOEOD5IYWCCBaSPA/7tiRpA2JaKd8qF/+xhJPAJxeyZdvYf1rqeJZDA3wtr7Tv/7CEk8AlEIBTRWMiDQmqGfUG+saqcX36oGEe4A2HcPR6euLGaX354kg3RAOVUuwl/UJksnT8tm+m5Lk1e1JzCFLbV9wrbbCY9X3z+gPrYbtbz9ZXlPLX9DEPeIB8c7xImrwCvH2onPqbKYTZA3FTNatTTGxf+CwjlZWMYm7hPRAy/d/FUZhYkc/vz+1WiBsqYMpLMXDG3QDWzGMOwL6gZ94mOYcH5L1ZxuXlRMU9F+wHH0Ov284NLpvL9aLB2rztAn7tfcCZMthoJhSNCrxzAtvo+KrIcnIqWbmYmmSnLcGicASel2znWPkQwLGMx6Jie4xJ6vADaBkdVVz4JhQTujSmrHPaFkCfIG9tS18PcwhSKoiHYY26J/gi8sLsZKe4CWYx6/HHlgoOjQdLsJsFZUy9Jah+UcpyO+cWp1LQP0e9RyFvPSEAgoGPY1zSAQTfeN2XUSxxuHVIJUYpNWzp523P7lOsTpzqHIhGB2FwwI4fnYhY7ABZOSqN1YFTI8nP7Q1wzr4DOIR+pdpPqVgrK5bhwRg5fOLuEV/e2cCbuszjaNiSMAaBr2KcpHbUaDXz43WW4fSHc/hAXP7RNIId6SSIlLojeZtIjxzFYJZC9T/gumw06fvHBKQCWVqRjNeh5/3iXqv4VpFj50ooy3jjUxntR0n+4dWjCPLjZhSm0DXjZHr0vXVYjf9isGKWUZdj59qemcMdLB9UFDIBblpSw83SvahrjCYRJMhuEcHpQyOPHEYketQQSSCCBBBJIQEUwHMETCE343OBokPpu7cLT5lM9nIhx1+v3BPj6qgrmFqXw+sE2bn/hAMlWI8sq0ilOs2HSS/z4nRNYjDrVQS7dYSI/Tq3x+MMaY4+IDFfOzSPDYRK2ZSSZqIo6vJ3pG+VQyxAFKVZsJj16Semf23iyR+2bGsNvN9QJE3IJ2Fbfy7m/3MS8YrHXy2zQ8fln9nD/2uOsmCL2n5n0Ou5+7TAPb6wj3SFOentHApRmOEi2GbEYdVwzr0AgaWPv/9azS1gxOYNUu4k5hWLfXEV2EqfiyuFk4NKZOaqiOOgN8rOY8O4xNPS4VZIGkOk08+k5eYISadRLbK3rUUmLLxShqV8co06CdUc6VcMXGbRGFtHrdOnMXOwmfZQ0w7H2Ybaf7mPt4Q6NA2CfJ8h180Wl7HSPm864niybSc/P3jupkrQ0u4mZBaKrny8Y4YvLSlWSNoYBT0Do5cpymjnUMqi+33SHiQVx5GFgNMiqqVkkmQ1qma96fYIRKrIcrJ6Vy53nlAklqACNPW5N2HT3iG9C9dQSzYebKFBblmUeeKeWrfWis6dBJ/HktkbsJlHh6nH7Na6Mn11YhFGn40dvn2DZzzcJiyMSSl/qtrpe9DoJnaQsaowGwpyKlh06zIrRiCcQpq7bzYgvRF6KlXMmZwiK8/b6PtqGxEWClgEvVXlOdsep5/VdIywpG7fdz0+x8p01R9l+uo9Fk9K454Ipwve+vsfD1vpegaQB1HWNCCWvwIR/v+JLpj8uSBC1BBJIIIEEEkhAhd1s4JKZuRM+N7tQCa+NhVEvkeXSljseax8SbONbBrxUF6XS6w4QiE52e0YCLJ+SwYtfWMB/XjBFMIsYQ/xkV3lNnWBMAeANRDT9LJ3DPu44p5xY0SwYllk9S3x/A6NBrpqbz6R0u0oCTvd4+PP+Vp64sZqLZuRg0kv4QxH6PEGe2t7IgCfADy+dxsx8F1lOM4FwhK5hP+tPdJOZZGb55AzyojlRrYNe6rrdjPrDfPj1Zdy/eppqgDIGCaUU8KOTPfzig1OYDTrOLk9X1cLdDf2Cs+IYhr0hQTs80zcq5E6l2k0aB8uatmFe2NWkHmfQSXzngkp63KKC2D3iZ0aU/OokRR2NP9ewN0S2c/zzN+gkXtzTwluH28lyWjg3zmFwxB9icrZofpFiM2Ix6nnkujmqdX0oItMy4CXLaUavkyhMtVGV5xIm6n2eAKl2rZHJOzUdmu3uQEgthy1Ks2KMIzO97oBGVZJQVKTKHCfLKjI0phySJDEjz6UxEQFItpn49dUzmZbrJMdlQSfBO0c72dc0gClmsaAsw8GzO5vYXt/Hm4fbhUUDh9nA+hNd7DnTT1vUmCM/xUpphoNQRKZ1wIsnEEYnwbziFCRJKX0du0ZLy9N56nPV3HBWEZtP9QhqHcBFM7KFx+GIzOKyNE1A+JTsJM31bBvwMhB3L4zFecTCbNBxpG1I06NoNxuYnJ3EL66q4oErZtA64FXvxx0NfRP2pul1kmASBDCvOJXFpWLO2ow8l5BBV5HlmNBg5+OAj6cOmEACCSSQQAIJ/MPwsyurqMpPVizFA2G6RnxMzkrirvMqyEyy0Drg5cU9TTgtRu5aVcHMgmSe2taolgo6zAam5DjhoNgX1Tro1VjHt/SN8t03a9RssNhcJQl4fGsjVqNOdc2TJHhpTwtmgzjRrsp30dQ/qk5oQXEj7BrWOuUZJyB/TqtRQ0IaejwsLE3Dbjbw9lExY2pnQx/P3DyfmxYVM/v+D4TnjneMsOZLi/n1h6d4dEuDuj0QjqglYLEr/Mk2I5G4Us2dDf3cuLBIILt13W5WVmaysbabiAwmvaQZMyCYO/R7AlTmJAmKT4bDxF9iyltDEZmjbUPMLkzmYPN4iWBeilV9HJHh3ZpOclwWwZVy0BtAJ0ksKEklL9kqOIE29HrIcWlDjVdNy2RGnpM1B9toHfAyMBrkj5tPMyPPpfY5jSEYlvnD9XM43DqoUWUgmssXc8+4rEaejyk9zUu2UJBiY1cMyW3q8zIz3yWEYDstBj44Nt6PB4ryONbbt+dMPxlJZnpixtc15ONHb58ARMMOo15i3ZEOPjzexe3LSznVNcI7MeYqgbDMjz49nYWlaVzwm63Ca3oDYX5+ZRXD0d7L+9cdF55fWpFBKBzhdM/4ZxyRYXK2UyhBBchLsXHOFGVhJTauQr12NqOml2vEFxLKaQF0OklwwwRF3SxKtQv3i8WoE8Zg1Eu4rEbuWVMDoPYDmvQSLQNentzWiCTBtfO0fYcOswGnxaCSYKNe4qq5BSwtz+D+dcfpGPKyemYety2bxNXzCvj+mzUcbB5kXnEqP1w9jVOdI7x5qJ0sl4XPLSpGN8F3/uOABFFLIIEEEkgggQQEmA16bllS8lefv315KbcvLxW2vfnlxby4p5lQOMJn5heSZjfx6OYGlbyZ9DpuXFjEweYBoQwvN8XKhpieHX8ows2Li3lm+xl1EukNRjhncgbHO0ZUlzx/KEJmkpnSTAe7G/rUfiuTXkcgHEGSFEXomR1nhH4inQRrDrQJE2sJxRAj3WEW3PCyksxsOdXD/JJUTAYdgRhFxR+KsLuhjwWT0pia62R7/Xi/V7bLgiwzoQX+1roewejEaTGw+Zsr+I/n9wm9ZVajXtNrBEre1bh5hMz+pgFcMSRzQUmqRnlzWoyqY6VBJ/Gp6dmaPrrWQa9A8KbnOSmIIWpj+PziEjbUdlHf7WZgNKi6YHaP+Lm6Ol8z3oJUK/MjqeyJGdN31tRQXZRCusMskKWjbUOUpNsF90mnxcBtz+1XH8e2sjnMepVwShLcsriEJ7Y1Cq9fkZVEdXGqQNRA+WwGRoM094+Sn2IVxgHwpeWlQpA0KIsI1y8o5HSPmxyXVVCoQhFFqTUZdPw5aqTiD0X4zfo6llVkaK7L/JJUZBlS7EaBROelWDm7PIMntjZM7HiYZptwu9OqndJX5bsIR2Qe3XKat4+0C9dOAt482K4J5j7aNiyQNJNeJ3x2oNyb/qCy6ABQkm7HaTFozE6+tKyM324cD0KXZcWo6JV9oqlLXbdb/d6C8lleMjOXz55VyJPbzuAPhrn+rEKm5jqZmuvUlB1nOfU8ekO1sC29zMyiMlFp+zjif1z6KEmSXpKkg5IkrYs+LpEkabckSXWSJL0iSZJWe04ggQQSSCCBTzgSv48KClJtfPtTU7j3oqnRfiwTr39pETcvLuYz8wp49YsLmZbr4smb5vHpWblU5bu4a1UFC+OCkQGQ461AlGymPo+otgx6g4TCEcGkIyJHuHx2nuDk5wtGuGZefvR5iKBMrGfmu3BaDMjAqS43J7tGKM90qH0/XSN+bn/hAL/bUMevrp6pBFtHz7nzdB/XPLaLx7c08F+rts1yVAAAIABJREFUpzMlezyfrXPIx5IHNzI118kFUXt7nQTXLygU7P1BMd94bMtpwSFQkuAb51Vw/YIioRy0KM2GPy4HTAY+PSsXc7Scrm1wVGOuotNJ6uuGIjIv720RxgsQjkQEle94+zBzisRyMb1OYmt9D5fPzucXV83U9Kf1uf1kJI27B0pATdsQ180v5N4Lpwj77msaIBRHRI16Sehfm5rj1ChsTouRr6wo40vLS4XyV1mG+p4RoeRt7P1+GDWhGYPFqOP1g+0094+il2BVXDkvKMpSclwOW4bDTEOPh5Z+L8M+rZKZ7jBp+sMAZhW4hJK9T03L5uU9Laz81Wa6hv3qPeUwG7j3wkquenQHT2xrVO3yDXoJSYLlFRk8vqVBJYKgGO7kJlt45COFVEqSch2vW1DI1dUF/GFTPT977yTH2keIyMprTM1xIqMYb4yRtKXRctnYz/SiGdkam/3J2UlMy3USjvmCtfSPkubQhskP+7XXKNlu1HxGaXYTT988j7PL05lfksoj181hblEKZZlJ/PTyGfzqmlnMLfr3dGf/3/SofRU4EfP4QeDXsiyXAwPALf+XA0sggQQSSCCBjwkSv49/BUVpdn5wyTQeuKJKDZUuSLXxm8/M5q2vLOHOc8tZPTtPyDFLs5u4bekkClLFkrmLqnI4f5rYU/OpadmafpqwjKZMC5jQVrw43T5hf1FusvjaL+5pZsXkTHbfcy6uOOXij5tPMynDwUu3nkXsy/Z5Avx+42mWVWRg1ElEZPjgeJdqeDKGglQrv990WsiP+ull0/nC2ZP4qLZbsDBfOSWLc6eIpMJu1vPa/lb80Ql364CPSRkOlZhkJplJjhtzMCxTmeNUCYJJr8MbEElTRIbJWUl887wKitJs2Ex6whGZLad6+dZfjnCkdVDTU5jptLDm9kVct6AQo15CBmrah/naK4cmVIHyU6wYo9dMAvKSrUJZ5cBoQNNLptdJuP0h+iewWx/xKY5/Y0ixGdnV0MehlkGVzJ8/NUtwSgzLcLR1SNMLqddJBCMxWYJJZpr6Pexs6KNt0MuGaC9i7P5PbjvD2sNiua9Jr0RZjBHQ4jQbty0t4ant48qfDJw3LYtd3zkXs1Gvce1cVZnFvntXUpbp0PQRfnHZJNoHx6+ZLMNXVpTxk8tmoNdJmqB0tz8khL6PoTBVG7sgSZKmLy8YihCMI+hhWWZZhahepTvM3LZ0knCNkm1GPreomKvnFqjbbCY9X1xeyuKydJ67ZQGv/sdCLpiRoxnLvyv+R0RNkqR84CLgiehjCTgHeC26y7PAp/8RA0wggQQSSCCBfzQkSbJIkvRlSZIekSTpqbH//gfHJX4f/05kJJlZd+cS7lpVwV2rKlh35xJykq28+IWzuKa6gLPL0/nZFVVcXV3AA1dUccuSEmYVJPOFJSX85PIZ3LiwWDjfxVW5XL+gSHB3zEwy89mzijTEYllFhsbUoyjNrpm0S0g8tLGO339UT3wxYiSqLAyMBoib09I5rPQwjU1se0b89HkC3LyomFyXhaXl6Vw8waS0LTrxfnrHGWH7K/tacFkN6phT7Sbuu3Sa6sI4BoNOojhNKbvsHvFT0yZmykkSfHCsU1UtA+GIpnfQbNBx7eO7eXF3M3efP1kgkgAbTnTz08tnCCYRL+1p4T/XHGFxaZom9mDYG8JqHJ92mvQ63jvWxRhnKs1waEhBx5CPy2eLxi+D3iDP7DjDy3tasMQwY5tJz/6mAYF4X1WdrxnHRCR+NBgm12XBoFN6qu48p4zndjXhiVHsLpqRo3GSzEux8tvPzKIyO0lVooZ9IRxmQ9TAIpn7Pz2Np3c0qUTxTN8of4qz7QeFqPa5/RxsHtA85w9FeHlvC00T9JmN+MIT7l/bOcwD79YSiojX1GbSc1apVsVePTtXdegcw/nTslk9K0/Ydt2CQm5aWCRsu2B6NjctKuEnl81gXnEKF83I4cVbF5DjsrLujiV887wKvraynHV3LCHHZeXBK6t46daz+NkVVWz65nJ1EScBLaT4jIQJd5Kk14CfAknAN4HPAbtkWS6LPl8AvCvL8vQJjr0NuA0gKytr7ssvv/x/Nvj/C7S0tDDqDxKxuP72zgkk8P+AdJue3lHtH9IEEvh7ofMNYTMbKSgo+Ns7//+MFStW7Jdlufpv7/mvAUmS/gzUAtcB9wPXAydkWf7q3zjuE/v7+HHCsd4wR3pC5CbpWJxrwKCTOD0YZktrCKsBVhYZSbfqONAV4vX6IKNBmRUFBi4uNbGjPcSzx/z4w5BulbhrroXmkQiPHvaPuyJKEIo+sOghdm6capG4otzI4jwj9+/00jA0PjG+stzIa3Xi5D7HLmHSSzQNR5CAs3L07OwQfyPyHRIZNh31g2FGYgQUu1EJMI41vLywxMiRnhCt7vH53Iw0HUf7xAl6ebKO+kGld6/UJVE/KAvlpekWiSsqjNT0RqjtD9PnG382wwoDfgQiWp6s42tzLexoD/LCCfE9XjPZyCsnxW0FDomW6BiTzZBl03FyQBzjnEw9B7rH35zdAJ4o78pzSOQ5dOzpFK/VRSVGMu0SAz6ZN+rF11yaZ2BLm0hAryg3sqM9RIdHGYsOIC7jblWRgQ+bxOOqM3XU9EWEz74qXcfKIiPPHQ/Q4xXn079dYUMvwbG+MH84LJZvzsvScXpIpj/mGp8Xfc34WblZL37eOlAXC7JsEt87y8K9230M+WV1/1tmmHjscEC9Z/VSVGnWwWenmjg7z8Bf6oJsaA5i0ktcVmZkeYGR+oEwr9cHcAfh7DwDK4uMhCIyW1pDNA9HmJauZ162QuZO9IU51B0i16FjcZ5hQsfWBP46/qe/kX/TTESSpIuBblmW90uStHxs8wS7Tsj4ZFl+DHgMoLq6Wl6+fPlEu/3T8NWvfpX9DV2JwOsE/mH4wkw7TyQCrxP4B8Ba+wFzJ2Vxww03/LOH8klAmSzLV0mStFqW5WclSXoReP+/O+CT/Ps44AnwtVcOcqrLzcLSNO5aVcELu5vx+ENcXV3A9Gj53o76Xup73Cwtz6A4XVFwRnxBDrcMUZHlIDPGtn3EFyQYlie0U58IgVAEvU6a0J4/Hsv/yrb4mtPlwF0TbLvDF6Rt0Et5ZpL6epcuG2Z7fS8nOoYFJ0NfGK6dX8Cr+1oJR5TJ9uNHAyydP4u/3Oni1+tP0THk5cIZOVw2O5+mP+4QnPAKMpPZ06g8loGdHWHuOKeM1/a3MhpQcuNa3TKt7nDU2XKczFw6u5CX9ogmID2ygyRHCNxKltTcohQWl6ZxdGO9sN/U4mzqDrUr5g2DsuCoB+AOSzx6JMDZ5ekE+weB8ed6vHD3+ZP55QcnicjKTV43GOGbW/ysrMwEREdMvy0Du6lLVfpKM+ycjsmNG/RDaZYLBkT1KCsznaLwCIFQhByXhQMxRiZtbpmq4gzoFJ0ZzcmZbGgaiF4rkagtqiqjzn1GLadcWZnFGY+fDs/4eVdMyWRDbbdwnDEpHZOhWzCPmVZawIJpBl7e00KfJ4DVpOdIb5gjvf5o6e44o56e5+SgP5XndzURjsiCKyVAQW4Oe7vG76kvLCnhg+NdyDHX3GU18NPLq/jKi+MB8AClmQ4WlqaRYjNxw8IimvpGGd20U32+IttFv9FJSB437AjL8JPLpnNRVS6uaN/dihVosBz4gnYzKyfYtnyCbf9X6I4aBsX+/TjQPKD0fpan47Qo72F3Qx8HmgeZX5Ki9rBtOdXDO0c7aO4fpalvlHSHiQcur6Iy16l9oY8B/ieuj4uBSyVJuhCwAE7gN0CyJEkGWZZDQD7Q/t+cI4EEEkgggQT+lTE2wxuUJGk60AkU/41jPrG/jxf+bqs6uV1zoI21h9vVErKX97TwxpcX8+f9LTy9/QygmBc8fmM1drOBzz+zlxFfCINO4ieXzeDqeQX8/P1aHt/SSDAS4aIZOfzq6llsr+/lB28do2PIy0Uzcvjp5VVYTYrT4Xdfr2HNwVbsZgN3nz+Z6xcU0dDj5j/XHOVo6xALS9N44IoZZCZZomNq5t2aTorSbHx5RRlZTguBUITt9b2YDTrOmpSm2nO3DXrV8GMp6mpgMuiwGPQCyx5zmHt0s+j8B0rvTryRxrtHO3lsSwNb63qxmfQsKVOc/h69oZqHNtZxuGWQBZPSaBvQlq+VZzpYf9cyfvT2cV7aMz7B9oci3LKkmFf3tTLiC/Hnfc1YjXqhL0+vk4TA3/1NA9y+fJKwn8NsoLlPfN1hX4hblpTQOjDKhhPdat/W1rpeSjPE3r1sp4XMJDObvrmC657YSeuAcm94g2F2N/YLjph2s5434mIZqotTBKIGUJhqpa57RH0dq1HHuzXj/VSLy9IFogbgMBlwmPWqiUhZhl0g0QadhFGvIyLLfPasIp7a1kB3jCSZmWRm/QmxZ6u5f1S1jR9D94ifC6Znc7x9mIHRALIMz0bLFavyXXx+STE/f/+Uun+fJ8DSinRa+71MyUliVWUWX3/1sPq8PxRhdkEyJoOOy+fkqZb+Y9hY260pPfUFI0zJTlLu0ZjBmQ06bCYDrQNeTnaO8Oq+FqFn7GjbEEVp2n6zolQ7x9qHmJTuIHuC3MN4+IJhNtZ2YzboWFaRgUGv40THMA9/VM/gaICrqwvUskhZlnng3Vqe29WEzaTn66sUI5z/Dt5AmHvWHOHtox3kuKz88NJpLK3I4O4/H+b1qJvkFXPy+dkVVdyz5qjqFJliM/LnLy5k/YluHni3Vj3ffZdMJctp4fYXRGLbNujl0t9v49h952MyavtU/9XxN4maLMv3APcARFcMvynL8vXRMpErgZeBm4A3/4HjTCCBBBJIIIF/JB6TJCkF+B7wFuAAvv/fHfBJ/X3sHvYJhg6A0OcTCEd4YXcTr+xtEZ5/ZNNpIhFZdQ4MRWR+/M4JitNt/P6jcbKz7kgHcwpT+OUHJ1XF5Y1D7eSn2Pjm+ZN5aU+zOikbHA3y3TdqWFSazp0vH1R7rTbWdvPd12t47MZqntvVxPfeqFHPv7uhn1duO4srH92p2s0vKEnl+S8s4Ofvn+TxrQ3IMlTmOHn+lvkci5pd9HsCFKRaeeyGaiZnJfHktkbWn+iiINUqZIelO0wakgbKhHAs82w0EOb+dcdZNTWLdIeZM70eDjQPcqB5kFn5YquFyaDjzpcPYTboqC7WhvIeax+OuaagkyJUZifRMuBlRp5LEyQMEInAPRdO5gdvHkdGMZAYiTNNMegkJqXbWVKWrjGcSHeYmFecyvvHOhkYDdI57OPu145w7fwChkbF8/S5A8wscHKgeQizQcfSigzePSqqXuEIQkSCBLx1uJ2wDEVJEp9ZXMGD750Ujhnw+IUIBYNO4o1DbSopSbObKMt0UB9DAEMRmYevm8nCSem0DY7yZJxV/+HWQWEcoBCfz55VxJsH23D7Q8iy4ki5r2mASel2vnJOGfe9NZ5ldqR1iPwUbTbcuVOyyEu20tw/SkOvtopmZkEyWU4Lfe4A/qBY8jkaCHP9gkIeilFBc1wWzv3VZmHxQCdB17CPP0YXD9YcbGXRBP1mNpNeuHazC5K54+WD9HsC6HUS3794KjctKtYcN4YBT4BPP7Kdpii5n1WQzFM3VXPt47sYHFXWtLbX92E3GVg5NYu3DrereYGjgTD3vl5DdVEqk7O1piVjeGRTvZpR19w/yldePMD9q6cJxPu1/a3MyHMJdv4Do0Ee3dzA+3GZd49sOq1kN06AYFjm5X0tmn7WjwP+nhy1bwMvS5L0I+Ag8OT/zZASSCCBBBJI4P9fyLL8RPR/NwOT/s7Tfax/H+3mvz01cJgNgj03KKWK8fb5w74gxztEIwuAfU39GgOMgy0D9HsCHG4RVRRZhgNNAxpDjL1nlGyntYdE9eZk1wi//6heyATb3djPC7uaeCwmfPpExzBPbG3kzUNtatZbS7+XH649xuLSdH754anosTA918nnFhXxyw/q6HUHeGVvC0kWA95AmFBEZtXULCLxTngRmfpuN7sa+vjoZI+6/VDrEDcvKqa+x82QN6ja8vtDEbbX9zEjz8nR6HutynOpE2P1OodlrCY9bn+InQ19gsshKIQozWHij5tPCzW3TX0eMpPMdI8odvChiMy9b9RgN+mFHDZQHDJvX17KzoY+BmJe/8/7Wrl4Zo6gmJWk2znQPP4e1h8XSR8on1+aw4zDpCfJYmRf0wBj3L9pRJ4wtLttwKcSDYfZQHVxCptirmOfJ4AlTiHRSfCX/a18+cWD2E16jfqY5bSwsjKLhz+qJxyR0UmKK2VN+zBzC5PJS7Hy1uHxMs6GXg/H2rT3r9mgE4hQis3IrtO9vBslvEa9hF6ShO/ImgOtqnpoM+qJvf1nFybz4fEuClOtFKXZSbWbeDN6X4+d4caFRUzJSuI7MYsSsgx6ScJq0uONnnBSup1XY+z785OtOK0G9R4PR2QefK+WK+fmq9/11oFR/rj5NN3Dfi6bnaeWDY7hUMsgf9zSoLkX36npYOXULA40aQ1QDjYPCEStrmuE+9Yeo77bzTlTsmjsFV1APYEw+yY4T/0EbqFD3iDxFhsRWcnc+2soSNGqjB8H/G/s+ZFleZMsyxdH/79BluX5siyXybJ8lSzL/r91fAIJJJBAAgn8K0GSpM9G/71rov/+p+f5JP0+2s0GZuaLK9PZznGL7cJUG7cuncQlVaIb382Li7ksziHObtLzuw31mlyv1bPyNATjdLebOf/1oUbdGZuIxud+lWcqj3OSxTIuo17SkEhgQse8pn4P7XHqYX23h7ePij1XNe3DnOkbVQN5QcnZ+t7FlaycmsXWuh4NITXpdbx+sJX9E0w+HRYDX19VobHqB5hdOK6qHWkbontEHF9phl0oCRzxh1hekaFmfvmCEa55dJcQ3A2Khfq6O5bw8HWzBQLnCYSZluvkrEmpqlPmlrpeLvjtVnRxgVcmg46tp8bJUobDRJpD7DkMhmX+Y+kk0h0mrEZF2Wno9dA24OVkl3tClaWuy01KjDKY47JQ2zVezun2hzSuk6Dkd43BatRx/rRsPjzRTTgiM+wL4Q2GyXZakFAUuY213Ty0sY47VpRxzbwCwUBkf/OgkMs2hq4RH/qY62Az6Xn9YLtK0tIcJv742TkqSRu7BtNynVQXpTAz38XqmTlCKeloMMyVc/P43KJivnFeBe/WdFLbOUJzv5cdp/smVGyL0mwMTpDd1jXsIxAMo9dJnDc1C0ccWWkd9NISF+Y9GgjTE82nC4SU++X5Xc18cLyL2184wOFWcbEEULMFYzFm6R9fSikBf9h0mqnff49vvXYYbyDErX/ax/b6PrqG/by0p1kllmNIMhu4Yk6+8LdCr5O4fkEhU2OUMkmCz8wv4Nal4nrabUtL+NLysgnJmsti0IRkf1zw9yhqCSSQQAIJJPBxhz3671+v0fk3QyQS4XCrSDoGPAFuX16Kw2zgliUlWIx6fnn1TJZWZERXyDOZX5JKJCKT5jCzobaLbXW9ysQ3OvktSrVhNxu4cWER50/Lxv5ZAz9ce4y2QS8ZSWZ1Bd/tD2E26LAY9Qx5g4RlmS+9cICr5iqB1bXRfqw9Z/q565VDfG1lBfvODNA26EVCsXmfXZiCeXezauCQZDFw65IS1h7uoNc9zptLMxzML0llT2O/um1GnlN4HVAUnWSb1gRly6keNtQqxKVjyIfdpCfLaaG5XyF1rx9sx6CTBPVFr5P4/Uf1PLSxnvQ4kmPS62iI6+Xq9wS5aWERO073keYwcUlVLvfGqCqgEL/BGFUqFJE1yqjTYuTZnWe4cII4AL1O4otnl3LjU3vUbaOBMIWpNpr7RlXiO6sgmR2n+9R9etwBlpSLZYBmg461h9upzHFyzpRMfrj2uPB8z4gfk14nkN5t9b2C2cbCSamsietzs5v02E16VYktTLWxP4awhsJacgPwg0sqeX5XM9uj447I8OiWBq5fUKjZN9dlwWbSq6TQYdaz5VSv+vyi0jRkWWZnw/j90ucOMDiqzeJLsZt49vPz6Rnxq6WKsZia6+LssnT+cqBN2B6OyNhN4mdn0En8+O0TxPO3ZKuRk11RxUmW+eB4F2dNEoOhLUYdl87M5Tfr69RtVqOe5b/YxPQ8JzcvLqFtUCRyI96QoEZmJJm5YWExG2u7ORxVgEsz7Ny8qISfvnuCRzePK9VpdhMef0hdGHl1XytWo54zcT2Sbn+Ia6oLWHekndxkKz+4ZBo2k4E7zy1nR30vOp3EbUsnMSXHyYu3LuBPO5voGPJxycwcFpWmc86ULGYWJHOgaYD5JaksLlNy3J7+3HxufmaPQIyHfCHqukYoz/r4/ZlPELUEEkgggQT+bSHL8qPRf3/4zx7LvwpiCcoY/GGZP2xSJputA6P89PIqjHodn56ViyEmkFink7hpUTE5LoswwQWoKkjmexdXkmZX1Lkl5el8eNcyAC747Vbx9UIRitNsQkncm4fauWVJiTC+NQfbuP6sIh69YQ6rf7+dcEQZ/92vHebha2dz7xs1dI/4GfGF+MpLB/nT5+fxxNZGdjf20zboVciS3cSnpmVztG2IzmEvH53swWzQkWo3qT09JoOO/U39pNlNqlI1pzBZzTsbgycQ5rLZeWrZJCik6dOzcvEEwgRDEbbU9agT7l53gDmFyfS6A/R7/DgsBoYnUE0+OtlNc7+Xum5o6HFTkm6nMdoHpddJLClLZ90RUQUsSrXx3Qsr+eorh+gZ8TPoDfL7j04TCEWYX5zKnjPjZKN90MuWGKVMHXs4giTJICtEKdupNaHISDKxamomNW3DyLJM57Cf9iEf7UM+6rvdGqOOY+3DKkkz6SWW5OrZ2CISnR63H7tZr+aYScCuhj680d4uo14ix2WmOUZRC0ZkCuJCm/U6iQPNg3QNi6K2NxjGGwyhi7HlTzIbeH73uKPmyikZrK8Vr0koLJM3QX+aXi+R7bTQGXUr1OskPre4mKe3N/KTd04QDMtCKWSqzcRP3j5OKKKEfMdjS12P+r4LUm34g2G6RsbfQ7LVwK+umcXuhj4e3SL24c0pTKF1wEvrgBejXqIsw8HjWxooSFF6LRt7PWpodk3bMM9sF48HhfjHaqmfXVDIW4faVJIGysJEn9vPE1vF40vS7ZoSxtrOEdIdJnpjwrpn5Ll48MoqHryyCoB71hxRjXTykq28+sWF6rVJtpm489xyzTiXVWQwvzgVw5gSfKqHzz+zVwiJH8MTWxt48MqZmu3/6vhflT4mkEACCSSQwCcRkiRlSJL0HUmSHvvfBF5/EqGX/vvnX97bwpHWQW54cjdl977LOb/cpPaL/Wb9Keb9eD0/WndcU+6483Qv83+8gSUPbmR3Qx8ef4i7Xj1E1X3v0+cWJ9KFqdp+krAs0xlXpgiK+cmHx7uJEWjwBSO8U9NBd8zk9kDzIDXtw3xtZQXtQ+MKQq8ngNNqQKdDPYc/FMFpMXD9/ELFgt8TYE/jAHqdxM+urOKaakXdi+1/AqUs7uQERHdwNMj0XBc3LirSqCJGvY5etx+3P0znkJ8jrUNC+dbZ5ek094+Pt3skwLLydMxRghyOyPxmfR3nVo6XdklAY4+HodGgWuI2hg+Pd/HUzfP4xnkVavjz6R4PT2xrZFK6Xd3PaTFwqGVQzU7zBMLUd7uFklWTQcdjWxr58Hg3FqMeV5zq2DHk44azitTXmZnvEtSbQFjGZkAIJwel/HSMpOkluGBGtkrSQCkttBhFrcGk12Ex6Lht6SSynRYlOywi8/jWRtqGRMUoy2nmhd0t6mcxLdeJLa60b8fpPkx6cZo87AvyXo1IiC+fk8fXXj6kkjQJ+MWVM5ldkMxP361VjXjCsszMfBf3XlgphKMrsRAOZUFAr6Mi06Ea18hESxvD8eYjETaf7GFrXZ+wXUIJIl84KY1nb57HJVU51LQP4wmEaRnw0jnspzeuJPZUl5v5JePltmPGOaMx9/ZjWxrYVi8uvIwGwuxrHtCUaUZkGbtZvJYdQz5CYRlrtKdwZr6L7hEfM+57n5ue2sPWUz2C22nboJfHY/pJe0b83Pz0HsrvfYdLH97G8fZh/KEwX3v5INPve5+5//Uhz+1q4sltjROSNNDeYx8XJBS1BBJIIIEEElCcGbcC64F/64T6/AlIUixkGX67oU51OGzo8XDHiwf51qcmC+VVkgQuqxGPP0Sq3aSSpo4hH9987TDnTM5kTbTsa9gXUkwtbEYCoQgt/aOayR4yrDsqlsMZdBL3rztOeaZDM86J8tf63AH6PH6NEUGfO6BRXbpH/JzqHtFsa+rz8EqMWYPFoCMYlpGRGQ2EWXe0A6NeUifoep3EplM9bDrVQ4rNqJQTxihBZRkOdseUXgIsKk0nxW6kfdA7Ye7cyS43/pjJe+ewj6+vKmdSup3HtzYiA7VdI3zt1YMk24yCCYReJ/Hq3haKUm1CThhARZaDqblO6rpGWFKezpPbzgjP948G+M5FldR1jTAwGuT1GIe+xl4PVXGOlnaTnpf2NKvXIi/FKqgyAA1DEeHzqC5OYV9M7lxYRmNiAUp55OTsJP6yv5WB0QCBcITfbawn12XhhoVF/Pz9cRdJbyDMJVU5BMIRyjOTeHyrWIrY0OPRXGcZiYJUixorkO4wadTm/1o9DYNep97HynFQ2zXMjHyn5vrqJInKnCRNsGJhqo17Lqxk2Bvg2R1NwnP+UIQZeS5BpUq2GdW4AIBUuwmdpCi0J7tGONk1wqluNyNxJi3N/aPMKUwWehyL0mxqrh9AIBRmOO44TyBMSQyJB+U+emzzaY2LZn23G48/jMWoIxRWSnBj7/fVs3LpcwdU4rf5VI9QjjyG7hEfo4EQNpNSIj1myHOkdYg7XjrAtfMLVdfIYV+I779Zw4KSVM15xnBpXP/sxwUJRS2BBBJIIIEEwCbL8rdlWX5VluW/jP33zx7UPwN2s5EVkzP+6vNX1Qi7AAAgAElEQVTzilPUsrsxdA772BxXOifLcO+FU9j1nXM1E9OWfq/Q5wPKZPDcKZn0ugNRS/kwhqhBAiiKxNiEf05hMhaDjlBEpmPIx5a6Xo0Kd6pzRFBJ9DqJgVE/FZlJVGSJxG5xWRqfniWao6yYkqkxvrCZ9BqHO18owg0LCwWlLBiW+fziYm5cWCQoDgOjQS6Ynq2GDgNsO92rSUlvHRjlpT0tbD7Vy+sH2zUqVuzxY/AGIoJDI4A/JHPl3HySogqdTlLUs/vXHddkeQG0DHhZd6SDk11untx2htw4k4iuIR/3rDnK0zvOEAhp1zPyU6yqdX1Gkpkcl0WIdthwoousGGMai1FHbX9EUEHSJiCm+Sk25heLk/AH3ztJz4ifa+eL1759yEdDj9YpcFFZOreePQmjXkeSRbx+TqsBW9zCQESWhey3iaITet0Beoa1JGNPQz9X/3GnqiCN4VT3CDc8uScazj2OrmEfn39mL1975TB1cYsDDrNBIGnnT8sSlGJQFkTi74nDLYOa+zfHZeG3n5nN4rI0bCY91UUpZDjMwj59niAL4vrcclwWntzWiF6SkKKvF47I1Pd4VJJ2dnk6FoNO7Q3zBSNcOTdf4+i5p7Gf3Y2iEniiY1jz/f3gWBczf/gB33ujRmPIc7rHw8FmrTvsgpK0CZWz6sJk5pdoYww+DkgQtQQSSCCBBBKAddHg6gSAL68oIyNqdFGWaed3n5nFTQuLuPfCSp65eT4L4iY9hak2jYkBwM/eP0n1j9ZrrOszk8yk2sWJZZrdJKy8g9LfFW+4AYrjoy9OrchxKaHMYzjSNszcwhRm5icDShncY1sa+fqrh3ju8wuE8z743kk+M6+Q25eXquTu7SMd+IMRdZXepNeR7jBpnAENOonMCXq3itPtVE6Q69Q17BMmr019o1xUlYPVpARuL6/IoLZTNHPR6yW1XycQivDesU7BJVEnwX1rj03YZxaJyDx783xuO7tEIDTdI37OrczEEFUeq/Jd1HWJJKHfE+ArK8o4d0omxWm2/4+99w6Pqzy3vn97T9eMNOpdsrrl3m3cbYzpgZgaApyElkJCCElOSE5CIJV0QggcSggYQg29GJvm3nuRZcnqxep1NL3s748tbc0zW+fk+877ns8QZl3XXJf17JnRs5v8rL3uey0tw0xR1BK7aFJlMkhsON5J26jD4F3nlWsh42MIhBQSRsmLLMEFU7MRzyK4/SHmFiYL+3ZmyMMv103j3s9N1cYV4PXD7dRPQMoMsiSQ9LJMB4FgmKse3c0DH9bSOxLQSnPNBpkBd5DTXePfc8XcPMHcBGBoAlXvbzsa+OOHtcJYZqKFw62D9HuCeINh7GYDC4tTMcgSbn8YBVUlq8h0sKAoha+uKOHEmfHzPeIPs7AolXmTUrh0Zg7umCDshh63jpTlp9jIcYq9bk6biYVFqVr5ptNm4k9fmM2QN8jR1iG1dLF5QOgbA9Vl1Wk1cW5lBqsqMrhgWhYdQz4iivqwRBk9PrHITrLq7snaLpcuc25abhIz85OFsQyHhZn5Ti6dmcPSMvVvSyiiPph5dk8zOTEPDEoy7KyKeZhkHs3D2/jtFXx9ZSnOqPLhKbl6d9VPC+JELY444ogjjjjgTlSy5pMkyTX60gcofQagKArfevGwZjhQ1+3m1UPt/PTy6dy2ogS7xcgPL67kslm5JFqMzC1M5j9vmMs18wv5t8VqP1JKggm7xagtAvvcAQpTEzQL+W6Xnz0N/eQlW5EktaysLMuh63exmdRFbixWTk7XqRXFGXad0tDU78blFxfYH1R3cbR1UFig+kMRXj7QSiSiCDbw/zjYxn2XTWNabhKBcISWfi/H24c0giJJYDHJHGkZFBQBWYL73qpiV10vJRnjJWM2k4FgOJaaQO+IH29AXcQfbO7HEaP4OK0mnTNfeWYiv75yBmajrBGwbpefXKd6TMdKP/+2s4mrHt3FwARZZaHwuJpV2+UiJUbNsluMDHgCXDkvX+szG4MvFOG3V87k6ytLuWVZsUb4xvDYtgYunSk6TBamJtA46v4XUeDtY2dwxvDwpWUZPH/bOVw16vIZUWDH6T5ueHIf/xWirePzkq28fKBNO485Tgtvf3OpUCoIKsF+/MZ53HPpFF0PWDAcISaZAIMskWg1YpAlkm0mpmQn4ooi7QYJnrl5oa6E0h0Ic92CAt21nZti4x9fW8KcQpG0AGQmWVhalk6a3Ywppk/ObJRZU5mpKUepdjNdwz521PVq5NNuNvDtNeX8YkO1tm9D3iB13SP855Z6RqLIX02Xi+mjTqdWk4zDauTRbQ18fKqHfU39JJj1XVKx5xpUAhYb1ZDttHLTkmIKRslaeaaDUCSCSZYoTlfvF5NBosvl551jHWw43kFJur6MeXZBMqsmZ2CUJWbkOXnoujlcNS+fu86rIC/ZxrTcJB67cR4ZiRZKMxz0jvgZinJ9fHZP84SE/tOAOFGLI4444ojjMw9FURIVRZEVRbGO/jtRURS9HPIZwLA3xJkYN8Mddb08+OFpfrWhmtouF0lWE3+4Zhb3XjaNBcWpuHwhDLLEzy6fzsmfXsBb31yqUwJMBklnGd/jCvAfF1XSOxJgb0M/O+r6yHZaSbObMcoS3mCYb790lHMrMylJt5OXbKMgxcbtzx3GYTVqphuLilMpSbPrnrwXpdl1ZWZWo4H2IX2mmixJmiFENGo6XVSdETl7ks3I7AInigJuf5j3T3ZRmuHgRxdXAiq5UIlIB1fOzSPJps7TGwzz7vFOof8uyWpkb1QZqMuv2uKPLYYlVPMLQwxzkCRVxYjtg8pItLDp2ysEYhBRoK5rRCARuclWdpweN4jwBSOkOyza8TLIEn3uAM/tbeH25w7p3A6tJplbnjnAq4faWF2ZoStvDYYiQr9VgtlAllMss4socF2lmdIoMvvgh7Ucbx/S9S11DfuxmQw6k5pNVZ2aZX9mkkU3z44hPw29bh3xkmWJ010uXckuqGWz0X1zk7MS2VHXh8sXIhxRGPIFdWphWIHqjiHdebJbDLx+uF1nTFKe6eDCP23ja38/JJTrGWSJ3fV9/Pmj06zf3UwkaiJGWaK2y8Vrh9sJhhWWlKaxvDyd2lE1MDLqzrn1+6vJSLLoyOGh5kGBpI3h6ytLef62Rfz0smmC2usJhPHFGObIEmyp7aEk3Y7ZoAZ/ZyVauO/tk4z4QhSk2kizm7GbDWw43snP3z1JYWoCm769nLYBL1tqetnT2E9zn4cfXzxFKI2NKNAx5NWdY6MsMX9SCu/ftYK371jG1Jwk3j3egScQ4hfrpvPut5azenImH5/q4u5XjvFejOELICimnyZ85s1E2tvbMXiGsJ3acLanEse/KD5uNWBzf6a9CeL4X4LB00d7u/4/3Tj+Z5Ak6TJgxeiPWxRFeedszudswR/UX1PhiMIDoyVez+xu4s1vLOORLXW8OdrM/9jWBh64dhbr5uRT1zNCXdcIk1IThJDpqTlJVMWEQo9lbkWjc8jH+VOzeP/keIDwlppudv1gDfe8eYIPRsd7XH7yU6w8fuM8bll/QDPkSEkwEVFUVWTM8MQgS9qi1RsM89O3q0X7dwme39fCtFyRm5uNMut3NwrZWgDF6Q4+PtUtvHdPQx9XztOXhO1p6GfYKx7T+YWpWM0yPS4/50/N5tcbTwnbE8wGblpapBmD7GsaEOzNJQn2Nvazt7Efp80kLK4HvUH+uq0BCWKCrUP0Rzn+SajkIhpGWeL1byylc8jLbesPCNtOd43wx2tmsaWmh4PN/Vo0QbfLz49fP8F1Cwp5aleT9v6Z+clsrOrUfvYEwmQ4RCKdbDNR4pRpqRq/TnyhCH/+6DSlGQ5gnEQZJInfbKzR1EOHxcDUnCT2RRmPdA/7Kc8QFRmDLHHXS0eEfjNQCe3v3h8vWxyz6i9MTRjPJkN9wLC4NI2aqLJQRVFt6KMJvNNm4v73xg1MxsaGvEG2jV6HCWYDCWYjl8/OZV9jv2ZOEgwrZCVZOG9KFplJVh6IiXdYNyePxaVpbDzeycc149fdrvo+ymL21x0Is+lEJ3sb+3TRCP1uP7Vd+h64bzx/GFD7T2ORn2LjW2vKeOeoSow6h/0a6cl1WrlgWhZPjRJyfyjCmUEfX15SxJM7xm37d9b38cK+VsElNaKgC4kHyEy08p21FbxzrINQRCEQCvP4aATAQx/X8crXlvD64Xb+Nhor8Ni2Bn58yRRS7Wa+8/JR3feNYXd9LxdOz/4vt39SEVfU4ogjjjji+MxDkqRfo5Y/nhx93Tk69plDbON+LHzBCM/uaeKtGIL19M4mHviglgv/tJ1vvnCYLpePWQVO0uxmbCaZt4910D7gFZSNuUUpOrJgNsoMecW+mYgCfW4/J9pFx8C2AR/P7GnWFBVQDTvWTs0UiFU4onDtggLhs25/mHVzckkwG7TFbNWZYZaXpbNqcgaypPaDHW5R+3lsJnXJZDHK1Ha6hH44AKfNyF+3NerUgFjbd1BzwjZVdXGoZZBfbzylM1IoTrezs040XOgdCbD+poWsqEgXFt9D3iCrJ2doJh3NfR5ePthGUlQfk0GWSIopp2wf9DG7QCy7O9E+zMUPbufxbQ3YYkrepNHti0vTdH16TX0edtaL9u3ZTn3f3pKyNP79ggpNQRr0Bvn9AZ+gqqj76mfH6XGSZjJIzC9KYcAzfl2M+MOkxRhhgGoCMqZGyqPOo7VRxKs808Efr5lFa79YSjolJ4nt31+tczcMhpUJDSr2jAZom40ya6dk6kwzlpen68xYPIEwb35zKfdcOlWn0vaNBPjmuWUoE9jLm40yw94g7oD+IUpsuWGa3cyP3jjBW0c7UBT1ek20GJlXmMLmmh7N+t9hMbB2apagsO1vGhDUTZvJwBPbG/nzR3UUpdt11+mZIZ/QXwfqvRZbpgsTu7D2jviF451oNfLi/hZ+/34tgVCE766tEKIp/KEIT+9s5O97xTLWp3Y28WKUvf9E2H6697/d/knFZ15Ry8vLo9NvxFsZ7yGP438H586y89ej7n/+xjji+P8I26kN5OVlne1p/KvgYmC2oigRAEmS1gOHgR+c1VmdBayuzPyn73GYjRgkiVAUY5AlSQvFBpXQJVlNlGcZ2DNa2ucPRUixm7hyTj5P72pi66jltlGWtF6pSETRWbhbTTK3Pr2fpAQTHVGbMhItE5o8DLj1Y/YJCJNRlgVCB2o/3ZeWTGJLjVgS97lZubx99AzeYIS20YVoZqKFbpefRKuRzmE/naMOgMkJJgySxIAnwKYqVQEcU7jKMx3UdomLWxlYUJSq5dG9sK+VojRxUWw1yZzudhHRt7jxjdVl/HJDtRAxMOQNctvyYjYc78AXjExY8nbx9GzWTs2iptPFW0fPaIHMexr6WVmRoZUFypLqCDmmYuQl2wRiMiPPyXEdifZQkmGnYVTJspkMZCZaGPIGBWLW7YUpOYlUd4wrPYFghPooZ9H8lARKM/UxBnazAbNB1vqw0h1mwU10cUkaO+tFwjvoDVKW4RCuOVAJxh0vHKbfLZZcWk2yEOqcYDaQnGDSyoMDociEypAvGBbC4EElXDc9tZ+mXtUQpC9K4SzJsLPsN5sJRxQhiDvJauSl/eMkJHqbxShrx8RkkFhckk63yyd8rz8UYfP3VvGN5w8Jcxnxh7WS3GjcvKyINLuVwy0DPBaVZfbxqW5dv6hxNAw+dh/31vcKap7VJGuukWPXmMkgaUqjxSDzrTVl/P79Wk0Fbuh1C/EPYzAY1Ly56JJfi1GecF+i8a01Zf/t9k8q4opaHHHEEUcccaiIlhc+vTZh/4ewmo0sKRVdHXOSxtWYHKeVm5cV86UlRdqYySBx4+JJOlOGYW+Qlj6xH2zAHaSpzy0skkMRhesXFmj/HrP8nl+Ugskg4QtG6Bj2U9M5wsw8J9ZRdavH5WdnfZ+gYiVajdjMYi+Tw2LEH47giOqRkyQIhMNkxChjFqPMBH4fmA2yELoMsLA4laM/Wasje6GwQlG6XXBZNMoSL962iN9dNVO3gLeYDNTEOD12DvsoSFX7rWRJJb6/eLeafU0iWTEbZe566YhuDmajzKuH2mgfVBfupzpdwv4D/Oq9UzyyuY7KHNHGHdTj+Jfr5nD/uhlUZInb2we9gglG55BeQUmzW/jtlTO16AFvMMztzx2iL8ZlENReu7HzVZHloDumP62x101agkk4p2l2M68cateuuZJ0OwMxYc77mwaojLGoN0hw2cM7hevPYpQ51eniSOsgLf1qj1Sa3czMPCdGWRJKSMsy7Iz4RNJ7ZsjHJTPGjVNkSf3dx9uHNAXZIEtYjTK1XS4C4Qh97gB5yWo/13lTsuga8mnluREFitIS+Mt1c3SOqekOC3ecW8YlM7IFZ8pgWGHd3FydA6nJIBGKRHSmIDaTAbMsC9EQCWYDdV1utp3u0QWzg3puxoxHxojumPKb47SS41R7Jge8IRRFLW1dVpam3c9jJO1LSyYJZN0fjtDU59b1OfpDYcFN1m42cNPSYm5fXaqNSRLcsaaMO84t113fY8hMNPP5OfkTbvuk4zOvqMURRxxxxBEHcD9wWJKkzajixwrgh2d3SmcPz992Dm2DbrbX9nLpzFxsJgPbTvcw4lezzuwWI/dcOpXzpmRxutvFivIMitLtvHHkjGARf+2CQmq7XDwd1bu0tCxN52QHE6eMV2QmCuHHABlJFqFfCFRjjDS7haNtQ7h8Id451sGcgmTyU218eLKbEX+I5/a0kGAycOG0LLbW9uINhnnziBpOPS03idPdI2qpY+sgR9oGWVmRwY7TvYQVtfStptMlqBkAZwa9PLK1nqwki2DAkmo34/KJql5YUfjh6ydo7HULhEOWYM2UTP5xsA2iCECC2cjfvrSA090j3P7cuBoSCEVYUJSCw2pkW02PGhA+aomfbDMx6A1ilCVuPKdQF1hdmZ3IrcuL+daLhwmE1B1xB8Jsru4m0WLEFaW6bT7VzTvHOkiyGslJFg06jLJEdVTJW8+ISjrGSt4MkkRKgoltp3uFxXcwrGA2SELPX7JF0sKMAWq7RqjIcuDyjZcrFqTYeGjzuFpbnG7HbjYIylFDr1tQ8ABS7CbaBlTiNRY2fbxdJMRfXqJm3T27p0UbiyjwnfMrWDcnj+n3bhLe3+cOsroyU+vPBLWvqqlvhAunZZOXYhWOu6LAeVMy+drKUq56dLfwXVaTzL2fm4o3EObjU13CNm8wTLLNJKjW2u9LstI1gfFN17APfzAs9CdePjuPS/68A1fUteWwGAlHFF4YVeoSzAZWVmRwqGVA6zOUJTAbJAKjhEpCDbOePymV718wmZue2i/8bqfNpHtYMOgNkpKgj9cwyvr7vzTDQUGqTShJvXRmLpfPzmNjVSe9Lj8XTs8mN9nGlJwkFpekcaxtiHNK0rS8uB13r2ZnXR+T0hKYmpPExhMdlGU6qMj+9PpCxRW1OOKII444PvNQFOUF4BzgtdHXYkVRXjy7szp78ARCvHbwDFtqenjjcDuRiEJrv5ePq7t440i79pQ/oijUdLrYWNWJyxfk0Rvm8s3VZczIS+KKOXmsnZrFDy+u5FvnljEz38m6OXk8dN1cbl5WLLjgnVuZyUXTc3TzuGBals4KfMoEiy6zwSCU/QEcaRtkQVGKYGDgCYaRZVkYC4YV5hQmE4qS0RRFXWQur0jX3rO/eYC8ZBsOixEJdSF7qGWQx7Y2MOILaU/zJaCl30Ndt+gyV5CaoAWFRxRV2fnaihIyE608sqWenphogX53gLUPbOP5vS3EIt1h4Zp5Bbr+vqVlaaypzCTJauJo25CmPI4hoigMe0MaSRvDoDfIt88rZ3FJGjPznWQlWbS+v2FfiEF3QOjTmpXv1GVmJSeYsI2Wl4YVhUe3NdA9AZn44GSXtqCXgEXZ+qVoeZaDFeXpJFqMLChK1RH7xl43GUmiEmoySDgsBu16SXOY6Rr2M+IPEVFUpXaiXLuUBAtWk74sNhxW+MozB3UqjScQ4s0jZ8hKslCW6dDs8avOqPdB15B+n00GmcZetxY8PoZ+d4CvPHuQO186ooubGPIGueFv+/DHqLh9IwHueeMELx9oE+6hzEQL71d1sbexXyNpK8oz6HcHBJJmkiWunpcn3heBMEVpCcI9FFFgWVkGayozqcxOREEtiX16VxM/euOEzvXSIEs6M57sJCvnTRXL8y1GmVuWFQtZecXpdr6wsJDnbz2Ha+cXsLw8nd9eNZOr5xdwsmMYq1HmCwsLyE22EYkovHG4nbeOniHbadVI2qaqTn72zknqukcoTEvg1++d4r63T3LHC0d0IfWfJsQVtTjiiCOOOOJQMZagagCWSJKEoiivnc0JnS1856WjmmPfpqouXjrQyolRJeKNI2do7vMwtzCZr/19XOn58GQXj1w/lxf2tdDnDnC8fZhd9X1s/PZyEq0martcHGsbomPIy2M3zmfDnct46OM6fMEwNy0p4pzSdH508RT+uqOBiAJfXVHCysmZ3H/FDH61oZpBT5CVFRncvrqUYCTCY1vH+2e+urKElw+0Cfb6SVaTsEAdw0TmHglmI1KMRZ5BQrfAax3wcuzetTz0cR1PRPUtDftC/PzyabxysE3rr4soqmLyhQWFVGYn8ubRdpqjykDDimoqEhsJsKYyk4+iHCV31PVSkeXQDDEk4L0TnVSdGdY5O3YN+zkwOuf+pgDpDjOJVkkjgYdaBjnUMkiO06qZSgA09bn5+bvVGGSJX35+Oj9756Qwp153gBynhbYB9TMHWwbJTrIKc5+Sk6QzyOhy+YT3LS1LE0xSFKB9RMFhMQo9dIkWE+8eU6+//U39TIrp17MYZWxGWXPuNMgSJoPMsbbx3z+3MJkPTorOnCA6gBplidcOt9LcN67iGGWJaxcU8JuNpwSTmtkFyTT3uRkY7YnsGvYzLTdJR8iPtw9RmJqghbdLEtT3jPDeCXV/pNE5TMlJEvr63IEw51ZmYDEaqOse4fTo9yqoZbdfXlrErrpewbwjGI5w67JinDYTl8/JZcVvtwhzOdo2SFGsOUpEQUEkWYAuOgPUuIO7L6zk7lePaQ6VAK39Xi6blasZCskS3L6qjDmFyXQN+zjUMkh+io3fXTWLOYXJ3LKsiM01PaQmmLlrbQWyJPG5WbksKU1nak4i507J4sV9LTy+rQFJkvjaqlKumV/A9/5xlFcOtgFqP+orX1vMUzubNIX+qZ1N3H1hJZmJFr77j3HHx+f3NtM1es13u/xc89hujt93vs4g59OAT9+M44gjjjjiiOP/MiRJ+hswE6gCxh5hK6jq2mcKI/4Qm052CmMnYsrFXtrfKizcAA40D/D49gahHK1z2Mezu5t54MNarWRwT0M/f93eQI/Lr5WPbarq4o/XzGJRSSqPbKljwBPkNxtPkWQ1ceGMbJ7f28xhzxBbT/fw24013HfZNHKTbby8v5XkBDNFaXb+4+Ip3LJ+P4OeIBKqIvG7TbUkJ5gYHF1cSxK8cahNMwEBlbgdbhlgXmGyZvUuS2rOljPBxHAU2ctwWHj98BkSYxwUGf19sW6IvmCE1n4Pz+5p1jLfxpDjtE4Yfj2RunPtggJsJiNP7WzUFvAt/R61NC6i4AmEWDMli8ZekTT0jgTY/N1VfOflIxxuHRw/L0M+vrm6jLYBD4daBjVSEY4o3P/eKS6Yli0YOSwsTmV3jClHttOqGY4M+4Icbh7Q2cE393oEMuf26wtcfWFVpRrDujl5uuiD/hG/RuYk1PLPDSfUUsGitAS+f8Fkbh+1mNf23aXvhdtU1aWRNKfNxPlTs9SS0yj85YtzAHguRsnMS7ZyJOoYApzqcJGSYNLIG6j9hmPkzSirvZtP7WzStivA5+fkMbsgWWfAMiUnidWTM/nR68eF8UA4wk1LizjSIv5+Bbh5WTFGg8Sbh8+QZjcL95/TZiIhRlUtSbfT0u8Ryk9zk63sa+wXCLzZIPPi/lZePdQ2oRJ5+excZhU4CUcUVlRkkGa38NDHp0kwG/nBhZO5bXkJh1sHWXz/Rwx4gjgsRn58yRSSE0ys+cMWjQSvnpxBil3NYRvDPW+cwGE2aCQN1H7UR7fU82qMwcgzu5soiHGj7IpRp0MRhZf2t/HlpUW6/fikI07U4ogjjjjiiAPOURRl6tmexCcBFqNMklXM5op1yEtJMJEY8wReksA+wRPrQW9QZ0xQ3TEs9CUBPLmjEadtfNEbDCv8/N2TdAx7OdyqLmgVBZ7e1cSqyRn8fmON1lO1t6GPN76xlD0/XMOPXj/Oq4fGF3ODniA3Ly3ibzubUBQIoT5lv3VZMe+d6KR90Mv+UYL2hQUFDHqDbDzRqfXG2c0G3IEwsqQqYPe+VUVBio3idLtWyigBv3+/VldqmJds09SxAU8Qi1Fmak4SbQNeOoZ8vHu8Q1DFTAaJkx1DQi+cQZJ4aX8rl8zI1YUPD3qDXDQtm/eqOvmwuouCmF4yu9nAq4faCMZYRUoS5KVY+dysXG5+Wuw1cvmC/PCiSvY19mlZaTUdw5gMkmAAUZrhoDTTzksH1D6n+l43ZoOELKvmL8vL0zkQY3xypHWQc0pSNRfQBLOBAV9YuD621HSr6mYUFCTuvrASbzDEzrpettaOW6039XmwmA2CUgZgMxuwmmR8wQgWo8zcwmTBEXLIG2TQq3cHre4YFojXGAbcQTIcFnqijE4ykyycinKrzE+x0Tbg1fYnFFE0G/9otA94ONUxLNxXVpPME9sbeHhzPdYYJ8UZeU6+8dwh3QOTC6ZlYTRIXPzgDi0gfOw4WIwyLf0eWvo9SJLqgBlRFPY09NMwet1Oy01iYXEqT+1s0nosk6xGlpSma4p6MKxwrG2IrCSLVhpZkm7nltGcvcrsRK6ZX8CNT+7TiOeOul4kSeKdYx3asRzxh7jnjSrOKUkVlMrNNT3kxly3gHSIjmcAACAASURBVM40B2DIp95D0Y6PNpOBlAT9g5NYlGba/+l7PomI96jFEUccccQRB+yWJClO1FD7af7j4kot98huNvCVFSXazyaDumj++qpSgaxdv6iQLy8pIi9q0VWSbuerK0pw2sSF1MqKDF3emFGW6Izp73H5QjT26ONN3q/qEowvQhGFd46puVGxi3xAl9MFan9QbN5TdadLZ9LgDoS5YVGhQCZaB7x8c3Upj94wl0SLUSNavmCESakJnDclk6+vKiUrxlHSH4owNTdJW+yHIypJW1qahiyp82zs9RBR1NI9h8VIWFGo7RrhgQ9rdUpeVpKF90YX1IoCLQNeyrPUAGSjLOEOhPnL5jpqO0eE4y1JEj987QQX/Gkb+SniInl2QTK1XS6NpAH0e4IsKErVvsMoS0zJcWiEawyBsML3Lqjg3MkZSJJEXoqodBSk2ITPJFqMxLRg4Q6E+fLiScKYNxjmnjdP8KsNp3SlogAPflgrkLTpeUnsqu/T3Ab9oQjyBNeFQUbI9bObDTz4UR3P7FZzugzSeB7broY+ekb8JJgNJFmNnFuZyZHWIaFX78q5eTpDDZcvRE5UnprFKLOnoZ8TZ4Y1knbFnDxsJoPWO+gLRchPsWkmJG5/iEMtg5rDZWmGnd9cOYOHrpvLG4fbNZIGqir6pSVFgiOkokBKgpm2gZjrvWNYC1Efw7AvJOTVjeGnn5vG87ct4oFrZmlED+BUp4uHPjqtUwffPnaG1gHR8bVjyCvMawyx2XUAl0zPoSxzPMxbklRzojvXlGtjsgR3nlfOHeeWC39j1s3OFXLbpuclsbw8g08j4opaHHHEEUccccB6VLLWCfgZjb1SFGXm2Z3W2cG1CwpZWZHJqc5h5hSm4LSZuP6cSRxvG2ROYQpZoxbg276/mm2neyhITWBuYQoA7317ORuPdyLLEhdNz8ZuMfLsLQv54we19Lj8XDE3nxsXF9HU5+HJHWqflyzB11eVUt3h4sGPTmvzWFaWzrq5+bwR5bCnPvFP5fl9Ymna7vo+ntjegDkmnNhkkNha263r52rt9+pUIrNBwmIUSw+NsqSZZIjfK7O0LF0gjKCWqWUkWvm4uhtjzFySE0w6a3eAonS7Lu+rJMPOoZhSN1BVkOqOYRxW1WjjnWMdwvbPz86jMDWBO14YLwUMhCNcPjuXiqxE3j56RihbPdQywNqpWXxwsmv050Ge3SMGCgMYDZKgFP1qwyluPEckVGaDzB831eKJYl9j/VqlGXbyUxI0h0pQS9QW5xjY3TFObiTgL1vqWVOZyeTsRDbXdAsZa/XdIzht44rv5KxEoTcN4PJZeTr1yWE1YjHKGlFItBjZeGLcaXFGnpNBTwB3YHx+sgwXTc3hnePjx9gTCPPcrYtw+0O6Es3j7cNMSksQehH73AHNuMNkkFg3J48X94vhzPkpNp26FwhFeOT6eQx4Ajy6tV7Y5vaHuXZB4ejx0hPQRMsEmYEGSWdYYrcYCYYmKEeNUW4TzAb+/HEdCjBvUrLu/SP+sKZejiEv2caMvGReiLpP107N4stLithU1andd/MmpXDLsmKGvUGe3NGIJEl8dUUJyyoyePEr57B+VxPdw34un6P2tK2syOCcUcfHhcWpGpnbfvdqdtf3UZRmZ3J2Ir9cN4OXDrRSlmlnefk/z4b8pCJO1OKII4444ogD/gbcCBxnvEftM41sp5XsKCUgL9kmqGUAKXYzl8/OE8aSrCauWVAgjM3MT+bpmxYKY/dcOpVVkzOo6XSxvDyDydmJnD81mySbiW21PVRmJ3L7qjKcCSYe/uJcXtzfQpLNxO2rSpmSncT5Rzt4f5Rc5CfbONqmkhrvKJtYXJrG3oY+gmGFllHL7xynlQF3AF8owv5mVdkZC+GVULOvDJJaTjW2uA5FFJ7b26IZV4BKLL//yjH+bUkRqydnCGWcVqNBWJzmp9gYcAeQZQmrycCQV1QrzAaZwhjlCWBmXjLvHe8UysSsJlkjb8NelShEhwhLwNtHz0yoULhGy8Zi3d6DYYXjMQHjW2q6Bat082g5bDQiCtgtqro07AthMkhcOiuH1w6JPUSLS9NYVJxKfc8Iwz59SWGeXeJnl01jT2MfG453akTqo1PdXDAtG3MMcQ5FYFVFOrvq+ynOsJNoMeriGnyhsC5KYX9TP/5QBLNB4sLpOWw8IRLc9kGvroTOIEskTVBWJwEdQz5dSfCuul5NYTMZJM6dnMmmk+NkMBhW8Ab0xCg32UZJup36KPU422ll5k83oSiKFrswhjmFyQRCEe554wSvHmoV9tVpM6mmHIw/mLCZDGw41kEwomjjkqSSzo1V4/Mb2zZmiGMxyswpTGZvQ78W6l3dMaydc1Dvhavn5zM9L4mfvXOSYFghx2nle+dPpiA1gQyHmT0N/czMd3LneeUkWk28c8dy3j12hiynlSvm5CNJEt85fzJ3nlehOqqOqmHpDgvfPX+y7nhNz3MyPU+MukyymrhgWrb2c4LFyE1Li3Wf/bQhTtTiiCOOOOKIA1oURXnrbE/ik4KPT3ZxyzMHUFAVpV13rybTqe8j+T/F8vIMoSRJliVuWVbMLcvEBdYlM3O4ZKZo3//4v83n5JlhfKEwL+1r4aUDoilESbpdZ4BxTkmaYJIBahmZAppJR1hRF9kXTs/l9cOqkjdWznb9wkKe29dCRFHL0x7f1sBvrpxJeWYiB5r7WVGewV82nxa+v3vYT3mWg6ozw7h8ITqHfCwuSaWux02Py08gHOH+jadYWZHOrnqVWKYmmKjrHuGHF0/h/g3VuANhyjIdukwqTyDMt9aUsa+xn9quEfpHg61PdbpItZvpHzWWMMoSH5/q4eNTPTrFcVFxqq6c0CjL+KMIRa7TyvLydJ169/axDm3BHgwrNPfpy1T31PfR3D+uMEUv8gFeqQvxVlM1N0UFqI/hYMsAhSk2jkaZeOSn2HjzqDqPnhG/rnTTZjLwh/drhd+XYjdrKlcgrLCzrheH1aQdH1Czxb6+qozvRbkHBkIRPqjqFIj74pI0Ht9Wz5aoPrmsJAsVWYlsPz0+FgwrJNr0JC8/xcrUUVVURuLy2bn8blONZgJikiUumJ7FO8fGDX38oSCFqQm0DnhYVpbOTy+bxjO7m7T+QFAJ0/WLJunU0Kvn5fPW0XaCo0xOARYUpTLgDlDXM24+47AaWTApRXjo4A9FKM9M1JW4XjY7l3BEJf/XLSxkflEq84tSuWhGDq39HqbnObVIhe9MQLQmZycyOVs/boith/4fQlEUlvz6IzqG/EjA986v4Bvnlv/Tz30SEe9RiyOOOOKIIw44JUnS85IkXSdJ0hVjr7M9qbOFm0dJGqiK0sL7P+aFfS1aE39Ln4c/f3SaJ3c0MhRlvODyBfn7nmb+ul3M0PIFw7x5pJ1ndzcJeWGHWgZ4/XCbMObyBdlV3yssokENl44NkS7NtDM1J4mlMf0nJoPE+TH5TQBTchKxxBg1pCda9H1F/pAuvwpggiozDjT182F1F4daBvnPrfWkO6zC9klpCTrb+rYBr3DcxsaunJsPqD1hz+xp5sPqLl7/xhLmTUrhzIBHWFiPTSccgfvXzRDMXwC8gRAPf3EuX1lRIqg+gbDC8vJ0yjMdSMDexn6tF2sM8yal0h3Vu9TUpxpSFEXZ5K+sSBfCiQGaej1MzUnUfq7IdAgkDVRCtP6mBcJ5CIQi7Kjr0S3UG7pHeDuKHK4oT0csYFWP2x3nllGR5WD15AxdVpnRoFcR+9wBbl9VKpzOHKeVNZWZvPXNpayerF5PEUUN8w6Gw/zgosk8esNc7v3cVIGkgVo2uXaC6y0r0SKodJNSE3hqZxMnzwyjKJDqMDE5O1FwagxGFFw+vep2bmUGcwqSOdQ8wH1vV7G3USRPEUXNydNDwR+TmxcMR4Q4BABvICwo6GOYkpuoGzunJI2fXT6Nv3xxLkvL0rXxQChCWaZDyL3rGPLSGnMNtA962dvQhz+q7PJY2yCvHWrT/d34x4FWHt1ar/uOnXW9/HbjKTYc70AZ3e+67hEe+KCWaT/ZSMeQf3Tv4Xfv19IzQW/jpwFxRS2OOOKII444wIbam3Z+1Nhn0p7/3aNtE47/8LXj7Kzr5a61FVz+l53aQu+5Pc1suHM5igKXP7yThtHyrUe21PP2HcvISrRw7WO7tXKqP35Qy5vfWMb63U1aj1qC2cCztywiEIrwlWcO4PKHMBtlfn/1LFZWZPDVZw+wp6Efi1Hmu+dX8JUVpTz44Wke3VpPOKJw3cIC/v2Cyazf1cSwT7Xnf+dYB3euKeexbfX4ghEyEy0MeYN8fWUpfxrtgzMZJGbkOZmVn8x/RvUBnVOSxurKTDacGFc1rCaZdXPzeH5fi2hB3+fWzBX8oQj9br9m/59oNfKN1aX8csMpgYyWZyVq8QBjMMgSH1aLPU9ba3sY8YU4OJqN1tzn0fqzxsrdHt5cxxPbGshwWARlLM1hYVJaAmkOM49vaxC+12YyaAoiQEOvm5uWFJGVZMEgy3QMedl2WnTl3HG6j6ao3quttb2UpNsFY4lsp1UgpS39HkHZU8+1keZ+j2aMMQZPIEJeslUrU11UnMLB5hg7/E4X03KTtDw3UInfo1vqCUYUjLKsizzwBsKsm5OnXWugqqhfWlLE9tO9bK1V93NvYz/f+8dRnvzyAl2fYigCNpOR/U0Dul5CUEOon4gpNyzLdPD49gatF8tqlFk1OYP1u8cVrx5XQDgPY6jIcmjzGsP7VV2cGTXb2XC8k1n5Yumf2ShzxVy1/y3aWOWi6dnsaxoQ+uaWlKo9XtHXywXTsnBYjIJt/8UzsjnRPkyu06pZ3l88PZu/7Wjkm88fZkpOEn+8Zha5yTa+8swB9jaq9+j3zp/MrcuLufvVY/zjYBuKovanPfzFufx1RwO/31RDRFGVyOduPYfXDrXxyBb1/rMYZdbfvJBFxanc8Ne9Wi7ggx+e5pWvL2ZarpNndzdxz5tV2txvWlrEFXPyuerRXROalQBc9egutn7/3Am3fZIRV9TiiCOOOOL4zENRlJsmeN18tud1NvDfWV2/e7yDp3c2CU/jG3rdbKnp5oPqLo2kgeqq+PL+VrbX9WokDVSb+id2NPDUzvGFsycQ5uHNdfxqQ7VmzhEIRfj5Oyd5Ylu9VnrlD0X49XunePfYGR74sBZvMEwgHGH97mZynFa1JDEYwRuM8I+DbfiCYU2l6nb5eXhzPfW9bv507WyMsmok8ti2BvY19vHTy6aS4VBdGnfX9/HGkXa+u7aCNLsZSVK/98evn+BHF08hP8Wm9s+srdBKysYQCCssLk0DVMe/7/7jGF9cWCjkqJ0Z8nJtTB9fgtmos/fPSrRqJG0M3kCY125fIvRfBcIRspIsJI+eOwlVabr0oR1sOHaG2QXjBhBGWSIzSXSjBDXz7vHtjfxyQzV/29kkWMRnJlp0Lp0AcyclYx5VT7KSrKQ7xNJMXyjCdQsLcIy6gxokqOsZ4SdvVpEQY2yR7RwnaQB7Gwd0IcwWoywYrCTbTHgCIe0cnOwYZlKa2J+3vCKdu9aW88VFBdo+1Pe4+bcn97EvRpXaXNPN8bZBPEFRbTIZJH757kme3NHIs7ubhWNjNshUnRmidcCrkbR1c/K4aHq2YFTjC0V0LqMAXcOqqc0YitIS+MKCAs0pUgLWTsnSSNoYekfUiInkBBOlGXbu+9xUHt3aQJrdTLrDTHmmg9tXlfL9V0/Q3OfBIEuUZzr46ooSntrZyI46VRVMtZv59/MrONw8wBPbG/EEwliNMo/eMJfGXg/P723hzJCPcEThrvPKGfKFtHNQ3THMXS8d4YltDZrC5w9FuP+9al492MbLB9q0hxofnOzi+b3NPPDBeKZi17Cf322q4Ynt4w8S/KEID318mgPNAxpJA9X585ldKsmNJt2gZt49s7vpvyRpAHp7lU8H4kQtjjjiiCOOzzwkSSqWJOmPkiS9JknSW2Ovsz2vs4El5foSrjGYZBmLSb9id09gkACqYUF4Amt8fyCsy1Yb8Yd0vVJ9I35qu0TFIaLArglUjd31fYJNOcCexn7eOyGGd2843sHHp7qEcsCDLYO4fGEhI2tnXR8OqxGXL6QtNk91uqjvcfP7q2eR47SyfnczRlkfKPzO0XGXynBEYVutWNZ3qsPFoCfI329ZxJxREnWkdZC2Aa9G1kwGmSynRdeDleYw82ZMnx1Aks3Enh+uYU1lplAc+OzeFn531UwWFKmunKGIwt/3tOhKQLuGfYLyFY4oXDE3D7vFQLfLr+XBjcFilHnnaIemjHUN+3QLZVlSe/R+e/VMvrKihOhLwR0Ic9msHOZlGrhlWZGOpILaDzZ21MxGmSFfUCjxLEpL0F1HyQkmHrhmNml2lTS+X9XFVf+5m3BENBfZ3dBHTrJY6pedZOXyh3eybbS00ShLlKTbWVWRQSCGdN26vJjvrK3gvsumCtsAhr1BDBOssPvdAaHMNN1hZvvpPo3Q5TitvPut5Ty9q1kLnlaAzTVd5MbM1WSQqelycdd5FXz4nZU8vauJD0520e3y0zsSYGVFBgeaBrR7IhxRGPAEGPIG8UaV9fa7A7gDYTqGx699XyjCztO9VHeIJbsfVncL/YKg3hOxZi4RBY606R1La7pcuqiMziGvbmwiZ1RQ/554A2FdBIdBkrQewv8Kj395wX+7/ZOKOFGLI4444ogjDngDaAIeAv4Q9fpMYvP3VmKbgJDdvKyYm5aWCMqJLMF3Xz7KMzubBLdBgyzRPuBlbmEyFVnjeUgmg8QXFhayvDxd+O4r5+Zx+axcYWzt1CzOj3JyA9XV7pr5BTqFpzI7UZfXVpJu12WZpTvMOnIFMODx68bqukd0JXp13S5ue+YAx9uH6B3xs7+pn9WTM5g/KYW1U7P44UWVxFJTTyCsC1Gu7hhmWXk61Z3iYlgGFhSlEAxHONqqKjVZowqYQVLdBtfvbtaZguw43cs1j+3WxQUoCvS4/Dqr//wUG0tL08hxWlk7JVNHsoIRhePtQ5rTpcsXIs1hpjI7kTmFydy1tkLIEAOQJYlLZ+YgS6rSFFHgHwfbuP3vh2iJ6TEC8AYjHOwO8+SOJnacFvu+HBYjG6s6tWO5sCiVYa+4b71uP9lJIoGZlptEWFGEvq9TnS7qJygxzEq0aETQaTOR6jALZC4UUXj21kVMzXXqPnu0dZAHPqzlvreqMMZcjFVnhvjTh3XCWLrDwqGWQc2hszzToeun6xjyMewL0hRjyhKKwJ1ryrX7yGEx0tTnYfvpXu59q4rfbqrRPdDYUttDW0yOWe9IQHhAMQazUX8/JNvNOjKfn2JjZkzJ5ayCZF0/aHKCiesXTdLUVlD/Tly7oJDSDIfw3qvnF2gPEcZw/aJJeAMh4X5OMBtISTAz/xcfaEHz0XjnWMdELaTq75iXT1mmvtfu04A4UYsjjjjiiCMO8CmK8mdFUTYrirJ17HW2J3W2UJzuoPrnF9P060vY/v3V3H/FDF79+mJ+cFEleck23r9rJT++ZApGeTxb60DLAEtK05gxapsdjij842AbP3mriq+tKNW+OxhW+PEbJ/jNlTOEhdgjW+q5fXWpsGg73DLIgqIUfnLpVCqzE5k3KYX1Ny1gVkEyf/rCHCqyHCQnmJAk+Pm71dhMMrlOKxKq4vP64XY6hn1afpTFKHPPJVO5eVkxCVHZaCsqMvjykmJB1TEbZG44p1CnaE3LTcIV88Q/GFawmGQ+ONnFbc8e1MUYtA96tPK/MXgCIW74617sZnE81WFhf5NY7mg1Gfju+RWCIhUIq4rXGDlWgGNtQ7TFEKJEq5G67hHdItZkkDnYMkDHkI8PqruF/jNQ1ar2mIDkAXeA/BQbh1sGefDDWt1CfsgbpDwzkU13rtD1itV1uYTznZFoYVvtuEoXDCsUpSUwf1IKF8/I1ilIO+t7mZqTJIzNyE/m77cuojJ7fBH+8OZ6ttSI6h9AbrJVULNyk63sbujXiOCwN4g1pjdNktQSw8OtA8KDgaL0BPY3DaAo6nkIRVRLeqtJZkpOIp3DIul/+ItzCEXE43G6e0RHWpJtJn78xgkd6bKaZH70+nFkSeLh62brjEC21HSTahfLTidnJXLRDNEpdXl5OrfEXPtzC5P50jlFTM4aP4bZTivNfW6cNpO239lOK9Udw2w/3YtRlrCaZJaUpvHnL8zm6vkFfO/8CsozVUOXZ29exJScJB78wmxm5jlZWJTKYzfO51THMPVRhjhjJZ7R13tldiLT85zc9PQBTT01yBK/vWoGj22rF9T75eXpZCSaNTVNQc3te+T6udT+4kI2fGs5+/5jDb+7ehafVsTNROKII4444ogDHpQk6V7gfVRTEQAURTl09qb0yUBBagLXLSwUxlLtZuYXpeqezjf0uKnpFMug3q/qwh2zsDzZMczTO5uEMrbmPg/P7WkRFm3dLj+Pbq2nON1Ofc8IwbDCd14+yjO3LOSyWbksKk5lya8/1koTO4f9XLewkMMtA1qo86AnqPbrrC7lqR2NfPOFw8zMd/LXL83jYPMg7x7rYFttDzc/vZ+fXT6d7ad7aR/wEFHgsa0N/Pzy6bx6qI2mPje5ThuJFhNmo6w5YIK6kNwa5QTYOuDlqytKeOVgG33uACOjqlSO04oCdA35aB9UX7KElsclS1CQnMCAJ6ApWaCSrdieLlDdBrfWiKYTZ4Z8PHrDXO55s4oelx+XL8RP3qpiYVEq+5rUPiJZUslGdPC12x9i7dQsPqruIqKoTo8ZMY6YJRkOzfBkrHyuJN1Ox5APbzBM1Zlhqs4M80F1F6bYY2SQ8QTGrwObyUCPS7x+ZEmiIjuR/hHR8RPUY/TANbO5580T2n68d7yT0gwHbTGE8lDLgBADYDcb2FTVqalZVpPMrDwnZwbHS20VYGFxKkdaB7Xr+vLZudy/oVqwp59TmMzUnESaekVi+73zJ7O0LJ373q4SArpBvY7T7GYGo1TVNLtZiI9Is5uJKAofRRnK5CVbMcqy5px5qtPFvW+fFOICQFXr5hSm8PbRM7h8IablJnHzsiK21faytDQNTyDMrIJkLp+dw18211GWYScn2cZ5U7KIKAorfrcZlz9EYWoCNy0t4sPqLt46Ou62uaoig1SHWcvIC0UUzEaZx26cR6LVxMOb6/jzR3UEwhEcViP5KTbeONzOv79ylGBYwWYyqOZAUbEJANtP9+rKnU91unhxX4tgiBKOKOyq69eVuVqNBnpc4rUy7Aty8ShBnZorEvtPI+KKWhxxxBFHHHHADOA24NeMlz3+/qzO6BOOqTlJZMaUFa6anEFRuhjeXJxu1+V/SdLE5VYTBSK3D3j57cYarY+lodfNXz5Wy8o6Rk0OotE24BFMTQAae928vL+NY+1qmeGxtiF+855aLjZGVk53j/Dnj06zbk4uh1oGOdI6yBtHzvCdl49w32XT8PjDvH+yi4c212GQ1IW1LMF5UzIpSNVnzKXazUL5HahE5OalRUJpZERRlQWbUS0V3N3Yhz8YEXraTrQP88T2BkGpkyX46dsndZbs+Sk2JmclCS6ToMYe3HBOITaTjNkgM+DWH+sBd0BYDPe4/Fw2K4fidDtrKjMpy9AHad99USXzY0rXTrQPcdH08ZJVgyyR47QKvUgt/R7mFoqf6xnx8/zeFjZWdVLbNYIxqrwzL9lGn8ePLyT2Ij0+6vwZjWBIYXqek2SbiVn5Tq6YkydY1PuCESwxxNcgS8zKdxLd/tTa59ZliNV2uihKE5Uws0Fm/a4mzrn/IzbH9PLZTAZ++vZJIcw6x2mlb7Q3bAzr5uTpymMLUhNIiFFie0cCfGVFsWZAkpJgYk9DH8/vbcHlC3H+tCye/NICbl1/gAc/Os3O+j7aBr18dWUJX3n2EO8e6+BY+zCbqroIhiPc99ZJrVy2pd9DVfuQrgf0YMuA7p7yBMJ0DPlo6fPw+/drtBLhwy2DPLq1nl+8W62db28wzK/fO6V7YDPiD2lqdzTyJ7ifFhWn6kpF10zJ1JVQr53yX/fYfhoRJ2pxxBFHHHHEAeuAEkVRViqKsnr09enzcv7/EWajzNM3LWRlRQalGXa+taacW5eX8IvPz9B62NIdZn7++encvrpUM3cA+NLiIr60pJiMKKKXnWTlqytLKY0hA0vK0nXKXVOfm8013SRajExKE4nh6smZrJmSKYytmpzB4VaxnPBo2xCHmsVFeNuAl9cPiUYdA54gj22tF2zovcEI187P56p5+Wyu6eGFvS1CaaFBlthU1am5MI4hJcGkczIE1bzBG6U+hSIKNy0pIjXq853DfnKcVn65bjoGedwYY8ATpCDFppWotQ14ufbx3ToibDMb+PueFrzBCL5QhL2N/ZrLJYDTZkSaoMmnY8hHY6+bj051cyTGSMIoSzyzu0lQikAlkXsaxhf74YiiyzIDCIfDGCTIcFi4flGhrqR0SWmaRtaa+jz825P7dL8rHFGt8KMRjETYVd/HoDfI0bYhWgb0bovnTslkUXGq9vPy8nTeO9EpkMmDLUNCdhxAqsPMLzdUaz8XpSWwanIGx9pVZ1N/SCXZcwuTuXBaNmFFLHmckp3I3Rfqw557R/y6c5busJAQY7LitJnY09DP7IJkfnzJFOZPShHm/H5VF0/tbBRIX4/Lz+NbG3Tk/a2jZ3QmHA29bopinDPLMh0siyFEhamq8ruvqU93bht73Ax4xIcUPS4f1y8SlfnrFxXytZWlQinm1fPy+fKSYs6tHL+HL52Zw6Wzcll/80KWlKZRnung7gsruXZBAQ9+YQ7Xzi+gMjuRm5YWcd9l0/hXwj8tfZQkyQpsAyyj739FUZR7JUkqBl4EUoFDwI2Koui16jjiiCOOOOL45OMokAzom1v+G3zW/4+cmpvE+psXCmMLi1PZ9YM1NPe5mZRm1xaf276/ml31feQl27SSpHe/6GFDYgAAIABJREFUtYzXD7UjSxLr5uaR7rCw/uaFXP3obs31btOJDgpTEwQziqOtg9z01H4kCW5dVsyAO8jmmm763AF+taGaLyws4IuLCvmouot+d4CPqrtJd1jwBccXqguKUihITdDKuUAt4yuZQDVKd+jt7Jv6PWw4LjpKzsx3UtPpwh+KaOYdaVHK2okzw/zkjRMsKk7V7Myzk6wTWt87bSb6Y0hJU5+H8sxEYtq/SE+00BpFRrpdfhYVq6WOigJJViMLi1N1hiIrKtJ588gZQhGFIa+a12YySNrCf1puklCK2jnsZ/XkDFoHvJwZ9OIJhNlZpxKy6HK8C6fnsOF4h/C7guEIKQkmjUCkJJg4Oqpw9oz4dTEEoDqGhqJISCiiUJJhF66FJJuR4+3j8Q/r5uTy+uEzwvf0jfgpz3JwerT3a2pOEjlOmxAavaWmh4VRxG0M2UlWWge8hCMKxel2IZB5bE7ugEgwwxGFH186lfJMB7N/9oGwbaxEdCwHbwx7GvrUns/RMtiitAQ2HO/Q3iNLKjlq7vNo8z7cMsi8SaIqCejMTQCynFYkCYFUTctNon3QKwSXN/V5GPYGsRhl/CE19mHQE+QvH9eRkmDCaTNRnG6ntsvFtY/tAdRSUl+Uk+SFM7JJsBh448j4ebhibj4/uLCSypwkDrcMsKAolctn5yJJElu+t4rNNd0UpCSwuDQNSZL425cXUN8zglGWtMiFuYUpPH/bOcJ+pdrN/Oaqmbr9/VfB/5seNT9wrqIoI5IkmYAdkiS9B3wHeEBRlBclSXoUuAX4z//Fuf6vweDpx3Zqw9meRhz/gpB9wxx2TcLWrv8PKI44/k9h8PQD/1plHmcRWcApSZL2M96jpiiKcvk/+dy//P+R/xOYjTLlWaLLmt1iZG2MO1xmoqqiReNg84BG0gAOtw5x94WTaehx0zbgZcAT0MoVFQXW72rm7gsn88ohNah7zH7+oevm8OK+Fm2h2zPipyTDTvuAF0mC4+1DTEpL4MLp2ew43UtGooU5hcmUZyUyPS+JE+3DSMCcScnkpdiYnJ2o9d+lO8w6t0GA6blOjkVlxoGaNba7ro+R0TK3sKKabqyqyGBLbQ+dwz5ePtBGfopN6LX6wwe1pDvM9Eb1a+Wn2Mh2WgTyNzZ+OIaEJSeYuGN1GQ6rkS8umkTbgIfHtjUIC/Wx3rgxRBS4dm4+Z4Z8DHoDlKbbhQBrUNWVH186lTV/EL12yjMdVGQ7ON09gs0kC+HPoO6z2x/CZJA4f2q2zvDjVKeLLy4s4Pl9rdpYv0f/bKM800EgFGHIE2RpebouzLux14PdbBDKCitzEgWDjprOYR2RBMh1WjWCAmqJ4p4oMheJRHR9Uv5ghDS7SOQzEy1UZiXyt52NOG1G+qPKTHtHAjyxXc0BkyX1IUC/OyAYkNxxbhk76noFgxdZkrhoeo4QzB4aJY8Hmge08s/l5el8ZUUpbx/r0AhtSYYdCVhels6u+j5CEYWyTAeNvW7MBpnSDDuyJNHa79EiGkIRhWvm5dM64GH3aPnngCdIusPCpDQ7m6N6I33BCMvK0vEEQqybm88Vc/O5eEYO5VmJHGsbZHFJGjcuLkKWJa6apyrRwvFKsnLtAlFtA3RmK59F/FOipiiKAoxd3abRlwKcC3xxdHw9cB+fwv+EysrKzvYU4vgXRl2di+HBAeaVxBfTcfxvICv+N+z/Hu6N+rcELAOu+2cf+lf/P/JsoHcCI4nGXjcRBWbkO9lVJ9q4B8IRnYEJwN5GvflAeaaD9gGv9vT/lYPt/PCiSjIcFp7d00xjr5tXD7Xzk0uncOXcfH7+zkkONQ9yqPkwn5+dy23LS6jtcuHyhQhHFIGMSBI4rEadamGQZJ2NvcsXoqZLNAGJRBR+etk07n2rSjgWcwqTOdE+RDCscKR1kCse2cWfrp3NfW9XaX1Pbx/tEMibLMGmqi42VXUB4A1EuPO8cpaVprN99PhNyU5kzZQsXjrQJsyjutOllTgebR0S1BJJgmd2N7OjrldQ3kBVil452K59LsdppWvYR0SBrCSLQPjePd7B9NwkTkSNTc5K5JfrZrC1tlcLhq7ucJHjtGrEfXpeEn/d3qgd8x6XXzePHKeV86dl8ftNNUQUcFgMnFOcps0NVLJc3z2iO1f7mwY0klaZnUgw5rw193u5dn6+cMwMslpCOHbc5xelct/npvHo1nr+/PG4RX+aw8zFM3J4dnezNhZRVMfRVw6K56Cm06Xru4soCoNe/b0x5A3+P+ydd3gc5bm+79m+Wkm76r1bxUWWe+82NcR0EkooKUAagVTSz0kjCamEkgQSIPRqTC9uuOFu2bItWb33stL2Or8/VhrtaJ1fOOcAIfDd15UraDQ78+1oYebZ932fh8vn52LUa6jITKQyx8ofttazfno62VYziWYdf9rWyB2v1QGRFtc/XTmPH7xwgm11k5/B65cV8NBetdtkw4AzJtagod95xqrzl9aWsKxksj3SqNOQbDFg0Gnxh8IEw2G0mv/U2Ol/H+/K9VGSJC1wGJgG3AM0AXZZlidqvZ1Azj957Y3AjQAZGRns2LHj/7jk95bKykoqKyv/3csQfER58MEHCYVCXHzxxf/upQg+wnzY/rv6n4gsy29LkjSHiLi6AmgB/vxuXvu/vUd+2O+P/y5snjAmLXjHCyI6DTwd9WBsUY99UWrTUKRRizedBNOkPgwa8Ec/azuHYvLCXj3UwIlB9ZzOfVvrSDVLKqG3ubqbbHmIB477lO2pZgmLHvpcMt4Q/HVnMyYt+EMwcZbXT/aim9KJZtX4GNJMvkcAgj5OnVa74gH4XWMqITLo9PPi7qP0jKjbIqWwn08W63EEZE4MBhmMGsu6Z3s90kgbuxonqza1vQ4OVtdQlqShfiSy2vwEKSbQ2ECY5fk6Tg2F6HHJ+IJhanscmLQQGm/fSzJK2J3qB/qeUS/fXWjEEYD2sSAvqgtz5BvduK0amkcj5z7d5+Dz971Jl13dRuj3+fjWAiNhGQ72uVVVun6njwUZWg71RS6kQQML4+3cv6tP+Rs5fSEe2Hoi5rr2Dg6TqAdnAIxaKEvSUj0wedHqeh2UJ6nnw0w62DQuqpJNsDRLxystk9c0LIM1PEZ//RGeO6B2hRxy+gkOq1syARyDvWglVNEL1a39DHnUQk0CnoiqNkpEhOFEoLvVKHHrXCOXbvYyYRgar4eLphnoHJkUeKOeIA+9dYT2YfV13nmynfjx6zFBusaJ1ipzKKrbsyxJQ6nezhtRr00xSbjbatjRMflBf67Bz0tNkYO9dKyb7UcbuKkqtgot+P/zroSaLMshYI4kSTZgEzD9TLv9k9f+FfgrwIIFC+Q1a9b871YqEPwHsmnTJux2O+JzLxB8OJEkqQz4NJHq2RDwFCDJsrz23R7jf3uPFPfHf86MOWM8vLeVsCwz4PCp2qxcAbhuaQHbTw/gDYRYNSuLz55bQVZxL3dtbcDlizjfffr8GZTMGOZnL9fSPeqhMsfKNzfOYPuf9qhs48+aW0LDjiaVDX1SooXEOAMMR5mNSHDabyUsT7bsDXpkbl47nZ9FmUt4Q5H1PXmwQxGFQRnKMuKJM+io7rBzaniyQiXLkYfubpfM8w1BtJKk2MgDpKUkw5BaiE4rKSHYXM+kHAS0BjKyc0gIhDg91g+e6FkqDeaMIqBOdZwRQzqN9kkR3OGQSYiytQdITozjaxvn8u1nj9PjmqxcekNw5aI8XjrWDVoNiRYDA+5JwxWTXsO9J0KMeoJkWU2AWgxftnoO+5qHVa2LW9uD5NjMSkUNwGg0cue4UihLj2eygB0hoI8HIu2m/jCcCqTS41JXqIaDejZMtyrRAnEGLfUjk+txByE/O53qAXU75OVLy3nzVB8HWofJTDQx4PQqgmrYC2FLKqCeU8zJyWXNmpmUtx6kK8oB0qTXsK1bUlXxbHF63moPEJYjokuSJGxxevqjqsp5yWaS4wwci2qplYhc++g20VGfzN7RRHyhyb+7MwC+uHQi3xVNMrO0kL29zaq5svnTcijPSOCBPS0Mu/ycOzOT/944k6cPdzCwv50Rl59FRcn8+JMzef1EL6XdHXgCIRYXJXPrhjJerenh0f1tWAw6bjurjIN7TwKTqu9AX5gHl6/EdAaXR8E/53/k+ijLsh3YASwBbJIkTQi9XCD2awKBQCAQCD7c1AHrgU/KsrxCluU/MfWJ8l0i7pHvHdOzEvnlpbP59WVVZ5xTOdI+Qvuwm36Hj7/tbuWOV+vwBUM0D7roc/h4ZF87X3n8KFlWMx0jbhzeIHubhrjhoUP85rLZquDluh4HN64sVn6WgAvn5PD5lcUqk491FekkT4kZAJVUUvCHwjGVO40k0TqktjhPNOmZk2dTVHwgLKPTSszISlAcGHfUD6qCpbWSxEvHu1lXrna2dPtDPLC7hcf3t9M/JXA502okLcEUYzKh16qrhjIRl82JaACJiLnExrv3xDgyWs16njjQgdMXYsQdoGnAhW38uhp0GrSSxKgn8pqeUS8VmQkkRblY3vzIEY62x85vnzsrQwmnnpGVSHfUvGJ9v1PlFHp+ZaZKwEDEFKR8ynxkQUqcYlaSGm/g8gXqGSmImKFEX5+kOD1ZNhMhWaY0PZ7zKzNjTFzGPAEyEifXE2/Ucc2SfJ480K5yvTTqNPgCYfocfkWkXTwnB7cvqFz/sAzrKtKUGbEJ+sZ8MU6hMpBonlJahsiXC1Moz0xQXbP0BCPeQAhJkhSn0hlZiXTbPfzs1Vp6R73YzHq+fW45P3n5FHe8WkfbkJsxb5ClJam8cLSLn79aS0O/k84RD00DLk50jXLHa3V0DHuo63Xw5ceOxFjpJ5p06LXCbP5/yr+8YpIkpY1/S4gkSWZgA1ALbAcuG9/tOmDz+7VIgUAgEAjeJy4l8pX4dkmS7pckaT0g/YvXKIh75PvP51YWqfLDPjE7i5oudR/dmyd7eWx/u2rblto+HtrboqqUdY546LJ7VEHbL9f0kJJgZElxxPFPBn73Vj1aDXz3vApFrG2t7SfTaiIx6gE0M9HE0pJk1fpMeg3XLytSWb9DJCdrKjqNFCPofMEwRakW1eyULxhmxbQUAEKyzImuMXY3DPCLi2dx/bJCPru8UPU+Q7LMytJUZe3twx6+/exx/mvjzPHqVoQ9U+b9IGKo8eotK7l8fo6qDNxl9zA334ZGipiXbJgSgQDwmaUFfOuccn51aaXKzAPA4w+p3qs/FKZ/il18nEHL33a30m33otVKZwws/uzyQv746TmcV5mJwxtUiW6IhERHC80FhUk0D7gUt8lBp5/jU9o7AfY2DynGKnnJZu67eh63PXWMw20jNPQ7+fueVuKnCKbTfQ76xkWxTiNx91VzSTTp+cELJ1R/j+UlyTEldW8whD+k3to/5mNOnk21bU6ejUvmqT87CwuTuHFlMXlJk5+7iswEhhxe1ZcLZRnx3PlGnWLLPysnke+cV8H9u1rw+EPKmm5YXsieqOy0/nE7/83V6qiKx/a38coUE5bqDjtvnupTbQuGZVaXpylfMGgk+M65FapsQMG74920PmYBD4/34GuAp2VZflmSpFPAk5Ik/Qw4CvztfVynQCAQCATvObIsbwI2SZJkAS4CbgMyJEm6D9gky/Kb/+IQ4h75PpNlNbPtm6vZ2zREqsXIjOxEDrQMqzKhClNjzQ0MWk3MgzUQkyUFcKhlWBVsHArL/H13K73jZhgTPLqvjZtWF3PnG5FZst4xLzf+4zBP3biEmx89Qm3PGMiwra6fv35mAffuaOT1k730O3w8caCdteXpbDo6+fCr12ooSI6LvG6cFIuB0SnVK0DVpgbg9Icw6iLvsdPujtkf1Pbv/lCY9iG3ylGzfdjD9KxE6vschMMyMvD3Pa28eKyb9RWxQqwoxUJNp53OEQ9OX2ySxT/eaVWqaLY4vSrzbG6+TTHdUJBhebaWEdlCUZqF16NEgD8YprHfgVYjKcYaeq3EWdMz+NLjR1QujhPRAFlWE0adlmOdwxOHp8fujQkeH3D6WT89nZ31A0hIzM23qaz6O4Y9bKntV0KcJ1hZmordHaBn1MOcPJvKfj4Yltle149Bq4nJ/fME5Bg7/sZ+JxajFpdvUtB5A2F8wRDpCUb6HT5mZifi8AT45jPHybGZmZmdSFWejcqcRDbes4fOEQ+5SWZuXl3M9tMDbK2d/JuUZcRTkmZRXacTXWPsb1aHWQMc64wVru5AEJNeqxKcCUYdaQlGxXUVIlXEOXk21eca4NJ5uXxxdQmH20aYkZ1IbpI6j07w7viXFTVZlo/LsjxXluXZsizPkmX5J+Pbm2VZXiTL8jRZli+XZTn2v3wCgUAgEPwHIMuyS5blx2RZvoBIq2I1cPu7eJ24R34AGHVa1panU5lrRauR+PlFs5TWqmyriR98Yga3rC/FFBUO/IVVRdywvEhloz8nz8b1ywoxTGnBWlKSEnNOrUZizKM27HD5QuxtUj/o9ox6eeJgB6d6xpCJhFf/6vU6Ou1uClMttA258fhDtA65efl4Nz+7aBba8b7G3jEvr5/s5arF+Uo49pDLz+6GiKviBAnG2DBqnUbiRy+e5O7tjbxwtFu1vy1Oj14T+4in08ZWNIpTLfztuvmqis+g04/bH1JVQBJNOl470cNEUczuDjAtPZ6kOD0pFgNz822KSJv4/dryNApT4og36nihujum9a1n1Mue7hCnesboHfUwpcBEKAxp8ZPtfPPykwjKskp8QCQP7B83LOKhGxaqMtYgUgksy1C3zwZDMltr+wmEZELhsKo1cIKp4dOR9cgcaR+hdch9RqfRpgEXf9zagGHKde4YcVOYEkdynIE4gxaNFHFPnBBp8/JtJMcZON3noHUo0tJ764ZSki0GasfP02X30Dbk5ktrSvj+CyeUKIfOkYioPNCsDm+v73PiD8baR1RkxlYpL52Xqwr21mkkrlpcwFfXlSrb9FqJWzeU8e1zK5SqrEGn4YcXTOfqxfl8akEeOo1EglHH98+fzvSsRFLijZw9M1OItP8D78pMRCAQCASCjwuyLA8Dfxn/n+BDyNkzM9lfmkrHsIeSNAu6cQGw81tr2d04yLT0eGbnRlrI3vz6Krac6iPOoGVdRQYGnYa/XjufP2xpwOkLcvXifK5clM/BlmGeH68K6LUSN64q5kDLMH/c2qCc99L5uei1khLyPLHvwFisDj/VPcaBFvXDcyAkU9czpjILgUj1yD4l3HpaejzBkExDvxOHL8jB1hFykyJGGzaznkVFyYr9/sSxP7OkgM3VXdjdAbad7lflpOm1Ek/sb4up4vSNeVWB0RM4vEFVD3BVno1dDepWSY0E1y0rxOkNUt8XK1y+uGYav3njtJIH5guGsZn1nFeZScewm91R1/Fwm52FhUmqgO1Mq0m1tv0tw3SOeGIs+XvHvFz74AEgMoMVTWq8QRF2Wo3E2vI0xVQEIm6LQ06/6lpZDFoe2Tdpoy8BayvSVS1+tb0Osq0mZYbOYtCyO6qV1KTTkGQx0DPqVUSVViPxxTUl3B1l2w+Rv/XUMPIdpwdoGVTPNJ7uczDo9KkCqiHyWavMtaq+RKjITOD65YXsqB9QKpLLp6Xw2RVFjLj9PLSnFYNOw9c2lDI3P4lnv7iMR/e1MeLyc8m8XKrybMzLT2J1WRq1PWMsLUkhe7zFd+e313Kqe4z85DiSLBEh/avLZvPfF85Eq5HELNp7iBBqAoFAIBAI/uOIM+goz1SbRqQnmrhkntooItGkj9m2pjydNVPMOH5zeRXnVWbRNuRiXUU6xWnxLCtJoTA1jn1Nw1TmWvn0wjxG3AGOttup6RpFq5FYX5HOmvI0JXAbIg/kS4pT8ARCqpYwjQQrylJ5dMo8XVlGfEz4dIrFyN4mtTBy+0M8+YUlbKvrj6kcAXgCQZVjYzAs84nKLF6p6SEQkhkZr3gtK0nhSPsI3kCYQ20jHGobITPRRO9YRHTotRKj3oBqPbsbB5mZnajKQ+sd9fKHLREhq9dIqly5BJMOly9I04C6+mX3BLhyUT73bFeLFSCm0unwBmL2efNkLzrNpFBLsRhUQeH9Dh9VuVY6RjxMS4vnUJu6pXVqPhmA2aDh8gW51PaMMS09gUOtw6qw6ZwkM59ZWsC2OnW756xcK59amIdBp2VbXZ9KZHqDYdaUp6ks9UNhmaEztN7OyrbysqFH1WZYmh5PRqJRJcbn5ttISzAxLd1CY/+kiFtZmsZX103jliePcrxzlPKMBH53xRxmZCey+cvLee1ED7lJccqc5DfOLucbZ5er1pAab+TWDWUxa5uRnRgzK6jXaqiaMksHCEfH9wEh1AQCgUAgEHzs0WgkzpqRodomSRIXz83l4rmTQi8twcjlC3Kp6RolFJZ5/WQks+u2DaX8aVsjwXExcMdrtdz16bmc7nXwzOFOrGY9t59bwbkzs/jSmhLu39VMMCxz3qxMrltWiN0d4N4dTUBk5uqW9dNoGnCqZsqsZj1XPbBfERtGnUYx6EiNN+ALxHpQegKxJqaFKZaYFs6KzARm5iRytN1OXpKZ0JQ+RFmGT1ZlU5Rqwe4OkGU18UxUUHMgLHPuzAz2NA3h8AZxeIPc8NBBVkxLVVWabGY9G+/eE7nmUXNbs7ITY9bUN+pV7ZMUp1dl6gGsrUhThVkDLClO4Yv5SXTZ3RxoVVc1x7xBpmcmKC2FRp2G3Q2DUcYeUswcY++oF50kqa43wP6mYd482YckRQLEo9FpJCpzbDxBh2r7hhnpSBqJJw+0E5bhnJkZfHpRPta4iAmJwxukMsfKN84uV1pV9zUPMzvXys8vquTWJ48qIk0jwdkzMvjxxhkkmvS8+JUVeAMhlWCalWNlVo4VwX8mQqgJBAKBQCAQ/A94fEpF7K3aPvKT41QVqFdrerlhuZ0NMzKwmnUsKExmXUVECN64qhhrnJ5gUOaqxfkYdVq+fW4F51dm0dDnYGVZGqnxRn5y4SxuffIoLn9ofBZMT8vg5Dl8wTDXLs3n8f0dDDr9vHS8J0a8zchKiKkELShM4vED6vcQCIXZUR8RSsMuP0adRiWS9FqJX74WyWG7Zkk+Z83IVAk1ALNBF2PjH2fUcP2yQvY1DxFv1HGobbLqFJZhcZaWtVWlWM06frj5pOoaJlkMfGJ2Fk8f6sRi1LGqNJWH32lTHV8raTDoNEo2XiQEuoe/jOezTRVXJ7pGlZ+LUizMyknkpeOTJibVHXbWlKWxo34yu29WTiKf+fsB5ecUi4GcJDPHx6MBZDkSkJ2bZKZzxINOI/Gtc8r51MI8DreNsOloJ5Ik8amFeayryKAqL4m8JDNmg44rF+Vh0GnYMD2DMU+AfoePqxcXkGk1Udc7xqgngFGnITcpjiGXT2VgEpYhNcFIomnS+VJUtT5aCKEmEAgEAoHgI0XvqBdJgowoI5H3kqkZVgathrEztOk9uq+NzcqDdTO3bSjjumUFfOKu3Uqo86P723j1lpXsax7iv186xaDTxyersrnjkkrOmpHB51YW8eTBDtLijZwpOaJ31KcSN75gmOuWFvDM4U4GnX7u3t5EUaqFEbefQChMeoKJF6q72TA9XZnVykw0xThk+oJhvnteOU5fiL2NgxyOmqF6dF87n19RzJLiZMUt06zXnrFVscfuw+EJsWF6RKRGCzUAgwZ++9Zp1cwZRCpSy0pSuXuiRdLhY9jlUwVGQ8SxcEKkJZp0XDA7SxUE7QuGWVOWhsWow+72q2zoW4ZcTMuIdQydOL9OI7G2Ip36KcYhDl8Qi0F9vcIy3HPVPDSSRKbVRFqCEZcvIlotRh1FKXFctSifjmEPF96zW4kLeOFoF098YQmX3rdXcVN8eG8rm7+ynM8/fEhp63ziQDujHrV7JaAycHmvkWUZaaqLjeADRQg1gUAgEAgEHwlCYZmvP12t2MBfPDeH31xWxdGOEe54tY7eMS8XzcnhtrPKsLv9/PyVWo52REwsvn/+DKxxsSHCZ+K2DWXc8NABxTL/q+umsbQkheeOdCltiekJRt4+ra5kPbC7meR4gyLSIOJ8+PiBdv64tUERHJuOdlGUaiEv2cxdWyNCpX/Mh06rbr8rSbOcsYIy4PCp5p1aBl388dNz+MbTx2gZdNEy6EKnkfjLZ+Zjd/s51TPGySnZdACv1fSRnWRCc4b8K4c3yGOfX8Jj+9v47xdP4QmE2FLbrzL6MOu1ihnIO81DrK9IV83iGXUaaodCRHdnWs16vnlOOSunpfL7LfWqc456gly/rJDXanoIhGWWlaTwclQ1bMwbZNgdKxazbCbSE0wcO0N+WllGAm/XDyrXPtdmVqppwbDM2/UDquy5CTZWZfNOlNV9cZqFu7bWs7txiJnZkcD2x/e389z47OLxrjFu/MchPjE7WxFpEKng/WVnk8ryfswb5C9vN6tm7wCa+p1MS4+nsT8y96eR4FML8mLWdibCYZknDrZH2ihzrFy7rAC9RsMftjaw6Wgn6QkmvnNuBYuKkrl/ZzN3b28kFJb57PJCvj5lnk3wwSGEmkAgEAgEgo8Er5/ojapgwfNHulhTlsYPXjihmGzcvb2RZIuBnQ0D7DgdeSBvGXTh8oX4yYUzuf35GvaMG2f84uJKSjMS2HS0k2cPd5JsMfKVtRFRtuvb69hZP0BpxqTD5OOfX8zThyLzaJ9dUcjF9+4FJise/8wNr3fUqwiFCY512GkbUhuGBEMy1yzL56G9kfa/pgEXTl9Q5eSYmWjiDH4Z7G0aVFXegmGZo+0jPLa/XWlXnMgsmxBb1Z12qjsjQdTRGHUarrz/HS6am4NZr1O5WAZCMreuL6Uq38bNjxxSvW5XwyDrK9J5Y9w9Mc6gxe1Xv2+3P8jJLjsP7WlBd4aIge2n++hz+Ig36s5ooZ9k1iu5ahBxX4w29IgWiukJRu7Z3qS895tXF1PTOUrEIZQMAAAgAElEQVRnlJB2+0MsLkqmaWDSvOP6ZYUkmHXMzE7E7g6wrCSFYbdfyTE70m7nK48fQTOlGtU96mXEHVsVC07NJSCST5ZsMTAclQFXmWvj2+eU8+i+Ngacfi6em8OiomT6xrz0jXmZlW1Fo5Go7Rnj+5tqqOt1sLosjTsuqeQvO5u5b3wG8qVj3dT2jjEnz8Zd466mHcMePvfQQe69Zh4/f7VWOedd2xqpzLXFzG8KPhiEf6ZAIBAIBIKPBM1THAYB3mkaUjkhAuxsGODtqBkkgO2n+/nRiyd561Qfbn+Ig60jfPWJo7x+opfbnjrGnsYhXjrWzZX378PlC/DXnU18d1MNl//5HX71emR2Kz3RRNuQi4f2tvCNp49x9eJ81TmyrCaqcqzkjNucAyRbDHxuRWGMGFpQmMzMKW57kgRdU6osfWM+blpVrOSs9Y552d04gC6qClaRmcCKkrSYa9Pv8KlmykJhmVvWTeO8WVmq/dz+ELesK+XiuTnotRK+YBinL8Sj+9pp7I+15d/fOsQDu5qxmg2q7RmJRkWkAYy4A6SY1GImy2rmyYOdNA24ON3nUFoyNRJMS7fQNhR5/05fkNdqerAYJ6+bTiPxzOEORaStLkuNyZ+zmfV8/awyfvCJ6Qy7Jk1DQmGZI2125hckqfY36jQ8E2VgMjM7kXn5Nr7y+FFOdo/RZfewu3GQmk51xEF9n5PSdHV+W2q8gXNnZmCMEpil6fFcNj9H9ZlINOnwBUPoNZIiRpcUJ2Mz61n7mx38bXcLGYlGFhUlc9fWBpb9chsb797Dht+/TbfdzZcfO8KRdjtuf4jXTvTyk5dP8eyUecIXq7tj/h1w+IK8dqKXqVR3jMRsE3wwCKEmEAgEAoHgI8H66RlEd+lpNRIXzctRhUFD5GF76kN0aUYCB6fkntX1OnixWu0oOOzy85e3m7l/Vwv+YBhfMMx9O5rYWT/AN56u5lDbCGE5kvl1sHWYzy0vUl57snuMLz9xhEc/v5j0BINyvNufr+Huq+YqodcAzxxq5+yZGawqTVW2ZVlNJFliw5kb+12quS2nL8QXVhaTmxR5+PcGQmRYTVxQOSnATHoNZ8i/pmXIpariTKDRyKyfnh4zSxYMhZmeNSkojToN7zQNs6dxiH6HTwkhtxi1XDolJgEgTh9xfEyxGLiwKptBh1f1e6cvyJNfWMzfr18Y0+bpCYT5wfkzWFOWxkVzssm0moguTB7vHEU7pSonaSS8gRBOX5ApRUzGvAFePzkpVBJNOmbnWglEVSJPdo+pMtYg0r5akKIOdbaZ9bx2YrItMz85jtVl6XzhkcP4gmHMei1fXFPMV9dN4+zf76LL7kECPlEZcQF9ZF87fQ4f/mCY5Dg9n1tRxAO7W3D5Q7j8If6wpYEXjnbxhy31Srtt84CL373ZQPOU/LUDLcOkWNSi2WrWMzNL/UWATiNx1vTYytnCwuSYbYIPBiHUBAKBQCAQfCSYkZ3I/dcuYGlxCstKUnjgugUsLkrhjktmKyJoXUU6N68u4ZeXziZ7fPYoPzmOn180izlTsqGKUi0Up8WaTUwNpwY42T0aE1p8uG2Ekz3qSkvHsIdH97XS75gUQ/uah2kbdKuO2zzo5h/vtNERVUHrtntpH3Kpqi8Xz81RCaUJjnXalRmn1iE3tz55lJVlk6LPGwjz7OEuyjImBatBK/HSsR52Nw6iHVe8E1ruD1sa+fpT1TGit33Egz8Y4pK5Ofz3xhkqh0WIVIJWl6Xh8oX4w9YGEkzqqZu2MZkT3WMMufxsPtZN2hQDmPQEI9c+eJDrHzxI+5RW0GSLge9uqmFH/QC7GgYV844JHL4gayvUlcRhp597dzTxhy0NJEwxUMlIMFLbo54Vsxhjp4SMuti5wHNnZlKSZkECClPisHsCKiH4hZVFbK7uUgS1JxCibcjNPdub8IciO8rAO83DHGlXV7CG3YEY506A/S1DMW2ug04veclm1baiVAtLi1OUnDqtRuL28yq4aXUJG6ZnIEkR4fbzi2extiKdn100iyyridR4I7efVxGTOSj44BAzagKBQCAQCD4yrJ+ewfopVYHL5ueysSobTyCEddyxcV5+Eru+s46+MS+ZiRHDjJ9cOAunL8jepiF0GomWQRfHO8eUoGcJKEmPx6CP/Z5bI0nMy09SPWRX5dooTLEozogwHuosx5ay2kdiA6w7R9y0TKmONPQ7mZtnUwxJmgecfOuccp4+1KHsOyfPRteU43WPetnTqA7QloGbVpWQHG9gX9OQYmkPkVbAy+bn8PyRSXHhD8lMz0pgzBOkb8yLViMpc3RNAy4yrcYYV0YJSWV17/AGOWdmBma9lsJUixKYPUF+chyBUJhuu5eMRCMjroAiZMa8QUrT4zHoNOQmmdlWOylehlx+ilMtKqMOvSYiPCESKp5jM7P9dNRafEFuWF5IOCyzfnpGTNwAwIL8JN5pGlIEqMWgVYmmSIZaIj99JTLXpddKrCpLo3VKjEBN96hqRhAipi9TZ9Yc3gBlGQnsaZw0KjHoNGcU4/FGHbY4vUrgd4/60CCRGm9kyOWjINnCroZBdjUMopXgi2tKuGZJgSL2H7huAWPeACadVmmzvGZJAdcsKYg5n+CDR1TUBAKBQCAQfOQx6DSKSJtAq5HItpkVV8NMq4m/XrsAi0GrPFTvbBhgSXEKF1ZlIwON/U4e2NXCspIUsm0mpeJ0x2t1WAxaFhYmKXNRB1qG8QRClI9XrSTAqNfg9AVVc0pGnYaKjEQyEtVtjZfOy6UqVx1WXJoRz5YooXCsc5Tnj3TRPzbZMljdYacwVd3aWZgSx/JpqaptEnCie5SiFAuVubGhyLY4Q0zFxqjTsunLy3jqpiUx1bOj7aMsK5k8R1GqhYozCIyMRBMycLQ91oVxwOGjx+5Fr5FYW56uiLQJ9FoNX1k7jbXl6aqWRACrWcevL5vNJfNyWFqcgicqALy+z3nGStjGqmzWlKfzy9fq2NOgFrJGnYbfvlVPOCyzpDiZVWWpuKLcNDUSPHDtAk73TVbhAiGZms5RpSI5QUGyhcIp7ZF9Y76YKmCKxchTB9qxjX9WE006UiwGfrT5JFpJItGkI9tqwhan5/5dLdjdASwGLYuKkokzaKnvc9A27GbQ6eNHF0xnIKqVNCTDjtMDqops5Bz6MxqzCP79iL+KQCAQCAQCwTjNA07VwzhATecob9X2qbZVd9ipyrURLRV2NQ5y9sxMpaIkA5uru/nqumnE6bXIRCpKTx3q4NqlBZRnJACRrK/vPH+ci+fkcOm8HDITTZj1Gv78dhO3nlXKmvI0UuMNnD0jg7XlsaYgR9tHYtacaNKTaI40TknAhukZXD4/j8+vKMJi0KLTSMjAg3taOf+uXRQkW5T1QMRa//xZWWyYrm57O95pZ/EvtvLnHc0xD/f+YHhK1U7mk7OzVKJFK0k8dbCDzeNmFhIov89PjqOu14EMBMIyTx7siBE3nSNuvvjYEW5/vkZlJAJwfmU2vaNedBopRihBRCRHm6ysLksjx2bmpkcPc6pnjOHx6lZZRjzzC5LwBcPKWvY1D8eEeYdlGPUElBmxCUKyzE8vnMnsXCtlGfEUJMdx5xunaR1yk2jSsbYijXijlvZht/J3m56VQEmahd4xL+5AGLsnwNx8GxfOyaFn1Ksc1+UPcdXifFUVzeUPMTM7URXJALCzfjBGTHv871/umuC9Rwg1gUAgEAgEgnHKMhJInmK8sKQkhaQ49bakOEPMAzpA65RWRYC9TcO4A+qH6MZ+Jy1D6n1fPNaNXquhd8yLJxDmYOsIP3mplt9eXkVRqoU3T/Xxxy0NikEHRESY/QxByD2jHsbGw5Bl4MG9rfQ7fPzgghncffU8VRue2x/i2cMd/PCC6UqF0BMIcdOjh/n1pbP56UWzOL8yE4iIE1mGt2r72FiVrbgyzspJxBdUv8eWQTd7mgYxj5uAJJp0XDQ3WyUeZOCzywt54cvLOfsMFvAXzslmw/R05hcksao0VeXg6fKFOG9WJufOzOR3V1Txck0Pv3urnqcPdbK7cVBlLGMz69lc3a2874rMBP5+/UIOto7ERCPMyrGe0UAjP1ktGk06DV9/+liMKKzpHOV7m06QGm/kq+tKaRuebEMd8wbJtcXh9MUK6+h8PYhUHDuG1S2sobDM0BnMXpLM+ph1VGQlxhi4iJbG/yzEjJpAIBAIBIKPHS5fkDdP9aKRJM6Zmak4CvaOevn6hjKeOdxB54iH8yuz+NKaiIPi956vIRiW0Wkkvnt+BckWA9vq+pWH/5WlqVyxII/HD7QrVTWtRuLCOdk8c7hD5Zg4M9vKoSkiwWTQsi8qRBkiGW93vnGag62R2Td3IIxOA2sr0nj79ABhGQ632dGNZ6DJwMLCJIxT5uhCYZlnD3dwqmeMKd2EAOi0Gl470auqEA44fOxvGeaiOdlIwKs1auv2YCjMRDTcia4xVUUOIkLmd2/WKy2IY94gg85YkbGtrp/7d7WQOMVoRCtJPLAr4nRo1mtZUZoa89q5+TbmFyRh0mljAq0rc23MHHeUfOV4N3bPZBWqrtdBfa+D+r7I7GH0+24bcnFqSgC4JMHh1hFyk8xYjDp0GomT3ZF9JgT7+op0ttb1K8faVtevtDBGY9RL4xlyk2JtVo4VSUI1z1iVa+XcWZmqGb8sq4mbVhXzyvEe+h2ReIGMRCPXLC3EZjHwi1dr8QbCLClO5uZVJViMWrKTTBxutXPhnGwunZ+Lxx/i91vq2ds0SGWOlW+dUxHz5YTgw4EQagKBQCAQCD5W2N1+Nt69h/bxakVZRjwvfHk5v3+rnvt3tQCR6slLX13BoNPH+X/cTfOgi5I0C9cuLeScmZlkjjtGvnzLCl4/0UuOzczGOdkYdVruvWoef9vdgmY8RHlxcQpfP6uc37x5mlBYJtGk49zKTBLNOn7xaiSDTSPB19aXsq2un9Yod8Nsq4nOKcYgwTCkJ6iDrYNhmS+uLqFt2E1Nlz3G0dBm1vObN+uVn406jVLZ0kiwrbafGdlqoQVw39tNfPGxIyTFGVRh0RDJdBv1TFa4GvsdFKbE0TrkxqjT8IVVxfxpW6PqeE5vgA3T09kybgRiM6KESY95gxi0EoWpFuIMOoZdPtqHI1UmTyDE0fYR1brNeq1y/YpTLTGCy2rS0W33cLTdjoy62mTWa7ny/newj69fI4EkSVhNOg63TQq+1HgDFoOOtmG3EoRt1GlYV5GuCLUJsm1qx0oAk0FDWoKRgXFRZdZruXJRAXPzkvivl04x6PSxpiyNW9aXMuLyc9vT1Rxtt1OZY+W3V1QxLT0BfyjMi9XdZNnM3LqhlEyrmVduWckTB9oIhWU+s7SQpDg9h1pH8I6LYqcvCBLcu6OJ378VMWw51DZMfkoczx/p4okD7UBEYHeOeHjkc4tj1i749yOEmkAgEAgEgo8Vm452KSINIkYTD+9tU0QaQPuwm7+83cQ7zUNKLlXTgItXa3pYW57Op/7yDkfaR5hfkMSdl1WRaTXx69frePl4Dzk2M9/7xHTm5U+GJ791qlepvIx5g/x480n+dt0CDreNUN1uZ1FxMmsr0llakkLbkJvqDjvZVhN3XTmXmq5Rdke5AKbGG6nMTuSpKe/rWIedvVEVuWybicxEE1lWM4POSHVsAl8wzCdnZ/HS8R7CciQ/rW3YRV6SWYkEKEyJ4/h4kPOI249Rp2FOng13IMTFc3J465R6bi8kQ3lmPK1DbnzBMPuah0hPMCqVH4hkn20sTePWDWUAfP3Rvdh9kyU+f0jm15fOJiXeyMa7d6uOP+zy8+JXVrDpaBdjnoDKpbF50MWcXBvVnRGRZTXrqe60K+2fgFLF0mkkFhQmsSvKPCQswx0Xz+S7z59QndNq1jM3P0nVvugLhklLUBu/mPQa0hJMMWK2rsdBUpye0vR4pmclcuGcbO7a2sArx3tIjTfw+yuquGhupD1Rp5GYkZXIkNNHbpIZs0FHKCzTMuiitmeM3jEvtT1jlKTF88CuZv62u4VgWKa+z8mnF+Xx4rFu5bwnusZ4cE8L9+5oUra5/SH+sKWe073qkPJdDYN4/CHMhlizFcG/FyHUBAKBQCAQfKzwBmJ7/wadvpht3aNe6vucqm2nesb45rPHODAuevY1D/OtZ4+xsjRNEXo9o14+//Ah9t6+TmmpPNapzlM73mnnm88cZ8u4SUnERl5idVkax8bFRveol/0tw1yzOJ9/vNNKy6AbnUbi6sV5XLYgjycPdXBivEVvQUESTQPqtXbbvfzt+oU09Dl544S6bVGSIg6K0YRluGJBHh0jbtITTLzTNKSq7vmCYfKS43jxWDc/f7VWlcEGUJoezxsnJx0pD7aOcOPKYk72jFLTOcqYN8ipnjF+/OJJrliQy68vq6IwUUP9yOTfwxan56ZHDtPn8MWYhVTmWPnG08cIyzJLSlKYSk6ymdKMeJy+IGvK0vjO8zWq3y8uSuYLq4oVobNristj+5A7piUx02qKmWEDON3rYGZ2InZ3gJR4AwNjPn73VqRiadJHXDybBp1Ktl59n5PzZmWyra6fzdURQdU75uM7z9WwuiydJIuBn71yiicOdETWMuyhe9TLZfNzeXBPKwAuv4dbn6xGr9WoohReO9GrzApG0233xKx91BOgODWeQeekaM+xmVVzj4IPD0KoCQQCgUAg+Fhx0dxs/rKzSXHOS0swctPqYt481UvH8KShwyVzcxj1BBRRBrBiWipvTqkkHW4bQSOpW+uGXX5erelRctVm51g5GjVDtbgohW116uNsOdXHia5RVQ7ZfTuacPuCtAxGBFMwLHPP9ibWT8+gbXBSRJ3uczAr20pfVPUq2WLggj/uYmI0zmrWMzo+p6WVJNV6JvjT9gb8wcgLMqeET9vMejYd7VJ+ru9zcum83PFjypRlJNDQrxaLwbDMY59fwuJfbFEZgTx/pItFhcm81Ta5bVq6Ba8/RKc94nLo8oXIspooTrOQbTWrKmgN/U7V+5GAbbV9yjzcO01DaCWJUNTFLM9MZFlJKs8c6mDLqX40Ekr7qFGn4b63I+JnIgsuNd5Adbtd5ahp0mnwBsNKdTIpTs8X5hbxXy+dUvbxBsLMK5is7k2wpbafKR8TfMEwp3rGWFyUzI6ojDeIVEhzprRTBsMyu+rV+0Ekvy36emgk+NTCfAYcPlV23KcW5jM3z8YX/nGInlEvtrhI0LU0dWGCDwVCqAkEAoFAIPhYkTU+4/PMoQ50GokrFuSRnmDiyRuX8ucdTfSNeblobg7nVWZRlWfjxy+e5FiHncXFKfz3xpkMOn2KuQdEwrNn5VjZ2zTZdmjUafj+phpFOMQZtCwpTuF4Z8T4o3PETbLFoDLXyLKaYpwTA6Ewtb3qWahgWOaJA+04ojK4HN4gc/NtjLj91PU6yBqfoYvyL0Ejwdw8G0c77ATHW+qSLXoc3iBGnZaSNIuq8tc75uW8WZnsbRrCYtSyuixNqfhM0O/wsrdpiFBYZkttPwatRpV9dqBliMf3t2M16+kbmxSRCSYdv33ztGqmzOkNqoTmxPt6+IZFPLC7halcNCebfkckiyw90cizhydFpN0T4LxZmWyt7ccfClOWEc/Nq4s53DbCt549rjrO6rJU3q6frK7JMtyyfhpdIx6eO9Kl2nd5aSpbo4K2R9wB6qa0Ekbenz6mDTLbZooxUzFoNdz0yCGCYZm0eHU7ZbbVxOKiFJWJi04jccm8XJ4+1Km6zudXZnPD8iL+urMZlz/IVYsKmF+QxD1Xz+ORd9po6HeyviKd8yqzANj17bW0DrnITYpTqr6CDx9CqAkEAoFAIPjYkWMzK3NS0dt+etEs1bZsm5n7r12g2vaby6v45jPHONJuV2bUrHF6GvocbD89QGq8gWUlqaqZIbc/xOKiZI60j+D2h5TqUnQVpHnQRfyUdr+VpWnML7CxrW6yKhJv1FGarm47hIgByuu3rmLA4SPZYmDxL7aofu/yhWLaI4ddAX51aSWnexw0TPld5Pd+Rj0BRj0BnjzQgUGnUbXTNfY7VTEFeq3E2ooM3q4fwBsIc6J7jO9tquHaJQU0D7oIjivH4lRLjMAZ8wZZVZrG21EVI71WYtr3X4uxxodIJfPEuKHHjKxYI5Qxb0ARM/V9Tp451InrDDliU6uhELHLbwrGRi0kx8W6I66tSOONk72MjFdoUywGZGSyrCa6R72EwjIzsxJ5taZHMV/RaiRybGbah91MFOw6RjxkWU30jHpJTzBy5+VVLC5KpmXQxVMHO0iK03P7+dOZV5DEgzcs5E/bGvD4Q1y7tFBxxLzz8irV2uIMOm5aXRKzZp1Ww7T02Gsm+HAhhJpAIBAIBALB/4CCFAvP3LwsZvuDNyzC6Qti0ml47kinSqhBZA5u6szQmvJUXj3eS2Bc7Dh9oYi9vk7L7sZBttT2sauhn0vm5rC/ZRi7x4/TF+S+HU3kJ8epTFF+9sopXP4Qn1tRRMewm2ybWVXBuXxBLi2DLlXlL8Vi4DvPTc5y6bWSEiMwJ8+qMiCRiThkGnVauuweVk5LjZnzCoRkPreiiDdOqts6W4ZcnDMjk1dqegA43B5p64tuK6zKtfH986eTGm+kumMEly9E71ikDbJ92E2KxRCpIsqwpDiZnVHnPtXjICPRqFTtKjITOBBldQ/w8DutfPe86UxlemYiuxsHlfedYNKRaTXRdUzttpmXZOb1kz3KzxKwpiKNrz91DJc/hF4rsbEqm2ybibu2Trpd5iWbWTYthft3TVZGQ2GZVaWpPLq/XXWOjVXZfHZFESkWA7rxGcL/2jiT/9o4U7Xf8mmpLJ8WG1cg+GghJgcFAoFAIBAI3iPijTp0Wg0bq3KoyrMp2+fl27hyUX7M/rlJcYpImyAQCqsywXxBmeZBF/MKknCNByUPOP04vQGuXTp5TKcvxE9fPsWh1mEuvnev4tgoATevLqY0PZ4DLZMibVp6xHgjmgSTnq+um8ZZM9KZk5tETK1JhqPtI/SOennmcGdMXpteK/Hr108zJXuZLKuJvU1qUddl93L1dD1Wc6Ru8E7zEJ++fx+3nVXK1m+sial+Dbn8/O7y2dx2VilFqZaYa/nphXnMzrUiAb5AUBE6E0jAjzZPujrqNBLnzsrkvp1NikhLitPzpyvncNtT1VRHXb+rF+fTN+bF4Z0UlpctyKV10K2IzUBI5nDbCHsa1Vl4HcOeM+bHlaTHx8ysLSlOISPRFLN2wccTUVETCAQCgUAgeI8xG7Rs+uIy9jUPIUkSi4uS0Wgkbj+vgru2NuAJhDi/Motb1peys36Qmq7J2bBzZ2Xxq9frVMcbcftxTRFVw+6Ayn5+ghequ1QuljIRt7+H9rYSXdArSoljwOFTcskgMlv30N5WHOOtmdG5ZQatBq1GUuW3tQ25+eEFM9hc3cXxzlFc/hCH2kaIN2rxBsLKjNbm6m7SEoxKeyBAbpKZJGNIaf2ESKvlkwc6+OY55czOtapET4rFwFeeqAZAK6EyCzHoNLQOuRRx2jLkIS7Kbl4jRdoNh1yTgiklPtLGGG3eMuIOsP30gCqcXCYinv0htaDutnvoGfWot416mZefpLg9QsQF8jNLCnjzZK8i6krT47l6cQEJJj1/2taALxDmhuWFrK1IRyCYQAg1gUAgEAgEgvcBjUZi2ZT2tJtXl3Dd0kL8wTDWOD0AD96wkHu3N9E65OKcmRl8amE+xzvtKhOJKxbkMeT0q1wVi9MsnDUjgxeqJ1sstRqJ+QVJPLpP3VIXp9fFxBJ0jHiYkZXIO+PZa5IEc/JsvBZl5e8Lhrl2aQG2OD3z85N4bH87oI4aOHtGBq/V9Ki2OX0hPr0wlycPdirH6RzxqHLVuu0edp2hchSWZe7d0agSaTOyEqntiWodlCNzadk2ExpJ4rPLi/jJy6dUx3H7Q9xz1VyOdY5SnGbhztdPq37f7/DFBINDZH5uKgsKk9ha268SeitL08ixmXn60KQb5caqbL62vpTqTjvNAy5Meg0/vGAG8wqSeO1rq9hc3UWiWc/F83Iw6DRcNj+Xy+bnxpxPIAAh1AQCgUAgEAg+UMwGrSpcODXeyI8+OUO1z++umENVbiunesZYWZrGZfNz8QZCBMNhttX1My09nh9eMIOStHjaht08tq8di1HLbRvKOHdWJq/V9CoxAsVpFr68bhqH2oZVro4DDp/K0OP7509HkiSVUAOo73Wwv3UYWYZZ2YmY9BpF9Jn1Gh7Y1UxZRgKH2iadMC0GLW5/bP7YhunpPD7uHBmW4dhgmBybmS67Z/x4Ws6ZmcHlf96nel2KxRDpQYwqasUbdXxlXSnffvYYVz6wLyZOICPRyOMH2hXBl2hWP/auKUvji2tK2FY3KcAunZfLNUsKOdJuV/LOzp6RwcVzc6nITOSOV+vosnu4YHYWn19RRDAsk2OL41DbMPMLkrh5dQkmvZatX19NQ7+TjEQTVnNEkOenxPHV9aUx10Qg+GdIsiz/673eIxYsWCAfOnToAzufQPDv5mtf+xp2u52HH374370UgeADRZKkw7IsL/jXewpA3B8F7w9H20dw+oIsKU5Br9Uw6PRx97ZGmgacVGQmKAHdE2yYns5vL5/DhffsVoKuC5LjaBtWm2rcsr6Uf+xtxR7VsnjdskKOto1wfLyFszwznmsWF/LDqJkwk17DZfNyYww0rpifyzOHOxUNtrY8TZX9BVCVZ6NgPGwbItW/e6+axy9eq1Vl32XbTIy4AhSnWbh4Tg4/e7VWdZylJSn4g2Eqc6zctqEMa5wepy/IrvoBMqwm5uUnKft2DLuR5YjAEgjeS97tPVJU1AQCgUAgEAg+gsyNEh0QqdxNuAe2DblihNqoJ8CTB9t54LoF1PY40Gslhl1+vrfphGq/zhG3SqQBHG4bVjlanu51srNhgBtXFfPgnhYCIZl4g6cZl94AABlCSURBVI7SDLUlvE6KhFdHlw22nx6gKteqqv5dNi+H1HgjLx3vRpYjc2X7W4ZUIg0iVvt7b1/HzoYBGvtj4wYqc6x873y182O8Uafki0WTd4ZIAIHgg0RYyggEAoFAIBB8zChIsXDD8kLlZ51G4mDrCHe8VseFd++hPDOBc2dlsWF6hsqUQ5Ii7YET7XwTlKYnUN+nFkZH20c41DqsGHMMuvw8sq+N751fgWncLdKkQxXcPHGOKxbmxjhH/vntJpXxx2P72ymcUu0qz0hg1Z3b+dqT1fxpWyNG3eSjrkGr4aI5Oe/uAgkEHwL+pVCTJClPkqTtkiTVSpJ0UpKkr41vT5Yk6S1JkhrG/z/pXx1LIBAIBIKPCuL+KPhP58efnMmbt63iO+eWK+6MAC5/iEf3tdEy6GL76X5+flEl587MZFVZGn/9zALm5Nm4dmkByZaIa+KiomS+d/50yjLUIdwLC5NjxFtjv5O9TUPKjJszAD12D7ooVXbJ3FyePNCpcpe8843TMWYoYTkS8FyemYBRp2HD9HR0Wo3iWAkRE5PL5+dy5aI8nrl5KTOyE/9vF00g+AB5N62PQeAbsiwfkSQpATgsSdJbwPXAVlmWfylJ0u3A7cB33r+lCgQCgUDwoULcHwX/8ZRlJDDg8MVsbxl0sf63OxSx9MMLZvC5FUU09jtY9evtivnGZ5bk89OLKrl7WwMtgy4gYoW/qiyNn1w4ix9tPqEyJ1lZmkp9lIEJRGIGnrt5KYfbRyhKjWdxUTLn37VLtY/LH+LqJfn8aPNJZdslc3N45XgPp8ePt79lmPJMdWslwA3Li/7PAm3I6SMUlkmfYlgiELyf/MuKmizLPbIsHxn/ZwdQC+QAFwITDgkPAxe9X4sUCAQCgeDDhrg/Cj6MPH2ogxW/2saCn23hnu2NAIy4/Pzq9Tq+9NhhNld3xbxmaXGKKpw73qijZdClqmj9cUs9obDMPdubVBb1j+5vZ2d9P795s15pcQzLsGJaKvfvamZLbR8aCRJNOi6ck83vrpjD6vI01fln51qZX5jMtUsLeeFoF3N+8maMePzk7Cy67V6lHXJGVgI3rirm4XdalX0c3iDIqEKk5+Xb/qlIq+0Z44FdzextnAzi3lzdxTUP7OeWJ45S3+dAlmV++MIJFv1iK4vv2MpXHj9CIBTrZikQvB/8j8xEJEkqBOYC+4EMWZZ7IHKzkiRJJPQJBAKB4GOJuD8KPgyc7nXwneeOK3Ncd75xmrKMBO7e3sixjkgA86s1vbh8ITbOyeaBXc009DlZXZ7GUzcu4aVj3fSOecmxmfnla+rAbW8wTCgsq0QaREw9arrGmMrb9QPsapgUQGPeIBfOySYtwcgPPjEDjz/Etrp+zJoQt59XAcCDe1p5ZTyPzRcMIwFnz8xgYWEyVXk2Lv/zO8rxTvU4eP5IJ1PNy80GLY98dhEvHuumJC2eqxbnEw7LPHekk6MddhYXJbOxKpuXjvfwtSePKq//0poSqvJsfO3JauVYuxsH+dWllTyyr03Z9vLxHtaWp3OpyD4TfAC8a6EmSVI88BxwqyzLY5Ik/auXTLzuRuBGgIyMDHbs2PG/WKZA8J+J3W4nFAqJz71A8BFG3B8FHxa2tgdihMvDW6o51h1UbXtw+0me2HWKmsEQAK/U9HCoppYSq5Z7DnvxhiKRZdHI4TDrfvk6s9O0qu16Ddy79TQaCVUFLuAYYSov7zmGptfAmF9m6yk3Dj+MAZ/9+35+utzM9vopIhAo0o3g6LHzdENsFau6vg2bEexRxTeTz87N/ziAMwDTkzXk+Np5scnPm22Ra/D4/na2HDzJ0b6g6lrdv7OJuenq9zbs8vPYtmMx591++BQpjsaY7QLBe827EmqSJOmJ3IQek2X5+fHNfZIkZY1/W5gF9J/ptbIs/xX4K0RyYtasWfN/X7VA8B/Cpk2bsNvtiM+9QPDRRNwfBR8mUjpHeeTUbtW2C5ZMZ//mE0pbIkBeZirb6tQfy2q7kUaPDm/IC0REklmvYVaulYMtIwTC0OmUGfCG+d0VVWyp7efNk70EwjITHh/5yXHoNBJGnYahcBhwqc7REUigXpOOMV6Lwz85a+YNQZ8pj7PmaznwymTumVGn4bHTYcUcRKeRVKYnNcMSznGRppUic3S/fL0O73hyQO1wmIOeNHZ2d6jWsadXItliAWeU0YkkMbesgAO9zap9r9swlz2PHFKunyTBDecsYH5B8tTLLxC857wb10cJ+BtQK8vy76J+9SJw3fg/Xwdsfu+XJxAIBALBhxNxfxR82KjMtfKjC2ZgNesx67XctKqYTy3M46vrSpW5rRSLgVvWT1NZ7kMkY23AqZ4L8wbDJMUZVNt8wTCJJj1XLcpXiSaAknQLDl+Q2l4HDf0RkZaeYCTBFKkLHGwd5hev1vHWqV6m0jfm487XJ9sts60mZmYnqhwcZWSWFCczJ8/GFQtycfomfxeS4VTPWIwzZF2vA4tBXZewGLV8fkWRatuVi/K5eXUJs3Ii82waCW5aVczainT+dt1ClhanML8giT9dOVeINMEHxrupqC0HPgPUSJI00bj7PeCXwNOSJH0OaAcuf3+WKBAIBALBhxJxfxR86PjsiiJuWF6I/P/au/foKqszj+O/55zkhNzI5SQQAgQINyFEruIFxLQCplex02WlWpE60JZVdYqdjrM6tc5qbe3qWKfLmWnrciyh03qZWqulLAQcUdTWgshFQAhyjQm3kJBAQsJJ9vxxjoccomBIwnlDvp9/cvZ+93ve5z0rWfs82fvd20m+yMobd18/UjdOyNe+6gZdMTRbyQG/7p09Wg/+eZtanZSelKB7Z4/WqzuP6OcvlUffa+aY/poyJEsrtx6K1vlMevT/ypWdGmg3wpWTmtRuEZCi/L56rc1iHZK0cX+tRuSmadeR8IhWQXaKNlbUqLnNqF9t42n1z4hdYbGlVfrRTcU6UNOo1dsO6WyFOanKTY+NYcaoXN04YaC++8ct4c/EpHtnjdaciQM1LCdVa8uPamx+X5UW5cnnMy2761ptr6pTVkpAeZHrzxiVqxmjcttdD+hu503UnHOvqf1U5Q9c37XhAADQM9A/wqvMTGc/KjkkmKohwdRo+c7pwzR7bH/tOnxCk4dmqW+fRE0cnKnc9CStLT+isQMytGDGMPl9pncP1uuFjZVKDvhVfyqkTRXHJUkpAb8yA34dO9ms/MxkOTn5zdTS5uGvwtw07ThYr8rjp6J1makB7as+My3yZFOo3ebWjadb9PnL8/X2/tpo3RVDs/TTF3dEl/v3W3gkTZJG9EvT3KlDNH1krn60fLsqahr16eIB+tqMQiX4fZo6LEsbDxzXlCFZGpoT/hyuLAzqysJgu89vzAD2WoM3dGjVRwAAAFwaBmenaHB2SrTs85luu2qIbrtqSEy7n908QQ994XItfmajlm2uitY3NLdoUclwPbxypypqGvX7t95X3z4Jagq1qinUqvGDMrSoZLgk6dev71Grk/ok+DQuP0MVNY3R96k+2axpI4LaW90Qrfv0uAHy+02JftPpFqd+6UlacO0wLfzNhmibFifNGJmjO6YN1fQRuQok+JSRkqHfLbiq3b2O6JeuEf3a77EGeBmJGgAAAM4pkOBTYU5qu/p33j+utk+q1Z0K6T/mTtC4gZkampOq3725X//92p7o8bH5fVU8KEMrtsY+p1ZVe2bELTs1oK9fV6gv/OKN6CIeh+ub9Nzble2un56cqE9e1r+Tdwd403kXEwEAAADunF6oiQXhjbETfKa7rx+poTlp7drlZSRHpxc+sz52xcUN+2s1LCclZjGT4oEZWrfvzHL+x042a+lf9sWsVClJ9adOa2ybaYl+n+nWKws6f2OARzGiBgAAgPPKSEnUc4um6b0jJ5SRnKictCQdrjul5VuqtP/YmWmLf790vR74XJHmTByoYGrsqpEBv08/XLZdDc0t0brCnBRtef94TDufz5TXt48O1p0ZaQumJemN96olSYk+0/c/X6Rrhud0x60CnsCIGgAAAD624blpyklLkiT169tHqxdfpxvGnpl+WNtwWv/07GbVNjSrZHT42bEP3DxlUMzCIpK0/1ijsttsA+AzaXJBlpIi532w1cDL7x6Obqp9utXp2Q0V3XWLgCeQqAEAAOCCBRJ8qmuz35kU3m/tkVU79b3nt6o5FN7bbP60ofrH0svUJzH26+fJ5pCONTRLCk+pfPCmYj3+2m7ti4zSNZ5u0eb3a1XfFHuNw3WxWwEAlxoSNQAAAHTK2fuM5aQFtGxz7OIfv3+rQjsO1is96cyTNwNSTeWHTkTLoVanNTsOa2ebOknaVlmv2WNjFw35u0kDuyp8wJN4Rg0AAACdsuDaYao/dVp/3lKlQVnJuq90jL5ati6mjc9Mdz25QUdONEfr8lJ8qjrZEtOu/lRIEwsyY/ZQu7owqJ99abweX7tHWyuPa/rIXN06lYVEcGkjUQMAAECnJPh9+k7pZfpO6WXRukUlw/Wvf9oWLX/5ysH6xZrdMecdbGjVlCFZWt9m1cdbphZo4uBMffeP72hLRa2uKgzqh3PGKSWQoLuvH9n9NwN4BIkaAAAAutxnigfo9V3Vevdgna4blat7Z47Wss1VOnDszGbXJmn6iBxdMzyoQ3VNKi3O0ydG95MkLf3q1DhFDngDiRoAAAC63J1l66PL7v/2zf3Kz0zWL2+brPuf36ptlXVqPN2iypNO//5SuSYWZOq5RdPiHDHgLSwmAgAAgC514FhDu73R/ry5SkX5GXr2G9foysLsmGNv76/V9qq6ixki4HmMqAEAAKBLZacGlBLwx2xs3dzSqkk/WKU+CT7lpifFtDeT0pL4Wgq0xYgaAAAAulRqUoLu/+zY6KbV2akB7Tp8QsdONqvy+Cltqjiu1IA/2n7u1AINzk6JV7iAJ/GvCwAAAHS5W6YWqHRcng4ca9Rzb1foidf3xhy/e+ZI1by/R7OnTdakgqz4BAl4GCNqAAAA6BaZKQEVD8rQ5CHZ7Y6tLT+qIw2tGpPXNw6RAd5HogYAAIALEmpp1Zu7q7X7yIlztvt0cZ4WlQxXasCv5MTwlMfXyo/q2fLT+oen374YoQI9DlMfAQAA0GFVxxt1y2N/1b7qBknSHdcM1QOfL9KLWw/qV6+8p1YnLbi2UJ+5fIDMLLoh9nU/fTl6jiSt3HZIxxtPKyM5MV63AngSiRoAAAA67Fev7I5JuJa8sVdXDw/qG//zllpduO6bT27Q4OxpunxQZrRdMDUQc15aUoL6JPoUamlVgj882auhOaQfLNum1dsPa2S/NH3/c0UanZd+cW4M8AgSNQAAAHTY4fpT7epe3nE4mqRJknPh/dN+vrpca8uPasyAdM2dWqB3D9aroblFpvCo222Pv6l1e2tUlN9XD988Xk/97YCe/NsBSdKR+iYt/M16vXxviXw+u0h3B8QfiRoAAAA6bM6EgVq+5WC0PDAzWZ8YlaunIgnWB97aV6P1+2okSZsqjqv+1G69cd8n9da+GtXs3aoX9tVo3d7w8a2VdfrW05vU0toa8x77qhtUUdOogiBL+KP3YDERAAAAdNjsojz96iuTVVqUp9uvHqKnv3aVZhfl6dYrC+T3mXwmfWnKYFXWNsact/voSW08UKttlXU6UN+qjftrYo5vr6rTmAGxK0EGUwPKy+jT7fcEeAkjagAAALggNxTl6YaivJi6B28q1rdnj5ZTeKPrb/5ugyo3V0WP56QFdMev10XLBdkpqjsVipbHD87Udz8zRgePn9Kbe44pP6OPfvLFyxVIYHwBvQuJGjrk0Ucf1a5du+IdRo+xa9cuhUIh3XPPPfEOpccYMWKE7rrrrniHAQDohKzUQPT19z9XpBNNoegzavWNIR1Vc/R4VW2jSkblat3eY7p8UKZ+/IVi9Uvvo6e/drVONIWUkujn2TT0SiRqQDdKTk5WU1NTvMMAACBuctOTtGT+1Gj5hkdejTluZvqv2yYpJdD+a2laEl9V0Xvx248OYaSjY6qrq7V48WLdf//9CgaD8Q4HAIC4+3pJoRY/s0kusjrk7VcP+dAkDejtmOwLdKOysjLt379fS5cujXcoAAB4wk0TB6ls/lTNmZCv+UUB/ctnx8Y7JMCTSNSAblJdXa0VK1bIOacVK1aouro63iEBABB3r5Uf1cLfrNcfN1ZqydZm/fr1PfEOCfAkEjWgm5SVlak1sg9MS0sLo2oAAEj6t5U7dOp0uH90kh5euVNNoZb4BgV4EIka0E1Wr16tUCi83HAoFNKqVaviHBEAAPFX29AcU25oDqkp1PoRrYHe67yJmpk9YWaHzeydNnXZZrbKzMojP7O6N0yg55k5c6b8fr8kye/3a9asWXGOCEBXo48EOu7mKwbHlD81boD69kmMUzSAd32cEbUlkkrPqrtP0kvOuZGSXoqUAbQxb948uciSVs453X777XGOCEA3WCL6SKBDFpWM0OJZozQ2v69mDPLr4ZvHxzskwJPOm6g5516VdOys6hsllUVel0ma08VxAQDgefSRQMc993aFHlm9U9sq6/RqRYseXrkj3iEBnnShz6j1d85VSVLkZ7+uCwm4NJSVlcnnC/+J+Xw+FhMBeg/6SOAcfrlmd3QPNUkqe2OfGppD8QsI8Khu313QzBZKWihJ/fv315o1a7r7koAnvPjiizGLiaxYsUITJ06Mc1QAvIL+Eb3ViZMNMeXW1latfXWtkhIsThEB3nShidohMxvgnKsyswGSDn9UQ+fcY5Iek6QpU6a4kpKSC7wk0LNs2LBBy5cvVygUUkJCgkpLS8XvP9ArfKw+kv4RvdW30iv07f/dFC1/5ZqhumFmURwjArzpQqc+viBpXuT1PEnPd004wKVj3rx50amPfr+fxUSA3oM+EjiHL04epD8sukaLZ43SPZOSdP9nx8Y7JMCTPs7y/E9K+ouk0WZWYWZ3SnpI0iwzK5c0K1IG0EYwGFRpaanMTKWlpQoGg/EOCUAXo48ELsykgizdff1ITeyXIDOmPAIf5rxTH51zcz/i0PVdHAtwyZk3b542bdrEaBpwiaKPBAB0lwud+gjgYwgGg5o/fz6jaQAAAOgQEjUAAAAA8BgSNQAAAADwGBI1AAAAAPAYEjUAAAAA8BgSNQAAAADwGBI1AAAAAPAYEjUAAAAA8BgSNQAAAADwGBI1AAAAAPAYEjUAAAAA8BgSNQAAAADwGBI1AAAAAPAYEjUAAAAA8BgSNQAAAADwGBI1AAAAAPAYEjUAAAAA8BgSNQAAAADwGBI1AAAAAPAYEjUAAAAA8BgSNQAAAADwGBI1AAAAAPAYEjUAAAAA8BgSNQAAAADwGBI1AAAAAPAYEjUAAAAA8BgSNQAAAADwGBI1AAAAAPAYEjUAAAAA8BgSNQAAAADwmE4lamZWamY7zGyXmd3XVUEBANDT0UcCADrjghM1M/NL+k9Jn5I0VtJcMxvbVYEBANBT0UcCADqrMyNqUyXtcs7tds41S3pK0o1dExYAAD0afSQAoFM6k6gNlHSgTbkiUgcAQG9HHwkA6JSETpxrH1Ln2jUyWyhpYaR4wsx2dOKaQE+UI+lovIMALrIh8Q4gzs7bR9I/ApLoI9E7faw+sjOJWoWkwW3KgyRVnt3IOfeYpMc6cR2gRzOz9c65KfGOA8BFdd4+kv4RoI8EzqUzUx/XSRppZsPMLCDpFkkvdE1YAAD0aPSRAIBOueARNedcyMy+KelFSX5JTzjntnZZZAAA9FD0kQCAzjLn2j1WBqALmdnCyBQnAADQBn0k8NFI1AAAAADAYzrzjBoAAAAAoBuQqAERZnaTmTkzuyzesUiSmX3dzG6PdxwAAAC4+Jj6CESY2TOSBkh6yTn3QJzDAQAAQC/GiBogyczSJE2TdKfCy2jLzErM7BUze8bMdprZQ2Z2q5n9zcy2mNnwSLslZvYLM3vZzHab2XVm9oSZbTezJW2uMTdy3jtm9pM29SfM7EEz22RmfzWz/pH6B8zs25HXC8xsXaTNs2aWcvE+HQAAAFxsJGpA2BxJK5xzOyUdM7NJkfrxku6RVCzpK5JGOeemSnpc0l1tzs+S9ElJ35L0J0mPSCqSVGxmE8wsX9JPIm0mSLrCzOZEzk2V9Ffn3HhJr0pa8CHx/cE5d0WkzXaFE0oAAABcokjUgLC5kp6KvH4qUpakdc65Kudck6T3JK2M1G+RNLTN+X9y4XnEWyQdcs5tcc61StoaaXeFpDXOuSPOuZCk30qaETm3WdKyyOu3znrfD4wzs7VmtkXSrQongQAAALhEXfCG18ClwsyCCo90jTMzp/DmtE7ScklNbZq2tim3Kvbvp+lD2rRtFzpHCKfdmYdFW/Thf5dLJM1xzm0yszsklZzzpgAAANCjMaIGSF+UtNQ5N8Q5N9Q5N1jSHknTu/Aab0q6zsxyzMyv8IjdKx04P11SlZklKjyiBgAAgEsYiRoQTpqeO6vuWUlf7qoLOOeqJP2zpJclbZK0wTn3fAfe4nsKJ3urJL3bVXEBAADAm1ieHwAAAAA8hhE1AAAAAPAYEjUAAAAA8BgSNQAAAADwGBI1AAAAAPAYEjUAAAAA8BgSNQAAAADwGBI1AAAAAPAYEjUAAAAA8Jj/B/qLPncrLuurAAAAAElFTkSuQmCC\n", "text/plain": [ "
    " ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], @@ -2000,6 +1995,7 @@ "\n", "sns.boxplot(data=ammonia, ax = axis1)\n", "axis1.set_ylim(0, 70)\n", + "axis1.grid(True)\n", "sns.swarmplot(y='Ammonia', data=ammonia, ax=axis2,\n", " \n", " # Play with these settings\n", @@ -2009,22 +2005,24 @@ " #linewidth=3\n", " )\n", "axis2.set_ylim(0, 70);\n", - "?sns.swarmplot" + "axis2.grid(True)" ] }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 19, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvUAAAHjCAYAAACjJeCWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3Xd8XNWd/vHPuVM0mlHvxbYkyx3bYLBpMYQWUneTTSMhG6ftpmw2ZVO2JGE3G7YlvxRI27RNMSW0UAIkQAglgDHYxsYNd1u23FSsLk295/fHyMY4gKVRuRrpefPSSyNr7rnfESrPnPmec421FhERERERyV6O1wWIiIiIiMjIKNSLiIiIiGQ5hXoRERERkSynUC8iIiIikuUU6kVEREREspxCvYiIiIhIllOoFxERERHJcgr1IiIiIiJZTqFeRERERCTL+b0uIBuVlZXZ+vp6r8sQERERkUlu3bp1bdba8tPdT6E+A/X19axdu9brMkRERERkkjPGNA3lfmq/ERERERHJcgr1IiIiIiJZTqFeRERERCTLKdSLiIiIiGQ5hXoRERERkSynUC8iIiIikuUU6kVEREREspxCvYiIiIhIllOoFxERERHJcgr1IiIiIiJZTqFeRERERCTLKdSLiIiIiGQ5hXoRERERkSynUC8iIiIikuX8XhcgIq/MdV3a29vp7OwkLy+PgoICwuEwxhivSxMREZEJRKFeZIKJxWKsXr2ahx75IweamvAHgwQiuaRiceL9AxQWF3Pxha9h+fLlVFdXe12uiIiITAAK9SITRCKR4N777uXe++4np7wIX0MVpWdfjBMMnLiPtZZEWyd/3L6B3z34AOeffz7ve897ycvL87ByERER8Zqx1npdQ9ZZunSpXbt2rddlyCSyefNmfvTTn5AIBwgtmY0/P3zaY9xYnIGNe0g2t/K3f/O3nHfuueNQqYiIiIwnY8w6a+3S091PM/UiHnJdl9tuv52H/vgwuUvnkje9YsjHOjlBIsvmEW+o4sf/91MOHTrI2976NvXbi4iITEEK9SIe6e3t5dvXX8eBjlYK3nAuvtycjMYJlhXhu3IZ9z/6MIcOH+YTH/s4jqONrURERKYS/eUX8UBbWxtfuuYrHLID5F+6JONAf5wvHCL/8nN4fs8OfvzTn6C2OhERkalFoV5knB04cIAvX3MNiemlRM6ZixmlWXUn4Cdy0WKee2ELN91886iMKSIiItlBoV5kHO3atYuvXvs1fIvqCM+vG/XxnYCfvEvO5NGnn+T+3/1u1McXERGRiUmhXmScbNu2jf/6+v8QWjaX3IaaMTuPkxMk/5KzuOOuO9myZcuYnUdEREQmDoV6kXGwadMmvvGtbxK+YAGhaUPf4SZTvkgukQsW8J3vXk97e/uYn09ERES8pVAvMsbWrVvHt6+/jshrFpJTXTZu582pLsM/u5ZvfOubJBKJcTuviIiIjD+FepExtOrpp/n+j35I3mvPJFhZMu7nDy+op8PGufmWX4/7uUVERGT8KNSLjJEHHnyQn/7i/8i/9GyCZUWe1GCMIXLufB5/4gk2bdrkSQ0iIiIy9hTqRUaZ67rccNON3P7buyi4YimB4nxP63FCQcLnzed7P/wB3d3dntYiIiIiY0OhXmQU9ff3863vfIc/rXuWgtctxZ8f9rokAHJqynCmlfG/P/6xLkwlIiIyCSnUi4ySpqYm/vFf/pndve3kX7YEJyfodUkvET5zFjv37+WJJ57wuhQREREZZX6vCxDJdslkkt/eey/33n8fuUtmE5k5dnvQj4TxOYTPX8Avb1jJGWecQWlpqdcliYiIyCjRTL1Ihqy1bNy4kc998Qs8+MyTFFy5jNwJGuiPC5QUEJw9je/98AdqwxEREZlENFMvMkypVIq1a9dyx1130tHbTc6imUSmV2CM8bq0IQmfUc/Bh9fx4EMP8YbXv97rckRERGQUKNSLDIHruuzcuZMnVj3F6qdX4+TlEpg7jYLpC7ImzB9nHIfwefO59fbbOHPxYqqrq70uSUREREZIoV7kFbS2trJp0ybWrn+OF7a+gD8SwjetjMjlS/AXRLwub0T8hXmEFjZw/fe/x39+7Vp8Pp/XJYmIiMgIKNSLDEomk2zfvp1n1jzL2ueeY6C/n1BNGZQXUvim8/CFQ16XOKpy50zn2MEN3H3PPbzj7W/3uhwREREZAYV6mfL279/PI489ypNPPokTycVUF5Nz3lyKi/OzrrVmOIwxhM+bx32/v58zFy9m1qxZXpckIiIiGVKolynJWsvmzZu54647OdDcTLChmsjlZ2d9W81w+SK55C6dy7evv45vfv0bhMMT42JZIiIiMjwK9TLlbN26lV/deAPt3V0E5k2j6OzXYHxTd3fX3BlV9B3p4Cc/+ymf/fRnvC5HREREMqBQL1NGc3Mzv1j5K/Yd2E/OogYK6udN6vaa4QifPYdNDz7LI48+ymWXXup1OSIiIjJMCvUy6fX29nLLbbfx5KqnyD2jnsI3XzClZ+ZfjvH7iCxfxA033UjdjBk0NjZ6XZKIiIgMg5KNTFrJZJLf/f73fOYfPsva5p0Uv/kCwvPqFOhfQaAwj/CyeXzjW9+kq6vL01r6+/tpbm6mq6sL13U9rUVERCQbaKZeJh3XdVm9ejU333oL8Rw/kUuXECjO97qsrBCaUUlfRw//79vf4l+//BWCweC4nDeZTLJ+/Xr+8Mgj7N69i0QsTk5+hMRAlFQiQfW0Wi696LVceOGFFBYWjktNIiIi2cRYa72uIessXbrUrl271usy5BSxWIynn36a39x9NzHjElxYT05NmddlZR3rWvpWbWZmcQVf/NzncZyxe2UjkUjw4EMPcfc99+ArCOPUVZBTU4aTm3NivYNNpogdPUZqfwvR5haWL7+Iq971LvLz9URNREQmP2PMOmvt0tPeT6F++BTqJ47e3l527NjBM2vW8OyzzxAsKyYwp5ZgdakWwY6ATbn0Pv48S2bN5eMf/diofy2ttaxZs4Zf3rCSVCRIzuLGIb2akorGiW7eQ7yphXe/6128/sor9f9ZREQmNYX6MaRQPzLWWlpbW9m6dSvbdmznSEsL7e3txKIxIP39mBPKIZSbSyQcIRKJkBeJ4HMcMIZoNEb7sXba29vp7uwkXFEKFQWEGmom3VVfveQmkvQ+sp5zF53JRz704VGbsW9vb+fHP/sZew7sI3T2HHKqS4c9RqKzl4FnXqCusppP/d0n1ZIjIiKTlkL9GFKoz0xbWxuPP/44j/7pcfr6+wlVlWKLI/jyw/giuZiAH2PAWrCJJDaRxE0ksfEEbjyZ/gRgfA5OOIQvHMJfGMGMYXvIVOfGE/Q9sYlZVbV89tOfGVGPveu6/OHhh7n1tlsJzp5G+IyGES1atq5L/8Y9pPYd5XOf/Szz58/PeCwREZGJSqF+DCnUD8/27du585672b59O6G6KgL1VQTKCtU2kSVsyqVv9VZKCPAPn/4MFRUVwx7jwIED/PDHP6J9oJfQ0rkEivJGrb7YoTb6Vm/hPe+6itdfeeWojSsiIjIRKNSPIYX607PWsnHjRm6543Za2loJzp1ObmMtxu/zujTJgLWWga37iG7bz1XvfBdXXnnlkNpx2tvbueW221i7bi2hRTPJnT1tTJ7MJbv76HtiI0sXL+FvPvxh/H5t7CUiIpODQv0YUqh/Za7rsnbtWm6/8zd09PYQXDCDUF2VWmQmiWRXLwNrthNyDW943ZVcfPHF5OW9dNY9lUqxefNmHv3T42zYsIHQrGnkLqjDCQbGtDY3nqRv1WZq84r54uc/TzgcHtPziYiIjAeF+jGkUP/nent7eWrVU/z2/vtJOBb/3OmEZlSqxWYSstYSb+kgufsw/QeOkF9QQHlFBcFAkNa2Vjra2wkW5uFMLydUX40vN2f8anNd+p/bQU7HAF/5ly9RXl4+bucWEREZCwr1YyjbQr21lvb2dnbv3s3O3btoaWujq6uLaCxKIBAgJ5hDSXExVeUVlJeXU1VVRVVVFfn5+a8Yyo/vYLN9+3ZWPbOarVu2kFtTTmB2LYGKYoX5KcKmUiR7B0j19GNTLr68XPyRXJzQ+Fy06mVrspaB7ftJbmvmH7/wBWbPnu1ZLSIiIiOlUD+GsiXUNzc389Sqp3hi1Sr6ensJVRTjFkZwIiGcUBDH78OmXGwqhTsQx+2P4gwkcHv7iXb2YF2XwuIiioqKycnJIRgMEIvF6ezspLOjA9daQpUlUFFIqK5qzNsrRIYj2txC/zMv8Lcf/ggXXnih1+WIiIhkZKihXqvJJhnXdVm/fj133/tbmg8dJKeuisDZjRQPc7eZPNLbGab6onQMxLCpFDaZwkQCOLXTyA/PwgnnaEZeJqzQtAp8kVx+tvKX7Nm3l6vf894xvTquiIiIlxTqJwnXdVm9ejW/vu02YqTwz6mleNnyES1QdYKB9Oz7EK70KTIRBYrzKXz9ufxp1Rp279nD5z7zWfLz9f0sIiKTj9pvMjCR2m+staxbt44bbr6JfpsiZ2EdweoyzaCLnMS6LgPP78ZtbuPTn/x7zjjjDK9LEhERGRK130wBO3bs4Jc3rKSl8xg5i2aSP61cYV7kZRjHIbxkNrHKIr55/XVcevHFXPWud5OTM7Y78wwMDNDa2kp7ezuJRIJkMonf7yc/P5+CggIqKyu1p76IiIwK/TXJQocPH+aGm29i247t5CxsoOD82RhHYV7kdHJqyvG/sZCn1m1i1eee5sMf+CDLli0blSfDruuyf/9+Nm/ezJZtL7B7924G+voJFebjj4TA5wOfgZTFxuIk+6PEevspLi2hoaGBsxYtZv78+VRWaitYEREZPrXfZMDL9puenh4+9elPE1pQT3jeDF2hVSRDsSPtRJ/bSVlBEW9/69tYunTpsBfS9vX1sXHjRp5Zu4bNmzZBwI+/shintIBAeRG+vNxXDeg2lSLZ1UeivQvauokdOUYoFGLZOUs5/9xzmTt3rhb3iohMcdrScgx5GepbW1v552u+TNFbl3tyfpHJxLou0QMtJHc044ulOO/ccznn7LOZM2fOn7XmWGs5duwYzc3NbH1hK+s3buTIocOEq0qhqij9KkD+yK5ia60l2dFDvLmV1KF2iCY4//zz+Our3zfmrUIiIjIxqadeROQ0jOOQW1cFdVUk2rt4+tAenv7Fc/S1HiMnlENBURHWWhLxOH29vRifj5ziAmxxHoFZFZRdMGdUXy0zxhAoKSBQUgCLG0l29bLqyTWcu3QZixYtGrXziIjI5KNQLyICBEoLCZQWwiKIWIsbjZPqj4Ix+P0+inMCODnje6Vcf2EewUjuuJ5TRESyk0K9iMgpjDH4cnPw5arlRUREsoNWYImIiIiIZDmFehERERGRLKdQLyIiIiKS5dRTn4US0Ri963d4XYaIjIN4Z4/XJYiISBZQqM8yJSUlXPWud5NMJr0uRUTGgVloaGho8LoMERGZ4BTqs4zP5+PNb36z12WIiIiIyASinnoRERERkSynUC8iIiIikuUU6kVEREREspxCvYiIiIhIllOoFxERERHJcgr1IiIiIiJZTltaypS2cuVKmpqavC6DI0eOAFBVVeVpHXV1daxYscLTGkRERGT4FOplSmtqaqKpqYm6ujpP64jFYp6eH5gQT25EREQkMwr1MuXV1dVxzTXXeFrDtddeC+BpHcdrEBERkeyjnnoRERERkSynUC8iIiIikuUU6kVEREREspxCvYiIiIhIllOoFxERERHJcgr1IiIiIiJZTqFeRERERCTLKdSLiIiIiGQ5hXoRERERkSynUC+eGEjG2dfTjmut16WIiIiIZD2/1wXI8KxcuRKAFStWeFxJ5hJuiv9a/wAt0V6WVzXy/tnneV3SiGzvPEphMERVuNDrUmSSmQw/7yIiMj4U6rNMU1OT1yWMWH8yTku0F4CmnmMeVzMyDx7Yyp37NuA3Dl85+41UexTs79iznieO7OTSmrm8rf5MT2oYLTs6j+JzHBoLyr0uxXOT4eddRETGh9pvZNwVBnN598yzWVBczVWN53hdzogc6u8CIGldOmL9ntXxyKHtRFNJHjm43bMaRsOzLfv41qY/8o3n/8DmY4e8LkdERCRraKZePHF57Twur53ndRkj5hhz4rbPZPYcOZpK0B0fIOQLZFzHRVWz+NORnVxUPSvjMSaCk58Ydca9e5IkIiKSbRTqZcpqi/ayr6cdC7QM9FCRmz/sMUpywgA4GCKBYEZ1/GL70xwZ6MbBYSAZJ9c//HHeO2sp7521NKPzTySX1sxhT08bAePjgoqZXpcjIiKSNRTqZcpa17afuJs8cfuN088Y9hhvnrGI2kgRxTlhpkWKM6qjPxkHwMWScF1yMxjj3qaN/OnwLi6tmcubZgz/cQC0RnvpT8bZ1nmEeUVVwz6+Pxnn+1seoyPWz0fnLaehoGzYY6xpbWJDezMASyvqOKt02rDHmCju3LuBZ1r2cuW0+SN6VcpqhygRERkC9dTLlLW4pBafcfAZh8UltRmN4RjD2WUzaMgffoA9ri6vGDAEHB/5gZyMxvj9ga10J6I8cGBLRscfHeimI9ZHLJXgt00bMxpjW+cRdne3cSzWz5NHd2c0xkAq8eLtwSc72SjlujzYvJXO+AAPHNia0RjxVJL9vcfY2d3KU0cy+3qKiMjUoVAvU1Z1uJDGgnIaC8qpjRR5Vsfjh3cBloSbZE9PW0ZjnFtRD8B5g++HqzgYJuikX7jLZJYeYFZBOeWhPIKOj3PKZmQ0xiXVs3lb/Zm8s2FJxo9lIvA5DmeXTQdgWUVdRmMcGegmmkoAlmdb941ecSIiMimp/UbEYzXhQjoBg6Emwy0xPzjnfN43axkBx5fR8UGfn7q8EpLW5S/rFmc0RkEwl/9Y9pe41sXJcNGw3/Fl1AZ1sr5EjIcPbqM6XHjiyY4XFpfU0p+MMz/DJ0m14SLy/DlEU0kuq5k7ytWJiMhko1A/xcRTSda3H2B6pISaiC6WNBH801lX8uW7nyLH589okexxmQb644wxBMzIxgAyDvSj5Td71/PU0T0AVIULmJFXMu41pFyXlTuewcVypL+br5/3V8Mew+c41Ay+gnRmFq8tEBGR8aH2mynmxp3P8vPtT/PfGx6gOx71pAZrLSt3PMM/PXMXTw+Gr6nMMQ5hfzDjLTEhfZXeA70dJN3UKFaWnUL+9NagjjEnWorGm89xmJaXDuR1+aWe1CAiIlPLpJipN8Z8EHjIWqur1ZzG7u5WAOJuiu74AAXB0LjX0Bkf4KnBhZR/aN7GBZXD37ownkryoxeeoGWghw/NvWDKX330u5sfZUdXCwuKq/nMwku9LsdTb68/i3x/iBl5xVSFCzyr44uLX8eh/i6mZ7grkoiIyHBMlpn6DwI1Xhcx1vZ2t7Gnu42m3mP0JmIZjVEQfHHDRP8I2zUyFfEHTsyghnyZPa/c0dXClo7DtEZ7efTQjtEsLyvt7WkHYE93ZgttJ5PHDu/k7qbn+b/tT9Pp4VV+gz4/9fml+JzJ8mtWREQmsgk7U2+MiQC3AdMAH3AtsAv4NpAHtJEO868BlgI3GWMGgAuAC4Fvkn58a4BPWGtjxpj/Af4SSJKe2f+CMeYvgK8AQaAdeJ+19uh4Pc7heLplL7GD6Zn2j37gQyMe73PcN+IxRmoDcDW/HNEYjwCP8IPRKMcTG9ub2dvTRsSf2XaWAGeXTmd9ezPnDO64kokXXngBgKuvvjrjMSaSHuDv+I3XZYiIiIyLiTyF9AbgkLX2TGvtQuAB4HvAO6215wA/B/7TWnsHsJZ0GD8LsMAvgaustYtIB/tPGGNKgL8CzrDWLgb+Y/A8TwLnW2uXALcA//hyxRhjPmqMWWuMWdva2jpGD/nVLc1wm0CZ2H6+/WkSborOeD/NvR0ZjXH8Qlpr2/aPcnUiIiKSDSbsTD2wCfimMebrwH1AB7AQ+IMxBtKz94df5ri5wF5r7fGejF8BnwS+D0SBnxlj7h8cE9KvBNxqjKkmPVu/9+WKsdb+BPgJwNKlSz25xOOcokrmz58PwDXXXONFCRPKjs6jtEZ7Oa+iPqNWor5EnC9c8yXA0puIkZfhhZ9GKnTSYs5IILPdb84oqeH59mYWFmfehabvrYnn2muv9boEERHJEhN2pn4wlJ9DOtz/N/AOYIu19qzBt0XW2itf5lDzCuMlgXOB3wBvIz3zD+nZ/+8Pzup/DBj/laMybAd6O/j2pkdYufMZ7snwCqirju6mNxmlNxnjSQ+v2Hl8dxQHh1xfZqE+OLgVZY5H6yRERETEWxM21BtjaoB+a+2NpPvjzwPKjTEXDH4+YIw5fpWaHiB/8PY2oN4YM2vw4/cDjxtj8oBCa+3vgM8CZw1+vhA4OHj7A2P5mGT0JN0UlvQLJrFUMqMxGvLLMIP/zfRw28GeZHrRs4sl5mb2WJ4bbLtZ25p5+01vIkZrtJcODxeXioiISGYmcvvNIuD/GWNcIAF8gvQC1+8aYwpJ134dsIV0D/2PTloo+yHgdmPM8YWyPwJKgHuMMSHSs/n/MHierw7e9yCwGmgYl0cnI9JQUMbfzL2QlmgPl9fMy2iMxoIyykJ5AMwurBjN8oZlxexz+Y/gQ4R9QQpP2p1oOII+PwOpBAFfZjP1HbF+DvV3AZaVO5/xbFvMQ32dfG/LY/iNw2cWXXbi/4+IiIi8ugkb6q21DwIPvsynLn6Z+/4GXrLNxR+BJafc7TDp9ptTj70HuCfzSsUryyrqR3T8HXvW0xrtAeDW3Wt5z6xlo1DV8FWFC6nMHdl+6gHHx0AqkfHFlgKOgyG9yjzXFxhRLSPxbMs+jg2+UrChrZkrpmX2hE1ERGSqmbChXmSsvdB55MTtbZ2Z72K6o6uFwmBoxMF8JAKDvfTBDGfq8wIhZuSVEE0l+MCc80eztGE5uf0oYTNrRRIREZmKJmxPvUx+8Qx74UfLu2a++GLOO2ee+sLO0DzU/ALf2vgw1z73e470d41WacM2kEqk3ycTGY/hMwa/cfB7eLGk6EnfE9GkQr2IiMhQKdTLuHOty7c3/pFPrbqN3x/Y4lkd84urmVNYyZzCShaW1GY0xvF95RNu6kTbiBc+ueBiXls9m08s+LPutCHpT8Zp6j3Gwf5Obtq5ZpSrG7oZecUnbtdGijyrQ0REJNuo/UbGXVc8yvaudLvLmpYm3jj9jNMckSVGcPWChJvCbzJ/jj2rsIJZI1jsO5BMkLIuwIl1Bl54bfVsHNKvFiwrr/OsDhERkWyjUD/FuNayq7uVytz8jHdaGaninDDLqxrZfOwQV06f70kNo6U6Ugit4DMORTnhjMb4zd717O1pI+j4SbipE/3xw3H//s08cXgXl9TM4Q3TFwz7+NJQhMrcAgaSca72aMEwgGMcXlsz27Pzi4iIZCuF+inm9j3reOTQDvIDIb629C2E/cO/2NHa1iYeO7STCyobeE1VY0Z1vH/2eRkdN9G8YdoC6vJKKArmUhMpzGiM44t0426SnniUklBk2GPcv38zKevyu/2bMwr1AIXBXAqDuVSHM3scIiIi4h311E8xB/vSizl7ElF6EtGMxrh511p2drdw0641WDuCnpNJwBjDguJqakbQ/z1t8Fi/8WX86smy8hkALFXLioiIyJSkmfop5qrGc7hv/yZmFZRnvAVjY0EZG48dZGZ+GcaYUa5w6mnuSy+2TdoUHfH+jC649KG5F3L1rHPJ8elHWkREZCpSAsgydXUjm4mtjRTxsfkXjWiMj8+/iCMD3VTk5o9oHEl7w7Qz2O08QNgfpDRn+K03xynQTz4j/XkXEZGpQykgy6xYscLrEvA5jrYbHEXnlM+gIb8MQK98yEtMhJ93ERHJDuqpFxERERHJcgr1IiIiIiJZTqFeRERERCTLKdSLiIiIiGQ5hXoRERERkSynUC8iIiIikuUU6kVEREREspxCvYiIiIhIllOoFxERERHJcgr1IiIiIiJZzu91ASJea2pq4tprr/W8BsDTOpqamqirq/Ps/CIiIpI5hXqZ0iZKiM3JyfG6BOrq6ibM10NERESGR6FeprQVK1Z4XYKIiIjIiKmnXkREREQkyynUi4iIiIhkOYV6EREREZEsp1AvIiIiIpLlFOpFRERERLKcQr2IiIiISJZTqBcRERERyXIK9SIiIiIiWU6hXkREREQkyynUi4iIiIhkOYV6EREREZEsp1AvIiIiIpLlFOpFRERERLKcQr2IiIiISJZTqBcRERERyXIK9SIiIiIiWU6hXkREREQkyynUi4iIiIhkOYV6EREREZEsp1AvIiIiIpLlFOpFRERERLKcQr2IiIiISJZTqBcRERERyXIK9SIiIiIiWU6hXkREREQkyynUi4iIiIhkOYV6EREREZEsp1AvIiIiIpLlFOpFRERERLKcQr2IiIiISJZTqBcRERERyXIK9SIiIiIiWU6hXkREREQkyynUi4iIiIhkOb/XBYiITDSu69La2kp7ezsDAwMMDAwQjUbx+/2EQiFyc3PJy8ujsrKSvLw8r8sVERFRqBcR6ejoYNOmTWza8BwHmpo40tpGXk6QknCAkM8h5EDQgZSFmAvRFPQlUrT2DuDz+agsL6OhcRZz5i9gzpw5VFRUYIzx+mGJiMgUolAvIlNSe3s7jz36CM8+vYr2Y8eYUxJmTsRwXmWQivpKQv7TdydaW0BvwqV1IM7+/RtYvf15bu6KguPjzDMXc/ay81i0aBG5ubnj8IhERGQqM9Zar2vIOkuXLrVr1671ugwRGSbXdVm/fj1/fPD37Ni5iyXluZxTEqSuIIhvlGbWrbW0R1NsOTbAC72WvR39zJ09iwsvvoRly5Yp4IuIyLAYY9ZZa5ee9n4K9cOnUC+SXay1rFmzhjtuuRkn1s9rygKcVZ5Ljm/s9wqIJl22HIuyvjPF7o5+Fi1cyGsvv4LFixfj8/nG/PwiIpLdFOrHkEK9SPbYsGEDt950A25fN2+oCbGgJORZv3tfwmVDWz9rjqXoiLtcdPHFXHLZ5dTU1HhSj4iITHwK9WNIoV5k4mttbWXlz/+P/Xt28hfTwiwq9S7Mv5wjfQmebY2yti1KVVUVl7zu9Zx//vmEQiGvSxMRkQlEoX4BYnrGAAAgAElEQVQMKdSLTFzJZJLf3Xcf9/32Hi6qyuWy2ggBZ+KE+VOlXMuWY1GePZZgT1eMc5ct4+JLL2Pu3LkT6kmIiIh4Q6F+DCnUi0xMzc3N/OC71xGO9fCOughludm1wVdXLMXa1gHWHEvg+oIsf+0lXHDhhdTW1npdmoiIeEShfgwp1ItMLK7r8rv77+e3d93Jm6eHOb8ynNWz3NZa9vcmWNcW4/ljMfILCjj/Ncs5Z+kypk+fjuOM38XA+/v7OXLkCEePHqWtrY2OY+10tLXS2dFBLBYjFo8Ti8exrsXn8+H3+wj4/eTl5VFYVERRSSklZeVUV1dTVVVFZWUlfn92PdkSEfGSQv0YUqgXmTja29v5wfXXkeg4ynsb8rJudv50XGvZ1x1nw7E427oTRFOWhWcsZOFZS2hsbKSmpmbEu+ikUilaW1s5fPgwBw8e5NCBJg4eOMDhoy0kkknK83IpC/ko8lsK/VAQ9JEfcMjxOwQdQ9BncAykXEhaS9K19CVcehIpeuIunQloSxha+uN09EcpLymmvr6B+lmzaGiYycyZMwmHw6P0FRMRmVwU6seQQr3IxLBu3Tp++qP/ZXlFkCtqIzhZPDs/VO3RJNs7ouzqtzT3JugciDO9uoqa2mmUVlRSWlZGUVERwWCQQCCA3+/HdV0GBgZOvB07doz2liO0t7bS2tZGW0cXhbk5lIcDVAShIsdQGfZTGQ6QH3BG9VWPpGs52p+guS/BoX6X5qiluaufksJCGmfPYva8BcyePZvp06dry08RERTqx5RCvYi3kskkN994A88+9QR/3ZjPzMIcr0vyTDTp0tyboC2apDOWoivl0J2EhLWkXEgN/o4P+QwhnyHHgQKfS1HQoSjHR0mOn7Jcv6eLiVPWcqQvQVNPnP0DlqbeFMf6Y9RPr6Vx7jxmzZ5DY2MjZWVlWd1WJSKSCYX6MaRQL+KdlpYWrv/2N8mLdfOehjwigfHrL5fx05902d8TZ39vggNRQ1PXAC6GuunTqJ81m4aZjUyfPp3q6mr16IvIpDbUUK/fhCKSNdasWcPPfvwjLq8O8doZ+Zq1ncTCfod5xSHmFaf37bc2Qnfc5WBfB81bV/Hk+qc53JfgWF+6R792Wi21M+qoqZ1GTU0NVVVV6tMXkSlFoV5EJrxkMsmvb7qRZ578Ex+ZnU99wdRtt5mqjDEU5vgozMllQcmL/55wLS39CY70H6Bl/V5Wr3FoGUjS2hslJxigqrycqppaqqdPp7q6hurqaiorKwkGg949GBGRMaBQLyIT2tGjR/nud75FJNrF5xeVqN1GXiLgGGrzgtTmvTSkW2vpiru0DvTT0vICLQe2sDXh0NKfoL1vgJLCAmqqq5lW18D0ujqmT59ObW0tgUDAo0ciIjIyCvUiMmGtWrWKX/38Z1xRncvFMwrUbiNDZoyhKMdHUY6P2UUv/VzKLaI1muRofwtHtxzkmQ2ruLsvSVvvAOWlx7fbnE1DQwP19fVEIhFvHoSIyDAo1IvIhNPf388Nv/wFLzz/HB+dW8D0PLVKyOjxOYaqcICqcADIPfHvSbeQI/0Jmjt2ceBPO1j9kOVgVz+F+Xk0NDTQOHceDQ0zaWhomLD9+slkkq6uLvr6+ohGo8RiMeLxOMYYfD4fPp+PYDBIfn4++fn5RCIRPVkWmSQU6kVkQtmyZQs/+sH3mRuBzy0sJuRXu42MD79jmJYXZNpJTyJdm09Lf5L9Pfto/tOelwT9uro66hpnU19fz4wZMygpKRnTq/1aa+np6aGlpeXEW9vRI7QePUJbeztdPb3E4gnyc4OEA36CPoegzxB0DNZCyoKLJZ6y9MWT9MQSJJIpSgsLqKysoKqmlqraadTX11NXVzdhn7iIyMvTlpYZ0JaWIqMvGo1y669v5pmnnuTdDREWlOSe/iARD7jW0tKf5GBfgoMDKQ7H4FBPjGgiSWV5GTU1NVTW1FJSWkZpaSklJSWEw+ETb6cGf9d1iUajRKNR+vr66OzspKuri46ODtpajqZDe2srbR2dGKAsL0Rpjo8Sv0tJ0KE45KM4x09B0CHsd4Z1EbaEazkWTdIWTdI2kKQlDgcHXA519VOUn8/MxkbmnrGQOXPmMGPGDF0QTMQD2qd+DCnUi4weay3PPPMMN/7qF8yKOLx1RkSLYSUrRZMuLQNJWgYSHIum6Ew5dCagK55kIJFiIJ4kmkjicwxgOJ69kymXoN9HKOAnN+CjIMdPgd+Q57MUBaAkx09JKH2hsPA4/Wwcf+LS1BNnX7/Lvr4UHf0xGuvrmb9oMfMXLKCxsVG7CImMA4X6MaRQLzI6Dh48yK/+76ccO3yQd9SFaZzCV4aVqcG1lpSF9J/e9N9fv2OGNbvulb6Ey97uGLt7kuzucznaM0D99GksWHwm8+YvYPbs2YRCIa/LFJl0FOrHkEK9jDZrLbFYjFgshrWW4z+Xfr+fnJwcAoHApFrMdvjwYe68/Tae37CBy2tyubg6Mjh7KSLZIpp02dsTZ3d3gj39lubOfmoqy5kzfwFz5y9g1qxZlJWVTarfXSJeUKgfQwr1Mlzd3d0cOnSIQ4cOcfTwYdpbj9Le1kZHRye9AwNEY3H8Poeg34cxhuN/ApOuJZ5MknItoUCAvEgu+Xl5FBQUUFRSSlllJaWDfbsVFRWUlpZO6J7Xffv28bt7f8v69c9xUVWY11aHydVCWJFJIeFaDvTE2dMdpykK+7tjuBhm1tfRMHsO9Q0zqauro7y8fEwXFItMNgr1Y0ihXl5NR0cHu3btYs/u3ezZsY19+w+QTCapys+lIuRQ5ndP7J9dlOMj7HcI+ZxXnal2rSWasvQlXHoTKfoSLl3xFJ1xN923G7e0D8TpHohRUlBARUU51dOmU107jerqaqqqqjz7Q9rf389TTz3Fow89SHdnB+eXB1leHSGsMC8y6XXGUuzvidPcl+RQ3HCwJ8ZAIklNZQXTps9gWn0DtbW1VFdXU15ePqEnJUS8olA/hhTq5WSpVIrHHnuMbZs3sn37DgaiA9QV5jI9BNMjfqblBSkMOuPyEnTStbRHk7RHk7QMJGmLQ2scWvri9MbilBcXU11dRdW06dTUTqOqqoqKigqKi4tHLfC7rsv+/fvZ+PzzPL9uDXua9jOvNML5ZQHmFuVkRe+wiIyd/oTLkf5E+i1qaU1AS1+CroEY5cWFVFZVUVU7jeqaWqqqqqiqqqK0tFSz+zJlKdSPIYV6OVlzczP/fs2XecuMPBoKglTk+idkcI2nXFoHkife2pIOrTGX9v44fbEEJYX5lJWWUlJaSnFZBSWlpeTl5REOh8nNzSU3N/clT0xisRg9PT309PTQ1dVFc9Nemvfv53BLK4W5QeYWBJhX4GdWUQ45Pv0xFpFXF0+lJyVaBwa32EwYWmOWtv70pERZcRHVVVXUTK+jenB2v6amhoKCAq9LFxlTQw31uviUyCjID+VwQdXEvpR80OdQmxek9mWuzhpPWTpiSY5Fu+huP0bX4W3sShkGXEM0BdGUSzTpvuSYgOOQF3CI+CHiuNSGfCwt81M1o0IXjBKRYQv6DNWRANWRwJ99Lp5yaYsmaR04TMuWAzz/vMMfoukdeHw+H9Nqa/jM579IYWGhB5WLTAwK9SJC0GeoDAeoDP/5H1MREa8FfQ41kSA1kZdOSlibT0/C5ftbj9DZ2alQL1OaptNEREQkKxljKAj6COjVQRGFehERERGRbKdQLyIiIiKS5YbUU2+M+QzwC6AH+BmwBPhna+1DY1ibSFZwHIf2vgF+sE37K4uIeKG1J6otL2XKG+pC2Q9ba683xrweKAc+RDrkK9TLlFdVVcWXvvwVksmk16WIiExJPp+P2tpar8sQ8dRQQ/3xzanfBPzCWvu8GY8r6YhkAcdxmDt3rtdliIiIyBQ21Neq1hljHiId6h80xuQD7mmOERERERGRcTDUmfqPAGcBe6y1/caYUtItOCIiIiIi4rGhztRbYAHw6cGPI0BoTCoSEREREZFhGWqo/yFwAfDewY97gB+MSUUiIiIiIjIsQ22/Oc9ae7YxZj2AtbbDGBM83UEiIiIiIjL2hjpTnzDG+Ei34WCMKUcLZUVEREREJoShztR/F7gLqDDG/CfwTuArY1aViIjHVq5cSVNTk9dljNiRI0eA9PUUBOrq6lixYoXXZYiIjLohhXpr7U3GmHXA5aT3rH+btfaFMa1MRMRDTU1NNDU1UVdX53UpIxKLxbwuYcKYDE/SREReyauGemNMgbW22xhTArQAvz7pcyXW2mNjXaCIiFfq6uq45pprvC5jRK699lqArH8co+H410JEZDI63Uz9zcBbgHUM9tMPMoMfzxyjukREREREZIheNdRba98y+L5hfMoREREREZHhGtLuN8aYvzLGFJ70cZEx5m1jV5aIiIiIiAzVULe0/DdrbdfxD6y1ncC/jU1JIiIiIiIyHEMN9S93v6FuhykiIiIiImNoqKF+rTHm28aYRmPMTGPMd0gvnhUREREREY8NNdR/CogDtwK3AQPAJ8eqKBERERERGbqhXnyqD/hnY0yetbZ3jGsSEREREZFhGOruNxcaY7YCWwc/PtMY88MxrUxERERERIZkqO033wFeD7QDWGufBy4eq6JERERkYrOJOLZ5OzY+4HUpIsIwdrCx1h4wxpz8T6nRL0ck+6xcuRKAFStWeFyJiMj4ce++Hg5sg4o6fH/9r57Vod/BImlDDfUHjDEXAtYYEwQ+DbwwdmWJZI+mpiavS8D9403YTY9jzroM55L3eF1O1rNtB7EdRzGhiNeliExc7YdOvLfWcsrE37iZCL+DRSaCobbffJz0bje1wEHgLLT7jciEYTc9Dm4Ku+lPXpcyKbgP/Ax6O7HtB7Gxfq/LEZmQnNd/GBrPwnnj33gW6EXkRUPd/aYNeN8Y1yIiGTJnvw678THMksu9LmVyiBSm3zs+8AUyGsK6LvR1Ql5xxoHHHtmHbT2AmXcuJpCT0RgTgXVdaNoCxVWYovLMxmg/hN3yFKbxLEzt7MwKSSawsX5stB8TCmc2hpxgGhbha1jkdRkiMmiou9/MNMbca4xpNca0GGPuMcbMHOviRGRonIvfhe/vf4Dzmrd7XYrnbCKO+9RduDszvz6e8+aPQ2kNpqIO488s1Lt3fgf3p1/EPvSLjI63Pcdwb/1v7B9+iX3kpozGGA22u53UHd8ide8PM14QaZ+4Hfeu63Bv/Cq2tyOjMdz7/he79gHcO7+DTSWHX0MqiW1pgmNHcO/T5m02lcTueR7b1eZ1KSIySobafnMz6YtOVQM1wO3Ar8eqKBGRTLm/+Tb2mfuw9/4Qd/+2jMYwwRAmnA8ZBnqbSsL+9LIju3dTRmOQTICb3o/AxqOZjTEK7IZHYP9W2LkOuyOzJ0q2szV9Ix6FgQwvdRIMpd8HcsAM9U/XSdwUuG76dqY1TCL2kZtw7/4u7o3/jtXXQ2RSGOpCWWOtveGkj280xvz9WBQkMtXYRBz2Pg8V9Rm3JshJ+jpfvN3dCswb9xKMz4+56B3YF1ZjzrkyszGKK3H+4pPYo3sxS64Y5QqHUce0Odjn/gA+P6aqPqMxnEvegw1FoLIOUz49szHe+insrvWYGfMxzvBDvQnkYMpqsdE+nDd9NKMaJhPb3Z6+EetPv+XmeVuQiIzYUEP9o8aYfwZuASxwFXC/MaYEwFp7bIzqE5n07EM/x25fA6EIzke+jsnJ9bqk7Hbum+CPN6ZDyrzzPCvDWfZGWPbGEY1hZi3BzFoyShVlWMPMM3H+5hvpUJ9p8Os4gj2wDeID2EUXY3xD3k35xTrCBZjFr83s/MeFIphQBFNaM7JxJgHnsvdhn/0d1M7CFFV4XY6IjIKh/ma9avD98emN46u+Pkw65Ku/XiRDtndwZjnWD8k4KNSPzL7N6VaLvi7MoT0wY/xn6icbk1c0ouPd5/4A3W3pt5b9UK0/GSNl2w5CTi4mvySj401xJeb1HxrlqkTES68a6o0xy4AD1tqGwY8/ALwD2Ad8VTP0IiPnXPlB7Lo/pNsKju+6IhkzjWdhdz0HBWVQPi2jMWzHUWxnq+c7pLir78Ue3oOz/O0Zt62MBptMgONgHF9Gx5s5y7BNW6C0FjRLPmLulqewD/4c/EGc912jVx5EBDj9TP2PgSsAjDEXA/8NfIr0PvU/Ad45ptWJTHC2/RC2ZT/4A9hUMrO2guIqzBXvH4PqpiZnwYXYxrPAH8zo/weAe8/3oecYtvcYNjbgSUuUbT2AXXV3uh7XxfeOfxj3GgBs83bcO6+DYAjnPf+SUauGs3A5dt556RYeL/czT8TTW1r296QXQmero4MXW0rG0xeAUqgXEU6/+43vpNn4q4CfWGt/Y629Bpg1tqW9lDHma8aYYa8WM8ZcYoy5byxqErFrfg+xAejrTu/DLROCyQlnHOgB6BlcRGjBJmKjU9Rw5RVDuAAAU1nnTQ2A3f18Ojz2d2MPbM94HOMPeBrobTKR3tKy4yjuvdm9paVZ9kaYfQ7mrMug8SyvyxGRCeJ0f/V8xhi/tTYJXM6LPfVDOXbYTPo3vrHWuqd+zlr7r6N9vleo4fjjFTm9GfOBR8HnAw/bI0aD7TiCbdmPaVyS8d7sE4XtbIFQXubtM9PmwqY14PNhQpHMamjegd29HrPgNZgM2oBMbh7OB74G3e2YyvqMahgNZuFy7L7N6f7tWVkcIK0L1qZvJz16ojZKTH4xvr/4O6/LEJEJ5nTB/NfA48aYNmAAeALAGDML6Hqlg4wxXwearLU/HPz4q0AP6VcG3g3kAHdZa//NGFMP/B54FLgAeJsx5t+BpaQX4f7cWvsdY8wvgfustXcM9vpfD0SAGOknHAngfwePSwKfs9Y+ekpdJcDPSS/s7Qc+aq3dOFhfDVAPtAFXn+brIgKkWz229X4fcHnfx7TL6+TjZvQEx7op3Luug0QMu/t5fB/+r4zObnLzIdfbNhFTWoPvA1/ztIbRYAI5bOtJ7/v//vu3wf36NS8ik8urtt9Ya/8T+DzwS2C5tcenOXBI99a/klt4ccccSAf5VmA2cC7pnvxzBvv0AeYCK621S4AyoNZau9Bauwh4yeUYjTFB4FbgM9baM0n3/A8AnxyseRHwXuBXxpjQKXX9O7DeWrsY+BKw8qTPnQO81Vr7sr/pjTEfNcasNcasbW1tfZWHLiKTiY31D/8g40DO4KsEGc70nzj/4AWopjrbcRR31d3Yw3u8LkVEZEI6bQuNtXb1y/zbjtMcs94YU2GMqQHKgQ5gMXAlsH7wbnmkQ/5+0rP6x8+zB5hpjPkecD/w0CnDzwUOW2vXDJ6rG8AYsxz43uC/bTPGNAFzTjl2Oende7DWPmKMKTXGHN9u5LfW2le8Brq19iekFwezdOlS+0r3k6ln/vz5AFxzzTUeVzIydscabPMOzDlXYgqz9yJYtrUZ99GbMaW1mMvei8ng6qOpO6/jPx9Ym26r8g1/pt4Yg3nnF2DnWjjjomEfD+mLkrm3fQNamjCv+wDOwuUZjTNZuPf+ENqasc89jPOJ6zJaMzHSn1Xbfgj3V/8KWMzCi3Cu/GBG40wEqbuuh70bwRicj/wPpqDM65Iydu1X/w1S6poVGfW++JPcQXp3nCrSM/f1wH9ba3988p0G22/6jn9sre0wxpwJvJ707Pu7Se+Hf+IQ0m05pxrKCqyXu8/xsfpe5nMiY87d/AT28VsxdWdg3vyxjELoaDBzlmHmLPPk3MfZzlbce38AvgDOX34ys/3Re9qhZT82lcAk4hA89QW703Pe8jFYcxATzM14fYF98OdweDemtRne8vHhD3DsMBzdmx5r22qY4qH+xJMrnw+8WnBbUJbeaaarFerO8KaGUWJC4fQfP38w/ZalbFcb9shecF3c5/6Ac/brvC5JxDNjmR5uAd5DOtjfATwIfNgYkwdgjKk1xvzZ3mjGmDLAsdb+BrgGOPuUu2wDagb76jHG5Btj/MCfgPcN/tscYAZw6lYNJ9/nEqDt+Ey/iFfshkcgNoDdsRa6p/alH+zWVdB6AI7sSX89MuBufhLiA3B4DxzZm9EYJpiLCRdApoE+lYQj6TYRe/BVX9h8ZWW10LgEIoU4S4a98deL3BSkEpkfP0E4b/0k5tKrcd79Txnvlz9iR/dB+0FIxtNPtDxkD+/BdhzN+HhzxQcwb/gIznu/lP5ez1adLeAO7q1xfKtPkSlqzGbqrbVbjDH5wEFr7WHgsDFmPvD04LZmvcBfA6c2jNYCvzAvTlf+yynjxo0xVwHfM8bkku6nvwL4IfAjY8wm0gtlP2itjZ2yhdpXB8feSHqh7AdG7QGLZMgsvAj72C1QtwAyvDrkZGEaFmGfewgcH6ZuQUZjOAuX4+5/AUqroaphlCscGuPzYy77a+y21RkHcuPz43vryBZf2/ZD2MO7wVrsrucws06dI8keJq8Ys+Ryb4uomJH+nmo7iLPgQs/KcDc+jn14Jfj8OFd/JaMLk5lAEOPhYxg1M+alf28m45gL3up1NSKeGsv2m+OLVk/++HrSu9acauFJ93meP5+dx1r7wZNurwHOf5lxPnjqP1hrHwMeG7x9DPizn3pr7Vdfrn6R8eCcdRmcdZnXZUwIpnomzsevA2My3mfezDwT399/f5QrGz7nzEvgzEs8rcEebQI33WHoNu/A51Got7s34D70S6isw/nLv8/aLVNNMITv6q9grR3Rnvt2xxpsIo5ZcEFm7Xbth9LvU8n0THWWb6c7EsY4mKL0GqDj70WmqjEN9SIiw5Wtge9U9tAu7K71mAUXYspqvSni5KumBjO7Kq7t6cB9eCUmJxfzug9gAjnDHsN9/lEY6IF9m9PtVdUzM6plohhRoN/5HO59P0p/kIilLyA13POf+yaI9acvTta4JONaRGRyUagXERll1nVxb/8mpBLYF1bj+9i3PKnDJOIv3raZbdpl1z8MezemF1XWLcCcMfwFu2b+BdgD26B8RnqtgFes9XyXlJdsUZrhdqUmUoh5w0dGqSIRmSwU6kVERpl1ky8uTh3o8a6QWUugqALcFObcN2Y2xvFZdcePqajLaAhTdwb2nCtxKuoymukfDda62Jb9EI/iPnwDzhXv96QOZ+4y3EQUEnGMx+1ZE4FNJaG/GzPF1xOJjAaFehGRUeb4g6TKpkPbAU+3PjTGYPKL07czDdMdR9Lv3SR0tmbUv20fvQm2r8HF4HzwWkxJdWa1jEQsCvFoup79W8f//CdxFmZ27YLRZA/uxH3iDkztHJyL3uFNDakk7i3/BUebMMveiHPROz2pQ2SyUKgXETmFTSXTPcsjmFV2rv5yOhCX1oxiZR44eQ/zTNc7HO/n9/kyH2OETCgMhWUw0KPwCLhP3gmHdqXXfiy4AOPF92l/z4ltKO3eTaD/LyIjolAvInIK+8DPsS0HwB/AppIZ7cRj/IFJsSuJWXI5hPIwoTCmYdHpD3i5MS69GqobMWXTPL1yqSkohYJSzOxzPKthojDT56avoVBY7tlWuia/GHPum7B7N+Fc+DZPahCZTBTqRUROYdsOpG8kE5CIQYbba04GxjiYBReMbAx/ADPVr4g7wTgXvg07/wLIK/JsnQOAs/wdsNyb9h+RyWbq/qUSGSV1dZktHpSJy7liBTz3LcjNw4QiXpcjMiZMcaXXJYwK/Q4WSVOoFxmhFStWeF2CjDJTO9u7veVFZFj0O1gkLYNL2YmIiIiIyESiUC8iIiIikuUU6kVEREREspxCvYiIiIhIllOoFxERERHJcgr1IiIiIiJZTqFeRERERCTLKdSLiIiIiGQ5hXoRERERkSynUC8iIiIikuX8/7+9Ow+O7LzPe//99b5hXwYDzAxmXzkzXMY0N1OUKKkia6eoSLZlSvKSm+XG17fKdcu3EqVSYpbrW0klcRJHlhVbZiJvokXb0UrJ3GSKHGq4iuTsCwYY7PvS6P3NH90zhMAZDtAA5uAAz6eqqxt9Tp/+4cUB8PQ573lfrwsQEVmturq6ePjhh70uY0m6uroAfP99LIeuri46Ozu9LkNEZEUo1IuIXMVaCX/RaNTrElaNzs7ONfNzFRGZT6FeROQqHnroIa9LEBERWTD1qRcRERER8TmFehERERERn1OoFxERERHxOYV6ERERERGfU6gXEREREfE5hXoREREREZ9TqBcRERER8TmFehERERERn1OoFxERERHxOYV6ERERERGfU6gXEREREfE5hXoREREREZ9TqBcRERER8TmFehERERERn1OoFxERERHxOYV6ERERERGfU6gXEREREfE5hXoREREREZ9TqBcRERER8TmFehERERERn1OoFxERERHxOYV6ERERERGfU6gXEREREfE5hXoREREREZ9TqBcRERER8TmFehERERERn1OoFxERERHxOYV6ERERERGfU6gXEREREfE5hXoREREREZ9TqBcRERER8TmFehERERERn1OoFxERERHxOYV6ERERERGfU6gXEREREfE5hXoREREREZ9TqBcRERER8bmQ1wWIiIisBs45MpkMExMT5HI5otHoT90CAR0HE5HVS6FeRETWlUKhQHd3N6dPn+bEiZP09vUzOTnJzPQkzkE8kSIYDFEo5inm8+QLeQr5PLFYjLaN7WzZspnOLZvZtGkTnZ2d1NbWev0tiYgo1IuIyNrmnOPChQscPfoCP3n9DXq6L5JI1ZGqbSVe00Ldxptp2ZogEk0QDIWvuY18bpb09Bg9Q6Ocu/gK2fRTTIwP0djYxM2HD3H48CH27t1LNBq9wd+hiIhCvYiIrEGlUolTp07x/NGjHD36AqWSUd+6lbrmfdy24z5C4ciitmdmRKLl4F/f1HHleVcqMTUxyPFzPRx7+U+YGBtga+c27rrrDm6//XYaGhqW+1sTEbkqc855XYPvHDlyxB07dszrMkREZJ6BgQGeeOJJnnrqaYLhKHXNW4+O7fAAACAASURBVGncsI1EqhEzW/H3LxbyjI/0MD50ntGBC7R3dHDP3Xdx++2309TUtOLvLyJrj5m96Jw7ct31FOoXT6FeRGT1yOVyvPDCCzz+/b+lp6eH5vZdtLTvJVnT6GldpWKR8ZFuxocuMDJwnvb2Dt517z3ccccd6ocvIgumUL+CFOpFRLzX39/P9x7/Ps88/TSp+laa2nbT2LqNQDDodWlvUyoWGRvuZnzwLCODXWzftp17772HI0eOkEqlvC5PRFYxhfoVpFAvIuKNUqnEK6+8wre+/V3Onz9HS/seNmw+QCzhnyPfxUKe0cEL5S46Q91s376du+68gyNHjqgPvoi8jUL9ClKoFxG5sSYnJ3nyySd5/PEfQCBMc8d+mjfuJBj093gPxUKeseGLTAx3MTJwgY0b27nt1ls4ePAmduzYQSjk7+9PRJZOoX4FKdSLiKw85xynT5/mO9/9Hi+//DLNG7bRsmk/NfUbvC5tRZRKRSZGLjE5eonp8T5mpsbYvmMnNx8+xK5dO9m8ebO66oisQwr1K0ihXkRk5UxNTfHss8/y/R/8LdPTaZo79tHasZdwJOZ1aTdUPpdhYvQS02N9zM6MMDk2RDyRYNOmzezYvpW2tjYaGxtpaGigoaGBVCp1Q0b4EZEba6GhXuf1RETEc8Vikddee40f/O0TvPHGGzS1bqVp061sb9q0boNqOBKjuW0HzW07gPKZi+zsJNOTI7x6op+XXjtLPpcml5lhNj1NoZAnFo8TjUaJRKJEo+VbJBwmEAwSDATK98EAwWCQYDBIKBSq3AcJh8IkEnHi8TixWIxYLEYikaChoYH6+nqSyeS6/VmI+IFCvYiIeKJUKnHy5El+9NzzHD16lEg0RUPbLm6995cIhTUr63xmRixRRyxRB23b37a8WMxTyOcoFfMUC3mKxUL5calIwZVwzkHB4fIlSqUSuBLOFSiVsjjncKUCpWKhfF/K44oFCoUcuWz5Q0OpWCBVU0dDfT0dHe1s2bKZjo4O2tvbaWlpIRAIeNAqInKZQr2IiNwwhUKB48eP89xzz/PjY8cIRxLUNW9l9y0fJJHSyC9LEQyGCQbDK7b9YjFPLpMmm5mmb2yMC71vkJv9ETNTo+Sys7R3bGbP7l3s3r2LHTt20NraqiP7IjeQQr2IiKwY5xzd3d28/vrrvPTyK5w5fZpUbSO1zVvZe9tHiCfrvC5RFigYDBNP1hFP1lHf1PFTywr5HNOTQ5zsGuC1N7/H5Fg/rlRk1+7dHD50kAMHDrBp0yYdzRdZQbpQtgq6UFZE5OrS6TTnz5/n7NmznDh5mjOnT2GBELWNHdQ0dFDX1LHuLnhdr7Kz00yM9jIz0c/UWC/5XIbde/Zyy82HOHjwIG1tbTqSL7IAGv1mBSnUi8h6l8lk6O3tpa+vj0uXLnGxu4eLF7uZGB+jrqGVWKqZRE0ztQ1tvpoYSlZONjPNxEgv0+O9jA93Ew6HOHTwILfccjP79++ntlb7icjVKNSvIIV6EVlrisUi2WyWdDrNzMwM09PTzMzMMDMzw9jYGEPDI4wMjzA6Osr4xDi5bJZUbQPxZD3haC2xZD2JmkaSqUZMXSzkOpxzzM6MMT7cw8x4L2PDl2huaeHwoUMcOnSQPXv2EIvpjI4IaEhLERHfc84xMzPDxMQEk5OTzM7O/tQtnZ4ll8u9dcvnyeXKo54UiyUKhQLFYvGtW6FAYc7jfCFPPpcjn8/jXIlQKEw4EiMSjREORwmGowRDEQKhGOFIkmisnZatu9kUSxKOJtR1QqpmZiRSjSRSjcAhSqUi0+ODvHn2Ej9+8WtMjA2yadNm9h/Yx/59+9i1a5cm3hK5DoV6ERGPFAoFBgcHGRoaYnBwkP7+AXr7+hkeHmZqcpKZmSmCwRCxeIpINE4wFCEYCmOBMIFgGAuECARDBAJBAoEgFogTCKSwYAALBQnGjHAgABYgEAhgFsQCbz0uj1keIhAIY4GAQrp4JhAIUtu4kdrGjQAUC3mmxgd4/WQfLxz7CeMjfTQ2NbFr5062b99GZ2cnW7ZsIZlMely5LIVzjtnZWbLZLJlM5sotn88TDocrcy5Ersy5UFNTo79T70Ddb6qg7jcishilUomBgQG6u7vp7u7m3Pkuenp6GB0dJpGoIZ6sIxxLEY6kiCVqicZrCEcTRCJxAkEdexFxpRLTk8NMTwySSY+RmRllcmyIRCLJxvZ2NrS2sGFDK83NzTQ1NVFfX39lEq1oNHrNIOicI5/PV858pa+cBbvc9Wx6epqpqWkmp6aYmUlfWSczO0smk6FQLJ8NK5VKlCr3gUCAUChEKBwun/0Kh0nE49TW1VJfV0d9Qz11tbU0NjbS0tJCS0vLmp4N+PLfv56eHnp7e+kfGGRwcIjh4WHGx0ZxQCQSJRQKVw5clA9UuFKJYjFfOcOYp5DLUSzmqatroLGpidaWFtraWtm8eTNbtmyhtbV1zY6upD71K0ihXkSuxTlHf38/58+f58yZs5w+c5ae7ouEwlFq6poJx+uIJxtJ1DSSSNYrtItUyTlHJj3J7PQY2cw0ucw0xXyaXHaa7OwMhUKefC5LsVggFA4TDkUouRKuVJ58y7kSxWKJQDBAJBwlVAmWoVCk0vUsigXCBENRQpWuaOVlkcrj8tkyMyuHSQtgFgDnKJUKlZBfpFSZxCufS5PPzpLPZSgVMhTyabKzU8xMT4BzNDQ2sWFDK1s2b6ajo5329vLNT2cjpqenuXDhAhcuXODsufN0X+xmcGiAWCxJsraJcKyWSDRFLF5DNF5DNJ5a1ERzxUKebGaa7OwU2dlpsplJ8rMTTE0Mk8vNsnFjB9u2bWXP7l3s2rWLjRs3romgr1C/ghTqReSydDrN2bNnOXXqNMdPnOD8uXMEgiFq6jcQTTSSqmshVdtCOBr3ulSRdakc3suz5ZpZOXhX7suBPOh1iRTyGTLpKTLpCdIz4xQyk2TS40xNjBKJRGnbuJHNmzfRuWUz7e3tdHR00NDQ4NnR/blnH7u6ujh77jxdF7pIz6apq28hlmwklmokWdNEItVIMLRyk6JdVshnmJkaZWZymMz0MJNj/RTyWbZu287+/XvZt3cvO3fuJBr132zVCvUrSKFeZH1yzjE4OMjJkyc5fuIkJ06cZHRkmLrGVuKpFpJ1reUwH9MFfSKydM45cpkZ0tNjzM6MkZ2dIJseZ2ZylEIhT1NzCxs3bmTzpnba2tpoamqisbGRpqamJY8e5JxjamqKgYGBK7dLvX309FxioL+XaCxJqraJcLyeRE0TqdpmYom6VdWNKJdNMznWz8zEAOnJQSbGB9m4sYObDuxn//597NmzxxcXYCvUryCFepH1IZfLce7cOU6dOsUbb57g3NkzOIy6xo3EUi3UNrSRrG1eFUf6RGR9KeSzZNITzM5MMJsep5CdJp+dITs7TXpmikAwSF1dHfF4gng8TiKRIJko35tBqeQoOUepWCqPPjSTZnJysjKc7TTpmRkCwSCpmnqi8VpC0RTReC2JZAOJmiZC4YjXTbBoxWKeqfFBpsb6mJ0aZGykj/r6Bvbt28uBSshvaWlZVR9MQKF+RSnUi6w9l/vCnz17lpMnT3Hy1Gn6+3uprWsmUdtKsraVmoY2orG1e0GbiKwNzjmKhSzZzAzFfI5CIUexkKNYyFMs5HBQ6YpkQPk+GIoQjsQIR2KEInHC4dgN6TbjJVcqMTM1wmQl5E+M9hIwY9v2Hezbu5tdu3axfft24nFvu08q1K8ghXoRf3POMTQ0VLmY6xynT53hwoXzBEMRahs2EE02U1PfSqquhWBwbf9TExGRMucc2cw0U+MDpCcGSU8PMTE2yIc/9GE++ckHPatLk0+JiACZTIaenp7KBV0XOXf+Aj3dFwkEQ9TWtxJJNJCs7eTQ3bcTiSa8LldERDxiZsTiNcTiNbBxJwD93W8yMDjocWULo1AvskTOOXp7e3HOXRnaLBAIEAwGCYfDRCIRIpEIwaD6Xa+UYrHI6OgofX199Pf303Opl56eS/T39TE9PUVNXRPxVAOReD3J+l0c2nKnAryIiCyAf7pbKtSLLFF/fz+//du/Taq2AeccrlTCOVcen7hUpFAoUCzkMTNCoTCRaJRYNEY0FiMWixGPx0kmE6RSKVLJJKlUkkQiceWWTP7016HQ+vq1zWazTExMMD4+fuV+ZGSU/oHyTKyjoyNMTU4STyRJpBqIxGqIxGqJJzvZcegwsWRteQg7ERGRNWx9pQORFVAsFknVNnDwzr9/zXWcczhXolQsB/xi8fIFS+WLlkbTOYYmZynkxykV87hSjlIxX7nAKUs+lyWXy5DLZgkGA0SjcWKV2RIvz5qYiMeJx2MkEglisehPTa99+YxBKBQiHA6XZzus3ILBIMFg8MrZhWAweOUCqkAgcOWi0PkXh5a/J1f5AFO6cl8sFq/cCoXClftcLkculyOfz5PP58lkMmSzWdLp2fJtNs309ExlJsdp0jNpZmfTlEol4okk0ViScDRBMBQjGI4TjdeQbDlA05YUkVhKI9CIiMi6plAvskTRaJTJiVGee/zLK/5egUCAQqFAoTDFzMzUir/fahAMhpidnWF2dsbrUkREZJ1xpRJb73+v12UsiEK9yBK1tLTw1T/6IzSSlIiIyNrjl26v/qhSZJULhzXsoYiIiHhHV4+JiIiIiPicQr2IiIiIiM8p1IuIiIiI+JxCvYiIiIiIzynUi4iIiIj4nEK9iIiIiIjPaUhLERHxpUceeYSuri6vy1i0/v5+ANra2jyuZHXo7OzkoYce8roMEd9TqBcREV/q6uqiq6uLzs5Or0tZlGw263UJq4YfP5SJrFYK9SIi4ludnZ184Qtf8LqMRXn44YcBfFf3SrjcFiKydOpTLyIiIiLicwr1IiIiIiI+p1AvIiIiIuJzCvUiIiIiIj6nUC8iIiIi4nMK9SIiIiIiPqdQLyIiIiLicwr1IiIiIiI+p1AvIiIiIuJzCvUiIiIiIj6nUC8iMk8mV+A//O7v8wdf+UOvS5Fl1N0/yTPHuhmbyHhdioj4xCOPPMIjjzzidRkLEvK6ABGR1eZbT53j+MmzBALG5wolwiEd/1iKsxfHefxHF2htSvDR9+wkFFx8e5ZKjqGxNI21McLh4KJfn88XeewHZygUS1zsm+IzH96/6G2IyPrT1dXldQkLplAvIjJPJlcAwDlHqeQ8rsb/Xj01yGy2QFfvJEOjaTa2pBa9jW89c47TXWO0NMb5zIf2Y2aLer0FjHAoQKFYIhJZ/IeC5TI+maF3cBoH9A/P0Nac9KwWEVlbFOpFROb5+Xu389IzEWKRIFEPA+BasW97E919U7Q0JmhuiFe1jYHhGQCGx2YpFB3h0OJCfSgY4NM/v5ee/il2djZUVUOhWOJPv3Wc8aks7797K3u2Ni56Gxd6JylWPiievTiuUC9XvHl2hGeOddPZXsvfu2fboj+4iijUi4jM01Abo74m6nUZa8a+7U3s3da4pJDynju28NKbA+zZ2lh1d6hkPExLY4JoFd13AE6eH2VobBaAZ471VBXqd2yuJxIKUHKwd/viXy9r10tvDpDOFDh+bpS7bumgLqW/QbI4CvUiIqvUj165RN/QDD936yZamxJel7MkSz3quH1TPds31Vf9+lLJ8eWvv0ouX6KlMc4vf/jAorfRVB+78jgZD1dVR00ywobK0fmm+urOWsjatH9HE4OjaTa31VCTiHhdjviQQr2IyCo0NJrm+Vf7Kl/18In37fa0nqW4cGmCHzzXRWtTgg++azvBwI2/8HgqnSOXLwEwUjnavljFOddXxKPV//sslRy6UkPmu3X/Bm7e20ogoG43Uh0N6SAisgqlkpErR4P93u/6peMDTM7kOHNxnMGRtCc11KWitDUnMODAzuaqttFQG7vyM+nsqK1qG4OjafqGpukbmqard6KqbSwH5xzd/ZNMp3Oe1SBvp0AvS6Ej9SIiq1A8GuKhjx5geiZHS6O/u97s2dpIV+8kTfVxmj3scvKLH1zaMJaJWJiHPrKfqZkcrU3VfdDqG5rm8gH/noFpOtvrllRTtZ58oZtXTgwSj4X4/MduIraEMw8isjrot1hEZJWKR0NL6uaxWhzY2cyebY0EA+brET0y2QJ/8u0TTExled9dnRzc1bLobezd1kg8GsI5x+E9i3/9chmdKHdBms0UmM0WFOpF1gB1vxFZorGxMb74xS8yPj7udSkiq1YoGFhSoJ+ayXHsjX6Gq+wPvxyGx2eZmMoCcK67uq4z0UiI5oY4LY0JUh5eDPmuI5vZ3FbD3bd00FAbu/4LRGTV8zzUm1m7mT1axeu+YmbveC7VzP6hmT1UfXUi1/fYY49x8uRJvvGNb3hdisiKmJnNk8kWPK3hr584wzPHeviL753wbEKw9pYUe7c10lQf58hNGzypYbm8fmaY7v4pXj4+cGWytcVKZ/K8eXZE/fIrNFGdeM3z823OuV7gwfnPm1nIOXfNvzTOuV9bwLa/tMTyRN7R2NgYTz/9NM45nnnmGR544AHq66sfdk/WjmKpxNR0jrqaqK+7nJzrGedvnjhLKGR8+gP7qp48aqmcKwcmV4Ly2DE3vk0DAePn791+w993JVw+45HOFJidLRCLLD4OfOP7pxkcTVOXivKrnzi43CX6ymunBvnb5y4SCQf53MduIpmobshTkaW4oaHezH4H6HLO/V7l638JTAGfd87dZGafAz4IxICkmb0X+C/Au4DzlM8s/KFz7lEzewr4LefcMTObBv4T8CFgFvioc26gsv1p59y/M7OdwJeAFqAIfBIYAP4aaADCwD93zv31yreErBWPPfbYlbBRKpX4xje+wa/8yq94XJUsh+PHjwPwi7/4ix5Xsnr86JteV1D27Cqpw8/u+5nNPPdqLx2tKRrqqut+M1s5e5PJFnDOVfXhdS3+nmn/FK/c6O43fwZ8as7Xfx/48bx17gQ+65x7D/AAsBU4CPxaZdnVJIHnnXOHgWeAX7/KOl8D/mtlnbuAPiADfNw5dyvwbuDf2zX+KpnZPzCzY2Z2bGho6LrfqKwPzz77LIVC+R9boVDg2Wef9bgiEVlJxWLpSpj1s+l0npHxWUYmMlcOTCzWh+/bwc17W/nY/Tt9fTZKZK24oUfqnXMvm1mrmbVTPmI+Blyct9r3nXOjlcf3AF93zpWAfjN78hqbzgGXPxu/CLxv7kIzqwE6nHOPVerIVJ4PA//GzO4FSkAHsAHov0rtXwa+DHDkyBF1nBMA7r77bp566ikKhQKhUIi7777b65Jkmezbtw+AL3zhC1W9/qU3Bzh+boTb9m9g7/am5SxNKh5++OEb+n6ZbIGvfes4E1NZ3n/XVm7aVd1496vBCz/pY2wyy9hkltv2b6hqdtu25uSS51BY6u/ZajI2kSEWDRKPedf15kt//grpTIGaZIRff/CQZ3Us1fhkhr964gyhoPGx+3d5elH5jf47sxReXCj7KOU+9J+ifOR+vpk5jxf60T/v3jrUUOTtH1autZ1fovzh4jbn3M2Uu+NoGABZsI9//ONXjlAFAgEeeOABjyuS1eLW/Rv4pQ/tV6BfRU51jfGdH56nf3jm+itfxcic0W/Odvt7tKudW8rX/rQ0xKlNRT2uxnvOuarPWFzWUBfzNNADPPDe3fzswY187P6dntaxVM+92svoRIbB0VlefGPA63J8w4sLZf8M+AOgmXJf+Xf6a/J3wGfN7I8ph+/7gD9Z7Bs65ybNrMfMPuac+ysziwJBoA4YdM7lzezdQOdity3rWzxZw+79t/HGa0e59957dZGsyCqVyxf59tPnKDnH4OgMn/3oTYveRltLkj3bGhkeS/t+9JvbDrRxYGczkXBw3c9iOjI+y9e/dxIHfPL9e6q+GHxoNE08FvL0qHJrU4LWJn9PVgdQLL71AatQLHlYib/c8FDvnHuj0h3mknOuz8y2vsPqfwncD7wOnAKOAtXOq/3LwO+b2ReBPOULZb8G/C8zOwa8ApyoctuyTv3o5V6CDYdI1Xdzxz3v97ocEbmGYNBIJcJMzuSoq/LIdDAQ4IPLMPrNzGwe58pDIHoZqDXhVNm5ngnSmULl8XhVof6VE4M8cfQikXCAz3z4APU1OvuxFKnkW2c8apLefUjyG09+o51zB+c8vgDcVHn8VeCrc5aVzOy3nHPTZtYEvAD8pLLsvjnrpeY8fpRyFx+cc/9yzvOngfdcpZxrXXwrcl2xaJBINMW+n/0ULc2NXpcjItcQDAT4hQ/uY2B4hs0baz2r49SFUUYnMgC8cnKQW/d5c8R/eGyW518rj35zS5U1OOeYnM5Rk4xU/eFkOp1jNltgYCTNBo+OMO/ubODNM8OUHOzqbKhqGwMjaQBy+RJjk5l1HepLJcfTx7qZmsnx7tu3VBXK929v5s2zowQDxq4t1f1M1iM/fEz/ppnVAxHgYefc2y5iFfHKHYfaaaqPU5OM0NLo/1Oesrr0Dk4zMJLmwM4mIuGg1+X4XjIeZvtmj7vIzRklxstOL0/9+CIX+6Y4dWGMrR11Vc0q+61nznHqwhid7bV84n27F/36yanyhboAf/n4Sf7xL9yy6G0sh7qaKJ/92OK7Y811x+GNZHMF6lJRtrZ796FxNTjXM87LxweB8u/c/Xcsvmdza1OCf/SpwwAaWWkRVn2on3tEXmS1CQSMPVt1hF6W3+R0lr/43klKJUf/8Awf+LltXpfke8fPjXDm4ji37d9Ae2vq+i9YAbs7G2iqi+EcHN7T6kkNAI11cS72TRGPhohX2Q2nq3cSgIt9k1WNU+9s7QwkV5eK8pF3+/vi1OXSWBcnFApQKJRoXcLBLoX5xVv1oV5EZD0qubdmUS2WdKHYUuXyRb7zw/MADI2l+ZWPezcDaiJe7i/sZX/6ZLz87z8WCRIMVlfHfT+zmZePD3JgZ3NVAawuFaOhNspsplDVkX5ZnRrrYnz+YzeRyRVoadAZ7BtJoV5EZBWqTUbY3FbD0OgsezqrOxtUKjmee7WXTLbA3bd2EIus3z/5Rrnni3OQzRU9qyOfLzJamfApncmT8GgIxAuXykfZx6ayTE7nqhqn/sDOZg7sXNpY/alEhFQiwoYljncvq0tNMrJmLnCtdrZkL3gxTr2IiFzH0Fiai31TzGYLvHpqsKptnL44xtHX+nj15BA//kl1lyMVSyVePj7Im2dHqnr9ahKo/GNOejiW+PHzo8zM5klnCrxyorqf63K443A7LQ1xDu9pobFO07OIXM3zr/bSMzDN0Fh6yfMY3Ajr97CNiMgq1lAbo6k+xsh4hh2bqxv9oTYZuXJ0uq7K0ThefGOAv3vpEgCRcICdPh2JIhwO8tH37ORczwSHdrd4VkdLQ7x8rayDtibvjk53ttfyyx854Nn7X5YvlMjmimSyBQ2xKVeUSo6fnBoiEDRuqrJ713I4fq58MCOTLTKbLXh2Zm2h9BskIrIKRcJBfvnDB8gVilV3m9nYkuIzH9pPNldkU1tNVduY2+/b75MUbe2oY2tHnac1bGxJsbE5iXN4PxKPx7K5IoMjaUrO8e0fnuOB96pfvZS9enKIJ1+4CEAoGGCfRzNzHznQxgtPGPFYaNUHelCoFxG5qs5O7yeYDgRsyf3glzrU6q37NhANB4lGgmzftL5D6HIJBtXzFaDkHI5yl4Z8QReDy1sCgbmPvTuYcHB3C3f+jPdntBZKoV5E5Coeeughr0tYFQIB46CH3VVk7YpHQzQ3xMlmi3zgHg3ZKm85tLuFUDBAMBjwfNhoP/0vUKgXERERT8QiIWKRELWp9TsDq7ydmS15ZKX1SOcARURERER8TqFeRERERMTnFOpFRERERHxOoV5ERERExOcU6kVEREREfE6hXkRERETE5xTqRURERER8TqFeRERERMTnFOpFRERERHxOM8qKiIhvdXV18fDDD3tdxqJ0dXUB+K7uldDV1UVnZ6fXZYisCQr1IiLiS34Ng9Fo1OsSVo3Ozk7f/hxFVhuFehER8aWHHnrI6xJERFYN9akXEREREfE5hXoREREREZ9TqBcRERER8TmFehERERERn1OoFxERERHxOYV6ERERERGfU6gXEREREfE5hXoREREREZ9TqBcRERER8TmFehERERERn1OoFxERERHxOYV6ERERERGfU6gXEREREfE5hXoREREREZ9TqBcRERER8TmFehERERERn1OoFxERERHxOYV6ERERERGfU6gXEREREfE5hXoREREREZ9TqBcRERER8TmFehERERERn1OoFxERERHxOYV6ERERERGfU6gXEREREfE5hXoREREREZ9TqBcRERER8TmFehERERERn1OoFxERERHxOYV6ERERERGfU6gXEREREfE5hXoREREREZ9TqBcRERER8TmFehERERERn1OoFxERERHxOYV6ERERERGfU6gXEREREfE5hXoREREREZ8z55zXNfiOmQ0BXV7XsQo0A8NeF7GGqD2Xl9pzeak9l5fac3mpPZeX2nN5LbU9O51zLddbSaFeqmZmx5xzR7yuY61Qey4vtefyUnsuL7Xn8lJ7Li+15/K6Ue2p7jciIiIiIj6nUC8iIiIi4nMK9bIUX/a6gDVG7bm81J7LS+25vNSey0vtubzUnsvrhrSn+tSLiIiIiPicjtSLiIiIiPicQr2IiIiIiM8p1Mt1mVnQzF42s29eZdnnzGzIzF6p3H7Nixr9xMwumNlPKu117CrLzcx+18zOmNlrZnarF3X6xQLa8z4zm5izj/4LL+r0CzOrN7NHzeyEmR03szvnLdf+uQgLaE/tnwtkZnvmtNMrZjZpZr85bx3tnwu0wPbU/rkIZvZ/m9kbZva6mf2pmcXmLY+a2Z9X9s+jZrZ1Od8/tJwbkzXr/wKOA7XXWP7nzrn/8wbWsxa82zl3rYkoPgDsqtx+FvhvlXu5tndqT4AfOuc+dMOqu0jf8QAABuhJREFU8bf/BHzXOfegmUWAxLzl2j8X53rtCdo/F8Q5dxK4GcoHm4BLwGPzVtP+uUALbE/Q/rkgZtYB/Aaw3zk3a2Z/AXwa+Oqc1X4VGHPO7TSzTwO/A3xquWrQkXp5R2a2Cfgg8BWva1lHPgo84sqeB+rNbKPXRcnaZ2a1wL3AfwdwzuWcc+PzVtP+uUALbE+pzv3AWefc/NndtX9W51rtKYsTAuJmFqL8Ab533vKPAn9cefwocL+Z2XK9uUK9XM9/BP4foPQO63yicprzUTPbfIPq8jMHPG5mL5rZP7jK8g6ge87XPZXn5Oqu154Ad5rZq2b2HTM7cCOL85ntwBDwR5Uud18xs+S8dbR/LtxC2hO0f1bj08CfXuV57Z/VuVZ7gvbPBXHOXQL+HXAR6AMmnHOPz1vtyv7pnCsAE0DTctWgUC/XZGYfAgadcy++w2r/C9jqnDsE/IC3PoHKtd3tnLuV8mnif2Jm985bfrVP7Rp79tqu154vAZ3OucPAfwb+6kYX6CMh4FbgvznnbgFmgN+et472z4VbSHtq/1ykSjemjwBfv9riqzyn/fMdXKc9tX8ukJk1UD4Svw1oB5Jm9pn5q13lpcu2fyrUyzu5G/iImV0A/gx4j5n9z7krOOdGnHPZypd/ANx2Y0v0H+dcb+V+kHL/xdvnrdIDzD3jsYm3n8KTiuu1p3Nu0jk3XXn8bSBsZs03vFB/6AF6nHNHK18/SjmUzl9H++fCXLc9tX9W5QPAS865gass0/65eNdsT+2fi/Je4Lxzbsg5lwe+Adw1b50r+2eli04dMLpcBSjUyzU55/5f59wm59xWyqfmnnDO/dSnznl9FT9C+YJauQYzS5pZzeXHwPuB1+et9jfAQ5VRHO6gfAqv7waX6gsLaU8za7vcZ9HMbqf8d2/kRtfqB865fqDbzPZUnrofeHPeato/F2gh7an9syq/wLW7imj/XLxrtqf2z0W5CNxhZolKm93P2zPR3wCfrTx+kHKuWrYj9Rr9RhbNzL4IHHPO/Q3wG2b2EaBA+dPm57yszQc2AI9V/kaGgD9xzn3XzP4hgHPuS8C3gZ8HzgBp4PMe1eoHC2nPB4F/ZGYFYBb49HL+EV2D/inwtcop+XPA57V/Lsn12lP75yKYWQJ4H/B/zHlO+2eVFtCe2j8XyDl31MwepdxlqQC8DHx5Xmb678D/MLMzlDPTp5ezBtPPRkRERETE39T9RkRERETE5xTqRURERER8TqFeRERERMTnFOpFRERERHxOoV5ERERExOcU6kVE1hEz+2dm9oaZvWZmr5jZzy7jtu8zs29e5fmtZjZ/PoZlZWa/WRme7/LX0yv5fiIiq43GqRcRWSfM7E7gQ8CtzrlsZWbIiMdlLZffBP4n5bHJRUTWHR2pFxFZPzYCw865LIBzbtg512tmt5nZ02b2opl97/JM0Wb2lJn9RzP7kZm9XplREjO7vfLcy5X7Pe/wntdkZjvM7LuV9/2hme2tPP9VM/vdyrbPmdmDlecDZvZ7lTMN3zSzb5vZg2b2G0A78KSZPTln+//azF41s+fNbMOSWk5EZJVTqBcRWT8eBzab2alKOH6XmYWB/ww86Jy7DfhD4F/PeU3SOXcX8I8rywBOAPc6524B/gXwb6qs58vAP628728Bvzdn2UbgHspnFv6/ynMPAFuBg8CvAXcCOOd+F+gF3u2ce/fluoHnnXOHgWeAX6+yRhERX1D3GxGRdcI5N21mtwE/B7wb+HPgXwE3Ad83M4Ag0DfnZX9aee0zZlZrZvVADfDHZrYLcEB4sbWYWQq4C/h65X0BonNW+SvnXAl4c85R9nuAr1ee7597VP4qcsDl/v0vAu9bbI0iIn6iUC8iso4454rAU8BTZvYT4J8Abzjn7rzWS67y9cPAk865j5vZ1sr2FisAjDvnbr7G8uycxzbvfiHyzrnLtRfR/zsRWePU/UZEZJ0wsz2Vo+uX3QwcB1oqF9FiZmEzOzBnnU9Vnr8HmHDOTQB1wKXK8s9VU4tzbhI4b2afrGzfzOzwdV72d8AnKn3rNwD3zVk2RfkMgojIuqRQLyKyfqQod5t508xeA/ZT7hP/IPA7ZvYq8ArlbjGXjZnZj4AvAb9aee7/B/6tmT1LubvO25jZETP7ypyn9phZz5zbJ4FfAn618r5vAB+9Tv1/CfQArwO/DxwFJirLvgx85zpdckRE1ix76+ykiIjIW8zsKeC3nHPHvK7lMjNLVa4NaAJeAO52zvV7XZeIiNfUx1BERPzkm5WLdSPAwwr0IiJlOlIvIiIiIuJz6lMvIiIiIuJzCvUiIiIiIj6nUC8iIiIi4nMK9SIiIiIiPqdQLyIiIiLic/8bvEGsg/0NocoAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5AAAAFACAYAAADK7ZMiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3WdgXOWZ9vH/maYp6l2WbMmybMu9F8AU02sgZbNhswnJpu3um4TUTSUJCwmhJZuQkB4CKZQAIbbpGAy4F9xtybZk9d7baOp5P4w8lmxhy2A8lnz9PslzzpxzP6ORPJeeZpimiYiIiIiIiMjJWGJdgIiIiIiIiIwOCpAiIiIiIiIyIgqQIiIiIiIiMiIKkCIiIiIiIjIiCpAiIiIiIiIyIgqQIiIiIiIiMiIKkCIiIiIiIjIiCpAiIiIiIiIyIgqQIiIiIiIiMiK2WBcQK8nJyWZRUVGsyzjtent78Xg8sS7jtBur7YKx2za1a/QZq23btm1bi2maGbGuY7QYq/8/wth9j6tdo89YbZvaNfq8k/8jz9kAmZWVxdatW2Ndxmm3Zs0aLrnkkliXcdqN1XbB2G2b2jX6jNW2GYZRGesaRpOx+v8jjN33uNo1+ozVtqldo887+T9SQ1hFRERERERkRBQgRUREREREZEQUIEVERERERGREFCBFRERERERkRBQgRUREREREZEQUIEVERERERGREFCBFRERERERkRBQgRUREREREZEQUIEVERERERGREFCBFRERERERkRBQgRUREREREZEQUIEVERERERGREFCBFRERERERkRBQgRUREREREZEQUIEVERERERGREFCBFRERERERkRBQgRUREREREZEQUIEVERERERGREFCBFRERERERkRBQgRUREREREZEQUIEVERERERGREFCBFRERERERkRBQgRUREREREZEQUIEVERERERGREbLEuQORc19TUxK233hqz+9fW1gKQm5t7Wq+7cOHCU25XUVERX/jCF05rHSIiIu9EOBymvr6erq4ugsEgAOPHjyc5OTnGlYnElgKkSIz5fD527NlPyJ0ak/tb+zoBaPCd3l8H02cF2FbeeAp1tJ3W+4uIiJyqxsZGNm7axNbtb1FdWYk1zoHd48KwWjDDJt7WDtxuN7NnzebGG25g3LhxsS5Z5IxTgBQ5C4TcqXiLr43JvV0lzwGc9vuHnZ5TuuaROkRERM6k1tZW1q1bx5o336C9vZ248ZlYx6WRPPsCrE7HkHPdpkmwq5edlXVs/t5tTJ8+nY9+5GYFSTmnKECKiIiIyDmls7OTzZs38/raN6mprsY5IRvbtFxSsmZhWIy3fZ5hGNiT4rHPjsc1LZ+yA9V857bb+OAHP8C1V1+DxaLlRWTsU4AUERERkTGvqamJLVu3sn7TBmqqa3DlZmLNSyd10UUYVuspX89it+GZMZG48Zn885UX2bR5M1+59UukpKS8B9WLnD0UIEVERERkTKqvr2f9hvWs27AhMjw1LxNrXhppCwsxbKceGodjS/SQcNkCmvce5n++9U2++qUvU1xcfFquLXI2UoAUERERkTEjFAqxbds2Vj3/HNXV1cTlZ2ObkUdKxomHp74bhsXAM6uQ/tQE7r7/Xj78wX/h6quuwjDem/uJxJICpIiIiIiMCTt37uSPD/8JLyFsReNIWXAhhvXMzUt05mZgu2IRTz23ktIDpfznZz+H0+k8Y/cXORMUIEVERERkVGtvb+cXv3qQippqnHMnEZ+XGbPeP1uCm8QrFlKypYRvfufbfP0rXz3tey2LxJKWihIRERGRUWvv3r38zze/Sa3VT9K1S3GOz4r50FHDZsW9dDr+/HS++73bePKppwgGgzGtSeR0UQ+kiIiIiIw6pmnyzxUr+OeqlXjOm05cTnqsSxrCMAxck/NwjEvj5S3reHP9Wj78gQ+xZMmSWJcm8q6oB1JERERERhXTNPnbY4+y6uUXSbp68VkXHgezelx4LppDcGoujzzzJP/5//6b1rY2Nm3aRENDA8FgENM0Y12myIipB1JERERERg3TNHno4T+xfvtWEi6bj8XpiHVJJ2UYBs7xmTA+k0BHD73+fv70zyfxtXbi7+0jbIaxDuxFaZomhmEhPjGBxOQkiiYWcv7S8yguLo6eIxJLCpAiIiIiMmo8/OdH2LDzLRIunY/FYY91OafMnhyPJRCH+8JZuAceM00TQmEwAAzMcJhwv5/evn62Ndew5Xe/JtTXzwdvej9XXXWVgqTElAKkiIiIiIwKK1etYu3mjSRcvnBUhse3YxgG2I6GQsNqwWK3YUtwE5eVCjMLCXR088xrL/Hyq6v5r89+jilTpsSwYjmXaQ6kiIiIiJz11q9fzz9W/pP4S+ZiiRs74XGk7MkJxC+fh29SJnfdew+rV6+OdUlyjlIPpIiIiIic1Q4cOMDv/vgHEi6dj9XjinU5MWMYBq6CHOypifztySdobG7i5n/9SMy3LZFzi3ogRUREROSs1drayr3334976XTsKQmxLuesYEv0kHDFQl7btJ5f//a3WsVVzigFSBERERE5K/l8Pu66525sU3Jx5mbEupyzitUVR/zyeby1fw9//dvfYl2OnEMUIEVERETkrPTLX/2K7jgD17T8WJdyVrLYbcRfPIfX1q9lxcqVsS5HzhEKkCIiIiJy1uns7GTf4UN4FhVrjt8JWJwOEpbP5ZlVK1m3fn2sy5FzgAKkiIiIiJxVdu3aRXtHB/EXzsKwac/Dk7F6XMRfPIff//GPlJeXx7ocGeMUIEVERETkrNHY2MjPfvEA1njXOb3i6qmypyTgXjSVu++9l/b29liXI2OYAqSIiIiInBX6+vq46567cUybgGFXz+Opck7IwlKYxY/vvQe/3x/rcmSMUoAUERERkZgLh8P83wM/pz8xDtfUCbEuZ9RyzZhIhxHkd3/4vbb3kPeEAqSIiIiIxNzfHn2UiuZ63AumatGcd8EwDNxLprF93x5efuWVWJcjY5ACpIiIiIjE1OrVq3l17Rt4LpiFYdXH03fLYrfhWTaLRx9/jNLS0liXI2OMfkJFREREJGa2bNnCXx5/lIRL5mJxOmJdzphhS/TgXjKN+376E1pbW2NdjowhCpAiIiIiEhMlJSU8+Jtfk3DRHGyJnliXM+Y48zKxFeVw9333alEdOW0UIEVERETkjCspKeGe++/Dc94M7GlJsS5nzHJNn0inJcSvf/tbLaojp4UCpIiIiIicUbt27eKe++7Dfd504salx7qcMe3Iojq7DuxnxcqVsS5HxgAFSBERERE5Y9avX89PH/g5ngtnEZej8HgmWOw24i+azT9XrWTLli2xLkdGOQVIEREREXnPBYNB/vinh/j9nx8m4ZK5ODJTYl3SOcXqceG5aDYP/ubXlJeXx7ocGcUUIEVERETkPVVXV8dtP/g+m0r2kHTVYuypibEu6ZzkSEvCvaiYH997D83NzbEuR0YpBUgREREReU94vV4e+cuf+c73bqMjzYnnotlY4uyxLuuc5pyQhXVKLrffeQednZ2xLkdGIQVIERERETmtOjs7efyJJ/j8rV9k/cG9JF27FHdxPoZhxLo0AdzF+YTGpXDnXT/C6/XGuhwZZWyxLkBERERERr9gMMju3bt59Y3X2b1zJ86CHOIvnYctKT7WpckwXLMK6d5Swo/u/jHf/da3iYuLi3VJMkooQIqIiIjIO2KaJgcPHuSNN99kw6aN2OLdGBPSSXnfBVjiHLEuT07AMAzcC4tp2rSPu+65h29/4xs4HPqeyckpQIqIiIjIKenp6WHNmjU8/9KL+EJBbPmZxF82H1uiJ9alySkwLAaeJdOo37CXe+6/j2987evY7ZqjKiemACkiIiIiI9LT08Pfn3qK119/HWduBvaFRSSmJ2tu4yhmWCx4zptB9fo93HPffXz9q19VT6SckBbREREREZETCgaDrFy1ii9+6Utsqiwl+bqleM6fgSMjReFxDDAsFjznz6Sqp40f33sPfr8/1iXJWUwBUkRERETeVnNzM9/9wfdZ+fpq4i+fj2dRMVa3M9ZlyWkWCZEzqO3v4oc/vgufzxfrkuQspQApIiIiIsPauGkT3/j2t+hMiSN++VzsWlF1TDMsFjxLZ9AQ7OPOu35Ef39/rEuSs5ACpIiIiIgcZ9WqVfz2j3/Ac9Ec3NMLNFT1HGFYDDxLp9OEn9vvvIO+vr5YlyRnGQVIEREREYkyTZO/PfYo/3h+FYlXLMCRnhTrkuQMMwwDz+Ji2h2mQqQcRwFSRERERIBIeHzo4Yd5dcM6Ei5fiNXjinVJEiORfSKn0umyKETKEAqQIiIiIgLAU//4B+vf2kLCpfOwOrWVw7nOMAzcC6YoRMoQCpAiIiIiwsuvvMJzL79I/MVzsDi0mbxEREOk09DCOgIoQIqIiIic87Zt28bfnniMhOXztEWHHOfIcNY2S5C77rlb+0Se4xQgRURERM5hNTU1/PLXvyJ+2WxsCe5YlyNnKcMwcC+eRoO/h/t+cj/BYDDWJUmMKECKiIiInKO6u7u56567cc6dhCMjOdblyFnOsBh4zptBRUczv/zVg4TD4ViXJDGgACkiIiJyDgqFQtz3k58Qyk7GVZgb63JklDAsFuIvmMWew4d4+M9/xjTNWJckZ5gCpIiIiMg56M9//Sv1vR245xTFuhQZZQyblfiL5rBu6yb+8cwzsS5HzjAFSBEREZFzzLr163ljwzo858/AsBixLkdGIUucnfhL5rLqxedZ/eqrsS5HziBbrAsQERERkTOnqqqK3//xDyQsn4clTns9yjtndTtJWD6Pvzz6N5ISE2Ndjpwh6oEUHnjgAR544IFYlyEi7zH9rItIT08PP773HlzzJmNP1Qd+efdsiR7iL5rNL3/9K+0ReY5QD6Rw6NChWJcgImeAftZFzm2hUIj7fvoTwtnJeArHxbocGUMc6cl4zptBY2MjFRUVFBQUxLokeQ+pB1JERETkHPDIX/5CXXc77rlaNEdOv7hx6RhuJz+86y7q6+tjXY68hxQgRURERMa41atXs3bThoFFc/TxT94bljgbthn53H7nHTQ3N8e6HHmP6DeIiIiIyBi2fft2/vLYo8RfPEeL5sh7zj05D6NoHN+//XZaWlpiXY68BxQgRURERMao8vJyfv7LXxB/4WxsiZ5YlyPnCHfxBMzCLL7/v7fT2toa63LkNFOAFBERERmDqquruevuu3EvnoYjIznW5cg5xj0tn3B+Brf94Ps0NjbGuhw5jRQgRURERMaYqqoqbr/zDuxzCnGOz4x1OXKOck8vgKIcbvv+96iqqop1OXKaKECKiIiIjCGVlZX87w/vxDF3Eq6JObEuR85xrinjsc0p5PY77qCkpCTW5chpoAApIiIiMkbs2LGD2++8A8e8IlwFCo9ydnAV5OBaOo2777uXNa+viXU58i7ZYl2AiIiIiLx7L7z4Ao8/+STxy2bhyEyJdTkiQ8SNS8dy2QIeeexRqmtq+ejNN2PRljKjkgKkiIiIyChmmia/ePCXbN+3h8QrFmJLcMe6JJFh2ZPjSbpyEW+u20L54XK+/MVbSUxMjHVZcooU+0VERERGqaqqKmpqa9nTWEXilYsUHuWsZ3E6iF8+l3pLgP/51jc5dOhQrEuSU6QAKSIiIjLKhMNhVqxYwfdvvx0zzoZn6Qwsdg0sk9HBsFjwzCvCOnsiP/zxXfxzxQrC4XCsy5IR0m8aERERkVGkrq6Onz/4C9r6+0i8ahGWODvgj3VZIqfMOSELW2oiq9a8wvadO7j1818gJUXzd8926oEUERERGQWCwSBPPvUU3/nebXSmu4m/dJ6GrMqoZ4t3kXDZfBocIb72jf9h48aNsS5JTkI9kCIiIiJnuZKSEn7129/Q77CQdPVirB5XrEsSOW0MiwXP7En4c9L43SN/YuPmTXz6Pz5FfHx8rEuTYagHUkREROQs1dXVxS8e/CX3/OR+AlNy8Fw0W+FRxixHRjJJ1yyhpLOJL3/tq2zZsiXWJckw1AMpIiIicpYJh8OsXr2ax/7+BPYJmSRddx4Whz62ydhn2Kx4Fk7FPz6DXz/0B95ct5ZPffI/SEpKinVpMkC/iURERETOIqWlpfz2D7+nO+THc/Ec7KnaJ0/OPY6sVOzXLOHA7nK+/LWv8tGP3Mzy5cuxWDSAMtYUIEVERETOAvX19Tzy179QevAgzjmFxBfkYBhGrMsSiRnDZsUzbzKOgmweW/UML7+6ms9+6tMUFhbGurRzmgKkiIiISAw1Nzfz5NNPs2nzJpzFE0i+/jwMmzXWZYmcNewpCdiuWEhnWS133PUjFs6fz7995GZt+REjCpAiIiIiMVBRUcGq555l67ZtOCfnkXL9+VicjliXJXJWMgwDd1EezglZ7N57mK987atceumlvP/Gm7Ra6xmmACkiIiJyhvT09LBlyxZeeOVlmltacEwaR8oNF2CJs8e6NJFRweKw45k3BeeUCazbs5dXb32N5cuXc8N116lH8gxRgBQRERF5j4RCISorK9lfUsLmbVuoKD+Ma1wG1vxMks+fgqEFQUTeEavHiWfJNOJmFLC+ZD+vfvVV5s2fxzVXXsXkyZM1f/g9pAApIiIi8i6EQiE6Oztpa2ujpaWFlpYWKqqrqKyqoqm+AUeCB2tGIpbMFFLnXITFro9fIqeLLd6FbeFUXDMnsr+8jt0/+ymeOCeXXHQx5y1dSnZ2dqxLHHP0G0xERERkGKZp0tvbS2trKy0tLZGA2NpKU0szbe3tdHZ20N3VTX+fF4fLid3jwupxYrockODCXpxD6pLJGp4qcgZYnA480wswp+Xjb2rnxV2bWfHsKpKSklgwdx5z58xh6tSpOByaZ/xuKUCKiIjIOenYgNjS0kJ9QwN1DQ00NTfR0dpG2DRxJnqwelyYLgfhOBtWtxNLjgdrYSoJTgdJToeGooqcJQzDIC4rlbisVNwLphJo6WBtzQHWbt+Ct6WDjOxMpk6eQlHhJPLy8sjLy8Ptdse67FFFAVJERETGvJqaGlpaW7n3J/fT0dlBR3sH3Z1dYEBcQjy2+EhANN1xWJNc2HILSImfhuGway6VyChlWAwcmSk4MiOL63iCIfxtXWxrqWf7G+WEO3vxtnVis9tIzUjnox/+CPPmzYtx1Wc/BUgREREZ83bs2EF3Vxfbt27D5orD5nbhyknH4jj6UcgIhjC6+jC7+ggAgdiVe0rCxbPpK9kb6zJOu7HaLhi7bRst7ToyXsCS4MIT7yLo7aexoZHy8nIFyBFQgBQREZExb9myZaxbt47Pf/7zsS7ltGtvb+djV98Y6zJOu7HaLhi7bRvt7SouLo51CaOCAqSIiIiMecnJyXg8Hs4///xYl3LarVmzRu0aZcZq28Zqu2QozfgWERERERGREVGAFBERERERkRFRgBQREREREZERUYAUERERERGREVGAFBERERERkRFRgBQREREREZERUYAUERERERGREVGAFBERERERkRFRgBQREREREZERUYAUERERERGREVGAFBERERERkRGxxboAEREREZHhPPLII1RWVsbs/g0NDQBkZ2ef1ut2dHTw5ptvntJz8vPz+fjHP35a6xB5JxQgRUREROSsVFlZSWVlJfn5+TG5v8/ni8l9jxXLEC1yLAVIERERETlr5efnc9ttt8Xk3nfccQfAab//mjVruOSSS065DpGzgeZAioiIiIiIyIgoQIqIiIiIiMiIKECKiIiIiIjIiChAioiIiIiIyIgoQIqIiIiIiMiIKECOIa2trTz00EO0trYOe+yLX/zisMdERERERERGYkQB0jCM9xuGYRqGUfxeFzQShmH8p2EY2kn1GA8//DBVVVU88sgjwx7bvXv3sMdERERERERGYqQ9kDcDa4GPvIe1jJhpmr82TVNJaJDW1lZeeOEFTNPkhRdeGNLTeKJjIiIiIiIiI2U72QmGYcQDFwDLgRXADwzDuAS4HWgE5gJPA7uBWwEXcJNpmmWGYfwJ8ALFQD7wSeAW4Dxgk2manxi4x83AtwEDeNY0zW8MPN4D/Ay4fuA6N5qm2WgYxg+AHtM07zMM4zPAZwEHcAj4mGmafe/qVRmFHn74YcLhMAChUIhHHnmEL3/5yyc9BlBbW4vX6+XWW28984WPUEdHB//4xz9iXcZ7orGxEUt/V6zLiDlLfxeHDnWf1e9DGN3vxUOHDuFyuWJdhoiIiIxiJw2QwE3AC6ZpHjAMo80wjPkDj88BpgFtQDnwe9M0FxuGcSvwBeBLA+elAJcC7wNWEgmjnwa2GIYxF2gC7gYWAO3AS4Zh3GSa5jOAB9homuZ3DMO4B/gMcOcx9T1tmubvAAzDuBP4FPDAcA0xDOOzRMImGRkZrFmzZgTNHx1efPFFgsEgAMFgkBdeeIF58+ad9BiAz+cjGAzS0dFx5gsfoVAodFbX925YrVaKJ+Uzb44nJvd/tdoKwKWn+f7pbiufPoVrbu/Op6uj/az/Po/m92IwGMTn873t776enp4x9XtRRERETr+RBMibgf8b+PqxgX8/C2wxTbMewDCMMuClgXN2E+mtPGKlaZqmYRi7gUbTNHcPPGcvUECkZ3KNaZrNA4//FbgIeAbwA6sGrrMNuGKY+mYOBMdkIB548e0aYprmb4HfAkydOtW85JJLRtD80eGtt97iueeeIxgMYrPZuPrqqznSvhMdA6K9KT/72c9iUPnIrFmzhrH0/Rrsz3/+M7954lm27eyNyf1dvSEAfn+a7//pOZ5Tuqartp0FhVln9fsQRvd78Ujv7tvVP5rbJiIiImfGCedAGoaRRqT38PeGYVQAXwf+lchQU9+gU8OD/h1maDD1DXPO4POME5QQME3THPg6xPCB90/A503TnEVkWK3zRG0aq2655RYslsi302q18vGPf3xEx0REREREREbqZIvofAh4xDTNfNM0C0zTHA8cBpadxho2ARcbhpFuGIaVSA/n66fw/ASg3jAMO/DR01jXqJKWlsbVV1+NYRhcffXVpKWljeiYiIiIiIjISJ0sQN4MHLtaxFPAv52uAgaGwX4LeA3YCbxlmuY/T+EStxEJoS8DJaerrtHolltuYcKECcP2MN5yyy3MmjVLvY8iIiIiIvKOnXAOpGmalwzz2M+Bn7/deaZprgHWDHz9iUGPVwAzB/178LG/AX8b5l7xg75+Enhy4OsfDHr8V8CvTtSOc0VaWhqf/OQnh+1hTEtL4+c///kwzxIRERERERmZke4DKSIiIiIiIuc4BUgREREREREZEQVIERERkXNAyAzHuoSoQDhEMBx6x8/3h4IcXaj/7PFu2jQSZ2Ob5dwzkn0gRURERM5JjzzyCMBZtQhdeVcLr9SWMCctlyWZE0f0nJ2tNfxm35t47HF8ZdZl5HiS3vZc0zT5fck69rXX84HCeVyYXcS+9noeKt1AtjuRG/Nns7q2FG8owLLsSbhtDrJdiQBU97YzIyUHm8V63HXX1B2g1dfLzJRxPLjvDSyGwddmX06uJ3nIed6gn8BAEPMGA9gsR/s76no72NVWyz8qdjIxIY2vzr4c+zH36vL309LfzcSEdAwjsltc2DTZ215HhjOebHcSBzoaWdtYxqKMfGal5g77Ovzl4GYOdjbhstoJhkPDtmmwpw/v4MWafcxLG89/Tr/whOe+E639vfz3useYnzaez0w79Q0RXqsrpaGvm+smzMQXCvJCzV4mJqSxLLsoes6T5dvZ1lJJQXwaH528mHh73HHX8Qb9xFltWIyx1Q91Nv6sn60UIEVERETeRmVl5dB/d7dxsKuJpZkFxNtPz9bTNb3tPFS6gWSHi89MW4bTaj/h+b8rWUubr49tLVXMPib8+EJBWvt7yHEnRcMTwJbmSkKYdAX6+cW+Nfxw0Y2YpknQDB8XwFp9vWxtqQLg72VvMSUxkz8f2ERXoJ+uzn5+sms1ISI9Yfs7GgBwWe1YDIPeoJ+lmQV8cur5Q65Z0tHAo2VbATjY2UR/KADA70vW8cWZy+kJ+GjyduO22nhg7+uEMFnW66K6tw0Dg2ZvN6/XH+Ll2v3YBoLL4e5WbtuyEothcEH2JK6bMJODnY3cv2s1JnB+5kRumXpepB3lb/FqXSkAn5u2jMfLttHh9/JWSzU/P//D+MNBDne1MjEhDafNzr72et5sOISJSV/Iz6HOZna01ZDpTODS3KkA9AT6Odzdit2wsKJyN9W97QBsb63GHwrisEY+Zjf0dbG5uYK5aXlMiE8FoC8YYFXlbpaPm4rH7hj2+7yjpZodbbVckjMZgA5/H3GmydaWKnp3v8rHJi8haIbwBgMUJKTR7uvj4QMbae7vYXZqLv86aUH0Woc6m3msbBsAgXCQrkA/u9vqWNtQRlFiBtnuJJq93bxcux+ANl8fLpuDj09ZEr3GtuYq/nRgA/5wiPGeFL4x98rj3jvvxCu1Jbxef5ALs4u4Mm/accdX15ZQ1tXCDfmzyHG//R8+3q1jf9bl7SlAioiIiIxAb8DP/btewRcOsq+9ni/OXH5arvt63UFqejuo6e1gb1s9CzImnPD8Tr8XAANwWI5+lAuEQ/xo+ws0eLu4dNwU/nXSQiDSa9fj74+eFzZNvEE/d+98mUZvF5+cch6LMwuixxMdTgzABMJmmO9vW8WRgZMOixX/MMM0vaEAR+JqS3/vccc9tjgMDExMnNajNdf1dXLblhUEBobXHrkvHB2uaWLS6uulrKsZgOCgobjt/j4AVlTu4uLsIrY0VUWfX9rZFD2vsqc1+vWqyt3R181usWAxDH68/UXqvV3YDAvfmHMljiHByGBDYzkbmyuASGj+9NTzuXvnyzR5u49pp4NZqbnc/tZz2A0Ln59xCfftepnugI/X6g5w/9IPUt/XSUt/N+uqmnmj4RChcBh/OMjMlHFkuhLo8PcxIT6VJ8rfAmB3ay1hXy+DB6/u72jg6YrtbG+pIWSG+fjkJdT3dUUD/at1pWxtruRLMy9lbeMh2nx9WDEIYZLscEd7Uw0MHtz3Bv857SIyXPFkOuNp6u8BwG0b+oeMNfUHot/76t52Wvt7SInzsKW5kgnxKRzubqW6t51f73uTz05bRoevD4/NQZztxH8QWVG4/U4SAAAgAElEQVSxC184yD8rdh4XIBv6OqOvgzcU4NbT9DMn744CpIiIiMiImIQHPsafzvmEM1PHsa6xHI/NwcTENJ6t2k2Tt5ubCuaSEuc+7vxcTzJVPe3keZKxDhre2RPw0eDtAuDQQNgC+OuhLUP+PSMlh+qedur7OgHY2lxFTW8Hbb5eXFY7BzqbmJGSw572ekwYElyGC48AizMK8IeDOCw2rp0w47jj4+NT+MbcK2j3eVnfUDbkWGDQazncDD+bYWVqUhYfnDiXn+xeTWiYeYBOq52vbnqa1EGvV2FCZFuzvqCf9xfM5f5dr2ACtQPtjhwLUNndFn3dgmaYhw9s5EOF8zGikdiksqct+pxdbbX86eBGmo8JjwDz08eTYHfSMhDC/li6nu6AD4gM/fz6xqf5SNHRnsEjfwwAeKu1Ovr13rb66Nc9QR99/T2D6olItDuj78P6vk4KE9Oh9ujxrkA/Dx3YEO0ZXZY1idlpucxKzcXExGpYeLWulEZvN38v38atsy7lK7Mu47tbVxI0w1R2t/GHkvXU9LZzU8EclmZO5FBnM1bDYGFGAVmuRP50YAMbmyqwW6ykO+MpNE22t1Zz944Xqehpw4rB/y66gXRnPMfqGOjlzHDFU9PbwbhhhlXH253E2+LoCfrIGRgmLbGnACkiIiIyAh57HLfOXM6BziaWZU86bdedk5bH/Us/iM1iobyrhRWVuwEwDAufmLL0uPO/MusyyrpamJSYPuTxlDg3NxXMYW9bPTfkz4o+nuGMHxIgNzdVctm4qcxKHUddbycTE1J5pnLXkGs1DgpU49xJJDlc3Jg/iyfKt1Pe3cL8tPGUdjbiD4WYlTaOzQO9czmuRJ6p2EmOO4kb82cPGUY7MSGdiQnwam0JAFbDGDYMDpbhTCDJ4cQwDIqSMlk+biqv1JaQ4YzHgoXG/kidR4bEtvn6os+dlpJDeVcLP9m9eqC31opvmABsNywszpjIpubD0Tb/355Xh5xTP/B6QKTX7q2WSNizYET/qADwZkMZ78ufHW1bWXdL9JhJJAwe6Ggiy5XIhwun8VrdQZoHwuZgR+YXDumRHXSfZVmFfKhwPt0BH419XVT1tJHm9DAxIY3D3Ud7W0Pho+G8pb+HOWl50VZcOm4qaxsO4Q+H2NfRwBNl27g8tzj6PTnQdbQHd2Xlbr47/xrOzyoc8j31hoKR1ywcZlHGBNoaDjEpMSPaWxzCZH97AxfmHJ1nCfBm/SH+cmgzKQ4X7QMhutV7fM91vD2O2+ZfQ5O3m6KkzOOOS2woQIqIiIichGmarG8sJxgOc8346ae0gEjYNLEYxgnPcQ0M80uNc0eHiWa7EqL3/l3JOna0VpMa5+Grsy9nZuq4Ya9zzfgZXDN+aA/gxyYvYWFGPk+Wb6fe24kvHOTB/W9yx8IbgMgcvWer90YXrgFw2xz0hwKETJN0ZzyfLr6AvxzchMfu4Buzr2RNwwF6g34A5qeNjwaqem8X9d4udrTWMD0lhynHfOgPhEMcPBJmTbg8dyp72uqjPYDH6vB78Qb99Ab8eOwO/qVwPh8omIvVYiFsmrxYs481dQfoGNSTB5HgtSgjn1frSqPtclsdQAibYRkyDPaOHc/z4cL5GJiR4bcGMPRyQ0R67yIB0WGx0h8ORo9ZDIPpKdnU9XawtaUKh8XKteNnsKutjpredqyGhUWZBdTV7uOS3GlYsPBY+bbj7tEZ8DI9OYfm/u7jAqYFg9mpeTxeto0tzUfn7ZV2NnF13nSavd2ETRNfOEid92hva3lXy5C5mRmueBZl5LOusRyIzClNdXr40MS5/P3w9iH3jLPYeHDP68xIzWFpViFxA9f4aNEixrmTyPekMi9jPGvKW5mdV8SD+yLfY5fVzpJBw6OP2NcR6WFt93uZlJhOWVcL899m6HZynJvkY3rid7bWYJomc9PHD/sceW8pQIqIiIicxNbmSh45uAmIDF89spDKyTxRto1X60q5IHsSH5u85KTnZ7gS+P6C6+jw9UV7XNoHFswBaO7vYVNTBVePn05/MEBpZyPhk/TiWS0WZqaOoy/o5w+l64FIKPUGA7hsdrLdidy+4Hp+ue91ans7APhc8YX8dM9qIBLitjRXsnkgrJR2NEaHslqAhw5sOO6edsNCutNz/OMWKy6rHW8oQAiTjU0VTE7MjAbIY3v0AuEggXCQZyp3MDNlHG6bgx2tNZyfVUiuJ5lrxs8gwebgifLtjHMncXhgrqMJbG2pImPQ0Mm+UCTwZjjjh/Qohk2Tpw/viLYpx5VIepyHDFc8R6Ld4J5AINpL1x8OYgCfnHoe2a4k4qw2st2J3DJlKWVdzbT7vbxUW0LfQNhell3AlKRM6tgHwPbWmqPfJ8Blc9AzcG5ZVzO+gXCaGuehzRfpoQtj8kbDQfa0Hx3mesTLNfv54eIbSbDH8f/WPT7kmN8Msbm5Ysiqqx8pXEhNbwdd/n4+OHHecdfL8yRTnJTFKwMLEO1sr+WVulJuX3AdFsNCksOFy2rnNyVvMq0hmzlYmJOWx8cmL6En4OOy3KlDFtp5snw7+9rrOT+rkDZfHznuJP69aBG+UBDPMCu+DmdLcyW/L1kHwLXjZ7AgYwJ5npQRPVdODwVIERERkZMY3ON4st7EwdY1lmMC6xvLRxQgAdKd8UPmjCXFuciPT6Wypw2bYWF6SjYAD+57g9LORpb1ufjWpmd4/8S5QxbDOdbizAI6/H2sqNhFc38Pd+98ie/NvxaLYZDm9DApIZ3a3g6SHS6afd2YRIZrTknMIM+TjN1iJRgORYPWjOQcLBaD3W11kddlUPibnZrLwwc20ujt5j+mnMeU5CxMMzKH9LLcYlZVRYbp9gR87GqtYUJ8Cgk2Jx+fvJi1jWW8XFsyJHi8UX+IN+oPRYPctpYqCuLTKExMY0XFLgJmOBoej9jaXDkkXDutdvpDAXLcSVyfP4vXag9Q0d1CEHPI3M4j4TJ1UAC2GAZfnLGcnx4ztPWI3oCf/MxUAuEQfz64mU6/Nzr3sS/oj9Y9+Zge2SvzplHa2QhACKLhEYiGR4C+gH/I80o6GqNfz0rOoS8UoKy7BdOI/HHAZrFyY/5s3qg/FF1oCCDXPXTLFIfNxrfnXT3ksfZBvbmX5xYPGf4M0OTt5vmqvSzImMCGxsNsaa7EBPZ1NDDTjLw3hxvi3ebrja7y+lTFdv69aDEXDJx3si1SBusPBqJfP1e9lxeq9/G1OZczKTFjxNeQd0cBUkREROQkFmRM4NPm+fjDIc7LKhzx8y7PLebVulIuzC46+clvw2pY+Pa8q/EG/dgs1miwah3okTJNkza/l+er954wQALsba+PLlrT0NdJIByKDke8uWgRSzIn0hvs59f71kaujckrdaWEMfnRovfRF/Dzj8qddPi9fKhwPr5QgH3t9YRNk7npeWxvqcZjj2NWai5/OrgRgDcaDpHtTuLenS/R7vdyU/6coUUZBlU9kYVeqvs6uD5/NlOTs9nw5trj6j8SBzt8fWz39bF90MIzw7UVoCA+jRkp2TxbvReILDA0LSWHQ93N2C1WJnlSKOtuwQCmJmVR2tmICRzobMJpteMLBclwJrxteDSBpw5vZ3dbLW5bHFtbjt8OwgTmpuWx9Jh9O2emjqM4OWtIIBzO4GGycHQl2mVZhexpr6c74GNp5kTmp+fxRsMh0p0erp0wkyvypvH1jU/jDQWIs9jYMdDj6bY7qOxuY05aHs9X7+XFmn0szZzILVOWsigjnx2t1aQ4PCzKyKcwIZ31DeVDeoZXVO3mueq9BM0wVsMg3hbHrLRcrHX9vJ1Eu5NcdzK1fR0Dw4/3RwPkiZR2NOILBZmdFtmy5oLsQnzhILtbaynpbCSMSWt/rwLkGaQAKSIiIjICi04SzoZzQ/4srsqbdlr2y3PZhu4X+B9Tz+ON+oPYuyM9RAtPsv0HwKSEDEo6GrEbFj5UOD8aHiHSy1aUlMGKyl1DwgJAp78fjy0Oh9XGf02/aMixB5fdTCgc5jtbVmAS6SFaVbUHm2HBBBamT6C8uyW6PcTejqNDL4sSMzAHFptxWm1kOSPzPsuO6fUqTEin0dsVnXd5okG7DsNKnM0W7QGs7W2nwdsV3fbkirxpVAwsbhMIh5iXPp5pKTlsaa6kpHNokDuyOM/bzdE8ImiG2TewhUa0jmO2PJk4sCosRLak2NxUwZzUXJIcLooSM0h1uNk8KHwOXWTo+BZbDQuGYUTnf+5tr+NwdwuNA6vDZroSKYhPja7U6gsHeaFmHy/V7MdqsUTanjaeg11NhAfm+F6ZN43nqvfS0t9LS38vh7taKUxM554l72dV1W42Nh2m/8jCOQPXNU24c9ENuGwO1tStedvXyGax8vXZl/PDHS/Q3N/D4oz8485ZU3eA2t4Orp0wk5Q4N/va6/nZntcA+GjRYi7KKcJiWLg8t5jzswp5pmInHptjRO/9E6nsbqPZ202C4/Ts7TrWKUCKiIiIvEfWNpTxl4ObyfUk8T9zrhwS2Lr8/dy/6xU6/V7+a/pFTE3OOuG1drXW8nj5NooSM7hlylImJWYwKTGDNfVr+Nl51+I8yX57AO8rmM3CjAmkxLmHBFJfKBitbUlGAVubKwc+mOfT3N9DQXwaX9/0NH1BP58pXnbcXpX9oUB0qGTQDNPii4TFpZkFPHJwM1muBMa5kugL+slwxnPt+BnYLFbafb28ObCthwWDu3e+zCU5k1lVvYdlhguLYcFqWLgqbxrPVOzEFwpGg4vdsJDgcA5ZeRUg3hGHL3S0xy5ghgmEIs9ZklnAlXnT+N3+o72bKyt3cd/SD/Jc1Z7oY4NXBz2RY+dGDpYeFx9dxMZtdTA1KYtQOMxvS9bi8XbzTOl64iy26FBVy6BtOuIsNqalZOMLBtnfeTSYuqx2rpswk6crdhAyw2xrrsJjc9Ab9NMd8EVDM8BrtaXU9XVw3YSZvFSzPxq+w5iEB4Jtd6Cf6ck50VV0X6ktIcURWbDGZli4b/crZDkTWJY9iSvypnHthJk8fGAjDouNBm8n9X1dhDF5vGwbH5sSGaLd7uvDGwwMuy3Hq/Wl0UWBCo9ZRbiyu41Hy7YCkYD96eIL6BnUnsFfQ2Shp38rWvQ2r/6p+cXeNbT7++gKvH0PqhylACkiIiLyHtnaXImJSU1vB/V9nRQM6oU60NkY7dna2lx50gD5Ys0+Wvp7aOnvoaSjgS/OXE6uJzKnbSTh8YhxA8/xh4LU9nawpv4gG5sOsySzgLreTmp7OwhjYjMsfLp4GSYmt21dGZ1PuKO1hmkp2ZR3tZAW5yHdFY/HHsc1edNZXVca7XUzgD1t9fQGfZR3Rz78J9qdvF5/EJth4a7FN/HQwKI+AH0DvX0vDsyTM02TXHcyLpudPe31Qxa+gch8wltnXcprtaW8ULOPLn/kw/+RQJnkcNI58FiOKxG33cFlA4sfDd4+xBcOsaO1hivzprG+sZwF6eMp724dEiDnpuZS0tkU7ZE84kQ9oYNXQO0L+fn53tdwWR20+nq5AOfAvY8G3SO9vpHtRoLsaK3houwirJZxbI7e0KS0s4k8TwpVPW30hQJkuRLoDwZw2hz0Bn24bXY+WDCPPx+KPOvZqj3ctehGano7eK3uADvaBoaxWh1MTsogw5nAnvZavMEARYkZLM4sYHpKNisrd1Pd205jfzdPVezg1boDZLoSmJeex/JxU6nsbuOuHS9gAhuaDtPp9zI9HHmvBMIhPjFl6QmHex+7r+XgbUqO/AFgYUY+HX4v/aEAl49w4ap34sgfU05ldeVzmQKkiIiIyHvk8tximrzd5CekMj5+6EqRxcnZTIhPocPnZWlWZG5cdU87q6p2Mzkpk8tzi4ecPzNlXHRBkw6/l01NFXxg4tx3XNvP9rzGoa7m6Mf4LccsOhMywwTDIUwiYQ7AabVxae4Ufrp7dXTeYo47iW/PvYqbJs5lUlIGv9j7OnB038PBBvcMAlycMzk69DMtzoMBtPiO7gcYCIdwYWdqchZrGw5hDFqop6a3g38c3sH7J87FY4+LrjB7RLLDHQ2QF+VM5qKcouhiLeM9ydH5kzbDwh9K15PhjOeq8dNZkD6Bb2/+Z/Q6CXYn/zXjYqq623hg72t0DeoJy/MkD1kwByIr0x7dJOSovmCAvkELwHisDnzhoz2qSzMLSLC7eG1gxdMjr+EXZl7CNz2raevvxRsOsrutFisGBfGpVPS00ejt5jtzrybHk0RJRwMT4lOJs9p4tGwrQTOMf2Dho+KUbKYkZ/LdLStp9fXSF/LzfHVkNdjpydlcnjuNGak5QGRvUpvFwpPl22np78EfDtHu76Pd30dpZyNJdhd2i5XpKTns72ggbJqUdDQyOZwW3TblmYqdTE7KHLIg1NV5M4i3OYm3xzFtYDGoI7oH9f65rJE/iFgMgyvzpg3zap5eX551KT/853o8xwwTl+EpQIqIiIi8R2amjuNHi28c9li8PY7vzLtmyGNPlG/jQGcTO1prmJ2aS+bAXpAAWe6jX1uABHscrf3Hb77e1t9Lm6932I3XSzoa6A8FmZuWR1VPGxDpCUpyOMnzpLCnPbKiaoLdSYrDxYamcuak5vG5aRdS1dPGsuwi0pwemrxH9yas7+uk3ddHljuRTGcCdos1EvwGtus4ItedxPlZk9jRWsOizMj8twZvF5+YspSChDQynQn8vfwtXqs/EH1Ok7cbw4BVlbsxiWx1cSScdQX6eaFmH3PT8igdNP/QabUxNy2Py8YVs7JqN/s7Gni8fBtVve18YspSILK1yRFHAlxzfw9/L3+LVZW7h8wBtRoWvr7habqC/RjABZkT6Q74yHQncs346dy2ZdWQ1/jfixbzyKFonyE2w8LVedNZVb1nyHm9IT+57iRq+zoH6nYQb49jSWYB6xrLsWBQ1dNKh68Pj82BzxbgyGDdMCYOiw0LBpMS08n1JGO1WJiVmhu9/uemX8iKil3MSh0XXVG2sqctuvjSYPs6Gqju7eCi7CKuz5+FN+inrLOF6yfMItudyFst1TxXtTv62v+mZOgCR6lxbq7Mm4ZxoJ54Wxw9QR8dfi+3b3uWHyy4nrSB+1stFi4eN/m4+0PkDyrz0sbT3N/N5XnFw57zXkmJc5PkcJ3Re45mCpAiIiIiZ4lcTzIHOptItDtJOGZfvKlJWYz3pNDm62NiQhpPHt7O89V7ud48Oiy2zdfL7W89S38oyPUTZnFD/qzoscELktw8aSHLc6bwYu1+wpgEwiHKupqZmpRFQ18nnYF+ugP9VPW281L1fi7PLWZXWx3PVe/l/QVz+UzxBTxdsSO6b+SutlqMtlqePLw9sk3GhFlMTsrku1tXRHsdP1N8AXfvfAlvKMjBribWNZRRORBiL8+dynhP6pDwCBAmTENfF66B4atBTOyGlVxPEhUDz/1DybqB/RgNPDY7faEAG5sqsFts3DxpId/eEulNbOo7OgT22H0DM+I8tPj6MDGHhF6I9Pa6g5HeMRPY2FzJDxZcR6Yrgbb+nuj+kgAJtjgqjtlOJGiGsVgsXJU7nW0tlZHFb7oir0m8w8nVqbk4rFbW1ZfR6u/DbXOQ4Yynub+Hyp52nqnYSZe/n96gH7thIWiGWZA+ga0De4OmOj1DAnFDXyd1fZ3MSc1j9vzcIbUEQiHeTnegn2er9zAxMY2tzZVsbKoAoDgpi2U5RXy6eBkv1+4nwxkf3RMUInM3Pzn1fKYkZbLmQD3vy5/No2VbMAF/OERrf080QJ6I3WLls9MuoC/oJ97+9ovZdPj6eGDvGvpDAf57+sXRYdxy5migr4iIiJyzVlbu4p6dL1FyzAqasfLhwgV8ffYVfG/+tYDBPTtf4usbn6a0oxGPPY7vzr+Gn5z3QYJmJAj0Bv2EMaMrbbb7+qKrZNb3dQ65du+gYZZPlL/F2sayo8eCfryhAKWdjXQes5BICJMXa/dTPzCnb31jGTNTxzE9OSd6zj8qdvLk4e2YQF1fJ9nuRBIdThYNrLQ5JzWXbHcS5qB5b32D9jx8pbaUfe1HV2e9OPtoL5WJyaSEQQuuGPCFmcujwxx94RDdAR8mJgl2Z3S4rS8UJNXp4WOTlxBvi6Osu4WVlbuA41dVbfb1DpmDd/RWxy+TEzLDlHU1EwiHuHP7i0OOdQd9rGsoP+46/cEAHyicyw8X30i2JwnTNLEYBqUdjbxWf4ALsibROrAIUX8wQMagYZ+t/b00eDvxhvzR3tKSzsbocMudrTXR7Tk6/V5+tP1FfrN/LY+VbY0OJz1yzAT+rWgR+YMC9HhPChdmDezHaFhIi/MQZz06p7aks5E/lq5nTloun5p6PvF2J4vS87l2/Ay+OedKvrfgWqYM6u2+eNxk7lz0PhZl5HP9hJlMGTS3t9Pvjc5VPVYwHOLHO17iqxufZlXl7mHPAdjVVkdNbwct/b1sHgi5J/NMxU6+t3UlGxsPj+h8OTH1QIqIiMg5qbW/l1UDK28+fXjHcRuq729voK63g4QT9Iacbke20gDY3VZLWVdku4l1jWVDFtn5t0mLeL5mH4UJadTvKOH/rX2cmyct5OJxk7kxfw51fR3cVDB0v8UFAwuSvNVSTXl3C71BP5muBJoGtn04rhbgyrzp7O9oiPYUArR4e6jv7WRB+vjoxvBHAqzDYmNOWi4ZTg8V3a38a+EC3l8wF4/NgWEYfGXWpfyxdAMhM8wHCubyfPVeqnrbyXMn4x+0oMzCzHxKK1qxGVZcNjvXTpjB7/ZHehoD4RC/GOiBshjGkJBU7+1iUXo+We4EZqSMo9PvxTMwpBJgbX0Z102YSWX30facyOBQmRrnji7Q4wsFWddQRu8xczwhEriP9VLtfpaPm0J/KEhDXydFEJ1vGgyHebXuaM+rAfz3jIvZ1HgYA4YMhz2iJ+DjhgmzWFm1m/5QkCfL32JDQznBcCi6ME9JZyNfWPc4k5My+UzxMr63dRX9oQBJdhedgcgCQf9etJjzsiZis1iZk5ZHnNXGOE8y/1I4n/z4VNY2lFHe3UKmM4E/lW5kb0c9fUE/BnBV3jQmJqbT6fcSCIeGbFWT7ozn08UXDKl5f3sDD+xdg8Uw+NrsyylISGNXay3tvj4uyC6kw++Nvs92ttVy/aDe88Gmp2STEufGFwoyNz1v2HMG8wb9PD+wB+jKqt3R+cbyzilAioiIyDkp0eEk25VIg7eLKUnHr4D6yMGN9AR99AT9BMOh6AIsZ0phQga57mRa+ntYnFEw5FiWO5EbJsxiVdVujFAAE5NNzYe5eNxkrp0wY9jrWQyDK/KmMT0lh1/vfxO31c4nppzH2sYyyrqaOdzdysyUHHyhEAe7mnDZHFw7YSaX5xazqmo3bzaUETLDhDC5f9crfG325UxMSONwd2TIpttm5yuzLmd8fAoP7FnDnvY6Jiak8c25V0VrSLA76fJ76QsF+F3JOsKYWA0LNX0d0ZBnt1jJ96RQZ3eSGuemqb+bX+x9nc9MvYDfla7DJLIFypHFfazHrJz5Vms117inc/fOl4iz2JiZerSntCPg5aHSDVwzfga72mqivbUnY8CQhXKObDfhttrxhYNMScqisruVQDhMYKB32DLwzCPzKZ86vINtLZWYwAxrAh8rmk1pZyObmyt5sWYfdsNCwAyTHOfGbrFSlJTBfTtfGVLHlbnTKOlooKm/h2cHzals8/VGt8eIPubtxQQOdDZR0l4fXUH2SHg0iPyxYktzJcFwmKcOb6c/FORTxeezKCOfC7InsTizgPKuFmp723m8/K3otU3ghZr9eENBXq8/SLYrkW/Nu4oTKetqjrx/TDjc3ULIDPPLfZEFl9r8vbitkR5Vh8XGteOHfw9DJJz+ePFNmKaJYRhve94RTqudqUlZlHY2Mict96Tny8kpQIqIiMiY197ezooVK5g7dy7JyZE5U3aLlf/P3n3HyXXV9/9/nem7s70X7UparXovluQmycbdYLBNJ5iUbwgJEEiAfOOQQBKHBBJIA74QfgktAZtm40JwxZLloi5ZXVqttNree5l+f3/M7NXM7soe2TLLrt/Px0MP7dy5M3POzkh333vO+ZyPzt/MV7/6VW745G2THlPpz6OZ+LYKv+7wCOB3e/jc+tsu+oPy9+t2cbK/g6vx4Xd5ub4idZuD4XCQhxteJtvj463VK3EknqPSn8e9a27G43DSONzHVaU1vHP+WgZCY+R4MghGIxzqaSLfm0l3YBiv08Udc1dRlpHDj87uxyI+VfMH9Xvt8Fjky+LDS66hKiufgdAYpxJ7F54f6k0J37s6z9nbdYwHq/HRy/7EthnhWJSXe1uApM3qgV82H7fH9lbkVzAYHsMYw9nBbjwOF36Xm77QGFErxvG++OsHYxE8DlfKRNQjva3s7TpPgdfPkrwyVhVU8njTcToDqSOxc7MKOInB7XBiSB3pHBeKRijLzGVTyTzqBjpT7htveVlGDgbY131h3aDX6WJlYSU/PnchlIWtGHMyc9lSvgiAZ9vqGEoa4cx2+7i7Zi1fOvRkynYiTmMo9mbRPqH9kaRasN+r221/XZmZyxUl86jy53O4p4UHGw6lPO47p17i6ZaTfHLFdWS4PCzOKyXD5cbtcBKNxXA6DOFYDKdxUD8QrwrcPjZI20jqlOmJtpTXcm6oB5fDwaaS+TQMXVgrGrMsXuqIT/0NxSJ8v243DzYc4k9XvoV8b+aUz5dOeBw/75Mrr2c0EnzFtZWSPgVIERERmfUeeugh2tvbefDBB/nd3/1d+/hjDz/C2bozk44D/MHSa2nxP4PPmf4ei2+Ei/2gnJlYA2eM4b4Nt+OfUHTnl03HeK79DBBf57a2qAqAZ1tP8UD9frtapgPD1oqFtI0OcGvVcpbklTHHn88XDz1hB7hMl4exSChlcuZ4IPU4XHgdLr5ft4uPLN3Cz84dJByLPy6GxQP1+/mthRuB+N6N47JcHmiBZo0AACAASURBVALRC9tYLMguon4oPmW3ZbSffOKhqTdRNbQ9aU3njvY63lOzHqfDwYHu+HYcuY4L4SDDeeFH3Jc6z3H3vDXs726iYbjHLpLTExyxR9rWFlbxf/c8ZO9hOT+7kOHEuspQLILrIjs+RrBoGe3nv+v22EF4flYhzSN9hBO328cGmZMo9OI0DjYWzyO7dZRzQ92TtjVpHh3gh/V7qfTnkeeeXBW0rr+Ts4nv0bioZdEXGp10bko7rQth8o9XXEdeIpQlh7hFuSWcHugkasVoGOrh2dY6ezS7OquAL1xxB92BYf7x5acAcBsH3cELo57dE0ZAJ8rxZPBHy7fw9aM7+OzeR8hyxT+vhV4/b6teSWlGNg+di//Co210gNFIiBP97Vz1CntJpsthjMLjZaQiOiIiIjKr9fX1sWNHfKrcc889R39/f8pxy7JSjo9zO5xkujx2UEp2oq+dp5pPMBYJT7rv1+VDizbz24s2U5aRMyk8hmNR8pK2JRgvWHO0t5UH6vcDF/ZojGHxbOtpTvZ38KP6/URiUZ5uOZkSOkYnhMcqfz6/vWgzf7RsS2Irin6aR/p5rr2Ow4mN6sft7jzH6cToXJU/n1X5FVT78/njFdfhSRrZrU7sk5nj9nFdYhTO43TZU1TDVuruij85e4BiXxalGTlkujwpUziPTSiKFIxFuHWKqb2PNx/nUE8zmW4Pf7vhbdxUuZQP1m7kM6tvZCSpyI8DQ74nk1UFU0+BjFoxnIkfq88N9/CJFddRkZFj33/LnGW8u2Ydf77mJkYiQVpG+vn+6d1TPhfAlw8/xQvt9WwsnktpRjaZTg8Gw5ePpE5p9SUVEkrXU80n+Jv9v+Cjzz+A1+nirvlruGfhJj616gYW5hTb53WMDbK99bRdlCjXk0E0aZ/QQCxCIBrBEA/6NUmPvZiGoR57HeX4iO9IJITH6eKaslr+7oq3keP24TIOSjOyWZ5f/irPGDe+LvbePT/nRN9vRkGs2UwjkCIiIjKrPfTQQ/YPwbFYzB5tvNjxZCdOxIvEvP/975/yub/zBrb7UnznP//rFe//Oo/x9TSe5xRwDz941fOOAx/lvycd/xmPTT4Z+GsennTs3gmPfyTx9xDwR/w05b7UeBwXw6JjbJC/3fBWPr/30ZSqruOyXB42FM/lhsqluB3xUNIxoWiQAWJWjNFIiOc76olZMYp82fbzmcQ6xr7QKO8uWYfH4eJAd6M9BdcAc7MKU7bvKPD5+av1t7O78xwZLg9rCuPFXsYiYQ73tnA1vknbhSSzgK7gMJGBGLdXr+AbTffH7/hGS8p5U5c/emUPJb1H37G/60z6fDyV+PtbaTznIPDxxHv2rW+l84gLhoD3f+2hScf7gD/k/kt6LoD7+PElP0YujQKkiIjIm5wx5sPAhwGKi4vZvn379DboMtuxYweRSHyqYCQSYceOHdTU1Fz0uPzmuXogg2y3l2A0kijEEsPlcBI80cgTJ5pYMBZmAZOnKHqcLsqCI2w/v52usSFqgdqk8xzG8PJLezhsDDluH2tDDsDBsd37uDriY3ckPqq4aSD+mNN7D+GNRbgyKdLmeTIZHByj0rrwvM899xz5nvg00SCwnTP2fbcE87CiIbYO+YnEonY11qnFONd1+NK/YfKaTfX/3/Dw8Kz7f/H1UIAUERF5k7Ms61skBhoWL15sbdu2bXobdJmdPXuW7du3E4lEcLlcbN26lW3btl30eLKdO3cCcOOHf4vvnH4JgLdULGZlQSXNI31cU1ZLhuv1rZH8lyPPcLK/gxy3j3/Y+HZcDief3fuIvabsX698JxmJ9Y4T7e9q5NjufbyQG6A8M5e/Tox6PXjuEEvzyjg71G2PuH127S18//QumkbiU3WX5ZXxiZXXA3Cyr4NvndxJMGlN4lQynG7GomEMhv93zXtxGMML7fV8vy51OqYBPrz0GuZk5vOD+j1ku33sTdp8/v0LNrC2qJp79/w85fUcGBbmFnNqoJOrB3w8tf1ZwOKF3DE+vHgd60vm2uf+uH4/D7Wewud0E/BMPZpngEW5foJRi4bhC/sPjvcjWaYzStSKJbbBiJ876oq37YXc+O3NRfPY1d2QUpQn123syqYXBPit2kVcW147Zbue+tUz/NTdAcT3XoxYsUk7TnocTkKxKA4MzooCAEruvs6eeuzC4HK4mJ9TwB8u28pndj1IMBahMjOPz62/UBRqNBLi3FA3g8Exvpt4n6r9+dxWvYKzQ90syC5iTVEVO9rq+OGZvQB8dNkWQrEo3YERHj1/GLfDydqiKl5MFLq5ec4y7pq/ZlK/tm/fbv8ber79DP9dt8fu1+LcUv501VtoHO7lX448gwMHH1u+lS+9/CQWUOT1k+vNoGNsiPcv2MD64rmTnh/io8Wf2vUgo5GQ/ZmHeEXe8V8sJAvHoriM41WL7tx3330Ak/4PmNgvUYAUERGRWe7OO++010A6HA7uuuuuVzw+lTWFc1hdUMlwJMS2ikWUZGSzNL/ssrRvOLE9xGgkRNSycIG9R+LaoqqU8Fg/2MX21tOsLapmXVEVKwsqOJa4b3wka1PJfDaVxPe6+1H9fjrGTmGIj7a9q2Y93zj+HBYWx/vb+dqx7Xx02VYeOLvPXvM3HmicxhC1LLLdXobCQTYUVVObW8KvWk9xVWmNvTa0NCN7Up8s4FR/B03DfZzs75h0/6rCOZzq77CDU4bTjQF+f+k1FPmyefDcQbJGhxJtia/v+9apF/iE28Oy/HICkTCNiT0DA1NMBR3vgwWcGuigdsL6vKmmj45GQ2S7vPY+ilPZ091AjtvHYPhCGE0Oj8lTZJ3GQTQWHy39z5Mv0DY6iMvhYEleKbHACCR+7xBNqjSbzO/0sLqwhMbhXsZXd46Hx2V5ZRzvbycSC3Oiv4PmkT4+sfI6Dve2cFVJ6ih6/WAX/3Hi+ZRqpm1jg7zQUc+R3lYMhi9ccQebi+fhd3nwOd3kezPpGBvkxjlL2FJei8MY6gY62dd1nlAsyhPNx1lZUJFSFGmia8pqqczM4xeNRznS18r5oR5GwiGO9LYwmlg7XD/UzXsWbOBgdxOL8kp49PwRIL4P5MUCJBicic+eMykUGmNwmdTwuKOtjvvP7KUqq4DPrLoBj1PR53LQd1FERERmtfz8fLZu3crTTz/Nli1b7G08xo8/88wzKcen4nO5+aPlW9+Q9v3e4qvZ2V7HyoJKvIkfcNcXV7O+uHrSud899RKdgWH2dzfxkaXX8lx7HZVuH1eWVrCtfCFnBrrI82ZQ5MsC4K75ayjNyKYkI5s5/niRmn+96l3xTeXHBjnS28pQOMjSvDLaElVOx0cEo5bFbVXLua16BYC9Ufx1FYvs9oSiEaqy8uNhKfG4DKebSn8e64qq+OnZg0B8ZHF9UTV7u8+zKLeEXI+PJ5vj60stsLf22NXZwO8svpI/WHYtP2x42A6P4470tLCn6zwvdZzF63CxLK8MCziRKJpjiAeJiaOoRb4sSnzZvNh5NuX4eNAcl7xtxlRikBIek11RPJcD3Y327e/V7eKXTcd429yV9rYkAK2jA1wduzDdtTQjmyJfFuFYjFAswvL8cp5uOcVgJJgyapvs+IQiQc+31zMvu5A7500eFdzX1Ug4FqVzbIg5/nyaR/pYkV9hv59uh4Njfa3cf2YfRT4/v7/0Gv7+4ONErBhlGTkszS9jS1kt3zrxvF2lFuBwb8srBkiA+TlF9mOCsSjBWJiNxfPY19WI0zhYV1RFgdfPdRWLGAmH2N/VSE9gZNK+p8kcxvCpVTdwrK+NdYnKwhezryu+72bjcC8dY0NUJQo1yeujACkiIiKz3p133snRo0cnjTLeeeedNDc3v+Lo4xutwp/LexZsSOvc4oxsOgPDFHgzub9+L73BUXLCPj5QewVPt5zk5w0v43W4+OzaW/hF01G6xob5rYUbqfSnhuMleaV0B4aYl1VIjsfHexas51R/Oy2jqXv5Pd9ez9vnrZ6yLXs7G/j2qZcozshiU9FcXuw6B8RH926tWs7uzvM0jvQB8N4F69lasYgPxTZjgK8cfobGkd6U5zPEQ9hAaIzuwDBmwn25bh+3Va3g03seBOKVVednF7GjvQ6HMcQsCwvswkjJinxZbCmvnRQgx8Oj3+VJqbpa5PXTndg+JJnLOFhZUMHBnuZJ983NKpgU+DoDQ2xvPU12YssUi3iYJql37WNDbCqp4bbq5fzH8Z081nh00nMnW1Mwh0MTKt2+2HGWFzvOUp2Vz/zsopT7ri1bwKmBDvI9mTQn3o+YFeODC69kSV4pc7ML+N/GY8Sw6AwMc26w2/6+tI8N0j42iGVZKeERYGlueiPwH1y4kZ83HGZudgEFXj8An09MO+0JjPCfJ1+gLCOHt85dyefX337RfU+TlWfmUp6Z+6qvfUPlEroDwyzIKabS/+rnS3oUIEVERGTWy8/P54477pg0ypifn8/nPve5y/Y6rSMD3F+/l2JfFh+o3YjTMXnHtHAsymAoQKHPf9HnOdHXzkBolEM9LawsqODqsgUAfGTptZwe6GRedgHfO72b3uAobocLl3HQmljbGIxFeL69nt2dDQA80Xyc3118VcrzH+5pIWpZnB3qIRyL4nY4KfRl0TI6gBMDJj4CaWExGBqjbqCTX7WeZkNxNddVLAbgQE9TohLqEAtzLoxEeR0uvnv6JQoTo6A+p4tlie0Y3A4nJ/raOTPYZZ9/Zcl8cjwZbCtfSH9ojM/ueYSwFeVmZx4+p4dANL6FyJqiarK9Pnu/wlxPBk0jffYU4Km4cLAwr4S3Vq8gasVSpp+uTmzJ0Rsc5aY5Szk72M2zbaeBeEAZCgcZtZ/HsDCvlPrBLhbmlmAwHO1rTQlVR3tbcRpDzAIraUJq/VA3H1q0mTWFc/inl5+idXQAsHAkqrtCfKSsNqeIAz1NKe1fV1iFy+FgOy/ax/wuL04M0QmTXl3GYe+tOP4eH+ltYVvFIr648R0MhgL8+Z6fAxCKRTnU08wPz+ylyJfFu+avo2mkLzHimLp1hgG2t9VR4sumOiufmpwiSjNyWFaQ3hYb3YER9nc3sr+7kYrMXFYUVNj3PXz+ZTt0L8otYVFeqR0eT/S1s6vzHFeV1rA4rzSt15podeEcVicq4MrlowApIiIicpk80XyM0wOdnB7oZF1RdcoPywDBaIQvHHycjrFB3lq9krfNXTnpOba3nub++n327YM9TSzIKaIsMxeP02U/5x8svYbzw700HjiKMYYVBZXsSfww3hUYIsftYygcYGne5JGiqqx8+npHsbA40ddOTU4hpxJrFWtzSjg1GP/a7/LyZ7sfsreyqB/s4urSBXicLq6vWEzTcB9lmTlsKa/lYE8zlmWR6/HRNjbIUDjIHy/fxpysfHKT9qSsysoj35NJX2iU+dmFvHfBBnyJQkT/fmw74cS01UgsSjhpPWL7WHx09E9WvoWhcIAct49DPc0c7k3d2gIgw+FmLBYmQoxcTwatowN0jQ3xsWVb+frx54haUXtaaWlGDsPhANdXLiLb42UkEuJYb1vKWsgIlj1N9snmE/SHJhbNgZMDk9d62o+PRvll0zGyXT4g3o9YUgBsGe3n9EBHvCBQ0vrM8UCZ485gKBF8X+isT3luA9w0ZynFvmz+48TzLMwt4Y65q/jmieeIWhb7uhu5Z+Emjve18Z6a9fSHRinNyOHbp17EIj7K+EJHPb+/5GqqswoIRMPkeTLoD42xpnAOp/o7GYuG6AoM8TcbbsdhLm0b+dbRfjtQt44OpPybGB9F9DpdFEz4hco3T+wkEA1ztLeVr1x59yW9pryxFCBFRERELpNFuaXs7mzA7/JOmjYK0BccoWNsEICT/e1TBsieKaZOHu1ro2zClD2Xw8mCnGKaEtMha3OK7eqi87OLuLp0AWWZORRPUeTmqtIaO3jdX7+XP115A6FEYIoZyw4yFiT+xANAlT+fH589QNNIH++tWc/fXXGH/ZwfW76V3uAoL7afoW1sEJdxMDe7kCx36i6OA6EAH1q0meqsAvxuD7s7z9EfHOO6ikXx8Dk6gNM4yPNmku/105OYsjsQHOMTL/4ELIuVhRVcWVrD2qIqvA7XpMI3ySOAJ/ra2NPVYBcZKvL6WVswh+1tdQB0jA3yo7MH+NHZA9wxdxU3Vy7jUHd8iqjBpDwXMOV+kxMtyimhdXTALnrzZMsJuiZMy01mgLqBLop9WawtnMP2ttMMJo2shmNRst0+IkCBN5Pe4Kh9nwUc6G5mJBJkNBKiaaSPTcXzcDmcRKMRRiMh/uPETiwg2+3ly5vv5v4z+1J6daCniTODXfzT5rvwOd18du2ttI8OUJtbzPPt9TzTcooFOcXcd+CX1OQUcee8NQyExqb8jEN8v0u3w4HL4eSaslraRgexsFhTWEnMsuwCTLdWLWdRbgl5nsxJI/JFPj/NI/2vOFIv00MBUkREROQyubpsAUvzyshwuafceqMsM5cbK5dQN9DJHXNX2ce7A8PsbD/D0rwybq1aTjgWJRgNs6fzPG6Hc8pRxIkKfX7+ZsNbGQ4H+c6pl2ga6bO3TphoaV4ZboeTcCxKb3CUrx7bzsqCSvI8Gdw0ZxlOY+gOjuA2Dn5Yv4+KzByq/Pkc62tjZ3t8T8P/PrMHv8vDxuJ5lGXm8JXDT2MBhYl1bhErxkPnDlE/2AXG0B8cxeVwMJQIRu+vvYLSjGy+fSq+PcpoNMSHl1zD0y2nqBvoZLQjRCASIteTwVUlNTzWdGFt4N6uRvZ2NfInK6/nzvmreaB+f0r/AkmBcnPJfJ5oOXHhex0cYXtbHdX+fHuN5rgXO+p55PyFfRcnhkdg0lrAcbkuH1eXL2BdUTVVWfnsbD/D/9TtAbBHDx2JyrYTrcgv50hfGwBNE9oEMBYNEYgavrD2Fna21bOjvS7l/q7AUMrtb57Yyebi+TzXXmf/EiDejiADoTG2ltdyuLeF3qRfVoST+pXj8ZHjiRf62VK+kC3lC/nK4adpHR2gdXSAl3uaGQoHub16BVeV1vCj+v3kezOpID4d979OvkieN4N719xMjieD31q4kfvP7OOv9j3G4txS/mTl9fZU1QUTKuSO+9OVb+FMYsqw/GZRgBQRERG5jCZOxZvonTXrAOgcG2JXxzlWF87h26depH6wm6ebT/LlzXfx3kRRnfcs2IADY28/8EzLSX527iBFviz+Ys0t9tTPcbmeDHLcPtoTo5ytE4rijPO53Nw1bw2PNh4hZll0jA3SMTbIP2++G39ixHC8H59dewvDoSCf2v2zlOdoSay5PD3Qid/lsUPKcDiI0zjwOVw835E63ZKk7HWyv50M54X2u4wTv9vLmcFO6gY7KQn57BG8YCyC1+kiGE0daQxGI6wprEoJkBNHJKfaYxGgJqeI1tEBu2CMAQaCk6emAvaWJuOmer78DD9vn7eacCzKp3c9aIdGgEA0wuqCOdxStZQzg930HznD+F6TbuOgYbiXV2NhMRwJpoRHA2S4PPaoqM/pIhCN0BcaZUd7HQtziinLzGVvZ4MdqgdCY1RnFfAPG9/O0d4WvnosvpXNeOXeZN2BYfZ1NbKioJxVBZWcHuikyJdl71F6qKeZ59rq7F8KvCNaTH1PCzEseoOjNA73saIgg3AsaleoPTXQQTAWwed85f1T/W4vqwoqp4jwMt0UIEVERER+zULRCF889CQjkSArCyrwJn6Y9jidKWvMJv6Q/XDDYaJWvHDNmcFOViQKwUB8BOkHdXvoD43xzvlrOdnfwbXlC3i29RQvdZzj+srFbE7sDwlwfeVirq9czI/P7ueZllNku7185fDTvL/2CmonjPp8v25Xyu17V9/Mvx77FWOJ/fyS95AcD28j0ZAd+nLdPkYiITusOTEc6G7iSG8r75y/hiebT/J8+xnWFs2hOquA0wOdmKQJny92nCXT6caBsfdw9Ls88fB98kKBGQdm0nTWw70tZLq8jCRt0eE2Ts4OdnN79XJ+1XKaoUgQA4QnbP8xbm3hHPZ1Xyhwk+/JoMCXlVIMqGGoh28e30mu25sSHse1jw3wQsdZhsJBFvn8LMnN5MxgJ2ErRnhCIaBMp5tl+eXsS9oWxO/yUu0vSNl65I+WbqEwI4unmk8wP7sIv9vDj+r324WC6ga7qBvsIs/tY0FOMZaB/V2N5Lh9/Kr1NEU+P++qWcfhnmYynB6eazvDlvJa+zW/cfw5mkf6eeT8y3xo4Wa+vOkuMl0eHms8wrmhHhqHe+333ud0YVkWZZnZlGfkYIyD79ftZlPJPE4PdDIYDuB1uFheUE7DYA8V/jx7lHMqHaODfPnw00StGJ9ceT3VWQUXPRfi+4G+WiiVy+PSVsGKiIiIyOsWjsXsYinD4SD/Z/HVfKB2I3+2+iZ7L8ipFGXER4lcxkHNhKl/R3pbeKnzHCf622kdHeAjy65laV4ZP6o/wPnhXn569kDK+S0j/Xz31EvMzSrgo8u2MhQO0jI6wDdP7KR9wshly2i//XVlRi5l/hw+v/Y2NhbP46bKpXywdhNrCudw1/w1eBxOe43bDZVLuGnOElwOJ/OS9uAbn74YjkUZCAUYDAfoD42xp7OBa0oX4HE4U6aPjkRC9IXGUqZZjkRC3Lf/l+zuarCPJRemGY+fA6ExPrp8KznuC2ElbEVpHOnj4fNH7FHOqaNjnNvhIjMRTgywtWIRN1UunXTewZ4mjk3Yo3G8HUOhAM+318enf4YC+FxuIlNMZ63IzOXTq26cNCrpNA7GomFiSSH3kcYjZLm9/PbiK9lasZANxXOn3N6iPxwgy+3leF8bjzcf5xvHd/JE83F+cGYv1f58vE43h3qb+cGZPbSM9NM2OsA/HHqCzrH41NioZfG907vwuz04HQ6uLavlgws32Xt/Fvuy+NiyrXQHhnnk/BFWFlYyHA4wEBrjyeYTnB/qTTxPjAPdTfzL0V/xuX2P0huYvN533NG+VgbDAUYiIV7umVwoKdlXj27nEy/+hJ+dO/iK58nloRFIERERkUtwvK+NR88fYXl+OW+doghOOvxuDx+ovYLjfW3cMW8VfrcnZeTnYj6z6kaO97WxIKeIzAlrLOf488lIFL+pTYRLh3GwKLeEUwMdLElaR3mou4n76/fRHxpjV+c5/nzNzXblzaFwkIfPH+YPll5rn/+emg184/hzxLBoGRvg8abjvGPean5vyYXtQa4pj281srV8ITErxv7uJpqH+3i69RRAynq7iBXDbZy8de4KNhTPZW9XA/2hADvb6wGTWGc4eTTJAHkuH/2R+Ahb8+jk9YLjxqNZKBblJ2cvjMpNfL65WQWTwtrEQjV5ngy+tOlOopaFz+ni0fOH+Z8ze6Z83a7E9M5xRb4sNpfMZ1fnOUaTfmlwqOdCKB+fImuITzu+7+D/Tpq6menycLyvLSXoNo308f+deIGmkV5uqFzK2+autIs0TbQkr8wO2zme+DRlBwaXw0ndQGeiHQ78Lg//23SMhqGelMd7XW4ebjhMltvLT88dxO/yEEhMKZ6XXYjL4bTPHY2E2FQyj6daTrK2sIoVBeXs6TxPT2DY3l9zLBqmY2zoolO+1xZV8WLHWcKxGBuL5055DkAgEuZoXysQX3959/y1Fz1XLg8FSBEREZFL8OC5QzSN9HF2qJuryxaQ78285OdoHx3g/vp9hGNRFuQUU1qZk9bjMlxuijOy7D0Zk6f1lWRk83dX3EEgGk5Zz/aJldfRGxih0JfFSx1n2d/dyJHeVvt+C/h/x3bgdbrs9YMlvhzODnZTnZXP3q7zZDg9KaN7oQlrEY/3tXG4t4UtZbVU+PMYDof5ft1uYpZFlsvLcCSIMQYracQtbEUxxpDl8rKlfBGPnD/MaCSE0xhKfFkwcOE1xqdthq2YHR7TMb4m8NxQD1lOD8PREJUZubQktgRZmFPC7yzezN8ffIKhpCmuK/IrWJ5fzr88vAsLiz2dDeztPs9d89aypnAOv2g6Zp9b4MmkNxQPmw5j7Gqv47oCwyzLL2MgNEZ3ez05Hm/K6OqCnCIsC84OddtHp1r35zCwqqCSJ7zH7RBmgLrBePj7VctJtpTXcte8NXzn9EtYifsdxsFNlUvZXDqfnsAwLoeTm6uWcbC7iQJfJpkujz0tOGbFON7fzvL8cp5rq0tpx2gkxOPNxylNVPUdiYSoyMxlIDjGvOxCnA4Hhb4sriqtwIFhdeEc7pi7yl6/e01ZLS0j/fyi8SjdgWFqc4tfcX/HAq+fv1p320XvH+dzubmxcgn7uhu5tWrFq54vr58CpIiIiMglWJRXQtNIHxWZuZO2qEhXV2DYno7ZdpFCNxfz1aPbGQwHeLGjnr9ce2vKfVlu76Q2OY2D4oxs+oOjfO/0rinDyUA4AIntB8szc3mm9QSPNx9jfnYh54Z6MMTXHI6vd2sa6aNxuDf+ei4vXz+2g4gV43R/J59bfxsu48TndDEaCbMgt5jfWXQlpwc62NV5jkAkzPH+dhwYHjx3iKO9rdyzcBN7u87jNIZry2q5Y+4qtu/YTnVWAR6Hi+rianZ1NqT2i5SaPFMKJAVdl9OJI4odHnPcPu6ct4r7Dv6SQOTCeQZ4rv0MdYNdVGXl0zjcS08iIH7r5PMszr0QepzGwbsXrOebJ3biwHBH9UqO9LVSnVXAc211RC2LTKebrx3bwUgkRI7Ly7tq1nOi60LRn+sqFlHkzeKBs/sZCgWm3MYFoHV0kNODHXbBGkgNmqPRMH+2+yG8Dhc5bh8D4QAW8H9X38Tc7AJ+fu5lftkcD771g118cNEme3/O9YVV7O9pwgIeO3+Ev9/4dr6y+W6O9rbaYXTcUDhIjtvH4txSosRoHR3gJ4np0W+zCjne10Z/aIzdXQ3865XvTOlDpT+Pu+av4TunXqJzbIiGoR5e7mlmbVEV87ILX/G9fCXvrFlnF6eSN54CpIiIiMgleHfN0udS7AAAG6xJREFUeraWLSTfm4k7adrepVieX8EtVcvoDYxyW3V6oyZNw31kub1kuNwMhgMMhYP8xd5HeHu0KK3H+1xust2+lKmct85Zxi+bj6eclxxoB0LxqqQW8RGn8eqjpwc6+cLBxwHIdfviax4tyE5MjQzFovzx8utpHxtgWV45HqeT1YVzWF04B4gXPPn0rgeJxaJ0B4Ypzsjmr9ffzlgkzFcOP0372CC3RwpwO5yMhIPs6Tqf0kaPcRKy4vGxyJfFhuJq+oNjRGJR+kKj1A92T+p/fyi1wupgOMCOtjOMJgoBjRsPS22jA0RGByZt5TFefRbguvKFrC2q4mPLtvFY4xG6AsN8atUNfGbXg3bV1rWFc3ih8xwAQ5EgG4qqqXe+bD/H8d42anNLOD/UQ4HXzy1zlvJ48wkms/ivky/Zt7Ld3pQwOS4Yi6SsFX3k/Mssyi3lqaStTI70tfKFA7+kOruA99Rs4GDPhQJBfcFRnm09xXUVi9lUOp+mkT6ebjlpfxfGK77u7T5PWUbqyPlQYi0rQIbTnVIIadyOtjq7+NC5wR6GI0F2tp/hK5vvttfGThSzYinFpWR6KUCKiIiIXKLSzPSmnF6MwxjunLcm7fOfbT3NA/X78DpcfHzFNp5tPc3+7kaiVsweFXw18Q3ib+F7p3fRPNLP9RWLuLlqOWErxtMtJ+PtwhDDIsPpZnFuCbdULWdPVwPb2+qIWRbL8supH+y2CwBBYvQSWFVQwe8uvorjfW187dgOXA4Ht1ev4M/3/Jx8byb3rrmZ7ETVTZ/TzR8svYZ9XY1cW7bAfq7G4V57H8ThSJCWkX4C0TCZSdNCM5xue8olQJbLy53z1tAbHMHjcJLl9vHN4ztTQpHP6eL26hXs72yiYeTC2r5dXQ04jcHn9KRUaR0PyqEJFV2z3V42FFXzbFt8K42xaISusWH2dJ2jYbiHhuEeluSV4UwKOy90nrOf75qyWh5rPGJPAc53Z7C1YhFPNB3HAnqCIzQNXwiobhyEJ5T38bu85HszuaN6Bd84sXPKEeX5WYXUD8dD9NG+NuoHu+zKreMGwgGO9LZyrPfRlFeIYfFA/X7WFVWT68ngnTXrKPZl88P6vZNfJ7uQxXml9AdH8TpdmOEL39vfX3r1lIFwSV4pz7ScwuNwkun2MBwJ4nG6Lhoen2k5yU/OHmRJXikfX7GNcCzKL5uOkeXyckPlkos+Tt44CpAiIiIyq41Fwpwe6Ji0Nu31CkTD/PvR7bSNDvB7i69iRUHFZX3+ZE3D8VAVjEUIRiO8c/469ie2eBiLphcgAdpGBzmeqBLaHwrgMIZ31azjRF87LaP9VGfl8+4F6ynLyMXvjhfpmZ9TxLqi6viaz9IF3H9mL4d7Wsh0e1JG9Q73tjIcDnJqoIOoFSMajXGgq4kYFj3BEc4P96Z8j1YWVLIyaRsSiAeSRbklnBvqIWrF7JG05H0X52UVcG6ox97XcDgS4Imm4zzYcAiAt1Qs4SPLrqU7MMy5wW7qBrt4S8ViSjNz2FA0l8/ufSRlPWfUspifXcDxvnZiWOR5MhPfnwtFdMYNh4O8Y/4aHA4Hdf2dvNBRz77u81xbeiEEP3L+MB9Zei1fP77DDvfjr1aSkcUj5w+zEU/ivQszEg6ytqiKjtFBIlaMY/1t9nO5nE7W5M/hoPugHdpHIkFGIkF2TFijmGw8PALU5hRTkZnDc+31rCusYkPxXL518nn7/thFniWaFDivLqthIDzGwe4mApEwJRnZuBxO3la9kidaTtA5NsTdNWtpaw2wpjCPxbmlBKMR/mrvI8zLLuJ3Fm+2RxCX51fwj5vegdM4CUbDHO5tYVl++ZRtGAoFeLzpOBYWJ/rb6QuO8nx7PY83xUfNi3xZrC2qush3Qd4oCpAiIiIyq33t2HbODHaxdWzqao+vVcNQD/WJqXgvdNS/oQHyrdUrGIuGKPRmsSy/nNFw0A5V0ViMoVDAHt0bVz/Yxc/OHaQmu5h31sQrU2a5vfYoY8NQDw83vMzb5q7kU6veQv1gNy6HIx4OSz12gARYmFvCwtwSxiIhe2/CHIeD31t0Jf91+sK0yn8+/EzKFNnVhRX0h0ZxGMPDDS/jcThZNEXhlJhl8eC5g7SNDrKusIrTA52EovHN5uNrOHNoS1QXrR/qTlRpjesOjPDz8xemhO7pOse7F6yjyJdFkS+LK0rmAfFAtL+7kWvLawlGwuzuarCjU5bbx6dX3cBAOMCSvFL2dZ3ngTP7IDEJszwzFwNcVVqDz+nm3TXr+Y8TO2kc6SMYjbC9rc5+P7oCwzzUcIgVBRXsnrBuc09nA+HYhWAWiEX42vEdxCwLj8OZ0i+IB8y93Y0EI0GiVizlB/cCr5/KzFxakqYcl/iy6QwM2bezXF4+vPSaeMCbvw6fy82ZRMXVZOOfCYDyjBzunr+GAu+Ffy8uh5NVBZX8ovEoAIU+P3+y4i10jA6yIzEa++C5QywKRPE6i8h0uXm04QidgWE6A8N4nE68Thd3zF2Fz+kmK7GlSobLzZbyhfbr9AVHebrlJDXZRawvrub++n3252lVQQUFXr+9HYuB17wGWV4fBUgRERGZ1XoSe81FrRgxy7L3KHy95mUVMi+rgLaxQTaXzL8sz3kxBT5/yrYapwY6U8aNphpDerjhMPWD3dQPdnNl6Xwq/XlUZeVz79qb+UXjUQ71NNMw3MMcfz7ri6tZXlDOn770UwLRCPu7G/E53RgDf7h0i73Vgs/pZkV+OUf72lhfVE3TaL9dXMeAXY103DMtp+19FnuDo3zt+A6+uPEdZLo8tIz0c3awG4cxPNF0nI5E8Gkc7rX3wsx2e8ly+2hN2ppiYsiCeAB1EN/L0WkcfOHgL/nYsq3kJirkto4M8GjjYQ50x6e13rNwE32hMU4NdACwq/McDUM9LMwt4VsndiZ9Ty18Tg+3Vi1jYW5JSqh6+9zVHOpuJoZFxIpR6PXTFxolZlnUDXaRmbRWEuKBZ1PJfJom7FU4PjI+sV9byxeyq+McwVgkZTRwVUEly/LLubq0Bgv4r5Mv0Draz9WltSzNL+MfDj0BgNfh4q75a7jvwP8yFA5yfcVi3rNgfUof/E4PKwrK2d11HrfDSZ4ngzxvJl87/hzZbi9jkTDvq93ANWWpW8yMFycq8Pmp8ufTNNKXGDGOsLuzgd2dDTgS6x9z3D6eb6+Pv57Lw+3VF9/65odn9nK4twUDVGe9DV/ic+AyDt634AocxnB95WIKfX6y3F4WTNgLVX49tBpVREREZrX/s+RqriytodiXddnCI8SL0ty79hb+/ap328Vhfl0W5BSR68nAYQz53kxyJow+AizOKwGgyOdPCQ3VWQUsz4+PljqMsbf8MBg8jvgP7OFYNFFptY+93RcK2Bhj+PiK6/j3q97NvOwinmw+wUgkxKqCSnsqoSOpcMr4tMvxI8FohPrBLkYjIf7x5Sf5nzN7+OGZvXZ4hHhxm+vLF1GRmUdOoo93zYuPiPkn7H1ZmrRdyXjE6g+N0Tjcx3dP77b78k+Hn7LDI4DX6eKPlm3huvJF9rHhcICd7WewSA3kY9EQ3z71El869GTKNGi/K3Vrkyp/fsr9o9EwnqQiS1luH9sqFvG5dbfhTBx3Gwd3zl1NbU5xSkGafE8mb5+7ij9bcyPXV1xoI8DRvlYW55bicbo41tfKy70tdAVG6AmOUJaZQ0EiNF9ZWsOCnGK70M54caRcb4YdvG6Ys5T2sSH7+/QnK6/nRGKK81A4SMSK2eEv15Nh96cmJ164ye1wcu/am/nK5ru4vmIxEA978fcj/r0o8vrt9z/5cziV8RFFt8OJx+nivQs2cM/CTXxm9Y0p+0WuLpyj8DiNNAIpIiIis1ptbjG1ucVsb91+yY+dO/fiG5hPpzxvJl/c+HailsULz+2c8pzbq1eysXgeOZ4Me0Rv3JbyWioyc8h0eanw5wLxMPlnq2/kRH87xb5svnVyJwbDivzJU3O9ThelGdn2/oyrCiq5pmwBfcFRdnc18POG+JTSm+YsZTQSojQjh0fOH6Y4I4sFOcVEYjF7Kmemy8NgOJBSHMcCXI4L4xw3Vy3j5qplNA718sWXnyRqxViYU8zHVmzjiabjvNhxluFE4Bk3PnplWZY9glfk9fOumnWsSYTd5Gm6W8oX8kzrKYKJ0bUF2UUcw8H47xxGIqFENdB4iMr2+Pjgwk0c6GrkqrIaXA4nh3qbASj0+pmXXcjb5q6kabiPaCzGwrwS3A4nlf48nIknzXL7uLlqGbdUL7fb0Tk2RI7bh8/lxu+OFwh6xumxw3jMsux1r/OyC8lx+xiOBFmRX47P6eYv195GV2CIuVkFGGN4d806zgx28bbEyJ/TOPjMqhsIRiP4XG4W5BTx6PkjLMsvo9CXhc/pJhAN4zQGt8PJ1sQU03ghpFtoGx1gTdIvTJzGYYfjX51q4Ya163im5ST7uxsZi4ZZU1TFe2uvIBgNTzl9Odn7a69gaV4Zc/x59hYjVycVWXoj/ab+W/9NpAApIiIichH33HPPdDfhohzGgeNVBlSLE5u+T6U2t2TK88cf8+VNd4MhpaJoskp/Hp9ffzujkZC9h1+Bz8+NlUswGLxOF9vKF9pVMq+vXJzy+I8t38qp/g62lNUSAwq8mbzQcZbB0Bg3zlnKS+efn/iSVGcX8I+b3sFgKECFPw+At89bzdvnraYnMMJgaIxjiX0I75ofr3Lrcbr45IrrOdrXypUlNRRnXBi1vKFyKaORMBlON7fPXcG2ikV0jg0xP7sAl8PFfY/uJhiNsLx8EWsK5+CasG3LNWULuCYp4Hx4yTUEYxE2l8y3R7vLM3Mn9aPEl809C5ezJK9sUhXRkgnvmcfpoiorn6gVY9WcZZRmZNujbwVeP3+/8e2EolE7DPvdHvzuC3sqvqVyCW+pXJLynMYYfC43AIvzSlmcFOz+cu2tHO9rY1VhJfmJ0cxxFf5c+xcOU3EYQ4U/lw8u2sTdNWsZDI1RNkX/L8btcLIxsWb11+03+d/6bxoFSKG2tvbVTxKRGU//1kXkUjgdr77SaWLYgXjBlVuqlr3qY5fll0+qvrml/NX/n8py++wiLMkKfX4KfX7m50zeF7Mmp8iedpksw+XmPQvW27dzPRn2yNc4r9PF+2o3vGq7ANYXV6d1nsOYSx5ZcxqHHYqTuR3O17wf6VSKM7LYmrHw1U98FZkuD5kTphzL7KAAKXz84x+f7iaIyK+B/q2LiIjI66UiOiIiIiIiIpIWBUgRERERERFJiwKkiIiIiIiIpEUBUkRERERERNKiACkiIiIiIiJpUYAUERERERGRtChAioiIiIiISFoUIEVERERERCQtCpAiIiIiIiKSFgVIERERERERSYsCpIiIiIiIiKRFAVJERERERETSogApIiIiIiIiaVGAFBERERERkbQoQIqIiIiIiEhaFCBFREREREQkLa7pboCIiIiIyMWcP3+e++67b9peG7jsr9/f38/OnTsvqR1z5869rG0Qea0UIEVERETkN9J0hyav1zutrz9u7ty50/69EBmnACkiIiIiv5Huueee6W7CG2L79u1s27Ztupsh8ppoDaSIiIiIiIikRQFSRERERERE0qIAKSIiIiIiImlRgBQREREREZG0KECKiIiIiIhIWhQgRUREREREJC0KkCIiIiIiIpIWBUgRERERERFJiwKkiIiIiIiIpEUBUkRERERERNKiACkiIiIiIiJpUYAUERERERGRtChAioiIiIiISFoUIEVERERERCQtCpAiIiIiIiKSFgVIERERERERSYsCpIiIiIiIiKRFAVJERERERETSogApIiIiIiIiaVGAFBERERERkbQoQIqIiIiIiEhaFCBFREREREQkLQqQIiIiIiIikhYFSBEREREREUmLAqSIiIiIiIikRQFSRERERERE0qIAKSIiIiIiImlRgBQREREREZG0KECKiIiIiIhIWhQgRUREREREJC0KkCIiIiIiIpIWBUgRERERERFJiwKkiIiIiIiIpMU13Q0QEXCO9pJx8n+n6bV7AC776zsW30TGyScvoR29QOllbYOIiIiIXF4KkCLTzOv1smbF0ml7/ZaWCACVlZc3vGV63ayvuZTnLKW2tvaytkFERERELi8FSJFpVlJSwr/9279NdzMuu+3bt/PBD35wupshIiIiIpeR1kCKiIiIiIhIWhQgRUREREREJC0KkCIiIiIiIpIWBUgRERERERFJiwKkiIiIiIiIpEUBUkRERERERNKiACkiIiIiIiJpUYAUERERERGRtChAioiIiIiISFoUIEVERERERCQtCpAiIiIiIiKSFgVIERERERERSYsCpIiIiIiIiKRFAVJERERERETSogApIiIiIiIiaVGAFBERERERkbQoQIqIiIiIiEhaFCBFREREREQkLQqQIiIiIiIikhYFSBEREREREUmLAqSIiIiIiIikRQFSRERERERE0qIAKSIiIiIiImlRgBQREREREZG0KECKiIiIiIhIWoxlWdPdhmlhjBkCTk13O94ARUD3dDfiDTBb+wWzt2/q18wzW/u22LKs7OluxEwxi6+PMHs/4+rXzDNb+6Z+zTyXfI10vVEtmQFOWZa1YbobcbkZY/apXzPLbO2b+jXzzNa+GWP2TXcbZphZeX2E2f0ZV79mltnaN/Vr5nkt10hNYRUREREREZG0KECKiIiIiIhIWt7MAfJb092AN4j6NfPM1r6pXzPPbO3bbO3XG2U2f79ma9/Ur5lntvZN/Zp5Lrlvb9oiOiIiIiIiInJp3swjkCIiIiIiInIJFCBFREREREQkLW+6AGmMucUYc8oYc8YY8+fT3Z7XwxjzbWNMpzHmaNKxAmPMU8aYusTf+dPZxtfCGFNljHnWGHPCGHPMGPOJxPEZ3TdjjM8Ys8cY83KiX3+TOD7fGLM70a8fGWM8093W18IY4zTGHDTGPJa4PVv61WCMOWKMOTRe6nqmfxYBjDF5xpifGmNOJv6tXTlL+rU48V6N/xk0xnxyNvTt12G2XCN1fZyRfdM1coaZrddHmJ3XyMt5fXxTBUhjjBP4OnArsAx4nzFm2fS26nX5LnDLhGN/DjxjWdZC4JnE7ZkmAnzKsqylwGbgo4n3aab3LQhcb1nWamANcIsxZjPwJeBfEv3qA35vGtv4enwCOJF0e7b0C+A6y7LWJO0BNdM/iwD/BjxuWdYSYDXx927G98uyrFOJ92oNsB4YBR5iFvTtjTbLrpHfRdfHmUbXyJlpNl4fYRZeIy/r9dGyrDfNH+BK4Imk2/cC9053u15nn+YBR5NunwLKE1+XE98Qetrb+Tr7+DBw42zqG5AJHAA2Ad2AK3E85TM6U/4AcxL/6VwPPAaY2dCvRNsbgKIJx2b0ZxHIAc6RKKQ2W/o1RT9vAl6YjX17g75fs+oaqevj9LfvdfRL18gZ8Gc2Xh8T7Z7118jXe318U41AApVAU9Lt5sSx2aTUsqw2gMTfJdPcntfFGDMPWAvsZhb0LTGF5RDQCTwF1AP9lmVFEqfM1M/kvwJ/BsQStwuZHf0CsIAnjTH7jTEfThyb6Z/FGqAL+E5iStV/GmP8zPx+TfRe4P7E17Otb2+E2X6NnFWfgdl2fQRdI6ejYa/TbLw+wpvjGvm6ro9vtgBppjimfUx+QxljsoCfAZ+0LGtwuttzOViWFbXiUwfmABuBpVOd9utt1etjjHkr0GlZ1v7kw1OcOqP6leRqy7LWEZ/W91FjzJbpbtBl4ALWAd+wLGstMMIMm4rzahLrie4AfjLdbZlBZtO/21ltNl4fQdfIX1OTLqfZeH2EWX6NvBzXxzdbgGwGqpJuzwFap6ktb5QOY0w5QOLvzmluz2tijHETvzj+wLKsBxOHZ0XfACzL6ge2E1/DkmeMcSXumomfyauBO4wxDcADxKfo/Cszv18AWJbVmvi7k/hagY3M/M9iM9BsWdbuxO2fEr9YzvR+JbsVOGBZVkfi9mzq2xtltl8jZ8VnYLZfH0HXyJlill4fYfZfI1/39fHNFiD3AgsTla88xIdvH5nmNl1ujwAfSnz9IeLrI2YUY4wB/gs4YVnWPyfdNaP7ZowpNsbkJb7OAG4gvij7WeCdidNmXL8sy7rXsqw5lmXNI/5v6leWZX2AGd4vAGOM3xiTPf418TUDR5nhn0XLstqBJmPM4sShtwDHmeH9muB9XJieA7Orb2+U2X6NnPGfgdl6fQRdI5lh/Zqt10d4U1wjX/f10SQWTL5pGGNuI/6bHyfwbcuyvjDNTXrNjDH3A9uAIqAD+Dzwc+DHQDXQCLzLsqze6Wrja2GMuQbYCRzhwnqBvyC+zmPG9s0Yswr4HvHPngP4sWVZf2uMqSH+W8kC4CDwW5ZlBaevpa+dMWYb8GnLst46G/qV6MNDiZsu4IeWZX3BGFPIDP4sAhhj1gD/CXiAs8DvkPhcMoP7BWCMySS+lq/GsqyBxLEZ/579OsyWa6SujzOyb7pGzqB+zebrI8zea+Tluj6+6QKkiIiIiIiIvDZvtimsIiIiIiIi8hopQIqIiIiIiEhaFCBFREREREQkLQqQIiIiIiIikhYFSBEREREREUmLAqSIiIiIzBjGmDuNMZYxZsl0twXAGPMRY8w9090OkV8XbeMhIiIiIjOGMebHQDnwjGVZfz3NzRF509EIpIiIiIjMCMaYLOBq4PeA9yaObTPG7DDG/NgYc9oY80VjzAeMMXuMMUeMMQsS533XGPMNY8yzxpizxpitxphvG2NOGGO+m/Qa70s87qgx5ktJx4eNMV8wxrxsjNlljClNHP9rY8ynE1//vjFmb+KcnyU2bheZVRQgRURERGSmeAfwuGVZp4FeY8y6xPHVwCeAlcAHgUWWZW0E/hP4eNLj84HrgT8BHgX+BVgOrDTGrDHGVABfSpyzBrjCGPOOxGP9wC7LslYDzwG/P0X7HrQs64rEOSeIB12RWUUBUkRERERmivcBDyS+fiBxG2CvZVltlmUFgXrgycTxI8C8pMc/asXXbx0BOizLOmJZVgw4ljjvCmC7ZVldlmVFgB8AWxKPDQGPJb7eP+F5x60wxuw0xhwBPkA8nIrMKq7pboCIiIiIyKsxxhQSHxlcYYyxACdgAf8LBJNOjSXdjpH6825winOSz4u8QhPC1oXiIVGm/jn6u8A7LMt62Rjz28C2V+yUyAykEUgRERERmQneCXzfsqy5lmXNsyyrCjgHXHMZX2M3sNUYU2SMcRIf4dxxCY/PBtqMMW7iI5Ais44CpIiIiIjMBO8DHppw7GfA+y/XC1iW1QbcCzwLvAwcsCzr4Ut4ir8iHkKfAk5ernaJ/CbRNh4iIiIiIiKSFo1AioiIiIiISFoUIEVERERERCQtCpAiIiIiIiKSFgVIERERERERSYsCpIiIiIj8/+3XgQAAAACAIH/rFQYoiwAWgQQAAGARSAAAAJYAGmAoqk6qDVYAAAAASUVORK5CYII=\n", "text/plain": [ - "
    " + "
    " ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], @@ -2032,39 +2030,82 @@ "import pandas as pd\n", "import ptitprince as pt\n", "%matplotlib inline\n", - "df = pd.read_csv('https://vincentarelbundock.github.io/Rdatasets/csv/datasets/iris.csv')\n", "\n", - "ax = pt.RainCloud(x = 'Species', y = 'Sepal.Length', \n", - " data = df, \n", + "fig = pyplot.figure(figsize=(15, 5));\n", + "axis1 = pyplot.subplot(1, 2, 1)\n", + "axis2 = pyplot.subplot(1, 2, 2)\n", + "\n", + "sns.boxplot(data=ammonia, ax = axis1, orient='h')\n", + "axis1.set_xlim(0, 70)\n", + "axis1.grid(True)\n", + "\n", + "pt.RainCloud(y = 'Ammonia', \n", + " ax=axis2,\n", + " data = ammonia, \n", " width_viol = .8,\n", " width_box = .4,\n", " figsize = (12, 8), orient = 'h',\n", - " move = .0)" + " move = .0)\n", + "axis2.set_xlim(0, 70)\n", + "axis2.grid(True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "##### TO DO\n", - "\n", - "* MUST COVER: time-series of stability data from which a database was built on\n", - "\n", - "* PCA loadings are orthogonal. Plot a scatter plot, and see the correlation is zero\n", - "\n", - "* Bubble plots from this notebook: https://nbviewer.jupyter.org/github/engineersCode/EngComp2_takeoff/blob/master/notebooks_en/2_Seeing_Stats.ipynb\n", - "\n", - "* regression: https://towardsdatascience.com/simple-and-multiple-linear-regression-in-python-c928425168f9\n", + "But where a raincloud plot really works well is with comparison of multiple variables. Let's go back to an [earlier worksheet case study](https://yint.org/pybasic09#%E2%9E%9C-Challenge-yourself:-box-plots-for-thickness-of-plastic-sheets), where we compared the thickness of plastic film.\n", "\n", - "* MUST COVER: qq-plot in Pandas\n", + "The thickness was measured at the 4 corners." + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvUAAAHVCAYAAABxBgQmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xd4XNd54P/vuXf6DHoHCIC99yKSogpty7ZsKbZlO3GqktgbJ7v7OPEmu3E2iRyvnR6nrLNZO07y2yeKHac4lizJliVbMimSkswu9k6CIHoZDKaXe8/vjxmMABIEAXBIYMD3g2eeO5i5c++ZM+29577nHKW1RgghhBBCCFG8jJkugBBCCCGEEOL2SFAvhBBCCCFEkZOgXgghhBBCiCInQb0QQgghhBBFToJ6IYQQQgghipwE9UIIIYQQQhQ5CeqFEEIIIYQochLUCyGEEEIIUeQkqBdCCCGEEKLIOWa6AMWourpaz58/f8b2H41G8fv9M7b/uUbqs7CkPgtL6rOwpD4LS+qz8KROC6vY6/PQoUP9WuuayawrQf00zJ8/n4MHD87Y/nft2sXOnTtnbP9zjdRnYUl9FpbUZ2FJfRaW1GfhSZ0WVrHXp1KqbbLrSvqNEEIIIYQQRU6CeiGEEEIIIYqcBPVCCCGEEEIUOQnqhRBCCCGEKHIS1AshhBBCCFHkJKgXQgghhBCiyElQL4QQQgghRJGToF4IIYQQQogiJ0G9EEIIIYQQRU6CeiGEEEIIIYqcY6YLIIQQxUJrTTKZJJlMEo/HUUrhdDpxuVy4XC4cDgeGIW0lQggh7j4J6oUQIseyLDo7O+nu7qa7u5v2zg46ujoZ6OsnEYuTTqUwTBOHy4npcgJgZzJYGQs7Y2FZGZwuF4HSUsrKyqioqKCmsorqqipqa2vzF5/PN8PPVAghxFwjQb0Q4p4ViUS4cOECp8+c4eSZ07RfacPp9+IsC2D73Si/B0dzOe6VjXjdTpTDRE3QEq+1Rqcz2PEkw/EkQ/EkF/qvoNrPoeIprHCcRCiM6XBQWV1FQ3098xqbaGxooL6+nrq6OkpLS1FK3cVaEEIIMRdIUC+EuGfYts2FCxc4fOQw+w8dor+3F19tFboigGNeGZXrH8RwO6e9faUUyuXEcDlxlAXGXSegNXYiRSoS42I4zvnLJzFOHsGOxEmGwmjLpqK6ktqaOhobGqgsL+fIkSNUV1dTXV2N1+uddvmEEELMXRLUCyHmtHg8ztGjR3nzwH6OHz+O6XFjNlTiWNlE9cOrJmx5vxOUUpheN6bXjaumYsx9AcBOpbEica6FY7T1XmaHczEv/uvXyETiJIYjmA4H5ZUVVFdXU19bS31tXT7gr6mpkZZ+IYS4R0lQL4SYc6LRKIcPH2bP6/s4e+YM3roqaKig9L1bMP2zu6XbcDkxKp04K0uz/6c9+B5eB0CJ1tjJNHY0Tmc0TnuwA9V5CRVPY8cSJIcj2JZFZXU19fX1NOdSe5qammhpacHj8czkUxNCCHEHSVAvhJgTwuEwBw8eZM8br3Px/Hm8DdWoxioqP3h7KTWziVIK0+PC9LhwVpXdcH++pT8c4+pwjMvtZzHOHsMORYkNhigtL6OltZWlixaxcMFCli5dKuk8QggxR0hQL4QoWqFQiIMHD/La6/u4cukS3sYajKYqKp94CMN5b369GS4nRlXZDUG/37bJDEdpGwxz6eQh1L7XiPUOUltfx5rVq1m9chXLli0jEBi/L4AQQojZ7d781RNCFCWtNZ2dnRw8dIg3D/yIzmudeJtqMOZVU7nu3g3kJ0MZBs7yEpzlJfnbfJZFsj/E610XeePEUWI9gzQ1N7Fty1Y2b9pEY2Oj5OcLIUSRkF9AIcSslkgkOHfuHIeOHOHAwQMkUklcTTWYrVVUbV2MMs2ZLmLRUqaJq64SV10lkA3yh7sHefHom3z7hefxejxs2bSZ+7dvZ/HixTKxlhBCzGIS1AshZpWRIP7EyZO8deIYXdc68dVUomtLcW9bTnlFibQe3yHKNPE01UBTDb7Ny8gEw7x57RJ7v/QjTFuzY/v9PLBjBwsWLJDXQAghZhkJ6oUQM0JrzfDwMG1tbVy5coVzFy9w5coVQsEh/LWV6OpSnItqqd62FOWQ1vi7TSmFs7IUZ2Upes1CMkMRXm87z+4v7sNtOnjogQd48IEHaWpqmumiCiGEQIJ6IcQdkk6nCYVCDA0NEQqFGBwcpKu7m47uLnp7ewj2D6IVeKvKocyHKg/g3LqMmjL/XR87XkxMKYWzogRnRQl63SLSg8PsunCCl195hfLycnY++BAP7NhBZWXlTBdVCCHuWRLUCyEmzbIsQqEQwWCQwcFBhoaGGBoaYmAoyFBoiFBomJVLl/GLn/g46WQKl9+H0+fB8LrA7cL2uTBLfDga5lMRWDlnhpq8lyilcFWV4aoqw7d+CameQb576HW+9cy3mNfczEM7HuC+++6jvLx8posqhBD3FAnqhRBj2LZNX18fnZ2ddHV1cfVaO+0dHfT19BKLRnB6PLj8XgyfB+1xYrtMDI8LI+DGqKoCv4fyx+9HuZ2Sdz3HKUPhbqjC3VCFb/NSgp39fGvvK3z9X75B07x5PLTjAbbedx8VFRW33pgQQojbIkG9EPe4cDjMhQsXOHf+PKfOnqHt8hUMlwNXWQkEPBDw4Ggpx7u6iYDPfcvUGJU2MJyuu1R6MVso08TTXAfNdfis5YQ6B3h236t841//heqaGjZv2MjGDRtYvHgxpoxYJIQQBSdBvRD3mFQqxdmzZzl05DCHjxwhNDSEt6YSXeHHUVdG+artmF73TBdTFLFsgF8LzbX47BUk+4bYfekkP3xjL+lIjBUrV7Ju9RqWLFlCS0sLDof8FAkhxO2Sb1Ih7gHBYJD9+/fzo0MHuXj+PJ7KMqgrx7VxEVWVpShD0mTEnaEMA3ddJe7cWPhWLMHlrn4uvbEL6zvPkRyO0DhvHiuXLWfRwoU0NjbS0NCAx+OZ4ZILIURxkaBeiDmqv7+f/fv389rr++jq7MQ7rxajsYrKDz4oHVTFjDF9HnyL5sGi7P92KkNkIMS+zgu8cfY4VjhGPDiM1+ejrqGepoYGaqprqKyooLy8nIrcMhAISAu/EEKMIt+IQswhwWCQ1994nd1799Db04unuRZzfg1V25agTBkmUsw+hsuR72w7IqA1VjROcDhKX7gXffYaRjIDiRRWPEk6GieVSGKYBh6vF4/Xi8/nw+v14vV48Hi9+L1e/F4fPp8Pj8eTvc/rJZFIcPHiRUpKSggEAni9XunQLYSYEySoF6LIhcNh9u/fzw9f28219nY8zXU4FtVSuWO5jPcuipJSCkfAhyPg42a9O7TW6IyFTmewU2liqQyRdCZ32zB6aBDdb0HaQlk2yrIhY7F95Tqe+d53yCRSpOMJbNvC4/Ph9/spr6igprqa+ppaqqurqayspK6ujpqaGgz5LAkhZjkJ6oUoQtFolIMHD7J7314unj+Pt6kWs7mGyi0PoWRkEXEPUEqhnA5wOjB9k8+/N9JeAu/dkv9fWxZ2Mo2dSNEfT9IbDXL8fBfGiTTEUqSGo6TicSqrq2lsbGR+cwstzc0sXLiQ2tpaaeUXQswaEtQLUSRisRgHDx7ktX17OX/2HN7Gaox51VQ+8RCGUz7KQkyHMk1Mn4np8zBeTxMfYKczWOEYbaEoly6dwHjrAMmBEDqdobm1hWWLl7Jk8WKWLVtGWVnZ3X4KQggBSFAvxKzW3d3N4cOHeePAj2i7fAVfQw1qJJB3ycdXiLvBcDowKktxVpbmb/MBVjzJwOAwr7WfYc+xQ8R7BigtL2f1ypWsWbWaFStWyMRbQoi7RqICIWaRaDTK2bNnOXbiBAcPHyIajeBuqsVsrKRqw8PSIi/ELGJ63ZhNNdBUA4DP1mSCwxzu6eLoC+eJ/f3fUV5Rwab1G9i4YQPLli3D6ZSRp4QQd4ZECELMEK01AwMDXL58meMnT3D85EkGevvw1VWhqwK4Ni2moqpUcnaFKBLKUDirynBWZVNwvLYmPRBiX8d59h05QCI4zOKlS9m2eQubNm2isrJyhksshJhLJKgX4g7TWhOJROjt7aWjo4NLly9z4fIlOtrbwTBwV5WhK0twrW6mumq1DD0pxByhDIWrphxXTTkAvmSKrs5+/mPPD/j6v3yD6upqtt23lS2bN9PS0iIH8EKI2yJBvRC3IZVKEYvFGB4eZmhoiKGhIUKhEIPBIF29PfT09BDsH0Cj8ZSVYJT4sEu9OJtLKVu7HdN7swH7hBBzjeF24V3QCAsa8dk2id4gPzh9hBd/8H2chsF9W7awfes2li1bJkNoCiGmTIJ6MSdorclkMqTTadLpdP56JpO54TJyu2VZZDIZwuEw3//+9/OPTaVSpNJp4skEiUSCeCK7TCaTJJIJErE4iXicZCKBtjVOjxunz5MN0N0utNuBdjsx/R7Mta1UlCxHuZzSCieEyFOGgbu+Cnd9FXrjEjJDEfZfu8KbXzmEFUuwceMm7t+2jdWrV0sevhBiUiSoFzNGa00sFiMSiRAOh4nFYsRiMaLRaP72SCxKLB4nFo8Tj8dJJBKkkslc8J0mk06RSWewMhkMw8BwODAcBoZpYpgmyjRQRu5iGpC7jqFQhoE2FNtXrOGNI2+gDYVWCm0q1MhjHSbKbaL8TpTDg3JUYricBJwOSl1OMA0J1oUQt0UphbOiBGdFCaxZRCYc43h7L8e+9o8kgyFWr1nDjm3bWb9+PV6vd6aLK4SYpSSoFwVl2zahUIhgMEgwGCQUCjE0NMRgMMhgKMjQUCgbwEejJGJxTIcDl9eD6XFlh2h0OsBpYjtMtMPEcJoopwNV4kBVBDCc5SiHicNh4hwJuk3ztoJrI+3Bt2V5gWtCCCGmx1Hiw7FyPqycjzee5OK1Xi58+5t85at/y6IlS9ixdRsbN26U4TKFEGNIUC+mJBqN0tfXR39/P/39/fT09tLd20PfQD/DwRDRSASXx43T78P0ucHtxHY5UB4nhseNMb8Sw1NPidtJmdslnUKFEGICpteNb0kzLGnGm8rQ3dHHv+96mae//jVq6+q4f+s2tmzeTFNTk5w1FOIeJ0G9uEEsFqOrq4uOjg66urpo7+qku6ebwb5+MukMnrISTL8H7XWhfS5MnxezphGffyEBj1sCdSGEuAMMlwPvggZY0IDPWkG8d5CXju/n+e99F5fpYOOGDWzeuImVK1fi8XhmurhCiLtMgvp7WCwW49q1a7S3t3P5yhWutF+lp7ubRDyOr6IMo9SH7XNjlHhxLG+kdMtiDI9LWoOEEGKGKdPA3VCNu6Ea3yZNZijCoc4ODn/jFLG+IAsWLWTLxk2sWb2a5uZmGU1HiHuABPX3AK01vb29tLW1cenyZc5fukjHtWtEIxF8leWoMh+6xIezuRTfqkZK/B4J3IUQokiM6Wi7CrypDH3d/bxwcB/PfvcF7GSKZctXsHHdOlauXEljY6N8xwsxB0lQP4d1dnbyN1/5Mh3XrmE4nbgrS7HLfJgVAdwL1+AL+FCGfLELIcRcYrgceFvqoaUeACsa50r3IFf2vsK//Mc3sdMZFixawKrlK1m2dCmLFi2SUXWEmAMkqJ/DOjs76YsNU/FjOzA8rpkujhBCiBlg+r34FjXBoiZ8gBVL0N0/ROfpw3x/32tE+wcpLS+npaWFpQsX0dLSQmtrK1VVVdKifx2tNbZtY1lWfqm1HnM/ZM+ejFwMw8gvTdPM3y5EoUlQP8eZLpcE9EIIIfJMn2dMS77PtsmEorQFw1w6fQjjR3tJDISw0xkqqquor6+nubGRxoZGampqqKiooLy8HJ/PN8PP5OYsyyIejxOLxcYsR+Y7icVixOIxorHsJZFIkEgmSSTiJJMpUqkUmXSadDqDlclNWJix0LadDcoNIxusGwquC9CVUtngXueCfK3RWqNtO7vUOv94Izd3imm+Pb/Kjm3b+dR/+zQOh4npcOAwHTgc2YvT6cTpdOB0OHE6nbhcLjwuNx6PB7fLhSt38Xg8+Yvbnb3f6/Xi8/nweCTFdq6SoF4IIYS4hynDeDsnP8cH2Kk0VjjG1XCMy9fOYZw7gY4myMQSpKJxtLZ59yOP8Jnf+W0CgQCBQIASf4DSkgABfwC3250PPLPBqBPTNPOddke3WNu2nW/5HrmMnuV7ZJlIJojF4sQTCWKJXJCeTJCIx0nEEyRzs3/bGQuH24XD5cJ0OTFcDlRuHhQcJto0sB0GyuHIzofiMVEBF8rhzc5/kpsLxZWbiBBz1MSFtxkQjwT62Bpta9B2dmlnA3/l9KC2LMHSmoxlk7Tt7AGBrcGy0ZaFttOQttGJ3P8ZG2XZKFujcuupjIXOWNiZDHY6g5VMk0mmsKwMLrcbj9fLx3/+F9iyZcttPR8xe0hQL4QQQogbGC4nRlUZzqqyce+30xmU5SW6pJZIKoOdiqKHhrB7MxgZKxdcZgNMbDsbkNp29sEjKSsjSzWq1Tu/zAbTmG/P9q1zkw4aDgfKZaJ8uUDcVZOdlNDpoMTpyAbms7Q1WqmR5wfjlVCljTEHWIWmbRudzhA9eoHu7u47th9x90lQL4QQQogpM5wOFAbuusqZLoqYAmUYKLcre+ZCzCnyis5hSinivYPw2rGZLsqsZq9eT+yE1FGhSH0WltRnYUl9FpbUZ+HdrTpNBYdR62bn2QwxPWp0r20xOZs3b9YHDx6csf3v2rWLnTt33nK9VCrFyZMnkdd4Yt3d3dTX1890MeYMqc/CkvosLKnPwpL6LLy7WadLliyhpOTOpfrMBpONmWYrpdQhrfXmyawrLfVzmMvlYsOGDTNdjFlv165dbNy4caaLMWdIfRaW1GdhSX0WltRn4UmdiumSeaOFEEIIIYQochLUCyGEEEIIUeQkqBdCCCGEEKLISVAvhBBCCCFEkZOOskKIaXn66adpa2u74fahoSH27NkzAyWaOSMTuNyJEStmY322trby5JNPznQxhBBCjCJBvRBiWtra2mhra6O1tXWmizLjksnkTBfhrhnvQE4IIcTMk6BeCDFtra2tPPXUU2NuK/YxgafjC1/4AsANdVEIs60+R56rEEKI2UVy6oUQQgghhChyEtQLIYQQQghR5CSoF0IIIYQQoshJUC+EEEIIIUSRk6BeCCGEEEKIIidBvRBCCCGEEEVOhrQUYpraI0GOD3awpaaVGm/JTBdnSo4PdhBMxri/biEOw7xj+/nu1RN0RIf40Pz11HgDBd32UDLGd9tP0ugrY2fj0kk9RmtNwsrgdTgBsGyb77afxNY2729ZjfMO1cX32k/RFh7gx1rX0ugvK8g2h5IxXuk8y4KSajZWN0/6cQf72uiMhYimU9R4AzzStLwg5RFCCDGzJKifw55++mkAnnzySf7t4iH2dF/gXU3L+dD8dTNcsuJna81fHn+FaCbF/r42PrfpsZku0qRdCPXxf07uBuBQ31UealjCppqWgu/n0nA/3247BoAGPrnigYJu/5uXj3CgLzsR0vySKuaXVE24vtaa/33ih5we6ubReSt5YsF6Xuk8wwtXjwPgc7h497wVBS0jwLVokGeuHAUgZVt8avXOgmz3ny8c4K3BDhSK31z3bp4+9yYxK81/XfkwrSWV4z7m8nA/f3dm35jb6r2lrK5sxNI2f3NyN2eGevjYwk083LgErTVKqYKUd7pODHZyZqiHnY1LqPYU9sCw2Ezm9bC1TTAZp8Ltw5jh167Yjf4NLXaWtnnm8lvEMkk+vGADAad7posk7gAJ6uewkZkftdb8sPMcNtnlTAf1ttbEMyn80/hSSVkZnr96HKcyeaxlNaYxcxlkIz+YBsX1w2lrO3/9TKiHM6Eefsv9HhaUVo9ZL2Gl+WHnOWo9JdMK+ivcPjymk4SVpsE39dbpvniYb10+SoO/jA+0rr3h/kq3HwCnYU7qByqWSXN6qBuA73ecoTVQxfNtx/P3l7m8kyrXC23H6YgN8cT89dROcIbmxGAn/3zhAI2+Mnymi5iVoslfftP1O6MhDvW3sb6qmeZAxYRl6E9E8tcdhsGrHWfoig8DcKDvyk2DetPIvlt17n8DRanLA8BgIsbJYBcA+3ouYhqKf75wkDKXh+21C3msdTWmuruft3Aqwf899RqWtrkSHuC/r3vkru5/OvriYQ4PtLOuch71vtKCbFNrzVfP7OXowDU+2LqOR5tX3nTdL5/aw7HBDjZWN/PLKx4syP5nu47oECk7w4KS6luvPAVzafbkw31X+X7HaQD8TjcfWbBhhksk7gQJ6u8BSikealjM3u6LPNSweEbLYmvNXx1/lbOhHt4zb8WUv1he7TzLy9eyX0xVHj876hfl77sSHqDE6aHK4y9omcdjKMWvr3mEk8FONlYXvpV7Ol7tOEtXLMTjrWsmDFCXltexubqFg/1X87eNd3D0zOW32NV1DoDf8rxnyj+YFW4fn9v0GIPJKItKa6b0WIBnr7zF4YF2GGhnZXkDi8vGbuND89exuLSGWm9gUi24fqeLzdWtHOxvw9I2L3ecImVbACwqqWJFeT0d0SHODvWwuaY1H+yOdmm4n+evvn0gMFHQ9ErHGQaSUQaSUT61aideh5OFE9Thl078kGAqxu6uC3xx24dvut43LhzMvy4AadviQO61dCiDzTWtN31sS6CSX1v9TvoSYdK2xfHBTi6E+mgJVOYPeABWVTTwes8lLG0zmIzxnfYTVLp9PHCXvz8choHLMIlbNr5cytRs979P/JC+RIQfXDvDww1LWFFRP633/2jRTIrD/e0A7Ou+MGFQfyp3YDaynOvOh3r582OvoNF8Ytn93Fc7f6aLNCvVeEswlMLWelqNLKI4SFB/j/ipxVv4qcVbZroYxDIpzoZ6ADg6cG3KQX2F2zfu9R92nuVfLh7CaZg8teF91BWohWwijf6yguVH366Lw33866VDQDbF4xeXbZ9w/XfPW8HxwU5sbH5i4SZaApX0xIcJJmMsL68HwJkL9BXgwOC5tmO8NXCNlGVNGFSMVuH2jXmdpqLJX8HB/qt4c639f3X8VeaXVOXPNBlKsbaqaUrb/OnFW7gS6ac/EaUtPEhroBKN5lJ4gN89+DyQzbk/3N8+bqtwmcuDqRSW1rcMMjfVtHJ6qIcmfxlLympxmzf/un2x/STBVAwAx6iUCcu2863qI0YH39d7oH7xLdOQVlTUs4J6/uLYK5wN9XB6qJtVlQ0MJN9u/W/0lVHvK+VqeJB07szOa93nxxxE3ykpK8MLV09gKMXjLav5zPr3cGm4f9YcPN+Kzr1i0UyK568e56Vrp/izrR/GcxsHJQGnm+21Czg6cI13NC6bcN2PLtzIvu6LPNywZNr7Kya98XC+znvi4Rkuzew1v6SK39v4GAkrfcvvCFG8JKifo86HemmPBPMdAmeLgNPNu5tW8NZAO481r57y47fWLqDc5cNlmGPSRa5Fh4Bsq2VvInxXgvrZpNTpwWmYpG2LykkE0fNLqvjz7R8BsukrvfEwXzj8Imnb4gOta3msZTUfnL+OOm8p1Z4AUSvFd66eyD/+2Stvcadr+P0tq1hRUUeFy8c/nnuT00PdnB7qZlN1yy3TU27G73TxuU2P8+nX/52MtumMhdheu4CrkSAJK40jl16S0Vb+Mba2CaUSVLh9BJMxLJ0NIMLpVH6dvkSERCbN5XA/C0qqCSZjGErx+5sfp8oTuGUe9NGBa/nrv7A0e0A2lIzxx0dfZmVE89bANdZVzQPgwwvW892rJ6j2BBhMRumIDrGmsokN1c1srJp8h9kGXxlnQz2UON0EHB7eO28l8Uwav8PFppoWDGWwqqKB33jzWwC0RYL5PhJ30mvdF3jp2ikge1D4cMOSompZ/NVV7+DwQDtH+ttpiwxiKKMg/RJ+4RYH6iPe0biUd0yy4/hcsLV2Pl2xYZJWmkeaJj7gudcVKh1MzF4S1M9Rz1x5i7iVIm6l6IkNz0iQG04lOBvqYVlZHSWjUhk+unADH104+Rb6rliIoWScFRXZFuRl5XU3rPN4yxqSVoZKt59VFY0Tbu9gXxungl28q2n5hDnOo1na5ulzb3I1EuSnF29hSVntpMt/N9R4S/idDY/Sn4jc8vmPGD3Sy1AqTjqXitKXy9d2GiYP5tIt+uIR3IaDpJ0BYE1lE22cLORTGNdIys+C0mpODXVT7vLmc+mny2mYvKNxKbu6zvNwwxLe0biUgWSUcpePbbXzORvqYXvdwvz6Xzqxi9ND3eyoW8RHFqyn2uNnIBFlbWW2ntsjQYLJKADfvnKMT695J39+7Af0JSLM85fz1Mb337JM729exX9cPsry8rr8+/tyeCDXeu/hrYGOfFC/vmoe63PXb8fHFm1iU3Uzdb5S/E4XkD2TMVrA6eFdjct4pfMsMDaX/06pcPnGvT6y/85oiFWVDXc9v3+y6nylvM+3ih11izjQd4WlZXUTnqURt8dhmFP6PblbBpNR0pZ1zzUwiZkl3zRz1JKyGo6TDWDKp5n+cLv+8virdMSGaPSV8XvTHB2mOxbi9w+/SEbbPDF/HY82rxp3vQq3j/+0fAeQza3/eq6D4pNLt4758Y+kE/zDmdex0XTEQvzP9e+dVDmuhAd4s/cKAC9dO3VHg/q0bfH0uTfpT0T52SX3TfrAo8FXNu0WzSq3n/tq5mMo+NA4nVJrvAF+b9NjBJNRarwllLm8fIGXydg2f3z0JRJWhl9e8UB+/12xENF0ksUFqqcPtK5lU3ULFW4fPofrtrf30YUb+ejCjfn/f3X1O/LXl446aEzbVj7d5chAO08u3crnNj1O0koTcGYPVKs8fhzKJKMtluTy/mOZbCt+dFRr/kTWVc3LB+0jVlTUs6qiAWd4mB2NhU+lSFkZSl3eW3YQ/olFm6j0+OmMDvF46xr+hlcLXpbRNtW08BuuRzCVGpOLHkkn+IMjLxLLpJkfqOLJpVsn/dm4G9rCg5wMdrK1dgFVHj+lLg/vkuFC54yUleFg/1Wa/RW3PFN4NTLInxx9GUvbfHLFA0WTOiaK3+xs6hC37Yn565kfqKI1UDVjrUShVDy3TEx7G8FknEwup7c/EZ3UY15qP8XVyCBv9l7mQqhvzH0uw5FVb2aTAAAgAElEQVQfKWUyaSoj6r2lVHv8KLKt1HfS6WA3+/vauBTu5/u5TsF3Qtq2eK3rPEf72/nDI99jf98V0rZ904PAKo+fxWW1Y4LAaCbJ5fAAXbEQr/dcArI5/Z8//F3+7NgP2N15fkpl2t97hS+feo2zQz3EM2nawoPYuXSXJn95QQL6qRiTNJErR3a0nbfPPPkcruyQmoEqHmtZA8DPLr6PZWV1/Mxt9GPxmE5+dfU7aPCV0RIYfzSb6Ypn0nz+8Hf5vUMvjBkB6GYeaVrOk0u35c+S9CciPHXgOfZ2XyxouUYsLau9oXNpLJMmlkkDcCUywF8ceyX/3ii0r5/fz2d+9Ez+PX0radviL46/wrfbjvGV03vuSJmKxes9l/jL46+MSSmbC/75wgH+35Fd/M7nPktb78SdkDuiQ6QiMaLPvs7ZzqsTrjsZwWCQz3/+8wwNDRVsO4Xapphd7kpQr5SqUkodzV26lVIdo/6f0q+0UmqvUuqsUuotpdR+pdTaUfe9pJSacBag3OPXj3P7RqXUo1Mpy2znMh03Haf4O1eP839O7qIjeuc+0P955YM8VL+Y/7Jy+sOqraio54n563iwfjEfaF0zqcesqmxAkW29b7quI6vLdPDbGx7lP698iI8vu39S29Na85XTe+hPRHmwfvEd74DWHKigxOlBofIpR3fCt68c4+sXDvDl03uIZpIABJOxKW3D53BR6vTgNh2syx3sWLadD7Z6E5PvuJayMvy/s29wdOAaT59/kz88+j3+8Oj3+PqF/VMqUyE5DJP5uYB6pAPxeAylcI06eP73y4c5G+rhPy4fueNlnI7B3Kg8kO1/MxW21gwmo/QmIrwwiQOCQqn1lvDkkq35A7s7E85nGyNe677AUCrOy+2nxl2nOzY8JhVJAUbuq/ZeHhve1jb/dP5HnBnq4evnZ+5zeyfErTSpQ+fJdA7wwrefm3DdTdUtVJ7qweoeJLT/9htmnnnmGc6ePcu3vvWtgm2nUNsUs8tdacLVWg8A6wGUUp8DIlrrL97GJj+mtT6qlPol4E+A9+X2M7lcivFtBFYD37uNbRSF9kiQ53I/xlprPjUq9WAqhlMJ0rZ10yEkF5fVFiT94mYpNzfzQP1i1lY24TGdYwKtEVMdkSVupTmXC3xOTTDySKFUuH38/pYfI2llJj12+mg9sWFeuHqcBSXVvHOCjmPWqM6gH2xdS38yOuXZRZ2Gyee2fgit3x4W0+tw8ljzakLpOO+b4LVrjwQ5H+plS00rJS4PDsOk1ltCd3yYWk8pp4ayrWFXwgNTKlOh/cbaR+iJh8cd6SiaTnF8sIO0bY3pozDSP2FkyMzZpslfzqPzVnJxuJ8npjhvhaEUPkf2bNf1KUN32o76RSwtq2N/3xVSVoZTwS5WV06uD8lklTg9rCiv5/RQN1vGGR7xaH87Xzm9B0MZ/I+1j7CgtBqHYfIbax/hdLB7wiFF5zpDGbQGKrkcHphzI6w8Vr2EfWf/HoAD+95g6Mc/Rnn5+Olf0eEw3W+dAQ1v7t3HT370x2+67q0Eg0F2796N1prXXnuND3/4w9Pa1ujt7N69G1vr/PXpblPMPjOeU6+U+k1gZLq2v9Va/7VSajHwbeAw2YOB08DPa63j1z38DeBTo7Z1DVittR5SSv0v4GNAOzAIvKG1/qvcqj+plPoqUAb8InAE+CzgVUrtBH5fa/3Nwj/bu+v06WwLwU//9E/fdJ03gDf4u7tUotnrq1/96qTWCwM/zb/c2cIU0N9Pcr1/4gUAXpzGPgxlcP38Wx+Yf2Ne/mgJK80Xj32fhJXh6MA1fn3tuzCU4jPr38O1SJAFpdXs6brA8cEO3tcydpQkS9sYqLs206nLdIybQ5uyMjx18DmimRSJ8CCLRo3G9Gur38mR/nY234GZegvliQU3nLCclJHvFb78As8DzxeuSHfNZD/vX+cFvj7B/b/DjS22/2+aZSpm49XnPmAff3v3C3OH/OCFFzEAG7Btm29961t8/OMfH3fdZ555Bp07W3mrdW+lUNsavZ1MJpO/nrat2yqfmF1mNKhXSt0H/AxwH2AC+5VSu4EYsBL4hNb6TaXU08AvA3913SYeBZ4dZ7vbgMeBdYAbOEo2fs2vorW+Tyn1AeCzWutHlVKfJ3tA8OmblPWTwCcB6urq2LVr1zSf9e2LRCIzun8hRnv25RcpdXryaQeTeX9qNJujTrR24I7E2DU4dv1OsrmB6zDoHDjFhcxRElYGl2kymIjhMAxKnG58DteYjtC21qTsDG7TWfB5fm2tx6RWxK006+MG4OFHGQiFQmOedylw7sog527Y0tQU+vOesW0MQxXdTMhCzJRdu3axe/duMpns6F+ZTIbdu3ezcOHCcdefyrrjGf2Zv91tjVcmPbovimVPe5vF4l6KmWa6pf5B4D+01jEApdSzwAPAy8BlrfWbufW+RjagHgnq/1Up5SfbPriRGz0APKu1TgJJpdQL190/kkR2CJg/mYJqrb8KfBVg8+bNeufOnZN52B2xa9cuJrP/PXuyHbaeeuqp295nNJ3iSqSfRaU1eEwnKSvD1y7sJ5pO8bNL7pv2BEO3Es+k+Kvjr9KXiPL+llX8+6XDAHx4/nreO8kJkG5lsvVZSEkrwzcvHcZG8+MLNt7WxDTXs7XmXKiHWm/JmOEfh1OJ/BB70x3nfbTf/dzv0RYZ4EVvkK218/N9FCZbnxeH+zgd7GZH/aIJ3z+DiSi/feA5NJoyp4eQe6TjdZRqT4A/2PIBINuC/9mDz9OfiLK2son/uurh/DbCqQR/cfwVhlIxfmX5gwRc2ZmHPeat6z1pZfijoy/RFQvx4ws35lOUhlNxfv/IiwynErj9Xso9gSm9j3riw1yLDLG2qmlM6s71xqtPy7YxDYNnLh/lpWun2FLTyidyoz9N5Hvtp3jmylFKnR5+b9P7x3T4naxbfa8c7m/n5VyZJhr95c/e+j4XhvtQwB9s+SC/e+A5bDQlTs+EM+pC9jX52vkfsb+vDYDHWlbzgXFGbRrPdD7vI5PbAfzkok03TAD1mR89w1BuYIC/vv8nxk37K7SUleFcqJfWQOWYIYPvtpn4/rxbvvCFLwCwc+dOLl26xK5du8hkMjgcDh5++OGbPu+prDue0XV6u9sar0xKqXxgb5rmtLdZLObye/R6Mz36zURNRdf3gxr9/8eAhcC/A389xe0CJHNLi5k/sCkKXzz2fb50Yhd/c3I3kE1J+Piy+/nU6p13LKAH8Dpc/M8Nj/IX2z9CnfftPtBxK33H9nk37Ou+yGvdF9ibWxaSoRTLy+tvGM/9787s5d8uHeaLx35AysoUZD8jHzWvOfVRaRaV1vB465pbvn9cpiM/gtO8QDlVbn9+kqhE5u33Qdq2GMx19O29bmbJc6FeOmMhYpk037h0iM8f/i5/cOR7+dz3ifTGw3TFQgAcG+jI317q8vJHWz7EX23/cao9gUk847dF00n+6MhLfPXMXv7p/I+m8LgUnzv4Ar/6+r9xpL+d13suoYH9fW1kJvFcLgxn+4YMpxP5+Qiu1xsP8+yVt24YOWqy/v3SIS6HB/i3S4cnfJ/V5OoskDvjsjCXvrT4ulFvxuM2HTzYsCT/RX/9ePaF9mD9Yh5rXs1jzat5sH7xDffvqF+EgeK+mta7EtADfPXMXv765C7+6OhLWLkRwsSd88QTT+RT/gzD4MMfvvmB51TWLeR+J7sdh8OBw5F9n5qmeVvlE7PLTAe0rwF/q5T6M7LpNx8kG7ADLFBKbdFaHwB+Ctg7+oFa65RS6reBS0qppVrr0We59wJfUkr9KeAC3g/8n1uUJQxMOHLOvcrWOh8AXB8s3U1rKpv4mcX3EU7HeXfTihkrh2VnR3joiYf5mSVbmOev4HK4n9PBbrbVLZjU5EgNvjIUCtA03KXJSTJ29off1jZ27hi5OxbC73BPq6XPaZi0BCr4saXb72jueMDp5rc3vJf2SJB1VfNwGiZXI4Ps720bs1+P6eQTy+7n6MA13nldS+qy8jqa/RUMpeL5FqreeJhwOnHL16vJX84D9Yu4NNyf7/gbTad49spRfE7XpFuIR0taGRK5gHd4CkO+tkUG6IoPA3Cgr41H5i3ne1dPUe3x89cnd/HRBRsnPAvzwdZ1pCyLlkAF8wPjd2T86um9tEeDvNpxli9u+/CUg9SlZbW82XuFBSVVE56B+LklW9lc00qTvxyvw8mn17yTvnh2NuhwKkFbZJClZbU33f/Sslo+s/49JDKZOzZK1LNX3mJv90Xe2bhswn4iH2hdy4+1rCloP48DfW189+oJNlQ1j7vv/nj2OzmYipG2LUxzptvo5raKigoefvhhXnnlFR566KEJO5ZOZd1C7ney23n44exZzEKUT8wuMxrUa633K6W+ARzI3fRlrfXxXEfZk8AvKaX+AThDLvXlusfHlFJ/CfwG2Zz7kdvfUEp9DzgGXMltP3SL4rwK/A+l1BHgD+ZCR9lCMZTil5bv4EBf27itVHfTQw0zu3+As6Ee3ui9DGTHxP+5JVv5y+OvkrQyHBvs4LcmMaHViop6Prvx/Wj0pCbQ6U9EuBweYG1l07TnHfilFTt4vfsSKyrq8ZhOdnee558vHsDncPK7G95/01GMJuIxnWyrWzCt8kxFnbeUOu/bBz8tgcpxx27fXNOaH30knknx58deoTce5pdW7OB3N74PyLbaP992jJUVDZM6ADOU4ueWbB1z20vXTuXPsMzzjw2iz4V66Y4Ns71uwU2D2kqPn08sv5/zod4pHaAuLq1hRXk93fFhHm5YwrLyOpaW1fLHR18G4Lm2Y2PSjq7XHKjg19e+a8J9jLy/nIY5pg/B1cggXzm1h97IIPN8N3/P/vzS7byveXV2XocJglzTMMaMXOM0TBr95Vja5o+OvsRAMsq6yia21LRyeqibR5qW03jdZ2VkxuGpiqSTvHTtFPXeUnbULxp3Ha01L7Wfwkbz0rVTvL9l4lG4Ct1x+7krb9GbiNAZC/GupuX5WX9H/PyybbzacY71VfMmlUYmbt8TTzzBtWvXJtWyPZV1J3Ko7ypXl5RRc7H5trc1ukxa64KUT8wudz2o11p/7rr//xT403FWtbTWnxzn8Q9c9/+fjLo+eny1P9FaP5XLvd8L/NH1j9dadwOLc9f7gM1TfT73ivFmvLxXNfnLKXV6CKcT+bHLVS4RwFAGlm2jVG5UmAmMN0TieFJWhj8++hLhdPKGXPGpqHT7eXzUWP+Xwv1AdlKf7nhoWkH9bHY5PEB7NAjAmz2X85OGLS2r5TfWPnJb2x5JBTNQVI+qt+5YiL889kp2xuJokJ+aYPKpLTWtbJni8Icu08Gn17xzzG01ngClTg/D6cSYEXgm4/rOvwC/suJBDg+0g4bvtp9kZ8NSSl0e3ui5zEAyStJK5+c1GI+hFPW3cfYpbVv5+RK6YsP8w9k30Gi6YsN8Zv17pr1drXU+8P7W5SPsy00sZaB4vfcSrYFKPrJgQ34dpRRba+fzRu9lto0ztOWdtrqyiVc7z7K4tAbvOH1uFpRU84nl0zuoEdNTUVHBZz/72YKvO5H/uHyEAZLw6Fo8Jbf3HX19mQpRPjG7zHT6zZ30D0qpZYAH+P+01sdmukBzRW88zPlQL+uq5uVnZ72XlLm8fGHLjxHPpPP54P997SOcGeqm2hPgv73xTTwOJ7+57t1TzrUeT9q2iWZSAPTHw3zn6nE2VbdQ75vcQcHNvL9lFZF0gmpPCSsmmFjpVs6FejnQe4WttQtYXHbrfOjJ6ouH+eKxH5CwMvzKigennGKxsKSaRaU19MSGb9oaC9mDps5YiGZ/RX6s/VvZUb+Iel8pXtNJo7+clJUhaWdIWhk0I0PF3Z0854DTw//a/DjDqfiU3hN7uy/w9QsHWFRSw6fXvANH7qxCicvDyvIGnjr4fDaYjob45ZUPsqFqHru7zgGKO/nMPKaTTyzPplE9UL+Ivz/zei5Nanp589F0Mtvyn4jyeOtq/IA/971lKMW+noucH+7jXKiXLTXzaS15+wzQLyzbzs8t2Trp90UhfWzRJh5tXkmJ031PT2h1r1tRUc/e7ossKq3GbczlkE0Uwqx8h2itL5CbrOo2tvGxW68lpipjW/zpWy8TTidZ2nv5tls8i5XHdI455d0cqKA5UME3Lx3OBnepDGeHeqiuv/2g3u908SsrHuRksIuDfW0813acN3ou8/u5UV+mqisW4vm24ywsrb7lxGNXI4OUOj2UTxBQffnUa8QyKY4MtPPFbR+ZVpnG87UL+/Mjirx49cSUg/qRA6uJHO5v518vHmQoFWddZRP/ZQpnQRaV1nBxuI/dXedpiwyi0ezpvsgvLt1OW2SQUCrOb/3oWX584UY21bSgtebvz+zj+GAnTyxYd8MIKlORsS32dl+kzOVlQ3UzPocrP9PqZL3Rcxlba84P99IbD49JbXEYBqZSZLTO57SXu31YWgOa4dT1U4YU1ug0qt/e8F6uRoKsqmiY1rYuhfvzfYKebzvOx2jkQ/PX0RePEMukaA5UcH64j3KXd8xZlxEzEdCPmM7kc6IwElaaWCY146lNP7v4Pt7XvIoKl++uzc0hitesDOrF7GVrne/gF8u1Hou33V+3kBODnXgdLtZVNRVsuyPpT28NXAMYMzb7VP3bpcOcCnZxqP8qqyoaaLhJ6+4rHWf4t0uH8ZhOntr4vjFnHbTWdMZCRNJJ6lU217jQAcg8fzlnhnoA2HgHOuJeCQ/wt6f35P9viwxO6fHtkSB/9tYP0Lk/gIFElOODHfmDEYCXO06zqaaF4XSCg/1XAdjddeG2gvoX20/xwtXsrNC/vuZdLCuvm/I2djYupTs2zOKyGupy6TJ7ui5wZqibR5tX8T/WvZurkexwpQCVbh8LS6o5QXbW1bul0u2fVN+Hm1lSWovXdBK30vgcLpSVfe2PDLQD2YPmz296nFKXd9w0l+tdjQzypRO7cJsm/23Nu244G9cXD/P3Z/bhNp18csUDt302M55J8X9PvUYoFec/Ld8xbl8SUXhfOrGLa9Eg7hkO6pVSBTnjK+4NEtSLKXGZDj61aifHBzt5oH7uTlYxXY3+cj63+fE7tv1fX/Mujgc7WX8b/RsafKWcCnYRcLgnDM6u5oLchJWmLx4Z88MSzSSJpLOjtrhMk19atIPl0wgsJ/KRBRtZXl5Pldt/QwfJQjCVkRt/KBuw/tSim+e/jydupfPBvM/hwmU42FG/iL87kx2oy+9wEcuk8nnzJU4PG6uaOTbYwYMTpANNzvUj/k7d9Tn9wWSMr13Yn72eivGb697D/JK3R8hxGCa/ue7dfP65N4sqHcTjcPKH932QY4MdLC6t4cSbB6l0+/E5nMQyaeb5K/IHNZNxuL+dcDpBOA0nB7t4uHHJmPv3dl/kSu6zc7i//bY7958MdnEulB2KdE/XBX5myX23tT0xOd2x7ChThRj+V4i7RYL6Oay1dWqd8CZrWXndtFoGxe2r85VOKQAZz0cXbGR9VTN13pIJWxEfb1lLwspQ6y254fUOOD2UOr1E0kne1bg8nypRSIZS+c6td0JzoIJfW/1O+hJhttctnHD4xfEsLavl55bcR38iylHfeUxlsLF6Hg/VL6YjFuInF22iwVeW366hFL+88sGClP19zasION2UOr0F+yx6TWe+w229d/z3mFKqqAL6ET6Hi221b4/SVOH28blNjxNMxsYcuEzG5poW3uy9jNtwsKaq8Yb7V1U08ErnWVyGydIC9DFZXFpDhdtHJJ1kfbUMVnC3fHzZdv5x3rmbnskUYjaSoH4Oe/LJJ2e6CGIWMpRiaVntLder8Qb4zysfuun9IyOcvLNp+mkkM21FRT0rmH4n4QdyQ7weV88B2RGP7kZLqsMwbyt9Zzweh5Pf3fg+OqMhlpbf+v1R7Mpc3mmljM3zV/DH933opvcvLa/ji1s/jKFUQSaiKnf7+MMtH8TS9pQPPMX0ra5s5M8+/T9nuhhCTIkE9UIIIYDpB7piLM8kcvOnwlAKQ0lAL4SYmExBJ4QQQgghRJGToF4IIYQQQogiJ0G9EEIIIYQQRU6CeiGEEEIIIYqcBPVCCCGEEEIUOQnqhRBCCCGEKHIypKUQYtra2tr4whe+MOa2oaEh9uzZM0MlmhltbW0AN9RFIcy2+mxra7tjE9sJIYSYPgnqhRDTIoHd29zum8/MO9e0trbKay+EELOQBPVCiGm52YzFu3btYufOnXe3MHOY1KcQQojJkJx6IYQQQgghipwE9UIIIYQQQhQ5CeqFEEIIIYQochLUCyGEEEIIUeQkqBdCCCGEEKLISVAvhBBCCCFEkZOgXgghhBBCiCInQb0QQgghhBBFToJ6IYQQQgghipwE9UIIIYQQQhQ5CeqFEEIIIYQochLUCyGEEEIIUeQkqBdCCCGEEKLISVAvhBBCCCFEkZOgXgghhBBCiCInQb0QQgghhBBFToJ6IYQQQgghipwE9UIIIYQQQhQ5CeqFEEIIIYQochLUCyGEEEIIUeQkqBdCCCGEEKLISVAvhBBCCCFEkZOgXgghhBBCiCInQb0QQgghhBBFToJ6IYQQQgghipwE9UIIIYQQQhQ5CeqFEEIIIYQochLUCyGEEEIIUeQkqBdCCCGEEKLIOWa6AELMZrZtk0wmSSQSNyxTqRS2bWNZFplMBsuysG0b27Zvuj3DMPIX0zRvuO5wOPLLkdtM08xfrn+cUuqG6yOUUvml1vqml5HnMFJ2y7LQWmNZ1pQvtm0Tj8f5zne+k/8/u7SwMiPLDLZto207v3+0xtY6ext63LpTKJRhYCgFueeqlMIwTUyHA9N0YDpMTNORryen04nT6cThcIxZulwuXC4Xbrc7/7/b7cbj8eBwyNeiEEKI4iO/XuKek0wmGRoaIhgMEgwGGR4e5uv/9DSh4CCRcJhwOEwkGiUaixNLJHE6TNwOE5fDxO0wcJkGbsPAYYCpsheDt68rNKBu2K8GtAY7d93OXR9ZWjZYGmw0ltbY9sjt2YDX1tnbLVtntzMSlOtR/5PdyeiwWGuNUipbIqUwVDZARoGBwjAUhlIoBYZSuQuYudvNkf9vWOaeuwKTkecOteu2ETz2BgYaA7LL3GMMBc58GbL7I1dbSo0sb6y73BPJ1p0m//yy9ZKtQ0trUiPXyV20wkKR0WQvdnaZtnX2YtmkRi4Zi2Q6g2Eo3E4nbrcLr9uN2+3G6/Xi8/uzl0AJPn8Av9+fvwQCgTFLOTAQQghxt8kvj5hzkskkvb299Pb20t/fT293F71dXfT199E/GCSVTlPm81DmdlDmNFiwcRvq9Os0O038TgNfuYGvxoXf4cHnMDCNmwSZYlzHXCYPzy+Z6WJMi9aajIakZZO0NClLk7BSJDJJ4vFBEmGbhKUJW5peWxHXingGYpZNLGURS2eIJlM4TQcBn5eSQDbQLyktpaS0jJLyCkpLS/OXkpISSktLCQQCY86yiLdlMhnC4TDRaJRoNEosFstf4vE40UiEZDxGMpkgmcheUskkyVQqfwbNsrJnjCzbYvO27fzXX/7kuPsaOdtlGgaGaeSvm6aJ0+HAkT/z48TpdOBw5s72eDy43R6co84AjSxHX/d4PPmDRDkrJIQoNPlGEUUplUrR3d2dv3Rdu0p3Zye9ff1EYnGqAh6qPE4qnJpKJ6xxm1TWOqhsrsTvNMa0Bh9zmaxtLp3BZyNmC6UUTgVOwyTgnN42tNYkLU00YxNNW0TTQaLD/UQGbIbTmi5tEMmQvz+cTBNPpfF7PJT4/ZSUBCgrK6O0vILSigpcLjdvvvlm/gBg5CDANM3CPvm7QGtNLBZjeHiYcDicX4ZCIYZDQwwHBwnnbotEo0RicVLpDH6PC7/Lgddh4nUYeEzwGOBVNh4D/KaiwjRwGQqXqXC5FU6vwmGMnFUyMZSJqRTtHpNfWxG4SflyZ8tGzgAxcnYsjaXTZOwYGVuTSWsyyewZn8zIWR9bE7MhjSKtIa0VKRtSdna9ZO6MUDJjk8xYJNJpDJU9K+Rxu/F5PXi93lFnhQL4AiUESkoIBAI3XEpKSuSgQAgxhnwjiFnLsiz6+vqyQXtXF13X2unquEZXTw/hSIzqgJcar4Mqp6bWrVjlc1C9PEC5uyyf1iHE3aaUwuNQeBwGVZ7JPcbSmljaJpK2CacjROLDREJtRC7a+Nfcz2u7v0cko4mkMkST2bMBbpeTgM9LIJf2EygpoaS0LJce5Mfn8+Hz+bJBos+X7z8w0nLscrlwOp03T3e6zkj/iFQqNW4/k1gslm9Nj0bCRIeHiUbCRMJhhsORbJAeT+B0mATcTgIuBwGngd8Ev2ETcCjmOw0CTgNftUGgwYfPGcBrqkmXcTI6laLcPfM/fVprLA2J3FmheMYmkYmRsCLEQz0kBrO3dduKmK2IWxC1bGJpm2gyTTSZxuV0UJo7ECwtK6OsvILyqv+fvfuOb+s8Dz3+e8/BJECC4BKpRYqUKFmSZdmW5W3LaRw7ThqncZYz7Iwm6Uh7b26amzSt09y4bdJ0J02b2aHsHTtxPOPIlpeWrWHtSXFvEJwAzjnv/eOQFCVxgBQoENTz/XzwIQic8fIQ43nX8xYTjRZRWFhINBqlsLCQSCQiFQAhLgHyLhdZZVkW7e3ttLW10draSktzE831p2lpbaUzFicS9FOa56XEB6U+qAl6KV0RoihQIIG7mDdMpcj3meT7TCo4u4tgr8/k1uVntyw7WjNkjfQGpBiwOhmIt9Pf6TBoaWJaMaQVQzYM2ZohW5O0HVKOQ9JySNk2ScsdlmIYbtDszqswRudYOFpjj0yedtz5G4ah8Hk8+EfmmZiG2zJuKIKmImi6redBE8o8Bnkeg7ygQThiEPJECHmjeGQ4G+BW/jwKwjPsFdJaM2hpelM2fakh+lID9DY20HvKodVWxG1FPGnTM5SidyhBOPZ3r94AACAASURBVBikqDBCUXExxaVl7q24mOLiYkpKSohGoznZ+yOEOEOCejGrHMchFovR3t5OR0cH7e1ttDU3u+Pc29uJ9fYRCQYoyfNS7FMUezRXBz2UVfooXlWOVwIAIc5jKEWeV5HnNSgNzvxjfHSS9dj7GjTu5GpzzMToSScxi4tOjXkNLJhiW0drepMOsaRNLNFM7GQ9rUfgiK3oTjh0DyXpHUwSyQ9REo1SUlZGaXkFJaVllJSUUFJSQmlpKT6f76L8bUKImZGgXsyY1pq+vj66urro7Ox0bx0ddLa10NHeTld3N93xPvJ8Horz/ET9BlHTodRvsNLvoWR5kKg/X1ruhMgSYzjlkNs+K+/D+cpQiojfJOI3qZxgDrvlaHqSNl1DA3THjtPdeoT9tkF3UtM1mKJ7YIi8gJ/iaNQN9MsrKC1bgOM4nDp1iuLiYsLhsFT8hMgiCerFuEYC9pFgvauri472Njrb2ujq7BgO2HvxGgaFeX4K/SaFHoh4NEv9JlfkmRRGAxT6w/hM+ZAXQoi5zGMoigMeigPjhwWO1vSmHLqGUnQPNRA7XMfJVyG67nq+8vd/S1d/AltrogX5FBcVUVRSQklZOcUlJRQVFRGNRolGo+Tn50umJyFmiQT1l7C+vr7R1I9tbW20NzfT1tpMe0cHXbEeTMMgOiZgL/Roqvwm64MmkUI/hf48/KZ8OAshxHxnKEXEZxLxmSwb8/hev8kn1hYCMGSNDPHpIdbRRazxIPsdg3gKepIWscEkiZRFJBwmGimgMBolWlxCYXEJhYWFo5N7I5EIBQUFMsZfiGmSoH6esyyLpqYmWlpaaGpqpKn+NC2NjTS3t2PbDiWhAEV+kyKPpsinqA6YFC31El2xgIBHAnYhhBDpCXgMyj0G5XkTz/xNOdqdwJtIEE80Ej9VT/dRh9OOQdxyn4sPpehPJAkHA0Ty84lEIhRGoxQWlxAtKiYSiYwG/4WFhQSDQRn2IwQS1M8bWmva2tqor6/n9OnT1J88Tv3petq7uikOBygLeinxOiwOmFxZ6KGsoojwOfnahRBCiNnknWKYzwhbazfFa9Imnuwi3tlBb8sh6ixFr62IWw7xIYv4YBKNpjA/n8LCCNGiIqLFJUSL3WE/Y29e7wwXnxAiR0hQn6MaGxs5efIkJ48f4+Sxo9Q1NBLwmCwM+yn3OazIM7llsZcFteUyEVUIIUROMccM95nKkOW4rf/JfuJ9vcS7TtB8EA5Zip6UQ2woRXwwQV7ATzQScdN4LlhASVn5aHafkpISIpGINHSJnCZBfY5paGig7tQpfvb977A47GOxX7Mp7GXxlcWEvTL+UAghxKUl4DEIeAzKJhn24wy3/McSNt2JFrpPNNB4WLPfMuhO2HQNJEhYNkWRAspKSyldUE5peQVlZWWUlpZSWlpKQUGBBP1iTpOgPsf09vbiNQ3+cn1RtosihBBC5ARDKQp8JgU+k6UTpPVM2A7dQzZdiU66GtpoO7GHw5aiK2HTOZAgZTuUFBZSWlpCWXnFaNA/0tKfn58vQb/IKgnqhRBCCHHJ85sG5SGD8tD4Lf5DlkNXwqJrqJ3OU800HoFXh4P+roEEtuNQPBz0F5eWUVy2YHTV3uLiYoqKimQBLzGrJKgXQgghhJhCwGOw0ONjYWj8592g36ZrqJ3uhha6TjictA1iKU33UIqe/iECfh+RgnwKI8OTekvKiBYVjabxzM/Px7ZtbNuWlJ5i2iSoF0IIIYS4QG7Qb7BwgpZ+R2sGUg49SZt4Mka8s5Oe5kOctN2MPv2Wpi9ps+66G7j/vvsI+n2EQ3mE8vIIhUKE8/MJ5xcQyi8gFA6Tl5dHMBgcvY387vf7CQQCeDwS4l1q5D8uhBBCCDHLDKUI+0zCPpNFk2y3N8/LP9y4kIGUQ5/lMGglGbCGGIy309/pMGhpuh1FQiuGHBhyIGE5DNkOQymbhGUxlLQwDEXA58M/cvP7CPj9+AOB0VsgEMQfzHN/H64M+P3+KW9SYZib5L8ihBBCCDGHjK0AzITWGku7k38TtiZha5J2iqSdJOnESfRpknFN0nZI2poeB5IoUlqRdCDpQMLRJJ3hbSyHhGWTtGwSlo1pKHxeL36fd0ylYUzgP1xh8AUCBIJ5+Px+fD4fvuHtRu57vd5xf3o8HrxeLx6PB8OQhTDTJUG9EEIIIcQ8opTCq8BrmIQzvObWSIVhpEKQGAn87QGSTh/JhCY5qEnabqVg0NbENaS0IoUi5UBSu6sLW477M+U4pGxNynZI2TaWo7FsG8t2MA2FxzTxmCbm6E/DfczjwRx+3BzzvGGamB4PHtNkYWUV//6lf8H0eDBND6bHxPS4FQbT48Ezcn/4eOfeTNOktraWSCSS2Qs5CySoF0IIIYQQaRlbYZhg+kDGaK2xNW6QP3zfcdxKhe1obK2xtY2tLWzHXYnY0e5POwV2UpO0F7Kk66j7+PA+I9skNQw6YAM2CgewtXKPr8HS0NQ7xC13vpG3vOUts/vHZoAE9TnIchx+dqo328WYN4oLbLmeGSTXM7PkemaWXM/MkuuZeXJNM6vY0XQOOuM8M/6aAqbSmGOe6jI0WuvZKVyGqVwp6FyyYcMGvXPnzqyce3BwkCeffFJy3WZQMpmU65lBcj0zS65nZsn1zCy5npkn1zSzMnE9169fT3l5eYZKND1KqV1a6w3pbCst9TkmGAxSUFDApk2bsl2UeWPLli1yPTNIrmdmyfXMLLmemSXXM/PkmmbWpXQ9ZUqxEEIIIYQQOU6CeiGEEEIIIXKcBPVCCCGEEELkOAnqhRBCCCGEyHEyUVaIOWzz5s3U1dVluxjTEovF2Lp1a7aLcVG1tLQAzEp2hEvxes6m2b6elZWV3HfffbN2fCGEmIgE9ULMYXV1ddTV1VFZWZntoohJJBKJbBdBzAG5VgEXQswvEtQLMcdVVlbywAMPZLsYabuU0oeNePDBBwFm5f90KV7P2TSb13PkdSCEENkgY+qFEEIIIYTIcRLUCyGEEEIIkeMkqBdCCCGEECLHSVAvhBBCCCFEjpOgXgghhBBCiBwnQb0QQgghhBA5ToL6S4S2Uuj2erRtZbso4iLSWme7CDlDpxI4Lz6E/eg30W2ns10cIWZMH9+N88wP0fGObBdFCHERSVCfYzZv3swLL7ww7f2cn/4Tzrc/i/Pwv81CqcTF4Lz4MM6v/gMda09v+0e+ivMvH8Z56ZezXLL5wfn5v6JffBgOvojz2LeyXZx5QacSGa1Y6paT6Fhb+ttbKZztv8bZ+0zGyjDX6b4YzsNfQe96Aufx/5rdcyWHwEqiHXtWz5NpuqMB55Gvz9vXhXPwJZznf4Ye7Mt2UeYMnUriPP1dnCf/B50YTHu/zZs3s3nz5lksWWbJ4lM5pq6ujlgsNq19tNbQcsL9pen4+Ns4DvrXX0c3HEbddi/Gyo0XWtRZ5ex/HjqbUBvuROXlj79NeyO67lWMlRtR+dGLXMLM0o1H0S8+5P6iDNQbPjL59olB9OEd7v1Xt8J1vzu75UsOQbwTVbJoVs8zq7pbz9wP5/brZS5wdj2OfuZHUFGN8fZPoszpf91o7aAPbUf5g+i+bvRT3wbTg/HuB1Ali6fef+dj6Bd+4d7PK0Atv3LaZZgN+sgOnIPbwLFRl12HserazB3c4wWvH5KDqGD4gg7l7HgUfWQHxjWvR9Vec9ZzWjs43/9bCNTgPPI1VDgKviDq+t9FGeYFnXe2Ob/5DjQehcPb0FVrUQXF2S5SxujWU+hHv+H+0teDuuP92S3QHKEPvIDe/bT7S0EJ6to3pLVfrq0SLUH9JUAphbr9fvT+51HrNuE8uRl9eDvqujdibLjT3SjWhj4yHAS+/BSkEdTrtjqcn38J/EGMe/4PKr9oNv+MM+dtrUM//p/uLwNx1J0fPH+b9gb0tz8LaJzdT2P+/t9dlLLNmoJi8AUhOQhpBM7KH0Rdfgv6yA7Ulb8zq0XTqSTOdz4HsVbUVbcD5bN6vtlivP6DOLueRBUvRF3/pmwXJ23OE/+NProLdcObMWbwv9ZdzW5FMbogo+UaqVTSfALinTCD4+tXnkZv+T4aoHq9+6BtQawN0gjq8frHv59FeiCO88jXYLgHQ596FV11OSqQl5Hjq0AI495Po1tPgenB+fU3UOtvQy1cPr1yJofQW38CgPPsTzDPCepJJaCzCRbVQP0h9FC/+3h0AWr19Rn4S2aPipajG49CXgH4M3Pd5wyvH5QB2gF/MNulmTNUtBytFGiNKqpIf0criR7sQ3e3ZvwzcjZIUH+JMFbfAKtvcMcNP/JVYDh4HwnqIyWwqBaajqb9gawPbYf+GPTH0Cf3odbdev42/T3onY9B6RK3DJngC4BhgmPDBC1RuvEIMNztP/JlMwnd1YKuP4RacRUqryAz5cwglV+Ecf/noLcbwoVuS1N5Fcaamybcx7j9frj9/tkv3EAcYm4rt246BgtzM6hXS1djLl2d8eNqK4Xe9yyqoBhVsz69fRKD0FYH5dWTbzc04PbEAPrlJ2GaQb0+sQfnF18Gw8B465+hFtdOa//JGBvuxHn2R6glq6CwbGYHsZKjd1X1FW6QEoqcCfAnoB0H/eT/oNvrUdffjSpfhqrM/P92Rjw+CIRgZGhEuBC8voyeQhUvhEgpzlc+CraFbj6O+cEvTO8gXj8sXA5Nx1BLLzv/HL4g6rXvhRMtsOYm2PU4oFAFF6dx50Ko174XtXIjFC9EzbPAVxVVYLzjU+hYq/s3Zpju64b2Blh62Yx637JFLV2Fcd/n3N6x0iVp76fb68GycH76TznROJg7/xGREcrrR626Fn14B+rym888bnow3/FJtGOn3XWqVl6DPvACeAOoZZePu43e8kP04W3u/dIl03ozTXje6AKMe/8C3d2CWnH1BGXbiD74EvR2oV73vimP6fzg8zDUhz70EuY7PuWWt+kYzi//HfIKMN76cVRw/GE+F4vKL4L8IuyHvgzHd8Me0OXV7hf4NOjuVvAFUKFIZsoVKUHd+HvougMYN9wNx5pnfCxtpaCnHYrKUWp+TPnRL/zCHQYCGO/887RaTJ0f/R2018PSy6Bkw4TbqUAeLL8Kjr+CWnPj9MvWXg9ocGx0Z+OkQb22LfSe30IwH+Oy66Y8tqrdgFk7cdnToa5+ndvq6A9grLsF1t2S3o7Nx9H7nwNA50cx5lDPi/IFMN79ALrpOHj8qIXVsxMcmR7IL3J7NQpLp19OpTDe9gno64aCknG3MdbdCl1bMG/dhK65wv0uWFB5oSWfdcowYa5U8mZD+TKUUm6lOIOvLZ0ccntlB+Koy65Dvf5DGTv2xTDd70pgtG0Q7WS0LLNFgvpLkHHXh9Gv/5D7pgecfVuhqwl1zV0Tjk8fj1pQhfkH/zz5RnnDLemmxx0+kiFqQeWkXx4qGMa899NpHk2DnXLvphJnHj34IvT3QH8P+vTBKVs9tJWCxEDGguWzjn1iD/rUq6j1r0GFo+7njNc/7a5j5+BL6Ee/CV6fOy55Ot2QkzCufSNc+0b3lxkE9To5hPPQl6HpGNgW6rLrUa///YyULddo7UDX8DXsaJw0qAcw3/THaO1MWglyXnwI3d6AcdM9qKIzPSnqitugqwVMD2qKnjS949Ez49P9eajqdWn+RTOnTA/qmjuntY+Od6LrD0GoEPpjqKq1s1O4C6AKSlATBMoZO4dSGPd+GppPwpKVMzuG6YFIehUCtXhm55iIdhz0vmfc1+aam0a/r8TU9BP/5Ta4FS7AuP9zmas0JodgoNc9R5oJG3KdKl2MHuzDuOf/ZLsoaZGg/hI18gGpm0+gn/xv98GhftQdH8jseW55OyxcjiqqQEUm/hLTg33QegoWrUBd9LGvCuMtH3OHEI1p7VQrN7pDjEIRdwjBJPRQP853Pwc9HajfeQ/GFbeNv53W7jj3QAhVuSa94jk2zsNfcVtTm09ivPNTqKWr3a7jcGHafyUAzccB7VZeOhogQ0H9Bas/5N6G6YbDWSxMZqkb3gzhqDv8ZkwrvY53ukF75eqzvnSVMjBe/yGcQ9vcltBTU6clnCyg180n3Kw+gINbCRjdLxCasvKkG46g6w6gRyq+AObcnQjp/PxfobMR8gpQH/oHjIs0Sd555TfuOHbHwX7k6xh3fSjrgagK5qMdC+d/PoNaXIu64/2Tv1aO7MR58SHUsnUYt7ztIpZ0nLLs+S36t99zfzG9qDR6h4RrNCVvrM2dh5WhXmYVLkTd+QGo24/a8PqMHHPO8/rdEQ5z5btyChLUX+oCeWPGp2d+eIkyPVO3cGuN88MvuK2TlWswz6kR61OvouMdqNU3ojzejJcRQC1agVq04uzHFq/E/OMvp3eArmbocYMvfXIfTBTUv/IUessP0IC65+MY6XQBK+WOJR7sg1CBGwCuuCq9cp17qA13ouOd7ryBmullAtFdzei9z6Cq17mVikyqqHZbBIcnVBo3vSWzx88i5fGirnrtWY/poX63G3uoz22FHJOhwnn5SfTWn7jj7yvXwKmz0+7p9gaId0D1uvSGKBUUu2O4h/pRpWlMLh17ruQgzs/+2e3Gr6hB3X4/KhhOv0KaDSPd5I6NCs9Cr1lyyO1RqqhGDfeU6eQQ+rffh+RwT9/hbejCUtSNv5fx80+Xs+MxiHegD3SgNt51XkVe2xYkh1DBMM6LD0FnE7qzCX3162al1zFtxpjXdgaz6eiT+9DHXkGtuzUnhgrNhPGad+Ps+DWq+oqMDxsdmZ8n5qasB/VKqWLgN8O/lgM2MNKvs1FrnRx3x/GP9RzwUa317jS3/yfgDuCXwHbggNb60OR7zS8qWo7xrr9wa/TLZxYoXjDHdsdRA3S3nPWUbjmF87N/ATTE2lFpth7pjgY3yE438LlQ5dWoNTei2+sxNt41cbkG4mfu73oivXGdysB411+im0+4kwXPPWZvN84T/wneAMYdH5h04pcqKMZ8859Ofc5xOI98Ddrr0Xu2YPzRv2a0R0XlFWB84G/BcXJq8tWMJQZHJ3Cfu0CQ3rPFndx4ZCfqNb1nP9fdgvO9B90hSte+Ma2gUYUi7gSx3i5UxeQTb8/f2XBb5S3A48W4PM0x7ZPQsTb0wRdRy65AlVdd8PHOZdz9J252r+orZuW97/zsn92gvnQJ5ns/6z7o9UHZUjh0ZHQ77cyNMbhq5TXo5uOwYNl5Y+N1chDne38DXc2o296Fqr4C3dkEFTWz0sgzLSuvgYPbwOMZ93NvJnQq6a7VYlvoxiOY7/vrCzveQO+ZRBBzqCdBLa7FzOCkd5E7sv7tqbXuBNYDKKU+C/Rprf9hts+r3H7R3weKtdYppdR3cHunL6mgHkCVVULZmRYLHe9ENx5FLVuXsTRrk57f9Ljj/I/scMf4juXYjM5USXOBEx1rw/nucOBzzV2om++ZVnl0bzd62y+hZDHG+tektY8yjLSGLqnVN6K3/9r9JTF1Vp7R/SKlqAnGtuq9v4W6A+79qrXjZiHKCHO4l8S20F3NqAVVGT28UgaY0wvCdGLQzXJipzBuv39OZi4aj4qUuBO4Gw67radjn7viNvTzP0NVrz8/sBrsc1M6gjuBMd3zhQvdLCvTLafXj/H2T6Ebj6BWnpOn/NSrEC5MK1/8WM7DX4GOBvTLT2L8wb9kvBKnogtQGVqXQZ/chz60DbX2pjND8EbWM+huRWvtpgxWBsY7PgVHPgf9cdTGW1Ejc0yyzLjqdvTlt7hZd1rrcHY+BsvWupmzultH52/oE7sx7/k4+qrbIZiPMrI8UX3PM9B01C3bgRdQV2y68GOappvGsrdrRu+Hc+ktP0Afesm9X7IoI4kghLgQai4tI39uUK+U+r/AfcNPf01r/WWl1HLgIeBl3MrAQeB+rfXgeC31SikP8EXgJiAAfElr/U2l1K9xW+n3AT8FPgb0DN/erLU+NVE5N2zYoHfu3Jm5P3wa3vWud2XlvCK7vve97034nD71Ks4vvuQuyvPOP59euq6hAfThbaiKGlTZ0km3dbb9Cv38zwF3nLgxQeC0ZcsWNm3alHYZLoSz+2n00991y3T93WdlOdFDA5NWSnUqifOrf4fuNow7PzDtPN5jPfjggwA88MADMz7GRM69ns7up6GrBXXdG7NWiXF2PIbe+mMwTIz3fGZagb393c9Bax0Ewxgf+eeLHjym+/rUWuP82x+780/yCkaTAui6A+hXt7rZP85pQZbPZyHmp8m+g2ebUmqX1jqtVGJZb6mfiFJqI/BuYCNgAtuVUs8AA8Bq4INa65eUUpuBjwD/MsGhPgy0aa03KqX8wEtKqSeANwEdWuuRXoKVwE+01r+YoDwfHj4WCxYsYMuWLRn6S4WY2pSvt6rXupkJdu6G4PirBo+ru9Xd7/Bpd9x1frE7hn88dgAqX+N2nPQHYLwyDcTpS+nZeX/YKXds7dghFZYFi28FNPT6zpQp3gGD/e5chLwCd22DcyUHIRmFUBR27IZIw4yLNrLK82z83X19fecc1wBjIWx/OePnGpedAtTZqfF6B2DR8FCcl18F37H0j1dxI0SvBH8Ann128m37Y262jWD++S2rtuXexvvfTuL86zmJhTeBlXIzTY3dJ7QSTnfD6TSPI4TIabkS883ZoB64Gfip1noAQCn1C9zW9ieAk1rrl4a3+w5usD1RUP864DKl1DuHf48AK4Cm6RRGa/114OvgttRfrJbIc23dupVYLMY//uM/TriN7ukA9ITDNaai6/ajj+9GXX7rtCfWjR4jlUQ//R300ADG77xn+llazj1ea527ElwaY3Cd53/hDp8xvWdSVS5cjvnOPx93+3Nb7rR24OQ+KCwbnfGum465uezHKqvEfM9nzj73sz92x1gC6o73T7o4lHYc9KPfQDefwHjNu8dNETjSAjzZ6033deN8/c/cX4oXYt7/4ITbnsv+ykfd8d3D1Ovej7F24jJPxtn7DPrlh9i66BZuWRo+b3VTrbU7dyK/aNpDLpwXH0a/+BCEoxj3/T9UIHTmuP097qTI/KLR4RD2l//orPSk6vo3YVx/99nlGezF+d7fQm8nxl0fRl1ATvWtW7dCcoib9/8ETC/GOz511uqDzv7noOUUauNd0155+UJ6PrRtXdDwFn18N85D/+YuTvW2T4xOJtcDve7/I78IY+P0Uk5Oh/2lPxzNtW3+r6+dKVdvN85/fsoN6tdtwnzte9M+5nSupx7sczNGLapNa5GirVvdhcAm67Fxnvvp6BA89br3Yay9ecJtx2N/96+h9SRUVGPe+xdnPzeyhoU/D+NDX0Sdk0ZY2xY0HkE3HnP/f5FSt6flAlZVnenrU6cSOF/9mPs+La/GfNdfTL3TGM6BF9GPfRMA4y0fY7zUpfroyzi//hoUVWC8/ZOT/g91e4ObwcyxUbe8HWPDHdMqTyZdzN7OS8GFXM90voPnkrkc1E+WC+zcMUOTjSFSwB9prX9z1oPusJx5R9cfwvnpP4HWGPd8bEZZSlTlmgvObqGP7EDvf969H12Q9gTXcY91cp+bpg6NcfefTL0qZ0+b+9NOuYuv9HahppGnWSkDzulW12WVsGyduyz6klXQ035ekAig1r/GXcXSn4c6d1n1c3XUow9vB8DZ9TjmTPN+hwpRtRvQJ/aePydhKotWwonh0WqGB1U28zGhKhA680YcE3SDu+CV88JDcHgbVFRjvPPT00r3p4fH1tLX7Y6HHXN8FYqgB3qx//svoa8b400fRd1wN3rnE25LL7hZdc4tbzAf4/1/4869GF7R012J9L/R7Q2oDXe4Ey7LKtNavEgP9g1XkAbRdftHg3rd2YR+/L/c+33dmHf/yZTHcpKD8NIjo4sG6eQgzq+/AUP9GHd+EDXFCq3aSuH8+IvQctJNsbpu05TnHPc4bac5a3Gq4aBe5eWjfuc90zuWdtCPfQvdcARj072oNDI4qctvRu/+LWrt2RN0df2hM3MLju+GaQT106GC4fM+CyaiB/vQsTaYIkOXKl/mLldveFCl7pA35+BL6JefRF12HcZVt09+ou7hNQy6Ws5/bmSV2lTizPUZe27TA0tXo5auRq+9CQLh0df+xaa8fox7Pu6+V9bMIJvKmDklui+GYrjhIN7pzvUwPTgHX3SvQ3u9O+Rr6cSpiVXpYoz3fhb6e8ZdQVeIXDCXA9tnga8ppf4ed/jN3cA7hp9bppS6Rmu9A7gXeG6S4zwO/JFS6hmttTU8zOY0kDpnu14gy9P9L5xuOz06oVS3ns586sE0qdIlaNPrBkzTzbhxDh1rY6TepmOtk9b2ANTNb3WHChQvcidX9fdMGQRNen6t0b/4Epw+gNpw56T5m1VB8XkpOScULYfSJdDeMHUFYBJKKdQb/xDddAzd3TKt1lnjjX8AJ/eiAyFU4QLUBeT0VrUbMN7yMThSf1YmCPvAizDcogZA8wk36Bhn2IRuq3MX2Vp17VmL8xg33oPjOKjyZePPGWg8cmbC36FtGK97H1x9B86ux6G7FXXd+EG53vUExFrh+rvd3qTm42cqo1u+DwO96OO70cvWjdtLpFNJaDgMtu2Oby/KB48XtXxMulB/0B2+kUqk3WOlv/25M5XTtW9FH30ZTuwBwPnRF93AfrLAo7vVvc6APrgNZhjUq/Wvca+P6UVddv2MjjG2TPqg28Hq7HwMM42g3rjtXehN955XAVRLV6FNjxuwhSJuRTrLkxT1Cz+HXjfQ1PWHJlzbQi2/CuP9n3ezuoTd95t+9kfuInetdegrbpv0/Wvc9RF34ug4Kwgbd34Qvftp1NLLpkxlON0eo9mgFtagFtZMax/ddAznV191h2Nd+Vq3AWW1+9rUT21G73sWFi7HeMenMNbditN0DIoXQsWyqctTvNDdVogcNWeDeq31dqXU94Edww/9h9Z63/BE2f3Ah5RS38LNVvP1Mbs+rpQaCdi3Au8BlgK7h78Y2nArNvBaAQAAIABJREFUCOcG9d/HrUR8nCkmys5lau1NbouE1qgMpJ+bcTnKlmJ88PNgpS4ooAZQa292h21ojZoiOHFe+Q36ladQa28+0316gecnMQinh7PLHN0FM+h10FYK55GvQkcDxu3vc790vX6M9/wVWMkLTg+pO5twfvh3bo7u9gbUpndOvRNuDnVWXD1lRSldqmrt+YslPfeTM/cLSlBX3IYaL6C3LZwf/z0kBtFHdmG+5zPo3i7oi6EqqjHf9omJT7xklZuyr6/rrGDHuHriLnRdf9id7AluKs073u+2oI7uPPzxGAjDBJUd51f/Dif3odvcCof5vs+ct40KRzHe/Rm3lyeN3hitnTMBPYAyUAtr0L6gOw+grxvn2R9hvuevJj5IcYXbe9N4bOqW30moYDhzS8EXlEB5tdt7MMXaFWeVYZweHRWOYrz/b3G+8/+grQ7nh1/A+MAXprUidsblDed0V0AwPOmmqvDsoZFq6WVuhWdx7aQBvR4aQPd2oa59w7iVGFVYlvZ7P1fpV59zW+n7ujGuueusHh9dt9+903TMrURXrZ161fNMlevIDnTTcdTVr5sTFSZxaZpTQb3W+rPn/P5F3Mw157K11h8eZ/+JBgN/avh2rtFmM631s0BO9bnpgTjOE//trsRqGG6O8qWrUXe5X8LO3mfQA3H3Q+air9LKaCvUBR/H60v7i0q/8HM3KHz+5+hrXp+RFR1VIM9dtOnormmlytNNx9EndrstnIN97jABwHnlKczhVlallNuKe6GsJKOL7iSHLvx4adJWCkxz8nzgI0MCDA/G+/56igXEhv9fSqHjnTib/wqSg6ib3oKx8Q0T7xUIYb77L6dX+HDE7dGxLRhe7VgFwmi3I99N6Xr5ze4cgIkW4RlZKt1OMdkoQFVUDkXlaRVLKQNueivsfgpqrwH8qGg56gOfR//g8xBrRS1cMfkxDBP1xj9M63wXi/J4Me79tFvRz8CQD1VQDN6gm+8/OYTz2Lcw3/K/M1DS8WnHcYdj5RehxskBrq57I+qXz4PpmTIbkD66C+fRb0LpYoy3/hnqzg+irn/zhJXHEc6j33B71nwBjA/9/QWNhc9VauU17rDFcCGcu2DgzW9F73gUVXvNuA0Hs0X3tOP86muARne3YP7e7L0OLxZ9dJe7qvUVm7LW4y+mb04F9WJ69J4to13y4LZSm8NvPn1iL/qpze4Tdgp14/xZoXMyavlV7vCJ5VdmdIl245a3TauFXju2u0hNctBdvfANf+AON0kOoVbMfELmRNSCKtRdH3YXkbnqdRk//nj0kZ04v/46FBRj3PsXqGAY3d163lhedccH0PtfwFh3y6QBvTI9GG//v+4Y25Ub3cXDksOTeNtnnplmwvNFy90xtL1dMPqlpd1FhLw+uOVtU06ONO74gDvcof3o2Vl5LpC58fWwcXgZ9uGsC0ZePvq9f+WOGc6RJcvP5VZi0wvoncPboe202ygxQepOdfcfob/3N+6QQz27iz3plx5Gv/RLNArj3Q+ctxqpUsaULfQjnP3PuxXx5hPu37hoxej8iUmNTP62rbTX7RhLWymoPwSlSy44eUG2qMo1GB/9t3EbEoyVG2EavUAZ4/W7r+tUIuMruGaDdhz3s922cJqOY35k4sQcYm7JuaBea32M4cWqLjW6t8sNmrT7b1MV1aOtiijj7C7tMa0U2kqNZgWZ74w7PoC+5e3nTdQcSx/fjXPsZZQ/hFo1S18AI8FLctD9ufOx0Rb0Cxm3Phlj1bWzctyJ6KM73cAi1gatp9CGB+en/wiLbkKf3IdadvmZcqVZNlW65Mywgvwi1HW/i+5sSmvl1AnLaVvu0K1xKhSqqOKsAFm/9Etoq3Ofazk55Yq/o2OCd6WfcehCKK//khjzqzub0I8MZ7uJd6Le8JFxtzPKKrGvuh1O7kNNMtTqvOO3nkKfPuTmmk83uB3NEqUvuDfMuPwWnMaj7pyassqpdxjZ7/W/j967BbVk1YyCR/3Yt9BHdkCoEOMDn8/aJNkLdVFWCZ8GlVfgrvrdXo/K1srsGaQMAwoXQGcjFOdmA8KlKueC+kuZs+UH0BcD//DEsKq1GL//BbQyUMH8s4IWtbgW9Zb/jX5yM+x6Am2lpp2tIlepSVrL9GAfzi//3c3mAeh9z8DamWfmmbAMysB4+yfRpw+ill85OvkSr/+8pdpzkT71Krq3280BX1YJi2rdCWraAQ26o2E0qL8Qxg1vvrBydjTi/PAL4NjuMIepJm0vXA6Htrnj6NMcLiNmgcd3ZmjUZAuI9Xa7FWZAv/ALqFrjDjvc9QRqzQ3jD9nSGudHX4RUAn1iD+Y7PplWkdQNb3YnPReUTCub1rjHqlmP+cdfnv5++UUX1OuqR+ZqDPSAlUi710RMTRUvdCfazhPGOz/lDu2tmN5EZpFdEtTnkLPGqA+3RKuCkgknOaqyKneiIaAbDs9y6XKExwu+IAz1zfqpVHTBaFpDtfEu9OKVkB+dF5OonMf/E/p73BVF3/ynbsvO2pvc1HGJEGrdrdkuIgD69EFIDLj3T+2bMqg31r8GXbkGAqFJK4didqlICcY7/9ztpZksM1QgD8JR6OtGDbco6ud/BoN96Od+jt5wJ8owJzlT+iuqK3/QDexzmHH7+9C7Hoeqy+fFMBExe5Q/b8ywRJErJKjPIerWt1O1r4mG3sG0AkOVl4+66R70iT0Y177xIpRw7lNeP8a7/hLn1KuooT5U1eVw6NTFOfc0U7fNaSVL3KC+eKEb0APKF0Dd8X7YsmXOTOAbnVRnW6jV6eXCHrtolMgetaAKtaBq8m1GMkh1No5OmlTV69H7n4Nll48f0CuF8bZPuL1oqy8wTWeOUWVLM5fNSIhLQGVl+sPj5gIJ6nOIMkzu+9OPT2u5YmPjXbDxrtkrVA5ShaWY68cs0nSRgvr5xLj7o9ByEi5gsaqLQYUimPd+OtvFELNI5eVD3pmc8MYd70fffM+kk1ZV+TJU+dR5y4UQl7b77rsv20WYFgnqhRDTpjxeGCetnxBzwUTZcoQQYj6bW1PIhRBCCCGEENMmQb0QQgghhBA5ToJ6IYQQQgghcpwE9UIIIYQQQuQ4CeqFEEIIIYTIcRLUCyGEEEIIkeMkpaUQc1xdXR0PPvhgtouRtlgsxtatW7NdjIuqrq4OYFb+T5fi9ZxNs3k96+rqcm6xGiHE/CFBvRBzmAQIucHv92e7CGIOqKyslPesECJrJKgXYg7LtdXsALZs2cKmTZuyXYx5Q65nZsn1FELMVzKmXgghhBBCiBwnQb0QQgghhBA5ToJ6IYQQQgghcpwE9UIIIYQQQuQ4CeqFEEIIIYTIcRLUCyGEEEIIkeMkqBdCCCGEECLHSVAvhBBCCCFEjpOgXgghhBBCiBwnQb0QQgghhBA5ToJ6IYQQQgghcpwE9UIIIYQQQuQ4CeqFEEIIIYTIcRLUCyGEEEIIkeMkqBdCCCGEECLHebJdACGEyHXJZJL29nY6Ojro6ekhHo/T3R2jOxYj3hMnmUqRGr5ZloVlpfB4vPh8vtGb3++nsDBCWWkJxcXFFBUVUVRUhNY623+eEEKIHCBBvRBCpMGyLFpaWmhqaqKhoYGGxmZaWlro7GhnYGCAUDhCIC+MxxvE8ATweAN4/Xl4goUEwiZBw4NhGBiGB2UYaMfBcSxs28KxLRJ2ivq2QU7UH8e29pFKDDA00Mt1113Dn/6vj7FkyRKql1WxdOkSqqqqKCkpQSmV7csihBBijpCgXgghxrAsi+bmZurr66mvr+fkqTqampro7uoiFC4gLxzFG4jgzysgXLaW0qoCfIEQSs3OaMZwMMaSlbfS39vF9j0neO7Fl4nH2vB4TGpra1m7ZjUrV65k6dKlGIaMqBRCiEuVBPVCiEtSIpGgqamJxsZGGhoaqTtdT1NTI11dnYTCEUL5RXgDEYLhMpasWkltXiGGaV78gioIFZQQKigZfUhrzdBAnHh3M089s5NfPPQrhgb7WbnqMq6+aj3r1q1jwYIFF7+sQgghskaCeiHEeWzbZnBwkKGhodFbIpEYfV4pNTr0w+v1jo4J9/l8OI6DZVl4PNn9eEkmk8RiMbq7u+ns7KSlpYXGpmZaWlrp6GhnYKCf/IIigqFCvIECgqFiFtcuZ0Uomp3gfRqUUgRDEYKhCLAKgGRigFhHA48//RI/+OGPCQYCrLtiHRuuvoo1a9bg9/uzW2ghhBCzSoJ6IS5BI+PD6+vraWlpoa29g/b2Drq6OonFYiSGhvD6fHi9PjweH6bXi2l4QCkYM3FTo3FsG8d2x4ZbVoqbb7qB+++/H9M08fkC+AMBAsO3YCBAMBgkmBcklBckLy8Pn883WjEYuW8YxmjFYeRm2zaWZY2ZbGoxMDBAb28ffX199Pb109/fTzweJx7vIZlIEAyFCQTD+PwhPL4w/rwCQqVrKK4swD+LQ2aywefPo2xRLWWLatFaM9Dbxanm0+z/9o/o6W5l+YoVXLvxGq688kpKSkqmPqAQQoicIkG9EPNcKpXi5MmTHDlyhGPHT3D69Gna29sIhQrIyy/G68/HFwjjCyymvHoVlcEwHm9gxpMwQ3kxbrjzD9xJoFYK20piW0ksK4Vtpei1ksS6U9jtvTh2F9qx0do+6yfo4bqDW4HQWqOUMRzsm6AMlDJQhhfT68Pj8ePxlhCILiK8IMgyfwiPb+Z/Q65TShEqKCZUUAxciZVK0N1Rz+O/eYnv/+CHFEYK2XDN1Vx91VWsWLFCxuILIcQ8IEG9EPPMwMAAhw4d4uDBQxw4cJCGhnrCBVFCBWUEwyUsWHYDy9ZFMU3vrJVBKYVpet1z+PNm7TwiPR6vn9KK5ZRWLGeZduiNtbH3YB3PPb+NxGAf6664gms2XM3atWspKCjIdnGFEELMgAT1QuQ4y7I4evQo+/bt45Xde2hqbKSwuIJgfhn5Jau5esVteDy+bBdTzBFKGRREyymIlgPXMjTYS0dbHT/++aN87evfoLy8gg1XX8n69eupqamRVnwhhMgREtQLkWO01jQ3N7Nnzx5efmU3R48cIVxQRLiwgoKytWxYeTumKW9tkZ5AMJ+KyrVQuRbHtol3N7Nz7yl++8zzDA70Ulu7kvVXXM6aNWtYvHixBPlCCDFHyTe/EDkgHo9z4MABdu/ew569e0mlLKIlSwgXLebKW67B6wtku4hiHjBMk8KSxRSWLAbcjDo9nY08vfUVfvHQr7CsJKtWrWLtmtXU1tZSWVmZ9SxHQgghXPJpLMQcNDg4yKFDh9i7bx979+yjs7ODaMki8iIV1Fx+B8Fw9JKdBCouHp8/j9KFKyhduAKAocFe4l1NPL31FX75yOP098VYuqSS1WsuY8Xy5dTU1BCNRrNcaiGEuDRJUC9ElmmtaWlp4ejRoxw8dJjDhw/T2dFBYVE5eZFySqs2suyKMgxjbudOF/NfIJhPYNFKWLQSACuVoDfWyp6DTWzfuY9YVys+r4eqZdWsWrmC6upqqqqqiEQiWS65EELMfxLUC3ER9ff309DQQH19PSdP1VFXd5qmxgZMj4+CaDmBcAkLll1P9RUlEsSLOc/j9RMtXUq0dCngVlATg7309rTx0svH2LJ1Oz3drfh9PpYsraR2RQ3Lli2jqqqKkpIS6W0SQogMkqBeiAtgWRbJZJJEIkFfX9/obWQRpNbWdtra2+no6CDW3YXjOOQXlhAMRfEFCwkVX8a6qhvxSdpHMQ8opQjkFRDIK4CK5cCZQL8v3s6uV+t5cfteenvacGybxUuWUFNTTU11NcuWLaOiokIm4gohxAxJUC8uKalUio6OjuFVR+P09fXR09PD5s3fZnBwkMGhBImEe0smEqSGVy51VzNNYVs2KSuFlUphWSm01ng8XjxeHz5/AK8vgMcbwDR9KNOHLxDGH1xERc1KqoL5eLx+aZ0Ul5SxgX5Jec3o48nEAP3xDg6d7GDv/qfo62lnaKifxYuWULO8huU11dTU1EigL4QQaZKgXsxLg4ODnDhxgrq6Ohobm2lsaqKttZXe3h6CoXz8/hBeXwDTG2D92uUcOhVzF0vy5GEYBRghD3kFHgzDxDBMlGFgqOGf5vDjpsdd1VSCdCGmzefPwzdm6A6AlRqir6eDY/Xt7D/0NL09PyCZGGLp0kpW1q5gxYrlrFixQibjCiHEOCSoFzlPa01jYyOHDx/m0OEjHD16jK6uDiLRMoKhInzBCIH8amrKr8QfzD9vrLovEGNx9ZVZKr0QYoTHGzgrpSZAKjlIb6yNfUdb2fnKAXq6W/D5fNTULGf1ZStZsWIFVVVV+HyywJoQ4tImQb3ISfF4nFdffZVXXtnN3n37cByIFC8kGC5l4fIbWZ5fLBNNhZgHvL4gRWWVFJVVAm4lfmggTm+slWde2Mejj/+GeE8nFRWLWH3ZSlauXEltbS1FRUVZLrkQQlxcEtSLnDDSGr9jxw5e2raDlpZmikoWESpcRO36NxAIRWQYjBCXAKUUwVCEYCgCi2oBsK0UfT1tHDrVyu5XHyHW+U38fh8rVqxg9WWrZKEsIcQlQT7hxJzlOA7Hjh1j2/btbN+2g6FEgmhpFYXll7Nk9R3SEi+EAMD0eIkULyJSvAgYac3vId7dcmahrN4Yixcv4eqrr2T79u0yNl8IMe9IUC/mlGQyyf79+9m2bTu7Xn4ZjzdApKSSJas2ESqQvNZCiKm5rfmFBEOFwCoArFSS3lgrgwmL7//oYXq6WvD7/VTX1HDZqlqWL1/OsmXL8Pv92S28EELMkAT1Ius6OzvZt28fO3bu4sD+/eRHSsgvWsqqq9/kdrELIcQF8nh9REuX4PPHWLH+zjFj81t49sVXeeyJ3xLv6aCsdAEralewsnYFNTU1LFq0SFJqCiFyggT14qIbGBjgyJEj7N69h9279xCPx4mWLiFUuJArbnqnLMQkhJh1Z4/NXwmAY1v0xTs43drK0RPP0tfzEwYH+1iy5ExKzZqaGlkNVwgxJ0lQf4nRWmPbNrZtY5ompmnO2peT1pr+/n4aGho4ceIER44c48TJE/TEYkSKFhCKVFCx/EZWREpRSlrChBDZZZgeCqLlFETLRx9LJYfo62njwPE2Xtl7mJ7uVhRQVVXFypUrWL7cDfQLCgqyV3AhhECC+nmjp6eH06dP09DQQHt7B52dXXR1dxPv6aG3N04qlcJxHLR2MAwDZRhoR6O1xuv14vX68Pq8+P0BgsEgwWCQUChEKJRHOJSH3+/H5/Ph9Xrx+Xx4PB5s2yaVSpFKpbAsi0QiQWdnF+0dnXR2dtIT60YpRbigiGB+CXnhEpasvI2V4ShKurOFEDnA6wsQHbNIltaa5FA/vT1t7NxXx/MvvUysq5VgMEh1dTWrVtZSU1PDsmXLCAaDWS69EOJSIkF9jkomk/z4Jz/h2LETNDTUk0qliBSW4s8rxOML4wuECRaVUVARwufPwzQ9w4G0Oqtl3nFsHNvGcSwcO4VlpbCtJHYqSTyZpHsgidXciWNboG20dtCODdoGZaAMEzBQw6utev15+MPLWFJ6OcsDYTxemXQmhJg/lFL4g2H8wTAl5dXAcLad/h56e1rZuu0AT/zmWXq624hGi6ipqaF2eNhOZWWlLJIlhJg1EtTnqM7OTn7zm6epXr2J1ddcjS8QntEwGsMwh1NDyheNEELMhFKKYLiQYLgQGB6f79gM9HXTEWuj/tmX+eUjj9Pb00VxSSnVy5axfHk11dXVLFmyhLw8mUckhLhwEtTnMK8vQNGCqmwXQwghxDkMwyRcUEK4oGT0Mce2GejrpL2nndNbX+GRR58iHusgnF/A4sWLqamuorKykkWLFrFgwQJp1RdCTIsE9UIIIcRFYJgm4UgZ4UjZ6GNaOwz1x+nv7eSV/Y1s27Wfgd5u+vt6yC+IUF5ezpLFi1i4sIKSkpLRWygUyuJfIoSYiySoF0IIIbJEKePM0J2KmtHHHcdmaCDOYH+Mo/UxDhxrxkr0MzTYy0BfD8owiEQKKSgooDASIRqNEo1GKCgoGE5y4N7y8vLIy8sjGAzi8XgkFacQ85gE9UIIIcQcYxgmeeEoeeHoec9prbGtBInBflLJQXoTA3Q19mOd7MCxEzhWEstKYlsJUskEycQQqVQCAK/Pj98/cgvg9/sJBgIEAgECwQB5weBwRcDNghYIuBnRRioHI7dAICCLcgkxx0hQL4QQQuQQpRQebwCPNzCt/RzHxrZS2Lab5cyxrdHf46kU3UMp7PZebKsT7VjDt5S7jZXESiVIpdxKgmVZ+P1+Nm3axCc+8UnyQiHC4TAF+WHy8/PJzw8TDofP6i0IhUKjFQSPR8IPITJN3lVCCCHEJcAwTAyfiZfpVQbGox0Hy0rgzxugpHIjVirBQCpBvCOB1dyKbdUPVwgSoxUCK5UkmRwimUhgmia+kV6DgJ+AP4g/4Mfv9+Hz+Qn4ffj9fgKBM2ukjL15PJ6zfo69jV1TxedzjyO9CuJSIEG9EEIIIaZFGQZeXxDDSJBfWDytfbXWOM5wL8GYngPbSpF0LIaSNrFBC8cZwrb70I6N1jY4DnpkvZThNVO0dnBsC+3Y7rorjo1tWe4xbRvLSmGlUng8Jl6vW2Hw+X3DCy2OGVoUDBIKnelNOPc2MgwpEHCHLMncBDEXSVAvhBBCiItGKYVpejFNL1yE9QlHKhGOZWGPViaGKxFWksH+FG09CWyrd7iCkMIZHaKUwrKSWCn3lkwlsC3b7RUY7gnw+fyjK62f25tgmgaGYeIZ/mmYBoozFYKRuoHWoHFXeS8uivIfX/0aWmvQ+qznxl5DAIVi9epV3HbbbbN/IcWcJ0F9DksmBmk8uSfbxch5hcvLaDxZl+1izBtyPTNLrmdmyfXMrPl0PQ3Ti2F6geDkG2qNbbursI/8TFg2g0kbxxnAcZzRngM3KHfQY36Oc0AYDvSVUtxy03XsfHnvyCOc+eFWB/SY/WwrRWtbmwT1ApCgPmcVFxfzmttuI5Wysl2UnOf3GdQskpzPmSLXM7PkemaWXM/MkuuZeeFwiBuvuybt7Wtrl89iaUQukaA+R/l8Pt773vdkuxjzwpYtW7jnnnuyXYx5Q65nZsn1zCy5npkl1zPz5JqKmZLp4EIIIYQQQuQ4CeqFEEIIIYTIcRLUCyGEEEIIkeMkqBdCCCGEECLHyURZIXLc5s2bqaubOynlYrEYW7duzXYxztPS0gJAeXl5lksyPZm6npWVldx3330ZKJEQQoi5SIJ6IXJcXV0ddXV1VFZWZrsoc1oikch2EbJmLlX6hBBCzA4J6oWYByorK3nggQeyXQzATce2adOmbBfjPA8++CDAnLlO6crE9Rz524UQQsxfMqZeCCGEEEKIHCdBvRBCCCGEEDlOgnohhBBCCCFynAT1QgghhBBC5DgJ6oUQQgghhMhxEtQLIYQQQgiR4ySoF2IWJVM23fGhbBdjXkimbPoHU9kuhhBCCDEnSVCfozZv3szmzZsv+DiJpE1LRz9a6wyUKvc0t/cxOGSRSFps3dXAT584QnvXQEaOnUjafPvh/fzXz1/lpT1NGTnmTGiteeSZE3zle6+w90j7uNskUzY/+PVB/uMHu6lr6pm1sqQsm9bOfhxn/Neb42h6+5Ojr8ee3gT1Lb3E+xJ862f7+PqP93DoZNeslE1rTd9AclbfCzv3t/Djxw9zujme1vYpy6ZvIMUzO+uxbGfWyjXCcTRPvVjHT584QnePVEbnm8GExZ5DbbR3Z+Yzbq7L1PekELlCFp/KUZlYIdKyHb77yAFi8QRrV5TwuhuqLrxgGXS0rpuUZXNZdTFKqQm3276vmZ6+BDeuX0Re0Dv6eE9vAtvRFEUC5+2jtealvc1s29NERSjJw789Tn1LLwDPvdLI7/3OitFtd+1voXcgxXXrKgj403/LxPsT9PQlAahv6eW6K848F+tN0D+YZFFZftrHm6m+gRSHT7mB8O5DbayrLT1vm6a2Ppra+wF49WgnlQsjGS+H1pofPnqYtq4BVlRG+d1NNec9/+MnDtPY2sflK0rYuK6CzQ/vJ2U5rKyKMjhkAVDXFGfVsqKMl++J50+x/3gnlQsLuOf22km3PXSik/3HOrm8toTaqvTKMjCY4tmdDYAbXN33pjVT7rP3cDv9gymO7G8lEvazflVZWueaqbqm+GjFb9u+Zu68admsnm8iWmuee7mRts4BbtmwmNKivKyUY7759bMnqGuK4/OafPht6/B5zWkfYyhpoR0IBuZ++CArKYtLzdx/V4ppO14f42hdN1esLKWiNDzhdsmkTSyeAKClo/9iFS8tx+tj/HLLcQCGkjZXXbaAHa8209zezw3rF1ESDeI4mh8+dojm4WBUoXjt9ZUANLX38aPHDuM4mjfdVsPypdGzjn/wRBcv7j7Tem4YilDQS/9gioWlodHHTzb28MxwIIbWbNq4NO2/oTSax4Y1C2hq7+fGKxfR25/E7zPpH0zx7YcPYNkOt1y9mA1ry2d0jQASSYu+gSRKKRxHYxjnV37CeV6qF0c41Rhn7fKSs57rG0jykyeOMDiUIlrgp28gxWU14wepnbFBevuTVC4smLSSNZHt+5r/P3t3HiTXcR94/vvqvqv6vg/cF0EcJHiLpHiIEimJpCjZOmzJko/ZXTt2ImZnJiY2RrZjtRGe2JmJ2N2Z8e7KOzO2vCPJkke2pSElUqII3icOAiDRuBrdQN9dXdV1H+/I/eM1Ct3oG91AdzV+n0AFuqpevcp69arql5m/zGRsqhdkrvPNMC0GR7MA9A2l2b21Dt242jq9o7uWTK7EnXualv3ciykUdXoH7R6K/qE0lqXoG0rh87hobZz9GXrprX4M02IknqOsW5y5mODg7iY2tc9fGfJ6nNRGfSRSRVoX+FzOJxLyVP5WSvHrdy8xMJrl4UPtq1YJq4v58HqclMrmnK97MYOjGQ6/f5nm+iCP3N1JrqAogst3AAAgAElEQVSjGxY1kdkV64WMTuR5/9QIAG8eG+SZaZXs9ebw+5cZGMnwiTva6WqNrHVxFmRMfZ5M05q3t2whY4k8f/PzHixL8exj2+hsWd+vV4hbjQT1G4xhWvy3wxcwLcXgWJbf/cLeebcN+N08fFcHFwdS3L235SaWcnHmtB8c01TEkwVePzIIgG5YPPf4dlLZUiWgB4iGrwY98WSh8qM1lsjPCuq901qofB4njz+wCYdDI5vXqa/xV+4L+txoGigFwYCHxUymi/QOpNjcESMW9vLgnR0AnDw3zg9/3kPQ7+bhQx2VVIqJFaQ4nOtP8MJrF0lOVcw++GiEu+Z4HzVN45lHt/H+qWFeOzLA4FiWzz60GU3T6BtMk5gqw+4t9Tx0qGPO50qmivx/P/sY01Lct7+Ve/a1LrmcSimKZZMTZ+OV2x66s33Wdm6XkwcOtnHmYoJDtzXT1hjmgYNtTEwWuf9AK5GQd8nPuRzn+pP8t1cv4HI6qIl4uW1bPSfPjvPyu5cA+I0ndtDePLNHpak+wOBolqa6AL98uw+lIJEu8vtfvH3e53E6HXztqV1MZkozzrGFfHh2nCDgdGh0TQugEqkiH56xW9Tf+XB41YL6SMjLt57dS7FsLDsQB3jnxDCjE3lGJ/K0N4V58a0+DMPiqQc3s2MZvSvRkIeAz0W+aMzbMPHxhQnGk3kO7Wme0UN3MyVTRY5+PArA28cH131Q/5lPbOLkuTidLeFl9TpeMTSWrVS0B0YzEtQLsc5IUL/BOB0aoYCHVLZENLR4EHpwVxMHd61+y+dKbe+q4fH7utB1i307GyiXLfxeF4WSQcNUQBQNeelui3BpOMP+nQ0cuu1qQLtrcy0j8Ry6YXFg5+zXt6UzxjOPbsUwFUMXs5Wg4Nofusa6AF99ahe5gs6mtsUDp7/95VnS2TLHTo/xu8/ZFar+oVSlVyBX0PF6nNyzr4VUpsR9+5ceHE9nmBbPv9aLNS3NerGWt1Pn4liW4lx/kkLJIOBz090WoSbipVg22d5dM+9jswW9UtFK58rLKuvzr/Vyti9JY22AfEFne3ftvCkrd+1tmVExmauSslxKKc72JSmVTbye2ekG/UNplLIri/cfaGN7dy1vHR+s3J8vzh6c+9zj25mYLFAb9fHDn/cwnijQXB+ctd213G7nslJJgj435O0K+PRemEjIQ13Mz8Rkgc0dq5sq5fe5rju1ors1Qv9QmmjYS0k3Ky3Dw/HcsoJ6v8/NfftbGR7Pcdu2+ln3jyfz/OKNi4CdXvbUg5uvq7wrFQp6qIv6mEgV6Zrn+8EwLc73J6mvCSxamTNMi1feu0SpbPLIXZ2rXlmJhLzcf6Dtuh+/Y1MtFwdSGKbF3m2z0/iEEGtLgvoNRtM0vvLkTobjOTqaw/RensTlclRli8r0Hw2/z8HXn95DKlOiZSo9xuHQ+MJjc+c+u13ORccIbG6PATB0ceFyNNUtHqxdYZp24GtOi7Z/8UZfZdaW3Vvq6GyJ0L2ECsJ8xpN53jw6iMvpoGxZaJqdYnNokTSe/TsbefPYIFs6YvinKi+hgIdvPjt/b84VHc1hHryjnclMiXuXWRE5f2kSgMlMkX/823cs67HXaySeo1Q26WqN8P6pETs/O5GncY6A+sCuRsaTeYJ+dyV95tCeZkxTkS/oZHJldMPC7bo6r4DL6aicF1/+9E4mUkUaapfW+n7Fm8cGGRjJcP/BNtqb5h5b8fSjWzl8eJAn7985I+XJ7XLyW5/bRalkEvC7Kesmv3jjIsWyyRP3dxNdYa9GNl9mcDRLV1sEXbd4+8MhaiO+RVPF7tjTzPbuWlLZEn2DKbZ11WBZijt2L6/hIJ4s8Kt37J4Sw1Q89dDMoN3jduJ0aJiWqpzLa8HtcvC1z+2mUDQIB+duRPn1u5c4dS6Oy+XgW8/eRmiBHr+zfQlOTvVoRUNePnHH7B6tteT3unj2sfWbCiXErU6C+g0o4HezpSPGqXNxXnqrD4BnHt1aCWKrVdDvJrhG3exL9dzj2zl3Kcm2aek+9TE/uYKd1rMaAw9fPzJA36A9e8oDB1rJ9IWwLEXPxQRbO2vmbI0GOLCriQOL9MpcG7xOdyWgu3B5klfeu0RbY4hPP7Bp0fz6+w+0cvJs/IYP8rxicCzD3/z8DACP3dtFsWxW7iuUjMrYg3xRx+nQqIv5+cqTu2bsw+12sq2rhu8/fxqATF7n4XlSk9xu55Ja6ad75b1LHDs9BsAbRwb48jXPf4XP48Lncc4ZMDodDgJ++70615+sVJ6O94zx0J1zl3UplFL84IUeMrkybU0hIkEvp3snAGhpDC46uNvvc/FX/3CKsm7RUOPnt68ZEHy6d4IPTo2wc3PtjN616TxuRyVo93lnn8/RkJevPLWLxGSBbV3z9zDdDC6nY96AHqgM8DYMa8YYkbnUxfyV191UJ4ODxcKUUgyMZomFvQueg+LWIUH9BvTSW330XEzQNm2gW7FkrGGJbh31Nf5ZXeyff2QrI/EsjbXLC/zm01QbpG8wTcDnYu/2Rn6uwWgiz4tv9nG2Pzlj5p7leOv44FR+doQvPLZt3mD9g1MjpLNl0tkEh25rWTSl4NBtLfMGbzdCNn81XSaTK3PP7S0Uijo979nX3zs5TFN9kH/49XncTgdffnIndbHltbJPpxsmbtf8s4iMJfL0DabYuamWSMiLUorjPWOV+9vmaKU/15/kdO8E+3Y0oLB7Z+pj/nnfk+b6IB63E8Ow6Ghe2YxKlqUqKUe5vD5jfy+92c8zj2ylZo4Zpa7QNHA4HICFa44K4utHBsjmdcaPDHJgVxMu5+xtIiEvX3lyFxOpAtvnCdobawNz9rysN4/c3Uk05KG5IbToOIWmuiDffPY2DNOiNnr956S4Nbx+ZIC3jl6g78QL/Mm//Ge0NEtK1K1u0aBe0zQTOAlogAn8kVLqrQW27wbuU0p9f+r6fqBVKfXCahRY07TDQAtQBMrA7yuljk/d9wLwVaXU5CKP/6dKqQ+uuX1Vy3mjFUsGzjlmOtENi1Pn7O7beLLAvftacbk0dm2uu9lFFFPcLgcdzauX/nT/wTa2dMaIhDx27rOiMrf6SipvPb32tJf9Q2mKJXPevOrt3bUMjtmDRGORGzN4dSW2d9WQ3N9KsWxy555mPG4nOzddPf/LusnlYXuGm5JlMjyemzOob64P8swjW5nMlNg7xzSgYP+ovn9qhE1t0TnTEkzL4scvnqFUNjnbl+S3PrcbTdPY1lXD2b4k27trOLCrkXP9SbpaI3jcTpRSvPBarz3YfTRDk7/IX//0Y3ZtruMzn7ja01MoGqSyJZrqAtRGfRza00ShbMwIwk3TYiyRRyk1b4Xg9SMDXLg8yb37WtmxqRan08HTn9zK+UuT7N1eT2NtgFLZ5NjpMZLpIh9diPPAwfnTQpwOB7/56R1cGs7MOU6jqzXKR+fjtDeF5gzor2isC9C4iq3VL77ZR0/vBFvrdd47Ocz5S5Pcs69lST2YFy5P8sGpEXZsql20x2liskBJNyszHIWDnmXNmnWjBoSLjWciVWT4wjukEwP85O/+jj/87/9grYsk1thSWuoLSqn9AJqmPQH8GfDQAtt3A18Fvj91fT9wJ7CawfLXlFIfaJr2TeBfA48DKKWeXME+b0Q5b4h80WA8WUADxhP5GQPv3C4He7bU0XMxwb4dDcuapWSjm8yUOPrxKO1NoSXPLb5eTU/3cDg06mN+7tjdxL4d199Sc2hvM28fH2JrZ82sgD6bL+N0OvB7XRzY1chtW+twuRzXNbXlciRSBVKZMt1ts6fRtCzFr97pJ5kq8sjdnZXPgaZps877rtYItVEfpmlx775W8iWD4XgO71SazXw2d8wf8J3tS1RmPrk4mJp3IO4V04v/2Ye2ULrXxO1y8B9/ctKeKrQlwnOf2o6madRGfYwnC9RG/eh5O2VjaCxbeXypbPC9n35ErqBzx+4mWhqCvDk1GNvrdlXGPfzs8AV6B1KMJfJzjg0pFPXK1JFvHR+sDGbtbovOGPexf2cjPRcTGIa14LSdV9TF/PP2fnzqvi7u3deyYG75ajNMi4/O240d+aLBG0ftgdCvfTCwpKD+lXcvkc6VGRzLsmdr3bw9MyPxHD98oQdLKT51X/ecg3yFWC37t4X5yV9+DMD7777F5Fd+g1isutNsxcosN/0mAiQBNPsX9n8DPgMo4H9VSv0N8K+AXZqmHQd+APwh4Nc07QHsCsEvgf8EbAbywB8opU5omvanwCbsVvjtwD8B7pna/yDwOaXUtdNQvA38sytXNE3rA+5USsU1Tfs28DXgMhAHjiil/s3Upl/SNO3PgRjwu8C7wP8yvZxTr2VdMk2LbNKeO/0f/9Hvzbvduz+H//NmFarKffe7313rIqzYfNNRLtXebQ1zzmjROzDJT399AZdL48uf2cVHF+JcHs5QKBl4PU6efXTbDcnnnMyU+OuffYxpKu7e28L9B2fO2jEwmqn0Sr13cpinHtoy124qrozHcLudRN1OfvPTO6+7bNl8medf62WxxWedDge/8cQO+oZS7LimIun1ONENi/zUIOpM/uqsQr/x6Z2MTuRoaQjyq18NoAVDMwap5gpGZfD1aCI/I9BWKC4Np+lsiTA6Ya8LkBi7RGIMvvrVry5Y3l/+ePHX/vbzi2+znn1wzfWXfrS8x3/jxSU+zxK32wg2wvdnNXrlVy9UGgssy+InP/kJ3/rWt9a2UGJNLSWo908F6D7sgPuRqdu/gN26vQ+oB97XNO014F9gp7d8FkDTtFHsQPuPpq7/O+CYUuoZTdMeAb43tR+ALcAngd3YAftzSql/rmna3wFPAX9/Tdk+PcdtaJp2J/AccGDqNR4Fjkx/3UqpuzRNexL4E6XUY5qm/fH0cs6xzz8A/gCgqamJw4cPL3LYbiBreVMKilvDjTons3mdlqAdQL77zgTZvI4bcGuADi/+8hJ1UX/lxyWbza5KWXTDotlvz6E/MZTgcPrcjPstpeiMFDEthaM4yeHDlxfc3+SknZW3GmVTCtpDBaypqN7ncfL2W6/P2gbNzlsEOBq/erulVCV9blezSbFsEvC5ZpWt9wyYRpHG0AiXzo9w6fzV+7Y3lCnrFmFnmt4zw+xtszBMi4HeMS5fgJMBN5tqHGQ85VmBrBC3kjX9vb4OS/0OffXVVzGMKwOxDV599VU2b16b6V3Xs9X6TaoGy02/uRf4nqZptwEPAD9QSpnAqKZprwKHgPQi+3sAO+BGKfVrTdPqNE270sz0c6WUrmnaScAJ/GLq9pPYaT1X/BdN04JT2xyc5zn+QSlVmCr3z665/ydT/x+5Zr/zUkp9F/guwJ133qkefvjhpTzshjh8+DC7dtmzZXz7299es3JUG92w6L08SWNdYMaAtcOHD7OU93MskecHL5zGNBWffWjzilJ4JiYLZPP6qixW853vfAdgSa/heqSzJV56qw+vx8WDhzr40S96SGXLlUW5AO48tK2SrrHU47mQkXiOjy9M0BABy1TcM0+6Rlk3KZXNGT0FpbLJC6/3UiwZfOaBTcSm3uvXX7eD7tU6TpPpImOJPF1tEbzumV+lFwdT/PTX5/G4nXzlqV3EwnaetL2a8EfkiwafvKtj3tmIKivGjmRoCZqzypwv6vynn5ykrFvsrqvj8alZlS6PZPjxi/bMP3ua6njwUAd//sPjhGracbkc/Pn/8a/mfT2vHxngxJlx9u9sZHNHlN7LKXZtqaN2gUGxq2E8keevf2anEOzf2cgjdy89//x6rMb5OZeReK4yW1J3W2Te6XbXgzN9CQZGMtyxu6ny+bheN+p4rtSv373ED7/37+0F/9Zh+Ray1GPa29vL4cOHMQwDl8vFQw89VHWv9WZYr+fojbCs9Bul1NuaptUDDVxtgFquuR53pRO7NPU8lqZpulKVzm3rmrJ+DfgQO9XnP2D3Giz2HNOVpv43kRmAbohMrsyPfnGGkm7w7KPb5l0V8mZyuxzLWgDnWo21Ab717F4Mw1pw9o/FJFKFyuqsDxxsW5UFluYzMVng/VMjdDSH2bP1+vJ7IyEvX/zUjsr13/78HnIFnUSqwPOv9lIT9VXWDlgtP33lPNm8vVDXH37lwLzbedxOPO6Z+c3nLyW5OJAC4MMz4ytOS5pPLOKbNyDqG0xhWopCyWBoLFsJ6hOpIvmpKQ4HR7PzBvXTV4yNOGYvfqXrFmXdzrWfvjhWR7O9Cm8yXeL+A6143E6a6gL0YPcmLOTIx6NYluLo6VGO9YxS1i3OX0ryjWduW/hALIFumPQNpmmuD85K1WqoDfDso9tIpovs3b6yHPR4ssBYIs/27poFB+HeCE11AfbvbGR0Ise963gsUyZX5oWp1LFEqsiXntix+IOq0OkL9jSs+YK+4EDxavbss8/y6quvAvaMU1/4wrWhkLjVLCug1TRtJ3br+ATwGvCPNE37K6AWeBA7v70NmD6nWuaa669hB+Xf0TTtYSCulEov9wM31aL/L4ELmqbtUkqdnnb3G8D/o2nan2G/xqeAv1hkl9eWU6xA/1CaVNauO53tS66LoH41rEbueDZ/dXXWVKa0yNYr86u3+xkcy/LxhQk6WyJzll83TEYn8jTVBjBMhVJq1kqWZd3kJ788y2SmxJMPbqazJUJNxMf/+Fs3ZjEpv89FNq9f18JCrQ0hvB57esfV6Am5Hvt2NDI0lsXndbFl2mDb9qYQ+3c2MjFZWHAQeyTkpb7GTzxZwOueY572sJenHtrM0Fh21sJO11YSf/MzOzn7fnDO6SWn27utnhNnx7ltaz1n+hKU9bmnpLweL7x2kQuXJwn63fzuc3tnBdyb2qNsYmUr4+YKOt9/4TSGYXF5OM0Tq7AmxHJomnbDexlWg9vlwON2UiqbBAPre92PlTi0t5lTb2sE/e4NGdAD1NTU8NBDD/Hyyy/z4IMPyiBZsaycerBbwL+hlDKn8tzvxW4xV8A/V0qNaJo2ARiapn0I/CXwV8C/mNrHnwF/CvxnTdNOYA+U/cb1Fl4pVdA07d8C/xR7wOuV29/XNO2nU2Xrxx4blVpkd69ML+d6Hih7PSxL8fxrvVweSfPwoU52b7mxU1x2t0Woi/kplQ12bl69mWaUUihlz/iyHhWKOoapFgz+O1siPHCwjVS2xH37l75k+1vHB5mYLPKJg21L7jKPhr0MjmXx+1yzWrSv+MkvzzE4lqU+5mcyU0IpxRce3zZjGs7BsSxD4zkATp2Lr3iF4uM9Yxw9PcptW+vn7Kl47vHt9A2m6Wyx69mGafHiGxdJ58p86r7ueWdWUcperOgPvnj71MJFS68UWJbi2OlRHA4H+3c2XFcg8Ot3L3Hh8iT3H2jla5/dPev+pQZ+bpeDr312F6WyyXvvvDnnNju6a2cNvp2Ly+lYUnD+6D1dPHJ3J5qmsX9nI/3DabZ2rk6QkMnZ44DyRR3DsG5IK7puWBhTizsVZF2Oefm8Lr721C7GEvkFZ3dayMSk3SOytXNtF/5ayF17W3ixcWM0Ji3k2WefZWBgQFrpBbCEoF4pNWckMJUa88+YNvvM1O068Og1mx+65vrTc+zvT6+5HprrPqXUw9ds92+n/d097a5/o5T6U03TAti9A//22scrpeJM5dQrpRJzlHPDSGVKnOtPAnZAdaOD+lDAwzee3rP4hsuQyZX5m5/3UCgZPP3I1hUHlqttPJnnhy/0YJgWT39y64I/mMtNuRkcy/DOh8MAODQWnenlisfv62J7Vw2ZfJnh8eyMaQqviCcLACTTxUoPwuBodkZQ39IQpKHGDvpXuuZBPFngtSMDGIbFm8cGOXRb86wAOuBzzzhH+wZTnOmzz98PPhrlwTvaZlWelFL87UtnuTyS4eDupnlXgJ3P8TNjvPqBPauU1+Ng95blpYLkCnplUamX3uwjFPCs6Bx1OhwEfHbwm0wXOfrxKB3N4RVPx3pxMMX7p0bY1hmblf5z5X2oifrmTDEbHs8yPJ5j15a6ZfWiPHF/N8d6xuhui86qaFmW4uV3+0mkijx6d9eCi5kVywZ///J5cvkyTz64eUYPYCzs5bMPbWZ4PMfB3QuvnHyrWyh1bDGFos73nz+Nbljs2pxClshaWzU1NfzxH//xWhdDrBMbOZ/8u5qm7caeteevlFJH17pAq00pu8UkFvbinNbyda4/ybn+JPt2NlSWdI+EPXS2hBkYsedZno9hWrx7YhhNg7v3tszY71obGM2QnmrxOz2VTrKejMbzlWXgB8ay190KNpdI0IvX7aSkm9TXLG1BHqUUDk0jnSvz63cvAfDsY9vYdE1g/+kHNnHqfJxtXTHO9iUxLTVrsSWfx8Vvf37PinNTs/lyJUUCYHN7bEn7a6oL4ve5KJYM6qI+/t//ehLDtPjsQ1sq88yXdZPLIxkALlxKLjuod09rzT7y8SjFssnBaUFvrqDz0lt9OB0aT9zfjdcz8+sz4HPRWBtgLJHHUnblebXO0V++1cfAaJYPz4xzYCxLNq/z4B3tRMPLX6jolfcuMZkuMTCSYfeW+gXn1p8uX9T50YtnME3F5ZEMTz+ydcnP2VAb4FP3dc9538BohpNn7amB3j0xzFMPzT97x6WhdGW+/hNnx2el9W3vrq36NSjWO92wZ1kCe85//zrL4CmVDcYTBZpXeZyPENVgwwb1SqmFJ2TeABKpAn/1Dx/R3hTiN6bm3DZMi+df68WyFMPjOX73ub2A3er3xU/tWDQoO3F2nHdP2C3CAZ970dUTb6am+iB1MR+T6RIfXZgg4HfziTvmX9lyPsdOj3JxMMVde1tob1q9YRTbu2voG7IXITqwhONW1k2AedNipgsHPXz96T1k8+UljU8YT+b52xfPomnMaHG98pzTbemMsWUqzWKx1umV5qaW9aspEt2tET7/yZk9DkNjWV54vZdIyMszj2ytHJtw0MPvfmEvumHRP5SuVJ6GxrKVoN7rcXHX3mbO9ie55/blD1Tcu60Br9vJ60cHGE8UOPzeZbZ31VRm3TlxZrwyALezJTHrs6FpGl96Yjvff/40qUyZ7QssarUcStmfRbArHsdO270BTqfGk59Y/vR1rQ0hJtMlGmr8MyoySynHlSkNLGuRCfqXwTAtfB4nxbI5YzXcuUx/3rnO5cWksyXKuollqSWn8I0n8njczuuqQG1EkZCXpx7awtCo3SN29IOhtS5ShVKKH7zQQyJVZPMSFkkTYqPZsEH9raBUtn/UBseylVzzV9+/jEOzpwuKRWb/CC0WlIWmNbuE1tEgqkLJ4Me/OFNZcAfspdsXCupT2RK/eqsfv9/FJw918tNXzjMcz2LZ8SC5gs5vf271UoQ8biefXWJazOhEjh+/eAal4Iuf2r6kQD0c9Cx5oO7FgVQlr7hYtls2NY1lB5qZXJkfv3iGkm7y7KPbZqxkuxjDtHj+1V7iyTyP39dNZ4u9qutnPrGJkXiOO/fMTrs5eXacdLZMOlvm8nCmUtmAqzPdbOuK0TdYS6FkcGDXzMD6gYPtPHBw+RW9K7Z319I/nOZkJk405JnRGt/aGMLh0HBoWuU4mJbds6UU3H17C16Pi9955jZMS61K3vjL7/QTT+RxRUw++9BmAn43f//yOcq6RcMSe2yu9cT93VNTGXqXNTYl6Hfzhce3MzSWZe8qrZTa0zvBC69fRNNY0jSxkWmBdWPt8l5/vqjz1z/7mHpPicPvX17S2IaPL8T5xRt278xXn9o1Y/XuW9n2rppVq7SuJtNSJNNTa1tMFta4NELcfBLUV7FYxEtrQ5DdW+rRNI2+wVRlGrzOlvCsVtCl2N5dy5d8LkBbtNXsZsrmy5WAPhL04HQ6Fp027ujHo/QP28sm1EZ8DE5127ucDgzToqlu7bpnL49kKlMSXh7JrPrsQNu7avj4wgSaZucaX7icYltnzbJb2vuGUkxOzdBzpi+xrKB+ZDzHhcv2gk/HTl9NRdm1uW7evPxt3TX09CUIBzy0NM79XG6XkycfvHELrDx2Txe3ba2nJuqb0ZLd1Rrh957bi0PTKrMDnTobr4x18PtcHNzVhKZpuJyrM5D7/KVJYk57NqmnH9mKy+ngG0/fRq6gL+u9mE7TtOsOTjuaw6v6vZCYCsCUotL7spDWhhBfemIHuYLOju7lBZXFkmE3hHhgMlNc0mPGE3ZgaFqKRKooQf0653I6+PQDmzjbl+TArkb+6uO1LpEQN5cE9VWqq6sLgC8/uatyW23Mh9djT1W2vbsWt2tpubLXmj5Acr1oqAlw3/5WhsdzPHCwbUk/rm1NYY73jOF2OdjSEWNgNMPoRJ5P3tVBbdRPU93a/UDv2lxH70AKZakVDzydSyzi43em5hdXyp4v/Xqmh9zUFqU26qNUNtm5zDn+G2r91EZ9JNNFti8xANvcHuOPvnoAh6at2TR0mqbNW8m6dgGs6VMChm5AcvG9+1s59/EQ9+xrqbT8L6fHZr07uLuJXEHH43Iu+fy63kpFbdTPo3d30n8+wSfuWtrUk3fe1kyuoOP3udjaJdMFVoPpjQZXfieFuFVIUF+lvv71r8+6LRry8s1nb6NUMle0ONJ6tdC83nPZ3lVDy3O343I68PtcMxZQWmtBv5vfuEmLvmiaVsnJXq5QwFOpHCyX1+PiG0/vwTDVsnK3nY71Mzh7MVs7a/jSE9tRihsycPv27Q0khvzLmvq0mvg8Lh6/t/umPd++nY0kRzwzVpReSNDvvqG9QuLGmut3UoiNTIL6DSbgc193ALcRbZQWzWqlaRpu1/pcU2C1rMeeLSGEELee6mkSE0IIIYQQQsxJgnohhBBCCCGqnAT1QgghhBBCVDkJ6oUQQgghhKhyEtQLIYQQQghR5SSoF0IIIYQQosrJlJZCbAD9/f185zvfWetiADA5Ocnrr7++1sWYpb+/H2DdHKelWo3j2d/fLwvxCCHEBidBvRBVToK1pQLwN9AAACAASURBVPF6vWtdhDXT1dUl54kQQmxwEtQLUeXW26qJhw8f5uGHH17rYmwYcjyFEEIsheTUCyGEEEIIUeUkqBdCCCGEEKLKSVAvhBBCCCFElZOgXgghhBBCiConQb0QQgghhBBVToJ6IYQQQgghqpwE9UIIIYQQQlQ5CeqFEEIIIYSochLUCyGEEEIIUeUkqBdCCCGEEKLKSVAvhBBCCCFElZOgXgghhBBCiConQb0QQgghhBBVToJ6IYQQQgghqpwE9UIIIYQQQlQ5CeqFEEIIIYSochLUCyGEEEIIUeUkqBdCCCGEEKLKSVAvhBBCCCFElZOgXgghhBBCiConQb0QQgghhBBVToJ6IYQQQgghqpwE9UIIIYQQQlQ5CeqFEEIIIYSochLUCyGEEEIIUeUkqBdCCCGEEKLKSVAvhBBCCCFElXOtdQGEEEJUt3K5TDKZJJlMkslkyGazZDIZ0qk0mVSaTDpDsVCgVCpRKpcolcuUyiXKuo5SFkoBKJQChQLA7XThdrvxuD143G7cbg8+r5dgKEgoHCYcjRCOhAmH7UssFqO2tpZYLIbLJT9tQohbj3zzCSGEmFe5XGZiYoJ4PM7ExATj4+OMj4yRmEgwOZlkMp2iVC4TCYQIe4ME3X4CTi9+hwe/00ut20ebqwmv340n5MbjdOF2uHA73bgdLhyahoaG/U+rPK9pmeiWgW6ZGJaBbhmUTYOCUaIQL5IfSTBkDFO0yuTNEhk9T7qYJVvIE/QHqJkK8hubm2hsbqKhoYGGhgYsy1rDoymEEDeOBPXipsvn84yPjxOPx4nH46TTdmteNp0hk8mSzWbJ5XPoho5pmpimhWkZmKaFZVk4nU7cLhdulxuX60prnptQKEQkEiUSixCJRYlEIkSjUerq6qivrycSiaBp2uIFFAsqFotMTk5WWmaTySTZTJZcNks+m6O+uZE/+Z+/Tb6QR9cNLMvEtK68jyaWZeHQHDhdTlxOl32Z+tvn9xMMBggGQwTDQYLhEMFgkEgkQiwWIxqNEovFCAaD8l6uEsMwmJiYYGxsjPHxccZGRxkbHmVsbIz4xAT5Qp5oMELMFybqCRJ2+qnzhtjk6SbcvoewJ0DA5Vv198PlcOLFs+zHmcoiVy6QLudIl7Ikz2c4d3qYD4wcyWKG2+86wO9/6/doqK+nubmZ5rYWmltaaGxspLm5mWg0KueWEKIqSVAvbohyuczQ0BADAwMMDgxwue8SY2NjTCQTWJZFTTBKzBsi4g4ScHgJuHy0uUMEXHUEGnz4XN6pVjwHTs2BwzH1v6ZhKgvDMqddDHTTIG8UyWeL5JJ5xvUJLqkyOaNIqpQlmU9jWAa10Rrq6xtobGqktaONlpYWDMPANE2cTudaH7Z1oVgs2sHd2BhjY2OMDI8wNjzC2Ng4ydQkpmkQCYSJeIOEPH5CDj9+pwef00vE5cfd5OYTkd34ary4HE4cmma/jw4HDs2BAwcWFqZlYSo70L/yf9EsUzTKFCdKFMcyJIw4Q5ZO3iqR1QtkS3kyxRy6qRMOhqmN1VBXX0d9YwN1DfXU1dVJJe4almWRSqXsFvap93V0aISxkVHG4uOks2nC/hC1/ihRT5CYK0ibL8ye2D5qmsOEPAEcVXQcnZqDiDdIxBuEcOOs+y8EM/zhvi+SKKZIpNMkxgboe/8MiVKaidwkumnQWNdAc3MTzW2ttLReDfhrampwOGQomhBifZKgXqxYNpult7eXCxcucOHMOQYGBkimJqkL19Dgj1HvibLVX8/dLVuIdofwu7wrCrYcmgO3Y/mnbskoM1nKMlnKMDmQ4fyFD3m3/AZbDuzkW9/8JvU1dbS0tNDR3Ulbezvt7e20tLTg9Xqvu6zrlWVZTExMMDQ0ZF8GhhgaGGBkdJRsLkttKEaNL0zMHSLmCbHb18r9HTuIbg3hc3oWfP8uuDJ0R+tvaPl1yyBbzpMq5UjnsqR6Epw9NUDayJMqZZmcUYmrp6Gp0b40NFBXV0dDQwOxWGxDVORM0ySRSFRSZOLxOOOjY/ZlfJxEKonX7aU2YFeko84gNd4wm/zbqNl2B1FvEKej+o/DcoQ8fkIeP52R5ln3FY0SiUKaiWKKxKlRjhy/QLKUYSI/SaFcpC5WS2NjE82tLTS3NtPY2Ehjo31ubcTvCiFE9ZCgXiyLaZr09fVx5swZzp4+Q29vL5lslrZYIy2+WrYE6rl/03ZqfZF1Fyh4XR6aXLU0BWtn3H4hkOFf3PUNJoop4vlJxj8cpPf908QLk8QzSaLhCK2tbbR3ttPW0U5rayutra2Ew+E1eiVLl8/nGRkZYWRkhMGBQQYvXWZoaIjR+DgBr4+GYA11ngi1ngh3+jdTv+MgUW8Ih7a+WyPdDhc1vgg1vsi820yvxKUGsgz1nqXHPE6qnGUynyFXyhMJRairqaWmrpa6+jpq6+uoqampDLiMRCL4/f41afEvl8tkMhnK5TIffvghqVSKRCJBIj5BIp4gmUiQTE2SyWUJ+4NE/XZ6TMQZIOoJss/bSU3XHmK+MB6n+6aXv1r5XF5aww20hhtm3Vc2dZLFDIlCisSFND09Q7yjZ5ksZEjkUgT8fhpq7UpkU0szjU1XA/66uroNUYkUQqxfEtSLBZXLZc6dO0fP6R5On/qI3r6LxAIROkNNtAcauHvzo9T5o+s+CFyM2+miOVhHc7Buxu2mskgW0oznk4z3THDkZB8vFlOMZSZwuVy0NDbT2NxE07QWu6amJqLR6E3ppjcMo9JKeyUvenhgiJHhEUbHRynrOvWhGLW+KHXuCJ3+KAdbOqnbHMO7wQO9+SpxVxiWSaacY7KYJZPNkU4k6f14iKxRIK3baT65UgHDNAj6A4SCIcLhEKFQCJ/fj8/vwx/w4/P78Xq9eDweHA7HjMuVysCVFC/DMDAMA13XKZfK5HM58tk8+bx9KRQK5PI5srksumEQ8gW4/8EHeOOFVwi5fIScfiLuANu89YTrOom0BAl7AuuuAr1ReZxumoJzn1OWUmTLeRLFNMlUmsmxAS4bZ0mWMyTzabLFHNFwlIb6BpqaG2maSuu5cgmHw5IuJoRYEQnqxQyWZdHb28upk6c4cew4vf19NEfq6Ag0sj/cxecP3k3A7VvrYt40Ts1BfSBGfSDGrmm3K6XI6nni+RTJiTQTQ31cMD4iWcqQzKcolIuEgyEiYXuwbqymhlhtjHAkUgkAp//vdDqxLAvDMLAsa2qAsEm5XCabtQcPZzNZsukM2UzGbrVNJskV8kT8IaL+EBFPkKgzSIMvwo7oHuqa7yPkDkigMA+Xw7loaz/YwX/BKJLXi+T0IoVSiXJBp2yWKJk5MpaOrgx0ZaKmpmW0sFDY5wnY55FTc+DEHlfgxIFLc+B1eah3evC66vH5PHhDHnxOD0GPv5LmdMGf4Z4dn74JR0SshEPTKrn83dGWWfcblmmP7ymmSY5kGO4/y2njmJ3ak51EaVRy+VvaW2lqbqa5ubnSKyifYyHEYiSoF4yPj3P8+HFOHD3O6TM9RHwhNodbuCOymefuvB+va/kzUGx0mqYR9gQJe4JsonXW/bplkCsX7MGd5Ty5sQKZgRHGrX4MZWKoq9P16ZaBqcypgcAONKYGlaLhcjjxOzz4HPZA1Ea3ly5XK8G6LURbQ4Q8/qrvJVnvXA5n5b0W4nq5HE7q/FHq/NE578/rRZLFNBO5NIkPh7h05CwTxTTjmQSaQ6OlqZmWtlbaOuzxPu3t7TQ0NMjAXSFEhQT1tyBd1+np6eHY0aMcP3qcbCbD1toONodaeWTfcxK8rAK3w0XMFybmW/9590KItRdw+wi4fbRdM2OPUoqcXrTH+IxNcvlyD8fL7zGanSBfLtLa1EJHZwedm7ro7Oykq6uLSGTh3ichxMYkQf0tIplMcvToUY689wE9Z3poDNexJdTK02330RJqqKop64QQ4lahaVpltp5r03qKRomxfJKxsQQXLp3g7dJrDKfG8Xg9dHV00r1lM92buunq6qKpqUla9YXY4CSo36Asy6Kvr48jHxzhyPsfEI/H2VrbwfZIO58++OVbKi9eCCE2Ip/LS2ekecbUnEopUqUsw7kJRk4M8qv3P2I4E6egl+hq72DTts1s3rKFTZs20dLSIoG+EBuIBPUbSKlU4tSpU3zw3vscO3YMr8PD9mg7j9Xtp2NTM07JvRZCiA1N07RK6t+uuu7K7Tm9wHA2ztCZOK+d+CU/zIyTK+XpbO9g89YtbN5qB/qtra0S6AtRpSSor3LFYpE33niDI+++z5lzZ2mLNrIt3M43dz4174AsIYQQt5ag28/Wmg621nRUbivoJYay4wydi/PGqV/xo2ycbDFHe2s7m7ZsYtOWzXR3d9Pe3o7bvbGnwBViI5Cgvsq98sorvPzTF7m/eS9P3nEHfpesaCiEEGJxfreXLTXtbKlpr9xWMEqMZCcY7ovzQc/r/Cz/90xkJ2mqb6Szq5POTV10dHTQ2dlJbe3ca0AIIdaGBPVVzjAMNkda2du4da2LIoQQosr5XV42xVrZFLs6Va9uGozlE4wmElwaOs0HpbcZy0xQtgwee+wx/u//8H/R2tFGS0sLLS32oloej0yFLMTNJkG9EEIIIebldrpoCzfOmm4zpxe45MzjGE1x+dJpPtTfY6KQIpFNEQmFaaivp76hgYamBuobGqirq6O+vp5oNEowGJQFtYRYZRLUCyGEEGLZgm4/HqfBrpbdM243lUWqmGGylCWVyDI5NMhl6xzpco7JYoZsMY9u6oQCISLhMJFIlGgsSigcIhAKEgwGCQQClYvP55u1CrfH48HpdFZtxUAphWmaM1YQn/73xMQElmWhlKpcgMrr1TQNTdNwOBy4XC6cTmflf6fTKYOdb1ES1AshhBBi1Tg1B7X+KLULTNZwZdXtnF4kq+fJTRQojmVIGnFGLJ2SMiiaZYpm2V5927xy0Skb9sWyLFxOJ06HE5fzakDrdDhwOBxoDkflb4fmQHNoU8GwA03j6v9MqxhMryMoUCim4mlQyr5uKSylUJZl/68sLEthKQtlWZiWhXXNxbQsLGVW/lZK4XA47JXEp5dR03jgwQf4rz/8sV1WtBkVF2UXyv4fsJS9P9My7f9NE9MycTmdeNwePG4PXo8Hr8eL1+vFH/ATCAYJhoJ2JSpoV6JCoRDhcJhIJEI4HCYUCknFoApJUC+EEEKIm2o1Vt22lJoKak1MZWEqcyp4ngqwUVf/VnYYbAfpqhKsXwmObVf/VgrsWPpKyH+lhdy+xTEt4L4SfDs0zQ7Mp/+taXbgPnXdMfX3tcH6dBcCGf7Jwa9c93FRSmEoE900KJt6pVJUtnRKhk4xXaKYKJExMsStMkWlUzBLFPSSXdEqFyiUivh9PiKhMNFIlGgsRqw2Rqy2hmg0SiwWq1wikYhUANYJCeqFEEIIUXXsQNmJy+Fc66KsK5qm4dZcuB2u615o0lSWHeTrBbLlPNlsgWwiw6AxylmzRNawe1gyxRz5UoGQP0gkHCEWjRKtmaoA1NgVgCuXcDhMOBzG5ZLQ80aRIyuEEEIIISqcmoOQx0/I46cpuPDUpaayyJULZPU82XKB7ESe7EicXnOAnFkkpxfJ6QVypTy5UgGv20M4GCIcChMMhQiFQ4QjYYJhOwUoGAzi9/sJBAL4/f7KJRAISIVgEXJ0hBBCCCHEdXFqDiLeIBFvcNFtLaUoGiXyU4F+wShRSJYojGeY0OMMKZ2CVaZs6RTNMiWjTNEoU9LLFMpFNLSpMQIePB4vPq93auC0F6/Xg+fKda8Hr8+H2+PG7Xbz4osv4vF4cLvdNDY2sn379ptwZG4+CeqFEEIIIcQN59A0Am4fAbePemLLfrxhmZRNvTJWoGzqlEwdwzLRywZ6wcCwDMpWlrw5iWGZ1N7eTt+bH2Mok7xRZKw8yb/7D//+Bry6tSdB/QYwUUhxZqJ/rYtRtYxYkDMTibUuxoYhx3N1yfFcXXI8V5ccz9Unx/T6uDQnLpcT8M643XC42RppAyCrFxgdS65B6W4OCeqr3JYtW/jow1OcZHCti1K1utlEnxy/VSPHc3XJ8VxdcjxXlxzP1SfHdHXNOJ5uuOeee9a2QDeQBPVVbvfu3ezevXvxDcW8Dh8+zJe/8uW1LsaGIcdzdcnxXF1yPFeXHM/VJ8d0dd1Kx1MmFhVCCCGEEKLKSVAvhBBCCCFElZOgXgghhBBCiConQb0QQgghhBBVTgbKCnETfO9736O//9aYdnRycpLXX399rYuxpkZGRgBobm5e8b7keK6erq4uOjs717oYQghxQ0hLvRA3QX9//y0T1AsolUqUSqW1LoaYRj6DQoiNTlrqhbhJurq6+Pa3v73WxbjhDh8+zMMPP7zWxVhT3/nOdwBW5f2W47k6rrwnQgixUUlLvRBCCCGEEFVOgnohhBBCCCGqnAT1QgghhBBCVDkJ6oUQQgghhKhyEtQLIYQQQghR5SSoF0IIIYQQospJUH8LUkqtdRFuCqtoULyYwMyV17ooQgixKKUU+nAGq2isdVGEEFVI5qmvcn/53f+ElS3xO//D7+PwLf52Zt7sJ/f2ZXw76ol9budNKOHqKA+kQIGnI7rkxyR+eAJjPA9A+JObCN7ZdqOKV7X0kSzZdy5jFXSsbJnwg934dtSvdbE2LKUUpd4krpgPV13ghj9f9u1L5N4dxL+nkcjjW274893qlKVQhoXD4wQg+85lCqdGCd7RRuBAy6KPT//qAoXjIzijXuq/eRDN7VxxmayiQfLvPsbK68Q+twN3Y2jF+xSimliZMuP/8QjhT3Txo3deAODrX//6GpfqxpCgvoop3eTC0dNgKSZ/1kPtl25b9DGFk2OgoNgTx3rCrPz4rDdW0WDyZz2osonvtiYyL50HIPb5nUsKOpVSGIlC5XqxJ07gjlbyR4awCgbBu9sXfe1GskDpYhLftjqcYe/KXtA6lf7VBfThTOV69p3LNy2oL56fIPXfzuCsC1D7m7fh8Cz/60gfzZI/OoR3c+2qldsqGhR7xnG3RnA3BhfctvDRGOZkkcCdrTi8i5c/+3o/uXcHwOWg/psHccV8q1Lm+eSPDqN0k/zxYcKPbkZzaJX7ch8Mog9lCN3Xiav+xlcwrqV0k9RL51FFg8intuIMe8kdHUIfTBO8twN3/cLHfr2xygaJ/3ICI54n8qmt+G9vIvu6vYJt5s3+OYN6ZSlSz5+hPJgm8ugWjJEsAGaqhFU0cK5CUF/qTaAPpAEonBjF/ZgE9eLWYaZLWPkyZqJA9q3L9F/e2KtKS/pNFVOWAstOpVGlq921yrBI/M1JRv/3tymcHp/xmOAdrWg+F/79zes2oAconolT7ptEH8pQOhuv3G5mSwBk37rE5E97MJIFzGwZI56f8XhN04h9fieOiBfN7yZ4qI3iuQkyr1wk985lcu8NLPj8SikSPzhJ5uVekv/149V/geuEq2EqmJsK9nzb6q57X8tN6yp8NIbSLYyRLPpw9rqeM/WLcxROjTH5s55VS1lIPX+G9C8vkPjBCazS/PssD6RJvXCW7FuXyL6xtB8KM2OfvxgWVl5fjeIuyL+vGRwa/r1NMwJ6YyJP5pWLFM/ESb/Su+T9pV46z/hffEDxQmLFZSuenaD48Til3iS5D4YwkgUyL/dS7ImTebkXM1cm/tfHGf+LD9DHcoD9nZf+dS+TP+25eizXCWOiUPkeKp6No2ka3q21APi2zv25MibydgNLpkzug0HCj2zGs6mG8Cc3rVpDgqc9iiPkAZcD7zzlEGKjcgTdlR6vK5/HjUxa6quYw+vC1RBEFQ2iT+2o3G5M5ClfSgFQODGCf1dD5b7goTaCh9ZfGopSCk27GnR42iJoXifKsAjc0Yq7JQxKEdjXQnkwTfbNSwBYZRN9MI0qm0Qe30Jg/9XWMN/WusqP6eRPeyieuVo5cPgXP/WVadn/G+aqvMb1KPL4Vvx7GnHW+NGcjiWlcF1LWYrk335E+dIk4Uc2L/lxgdubKV9O4aoN2O/vdXBGvBhjORxBD5prddoolD71vptWpdI8F83tAA1QoC2xghx+aBOax4mrLoCn9fpe81Io06JwchR3c4jm/+n+Wfc7Am40vwtVMJacBlQey1H4cASA9C/O4fvDu1dURldjEM3tQBkWnrYwDr8bR8CNlddx1QYo9SYrLdeFj0ZxN26mdCFB/shQ5TVEHltZSpEyLJSlVqWBw90UwrezHn0kS/BQOwCxZ3ahCgaOgHvOx7hq/LhbQujDWfw7G/C0Raj94h6sgk7mjX7cDcEV90A5I14a/tEhsNSqfUbE2jJzZaxcWVKplkBzOnDW+mn89N325/CVtS7RjSVBfRVTpgUODWfUi6vGX7ndVRfA0xm1fyhub76ufZu5Msm//QiraFDzzC7cTav35WGVTZI/OoU+niPy2Bby7w9ipIp2as0Wuybtqg/Q8N/dBZbC4XPh23y1hu2MeNE8TlTZxOF3ocp20K2PzN3aa5XNSkDvCLiJfGrrojV2TdOo/dIeiucTMypFG43m0PC0L32cwlzMdIly/ySAXdnaYwfCVtnATBRxNQVnVNiu8G6qoemP7lnRc8c+u4NS/yTu5tCqBSzRJ7eTPzGCpyOKwz93MAZ2EFf7m3sx0yV8SzxHnCEP0ce3LmlbpZuVHpTlyr5zmdxblwGo/creWe+xw++m/ncOYiYLuNsjS9qn5pxWFuf1lWs6d0OQ+t+/E2VYuKJ2GlLdN/ZjJAp4OqJY6RKOsAdVMis9SK5aP7gcYFi4FkmNmovSTVTRQBkWZrrIxPdPoHSL2i/uWdZ4nbloDm3WOCVN09CmBfRKN+20mqlWeM3loO639qMMa8b5m365l+JUL2vdNw+sOBVJc2jXfS6J9cXMloj/52OookHowW5Cd7evdZGqwnwV641GgvoqNvn3pzFGs7NaCTWXg9rf3LuifZcvJjGmurwLH43NCuqVpci+0Y9VMAg/1L2sFl5jLFfJ484fH8aYmOqyPj1eCeqBeVvPnGEv9d86iJku4W4J4/C5MFMlgvd0zLm9w+PEv7+ZYk+c4N3tS04xcTeHcTffuNbU1aLHc0z+3Wk0t5OaL+7GGbrabW9myyR+dBJVMIh9YTeeJbSIW0WDwim7lXcpAb8z6sXdEUW/nEIVDcxsGWVaTPz1h5iJAv7bGol+ZvuKXuN0hY/G0EezBA+1YRUNSr1JuxxbVyddwRnxEn6ga0nbrjQQnE/pYpLk332Mw+eGndcxW5V19U81T2+DM+TBGfIseZfuugDBB7oo908SfrB7+WWaqwzBmc/vDHkr568z6rNbmBWV1CFnzEf9tw6gSuayWymVaaGPZjFTRdK/uoC7OYQq2OlVpYvJG/ZeXmEVDSa+dwwzVSL8yCaCd1ztMb22Qqp5p777HBqaa/2mSa4XRqoIpoWr9uaPDbnZzMkiairV0Bi9vrRFsXFJUF/FrrRMq7I5K31lpTxdMZxRL1bRwLd9dvdv8UzcHvCHncqynB95d1PQ7kkYyxE81Eb+2LA92HDf0nsVnGFvpbUr8uj8XfBKNzFzOtHHty65hbTaFD8ex5ws2n+fjs9Iryr3JTEnClP3jS8pqE+/dN7u2XBqNPz+nYvm9mqaRvSJrcT/8hhMtTiqsok5NVD5evPl56LHc6ReOAvY+elmqogxmqNwcpTGP7z7utKH1qPShQSYCitXrvRELUfo3g4cfheOkAdvZ2zVyhW+twPunbvyvFJKKdK/vIA+mCb88Ca8m2rs77Spr7XSxSTJvz+NI+Cm7mu3X8cTTF0Aq6Dj215PoWccVTbx7226/nJbitLFJK5a/4we02sZiQJmyh4HUO6bnBHUXyvyyc24m8O46gI3fDB1tSsPZ0j84ASYitgzu1Y0LmiprLKJKuo4Izf/vXG3RQje3Y4RzxN6oPO69lEeSJN7fwB3W8RO42kJ49+5cXukbyUb4xfwFhV5YivaGRfOgHtVA/orA9Aa/uDQvJUFZ9RXySc2CzqZ1/sIHmpfMKhKv3IRfShN+KHuGT0JN+rLROkm8e8dx0wUCN7bseTW12rj6Y5VKljF8xMzgnpPdw2OiNfOU25eWstmZcCrApY4+NVV46f+dw5gZcs4LhzD4XcTfnQzpfMJgvesXveww+uqpF84Ax4wLYzRHA6fa0PlC/v32eMNHAE3mnf+wbrKUhgTeVw1/hmvX3M5qm4KVzNRqOTsZ9++jHdTzYz7i+cm7AHG6RLlgfSyvzc0lwNXXQBHwEPk4S125eDL11E5uEbm173kjw2jeZzU/94ds3ofrnC3hPDva7Z7mebpVZxe1sAKKhoLyR0dIn9kCGVYeDfV2L8jU9/xejxH+sXzWLkywXs7COy9vvTNm8kYz4Fpf0/po9kbHtRbBZ34945jpUuVqZKVbqLU/L3Lq0nTtOvqKdOHM2TfvoSnM0bh5ChGPE/p/NUB7+6m0IKVUlEdVhTUa5pmAiexwzsT+COl1FsLbN8N3KeU+v7U9f1Aq1LqhZWUY9r+DwP/VCn1wRK3/9fAk8AL/397dx4dWXUfePz7q11VpX3pVqv3BegFeqG7DTaYThODsTF4AniBGOx4gjPJTDKTTDz2eDxxDnNOZiY5yWQ8niQktrE9tnGMHYfg2IYDNBDMDk0vNL3vi9TaVfvy7vzxnqoldZVUkkrLk36fc3S669VT6enqVtWv7v3d3wVeBA4ZY1xT6iS0uhF/c2XLvmVO99H99/tAoOFjG0qmXwQWVdP46c1kz/bT/+RRAKxEjtpbi4+GZzvjJF4/C0DsX07R8InJpQeVIz+QKYwWZ072whwN6v0tUbuOlUVhJHJQIb0iZxHbdZzwupYxH6/2ltUkFkbxL6we10iUr74K6qvA7g5EtiwismVR2d9fDm91kMZPbSTflSS4ugGTN2SO9+BvrVxOfTGZcwPk2mOE1jdPqPTmePmbIzR9Zot9Y9euwz2wUAAAHTtJREFUkuf1PXGQ1MFO/K3VNP76xim/rqnkrQniawqT60zgX1JL+lg3gSW1iN9LPpYhe7YfvIKvOXJZwF8uT9iPpzpQ0RK1+X57lsxk7Hx9SgT1IkLtLeObLTTGkDrYiTcamPTal0EDzx4vLABP7m0nvGlhIc2w96eHyDtplwPPHndFUF+1tpnsuQFMNk9kyyLyA2l74XyZawhMzmLg+ROYnGWnko5RmjbXk8Lqd2ZcTvYSWFpnzxQYQ/09Gwi0lbdGZbr1P3PMriZ3tIfg6gZynYnC2jR8norsiaBm3mTfnZLGmE0AInIr8CfATaOcvxy4F/iec3sTsBU7qJ4JnwOajTFpEXkEeAJwTVA/FTLnBgov+NnzsVHfSAqLt5wRe0/IW3pkvyaItzZEvi9FYOnU5q4O8jVUEdneRuZ0H9Ebiwf0xhg7RSeWHpaLPlXSp3rt2vvjKC2X603R+0/vIj4P9XeuvWzBjyfko/7uDWRO9tolDEcQrxPsessLej1VfqLvmZoUi0rwN0XwN0UwxhB77gS57iQ1U1hnPT+QpvtRe3o/c7afutuvHPubpkDqUCfJve1UbVhQqIiSOWvXH89eGMDkrUt/61kuc7qP9LFuqq5eUMiDFr+Xxvs3YSWydH1vD4mXTxNcVU/9r60ndfBioVxkaGVDWXsCTJfqnavwRE7jb62+rJKQyVn2TEpTeEJ/m/grZwq17hvu21iRiknB5XWX1qHUV+FtGFJkoSZYCOoDyyqXtjWVxO+l9oNrAOh76gjJ3RfwL6mh4eNXlzWDnXyno1BRyVsdIHr96Ckt/tYo4U2t9ozLe5eSOd1XSJHLnOydtUG9vyVK9twAnuogNbddQb4zgbcuROZUL77myLjW16jZq5KvjDVAD4DYz6T/CdyGPXb434wxPwD+O7BWRHYD3wd+B6gSkRuwPxA8BXwDWAkkgAeNMXtE5CvACqAVuAL4feA65/HPAh8xxhQt+iwiXufn7gCCwNeMMX8jIo8DEeAVEfkH4A7gJhH5L8BdxpijFWybKXPgwAEA7r333so/+FsTOP9vyjzv/4z/ciZljI+Nf/vNr0/LZfT8YB/AZeU3R5Pc214o7Zc62Fl0E5vgsjqCJd6EG+5ZT+poN8GVla/Rm9h9noFdJwisqKPujqsqmgY2lszpvsKbcSzonbIdkoftB5G3xjh76vT9/DAmnSdzuq8Q1NfcvJL4G+eoWts8ZQF9Pp6x04Aq9Lc12Tw9P9qPyVqkj/fS9OnNhfvE60GCPqxYBrA/0AIEltYhIR9YhsDK+gld0+Br5YEDB3j44Ycr8rtMq/G+HpfrmVF+3g/Ke4hZ155vAY9P8Pu+Oo7zR76vVPC9bUrb9Pmpe+jZatb10Sky2aC+ygnQQ9gB907n+K9hj8JvBJqA10TkeeAL2OkxtwOISDuw1Rjzb53bXwXeMsZ8VER2At92HgdgFfArwDrgJezA+/NOQP5h4CclrvGzQJ8xZpuIBIEXReRJY8wdIhIbMtOwAnjCGPNYsQcRkQeBBwEWLFjArlGmxKdaLBab0Z+vJm7fUrv0o+fsPjy9B8v6HpPNk19mBze+rgOwa8j3Gcj3JjGWwVsbGj0FZfeEL7ukXFcSWvOQ6sL37AXwSMn+acUzmJzBWx2oTHk9y5BbnrDLnnqTeHZdmPxjlmCuyWOyeTxVWdjVPub5vb3237kSz9PB9swvSWIyecTv5cDQx20FeruH94sRTDqPyVn2LM84mj7fn8Yks0jQh7eMBZtWIot4xA7AR5Fri9t10/0DeIu0kdmQw0rl8YQzyOD9TsZe/rVfjuualFJqpLkaQ1Uy/eZ64NsisgG4Afi+MSYPtIvIc8A2oH+Mx7sBuAvAGPOMiDSKyGCuxs+MMVkR2Qt4gZ87x/dip/WUcgtwjYjc7dyuBdYAx8fxe2KMeRh4GGDr1q1mx44d4/n2itq1axeDP/+FF14A4Mtf/vK0X0euM0HqUCfBNY34GsP0/uMBe7vzX11V0cWvgyOlE8mZTh3tpvfHdkZV1TULqL11zbD7c10JnvuX57mu7eopXVj40EMPAXD9ys1YmRzR7YvHlcNoZfJ2sDSiDZL7O+h73a4GE97SSs2OyW3GM17xN88xsOs4wRX11P3KWkRkWP8clD7RQ88P9wPF/w7jYaVzhTxybySAlcyWvYHSdBl8XlbidWKwPU02T7Yjjr8lMq6+k+tK0PmNNwFGLS9qjCF9uAsJ+QoVc9q/+rKdJy6w4A/eN+rIeOzFU8T225vC1d+1btSZoVxP0p5xWN14WTqZlc6ROdGLv62maEpAx9deKezGu+D331v2DMXg3+TGG29kx44ddH7zzUJKT/Nvbatonv2gxL52Uvs7CG9uLVpFbKjkuxftheWDm+0NYYyh54f7yZzsJXLdEqpLpBPOhGLP96kSf/UMA8+dACB64zKiYyw4dqvJtqkxho6/fAmTtfBEArT89vbKXZwLDW3PwffimYzhplLF0m+MMS+JSBPQzLjGgoYp9n2DS//Szs+xRCRrLu1JbzH67yHAvzPG/GKC16RK6P7Rfqz+NIndF2j57e3U/6t1l52TOtpN5lQv4c2LJlSazUpk6fp/u8kPZOzNqdY0OpsaJfG1RIsuhoq/eobU0W6i1y8luKKe8KZW8gMpIkXyxH2NYby1oWmrFDLR3XxLVVXwL66xd+HM5Amumv4t4MtdDOutCV3aNGgCtaStdI58Xwp/S5S+nx22g0+/l+bPba1IQG8se23FTOZqG2Ow4ll7W/MiwbP4vRPL1x0sC2kYdYYk8eZ5Bp45BkD9xzcQXFpH9Y3L7PSeDQvGTnUZtjnV6IG2r750+ceeH79D9kw/3togTb+59bKfG71hGfHXz1K1rmVSKUeR7YsZeOEEwRUNUxLQA4Q3LCC8YewqNlYmR98TB8HY+3g0/caWYfeLCA0f24CVyU9LhZXZKrSumdSRbrAMVWUs+p+vRIS6O9eSevfipMq1zkUmZ83pjdgq9g4mIldhj6B3YWdsfU5EvgU0AO8H/hBoA4YOQQyMuP08cB/wkIjsADqNMf2TzOX8BfBvROQZZ6T/CuCsMSY+4ryR1+Iq8TfOYTJ5ItvaJjSindhzgeQ+e0Sp3B1UCwF1id0l8/EMvT85AJYheyFG4yfHXz4uc36gUNs5daiT4Mr6UTc1ysczhZGcgWeP0fSZLdR8YHpHr6eTrzZE8285W8BPQfWC9LFushfjhDe1Fg14k/s7yF2ME97WVrKUH9iLlps+vRkrniUwZAfT1NFuYi+eIriqnur3FR99tDJ5Oh95C6s/TXhbW2FRmslbmPwENmYawWTzdH13D7mLcap3riRybWUr9pSr76eHSB24SHBNI/UfXVuxx/U1VNHw8avJXoxT5QSY+XiG2Asn8VQHiL53KSKClbq0LGlwc5vwptay135Eti/GE/HjqfKXXN9RDmsg41xj1l7LMOL1Jbxx4WV7WqSOdhN/5QyhNY1EtrWR60rYMwFXNJXcSbJqfQtV62dHYCheD57qIFZ/Gm996cGP+RzQg705WeO9ky9DOh8EV9QPqxKV604Sf+0sgaW1c3qX9NEk371ob3wpQq4nOSdLeFYqpx7ssaAHjDF5J8/9euBt7PGhzxtjLohIF5ATkbeBR4BvAV9wHuNPgK8A3xSRPdgLZR+YwDX9VEQG351eAj6OnZ7zprOA9yLw0SLf9yjwtyLyu8DdblkoC/Zo9uAIGx4uq1xisnnSx3vwL4wWLVE4uOkLlqG/O1H2E77+ng2kj3QRXFV8ml18HsTvwaTzE94UKLCklsDyOvJ9KcKbWzHpIZsaXbh8UyNPyHepLN4srUJQaeL12B+nKyzXlaDnR3bqUvbcwGUzMdmO2KWNoGKZMavCFEpeDhF7/gS5zgS59hjhja1F0y2seKZQQi57foC6268k8dZ5AouLp2eMV643Zde6BlKHO2csqE8f7R72byUFltQO2zE1/tJpknvttQH+hdWEVjXYKWEIUuUjOIFa3+KRipRArP3IlST3XCB0RVPZI/EDzxwj35sie7af0Lpmur63B5Oy07Qmu7v2dBCvh8Zf30iuPUaggpuFqbnLWIZ8X8peS1XGyHPfk4fJnu4nufeC/do5RbNTs1n2tJMBbgy5jrgG9SMZY4qGEk5qzB86X0OPZ4GbR5y+bcTtO4s83ldG3I4Wu88Ys6PEpf5n52vk4w59nBexF+G6z5AndLHR1N6fHiJ9uAtP2E/zg1svG9EVEQJtNWRO941ret9XF8JXJG0l2xGj/8mjeOtDNHzyanLtcYJj5JOW4gl4abhnw7Bj1TevJH20m8h77E2NEnvbib98mtBVzVTfuMx+c+xLTWuetZXJk+9J4muOlF0febbLOvnGANmOkRNbIAGfPYqaN6SOdBF75fS4S2EGltWR60zga4ngqSr+cuSrryJ6wzK7NOkNy/BWB8vafMVK5+h+dC/5niS1H7mKUIkPn76mMFUbWsic7Z/RUp7V719O/K1zVF29oOLlKRNvXyB3MU7kPYvt3ZgHyxh6BW+N/eYufi/R901sh8rRWJk8PX+/j1xnnOCaRqLXL8XXUIXJWaSPdeNriQ5LzQu0Vpe18/FQgSW1JHtT+Foi4PXYU+zYAxpu4Y0E8I5RoSpzps/emGt5/bhT+VKHOkkf6yG8ZRH+lsrub6KmX8+P9pM50Uvwikbq7xx7Zs8bDZIFJOibtzXpw9vakMd9iFdKDka63ewp9qsmzBPyUX/Perv+eZHg2XJ2iLVSOUzOKvqErr9nPfme1LCaxeOR70+TOdVLcGUD8VfPkj0/QPb8AFXrWgpT/pUyMo879uIprIE08ZdPE3nPYjwB76Ua+mPInBvASmSxUrkJzyYYy9D93bfJdSYIrWum7sMzU8e8XFYiS643ZW/YNEpqW2BxDQQ8kLGKpin46kI03reRru/shqxF/KXT416bULNzJeFrF+GNBkYNYqPXL4HrxxdwZ88NkHM+jKTe6SgZ1Cd3XyDXk6L6xuUT3tSoEsKbWwmtbabru28Te/4ktbeuJrG3nZw/QebcwIRrlGfbY/Q/eQSwd8Os+8hVRJzAzhP2T2iNw7h+vvNaAJB6x57+brxvI31PHiF9yF6Y2/zg1kmtZ6i5dTWRrW146+wKUA13ryd9onfO5RP3P3OcXHuMzIlevI1VkLUIrmkccyDBSuXo/aeDdipkR4ym+zePer6a3YwxZE71Ac7GimWo/eAaQlc04muJTvi9zu18daHCB9q5tAP5UPPzLzsHBZeXDkZqbltD4o1zBFfU46kqnl8qXg++CW7gY4yh6/t7sPrT+BdGCW9uJXXgIp5IAF+Fd7wtJrSmgcSb5wksqxtXzmk+lqH70T1YbWn6fnF4zNEOK52j758PYaVy1N52Bb66ENkLMQaeO16oolEsJWg2sdI5Oz89niF87SJqdq4sea43EqDlN7eRj6XtXWuL8C+IElrXQmp/B0aE9j//Jfk1qXFdk6+2/AXUJmeRd/KOR/tAku2M422O4F9UTa4nOSy4MzmL/qePYdI5ojuW0//0UTDQ35ss1H+fClYyS//TxxC/h5qdK4t+uM62xwrpZYm3L5A9NwBLLZJ7LgwL6k3OKvtNyRPyFRYpe4akK1Vqh9Kx+Fur8S+qtn8XwOQNHX/9Gjg1/006Z6+TmERQLyLDXr9GphvNFf6FUXLtMTzVAbuql4HI9UuoHmO3bPF58FT5sOLZeZl2MdeICDU7V5Lc115035Ki3+PzjFmBSbmfBvXzgL8pMqkSgmMylxbWWckcVRsWEFhejwS807Kwq+bmVfZiv/GOPhhzqbZSiQWXxpjCTIC3JUL6iJ3vnNh9npodKxh47nhhxMS/qJpoicWes4WVyGLFnY19iqTUjOQJ+0suNBxU96Er6E5myTi7VJp0Diudq2glmczZfgZ2HSffl8KKZ0ctzdj/zDESb5zDWx+i6YHNlwXPqXcvktxj17T31obwt9oB51QHufE3z5E6cBGw89hHLvYECCyqJrCinnx3gsj2NgaePQEiwz5sxF48ReyXpwisqKf+rnVjVqXx1oZoun8Tue7klEw5J/e1kz7WQ2Rb22WlGMFOoWu8byO57gTpoz3k4xkSr50FnN05r22rSKCZ60yQPt5D6MrGy9YOZTviWMlsyUENK5MnubedzIkewtcuGnWQZCbVfGAV4Y0LseKZwnqXwfKeoxGfh8ZPbSJ7IUZw+dzJ2U8f6wavZ1ILs90qvLm17IBezR8a1KtJE49Qf9c6Uoe6Cmka073ldKk369F4q4PU370ez75Xqdmxuug56WM9xF86DUBobTMS9GKyFsGldgDoX1hN5lQfnmjAfqxZtH19Mb76KqpvWk7mTH9F86f9C6KFoF6q/BVvh9iLpwojvWDvJltK9py9GCrfk8JKZPHWDg/qfc2RwloA34II0fctJd878dSzchVmOzyCr7n4rJj4vTTcvb5wO7i6Ed9zzw1LC0oe6AAgc7wHk8whY3zoArt061SsMbESWfp+dhiwa883PVA6rcPXEMbXECYfy9gfKAXqPnzlmB8ay2GMofsHe7ESWZL7O4btUpvrTND1nd3kOhOF9QND5QfSdH7rLUzSHpjIdiZo+dzIpV6zg4jgX2D3o5oPrCLXmyLqrC0ai7c6OKdG6RP72ul3+t5Y+yIoNV/M7ghEjWnZstkxMhxYXDtt0/mVFFxWh+d4oGQ5Rm9NsBAA+hdV2+Ux86YQiFTftJzQVU14a4KzPqAfFNm+mEiF9yKpvmEZwZUNeGuCeF//ZWUfHAgsrSVzshcJ+fDWhoheVzqQqb5pBbEXTxFYVou3SGqPf0GU5n99LSZrFQLdiaaejUdoTaNdf9zrKXvPhmKj8JHti+0yoKsbKhIQT4YEvHhq7FKMvjI/FHmjARo+tmHsE8fDOJvUgT0DN0Q+kbFLY0LREqjZjnghoAdcs4i03FKjc5UZMkNRzmyFUjB7Yqap4o4oRJV0//33z/QlzGn+5ghNn96ClcyWrAw0OHI23010IWc5otctIXRVs50ONEZKV2BJLQ2fGL2MYbHSrtOhEqPl4WsWEr5m8qUjK0F8Hpo+tYnsxfiw/Qem/To89uZM6WPdhEbsZh1cWkf1zhV4zgeK/t2Dy+sIrW0m15MkvGURVVdp3rEbhLcswsrmEZ+XkG5Epco012MmDeqVGoM9Ajn36tm6zUR2JFZTzxOe3GZTleJfEC35ATtybRu+fy7+HBavZ8w9FtTsIz5PyQ3rlJqv5mZNH6WUUkoppeYRDeqVUkoppZRyOQ3qlVJKKaWUcjkN6pVSSimllHI5DeqVUkoppZRyOQ3qlVJKKaWUcjktaanUNDl58iQPPfTQTF/GlOvt7eWFF16Y6cuYUSdPngSoyN9b27MyTp48Oec3nlFKzW8a1Cs1DTSYmF+CweBMX4IaYdmyZfo8VErNaRrUKzUN5voudkPt2rWLHTt2zPRlzBnanpW1a9eumb4EpZSaEppTr5RSSimllMtpUK+UUkoppZTLaVCvlFJKKaWUy2lQr5RSSimllMtpUK+UUkoppZTLaVCvlFJKKaWUy2lQr5RSSimllMtpUK+UUkoppZTLaVCvlFJKKaWUy2lQr5RSSimllMtpUK+UUkoppZTLaVCvlFJKKaWUy2lQr5RSSimllMtpUK+UUkoppZTLaVCvlFJKKaWUy2lQr5RSSimllMtpUK+UUkoppZTLaVCvlFJKKaWUy2lQr5RSSimllMtpUK+UUkoppZTLaVCvlFJKKaWUy2lQr5RSSimllMtpUK+UUkoppZTLaVCvlFJKKaWUy2lQr5RSSimllMtpUK+UUkoppZTLaVCvlFJKKaWUy2lQr5RSSimllMtpUK+UUkoppZTLiTFmpq/BdUTkInByBi+hCeicwZ8/12h7Vpa2Z2Vpe1aWtmdlaXtWnrZpZbm9PZcZY5rLOVGDehcSkdeNMVtn+jrmCm3PytL2rCxtz8rS9qwsbc/K0zatrPnUnpp+o5RSSimllMtpUK+UUkoppZTLaVDvTg/P9AXMMdqelaXtWVnanpWl7VlZ2p6Vp21aWfOmPTWnXimllFJKKZfTkXqllFJKKaVcToN6pZRSSimlXE6DehcRkQ+KyEEROSIiX5jp63EDEVkiIs+KyAER2S8iv+ccbxCRp0TksPNvvXNcROR/O228R0S2zOxvMDuJiFdE3hKRJ5zbK0TkFac9fyAiAed40Ll9xLl/+Uxe92wkInUi8piIvOv00+u1f06OiPwH5/m+T0S+LyIh7aPlE5FviEiHiOwbcmzcfVJEHnDOPywiD8zE7zIblGjPP3We83tE5B9EpG7IfV902vOgiNw65LjGABRvzyH3/UcRMSLS5NyeV/1Tg3qXEBEv8DXgNmAd8EkRWTezV+UKOeAPjDFrgeuA33Ha7QvA08aYNcDTzm2w23eN8/Ug8FfTf8mu8HvAgSG3/wfwF0579gCfdY5/FugxxqwG/sI5Tw33l8DPjTFXARux21X75wSJSBvwu8BWY8wGwAt8Au2j4/EI8MERx8bVJ0WkAfgj4D3AduCPBj8IzEOPcHl7PgVsMMZcAxwCvgjgvD99AljvfM//dQZRNAa45BEub09EZAnwAeDUkMPzqn9qUO8e24EjxphjxpgM8Chw5wxf06xnjDlvjHnT+f8AdsDUht1233JO+xbwUef/dwLfNraXgToRaZ3my57VRGQx8GHg75zbAuwEHnNOGdmeg+38GHCzc74CRKQGeD/wdQBjTMYY04v2z8nyAVUi4gPCwHm0j5bNGPM80D3i8Hj75K3AU8aYbmNMD3YQe1kgNh8Ua09jzJPGmJxz82VgsfP/O4FHjTFpY8xx4Aj2+7/GAI4S/RPsD+WfB4ZWgJlX/VODevdoA04PuX3GOabK5EyrbwZeARYYY86DHfgDLc5p2s5j+1/YL5yWc7sR6B3yBjW0zQrt6dzf55yvbCuBi8A3nXSmvxORCNo/J8wYcxb4M+zRuvPYfe4NtI9O1nj7pPbV8v0G8DPn/9qeEyAidwBnjTFvj7hrXrWnBvXuUWzkSOuRlklEosCPgH9vjOkf7dQix7SdHSJyO9BhjHlj6OEip5oy7lP2iPIW4K+MMZuBOJfSGorR9hyDM4V+J7ACWAREsKfgR9I+Whml2k/btQwi8iXsNNHvDh4qcpq25yhEJAx8Cfivxe4ucmzOtqcG9e5xBlgy5PZi4NwMXYuriIgfO6D/rjHmx87h9sG0BeffDue4tvPo3gfcISInsKd/d2KP3Nc5qQ4wvM0K7encX0vxadP56gxwxhjzinP7MewgX/vnxP0qcNwYc9EYkwV+DLwX7aOTNd4+qX11DM7izNuB+8ylTYO0PcdvFfaH+Led96bFwJsispB51p4a1LvHa8Aap4JDAHshzeMzfE2znpMb+3XggDHmz4fc9TgwuNr9AeAfhxy/31kxfx3QNzjlrMAY80VjzGJjzHLsPviMMeY+4Fngbue0ke052M53O+e7fjSkUowxF4DTInKlc+hm4B20f07GKeA6EQk7z//BNtU+Ojnj7ZO/AG4RkXpn9uQW55jCrmQD/CfgDmNMYshdjwOfELsq0wrsBZ6vojFAScaYvcaYFmPMcue96QywxXl9nV/90xijXy75Aj6EvUr+KPClmb4eN3wBN2BPqe0BdjtfH8LOmX0aOOz82+CcL9gVBo4Ce7EraMz47zEbv4AdwBPO/1div/EcAX4IBJ3jIef2Eef+lTN93bPtC9gEvO700Z8A9do/J92mfwy8C+wDvgMEtY+Oq/2+j70eIYsdIH12In0SO1f8iPP1mZn+vWZZex7BzukefF/66yHnf8lpz4PAbUOOawxQoj1H3H8CaHL+P6/6pzi/mFJKKaWUUsqlNP1GKaWUUkopl9OgXimllFJKKZfToF4ppZRSSimX06BeKaWUUkopl9OgXimllFJKKZfToF4ppZRSSimX06BeKaWUUkopl/v/UBLJ3bujFzEAAAAASUVORK5CYII=\n", + "text/plain": [ + "
    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import pandas as pd\n", + "import ptitprince as pt\n", + "%matplotlib inline\n", "\n", - "* ShOULD show: correlations numerically calculated for the film thickness dataset, but then also visualized with ``data.plot('TopRight', 'BottomRight', kind='scatter')``\n", + "films = pd.read_csv('http://openmv.net/file/film-thickness.csv')\n", + "films.set_index('Number', inplace=True)\n", + "ax = pt.RainCloud(#y = 'Ammonia', \n", + " data = films, \n", + " width_viol = .8,\n", + " width_box = .4,\n", + " figsize = (12, 8), orient = 'h',\n", + " move = .0)\n", "\n", - "* MUST COVER: https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.probplot.html\n", + "ax.grid(True)\n", + " " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### TO DO (potentially)\n", "\n", - "* Regression model:http://localhost:8888/notebooks/Notebooks/Thermocouple%20-%20linear%20regression.ipynb\n", + "* MUST COVER: time-series of stability data from which a database was built on\n", "\n", - "* PCA plots: https://jakevdp.github.io/PythonDataScienceHandbook/05.09-principal-component-analysis.html" + "* ShOULD show: correlations numerically calculated for the film thickness dataset, but then also visualized with ``data.plot('TopRight', 'BottomRight', kind='scatter')``\n" ] }, { @@ -2097,7 +2138,7 @@ }, "hide_input": false, "kernelspec": { - "display_name": "Python [default]", + "display_name": "Python 3", "language": "python", "name": "python3" }, @@ -2111,7 +2152,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.5.5" + "version": "3.7.3" }, "toc": { "base_numbering": 1, diff --git a/Module-11-interactive.ipynb b/Module-11-interactive.ipynb index d6262d5..7afeab1 100644 --- a/Module-11-interactive.ipynb +++ b/Module-11-interactive.ipynb @@ -309,7 +309,11 @@ "\n", "* MUST COVER: https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.probplot.html\n", "\n", - "* Regression model:http://localhost:8888/notebooks/Notebooks/Thermocouple%20-%20linear%20regression.ipynb" + "* Regression model:http://localhost:8888/notebooks/Notebooks/Thermocouple%20-%20linear%20regression.ipynb\n", + "\n", + "* Later: PCA loadings are orthogonal. Plot a scatter plot, and see the correlation is zero\n", + "\n", + "* PCA plots: https://jakevdp.github.io/PythonDataScienceHandbook/05.09-principal-component-analysis.html" ] }, { @@ -341,7 +345,7 @@ }, "hide_input": false, "kernelspec": { - "display_name": "Python [default]", + "display_name": "Python 3", "language": "python", "name": "python3" }, @@ -355,7 +359,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.5.5" + "version": "3.7.3" }, "toc": { "base_numbering": 1, From 5a8dc181cbfd8c1c5a86e2d241a3307c4acd5d80 Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Thu, 25 Jul 2019 11:51:14 +0200 Subject: [PATCH 077/134] Spelling and grammar corrections --- Module-10-interactive.ipynb | 409 ++++++++++++++++++------------------ 1 file changed, 200 insertions(+), 209 deletions(-) diff --git a/Module-10-interactive.ipynb b/Module-10-interactive.ipynb index 093fa09..13173ca 100644 --- a/Module-10-interactive.ipynb +++ b/Module-10-interactive.ipynb @@ -7,7 +7,7 @@ }, "source": [ "

    Table of Contents

    \n", - "" + "" ] }, { @@ -28,8 +28,10 @@ }, { "cell_type": "code", - "execution_count": 9, - "metadata": {}, + "execution_count": 1, + "metadata": { + "collapsed": true + }, "outputs": [ { "data": { @@ -187,7 +189,7 @@ "" ] }, - "execution_count": 9, + "execution_count": 1, "metadata": {}, "output_type": "execute_result" } @@ -313,10 +315,11 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 24, "metadata": { "deletable": false, "editable": false, + "hide_input": false, "run_control": { "frozen": true } @@ -541,7 +544,7 @@ "11 92.2 " ] }, - "execution_count": 2, + "execution_count": 24, "metadata": {}, "output_type": "execute_result" } @@ -555,17 +558,11 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": false, - "editable": false, - "run_control": { - "frozen": true - } - }, + "metadata": {}, "source": [ - "Click on the column header for ``BlendingEfficiency`` and you can sort from low-to-high, or high-to-low. You can now instantly see that ``ParticleSize`` has the greatest effect. No plotting required. \n", + "Click on the column header for ``BlendingEfficiency`` and you can sort from low-to-high, or high-to-low. You can now instantly see that ``ParticleSize`` has the greatest effect on blending efficiency. No plotting required. \n", "\n", - "In terms of the 5 goals above - here we have used the table to learn more about our process: what direction is the ***correlation*** between particle size and blending efficiency? *Positive* or *negative* correlation?\n", + "In terms of the 5 goals above - here we have used the table to **learn more** about our process: what direction is the ***correlation*** between particle size and blending efficiency? *Positive* or *negative* correlation?\n", "\n", "##### To try yourself\n", "\n", @@ -582,14 +579,8 @@ }, { "cell_type": "code", - "execution_count": 3, - "metadata": { - "deletable": false, - "editable": false, - "run_control": { - "frozen": true - } - }, + "execution_count": 25, + "metadata": {}, "outputs": [ { "data": { @@ -664,13 +655,13 @@ "Wednesday 17.23" ] }, - "execution_count": 3, + "execution_count": 25, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxkAAAD8CAYAAAAbgmlTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xl8lPW5///XOxuEJEQUtdS0xqMoiEGUuFBFKa1djtpWa0+1Wre21hbbnvZYf5zaJfZbPelR664cd1rX4lYtta4FBBVlE1AUF6AKyiJ7gGSW6/fHfaeMMXsmc89MrufjMY/M3PdnuQaTmGs+m8wM55xzzjnnnEuXgqgDcM4555xzzuUXTzKcc84555xzaeVJhnPOOeeccy6tPMlwzjnnnHPOpZUnGc4555xzzrm08iTDOeecc845l1aeZDjnnHPOOefSypMM55xzzjnnXFp5kuGcc84555xLq6KoA3DOOZfbBg8ebNXV1VGH4ZxzLgPmzp27zsx276icJxnOOed6pLq6mjlz5kQdhnPOuQyQtKIz5Xy6lHPOOeeccy6tPMlwzjnnnHPOpZUnGc4555xzzrm08iTDOeecc845l1aeZDjnnHPOOefSypMM55xzzjnnXFr5FrbOOed6ZNHKTVRPnBp1GM4559qxvP74jPbnIxnOOeecc865tPIkwznnnHPOOZdWnmS4SEgySX9KeV0kaa2kv6ap/TpJF6ajLeecc8451zWeZLioNAAHSSoNXx8HrIwwHue6RdJVkv4z5fUTkm5NeX2lpJ91sq1eTY4lnS3p+t5q3znnnGvmSYaL0uNA8yqk04B7m29I2lXSI5IWSnpR0sjwep2k2yVNk/SOpB+n1LlY0huSngYOSLn+PUkvS3pF0oOSBkiqkLRMUnFYZqCk5c2vneuC54HPAEgqAAYDI1LufwaYFUFczjnnXGQ8yXBRug84VVJ/YCQwO+XeJcB8MxsJ/AL4Y8q9YcAXgcOB30gqljQaOBU4BDgZOCyl/ENmdpiZHQwsAb5jZluAaexMck4FHjSzWJrfo8t/swiTDILkYjGwRdIgSf2A4cB8ST8Pk92Fki5prtxOcjxN0u8lvSRpqaSx4fVCSZentPX98PoQSTMkLZC0OKX8OWH96cBRKe2fKGm2pPmSnpa0p6QCSW9K2j0sUyDpLUmDe/Mf0DnnXP7xJMNFxswWAtUEoxh/a3H7aOBPYblngd0kVYb3pppZo5mtA9YAewJjgYfNbJuZbQYeTWnrIEnPSVoEnM7OT5lvBc4Jn58D3JHO9+f6BjNbBcQlfZog2XiBIGEeA9QCC4FxwFCCxHgUMFrSMR0kxwBFZnY48J/Ab8Jr3wE2mdlhYfnvSdoH+BbwhJmNAg4GFkgaQpCwH0UwJfHAlLZnAkea2SEECf9FZpYE7iL4OQH4PPBK+LPmnHPOdZqfk+Gi9ihwBcEfYbulXFcrZS382phyLcHO72OjdXcCXzOzVySdHfaFmc2SVC3pWKDQzBZ3I37nYOdoxmeAPwB7hc83EUyn+kL4mB+WLydIOioIk2MASY9+tFkeCr/OJUjICdsZKemU8HVl2NbLwO3hlL9HzGyBpM8B08xsbdj+/cD+Yb0q4P4wESkBloXXbwf+AlwNnEsbybek84DzAAoH7t7hP5Bzzrm+xUcyXNRuB35rZotaXJ9B+GmqpHHAunCEoi0zgJMklUqqAE5MuVcBvB/+8XV6i3p/JFgL4qMYriea12XUEEyXepFgJKN5PYaA/zGzUeFjPzO7LazbVnIMOxPq1GRawI9S2trHzJ40sxnAMQQbKPxJ0pkdtH8dcL2Z1QDfB/oDmNm7wGpJ44EjCNZOfYyZ3WxmtWZWWzigsrUizjnn+jBPMlykzOw9M7umlVt1QK2khUA9cFYH7cwD7gcWAA8Cz6Xc/hXB9JWngNdbVL0bGETKonPnumEWcAKw3swSZrYe2IUg0XgBeAI4V1I5gKS9JO1B+8lxW54AfpCyacH+ksok7Q2sMbNbgNuAQwm+78dJ2i0s/42UdirZuaNby5+vWwmmTf3ZzBJd+6dwzjnnfLqUi4iZlbdybRrBYmzCP9K+2kqZuhavD0p5filwaSt1bgJuaiOUo4EHzGxjp4N37uMWEewqdU+La+XheoYnJQ0HXpAEsBU4w8zmhVOYFgAr+Ghy3JZbCaZOzVPQ2FrgawTTAH8uKRa2f6aZvS+pjiDReR+YBxSG7dQBUyStJBh52Selj0cJRvd8hM8551y3yKy9kXrn8pek64AvA/9uZkujjse5bCGpFrjKzMZ2pny/IUNtyFlX93JUzjnnemJ5/fEdF+oESXPNrLajcj6S4fosM/tR1DE4l20kTQR+wMfXLznnnHOd5klGX1NXOYhgC9cRBLvLlAEDwkdpyvOWjwTBdrGrU7629lhH3Safw+1cjjKzeoJ1UM4551y3eZKRr+oqK9mZTKQ+hvSg1b06USZJXeV7BFt1zv3Xo27T6h7065xzzjnncoivycgHdZUFBId+fYng0K0RdC4hyKSVBDvwzACmA69St8m/+ZzLA7W1tTZnzpyow3DOOZcBviYjz/3lik/u/tWtDf9OkFgcx0cPsstGewH/ET4APqSucibBHvx/pm7Thsgic84555xzaZW1IxmSLga+RbAWIAl838xmt1H2bOBJM1vVwz6nAReaWVZ+JFczuaYa+DpwUpHZp+Yvf/fTEYeULk3A3wj25f8rdZsaOyjvnMsiPpLhnHN9R06PZEgaQ3Cw1aFm1ihpMFDSTpWzCU7Z7XSSIanIzOI9CjQDaibX9CNILL5LsA++AOISi0pK3qxpahoaYXjpUkKwz//XgA3UVT5AkHA851OqnHPOOedyT7ae+D0EWGdmjQBmts7MVkn6taSXJS2WdLMCpxCsR7hb0oLw5NzlYWKCpNpwhAJJdWG9J4E/hmXvk7QwPBCrtDkASTdJmiPpVUmXhNc+J+nhlDLHSXqoN/4BaibXjKyZXHMtQeJ0N/BZwgSj2V2VFT0auclSg4DvEazbeIe6ykupqxwWcUzOOeecc64LsnIkA3gS+LWkpcDTwP1mNh243sx+CyDpT8AJZvaApAtImeYUnqjbltHA0Wa2XdLPgG1mNlLSSILTcJtdbGbrJRUCz4T3nwVukLS7ma0FziGNJ+LWTK4pAE4BLgQO66j89AGlu6er7yxVDfwC+AV1lS8Dl1K36S/RhuScc8455zqSlSMZZraVIBk4D1gL3B+uu/ispNmSFgHjCXZR6qpHzWx7+PwYgmk5mNlCYGFKuf+QNI9gK9YRwIEWLGD5E3CGpF2AMQQLl3ukZnJNUc3kmrOAV4H76USCAdAgDV9dWNhXtoY9DHiEusqXqav8ctTBOOecc865tmXrSAZmlgCmAdPCpOL7wEig1szelVQH9G+jepydCVTLMg0tu2pZWdI+hKMJZrZB0p0p7dwBPAbsAKb0ZF1HzeSaEoLRkP8P2KfLDUi6f2D50h9v2LRnd2PIQbXA36irfB74FXWbno06IOecc84591FZOZIh6QBJqQuaRwFvhM/XSSonmFbUbAtQkfJ6OcFICASLptsyAzg97PMggiQGYCBBMrJJ0p7Avz45D3ewWgX8Eriz028qRc3kGoUjF28Dk+hOghF6rLysrUQr330GeIa6yn9QV3l01ME455xzzrmdsnUkoxy4LpySFAfeIpg6tRFYRJBEvJxS/k5gkqTtBFOYLgFuk/QLoNVtb0M3AXdIWggsAF4CMLNXJM0nmL70DsEhcqnuBnY3s9e6+sZqJtccAVwDHNHVuq35oLDwoO3StlKzAeloLweNA56jrvIJgpGNlzso75xzzjnnelnWnpORzSRdD8w3s9s6W6dmcs0QoB74Ni12ieqpS9Z++NLJWxsOT2ebOewhYAJ1mz6IOhDn+go/J8M55/qOzp6TkZXTpbKZpLkE06ru6kz5msk1hTWTa35OMN3rTNKcYADcP7C8Kd1t5rCTgcXUVZ7SYUnnnHPOOdcrsnW6VNYys9EdlwrUTK45kGAqV6d2i+quJSUlBxiYeiGByVG7AVOoq7yHYFRjY9QBOeecc871JT6S0QtqJtcU1EyuuZDg3I1eTTAATNp9dv9+XV4f0gd8C1hEXeVxUQfinHPOOdeXeJKRZjWTa6oIDhC8HOiXqX7vHlixNlN95Zgq4AnqKm+grrKvLo53zjnnnMsoX/idRjWTa75CMD1qUKb77pdMvjlnxXtDOy7Zp70JnEXdpheiDsS5fNJvyFAbctbVUYfhnHN9xvL64yPr2xd+Z1B47sWvgUeIIMEAaCwoGLqiqOjdKPrOIUMJtrv9HXWV/r3vnHPOOddL/A+tHqqZXFMOPEBwNkekC6/vHlixLMr+c0QhcDHwMHWVZVEH45xzzjmXjzzJ6IGayTX/BrxAsG1q5P5ePqCi41Iu9BVgBnWVQ6IOxDnnnHMu33iS0U01k2vGEZw6flDEofzLhoKCgzYXaFPUceSQQ4HZ1FWOjDoQ13dJ2k3SgvDxgaSVKa9LeqG/mZJGpbtd55xzLpUnGd0QLvD+O7Br1LF8hFT8SHm5b2XbNZ9abbvcVD1x6ueiDsT1TWb2oZmNMrNRwCTgqubXZuYHbTrnnMtJnmR0Uc3kmlOBB8ng9rRd8UBFuW8X1gXbrWTp5xsvHwFMrZ44NSumvTkHIGk/SQtSXk+U9Mvw+VBJT0iaK2mGpP3D66dKWizpFUn/CK8NkDRF0kJJ9wH9U9q8WdIcSa9K+nV47YuSpqSU+bKkP2fobTvnnMsTnmR0Qc3kmu8Cd5PFJ6UvKy4aEYd41HHkgrgVrBzfeOXALZRVEiSNf66eOPXcqONyrhNuBn5oZqOB/wauD6//BvicmR0MnBReuwDYYGYjgd8Dh6S0MzHchvBg4DhJBwJPASMl7RaWOQe4o1ffjXPOubzjSUYn1Uyu+SlwC9n+byZVTh9QuijqMLJd0thwYtOlO95nt0+kXC4EbqueOHVCVHE51xFJuwBHAg+GIx03AJ8Mb88C/ijpu+z8XXUMcBeAmc0HXk1p7jRJ84B5wHDgQDNLAvcA35K0KzAaeLKVOM4LR0HmJLb5UjDnnHMfld1/MGeJmsk1FwJ/iDqOzrpnYMXmqGPIZmZsPys28b0ltve+bRS5rnri1G9mNCjnPi7OR39HN09zErAuZd3GKDNr3oDiewSjGdXAK5Kaz+352DRKSUOBnwDjw1GOv6f0cTvwbeB04H4zS7Ssb2Y3m1mtmdUWDqjsyft0zjmXhzzJ6EDN5Jozgf+NOo6umNe/3z5Rx5CtzEj8d/y7C59Ljqxpp5iAP/picBexD4BPShokqT9wPICZbQDel3QSgKQCSQeHdf7NzF4EfgVsAPYCZhAkC4TlRoRlBwJbgM2ShgBfbO7YzN4F1gETgTt7800655zLT55ktKNmcs2XgduI+JC9ropLn36tpPjtqOPIRpMSJ866LzH+iE4ULQEerp449dDejsm51pjZDuAygq2yHwVSd447FThf0isE059OCK9fJWkRsAh42swWE6zX2E3SQuCnwJyw7LywzcUEU0FntQjhHmCZmS1N93tzzjmX/2TmmxG1pmZyzRHAM0BOngr9lS1bp126bv24qOPIJn9PHDbt/NhPx3Wx2hrgM8vrj/ekzfUpkiYBL5jZ5I7K9hsy1IacdXUGonLOOQewvP74yPqWNDfcNKRdPpLRiprJNQcAU8nRBAPgHwMGDI46hmyyKFn9XDcSDIA9gCeqJ07dM80hOZe1wgXlBwD3Rh2Lc8653ORJRgs1k2t2I1gAuVtHZbPZlgIduK6wYG3UcWSDVbbrS19t+t1netDEvsDj1ROnVqQrJueyWbiY/LN+GKBzzrnu8iQjRc3kmkLgfoKdWXKbVPDnioo3og4jalus9NXPNV55UJKCwh42dQjBHHXnnHPOOdeBrD1ULgoFSbs0WaC82VHoL+VlJT/c2Hf3r2+yomXHNv7hE9vpNyBNTZ5QPXHqT5bXH39NmtpzLi/U7FXJnAjnBzvnnMs+PpIRWjJs+NfuuCpxwp4b7L2oY0mXVUWFBzWKHVHHEYWEac1xTf9bvJ7KdE97+9/qiVMP6biYc84551zf5UkGsGTY8GrgjtImRlw7KVE2dnFyTkd1coI04Imysj53+rcZW05pqtuwwj5R1QvNlwD3VU+cWt4LbTvnnHPO5YU+n2QsGTa8mGAdxi4AgkEXPJYc/V8PJabLLBltdD13b0V5nxrJMKNpQuwnb863oQf0Yjf7E5w94JxzzjnnWtHnkwzgl8DhqRcEOuINO3bSdYn5FdtsfURxpcVr/UqGGvSJw1DMsMvip8/5W/KITBygd1b1xKmnZ6Af55xzzrmc06eTjCXDho8AJrZ1f1ADo2++NrF9xIrkqxkMK62S0ifm9u+3JOo4MuHexPgZtySO78lWtV11U/XEqftmsD/nnHPOuZzQZ5OMJcOGFwC3EMyxb1Ohsdev70kOPeOZxIzMRJZ+dw+syPvzMmYlRkz/Rfy7x2a42wrg3uqJU/vsz5FzzjnnXGv68h9HPwTGdKagoOQrL9kxV94Sn1USs229HFfazSztPyTqGHrT28khz58e+8UxEXV/GPC9iPp2zjnnnMtKfTLJWDJseBVwWVfrfWodR912dWJl1Vpb1gth9ZodBQX7v1dUuDLqOHrDh1Yx/0tNv68FKcIwflc9ceouEfbvnHPOOZdV+mSSAdxIMNWly/rFGXrlrYnBX5ibfDHNMfWqewZWvB11DOm2zUreOLbxqn1jFLU75S0DBgO/iTgG55xzzrms0eeSjCXDhp8MnNiTNgQV330yeeQv701ML0haPE2h9arHy8rKoo4hnWJW+N74xj/sspUBA6OOJXRB9cSpw7taSVJC0oKUR3UrZT4p6YE26k+TVNv1cJ1zzjnnek+fSjKWDBteSDemSbVl5HI79pZrEq/uutlWp6vN3rKusKBmq7Ql6jjSIWlaf0LTpbEP2HXPqGNJUQRc1Y16281sVMpjeepNSUVmtsrMTklLlM4555xzGdCnkgzgTCCth7RV7ODgG29MFIx+M7kgne2mnVTyl4qynN2Kt5kZ28+MTVz5hn16n6hjacUXqydO7dEoGYCksyVNkfQY8KSkakmLw3ulku6TtFDS/UBpSr2bJM2R9KqkS8Jrn5P0cEqZ4yQ91NMYnXPOOefa02eSjCXDhpfQS/PmC4zdL3ogWXP+1MT03mg/XR6oKE9EHUNPmJG4KH7eopnJmpqoY2nHH6onTu3KGpHSlKlSD6dcHwOcZWbjW5T/AbDNzEYClwKjU+5dbGa1wEjgWEkjgWeB4ZJ2D8ucA9zRlTfknHPOOddVfSbJAM4D9u6txgWF4xfasdfdGH+xdIdt7q1+euLt4uIDE5CzicYNia8+PyUx7vCOS0ZqP2BCF8qnTpc6KeX6U2atnjZ/DHAXgJktBBam3PsPSfOA+cAI4EAzM+BPwBmSdiFIXh7vQnzOOeecc11WFHUAmbBk2PABwMWZ6GvPTRx56zWJ5b/+duEHb39S+2eiz84yadDM0v4Lj92+Y2TUsXTVXxNHTLsi/s1xUcfRSRdWT5x6w/L645t60EZDO/es5QVJ+wAXAoeZ2QZJdwL9w9t3AI8BO4ApZrmxWYHLHYtWbqJ64tSow3DOubyyvP74qEPokb4yknEB8IlMdVacpPqyyYlPnTQrOTNTfXbW3QMrNkQdQ1ctSO773AWxn4yLOo4u+CTB+p/eMAM4HUDSQQRTowAGEiQmmyTtCXy5uYKZrQJWAb8E7uyluJxzzjnn/iXvk4wlw4aXAhdlul9B6Wkzkkdfemf8uaK4NWa6/7bMKe3fa1PGesNK2+2lk5su+UzUcXTDz6snTu2Nn6+bgHJJCwm+r18CMLNXCKZJvQrcDsxqUe9u4F0ze60XYnLOOeec+4i+MF3qNGC3qDof+j5jb7sm8dpF5xYOXD1IVVHF0SwmVS8tLl62fyyWjbszfcRmG7Doc41X1CQpKIw6lm7YHzgJeLC9QmZW3sq1O0kZcQi3tT0ofL4dOLWNts5up6ujgVvajdg555xzLk3yfiQD+GHUAZQ2ceC1kxJlYxcn50QdC8DdlRX/jDqGjjRa0bJjG/+w1w76lXZcOmv9OOoAACTNJZhWdVfUsbiOSTJJf0p5XSRpraS/pqn9OkkXpqMt55xzri15nWQsGTb8MD66xWdkBIMueCw5+r8eSkyXWTLKWJ4eUDooyv47kjCtPq7p8uINDNw16lh66JjqiVMPjjoIMxttZseYZc+0PdeuBuAgSc0J9nHAygjjcc4557qsU0mGpIvDA74Whvv5H9HTjjP0adoPern9LhHoiDfs2EnXJeZXbGt1e9KM2FxQMGJ9QcGHUfXfHjM2f73pko3/tD0jn1qWJj+KOgCXkx4HmrcVOQ24t/mGpF0lPRL+Pn4xPA+l+Xfq7ZKmSXpH0o9T6lws6Q1JT5NyIKmk70l6WdIrkh6UNEBShaRlkorDMgMlLW9+7ZxzznVGh0mGpDHACcCh4QFgnwfe7e3AemrJsOGDaGPuetQGNTD65msT20esSEZzArdUOKWi/PVI+m6HGU3fj/307QW2X1pPZY/Yt6onTs31ERmXefcBp0rqTzDVbXbKvUuA+eHv418Af0y5Nwz4InA48BtJxZJGE/wuPAQ4GTgspfxDZnaYmR0MLAG+Y2ZbgGnsTHJOBR40s1ia36Nzzrk81pmRjCHAuuapFma2zsxWhZ9sDQaQVCtpWvg8Wz5NOxvI2vn8hcZev74nOfSMZxIzouj/kYqyrFpMbYb9v/i35zyZPOyQqGNJs1KCP+yc67TwoMVqglGMv7W4fTTBAYuY2bPAbpIqw3tTzazRzNYBa4A9gbHAw2a2zcw2A4+mtHWQpOckLSLYGnlEeP1WgtPhoY1T4iWdJ2mOpDmJbZt69oadc87lnc4kGU8Cn5K0VNKNko7tRJ1s+DTt+50sFxlByVdesmOuvCU+qyRm2zLZ93tFRQc1QdbM0b8r8fkZtye+nItb1XbG16MOwOWkR4ErSJkqFVIrZZsPaEz9mU6wcwfBjx3gGLoTuMDMaghGSPoDmNksoDr8fV9oZos/1qHZzWZWa2a1hQMqW952zjnXx3WYZJjZVoLF0+cBa4H7JZ3dQbWMfZrWmiXDho8iZaQk231qHUfddnViZdVaW5axTqXyp8oGfOwPhyjMSNRM/1X83M4kr7nqc9UTp+4SdRAu59wO/NbMFrW4nnog4ziCkebN7bQzAzhJUqmkCuDElHsVwPvhCPHpLer9kSDB6dTvXeeccy5VpxZ+m1nCzKaZ2W8ITs/+OhBPqd+/RZWMfZrWhlM6WS5r9Isz9MpbE4O/MDf5Yqb6vHdgRUOm+mrL0uRes86MTTwm6jh6WTHwlaiDcLnFzN4zs2tauVUH1IYHMtYDZ3XQzjzgfmABwbktz6Xc/hXBeo+ngJbrtO4GBvHxkRTnnHOuQ51Z+H2ApKEpl0YBK4Dl7NwetjPTQTL5aVrOJRkAgorvPpk88pf3JqYXJC3e2/0t7leyX2/30Z51NnDevzf9z+Gg1qZ/5BufMpUjJH2nlWv1meq/jQMap5nZCeHz9Wb2VTMbaWZHhus3MLM6M7sipc5B4UGOmNmlZnaAmX3BzM5tLmdmN5nZPmY2zsx+1OJAx6OBB8xsY++9W+ecc/mqMyMZ5cBkSa+Fn5wdSPBJ2iXANZKeIxitaFemPk1bMmz4cHJoqlRrRi63Y2+9JvHarpttdW/2k5A+uaBfyRu92Udbtlm/149tvGponKK+si3mF6onTq2IOgjXKadI+teHHZJuBHaPMJ6Mk3QdwSjJ/4s6Fuecc7mpqKMCZjYXaG1B7nPA/q2Ur2vx+qCU55cCl7ZS5ybgpjZC6OqnaSd0slxWK9/ByBtvTKy9/OsFC+YOLRjVW/3cNbDig1FrP8xoUhazwnc/23jlrg2U9qU/uvsTbGJwX9SBuA6dDDwqKQl8GVhvZj+MOKaMMjM/38U551yPZPWJ3938NO34jovkhgJj94seSNacPzUxvbf6mDGgdM/ears1SdOHxzddFl/Nrntkst8s4VOmslh4yN2uBNsOfxe4CNgM/Da87pxzzrlOkllba7Fzz5Jhw3ch2AGrwxGaXLOmktkXnVs4bFt/pX2vyCf/ufL9IYnEkHS325IZ206P/WLZ88mDRnRcOi9tAwYtrz++KepA3MdJWkawOYVSvjYzM/u3SALLAbW1tTZnzpyow3DOOZcBkuaaWW1H5bJ6JKMbxpKHCQbAHps44tZrEhv3XWVL0932fQMr3kp3my2ZEb8wdv6rfTjBABgAHBx1EK514QLof2vxtfnhCYZzzjnXBfmWZBwRdQC9qSjJ3pdNTnzqpFnJmels96/lA3r9ZPRrEye98GDymMM6Lpn38vp7NB9IGiDpl5JuDl8PlZQXa72cc865TPEkI8cISk+bkTz60jvjzxXFLS0ndq8pLKzZJvXamRmPJsZMuyr+jbG91X6Oyfvv0TxwB9DEzg0v3gN+F104zjnnXO7JmyRjybDhAvrMJ+VD32fsbVcn3tlzvb3X48akfo+Vl/XK6d/zk/vO+HHsR+N6o+0cdXjUAbgO7Wtm/wvEAMxsOx9dn+Gcc865DuRNkgEMA9K+KDqblcYYfu3/JcrGLk72eMXllIryWDpiSvVucvDsrzddclS6281xQ6snTh0UdRCuXU2SSgkWfyNpXyAto4bOOedcX5FPSUafnIYiGHTBY8nR//VQYrrMkt1tZ2lJ8bAkdLt+S5tswMLPN11xcJKCwnS1mSeEj2Zku98Afwc+Jelu4BmC7Wydc84510meZOQBgY54w46ddF1ifsU2W9+dNkwa/Hxp/1fTEU+jFb99TOPVn26kpH862stDnmRkMTN7iuBAvrOBe4FaM5sWZUzOOedcrsmnJKPPrMdoy6AGRt98bWL7iBXJbiULdw+s6FaCkiphBe9/vuny/pso36WnbeWxPpsQ5wJJIjjpe7SZ/RUYIMkTQ+ecc64L8inJ2C/qALJBobHXr+9JDv32M4kZXa37Uv/+VT3p24xNJzVdsvVd22OvnrTTBxwadQCuXTfMz+4YAAAgAElEQVQCY4DTwtdbgBuiC8c555zLPXmRZIQnffepRd/tEZSc+JIdc+Ut8VklMdvW2XpNBdr3neKiFd3p04zG82I/W7bQ9h3anfp9zCeqJ04tjjoI16YjzGwCsAPAzDYAJdGG5JxzzuWWvEgygL2jDiAbfWodR912dWJl1Vpb1tk6dw+sWN7VfsxI1sXPnPdUsnZUV+v2UQKGRB2Ea1NMUiE7d5fanTRuiuCcc871Bd1OMiTtK6lf+HycpB9LimoefnVE/Wa9fnGGXnlrYvAX5iZf7Ez5J8sGdPm/4Z2JLz43OfGlMV2Prk/zKWXZ61rgYWAPSZcCM4HLog3JOeecyy09Gcl4EEhI2g+4DdgHuCctUXVddUT95gRBxXefTB75q3sS0wuSFm+v7MaCghGbCgo2drbtfyQOnnZJ/Kxjex5ln+NJRpYys7sJtqz9H+B94GtmNiXaqJxzzrnc0pMkI2lmceAk4Goz+ynRTQHx6VKdULPCjr31msRru2621W0WkooerCh7rTPtvZGsmnVO7CJPMLrHk4wsI+lqSd+QtJeZvW5mN5jZ9Wa2JOrYnHPOuVxT1IO6MUmnAWcBJ4bXolrMWh1RvzmnfAcjb7wxsfbyrxcsmDu0oNU1FA9VlOvcTVvabWeNVc49vumyw0HqlUDznycZ2ectgg9NLg92seV5YFb49RXrwWGX+W7Ryk1UT5wadRjOOReZ5fXHRx1C1unJSMY5BNs8XmpmyyTtA9yVnrC6zBfRdkGBsftFDyRrzp+amNba/RVFRSNiEGurfoP1X/LZxj8cEKfId0jqPk8yskw4avEtM6sm+N32ELAvMAXo9BRC55xzzvUsyTjOzH5sZvcCmNkyYHt6wuqyARH1m7MEheMX2rjrb4zPHrDDNn30pgY+WzZgUWv1Ylb4z882Xjm4gdLyjASavzzJyEIKjAS+Gj6OJRjhuDLSwJxzzrkc05Mk46xWrp3dg/Z6ojSifnPeHps44tZrEhv3XWVLU6/fW1H+sflSSdO6LzXV2xoG7Z65CPOWj75lGUlPAS8CE4BG4DIzG21mXzKzS6KNzjnnnMstXU4yJJ0m6TFgH0mPpjz+AXyY/hA7pX9E/eaFoiR7XzY58amTZyVnNl9b0L/fvqllzGg4reniNW/bXr7IPj36RR2A+5h3CM7GGBo+9pM0ON2dSNpN0oLw8YGkleHzjZI6telCD/s/W9L1vd2Pc865vq07C7+fJ9jWcTAfnUKwBViYjqC6wUcyekhQeuqM5NG1byaf+/UZhYfHi1S1qKTkzZqmpqFmxH8a++GS2XZgbdRx5pGebLrgeoGZfR9A0kDgSOAzwITwML7FZtba6G13+vkQGBX2VQdsNbMrJFUDf+1uu5KKwh3/nHPOuch1eSTDzFaY2TQzG2Nm01Me8yL8H5yPZKTJfu8z9rarE+/sud7eu6uyYhXAVfFTXnwkebQnGOnli+azVyOwjWCNWSNQBRyaob4LJd0i6VVJT0oqBZA0TVJt+HywpOXh87MlTQlHl5+UNETSjHBkZLGksWG5cyQtlTQdOKq5M0knSpotab6kpyXtKalA0pthckX4+q3eGNVxzjmXv7ozXWpm+HWLpM0pjy2SNqc/xE7xkYw0Ko0x/Nr/S5Tt8nrx9ocTR02/NnHy0VHHlIc8ycgykq6SNBv4APgtUAH8H3CAmdVkKIyhwA1mNoJgR6uvd6LOGOAsMxsPfAt4wsxGAQcDCyQNAS4hSC6OAw5MqTsTONLMDgHuAy4Kt+q9Czg9LPN5gi181/X43TnnnOszujxlw8yODr9WpD+crlsybHgRUBh1HNnIkMUL+2+JF5c2xIvKGpqKy3bEissbY8XlTU0lFfFYcVkyVlxusaKygnhRaUGiqH9RvLBfSbKguF+yoKi0fNPCkhH9Dy6bUdh/fdTvJd8YbOq4lMuwDQSLvl83s60RxbDMzBaEz+fSuTOAnjKz5p/Rl4HbJRUDj5jZAkmfA6aZ2VoASfcD+4flq4D7w0SkBFgWXr8d+AtwNXAucEfLTiWdB5wHUDjQ94Jwzjn3Ud2eFy5pX+A9M2uUNA4YCfzRzHw/+R4ysERhv4Z40YCtsaIBDbHi8h2x4rLGWEl5Y1NxRSJWXJ6IFZdZrLhM8aIBhfHC/oWJwn4licKSfqai0mRBYRmoDCgnmF8+sMsxWGxbU+OMklc+XLN6zB5f2TX977LPs6gDcB/zVTP7raR5ZG56VEuNKc8T7ByljbNz5Lnl9NCG5idmNkPSMcDxwJ8kXQ5spu3vt+uAP5jZo+Hv8bqwnXclrZY0HjiCnaMa/2JmNwM3A/QbMtS/n51zzn1ETxafPgjUStoPuA14FLgH+Pd0BNZZw19fEl8ybHiMLJl+kigo2RYrKt0aLy5riBWXbY8Vlzc2BaMH8VhxebKpuDwZLy5TrKi0IF5UWpgo7FeSLCjplywo6m8FhWVGQTlBchB8jUhs62Mvgx37z4YlVYcmPr+gX+GAVk8Hd92WiDoA9zExSXcAVZKubXnTzH4cQUzNlgOjgZeAU9oqJGlvYKWZ3SKpjCBZ+j1wjaTdCBKObwCvhFUqgZXh85YL228lmDb1JzPz71fnnHNd0pMkI2lmcUknAVeb2XWS5qcrsC5qAHbpSQOJgqId8aIBW+NFAxpixWXbwsSgKZhaVJ6MFZVbrLjM4sUDCuOFpYWJon7FiYKSfsmC4v6mwjJTQfPIwQBy/HDAZPyDN5Px5f9aHPrCmkeLxg05NcqQ8tG2qANwH3MCwfqD8QRTlbLJFcCfJX0beLadcuOAn0uKAVuBM83s/XAXqxcIdgacx84ppnXAFEkrCc4I2SelrUcJpkl9bKqUc84515GeJBkxSacRfPp1YngtktGEpuLylbGiss2x4gHbwjUHjbHi8lhTSUXztCKLFZUVJIpKi+KF/YoShf9KDkpNhc0jB/0JpiH06R1UzMyatj6wg5TvjdU7VhzUENv0Ullx5eERhpZvNkQdgPuocGHzfZKWmNkrHVZIT591Kc+XAwelvL4i5fnrBFNSm/0yvH4ncGdKucnA5Fb6aTVZMLO/EKy9aM3BBAu+X+/EW3HOOec+oidJxjnA+cClZrZM0j4EQ+sZN/Oo3wv4dBR955v4jlkzsaaxLa/PXPPQbl/45NlJST05Jd7t5ElGFpL0ZeC/JR1IsI7hNeD3Zva3aCPLLEkTgR/QyloM55xzrjO6nWSY2WvAj1NeLwPq0xFUN0R10nhesWTD2sSOl1rdqnNj05p9NzWtnbVLvz2Oau2+6zLfsSvLSPoe8H3gImBOeLkWqJdUFS507hPMrJ7ofp8755zLA905J+PP4ddFkha2fKQ/xE7x/dvToGnLA0tpZ23LzDUP721mjW3dd13iIxnZ56fAF8zsWTPbHD6eBb4c3nPOOedcJ3VnJGOLpKMI1mFky7aFPpLRQ4mmpfMs+WG7oxQN8Y1Va3b8c8aepXsfk6m48piPZGQfpZw38S9m9qGkKOLJGTV7VTKn/viow3DOOZdFujO/fiHBTifTgB8Cg8xsRfMjncF1gY9k9IBZvDHW8LdBnSn7wppHDzSzLb0dUx+wsuMiLsM2Szq45cXwmn/PO+ecc13Q5STDzK4xszHAsQSfxt4haYmkX0vav4PqveXdiPrNC7GGv78IyX06LgmNyW2D39v2xrzejqkPeDvqANzH/BfwqKQ6SSdKOkHSJQS7L/0s4ticc865nNLtnYLCkYvfm9khwLeAk4AlaYusaxZF1G/OSybWLUvGlh7ZlTovrX380HC7T9d9nmRkGTObCRxO8HvxbODc8PmR4T3nnHPOdVK3kwxJxeGnfXcDjwNLga+nLbKu8SSjm5q2TNkA9OtKnbg1Vby1Zf5rvRRSX5AElkUdhPs4M1tNcKr2N8zsZDP7lZl9EHVczjnnXK7pzu5Sx0m6HXgPOA/4G7CvmX3TzB5Jd4CdMWHS+I34lKkui+94aRa2/dDu1F3w4bNHJC3xXrpj6iPeq6of2xR1EK5NpwJvSvpfScOjDsY555zLRd0ZyfgF8AIw3MxONLO7zawhzXF1h49mdIElt2+Mb5/Z7TU0SRL9Xt34fFQL/XPdW1EH4NpmZmcAhxJMabtD0guSzpNUEXFozjnnXM7ozsLvz5rZLa1t9RixqM7oyElNWx9eBOzekzZe2/j8mEQy5n8wd92CqANw7TOzTcCDwH3AEII1Z/Mk/SjSwJxzzrkc0e01GVnIk4xOSsSWL7LEB0enoamCeeufybZkMxfM6biIi0q41uxh4FmgGDjczL4MHAxcGGlwzjnnXI7IpyTDp0t1glkyHtv6aH8gLaeLvbPllcObkjsWp6OtPuTlqANw7foGcJWZjTSzy81sDYCZbSPYcco555xzHcinJON1wBfTdiC+7emZEB+azjZnr50aT2d7eW5DVf1Yn2KWxczsTDOb0ca9ZzIdj3POOZeL8ibJmDBpfJwg0XBtSCY2vpdoWnx4uttdte2tUdvjW30KUOfMjToA1z5JR0p6WdJWSU2SEpI2Rx2Xc845l0vyJskI+R+67Wja8udVwIDeaPv5NY+UmZn1Rtt5ZnbUAbgOXQ+cBrwJlALfBa6LNCLnnHMux+RbkvG3qAPIVvHGV2ZjW9M+itFsXePK4VvjG17srfbzyFNRB+A6ZmZvAYVmljCzO4DPRh2Tc845l0vyLcl4AmiMOohsY9a4Nb7t2U/3dj8zVz80xMx8fUbbtgDPRx2E69A2SSXAgvBAvp8CZVEH5ZxzzuUS5dsMlxvOf/Zx4EtRx5FNmrZMmZ6Mv3tsJvr6/JBvP7db/0+OzURfOegvVfVjvxZ1EK59kvYGVgMlwE+BSuDGcHTDtaLfkKE25Kyrow7DOZfHltcfH3UILiRprpnVdlQu30YyAB6NOoBskoyvej0ZfzcdZ2J0yqw1jww1s+2Z6i/HPBF1AK5jZrYCqAD6mdklZvYzTzCcc865rvEkI4+ZWbJpy4NJoDBTfW5PbPnE+9vfeSlT/eUYTzKymAJ1ktYR7FS3VNJaSb+OOjbnnHMu1+RdkjFh0viVwLyo48gG8e3TZ0LswEz3O3vtXw82s02Z7jfLvVpVP/adqINw7fpP4CjgMDPbzcwGAUcAR4XrMpxzzjnXSXmXZIT6/GiGJbesTjTOGxVF303JHbss37p4QRR9Z7F7ow7AdehM4DQzW9Z8wczeAc4I72WF8NyOBSmP6lbKfFLSA23Unyapw7m0zjnnXE94kpGnmrZMeQcYGFX/cz988jCz5Oqo+s9C90QdgOtQsZmta3nRzNYCxRHE05btZjYq5bE89aakIjNbZWanRBSfc845l59JxoRJ4+cD70YdR1QSjUvmWHLjmEhjsPiANza9vDTKGLLIi1X1Y5d1XMxFrKmb9yIn6WxJUyQ9BjwpqVrS4vBeqaT7JC2UdD/BAYPN9W6SNEfSq5IuCa99TtLDKWWOk/RQpt+Tc8653FYUdQC96AGC7Sf7FLPY9ti2J/aIOg6AhRumjxlaWbuiUIV7Rx1LxHwUIzccLGlzK9cF9M90MO0oldQ8HXGZmZ0UPh8DjDSz9S2mUP0A2GZmIyWN5KNr1i4OyxcCz4T3nwVukLR7OIpzDnBHb74h55xz+ScvRzJC1wPJqIPItFjD1NmQ7PWD9zrDsKJF66evjDqOiMWBP0cdhOuYmRWa2cBWHhVmlq3TpU5Kuf6Uma1vpfwxwF0AZrYQWJhy7z8kzQPmAyOAAy04POlPwBmSdiFIXh5v2aik88JRkDmJbb7Pg3POuY/K2yRjwqTx79DH1mYk42veTsbeOSrqOFK9sfnlMfFk0xtRxxGhh6rqx/raFJcJDe3c+9ipq5L2AS4EPmdmI4Gp7ByxuYNgwftpwBQzi3+sQbObzazWzGoLB1T2OHjnnHP5JW+TjNBVUQeQKWZmTVsf2Ep2LVAF0Jx1T2yJOogIXRt1AK7PmwGcDiDpIGBkeH0gQWKySdKewJebK5jZKmAV8EvgzkwG65xzLj/kdZIxYdL4GfSRMzMSO16che04OOo4WrOi4bXaxsS2vril7dyq+rGzog7C9Xk3AeWSFgIXAS8BmNkrBNOkXgVuB1p+r94NvGtmr2UwVuecc3kinxd+N7uKYH5x3rLktg/jO17I+KF7XfHCmscKxw35ZtRhZNp1UQfg8o+Zlbdy7U5SRhzCbW0PCp9vB05to62z2+nqaOCWbgfqnHOuT8vrkYzQ/QTD/nmraeuDS4Bdo46jPat3LK9piG96Keo4MmgNcF/UQTjXHZLmEkyruivqWJxzzuWmvE8yJkwaHwNuiDqO3pJoenuBJdYeHXUcnTFr9cO7mllf2fHrmqr6sY1RB+Fcd5jZaDM7xsz8e9g551y35H2SEfo/YHvUQaSbWaIp1vDXiqjj6KwNTav32xRb+0LUcWTAOnzBt3POOef6MAVboue/G85/9ibg/KjjSKemhr9NSza9Pi7qOLqirGiX946vOm8PSSVRx9KLfl5VP/aKqINwLlNqa2ttzpw5UYfhnHMuAyTNNbPajsr1lZEMgMvIo9GMZGL9imTT60dGHUdXNcQ3Vq3d8e6LUcfRiz4gj6fnOeecc851Rp9JMiZMGv8ucGXUcaRL05Ypa9l5cFZOeX7NXw40s61Rx9FL/qeqfmzeJLPOOeecc93RZ5KMUD3wftRB9FR8x9znsYYOh6myVWNy2+D3tr0xN+o4esFygvU/zjnnnHN9Wp9KMiZMGt8AXBx1HD1hyR2b4ttn7Bd1HD310trHDzWzD6OOI83+y3eUcs4555zrIMmQtJukBeHjA0krw+cbJfX6KbCSzpZ0fZqbnQzk7KfoTVsfeQVsj6jj6Km4NVW8tWX+4qjjSKNnqurHPhR1EM4555xz2aDdJMPMPjSzUWY2CpgEXBU+HwV0+7wDSZGdND5h0vgkwS5TOXdeQyL27quWWJUTZ2J0xoIPnz0yacmVUceRBk3AhPYKSLpK0n+mvH5C0q0pr6+U9LPOdCapTtKF3Y624/Z7I7l3zjnnXB/Sk+lShZJukfSqpCcllQJImiapNnw+WNLy8PnZkqZIegx4UtIQSTPCkZHFksaG5c6RtFTSdOCo5s4knShptqT5kp6WtKekAklvSto9LFMg6S1Jg9sLfMKk8XPIsR2AzJKJ2NZHCsmjKW5JEv1e2zhrWdRxpMHlVfVj3+igzPPAZyD4PgUGAyNS7n8GmNU74TnnnHPOZVZP/mAdCtxgZiOAjcDXO1FnDHCWmY0HvgU8EY6MHAwskDQEuIQguTgOODCl7kzgSDM7BLgPuCg8Pfou4PSwzOeBV8xsXSdi+SWwqhPlskJ8+z9mQmxY1HGk22sbXxiTSMbfjjqOHlgK/K4T5WYRJhkEycViYIukQZL6AcOB+ZJ+LullSQslXdJcWdLFkt6Q9DRwQMr1aZJ+L+mlMDlvTtYLJV2e0tb3w+uRJffOOeec6zt6kmQsM7MF4fO5QHUn6jxlZuvD5y8D50iqA2rMbAtwBDDNzNaaWRNwf0rdKuAJSYuAn7PzU+DbgTPD5+cCd3Qm+AmTxm8GftKZslFLJjatSjS+MjrqOHqDYYXz1z/TmaQwG8WBM6rqx+7oqKCZrQLikj5NkGy8AMwmSLxrgYXAOILk/XCCKYmjJR0jaTRwKnAIcDJwWIvmi8zscOA/gd+E174DbDKzw8Ly35O0D9En984555zrA3qSZKTuopMAmtdZxFPabXmOQ0PzEzObARwDrAT+JKk5UWjrCPLrgOvNrAb4fnPbZvYusFrSeIIk5fHOvoEJk8Y/ANzZ2fJRiW2d8i5QHnUcveXtLQuOiCUbX406jm74XVX92Je7UL55NKM5yXgh5fXzwBfCx3xgHjCMIOkYCzxsZtvMbDPwaIt2mxecpyb7XwDOlLSAIJnZLWwr0uTeOeecc31Db8zvXw40f+p+SluFJO0NrDGzW4DbgEMJ/hgaF+5qVQx8I6VKJUFCAnBWi+ZuJfhk9c9mluhivD8EXulinYyJNy5+yZKbj4g6jt724tq/xqKOoYtmA5d2sU7zuowagulSLxKMZDSvxxDwP82bLZjZfmZ2W1i3reQbdib8qcm+gB+ltLWPmT2ZDcm9c8455/JfbyQZVwA/kPQ8weLWtowjmKoxn2A9xzVm9j5QR/AJ79MEn+Y2qwOmSHoOaDkt41GCT/q7/GnqhEnjtxMkQ5u6Wre3mTU1xLc9tVfUcWTCqm1vjdoe35orWws3EEyTinex3izgBGC9mSXCqYO7ECQaLwBPAOdKKgeQtJekPYAZwEmSSiVVACd2oq8nCH4Oi8O29pdUlkXJvXPOOefymMza+4A0N4S7WV1lZmO728YN5z97EjunnWSFpi0PTk/GVxwbdRyZMrjfXkvGDzl9mCRFHUsHzq6qHzu5q5UkFQIbgGvN7JfhtTuBMWZ2QPj6J8B3wypbgTPM7G1JFxNMT1oBvAe8ZmZXSJoGXGhmc8KF13PMrDrcwep3BAmJgLXA18LHz4FY2P6ZZrZM0jnAfwPvAwuAQjO7QNJXgasIEo0XgcPMbFwYazHwIXC4mb3e1X8Plz9qa2ttzpw5UYfhnHMuAyTNNbPaDsvlepIhaSLwA+B0M5vZk7ZuOP/Zy4FeO3+gK5Lx95c2bbn339g5/aVP+Peq771QUbzrmKjjaMd1VfVjfxx1ENkgHcm9yw+eZDjnXN/R2SQj5/+ANbN6oD5Nzf03wfzySP9oMjNr2vpgI3nw36erZq5+aMiX9vpOXBEe2NiO6UCnDszLd6nJfdSxuOgtWrmJ6olTow7DOddFy+uPjzoEl8fy5mC3dJgwaXwc+CbwQZRxxLfPfA5rqokyhqhsjn1Yvb7x/ReijqMV/wS+0Y11GHnJzOrNbO+ejh4655xzLj95ktHChEnj3yc4kyCShayWbFibaHz54Cj6zhaz1jwy1My2Rx1Hiu3ASVX1Y9dGHYhzzjnnXC7wJKMVEyaNn06wtW3GF6w0bZmylGBHnz5re2LLJ97f/s5LUccRihOMYMzrsKRzzjnnnAM8yWjThEnjbwZ+lMk+E01L51ly/VGZ7DNbzV7714PNLOpthQ04p6p+rE82d84555zrAk8y2jFh0vgbgJ9moi+zeGOs4W+7ZqKvXNCU3LHL8q2LF0Qcxn9W1Y+9K+IYXB8m6WJJr0paKGmBpB4fzCmpTlJW7KLnnHMuf3mS0YEJk8ZfDVzU2/3EGh5/EZLVvd1PLpn74ZOHmSVXR9T976rqx14bUd/OIWkMweGNh5rZSODzwLvRRuWcc851jicZnTBh0vjLgYt7q/1kYt2yZOzNI3ur/VyVsPiANza9vDSCrq+oqh/7qwj6dS7VEGCdmTUCmNk6M1slaXl48CKSasMDGZtHKG6XNE3SO5L+dZ5LOCLyhqSngQNSrn9P0suSXpH0oKQBkiokLUs5LX5g2GdxBt+7c865HOdJRidNmDT+MqCuN9pu2jJlI9CvN9rOdQs3TB+TsMSKDHb566r6sT/PYH/OteVJ4FOSlkq6UdKxnagzDPgicDjwG0nFkkYT7Jh3CHAycFhK+YfM7DAzOxhYAnzHzLYA04DmDfRPBR40s1hqR5LOkzRH0pzEtqiXTznnnMs2nmR0wYRJ4y8BfpfONuPbZ8/Cth+SzjbziWFFi9ZPX5mh7n5aVT/2/2WoL+faZWZbgdHAecBa4H5JZ3dQbaqZNZrZOmANsCfB4aIPm9k2M9sMPJpS/iBJz0laRHCw4ojw+q3AOeHzc4A7WonvZjOrNbPawgF9ekM855xzrfAko4smTBr/K9KUaFhy+8b4jlkHdFyyb3tj88tj4smmN3qxiyTwvar6sVf3Yh/OdZmZJcxsmpn9BrgA+DrBtsrNv7v7t6jSmPI8ARQ1N9VGF3cCF5hZDXBJc3tmNguoDkdPCs1scU/fi3POub7Fk4xuCBONMwgOaeu2pq0PLQIGpyWo/KY5657Y0kttNxCcg3FrL7XvXLdIOkDS0JRLo4AVwHKCEQ4Iko6OzABOklQqqQI4MeVeBfB+uN7i9Bb1/gjcSyujGM4551xHPMnopgmTxt8NHEXwP/0uS8SWLbTE6qPTG1X+WtHwWm1jYlu6t7T9J3BUVf3Yh9LcrnPpUA5MlvSapIXAgQTrwi4BrpH0HMFoRbvMbB5wP7AAeBB4LuX2r4DZwFPA6y2q3g0MIkg0nHPOuS6RWcYPtc4rN5z/7GDgz8BnO1vHLBFr3HjDcogP7bCw+5c9+1cvGjfkmzVpau554KSq+rFr0tSec3lF0inAV83s2x2V7TdkqA05y2cbOpdrltcf33Eh51qQNNfMajsq5yMZPTRh0vh1wHHAVZ2tE9/29POeYHTd6h3Laxrim15KQ1OTgc96guFc6yRdB9QDvhGCc865binquIjryIRJ4xPAz244/9l5wM1AaVtlk4kN7yWaXj2srfuufbNWP7zrcZ88KympOwlyA/Djqvqxt6c7LufyiZn9KOoYnHPO5TafLpVmN5z/7KHAw8CnW7u/Y+PNL2NbPcnogS/udc7MXUr26Op6lnnAaVX1Y6M43M+5vFZbW2v/f3v3HyVnVd9x/P3hp/IrBKEYCIK2kSOmECD8qg3EUMKvFaSlbpBasFhEQpVzllOxUIx42kbr+qNwJAcrAjbIGiGarqChCOVHDc0mhkCC/DBn28TEQCANCSFAwrd/PHflcTKzO5udnWdm9vM6Z87OPM99Zr5377Oz9zv3Pnd6enqKDsPMzOrA06UKMn3WlMXAMcAdpfu2blmywAnG0D26du5hEfF6lcUD6AROcoJhZmZmVh9OMobB9FlTXpw+a8qFQBuwCiDitY1bX33g0GIjaw2btv7f2Be2rFxQRdEVwNSxMyddNXbmpGqTEjMzMzMbIicZw2j6rCk/Jlt28qY3Nv1oMcSYomNqFT9/Yd770jcil/MG8E/A+LEzJ/1HHe+LeAIAAA0PSURBVMMyMzMzM3zh97CbPmvKRuDyzvavngjcAAw4h80GtmXbKwes2vzMfx6y5+GnlOx6BLhs7MxJy4qIy8zMzMw8klE3HV3dC4ATgEuBdQWH0xIWvnDP0RHxYnq4BrgEONkJhpmZmVmxvLpUATrb20YD1wOX4dGkIZmw35T5h4867hGgc+zMSZuLjsdsJPLqUmZmI0e1q0s5yShQZ3vbu4ArgU8AexccTrPZRDb9rLOjq/vFgQqb2fBxkmFmNnI4yWgine1to8imUX0aGFtwOI3uFeBG4CsdXd2edmbWAJxkmJmNHE4ymlBne9uuQDvQAUwoOJxGsxK4Fbiho6v7hYJjMbMcJxlmZiOHk4wm19nedipwFXBG0bEUaDNwN1ly8UBHV/ebxYZjZuU4yTAzGzmqTTJ80XGD6ujqvh+4v7O9bTxwOXAucFCxUdXNw2SJxZyOru6NBcdiZmZmZoPkkYwm0dneJuBY4BzgQ7TedKpe4Hbg9o6u7l8VHIuZDYJHMszMRg5Pl2pxaWWqD6XbB4Hdio1o0N4AFgGPAj8GHuzo6vbJaNaEnGSYmY0cTjJGkM72tr2BqWSjHFNozBWq1gP/RZZUPAos7OjqfrXYkMysFpxkmJmNHE4yRrDO9rZ9gCOA95f8PKSOYawgSyYeST+Xe6TCrDU5yTAzGzmcZNh20ojHEbnbOGBfYBSwT+5WaerVNuB5YM0At990dHW/PmwVMbOGsvuYcTHmoq8XHYZZ0+mdeXbRIZgNmleXsu2klZoeS7eKOtvbdgJ2LnN7uaOre9twx2lmZmZmzc1Jhm0nfR/Fm2QXZ5uZmZmZDcpORQdgZmZmZmatxUmGmVlBJF0jaZmkpZKWSDqhn7IXSxryF3JKelDSgHNpzczMhsLTpepI0juA+9PDd5JdSP1Cenx8RNT0YmlJjwBXRMSSWj6vmQ2dpJOANuCYiHhN0v70/303FwNPAqsH8Rq7RMTWIQVqZma2AzySUUcR8WJETIiICcAs4Gt9j2udYJhZwxsDrIuI1wAiYl1ErJZ0naSFkp6UdLMy5wMTgdlpxOPtknpTYoKkiZIeTPdnpOPmA7ensnem0ZIu4O19AUi6SVJPGk35Qtp2qqS5uTKnSbq7Xr8UMzNrDU4yGoCkP5C0JPf4aknXpvvjJP1U0iJJD0l6b9o+LXVCHpf0QNq2h6Q5qTNxJ/C23HPenOtMXJe2nS5pTq7MmZK+X6dqm41084FDJD0j6ZuSTknbb4yI4yJiPFlC0BYRPwB6gAvThxIDfZHlscC5EfFR4FPA5og4EviHtK/PNWkZwiOBUyQdCfwMeJ+kA1KZjwPfKX0BSZem95SebZs37NAvwMzMWpeTjMZ3M3B5RBwLfA64MW3/PHBqRBwFnJe2XQGsT52JLwFH557n6tSZOAo4TdIRwH3AkWkaF1ToTJhZ7UXEJrIO/6Vk0ya7JF0MfFDSY5KeAKaQfZnmYM3LJSInA/+WXnMpsDRX7iOSFgO/SK9zRGRfnvRd4C8k7QucBNxbJv6bI2JiREzceY9ROxCimZm1Ml+T0cDSP/gTgbsk9W3ua7NHyaZCzAH6pjKcDHwZICJ+IWlZ7ukukHRJOv4gss7Eckl3AB+VNJusw3PBcNbJzN4SEduAB4EHU1LxSbJRhYkRsVLSDHIjkiW28tYHRaVlXil9qdKDJb0buAo4LiLWS7o19zzfAf4d2ALM8XUdZmY2WB7JaAz5zgK89Y9eZHO2J+Ru49O+vyYbzTgMeFzS6LS9XGdiHPAZYEoa5fhJ7jVuAT4GXAh0pU6PmQ0zSYenv80+E4Cn0/11kvYCzs/t3wjsnXvcy1tTn/6sn5d6iOzvG0njyZIYgH3IkpENkg4Ezuw7ICJWk11gfi1wa9WVMjMzS5xkNIbfAAdJGi3pbcDZABGxHlgj6TwASTtJOiod856IWAD8PbAeOJjf7UwcxVvTLPYh66C8LGkMcHrfC0fESmAdcDXuTJjV017AbZKWS1oKHAHMAL4FPAH8EFiYK38rMKvvwm/gC8A3JD1MtlJdJTcBe6XX+FvgvwEi4nGyaVLLyD5seLTkuNnAyohYPpRKmpnZyOTpUg0gIrZI+keyDsUKIP9PfRpwU5o2sRvZ3OrHga+l6Q4C5kfEk5JWkHValgKLyS4UJd1fTrb85Qq270zcAewTEc8MR/3MbHsRsQj4ozK7rk230vJ3AXflNj0MvLdMuRklj18lex8pF8PF/YT4x2QJj5mZ2aApu8bPRjJJs4CfR8RtRcdiZsWTtIhsKtVpfUvs9mf3MeNizEVfH/7AzFpM78yziw7BbNAkLUqLCfXLIxkjXFo6dz3w6aJjMbPGkFazMzMz22FOMka49MWAZmY77A8PHkWPP5E1M7McX/htZmZmZmY15STDzMzMzMxqykmGmZmZmZnVlJMMMzMzMzOrKScZZmZmZmZWU04yzMzMzMysppxkmJmZmZlZTfkbv83MbEgkbQSeLjqOGtsfWFd0EDXUavUB16kZtFp9oPXqtCP1OTQiDhiokL+Mz8zMhurpiJhYdBC1JKmnlerUavUB16kZtFp9oPXqNJz18XQpMzMzMzOrKScZZmZmZmZWU04yzMxsqG4uOoBh0Gp1arX6gOvUDFqtPtB6dRq2+vjCbzMzMzMzqymPZJiZmZmZWU05yTAzs6pIOkPS05Kek3R1mf27S+pK+x+TdFj9o6yepEMkPSDpKUnLJH2mTJnJkjZIWpJu1xURa7Uk9Up6IsXaU2a/JP1LaqOlko4pIs5qSTo897tfIullSVeWlGn4NpJ0i6TnJT2Z27afpPskPZt+jq5w7EWpzLOSLqpf1JVVqM8/S/plOq/mStq3wrH9nqNFqVCnGZJ+nTu3zqpwbL/vjUWoUJ+uXF16JS2pcGxN2sjTpczMbECSdgaeAU4DVgELgQsiYnmuzOXAkRFxmaRpwHkR0V5IwFWQNAYYExGLJe0NLAI+XFKnycBVEdFWUJiDIqkXmBgRZde9T52kvwHOAk4AvhERJ9Qvwh2XzsFfAydExP/ktk+mwdtI0snAJuD2iBiftn0ZeCkiZqaO6eiI+GzJcfsBPcBEIMjO0WMjYn1dK1CiQn2mAj+LiK2SvgRQWp9Urpd+ztGiVKjTDGBTRHyln+MGfG8sQrn6lOzvBDZExPVl9vVSgzbySIaZmVXjeOC5iFgREa8DdwLnlpQ5F7gt3f8BcKok1THGQYmINRGxON3fCDwFHFxsVMPuXLJOR0TEAmDflGw1g1OBX+UTjGYREQ8BL5Vszv+93AZ8uMyhpwP3RcRLKbG4Dzhj2AKtUrn6RMT8iNiaHi4AxtY9sCGo0EbVqOa9se76q096X/4I8L3hjMFJhpmZVeNgYGXu8Sq275D/tkzqbGwA3lGX6IYoTe06GniszO6TJD0u6V5J769rYIMXwHxJiyRdWmZ/Ne3YqKZRuVPUTG3U58CIWANZwgv8XpkyzdpefwXcW2HfQOdoo7kiTQG7pcKUtmZso0nA2oh4tsL+mrSRkwwzM6tGuRGJ0vm21ZRpOJL2Au4CroyIl0t2LwYOjYijgBuAH9Y7vkH6QEQcA5wJTE9TJvKatY12A84B5pTZ3WxtNBhN116SrgG2ArMrFBnoHG0kNwG/D0wA1gCdZco0XRsBF9D/KEZN2shJhpmZVWMVcEju8VhgdaUyknYBRrFj0w/qRtKuZAnG7Ii4u3R/RLwcEZvS/XuAXSXtX+cwqxYRq9PP54G5ZFM58qppx0Z0JrA4ItaW7mi2NspZ2zdVLf18vkyZpmqvdGF6G3BhVLjot4pztGFExNqI2BYRbwLfonyszdZGuwB/CnRVKlOrNnKSYWZm1VgIjJP07vSp8jRgXkmZeUDf6jfnk10E2rCf6KV5yd8GnoqIr1Yo886+60okHU/2f/PF+kVZPUl7pgvYkbQnMBV4sqTYPOAvlTmR7MLPNXUOdUdU/OS1mdqoRP7v5SLgR2XK/BSYKml0mqozNW1rOJLOAD4LnBMRmyuUqeYcbRgl1yudR/lYq3lvbCR/AvwyIlaV21nLNtplh0M0M7MRI60YcwVZB2dn4JaIWCbpeqAnIuaRddi/K+k5shGMacVFXJUPAB8Dnsgt5fh3wLsAImIWWbL0KUlbgVeBaQ2cOB0IzE397V2AOyLiJ5Iug9/W5x6ylaWeAzYDHy8o1qpJ2oNs5Z5P5rbl69TwbSTpe8BkYH9Jq4DPAzOB70u6BPhf4M9T2YnAZRHxiYh4SdIXyTqyANdHROGjgxXq8zlgd+C+dA4uSCvNHQT8a0ScRYVztIAqbKdCnSZLmkA2/amXdA7m61TpvbGAKvyOcvWJiG9T5tqm4WojL2FrZmZmZmY15elSZmZmZmZWU04yzMzMzMysppxkmJmZmZlZTTnJMDMzMzOzmnKSYWZmZmZmNeUkw8zMzMzMaspJhpmZmZmZ1ZSTDDMzMzMzq6n/B1fdY1eJxiCfAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAyAAAAEBCAYAAACAH8HSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XWYXOX1wPHvvTPru7ElRkIIBDi4Q3CCa4FfC8UKBdJSPAUKRVIokApOixSCFCkubXGCxN2dE+JuG1md2ZH7++NOyhIiK7N7d2fP53n2ycyV9z3vZnd2zrzmeJ6HMcYYY4wxxjQFN+gAjDHGGGOMMa2HJSDGGGOMMcaYJmMJiDHGGGOMMabJWAJijDHGGGOMaTKWgBhjjDHGGGOajCUgxhhjjDHGmCZjCYgxxhhjjDGmyVgCYowxxhhjjGkyloAYY4wxxhhjmowlIMYYY4wxxpgmYwmIMcYYY4wxpsmEgw7AGGNMxskBDgNWAImAYzHGGNN4QkBXYDwQre1NloAYY4xJt8OA4UEHYYwxpskcC4yo7cWWgBhjjEm3FQDr11eQTHpBx5I2xcWFlJSUBx1G2mRaeyDz2pRp7YHMa1OmtQfq1ibXdWjfvgBSr/u1ZQmIMcaYdEsAJJNeRiUggLWnBci0NmVaeyDz2pRp7YF6talOw21tEroxxhhjjDGmyVgCYowxxhhjjGkyloAYY4wxxhhjmowlIMYYY4wxxpgmYwmIMcYYY4wxpsk4npd5M/eNMcYEqiewIOggjDHGbF0kGqestOpHxzt2LGLNmrJaleG6DsXFhQC7AAtrW7ctw2uMMaZR9B0wiNXrf/zHzRhjTPA+evRcapdmpJ8NwTLGGGOMMcY0GUtATLMgIgtFZIWIhGocu1JEPBG5IY31DBGRs9NVnjHGGGOMqRtLQExzsgI4rcbzXwITA4rFmC0SkQEi8o8az89OJcr71Dj2sYj0rUOZfURkQrpj3UpdL6czqTfGGGPqyuaAmObkZeAK4FMR2QXIB2YAiEgh8CRwWOra11T1wdS5IcB44EhgR+AdVb0jdW5v4J9AFjALyN1UmYjcClyE/3sQAa5V1SkicjvQQ1VvSF3XGZgG7KKqlY3UdtNyDMH/WdzkeGAs0AeYmerFOwa4qckjM8YYY1oAS0BMczIYuE5E2uMnIq8Ch6bO/QG/x24/oAgYLSLTVPWz1PkewHGpc/NE5EVV/Q54Dfi7qr4iIkcAI2vU96qqPgogIicDzwJHAM8Ds0XkDlUtB64G3rDkw6SMBHYRkc6qugo/Abkfv8fuaeAgoFRV54vImcDd+IlvNXCzqo4BvycFPwFeBozbVLiI9AGewE9qjgQ84CJVnZ06/0vgOvzX7434ibOKyFHAU/i/J1nAAFV9U0S64f8u7YC/MlW4Rl2XAP2A7NSh36nq1yLyc+ByVT07dV0O/uomh6vqkrR8F40xxrRaNgTLNCce8A7+m7ILgTdrnDsZeF5VPVUtTZ07ucb5d1U1qaobgdlALxFpA+yLn4SQeuM3vcY9h4jIMBGZATwGHJi6bj3wIXCZiISBXwP/wBhAVavwe9z6iEgRUAB8RurnB78nZLCI9MJPnM9Q1UOAX+H/fCMiPwHOSd1zIrDnZtXsAzyrqvun7umfuu9Y4OfAcakyHwZeSt3ze+BxVT0Q/+d+U3L+d2CYqh4A3IKfMG3yBXCEqh6E/3v3Sur4B8B+qZ5IUnWOseTDGGMyS8eORT/62trxLX2lluCtM+sBMc3Ny/if/A5V1RIR2XTcwU9Qaqr5PFLjcYLvf7a3uNGNiGQD7+G/kZskIjvifxK9yd+BN4DVwGxVnVP3ppgMNhg/0SgFRqhqQkS+S80D6QO8jz+fqRcwrMbPcTg1pO8E4O1UDxsi8iKpJCNFVXVy6vEY4Cepxz8BDgDGpsp0gPY1YrpTRHYGvlTVsanjJ5AaDpbqlfm6Rj29gE29JDGgi4h0UdWVIvIccA1+YnP9ZvEZY4zJAFva76Oe+4DUifWAmGZFVefjD1l5YLNTXwK/EhEn9anzRcBX2ymrFH8OySUAInI4/hAu8IfEhIFNn+het9m9M4AS/KEwT9e3PSZjDcFPNI4HhqaODcPvzTgGPxlwgM9V9cAaXzumhm052yl/awm1A7xUo7wDVLUHgKo+gZ+grAGeTA3x2p43gWdUdR/gYCDO9/OkBgKXiMjRQDvg6y0XYYwxxtSNJSCm2VHVgao6dbPDD+C/+ZoOjMafhP55LYq7HLhRRCbhD6Uak6qjFLgHGC8iw4CKLdz7ApAEPqlXQ0wmG4W/2/fP8JMR8BOQG4ENqroQGAScvtnqWJsWUfga+LmIFKQmrV9Zy3o/Ai4Xke6p8kIickjq8R6qOk9VnwP+BhyeuuebTeWnhlSdVKO8dny/Y3lfIGfTCVVdi5/kv4WfpGyxN9EYY4ypKxuCZZoFVe25leNX1Hh6xVau6bO156o6C+i9lfseAh6qcegvm11yAvCUqia2GLRptVQ1IiJjgW6qujx1eDzQDXg3dc13IvIL4EURycOf6D0SGK+qH4vIkcAUYDl+j0m3WtQ7TETuBj5MJS7ZqfomAjeJyAn4k92j+MkQ+JPMXxWRCwDF703c5LfAf0RkGX5PTslmVb4AXMD3c0OMMcaYBnM8zz7UMqam1HyQwcBK/AnEtvqVaZVEpD/QVVWvr+OtPYEFfQcMYvX6qvQHZowxpsE+evTcdM4B2QV/tcRasR4Q4+AvYbsPsLeXiHf0EvE2XjJRhJcsxPMK8Vf5ycdx8nHcPMdxc3DdHLxkzEskSvCSK3FDy9ysnEVOKLwCWLXZ13r8oUwtQuoTbdnuhcZkMBGZiT8n5LTtXWuMMcbUhSUgrYcDdMdPNPZJRCoOw0se6Gbn9UxWRxKxkqWx6Mr5eYmyddnJWDVeLIoXryYZi/qPY9Uk45se++eccA6hgrYdQgVtdw8VtCNU0M4LF3WIhtoUV4cLO3ihgjaOm1uY44Szw151ZLXnJSeG8gqH4g8XmYS/h4ExphlKTUw3xhhj0s6GYGWuQuCEZLTqHC8ZP9rNyt0lGa/2YiXLqqMr5uVWr16UU71mMbG1S0lGtjT/Oo1CYbI6dCWnSy9yuu0eze2+ZyS7uFu+l4itxWOom5v/Bf7484VsZdlcY0yL0pPvJ7cbY4xphiLROGWlPx4m2xRDsCwByRwOcICXTJ6WjFZc4Gbl7hddOT9SoWOLosvmONVrl5CsKg86xu85Llk7dCevx17k7XpQeW6PvUOO61Z5ycSwUG7h2/gbAdrcC2Napp7AgpKScpLJzPkbU5c/yi1BprUHMq9NmdYeyLw2ZVp7oJXPAUmt2HIX/hvrXGCSql6yjet7Aqeq6sA01X8FcLaqnp+O8hqJCxwVjVdfmPSSF2a54Y5Vs0ZFK2aNyKlaNBMvFskOOsCt8pLE1iwmtmYxpRO/KAQIt++al7fzPucV7nf8STk77vYS8fhHbm7+8/gTwm0lKmOMMcaYDNAsExAR6Qo8AxysqktExMHf/XdbegJX42+eVdf6wqoar3OgwekeS8T7xpPx60uj5bnDFo7NG7t0cvi6wy9Ltt+4Kqdy7sSg46uX+PoVlK1fQdmUr4pCBe0o3OeYC4oOPvWMcFFxAsd5xc3K+Sew+f4gxhhjjDGmBWmWCQjQBYiRWpM+tQHWFAAReR1/haIcYC5wlaqux9+tehcRmQLMVdXzRcQDilS1PHXv/56nHt8OnAUMF5EHgCfxdzdeBny7KRgR2Q8/ISrA740ZqKpPpJZrnQjsoqqR1LUfAm+p6htp/p5kAWeXV1f2y3JDR4xYPMEbNHdY7oL1i/93wfBF45zz9zwiwdC3Qmmuu8klKjawcdzHzsZxHxdl7dCdov2Ov67ogJN+TSi82s3Kec4Jhf8FLA06TmOMMcYYUzfNNQGZCowDFovIEGAE/s7XJUC/1A69iMgA4PfAHcD1wCOqemgd6nE3bVonIjfij1/bF//N/jC+H8u2EDhZVaMiUgiME5EvVHW2iAwFLgReEZGdgUOBdA7bKo7Gq28Frl9WutL57LvBRWOWTCKaqP7RhROWTXMu2u+ckD8yq8WsertdsbVLWTf49ax1g9/Iyt1pr55FB5xwT8FeR93rJRNTQrkFd+BPYDfGGGOMMS1As0xAVDUJnCci+wLHA+cBt6V6Ii4XkUvxdwAuAOY0oKqau/ueALyiqjEgJiL/Ao5JncsH/iEiB+C/s98Rf0jYbODvwOOpsq4FXlLVH2cHddc1Eo/e6eL8avSSic5/Zw/KXVa2cps3rKpYS1m0wivcv49TPu2bNITQ3HhElswismRW3trPBlKwzzFHdDjh0k+dcPa0UG7BLcDooCM0xhhjjDHb5gYdwLao6gxVfVpVT8HfM+JG/Df5p6vqfkB//CFRW5Mg1UYR2dJ1NZeFcrZRzp/xd8U+SFUPwO+dyU3FOAoIicjRwC+B52rTtm3oURWLPB+NV88fumDM1f0+/WPeM+Ne3W7yscmoJRO9ggNPzJzuj63wEjHKpw1m8ZO/yV/39au9E5WlXyUiFUOAQ4KOzRhjjDHGbF2zTEBEpJuIHFnjeXegI37vw0agRERygKtq3FYKtN2sqHnAYanHW11BK+Vr4DIRCYtI3mbXtwOWqGo81Stz7Gb3Pgm8BYxW1SXbbeCWdayKRV6OxKP65bzhl9/wcf/cFye9lVNStb5OhYxbOsV1Ou20rWQqsyQTlE35yln091/nrx/65rGJqvJhiUjFF8B+QYdmjDHGGGN+rFkOwcKP677UnIoq/ESpP/Ai/hyNb/EnIE8ADk/dMw1QEZkBfJtaPvdm4DkRWQF8vJ06BwL7AzNTZQ/FnxMCMAB4TUR+gZ/UDNvs3rfwJ8E/U4+2ZsWTiRsTycT9QxeOCb8946Ociur6b3/x3boFOG7Iyem+F9Gls+tdTouTiFM64TO3bMrX+W0OOe3kdsdcMNaBr9zcgtupsaCAMcYYY4wJlm1EmAYicgzwLLBfasWu2jq1KhZ5fuGGJcUDJ7xRsKy0dsOstuemI65MHFiZcFd/8Ejr6QnZjJOVS9vDzky0O+qnMfA+cHPyrwc2BB2XMa1ET2wjwmYv09oDmdemTGsPZF6bMq090Mo3ImwpRORF4BTg8jokHz0rq6sGRhPVRz8/4Y38CcunpTWm0UsmhQ486MIE0OKX460vLxZhw6gPQhsnfh4qPvGynxXue9xpbnbuxcCXQcdmjDHGGNOaWQLSQKratw6XO4lk4pp4Mv7wR/plzofffhmOJdO//+G0Vd+Sk1sYcouKSZaVpL38lsSLVrL2s+dyKr4dndPpvJv/44Sy3nBz8n4LVAQdmzHGGGNMa9QsJ6FnqJ0qY1Ujl5aufPiOQX8teH/WZ42SfABE41G+K1mQaNf7nEYpvyWqWjCNJf+4Ib9y3qRLk9VVChwRdEzGGGOMMa2RJSBNIOklfx6NV8/68NsvD/v9oD8X1HZJ3YYYsXh8KLzHoYlGr6gFSUYqWP3vx/LWfPhUt2Sk4ptkdeRB/P1kjDHGGGNME7EEpHHlV8aq3lpftfGf937zaOEHsz4LJ72m2aJj4vLpZLcpDhG299ebq9AxLHn2przIUr0hGa2cgS3Za4wxxhjTZGwVrMbToyoWGTRl5cwez4x9NS+aSMfm6HXzxBn3JrPHfOqWjv+kyetuKYoOONErPrVvBNe93w1nPwjYL4QxDdcTWBB0EMYY01pEonHKSqvSUpatgtVyHRuJRz98f9anhR9++2Vg3+ORiydw5n7HJUrHf9JqV8PanrKp3zhVC6fndb7gzv5Z7Tod5ubkXQpEgo7LmEzQd8AgVq9Pzx9EY4wxW/fRo+fSkhYDtiFYaRZPxq+rjFV98ejI59oFmXwAjFs21XWLu9n/8XbEN65h+ct3FFQtmnFGMlo5Etgh6JiMMcYYYzKVvTlNn6yqWOTldZUbHv79oL/kTV0Z/C7kizYsJe4lnLzdDgk6lGbPi1ez6t0H80onDdo3WR2ZCuwRdEzGGGOMMZnIhmClR25lrOrjeesWHfnIiOfyq+LNZwTPuKVTEr0POd2tmjux1e6KXnse6755LTu2flWX4lOvmuGGs84Avg46KpOZRGQskIO/EtsewIzUqcmqemUj1jsCGKCqnzdWHcYYY8y2WALScIWVsapBM1bpgY+PfiEvkWxeK9+OWTopdMThVyQBS0BqKafb7l4kUh1yspwP83LCPwPsjZpJO1XtDSAiPYEJqnpgsBEZY4wxTcMSkIZpVxWLDBm/bKo8M+7V3Oa4otjM1d+RlZXrhou7ES9ZFnQ4zV674y5M5O5xhPurB4c5nTrk599/9ZEf5GaHr3Jd562gYzOtg4j8CjhZVS/a/LmIOMCdwHlAFrAY+LWqrhaRnwL3A3H81/ZrVXW4iOwLvASEgJn4vS6b6roduCBVVhXwG1WdJiJ3AZ1U9bep63YEJgE9VbX5dPEaY4xpkSwBqb9OVbHIiGELx/Z4adLbOV4zXb01nowzY7Umdjvi3NDaT54JOpxmrejAk702h5/j/vbJUc76sijry6Lc/uTwvD9fd8yLeTnhNllhd2DQMZpW75dAd+AIVU2KyI3Aw6njDwC/UtXRIhIG8lL3vA48pKqvi8gxwLAa5b2kqg8BiMjpwDPAMcBAYLqI3KWqlcBvgNcs+TDGmOarY8eiZlnWllgCUj+dIrHI+M+/G9L1zen/zQo6mO0ZtWRiaI+9zkrgfwJqtiB/t0PocMpVzr0vTWDRiu8Xslu0sozf/W1Y/mO/Pe6JkJu11nWdDwIM05hzgAOBSSIC/mt4SercN8DjIvIe8JmqzhSRDsDuwBsAqjpCRGbVKK+3iNwBtMffA2eX1HVrReQz4FIReRnoCxzX2I0zxhhTf7Xdu2N76rkPSJ3YKlh1V1gViwz+fO7QFpF8AExePoOcgnYhNzs/6FCapZwdd6fT/93Ck+/PZOp3a390fkVJBXc/OyovGku8Bhzf9BGaVibOD1+bc2s8doA/quqBqa99VfV4AFW9Ebg6df8HInJV6npU9UddtCKSB7wN3Kiq+wJnbVbX34HrgJ8CU1V1froaaIwxpnWzBKRusitjVZ+NWzpl1zem/adFJB8AZdUVLCtdmWxz+FlBh9LsZHXYkS4X38Ob3yzg6wlLtnrd/GUbGfDS2PxIdfxj4ICmi9C0QvOAA0QkW0RygJ/VOPchcL2ItAMQkVwR2T/1WFR1mqo+gd/jcaiqlgBzRGTTfJIjgb1TZeXh94pu+sG/rmYQqjoFKAceAZ5uhHYaY4xppSwBqT23KhZ5Y87a+Qf/Y/xrudu/vHkZvmick7P3Uc1ria6AhQrb0fWyB7yvp6zy3vpyznavnzZ3LX97a3JBpDr+DdCz0QM0rZKqDgeG4y/L+yH+xPFN5/4JvAsME5FpwATgyNTph0VkhohMAfoAD6WO/wK4VUQm4s8VGZ8qax3+pPWJIjIUKN1COC8AMWwlOGOMMWnkNMeVm5qjSDz65LLSlVfe882jBbFELOhw6qxrUWceOuVOlj10SdChNAtOdh7drnrIm73WTfYfOLZOc2N+csyuicvO3GtFXk74YGBNI4VoTOBS8z+mqurjdby1J7Cg74BBrF5flfa4jDHG/NBHj54b9ByQXYCFta3DekBqIZaI3boxUnrlgCF/b5HJB8CKslVUxCq9gn2ODTqU4Llhul7UP7kqmlvn5APgoxHzQ5+MXNCpMhIbDNR95pUxzZyI7CQic4CdgWeDjscYY0xmsVWwtu/E6kTsgfsGP5FXEasMOpYGGb1kktfnoFOomDm8FW9K6NDp/25ORAp35KY/D673qmCvfDIru31RTq8j9+v63/zcrFOAZBqDNCZQqroEf3d2Y4wxJu0sAdm2HtF49INHRg7MW1u5LuhYGmzs0inuCUf/plXvit7hlCsToZ32c3795yFuvIEpw5PvTMndtVvb3t07Fd2SFXYfSU+ExmSOF/ufGnQIxhjTKkSi8aBDqBNLQLYuO15ZORIv2aY0mp4xdUGbUzIfNxR2s3fcnerl3wUdTpNr2/ucZMH+J7rXPjrCKY80/Bc1kfT40z/HFTz5uxPuzwq7g4GJDY/SmMxRUlJOMpk58wzrMi66Jci09kDmtSnT2gOZ16ZMa09TsTkgW5Goqnqi7FvtsPqTz70H+9zGqb1a/vYPSS/J5JUzE+0OPzvoUJpcwd7HeO2Ou9C947lxzqp16RtKt2pdJU++Mzm3Khr/EGjcbUONMcYYYzKAJSBbdl4iGv3lnEefyF/8+puuPvgIV+x9Drcd9ZsWP85/1OKJIXbeu1Utx5vbcz86nnWt85fXpzJn8Ya0lz98ynJn9PTlHSojsRfTXrgxxhhjTIaxBOTHuiai0ddm/+mv+fHycgA2TJrMlH63sA/FPHv6/Yn2uW0DDrH+pq6cRU5eUcgt7BB0KE0iu3NPupz/e174ZA5jZ6xstHqeeX9abnll7Myk513WaJUYY4wxxmQAS0A2E6+ofGHFx59ml8/54RyJ6Oo1TLn5Njc2fjpPnXqPd1i3lrkZdiQeZd66RYl2vTN/GFa4bUe6XvpH/jtqqffRiAWNWle0OsEDL40tqI4l/gHs3qiVGWOMMca0YJaA/NC5iarKPkveeid7Sye9WIy5Tz4dWvDcC9xy6BX0PfjCFjm7cuTiCaGsPQ7L6GFYbl4RXS8b4I2dszH50sezmmTVr4UrSnn541l5lZHYh0BWU9RpjDHGGNPSWALyvbaJSOSlOY/9LT9ZXb3NC9cMHupMu/0u+nTYj0dPuiuRG85tohDTY8LyaWS12SGEm5mLoDnhbLpe+sfkgvVe8i+vTmzSn/FPRi5w5y/buFMsnrypKes1xhhjjGkpLAFJSVRVPbZ25Oj80pmzanV95aJFTL7ht07h4rXOwNPvT+5W3LNxA0yjksr1rKvakGxz0MlBh5J+jkvnn9+Z2OC28259clS9NxpsiKffm1qQTHr3AZ2CqN8YY4wxpjmzBMR3dDKeuGjBi/+sU1dGorKSWfcNcFe+9x8eOKYf5+15WmPFl3YjF09w8vbv0+JX9dpcx7OvTySKd3Wue2R4IMkHwNLV5QwauyhcGYnZ5oTGGGOMMZuxBASyE1VVb8x75h/5iYqKehWw7IP/uLPu/xMX9DqZe4+7KeG2gG/r+GVTHWeHbhm1I3r74y9OZu92uHPdo8Pd6oZuc95Ar38+O8fzOB84KNBAjDHGGGOameb/TrmReYnE1eXz5heXjBrToHJKZ85i8g396FGZ7Qw8c0Cyc2HHNEXYOBasX0ISz8nb9cCgQ0mLooNO9YoOO8u55akx7obybc/haQoVkTj//HhmbmpvkDoleiKyUES+FZEpqa/Ht3LdFBHJ20YZ+9YjdGOMMcaYRtXaE5D8ZCz+wIIX/1mQjsJi6zcw/bY73fIho7zHT7rTO3bnw9NRbKPw8Bi/dGqi6JDTW+RKXjXl734oHU6+wrn3pUnO4lVlQYfzP1+OXeSsK43sAfy8Hrefr6oHpr5urnlCRMIAqXNV6YjVGGOMMaapZOYySLWUjMdv2jh9elbF/PTtEeElEix44aVQ6cxZXNvvBg7svLf35LiXm+VQpzFLJ4UOP/SyJHX8hL45yekmdDrvZp54bybT5q4NOpwfSHrw5DtTCv746yOfyssJfwRU1rcsEXkZKMPfY6QjcIiIeECRqpaLyLHAM0AVMIYa/6ci8ghwPJANrAWuUtVFIvIMMF9VH0lddxDwFrCnqrb4xNQYY4wxzVNr7gFp6yUSdy985bW09H5srmT0GKbechuH5u3MU6femyjMzm+MahpkxiolKyffDbfvHHQo9ZJV3I0uF/Xn9a8WMHjikqDD2aJZC9YxZc6a/GgscWcdb32vxhCsTasbHAn8TFUPqXmhiOTgJw43qurhwAigR41L/qqqh6nqAcCbwIOp408C14jIpmTlBuAZSz6MMcYY05habQKSiFbftm7c+FDVkqWNVkdk+Qqm3HSL486azz9Ou9/br5M0Wl31EUvG+XbNd4l2vc8LOpQ6CxW2p+tl9/PV5NXeO1/PCTqcbXrxwxn5eNwMtKnDbTWHYH2ROvaeqm5ppQQBKlV1CICqvgNsrHH+DBEZIyIzgN8BB6aumw3MB04XkfbAOcDLdYjRGGOMMabOWusQrGLwbl702htbnMCbTsloFH3o0VCXM0737rriGj6cP4Q3p/+3sauttRGLJ4R2ldMTQGDL1taVk5NP18se8KYvqfKeem9qs0+iV62rZMLsVc7h+3S5NivsPrj9O7aqfCvHtzqETkR2Bh4HDlPVBSJyFPBGjUv+DlwH7A18oKobt1CMMfVSXFwYdAhp17FjUdAhpFWmtQcyr02Z1h7IvDY1ZXsi0ThlpS1/+merTEASkUj/tcNHutFVq5qszpWffe6Uz53LWX+4i/132CPxh6GPh+LJeJPVvzWTls/g14dcHCI7F6ojQYezfaEwXS/6Q3JlJMe75/ng9vqoq7e+1PxD9up0Rxbu34B0f6O/BfJE5DhVHSYi5wNtU+faANXAShFxgWs2u/dT4DHgYODMNMdlWrm+Awaxen3L/0NpjDHNxUePnkvzWW6n/pr9p8eNoMBx3auXvPNunTYdTIfy7+Yy+fp+7LAm4jx/xoDkTm13bOoQfqQ0WsaKslXJtoecEXQoteDQ6f9uTVQVdKHf4y0n+QBYuKKUOYvXh5Oed3m6y1bVKHAx8LSIjAMOBRanzk0H3gVmAt8ACza7Nwm8AixQ1anpjs0YY4wxZnOO57W6+aZ9N0yd9sTMe+4LbmyA69Lj4guTXc852315xn8YNG9oYKEAnLfXad65XQ5Mrnr+1mb9pr74tF8lsvc8zrniL0PcykjwvUd1tV+vHeh/1eFL8nOzdgaazS+eiHwJDFTVd4OOxWSMnsAC6wExxpj0+ujRc1mzpnH7QDp2LKp1Ha7rbBpuuwuwsLZ1tLoekHhFxe3L//tRsAOTk0kWv/6mqw8+whV7n8NtR/0m0G27xy+b6oTad2nWyUfbI85L5u/bx73hiZEtMvkAmD5vLaUV1e2Bk4KOBUBEDhWRefgT1t8POp7WLrV55AoRCdU4dqWIeCJyQxonQK41AAAgAElEQVTrGSIiZ6erPGOMMaauWlsCcliyOtZt/eQpQccBwIZJk5nS7xb2oZhnT78/0T637fZvagTLSldSFY96BXsdFUj921O4z7Feu2MvcG//x1inpX+a+t433xWUV8XuCDoOAFWdoKq9VPX81FAsE7wVwGk1nv8SmBhQLMYYY0yjqPUkdBG5ALgLf8WdXGCSql6SjiBEpCcwQVV3SEd5WxOvrLxl+Ucf55JsPu+1oqvXMOXm29xe11ydeOrUe7wnJr7qjF/W9EPxxyyZlDz2oFOcitmjmlVSmtdzf3Y481rnz69NYe7Slr9A05BJS52+5+x7NH5XZfp2wDR1JiK3qOpjmx1zgBdV9aqAwnoZuAL4VER2AfKBGanYCvH3bjksde1rqvpg6twQYDz+XjE7Au+o6h2pc3sD/wSygFn4r9+kzt0KXIT/tyACXKuqU0TkdqCHqt6Quq4zMA3YRVXrvaGmMcYYA7XsARGRrvi7LJ+jqgcCewEPNWZgjaCDGw6ft+rLr5vdUCMvFmPuk0+HFjz3ArccegV9D76wyecHjF06OeR03aWpq92m7M670PmC23nuo28ZO2tl0OGkRbQ6wVfjFruxeOJXQcdi+KWI9N30JJV8/AvoHlxIDAb2T+3LcgXwao1zf8B/zd4POAq4XERqrh7RAzgOOAj4lYjsnjr+Gv4GkwcDT/F9AgPwamqTyoNS5T+bOv48cH4q6QG4GnjDkg9jjDHpUNsekC5ADCgBSO2UPGXznouazzc9Bp7DX94zH+irqiNS114P3Iw/5GDIpopEJAx8AhQDecA44DeqWp3aSO1KVR2fuvYWYE9VvXp7DfASiSvWjZ+QjJeW1rLJTW/N4KFOxfyF9Ln3bvY5uVfiriGPhSLxplkaV9fOIxzOdrO77Er1yvlNUue2hNt2ouulf+TfI5Z4n45auNV9LlqioZOXZp946E6XZYVDdwcdSyt3OjBERMrw58C8CRQAPwkwJg94B79X4kLgaPxVzQBOBvqlXn9LReTN1LHPUuffTQ2l2ygis4FeIrIK2Bc/CUFVx4jI9Br1HSIidwEdgCSwR+q69SLyIXCZiDwP/DpVlzHGmIA1xb4jjV1HbROQqfiJwOJUV/8IUn/QtqMYGK2qd4vIpcCDwNEisj9wN3CQqq4SkWdq3JMALlHVktQnkq8AV+F/MvcU/qZpV6bOXQucX5sGJKqqrln52Rf5tbk2SJWLFjH5ht86ctstzsDT70/eP/oZd27JwkavN+ElmbpyVmKvw88Orfnw741e37a4+W3oevkAb7Su917+ZHazGhKWDnMWryeZ9IqBPfH38DABUNUVInIq/gcgNwJrgXNVNehVDl4GxgJDU6+Dm447/Hj1tJrPa35akeD71/ct9qiKSDbwHnCcqk4SkR2BZTUu+Tv+ppWrgdmqOqfuTTHGGJNuzXQVrDqp1Zs7VU2q6nlAH/whAmfhjwfusJ1by1X149TjMUCv1OM+wCequmknwIGbxfQ7EZmSquNE4MDUuVeB00SkA/5EzVW13LtgV1y3+8aZs2pxafASlZXMum+Au/K9//DAMf04b8/Ttn9TGoxcPDHk9Nw30SSVbYWTlUPXS+9Lzi9JJh98bVLGJR8AngfDpywLxRPJC4KOpbURkatqfuGvSPYBsBvwOf6wpqDmfwCgqvPxP6B5YLNTX+IPrXJEpAi/l+Sr7ZRVij+H5BIAETkcfwgX+HNBwsCS1PPrNrt3Bn6v9xPA0/VtjzHGGLO5Or3BU9UZqvq0qp6Cv3TnvpuVsfnmftEaj2t+IretITWXAMcAx6rqfvhzT3JT9VfifyJ3JXA9tfyj6CUS55eMGuM0p8nntbHsg/+4s+7/Exf0Opl7j7sp4TbyomVTVs4kJ79NyM1v06j1bJXj0vmCO5IbaOP97qlRzW6uTjoNm7IsJ1Kd+GXQcbRCl23h62D8nqiLUs9/EVh0Kao6cAsfrjyA/9o5HRiNPwn981oUdzlwo4hMwh9KNSZVRylwDzBeRIYBFVu49wX8oVmf1KshxhhjzBbUagiWiHTDXxFldOp5d6AjMBvIEpHdVHUuqU/ZamEwcLuIdFLV1UDfGufaAWtVtUxE2qbKnFDj/NPAMCAE/Kw2lSWqqq5YO3xEk+98ng6lM2cx+YZ+7PWHu5yBZw5I3j3scXdV+ZpGqasqFmHhhqWJHQ7/SWj9kNcbpY5t6fiTGxKJDrs41/15SEYnHwCzF5Tg+KsV9QLmBR1Pa6GqJwQdw9aoas+tHL+ixtMrtnJNn609V9VZQO+t3PcQP1xQ5C+bXXIC8JSqBtozaowxJrPU9iP1MHCfiGhqaNSnQP/UZPB+wJepuSG1+iOlqtOAPwMjRWQ4Pxx3/CpQJCIzgXeB4ZvduwD/08qXVLW6FtV1drKydt04fUZtQmuWYus3MP22O93yIaO8x0+80zt258Mbra4Ri8a72Xv2bvI3G+37XJLM7nWYc91jI9zqeMvqqaqPpAcjpy13EslkreYwmcYhIsUicpmI3JZ6vmPqA5ZWLfV9UGB3bPiVMcaYNHM8r8lXfG0QEWmDn4AcrqpLa3HLlevGT/j77AF/CXb38zQpPvIIdut3A6NXTvOeHPdy2leH6lhQzOOn38PShy+DZNPMxS06+DSv/YmXcdPfRjlLVpU3SZ3NwQG7d+SOyw/9tjA/e6+gY2mNROR4/NWvJgBHq2pR6tjvVDXIlbAyQU9gQd8Bg2jpm4caY0xz8tGj5zbXSei7AAtrW0etNyJsDkTkGqA/8Ggtkw/i5eUXrh05OiOSD4CS0WOoWLSIQ+/tz1On3pu4Y8jDofLq9C3Nv6aihA2RUq9o/z5O2ZRtzm9Ni/w9DqfDSb90+j8/ntaUfADMmLeWUMjtib9/w+KAw2mNngAuVNWvRWR96thYoPG6GFuZF/ufGnQIxhiTUSLRoBdqTI8WlYCo6rN8v1FWbYTcnJzjNkya3FghBSKyfAVTbrrF2b3fDfzjtPu9h8Y+70xfrWkrf9SSid4pB5zolU35qlFnved0Fzqd24/H3p3OjPkljVlVs5RIekybuybee5+uffjhhnOmafRU1a9Tjzd1BVfTwl4Xm7OSknKSyZbVy74tdflUsCXItPZA5rUp09oDmdemTGtPU8nIZU5r2CtWWhaPbdwYdBxpl4xG0YceDS199Q3uOvIaLt7v3LSVPW7pFNfp2L1RN//L2qE7XS7qz2tfzmPopGXbvyFDTZ9bUlgVjR8XdByt1CwR2XyN65PxV5kyxhhjTCPJ9ASkd9m332Z0G1d+9rkzo/+9nNXtSP5ywm2JsNvwD2/nrVsEjuvk9tgnDRH+WKioA11/cT+DJq703vtmbqPU0VLMWbyeeCJ5bNBxtFK3Aq+LyCtAnog8h78J4G2BRmWMMcZkuIx+cx6vrDx+44xZBUHH0djKv5vL5Ov7scOaiPPCGQOSO7XdsUHleXiMXzY1UXTYWWkfO+Hm5NP1Fw940xZXJp95f3qj9rK0BPOWbiAvO7wLP95DxzQyVR0DHADMBF4CFuAvbjE+0MCMMcaYDJfRCQhJ79jyOXOCjqJJxMvKmNH/Xrfk0y95sM9tnNrr+AaVN2bppJCzk6R1PVwnlEWXS+5JrqjMSt77wrjM/tmrpep4klXrK6uAg4KOpTVS1WXAI8AAVf1rbRe3MMYYY0z9ZfKbwEI3J6dbxcJFQcfRdJJJFr/+pqsPPsIVe5/D7Uf9pt4JxPRV35KTWxAKt+2YpuAcOv301kRlbmf6/W1Exm80WBcz55dkYysvNTkRaScibwARYG7q2DkiMiDYyIwxxpjMlskJyCFVy5dXevHMWK6sLjZMmsyUfrewN8U8d/oDifa5betcRnUihq6dl2h7xDlpian49F8lnB33cq59dLibyPx9Butk1oJ1uWWV1ScGHUcr9CywEdgZf/UrgNHAhYFFZIwxxrQCGZuAeJ7Xu3TGzLyg4whKdPUaptx8m1s9fhpPnXqPd1i3A+pcxojFE0Kh3Q5ucAbX9sj/S+btc5x7w+Mj3cpI60sIt2fO4vWEXKd30HG0QicBN6nqClLL8KrqGqBToFEZY4wxGS5jE5BERUXv8nnzsoOOI0heLMbcJ58OLXjuBW459Ar6HnxhnSaVT1w+neyi4jDhnHrHULjv8V67Y853b39mnLNmQ6Te5WSyZavLCIXc9sAOQcfSymxks++5iPQAVgQTjjHGGNM6pCUBEZGLRWSv1GMRkWEi8o2I7JmO8uvDSyZ7RVevCar6ZmXN4KHOtNvvok+H/Xjs5LsSueHaLbi0MVLK6vK1yTaHbL5VQu3k7XIAO5zxG+dPr01h3rLM24slXZIerF5XWQX0CjqWVuYF4H0ROQFwReRI4BXqttmpMcYYY+ooXT0gA4B1qcePAOOAYcAzaSq/ztysrO6RVauDqr7ZqVy0iMk3/NYpWLTWGXj6/cndinvW6r4Ri8c7efsem6hrfdlddqXz+bfz7IffMn7Wqrre3uqs3VDlAN2CjqOVeRB4B3gayMJfive/wN+CDMoYY4zJdA3ftc7XUVVXiUgucAxwPhAD1qap/LrKcrOz21WXlARUffOUqKxk1n0D3G4/PS/5wIX9eFs/5z/ffrHNe8Yvm+qcK6fUKVENt+tM10vu5YPhi/ls9MIGRNx6rFpXmY0lIE1KVT3gidSXMcYYY5pIunpA1ojIbsAZwHhVjeJvrBbURnPd4hUVES9R5w/uW4VlH/zHnXX/n7ig18nce9xNCXcbPwZLNi6nOhkjf4/DalW2m9+GHS97wBsxa733yqez0xVyxlu9vjI3Fk/sHHQcrYGIzBaRZ0XkEhHpHnQ8xhhjTGuTrgTkAWAi8CLwcOrYScDUNJVfVz2ja0tsuaVtKJ05i8k39KNHZbYz8MwByc6FW9/vY+zSKcmiQ07f7gR2JyuXrpfel/xuTcJ75I1JrX6X87oo2RghUp3YLeg4WolN+3zcDSwSkXki8k8RuVJEbB6OMcYY08jSkoCo6stAV6C7qn6ZOjyW4NbT3zmyYoVtdrcdsfUbmH7bnW75kFHe4yfe6R2785b3whu7dHKIrrtuOwFxQ3T5+Z3JdV4b7/ZnRmfs6mqNpWRjBM+jR9BxtAaq+rqqXqOq+wCdgVuB9cB1wGwRWRJogMYYY0yGS8scEBGZrKoH1TymqqtFZAJwaDrqqAsvmexZtXxFflPX2xJ5iQQLXngpVDpzFtf2u4EDO+/tPTnu5R/0Xsxa8x3hrFw3q2MPYmsWb7Gcjj+5MRFrv7Nz/Z+HWOJXDyUbqwiFnK5Bx9HaqOpaEZkHdE997QyUBhtV5iguLgw6hLTr2LEo6BDSKtPaA5nXpkxrD2Rem7bUnkg0TllpVQDRtAzpmoT+o6EjIuIAu6ap/DpJVseK42Vl9il8HZSMHkPFokUcem9/njr13sQdQx4OlVdXApBIJpi+anZCep8TWvPxUz+6t/0Jv0hk7XqI0/evQ91Y3LY5r4+SjRFyskId8OdN1Wm/FlM3InIocHzq63BgPjAS+Bdwjaqu28btpg76DhjE6vX2B9gY0/p89Oi5lAUdRDPWoARERF5NPcyu8XiTnsDMhpRfX14iUZSMxYKoukWLLF/BlJtucXbvdwP/OO1+76GxzzvTVysAIxdPDO25zzkJ4Ac9HG0OOT1ZdMjp7g2Pj3JKK6qDCDsjVEXjJJOeQ4i2wIag48lw44DZ+Mvw/lxVbYdMY4wxpgk1tJdgXuqr5uN5wFzgdeDcBpZfP14yPxm1N8P1kYxG0YceDS199Q3uOvIaLt7P/y+csmImOQVtQ27u90Mq8qU37U+8zO3/wkRn2ZryoELOGJHqRDXQJug4WoHLgOHA7/HnfLwmIldv2kzVGGOMMY2rQT0gqnofgIiMUdVtbyjRhLykV5CstgSkIVZ+9rlTPncuZ/3hLvbfYY/EH4Y+Hlq8cXmiw+FnhdYPe5vcnfai0zk38cjbM5g53/ZbSYdk0vPwN8QzjUhVX8f/gAQR2QF/76LjgF+JyE7AGFX9v3TWKSJjgRwgG9gDmJE61RYoUdUmmysnIh5QpKr2qYExxphA1LsHRESOq/E0JiInbukrDTHWg5efjFkC0lDl381l8vX92GFNxHnhjAHJ79YuCGXvdWQia4ed6HzhXbw6aB7DpywLOsyMkUgmPdI3L8vUgqquxe+1nQ8sxP/+n9kI9fRW1QNTZW9Q1QNTz69MR/kiYos/GGOMaTEa8mbnGWDf1OMXt3KNRzAT0fNsCFZ6xMvKmNH/XrfHxRcmTznnbBJhN9T1F/fxxfiV3vuD59peH2mUsB6QJlFjEvpxwNFAPv68kOHA88CoJg4pLCLPAUfiv2ZepKqzReQK4GxVPT8V9/+epx5fBKwB9gb6isi5wMVAJFXOCaq6QUR+CvwZWAd8WrNiEXkdEPzembnAVaq6XkQ+BV5S1fdS1/0Uf4L+qY34fTDGGNNK1DsBUdV9azzeJT3hpE2eTULfinCYnOJisju0J7t9e7LatSWrTRvCbYrIKiwkVFBAKL/Ac/Lykk5OnudkZeNkhR03FHLihHBjHm5OIaf3LnRO720bd6dZGyAv6CBagcH4ScZw4FFgrKpGA4xnH+BKVf2NiNwN9AcurcV9xwAHqOo8EWkP/A7opKpVIlIEVIlIJ/yk6ihVVRG5fbMy+qV6gRCRAfjzYu4A/p56/F7quutTx4wxxpgGa5ThHiJyAhBX1eGNUf52OU6Ol2kJSDhMdvt25HQoJqt9O7LatiG7XTvCRUWECwsJFxbi5ufj5uUlaiYOTthPHtyQ64TCLo7jEI8niFUniEXjXjQaT0aq4pRVxbyqymqnqjzmRNbE3EikLBSNrCcaiRONxIhG4px67l5e1x0LnHhp3Fv65jTH1opNrx6XHVTuZoWCfCOc8UTkbaCdqiZE5EpVHRZ0TICq6uTU4zHAT2p53whV3bQISCmgwL9E5HPgY1UtE5EjgEmqqqnrBuKv/rXJ5SJyKf7clAJgTur4F8DjqYn5HtAL+LgebTPGmFarJe930tixp2sjwqHAXao6UkR+D9wCxEXkaVX9czrqqBPPi7jZ2U1e7Ra5Ltnt2pFd3IGsdu3JbteWrHZtCRcVkVVUSKiwkFB+Pk5efsLNyfOc7GyccJbj9zq4jhsKOaGQixtyiMeTNRMHLxKJeRVVca+qMuZUVlY7kZKYG41UhCKRDanEIfUVjRGtihONxolVJ2pG57DZsrpb061HW3bsXuS889R9XHjdH8nt2oaK+bZdQpolgcR2rzINcRr+9xngb8A/A4xlk5rLACf4/nU5zg/n6eVudt//JpGnEqoj8IeUnQhMFJHT8X/Ht0hEjgWuxe8dWSMilwBXp8rzRORp/N3hAZ5TVfvZNMaYOlizpmXuBNKxY1GtY3ddp16bzqarB2Rf/E/uAH4N9MH/4zgSf+xxU6twc3IaXEi4XTtyOnQgu327VK9DW7LaFBEuLCJcuGmoUr7n5uZ5ZGd7blbWD3oc3LBLKOSSiCeJxRJUR+NedTThRSMxr7IqRqQqRmVFzImsj7nRSGUoEiklGolTHY0TqYoRjcb/1wNRXZ2ouT2dwzbeWDSGCy4/MDF52GfO+jUr3MmjPncOOPEUr2LBOse2zEsfx8XBf9NpGs9wYLSIzAFyt7B/EQCqennThrVF84D9RSQH/7f/fLayR0xqyFWhqg4FhorIkfivy18BL4rI7qr6HfCrGre1AzYCJak6rtqs2FeAWfjzQ/ZJX7OMMca0dulKQFzAE5FegKOqswFS45KDUJ7fYye8RIKsdu38eQ5FRWS1aUOooIBwQT5OfkHSycn1nOwcz83OcpxwluNsGqoUcgmFXRIJj3h1gurquFcdjXvRSNyLVMWoqop5VZUxp2pldSgajTiRqnKi0RjVkTiRSPwHw5aqo3G8ABOHdDjhDMFxqt0JQz5xAMZ++W8O6H2KV7RXR6ds1pqgw8sYblYojG1C2NguwH8jvzP+m/p52748OKo6WkS+wl+ydwH+5oldt3J5W+B9EcnDfz2eBHygqhERuRr4SETWAe/UuOcz4BfAt8BSYAL+zvCb6i9LDefKU1X7RTfGGJM26UpARgBP4f9x/DdAKhlZm6by68TLyinsdvElRKpiqcQh5kUica+0KkZlRbVTtSYWikaq3UhVBdFoPJU4xDYbthTHS/4vc2iRiUM65Bdm0/vYHnzy6hNOMvH9h/Ojv37fPfqkn3vlutbxEtYNkg5OVigHWB90HJkstev5vwBEJGvTXkZNWP9CYIcaz4cAh27j+TVbKedl4OUaz5cCvbdy7QfABzUOPVHj8YVbi1VEwvhDun65tWuMMcaY+khXAnIFcCv+kpAPp47tiT/Gusk5ofCkIV/o0aOHzG+1iUO6XNz3kMSib6ewbP63P5grMn301xze59xkm/27uBsnr7DvcQM5WSHwvDg4tn500xkiIn/CTwjWAl+p6uCAY2oWROQc4Eng36o6Puh4jDHGZJa0JCCqWgLctdmxT9JRdn1kZYdWFBTmJKjlBGuzZXvt34WOnfJDr776+hbPD/34tdApP7ua0hmr8WI2P7UhQrlhvIRX4dhPbKMTkWz8oUinAWOBFfh7YdwqIoOA81W1VSeCqvoh8GHQcRhjjMlM9U5ARORuVf1T6vH9W7tOVe+pbx0NUFJYlBPF32DM1IPjwtnn750c8clbTqSibIs9HHOnj+fo0y5MtD9sR2fdqCXulq4xtePmhvGS3sag42gl7sMfLrp7augSACKyE/6+F/cBdwYUW0Z5sb/tW2iMaZ0iUVtTZlsa0gPSXUQcVfWAndIVUJqsLSjKsf/5Bjjv4gO98g1rmDVx+DaHV3397xdD5/zyVjZMXkGyyr7l9RXKC4Pn2brGTeNi4IyayQeAqi4Rkavwdwu3BCQNSkrKSSYzZ45YXZambAkyrT2QeW3KtPZA5rUp09rTVBqyE/q1IrJCRF4DHlPV6WmMq6HWFBblZM5fvSbWsWsRe+7byXn36fucmkt4bcnSebPZULIqUXzkTqz5ZoENIKqnrHa54DjfBR1HK9ERf9O+LZlNjUnixhhjjEm/hg6buQbYBRgnIpNE5CYRaQ5/vOe03yF/8027TC1ddMWBieljvk6uW728Vtd/8fazoTb7dQmFixq+90prld0+L+7mhJpTEp/JllFjpanNHAbU7gffGGOMMfXSoAREVf+rqhfgj6d+Dvg5sFREPhSRn4lIVjqCrIdVDk51URvLQerq6BN7kZODO+6r/9T6Z6Nk5RJWLVuYLD52Z5uJXk/ZxfmVjuM02z0pMszzwGsickjNgyJyKPAqMDCQqIwxxphWIi0Th1V1g6o+p6rHAHvhb2j1OP7qMoGIxRLfdt6xKKjqW6Sc3DDHnrSL9/X7LznxWN0WAfrirWfcwt2LQ1kd8hopusyW1T4PmvGmeJlEVR8GBgFjRWSBiIwSkQXAGPyleB/edgnGGGOMaYi0rlwkIjn4Qxh6A52BwIaUZGWFxnbq2sbmgdTBRVcdkly2QJOLdFqd7y3fuI7F82Ymd+izi/WC1EO4KCcXS0CajKreiL9X0V+BT1L/7qWq1wcamDHGGNMKpGUfEBE5BrgcfwjWauA14DpVXZSO8usjKzs0cced2lUAhUHF0JL02rMjO3Yvcv/12Mv1LuOrdwe6V/7+CXK6FBJdWZ6+4DJcqDAbPK8asFWwmtbewIuqasu3GWOMMU2oQQmIiPwRuAzoALwLnKWqI9MQVzpM79q9TTLoIFqK8y7aNzl60AdORemGeu9qHqmsYO6McV6PE/f1lr4xzfYFqaXczoV48eQ0smwRsSb2APCiiLwNvKqq44IOyBhjjGkNGvom8QjgbqCrql7djJIPgFlt2uXlu26930+3Gmedv58XrdrI9NFfNfibNfjfrzjZxXlOXo+26QitVcjtWpRws0ODg46jtVHVA4CTgSrgAxFREekvIj2DjcwYY4zJbA1dBet0VX1LVSPpCiiNqmLVidXFnWwE1ra0L85n/0O6OF++PdD1trPnR23E49VMH/+N0/GkXtb7VEt5O7WtcELu2KDjaI1Udaqq3oa/mer1wAXAPBEZJiKXioj15BljjDFpltF/XJNJb1rnrrYS1rZc1PfghE4elVizPH3TdUZ89g5ufsgp3KM4bWVmspyOBTn4K8eZAIhIL+Ae4B9Aburx88ANwHsBhmaMMcZkpLRMQm+ucvOyRnXp1vbkGZOXZ3Q76+vQo3amqCgc+uCzd9JbcDLJ+KEfOoedcI5X/l2Jg61FtlXhtjkAlQS4ZHVrJSLX489h2w14B7hMVcfUOP8+/qIaxhhjjEmjjO4BcV1nxO57d6oMOo7mKJztctKZu3mD//0KsWj6R9BNGvopSSfutdm3s6Uf25C/Uzu8pNec5k61JmcAjwI7qup1NZMPAFWtBH4aSGTGGGNMBsv0noER7Tvkh4va5FJW2hynqQTn55cfnFyzfCHzZkxotFn6Iz5/y+1z1uWUzV6DF7cpIVtSsFuH8lBu+IOg42iNVPXsWlwzqCliMcYYY1qTTE9AYvF4ctDue3c6b9KYxUHH0mz02KU9O/dq777xxKONWs/siSM44uTzE20P6upsGL8so3vb6sWB/B7twvi7cpsAiMg5wPHADsD/knFVvTywoIwxxpgMl+kJCLl5WW/ue9COJ04as7hN0LE0Fz+77IDEhMEfO2Xr1zZ6UvDNf/8ZOvOiGyidtpJk1DZJrym3SxGe560ClgUdS2skIvcC1wBv4a9+9RxwCfB2kHFlkuLizFuFsGPHzFrYJNPaA5nXpkxrD6SnTZFonLLSqjREY4KQ8QkI8EX3ndvnZmWHiFXbG+BTfrIXyUSVO3nYZ02yQcqib6dSXlqSaH94d6dk+CLrBakhf5f2Ccd1/ht0HK3YVcApqjpDRK5U1ZtF5E2gf9CBZYq+AwaxemUwFsAAACAASURBVL29QTDGpN9Hj55LWdBBmHprDW8IN8aqE5N7Sceg4whcYZscDj2yO1+987yTTDZdMjbo3YH/3959x1dV348ff5177soirLDCCAi8GbJBUUCGVdG6F+pXrUqtVWu1/dql/vrt8Ntv63i4qlWrVq3WPYrWgeIAFRAVFBTeKkMQZMvMzr2/P85JjWlCbkJy783N+/l45MHJme9Pbj7hvM9nHLf96B4BNzuUtGu2BrkDO+0NhNznUx1HG9ZeVZf5y+UiEvLfhj45lUEZY4wxma4tJCBEs0MPDRnevc3PhnXWzDFVqz55v+qrLz5L6nU3rVvFtk1fVnWa2NuaoHzB/Aih/GgAeCPVsbRhK0VkqL+8DLhYRM4Bvk5hTMYYY0zGaxMJiOM4zw0Y0jXgJKXTUXoaNqaQDp2j7rzn/+Gm4vovP36Xmze4i+u/96LNyxtUUEWcx4GKVMfShl0DVL8t85fAj4HrgZ+mLKIGiMgaEVkhIkv8r5vq2W+JiGTt4xwHtmykxhhjTP3awhgQgC/i8fiGnkUd+q1b3fYebgZch+knSnzurIcpLd6bkjRsx5av2PDFp7HOk/vGN85akZIkKJ3kD+tWHAi7f0t1HG3cGmCSiEwAtgMnqOrHqQ0pIafW6Dr2LSISVNVKVR2Z7KCMMcaYRLWVBIRgyH108LDuP1u3+us2NxDh5LNHxXdu2xjXxe+ktMVr9mN3Bc77+Y2EC3Io37I3laGkVLhzNm52qAx4J9WxtEUi4gD3At8DvgQ2AIVADxH5O3CBqraaF2iKyP3AbmAAUACMEZE4kKeqe0RkEnAHUAIsoMZ0wyJyA96YlzCwFa/sX4jIHcAqVb3B328U3mxhg1rTz8YYY0x6ahNdsACCwcADow7uVRUMtpkiA9CtMJ8Bgzo7rz7x15QXvHjPTlatWBwvmNq3TY8FyRvSpQKHBwF7O2Nq/ACYAoxX1T6qeoiq9gYOASYBF6UyuAQ8WaML1lH+ukOAU1R1TM0dRSSClzhcpqoHAW8BvWvs8kdVHaeqI4BHgD/5628DfugnawA/Au6w5MMYY0xzaDMtIMCn8TgLho3pOXnxwrVtZjTI6eeNqPrw7dnOji0bU56AALz65L3OhVff5kYL21G6fleqw0m+gEP+8K4VgZB1v0qhc4Afq+qimitVdZGIXAH8CrgzJZEl5ltdsETkTOBJVa2rWVGAYlV9A0BVHxeRu2tsP1pELgVyqfH/gaouF5FVwHQRWQAcTxqPjTHGtE3p8o6UdImjObV0mdpSAkI0K3TtpO/0H7t44drMeztWHQ47YgBBtyqw6LV/pk3CVVleyvLFb8X7TxsbX/f3JWmRFCVT7sBOgPMx3qxLJjWGAG/Ws+1N4O9JjKW57Klnfb11X0T6ADcB41R1tYgcCvyjxi63Apfg/byeVtWdzRWsMcY0hy1bUv8mkIKCvLSIozk1pkyBgNOkl862tRvA16JZoc1t4Z0g0ewgh07tE5/z5D1OVWVlqsP5lrmz/u4E88NOTr8OqQ4l6Toe3Gu3Gw3+IdVxtHGuqtb5l9Vfn0l/F1cAWSJyGICInArk+9vaAeXARhEJ4L0VvqYX8FpQfoo3hsQYY4xpFm2qBQSIR7NC1048vP+tK3VLRreCnDlzbNW6zz5m3eefpN2MU7FYjMXvvOSMmHZEfO/q9x3aSK/ySLdcQvnRUuC5VMfSxoVEZCr1tw5kzN9FVS3zu2jdISIlwGvAWn/bUhF5AvjYX/cmcFiNY2Mi8gBwtKp+mPzojTHGZKqM+Y+2ER7p0av9zZ275rJ1U329Flo3ObArXbvnug/d8GCqQ6nXwleeYcTBR8TzBhU4u5dvSXU4SdFhXGGx4zo3AG16EH4a2Azc18D2tKSqRXWsO6+OdU6N5XnAsBqbf1lj2+XA5TW2/U+tU00BbmlSsMYYY0w92mICUuo43HrolAOunPXYh9FUB9PsAnDcaUNi77z4uFO8Z1fajP2oy/w5TwUmHH56fLdudYhldjNIMDdMzgGdHMcN3JPqWNq6um7izbeJyFjgMWAx8FSKwzHGGJNhMqmvc8KCIffPQ0f1ICsn814Jcvzpw+PFu7ez7N030jr5AFg6fw4VVWWx/BHdMjv7ADoe2ruUePwuvBfeGZPWVPU9VT1AVU9VVZsu2hhjTLNqiy0gAJtiVbFnxh1adNrcVz7LmJ9B5665DB3RzXnyL9c6xFvHPf2bzz/kHnHyhexatol4RWbe5wTbRcgbXBALhNz/TXUsxiTTvdccmeoQjDEZqrQsvSbYMY2TMTffjRWJhv5v/OR+Jy6YuzpYniG/xDPOH1X1yaI32bZxXdoNPK/P50vfZcJRp1d1GFvobJ+/LiNb5DpN6FOCN6Xp1lTHYkwybdu2h1gGda/MtOk2M608kHllyrTyQGaWyTReRt7wJWip4/DcYUcMKE91IM1h/GF9yc4KuAtmP9Vqko9qc5651+0wrmcgkJV5+XCofZTcgZ1igZB7XapjMcYYY4xJB205ASESDf1k3ISiqvwOWakOZb+Ew0EmH3VAfM7T91FRXpbqcBrty5XL2bF9U1XH8b0ybnaoTpOKinGcG4GvUx2LMcYYY0w6aNMJCLDBcbjhqBOHFqc6kP0x4/zRVZvWfh5bs3xJqkNpstmP3eXmD+/mBvPCqQ6l2US755HTr0NZIBi4IdWxGGOMMcaki7aegBAMuX/sN6BzSa++rfOt3H0HdKZnUb772tN/a3Vdr2raunEtm9eviXWaWJQZrSAOdDlqwF4nGPgxYJ1djTHGGGN8+0xARGShiCwRkU9EpNJfXiIiq0XkvWQF6ccSF5GWeHt5cTgS/NEJZ4zcGwik/cy1/+Gksw6MvfvqM7E9O1v/7K4vP/qXQO7ATm6oY+vuEgeQP7xbLJgX/txxnIfr20dErhWRv9T4/lj/93xojXXPi8jMRK8rIlOSVTdF5H4R+VEyrmWMMcaYzLHPBERVD1bVkcAxwA5VHel/f35zXFxE0uWp/WM5ueHF4yf3a1VP36efODReWb7XWfL2KxnRkrV75zbWrvwk1nlK31b1OdTmZofoPLmozI0EzwX2NQXQG3hvmq42GVhYvc6vHxOB11skUGOMMcaYFNifaYeCInIXcAjeTdYZqrpcRM4DjlXVUwFqfu8vnwFsAYYAM0XkBOBMoNQ/z1RV3SEiJwN/wHtx2ws1LywiDwMCRIDPgQtU9WsReQG4T1Wf9Pc7GfihqjY0GX08Eg2dd9iRA5Z+vGRD1s6vS/bjx5Ic+R2yGHVwD+fZe64jHsuc92e8+sRdgfN/cTORbrmUbdyT6nCapGBavxJw7gE+amDXt4G+ItJVVTfhJSC/A74H3A6MAnap6ioROQa4GogC5cBPVHUBeC0pePVqPfBu9clFZApwM15S86166m//HnAJ3t+BncDFqqoicijwZ7wHFCHgWlV9REQKgQeBzsBqavz9EJGzgMuB6kE8V6rqHBE5HThXVY/194sAa4CDVHVdgj9SY4wxxmSQ/XlyPhS4U1WHA48D1yR43ETgN6o6BvgCuBIY5besHAbsEZEuwF+BE1T1ULwbrpouV9WxqjoM+Bj4hb/+VuDSGvtdincjl4iVjuP86bjTh7eKAelnzhxd9emHC6s2rVuV6lCaVWnxXj5ftiheMK1fq8yqcgZ0Iqdfxx2BsHtVQ/uqagmwCJgiInlADvAiMNLfZQrwuogcAPw/4Gi/3nwfr84hIscBx/vHTAMG1bpMnfVURCYBpwOH+ee8HrjPP+YXwE1+nTzQjwm8+jVXVUcAP8VLmKq9DIxX1VF4ydAD/vqngWEi0tf//nRggSUfxhhjTNu1PwmIqupif3kBcECCx72lqiv95V2AAg+JyIVArqpWAuOBD1RV/f3urnWOc0XkfRFZCpzFNzdsLwPdRGSwiAzyY3o+0QKFQu7/FfbusHnkuF5p/easUQf1ol37sPv2C4+mSxe2ZvX6M/c74U5ZTlbv/FSH0ihuToiu0weUBMLuKUCizTev4yUaE/HqRhXwmT8OZApeN62j8H6X54rIEuBhvBbIrsBU4DFV3eMfe2+t89dXT48DRgAL/XP+EehVI6Zficg1eC0VO/z1U4F7/JOuAubUuM4BwMsi8jHwGF497ObX57uAH/r7NeahgDHGGGMy0P4kIKU1lqv4pjtGZa3zRmsd9+8bM/+GaTzek9WewPsiMhyodzS4/+T2YmC63wJyTfU1VDWOd3NzCd6Nzl3+NRJVHokGj51+8tCSrt3zGnFY8gSDAY44bmD8zWcfpLw0/buKNUVlZTlLF73uFBx+QKtqBen2XSl2As4twPxGHPYGXqIxGXjTXzcXrzWjevyHA7xUPQbL/+rhd9tqaOaE+uqpg9ddsfp8I1S1N4Cq3oyXoGwBbvO7eDXkEeAOVR0KjMb7O1Bd9+8GzhKRCUB7vp24GGOMMaaNaYnByyuB4SISEZEwcGp9O/rdTgpU9U1V/R9gGV6Xj/nAKBEZ4O/6/RqHtcfrr77N709+Qa3TPgCcCMzAf1rbSB+Hgu6FZ37/oOJINP3ezH3KuaNi2zevi3/20bsN79yKvfXiYwSyXSd3YKdUh5KQ/JHdY9GuuV8EQu6vG3noO0ARcApeMgJeAnIZ3sQPa4DZwPRas2ON8xfnAKeLSI4/aD3RCSKew2tJ7OmfzxWRMf7yQFVdqap3AbcAB/nHvFZ9fr9L1eE1ztceb1wIwEy88VkAqOpW4FXgUbwkJa1bGI0xxhjTspo9AVHV+Xg3G8vwuj8t38fu+cCzIvKRiCwDNgJPq+pm4AfAcyLyDt7T1Gov4iU5K/zlD2pdfzfwEjBbVbc0pQxOwPlHJCv0yMlnj06r8SCFfdrTb0DHwJwn782IWa/2KRbjvbnPOZ2n9Is3+Iw/xcKdsuk8uag0EAmeBFQ05lhVLcUbJI6qbvBXLwIK8RMSVf0MOBu4V0Q+FJHlwEX+tufx6tkSvARhMQlQ1bl4g9pniciHePX1BH/zj0XkYxFZjJcIXe2vvxyY6u//J+CVGqe8Aq8uv4WXUG2rdcl7gA58MzbEGGOMMW2UE49n1sNIEQnizT70PVVdtB+nipSVVrw/95XPBs1/Y1VajLW44prJVcvff9VZNGdW5icgvguvvj224+31zq6lm9IyDQlEXPqcN7rYzQlf4gQcu7muhz+epLuqXtrgziYTFAGrt23bQyyWOf/HFBTksWVL5rxXNNPKA5lXpkwrD2RemTKtPNC4MgUCDp065QL0xZvlMrHjmhRZmhKR4/FaR2bvZ/IBUBaJhr47+aiBe3v369gM0e2faccIDuWB9994IaM+s4a89fKjgc6HFTlOMA2L7UD3EwYXByLBBy35qJ8/MP004PepjsUYY4wxqZdxLSAtYHpJcfnTd1z3Ztbe3WUpCSA3L8yPfjWZfz1wE+tXa8MHZJgLfnFz1d4Ptzs7Fq1Pqyyk02FF5e1HdFsciAQn0ciuV8ZkuCK+GRNkjGlFSssq2b2r5Sa5ybQWg0wrDySnBST9Rlmnn5eCQfemGeePvfxvf34nJ56C7gRnXDC2as2KJaxfrWnRFSzZXp91vzt9xqXs+nAjsfL0eEl6rnSOtx/ZfWcg7B6HJR/G1GnmtbPZ3Ape7GqM+cZzN55AZt1Om3SUVk+U01Uo7P66oGvu4qNPGpr0JpAhI7vTuUuWO3fWQ20y+QBYvXwJe3Ztr+pwcM+0mJY32iOPrkcNKA6E3aPwpqo1xhhjjDEJsgQkMVWRaOi4YaN7rj7y+CG138reYgIB+O7Jg2Pznn8kXlqc6HvtMtMrT/7VbT+6R8DNDqU0jnDnbApPGVocCLsnk+CMU8YYY4wx5hvWBStxOyLR4IRRB/deUFUV6zPnXyvCLX3BE88aGd+9YzPLP3grLWeASqaNaz9n++b1VR0n9GbLKytT0hoUzI/Qc8awYifsno/3bg5jWoSInAZchffCyCjwgaqe1UznLgLeU9XOzXE+Y4wxprGsBaRxtkeiwUPHTij6cup0adF+/1265yFDuzivPv7XADZRAAAvPXan225IFzeYH2l452bmZofodebw4kDY/bnjOI8nPQDTZohId+AO4HhVHQkMBq5LbVTGGGNM87EWkMbbGokEDzn4sL7vVlXFesx95bMW6RM047xRVUvnz3G2b95gSaJvx5av+GrtZ7HOhxXFNz6XvAH5bnaInmcO3xuIBG903MDtybquabO64U1ssA3Af3P8ktotFzW/r14G7gKOAbKBmar6lr/vpcBPgK/wX3Dprw8C/wI6AVnAu8BFqlruvxz2/OopzUXkp8AgVf1BSxbeGGNM5rOb26bZHI4EDzl06gGbJkzrX9nw7o0zYdoBhCPxwLtznrXPp5aXH70zkNOvoxvunJ2U6wXzwvQ6e2RxMDd8cyDk/iYpFzVt3Yd4icBaEXlSRK4QkU4JHNcJmK+qo4Df4b2tHhEZjvc2+wmqOsnfr1oVcJaqjgUOBFzgAn/bn4FL/HM4wMWAJeDGGGP2m7WANN1X4Uhw/KTv9H83VhXrMv/NVc3ys4xGg0w6vG/8pUfucCorkjbevdUo3rOT1bok3n3qAbH1Tyxr0VaQUPsoPc8cXhyIBH8TCAaub8lrGVNNVWPAiSJyIDAZOBH4GXBcA4fuUdXn/eUFwI3+8hTgX6q6yf/+buB0fzkAXCkiR+MlHx2AYn/bg8CvRaQjcBCwSVU/3J+yGWNah4KCvFZ9/mTLtPJAy5fJEpD9sz4cCY6ffNTARbF4vPPCuav3+4Z4xswxsfWrV8TXfrq0zU6725BXnrjHufDq29xoYTtK1+9qkWuEO2fTc8aw4kDY/W/HDdzZIhcxZh9UdRmwDLhdRD7Ba6Go2SoarXVIzWnCq/jm7/u+JrE4C5gITFLV3SJyFTDQv36xiPwDOB8vibHWD2PaiJZ8sV6mvbgv08oDTX4RYaNYF5/9ty4cCY6fOl02HHva8NKA2/QJqwYM7kL3wrzAG888YMnHPlSWl7Jiydvxgmn9WuS9INHCdvQ8c3hJIBL8gSUfJtlEpFBEDqnxfU+gAFgOhESkv78p0VmxXgeOEZEu/vcza2xrD2z1k4/8Os55O3AFMAZ4qnElMcYYY+pmCUjzWBOOBIcNHdn9rQsum7A3J69pszQdP2NobMHsp+J7d+9o5vAyz5v/fNAJ5oed7H4dmvW87YZ1jRWeOnSPGwme5ASch5v15MYkJgj8VkRURJYALwDX+IPBLwdeEZE38Fo5GqSqHwF/AN4WkXnA+hqbHwTyRORj4AlgXq1jVwMrgPtU1fqEGmOMaRZO3KZ4bU6BivKq31VUVP3kkXvezV6/NvFE4tjThsWL+gbjj9zy/wL2mSRm/JGnMHzU4fEv7nl//9+T4kDB1H5l7Q7sujUQdg8HdP8jNKZ1E5F2eAnIQar6ZSMOLQJWz7x2Npu/LmmR2IwxLeO5G0+wLliNkGnlgSZ3weoLrEn0GtYC0rxiobB7TXZO+KxzLh6/d+RBvRLqItSxczbDRndzXnn8r5Z8NMKC2U9B2InnDS7Yr/MEIi6Fpw8rbje0y/uBsDsMSz6MQUR+CHwC3NjI5MMYY4zZJxuE3jL+GQ4Hx04/cejswt7tu7z4zLJIrKr+xOKMC0ZXrfjgbbZs+MLGfjTSgjlPBQ6ddlp8t251iDU+eYt0y6XHiYOLA+HgQ4GweynQ7NMqG9MaqeqdgI2BMsYY0+wsAWk5K8KR4LADRxU+1b1n/vhH7nk3Z++e/+xCPfbQPuTkBt13XnoiBSG2fh+98yrjJh8fyx/eLbBzyVeJd8VyoMNBPSs7ju9VEgi552MDbI1pdvdec2SqQzDGNFJpmT2HMy3PEpCWtTMSDR5Z0DXv9xf/fMoV/3xkSfZnyzf/e2MwHODwY/rHX3vqXqeirDSFYbZub/7rIfeIky5k18ebiFc03OstmBum2/GD9oY7Za8IhNyTgHUtH6Uxbc+2bXuINaFlMl1lWl/vTCsPZF6ZMq08xlSzMSAtLxYKu1dn54SPO+Wc0RtPOWd0SVZOCIDTvzcmtmXDmvjKj99PcYit2+cfvUtx8a6q9mMKG8w+cgd1pvf5o0siBTnXu5HgwVjyYYwxxhiTVJaAJM9r4Uiw/4DBXe697FfTSiYfNTDep1/7wJwn77XPoBnMefoet+NBPQOBaN2NeqH8KD3PGLa36xH9V7qR4NRAyP0tCU5jaowxxhhjmo/d/CbX3nAkeFk0KzT1kMl9Nxfv3lnpBq0XXHP4cuVydmzfXNXxkF7fTioCDh3H96rsfd6o4ki3vN8HIsHBwMLURGmMMcYYYywBSY2F4UioV25+x1/OuOy3eyccM6M8FI6mOqZWb/bjd7r5w7u5wdwwAFm98ymaOWZv+3GFcwMhd0ggGPgTUJHaKI0xxhhj2jZ7/J46FW4weKNL8OGh4ybfMnjMxGPnPvdw1qdLFuz/S/XaqK1frWXzhjVVXY7s7zghtyTaNXeXP7Xus0DmjIQ1xhhjjGnFrAUk9TaGo1kzotm535l8wrl67s+u2zN4zCQCruWGjdWhSw8qKsrKo4V55VmF7X4VCLtFwDNY8mGMMcYYkzbsLjd9zI9Es4ZEolnTJn53xm8mfHfGmCXzXg4vW/iaW1q8N9WxpbUOBd0Zf+Qpxb0HHlgVCLh/cIPBPwN7Uh2XMcYYY4z5T5aApJc4MCeSlTMHGDbqsKOvHjPluyfo4nf4YO6L0V3bt6Q6vrTSvc8ARk48sriPDK9yHOdPbjB0C5Z4GGOMMcakNUtA0tfSSDTrDKCHjJrwk0GjJ1y87vNPeO/153I2rVuV6thSJq99JwaNnlB14MFTS4PhyLZQKHx7wHXvBHalOjZjjDHGGNMwS0DS34ZQOPwz4Ld9Bg6bWdhv0FU7t23KXjzvpdwvVnxEWWlxquNrcaFwhH5DxzBs/LTdnbv3CsRisUfCkejdwHvY+A5jjDHGmFbFEpDWY0/AdW8Ju+7tBT36nHTYcWdfGjolPH7LV+vKPvtwYd7q5YudjOqi5Tj0KBrI0IMmlxwwdEygsrJifjQr53bgOaAs1eEZY4wxxpimsQSk9akEnohm5zwBZHfr1e87HQu6nz7+yJOPK9m72/l86aLoqo8/CG1at5J4vHU1DkSi2XTr05/CfoMqB406tMwNhbaEwpHbAwH3oWAovDHV8RljjDHGmP1nCUjrVgzMCkezZgGBUDgybvih3zlp6LjJMxzH6bZ6xZLYyqXvZW9Y8ymlxek3NrtdxwK69xlAYb9BpT0PGFyRk9c+XFFeujQUib7susGngcVYFytjjDHGmIxiCUjmiAELg8HQwmAw9EugaOCI8cf1GTjs7FA4MryysjK+Y+vG8i3r10S2blwX3b5pA9s3b6B07+6kBBdwXTp37033PgPo1X/I7u59BgQDrltWVVkxP5qd+zLwFvChG8ytTEpAxhhjjDEmJZzW1k3HNIkDFAJDgCFlpcVj47HYyFA40q+qqsrZsWVj2ZYNX0S2frU2uuvrrZSXllBeVuL9W1pCeXkp8ViszhO7wSDZufnktOtATl4+2e3ak5PXPpbXoVNJXn7Hypx2HZysnLxQMByJVJSVrnMCzuvhSNYc4G1gDdbCYUwmKgJWpzoIY1qj0rJKdu8qAaCgII8tW5LzoDBZMq1MmVYeaFyZAgGHTp1yAfri3dclxFpA2oY48KX/NTsSza5e77jBUPcuPYuGdOlZNLS8tGR0VVXlAMdx2jmOk+cE3JxAwM12g8EoQDwej8fjsZi/EAcIuK5bWVGxI1ZVuSUej29w3eAXoUh0teM4XwE1v7ZEsrKtdcOYNmTmtbPZ/HVJqsMwplV57sYTyKzbWWP+kyUgbVsc2OB/vRqOZtW3nwO4juO4EHCB6i+AneGIa60YxhhjjDEmIZaAmETE8WbfshYMY4wxxhizXywBMcaYJBKR04Cr8FoWo8AHqnrWPvYvAo5U1bub6frnAceq6qnNcT5jjDGmsQKpDsAYY9oKEekO3AEcr6ojgcHAdQ0cVgT8oInXs4dMxhhj0o7955REIrIQiABhYCCwzN+0WFXPb8HrvgVcq6ovtdQ1jDEJ6QZUANsAVDUOLAEQkYcBwfsb8Tlwgap+DdwO9BWRJcDnqnqqiMSBPFXd4x/77+/95Z8D3wXmicjvgduAKcB6YEV1MCIyDC8hysFrjblbVW8WkR7A+0BfVS31950FPKqq/2ixn44xxpg2wRKQJFLVg+HfXSre85+AGmPajg+Bd4G1IvIG3vtv/q6q24DLVXUrgIhcC/wC+CVwKXCDqo5txHUCqjrFP9dleNMjHgiEgLl8M1XiGuA7qlomIrnAuyLysqouF5E3gRnAAyLSBxgLWLctY4wx+80SkDQgIt/Huwk4o/b3IuIAvwJOxLt5WAtcqKqbReRk4Hd4g8ODwMWqOk9EDgTuw5up6mO8J6rV1/o5cJp/rhLgIlX9SESuArqo6hX+fj2AD4Ci6iegxpj9o6ox4ES/jk7Gq9c/81sizhWR/8JrIc0BPt2PSz1QY3kq8ICqVgAVIvIQMNHflg38RURG4L3MtAcwAlgO3Arc5J/rYuA+VS3fj5iMMQkqKMirczlTZFqZMq080PJlsgQk/X0P6AmMV9WY/zTzen/974Hvq+p8v6939Ty6DwPXqerDIjIR74lntftU9ToAEZmO1/1iInA3sFRErlLVYuAivCezlnwY08xUdRleF8zbReQT4DLgbOBQVd0iImex73EfVfhj+EQkWsf2PTWWnX2c5w/ARuA8Va0Ukdl4XbFQ1XdExBWRCXh/bw5KrHTGmP1V/RK4tv6Su9Yg08oDTX4RYaPYIPT0dzwwHfjA7wN+Ed6gVIDXgJtE5EpAVHW3iHQEBgD/AFDVt4BPapzvYBGZJyLL8BKZkf5+W4EXgf8SkRAwE/hLSxfOmLZERApF5JAa3/cECvBaH3YCWwfRqAAAB9ZJREFU20QkAlxQ47BdQH6tU60ExvnL9c6g5ZsDnCMiQRHJqrV/e2Cdn3wcCEyqdextwKPAfFVd12ABjTHGmARYC0h6qOTbyWDNJ5oO8BtVfbD2Qap6mYgMB6YBT4vIn4B/+tv+4+WA/s3HY8BEVV0iIr2BVTV2uRX4G94Nz4equqr2OYwx+yUI/NYfU1GCV++vAe7FG6OxAvgSeI9vWhw+AtR/aLDCnz73J8BdIvIV8HwD17wbGI7XHfNL4E28MSEA1wJ/F5Gz8ZKaubWOfRRvEPwdTSqtMcYYUwdLQNLDSmCEiITxEo5TgE3+tlnApSIyS1V3+N0tBvrjNkRVPwI+EpF8YKyq3icin4rIGar6qP+0dYh/riy8cSHVTzIvqRmEn5TsAW7Aa2kxxjQjVf0COLKezTPqOaYSOLbWuheAF2qs+lONbU6tfcuppzuXqi7GS3zqMw5voPqcfexjjDHGNIp1wUoDqjoPmIfXJ3wW3pPK6m1/A54A5orIR3hPRqu7cFwvIsv8rllT+OZ9AmcD/y0i7+P13V7kn2s73qD19/0ZbnbVEc49eNOE2pS9xrRhInIvXlfOH9XVomqMMcY0lROP2/8r5hsicj9e96ubUh2LMabVKgJWz7x2Npu/Lkl1LMa0Ks/deIINQm9FMq080ORB6H35Zor3BlkXLAOAiPTC62axHm/KTWOMMcYYY5qdJSAGAH+Gm4GpjsMYkznuvaa+4S7GmPqUllWmOgRjWpwlIMYYY1rEtm17iMUyp5tvpnW1yLTyQGaWyZhMZIPQjTHGGGOMMUljCYgxxhhjjDEmaSwBMcYYY4wxxiSNJSDGGGOMMcaYpLFB6MYYY5qbC9788Jkm08qUaeWBzCtTppUHMq9MmVYeSLxMNfZzG3N+exGhMcaY5jYRmJfqIIwxxiTNJOCtRHe2BMQYY0xziwDjgK+AqhTHYowxpuW4QHdgEVCW6EGWgBhjjDHGGGOSxgahG2OMMcYYY5LGEhBjjDHGGGNM0lgCYowxxhhjjEkaS0CMMcYYY4wxSWMJiDHGGGOMMSZpLAExxhhjjDHGJI0lIMYYY4wxxpikCaY6AGOMMa2TiAwEHgA6AduAc1X1s1r7uMCtwHQgDvxRVe9JdqyJEJFOwN+BA/BeqPU5cJGqbqm13/3Ad4Ct/qonVPV/kxhqwkRkDVDqfwH8QlVfrrVPNvA3YAxQCVypqs8nMcyEiUgR8GyNVe2BdqrasdZ+vwEuATb4q95W1UuTEWNDROQG4BSgCBimqsv89Q3WJ3+/tKtTdZUp0frkH38/aVan9vE5raGBOuXvl1b1qp7PqIgE6pN//G9oxjplCYgxxpimuhO4XVUfEpGzgbuAabX2+S+gPzAA78ZqsYi8qqprkhppYuLAdar6BoCIXA/8EZhZx75/VNU/JzG2/XFq9c1TPa4EdqtqfxEZAMwTkf6quidJ8SXM/70ZWf29iNxM/fcyD6rqlcmIq5GeBW4B5tVan0h9gvSsU3WVqTH1CdKvTtX3OUHDdQrSr179R3kaWZ+gGeuUdcEyxhjTaCLSBRgNPOKvegQYLSIFtXadAfxVVWP+k89ngdOSF2niVHV79c2SbwHQJ0XhJNMMvJtf/Cfu7wFHpzSiBIhIGO9m/L5Ux9IYqvqWqq6rua4R9QnSsE7VVabWXp/qKlMjpVW9aqg8ya5PloAYY4xpil7AelWtAvD/3eCvr6k38EWN79fWsU/aEZEAcDEwq55dfioiS0XkWREZnMTQmuJhEflIRO4QkfZ1bG+VnxFwPN7v4Af1bD/DL/dsETkkmYE1QaL1CVrh55VAfYLMqlPQ+j6nhuoTNGOdsgTEGGOM+U+3AXuAurqEXA30V9VhwNPAS36//HQ0SVVHAOMAh7rL01pdQP1Pa+8E+qrqcOB64J/+mASTGvuqT2B1Kh3sqz5BM9cpS0CMMcY0xTqgsPomwf+3h7++prV8u9tF7zr2SSv+YM0BwAxVjdXerqrrq9er6oNALtAzuVEmprrLhaqWAXcAE+rYrTV+Rj2AycDDdW1X1Y2qWuEvv4JXngOTF2GjJVqfoJV9Xg3VJ8jIOgWt6HNqqD5B89cpS0CMMcY0mqpuBpYAZ/qrzgQW1zHDzRPAhSIS8Puznwg8lbxIG0dE/hdv1poT/RuMuvYprLF8FFAFrE9OhIkTkRwRyfeXHeAMvM+stieAi/z9BuA92X0pWXE20XnAv1R1W10ba31GI/Fm/tGkRNYEjahP0IrqVCL1yd8v0+oUtK56dR77qE/Q/HXKZsEyxhjTVD8EHhCRXwNfA+cCiMgLwK9V9T28aTgPBqqnE/2dqq5KRbANEZGhwFXAp8A7IgKwWlVPEpElwDGqugGvzF2BGLALOF5VK1MV9z50BZ7yn6a7wCd402hSqzzXA/eLyOd4N34/UNXdKYo5UecBP665otbv3R9EZAxeecqBc1R1Y9KjrIOI3AqcDHQDXhWRbao6lHrqk39MWtepusoEnE499ck/Jq3rVD1lOo566pR/TNrWq3383kEd9ck/psXqlBOPx5t6rDHGGGOMMcY0inXBMsYYY4wxxiSNJSDGGGOMMcaYpLEExBhjjDHGGJM0loAYY4wxxhhjksYSEGOMMcYYY0zSWAJijDHGGGOMSRpLQIwxxhhjjDFJYwmIMcYYY4wxJmn+P951VSKqWbZFAAAAAElFTkSuQmCC\n", "text/plain": [ "
    " ] @@ -712,7 +703,7 @@ "##### Answer these questions, based on the above\n", "\n", "1. From the pie chart alone: which day has the second highest number of visits? Note how long it takes you to discover that.\n", - "2. From the pie chart only: which percentage of visits occur on a Tuesday? How accurate is your guess? Check it afterwards against the bar chart.\n", + "2. From the pie chart only: which percentage of visits occur on a Saturday? How accurate is your guess? Check it afterwards against the bar chart and the values in the table.\n", "\n", " The superiority of tables is not surprising here. The human eye excels at at finding differences in 2-dimensions with respect to length and location. But it is not good at estimating area and angles, yet a pie chart encodes its information only in terms of area and angles.\n", "\n", @@ -731,7 +722,7 @@ "### Colour-coded tables for heatmaps\n", "\n", "\n", - "Related to data tables is the concept of colour-coding the entries in the data table according to their colour. High values get a specific colour (e.g. red), and low values another colour (e.g. blue) and then the in-between values are shaded in a transition.\n", + "Related to data tables is the concept of colour-coding the entries in the data table according to their values. High values get a specific colour (e.g. red), and low values another colour (e.g. blue) and then the in-between values are shaded in a transition. This is also related to a colour map: each value is mapped to a certain colour (more on that below, in the section on [scatter plots](#Scatter-plots)).\n", "\n", "This is helpful for emphasizing trends in the data which are not easy to pick up with the numbers alone.\n", "\n", @@ -746,7 +737,7 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 26, "metadata": {}, "outputs": [ { @@ -781,63 +772,63 @@ " \n", " \n", " 0\n", - " 6.485\n", - " 6.660001\n", - " 4.555\n", - " 2.200\n", - " 2.910\n", - " 3.475\n", + " 6.48\n", + " 6.66\n", + " 4.56\n", + " 2.20\n", + " 2.91\n", + " 3.47\n", " \n", " \n", " 1\n", - " 5.750\n", - " 6.090000\n", - " 3.805\n", - " 2.315\n", - " 4.025\n", - " 3.770\n", + " 5.75\n", + " 6.09\n", + " 3.81\n", + " 2.32\n", + " 4.03\n", + " 3.77\n", " \n", " \n", " 2\n", - " 3.935\n", - " 4.119999\n", - " 2.445\n", - " 3.625\n", - " 5.770\n", - " 5.395\n", + " 3.94\n", + " 4.12\n", + " 2.44\n", + " 3.62\n", + " 5.77\n", + " 5.39\n", " \n", " \n", " 3\n", - " 6.595\n", - " 6.125000\n", - " 4.440\n", - " 1.930\n", - " 3.310\n", - " 4.465\n", + " 6.60\n", + " 6.12\n", + " 4.44\n", + " 1.93\n", + " 3.31\n", + " 4.46\n", " \n", " \n", " 4\n", - " 5.680\n", - " 5.985000\n", - " 3.800\n", - " 2.115\n", - " 3.850\n", - " 4.140\n", + " 5.68\n", + " 5.98\n", + " 3.80\n", + " 2.12\n", + " 3.85\n", + " 4.14\n", " \n", " \n", "\n", "" ], "text/plain": [ - " Flavour Sweet Fruity Off-flavour Mealiness Hardness\n", - "0 6.485 6.660001 4.555 2.200 2.910 3.475\n", - "1 5.750 6.090000 3.805 2.315 4.025 3.770\n", - "2 3.935 4.119999 2.445 3.625 5.770 5.395\n", - "3 6.595 6.125000 4.440 1.930 3.310 4.465\n", - "4 5.680 5.985000 3.800 2.115 3.850 4.140" + " Flavour Sweet Fruity Off-flavour Mealiness Hardness\n", + "0 6.48 6.66 4.56 2.20 2.91 3.47\n", + "1 5.75 6.09 3.81 2.32 4.03 3.77\n", + "2 3.94 4.12 2.44 3.62 5.77 5.39\n", + "3 6.60 6.12 4.44 1.93 3.31 4.46\n", + "4 5.68 5.98 3.80 2.12 3.85 4.14" ] }, - "execution_count": 33, + "execution_count": 26, "metadata": {}, "output_type": "execute_result" } @@ -852,12 +843,12 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 27, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAy4AAAEwCAYAAABR8CVpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xd8FNX+//F3EhIMSQCRXqVdQbigokZUQAIoKEUCoQdRUGlXpSggqFFE4Fq4CiKgUoxIE1DhigUpgkhMKOKlKT2AdCIkgdTz+8Mf+zVkQ84iIRP29eSxjweZvPfsmZndnf3knJn1McYYAQAAAICD+eZ3BwAAAAAgNxQuAAAAAByPwgUAAACA41G4AAAAAHA8ChcAAAAAjkfhAgAAAMDxCuV3B/LDuQ8GW2fT47ZZZz//oqR1tsO4StZZSUpbHWedPbgqwDp7478q2nciJdU6Gj0xzTrbtdUx+z5I8qtUyjr75of27Q6OSLTOmmT7bfHmf0tYZ4e94tnzIn3TVuvsF/OLWWfbD7J/Dp1etM86uzS+vHW25yfNrbNps+dYZyXpla/t98nLj3nw953MTOtoj+n2z7epNc9YZz/91bPnUJfb4q2zgeENrbMpX8VYZw/GBFlnqw0sZ53N/P2EdVaSfEKK2GdvuN46m775V+vszi/tt0XtHj72fdh32jorSaNiSltnXx9VwTp7ftlG6+y8n+yPT907/GGd9S1lv+8WTLZ/TUtSp2fs3zvTfz1onX3gS/tj6ooJTa2zmdu2W2cTVx+2zkpS0Sfus+/H/+w/ay3/0N86e/8bVa2z6XFbrLOzFtofTyVpYPzHHuXzS9qJPR7fx79ktTzoSc68snABAAAA8BeZGfndg1xRuAAAAADezng2wpgfKFwAAAAAb+fBdOf8QuECAAAAeDlTAEZcuKoYAAAAAMdjxAUAAADwdkwVAwAAAOB4BWCqGIULAAAA4O24HDIAAAAAx2PEBQAAAIDj5cE5LosWLdLixYslSSkpKdq+fbt++OEHFS1aVJL06quvauPGjQoKCpIkTZ48WSEhITm2R+ECAAAAeLm8uBxyeHi4wsPDJUkvv/yyOnTo4CpaJGnr1q364IMPVKJECav2uBwyAAAA4O0yMz2/Wfrll1+0a9cude7c+S8Pl6n9+/frxRdfVJcuXfTpp5/m2g4jLgAAAIC3y8NzXKZOnaoBAwZkWZacnKwePXro0UcfVUZGhnr27Km6deuqVq1aObbDiAsAAADg7TIzPL9ZOHPmjPbs2aO77rory/LAwED17NlTgYGBCg4O1l133aUdO3Zcsi0KFwAAAMDbmUzPbxZiY2N19913Z1u+b98+devWTRkZGUpLS9PGjRtVp06dS7bFVDEAAADA2+XBVcUkae/evapYsaLr5xkzZqhy5cpq1qyZ2rRpo06dOsnf31/t2rVTzZo1L9kWhQsAAADg7fLoHJc+ffpk+fnRRx91/f/xxx/X448/bt0WhQsAAADg7fJoxOVKyrPC5eDBg2rbtm2WuWqhoaHavXu3JkyYkFcPCwAAAMBDxtidbJ+f8nTEpUaNGoqOjnb9HBMTo927d+flQwIAAADwVB5eDvlKyberin388cfq2bOnunXrpieffFKpqakaOHCgfvrpJ0nSli1b1K9fP6WlpenZZ59Vly5dFBERoS+//FKSFBkZ6SqC5syZo4kTJ+rgwYNq06aNIiMj9f777+fXqgEAAAAFSx5+AeWVkqcjLrt27VJkZKTr54iICEl/flNmQkKCZs6cKV9fX/Xu3Vu//PKLIiIitHjxYt15551avHixOnXqpHnz5un666/X66+/rsTERIWHh2e7DvRfHT9+XAsXLlRAQEBerhoAAACAq+iqTxWTJF9fX/n7+2vw4MEqUqSIjhw5ovT0dDVq1Eivv/66EhISFBcXp1GjRunVV191Xfs5ODhY1atXV3x8fJbHMca4/l+xYkWKFgAAAMATTBVzb8eOHVq+fLn+85//6IUXXlBmZqaMMfL19VXLli0VFRWl5s2by8/PT9WrV1dcXJwkKTExUb/++qurODl+/Lgkadu2bf+3Qr58pyYAAADgkcwMz29XWb5cDrlKlSoKDAxUeHi4AgICVKpUKR07dkyS1KFDBzVv3lxff/21JKlTp0564YUX1LVrV6WkpGjgwIG64YYb1LNnT73yyisqV66cSpcunR+rAQAAAFwbCsCIS54VLhUrVtT8+fOzLAsNDVVoaKgk6aOPPnJ7v3Llymnr1q2unwMCAjR+/PhsuSZNmqhJkybZll/8mAAAAABy4c3f4wIAAACggPDmERcAAAAABQQjLgAAAAAcj8IFAAAAgNMZc/WvEuYpChcAAADA2zHiAgAAAMDxODkfAAAAgOMx4gIAAADA8RhxAQAAAOB4jLgAAAAAcDxGXAAAAAA4HiMuAAAAAByvABQuvvndAQAAAADIDSMuAAAAgLfjHBcAAAAAjlcApopRuAAAAADejhEXAAAAAI7HiAsAAAAAx2PExaGCQqyjvuVvsM4Ge1CpZh6It85Kkm/potbZ9IxU66xJTLLvRIp9u4VNgHW2UN1q9n2QZP44a51N8MmwzvoUDbbOnv/loHX2nE9x66xKlrXPSvIt87t1trrst5tPjbrWWf8iu62zwR68J2au+tY6m7LnvH3DHvKtdqN11hw75kHLidZJ/xI+1tlaqfavU0lKPW3fdqAH7WYme/B+mGnfB5/6d1hnzb4vrLOSlHnmhHXWv3wZDxo21tEy5c5YZ33L2L93Zu44aZ2VpDLGg48HIcWsoybdfltUT02zzp77xX67hQxrZZ2V1nmQlTL2H7HOnoq13xYZnnygLHydddST97f0r4/a90Hy6K/3PjfYHyfrljxg34dSd1tH/Srar19QZt4dc/IVIy4AAAAAHI/CBQAAAIDjGftRwPxC4QIAAAB4O0ZcAAAAADgehQsAAAAAx+OqYgAAAAAcjxEXAAAAAI7HyfkAAAAAHI8RFwAAAACOR+ECAAAAwPEKwMn5vvndAQAAAADIDSMuAAAAgJczmZycDwAAAMDpOMcFAAAAgOMVgHNcKFwAAAAAb8dUMQAAAACOx1QxAAAAAI5H4QIAAADA8QxTxQAAAAA4HSMu2U2bNk3r1q2Tr6+vfHx8NGjQINWtW/eKtJ2QkKA1a9aoTZs2V6Q9AAAAwCtwcn5Wu3bt0ooVKzRnzhz5+Pho+/btGjZsmL744osr0v7OnTu1YsUKChcAAADAEwXgcsi+V/PBSpQoocOHD+vTTz/V0aNHVbt2bY0ePVpPPvmkJGnp0qVq27atJCkuLk4vvPCCzp49q6eeekqRkZGKjIzUzp07JUnLli1T586d1bVrV73xxhuSpClTpmj9+vWaN2/e1VwtAAAAoGDLNJ7frrKrXri899572rhxozp37qyWLVvqyJEjOnz4sFJSUrRmzRr5+PjoxIkTWrFihVq0aKEpU6borrvuUnR0tEaPHq2oqCglJCRo4sSJmjlzpubMmaOjR4/qhx9+UN++fXXXXXepc+fOV3O1AAAAgALNZGZ6fLvarupUsf379ys4OFhjx46VJP3yyy964okndN999ykmJka///672rRpo3Xr1ikuLk6DBg1SdHS01q9fr2XLlkmSzpw5owMHDujUqVN64oknJElJSUmKj49X1apVr+bqAAAAANcGznHJaufOnZozZ46mTJmiwoULq2rVqgoJCVH79u01ceJE1apVS/fee69eeuklValSRf7+/qpWrZratm2rNm3a6OTJk1qwYIEqVqyocuXKafr06fL399eiRYtUu3ZtJSYmKrMAXBEBAAAAcJQCcI7LVS1c7r//fu3evVsREREqUqSIjDF67rnndMcdd2jv3r3q06ePatWqpUOHDqlPnz6SpL59+2rkyJGaP3++EhMTNXDgQJUoUUK9evVSZGSkMjIyVKFCBbVq1UpnzpzRr7/+qpkzZ6pXr15Xc9UAAACAgosRl+z69eunfv36ZVu+du1at/+//vrrNXny5Gz5du3aqV27dlmWBQYGuqaUAQAAALBUAGYtXdWT8wEAAAB4j6lTp6pz584KDw/XggULsvxuxYoV6tChgzp37qz58+fn2tZVH3EBAAAA4DB5MFUsJiZGmzZt0pw5c3Tu3DlNnz7d9bu0tDSNHTtWn376qQIDA9W1a1c1bdpUpUqVyrE9RlwAAAAAb2cyPb/lYu3atfrHP/6hAQMGqG/fvrrvvvtcv9u9e7cqV66sYsWKKSAgQA0aNFBcXNwl22PEBQAAAPB2eTDicvr0aR0+fFhTpkzRwYMH1a9fP3311Vfy8fFRYmKiQkJCXNmgoCAlJiZesj0KFwAAAMDL5cUXShYvXlzVqlVTQECAqlWrpsKFC+vUqVO64YYbFBwcrKSkJFc2KSkpSyHjDlPFAAAAAG+XaTy/5aJBgwZas2aNjDE6evSozp07p+LFi0uSqlevrv379yshIUGpqamKi4vTrbfeesn2GHEBAAAAvF0eTBVr2rSpYmNj1bFjRxlj9OKLL+rLL79UcnKyOnfurOHDh6t3794yxqhDhw4qU6bMJdujcAEAAAC8ncXJ9pfjueeey/F3YWFhCgsLs26LwgUAAADwdnkw4nKlUbgAAAAAXs5QuAAAAABwPAoXAAAAAI6XB5dDvtIoXAAAAABvx4gLAAAAAMejcAEAAADgdMZQuAAAAABwOkZcAAAAADheAShcfExBGBe6wmIrtLfObvYJss7O8zlunX05LcQ6K0nbCl1nnV1b6Jx1dri/fTYl1b7OHZCeaJ2N9C1vnZWkYhn2T9nhKb9YZ8cV/qd1NsXHxzo7Pu1X6+xnJW6wzkpS3Bn7/GSfw9bZl9JLW2e/CLTfH+tT7PuwtKafdXbR3orWWUl6J2WndXaiTzXr7Ak/+9fIY6fXWmdHlb7XOvtZWrx1VpIe9q9knW3n94d1dmVacfus7xnr7OshKdbZb/8oZZ2VJD8Pjoahhey3xdbUotbZuR602yOtmHX2eCH79yxJGpf0s3X26xvsn0MzPejzylT794tefvZ9CAs8ZZ3tmZhknZWkVzPKWWeXB9rvk7cOf2+d3XXzzdbZzUfsXyMx9h9DJEn9Sx21zq48bL/dZvuetM6+XybVOvvTobLW2bd9j1hnJWnNoe88yueXPx5t7vF9is1Yngc9yZnvVX00AAAAALgMTBUDAAAAvF0BmCpG4QIAAAB4O+d//ySFCwAAAODtDCMuAAAAAByPwgUAAACA4zFVDAAAAIDTMVUMAAAAgPMx4gIAAADA6RhxAQAAAOB8jLgAAAAAcDpD4QIAAADA8ShcAAAAADgdIy4AAAAAnI/CBQAAAIDTMeICAAAAwPEoXAAAAAA4XkEoXHzzuwMAAAAAkBtGXAAAAABvZ3zyuwe5yrfC5eDBg2rbtq3q1KnjWhYaGqqBAwde8n7bt2/Xd999p4EDB+rbb79VvXr1VKZMmbzuLgAAAHDNKghTxfJ1xKVGjRqKjo726D61a9dW7dq1JUkfffSRoqKiKFwAAACAv8FkOn/ExVHnuMTExCgiIkLdunXTZ599prCwMKWkpEiS3njjDS1atEgxMTEaNGiQVq1ape3bt2vYsGGaN2+exo8fL0nKyMhQmzZtlJqamp+rAgAAABQYJtPz29WWryMuu3btUmRkpOvniIgIpaSkaMGCBZKkd955J8f73nfffapdu7ZrxCU8PFxDhw7VmjVrFBoaqoCAgDzvPwAAAHAtMJzjcmkXTxWLiYlR1apV3WaNMTm2ExwcrDvuuENr167VokWL1L9//yveVwAAAOBaVRDOcXHUVDFJ8vX9vy4FBATo2LFjMsZox44d2bI+Pj6ugqZTp05asGCBTp48qVq1al21/gIAAAAFncn08fh2tTmucPmrPn366IknntDjjz+uokWLZvv9rbfequeee04JCQmqX7++9u/frzZt2uRDTwEAAICCyxjPb1dbvk0Vq1ixoubPn59lWWhoqEJDQ10/d+zYUR07dsx23wuZQYMGadCgQZKkzMxMFSlSRK1bt87DXgMAAADXHq4qdpXEx8erffv2ateunYKDg/O7OwAAAECBUhCmiuXryflXSqVKlfT555/ndzcAAACAAik/pn556pooXAAAAABcvoIwVYzCBQAAAPByfI8LAAAAAMcrCN/jQuECAAAAeLlMRlwAAAAAOF1BmCp2TVwOGQAAAMC1jREXAAAAwMtxVTEAAAAAjsf3uAAAAABwPEZcAAAAADgeVxUDAAAA4HgF4apiFC4AAACAl+McFwAAAACOx1QxAAAAAI7HVDEAAAAAjsdUMYfqb05aZ6/TGetsuG856+yjGTuss5IUpMLW2VsL2fejXcIx6+z5jBTrbP+Q+tbZ1Uq0zkrS1rSj1tnPg2+0zg5I/906m2EyrbMzClW0zrY7FW+dlaSQQknW2adNZevsWH/7bXynSlpn38gsa51t8Ms262z1In7WWUl637eKdXZ8gP3z82j6WevsiRH3WmeHTk+zzo7ItH++SdLEDPv3gE9Tkq2zpfzTrbN1fYpbZ3sn2PfhVPpu66wknc+w387BGddZZ6v42/ehim+QdfbfPvbvFzV8S9h3QtKKsuWts90S7N+H6gUUsc6+mmF/LHvTz/64/vk566ieM569nob57LPOVs683jp7ZlIn6+wDL2+xzgb6n7LO3mDsn/OS1GK//eenYL9U62yHQvbv3+0O7rXOFvGz/wzwbIb9sawgycupYidPnlR4eLimT5+u6tWru5bPmDFDn376qUqU+PM96uWXX1a1atVybMcrCxcAAAAA/yevpoqlpaXpxRdf1HXXZS9+t27dqvHjx6tu3bpWbfle6c4BAAAAKFgyjY/HNxvjx49Xly5dVLp06Wy/27p1q6ZNm6auXbtq6tSpubZF4QIAAAB4OXMZt9wsWrRIJUqUUKNGjdz+/qGHHlJUVJRmzZqlDRs2aOXKlZdsj8IFAAAA8HJ5MeKycOFCrVu3TpGRkdq+fbuGDRum48ePS5KMMXrkkUdUokQJBQQEqEmTJtq27dLnt3KOCwAAAODl8uIcl9mzZ7v+HxkZqaioKJUqVUqSlJiYqNatW+vLL79UkSJFFBMTow4dOlyyPQoXAAAAwMvZXy/171myZImSk5PVuXNnDRo0SD179lRAQIAaNmyoJk2aXPK+FC4AAAAA8lR0dLQkZbkc8sMPP6yHH37Yug0KFwAAAMDLGeXd97hcKRQuAAAAgJfLtLlMWD6jcAEAAAC8XCYjLgAAAACcjqliAAAAABzval1V7O+gcAEAAAC8HCMuAAAAAByPERcAAAAAjkfhAgAAAMDxmCoGAAAAwPEynV+3ULgAAAAA3o7vcQEAAADgeCa/O2DBqnCJj4/Xv//9byUkJCgtLU21atXS0KFDdfr0aQ0cOFC1atVS9+7dNWLECIWFhWnIkCGu+545c0aPP/64goKCVLp0aT344INq3Lhxnq0QAAAAAM8UhJPzfXMLnD9/Xv3791efPn0UHR2tuXPnqn79+hoyZIg2btyohg0bavz48Vq7dq26dOmSpWiRpF9//VWlS5fW9OnT82wlAAAAAFy+TB8fj29XW64jLqtWrdIdd9yh+vXru5a1b99ekyZN0siRI1WyZEkFBwdr0aJF8vf3V9myZdWiRQtJUmpqqkaPHq1jx47pnXfecd0/MTFRI0eO1NmzZ3X69GlFRESoZcuW6t69u7788kv5+Pjo5Zdf1t13360KFSpo9OjR8vPzU+HChTV69GhlZmZq8ODBmj9/viSpU6dOeuutt7R48WJt2rRJycnJGjNmjKpXr36ltxcAAABwzbkmporFx8ercuXK2ZbXr19f9957r/bs2aOBAwfKGKOSJUu6ihZJCggI0PPPP6+5c+fqqaee0vDhwyVJ+/fv10MPPaT7779fR48eVWRkpLp166abbrpJcXFxql+/vn766SeNHDlSnTp10pgxY1S7dm0tX75c48aN03PPPZdjf6tVq6ZRo0ZdzrYAAAAAvFJBmCqWa+FSpkwZbdmyJdvyffv26e677862fP/+/a7CoW3btm6LnpIlS2rWrFn65ptvFBwcrPT0dEl/jpwsXrxYx48fV1hYmAoVKqRjx46pdu3akqQ77rhDb775Zrb2jPm/GrFq1aq5rRIAAACAAibXc1yaNWumdevWZSleFixYoBIlSsjXN/vdq1SpoujoaEVHRysiIsJtm9OnT9ctt9yiN954Qy1btnQVHg0bNtT27du1cOFCdezYUZJUunRp7dixQ5IUGxurG2+8UYULF9bJkyeVkZGhM2fO6ODBg/+3Qm76BAAAACBnmT6e3662XEdcgoKCNGXKFL322mtKSEhQRkaGbrrpJr311ltavnz5ZT1o06ZNFRUVpSVLlqh48eLy8/NTamqqAgIC9MADD2jdunWqUqWKJOnVV1/V6NGjZYyRn5+fXnvtNZUqVUr33HOPOnbsqMqVK7uyAAAAADx3zXyPS+XKlTVlypRsy8PDw13//9e//uX2vqGhoQoNDZUkjRs3zrX8q6++cpvv27ev+vbt6/r55ptv1uzZs7PlXnnllWzLcuoDAAAAgJxdEyfnAwAAALi25cfUL09RuAAAAABe7pq4qhgAAACAaxtTxQAAAAA4HlPFAAAAADgeU8UAAAAAOB6FCwAAAADHM0wVAwAAAOB0jLgAAAAAcDwKFwAAAACOx+WQAQAAADgel0MGAAAA4HhMFQMAAADgeBQuAAAAAByvIJzj4pvfHQAAAACA3DDiAgAAAHg5Ts4HAAAA4Hic4+JQdQNKWWcfTLnOOtuy3UnrbB+V0rgvr7fO10izn9UX3vSIdbb3ivLW2fI+gdbZpwYEWGe/e9O+XUkqbKpYZ/8xsIh19sn/FLXOlsxIt87+80nrqBp+VNk+LOnudPttF/60/T5ZMLGwdXZozcPW2aCI26yzt76abJ2VpK7p9q+nBkPtX9e1JvlbZzv52PfBt2Z16+ygwBjrrAKlSkPrWsfLjEy1zs6+zn79+vva77+yNX+3zrb6xX4W9mA/+20sSTV13jo7rbB9P3qft3//vrWL/Xb7fL79+8VthU5bZyWp/CP2x4aUCTuts6Mr2h8ni95v34dDU2+wzq4o5ME2DjinKT38rPM/zbbfJxFp9s83n2LFrbN+PvZ/Nq/lV8w6K0l9ZL/tBvrbH1PflH22Wt146+yqLfbtDkm13xb3PGN/XChICsI5Ll5ZuDiBJ0ULgEvzpGi51nlStAC4NE+KlmudJ0ULCqbMAlC6ULgAAAAAXo6pYgAAAAAcz/njLRQuAAAAgNdjxAUAAACA43E5ZAAAAACOx8n5AAAAABzP+WULhQsAAADg9TjHBQAAAIDjMVUMAAAAgOM5v2yhcAEAAAC8HlPFAAAAADgeU8UAAAAAOJ7zyxbJN787AAAAAAC5YcQFAAAA8HKc4wIAAADA8UwBmCxG4QIAAAB4ubwYccnIyNCoUaO0d+9e+fn5aezYsapcubLr9ytWrNC7776rQoUKqUOHDurUqdMl2+McFwAAAMDLZcp4fMvNypUrJUlz587VU089pbFjx7p+l5aWprFjx2r69OmKjo7WvHnzdPz48Uu2R+ECAAAAeDlzGbfcNG/eXKNHj5YkHT58WCVLlnT9bvfu3apcubKKFSumgIAANWjQQHFxcZdsj6liAAAAgJfLq+9xKVSokIYNG6Zvv/1W77zzjmt5YmKiQkJCXD8HBQUpMTHxkm1Zj7jExMTopptu0pdffplleZs2bTR8+HDbZiRJYWFhSklJ0bRp07RlyxaP7gsAAADgysq8jJut8ePH6+uvv9YLL7yg5ORkSVJwcLCSkpJcmaSkpCyFjDseTRWrVq2ali5d6vp5586dOnfunCdNZPHEE0+oXr16l31/AAAAAH+fuYx/ufnss880depUSVJgYKB8fHzk5+cnSapevbr279+vhIQEpaamKi4uTrfeeusl2/NoqlitWrW0b98+nTlzRkWLFtUXX3yhNm3a6Pfff9eyZcs0c+ZM+fr6qkGDBho6dKiOHDmiqKgopaSkKCEhQQMGDFDz5s1d7Q0fPlwPPvigTpw4odWrV+v8+fM6cOCAHn/8cYWHh2vnzp169dVXJUnFixfXa6+9prS0ND3zzDMyxigtLU0vv/yybrzxRj399NNKTEzU+fPn9eyzzyo0NNSTVQMAAAC8Vl5cVez+++/XiBEj1L17d6Wnp+v555/XN998o+TkZHXu3FnDhw9X7969ZYxRhw4dVKZMmUu25/E5Li1atNC3336r8PBwbdmyRY8//ri2b9+uiRMnauHChQoMDNSzzz6rH374QT4+Pnr00UcVGhqqjRs3auLEiVkKl79KTEzUhx9+qH379qlv374KDw/XCy+8oNdee001atTQggUL9MEHH+jWW29VSEiI3nzzTe3atUuJiYk6cOCATpw4oZkzZ+rkyZPat2+fp6sFAAAAeK28+B6XIkWK6O23387x92FhYQoLC7Nuz+PCpU2bNoqKilKlSpV0++23S/rzGs2nTp3SE088IenPOWrx8fFq0KCB3nvvPX366afy8fFRenp6ju3WqlVLklSuXDmlpqZK+vNqAy+//LKkPy+ZVrVqVTVu3Fj79u1T//79VahQIfXr1081a9ZU9+7dNXjwYKWnpysyMtLT1QIAAAC8Vl6MuFxpHhculSpVUnJysqKjozV48GDFx8fLx8dH5cqV0/Tp0+Xv769Fixapdu3aevvttxUREaEmTZpo4cKFWrx4cY7t+vj4ZFtWtWpVjR8/XuXLl9eGDRt0/PhxxcTEqHTp0po+fbo2bdqkt956S6NGjVJSUpKmTZumY8eOqUuXLmratKmnqwYAAAB4pUyTN1cVu5Iu63LIDz74oD7//HNVrVpV8fHxKlGihB566CFFRkYqIyNDFSpUUKtWrdSyZUuNGTNGU6dOVbly5XT69GmPHicqKkrDhg1TRkaGJGnMmDEqXry4Bg0apFmzZsnX11cDBgzQjTfeqHfffVefffaZ/P399dRTT13OagEAAABeyflliweFS2hoqOuE98jISNd0rMaNG6tx48aSpHbt2mW5T+ugnFDPAAAdBklEQVTWrdW6detsba1YsUKSNG7cuGy/K1y4sOv3devWVXR0dLbMzJkzsy3763WhAQAAANjLq+9xuZL4AkoAAADAy+XFyflXGoULAAAA4OUKwsn5Hn0BJQAAAADkB0ZcAAAAAC/HOS4AAAAAHI9zXAAAAAA4XkE4x4XCBQAAAPBy5lr9AkoAAAAA1w7OcQEAAADgeEwVAwAAAOB4nJwPAAAAwPGYKgYAAADA8Tg5HwAAAIDjcY4LAAAAAMfjHBcAAAAAjsc5LgAAAAAcj3NcAAAAADgeIy4OVcNcZ5095edjnU2NT7bOPpRSxDorScdNYeusb6C/dba6T5B1tkqGn3U2fdch6+xJv1LWWUkqm55unfV7sLt1tu4771hnS5Sz39d+D/SyzlaZ9aV1VpLCih+3Dwf/wzpazTfYOpuZftY661PY/nn8D98Q62yD4FPWWUnybfqEdfboxI+ss6XTA6yzhcK6WWd3DvrVOlvxjz+ss5JUs479c6jsrorW2SotM6yzPkEl7PuwPc06a+y74LHaJtA6+z/7t2RV/M5+/x314Ahe8sZE+7Akn9AO1tl6he37nJLowftFsP1xsmL6GetsSX/716lPqWLWWUkKNvbbudot9u9bhZpFWmev942zzhb34GNg9e72n50k6abZ9vlD5+1fJHU7322dLf6/7dbZk372n3F86/zTOluQcI4LAAAAAMfLLABTxXzzuwMAAAAAkBtGXAAAAAAv5/zxFgoXAAAAwOtxcj4AAAAAx6NwAQAAAOB4fI8LAAAAAMdjxAUAAACA4/E9LgAAAAAcj6liAAAAAByPqWIAAAAAHI8RFwAAAACOx4gLAAAAAMfj5HwAAAAAjpfJVDEAAAAATseICwAAAADHY8QFAAAAgOMx4gIAAADA8QrCiItvfncAAAAAAHLjceESExOjQYMGZVn2xhtvaNGiRR4/+D333OPxfQAAAABcWeYy/l1tTBUDAAAAvFxBmCp2xQqXjIwMjRw5UkeOHNHp06fVuHFjPfPMMxo+fLgSEhKUkJCg9957T6+//rp27dqlSpUqKTU1VZI0fPhwBQQE6NChQzp27JjGjRunOnXqaNmyZZo5c6Z8fX3VoEEDDR06VBs2bND48eNVqFAhFS1aVG+88YaOHz+uESNGqFChQvLz89O///1vlSlT5kqtGgAAAHBNu2ZPzl+/fr0iIyNdP8fHx+upp57SLbfcooiICKWkpLgKF0m666671KtXL61cuVIpKSmaP3++Dh8+rK+//trVRvny5fXKK69o/vz5mjdvngYPHqyJEydq4cKFCgwM1LPPPqsffvhBa9euVYsWLdS7d2+tWLFCZ86c0bp161SnTh0NHz5ccXFx+uOPPyhcAAAAAEvGZOZ3F3J1WYXLXXfdpQkTJrh+fuONN5SYmKhdu3Zp/fr1Cg4Odo2mSFLVqlUlSb/99pvq1asn6c9CpVy5cq5M7dq1JUlly5bVxo0bdeDAAZ06dUpPPPGEJCkpKUnx8fHq27evpkyZokceeURlypRRvXr11LFjR73//vvq06ePQkJCsp2DAwAAACBnmQVgxOWKXlUsJCREb775ph577DGdP39e5v/PlfPx8ZEkVatWTZs3b5YkHT16VEePHnXd90LmgooVK6pcuXKaPn26oqOj1aNHD9WvX19LlixR+/btFR0drZo1a2r+/Pn67rvv1KBBA82aNUstW7bUBx98cCVXCwAAALimGWM8vl1tV+wcFz8/P33//ffasGGDAgMDVaVKFR07dixLpnnz5tqwYYMiIiJUvnx5XX/99Tm2V6JECfXq1UuRkZHKyMhQhQoV1KpVK6Wmpmr48OEqUqSI/P399corr8gYo2effVYTJ06Ur6+vRowYcaVWCwAAALjmFYQRF48Ll9DQUIWGhmZZNnToUElS9+7ds+XHjRuX5edhw4ZdMtO4cWM1btxYktSuXTu1a9cuS7Z+/fpuL708b948yzUAAAAA8Ff5MYLiKS6HDAAAAHg5r7ocMgAAAICC6Zq9HDIAAACAawdTxQAAAAA43jV5cj4AAACAawsjLgAAAAAcryCcnH9Fv4ASAAAAQMGTl19A+fPPPysyMjLb8hkzZuihhx5SZGSkIiMjtWfPnku2w4gLAAAA4OXy6hyX999/X1988YUCAwOz/W7r1q0aP3686tata9UWIy4AAACAl8urEZfKlStr4sSJbn+3detWTZs2TV27dtXUqVNzbYvCBQAAAECeeOCBB1SokPtJXg899JCioqI0a9YsbdiwQStXrrxkWxQuAAAAgJfLNMbj299hjNEjjzyiEiVKKCAgQE2aNNG2bdsueR8KFwAAAMDLmcv493ckJiaqdevWSkpKkjFGMTExuZ7rwsn5AAAAgJe7WpdDXrJkiZKTk9W5c2cNGjRIPXv2VEBAgBo2bKgmTZpc8r4ULgAAAICXy8svoKxYsaLmz58vSWrTpo1r+cMPP6yHH37Yuh0KFwAAAMDL/d2pX1cDhQsAAADg5fJyxOVKoXABAAAAvByFCwAAAADHc37ZIvmYglBeAQAAAPBqfI8LAAAAAMejcAEAAADgeBQuAAAAAByPwgUAAACA41G4AAAAAHA8ChcAAAAAjkfhAgAAAMDxKFwkZWZm5vljpKam5po5f/68VU6STp48af3YmZmZOnr0qPV6njp1KsdvT01MTLR+3Iulpqbq/Pnzueb4aiEAAABczC8qKioqvzuRH+Lj4zVixAiNHz9eH3/8sWbMmKF169apbt26uv766y+73RUrVuixxx7T7NmzVbJkSdWsWVOS9Oijj6p9+/Zu+xATE6PChQurd+/e+uSTT1SpUiVVrVo1S3bv3r1KSEhw3Z555hndfvvtSkhIcNvf559/Xs2aNdPPP/+snj17asWKFZo1a5bq1KmjsmXLZskuXLhQK1asUFBQkHr27KmlS5dq5syZql69uipVqpQle8cdd6hkyZKqU6dOrtti7969eumll7R8+XKVKVNGjz32mD7++GOVKlXKtV0uOHDggAYPHqz//Oc/ev3117V69WqtX79et912m4KCgnJ9LBQsy5cv1+zZs/Xf//5XMTExSkpKUo0aNeTj43PZbZ46dUpvv/22YmNjVatWLQUGBkqSJk2apDvvvDNb3hij7777TmfOnFFgYKCioqK0YsUK1a9fX0WKFLnkY40dO1aNGjVy+7tly5apZs2aSk5O1ltvvaUPP/xQu3btUv369RUQEJAlGx8fr82bN6ts2bKaPHmypk+frh07dqhevXoqXLhwluyQIUN0++2359q3C1atWqWDBw+qbNmyGjNmjJYsWaK6desqJCQkW3bJkiWaM2eOli1bpg0bNigzM1NVqlTJse383n95te+ka3//5fe+k3jt/ZWnr73t27dryZIl+v7777V9+3b5+fmpTJkyVv3KSUpKiubOnaudO3eqZs2a8vPzkyTNnTtXdevWzZbfsWOH0tPTFRAQoPfee0+xsbH65z//KX9//1wf6/3331eDBg3c/i4uLk7ly5dXZmamPvnkE82fP19Hjx7VzTffLF/frH9n/+OPP7Rz506VKVNGixcv1oIFC3To0CHVrl07W/att97SLbfcYtU/Sfrtt9+UkJCgEiVK6MMPP9Tq1atVt27dbM8LSdq4caOWLl2qH374Qb/++quCg4NVokQJq8fB5fExXvrn7Z49e2rIkCGqX7++a9nmzZs1btw4zZ0797Lb7dSpk6ZNmyZjjJ5++mm1b99e7du3V2RkpKKjo7NkIyMj9a9//UuHDh3SmDFj9PXXX6tw4cLq06dPtj7cd999uu6661S6dGkZY7Rjxw7VqlVLPj4++uijj9yu30cffaRevXopKipKN954o44ePaohQ4bo448/zpLt0KGDoqOj1a9fP0VFRalq1ao6evSo+vfvr4ULF2bJdu7cWXXq1NGuXbs0cOBAtwelC3r06KH+/fvr7NmzevHFF/XFF18oJCREjz76qObNm5cl27t3b40aNUpVq1bV5s2btWrVKjVv3lzvvPOOpk2b5rb95cuX68cff9TZs2dVtGhRNWjQQC1btvxbB2Dpz4PwtGnTVLhwYfXq1ctVGE6aNEkDBw7Mkr1wAC5ZsqSqVq2qsWPHytfXV4MHD1bJkiUv+Thjx47ViBEj3P5u2bJlatWqlZKTkzVx4kTt2LFDderUUb9+/bIVcvHx8dqzZ49CQ0M1bdo0bd26VTVq1FDfvn2zHSiHDBmi559/XjfccIP19li1apUKFSqkO++8U+PGjdOZM2c0ePBglS9fPlt2yZIl2rBhg86dO6frr79ed999txo3bpwl8/LLLyszM1ONGzdWUFCQkpKS9P333ys9PV1jxozJkr34efJXnTt3zvJznz591KJFC6Wnp+uTTz7RtGnTVKFCBddr4WKvvPKKzp07p+PHjyshIUGdO3dWUFCQvvjiC02ZMiVLtkuXLq7/G2O0e/du1ahRQ5KyvVYvPN7IkSNVqVIltWjRQj/++KM2bdqkN998M0u2W7duevrpp7V06VKVLVtWYWFhio2N1dq1a7M978PCwlSsWDH16NFD4eHhl3yejxw5UikpKUpKStKpU6fUtm1blSlTRnPmzNGHH36YJfvqq68qJCREt956q1auXKkbbrhBCQkJCg4O1jPPPJOtbSfsv7zad9K1vf+csO8kXnsXePramzRpkrZs2aJ7773Xtf/Wrl2rm2++OVt+7dq1Ofbx3nvvzfLz008/rSpVqig9PV0//fSTPvzwQxUrVszt/ps8ebLWr1+vxMRElSpVSrVr11ZQUJB27NiRbRtL0uDBg13byxijmJgY3XXXXZKULX/h8caPH6+kpCQ1a9ZM69ev1/nz5/XSSy9lyfbu3VtdunTR5s2blZCQoKZNmyo2NlYnTpzI1u69996rsmXLaujQoa7Hzsnbb7+tmJgYpaSkqHz58qpcubJKlSql2NhYvfvuu1myU6ZM0e7du3Xbbbdp9erVqlatmg4cOKCGDRuqe/ful3wcXL5C+d2B/JKampqlaJGkW265Jcd8ZGSk0tLSsiwzxsjHxyfLm6e/v7+KFy8u6c8X+COPPKJy5cq5faNLT093ffCPiYlxfZgsVCj7blm4cKFeeuklde3aVffcc4/bQsgdPz8/3XjjjZKkMmXKuJ0u5u/vryJFiigoKMg1wlKmTBm3fS5cuLBefPFF/fLLL5o2bZpeeeUVNWzYUJUqVVLPnj2zrd/dd98tY4zeeust11+F3K1fYmKia5Tplltu0VtvvaVnnnlGZ86ccbteOR2A165d+7cOwJL03HPPuQ7CPXr0cB2Ef/rpp2zZ0aNHuz0Ajxo1yuoA/PPPP0vKfgCeM2eOWrVqpTFjxqhSpUoaNWqUfvzxR7344ovZ3pSHDRump59+WmPGjFHZsmX1zDPPKDY2VkOGDMl2AN60aZP69OljdQCWsh6EJ06c6DoIv/DCCzkehMPCwrRy5UoFBwfr+++/18aNG7McVH/77bdsxXOzZs2ybJ8L9uzZo5UrV6pt27aX7Kf052v6wv6sXbu2+vfvr+jo6BynHu7YsUOffPKJUlNT1aZNG0VEREhy/3zp3r27Fi5cqJEjRyowMFBDhgxxe5D+q/3797uei9WrV9c333yTLePn56fQ0FBNmTJFo0ePdvV92bJl2bIVKlTQu+++q3feeUdt27ZV69at1bhxY1WqVEnBwcFZsvv27dPs2bNljNFDDz3kOojOmjXL7Xa4sD8aN26svn37asqUKeratavb9XLC/svrfSddm/vPCfvuQp957Xn+2lu3bp0++eSTLMsiIyPVqVOnbIXL/Pnz9b///U+hoaHZ2rm4cLkwYiZJ3377rfr166eZM2e63X/ff/+95s6dq6SkJLVp00ZTp0519cOdmjVras2aNfrXv/4lX19f7dmzx+1x96+2bNmi2bNnS5KaNGnitu3U1FS1aNFCH330keuzUPPmzd0+l6tWrarXXntNr732miZPnqxOnTqpUaNGKlasWLbsjz/+qLlz5yo1NVWtW7fWxIkTJUnfffddtuyaNWtc/bywDyZNmqQuXbpQuOQhry1cbrrpJo0YMUKNGjVSSEiIkpKStHr1at10001u80OHDtWoUaP07rvvuoZR3alQoYLGjh2rp59+WsHBwZo0aZJ69+7t9gN41apVNXLkSI0ePVrjxo2TJE2bNs3tX+pvuOEG/ec//9H48eP1yy+/5Lp+Z8+eVXh4uJKTk7VgwQK1bdtW48aNc/tX8rCwMPXr10//+Mc/9OSTT6pRo0Zas2aN279MXHgj++c//6mJEyfq7Nmzio2N1d69e91ui0GDBikjI0NBQUGaMGGCgoODVapUqWzZihUr6sUXX1Tjxo21atUq1a5dW998841rysHF8uoALDnrA1R+HoClvDkIZ2ZmKi4uTrfffrtrWWxsrNth/BEjRmjPnj1q3Lix6tWrl+N2kqSMjAzt3LlTN910k2677TY9+eST6tevn5KTk3O8z4YNG9SgQQPNmDFD0p/b2915Zm3atFGNGjX073//WyNGjFDhwoVVoUIFt23u27dPM2fOlJ+fn7Zt26abb75Zv/zyi9t2Q0JC9NVXX6lJkyb67LPP1LRpU61evdrt897Hx0dFixbVqFGjdOrUKX311VeaPHmy9u3bpyVLlmTJpqen6/vvv1dCQoJOnjyp3bt3Kzg4WOnp6dnaTUlJ0c8//6z69esrLi5O6enpOn78uM6dO+d2/dztv59++umq77+82HeS+/23ZcsW6/23atWqK7L/1qxZo9OnT7v2X1BQ0N/ef97y2itUqJCj9t2Veu2lp6fr4MGDqlixomvZwYMHs02NkqQJEyYoMjJSjz/+uKpVq+a2vQvS0tJ06tQplShRQi1atNChQ4c0ZMiQbH+slf58Dh0+fFjly5fXhAkTJElnzpzJ8fzcfv366eabb9bs2bP1yiuvqGjRojnO1Pj999/17bffKiQkxLWeR48edXtubKFChbRlyxbddtttio2N1R133KG4uDi328LHx0eVKlXSe++9p507d+qLL77Q9OnTdfLkSa1evTrbttizZ49Onz6t06dP6/jx4woMDFRKSkq2dpOTk3Xo0CFVqFBBBw4cUEJCgs6fP291Li/+BuOlMjMzzTfffGPGjh1rRo4cacaOHWu+/vprk5mZmeN93n//ffPNN99cst20tDSzcOFCk5yc7Fp2/Phx8+qrr2bLZmRkmG+//TbLss8++yzLfd1ZuHCh6d69+yUzxhiTkpJifv75Z7Nz506TkpJiPvnkE5Oamuo2GxMTY958800zatQo88Ybb5iVK1e6zS1atCjXx70gLS3NLF++3Ozatcv8/vvvZuzYsWby5MkmKSnJbV8//vhjExUVZebNm2fS09PNpk2bzKlTp9y23bVrVxMbG5tl2U8//WR69OjhNt+nTx/z888/W/W7W7duZseOHa6f//vf/5pu3bqZhx9+2G0/4uLijDHGHDp0yBhjzL59+0yXLl3ctr1t2zbTp08fs3v3bhMZGZljHxo1amRmzJhhHnnkEbN161ZjjDFbtmwxnTt3zpbt16+fWbZsmZkxY4ZZvHixSUhIMJ9//rl59NFHs2X/+pgnT540s2fPNgMHDjStW7d2249OnTqZ77//3nz++efmzjvvNLt27TJHjhxxu34dO3Y0mzdvNsYYExsba3r37m2OHTtm2rVrlyW3f/9+07dvX9O4cWPTqFEj06RJE9O3b98s2/yvTp06ZQ4ePJhlWUpKSrbc9u3bTY8ePcyJEydcyz777DNz5513um13165dZsCAAVmW9e3b12zcuNFt3hhjTp8+bfr37+/aXu76sXXrVrNgwQITFRVlFi1aZM6cOWMiIiLctnvy5EkzfPhwc//995s6deqYe+65xzz11FPm8OHD2bKDBg1y26fz589nW7Z9+3YzcOBA8+6775qlS5eahg0bmlatWrmeqxf3t0OHDuaee+4xXbp0MXv27DEzZszI8T3g4v135513mscee8zs27fPbf7kyZOu/Xfu3Dm328yYP18bPXr0MMePH3dlLzzvLvbbb7+ZAQMGuN6vz507Zx577DGzadMmt20b83/7rlmzZjm+D17YHvPnzzcvvfSSWbRokTl69Kjp1KmT2bZtm9t1++v+a9iwofX+u9S2cLf/HnzwQbNhwwa3/Q0PD3ftvx07dpipU6eaFStWZMv+dd/de++9pk6dOqZv375m7969bvvx133319fVxS7edydOnLjka++3334z/fv3d+2/48ePm759+1rtvxYtWuSYuXjfnThxwkRERFjtu3r16pmnnnrK9T7+Vxfvu0tti+3bt5sBAwa49l2dOnVMq1atrPZdbGysmTFjhtt9Z4wxmzdvNu3atTMPPvigCQ8PN82aNTOtW7fO8dh24MABs2PHDpORkWGOHDliMjIy3ObWrVtnWrZsaY4fP+7KTpw40dSpUydbNjY21oSHh5uMjAxXtnPnzua7777LcZsY8+dzr1evXqZFixY5fs765ptvzIQJE0yfPn3Mhx9+aI4cOWIaNWpkfvjhB7ft9ezZ07Ru3drUqlXL1KpVy3To0MHtceSvnwtstsXDDz9snn/+efPBBx+YWrVqmRYtWmT7rGaMMWvXrjX33XefadeunWnWrJmJi4szEyZMMPPnz7/ktsDf47WFCwq2CwfgRo0amXvvvdc0btw41wNwfHy8VdsXH4SNyfkD8MUHYGNy//B76tSpLB9+3bn4AHzhw++FIubidXP34dfmAJybbdu2mQEDBphJkybl+gH4f//7X5aD8IUPwBcfhL/77jtz3333mWbNmpmlS5e6lrsr5C5kmzdvbv773/9eVrZbt25u1+1y216yZInrg0JuWdv1y8ttcSX7YMyfH4b69etnXnjhBdeBOywszO2Hrb9mf/jhB9O0aVPTrFkzj7LuPhC5y4aFheWaXbNmjalXr16OfbhU27n1OS+3xYV2c1u/tWvXXnK77dmzx+zZs8fs3r3b7N6923Ts2NG1LKfshVtERMQls7t3786W/e2339xuY0/bvnD77bffTO3atc3evXtzze7evdu63cvZFrZ9yK3dC/sit/4aY8yIESOMMX8WD82bNzft27c3LVu2dFvwXchu3rzZNG/e3HTs2NG0atXKo+zFfxzMKfvAAw/kWHRenL///vs96kdObV/Ibtq0yYSFhZkOHTpYb4uIiAjTqlUr1x/acutvWFhYju1mZma69seltjGuHAoXwFJOf6G53La2bNlyxdorSCIiIkxCQoI5deqUiYyMdI3iuRsti4iIMKdPn7bO2rab1/1wQtaTdfNku/Xo0cPExMSYxYsXmwYNGpgTJ06Ys2fPuh0NvJBdtGhRgchebttO2BY2fWjSpIl54IEHTGRkpOnRo4e54447TGRkpNsi9eLs7bffbnr06PG3sznl86oftu3m1ba4Uu0a839/THjkkUdcf6Q7cuSI2xkYTsg6pR9OyOLK8dpzXFCwubtYwgUXn+hue2GFK9X2leiHE/qQV/3w9/d3nRSZ2wUsPLnYhSft5nU/nJD1ZN082W5/vajI+vXrL3lREU8uQOKE7N9p2wnbIrc+uLvIi7urfuWUzemCMJ5ePOZq9sOTdp3Qhyt10R0nZZ3SDydk8fdRuKBAsr1YgqfZvGy7oGXzqm1PLmCRV1mn9KOgZSXPLipS0LJO6UdeZT25yEteZZ3Sj4KWlTy76I4Tsk7phxOyuILyecQHuGw2F0u4nGxetl3QsnnRticXsMirrFP6UdCyxnh2UZGClnVKP/Jy/S6wvchLXmad0o+ClPXkojtOyDqlH07I4srw2i+gBAAAAFBwZL/gNQAAAAA4DIULAAAAAMejcAEAAADgeBQuAAAAAByPwgUAAACA4/0/Tf0V37jC4XgAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0MAAAE7CAYAAAAfLlpqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xl8U1X+//F3ulCUWnAplXUGcVpEhcIIlYFhH0SsdEGUGQUUhEE2RVGgOLIp6w9RQFQYlUVRB2URKOIXq6LI5siq7CKbUpYCbVm6nt8fPJppSKEngZaWvJ488ng0N++cnNzk3uTDuffEYYwxAgAAAAAf43e1OwAAAAAAVwPFEAAAAACfRDEEAAAAwCdRDAEAAADwSRRDAAAAAHwSxRAAAAAAn0QxBAAAAMAnUQwBAAAA8EkUQwAAAAB8EsUQAAAAAJ9EMQQAAADAJ1EMAQAAAPBJAVe7A6XN2X8/a53N/uFn6+yiz26xznYYW806m/XND9bZg1+Xsc7+sV9V66wkKSPTOjpnSpZ19u/3H7HO+lcLtc5OfMc6qmc7ptuHJZkz9uti4tKbrLODRtq/L7I3/GSd/ew/5a2zcQPs30Mn5v9qnZWkJQcqW2e7zG1tnc364EPr7Mjl9q/HiG4e/F9Tbq59VtJj79q/597+U6p19pOd9u+hTvUPWGevi29knc34fK11VpIOri1nnb2tbyXrbO7vx6yzjhuut8/efKN1NnvjTuusJO1ItF8XdzzmsO/Hryessy+urWidnfBiFevsuWU/Wmc/XufZ59OjHU5ZZ/1C7V+/edPst+uHn7Hfd2bvPGidvS/R/vNUkpImtbDO5v68zTqb/s1v1tmQns3t+7DV/nvWincCrbOS1Ob/1bDOZv+w2To761P7z1RJ6nvgfY/yV0PWsV+8ul/gLbdd4Z54h2IIAAAAgHdyc652Dy4LxRAAAAAA7xjPjm4oaSiGAAAAAHjHw0O9SxqKIQAAAABeMYwMAQAAAPBJjAwBAAAA8EmMDAEAAADwScwmBwAAAMAnlfKRIQ9+FRAAAAAArh2MDAEAAADwThFPoHDw4EH16dPHeT0tLU3p6elat26dS27KlCmaO3euKlasKEmqX7++hg0bVmj7FEMAAAAAvFLUU2tXrVpVixYtcl5/5ZVXlJNT8HlKsbGxGjRokEftUwwBAAAA8I6XI0OpqalKTU11Wx4SEqKQkJAC75OZmanFixfrnXfe8eoxC0IxBAAAAMA7Xo4MzZo1S1OnTnVb3rdvX/Xr16/A+yQlJSksLEx33nlngbcvXbpU3333nUJDQ9WvXz/Vq1ev0H5QDAEAAADwjpdTa3ft2lVxcXFuyy82KiRJn376qTp06FDgbZ06dVKvXr0UGBioVatWqXfv3kpMTNSNN954yX5QDAEAAADwjpcjQ5c6HK4gycnJWr9+vcaPH1/g7aGhoc6/GzdurEqVKmnXrl1q2LDhJdtlam0AAAAA3snN9e7ioQULFqhZs2YXHelJTk52/r1t2zYdOnRINWrUKLRdRoYAAAAAeKeYfnR1wYIFGjp0qMuyHj16qH///rr77rv16quv6qeffpKfn58CAwM1fvx4l9Gii6EYAgAAAOCdIv6doTzLly93WzZjxgzn3+PGjfOq3WIthlq2bKkyZcooKChIkhQVFaXU1FTdddddeuyxx4qzKwAAAAAukzHeTaBQUhT7yNDkyZMVHh7uvD548ODi7oKb7OxsBQQwSAYAAAB4pJgOkysqJWoChdWrV+uRRx5RbGysHnzwQS1dulSS9MMPPyg2NtYlGx8fr3Xr1kmSpk+frujoaEVHR2vIkCE6ffq0pPOF1vvvv++8T/7rgwcP1qhRo9S9e3c9/PDDxfH0AAAAgGtLMU2gUFSKfTikf//+zsPkBg4c6HJb7dq1NXfuXPn7++vYsWOKj49XkyZNdM899+jMmTPavn27atWqpZ07dyo1NVUNGjTQN998o88++0wfffSRypUrp0GDBmnatGl6/vnnC+3Lhg0b9P777+v6668vkucKAAAAXNNK+cjQVT9MLm/0R5JSUlKUkJCgffv2yd/fX6dOndLevXsVGRmpmJgYLViwQEOGDNH8+fMVFxcnh8Oh1atXq127dgoODpYkPfzwwxo9erRVX9q2bUshBAAAAHjLyx9dLSlK1GFyw4cPV8OGDbV48WItWrRIt956qzIyMiRJcXFxWrp0qTIyMrRkyRLnYXPGGDkcjgLb8/f3V26+Ybi8tvJQCAEAAACXweR6dykhSlQxlJaWpipVqsjhcGjVqlXat2+f87bKlSurZs2aevnll3X77berSpUqkqS//OUvSkxMVHp6uowx+uSTT/SXv/xFklS9enVt2bJFknTkyBGtXbu2+J8UAAAAcK3inKEr57nnntOIESM0Y8YMRUREKCIiwuX2+Ph4vfDCCxo/frxzWbNmzbRjxw516tRJknTXXXfpqaeeknT+kLn+/furffv2+uMf/6g6deoU35MBAAAAUKIVazGUlJTktmzs2LHOvxs3bqwvvvjiovePiYlRTEyM2/KePXuqZ8+ebstvvPFGzZkzp8C28j8uAAAAAC+UoEPevFGiRoYAAAAAlCIl6JA3b1AMAQAAAPAOxRAAAAAAX2RM6Z5am2IIAAAAgHcYGQIAAADgk5hAAQAAAIBPYmQIAAAAgE9iZAgAAACAT2JkCAAAAIBPYmQIAAAAgE9iZAgAAACAT6IYAgAAAOCTOEwOAAAAgE9iZAgAAACAT2JkCAAAAIBPKuUjQ35XuwMAAAAAcDUwMuSpcjdYR/0q32ydDfagqs7df8C+DxVDrLPZOZnWWZN+2jorScqwbzvIlLHOBtx1m3XWnEqzzp505FhnHSHB1llJOrfloHX2rKOCfcO33God9Qv73TpbU/brzXH7XdbZm14IV9rUZdb5YA/+4yn36/+zzmb8cs6+YQ/43fZH66w5csTD1tOtk4E3OayztTLtt9PME/btXmedlHLPePY/jLm59v1w1G1gnTW/fmbfh9Rj1tnAymHWWeUa+6yksEqp1lm/MPt9Z+724/Z9MB58rbihvHXUZNuvi4frH9B/19jvD89usV9vNwy63zorfW+dzNl32Dqbst5+XeR4evhSUFnrqCf7uOzlyfZ98OD7kONm+8/Iu27Zb98HSQr9i3XUv6r98yuXWzSfOVcVh8kBgOc8KYQAwJYnhRCAK6CUHyZHMQQAAADAOxRDAAAAAHyS8eyQ3pKGYggAAACAdxgZAgAAAOCTKIYAAAAA+CRmkwMAAADgkxgZAgAAAOCTmEABAAAAgE9iZAgAAACAT6IYAgAAAOCTmEABAAAAgC8yuZwzBAAAAMAXcZgcAAAAAJ/EYXIAAAAAfFIpP0zO72p3AAAAAACuBkaGAAAAAHiHc4YAAAAA+CSKIQAAAAA+yZTuc4ZKTDG0bNkyvf322zLGKCMjQ3feeacmTpxYZI938OBBrVq1So888kiRPQYAAABwTWNk6PIdOXJEI0aM0IIFC1SpUiUZY7R9+/YifcxDhw7p448/phgCAAAAvMVscpfv2LFjCggIUIUKFSRJDodDd9xxhz766CONGDFCkrR582ZFRERo8+bNkqThw4fr448/liRt2rRJnTt3Vnx8vOLj4/X111872/7mm2/UqVMnxcfH65FHHtHGjRslSSNHjtSePXsUExOj/v37F+OzBQAAAK4RJte7SwlRIkaGatWqpTp16qh58+aKiopS/fr1FRMTo0aNGmnmzJmSpNWrV6tevXpas2aN6tSpo9WrV6tbt25KTU3VsGHDNH36dFWsWFFHjhzRQw89pCVLlujkyZOaNm2a3nnnHQUHB2vXrl3q0aOHvv76a7300ksaN26c5s+ff3WfPAAAAFBalfKRoRJRDPn5+WnatGnauXOn1q9frxUrVuidd97R4sWLlZGRocOHD2v16tV69tln9eabb+rBBx9UVlaWqlevrm+++UYHDx5Ujx49nO05HA7t27dPmzdv1v79+/Xoo486b8vOztaxY8euxtMEAAAArimGc4aunPDwcIWHh+vRRx9Vu3bttG7dOt177736+uuvdfz4cTVs2FAjR47U119/raioKEmSMUYRERH64IMP3NrbvHmz/vrXv2r8+PFut+3Zs6fInw8AAABwTSvlI0Ml4pyh5ORkbdiwwXn98OHDSklJUdWqVXXvvfdq+vTpqlevniSpfv36mjFjhho1aiRJqlevnvbt26c1a9Y4779582YZY9S4cWN9++232rVrl8ttkhQcHKz09PTieHoAAADAtYlzhi5fdna2pkyZokOHDqls2bLKzc3VM888o9q1a+vmm2/WCy+84Cx+7r33Xn388ce69957JUnly5fXtGnTNGHCBI0ePVpZWVmqVq2a3nrrLf3xj3/UhAkTNHToUJ07d05ZWVmqX7++6tSpo4iICNWoUUPR0dG67bbbNHny5Ku5CgAAAIDSp5SPDJWIYqhKlSp69913C7wtLCxMO3bscF5v166d2rVr55KpU6eO5syZU+D9mzRpoiZNmrgtDwgI0Ntvv30ZvQYAAAB8XDGcM5SRkaHRo0dr9erVCgoKUmRkpEaNGuWSycnJ0csvv6xvv/1WDodDPXv2VMeOHQttu0QUQwAAAABKoWIYGZowYYKCgoK0fPlyORyOAidDW7x4sfbv368vvvhCJ0+eVGxsrBo1aqSqVatesm2KIQAAAADe8fL8n9TUVKWmprotDwkJUUhIiPP66dOntXDhQn3zzTdyOBySpFtuucXtfomJierYsaP8/Px00003qXXr1vr888/15JNPXrIfFEMAAAAAvOPlyNCsWbM0depUt+V9+/ZVv379nNcPHDigChUqaOrUqVq7dq3KlSunp59+Wvfcc4/L/X7//XdVrlzZeb1SpUo6fPhwof2gGAIAAADgFW9/Z6hr166Ki4tzW55/VEg6P9HagQMHVLt2bQ0aNEibNm1Sr1699H//938KDg726rHzoxgCAAAAUKwuPBzuYipXrqyAgABFR0dLkurWrasbb7xRe/fu1d133+3MVapUSb/99pvq1KkjyX2k6GJKxO8MAQAAACiFco13F0s33XSToqKitGrVKknS3r17dfz4cf3hD39wybVt21bz5s1Tbm6uUlJStGLFCt13332Fts/IEAAAAADvFMNsciNGjFBCQoLGjRungIAAjR8/XiEhIerRo4f69++vu+++WzExMdq0aZPatGkjSerTp4+qVatWaNsUQwAAAAC84+Vscp6oVq1agb8pOmPGDOff/v7+GjFihMdtUwwBAAAA8E4xjAwVJYohAAAAAF4xFEMAAAAAfBLFEAAAAACf5OXvDJUUFEMAAAAAvMPIEAAAAACfRDEEAAAAwBcZQzEEAAAAwBcxMgQAAADAJ5XyYshhSvvYVjFbXyXOOrvRUc46+7HjqHV2RNYN1tmfA8paZ78LOGudHRxon5WkjEz7urtPdrp1trNfZets+Rz7t/rgjC3W2bFBd1tnJSnD4bDOjsvaaZ1deNPN1tkfUu2z0xy/WWeHZVe0zn52nWe7njUZ9v1Y8id/6+z8vVWts5Mzdlhnpzhus84e8/fs/6W6nfjOOvtixSbW2YVZB6yzsYHVrLMx/qess19lVbDOStJXfqnW2Qk3ZFhn/+9UqHXW34O3clSA/br4KTPEvmFJH3nQ9mNZ5a2zRwPs91ljT2+yzi6/2f49NNOD/n6Vab+vkKTH/e370fK6FOtsl/TT1tmXcypZZ1dcZ/96vPrbSuusJO2uXds6u/Gw/Tay1v6riHqHJltnv/rNfr194HfcvhOSZoRlWmfXHbrVOvu632GP+vHtoS89yl8Np55o7dX9yr+34gr3xDuMDAEAAADwTikfGaIYAgAAAOCd0v0zQxRDAAAAALxjGBkCAAAA4JNKeTHkd7U7AAAAAABXAyNDAAAAALzDOUMAAAAAfBHnDAEAAADwTYwMAQAAAPBFjAwBAAAA8E2MDAEAAADwRYZiCAAAAIBPohgCAAAA4IsYGQIAAADgmyiGAAAAAPgiRoYAAAAA+CSKIQAAAAA+iWIIAAAAgG8yjqvdg8vid7U7cKGWLVuqbdu2iomJUUxMjEaPHu3R/ZOTk9W5c2fn9SlTpigzM/NKdxMAAADweSbXu0tJUSJHhiZPnqzw8PACb8vOzlZAwMW7HRYWpjlz5jivT506Vd26dVOZMmWueD8BAAAAX2ZyGRkqcoMHD9aoUaPUvXt3Pfzwwzp48KCioqKct+e/nv/vESNGSJI6deqkmJgYJScnq0mTJsrIyHDet1evXlq8eHExPhsAAADg2sDIUBHo37+/goKCJEkDBw6UJG3YsEHvv/++rr/+eh08eNCqnWHDhmnu3Ln66KOPVK5cOUlSgwYNlJiYqLi4OB06dEhbt27V5MmTi+aJAAAAACixSmQxdOFhckuXLlXbtm11/fXXX3bbnTt31pgxYxQXF6cPP/xQHTp04BA6AAAAwAumlE+gUCKLoYLkL4QCAgJkjHFez3/YW2Hq16+vnJwc/fe//9XChQs1b968K9pPAAAAwFeUpEPevFEqzhm60C233KKsrCzt27dPkrRkyZKLZsuVK6f09HSXZZ07d9azzz6ryMhIVapUqUj7CgAAAFyrTK7Dq0tJUSqLoYCAAA0dOlRPPPGEOnfuLH9//4tmu3Xrpi5duigmJkapqamSpAceeECpqan6xz/+UVxdBgAAAK45xnh3KSlK3GFySUlJbsvGjh3rtuyhhx7SQw895Lzet29fSVLVqlW1du1al+V5t+XZvHmzqlSpokaNGl2pbgMAAAA+pySN8nijxBVDRS0hIUHff/+9xo0bJ4ejdL94AAAAwNVEMVTKjB49+mp3AQAAALgmlKRD3rzhc8UQAAAAgCuDkSEAAAAAPonfGQIAAADgk0r77wxRDAEAAADwSi4jQwAAAAB8EYfJAQAAAPBJTKAAAAAAwCcxtTYAAAAAn8TIEAAAAACfVNonUPC72h0AAAAAgKuBkSEAAAAAXmE2OQAAAAA+iQkUAAAAAPik0n7OEMUQAAAAAK+U9sPkmEABAAAAgFeM8e7ijalTpyoiIkI7d+50u23w4MFq2rSpYmJiFBMTozfffNOqTUaGPNTbHLfOllWqdTber5J19omc7dbZcgqyztYLsO9DzMkj1llJOpeTYZ3tfUNd6+w3SrfO/pSVbJ1dFPxH62yf7N+ts5KUY3Kts+8FVLXOxqQcsM7eEHDaOvu0qW6dHRNov44b6hbrrCT9v9xbrbN/3vKzdbbm9f7W2Rl+f7DOjitj/95Mzk6zzkrSsSFNrLMD382yzg7JtX+/Tcmx3wd8knHGOhsamG2dlaS7HBWss91P2vcjJXuPdfZcjv06Ds4pa539Q6B19Hzer5x1drzDfn9xu99N1tmkWytbZ/9x0n4/VKfM9dbZl3PsP8skaaK//ef6orP27b5g7LenQY5frbPVc2+0zqZOfdg6K0n3jdhsnb0uMMU6e7Oxf9//bZ/9d6dg/0zrbIcA+/23JMUc3Gudvd7f/nvA8zn2n2WlRXEdJvfTTz9p48aNqlz54vuZnj176rHHHvOoXUaGAAAAAHjFGIdXF09kZmZq5MiRGjZsmByOK1t8MTIEAAAAwCvejgylpqYqNdV9JDAkJEQhISEuy15//XW1b99e1apVu2Sb7733nj7++GNVq1ZNzz33nGrWrFloPyiGAAAAAHjF25m1Z82apalTp7ot79u3r/r16+e8vmHDBm3ZskUDBw68ZHsDBgxQaGio/Pz8tHDhQj355JNasWKF/P0vfTg8xRAAAAAAr3g7MtS1a1fFxcW5Lb9wVGj9+vX65Zdf1KpVK0nS4cOH1b17d40ZM0ZNmvzvHNqwsDDn37GxsRozZowOHz6sKlWqXLIfFEMAAAAAvOLt1NoFHQ5XkJ49e6pnz57O6y1bttRbb72l8PBwl1xycrKzIPr222/l5+fnUiBdDMUQAAAAAK/Yz5F75cXExGj69OkKCwvToEGDdPz4cTkcDgUHB+vNN99UQEDhpQ7FEAAAAACvGBXvj64mJSU5/160aJHz75kzZ3rVHsUQAAAAAK/kejuDQglBMQQAAADAK7nFPDJ0pVEMAQAAAPBKcR8md6X5Xe0OAAAAAMDVwMgQAAAAAK9czdnkrgSKIQAAAABeKe2HyVEMAQAAAPAKI0MAAAAAfBLFEAAAAACfxGFyAAAAAHxSbumuhSiGAAAAAHiHH10FAAAA4JPM1e7AZbIqhjIzM/Xqq69qxYoVCggIUNmyZdW3b1+1bt1akjRkyBBt3rxZf/rTn/Taa6+5Xb9Q/tubNm2qr7/+WpMnT76yzwwAAABAkfKJCRSGDx+uM2fOaOnSpQoKCtLOnTv15JNPqnz58qpRo4aWL1+uH374QX5+fjp27JjL9QtdePv8+fOv+JPyRk5Ojvz9/a92NwAAAIBSI9dRug+Tc69WLnDo0CEtW7ZMw4cPV1BQkCQpPDxcvXr10tSpU9WlSxedO3dOcXFxeuONN1yuz5w506Wt9PT0S95+9OhRde7cWfHx8XrggQc0fvx4SdLZs2cVFRWllJQUZ3bs2LGaOnWqJGnlypWKjY3Vgw8+qK5du2rfvn2SpPnz56t///7O++S/Pn/+fHXv3l3PP/+84uPjtXPnTg9XHQAAAODbjJeXkqLQkaGdO3eqevXqqlChgsvyyMhIvf766/r000/VoUMHLVq0SJIUExPjcj2/4OBgTZ8+3eX2/CNDISEheuutt1SuXDllZWWpe/fuWrlypZo2bapWrVppyZIl6tKli7Kzs7VkyRJ99NFHOn78uF544QW9//77uv322zVv3jwNHDhQ8+bNK/TJ//jjj1q0aJGqV69eaBYAAACAq9J+mFyhI0PGFF/tlpOTo/Hjx6t9+/aKj4/Xrl27tH37dklSfHy8FixYIOn8SFDNmjVVtWpVbdq0SbVq1dLtt98uSerQoYO2bdum9PT0Qh+vfv36FEIAAACAl3Id3l1KikJHhsLDw7V//36dPHnSZXRo48aNioiIKPQB+vTpo4MHD0qSPvjgg0tm33vvPaWmpmrevHkKCgrSv/71L2VkZEiS7rnnHp0+fVo7duzQggULFBcXJ+l8sea4yLGK/v7+ys39X72a11aecuXKFdp/AAAAAAUr7VNrFzoyVLVqVbVt21bDhw93FhM7d+7UW2+9pb59+xb6AG+88YYWLVqkRYsWKTg4+JLZtLQ0hYaGKigoSMnJyfryyy9dbo+JidF7772n9evX67777pMk1atXT9u2bdOePXskSQsWLFDt2rUVHBys6tWra8eOHcrMzFRmZqaWL19eaH8BAAAA2LnmzxmSzs8mN3HiRLVr106BgYEKCgrS0KFD1bBhQ+eoz5XQuXNnPf3004qNjdWtt96qRo0audweFxenVq1aKT4+Xtddd50k6aabbtL48eM1cOBAZWdn66abbtKECRMknS+UGjVqpOjoaFWtWlU1a9bU0aNHr1h/AQAAAF9Wkg5584ZVMRQUFKSEhAQlJCS43Va1alWtXbv2otcLy8fHxys+Pl6SVKVKFX3yyScXvW/lypW1bds2t+VNmzZV06ZNC7zPyJEjC1ye/3EBAAAA+B6rYggAAAAALlTaZ5OjGAIAAADglZJ0/o83KIYAAAAAeMUnzhkCAAAAgAtxmBwAAAAAn0QxBAAAAMAnGQ6TAwAAAOCLGBkCAAAA4JMohgAAAAD4JKbWBgAAAOCTmFobAAAAgE/iMDkAAAAAPoliCAAAAIBP4pwhAAAAAD6Jc4YAAAAA+CQOkwMAAADgkzhMzsfcVSbUOtsuo6x1tm3McevsscRw6+ztWX7W2fgWh62z3ZMqW2clqbLjOuts/z5lrLNfTrRvN8j8wTob3vd66+w/XwuxzkrSLTnZ1tm7/2nfbqPZ1a2zf8m2X2/xT9u/HvOmBFlnt+em6d8Radb5ch3rW2frvXzGOvv37Buts38eaL9N15oaaJ192GHfB0ny+1NN6+yA69ZaZ6v96y7rbNjQTOvsB2Xtn19vP/vXTpJu/dPv1tn7t9h/ZD/rb7+O/6Rz1tnpQfZ96H7Ofv8tSfU62a+7Rf+x31/UDzhhna3c1f6zIWPSDuvsqKr2n5GSFNLGvh+H3r7ZOpsUYL+O7+9mv42s+8D+9eiYZf9+c5SvYJ2VJH+H/fFOtfzLW2eflP166xto/5k6UfbZ2+46YJ2VpK8327f9XKb9umj8jP1nQ2mRW8rLIc/2tABwhXhSCAGALU8KIQBgZAgAAACAVzhnCAAAAIBPKt0HyVEMAQAAAPASI0MAAAAAfBK/MwQAAADAJ5X22eQohgAAAAB4pXSXQhRDAAAAALzEOUMAAAAAfBKHyQEAAADwSaW7FKIYAgAAAOAlDpMDAAAA4JM4TA4AAACATyrdpRDFEAAAAAAvcZgcAAAAAJ9kSvnYEMUQAAAAAK8wMgQAAADAJxXHBAq9e/fWwYMH5efnp+uvv17/+te/dMcdd7hkcnJy9PLLL+vbb7+Vw+FQz5491bFjx0LbphgCAAAAUGKNGzdON9xwgyRpxYoVSkhI0IIFC1wyixcv1v79+/XFF1/o5MmTio2NVaNGjVS1atVLtk0xBAAAAMAr3o4LpaamKjU11W15SEiIQkJCXJblFUKSlJ6eLofD4Xa/xMREdezYUX5+frrpppvUunVrff7553ryyScv2Q8/bzrfsmVLNWnSRDk5Oc5ln376qSIiIvT+++9706Sz3Z07d0qShg4dqh9++MHrtgAAAAAUrVwZry6zZs1Sq1at3C6zZs0q8HGGDh2q5s2ba9KkSRo3bpzb7b///rsqV67svF6pUiUdPny40P57PTIUGhqq7777Ts2aNZMkLVy4UHfeeae3zbl55ZVXrlhbAAAAAK48bydQ6Nq1q+Li4tyWXzgqlCevNli4cKHGjx+vGTNmePnIrrwuhuLi4jR//nw1a9ZMBw4c0NmzZxUeHi5JyszM1KRJk7R+/XplZWUpPDxcw4cPV7ly5bR48WLNnj1bWVlZkqRBgwapUaNGbu137txZ3bp1U4sWLTR48GCVKVNGv/76qw4fPqyFL4K/AAAfAUlEQVTIyEiNGzdODodD6enpGjNmjHbs2KGMjAxFRUVpyJAh8vf319SpU7VkyRIFBQXJ4XBo9uzZCgwM1KBBg7R7924FBASoRo0aev31171dDQAAAIDP8nZq7YIOh7MRGxurl156SSdOnNCNN97oXF6pUiX99ttvqlOnjiT3kaKL8boYioqK0ty5c3Xq1CktWLBAsbGx2rp1qyTp3//+t2644QZ98sknkqQJEyZo+vTpGjBggJo0aaLo6Gg5HA798ssvevzxx7Vy5cpCH2/Xrl2aOXOmHA6H4uLi9P3336tx48YaM2aMGjRooFdeeUW5ubkaOHCgPv30U91333165513tHr1apUtW1bp6ekqW7asvvrqK6WmpioxMVGSdOrUKW9XAQAAAODTinpq7dOnTys1NVWVKlWSJCUlJal8+fKqUKGCS65t27aaN2+e2rRpo5MnT2rFihX64IMPCm3f62LI4XDo/vvv19KlS5WYmKgPP/zQWQwlJSUpPT1dy5cvl3R+pKhWrVqSpAMHDui5555TcnKyAgICdOzYMR09elShoaGXfLzWrVsrKChIklS7dm3t379fjRs3VlJSkjZv3qz33ntPknTu3DmFhYUpODhYNWrU0PPPP6+//vWvat68uYKDg1WrVi398ssvGjFihBo2bKjmzZt7uwoAAAAAn1bUP7p69uxZPf300zp79qz8/PxUvnx5vfXWW3I4HOrRo4f69++vu+++WzExMdq0aZPatGkjSerTp4+qVatWaPuXNZtcfHy8OnbsqIYNG7oMUxljNGzYsAIPf3v22Wc1ePBgtW7dWrm5uapbt64yMjIKfay8QkiS/P39nZM3GGM0bdq0Ap/sf/7zH/34449as2aN4uPj9e9//1u1atVSYmKi1qxZo5UrV2rSpElavHixS/sAAAAAClfUI0O33HKL/vOf/xR4W/7zhvz9/TVixAiP2/dqNrk81apV04ABA9S7d2+X5S1bttTMmTN17tw5SeenwNuzZ48kKS0tzTnf9yeffKLMzMzL6YJatmyp6dOnO4ujlJQUHThwQOnp6UpJSVHDhg3Vv39/hYeHa9euXTp8+LD8/f3VunVrDRkyRCkpKTp58uRl9QEAAADwRbnGeHUpKS77d4YeeeQRt2U9e/bU1KlT9dBDD8nhcMjhcKhv376qWbOmhgwZot69eyssLEwNGzZ0O97PUwkJCZowYYJiYmLkcDgUGBiohIQEBQYGql+/fjp37pyMMapdu7batGmjNWvWaOLEiZKk3Nxc9ezZU2FhYZfVBwAAAMAXlZyyxjteFUNJSUkFLh87dqzz7wEDBmjAgAFumdjYWMXGxrrkCmp3zpw5BbZ74fXg4OCLDonNmzfPbVmzZs2c04EDAAAA8F5uKS+HLntkCAAAAIBvKuoJFIoaxRAAAAAArxT1BApFjWIIAAAAgFc4TA4AAACAT+IwOQAAAAA+icPkAAAAAPgkU4J+M8gbl/WjqwAAAABQWjEyBAAAAMArTKAAAAAAwCdxzhAAAAAAn8RscgAAAAB8EofJAQAAAPBJpX02OYohAAAAAF7hnCEAAAAAPolzhgAAAAD4JM4ZAgAAAOCTOGcIAAAAgE9iZMjH3G7KWmdT/B3W2cwDZ6yzD2Rcb509aoKss37XBVpnazrKWWcl6Q85/tbZ7N2HrLPH/UOts7dmZ1tn/ds9ap29a/Jk66wk3VTJ/rX2v+9x6+wfZiVaZ1tWOGqdVXC4dfQ2v2DrbG52mn0fJDmC7N/L4X43WGf/HJxinfVr0dM6mzxltnW2YnYZ66wkBbT8h3V2x4Cd1tmqp05ZZ/90p/176NbdVa2zf2ibY52VJEe5m+z7sS3LOms864a1O8x11tmt9rtkSVLVL+1fv2QPPv1v+WO6ddYR1cE6WyfIvr8Z6fb7C0ew/WekJFXNTrXO3hJov606QstbZ4ON/Tq+LdJ+nxXQqrN1VpJu9PvBOlvBg6+QNR+1/+4U8YF99tA5+43krkf+Yp2VpApbt1lnj/vbf8fxu/Nuj/pRGnDOEAAAAACflMthcgAAAAB8UekuhSiGAAAAAHiJc4YAAAAA+CSKIQAAAAA+qbRPre13tTsAAAAAAFcDI0MAAAAAvMJhcgAAAAB8Er8zBAAAAMAnlfZzhiiGAAAAAHiFw+QAAAAA+CRGhgAAAAD4JEaGAAAAAPgkJlAAAAAA4JNyOUwOAAAAgC9iZAgAAACAT2JkCAAAAIBPYmQIAAAAgE8q7SNDfpdz55YtW2rnzp0uy+Lj47V27drL6tTatWsVHx9/WW0AAAAAKFrGy38lxVUfGcrOzlZAwFXvBgAAAAAPlfaRoSKrQhYvXqzZs2crKytLkjRo0CA1atRI0vkRpQ4dOmjNmjWqVq2aRo8erUmTJikxMVFhYWG6++67ne2sXbtWo0ePVt26dbVhwwY5HA5NmjRJNWvWlCQtWLBAc+fOVU5OjoKDgzV8+HDddttt+vHHHzVq1Cjl5uYqOztbTz31lKKjo/Xxxx9r5syZKlOmjHJzc/Xaa6852wIAAABgrySN8njjsouh/v37KygoyHn9119/lSQ1adJE0dHRcjgc+uWXX/T4449r5cqVztzRo0c1Z84cSVJSUpKSkpK0cOFClS1bVn369HF5jN27d2vMmDEaOXKk3nzzTU2bNk0TJ07UDz/8oGXLlumDDz5QmTJl9M033yghIUEfffSRZsyYoa5duyo2NlbGGKWlpUmSxo8fryVLlqhSpUrKzMxUTk7O5a4CAAAAwCcZk3u1u3BZLrsYmjx5ssLDw53X8871OXDggJ577jklJycrICBAx44d09GjRxUaGipJio2Ndd5n7dq1ateuncqVKydJeuihhzRt2jTn7TVq1FDt2rUlSZGRkfrqq68knS+itm/fro4dO0qSjDFKTU2VJEVFRWn69On67bff1LhxY9WtW1eSdO+992rIkCFq1aqVmjdvrmrVql3uKgAAAABQChXZYXLPPvusBg8erNatWys3N1d169ZVRkaG8/brr7/e+bcp5FjDMmXKOP/28/NTdna2834dOnTQ008/7Xafxx9/XC1bttT333+vUaNGqXHjxhowYICmTp2qLVu2aM2aNerSpYuGDx+uZs2aXe7TBQAAAHxObik/TO6yZpO7lLS0NFWtWlWS9MknnygzM/Oi2UaNGmnZsmU6c+aMcnJy9Omnn1o9RsuWLbVo0SIdPnxYkpSTk6OtW7dKkvbu3avq1aurU6dO6tKli7Zs2aLs7GwdOHBAderUUc+ePdW4cWNt27btMp8pAAAA4JuMMV5dSooiGxkaMmSIevfurbCwMDVs2FAVKlS4aLZFixbauHGjYmNjVbFiRUVFRSk5ObnQx2jQoIGeeeYZPfXUU8rJyVFWVpbatm2ru+66S3PmzNHatWsVGBioMmXK6MUXX1Rubq4GDx6stLQ0ORwOVapUSc8999yVfNoAAACAzyjtI0OXVQwlJSW5LZs/f77z7/znBQ0YMOCS9xswYIBLpl+/fpLOn/uTv80Lr7dv317t27d3a++ll14qsM9z584tcDkAAAAAz5SkUR5v8AM/AAAAALzC7wwBAAAA8Ek+/ztDAAAAAHwTh8kBAAAA8Ek+PYECAAAAAN/FyBAAAAAAn1QcEyiMGzdOy5cv16FDh7R48WKFh4e7ZaZMmaK5c+eqYsWKkqT69etr2LBhhbZNMQQAAADAK8UxMtSqVSt16dJFjz766CVzsbGxGjRokEdtUwwBAAAA8EpxnDN0zz33FFnbFEMAAAAAvOLtyFBqaqpSU1PdloeEhCgkJMSrNpcuXarvvvtOoaGh6tevn+rVq1fofSiGAAAAAHjF23OGZs2apalTp7ot79u3r/r16+dxe506dVKvXr0UGBioVatWqXfv3kpMTNSNN954yftRDAEAAADwirc/utq1a1fFxcW5Lfd2VCg0NNT5d+PGjVWpUiXt2rVLDRs2vOT9KIYAAAAAeMXbkaHLORyuIMnJyQoLC5Mkbdu2TYcOHVKNGjUKvR/FEAAAAACvFMdsci+//LK++OILHTt2TE888YQqVKigpUuXqkePHurfv7/uvvtuvfrqq/rpp5/k5+enwMBAjR8/3mW06GIohgAAAACUWC+++KJefPFFt+UzZsxw/j1u3Div2qYYAgAAAOAVb88ZKikohgAAAAB4pTgOkytKFEMAAAAAvFLaiyGHKe3PAAAAAAC84He1OwAAAAAAVwPFEAAAAACfRDEEAAAAwCdRDAEAAADwSRRDAAAAAHwSxRAAAAAAn0QxBAAAAMAnUQwBAAAA8EkUQwAAAAB8EsUQAAAAAJ9EMeSjvv/++6vdBQAAAOCqohjy0okTJ7Rt2zZt27ZNJ06cuGJtDh06VN26ddMHH3zgclu/fv0Kvf+pU6cKXL579263y5AhQ7Rnzx7t3r3bJbtq1Srn32lpaXr++efVunVr9evXT8eOHbvk458+fVo//fST0tPTC+2rp86ePautW7cqNTX1opmTJ09q27Zt2rVrl86dO3fF+4CSJTU19ZLvh5Jqz549Rdb2yZMni6Rdm31camqqTp8+bdXWld53Xq6L7TsLUhT/kVRU+06b/abk2b6ztG53UtFte0W13UlXdtvLy/L6uSpNrx+KiIFH9u3bZ7p06WLuuece065dO9OuXTtzzz33mC5dupi9e/deVtv9+vUz48aNM8uXLzePP/646dOnj8nKyjLGGBMTE+OS3bZtm4mLizMdOnQwu3fvNj169DB16tQxTZs2NT///LNLNiIiwrRo0cLlUrt2bdOiRQvTsmVLl2xsbKzz7xEjRphhw4aZHTt2mFdffdU8/fTTLtl//etf5vjx48YYY3744QfTqFEj065dO3Pvvfeab7/91iXbsGFDM2rUKLe+XcwXX3xh6tWrZ+677z6zceNG07x5c3P//febhg0bmi+//NIle/DgQdO9e3cTERFhatWqZRo2bGjq1KljxowZYzIyMgpsPyUlxfz888/m559/NikpKVZ9KmonT560zq5ateqKP356errZunWrSUtLu+JtnzlzxmzZssWcOnXqopkTJ06Yn3/+2ezcudOcPXu2wMzx48fNkCFDTGRkpImMjDR169Y1kZGRZsiQIc73oo3u3bu7XM/IyDDTpk0zL774ovnqq69cbhs5cqTL9UOHDpm+ffua/v37myNHjpjhw4ebevXqmU6dOpkDBw64Pe8LLy1atDBnz541Z86cccnu3LnT+XdmZqZ57bXXTJcuXcyYMWPcssYY88Ybbzif865du0zr1q1N3bp1TbNmzcyWLVtcsnFxcea9996zWkfr16837dq1M926dTP79+830dHRpm7duqZx48bmxx9/dMmeOnXKvPTSS6ZevXqmVq1aplatWqZZs2Zm9uzZbu1eqX1ndHS027KUlBSTkJBgnnjiCfP++++73Na3b1+X657sO3ft2uV2adq0qdm9e7fZtWuXS/a7775z/p2ammoGDhxoWrVqZfr27WuOHj3qki2qfacn+01j7PedV2q7M6b0b3uebHfGlIxtj9fvf4pqv2lM0b1+KHoUQx565JFHzKJFi0xOTo5zWU5Ojlm4cKF5+OGHPWrrwg/19u3bO//Ozc01w4cPN926dTPnzp1zK4YeffRRs2LFCrNgwQLTvHlzs2jRImOMMV9++aXp2rWrS3bKlCnmySefNAcPHnQua9GiRYF9yv847du3N5mZmRft74MPPuj8u3PnzmbTpk3GGGN++eUXExcX55Jt0aKFeeWVV8y9995rYmNjzZw5cy755b99+/Zm+/btZt26daZhw4bmv//9rzHGmN27d7uti8cee8wsWrTInDx50syePdu8/vrr5tixYyYhIcEMHz7cJcsXsv8pjcVst27dzLRp01wK2OPHj5s33njDdOvWzSVb0Idp3qVp06Yu2SFDhphnnnnGvPvuu+aBBx4wL7/8svO2/P9BYIwxTz75pJk1a5Z54403THR0tHnrrbfM0aNHzezZs81TTz3lks17ThEREW6XWrVquWTzP87EiRPNU089ZZKSksygQYPMiy++6LaO878He/bsab744gtjjDHr1q0zjzzyiEu2SZMmpnfv3qZu3bqmT58+5quvvnLZh+XXoUMH8+WXX5oFCxaYZs2amcTERGOMMatXrzYdO3Z0yfbq1ctMmzbN/PTTT2bs2LHm7bffNps2bTJPPvmkef31112ynuw7C3rP510aN27s1mdP/iPJk31nUf1HUlHtOz3Zbxpjv+/0ZLsz5tre9jzZ7owpGdser9//FNV+05iie/1Q9CiGPHTfffd5dJsnH+pt27Z1u//YsWNNly5d3G7Lv/E3b97c5baCPvR++ukn88gjj5i5c+caY4zbB3me+++/3/kl+8J28hdrxhjTpk0b59/x8fEut11YLOT1NzMz0yxbtsz06NHDREZGmmeeecblC3xBz+HCwu3CfuX/YmHM+R2SMee/aP3tb39zuY0vZAWvt9JSzF5q+8v/fjSm4A/TvOsXfpjmf7+ePXvWPPXUU2bIkCEmNzf3ktvBhe+DC9+LgwcPNgkJCS6jbTb/EREbG2vS09ONMcZkZWWZBx544JLP98LX68I+510/duyYeeedd8wDDzxgGjdubCZMmGD27Nlz0fsWtu1duJ3nbUPnzp1zez082XdGRESYli1bur3vW7RoYe688063+3vyH0me7DuL6j+Simrf6clrZ4z9vtOT7c6Ya3vb82S7y7+spG57vH4Ft5P/us1rd+H9r+Trh6LHOUMeqlChgpYsWSJjjHOZMUafffaZQkJC3PLR0dH65z//qZ49e7pdLjxOtVq1alq/fr3LskGDBikyMlK//vqry/L8j9+4cWOX23Jzc936Ubt2bc2ePVuHDh1S165dlZWVVeDzO3funLN/qampSk5OliSlp6fLz8/17dKoUSONHTtWZ8+eVVRUlBITEyWdP++oQoUKBbYfGBiotm3bavr06Vq+fLkiIiI0atQot5zD4dCePXu0YcMGnTlzRhs3bpQk7d27Vzk5OS7ZgIAA7d+/X5K0detWlSlTRpLk5+engIAAl+zJkyfVvn17l+fi5+enmJgYt/MGPHntJGnfvn164YUX1KZNG7377rsKDQ3VP//5T2VkZLhlT58+rVatWik2NlaS1L59e0lSy5Yt3dru27evatasqTlz5igpKUlJSUkKCwtTUlKSvvzyS5ds/vfFf//7Xw0dOlTh4eEaMGCA2/HW+ft1+vRp1alTR5JUo0YNt/dH+fLllZCQoJUrV+qf//ynVq5cqebNm2vAgAEu55nlcTgcioiIUIMGDVSuXDnVr19fklSzZk237KlTp9S+fXuVL19enTt31sqVK3XzzTdr1KhRbm0HBQVpw4YNbm38+OOPztc9T2hoqFatWqXt27c7L9u2bdP27dtVsWJFl2z+91TZsmU1ZcoUnT17Vs8//7zb9uRwOJx/165d+6K3SdKYMWPUunVrPf744/rmm28KzOQxxujcuXM6e/as/P39Va5cOUnn398Xvo8l6a677tKcOXMkSXfccYd+/PFHSefPEQwMDCywXzfffLO6deumJUuWaOrUqTp16pQ6derkti5SUlK0f/9+nTx5Uvv27ZMkpaSkKDMz063dvPfroUOHnOsqKCjIrc+e7DurVKmiuXPnOt/v+S8333yz27rI3y+Hw6Fhw4YpPDxcPXv2dNv+PNl39u3bVwMGDNBzzz2nDz/80GVdFtSHvPMwHQ6Hy2tQXPtOT/abkv2+05PtTrq2tz1Ptrv8j3k1tz1ev/8pqv1m3rooitcPRY817qGxY8dq2LBhGjlypMLCwiRJycnJqlWrlsaOHeuWz/tQz8vm16xZM5fr48ePL3BjHzBggB588EG3dtPT0xUcHKyXX37Zufzw4cO67rrrCux7mTJlNHDgQG3cuFHr1q0rMJOUlFTgcn9/f02ePNllWUJCgsaPH6+mTZuqQoUKevfdd/XCCy8oKipKo0ePdsnm/wKSp2LFiurVq5d69erldlv//v3197//XX5+fpo0aZJef/11HT16VIcPH9bw4cPdsg8//LBCQ0N19OhRTZo0SZJ07Ngx55fwPHlfyB544AHnujbGaPHixRf9Qmbz2kkFfyEbN27cFflC9vPPP+u5555TTEyM/v73vxf6hcwYY/2F7Omnn3Z+IWvXrp3VF7K2bdvqyJEjmj9/vkaNGqXPP//cJZf3pSw1NdX5pSwyMvKSxWz16tULLWZHjBihF154QUFBQapSpYqk8x8kGRkZGjdunEs2KipKu3btUlRUlNvzyCv88txyyy3avn27atWqJen8+33ixIkaNGiQdu3a5ZItW7asc9ubPn26c/nJkyfl7+/v9lgtWrRQZGSkRo0apWXLlhX4pVSSduzYoXr16jlfu+TkZIWFhSkjI6PA/+B46aWXNHjwYM2cOVNhYWHq0qWLKlWqpOuuu85q+4uMjFRkZKRefPFFl+Vdu3bV3/72NzkcDo0YMUKDBg1S+fLl9fPPP6t79+5u2fbt26t27draunWrEhISJJ3f9ipXruySvXDfaYxRcnKy7rjjDrd9Z5s2bXTo0KECt72//e1vbsvy/iOpQYMGzmWDBg3SpEmT9Pbbb7tkPd135v1H0uTJkwv9j6QePXo4r+e9fgX9R1JR7TsL2m8eOXJEycnJbvvNvLzNvvNS29348ePd2i2J215iYuIV2fYu3O46d+6sypUrF7jdSSVj2+P1+x9PXj9PXjup6F4/FIPiHIa6lhw/ftxs3brVbN269ZIn140dO9Z5iNCFRo0adcX7dfr0aXPs2LEr3m5hj7lt2zazdevWi05GkP8wE29kZ2ebLVu2uJ33kufUqVNm8+bNhZ78v3fvXtOlSxfToEEDEx0dbaKjo02DBg1M586d3Ya9PX3tevToYdatW+e2/NVXXzUREREuy3r37l1gX3///feLnnuWkZFhJkyYYLp06WL++te/FpjJO3Qu75Ciw4cPG2OMSUtLczt+OyMjw4waNcrcc889pnXr1iYiIsLceeedzpM/8yvo8I9LSUpKMg0aNDBRUVHm+++/N48//rh54IEHzJ///Gfz2WefuWS/+uorExUVZaKjo515Y4w5evSoGTp0aIHtb9682SxfvtwsX77cbN682eTm5nrUvwvt3bvXHDp0yG15bm6u+frrr92WFeT48eNmx44dl3ycxMREt0P/CnPq1CmzYcOGi97+66+/mhUrVpjly5cXeAK3Mcbt5N3CnDhxwrktp6Wlmc8//9xs3bq1wOzu3bvNsmXLrM+5s913XuhSh2WeOHHCbXKOvPyF59VdrG2bfeeGDRvMW2+9ZdHb/7V79uxZt+0pT/5958XWRUH7TtvJVrKzs82mTZsuut80xn3feam28293M2bM8Gi7u9ikL3v37nV7jqtWrbLe9latWmVSUlKstr2CDje9VH9TU1Mvuu3l3+7+/e9/X7Sdgra9S02Ac+G2l5iYaL3tFTaxTv7Xb8uWLZe93zSm4NfPGM/2nTav37Jly8yIESM86pvt63ex9evpftOYot13ouhQDMEnefuF7FJOnDhx0S8SNl/IjDn/5aiw/mzYsMG8/fbbHvXtzJkzbrP15H/M0lLMpqSkmKFDh5onnnjCzJkzx+W2CyepyJ8tbEILTya/yJ+16YMn7dr298J8Yf04fvx4kfTDk6wnk4ZcKrtt2za3deFJ/kplL9bnhx56yLrd/Nm6det6vC4upw+erIsLz5ncuXPnRSdxKSh/qUlfiit7qT4XVbslZV1cbGKdfv36FbhP9mQiHk/a9rbdtLQ0M3DgQNOyZUvrbHH3t6B+PP/881ekzyh6DmMKGAcEfNCDDz6oxYsXX/FsUbZd2rKX23b//v1VtWpVRUZG6sMPP1S5cuX02muvKSAgQLGxsVq4cOEVz8bFxWnBggUlqg9Xqx+Xk33sscf0xBNPKC0tTa+//roGDBig9u3bKykpSbNnz9bMmTO9yhZl29dy1pN8rVq13A7dyTsUyeFwuJ276Em+OLNHjhxRxYoVi60PJWVd5N9/jBw5Urm5ufrHP/6hpUuXat++fXrttddc2vEkX9KyI0aMkDGm2PtQ1G2jiF3lYgwoVhebHW7nzp1us9t4OpucJ/mSnC3J68KTWcOu5WxJ6UdRzeLm6WyZRdX2tZz1JO/JrHqe5q/lbEnphyczHXqaJ1s8baNoMYECfEp0dLSqVKlS4ImRF87i5km2KNsubdmibNuTSSqu5WxJ6UdRTRriSbYo276Ws57kPZnExdP8tZwtKf3wZGIdT/Nki6dtFC2KIfgUT2aI83Q2uaJqu7Rli7LtS80aln92oms9W1L64UnWk1ncPJ3xrajavpaznuZtZ9XzJn8tZ0tCP/J+MiOv+L3UTIee5skWT9soYkU36ASUPJ7MEOfpbHJF1XZpyxZl255MUnEtZ0tKP67UpCG2M2B6OltmUbV9LWdt8p5O4uJJ/lrOlqR+GHN+Yp2LzXR4uXmyxdM2rgwmUAAAAADgkxiLAwAAAOCTKIYAAAAA+CSKIQAAAAA+iWIIAAAAgE+iGAIAAADgk/4/CQQR68y+BwUAAAAASUVORK5CYII=\n", "text/plain": [ "
    " ] @@ -882,14 +873,14 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "That visualizations is somewhat helpful, because we get an idea already that some of the attributes move together: see that if `Flavour`, `Sweet` and `Fruity` are low (dark colours), that they are jointly low. And that it is opposite to the other 3 flavour characteristics.\n", + "That visualization is somewhat helpful, because we get an idea already that some of the attributes move together: see that if `Flavour`, `Sweet` and `Fruity` are low (dark colours), that they are jointly low. And that it is opposite to the other 3 flavour characteristics.\n", "\n", "Now let's sort the data set and try again:" ] }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 28, "metadata": {}, "outputs": [ { @@ -912,20 +903,20 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "What a difference! Now the visualization is greatly improved, and actually tells a story. That's the purpose of a plot.\n", + "What a difference! Now the visualization is greatly improved, and actually tells a story. That's the purpose of any visualization.\n", "\n", - "Now we quickly see the opposite trends occurring which took us much longer to realize in the prior plot. ***How would you describe the trends to someone?***?\n", + "Now we quickly see the opposite trends occurring which took us much longer to realize in the prior plot. ***How would you describe the trends to someone***?\n", "\n", "Note also that you could not have seen these trends from a box plot! \n", "\n", - "Next we can calculate the with the [***correlation*** value](https://learnche.org/pid/least-squares-modelling/covariance-and-correlation#correlation), which is a number between $-1$ and $+1$ that shows how strongly variables are related. A value of 0 is no correlation. A value of $-1$ is a perfect negative relationship, and $+1$ is a perfect positive relationship.\n", + "Next we can calculate the [***correlation*** value](https://learnche.org/pid/least-squares-modelling/covariance-and-correlation#correlation), which is a number between $-1$ and $+1$ that shows how strongly variables are related. A value of 0 is no correlation. A value of $-1$ is a perfect negative relationship, and $+1$ is a perfect positive relationship.\n", "\n", - "We will visualize what a strong, or a weak, correlation is in a next section on scatter plots. Here we already see how the columns are correlated to each other: both in a table, and a heat map. Heat maps are great way to visualize correlations." + "We will visualize what a strong, or a weak correlation is in a next section on scatter plots. Here we already see how the columns are correlated to each other: both in a table, and a heat map. Heat maps are great way to visualize correlations." ] }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 29, "metadata": {}, "outputs": [ { @@ -1102,7 +1093,7 @@ "## Time-series, or a sequence plot\n", "\n", "\n", - "If you have a single column of data, you can see interesting trends in the sequence of numbers when plotting it. These trends are not always visible when just looking at the numbers, and they definitely cannot be seen in a box plot.\n", + "If you have a single column of data, you may see interesting trends in the sequence of numbers when plotting it. These trends are not always visible when just looking at the numbers, and they definitely cannot be seen in a box plot.\n", "\n", "An effect way of plotting these columns is horizontally, as a series plot, or a trace. We also call them time-series plots, if there is a second column of information indicating the corresponding time of each data point." ] @@ -1116,12 +1107,12 @@ "Below we import the data. \n", "* Modify the code, if necessary, if you are behind a proxy server.\n", "* Note how we can force a particular column to be a time-based variable, if Pandas does not import it as time.\n", - "* Lastly, we can set that time-based column to be our ***index***. [Recall that term](http://yint.org/pybasic07) about a Pandas series?" + "* Lastly, we can set that time-based column to be our ***index***. Do you [recall that term](http://yint.org/pybasic07) about a Pandas series?" ] }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 30, "metadata": {}, "outputs": [ { @@ -1162,7 +1153,7 @@ "Copy and paste the above code, and try this again for the [Ammonia dataset](http://openmv.net/info/ammonia). Note in the code below:\n", "\n", "* The dataset had no time-based column, so Pandas provides a simple function for doing that (`pd.date_range(...)`). We were told the data were collected every 6 hours. \n", - "* Note how the plots colours can be altered, and the line thickness.\n", + "* Note how the plot's colours can be altered, and the line thickness.\n", "\n", "Modify the code below:\n", "\n", @@ -1173,7 +1164,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 31, "metadata": {}, "outputs": [ { @@ -1217,7 +1208,7 @@ "print('Someone who has consumed too much: \\n{}'.format(deviating_steps))\n", "```\n", "\n", - "In the space below, start with this code:\n", + "In the space below, start with the code given above, then modify it to:\n", "* create a series for `size=400` steps\n", "* convert this to a Pandas series, using a frequency of 1 second\n", "* plot the random walks for 2 people: one regular, and one with deviating steps. \n", @@ -1227,7 +1218,7 @@ "ax = df.plot() # the output of the plot function is an axis\n", "ax.axhline(y = 0, color='k')\n", "```\n", - "* You can also use the axis to set labels: ``ax.set_xlabel(...)`` or ``ax.set_ylabel(...)``\n", + "* You can also use the axis ``ax`` to set labels: ``ax.set_xlabel(...)`` or ``ax.set_ylabel(...)``\n", "\n", "\n", "Here's how my plot looked. Run your code several times to see how different the random walks appear." @@ -1235,24 +1226,22 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": null, "metadata": { - "hide_input": true - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4sAAAFOCAYAAAAvqYhNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xl4XdV59/3v2vuco8marMEaPMsDxiPYzGEyg3EYQtukUJpAk6ZpQqE8tJCHJ1BMocTF0KZJCvWboSEhBJoBKBBiQzAETMBgjEF4wtjGgyRLsubxDHuv949jHxAafCRrsOzf57p8Ie1h7XvLwpdurbXu21hrLSIiIiIiIiKf4Ix0ACIiIiIiInL0UbIoIiIiIiIi3ShZFBERERERkW6ULIqIiIiIiEg3ShZFRERERESkGyWLIiIiIiIi0o2SRREREREREelGyaKIiIiIiIh0o2RRREREREREulGyKCIiIiIiIt0oWRQREREREZFulCyKiIiIiIhIN4HhfuD111/Pvn37cByH9PR0/umf/olZs2axePFiQqEQKSkpANxyyy2cffbZAGzcuJE777yTcDhMaWkp999/P3l5ef16bkNDG75vB/19REREREREjmaOY8jNzej3fcZaO6wZVEtLC5mZmQD8/ve/58EHH+TJJ59k8eLFrFy5khkzZnS53lrLxRdfzPLly1m0aBEPPfQQe/fuZfny5f16bl1dq5JFERERERE57jiOIS9vTP/vG4JY+nQoUQRobW3FGNPn9eXl5aSkpLBo0SIArr76alatWjWkMYqIiIiIiBzvhn0ZKsDtt9/Oa6+9hrWWH/3oR4njt9xyC9ZaFi5cyD/8wz+QlZVFVVUVJSUliWvGjh2L7/s0NjaSk5OT9DMHkkmLiIiIiIgcr0YkWbz33nsBeOqpp1ixYgU//OEPefTRRykuLiYSiXDvvfdy991388ADDwzaM7UMVUREREREjkejZhnqJ1155ZWsW7eOhoYGiouLAQiFQlxzzTVs2LABgOLiYiorKxP31NfXY4zp16yiiIiIiIiI9M+wJottbW1UVVUlPl+zZg3Z2dmkpKTQ0tICxAvaPPfcc8yaNQuAOXPm0NnZyfr16wF4/PHHWbp06XCGLSIiIiIictwZ1mWoHR0d3HTTTXR0dOA4DtnZ2axcuZK6ujpuvPFGPM/D933KyspYtmwZAI7jsGLFCpYtW9aldYaIiIiIiIgMnWFvnTFStGdRRERERESOR6Nyz6KIiIiIiIgcnZQsioiIiIiIHMOs7w/oPiWLIiIiIiIixyhrLZ2rvjOge5UsioiIiIiIHKNsywH8pqrDX9gDJYsiIiIiIiLHKK9mx4DvVbIoIiIiIiJyjPJqdoIbHNC9ShZFRERERESOUV7tTpzc8QO6V8miiIiIiIjIMch6MfwDH+HkTRjQ/UoWRURERERERjnr+0R3voX1vcQxv34feDHc/EkDGlPJooiIiIiIyCgX/eBVOn//ILFdbyeOHSpu4+RNHNCYShZFRERERERGMet7RN55FgCvenviuFezE5OWhUnPGdC4ShZFRERERERGsdiOddiWWgim4VV/3CrDr9mBW1iGMWZA4ypZFBERERERGaWs9Ym88yxO7niCs87Dr9uNjUXw2xvxm/bjjCsb8NhKFkVEREREREYpr2ILfmMloZMuxS2aBr6Hd2A3sZ3rAQhMPnnAYwcGK0gREREREREZXn5zNQBu8Qlg4nOBfvWHxPZsxMktxc0pGfDYmlkUEREREREZpWx7E2AwaVk46dmYzAJiH23Aq/qAwNRTjmhsJYsiIiIiIiKjlG1vxKRlYhwXAHdc2cGKqJbAFCWLIiIiIiIixyW/vbFLawy3MF7QxskpwR1bekRjK1kUEREREREZpeynk8Vx0wEITF10xGOrwI2IiIiIiMgoZdubcPMmJj538ieRcs6XCU5RsigiIiIiInJcsr6P7WjqMrNojCF0wrmDMr6WoYqIiIiIiAwjG+2k46Uf4rc1HNk4nc1gLSY9e5Ai60rJooiIiIiIyDDy9m8ntv01YjvfPKJx4m0zwKTnDkZY3Qx7snj99ddzxRVXcOWVV3LNNdewZcsWAHbt2sVVV13FkiVLuOqqq/joo48S9/R1TkREREREZDTxm6qBeNJ4JGx7fGbSOVZmFu+77z6efvppnnrqKb7yla/wrW99C4Bly5ZxzTXXsHr1aq655hruvPPOxD19nRMRERERERlN/OaPk0Vr7cDHScws5hzmyoEZ9mQxMzMz8XFrayvGGOrq6ti8eTOXXXYZAJdddhmbN2+mvr6+z3MiIiIiIiKjzaGZRdvRhG2pHfA4tr0RYMj2LI5INdTbb7+d1157DWstP/rRj6iqqmLcuHG4rguA67oUFhZSVVWFtbbXc2PHjk36mXl5Y4bkXURERERERPpjT2sNwfzxRA/sI71tL5llZQMa54DfTixtDIVFyedF/TEiyeK9994LwFNPPcWKFSu46aabhvyZdXWt+P7Ap3hFRERERESOlPVjxBprCc2/BJrraNxeTmfxwgGN1VFfC6k51Na29Hmd45gBTZ4ltQz1xz/+cY/Hf/KTn/T7gZ905ZVXsm7dOoqKiqiursbzPAA8z6Ompobi4mKKi4t7PSciIiIiIjKa2JY6sB5OdhHuuOl41R8MeCy/rXHIlqBCksnigw8+2OPx//qv/+rXw9ra2qiqqkp8vmbNGrKzs8nLy2PWrFk8++yzADz77LPMmjWLsWPH9nlORERERERkNDm0X9Fkj8Mtmo7fUIntbD3sfbH9HxDZ8nKXY7a9cciK28BhlqG+/vrrAPi+zxtvvNGlUs++ffvIyMjo18M6Ojq46aab6OjowHEcsrOzWblyJcYY7rrrLm677TYeeughsrKyuO+++xL39XVOREREREQGl9/eSPj1xwhOOwN34nyMMSMd0jHjUCVUJ2sc+D4AXvWHBCYt6PUe6/t0/uHH2KZq3PxJuAVTsNZiO5qGrG0GHCZZvP322wEIh8OJFhcAxhgKCgq44447+vWw/Px8fvnLX/Z4rqysjF/96lf9PiciIiIiIoPL27eJ2I51xHaswy2aQdol/wcTSh/psI4JftN+CKZi0rJwQ6lgHLyaHX0mi7Fd67FN1WBcwm/8D2mX/V9suBV8b+RmFtesWQPAN7/5TVasWDFkQYiIiIiIyNHDP9iSIbToT4msf4LY7o0Ep585wlEdG/ymapzscfHZ2kAKztgJeDU7e73eWktk4zOY7CJCsy8g/MdH8fa8i8nMA8BkDF2ymNSexU8mir7vd/kjIiIiIiLHFtvWAME0QvMuAQx+c81Ih3TM8Juq40tQD3ILp+DV7sTannMrb285ft1eUuZ/luCJ52Oyx9H5x0eJ7XwLYEhnFpNKFjdt2sRVV13FggULmD17NrNnz+bEE09k9uzZQxaYiIiIiIiMDNvWgJORiwmEMBm5iaIscmSsF8O2HsDJ/mSyWAaRjvjy1B5ENq/BZOQSmH4mxgmQes5XwI8R2fA0AM5ILUM95LbbbuP888/n29/+NqmpqUMWjIiIiIiIjDy/vRGTkQuAkz0Ov6V2hCM6NtiWA2Btl2TRKZgKgF+zEzenhOgHa3FySw8WsfHxqrcTnLIQ48ZTt0DxTDKuuo/oB2vx6/dhxuQPWbxJJYsVFRXcfPPNqoIkIiIiInIcsG0NOKWzAHCyCol9tGGEIzo2xPaVA+DkfNwz3skphmAqXs1O3KIZdL78Y9wJc0hf+o/4jfsh3IY7bnqXcUwgROjExUMeb1LLUC+66CLWrl071LGIiIiIiMgIs9bHtjfhpMdnFk3WOGxnCzbSMcKRjW5+037Cb/4Kt3Q2TsGUxHHjOLgFU/BqdhIpfx6weJXbsF4Ur3o7AO64aSMSc1Izi+FwmBtuuIGFCxeSn991mlNVUkVEREREjh22oxmsl6iy6WQVAOA31+DmTxrJ0EYt63t0vPQDcIOknvdVjOk6Z+cWTiXy7ir8xipMZj625QDe/u341TsgJQOTXTQicSeVLE6bNo1p00YmmxURERERkeFjD7bN+OSeRYg3k1eyODCxHevwa3aSesE3cA5+XT/JKZwK1oOYR+r5/0jHM/fhVWzCq/4Qd9y0EdsOmFSyeMMNNwx1HCIiIiIichSwbQ0AiWWoTlYhAH6T2mcMlF+/D5wAgSmn9HjePVjkxi09kUDRDNxxZUR3rsc2VxOadvpwhtpFr8niW2+9xSmnxF/m9ddf73WAM844Y/CjEhERERGREeEfTBYPzSyaYComLQs7Cnot+h3NdL7wnzjZRQSmLMKdMPeoKNLpN1bhZBdinJ5LxjgZuaScdhXuhLkAuOPn4K1/Iv5x0fQe7xkOvSaL//zP/8yzzz4LwO23397jNcYYXnzxxaGJTEREREREhp1tbwRjMGlZiWNO1jj85qO/12Jk42/xqrfj1e0huu0VUs76EqHZF4x0WPhN1Tg5fe87DM1fmvg4MH42kfVPgIkXvxkpvSaLhxJFgDVr1gxLMCIiIiIiMrJsWwMmLRvjuIljJrsQr2LzCEZ1eH5bA9HNawhMP4vUs6+j/Ym7iO1aP+LJovV9/OZqApMWJH2Pkz8FQuk4mQWY4Mj1uU9qzyJALBbjnXfeobq6mqKiIhYsWEAgkPTtIiIiIiIyCvhtDYklqIc4WYXEPngNG4tgAqF+j2l9r0vyORQiG58F3yfl5CswbpDAxPlEyldjIx2YUNqQPrsvtvUA+B5OPyqaGsch9awvYlLShzCyw0sq29uxYwff+MY36OzspLi4mKqqKlJSUli5ciVlZWVDHaOIiIiIiAyh2J53ie3bRMoZV2PbGhPtMg5xsg5VRK3FHVvar7HD658k8u7vCJ10KaH5n8W4wUGL+xC/rYHolj8QnPmZREEed8JcePc5vMqtBCafNOjP/DRrbY/7I/2m/QCYwyxD/bTg9DMHJa4jkVSy+M///M/8+Z//OX/913+d+AL8+Mc/5q677uKRRx4Z0gBFRERERGToxPZtouP574MfIzBxHn57A27xjC7XJCqiNlf3K1mMbn2FyIb/xckuIrL+SaJbX8HNm4jJzCdl0Z8O2oyfV/0h+DGCs85LHHPHTYdgKrG97w1psug1VNL54kO4BVNJPfcr3c77TfG9nv2ZWTxaJJUsbt26lZ/85CddMuXrrruOlStXDllgIiIiIiIytLzaj+h4/ns42UXYjiYi5ash3IZJz+ly3aHiLH79Pph8clJjx6q20fnqT3HHzyHtkv+DV7mVyPsv4DdX4+9+B3fcNIJlpw3Ke/jNtfE4P5GQGTdAoGQWsX3lvc76DYSNhYm8tyq+vDWQEv+aRTvxm2tJ+cyXus2c+o37IZSGSc0clOcPp55rt35KYWEhb775Zpdj69evp7CwcEiCEhERERGRoRfZ+CwmECLt0lsIzjwbb285QLfG8SaUjpNTjFezI+mxo5tfwqRmkHbh32GcAIHxc0i/5GbS/+QuMAa/oXLQ3sM212BSM7vNVLoT5mFbDmAPLgXt8d7O1kSyeTheQwXtT94dnyXdtCY+a5pbSspnroVYGG//9m73+E37cbKLjooWHv2V1MzizTffzPXXX895551HSUkJlZWVvPzyy9x///1DHZ+IiIiIiAwBay1e1TbcCfNw0nMIzjqfyLu/A2y3AjcATuFUvD3vJTVLZ63Fq9yMWzq7WwJnAiFMViF+Q8WgvYvfUoP51D5LgMCEuYSB2N73COUUfypGn+jWVwi/+SsMhowvfa/XPogQTyrbn/oXTCBI2mdvwS2dDdEOCKZBLEz4j48S21tOoPTErrE17cctmtHLqEe3pGYWL7jgAp544gmmT59OW1sb06dP54knnuDCCy8c6vhERERERGQI+E1V2M6WxP5EJ6sg0RTepHdPFt3CMmxnC7blwOHHbqzEdjQTKJnV43k3pwS/cfBmFv3mmsS+yk9yMvMxmQV41d1nRMN//AXhVx/GuEFsuDVRiKY3sb3vQbSDtItuJDB+DsYYTCg9/t9gKm7RjMTM7CE2FsG21o3K/YrQj9YZU6ZM4Rvf+AYNDQ3k5uaOymlUERERERGJ86o+ACBQNDNxLGXhlYSNwcnunni5hVPj99Xs6FYttdvYFVvi95T2nCw6uaXE9ryH9WMY58ja8VkvFk/Ieqke6uZPwqvb3fWeSAfRba8QmHYGoQWX0v7rO/Brd+HmlvT6nNjujZi0LJxxPXeDCEyYS3jdL/Fb63HGjAXiBYEAnOxxA3m1EZfUzGJzczO33nor8+bN46yzzmLevHnceuutNDY2DnV8IiIiIiIyBLyqbZi0LMwnEhm3cCrpl9zcY3sLZ+x4cIN4NTsPP3blFkxmAU5mz0mlk1sC1sNvqhn4CxxkWw+AtT3OLAI4+ZOwTdXYSEfiWHTnmxCLEJp9AU5OCQRCeAc+6jruoUI2sTDWjxHbV05g4nyM6TmFcifMAyC2rxzvwG6iO98itufgHtBPLYEdLZJK4//f//t/uK7LU089ldiz+L3vfY9vfetbPPTQQ0Mdo4iIiIiIDILYnvfADRAoPTG+X7F4ZtIrBo0TwM2fjFfbd7JofZ9Y1VaCkxf2eo1zcAbPb6joczYvGX5zPOE0vSSmbv4kALy6PQSK47Oo0W2v4uQU4xSWYYzBzZuEX/tRl/tiH20g/Mbj2I5m3PFzINKBO2lBH+9UisnIJfzaI+DFPj5hTK+J7NEuqWRx3bp1rF27ltTUVADKysr413/9V84+++whDU5ERERERAaHtZbOV/4bG24n7aLrsW31uEWf7dcYTuFUoptfxHoxjNs1lYhs/QN+QyWBCXMh3NbrElQ4NNNmBmXf4qFksdeZxbx4sugf+AiKZ+I3VuFXf0jKaX+eSJSdgslEt/4B63sYxwXAq9kVf6/3VuM2VIATIFA6u9c4jDGE5l5CbO+7BKacgls4Bb/lACaQMmj9JIdbUsnilClTqKiooKzs4/W5lZWVTJkypV8Pa2ho4Jvf/CZ79uwhFAoxadIk7r77bsaOHcvMmTOZMWMGzsEKRCtWrGDmzHjmv2bNGlasWIHnecyePZvly5eTljY6v+AiIiIiIkPNb60jtu99/NpdBGeeg1s4Fb9hH7a9ETB0vPCfAIniNslyx5URLV+NX7cnsYcRwG9vIvzao+BFiJavjl/bS3EbIJ5AZeYPSvsMv7kW3FC33pCHOOnZmIxcvAPxfYvRD9aCcQh8Yo+jWzCF6Psv4DdW4Y4dD4BXuxMntxS/rQFvz7u4E+Zigql9xhKat4TQvCUfj5s/+QjfbmQllSyeccYZfOUrX+Fzn/scRUVF7N+/n6effprPfe5z/PrXv05c9/nPf77PcYwxfPWrX+W00+LNN++77z4eeOABvv3tbwPw+OOPk5GR0eWetrY2/umf/olHH32UyZMnc/vtt/PjH/+YG264oV8vKiIiIiJyPPDqK2h/clliKaTfWkf60n/E2/c+AKnn/w2dL/8QQuk4ueP7NbZbGJ888mp2dkkWI++tAj9K6sV/T3TLS2AcnF6St0Oc3JJBSRZtcw1OVkGfy2mdvEn4B3Zjo2GiW/5AYOL8LvE5B5M6/8BHuGPHY30P/8AegrPOI5hTRHjtzwhM7H0J6rEqqWTxnXfeYeLEibzzzjuJYxMmTGDDhg1s2LABiCeCh0sWc3JyEokiwIIFC3jsscf6vOeVV15hzpw5TJ48GYCrr76a2267TcmiiIiIiMinWGsJv/4LcEOkX7mM2I43iLz7HH57I7F9m3BySwhOPxN8DxsL99lXsCcmYywEUxNVPgH8jmaim18kUHY6wcknE5x8clJjOTklRCs2dVn6ORC9tc34JDd/EpG97xLZ9HtsuJXg/K7Lb53sIgim4tXuIjjjM/EekF4Et3AKgbLTMKmZBPrYr3isSipZfOSRRwb9wb7v89hjj7F48eLEsS996Ut4nsc555zDjTfeSCgUoqqqipKSjze9lpSUUFVVNejxiIiIiIiMdt6ed/EqNpFyxjW4eRPAcYls/C3Rba/iVW0jOOt8AIIzB1Z7xBiDM2YstrU+cSxa/jzEooROurxfY7m5JUS9GLalFnOwD2GkfDVOwVQCRdPj71Ozg+iHb2A7W3ELphCae3GXMay1+M218QI0fXDyJ4G1RN5+CrdoRmL8xHs5TrzFxsEiN4cqvroFUzHGITj1lH6927HiyJqaHIF77rmH9PR0vvjFLwLw8ssvU1xcTGtrK7feeisPPvggN99886A9Ly9vzKCNJSIiIiJytLFejH2//iXBvBJKzv1cvABNwUz2FZUR3fgseFHy5pxKekHmET0nlluI195IwcFx9u55m7SykyiaMfMwd3bVGZlO5R9gTKyejILpeO3N7H79cUKFEyj66r9jvSh7H/0efrgD4wbwPnqbknOuwAQ+busRa6mn1YuQVTKB7D7eK5Yymz3PA16UgnM/3+PXoG7CdJo3PE9epkNdyz6iqWMoLCs7rvvLj0iyeN9997F7925WrlyZKGhTXBzvPTJmzBi+8IUv8JOf/CRxfN26dYl7KysrE9f2R11dK75vByF6EREREZGjT2zfJqL1laRe+HccqP+4p6CZchp2/w5wArSmT6CttuXInhPKJla5g9raFqzvE22swUw8mdp+jmudseCGqN+6gfa8E4nueAuwRGr2sH/jOvyWWry2JtIu+78Q6aTj+e+yf9NGAiUnfBzL/njF0nYni0gfz7c2hEnNxKRn05o1vcevgTd+EfbN31Kx+hG8qg8weZM4cKC1X+90tHIcM6DJs/4tUh4E3/nOd3j//fd58MEHCYVCADQ1NdHZ2QlALBZj9erVzJoVr5509tlnU15ezkcffQTEi+AsXbp0uMMWERERETmqeZVb4lU+J8ztcjww7XQwDm7xDEwg5YifY8bkYTtbsLEItr0BfK/XHod9jhMI4ZbOIrZnI9ZavIpNEEzDpGURee93RN77HU7BFNziE+JVW42Jv+Mn+PX7gIN7Dvt6ljGkXnQDqRdc3+tMoZs/meCJ5xPd9Hv8+r1dCvgcr4Z1ZnH79u2sXLmSyZMnc/XVVwMwfvx4vvrVr3LnnXdijCEWi3HSSSdx0003AfGZxrvvvpu//du/xfd9Zs2axe233z6cYYuIiIiIHPViVVtxCqZ0a+/gpGWRes6XD/Y2PHLOmLEA2LZ6/LaG+LEBNp0PTFxAeM+7+A2VxCo2EyidhZM/mcj6JwBIufBgcpeSgZM3Ca9qa5f7vX2bMGPykkpWA8WHXyabcsqfEdu1HtvRjFPQvzaBx6KkksW9e/f2eDwUClFQUJBYSno406dPZ9u2bT2ee+aZZ3q978ILL+TCCy9M6hkiIiIiIscbGw3j1+wiNP+SHs8PtKBNT8yYPAD81nr8lloAnAHMLAIEJi0gvPanRN9/HttSiztvCYGy04i88ywmPZvA5EWJa92SE4i+//t4FddACtb3iFVuJjjllEHbV2hSMkg560uEX/s57qeK4ByPkkoWL7roosRfgLW2y1+G4zgsXryYZcuWkZ+fPzRRioiIiIhIr7zq7WA93OITDn/xEXIOJou2tQ7bXAvGxRycbez3WBm5OHmTiG57BYBA6Wyc1EzSLrwek5bZpbVHoGQW0fdW4e3/kMD42fi1uyDSgTt+9pG/1CcEp55y3FY//bSkpgTvueceLr/8clavXs17773HqlWruOKKK1i2bBlPP/00sViMu+++e6hjFRERERGRHniVW+P7EodhNsxk5AIfzyyazLwj6pMYmLQArMVkjE200AhMWoBbWNblOrdoBhgnsW8xVrEJMLilJw742dK3pGYWv//97/PCCy+QkhLfEDtp0iTuuusulixZwiuvvMK//uu/cvHFFx9mFBERERERGQq97VccCsYNYtKysG11+M21A16Cekhg4nwiG/4Xt3R2n8tJTSgNp2AyscotpBDfr+jkT8JJPbJWINK7pGYWfd9n3759XY5VVlbi+z4A6enpeJ43+NGJiIiIiEifbLQTv2ZXl5YSQ82MycNvrce21OJkHVmy6BRMJjh3CaE5h69REph0En7NDjpfewSvegeBQV6CKl0lNbN43XXXcd111/Fnf/ZnFBUVsX//fp544gmuvfZaAP7whz+wYMGCIQ1URERERES68yq3Dtt+xUOcjLF4tTuxnS2YzIFVQj3EGIfUM/4iqWtD8y/FtjcS3fQiAG6pksWhZKy1SXWqf+WVV1i1ahU1NTUUFBSwdOlSzjnnnKGOb9DU1bXi+0m9qoiIiIjIqNHxwn/iVW0j4y+/g3GHpzNe5x9/QfT95wFIvfDvhrUgjLWW6KbfE9vzLmlLbsK4wWF79mjlOIa8vDH9vi/p76ZzzjlnVCWHIiIiIiLHguiHb+A3VpGy6E+6nfM7W4jtfofgiRcMW6IIH1dEBY54GWp/GWMIzbmI0JyLhvW5x6OkvqMikQhPPvkkW7Zsob29vcu5FStWDElgIiIiIiIC0W2v4FVsxskpJjjt9C7nYh++Ab5H8ITB66OYjE+2yjjSAjdy9EoqWbztttvYunUr559/vnopioiIiIgMI7+1HoDOtT/DLZqBczBRs9YS3foKTv5k3LEThjWmxMxiSgYmJWNYny3DJ6lk8dVXX+XFF18kKytrqOMREREREZGDrLXY1joCk04iVrGZzld/QvrSfwTAr9uNX7+XlLO+NOxxHZpZ1KzisS2p1hnFxcVEIpGhjkVERERERD7BhlvBi+KWzCI0/7N4e8vx2xsBiO16G4xDsOy0YY/LpGWB4+JkHVklVDm6JTWzeOWVV3L99ddz7bXXkpeX1+XcGWecMSSBiYiIiIgc7+zBJahmzFjczAIibz8Zb0Y/4yxi+97HLSzDpPa/yuWRMsYhtOAy3MKyYX+2DJ+kksWf//znAPz7v/97l+PGGF588cXBj0pERERERPBb64B4X0MnbwImNZPYvnLcCXPxaz8i1EOF1OHSU3VWObYklSyuWbNmqOMQEREREZFP+XhmMQ9jHNzxc/D2vY+3733AEhg/Z2QDlGNaUnsWRURERERk+Nm2enACmLRMAALj52A7W4i8+xwmNROnYPLIBijHtF5nFpcuXcrvfvfbWyKFAAAgAElEQVQ7AM4991yMMT1e9/LLLw9JYCIiIiIixzu/tQ6TkYsx8Tke9+BMol+/j8C00xPHRYZCr8niPffck/j4/vvvH5ZgRERERETkY7a1/uOehoCTno2TNxG/bg+B8XNHMDI5HvSaLC5atCjxcV1dHUuXLu12zapVq4YmKhERERERwW+rxy2e2eVYYMI8IvX7cMfPHqGo5HiR1Lz17bff3uPxO++8c1CDERERERGROOv72LaGLjOLAKGTLiP9c3fgpOeMUGRyvOizGurevXsBsNYmPv7kuVAoNHSRiYiIiIgcx2x7I1gfkzG2y3ETTMUtnDpCUcnxpM9k8aKLLsIYg7WWiy66qMu5/Px8brzxxiENTkRERETkeGXb4m0znDFjD3OlyNDoM1ncunUrAF/84hf5+c9/PiwBiYiIiIgcj8Jv/QZ3wlwCRTMA8D/RY1FkJBx2z6Lneezfv59IJDIc8YiIiIiIHHe8ur1E3nmGaPnziWO2tQ7QzKKMnMMmi67r4rounZ2dwxGPiIiIiMhxJ7r9NQC8qm1Ya4F4JVSCqZhQ+kiGJsexpKqhXnvttdx88828+eab7Nmzh7179yb+9EdDQwN/8zd/w5IlS7j88su54YYbqK+PT69v3LiRK664giVLlvCVr3yFurq6xH19nRMRERERGc2s7xP78A1wQ9jOFvzGqvjxT/VYFBluxh761UUfTjjhhJ5vNoYtW7Yk/bDGxka2bdvGaaedBsB9991HU1MT9957LxdffDHLly9n0aJFPPTQQ+zdu5fly5djre31XH/U1bXi+4d9VRERERHpp+jWVyCYSrDs1JEOZchYP4Zx+iz3MWCxis10/HYFoVM+T+StX5PymWsJnnAubY/dglswlbSLVVRSjozjGPLyxvT/vmQu2rp1a49/+pMoAuTk5CQSRYAFCxZQWVlJeXk5KSkpLFq0CICrr76aVatWAfR5TkRERERGlt/WQOfanxF573cjHcqQ8VvraH34eqIfvDYk40e3vwbBNEJzL8ak5+BVbcPbW45tayAw/cwheaZIMobm1yNJ8H2fxx57jMWLF1NVVUVJSUni3NixY/F9n8bGxj7P5eQk34h0IJm0iIiIiPStbuOvwY9Bay0FBZkjHc6QaNq9lrZYhMib/8O4hWfjpmYMeCzrxWjbto6Mmadh3AB+uJ3dH71N5olnUVCcR/Xk2XTu2YJxPNyMHIoXfgbjjtiP7HKcS+o7LxaL8Ytf/IK33nqLhoYGPrly9dFHHx3Qg++55x7S09P54he/yAsvvDCgMfpDy1BFREREBpff0UzbhufBDeF3tFKzbz8mZeCJ1NGqffM6TGomfkcLlasfIfXMvxzwWJEtLxN+9WFCp36elAWXEX77f7GRTrypZ1Nb20JsbBne5tdo315PaMGlHKjvGMQ3kePVkC5DXb58Of/zP//DokWL2LRpExdffDF1dXWcfvrp/X4gxPcq7t69m//4j//AcRyKi4uprKxMnK+vr8cYQ05OTp/nRERERGTkRMufh1iU0EmXAeC3HBjhiAafjXbiVWwhMP1MgiecR3TTi0R3vY31vf6PZS3RzWsAiLzzLF5DBZHyVQQmn4xbMBkAt/jjWiHBE84dlHcQGaikksXnn3+eH/7wh1x33XW4rst1113Hgw8+yLp16/r9wO985zu8//77PPjgg4RCIQDmzJlDZ2cn69evB+Dxxx9n6dKlhz0nIiIiIiPDhtuIbHqRwJSFBCbOB8BvrhnhqAZfrGIz+DECE+cTOuVPMek5dL7wfdoevZnI1j/0ayy/did+3R6C8y4BL0b709+GSAehhX+SuMbJKcakZeOWzsbJKhzs1xHpl6SWoXZ2dlJcXAxAamoqHR0dlJWVsXnz5n49bPv27axcuZLJkydz9dVXAzB+/HgefPBBVqxYwbJlywiHw5SWlnL//fcD4DhOr+dEREREZGRENr0I0Q5CJ12eSGr85toRjmrweXs2QjANt2gGxg2QcfV9xPa+R7T8ecKv/ATbWkdo4Z9gjOl6X30Ffs0OgieckzgW2bwGgqmknPw5jHGIvPscgamn4uZNSFxjjCHtsm8ek8t5ZfRJKlksKyujvLycefPmMWfOHL7//e8zZswYxo0b16+HTZ8+nW3btvV47uSTT+aZZ57p9zkRERERGV422km0/HncifNx8ycBYFIzsS3H1syitT6xPe8RmDAnUWTGuEGCkxcSmLiA8Ks/JbLhaTAOKQuv7HJvZMP/Etv5Js7Y8biFU7GdrcR2vElw5tmYUBqhky7HWktozoXdnuvmlg7L+4kcTlLLUL/1rW/hui4At912G5s3b+all17innvuGdLgREREROToE93yEjbcSspJlyeOmcyCY25m0a/bi21vTCyz/STjuKSc82XcifOJbl7TZQ+jtT5eZbzFXHj9E/H/vvUb8KIETzw/fn8ojdTTr8IZkzcMbyIyMEnNLBYXF1NQUADA5MmTefjhhwGorT22/kEQERERkd5Za4ntfJPwO8/ilszCHTctcc7JKsCr2TmC0Q0+v6ECAKdgao/njTEEZ3yGzj3v4lVtI1B6Yvy++gpsZwtO/mS8fe/T+fpjRLe8RHDeUtyxE3ocS+RolNTM4pIlS3o8fumllw5qMCIiIiJydLK+T8fq79L54n/hZOaT+pnrupx3sgqxrXUDqhJ6tPKbqsEYnKyCXq8JTJwPwVRiO95IHPMq4nU90hZ/HZOWRbR8NU7hVFJO/bMhj1lkMCWVLH6yr+Ihra2t3TbyioiIiMixyT+wC2/PRkILLiP9ymU4OUVdzjuZBWB9bGtdt3ut9fHq9/X4M+XRzG+qxozJx7jBXq8xgRCBSSfF22l4MQBilZsx2UU4OUWknHYVJrOAtMXfwDhJLeoTOWr0+R177rnnYowhHA5z3nnndTnX2NiomUURERGR40Rs3yYAgnMvxjjd5xvMwdk3v7m2W8uH6JaXCa/9GU52EcE5FxE8cXGvkw7hjc9hXJfgiRckisqMFL9pP0724Qs6BqedRuzD1/Eq3scdPwevahvBaWfEz804i8D0MzXJIqNSn/8H3n///Vhr+drXvsaKFSsSx40x5OXlMXVqz+u3RUREROTY4lVuwcmbgJOW1eP5RPuMlu41LWIfvoEZkwcp6YRfewSTkkFw2undrvOba4i8+Usg3poj7fyvddkXOZystfhN1QQLyw57rVs6B1IyiLz7O0K+hWgn7sH9i4ASRRm1+kwWTz31VADeeOMN0tLShiUgERERETm62FgYb/92gj20eTjEpOeCE8A2d22f4bc34u3fTmjhlYROvpy2X36LyHu/I1B2WrckKvrBWsCQet5fE37z14Tf/DXpl982FK90WLazBaId3Zbb9sS4AVIW/QnhPz5GR9V3AQiUzBrqEEWGXFJ7Fh9//HG2bImX/924cSPnnXceF1xwARs2bBjS4ERERERk5Hn7t4MfI1ByYq/XGMfBZObjfypZjO16G7AEpi7CGIfQvEvwD+zGq9ra5Trr+0S3rcWdMIfgjM/gjp+D37R/KF4nKYee7WQl11c8NPtC0j9/N27pbAKTF2JSxwxleCLDIqlk8eGHH2b8+PEA/Nu//Rt/9Vd/xde//nWWL18+pMGJiIiIyMjzKjaD4+IWz+jzOiersFuCF9u1HienJNFoPjj9TExqJpH3Vn3qGZuwbfUEZ54dHyt7HLa9ERvtHMQ3SZ5tqo7HkcTM4iFubinpl95K2sU3DlVYIsMqqWSxpaWFzMxMWltb2bZtG1/60pf4whe+wK5du4Y6PhEREREZYbGKzbiFZZhgap/XuePK8Osr8DtbAPA7mvGqthKYsjBxjQmECM6+EG/Pu0TKV2PDbdhIB9HNazApYwhMOgkAJzuepPkHk7bh5jftB+PG91qKHKeSKjFVXFzMhg0b+PDDD1m0aBGu69La2orrukMdn4iIiIiMIL+9Ef/AbkILrzzstYHS2UTWP4lXsQWn7FRiH20AawlMPaXLdaHZFxDbV0749ccIr/slHOzNGJx3SaJNxaEqpH5TNW7+pEF+q8Pzm6oxWQUYRz/vyvErqWTxm9/8Jn//939PKBTie9/7HgAvvfQSc+fOHdLgRERERGTkWN+n86UfgOsSKDvlsNc7BVMglIZX8T7BslOJffAaTk4xztgJXa4zqWPI+NwdeLUfEd2xDpOSjps7HnfivI/HyjqULI7MvkW/qTqpthkix7KkksVzzz2XtWvXdjl2ySWXcMkllwxJUCIiIiIy8iJvP4lXsZmUc76Mm1Ny2OuN4xIomUVs3yb8pv141dsJnfqFXltHuAWTcQsm9zxWMAWTkTsiy1Ct9eNtM0p7L+gjcjxIas9iT4LBIMFgcDBjEREREZEREt35Jm3/cxteY2Xi88g7zxCceTahE85Nehy3dDa2tY7wW0+AMQSnnzngmJzsIvzmEUgW2xrBi2hmUY57A04WRURERGR0srEIna/+lM4//DhxLLLxt/hN++n47QNEP3iNzjU/wB03nZSzvtSvsQPjZwMQ2/km7vg5OBm5A47TyRqHbRz+ZaiHEtRDRXZEjldJLUMVERERkWOD33KAjue/j1+3G4DAjM9ggqn4B3YTnHUe0Q/X0fnyD3Fyx5N2yf/BBEL9Gt9kjcOMycO21hGcftYRxerkjMOGW7GdrcPat9Cv2xt/fu7hl96KHMs0sygiIiJyHOl89WH85hpSL7w+3u/wnWeIbnsVnAApp3yetKU3E5iyiLTP/iMmJaPf4xtjCEycH2+DMfnkI4rVyTrYPqO5GhuL4Lc3Js5ZL4rfXHNE4/fGq92JyRiLk54zJOOLjBZJzyy+9tpr/Pa3v6W+vp6VK1dSXl5Oa2srZ5xxxlDGJyIiIscpb/92Iltfwdu/DZOSQeo5X8bNm4hXtwfbVk9g4oKRDnFU8hsqCEw5meDUU/Gba4m8+Su8/R8QmHwyJnUMgaIZBIpmHNEzUk6/itBJl/d7VvLTTM7BiqiN+wm/9QRe5VaCcy7EHTeN8Ju/wrbWkXHNv+OkZyc1nt9cC4HQYa/3anbhFkw5othFjgVJzSw+8sgj3HXXXUyePJm33noLgNTUVL773e8OaXAiIiJy/Op8/RfEdr2Fm1uKba2n/cm7aX/627T/5k46Vn0XG+kY6RBHHRuLYNsacDILAQiduBhC6RCLEDzhnEF7jgmkHNFexUOczEIwhvDbT+FVbMItnkG0/Hk6f/8gRDrA9/Dr9yU9XscL36dj9X9gre31GtvZim2uximcesTxi4x2Sc0s/vSnP+Xhhx9m/Pjx/PCHPwRg6tSp7Nq1a0iDExERkeOXbTlAsOx0Us/5K/yOZsJrf4Z3YDfuxPl4e97FtjdhQmkjHeao4rceAMDJKgDAhNJIWXglsV3rcUuOvjYRxg1gxuRjW2pxJy4gbclN+PV78RurcMdNo+0X/4jfWAkHi+r0xVqL37gfvAhexSYC4+f0eJ1XuxMAV8miSHLJYltbG8XFxQCJPjmxWEytM0RERGRI2GgY29mCycwDwEnLIu2iGwCI7dtEx5538TuacHJUrbI/bHMtAE5mQeJYaO7FhOZePFIhHZY7djxetJPUc76MMQY3byJu3sT47GBKBn5DRVLj2I4m8CIARN55tvdksWYXYHDzJw/SG4iMXkktQz3llFP4wQ9+0OXYz372M0477bQhCUpERESOb35rHQDOmLxu58zB/Wa2vWlYYxoNrB8jvP4J/F6+Nv7BZNFkFfR4/miUcvZ1pP/Jsm77DI0xuLml+A2VSY1jW+Kzqm7pbLyqrXjVH/Z4nVe7Eye3WLPWIiQ5s3jHHXfw9a9/nV/96le0tbWxZMkSxowZw8qVK4c6PhERETkO2YPLJU1mfrdziWSxQ8nip3n73iey4WlMypgeZwv9llpwQ5i05ArCHA36qkjq5JQQ3fUW1trE6rfe+C3xRDnl1M/T8dxu2ld9ByezABMIYaOdOGPySD33r/FrduJOnD+o7yAyWiWVLBYWFvKb3/yG9957j8rKSoqLi5k3bx6O0//OG/fddx+rV6+moqKCZ555hhkz4tW2Fi9eTCgUIiUlBYBbbrmFs88+G4CNGzdy5513Eg6HKS0t5f777ycvr/tvGkVEROTY4Lf0MbOYkgHG0cxiD2K7NwLgN/Rc9MW21OJk5R82sRotnLGlsPXl+JLltKw+rz00q+rklpJ64fVEP1iL7WwFL4rJyCW2t5z2//0XbGeL9iuKHJR06wxjDPPnz2fu3LmJY77v9zthvOCCC7j22mv5y7/8y27nvve97yWSx0Ostdx6660sX76cRYsW8dBDD/HAAw+wfPnyfj1XRERERg/bWgfGxaR3r6hpjINJyzouZhaTmTH75LWHkkWvlwqhfnMtJnP0LEE9HCenBIi3A3EOkyzalgOYtCxMIESg9EQCpV0L+sT2vEvH898HwC1QsigCSe5Z3LRpE1dddRULFixg9uzZzJ49mxNPPJHZsw9feerTFi1alCiWk4zy8nJSUlJYtGgRAFdffTWrVq3q93NFRERk9PBbD2DG5GJ6+aW0Sc/udV/escJaS+cL/0nHmv8vqev9A7ux7Y2YtCz8hkqs9buN57fU4mQVDkW4I8LJPZQsHn7fot/Sd6IcmDiftCV/T/CE83DyJgxajCKjWVIzi7fddhvnn38+3/72t0lNTR2yYG655RastSxcuJB/+Id/ICsri6qqKkpKShLXjB07Ft/3aWxsJCen9zXsn5aXN2YoQhYREZEhUNHZSCB3HAUFmT2ej2Xn4bU19nr+WNC27U1aP3obE0ojPz8DY/r+HX/9ls20Y8g59VIa/vAYuaEwwZyPE0OvrYnWaCdZxePJPka+bjZ/DLtT0knprCX/MO+0p72O1NIZfX/PFJwFJ581yFGKjF5JJYsVFRXcfPPNQ7q+/dFHH6W4uJhIJMK9997L3XffzQMPPDBo49fVteL7vTdgFRERkaNHpKEGt2QWtbUtPZ6Puhl4Lbt6Pd8bv+UAOO6gNIwfSjYWoW31f4NxsZEOqrd/gJtb2uc9bVvW4YwrI5wdX0J54MNtBCalEX7rN7glszDBeF2IdieLSD+/bke1nBLaqnZj+3gn63vEmg7gTD61398zIscCxzEDmjxLahnqRRddxNq1a/s9eH8cWpoaCoW45ppr2LBhQ+J4ZeXHSwvq6+sxxvRrVlFERERGD+vHsO0NOJm9F7Nz0rOx7c3dlloeTsfz36Xj9w8eaYhDykbDhN/6DballpQz/gIAv2Znn/f4bQ34B3YTmLQgXvQF8Br24TfuJ/LOM3Su/Rl+UzUAJvPYWYYK4OaUHLbXom2rB+uPqpYhIkeDXmcWb7311sRMYiQS4YYbbmDhwoXk53ctYb1ixYojDqK9vR3P88jMzMRay3PPPcesWbMAmDNnDp2dnaxfv55Fixbx+OOPs3Tp0iN+poiIiBydbGsDWIvpoRLqISY9G6yHDbdhUpNbUum3N+HX7Y1/3NZwVM4uhtc/SeS9VRALE5h2BsHZiwm/9Ru82l0EZ57d632xnW8CEJh8MiaUjskYi19fQdSPJ9O2aX98XMDJ6t6OZDRzckuw217B72zB6eV7wT/YY9E5hor7iAyHXpPFSZMmdfl82rRpg/LAf/mXf+H555/nwIEDfPnLXyYnJ4eVK1dy44034nkevu9TVlbGsmXLAHAchxUrVrBs2bIurTNERETk2OQf7LHojOk9qTnUJ9C2N0GSyaJXtTXxcWz3O4ROXHwEUQ4+GwsTeedp3JJZhE7+HG7RdIxxcAun4NXs6PPe6Idv4ORPwj1YHdQZOx6/YR9+/T6ccdMg0o5ftweTlo0JpAzH6wwbZ+x4IF7gxxk/p8dr7KG2GT307RSR3vWaLN5www2Jj2trayko6P6bmNra2n4/8I477uCOO+7odvypp57q9Z6TTz6ZZ555pt/PEhERkdHHth7ssdjHMtRDPfVsexMcTBYOx6vYAsE0TFoWsV1vD3qyGNu9Ea9uD8GZZw9o1tKv3wfWEpx9IYHimYnjbsFUIu/+DhuLYAKh7vc1VuHX7iLl9KsTx5zcUqL7ysFaUs78S0xKBp0v/eCYXIbpFpaBMXj7PyDQS7Lot9SCMZgxY4c5OpHRLak9i0uWLOnx+KWXXjqowYiIiIj4B5NFk9H7D/ZO+sGZxX70WoxVbcEtnklwykK8yq3YcNuRBfoJ1lo6//gokfVP0PaLWwi/9Zt+j+Ed2A2Amzexy3GncApYD79uT4/3RT98HTAEyk5LHHPHjgdr48enLCJQdhpO7njc/Mn9jutoZ0JpOPmT8aq29XqN33IAkzEW4yTdYlxESDJZtLZ7FdHW1tYhrY4qIiIixyfbUndwuWT3WbRDTD+TRb+1DttUTaBkFoHJJ4P1iO15d1DiBfDr92JbauPLR0tOIFK+usefn/oc48AeSMnotlfTLSwD6HEpqrWW6PbXcUtndZnNPLQ00y2egZORi3Fc0v90GSlnXtPfVxsV3KIZeDU7sF60x/N+S632K4oMQJ+/Xjn33HMxxhAOhznvvPO6nGtsbNTMooiIiAw6v7UO08cSVACCaeAG8duTSxa9yvh+Rbd0Fs7Y8Zj0HGK73iY4/cwjDReA2K63AUPwxMWYlHS8ik3YcGvSxXcAvLo9uHkTu/0y3knPwWSMxavZ9fHzKrcQfv0xsBbbUkvw5Cu63pNTjMnMJzjr/MQx4wYH9nKjgFs8k2j5arzaXbjjphHd9iqB4pk42UV4B3bj1+8jOPWUkQ5TZNTpM1m8//77sdbyta99rUvVU2MMeXl5TJ06dcgDFBERkeOL31J72OWSxhhMWlZ8z+JhWGuJVWzGpIyJJ4rGITBpAdEP38B6MYx75EsTYx9twC2ajpOejTlYRMW21CVdfMf6Hn79XoK97KN0C6fiVW1NxBt5+ylsaz1O4VQCOUUEPpUImUCIMX8xeP2qj3aBohkAeFXbsM01hF/5CWHHJTDtTGI712FSxhCcp2r6Iv3V57+Op556KgBvvPEGaWlpwxKQiIiIHL9spAPbXIsz4zOHvdakZ2M7mnsfK9xG58s/Ila1DSLtBKYswpj4Dhx3wjyiW17Gq95OoGTWEcXsN9fg1+9NFJg5VMXVbz2AWzA5uTEa94MX7bZf8ZDgCecQ27We6AdrcQvL8Kq2kXLanxOa/9kjiv1YYVLH4OSW4u0tJ9pcg1MwBSd3PLEPXsUpnEraxX+Pk64e3SL9ldSv0pQoioiIyHDw6vcBttek6ZOctOx4lcse2Eg77c89gH+oOmlOCYEpixLnAyWzwHHx9pYfcbIY+2hDfMzJJ8fjOrjn0B7s7ZcMvy5e3MbJn9TjeXf8XJyCqUQ2PotbfAK4IYIzzzmSsI85bvFMopvXAJB24d/hFk3HX3gFJj13UGaPRY5HSRW4EREZaV5DJdGP3h7pMERkiCWSpiSSRZOe3eMyVOtFaX/u3/Dr9pB20Q2knv1XhOZejPOJtgkmlIZbNIPY3vIjitdGOohuewVn7AScrML4wZQMCKYmqromw6vbA24AJ6eox/PGGFIWXoFtOUDsg7UEp5+OSR1zRLEfa9yDS1EDZafhFk0HwMksUKIocgSULIrIqBB+43E6X3hoUEvdi8jRx6/bg0nNxCTRp9CkZWM7W7F+rMvxyLu/w6/ZQerivyUw6aRe7w9MmItfvxe/rWFAsdpomI5V38FvrCbl1M9/HJcxOGPy+jmzuAdn7IQ+Wzu4E+bjHNzLGZx90YBiPpYFJs4nOOu8Lv0mReTIKFkUkaOejYbxKjcPeql7ETn6eHV7cXqoCNqTePsMi1f9cUsJv6mayDtPE5h6KsGpp/Z5vzthLgCxve8NKNbOl36AV72d1MVfIzBxftfYxuQlPbNorcU7sBs3b0Kf1xljSD3ny6Sc+cXDXns8MqE0Us/+qy4tRETkyCQ1L9/S0sLPfvYztmzZQnt7e5dz//3f/z0kgYmIHBKr2AReDIwzqKXuReTokqgIOvvCpK4PTDqJyMbf0vHcv5F63ldxsgsJr/slOEFSzviLw97v5I7HZOTi7S2HE87tX6zRMLHdGwjOXUKw7LTuY2fmE+2hL2KPY7XWwf/P3n3Hx1Wdif//3DJNzeq9WJKb3CvYBmMTQ+i9lywhbYM3wJKFfPltSCCVBHZhU2DZBEISQkIJ3QYM2Ljg3rtkS1bvvU675ffHlcYWkuyRrGqf9+vll+17Z+55ZMkz89xzzvN425Fjet+veDIlNgOlj32NgiAIgy2oZPHBBx9E13UuvfRSHA7HUMckCILQjV6yF2wubNnn4T+2BVPzIqnitUgQzjZWRVAtqOI2AHJoFCHX/xj36v/Bs+b5wHHHBV8LanZJkiTU9Nn48zailR1ETZ0edKx6fTGYJmrSlN6vHRYD3nZMnxvJfupCgXqt1T9RicsMenxBEIThEFSyuHfvXrZt24bNdvY2cxUEYXQyTQOteB9q2nTU7PPx565HKz2ILXPeSIcmCMIgO1HcJviZMzlkHCHXPIp2fCfYnMgR8f1aoulYcBN6TT7u1b/FdcX3UZN7T/56xFpjJXhyH60xuiqiGm31KNGpp75WXRFICvJpHicIgjDcgtqzOG/ePAoKgltKIQiCMJiM2iJMdzNq+myUpMngCEUr3DnSYQmCMAROVxG0L5LqwDbpAmyZ8/q9l09yhuG68hHk8FjcHz+Dv2B7cLHWFSKFRvfZu08Ot3otmm2nL3Kj1xYhR6ciqfbgAxcEQRgGQc0s/upXv+Lb3/42s2bNIiYmptu5733ve0MSmCAIAoBWshckCTV9FpKsoGbMQSvahWlop6waKAjC2HOiIqgyrOPKrghcV/8A96e/x7PmeYz6EuwLbjplkR29thClj1lFAKkzWTRaT13kxipuU4TtpB6QgiAIo0VQM4vPPvssVVVV1NfXU1xcHPhVUlIy1NIDz8QAACAASURBVPEJgnCO02uOI0enB/qJqekzwefGqC0a2cAEQRhURnsjek3hiFX5lEMiCbn6UdRJF+DbuxKjobTPx5redszmauRT7DGUXBEgq1bxmt6u4bMKBpqttVZxG7FfURCEUSio2/KrVq1i9erVxMfHD3U8giAI3ZgdzYHlXABKcg4AWvlhlIQJIxWWIAiDyPR14P7oGcAc0f6BkqLimH8T2tFN6OWH+yy0o9dZeytPVZBGkmSrfUYvvRb9RzfhWf8SzuX3gWla1+rsnygIgjCaBDWzmJaWhqqK5V6CIAw/s6Ops5eaRXaGI8eko5cfHsGoBEEYLKZp4v70OYzGClyXfm/E+wfKYdFI4xLRTvEaE6heepoETw7v2WtRry/Fs/EvYBp4t7+JXlMAsoocnXLGsQuCIAy2oDLA6667jhUrVnD33Xf32LO4aNGiIQlMEATBNDRMTyvSlwpIKClT8R/8TLTQEISzgNlai15+CPt5N/erdcVQUlOm4j+2uc+90UZtIVJ4XGB5fF/ksBi00gOBv5s+N+5Pf4fkCMEx/248G/6E//Aa5Jg0JEVUnBcEYfQJKll89dVXAXjmmWe6HZckiTVr1gx+VIIgCIDZ0QKA5BrX7biaPBX//o/Rq46Nmg+XgiAMjN5QBoDaucR8NFCSc/AfXoteU4iaOLHHeb22ECU++7TXkcLjMDuaAje2tOI9mC01uK58GCVlGsqxTeiVeWIJqiAIo1ZQyeLatWuHOg5BEEYZ09DRjm1Gnbh42CsTBmLoaALoUZpeSZoEkoJeflgki4IwxhmdyaIcmTzCkZxgJa6S9RrzpWTR1LyYbfXIU5ae9jryOKsFiNFcgxKThtFUCZKEkjQZSZJwnH8rHe/9HKWXhFQQBGE0CGrPIoCmaezYsYOVK1eyc+dONE0byrgEQRhhetlBPOtfQivZN2IxmB3NAN32LAJINidKQvYp9xQJgjA2GA1l1pJOu2ukQwmQnGHIsenoFT1fY7pel+Sw6NNeRx6XAIDRXNn5e5X1tXYuOVXiswm9/WnUCQsHK3RBEIRBFdTMYkFBAffddx8ej4ekpCQqKytxOBy88MILZGeffhmGIAhjj9FUYf1eVwzj545MDJ0zi1/eswjWvkXfrvcwOpr6bIotCMLoZzSUoUSnjnQYPSjJU/Ef/ATT70WyndgbbbQ3Ar2/Ln1ZYGaxqcr6vbkqcCzwmJOqPQuCIIw2Qc0s/uQnP+HWW29l/fr1vP7662zYsIHbb7+dJ554YojDEwRhpBhN1p1wva5oxGKwlqFKSCERPc7ZsheCBL79q4c/MEEQBoWp+60EahQmi2ryFDD0Hq+BZuAmVtRpryHZHEih0RjNVZimgdFc3SNZFARBGM2CShZzc3O59957kSQpcOyee+4hNze33wP++te/5itf+QqTJ0/m6NGjgeOFhYXcdtttXHbZZdx2220UFRUFdU4QhKERuBNeXzJiMZgdzUjOsF6rEcqRiahZ5+M/vBbD0zoC0QmCcKaMpkowDeSo0dc2oiumrhtnXcz2zr3UocGtaJAjE61ksb0RNB9ypEgWBUEYO4JKFuPj49m+fXu3Yzt37iQ+Pr7fAy5fvpxXX32VlJTubwyPP/44d955J6tXr+bOO+/kxz/+cVDnBEEYGkZzFUgKZnsjhrtlZGLoaDrlUi/7nGtA8+I/8Ammpw2tZC+mLvZTC8JYEShuEz2yvRV7I4VFg2rHaKzodtzoaATFBvaQoK4jj0vEaKoK3IATM4uCIIwlQe1ZfOihh1ixYgXLli0jOTmZiooK1q1bx9NPP93vAefPn9/jWH19PYcPH+bll18G4Oqrr+ZnP/sZDQ0NmKbZ57no6NNvLhcEof9MbzumuwUlbSZ66X6MumLktBnDH4e7uUdxm5Mp0SmomfPx7fsI394PwdRR0mbiuvR7SKp9GCMVBGEgjIYykBXkyISRDqUHSZKRxyUFitN0MTtvYp282upU5HEJ4OtAr863/h6ZNOixCoIgDJWgksXly5fzzjvv8OGHH1JTU8PEiRN54IEHyMzMHJQgKisrSUhIQFGs8vyKohAfH09lZSWmafZ5rj/JYkzMqRvnCoJwgqe8kjYges5Sakv343RXERW3eMDX8zfX4C7cT/is5UF/wALo8LTgShpPXFx4n4/xffVr1K5qw5k2BdkRSuO6v6N//hwJt/w/5JOKUgiCMDIMnxt/fSWOpKwe5yrbKrHHphKfcPr9fyPBSEzDW3a022tQhb8VNTL2lK9LJ+tIz6JqC0gV+5FsTuIz0vr1OigIgjCSTpss6rrO17/+dV566SVWrFgxHDENifr6NgzDHOkwBGFM8BcVANDhTEEKj6O15CjapIHtC9QqcvF89hymp5UOWxxKfM8PjL0xTQO9rQmfHEpt7anGHof9ykcxAANw4sK97iXKP/gDziVfH1DMgiAMnKlroHmRHKEYzdW4V/8Go6kC1+X/jpo+u9tjPVXFKEmTTvN/fOT4nXFozZuoqaxDUq2bT96mepSY9KBjNiRrdYS3sgA5JoO6urYhi1cQBKEvsiwNaPLstMmioiiUlZVhGMaAAgtGUlIS1dXV6LqOoijouk5NTQ1JSUmYptnnOUEQhobRZO1XlCJiUWIz0OuKB3Qdrfww7g//G6mzEIReVxR8suhpA1M/5TLU3tgmXYjeUIZ//8eomQtQU6f1O25BEAbOu+kV/LnrkaPTMNobAGufnmfdS4Tc9FPkUGsW0fS2Y7Y3jMpKqF3kqCTAxGiqQonNADqXoabPCvoaUlgsyAoYeqDvoiAIwlgRVIGbf/u3f+OJJ56gvLwcXdcxDCPwazDExMSQk5PDypUrAVi5ciU5OTlER0ef8pwgCEPDaKpEHhePJKvIsRmYLTWYvo7uj2mpwbvrPbSKI31eRyvaDYpK6E0/RXKGY9QWBh1DV+PrYHqZfZlj/o3Wh9MNf8L0ufv9fEEQBsY0TbSSfcjRaUiucJSYdEJveBznZQ9gal48n/8B07Q+O2hlhwCrMf1o1bW/sKsiqulzg9/Tr96ukiwjRyR0u54gCMJYEdSexcceewyA9957L3DMNE0kSeLIkb4/KPbm5z//OZ988gl1dXXce++9REZGsmrVKp544gkeffRRnn/+eSIiIvj1r38deM6pzgmCMPiM5spAxT4lxrqbrpUdwpa1AKO9Ee8Xf0Ur3gOAHJmMcssvet2DYzRVIEclIzlCkePGo9cWBR3DiV5m/U8WJdWOc9m36Hj/F3Ssegrnxd9GiUzu93UEQegfo7kSs6MJ+7zrsecs63bOsehOvBv/jFa8F9v4uWgF25BCIlESJ49MsEGwkjzpRLLY9boUZNuMwHUiE63XQzGzKAjCGBNUsrhmzZpBG/Cxxx4LJJ8ny87O5s033+z1Oac6JwjC4DINA6O5JrC3SEmciBQWg2fN8+hlS9CK9mBqXuxzrwNZwbfzbYza473ODhiNFSgp1jJQJXY8vrJVmJo3sPen27h+Dyh2JNla8ND1oUzu5zLULkrCBJyXfA/Phj/R8dbjuC79t8DX5C/Yjla4A8nuQkmeim3CwgGNIQw9reoYaF7U1OkjHYoQBL3cuoGspkztcc42eQm+3e/jP/gpavIUtNJ92HIuDvyfH40k1Y4UHhtIFo0B3sTquvkmZhYFQRhr+nyFvvDCCwN//v3vf09KSkqvvwRBOLuYbXVgaIEPN5LdRejNP8M2aQn+3A1IIZGE3PgEjvk3YJ9+KSh2/Hkbe17H14HZ0YQcZc3oyXGZYBoYdSU9H+ttp/0fj+Db/2HgmBFYhjqwZBHAljmP0Ft+geSKwHf488Bx394P0EoPoBXuxrP2/9Brjg94DGFoeTf9Dfcnv8NobxzpUIQg6BVHkMJikMLjepyTZAXbtOXoFUfw7n4fdG1M3KiRo5JPzCx2/hzKIf2r3qqkTEOOSkEWKxwEQRhj+kwWNU2jsdF6UVy9evWwBSQIwsgymqwG1CffAZfsITiXfoOQW39JyA0/DizplOwu1Kz5+Au2YWq+7tfpbGTd9Vglzmq1o9cV9RjTn7se09OK3rmHCTpnFm2uXmch+0MOiURJmoLRWaTH1HwYDRXYp11C6B1PI7ki8Gz6W2AflTB6mJoXo6EUNC/ebW+MdDjCaZimgV6Ri5I8pc/WEPYpS60bTPs/RgqPQ44LruDVSJIjkzCaqzAN46Tl8f27iaWmTrNuXIl2PoIgjDF9LkO97bbbWLZsGVFRUXg8HpYtW9br49atWzdEoQmCMBK0skOg2JBj0nqc623fn23yErRjm9GKdmGbsChwvOtOfGBmMTQKKSQS/UtFbkxdw3fwUwD0muOYho4kK9as5BnMKnaLOzYD7dgmjI4mzLYGMHXk2AwkuwvH+bfiWfdHtKObsE1eMijjCYNDrysG00COy0TL34I+bTlKwoSRDkvog9FQhultQ03uuQS1i+QMwzZxEf7c9diyzx8T/QblyCTQ/Zht9RjtTWBzItldIx2WIAjCsOgzWXzooYe44447KCsr45vf/CZPPfXUcMYlCMIgME0T76a/IUfEYZvxVSTp1HuDTNNAK9yFmjodyeYMagwlaTJSeBy+A5+gZp0f2H+kN5aDonZbjibHjsf4UpEb7fh2zPZG1AmL0PK3YDSUocRmYLQ1DKi4TW/kuPEAGHVFGG1WKX+l85g6cTHKkXV4t7+JOumC0/4bCcPHqLH6fbqW30fH+7/Es/U1Qq/rvufd9LnRK/NQ0meNicTjbKZ3VkZWkqec8nH2mVeg1xZhm3LRcIR1xrqWjuo1BZ03sQbndUkQBGEsOGWBm8TERBITE3nhhRc477zzhismQRAGiV56AP9hq0CVVn4Y57JvIbsi+ny8UVuE2d6AuuCmoMeQJBnHgpvwrH0B/4GPsc+60rpWk1VR9eTiFUpcJr6SfZg+N5LdhWma+PZ/hByVjGP+jdbsUXU+Usg4jNpC7HOvHeBX3p0Skw5I6LXFmO314Ai1ep8BkiRhm3IRnvUvYTbXIEUmDsqYwpnTa44jhcciR8Rjn3kZ3q2vY7TUIEfEA2C01eP+6FmMxjJcl38fNX3mCEd87jJaavAfWY8UkYAcFnPKx8qRiYTe9JNhiuzMKfFZSOMS8O1bBaoDKbR/+xUFYSTphsGHW0uYmRVDRmL4SIcjjEFB3UJftGjR6R8kCMKoYpom3t3vIoXF4Fh8F3r5YdpffxTv3pWYmrfX52iFO0FSUDNm92ssNft81PHz8O5825pRxNqz+OViDkpCNmDiz99ijZe3EaO+FPusK5HCY5Fc49Cr8604MFGzBucmlWRzWqXr64rQ64pRYsd3m4WSY9IB0OuLB2W8c5XpaQsUJhoMes1xlM49bWrmAgD8x3cA1s2Ijnd/htFWD3YX/qNfDNq4Qk96YwVtrzyAVrq/xzn/8R20v/VjjI4mnIvvHIHohpYkKzjmXItRX4pRUzBoKx4EYbCZpkl9s4eDhfW4vRqGafLyh7m8s+E4v397Px0ebaRDFMYgsd5KEM5SevkhjJrj2GdfjX36pYTc+BOUxIn4tv+Tjvd+YbWqOIlpmvgLd6Gk5CA5Qvs1liRJOJbcg2Rz4Vn3IqbPjdlaF9iv2EVJmYqSMhXv1tfQKvPwbP0HStJk1ImLkSQJJWECek0B2vEdyFEpKNGDV3FZjh2PXlMQWOba7VxUCsgKRn3PSq1C8NzrXsT96e8G5VrW/tL6QEsWOTwWOS4LrTNZ9Gz5O6buJ+S6H2KbuBiteDemt31Qxha6Mw0dz7o/Yrpb8B9Z3/2caeD94q/I4xIIvflnqOmzRijKoaVOWIg0LgFMUySLwqh0tLSJh5/fzCP/u5lnXt/Hw89v4um/72HzwSoWT0+kodXLa2uPjXSYwhgkkkVBGMMMdwvene9g6t3vFpqaD++ud5FCo7FNttrgKNEphFz+EM6v3o/RUIrn8z90qwBqNJRhtlSjZs4fUCyyKwLHhV/DqC3Es+FlwOyRLEqSjHPpt0Cx4V75K9A1nBfdG9gnqCRkY7bUoFceHbRZxS5KbAamuwUMPbCHMRCXoiJHJVsFVYQBMU0DvepooArumepqZ6LEn6iWactagFFXhP/oJvTSA9hnXYUSnYpt0oWga/gLtg/K2EJ3vn0fYdQWIkenopVay8i7GPWlmJ5W7DMuO+3y07FMkhUcc68DQA4VyaIwupTXtfPbf+7Hrsrcdekk/v2WmczKjiW/vJkrzk/nm1flcOXCDL7YX8ne/LqRDlcYY0SyKAhjmHfra/h2v4defqLlhF5znI63n8Cozscx73okxdbtObbx83AsvAOtaDfera9jmgam7se75e8gK6gZcwYcjy3rPNSs89COWx/ae+spJodF47zwHjBNHPNvCPRzBJATJnb+yUTNWjDgOHojx44P/Fk56c+B8zEZYmbxDJjN1eDrAF9Ht2RioIya4yApyCfNAnfdyPBs+BOSaxz26csB63srRyXjP7bpjMcVujNaa/Htegc1awHOJV8HXUMr2h04r5cfBkBJzhmhCIePmr0Qx8LbUbPPH+lQBCGguc3L/7yxF1WV+f5ts1k+L5WZ2bF859ppPP/9pdxy8QQkSeK6CzNJjg3l9bX56IZoFSUE75QFbrr4fD7eeecdjhw5QkdHR7dzokqqIIwMva4I7dhmALSKI6jpszDa6ul4/5dIrghcV3wfNa33gh+26ZdiNFfjP7Aao6EMyeZArziC8+LvnHG7CseFX0OvzMX0tCGPS+h9/OzzUBIm9CgUocRmgKwgRyahRA1u8+rA0lN7SK8Nw5WYdLSjX2CIaocD0jUTCGC01aFE92y90r/rFSDHpCGp9sAxOSIOOS6zs/jRNYEenJIkYZt0Id5tb2A0V3W7AXE2M1pq8B1ag2Putf1eOh4srfQAGDqOBTchRSQghcXgP74d26QLrPPlh5CjkpHPgaIvkixjn3n5SIchCN28vjaflg4//3n3POIiu7d0sakn5oRUReaGJVk8984Bth6q5oIZSV++lCD0Kqhk8dFHHyU3N5eLL76Y2NjYoY5JEITTME0T75bXkBxhSOEx6JV5AGiFu8DQCLnqB8inqOopSRKOC+5GjknDu/lV0P04Ft2BbeLiM45NdobjvOTfMGqLesxqdntcWHTPuFQ79vk3DXqiCCDZXciRSUih0b22WOiawTLqipHTRbLYXycni2ZrPZxBsmiahtVaYcLCHufs0y/Fn7cR25Sl3Y4rGbNh2xvoVcfOymTR1DV8+1ZhultwLL4bSZLwbn0drWgXetVRQq58eEgSRr3yKFJIpJUoShJq1nn4D3yC6WkDmwO96ii2yWOjBYYgnG3yy5rZeriaqxePD6rS6dxJsaQnhPHBpiLOn5qAqogFhsLpBZUsbty4kTVr1hAR0XfJfUEQho9efgi9MhfH4rsxPa349ryP6etAK95j3eUPov2DJEnYc5ahJE7CaKrANsC9ir1RkyZD0uQBPdcx+8pBi+PLnJd8D0ntPYFVYqzkRq8vOWuLdAwlvfY4cmQSRlMlRtuZ7YkxW2rA7+6xtxTANnFxrzc15IhEUGzoDWX0fYtibNLrS/Cs/QNGYxkASuJka/9g0S6U1OnoFbl0rHwKx8LbUJKnDFqvUNM00avyrF6qnTdYbBPOx7//I3xH1qEkTADNh5oybVDGEwQheIZp8vfPjhIV7uCqhRmnfwLW+/71F2bx27f2s/lgFRfNGvwbs8LZJ6h3lKSkJHw+31DHIghCkPTaQgBsU5ZYDbBNE61oN3plHmrG3H5dS4lKHtREcTRTolMCPfq+TOpcnmqIIjf9Zmo+jPoSlPTZIKsYrfVndD29tgjofW9pXyRZRo5OxWgoPaOxRxvT14H742cxvW24LnsQOSbd2qu8611Q7Dgv/g6ur96P0VaHe9VTtL/+KEZ74+CM3VqL2d6IctKNHzkmAzVjDr4db+Hb+TZIEkrywG4MCYIwcJsPVFFU1crNS7Nx2JWgnzdrQgxp8WGs31s+hNEJZ5OgksXrr7+eFStWsHLlSrZs2dLtlyAIw890t4DNiaQ6rNYCiop3x9tgGqjjB16g5lynxGag159dycZwMOpLwNBRErKRwmIw284wWawrAkW1Wpr0gxKdalXnNM0zGn808W59DbOjCddXH0DNmINj8V2Y7Q1ox7djm7IE2RWBmj6LsLuexbHk61Y14bKDgzJ21/J2JfFEMihJEs7l30WOz0SvOoocl4VkDxmU8QRBCI7bq/HW+gKykyM4f1rvtQH6IkkS8ybFUVTZSmuHmAgSTi+oZah/+9vfAHjmmWe6HZckiTVr1gx+VIIgnJLpbkFyWYVoJNWOkjARveIIUkgkclzmCEc3dskx6WiFOzF9HeIDcD90zXQr8dnI4TFnvAzVqCtGjk5DUoJ6iwqQo9Mw8zZiupvPil54WtlB/LkbsM+6MtBCRE2ajJq9EO34jm7FViTVjm3yhXi/+AtGa+3gjF+Zh+QIQ47qXghDUh24Ln8Izye/s9qWCIIwrFZtKaa53cf9N81E7mUP/ulMy4rm3S8KOVzUyPlT+5dsCueeoN6J165dO9RxCILQD1ayeGIzu5I8Bb3iCGr67EHbr3Qu6vpArtccR02dPsLRjH6+g59iNJaj1xRaNypCo5DDYtBK9g/4mqZpotcVYcvuWdzmdOTOfadGQ9lZUdHWu+MtpHGJ2Odd3+24c+m9GHOuRv5SVV9JVpHCYjBaagZlfL0yDyVpUq+vKbIznJBr/3NQxhEEIXg1jR18sqOExdMTyUoeWC2RzMQIQp0qB4/Xi2RROK2gP1VqmsaOHTtYuXIlO3fuRNO00z9JEIQhYbpbkV0n3iTUtFmAhJo9uI3szzVKfDZIEnrV0ZEOZdQzDQPvtjfwH/0Co7440KZFCovFdDdjagNb3mS21ICv9+I2pyNHpwJWo/ixzvR1YNQVYcs+v1v7ELBm9pTOr/XL5Ih4jJYzm1k03C1olXmYrbXdlqAKgjD4mtt9QS+dr6xv59k396PIMjctzR7wmLIsMS0zmoNFDWfVsn1haAQ1s1hQUMB9992Hx+MhKSmJyspKHA4HL7zwAtnZA/9hFQRhYExPC1LChMDflbjxhH7tN90SSKH/JLsLOTodverYSIcy6pmtNaD7cS79JuqERSBbBRbkcKu9ktnegDSAFhZ6XRHQv+I2XWRnOFJIJPpZUORGry4A00RJnNSv58nhcWjFewY8rj9/C561/xf4u5KSM+BrCYJwap/uKOUfa45xybxU7rhkYqDqsKYbbD9SjcenkxQdgmaYFFe18uHWYmyqzL/fMpOocMcZjT0tM5rtR2ooq20nLT5sML4c4SwVVLL4k5/8hFtvvZVvfvObgR/kl156iSeeeIJXXnllSAMUBKE70zAwPa1IId0TQ5EoDg4lcSL+vA2YhoYk92/P3LlEb7Qq6clRKd32FkphMQAYrfWn7XdomgZGbZHV/9JuNZPWa4tA7n9xmy5yTNpZURFVrzoKkoyS0L8bslJEHKa7BdPvQbI5+z2uVrgLKSQSx+I7kcPjUGLS+30NQRBO7+NtJbzxeT6x45x8tqsMp0Pl/Jx4ckuaWL29hLpmT4/nZKdEcN9104mO6P//7S+bnmm9Vh88Xi+SReGUgvoklJuby8svv9ytkfU999zDCy+8MGSBCYLQO9PbBqaJ5BTJ4VBQEifiP/QZRn0pyhgpFmRqvkCj+v4WhRkoo6ErWezep0sO70wWeylyY5qmVTlV92O0N+Lb84H1d5sL+9SLkeMy0SuOIMf0v7hNFyU6DV/54TGf7OtVR5FjM/qd8MnhVmsYo7UWJTqtX881DQOt4ghqxlxsWWJJuyAMlbySRt74PJ8FU+L59jVT+dsneazcXMTKzUUAjE8M5+6vTiYtPozK+nYUWSIlLoww1+B1kY0Kd5AaF8r+gnquCLJPo3BuCuqdND4+nu3bt7No0aLAsZ07dxIf33u/MkEQho7pbgFAEjOJQ0JJmAhYH9bHSrLoz9+Cd9MrSM4wbNnnD8uYRmM5Unhsj2RGCo0CSeq1fYZWuBPPZ8+deGx4HI4LvoZemYdv/0fQuXfGNv3SAcclR6eCoWM0VfW5r2+0M3UNveY4tpyL+/1cOcIqemO01PQ7WTTqS8Dbjpo6td/jCoJwgl/T8fh0wkPsvZ7fergah03hG1floCoy/3LZFDKTIlAVmeyUcSREuQITNGe63PRU5k2O5/0vCqlrchMb6RqycYSxLahk8aGHHmLFihUsW7aM5ORkKioqWLduHU8//fRQxycIwpeIZHFoyWHRSGEx1r7FGZed9vGe9X9CGpeAY/ZVwxBd77Si3dbvpQeGNVnsbamoJKtIIVEYrXV4d7yFXpmH66ofICkqWsE2JFcEzqXfAllBSZpszSBOW47R0Wz9bOu+QKGagZBjrDvk/oOfIi+5Z0xWBzbqikD3oyT1b78iWAVuAMwBFLnRyg8BoCSLZFEQBso0TZ59Yx+V9R388jsLcTm6f9TWDYNdebXMmhCDw9a511uWWDp7YEvvz8SFM5J4/4tCvjhQyfVLsoZ9fGFsCOpddPny5bz99ttMnDiR9vZ2Jk6cyNtvv80ll1wy1PEJgvAlIlkcekriJPSqY6etEme01uHP24A/b+MwRdaT6XOjd37I10sPDFllO9PTRttf78d/fAemoWE0VaL0sa9QDo9Fy9+Gb88H6FVHrd6Vfi9ayX7UzPmo6TNRU6d1W2oqh4xDiUlDic9GUgd+J12JTsE283L8uevxrHkBU/cP+Fojpasab9csd39IjlCwhwyoIqpefhg5OhU5ZFy/nysIgmVnXi25JU00t/tYtaW4x/nckiba3H4WTBn51Xkx45xMy4pm4/5KDKP39w5NN4Y5KmG0CXpDR2ZmJitWrBjKWPjKV76C3W7H4bA+KDz88MMsWbKEvXv38uMf/xiv10tKSgpPe7zmTgAAIABJREFUP/00MTExQxqLIIxWXcmiKGgzdJTEiWj5W/DtfBv7zMutD+C98OdvBcBsrsJwt4zI90QrOwi6hjppCdrRjRgNpUNSlEQrP4zpacV/eK01o2jofRahkcJjoeoo9rnX4j+2Bf/htVa1VN2HmrVg0GP7MufC25FDxuHd+jr++EzsM68Y8jEHk151DGlcwoCTNjkiDqO1f8miqfnQq/Kw5XxlQGMKgmAtP31jbT6pcWGkxofyyY5Sls1O7rbEc2duDQ6bwoys0fE59qKZyTz/7kEOFjYwM7t7TLvyanhx1REevGkmUzKiRihCYaT1mSz+6Ec/4mc/+xkAjzzySLfiNid76qmnBjWg3/72t0yadGLpjWmaPPLIIzz55JPMnz+f559/nv/6r//iySefHNRxBWGsMN0tIMngCBnpUM5atgmL0MsO4dvzAb5DnxFy9aMosd0LAJimiZa/GckRhultQ686hpw5b9hj1Yp2IznCcMy/Ae3oRrTSA0OSLOrlB63fK3LRS/cDIEf3niw65lyLLXMB6vg5SDYn3m1vYGpeJGf4sPXts8+8An/uRrSK3FGdLJq6hmfdH1Ez52PLWoBenY9WdgDbpAsHfE05PA69oaxfz9Gr862bDmK/oiAM2Cc7Sqlv8fDIHXNIjA5hd14tf/k4l+svyiIzMQITM7AE1d65BHWkzZ4YS5jLxoZ9Fd2SRa9P5++fHcPr0/nLx7n89JvnYVNHR8zC8OpzGWpq6ok9IxkZGaSnp/f6a6gdOHAAh8PB/PnzAbj99tv5+OOPh3xcQRitTHcLkitiTO7FGiskuwvXV+8n5KafIik2PF/8BdPsvhTHqC/BaKzAPvdaUGyBpYPDyTQ0tJK9KBmzkcOikWPS0EsPDP44polWdgg5djxg4tu7CpCQI5N7fbwcmYg6fg4A6uQloKgYdcWomfOQ5OH7uVUSJ6BX5we+d3pNAUZz1bCNHwyjvgStYBuez57Hu/t93Kt/gxQajX3BTQO+phwRj9lah2kEv3xMKz0AkjJsybwgnG38ms7q7aXMzI4hJyOKqHAHNy7N5nBRI7/46y7ue2Y93//9plGzBLWLqsgsmZnE3mN1VDd2BI6v2lpMY6uX6y7MpLrRzcrNPZfUCueGPmcW//Vf/zXw59tuu424uLgej6mt7f+eiNN5+OGHMU2TefPm8f3vf5/KykqSk098IImOjsYwDJqamoiMjAz6ujExooeMcHaoMjqQwiKJiwsf6VDOfnHTaPXfQ+37v8NZsZOI2csDp+r37QJZIXHhV6ku34tZVzCs3xOttYGmLe+Az03MrAsJjQtHnjSP5m0fEBOhIjsGr7Kdr76CtrZ6Yi68idaDG/CW5aJGJRKfFMwyqnBqchbTdnADsXOW4hrGf6PWCTOozd1ApNSMLTqJ4r8+iyN5Agl3/GjYYjidlrIaOgBH8gS8O99GdoaSfOdj2GN6T8SDumZyGnX7NKJdftSI2KCeU1q+H9f4acSnjJ4PsYIwlqzZUUKb28+tl04OvBfcdeVUrr4om33HajlW2oTbq2FTZJYvHD+qZuluvzyHz3aVsXZPBQ/cNoeKujZWby9h6ZxUvnXDTFrcfj7aVsxVF2WTEic+T59rgtqzeNlll7F79+4ex6+66iq2b98+aMG8+uqrJCUl4fP5+MUvfsFPf/pTLr104CXUT1Zf39bn5l1BGEs8zQ1ItlBqa1tHOpRzgpkwFyVhIvVrXsETOw3JEYppmrQf/AIldQYN7WBEZ+Hb9yE1FXVItqErc95FK9mH+5PfgmGgZp1He0Q2HbWtaDGTwXiX6gM7UDPmDNp4voPbAHBHToDxHijLhYikoH8GzelXY1cjaA3JoG0Yf26NUKt1RO2RfcihpRieNtxledTUNI+amXlP0VGwubBd8QPMPStR02bQbETAGfw7aZK1d7a2sBA1+fQ/j0ZTFf76cuTJy8TriiAMgGmavLMun6SYEJLGOXr8P8pJHUdO6ok9yE0nzeCNFhfNTGbtzlIW5sTzhw8Ooyoy1yxKp7a2lWsWZbBuVxkffXGc6y4cGy2lhJ5kWRrQ5FlQ75a9Vddra2vrcx/jQCUlJQFgt9u588472b17N0lJSVRUVAQe09DQgCRJ/ZpVFISzSdcyVGF4SJKE44K7rOIuxzYDYLbVYbY3oKbPBKzqqZgGek3BsMTkO7wWyTWO0Nt/jeuSFUiK1ahZicsCJPS6wV0upJcfQgqPQ46It5q1q3bkfvSglCPicZx387AuQQWQIhKQnOHoVcfwH99hHfS5MRorhzWOU9HrS1Bi0pAUG475N6AkTDjja3a1zzCaKk7zSItWsgdgUG8wCMK55HhFC8VVrSyflzron42HyxUL05Ek+OUru2ho8fDgzTOJjrD66EaGOchOGceeY4O/olAY/U45s7h06VIkScLr9bJs2bJu55qamrjqqsHrK9bR0YGu64SHh2OaJh9++CE5OTlMnz4dj8fDzp07mT9/Pq+99hpXXDF6ixUIwlATyeLwU2LHW70XK3Jh+qVWMRBAic+2fk+cAEjoVUdRU4a2QIjp96KXH8aWsyyQFHSRbA6kcfEY9aVBX89fsB29Oh/n4jt7H8/Q0CqOYJuwyBrDGUborU8iOUf/MmhJklASJ6JX5mL6PcjxWRg1x9Fr8lH6KM4znEzDwKgvxTZ5yaBeVwqPRQqPQyveg33q6aubakV7kGPSkMODW7IqCMIJpmmyekcpLofC4umJIx3OgEVHOFkyK5n1eyq477rpTErrPikzZ2Isb64roKHFE0gi+0PTDbYcrGLPsTrK69p48OZZJMf2XmlcGF1OmSw+/fTTmKbJd77znW5VTyVJIiYmhqyswWvgWV9fz/3334+u6xiGQXZ2No8//jiyLPPUU0/x+OOPd2udIQjnItPvBc0nksURoCRNQS/dj2ma6FX5YHMGmsdL9hDkmFT0iiMw7/ohjUMrPwi6v89ZICU6Db2+pM/nGy01IEnI4XEY7hY8G18Gnxv77CuRQ3qu2DAaysDvQUnOCRyTw0ZHyfdgKIkT0YqsbRSO2dfgXv8iRnU+TFk6wpGB2VIDmrdHpd0zJUkStqwF+PavxvS2d2v9YrTUgGJDDrXK4BueVvTqY9jnXDOoMQjCueK9LwrZmVvD1YvH47QH3ZFuVLrzkolccV56t1YfXWZ3Jot7jtWxfF5qL88+tVdW57FxfyUxEU7cXo0XVx7mP782D1UZHVsChL6d8qf6vPPOA2Dr1q24XINXLKE3aWlpvPvuu72emzt3Lh988MGQji8Io4F374fIYdHYJizs9bzosThylKRJaMc2YTRVolfno8RnIcknChSo4+fj2/UORkstckTPgmBnoquxvKTY0Ir2gj0EJWlSr4+VY9LQCndi+j2g2ul4/5fYJizCPm05pu6n44MnMf0eQq76Af7Dn4PPDYBecQS5c/bwZEZrvXXdcWOz8Emgsb3NhZI2HSVhAnr18CwXPp2upF4eglYnauZ8fPs+RCve060Nh3v1bzB9HYRc9yPksGj0kv1gmmIJqiAMwMrNRby/qYgLZyZx/ZKxv5dPkeVeE0WApJhQEqJD2Jvf/2RxX34dG/dXcvn56dyyLJtdebU8/+5BPtxSzLViD+SoF9QtEJfLxZEjR9i5cyeNjY3d9jA++OCDQxacIJxLjLZ6fNvfsP7cXI197rU99j6Y7mYAJNfoXwJ4tlGTpuAF9NJ9GA0lPWZibJMvxLf7Xfx5G3CcQduD3ng3vYpWvBvXVY+gl+xFTZ+JJPf+8q1EW4mH0VAGsoJRnY+3oRxb9vn4j2/HbG9EcoTRseop8HmwTf8q/mObrKWtvSSLZnsDAFJo9KB+TcNFjh0PNifq+LlIig0lPhtfyT5MbzuGuxnT046aOHFEYjPqS0BSkKMGXvm0L3JcJlJYDP7jOwLJoulzYzSWA+D++BlsU7+Cd9ub1n7UQZ7dFISzXUuHj3c3FrJgSjxfv2IK8hjdq9gfcybE8unOUjo8GiHO4GZR29x+/vxRLilxodywJAtJkpg/JZ6FUxP4YHMR6YnhzJ4QS3FVK3/68Ag3XpTFrAliSfxoEtTc7+uvv84dd9zB1q1b+eMf/8jRo0d5+eWXKSnpe6mTIAj9ox3fCYCSPhvfrnfw7Xqnx2NMt1VhTXKN63FOGFpSRDxSSCS+A5+CafYoRCKHxaCkzsCftxHT0AdtXNM00Ur3Ybpb6Hj3Z5ieVtSMuX0+Xo6x7vjq9aVW7zwAzYN393v49q5Cjs8i5IbHkewhSK4IHPNvQE3OQSs71GsxM6OtARR1TOxR7I2kqIRc+0Oci+4ACHzf/Mc2437vl3g+/X2vX3ew9JrjGC0DK/qg15cgRyUHChQNJkmSUDPno5cdxPRZlRe7Ch/ZZl6O0ViJ94u/osSmE3LVI6OmOqwgjDZ+TWfLoSq8vu6v67vyajFMk6sXjz8nEkWwlqLqhsm2wyf61bZ7/Gj6iZ6ubq9Gu8cf+Pt7XxTS5vbzraumYlNPvM7c9dVJpMaF8bt/7udvn+Txq7/vprSmjZ15NcPzxQhBC+rd4cUXX+TFF1/kueeew+l08txzz/Gb3/wGVR3ba7MFYTTxF+5AjknHddmD1hKyA59aexRPYnisZahiz+LwkyQJJWlyYKatq7jNyWw5SzE7mtBL9w/auGZbPWZ7I7bplyLZQ0BWUdOm9x1nWCzYXRgNpeilB5DjMlEnXoD/4KeYbfU45l6LHBFH6E0/JeSmnyDZXSgpUzHbGzBbqnuO396AFBo9Ziv8AVa1UadVLlyJzwJJwrv5VUxvG6a7OfA97S/T0On46L/xbnt9QM836kuGZAlqF1vWAjB0tCKr2qlRVwiAfdaVuC57AOfSb+K6+v/1KJQkCILFMEz+7/3D/PGDwzz75j7cXi1wbvvhapJiQkiNO3eKtExIHceU9EheW5tPSXUrR4oaeOT5zfz8rztpbPVSUt3KD/+4lZ//ZSd+zaDN7Wfj/goWTksgI7H7DcdQp41H75rLvMlxrN1dTkKki8ykCIqr2kboqxP6ElSyWF9fz/z5860nyDKGYbB06VI+//zzIQ1OEM4VRls9RnU+atZ5VnGK6ZeC341WuKPb48yOzmWoY3SWZ6xTkiYDIEeldCsa0kVNn4XkisCfu2HQxtSrjgJgm7yEkOt/TMg1j1pJYx8kSbKK3FTmodfko6bNwDH/BlBU5JgMlLRZ1uMcoYGCNl0VXLXywz2uZ7Y1BIqhnA0kmxM5Og0UG45FVgVYvbZoQNfSa46Dtx29H9VnuxgdzZgdTShDmCzK8VlIIZGBAj96bTFSWAyyKwI1fRa2yUvEjKIg9MEwTP66Oo/dR2tZNC2B/LJmnn3DShgbW70cLW3ivJyEMX0jrb9kSeK7100nzGXj2Tf38eyb+xgX5qC60c1P/7KDJ1/djaabVDe6+WxnKZ/vKcfnN7jsvN5f5xx2he9eP52Hbp3Fo3fPZer4KCrr2/Frg7c6RzhzQU0NJiYmUlZWRmpqKuPHj2fNmjVERUVhsw3+0hlBOBdpnT3gbFkLAKtvnzQuEX/uhm7FKczWOiRnOJJqH5E4z3VdyaKS0HNWEUCSVdTs8/EfWYep+fr9ffLueg8leQpq5zgAetUxsLmQo1KtPoVhp987KEen4T+8BgA1dQZyWAyuKx5GDons9YONFJFgtQYpPwxfarVgtDdYfSTPIs6l3wBDR45Ow7v1dYzaQsic1+/rdM0gmy01mH4Pki34cvJGg5VgyjFp/R43WJIko2bMwX9sM6bmQ68rRIkdP2TjCcJoUdfk5p2NhVyxMJ3UuN6bkDe0eNh0sIoDBfU4HQr33zgTmypTVtvGW+sKOFrWhNurc/XiDG68KJs5E+P4v/cP8V+v7WVmdgwmcF7OuTcrHxFqZ8X10/n133eTmRTBAzfPpKHFy2//uY/4SBf/fsssXlmdx/ubi7CrMjOyYvr8HoCVgM7IsipsZySEoxsmZbXtZCaJFVSjRVDJ4re+9S0KCgpITU1lxYoVPPjgg/j9fn74wx8OdXyCcE7wH9+BHJOBPC4BsGaH7FMuwrvtDfTGCpTOAhh6U8WQFMM4lbomN0/9Yw8Ou0JyTCjXL8kkKebcWXZzMjkyGdv0S3stBNNFTZmK/+Cn6DXHUZOnBH1tva4Y3653UKqn90gWlYTsfjW0DyQg9hDkeKvF0alikSTJirtwF6bmRVIdgNUH0GxvGlOtMoJxcsIkR6eg1xYO6Dpa6QGQFTB0jMbyXpcm98VoKOscv/8l6PtDHT8H/5HP0Yp2YzZXI59080kQzkZHihv533cP0ub2U9vs5v+7a26Pm2Qen8avXt1NXbOH1Lgw8subeePzfK5cmMGzb+zDrxmcl5PA9Mxo5k6yqlvPnxKPIks8/+5BCitbSIsPO2ffC7NTxvHUfYsJc9lQFZlQp40n/3URsiQhyxK3fWUCj724Da9P5/Lzgr8hlt65VLWkulUki6NIUJ8+brzxRpYutXpSLV26lO3bt7N9+3buvLP3Js6CIARPrynAqCnANuH8bsfViReApODPXQ9YhU6MxnLkqOFtJv7GugJa2n3ERjg5WFjPH94/jG4Yp3/iWUiSJJyL77L2vfXBmoWT0Ctzux3XG8ro+OBJjI6mXp/nP2It69crcjE721mY3nYrCennzJ7SmSyqqdO6tfc4FXXyEvB14Nv1XuCY6W4GU0cKYjZzrFLiMtHrivpd5MboaMaoK8I2cTFgfX+7mKaB/9hmfEfW9fl8vaEcyRUx5G1wlOQcsDnx7ba+r2JmUTibldW08d+v7SU8xMZVizLIL2tm91GrAFVucSM1jVaxp7fXH6eu2cMP7pjDT795HpfOT2PNrjKe/NsuOjwaD98+m3sun8K8yfHdEs05k+K4/6YZ2FSZi2YN743b0SYyzNGtR6KqyMiy9W+VEB3C9UsymTspjikZwW9jiBvnxOVQKa4W+xZHkz6TxZPfOA3D6PZLVVVcLhfGOfqBURAGi2maeLe9geSKwJZzcbdzcsg4lLTpaMVWcQqzowl8buTI4XuDOlraxM7cGq5YmMGDt8zi61fkUFzdyppd5cMWw1gjOUKRY9PRK450O67lb0WvzMO3s2c/WdPnxn9si3UjwNDQyg4CoFfnAyZKP1s7yNFpyNGp3ZYwn46aOAnb5Ivw7f84UDWzq/DL2bRn8cvkuEzwtmO29q+iqd75PbLlXAyqA6Nz36LeUE7Hez/H8/kf8G56BbOP90mjsWzIZxXB6s2ppk7HaKoEQI4bP+RjCiOrw6Px0srD7C+oH+lQuqmsb+cfnx2j46RKmYNt7Z5yFEXi0bvmcv2STFJiQ3lzXQF/+OAQT/1jD4+9uI0/f5TLml1lLJ+bGkhkbrk4m8ykCOqbPXzn2qmkJ/RdF2Bmdiy/fXAJX5k7vDdux5qrFo3nezfO6NeeTkmSyEgIo7iqddDiOJNq14Klz2Rx3rwT+zemTp3KtGnTuv3qOiYIwsDppfvRK/Osnor2no1wlcTJmC01GO4WjMYKgGFbhmqYJv9Yc4yocAeXn29tTp8/OY6Z2TG8s+E49c2eYYljLFKSc9BrCjA1X+CYVmEVj/HnrUfv/F528edvAc2L86J7wRGKVrIX6NyvKCmnnMnsjaTaCb3556jps/r1PMf5tyI5w/Bs/DOmaVhtMxi7PRaDocRZDaH7uxRVKz1gzQzGjUeOTg0sK/VseAmzuQZ1/FwwdOsmz5eYpoHRUI4cNfTJImDFAlZxG1Ec66z33heFbDpYxf+8uY9XPzmKz3/6YiFev05Nk3vIYvJrOs+/c5BPd5byP//cjzeImPrL49PYeqiKBVPiCQ+xo8gyt1ycTU2jmx1Harhm8XjmT45nw74KYsY5uWnZiddVVZH5j9tm8dg985kzMe60YzlsyjlV2GY4pSeEU1bbdsoVTDWNHezLrwv8/UhRAz/438288N5B1u8tZ/fRWrYfqeaF9w7y3f9ez6c7exYhK65qpbRGzGAGo889i6tWrQr8ec2aNcMSjCCcS0zTwLv9TaSIeGxTlvX6mK5CKkbNcYzOmY/hWob6yfZSiqta+fbVU3HYrKWMkiRx96WTeOylbfzkzzu4cWkW2cnjKKttIyU29JR3Y88latIU/Ps/Rq8pQE3OwfR1YNQWYstZhj9/G77tb+K67EGgc8ni4bXIsRnI8dmoaTPRS/ZjuFvwF2xFjhsf2EM41CRnGPYFN+Hd8DJGbeGJmcWzbM/iyeSoFFBU9NpCbNndl4Kbfg/+vI3YcpZ164VoGgZ62UGUtBlIkowSnYa/cAdGUyVGzXEcC29DjkpFK9qN0VqL/KVlvGZLLeg+5Ojh+b+sps0ESRZLUM8BZbVtrNlVxoUzkghxqnyyo5Ti6lYeuHkmYa4TP8P55VZl7Qkp4zBMk9+/tZ/DRY0sn5/KjRdl4bQPbmu0t9Yfp7yunUvmp7JmVxnPvX2A7904A7stuGXywdh+pAaPT2fZ7BP/r2ZkxXDvFVNITwgPtG64ZH4aYSG2Hl9jiNNGZpIo3DjSMhLC8WsGlfUdpMaF4dcM1u0tR9dNls1JpqKug2ff2Eu7R+M/bpvNpLRI/ro6D59fJ6+kie1HTvRpDHPZiIt08da6AmZlxxAfZVUSb27z8tQ/9mBTZX793UWBzzhC7/p8NUhKSgr8uaWlhZycnGEJSBDOFUZdCUZDGc6LvoGk9P5fUYkbD5KCXp2P6W0DR+iAeywWlDdjmlafpN6UVLfy+Z5yLp2fRmuHj3+uK2De5DgWTkvo9rjYSBf/efc8/v7pUf76cV7geFS4g19/d1G3PQznKiVpEkgSekUuanIOeuVRME3U7PORwmLw7XgL35F12HOW4d32hvVzcPF3rEIzGXPQ8rfQ8e7PMDuacF38r8Mauzp+Lt4NL6OVH8b0tIFig17ahJwtJEVFjk63KqKexDRNPBv+jFawFTksFnX8nMA5vfoYprcNNcM6JkenQu46fPs+BElCnbAIfNbMu9laBycVLIIT+xuV6KGrhHoyyRmGc+k3hmXZqzAyTNOkze3n758exeVQuPUrEwhz2ZiQMo4/fHCIJ/+2iwdvmUV8pIvc4kaeecNavfDAzTOprOvgUFEjORlRfLazjP0F9fz4nvmEOHsmToZpsn5vBTOyookd13M1TG/yShr5ZEcpF89N4c5LJpEWF8bLH+Xy1D/2cP+NM3A6VPLLm/H5dCRZIic9Coe9/x/e1+8tJyU2lOyUE++RkiSx5Et7C7OSReGU0ayryM22w9Uci2hm9baSwKz3x9tL8Pp0IkJthIXY+dOHR1g8PZHqRjcP3TqL6ZnR1DS58Xh1DNMkLT6M1g4/j724lb98nMfDt89GkiRe/zwfr0/H7dX4fHd5YPWU0Lugbh3de++9REdHc/XVV3PNNdeQljY8b3CCcDbTK61ES0mb0edjJNWBHJOGXlMAho4SlTKgpS9ev84znf2hcjKiuPXiCT0a5L625hi5JU1s3FeJw64QF+nkG1fm9DpeekI4/++uuRw4Xk+HV8PnN/jzR7lsOVjV4435XCTZQ5BjxweK3GgVR0BRUeKzUeKz0auO4t34Z7Si3eil+7FNu8RKMAA1bTpICmZrLc5LVvR7v+KZkp3hyDHp6OWHkZxhSGHRZ/1yKyU+C3/ueoy2+sAsqj93PVrBVgD0+pJuyaJWvAdkBbXz/25X9Vn/0S9QUqYhh0RiOvyAFFgRcDKjsbMS6jBWNu7P/lVhbNl8sJJ/fHaMdo/VMP5rX50UmEWcPyWeMJeN3719gB+9uI2L56SwcX8FcZEuVEXm928dwDBhVnYMD9w8k8PFjTzz+l7eWn+cr102uedYB6p4ZXUeKbGhPPYv84NK6tbsKiMixMatF08AYMmsZEKcNv648hA/emk7Xr+OXzux5HBCyjgevn02dptCbZOb3OJGKurbSYkN48KZSd2u7dcMDhU2cOB4PYWVrdxxycSz/vXqbJcUHYLTrrBqi7V3Pjk2lP+4bTZOu8LbG47j8encf9MMGlq8/OKVnazaUszsCbGB9hsJUd37EEeFO7h52QReWZ3Hnz48wvjECLYequaaxeM5XtnCh1uLWTo7GZfj1ClRfbOHZ97Yy7eunnrOVWoNKlnctGkTGzduZOXKlVx33XVMnDiRq6++miuvvJKYmLN3eZIgDCW9Kg8pIv60xUOU+Gz8xzaBrGDLXDCgsXbm1uD2alw8N4VduTU89Y/dPPYv8wNlvwsqmsktaeKqRRm4vRr78utYccOMU754SpLEzOxYwLqrvXZ3GR9uLeaCGUmBimiDqaHFQ0uHj/GJY+NFWk2Zhm/fKrSKI+gVR1ASJgb6Lroue9CatTr6Ber4uTgW3Rn4gCPZQ3CcfzOSM+L/Z+88A+Oo7/z9zGyVtFr13rtkdVuSLRdcsMHGYGOaAUNCSEIIuQsk5BKOkAv5hyRHQnIXciGFkAAhgKk2Nhjce5NkWVbvvfe62jbzf7G2sJBkS27YMM8b8O7szG92VzvzbZ8Pmsisz2XtqqBZWIt2InoEIH6B5xXPoE2+EWv5AUYPvIzTyu9jb6/EfPhfqIISkQa7kLobxraVZRlbfT6qwISxOWPVmYqdLI+powoqDYKLO9Jg14TjST1NCK4+M/JlVPjy0tE7gsUmTepVtz2nkTd3VRId7EZGnC9B3i7MCh9/TYkP8+DnX8/irT1VbM9pxMNVx+Pr01CrRP77XycYGbXywOnEYGK4J8vnhLAzt5HsJH+igz7tRBkZtfHO3ip83Z1o6Rrm1U/K+cbNkycUz2C22DlV3c2ClIBxrX5z4nzwdpvD+wdq8PVwIiXSC1dnLfXtg7yyrYwXt5YQ6ufKlkO12OwyAoAA/l7ORAe5MTJqZWduE7vzmxkYtqBVi8yO9WFhcsCUa1G4NhBFgR/em86QyYqvuxPe7k6Ip79j/3HPp0mf+UCbAAAgAElEQVQ7d4OOtQsi2J7TyN3Lz51UXZwWSEP7IIeL2jhU2IaPu57V2WE0dQ7zzKu57Mpr4ub54efcx868Rlq7R9hzopmI1dfGfcilYlrBokqlYsmSJSxZsoTR0VF27drFG2+8wbPPPktRUdHlXqOCwhcOWZawt1agCks/77Yqv6gxg/ULrUTsO9mCv6cz962I5aa5Yfz8lRyef+cUT301Axe9ho+O1OOiV3PTvDCcdGruu2FiRvlcCILAzdnhvLCpiLyKTjLjL61R8ZFiRzbbapN4+sEsgryv/rZIbdpqbHV5mHb8H5iH0WbcNvacIKrRL/469tiFqHwjJ3goalNWXenljkMdlIj11MdI3Y0OC5cvOKLRB13WnZgPv8bonr9iqzmOYPBGv/QhzIf/NU78RuprRe5vR510w9hjgs4FwcUT2TyMOvxTcTjR4D2pyqrU0/xpgKmgcA5MZhvPvp5P35CZ1dnhrFkQjlolMmqx8dbuKvaebGF2rA/fWjMLjXrqKp+nUc/Da5NYNXcQV2cNnkZHouKnD2RittkxOmvHtr11UQS55R28+nEZ//VA5thowQeHahkcsfK9u9LIr+zkg0N1RAUZWTZ76u/yqZpuLDaJzLiJ14Qwf1ceuzN1wmOjZhtv7q4ir7yTjHhfbl0YgbtBy0//nsNLW0t4ZF0yL2wqor1nhJQoL5bNDiYhzP2c569wbTHdpPCahRGsmhd63s9eFAS+ujKeu5ZGU1jTTbCPAa1GRWSgkbRobz48Ws+8RL8JrdWyLCMIAiazjf0FrQhAXkUH998YO63vW2efiebOYVKjva7piveMJpjNZjN79uzho48+oqioiIyMjMu1LgWFLzRSb6tj5ing/P55Kr/osf+/kGCxqXOIquZ+1i+LRhAEvNz0fOe2ZH79ej7//doJUqK8yK/sYs2C8PO2YZyL2bE++Hs68/aeKkL9DBNaQWaKJMsU1/awK88xQxMd7EZr1zCvbCvjiftmj2Uaz0XfkBlXZw0qUUSWZV79pJyG9iF8PZyYm+BHWoz3uO1tdomaFofZ8sW8FwCC1gmnGx5l+P2fAaAOHD/3LckyJwc8SfVVcbVJKqj8Y0FUg2SbIM7yRUWTuAxbzXFsVUdQBSXidP23EfQGRK9QbDXHkS0jCFpnbPUnAMbmFcdeP2spCAKC5lMxIsHVG3tbxbjtZLsVqb8NdcQcFBTOx/sHaugbNJMa7c3Ww3UcKmwl7LRaZHf/KCvnhnL74khU4vRmxT87fqDTqia0kjrp1Ny3IpY/vFfI9pxGbpoXRl3bALvymrguLZAwf1dCfA3UtQ3yrx0VeLjqplQQzSltx+iiJTbEfdrnvCIzBK1WhbuLbtxv9IOrE/jNG/k8/ffjuDhpeGLD7BntV+GLyUySBE46NVkJ43UY7l0Rw09eOs7L28p4fH3aWFBXWNPNSx+W8sDKeLoHRjGZbaxbFMH7B2opqOomYxpJ8X98VEpZQx9L0gK5d0XsNavpoHr66aefPt9G+/bt4//+7/946qmnaGhoYMmSJfz85z9nw4YNV2CJlwaTyYJitaJwMcg2MwiXRi7bVpuLvaEAXfY9COcTD9E6Yy3ZDTYLuqw7J7XY+CyjFht/2lREcV0PBVXddPWb+MZZqqZeRj1B3i5UNQ+QV96JXqvioTWJF6UIJggC4f6uHCpsY//JFqICjecVQDCZbfzytTw8XXX4eY4PLv+0uZj39tVgMtu4eX44D6yKx92gc8y/uGjPOzNwsqqLX7yaR23rIJkJvhwsbGPzwVrcDFqaOoY4XNRKZoLfOIXADw7V8tKHpXx8rIHyxj7SYrzRXkS2WtAbHCJFdhuapOUIguNCYbVJ/HlzMR8cqsNFrxnX6nU1IKjU2JuLkYe6UUdnj9lLfJERBAFVSDIqjyCHhciZFlGrCVvVUVQhKYiu3mO+qLrU8dVfdUAcav/xyR+puwF7QwHa9JvHPnuppwlr6R40idcr1UWFc1LfNsjL28pYkh7EQ2sSCfUzYDLbaO0ZQatR8e1bk7guNXBaibOZEuDlQkP7IAdPtZIS5cULm4rQalQ8cqtDwVQQBNJjfCiu62HPiWZigt0m/N6bLXZe+biMuYl+pEV7T3GkiTiuJUb8vcZfE3zcnbBLEmarxOPrUxX1bYVLgrNeg0GvYWdeE+4GHeGn7y1e2VZGc9cwx8vax5LID66exb6TLZjMNjLjfSmt78Vqk3A9qzJ/htbuYd7aU02on4GC6m4qm/rIiPP9XANGQRBwnmSt52NaweIjjzxCVlYWP/3pT/nGN75BWloaLi5XfxvY2SjBosLFIJkGGH79cUQ3P1SXwLrCcupjZMsI2ozbzht8CoKArbUC2dSPLvP2aQWrr35cTk5pB519Jpo6h8lK8GN+0vhZjkBvF5akB7FsdhBL0oJwN1y8PYOnUc/sOB/yK7vYkdOEKApEB7lNueaDp1rYX9BKS/cwi9MCx7brHTTzyrYyls0O4vvr04gP9UAUBEJ8DVQ197PvZCujFhvhAa6TBnNFNd3833uFuBu01LUN0tY9wq4TTcQEufGf981hfqI/e0+20NA+yPwkfwRBwGqTeHFLMaF+rmTN8uVIcTvOOvVFZ65Foy+ayMyxYMFitfOHd09xqrobJ50Ks1ViwVU4ZyMN92JvKUU7aymim//nvZwrgqDRo/IOG/usAFDrsBZ+4njcyQ3L0Y1oZi1FHRB/3v3JA53Y6vPRxC4cSwrZavOwN55yJH70E2fQLhZJlhketTEwbMFJp76mW5++zAyPWnn+3VMICPzbbclo1CoCvFzIiPdl2exglqYH4eV2eWdeY4Ld2J3fzL6TLYyM2njsztRxAZxaJZIe40NueQfbcxoZMlmJCXZDo3b8/Zyo6ORYaQd3LYnG2316yqnnIyHMkyVpQbg4XW39GArXMmH+rlQ193OgsJUFSQH0D1vYuLuK1dlh6DRqmjqHWL8smmBfA72DZo6WtFHZ1M/mg7XsPtFMXesAoX6u44LGD4/UU9c2yE+/lkWwjws785qobx8iM973sug6TIfLGixu2LCBrKws3Nyuruz3TFCCRYWLwVaXh636GKLRF3VQ4kXtS5Zlh3hGQDyayOkJ1oieIaiDElG5n/+m/WhJG+8fqOXm+eE8dmcqyVFeLEj2n7JVQ6dRXXTL5dkYnDRkJ/rR2W9iZ14TVc39zJvlP+GmVZZl/rGtnBGzjd5BM7Eh7vicvqHYd7KF4roeHlqTOG6WRhAEkiK86B00s/f0TYyfhzOBZ80w9g6a+dVreQR4ufDjr2QgILDvZAtatcjj69Nx0Tv8tZx0KnafaMbP05kQXwNHi9s4WtLO11YlsCQ9iIrGPopqe7h+TvAlzdy/tqOCnLJOHrwpAS83PTmlHazICBm7wbpaEJ3dsXfVoU1ZOa618kuHRo+1ZDeC1gmptwV7RzX6Jd9A0J6/zVq2jGCrOIQ6LB3R6GjTs5zcimy3op2z7pIHcm09I/zkpeNsOlDLjtwmfD2cCPFVqi/XGiazjd9uLKCla5hH1iUT5H3pkwrTwUmnRqdRcaq6mzuWRDF3lt+EbXRaFQuSAzBZHBYEx0rbiQw00tU/yt+2lmJw1nD39YpCqcLVjSAIRAe7szuvic7+UTp6R6hrHeThtYksTAkgOcqLpAiHMrjBScPe/Bb6h83cuTSaqCA3css7OFnZxeK0QFSiiMVq529bS0iJ8mZhSgChfq64G7Rsz2mks8/E7Fifz+Vv4rIGixaLheeff56nnnqK559/nm9961scPHiQ/fv3k5KSciHrveIowaLCxWApdIh9CC5eaCIvblZXHuzEkr8FTeKyabf3iU5GRLeJF+rP0j9k5ncbCwj3N/L1mxNQq0Q8jforPvivUauYE+eDs07NnvwWQnwN4wI6gJqWAT48Us/666NpaB+is89EdpIjGH5tezmeRj03zQubsG+d1rHv9BhvKpr62ZHbyOCIhcQIT0RBYGduI8V1vTxx32w8XPXEh3mgVonckBk6bl4nzM+VwpoeDhe1EuLr6hD5cdKMzXY66dTsO9lCqK/rhLVfKMdK2nl3Xw03zQtj5dxQVKLAwcJWIgKM0zrGwVOtvLmrElEUCPByvqzZSUFvQBt/3Zc6ULTa7OSWd+I7Wovc34qttRx1SArahCXT30fRDlQBsai8w5ElO6MHXkUTlo4m/PziVjPlnb1V1LYOcteSKOrbBwGYc5awyPColb9sLqa6pX/sxkfh6mJk1Mrv3zlFXdsgj6xLGlOc/ryIDDCSEe97zptbjVokJcqbWeEe5JV3siO3iSPFbbi5aPn++rRJW/QUFK42XPSa08ruzTS2D5Ea7c2i1EBEUcDTqB/7/rsbtAT5GFh3XSQpUV7Eh3oQ7u/KjtwmQCAhzIMjxe0cL+3gvhWxY1X1cH8joiiwM7cJT6N+wvzwleBCg8VppbJ/8YtfUFFRwXPPPTf2ZsXExPDGG2/M+IAKCtcasixjbyoGQBqaKIM/U8b8FQNmpjg6bh+SRHPX8ITHPzneiNlq58HVCdMWPLhcCILA8owQvN30fJLTOOH5vfnN6LQqFiYHsHxOMEW1PTS0D9LcNUxDxxDzJslin02onys/vn8OKzJC2H2imb35LUiyzIFTrSSEeYwJ7IiCwM3zw0mMGC/UIooC31mXhLebE79/u4D69kGWzwke+41LjfbCy6hjV97EtV8ILV3DvPJxGdFBbty6yJEkiA52w0mnorDm/N+r3kEz/9pZQXXLAC9uKeFHfz7CsZJ25Gs4C2ax2nl9R8WY4fLVxmvbK/jLB8Wc6NQj9baAeRhN4vJpv15w8QRBRB5wKKJKHTVgNaEKvrjuhMnoH7ZwuKidBckB3JAVSnyoB+UNfWPfj84+E7/8Zx4nK7vYmds05mGmcPXQO2jmV/86QU3LAA+tSZxSNOZKIggCwT6GaSUWYoLd+dmDmcxL9CMpwosffyUDf8+LEzpTULiSrJobhp+nMxabxOK0yQUFBUEgM94X37Naq2eFe5Kd6M+2o/W88nEZr3xcRpCPC3Gh48dYVmeHERfizsbdlfQOmi/ruVxKpnU3uWvXLn7729+Snp6OePoG1M/Pj/b29su6uEuJtfIw1rp8jpa0kV85UcpcQWEqpN4W5JE+UGuRJ/FMmym21nIEvSui+4Ubcm/cXcVP/naMHbmfBjJDJit78puZm+B31VygRVFgRUYIVU39VLf0jz3eMzDK8bIOshP9cdKpWTo7CCedmmdfz+efn5QjCJCVcH6lMbVK5O7ro0kI82DTgRpyyzro6h9lUer0ZgA9jXqevG8OGfG+eLvpyU78tM1XJYosnR1MWUMf+RUX95vR2j3Mb97IR6tR8a01iWMD7mqVSGK4J6equ88b9L25qxJJkvn517N47M5UjM5a/vJBMc+9eRKz1T7pa2x2iZ+/kstTfzvGnzcX8eGROk5Vd0+5/ZVAOus8Pz7ewM68Jg4UtHxu65mKA6daOHCqleRIL4r6HFVf2T0IVUAcfUNm/ry56LzXEkFUIRg8x5JMtqYiQEAdOOuSr3fPiSZsdokVGQ7RnNgQd3oHzXT1jyJJMs+9mc/AsIX/uCed7EQ/3ttfw/HSa+ca/kVn1GLjV6/l0d0/yvfuSr3k9kNXCme9hm/cPIvv3pEyTjxMQeFaQKMWeeiWWdyQGcKs8Jkpga+/PhonnZr9J1uYn+TPD+5On5BkEQWBB26Kx2aX+ecn5WPX/f5hC//516OcrPz0HvNqSgRPa1BJo9Fgt4+/uejp6cHd/dqRLLbkbaZlRMNf25bipFPx3CMLLumclsLniyzZEcTL02ppb3Z4iaojs7BVHEK22xBUF/7dsbeWo/KPnXYLmCzLvLe/hsaOIb61JpGeQTO785oxOGl4Y2clyHB9RjA7cx1VxdXZE1s3P08WpgSw6WANO3IaiVrrxsCIhd9uPIlKFMZubF30Gp76yhxe31lJcW0PiRGeuE1TcEcQBO6+Poan/3Gclz4sxUWvZk7s9DPyOq1DVVCS5QmziUvSAjle0s4f3ivkpnlhXJcagKdRP07NzGqzc6iojR05jYT4Gnh4bdK4fbT3jPDr1/ORcRgKf1aUIjnKi9zyTho7hiZV97NLEsdLOsgp6+DWRRH4ejjj6+FMUoQnu0808frOSvbmN3NjVuiE156s7KK2dYCYYDeqm/s5XtoBQGKEJ4+vT5v2e3SpKG/o5ffvnGLDiljiQt356HR1q7yh74qv5Vy0dA3z2vYKEsI8ePSOFEpOaZGOHeTd9gg8D9ay72QL/cMWKhr7SAz3RHsOFWHR1QfpdJLJ1lyM6BM+Y2GbLaf97e5dMV5t9WhJG4cL2wj2MXCwsJW0aG8CvByB7ZmMdkVjH0YXLZ19o3z71iTiwzyICnIbmynzNOqvOjXeLyPbjzfS1T/Kj+5NJy7U4/NejoLCl5aIAON51dYnw+is5YkNs5FkmWCfqX/j/TycWbcokrf2fOol+vGxetp7Rnh3XzUp0V5YbY5Eb3qMN7cvjjrncU1mG63dI0QGznzN02VaM4vt7e288847pKSk8NZbb7F27VqeeeYZMjMzyc7OvmyLu5T0H9+CbagXc/T11LQO4m7QEhmoXCC/CNg7qhne+CPUwYmILpfeE8584gMQQBszH1v9CTRxC89vdzEF0lAPlrz30SQsReV37h+AM2w+WMvWw/W095qoaemnqKaHYZOVn39jLp19o+zIbWTvyRbKG/pIjfZmeUbIBa3tcqFRiwybbOwvaKGotpu9+c109Y/yvTtTxySqAVydtWQn+pEQ5sGC5IAZJXPcXLT0DZmpaRlgSVoQqTOQaT/DZMG7Rq1ifpI/AyNWduY1sTPP0b7n7qojzN8VuyTxi3+eYP/JFmRZpr59kCXpQehP+5aZzDZ+82Y+oxY7P7x3NkGTzCW6uziG3odNNjLixs8F7TnRxP++fYqjJe0EervwjZs/bS8WBIHIQDcqm/o4Ud7J0tnBiKJAcW0PHq46VKLIa9vLkWV4+mtZ3JgVyvLTwfnhojbmxPlgdLmys0SbD9ZS2zpIfmUXRbU9DvnxBF+Ka3u4ITPkqvGgentPNS3dwzyxYQ5OOjW+/j70+2dwtNPIoaI23A1ablscxfHSDpz1GqKDp76W2FvLkTpqUEfPcyipxi5EHTT9ymJlUx8vbi2lpnWAWeEeeBn1jFpsvLytjE0HarFLEqX1vYxa7DywKn4sGWFw1rArrwmNRkVNywADwxYeWBWPKAqoRIG0aG9yyzo4VNRKRpwvLnqlCvR5MTBi4U+bi0mL8mbVJHPaCgoK1wauztppXVcjAl05WdnFiYpO0mN9+MeHpXi46mjvNRHsY+BYaTv5FV00dQ5x/ZzgKa+N/cMWfvNGPlsP15EZ73ve+eDLKnCTlZVFYWEhP/nJTxgeHubNN98kKyuLxx57DJXqyghn1NbW8vDDD/O3v/2NrVu3kpmZOaPKZs+xD9Fa+pm77h6KGwcpq+9j2VnzSQqfH1J/G6i1F1wZNOe8h9RVh2wZnba66HSRzcOYD7+OJiIDlX/0BGXDmWJrKMBWm4su6w5E5/N/f/ecaOLtvdUsTA7gxqxQduQ00tk/yh1LokiM8GR2rA/+ns5j3lP33xCH2xUOAKZDZKARQYSu/lEGR6x885ZZJEZ4TdhOEAS83ZwuqOofGWikZ2CUWxaE43wJb3xVKpG0GG+SI72ICjIyOGLlcFEb85MCOFTUxsFTrXztpnhuzg5nT34zPu56IgKMyLLMX7eUUNnUz6N3pE6Z9dNr1ahVAjvzmlCrxDGrjuFRK7/bWECgjwv3XB/DnUuiJ61gebs5setEM3qtit15zby7r4bWrhECvVx4e281q7PDxvapVasI9TWwM7cJWZanJZ5hs0vsymvCw1V3Ud0YNrvEK9vKSI32xs/Dicqmfm6ZH05qtDeHitqIC3HH1+PKtk9vOVzHrtxGMs8yaR4yWfn7R6XMT/Ifp/5oMBqZn+RPfKgHaxZEEBvifrpa286StKAp1WztfW3Y609gLfwEkNFm3Ibo+un7PjBi4X82nuTdfTV8dLQem10aqyzZ7BK/f+cUWrWIRq2iqWOIeYl+/P6dU5ys6mLNgnC+c1uyo+qdEkjIWZVpQRCobu6norGPhvZBFqYEjEui6DQqkiK92H+yhX0nW2juHMYuSfh6OH3u885fNt7dW0118wDfuS1JEYNRUPgSIAoCIT4GduQ2klPagcli48n75lBc10tRTTfFtT1EBhrp6B3F06iftNLZ0WfiN2/k0z0wil2ScTPoiDuP1ddlDRZVKhXXXXcdDz/8MPfeey+PPfYY11133RULFAEeffRR1q9fzzPPPINWq+WFF15g3bp10359dU0rTr1VqMPScfL0ZV9By6Smr9cqsnkY084XUPlGXnDV6/NAGuhg+K0nEbROqPxjZvx62TrK6L6XQBCRelvQxF83qWm9pXgXsmkAcRrWEwCyzYL50D8Z3fs3sFnQZd2J6OqNtWgH6sB4VN4Xlv21Fu9C6m9Hl33PeRMVQyaHKl5ciDsP35pIqJ8rnkYdWrXI7YujEEUBUXR4D2bE+7J8TvBVGSiCo7qYEObJdamB3JgVit9lmKnUaVRkxPte0kDxbDxcdYT5uRIX6s7OvGaaO4c5XNRKXKgH65dFY3TRknN6ZnJhSgA7chrZkdvEXUujx81CTkZMsBsdfSZ25DYR6mcgwMuF3XnNnKrp5tE7UkgI95wys+jlpqeyqc/hV9k1TGqUF/lVXeRXdmKzy3zzllnozgoydRoVbT0j5JR1nDNjeYbc8g5e3lbG0ZJ2ooKMeBkvzNuttKGXfSdbuO26SG5ZEE50kBvzk/zxMOj4+FgD7gbdtGZEzFY73QOjFz0PZZckXni/iLq2QTLOqrLuPtFMYU03D96UMOHvSRAEvN2dxgLDQG8XduQ2YbLYSIn0QhAEOvtM9A1ZxixfVN5hiD7hiJ6hqPxj0MQsGPvbl2WZF7eUUN7YR2a8Lzqtiv0FrQgCBHi78N6+Gk5Vd/PNWxIJ8TWwJ7+Z0vpeKhr7+PrqBG7IDEUUBFSiOOn3vn/ITG55J5IMX7kxbkJrt8FJQ2K4J4MjVopqezhc1MaeE830D1mICjRecRXlLyMN7YO88nE5C1MCWJRy4XPsCgoK1xaeRj3d/aNUNvWTnejPkvQgnLQqDhW24aLX8OP7Myiu66GmZYCl6UHUtA5Q1dSPm0FHcW0P//tWAVabxOPr02jpGqa5a5glaef2Ab/QYFGQpzFBWVVVRW5uLv39/bi5uZGRkUF0dPSMD3ahdHd3c+ONN3Ls2DFUKhV2u525c+eyfft2PD2n13Y4d+5cmpqaLvNKFRQUFBQUFBQUFBQUri6Cg4M5duzYjF93zp4iWZZ58skn2bRpE/7+/vj6+tLe3k5HRwdr167ll7/85RVp42xtbcXPz2+skqlSqfD19aW1tXXawaKCgoKCgoKCgoKCgoLC9DlnsLhx40aOHz/Oxo0bSUlJGXv81KlTPP7447z55pvcc889l32Rl4KPPtrF4FtPIRg8cV75PYZMVn7wwiGyEvx48KaEse1GLTbe21/DzlxHFTIx3IPvr08bC4qbu4bZuLuSYB8DaxdEoNN+/m06siQx/M/vItvMYLfics9z42Zixm0ry+SVd2KX5HHzOFcKW0sppq3PogqahSowAUvOu6jD0rHV52N44E+TtpBOhb2rnpH3foo24zZ0s9dgayzEtO236Bd/HU3corHtTDtfwN5ahv76b2P68Ddo4q9Dv+iBKfcrS3aGXv13NBFz0C/++rjnhjc/gyCqcb7liZmfe30+pk9+j9OaH6M+T8vtv3ZUsOdEM7/45tzL0rKpcPn4r5eO09Q5xL/flkz6DFRZz3C0uI2/binBw1XHr7+dfdnmx1q6hnl/fw0nKjuRZQj1NZAW4012ov/Yd+5wUSt/21rKk/fNITrYjT9tKqKiqY/ffWfBeROFkiRT2dRHTcsA7b0m9he08PDaRLISJv7ulNT18NybJ1k1LxQ/D2dmhXng7e6E2WLn9+8U0NU/yvKMED48UoeXUY8oCoyM2vjFN+deUMLSapN47A8HSY/xJj3Ghz++X8idS6PYergeD1cdT38tc0ZiO7Issye/GUmSWTYnmC2H6th8sJbvr08laZLZ3Krmfv7nrQKcdSqe2DBngkLu1YDVJp22B+niKyvjztveBPD8O6ew2Oz84O70K7DCa5sPj9Tx7r4a7lkew4qrTJRMQUHh6qGyqQ9ZZkx7YCp+8tIxDHoNP9owG4BNB2rYcriOtGhvTlZ2YXDW8MBN8Re0hnMGi5s3b+app54aFygCpKSk8OSTT/KXv/zligSLAQEBtLe3Y7fbx9pQOzo6CAiYnpfaGUT3AOydtYBjVmN+UgAHT7Vyx+IoDE4aDha28v7+GvqHLVw/OxgvNz1v7anicFEbs2N92JHbyNbDdahVIkU1PeSUdvCttYkXJDsuy/KMbnJkmxnZYppUFEXqqkM2D6GdvRbLic3Y6k+iTfrUOHpk67OogpMYjVnBqx+XkX/ax6W1e5i1CyOuqMiP1OMIwu0tpdibSxD9otEkLMZWn4+9pxG1f+x59uCYzxw9/Dq2qsOgdUITuxAAVXASoncY5hMfoI7ORlCpke1WbI2n0ERloQ5MQB0+G1tT8bnX2FkLlhFUwckTnhMN3tg7qi/gzMHe2+xYp2fwObc7Vd3N7rwmlqQHKYHiNcj6ZdG0dA1fUKAIMC/Rn8ERK/5ezpdVaCTQ24Xv3JZMV5+JnLIOCqq62HK4jg8O1RET7MY9y2M4XtqBp1FHZJBjuD450oucso4pbT7OcKCghbf3VjNksgKOmdUQXwPJkRMDJ4CoIDecdWq2HW0AHHYm962I5UhxG+WNfYT4GHhzVyUqUeAHdyfQ0D7ISx+WUt7QR0yIGxi0C5YAACAASURBVK3dI/h7Ok87wCs+rcSaleDHrHAPDE4a3t5TjbtBy/fuTJ2xKqsgCCyb/enf9U3zQjla3MZLH5by1RvjSYv5NHnX3DXMb988iZtByw/uTrsqA0VwfGYPr03ij+8X8urH5ZTU9rBqXtiUkvKjFhuFNd3YJZmOPtM4w2qF8ZTU9fDe/hqyEhyz5goKCgpTERM8PTHP2TE+bD1SR/+QGTeDjryKTmKD3fn321NoaB/kn5+Us3FXFTdkR854DecMFqurq8nMnFxdMjMzkx/+8IczPuCF4OXlRUJCAlu3bmXt2rVs3bqVhISEGbegiu4B2GpykG0WBLWW5XOC2ZvfzOs7K2juGqa5c5joIDf+7bZkooLckGSZExWdvL6zkjd3VTI8aiMj3pf7VsTS1jPCXz4oZuPuSn58f8a01yDJMrtym9h0sIa0aB/WXReBt9v5L6rmoxux1ebisuF/ET5zA2lrLASgxnU2wcaj2Bo+DRalgQ5HYGYa4ldHPekZNHPn0ihau0b44FAdwyYb96yImeAvd7mQ+lpB64TT0ocY3fd3dOm3IHo5/OGkrgaYRrBoKdmNrfIQmuQb0abehOjsCNYFQUCXcTumj3+HtfwA2llLsbeUgnUUdbgj0yJ6hWKrzUW2mKasYtoaC0EQJpW3F129Hd8hSZrwOZz33HtbEVw8zlk97ewz8eKWYoJ9Ddy17MrNBStcOhIjPEmMuLj2+BWZV67S4O3uxKp5YayaF0bvoJmjJW1sz2nkmVfyALghM2Ts9yE50nFehTXdUwaLJXU9vPJxOVFBRpZnhDAr3ANnnfqcSSmdRsWvvz0fk9mGyWLj1U/KeenDUgTgwdUJzE/yp6KxD7skE+JrwM/DiTd2VvLe/hpMZhvNXcPoNCpmhXtw/41xuBt02OwS7++vITvJf5znlc0usetEEy56NbPCPVCrRK5LDWRPfjOP3Zl6SYI3jdrh3fnXLSU8/+4pMuJ8+NbaRFSiyJZDtSDAj+6djYfr9LxEPy80apHvrEvig0N17D7RTG55J+uXRU/q6Vla34tdckggHCtu45YFEZd0LVabHYtNuuYtPvqGzPx5czEBXi48sCpeUWRXUFC4JMxP8mfrkTq2HWtgSXoQzZ3D3LPc0cUW6ufKf94/54I9jc8ZLNrtdgyGyY0lDQYDkiRd0EEvhKeffponnniCF154AaPRyLPPPjvjfYgegYCM1N+OyiuEQG8XkiI9OV7agY+7nkduTWLOWT5noiDw1VXxPPuvE8QEu3FTdhhRp70ZjS5aFqcGsvlg7VgU/1kkWaa+bZD69kE6ekzYJYcPW0VjH5GBRnLKOk4rEgaxOjt8SnU/WZax1Z9ENg0gddej8vn0ItzRZ6Iz9wiC3ZPn3q9mnYs3iwZKGO3uxdPLA1uTw1Be7m1kaGCAH9wzl9gQd2RZxsVJzSfHGxkatfL11QlXxONM6mtFdA9EHZaOy/3PIwiCo8qqd0XqbpjePnpbEAxe6LMnVrVVIcmIftFY8j9AE5ONre4EqHWoAh2Bn8rLcRMu9TRNqb5qaypE9ImY1DhbMHiBbEce6XX8/wxwnPvU1XBZlvnrB8XIMnxnXdI4BUsFhSuBh6uOVXPDWJwayFt7qjhS3M78pE+VXN0MOkL9DBRWd7M6O5zeQTMN7YP0DppRiQIGJw1//6iUAC9nHrszdUZWG856Nc56x/Y/ujed7ccb8XLTj7Wtnm1UrtWomJ/sz87cJnzdndiwIpaW7mEOFbby4pYSHl+fxvv7a9h2rIHmrmEeuzMVAIvVzp83F1Nc28Pd18eM/ebdtjiSW+aHX9KxglA/V57+WiYfHa1n04Fawo83MjvWh5zSDlbOC73qA8UzaNQqbl8cxU3zwvj7R6Vs3F2Fl1FPRrzvuO0Ka3rQaVUE+7hwpLidm+eHX7JASJJlnnvzJB19Jp75xtxrOmD86Gg9JrONJzbMRq+9cCsaBQUFhbPx83RmQXIAu080Y7M74rM5Z3U4iYJwwYnsc/5S2Ww2jh49ylSCqXa7/YIOeiFERUXx9ttvX9Q+RHeHLLXU1zIWNHzlhjjKG/vISvCb1CcryNuF5x9dNOFxgPRYHzYdrOVkVReL04Lo6jPR3msiLtSd/iELL24toaLREcVr1CJqlYBOo+KBVfEsSgmgd9DM+wdq2H68kQMFrWTE+xAZ6EZGnM84GXSptwV5uAcAW3PJuGDxaH4t19FOW9AivrcyleZiCVVrMXu3bWfthruwNxYiIyIgsSHtUw83QRC4a2k0rs5a3tlbjcls47t3pFx0hVGWJZDsCKrJL+ZSXyuq4KSxNZz5r+gVir27flrHkAbaEd0mtyIQBAFd5u2Ytj7L0D8eBkAdkYGgdkgFn6li2nsaJw0W5dEhpM5atOlrJt2/6OoIEKWhbsQZBIuyLCP1taCJXTDlNg3tQ1S3DHDfDbFX3G9OQeFsnPUaHliVwFdudJi4n01ypBfbjjawJ7+ZjbsqsdjGJw2ddWr+7fbki/JkVIniec3J1y2KJDbYnbQY77GgL9zPlX9sK+PPHxSTW9aB0VlDYXU3Xf0mvIx6/vh+EYU13WxYEcv1Z7X/iYJwWebP1SqRNQsiaOwYYtOBWkrqelCrRW7InFiZu9px0qn55s2z6BvK58WtJahEYazVWpZlCqu7mRXmQWq0Ny9vK6OubXDKltWZcqSojcqmfgA27q4apzMwGVab/aq0/RgyWdlf0MLcWX4Eel87FlcKCgrXBmsWhHO0uI3dJ5qJCHDF8wKtrj7LOa/mXl5ePPnkk1M+f60pkYpufoDgaIU8jbe7E94XOFsR7OOCt5ue/MouFiQH8D9vF9DaPYKLXo0kO7Kh990QS1KkFz5u+glZVk+jnq+vnsUNmaF8cKiWvPJO9he0su9kM0/ePweVKLIrrwld5S5SAcHZHXtzCaStBhyze6FVb6ESZKLnLkLt70VS+FK6Xv2QqIEcCiqXENFUQp4lgtnaWtLdescdXxAEbpoXhkYt8sbOSvbmN4+bu5kpsiRh2v575JE+XG772cTnLSPII32TVtdEr1CsRTuQJRuCOPXX0hF0taGJnjflNurABJxueBR7T6OjBfWsAE1w8QStM1J346SvtTUUgCyjPh3QfhbB4Jg9kge7ptUyO7bukT6wjo4lLCbjSHEbapXwuQgPKShMxmcDRYCUKC8+PFLPPz8pJybYjTuXRONp1GGXZLr6TPh5Ol+yC9S5cNKpJ1S3FqYEUFTbQ05ZBwFezvzbbck89eIx9he04uvuRGFNN/csjxkXKF4J7lsRS1n9MUrqeq9qP9TzodWo+PfbU3jujXz+8F4hadHe3HdDLKMWh/fl6vlhZMT58Nr2co4Ut12SYNFktvHO3moiA43Ehbqz7WgD82b5TfDkNJlt7MxtJK+ik4b2IR5fn3bR7eCXgqaOIU5WdbEiM4Q9J5qwWCVWTtLGq6CgoHCxeLs5sSQtiJ15Tcy+QN2EyThnsLh79+5LdqCrAUGtRXD1RuptOe+2smTHVnUUdWTmWFVKNg+DII7NnAmCQHqMD3vym9l2tJ7W7hFuXRhBW88IZqud9cuip1UhCvE18J11yUiyzJEihyjCx8caCPRy4V87KnjEtYxWwZ1eKYKEtiJkmwV5pI+hrb8mXOqmOmglaaerZIKowjXjZvSH/8meXW8TpTLTpIsm0xvsbRWTHn/5nGBOVnbx7r5q0mN8Lrg9ynz8bewNBYAwNhd6NlJfG8CkwaLKOxSrZHNUHj2nnteSzUNgGTkd+E+NOjwddfhERT5BEFB5hTgCyc/uW5axnPoY0c0f0Tdq0v2OVRYHu855/M9yJkExVRuqXZI4WtJOSpT3Nd1ipfDFJzLQSHSwG+F+rty1LHpc+7rP5yxqIggCX10Zh7NezfI5wQR4uZAc5cX+ghYkSSY6yO2KB4rgaN/96sp43ttfw8q513agYHTW8l8PZLI9p5EPDtXy078fJyHM0SKcEumFs15DeowP+wtayErwuyABuLPZfLCWgWEL370jhSBvF06Ud/LSh6V89/YUwvwdc7MN7YP8aVMRHb0mooLc0GtVHC1u+9yDRZtd4i8fFNPcNcyxknYGRiykRHkR7Dv5eI+CgoLCxXLzgnBMZhsLk2cmAnouLv+Q2lWGyj8WW20u1pocAKT+dqwVh7DW5GDv+rQN0laXx+jeFxnd/w/HzGBTMUP/fJShl7/N0Js/wlZ/EoDZsd4OIYUDtSRFeHLLgnAeWpPIv9+eMuNWQlEQmOs3yqJoHZsP1vLi1hKi/fTE6jqx+sZzvNcTwW7l4K6DjO77O3bTEM8PrsRn3i3j9qOLX4Rda2CxmIckC9y8biXawDikjlqHvcZnEASBr9wYh9Um8/qOCqQp2o4nw97diOXUNnp2v4z11LbTwZCMNNA+YdszAZNqisoinBa5OQfymYBzijbU6SB6BiP1NDlaZs/C3lCA1NOINv3mKcVrBLUOwcmIPNg5o2OeSVA45mYnUlLXy8CwhezECz8vBYUrgUoUefK+Ody7IvaKzDnPFGe9hq+ujCfotKjNkrQgBoYtmMw2vrIy7oqJeX2WjHhffvnQvCtSdb3cqFUiN80L42dfy8LTqCe3vJMgb5exc7t3RSzuBh2/f7uA5s6hCz7Oqeputuc0sjg9iIgAI1qNQzgI4Jev5fHO3mr++H4hz7yah9lq50cbZvPk/XNIi/GmoLob+xXUVZiMPfnNNHcNc9O8MAZHLAyOWFl1jScLFBQUrm6Mzlq+fvOsSbVULpSr70p/mdEvuA+VbxSju/7EyMf/w/BbTziCwp1/ZOT9p5FOBwG2hlOO/1YdwXzoNUw7/oDo7o824zYwD2OtPAxAdLAbBicNKlHgnuUxFzXQL5kGMG39Fbfrj6LXqtGqRb6drUGQbMTNW8h9992ChIBv9QfYW8s4plvAkEsIgV7jg1JBrcUpbSWiICN7R+Lp7YEqIA5kO/aOmkmP7efpzNqF4eRVdPLfr52gqWPqC7zNLpFX3klHRw8jW36F+ehGNFV7KbeHoFro8CU8u9V37Pz6WkFUIRgnlsZFtwBQabF31Z37Peq/BMGiVyhYRx2tpKeRZRlz/hYEV2/U52hxPXNsaaBjRseU+lpA44TgNHmW/UhRGy56NSlRMxPNUVBQODcpUV5EBLiyZkH4OFVUhYvHz9OZH98/h5vnh3Hrok/l2N1ctDy+Pg21WuSZV/N4YVMRBVUz68boGRjlb1tLCPYxcPdZytChfq789IFMooPc+OhoPXWtA8xP8ufpr2WNzeSnx/gwZLJSdXrO8fNgYMTCpgO1JEZ4cvviSH729bk8dmfqeb3SFBQUFK42vnRSXILWCadV38e07XfYW8rQJK9EE7cQ2TSAaeuzWKtz0KauxN54CnVkFkh2rCW7EAxeOK16HNHFA6mrHvtp5U6VKHLnkijsskyA1/iBdWmoG2vZflBrEd0DUIelnzOYtBZuB5sFob2Up+59EFGrx6noHawqLSr/WDzUWoZ9IwnsqKbO5sP7rUFcl+Y96T61s5ZhLdyBc+xcxzr9YwABe2s56sDJxQFumheGu0HHxt1V/OzlHG7IDGHNggjae0fILe887Q0JR4ra6R4Y5RbXIpZrRthivIc99WrsssD9zSIZTBUstiAa/SadSRREEZVvBPb2c3sYSv3tIKgQXL3Pud25ONPmau9uRDQ6Zp7srWVIHdXoFn7lnDOTAILRF/tpldnpIvW1InoETPpZmcw2TlR0Mj85YFKRJQUFhQtHFAV+8tXJLaAULh6tRsVt101s2/dxd+KJe2fz8fEGTlZ2kVvWwU8fyBxrHT0Xsizz1y0lWO0Sj6xLQvsZZWiji8OjcshkxdV54vxnUoQnapVAfmXXOBXdK8nmg7VYrHbuud6RRHZz0SrJQAUFhWuSL12wCKcDxlueALsNQXO6TOsRhOgbia36GOqgBGTTAOqwNNRh6Vjy/dDEXYfo4rjoiF4h2OpOIFvNCBodi1Inby205G/FWrpn7N9ONz6KOmziHB04VDgtxTsRjL7IAx14DNei9kxhuPo46pDksfk/dUgyls5adqgWY7VDWvTkQZOgdcZlw+9AEMf+LfqEY6vJQZu+ZtI2S0EQWJAcQGq0N+/srWLbsQZ25zdjttgRBQFBALskEx3sxrp5AUTnbKTIGsLOOg13L4smt6KTD3NayXT3mrKyeC6BF5VfNJaCjyeddxzbR38botEHQbxwpTvRMwgQkHoaIWIOANaSPQg6A5rYhVO+zmaXUKtERKMvtpG+sc9/OpytAvtZTlR0YrFJzFdaUBUUFL5A+Hk689WV8dy5xMrjLxzmk+MNPLQmcdJtG9oH8fN0RqdRcay0nYrGPh5YFY+/5+TjHIIgTBoogkP8KD7Mg5OVXaxfFn3FvQx7B80cKGhhYUqAonqqoKBwzfOlLWMIomrCjb4mai5Sdz2Wwk8AAVVwEoLWCd3cuxDdP72Rd8zXyUi9TVPuX5YkbHV5qCMzMTzwJwRXH8z5W6a0IbEU7QDrKE7XPwIaJ+z1J7HV5yOPDqKJXzy2nTb1Jlzu+iX33LGUG7NCiAuduqVFEFXjLpLa5BuRepux1Rw753tjcHLI5j+xYTbp0d5sWBHL/353IX/9jyX89T+W8OR9c5gjFOEkmDkiZpAY4cnyzBBuzg6nZ8BMv8pzQrAoSzak/g4kVz/q2gYmfR9UftGOVtnO2inXJvW3IVxECyo45g6tzt5011U51mYexlZ/AnX03EmDVLPFzjt7q/n2b/dxqLB1TFxHGpxeK+q5VGABDhe14eOuJyro0sjMKygoKFxNOOs1LE4N5HhpB139pgnPHy9t5+l/5PDcm/n0DZl5e081YX6uLEy5cIGG2TE+dPSZaOkavpilXxCfHG9AkhzdOgoKCgrXOl/aYHEy1JFZgICt6iiiTwSi0+Q372c8Gu1T2C+AQ3lUNg041FS1TmjTViN11DisLz6DbDFhKdqBOnw2Kp9w1CHJ2BpOYi3di2DwGleREtRaRDd/ArxcWL8sZkYCE+qoLETPEMy5m5Al23m3jw1x56E1iVw/JxiDkwZBEFCrRGRZwlq0A1VICt996Ba+d2cqoiCQHOlJmJ8rJT067L2tYwIyVpud3JwSkO28dnSA//dyLsdLJwZaop9jLsXeXgnA6JE3GNn2O+x9DnEYWZaQ+tvHBe4XQlFtNwV9rqi7KrAM9mKtzQW7DU3MAoZHrWw7Vs+HR+rYfLCWFzYV8cRfjvDR0Xo0aoeViWg8HSz2Ty9YPCNuo5qkqto7aKasvpfsRP8rnv1WUFBQuFLckBmCIMDO3PFJ1vq2Qf7+YSkBXs7UtQ7y4xeP0Tto5p7lMRclRpQW440gwOHitotd+owYGLGwN7+ZeYl+n7s6sIKCgsKlQAkWz0J0OS0EA6hDU6bcTjB4g9YJqXtq5U5bbQ6otKhDHPvRxC5AcPHAkv/BhG0txTvBMoJ2tsMIXh2WhmwawN5cjCZu0ZTKnDNFEER0GbchD7RjPv4OlsJPsDUWzng/Uk8TsmkATdRcR1vmaS82QRB4YFU8rTYjgt1CU10T7++v4YkX9tN7zHHe4fGx+Hk689HR+gnVRVHviujmj72tyjHvWbQDe+MpRt75L8wnP0Ie7gW79aLEbRraB/nj+0UclNLRYqVr7+vYKg8juPkj+kSwI6eRt/dU8+6+GjYfrKW+bYDoIDf+877ZrFsUSV3bIK1mR1uUPIni62ScmW8VPSZmyY+WtCGDooKqoKDwhcbTqCcrwZd9BS0MjFgAh0n98++ewuCs4Yf3zuaRdUlYrHayEnwvWgjG3aBjTqwPe/NbMJnPnxy9VOzIacRqk1idrVQVFRQUvhh8KWcWz4U6Jht7axnqsLQptxEEAZVnyFgQ8FlkWcJWm+eYNdQ4pMQFlQZt6k2YD/8LW3MJ6qBZjm2to1hPfYIqNBWVd7hjDSEpcDqjqolbdAnPDlRhaYh+0VhPfXzmbHC65QnUp4Pk6WBvKXXsKzB+wnNh/q4sXjwbjh7m9Xf30yUZ+a7XfjztXWiSbuCG7EU4F7byj4/KKK7tISly/MC/6BeDvT4fa8kekGWcb/0JloJtWI6/hdThEL85n8fiVMiyzEsfluKsU/OtDcvZ/1o5S1tzsIND5RbIKesgLsSd769PQxAYV7n193TmrT1VHCjr52a9gbrKaj4sL6B3cJQ5cb6sXRgx6TGtpfsQPYIQjBPXfaSojahAI35TzOUoKCgofFFYnR3O8dIO3txVyUO3JPLGzgoGhi089ZUM3Fy0pMf48OzD2RhdJp9FnCkr54aRW97JgYIWbsi6/JYVoxYbe040MzvOZ4LgnYKCgsK1ilJZ/AyauEU43/azscBtKkSv0Em9+gDs7dXII32oI8cr8GniFyO4emM+/DqyZAfAWrIb2TyE7nRVEUDQG1CFpKKOyEQ0XFr1NEEQcF71fZxv/zku9/4WwejD6N4XkS0T50imwt5ShmD0m3JtIdExACyLVvHjhAo8xSGcVn4f/fx7EQSB7ER/PFx1fHS0fsJrVf7RyOYhLIXbUYelofKNQn/9I6jD52CrywMu3DajoX2Ixo4hbp4fjq+7E22BS+mXHUGaJiabps5hWrtHyJrlh0YtTmjxdXXWkh7jzZHiNrolI4PtzfQOjiLJsPVw3aSzOPb2SqTuejRJKya0me472UxT5zDzL6FxqoKCgsLVSqC3C6uzwzha3M7rOys4UtzO6uywcQqpnkb9JfPvjAw0EhvizvbcRmx2CUmSx3yEewfN7MprIq98ZjZI5+LAqVZGzDZWXoHAVEFBQeFKoQSLn0EQRFTe528fEb1CJnj1ncFWlweiGnVo6vh9q7Xo5t2N1NuEtXQP9o5qLAXbUAUlovIdLz3udOOj6K//9sWdzBQIWmdUXiGIBi+clnwTeaib0f3/mJZ3oCxJ2FrLUE9SVRzbv5MRtM7Mspeiai1Cm37LuLZetUpkRUYIZQ19HChoGdeOqvI97adlt6BJXO7YnyiiX/YtVP6xCHpXBOfztye19YxMMGQ+WNiKWiWSleCwy0iODeLlwUUMzlqH6OrD8dJ2REFgTtxEH8gzLEwJYMhkpWZQT4iTiZ89mMX370pFEOCjI47gVxrpx95ZB4C1aAfoXNDEZI/bT3lDL69tryAp0pPrUpVgUUFB4cvB6uxwgrxd2JnbRJC3CzfPD7+sx1s5N5SeATNP/OUI33puLw/9ei+PPn+AH/zxEP/aUcFft5QwMGy56ONIksyOnEaig9yICprcT1dBQUHhWkRpQ71AVF6OzKG9q37Mq+8M9rZKVL6RCNqJw+3q8DmoAhMwH30L7FYEFw908+6esN2VEjtR+cegnb0WS94mbDXHEVy9EY1+iO4B6ObeNUEdVOquB4sJ1RRejeBYu+gegNRRjeDiiTZpxYRtlqQHklPWwT+2lXGwsJUVGSFEBbmxcX8Pt0pahmQnege9OVObFdRanFb/B/Lo0DnfG7PVzlu7q9iT38yNWSGsX+aoctrsEsdK2pkd642LXgNASrQXL9n9OWwL5XZZJqe0g4RwD4xTyLEDJEZ4khbtjZ8mDKf2WrBb8TTqWZgSyIGCFlaEjqI58iI6+zBDnvEYeivQpqxEUDuUd2VZpqCqm79/VIqvhxMPr0lCdYlmUhUUFBSudjRqkQdXJ/DytjIeWBV/yaqIU5ES5cXC5ABMFht+Hs6IIgyNWHF31RHm58rz75xiR24jty+e6BU5E05UdNLVP8r6ZdGXaOUKCgoKVwdKsHiBiB5BIJz26jur3VS2WZC66tAm3zjp6wRBQDd/A6Yt/406biG6rDsnDSqvJLo5t6KJnoetsRB7WyVSXyvW5mKHz2RwErLFxMi236KJWQBWR6vlZPOKZ3MmWNRlrJvUjkKvVfPj++dwsLCV9/bX8MImh8m9IEBSyh2Ud9g4/EExvUMWls8JRhQFBJUGweVTg+WG9kF25TVx07ww/DydaewY4i8fFNPSNYy/pzM7c5tYOjsYX/f/3969R0dVnnsc/85MSEIukAskmRAEUYghQJDEgseFp02QSxIIkWBcID2FSi9qtXIspdomokVAV22PR1hWXbjEG1pZAaEKCHgreAOkDQbBYAKR3EgCRC65zMw+f0TmFCckAZxb8vusxYLZe8+e9+GZmeTZ77vftzf/LK3n1NlWbvi3IZ+hwb1IvCKC9/9ZyamzLdSeONvppAQWs5m780bR+uUpmmrewfFNHZbIeLLGDeKbkh30/mA19Y5wSoxrGVe/DzsG//OvKDi0hz6hgTSebuGLIyewRodwd94oQoL1ERSRnuVKax8Wz/uBR17LbDIxL+vCFzdTr4lh+56vmTJ20CV/Hze12Fj/jzJiInpz7dALj0wREfFH+k31EpkCAjFHxLusCWivOwwOu3MZiPZYohII/fH/+tRSCea+cQT2jYMRN2E0neLU6rvaZntNGIG99iscNaU015RiCg7HHBGPuZOhoL2uvr5tqY2hN1z4Nc0mbkyJ54aRcXxV2cgXR06QODCCYQMjuK7Vzun1n7Nm25f8419VZI67gtioEGIjQwgJDuBIzTc89spnnG6y8fH+Gq5PjmNHcRWhwb347/zRxPcL5XdPf8jadw/x48mJvP3pESLCAkkeHHVeG27+zyG8ur2UHcXVBPWyMKaDIajn/3+1TVZjNNZAZDzRfYPJjf6SE63R9Jq0kMz4fuwrOUx5WQWhrZGcPNPC4epvsNkd3JoxlPQxA9x+RV1ERDqWNW4Qu76o5Z3Pvibr+sEX/Xy7w8FT6z+nqv4M98wc5ZwdXESku1CxeBksccNoLf0Qw+FwLm/h+HaNQEsHxSJ4bpjppTAFh2EKjXKuI2mvKwdwTjLz3Yl72hOQkExAQnKXXs9iNjM0IYKhCf9fgAb1svCrGSPZfeAYr71TytMb2tanNAEDY8Ko91UHFgAAElBJREFUb2wisJeFX80YxYad5by3t5KUq6KZm5XkHEY6+QdX8MaOcj4va+Bss43ZE4e5/CC/Kr4v99+WSnOrneYWu3OIame+u9ai0dpEeHMNgddmE5TQNiw5ZcSVpIxwnSFVRER8w6C4cEYMiWLzJxXcmBJPeAe3IZzjMAw+3FdNdcMZDtd8w76vGvjxpERGDvl+J6QTEfEFKhYvg8WaSOv+d3A0HHHOnmqvKW2bKbR3H+827jKZowc615F01B3GFN6f4JvuxHZwB5aBIz3SBpPJRNo1MYwe2o+jx05T39jE17WnOFBxgl4BZuZPHU5MZAgLbknhaN1pBvQLPa8Inzz2Cj79opaoPsHc8qOrGRgTdsHXCuplIaiXpeuNCwqFwBAcJyoBsNd+BYaj04sEIiLiW2750dUsfu5T1mwrZf7U4R0ee7bZxrMbS/jsyzosZhO9gwKYPv5KfnjtAA+1VkTEs1QsXgbLt2sT2qsOYOk3GMMwsNeUYknwTDHlTpboK2ipKMawtWCvK8fSbxAmk/l7X/exKwIsZgbFhTMoLpwxw1yHiZpMJhL6uxaCwYEBLJk/zi1tMplMBFgTsVUUO/MOuMxqKyIivi2hfxiZ4waxYWc51yfHuqz/e05Lq51HXtxNVd0Zbs0Yyk1pCT49SkhE5Pugm6Yugzk0ElOfGOxVBwAwvjmGcbaxW/QumaOvAMOBvaYUo7EWcyfrTvZEAYPHYJxuwFFXjr2mFHPkAExBWohZRMTfZP/HYKzRITy/6QAtrfZ2j/m8vIGjx04zf+pwJl43UIWiiPQIKhYvkyUuEXvVQYxvCyvo/H5Ff2CJHghA64EP2h53Ye3JniZg0LVgMmMr29XWo9wN8i4i0hP1CjAzZ2Ii9Y1NbP607X794q/qeeCZj6hpOAPAZwfr6B1k6XAtXhGR7kbF4mUKsA7DaD6F43gltrLd0Cu4bVkNP2fqEwMBQdjKdgFg7j/Yuw3yQabgMCzWRFpK3oGWM1jihnq7SSIicomuGRTJmGH9efPDw3xV2cjTb7TNcvr2rgocDoN/Hqpj5JBozWQtIj2KvvEu07n7FpvefhJb+W4CR050zozqz0wmM+bogWBvxRQWjTk43NtN8kkBV6ZCS9tVZ/Usioj4t5k/ugqb3cHSF3djcxgkDYpkx75q9pU18M2Z1nbvmxcR6c78v6rxMlN4f0yhkThOVhOYkklgaq63m/S9sURf0fa3hqBeUMDgVABMweGYvl1OQ0RE/FNsZAg3pQ3E7jD4r8mJ5P3wKppb7Dy/6QssZpOWxxCRHscnZkNdtGgRO3fuJDIyEoDJkyfzy1/+EoC6ujoWLlzI0aNHCQoK4uGHHyYlJcWbzT2PyWQi6Lo8jJYz9Eqe0K1ueDd/WyxqcpsLM4dGYhmQjCmkb7fKvYhITzXjh0O4fkScc7mlK619KKtqJPnKKHoH+cSvTSIiHuMz33o/+9nPuO2221y2/+lPfyItLY1Vq1axa9cu7rvvPrZs2eJTv5j3GnaDt5vgFpbYq8Fkcg61lfb1nrIAfOj9KCIil85iNp+3Lm9G6gCe3djItUP7ebFVIiLe4TPF4oVs2rSJbdu2AZCWlkZQUBDFxcWMGjXKyy3r/ixRCYTOeUL3K3bCZLZ4uwkiIuImY4fHYrMbjBuuWw1EpOfxmXsWn3vuOaZOncodd9zBoUOHADh+/DiGYRAVFeU8zmq1Ul1d7a1m9jgqFEVEpCezmM3cmBJPYC9dGBSRnscjPYu5ublUVla2u2/nzp3ce++99O/fH7PZzLp167j99tvZunXr99qG6Oiwzg8SERERERERwEPFYlFRUYf7Y2P/f2jH9OnTWbp0KdXV1QwY0LZeYUNDg7N3saqqiri4uItuQ339KRwO46KfJyIiIiIi4s/MZtMldZ75xDDUmpoa578/+OADzGazs4CcPHkya9asAWDXrl00NTUxYsQIr7RTRERERESkpzAZhuH17raf/OQn1NfXYzKZCAsLY+HChYwePRqAY8eO8Zvf/IbKykqCgoJYvHgxY8aMuejXUM+iiIiIiIj0RJfas+gTxaInqFgUEREREZGeyK+HoYqIiIiIiIhvUbEoIiIiIiIiLlQsioiIiIiIiAsViyIiIiIiIuLCI+ss+gKz2eTtJoiIiIiIiHjcpdZCPWY2VBEREREREek6DUMVERERERERFyoWRURERERExIWKRREREREREXGhYlFERERERERcqFgUERERERERFyoWRURERERExIWKRREREREREXGhYlF8XllZGfn5+UyaNIn8/HzKy8s73N6e1157jZtuuokJEybw0EMP4XA4AKipqWHOnDmkpqZy8803eyAa6Sp35n3r1q3cfPPNZGdnk5WVxapVqzwQkXTGnTnfv38/ubm55OTkkJWVxR/+8AdaWlo8EJV0xp15P6e5uZnMzEx9z/sQd+b9448/JiUlhZycHHJycpg5c6YHIpKucPfnff/+/cyePZvMzEwyMzN577333BxRD2CI+Lg5c+YY69atMwzDMNatW2fMmTOnw+3fdeTIEWP8+PFGfX29YbfbjXnz5hlFRUWGYRhGY2Oj8cknnxjbt283cnNzPRCNdJU78753716jurraMIy298CECROMTz/91N0hSSfcmfOzZ88azc3NhmEYht1uN+666y7j+eefd3dI0gXuzPs5S5cuNX73u9/pe96HuDPvH330kXLto9yZ99OnTxvp6enGZ599ZhiGYbS2thoNDQ3uDqnb86ueRXdfjejsyqR4Xn19PSUlJWRnZwOQnZ1NSUkJdXV17W5vaGhwOcfmzZuZMGECUVFRmM1mZs6cyZtvvglAeHg41113HSEhIZ4LSjrl7rynpKQQGxsLtL0HrrrqKo4ePeqh6KQ97s55cHAwgYGBANhsNpqamjCb/epHYLfk7rwD7Nq1i/LycnJycjwTlHTKE3kX3+PuvG/cuJHU1FRGjx4NQEBAAJGRkR6Krvvyq5+UhYWFzJo1i82bNzNr1iwKCgo63P5dFRUVPPnkk7z66qts2bKFw4cP88Ybb3S6T7ynqqqK2NhYLBYLABaLhZiYGKqrq9vdXlVVBcADDzzAtm3bnOeIj493njM+Pt55nPgmT+b90KFD7N27l3Hjxrk7LOmAJ3JeU1NDTk4OY8eOJTQ0lFtuucVT4ckFuDvvZ86c4ZFHHmHx4sWeDEs64YnPe3l5Obm5ucycOZOioiJPhSYdcHfeS0tLCQgIYP78+eTk5HD//fdz8uRJT4bYLflNsejuqxG6QtW9LFmyhIyMDG83QzzsYvNeW1vLHXfcQUFBgbOnUfzLxeQ8NjaW9evXs2PHDlpbW3n77bfd3Dpxl67m/dFHH2XWrFn6fHcTXc17cnIy7733HkVFRTz++OOsWLGCnTt3eqCF4g5dzbvdbuejjz5iyZIlFBUVERoayrJlyzzQwu7Nb4pFd1+NUO+Tb7JardTU1GC324G2L4La2lri4uLa3W61Wts9R2VlpfNxZWVlu8eJ7/BE3uvr65k7dy633347mZmZbo5IOuPJz3pISAiZmZls2LDBTdFIV7k777t372blypWkp6ezYMECDh48yNSpUz0QmXTE3XkPCwsjPDwcgIEDBzJhwgT27Nnj7rCkE+7Oe3x8PGPHjiUmJgaz2czUqVMpLi72QGTdm98Ui5dKPUz+LTo6mqSkJDZu3Ai0jUdPSkqiX79+7W6PiopyOcekSZPYunUrDQ0NOBwO/va3vzFlyhSPxiEXx915P378OHPnzmX27NmaJc9HuDvnFRUVztlPW1pa2LZtG8OGDfNQdHIh7s77hg0b2L59O9u3b+fxxx9n2LBhukjgA9yd99raWgzDAODEiRPs2LGDa665xkPRyYW4O+9TpkyhuLiYU6dOAfD++++TmJjooei6MW/PsNNVdXV1RmpqqmGz2QzDMAybzWakpqYax44da3d7fX29yzmeeeYZY/Hixc7Hb731ljF//vxO94l3lZaWGnl5ecbEiRONvLw849ChQx1uNwzDuP/++42tW7c6H7/yyitGRkaGkZGRYRQUFJz3fhk/frwxduxYIzk52Rg/frzxxBNPeDZAaZc7875s2TJj5MiRxrRp05x/Xn/9dc8GKC7cmfN169YZ2dnZxtSpU42srCzjwQcfNM6ePevZAKVd7sz7v9MMmb7FnXl/4YUXjMzMTGPatGlGVlaW8fTTT3s2OLkgd3/ei4qKjKysLCM7O9v4xS9+YRw7dsxzwXVTJsP49tKLH5gzZw55eXnk5OSwfv16Xn/9dV544YULbv+uiooKZs+ezbp164iIiGD+/PlkZ2eTm5vb4T4REREREZGexq+KxUOHDrFo0SIaGxvp06cPy5cvZ8iQIRfcDm33LKanpzuHoq5Zs4Znn30WgBtuuIGCggLn/Y4d7RMREREREelJ/KpYFBEREREREc/o9hPciIiIiIiIyMVTsSgiIiIiIiIuVCyKiIiIiIiIC78oFsvKysjPz2fSpEnk5+dTXl4OwPLly0lPTycxMZGDBw92eI709PROjxEREREREZE2flEsFhYWMmvWLDZv3sysWbMoKCgAICMjg5deeokBAwZ4uYUiIiIiIiLdi88Xi/X19ZSUlJCdnQ1AdnY2JSUlNDQ0kJaWhtVqvehzrlq1ihkzZjB9+nTy8/PZv3+/c19iYiJPPfUUM2bMICMjg82bN39vsYiIiIiIiPiLAG83oDNVVVXExsY61zu0WCzExMRQVVVFVFTUJZ1z+vTpzJs3D4CdO3dSWFjIa6+95twfFhbG2rVr2b17N7/+9a+ZNGnS5QciIiIiIiLiR3y+WHSHffv28de//pWTJ09iMpmc90Cek5mZCcDo0aOpra2lubmZoKAgL7RURERERETEO3y+WLRardTU1GC327FYLNjtdmprazscfrp27VpWr14NwE9/+lOmTZvm3NfS0sI999zDiy++SHJyMjU1Ndx4443nPf9cYXiuN9Nms6lYFBERERGRHsXni8Xo6GiSkpLYuHEjOTk5bNy4kaSkpA6HoM6YMYMZM2a0u6+lpQWbzeYsNl9++WW3tFtERERERMSf+XyxCPDggw+yaNEiVq5cSZ8+fVi+fDkAf/zjH9myZQt1dXXMnTuXiIgI/v73v7d7jnO9g2FhYdx9993k5eVhtVpdehVFREREREQETIZhGN5uhLvV1tYyZcoUduzYQXBwsLebIyIiIiIi4vP8omfxcqxevZqXX36Z3/72tyoURUREREREuqhH9CyKiIiIiIjIxTF7uwEiIiIiIiLie/xuGOrx48dZuHAhR44cITAwkEGDBvHQQw8RFRXF3r17KSgooLm5mQEDBvDYY48RHR1NWVkZBQUFHDt2jICAAEaOHElhYaFzWOr27dt59NFHsdvtJCcns3TpUnr37u3lSEVERERERLzH74ahnjhxggMHDjB27FgAli9fzsmTJ1myZAkTJ05k6dKlpKWlsXLlSioqKli6dClff/01jY2NDB8+HIfDwYIFCxg6dCh33nknp0+fZuLEibz00ksMHjyYBx54AKvVyl133eXlSEVERERERLzH74ahRkREOAtFgNGjR1NZWUlxcTFBQUGkpaUBcOutt7Jp0yYAEhISGD58OABms5lRo0ZRWVkJwPvvv8+IESMYPHiw83lvvfWWByMSERERERHxPX5XLP47h8PBK6+8Qnp6OlVVVcTHxzv3RUVF4XA4OHHixHnPaWpqYu3ataSnpwO4PC8+Pp6qqirPBCAiIiIiIuKj/LpYfPjhhwkJCeG2227r0vE2m417772XcePGkZGR4ebWiYiIiIiI+C+/LRaXL1/O4cOH+ctf/oLZbMZqtTqHlgI0NDRgMpmIiIgAwG63c99999G3b19+//vfO4/77vMqKyuxWq2eC0RERERERMQH+WWx+Oc//5l9+/axYsUKAgMDARgxYgRNTU3s2rULgDVr1jBlyhSgbbjqokWLsFgsLFmyBJPJ5DzX+PHjKS4upry83OV5IiIiIiIiPZXfzYb65Zdfkp2dzeDBg51LXyQkJLBixQr27NlDYWHheUtn9OvXj3fffZef//znDBs2DLO5rT4eM2YMhYWFAGzdupXHHnsMh8NBUlISy5YtIyQkxGsxioiIiIiIeJvfFYsiIiIiIiLifn45DFVERERERETcS8WiiIiIiIiIuFCxKCIiIiIiIi5ULIqIiIiIiIgLFYsiIiIiIiLiQsWiiIiIiIiIuFCxKCIiIiIiIi7+D1DPXfEHuc78AAAAAElFTkSuQmCC\n", - "text/plain": [ - "
    " - ] - }, - "metadata": {}, - "output_type": "display_data" + "collapsed": true, + "deletable": false, + "editable": false, + "hide_input": true, + "run_control": { + "frozen": true } - ], + }, + "outputs": [], "source": [ "from scipy.stats import norm\n", + "from matplotlib import style\n", + "# print(style.available)\n", + "style.use('ggplot') \n", "\n", "N = 400\n", "regular_steps = norm.rvs(loc=0, scale=5, size = N)\n", @@ -1265,7 +1254,8 @@ "deviating = pd.Series(deviating_steps.cumsum(), index = datetimes)\n", "ax = deviating.plot()\n", "ax.axhline(y=0, color='k', linestyle='-', linewidth=2)\n", - "ax.set_ylabel('Deviation from the starting point');" + "ax.set_ylabel('Deviation from the starting point [cm]')\n", + "ax.legend(['Regular steps', 'Deviating steps']);" ] }, { @@ -1305,13 +1295,9 @@ }, { "cell_type": "code", - "execution_count": 48, + "execution_count": 32, "metadata": { - "deletable": false, - "editable": false, - "run_control": { - "frozen": true - } + "hide_input": false }, "outputs": [ { @@ -1377,7 +1363,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA38AAAEuCAYAAAA++qv0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3Xl8VPW9//H3bFlnspGwBBIMO2ERMQLWiLaKsdZdFKTFe8XbVitY2l/7UPlV0AuKXi1dsNKW2t+9l9ZKEbW01tpKpSlLQdEQCYuAIUAIkJB1Jsss5/z+CIRFMAsJZ5J5PR+PPGbO93wn+YTHh0neOed8j800TVMAAAAAgB7NbnUBAAAAAICuR/gDAAAAgAhA+AMAAACACED4AwAAAIAIQPgDAAAAgAhA+AMAAACACOC0uoALUV5eZ3UJ55ScHKeqqnqry0AEovdgFXoPVqH3YBV6D1Y5u/fS0jxtfi1H/rqA0+mwugREKHoPVqH3YBV6D1ah92CVC+k9wh8AAAAARADCHwAAAABEAMIfAAAAAEQAwh8AAAAARADCHwAAAABEAMIfAAAAAEQAwh8AAAAARIBWb/IeCAQ0b948lZaWyu/366GHHtKQIUP02GOPyWazaejQoVqwYIHsdrtefPFFrVu3Tk6nU/PmzdPYsWNVUlJywXMBAAAAABem1WS1Zs0aJSUl6ZVXXtHy5cu1cOFCLV68WHPnztUrr7wi0zS1du1aFRUVacuWLVq1apWWLFmip556SpIueC4AAAAA4MK1euTvxhtvVF5eXsu2w+FQUVGRJkyYIEmaPHmyNmzYoKysLOXm5spmsyk9PV2hUEiVlZUXPHfKlCld8X0DAACgmzJNU4ZpyjB04tE8MSYZRvM+0zw1T6ZkNL9QJzZb5p891vz85OvPNdb8WFbTqKqq+jbMbx6TdKouNX9Bs+UbOvnQvP/M7/XUvlPzPvvv8dnPdeYnME/7XKe/rmVue1532mSzZfqZk8zTP9/pX+dc38DnDJ/9eVtzvunnHj7P6Hk+R3yMS9fnDJDT0X3PTGw1/MXHx0uSvF6vHnnkEc2dO1fPPfecbDZby/66ujp5vV4lJSWd8bq6ujqZpnlBcz9PcnKcnE5HO7/liyMtzWN1CYhQ9B6sQu/BKvRe60KGqUAwpEDQkD9w5mMgaMgfDMkfaH4eDBkKhQwFQ6ZCRvPjGWMhQ0HDVDBoKGgYCp3Y3zznxFzjxFjw1POTocwwToW2kGG0bIda9p0+77PPQ8ZnAxJwsUzOyVC/MHjP6ej7XqvhT5LKysr08MMPa8aMGbrlllv0/PPPt+zz+XxKSEiQ2+2Wz+c7Y9zj8ZxxzV5H5n6eqqr6tpR/0aWleVRe/vnBFegK9B6sQu/BKt2990zTlD9oqMkfUlPgtI/Ttv2B5v2NgZD8Z+1r8ofkDxoKhE4EtxNh7uR24LQAZjWH3SabzSa7XbLbbKdt22S36cSjTU67TTa7XY6T4zabbCf2nXyt/eTrTo6f9nrb6a+zSbaTjzq5fWJMn92nE6+TTjyemH9y7NTrJHd8tOob/GeMfeZrnf41bKfGdOK5dGL7xLyTbGc9senk1z/172k7a59sbX2d7cyvccbnO3P+6Z/v9K9zZt2f/7qWOs5+nc7D9tk955t7jqmfy9aOF5xranyMS3EOm+XvOWe/77UnCLYa/ioqKjRr1izNnz9fV155pSQpOztbmzdv1sSJE5Wfn69JkyYpMzNTzz//vB544AEdOXJEhmEoJSXlgucCAACEK8MwVd8UVF29X/WNQTU0BVV/4qPh5Edj6MztM/aHmk9LvEA2m+Ry2uVy2JsfnXbFRkfJ6bCdNu6Qy2k/NeZ0nDHf6bDJ5bDL4bDL4WgOZ077yefNj0578/jJOc4TIc3haB47Y7/dJueJ19rt7fwtvRvo7n94QGSyma2cSLto0SK9/fbbGjRoUMvY//2//1eLFi1SIBDQoEGDtGjRIjkcDi1dulT5+fkyDEOPP/64cnJyVFxcrCeeeOKC5p5PuP6H480AVqH3YBV6D1bp7N5r8odU7WtSrc8vb31A3obmj7oTj6ePeRsC8jUEznf50nnFRDkUG+1UXLRTsdFOxUQ7FONyKNrlUFRU82OMy6Eol0PRUQ5Fu+yKPrnf5VBM1KnnzY/2bn0NUnfF+x6sciFH/loNf+EsXP/D8WYAq9B7sAq9B6u0tfcamoKqrGtSjbdJNV6/qn0nHlu2/arxNqnRH2r1c9ltNsXHOuWOdckT65I7LkruWKfiY1yKPRHoTga72OgTQS+meSwmytkjj4JFIt73YJUuPe0TAAAgnBmmqRqvX8drG1VZ26jjNY063vLYpOO1jWpoCn7u53DHupSaGKNEd7SS4qOU4I6SJzZK7liX3HEnQt6J57HRzpZrwACgOyH8AQCAsGcYpirrGnW0qkHHKuubH6saVFHbqCPHfQqGzn0iU7TLoV6JMRrSP1HJnmgluaOU5I5W4snH+CglxEdx2iSAiED4AwAAYaMpEFLZcZ9Ky306XOFT2fF6Ha2qV3l1o4Ih4zPz42NdGpDmVmpSrHolRKtXQkzzR2KMUhJiFB/jbNcKfwDQkxH+AADARRcyDJUdr9fBY14drjgV9sqrGz6zgEpctFMZvePVOzlOfZJj1Ts5Vn2S49QnJU6XZCSrosJryfcAAN0N4Q8AAHSpYMjQ4Qqf9h+pU8nROh04UqeDx7zyB888kueOdWl4ZpLSU+PVPzVe/dPc6tcrTu5Y13mP3nFUDwDajvAHAAA6jWmaOl7TqL2lNdpTWqNPD9eqtNx7xjV5DrtN6anxGtjXo8zebvVPc6t/arwS4qMsrBwAej7CHwAA6LBgyFDJ0TrtO1TTEvhqvP6W/U6HTf3T3Lqkr0cD+3g0sK9HA9Li5XKe/z6+AICuQfgDAABtFjIM7S+r046SKu0qqdLe0hoFTjt9MzE+SpcPT9OQ/oka0j9RmX08cjlZSRMAwgHhDwAAnJdpmiqt8GnH/irt3F+p3Qerz7gR+oC0eA0dkKQhA5rDXmpiDNfhAUCYIvwBAIAzNPlD2llSpcJPj+vjfRU6XtvUsq9PcqwmZSdr5CUpGp6ZpIQ4rtMDgO6C8AcAAFRZ26gPPylX4b7j2nWguuWeenHRTk0Y2Vujs3pp5MBk9UqMsbhSAEBHEf4AAIhQx6obtHX3MW3dXa5PD9e2jA9Ic+vSIb00ZlAvDe6fIIeda/YAoCcg/AEAEEGOVdVry87mwFdytE6SZLfZNHJgsnKGp+nSIalKSeDoHgD0RIQ/AAB6OG9DQO/vOqZN249ob2mNpOZ77Y0elKKc4b112dBUebh2DwB6PMIfAAA9UDBkqHDfcW3afkTb9lUoGDJlkzRyYLKuHNVXlw1LVXyMy+oyAQAXEeEPAIAe5GhVvf5RcFjrC8vkbQhIkvqnxesLo/pqYnYfTukEgAhG+AMAoJsLhgwV7KnQPwpKVbS/SpLkjnXphisy9IXRfZXR28299wAAhD8AALqrqromvfdRqf657bBqfH5J0rCMJF17WbouH9ZbLierdAIATiH8AQDQzRw85tVftxzQv3YcVcgwFRvt1PWXD9A1l/VX/9R4q8sDAIQpwh8AAN2AaZoqKq7UO1sOtJza2a9XnKZckaErR/VVtMthcYUAgHBH+AMAIIyFDENbdhzT25tLdKjcJ0kakZmkGyZkauzgXrJzLR8AoI0IfwAAhKGQYWjzjqP644b9OlrVILvNpknZfXTDhAxd0jfB6vIAAN0Q4Q8AgDASMgz9q+io/rhxv45VNchht+macen6yqSBSk2Ktbo8AEA31qbwt23bNr3wwgtasWKFvvOd76iiokKSVFpaqksvvVQ/+tGP9OCDD6q6uloul0vR0dH61a9+pZKSEj322GOy2WwaOnSoFixYILvdrhdffFHr1q2T0+nUvHnzNHbs2PPOBQAgEhiGqU1FR84IfdeOS9dNVw5UaiKhDwBw4VoNf8uXL9eaNWsUG9v8g+dHP/qRJKmmpkb33XefHn/8cUnSgQMH9NZbb51xH6HFixdr7ty5mjhxoubPn6+1a9cqPT1dW7Zs0apVq1RWVqY5c+Zo9erV55w7ZcqUrvieAQAIK9uLj+v3f9+nQ+Xe5tB3WX99ZdJA9UrkhuwAgM7T6qG1zMxMLV269DPjS5cu1de+9jX17t1bFRUVqq2t1YMPPqh7771X7733niSpqKhIEyZMkCRNnjxZGzdu1NatW5Wbmyubzab09HSFQiFVVlaecy4AAD3ZgaN1+uHKAi1ZuU2l5V59YXRfLf7mJN2XN5zgBwDodK0e+cvLy9OhQ4fOGDt+/Lg2bdrUctQvEAho1qxZuu+++1RTU6N7771XY8eOlWmaLUcC4+PjVVdXJ6/Xq6SkpJbPdXL8XHNbk5wcJ6czPJe2TkvzWF0CIhS9B6vQe21XUd2gFW/v1HtbD8o0pXFD03T/LaM0qH+i1aV1S/QerELvwSod7b0OLfjyl7/8RTfffLMcjubglZqaqunTp8vpdKpXr14aOXKkiouLz7hmz+fzKSEhQW63Wz6f74xxj8dzzrmtqaqq70j5XS4tzaPy8tbDK9DZ6D1Yhd5rG38gpLc3H9Cf/1WiQNDQgLR43f3FIRqdlSKbzca/YQfQe7AKvQernN177QmCHVpRZdOmTZo8eXLL9saNGzV37lxJzcFtz549GjRokLKzs7V582ZJUn5+vnJycjR+/HitX79ehmHo8OHDMgxDKSkp55wLAEBPUbCnQj/41Wb9YX2x4mKcuv+mEXry/gkaM6jXGdfLAwDQVTp05K+4uFgZGRkt29dcc43Wr1+ve+65R3a7Xd/97neVkpKiRx99VE888YSWLFmiQYMGKS8vTw6HQzk5OZo2bZoMw9D8+fMl6ZxzAQDo7o5VN+h3f/tE2/Ydl8NuU96EDN16VZZio7nbEgDg4rKZpmlaXURHheuhdk4DgFXoPViF3vusYMjQO1sO6A/r9ysYMjQiM0lfvWG4+qfGW11aj0LvwSr0HqxyIad98mdHAAA6WXFZrf777V06eMyrhPgoTb9uiCaO7MPpnQAASxH+AADoJE3+kN5c/6n++n7zKp5Xj+2ne740RPExLqtLAwCA8AcAQGf45GC1Xn5rh8qrG9U7KVb/duNwjbwkxeqyAABoQfgDAOACBIIhvfHPYr2z+YBkk26cmKnbc7MU5QrP+9ACACIX4Q8AgA4qOVKnX/1ph0orfOqdFKv/uDlbQwZwo3YAQHgi/AEA0E6GYerP/yrRH9YXK2SY+uL4/rrn2iGKjuJoHwAgfBH+AABoh6q6Ji3/Y5F2HahWsida9980QqOzelldFgAArSL8AQDQRtv2Vujlt3bK2xDQZUNTdf9NI+WOZSVPAED3QPgDAKAVgaCh19bt098+OCinw66vThmmL43vz337AADdCuEPAIDPcbymUS+9uV3FZbXqmxKnB28bpcw+HqvLAgCg3Qh/AACcx/bi4/rlmh3yNgR05ai+ui9vOIu6AAC6LcIfAABnMUxTb23crzf/WSy73aaZecN17bh0TvMEAHRrhD8AAE5T3xjQ8j/u0LZ9x5WSEK1v3T5Gg9ITrC4LAIALRvgDAOCEI5X1+ulrhTpSWa/sS5L1zVtHyRMXZXVZAAB0CsIfAABqvr5v2ZtFamgK6sYJmZp67WDZ7ZzmCQDoOQh/AICIZpqm/vbBIa38+x457DY98JWRumpMP6vLAgCg0xH+AAARKxgy9L/v7Nb6wjIlxkdp9p1jNLh/otVlAQDQJQh/AICI1NAU1M/e+Fg79ldpYF+P5tw5RikJMVaXBQBAlyH8AQAiTmVto368qlCHyr0aNyRV37x1FPfvAwD0eIQ/AEBEOXjMqx+v2qaquiZ9cXx/ffX6YSzsAgCICIQ/AEDEKNpfqZfe+FgNTSHd/cXBunFCJjduBwBEDMIfACAibPi4TP/99i7ZbNI3bx2lidl9rC4JAICLivAHAOjx3v5XiVat26e4aKfm3DVGwzOTrS4JAICLzt6WSdu2bdPMmTMlSUVFRbr66qs1c+ZMzZw5U3/+858lSS+++KKmTp2q6dOnq7CwUJJUUlKie++9VzNmzNCCBQtkGEa75wIA0FGmaeq1dfu0at0+pSREa97Mywl+AICI1eqRv+XLl2vNmjWKjY2VJO3YsUP333+/Zs2a1TKnqKhIW7Zs0apVq1RWVqY5c+Zo9erVWrx4sebOnauJEydq/vz5Wrt2rdLT09s8d8qUKV33nQMAejTDNPWbv36idR+Vqk9yrL43/TL1SuRWDgCAyNXqkb/MzEwtXbq0ZXv79u1at26dvvrVr2revHnyer3aunWrcnNzZbPZlJ6erlAopMrKShUVFWnChAmSpMmTJ2vjxo3tmgsAQEcEQ4Z+9ccdWvdRqTJ6u/XY1y4n+AEAIl6rR/7y8vJ06NChlu2xY8fq7rvv1ujRo7Vs2TL97Gc/k8fjUVJSUsuc+Ph41dXVyTTNllXUTo55vd42z21NcnKcnM7wvC9TWprH6hIQoeg9WCVces8fCOm5//1AW3Yc1YiByVrwH5Pkjouyuix0oXDpPUQeeg9W6WjvtXvBlylTpighIaHl+cKFC3XdddfJ5/O1zPH5fPJ4PLLb7WeMJSQkyO12t3lua6qq6ttb/kWRluZReXnr4RXobPQerBIuvdfQFNTS1YXadaBaoy5J1uw7x6rB16QGX5PVpaGLhEvvIfLQe7DK2b3XniDYpgVfTvfAAw+0LNKyadMmjRo1SuPHj9f69etlGIYOHz4swzCUkpKi7Oxsbd68WZKUn5+vnJycds0FAKCt6huD+uHKAu06UK3Lh6XpkamXKjoqPM8OAQDACu0+8vfkk09q4cKFcrlcSk1N1cKFC+V2u5WTk6Np06bJMAzNnz9fkvToo4/qiSee0JIlSzRo0CDl5eXJ4XC0eS4AAG1R3xjUkt8X6NPDtbpyVB/N+spIOezt/vsmAAA9ms00TdPqIjoqXA+1cxoArELvwSpW9l59Y0A/XLlNxWW1+sLovpp100jZ7TZLasHFx/serELvwSoXctonN3kHAHRbzcGvQMVldbpqdF/dT/ADAOC8CH8AgG7pjOA3pq/u/zLBDwCAz0P4AwB0O6cHv9wx/fTvXx5B8AMAoBWEPwBAt1LfGNQLrxZo/5ETwe+mEbLbCH4AALSGpdAAAN1Gkz+kH7+2jeAHAEAHEP4AAN1CIBjSi68Xau+hGk3M7tN8qifBDwCANiP8AQDCXjBkaNmbRSraX6VxQ1L1wFdY3AUAgPYi/AEAwpphmHr5rZ0q2FuhkQOT9dDto+R08OMLAID24qcnACBsmaap/31nlzbvOKohAxL1yF1j5XI6rC4LAIBuifAHAAhLpmnq1bV7lb+tTAP7eDR36qWKjiL4AQDQUYQ/AEBY+uOG/frbBweVnhqv7067VHEx3J0IAIALQfgDAISddR+V6s31xUpNjNH/mTZOnrgoq0sCAKDbI/wBAMLK1t3HtOKvu+WJc+n/TBunZE+01SUBANAjEP4AAGFj94Eq/WLNDkU5HZp796XqkxJndUkAAPQYhD8AQFg4cLROP11dKNM0NfvOMcrql2B1SQAA9CiEPwCA5cqrG/Sj329TQ1NID9w8UqOyUqwuCQCAHofwBwCwVG29X0tWFqjG59e91w3VpOy+VpcEAECPRPgDAFimKRDST1YV6mhVg26aNFBTrsiwuiQAAHoswh8AwBKGYeqXa4pUXFarL4zuq7uuGWR1SQAA9GiEPwCAJVb+fa8+2lOhkQOT9e9fHiGbzWZ1SQAA9GiEPwDARffuBwf1tw8OKj01Xg/fMVpOBz+OAADoavy0BQBcVB/tKdfv1u5RYnyU5t49VnExLqtLAgAgIhD+AAAXTXFZrX6xpkgup12PTB2r1MRYq0sCACBiONsyadu2bXrhhRe0YsUK7dy5UwsXLpTD4VBUVJSee+45paamatGiRfrwww8VHx8vSXrppZcUCAT0ve99T42Njerdu7cWL16s2NhY/f73v9err74qp9Ophx56SF/84hdVWVl5zrkAgJ6hoqZBP3mtUIGAodl3cRN3AAAutlaP/C1fvlw/+MEP1NTUJEl6+umn9cQTT2jFihWaMmWKli9fLkkqKirSr371K61YsUIrVqyQx+PRSy+9pJtvvlmvvPKKsrOztXLlSpWXl2vFihV69dVX9fLLL2vJkiXy+/3nnAsA6BnqGwP68apC1fr8uvf6obpsaJrVJQEAEHFaDX+ZmZlaunRpy/aSJUs0cuRISVIoFFJ0dLQMw1BJSYnmz5+v6dOn67XXXpMkbd26VVdffbUkafLkydq4caMKCwt12WWXKSoqSh6PR5mZmdq1a9c55wIAur9gyNDP3tiuwxU+TcnJ0PU53MsPAAArtHraZ15eng4dOtSy3bt3b0nShx9+qN/85jf67W9/q/r6en3ta1/T/fffr1AopPvuu0+jR4+W1+uVx+ORJMXHx6uuru6MsZPjXq/3nHNbk5wcJ6fT0b7v+CJJS/O0PgnoAvQerHKu3jNNUz9Z+ZF2llRp0ui+enjaZXLYuaUDOhfve7AKvQerdLT32nTN39n+/Oc/a9myZfrlL3+plJSUlsB38hq9SZMmadeuXXK73fL5fIqJiZHP51NCQkLL2Ek+n08ej+ecc1tTVVXfkfK7XFqaR+XlrYdXoLPRe7DK+Xrv7c0lWvv+QV3S16N/yxuuyuNeC6pDT8b7HqxC78EqZ/dee4Jgu1f7/MMf/qDf/OY3WrFihTIymk/d2b9/v2bMmKFQKKRAIKAPP/xQo0aN0vjx4/WPf/xDkpSfn6/LL79cY8eO1datW9XU1KS6ujrt27dPw4YNO+dcAED39dGecr323j4le6I1566xinaF55kaAABEinYd+QuFQnr66afVr18/zZkzR5J0xRVX6JFHHtEtt9yie+65Ry6XS7fddpuGDh2qhx56SI8++qh+//vfKzk5WT/84Q8VFxenmTNnasaMGTJNU9/5zncUHR19zrkAgO7p4DGvfrlmR/MtHe4aq2RPtNUlAQAQ8WymaZpWF9FR4XqondMAYBV6D1Y5vfdqfH4t+p/3dby2Sd+6fbRyRvS2uDr0ZLzvwSr0HqxyUU/7BADgfALBkH72+sc6XtukO67OIvgBABBGCH8AgE5hmqb+++3d2ltao4nZfXTzFy6xuiQAAHAawh8AoFO8vfmANhUdUVa/BN3/5RGy2bilAwAA4YTwBwC4YJs+LtPqdSdX9hyjKFb2BAAg7HToPn8AAJx04GidlrzyoVyu5pU9k9ys7AkAQDjiyB8AoMNq6/1aurpQjf6Qvn5ztgb2bfuKYwAA4OIi/AEAOiQYMvTzN7freG2TZuSN0OXDWdkTAIBwRvgDAHTIyr/v1a4D1Ro/LE3Trh9mdTkAAKAVhD8AQLv9s/Cw1m49pP6p8XrgKyNlt7OyJwAA4Y7wBwBol32Ha7Tind2Ki3Zq9l1jFBvN2mEAAHQHhD8AQJtVe5v0s9c/Vsgw9eDto9QnOc7qkgAAQBsR/gAAbRIIGvrZGx+r2uvX3dcO0eisXlaXBAAA2oHwBwBolWma+u3fdmtfaa0mZvdR3oQMq0sCAADtRPgDALRq3Uelyt9Wpsw+bv37l0fIZmOBFwAAuhvCHwDgc+0+UKVX3t0jd6xLs+8co2iXw+qSAABABxD+AADnVVnbqJfe3C5JeviO0UpNjLW4IgAA0FGEPwDAOfkDIS1d/bHq6gOaft1QDc9MtrokAABwAQh/AIDPME1T//OXXSo5Wqfcsf30pfH9rS4JAABcIMIfAOAz/vr+QW0qOqrB6QmaecNwFngBAKAHIPwBAM5QVFyp37+3V4nuKH3rjjFyOflRAQBAT8BPdABAi2PVDfr5H7bLYbdp9h1jlOyJtrokAADQSQh/AABJUqM/qKWrC+VrDGrmDcM1uH+i1SUBAIBORPgDAMg0Tb381k6Vlvt03fgBuvrSdKtLAgAAnaxN4W/btm2aOXOmJKmkpET33nuvZsyYoQULFsgwDEnSiy++qKlTp2r69OkqLCzstLkAgK73p00l2rq7XMMzkjTtuiFWlwMAALpAq+Fv+fLl+sEPfqCmpiZJ0uLFizV37ly98sorMk1Ta9euVVFRkbZs2aJVq1ZpyZIleuqppzplLgCg6xXsrdCb+Z+qV0K0HrpjtJwOTgoBAKAnavUnfGZmppYuXdqyXVRUpAkTJkiSJk+erI0bN2rr1q3Kzc2VzWZTenq6QqGQKisrL3guAKBrlR33afkfi+Ry2jX7zrFKiIuyuiQAANBFnK1NyMvL06FDh1q2TdNsud9TfHy86urq5PV6lZSU1DLn5PiFzm1NcnKcnE5HG7/ViystzWN1CYhQ9B7aytcQ0Esvb1FDU0jf++rlyhlzYdf50XuwCr0Hq9B7sEpHe6/V8Hc2u/3UwUKfz6eEhAS53W75fL4zxj0ezwXPbU1VVX17y78o0tI8Ki9vPbwCnY3eQ1sZpqmfvlao0nKvbpyYqeyMxAvqHXoPVqH3YBV6D1Y5u/faEwTbfWFHdna2Nm/eLEnKz89XTk6Oxo8fr/Xr18swDB0+fFiGYSglJeWC5wIAusab//xUhfuOa1RWiqZeM9jqcgAAwEXQ7iN/jz76qJ544gktWbJEgwYNUl5enhwOh3JycjRt2jQZhqH58+d3ylwAQOf7YNcx/WljiXonxerB20bJbrdZXRIAALgIbKZpmlYX0VHheqid0wBgFXoPrTl0zKunV2yVJP3gvsvVP83dKZ+X3oNV6D1Yhd6DVS7qaZ8AgO7J2xDQT1cXqikQ0n/cPLLTgh8AAOgeCH8AEAFChqFlb25XRU2jbr3qEl0+vLfVJQEAgIuM8AcAEWDl3/dqZ0mVLhuaqltzs6wuBwAAWIDwBwA93PrCMr37wSH1T43Xf9ycLbuNBV4AAIhEhD8A6MH2Ha7R/76zS3HRTs2+a4xio9u9yDMAAOghCH8A0ENV1TXpxdc/Vsgw9eDto9QnOc7qkgAAgIUIfwDQAwWChl5642PVeP26+9ohGp3Vy+qSAACAxQh/ANDDmKapFe/s1r7DtbpyVB8fxqhxAAAdU0lEQVTlTciwuiQAABAGCH8A0MOs3XpI6z8u0yV9Pfq3G0fIxgIvAABAhD8A6FF2llTp1bV7lRAfpdl3jlGUy2F1SQAAIEwQ/gCghyivbtCyN7fLZpMevmO0UhJirC4JAACEEcIfAPQATf6Qlq7+WN6GgL52wzANHZBkdUkAACDMEP4AoJszTVMvv7VDh8q9+uL4/rpmXH+rSwIAAGGI8AcA3dwfN+7XB7vLNSwjSfdeN9TqcgAAQJgi/AFAN/bBrmN685/F6pUQo2/dPlpOB2/rAADg3PgtAQC6qf1HavWrP+1QdJRD3546VgnxUVaXBAAAwhjhDwC6oaq6Ji1d/bECQUPfvGWUBvR2W10SAAAIc4Q/AOhm/IGQXny9UFV1TZr6xcEaNzTV6pIAAEA3QPgDgG7ENE39+s87VVxWp6vG9NWNEzKtLgkAAHQThD8A6Eb+uGG/tuw8pqEDEnVf3gjZbDarSwIAAN0E4Q8Auon3dx3Tm+uLlZoYo4fvHCOXk7dwAADQdvzmAADdwP4jtXr5xMqej0wdq4Q4VvYEAADtQ/gDgDBXVdekn75W2Lyy562jNCCNlT0BAED7OTvyotdff11vvPGGJKmpqUk7d+7UD3/4Q/3Xf/2X+vXrJ0maM2eOcnJy9OSTT2r37t2KiorSokWLNHDgQBUUFOjpp5+Ww+FQbm6uZs+eLcMwzjkXACJZQ1NQP1m1TdVev+754hCNG8LKngAAoGM6FP7uvPNO3XnnnZKkp556SnfddZeKior0/e9/X3l5eS3z/vrXv8rv92vlypUqKCjQs88+q2XLlmnBggVaunSpMjIy9I1vfENFRUUqLS0951wAiFQhw9Av1hTpwDGvrhmXrrwJGVaXBAAAurELOu3z448/1t69ezVt2jQVFRVp9erVmjFjhp599lkFg0Ft3bpVV199tSRp3Lhx2r59u7xer/x+vzIzM2Wz2ZSbm6tNmzadcy4ARCrTNPXK3/aocN9xjR6Uoq/dMIyVPQEAwAXp0JG/k37xi1/o4YcfliRdddVVuv766zVgwAAtWLBAr776qrxer9zuU9emOByOz4zFx8fr4MGD55wbDAbldJ6/xOTkODmdjgv5FrpMWprH6hIQoei9nuGNdXv13keluqRfgp54YJLiYlxWl9Qqeg9WofdgFXoPVulo73U4/NXW1urTTz/VpEmTJEl33XWXEhISJEnXXXed3nnnHXk8Hvl8vpbXGIYht9t9xpjP51NCQoIaGxs/M/fzgp8kVVXVd7T8LpWW5lF5eZ3VZSAC0Xs9wwe7junXfyxSkjtKs+8YLV9do3x1jVaX9bnoPViF3oNV6D1Y5ezea08Q7PBpn++//76+8IUvSGo+PenWW2/VkSNHJEmbNm3SqFGjNH78eOXn50uSCgoKNGzYMLndbrlcLh04cECmaWr9+vXKyck551wAiDT7Smu0/MQtHebefalSEmKsLgkAAPQQHT7yV1xcrAEDBkiSbDabFi1apNmzZysmJkaDBw/WPffcI4fDoQ0bNmj69OkyTVPPPPOMpOZFYr73ve8pFAopNzdXl156qcaMGXPOuQAQKY5V1eunqwsVCpl6+I4xyuzD6UQAAKDz2EzTNK0uoqPC9VA7pwHAKvRe9+VtCOjpFVt1tLJe9+UN17WX9be6pHah92AVeg9WofdgFUtO+wQAdI5A0NCLqwt1tLJeN07M7HbBDwAAdA+EPwCwkGGYWv6nHfrkUI1yhqdp6rWDrS4JAAD0UIQ/ALCIaZr63bt79MGuYxo2IFH/cXO27NzLDwAAdBHCHwBY5K1NJVr74SH1T4vXI1PHKsoVnvctBQAAPQPhDwAskL/tsF7P/1S9EqL13XvGdYubuAMAgO6N8AcAF1nBngr9z192yR3r0nenjVOyJ9rqkgAAQAQg/AHARbT3UI2W/WG7XE67vn33WPXrFW91SQAAIEIQ/gDgIimt8Oknr21TKGTqW7eP0eD0RKtLAgAAEYTwBwAXwbHqBv3w1Y/kawzq/ptGaOzgXlaXBAAAIgzhDwC6WFVdk1743Ueq9vo17UtDdNWYflaXBAAAIhDhDwC6UG29Xy+8+pEqahp1W26W8iZkWl0SAACIUIQ/AOgi9Y0BLVlZoLLj9cqbkKFbr7rE6pIAAEAEI/wBQBdo8of041WFOnDUq2vGpeueLw6RzWazuiwAABDBCH8A0MkCwZB+urpQe0trNCm7j2beMJzgBwAALEf4A4BOFAwZWvZmkXaWVGnckFTN+spI2e0EPwAAYD3CHwB0kmDI0M//UKSCvRUaOTBZD90+Sk4Hb7MAACA88FsJAHSCk8Hvw0/KNSIzSY9MHSuX02F1WQAAAC0IfwBwgc4Oft+++1JFuwh+AAAgvBD+AOACEPwAAEB3QfgDgA4Khgz9guAHAAC6CcIfAHTAyeC39WTwm0rwAwAA4c1pdQEA0N0EgiEte7N5Vc+W4BdF8AMAAOGN8AcA7dDQFNTS1YXadaBaoy5J1uw7xxL8AABAt9Dh8Hf77bfL4/FIkgYMGKBp06bp6aeflsPhUG5urmbPni3DMPTkk09q9+7dioqK0qJFizRw4EAVFBS0eS4AhAtvQ0A/XrVNnx6u1fhhafrmraPkcnL2PAAA6B46FP6ampokSStWrGgZu+2227R06VJlZGToG9/4hoqKilRaWiq/36+VK1eqoKBAzz77rJYtW6YFCxa0eS4AhIMab5N+uLJAh8p9unJUX836ygg57AQ/AADQfXQo/O3atUsNDQ2aNWuWgsGg5syZI7/fr8zMTElSbm6uNm3apPLycl199dWSpHHjxmn79u3yer1tngsA4eB4TaNeePUjHa1q0JfG99eMKcNkt9msLgsAAKBdOhT+YmJi9MADD+juu+/W/v379fWvf10JCQkt++Pj43Xw4EF5vV653e6WcYfD8Zmxz5sbDAbldJ6/xOTkODmd4XmtTVqax+oSEKHovc5VWu7Vc7/7SBXVDbr7uqGa+eWRshH8zoneg1XoPViF3oNVOtp7HQp/WVlZGjhwoGw2m7KysuTxeFRdXd2y3+fzKSEhQY2NjfL5fC3jhmHI7XafMfZ5cz8v+ElSVVV9R8rvcmlpHpWX11ldBiIQvde59h2u0U9WFcrbENDUawfry1dkqKLCa3VZYYneg1XoPViF3oNVzu699gTBDl2w8tprr+nZZ5+VJB09elQNDQ2Ki4vTgQMHZJqm1q9fr5ycHI0fP175+fmSpIKCAg0bNkxut1sul6tNcwHAKh/tKdfzr3wkX2NA9904XDdNYgEqAADQvXXoyN/UqVP1+OOP695775XNZtMzzzwju92u733vewqFQsrNzdWll16qMWPGaMOGDZo+fbpM09QzzzwjSXrqqafaPBcALrb3Pjyk3/ztE7mcds25a6zGDUm1uiQAAIALZjNN07S6iI4K10PtnAYAq9B7F8Y0Tb2e/6ne2lQiT5xLc+++VFn9Elp/Ieg9WIbeg1XoPVjlQk775CbvACApGDL0//68U5uKjqpPcqy+c8+l6p0cZ3VZAAAAnYbwByDi+RoDeumN7dpZUqXB6Ql6ZOpYeeKirC4LAACgUxH+AES0I5X1+slrhTpaWa/LhqbqG7eOUrQrPG8hAwAAcCEIfwAiVtH+Si17Y7vqm4L68sRM3XXNYNnt3MMPAAD0TIQ/ABFp7dZD+t27e2S3Sw98ZaSuGtPP6pIAAAC6FOEPQEQJhgy98u4erfuoVAlxLs2+c6yGDEi0uiwAAIAuR/gDEDEqaxu17M3t2ne4Vhm93Zpz1xilJsZaXRYAAMBFQfgDEBF2lVTp53/Yrtr6gK4c1Uf33TiChV0AAEBEIfwB6NFM09Q7Ww7qtXX7ZLNJX50yTF8a3182Gwu7AACAyEL4A9Bj1TcG9P/e3qWtu8uV6I7St24fraEDkqwuCwAAwBKEPwA90r7DNfrFH4pUUdOoYRlJeui2UUp0R1tdFgAAgGUIfwB6FMM09dctB7X6H/tkGKZuveoS3XLVJXLY7VaXBgAAYCnCH4Aeo9bn16//vFOF+44rMT5K37glWyMvSbG6LAAAgLBA+APQIxTsqdB/v71TtfUBjcpK0ddvzlZCfJTVZQEAAIQNwh+Abq3RH9Sra/cqf9thOR12TfvSEE25IkN2VvMEAAA4A+EPQLe191CNlv+pSOXVjcro7dbXb8nWgDS31WUBAACEJcIfgG6nKRDSG/mf6m8fHJRM6aZJA3VbbpZcThZ1AQAAOB/CH4BuZWdJlf777Z0qr25U7+RYzbpppIZlcO8+AACA1hD+AHQL9Y1BrVq3V/8oOCybTbpxYqZuy81StMthdWkAAADdAuEPQFgzTVPv7zqmV9fuUbXXrwFp8br/ppHK6pdgdWkAAADdCuEPQNg6Ulmv3/51t4r2V8npsOv23CzddOVAOR1c2wcAANBehD8AYccfCOmtTSV6e3OJgiFTo7NS9NUbhqlPcpzVpQEAAHRbhD8AYcM0TW3ZeUyvrdun47WNSvZE697rhury4Wmycd8+AACAC9Kh8BcIBDRv3jyVlpbK7/froYceUt++ffXggw/qkksukSTde++9uummm/Tiiy9q3bp1cjqdmjdvnsaOHauSkhI99thjstlsGjp0qBYsWCC73X7OuQAiw97SGq1cu0f7DtfK6bDpxomZuuULlyg2mr9RAQAAdIYO/Va1Zs0aJSUl6fnnn1dVVZXuuOMOPfzww7r//vs1a9aslnlFRUXasmWLVq1apbKyMs2ZM0erV6/W4sWLNXfuXE2cOFHz58/X2rVrlZ6efs65AHq2iuoGvfaPfdqy85gkKWdEb029drB6J8VaXBkAAEDP0qHwd+ONNyovL69l2+FwaPv27SouLtbatWs1cOBAzZs3T1u3blVubq5sNpvS09MVCoVUWVmpoqIiTZgwQZI0efJkbdiwQVlZWeecm5KS0jnfKYCw4m0I6O1/lehvHxxSMGQoq59H068bqqEDuGcfAABAV+hQ+IuPj5ckeb1ePfLII5o7d678fr/uvvtujR49WsuWLdPPfvYzeTweJSUlnfG6uro6mabZcv3OyTGv13vOuZ8X/pKT4+R0huc9vtLSPFaXgAgV7r3nbQjozX/s1Zr8T9XQFFRqUqz+7SvZmjyuv+x2ruvrzsK999Bz0XuwCr0Hq3S09zp8MU1ZWZkefvhhzZgxQ7fccotqa2uVkNB8360pU6Zo4cKFuu666+Tz+Vpe4/P55PF4ZLfbzxhLSEiQ2+0+59zPU1VV39Hyu1Ramkfl5XVWl4EIFM6919AU1LsfHNQ7Ww6qvimohDiXbvvSEF17WX9FuRw6ftxrdYm4AOHce+jZ6D1Yhd6DVc7uvfYEwQ7dLKuiokKzZs3S97//fU2dOlWS9MADD6iwsFCStGnTJo0aNUrjx4/X+vXrZRiGDh8+LMMwlJKSouzsbG3evFmSlJ+fr5ycnPPOBdC9NfqDevtfJXr055v0xj+LZbfbdPe1g/Xcg1/QDRMyFeUKz6P3AAAAPU2Hjvz9/Oc/V21trV566SW99NJLkqTHHntMzzzzjFwul1JTU7Vw4UK53W7l5ORo2rRpMgxD8+fPlyQ9+uijeuKJJ7RkyRINGjRIeXl5cjgc55wLoHuq9fn17tZDeu/DQ/I1BhUb7dQdV2fp+pwMVvAEAACwgM00TdPqIjoqXA+1cxoArBIOvXesql7vbDmo9R+XKRA05I516frLB+i6nAGKj3FZWhu6Tjj0HiITvQer0HuwyoWc9smf3wF0iuKyWv1l8wF9sPuYTFNKTYxR3oRM5Y7tp2hO7QQAALAc4Q9AhwWCIW3ZeUx///CQisua/wKV2dutL08aqJwRaXLYO3RZMQAAALoA4Q9Au1VUN+i9j0r1z8IyeRsCstmkcUNSdd3lA5R9SXLLrVwAAAAQPgh/ANokGDK0be9xrS88rMJ9x2VKcse6dNOkgbr2snSlJsZaXSIAAAA+B+EPwOc6cLRO6z8u07+KjsrbEJAkZfVL0JfG99eEkb3lcnI9HwAAQHdA+APwGTU+v7bsPKoNhWU6cKz55uueOJduuCJDV43pp4zebosrBAAAQHsR/gBIkurq/dr6Sbne33lMuw5UyTQlh92my4am6qox/TR2cC85HSzgAgAA0F0R/oAI5m0I6KNPyvX+rmPasb9Kxonbfg7un6ArRvTRpOw+SoiPsrhKAAAAdAbCHxBhjlbVq2BPhQr2VGjPoZqWwJfVz6MrRvRRzog0Fm8BAADogQh/QA8XMgztK63Vtn3Nga/seL0kySZpUHqCxg1N1RUj+6h3EoEPAACgJyP8AT2MaZo6Vt2gHcWV2l5cqV0HqtTQFJIkRTntumxoqsYNSdXYIalK5JROAACAiEH4A3qAqromfXKwWiXln+qDHUdUUdPYsq93UqwmZqdo7OBeyh6YrCgXt2YAAACIRIQ/oJsxTVPHqhq0+2C19hys1ieHqlVefSrsxUY7dfmwNI3KSlF2VgqncwIAAEAS4Q8Ie43+oEqO1Km4rE6fHq7RJ4dqVOvzt+yPi3bq0sG9NCwzSRPHpCsxxiGHnVsyAAAA4EyEPyCMBEOGDpV7VVxWp+LDtSo+UqvDFT6dWJBTkpTojtIVI3prWEaShmUkqX9avOw2myQpLc2j8vI6i6oHAABAOCP8ARaprffr4DGvDp34OFju1eEKn4KhU0kvymXXkP6JyuqXcOLDo7SkWNlOhD0AAACgrQh/QBcyTVN1DQEdOV6vI5X1Kjvu06Fynw4d86rmtFM3JcnltKt/mrs55PX1KKtfgvqlxnEKJwAAADoF4Q/oBIFgSMeqGnSksjnknQx7Ryrr5WsMfmZ+amKMxg1J1YDebmX0dmtAWrz6JMfJbueIHgAAALoG4Q9og5BhqKq2SeU1jaqoblB5TaOO1zS0bFd7/Z95jcNuU+/kWA3LSFLflDj1TYlTv17xSk+NV1wM//UAAABwcfEbKCJeIGio2tukqrqmlsezn1fWNsk4fdWVE2w2KcUToxGZSUpLilW/XvHNQa9XnFITY+R0cMomAAAAwgPhDz1SMGSorj6gunq/auv9zc99ftXWB1Rb71etz98S7LwNgfN+HptNSoyP0qD0BKUmxSg1MVapiTFKS4xRalKskj3RBDwAAAB0C4Q/hLWQYai+Maj6xqB8jUH5GgPyNQaatxsC8rXsC8jXEFDticB3ruvszhbtcijJE60BafFK9kQryROtZHf0Gc8T3VEsuAIAAIAegfCHThcMGfIHDPmDITUFQmpsCqnRH1SDP6TGpqAa/SE1+kNqOPG8wX9yLHhqblNI9U0BNTSF2vx1bTbJE+tSkidamX088sS55ImLUkKcS574KCXERckT5zrxGKXYaAe3TAAAAEDECKvwZxiGnnzySe3evVtRUVFatGiRBg4caHVZ3Y5pmgqGTAVDhgIhQ6GQqUDIUDBoKBgyztpnKBA0T4yf2h8INu/3B0ItQe7U8xPjwebtpkCoZSwQNBQyPnttXFvZbTbFRDkUE+1Qr4RYuWOdiotxKT7GqfgYl+JinIqPbd6OOzEWf2IsNsrJapkAAADAeYRV+Hv33Xfl9/u1cuVKFRQU6Nlnn9WyZcusLqtdAsGQ/rq5REfLvTJMUyHDlGE0P4YMo+W5cdr4qf2njZ3+2pChkHn++WcHvAsJX+3hctoV5bQryuVQbLRTSfFRinI55HLaFe1yKMplV5SzOcjFRDkVe/IxqvkxJqr5dc1hr/kxymnnaBwAAADQBcIq/G3dulVXX321JGncuHHavn27xRW13+4D1Vr6+22d/nkddpscdpvspz2efB7tcsgZY5fTYZPLYZfT0fzc6bDL6Ty17XLY5XDYm+c4bXLaT+13OWyn7bPLabedM8hFuewt43ZCGgAAANBthFX483q9crvdLdsOh0PBYFBO57nLTE6Ok9PpuFjltcnklHglJcUpEDRawpnDYZPDbm8JbU7Hqeen72uee/pzm+x2u+w2cTQMbZaW5rG6BEQoeg9WofdgFXoPVulo74VV+HO73fL5fC3bhmGcN/hJUlVV/cUoq90uG95b5eV1bZtsmlIoJDMkBdX8AXRUWpqn7b0HdCJ6D1ah92AVeg9WObv32hMEw2oN+/Hjxys/P1+SVFBQoGHDhllcEQAAAAD0DGF15G/KlCnasGGDpk+fLtM09cwzz1hdEgAAAAD0CGEV/ux2u/7zP//T6jIAAAAAoMcJq9M+AQAAAABdg/AHAAAAABGA8AcAAAAAEYDwBwAAAAARgPAHAAAAABGA8AcAAAAAEYDwBwAAAAARwGaapml1EQAAAACArsWRPwAAAACIAIQ/AAAAAIgAhD8AAAAAiACEPwAAAACIAIQ/AAAAAIgAhD8AAAAAiABOqwvoSQzD0JNPPqndu3crKipKixYt0sCBA60uCz3Qtm3b9MILL2jFihUqKSnRY489JpvNpqFDh2rBggWy2+168cUXtW7dOjmdTs2bN09jx461umx0Y4FAQPPmzVNpaan8fr8eeughDRkyhN5DlwuFQvrBD36g4uJiORwOLV68WKZp0nu4aI4fP64777xTv/71r+V0Ouk9XBS33367PB6PJGnAgAGaNm2ann76aTkcDuXm5mr27Nkdyh6Ev0707rvvyu/3a+XKlSooKNCzzz6rZcuWWV0Wepjly5drzZo1io2NlSQtXrxYc+fO1cSJEzV//nytXbtW6enp2rJli1atWqWysjLNmTNHq1evtrhydGdr1qxRUlKSnn/+eVVVVemOO+7QiBEj6D10uffee0+S9Oqrr2rz5s0t4Y/ew8UQCAQ0f/58xcTESOJnLi6OpqYmSdKKFStaxm677TYtXbpUGRkZ+sY3vqGioqKWP8i2J3tw2mcn2rp1q66++mpJ0rhx47R9+3aLK0JPlJmZqaVLl7ZsFxUVacKECZKkyZMna+PGjdq6datyc3Nls9mUnp6uUCikyspKq0pGD3DjjTfq29/+dsu2w+Gg93BRXH/99Vq4cKEk6fDhw0pNTaX3cNE899xzmj59unr37i2Jn7m4OHbt2qWGhgbNmjVL9913n95//335/X5lZmbKZrMpNzdXmzZt6lD2IPx1Iq/XK7fb3bLtcDgUDAYtrAg9UV5enpzOUwftTdOUzWaTJMXHx6uuru4zvXhyHOio+Ph4ud1ueb1ePfLII5o7dy69h4vG6XTq0Ucf1cKFC5WXl0fv4aJ4/fXXlZKS0vLLtcTPXFwcMTExeuCBB/Tyyy/rqaee0uOPP95yxpd0/t5rS/Yg/HUit9stn8/Xsm0Yxhm/pANdwW4/9d/Y5/MpISHhM73o8/lazhsHOqqsrEz33XefbrvtNt1yyy30Hi6q5557Tu+8846eeOKJllOiJHoPXWf16tXauHGjZs6cqZ07d+rRRx8944gevYeukpWVpVtvvVU2m01ZWVnyeDyqrq5u2X++3mtL9iD8daLx48crPz9fklRQUKBhw4ZZXBEiQXZ2tjZv3ixJys/PV05OjsaPH6/169fLMAwdPnxYhmEoJSXF4krRnVVUVGjWrFn6/ve/r6lTp0qi93BxvPnmm/rFL34hSYqNjZXNZtPo0aPpPXS53/72t/rNb36jFStWaOTIkXruuec0efJkeg9d7rXXXtOzzz4rSTp69KgaGhoUFxenAwcOyDRNrV+/vqX32ps9OCzViaZMmaINGzZo+vTpMv9/u3aMqjAQhWH0j+5Ea7GxtNYNCEHchiBRtJKUlsF1plbz1vCKZ3jMOSu4A5cZPphhSNu2Y49EAU6nU67Xax6PR2azWbbbbabTaVarVeq6zufzye12G3tM/rnn85m+79N1XbquS5JcLpfc73e7x5/abDZpmiaHwyGv1yvn8znz+dy9xyi8uXzDbrdL0zTZ7/epqipt22YymeR4POb9fme9Xme5XGaxWPy6PaphGIYvnAEAAIAR+fYJAABQAPEHAABQAPEHAABQAPEHAABQAPEHAABQAPEHAABQAPEHAABQAPEHAABQgB/USJhrp5iZOAAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4wAAAE3CAYAAADhWM89AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xt8VPWd//H3zCQzuWdyhUm4BIKESAQssVQtXoKKtCBYi1Cq3a213WKlVYtdt+7CPlTWBmip/kqX7dZ1e6HQqlUWUEBFrfWCIBeDICByCxlyD7lnMnPO749AFI2EXE9O8no+zGPmnO85M5/h8fFM3jk3h2mapgAAAAAA+BSn1QUAAAAAAPomAiMAAAAAoE0ERgAAAABAmwiMAAAAAIA2ERgBAAAAAG0iMAIAAAAA2kRgBAAAAAC0icAIAAAAAGgTgREAAAAA0CYCIwAAAACgTQRGAAAAAECbCIwAAAAAgDYRGAEAAAAAbQqzuoDeVllZJ8MwrS4DuGBJSTEqL6+1ugygw+hd2BW9C7uid9Eep9OhhIToDq0z4AKjYZgERtgOPQu7ondhV/Qu7IreRXfjkFQAAAAAQJsIjAAAAACANhEYAQAAAABtIjACAAAAANpEYAQAAAAAtInACAAAAABoU7uBsbKyUt/97nc1depUzZgxQ3fffbcqKiokSbt379ZNN92kqVOn6o477lB5eXnrer09BgAAAADoXu0GRofDoTvvvFObN2/W+vXrNXToUC1fvlymaer+++/XokWLtHnzZuXm5mr58uWS1OtjAAAAAIDuF9beAl6vV5MmTWqdnjBhgtasWaOCggJ5PB7l5uZKkubOnaspU6bo0Ucf7fUxAAAADFymacowTYVCpkLGJ35ChkJGy5hhmDJMyTwzbZr6xPyWx9Z5pinD0JnlWp6bZhvLtflaallGH0/rzDLmmVpbnrc8Si3rytQ5889ZxpQMnV3G/NTrtDyXKbk9YWpsbG7jvT5exjjzpuY5r/XJ9zoz3vpve+6/87n/7jpn2c+sq3OfmDI/Nf3p9zDPmf7k7Ate9zPv2bnaP13zp1Zv1/mXb3vw81bp6Hu3rNP2SoMSo7T8R1d36LXaDYyfZBiG1qxZo7y8PPn9fqWlpbWOJSYmyjAMVVVV9fqY1+u94M+QlBTTkY8M9AkpKbFWlwB0Cr0Lu6J3zxUMGWoKhNTUHFKgOaTmoKFgyFBz8OxPy7zAmengmenWnzaWPftz9nUMw1TwTMA7+xgKGQqGTBlGy2MoZChonA2GH88LGZ34jdpCDkfLUXwOnXl0qOW581PzWpdpa9551tPZZc+3nkMOZ8v6cjjkPDPvzH9n6vx44uPXdXzms0hn1v3E9OeNf+rh49f7vPmf/Ddr7z3aqe3z3qN1rc/7LJ9a79M+/b4X4vNWcXzOu3TiLdqsKyHW3eHX6VBgfPjhhxUVFaXbbrtNL774YoffrC8oL6+VYbONCga2lJRYlZbWWF0G0GH0LuzKrr1rmKaaAiE1NAXVEAipMRBUY1PLY0PTx2Gv5dFQU7BlOtBsfDw/aLTO++R4dwQyh0MKdzkV5nIqLMzZ8jzMqTCXQ2FOp5xOh1wuh8KcLT/ucJdcnjC5XA65nGd/nK3TTmfLep+c/vQyZ6edTsnpaFnG6WgJPU5nyy/UzjPPna3PWwLVucvrzPyWYHV2ftvLn3ndTz53fBzEOhMuLpRdexe9x+nseP9dcGDMz8/XsWPHtGrVKjmdTvl8PhUVFbWOV1RUyOFwyOv19voYAACA3QVDhuobg6prbFZdQ1C1jc2qa2hWXWNQdQ3Nqm8MqiEQVENTUI2Bj4NgY6AlIDYFQhf8Xu5wp9xhLnnCnXKHu+QOc8kd7lSkJ0zeGE/ruDvcKU+4S+6wM8uFu84EPcdnw5+rJfyFnxMGna3Lu5xcnB+wowsKjCtWrNDevXv1m9/8Rm53y27MnJwcNTY2aseOHcrNzdXatWs1bdo0S8YAAAD6EtM0VdcYVE19QNV1AZ2ua3msrm9WTX3gnCBY19is2sbgeQOfQ1KkJ0yRHpciPGGKdIcpOjJcSfGRinS7FOkJU4TbpQh3yzIt0y3zIj1hinS75Ha7WsNfT+7lAtC/OMzPOyPyjEOHDmn69OnKyMhQRESEJGnIkCFauXKldu7cqcWLF6upqUnp6elatmyZkpOTJanXxy4Uh6TCbji8BHZF78Kuzte7IcPQ6dqAKmuaVFnTpIqaJlXVNqmmLqDTZ8JhTX2zqusCbR7G6XBIsZHhio4MV3REuKIjwj5+HhnW+hgT0bJMVETLvChPWKcOJcPAwnYX7XE6HR2+pku7gbG/ITDCbtj4w67oXdiNaZqqrgso6HDq0NHy1kBY2frTqNN1gc9csTDM5VBctFtxUe5PPYa3PEZ/PD8mMpzghx7Ddhft6Uxg7NBFbwAAAOysoSmostONKq1qUFlVg0rPPj/dqLKqBgWCxjnLR3rClBjrkTfWo/SUpNbnibEeJcRGKCHWo+iIMA7xBNBvERgBAEC/EjIMlZ1u1Knyep2qqJf/zOOpinpV1wXOWTbS41JyfKQGJUQqZ0SiUryRyhyWoHCHlBjrUaSHX5UADGxsBQEAgC0ZhqmSqgYVltSqsLRWJ0vr5K+oV0llvYKhj48bjYkM1+CkKI3LTNLgxCileCOVHB+hFG9km3sHOawPAD5GYAQAAH1ebUOzTpwJhp8MiGcPIXU4pNSEKKUlRWl8ZpIGJ0XJlxitwUlRiokMt7h6ALAvAiMAAOhTGgNBHTtVoyP+Gh09Va2PiqpVdrqxdTwmMlxDU2N09YR0DUmN1tDUGKUlRcsd7rKwagDonwiMAADAMiHDUGFJnQ4XndYRf7WO+mtUVF7XeiXSpLgIjfDF6ppL0zVsUIyGpsQoLtrNRWYAoJcQGAEAQK9pag7po6JqHSqs0qHC0/rw5OnWG9bHRYUrwxen3DGpGuGLVcbgOMVFuy2uGAAGNgIjAADoMU3NIR0qrNL+o5U6cKJKx07VKGSYckhKT4nRlTmDddEQrzLT45QUF8GeQwDoYwiMAACg2xiGqaOnarTvaIX2Ha3QhydPKxgy5XI6NCItTlO/OEyjh8ZrVHq8oiK4GA0A9HUERgAA0CWn6wIqOFyuPYfLtP9opeqbgpKkYakxmjJxiC7OSNToIV553FyUBgDshsAIAAA6xDRNHS+u1Z7DZdrzYbmO+qtlSkqI9WhiVorGjkjUmOEJiovi/EMAsDsCIwAAaFfIMHTgeJV2HCjV7kOlqqoNyCFpRFqcZk0eofGjkjU0NYZzEAGgnyEwAgCANoUMQx8cr9KOD0q082Cpauqb5Q536pIRSRo/KlmXZCYpnquYAkC/RmAEAACtDMPUB8cr9c7+Yu08WKbahmZ5wl0aPypJuVmpuiQzSZ5wzkUEgIGCwAgAAOQvr9Obe0/pzb2nVFnTJI/bpQmjkltC4shEuQmJADAgERgBABigahuatW1fsd7ce0pH/NVyOhzKGZmoOXmjNGFUMiERAEBgBABgIDFNU/uPVerVXSe161CZQoapoakxmpM3Sl+6eJDiYzxWlwgA6EMIjAAADAC1Dc16o8CvV3cXqbiiXjGR4ZoycYiuyBmsYYNirS4PANBHERgBAOinTNPUR/5qvbrzpN75oETNQUOj0uN10/SLlTsmReFhHHIKADg/AiMAAP1MyDD07oFSbdp2XEdP1cjjdunKS3y6ZkIaexMBAB1CYAQAoJ9oaArq7+/5tWX7CZVXN2pQQqRuu2G0Lh87WJEevvIBAB3HtwcAADZXWdOkl98t1Ku7Tqq+KajRQ+I17/qLNH5UspwOh9XlAQBs7IICY35+vjZv3qyTJ09q/fr1Gj16tAoLC/WDH/ygdZmamhrV1tbqnXfekSTl5eXJ7XbL42m52trChQs1efJkSdLu3bu1aNEiNTU1KT09XcuWLVNSUlKXxgAAGGhKqhq08c2jenPvKRmmqYlZqZr6xaHKTIu3ujQAQD/hME3TbG+hHTt2KD09Xd/85je1atUqjR49+jPLLFmyRKFQSIsWLZLUEhjbWtY0Td1www169NFHlZubq1//+tc6ceKEHn300U6PdUR5ea0Mo92PDPQZKSmxKi2tsboMoMPo3Z5TXFGvDW8d1Vt7i+VyOTR5nE83fHGYUr2RVpfWL9C7sCt6F+1xOh1KSorp2DoXslBubq58Pt/njgcCAa1fv1633HJLu69VUFAgj8ej3NxcSdLcuXO1adOmLo0BADAQnKqo13+v36ef/vfb2r6/RNflDlH+9y/XbTdkERYBAD2iW85h3Lp1qwYNGqSxY8eeM3/hwoUyTVMTJ07Ufffdp7i4OPn9fqWlpbUuk5iYKMMwVFVV1ekxr9d7wbV2NFEDfUFKClc1hD3Ru92jtLJBa7Z8oJe3H1d4uEszr8rU164ZpYS4CKtL67foXdgVvYvu1i2B8ZlnnvnM3sXVq1fL5/MpEAhoyZIleuihh7R8+fLueLsu4ZBU2A2Hl8Cu6N2uq21o1sa3jurld09KMjVl4lB99fLhiot2K9jUrNLSZqtL7JfoXdgVvYv2dOaQ1C4HxuLiYm3fvl1Lly49Z/7ZQ1jdbrfmzZun+fPnt84vKipqXa6iokIOh0Ner7fTYwAA9CdNgZC2bD+uTe8cV2MgpCtyBmvml0coOZ7DTgEAvavLgfHZZ5/V1VdfrYSEhNZ59fX1CoVCio2NlWmaev7555WdnS1JysnJUWNjo3bs2KHc3FytXbtW06ZN69IYAAD9gWGa2vZ+sZ5+7bAqa5p06UXJ+tpVI5WewukUAABrXFBgfOSRR7RlyxaVlZXp29/+trxerzZu3CipJTA++OCD5yxfXl6uBQsWKBQKyTAMZWZmavHixZIkp9OppUuXavHixefcHqMrYwAA2N2HJ09rzUuHdMRfreGDY/VPN43V6KEcRQMAsNYF3VajP+EcRtgN5yPArujdC1NR3ainXj2sbfuKFR/j1tevztTlOYPldDisLm3AondhV/Qu2mPJOYwAAKDjgiFDL+0o1Lq/H5FhmppxRYamfWmYItx8NQMA+g6+lQAA6GUHT1TpD5sP6GRZnSaMSta86y5SMvdRBAD0QQRGAAB6SXV9QE9t/VBv7D2lpLgILbjlEl16UYrVZQEA8LkIjAAA9DDTNPX2+8X600sH1RgI6auXD9f0yzPkcbusLg0AgPMiMAIA0IMqqhv1+80H9N7hcmWmxekfv5Kt9ORoq8sCAOCCEBgBAOgBhmnqtV0n9dSrh2WYpr4x5SJNmThETidXPwUA2AeBEQCAblZW1aAnNu7XgRNVujgjQf9w4xilcFEbAIANERgBAOgmpmnq7wV+rXnpkCTpH6eN0eRxPjm4pyIAwKYIjAAAdIPquoB+t+kD7TpUpjHDvLrjq9lKjmevIgDA3giMAAB00a6DpfrfTR+ooSmkOXmjdP1lQ+VkryIAoB8gMAIA0EmB5pD+vPVDvbLrpIalxuj+b1ysISkxVpcFAEC3ITACANAJRWV1WrVurwpL63TjF4fpa1ePVJjLaXVZAAB0KwIjAAAdYJqmXn/Prz+9eFAet0v3zB6vcZlJVpcFAECPIDACAHCBGpqC+t2mD/TO/hJlD0/QndMvVkKsx+qyAADoMQRGAAAuQGFprVb+tUAlVQ26+aqR+uqXhsvp5MI2AID+jcAIAEA73n7/lP530weKcIfpJ9+4VFnDEqwuCQCAXkFgBADgcwRDhv788od6eWehLhoSr+/PzOEQVADAgEJgBACgDRXVjfrP5/bqcFG1brhsqL5+TSZXQQUADDgERgAAPuXDwtP61bMFamoOaf6sHF02JtXqkgAAsASBEQCAT3h9T5F+v/mAkuIidP/cCUpPibG6JAAALENgBABAUshoOV/xpXcLdXFGgr4/M0cxkeFWlwUAgKUu6GSM/Px85eXlKSsrSwcPHmydn5eXpxtvvFEzZ87UzJkz9frrr7eO7d69WzfddJOmTp2qO+64Q+Xl5T06BgBAZ9U2NGvFX/bopXcLdV3uEN1763jCIgAAusDAOGXKFK1evVrp6emfGXv88ce1bt06rVu3TpMnT5Ykmaap+++/X4sWLdLmzZuVm5ur5cuX99gYAACdVVxRr0d+v0MHjlfp29PGaN51o+VycnEbAACkCwyMubm58vl8F/yiBQUF8ng8ys3NlSTNnTtXmzZt6rExAAA641BhlZb84V3VNwb1k3mXavL4NKtLAgCgT+nyOYwLFy6UaZqaOHGi7rvvPsXFxcnv9yst7eMv3cTERBmGoaqqqh4Z83q9Xf0YAIAB5p39xfrthv1KivPonlvHa1BClNUlAQDQ53QpMK5evVo+n0+BQEBLlizRQw891OcPE01K4mp3sJ+UlFirSwA6pS/2rmmaeuaVD/W7jft08YhEPfjtSYqLdltdFvqYvti7wIWgd9HduhQYzx6m6na7NW/ePM2fP791flFRUetyFRUVcjgc8nq9PTLWEeXltTIMs1OfF7BCSkqsSktrrC4D6LC+2Lshw9AftxzUa7uLNOniQbrjK2PUVN+k0vomq0tDH9IXexe4EPQu2uN0Ojq8A63TZ/XX19erpqalIU3T1PPPP6/s7GxJUk5OjhobG7Vjxw5J0tq1azVt2rQeGwMAoD0NTUE99tR7em13kaZfMVzfnXGxwsNcVpcFAECf5jBNs93dbY888oi2bNmisrIyJSQkyOv1atWqVVqwYIFCoZAMw1BmZqb+9V//VampqZKknTt3avHixWpqalJ6erqWLVum5OTkHhu7UOxhhN3w10LYVV/q3dO1TfrFX/boZGmdvnVjlq7i4jY4j77Uu0BH0LtoT2f2MF5QYOxPCIywGzb+sKu+0rslVQ36+dpdqq5r1g++lqOcEUlWl4Q+rq/0LtBR9C7a05nA2OWrpAIA0FedKKnVL/68W8GQofu/calGpsVZXRIAALZCYAQA9EsHT1TpsaffU4TbpX/5xkSlJUdbXRIAALZDYAQA9Du7PyzTfz63V0lxEfrxnAlKio+wuiQAAGyJwAgA6FfeKPDryec/0LBBMbrn1vGKi+IeiwAAdBaBEQDQb2x557jWbv1Q2cMTdPfXLlGkh685AAC6gm9SAEC/sP7No3r2bx9pYlaKvjdjrMLDOn2rYQAAcAaBEQBga6Zp6tnXj2jDm0d1+djBuuOrY+RyEhYBAOgOBEYAgG2ZpqmnXj2sTduO66rxPn1r6hg5nQ6rywIAoN8gMAIAbMk0Tf3ppUN6+d1C5X0hXfOuHy2ng7AIAEB3IjACAGzHME39YfMBvba7SFO/OFS3XjtKDsIiAADdjsAIALAVwzD1P8/v15t7T2n6FcN18+SRhEUAAHoIgREAYBshw9BvN+zXtn3FunnyCM24coTVJQEA0K8RGAEAtmAYpp44ExZnX5OpaV8abnVJAAD0e1x3HADQ5xmGqSc27tfb+4r1dcIiAAC9hsAIAOjTDNPUky/s11vvn9LNV43UVwiLAAD0GgIjAKDPMkxTv3vhA71RcEozvzxCM67IsLokAAAGFAIjAKBPOnvrjNff82vGFRma+WUucAMAQG8jMAIA+hzTNLV6y0G9trtIX718uGZNJiwCAGAFAiMAoE8xTVN/eumQXtl1UjdOGqavXcV9FgEAsAqBEQDQp/z1bx/p5XcLdcNlQzX7mkzCIgAAFiIwAgD6jI1vHdXGt47pqvFpmpM3irAIAIDFCIwAgD7h5XcL9cxrH2nSxYP0ralZhEUAAPqACwqM+fn5ysvLU1ZWlg4ePChJqqys1He/+11NnTpVM2bM0N13362KiorWdbKysjRjxgzNnDlTM2fO1IEDB1rHtm7dqhtvvFHXX3+97rnnHjU0NHR5DABgX28U+LX6xYOaMCpZ3/lqtpxOwiIAAH3BBQXGKVOmaPXq1UpPT2+d53A4dOedd2rz5s1av369hg4dquXLl5+z3tq1a7Vu3TqtW7dOWVlZkqS6ujr927/9m1atWqUXX3xR0dHReuKJJ7o0BgCwrx0flOh/nt+v7OEJmj9rrMJcHPwCAEBfcUHfyrm5ufL5fOfM83q9mjRpUuv0hAkTVFRU1O5r/e1vf1NOTo4yMjIkSXPnztULL7zQpTEAgD3t/ahc//V/72tkWpwW3HKJwsNcVpcEAAA+Iaw7XsQwDK1Zs0Z5eXnnzL/99tsVCoV01VVXacGCBXK73fL7/UpLS2tdJi0tTX6/X5I6PQYAsJ+DJ6r0q78WKD05WvfOHq8Id7d8JQEAgG7ULd/ODz/8sKKionTbbbe1znv11Vfl8/lUW1ur+++/XytXrtS9997bHW/XJUlJMVaXAHRYSkqs1SUAnfJ5vXvoRKUee/o9pSREacldX5Y31tPLlQHnx3YXdkXvort1OTDm5+fr2LFjWrVqlZzOj49wPXsIa0xMjGbPnq0nn3yydf62bdtalysqKmpdtrNjHVFeXivDMDu8HmCVlJRYlZbWWF0G0GGf17sny+qUv3qnojxhunf2ODU3BlTaGLCgQqBtbHdhV/Qu2uN0Ojq8A61LVxZYsWKF9u7dq5UrV8rtdrfOP336tBobGyVJwWBQmzdvVnZ2tiRp8uTJKigo0NGjRyW1XBhn2rRpXRoDANhD2ekG/eLPu+VyOnT/NyYoMS7C6pIAAMB5OEzTbHd32yOPPKItW7aorKxMCQkJ8nq9+uUvf6np06crIyNDEREtX/hDhgzRypUrtWvXLi1atEgOh0PBYFCXXnqpfvrTnyo6OlqS9NJLL2nZsmUyDEPZ2dn62c9+pqioqC6NXSj2MMJu+Gsh7OrTvVtdH9Cjf9yp6rqAHvjmFzQ0lVME0Dex3YVd0btoT2f2MF5QYOxPCIywGzb+sKtP9m5jIKhla3apsLROP54zQaOHei2uDvh8bHdhV/Qu2tPrh6QCANCeYMjQyr8W6NipWs2fmUNYBADARgiMAIAeY5imfrthn94/Wql/mJalCRclW10SAADoAAIjAKBHmKapNS8e0jv7SzT7mkxNHpfW/koAAKBPITACAHrEX146qJd3FmrqF4fqxknDrC4HAAB0QpfvwwgAwKe9uvuk/rjpgC4fO1izrx0lh8NhdUkAAKAT2MMIAOhW7x4o0R82H1Bu9iB9+ytj5CQsAgBgWwRGAEC3OXC8Uv/1f+8rMy1e//ytXIW5+JoBAMDO+CYHAHSLwtJaPf5MgVK8kfrh18cpws1ZDwAA2B2BEQDQZRXVjVrxlz1yhzt1360TFBMZbnVJAACgGxAYAQBdUt/YrBVP7VFDU1D3zh6vpPgIq0sCAADdhMAIAOi05qChX/21QKfK63X31y7RsEGxVpcEAAC6EYERANAphmnqiY379MHxKt3x1WxdnJFodUkAAKCbERgBAJ3y9CuH9c7+En39mkxdPnaw1eUAAIAeQGAEAHTYi9tPaNM7x5X3hXRNmzTM6nIAAEAPITACADpkxwclWvvyIX1hdIrmXTdaDofD6pIAAEAPITACAC7YwRNV+s36fcpMj9f3Zlwsp5OwCABAf0ZgBABckJNldXr86feUHB+hH359nNzhLqtLAgAAPYzACABoV2VNk1b8ZbfCw5y679bxiokMt7okAADQCwiMAIDzqm8MasVf9qiuMah7Zo9XsjfS6pIAAEAvITACAD5XMGRo5bMF8pfX6Qc352j44FirSwIAAL2IwAgAaJNhmvqf5/dr/7FK/eO0McoZkWR1SQAAoJcRGAEAbXrmtcN6+/1i3XzVSF15ic/qcgAAgAXaDYz5+fnKy8tTVlaWDh482Dr/yJEjmjNnjqZOnao5c+bo6NGjlo0BALrXy+8W6oW3j+uaCWmafvlwq8sBAAAWaTcwTpkyRatXr1Z6evo58xcvXqx58+Zp8+bNmjdvnhYtWmTZGACg+7x7oER/evGgJoxK1jdvGC2Hg3stAgAwULUbGHNzc+XznXsoUnl5ufbt26fp06dLkqZPn659+/apoqKi18cAAN3nUGGVfrN+n0amxemfZo6Vy8mZCwAADGRhnVnJ7/dr0KBBcrlabtrscrmUmpoqv98v0zR7dSwxMbHL/wgAAMlfXqfHn35PibEe/fDr4+QJd1ldEgAAsFinAqOdJSXFWF0C0GEpKdzKAD2rorpRjz39nsLDXHpk/pUanBTdLa9L78Ku6F3YFb2L7tapwOjz+VRcXKxQKCSXy6VQKKSSkhL5fD6ZptmrYx1VXl4rwzA787EBS6SkxKq0tMbqMtCPNTQFlb96p07XBvSTeZfKZRjd0nP0LuyK3oVd0btoj9Pp6PAOtE6dnJKUlKTs7Gxt2LBBkrRhwwZlZ2crMTGx18cAAJ0XDBn69bMFKiyt0/xZORrhi7O6JAAA0Ic4TNM87+62Rx55RFu2bFFZWZkSEhLk9Xq1ceNGHT58WA888ICqq6sVFxen/Px8jRw5UpJ6fawj2MMIu+Gvhegppmnqtxv26633T+nbXxmjyePSuvX16V3YFb0Lu6J30Z7O7GFsNzD2NwRG2A0bf/SUZ147rI1vHdOsySN005Ujuv316V3YFb0Lu6J30Z5eOyQVAGBvr+ws1Ma3jumq8WmacUWG1eUAAIA+isAIAAPMzoOl+uOLBzU+M0m3Tx0th8NhdUkAAKCPIjACwADyYeFp/df/va+MwXH6/swcuZx8DQAAgM/HbwoAMED4y+v02NN7lBDr0Y9mj5PH7bK6JAAA0McRGAFgADhd26QVf9kjl9Oh+24dr7got9UlAQAAGyAwAkA/19AU1Iqn9qimvlk/mj1eqQlRVpcEAABsgsAIAP1YMGToP5/bq8KSOs2flaMRvjirSwIAADZCYASAfso0Tf3uhQ+090iF/uHGLI3LTLK6JAAAYDMERgDop559/SO9sfeUZn15hCaPT7O6HAAAYEMERgDoh17ddVIb3jymq8anacaVGVaXAwAAbIrACAD9zK5DpfrDlgMan5mk26eOlsPhsLokAABgUwRGAOhHDp6o0qp17ytjcJy+PzNHLiebeQAA0Hn8JgEA/URhSa0ef/o9JcVF6J7Z4+Rxu6wuCQAA2ByBEQD6gbKqBv38L7vlcbt035zxio1yW10SAADoBwiMAGBz1XUrk1O3AAAbc0lEQVQB/fzPuxUMGrrv1vFKjo+0uiQAANBPEBgBwMYamoJa8dQeVdY06UdfH6/0lBirSwIAAP0IgREAbKo5aOhXfy3QieJazZ+Vo1FD4q0uCQAA9DMERgCwIcMw9dsN+7T/WKW+/ZUxGj8q2eqSAABAP0RgBACbMU1Tf3rpoLZ/UKJbrx2lKy/xWV0SAADopwiMAGAz6984qq07T+rGScN046RhVpcDAAD6MQIjANjIKzsL9dzfj+jKSwZr9jWZVpcDAAD6OQIjANjEm3v9+sOWg5owKln/OG2MHA6H1SUBAIB+LqwrKxcWFuoHP/hB63RNTY1qa2v1zjvvKC8vT263Wx6PR5K0cOFCTZ48WZK0e/duLVq0SE1NTUpPT9eyZcuUlJTUpTEA6M/ePVCq/9n4gbKHJ2j+rLFyOfl7HwAA6HkO0zTN7nqxJUuWKBQKadGiRcrLy9OqVas0evToc5YxTVM33HCDHn30UeXm5urXv/61Tpw4oUcffbTTYx1RXl4rw+i2jwz0uJSUWJWW1lhdBiz0/pEKPfb0Hg0fFKsfz52gCHeX/tbXa+hd2BW9C7uid9Eep9OhpKSO3bO52/5EHQgEtH79et1yyy3nXa6goEAej0e5ubmSpLlz52rTpk1dGgOA/upQYZX+31/fky8pWvfcOt42YREAAPQP3fabx9atWzVo0CCNHTu2dd7ChQtlmqYmTpyo++67T3FxcfL7/UpLS2tdJjExUYZhqKqqqtNjXq+3uz4GAPQZx07V6JdP7VFCbITumzNB0RHhVpcEAAAGmG4LjM8888w5exdXr14tn8+nQCCgJUuW6KGHHtLy5cu76+06raO7YIG+ICUl1uoS0MtOFNdoxVN7FBPl1qN3fVkpCZFWl9Qp9C7sit6FXdG76G7dEhiLi4u1fft2LV26tHWez9dyI2m326158+Zp/vz5rfOLiopal6uoqJDD4ZDX6+30WEdwDiPshvMRBp7Sqgb9bPVOOSTdd+t4KRi0ZQ/Qu7Arehd2Re+iPZadw/jss8/q6quvVkJCgiSpvr5eNTUtzWqapp5//nllZ2dLknJyctTY2KgdO3ZIktauXatp06Z1aQwA+ovKmiYtX7tLgeaQfjxnggYlRFldEgAAGMC6ZQ/js88+qwcffLB1ury8XAsWLFAoFJJhGMrMzNTixYslSU6nU0uXLtXixYvPuT1GV8YAoD+oqQ/o53/erer6Zt0/91INSeUQegAAYK1uva2GHXBIKuyGw0sGhtqGZi1bs0unKup17+zxGjM8weqSuozehV3Ru7ArehftsfS2GgCAzqlrbNbytbvkL6/XD28Z1y/CIgAA6B8IjABgofrGZv187W4VldVpwS2XaOyIRKtLAgAAaEVgBACL1DcG9fM/79GJklr94OZLdMnIJKtLAgAAOAeBEQAs0NAU1Iqndut4cY3uujlH40clW10SAADAZxAYAaCXNQaC+uVTe3SkqEbfn5mjSy9KsbokAACANhEYAaAXNQVC+uVT7+nwyWr908yxmphFWAQAAH1Xt9yHEQDQvoamlj2LH548re/NGKvLxqRaXRIAAMB5ERgBoBfUNzbrF3/Zo2OnWg5DJSwCAAA7IDACQA+rbWi5dUZhaa3umpWjS0dzGCoAALAHAiMA9KDquoCWr92tUxX1WnDLJRqXydVQAQCAfRAYAaCHVNU2afna3SqratCPZo/T2IxEq0sCAADoEAIjAPSAiupGLVu7W1U1Tbr31vHKGpZgdUkAAAAdRmAEgG5WWtWg5Wt3qbahWT+eM0GjhsRbXRIAAECnEBgBoBsVltbq53/erWDQ0I/nXKqRaXFWlwQAANBpBEYA6CYfnjytx57ao/Awpx745heUnhJjdUkAAABdQmAEgG6w96Ny/erZAnljPFo4Z4KSvZFWlwQAANBlBEYA6KJ39hfrv9fvU3pytO6dM0Hx0W6rSwIAAOgWBEYA6IJXdhbqj1sO6qKhXv3wlnGKimCzCgAA+g9+swGATjBNUxvePKpnXz+iCaOS9f2ZY+UOd1ldFgAAQLciMAJAB4UMQ6tfPKRXd53U5WMH69tfGaMwl9PqsgAAALodgREAOqAxENSqde/rvcPlmvalYbrl6kw5HQ6rywIAAOgRBEYAuEBVtU167Kn3dLykRt+amqVrLk23uiQAAIAe1eXAmJeXJ7fbLY/HI0lauHChJk+erN27d2vRokVqampSenq6li1bpqSkJEnqkTEA6EknS2v1y6f2qLYhqB99fZzGZSZbXRIAAECP65aTbh5//HGtW7dO69at0+TJk2Wapu6//34tWrRImzdvVm5urpYvXy5JPTIGAD1p/9EK/ccfdyoYMvXAN79AWAQAAANGj1yloaCgQB6PR7m5uZKkuXPnatOmTT02BgA95Y0Cv37xlz1KjPXoX7+Vq+GDY60uCQAAoNd0yzmMCxculGmamjhxou677z75/X6lpaW1jicmJsowDFVVVfXImNfr7Y6PAQCtDNPUc69/pA1vHlP28AT94OYcRUWEW10WAABAr+pyYFy9erV8Pp8CgYCWLFmihx56SNdff3131NYjkpJirC4B6LCUFPZq9ab6xmb94k87te39U7ph0nB9/2vjFB7GbTM6g96FXdG7sCt6F92ty4HR5/NJktxut+bNm6f58+frW9/6loqKilqXqaiokMPhkNfrlc/n6/axjigvr5VhmJ39uECvS0mJVWlpjdVlDBilVQ16/Jn35C+r17zrLtKUiUNUVVlndVm2RO/Cruhd2BW9i/Y4nY4O70Dr0p/M6+vrVVPT0pSmaer5559Xdna2cnJy1NjYqB07dkiS1q5dq2nTpklSj4wBQHc4cLxSD/9uhyqrm3TvnPG6LneoHNxjEQAADGBd2sNYXl6uBQsWKBQKyTAMZWZmavHixXI6nVq6dKkWL158zi0wJPXIGAB0hWmaemXXSa156ZBSEyL1w1vGaVBilNVlAQAAWM5hmuaAOj6TQ1JhNxxe0rOamkP6/aYDeuv9UxqXmaTvzRirqIhuuR7YgEfvwq7oXdgVvYv2dOaQVH4rAjBglVTW61d/3auTpbWa9eURmn5lhpwcggoAANCKwAhgQNr9YZn+e/0+OR3Sj2aP17jMJKtLAgAA6HMIjAAGlJBhaN3fj2rDm0c1LDVGd33tEqV6I60uCwAAoE8iMAIYMCprmvRf//e+Dp6o0pWXDNbtN2TJHe6yuiwAAIA+i8AIYEDY82GZnti4X81BQ3dOz9YVOT6rSwIAAOjzCIwA+rVgyNAzrx3W5ndOaEhKjObPGitfUrTVZQEAANgCgRFAv1VcUa/frN+nI/5qXXtpuubkjeIQVAAAgA4gMALod0zT1Gt7irT25UMKdzl116wc5Y5JtbosAAAA2yEwAuhXTtcF9L/P79eew+W6OCNB3/nqxUqI9VhdFgAAgC0RGAH0G7sPlenJF/aroSmkuVMu0nW5Q+R0OKwuCwAAwLYIjABsr7ahWWtfPqQ3957S0NQY3f+NizUkJcbqsgAAAGyPwAjA1nYdLNXvNx9QTX2zpl8xXDOuGKHwMKfVZQEAAPQLBEYAtlRTH9DqFw/qnf0lGpoao3tmj9fwwbFWlwUAANCvEBgB2Ippmtq2r1hrXj6k+sagZk0eoa98abjCXOxVBAAA6G4ERgC2UVxRrz9sOaB9Rys1wherb8/N1pBUzlUEAADoKQRGAH1ec9DQC28f04a3jik8zKFvXj9a116aLqeTK6ACAAD0JAIjgD7t/aMV+uOWgyquqNcXs1M1d8pF8sZwX0UAAIDeQGAE0CeVVDXozy8f0q5DZUr1Ruq+W8crZ2SS1WUBAAAMKARGAH1KYyCojW8d0+Z3jsvldOqWq0fqhsuGKjzMZXVpAAAAAw6BEUCfYJim3tp7Sk+/dlinawO6fOxgff2aTCXEcvgpAACAVQiMACxlmqb2HqnQ068e1omSWo3wxerumy9RZnq81aUBAAAMeARGAJY5eqpaT71yWPuPVSo5PkL/dNNYXZadKqeDq58CAAD0BV0KjJWVlfrJT36i48ePy+12a/jw4XrooYeUmJiorKwsjR49Wk5ny820ly5dqqysLEnS1q1btXTpUoVCIY0dO1aPPvqoIiMjuzQGwD785XVa9/cjemd/iWIiw/WN6y7StZemK8zltLo0AAAAfILDNE2zsytXVVXpwIEDmjRpkiQpPz9fp0+f1n/8x38oKytLO3fuVHR09Dnr1NXV6YYbbtDq1auVkZGhBx98UD6fT3fffXenxzqivLxWhtHpjwz0upSUWJWW1lhdRrcorqjX/71xVG/vO6XwMKduuGyYpk0apkgPBzv0R/2pdzGw0LuwK3oX7XE6HUpKiunYOl15Q6/X2xoWJWnChAkqKio67zp/+9vflJOTo4yMDEnS3Llz9cILL3RpDEDfVlJZryc27NOD/71N7x4o0dTLhmnp96/Q164aSVgEAADow7rtNzXDMLRmzRrl5eW1zrv99tsVCoV01VVXacGCBXK73fL7/UpLS2tdJi0tTX6/X5I6PQagbyosqdUL245p274SuVwOXZc7RNMmDVN8DFc+BQAAsINuC4wPP/ywoqKidNttt0mSXn31Vfl8PtXW1ur+++/XypUrde+993bX23VaR3fBAn1BSkqs1SVcMNM09f5H5XrmlQ+1Y3+xItwuTZ88Qrdce5ES4yKsLg+9zE69C3wSvQu7onfR3bolMObn5+vYsWNatWpV60VufD6fJCkmJkazZ8/Wk08+2Tp/27ZtresWFRW1LtvZsY7gHEbYjV3ORzBMU7sPlemFt4/pcFG1YqPCdfPkEbr2C0MUExmuUFOzSkubrS4TvcguvQt8Gr0Lu6J30Z5eP4dRklasWKG9e/dq5cqVcrvdkqTTp0+rsbFRkhQMBrV582ZlZ2dLkiZPnqyCggIdPXpUkrR27VpNmzatS2MArNMYCOqVXSf1b7/dpl/9tUCn6wK67YbRWjr/Cs24coRiIsOtLhEAAACd1KWrpB46dEjTp09XRkaGIiJaDjUbMmSI7rzzTi1atEgOh0PBYFCXXnqpfvrTn7ZeMfWll17SsmXLZBiGsrOz9bOf/UxRUVFdGrtQ7GGE3fTVvxaeqqjX1p2FeqPAr4amkIYPitWNk4Ypd0yKXE5uj4G+27tAe+hd2BW9i/Z0Zg9jlwKjHREYYTd9aeNvGKbeO1yul3cW6v0jFXI5HbosO1VTvjBEI9Pi5HA4rC4RfUhf6l2gI+hd2BW9i/Z0JjByPXsA7aqobtQbBX69/p5fZacb5Y1x6+bJI3TVhHTFR7utLg8AAAA9hMAIoE3NwZB2HSrT6+/5te9IhUxJY4Z5deu1ozThomSFuTjsFAAAoL8jMAJoZZqmjhXX6O/v+bVtX7HqGoNKivNo+hUZunKcT6neSKtLBAAAQC8iMAKQv7xO2/YV6539JTpVUa8wl1MTs1L05XE+ZQ9PkJNzEwEAAAYkAiMwQJVUNWj7/paQeKKkVg5JWcO8uuGyobosO1XREdwOAwAAYKAjMAIDhGma8pfXa9ehUu08WKYj/mpJUmZ6nL5x3UXKzUpVQqzH4ioBAADQlxAYgX7MMEx9ePK0dh8q065DpSqubJAkDR8cq9nXZuqyMalKjue8RAAAALSNwAj0M3WNzdp3tFIFh8u153CZauqb5XI6lD08QddfNlQTRiUrMS7C6jIBAABgAwRGwOZChqEjRTXae6Rc7x+p0Ef+apmmFOUJ07jMJE24KFmXjExSpIf/3QEAANAx/AYJ2Ixhmioqq9OB41X64Hil9h2tVENTUA6HNNIXpxlXZChnRJJGpMXK5eReiQAAAOg8AiPQxxmGqePFNTpwokoHj1fpwIkq1TY0S5KS4jy6bEyKxo5IUvbwBMVEcmVTAAAAdB8CI9DH1Dc26yN/tT46Wa3DRdU64q9uDYjJ8REaPypJWUMTNGaYV8leLlgDAACAnkNgBCwUMgydLK37REA8LX95vSTJISktOVqXX+LT8NRoZQ1NUFI8F6sBAABA7yEwAr0k0BxSYWmdjpfU6ERxrY4X1+hEaa0CzYYkKSYyXJlpcfrS2MHKTIvTCF+cIj1hSkmJVWlpjcXVAwAAYCAiMALdzDRNVdY0qai8ToUlLQHxeHGt/OV1Ms2WZSI9YRqWGqOrxqdppC9OI9PjlRIfIYfDYW3xAAAAwCcQGIFOMkxT5acb5S+vU1FZvYrK6lRUXqeisjo1BkKtyyXEejR8UKwmjk7RsEGxGjYoRsmEQwAAANgAgRE4D8MwVVHTqNLKBhVXNai0skEllQ0qrmxQSVV96+GkkhQf7VZacrSuzPEpLTlKacnRSkuOVmyU28JPAAAAAHQegREDmmmaqm1oVkV1kyqqG1VW3ajSqpZQWFrV8hMMma3Lh7kcSvFGKtUbqYszElpCYVK0fMlRio7glhYAAADoXwiM6LdM01R9U1CnawOqqm1SeXWjKqpbHiurG1V+JiQGgsY563nCXUpNiFRaUrQmjEpWakKkUhOilOqNVEKsR04nh5ICAABgYCAwwnaCIUM19c2qqm3S6bqATrc+Bs6ZrqoNKBgyPrN+fIxbibERGpISrXGZSUqKi1BiXIQS4zxKjItQXFQ45xcCAAAAIjDCYs3BkOobg6ptaG79qWloVm1987nz6ptV2xBQbUOzGppCbb5WTGS44qPdio9x66KEeMXHeFqnvdEeJcZHKCHGo/AwZy9/SgAAAMCeCIzoFNM0FWg21NgcUlMgqMZASE3NITU0BVXfGFT9mceGpo+ftzWvrT2AZ3ncLsVEhCsmKlyxkeEalBipmMiW57FRLUEwPtojb4xbcdFuhbkIggAAAEB3sl1gPHLkiB544AFVVVXJ6/UqPz9fGRkZVpfVp5imqWDIVHMwpEDQUHPQOPMYUqD57HSo5bHZaF0uEDQUaA6pKRA6EwRDLUEwEPx4+sxjUyAks/1SFOZyKCoiXFGeMEVFhCk6IkzJ8RGKighrnRfpCVNMZHjrT2yUWzGRYQoPc/X4vxUAAACAz2e7wLh48WLNmzdPM2fO1Lp167Ro0SL9/ve/75H3Mk1Tptlyv72QYcowzjyaLc9bp8/Ma2uZUKhlOhgyFAydfTTOmRc6My8YMhU0DIVCpppDxpn5LcuFzq5rmOfMD4Y+GQg/DoLmhaS5NjgcUoQ7TBFulzzhLkW4W34SYjzynHnuCQ+Tx+1SpNslzyeW84S7FHk2CJ4Jg4Q+AAAAwL5sFRjLy8u1b98+Pfnkk5Kk6dOn6+GHH1ZFRYUSExMv6DV+/ufdKqlskGEYZ4KezhsGe1uYy6kwl0NhLqdcLofCnGemw5ytz10up9zhTkVFhMnldCg8zKnwMKfcYa6Wx3CnwsNccoc55Q478zy8/WXCw1penwu+AAAAAJBsFhj9fr8GDRokl6tlr5XL5VJqaqr8fv8FB8ZUb6Qi3S65nA45HQ45nY6W521MX8gyTsenlv/0Mg61hD2XUy6n45xAePa568yj00FYAwAAANB32Cowdod75k20ugSgw1JSYq0uAegUehd2Re/CruhddDdbBUafz6fi4mKFQiG5XC6FQiGVlJTI5/Nd8GuUl9fKsOBQU6CzUlJiVVpaY3UZQIfRu7Arehd2Re+iPU6nQ0lJMR1bp4dq6RFJSUnKzs7Whg0bJEkbNmxQdnb2BR+OCgAAAAC4cLbawyhJ//7v/64HHnhAv/71rxUXF6f8/HyrSwIAAACAfsl2gTEzM1NPPfWU1WUAAAAAQL9nq0NSAQAAAAC9h8AIAAAAAGgTgREAAAAA0CYCIwAAAACgTQRGAAAAAECbbHeV1K5yOh1WlwB0GH0Lu6J3YVf0LuyK3sX5dKY/HKZpmj1QCwAAAADA5jgkFQAAAADQJgIjAAAAAKBNBEYAAAAAQJsIjAAAAACANhEYAQAAAABtIjACAAAAANpEYAQAAAAAtInACAAAAABoE4ERAAAAANCmAREYjxw5ojlz5mjq1KmaM2eOjh49anVJgCQpPz9feXl5ysrK0sGDB1vnn69n6Wf0BZWVlfrud7+rqVOnasaMGbr77rtVUVEhSdq9e7duuukmTZ06VXfccYfKy8tb1zvfGNAb7rrrLt10002aNWuW5s2bp/3790tiuwv7+NWvfnXO7w1sc9HjzAHg9ttvN5977jnTNE3zueeeM2+//XaLKwJabN++3SwqKjKvvfZa88CBA63zz9ez9DP6gsrKSvPtt99unf7Zz35m/su//ItpGIZ53XXXmdu3bzdN0zRXrlxpPvDAA6ZpmucdA3pLdXV16/MXX3zRnDVrlmmabHdhD3v37jW/853vmNdcc4154MABtrnoFf1+D2N5ebn27dun6dOnS5KmT5+uffv2tf4lHLBSbm6ufD7fOfPO17P0M/oKr9erSZMmtU5PmDBBRUVFKigokMfjUW5uriRp7ty52rRpkySddwzoLbGxsa3Pa2tr5XA42O7CFgKBgB566CEtXrxYDodD0vm3q2xz0V3CrC6gp/n9fg0aNEgul0uS5HK5lJqaKr/fr8TERIurAz7rfD1rmib9jD7HMAytWbNGeXl58vv9SktLax1LTEyUYRiqqqo675jX67WidAxQDz74oN544w2Zpqnf/va3bHdhC4899phuuukmDR06tHUe21z0hn6/hxEA0LMefvhhRUVF6bbbbrO6FOCCLFmyRK+++qruvfdeLV261OpygHbt2rVLBQUFmjdvntWlYADq94HR5/OpuLhYoVBIkhQKhVRSUvKZwwCBvuJ8PUs/o6/Jz8/XsWPH9Mtf/lJOp1M+n09FRUWt4xUVFXI4HPJ6vecdA6wwa9Ysbdu2TYMHD2a7iz5t+/bt+uijjzRlyhTl5eXp1KlT+s53vqNjx46xzUWP6/eBMSkpSdnZ2dqwYYMkacOGDcrOzuYwEvRZ5+tZ+hl9yYoVK7R3716tXLlSbrdbkpSTk6PGxkbt2LFDkrR27VpNmzat3TGgN9TV1cnv97dOb926VfHx8Wx30ed973vf09///ndt3bpVW7du1eDBg/XEE0/ozjvvZJuLHucwTdO0uoiedvjwYT3wwAOqrq5WXFyc8vPzNXLkSKvLAvTII49oy5YtKisrU0JCgrxerzZu3HjenqWf0RccOnRI06dPV0ZGhiIiIiRJQ4YM0cqVK7Vz504tXrxYTU1NSk9P17Jly5ScnCxJ5x0DelpZWZnuuusuNTQ0yOl0Kj4+Xv/8z/+ssWPHst2FreTl5WnVqlUaPXo021z0uAERGAEAAAAAHdfvD0kFAAAAAHQOgREAAAAA0CYCIwAAAACgTQRGAAAAAECbCIwAAAAAgDYRGAEAAAAAbSIwAgAAAADaRGAEAAAAALTp/wOh7xs1nKgskgAAAABJRU5ErkJggg==\n", "text/plain": [ "
    " ] @@ -1409,7 +1395,7 @@ "bugs = pd.DataFrame(data = {'bacteria': population}, index=time)\n", "display(bugs.head())\n", "ax = bugs.plot(figsize=(15,5), legend=False) \n", - "ax.grid(True)" + "ax.grid(True)\n" ] }, { @@ -1418,10 +1404,11 @@ "source": [ "#### Answer these questions:\n", "\n", - "1. Add an x-axis label, y-axis label and title to your figure. Hide the legend\n", - "2. Add another time-series plot (as a subplot) to figure out at which point in time is the rate of growth the steepest. Estimate it from the plot, and also find it in the data frame.\n", + "1. Add an x-axis label, y-axis label and title to your figure. Hide the legend.\n", + "2. Add another time-series plot (as a subplot) to discover at which point in time the growth rate is the steepest. Estimate it from the plot, and also find it in the data frame. Look back at the equation: the growth rate is $ \\dfrac{dP}{dt} = rP - aP^2$. So plot this value.\n", "3. What steady-state population is reached?\n", - "4. If you start with 1000 bacteria, do you end up with a different final colony size?" + "4. If you start with 1000 bacteria, do you end up with a different final colony size?\n", + "5. Perhaps not necessary for these values on the plot, but usually with bacterial growth we use log scale plots on the y-axis. Change only 1 line in the above code to make this y-axis a log scale." ] }, { @@ -1439,37 +1426,39 @@ "In a scatter plot we use 2 sets of axes, at 90 degrees to each other. We place a marker at the intersection of the values shown on the horizontal (x) axis and vertical (y) axis. \n", "\n", "\n", - "* Most often **variable 1 and 2** (also called the dimensions) will be continuous variables. Or at least [***ordinal variables***](https://en.wikipedia.org/wiki/Ordinal_data). You will not seldom use categorical data on these axes.\n", + "* Most often **variable 1 and 2** (also called the dimensions) will be continuous variables. Or at least [***ordinal variables***](https://en.wikipedia.org/wiki/Ordinal_data). You will seldom use categorical data on the $x$ and $y$ axes.\n", "\n", "* You can add a **3rd dimension**: the marker's size indicates the value of a 3rd variable. It makes sense to use a numeric variable here, not a categorical variable.\n", "\n", - "* You can add a **4th dimension**: the marker's colour indicates the value of a 4th variable: usually this will be a categorical variable. E.g. red = category 1, blue = category 2, green = category 3. Continuous numeric transitions are hard to map onto colour. \n", + "* You can add a **4th dimension**: the marker's colour indicates the value of a 4th variable: usually this will be a categorical variable. E.g. red = category 1, blue = category 2, green = category 3. Continuous numeric transitions are hard to map onto colour. However it is possible to use transitions, e.g. values from low to high are shown on a sliding gray scale\n", "\n", "* You can add a **5th dimension**: the marker's shape can indicate the discrete values of a 5th categorical variable. E.g. circles = category 1, squares = category 2, triangles = category 3, etc.\n", "\n", "In summary:\n", "\n", "* marker's size = numeric variable\n", - "* marker's colour = categorical, maybe numeric, especially with a grey -scale\n", + "* marker's colour = categorical, maybe numeric, especially with a gray-scale\n", "* marker's shape = can only be categorical\n", "\n", "\n", - "Let's get started with some examples. We will start off the example from the [prior module](https://yint.org/pybasic09#Histograms) where we considered the grades of students, and how long it took to write the exam." + "Let's get started with some examples. We will start off with the example from the [prior module](https://yint.org/pybasic09#Histograms) where we considered the grades of students, and how long it took to write the exam." ] }, { "cell_type": "code", - "execution_count": 80, + "execution_count": 33, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAewAAAHfCAYAAACSxOtjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3X90HWd95/GPrMt1QBY0cK7Z7Sktv9pHu+niNJQ6aYG4FaBEzSpduqasAS+QlDpLmtIkq2KtuyhtqmTVxAWXFnfBgXqLTxvRAKZHQWEFmMAJyYEm2YWsvqQhh/4gEBEcsKMmtzfW/nE1iXx15/6Q7sw8z8z7dU5OrNH98Tzz3JmPZu73melbXl4WAADw26asGwAAANojsAEACACBDQBAAAhsAAACQGADABAAAhsAgACUsm5AK4uLJ7qec3bmmc/S8eNLSTQnNXnog0Q/fJOHfuShDxL98ImPfahUBvuaLc/dEXap1J91EzYsD32Q6Idv8tCPPPRBoh8+CakPuQtsAADyiMAGACAABDYAAAEgsAEACACBDQBAAAhsAAACQGADABAAAhsAgAAQ2AAABIDABgAgAAQ2AAABILABAAgAgQ0AQAAIbKAD1VpV185NqlqrZt0UAAVFYANtVGtVXXJktw4c269LjuwmtAFkgsAGWqjWqtp5cKfmFmYlSXMLs4Q2gEwQ2ECM6Mj66L1HT1tOaAPIAoENNBGFdXRk3YjQBpA2AhtoYnp+KjasI3MLs5qen0qpRQCKjsAOFFXLyRofntDI0GjLx4wMjWp8eCKlFgEoOgI7QFQtJ69cKuvQrsOxoT0yNKpDuw6rXCqn3DIARUVgB6bxu1W+S01OFNpj28ZOW05YA8gCgR2QuEIoQjs55VJZM3tmnjrSJqwBZIXADgRVy9mJjrSvOP9KwhpAZgjsQFC1nK1yqax9I5OENYDMENiByGvVMtXuANAZAjsQeaxaptodADpHYAckLrRDDmuq3QGgMwR2YBpDOw9hHSG0ASAegR2gkKuWqXYHgPUhsAMVatUy1e4AsD4ENlKV12p3AEgagR2Y0KdB5bHaHUA++ba/JbADkpdpUHmqdgeQTz7ubwnsQORtGlQeqt0B5JOv+1sCOwB5nQYVcrU7gHzyeX9LYHsu79OgQq12B5A/vu9vCWzPMQ0KANLh+/6WwPZcUadBtavO9K16Myush/BUa1XtvWUvY+Yh3/e3BLbnijgNql11po/Vm1lgPYQnGrPrb72eMfOQ7/tbAjsARZoG1a4609fqzbSxHsLDmIXB5/0tgR2IIkyDaledefLxk95Wb6bJ5ypWNMeYhcXX/S2BHZA8T4PqpDpz+41ne1u9mRbfq1ixFmMWJh/3twR2YPI6DaqT6szFxx5u+fsiVMv7XsWKtRizcPm2vyWw4YVOqjMrA1tb/j6P1fKNfK9ixVqMGXqFwIYXOqnOvPOqe7yt3kyL71WsWIsxQ68Q2PBGu+rMLWds8bZ6M00+V7GiOcYMvUBgwyvtqjN9rd5MG+shPIwZNqp/cnIy6zbEWlqqTnb7nIGBzVpaCrvaMg99kNbfj/5N/brorDHVTtU0ffH+NTu0dr/vNV/Ho9v14Gs/uhF6H6IxK5+xSX8w+ofBh3Xo4yH52YeBgc3XNFvet7y8nHZbOra4eKLrxlUqg1pcPJFEc1KThz5I9MM3eehHHvog0Q+f+NiHSmWwr9lyTokDABAAAhsAgAAQ2PAad6MC4Ku0908ENrzF3agA+CqL/ROBDS9xZyMAvspq/0Rgwzs+39mIU/RAsWW5fyKw4RWf72zEKXqg2LLePxHY8IqvdzbiFD2ArPdPBDa84uOdjXw+RQ8gPVnvnwhseMW3OxtVa1XtPLjTy1P0ANKV9f4pscB2zm12zh1xzn3ZOXebc+4nnXPnOufudM59yTn3nqTeG2Hz6c5G0/NTOnrv0ZaPyeIUPYBsZLl/SvII+9clnTSzcyX9pqT3SzooaZekV0ra7pw7J8H3R8B8ubPR+PCExraNtXxM2qfoAWQrq/1TkoH9byXdKklmZpJeIWmzmT1gZsuS5iQNJ/j+CFy0UVxx/pWZ3YawXCprZs+MN6foAfghi/1TYnfrcs69Q9J2SZeu/P9Lkv7WzF6x8vu3S3qxme2Le41a7cnlUqk/kfYB3Yi+y159enxs25hm9swQ1gB6rendukoJvuFNkv6NpM+pHtb3ShpY9ftBSY+2eoHjx5e6flMfb5XWrTz0QcpXP35w/An96a/epCeeqFeLjwyN6k9/9Sb94PgTkp7IuoltVWtVvf+OG3T5eVd39AdGtVbV9PyUxocnvPqDJE+fKfrhBx/7UKkMNl2e5CnxV0j6opntkPRxSd+QVHXOvcQ51ydpRNLtCb4/0FM+nKJfj2ha2vW3Xt9RRTsXiAH8lGRg3y/pMufcHZJ+X9KVkvZI+qikuyTdbWZ3Jvj+QM+VS2XtG5kMLqw7veALF4gB/JXYKXEz+56k1zQs/rakc5N6TwBPa3fBl8azBN0+HkC6uHAKkEPdXvM462skA2iPwAZyqNtrHmd9jWQA7RHYQA51e83jrK+RDKA9AhtooVqrau8te1M/FbzR+253e83jrK+RDKA9AhuI0e10qF6/70anVXV7zWOfruEOYC0CG2giq+lNvX7fbq957Ms13AGsRWADDbK6/3VS7xuF8LsvfHdH4RvqBWKAvCOwgVWymt6U9PuWS2Vd9/rrOg7f0C4QAxQBgQ2sktX0JqZVAWiHwAZW6WR604ue92K96/yrU39fplWtz0Yr7tN+XSAOgQ2s0m56U2Vgqx585Ju67OZLe7qjZlpVMpK6kQk3SEEWCGygQVx4Vga2avGxhyUl810206p6K6lKf26QgqwQ2EATjeG5OqwjaYQ2Yb0+SVXcZzWDAJAIbCBWuVTWB97wIb1060vXhHUkydBmWtX6JFVxzw1SkDUCG2jhvcdu0N89/HctH5NE9TbTqtYvqYp7KvmRNQIbaGF8eEJj28ZaPobqbb8kVXFPJT+yRmB7JqubTaC5cqmsmT0zVG8HJKmKeyr5kTUC2yNZ3WwCrUU76te5C05b/jp3ATtoTyVVcU8lP7JEYHuCqSL+W27zM/ySVMU9lfzICoHtAaaK+C0an8/Yp09b/hn7NOPjuaQq7qnkRxYI7IwxVcRv1VpVOw/uZHwCllTFPZX8SBuBnTGmivhten5KR+892vIxjA+ANBDYGWOqiN+Y1gXAFwR2xpgq4jemdQHwBYHtAaaK+I3xAeADAtsTTBXxG+MDIGsEtkeiUHj3he8mDDzEVB4AWSKwPVMulXXd668jDDzFVB4AWSGwAQAIAIHtuWqtqmvnJrkwBwAUHIHtsegqaAeO7edqWgBQcAS2p7gZCABgNQLbQ9wMBADQiMD2DDebAAA0Q2B7hptNAACaIbA9w80mkFdFm/FQtP4ieQS2Z7jZBPKoaDMeitZfpIPA9hA3m0CeFG3GQ9H6i/QQ2J7iZhPIg6LNeChaf5EuAttj3GwCIYsLr0jeQqxo/UX6CGzPcbMJhGp6fio2vCJ5mvFQtP4ifQQ2gESMD0/EFk9G8jTjoWj9RfoIbCDHspxaFFc8GelVXYYv06fS6i+Ki8AGcsqHqUVJz3jwoY+rMcMDSSKwgRxqNrVo58GdXoR2r8Pat+lTzPBAUghsIGfiqpWP3ns08yPtXs148H36FDM8kAQCG8gRn6cW9WrGg899XI0ZHug1AhvIkSJMLSpCH4FmCGzkii8Vw1kpwtSiIvQRaIbARm74VjGchSJMLSpCH4FmCGzkgq8Vw1mIC7SxbWO5CTKmT6GICGwEz/eK4Sw0m1o0s2cmV0HG9CkUDYGNoIVSMZyFIkwtKkIfgQiBjaBRMdxaEaYWFaGPgERgI3ChVQzHVbF3Wt1e9Cp4iXWA4iKwEbSQKobjqtg7rW6nCp51gGIjsBG8ECqG46rYTz5+sqPqdqrg6+tg58GdhV4HKDYCG7ngc8Vwqyr27Tee3ba6nSr4p9fB0XuPnra8SOsAILCRGz5WDLerYl987OGmy+OOwOMel+fAYiYAUEdgI1d8qxjupIo9ztzCrHZ++OLCV8EzEwCoI7CBBHVSxR5nZGhUM2/7ZFBV8EkIbSYAkBQCG17Ky9SddlXslYGtTZdH38FvOWNLMFXwSQlpJgCQJAIb3snb1J1WVex3XnVP2+r2EKrgkxatg7FtY6ctL9I6AAhseCWv05fiqtgbj6DjAsjnKvi0lEtlzeyZKfQ6QLH1T05OZt2GWEtL1clunzMwsFlLS2Hv3PPQB6n7fsRVAz/wvfv19Ye+povOGlP/pv5eN7OtXo1H/6Z+XXTWmGqnapq+eP9TQRO3vNPnp92PLD178Fn6xRddsO514Is8jIWUj3742IeBgc3XNFvet7y8nHZbOra4eKLrxlUqg1pcPJFEc1KThz5I3fWj3dQdKbsjqiKOh6/y0AeJfvjExz5UKoN9zZZzShxeYOoOALRGYMMLTN0BgNYIbKSi3TQtpu74Ly9T7bpV1H7DP6WkXtg59wxJfy7phZKelPTrkmqSPiJpWdLXJL3TzE4l1Qb4YfX30/bdhdjgjUK78btswjp7nY5h3hS13/BTkkfYo5JKZvbzkn5P0h9I2i9pn5m9SlKfpIsTfH94oNtpWkxf8k9ep9q1U9R+w19JBvY3JJWcc5skPVvSv0h6uaRjK7+/VdJrEnx/ZGy9d5ny8SYeRVXUO4UVtd/wW5KBfVL10+ELkj4o6YCkPjOLpmqdkPScBN8fGWq8d3GjTkLbp5t4FFFR75JV1H7Df4l9hy3ptyXNmdle59wLJH1W0uq976CkR1u9wJlnPkulUvcXyqhUBrt+jm9C78PeW/auuXdxo7mFWb3/jht03euvS6lV6xf6eES66cfeW/Z2NNUu7TFMeizS6ncRP1O+CqUPSQb2cdVPg0vS9yU9Q9LdzrkdZvZ5SRdK+lzLFzi+1PWb+jgJvlu97EO1VtX0/JTGhydSPVq9/Lyrdd+372sZ2iNDo7r8vKu9H688fKak7vtx+XlX6+4H/0/bi9m84xVX6Lf+4qpUPmNpjEWn/d7IZ3c9/chqW24lD9uGj32I+wMiyVPifyTpHOfc7aofXU9Ieqeka5xzd6h+tP2xBN+/8LK8iUbjdZ8bUUzmv06m2n3gDR/SZTdfmpsbtUh+TjHM2w1xsD5cmtRDvehDs+/h0t7RVCqDevAfHtL2G8/W4mMPP718YKvuvOoebTljSyrt2Kg8fKak9fcj7rMUhXWan7E0xyLJbWijl+315Q/ePGwbPvaBS5MWiC8VrtVaVZfdfOlpYS1Ji489rMtuvpSjhEA0m2rXLKylfBVk+TDF0JdtGX4gsHPGlwrXjVaJwy+rp9rFhXUkT2Ob5RRDX7Zl+IPAzhlfbqIxPT/VUZU4N/MIRzTV7r3HbvDiM5aWrKYY+rItwx8Eds74chON8eEJjW0by7wd6D1fPmN5x3pGIwI7Z3ypcC16lXiebxjhy2cs71jPaERg51Dchp72Bu5LO9JWhCk4RR3btLGesRqBnVM+VLj61I60FOmGEUUb26ywnhHpn5yczLoNsZaWqpPdPmdgYLOWlsLeOfaqD/2b+nXRWWOqnapp+uL9qW/gUT+ybsdGdToecVW9D3zvfn39oa/porPG1L+p+0vt9koS20baY5uH7Vvqvh++bkN5GA8f+zAwsPmaZsu5cIqH8tAHqVj9aDcFR8r+yCgP45GHPkj0wyc+9oELpwAJYgoOgKQR2EAPMAUHocvzzIa8ILCBHmAKDkJWhJkNeUBgAz3CFByEqEgzG0JHYAM9xBQchISbi4SFwAZ6LMsbRgCd4uYi4SGwgQRkdcMIoFPMbAgPgY1UdFqB2vg4Kle7w/rqnbyvS2Y2hIfARuI6rUBtfNzJx09SudoFKn17pwjrkpkN4SGwkahOK1CbPW77jWdTudohKn17p0jrkpkNYSGwkZhOK1DjHrf42MMtn4c6Kn17p4jrkpkN4SCwkYhqraqdB3e2rUCNTnu3K35pfF4ed5zrQaVv7xR5XTKzIQwENhIxPT+lo/cebfmYuYVZ7fzwxR2H9ernUblaR6Vv7xR9XTKzwX8ENhIxPjyhsW1jLR8zMjSqmbd9sm2larPnUblaR6Vv77Au4TsCG4kol8qa2TPTtgJ1yxlbWlaqxj2Po4A6Kn17h3UJ3xHYSEynFahxj6sMbG35PNRR6ds7rEv4jMBGojqtQG32uDuvuofK1Q5R6ds7rEv4qn9ycjLrNsRaWqpOdvucgYHNWloKu4ozD32Qnu5H/6Z+XXTWmGqnapq+eH/sjq/xcc8sP7Oj5yUtlPFot55D6UcrafWh08/seuVhLKR89MPHPgwMbL6m2fK+5eXltNvSscXFE103rlIZ1OLiiSSak5o89EGiH77JQz/y0AeJfvjExz5UKoN9zZZzShwAgAAQ2AAABIDABgAgAAQ2AAABILABAAgAgQ0AQAAIbAAAAkBgAwAQgEIFdrVW1bVzkz2/n21Sr7sRPrYJazFOycl63Wb9/sifwgR2dHP6A8f29/Qm9Em9bt7ahLUYp+RkvW6zfn/kUyECO9p4opvTzy3M9mQjSup189YmrMU4JSfrdZv1+yO/ch/YjRtPZKMbUVKvuxE+tglrMU7JyXrdZv3+yLdcB3bcxhNZ70aU1OtuhI9twlqMU3KyXrdZvz/yL9eBPT0/FbvxROYWZjU9P+XF626Ej23CWoxTcrJet1m/P/Iv14E9Pjzx1E3o44wMjWp8eMKL190IH9uEtRin5GS9brN+f+RfrgO7XCrr0K7DsRvRyNCoDu063PXN6du97oue+2J94A0f6vlN7zfSpte6C9bVV/RWrz6TcVOGsphK5Mv0pWjdvs5d0PT3693eu33/Xu9vgEiuA1uK34g2uvHEvW5lYKse/P43ddnNl6a+A2u1w2h6N3RkYqOfybgpQ1lMJfJx+tJyk2VphWVS+xtAKkBgS2s3ol5tPI2vWxnYqsXHHpaUXYFJ1KbXNhxl3Gaf9maHivV/JuOmDJ18/GTqU4l8m74Utecz9unTlr8u5bNLSe1vgEIEtvT0RnTF+Vf2dOMpl8r6wBs+pBc978VPhXUkyx1YsyPqrHeoOF23n8lWU4a233h2qlOJfJu+1KpCu9kRd9KS2t+g2AoT2FJ9I9o3MtnTjadaq+qymy/Vg498s+nvs7pow20NRxlZtQetdfqZbDdlqPGPxUgS4+3b9KV27flMRmeXktjfoNgKFdhJ8G0qh2/tQW90Mq5xej3evn3GfGsPkBQCe4PSnsrRriKXqSWd8aWyOdKLcY3T6/H27TPmW3uApBDYG5TmVI5OKnKZWtKeb5XNvRjXysDWpsuTGG/fPmO+tQdICoHdA2lM5eimIpepJfF8rWze6LjeedU9qY63b58x39oDJIHA7pEkp3KspyKXqSVrhVLZvJ5x3XLGltTH27fPmG/tAXqtf3JyMus2xFpaqk52+5yBgc1aWsrmaKl/U78uOmtMtVM1TV+8f907itV9aFcB+8D37tfXH/qaLjprTP2b+hNpz3plORaNNrIek+hHEuPabryT6Efan7F2fcj6M98pn7aNjchDP3zsw8DA5muaLSewe6x/U79e/dIda3ay3Vjdh+s+8/s68tXDLR//wPfuV+1UTa9+6Y5E2rNeWY/FahtZj0n0I6lxbTXeSY1Hmp+xTvqQ5We+Uz5tGxuRh3742Ie4wOaUuOfyUgEbVUGffPxkJtXZvq3HLGYX7L1lb+YFdkCIfJlVQmB7Lg8VsKuroLffeHYm1dm+rccsZhdcf+v1XlTFAyHxaVZJx4HtnBtwzr3MOdfnnBtIslE4XcgVsI3f1WZ5rXXf1qNvswsAnM637aejwHbODUu6V9InJT1f0recc69LsmE4XYgVsL5dwlLybz36NrsAQJ2P20+nR9hTkl4p6VEz+46kV0v6w8RahaZCuqFAtVbVzoM7O7pkZFah7ct6TKI9Pv6xBITC1+2n08DetBLUkiQzuy+h9qCNUG4oMD0/paP3Hu3osVlc59m39djr9nB9bWD9fN1+Og3sf3TOXSRp2Tn3I865/ybp7xNsFwI3PjyhsW1jHT02hCr30PhWFQ+ExNftp9PA/g1Jb5L0AknflHS2pHck1SiEr1wqa2bPTEcfeh9OS+eNb1XxQEh83X46Cmwze9jM/pOZVczsuWa208weSrpxCJuvH/qi8K0qHgiJj9tPqdUvnXMPSlqO+72ZvbjnLUKuRB/6qICjMrBVi489TGikpHH9s96Bzvm2/bQMbEk7JPVJ+u+qnwr/iKSa6qfHX5Rkw5Af0Yd+en5K7zr/ar332A0aH54gNFISrf/333GDLj/vatY70IXV+6+s91t9y8uxB9BPcc59xcx+tmHZV83s5Ym1TNLi4on2jWtQqQxqcfFEEs1JTR76INEP3+ShH3nog0Q/fOJjHyqVwb5myzstOutzzv1S9INz7kLVj7QBAEAKOg3sSyW91zm36Jx7RNK1kt6WXLMAP/lyEwAAxdPuO2xJkpndLellzrnnSVo2s+8n2yzAP6uvfmTfXaB4C0CqOgps59y5kvZK2qL66fF+ST9hZi9s8Zy3Snrryo9nqD53e4ek96l+Ov02M2t6z0/AN3E3ASC0AaSl01PiN0n6hOoB/yeS/lHSx1s9wcw+YmY7zGyHpK9KukLSQUm7VL8u+Xbn3DnrbDeQGh9vAgCgeDoN7CfM7MOSPi/puKTdkkY6eaJz7mclnSXpLyVtNrMHzGxZ0pyk4a5bDKSo3U1MCG0AaenolLikx51zz5Vkks41s8+unBbvxISkayQ9W9IPVy0/IanlhVfOPPNZKpU6fZunVSqDXT/HN3nogxR+P/besrftTUzmFmb1/jtu0HWvvy6lVq1f6OMh5aMPEv3wSSh96DSwb5T0V5JeL+ku59ybJH2l3ZOccz8iacjMPuece7ak1WtlUNKjrZ5//PhSh817mo9z6rqVhz5I+ejH5eddrfu+fV/L0B4ZGtXl513tfV/zMB556INEP3ziYx/i/oDo9JT4P0t6nZmdkPSzkt4s6S0dPO/Vkv63JJnZDyVVnXMvcc71qX5K/fYO3x/IRLubmPTqUoVMFwPQTqeBPb3yvbPM7DEzu9vMTnXwPKf6JU0jeyR9VNJdku42szu7ai2QgaRvAhAVtR04tp/vwwHE6vSU+APOuZsk3an60bYkycwOt3qSmf1hw89flnRut40EspbUTQCYLgagU50eYT+i+k1Atqs+lzr6DyiMKLSvOP/KRMI6QuU5gGbaBrZz7jJJR83sbZJ+WtIvSnqVpKmE2wZ4p1wqa9/IZGJhHSG0ATRqGdjOub2SflXS11cWbdbTVyvbm2jLgBybnp+KDevI3MKspuf5uxhAXbsj7N2SfsXMvrHy8ykz+5bqVyzbkWTDgDwbH56IrTyPjAyNanx4IqUWAfBdu8B+0sxOrvr5Wkkys5rqFz4BsA5xleeRXhW1AciPdoG9yTn31AxuM/trSXLOPUdSJ9O6AMRIeroYgHxpF9gflXR45SplkiTn3BbVbwbyF0k2DCiCxtAmrAHEaRfY10talPRt59xdzrk7JT0k6btmtj/x1gEF0OvpYgDyqeWFU8zsSUnvcM5dI+nnVhZ/xcz+IfGWAQUSTRcDgDgdXenMzP5Jbe5/DQAAktPplc4AAECGCGwAAAJAYAMAEAACGwCAABDYAAAEgMAGACAABDYAAAEgsAEACACBDQBAAAhsAAACQGADABAAAhsAgAAQ2AAABIDABiRVa1VdOzepaq2adVMAoCkCG4VXrVV1yZHdOnBsvy45spvQBuAlAhuFFoX13MKsJGluYZbQBuAlAhuF1RjWEUIbgI8IbBRSXFhHCG0AviGwUUjT81OxYR2ZW5jV9PxUSi0CgNYIbBTS+PCERoZGWz5mZGhU48MTKbUIaI2ZDCCwUUjlUlmHdh2ODe2RoVEd2nVY5VI55ZYBazGTARKBjQKLC23CGj5hJgMiBDYKrTG0CWv4hJkMWI3ARuFFoX3F+VcS1vAGMxnQiMAGVA/tfSOThDW8wUwGNCKwAcBDzGRAIwIbmWKqSm80rkcf16uPbfIZMxnQiMBGZpiq0huN6/Hk4ye9W6+M9fowkwGrEdjIBFNVeqPZetx+49lerVfGemOYyYAIgY3UMVWlN+LW4+JjD5/2c5brlbHuDWYyQCKwkTKmqvRGu/XYaG5hVjsP7kx1vTLWvcVMBhDYSBVTVXqjk/XY6Oi9R1Ndr4w10FsENlLFVJXe6GQ9NhrbNpbqemWsgd4isJEqpqr0Rrv12GhkaFQze2ZSXa+MNdBbBDZSx1SV3ohbj5WBraf9nOV6ZayB3iGwkQmmqvRGs/V451X3eLVeGWugN/onJyezbkOspaXqZLfPGRjYrKWlsKtO89AHqX0/+jf166KzxlQ7VdP0xfu93YH7Ph6N6/GZ5Wc2Xa9Z9qNXY+37WHSKfvjDxz4MDGy+ptnyvuXl5bTb0rHFxRNdN65SGdTi4okkmpOaPPRBoh++yUM/8tAHiX74xMc+VCqDfc2Wc0ocAIAAENgAAASAwAYAIAAENgAAASCwAQAIAIENAEAACGwAAAJAYAMAEAACGwCAABDYAAAEgMAGACAABDYAAAEgsAEACACBDQBAAAhsIGDVWlXXzk2qWvPrfr4Aeo/ABgJVrVV1yZHdOnBsvy45spvQBnKOwAYCFIX13MKsJGluYZbQBnKOwAYC0xjWEUIbyDcCGwhIXFhHCG0gvwhsICDT81OxYR2ZW5jV9PxUSi0CkBYCGwjI+PCERoZGWz5mZGhU48MTKbUIQFoIbCAg5VJZh3Ydjg3tkaFRHdp1WOVSOeWWAUhaKckXd87tlTQmqSzpTyUdk/QRScuSvibpnWZ2Ksk2AHkThXbjd9mENZBviR1hO+d2SPp5Sb8g6XxJL5C0X9I+M3uVpD5JFyf1/kCeNR5pE9ZA/iV5SnxE0v+V9HFJn5L0N5JervpRtiTdKuk1Cb4/kGtRaF9x/pWENVAAfcvLy4m8sHPug5J+QtJFkl4k6aikZ5vZv175/S9JeruZvTnuNWq1J5dLpf5E2gfWf+34AAAMqUlEQVQAgKf6mi1M8jvsRyQtmFlVkjnnHlf9tHhkUNKjrV7g+PGlrt+0UhnU4uKJrp/nkzz0QeqsH9VaVdPzUxofnvD2CLFI49HIt/HJ01j800OPeLVu1yMP4+FjHyqVwabLkzwl/kVJFzjn+pxzPyppQNL8ynfbknShpNsTfH94jmth+43xSQ7rFuuRWGCb2d9IulvSXap/h/1OSVdJusY5d4fqleMfS+r94Teuhe03xic51VpVOw/uZN2ia4l9h90Li4snum6cj6c3upWHPkjx/Wh1eU0fq53zPh6NfB6f0MfC53W7HqGPh+RnHyqVwabfYXPhFKSKa2H7jfFJDusWG0VgI1VcC9tvjE9yWLfYKAIbqeJa2H5jfJLDusVGEdhIFdfC9hvjkxzWLTaKwEbq4nZc7LD8wPgkJ1q3Y9vGTlvOukUnCGxkgmth+43xSU65VNbMnhnWLbpGYCMzXAvbb4xPcli3WI9Eb68JtFMulbVvZDLrZiAG45Mc1i26xRE2AAABILABAAgAgQ0AQAAIbAAAAkBgAwAQAAIbAIAAENgAAASAwAYAIAAENrAB1VpV185Ncg9jAIkjsIF1qtaquuTIbh04tl+XHNlNaANIFIENrEMU1nMLs5KkuYVZQhtAoghsoEuNYR0htAEkicAGuhAX1hFCG0BSCGygC9PzU7FhHZlbmNX0/FRKLQJQFAQ20IXx4QmNDI22fMzI0KjGhydSahGAoiCwgS6US2Ud2nU4NrRHhkZ1aNdhlUvllFsGIO8IbKBLcaFNWANIEoENrENjaBPWAJJGYAPrFIX2FedfSVgDSFwp6wYAISuXyto3Mpl1MwAUAEfYAAAEgMAGACAABDYAAAEgsAEACACBDQBAAAhsAAACQGADABAAAhsAgAAQ2AAABIDABgAgAAQ2AAABILABAAgAgQ0AQAAIbAAAAkBgAwAQAAIbAIAAENgAAASAwAYAIAAENgAAASCwAQAIAIENAEAACGwAAAJAYAMAEAACGwCAABDYAAAEgMAGACAABDYAAAEgsAEACACBDQBAAAhsAAACQGADABAAAhsAgAAQ2AAABIDABgAgAAQ2vFStVXXt3KSqtWrWTQEALxDY8E61VtUlR3brwLH9uuTIbkIbAERgwzNRWM8tzEqS5hZmCW0AEIENjzSGdYTQBgACG56IC+sIoQ2g6AhseGF6fio2rCNzC7Oanp9KqUUA4BcCG14YH57QyNBoy8eMDI1qfHgipRYBgF8IbHihXCrr0K7DsaE9MjSqQ7sOq1wqp9wyAPBDKckXd87dLekHKz8+KOnPJL1PUk3SbWZ2TZLvj7BEod34XTZhDQAJHmE7586QJDPbsfLf2yQdlLRL0islbXfOnZPU+yNMjUfahDUA1CV5hL1N0rOcc7etvM+kpM1m9oAkOefmJA1L+tsE24AARaE9PT+l8eEJwhoAJPUtLy8n8sLOuX8n6VxJH5L0k5JulfSomb185fdvl/RiM9sX9xq12pPLpVJ/Iu0DAMBTfc0WJnmE/Q1Jf2dmy5K+4Zz7gaTnrvr9oKRHW73A8eNLXb9ppTKoxcUTXT/PJ3nog0Q/fJOHfuShDxL98ImPfahUBpsuT7JK/O2SbpQk59yPSnqWpMeccy9xzvVJGpF0e4LvDwBAbiR5hH1I0kecc1+UtKx6gJ+S9FFJ/apXid+Z4PsDAJAbiQW2mVVVrwhvdG5S7wkAQF5x4RQAAAJAYAMAEAACGwCAABDYAAAEgMAGACAABDYAAAEgsAEACACBDQBAAAhsAAACQGADABAAAhsAgAAQ2AAABIDABgAgAAQ2AAABILABAAgAgQ0AQAAIbAAAAkBgAwAQAAIbAIAAENgAAASAwAYAIAAENgAAASCwAQAIAIENAEAACGwAAAJAYAMAEAACGwCAABDYAAAEgMAGACAABDYAoK1qrapr5yZVrVWzbkphEdgAgJaqtaouObJbB47t1yVHdhPaGSGwAQCxorCeW5iVJM0tzBLaGSGwAQBNNYZ1hNDOBoENAFgjLqwjcwuz2nlwJ6GdIgIbALDG9PxUbFhHjt57VNPzUym1CAQ2AGCN8eEJjQyNtnzM2LYxjQ9PpNQiENgAgDXKpbIO7TocG9ojQ6Oa2TOjcqmccsuKi8AGADQVF9ojQ6M6tOswYZ0yAhsAEKsxtAnr7BDYAICWotC+4vwrCesMlbJuAADAf+VSWftGJrNuRqFxhA0AQAAIbAAAAkBgAwAQAAIbAIAAENgAAASAwAYAIAAENgAAASCwAQAIAIENAEAACGwAAAJAYAMAEAACGwCAABDYAAAEoG95eTnrNgAAgDY4wgYAIAAENgAAASCwAQAIAIENAEAACGwAAAJAYAMAEIBS1g1YD+fcdkn/w8x2OOdeKukjkpYlfU3SO83slHPuPZJ+WVJN0rvM7K7MGhyjoR9nS/pjSU9KekLSbjP7rnPugKRfkHRi5WkXm9kPsmlxcw39OEfSpyTdv/LrD5jZXwU4Hn8p6V+t/OqFkr5sZm90zh2V9DxJ/yLpn83swmxau5Zz7hmSblK9vZslXSvpPgW0fcT04e8V2LYR049/VGDbRkw/dim8baNf0gclOdU/R2+T1KeAtg0pwMB2zo1Leoukx1YW7Ze0z8w+75w7KOli59y3JJ0vabukF0j6a0mvyKK9cZr0432SftPM7nHO/Yak35F0paRzJI2Y2feyaWlrTfpxjqT9Znbjqseco8DGw8zeuLL8TEmfk/TbKw99qaSzzMzHCxi8WdIjZvYW59zzJN0t6R6FtX0068ODCm/baNaP31N428aafpjZj0vBbRv/XpLM7BeccztUz40+hbVtBHlK/AFJr1/188slHVv5962SXiPplZJuM7NlM/t7SSXnXCXdZrbV2I83mtk9K/8uSXrcObdJ0k9K+p/OuS85596ediM70Gw8ftk59wXn3CHn3KDCHI/INZL+2Mwecs49X9KPSPqUc+6LzrmLUm1hezOSfnfVzzWFt30060OI20bcWIS2bTTrRySYbcPMPiHpHSs//oSk7yq8bSO8wDazv1b9lEukb9VfdCckPUfSsyWtPjUWLfdGYz/M7CFJcs79vKTLJf2RpAHVTwW+WdIFkv6Lc+5l6bc2XpPxuEvSfzWzV0v6pqT3KMDxkCTn3FZJw6qfNpOksqQbJf2K6uH+RyuP8YKZnTSzEytB8DFJ+xTY9tGsDyFuGzFjEdy2EdOP4LYNSTKzmnPuz1X/3HxMgW0bUoCB3cSpVf8elPSopB+u/Ltxudecc78m6aCkXzazRUlLkt5nZktmdkLSZyVty7KNHfi4mX01+rekn1Gg4yHpP0o6YmZPrvz8HUkHzaxmZg+rfprTZda6JpxzL1D9NOX/MrMjCnD7aNKHILeNJv0IcttoNh4KcNuQJDP7z5J+SvXvs5+56ldBbBt5COy7V76TkKQLJd0u6UuSRpxzm5xzPy5pk6ffcz3FOfdm1Y8edpjZN1cW/5SkLzrn+leKP14p6W+zamOH5pxzP7fy72FJX1WA47HiNaqfKlv9882S5JzbIumnJf2/DNrV1Mppydsk/Y6Z3bSyOKjto1kfQtw2YsYiuG0jph9SeNvGW5xze1d+XFL9D9mvhLRtSAEWnTVxlaQPOufKqn9APmZmTzrnbpd0h+p/lLwzywa2s1LBeED1athbnHOSdMzM3uOc+6ikL6t+uvawmX09u5Z25DJJ73fOVVX/q/sdZvbDkMZjFaf6qUtJkpnd6pwbcc59WfUNfsKnjVnShKQzJf2ucy763vG3JB0IaPto7EO/6jv/bymsbaPZWFwp6b2BbRvN+nGhwts2bpH0YefcFyQ9Q9K7VN8egsoO7tYFAEAA8nBKHACA3COwAQAIAIENAEAACGwAAAJAYAMAEIA8TOsC0IZz7k9Uv1FGWfVrPt+38qs/k7RsZgezahuAzjCtCygQ59wLJX3ezF6YcVMAdIkjbKDAnHOTkmRmk86570j6hOp3KvqO6rdVvELSj0l6q5kdc/Xb2X5A9dsoLql+F627s2g7UDR8hw0g8nxJt5rZz0g6Q9J/MLNXSZpU/cpQkvTnksbN7BzV7370l1k0FCgijrABrBZdH/pbkr646t9nrlwj+hWqX+IxevwW59zzzOyRdJsJFA+BDeApZlZd9WOt4df9kh43s7OjBc65H5P0/TTaBhQdp8QBdMTMfiDp/pW7Z8k591pJX8i2VUBxcIQNoBtvknTQOTcuqSrp18yMqSZACpjWBQBAADglDgBAAAhsAAACQGADABAAAhsAgAAQ2AAABIDABgAgAAQ2AAABILABAAjA/wcwlez9V8QDkwAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfsAAAHrCAYAAADIXTRJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3X+UXWdd7/HPTDIpJz8oZTIRWoE0A30SK1pruYBOxzUX/NFlEC+XlHSljUNllErD1S5dlsbewsVUrj8QaUvbFZQQGjuXXgU0WnCxjHc6CFelrYJNvsVJA9VbzWSA0ianzdDM/ePs3ZycnB/7zJy997Of/X6tlTWdc/Y58zz7OXt/es55vvvpW1hYEAAACFd/3g0AAADpIuwBAAgcYQ8AQOAIewAAAkfYAwAQOMIeAIDAEfYAAASOsAcAIHCEPQAAgSPsAQAI3PK8G7BE50h6jaQnJD2Xc1sAAEjbMkkvlfT3kp5N+qCih/1rJD2QdyMAAMjY5ZKmk25c9LB/QpK+9a3jOnUq2YI+g4OrNTf3dKqNygL98EcIfZDoh09C6INEP9LQ39+n885bJUX5l1TRw/45STp1aiFx2Mfbh4B++COEPkj0wych9EGiHynq6qtrJugBABA4wh4AgMAR9gAABI6wBwAgcIQ9AACBI+wBAAgcYQ8AQOAIewAAAkfYAwAQOMIeAIDAEfYAAASOsAcAIHCEPdAD0zNT2rRrg6ZnpvJuCgCchbAHlujAoQPatneL5o4f07a9Wwh8AN4h7IElmJ6Z0ubbNqs6X5UkVeerBD4A7xD2wCJNz0xp294tOnHyxBm3E/gAfEPYA4sQB338jr4RgQ/AJ4Q9sAgTk+Mtgz5Wna9qYnI8mwYBQBuEfcCYIZ6e3Vv3qDJQabtNZaCi3Vv3ZNMgAGiDsA9U/DEzM8TTMTI8qn3b72sZ+JWBivZtv08jw6MZtwwAzkbYB6jx+2S+P05HHPgrV6w843aCHoBvCPvAtJo4RuCnY2R4VPt37H/+HT5BD8BHhH1AmCGej7GNY9q3/T4NrlpL0APwEmEfEGaI52dkeFQHdx4m6AF4ibAPCDPEAQDNEPYBCXGGOOWDALB0hH1gWgV+UYOe8kEAWDrCPkCNgV/koKd8EACWjrAPVBz4RZwhTvkgAPQWYR+wIs4Qp3wQAHqPsIdXKB8EgN4j7OEVygcBoPcI+wAVuVwtxPJBAOEqyvmWsA9MCOVqIZUPAghXkc63hH1AQipXC6F8EEC4ina+JewDEWK5WpHLBwGEq4jnW8I+ACGXqxWxfBBAuIp6viXsA0C5GgBko6jnW8I+AGUsV+s0A7YoM2TTxn4onumZKa27YR1j5qminm8J+wCUrVyt0wzYIs2QTRP7oXjiMZt9apYx81RRz7eEfSDKUq7WaQZs0WbIpoX9UDyMWXEU8XxL2Ack9HK1TjNg73zg9sLNkE1DEWcKlx1jVjxFO98S9oEJtVwtyQzYW+6/qXAzZHutqDOFy4wxK64inW/7FhYW8m7DUqyX9Njc3NM6dSpZP4aG1mh29qlUG5WFsvVj064Nmjt+bMl/b3DVWh3ceXjJz1PPp7FIup+a7Qef+rEURevHUsbMd0Ubi1Z86kd/f58GB1dL0oWSjiR+XFoNAnopyQzYTnycIdtrRZ0pXGaMGbJA2KMQksyAfd8VtxZuhmyvFXWmcJkxZsgCYY/C6DQD9rrLry/cDNk0FHGmcNkxZkgbYY9C6TQDtmgzZNPCfigexgxpIuxROJ1mwBZphmya2A/FE4/Z0Johxgw9xWz8gqIf/gihDxL98EkIfZDoRxqYjQ8AAJoi7FFoLPQCwGe+nKMIexQWC70A8JlP5yjCHoXEoiEAfObbOYqwR+H4vGiILx/ZAciPj+cowh6F4vOiIT59ZAcgH76eowh7FMrE5HjLgyhWna9qYnI8mwZFfPvIDkA+fD1HEfYoFB8XDTlw6IB3H9kByIeP5yiJsEfB+LZoyPTMlDbfttm7j+wA5MO3c1Qss7B3zv20c+5B59xXnHP/xzl3YXT7Rc65LzrnHo1+viqrNqGYfFo0ZGJyXCdOnmi7TR4f2QHIj0/nqFgmYe+cO0/SxyVtNbNXS9ot6c7o7rsk3WFmF0m6Q9LdWbQJxebLoiG7t+7RyhUr227DWuRA+fhyjopl9c7+lZL+w8wejX7/S0k/6ZxbJ+lSSfdGt98r6VLn3FBG7UKB+bDQy8jwqPbv2O/dR3YA8ufDOSqWyUI4zrlzJR2W9FNm9vfOuR2SPizpMkl7zezium0fkXS1mT2Y4KnXS3oshSYDXTlw6IA237b5jI/0V65Yqf079mts41iOLQMQqK4WwlmeXjtOM7MnnXNvk/T7zrkXSLpf0rclre7F87PqXXGF0I+hoTX6/sHLdM81n3x+Vn5loKJ7rvmkvn/wssL0L4SxkMLoRwh9kOhHGupWvevucSm0pSkz+7yZjZjZZZJul1RR7f9KLnDOLZOk6Of5kh7Pql1Ar/j0kV23pmemtO6GdYmrBrhSIFAsWc7Gf0n0s1/SrZLuMrOvS3pY0lXRZldJesjMZrNqF9BLI8OjOrjzcOGCftveLZp9ajZRmSBXCgSKJ8s6+990zh2U9DVJJyXdGN3+Tkk7nHOPStoR/Q4gA91e+Y8rBQLFlMl39pJkZu9ocfshSa/Nqh0Aajot1tH4VUS32wPwB1fQA0qo28U6fF3cA0AyhD1QQt0u1uHr4h4AkiHsgRLqdrEOXxf3AJAMYQ8sQbcla738u0spfet2sQ5fF/cAkAxhDyxStyVrvf67Sy1963axDh8X9wCQDGEPLEJeJWi9/rvdLtbh2+IeAJIh7IEudSpBSyvw0/q7cYAPrRlKFNxFvlIgUFaEPdCFvErQ0v67I8OjOvrBo4mDu4hXCgTKjLAHupBXCRqlbwCWgrAHupCkBE2S3j16Q+Z/l9K3xUtjYR8WC4JPCHugC51K0GIf+Pz7e3qSp/QtPWks7MNiQfANYQ90KUngp/HdPaVvvZdGVQWLBcFHhD2wCL4EPkG/eGlUN+RVqQF0QtgDizQyPKob33hz223SDHxK3xYvjeoGFguCzwh7YAk+PPXBjtukMUue0relSaO6gYoJ+IywL6C8rseOs+3eukcrV6xsuw2z5P2TRnUDFRPwGWFfMHldjx3NjQyPav+O/cySL5g0qhuomIDPCPsCYZavn8Y2jrX87v7GN97Myd1TaVQ3UDEBXxH2BcEsX38dOHRAH/j8+5ve1+t6e/RWGtUNVEzAR4R9ATDL11/TM1PafNtmxqbA0qhuoGICvulbWFjIuw1LsV7SY3NzT+vUqWT9GBpao9nZp1JtVK9t2rVBc8ePddxucNVaHdx5OIMW9U4Rx6NeSGNT9LGIhdCPEPog0Y809Pf3aXBwtSRdKOlI4sel1SD0DrN8/cVsfABFQNgXALN8/cVsfABFQNgXBLN8/TW2cYyxAeA1wr5AmOXrL8YGgM8I+4KJQ2VozRBh4hlmYAPw1fK8G4DujQyP6ugHj3ozOxSnxdesBwCf8M4eAIDAEfYBmJ6Z0qZdG7hwCwCgKcK+4OKr680dP8aV2gAATRH2BcbCOACAJAj7gjpw6AAL4wAAEiHsC4jFVwAA3SDsC2hiclwnTp5ou011vqqJyfFsGgQA8BphX0AsvgIA6AZhX0AsvoJQlamMtEx9Rf4I+4Ji8RWEpkxlpGXqK/xA2BcYi68gFGUqIy1TX+EPwr7gWHwFRdcYfrEQQ7BMfYVfCPsAxIuvEPQomlbhFwspBMvUV/iHsAeQm4nJ8ZbhFwuljLRMfYV/CHsAudm9dU/LqpJYKGWkZeor/EPYAyWWd/lX4yTTRr2adJp3P6Xs+go0Q9gDJdVY/nXg0IFc2tEqBHsZ9L6UuaXdV6AVwh4ooWblX5tv2+zNO/xeB71PZW6UzCIPhD1QMq1mhZ84eSLXIOx1GanPZW6UzCJrhD1QIr6Xf/WqjNT3fkqUzCJbhD1QImUp/ypLP4GkCHuUig+zsvNUlvKvsvQTSIqwR2n4NCs7L2Up/ypLP4GkCHuUgo+zsvPSKghXrlgZVABS5gacRtgjeD7Pys5Ls/Kv/Tv2BxeAlLkBNYQ9glaEWdl5aSz/Gts4lneTUkGZGyAtz7sBQJq6mZV9cOfhjFrlj7j8K3Rl6SfQCu/sEbSizcpuVS2QtIqg7NUGMfYDcCbCHkEr0qzsVtUCSasIqDaoOXDoAPsBaEDYI3hFmJXdqlrgzgduT1RFQLVBzfTMlDbftrn0+wFoRNijFHyeld2uWuCW+2/qWEVAtUFNvB9OnDxxxu1l2w9AM4Q9SsPHWdmdqgVaafXOv9V2oQcdVRdAe4Q9SsW3xUeSVAu0Up2v6r337+Qa8OJa+EAnhD2QoyTVAq1UBip67xW7ClVtkJaiVV0AWSPsUUihlFZ1qhZoJZ5zcN3l1xem2iBNRaq6APJA2KNwQisxa1ct8L4rbu1YRVCEaoMsxPth5YqVZ9xetv0ANEPYo1BCLTFrVS3Q+M69VXD5XG2QpZHhUe3fsb/0+wFoRNijMEIvMWtVLZC0isDHaoM8jG0cYz8ADfoWFhbybsNSrJf02Nzc0zp1Klk/hobWaHb2qVQblYWy9SNJiVpe7+LKNha+C6EfIfRBoh9p6O/v0+Dgakm6UNKRxI9Lq0FAL1FaBQCLR9jDC51m11NaVQyhVEl0q6z9RnEQ9shdktn1lFb5L7QqiaTK2m8US2Zh75zb7Jx7yDn3sHPun5xzb4luv8g590Xn3KPRz1dl1SbkL16hLMnsekrM/BVqlUQnZe03iieTsHfO9Un6hKRrzOwSSVdL+rhzrl/SXZLuMLOLJN0h6e4s2oT8Na5QFusm8An6/IVeJdFKWfuNYsryY/xTks6N/vtFkp6QtFbSpZLujW6/V9KlzrmhDNuFHLRaoSyWJPAprcpfWRegKWu/UVyZld45594g6X9JOi5pjaSflnRS0l4zu7huu0ckXW1mDyZ42vWSHut9a5G2dTes0+xTsx23G1ozpKMfPJpBi7AYZR3HsvYbXumq9G55eu04zTm3XNJ7JL3ZzL7gnPtR1YL/ml48P3X2SzM9M6WJyXHt3rons3fJd1/5sUR183df+THvx6vMr6mk43j9yK9o7S8PZfIay2I80n79LqYPeRzHnZT52EhLXZ19d49LoS3NXCLpfDP7giRFP49LekbSBc65ZZIU/Txf0uMZtav08ppJ3Oo65jG+iy+GJFUSN77xZn3g8+8Para6b9UhVASgk6zC/l8lfa9zzkmSc26TpJdI+pqkhyVdFW13laSHzKzz52NYsrxnEo8Mj+r9b35/0/tufOPNBH1BtKuSiIM+xNnqvlSH5H0coxgyCXsz+3dJ10n63865f5Q0KentZvZNSe+UtMM596ikHdHvSJkPM4mnZ6Z082dubnrfBz7/fk5WBdKsSqIx6GMhhVHe1SE+HMcoBq6NX1BL6YcP15n3oQ29wmvqtPh743eP3tA06OulNb55jEevvy9P0ociHEMcG7232GvjE/YFtZR+bNq1QXPHj3XcbnDVWh3ceXhRf6MIbegVXlNny3N8QxiPJH0owjEUwlhIfvWDhXCQmA/XmfehDUgP45s+9jG6QdiXkA8zics+Gz/0hVN8eI2Fjn2MbhD2JeXDTOKR4VHt37E/99nMWStLmZQPr7HQsY+RFGFfYnnPJJaksY1jubchS2Urk/LhNRY69jGSIOxLzofrzPvQhiyUtUyqLOObJ/YxOmE2fkHRD39QJuWXEPoRQh8k+pEGZuMDHpuYHG8b9FLtHf7E5Hg2DQJQKoQ9kAHKpADkibAHMkCZFIou9HLR0BH2QEYok0JRlaVcNGSEPZAhyqRQNGUrFw0VYQ9kjDIpFEVZy0VDRNgDORgZHtXBnYcJenirU7kogV8shD0A4CyUi4aFsIcXks70bdyOGcLdYX/1Vsj7k3LRsBD2yF3Smb6N2935wO3MEO4CM6p7K/T9SbloWAh75OrAoQOJZvo2mxF8y/03MUM4IWZU91ZZ9iflouEg7JGb6Zkpbb5tc8eZvkmuK9/scahhRnVvlW1/Ui4aBsIeuYhPmCdOnmh6f3zijD+q7xT0jY8L7YS7WMyo7q2y7k/KRYuPVe8Kquj92LRrg+aOH+u4XZ/6tKDuX6ODq9bq4M7Di2la13wei6T7eXDVWh370Ky3/ehGmuPRzf5cyuvP59dUN+hH77HqHQol6Uzf916xq+N2zR7HDOEaZlT3FvsTRUXYIxfxx4IrV6xsen/8veB1l1/fdkZwq8fxMWMNM6p7i/2JoiLskZuR4VHt37G/40zfTifYVo9DDTOqe4v9iSIi7JGrsY1jiWb6NpsR/L4rbmWGcELMqO4t9ieKhrBH7pLO9G3cLv6InxnCyTCjurfYnygSZuMXFP3wRwh9kOiHT0Log0Q/0sBsfAAA0BRhDwBA4Ah7AAACR9gDABA4wh4AgMAR9gAABI6wBwAgcIR9nemZKW3ataHny1Om9bxL5Wu7cBpjlK489y9jiywR9pF4neq548d6uh51Ws+7VL62C6cxRunKc/8ytsgaYa/TB151vipJqs5Xe3IApvW8S+Vru3AaY5SuPPcvY4s8lD7sGw+82FIPwLSed6l8bRdOY4zSlef+ZWyRl1KHfasDL7bYAzCt510qX9uF0xijdOW5fxlb5KnUYT8xOd7ywItV56uamBz34nmXytd24TTGKF157l/GFnkqddjv3rrn+fWoW6kMVLR76x4vnnepfG0XTmOM0pXn/mVskadSh328HnWrA7AyUFnUOtWdnnfFshUaWLai6/YuVZJ2sS53vnr1mmxV1pVXuZcvZWbx/j1n+TlN71/sMd/N3+71+QZIotRhL7U+AJd64LV63hXLVqivr0/feebJXL6fa3fC6evry7QtaG6pr8lWZV15lXv5WGa2sLBw1m1ZhG1a5xugk9KHvXT2AdirA6/xeeOgf/a7z0rKb0JO3K4VDZ8uPPvdZ705GZfdYl+Trcq67nzg9lzKvXwrM4vbc/K5k2fcfs7yczIL27TON0A7hH0kPgAHV63t6YEXP+8LX/DCM4I+lufJr9k7+bxPxjit29dku7KuW+6/KfNyL9/KzNrNhm/2Tj9NaZ1vgFYI+zojw6M6uPNwKgfe/HPzZwV9LOuTX3zS86U9aC3pa7JTWVcraY21b2Vmndpz8rmTmb/m0zzfAI0I+wz4VnLjW3uwdEnGtJU0xtq315hv7QGyRthnwLeSG9/ag6VLMqatpDHWvr3GfGsPkDXCPgNZl9x0KnOiBKgzX0rFYksd01bSGmvfXmO+tQfIGmGfkaxKbpKWOVEC1JpvpWK9GNP3XXFr5mPt22vMt/YAWSLsM5R2yU23ZU6UAJ3N11KxpY7pdZdfn8tY+/Ya8609QFYI+4ylVXKz2DInSoBOK0qp2GLHNK+x9u015lt7gCz0ZV1f2mPrJT02N/e0Tp1K1o+hoTWanX0q1UZlob4fScqufH0H48t4LGUfptGHPMbUl7FYqhD6EUIfJPqRhv7+Pg0OrpakCyUdSfy4bv+Qc67fOffSbh+H9FBWtHS+7UPf2gOg2BKHvXPuRc65P5b0jKR/iW77Gefcb6bVOCQTQllRPNv8zgduz2UWvG/7MOv2TM9Mad0N63KfjAgUlW8VPI26eWd/l6QnJb1CUnxh6S9KeluvG4XuFL2sqH62+S3335TLLHjf9mGW7Yn3/+xTs15UHwBF41sFTzPdhP0bJL3bzJ6QtCBJZjYraV0aDUN3ilpWdODQAW8mxfm2D7Noj2/VB0DRFOUY6ibsn5S0tv4G59zLJT3R0xZh0YpWVjQ9M6XNt2325vrpkn/7MM32+FZ9ABRNkY6hbsL+o5L+xDk3JqnfOfd6SR9X7eN9eKIoZUXxQXLi5Im22+UZ+L7swzTa49tCNUDRFO0YSlx655zrk/TfJP2Cat/bf0PS3ZL+wMzyqt9bL0rvCmnTrg2aO34s8faDq9bq4M7DKbZo8Yo4Fkn3v8/7vZUijkejEPoghd2PvI6h1EvvzGzBzD5kZt9nZqvMbFP0e6EL9ZGPbhZu8b2SoIh8qz4AiqZox9Dydnc65/5zkicxs7/uTXNQFvFH01d/4sq2H+Xn/Z15qOL93+pjSPY70F7RjqFO7+z/sOHfZyXdL+me6OdnVfsuH+jayPCo9u/Y7025W9n4Vn0AFE2RjqG2YW9mF8b/JO2WdJuk88zsfEnnSfpwdDuwKGMbxwpzsITIt+oDoGiKcgx1Mxv/VyTdaGYnJCn6+R5JN6TRMJRH/Wzz911xqzez4Msi3v9Da4bY78Ai+FbB00zb7+wbHJf0nyR9oe6210hqXzsFJDAyPPr8jNXrLr8+59aUz8jwqI5+8GgQM6eBPNSfw3zUTdjfLOmzzrk/l/S4pJdJ2izpXWk0DAAA9EY3pXefkPRaSQclvVDSIUmvi24HIP8XwwBQTt28s5eZPSLpkZTaAhRa/RW1tu3d4u13dwDKp6uwd879jKQfU+0a+X3x7Wa2vcPj1kv6dN1NL5L0QjN7sXPuItUuuzsoaU7SdjP7WjftAvLWajEMAh+AD7pZz/4W1S6P2y9pi2rB/JOSvt3psWZ2xMwuif+pFvx/HN19l6Q7zOwiSXdEfwMoDJ9W7gOAZropvbtW0o+b2a9IOhn9fJNq16dPzDm3QtI2SX/knFsn6VJJ90Z33yvpUufcUDfPCeTFx5X7AKBRNwvhPGlm50b/fVTSBWY2X397wud5q6TfMLNLnHM/LGmvmV1cd/8jkq42swcTPN16SY8l/dtAr627YZ1mn5rtuN3QmiEd/eDRDFoEoCS6Wginm+/sZ5xzF5vZP0v6qqTrnHPfkvSt7tqnayX9UZePaYtV74qr6P24+8qPJbq+/91XfmxJ/ZyemdLE5Lh2b92T2hyAoo9FLIR+hNAHiX6koW7Vu+4e18W2v6HaJDpJulHSuyX9jrq4gp5z7nzVJvjti256XNIFzrll0f3LJJ0f3Q54L4vr+8eT/+aOH+MrAQCLkijsnXP9kp6R9CVJMrO/M7NXmtlLzOxPu/h745L+wszmouc5KulhSVdF918l6SEz6/y5KOCJNK/v32qWP4EPoBuJwt7MTkn6jJmdXOLfG9fZH+G/U9IO59yjknZEvwOFksZiGI1BHyPwAXSrm+/sp5xzrzOzLy32j0XldY23HVLtynxAocWB34vv1lsFfYw6fgDd6Cbsvy7pfufcZ1T7Tv35GXFm9t973TCgiHq1GMbE5HjLoI9V56uamBz3evENAH7oZoJeRbWL4SxI+l7VFsKJ/wHood1b97Sc9BerDFS0e+uebBoEoNASvbN3zg2Y2duj/x7Rmf+T8MU0GgaUWfyVQKuP8nsxJwBAeXR8Z++cu05nTqr7K0n3qFY+9ylJba+LD2BxGif9xQh6AN1K8jH+dkm/W/f7s2b2cjN7maQ3SHpHKi0DkMosfwDlkyTsLzSzf6z7vX6J23+UtKG3TQJQLw78wVVrCXoAi5LkO/vVzrlVZnZckszsR+vuWylpVSotA/C8Xs3yB1BOSd7Zf1XST7S476ck/XPvmgMAAHotyTv7D0n6iHNuQdKfmdmp6PK5b5Z0u7q4Nj4AAMhex7A3s0nn3AWqzcBf4Zw7JmmtpGcl/Q8zu7ftEwAAgFwlqrM3s99zzu2W9HrVgn5O0hfN7Mk0GwcAAJYu8eVyzew7kj6XYlsAAEAKurlcLgAAKCDCHgCAwBH2AAAEjrAHACBwhD0AAIEj7AEACBxhDwBA4Ah7AAACR9gDABA4wh4AgMAR9kAC0zNT2rRrg6ZnpvJuCgB0jbAHOpiemdK2vVs0d/yYtu3dQuADKBzCHmgjDvrqfFWSVJ2vEvgACoewB1poDPoYgQ+gaAh7oIlWQR8j8AEUCWEPNDExOd4y6GPV+aomJsezaRAALAFhDzSxe+seVQYqbbepDFS0e+uebBoEdEDFCNoh7IEmRoZHtW/7fS0DvzJQ0b7t92lkeDTjlgFno2IEnRD2QAutAp+gh0+oGEEShD3QRmPgE/TwCRUjSIqwBzqIA39w1VqCHt6gYgTdIOyBBEaGR3Vw52GCHt6gYgTdIOzhNWYY90bjfvR1v/raLh9RMYJuEPbwFjOMe6NxP975wO1e7lfGuztUjKAbhD28xAzj3mi2H2+5/ybv9ivjvThUjCApwh7eYYZxb3SawBWL9+uBQwcyatmZGO+loWIESRD28AozjHsjadDHqvNVbb5tc+b7lfHuDSpG0AlhD68ww7g3kuzHRidOnsh8vzLevUPFCNoh7OEVZhj3RpL92GjlipWZ71fGG8gGYQ+vMMO4Nzrtx0aVgYr279if+X5lvIFsEPbwDjOMeyNp4Mf7dWzjWEYtOxPjDaSPsIeXmGHcG8324/uuuNW7/cp4A+ki7OEtZhj3RuN+vO7y673cr4w3kJ6+hYWFvNuwFOslPTY397ROnUrWj6GhNZqdfSrVRmWBfvgjhD5I9MMnIfRBoh9p6O/v0+Dgakm6UNKRxI9Lq0EAAMAPhD0AAIEj7AEACBxhDwBA4Ah7AAACR9gDABA4wh4AgMAR9gAABI6wBwAgcIQ9AACBI+wBAAgcYQ8AQOAIewAAAkfYAwAQOMIeAIDAEfZAwKZnprRp1wZNz0zl3RQAOSLsgUBNz0xp294tmjt+TNv2biHwgRIj7IEAxUFfna9KkqrzVQIfKDHCHghMY9DHCHygvAh7ICCtgj5G4APlRNgDAZmYHG8Z9LHqfFUTk+PZNAiAFwh7ICC7t+5RZaDSdpvKQEW7t+7JpkEAvEDYAwEZGR7Vvu33tQz8ykBF+7bfp5Hh0YxbBiBPy7P6Q865F0j6fUlvlPSMpC+a2S845y6S9HFJg5LmJG03s69l1S4gNHHgN353T9AD5ZXlO/vfVi3kLzKzV0u6Obr9Lkl3mNlFku6QdHeGbQKC1PgOn6AHyi2TsHfOrZa0XdLNZrYgSWb2H865dZIulXRvtOm9ki51zg1l0S4gZHHgD65aS9ADJde3sLCQ+h9xzv2gpD+N/o1JelrSb0iqStprZhfXbfuIpKvN7MEET71e0mM9bzAAAH67UNK9g8NCAAAO4ElEQVSRpBtn9Z39ckkbJD1kZr/mnHutpD+XtKUXTz4397ROnUr2Py1DQ2s0O/tUL/5srsrSj+mZKU1Mjmv31j3evjMty1g04+P4hDAeQ0Nr9Kkv/YV3+7ZbIYyF5Fc/+vv7NDi4uvvHpdCWZr4u6buKPq43s/8r6Zhq7+wvcM4tk6To5/mSHs+oXfAY13b3G+OTngOHDrBv0VOZhL2ZHZN0QNKPS1I0A3+dpEclPSzpqmjTq1R79z+bRbvgL67t7jfGJz3TM1PafNtm9i16KsvZ+O+UdJNz7iuSJiVdY2bfjm7f4Zx7VNKO6HeUGNd29xvjk5543544eeKM29m3WKpMJuilaL2kx/jOvrga+9Hp2u6Sf2VkoY5FM0UYn6KORxH2bbeKOhaNfOpH3Xf2XU3Q4wp68ArXdvcb45Me9i3SRNjDK1zb3W+MT3rYt0gTYQ+vcG13vzE+6WHfIk2EPbzT6qTHyc4PjE964n27csXKM25n32KpCHt4iWu7+43xSc/I8Kj279jPvkVPEfbwFtd29xvjk56xjWPsW/RUZkvcAosxMjyqgzsP590MtMD4pId9i17inT0AAIEj7AEACBxhDwBA4Ah7AAACR9gDABA4wh4AgMAR9gAABI6wB1I0PTOlTbs2sA45gFwR9kBK4vXJ544f07a9Wwh8ALkh7IEUxEEfr09ena8S+AByQ9gDPdYY9DECH0BeCHugh1oFfYzAB5AHwh7ooYnJ8ZZBH6vOVzUxOZ5NgwBAhD3QU7u37nl+HfJWKgMV7d66J5sGAYAIe6Cn4jXeWwV+ZaDC+uQAMkfYAz3WKvAJegB5IeyBFDQGPkEPIE+EPZCSOPAHV60l6AHkanneDQBCNjI8qoM7D+fdDAAlxzt7AAACR9gDABA4wh4AgMAR9gAABI6wBwAgcIQ9AACBI+wBAAgcYQ8AQOAIewAAAkfYAwAQOMIeAIDAEfYAAASOsAcAIHCEPQAAgSPsAQAIHGEPAEDgCHsAAAJH2AMAEDjCHgCAwBH2AAAEjrAHACBwhD0AAIEj7AEACBxhDwBA4Ah7AAACR9gDABA4wh4AgMAR9gAABI6wBwAgcIQ9AACBI+wBAAgcYQ8AQOAIewAAAkfYAwAQOMIehTQ9M6VNuzZoemYq76YAgPcIexTO9MyUtu3dornjx7Rt7xYCHwA6IOxRKHHQV+erkqTqfJXAB4AOCHsURmPQxwh8AGiPsEchtAr6GIEPAK0R9iiEicnxlkEfq85XNTE5nk2DAKBACHsUwu6te1QZqLTdpjJQ0e6te7JpEAAUCGGPQhgZHtW+7fe1DPzKQEX7tt+nkeHRjFsGAP5bntUfcs4dkfRM9E+Sft3MPuece52kuyVVJB2RdLWZHc2qXSiOOPAbv7sn6AGgvazf2b/VzC6J/n3OOdcn6R5J7zKziyRNSfpAxm1CgTS+wyfoAaCzvD/Gv0zSM2Y2Hf1+l6Qrc2wPCiAO/MFVawl6AEggs4/xI/uid/PTkm6S9HJJX4/vNLNjzrl+59yLzeybGbcNBTIyPKqDOw/n3QwAKIQsw/5yM3vcOXeOpA9Jul3Sp3rxxIODq7vafmhoTS/+bO7ohz9C6INEP3wSQh8k+uGLzMLezB6Pfj7rnPuIpD+T9AeSXhFv45xbK2mh23f1c3NP69SphUTbDg2t0ezsU908vZfohz9C6INEP3wSQh8k+pGG/v6+rt/gShl9Z++cW+WcOzf67z5JWyU9LOnLkirOuZFo03dK+mQWbQIAoCyyemf/PZL+xDm3TNIySY9I+iUzO+Wcu0bS3c65FygqvcuoTQAAlEImYW9mhyX9UIv7/lbSq7NoBwAAZZR36R0AAEgZYQ8AQOAIewAAAkfYAwAQOMIeAIDAEfYAAASOsAcAIHCEPQAAgSPsAQAIHGEPAEDgCHsAAAJH2AMAEDjCHgCAwBH2AAAEjrAHACBwhD0AAIEj7AEACBxhDwBA4Ah7AAACR9gDABA4wh4AgMAR9gAABI6wBwAgcIQ9AACBI+wBAAgcYQ8AQOAIewAAAkfYAwAQOMIeALBk0zNT2rRrg6ZnpvJuCpog7AEASzI9M6Vte7do7vgxbdu7hcD3EGEPAFi0OOir81VJUnW+SuB7iLAHACxKY9DH4sA/cOhATi1DI8IeANC1VkEfq85Xtfm2zbzD9wRhDwDo2sTkeMugj504eUITk+PZNAhtEfYAgK7t3rpHlYFK221Wrlip3Vv3ZNMgtEXYAwC6NjI8qn3b72sZ+JWBivbv2K+R4dGMW4ZmCHsAwKK0CvzKQEX7tt+nsY1jObUMjQh7AMCiNQZ+HPS8o/cLYQ8AWJI48AdXrSXoPbU87wYAAIpvZHhUB3cezrsZaIF39gAABI6wBwAgcIQ9AACBI+wBAAgcYQ8AQOAIewAAAkfYAwAQOMIeAIDAEfYAAASOsAcAIHCEPQAAgSPsAQAIXNEXwlkmSf39fV09qNvtfUU//BFCHyT64ZMQ+iDRj16ra8eybh7Xt7Cw0PvWZGdE0gN5NwIAgIxdLmk66cZFD/tzJL1G0hOSnsu5LQAApG2ZpJdK+ntJzyZ9UNHDHgAAdMAEPQAAAkfYAwAQOMIeAIDAEfYAAASOsAcAIHCEPQAAgSPsAQAIHGEPAEDgin5t/DM4535X0n+VtF7Sq83sq9HtF0n6uKRBSXOStpvZ1zrdl5dm/XDODUr6hKRh1a6a9C+SftHMZqPHLEj6iqRT0dNcY2ZfybrtsTZjcUTSM9E/Sfp1M/tcdN/rJN0tqSLpiKSrzexolu1u1GIs1kv6dN1mL5L0QjN7cfSYI2rRxzy0e+202+e+jUerfkg6T7V2vlTSd1W7stgvmVk1Gqt/kfTVuqd6g5nNZdj0M3QYj5bHsXPuTZJ+R7Xz9pclvd3MTmTd/lib8XiVpI/UbbpO0r+b2aXR43w7V31a0oVRe56WtMPMHi5abnQS2jv7T0salfT1htvvknSHmV0k6Q7VTgxJ7stLs34sSPptM3Nm9gOSZiR9oOFxP2Jml0T/cjt4Iq3GQpLeWtfOOOj7JN0j6V3RWEzp7P7l4ax+mNmRuvZfEm3zxw2PO6uPOWr62mm3zz0dj1bHwElJN5jZRkk/IGmlpF+te9y368crz6CPdDqWzzqOnXOrJe2W9CYze6Wkp3RmH/PQtB9m9rcNx8ff6ezjw6dz1c+Z2Q+a2Q9J+l1JfxTdXrTcaCuosDezaTN7vP4259w6SZdKuje66V5Jlzrnhtrdl1Wbm2nWDzP7ppn9Td1NX5L0ikwb1oVmfejgMknPmFm8sMNdkq7sfcu606kfzrkVkrbp9AnCO21eO+32uXfj0aof0f98PRRtc0q1cPH52FjMsXyFpH+oe/d4l6S3pdC8xJL0IzrH/oRqnwB4ycyerPv1XEmnipgbnQQV9i28TNK/mdlzkhT9/H/R7e3u85Zzrl/SdZL+rOGuv3HOPeyc+y3n3Dk5NC2pfc65f3LOfcQ596LotpfrzHfPxyT1O+denEsLk/sZ1V5DDzbc3qyPuWt47bTb516PR6tjwDlXkXRtw+0vdM79g3Puy865X4s+tfBCi340O47PGA9J35BH56k256Ttkv7KzP6j4XavzlXOuY86574haZekn1OAuVGGsA/Rbap9t3R73W0vN7PLVPvI+fsk3ZxHwxK43Mx+ULXVCvt0Zh+K6Fqd/a7e5z42e+0U0Vn9cM4tlzQp6a/NLA6dJyR9b3RsXKHa/Iufz7it7TT2oyjHcaNWr6u36+zjw7s+mtk7zOzlkm5SbV5EcMoQ9o9LusA5t0ySop/nR7e3u89L0YSxV0l6W/SRpSQp/qjZzL4j6aOSfjSfFrZX185nVZvEE7fzG6r7CNA5t1bSgpl9M/NGJuScO1/Sj0naV397mz7mqslrp90+93Y8mh0D0bG7T9K3JL073tbMno0nFUY/98nf8Wh3HJ8xHqq90/fiPNXqnBRN8ByU9Jf12/t8rjKzT0gak/SvCig3pBKEfXSAPyzpquimqyQ9ZGaz7e7LvqWdOed2SfphST8bBUl8+3nRx5fxu5u3qtYvrzjnVjnnzo3+u0/SVp1u55clVZxzI9Hv75T0yexb2ZVxSX9RP+GrQx9z0+K1026fezkezfoRfYS8R9Jzkn7ezBbqtl/nnBuI/nulal+7eDkeHY7jz0p6jXPuVdHv3o5HnWsl7TWz79Zt79W5yjm32jn3srrf3yTpm5KCyY1YUOvZO+c+LOktkl4i6ZikOTO72Dm3UbUyifNU+z//7WZm0WNa3peXZv1QbXLUVyU9KqkabfqYmf0X59zrVZsNuiBpQNLfSvplM3s667bHWvThTZL+RNKy6N8jkt5tZk9Ej/kR1frxAp0u9Wr8ri9TrV5T0X2Pqtb+z9Ztv0Ft+pgH59zFav3aabnPfRuPVv1Q7d3h/ui+56Lbv2Bm73LOvUXS/4huH4i2e0/8fWse2vTjt9XmOHbOvTnaZpmkhySNm9nxbFt/WofXVUW1r1Beb2YH6x7j1bnKOfc9kj4jaZVqr5FvSvpVM3uwaLnRSVBhDwAAzhb8x/gAAJQdYQ8AQOAIewAAAkfYAwAQOMIeAIDAEfYAWnLO3eSc+2je7QCwNJTeASXmnKuvb16p2lKlcQ36L5rZvrMfBaBoCHsAkiTn3BFJ7zCzz+fcFAA9tjzvBgDwl3PuvZJeaWZXO+fWq3alt2tVuyrdaknvUe3Sun+o2vXa7zGz6+sef62kX1PtCoR/J+kXzKx+9TYAGeA7ewDdeq2ihU8kfUjSTklvlHSxpCudcz8mSc65n1VtFbG3SBqS9IBOrwEOIEOEPYBuvd/MnjGzv5J0XNK9ZnbUzP5NtUD/oWi7X5T0W2Z2MFoM5VZJlzjnXtH8aQGkhY/xAXSrfjGcapPfV0f//QpJf+Cc+726+/skXSCJj/KBDBH2ANLyuKRdzOgH8sfH+ADScpek90RLoco5d65zbkvObQJKibAHkAoz+5Sk/ylp0jn3HdXWPr8i31YB5USdPQAAgeOdPQAAgSPsAQAIHGEPAEDgCHsAAAJH2AMAEDjCHgCAwBH2AAAEjrAHACBw/x/ucdJAePMHXAAAAABJRU5ErkJggg==\n", "text/plain": [ "
    " ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], @@ -1506,66 +1495,18 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Remember our objective from the [prior notebook](https://yint.org/pybasic09#Histograms)? Do students score a higher `Grade` if they have a longer `Time` to finish the exam? The idea was they will have less stress, they had any books and notes with them, so in theory it was ideal exam conditions.\n", + "Remember our objective from the [prior notebook](https://yint.org/pybasic09#Histograms)? Do students score a higher `Grade` if they have a longer `Time` to finish the exam? The idea was that students will have less stress with unlimited time, because they had all their books and notes with them. In theory these are fairly ideal exam conditions.\n", "\n", "The scatter plot however shows there isn't anything conclusive in the data to believe that there is a relationship. Let us also quantify it with the correlation value we introduced above." ] }, { "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
    \n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    GradeTime
    Grade1.000000-0.044229
    Time-0.0442291.000000
    \n", - "
    " - ], - "text/plain": [ - " Grade Time\n", - "Grade 1.000000 -0.044229\n", - "Time -0.044229 1.000000" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], "source": [ "display(grades.corr())" ] @@ -1576,12 +1517,12 @@ "source": [ "The correlation value is $r=-0.044$, essentially zero. So now you get an idea of what a zero correlation means.\n", "\n", - "* The correlation value is symmetrical: a value of -0.044 is the correlation between time and grades, and also the correlation between grades and time.\n", + "* The correlation value is ***symmetrical***: a value of -0.044 is the correlation between time and grades, and also the correlation between grades and time.\n", "* Interesting tip: the $R^2$ value from a regression model is that value squared: in other words, $R^2 = (-0.044229)^2 = 0.001956$.\n", "\n", "Think of the implication of that: you can calculate the $R^2$ value - *the* value often used to judge how good a linear regression is - without calculating the linear regression model!! Further, it shows that for linear regression it does not matter which variable is on your $x$-axis, or your $y$-axis: the $R^2$ value is the same.\n", "\n", - "If you understand this, you will understand why $R^2$ is not a great number at all to judge a linear regression model." + "If you understand these 2 points, you will understand why $R^2$ is not a great number at all to judge a linear regression model." ] }, { @@ -1596,7 +1537,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 34, "metadata": {}, "outputs": [ { @@ -1694,12 +1635,12 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 35, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAArwAAALACAYAAABxWqH5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3X98VNWdP/7XTH4RmGAm+UwSKkwMqECG7acSpU2tDWBdy1qrLiiFLnbFh0VXt1s/tghVqWutYK2P/rA/0K60Nm0Vi7Zqv67uSkBbzWIEfywJoRVihgTyw2RoMiSGkJnvH3TiZDI/7szcc+85976ej8c+tmaGmTNz3+d933PuOec6wuFwGEREREREFuU0uwFERERERCKx4CUiIiIiS2PBS0RERESWxoKXiIiIiCyNBS8RERERWVqu2Q3Qqrd30OwmpOR2T0UgMGR2Mwwj4+f1eIrMbgJ6ewel/G5iqdBGQI12ZtJGs2NVdE5V4bilw66fx+w4BVLHqirHhu3UV2w7U8UqR3h1lJubY3YTDGW3z5sOFb4bFdoIqNFOFdpoNKt9J/w88lLls7Cd+kq3nSx4iYiIiMjSWPASERERkaWx4CUiIiIiSxO6aO3hhx9GQ0MDRkdHsWrVKlx99dXjj/385z/Hjh07UFJSAgD493//d8yePVtkc4iIiIjIhoQVvHv27MGbb76Jxx9/HMPDw9i2bduEx5ubm3H//fdjwYIFoppARJJzOh0IhcJmN4PIVOwHlAhjQz/CCt4//elPOPfcc3HzzTcjGAxi/fr1Ex5vbm7GI488gt7eXixevBjr1q0T1RRlrN3SkNbzt21YKqglRGL5e4JobO5Ca/txzKssRq2vAt4yV1qvwRMBqU6PfhCL/cIaRMSGqvSKaUc4HBbSM+68804cPXoUW7duRUdHB2666Sa88MILcDgcAIAf/ehHWL16NVwuF2655RasWrUKS5YsSfh6p06NKbNVRqYuv+2ZtJ7/3INXCGoJZcMOsZqNlrY+bHq4ESOjY+N/K8jLwT3ralFdVarp37+8rwPNbf3wVZWgbuFMTf+OJmKcmivbfhDv9azaL+wWq3rHhqr0jmlhI7zFxcWYPXs28vPzMXv2bBQUFKC/vx+lpaUIh8P40pe+hKKi05sE19XVoaWlJWnBq8ImyB5PkaE3yDD7ZhxGf14tZNgkPRAYkvK7iWVWGxua/BMSOQCMjI6hoekIPK78Sc+Pbqe/J4jN9XvH/337sQHsbDqCjWtqTB39yOS7NDtWRedUFfpAOvT+POn2g2Qy6RdaP4/ZcQqkjlVVYk1rO/WMjUzI8H1qienYdpp244mamhr88Y9/RDgcRnd3N4aHh1FcXAwACAaD+NznPocTJ04gHA5jz549nMtLZANOpwOt7cfjPnbQH4DT6Uj67xubu+KeCBqbu3VrI5Fo2faDWOwX1qF3bKhKREwLG+FdsmQJmpqasGLFCoTDYWzatAnPP/88hoaGsHLlStx666249tprkZ+fj9raWtTV1YlqChFJIhQKY15lMdq7BiY9NtfrTjpPS8uJgHMXSQXZ9INY7BfWomdsqEpUTAvdlix2oVq0K6+8EldeeaXItyciCdX6KrB7X+ek+Wm1vvKk/87sEwELB9JTpv0gltn9gvSnV2xky6ycJyqmhRa8RESxvGUubFxTg8bmbhz0BzDX60atr1zTHFwzTgRcLU0iRPeD1vYAZpW74CrMx/+0dAFIL8ZkKZBIH9nkSD20tPWhoclvas4TEdMseInIcN4yF7xlrrRHEIw+EUxaONE1gN37Ok1fJEfW4C1zweEADrzXj6aW7vE427U3vRgzu0Ai/WWaI7MlS84TEdMseInINJkkciNPBMkWTrCYID28tr8L/u6JK+IziTGzCiQSy+hjKVPO0zumhe3SQEQkkhFzdrlamkQSEWMsdilTsuY8vWKaBS8RURyRhRPxcDEQ6YExRjKxejyy4CUiSqDWV4GCvIl3eOJiINITY4xkYuV45BxeIqIEuBiIRGOMkUy8ZS7cs64WDU1HLBePLHiJiJLgYiASjTFGMqmuKoXHlW+5eOSUBiIiDayU+ElOjDGSidXikQUvEREREVkaC14iIiIisjQWvERERERkaSx4iWyEN0sgq2FMUzoYL/bFXRqIbMDfE0Rjcxda249jXmUxan0V8HiKDG+H1Vb9knnixbRRWycxjtVjZryQdiL7FgteIovz9wSxuX7v+P3R27sGsHtfJ+5ZVwuPK9+wNvBkQ3pJFNMb19QIjSvGsZrMihfSzoi+xYKXyOIam7vGE33EyOgYXt7XgRWfni38/XmyIb0liunG5m5hMdXS1sc4VpQZ8ULaGXWO4BxeIgtzOh1obT8e97GWtn5D5rMlO9kQpStZTB/0B4TF9Mv7OhjHCjIrXkg7o84RLHiJLCwUCmNeZXHcx6qrSoTPQ+TJhvSWLKbnet1CYtrpdKC5rT/uY4xjuZkRL6SdkecIFrxEFlfrq0BBXs6EvxXk5aBu4Uzh7y36ZMNCw54SxXStr1zI+4VCYfiqSuI+JrpoYoxnz+h40YrH1tgfJJzDS2Rx3jIXNq6pQWNzNw76A5jrdaPWV47qqlL09g4Kf/9aXwV27+uccMkq25MNFw/ZW6KYFhkDdQtnYmfTEV3jOBnGuH7MiJdkeGwnEnGOiIcFL5EERG9z5C1zwVvmMmU7Jb1PNlwER4D4mI593eqqUsOKJsa4/rKJFz1jjMd2MqN+kLDgJTKR0b/0zZqvpmdxwhXXFE3vmE7WJ4364cgYFyed4yYiP/PYxmdE32LBS2QSO/7S12PObqoFDlyEQplK1iejb9Qies4uY9x8ovIzj21yQvuWsFcmoqS4XVf6uOKaRJKhTzLG5SAqFnhszcOCl8gE3K4rc7KuuCa1peqTRmKMm0tkfuaxNY/QKQ0PP/wwGhoaMDo6ilWrVuHqq68ef6yhoQE//vGPkZubi+XLl+Oaa64R2RQiqURGcdq7BiY9xl/6ycm24pqsIVWfNBJj3Fwi8zOPrXmEFbx79uzBm2++iccffxzDw8PYtm3b+GOjo6PYvHkzduzYgcLCQqxatQpLliyBx+MR1Rwi6Ri1FYsVmbnrBFmXTH2SMW4ukbHAY2sORzgcFvJtP/jgg3A4HPjLX/6CYDCI9evX4+/+7u8AAK2trXjggQfw6KOPAgDuu+8+nHfeeVi2bFnC1zt1agy5uTkJH7eCy297Jq3nP/fgFYJaQtlIJ1Zb2vrw8r4OtLT1o7qqBHULZ6K6qlRwC4nskVMzwT4pH7NilbFgLcJGeAOBAI4ePYqtW7eio6MDN910E1544QU4HA4Eg0EUFX244nXatGkIBoMpXm9IVFN14/EUGbKRf4SR7xWP0Z9Xi+iV1GYJBIY0fzceVz5WfHo2nIvnjP/SN+o7lfH4xaNCOzNpo9mxKjqnqnDc4knUJ1X9PIlozlGS5NRkRB0bvfOzKjGkajtTxaqwgre4uBizZ89Gfn4+Zs+ejYKCAvT396O0tBQulwsnTpwYf+6JEycmFMBEdsPLWkRyYZ+kCMaCNQjbpaGmpgZ//OMfEQ6H0d3djeHhYRQXn96OY86cOWhvb8fx48dx8uRJvPHGGzjvvPNENYWIaBx3wLA+HmOi1OzWT4SN8C5ZsgRNTU1YsWIFwuEwNm3ahOeffx5DQ0NYuXIlNmzYgOuvvx7hcBjLly9HeTkX6hCROLx/vfXxGBOlZtd+InRbsvXr1yd8bOnSpVi6dKnItyciAmDsXe248tocdrxzIVG6VOsneuZT3lqYiCzPiPvX23XURBZGHGMrGI9T/3HM8zJO7UaVfiIin7LgJSJL03LXpGxHEFra+pQaNbEaI46xFUwa3TvGOLUTVfqJqFFoFrw2snZLQ1rP37aBU05IfUbc1e7lfR1KjJpYFe9cqI0qo3skhir9RFScCtulgYgompkrgkXev97pdKC5rT/uY5FRE4pPz+9G5DG2Ai2je6SNyt+V7P1EZJxyhJeIhJJhbqvI+9eHQmH4qkrQfkzuUROZiIgJkcfYClQZ3ZOZDLksW7L3E5FxyoKXiISRaUWwyPvX1y2ciZ1NRyZchpNp1EQmImNC5DG2glpfBXbv62ScZkCmXJYt2fuJqDhlwUtEwsg4Z1BEgq+uKpV61EQmRsSEjCdxPWRboMg+uiczGXNZtkT1E1njlAUvEWUtXoLLdkWwatsnyT5qIgNVVomLlu7n1PNSeiROPZ4i9PYOZvQadmOFuDWijSLilPvwEpEUkiW4bOZiqbx9kuwnPjPZfR5pJgWBlS6lq0rluDVq3rGoONXzu+UuDUSUkUiCe3GPH+1dA3hxjx+b6/fC3xMcf06mK4KTXT4ktcm+SlwULf0lHvYFOagYt5nGXCZUiFOO8BJRRrTMactkLlbs5cOCvBy4pxcgMDCizOVDSiw2JuZVuvGJauvPI81kDqgVLqVbhRnzn7M9vkbNO1YlTlnwElHa0klw6c7Filw+PNIziNoFM/DByVPoDQxjwZxS6S8fkjbeMhccDmD6tDy8+ef3EQ6HAcg9RzsbmRYEKl9KtyKj5unrMQ3ByCJUlThlwUtEacskwaWT9Gp9FRgeOYU9zd3jIxT+7kHsP9SHc2eeYdnCyC5i5/u923Hc0vNSsykIuJWYfEQXu3rMhTW6CFUhTjmHl4gyInJOm7fMhbzcHOnnhFFmVJjvp7dM+0vkUvqlH6/EWTOm49KPV1r2hwHp2zeMnHesQpxyhJeIMiJyTpvT6cC7HX+N+5hMc8IofarM99NbNv2FW97Zg959w+h5x7LHKQteIsqYqASnypwwSp+dj222/cXK3w2J6RtmFKGyxmnKKQ0HDx7ErbfeCgA4dOgQvvjFL+Lw4cPCG0ZE6hCR4FTcBoi0sfuxlbUgIPOJ6huMOQ0jvHfddRduvvlmAMCcOXPwL//yL7jjjjvw+OOPC28cEdlX5HLc6609aGnr521QLYS3uCWKj31DnJQF7/DwMOrq6sb/+8ILL8QDDzwgtFFERMDp5F/jm4G+viBHKCxG9vl+RGZh3xAj5ZSGkpISPP744zhx4gROnDiB3/72tygtLTWibUREAHg5zsp4bIniY9/QV8qCd/Pmzdi9ezc+9alPYcmSJdi9eze+/e1vG9E2IiIiIqKspZzS8JGPfAQPP/ywEW0hIiIiItJdwoJ33bp1ePjhh7F06VI4HI5Jj+/cuVNowzK1dktDWs/ftmGpoJaclm57iIiIiEhfCQveb33rWwCA+vp6wxpDRERERKS3hAVvWVkZAGDLli146KGHJjz2pS99CY899ljKF7/yyitRVFQEAJg5cyY2b948/ti9996Lffv2Ydq0aQCAn/zkJ+PPJSIiIiLSS8KC95ZbbsGBAwfQ09ODiy++ePzvY2NjqKioSPnCIyMjABKPEDc3N+M//uM/UFJSkm6biYiE4VZA9sbjTypj/CaWsODdsmULjh8/jm9/+9u48847P/wHubmatiVrbW3F8PAw1q5di1OnTuH//b//h4997GMAgFAohPb2dmzatAnvv/8+VqxYgRUrViR9Pbd7KnJzc5I+JxMej76jynq/npnvpeX1jfy8qnC7pwJQ47tRoY2AMe1saevDy/s60NzWD19VCeoWzkR1lfYtGFX5LiNE5dRoKn0nWo6/Sp9HC1U+j5ZYVeWziGpntvkrlhW/z4QFr8vlgsvlwk9/+lPs3bsXf/7zn7F8+XK8/fbbKC9PfYu7KVOm4Prrr8fVV1+N9957DzfccANeeOEF5ObmYmhoCP/0T/+E6667DmNjY7j22muxYMECzJs3L+HrBQJDmj9UOnp7B3V7LY+nSNfXS0X0e6V6faM/rxYydNJAYEjK7yaWCm0ExLbT3xNEY3MXHA4ndu09gpHRMQBA+7EB7Gw6go1rajTd4SiTNpodq6JyaoQq8QWcjoPN9XuTHn+VPk8ikXhvbT8O3+wSLJpXljK+zY5TIHWsqnJsRLVTS/ym+veRuJhXWYylF3jhceXr3k69xX6fqWI15bZkjz32GF566SX09PTgs5/9LDZt2oQVK1bg+uuvT/rvqqqqUFlZCYfDgaqqKhQXF6O3txczZsxAYWEhrr32WhQWFgIAPvGJT6C1tTVpwUtEmeNlrskiJwkAWDCndPxkETEyOobG5m7e0tMGGpu7kh5/p3PyTkWqmVQUdaVXFFmNlXJiqvhNJl5c7N7Xacm4SHnjid/97nd49NFHUVhYCLfbjR07duCpp55K+cI7duzAli1bAADd3d0IBoPweDwAgPfeew+rV6/G2NgYRkdHsW/fPvh8viw/ChHF8vcEsX3Xu/jmtiZs3/Uu/D1Bs5skjchJwj29AL2B4bjPOegPWKLYocScTgda24/Hfay1PYD/fN2Pb25rwk+felvp/pOsKLITq+XEZPGrJX/ZKS5SjvA6nU7k5384tF1QUICcnNTzvlasWIGNGzdi1apVcDgcuO+++1BfXw+v14uLL74Yl19+Oa655hrk5eXhiiuuwDnnnJPdJyGiCez0yz1d0SeJwMAIFswphb978qXGuV63ZUaBKL5QKIx5lcVo7xqY9JineAqe/WMbRkbHlB4R1VIU2SHOrZgTk8Vvqvxlt7hIWfAuWrQI999/P4aHh/HSSy9h+/bt+MQnPpHyhfPz8/Hggw9O+NvChQvH//cNN9yAG264IYMmE9lLpkknm8tc2byvCqJPEiOjY5iSn4uCvJwJ31dBXg5qfanXK5C8tMZwra8Cu/d1Tjr+Bfm5E/6WrP/I3F+yKYqsJNucqIUZcZAoflPlL7vFRcqCd/369XjyyScxd+5c/P73v8fixYuxcuVKI9pGZGuxCwlqfRWak3I2l7myeV+VRJ8kGvcfQ+2CGRg5eQq9xz/AvEo3an3llvzcdpBuDHvLXNi4pgaNzd046A9gXqUbgAP/9Xr7pOfGjnyp0l8yLYqsQvRopplxEBu/c73a85ed4iJlwTs8PIyxsTH88Ic/RHd3N5544gmMjo4iNzflPyWiDGV76S3TX+5WvOSXSOxJwlWYh7+/YCYqy4ssN7JhJ5nGsLfMNb5ALRQKY/uud+PGQXT/Uam/xMZ7dZW2XRqsQuRopgxxEBu/6fi4rxwnPjiF3sAwPO5CTJtizfou5ae67bbbMHfuXADAtGnTEAqFsH79+kl3XyMi/WhZNZ4qqWXyy92IS34yiXeSYLGrlti+kG0MR15LS/9Rrb9Ex3tpqUuJrby0EpUTtZApDtLNX43NXXjlraMoyMuBe3oB9h/qw8joGAoL8qSM4WykLHiPHj2KrVu3Aji9N++tt96KK664QnjDiOwq0aU3p9MBh9OB7bsOobU9kPKyWbqXuey2gCGaVT+XlcW7hHxWRZFuMZxqRFTl/iJruzLh7wlixyuH0Xy4X/ecqIXKcRDd9pHRMXT1fbjfsextz0TKgtfhcODgwYPjo7yHDh3idAYigRJdeqtdMAO73jiS1mWzdC9zLZjtts0CBlJXskvIel62TjYiarcFPzLKZCpBNpf+4zkdB2rmTbvFcMrK9fbbb8fatWtRXl4Oh8OB/v5+PPDAA0a0jci2Yi+9FeTlYOTkqYwvmyVLXNEjZXNmnoFPf+wj+NM7x8b/jVUXMJC6kl1C/uSC+JetS88ogL8nmNFoXqL+Y6cFPzLKZiqBHsVc9J0aVd3lxU4xnLLg/eQnP4ldu3ahtbUVr7zyCv74xz/ihhtuwJtvvmlE+4hsKfbS2wXzy7GnpSvuc7O59BRvhKQgLwdf+My5eO1/j+lyyY9IT6kuIa+6+GxsXFODP71zDH8+chwedyGm5OfiiZf+grwcp64LiURcIidtzJ5KEJ07nU6Hsru8xIvhpRfMUuLWwulKWfAeOXIETz75JJ566ikMDAzgxhtvxE9/+lMj2kZka7GX3gZOjMDfFf/mCJlKNELS99cPcPd1F6R1wrDafC+Sk5bLsN4yFwrynTh5amx8EQ4AjIT0X0gU3U8j7YvGfiGG2Zfjo3NnKBTGq++cXvj1+YtmY9miWQASH3vZYiL2XOPxFFlqQWNEwoL3v//7v/HEE0+gubkZl1xyCR544AHcdddduOWWW4xsH5HtpVo1XnpGAb65rSmtvR8jJ+dkIyRaqbIPKVlHqsuwTqcD+w8HJizCiRAx+hevDwBgvxDMrMvxiUaXR0bH0HSgG+ed83/w8ludk459S1sfGpr8mmPC6MJYpiJchIQF77/+679i2bJl2L59OyorKwGcXsBGROaIvfR09pln4OSpMTzx0l8QCoU1LdiIPjH/33NKMWfmGVmNkMiw/yTZT7KpBP6eIJpau1FeOtWQ0b94fWB45BT2NHezXwgWiYPXW3vQ0tZv2JSSZKPLZ595BjbXv4HBoVEAHx77m1d8FD/e8Y6mmOAgghgJC95nn30WTz/9NFavXo0zzzwTl112GcbGxhI9nQhrtzQIff1tG5YKfX0VRF96+u3ud/HSG0cmPJ5swUa8E/OnP/aRrBZbyLT/JNlLvNX20TF+4Uezi22tYvtAQV4OTnyQ+QJTSo+3zIUa3wz09QUNHaFMNLpcVlI4XuxGjIyO4fWW7kmvES8mOIggTsKC99xzz8WGDRvwta99Dbt378bTTz+N999/H1/+8pfxxS9+EXV1dUa2k4hi7D8cf9pBoku28YrTP71zDF/4zLno++sHaS+6MXvRCBEw8TJsdIxHbhf9wclT6D0+jPmVJbqP/sXrA+7pBegNDMd9PvuFOEZ/p3GvMiwox2PPH4z7fH/XINzTCyZNs4mNCQ4iiJNy0Vpubi4+85nP4DOf+Qz6+/vx+9//Hg8++CALXiITpbtgI1FxGgqF8dr/HsPd110w/t+i2kAkUmyMRy8k+rs5pVh18dm6x2S8PhAYGMGCOaXwd8dfYMp+YR3xrjKc6z0Dbcf+Ovm5FUVoijPKGx0THEQQy5nOk0tKSrB27Vo8++yzotpDRBrV+ipQkJcz4W+JLtlGTszxRBJuJok0nTYQiZQoxkdGx1B6RqHuhUJk4WdsHxgZHcO0KbnsFzYSHVuJcuKi6snHPjYmtORpyhxvmUakqHT3AE22y0OmG/JzH1KSiRGr9uMtKIrXB5YunMl+YUPJcuK/feE8vPbOUfi7BuGtKMKi6skxYacbQRiNBS+RwtK5TWYkEeu9Ib/et+okypToH2DJFhStXDJnUh9gv7CnRAsqf/DE6Rt2uacXoKmlG00t3ZPyLgcRxGHBS2QBWk+oIjfk50mdZCDyB1iqBUXx3o/9wr4SLaiMXrgWL+9yEEGMtObwEpHaojfkjz1xRxZFEFmBiEIh1YIioni0LEaLh8WuvljwEtkIF0UQZY59hzLBvCsHFrxENsOdFYgyw75DmWLsmI9zeIlsxqzbcRKpjguKKFPeMhfuWVeLhqYjjB2TsOAlsiGzbsdJpDouKKJMVVeVwuPKZ+yYhFMaiGyMSZcoM+w7lCnGjjlY8BIRERGRpQmd0nDllVeiqKgIADBz5kxs3rx5/LEnn3wSTzzxBHJzc3HTTTdhyZIlIptCRERERDYlrOAdGRkBANTX1096rLe3F/X19XjqqacwMjKC1atX48ILL0R+fr6o5hARERGRTQmb0tDa2orh4WGsXbsW1157Ld56663xx9555x2cd955yM/PR1FREbxeL1pbW0U1hYiIiIhsTNgI75QpU3D99dfj6quvxnvvvYcbbrgBL7zwAnJzcxEMBsenOgDAtGnTEAwGk76e2z0Vubk5SZ+TCY+nKPWTTHw9M99Ly+tb6fPqxe2eCkCN9qrQRkCNdqrQxmiicmo01b6TVPh5zKElVlX5LGynvtJpp7CCt6qqCpWVlXA4HKiqqkJxcTF6e3sxY8YMuFwunDhxYvy5J06cmFAAxxMIDCV9PFO9vYO6vZbHU6Tr66Ui+r1Svb6Mn1eGThoIDBn+3WRChTYCarQzkzaaHauicmqECsctHXb9PGbHKZA6VlU5NmynvmLbmSpWhU1p2LFjB7Zs2QIA6O7uRjAYhMfjAQB89KMfxd69ezEyMoLBwUEcOnQI5557rqimEFlGonuuE9GH2E9IBoxDuQgb4V2xYgU2btyIVatWweFw4L777kN9fT28Xi8uvvhirFmzBqtXr0Y4HMatt96KgoICUU2hDK3d0mB2E+hv/D1BNDZ3obX9OOZVFqPWV8E79BDFYD8hGTAO5SSs4M3Pz8eDDz444W8LFy4c/9/XXHMNrrnmGlFvT2QZ/p4gNtfvxcjoGACgvWsAu/d1YuOaGiZRor9hPyEZJItDGaaH2BlvPEEkucbmrvHkGTEyOobG5m6TWkQkH/YTkgHjUF4seIkk5nQ60Np+PO5jB/0BzhEjAvsJySFVHJK5WPASSSwUCmNeZXHcx+Z63bwnOxHYT0gOqeKQzMWCl0hytb4KFORN3IOyIC8Htb5yk1pEJB/2E5IB41BewhatEZE+vGUubFxTg8bmbhz0BzDX60atr5wLcYiisJ+QDBiH8mLBS6QAb5kL3jIXnE4HQqHw+P8nsrJ04zy2nxAZJTrmGIdyYsFLpJD3uga5vyNZXrb7mLLIIKMki1XGoVxY8BIpgvuMkh0wzkkVjFW1cNEakSK4vyPZAeOcVMFYVQsLXiIFcJ9RsgPGOamCsaoeFrxECuA+o2QHjHNSBWNVPSx4iRTB/R3JDhjnpArGqlq4aI1IEdzfkeyAcU6qYKyqhQUvkULOqiji/o4kvWznL3IfUxJJz7hirKqDBS+RArLdl5TICNFx6ptdgkXzyrKKUxYQpCeReZSxKj8WvESS416PpIJ4cbqz6QjjlKTAPEpctEYkOe71SCpgnJLMGJ/EgpdIYtzrkVTAOCWZMT4JYMFLJDXu9UgqYJySzBifBHAOL9ZuaTC7CURJ1foqsHtf54TLcdzrkWSjd5xy1TvpifFJti94icyWKnHqvdfj+Epl/3HM83LHB0pO64k9Nk6rqzLbpYE7kpAIeuRRp9OB97oGGZ+KYsFLZJJ0Tux67fU4aaXyMa5UpvgyKTyj47S01IXe3sG035Mr6UmUTPNopC84HE7s2nuE8akoFrxEJsj0xJ7tJbRkK5WZsCki28Iz0zhlfJIR0i12N9ePkd+2AAAgAElEQVTvBQAsmFPK+FQYF60RmcCMLXK4Upm0YnwSnRbpC+7pBegNDMd9DuNTDSx4iQxm1omdK5VJC8Yn0WnRfSEwMAKPuzDu8xifahBa8Pb19aGurg6HDh2a8Pef//znuOyyy7BmzRqsWbMGhw8fFtkMIqmEQmEsqi5DQV7OpMdEJ85aX8Wk9+WODxTNiMIzUdHM+KRMifghFt0XRkbHMCU/l/GpMGFzeEdHR7Fp0yZMmTJl0mPNzc24//77sWDBAlFvTySlyOKHA+0BLJhTiin5uWjcfwyhUNiQxKn3jg9kTaK2wku1EI7xSeny9wSx45XDaD7cL2TXhOi+0Lj/GGoXzMDIyVPoPf4B5lUyPlXiCIfDQoaT7r33XtTV1eGRRx7B3XffjTlz5ow/tmzZMpxzzjno7e3F4sWLsW7dupSvd+rUGHJzJ4+Ixbr8tmeyardKnnvwirSer/p3k+7nNUuiWG1p68OmhxsnFRFLzp8FpwOoWzgT1VWlRjaVbCxVTm1p68PL+zrQ0taP6qqSrOMzUfzfs66WcU9JpZtT9Y6p2L6wuGYm5p/FmFWNkBHep59+GiUlJbjooovwyCOPTHr8sssuw+rVq+FyuXDLLbdg165dWLJkSdLXDASGRDRVaelu+aM6LZ/X4ykyoCXJBQJD8HiKJrW3ockfdyEQwmGsqDv9g9DIYxqvjTJSoZ2ZtNHsWE2VUz2ufKz49Gw4F88Zn8aQzmeM/U4SxX9D0xF4XPnaG24SFeIwHVo/j9lxCiSOVaNiKtu+MP46isSQqu1MFatC5vA+9dRTeO2117BmzRocOHAAt99+O3p7ewEA4XAYX/rSl1BSUoL8/HzU1dWhpaVFRDOIpJFsIVBrO1f4krz0mrPLHRhIT2bEFBemqU1IwfvrX/8av/rVr1BfX4/58+fj/vvvh8fjAQAEg0F87nOfw4kTJxAOh7Fnzx7O5SXL4wp0sjPGP+mNMUXpMmxbsueeew7bt29HUVERbr31Vlx77bVYvXo1zj77bNTV1RnVDCLTcAU62Rnjn/TGmKJ0CL/TWn19PQBMWLR25ZVX4sorrxT91kRS4Qp0sjPGP+ktElOvt/agpa2fMUVJ8dbCRAbK9F7uRFbA+Ce9ectcqPHNQF9fkDFFSfFOa0QmYGImO2P8k94YU5QKC14iIiIisjQWvERERERkaSx4iYiIiMjSWPASERERkaU5wuEwZ3oTERERkWVxhJeIiIiILI0FLxERERFZGgteIiIiIrI0FrxEREREZGkseImIiIjI0ljwEhEREZGlseAlIiIiIktjwUtERERElsaCl4iIiIgsjQUvEREREVkaC14iIiIisjQWvERERERkaSx4iYiIiMjSWPASERERkaWx4CUiIiIiS2PBS0RERESWxoKXiIiIiCyNBS8RERERWRoLXiIiIiKyNBa8RERERGRpLHiJiIiIyNJyzW6AVr29g2Y3ISW3eyoCgSGzm2EYGT+vx1NkdhPQ2zso5XcTS4U2Amq0M5M2mh2ronOqCsctHXb9PGbHKZA6VlU5NmynvmLbmSpWOcKro9zcHLObYCi7fd50qPDdqNBGQI12qtBGo1ntO+HnkZcqn4Xt1Fe67WTBS0RERESWxoKXiIiIiCyNBS8RERERWRoLXiIiIiKyNBa8FJfT6TC7CURERGRjetYiymxLRsbw9wTR2NyF1vbjmFdZjFpfBbxlLrObRUREOhjP8f7jmOdljic5iahFWPDSOH9PEJvr92JkdAwA0N41gN37OrFxTQ0TIhGR4ibl+GPM8SQfUbUIpzTQuMbmrvEAixgZHUNjc7dJLSIiIr0wx5MKRMUpC14CcHqeTGv78biPHfQHOKeXiEhhzPGkApFxaljB+/bbb2PNmjUAgPb2dqxatQqrV6/GN7/5TYRCIaOaQQmEQmHMqyyO+9hcrxuhUNjgFhERkV6Y40kFIuPUkIL3Zz/7Ge68806MjIwAADZv3oyvfvWr+M1vfoNwOIydO3ca0QxKodZXgYK8ibfqK8jLQa2v3KQWERGRXpjjSQWi4tSQRWterxcPPfQQ1q9fDwBobm7GokWLAACf/vSn8eqrr+KSSy4xoimUhLfMhY1ratDY3I2D/gDmet2o9ZVzMQMRkQUwx5MKRMWpIQXvpZdeio6OjvH/DofDcDhOz8OYNm0aBgcHU76G2z0Vubk5KZ9nNo+nyOwmZMXjKUKNb0Zaz6eJ3O6pANT4blRoI6BGO1VoYzQjcqpq30kqVvg86eZ4GWiJVVWODdup/f21xGk67TRlWzKn88OZFCdOnMD06dNT/ptAYEhkk3Th8RShtzd18W4VMn5eszspcDpWZfxuYqnQRkCNdmbSRrNjVXROVeG4pcOun8fsOAVSx6oqx4bt1FdsO1PFqim7NFRXV2PPnj0AgFdeeQXnn3++Gc0gIiIiIhswpeC9/fbb8dBDD2HlypUYHR3FpZdeakYzSFLcHoeI7Ii5j2RitXg0bErDzJkz8eSTTwIAqqqq8Ktf/cqotyZF8LbGRGRHzH0kk5a2PjQ0+S0Xj7y1MEmBtzUmIjti7iOZWDkeeac1kgJveUlEdsTcRzKxcjyy4CXT8ZaXRGRHzH0kE6vHIwteMh1veUlEdsTcRzKxejyy4FWY6r+2ovGWl0QkA6PzKnMf6Snb+LVyPHLRmoKsuKKXt7wkIjOZlVeZ+0gPesWvt8yFe9bVoqHpiOXikQWvYqy8gtJb5oK3zAWn06H8pRMiUofZeZW5j7Khd/xWV5XC48q3XDxySoNirLyCMsJKHYyI5CdLXjUq91lpOhzpF7+xcWG1czFHeBXidDpwoD0Q97HICkqrBSgRkUhaVqZbJa9GX/b2zS7Bonllyl8ZtDs94jd2OsTSC7zwuPJFNNdULHgV0t49CE9xIfxdg5Mes8IKSiIio0VWprd3DUx6zEp5Nd5l751NRywxHc7Oso1fs6fzGIlTGhTy2v4uTMnPtewKSiIiM1h5ZXqELNM2SH/ZxK+d4oIjvIqIXLY40jOI2gUz8MHJU+gNDMPjLoTHPRVnVRRZZiSCiMhIVt8pwU7TNuwo0/i1W1yw4FVE9GWLV985ioK8HLinF2D/oT4sXlhoqaAkIjKalXdKsMu0DTvLJH7tFhec0qCQ6MsWI6Nj6Oob+tvfxV5244peIlJJNjnLaif5CDtM26D04tfpdNgqLjjCqxCjL7tZ8QYXRGRdzFmJxZ4/qqu4S4NdRfeT+WcV4+YVH0Xz4f7xumLpBbO4SwOZz6jLbnZauUlE6mPOSi36/FFa6kJv7+Qdf8ja4vWTXXs78Y1ra7Dq4rMRCoXh8RRZMjY4pUFRoi+72WnlJhGpjzlLO6tO26DUEvWT1/Z3Wz4uWPDSJFpWbhIRyYI5iyg1u/cTFrw0SWTlZjxWXLlJRGpjziJKze79hAUvxWWnlZtEpD7mLKLU7NxPuGiN4rL6RuxEZC3MWUSp2bmfsOClhKy8ETsRWQ9zFlFqdu0nnNJAKdmpQxCR+piziFKzWz9hwUtERERElsaCl4iIiIgsjQUvEREREVkaC14iIiIisjQWvKQrq9+phYjISMyp1sVjayzTtiUbHR3Fhg0b0NnZCafTiW9961uYM2eOWc2hLPl7gmhs7kJr+3HMqyxGra9C13397LZ9Sqy1WxqEvv62DUuFvj4RpSfTnGr3XKkC0edLq9Erpk0reF9++WWcOnUKTzzxBF599VV8//vfx0MPPWRWcygL/p4gNtfvxcjoGACgvWsAu/d1YuOamqw7MRMDEdlNJjmVuVINIs+XVqN3TJtW8FZVVWFsbAyhUAjBYBC5ucmb4nZPRW5uTtLnyMDjKTK7CYbyeIqw45XD4503YmR0DK+39qDGNyPj125p64ubGO5ZV4vqqtKs2i2S2z0VgFqxIHtbZW8foEYboxmRU1X7TlIx6vOkm1MzzZWqHB8tsarKZ3m9tUfI+VJvZn+fWmM6nXaaVvBOnToVnZ2dWLZsGQKBALZu3Zr0+YHAkEEty5zHU4Te3kGzm2EYj6cIfX1BNB/uj/t4S1s/+vqCGV+KaGjyx00MDU1H4HHlJ2yT2QKBIeViQea2qvBdZtJGs2NVdE5V4bilw6jP43Q60s6pmeZKLZ/H7DgFUseqKrHm8RQJO1/qSYbvU0tMx7YzVayatmjtF7/4BT71qU/hxRdfxDPPPIMNGzZgZGTErOZQhkKhMOZVFsd9bK7XnXHndTodaG0/Hvexg/4AJ/sTkSWlm1OZK9Ui4nxpNaJi2rSCd/r06SgqOl2Nn3HGGTh16hTGxsZS/CvSg94JsNZXgYK8iZebCvJyUOsrz/g1RRXSRCQXFmSTpZNTmSvVks6xtWvfEBXTpk1p+Od//md84xvfwOrVqzE6Oopbb70VU6dONas5tiBqUYO3zIWNa2rQ2NyNg/4A5nrdqPWVZ/3atb4K7N7XOeGyRraFNBHJgYusEks3pzJXqkPLsWXfEBPTphW806ZNww9+8AOz3t52kq0MPauiKOtRAG+ZC94yl65b4ogqpInIXFypnlq8nJoovzJXqiXZ+dIKfUOPOkBETJtW8JKxGpu74k4Af2lvB7r6hjDnzOm6/IrU+/KZiEKaiMyVKB81Nncrc1I3SigU1jTix1ypnnjHSeW+offItN4xzYLXBpJNAPd3DeLkqTG8uMcv9a9IJnAia9CyIIX9/UPpjvjxu1OXyn1D5Mi0Xp+Ztxa2gWQTwD3uQgQGTu+OEfkVSUQkChdZpSfZiB9Zi8p9Q4U4ZcFrE4lWhk7Jz50QpNzGhohEE7GzixVxyzH7UbFvqBKnnNJgE7ETwGeWuRAOA437j014nuy/IolIfVxkpU1kxK+9a2DSY8zV1qRi31AlTlnw2kj0BPD27kHc98u9EwJR9l+RRGQdXGSlDbccsx8V+4YKccqC14ZCoTBmedT7FUlE1qPKCd0sKo74kT5U6hsqxCkLXhtT8VckEZHdMFeTCmSPUy5aIykDk4iIJmKuJhXIGqcseEkZsqz0JCLSE3MbJcLY0A+nNJD0eF9xIrIi5jZKhLGhPxa8JDUr3FeciCgWcxslwtgQI60pDbt27cKRI0cAAC+99BJuvPFG/OAHP8Do6KiQxpH6sr0co8LdW4jIXvS4zMzcRonYOTZETuHQPML76KOP4vnnn8f999+P1tZWfO1rX8Mdd9yBAwcO4Dvf+Q7uuOMOYY0k9ehxOUbl+4qnsnZLg9lNkFo638+2DUsFtoToQ3pdZrZybqPs2DU2jJjCobngfeaZZ7B9+3YUFhbiu9/9LpYuXYqrr74a4XAY//AP/6Bro8gcenUkvS7HqHL3FiLKjEon75a2Pt0uMzO3qU1k3NoxNoyawqF5SoPD4UBhYSEAYM+ePbjooovG/05q8/cEsX3Xu/jmtiZs3/Uu/D3BrF5Pz8sxKt5XnIiS0zvnGOHlfR26XmZmblOPUXFrt9gwagqH5hHenJwcDAwMYGhoCAcOHMCFF14IAOjs7ERuLte+qUrvX1Z6X45R4e4tRKSdigtynE4Hmtv64z6W6WVm5ja1GBm3dooNI6dwaK5Uv/zlL+PKK6/EqVOnsGLFCpSVleH555/H9773Pdx88826NIaMl+yXVSadS8TlGNnv3kJE2umdc4wQCoXhqypB+zF9LzMzt6nD6Li1S2wYOYVDc8H72c9+Fueddx4CgQDmzZsHAJg2bRruvfdefPzjH9etQWQcUb+san0V2L2vc0Jy0ONyjJU7PZEdqLwgp27hTOxsOqJ7XgOY22RnZtzaITZE1Qyx0pqL0N/fj2PHjuHMM89EUVER6urqAJzermzJkiW6NozEE/XLyk6XY4hIO5UX5FRXlTKv2ZTKcasCo2oGzQXvY489hieffBKzZs3CXXfdhe9+97uora0FAPzwhz9kwasoUb+s7HI5hojSY9RojgjMa/alctyqwIi+pbng3bFjB3bs2IHCwkLs27cPX/nKV/D9738f559/PsJhdnxVif5lxZMCEUWzwhUg5jX7sULcqkBk30prSkNkW7KFCxfie9/7Hr761a9i27Zt3JpMcRy1ICIjMeeQihi3atO8D+/ChQtx66234t133wUAXHDBBdi0aROuu+46HDt2TFgD7ULk7fS0vi87MBEZyQ45J15uNyvfkz60xq1Mx1mmtphF8wjv3XffjaeeegpDQ0Pjf/v7v/97zJgxA1u3bhXSODsw4nZ6Mr0vEZEdxMuxAJh3bUCm86tMbTGb5oJ3/vz54/87egpDOBzmlIYMmbUBu4obvxMRqSJRjv24rxyvvHV0wt+Yd60l2fnV4ymSpi12jDnNUxpaW1vH/2/u3Lk4cOAADhw4gNbWVhw4cEBkGy3LqNvpyfK+RER2kCjHnvjg1IRbxjLvWo9M51eZ2iIDzQVvNL1GdB9++GGsXLkS//iP/4jf/va3urymKrRsZG2l9yUisoNkObY3MAz39IIJf2PetY5U51eZ2mLHmMuo4NVjG7I9e/bgzTffxOOPP476+np0dXVl/ZoqiWxkHY/IjazNel8iIjtIlmM97kIEBkYm/I151zpSnV9laosdY860Ed4//elPOPfcc3HzzTfjxhtvxOLFi7N+TdXU+iomXN4CjNnI2qz3JSKyg0Q5dtqUXN64wOJkOr/K1BYZOMIah2uXLl06Xuh2d3ejvPz0FxZZtLZz58603vjOO+/E0aNHsXXrVnR0dOCmm27CCy+8kLCYPnVqDLm5OXEfU1lLWx9e3teBlrZ+VFeVoG7hTFRXlVr2fe1AS6xeftszBrVGm+cevMLsJkyQzvcjW9tVYdWcKot4ORYA824GVItVmc6vMrXFbJoL3s7OzqSPn3nmmWm98Xe/+12UlJRg7dq1AIDPf/7z+PnPf47S0vgHord3MK3XN4PHU5RxO83ayDqb983m84pi9CrYeHp7B1N+N2u3NBjYotS2bVhqdhMmSOf7kaHtmfQFs2NVdN+VMT9kI9PPEy/HynDjAq2fx+w4BVLHqqyxFnuczWxnOjEn6/cZK7adqWJV87Zk6Ra0qdTU1OCXv/wlrrvuOvT09GB4eBjFxfHnm9iBWcnP7KRLRGRl8XIs8649yHScZWqLWdK6tbCelixZgqamJqxYsQLhcBibNm1CTo46lyyISDvZRrSJiMheTCt4AWD9+vVmvj0RERER2UBGuzQQEREREamCBa8C7LhBNBGRSpinSXVWj2FTpzRQcv6eIBqbu9DafhzzKotR66uw5f2viYhkxTxNqouN4aUXeOFx5ZvdLN2x4JWUvyeIzfV7xzcpb+8awO59ndi4pobJlIhIAszTpDo7xTCnNEiqsblrwh15AGBkdAyNzd0mtYiIiKIxT5Pq7BTDLHgllJvrxKHOgbiPHfQHLD/PhohITyJyptPpQGv78biPMU/bi6rH2m4xzCkNEomeRzOzzIXykqlo3H9swobRc71ubiBNRKSByPm1oVAY8yqL0d41eXCCedoeVJ+/bbcYZsEriXjzaAryclC7YAZefecoAJz+b1+5mc0kIlKCEXMTa30V2L2vc8IlYeZpe7DK3Fc7xTALXhPEu6d1onk0DgdwzqxizP7IGaj1lSvVkYiIzJJsbqIeedTpdMBb5sLGNTVobO7GQX8Ac71u5mmbyCa+4tUAZokXw0svmMVdGig7iS5/JJtH09ETxD3XL8KpUyGDW0tEpCYtcxMzLTji5fGVS+ZIVcSQWJnGV0tbHxqa/NJNgfCWucZrkVAoDI+nCL29g2Y3S3e2KHhlSESJLn9849oaVJYXJZ1Hw2KXiOwmm7x9em6iW/e5iVa5jE3ZySS+Mokdo2sXs+sk0Sxd8Mo0oTz28ofT6cD588vxX00d6OgJ4sKPVqAgL8cW82iIiBLJNm9H/r3D4dQ9p4qeJkHyyzS+0okdmWoXK7FswSvTL/F4lz9qF8zAGwe6x9t3pGcQn/roDOTn5uDdzr9abi6YDKPsRCS3bEfBov+90+lA7YIZGDl5Cr3HP8C8yuxzqqhpEmScbKezZBJf6UyBkKl2sRrLFrwy/RKP3fqjIC8HH5w8NaF9oVAYr7x1FJd98izcfd0Flkmc/KVKRFplOwr2Py0f/vtQKIxX3zmKgrwcfP6i2Vi2aFbW7bPTFk5Wo8e5KDo+04mvdLb/kql2sRpL3nhCxs2Ua32npywAgHt6AXoDw3Gf19zWn/R1VNoIOvJL9cU9frR3DeDFPX5srt8Lf0/Q7KYRkWTSyduJcku8U9rI6BiaDnRnlTsj/zY6j0dw6pn89DgXJYpPrfGlJXZkrF2sxJIjvDJuphy99cfho39FmXsq/N2TV0Emm/Cu2kgpf6kSkVZ6jIIFh09OmlcZ799rFZ13fbNLsGheGbchU1CieHlpbwcuOX8mZnlSH79s6wpvmQv3rKtFQ9ORhLEjY+1iJZYseAE5N1OO3vrjva7BCXN4k7VPxTk9IrcFIiJr0pK3k+WWI91BlJdMHEzINO/Hy7s7m45g45oabkOmkGTx4u8axKN/OIC1l83XdC7Ntq6oriqFx5WfNHZkrF2swrIFr8wbgodC4bTap+JIKX+pElG6tOTFZLllXqUbn1xQjtf2Z5/3U+Vd5jA1JIsXj7sQ+w/1aT6X6lVXJIsdmWsX1Vm24AUmb6YsGy3tU3mklL9U1bF2S4PZTTCM6M+6bcNSoa9vdVryYrLcMsvjwsol2eV9lfMuTZYoXqbk52JkdCytY2pEXSF77aIqSxe8EbIHTLL2qTxSyl+qRJSpbEfBssmNKuddmiwSLy/t7YC/axAedyGm5Oeicf8xAJkdUyNigHGmL1sUvKpTeaSUv1SJSATRuUXlvEuTectcuOT8mXj0Dwew/1Df+HHlMbUPFrwKsMJIKYtdIhJB5GXl6LxbXXV6lwaV8i5NNMvjwtrL5it9LqXMseBVBEdKiYiMFZ13S0td6O2dvJUkqYXnUvuy5I0nVKR1Q2l2UCIiY2nNu7wxgDrMPJcyTszBEV6TqXhDCSIi+hDzOGnR0taHhiY/48QkLHhNpOINJYiI6EPM46QF48R8nNJgomQbmxMRkfyYx0kLxon5WPCaRMvG5kREJC/mcdKCcSIH0wvevr4+1NXV4dChQ2Y3ZRKRQRjZ2DyeyCbY7AREZGdacqCZeVJLHidjmH2+TPb+jBM5mDqHd3R0FJs2bcKUKVPMbMYkqRYg6LWdSbyNzQsLcuGbXYLtu97lxHYisiUti8CSPcfILad4gwpz+XuC2PHKYTQf7jflfKk1Dhkn5nOEw2HTflrce++9qKurwyOPPIK7774bc+bMSfjcU6fGkJubI7xNLW192PRw46SgvGddLQDg5X0daG7rh6+qBHULZ6K6qjTr93t5Xwda2vpRXVWCBXP+D37wxJtx3z/b9yJjaInVy297xqDWWN9zD16R1vNFf/fptscsRuXUdCXLwZEcmOg5//aF87D/0Pu65mitbY7O40a9r10kilUtsSJSunHIODGXaSO8Tz/9NEpKSnDRRRfhkUceSfn8QGBIt/dO9ousockfd2L5f/9PO/a0dGFwaBQA0H5sADubjkxYYenxFKW9MbnHlY8Vn54N5+I5CIXC2L7r3bjv39B0BB5XfoafWIxMPq9oHk+R2U1AIDAk5XdjVbJ9z1rbY3as6plTI6Jzq292ZncmS5SDo3Ng4uf48b9/u21svBydjWR9OjaPA/LFZSytOcrsOAUSx6qWWImm9/Zx6cZhjW8GPK58yB4nqpy/YtuZKlZNK3ifeuopOBwONDY24sCBA7j99tvx05/+FB6PR+j7Jtsa5KyKooQTy//ccRzTCvPGC17gwxWWeiTTyJzdVBPbOdeHiGQUL7emW3BqXdyT6Dk9gWG4pxegq28IBXk5cE8vQFNrj2GXuJmfjZPu+VLvbcHivX8k5gKDI+NxCHxYK9T4ZgBgnJjFtEVrv/71r/GrX/0K9fX1mD9/Pu6//37hxS6QfGuQZBPLZ5ROQ2BgZNLf9Vxhmez9Z5a50N4t/y8uIrInPbZd0rK4J9lzPO5CHA+exIUf/QgWzClFfm4Oev/6Afy9Qe0fhJSQ7kIwvbcFi35/p9MxIebKSgpx7qziCbXBQX8go/ch/Zi+S4ORtPwirPVVoCBv4lyhgrwczDlz+qTOAui/wjLR+4fDwH2/3At/DxM3EclFz22XEuXA6MU9iZ4zJT8XNXPL8MaBbuxt7YG/exCvN3dhM3OnJWmJFUDctmCR969dMGNCzDX+bxf2NHejdsGM8efO9bozeg/SjxR3WquvrzfkfSK/yNq7BiY9FilcvWUubFxTg8bmbhz0BzDX6x7vPAV5OcJXWEbe/6W9HfB3DcLjLsSU/Fw07j+GUCis2xQKIiK9aMmtWiXKwdF5L95zfLNL8OhzzTh7ZnHCkTzmTmuJxMHrrT1oaeuPGyuAvvEZ+/7fuLYG//1GR9yY++DkqfGCnLsxmE+KgtdIWrYG8Za54C1zTZoDlCoJ6+WsiiJ09Q3h5Kkx7P/bxPcIzuUlIhnpue1Sohyc6jm3f7EGW3+/P+7zmTutyVvmQo1vBvr6gkmPrahtwSrLi3CkO/7Vg97AMD5/0Wz4znLzx5YEbFfwahk9iIjtPFqSsB5CoTDmnDkdL+7xT3qMm1QTkYxic2t1VWa7NETTkuuin1PhLsT8s9zwx1nvwNxpbamObTrn/nTfN9HocXVVCZYtmpXV65N+bFfwAtkXrkYkTW5STaTN2i0NZjeB/iY6t5aWukzZ2oi5kxIRNWiVKOY+Uc2Yk4ktC94ImX/ti/o1SkQkmpm5lbmTUtE7PhlzarB1wSs7o6ZQ6EGFNhKRPeiRO5nTKEJLLKh0vrYrFrwKkLnz6H3nGiIivWSSO5nTKCKTWJD5fG13li94+WtLnJa2Pl3vXENE8rFTDk12Ny4ZbrFLxtH7zmxkPssWvPyVLt7L++LvPcj9LonUZ8ccmuxuXFXvAbIAACAASURBVJHbwpI9JIqFl/Z24JLzZ2KWx9p9wYosV/A6nQ60dw/yl5lgTqcDzW39cR/jfpdEahM9uiVjfkh1Ny6Sm54xlSwW/F2DePQPB7D2svmsJxRjmYI3ejRiZpkL588vH787GcCRR72FQmH4qkrQfkzfO9cQkfmSjXRmk0NlHjVOdTcukpO/J4gdrxxG8+F+3WIqWSx43IXYf6iP9YSCLFHwxhuNiNzf+tV3jo4/jyOP+qpbOBM7m45wv0siC0k10plpDlVhTiT38FWLyJhKFAtT8nMxMjrGekJBlih4E41GRO5jHXmMI4/6qq4q5d6DRBaTaqQz0xwqatRYT9xPVS0iYyoSCy/t7YC/axAedyGm5Oeicf8xAKwnVKR8wZtsNKI3MAz39AJ09Q3xV7og3HuQyHr0HukUNWosAnOaGoyIKW+ZC5ecPxOP/uEA9h/qG+8PrCfUpHzBm2w0wltRhO7+Ifzfsz38lS4YTwxE1qH3SKeoUWORZGwTfciomJrlcWHtZfM56m8Byhe8QOLRiM/UzMRZFUVMXEREadJ7pJPzY0lvRsUUR/2twRIFb7LRCAYnEVHm9MqhnB9LeovE1OutPWhp6xceU6wn1GaJghfgLzAiItkxT5PevGUu1PhmoK8vyJiipJxmN0BvDHgiIrkxT5PeGFOUiuUKXiIiIiKiaCx4iYiIiMjSWPASERERkaWx4CUiIiIiS2PBS0RERESW5giHw1zaSERERESWxRFeIiIiIrI0FrxEREREZGkseImIiIjI0ljwEhEREZGlseAlIiIiIktjwUtERERElsaCl4iIiIgsjQUvEREREVkaC14iIiIisjQWvERERERkaSx4iYiIiMjSWPASERERkaWx4CUiIiIiS2PBS0RERESWxoKXiIiIiCyNBS8RERERWRoLXiIiIiKyNBa8RERERGRpLHiJiIiIyNJY8BIRERGRpeWa3QCtensHzW5CSm73VAQCQ2Y3wzAyfl6Pp8jsJqC3d1DK7yaWCm0E1GhnJm00O1ZF51QVjls67Pp5zI5TIHWsqnJs2E59xbYzVaxyhFdHubk5ZjfBUHb7vOlQ4btRoY2AGu1UoY1Gs9p3ws8jL1U+C9upr3TbyYKXiIiIiCyNBS8RERERWRoLXiIiIiKyNBa8RERERGRpLHiJiIiIyNJY8FJcTqfD7CYQKYl9h4hIH3rmU2H78I6OjuIb3/gGOjs7cfLkSdx00024+OKLxx9vaGjAj3/8Y+Tm5mL58uW45pprRDXFkpxOB0KhsO6v6+8JorG5C63txzGvshi1vgp4y1y6vw+RTPToT+w7RKQyUXVFJkTkU2EF77PPPovi4mI88MADCAQCuOqqq8YL3tHRUWzevBk7duxAYWEhVq1ahSVLlsDj8YhqjmWIPKn6e4LYXL8XI6NjAID2rgHs3teJjWtqeOImS9KrP7W09bHvEJGSYvPg0gu88LjyTW2PiHwqrOD97Gc/i0svvXT8v3NyPtwg+NChQ/B6vTjjjDMAADU1NXjjjTewbNkyUc2xBNEFaWNz1/hrR4yMjqGxuZsnbbIcPfvTy/s62HeISDkyDnSJqkWEFbzTpk0DAASDQXzlK1/BV7/61fHHgsEgioqKJjw3GAwmfT23e6oSd/8QeRvGHa8cjhsEr7f2oMY3I+vXb/Ufj/v3g/5Aws8lw20nZeN2TwWgxnejQhsBMe3Usz81t/XH/XuyvmM2I3KqrJ89U/w85tASq6p8FtnaKbquyEQ6tUg636ewghcAjh07hptvvhmrV6/G5ZdfPv53l8uFEydOjP/3iRMnJhTA8ahwX2ePp0jY/emdTgeaD8c/qba09aOvL5j13Jt53mK0HxuY9Pe5XnfczyXy82ZKhmQSCAxJ+d3EUqGNgJh26t2ffFUlafUdwPxYFZ1TVYkvrez6ecyOUyB1rKpybGRrpxF1RSa01iKx32eqWBW2S8P777+PtWvX4utf/zpWrFgx4bE5c+agvb0dx48fx8mTJ/HGG2/gvPPOE9UUSwiFwphXWRz3sblety5BWeurQEHexF/RBXk5qPWVZ/3aRDLRuz/VLZzJvkNESjGirsiEqFpE2Ajv1q1bMTAwgJ/85Cf4yU9+AgC4+uqrMTw8jJUrV2LDhg24/vrrEQ6HsXz5cpSX88SQSq2vArv3dU64/KDnSdVb5sLGNTVobO7GQX8Ac71u1PrKOQeRLEnP/lRdVcq+Q0TKEV1XZEJULeIIh8Ny7EGRgkyXARIx4nLF6dWU4k+qWrYnke3yDCDH5bfe3kEpv5tYKrQRENtOvfpTdBu1bu1jdqyKPvaqxJdWdv08ZscpkDpWVTk2srYzNg8uvWCWqbs0REuWT9Od0iB0Di/pz1vmgrfMJXy/PFn24iMSSUR/Yt8hIpXE5kGZCnM98ynvtKYonlSJ9MP+RER2Z/U8yIKXlMDbtVIsxgQRkfXples5pYGkxtu1UizGBBGR9emd61nwkrRkvAMMmYsxQURkfSJyPac0kLSS3V6Q7IkxQURkfSJyPQtekpLT6UBre+LbC3L+pv0wJoiIrE9UrmfBS1KS9Q4wZB7GBBGR9YnK9Sx4SVq81THFYkwQEVmfiFzPRWskLd7qmGIxJoiIrE9ErmfBS1Iz6s5ypA7GBBGR9emd6zmlgZTAwoZiMSaIiKxPr1zPEV7iSBkRKWHtloa0nr9tw1JBLSGiRGStKVjw2hjvWEUyG49P/3HM8zI+iYhkJntNwYLXpnjHKpLZpPg8xvgkIpKVCjWF0Dm8b7/9NtasWTPp788++yyuuuoqLF++HL/5zW9ENoESEHXHKm7+T3rQGp+MNyJSlZXylwp3wRQ2wvuzn/0Mzz77LAoLCyc99p3vfAd/+MMfMHXqVFx22WW47LLLcMYZZ4hqCsXQcheTdOffyH4pg9ShJT7f6xpkvBGRkqx2vhRRU4ggrOD1er146KGHsH79+kmPzZ07F4ODg8jNzUU4HIbDkfpXjts9Fbm5OSmfZzaPp8jsJmjim12C9q6BSX+vripBaan2jufxFKGlrS/upYx71tWiuqpUtzarwu2eCkCNWJC1jcnis3tgRMp4k/W7TMSInGr2d6L3+5v9efSmyufREquqfJbe4Ekp81esdL9PvWqKdKXTTmEF76WXXoqOjo64j51zzjlYvnw5CgsLcckll2D69OkpXy8QGNK7ibrzeIrQ2ztodjM0WTSvDDubjky4BFGQl4NF88o0f4bI521o8se9lNHQdAQeV76u7dbSJrMFAkNKxILMbUwUnx+fXyZVvEVk8l2aHauic6oM8aXn+8vwefSk9fOYHadA6lhV5dh4PEVS5q9YmXyfetQU6YptZ6pYNXzRWmtrK3bv3o2dO3di6tSp+PrXv47//M//xLJly4xuiq3pdRcTVS5lkFoSxWdleRG2/X+tcf8N442IZGfV86UKd8E0vOAtKirClClTUFBQgJycHJSUlGBgYPIwOImnx11MQqEw5lUWx72UMdfrzuh1Ve70pJ9IfEb/ihcRb1oxLokoW2blr0ykm/NkvwumYQXvc889h6GhIaxcuRIrV67E6tWrkZeXB6/Xi6uuusqoZlAc2QZmra8Cu/d1TrqUUesrT+t1rDaRn8TQK960YlwSkV6Mzl+ZaGnrQ0OTP+OcJ2OxCwCOcDgsZ8tiqDI/R4V26iX6854uCjK/lBG7hx9wOglE7+Gn5VejDPPNensHlYgFGdqo9ZjGtjPbeNNKS1wmamMqZseq6GMvIr7MvNOaDP1FTyrN4U3VTlWOTaSd6eQvo0dLteY8GUg/h5esKdtLGYn28Puflu7xxznCZh3Zjpoadeks2d6SjEEiyoSW/GXWlSUr5zwWvKSrTOfsJprID4dD+ru3UHr0vCOP6Dm7Vl1gQkTmS1bsmnHes3rOE3qnNSItIguRYhXk5SA4dFL6u7dQelS4Iw+QOC4BOReYEJE1mJUjrZ7zWPCSFGp9FSjIm7ixeHnJVPi748/LivzaJLVoGUGQSby4lG2BCRFZh9k50so5j1MabE6WSxTx9vD75IJyvLa/C/6uyUWvFX5tWonWODJzW7FMqLC3JBFZh6gcqTVHe8tcuGddLRqajlgu57HgtSkZt1qKN5FfhS1c7CyTOFLtmMq+tyQRWYueOTKTHF1dVQqPK99yOY8Frw2ZNSFeq+gOxhE2eWUaR6oeUyslfiKSl145MttzvdVyHgteG1Jt2xGOsMkpmzjiMSUiSkyPHKnauV40LlqzGbMnxGeDhZE89IojHlMiosSymbOr6rleFI7wSsKokS7VFg2RnGLjqCAvB+7pBQgMjDCOSFlm3smNrMfMK1g810/GgtdkZiweU23REMmp1leBV946ioVzy/DByVPoDQxjwZxS+GaXmN00IiLTyLIonOf6iVjwmsisxWOqLhoiuXjLXLjpH/8OP97xzngM+7sHsf9QnzQLIImIjJTsvO7xFBnaFp7rJ2LBayIzJ5Rz0RDpoflwHxdFEBH9TbLzeo1vhuHt4bn+Q1y0ZhJZJpTbvQNQ5mSJYSIiGaTKiWbiuV5wwfv2229jzZo1k/7+zjvvYPXq1Vi1ahW+8pWvYGRkRGQzpGT1e1aT9TGGiYg+lConkrmEFbw/+9nPcOedd04qZsPhMO666y5s3rwZjz/+OC666CJ0dnaKaobUrHzPajKWWaOpjGEiog9pyYm8+mUOYXN4vV4vHnroIaxfv37C39va2lBcXIzHHnsMf/7zn1FXV4fZs2eLaobUvGUu3Lzio3i9pRv+rkF4K4qwqHryhHLOvaFERK4G1hJ3XBRBRPShZDmxpa0PDU1+03dvSMTqtYawgvfSSy9FR0fHpL8HAgG8+eabuOuuu1BZWYkbb7wRCxYsQG1tbdLXc7unIjc3J+lzZJDOKsyWtj78eMc7AAD39AI0tXSjqaUb96yrRXVVKVra+vDyvg40t/XDV1WCuoUzUV1VKqrpGTF61akK3O6pAMR/Ny1tfXFXA0fiR4t4bUw37jyeIuGLMVSIMxXaGM2InGr2dyL6/c3+fNlSpf1aYlWmzxIvJ7a09WHTw41Z5WtRVKg1EknnuBu+S0NxcTEqKytx9tlnAwAuuugi7N+/P2XBGwgMGdG8rHg8RejtHdT8/IYm/3jwd/UNRf39CD4YPon7fhlVzBwbwM6mI1Jt95Tu5zWCDEkvEBgy5LuJjp+IkdExNDQdgceVn/Lfx2vjpC11JIg7GeMsViZtNDtWRedUGY6b6Pc3+/NlQ+vxMTtOgdSxKkOspZJtvhZFxpyvVexxTxWrhu/SMGvWLJw4cQLt7e0AgDfeeAPnnHOO0c0wXarVnPvb+hNubUIkaoeEZFvqEBFR+mTe0cZOOd+wgve5557D9u3bkZ+fj29/+9u47bbbsHz5clRUVGDx4sVGNUMayVZzzqt0480/vx/3MbM7B8lBxA4JMidlIiJVybqjjd1yvtApDTNnzsSTTz4JALj88svH/15bW4sdO3aIfGupRSaGJ7rt3yeqyxEOh/Fux+RA5HZPFKHHbSOjFynw3utERGLIeJtfu+V83mnNQPFW1Cde4S5f58iE1Vd9mimbHRL8PUHseOUwmg/3T1gtLDopMx6IyI68ZS782xfOw2vvHE26K5PRZCvERZ4jWPAaJNn9tVcumTPpIKu+3ZPI7bLoQ5ncNjJZLIqKO8YDEdmZvyeIHzzxJoCJuzKZvTgsXs5fesEswxfSGXGO0FTwjo2NYffu3bj44ovR39+PhoYGLF++HA6HteZ3iJRsYri3zBW3WFH1HtipCirSXzrxkSoW9Y47xgMR2V103o3elSmSd80Um/ON3vXCqHOEpkVrd955J/7rv/5r/L/37NmDb37zm7o1wuqynRgeXXSoMIncTqs+VRGJm3RiUa8fWYwHIpKNkedSVRaHmTWwZtQ5QtMI7/79+/Hcc88BAEpKSvDAAw9MWIRGyekxMVyVS8JaOrZKo9Wqixc3888ybpEC44GIZGLGudRui8PSYeQ5QtMIbygUQk9Pz/h/9/X1wek0fAtfpWm5v3YikeH+F/f40d41gBf3+LG5fi/8PUFRzc2YrNuv2FGiuKmuKs04FtPFeCAiWZh5Ls2mBrAyI88RmkZ4b7zxRlx11VWoqakBALz99tu44447dGuEHWSzGCjVnEsZRP8Kk23VpwpEjHQmipvmw/34xrU12HOgBy1t/cIXRDIeiEgGmZ5L9cjP3jIX7llXi4amI0ouRBfJqHOEpoL38ssvx6JFi/DWW28hNzcXd955J8rKynRtiB1kshhI9kvCiS4PqbzDhJFEXV5LFTerLj4bC6tnoK8vKDx+GA9EZLZMzqV65+fqqlJ4XPmmn7dlY9Q5ImnBu337dqxcuRI/+tGPJvz9wIEDAIBbbrlF18bYRTqBLvPcn5a2vqQrK1XcYcJIIlemao0bo44N44GIzJTuuVR0fqaJjDhHJJ2IGw7zoMgg3tyfoql5qPvYR0xq0Wkv7+tIubKSHTsx0StTZZwzpkI8yLJimoj0lU5OVHV3GdXzl8hzRNIR3i984QsAgDPPPBNXXXXVhMd+/etfC2sUTRQ93P+XI8fxiQUV6OofwsPPNJu2Y4PT6UBzW3/cx2SYaiE7I6aqcCpBelTZCYWIMqM1J8o+lTAe5q/Ukha8v/jFLxAMBvHEE0+gs7Nz/O9jY2N47rnn8MUvflF4A+m0yHC/vzeIzb80fxP/UCgMX1UJ2o/JN9VCBUZNVeFUAm14cwwie9CSE2WeShgP85c2Sac0nHXWWXH/np+fjy1btohoD6XQuF+eyyx1C2dKd8lcJUZOOZAtQctG1cuXRJSZVDlRxilhiTB/aZN0hHfx4sVYvHgxli1bhpGREVRXV2NwcBD79+/H+eefb1Qb6W9ku8xSXVXKS+ZZ4JQDOcjWr4jIfKrkZ+Yv7TRtS/a73/0OLS0t2LZtG4aHh///9u48PKry7B/4dyYbIQtMcMJiHAwgW6jVBIFYBQExVkSURZK0SSu8bnUpVmVpIaCigKK14oJioa/BIrwRWtCrbgGMQkzZlbApS2KALCYD2dc5vz/4ZcwymfXs8/1cl9clmWTmPufczz33nHnOc/Dmm29i3759eOyxx6SOj9pQ49cs/MrcN9x/ylPjuCIi5WmhPrN+uc+t26Xt2rULa9euBQBER0dj/fr1+Oyzz1z+3eHDh5GWltbl44sXL8aqVavcDJUA9X7NwkHlG+4/Zal1XBGR8tRen1m/3OPWGd7m5mbU19cjLCwMANDU1OTyb9auXYtt27YhNDTU4eMffPABTp48iRtuuMGDcEkrX7MQaQnHFRFpFeuXe9xqeJOTkzFt2jRMmDABAJCTk4PU1FSnf2OxWLB69WrMmzev02MHDx7E4cOHMWvWLJw+fdqtQE2m7ggMDHD9iwozmyNkeY2EuL6Sv4475NherTGZugPQxr7RQoyANsaVVvZlKzlqqtL7ROrXV3r7fKWV+N3JVa1si1Rxit0X6HF/utXw/v73v0dCQgL27t2LwMBAvPTSSxg+fLjTv0lKSkJRUVGnn5eWluL111/H66+/jv/85z9uB2q11rr9u0oxmyNQVlaldBiyUeP2qmGQWq21qtw3HWkhRkAbcXoTo9K5KnVNVcNxk/r1ld4+X7h7fJTOU8B1rqoh19zBOMXVMU5XuepWw9vY2Iji4mJERUUBuHxr4c8//xx//OMfPQ7wk08+gdVqxQMPPICysjLU19djwIABmDZtmsfPRURERETkilsN75/+9CdcunQJhYWFGDlyJPLy8hAfH+/VC6anpyM9PR0AsGXLFpw+fZrNLhERERFJxq1VGk6cOIH33nsPkyZNwv/8z/9g48aN7e685o7t27dj06ZNXgXpb7R+L2zSJuYdEZHnWDu1wa0zvL169YLBYEBsbCxOnDiBu+++G42NjS7/LiYmBps3bwYATJkypdPjPLPbHu+FTUpg3hEReY61U1vcanivueYaPPfcc0hJScFTTz2F0tJSGAz8RCOmru6F/ef0BPTvHaH6dQBJOlIues57sBMRec5R7dzz3QUsTBuJPibHy7GSstxqeJcuXYqDBw9i0KBBePzxx7Fnzx706tVL6tj8htFo6HQvbKPRgJHDeuOzvUUoKq3mp0c/JOXZg9av4Jzdg525RkTkWNvaaTQakDiiL+obm7HmX0cw7GqTKPVazXd40yK3Gt6AgACMHDkSADBhwgRMmDDB64vW6GetDc1Pl+pRZq1r91jiiL7Yd6yEZ978lFRnXts20Ym/6INjBVaHv8d7sBMROWY0GnC84KL93x3frwtLqnyq15wqIQ23Gl5HBMF/3wjFaATaNjQhQQEYMbAXCksurycXEhSA+sZm1Zx5Y+Mjv67OvH5z1Pvj37GJLi6vuZx3xZ3XW9TzPdiZz0TkC5tNwND+PVFQXOn0/dqbei3nNDN/q4VeN7z+OIdXzE9dbRuahqYWdAsOREhQABqaWmCKDOl0xreVnGfe+ClTGR3PHrR19EwF/tM9CHFXR3l8LDo20R3zrpVe78HOfJbH7BU7lA5BNlJv67oFEzz6fU/i2f7yVE/DoTYS4/pg14FzTt+vvanXckwz89da6LThTUtLc9jYCoKAhoYGyYJSIzE/dTlqaHKPXEDiiL5obrGhorIe0abu9jO+bcl15o0XMymn7dmDjsymUGz76gy2fXXGo2PRVROde+QCbhvdHxAEHC/Q7z3Ymc9EJCZLdDgWpiVg7/FSlF2qd/h+3bFeu7oTmLOTHWKd7PLnWui04X3sscfkikP1xPzU5aihsdkE7P72PCbfeDUenhqHs8VV7eYEAfKeeePFTMpqPXvQ8fh3Cw60/8yTY9FVE22zCRBsAmaNH6jrr7eYz0QkNkt0OCzR4Sgsq8bhk2Uu63VCXF+nz+fsZIdYJ7v8uRY6bXhHjRolVxyqJsWnrq4amhuGRsNmE2CJDseS2aOw+7sLyD9TIeuZNym2V8/NlBRazx58c7QER89UwGwKRbfgQOQeuYCQoACYIkNw+vwlj/brjSP64NhZK0oqau151/ZDlF6PjxxnTYhIWe6OYynGu8Xcdb1udaLQ8QXCHXXVG4hxssvfa6HXc3j9iRSfulobmtz8EpwobP9Vcsf5Nb+/YygsZvk+eYm5vf46V0gMrWcP/tM9CNu+OoOmFpt96Zsyax2iTd1xtrjKrf3ZehxgAEYO642IsGAEGIEbhkTr/njIcdaEiJRRWFqNrJzTyD9d4fQ9Rur3oo71uuNZ1CEWk9vP01Vv4Ct/r4VseN0kxaeu1gHS9lOVWubXiLG9atkWrYu7OgrbvjrjcOmbfcdKXO7PjsehsLgKIUEBePbBRJjDg2XZBqVJedaEiJTh7nuMnO9FrfW6LU9rjaPeQCz+XAvZ8LpJ6k9drdQyv0aM7VXLtmidJTocf05PwOf7irzan10dhy8PFGHG2AGSxKw2Uo5fIlKGu+8xcr4XiVlrpDjj6s+1kA2vB6T81AWob36NL9urtm3Ruv69I/BjSbXDx5ztT1dLnBlvGeg3x0Hq8UtE8nH3PUaJ9yK11xq1xycVo9IBaJFUCdI6v8YRJefXePO6at0WrfJ2fzr7u+GxUX55HPxxm4n0xt2aqOR7kdprjdrjExsbXpVJjOuDkKCAdj/T6vwaPW2LGni7P7v6u3HxMaLHSEQkF3drIt+LCJB4SsPhw4exatUqZGZmtvv5Rx99hP/93/9FQEAABg8ejKVLl8JoZO8N6Gt+jZ62RQ283Z9d/d3w2F4oK+u8WDoRkRa01rb/Hi/FUSfLd/K9iAAJG961a9di27ZtCA0Nbffz+vp6vPrqq9i+fTtCQ0Pxpz/9CTt37sTEiROlCkVz9DS/Rk/bogbe7k8eByLSI0t0OBLi+qK8vNppbWMNJMlOq1osFqxevbrTz4ODg/HBBx/YG+Hm5maEhIRIFYam6WlQ6mlb1MDb/cnjQER65G5tYw30X5Kd4U1KSkJRUVGnnxuNRlxxxRUAgMzMTNTW1uJXv/qVy+czmbojMDDA5e8pzdW9svXG37bXHSZTdwDa2DdaiBHQRpxaiLEtrdRUX2jtmHQkdfxa2T/u5KpWtoVxisuTOBVZlsxms+Gll17CmTNnsHr1ahgMBpd/Y7XWev16nn6F4e0dWczmCL+aE6nG7VXDILVaayXbN2LeLUiNx88RLcTpTYxK56ovNVUr1J43rkgdvzvPr3SeAq5zVYka0dpXeFKTtVDLAO3G6SpXFWl4MzIyEBwcjDfffFPSi9W8aQ54dzBSK7Fy0z4uCi9iqIW3eyYiclfbvmJgTA80N7fg628vwGYT2C+onGwN7/bt21FbW4sRI0YgKysLI0eOxO9+9zsAQHp6OiZNmiTq63nbHPDuYKRWYuRmp3FxgQWaiMgdjvqKkKAAJI7oi93fngfAfkHNJG14Y2JisHnzZgDAlClT7D8/fvy4lC8LwLvmgHcHI7USKzf5gY6IyDtd1c/6xmaEBAXYH2O/oE66XPzWnebAEd4djNRKjNz0dlwQEfk7Z/WzzFoHU+TPq02xX1AnXTa8vjQHvCMLqZWvuckPdERE3nFWP82mUFgrGwCwX1AzRS5ak0NiXB/sOnCu3dcP7iQi78hCaiVGbno7LoiI/F1X9XOIxYTyS/XsF1ROtw2vL82B3u/Iotft8ge+5qZWP9AxZ8kfzV6xQ+kQqA1n9fO2kTGi1yjWPXHptuEFfG8O9JZorpZp4+DSDl+OU+u4kHutRW/yq7C0Glk5p5F/usLndYeJiHxliQ7H1X0ur/fatp6J+d4p5nrr9DNdN7yt2MQ5X6YNAAcXScbb4s01sYlITeRoRFn3pKO7hpdnKR3rajmVk0WX8OHOHzi4ZOYveepL8eYSakTkLqlrqlyNKOuedHTT8PIrgK51tZxKSFAATp27xMElI3/LU2+LN9fEJiJ3yDXtSY5GlHVPeymbiAAAIABJREFUWrpoePkVgHOty6kUFFe2+7kpMgQXfqpx+DccXOLztzz1pXh3lbMAl1AjosvkqqlyNaKse9LSxTq8zj550WWO1nCtqWvCoKu4Lqtc/C1PfV33l2tiE5EzctVUOdcwZ92TjubP8PIrAPd0tZwKAOw+fJ7rskrMX/PUl3V/W3P2v8dLcfRMhWaWUCMi6cldU+Vaw1yrS0dqgeYbXn4F4L6ulmnj4JKev+apr8XbEh2OhLi+KC+v1u0+IiLPyV1T5WxE9X4vAKVovuEFePcoT3UcQBxc8vDXPBUjv5iXRNSR3DVV7vdK1j1x6aLh5VcA4uDgkpa/5ynzi4jEpNS0J9YybdJFwwt498mLZzRJbr6eIWDOEhH9zJtpT6yj/knShvfw4cNYtWoVMjMz2/18x44deOONNxAYGIjp06fj3nvvFe013Ulif1sLldTHm1vsMmeJiBzjez+5IlnDu3btWmzbtg2hoaHtft7U1ITly5cjKysLoaGhSElJwfjx42E2m6UKpR1/WwuVtI85S0TkG9ZRkqzhtVgsWL16NebNm9fu56dOnYLFYkGPHj0AAAkJCdi3bx9+/etfO30+k6k7AgMDnP6OO7JyTjtct++/x0uRENfX5+c3myN8fg4t8bftdYfJ1B2AePtGypzVyvHTQpxaiLEtsWqqmmntmMhNK/vHnVx1tS1Sv/e7Syv7XI9xStbwJiUloaioqNPPq6urERHxc4BhYWGorq52+XxWa63PMRmNBuSfrnD42NEzFT4vfWQ2R6CsrMrrv9caNW6vGgap1Vor2r6RMmfVePwc0UKc3sSodK6KUVPVTu15ozR39o/SeQq4zlVX40/q9353aaGWAdqN01Wuyn6ntfDwcNTU/Hw725qamnYNsJTkvFsKkRiYs0REvmEdJUCBhnfgwIEoKCjAxYsX0djYiH379uH666+X7fV52z7SGuYsEZFvWEdJtmXJtm/fjtraWsyaNQsLFizAnDlzIAgCpk+fjt695Us4f18LlbSHOUtE5BvWUZK04Y2JicHmzZsBAFOmTLH/fMKECZgwYYKUL+0U7yxGWsOcJSLyDeuof9PNjSe8wYQnrWHOktxmr9ihdAhe03LsJB3WUf8k+xxeIiIiIiI5seElIiIiIl1jw0tEREREusaGl4iIiIh0jQ0vEREREema7hteo9GgdAhETjFHiYjUj7Va23S7LFlhaTVy84txvOAihvbvicS4PlxgmlSFOUpEpH6s1fqgy4a3sLQayzP3o6GpBQBQUFyJXQfOYWFaApOUVIE5SkSkfqzV+qHLKQ25+cX25GzV0NSC3PwShSIiao85SkSkfqzV+qG7htdoNOB4wUWHj50otHIODimOOUpEpH6s1fqiu4bXZhMwtH9Ph48NsZh4S0FSHHOUiEj9WKv1RXcNLwAkxvVBSFBAu5+FBAUgMa63QhERtcccJSJSP9Zq/dDlRWuW6HAsTEtAbn4JThRaMcRiQmJcb04wJ9VgjhIRqR9rtX5I1vDabDYsXboUJ06cQHBwMJYtW4b+/fvbH//73/+Ojz/+GAaDAQ899BAmTZok6utbosNhiQ6H0Wjg1w6kSsxRIiL1Y63WB8ka3i+++AKNjY3YtGkTDh06hBUrVuCtt94CAFRWViIzMxOfffYZ6urqcPfdd4ve8LZicpLaMUeJiNSPtVrbJJvDu3//ftx8880AgOuuuw5HjhyxPxYaGop+/fqhrq4OdXV1MBh4pSMRERERSUOyM7zV1dUID/95jktAQACam5sRGHj5Jfv27YvJkyejpaUFDz74oMvnM5m6IzAwwOXvKc1sjlA6BFn52/a6w2TqDkAb+0YLMQLaiFMLMballZpK0tFKzrqTq1rZFsYpLk/ilKzhDQ8PR01Njf3fNpvN3uzm5OSgtLQU2dnZAIA5c+YgPj4e1157bZfPZ7XWShWqaMzmCJSVVSkdhmzUuL1qGKRWa60q901HWogR0Eac3sSodK5qoaaStNzJWaXzFHCdq1qoEQDjFFvHOF3lqmRTGuLj45GTkwMAOHToEAYPHmx/rEePHujWrRuCg4MREhKCiIgIVFZWShUKEREREfkxgyAIkszCbl2l4eTJkxAEAS+88AJycnJgsVgwceJEvPbaa/jqq69gNBoRHx+PefPmcS4vEREREYlOsoaXiIiIiEgNdHmnNSIiIiKiVmx4iYiIiEjX2PASERERka6x4SUiIiIiXWPDS0RERES6xoaXiIiIiHSNDS8RERER6RobXiIiIiLSNTa8RERERKRrbHiJiIiISNfY8BIRERGRrrHhJSIiIiJdY8NLRERERLrGhpeIiIiIdI0NLxERERHpGhteIiIiItI1NrxEREREpGtseImIiIhI19jwEhEREZGuseElIiIiIl0LVDoAd5WVVSkdgksmU3dYrbVKhyEbNW6v2RyhdAgoK6tS5b7pSAsxAtqI05sYlc5VqWuqFo6bJ/x1e5TOU8B1rmrl2DBOcXWM01Wu8gyviAIDA5QOQVb+tr2e0MK+0UKMgDbi1EKMctPbPuH2qJdWtoVxisvTOGU5w/v2229jx44daGpqQkpKCkaNGoUFCxbAYDDgmmuuwZIlS2A0svcmIiIiIvFJ3mXm5eXh4MGD2LhxIzIzM1FcXIzly5dj7ty5+Oc//wlBEJCdnS11GERERETkpwyCIAhSvsDLL78Mg8GA77//HtXV1Zg3bx7+8Ic/ICcnBwaDAV988QV2796NJUuWOH2e5uYWzZxmJ//GXCUtYJ6SVjBXSQyST2mwWq04f/481qxZg6KiIjz88MMQBAEGgwEAEBYWhqoq1xdPaGECtdkcoYmL68Sixu1VwwUWVmutKvdNR1qIEdBGnN7EqHSuSl1TtXDcPOGv26N0ngKuc1Urx4ZxiqtjnK5yVfKGt2fPnhgwYACCg4MxYMAAhISEoLi42P54TU0NIiMjpQ6DNM5oNMBmk/TLCNIY5gRRZxwXRI5J3vAmJCTgvffew3333YfS0lLU1dUhMTEReXl5GD16NHJycjBmzBipwyAPqaVoFpZWIze/GMcLLmJo/55IjOsDS3S40mGRgtSeE2oZO+Rf1D4uiJQmecM7fvx47N27FzNmzIAgCMjIyEBMTAwWL16MV155BQMGDEBSUpLUYZCb1FQ0C0ursTxzPxqaWgAABcWV2HXgHBamJbCQ+yk154Saxg75F0/GhT1PCy9iqIV5Sv5DlmXJ5s2b1+lnGzZskOOlyQNqayZy84vtsbRqaGpBbn4JC7SfUmtOHD1TrqqxQ/7F3XHRqcZfYJ6S/+Dit2TnrGjKzWg04HjBRYePnSi0wmg0yBwRKU3NOfHlgSLVjB3yL56MCzXVeCK5seElAOprJmw2AUP793T42BCLiXMk/ZBac8JoNCD/TIXDx5RuxEn/3B0XaqvxRHJjw0sApGsmfCmiiXF9EBLUfu3FkKAAJMb19vo5SVm+vqmqMSdsNgFxsVEOH+OHM31SW3PozrhQ6wdGIrnIMoeXtCExrg92HTjX7isvb5sJMS7gsUSHY2FaAnLzS3Ci0IohFhMS43pzrpkGiXVBl1pzYlx8DLL3/ijK2CH1UuuFie6OCzFrPJHWSH6nNbFocRFkLbpc0N1rJrra3o4XRgCXi6ovF0a4u9STGhZJLyur0kQuyBWjr/nQVZxqWv7LbI7A/vwLHjXiSueq1MdeC2PAE2XVjch4O1fUuiYFV+PCkxoPKJ+ngOtc1UquMU5xqe7GE6QtluhwWKLDfWompLiSXi2NDXlOqpUV1JYTYowdUi9nFyaqqeF1lXuteaqVpoZILJzDSw75MmeXF0ZQK3/MBza7+sMLE4m0jw0viYoXRlBbzAfSA16YSKR9bHhJdGq8kp6Uw3wgPRgXH8M8JtIwzuEl0an1SnpSBvOB9GB4bC/mMZGGseElSfACHmqL+UB6wDwm0i5OaSBJ8U2B2mI+kB4wj4m0hw0vEREREekaG14iIiIi0jXZ5vDefffdiIi4fBeMmJgYzJo1C88//zwCAgJw00034dFHH5UrFCIiIiLyI7I0vA0NDQCAzMxM+8+mTp2K1atX46qrrsIDDzyA/Px8xMXFyREOEREREfkRWaY0HD9+HHV1dZg9ezbS09Oxd+9eNDY2wmKxwGAw4KabbkJubq4coRARERGRnzEIgiD55aYnTpzA4cOHMXPmTJw9exb3338/IiMjsWXLFgBAVlYWfvzxRzzxxBNdPkdzcwsCAwO6fJxILZirpAXMU9IKNeTqlCf/7dHvb395qkSRkLdkmdIQGxuL/v37w2AwIDY2FhEREbh48aL98ZqaGkRGRjp9Dqu1VuowfWY2R6CsrErpMNxWWFqN3PxiHC+4iKH9eyIxro9Hi6ircXvN5gilQ4DVWqvKfdOR2mO052fhRQy1eJ6fcvJmXyqdq1LXVLXnl6eU3B5fa7Uj7m6P0nkKuM5VNeaao3jUGKcjWo3TVa7K0vBmZWXh5MmTWLp0KUpKSlBXV4fu3bujsLAQV111Fb7++mtetCazwtJqLM/cj4amFgBAQXEldh04h4VpCaptKsh/dMrPC8xP8k+s1UTikKXhnTFjBhYuXIiUlBQYDAa88MILMBqNeOqpp9DS0oKbbroJv/zlL+UIhf6/3PxiewFt1dDUgtz8EhZRUhzzk+gyjgUiccjS8AYHB+Pll1/u9PPNmzfL8fLUgdFowPGCiw4fO1Fo5W0zSVHMT6LLOBaIxMMbT/ghm03A0P49HT42xGJiASVFMT+JLuNYIBIPG14/lRjXByFB7a96DQkKQGJcb4UiIvoZ85PoMo4FInHIdqc1UhdLdDgWpiUgN78EJwqtGGIxITGuN+eEkSowP4ku41ggEgcbXj9miQ6HJTqc88BIlVrzUytL5BBJhbWayHec0kAsoEREGsBaTeQ9NrxEREREpGtseImIiIhI19jwEhEREZGuseElIiIiIl1jw0tEREREusaGl4iIiIh0jQ0vqY7RaFA6BKJOmJckNeYYkXR44wlSjcLSauTmF+N4wUUM7d8TiXF9eDchUhzzkqTGHCOSHhteUoXC0mosz9yPhqYWAEBBcSV2HTiHhWkJLPykGOYlSY05RiQPTmkgVcjNL7YX/FYNTS3IzS9RKCIi5iVJjzlGJA/ZGt7y8nKMGzcOp06dQkFBAVJSUpCamoolS5bAZrPJFQapkNFowPGCiw4fO1Fo5bw2UgTzkqTGHCOSjyxTGpqampCRkYFu3boBAJYvX465c+di9OjRyMjIQHZ2NiZNmiRHKJpkNBo63UPd0c+0ymYTMLR/TxQUV3Z6bIjFpJvt1Bo95ZgrjraVeUme8Ga8KJVjbKSlN3vFDo9+f92CCRJFQq1kaXhXrlyJ5ORkvPPOOwCA/Px8jBo1CgAwduxY7N6922XDazJ1R2BggOSx+spsjhDtuY6eKceXB4qQf6YCcbFRGBcfAwCdfjY8tpdor+kpsbZ3wg0W7Dpwrt1XeyFBAZhww1Wi7lM5mEzdAYibC1JxFKOjvFMyxwDp9qWrbfUkL7VwvNuSo6ZqbZ+4IsV4kbP2qXFsu8OdXNV6rqktfrXF0xVP4pS84d2yZQuioqJw88032xteQRBgMFz+hBkWFoaqqiqXz2O11koapxjM5giUlbneFnd0upDhQiWqaxuRl1/S7mfZe39U7OIGMbfXHB6MhWkJyM0vwYlCK4ZYTEiM6w1zeLBHr6GGQWq11oq6b6TiKEZHeadkjgHi5llb7myru3npTYxK56rUNVULY8ATUo0XsWqfK97GqnSeAq5zVQ+5pqb4tbI/O8bpKlclb3g//PBDGAwG5Obm4tixY5g/fz4qKirsj9fU1CAyMlLqMDSn44UMIUEBqKlv7vLiBj1czWuJDoclOtyvvkpXG2cX0Oghx9pyd1uZl9QVscaLHDnmT2ObyBHJL1p7//33sWHDBmRmZmLYsGFYuXIlxo4di7y8PABATk4ORo4cKXUYmuLoQgZTZAjKrHUOf1/qixvknu/FpkIZ/nIBjdFo8GpbmZfaIUeuSjFepJyz6w9jm8gZRdbhnT9/PhYvXoxXXnkFAwYMQFJSkhJhqJajCxmslQ0YMbAXCks6f80g1cUNXAzdv+j9Iq22+TxigAkDY3rodlv9lZw1S0vjRUuxEklF1oY3MzPT/v8bNmyQ86U1JzGuT7sLGRqaWhDWLRAhQQGdpjokxvUW/fW5GLp/6ph3gHQ5JidH+Tz2un6yjSeSnhI1S0vjRUuxEkmBd1pTKUt0uMMLGSbEx3T6mRTFnPO9/FNXeaf1Y+4on7/+9gKSbx2M8kv1utpWf6VEzdLSeOkY6/DYKIwaGq3KWImkwIZXxbq6kEHqixvcme/Fr8D0S28XaXWVzzabgD3fXcDS+26w/5u0ScmapaXx0jbWXr3CNXElPpFYeGthDXBURMUqrF1dnDO0f0+Hv8/5Xv7Dk+Os5ote3Mln5rS2qaFmaWm8MN/JH/EMr59ydXEH53uRO7RyYSPzWf+0cIy1Ml6I9IgNrx9y5+IOLc1NI2Vo6cJG5rP+qf0Ya2m8EOkRG14/xAX3SQxau7CR+ax/aj7GWhsvRHrDObx+hgvukxi0vJA981n/1HaMtTxeiPSCDa+fUcPFHaR9zCMi93G8ECmPDa8fSozrg5CggHY/U9vFHaR+zCMi93G8ECnLozm8Fy5cwOLFi3Hu3Dm89957mD9/Pp577jlceeWVUsVHTng7T03tF3eQNug1j9Q4/5PkI9Xx1+t4IdIKjxrexYsXIy0tDX/9619xxRVX4NZbb8WCBQva3TKYpCfG0jZqvriDtENPecQlo/ybHMdfT+OFSGs8mtJQUVGBcePGAQAMBgNSU1NRWVkpSWDkWOvSNp/mFaKguBKf5hVieeZ+FJZWe/V8LLokBq3nkdjjirRF7uOv9fFCpEUeNbwhISEoKSmBwXD5itKDBw8iKChIksDIMWdL2xCRdziu/BuPP5H+eTSlYcGCBbj//vvx448/Ytq0afjpp5/w6quvShUbdaDk/eKJ9Irjyr/x+OvD7BU7PPr9dQsmSBSJ+ni6b7a/PFWiSJTlUcM7cOBAZGVl4fTp02hpacGgQYNgtVqlio06aF3apqC48zQSLm1D5B2OK//G40/kH9ya0lBaWoqSkhKkpKTg4sWLMJlMuOKKK1BeXo777rvP5d+3tLRg4cKFSE5Oxm9+8xsUFhaioKAAKSkpSE1NxZIlS2Cz2XzeGH/ApW2IxMdx5d94/In0z60zvKtWrUJeXh7Ky8sxc+ZM+88DAgIwfvx4l3+/c+dOAMAHH3yAvLw8LF++HIIgYO7cuRg9ejQyMjKQnZ2NSZMmebkZ/oNL2xCJj+PKv/H4E+mfWw3viy++CABYs2YNHnroIY9f5NZbb8Utt9wCADh//jyuuOIK7Nq1C6NGjQIAjB07Frt373ba8JpM3REYGNDl42phNkfI8hoJcX0lfx13yLG9WmMydQegjX2jhRgBbYwrrezLVnLUVC3tE3eOv5a2xx1a2R4pclVt2854vONJnB7N4Z08eTI+/vhjTJ48Gc888wyOHj2KJUuWYPjw4a5fKDAQ8+fPx+eff47XXnsNO3futK/2EBYWhqqqKqd/b7XWehKqIszmCJSVOd8OPVHj9qphkFqttarcNx1pIUZAG3F6E6PSuSp1TdXCcfOEv26P0nkKuM5Vb2JU27FkPJ7rmMOu8sCjZckWLlyIhoYGZGdn4+TJk3jiiSfw7LPPuv33K1euxKefforFixejoaHB/vOamhpERkZ6EgoRERERkVs8anjr6+sxbdo07Ny5E1OmTMGYMWPaNa5d+de//oW3334bABAaGgqDwYARI0YgLy8PAJCTk4ORI0d6ET4RERERkXMeNbxGoxFffPEFdu7cifHjx2PXrl0wGl0/xW233YajR4/iN7/5DebMmYM///nPyMjIwOrVqzFr1iw0NTUhKSnJ640g/2A0GpQOgUTGY0rEcUAkB4/m8D7zzDNYv349/vKXv6B37954/vnn8fzzz7v8u+7du+Nvf/tbp59v2LDBk5fXLbkXNtfaQupy3OPe3yj9BuvpMdVazpL7pDq2WsgZ1jYi+XjU8A4bNgyLFy9GXV0dSkpKsHDhQhQVFUkVm+7JXey0WFxb73HfetvPguJK7DpwDgvTElQfuxq1zYG4AVEYNTRa9v3oyTEtLK1GVs5p5J+u0EzOknukqkdaqXOsbUTy8qjhff3117Fu3To0NzcjMjIS5eXlGDZsGLZs2SJVfLold7HTanF1do97NcetRo5yIHvvj7LngLvHVKs5S65JdWy1lDOsbUTy8mgO75YtW7Br1y5MnjwZGzduxOuvvw6z2SxVbLrmrNjp4fXE4M497sl9asgBT46pGuIlaUh1bLWSM6xtRPLzqOE1m82IjIzEoEGDcPz4cUycOBHnz5+XKjbdkrvYabW4tt7j3hHe494zaskBd4+pWuIl8Ul1bLWUM6xtRPLzqOENDw/H9u3bMXz4cGzfvh3fffcd6uvrpYpNt+QudlourrzHvTjUlAPuHFM1xUvikurYai1nWNuI5OVWw7t161YAwPPPP48LFy4gMTER0dHRWLBgAR5//HFJA9QruYudVotr6z3uk0b3x9V9I5E0ur8q5+NpgVpywN1jqpZ4SXxSHVst5QxrG5G83Lpo7b333sM999yDPn364IEHHgAALFq0SNLA9K612OXml+BEoRVDLCYkxvWWrNjJ/XpiskSHwxIdrollhtSsYw4Mj1VmlYbWWFwd09Z4/3u8FEfPVGgqZ8k5qeqR1uocaxuRfDxapYHEJXex03px1WLMatM2B3r1Clf8fumujqklOhwJcX1RXl7N468zUtUjLdY5rcRJpGVuNbzff/89Jk6c2OnngiDAYDAgOztb9MD8idzFTsrX09KbjD/T2jHqKl7mm/ZJdfz0khfMcSJxuNXw9u/fH++8847UsZCGaWWxd9IH5hvpHXOcSFxuNbxBQUG48sorpY7Fr2n5U7yWFnvXKy3nj6eYb6RWYo1D5rj/mb1ih0e/v27BBIkikZ5S2+pWwxsfHy/Ki9FlbYuiHj7F845ByvE1f7TYKDPfSA2krOPMcSLxudXwZmRkSB2HX+hYFOMG9MIbWd9q+lO8O4u9a62h0gpfzgIVllYjK+c08k9XaOqDFvONlCZ1HWeOE0mDqzTIpGNzUlxeg/JL9Zr/FN+62HtBcWWnx9S42LueeHsWSMtflzLfSEly1HHmOJE0PLrTmjeamprw9NNPIzU1FTNmzEB2djYKCgqQkpKC1NRULFmyBDabTeowFNexOTFFhqDUWufwd9V2G0xXtLTYu174chtVZ42yFjDfSCly1XHmOJH4JD/Du23bNvTs2RMvvfQSrFYr7rnnHgwdOhRz587F6NGjkZGRgezsbEyaNEnqUBTjqDmxVjZgxMBeKCzpvA6q1j7Fa22xdz3w9iyQHr4uZb6RUuSq48xxIvFJ3vDefvvtSEpKsv87ICAA+fn5GDVqFABg7Nix2L17t64bXkfNSUNTC7oFByIkKKDdGQOtforX4mLvWpcY1we7DpzzKH/08nUp842UIGcdZ44TiUvyhjcsLAwAUF1djccffxxz587FypUrYTAY7I9XVbm+25PJ1B2BgQEuf09pZnOEw59PuMHSqTk5cKIUf0y+HsfPluN8WQ36mcPwq19eieGxveQK12ddba8/M5m6A5B+35jNEXj2wUR8eaAIR89UYHhsFMbFx7jMH0e5GBIUgAk3XKXa46nWuNrSQoxtyVFTtbZPXHFWx4+c+smjcagGWjk+UuSqVra9K3K8v6iFs1g8iVOWi9YuXLiARx55BKmpqZgyZQpeeukl+2M1NTWIjIx0+RxWa62UIbrF1dIzZnNEl7dqNYcHO/yKCgAaGltQdrEevXp0Q11to+K3e3WXs+1VihoGqdVaK/q+6Sr3zOHBmDF2AIy3DLSfBXL1uq25+N/jpTh6psKei+bwYK9ilnppPTXmWUfexKh0rkpdU5U4blLmotkc0WUdt0SHY+iVkWg7DvfnX1D1kpPuHh+l8xRwnavexKj2muKK1PGraf902Vd1yGFXeSB5w/vTTz9h9uzZyMjIQGJiIgBg+PDhyMvLw+jRo5GTk4MxY8ZIHYbPxLiyveNXVFq+Wp7k406eePqVpyU6HAlxfVFeXu3T16XMYVILuXLR2VSDtuvyclwQqYvkqzSsWbMGlZWVePPNN5GWloa0tDTMnTsXq1evxqxZs9DU1NRujq9aiXlle2tRdPc5tbRiA4kv/2xFp5+JtaqCr3MDtb7iA+lHx1wMCQqAKTIEe4+XSvJ6zsYOxwWR+kh+hnfRokVYtGhRp59v2LBB6pcWjRRXtrvznGeLq1T9lRhJ6/LXsyU4drYCIwb2QrfgQOQeuWDPNaVXVdDDig+kD21z0Wg0IHFEX9Q3NqPMWoeyS/UoLKuGxSxP7eS4IFIn3njCidbCJMWV7a6e82xxFb8S82MdvxItLKm6fOX3iL7Yd6wEpsgQxMVGKfrGqZcVH0i93G0O2+Zi6xhpO3YOnyyTrXZyXBCpk+RTGrSosLQam3b+gCXr9mLTzh9QWFotyULgXT3njSN68ysxP9fV8Rcg4PrBZgQHBqCusQWFpdUKRXgZF8gnKTiqwa4kxvVBRPcg1Dc2K147OS6I1IdneDtwdrGB2AuBO1pc/MYRvRHbNxLrPj7u8G/4lZj+OftKtKikGo3NLSgur0VhSRV2Hz4v2pkrb/KKC+ST2Ly94OtyLo7Emn8dcfi4nLWT44JIfdjwduDszOqs8QNFXwi87RW/Z4ursOdIMTI/PYmY6HB+JeannH0lajaF4sipcvu/W3PTlzdSX5dy4gL5JCZnNdhVXvYxhWLY1SaHdz6LiQ5HQUkVrpJpLi/HBZG6+MWUBndXOXDnYgPA9yvbHWmpGKLxAAAa0UlEQVSds/tpXiF+KLocA78S819dfSXaLTiwUzPQNjc91Xo27dO8QhQUV+LTvEIsz9zv1VQJvqmTr1prcEhQAPr06t5uDLib512NHUEAXnjPu9z2BccFkTro+gyvp2eulLzYoONZjdwjF5A4oi8MBqCotJpfifkZR1+J9uoRgg+++L7T73qam63j4tT5SvSJ6u712TQisdlsAn51bR+cKLyIMmtdu9VJ3M3z1rHzxf4iFBZXwWwKbbfCCXObyD/ptuH1dh5YYlwfh7ddlfLMqqMzyzabgN3fnsc1V/XEs3NGobnZJtnrt42DZyPUw9GNSoICjGiweZ+bbcdFn17dUdjY4vD3pJjvyPyijjrmRGFpNT7cearT6iQ3XdvXozy/uk8Eistr0djcgiOnytvVc14HQeSfdNvwejsPTImLDZydWR7Qr4fkza7Ut4Yl37S+MYuRm23HhbWyASMG9nI431HMbzSYX9RRVznRVd0ODgzwKGdsNgEDr4zEp3mFnR7jdRBE/kmXDa+vC38rcbGBEmeWAd4CUw08yTNfcrPjuGhoakG34ECEBAVIlnfML+0Tuw52mRPpCV3W7R/OXfI4DqVqKmnD7BU7lA6BZKbLhtdmEzAwpofPc3HlPAug1DI2vlwRTb7x5cynWDc7kXquOPNLu6Q6M99lThwpwYgBJtGuoeDSYETUli4b3sLSajQ3t0h65koKcp9ZFvMWmJwT55m2Z7ku52kz9nx3AU8mXy/pG3LHs142m4B9x0rw5/QE9O8dIfqcXd5iVZukOjPvKiceuCsOX+wtEq1u+/qNCPOTSD902fDm5hfj628vtLufutkUiiEWkyY+3ctVZMVYlYLzM72Tm1+MphYbfnVtP3uOXmkJx8miS5Luv67Oel1lDhc973iLVe2S6sy8q5zoYwqV5KysN6uYsKYR6YvuGt7WMwitqxyEBAXAFBmCI6fKUX6pHreNjOEbbRu+zHM7eqac8zO90JqjiSP6Yt+xknZXpB85VY7BV/WARcLF8VvPepnNESgr63zBmpg4j1J7pD4z7yonlLxhg7Mz22ZzhKyxEJG4dNfwdjyD0NB0+TasAM8qOeLLPLcvDxRxfqYXbDYBIwaYUFxR1+VcRst4few/zqPUHqnPzLubE0rUamdnthPi+soeDxGJR3cNL8CzSp7y5oyK0WhA/pkKh49xfqZrv/pFP6z51xGHj+lt//EWq9ojdQ1VY064OrNNRNom262FDx8+jLS0NABAQUEBUlJSkJqaiiVLlsBmE3ed2dYzCEmj++PqvpFIGt2fX7O7wZM3HptNQFxslMPHeCbdtT6mUAy6qqfDx/S6//S4TXolVw1VU060ntl2ZIjFJHM0RCQ2Wc7wrl27Ftu2bUNoaCgAYPny5Zg7dy5Gjx6NjIwMZGdnY9KkSaK+phrPIOjNuPgYZO/9kWfSvTT22r7Yffg89x+pkj/WUH47SKRfsjS8FosFq1evxrx58wAA+fn5GDVqFABg7Nix2L17t8uG12TqjsDAAMlj9ZU/XdhgNgPPPpiILw8U4eiZCgyPjcK4+BgMj+2ldGiKMpm6A3CdC2ZzhOL7Tyv5qoU4tRBjW3LUVK3tE1djUmvb44pWtkcr7/9ykvrYqSk3nMXiSZyyNLxJSUkoKiqy/1sQBBgMBgBAWFgYqqpcXylutdZKFp9Y5LjqXU3M5giYw4MxY+wAGG8ZaD8LpOQ+UMMgtVpr3c4FJfefVvJVC3F6E6PSuSp1TdXCcXOkqzGp1e3pits1SiU11Rk1xCg3qXNRTbneVSwdc9hVHsg2h7fdixp/ftmamhpERkYqEQaJyF++8pQK9x+RunBMEumLIg3v8OHDkZeXBwDIycnByJEjlQiDiIiIiPyAIg3v/PnzsXr1asyaNQtNTU1ISkpSIgwiIiIi8gOyrcMbExODzZs3AwBiY2OxYcMGuV5aV/zpimkSD/OGyHtGo0HpEIjIR7q88YS7tNQE8P7uBHies8wbUoJeGsS24yduQBRGDY3m+CHSKL9seLXWBDi7v7ua425LSx8u1MibnO2YN8XlNTh21oo5dw7DVWZt5A1pixINolS1xVHdzd77o6bqLhH9zO8aXi02j87u767WmFtp7cOFGnmbs615YzQakDiiL+obm1FmrcNne4swaWSMXy7lQ9KRu0GUurZoue4SUWd+1/BqrYi5ur+7ms+cavHDhRp5k7Nt8yZxRF/sO1Zif47CkirsO1aCZx9MhDk8WNrgyW/IWVulri1arrtE5JgiqzQoxZ0ipjau7u+u5qLr7A2Q3ONtzrbmTUhQAOobmx0ehy8PFDn8WyJPyV1bpa4tWq67ROSYXzW8Wi1iiXF9EBLU/raKar+/uxY/XKiRLzmbGNcHvaO6o8xa5/Dxo2cqeBxIFHLWVrlqixbrLhF1ze+mNCTG9cGuA+fanR1QexGzRIdjYVoCcvNLcKLQiiEWExLjeqt6WkDrG2BBcWWnx9T84UKNvM1ZS3Q45tw5DJ/tLUJhSedbMw6PjeJxINHIVVvlqi0d6+7wWK7SQOoxe8UOyZ57ypP/luy5leR3Da8Wm0fgctyW6HBNzR3T4ocLNfIlZ68yh2PSyJh2c3iBy8dhXHyMlGGTn5GzQZSrtrStu716haOsrPMHRyLSBr9reAFtNo+ttBSvVj9cqJEvOdvVcRge24tv4CQquRpEuWuLluouETnmlw1vKxYx6Wn5w4UaebsPeRxITnLkGHOaiDzhVxetkXL4hqQOPA6kN8xpInIHG14iIiIi0jXdNbx6WmZJT9tC7fl6bJkbpGVi5i/HAhG5QzdzePV0C1s9bQu15+uxZW6QlomZvxwLROQJXTS8erqFrZ62hdrz9dgyN0jLxMxfjgUi8pRiUxpsNhsyMjIwa9YspKWloaCgwOvn0tMtbPW0LdSer8eWuUFaJmb+ciwQkacUa3i/+OILNDY2YtOmTXjyySexYsUKr55HT7ew1dO2UHu+HlvmBmmZmPnLsUBE3lBsSsP+/ftx8803AwCuu+46HDlyxOnvm0zdERgY4PCxuAFRDm8zOTw2Cr16yfv1ltkc4dPfq2lb3OHr9uqRydQdQOd94+uxlSI3tHL8tBCnFmJsy1lNFUvbfSJm/ipVJ7V2jF3RyvbIkaukXs7y1JMcVqzhra6uRnj4z4UpICAAzc3NCAx0HJLVWtvlc40aGo3svT92us3kqKHRst5JymyO8Pn11LIt7hBje8WmhgJutdY63De+Hluxc0ONx88RLcTpTYxK56qzmiqGjvtEzPxVok5qIQ894e72KJ2ngOtcVUOMJJ2u8rRjDrvKA8Ua3vDwcNTU1Nj/bbPZumx2XdHTLWz1tC3Unq/HlrlBWiZm/nIsEJGnFGt44+PjsXPnTtxxxx04dOgQBg8e7NPz6ek2k3raFmrP12PL3CAtEzN/ORaIyBOKNbyTJk3C7t27kZycDEEQ8MILL4jyvHoqfHraFmrP12PL3CAtEzN/ORaIyB2KNbxGoxHPPvusUi9PRERERH5Cd7cWJiIiIiJqiw0vEREREekaG14iIiIi0jWDIAic8U9EREREusUzvERERESka2x4iYiIiEjX2PASERERka6x4SUiIiIiXWPDS0RERES6xoaXiIiIiHSNDS8RERER6Vqg0gHoxd13342IiAgAQExMDJYvX65wRNJ6++23sWPHDjQ1NSElJQUzZ85UOiRFNDU14c9//jPOnTuHxsZGPPzww5g4caL98fXr1yMrKwtRUVEAgGeeeQYDBgyQPU5n+bl582Z88MEHCAwMxMMPP4zx48fLHt+WLVuwdetWAEBDQwOOHTuG3bt3IzIyEgCwbNkyHDhwAGFhYQCAN9980749cjh8+DBWrVqFzMxMFBQUYMGCBTAYDLjmmmuwZMkSGI0/nzuor6/H008/jfLycoSFhWHlypX2469nbfdRWzt27MAbb7yBwMBATJ8+Hffee69CEXqmq+1Ry5h2l6sapdXjY7PZsHTpUpw4cQLBwcFYtmwZ+vfvr3RYdo72+6BBg5zWDqWUl5dj2rRpWLduHQIDA1UZI9C57xg1apRnsQrks/r6emHq1KlKhyGbb775RnjwwQeFlpYWobq6WnjttdeUDkkxWVlZwrJlywRBEISKigph3Lhx7R5/8sknhe+++06ByH7mLD9LS0uFO++8U2hoaBAqKyvt/6+kpUuXCh988EG7nyUnJwvl5eWKxPPOO+8Id955pzBz5kxBEAThwQcfFL755htBEARh8eLFwmeffdbu99etW2cfEx999JHw3HPPyRuwAjruo1aNjY3CrbfeKly8eFFoaGgQpk2bJpSWlioUpfu62h5BUMeY9oSzGqXV4yMIgvDpp58K8+fPFwRBEA4ePCg89NBDCkfUnqP97qp2KKGxsVH4wx/+INx2223CDz/8oMoYBcFx3+FprOpo2zXu+PHjqKurw+zZs5Geno5Dhw4pHZKkvv76awwePBiPPPIIHnroIdxyyy1Kh6SY22+/HX/84x/t/w4ICGj3eH5+Pt555x2kpKTg7bffljs8AM7z89tvv8X111+P4OBgREREwGKx4Pjx44rECQDfffcdfvjhB8yaNcv+M5vNhoKCAmRkZCA5ORlZWVmyxmSxWLB69Wr7v/Pz8zFq1CgAwNixY7Fnz552v79//37cfPPN9sdzc3PlC1YhHfdRq1OnTsFisaBHjx4IDg5GQkIC9u3bp0CEnulqewB1jGlPOKtRWj0+QPtxdt111+HIkSMKR9Seo/3uqnYoYeXKlUhOTkZ0dDQA1/VNKY76Dk9j5ZQGEXTr1g1z5szBzJkzcfbsWdx///345JNPEBioz91rtVpx/vx5rFmzBkVFRXj44YfxySefwGAwKB2a7Fq/Yq+ursbjjz+OuXPntnt88uTJSE1NRXh4OB599FHs3LlT9ikDzvKzurq63dSAsLAwVFdXyxpfW2+//TYeeeSRdj+rra3Fb3/7W9x3331oaWlBeno6RowYgaFDh8oSU1JSEoqKiuz/FgTBnuthYWGoqqpq9/tt96mjx/Wo4z5qpbb8cldX2wOoY0x7wlmN0urxAS7HHh4ebv93QEAAmpubVfO+62i/r1y50mntkNuWLVsQFRWFm2++Ge+88w4A1/VNKY76Dk9j5RleEcTGxuKuu+6CwWBAbGwsevbsibKyMqXDkkzPnj1x0003ITg4GAMGDEBISAgqKiqUDksxFy5cQHp6OqZOnYopU6bYfy4IAn73u98hKioKwcHBGDduHI4ePSp7fM7yMzw8HDU1NfbframpkXVubFuVlZU4ffo0xowZ0+7noaGhSE9PR2hoKMLDwzFmzBhFz0K3nSNWU1Njn2fcqu0+dfS4P1FTfolBLWPaU13VKC0fn46x22w21TS7rTrud1e1Q24ffvgh9uzZg7S0NBw7dgzz589v916uhhhbOeo72ja47sTKhlcEWVlZWLFiBQCgpKQE1dXVMJvNCkclnYSEBHz11VcQBAElJSWoq6tDz549lQ5LET/99BNmz56Np59+GjNmzGj3WHV1Ne68807U1NRAEATk5eVhxIgRssfoLD+vvfZa7N+/Hw0NDaiqqsKpU6cwePBg2WMEgL179+LGG2/s9POzZ88iNTUVLS0taGpqwoEDBxAXF6dAhJcNHz4ceXl5AICcnByMHDmy3ePx8fH48ssv7Y8nJCTIHqNaDBw4EAUFBbh48SIaGxuxb98+XH/99UqH5TW1jGlPOKtRWj4+8fHxyMnJAQAcOnRIsbrVFUf73VXtkNv777+PDRs2IDMzE8OGDcPKlSsxduxYVcXYylHfkZiY6FGs6vo4pFEzZszAwoULkZKSAoPBgBdeeEF1nzTFNH78eOzduxczZsyAIAjIyMjoNHfVX6xZswaVlZV488038eabbwIAZs6cibq6OsyaNQtPPPEE0tPTERwcjMTERIwbN072GB3lZ2ZmJiwWCyZOnIi0tDSkpqZCEAQ88cQTCAkJkT1GADhz5gxiYmLs/16/fr09xilTpuDee+9FUFAQpk6dimuuuUaRGAFg/vz5WLx4MV555RUMGDAASUlJAIDZs2djzZo1SElJwfz585GSkoKgoCC8/PLLisWqlO3bt6O2thazZs3CggULMGfOHAiCgOnTp6N3795Kh+exttujhjHtCVc1SqvHZ9KkSdi9ezeSk5MhCAJeeOEFpUNqx9F+/8tf/oJly5Z1qh1q0lV9U5qjviMmJsajWA2CIAgyxUtEREREJDtOaSAiIiIiXWPDS0RERES6xoaXiIiIiHSNDS8RERER6RobXiIiIiLSNTa8KnLy5EkMGTIEn376qVd/X1VVZb9LVUlJCe6//34xwyPqpKioCBMmTOj08yFDhqClpQVLlizBnXfeicmTJ+Mf//iH/fFPPvkE06ZNw1133YUpU6bg3XfflTFq8gd5eXlIS0vz6Tl27tyJ9evXAwA2btyIjRs3ihEakd0zzzyDqVOn4o477sCIESMwdepUTJ06FR9++KFHz/P000+jpKREoij1Qb+LxWrQhx9+iNtvvx2bNm3yau27S5cu4dixYwCA3r17Y+3atWKHSOS2LVu24OLFi9i2bRvq6+sxY8YM3HDDDbjiiiuwcuVKbNmyBSaTCTU1NUhLS0NsbCwmTpyodNhEdkeOHLH/f0pKioKRkF4tWbIEwOWTB+np6fj3v//t1fPk5eWBq8w6x4ZXJZqamrB9+3a8//77SE5ORmFhISwWC/bs2YMVK1ZAEAT069cPL7/8MkJDQ/Hiiy/iv//9L1paWjBt2jT8/ve/x7Jly1BaWopHHnkECxcuRHp6Onbs2IFz585h4cKFqKioQLdu3bBs2TIMHTpU6U0mnbvmmmvwy1/+EkajEd27d8dVV12FCxcuICAgAE1NTaivrwdw+R7oK1asUOyGF+Q/mpubsXTpUnz//ff46aefMGTIELzyyivo1q0b/vGPf2Djxo0ICAjA+PHjcc899+CDDz4AAPTr1w/nz58HADz22GPYvn073nrrLRgMBvziF7/Ac889h6CgICU3jXTmwoULWLRoESorK/HTTz9h+vTpePTRR3H06FEsWbIELS0t6NatG1auXImPPvoIFRUVmDNnDjZu3IgzZ85g+fLlaGhoQFRUFJ599llceeWVSm+S4jilQSW+/PJL9OvXD7Gxsbj11luxadMmNDY24qmnnsLKlSuxfft2DB48GFu3bsXmzZsBAFu3bkVWVhays7Oxb98+LFq0CNHR0XjjjTfaPfczzzyDpKQkfPTRR3jsscfw1ltvKbGJpFOlpaX2r+Fa/wOA6667zn67zwMHDuDbb7/FDTfcgKFDh2LixIm49dZbMWPGDLz00kuw2Wzo37+/kptBfuDgwYMICgrCpk2b8Pnnn6Oqqgpffvklvv32W/zzn/9EVlYWtm3bhvz8fNTX1yM5ORnJycmYPn26/TlKSkqwfPlyrFu3Dh9//DFaWlrst5ImEsv27dtx11134f/+7//wr3/9C3//+99x6dIlrF+/Hg888AC2bNmCadOm4dChQ3j44YcRFRWFv//97+jWrRsWLVqEV199FVu3bkVaWhoyMjKU3hxV4Blelfjwww9x5513AgDuuOMOPPXUU0hKSkLv3r0xbNgwAMCTTz4JAHj88cdx7NgxfPPNNwCA2tpanDhxAn369HH43Hv37sUrr7wCABg3bpzqb4VJ2hIdHd3pa7ghQ4bY/3/v3r144oknsGrVKvTo0QPA5Q9hf/jDH/D111/j66+/xr333otVq1bhtttukzV28i833HADevbsiffffx+nT5/G2bNnUVtbi71792L8+PGIiIgAAPt88507d3Z6joMHDyI+Pt5eb1966SXZ4if/cf/99+Obb77Bu+++ix9++MH+rdgtt9yCJUuWYNeuXRg/fnynayhOnTqFoqIiPPjggwAAQRDQ0NCgxCaoDhteFSgvL8dXX32F/Px8vPfeexAEAZWVlcjJyYHBYLD/XlVVFWpqatDS0oKnn37a3hxUVFQgLCwMZWVlDp8/MPDnwywIAk6dOoVBgwZJu1FEAD777DMsXboUf/3rXzF69GgAwK5du1BbW4s77rgD06dPx/Tp07F582ZkZWWx4SVJZWdn47XXXkN6ejqmTZsGq9UKQRAQGBjYrtaWlJQgNDTU4XN0/N2KigoAQFRUlLTBk195/vnnUVJSgsmTJ+O2227DV199BUEQMHnyZCQkJGDHjh1Yt24dvvrqKzzzzDP2v2tpacHVV1+NrVu32v9dXl6u1GaoCqc0qMC///1vjBkzBjk5OdixYwd27tyJhx56CDk5OSgvL8cPP/wAAHj33XexceNGjBkzBps3b0ZTUxNqamqQmpqKQ4cOITAwEM3NzZ2ef+TIkfj4448BAHv27MHixYtl3T7yT99++y2WLl2KdevW2ZtdAOjWrRtefvllFBUVAbj8IezYsWP2bzKIpJKbm4tf//rXmD59OiIjI5GXl4eWlhaMHDkSX375JWpqatDc3Iwnn3wSR44cQUBAQKea+otf/AKHDh2yn2B44YUXkJ2drcTmkI7t2bMH999/P26//Xb7nPOWlhY89thjOHbsGFJTU/HYY4/h6NGjAGB//x80aBDKyspw4MABAMCmTZswb948JTdFNXiGVwW2bt2KJ554ot3PfvOb3+Ddd9/F2rVrMW/ePDQ1NcFiseDFF19EcHAwCgoKcM8996C5uRnTpk3D6NGj0dTUhH79+iEtLQ3Lly+3P1dGRgYWLVqEf/7znwgNDcWyZcvk3kTyQ2+99RZaWlowf/58+88ef/xxTJw4EY8++igeeughNDU1AQBuvvlm+5J6RGLZt28frr/+evu/r732WuTl5eHjjz9GUFAQ4uPjUVRUhJkzZ+K3v/0tkpOTYbPZMGnSJNx4440ICgrC/PnzccUVV9ifo3fv3vjLX/6COXPmwGaz4brrrsO0adOU2DzSsQcffBB/+tOf0K1bN/Tt2xfDhw9HUVERHn74YSxatAh/+9vfEBISYp+fe8stt2DOnDlYv349Xn31VTz//PNobGxEZGQkVqxYofDWqINB4DoWRERERKRjnNJARERERLrGhpeIiIiIdI0NLxERERHpGhteIiIiItI1NrxEREREpGtseImIiIhI19jwEhEREZGu/T+++fTgxuVdTAAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAALECAYAAAAVacYNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XuUFPWd//9XVfVcuAzMgMNNCWbZ1Z+7UeNl4WtQT4KXuBsQEo9HN2azisoqrqKBBEEiaggjBl1vQaPR5azHTTyJGwhKVonkrBFdTHZdV4m3k3gLisA4kYFhLl1Vvz+w256Z7p6+1L2fj3M8B2dquj9V9a53vfvTn8+nDNd1XQEAAACQJJlhNwAAAACIEgpkAAAAIAcFMgAAAJCDAhkAAADIQYEMAAAA5KBABgAAAHJQIAMAAAA5KJABAACAHBTIAAAAQA4KZAAAACAHBTIAAACQgwIZAAAAyJEKuwFBam/fJ8dxw25GQS0tw9XR0RV2MwITxf1tbW0K7b3TaTtyx2OgKJ6zfOLQzkraGGZ8+pk/43C+ylGr+xPV+IzL+aCd3hrYznLjkx7kCEmlrLCbEKha29+hxOF4xKGNUjzaGYc2BiVpx4L9iZa4tJ92eqvadlIgAwAAADkiMcSip6dHq1at0nPPPaeGhgZ99rOf1Xe+851+29x11136t3/7N40bN06SdPzxx2vFihVhNBcAAAAJFokC+Xvf+54aGhr0xBNPyDAM7dmzJ+92c+fO1ZIlSwJuHQAAAGpJ6AXy/v37tX79ev3nf/6nDMOQJB1yyCEhtwoAAAC1KvQxyO+++66am5t199136ytf+Yr+/u//Xr/97W/zbvv4449r9uzZmjdvnl544YWAWwogTJZlyrVMpQ1DrmXKskJPX0BgiH8MREz4y3BdN9R1z15++WWdc845WrNmjWbPnq0XX3xRl112mTZv3qyRI0dmt9u9e7eam5tVV1enrVu3avHixdq0aZNaWlpCbH209PbZqq8rfdZmudsDYXEcV2/v3KuVD27Tro4DGtcyTMvnTdeUCaNkmkbJr/HR/h71pR3VpUyNHtFQ8t8CYfIi/ge+HtdCvHkdE3HkdxyHXiB/+OGHOuWUU/Tyyy9nh1j87d/+rVavXq2jjz664N995Stf0bXXXqtp06aV/F5RXwe5tbVJu3d3VvX3sxdtKHn7jbfOqer9qlXt/vohzHU8JUXueAwU1jlzLVNL127Vro4D2Z+NaxmmtgUzZNjOoO0HttOyTHV09WnVuuezN5NlF05Ty/A62Xn+PgiVHMuorjNbrSjmgmp4vT/lxn8xlVwLpe5PVOMzLvFVTju9jIlyReF4lhLHA9sZu3WQx4wZo+nTp2vr1q2SpDfffFPt7e2aMmVKv+0++OCD7L9feeUV7dixQ5/+9KcDbSuAcNiO2+9GIEm7Og7ILrFgS0vZRJr521Xrnlfa64YCPqg2/nNxLSSDlzERR0HEceiT9CTpxhtv1LJly7R69WqlUindcsstGjVqlC699FJdddVVOvroo3Xbbbdp+/btMk1TdXV1uuWWW9Ta2hp20wEEwDINjWsZNqi3xDINyR76hlDsZhKJJAgUUW385+JaSAYvYyKOgojjSFwPkydP1kMPPTTo5/fff3/236tXrw6ySQAiJCVp2YXTBn2dlpJkl/D3tX4zQbxVG/+5uBaSwcuYiKMg4jgSBTIAFGPbjlqG16ltwQzZjivLNA7eCEocaxf0zcSyTKWlitoKDJQb/46jgxORDFdpV0pZZlmxVeuFVVJUmxOr4TiuXMsMNb8FEccUyABiwbYdGfo4adluWUkwyJtJFCcEIv5s21HKMtXRXV1shVlYwVvV5MRKWZY5aPWMMPJbEHEc+iQ9AAiCbTsybEcp15VhO74lcyZBwS9exVZQ1wKSJy1li2Mp3PzmdxxTIAOAh2p9djn8Q2whbLUUgxTIAOChzOSRXNnJI0AViC2ErZZikAIZADyUmTySuYnkTh4BqkFsIWwpScvnTa+JGEziPgFAaJgEBb8QWwibbTuaMmFUTcQgBTIAeCyM2eWoDcQWwmaaxsHJcVKiY5AhFgAAAEAOCmQAAAAgBwUyAAAAkIMCGQAAAMjBJD0AeVmWqbTUb6YyEEf5YjmJs+5ROWIEA3HPAzCIZZnq6OrLPtY2s9Zlc3PynpaEZCsUyy3D6yiAIIkYQX4MsQAwSFrK3iykg48SXbXueX20vyewNliWKdcylTYMuZYpyyJdoXyFYjnt43s6jkvsxkgYMYLyhHE/oAcZwCC242ZvFhm7Og6oL31wDVa/0aMDrxSKZdtxfbkBWpapt3fu1coHtxG7MRF0jKA8Yd0P+FgLYBDLNLKPEs0Y1zJMdalgUgY9OvBKoVi2TH8+6qWlbHEsEbtxEHSMoDxh3Q8okAEMkpK07MJp2ZtG5hP76BENgbx/sR4doByFYtmvnkFiN36CjhGUJ6xrivMPYBDbdtQyvE5tC2b0m9VtBtSjkunRyU2K2R4du7KkyCz12lQolv06937EbtH3I66rFnSMDIVz2l/Q11QGPcgA8rJtR4btKOW6Mmwn0ATtdY9OZgzb0rVbNb/tKS1du1UdXX1MnqoRQcZyStLyedMD6Y0krr0TZr7LxTkdLKwefnqQgZiphd4Fr3t0Co1ha1swI5BJh0imQtfilAmjAumNJK7D5Ucu5pwOFlYPPwUyECO1tLqDbR9cMSMlSbYru5rXYpY6PFbsWjRN42BvpFR17BZDXIfHr1zMOc3Py/tBqWq3zx6IIVZ3qAyz1OG1KFyLxHV4/Dr/nNPoiESB3NPToxUrVujMM8/U7Nmz9e1vf3vQNrZt68Ybb9Tpp5+uM844Qz/5yU9CaCkQLmbIV4ZZ6vBaFK5F4jo8fp1/zml0ROKYf+9731NDQ4OeeOIJGYahPXv2DNpm48aNeuedd/Tkk0/qT3/6k+bOnauTTjpJhx12WAgtBsIR1mzeuIvaLHXEX9FrMSDEdXj8ysWc0+gIvQd5//79Wr9+vRYuXCjDOJhYDjnkkEHbbdq0Seeee65M09SYMWN0+umn6z/+4z+Cbi4QKnoXKheVWepIhqhci8R1OPw8/5zTaAj9vvruu++qublZd999t7Zt26YRI0Zo4cKFOvHEE/tt9/7772vSpEnZ/584caJ27txZ1nuNHTvSkzb7qbW1KdHvF7X3j5pSjkdzs6s1C09VX9pRXcrU6BENga1PLMXnnMWhnXFoY4bf+TNOxyKj2LUYx/0pJur7M1R8+tF+P3Jx1I9zRi20M/QCOZ1O691339Vf/uVfasmSJXrxxRd12WWXafPmzRo50tuE3N6+T06Ex2q2tjZp9+7Oqv6+XNW8X7Wq3V8/hH3Rl3M8DEnptK327j7/GjRAFM9ZPnFoZyVtDDM+/cyfcThfxQy8FuO+PwOVuj9RjU+/z4dXuTgucRPXdpYbn6EPsZg0aZJSqZRmzZolSTr22GPV0tKiN998s992EydO1HvvvZf9//fff18TJkwItK0AAABIvtAL5DFjxmj69OnaunWrJOnNN99Ue3u7pkyZ0m+7s846Sz/5yU/kOI4+/PBD/fKXv9QXv/jFMJoMAACABAt9iIUk3XjjjVq2bJlWr16tVCqlW265RaNGjdKll16qq666SkcffbTmzJmjF198UWeeeaYk6YorrtDkyZNDbjmAJKuFpxbWIs4rUBjXx0GRKJAnT56shx56aNDP77///uy/LcvSjTfeGGSzANSwWnpqYS3hvAKFcX18IvQhFgAQRUE8Kc2yTLmWqbRhyLVMWRYp2W9ReAJeXGTic1dHF/FZI+JyfQSROyPRgwwAUVPsSVleJE7HcempCYHf5zUp6EmsTXG4PoKKTT4OomRNo4aptbWp5P+aRg0b+kWBiMo8KSuXl09K+2h/Tyx6apLG7/OaFHHpSYS34nB9BBWbUflAgBhobEhp9qINJW+/8dY5iv5KiUB+mSdlDeylSEmyPXj9vrQT+Z6aJPL7vCZFHHoS4b04XB9BxSZxDiByojCL2rYdtQyvU9uCGb60oy5lalzLsH6JPttTY0f3gUZB8iMO/D6vSZHpSSQ+SxeFvFWtOFwfQcUmQywAREpmfNnStVs1v+0pLV27VR1dfaFMELJtR4btKOW6MmzH05vE6BENWnbhtOzXmbk9NfA3Dvw8r0mR6UkkPksTpbxVrahfH0HFJrEOIFIKjS9rWzBDQ42Cy/Tg7Orokiwzcj0fuUzTiHxPTZiqiYNa5lUvZm5PogxDcl3iswjitTRexGdQvdwUyAAipdLxZXGcdW/bjgx9nIhtNzJj/KKAMbDl8/oayMRna2uTdu/uJD6LIF6H5mV8BpE749f3DyDWhlq/stJZ1My6T5Y4zKb3UyXrvHINhCeu8RrkWuxxi08KZACBKWWcXqXjy4r14CB+ankMbKXjWbkGwhPHeA163HTc4jPK5w5AwpQyTq/S8WWZHpyWpkadM/Mv1DS8Tt29adXXmXJ6+XI4bjJxcPOCk5V2XJmmlLJqYwWFSsezsvJEeIJc/cGrceZBj5uOW3xSIAMITKnj9CoZX5aSdMOl/08dnT2648cvZMe4XXfhNDVHeBwyitvb1RurceVeqHQ8axzWsE2yIMbFejqON+Bx03GLz6qPQW9vrwzDUF1dXfZnfX19cl1X9fX11b48gATxswfBth011qV0x4//q1+PyHeZSR5btboyQKXXSRzWsEV1vLwmgu7RjVt8Vj3Q5KKLLtL27dv7/Wz79u26+OKLq31pAAnj9zi9tFP46XSIn7iNWfRKNddJ1NewRXW8vCbCGDcdp/is+ji8/vrrOvbYY/v97JhjjtGrr75a7UsDSBi/exDiNsYNxdXq+YxbTxuC4+U1QZwVV3UPclNTk/bs2dPvZ3v27NGwYcMK/AWAWuZnD0IcZ5KjsFo+n3HqaUNwvL4miLPCqs4zZ555phYtWqTly5dr8uTJeuedd3TzzTfrb/7mb7xoHwCULNMjsmbhqeruSdMjEnP0cAH9cU0Ep+oe5GuuuUZTp07Vueeeq+OPP17nnXeePv3pT+sb3/iGF+0DgLLYtqOWpkZ6RBKCHi6gP66JYFTdg9zQ0KAVK1bo+uuvV0dHh1paWmQYSZ5fDAAAgCSrqED+4x//qMMOO0yS9O677/b73f79+7P/njx5chVNAwAAAIJXUYE8e/ZsvfDCC5KkM844Q4ZhyHX7z540DEOvvPJK9S0EAAAAAlRRgZwpjiUlajm3plHD1NhQ+iHp7kmrc++BoTcMqD0AAACoXtXV18qVK7V8+fJBP//ud7+r6667rqTXmDlzpurr69XQ0CBJWrx4sU455ZR+21x77bV69tln1dLSIkk666yzdPnll1fZ+v4aG1KavWhDydtvvHWOOj1tQfXtAQAAQHWqLpD//d//PW+B/POf/7zkAlmS7rzzTh1xxBFFt5k/f76+9rWvld1GAAAAoFQVF8g//elPJUm2bWf/nfHuu++qubm5upYBAAAAIai4QN6w4eBX/319fdl/Swcn5x1yyCFavXp1Wa+3ePFiua6rE044Qd/4xjc0atSoQdv8y7/8ix555BFNnjxZixYt0tSpUyttPgAAAJBXxQXyQw89JEn653/+Z11zzTVVNeLhhx/WxIkT1dvbq+9+97u66aabtGbNmn7bXHPNNWptbZVpmlq/fr0uueQS/fKXv5RlWSW/z9ixI6tqZz6trU2Rfr2w32+o1w96f6MuDscjDm2Ugmun47j6aH+P+tKO6lKmRo9okGmWthZ8XI6l5E/+zBWnY1HKOY/T/pQi6vszVHxGvf0ZfrWzmjyVTy0cz6rHIF9zzTXq6OjQf/7nf2rPnj265JJL9MEHH8h1XU2YMKGk15g4caIkqb6+Xl/96lfzTr4bP3589t9z585VW1ubdu7cqUMPPbTktra375PjuAV/X8mB3L3bu2l6ra1N/V4viAAsp/1eH5+B+xsFYV/0UTseA0XxnOXjdzsty1Rakgypc3+fVq17Xrs6DmhcyzAtu3CaWobXDfl0q0raGGZ8DpU/qxGXuJIOnvuOruLnPE77U0gmxm3HVWNDSm6fXVJMh6VYfMblfPjVzlJidqi/z8SCZRo6pHm42tv3ed5Or1VbU1X9qOnnn39eZ511ljZu3Kjvf//7kqS3335bN9xwQ0l/39XVpc7Ogzvguq42bdqko446atB2H3zwQfbfv/71r2WaZr+iGYA3LMuUa5lKG4Zcy5RlVZ0mEiVzs1m6dqt+/8e92ZuOJO3qOKBV654/WDwjkdJS3nNuy8heNx2d3bG+bnJjfH7bU1p8x9Pq6OqL9T6VKon5r1DMlpKnBsbC0rVb9fbOvYk4LkOpugd51apVuv3223XSSSfpr//6ryVJxx57rP7v//6vpL9vb2/XlVdeKdu25TiOpk6dqhUrVkiS5syZo/vuu0/jx4/XkiVL1N7eLsMwNHLkSN1zzz1KpVgjGPBStT0NtSD3ZtM0vC5708nY1XFAtuNWn1wRSbbj5j3nfbajb//g2URcN4UKqrYFM1T5l/LRl9T8VyhmS8lT+WJh5YPbEh8LkgcF8o4dO3TSSSdJOjhBT5Lq6upk23ZJfz958mStX78+7+9yJ/+tW7euuoYCGFKt3hjLkXuz6ezq07iWYf1uPuNahskyDcn2ZzgCwmWZRt5z/t6efYm5bqopqOIsqfmvUMyWkqdqNRYkD4ZYTJ06Vb/+9a/7/ezZZ58dck1jAN6r9uvBYsnQz/eNk8zNRpIe3fKGrjrvuOz/Z3qckn7jSIpK4jYladmF0wad8x8/+Xq/7QZeN3G6RnJjPCNbUCVYpfmvFGGe/0IxW0qeqtVYkDzoQb722mv1j//4j/r85z+v7u5uXX/99dqyZYvWrl3rRfsAlMiLrwcr6WlI6teShWRuNqvWPa/X3unQxl//Xisv+5wMGTLNg79P4n4nTaVxa9uOWobXqW3BjOykJcs6OO44V+51E7drJDfGc9ubklTad8PxVE1Pa9HXDfn854vZUvNUvWVo6YXT1JbT9qUXTlO9ZagvycEgD3qQP/vZz+rnP/+5/vzP/1znnHOODjvsMP30pz/VMccc40X7AJSomokYGZX0NHjxvnGSe7O5b+lpmj/3aDWYhizXkWE7kSx4MFg1cWvbB891ynVl2I4M2y163cTtGhkY42sWnhrZYt5L1fS0FhOF8z8wZks9l722qx8/+aoumXO02hbM0CVzjtaPn3xVvTUwhKzqHuTe3l6NGTNGl156afZnfX196u3tVX19fbUvD6BE+b4ebGlqlCvJNoySeg0q6WmoxTFqtu3I0McJ1HYT3auWBAOXqUpJ6vEwbgdeNwOXRYvjNZIb4y1NjbFYJi0fyzLV0dmtdAk5sJqe1mLieP4zbMfVtu0faNv2D/r9/OKzPxP5tler6h7kiy66SNu3b+/3s+3bt+viiy+u9qUBlGHgWLEjP9Wir3/pKC3LWZ6nlKWayu1pqOUxaoi+fMtUdXT1qb7O9DRuc6+blqbGftcN10g4Mud+8R1Pl5wDK+1pLdqOGJ//OLe9WlUXyK+//rqOPfbYfj875phj9Oqrr1b70gDKMPDrwfPPPEJ3/PgFX77Wy51wYsjQDZf+PyaqIZIKfb3t2Pm/Trcsw/MJVH59dY/iwh7akMmTMuJ7/vPF7vJ502PR9mpVvY9NTU3as2ePWltbsz/bs2ePhg0bVuSvAHht4NeDknz5Wi/fhJPrLpymW648Wb19jmdfSwJeKPT1dto5eL3cvOBk9dmO3tuzT/c8+n/q6Oz2fAKVX1/do7gwhzYMzJPT/2p8LCfz5ovduDxJr1pVf0w+88wztWjRIr3++us6cOCAXnvtNX3rW9/SWWed5UX7AJQh9+tBv74ay9cr8911z8u2XU+/lgS8UOw6sG1Hrlx9+wfP6sYfbtNr73T41svox1f3KC7M4QED8+S27R9o+b3PyjQVu/M/MHbNGhheIXlQIF9zzTWaOnWqzj33XB133HE677zzNHXqVF199dVetA9AhQp9rVtvGWWtx5k7nKKjs1uOB2uFxmlNWMTbUNeBn2vfDlQo7rke/BHm0JZicVXofDuOW1IcEC/BqDpOGhoatGLFCl1//fXq6OjQrl27tGHDBp155pl65plnvGgjgArk+2qs3jLU3tlb8nqc+YZTrLzsc1WtFRr2mqCoLUNdB5fMOTqQpyEWivuxTfVlXZMoXebcr1l4qrp70oEObSm0pnLKNNXRNfh8j22q19s792rlg9uKxgH5MziefOz48MMP9a//+q+6+OKL9eUvf1kvv/yyrrvuOi9eGjWkadQwtbY2lfzfqNHDS962aVRtjokf+NVYr+2WNWkl33CKB37+clW9MmFPnEHtKXYdBPU0xEJx32tzPfjJth21NDUGPrSlUO+1aRWOg0xxnPvzgXFA/gxOxTmgr69PW7Zs0c9+9jM988wz+tSnPqUvfelL2rFjh26//XaNHTvWy3aiBjQ2pDR70YaSt99465ySt9946xzFcxVPb5U7aSXf9tu2f6D5Xz664glHcV4TFMmQG4OvvdOhhza9okvmHK3DJzb51stYOO4drocEKjQxs6ev0PkuLQ7In8GpuAd5xowZuv766/XpT39ajzzyiDZt2qQrrriCh4MAEVbupJVC28tVxROOanldTUTDwBh87Z0O/XDDS7JMw7dexsJx7+16zIiOfBMzq40D8mdwKi6QjzzySHV2durFF1/USy+9pI8++sjLdgHwQbmTVgptX81asawJi7AFEYMDJ1LVW0aByYJcD7Wk8KRRafm86f1+fl2eOCB/BqfiY/rQQw9px44dWr9+vR588EGtXLlSJ598srq6upROMxoGiKJy12PNbO/lWrGsCYuw+R2DjuMWnJA38D37em2uhxpSKPYc21VdytTl5xyjxvqUunvTqqsb3AlB/gxOVR86Dj30UF1xxRW64oor9Nvf/lYbNmyQaZo6++yzdc455+hb3/qWV+0E4BHbdmTo44vfdmWXsL1rmfr2D57tN/Zt1brn1bZghir5Yq/cNgBe8zMGP9rfk3ciVduCGQe/ch/wnlwPtSXf+XYtUyvue27Qqhf5cizxEgzPeuVPPPFEnXjiiVq+fLk2b96s9evXe/XSAELGxBCgdH1pJt6hPOTY6PF8demGhgbNmjVLP/zhD71+aQAhYWIIULq6FBPvUB5ybPTw+BUAQ2JiCFC60SMauF5QlpQGT9IjZsLFsQcwpDCfSAXEjWkaTKRCWWzb0ZQJo4iZCKEHGUBJwnoiFRBH+dbABYoxP16Hm5iJBgpkAAAAIAcFMgAAAJAjEmOQZ86cqfr6ejU0NEiSFi9erFNOOaXfNgcOHNDSpUu1fft2WZalJUuW6Atf+EIYzQUAAECCRaJAlqQ777xTRxxxRMHfP/DAAxoxYoQ2b96st956SxdccIGefPJJjRgxIsBWAgAAIOliM8TiF7/4hc4//3xJ0uGHH67PfOYzevrpp0NuFQAAAJImMj3Iixcvluu6OuGEE/SNb3xDo0aN6vf79957T4ceemj2/ydOnKidO3eW9R5jx470pK25WlubIv16Yb/fUK8f5P4GfWwrQRu9E4d2xqGNGX7kz1xxOhalYH+CNVR8Rr39GbTTW9W0MxIF8sMPP6yJEyeqt7dX3/3ud3XTTTdpzZo1nr9Pe/s+OY5b8PeVHMjduzuradKg9899vSACsJz2e318gt7fUvY17Ivey3jyw8BzFlVxaGclbQwzPofKn9WIw/kqR63uT1TjMy7ng3Z6q9oaIxJDLCZOnChJqq+v11e/+lX9z//8z6BtJk2apB07dmT///3339eECRMCayMAAABqQ+gFcldXlzo7D1b4rutq06ZNOuqoowZtd9ZZZ+mRRx6RJL311lt66aWXBq10AQAAAFQr9CEW7e3tuvLKK2XbthzH0dSpU7VixQpJ0pw5c3Tfffdp/Pjxuvjii3XttdfqjDPOkGmauummmzRypL9j4lCd3j47UmOQa41lmUpLPLYUGIBrA2Ei/uIh9AJ58uTJWr9+fd7fbdiwIfvv4cOH68477wyqWfBAfZ2l2Ys2DL3hxzbeOsfH1tQWyzLV0dWnVeue166OAxrXMkzLLpymluF1JGLUNK4NhKlY/CFaQh9iAcB7aSmbgCVpV8cBrVr3vNLhNgsIHdcGwkT8xQcFMpBAtuNmE3DGro4Dsn1ahQCIC64NhIn4iw8KZCCBLNPQuJZh/X42rmWYLNMIqUVANHBtIEzEX3xQIAMJlJK07MJp2UScGecW+qQDIGRcGwgT8RcfnBMggWzbUcvwOrUtmMFMaSAH1wbCRPzFBwUykFC27ShlmZJpHBzfZhpKWSaJGIlSyZJZtu3I0Mc3QNuV7X8zUaMKxSfxF30UyEBCsZwVko4YR5QRn/HGGGQgoVhOCElHjCPKiM94o0AGEorlhJB0xDiijPiMNwpkIKFYTghJR4wjyojPeKNABhKK5YSQdMQ4ooz4jDfOE5BQLCeEpCPGEWXEZ7xRIAMJxnJCSDpiHFFGfMYXQyyAhLIsU65lKm0Yci1TlsXljujIjc+Ozm7iE6EjZyIXPchAArH+JqKM+ETUEJMYiI9HQAKx/iaijPhE1BCTGIgCGUgg1t9ElBGfiBpiEgMxxKIKvX22WlubSt6+p9dWQ71VdJtyXg8oJLP+Zm7Cz66/aZPwES7iE1FDTGIgCuQq1NdZmr1oQ8nbb7x1TtnbA5XIrL85cDxdSmIWNUJHfCJqiEkMRIEMJJDX629alqm0pF0dXZJlspYnqjIwPhsbUnL77LJjKhOXrDGLanmVM4nJ5KBABmKknOTr1fqbzO5GMZUWBLnx2dLUqN27O8t+X+ISXqo0Z2auARlSx35iMimYpAfERKYgWLp2q+a3PaWla7eqo6vP97U6md2NQsKKSYm4RDTkXgO//+NeYjJBIlUg33333TryyCP1+uuvD/rdtddeq1NPPVVz5szRnDlzdM8994TQQiA8YRUEzO5GIWEWqcQloiD3GmgaXkdMJkhkhlhs375d//u//6tJkyYV3Gb+/Pn62te+FmCrgOgoVhD4eSEzuxuFhBWTEnGJaMi9BjpQlJNvAAAgAElEQVS7+ojJBIlED3Jvb69uuukmrVixQoZhhN0cIFIyjz+VpBWXTNeRn2rJ/i6bfH2Umd09rmVY9j0zs7tR2zJFai4vYrKUR/4SlyiFZZnq6Oz27fHRudfAo1ve0FXnHUdMJkQkztsdd9yhs88+W5MnTy663b/8y7/okUce0eTJk7Vo0SJNnTo1oBYC4cg3EWnh+cfpXx9/RR2d3YEsQ5Q7u1uGIbkuM7MhyZ+lsUqdfOf1Si1Ink9iaatvk+Zyr4HX3unQxl//Xisv+5wMGTJNEZMxFnqB/MILL+ill17S4sWLi253zTXXqLW1VaZpav369brkkkv0y1/+UpZV/MEbucaOHVltcxOnlh5MEod9HdjGjs7ubHKXDn59fcePX1DbFSerLmVq9IgGmT73IMdVHM93lBXKn83NrtYsPFV9aaeqmMwci3wxv2rd81qz8FS1jhlR+Q4ELE7nthRR35988RlULHl1DUjRP84ZtdDO0Avk3/zmN/rDH/6g0047TZK0c+dOXXzxxWpra9PJJ5+c3W78+PHZf8+dO1dtbW3auXOnDj300JLfq719n5wig+XjcsK9VM7SSnE/PqXsa9j7OLCNacPIP8bTdmSkbbV39wXZPLW2NpW9HFcY4tDOStoYZnwOlT8NSekKYzL3WBSK+e6etHZ3R/ucZsQh/spR6v5ELT6DjqVqrgEpPnET13aWG5+hj0GeP3++nnnmGW3ZskVbtmzRhAkT9MADD/QrjiXpgw8+yP7717/+tUzT7Fc0A0nk1xhPIKqIeXiFWEI1Qi+Qi5kzZ062MF6yZIlmz56ts88+W/fcc4/uuecepVKhd4ADvmIiEmoNMQ+vEEuoRuTiZMuWLdl/b9iwIfvvdevWhdAaIFxMREKtIebhlUwsrVl4qrp70sQSyhLpHmQAHz/+1HaUcl0ZtkNyR+IR8/CKbTtqaWokllA2CmQAAAAgBwUyAAAAkIMCGQAAAMhBgQwAAADkiNwqFn7iiWOD1dIxicO+0kbvxKGdcWhjht9tjdOxKAX7E6yh2hf19mfQTm9V007Ddd3Cj0YCAAAAagxDLAAAAIAcFMgAAABADgpkAAAAIAcFMgAAAJCDAhkAAADIQYEMAAAA5KBABgAAAHJQIAMAAAA5KJABAACAHBTIAAAAQA4KZAAAACAHBTIAAACQgwIZAAAAyEGBDAAAAOSgQAYAAAByUCADAAAAOSiQAQAAgBwUyAAAAEAOCmQAAAAgBwUyAAAAkIMCGQAAAMhBgQwAAADkoEAGAAAAclAgAwAAADlSYTcgSO3t++Q4btjNKKilZbg6OrrCbkZgori/ra1Nob13Om1H7ngMFMVzlk8c2llJG8OMTz/zZxzOVzlqdX+iGp9xOR+001sD21lufNKDHCGplBV2EwJVa/s7lDgcjzi0UYpHO+PQxqAk7ViwP9ESl/bTTm9V204KZAAAACAHBTIAAACQgwIZAAAAyEGBDAAAAOSgQIanLMuUa5lKG4Zcy5RlEWIAEEeZfL6ro4t8jkgJotaoqWXe4C/LMtXR1adV657Xro4DGtcyTMsunKaW4XWybSfs5tWcplHD1NhQ+iXe02uroX7oWb+ZpXK6e9Lq3Hug4vYBiC7yOaIqqNikQIZn0lI2YCVpV8cBrVr3vNoWzJARbtNqUmNDSrMXbSh5+423zil7+85KGgYg8sjniKqgYjNy35esXr1aM2fO1JFHHqnXX389+/M333xT5513nr74xS/qvPPO01tvvRVeI5GX7bjZgM3Y1XFAdoQfzgIAGIx8jqgKKjYjVyCfdtppevjhh3XooYf2+/mKFSv01a9+VU888YS++tWv6vrrrw+phSjEMg2NaxnW72fjWobJMulvAIA4IZ8jqoKKzcgVyCeeeKImTpzY72ft7e363e9+p1mzZkmSZs2apd/97nf68MMPw2giCkhJWnbhtGzgZsYFMY4HAOKFfI6oCio2YxHr77//vsaPHy/LOjiByLIsjRs3Tu+//77GjBkTcuuQYduOWobXqW3BDNmOK8s0lPr45wCA+MjN5zIMyXXJ54iEoGqNWBTIXhk7dmTYTRhSZoWAWlFr+zuUuB2PKLc3ym3LiEMbM/zOn3E6FqVI2v5E3VDxGZfzQTu9VU07Y1EgT5w4UR988IFs25ZlWbJtW7t27Ro0FGMo7e375ER4gkFra5N2766ddQGiuL9hX/ReHo8g9iVq5y8jirE1UCVtDDM+/cyfcThf5ajV/YlqfMblfNBObw1sZ7nxGbkxyPmMHTtWRx11lB577DFJ0mOPPaajjjqK4RUAAADwXOR6kFeuXKknn3xSe/bs0UUXXaTm5mY9/vjjuuGGG3Tttddq7dq1GjVqlFavXh12UwEAAJBAkSuQly9fruXLlw/6+dSpU/WTn/wkhBYhLizLVFpigiCAxCLPIWyO48q1zMTHYOQKZKASPBYVQNKR5xA2yzL19s69WvngtsTHYCzGIANDKfToyXS4zQIAz5DnELa0lC2OpWTHIAUyEoHHogJIOvIcwlZLMUiBjETgsagAko48h7DVUgxSICMReCwqgKQjzyFsKUnL502viRhM4j6hiKTOgOYx1wCCElYeJc+hUl7FrG07mjJhVE3EIAVyDUn6DGjbdmTo46C2XdkhtwdA8oSdR8lzKJfXMWuahgzbSXwMMsSihjADGgCqQx5F3BCzlaFAriFODc0+BQA/1Mosfssy5Vqm0oahjs5uWRblQlxVG7O5seBappyExXohDLGoEZZlKu24GtcyrN+Fkp19atdGwANANTKz+JOcR8MeRgJvVROz+WJh+bzpGt2YSnws8JGwRqQlPfDzl3XVecfVxOxTAPBDLawkwVfyyVJNzOaLhZUPbquJWEjSNY0ibMfVtu0f6E+dvbpkztFqGl6nzq4+NY2ok51O9qdAAPBKLawkUewreYqG+KkmZms5FpK+f/hY5iuW197p0Kp1z0s6+CmybcGMkFsGAPGS9JUkamEYSa2pNGZrORYYYlEjauFrQQBA9bhfICNfLCyfN70mYqEW9hEK/mvBpD6QBED8kZ+KG3i/aGxIye2zOUY1Ivf6cCWNbarvVzsc0jxc7e37wm6m7yiQa0hQXwsyAxpAVJGfSpN7v2hpatTu3Z1hNwkBKHZ9GK4r2a5M0wi7mYGgQIbnCs2AblswQ7VxWfmjadQwNTZwyRYy8Pi0tjYV3b67J63OvQeKboPkIT8BhXF9fIK7LTxXy7Ne/dTYkNLsRRtK3n7jrXN8bE30VHJ86BOrPeQnoDCuj08wSQ+ey8x6zZWd9QoAISI/AYVxfXyCAhmeYwY0gKgiPwGFcX18ohb3GT6rhYX0AcQT+QkojOvjExTI8EXSF9IHEF/kJ6Awro+DGGIBAAAA5KBABgAAAHJQIAMAAAA5KJABAACAHLGapPerX/1Kd9xxh1zXleM4uvLKK3XmmWeG3SwAAAAkSGwKZNd19a1vfUsPP/ywjjjiCL366qv6u7/7O51++ukyTTrC486yTKWlml9WBgDKQe5MHs5pNMSmQJYk0zTV2Xnw4bCdnZ0aN24cxXECWJapjq6+7PPfMwuTtwyvqzopkGgAJFWluZO8GF1+3g+Txu84jk2BbBiGbr/9di1YsEDDhw/X/v379YMf/CDsZsEDaSmbDKSDz31fte55tS2YoWoebkmiAZBkleRO8mK0+XU/TJog4jg2BXI6ndYPfvADrV27VieccIL++7//W9dcc40ef/xxjRgxoqTXGDt2pM+trF5ra1PYTQhUa2uTdnV0ZZNBxq6OA5JhVHU8Ojq7tWrd1kGJZs3CU9U6prSYCVrczn/c2jtQ2O0P+/3L4Xf+jNOxKEUQ+1NJ7qw0L0b9/AwVn1Fvf5Zh+HI/9FrYbSk1jqtpZ2wK5FdeeUW7du3SCSecIEk64YQTNGzYMP3+97/XMcccU9JrtLfvk+O4fjazKq2tTdq9uzPsZgQmu7+WqXEtw/olhXEtwyTXrep4pAskmu6etHZ353/dsC/6YvsbdtvyiVK8VnJ8wmx/Jdd7mDHgZ/5MWu4LbH8qyJ2V5sVS9ieq8RmX+GptbZJc15f7oZeicDxLieOB7Sw3PmMzgHfChAnauXOn/vCHP0iSfv/732vPnj361Kc+FXLLUK2UpGUXTjuYBKTsVyXVfnqzTCP7mhnjWobJMvmiCkD8VZI7yYvR5tf9MGmCiOPYHPPW1lbdcMMNWrhwoQzj4AFoa2tTc3NzyC1DtWzbUcvwOrUtmOHpYPtMohk4Rikl1eyz5QEkRyW5k7wYbX7dD5MmiDiOTYEsSWeffbbOPvvssJtRs/ycMWrbjgx9HJC260mAk2iA+GPFheLKzZ3kxegb6pxyTQQTx7EqkBGeQjNGm0bUSa4ie4H6UXgDCAYrLpSvlOKJvBhfcb8mvCzu/Y7j2IxBRrgKLT3z+z/u1dK1W9XR1SfLIpwAeKdQ3kmH26zIyhRPS9du1fy2p8jNCRTnayJu8RnNViFybMfNO2O0aXhdrC5QAPFRKO/YEV6NKExxLp5QmjhfE3GLTwpklKTQjNHOrj5J8blAAcQHKy6UJ87FE0oT52sibvFJgYyS5Ft65qrzjtOjW97I/n8cLlAA8cGSV+WJc/GE0sT5mohbfMbhmCICcmeMOo7kytUDP39Zr73TwTJBAHzBigvlYQm35IvzNRG3+KRARskyM0YtHRxsP3/u0br47M/E6gIFEC+suFC6OBdPKF1cr4m4xScFMioS1wsUAJKM3Iwoi1N8MgYZAAAAyEEPMoBIaho1TI0NpCgAQPB8v/ts3bpVb7zxho455hgdf/zxfr8d0A+P5IyvxoaUZi/aUPL2G2+d42NrgHCRyzAQMeEvTwvkb3zjGzrppJN07rnnSpLuu+8+3XnnnTryyCN1++2364YbbtDcuXO9fEugoLg/khMAJHIZBiMm/OfpGOT/+Z//0cyZMyVJjuPowQcf1K233qpHH31Ud9xxhx588EEv3w4oKm5P7QGAfMhlGIiY8J+nBfLevXs1duxYSdLvfvc79fT06PTTT5cknXrqqXrvvfe8fDskmGWZci1TacOQa5kVPas9bk/tAZAMjuNWnb9ykcswUK3FhBc1Qbk8HWLR0tKiP/7xjzrssMO0bds2HXfccbIsS5LU1dWV/TeSxetxUF59dZR5ak9uEsk+tcdOZhIBkiSOYywty9TbO/dq5YPbPPvqm1wWD0HGay3FRFjDSTwtwc8991z94z/+o9ra2nTffffpK1/5SvZ3v/3tb/Vnf/ZnXr4dIiATuEvXbtX8tqe0dO1WdXT1VfXpzquvjuL8SE6g1vmRW4KQlrLFseTNV9/ksugLOl5rKSbCGk7i6bG87LLLNH78eL388su67rrrNGvWrOzvPvzwQ82bN8/Lt0MEFArctgUzVOnT1Yt9dVROwMbtqT0APuFHbgmCV/mr32uSyyIv6HitpZjw45oqheev/eUvf1lf/vKX8/4cyeNH4Hr51VGcntoD4BNh3RSr5ddX3+SyaAsjXmslJsIaTuJ53/97772nzZs368033xz0u8cee8zrt0PIMoGbKxu4Faqlr44A5OdHbglCStLyedPJXzUmrvEaB2HVBJ6+/tNPP62rr75ahx12mN566y195Stf0be//e3s5Lzrr7++37ALxF8mcAcOnk9JFX+araWvjgDk50duCYJtO5oyYRT5q8bENV7jIKyawNMC+fbbb9dtt92mz3/+89qzZ4+++c1vasGCBbrrrrtUX18v103WzEr4F7i18tURgPzi/EHZNA0ZtkP+qiFxjtc4CKMm8HSIxdtvv63Pf/7zkqRDDjlE999/v4YPH6758+frwIEDxf8YsWXbzsGbgevKsB0SAgBPkFsQJ8RrsnhaII8ePVrvv/9+9v9TqZRuu+02TZw4URdddJEch2ABAABAtHlaIJ900kl69NFH+/3MMAy1tbXpiCOOUE9Pj5dvB4XzdBkAgHfI47WF8x0Pno5BvuGGG2Tb+UeG3HTTTbrsssu8fLuaF9bTZeL4dCsAiKJCeXxsU716bZc8mzDF7tthtYf7eX6eFsj/8A//IMMovqTJww8/7OVb1rQwFtIPqygHgCQqlMdXXvY5Lb/3WfJswhS7bweN+3lxnhbI5557bvbfruvqpptu0ooVKzx7/Z6eHq1atUrPPfecGhoa9NnPflbf+c53PHv9uAljYfK4Pt0KAKKoUB7v6OwhzyZQsft20LifF+dpHTXwaXk333yzp0/Q+973vqeGhgY98cQTMgxDe/bs8ey14yiMp8vE9elWABBFhfL4R/t6+21Hnk2GovftgHE/Ly42I8P379+v9evXa+HChdlhHIccckjIrQpXGE+X4WlBAOCdQnn8qd+83W878mwyROlJsdzPi4vNh4R3331Xzc3Nuvvuu7Vt2zaNGDFCCxcu1Iknnljya4wdO9LHFnqjtbWprO2bm12tWXiq+tKO6lKmRo9okOljcDuOq+Xzpmvlg9uyY5aWz5uuQ5qHV/S+5e5v0sXteMStvQOF3f6w378cfufPOB2LUpSzPwPzeNOwel1w1lF68729nuRZL0T9/AwVn1Fqf7H7dpDtrOZ+HqXjWUw17fS0QH7uuef6/X86ndZ//dd/9XuC3kknnVTRa6fTab377rv6y7/8Sy1ZskQvvviiLrvsMm3evFkjR5aWuNvb98kJYZxPqVpbm7R7d2dFf2tISqdttXf3eduoPEY3pgY9Lai9fV/Zr1PN/vol7Iu+2PEIu235+Hn+gtjfMOOvkvgPMwb8zJ9RzAXVqHR/Mnm8o7vPszzrhVL3J6rxGdX4GnjfDqOdlcRZVI/nQAPbWW58elogX3fddf3+v7m5WcuWLcv+v2EYeuqppyp67UmTJimVSmnWrFmSpGOPPVYtLS168803dfTRR1feaJSNx0ADgL/IswgCcVaYpwXyli1bvHy5fsaMGaPp06dr69atOvnkk/Xmm2+qvb1dU6ZM8e09AQAAUHtiMwZZkm688UYtW7ZMq1evViqV0i233KJRo0aF3SwAAAAkSKwK5MmTJ+uhhx4KuxkAAABIsNgs8wYAAAAEIVY9yCgPz1iHn3r77LJmBff02mqot3xskb+aRg1TY0NpKbPUfc0cv+6etDr3Hhhia8QZ+RhxNTB2o7wamJcokBOKZ6zDb/V1lmYv2lDy9htvnVP29lHS2JAquf2V7Gv0F01CpcjHiKt8sbt83nSNbkwlPnYZYpFQhZ6xng63WQBQc8jHiKt8sbvywW01EbsUyAlV7BnrAIDgkI8RV7UcuxTICWJZplzLVNowZJmmpv/V+H6/5xnrADBYbu50LVOW5e2t0TINjWsZ1u9n5OPk8zuuglDLscsY5ITIN05o6YXTJEnbtn+QHfOWknhSDgB8LIjxwSlJyy6cNug9yMfJlZRx5/lid/m86TURuxTICZFvnFDbuufVtuBkXXy2w6xpAMij0PjgtgUz5FUfmW07ahlep7YFM1jFokYEEVdByBe7hzQPV3v7vrCb5jsK5JgYaomgwuOEHKVcl2esA0AexcZYVnODHJizJcmwnYOvST5OvEriynFcuZYZuQ9Rtu3IkLKxa9bA8AqJAjkWSvmqJjNOKPeCzI4TspM/mB4AKuFH7nQcNxFfr6Ny5caVZZl6e+derXxwGzETEfEbMR6gqAywL/RVjWsZn0zKswxdd+G07GD63DFuAJBE1eTozN/KODjG0svc+dH+HpZ1q1GVxlVayhbHUvGYiUptknTUTwVEaYB9vq9qWpoa9afO3n7tu+HS/6ebF5ystMOYYwDJVk2OHvi30/9qvFZe9jkZMmSaqjp39qUdX4ZtINqqiatSh2REqTZJOj52FBClhd3zLbNy/plHDGrfDff/l1y5SrmuDNuJ/cXCp2QAhZSTowfmEtcy+v3ttu0faPm9z8o05UnurEuZNbs0Vlx5cb8ZGJPlxFWpy6lFqTZJOiqOAqK0OHZmmZXcr2omHTIyMu3zQ+ZT8tK1WzW/7SktXbtVHV19FMkAJJWeo/Plkj919qqlqXHIv63U6BENng/bgH+8ut9UUzekJC2fN33ImIlSbZJ0XK8FRGnSW75lVgyVPwGg2CoYUZOUJXIA+KPUHF0ol1x+zjG68Yfbiv5tWe3JybEf7e/R2KZ6lnWLicL3m5OVssySz1s1dYNtO5oyYdSQMROl2iTp6I4rIF+vbZg9ALbtHFwi6OPhE5bcktsXx95YPiUDKKbUHF0ol0w6ZKRn+X1gjl18x9Nq7+xVSkrMkLckKxQjez46UNa9stq6wTSNfvf5fDETtdokyTimBUR9Yfdy2hfH3lg+JQMoptQcWCiX1FmmZ/k9jjkWnygUIx/t69UPN7xU8nkMom6Iem2SJNHtQoyAgb22UQvAUtsXx95YPiUDGEopObBQLrHkepbf45hj8Yl8MXLVecfp0S1vlH0eg6gbol6bJAX1Rg2IY28sn5IBeCGIXBLHHItPfBIjJ2vPRwf00b5ePbTpFb32TgfnsYbRg1wD4toby6dkAF7wO5fENcfiE7btKCVXDXWWfrjhpWxxzHmsXZz3GkBvLAD4Z2CObWxIye2zybExw70SuehBrhH0xgKAf3JzbEtTIzk2prhXIoMCGQAAAMhBgRxjPIoZAOKDnI1iHMclPiKEMcgxlVmYPrP2ZmYyQcvwOr4SAoCIIWejGMsy9fbOvVr54DbiIyL4eBJThRamT4fbLABAHuRsFJOWssWxRHxEQSwL5LvvvltHHnmkXn/99bCbEhoWpgeA+CBnoxjiI3piVyBv375d//u//6tJkyaF3ZRQZRamz5Vd0BwAECnkbBRDfERPrArk3t5e3XTTTVqxYoUMI5pBE9QkjGIL0zMRBECtKCXfRSEn8jCRcFiWqY7O7tDOfamxl5K0fN504iNCYnXs77jjDp199tmaPHlyRX8/duxIT9rhOK4+2t+jvrSjupSp0SMaZJqGHMcdNMh++bzpmjJhVPb3+f4uV2trU8ntaG52tWbhqf1eT1LRNkRNOftbCzgewentsyN1vKPUlny8yp8Zufmwo7NbY8eOLDtHDZVzi20zZlSDevoK5+Jq5Tuf+XJ2FPNyPnGMz+y5X7u1pPthKffochSKvcnjmtR5oHfQ+zQ78YmPqMdDRjXtjE2B/MILL+ill17S4sWLK36N9vZ9cqocz1NsJnK+QfYrH9ymtgUzlJKGnMHc2tqk3bs7y26TISmdttXe3SfXMgu2wYjYTNhK99dPYV/0xY5H2G1Lmvo6S7MXbSh5+423zvGxNcXPfUaYMeBF/szwakWHUvJdoW0uP+cY3fjDbb6sFjBUbsvN2XFQaq6OWnyWcz/0Y5WRQu+/8rLPafm9zw56nzFjRijd3Rf5+IjivTufge0sNz5j8937b37zG/3hD3/QaaedppkzZ2rnzp26+OKL9cwzzwTajmIzkYsNsg9qBjMD/QFEnVf5sJR8V2ibxvpUVe+N6CvnfujHPbrQ+3d09rBaRQzEpgd5/vz5mj9/fvb/Z86cqXvvvVdHHHFEoO0odsFlBtnn/j4zyL7Y33l5Egq3wZQll/UUAYTOq3xYLOfKdotu09nVpyM/1aJzZv6FmobXyZWUskxyZIKUEh8Zftyjc98/E2ujR9Zr5LB6HfmpFr32Tke/90G0xKYHOSqKzTQtOnEuoBmq+dpw1XnH6b71/6eOrj4m7AEInVf5sJSJb/m2WXj+cXp++/v6+789Sj/c8JKWrt2qZWu3kiMTppyJkX7cozPvP/2vxmdjbcndz+jGHz6nv//bo3Tkp1o8eR/4IzY9yANt2bIllPfNBPzAcUopSbbtqGV4ndoWzMj2KGd+nrLMwn/nYfs+acPJ2vPRAX20r1cPbXpFr73ToTff23tw7JWH7wcA5SqaR8t4nWI5t9A2KdNUd19aM46dpDsfeWHQV93kyOTInPs1C09Vd086b3xkeBWT+d5//txjtHTtM/1i7c5HXtAlc47WDze8xGoVEcU5KdNQCdm2HRn6+MDabvbCKiWRe9lG2zC05O7+47P9GNIBAOUamA8bG1Jy++yK8mGhnFt4G1sj6iwd2joykGFvCJdtO2odM0K7uzsLxkdmOz/u0Zn7cb5YO3xiU3YSP0N7oofvkipg244M21HKdWXYTsmBXenfVYJFxwFEWW4+bGlqDLRAsG2HHIlB/LpHF4s1v2sBVI4COaFYlB4ACiNHIijEWjxxfhIqyCEdABA35EgEhViLJwrkBCtlbB4A1CpyJIJCrMUPQywQGsdxS3pGPQBEkWWZ5LAaxvlPNnqQ87AsM/tkPL4K8YdlmYOeUe/1414B+K9W82WxRxMj+Qqd/+amehk2D+VKAj7uDJAJ+qVrt2p+21NayuLxvkhLg55Rz+M2gXip5Xzpx6OJER+Fzv+b7+2tmWsg6TiD6v81SVqGfvTkqyQ9nxV7rCeAePCrSIzDV9fksHiwLFMdnd2ex1Kh899Yn6JmSIiaH2KR72uSq847Tn/q7B30nPSaP1geyn1GfUZ2DVKbGwwQB8WKxErzZbGhC1H62rpoDkMkfBJLWz2PpULnv7Orj5ohIaL3sTxg+XpA7nzkBZ0z8y+y25D0vJeStHzedNaFBGLMj4dtxGXoAmvbRp+fsZTv/F913nF6dMsb1AwJUfPXcqEekNEj6yX1T3osy+Id23Y0ZcIo1oUEYixTJAzs7a0mX/rRK+0H1raNPj9jKXP+b15wsvpsR+/t2aeHNr2ijs5uaoaEiFK+CUWhr0kOGT1M9y09jaTnI/Pjx2yyLiQQT34UiXEafsXattHmdyxl4rzRMvWp8U1adMHx1AwJUvNDLAp/TeZ6/jx2AEga23YOftD1KF8ydAFeCSqWvL4GEA01n3P4mgwAooOcDK9kYmnNwlPV3ZMmllCWmu9Blvj0BwBRQk6GV2zbUUtTI7GEslEgA5BicTMAACAASURBVAAAADkokAEAAIAcFMgAAABADgpkAAAAIEdNrWJhxuDJNnFoo5dqbX+HwvGoXVE/9363L+r7Xy72J1hDtS/q7c+gnd6qpp2G67rRWnkdAAAACBFDLAAAAIAcFMgAAABADgpkAAAAIAcFMgAAAJCDAhkAAADIQYEMAAAA5KBABgAAAHJQIAMAAAA5KJABAACAHBTIAAAAQA4KZAAAACAHBTIAAACQgwIZAAAAyEGBDAAAAOSgQAYAAAByUCADAAAAOSiQAQAAgBwUyAAAAEAOCmQAAAAgBwUyAAAAkIMCGQAAAMhBgQwAAADkoEAGAAAAclAgAwAAADlSYTcgSO3t++Q4btjNKKilZbg6OrrCbkZgori/ra1Nob13Om1H7ngMFMVzlk8c2llJG8OMTz/zZxzOVzlqdX+iGp9xOR+001sD21lufNKDHCGplBV2EwJVa/s7lDgcjzi0UYpHO+PQxqAk7ViwP9ESl/bTTm9V204KZAAAACAHBTIAAACQgwIZAAAAyEGBDAAAAOQIpEDu6OjQpZdeqi9+8YuaPXu2/umf/kkffvjhoO0OHDigq6++WmeccYbOOuss/epXvyrpdwAAAIBXAlnmzTAMXXLJJZo+fbokafXq1VqzZo1WrVrVb7sHHnhAI0aM0ObNm/XWW2/pggsu0JNPPqkRI0YU/R2iw7JMpSXZjivLNJSSZNtO2M0CIonrxT9No4apsaH0W1x3T1qdew/42CIAXgkidwZSIDc3N2eLY0n67Gc/qx/96EeDtvvFL36hm2++WZJ0+OGH6zOf+Yyefvpp/c3f/E3R36E0fgeUZZnq6OrTqnXPa1fHAY1rGaZlF05Ty/A6bvpIFC+uJcdxuV581NiQ0uxFG0refuOtc9TpY3uAuBqY78J+nkRQtUbgY5Adx9GPfvQjzZw5c9Dv3nvvPR166KHZ/584caJ27tw55O8wtExALV27VfPbntLStVvV0dUny/IuBNJSNmAlaVfHAa1a97zSnr0DED6vrqWP9vdwvQCItHz57u2dez2tHcoVVK0R+JP0vvOd72j48OH62te+FvRba+zYkYG/Z7n8ehJRR2e3Vq3bOiig1iw8Va1jvBmmsqujK/v6n/zsgGQYBfcrzCcvRVEcjkcc2ihF/1qq5HoJk9/5Mwr77GUborA/Xor6/gwVn1Fvf0bU2pkv3618cJuntUO5ysmd1RzPQAvk1atX6+2339a9994r0xz86WPSpEnasWOHxowZI0l6//33s0Mziv2uVFF/1HRra5N27/bnS760YeQNqO6etHZ3e/SelqlxLcP6vc+4lmGS6+bdLz/3t1JhJ6eoHY+BonjO8onDtVTXWFfW9SJF91G+1fLjfFVyrLxqQ1yuk1KVuj9Rjc+4nI8otjOQ2qFcJdYaA49nZB81/c///M96+eWX9f3vf1/19fV5tznrrLP0yCOPSJLeeustvfTSSzrllFOG/B2GZpnGwQDKMa5lmCzT8Ow9UpKWXTgt+z6ZcUGBf00B+Mira2n0iAauFwCRFkTtUK6gag3DdV3fu1TfeOMNzZo1S4cffrgaGxslSYcddpi+//3va86cObrvvvs0fvx4dXV16dprr9Urr7wi0zT1zW9+U6effrokFf1dqWq5BzmoQe3lTF6K4qdlepCLi+I5yycO11Jra5M+/HB/WZP9otpDVy2/epDLnaRHD3J+9CAHI4rtzJfvls+brtGNqVAnE5dSa1TbgxxIZ8Vf/MVf6LXXXsv7uw0bPklgw4cP15133pl3u2K/w9Bs21HL8Dq1LZjh67Iotu3I0MeBZbuyPX11IHxeXktcLwCiLF++O6R5uNrb94XeLr9zJ9/m1RBuxoA3uJYA1IqB+c4McXhFkHjUNAAAAJCDAhkAAADIQYGMRLMsU65lKm0Yci0z1MXNES5iAQCSw++czhhkJBaPvkYGsQAAyRFETqcLBYnFo6+RQSwAQHIEkdMpkJFYtuPmfQKQHeG1sOEPYgEAkiOInE6BjMSK4hOAEA5iAQCSI4icToGMxOLR18ggFgAgOYLI6dwfkFhBPT0Q0UcsAEByBJHTKZCRaDzxDBnEAgAkh985nSEWAAAAQA4KZFSEhy4gijJxuauji7gEgIiJU+3AEAuUjYcuIIqISwCIrrjl6OiW7ogsHrqAKCIuASC64paj6UFG2Yot0E1AISzEJYLUNGqYGhsKR1Zra1O//+/uSatz74ECWwPJF7ccHcU2IeIyC3TnBnp2gW67sqfYWJaptMQSXKjYUHFJjMFLjQ0pzV60oeTtN946R50+tgfJkdRc5Uft4CeGWKBsXi/QnRmXtHTtVs1ve0pL125VR1dfpAfvI3qKxSUxBiAOkpyr4vbApsDatXr1aj3xxBPasWOHNm7cqCOOOGLQNt/61rf02muvZf//tdde0/e//32ddtppuuuuu/Rv//ZvGjdunCTp+OOP14oVK4JqPnJ4vUB3oXFJbQtmiAcBo1S5cSnDkFw3G5euZRJjACIvyffDuD2wKbAC+bTTTtPXv/51XXDBBQW3ueWWW7L/fvXVV/UP//APOuWUU7I/mzt3rpYsWeJrO1EaLxfojtu4JERXJi5bW5u0e3dnNi6JMQBxkPRcFacHNgXWZ3/iiSdq4sSJJW//05/+VLNnz1Z9fb2PrUIUZMYl5cqOSyrndWK0viKC5VWMlfx+xCKACgSdqyrhOG5N5LdI7lVvb682btyoc845p9/PH3/8cc2ePVvz5s3TCy+8EFLr4DUvxiUledwWqhfk2DdiEUCloj5O17JMvb1zb03kN8N13UCnDs6cOVP33ntv3jHIGZs2bdL999+vn/3sZ9mf7d69W83Nzaqrq9PWrVu1ePFibdq0SS0tLUE0Gz5zHFcf7e9RX9pRXcrU6BENMsv4xNzR2a3Fdzw9aHbsbVefKsdVxa+L6Kg2Rqr9+1IVisU1C09VS1Oj5++HwspdZSJqr4/aVGquCiqn5aql/BaVDyX9PProo4N6j1tbW7P/njFjhiZOnKg33nhD06ZNK/l129v3yXGit5RIRmbcZK3It7+GpHTaVnt3X1mvlTaMQeO2WpoatedP3WU9tWfg2qVBi/r5DytGy30CU7F2VhpjpcoXi7s6Dqi7J63d3Z+0qZJjGWZ8+pk//YirSo5VOW3w+/WjpNTzE9X4jMu9dWA7i+WqsJ5KV2p+i4KBx7Pc+Ixcn/jOnTv13//935o1a1a/n3/wwQfZf7/yyivasWOHPv3pTwfdPERUvnFb5595RKye2oPC4vQEpjiMIQQQb2HlxFrKb4EVyCtXrtSpp56qnTt36qKLLtKXvvQlSdKll16ql156Kbvdz372M33hC19Qc3Nzv7+/7bbbNGvWLJ199tlavny5brnlln69yqht+cZtTTpkZMHZwIiXYjO7oybqYwgBxF9YOTElafm86TWR3wLbp+XLl2v58uWDfn7//ff3+//LL78879+vXr3al3YhGfKtr2goXk/tQWFxegJT3Nb6BBA/YeVE23Y0ZcKomshvkRtigeiL6hJWtu3IsB2lXFeG7ciSS09eBFUSP3HrlR0Yi0m8eQAIj1c5sZJ8bJpGTeS3qN5fEFFhTQyoBD150VNp/HAuAeATXuTEON3PwxCNrj/ERpwmS0n05EVNNfHDuQSAT1SbE+N2Pw8aBTLKEqfJUoge4gcAooF8XBwFMspSS0u8wHvEDwBEA/m4OArkmAt6wlzcJkshWjLxM/2vxmvZhdO0+p9O1srLPqd6i4QMoDZEZaI79/PiOA4xFsYAeyZLoRq27WhsU73+7sz/j4khAGpOsft20LifF0cPcoyFNcCeyVKoRq/tMjEEQE2K2sQ47ueFUSDHGAPsEUfELYBaRf6LDwrkGGOAPeKIuAVQq8h/8UGBHGMMsEccEbcAahX5Lz44JzHX3FSvVQtmyHGklGnIkssYIhRlWabSUmiTMpgYAqBWFct/juPKtUzyYkRQIMdUKTNhwy6EED1+rXxSbqzZtiNDHycg25Vd8TsDQLzky3+WZertnXu18sFtkVvdZ2B+d2pkvDRDLGJqqJmwmUJo6dqtmt/2lJau3aqOrr7Q1ltENPgxg5pYA4DqpKVscSyFv7pFRr78/vbOvTWR35O/hwk11EzYqC0lg2jwYwY1sQYA1Ynq6hb58vvKB7fVRH6nQI6poWbCRvViQ7j8mEFNrAFAdaK6ukUt5/eSC+T169fr1Vdf7fezV199VevXr/e8URhs4KMp6y2j6EzYqF5sCFc1M6gty1RHZ/egx6MSawBQnZSk5fOm98vN10VgdYtazu8lH/s77rhjUDE8YcIEXX755Zo7d67nDcMnCk2sGttUX3AlgEwhNPBvUlIsJkQxwdAfla4g8UkMbs07KdSPWCMGANSSupSpy885Ro31KXX3plVXF/6X/PlqieXzpgdeS4RxPyi5QN63b59GjhzZ72dNTU3au3ev541Cf4XGeLYtmHHwEZHSoJUA4ryUll8rLeCgSlaQGCoGvY41YgBALUlLWnHfc/2GM4xrGXYwx4bXrLy1xCHNw9Xevi+wNoR1Pyj548nUqVP1xBNP9PvZ5s2bNXXq1JL+fvXq1Zo5c6aOPPJIvf7663m3ueuuu3TSSSdpzpw5mjNnjm688cbs7w4cOKCrr75aZ5xxhs466yz96le/KrXpsVfpGKC4PmOdSV/RM1QMeh1rxACAWhLlsb4D87sZ8PCKsO4HJfcgL168WPPnz9cvfvELTZ48We+8846ee+453XfffSX9/Wmnnaavf/3ruuCCC4puN3fuXC1ZsmTQzx944AGNGDFCmzdv1ltvvaULLrhATz75pEaMGFHqLsRWZgzQwE+WlmlIdmkXT5y+ri6WKMIej1UL8sWKK1Udg+UgBgCEIax7pRf3+aQK635Qcg/yiSeeqMcee0xHH320Dhw4oGOOOUaPPfaYTjjhhJL/fuLEiRU39Be/+IXOP/98SdLhhx+uz3zmM3r66acrfr04qfbRlHFbp7aWJwWErVCsDDUp1PN2EAMAAhbmvTLfJD0eQX1QWPcDw3XdQD+azJw5U/fee6+OOOKIQb+766679JOf/ESjR49Wa2urrrzySh133HGSpOOOO05PPfWUxowZI0m64YYbNGXKFF100UVBNj80juPqo/096ks7qkuZGj2ioeSvOTo6u7X4jqcHfTJds/BUtTQ1+tXkijmOO+iJQsvnTdeUCaMC/2qn1hSLldEjGiqOwXIRA/DC7EUbSt52461zIvf6CFbY98pq7vNJFtb9oOiHk29/+9v6zne+I0n65je/KcPI35BbbrnFk8acf/75uuyyy1RXV6etW7dqwYIF2rRpk1paWjx5/fb2fZF+RGJra5N27+4suo0hKZ221d7dV/Lrpg0j79cT3T1p7e4u/n5+Kra/oxtTgyZ9BTEpoLW1yff3KGao8++3YrGS7u7LnrNyY7AS1cRAKddS2CppY5jx6Wf+9ON8VXKsymmD368fJaWen6jGZ6ntD/te2drapHR3X0X3+SCFkV8ruR8MbGe58Vm0QD7ssMOy/54yZUpZL1yJ1tbW7L9nzJihiRMn6o033tC0adM0adIk7dix4/9v786joyjT/YF/q6qzEAikExIIi6JcUVRENBCVbVguiMM2+uOAjnCUJY44ohxBAjIgiGAQZwYFhgtX5eqZi8oFgwEURnEUUVnGMCKgojLKsCQQOhAIWbqqfn/Ebjud7qSXWru/n3M4h3S6q5+qet63n7z91lveEeRTp04hNzdX95higVXnNimKClUSA871imSlhXih5xw5K+UKc4CIjBRu/2ena3vszozPg0YL5Iceesj7/7Fjx9YrYD3OnDmjWTAlJSVo06YNAODIkSM4ceIErrrqKgDAnXfeiTfffBPdunXDv/71Lxw8eBAvvPCCZu8dy6y4JrIkiQ2+MuEyXk3Te7kbK+YKEZERwun/uBRl7At5/vfQoUPxxRdfNHj817/+Nfbu3dvk6xctWoQdO3bg7NmzePDBB5GWloatW7diypQpmDZtGrp164Y//vGPOHToEERRREJCApYuXeotyidNmoT8/Hz853/+J0RRxMKFCxusy0yB+a5jCAGAKkBRFLgBOCTRlMbsBrzFMeC3rq7h0dhHo+sRa7B9O6+fbRaOIhHFhnD6P737Yq2xnwpfyAVyoGv5Ll68GHResr+5c+di7ty5DR5fu3at9/8FBQVBX5+SkoIXX3wxpPeihmRZgUMS4bpkjb94uYxXZIw4bpzaEDqOIhHFllD7Pzt9hrGfikyTa5f0798fv/rVr1BdXY1f/epX9f716dMHgwcPNiJO0oCVbr7AZbwiw+NmLVZqU0RkHDv1xeynItPkHzrPP/88VFVFXl5evdUqBEFARkYGrr76al0DJO1Y6S9ez5qP/nOQOde1cZwjbC1WalNEZBw79cXspyLT5LHp1asXAODzzz9Hs2bNmng2WZnVVii4sm1LznUNE+cIW4uV2hQRGcdOfTH7qciEfHuYmTNnYv/+/fUe279/P6ZNm6Z5UKSPaO/IpzVRFOrd392KHYsVybLC42YRVmtTRGQcu/TF7KciE/Lx2bdvH5YvX17vsZtvvhmPPPKI5kGRPuz0Fy+RHbBNEZHVsZ+KTMgFcmJiIi5fvlxvabXKyko4HPwbxE64QgGRttimiMjq2E+FL+Tqtk+fPpg3b553/eGLFy9i4cKF6Nu3r57xERFRDEpt2QzJSb98BDV1G9jqGhlJiZLeYemmplYO61a34e5vVbUbFRcuN/1ENDz2TampZTlF8SfkFpKfn4+ZM2eiV69eaNWqFc6fP49+/frVW9mCiIgoFMlJDox4YnPIzy96YVTYz7eSxARJ9/2tCPG5kRx7ongTcoHcqlUrrFmzBqWlpTh9+jSys7MD3nqaiIiIiMjOwp5AnJWVhczMTKiqCkWpm+AtiiEvhkFEREREZGkhF8glJSVYuHAh9u/fjwsXLtT73ZEjRzQPjMLHe62TUZhrRESNYz9pbyEXyPPnz0dycjLWrVuH+++/H3/961/x0ksvoX///nrGRyHivdbJKMw1IqLGsZ+0v5DnRhQXF2Px4sXo2rUrBEHAddddh2effRavvPKKnvFRiALda339jq/hhgC3IECVREgSp8LEOkkSoUqiruc8UK4tXrcXbs3fiYjInvz7SWdqMlwVVahWVH4e20TII8iiKHrXPG7ZsiXOnTuHFi1aoKSkRLfgqHG+X9/A717r117hxIi+nTF71Sf86zVO6DVi4ZtnrooqKH65BtQVybKi8s5MRESo6y89/eS1Vzgx/q6uePHNYk36Zk7dMEbIf8J0794dH330EYC6NZEff/xx/P73v0e3bt10Cy7WaDm65ymGZq/ajbwlH+DEmYve20gCwD0Dr/E2RsD4UT4jRjKpvmAju7VAxOfAP89mLP8YKlAv1/Dzz5IoRL8TFsM8JqJISKLg7SeDfR5H0jf798mzV+2Gq7JW076J/V6dkPd66dKl6NmzJwBgzpw5uO2223D11VejY8eOugUXS7ROav9i6I0d3+KxcT28DbJVi8Sgo3x6M6IBU0NykJHdM67LEZ+DQEX3y+98hTkP9PLmmmc0JNZGj5nHRBQpB+DtJ1NTEjTrm/We4sZ+7xch73HLli2RlpYGAEhOTsbUqVMxffp0bNq0SbfgYonWSe1fDH3zkwuvbT2CxVN7Y83sQWjdqplpo3yco2oO3xELjyxnM1RU1kZ8DgIV3XsOlSC1eQKW/JxrS6b2jsmpO8xjIoqULCtwptT1k5nOwJ/HkfTNwQZCtBr8Yr/3i6j+JBAEAaqq/4hkLNA6qQMVQ66Kqrp7rasqHFBNG+XTuwFTYL4jFkDdOZ82tgc27jwKILJzEKzohgoIsgKHqkKQlZgrjgHmMRFFR5YVCLKCBGjXNwfrk7Ua/GK/94uo6yVBCO2kFBQUYPv27Thx4gSKiorQpUuXBs9ZuXIltm3bBkmS4HA4MH36dPTt2xdA3a2uP/30UzidTgDAnXfeiYcffjja8A3jSWrfxPMmtRx+4nmKIf8LshwAZNT/69Xoifxa7yuFpv45B06cqcDr247gm59cACI7B03lWSxjHhORFkLum0Ogd5/Mfu8XTRbIn332WdDf1dbWhvxGgwYNwoQJE/Db3/426HNuuukmTJw4Ec2aNcPXX3+N+++/H5988gmSk5MBAHl5ebj//vtDfk8r0TqpGyuAPVe4Vv/8eJIoQJYVwwoarfaVV+qGT5YVCACSJBHO1GSkpSZizgO90KpFIpypSUiUBNSGeBI8x795sgNLpvYBBBUJDglqrRwX5yGe/zggihWSJMJVUQW3IDT6OaL3541/3+yqqAIQ/re7eg9+sd/7RZPn5Kmnnmr099nZ2SG9UU5OTpPP8YwWA8C1114LVVVRXl6Otm3bhvQeVqZHUnsanAMAZBUyrLE4uRb7aoX9sDNZVpCRmoh7h1wX0TEMdvyvapeCsrKLBu2Fucz8FoaIovdLP7a70T7QyM8bLfqVQJ/9VoovVjQ5B3nnzp1N/tNDYWEhrrjiinrF8auvvooRI0Zg6tSp+P7773V5Xz155iPpOW/TKhPso91Xq+yHndXIasTHMNjxP3+pWr+ALciINktE+gj1c8Tozxur9ytWj88ollyZae/evVi+fHm9u/RNnz4dmZmZEEURhYWFmDx5Mt5//31IkhTydjMyWugRrqYyM1Ojen2pqzLgBHsIQtTb1kOwmOy2H1rRct+iOYbBXlvrVpBlk+NvhzyxQ4wedug/o2Wn8xGInvFb/dgEys9Q+0Arfd5Y/Th7xEOcliuQi4uLMXPmTKxatQpXX3219/E2bdp4/z969GgsWbIEp0+fRvv27UPedlnZRSgWvhIzMzMVZ85URLcRSQw4wR6qGv22Ndbo/pq0H2Y3ek33LZpjGOS1CQ7RcnkUiCZtSWeRxGhmfmrdf5rd1gIJ53zYOf5IYg9l25bLz1D7QIt8btqh3wLsG2e4+WmplZ+//PJLTJ8+HS+++CJuuOGGer/zvaX1rl27IIpivaKZ6gRa6suON3GIlf0wUzTHMNhrWzVP0i1eIiIthdoH8vOGAjHs/C9atAg7duzA2bNn8eCDDyItLQ1bt27FlClTMG3aNHTr1g0LFixAVVUV5s2b533d0qVLce2112LWrFkoKyuDIAho0aIF/vKXv8DhYPr6i5UJ9rGyH2aK5hgGe60Yg7eTJqLY5OnHlj3WD1XV7qB9ID9vKBDDKsy5c+di7ty5DR5fu3at9/8bN24M+vp169bpEVZM0vMKVyPFyn6YKZpjyONPRHYnywoy05vjTFVFo/0Y+zvyZ6kpFkREREREZuMcBSIiIpurqZUteeEgkV2xQNYY7/5GVsJ8JIoPiQkSRjyxOaTnFr0wSudoyIN9sH2xQG5EuInNu7+RlWiZj562UOqqBCSRnTwRUQC+dYNDFHGp1o2n137OmsCGOAc5CE9xMXvVbuQt+QCzV+2Gq7IWkhT8kPHub2QlWuWjb1uYtOhvIbUFIqJ441835K/6BK6KajhTkwGwJrAbfsIFEUlxIStqwLvxyBa+OQnFLq3ykX/4ERE1LVBfufyNYtwz8Brvc1gT2AcL5CAiKS4kUfAuNO6R5WwGiWvHkgm0ykf+4UdE1LRgfWVqSoL3Z9YE9sECOYhIigvejYesRKt85B9+RERNC9ZXVtW4vf9nTWAfPE9BeIoL/wucHECjC43zbjxkFVrlYyRtgYgo3gTqK596oBdapSZizexBrAlshgVyEJEWF7F8Nx4uV2M/WuSjb1uAIACqaulzL0kiXBVVcAsC85SIDBO0bqiRNa0J+FlsDBbIjYjlYjdcjS0ZBoCNNcZ52kJmZirOnKnQvS1E+gHwS57u5rJKRGQoIwpXLidrHM5BppAEW8lAlYSwl8MjakwkSyx6cMUNIjJDNP1WONjHGYdVDIUk2NW5blllYyVNRfMBwBU3iMgMRhWu7OOMwwIZdX/5qZIItyBAlUSOfgYQ7OpchY1Vd/GWn9F8AHDFDSLy5XtNgp79p1GFK/s448T2J20IjPpaxO6CLhkmimysOorH/IzmA4BLLRKRh6f/nLH8Y937T6MKV/Zxxon7Yxrsa5ElU3uDJd4vgl2dC6hcAkxH8Zif0Swr58nTZY/1Q1W1mxeNEsUxI/tPo5bD5HKyxon7Armxr0Xi/uD4CbaqBxurfuIxP6P9AJBlBZnpzXGmqiLuV58himdG9p9GFq5cYcsYsfs9bYg4nyd6sqxAkBU4VBWCrLA41lC85idzioiiZXT/yX4rtsR9gcz5PGRlzE8iosiw/6RoGJInBQUF2L59O06cOIGioiJ06dKlwXNkWcaiRYuwa9cuCIKAvLw8jBkzpsnfRYvzecjKmJ9ERJHhNQkUDUMK5EGDBmHChAn47W9/G/Q5RUVF+Omnn7Bjxw6Ul5dj9OjRuP3229GhQ4dGf6eFcOfz8DaPZKRI55sxT4ko3oVzTQL7TPJlSIGck5PT5HO2bduGMWPGQBRFpKenY/DgwXjvvfcwefLkRn9nNN7mkeyAeUpEFDr2meTPMlNxTp06hXbt2nl/zs7OxunTp5v8XTgyMlpEHaerogqL1+1usGzMssf6ITO9edTbz8xMjXobdhJv+9sUrY6Hnnlql3NmhzjtEKOHFv2n1dnpfBjN6semqfxsKn69P9tDZfXj7BEPcVqmQDZCWdlFKFHe1cYtCAGXjamqdtd9hROFzMxUnDkT3TbsxIr7a3aj1+p46JWnVjxngdghzkhiNDM/teg/fZnd1gIJ53xYMX49hXJsrJqfobQ1PT/bQ2WHfguwb5zh5qdlCuTs7GycPHkSN910E4D6o8aN/c5onmVjfBuSd9kYmbdXJmtgnpLRUls2Q3KSZT5SwlZTK8dd0Uu/YJ9J/izTm915553YsGEDhgwZSrR3YwAAIABJREFUgvLycrz//vv461//2uTvjGbU3XKIosE8JaMlJzkw4onNIT+/6IVROkYTvsQEydbxU3TYZ5I/QwrkRYsWYceOHTh79iwefPBBpKWlYevWrZgyZQqmTZuGbt26YdSoUfjnP/+JIUOGAAAeeeQRdOzYEQAa/Z3RuOwW2QHzlIgodOwzyZ8hBfLcuXMxd+7cBo+vXbvW+39JkrBgwYKAr2/sd2bgbR7JDpinREShY59JvuL+TnpERERERL5YIBMRERER+WCBTERERETkgwUyEREREZEPFshERERERD5YIBMRERER+WCBTERERETkgwVyAJIkQpVEuAUBqiRCkniYyBqYm0RE1sJ+OTZZ5lbTViFJIlyVtQ1uN+lMSeAddchUzE0iImthvxy7+GeOHzfgTXQAKHVdxuJ1e+E2Nywi5iYRkcWwX45dLJD9yIrqTXSPUtdlyIpqUkREdZibRETWwn45drFA9iOJArKczeo9luVsBkkUTIqIqA5zk4jIWtgvxy4WyH4cAOY80Mub8J75RJysTWZjbhIRWQv75djFc+hHlhU4UxKwZGpvyIoKSRTg+PlxIjMxN4mIrIX9cuxigRyALCsQ8PPBkVXIJsdD5MHcJCKyFvbLsYlTLIiIiIiIfLBAJiIiIiLywQKZiIiIiMhHXM1BFm2w7IodYtRSvO1vU+xwPOwQI2CPOO0Qo4edYiXtWf38NxWf1eP3YJzaiiZOQVVVrmZNRERERPQzTrEgIiIiIvLBApmIiIiIyAcLZCIiIiIiHyyQiYiIiIh8sEAmIiIiIvLBApmIiIiIyAcLZCIiIiIiHyyQiYiIiIh8sEAmIiIiIvLBApmIiIiIyAcLZCIiIiIiHyyQiYiIiIh8sEAmIiIiIvLBApmIiIiIyAcLZCIiIiIiHyyQiYiIiIh8sEAmIiIiIvLBApmIiIiIyAcLZCIiIiIiHyyQiYiIiIh8sEAmIiIiIvLBApmIiIiIyAcLZCIiIiIiHyyQiYiIiIh8OMwOwF91dTUWL16Mzz77DElJSbj55pvxzDPP4NixY8jPz0d5eTnS0tJQUFCATp06hbXtsrKLUBRVn8A14HSmwOWqNDsMw1hxfzMzU017b7dbttzx8GfFcxaIHeKMJEYz81PP/tMO5ysc8bo/Vs1Pu5wPxqkt/zjDzU/LFcjPP/88kpKSsH37dgiCgLNnzwIA5s+fj/vuuw+jRo3C5s2bMW/ePLz22msmR6sth0MyOwRDxdv+NsUOx8MOMQL2iNMOMRol1o4F98da7BI/49RWtHFaaorFpUuXUFhYiMceewyCIAAAWrdujbKyMhw+fBjDhw8HAAwfPhyHDx/GuXPnzAyXiIiIiGKQpUaQjx8/jrS0NKxYsQJ79uxB8+bN8dhjjyE5ORlt2rSBJNX9NSBJErKysnDq1Cmkp6eHvP2MjBZ6ha4ZM7+iMkO87W9T7HA87BAjYI847RCjh979p52ORSi4P8ZqKj+tHr8H49RWNHFaqkB2u904fvw4rr/+esyaNQv//Oc/8bvf/Q7Lly/XZPtWn4OcmZmKM2cqzA7DMFbcX7MbvdWOhz8rnrNA7BBnJDFadY5ntOxwvsIRr/tj1fy0y/lgnNryjzPc/LTUFIt27drB4XB4p1J0794dTqcTycnJKCkpgSzLAABZllFaWors7GwzwyUiIiKiGGSpAjk9PR25ubnYvXs3AODYsWMoKytDp06d0LVrV2zZsgUAsGXLFnTt2jWs6RVERERERKGw1BQLAFiwYAHmzJmDgoICOBwOLF26FC1btsTTTz+N/Px8rFq1Ci1btkRBQYHZoZINSJIINwBZUSGJAhwAZFkxOywyAXOBqA7bgvZSWzZDclLoJVVVtRsVFy7rGBFFy3IFcseOHfH66683eLxz587YsGGDCRFROKzU8UqSCFdlLRav24tS12VkOZthzgO94ExJ4IdBnLFqLlipvVB8CKctePKz1FUJSCLzsxHJSQ6MeGJzyM8vemEUrD+LN75ZaooF2Zun4529ajfylnyA2at2w1VZC0kyJ83cgPdDAABKXZexeN1euE2JhsxkxVxQFNVS7YXiQ6htwbc/n7Tob8xPijvMdNKM1YoQWVG9sXiUui5DtvBKJqQPK+bC+UvVlmovFB9CbQtW68+JjMYCmTRjtSJEEgVkOZvVeyzL2QySKJgSD5nHirlQ61Ys1V4oPoTaFqzWnxMZjQUyaUbLIkSSRKiSCLcgQJXEiL7WcwCY80Avb0yeuXaWm3hPAWmRAx5WzIUEh2i5op20oSiqZrmrtVDbghX/qCQyEmsF0oyn4/W/+MMBQA5jO1pdUCXLCpwpCVgytTcvgrIZrS+qs2IutGqepEl7IWuRJBE/nr6ARa/ssdQFoR6htgWt+nMiu2KBTJrRqggJNvdtydTeCHfsQpYVCPg50WWVHbtNaJkDHlbLBVEULFe0U/TcgLc4BrTJXa2F0hZ8+3MIAqCqzE+KK9b53odigiwrEGQFDlWFICuRjfZx7lvci5cc0KK9kLXEUu568jPLmcL8pLjDApksh3PfiDlAdsXcJYoNLJDJcqx4QRUZizlAduUAMHdiLnOXyObYZslyrHhBFRmLOUB2JcsKrmzbkrlLZHMskMmSrHZBFRmPOUB2JYpC3dxygLlLZFOcYkFERERE5IMFMhERERGRDxbIREREREQ+WCATEREREflggUxERERE5IMFMhERERGRDxbIREREREQ+WCBTRCRJhCqJcAsCVEmEJDGVyHyevCx1VTIvKS6xbybSBm8UQmGTJBGuylosXrcXpa7L3lupOlMSeLcoMg3zkuId2wCRdvinJYXNDXg7YAAodV3G4nV74TY3LIpzzEuKd2wDRNrhCDKFTVZUbwfsUeq6DFlRmVBkGuYlxTu2AfuoqZWRmZna4PFAjwFAVbUbFRcuB/wd6YNthsImiQKynM3qdcRZzmaQRAGQVRMjo3jGvKR4xzZgH4kJEkY8sTnk5xe9MAoVOsZDDXGKBYXNAWDOA72Q5WwGAN55bvxri8zEvKR4xzZApB22GwqbLCtwpiRgydTekBUVkijA8fPjRGbxzUsIAqCqzEuKK+ybibTDEWSKiCwrEGQFDlWFICvsgMkSPHmZ5UxhXlJcYt9MpA0WyEREREREPlggExERERH5YIFMREREROSDBTIRERERkQ8WyEREREREPlggExERERH5YIFMREREROSDBTIRERERkQ8WyBQzJEmEKolwCwJUSYQkMb3JHMxF0gtzi8gYlr3V9IoVK/DSSy+hqKgIXbp0wYEDBzBv3jxUV1ejffv2eP7555GRkWF2mGQRkiTCVVmLxev2otR1GVnOZpjzQC84UxJ4JykyFHOR9MLcIjKOJf/0PHToEA4cOIB27doBAFRVxcyZMzFv3jxs374dOTk5WLZsmclRkpW4Ae+HBgCUui5j8bq9cJsbFsUh5iLphblFZBzLFcg1NTVYuHAh5s+fD0EQAAAHDx5EUlIScnJyAADjxo3De++9Z2aYZDGyono/NDxKXZchK6pJEVG8Yi6SXphbRMaxXIG8fPlyjBw5Eh07dvQ+durUKe9oMgCkp6dDURSUl5ebEaJt+M9VS0iUYnbumiQKyHI2q/dYlrMZJFEwKaL4Em/zIhvbX+YiBaJFGzEyt3zjdVVUxXybJvJnqTnIxcXFOHjwIGbMmKHL9jMyWuiyXS1lZqZqsh1FUfHj6QtY9MoelLouI/eGNhg35Dos8Zm7NndiLq5s2xKiiR/cWu7v3Im53v317F/rtBRT9y9cWh0PPfnH6J9rsZZb/pra33By0Q7n20Pv/tNOxyIUvvujVRsxqp+zaptuTFP5GQv5ZaV9sFIsjYkmTkFVVct8N7NmzRq89tprSExMBACcPn0aGRkZGD9+PN555x1s2bIFAHDu3DkMHDgQBw4cCGv7ZWUXoVj4q6jMzFScOVOhybZUScTsVbu9X8fNeaAX/nvzwXpfz2U5m2HJ1N4QTLq4Q8v9BepGPNyo+xpSEgU4gLAvXDG70Wt5PPQQ6Jz55xoQe7nlK5T9DSUXI4nRzPzUs//U83yZwX9/tGwjWvRzTYk0XqvmpxH5lZmZihFPbA75+UUvjAr7+VZpI3Zpr/5xhpuflvrOJC8vD5988gl27tyJnTt3om3btnj55ZcxefJkVFVVYf/+/QCAN954A8OGDTM5Wmvzn6uWmpIQ83PXZFmBICtwqCoEWeFV3QaJt3mRoewvc5F8adlGjMiteGvTRIFYqkAORhRFLF26FAsWLMCQIUOwb98+PPHEE2aHZWn+c9UqKmsNnRcZb3NS41ksz7kNlMexvL/xwuj+yW45Y7d4ifRg6apl586d6NKlCwDglltuQVFREXbs2IFXX30VrVu3Njk6a3OgblqFp5P7YN+PmO3zs2f9TD0moXvW6py9ajfylnyA2at2w1VZyyI5Rvnnmp65ZaRgeZwoCTG5v/HCjP7Jbm3EbvES6cFSc5D1Fk9zkIGGc9USJQE1sqrr3DUg9PlrVpzHxDnIjQt2zoyYFxkOLXKrsTx2AJrMd+cc5DpG9gVGzJkPtD9WayNN8Y03OckBtVZuMl6r5mdmZiqqqt1ITgq9xK+qdqPiwuWmn+jzHnaeg5zaspmux8cM0c5B5h+EMUyWFQj4+STLKmpl1PtZ1ut9G5m/xoSLTf65plduGamxPBZUNeb2N16Y1T/ZrY34xutMTbb8H+9NSU5yhF2Q2nuPw8Pj0xC/8ybNcf4axQLmcWzieSWiULBAprA1dYEL569RY+xyASfzODbZ5bzapZ0QxSpd+oT9+/dj69atKCsrw4svvojDhw+jsrLSe6tosi/PBS6LfW44MueBXnCmJHjnp8myAmdKApZM7W2b+XZkjFDyxyqYx7HJDufVTu2EKFZp/ifpG2+8gSeffBLp6enYvXs3AECSJPzxj3/U+q3IBG7A22kDdXP3Fq/bC7ff87gOLAUSav5YBfM4Nln9vNqtnRDFIs0L5JdffhmvvvoqHn30UYhi3eY7d+6M77//Xuu3IhNwAXmKBvOHqGlsJ0Tm07xArqioQIcOHQAAglB30YOiKHA4rDbDiyLBC1woGswfoqaxnRCZT/MC+ZZbbsG6devqPbZ+/Xr07NlT67ciE9jlAheyJuYPUdPYTojMp3l7+8Mf/oC8vDy89dZbqKysxMiRIwEAa9eu1fqtKALRLlZvhwtcyLpiMX/sdgMIip7e5zwW2wmR3WheIGdnZ2Pz5s34xz/+gRMnTiA7Oxu33norp1hYgFZXRtttwXuylljKH642EH+MOuex1E6I7EjzKRaPP/44RFFEz549MXr0aOTm5sLhcOCJJ57Q+q0oTLwymkhbbFPxh+ecKD5oXiB//PHHAR/ftWuX1m9FYeKV0UTaYpuKPzznRPFBs3kPq1evBgC43W7v/z2OHz+ONm3aaPVWFCHPldG+nbv3ymiZnTtRuNim4g/POVF80GwE+dtvv8W3334LRVG8///2229x9OhRNG/eHH/+85+1eiuKEK+MJtIW21T84Tknig+atWnPnfJef/11jB8/XqvNkoZ4ZTSRttim4g/POVF80PyP3r59++LcuXNIT0/H5cuX8dprr0EURUyYMAFJSUlavx2FiVdGE2mLbSr+8JwTxT5dVrFwuVwAgOeffx5///vfsWvXLixYsEDrtyIiIiIi0pzmI8j//ve/0blzZwDA9u3b8c477yApKQlDhgzR+q2IiIiIiDSneYGckJCAyspKfPfdd8jKykJGRgZkWUZVVZXWb0VEREREpDnNC+Rhw4Zh4sSJuHTpEu655x4AwJEjR9C+fXut34qIiIiISHOaF8hz587Fhx9+CIfDgf79+wMAZFnGk08+qfVbERERERFpTvMCWRRFDBo0qN5j3bt31/ptiEIiSSLcAJdjigE8lxTPmP9ExtK8QFYUBRs2bMDevXtRXl4OVf3lzkKvvPKK1m8X14zuMO3WQUuSCFdlLRav24tS12Xvgv7OlARLx201vufdVVEFSRINP37hnEtJEuGqqIJbEGyRp9Q4vfodO/Vn7MuoplZGZmZqyM+vqnaj4sLlpp9oQaktmyE5KfTyVK991bxALigowN///nfcc889+Mtf/oKHH34YGzZswF133aX1W8U1oztMO3bQbsAbLwCUui5j8bq9WDK1NwRzQ7MNq5z3UM/lL/Hutk2eUnB65Z9V8jpU7MsoMUHCiCc2h/z8ohdGoULHePSUnOSwxL5qvg7yu+++i//+7/9GXl4eRFFEXl4eVq1aheLiYq3fKq4F6zDdMfJ+WpAV1RuvR6nrMmRFDfIK8meV8x7qubRKvKQNvc6n3fKEfRmR8TQvkCsrK9GxY0cAQHJyMqqqqnDNNdfgq6++0vqt4prRHaYdO2hJFJDlbFbvsSxnM0gix1xCZZXzHuq5tEq8pA29zqfd8oR9GZHxNC+Qr776am8xfP3112P16tV4+eWXkZmZqfVbxTWjO0w7dtAOAHMe6OWN2/M1qubzimKYVc57qOfSKvGSNvQ6n3bLE/ZlRMbTvH3l5+d7L8zLz8/H3LlzUVlZyVtNa8zTYfrPoXMAkGPg/bQgywqcKQlYMrW3LS7EsSKrnPdQz6VV4iVt6HU+7ZYn7MuIjKdZgbxlyxYMHz4ct9xyi/exzp07Y/369Vq9BfkwusO0awctywoE/JzosmrJDz8r8z/vyUkOqLWyKec9lHPpiXfZY/1QVe22TZ5SYHr1O3bsz9iXERlLsykW8+bN02pTFCJZViDIChyqCkFWdO/cjX4/sgbf8+5MTbb8eZdlBc7UZOZpjNCr32F/RkSN0axA9l3vmIiIiIjIrjSbYqEoCj7//PNGC+Xbb79dq7ejGGOnRfvJnphjFIuY10T60KxArqmpwVNPPRW0QBYEAR988IFWb0cxxG6L9pP9MMcoFjGvifSjWYHcrFkzFsA6CjRKACAmRg54lyhjRTriZOdbODPHyGhG9NnMayL9cBlFGwg0SvD0lNtQW6vg2RgYOWhs0X4mqLYiHXGy+y2cmWNkJEVRDemzmddE+rHcRXoulwtTpkzB0KFDMWLECPz+97/HuXPnAAAHDhzAyJEjMXToUEycOBFlZWWavKfVBRolKDlX6e1oPY9Z+VapjbHbov12Fuktdu12a15/zDEy0vlL1Yb02cxrIv1oViAXFxdrsh1BEDB58mRs374dRUVF6NixI5YtWwZVVTFz5kzMmzcP27dvR05ODpYtW6bJe1pdoFGC5ESHrW6V2hjeJco4kd5i12635vXHHCMj1boVQ/ps5jWRfizXjtLS0pCbm+v9+eabb8b69etx8OBBJCUlIScnBwAwbtw4DBo0CEuWLDErVMN4Rgl8O9eqGneDx7wjB7I9ihYPOy7ab1eBcimUvIn0dVbBHCMjJThEQ/ps5jWRfixXIPtSFAXr16/HwIEDcerUKbRr1877u/T0dCiKgvLycqSlpYW0vYyMFnqFqpnMzNQGjymKirkTc7HolT3euWttM5o3eGzuxFy0TkuBaKOv1wLtbzzT+3gEyqVQ8ibS15nJDrllhxg99O4/7XQsmhKLfbbVz48e+Wn1fW6K3vFb6fgEiyWaGC1dID/zzDNISUnB/fffj7/97W9Rb6+s7CIUE78Sbmr1gMzMVJw5UxHwta2SHQ1GCeAQsfTRPnDLKhRFhUMUUV5eaZvRg8b21yxmN3gtj0ewfAuUS2VlF5vcXqtkR4NbOIfyunBi04oVc8tfJDGamZ969p9Gny8j8i9Ynx2o7Vl9LeNQz49V8zPSuMLJSbM/OwLRO3692qxWsfjnbbjbtWyBXFBQgB9//BGrV6+GKIrIzs7GyZMnvb8/d+4cBEEIefTYbNGuVynLCgT8fMJkFfLP2yyvqOEamNRAU/nmn0uhkGUFmenNcaaqIqzXhRsbkZ6Myr9g7SxQP872QGQ9ml2kp6U//elP+Oqrr7By5UokJiYCAG688UZUVVVh//79AIA33ngDw4YNMzPMsOixCoDdVxYg/Vg5N6wcG8U+q+Wf1eIhojqWG0E+evQoVq9ejU6dOmHcuHEAgA4dOmDlypVYunQp5s+fj+rqarRv3x7PP/+8ydGGTo/1KpvaptW/tiPt+Z7zyaO6YePOo/jmJxcA66yPyrVbyUy++XftFU7cM/AapKYkQAXgkETD+0i2ByJrslz7u+aaa/DNN98E/N0tt9yCoqIigyPShh6rADS2TQkCv7aLM4G+qp02tgde33YE3/zkssyqE3ZfEYPszZN/ztRkjL+rK158s9jUPpLtgciaLDnFws4kSYQqiXALAlRJhCTVHWI91qtsbJv82i7+BDrnL75ZjGlje6Dg932w6Hd3IFEy/2p5rt1KWgrW5wbjyb9xQ7p4i2PAvD6S7YHImtgGNdTUxRZar1fZ2DZlQeDXdnEm2Fe1Fy/XYNaKTyzzLQLXbiWtRHKBmyf/UpKD37jDyD6S7cGaamplS65MQcZhraShYKO2S6b2hoDgVzVHw3ebEoS6+aeCAElsuFA9v7aLbcG+qj1/sQZAw3yM6r2inN+uR1ug+NNUnxuMLCuQpGB9pAgJqqEFKtuD9SQmSBjxxOaQn1/0wigdoyEzcIqFhsy8Ha9nJGX2qt3IW/IB1hR+idn82i6uBPqqdtrYHti486j3OVrko3+uzV61G67K2ia/2ibSWjR9brD2sqbwS+YzEbFeaky4o2RmXmzhP5Ky51AJAGDJ1D6QFYVf28WBhl/VilhT+KV3FQsg8nz0tIVSVyUAIaJROyKtJSaImD85F8mJDlRU1mLjzqNwVVSFlOO/tJc+OHv+Ms5frPFe0Hrs5AXmM1GcY4EcRCRz2zwjEv6vcQC6f2UWaCRlz6ESTBqpwKGq/NouTtSfcqPi3iHX4djJC1Hlo39bKPh9H0vM3aT45rlR0l82funN78fG9YAzNSnkHPdcrzFrxSf1Hmc+ExHbfxCRzG0z82ILM0evud6yNWmVj/5t4fzFGt1zjTlFQON54AbwrF8fvfyNYjw3tQ9kOfQ/AbnMGhEFwklWQUQ6t02WFQhy3aitICuGfaibtVQQ56Namxb56N8WNu48imlje+iWa8wpAprOg2B9tFsJL8e5zBoRBcI+IABJEqHCXqMKZo1eR3oVOUXGjJFV/xG2b35yoWjX97rNb2dO2YteOdlUHmg18stl1ogoEA7J+PGMWqwp/FLXUTI9mDF6bebKHfHGrJHVQCNs9w65Dg6ouuQac8o+9MzJpvJAy5Ffs775IyLrsnK9ZwrfUYvyihpMHtUNrVokonWrZnAYvDamHUQziqMoKlRJ5KhNiDy56UxNxuRR3ZCakgBXRRXSUhN1vQrUd4QNggCoqq7ninNC7UPP0f6m8sAKI7+cK08UuziC7Md31OKbn1xYvG4vZq34BLLCUYVAIh3FkSQRP56+wHmmYZAVFc7UZIy/qyv+e/NBzF61G3/Z+CXKK2p0P26eEbYsZ4ruI2ycE2ofeo72h5IHZo78cq48UWzjZ44fjl6FJ9JRHDeARa/s4TzTMEiigHFDuuDFN4tj+rhZYWSQQqNnf2n1PGhs9JyI7I9/6vrh6FX4IhnF4TzT8DkAtGvdIi6OG+eE2oPe/aWV84B9GFFsY93nx+qjFrGCI/Xhk2UFCZLE40aWEc/9ZaN9GBHZHkeQA7DyqEWscACYOzGXI/VhkqDyGw6ylHjtL/ltI1FsY1smU8iygivbtozLkadoxPOIHZGVsC0SxTYWyGQaURTqRp6AumWbzA7IJmRZgQDwuBGZjG2RKHZxigURERERkQ8WyEREREREPlggExERERH5YIEcJyRJhCqJcAsCVEnk3Z4oKOYKUfh8242roorthsjmeJFeHPDcEtVz1yfPckTOlARecU31MFeIwsd2QxR7WCBHQJJEuAHbLO3T2C1Rrbykvd2Os9VEcvx8c+XaK5y4Z+A1qK6V4UYiHBwRIw355qdnxFWv9q13X2LXPpZiV02tjMzMVMtsv7pGRlKipFs8emCBHCY7jhQ0dktUqyaAHY+zlUR6/Dy5cu0VToy/qytefLO43uvT0ni3Poqeke3biPeyYx9LsS0xQcKIJzaH/PyiF0bpvv1Qnx9uLHrhkFCYgo0UuM0Nq1GeW6L6svotUe14nK0k0uPnyZV7Bl7jLY59X3/+UrW+gVNcMLJ9G/FeduxjiahxLJDD1NhIgVXZ8ZaodjzOVhLp8fPkSqsWiQFfX+vm6D1Fz8j2bcR72bGPJaLGsf2GyTNS4NvhekcKZGsWb3a8Jaodj7OVRHr8PLniRmLA1yc4RLjdvF8YRcfI9m3Ee/n3sclJDqi1sqX7WCJqHEeQw2TXkQJZVupu66yqEGTF8h23XY+zVURz/GRZgQNqwNe3ap6kX9AUN4xs30a9l28f60xNtnwfS0SNY70RJjuOxtoRj3N0oj1+wV4vck4lacDIEVf2JUQUCRbIEZBlBQJ+PniyCn7hrA8e5+hEe/x4/ElPvvnlTE3GmTMVhrwXc5mIQsEpFkREREREPlggExERERH5YIFMREREROSDBTLq7rSkSiLcggBVEiHZ/Ja6sbY/8S6a88lcIDvSOm/ZDogoXLa6SO/YsWPIz89HeXk50tLSUFBQgE6dOkW1zVi7pXGs7U+8i+Z8MhfIjrTOW7YDIoqErf6Mnj9/Pu677z5s374d9913H+bNmxf1NmPtlsaxtj/xLprzyVwgO9I6b9kOiCgStimQy8rKcPjwYQwfPhwAMHz4cBw+fBjnzp2LaruxdkvjWNufeBfN+WQukB1pnbdsB0QUCdtMsTh16hTatGkDSZIAAJIkISsrC6dOnUJ6enpI28jIaNHgMVdFVcDbkCYnOeBMTdYm+DBkZqZG9Xqr7U9Tot3fWON/PKI5n3rlgl3OmR3itEOMHoH6Ty15joXWeWtWn2incxsKq++A3TYKAAAS6UlEQVSP3vlJ1hYsP6PJW9sUyFooK7sIxW/UQJJEzHmgV4P5aWqtrOvC9YFkZqZG/Z5W2p+maLG/WjP7Q8D/eERzPvXIBSues0DsEGckMZqZn4H6T634Hgut89aMPtEO+ReOUPfHqvlpdr9O+guUn/55G24e2KZAzs7ORklJCWRZhiRJkGUZpaWlyM7Ojmq7sXYb0ljbn3gXzflkLpAdaZ23bAdEFAnbzEHOyMhA165dsWXLFgDAli1b0LVr15CnVzRGlhUIsgKHqkKQFdt3nLG2P/EumvPJXCA70jpv2Q6IKFy2GUEGgKeffhr5+flYtWoVWrZsiYKCArNDIiIiIqIYY6sCuXPnztiwYYPZYRARERFRDLPNFAsiIiIiIiPYagQ5WqIomB1Ck+wQo5bibX+bYofjYYcYAXvEaYcYPfSO1U7HIhTcH2NZPT7SV7DzH01eCKqqcrV0IiIiIqKfcYoFEREREZEPFshERERERD5YIBMRERER+WCBTERERETkgwUyEREREZEPFshERERERD5YIBMRERER+WCBTERERETkgwUyEREREZGPuLrVtFUNHDgQiYmJSEpKAgDMmDEDffv2NTkq/VRXV2Px4sX47LPPkJSUhJtvvhnPPPOM2WHpzuVy4cknn8RPP/2ExMREXHnllVi4cCHS09PrPS8/Px+ffvopnE4nAODOO+/Eww8/bGisoeTk5cuXMXv2bBw6dAiSJGHWrFkYMGCAIfH9+9//xiOPPOL9uaKiAhcvXsTevXvrPe+ll17C//7v/yIrKwsAcMstt2D+/Pm6xVVQUIDt27fjxIkTKCoqQpcuXQAAx44dQ35+PsrLy5GWloaCggJ06tSpwetlWcaiRYuwa9cuCIKAvLw8jBkzRrd4jRLsuPiy276Hsk9G5180Qu2fzGz34Qq13RmtsWN94MABzJs3D9XV1Wjfvj2ef/55ZGRkmB0yVqxYgZdeesmb61aLM1hdEVUOqGS6AQMGqN98843ZYRjmmWeeUZ999llVURRVVVX1zJkzJkdkDJfLpX7++efen5977jl19uzZDZ43a9Ys9fXXXzcytAZCycmXXnpJnTNnjqqqqnrs2DH1jjvuUC9evGhEeA0sWrRIXbBgQYPHX3zxRfW5554zLI59+/apJ0+ebHD8xo8frxYWFqqqqqqFhYXq+PHjA77+7bffVidOnKjKsqyWlZWpffv2VY8fP25I7HoKdlx82W3fQ9kno/MvGqH2T1Zq900Jtd0ZLdixVhRFHTx4sLpv3z5VVVV15cqVan5+vllhen311VfqpEmT1F/96lfqN998Y8k4g9UV0eQAp1iQoS5duoTCwkI89thjEAQBANC6dWuTozJGWloacnNzvT/ffPPNOHnypIkRRefdd9/FuHHjAACdOnXCjTfeiI8//tjwOGpqalBUVIR77rnH8Pf2l5OTg+zs7HqPlZWV4fDhwxg+fDgAYPjw4Th8+DDOnTvX4PXbtm3DmDFjIIoi0tPTMXjwYLz33nuGxK6nQMfFn932PZR9spNQ+yertPumhNPujBbsWB88eBBJSUnIyckBAIwbN870NlBTU4OFCxdi/vz53s9sq8UZrK6INgdYIFvEjBkzMGLECDz99NO4cOGC2eHo5vjx40hLS8OKFStw9913Y/z48di/f7/ZYRlOURSsX78eAwcODPj7V199FSNGjMDUqVPx/fffGxxdnaZy8uTJk2jfvr335+zsbJw+fdrIEAEAO3fuRJs2bXDDDTcE/P3WrVsxYsQITJw4EcXFxQZHB5w6dQpt2rSBJEkAAEmSkJWVhVOnTgV8brt27bw/m3VMzRCr+252/kWisf7JKu2+KeG0OzP5Hmv/NpCeng5FUVBeXm5afMuXL8fIkSPRsWNH72NWizNYXRFtDrBAtoC//vWveOedd7Bx40aoqoqFCxeaHZJu3G43jh8/juuvvx6bNm3CjBkz8Oijj+LixYtmh2aoZ555BikpKbj//vsb/G769On429/+hqKiIgwZMgSTJ0+GLMuGxmennNy4cWPQ0eNx48bhgw8+QFFRESZNmoSpU6fC5XIZHCHFK7vmX2P9E2nLyse6uLgYBw8exH333Wd2KI0KVldUVlZGtV0WyBbg+ZouMTER9913H7744guTI9JPu3bt4HA4vF95dO/eHU6nE8eOHTM5MuMUFBTgxx9/xJ///GeIYsMm2KZNG+/jo0ePRmVlpeEjNKHkZLt27XDixAnvz6dOnULbtm0NixEASkpKsG/fPowYMSLg7zMzM5GQkAAA6N27N7Kzs3H06FEjQ0R2djZKSkq8f+TIsozS0tKAX89nZ2fX+1rbjGNqlljcdyvkX7ia6p+s0O5DEU67M4v/sfZvA+fOnYMgCEhLSzMlvn379uGHH37AoEGDMHDgQJw+fRqTJk3Cjz/+aKk4g9UVycnJUeUAC2STVVZWoqKiAgCgqiq2bduGrl27mhyVftLT05Gbm4vdu3cDqLvKuKysDFdeeaXJkRnjT3/6E7766iusXLkSiYmJAZ9TUlLi/f+uXbsgiiLatGljVIgh5+Sdd96JN998EwDwr3/9CwcPHjR89ZW3334b/fv396744c/3WB45cgQnTpzAVVddZVR4AICMjAx07doVW7ZsAQBs2bIFXbt2bbA6AFB3TDds2ABFUXDu3Dm8//77GDp0qKHxmiUW990K+ReOUPonK7T7UITT7swQ6FjfeOONqKqq8k47fOONNzBs2DDTYszLy8Mnn3yCnTt3YufOnWjbti1efvllTJ482VJxBqsrOnXqFFUOCKqqqrpFTU06fvw4Hn30UciyDEVR0LlzZ8ydO9e7LFAsOn78OObMmYPy8nI4HA48/vjj6N+/v9lh6e7o0aMYPnw4OnXqhOTkZABAhw4dsHLlSowaNQpr1qxBmzZt8MADD6CsrAyCIKBFixZ48skncfPNNxsWZ2M56RtnZWUl8vPzceTIEYiiiJkzZ2Lw4MGGxQkAQ4cOxVNPPYV+/fp5H5syZQqmTZuGbt26YdasWTh06BBEUURCQgKmTZuma64tWrQIO3bswNmzZ+F0OpGWloatW7fi+++/R35+Pi5cuICWLVuioKAAV199dYN4ZVnGwoULvR39lClTMHbsWN3iNUqw42LnfQ9ln4zOv2iE2j9Zod2HqrF2Z6bGjvUXX3yB+fPn11s+zSoXsg8cOBCrV69Gly5dLBdnsLoimhxggUxERERE5INTLIiIiIiIfLBAJiIiIiLywQKZiIiIiMgHC2QiIiIiIh8skImIiIiIfLBApkb16NEDx48fNzsMIiLbWL16NZ566imzwyCiKLBAtrnx48ejZ8+eqKmp0WRbGzZsqPdYcXFxvXuwE0Vj4MCB+PTTT+s9tmnTJtx7772oqanBnDlzMGDAAPTo0QOjR4/GRx99VO+5q1evxsCBA9GjRw/069cPjz/+uJHhU4wIlIeR2rNnT711uAHgd7/7HZ599llNtk/xp0ePHt5/1113HW666Sbvz++8807E250+fTpWrVqlYaSxzWF2ABS5f//739i/fz9SU1PxwQcfmHonG6Joud1uZGdn4/XXX0e7du3w0Ucf4fHHH0dRURE6dOiAt99+G5s3b8a6detwxRVX4MyZM9i5c6fZYRMRaaq4uNj7/4EDB2LRokW44447TIwoPnEE2cYKCwvRvXt3/OY3v0FhYaH38aqqKjz33HMYMGAAbr31Vtx7772oqqoCABw4cADjxo1DTk4ORo4ciT179gCou+3l/v37sXDhQvTo0QMLFy4EAFx77bX48ccfm9wuUbRSUlLw6KOPokOHDhBFEQMGDECHDh1w6NAhAMDBgwfRp08fXHHFFQCAzMxMS99pjezl/PnzeOihh3DbbbehZ8+eeOihh3D69Gnv78vLyzF79mz06dMHPXv2xNSpU1FZWYkpU6agtLTUO8JXUlKCl156CTNmzPC+dv/+/d5+t3///ti0aZMZu0gx4h//+AfGjBmDW2+9FX369MHixYvhdrsBwHtHyttuuw233norRo4ciR9++AGvvfYaduzYgVWrVqFHjx6YNm0aAODUqVN4+OGHkZubi0GDBmH9+vVm7pqlcATZxjZv3owHHngA3bt3x9ixY3H27Fm0bt0aBQUF+O677/DGG2+gdevW+Oc//wlRFFFSUoKHHnoIS5cuRd++ffHZZ59h2rRpePfddzF9+nR88cUXGDlyJMaMGRPw/YJtl0gPZ8+exb/+9S/8x3/8BwCge/fuePbZZ9GmTRvk5ubi+uuvhyRJJkdJsUJRFNx9993485//DFmWMWfOHCxcuND7lfSTTz6JlJQUbN26FSkpKSguLkZKSgrWrl2LmTNn4uOPPw643ZMnT2LKlCl45plnMHToUFy8eLFe4U0UroSEBPzhD3/ADTfcgBMnTmDSpEm46qqrcO+99+LDDz/EoUOH8P777yMlJQXff/89WrVqhQkTJqC4uBjXXHMNpk6dCqCumM7Ly8OIESOwfPlynDhxAg8++CA6d+6MXr16mbyX5mOBbFP79+/HyZMnMWzYMKSnp6Njx47YsmULJkyYgI0bN+Ktt95CmzZtAAC33HILgLqCul+/fujfvz8AoHfv3rjxxhvx0Ucf4Te/+U2j76coStDtEoXjkUceqVfY1tbW4vrrr6/3nNraWsyYMQO/+c1v0LlzZwDAqFGjIAgCNm3ahBUrViApKQmTJk1CXl6eofFTbHI6nRg6dKj354cffhgTJkwAAJSWluLjjz/Gnj170KpVKwAIuYAoKirCHXfcgeHDh3vfx+l0ahw9xZObbrrJ+/8rrrgCY8aMwb59+3DvvfciISEBFy9exA8//IBu3brhmmuuCbqdf/zjH6iurvb2oVdddRXuvvtubN26lQUyWCDbVmFhIXr37o309HQAwPDhw/H2229jxIgRqK6uDnhh3cmTJ/Hee+/hww8/9D7mdruRm5vb5Pu5XK6g2yUKx8qVK+vNp9u0aVO9i0MVRcGTTz7pHSXxNXLkSIwcORK1tbV4//33MXPmTHTt2hV9+/Y1LH6KTZcvX8aSJUuwa9cunD9/HgBw6dIlyLKM06dPo1WrVt7iOBynTp3yTgsi0sJ3332H5557DocPH0ZVVRVkWfYOWPXr1w8//PAD5s2bh5KSEgwdOhQzZ85E8+bNG2zn5MmTOHHiBHJycryPybLM+c4/Y4FsQ1VVVXj33XehKAp69+4NAKipqcGFCxdw5swZJCUl4fjx47juuuvqvS47OxujRo3CokWLwn5Pp9MZdLtEWlFVFU899RTOnj2LtWvXIiEhIeDzEhISMGzYMKxduxZHjx5lgUxRe+WVV3Ds2DG89dZbyMzMxJEjRzB69Gioqoq2bdvi/PnzuHDhAlq2bFnvdYIgNLrd7OxsfPnll3qGTnFm7ty5yM3NxfLly9G8eXOsWbPGuyqLIAh48MEH8eCDD+LMmTN49NFH8dprr+Hhhx9ukKtt27bF1VdfjaKiIjN2w/I4gdSG3n//fUiShK1bt6KwsBCFhYXYtm0bcnJyUFhYiHvuuQdLlixBSUkJZFlGcXExampqMHLkSHz44YfYtWsXZFlGdXU19uzZ450P17p166BrHouiGHS7RFqZP38+vv/+e6xevRrJycn1frdp0yb8/e9/x8WLF6EoCj766CN899139b5uJApVbW0tqqurvf8uXLiApKQktGzZEuXl5VixYoX3uVlZWejXrx8WLFiA8+fPo7a2Fvv27QMAZGRkoLy8HBUVFQHfZ8SIEfj000+xbds2uN1uuFwuHDlyxJB9pNh06dIltGjRAs2bN8fRo0fx1ltveX934MABHDx4EG63G82aNUNCQoJ3SltGRka9z/hbb70VALBu3TpUV1fD7Xbj66+/9l4YHe9YINvQ22+/jbvvvhvt2rVDZmam999vf/tbFBUV4YknnkCXLl3w//7f/0OvXr2wbNkyKIqC7OxsrFq1Cv/1X/+F22+/Hf3798fLL78MRVEAABMmTMD27dvRs2fPgKPMs2bNCrhdIi2cOHECb775Jo4cOYI+ffo0WPezRYsWWL16NQYMGICcnBwsW7YMTz/9dL2vB4lClZeXh5tuusn778KFC6iursZtt92GsWPHNvhWYunSpXA4HBg2bBjuuOMO/M///A8AoHPnzvj1r3+NwYMHIycnByUlJfVe165dO6xduxavvvoqevXqhdGjR+Prr782bD8p9syZMwf/93//511x6q677vL+7sKFC5g9ezZ69uyJwYMHo3379hg/fjwAYOzYsfjqq6+Qk5OD6dOnIyEhAWvWrEFxcTEGDBiA22+/HU8//TQqKyvN2jVLEVRVVc0OgoiIiIjIKjiCTERERETkgwUyEREREZEPFshERERERD5YIBMRERER+WCBTERERETkgwUyEREREZEPFshERERERD5YIBMRERER+WCBTERERETk4/8Dih9Cpf3jeAIAAAAASUVORK5CYII=\n", "text/plain": [ "
    " ] @@ -1740,12 +1681,12 @@ }, { "cell_type": "code", - "execution_count": 120, + "execution_count": 36, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlwAAAHtCAYAAADMYqD9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3XecHHX9x/HXXku9hAAHihSpXwQJvYUWCIggIir8kN6LgAioKCAIgoqFJiAdQhOU3ou00DukCHwRpArIASHkLuVyd/v7Y+bkSK7fzpXd1/PxyCO3O/P9zmf3uzP73pnZ2Vw+n0eSJEnZKevvAiRJkoqdgUuSJCljBi5JkqSMGbgkSZIyZuCSJEnKmIFLkiQpYwauLgohnBtCeDKEUN7qvvIQwmMhhFNCCOuEEK7vQj9vhhDWaeP+HUMIDxW47G4JIZwXQngjhPCbAve7bAjhhvTvJUIIjxey/w6W2+bjaV3PYBBCGB1CeCDjZeRDCFNDCNuGEB4KIeyYwTL2DyEckv59cAjhFz3sZ6kQwoshhIa21qX55t07hHB7D5ZxXAjh7RDCpSGENUIIr4cQnutpf+0s48QQQm0I4dZC9NdG/xNDCD/Nou9u1NDm9q6HfX03hPBSCKGuEP21s4y6EMJXs+q/u0II00II49u4f2II4T8hhPMzWm4m24A2lvPrEMKePWx7WQjhgxDCOYWuKysGrq77CTACOKbVfccATcCvYozPxhgzf4Fm7CBgkxjjcQXudxkgAMQY34sxjitw/+1p7/H8r55BYgywXh8sZ/MY450Z9r8xMBwgxnh+jPHUnnQSY3wnxrgG8F4hi5vPfsCuMcZ9ge2BB2OMa2ewnL/FGLfPoN+iE2O8Cdi2v+sYQM6IMR7c30X0RozxhBjjFT1suw+QSeDMSkV/FzBYxBjnhBB2BR5LP+HmgEOAdWOMTemnkHNijF8PIVQBvwc2A8qBF4DDY4yfte4zhPBrYDfgY+BfbS03hFAGnAFsAFSny90/xvhYCGFj4PR0GXngdzHGG7rafr75Hkmn3ZXuhbgS2DHG+Gw6/U1gR+Aj4H7gTmB9kjBwdIzxphBCBfAHYDugEXgcOBS4GPhKCOEekhA0LcY4MoRQmdY/gSS4PgUcGWOcmS5vYjptaeCKGOPxbTw/qwLnAIukz8FpMcYr5n88McZH0vnLW9cTY9w6hDCOZLxGpHWcFGO8PYSwN/B9kg8mywDvAhcBhwErAafHGE9L59up1Xz/AfaKMb4XQhgNnAWsBlSmz93PYoyNIYS5wC3A6iSvg7Hp81MFLAycGmM8D7gMGBZCeBFYO31ua2KMH6WPKQ/UAF9Pl1UPjATWBb4B/DLtcxbw0xjjE/M/j+0JIewA/Cp9bDOBo2KMT7cz1oeQvB4uABYHvgS8BfwfsBFJcNkqhDA7rXfRGONhHYzheOA3wL/Tx1YJHDT/a7cLvhxCuBtYIq3ngBjjByGEDdLHMAT4MvCPGON+IYS/AUsCl4QQfps+rvIQwjDgH62em47G9iTgu0ADyfq9d4zx/Q6e5/HA74C3ST4M1AOnAoent2+IMR7ZyfZgIsnrZnng9vn6P4Pk9fWdtKY2t0/pevdUOu+xachp6aO9Mc/Tzno8Xw0Hpo+nCfgvcFiM8dW07mkxxj+l8/3v9vz1pLW29xwemz6+YSTr8k/T7dKJwFdJxrhl/dw9xvh+CGET4Oz0MTxDOzshQgg/BA5On7s5JK/Dl9L6rgG2AhYiee2el7b5Nu2seyGE4/h82/ImcEi6vVgFuJTkg8kr6ePoUDe2UyOA84AVSda1mSQfKmJ6dOUTYOV0npa+K4C/AvOAvdJ6urQ9a3nvSPtp872qZayBR0i2Gy2WBv4ZY9wkhPC1dJmLpO3/HGO8tLPnZSByD1c3xBinAseRvGFfCuwXY/xPG7P+gmSDtHaMcXWST+Jf+DQfQvgOyUqyBjAOGN3OYtcneaPYMMa4CnB52j/ASSQr09rAvsAW3Wzf+rFtkv65eUs46cBywD0xxvXSvs5M7z+EJBCsTvIGWU3yZrs/8HqMcev5+vllWtvq6b8y4I+tpo9M6xoH/DSEsGzrxunG4Fbg7BjjWGAb4LchhA3bezwxxqbW9YQQxpAEmj1ijGuRbLDPCyEsnTbZhGRDOxZYCvgByRvLtsAp6RsgJG9eP06f4+eAP6f3nwE8l47RmsCiwFHptCrgthhjINm4HgBsG2NcE9iZ5M0NYB9gdoxxjbT+jnwd2CV9PpYGftuqzwOBG9MNb6dCCCuTfIL8fvo6PgG4JYQwirbHeuf0+XkixrghyetkFslzexPJWJ0RYzy31TLaHcN0lvVJ3sTWJBmn33al9vmsRPLmPhaYSrLxBvgxcEKMcX1gFWD7EMLaMcadSdbZ3WKMl6fPwd9ijLvN12+bYxtCWAo4guTD2DrAvenj6My6JCF7DeAzkj3o3wLWAg4NISxB5+vz8BjjqjHGn6e3c+khl2VIXgd1dL59mhZj/FrrsJVqb8w7W48JIWwBHE2yPq5O8iZ+cwgh14Xnpb16Wve/DLAlMD4d5+OAX7eaZRNgpxjjyiRh9uD0g/F1wE/S19eDJGFt/r7LSbZx34wxrgtcSLK3tsXCJGM3Hvh1CGG1EMKKtLPupYfQVgPWS8f6TpL3FICrgYvSx3AWybh1RVe2U9sAn8YYN4wxrkQSMA9r1cf0GOMqMcaz09stz8+HJAG1kS5uz1qHrVSH71UxxqfS7dsaJNvBOuCAdPtwPfCLtO1mJO8FG3TxeRlQ3MPVTTHGs9Nj2y/FGO9qZ7btSD7tbBVCgOSF+OF882wJ3NjyKTCEcCnJp7/5l/dECOGXwEEhhOVJVuqWT45/B85NP0ndR/IJsDvte2oeyUYC4HmSDU7LY7oyxjg7vb1z+tjGt9PPNsBxMcZ56XxnAze3mn5L+hj+E0L4MF3OG62mrwQMjTHemM73XkjOzfom0NW9OBuSfPK9OR0rSD6BjU3/fibG+E5a3xvAvTHG5hDC68BQ0kNk6f2vpn9fBLyY/r0dsF4IYb/09vwb9EfS2utCCNsB30o31muQ7KXqrndijG+lf2+VPrb7Wz22ZmAFYHIX+toCuD/G+O+0xgfScVibdsYaIISwSQjhKJJP0l8n2UPRno7G8EHgrRhjy3P5PLB3F+qe330xxtfSvy8heaOB5BP7tumekZVJxqY7z3l7Y/snkuf3+RDCXcBdMcb7u9DfGzHGlj04rwMzYowNwEchhM+AhbuwPj86X59HAYsBa8QY57aqu6PtU3sfuNpbv5+m4/UYkvH8W4yxFiDGODGEcBbJnqfOdPYBkBjjW2mQ2S2EsALJHsDWY/lQ/PwIwwsk25LVgHktYxNjvCaE0HovS0vfTSGE64DHQwh3APeQBMYW58YY88C76Z7UbwCzaX/d247kFIFn02nlwPAQwiIk250r0uU+FkKY1tljT3W6nYoxXh9C+HcI4UdpHeP54nZy/uf5NJJQvXz6+KCL27M2dPpelda+AnAjScB7Jd3jtzxwaavncRhJ2HuynWUNWAaunnmDZIPYnnKSvR13AYQQRpK86OfX+tNdY1sdhRC+RfJJ5zSSAPIKsDtAjPGCEMJtJCv4N4ETQwghxjinK+07kZ+vvqpWfzfEGJvbmK8xvd2y7MXpeC9qy+7lFmUku6lbzG719/z1tNW+rT46Uw68nO7lAJIT+4FaksN8c+ebf147/bQevzKSwyYt/e8UY3w57Xuh+WquS+9fkmTjdyHJm+b1JBu39uTSdlXz3d/6hOJyksDUOgwtRdfPfero+W1vrI8geTO5lCQwVbLguHV1GdD5a6ArWu8VLOPzMXwYmALcTfKGsH43+29zbNM3us2AdUhCyhkhhLtjjEd30l+nr7UurM/zn1A+CXgMmBhC2CANRZ1tn9o7Kb29Me9sPSadp2G++3LpfB1tazqq539CCGuRPB9nkOxRnESrQ2O0/zqaf7zb3A7HGHcPIXydZDx/AexBsvd+/jYt635H61458Pv4+aHHISSH4lt0+r7Qhq68dn5IsqftHJLA+AnQ+qjB/M/zlWktF5GcDgBd3J7Nr733qvnqWwy4i2Rv1qRWy5uR7vlqmW9xYEZbyxnoPKSYjXuAw0IIVemu3ItIzs9o7S5gpxDCQuk8e7TT11Yku2nPA54FdiB5ERKSb/utGWOcSLIiLURy3kyX2neiluQNo2UP1Ze70OY+YNcQwpD0MZ0H7EKy0WgrBN0N/DCEUJnOfyitzpHpgleAeSGE76V1LkFymLazPlrX8ySwYghh07SPNUjOp/tKN+oAmBBCaGlzMHBb+vc9wJEhhFy6Yb2VL+7Gb7EOyXN+CskbxnZpPeVpveWtDr/8b2yAXTuo6X7gGyE5NEgIYVuSgLHAYZMO2m8dQlgubb8FyeGKp2h/rLcGzowxXkmy12QrPn+9tfU66OkYdsfm4fNDxAeTnNe3EMlhoJ+ne9eWJPnU35V1o0WbYxtCWJ3kvJSXY4y/IwkB6xbosXR3fX6W5A32U+DEVnV3tn1qS3tj3pX1+G7gByGEGoAQwj4k57a9xhe3NUuQHDbqrk2BZ2OMp5OEra5s56aQHHLdNl329nwx+JDev2gI4R3g4xjjmSSHUFuP557pfEuTBIq76HjduwfYPySH5iE59HlljPFjktMR9k/brEWyF65QtgYmxhgvASLwbTp+jp4GjgdWCCEckN7X1e3ZF3T2XpWG/juAS2KMV7dqGoHZIYTd0/mWIlm3svgCS+YMXNk4meREyBeAl0g+Jfyk9Qwx+TbYpSQbxKdoP7GfD4wPIUwlOaTyOrBsumE7muScgReAh0hO9n6zG+078nPgxyE5UXsPkg1BZy5I53uO5FyZ90nOZXoJmJMeemj96e0U4AOSw28vk7wZ/7gLywEg/bS+Q1rnFJI3hF/HGB/spGnrej4ieYP/YwhhMsmnuj3aeB478y5wZQjhZZLDJEek9x9OcqLpVJIN7lQ+PzertXvTPiLJc7E0yRvRCiTP49PAP9PDDoeT7J5/HvhaOn0BMcaXSDZu16aP7WRg+/Q8nk6l7Q8hOfdkGsl5Pt+OMc6g/bH+NfCndDxuJdlbt0La5V0k584c02oZPR3DLwgh3Jm+YbZlCskhiWkkz+tRMcZPSULG8+n9vyDZE7RCO320pc2xjTFOJtlj9mwI4VmSc1aOareX7un2+pweDtoXOCQkXxDpdPvUjvbGvNP1OMb4D5Lg+UAI4Z8kh3O3S/eUn03yxYZIcp5eTy6Bcg2waLr+vUSyp2XhEEJ1ew1avfZOTrdz32PBUz+IyZdTTiE5PPgcyXpwQKtZlk3vv5vkywexk3XvYpIvNTyZPhdj+fxQ+S4kwXQqSdh5uQfPRXv+RHIoegrJob/n6eT1nh4t2Ztk+7g8Xd+eza+z96ofkZz/990QwgshuezLi+kh9e+QBNQpJNvJ42P3vzgzIOTy+fn35kvqjpB8S2jHGGNHhwAHtJB+0zF9cxkUQvrN2Rjjs+kn8HdijHf3b1VdF5Jvzy0aY+x0D4ESIblG1rQYY0/Obyy41q/BPl7uRFp9s7NUDbZ1yD1cklo82HJ4ZSAL6YVPSb4Z16KR5DDOYLNzyOjCp8UmhPBdPv+yjpJDe4PqOlSFFEK4jOQUgUHDPVySJEkZcw+XJElSxgxckiRJGTNwSZIkZWxAX/i0tnZmn5xgNmbMcKZPn9UXi9IA4HiXDse6tDjepWOgjnVNTXW7F092DxdQUdGdax1qsHO8S4djXVoc79IxGMfawCVJkpQxA5ckSVLGDFySJEkZM3BJkiRlzMAlSZKUMQOXJElSxgxckiRJGTNwSZIkZazkA1dTUxP5fJ9c0F6SJJWoAf3TPlnI5/Pce+9dXH/935k2bTJ1dfVUVlZQXT2Kddddn7322o/VVhvb32VKkqQiUlKB66677uDPfz6dF198nqampgWmv/zyS9xww3VssME4Tj75d6ywwor9UKUkSSo2JXNI8eqrr+DIIw/jueeeaTNstaivr+P+++9lzz1/wHPPPdOHFUqSpGJVEoHr7rvv4OSTf8Unn3zc5TavvfYvjjjiMN56660MK5MkSaWg6ANXPp/nz38+o1thq0WML3PGGX/IoCpJklRKij5w3XvvPbz44vM9bv/www9SVzezgBVJkqRSU/SB6/rrr6WxsbHH7d99910uvPC8AlYkSZJKTdEHrn/+c2qv+5g6dXIBKpEkSaWqqANXc3Mz9fV1ve6nrq73fUiSpNJV1IErl8tRVlbe637Ky0vqcmWSJKnAij5wjR69UK/7GTVqVAGqkSRJpaqoAxfA+utv0Os+Nt98QgEqkSRJparoA9fee+/PyJEje9x+lVW+zk47/aCAFUmSpFJT9IHra19bhQ033LjH7bfc8htUVHgOlyRJ6rmiD1wAp5xyKiutFLrdbvz4LTj66GMzqEiSJJWSkghcyy67HOeeeyFf+9oqXW4zfvwWXHjhZVRVVWVYmSRJKgUlEbgAVl99Ta6++jp2220vllpq6XbnW3XVr3P44Udx1VV/Z6GFxvRhhZIkqViV1MlJSy65FGeccTZ1dXVceumFvPjiC9TV1TFsWBXDho1g880nsOOOP6C8vPfX7pIkSWpRUoGrxciRIzn88KP+d7umppraWn+gWpIkZaNkDilKkiT1FwOXJElSxgxckiRJGTNwSZIkZawkT5ovFp99NoPLLruEDz/8Lw0Ncxk2bDhrrLEWO+zwPcrKzNKSJA0UBq5B6MUXn+eyyy7m4Ycf4j//efcL03K5HH/5y1lsscWWHHbYEYwaNbqfqpQkSS0MXIPMNddcxSmnnEht7YdtTs/n80yZMpkpUyYzadJDnHvuhaywwop9WqMkSfoijzsNItdf/3eOP/4X7Yat+b3wwnPsv/+efPDB+xlXJkmSOmLgGiRqa2s5+eQT+Oyzz7rV7qWX/snRRx+ZUVWSJKkrDFyDxIUXnsv777/Xo7aPPfYIr7zycoErkiRJXZXpOVwhhGOA7YEq4C/AJGAikAemAYfGGJuzrKEYNDU18cAD9/e4/cyZM5k48WJOPfW0AlYlSZK6KrM9XCGE8cA4YCNgM2Ap4HTglzHGTYAc8J2sll9MHnzwfqZOndyrPp544vECVSNJkrory0OKWwNTgZuA24DbgbVJ9nIB3AVsmeHyi8bbb7/V6z4+++xT8vl8AaqRJEndleUhxUWBZYDtgGWBW4GyGGPLu/5MoMOLRI0ZM5yKivIMS/xcTU11nyynJ4YNK8wwLbroSC+ImhrI463CcqxLi+NdOgbbWGcZuD4GXokxNgAxhDCH5LBii2rg0446mD59Voblfa6mppra2pl9sqyeGDZsVAH6GM7HH9cXoJrBb6CPtwrHsS4tjnfpGKhj3VEIzHJ3x6PAN0MIuRDCEsAI4P703C6AbYBHMlx+0fjGN7bhq19drld9rL76mgWqRoXS2NjI+++/xyuvvMy7777DnDlz+rskSVJGMtvDFWO8PYSwKfA0SbA7FHgDuCiEUAW8DFyf1fKLyfDhwxk/fnMmTvx3j9pXVVWx8867Frgq9dRbb73JxRefz6RJD/Lmm28wZ84cqqqqWHzxL7HJJpux++57sc466/V3mSqQTz+dzkUXnc8jjzzMJ598RGPjPIYNG8Eqq6zKzjvvyqabju/vEiX1gdxAPpG6tnZmnxQ3UHdNtvbSS//k29/+BjNndr/ODTYYxy233EUul8ugssGnv8Z73rx5HH30Udx5561Mnz693fmGDh3Gxhtvylln/YWampo+rLD49Oe6PXfuXI477mjuu+9e3nvvP23OU1VVxdprr8uRR/6M8eO36OMKi89g2JarMAbqWNfUVLf7RusZ1IPEKqusyn77HdTtk96//OUlOOaYEwxb/ayhoYF99tmNq6++vMOwBTBnzmzuu+8edt31++2+UWtgq6urY7fdduKKKy7rcAwbGhp44onHOOywA7n++r/3YYWS+pqBaxA55pjjOeCAgxkyZEiX5l9yySU59dTT2HDDcRlXps4ceeRh3Hvv3d1qM3nyixx00L6e2zXINDU1cfDB+/Lwww91uc2HH37IiScey6RJD2RXmKR+ZeAaRHK5HCeffCqnnPJ71l9/QyorK9ucb8yYMWy33Xe4+OIr2Gabb/VxlZrfCy88xx133Nqjtk899QSXX35JgStSlv7+92u6Ha4hCV1nn31mBhVJGggy/WkfZWOvvfZlzz334YEH7uemm67no49qaWiYy/Dhw1luueXZf/+DWXrpZfq7TKWuuGIis2b1/BInd999JwcddGgBK1KWbr/9lh63ffrpJ3n66SdZb70NCliRpIHAwDVI5XI5JkzYkgkTvFj/QFZXV8fDDz/Yqz6effZpHn/8EcaN26RAVSkrL730z179jNacOXO4+urLDVxSEfKQopShZ555knfeebtXfcydO5fHH3+sQBUpS/fffy91db375lSMsUDVSBpIDFxSht5///2C9DNrlr8SMBj05tDx53041lIxMnBJGaquLsxvfVVWdu2bqepfVVVVve6jvS/DSBrcDFxShlZaaWWGDh3W634WW2yxAlSjrC255FKdz9SJRRbxYrdSMTJwSRkKYWXWW2/9XvXx1a8uxy677F6gipSlHXb4PiuvvEqv+th88wkFqkbSQGLgkjL2zW9u26v2m222OcOHDy9QNcpSZWVlr36iZ9lll2PvvfcrYEWSBgoDl5SxPfbYp8d7PcaMWdg34EHmwAN/yFe+smSP2m6zzXYMG9b7Q9CSBh4Dl5SxIUOG8Nvf/pHFF/9St9oNHTqMn//8WFZd9esZVaYsLLnkUpx88u9YeOFFutVum22+xfHHn5RRVZL6m4FL6gMbb7wJZ555Dssss2yX5l9ooTH88pe/Yt99D8y4MmVhu+2+w+mn/7lLJ9GXl5fz3e/uyEUXXU55eXkfVCepP3ileamPTJjwDa69djkuvPA8Hnroft54498LzLPYYouzySbj2X33PdloI68sP5htu+23WXvtdbnwwvN58MF/MG3a1C9MX3jhRdh4403Zccf/Y+uttyWXy/VTpZL6Qi6fz/d3De2qrZ3ZJ8XV1FRTW9u7q0Nr8BgI4z179myuvPIyXn/9NerrZzF06BAWW2xx9t33QBZddNF+ra2YDISxBmhqauKOO27lnXfeprGxkeHDR7Dtttv1+FwvtW2gjLeyN1DHuqamut1PTu7hkvrBsGHDOPDAQ/q7DPWR8vJytt/+u/1dhqR+5DlckiRJGTNwSZIkZczAJUmSlDEDlyRJUsZK8qT5yZNf4IorJjJt2hTq6+uoqqpkxIiRrLfehhx00KH+ULAkSSqokgpcTz75BGec8QeeeupJZs2qX2D6U089ybXXXs3GG2/GySf/zuAlSZIKomQOKd5xx60cfPA+PPjg/W2GrRa1tR9y003Xscsu3+PVV2MfVihJkopVSQSuJ554jGOO+Rnvvfdel9tMnTqFQw89kI8//jjDyiRJUikoicD1+9//hg8+eL/b7SZPfoHf//6UDCqSJEmlpOgD16OPPsyzzz7d4/aTJj3I7NmzC1iRJEkqNUUfuK655ioaGhp63P6NN/7NxIkXF7AiSZJUaoo+cL344gu97uPpp58qQCWSJKlUFXXgyufz1NX1/tfE6+vrClCNJEkqVUUduAByuVwheilAH5IkqVQVdeDK5XJUV4/qdT+jRlUXoBpJklSqijpwAay99jq97mPDDTcuQCWSJKlUFX3g2n33vRg2bHiP26+44krsscfehStIkiSVnKIPXOussx7rrbd+j9uPHz+BqqqqAlYkSZJKTdEHLoDjjz+JpZf+arfbrbfeBhx77AmFL0iSJJWUkghcY8euwemn/5lll12uy23WXXd9LrzwMkaMGJFhZZIkqRSUROAC2HTT8Vx66VV8+9s7sPDCi7Q739JLL8Oee+7DtdfewBJLfKUPK5QkScWqor8L6Eurrvp1LrnkCt599x0uvvh8pk6dQn19PUOGVDJ8+EjGjduYffc90L1akiSpoEoqcLVYcsmlOPHE3/zvdk1NNbW1vb8ivSRJUltK5pCiJElSfzFwSZIkZczAJUmSlDEDlyRJUsYMXJIkSRkzcEmSJGXMwCVJkpQxA5ckSVLGDFySJEkZM3BJkiRlLNOf9gkhvADMSG++AdwG/BF4J73vVzHGSVnWIEmS1N8yC1whhKEAMcbxre47BTg6xnhDVsuVJEkaaLLcw7U6MDyEcG+6nGOBtYE1QwhHAE8DP48xNmZYgyRJUr/L5fP5TDoOIawGbABcDKwI3AVcAFxPcnjxfGBqjPGc9vpobGzKV1SUZ1KfJElSgeXam5DlHq5XgddijHng1RDCx8A1McZ3AEIItwDf76iD6dNnZVje52pqqqmtndkny1L/c7xLh2NdWhzv0jFQx7qmprrdaVl+S3Ff4DSAEMISwGjgqRDCkun0CcBzGS5fkiRpQMhyD9clwMQQwqNAHtgHGAncGEKYDbwEXJTh8iVJkgaEzAJXjLEB2LWNSfdmtUxJkqSByAufSpIkZczAJUmSlDEDlyRJUsYMXJIkSRkzcEmSJGXMwCVJkpQxA5ckSVLGDFySJEkZM3BJkiRlzMAlSZKUMQOXJElSxgxckiRJGTNwSZIkZczAJUmSlDEDlyRJUsYMXJIkSRkzcEmSJGXMwCVJkpQxA5ckSVLGDFySJEkZM3BJkiRlzMAlSZKUMQOXJElSxgxckiRJGTNwSZIkZczAJUmSlDEDlyRJUsYMXJIkSRkzcEmSJGXMwCVJkpQxA5ckSVLGDFySJEkZM3BJUg81NzeTz+f7uwxJg0BFfxcgSYNFPp/nwQcf4Lrr/srkyZOpr6+jvLyc0aMXYoMNxrHffgeywgor9neZkgYgA5ckdcGjjz7C739/Cs8//yzz5s37wrR3332Hf/5zKtdffy0bbbQpf/jDGSy22GL9VKmkgchDipLUidtvv4VDDtmPp556YoGw1dqMGTO4887b2GWX7/Hmm2/2XYGSBjwDlyR14JlnnuKXv/w5H3zwQZfbTJ06hUMO2Y+6uroMK5M0mBi4JKkD55xzFu+991632z377DOcd97VmzHUAAAgAElEQVTZGVQkaTAycElSO15//TUef/yRHre/7757/RajJMDAJUntuvTSC5kxY0aP20+e/AJ33nlbASuSNFgZuCSpHa+99lqv2jc3N/P8888VqBpJg5mBS5LaMXv2rF73MWtWfQEqkTTYGbgkqR1VVVUDog9Jg5+BS5LaUVPT+4uXfulLSxSgEkmDnYFLktqx/fY7UF5e3uP2Sy21DHvuuU8BK5I0WBm4JKkd3/zmt1h99bV63H6zzcYzYsSIAlYkabAycElSO3K5HDvuuBOVlZXdbrv44ouzzz4HZFCVpMHIwCVJHdh//4PZffe9yeVyXW4zevRoTjjhZFZbbWyGlUkaTAxcktSJU0/9E4ce+mNGjBjZ6bxLLPEV/vCHM9hppx/0QWWSBouK/i5Akga6XC7HCSf8mh12+D6XX34pkyY9wNtvv/WF6auttjpbbDGBAw88lEUXXbQfq5U0EGUauEIILwAtv4vxBnABcBbQCNwbYzwpy+VLUiGNHbs6p512FvX19dxzz53U1tZSWVnJMst8lc03n0BZmQcNJLUts8AVQhgKEGMc3+q+F4HvA/8G7gghrBVjfD6rGiQpCyNGjOB739upv8uQNIhkuYdrdWB4COHedDknAkNijK8DhBDuASYABi5JklTUsgxcs4A/ARcDKwJ3AZ+2mj4TWK6jDsaMGU5FRc8vOtgdNTXVfbIcDQyOd+lwrEuL4106BttYZxm4XgVeizHmgVdDCDOAhVtNr+aLAWwB06f3/odju6Kmppra2pl9siz1P8e7dDjWpcXxLh0Ddaw7CoFZnuG5L3AaQAhhCWA4UB9CWD6EkAO2Bh7JcPmSJEkDQpZ7uC4BJoYQHgXyJAGsGbgaKCf5luJTGS5f0gBT8exTDL3maso+eB/mzoVhw2laemlm73cQzcst3+v+m5qauPHG67jvvnuZMWMG5eVQVTWUsWPX4IADDmbkyMF1CEJS8cjl8/n+rqFdtbUz+6S4gbprUtlwvPvekJtvYMhVV1D19JPk5sxeYHrz6NHMG7cJsw46hMZxG3e7/+bmZk4//Q/cddcdTJs2hba2a0suuRSbbro5xxxzPIsvvniPHocGNtft0jFQx7qmprrdn6QwcDFwB07ZcLz71rDT/8Dws8+krL6u03mbFluc+l+dzNxuXKV97ty5HHzwftxxx61dmn+11cZy7rkXsfLKX+vyMjQ4uG6XjoE61h0FLq/SJykzQy84lxFn/LFLYQug/MP/MuKEY6m89+4uzd/c3Mxhhx3c5bAFMHXqFA45ZH/++9//drmNJPWWgUtSJnK1tQw/+0xyc+d2q135xx8x4tRToKmp03mvueYqbrnlhm7XNm3aVE455YRut5OknjJwScrEsAvPpfzDnu1Fqpg2haobr+t0vttvv6VH/QM8/PAkPv10eo/bS1J3GLgkFV5TE1UP3N/j5jlg6K03dzjPlCmTefLJJ3q8jPfff48LLzyvx+0lqTsMXJIKrnzqFCqmTelVHxWTn4fGxnan33nnbdR38dyw9rzwwnO9ai9JXWXgklRwZe++Q66X34DO1deTmzGj3el1db3/hlJvA5skdZWBS1LhVVb2vo+yMihvfxNVVtb731nN5frmt1olycAlqeCal12OfFVVr/rIV48iP2p0u9NHj25/WleNHj2q131IUlcYuCQVXNOKKzFv7XV71UfD+hsme7nascsuu7PIIov0ahmbbjq+V+0lqasMXJIKL5ejYaute9w8X1XF3P/bpcN5lljiK2y00aY9Xsbyy6/IHnvs0+P2ktQdBi5JmZi974E0Lt+zH6Set856zBu/Rafz7bzzrgwdOqxHy9hyy60YMmRIj9pKUncZuCRlY/hw6k76LU2LLNqtZo3LLc/MU0+DXLs/SfY/W221NQceeDBlHRx6bMtmm23O8cf/ulttJKk3DFySMjPvG9tQ9/vTaVziK12bf+WvMfMvF9HcjR+WPu64EznkkMMZOnRol+bfYostueSSK6jq5Un9ktQdFf1dgKTi1rD9DjQuvwLDL72QqoceoPydtxeYZ15YmXnjJzDr0MPJf+nL3eo/l8txwgm/Zu211+H66//Oo48+zIwZn35hnqqqKtZcc2223nobDjroUCoLcdkKSeqGXL6XFyfMUm3tzD4prqammtra3l9EUYOD492P6uoYNvFiyt5/D+bMgWHDaVwpMHeX3Qtz7S7gzTff4Oqrr+Czzz6jqqqMXK6SzTefwPjxW5DrwmFKDV6u26VjoI51TU11uxsZAxcDd+CUDce7dDjWpcXxLh0Ddaw7ClyewyVJkpQxA5ckSVLGDFySJEkZM3BJkiRlzMAlSZKUMQOXJElSxgxckiRJGTNwSZIkZczAJUmSlDEDlyRJUsYMXJIkSRkzcEmSJGXMwCVJkpQxA5ckSVLGDFySJEkZq2hvQgjh3520zQHNMcblC1uSJElScWk3cAGzgW07mJ4D7ihsOZIkScWno8B1UIzxrY4ahxAOKnA9kiRJRafdwBVjfLT17RDC+sDpwBDgpBjjbfPPI0mSpAW1e9J8CKFqvrtOAL4HfAv4U5ZFSZIkFZOOvqV4Ywhh91a3Pwb2AfYAPsu0KkmSpCLSUeD6NlAVQrg9hPAN4IfAdGAuyV4uSZIkdUFH53DlgUtDCH8FjgIOAn4TY3y+r4qTJEkqBh2dw7VBCOEG4FLgZuBAYM8QwmUhhGX7qkBJkqTBrqPLQlwC7AmMAi6OMY4DjgghLA+clE6TJElSJzoKXM3AssBIYF7LnTHG1zFsSZIkdVlHJ81/HxgHBGD3DuaTJElSBzraw/WNGONRHTUOIRwWYzynwDVJkiQVlY4C189CCB1dbysH/BQwcEmSJHWgo8D1ALB5J+0fLGAtkiRJRamj63Dt05eFSJIkFauOTpqXJElSARi4JEmSMtbROVy9FkJYDHgO2AoYDtwG/CudfF6M8W9ZLl+SJGkgyCxwhRAqgQuA2eldawGnxxhPy2qZkiRJA1GWhxT/BJwPvJfeXhv4Vgjh4RDCJSGE6gyXLUmSNGDk8vl8wTsNIewNLBljPCWE8BBwMLAhMCXG+FwI4ThgTIzxpx3109jYlK+oKC94fZIkSRnItTeh3UOKIYQ3gHbTWIxxuQ4WuC+QDyFsCawBXAFsH2P8IJ1+E3B2RxUDTJ8+q7NZCqKmppra2pl9siz1P8e7dDjWpcXxLh0Ddaxrato/eNfROVzjSZLaCcC/gYlAI7AbyY9atyvGuGnL3632cN0SQvhRjPFpYALJyfSSJElFr6MLn74FEEIYG2Pct9Wk00IIPQlLPwTOCSE0AB8AB/agD0mSpEGnK99SzIUQtogxPgAQQtiGZE9Xl8QYx7e6Oa575UnSwFPx+KMMue1mcjNnQlk5zTU1zNlrX5qXXqa/S5M0QHUlcO0PXB5C+DLJtxrfBPbIsihJGoiG3HgdQ66cSNWzT5ObO/cL04ZedTnzNtqEWUf8hKaxa/RThZIGqk4DV4zxBWBsCGERIB9j/CT7siRpYBl21mkMP/M0yurr2pxePv0Tym+/hcopLzLzj2cyb/MJfVyhpIGso28pPkgb31IMIQAQY9wiu7IkaeAYcvWVDD/jT5TNqu903vK336L66KP49MpraV75a31QnaTBoKM9XCf2VRGSNGA1NzPs8ku6FLZalL/1BsPPP4e6M8/NsDBJg0lH31Kc1PJ3CGEjYDXgUmCDGOPDfVCbJPW7qttupmLKi91v99AD5GZ+Rr56VOGLkjTodPrTPiGEHwOnAEcB1cAFIYQOrxAvScViyN13kmtu7na78vf+w9ArLsugIkmDUVd+S3FvYGugPsb4MbAuyZXkJano5T7p+feEcp98XMBKJA1mXQlcTTHGhla35wBNGdUjSZJUdLoSuCaFEP4EjAgh7ADcCtyfbVmSNDA0L7xwj9vmF1m0gJVIGsy6Erh+BvwLmAzsCdwJeA6XpJLQsM125Mu6sqn8oqavLMmcPfYufEGSBqV2tyIhhC+lfy4J3AX8BDiCZA/XEtmXJkn9r2G77WnswZXjGzbb3G8oSvqfjj62XZz+Pwl4qNW/ltuSVPzKypi9z/40jxjR5SaNX12WWT/8UYZFSRpsOrrw6c4AMcZl+6gWSRqQ5u6yO2Uf1SZXm6+b2eG8Tct8lbo/nkFzWLmPqpM0GHS0h2tyCGGTPqtEkgaw2T86krrT/8zcTTYjP3ToAtObFlmEOdt/lxmXXsm8zfzlM0lf1NEerkOAy0IItwDHxhjn9lFNkjQgzd3h+8zd4ftUPPUEQ265idxnn0FFOc2L1jBnn/1p/sqS/V2ipAGqo5/2uTeEMBY4GXg6hHAY8Far6W/3QX2SNOA0rr8hjetv2N9lSBpEOtrDRYxxVgjheJJvKt4KTAdyQB5YLvvyJEmSBr8OA1cIYTvgHOAeYOkYY8dni0qSJGkB7QauEMJ1wFrAfjFGrywvSZLUQx3t4foAGBtjrO+rYiRJkopRRyfNe9U+SZKkAujwHC5JkqTBaO7cuVx11eVMnTqZWbNmUVlZyZgxY9hppx+w+upr9nk9Bi5JklQ03n//Pc4++0wmTXqAf/3r1QWmX3XVFay//gbssMP32WWX3fusLgOXJEkqCpMnv8CPf3wIL730z3bnmTWrngcfvJ9HH32YF154jlNPPY2yso5+eKcwDFySJGnQe/XVyA9/uD+vvfavLs0/b948Jk68hHwe/vjHMzKuruPfUpQkSRoUfvGLn3Q5bLX2179ewbXXXp1BRV9k4JIkSYPaI49M4umnn+xR23nz5nHzzTcUuKIFGbgkSdKgdu21V9PQ0NDj9k8++QRTpkwuYEULMnBJkqRBq6GhgSeeeKxXfcyaVc/f//7XAlXUNgOXJEkatD799FOmT/+kIP1kycAlSZIGrYaGucybN6/X/RSij44YuCRJ0qA1evRohg8f0et+hg8fXoBq2mfgkiRJg9bIkdWEEHrdz9ixaxSgmvYZuCRJ0qCVy+XYcstv9qqPFVdcid1227NAFbXNwCVJkga1/fc/iKWWWqbH7ceP34KqqqoCVrQgA5ckSRrURowYwR577E1lZWW3266yyqr86EdHZlDVFxm4JEnSoHfEET9h330P6FboWmGFFTnrrL/wpS99OcPKEgYuSZJUFE4++VSOPvrYTg8vVlVVsfHGm3HFFdey+upr9kltFX2yFEmSpD7w4x//hP33P5hLLrmQ++67hxhfYdaseiorK1looYUZN24jfvCD3dh44037tK5cPp/v0wV2R23tzD4prqammtramX2xKA0AjnfpcKxLi+NdOro61vl8nvr6OmbMmEFV1RAWWmihHp3n1Y26cu1Ncw+XJEkqSrlcjpEjqxk5srq/S/EcLkmSpKwZuCRJkjJm4JIkScqYgUuSJCljnjQvSSq4stdfY9glF1D59JPkPp1BjjzNI6tpXGddZu+1H02rje3vEqU+ZeCSJBVM7pNPGPmzH1P18EOUzZjxhWnlQOVL0xhyw3XM23Aj6n73J5qX6fnv30mDiYFLklQQufffY/Seu1A5+YUO5yurr2PIffdQ9u7bfHbhRJpX/lofVSj1H8/hkiT13ty5jDpo307DVmuVr7zMqMMOJDfj0wwLkwYGA5ckqdeGXnEpVU8+3u12lVMmM+y8szOoSBpYMj2kGEJYDHgO2ApoBCYCeWAacGiMsTnL5UuS+kbV3Xf2vO39/2DW0cdBmfsAVLwye3WHECqBC4DZ6V2nA7+MMW4C5IDvZLVsSVLfqXj2Kaqeearn7adMpuq2WwpYkTTwZPlx4k/A+cB76e21gUnp33cBW2a4bElSH6l89hlyc+b0uH0un6filX8WsCJp4MnkkGIIYW+gNsZ4TwjhmPTuXIwxn/49ExjdWT9jxgynoqI8ixIXUFPT/z9sqb7jeJcOx7oPFOCdZESumREFGCvHu3QMtrHO6hyufYF8CGFLYA3gCmCxVtOrgU6/ljJ9+qxsqptPTU01tbUz+2RZ6n+Od+lwrPvGsKYyRvayj3oqmNXLsXK8S8dAHeuOQmAmhxRjjJvGGDeLMY4HXgT2BO4KIYxPZ9kGeCSLZUuS+lbDhuNoHj6ix+3z5eU0jl29gBVJA09ffiXkJ8BJIYQngCrg+j5ctiQpI01j12De+hv0uH3jGmvRsPW2BaxIGngyv9J8uperxWZZL0+S1PcavrU9Qx68v2dtJ2wFuVyBK5IGFi96IknqtTm77M7c8Zt3u13DOusx64c/yqAiaWAxcEmSeq+ykpkXXEbD+ht2ucm8sasz87xLYETPz/+SBgsDlySpIPJjFmbGtTcye+ddaVps8Xbna1p4EeZ853vMuPYmmpdZpg8rlPpP5udwSZJKyIgR1J19PrnaWoZddB6VTz5O7rMZkId8dTXz1l6XOQccTPOSS/V3pVKfMnBJkgouX1PDrGNP6O8ypAHDQ4qSJEkZM3BJkiRlzMAlSZKUMQOXJEmdmTOH3EcfwZw5/V2JBilPmpckqQ1l/3qVYZdcQOVjj1D28cfk5swmP3QYzYsuyrxxmzB7/4NoXmHF/i5Tg4SBS5KkVsriy4z8za+pfOJRymbM+OLEujrKP6ql8pWXGXrD35i34cbUHXcCzeFr/VOsBg0PKUqSlKp49BFG77UrQ+6+Y8GwNZ+yGTMYcvcdjN57NyoefaSPKtRgZeCSJAkonzaF6qMOo+Lfr3erXcXrr1F91GGUTZuaUWUqBgYuSZLyeUYe8zMq3nyjR80r3nyD6mN/Bvl8gQtTsTBwSZJKXuV991L53DO96+O5Z6i8794CVaRiY+CSJJW8odddS66xsVd95ObNY+j11xaoIhUbA5ckqaTlPvqIykcfLkhflY9MSq7XJc3HwCVJKmkVU1+k/KPagvRV/tFHVEybUpC+VFwMXJKkklb2wQcF7u/9gvan4mDgkiSVtHz1qIL211zg/lQcDFySpJLWtOxy5CsrC9JXvrKS5q8uW5C+VFwMXJKkkta0yqrMW3OtgvQ1b621aVpl1YL0peJi4JIklbZcjoYtv1mQrhombA25XEH6UnExcEmSSt7s/Q+iaamle9VH01LLMHv/gwpUkYqNgUuSpJEjmb3Xvj0+lytfWcnsvfaBkSMLXJiKhYFLkiRg9uFHMXufA8hXVHSrXb6igtn7HMDsw4/KqDIVg+69qiRJKmL1J/+O/EILMeyCv1A249NO528evRCzDjqE2T/9RR9Up8HMwCVJUotcjlk//QVzvrcTwy6+gKqH7qfitX8tMFvjiivRMH4Cs/c/iOZll+v7OjXoGLgkSZpP83LLU//bP1A/d27yw9bv/4fc7Nnkhw0j/+WvMGenH8CQIf1dpgYRA5ckSe0ZMoQ5u+/V31WoCHjSvCRJUsYMXJIkSRkzcEmSJGXMwCVJkpQxA5ckSVLGDFySJEkZM3BJkiRlzMAlSZKUMQOXJElSxgxckiRJGTNwSZIkZczAJUmSlDEDlyRJUsYMXJIkSRkzcEmSJGXMwCVJkpQxA5ckSVLGDFySJEkZM3BJkiRlzMAlSZKUsYqsOg4hlAMXAQFoAvYBRgO3Af9KZzsvxvi3rGqQJEkaCDILXMC3AWKMG4UQxgOnk4St02OMp2W4XEmSpAEls0OKMcabgQPTm8sA/wXWBr4VQng4hHBJCKE6q+VLkiQNFJmewxVjbAwhXA6cDVwPPA38LMa4KfBv4FdZLl+SJGkgyOXz+cwXEkL4EvAUMC7G+J/0vlWAs2OME9pr19jYlK+oKM+8PkmSpALItTchy5Pm9wCWjDH+DpgFNAM3hhB+FGN8GpgAPNdRH9Onz8qqvC+oqammtnZmnyxL/c/xLh2OdWlxvEvHQB3rmpr2z5TK8qT5G4HLQggPA5XAEcA7wDkhhAbgAz4/x0uSJKloZRa4Yoz1wP+1MWlcVsuUJEkaiLzwqSRJUsYMXJIkSRkzcEmSJGXMwCVJkpQxA5ckSVLGDFySJEkZM3BJkiRlzMAlSZKUMQOXJElSxgxckiRJGTNwSZIkZczAJUmSlDEDlyRJUsYMXJIkSRkzcEmSJGXMwCVJkpQxA5ckSVLGDFySJEkZM3BJkiRlzMAlSZKUMQOXJElSxgxckiRJGTNwSZIkZczAJUmSlDEDlyRJUsYMXJIkSRkzcEmSJGXMwCVJkpQxA5ckSVLGDFySJEkZM3BJkiRlzMAlSZKUMQOXJElSxgxckiRJGTNwSZIkZczAJUmSlDEDlyRJUsYMXJIkSRkzcEmSJGXMwCVJkpQxA5ckSVLGDFySJEkZM3BJkiRlzMAlSZKUMQOXJElSxgxckiRJGavo7wIkSeqxfJ7yKZMpf+Pf8KWFya24GvlFFunvqqQFGLgkSYPPnDkMO/9cqv5xN5UvPEeusRGAMYstTsMm45mz2540brxJPxcpfc7AJUkaVHKffMKo/fag6rFHFphW/uF/GXbD3xjyj7uoP/Jo5hx6eD9UKC3Ic7gkSYPHvHmMOmCvNsNWa2WffcaIP/6OIVdf2UeFSR0zcEmSBo2h11xF1SOTujRv2ax6hl16ATQ3Z1yV1LnMDimGEMqBi4AANAH7ADlgIpAHpgGHxhhdEyRJXVJ1523dmr9i2lSqbryOhh13zqgiqWuy3MP1bYAY40bACcDp6b9fxhg3IQlf38lw+ZKkIpKb/gmVzz3bvTb5PFWTHsqmIKkbMgtcMcabgQPTm8sA/wXWBlr2Bd8FbJnV8iVJxSX36afk6mZ2u11ZfV0G1Ujdk+m3FGOMjSGEy4HvAjsC28UY8+nkmcDojtqPGTOcioryLEv8n5qa6j5ZjgYGx7t0ONZFpHExGDoU6uu71WzIqBG+DorQYBvTzC8LEWPcK4Twc+ApYFirSdXApx21nT59Vpal/U9NTTW1td3/1KTByfEuHY51kSkbzkIrrEjl5Be71axumeWZ7eugqAzUdbujEJjZIcUQwh4hhGPSm7OAZuDZEML49L5tgI6/1ytJUouyMhq26N6ZKE1LLsWcAw7OqCCp67I8af5GYM0QwsPAPcARwKHASSGEJ4Aq4PoMly9JKjKzDzqUxuWW7/L8c7fdjvzIwXXoScUps0OKMcZ64P/amLRZVsuUJBW3/MKLMPMPZzLqqMMof/utDueds913qD/xN31UmdQxL3wqSRpUGjfdjBmXXMHcbbajefSC372aF1am/sc/YeZFE6HCX7DTwOArUZI06DStviafXf5Xyl5/jaHX/pXcZ58yfNQIZi61HHN22R0qK/u7ROkLDFySpEGrefkVmHXcCQAMr6lmzgD85poEHlKUJEnKnIFLkiQpYwYuSZKkjBm4JEmSMmbgkiRJypiBS5IkKWMGLkmSpIwZuCRJkjJm4JIkScqYgUuSJCljBi5JKmG5GZ9S9vZb0NDQ36VIRc3AJUklqOytt6jeb0/GbLgWC2+wJmM2H8fw354Ezc39XZpUlPzxakkqNXV1jNp3NyqnTvnfXRX/epXyM08jV1dH/W//2I/FScXJPVySVGKGXXTeF8JWixww5JabyNXW9n1RUpEzcElSiamYNrXdaeW1HzLktpv7sBqpNBi4JKnUVHR8Nkl++PA+KkQqHQYuSSoxDeO3IN/OtMbllmfuDt/v03qkUmDgkqQSM/f/dqFh620XuL95xEhmH/BDGDq0H6qSipvfUpSkUlNezmeXXsnws06j8uGHyM2cSfPSyzBn511p2Ha7/q5OKkoGLkkqRZWVzPrpL+Cnv+jvSqSS4CFFSZKkjBm4JEmSMmbgkiRJypiBS5IkKWMGLkmSpIwZuCRJkjJm4JIkScqYgUuSJCljBi5JkqSMGbgkSZIyZuCSJEnKmIFLkiQpYwYuSZKkjBm4JEmSMmbgkiRJylgun8/3dw2SJElFzT1ckiRJGTNwSZIkZczAJUmSlDEDlyRJUsYMXJIkSRkzcEmSJGWsor8L6A8hhGOA7YEq4C/AJGAikAemAYfGGJv7rUAVTAhhb2Dv9OZQYA1gPHAW0AjcG2M8qT9qU2GFECqBy4GvAk3AASRjPBHX7aITQhgCXAYsB3wGHAosgut2UQkhrA/8PsY4PoSwAm2szyGEXwHfIhn3I2KMT/dbwR0ouT1cIYTxwDhgI2AzYCngdOCXMcZNgBzwnX4rUAUVY5wYYxwfYxwPPAccDpwP7ApsDKwfQlirH0tU4WwLVMQYxwG/Bn6D63YxOwCoizFuAPwIOAfX7aISQjgauJjkwzK0sT6nY7wZsD7wA+Dc/qi1K0oucAFbA1OBm4DbgNuBtUn2cgHcBWzZP6UpKyGEdYBVgWuBITHG12OMeeAeYEK/FqdCeRWoCCGUAaOAebhuF7NVSMaUGGME1sV1u9i8Dnyv1e221ueNSfZm5mOMb5NsA2r6tsyuKcXAtSiwDrATcDBwNVCWrqAAM4HR/VSbsnMscBLJG/Fnre53vItHHcnhxFeAi/j/9u42xKoijuP4dxW3wDR7U2SklebPTFMLTQnFYE3LHqAiRAJ70gghsCykF5pUFkWUgUJEShmE2dMLoUxTyY0yJSuf+JOVwloYamYPipXbi5nNm667e2Xv3t27v8+rvWfOOTO7w9z9n5k5M/ASUOW2XbG+Am6UVCVpFKlufy9Id313cBHxDunBqUFj7bkn8GvBOe223jtjwLUfWBkRR/NT0RH+Xzk9gINlKZmVhKRewMCIWEsKtnoUJLu+K8dMUtseAAwlzeeqLkh3XVeWxaT2vBa4Cfga6F6Q7vquPIXzLxvqt8N8p3fGgKsWmJifinqTGujHeW4XwPXA+nIVzkpiLLAaICIOAUcl9ZNURRpidn1Xhl84/qR7AOgGbHbbrlgjgNo8P/M90pCy23Zla6w9fwpMkNRFUh/SiNW+chWwKZ3uLcWIWCFpLPAFKeCcAfwAvCKpGtgBvF3GIlrrE/B9weeGoeSupLH/DWUplbW2F4DFktaTerYeAzbhtpo1Q1UAAAPeSURBVF2pvgWekDSL1KNxL9AHt+1K9jAntOeI+Ce3+c84/j+9Xaqqr69v/iwzMzMzO22dcUjRzMzMrE054DIzMzMrMQdcZmZmZiXmgMvMzMysxBxwmZmZmZVYp1sWwsxKR9JC0j6l1UB/YHtOWhARS8pWsCZIWgrMjog9rXzfOtK6YPcAA4FZpIVZZ+X0C4DngCtICzruAh6MiF35NffhwMSIqG3NcplZeTjgMrNWExEzACRdBKyLiGHlLVGLXEvaCLcUJkREnaR5wJXAUkk9gXrSnnBPR8QUAElTgY8kDYqIMZIcaJlVEAdcZtYmJPUAFpI2Ee9CCjbeknQfMB44FzgfWARcCowD9gKTgAuB5aTNbC8jLVZ8Z0QclDQJeJz0ffYdMD0iDuQeplpgGKnX7RFScHUOsAe4A5ie810p6RpgKzAqB0k1pJ6vmhz87AUGA7eTFtg8Kc8mfv1lwGZgVUQcknQ/UBcRrzacEBGvSfoTOAP4u8g/r5m1c57DZWZtZS7weURcRQqm5krqm9NGADeTgqsFwPsRMYQUfNTkc4YCL0bE5cBOYI6k84AngfERMZy0r978gjxXRMRA0qb1lwCj816LPwFTIuIp4GdST1Rz+69tjgjl85vK8yQRsSQiBkfEzHxoOPBlI+ctj4g/mimHmXVA7uEys7ZSA1RLmp4/dwcG5Z9rI+I3SYdJw21r8/HdpB4pgB0F85leJ21e/AnQF1gnCdJ32t6CPDcARERImg1MkzQAGAlsK7L8DdvEjG4mz5Y4Bhwp8hoz68AccJlZW+kKTI6IbwBy79QBYCpwtOC8YxFxrJHrC4fZuuTPXUlzxW7N9zwTOKvgvMP5+EjgDeB50tBkFY3P26ovON7thLTDBb9HU3m2xCZg8okHJS0Bno2IHUXez8zaOQ8pmllbWQM8AP+9obcF6F3E9YMkDck/3w18QNqwdoykfvn4POCZRq4dB6yOiJdJc65uIAVOkAK3hofPfaQ5ZgC3nKIcLc2zKcuAAZLuajggaRpprtnOIu9lZh2AAy4zaytzgLMlbQFWAQ9FxO4irt8HzJe0HehFmnT/IzANeFfSVtKk9kcbufZNYETOew2wEbg4p60gTZrvk8u4SNJGYH9jhSgiz1PK87RqgNskbcv3mQRcFxF/FXMvM+sYqurr68tdBjOzJknqD3wYEf3LXZaWym9JjoqIutO8vpb0lqSXhzCrAO7hMjMrnZWSri72orzwaUdYw8zMWsg9XGZmZmYl5h4uMzMzsxJzwGVmZmZWYg64zMzMzErMAZeZmZlZiTngMjMzMysxB1xmZmZmJfYvHLpLpjqffNIAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmoAAAH1CAYAAABGCtJ0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xl4TGf/BvB7JpNZshGRkKgqWmlQRBKxL7EriRRFUbVUqK2U1qu2V0urVWrXlqqqllLUTmkt3YKfWkpVi9qSCBGRzExmfX5/eE2FLDOZJZPM/bku1yVzznnO98xz5sw9Z5UIIQSIiIiIyO1IS7oAIiIiIsofgxoRERGRm2JQIyIiInJTDGpEREREbopBjYiIiMhNMagRERERuakyF9SWL1+ON99806pxBwwYgA0bNuQ77Nq1awgPD4fRaHRkeXa5desW+vXrh8jISLz77rsunXdkZCSuXr3q0nnm5uZi+PDhiIqKwpgxY1w6b08wadIk1K1bF3FxcZbXCvtMOMvWrVsxePBgu9vR6/WIjIxEnTp1MH/+fKumsWd581s/58+fj9jYWDRr1swp25Dk5GQ8/fTTiIyMxKFDhxzWbmHccVvo7JpefPFFPPPMM+jbt69T2n9YXFwcfv75Z5fMqzgmTZpU4Gdq0aJFqFOnDiIjI6HRaFxSz6ZNm1zWNw8aOnQoNm/ebFcbkyZNQr169dCyZUurp5HZNccS8Nprr0Eul+Odd96xvHbkyBGMHj0a27Ztw/Dhw0uwOudav349AgMDcfz4cUgkEqfNZ8CAAYiPj0evXr0sr/32229Om19Bdu/ejVu3biE5ORky2aOr6qJFi3D58mXMnTvX5bU52rVr19C2bVucOXMm32V1liFDhmDcuHEum19+yxkfH4/4+Hi725bL5fjtt98wadIku9uyxsPrZ2pqKlatWoUffvgBQUFBuHbtmlPmGxIS4rKQ5qk+//xzbNq0yeU/Wkqrzp07l4ntcFFWrFhhdxvvvvsuEhMTMXHiRKunKXV71KZMmYJDhw7hp59+AgDodDpMnToVb7zxBkJCQkq4OudKSUlBzZo1nRrS3ElKSgqeeOIJlwYXZzGZTE5tXwgBs9ns1HlQXg+vn9evX0f58uURFBRUwpU5jiP3WJWGddSd9hpS/hzZR6Wlv0tdUAsMDMSUKVMwdepUaDQaLF68GFWrVsVzzz0H4N5elgkTJljGP3HiBPr06YPo6GjEx8cjOTk533ZNJhPmzJmD2NhYtG3bFgcPHiy0jo8//hjt2rVDZGQkunTpgu+++84y7PLly+jfvz+ioqIQGxuLV199tcB2xowZg2bNmiEqKgr9+vXDX3/9le94kyZNwpYtW7By5UpERkbi559/fmR3dHJycp7dqXFxcVi5ciW6deuGqKgovPrqq9DpdJbh+/btQ0JCAho2bIh27drh0KFDmD9/Po4dO4aZM2ciMjISM2fOBACEh4fj8uXLAIDs7Gy8/vrraNy4Mdq0aYOlS5daNsD3d0nPmTMHMTExiIuLK/S9vHDhAgYMGIDo6Gg8++yz2L9/PwBg4cKFWLp0KXbt2oXIyMhHftkeOnQIH330kWX4/T0y2dnZmDx5Mpo3b44WLVpg/vz5lpC0adMm9OnTB7Nnz0Z0dDTatm2L48ePY9OmTWjVqhWaNGmSZ7f2pEmTMG3aNAwaNAiRkZHo378/rl+/nqf2QYMGoVGjRujYsSN27tyZZ9rp06fj5ZdfRoMGDZCcnIwDBw6ge/fuaNiwIVq1aoVFixZZxu/fvz8AICYmBpGRkfjtt98eWZcfPtwzYMAAzJ8/H3369EH9+vVx9erVQpffVmazGUuXLkWbNm3QpEkTvP7668jOzrYMP3bsmOWz1apVK2zatAkAbF7Ohw9jHD9+HD169EBUVBR69OiB48ePW4YNGDAAH374Ifr06YPIyEgMHjwYt2/fLtby3XflyhX07NkTUVFRGDFiBO7cuWMZVtDn8+H1c926dRg8eDDS09MRGRmZ7169wvrGlm3Gw2xdrwvrn/vr2IYNG9C6dWsMHDjwkfnt2bMHcXFxOH/+PIDCt7H5raMPS01NxahRo9C4cWPExsZatjlFrX8PunHjBoYPH45GjRqhffv2+Prrry3DrNlOfvzxx+jWrRsaNGhg1Zd3VlYWkpKS0LhxY8TExCApKQlpaWl5lruw9XTLli1o06YNYmNjsWzZskLndfDgQXTp0gWRkZFo0aIFVq5cmWc5li9fjtjYWMTFxWHr1q2W6fR6PebMmYPWrVujadOmmDZtGnJzcy3Df/jhByQkJCA6Ohp9+vTBuXPnLMPOnj2LxMREREZGPvK9YY1JkyZhxowZGDp0KCIjI9GnTx/cvHkTs2bNQkxMDDp16oSzZ89axi/s+/TB9btRo0Z51tf75syZg759+1rWj40bN6Jz586IiYnBkCFD8my3w8PDsXbtWnTo0AEdOnR4pC2dTocJEyYgNjYW0dHR6NGjB27dugUg76kS8fHxiIyMtPwLDw+3rPvW5g6riVJq9OjRIikpSTRq1Ehcv37d8vrChQvFa6+9JoQQIi0tTTRq1EgcOHBAmEwm8eOPP4pGjRqJjIwMIYQQ/fv3F19//bUQQogvv/xSdOzYUaSkpIjMzEzRv39/UatWLWEwGPKd/86dO0VaWpowmUxix44don79+uLGjRtCCCHGjRsnli5dKkwmk8jNzRVHjx4tcDk2bNggsrOzhU6nE2+//baIj48vcNw33nhDzJs3r8C/f/31V9GiRQvL323atBE9evQQaWlpIjMzU3Tq1El8+eWXQgghTp48KRo2bCh+/PFHYTKZRFpamvj7778feV/uq1Wrlvjnn3+EEEJMnDhRDB8+XGRnZ4urV6+KDh06WMb/5ptvRO3atcX69euF0WgUa9euFc2aNRNms/mR5dHr9aJdu3Zi2bJlQqfTiZ9//lk0aNBAXLhwQQiRty/zk9/wESNGiKlTpwq1Wi1u3bolevToIb766itLbREREWLjxo3CaDSKefPmiVatWokZM2YInU4nDh8+LBo0aCBycnIs72+DBg3EkSNHhE6nE2+99Zbo06ePEEIItVotWrZsKTZu3CgMBoP4/fffRaNGjcT58+ct0zZs2FAcO3bMsh78+uuv4ty5c8JkMok//vhDNGnSRHz33XdCCCGuXr36yPr28PI9PE7//v1Fq1atxPnz54XBYBB6vb7Q5X/Yw+vP/Tbv9+WGDRtEu3btxJUrV0ROTo4YOXKkmDBhghBCiOvXr4sGDRqIbdu2Cb1eL27fvi3Onj0rhBA2L+c333xjeV8zMzNFdHS02Lx5szAYDGLbtm0iOjpa3L5921Jf27ZtxcWLF4VWqxX9+/cX77//fpHLVZD+/fuL5s2biz///FOo1WoxatSoPO95YZ/Ph/vn4c/fw8taWN9Yu814eB733z9b1mtr+mfixIlCrVYLrVabZzk2btwo2rVrZ9kWWLONfXgdfZDRaBTdunUTs2bNEmq1Os+yF7b+Pfze9uvXT0yfPl3k5uaKs2fPitjYWPHzzz8LIazbTsbHx4uUlBSh1WrzvK/318uH3b59W+zevVtoNBqRnZ0tRo8eLUaMGGEZXth6+tdff+XZrsyePVtERESIn376Kd95NWvWzPKe3LlzR/z++++W5YiIiBCzZ88WOp1OJCcni/r161u2n2+//bZISkoSmZmZIjs7WyQlJYm5c+cKIYT4/fffRePGjcWJEyeE0WgUmzZtEm3atBE6nU7odDrRunVrsWrVKqHX68WuXbtE7dq1C/xM5bcdfuONN0SjRo3E6dOnRW5urhgwYIBo06aN2Lx5s2Ud7d+/v2X8wr5P76/fn3/+uTAYDEKr1Vr6xmQyiTfffFMMHjxYaDQaIYQQ3333nWjXrp34+++/hcFgEEuWLBG9e/e2zKtWrVripZdeEpmZmXn6+76vvvpKJCUlCY1GI4xGozh9+rTIzs629OvD341CCLFu3TrRsWNHkZ2dXeRn4n7fPfw5Lkyp26N237Rp05CcnIxXXnkFYWFh+Y7z7bffomXLlmjVqhWkUimaNWuGunXr5ruHZ9euXRg4cCBCQ0NRvnx5JCUlFTr/zp07o1KlSpBKpejSpQuqVauGU6dOAQBkMhlSUlKQnp4OhUKB6OjoAtvp2bMn/Pz8IJfLMXr0aJw7d67AX43FMWDAAFSqVAnly5dHmzZt8McffwC494ujR48eaNasGaRSKSpVqoSaNWsW2Z7JZMLOnTvx2muvwc/PD4899hgGDRqU55dcWFgYnn/+eXh5eSExMRE3b960/CJ50MmTJ6HRaDBs2DDI5XI0adIEbdq0wY4dO4q1rLdu3cKhQ4cwefJk+Pj4ICgoCC+99FKe9h577DH06NEDXl5e6NKlC1JTUzFy5EjI5XI0b94ccrkcV65csYzfunVrxMTEQC6XY9y4cThx4gRSU1Nx4MABVKlSBT169IBMJkOdOnXQsWNH7NmzxzJt27ZtERUVBalUCoVCgdjYWISHh0MqleLpp5/Gs88+iyNHjhRrWe9LTEzEU089BZlMhqysrCKX3xbbtm3DSy+9hKpVq8LX1xfjx4/Hzp07YTQasW3bNjRt2hRdu3aFt7c3AgMDERERAQB2LeeBAwdQrVo1dO/eHTKZDF27dkWNGjXwww8/WMZ57rnnUL16dSiVSnTq1MmyThdXQkICatWqBR8fH4wdOxa7d++27Oly1OezqHXTlm1GfmxZr63pn9GjR8PHxwdKpdLy2urVq7Fy5UqsWbMG1apVA2DdNvbBddTb2zvPfE6dOoX09HS8/vrr8PHxybPsha1/D0pNTcX//d//YcKECVAoFIiIiECvXr3w7bffWv3+DRgwAKGhoXmWtzCBgYHo2LEjVCoV/Pz8MGLECBw9ejTPOAWtp7t3786zXRk7diyk0oK/imUyGf7++2/k5OSgXLlyqFOnTp7hY8eOhVwuR6NGjdCqVSvs2rULQghs2LABkydPRvny5eHn54ekpCTL+vb111+jd+/eqF+/vmU77e3tjRMnTuDkyZMwGAwYOHAgvL290alTJzzzzDNWv5f3tW/fHnXr1oVCoUD79u2hUCjQvXt3yzr64Oe2sO9T4N55mQMGDIBMJrP0kdFoxPjx45GVlYVly5ZBpVIBANatW4dhw4ahZs2akMlkGD58OP744488e9WGDRuG8uXL59vfMpkMd+7cweXLl+Hl5YW6devCz8+vwOU8duwYPvzwQyxbtgx+fn425Q5rldqTfypWrIjAwEA89dRTBY6TkpKC3bt359nIG41GxMbGPjJueno6QkNDLX8XFP7u27JlC1atWmXpfI1Gg8zMTADAxIkTsWDBAvTs2RPlypXDoEGD0LNnz0faMJlMmD9/Pnbv3o3bt29bPqyZmZnw9/cvdP7WCg4OtvxfpVIhPT0dwL2NW6tWrWxuLzMzEwaDIc/7ExYWhhs3blj+rlixYp55Asj3aqD09HRUrlw5z0bq4bZskZKSAqPRiObNm1teM5vNefr1wfOH7n9IH6xXoVBArVZb/q5cubLl/76+vihXrhzS09Nx/fp1nDp1Ks8XqslkynNS/IPzBe4F07lz5+Kvv/6CwWCAXq9Hp06dirWs+c3DmuW3RXp6OqpUqWL5u0qVKjAajcjIyEBqaioef/zxfKezZznT09Mf+ew9vE48vE7be6XZw597g8GAzMxMBAYGOuzzWVTfWLvNKIgt67U1/fPgen/fypUrMXLkyDzDrNnGFrb+paamIiwsLN/zUAtb/x4er1y5cnm+TMPCwvD7778XON+H2foZ0Wq1eOedd3D48GFkZWUBANRqNUwmE7y8vAAUvJ7e3+7d5+Pjg/Llyxc4r4ULF2LZsmX44IMPEB4ejtdeew2RkZEAgICAAPj4+FjGDQsLQ3p6Om7fvg2tVms5JQjIe45gSkoKtmzZgi+++MIy3GAwID09HRKJBJUqVcpzLnRR34f5eXidfHB9VCqVeT63hX2fAvmvj1euXMG5c+ewYcMGyOVyy+spKSmYPXs25syZk2fZb9y4YVmfCuvvhIQEpKWlYfz48bh79y7i4+Mxbty4R35kAPfW31dffRXvvvsuqlevbpm/tbnDWqU2qFkjNDQUCQkJePvtt4scNzg4GKmpqZa/H/z/w65fv44pU6bgs88+Q2RkJLy8vJCQkJCnrfvzPHbsGAYNGoSYmBjLr9D7tm3bhv3792PVqlV47LHHkJ2djZiYGAghrFo+lUqV55yD/PZaFSQ0NDTPniNrBQYGwtvbGykpKXjyyScB3HuvKlWqZHNbISEhSEtLg9lstnwJpqam4oknnrBq+ocvqqhcuTLkcjl+/fVXh12A8OB5J2q1GllZWQgJCUFoaChiYmKwatUqq9t67bXX0L9/f6xYsQIKhQKzZs2ybIzyu0DEmv59cDpHL39ISEieX6EpKSmQyWQICgpCaGhonl+8D7J1OR+eZ0pKSp7XUlNT0aJFCzuXpmAPf+7v7yG09/P5oKL6xtpthiMU1j/35ddPn376KYYOHYqKFSuiY8eOAKzbxhbW56GhoUhNTYXRaHzkfSls/XvwcxkSEoKsrCzk5ORYwtqD2yRbP0fW+PTTT3Hp0iV8/fXXCA4Oxh9//IHu3btbtW6EhITgwoULlr+1Wm2e8yIfVq9ePSxbtgwGgwFr167Fq6++atk7c/fuXWg0GktYS01NxVNPPYXAwEAolUrs2LEj321zaGgohg8fjhEjRjwy7MiRI7hx4waEEJb3JSUlBVWrVi1y2YqjqO9TIP/+qVGjBvr164eXX34Zq1evRo0aNQD8u2yFXUleWH97e3tj1KhRGDVqFK5du4Zhw4ahevXqee6CANy7Pc/IkSMxcODAPDs9bMkd1iq1hz6tER8fjx9++AGHDx+GyWSCTqdDcnJyng/5fZ07d8aaNWuQlpaGrKwsfPzxxwW2q9VqIZFIUKFCBQDAN998k+cigF27dlnmUa5cOUgkknx3bavVasjlcgQGBkKr1WLevHk2LV9ERAQOHjyIO3fu4ObNm1i9erXV0/bs2RObNm3CL7/8ArPZjBs3blg2HhUrVizwnmleXl7o1KkT5s+fj5ycHFy/fh2rVq0q1u0V6tWrB5VKhRUrVsBgMCA5ORnff/89unTpYtX0QUFBuH79uuVXYkhICJo1a4Z3330XOTk5MJvNuHLlil2HFw8ePIhjx45Br9djwYIFqF+/PkJDQ9G6dWv8888/2LJlCwwGAwwGA06dOpVnA/wwtVqNcuXKQaFQ4NSpU9i+fbtlWIUKFSCVSvO87xERETh69ChSUlKQnZ2Njz76qNBaHb38Xbt2xerVq3H16lWo1WrMnz8fnTt3hkwmQ7du3fDzzz9bDkVlZmZaDmXYupwPatWqFf755x9s27YNRqMRO3fuxN9//43WrVsXaxnunxxf2K0ytm7dir///htarRYLFixAx44d4eXlZffn80FF9Y212wxHKKx/CvPkk09ixYoVmDlzpuWiH1u2sfmpV68egoOD8cEHH0Cj0UCn0+H//u//ABS+/j0oNDQUkZGRmDdvHnQ6Hc6dO4eNGzeiW7duAOzbThZErVZDoVAgICAAd+7cweLFi62etmPHjjhw4IBlu7Jw4cICr4bV6/XYunUrsrOz4e3tDV9fX8seu/sWLVoEvV6PY8eO4cCBA+jUqROkUil69eqF2bNnW/ZA3rhxA4cPHwYA9OrVC+vWrcPJkychhIBGo8GBAweQk5ODBg0aQCaT4fPPP4fRaMTevXtx+vTpYr5TRSvq+7QwXbt2xfjx4zFo0CDLjoc+ffrg448/trSRnZ2NXbt2WV3Pr7/+ij///BMmkwl+fn6QyWSPvOcAMHnyZFSvXh0vv/xyntft/Uzkp0wHtdDQUCxduhQfffQRmjRpglatWmHlypX5fiief/55NG/eHAkJCUhMTMz3apD7nnzySQwePBh9+vRB06ZNcf78eTRs2NAy/PTp0+jVqxciIyMxYsQIvPnmm/n+GunevTvCwsLQokULPPvss2jQoIFNy5eQkICnn34acXFxGDx4sNUBB7i3gXznnXcwe/ZsREVFoX///pY9GS+++CL27NmDmJiYfH8VTJ06FSqVCu3atcMLL7yArl27okePHjbVDty779WyZctw6NAhNG7cGP/973/x3nvvWXWuHADL4ZrY2FgkJiYCAN577z0YDAZ06dIFMTExGDNmDG7evGlzbfd17doVS5YsQWxsLM6cOYP3338fAODn54eVK1di586daNGiBZo3b465c+dCr9cX2Nb06dOxcOFCREZGYsmSJejcubNlmEqlwvDhw9G3b19ER0fjxIkTaNasGbp06YL4+Hg899xzaNOmTZH1OnL5e/Togfj4ePTv3x9t27aFXC7H1KlTAdw7FPLJJ59g1apVaNSoEbp37265aszW5XxQYGAgli9fjlWrViE2NhYrVqzA8uXLLRtxW6WlpaFKlSqF7vFNSEjApEmT0KxZM+j1essNs+39fD6ssL6xdpvhCIX1T1GefvppLF++HFOnTsXBgwdt2sbmx8vLC8uXL8fly5fRpk0btGzZ0vKlWtj697B58+bh+vXraNGiBUaNGoXRo0ejWbNmAOzbThZk4MCB0Ol0aNy4MXr37m3THt+nnnoK06ZNw4QJE9CiRQsEBATke2jvvm+//RZxcXFo2LAh1q1bh/fee88yrGLFiggICECLFi0wYcIEzJgxw7L9nDhxIqpVq4bnn38eDRs2xEsvvYRLly4BAJ555hm89dZbmDlzJmJiYtChQwfLVdtyuRyLFi3C5s2bERMTg507d6J9+/bFeZusUtT3aVESExMte7auXbuG9u3bY+jQoRg/fjwaNmyIrl272nTfwVu3bmHMmDGIiopCly5d0KhRo3x3ROzYsQP79u3Lc+XnsWPH7P5M5EciirMfn8gDTJo0CZUqVXLpDWFdacqUKdixYweCgoKwb9++ki7Hbnq9Hk2bNoXRaMTQoUMxatQoLF26FBUqVECfPn1KujyHOHr0KIYMGQK5XI758+c79ZCwJxs0aBBOnDiBevXqOWQPnDMkJydj4sSJJX7z46VLl+Ljjz+GTCbDoUOH8pwzR4+aPHkydu/ejaCgoDy3ISkMgxpRAcp6UCOi0stdgho5X5k+9ElERERUmnGPGhEREZGb4h41IiIiIjfFoEZERETkpsrEDW8zM9Uwm513BDcoyA8ZGTlOa5/cC/vbs7C/PQf72rO4Y39LpRIEBvraNE2ZCGpms3BqULs/D/Ic7G/Pwv72HOxrz1IW+puHPomIiIjcFIMaERERkZtiUCMiIiJyUwxqRERERG6KQY2IiIjITTGoEREREbkpBjUiIiIiN8WgRkREROSmysQNbx1Nr9dj167tWL36U6SmpsJkMsDX1w9NmjTD0KHDUaNGzZIukYiIiDwAg9oDNBoN5s9/H6tWfQKTyQy1Ou+jJ86f/xNr1qxGvXr1MWXKDDRp0qyEKiUiIiJPwEOf/5ORkYHOndti+fIluHv37iMhDQAMBgN0ulwcPZqM3r2fw5o1n7m+UCIiIvIYDGoA1Go1EhI64e+/z0Ony7VqmtxcLaZMeQMbN653cnVERETkqRjUAPznPxNw+fI/MBgMNk2n1WoxfvwYXLly2UmVERERkSfz+KCWlXUHW7Z8A51OV6zpzWYTVq78yMFVERERETGoYf36LyGRFP9t0Ov1WLPms2IHPSIiIqKCeHxQ++ST5dBqNXa3s3fvbgdUQ0RERPQvjw9qN26k2d2GTqfD1atXHFANERER0b88Pqjp9Xq72zAYDNBo1A6ohoiIiOhfHh/UFAql3W3I5XL4+/s7oBoiIiKif3l8UKtevbrdbcjlcjz1VLgDqiEiIiL6l8cHtVdeGQNfXz+72lAqVWjVqo2DKiIiIiK6x+ODWnx8ol3TK5UqJCWNhJeXl4MqIiIiIrrH44OaUqnEsGEj4OPjU6zpZTIZ+vcf6OCqiIiIiBjUAACvvz4ZjRo1hlKpsmk6lUqFL7/cgKCgICdVRkRERJ6MQQ2Al5cX1qxZj9at46zasyaTecPX1xdr125A48ZNXVAhEREReSIGtf9RKBT47LO1mD9/MerWfQZKpeqR8858fX2hUvlgwICBOHDgFzRv3rKEqiUiIiJPICvpAtyJVCpFYmJPJCb2xNmzZ/D111/i6tUrMJkM8PMrh6ZNm6N79x7FPp+NiIiIyBYMagWoXbsOZsyYBQAIDvbHzZvZJVwREREReRoe+iQiIiJyUwxqRERERG6KQY2IiIjITfEctTIuJeU6Tp48gbt3s6BUKhEWVgVRUTGQSpnRiYiI3B2DWhlkNptx6NABLFmyAL/++jPkcgXMZhMkEimEEPDz88OIEaPxwgv9Ub58YEmXS0RERAWQCCFESRdhr4yMHJjNzluM0nTV5507mejdOxHnz/8JtVpd4HgqlQoSiQQrV36Otm07uLBC91ea+pvsx/72HOxrz+KO/S2VShAU5GfbNE6qhUpAVtYdtG/fGmfO/F5oSAMArVYLjUaDQYMGYPv2rS6qkIiIiGzBoFZGCCHQt29PpKZeh16vt3q63FwtRo58GadPn3JidURERFQcDGplRHLyLzh79oxNIe2+3NxcvPfeLCdURURERPZwWVDT6XSYPn06OnTogG7dumHq1KkAgEuXLqF3797o2LEjevfujX/++cdVJZUpS5YsgFarKda0QggcOPA9bty44eCqiIiIyB4uC2rvv/8+FAoF9uzZg23btmHs2LEAgOnTp+OFF17Anj178MILL2DatGmuKqnMuHnzJn744XvYe13ImjWrHFQREREROYJLgpparcaWLVswduxYSCQSAEDFihWRkZGBs2fPomvXrgCArl274uzZs7h9+7Yryiozzp07C4VCYVcbOp0Oycm/OKgiIiIicgSX3Eft6tWrKF++PBYvXozk5GT4+vpi7NixUCqVqFSpEry8vAAAXl5eCAkJQWpqKipUqOCK0sqEu3fvOqSdrKw7DmmHiIiIHMMlQc1oNOLq1auoXbs23njjDZw8eRLDhw/HggULHNK+rfckKY7gYH+nz6O4QkODIJUC0Yq3AAAgAElEQVRK7G6nXLkAt15OV+L74FnY356Dfe1ZykJ/uySohYWFQSaTWQ5x1q9fH4GBgVAqlbhx4wZMJhO8vLxgMpmQnp6O0NBQm9r39Bve+vkFFetqzwdJpVI89lg1t15OV3H3/ibHYn97Dva1Z3HH/nbbG95WqFABsbGx+OmnnwDcu9IzIyMDTzzxBCIiIrB9+3YAwPbt2xEREcHDnjaqVSscVas+blcbCoUCgwYNdVBFZK/ffz+NUaOSEB7+BB57rCKqVg1GRER1jBs3Cn/+ea6kyyMHu3r1Ct56azoSEjqjTZtmePbZ9nj11Vdw6tSJki6NiEqYyx4hdfXqVUyePBl37tyBTCbDq6++ilatWuHChQuYNGkS7t69i4CAAMyZMwc1atSwqW1P36MGAOvXf4lJk14r8okEBalV62n8+OMRB1dVOpVkfx85kozXX38Vly5dhF6vh8lkyjNcJpNBJpMhPPxpzJ27APXrR5ZInWVJSfb30aPJePfdt3HkyK8QAtDrdZZhXl5ekMsVqFr1cUyY8Aa6d+9RIjWWJaVhW06O4479XZw9anzWpxXcsbMflpubi/r1w5GZmWnztD4+Ppg3bxGee66XEyorfUqqv7dt24JRo5Kg1WqtGl+lUmHlys/Rrl1HJ1dWtpVUf3/11Rd4443XkJtbdH+rVD7o3bsv3n33A0ilvE95cZWGbTk5jjv2t9se+iTnUyqVWLduE1QqH5umU6lU6N69BxITezqpMrLGwYM/YORI60MacO95rUOGvIgjR5KdWBk5w5Yt32DSJOtCGgBotRp8/fVXmDp1kpMrIyJ3w6BWhkRGRmH9+k3w8/Oz3PKkMD4+PujR43l88MFCy/3tyPV0Oh0GDx5g9Zf2g7RaLQYO7AOj0eiEysgZ0tJSMWbMKzaFcgDQaDRYu/Zz7N+/10mVEZE7YlArYxo3borvv/8Jffr0g1Kpgo9P3j1sXl5eUCpVeOaZeli06CN88MFCq0IdOc+2bVtgNpuLPX1urg779vHLu7RYtWoFhChef2s0Gnz44QcOroiI3BnPUbOCOx7ntkZOTjY2blyPn376EbdvZ0Cl8sETT1RHv34vIiKidkmX57Zc3d+tWjXGH3+ctauNmJhY7NjxnYMq8iyu7G+DwYDatWsgKyur2G0oFAocPnwETzxR3YGVeYbSui2n4nHH/i7OOWouuY8alQw/P3+89NJQvPQSb7vhri5f/geXLl20u52TJ0/g5s2bCA4OdkBV5CyHDx+EyVT8vacAYDab8fXX6/D66/9xUFVE5M546JOoBN24cQNyudzuduRyOW7eTHdAReRMaWmpMJtNRY9YCIPBgMuXLzmoIiJydwxqRCVIp8t1SDsSiaRYFyOQa+Xm5tp1PuJ9Go3GAdUQUWnAoEZUggICAuCI00TNZhPKlSvngIrImcqVKweZzP4zToKCghxQDRGVBgxqRCWoZs2nYDA44tYaEjz2mH2PESPni4yMsru/fX390KRJMwdVRETujkGNqAT5+fkhMbGHXbdI8faWo1+/F6FQKBxYGTlDjRo18cwz9exqQyKRoGvXBAdVRETujkGNqIQlJY2Et3fxLyiQSiUYOjTJgRWRM40ePQ6+vr7FmtbbW44XXxzEUE7kQRjUiEpY7dp10Lhx02J9+SqVSrRv34n31CpF2rfviGrVqsPb29vmaX18fDB8+EgnVEVE7opBjcgNfPrpGjz+eDWbbtWhUCjw1FPhWLr0EydWRo4mk8mwceNWhIRUsnpPqkQiga+vL775ZisqVw51coVE5E4Y1IjcgJ+fH3bt2o969RpYdVjM19cXMTGx2Lp1N5RKpQsqJEeqWLEi9u8/jDp16sLX17fQZ+36+fmhYsVg7Nr1PerVa+DCKonIHTCoEbmJgIBy2Lp1N5Ys+QRRUTFQKpWWECaRSCx/N27cFB9/vAobN24t9rlOVPIqVAjCnj0/4KuvvkGHDp2gUCgQEBBg+adUKtGgQSQWLFiKEyf+wNNPR5R0yURUAvisTyu44/PCyHncpb8vXPgLP/ywH5mZmQCAChUqIC6uPapXr1HClZUt7tLfN2/exIULf+Hu3Sz4+Pjisceq8txDB3OXvibXcMf+5rM+icqQmjWfQs2aT5V0GeQiwcHBfFYrET2Chz6JiIiI3BSDGhEREZGbYlAjIiIiclM8Ry0fQgj88stPWLv2c1y7dhVGox7+/uXQtGlz9Os3kA9EJiIiIpdgUHuA0WjE6tWfYvHiD3HnTiY0Gg0evCj2559/wvvvv4MOHTrjtdfeQO3adUqwWiIiIirrGNT+JycnB/369cKJE79Bq9XkO05urhYAsGPHVuzbtwfLl3+Kzp2fdWWZRERE5EF4jhoAvV6P55/vjuPHjxUY0h5kNpuh1WqRlDQY+/fvdUGFRERE5IkY1ADMnDkVZ86chk6ns2m63Fwthgx5ETdupDmpMiIiIvJkHh/U1Go11qz5DFqttljTm81mfPbZpw6uioiIiIhBDZs2bYBEUvy3ITc3FytXLofRaHRgVUREREQMali+fDE0GrVdbRiNRuzf/52DKiIiIiK6x+OD2rVrV+1uQ6fT49KlCw6ohoiIiOhfHh/UbL2AID8Ggx7Z2dkOqIaIiIjoXx4f1ORyhd1teHvL4efn74BqiIiIiP7l8UGtSpUqdrehUChQvXoNB1RDRERE9C+PD2rDh4+Cj4+vXW14eUnRtm17B1VEREREdI/HB7UePZ6HEOZiT69QKDBo0Mvw9vZ2YFVEREREDGrw8/PDCy8MgFKpKtb0Xl5eGDRoqIOrIiIiImJQAwDMmDELERERUChsu7BApVLh449XITQ0zEmVERERkSdjUMO9w5cbN25FgwaRUKmK3rMmkUigUqmwePFH6NChswsqJCIiIk/EoPY//v4B2LRpB/7zn2moXDkUvr6PXmCgUCihUCjQqVMXbN/+Hbp1614ClRIREZGnkAghREkXYa+MjByYzY5bDCEEDh8+iC+++AzXr1+H0aiHn18AmjVrgQEDBiE4ONhh8yL3Exzsj5s3eQNjT8H+9hzsa8/ijv0tlUoQFORn0zQyJ9VSqkkkErRs2RotW7YG4J6dTURERGUfD30SERERuSkGNSIiIiI3xaBGRERE5KYY1IiIiIjcFIMaERERkZtiUCMiIiJyUwxqRERERG6KQY2IiIjITTGoEREREbkpBjUiIiIiN+WyR0jFxcVBLpdDoVAAACZMmIAWLVogPDwctWrVglR6LzO+9957CA8Pd1VZRERERG7Lpc/6XLhwIWrVqvXI6+vWrYOvr68rSyEiIiJyezz0SUREROSmJEII4YoZxcXFwc/PD0IIREVFYfz48QgICEB4eDjq1KkDk8mEli1bYvTo0ZDL5a4oiYiIiMituSyopaamIjQ0FHq9HrNmzYJarcbcuXMtr+fk5GDixImoVasWxo0bZ1PbGRk5MJudtxjBwf64eTPbae2Te2F/exb2t+dgX3sWd+xvqVSCoCA/26ZxUi2PCA0NBQDI5XK88MILOH78eJ7X/fz80KtXL8vrRERERJ7OJUFNo9EgO/teqhVCYOfOnYiIiEBWVhZyc3MBAEajEXv27EFERIQrSiIiIiJyey656jMjIwOjR4+GyWSC2WxGzZo1MX36dFy8eBHTpk2DRCKB0WhEZGQkxo4d64qSiIiIiNyeS4Ja1apVsWXLlkdeDwkJwbZt21xRAhEREVGpw9tzEBEREbkpBjUiIiIiN8WgRkREROSmGNSIiIiI3BSDGhEREZGbYlAjIiIiclMMakRERERuikGNiIiIyE0xqBERERG5KQY1IiIiIjfFoEZERETkphjUiIiIiNwUgxoRERGRm2JQIyIiInJTDGpEREREbopBjYiIiMhNMagRERERuSkGNSIiIiI3xaBGRERE5KYY1IiIiIjcFIMaERERkZtiUCMiIiJyUwxqRERERG6KQY2IiIjITTGoEREREbkpBjUiIiIiN8WgRkREROSmGNSIiIiI3BSDGhEREZGbYlAjIiIiclMMakRERERuSlbSBRARlSVGoxF79uzC6tUrcf36dej1OgQElEOrVm0wePDLeOyxqiVdIhGVIgxqREQOYDAYsHDhPHz00VIYDAao1Tl5hv/55x/45JNliI1tjOnT38Yzz9QvoUqJqDThoU8iIjvl5GQjMbELFi6chzt3Mh8JaQCg1+uh0+lw6NBBdO3aAbt37yyBSomotGFQIyKyg8FgQN++PXDy5AlotVqrptFqtUhKGoQffzzk5OqIqLRjUCMissPSpQtx6tRJ6HQ6m6bTarUYOLCv1eGOiDwTgxoRUTGZTCYsX7642GHLbDbj2283ObgqIipLGNSIiIpp//69yM21bU/ag9RqNRYt+tCBFRFRWcOgRkRUTJ9/virfCwdsce3aFVy8eMFBFRFRWcOgRkRUTNevX7e7DW9vb6SnpzugGiIqixjUiIiKSa/XO6id4h8+JaKyjUGNiKiYypcvb3cbQgiUK1fOAdUQUVnEoEZEVExt2rSFQqG0qw2TyYRatZ52UEVEVNYwqBERFdOLLw4GIIo9vbe3N/r27Q+VSuW4ooioTGFQIyIqppCQELRp0xYSiaRY03t5eeHll4c7uCoiKksY1IiI7PDmmzOgUvnYPJ1KpUJ8fCJq1HjSCVURUVnBoEZEZIfw8KexevWXNh2+VKlUiIqKwfz5i51YGRGVBQxqRER2atWqDb75ZhsCAwPh6+tX4Hje3nIoFAokJDyH9es3w9vb24VVElFpJCvpAoiIyoLo6Eb4/fe/sWvXdixaNB/nzp2DXC6HRHLvmZ5CAP37D8TQoUmoVu2Jki6XiEoJlwW1uLg4yOX3fk0CwIQJE9CiRQucOHEC06ZNg06nQ5UqVfD+++8jKCjIVWURETmMt7c34uMTER+fiJSU67hxIw06nQ4BAeVQo0ZNKJX23cqDiDyPS/eoLVy4ELVq1bL8LYTAxIkT8c477yA6OhpLly7F3Llz8c4777iyLCIihwsLq4KwsColXQYRlXIleo7a6dOnoVAoEB0dDQDo06cPdu/eXZIlEREREbkNl+5RmzBhAoQQiIqKwvjx45GamoqwsDDL8AoVKsBsNuPOnTs2PZolKKjgk3cdJTjY3+nzIPfB/vYs7G/Pwb72LGWhv10W1NauXYvQ0FDo9XrMmjULM2fORPv27R3SdkZGDszm4t8dvCjBwf64eTPbae2Te2F/exb2t+dgX3sWd+xvqVRi884llwW10NBQAIBcLscLL7yAESNG4MUXX0RKSoplnNu3b0MikTjkQcdEVAqZzfA+fBDev/wE6a2bEEolzFWqQpeQCLODzvfSaDTYvv1bnDv3B+7cyURoaAiqVq2Bbt26w9fX1yHzICJyFJcENY1GA5PJBH9/fwghsHPnTkRERKBu3brIzc3FsWPHEB0djXXr1qFz586uKImI3Igk+y6UX3wO1bJFkGTfhUStxv2HMgmFAr6z/wt942bQjhkHQ4tWxZrHP/9cwkcfLcFXX30BiUQCtVptGebr64s33hiPXr364JVXRvNpAUTkNiRCCOcdM/yfq1evYvTo0TCZTDCbzahZsyamTJmCkJAQHD9+HNOnT89ze46KFSva1D4PfZIjsb9dS3rlMsp37wJpxi1ItNoCxxMAoPKBtv+LUL/1LiC1/lqo/fv3YsiQF2EwGGAwGAocTyaTwdvbG8uXf4rOnZ+1YSmoNOBn27O4Y38X59CnS4KaszGokSOxv11HmpqCwLhmkGRmQmI2WzWNUPkgt+fzyJm7ALDiYejff78PL73UD7m5BYfAh6lUKoa1Moifbc/ijv1dnKDGR0gRUckQAuV6J0KSlWV1SAMAiVYDxcavofj6qyLHTUm5jsGD+9sU0gBAq9Vi+PAh+OefSzZNR0TkaAxqRFQivJN/gfTKFUiMRpunlWo18H1/NlDEAYGVKz+GsRjtA4DRaMDHHy8t1rRERI7CoEZEJUK1ZAEkWk2xp5fcyoAs+dcCh+v1eqxevRJ6vb5Y7RsMBnz55RpoCzlvjojI2RjUiMjlJJm3IT/wPSR2nCIr0WqgKmSP1969u2G24ZBqvvOQSLFjx1a72iAisgeDGhG5nPTaNQi53K42JEJA9tefBQ6/dOkicnNz7ZqHWp2DS5cu2tUGEZE9GNSIyOUkarVVV2xa1U4B1OqcYp+f9qCsrDt2t0FEVFwMakTkcsLfv8gLAaxupwD+/gGQybztal8ikSAwsIJdbRAR2YNBjYhczvz445AU8yT/+4SXFwx16xU4vFatWlAqFXbNw9fXF7VqPW1XG0RE9mBQIyKXE/4B0HXuBmHD0wUeIVcgN+mVAgfHxbWHXG5fUJNKpejYkY+1I6KSw6BGRCVCO3I0oFAWe3pT1aow1mtQ4HAvLy8MGzYCSmXx5qFQKPDSS0Mht/OiByIiezCoEVGJMNaPhPGZesW6+lOoVFBPnl7keC++OLjYQcvb2xtDhgwr1rRERI7CoEZEJSbri/Uwh1SC8Lb+pH+zygeaV8ZA36VrkeNWrFgR69dvhkrlY1NdKpUKa9duQGhomE3TERE5GoMaEZUYUT4QmXsPwvRUOMy+voWP6+UFoVRCM/E/0Lw+2ep5REXFYNOmbQgICIBSqSp0XKVSCX9/f6xfvxlNmjSzeh5ERM7CoEZEJUpUrIjMvQeQM38xDHWfgVCpYFaq7gUzbznMfn4QShVye7+AzD0HoB011uZ7sEVFxeDIkZOYOHESgoND4OfnB4VCAalUCoVCAT8/PwQFBWHcuIlITj6Jxo2bOmlpiYhsIxHCATczKmEZGTkwm523GMHB/rh5M9tp7ZN7YX+XLK+zZ+B95FdIsu4AcgXMISHQd+gE4R/gkPbNZjMOHvwBFy78hezsbFSuXBEhIVXQunVbeHl5OWQe5J742fYs7tjfUqkEQUF+Nk3DoGYFd+xsch72t2dhf3sO9rVnccf+Lk5Q46FPIiIiIjfFoEZERETkphjUiIiIiNwUgxoRERGRm2JQIyIiInJTDGpEREREbopBjYiIiMhNMagRERERuSkGNSIiIiI3xaBGRERE5KZkhQ3s16+fVY0oFAp8+umnDimIiIiIiO4pNKidPn0a//3vfwttQAiBWbNmObQoIiIiIioiqEVGRiIxMbHIRrZv3+6wgoiIiIjonkLPUVu9erVVjfCwJxEREZHjFbpHrSAXLlzAX3/9hapVq6JOnTqOromIiIiIUIygtnbtWqxbtw61atXC77//jrZt2+L11193Rm1EREREHq3IoHbmzJk8e812796NzZs3QyaTQa1WIy4ujkGNiIiIyAmKDGrz58/H448/jvHjx8PPzw8hISH49NNPUbduXSQnJ6NatWquqJOIiIjI4xR5w9sVK1YgOjoaAwYMwJYtWzB9+nRkZWVh1apVuHv3LhYuXOiKOomIiIg8jlXnqHXp0gUtW7bEggULsHnzZkydOhVPPvmks2sjIiIi8mhWBbUzZ87g6tWr6N27NwwGA6ZNm4YGDRpgzJgxUCqVzq6RiIiIyCMVeehzzpw5ePXVV7F3716MHDkSR48exdq1a1G1alU8//zz2Lt3ryvqJCIiIvI4RQa1TZs2YfPmzZg3bx42bNiATZs2QSKRoG/fvli1ahX279/vijqJiIiIPE6RQe2JJ57Ajh078M8//2Dbtm2oXr26ZVhQUBDmzJnj1AKJiIiIPFWRQW3BggU4d+4cZs2ahZSUFMyYMcMFZRERERFRkRcTVK5cGdOnT3dFLURERET0gEL3qG3YsMGqRqwdj4iIiIisV2hQe+eddyCEgNlsLvCfyWTC+++/76p6iYiIiDxGoYc+NRoNateuXWgDQggoFAqHFkVERERERQQ1a2+9IZFIHFIMEREREf2r0KBWpUoVV9VBRERERA8p8vYcRERERFQyGNSIiIiI3JTLg9rixYsRHh6O8+fPAwDCw8PRrVs3JCQkICEhAX/++aerSyIiIiJyS0Xe8NaRzpw5gxMnTiAsLCzP6+vWrYOvr68rSyEiIiJyey7bo6bX6zFz5kxMnz6dV4kSERERWcFle9QWLFiA+Ph4VK1a9ZFhAwYMgMlkQsuWLTF69GjI5XKb2g4K8nNUmQUKDvZ3+jzIfbC/PQv723Owrz1LWehvlwS13377DadPn8aECRMeGXbgwAGEhoYiJycHEydOxJIlSzBu3Dib2s/IyIHZLBxV7iOCg/1x82a209on98L+9izsb8/BvvYs7tjfUqnE5p1LhR76LOzRUQ/+K8rRo0dx8eJFtG3bFnFxcUhLS8OQIUPw448/IjQ0FADg5+eHXr164fjx4zYtABEREVFZVegetdq1a1t1Ptkff/xR6PBhw4Zh2LBhlr/j4uKwfPlyVKpUCbm5uVAqlTAajdizZw8iIiKsLJ2IyE2ZzfD+8RC8Ll6ARK+DuXwgDK3awFypcklXRkSljNWPkDpw4AD27NmDpKQkhIWFISUlBZ988gk6dOhQ7JlfvHgR06ZNg0QigdFoRGRkJMaOHVvs9oiISpLkbhaUn62E6qOlkGg1gMkEidkMIZNBYjRC37I1NGNegzG2cUmXSkSlhEQIYdXJXe3bt8c333yDgIAAy2tZWVno0aMH9u3b57QCrcFz1MiR2N+exVH9Lb1yGeUTOkOSkQFprjbfcYREAiiVUI9/Hdqxr9k9T7INP9uexR372+HnqD0oOzsbWm3ejU9ubi6ys93rTSAicjXJzZso36UdpKkpBYY0AJAIAYlWC99570O1dJELKySi0srqqz4TExMxaNAgDBw4EJUrV0ZaWhrWrFmDxMREZ9ZHROT2/CaNh/T2bUisuLgKACRaDXzffQu6Z7vBXO0J5xZHRKWa1UFt4sSJePzxx7Fz506kp6cjODgY/fr1w/PPP+/M+oiI3JokIwOKvbshMRpsm9BkhmrFR1C/9Y5zCiOiMsHqoCaVStG3b1/07dvXmfUQEZUqyi9WQ0gksPV5KxKDHsovVkP95nRAqXRKbURU+hUa1DZu3GhVIz179nRIMUREpY384PeQ5uYWb2IJ4HXpIkwRtR1bFBGVGYUGtW+//bbIBiQSCYMaEXksiT0XVEml9k1PRGVeoUFtzZo1rqqDiKhUEn52PGvYLCD8S/+zCInIeay+PQcAZGZmYsuWLVixYgUA4MaNG0hLS3NKYUREpYGhcVMIhaJY00pMRph41ScRFcLqoHbkyBF06tQJ27Ztw5IlSwAAly9fxowZM5xVGxGR28sdOLhY0wmZDLm9+gA+Pg6uiIjKEquD2uzZs/Hhhx9i5cqVkMnuHTGtX78+Tp065bTiiIjcnblyKPTNW0J4edk2oUwGbdJI5xRFRGWG1UHt+vXraNKkCQBYHtTu7e0Nk8nknMqIiEqJnPfmQ/j7w9oH2Zl9fKB5eQRMT9Vyal1EVPpZHdRq1qyJw4cP53nt559/Rq1a3NAQkWczV30cd77dDVGhAoS3d+Hj+vgg94UB0EyZ4ZriiKhUs/qGt5MmTUJSUhJat26N3NxcTJs2Dd9//z2WLl3qzPqIiEoFU0RtZB78FapF86Fc+zkgkUCiVkMiBIS3HPDygvHpp6EZ9zr0nZ8t6XKJqJSQCCGs3VuPGzduYOvWrUhJSUFoaCji4+NRuXJlZ9ZnlYyMHJjNVi+GzYKD/XHzJu915CnY357FKf2t1UKxazu8Ll0EcnMhAitA364DTLXCHTsfsgk/257FHftbKpUgKMi2W/pYvUcNACpVqoSXX37ZphkQEXkclQq653qVdBVEVAYUGtSmTp2Kt956C8C9h7Lfv4jgYe+9957jKyMiIiLycIUGtccee8zy/2rVqjm9GCIiIiL6V6FBLSkpCbdu3ULFihUxatQoV9VERERERLDi9hzPPvsstmzZ4opaiIiIiOgBRV5MsGjRIkydOhU7d+7EW2+9hUqVKrmiLiIiIiKnunMnE/v3f4eMjFswGIwoX748mjRpiho1nizp0iyKDGqNGjXCtm3bsGjRIiQkJGDUqFGoWbNmnnHuP7GAiIiIyN2dOnUCS5cuwo4d2yCTyWAw6CGE+N8Tl8yoW/cZjB49Dh06dLI8NrOkWH0fNa1Wi/Hjx+PXX39FYGDgvw1IJNi/f7/TCrQG76NGjsT+9izsb8/BvvYs+fW32WzGf/4zAevWrYVery/0MZi+vr544oka2LhxK4KCghxSk9Puo/bLL79g6tSpqFOnDvbt2+ewgomIiIhcQQiBYcMG4bvv9kCr1RY5vlqtxvnzf6JduxbYv/8wKlQomexTZFCbPHkyDh06hClTpqBTp06uqImIiIjIoebOfRf79u2BVquxehqDQY/09HT07p2IvXsPFng/WWcq8qpPvV6P7du3M6QRERFRqaRWq7F48YfQaKwPafcZDHr8/fdfOHz4oBMqK1qRQW3u3LkoX768K2ohIiIicrhvvvkaEkmRkadA94NeSSh+1URERESlwL29aWq72vjll5+QknLdQRVZj0GNiIiIyiydTocrVy7b3Y5crsCJE785oCLbMKgRERFRmXXnzh3I5XK72zGbTbh7N8sBFdmGQY2IiIjKLIVCDrPZbHc7EonEIYHPVgxqREREVGYFBJRz0E3xJQgODnFAO7ZhUCMiIqIySyqVonPnZyGV2hd5ZDIvNG7c1EFVWY9BjYiIiMq0kSPHQKlUFnt6hUKBIUOS4O3t7cCqrMOgRkRERGVaZGQUwsKq2NGCBAMHDnZYPbZgUCMiIqIyTSKR4JNPVsPHx9fmaVUqFWbOnI3KlUOdUFnRGNSIiIiozKtTpy6+/HIDfH2tD2sqlQqjR4/DoEFDnVhZ4RjUiIiIyCM0bdocO3fuR716DaBUqiCTyfIdz8/PD8HBIZg/fzEmTJjk4irzYlAjIiIijxERURv79h3C3r0H0Lv3C/D394dEIoFEIoFCoUCzZi2wYjoit9sAABrVSURBVMVqnD59Hs8916uky4VECOGIm4uUqIyMHAfdIyV/wcH+uHkz22ntk3thf3sW9rfnYF97Flv622w2w2w2F7iHzVGkUgmCgvxsmsa5FRERERG5OalUavd91pzFPasiIiIiIgY1IiIiInfFoEZERETkpniOGhERlQjZyd+g/GQ5ZOf+gESjhvD3hyEqBtqhw2GuUbOkyyNyCwxqRETkUvJdO+D79nR4XbsG6HIhMZstw2S/n4bqi9UwPFMf6ulvw9gotgQrJSp5PPRJREQu4/PebAQMHwzZX+ch0WryhDQAkBgMkOTmQn40GeV7xkOxcX0JVUrkHhjUiIjIJVRLF8JnyUJItFqrxpfkauE/fgzke3c5uTIi98WgRkRETie9eAG+774NiVZj03SSXC38hw0G1GonVUbk3hjUiIjI6VQrlgMmU7GnV275xoHVEJUeLg9qixcvRnh4OM6fPw8AOHHiBOLj49GxY0cMHjwYGRkZri6JiIicSauF8qsvIDEYijW5VKOGauE8oPQ/8ZDIZi4NamfOnMGJEycQFhYGABBCYOLEiZg2bRr27NmD6OhozJ0715UlERGRk3n/8hNg5+N5vFJTIL121UEVEZUeLgtqer0eM2fOxPTp0yGRSAAAp0+fhkKhQHR0NACgT58+2L17t6tKIiIiF5Bm3ALM9u0NE97ekN7mERfyPC67j9qCBQsQHx+PqlWrWl5LTU217F0DgAoVKsBsNuPOnTsoX7681W3b+iT64ggO9nf6PMh9sL89C/vbyQJUgMS+JqQSCQIDfQE7+4p97VnKQn+7JKj99ttvOH36NCZMmOCU9jMycmC289daYYKD/XHzZrbT2if3wv72LOxv5/P29kGARGLXIRyhN+A2FDDb0Vfsa8/ijv0tlUps3rnkkqB29OhRXLx4EW3btgUApKWlYciQIRgwYABSUlIs492+fRsSicSmvWlEROTeDI2bQWLHFZ8AYK5UCeaqjzuoIqLSwyXnqA0bNgw//vgjvv/+e3z//feoXLkyVq5ciaFDhyI3NxfHjh0DAKxbtw6dO3d2RUlEROQqPj7Ifb4vhMy7WJObfXyhGfUqILHz+CnR/7d379FR1ffexz97JtdJJiEESIBDUamXYEVjYlJAygIseWSBoNaGWoEu9FAbtEHhWA4six5JXVApiICoxPbQCy4pcguuJQ+CyzZSSjDHHg88ttyeAyVcErnkMiSZmd/5g0MWqRoSksz8Mnm/1soiO3vv3/5uvpnkk7337N0FhfVZny6XS4sXL9aCBQtUX1+v/v376+c//3k4SwIAdALfDwsU99ZvJX/bb9HhyOjig9/thKoA+4UlqO3cubPp8zvvvFNbt24NRxkAgBAJDLpRtU8/o4SlL7Xp6QQmLl4XVq2REjv/TWOAjXgyAQAgJHyFs1X32A9l4uNbtbyJi1P1oiVqGDe+kysD7EVQAwCEhuOo7tnnVb1spQIDr1PQ45H5h+vOTFSUTFycGm+/Q+fXbVD99x4JU7GAHcJ6jRoAoPupv/87qp/0oKLK/qz4119V1GcH5NT5ZBIT1ZiVLd+MAgVuviXcZQJWIKgBAELPceS/K1fVd+WGuxLAapz6BAAAsBRBDQAAwFIENQAAAEtxjRoAANcoqnyf4levVPS+Mjk1FyS3W8GkZNXfO14Xp/+zgv80INwloosjqAEA0BbGKPbtdfK8vESuE3+Xc/GinGCwabbrzBm5X18lzxuvqjF3qGrn/Kv83xwaxoLRlXHqEwCA1mpokPexafL+5GlFHfybXHV1zULaZU5Dg5z6ekV/+IF65E9S3JrXwlAsIgFH1AAAaI1AQEnTHlbMR3+Q4/O1ahVHknw+JbywQAr4dfGHMzu1REQejqgBANAKCQsXKGb3H1sd0q7k8tUpsejfFL3r/U6oDJGMoAYAwFU4F84rvvh1OXWtf6D8F8a46FPCCz/twKrQHRDUAAC4iti3fifjav+vzKhDB+Xe/18dUBG6C4IaAAAtMUaeVS/L1Y6jaU0aGxX/2sr2j4Nug6AGAEAL3IcPynXuXIeM5fj9it22tUPGQvdAUAMAoAVO1ecyUR13kwSntkYypsPGQ2QjqAEA0AKn/mLHDhgMXvoAWoGgBgBAC0xystSRB8BiYiS3uwMHRCQjqAEA0ILA1wbKaajvuPEGXtdhYyHyEdQAAGiB6ZGihm//nw65PUcwIUF1Mws7oCp0FwQ1AACuoq7gSSkurv0DGaP6iQ+0fxx0GwQ1AACuwp91lwJ9+7XrUjUTE6P67z0ieTwdVhciH0ENAICrcRxdKP61jCfhmlY3UVEK9P8n1c7jEVJoG4IaAACtEBh8qy789m0FPQltOrJmomMU7JOm85velfEmdVp9iEwENQAAWqlx+Aid2/qegunpCiYmtriscbtl4uPVmHmnzu4qVbBvvxBViUjScbdaBgCgGwjcNkSflx9QzK4din9lmaI/LpOJiZUCAclxJJdLTmODLk64X77HZypw25Bwl4wujKAGAEBbud1quCdPDffkyfXf/19R//WpnPPnJLdbJiVFjXflyiT3CHeViAAENQAA2iH4tYFq+NrAcJeBCMU1agAAAJYiqAEAAFiKoAYAAGApghoAAIClCGoAAACWIqgBAABYiqAGAABgKYIaAACApQhqAAAAliKoAQAAWIqgBgAAYCmCGgAAgKUIagAAAJYiqAEAAFiKoAYAAGApghoAAIClCGoAAACWIqgBAABYiqAGAABgKYIaAACApaJCtaGCggIdP35cLpdLHo9Hzz77rDIyMjR69GjFxMQoNjZWkjRnzhyNGDEiVGUBAABYK2RBbdGiRfJ6vZKkHTt2aN68edq4caMkafny5brppptCVQoAAECXELJTn5dDmiTV1NTIcZxQbRoAAKBLcowxJlQbmz9/vkpLS2WM0Zo1a3TjjTdq9OjRSkxMlDFGWVlZevrpp5WUlBSqkgAAAKwV0qB22aZNm7Rt2za98cYbqqioUN++fdXQ0KCioiLV1tbqpZdeatN4VVU1CgY7bzd69/bqzJnqThsfdqHf3Qv97j7odfdiY79dLkepqYltW6eTamnRpEmTtGfPHp09e1Z9+/aVJMXExOjhhx/Wxx9/HI6SAAAArBOSoFZbW6uKioqm6Z07dyo5OVmxsbGqrr6Udo0xevfdd5WRkRGKkgAAAKwXknd9+nw+FRYWyufzyeVyKTk5WatXr1ZVVZWefPJJBQIBBYNBDRo0SAsWLAhFSQAAANYLSVDr1auX3n777S+dt2nTplCUAAAA0OXwZAIAAABLEdQAAAAsRVADAACwFEENAADAUgQ1AAAASxHUAAAALEVQAwAAsBRBDQAAwFIENQAAAEsR1AAAACxFUAMAALAUQQ0AAMBSBDUAAABLEdQAAAAsRVADAACwFEENAADAUgQ1AAAASxHUAAAALEVQAwAAsBRBDQAAwFIENQAAAEsR1AAAACxFUAMAALAUQQ0AAMBSBDUAAABLEdQAAAAsRVADAACwFEENAADAUgQ1AAAASxHUAAAALEVQAwAAsBRBDQAAwFIENQAAAEsR1AAAACxFUAMAALAUQQ0AAMBSBDUAAABLEdQAAAAsRVADAACwFEENAADAUgQ1AAAASxHUAAAALEVQAwAAsBRBDQAAwFJR4S4AAIBOZYxUVydFB6SgI7k4RoGug+9WAEBEcp06Kc+iIqXePFC9bhwgpaWp14De8v5wuqI+KQ93eUCrENQAABEnbu0v1fOuIfKsWCbXuXNy/H6poUFOY6NiN7+jHvfdq6Tpj0j19eEuFWgRQQ0AEFHi/v1NJT47V87Fi3K+JIg5waAcX51idvxfJU2dLAUCYagSaB2CGgAgYriOH7sU0ny+qy7rXPQp5k+7FffbtSGoDLg2IQtqBQUFuu+++zRp0iQ9/PDDOnDggCTpyJEjys/PV15envLz83X06NFQlQQAiDBxxa9LwWCrl3d8dfIsX3rpDQeAhRxjQvPdWV1dLa/XK0nasWOHVq5cqY0bN2rq1Kl68MEHNXHiRG3evFkbNmzQ2rVt++umqqpGwWDn7Ubv3l6dOVPdaePDLvS7e6HfESQQUOpNX5Orum39DHoSdP73m+XPzumkwhAONr62XS5HqamJbVunk2r5gsshTZJqamrkOI6qqqq0f/9+jR8/XpI0fvx47d+/X59//nmoygIARAjn88/lNDRc07ruv/21g6sBOkZI76M2f/58lZaWyhijNWvWqKKiQmlpaXK73ZIkt9utPn36qKKiQj179mz1uG1Np9eid2/v1RdCxKDf3Qv9jhANF6T//X3SFi4TVFKsS+L7IOJEwms7pEGtqKhIkrRp0yYtXrxYhYWFHTIupz7Rkeh390K/I0ggWr0aGuS0cbWgO0rVsV418H0QUWx8bVt96vNKkyZN0p49e5Senq5Tp04p8L9vjQ4EAjp9+rT69u0bjrIAAF1ZfLwahn9Lbf2z3QkE1DBqTKeUBLRXSIJabW2tKioqmqZ37typ5ORkpaamKiMjQyUlJZKkkpISZWRktOm0JwAAl/meKJRJSGj18iYqShfzvyd5PJ1YFXDtQnLq0+fzqbCwUD6fTy6XS8nJyVq9erUcx9Fzzz2nuXPnatWqVUpKStKiRYtCURIAIAI1jhgp/223K7p835fe7PYfmYRE1c2aE4LKgGsTsttzdCauUUNHot/dC/2OPE5NtZIfmKCo/3dAzsUvv/GtcbtlEhN17p1tCtw2JMQVIhRsfG13mWvUAADoLCbRq3Nb31Pt7GcUTO2lYGKiTGysFBNz6fO4eF3M/57O7vqIkAbrhfRdnwAAhERsrHyFs+V7YpaiP/xA7kN/kzfWrRpPshry7pVJ7Pq3bUD3QFADAEQut1uNo8aocdQYeXt7VW/ZqTDgajj1CQAAYCmCGgAAgKUIagAAAJYiqAEAAFiKoAYAAGApghoAAIClCGoAAACWIqgBAABYiqAGAABgKYIaAACApQhqAIAvMkYxWzepx5gR6jUwXamDB8lT9Jycs5+HuzKgWyGoAQC+IGHBPHmffFzR//mJHF+dXJVn5Hl1hVJG3y2nsjLc5QHdBkENANCM+z//ovh/f1OuurpmX3caGuQ6fUoJRc+FpzCgGyKoAQCaiV/7ptTQ8KXznMZGxW14W/L7Q1wV0D0R1AAAzbiO/becQOCrFwgE5Pjqvno+gA5DUAMANBO4JUMmOvor55u4OJmExBBWBHRfBDUAQDO+Hzwmud1fOs/Exsk37VHJxa8PIBR4pQEAmgled71q/u1Fmfh4mSsCmfEkyD/4VtX9y7+GsTqge4kKdwEAAPtc/MGj8mdlK37VK4r6j3KZniny/eAx1U98QIqJCXd5QLdBUAMAfCn/bber+tU14S4D6NY49QkAAGApghoAAIClCGoAAACWIqgBAABYiqAGAABgKYIaAACApQhqAAAAliKoAQAAWIqgBgAAYCmCGgAAgKUIagAAAJYiqAEAAFiKoAYAAGCpqHAX0BFcLicitgF70O/uhX53H/S6e7Gt39dSj2OMMZ1QCwAAANqJU58AAACWIqgBAABYiqAGAABgKYIaAACApQhqAAAAliKoAQAAWIqgBgAAYCmCGgAAgKUIagAAAJYiqAEAAFiKoPYP6uvrtWDBAo0dO1YTJkzQs88+K0k6cuSI8vPzlZeXp/z8fB09ejS8haLdjh8/rokTJzZ9jB49Wjk5OZLodyTatWuXJk2apIkTJ2rChAnavn27JHodqT744APdf//9mjBhgh555BEdO3ZMEv2OBIsWLdLo0aN18803669//WvT11vqbZfuu0EzL7zwgikqKjLBYNAYY8yZM2eMMcZMmTLFbNq0yRhjzKZNm8yUKVPCViM6x8KFC83zzz9vjKHfkSYYDJrs7Gzz2WefGWOMOXDggLnjjjtMIBCg1xHo3LlzJicnxxw+fNgYc6mv06dPN8bw2o4Ee/fuNSdOnDCjRo1qek0b03Jvu3LfCWpXqKmpMVlZWaampqbZ1ysrK01WVpbx+/3GGGP8fr/JysoyVVVV4SgTnaC+vt7k5uaaTz/9lH5HoGAwaHJyckxZWZkxxpg///nPZuzYsfQ6Qn3yySdm3LhxTdNnz541N910E/2OMFcGtZZ629X7HhXuI3o2OXbsmHr06KEVK1Zoz549SkhIUGFhoeLi4pSWlia32y1Jcrvd6tOnjyoqKtSzZ88wV42OsHPnTqWlpenWW2/Vp59+Sr8jjOM4WrZsmQoKCuTxeFRbW6vXXntNFRUV9DoCXX/99aqsrNRf/vIXDRkyRFu3bpUk+h3BWuqtMaZL951r1K7g9/t17NgxDR48WO+8847mzJmjJ598UnV1deEuDZ1sw4YNevDBB8NdBjqJ3+/Xa6+9plWrVmnXrl169dVX9dRTT/HajlBer1dLly7Viy++qAceeEBVVVVKSkqi3+iSOKJ2hX79+ikqKkrjx4+XJN1+++1KSUlRXFycTp06pUAgILfbrUAgoNOnT6tv375hrhgd4dSpU9q7d68WL14sSerbty/9jjAHDhzQ6dOnlZWVJUnKyspSfHy8YmNj6XWEGjZsmIYNGyZJqqysVHFxsfr370+/I1RLP7eNMV267xxRu0LPnj2Vm5ur0tJSSZfeJVJVVaXrrrtOGRkZKikpkSSVlJQoIyOjSxwyxdVt3LhRI0eOVEpKiiQpNTWVfkeY9PR0nTx5UocPH5YkHTp0SJWVlRo4cCC9jlBnzpyRJAWDQf3iF7/Q5MmT1b9/f/odoVr6ud3Vf6Y7xhgT7iJscuzYMc2bN0/nzp1TVFSUZs2apZEjR+rQoUOaO3euLly4oKSkJC1atEg33HBDuMtFB8jLy9P8+fP1rW99q+lr9DvybNmyRW+88YYcx5Ek/fjHP9Y999xDryPU/Pnz9fHHH6uxsVHDhw/XvHnzFBsbS78jwMKFC7V9+3ZVVlYqJSVFPXr00LZt21rsbVfuO0ENAADAUpz6BAAAsBRBDQAAwFIENQAAAEsR1AAAACxFUAMAALAUQQ0ALLFu3ToNHjxYmZmZOnbsWLvGqq6uVmZmpm699VatWrWqgyoEEGoENQDtkpmZ2fRxyy23aMiQIU3TW7ZsCXd57TJ8+HCVlZWFdJs5OTkqLy/XgAEDJEl1dXV6/PHHdffdd6u4uLjZsgcPHtQTTzyh3NxcZWdna+LEiVq7dq2MMfJ6vSovL9fYsWNDWj+AjkVQA9Au5eXlTR/9+vXT6tWrm6bvu+++cJf3lfx+f5fYxoYNG5STk6P3339fpaWlOnnypKRLN/DMz8/X9ddfr5KSEpWVlWnJkiUqKytTQ0NDu7cLwA4ENQCdKhAIaOXKlRozZoxyc3M1e/ZsXbhwQdKlsDF48GCtX79eI0aMUG5urn7/+9+rvLxc48ePV3Z2tl588cWmsdatW6epU6fqpz/9qe68806NGzdOe/fubZp/7tw5PfPMMxo+fLhGjhypFStWKBgMNlv3+eef11133aXXX39dhw4d0pQpU5STk6NvfvOb+slPfqKamhpJl55cUFVVpUcffVSZmZlau3atPvzwQ337299utn9XHnV76aWXNHv2bM2aNUuZmZnatm1bi/vf2v+/YDDY7F9JevnllzVs2DDNnj1bvXv3liR9/etf1/LlyxUbG9vWNgGwFEENQKcqLi5WaWmpfve73+nDDz9UdHR0s/AVCAT02Wef6f3339fPfvYzLVy4UG+++aZ+/etfa8uWLXrnnXf0ySefNC1fVlamm2++WXv27NGMGTM0c+bMpnA1Z84ceb1e7dixQ+vXr9eOHTu0efPmZutmZGToT3/6k6ZPny5JKigo0B//+Edt3bpVR44c0erVqyVJy5cvV2pqqoqLi1VeXq6pU6e2an/fe+893X///dq3b5/y8vKuuv9X853vfEe7d+9uCnr9+/eXJH300UfKy8tr9TgAuiaCGoBO9dZbb2n27NlKS0tTbGysZs6cqXfffVdXPr1u5syZiomJ0ZgxYyRJEydOVEpKivr166fMzEzt37+/adn09HR9//vfV3R0tCZNmqS0tDT94Q9/0N///neVlZVp7ty5io+PV58+fTRlyhRt27atad0BAwbou9/9rtxut+Li4jRo0CANHTpUMTEx6t27t6ZNm9bsCN21yMnJ0ciRI+VyuRQXF9eq/W9JYmKiiouLtXv3bv3oRz+SdCncVldXNx1JAxC5osJdAIDIZYzRyZMnNWPGjKaHoUtSMBjU2bNnJUlut1spKSlN82JjY9WrV6+m6bi4ONXV1TVNp6enN9tG//79dfr0aZ04cUL19fUaOnRos+0MHDjwK9c9deqUioqKVF5ertraWhlj2h1+rtzG1fa/Z8+e17QNt9str9erM2fOtKtWAPYjqAHoNI7jKC0tTa+88oq+8Y1vfGH+5bDWFpcvpr/sxIkT6tOnj9LT0+XxeLR3795moegf67nS4sWL5fF4VFJSouTkZG3btk3Lli37yuU9Ho98Pl/TdGNjo86fP/+V27ja/rfHsGHDtH37do0fP75DxwVgF059AuhUkydP1pIlS1RRUSFJqqqq0s6dO695vJMnT2rdunXy+/3avHmzKioqdPfdd2vAgAG64447tHjxYtXU1CgYDOro0aMt3l6jtrZWHo9HiYmJOnHihH75y182m5+amqrjx483Td9www06f/68du/ercbGRr3yyitNb1YI1f5fVlhYqNLSUi1dulSVlZWSpMOHD2vWrFmqr69v9/gA7EBQA9CpHnvsMQ0dOlTTpk1TZmamJk+e3Oyas7bKzs7WgQMHlJOTo9WrV2vFihXyer2SpCVLlqi6ulr33nuvcnJy9NRTT6mqquorxyosLNS+ffuUnZ2tJ5544gv3HHv88ce1dOlSZWdn6ze/+Y169uyp+fPna86cORo5cqR69erV7LRtKPb/skGDBumtt97SwYMHNW7cOGVnZ+vpp59Wdna2YmJi2j0+ADs4prVXtAJAmK1bt07vvfeefvWrX4W7lE6xfv16FRUVKSoqShs3bmy66e21qK6u1qhRo+T3+1VQUKAZM2Z0YKUAQoVr1ADAEg899JAeeuihDhnL6/WG/KkKADoepz4BAAAsxalPAAAAS3FEDQAAwFIENQAAAEsR1AAAACxFUAMAALAUQQ0AAMBS/wMQNfD2N5G9sgAAAABJRU5ErkJggg==\n", "text/plain": [ "
    " ] @@ -1783,12 +1724,12 @@ }, { "cell_type": "code", - "execution_count": 125, + "execution_count": 37, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlwAAAHtCAYAAADMYqD9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3XecHXW9//HXZjeNJCLIiiIlEvGjiBSDNAUiRWyABXsDFSz4Q0SseBW8WK5XQS9YuHSxXxQLVwSlo1EkooDlowjx2sAIMaSyye75/TGzsoTds7vJ+W59PR8PHmTPmfnO58x3Zs57vjPnnLZGo4EkSZLKmTLaBUiSJE10Bi5JkqTCDFySJEmFGbgkSZIKM3BJkiQVZuCSJEkqbFwGroj4TET8JCLa+zzWHhE/iohTI2L3iLh4CO0sjojd+3n8iIi4psVlD0tEfC4i7oyID7e43cdGxDfqf28VET9uZftNltvv6+lbz3gQEZtGxFWFl9GIiFsj4jkRcU1EHFFgGW+IiLfU/35TRLxnA9vZJiJ+ERFd/e1L6017ZERcugHLOCki/i8izouIXSPiDxGxaEPbG2AZJ0fEkoj4zgbOf0FEnNiKWkqIiC0iYkS+A6iV/TLIchZExG0jsJwhb+MbsYxLI+LIEm1viIg4MyJO7ufxIyNiWUTcVGi5J0fEmSXaXm85h0XEf23gvMdGxO0bsu2Ny8AFvAOYBby3z2PvBbqBD2bmTZnZ8jepEfZGYN/MPKnF7W4HBEBm/jUz92lx+wMZ6PX8q55xYjNgjxFYzjMy83sF2386sAlAZn4+Mz+2IY1k5p8yc1fgr60sbj2vB16Rma8DDgOuzsz5BZbztcw8rEC7GsdGaBsfT67PzCLBc6Rk5ncy87gNnPczwBs2ZN6ODZlptGXmmoh4BfCj+kyqDXgL8NTM7I6IBcCZmblTREwD/gPYH2gHbgaOy8z7+rYZER8CXgncA/y+v+VGxBTgdGAvYE693Ddk5o8i4unAafUyGsBHM/MbQ51/vemur5+7rB6FuAg4IjNvqp9fDBwB/AO4EvgesCdVGHhXZl4SER3Ax4HnAeuAHwPHAucAj4mIy6lC0G2ZOTsiptb1H0gVXH8KvD0zl9fLu6B+blvgC5n5b/2snycBZwKPqNfBJzPzC+u/nsy8vp6+vW89mXlIROxD1V+z6jpOyczes78XUZ0kbAf8GTgbeCvweOC0zPxkPd2L+0z3F+C1mfnXiNgU+DTwZGBqve7emZnrIuJ+4NvALlTbwc71+pkGbA58LDM/B5wPzIyIXwDz63XbmZn/qF9TA+gEdqqXtRKYDTwVeCbw/rrNVcCJmblw/fU4kIh4PvDB+rUtB07IzBsH6Ou3UG0PZwFbAo8C/gi8BHgaVXA5OCJW1/VukZlvbdKHC4APA3fUr20q8Mb1t90heHREfB/Yqq7n6My8KyL2ql/DdODRwA8y8/UR8TVga+DciPhI/braI2Im8IM+66ZZ354CvADootq/j8zMvw2yrl9HdWLXTbWfvTYz/xQRxwDH1Y/fDbw1M3+33rz7Av9JFWi7gPdn5vfrbfOIzHxePd2//o6IC6i2s3nApZn57j7tNTvuXADcV7/ubYBbgNdk5oqIeCFVn60Cftbkta6h2vcPotpWT6bah55MFTIOzcyV9Tp5yD5Rv47XU+2zy4AL+7R9BNX+/JzMzIh4PVUfTqHqi7dm5m8Hef2zqfa7HYAeYFFdB8DsiPgq8ARgBtX2dH1EPB74TL2+Hg38Anhp/d6xDvgY8Oy65vdl5jfrZfVb30Drrp7necD76vXySODCzPy3ZvtMRGxVr6fe/eCRA7Td7/tKvb5WA7vW815B9b62NiKeSLUvPKKe778y87y6vUPp5xgUEQ+jOhbvAvyN6jhywyCvey5wFdV+OJ8qT3yAqm+eANwEvDwzeyLifcDhwEyqdX5i/T51MrB3vR5+Cdzep/3jgaOAQ+pjxEk88B6wGHhLfVy/Bri3XubnMvOMPm08CvgCsEX90P/WfXMk1Xvo4VTbU6/N6/X5iPr19HtMabZemhmvI1xk5q3ASVQbyXnA6zPzL/1M+h6qjWd+Zu5CdQB50Nl8RBxO1ZG7AvsAmw6w2D2pNoy9M3NHqh2m91LMKVRv+vOB1wEHDHP+vq9t3/qfz+gNJ01sD1yemXvUbX2qfvwtVDvBLlQ7+xyqN9s3AH/IzEPWa+f9dW271P9NoXrT6DW7rmsf4MSIeGzfmes3/e8AZ2TmzlQHs49ExN4DvZ7M7O5bT0RsRnVgfXVmPoVqZ/hcRGxbz7Iv8CaqMLQN8DKqEPgc4NT6jQmqcP22eh0vAnqHjk8HFtV9tBvVTnhC/dw04LuZGcBvgaOp3iR2A15KFQagOgCszsxd6/qb2YnqgLMzVVD9SJ82jwG+GRGzBmkDgIh4AvB54EX1dvwB4Nv1gbK/vn5pvX4WZubeVNvJKqp1ewlVX51en631LmPAPqwn2ZMqgO1G1U8fGUrt63k81ZvYzsCtVAc0gLcBH8jMPYEdgcMiYn5mvpRqn31lZl5Yr4OvZeYr12u3376NiG2A46lOxnanemPas1mBEbELVUh4Vl3nd4CTIuIA4F1U2/EuwJeBb0VEW595HwFcTLX97Qy8Fvji+vvLADbJzCf1DRu1wY4b84FnAU8E5gIvjogtqY6LL6rXyR+bLHc6cFd9DLmQ6ph6PFU/bAocXoeegfYJgCcBCzLzGX3WxcupwtuCOmztX6+Pfes2Pg5cMoTX/wJgTj3K9NT6se3r/29NtR3vSnVycXL9+NFUwWcv4HHAY4Hn1s+1A6vq9fIS4LyI6BxCfQ9R9/07qAL57lSh+L0R0fsGP9A+8xngJ5n5JKoA/4QBFtHsfWVP4GCqftoReGO9D18MvKeeZ3+q4/VeEbEDAx+DTqEKcE+gCttDverwWKoQszuwkGp/fjnV9rAvsFdEbEcV5hfU+8RJwIf6tLEdsFtmvqr3gYh4V13H/nXYeg1V8Nmj7uvvUW2nvZZm5o59w1btaOCO+v1kX2CH+uQMqN6D6mP5rvW6XU51QraS5u8XG2RcjnD1yswz6jOoX2fmZQNM9jzg4VRn81C9sf59vWkOAr6ZmcsBIuI8qp1g/eUtjIj3U23Y84AFVB0E8HXgM/UZxA+pzniGM/+GWku18QH8nCqh976mizJzdf33S+vXtmCAdp4NnJSZa+vpzgC+1ef5b9ev4S8R8fd6OXf2ef7xwIzeM8X6zOMbVG8EQx3F2ZvqbPRbdV9BdVa3c/3vn2Xmn+r67gSuqM+e/kB1drtJPd0VfUYdzqY6u4VqW9ijPouF6myrr+vr2lfUZ63PrQ9Su1Kd+Q/XnzKz943u4Pq1XdnntfVQvRn8cghtHQBcmZl31DVeVffDfAboa6hGWyLiBKrRgZ2oRi4H0qwPrwb+mJm96/LnwJFDqHt9P8zM3rPYc3lg5OW1wHPqM+EnUPXNcNb5QH37Car1+/OIuAy4LDOvHKStA6lOYv4EkJmfAoiIj1OFvSX14xdExKepQk6vPYHbM/On9TS/iogfUe3rg91D1e+IwhCOG9/PzPvrGm+l2jefDtyamb+upzmL5gG5dzT+D/V8f6nbuxPYfAj7xC354KsGT6Xabo7vXY9UgedxwI/77AObRUTvMWugEZUbqIL/NVSjKZ/KzNsjYmuqk7XebfoXVKEE4N1Ux/x3UW3XW61X75kAmXlLvc72o+q7fuvLzHv7KywzG/Ux/3lRXXV5ItUIZO+J1ED7zEHAiXUbt8fA94U2e1+5IDNXAETEF4DnU404zaMKkb3TzaQKDG0MfAw6iKqvGsCSiGgaNPtYC3y3/vcfgB/3bgcR8VeqbefHdWB6ZUQ8jiqU9u2Ln+SDR41eWNd5aGb+s37seVS3ctxU197OA8d7qI/d/fg+8L36pP2HVEF0WZ/XT13rzPp1XJSZX+27zCbvF8M2bke4+riTqqMH0k51ttmbYvegGkpcX1uff/c7ZBgRzwX+t/7z21Rn220AmXkWVQL/AXAIcEtEzBjq/INorDfdtD7/7srMnn6mW0efA3xEbBkRj26yjHYe/IYwhWoYtdfqPv9ev57+5u+vjcG0A7/p7au6v/YCLq+fv3+96dcO0E7f/ptCdfmnt/0X92l7T6pLkr16D15bUx28t6M62L9/kLrb6vmmrff4ivVe25X9vLah3njZbP3229cR8R9UZ5JLgP+mGt1ptr0N1oeDbQND0XdUcAoP9OF1VCOVv61r/ssw2++3b+t9Y3+qN7p7gNPr4NTM+utzZj3C2N/6aePB23izddhsP4YHby//MoTjxkD9MugxrY+++9ZD9qsh7BPr1/5PqkvoJ9eXnqBaNxf16aOnALsDSwdoA4DMvJMqFHwUeBjwwzqArF9r39f+FaoRnD9SjVT8nIHXR+8xYrD6HqIeHbq5nvbnwDvrmnqXNVDfrL8t9Ns/g7yvDPQalvVznDmfwY9Bw9leenXVIa1Xf9vOU6hOuh9GdQz6j/WWtX6/3071Hv3ZiHh4/Vg78B996t6d6taIgdoAIDN/RjUK999UJ0Y3RsSD7v+M6taWL1PdXtP36tdg7xfDNhEC12AuB94aEdPqS05nU+24fV1GNQz/8HqaVw/Q1sFUl50+R3V9+vlUnUJUn/bbLTMvoNrRH05138yQ5h/EEqoNrHeEqllw6vVD4BURMb1+TZ+jGupdR/8h6PvAmyNiaj39sfS5R2YIfgusjeq+EaK6R+FFQ2ijbz0/oRry3a9uY1eq++keM4w6AA6MiN553sQDZ2CXA2+PiLaImE51qai/HWh3qnV+KtUBoveem/a63vY+l5H+1TfAK5rUdCXwzPqNm4h4DtX9NkM9a7oSOCQitq/nP4DqsupPGbivD6EaDbiIalT3YB7Y3vrbDja0D4fjGfHAJeI3Ud3X93CqEZF316NrW1O9wQ5l3+jVb99GdXnwNqog/1GqN9+nNmkHqtG8g/qcoLyR6vLS94GXRUQnQEQcRRXibu8z70LgCRGxRz3Nk6hGT66h2lZ2iogZUd0zOdQP9mzIceM64En164cNG43sq9k+0Z/fZ+ZVwBnAF+rt8nLg5X3W65uotuumIuLNVIHhivpy4+VUAaeZQ4APZebX6r/35MHr7DV120+hGlG9dgPr24EqSLw/M79LNfo4ncH75/tU7xPU+8Mz+ptokPeVl9b7/AyqEeLvAgmsjohX1fNvQ7X9z6f5Megy4PURMSWqWzsOH6T+4dgPuCkzT6Naz4Ntv7dkdf/zlVSXXqHqmzdEdQsFVCdlFw224Ij4GPBvmfktqtsWfkU10t/XmVTHwmPXe3yo7xdDNhkC179T3WB3M/BrqmT9jr4TZPVpsPOoDmY/pbrxsz+fBxbUQ9A/pxpZe2x9MHkX8KGIuJnq4HpKZi4exvzNvBt4W1Q3ar+aB9/kN5Cz6ukWUd0r8zeqe5l+DayJiBt58FnGqcBdVGexv6HaAN82hOUAUF+KfH5d5y1UIeBDmXn1ILP2recfVG/w/xkRv6TaoV7dz3oczJ+BiyLiN1RnNcfXjx9HNdR/K9WB5lYefB9KryvqNpJqXWxL9WbzOKr1eCPwq6ju1zmOasj/51SXE/q9Gbu+tHMM8NX6tf07cFjvJYHB1PO/heqei9uo7kM8NDOXMXBffwj4RN0f36EamXhc3eRlwJsi4r19lrGhffggEfG9iBjo0363UF3uuI1qvZ5QXzb4KNVlv9uo7k/6UZ9ah6Lfvs3MX1Jdlrkpqo+yv45B7sPI6v7QdwLfr/vqWcCbMvMHVIHtqoj4FdWb3PP6jDCT1YcnXgycUe/nXwaOqi9xX0H1hvNbqkA01I/WD/u4UV/2fAXwpXrbHMo9ZM002yea+TBVv7wzM3tHN35Qb1+vAF643ghJf75A9Qb964hYRHVf2WAf6X8fcEm9zs6iWu99a31avV7Oo7qZfukG1ncLcCnw2/p4cyjVMW2w9XIssGM9z7k8cNvD+pq9r6yiupR2a/3/8zOziyosvaF+DVdQBY4fDXIMOplqdOq3VMHt1kHqH46vAFvUr/XXVKNRm0fEnEHmOx7YLyJeQnW/1qXAT+p9b2eGdhLxKWDX+rhyE9UVsd5LhkR1f+qbqE5efxbV13/8Iqqv/xjq+8WQtTUaI/LVLNKIiPU+CTYeRf1Jx/rNe1yI+pOzmXlTRBxNdf/a90e3qqGL6tNSW2TmRp3Bauzb0P2r7zZeoq7hiOpTirdl5idGeLlHMs6Pr60Qfb4JYTjzTYYRLmk8uroe8h/Tov5SSKqbknutYwiXisagl8YGfvGpJq4BtvHJbN8o9MWn40FE9H690rA5wiVJklSYI1ySJEmFGbgkSZIKM3BJkiQVNqa/aX7JkuUjcoPZZpttwtKlq0ZiURoD7O/Jw76eXOzvyWOs9nVn55wBv7DZES6go2M436+o8c7+njzs68nF/p48xmNfG7gkSZIKM3BJkiQVZuCSJEkqzMAlSZJUmIFLkiSpMAOXJElSYQYuSZKkwgxckiRJhY3pb5rfWN3d3SxefMeg0y1dOpt7713RdJq5c7envX38fdGaJEkafRM6cC1efAd77z2/JW0tXLiIefN2aElbkiRpcvGSoiRJUmEGLkmSpMIMXJIkSYUZuCRJkgozcEmSJBVm4JIkSSrMwCVJklSYgUuSJKkwA5ckSVJhBi5JkqTCDFySJEmFGbgkSZIKM3BJkiQVZuCSJEkqzMAlSZJUmIFLkiSpMAOXJElSYR2jXUBJc+duz8KFiwadbvPNZ3PvvSsGbUuSJGlDTOjA1d7ezrx5Oww6XWfnHJYsWT4CFUmSpMnIS4qSJEmFGbgkSZIKm9CXFCeK7u5uFi++Y6PbmTt3e9rb21tQkSRJGg4D1ziwePEd7L33/I1uZ+HCRUO6p02SJLWWlxQlSZIKM3BJkiQVZuCSJEkqzMAlSZJUmIFLkiSpsKKfUoyI9wKHAdOAzwLXAhcADeA24NjM7ClZgyRJ0mgrNsIVEQuAfYCnAfsD2wCnAe/PzH2BNuDwUsuXJEkaK0peUjwEuBW4BPgucCkwn2qUC+Ay4KCCy5ckSRoTSl5S3ALYDnge8FjgO8CUzGzUzy8HNm3WwGabbUJHx8h8M3pn55wRWc6GWLp0dkva2Xzz2WP6dY4k18PkYV9PLvb35DHe+rpk4LoH+G1mdgEZEWuoLiv2mgP8s1kDS5euKljeAzo757BkyfIRWdaGuPfeFS1rZyy/zpEy1vtbrWNfTy729+QxVvu6WQgsGbhuAN4WEacBjwZmAVdGxILMvAZ4NnB1weVLo87fwZxc7G9JAykWuDLz0ojYD7iR6l6xY4E7gbMjYhrwG+DiUsuXxgJ/B3Nysb8lDaTo10Jk5rv6eXj/ksuUJEkaa/ziU0mSpMIMXJIkSYUZuCRJkgozcEmSJBVW9KZ5tcbcuduzcOGilrQjSZJGnoFrHGhvb/cj4pIkjWNeUpQkSSrMwCVJklSYgUuSJKkwA5ckSVJhBi5JkqTCDFySJEmFGbgkSZIKM3BJkiQVZuCSJEkqzG+alwryZ5kmF/tb0kAMXFJB/izT5GJ/SxqIlxQlSZIKM3BJkiQVZuCSJEkqbELfw9Xd3c3ixXcMOt3SpbO5994VTaeZO3d72tvbW1WaJEmaRCZ04Fq8+A723nt+S9pauHCRN8NKkqQN4iVFSZKkwgxckiRJhRm4JEmSCjNwSZIkFWbgkiRJKszAJUmSVJiBS5IkqTADlyRJUmEGLkmSpMIMXJIkSYUZuCRJkgozcEmSJBVm4JIkSSrMwCVJklSYgUuSJKkwA5ckSVJhHaNdQElz527PwoWLBp1u881nc++9KwZtS5IkaUNM6MDV3t7OvHk7DDpdZ+cclixZPgIVSZKkychLipIkSYUZuCRJkgozcEmSJBVm4JIkSSrMwCVJklSYgUuSJKkwA5ckSVJhBi5JkqTCDFySJEmFGbgkSZIKK/rTPhFxM7Cs/vNO4LvAfwJ/qh/7YGZeW7IGSZKk0VYscEXEDIDMXNDnsVOBd2XmN0otV5IkaawpOcK1C7BJRFxRL+d9wHxgt4g4HrgReHdmritYgyRJ0qhrazQaRRqOiCcDewHnADsAlwFnARdTXV78PHBrZp45UBvr1nU3Ojrai9QnSZLUYm0DPVFyhOt3wO2Z2QB+FxH3AF/JzD8BRMS3gRc1a2Dp0lUFy3tAZ+cclixZPiLL0uizvycP+3pysb8nj7Ha152dcwZ8ruSnFF8HfBIgIrYCNgV+GhFb188fCCwquHxJkqQxoeQI17nABRFxA9AAjgJmA9+MiNXAr4GzCy5fkiRpTCgWuDKzC3hFP09dUWqZkiRJY5FffCpJklSYgUuSJKkwA5ckSVJhBi5JkqTCDFySJEmFGbgkSZIKM3BJkiQVZuCSJEkqzMAlSZJUmIFLkiSpMAOXJElSYQYuSZKkwgxckiRJhRm4JEmSCjNwSZIkFWbgkiRJKszAJUmSVJiBS5IkqTADlyRJUmEGLkmSpMIMXJIkSYUZuCRJkgozcEmSJBVm4JIkSSrMwCVJklSYgUuSJKkwA5ckSVJhBi5JkqTCDFySJEmFGbgkSZIKM3BJkiQV1jHaBUjSWNTd3c3ixXdsdDtz525Pe3t7CyqSNJ4ZuCSpH4sX38Hee8/f6HYWLlzEvHk7tKAiSeOZlxQlSZIKM3BJkiQVZuCSJEkqzMAlSZJUmIFLkiSpMAOXJElSYQYuSZKkwgxckiRJhRm4JEmSCjNwSZIkFWbgkiRJKszAJUmSVJiBS5IkqTADlyRJUmEGLkmSpMIMXJIkSYV1lGw8Im4GltV/3gmcBXwaWAdckZmnlFy+JEnSWFAscEXEDIDMXNDnsV8ALwLuAP43Ip6SmT8vVYMkbai5c7dn4cJFLWlHkkqOcO0CbBIRV9TLORmYnpl/AIiIy4EDAQOXpDGnvb2defN2GO0yJE0QJQPXKuATwDnADsBlwD/7PL8c8NRPkiRNeCUD1++A2zOzAfwuIpYBm/d5fg4PDmAPsdlmm9DR0V6wxAd0ds4ZkeVobLC/Jw/7enKxvyeP8dbXJQPX64AnA2+JiK2ATYCVETGP6h6uQ4CmN80vXbqqYHkP6Oycw5Ily0dkWRp99vfkYV9PLvb35DFW+7pZCCwZuM4FLoiIG4AGVQDrAb4EtFN9SvGnBZcvaYxpW34fM847myl//Qtt999PY+YmdO/weNa88jUwffqw2uru7mbx4juaTrN06WzuvXdF02nmzt2e9vaRGUmXNHkVC1yZ2QW8op+n9iq1TEljU/utv2Tmuf/NtGuvpv0vf37I8zPP+Txd+x/AqmOPo7H1NkNqc/HiO9h77/kbXdvChYu8OV5ScUW/h0uSpl9yMbM+eBLtd/1twGk6bv89Hbf/nmnXX8vy089g3VP3HMEKJak8v2leUjHTvncps95zYtOw1VfH737LnGOPYcqvf1W4MkkaWQYuSWWsXMmsU95P+9J7hzVbx+I7mfPeE6HRKFSYJI08A5ekImaedzYddza/qX0gU2+6kalXX9XiiiRp9Bi4JLVeo8G0Ky7b4Nnb1q5l+te/3MKCJGl0GbgktVz775KpP79po9qYduNPoKenRRVJ0ugycElquSmL76Rt7dqNaqNt+X203besRRVJ0ugycElqvY0MW0A1utXtCJekicHAJanlerbdjkZb20a10Zg1i8amm7aoIkkaXQYuSS3XvdOTWbfTzhvVxrpdngIdfjezpInBwCWp9aZMoevAgzZ49kZbG2sOf0ELC5Kk0WXgklTE6mOOpXvLR23QvOuevDNdL3xxiyuSpNFj4JJURGOLLVj1tnfQmDFjWPN1b9HJyvd9AKZ4eJI0cXhEk1TMmje8kZXveDc9s+cMafruRz2Klad+jLUHHFy4MkkaWd6RKqmo1W97B93bP44ZX7qQqT9ZyJRVKx8yTfdmm7H2afuy+o1vZd2ee41ClZJUloFLUnFdhx5O16GH0/6Lm5n5pS8w5e67YM0a2GQTurfdltVveBM922432mVKUjEGLkkjpnvX3Vix624taWvu3O1ZuHBR02k233w29967YtB2JKk0A5ekcam9vZ1583ZoOk1n5xyWLFk+QhVJ0sC8aV6SJKkwA5ckSVJhBi5JkqTCDFySJEmFGbgkSZIKM3BJkiQVZuCSJEkqzMAlSZJUmIFLkiSpMAOXJElSYQYuSZKkwgxckiRJhRm4JEmSCjNwSZIkFWbgkiRJKqxjoCci4o5B5m0DejJzXmtLkiRJmlgGDFzAauA5TZ5vA/63teVIkiRNPM0C1xsz84/NZo6IN7a4HkmSpAlnwMCVmTf0/Tsi9gROA6YDp2Tmd9efRpIkSQ814E3zETFtvYc+ALwQeC7wiZJFSZIkTSTNPqX4zYh4VZ+/7wGOAl4N3Fe0KkmSpAmkWeA6FJgWEZdGxDOBNwNLgfupRrkkSZI0BM3u4WoA50XEl4ETgDcCH87Mn49UcZIkSRNBs3u49oqIbwDnAd8CjgFeExHnR8RjR6pASZKk8a7Z10KcC7wGeBhwTmbuAxwfEfOAU+rnJEmSNIhmgasHeCwwG1jb+2Bm/gHDliRJ0pA1u2n+RcA+QACvajKdJEmSmmg2wvXMzDyh2cwR8dbMPLPFNUmSJE0ozQLXOyOi2fdttQEnAgYuSZKkJpoFrquAZwwy/9UtrEWSJGlCavY9XEeNZCGSJEkTVbOb5iVJktQCzS4pbrSIeCSwCDgY2AT4LvD7+unPZebXSi5fkiRpLCgWuCJiKnAWsLp+6CnAaZn5yVLLlCRJGotKXlL8BPB54K/13/OB50bEdRFxbkTMKbhsSZKkMaOt0Wi0vNGIOBLYOjNPjYhrgDcBewO3ZOaiiDgJ2CwzT2zWzrp13Y2OjvaW1ydJklRA20BPlLqk+DqgEREHAbsCXwAOy8y76ucvAc4YrJGlS1cVKu/BOjvnsGTJ8hFZlkaf/T152NeTi/09eYzVvu7sHPji3YCBKyLuBAYc/srM7Zs8t1+fdq6hGuH6dkT8v8y8ETiQ6mZ6SZKkCa/ZCNcCqqGxDwB3ABcA64BXUv2o9XC9GTgzIrqAu4BjNqANSZKYFD1cAAAYbElEQVSkcafZF5/+ESAids7M1/V56pMRMeTRqcxc0OfPfYZdoSSNJV1dzPjSF5h2/TWwbBm0d9DT2cn9LziCtQceDG0D3sIhaRIbyj1cbRFxQGZeBRARz6Ya6ZKkyaPRYOanP8mM//kqHb//3UOennHJxazdbT6rj30bXc953igUKGksG0rgegNwYUQ8muprJBYDry5ZlCSNKY0Gs959AjMvuoC27u5+J2lbt45pP/spHW8/lhXL/sn9L3/VCBcpaSwbNHBl5s3AzhHxCKCRmfeWL0uSxo6Z/3Va07DV15SlS5n17x+ke7u5rNvn6SNQnaTxoNmnFK+mn08pRgQAmXlAubIkaYxYu5bp3/j6kMJWr/Z/LGHm+eew3MAlqdZshOvkkSpCksaqGV/5IlN/+5thzzf1hutou+tvNB716AJVSRpvBvxpn8y8tvc/qpvknwgspLqseO1IFShJo2nqddds0Hzt9/yDGV/5YmuLkTRuDfpbihHxNuBU4ARgDnBWRDT9SR5Jmija7rtvg+edshHzSppYhvLj1UcChwArM/Me4KlUP90jSRNf+1AOk/1rdJT69TRJ481QjiTdmdnV5+81wNDvHpWkcaznkVtu+LyP2bqFlUgaz4YSuK6NiE8AsyLi+cB3gCvLliVJY8OaF7+MxrRpw55v3bwdWON3cUmqDSVwvRP4PfBL4DXA9wDv4ZI0Kax7+n6snf/UYc/XteAZMH16gYokjUcDBq6IeFT9z62By4B3AMdTjXBtVb40SRobVr3tBLq36Bzy9Gt3ejKrjn9nwYokjTfNRrjOqf9/LXBNn/96/5akSWHtAQez8tSP0b3lowaf9sk7c99nz6Gx5Ybf+yVp4mn2EZqXAmTmY0eoFkkas+5/4Yvp3nY7Zpx3NtOuu4b2v9/9oOfXPT7o2v8AVr3tHTQe+chRqlLSWNUscP0yIo7KzOtHrBpJGsPW7b4HK3bfg7Z77mHGVy6ibdkymDKFnm22Zc1LXg4bcHO9pMmhWeB6C3B+RHwbeF9m3j9CNUnSmNZ4xCNY/dbjR7sMSeNIs5/2uQLYuf7zxojYNyK27f1vZMqTJEka/5p+DXJmroqIf6P6pOJ3gKVAG9AAti9fniRJ0vjXNHBFxPOAM4HLgW0zc/mIVCVJkjSBDBi4IuJ/gKcAr89Mv1lekiRpAzUb4boL2DkzV45UMZIkScPR3d3N4sV3tKStuXO3p729vSVtrW/AwJWZ/6/IEiVJklpk8eI72Hvv+S1pa+HCRcybt0NL2lrfUH5LUZIkSRvBwCVJklSYgUuSJKkwA5ckSVJhBi5JkqTCDFySJEmFGbgkSZIKM3BJkiQVZuCSJEkqzMAlSZJUmIFLkiSpMAOXJElSYQYuSZKkwgxckiRJhRm4JEmSCjNwSZIkFWbgkiRJKqxjtAuQJEnaUHPnbs/ChYta1lYpBi5JkjRutbe3M2/eDqNdxqC8pChJklSYgUuSJKkwA5ckSVJh3sMlSSqjq4vpl36bKXf9DRoNejZ/BPc//0Uwc+ZoVyaNOAOXJKmlpixezMyzP8e0a66i4/f5oOfWfeoTrN3/Gaw66mh6nrjj6BQojQIDlySpZaZ/9cvMOvVk2v9+V7/Pd9x5Bx133sH0S77ByhPexZo3v3VkC5RGiYFLktQS07/6ZWaf9E6mLF8+6LRTlv2T2R85BXp6WHPscSNQnTS6vGlekrTRptx5B7NO/eCQwlavtvvvZ9bpH6dj4Y8KViaNDQYuSdJGm3nO52n/+93Dnm/Kffcx40sXFahIGluKXlKMiEcCi4CDgXXABUADuA04NjN7Si5fkjQC7r+faVdftcGzT7vuatqW3ktjs81bWJQ0thQb4YqIqcBZwOr6odOA92fmvkAbcHipZUuSRs70b3+Tjtt/t8Hzt9/1N2Z82VEuTWwlLyl+Avg88Nf67/nAtfW/LwMOKrhsSdIImbIBlxLX17Z0aQsqkcauIpcUI+JIYElmXh4R760fbsvMRv3v5cCmg7Wz2Wab0NHRXqLEh+jsnDMiy9HYYH9PHvb1CNhk2kY3MWtGB7Na0Ff29+Qx3vq61D1crwMaEXEQsCvwBeCRfZ6fA/xzsEaWLl1Vprr1dHbOYcmSoX+yRuOb/T152NcjY0bHTDb2rW9F+3RWb2Rf2d+Tx1jt62YhsMglxczcLzP3z8wFwC+A1wCXRcSCepJnA9eXWLYkaWTd/8Ij6N5m2w2ev3uzzbn/xS9rYUXS2DOSXwvxDuCUiFgITAMuHsFlS5IKacyeQ9f+z9jg+dfuux89W2/Twoqksaf4N83Xo1y99i+9PEnSyFv9mtcx/TuXMOW++4Y1X2P6dO4/4qWFqpLGDr/4VJK00bp33Y1Vx51AY9rQb6BvtLWx+qij6XrWcwtWJo0N/paiJKklVh93AnR3s8kZn2LKiuY3NDemT2f1UUez8pQPj1B10ugycEmSWmb129/J2t3mM/OrX2Lq9dfQvmTJg57vefhmdD19X+5/0Uvoeu5ho1SlNPIMXJKkllq34ACWLziAtrvvZsZXLmLKsmXQaNAzZw73H/FSerabO9olSiPOwCVJKqKx5ZasPv7E0S5DGhO8aV6SJKkwA5ckSVJhBi5JkqTCvIdLkqQBtN19FzMvOJe2e+6hbfVqGjNn0thiC1a/9vU0ttxytMvTOGLgkiSpr0aDqVf9kBlf/wpTb7j2IV9tATDjwvNYu+/+rHnxy1l7wIHQ1jYKhWo8MXBJktSru5vZ73o7M772Zdq6ugacrH3J32n/5v8w/dJvs+alr2DFx0+H9vYRLFTjjYFLkiSAnh7mvOUNzLjkG0Oepa2ri5kXXUDbihUs/9w5MMVbo9U/twxJkoBNTvk3pg8jbPU1/ZKL2eSUf2txRZpIDFySpEmv7R//YMY3vs6G3onVBtX899zTyrI0gRi4JEmT3sz//iztf797o9po//vdzPzvz7SoIk00Bi5J0uTW08O0q37QkqamXfVD6OlpSVuaWAxckqRJrf2XN9Nx6y0taavjll/S/subW9KWJhYDlyRpUmv/vz/S1mi0pK22RoP2P/+pJW1pYjFwSZImtbY197e2vVWrW9qeJgYDlyRpUut59KNb295jtmppe5oYDFySpElt3W5PoXurx7Skre6tHsO6XXZrSVuaWAxckqRJrTHnYXTtt6AlbXXtv4DGnIe1pC1NLAYuSdKkt+ZVr6UxY8ZGtdGYMZM1r3xtiyrSRGPgkiRNeuv22IuuvZ+2UW107f001u2xV4sq0kRj4JIkCVh++pms3XGnDZp37Y47sfz0M1pckSYSA5ckSUBjq8dw31nnsXbnXYc139pdduW+s86l0aIb7zUxGbgkSar1xBNY9pVvsPqVr6F7m22bTtu9zbasfuVrWPblb9ATTxyhCjVedYx2AZIkjSWNzk5WnH4mbSuWM+Ocs5h27dW0/eMftK1ZTWPGTBpbbEHX/gew5g3H0Jg9Z7TL1Thh4JIkqR+N2XNYffyJrD7+xNEuRROAlxQlSZIKM3BJkiQVZuCSJEkqzMAlSZJUmIFLkiSpMAOXJElSYQYuSZKkwgxckiRJhRm4JEmSCjNwSZIkFWbgkiRJKszAJUmSVJiBS5IkqTADlyRJUmEGLkmSpMIMXJIkSYUZuCRJkgozcEmSJBVm4JIkSSrMwCVJklSYgUuSJKmwjlINR0Q7cDYQQDdwFLAp8F3g9/Vkn8vMr5WqQZIkaSwoFriAQwEy82kRsQA4jSpsnZaZnyy4XEmSpDGl2CXFzPwWcEz953bA3cB84LkRcV1EnBsRc0otX5IkaaxoazQaRRcQERcCLwCOAB4D3JKZiyLiJGCzzDxxoHnXretudHS0F61PkiSpRdoGfKJ04AKIiEcBPwX2ycy/1I/tCJyRmQcONN+SJcvLFwd0ds5hyZLlI7EojQH29+RhX08u9vfkMVb7urNzzoCBq9glxYh4dUS8t/5zFdADfDMi9qgfOxBYVGr5kiRJY0XJm+a/CZwfEdcBU4HjgT8BZ0ZEF3AXD9zjJUmSNGEVC1yZuRJ4ST9P7VNqmZIkSWORX3wqSZJUmIFLkiSpMAOXJElSYQYuSZKkwgxckiRJhRm4JEmSCjNwSZIkFWbgkiRJKszAJUmSVJiBS5IkqTADlyRJUmEGLkmSpMIMXJIkSYUZuCRJkgozcEmSJBVm4JIkSSrMwCVJklSYgUuSJKkwA5ckSVJhBi5JkqTCDFySJEmFGbgkSZIKM3BJkiQVZuCSJEkqzMAlSZJUmIFLkiSpMAOXJElSYQYuSZKkwgxckiRJhRm4JEmSCjNwSZIkFWbgkiRJKszAJUmSVJiBS5IkqTADlyRJUmEGLkmSpMIMXJIkSYUZuCRJkgozcEmSJBVm4JIkSSrMwCVJklSYgUuSJKkwA5ckSVJhBi5JkqTCDFySJEmFdYx2AZIkbbCeHqb+6HraF98BnZsx5cm70/OYrUe7KukhDFySpPFn5Uo2OeN0pl31Azpu+SVtPT0APHyzzVm7736sedkrWXvQIaNcpPQAA5ckaVxpu/suHvb61zDtxp885Ln2pffS/p1vMe3KH7LquLez+u3vHIUKpYfyHi5J0vjR1cXD3vi6fsNWX1NWrmDW6f/JjAvOHaHCpOaKjXBFRDtwNhBAN3AU0AZcADSA24BjM7OnVA2SpIllxhcvZNqPbxjStG1r1jDjwnNZ8+ojob29bGHSIEqOcB0KkJlPAz4AnFb/9/7M3JcqfB1ecPmSpAlm2mX/O6zpO351G9Mv/mqhaqShKxa4MvNbwDH1n9sBdwPzgWvrxy4DDiq1fEnSxNJ27z1M/cWi4c0DTL3+ujIFScNQ9B6uzFwXERcCZwAXA22Z2aifXg5sWnL5kqSJo23ZMtpWrBj2fFNWrixQjTQ8xT+lmJmvjYh3Az8FZvZ5ag7wz2bzbrbZJnR0jMx1987OOSOyHI0N9vfkYV9PIOseCTNmwDAD1PRNZ7sdTEDjrU9L3jT/amDrzPwosAroAW6KiAWZeQ3wbODqZm0sXbqqVHkP0tk5hyVLlo/IsjT67O/Jw76eYNpn8fDHP4GpNw/vsuKK7YPVbgcTyljdt5uFwJIjXN8Ezo+I64CpwPHAb4CzI2Ja/e+LCy5fkjSRtLXRdeDBwwpc3dvOZfXrjxl8QqmwYoErM1cCL+nnqf1LLVOSNLGtPubNTP/2JXT8PgedtgGsed5hMGtW+cKkQfjFp5KkcaPx8M1Yftp/se6x85pPB9z/wiNY9YEPjUxh0iAMXJKkcWXdnnuz7PwvsubwF9L9iC0e9FwDWLvTzqx890ks/+w5MMW3OY0N/paiJGnc6dnxSSw/+wLa/vZXZnzpC0xZ9k822XQ2983dga4XHOE3y2vMMXBJksatxqO3YvWJ7wFgk845dI3BT65J4CVFSZKk4gxckiRJhRm4JEmSCjNwSZIkFWbgkiRJKszAJUmSVJiBS5IkqTADlyRJUmEGLkmSpMIMXJIkSYX50z6SNFk1Gky9/lqm/N8fWbvv/vRsN3e0K5ImLAOXJE1CHT++gVmnnszUmxfR1t1Nz6YPp+uAg1h+2hkwa9ZolydNOAYuSZpk2u6+i4cd9xba/2/xvx6bsuyfzLjkYujpZvnZF45ecdIE5T1ckjTJzPz8Zx8UtvqadvWVTPldjmxB0iRg4JKkSabjj3cM+NyU++5j2nXXjFwx0iRh4JKkSaZnk9kDPtcAerbccuSKkSYJA5ckTTJdhx5Oo6P/W3jXPenJdD3n0BGuSJr4DFySNMl0PfNZrH71kTTa2x/0ePejHsXK95wE6z0uaeP5KUVJmmza2lj5sU+y9mn7Mf2yS2lbfh/d22zL6te/kZ7H7TDa1UkTkoFLkiajtja6Dns+XYc9f7QrkSYFLylKkiQVZuCSJEkqzMAlSZJUmIFLkiSpMAOXJElSYQYuSZKkwgxckiRJhRm4JEmSCjNwSZIkFWbgkiRJKszAJUmSVJiBS5IkqTADlyRJUmEGLkmSpMIMXJIkSYUZuCRJkgozcEmSJBXW1mg0RrsGSZKkCc0RLkmSpMIMXJIkSYUZuCRJkgozcEmSJBVm4JIkSSrMwCVJklRYx2gXMBoi4r3AYcA04LPAtcAFQAO4DTg2M3tGrUC1TEQcCRxZ/zkD2BVYAHwaWAdckZmnjEZtaq2ImApcCMwFuoGjqfr4Aty3J5yImA6cD2wP3AccCzwC9+0JJSL2BP4jMxdExOPoZ3+OiA8Cz6Xq9+Mz88ZRK7iJSTfCFRELgH2ApwH7A9sApwHvz8x9gTbg8FErUC2VmRdk5oLMXAAsAo4DPg+8Ang6sGdEPGUUS1TrPAfoyMx9gA8BH8Z9eyI7GliRmXsB/w84E/ftCSUi3gWcQ3WyDP3sz3Uf7w/sCbwM+Mxo1DoUky5wAYcAtwKXAN8FLgXmU41yAVwGHDQ6pamUiNgdeBLwVWB6Zv4hMxvA5cCBo1qcWuV3QEdETAEeBqzFfXsi25GqT8nMBJ6K+/ZE8wfghX3+7m9/fjrVaGYjM/+P6hjQObJlDs1kDFxbALsDLwbeBHwJmFLvoADLgU1HqTaV8z7gFKo34vv6PG5/TxwrqC4n/hY4G/gvoM19e8L6BfC8iGiLiL2o+nZFn+ft73EuM79BdeLUq7/9+WHAsj7TjNl+n4yB6x7g8szsqs+K1vDgzpkD/HNUKlMREfFw4AmZeTVV2JrT52n7e+J4O9W+/XhgF6r7uab1ed6+nljOo9qfrwYOBX4JzOrzvP098fS9/7K3f8fNMX0yBq4bgGfVZ0VbUe2gV9b3dgE8G7h+tIpTEfsBPwTIzPuAroiYFxFtVJeY7e+JYSkPnOneC0wFbnbfnrCeCtxQ3595CdUlZfftia2//flHwCERMSUitqW6YvWP0SqwmUn3KcXMvDQi9gNupAqcxwJ3AmdHxDTgN8DFo1iiWi+AO/r83XspuZ3q2v9PR6UqtdrpwHkRcT3VyNb7gJtw356ofg/8e0ScSDWi8XpgW9y3J7J3sN7+nJnd9T6/kAfe08ektkajMfhUkiRJ2mCT8ZKiJEnSiDJwSZIkFWbgkiRJKszAJUmSVJiBS5IkqbBJ97UQksqJiM9Q/U7pNOBxwK/rpz6dmeePWmFNRMRFwHsy8y8tbvfPVN8L9jrgCcCJVF/MemL9/GOA/wR2pvpCx8XAcZm5uP6Y+27AszLzhlbWJWl0GLgktUxmHgsQEXOBazJz19GtaEieQfVDuCUckpl/johTgKcAF0XEw4AG1W/CfTQzXwEQEa8FroiIHTNz34gwaEkTiIFL0oiIiDnAZ6h+RHwKVdj4ekS8ATgYeCTwaOCzwA7AAuBu4LnANsD/UP2Y7ROpvqz4VZn5z4h4LnAy1fHsD8AxmXlvPcJ0A7Ar1ajbO6nC1WbAX4CXAMfUy708Ip4G3AbsVYekg6hGvg6qw8/dwE7AEVRfsPmQZTZ5+V8DbgZ+kJn3RcQbgT9n5rm9E2TmhRGxCpgOrBvm6pU0xnkPl6SR8kHgJ5k5nypMfTAitqufeypwGFW4+jTwrcx8MlX4OKieZhfgU5n5JOB24AMRsSVwKnBwZu5G9bt6H+mzzEsz8wlUP1q/PbB3/VuLfwNekZkfBv5ONRI12O+v3ZyZUU/fbJkPkZnnZ+ZOmfn2+qHdgJ/3M93/ZObKQeqQNA45wiVppBwETIuIY+q/ZwE71v++ITOXR8RqqsttV9eP/5FqRArgN33uZ/oC1Y8XXwdsB1wTEVAd0+7us8yfAmRmRsR7gKMj4vHAHsCvhll/78/E7D3IMoeiB1gzzHkkjWMGLkkjpR14WWbeAlCPTt0LvBbo6jNdT2b29DN/38tsU+q/26nuFXth3eYMYHaf6VbXj+8BfBH4JNWlyTb6v2+r0efxqes9t7rP62i2zKG4CXjZ+g9GxPnAxzPzN8NsT9IY5yVFSSPlKuDN8K9P6N0KbDWM+XeMiCfX/z4KuIzqB2v3jYh59eOnAB/rZ94FwA8z8yyqe66eQxWcoApuvSef/6C6xwzg8AHqGOoym/ka8PiIOLL3gYg4mupes9uH2ZakccDAJWmkfADYNCJuBX4AnJCZfxzG/P8APhIRvwYeTnXT/V+Bo4FvRsRtVDe1v6ufeb8CPLVe9lXAz4DH1s9dSnXT/LZ1jZ+NiJ8B9/RXxDCWOaD6Pq2DgBdFxK/qdp4LPDMz1w6nLUnjQ1uj0RjtGiSpqYh4HPD9zHzcaNcyVPWnJPfKzD9v4Pw3UH1K0q+HkCYAR7gkqZzLI2LP4c5Uf/HpePgOM0lD5AiXJElSYY5wSZIkFWbgkiRJKszAJUmSVJiBS5IkqTADlyRJUmEGLkmSpML+Pw8c8Nj31/19AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAokAAAH1CAYAAACa32QGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XucjeX+//H3WjOzxozlMAZjyBZ2NKgMwyQko3JIM2yKREVCBymxsxXKqUgJRbXJrr7t7BQiot1BKjvxlRK1O4hkZhzGDHM+rHX9/vCzvsY9ZtaYNWuGeT0fD4+HWete1/257+u+73nPdR+WzRhjBAAAAJzBXtEFAAAAoPIhJAIAAMCCkAgAAAALQiIAAAAsCIkAAACwICQCAADAwqch8aWXXtJjjz3m1bTDhg3TypUri3zvjz/+UMuWLVVQUODL8srk2LFjuv322xUdHa2nn37ar/OOjo7WwYMH/TrPnJwcjRkzRu3bt9eDDz7o13lXBZMmTVKbNm0UFxfnea24faK8rF27ViNGjChzO3l5eYqOjlbr1q01f/58rz5TluUtavucP3++YmNj1blz53I5hmzbtk2XX365oqOjtWXLljK1NWnSJK/XU2VS0cfmilpvLVu21IEDB/w+3zvuuENXXHGFbrvtNr/MLy4uTlu3bvXLvM5Hcf2/aNEitW7dWtHR0crKyvJLPatWrfJb35xp5MiRWr16dZnamDRpkq688kpde+21xU4XWJpGH3nkETkcDj311FOe177++muNHTtW69at05gxY86v2gvAv/71L4WFhWnnzp2y2WzlNp9hw4YpPj5et9xyi+e1b775ptzmdy4bN27UsWPHtG3bNgUGWjeTRYsW6cCBA5o3b57fa/O1P/74Qz169NCePXuKXNbycvfdd+vhhx/22/yKWs74+HjFx8eXuW2Hw6FvvvlGkyZNKnNb3jh7+0xKStLy5cv16aefKjw8XH/88Ue5zLd+/fplDoiAt15//XWtWrXK7388Xqh69+59UfxOKsnSpUvL3MbTTz+t/v37a+LEicVOV6qRxMcff1xbtmzRl19+KUnKzc3VlClT9Oijj6p+/frnX+0FIDExUc2bNy/XgFiZJCYm6tJLL/VraCovLperXNs3xsjtdpfrPFDY2dvnoUOHVLt2bYWHh1dwZRWrMp198TVf7scX83qCf/hyG6rM22OpQmJYWJgef/xxTZkyRVlZWXrhhRfUuHFj/eUvf5F0anRpwoQJnul37dqlwYMHKyYmRvHx8dq2bVuR7bpcLs2ZM0exsbHq0aOHPvvss2LreOWVV3T99dcrOjpaffr00b///W/PewcOHNDQoUPVvn17xcbG6qGHHjpnOw8++KA6d+6s9u3b6/bbb9fPP/9c5HSTJk3SmjVrtGzZMkVHR2vr1q2WYe9t27YVGraNi4vTsmXLdPPNN6t9+/Z66KGHlJub63n/o48+UkJCgtq1a6frr79eW7Zs0fz587Vjxw5Nnz5d0dHRmj59uqTCpzrS09P117/+VVdffbW6d++uxYsXewLK6aHvOXPmqEOHDoqLiyt2Xf76668aNmyYYmJidNNNN+njjz+WJC1cuFCLFy/WBx98oOjoaMtfsVu2bNHLL7/sef/0SFR6eromT56sLl26qGvXrpo/f77nwL5q1SoNHjxYs2fPVkxMjHr06KGdO3dq1apV6tatmzp16lRo+HzSpEmaOnWqhg8frujoaA0dOlSHDh0qVPvw4cPVsWNH9ezZUxs2bCj02WnTpumee+5R27ZttW3bNm3evFn9+vVTu3bt1K1bNy1atMgz/dChQyVJHTp0UHR0tL755hvLtnz2abZhw4Zp/vz5Gjx4sK666iodPHiw2OUvLbfbrcWLF6t79+7q1KmT/vrXvyo9Pd3z/o4dOzz7Vrdu3bRq1SpJKvVynn26ZOfOnRowYIDat2+vAQMGaOfOnZ73hg0bpueff16DBw9WdHS0RowYoePHj5/X8p32+++/a+DAgWrfvr3uvfdepaWled471/559va5YsUKjRgxQkeOHFF0dHSRo5nF9U1pjhlFefvtt9W7d2/P8WjPnj2Szr1/nauNG264QR07dtSYMWN0+PBhSUWf3j3zNP2Z+1XHjh0L9fdp3333nQYNGqSYmBh16dJF06dPV15enuf9li1b6q233tKNN96oDh066Mknn9TpL+Iq7bE5Li5OS5cu1c0336y2bdtq8uTJOnbsmEaOHKno6GjdddddOnHihGf64o7BRe3HZ8rIyNCwYcM0c+ZMGWOUl5enOXPm6LrrrtM111yjqVOnKicnR9L/HZ9feeUVde7cWX/7298stZe0HWzdurXIdfT777/rjjvuUGxsrGJjY/XII4/o5MmThdbJyy+/rD59+qhDhw7629/+Vuh3waeffqqEhATFxMRo8ODB+vHHH4tdx2c6ceKERo8erauvvlodOnTQ6NGjlZyc7Hm/pH12zZo16t69u2JjY7VkyZJi5/XZZ5+pT58+io6OVteuXbVs2bJC6/all15SbGys4uLitHbtWs/niuuXkpZ/79696t+/v6Kjoy2/Q70xadIkPfHEE57tb/DgwTp69KhmzZqlDh06qFevXtq7d69n+uKyhTf72pw5c3Tbbbd5jtXvvPOOevfurQ4dOujuu+8u9DusZcuWevPNN3XjjTfqxhtvtLSVm5urCRMmKDY2VjExMRowYICOHTsmqfAxID4+XtHR0Z5/LVu29Owr3mawYpnzMHbsWDN69GjTsWNHc+jQIc/rCxcuNI888ogxxpjk5GTTsWNHs3nzZuNyucwXX3xhOnbsaFJSUowxxgwdOtS8/fbbxhhj/vnPf5qePXuaxMREk5qaaoYOHWpatGhh8vPzi5z/hg0bTHJysnG5XGb9+vXmqquuMocPHzbGGPPwww+bxYsXG5fLZXJycsz27dvPuRwrV6406enpJjc318ycOdPEx8efc9pHH33UPPfcc+f8+auvvjJdu3b1/Ny9e3czYMAAk5ycbFJTU02vXr3MP//5T2OMMd9++61p166d+eKLL4zL5TLJycnml19+sayX01q0aGH2799vjDFm4sSJZsyYMSY9Pd0cPHjQ3HjjjZ7p3333XdOqVSvzr3/9yxQUFJg333zTdO7c2bjdbsvy5OXlmeuvv94sWbLE5Obmmq1bt5q2bduaX3/91RhTuC+LUtT79957r5kyZYrJzMw0x44dMwMGDDBvvfWWp7aoqCjzzjvvmIKCAvPcc8+Zbt26mSeeeMLk5uaazz//3LRt29ZkZGR41m/btm3N119/bXJzc82MGTPM4MGDjTHGZGZmmmuvvda88847Jj8/33z//femY8eO5qeffvJ8tl27dmbHjh2e7eCrr74yP/74o3G5XOaHH34wnTp1Mv/+97+NMcYcPHjQsr2dvXxnTzN06FDTrVs389NPP5n8/HyTl5dX7PKf7ezt53Sbp/ty5cqV5vrrrze///67ycjIMPfff7+ZMGGCMcaYQ4cOmbZt25p169aZvLw8c/z4cbN3715jjCn1cr777rue9ZqammpiYmLM6tWrTX5+vlm3bp2JiYkxx48f99TXo0cPs2/fPpOdnW2GDh1qnnnmmRKX61yGDh1qunTpYv773/+azMxM88ADDxRa58Xtn2f3z9n739nLWlzfeHvMOHsexpw6FnXp0sV8++23xu12m/3795s//vijxP3rzPW0detW07FjR/P999+b3NxcM336dDNkyJAil+P0ejtzn4+KijKvv/66yc/PN9nZ2Za6d+/ebb755huTn59vDh48aHr16mWWL1/ueb9FixZm1KhR5sSJE+bQoUMmNjbWfPbZZ8aY0h+bu3fvbm655RZz9OhRk5ycbK6++mrTr18/s2fPHpObm2uGDRtmFi1a5FUfF7Ufn15vx48fNwMGDCi0rc2cOdOMHj3apKammvT0dDN69Ggzb948T99FRUWZuXPnmtzc3CLXU3HbQXHraP/+/eaLL74wubm5JiUlxQwZMsTMnDmz0Dq56aabPOtw0KBBnrq///57c/XVV5tdu3aZgoICs2rVKtO9e3eTm5vr+fyZ++jZjh8/bjZu3GiysrJMenq6GTt2rLn33ns97xe3z/7888+FjrGzZ882UVFR5ssvvyxyXp07d/ask7S0NPP9998XWrezZ882ubm5Ztu2beaqq67ybOvF9Utxy5+bm2uuu+46s3z5cpOXl2c++OAD06pVq3MeX4r6nfToo4+ajh07mt27d5ucnBwzbNgw0717d7N69WrP76GhQ4d6pi8uWxS1r53uG5fLZR577DEzYsQIk5WVZYwx5t///re5/vrrzS+//GLy8/PNiy++aAYNGuSZV4sWLcxdd91lUlNTi9we33rrLTN69GiTlZVlCgoKzO7du016erqnX8/OCcYYs2LFCtOzZ0+Tnp5eYgY73XdnH9POdl43rkydOlXbtm3Tfffdp4YNGxY5zXvvvadrr71W3bp1k91uV+fOndWmTZsi/xL94IMPdOeddyoyMlK1a9fW6NGji51/7969FRERIbvdrj59+qhJkyb67rvvJEmBgYFKTEzUkSNHFBwcrJiYmHO2M3DgQDmdTjkcDo0dO1Y//vhjodGasho2bJgiIiJUu3Ztde/eXT/88IOkU39dDBgwQJ07d5bdbldERISaN29eYnsul0sbNmzQI488IqfTqUsuuUTDhw8v9Fdbw4YNdeuttyogIED9+/fX0aNHPX99nOnbb79VVlaWRo0aJYfDoU6dOql79+5av379eS3rsWPHtGXLFk2ePFmhoaEKDw/XXXfdVai9Sy65RAMGDFBAQID69OmjpKQk3X///XI4HOrSpYscDod+//13z/TXXXedOnToIIfDoYcffli7du1SUlKSNm/erEaNGmnAgAEKDAxU69at1bNnT23atMnz2R49eqh9+/ay2+0KDg5WbGysWrZsKbvdrssvv1w33XSTvv766/Na1tP69++vyy67TIGBgTpx4kSJy18a69at01133aXGjRurevXqGj9+vDZs2KCCggKtW7dO11xzjfr27augoCCFhYUpKipKksq0nJs3b1aTJk3Ur18/BQYGqm/fvmrWrJk+/fRTzzR/+ctf1LRpU1WrVk29evXybNPnKyEhQS1atFBoaKjGjRunjRs3ekb4fLV/lrRtluaYcbZ33nlHI0eO1JVXXimbzaYmTZqoUaNGpdq/1q1bpwEDBqh169ZyOBwaP368du3a5fV1lfXr19ewYcMUGBioatWqWd5v06aN2rZtq8DAQF1yySUaNGiQtm/fXmiae+65RzVr1lTDhg0VGxvrGc0p7bFZOjViXbduXUVERCgmJkZXXnmlWrVqJYfDoRtuuKHQyE1JfXz2fixJR44c0bBhw9SrVy/PNb3GGK1cuVKTJ09W7dq15XQ6NXr06ELr226368EHH5TD4ShyPZW0HZxrHTVp0kSdO3eWw+FQnTp1NHz4cMv6vf322z3r8N577/XU9fbbb2vQoEG66qqrPMfsoKAg7dq1q8T1LJ06u9ezZ0+FhITI6XTq3nvvtcz7XPvsxo0bCx1jx40bJ7v93JEgMDBQv/zyizIyMlSrVi21bt260Pvjxo2Tw+FQx44d1a1bN33wwQcl9ktxy//tt98qPz9fd955p4KCgtSrVy9dccUVXq2XM91www1q06aNgoODdcMNNyg4OFj9+vXz/B468xhWXLaQit7XCgoKNH78eJ04cUJLlixRSEiIJGnFihUaNWqUmjdvrsDAQI0ZM0Y//PBDodHEUaNGqXbt2ufcHtPS0nTgwAEFBASoTZs2cjqd51zOHTt26Pnnn9eSJUvkdDpLlcGKc14XnNWtW1dhYWG67LLLzjlNYmKiNm7cWOgXTEFBgWJjYy3THjlyRJGRkZ6fzxU8T1uzZo2WL1/uWdlZWVlKTU2VJE2cOFELFizQwIEDVatWLQ0fPlwDBw60tOFyuTR//nxt3LhRx48f9+wcqampqlGjRrHz91a9evU8/w8JCdGRI0ckSUlJSerWrVup20tNTVV+fn6h9dOwYUPPqSnpVN+cOU9JRd7pdeTIETVo0KDQQeHstkojMTFRBQUF6tKli+c1t9tdqF/PvF7s9E5xZr3BwcHKzMz0/NygQQPP/6tXr65atWrpyJEjOnTokL777rtCB3GXy1XoBowz5yudCsXz5s3Tzz//rPz8fOXl5alXr17ntaxFzcOb5S+NI0eOqFGjRp6fGzVqpIKCAqWkpCgpKUl/+tOfivxcWZbzyJEjln3v7G3i7G26rHcRnr3f5+fnKzU1VWFhYT7bP0vqG2+PGUU5V1+UZv86cuRIoV+41atXV+3atXX48GFFRESUWMOZ+0lRfvvtNz399NP6/vvvlZ2dLZfLZfkFf3a/nt4PS3tslqz79Jk/V6tWzbPNeHMMLmr/+eyzzxQaGqrBgwd7Xjt+/Liys7M9lz5J1muFw8LCPEGzKCVtB+daRykpKZo5c6Z27NihzMxMGWNUs2bNQm2fvQ5P/y5ITEzUmjVr9D//8z+e9/Pz8z3vlyQ7O1tPPfWUPv/8c89p/MzMTLlcLgUEBBRZ9+n1f3obPS00NFS1a9c+57wWLlyoJUuW6Nlnn1XLli31yCOPKDo6WpJUs2ZNhYaGWpaxpH4pbvltNpsiIiIK3QfgzfZ3trN/75xre5SKzxZS0fva77//rh9//FErV66Uw+HwvJ6YmKjZs2drzpw5hZb98OHDnmN7cb8fEhISlJycrPHjx+vkyZOKj4/Xww8/rKCgIMu0SUlJeuihh/T000+radOmnvl7m8GKU253JURGRiohIUEzZ84scdp69eopKSnJ8/OZ/z/boUOH9Pjjj+sf//iHoqOjFRAQoISEhEJtnZ7njh07NHz4cHXo0EFNmjQp1M66dev08ccfa/ny5brkkkuUnp6uDh06eK4zKUlISEih6yqKGq07l8jIyEIjZt4KCwtTUFCQEhMT9ec//1nSqXXlzS+Ss9WvX1/Jyclyu92eg3NSUpIuvfRSrz5/9g08DRo0kMPh0FdffeWzm13OvLYmMzNTJ06cUP369RUZGakOHTpo+fLlXrf1yCOPaOjQoVq6dKmCg4M1a9Ysz85f1M1I3vTvmZ/z9fLXr1+/0F+ciYmJCgwMVHh4uCIjIwv9dXum0i7n2fNMTEws9FpSUpK6du1axqU5t7P3+9Mjo2XdP89UUt94e8woyrn25dLsX2f3dVZWltLS0hQREeH5xZuTk+MZRTh69Gihz5fUr0888YRatWqlZ599Vk6nU//4xz8KjboXpzTH5tI63z6+5ZZbdPLkSY0aNUpLly5VaGiowsLCVK1aNa1fv/6cx8OS1tP5bgfPPvusbDab1q5dq7CwMH300Uee68lPO3O9JSYmem70jIyM1JgxY3TvvfcWO49zefXVV/Xbb7/p7bffVr169fTDDz+oX79+Xu0n9evX16+//ur5OTs7u9A1wWe78sortWTJEuXn5+vNN9/UQw895BmVOnnypLKysjzba1JSki677LIS+6W45f/66691+PBhGWM8fZeYmKjGjRuXuGzno6RsIRW9DTVr1ky333677rnnHr322mtq1qyZpP9btuKeHlHcNhkUFKQHHnhADzzwgP744w+NGjVKTZs2LfTkE+nUseH+++/XnXfeWWjwqTQZrDjl9jDt+Ph4ffrpp/r888/lcrmUm5urbdu2FfrFf1rv3r31xhtvKDk5WSdOnNArr7xyznazs7Nls9lUp04dSdK7775b6GLnDz74wDOPWrVqyWazFTmEnpmZKYfDobCwMGVnZ+u5554r1fJFRUXps88+U1pamo4eParXXnvN688OHDhQq1at0n/+8x+53W4dPnzYs7PWrVv3nM9EDAgIUK9evTR//nxlZGTo0KFDWr58+Xk9wuTKK69USEiIli5dqvz8fG3btk2ffPKJ+vTp49Xnw8PDdejQIc9fhPXr11fnzp319NNPKyMjQ263W7///nuZTul+9tln2rFjh/Ly8rRgwQJdddVVioyM1HXXXaf9+/drzZo1ys/PV35+vr777rtCB7yzZWZmqlatWgoODtZ3332n999/3/NenTp1ZLfbC633qKgobd++XYmJiUpPT9fLL79cbK2+Xv6+ffvqtdde08GDB5WZman58+erd+/eCgwM1M0336ytW7d6Tj+npqZ6TpmUdjnP1K1bN+3fv1/r1q1TQUGBNmzYoF9++UXXXXfdeS3D6ZsuijttunbtWv3yyy/Kzs7WggUL1LNnTwUEBJR5/zxTSX3j7TGjKAMHDtSrr76q77//XsYYHThwQIcOHSrV/nXzzTdr1apV+uGHH5SXl6fnnntOV155pS655BLVqVNHEREReu+99+RyufTOO++U+pmpmZmZql69uqpXr65ff/1Vb731ltefLc2xubTK0sdTp05V06ZNNXr0aOXk5Mhut+uWW27R7NmzlZKSIkk6fPiwPv/8c6/bPN/tIDMzU6GhoapZs6YOHz5c5ONJ/vnPfyo5OVlpaWmem1ikU4F3xYoV+vbbb2WMUVZWljZv3qyMjAyvas7MzFRwcLBq1qyptLQ0vfDCC14vb8+ePbV582bPMXbhwoXnfEpDXl6e1q5dq/T0dAUFBal69eqekcrTFi1apLy8PO3YsUObN29Wr169SuyX4pb/9CUSr7/+ugoKCvThhx9q9+7dXi9faZWULYrTt29fjR8/XsOHD/f80Th48GC98sornjbS09P1wQcfeF3PV199pf/+979yuVxyOp0KDAy0rHNJmjx5spo2bap77rmn0OulyWDFKbeQGBkZqcWLF+vll19Wp06d1K1bNy1btqzIjfDWW29Vly5dlJCQoP79+xd5p89pf/7znzVixAgNHjxY11xzjX766Se1a9fO8/7u3bt1yy23KDo6Wvfee68ee+yxIv/y6Nevnxo2bKiuXbvqpptuUtu2bUu1fAkJCbr88ssVFxenESNGeB2upFMB7amnntLs2bPVvn17DR061DOCc8cdd2jTpk3q0KFDkX8BTJkyRSEhIbr++us1ZMgQ9e3bVwMGDChV7dKp59otWbJEW7Zs0dVXX60nn3xSc+fO9eraSEmeU5ixsbHq37+/JGnu3LnKz8/33MX34IMPWkY9SqNv37568cUXFRsbqz179uiZZ56RJDmdTi1btkwbNmxQ165d1aVLF82bN6/QHZtnmzZtmhYuXKjo6Gi9+OKL6t27t+e9kJAQjRkzRrfddptiYmK0a9cude7cWX369FF8fLz+8pe/qHv37iXW68vlHzBggOLj4zV06FD16NFDDodDU6ZMkXTqlMvf//53LV++XB07dlS/fv0810eVdjnPFBYWppdeeknLly9XbGysli5dqpdeeslz0Cyt5ORkNWrUqNiR7oSEBE2aNEmdO3dWXl6e52H8Zd0/z1Zc33h7zChK7969NWbMGD3yyCNq166d7r//fp04caJU+1enTp00btw4jR07Vl26dNHBgwcLPTlhxowZWrZsmWJjY/XLL794TvF569FHH9X777+vdu3aacqUKaU6VpXm2FxaZeljm82mGTNmKDIyUvfdd59yc3M1ceJENWnSRLfeeqvatWunu+66S7/99pvXbZ7vdvDAAw9o7969iomJ0ahRo4pcR3379tWIESN0/fXXq3Hjxp6RsyuuuEIzZszQ9OnT1aFDB914442eJxV4484771Rubq6uvvpqDRo0qFSj/pdddpmmTp2qCRMmqGvXrqpZs2axly689957iouLU7t27bRixQrNnTvX817dunVVs2ZNde3aVRMmTNATTzzh2daL65filt/hcGjRokVavXq1OnTooA0bNuiGG27wevlKq6RsUZL+/ft7RvT++OMP3XDDDRo5cqTGjx+vdu3aqW/fvqV6xuqxY8f04IMPqn379urTp486duxY5IDQ+vXr9dFHHxW6w3nHjh2lymDFsZnzOX8DlLNJkyYpIiLCrw+b9qfHH39c69evV3h4uD766KOKLqfM8vLydM0116igoEAjR47UAw88oMWLF6tOnTqFrh27kG3fvl133323HA6H5s+fX66n4XHxiIuL08yZM3XNNdeU+rPDhw/Xrl27dOWVV5bqbJU/bdu2TRMnTqzwh8wvXrxYr7zyigIDA7Vly5ZC10jCavLkydq4caPCw8MLPernbIREVEoXe0gEUDWUJSReCCpLSET5KLfTzQAAALhwMZIIAAAAC0YSAQAAYEFIBAAAgEW5PUzbn1JTM+V2l99Z8/Bwp1JSvHtuFS589HfVQn9XHfR11VIZ+9tutyksrHpFl+G1iyIkut2mXEPi6Xmg6qC/qxb6u+qgr6sW+rtsON0MAAAAC0IiAAAALAiJAAAAsCAkAgAAwIKQCAAAAAtCIgAAACwIiQAAALAgJAIAAMCCkAgAAACLi+IbV8qqWbOGysgo21f3OJ1O7duX6KOKAAAAKhYjiVKZA6Kv2gAAAKgsCIkAAACwICQCAADAgpAIAAAAC0IiAAAALAiJAAAAsCAkAgAAwIKQCAAAAAtCIgAAACwIiQAAALAgJAIAAMCCkAgAAAALQiIAAAAsCIkAAACwICQCAADAgpAIAAAAC0KiJKfTWSnaAAAAqCwCK7qAymDfvsRi369Xr4aOHk33UzUAAAAVj5FEAAAAWBASAQAAYEFIBAAAgAUhEQAAABbcuHKRaNasoTIyMsrUhtPpLPEmHgAAUDUwkniRKGtA9FUbAADg4kBIBAAAgAUhEQAAABaERAAAAFj47caV3NxczZ49W//5z38UHBystm3basaMGfrtt980adIkpaWlqXbt2pozZ44uvfRSf5UFAACAIvgtJD7zzDMKDg7Wpk2bZLPZdOzYMUnStGnTNGTIECUkJOi9997T1KlT9frrr/urLAAAABTBL6ebMzMztWbNGo0bN042m02SVLduXaWkpGjv3r3q27evJKlv377au3evjh8/7o+yAAAAcA5+GUk8ePCgateurRdeeEHbtm1T9erVNW7cOFWrVk0REREKCAiQJAUEBKh+/fpKSkpSnTp1/FEaAAAAiuCXkFhQUKCDBw+qVavmwxwLAAAgAElEQVRWevTRR/Xtt99qzJgxWrBggU/aDw93+qSd4tSrV6Pc51EZVJXlLAnroWqhv6sO+rpqob/Lxi8hsWHDhgoMDPScVr7qqqsUFhamatWq6fDhw3K5XAoICJDL5dKRI0cUGRlZqvZTUjLkdpvyKF3SqY3s6NH0cmu/Mqkqy1mcqtTfoL+rEvq6aqmM/W232/wysOUrfgmJderUUWxsrL788kt16dJFv/32m1JSUnTppZcqKipK77//vhISEvT+++8rKiqKU82oUnzxlYoSX6sIAPAtmzGm/IbgznDw4EFNnjxZaWlpCgwM1EMPPaRu3brp119/1aRJk3Ty5EnVrFlTc+bMUbNmzUrVNiOJUv36NX3SzpEjJ33SzoXM3/3tq76T6L/z4e/+5nvWK86FcCyH71TG/mYk8RwaN26sN954w/J68+bNtXLlSn+VAQAViu9ZB3Ch4BtXAAAAYEFIBAAAgAUhEQAAABaExIuE01n2C2F90QYAALg4+O3GFZQv7nQEAAC+xEgiAAAALAiJAAAAsCAkAgAAwIKQCAAAAAtCIgAAACwIiQAAALAgJAIAAMCCkAgAAAALQiIAAAAsCIkAAACwICQCFcxX35nNd29fGPiedQAXCr67GahgfO921UJ/A7hQMJIIAAAAC0IiAAAALAiJAAAAsOCaREnNmjVURkZGmdpwOp1cawQAAC4ajCRKZQ6IvmoDAACgsiAkAgAAwIKQCAAAAAtCIgAAACwIiQAAALAgJAIAAMCCkAgAAAALQiIAAAAsCIkAAACwICQCAADAgpAIAAAAC0IiAAAALAiJAAAAsCAkAgAAwIKQCAAAAAtCIgAAACwIiQAAALAgJEpyOp2Vog0AAIDKIrCiC6gM9u1LLPb9evVq6OjRdD9VAwAAUPEYSQQAAIAFIREAAAAWhEQAAABYEBIBAABgQUgEAACABSERAAAAFoREAAAAWBASAQAAYEFIBAAAgIXfvnElLi5ODodDwcHBkqQJEyaoa9euatmypVq0aCG7/VRenTt3rlq2bOmvsgAAAFAEv34t38KFC9WiRQvL6ytWrFD16tX9WQoAAACKwelmAAAAWNiMMcYfM4qLi5PT6ZQxRu3bt9f48eNVs2ZNtWzZUq1bt5bL5dK1116rsWPHyuFw+KMkAAAAnIPfQmJSUpIiIyOVl5enWbNmKTMzU/PmzfO8npGRoYkTJ6pFixZ6+OGHS9V2SkqG3O7yW4x69Wro6NH0cmsflQv9XbXQ31UHfV21VMb+ttttCg93VnQZXvPb6ebIyEhJksPh0JAhQ7Rz585CrzudTt1yyy2e1wEAAFBx/BISs7KylJ5+Ks0bY7RhwwZFRUXpxIkTysnJkSQVFBRo06ZNioqK8kdJAAAAKIZf7m5OSUnR2LFj5XK55Ha71bx5c02bNk379u3T1KlTZbPZVFBQoOjoaI0bN84fJQEAAKAYfgmJjRs31po1ayyv169fX+vWrfNHCQAAACgFHoEDAAAAC0IiAAAALAiJAAAAsCAkAgAAwIKQCAAAAAtCIgAAACwIiQAAALAgJAIAAMCCkAgAAAALQiIAAAAsCIkAAACwICQCAADAgpAIAAAAC0IiAAAALAiJAAAAsCAkAgAAwIKQCAAAAAtCIgAAACwIiQAAALAgJAIAAMCCkAgAAAALQiIAAAAsCIkAAACwICQCAADAgpAIAAAAC0IiAAAALAiJAAAAsCAkAgAAwIKQCAAAAAtCIgAAACwIiQAAALAgJAIAAMAisKILAIALWbNmDZWRkVGmNpxOp/btS/RRRQDgG4wkAkAZlDUg+qoNAPA1QiIAAAAsCIkAAACwICQCAADAgpAIAAAAC0IiAAAALAiJAAAAsCAkAgAAwIKQCAAAAAtCIgAAACwIiQAAALAgJAIAAMCCkAgAAAALQiIAAAAsCIkAAACwICQCAADAItBfM4qLi5PD4VBwcLAkacKECeratat27dqlqVOnKjc3V40aNdIzzzyj8PBwf5UFAGXidDqVkZFR5jYAoLLxW0iUpIULF6pFixaen40xmjhxop566inFxMRo8eLFmjdvnp566il/lgUA523fvsSKLgEAykWFnm7evXu3goODFRMTI0kaPHiwNm7cWJElAQAAQH4eSZwwYYKMMWrfvr3Gjx+vpKQkNWzY0PN+nTp15Ha7lZaWptq1a3vdbnh4+Z+qqVevRrnPA5UH/V210N9VB31dtdDfZeO3kPjmm28qMjJSeXl5mjVrlqZPn64bbrjBJ22npGTI7TY+aaso9erV0NGj6eXWPioX+rtqob+rDvq6aqmM/W232/wysOUrfjvdHBkZKUlyOBwaMmSIdu7cqcjISCUm/t/1PMePH5fNZivVKCKAi4s98ZAca1er2hv/UPCKNxX06cdSfn5FlwUAVY5fRhKzsrLkcrlUo0YNGWO0YcMGRUVFqU2bNsrJydGOHTsUExOjFStWqHfv3v4oCUBl4nYr6PPPFPrC8wr6aqtMkENyuSSbTQqwSza7su+6Wzkj7pG7YSOvm23WrKFP7jzm5hQAVZFfQmJKSorGjh0rl8slt9ut5s2ba9q0abLb7Zo7d66mTZtW6BE4AKoOW0a6ag65RYG7v5UtM1M2SbbcXMt0oS+9oNBXFit9znPKvW2oV22XNSD6qg0AuBDZjDHldzGfn3BNInyJ/vajzEyF9YpTwP59RQbDopiQEGU8/oRy7rm3xGnr169Z1golSUeOnPRJO6hY7NtVS2Xsb65JBAAv1bx7mAL2/+Z1QJQkW3a2nDOeUNDmT8qxMgAAIRFAhQj4Ya8cW7+ULTen1J+15WSr+sxp5VAVAOA0QiKAChHy8otSft55fz7wp58U8OMPPqwIAHAmQiIA/8vMVLVV78jmcp1/GwX5Cvn7Et/VBAAohJAIwO8CDuyXCSzbwxVsBQUK+t/tPqoIAHA2QiIAv7OdPCnZbWVvJ71y3bkIABcTQiIA/6seKvngqVUmJKTsjQAAikRIBOB3rshGsuV5/9ibohhJrqbNfFMQAMCCkAjA70zdusqPvbpMg4mmenVljxzjs5oAAIUREgFUiKz7H5Kpfv7fPGBq1FR+124+rAgAcCZCIoAKkd+tu0x4uIy99Ichd2iossaNl87jswAA73CEBVAx7Halvb1GxumUsXl/p7MJCVFe3A3KGTGqHIsDABASAVQYd7PmSnv/3zJ1wmUcjpKnDw1Vbu++Sn/5VakUwRIAUHqERAAVynV5lI5v2aas0ffLXaOm3Gddp2gCAmRCQpR/xZXKWLBY6UuWSkFBFVQtAFQdZfvKAwDwAVOvnrKmPKmsRx9T8IZ1Ctr8iezHjsmEVJP7kj8p59bb5IpqVep2nU6nMjIyylSb03n+N9cAwIWMkAig8nA4lNtvgHL7DfBJc/v2JZY4Tb16NXT0KN/cAgBn43QzAAAALAiJAAAAsCAkAgAAwIKQCAAAAAtCIgAAACwIiQAAALAgJAIAAMCCkAgAAAALQiIAAAAsCIkAAACwICQCAADAotjvbr799tu9aiQ4OFivvvqqTwoCAABAxSs2JO7evVtPPvlksQ0YYzRr1iyfFgUAAICKVWxIjI6OVv/+/Uts5P333/dZQQAAAKh4xV6T+Nprr3nVCKeaAQAALi7FjiSey6+//qqff/5ZjRs3VuvWrX1dEwAAACpYqUPim2++qRUrVqhFixb6/vvv1aNHD/31r38tj9oAAABQQUoMiXv27Ck0Wrhx40atXr1agYGByszMVFxcHCERAADgIlNiSJw/f77+9Kc/afz48XI6napfv75effVVtWnTRtu2bVOTJk38UScAAAD8qMSHaS9dulQxMTEaNmyY1qxZo2nTpunEiRNavny5Tp48qYULF/qjTgAAAPiRV9ck9unTR9dee60WLFig1atXa8qUKfrzn/9c3rUBAACggngVEvfs2aODBw9q0KBBys/P19SpU9W2bVs9+OCDqlatWnnXCAAAAD8r8XTznDlz9NBDD+nDDz/U/fffr+3bt+vNN99U48aNdeutt+rDDz/0R50AAADwoxJD4qpVq7R69Wo999xzWrlypVatWiWbzabbbrtNy5cv18cff+yPOgEAAOBHJYbESy+9VOvXr9f+/fu1bt06NW3a1PNeeHi45syZU64FAgAAwP9KDIkLFizQjz/+qFmzZikxMVFPPPGEH8oCAABARSrxxpUGDRpo2rRp/qgFAAAAlUSxI4krV670qhFvpwMAAMCFodiQ+NRTT8kYI7fbfc5/LpdLzzzzjL/qBQAAgB8Ue7o5KytLrVq1KrYBY4yCg4N9WhQAAAAqVrEh0dvH29hsNp8UAwAAgMqh2JDYqFEjf9UBAACASqTER+AAAACg6vF7SHzhhRfUsmVL/fTTT5Kkli1b6uabb1ZCQoISEhL03//+198lAQAA4CwlPifRl/bs2aNdu3apYcOGhV5fsWKFqlev7s9SAAAAUAy/jSTm5eVp+vTpmjZtGje6AAAAVHJ+G0lcsGCB4uPj1bhxY8t7w4YNk8vl0rXXXquxY8fK4XCUqu3wcKevyjynevVqlPs8UHnQ31UL/V110NdVC/1dNn4Jid988412796tCRMmWN7bvHmzIiMjlZGRoYkTJ+rFF1/Uww8/XKr2U1Iy5HYbX5VrUa9eDR09ml5u7aNyob+rFvq76qCvq5bK2N92u80vA1u+4pfTzdu3b9e+ffvUo0cPxcXFKTk5WXfffbe++OILRUZGSpKcTqduueUW7dy50x8lAQAAoBjFjiS63W6vGrHbi8+ao0aN0qhRozw/x8XF6aWXXlJERIRycnJUrVo1FRQUaNOmTYqKivJqngBQWdlOpCl41TsK+Om/smVnyV2/vvJu6KWCmI4S12QDuEAUGxJbtWrl1U0mP/zww3nNfN++fZo6dapsNpsKCgoUHR2tcePGnVdbAFDR7Af2q/rTMxW8fq2MzS57dpYkydhsCn1liVwRDZQ1/q/KvfU2wiKASs/rr+XbvHmzNm3apNGjR6thw4ZKTEzU3//+d914442lnuknn3zi+f+6detK/XkAqGwCv/lf1RqYIFtmhmxut86MgDZjpKwsBf62TzUeHS/Hls1KX7hECgiosHoBoCRefy3fP/7xD7377ruqWbOmJKlp06Zq06aNBgwYoCFDhpRvlQBQiQX8+rNqDYiXPaPki+RtWVkKfn+tjNOpjDnP+aE6ADg/Xt+4kp6eruzs7EKv5eTkKD29ct05BAD+5pw4XrbMDK+nt2VnqdqKNxWw5/tyrAoAysbrR+D0799fw4cP15133qkGDRooOTlZb7zxhvr371+e9QFApWY/+LuCtn916pRyaeTlKeSlF5WxaEn5FAYAZeR1SJw4caL+9Kc/acOGDTpy5Ijq1aun22+/Xbfeemt51gcAlVq1fyyTShsQJdlcLlV7711lPjVXxskDfwFUPl6HRLvdrttuu0233XZbedYDABeUoP/dLlte3nl91gQFyX7ggFyt2/i4KgAou2JD4jvvvONVIwMHDvRJMQBwobFlZpbhwzbZssrweQAoR8WGxPfee6/EBmw2GyERQJVl/v8TH86Lyy1Ts5bvigEAHyo2JL7xxhv+qgMALkh5N/ZS4P9ulz0rq/QfDgiQq1lz3xcFAD5Qqu9uTk1N1Zo1a7R06VJJ0uHDh5WcnFwuhQHAhSBn8O2yefkVpmcywcHKHj5SCgoqh6oAoOy8Dolff/21evXqpXXr1unFF1+UJB04cEBPPPFEedUGAJWeqVVbuX0TZByO0n3QZlPO8JHlUxQA+IDXIXH27Nl6/vnntWzZMgUGnjpLfdVVV+m7774rt+IA4EKQ8dQzckc0kAn07oERJiRE6U/Nk7tho5InBoAK4nVIPHTokDp16iTp1M0qkhQUFCSXy1U+lQHABcLUqq3UDR/LdWlTuUNDzz1dQIBMSIgyps9W7u13+LFCACg9r0Ni8+bN9fnnnxd6bevWrWrRooXPiwKAC42JiFDqx18oc8bTKri0qUxodbmdNeQOrS53jRoy1aopZ8CtSv3gE+XceXdFlwsAJfL6YdqTJk3S6NGjdd111yknJ0dTp07VJ598osWLF5dnfQBw4QgJUc6wu5Qz9E4FfvuNAvb/JuXmytQOU36na3jcDYALis0Y779P6vDhw1q7dq0SExMVGRmp+Ph4NWjQoDzr80pKSobc7tJ/LZa36tWroaNH08utfVQu9HfVQn9XHfR11VIZ+9tutyk83FnRZXjN65FESYqIiNA999xTXrUAAACgkig2JE6ZMkUzZsyQJE2cONFzw8rZ5s6d6/vKAAAAUGGKDYmXXHKJ5/9NmjQp92IAAABQORQbEkePHq1jx46pbt26euCBB/xVEwAAACpYiY/Auemmm7RmzRp/1AIAAIBKosQbVxYtWqQpU6Zow4YNmjFjhiIiIvxRFwAAgE80a9ZQGRkZZW7H6XRq375EH1R0YSgxJHbs2FHr1q3TokWLlJCQoAceeEDNmzcvNM3pb2IBAACobHwREH3ZzoXCq0fgOBwO3Xffffrll1/07LPPKiwszPOezWbTxx9/XG4FAgAAwP+8Con/+c9/NGXKFLVu3VofffSRwsPDy7suAAAAVKASQ+LkyZO1ZcsWPf744+rVq5c/agIAAEAFKzEk5uXl6f3331ft2rX9UQ8AAAAqgRJD4rx58/xRBwAAACqREp+TCAAAgKqHkAgAAAALQiIAAAAsCIkAAACwICQCAADAgpAIAAAAC0IiAAAALAiJAAAAsCAkAgAAwIKQCAAAAAtCIgAAuKg5nc5K1c6FosTvbgYAALiQ7duXWNElXJAYSQQAAIAFIREAAAAWhEQAAABYcE0iAKDiZGXJnpwkW1aWTI0ackc2lByOiq4KgAiJAIAKELD7O4W+9IKC166RCQyQ7HbZXC4Zm105t9+h7JGj5b60aUWXCVRphEQAgN/YTqSp5h23KWjXTikvTzaXS7bcM96XFLJ8qUJeW6bcvglKX7CYkUWgghASAQB+YTueorCe3WVPSpQtL+/c0+Wfei94wzrZDx3UiXfWERSBCsCNKwCA8udyqdat/WVPLD4gnsmWna2gb3epxoP3lnNxAIpCSAQAlDvHxx8q4NefPaOE3rJlZyt4wzoF7PulnCoDcC5+D4kvvPCCWrZsqZ9++kmStGvXLsXHx6tnz54aMWKEUlJS/F0SAKCchSx6XvbMzPP7cIFLIa8s8W1BAErk15C4Z88e7dq1Sw0bNpQkGWM0ceJETZ06VZs2bVJMTIzmzZvnz5IAAOXMfmC/gr795rw/byvIV7W33pSys31YFYCS+C0k5uXlafr06Zo2bZpsNpskaffu3QoODlZMTIwkafDgwdq4caO/SgIA+EHg7u9kgoLK1IYJsCvg4O8+qgiAN/wWEhcsWKD4+Hg1btzY81pSUpJnVFGS6tSpI7fbrbS0NH+VBQAoZ7aMdMnlLmMjdtlOnvBNQQC84pdH4HzzzTfavXu3JkyYUC7th4c7y6XdM9WrV6Pc54HKg/6uWujvctYgXAoMKFMTdhmFNY6QythX9HXVQn+XjV9C4vbt27Vv3z716NFDkpScnKy7775bw4YNU2Jiome648ePy2azqXbt2qVqPyUlQ2638WnNZ6pXr4aOHk0vt/ZRudDfVQv9Xf4C6zRQrQJXmU5dmbw8pVSrJVOGvqKvq5bK2N92u80vA1u+4pfTzaNGjdIXX3yhTz75RJ988okaNGigZcuWaeTIkcrJydGOHTskSStWrFDv3r39URIAwE8KrrhK7oiI8/68sdmU172HTK3SDSAAKJsK/cYVu92uuXPnatq0acrNzVWjRo30zDPPVGRJAABfs9mUPfZhVZ8y6bweg2NCQpV1/0PlUBiA4tiMMeV3ntZPON0MX6K/qxb6208yMxUec4Vsx1NkK8WvHRMYKNflUUr9+Avp/z8Z43zR11VLZexvTjcDAHC26tWV9u46merV5W1ENIGBctcJV9qK1WUOiABKj5AIAPALV6vWSnv/3zLh4TKhocVO665eXa4mlyrtoy0y9ev7qUIAZ6rQaxIBAFWLq1VrHd/+nYJXrlDooudlSz0uySa5XFJggGwulwqa/VnZDz6s3JviJYejoksGqixCIgDAr4yzhnKG36Ocu0Yq8H+3K2Dfr7JlZcnUqKGCVm3kimpV0SUCECERAFBRbDYVxHRUQUzHiq4EQBG4JhEAAAAWhEQAAABYcLoZAIAyCPj1ZwXu/k62tDQpMFDu2mHK79RZJjy8oksDyoSQCABAaRUUyLFxg0JfmK/AvXtkAoMkV8Gp5zkGBMiWl6fcG3sr+76xKmgXw3MecUEiJAIAUAqBu3aq1m0Dpdwc2TMyJEk25VimC16/VsEff6iCy1rqxFvvytSt6+9SgTLhmkQAALwUtPkT1U7oLXvKMU9APBeb2y1bVpYC936vsO7XyP7HQT9VCfgGIREAAC8EfrdLte4aIlt2dqk+Z8vPl/3YUdXu10e2E2nlVB3ge4REAABKYoxqjrxTyso6r4/bXC7Zk5NUfdaTPi4MKD+ERAAAShD49TbZjhxRWW4/seXlqdq/3pIyM31WF1CeCIkAAJQgdPEC2bLPbxTxTMZuU7XV7/igIqD8ERIBACiGLfW4HJ98JJsxZW7LnpmpkBcX+qAqoPwREgEAKEbAwd9lHMG+a++P333WFlCeCIkAABTDduKEynQx4tny8iSXy4cNAuWDkAgAQDFMcDXfNmi3n/oHVHJspQAAFMPUDZctv8B37TmdfE0fLgiERAAAiuFq2lzu8HCftGUCA5V7cz+ftAWUN0IiAADFsdmU9cA4mdDQsrcVGKjs0feXvR3ADwiJAACUIPeWwZK77I/AKWh5uVwtL/dBRUD5IyQCAFACU6OmskbfJ3cZRhNNSIgyp87wYVVA+SIkAgDghay/TVF+tzi5Q0JK/VkTEqKMJ2Ypv2u3cqgMKB+ERAAAvGG36+TS15R3U7zXI4rGZjsVEGfNVc7wkeVcIOBbhEQAALwVFKT0F19RxoLFym9zhUy1EJmAAMtkplo1meBg5d3YS2mr1ytn6J0VUCxQNoEVXQAAABcUm025CX9RbsJfFLB3j0JeelFB//u1bCdPSgEBMrVqK7dvvLLvGCETEVHR1QLnjZAIAMB5crVqrYyFiyu6DKBccLoZAAAAFoREAAAAWBASAQAAYEFIBAAAgAUhEQAAABaERAAAAFgQEgEAAGBBSAQAAIAFIREAAAAWhEQAAABYEBIBAABgQUgEAACABSERAAAAFoREAAAAWBASAQAAYEFIBAAAgAUhEQAAABaERAAAAFgQEgEAAGBBSAQAAIBFoL9mdN999+mPP/6Q3W5XaGiopkyZoqioKMXFxcnhcCg4OFiSNGHCBHXt2tVfZQEAAKAIfguJc+bMUY0aNSRJH330kSZPnqzVq1dLkhYuXKgWLVr4qxQAAACUwG+nm08HREnKyMiQzWbz16wBAABQSjZjjPHXzB577DF9+eWXMsZo6dKluuyyyxQXFyen0yljjNq3b6/x48erZs2a/ioJAAAARfBrSDxtzZo1Wr9+vf7+978rKSlJkZGRysvL06xZs5SZmal58+aVqr2UlAy53eW3GPXq1dDRo+nl1j4qF/q7aqG/qw76umqpjP1tt9sUHu6s6DK8ViF3N/fr10/btm1TamqqIiMjJUkOh0NDhgzRzp07K6IkAAAAnMEvITEzM1NJSUmenz/55BPVqlVLwcHBSk8/lfKNMdqwYYOioqL8URIAAACK4Ze7m7OzszVu3DhlZ2fLbrerVq1aeumll5SSkqKxY8fK5XLJ7XarefPmmjZtmj9KAgAAQDH8EhLr1q2rt99+u8j31qxZ448SAAAAUAp84woAAAAsCIkAAACwICQCAADAgpAIAAAAC0IiAAAALAiJAAAAsCAkAgAAwIKQCAAAAAtCIgAAACwIiQAAALAgJAIAAMCCkAgAAAALQiIAAAAsCIkAAACwICQCAADAgpAIAAAAC0IiAAAALAiJAAAAsCAkAgAAwIKQCAAAAAtCIgAAACwIiQAAALAgJAIAAMCCkAgAAAALQiIAAAAsCIkAAACwICQCAADAgpAIAAAAC0IiAAAALAiJAAAAsCAkAgAAwIKQCAAAAAtCIgAAACwIiQAAALAgJAIAAMCCkAgAAAALQiIAAAAsCIkAAACwICQCAADAgpAIAAAAC0IiAAAALAiJAAAAsCAkAgAAwIKQCAAAAIvAii4AAIBy5XLJlpYmFWRIriApOLiiKwIuCIwkAgAuSvYD+1V9yt8U/ufGCm97udS8ueo2a6iawwYp6KutkjEVXSJQqTGSCAC46FR7+UU5Zz4pud2y5ed5XrdJcny4UUGfb1H+1Z108tX/kUJDK65QoBJjJBEAcFEJeekFOWfPkC03p1BAPM1mjOxZmQr68gvVGjJQKiiogCqByo+QCAC4aNj3/6bqs6fLlp1V8rS5OQr8ZqeqvfaqHyoDLjx+C4n33Xef4uPj1a9fPw0ZMkQ//PCDJOm3337ToEGD1LNnTw0aNEj79+/3V0kAgItMyNKXJZfb6+nt2VkKfXEB1ycCRfBbSJwzZ47Wrl2rNWvWaMSIEZo8ebIkadq0aRoyZIg2bdqkIUOGaOrUqf4qCQBwMSkoULU3Xy/yFHNxbKnHFfj1tnIqCrhw+S0k1qhRw/P/jIwM2Ww2paSkaO/everbt68kqW/fvtq7d6+OHz/ur7IAABcJW2qqbOdzfaExCtj3i+8Lwv9r7+5jo6r3PI5/ptPSB5hCnwuEIGCCBRepjFMoaC+gNHJBQETY1cINugQBLViihMYHIr0uRAQBsahVF11LgkCB1g1cHrxIRdJiozEQXJ5MkVJooVBKgXbmt38QJvQeKY+dgeH9Shpyzpw553v49kw/+Z2HwV3Op3c3Z2dnq1PSefEAAA6ISURBVLi4WMYYffrpp6qoqFBCQoLsdrskyW63Kz4+XhUVFYqOjr7u9cbEtGmpkr3i4hzXXggBg37fW+h3gLh4Rgqy3fDbgoxRZGiQxO9BwOHYvjU+DYk5OTmSpIKCAs2fP1+ZmZm3Zb3V1Wfl8bTc9SRxcQ6dOFHbYuvHnYV+31vodwBxhyi2sVE3GhM99mDVhrfVRX4PAsqdeGwHBdl8MrB1u/jl7uaRI0dq165dSkxMVGVlpdxutyTJ7Xbr+PHjat++vT/KAgDczcLDdTFtoIztBmOi8ejiXwa1TE3AXcwnIbGurk4VFRXe6a1bt6pt27aKiYlRUlKSCgsLJUmFhYVKSkq6oVPNAABcVj81U+YGHo5tgkN0/j8ypPDwFqwKuDv55HRzfX29MjMzVV9fr6CgILVt21a5ubmy2Wx6++23NWvWLC1btkyRkZGaN2+eL0oCAASghtQBanSmKPjHHxR04XyzyxpJJtKh+lde9U1xwF3GZszd/3AorknE7US/7y30OwDV1anduFGy//Kzgurr/3QRExwiE+lQTcH/yv1Ako8LhC/cicc21yQCAOBPrVurZk2R6rLflrtDB3lat5EnIkIKD5fH4ZAnIkL1f5uoU//8kYAINMOndzcDAOATISE6P+klnf/PyQrZtVP2A/vlCLNfuot54GCuQQSuAyERABC4bDY19E1VQ99UOeIcPOYGuAGcbgYAAIAFIREAAAAWhEQAAABYEBIBAABgQUgEAACABSERAAAAFoREAAAAWBASAQAAYEFIBAAAgAUhEQBwdY2NslVWSmfP+rsSAD5GSAQAWDU0KOK/5irmgfsU88i/KbZ7Z0WOe1r2/f/n78oA+Ajf3QwAaMoYRY4fp1bFO2Q7X++d3WrbFoWk/0U1//in3F3v92OBAHyBkUQAQBMhxd8rZOcPTQKiJNmMke3sWbWe84afKgPgS4REAEATYV9/Kdu5uj99zWaMWv1jo3Txoo+rAuBrhEQAQBO2kydla34J2S6c91E1APyFkAgAaKIhpa9MWNhVX/dER8m0cfiwIgD+QEgEADRx/vm/SUF//ufBRESoftoMydb8WCOAux8hEQDQhImL0+n/zpcnIkKe8PBL84KCZMLDdeGvT6l+0kt+rhCAL/AIHACARUPaQJ0s26Ow/P9R8E8lMrFxOv/vz6vxoWR/lwbARwiJAIA/ZaKiVT/lZX+XAcBPON0MAAAAC0IiAAAALAiJAAAAsCAkAgAAwIKQCAAAAAtCIgAAACwIiQAAALAgJAIAAMCCkAgAAAALQiIAAAAsCIkAAACwICQCAADAgpAIAAAAC0IiAAAALAiJAAAAsAj2dwG3Q1CQLSC2gTsH/b630O97B72+t9xp/b7T6rkWmzHG+LsIAAAA3Fk43QwAAAALQiIAAAAsCIkAAACwICQCAADAgpAIAAAAC0IiAAAALAiJAAAAsCAkAgAAwIKQCAAAAAtCIgAAACwIif/iwoULeuuttzRkyBANHz5cb7zxhiTp0KFDGjt2rNLT0zV27FgdPnzYv4Xilh05ckQjRozw/gwaNEgul0sS/Q5E27Zt08iRIzVixAgNHz5cmzZtkkSvA9V3332nUaNGafjw4Xr++edVXl4uiX4Hgnnz5mnQoEHq3r27fvvtN+/85npL32+SQRPvvPOOycnJMR6PxxhjzIkTJ4wxxmRkZJiCggJjjDEFBQUmIyPDbzWiZcydO9fMmTPHGEO/A43H4zFOp9Ps27fPGGPM3r17Te/evY3b7abXAaimpsa4XC5z8OBBY8ylvk6cONEYw7EdCEpKSszRo0fNwIEDvce0Mc33lr7fHEYSr1BXV6eCggJlZmbKZrNJkmJjY1VdXa09e/Zo2LBhkqRhw4Zpz549OnnypD/LxW108eJFbdiwQaNHj6bfASooKEi1tbWSpNraWsXHx+vUqVP0OgD9/vvvio2NVZcuXSRJaWlp2rFjB8d2gHA6nWrfvn2Tec31lr7fvGB/F3AnKS8vV7t27bR06VLt2rVLrVu3VmZmpsLCwpSQkCC73S5Jstvtio+PV0VFhaKjo/1cNW6HrVu3KiEhQT179tSvv/5KvwOMzWbTokWLNGXKFEVERKiurk7Lly9XRUUFvQ5AXbp0UVVVlX755Rf16tVLGzZskCT6HcCa660xhr7fJEYSr9DY2Kjy8nL16NFDa9as0cyZM/Xyyy/r3Llz/i4NLWz16tUaPXq0v8tAC2lsbNTy5cu1bNkybdu2TR999JFmzJjBsR2gHA6HFi5cqHfffVdPP/20qqurFRkZSb+BG8RI4hU6dOig4OBg75D0Qw89pKioKIWFhamyslJut1t2u11ut1vHjx+3DHfj7lRZWamSkhLNnz9fktS+fXv6HWD27t2r48ePq0+fPpKkPn36KDw8XKGhofQ6QKWmpio1NVWSVFVVpby8PHXs2JF+B6jmPreNMfT9JjGSeIXo6GilpKSouLhY0qW7oaqrq3XfffcpKSlJhYWFkqTCwkIlJSUxTB0g1q5dq7S0NEVFRUmSYmJi6HeASUxM1LFjx3Tw4EFJ0oEDB1RVVaXOnTvT6wB14sQJSZLH49H777+vcePGqWPHjvQ7QDX3uc1n+s2zGWOMv4u4k5SXl2v27NmqqalRcHCwpk+frrS0NB04cECzZs3SmTNnFBkZqXnz5qlr167+Lhe3QXp6urKzs/XYY49559HvwLN+/Xp98skn3pvSXnnlFT3++OP0OkBlZ2frp59+UkNDg/r376/Zs2crNDSUfgeAuXPnatOmTaqqqlJUVJTatWunoqKiZntL328OIREAAAAWnG4GAACABSERAAAAFoREAAAAWBASAQAAYEFIBAAAgAUhEQDuEPn5+erRo4eSk5NVXl5+S+uqra1VcnKyevbsqWXLlt2mCgHcSwiJAG5JcnKy9+eBBx5Qr169vNPr16/3d3m3pH///iotLfXpNl0ul8rKytSpUydJ0rlz5zR58mQNGDBAeXl5TZbdv3+/pk2bppSUFDmdTo0YMUIrVqyQMUYOh0NlZWUaMmSIT+sHEDgIiQBuSVlZmfenQ4cOys3N9U4/9dRT/i7vqhobG++KbaxevVoul0tbtmxRcXGxjh07JunSw4HHjh2rLl26qLCwUKWlpVqwYIFKS0t18eLFW94uABASAbQot9utDz/8UIMHD1ZKSoqysrJ05swZSZeCTo8ePbRq1So9+uijSklJ0TfffKOysjINGzZMTqdT7777rndd+fn5Gj9+vN588009/PDDGjp0qEpKSryv19TU6LXXXlP//v2VlpampUuXyuPxNHnvnDlz9Mgjj+jjjz/WgQMHlJGRIZfLpb59++r111/X2bNnJV36Rpbq6mq98MILSk5O1ooVK7R9+3Y98cQTTfbvytHG9957T1lZWZo+fbqSk5NVVFTU7P5f7/+fx+Np8q8kffDBB0pNTVVWVpbi4uIkSffff78WL16s0NDQG20TAFgQEgG0qLy8PBUXF+vrr7/W9u3bFRIS0iT4ud1u7du3T1u2bNHf//53zZ07V5999pm+/PJLrV+/XmvWrNHPP//sXb60tFTdu3fXrl27NGnSJE2dOtUb7GbOnCmHw6HNmzdr1apV2rx5s9atW9fkvUlJSfrxxx81ceJESdKUKVO0Y8cObdiwQYcOHVJubq4kafHixYqJiVFeXp7Kyso0fvz469rfjRs3atSoUdq9e7fS09Ovuf/X8swzz2jnzp3ekNmxY0dJ0g8//KD09PTrXg8A3ChCIoAWtXLlSmVlZSkhIUGhoaGaOnWqvv32W135jaBTp05Vq1atNHjwYEnSiBEjFBUVpQ4dOig5OVl79uzxLpuYmKjnnntOISEhGjlypBISEvT999/rjz/+UGlpqWbNmqXw8HDFx8crIyNDRUVF3vd26tRJzz77rOx2u8LCwtStWzf169dPrVq1UlxcnCZMmNBkZPJmuFwupaWlKSgoSGFhYde1/81p06aN8vLytHPnTr300kuSLgXr2tpa7wgiALSEYH8XACBwGWN07NgxTZo0STabzTvf4/Ho1KlTkiS73a6oqCjva6GhoYqNjfVOh4WF6dy5c97pxMTEJtvo2LGjjh8/rqNHj+rChQvq169fk+107tz5qu+trKxUTk6OysrKVFdXJ2PMLQevK7dxrf2Pjo6+qW3Y7XY5HA6dOHHilmoFgOYQEgG0GJvNpoSEBC1ZskQPPvig5fXLQfFGXL5x47KjR48qPj5eiYmJioiIUElJSZNA9q/1XGn+/PmKiIhQYWGh2rZtq6KiIi1atOiqy0dERKi+vt473dDQoNOnT191G9fa/1uRmpqqTZs2adiwYbd1vQBwGaebAbSocePGacGCBaqoqJAkVVdXa+vWrTe9vmPHjik/P1+NjY1at26dKioqNGDAAHXq1Em9e/fW/PnzdfbsWXk8Hh0+fLjZR9jU1dUpIiJCbdq00dGjR/X55583eT0mJkZHjhzxTnft2lWnT5/Wzp071dDQoCVLlnhvjPHV/l+WmZmp4uJiLVy4UFVVVZKkgwcPavr06bpw4cItrx8ACIkAWtSLL76ofv36acKECUpOTta4ceOaXGN4o5xOp/bu3SuXy6Xc3FwtXbpUDodDkrRgwQLV1tbqySeflMvl0owZM1RdXX3VdWVmZmr37t1yOp2aNm2a5ZmCkydP1sKFC+V0OvXVV18pOjpa2dnZmjlzptLS0hQbG9vkVLkv9v+ybt26aeXKldq/f7+GDh0qp9OpV199VU6nU61atbrl9QOAzVzv1dMA4Gf5+fnauHGjvvjiC3+X0iJWrVqlnJwcBQcHa+3atd4Hat+M2tpaDRw4UI2NjZoyZYomTZp0GysFcC/gmkQAuEOMGTNGY8aMuS3rcjgcPv+2GACBhdPNAAAAsOB0MwAAACwYSQQAAIAFIREAAAAWhEQAAABYEBIBAABgQUgEAACAxf8DEmEQ9YKCN+UAAAAASUVORK5CYII=\n", "text/plain": [ "
    " ] @@ -1850,24 +1791,12 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": { + "collapsed": true, "hide_input": true }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABCIAAAQxCAYAAAD7kyxmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xt4XNV5L/7v2nPTaCRZQh7ZgETsUCNQqIiRudl9WlMXQ3644Tg2pIfYJhCwHTd1kwZjeg4+SR83LQ6knPCkrgWUi21oIb40KTQJlB+0pzY3CycOFVF8HEMtsC1ZSLY0Gs1tr/OHvMdz2Xtumj0ze8/38zzzWJbmsmfmXZe99lrvElJKEBERERERERGVglLuAyAiIiIiIiKi6sGBCCIiIiIiIiIqGQ5EEBEREREREVHJcCCCiIiIiIiIiEqGAxFEREREREREVDIciCAiIiIiIiKikuFABBERERERERGVDAciiIiIiIiIiKhkOBBBRERERERERCXDgQgiIiIiIiIiKpmKGoi46aabJADeeJvqrWQYs7wV8VYSjFneingrGcYtb0W6lQxjlrci3kqCMctbEW85qaiBiFOnTpX7EIjywpglq2HMkhUxbslqGLNkNYxZKrWKGoggIiIiIiIiInvjQAQRERERERERlQwHIoiIiIiIiIioZDgQQUREREREREQlw4EIIiIiIiIiIioZZ7kPgIio1FRVYigQRjgag9vpQLPPDUUR5T4sorKyarmw6nET5YuxTlbEuCUjHIigNLPufynvx3zw4M0mHAlR8amqRN/JUdyz/QD6h4NobfLi8VXz0D6jng0jVS2rlgurHjdRvhjrZEWMW8rEtKUZQoh2IcTPE25nhBBfN+v1iIhyMRQIxxtEAOgfDuKe7QcwFAiX+ciIyseq5cKqx02UL8Y6WRHjljIxbUaElLIPwGcBQAjhAPARgL1mvR4RUS7C0Vi8QdT0DwcRjsbKdERE5WfVcmHV4ybKF2OdrIhxS5mUKlnlIgBHpJQfluj1iIh0uZ0OtDZ5k37X2uSF2+ko0xERlZ9Vy4VVj5soX4x1siLGLWVSqoGIPwLwDyV6LSIiQ80+Nx5fNS/eMGrrFZt97jIfGVH5WLVcWPW4ifLFWCcrYtxSJkJKae4LCOEG8DGAz0gpT+r8fTWA1QBw0UUXdX34ISdNlJsNklWamv2GMWt9FZrB2bQDYMxSLgooFxVR11ZoeabKVBExWyjGetWydP+AcVuVcvqCSzEj4nMA3tUbhAAAKeVjUsp5Usp5fr+/BIdDNDWMWetTFAF/vQcXNtXCX++xfYPImKVcVFq5yDVuK+24qXqZXdcy1qnYStE/YNySkVIMRPx3cFkGEREREREREcHkgQghRC2AGwDsMfN1iIiIiIiIiMgaTNu+EwCklOMAms18DSIiIiIiIiKyDlMHIoiI7I5JmMhqGLPJ+HlQJWJcUqVibFKxcCCCiCgPiQ2wy6lgbCKKVU++jf7hYHxbqvYZ9WyUqSKpqkTfyVHcs/0A+oeDWNzRggdu7oBDEbbrUObSWU79PFiGqRJEoyo+Ph3EwGgIQ4EwdvccwzduaGdcUtllqzM5SEH5KEWySiIiW9Aa4KVb92HBltfwha37cfLMBPx1HgBA/3AQ92w/gKFAuMxHSqRvKBCOdyDntjXijvmzcfsTb2HBltewdOs+9J0chaqau613KaSWVaP3lvh5ACzDVH6qKtE3MIrbn3gLy7e9gc0v9uKO+bPxyCt9jEsqu0x1Zq71LpGGAxFEVJVUVWJwNISPhscxOBrKqaHUa4A37DqEtQsvjt/HX+dBOBrL63mJclFIzKYKR2PxQYjvLu+Ex6lg05IOzG1rtNVJ+KlAKK2sPvJKH06cmUj6/LTPI1H/cBDhaKwch02EoUAYa3b0JMXuM/uPYsONl2I8HC1qu1KMOoWqS2KdObetEd0ru/C9W69AOBrDSLAyB3YZ55WLSzOIqOoUMh1bVSWCkajuSUuj1wVgslG+76Z2fPGxNznNm4oq15hNnRbb5HVhOBiJ/9/lVLC4owV3zJ+NO59+J/5cW5Z14uGf9eHgsRHLn4SrqsR4KHmAQZv9cVv3G0mf34wGD1qbvEn3bW3ywu10lOPQidIGx7TYTSyvubRXWj3gdTsQVSUiUTVpqjyXJVEh3E4HWpu88Nd5cO+N7di4+1A8frpXdMFf50mKX6OBXVWVGAmGEQzHEJMSNS4Hpvs8RY89xnll44wIIqo6+U7H1hqyIwMBtDZ5k/7W2uTFeHiykV2/aA427DpUcVcDyPpyiVm9abG/OjmK/7n3UPz/YxNRPHBzR7zzqD3Xxt2TM3vscBI+FAjjxJmJpLK6duHFae/5nu0HEI1JPL5qXvy+Wie12ecuy7ETaSd6GqPYzdZeLd26D1977iD6ToziC1v3p02V57IkKkSzz43HV83D+kVz0uJyzc4erF80J+n+em2Kqkp8MBRA34lRfPGxN/G7330dX9i635RlHIzzysaBCCKqOvlOx9YaskdfPYwtyzqTTlq6V3bhMxc0YNfa69B2njev5yXKlVHMBiPnlgElLkeY29aITUs6MBGJYcONl8aXXqx68m0IAd3n0jqYVj8JD0djkFLioeXnymqzz234+TX73Njz1fnYt/F67F23gFfKqCSMpotr5TBb7Bq1K4n1wNqFFxsOjnNZEhVCUQTaZ9Tj4hafbvzMmu7LOrA7FAjjw6Fx3dg8cWaiqIMRjPPKxqUZRFR1tCtOuU7H1hqy/uEgfnTwI2y/62p8EghjKBDG9//11/jTRZfgOy+9H7+izGneVGxGMXtkYAx3Pv0OWpu82PmVa+KDEKlTZhOXXihC6D7XBY1ezGyosfxJuNvpgMuh4DsvvY9NSzrQ6HVhRkON7nv+1YlRbH6xF9tWdOHSGfVwOnl9hsyXbbp4+4x67F23AOFoDMKgvOq1K6nLkhq9LsOTsHzbQSKNogh4XU7d+PloeBybb7kcs6f7UOvRX24RjsZQ63boxubHI0GcDkaKNiDMOK9sbHGJqOqkXnHKNh07carsoo4ZWPXk21i+7Q2s2dGDl3sH4tMRt71+JG3GhB2uMFP56cXsQ8s78eirhwFMduCOnppcOqQ3lTtx6YXX7dCNfzsMQgCTn1VLvQeDYyGs2dFzNmfLeNIMCW1wZtvrRyavHO/swcBYqMxHTtUi23RxRRHw13twYVMtZjbU5NxeDQXC8XoAAEaCEd3lhFquCC5LokLpxc+WZZ343su/xp1Pv4MVf/8WBIRum+J2OjAejunGplY2irV0gnFe2TgjgoiqTuoVp0x7XauqhITEzq9cg6OnAmis1b/CNHu6D4NjITz8s76sVwOI8pUaswDwtecO4uCxkfh9fvLL43j27msQU2XGpReNXjcave6c4t+KFEXggmmTy6a03Qee2ncU9910KR6+9QrMnFaDvhOj8RkiwOTnE42pZT5yqhb5TBfPp70KR2P4yS+Px2ftTURi+Nvb5+KPnzuYNPNCe3yuz0uUKjF+guEo3tepU42WPzT73PhUcy0eWt4ZX56xuKMFf/65yzASjGDTkg6oanHqY8Z5ZeNABBFVJe2KUyZ602efvfsa3Wl+tR4HGzoyVWLMDo6GMJhwBX9uWyOWXnkhvvTEW9i0pCOnpRfZ4t/KnE4Fl81sSCqTjTVOhKIqjg4GsPnF3rTPx+ngJFEqjXyni+fSXgGA1+3A0isvxKon3463WX/3pSux56vzEYmpaW1Trs9LpEeLn8FR6NapmeJ5VrMPjbUu/OPqayGlxPB4BCsT4rZ7ZRf89cWZpcc4r1xsdYmoKuWyr7Te9NnvvNSLrV+6Mm2a33SfJz6V1l/PWRBkrtTppok7tugtEepe2YWWuuqJy9RtTJt9boxMRLFmR49u0tltKyY/H6JSKNZ08dR2LBqTaQkAv/rsu4AA2yYyTa7xnBivQ4EwGr1uXDDNCymBdc++m7wDx44e7mxRBTgjgoiqTq77SutNn325dwB/ccvleH71tYhJoMal6C6/0DsRYgeQiiV1umlMnluOcfDYCB7+WR82LenAnJY6HB4Yw/f/9de4/3OXoa7GiUg0/cqonRiV74YaZzzprPb5NHpduLDJi5lnr7wNjoZYZsl0egkpHWJy8DvXuNOLcy1hbaL+4SAiUS47oqkz6tfksvwhU7/LoQjubFGlOCOCiGwn22yHXPeVTt3PHTg7hVtRcGFTLS46rxbTfR4MBcJJr5W4j3vq3u1E2USjKj4eCeLDoQA+HgkianASkZjQTstgrjl4bASbX+zF4YExrNnRg8HRME6emcAXtu63fUwalW8hBBZ3tKB7ZRfu/9ylAIC//4/fwON0QFEEyyyVlKIINPvcODMRxW3db+Cav/7/c4o7rX3rHxnHidMT8J+dyZOYsDaR3hT5XGYEEiXK1q9JbI9SZ96oqsSJMxMIhKLYtKQjvp30I6/04cSZCcSkxFNfvgpz2xrjj+HOFtWBAxFEZCuZGkut8zUePtcYavRG37NNNzR6rcR93LXnLmYWaLKvaFTFr06O4rbuN/B7D72O27rfwK9OjhoORmiavC50r+zS3RUCANYuvFh3z3a7xGTiiVU4GoufnGn6h4NwOwTWL7oEm1/sxRcfexObX+zF+kWXoMnrMiyzpwLcSYPMk+uguCaxzfnd776OTT96D/fe2B5vyx599TC6V3TptllaGTl5Ooj3T5zhoBvlJd9Y1Wgxe1v3G1i+7Q1sfrEX997Yjtu6WnHH/Nm4rfuNeCzfd9NkLGtx2+R1ccDM5rg0g4hsxaix3LNuPobGwknTArcs64xnedYbfc823dDotX649tr4tO+RYATbXj+Cg8dGOM2QshoYC2Htzp6kmFq7swcvrLkOFzR6dR+jqhKHByeXX2xa0oFmnxv+eg9ee/8E1i68GI1eF1rqPfDXeZKmv9pl6qvelN+Hlnfiuz89l8G9tcmLcEzqfrZ71y3ARCR5GdbctkasXXgxguEYBkdDXKZBpshn9wxAv83ZuPsQNi3pwJodPfDXu3Gez43n7rkGDiHgdTvQ6J0cONfKyKYlHUmJBbV2a++6BUzoR4byjVXNUCCMR17pS+oTPbP/KDbceCnufPqdpDjcsOsQnl99LdxOB5q8LhweHMu6hJasjQMRRGQrRo3lREQ17MBtfrHXMFFYYrbl1PWRqqqmvZa/zoNPxiLxjp424PHM/qOcZkhZRWLpMaVtLamqUrcDlnhy8nLvAABgcUcL1i+6JH7ibXRyboeY1Ds527DrEDbfcjnufPqdeAdWSv1tTcPRGBxCxHcxmNvWiHtvbMfG3YfOZXBf0YXzG2vQ6OWABBVPvrtnGLVvjV5XvMzf2v1G0olbo9edVEZa6j0FnVBSdcsWq0b5I1RVxR3zZyfVp1uWdcLp0M8LAeDsThz6s9Q4YGYvXJpBRLahqhLi7AlFotYmLxziXCM3t60R3Su78L1br8BnLmjAj7+2AHP8dWm5HhJFoyr6h8fx4VAA7318Bv9z7yGcCoSxuKMl6X7rF83BmpSrrht3H8IDN3fknRGdrMtoDXZq/odIJJZ0P69LPy/JkcGA4fRpvZOTZV1taVf/N+w6hPWL5sSfs5As/ZVI7/376zyYM6MO/7ZhIV5Ycx1+a7rPsG5wORV43Q48tHxyJ437bmpHOKrie7deMbmFXJ0Ha3b24BfHTnMKOxVVvrtnGOUtam3y4tufvzytzGtT57XlSju/cjWafO6irsfPNd+E3v2Yq8I6MsVqpiWxMYn4IARwrk9U63LgqS9fhedXX4vulV3xJRlaHBYyA0MvvxJjrLJxRgQR2YLWED7ySh+2LOtMGn1/fNU8eN2THTh/nSftauf2u67GyTMhwymAqirRNzCKNTt6kkb0v/+vv8YDN3eg9/ho/Pezp/t0G0/H2czSZH9G2cF/a7oPfQNj8ZOFxR0t+JNFl+CrCbMWHl85D0/feRW+/NQ7aUuIBsdCuleD9K5UNfvcunF4cUsd9m283la7QqS+/7ltjbjvpnb80WNvxj/DbSu68M8/78f3br0C3/zhL5JmiYxNRHFRUy1mNNTgkds+C6/bgQ27etI+/1q3g1fkqKhy2W0gkXYymFq3nD/Ni+Ong4Ynbl63A/fd1B7PE5M4Q2pwLITulV0FDUrmugOV3v2233U1QlGVU+8tIlOsZpq9oDcTzV/nwalAGJt+9F5SPM5oqInHYb6zhbT8SomzAJ++8ypEohL37GCMVSpTByKEEI0AngBwOQAJ4C4p5RtmviYRVafEqaeDo+H4WvkLGr2Y2VADAHh81TycOD2RNjr/4dA4/uHtD5PWMD7ySh++s7QT/vrJXTG0QQjtMdqyDocikhpmCZlX40n2o7dU4JFX+vCtP/wMJiIxbFrSgW2vH8Gyrrb4IIR2v3t2HMCer87HP66+Fh8NBzESjMTzmADQvRqkd3LSUu/RjUOvy2G7k+jU979+0Zy0xJxrd/Zg05IOqFLikds+i+l1bsSkxInTE3jwJ+/jO0s7MavZhxqXA7edndquPXbj7sllHiPBCKewU9ElLv/L5b5GJ4OZTtyiqkwrExt2HcKOu67GrwfGML3AQUmjPEmpg3V69/twaDx+IqrlZAmEojhxZgIzG2p4oliBjGI10+wFvbhcv2hOWp9qw65D2LNufvx7Nxp0Sx0w05aEjIejGBwNxXMh9Q8HceyTYDzGtNfhYHJlMXtGxPcB/FRKuVwI4QZQa/LrEVGVSmwIDx4bwZodPQCAfRuvjzds7TPq4fM40hrM6XVu3TWMqqqmPbemfziIZp8bbmfyiZ2qypwaT7Kv1HiZ29aIO+bPxhcTrtBvWdaJhhqnblxFYio8Tkf8yr3GaEBL7+SkyeuqmjhMff8xg1wQjV4Xat0OnJmIYuWTb6eVdUURhnkkLmquxb0v/IKDilR2RieDmU7cjGZLDIyGsPnFXuxdt6CgY8l1+rze/WrdDsOcLLxqbS2ZBsH04tJo5mgkYXeoXGYL6c20SUxCrsVY6utwMLlymDYQIYRoAPC7AL4MAFLKMAB77BNGRBUnl2l8iiLgdTnT7ud1O/HVZ99Nuwr6wprrMj53S70n7cQu36m2ZD+p8bJ24cW6a2Sfu+favDpvmQYS9E5OqikOE9//4GhI93MdCUZwns9dUFk/PhLE4FjItoM5ZH2FzJYYD8emFNNupwOLO1qwrKstPptwd8+xtME6vdcfD8fQ2uTVrR951dpaMrVXenGZaeaoUdJLPdl2kdFijDNUK5eZySo/DWAQwFNCiINCiCeEEL7UOwkhVgshDgghDgwODpp4OETFwZitTHqJlLpXdkFV1aQERXr3cxlkb5bS+DHdK7twwTSvbgOpnRRd2FQLf72n7Cd/jNnSavK60L2yKx4vRvkahgNhbFnWqZv8K7Hztm/j9di7bkHeVwgrLQ7zVWjc6pXXbSu6cF6tu+CyPqelrqDvgKpLuetaozKvG9crunBF27QpxXRjjRPrF12CzS/24ouPvYnNL/Zi/aJL0OR1Jd1P7/U/1Vwbr+941bp8ihGz2dqr1Lic7vPoJr5s8roMk17qJZ3MtItMa5MXbedN5l3KNRkslZ7QGt+iP7EQ8wC8CWCBlPItIcT3AZyRUm4yesy8efPkgQMHTDkeyt2s+1/K+zEfPHizCUdSsJL1Ehmz5spnZDz1/jFV4i9f6sXLvQNpUz2jURUDYyEAElICTkWg9/goat0OjAQj2Pb6EQyOhfDCmutwQaO3oGMpQEniljFrrmhUxcengxgej6DW7UA4pmKa1xVPnKjRknPFVImZ02rgUAR8biem11lqwKBi69rE8upyKhibiGLVk2/jqS9flbR3/dy2RqxfNAef9vvgcihoOfv5nwqEMBFR4RCA1+3gtp32UbExa7ZitmGqKnFmIoyxUAwnTk9gKBDGtteP4OCxEbQ2eXVnM2jtbiSmJpW1E2cmkvKyADB8jipmu/6BXjwOBcJYunVfWizsWTcfQ2PnZj8s7mjBAzd3AAI4MhDAo68eTtqW+vnV1wKYTE7odipwKgLB8Llli8PBiG45KEE/r5rk9MGZmSOiH0C/lPKts//fBeB+E1+PiGwk12zcibRR98HRUFJjljjVs9nnxuHBMTzySh/umD8bz+w/ij9ZdEla9mav2wGHSH9uIiNGu6v8+GA/uld2Jf3+B7fPRSiiYsOec+uiu1d0YXodY6wYUpdqrDqbE2IiEovvquOv86TtJLBtRRfaW+qSOr1cs052UKw2TFUlPhgKYCwUxbqzy5xS1+anzmZQVYnDg2O6ZWpmQ03V5LOhc/Ti0WiGw0Tk3O4qWs6l2594K6nPpu0A8/iqeQhF1XidnxhrAAz7lZn+xnrfPKYtzZBSngBwTAjRfvZXiwD0mvV6RGQvRtm4hwLZU81kSqClPe+yrjZs3H1Id+eCDbsOYSKiQlHMXL1GdmO0u8qVs5pxns+NzbdcjudXX4unvnwVJiJqUjLK/uEg1uzsySm+KT+J9cHHpyfwzP6j2LSkA39z2xW6u2sMjOlvRcfvhmiynvtwaDw+CAGcq+vWLrwYrU1eCCHSHmNUpoqxDI3sQcslkqi1yQuHQMacSxt2HcIPbp+LvesWYEaDJz4Iof1di7VMcTiVPicVzuxe9p8AeFYIcQjAZwH8lcmvR0Q2YTSYEIzE4vkejBg1Zm6nI/68jV5X0r+przMzYT9rolxk2l0lpkrc+fQ7+OJjb+K+XYfgr/dwXXSJJNYH214/gjvmz8bmF3sxMBrS/Q6iqv7OGfxuiCbrOaPdCJp9bvzt7VdCQMbX8auqRDASzVimrJ7PhopDL5fI46vmweVQ4r8z6rMBgL/eg2DY+EJUpotUU+lzUuFMHYiQUv5cSjlPStkppfxvUsphM1+PiOzDaDDh45FgPHmREaPGrNnnhsupxDPoJ/6b+jq1Hgc7Q5QXo5j113twfGQi/reDx0ZwfCRoOFhGxZVYHxw8NoJn9h/F9ruuxoyGGt3vwKkIfjdEBtxOR3w3gkStTV7MnFYDpyLwwdA4lm7dhw+GAug7OYojAwGWKcoqdXbMnnXz4XEqeOCffhlP7GzUZ9NiKdOFKKO/ed0OCCGwa+116F7ZhbltjfG/HRkYy9rnpMJx3jERlY1eFmSN3mDCQ8s7UeNS8MgrfWnT5RKfaygQxhx/XdJUzzn+OgwFwoipKrZ+6Urs7jmGLcs64/+mZsmXqkw7JrK/TDGZTZPXhW0rupJiaduKLrz2/gn81b+8jy3LOrG4owXdK7vQ5HOn3Zfros2hdW73rJuPf7/venz7Dz8DVUr81b/04nu3XpFWxwQj0aRdTxZ3tOC5u6/BRCSKj4bH8UkghGhULThOiKys2efGp5pr8dDy5HZz65euxKP/ehhrdvZAEQL+Og8GRieXOT366mHddlbb1YrliTSJs2OcisCHQ+P4yu98Gh6ngmfvvgYd59ejW6ftdCjAR8PjcCgwvBCl16/cftfVOHkmhNu638DybW9g84u9uPfGdizuaMGWZZ149NXDuks0ptJXoHPMTFZJRGQoWzJKRRGY0eDB5lsuj+9moSUj2rSkI2madLbnSv374o4W3P+5yxCOxrDhxksRU9V4luVMu22QvRWSIDXRcDCCR1/9NTYt6UCj14WRs/9f1tWGg8dG8KODH+GPr5+DP37u3XgcPnv3NXAqghm6SyAxAeVL638Hy7racGFjjW4ds3vtddi7bgFUVcWpQDgtMZq/3oPv/vRXrCeo6iiKwEVNtfC6FOz4ytVQhMBvBgP41o/+M75zwTd/+As8+IXfji9B6x8O4uGf9WHTkg601Htwns+N75xtZxd3tGD9okuwdmdPQfUu2ZOqShwfmUhLJP7dn/bBX+/Gc3dfA4ci4rsiff4H++L3237X1dizbj4iUTWtbdVmXGg7Y0hIrNq6Py3fyVNfvgr37ToUj+l8+pyUO86IIKKyyCUxUDAci6+rX7OjBwePjcTXoSZO6cz2XKl/f7l3AKuefBsffhLEDY/8O+7e3hOftnf7E2/h5d4Bw2Mi+5pqsqpwNIaXewewZkdPPGZf7h2Iz3JY1DEjPggBTMbhl554C26ng+uiTab33W5+sRcfjUzo1jGhmDz7nShpCUg37DqEY58EsayrLf471hNUTYaDEdza/Sauf/jfcOL0ZBnSTtiAs3mWptXgv4bGk5akrdnRg5HxCL6U0M4u62qLD0Joj2V5oqFAGGt0EomvXXgxXu4dwO1n204BkZacctWTb0NA6OYcSc1HEomqurkhPgmEk7YEzafPSbnjQAQRlUWmpEEao/V8LfWepCns2Z7L6O+NXlfStL1cjonsa6rfv1G8nudzo7XJa5hki/FlvtTvdtvrR7BlWafhWvcal6L7OGDyO6t1O9DodSX9jt8jVYvEcmG0Zt+hCN0lGbOm1yaVKdaLpCdTv037OVsCylwYtdvj4Vj859Rlk+wrFg8HIoioLDIlFNKkrufTprIrisBQIBxfk5ftuYz+3trkTdoqLJdjIvuayvevqhISEju+cjWe+vJVmNvWiNYmL7Ys68Tzb3+Ip++8GheejblCnp+mJvW71ZJWfuaChrT1xtvvuhrA5HpjIfQTV46HYxgJRpJ+x++RqkXqTjRp+R9WdMHndmJwLBRfkvH86mux+ZbLUZNSFo0GMlxOhWvwq5hRe6zVu9kSUOZaHxslN7+ibZrhdrL5vibzSRgTUlbOhzFv3jx54MCBch9G1Zt1/0t5P+aDB2824UgKVrL5zYzZwuW6xk5V5dlBBxWjoSiOfTJ5NXI8HMOnmmsxq9kHAHnliMj0WmVc91eSuGXMGiv0+098nL/Og/WL5mDW9FpICTz/9odYeOkMzGiowUVNtTg8OGandaWWqWszfbfA5FTbcDQGr9uBk2dCSflkUtevP7S8Exc2efHxyAQEkFQXWfR7rCaWidlKppd36YGbO+BIyHcD6LfLc/x1SfWgUY4Ij1PBgz95H8u62tDsc6Ol3oMLpnnhdFblNdSq6x/o1dlajojBsVBS/T3VfpvWz9TyRmTK16SqEiPBMI6PTMSXjmR6zSrOJ5HTm+NABKXhQETuGLNTk0/l/0kghGP43TYKAAAgAElEQVSfjOOTQCQ+EHGez4W282pxns+T9blyfa18jqnIqq6jUYlUVeJUIISJiAqHALxuBxq9mWNgcDSEpVv3wV/nwb03tmPj7kPxDkf3ii5c2FSDhhp3fFCsTPFlBkvVtbl89tp3mTjtdnFHC/7i85cjoko4BODzOHB8JIR7dqSfYA0HI3b5bu3KUjFbyXIpT0b3Sf19k9eVVHYcCnD/7kO4Y/7s5Pp0ZRcum9lQaW13KVRl/yDxO3U5FTgVgWA4/fst9nefKW5TLzrMnu5DrceB6T79PE96bYo2G9df7yn4GC0gpy+Au2YQUdloSYNS6TUCkaiK8XAsLYNyJKpmfK5sr1Xo/ci+EndXMLpyntg50daLblrSEe80A5NrRtfs7MHedQviHRTGV/lk++xVVSIYiaat/X25dwDf+kOJi86rBTDZsdQGIYDJ7/mRV/rwp39wSTyxZRVd9aIqlUtdZnQfRRFo9rnj9elwEEknjx8Nj2NZV1t6fbqjR/cEroqvOtuabvz4crxfgTLFUmKSyv7hIO58+p34oIJRnDGfRGZVOb+JiCqX1ggs3boPC7a8hqVb96Hv5CgiqsSGXcmdkg27DiHCtXZUREbZsE8FQrpxqaoyvl6USdesS6t3jgwEsq791etYLutqS9tdg1nUifQZtfOJeZ+afe6c61PuYkDFkimWChlUYO6xzDgQQUQVxagRUFWp2wCoFbS8jKzPqKMxEVENOydasiujHRjY4ah8Wr2jl+U/NWO6Xscyn5MmomqXbeBAywmRa33Kq85ULJliySh5sRDGs26MkmEmtinVjAMRRFRRjBoBp6LfANS4eJJHxWN09cIhYNg5URSB9hn1uKJtWtoODOxwWINW7xw8NpKU5f/51demTe/W61jmc9JEVO2yDRwoisAF0yZzQuRSn/KqMxVLplhyCKQNVG9Z1glHhtU/Wv9g77oFhrtwVDPmiCCiiqI1AqmJfWrcDjy+al7aur3pPq63p+LRTjJT48zr1o9LraOrKALn+Txo9Lqxd90CuyZMs63EeufgsRGs2dFjuPY3sWOZmGxPL244CEWUzqidTxw4cDoVXDazIaf61KjeZvmjfGWKpaFAGM/sP4pNSzrQ6HVhJBjBM/uP4jtLOzM+J3NDGeNABBFVDFWVkJDY+ZVrcPRUAI++eji+TVOj1510kieEgEMgPjWeJ3tUDNpJ5o+/tgDBcAwxKVHjcqDBk9uJJjsc1jTVExktbvasm5+04woRpctW3lITVp8/bfIKtNHOCHqDg+wXVI9i7pqRKZaafW5844b2ogx42XyXl5xxIIKIKoJepuLuFV04v7EmafvEZp+b2bHJdCfPhNJirM7jwOZbLo9vH+upzv3sbSmfExmjrOpz/HWGO66wbiI6J1N5MypfHqeCVU++bVi2OAhcnczYMSXTbi/FGPDiLi/nZO1FiUltpTgYIqpeesmr1uzsQUxFUsXM7NhkNqMY+78DAdz59Dv44mNv4s6n38GqJ99m3NmI1vm8sKkW/nr9PeEB4/gYGAuxbiLKkVF5MypfHw6Ns2xRmlL3CXNtJzJhP/acrDMipJRSCPFPALpKcDxkUbPufynvx3zw4M0mHAlZVa5Zr5kdm8xmFGO1KVPtGXfVySg+ojGVdRPRFLH+pXxYsU9oxWM2S67zSt8UQlxl6pEQUVUzylQshMBHw+MYHA1BVSWzY1PRqKrE4GgoKb4A41gcD8fSfse4qz5G8eF0KBnrJqN4I6JzilX/srxVh1L2CYsVU+zHnpPrQMT1AN4QQhwRQhwSQvxSCHHIzAMjouqityXethVd+PaP38OCLa9h6dZ96Ds5Gs9Ozy0SaSq0NZpLt+5Lii9VlYb7fn+quZZxR4bx0VLnMaybMsUbEZ1TjPqX5a16GMVLsdvmYsZUqY7ZCoSU2T9AIcSn9H4vpfwwy+M+ADAKIAYgKqWcl+n+8+bNkwcOHMh6PGSuQpZZFMLEpRkly/TCmC2uxCzCQgh8+8fv4eXegfjfte30tG2UbJZtuCRvgDE7aXA0hKVb96VtH7d33QL46z26Ga0B46ztVapq61qjjOdGv88Wb1QyVRuzVjLV+teG5Y39gwxKsQNFsWOqCnbNyOnN5LprxlSGEK+XUp6awuOJqEokZir+aHg8aRACOLeGjtmxaaqyrdE0ijHGHQGZs6rr/Z5rgolyN9X6l+WtupSiT1jsmGI/dlKuSzNeAvDi2X9fBfAbAD8x66CIiLiGjszE+KJSYrwRlQ7LGxUbY8ocOQ1ESCl/W0rZefbfOQCuBvAfuTwUwMtCiB4hxOqpHCgRVReuoSMzMb6olBhvRKXD8kbFxpgyR045InQfKMS7Usors9znAinlx0KIFgCvAPgTKeW/p9xnNYDVAHDRRRd1ffhhxrQTVALMEZHlyRmzJVMFa+gSmfbGGLP6qiy+zMC6Ng+Mt4rAmK0SNitv7B9UAJvFlNmKlyNCCPFnCf9VAFwJYDDb46SUH5/9d0AIsReTMyn+PeU+jwF4DJhMkpLL8RCVE2O2dLiGrjgYs/oYX5XNbnHLeLM/u8WslbG85YYxmzvGVPHlmiOiPuHmwWSuiFsyPUAI4RNC1Gs/A1gM4L3CD5WIiIiIiIiIrC6nGRFSyr8AgLMDC1JKOZbDw2YA2CuE0F7nOSnlTws9UCIiIiIiIiKyvlyXZlwOYAeA887+/xSAO6SUhjMcpJS/AXBFMQ6SiKyJ6+mo3BiDVAqMMyJrYtklMzG+MstpIAKTa4f+TEr5GgAIIRae/d18k46LiCxOVSX6To7ikVf6sKyrDc0+N4LhKC6Y5oXTmeuqMKLsjBp6LQbv2X4A/cPBeJbr9hn17AhQ0WSKMwDshBKVSbaTQLYRZCa9+Np+19Woq3EiElXZJiD3HBE+bRACAKSUrwPwmXJERGQLQ4EwHnmlD3fMn43NL/Zi+bY3cPsTb6FvYBSqynxIVBxaQ7906z4s2PIalm7dh76To/EOqNYBAID+4SDu2X4AQ4FwmY+a7MQozkaCYcPYJCJzZWobNGwjyEyp8eWv8+DkmQl8Yet+tgln5ToQ8RshxCYhxKyztwcAHDXzwIjI2sLRGJZ1tWHj7kNJjfyaHT1s5KloMnUkw9FY/Pea/uEgwtFYOQ6VbMoozoLhGE9yiMokl0EGthFkptT4WrvwYmzYdYhtQoJcByLuAuAHsAfAXgDTAdxp1kERkfVpU87YyJOZMnUk3U4HWpu8SX9rbfLC7XSU8hDJ5oziLCYl6z+iMsllkIFtBJkpNb4avS62CSlyHYiYJaVcL6W8Uko5V0r5dSnlsKlHRkSW1uxzo6Xew0aeTJWpI9nsc+PxVfPif9fW/zb73OU4VLIpozircfEkh6hcchlkYBtBZkqNr/FwjG1CilyTVf6NEOJ8AD8E8I9Syv808ZiIyAYUReCCaV50r+zCmh09SYmgUht5ZhWmQjV5XXju7mswMBrCUCCM3T3H8I0b2uMx1D6jHnvXLWBskWmM4kxVpWFsEpG5tJPA1ESUieUvUxvBfkl1Kub3nhpfXrcja0xWm5wGIqSU1wshZgK4DcBjQogGAM9LKf/S1KMjIktzOhVcNrMh44kgs1ZToVRV4vDgWFLsdK/swhx/XTx2FEXAX+8p85GS3aXGWS6xSUTmyXUgWq+NYL+kOpnxvafGV6PXzYsjCXLeQ09KeUJK+SiAtQB+DuB/mXZURGQbWiV8YVMt/PWetAqXWaupUHqxs2ZHD4aDkTIfGVU7xiZR+WXrfxhhv6Q6leJ7LzQm7SqngQghxGVCiG8LId4D8AMA+wG0mnpkRFQVmLWaCsXYoUrF2CSyLpbf6sTvvfRynRHxFIBhAIullL8npfw7KeWAicdFRFWCWaupUIwdqlSMTSLrYvmtTvzeSy+ngQgp5bVSyu9LKT82+4CIqLowazUVirFDlYqxSWRdLL/Vid976eWUrFIIMQfAXwPoAFCj/V5K+WmTjouIqgR3NqBCMXaoUjE2iayL5bc68XsvvVy373wKwLcAPALgegB3AuC3QkRFwZ0NqFCMHapUjE0i62L5rU783ksr1xwRXinlqwCElPJDKeW3Afy+eYdFRERERERERHaU64yICSGEAuCwEOJrAD4C0GLeYRERERERERGRHeU6I+LrAGoBrAfQBWAlgDvMOigiIiIiIiIisqecZkRIKd85++MYJvNDEBFNiapKDAXCTAhEOWPMkB0xronMw/JFdmK3eM44ECGE+GcA0ujvUsrPF/2IiMj2VFWi7+Qo7tl+AP3DwfgWSe0z6i1doZJ5GDNkR4xrIvOwfJGd2DGesy3NeBjA9zLciIjyNhQIxytSAOgfDuKe7QcwFAiX+cioUjFmyI4Y10TmYfkiO7FjPGdbmnFUSvlfU3kBIYQDwAEAH0kpl0zluSrZrPtfyvsxHzx4swlHQlT5wtFYvCLV9A8HEY7GynREVOkYM2RHjGsi87B8kZ3YMZ6zzYj4J+0HIcTuAl/jTwG8X+BjiciG3E4HWpu8Sb9rbfLC7XSU6Yio0jFmyI4Y10TmYfkiO7FjPGcbiEhccPLpfJ9cCNEK4GYAT+T7WCKyFlWVGBwN4aPhcQyOhqCqhull0Oxz4/FV8+IVqrbOrdnnLtXhUgXTiyXGDNlRIXGdT11LVM1K0W6wPJKZEuPLocB2/aBsSzOkwc+5+t8A7gNQX8BjiahCZMvSm28CHUURaJ9Rj73rFtgm8y8Vh1EszfHXYUaDB8+vvhYxCdS4FEz3eRgzZGmpdaHLqcCpCBw/HSxKXUtUzfLta+S7IwHLY3UzewcLvfjaftfV2LNuPiJR1RZ952wzIq4QQpwRQowC6Dz78xkhxKgQ4kymBwohlgAYkFL2ZLnfaiHEASHEgcHBwTwPn6j0qi1mtYpw6dZ9WLDlNSzdug99J0eTRv0LSaCjKAL+eg8ubKqFv54nlGayUswaxdLHp4P4/A8mY/D2x9/E0Jh1kzNRbqwUt1Oh1YXnT/NiaCwcj/Ni1bVUOtUSs1aSa18jl75OKjuUR8ZsYQqJl3zpxdeqJ9+GgLBN3znjQISU0iGlbJBS1kspnWd/1v7fkOW5FwD4vBDiAwD/COD3hRA7dV7jMSnlPCnlPL/fX/AbISoVu8as0fTCXBpaOybQsROrxKyqSoSjMXzv1ivQvbILc9saAUzG0sBoyNKdPcqfVeK2WAqpa+e2NWLTkg6Mh6OcFl4Bqi1m7SRb+dPrI9mh78OYLYzZg1CZ+kNWiq9ssi3NKJiU8s8B/DkACCEWArhXSrnCrNcjosJlml6YS0OrJdBJvJ/VE+hQaenF4JZlnXj4Z30YHAulNe52a4yJ8q1r57Y14t4b27Fx9yFOCyeaokzlz6iPNKPBw75PlTJzECpbf8hO8ZVtaQYRVQGjkd3jp4MQQmBxR0vS/VMbWiYSpKlQVYkTZybSYnDj7kNYv2gOuld2YXfPsaTHsLNHdqKqEkII7Fp7XdLVr0x17dqFF8cHIQD9K3JMpEeUm0w7Ehj1kaKqzNj3Yfmzr1x2sCj0+9eLt427D2Hj5y7Fc3dfg3A0Zpt4Mm1GRCIp5esAXi/FaxFR/oxGdvuHg/jmD3+BbSu6AAAv9w7Ek+VISHw0PB5PlsPkk1QIbeQ/HFV1Y/Ci82ohBHD/5y5D7/HRpKtRHOgiOzC6+vXM/qP4xg3tSXGemHxvPBzNeAX3VCCE8VAMR08F8OirhzE4FuKMCSID2iBf6qyHZp8bx08HdcvaRCSGOo8Dm2+5HLVuB8bDMXick9d4mcjS3jLFCzC179+oTz6joQa3P/GWreKpJAMRRFTZtFkPy7ra0Oh1YSQYwe6eYxgJRtA/HMTanT14Yc11+NYfSnjdDpw8E8KqrfvjlWH3ii6c31jDwQfK21AgjEde6cOff+6ypCmuc9sasX7RHEhI/NdQEJ1tDRzoIlsyuvr1wprrMLOhJi3OteR7g6OTV+D8dR6sXXgxGr0ujIdjqHErhtN679l+AHvXLYC/3lOOt0pUsTLtsGG0/PTk6RCa69xorHVhYDSEba8fweBYCHvXLQAA3LP9APx1Hmxa0oFGrwsnTk9gRoMH5/lY/qwu244sRrNostW/qioRU6VuvH1wKmD4fGbv4GEWDkQQEdwOga/9/hyse/bdeMd165euxM43PgQwWeFJKXFhUy0GR0NpleuanT3YfMvlmDmtxvKjs1Ra4WgMq66bhb/+yfvYsqwTG3cfgr/Og/tuaseGXYeSBrsuO7+BsUW2Y3T1S0qZMd6bvC48fedVGBwNJZeVlV34/r/+Om1gY9OSDqzZ0cPcKkQGtEG+VHpXv39w+1yEIipWPfl22oCfVsb8dZ60PC7dK7rQ6LXGSSJlZhQvQOE5JE4FQvjLl3rj/aHEuHngn97TfT4rz75hjggiQjgm44MQwGTltu7Zd7GoYwaA5HVvRpVrrdvBnQwob26nAzOnefFy7wAe/lkfNi3pwN/cdkX8xAo4N9jF2CI7ymWtsZ7hYASnxsLpZWVHD5Z1tSXdt384iEavi7lViAqgXf1+fvW1eH71tdi0pANjE1F884e/0M1r5HY64HY6sH7RnLQ8LmzLqkOh9fpEJJbUH9Li7TyfC4NjId3ns/I2shyIICJIKXUHF7SOa+K6N6PKVVvGwattlI9mnxs1TgWtTV4cPDaCNTt6krbq1DC2yK4KTfYbjsYgAN2ykvrY1iYvxsMx5lYhKpC2ROObP/wF1uzogcuh6Ja92dN9aPa50exzY/Z0H9uyKlVove4QIqk/9MXH3sTmF3uhShg+n5W3keXSDCIyXP/Y2uTF3nULktaa6U1R1KYj8mob5UtRBLweBQ8t74xf2R0Px7glGlWNbGuNjbidDsOy0lJ/blvBxDw+nBJOVLjE/s9IMKJb9mo9jngZq/Vwa/NqVWi97nU7kvpDrU1ePLS8E163A+dP8+aVw8QKccaBCCIyzP57/jSvbqK09hn12LNufjwju7a3Ma+2USGavB7MaIjGM48rQmDbii6s3dnDXTKoKmRaa2yk2efGp5pr0zqtj6+ahwsMOqxEVLjEk0tVVdG9sgtrdiS3U9MTElFO93ky7qxA9lZIvd7odWNGQ03STiwzGs4NIueaw8QqccaBCCLKe+RWUQRa6mug+iR8Hid+cPtcdnapYIoiMKvZh/oaVzz+mrwunkgRZaCVm8ZaF55ffS1iEqhxKZju8xTUASai7BLLlr++JmM7VehVcapeev2hbDFj5TjjQEQVmHX/S+U+BLKAQjqu7OxSsejFEmOLKDNFEZNbAfrKfSRE1SeXPhD7SZSvauqPcyCCyOKsuncw2RdjksgaWFaJpoZliKyunDHMgQgiC0vcO9hf58H6RXMwe7oPtR5HfHouUSll2s8aADtsRGWU2OF0ORWMTUSx6sm3Lbf3PFE5pJ6wNXldODw4ptvesQxRJTEabMjUZytFDHP7TiIL0/YO9td5cO+N7dj0o/ew8OHX8YWt+9F3chSqKst9iFRljPazHgmG0XdyFEu37sOCLa9h6dZ9jFGiEtI6nFoZ/MLW/Th5ZgL+usnpvFbae56o1FLLz9Kt+9A3MIpHXulLa+9YhqiS6Mbu2f6XUZ+tVDHMgQgiC9P2Dl678GJs3H2IjSGVndF+1sFwrKyNHVG10+twbth1CGsXXhy/j1X2nicqNb3ys2ZHD5Z1tSXdj2WIKk2mwQajPlupYpgDEUQWpu0d3Oh1lbUiIdJoMZmotcmLmJSMUaIyMupwNnpd8f9bZe95olIzKj+pWySyDFGlyTTYYNRnK1UMcyCCyMK0vYPHw7GyViREGi0mtXjU1hvWuMrb2BFVO6MO53g4Fv/ZKnvPE5WaUflpqfektXcsQ1RJMg02GPXZShXDTFZJZGHa3sHnT/Pg2buvweBoCEOBMHb3HMM3bmhnY0glZ7SftapKPHf3NRhgjBKVnKpKSEjs/Mo1OHoqgEdfPYzBsRAeXzUPMxo82LfxeiaQJcpAO2FLTep3wTQvfvy1BQiGY4hJiRoXB9epsqTG7uKOFjxwcwfC0RiGAmHM8del9dm4awYR5ez46VBS49i9sgtz/HXsUFJZpO5nraoyLbM4Y5SoNPSyonev6ML5jTVo9J7tcPrKfZRElc1okB0ATp4JcecMqliJsauqKk4Fwrj9ibcqIl65NIPI4owSKA0HI2U+MqJJjFGi8tEtfzt7EFPBEyWiPGiD7Bc21cJfP7lFerl3HSDKhRa7iqJgzY6eiolXzoggsrhMSWiM9g0mMlNq3KmqykSVRGVSSFZ0th1EuVFVFZuWdKDR68JIMIJtrx/BwWMjbN+oIlR6f4wDEUQWpyWhSaxYWpu88LodadNxOV2QzKY7DXxlFxZ3tODl3oH4/Ziokqg0jNoIo/KnV4bZdhClU1WJU4EwNr/YGy8rW5Z14pn9R9m+UdlZoT9m2tIMIUSNEOJtIcQvhBD/KYT4C7Nei6iaGWW8jaqS0wWp5IyWYTxwcwczixOVQb5Z0TnVnCg3Q4Fw2jT3jbsP4YGbO9i+UdlZoT9m5oyIEIDfl1KOCSFcAP5DCPETKeWbJr4mUdUxSqB0/HSwoqZfUXUwmgbuUETZsjITVTOjNsKo/BWylIOoGmVq79i+UblZoT9m2kCElFICGDv7X9fZmzTr9YiqWeouBUD+03GJiiFT3KXGKBGVhl4bYYRtB1FuWFaoklmhP2ZqjgghhANAD4DfAvC3Usq3zHw9spZZ97+U92M+ePBmE47Enoz2vOZ0QTIT447I2liGiXLDskKVzArxaepAhJQyBuCzQohGAHuFEJdLKd9LvI8QYjWA1QBw0UUXmXk4REVhlZjNdzou2VcpY5ZxR8VilbrWbliGC8eYrS52KCuMWfuyQnyalqwykZRyBMDrAG7S+dtjUsp5Usp5fr+/FIdDNCVWilm9Pa+p+pQ6Zhl3VAxWqmvthmW4MIzZ6mP1ssKYtbdKj08zd83wn50JASGEF8AfAPiVWa9HRERERERERJXPzKUZ5wN45myeCAXAC1LKF018PSIiIiIiIiKqcGbumnEIwFyznp+IiIiIiIiIrKckOSKIiIiIiIiIiACTd80gotypqsRQIFyxmW2pOjEuiagcWPeQHTGuyWrMjFkORBiYdf9L5T4EXZV6XDQ1qirRd3I0ba/f9hn1bKCobBiXRFQOrHvIjhjXZDVmxyyXZhBVgKFAOF7IAaB/OIh7th/AUCBc5iOjasa4JKJyYN1DdsS4JqsxO2Y5EEFUAcLRWLyQa/qHgwhHY2U6IiLGJRGVB+sesiPGNVmN2THLgQiiCuB2OtDa5E36XWuTF26no0xHRMS4JKLyYN1DdsS4JqsxO2Y5EEFUAZp9bjy+al68sGtrsJp97jIfGVUzxiURlQPrHrIjxjVZjdkxy2SVRBVAUQTaZ9Rj77oFzKRMFYNxSUTlwLqH7IhxTVZjdsxyIIKoQiiKgL/eU+7DIErCuCSicmDdQ3bEuCarMTNmLTcQwe0riYiIiIiIiKyLOSKIiIiIiIiIqGQ4EEFEREREREREJWO5pRlEVqKqEkOBMJMSkWUwZonISlhnkdUwZslqzIpZDkQQmURVJfpOjuKe7QfQPxyMb3nTPqOeDQ5VJMYsEVkJ6yyyGsYsWY2ZMculGUQmGQqE44UWAPqHg7hn+wEMBcJlPjIifYxZIrIS1llkNYxZshozY5YDEUQmCUdj8UKr6R8OIhyNlemIiDJjzBKRlbDOIqthzJLVmBmzHIggMonb6UBrkzfpd61NXridjjIdEVFmjFkishLWWWQ1jFmyGjNjljkiymjW/S+V+xDIRM0+Nx5fNS9tTVWzz13uQyPSxZglIithnUVWw5glqzEzZjkQQWQSRRFon1GPvesWMDMyWQJjloishHUWWQ1jlqzGzJg1bSBCCNEGYDuAmQBUAI9JKb9v1usRVSJFEfDXe8p9GEQ5Y8wSkZWwziKrYcyS1ZgVs2bOiIgC+KaU8l0hRD2AHiHEK1LKXhNfk4iIiIiIiIgqmGnJKqWUx6WU7579eRTA+wAuNOv1iIiIiIiIiKjylWTXDCHELABzAbyl87fVQogDQogDg4ODpTgcoilhzJLVMGbJihi3ZDWMWbIaxiyVk+kDEUKIOgC7AXxdSnkm9e9SyseklPOklPP8fr/Zh0M0ZYxZshrGLFkR45ashjFLVsOYpXIydSBCCOHC5CDEs1LKPWa+FhERERERERFVPiGlNOeJhRAAngHwiZTy6zk+ZhDAhwCmAzhlyoGVD99T6ZySUt5UihdKiFlNpX4mU8H3VBoliVudmC2HSvz8y8Hqn0M569p8Wf2zNmLX9wWY894qJWb5vVlXOd5fNfUP8mGHWLPre8gpZs0ciPgdAP8HwC8xuX0nAPwPKeW/5PDYA1LKeaYcWJnwPVUHO34mfE9UbPz8J/FzKB27ftZ2fV8A35tV2fm9AfZ/f1Zih++i2t+Dadt3Sin/A4Aw6/mJiIiIiIiIyHpKsmsGERERERERERFQuQMRj5X7AEzA91Qd7PiZ8D1RsfHzn8TPoXTs+lnb9X0BfG9WZef3Btj//VmJHb6Lqn4PpuWIICIiIiIiIiJKVakzIoiIiIiIiIjIhjgQQUREREREREQlw4EIIiIiIiIiIioZDkQQERERERERUclwIIKIiIiIiIiISoYDEURERERERERUMhyIICIiIiIiIqKS4UAEEREREREREZUMByKIiIiIiIiIqGQ4EEFEREREREREJcOBCCIiIiIiIiIqGQ5EEBEREREREVHJcCCCiIiIiIiIiEqGAxFEREREREREVDIVNRBx0003SQC88TbVW8kwZnkr4q0kGLO8FfFWMoxb3op0KxnGLG9FvJUEY5a3It5yUlEDEadOnSr3IRDlhTFLVsOYJSti3JLVMGbJahizVGoVNRBBRERERERERPbGgQgiIiIiIiIiKhj9GLQAACAASURBVBkORBARERERERFRyXAggoiIiIiIiIhKhgMRRERERERERFQyTrOeWAjRDuD5hF99GsD/klL+b7Nek8pPVSWGAmGEozG4nQ40+9xQFFHuwyIiqnqsnzPj50PlwLgjq2CsUrGZNhAhpewD8FkAEEI4AHwEYK9Zr0flp6oSfSdHcc/2A+gfDqK1yYvHV81D+4x6VlRUkWbd/1Je9//gwZtNOhIic7F+zoyfD5UD446sgrFKZijV0oxFAI5IKT8s0etRCamqxOBoCP0j4zhxegL+Og8AoH84iHu2H8BQIFzmIyQiqj5a3fzR8DhOnJnAI6/0oX84CID1c6qhQDjewQYAf50HJ05PoH9kHIOjIaiqLPMRkh2lxt1Uy2VimWfcUjFNJVYZl2TEtBkRKf4IwD+U6LWohPRGSLcs68TDP+vDwWMj6B8OIhyNpT2GU7uIiMxjVDcPjoZx8NgI5rY1Yu3CizEejmJwFFVRD2dqe8LRWLyDPbetEffe2I6Nuw/xyh+ZKjHuNIX2m3jFmsykF6v+Og/C0Rg+Gh5nXFJBTJ8RIYRwA/g8gB8a/H21EOKAEOLA4OCg2YdDRaY3Qrpx9yGsXXgxAKC1yQu30xG/fzSq4v0TZ7B06z4s2PIalm7dh76To5YaHWXMktUwZqtPprpZO9He/GIvfu+h1yu2Hp5q3CZehfskEELfyVHDtsftdKC1yQsAWLvw4vggBMDZI5S7fGM2Me40qf0m7UQuW7/J6Ir1iTMTFVe2qXLkGrOpsTq3rRH33dSOLz72ZkFxeSoQ4iwJKsnSjM8BeFdKeVLvj1LKx6SU86SU8/x+fwkOh4rJaDS/0euKj3o2+9wAJhvTj08HsWZHj6U7eIxZshrGbPUxqpubfW7LnGhPJW5TT95+cex0xmnFzT43Hl81D61NXjR6XTldpSZKlW/MJsYdgLR+E5D7lHijMv/xSLAiBxqpMuQas6mxun7RHGzYlb0dMYrL8VDM0hclqThKsTTjv4PLMmxLGyFNrGRam7xobfJi77oFSdO0hgJhDIyGdCukYBVNDyYiMptR3dxY60ZLvcf2J9qpJ2+1bofhe9amvTfUOPHCmuvgEND97BKvUhMVg6IItM+ox951C9KWXWhxOR6O5lRejcr8UCCMrz//c+xdtwD+ek9J3hfZT2KsqqqKiag6pbg8eiqQNojBGK0+ps6IEELUArgBwB4zX4fKR280v3tFF7zu9LVi4WgMQ4Gw7jTE90+MckSUiAjFSezV7HOje0VXUt28ZVknHvu3I5Bn/5/IbifaqVfhRoIR3ffscipJMydu634DpwJhPH3nVRmvUhMVi6II+Os9uLCpFv56T3wQQovLX50Y1Y1dAEn1g15/bMuyTmx7/YjtBhqpPBRFoNnnxifjEfxmMJBTO6J7nrCyC4++ejjpfozR6mTqjAgp5TiAZjNfg8pLGyHds24+xkMxHD0VwAP/9B4Gx0JpyWjcTgd29xzDlmWdSUnAtOSWHBElompXrMReiiJwfmMNNt9yOWrdDowEI3j4Z31Yv2gOvvNSb1o93L2yy1Yn2qlX4ba9fgQPLe+MTyXWPlenItKmva/Z0YOHb70Cz919DRyKYFJlKrnEGT3bXj+SVl4fWt6Jrz13MK2v1T6jHi+suQ4fjwQxFAjHE4fbbaCRykeLTX+dJy0ujQZsPU4l3haNh2PwOBX465PvxxitTqXaNYNsTFEEBARW/P1bSVegUgcVmn1ufOOGdjzySh82LenAnJY6HB4YizeUAEdEiai6Ga0HL2SAttHrxsxpNUmDGrOn+/By7wAGR8PYtKQDjV4XRoIRTLfZibZ2FU5774NjIcxoqMGedfMRiarxwYXjp4O604sFgNufeIsD41QWiTN6Dh4bwcM/m+w3XTqzHr8ZDOC7Pz3Xb0qsHxRFYGZDDU4HI/j68z/PeoJIlC8tNvuHg/G41PLCnT/Nm9aODAXCWPXk22lLM567+xr0Hh9ljFY5DkRQUWTbgipxDe63P385HAKISWDzi71ch0tEdFau2/llo5f3QFEUSEi0Nnlx8NgI1uzoAYB4Th87ybT2Hjj3+QD6+SBGghEOjJOpMm3JmTqj5+CxEWx+sRfPr74Wdz79TtLzpMZpttgnmorE2NTakdYmL/asm68bz0ZtmkMRjFHiQAQVh1EyGrfTYTjV+Lem+/Dc3ddgYDSEoUAYu3uO4Rs3tHNElIiqVqa6NJXRiUym5R0AkmYKLO5owQM3dyAcjWFwNFQVncHEz8df50lbsqEtF+TAOJkl2xKsJq9Lt3/kdWevHzINcBBNVepsMy12xyaiWPXk2/DXebB+0RzMnu5DrceRMWa12WaM2eolpKycxIDz5s2TBw4cKPdhUI5UVeJUIISJSAwOIaAI4Fs//k+83DuQ1KieCoTwha37kyqhxR0t+NM/uCS+lae2Rrm9pR5O55RzqJas9mLMWtus+18y/TU+ePDmXO9akrhlzFaW1A5Yk9eFw4Nj8ZPkxA7ddJ8n6Yq+0YnMUCCMpVv3pXX8tOnb2muqqopTgXBSPZxnPoqKrWszfT6pbdLctkasXzQHn/b78JvBAH7yy+P43G+fP/m5ux1wOgSCYXaQbaIiYnZwNGRYRpt97rTY1fpHiiIyDmBkG4TU6hohRHyWFGPaEiqqf5DabjkU4PM/2Ad/nQf33tieljfC41TiyzO0383x12E4GEE4GkNMlfjLl3rTzh8Yl5aW05fHGRFUEL3G7qHlnbjvpkux+ZbLkxq3iUj6tKxlXW3xzi9wLkEY1+MSUbUwOmmY46/Dj7+2AMdHJrBmp/4ggVEuiR9/bQGCkczb/WlZ+gdHQ2n1sF0SBht9Pi+suQ6RWPK2cwePjeDOp9/B/7nvelzRNg0t9Z6kz/2h5Z347k/7dJMwExUi0xIsvdhN7B9lWnah99hHXunDX/63354s7wlxvWVZJ57ZfxTfuKGdMU150doQzUfD4+gfDmLTko74IARwrt7ds25+UswmDrhr8fi3t1+JRq8bL/T026YdouxM3b6T7Euvsduw6xCOfRKEoijxpEkA4BAibYufZp/b9vvYExFlYnSyPByMIKYiftKQ+Dctr4HeiYy/zoPjIxM4MpDbtmrFykdRiYze28cjQcPtEBUB3c99w65DWLvw4rTvgKhQ2hKsRFoZzVYu9bb71KQ+dm5bI+6YPxv/+fGZtLjeuPsQlnW1MaZpysTZfn6j16Ubu5GomhSzw8FIWtv3x8+9i7ULL8bctkbbtEOUHQciqCBGDWWt25GUoHJwNARFAbal7Gd/ns9t+33siYgyyXTCke1kRO9E5n/8f5dhYDSE6XVu/O3tVybVuXoZyTOdDFmd0XubiMTQUOPE330p+fN5aHknvG7jk8BGryv+MzvINFXaOnu9MjqVcul2OrC4owXdK7vw/Opr8d3lk7Meat0Ow7hmTNNUOQSwZVknxsOxKQ2CSwk8dGsnnvryVfC6rd8OUXZcmkEFMUqoNn52HW3qlOPFHS3YftfVOB2MYGA0pLsvNrfuIaJqki0xZaa/pSYMW9zRAq/bgW+88PO0Orel3qO7rZpR0jE71MN67+17t14Bj0vB1547CH+dB5tvuRyzptfi5JkQWuo9aPS6EVPDhrtoaD/bYaCGyivTzhZTKZdNXhfWL7oEa1OWYERiqmFcM6ZpqhRFwTP7j+LOBbPxd1+6El999t2MsWvU9v3XJ+O48+l34o9r9DJ/id0xWSUVxChHxIyGGsxq9hkmS9u0pCO+ZdzijhZ8+/OXQ0pZ7CRgFZGMiiofk1VSOWVLLJcpKZ32+MTkc7d1v5FW526+5XJcfuE0w7W2U8xWXtF1bern89FwMD5Qo2lt8uKFNddhZkONYbI/5oiwlYqOWU2h5dIoCeZDyzuhSiRd/GGOCEup6P5B6k5ERkmWE+///okzSYmStXr24LERAMkJlsmSmKySzKON5u9ZNx8TERUOAXjdjvjopdG0K21UtLXJi2/c0B7v/BERVZtMV0UBZPyb9nitk6YlC0vUPxzE7Om+jFdSU5OO2Unie1NViXBUNZgOLOOfa+p34nIqcCoCP7h9LnfNoJIptFwa9b1cDgXfeel9bL7lcsye7oPHqUARwHeWdjKmacqytWW692+pj29R2+xz489e+EV8EALgMrhqwYEIKpiiCLTU1+j+zWja1QWNXuzbeD07dEREyHzCkc/JiFGdW+txsJ7F5GdZ68m8FCbxvmmfu68UR0k0NZn6XhxMIzPlO3jmdCpobaqF1+1EOBrD4Fgo6e9cMlQdmKyS0mhJJj8aHsfgaAiqmv/yHaNETDMbanQzPRMR2UUx6tB8GdW50332nO1QiOk+j2GCwHyV4zsmyqbS+l4sJ5SJNnhx/jRv1rqZsWRPnBFBSTKtWdbWz44EwwiGY4hJCZcyOb1PUZSkUfZ8p2kREdmBUR06x1+H4WAknq/A7RAIx2TRcuSwzs1O+4z++U/mYzykIqpKOBWBWEyFouR+5e3/sXf30VFVed7ov7teU6kEEkOCL4nKMBjNOHEwiErm8WI7otMw+tAwOq3g2yihadseryLOalnjeui+V8S5Tvs4DEG7tUGZRwVpXfp0q2PL9B18ayItw40dGVrtgEhCTCCpVKpSdfb9I5xDVeWcqlMvp6pO1fezVpaSVKVOpX77t8/ZZ+/fTtVPEhVKIfJAJKKgbySE8agCt9OBhiovXC5HWu0ky1o1ZHOxcasoCqISkHIiJtTBiGT1lNTYUZfSBcOMI7vgQATF0dvX/vG3erSikooEvg6E8N1te+Mqkf/kP34/qeBRKa89JiLSY5RDv/8X58UV5tp488V4/ePDuPjcOtT5PQiGIzhzqg8uV+YTFZlzU4tGFRwaDOE7J3cVWNDSgB8sbIHTIeA1eeKq9xnftWUPC6tRUchnHohEFPzu6HDcLh2blrXh/OnVGAyOx7WT+iovvjo+Br/XCZ/bpbU1DuwRAG3HGL1YmD7FqxtLVV4npAR++Ho33uzuY3FhG+LSDIqTWOhodlMNbp03Azd0vof29e/g20+9j9FwFPVVE53cocEg7nvpYyxpa8JdW/ZgIBAu1KETERWcXrG4JW1N2iAEMJE3n/zVAXyz9Syse60bSze9h5ue/gA9fcOcbmqxvpFTgxBq/3bz0x/gz9e/g8Ubd6PnaOrPwKggIAurUbnpGwlpgxDARDtY+VwX+kZCce1kdlMN7r+mGWtf2Y8rHt0V19aMBvZ4Pll+jGIhGNaPpf/26C7c9PQHuHXeDMxuqsGhwSBWb9+HlfNnMo5sggMRFEctdKRaOX+mtt0TgLhGrjo0GESNz80TMSIqe4k5FJhYt603OPHdbR/F5daOrV08abJYRJHa31yvfzNz4qr3GbOwGpUTdb3+eFR/J5pIVIlrJ8naGgf2SGUUC1GJpLG0Zsep6xL1mkT9/3TiiHUo8o8DERQnsdDR6VMqdJOC2siBieQwFBzXTsTYkImoXOkVi2uo9poanMj1yXc552Kj9+5yCO2zUAfQY5n5DIwKAmZS9JIoG4Vo4+pSisUbdyMcUXQH5VxOR1w7SdbWOLBXPlLFq1EsVLgdKWNJvS5Rr0nU/zcbR7Fx3Z7GDDnKDmtEUJzEQkcAdLeCGg2f+plaI6JzeRtqKlwp1/qxKBERlSq9YnG1Pjc6l7fF1YioPzk4kWoryVjp5M5yXnet99633DEXVRUu+DwO/MuyNnznuS5tAD2dzwBgYVAqDrlo45mcj8VOn3/q17/HxpsvxqrnP4qrEdFQ5Z3UTozamjpgkfg+OLBXWszEq1EsTPN7Mc3vTRpLaj5Xa0TExpGZOGftn8IQUhbPSM+cOXPknj17Cn0YhFOd03g0is+OjWrToNQiaw3VXoSjCpxCYCg4jkODQezo6sX3/+I8/PjfPsWb3X3a72qs9WkNOdOOM83OMm9ng4xZezv3wdctf43PH1lo9qF5iVvGbH4k5ixFUfDbQ8fRUO1FldcFj0tgeCwaV+QtWS5MN3f2D4eweOPuSSdryU6qMrgoKYpcm3jcDofE9U++G7em+IFrm7F6+0Q/9usH5gMQcDmArwPjcZ9B5/I2NDdUZ1U0lIpaUcRspmJjXQiBh1/db3i+ZeZ3ZXI+dnhwFO3r39H+fUNbI+664o/gObljQVWFEyNj8TkkWVFLdYcN3qBKytbnB4oi8dWJMXw5FMRAIIxNuw5ib++QbrwmxkKtz63tOKX++0D/SFzcdi5vwzS/B+GoxFfHx6BIidFwFOfUVeLs2sq4xy9oacBDJwsUx8ZaYlyrdq+5EmfVVub8b1IGTMWspTMihBA1AJ4GcCEACeAOKeV7Vr4mZS+2c1q7qAU7unqxdlELanxuDAXH8eSvDuChhS2oqnDhuifjT3S7jwxj7aKWuI4xdqprJiOO5Xxnj4jsRy9nbbvzUqx7rTsuXy5oacCzt8+F0yHg9zoxze81zGnp5s50113bNc/qHfemZW2or/LG1YJQByEA4JMjw9pnMbupBmsXtaDO70FNpQeB0Dj+MDiKc+v8Rf2+qfzoxfr6Ja3oHw5jb+8QgPSWd2V6B1idPq8+78WuQ3j39wNYu6gF617r1t21YDA4jife/jTuXPKJtz/Fjxa3or7ayx1/SphR3D72Rg/29g5NitfYWEi2HXbijLSBQBjf3jR58P3Fjsu156sFim96+oNJ/VxiXKvP5xIha1k95P9jAL+UUp4P4CIAn1j8epQlddQyEIpg7aIWvN19FN+9chbWvdaNGze/j3WvdePWeTPww9e746rYqg4NBvHH9VWY3VSjfS+2IWdSlIgVlYnITgYCYTz+Vg/WLmrBCysuw9pFLXj+/c+xaVlbXF2BW+fNwOqXPsbyn3wAAZH0wjdV7kxce+vzpLfu2q55Vu+4Vz7XhTV/eb72mMQ1xZt2HcT6Ja1orPVhb+8Q1r3WjVBEweqXPsZ3t+3FFwOjRf++qfzoxXpskT4geRufvD5fv9BkJjVS1i9pxaZdBw13LQhHonizuw8dW7tw4+b30bG1C29297EgZRlIFrepLvSHgmF8dXwM//jXF6Fz+cQA811b9mAwOI76ai/Oqq3UBi2C4xHDwqlmChSz9k9hWDYjQggxBcAVAG4DACllGAB79iJmNGrpdYm4UWx1FPOhRX+iO3r4h69H8cC1zXEj4mpDzmTEkRWVichOFEXBrfNmxC1pW7+kFQ1VHmz927noOxGKy6UAUuazZLnT6K7Rljvm4paffmhq3bVd86zRcU+f4sWClga82d2H0XD8muK9vUP42buf4X+tuAyHB4OTPotKj7Po3zeVH6NYV9t0sjaulyM6l7dpbURltkbKrPoqbLvzUkQUiQN9I3HtR2/XAt5tLl/J4jZZn6QoEkeGxrD2lf2TZlLE5mc1tr86PqYbYy6nQ/t+sqKprP1TGFbOiPgjAP0AnhFC7BVCPC2E8Fv4epQlo1FLp8OhzYjo2NqlreuKrWILnBoVf+LtA1i9fR+evGk2dq5q1y1Ek86IIysqE5GdRCV0txeDEHAKgfte+ljLpYC5fJYsdxrNZqiqcGHnqnbsXnPlpFycyK551ui4Pz82igeuvQAvrLgMVV4XOnVmoxwaDOp+FqPhaNG/byo/RrF+Zo0vZRvXyxEdW7vw0MKWjO4ADwbHcdPTH+BA3wjWvdattR/19yTuWsC7zeUrWdwm65MGAmF0nKwpApzqR++5alZcflZj+4m3D2gz3dTXeOqWOWio8mqxpxa0TDwW9fepy0LUmRYchLCelTUiXAAuBvA9KeUHQogfA3gQwNrYBwkhVgBYAQBnn322hYdDqRjeEYsq2LSsbVJRNbWK7QsrLsMhnbtKACat+ctkxLHYKiozZsluGLP5JaXUzaXjUQVnTvVN2kHDTD5LljuNcvd4RDFdZKvY8ixgLm7r/B50LmvTTlhj75r9+NuzY2aNKJNm9gGY9NwNS1sxfUoFL5AoI1bmWqM2evqUipQXTEY5wukQGd0BVn+fuswpdvaX3q4FvNtcvKw+P8g0bo1idsY0f1x+Vh93aDCIx97o0fJ8Y60PZ0z1xcWeoigZ9b9kHSsHIg4BOCSl/ODkv7djYiAijpRyM4DNwES1VguPh1IwmjpXW+lBQ5XXsAPxuJy476WPTU+5S7coUbF1YIxZshvGbH4lm4bscjlwwelTMspnRrkzF9Oeiy3PAubi1uEQOKOmAuuuvxCVHqc2yNA/EoLP7dT+Xv3DoUnFQhtrfTijpgIvr5qHsXEFTgH4PE7U+HiBRJmxMtdm00aT5YhMikSqv29v75B28Vfn9+DMmonZsk/eNHvS8bEgZXGy+vwg07g1itlKrzPuubGP29s7hI6tXdpuHHqxV19dUVT9XLmzbCBCSvmVEKJXCNEspewBcBWAbqtej7KXatRSnQIcjkS1wi7q962+k8YOjIjsotbnxrY7L0XfcAgDgTB2dPXi3qubtZyY63yWqxxs1zxb4/Pg9KkVSd+/0WfCQQeyk0zbaK7P09Tf9/hbPVjS1oQ6vwcN1V40VHkntr7lQmyKkUncJsasuu3meERB/3Ao42sQu/ZzpcrS7TsBfA/A80IID4DfA7jd4tejLCQbtUy1tVvz9Gq8enc7guEoolKiws31tURUfhRF6u5xPqu+yvQFb+I+6qnu2BTjbIZ8SvX+Yz+T+iov7rlqFv7+mxfA77H6FIioOCS2EZ/HiYgiceR4MKN8oRas/P5fnDdpmnuxb/lLxSNZX5e4pOJYIKy77Wa59392Z2kvLKX8LYA5Vr4G5ZbRSKGZ/aaPngjZbg96IqJcMioKF5srk0k16Guk3O/yJHv/6mdSX+XF/dc0x61nZz9F5UJtI5nmmESDwXFtEALQPy8kMmImDtWY7R8OJY21cu//7MzKXTOohOgVjamv8iIcieLw4Ci+OjFmyz3oiYhySc2Vs5tq0Lm8DS+suAxrF7VAURRTzzca9GUuTY+iSPQPh3B4cBThSBT1Vd6ke8gTlYtc5ZhcbPkb2077h0NQFJYwKhfpxGE2scYYK26cl0iT6E2VSiwaM7upBg9c24wbN7+PQ4NBbF95uS33oCciyiWPy4kFLQ24dd6MuDvvncvbUF9dAQBJl13k4uS+3OndaduwtBUVbmdWJ7PpLJchKla5yjHZFMlVFIljgRBGQ1F8diyAJ94+gP6REGcolREzcajm3aiUeOa2S/DE2wfS2vY6V7N/yDqcEUFx1Ea7eONutK9/B4s37kbP0WHU+txxe0Dfc9UsrN5+6s7SQCBsyz3oiYhyqc7vwUMLWybdee/Y2oWhYFg3v8beoTHac5251Dy9O22rt+9DdYU7o7+tUb/IO2tkR7nKMWqRQPV3mS2Aqbanb218F/Mf24W1r+zH/dc0o77KyxlKZSRVHMbm3SsenYiTB65txuymGtOxxhmGxY8DERTHqNEOBse1YjC711yJmQ3+uJFMdS/pdDskIqJS4nAIOB1C905PMBxNeVKU6ck9nWJ0p83vdaJzWVvaf1uezFIpyVWOiS0SuHvNldi5qt3UnWa99rRmxz6snD+Ts7/KSKo4NBpQfvKm2aZjjTMMix+XZlCcZI02thhM/3Aobkre3t4h/Ozdz/Bix+WQUnLqKhGVLaMpy1EpU54UsQJ49oz+/i6HAxecMSXtvy1PZqmU5DLHZFIk0Kg91fjcnP1VRlLFoVGcADAdc9ksH6L84IwIimN2yp7eSOa9Vzfj9CkVOKu2UqtiS0RUbozu9FS4zeVX9eSeuTQzye60ZfK35XIZKjWFzDFG7Wk0HOXsrzKTLA5zkXc5w7D4cUZEGUinyJbaaBMLuyQ2Wt61I6JyYzaXGuVHAKbyK2Un1/2T2X4RYFFLolT02lPnsjacUVOBGp9xe2HbKi+5yLu8Vil+HIgocelWjE2n0XLfXiIqF5nkUr38yJOi/Mhl/2S2X2SFdqLUMrk4ZNsqP7nKu7xWKW5cmlHikhXZUhSJvuEx/OHrAA4NjuLo8SC+DoQAgNOCiahs6e07nqpgofqco8eD+HIoaLhnOZddFD+9zz/xcwMw6TFDwTC+Oj6Gf/zriya2a+UuAES6zORBRZH4OjDRxnoHR3E8OI76qom2p1cwVq/dkr2ZiRMrigkni6VM4oyxaYwzIkqcUbEXRVF091mv9DgxVDGOc+v8PEGmgjn3wdfTfs7njyy04Eio3BjdXTmt0m1YsFB9zuNv9eDWeTO0rTt5185+zNx51XvMljvmIjgexdpX9mvfW7+kFY+90cOilkRpUhSJzwcCOHpiTNsqvrHWh3/864vwyC9+h729Q3EFYzljonzluphwslgCkHacMTaT44yIEmdU7CUqobstzteBcXwxMMo7OERUlozurkQlDAtnqc9Z0takDULEPpf51D7M3F3Te8wXA6Po2No1aUvCe66axaKWRGkaCITxxcCoNggBTLSp+176GCvnzwQQX7iQW+yWr1wXE04WS5nEGWMzOQ5ElDijirHSYBu5So8TlR6ndpePU4mIqJwY3V2RUhpW31afU+MznjXBXFp89Po4M3fX9B5T6XHqPm/GND+LkVJZy+RcMhyJGrYpdZvP2MKF3GK3fOV6Z4xksZRJnDE2k+PSjBJnVOxlIBDW3Vt3NDzRMIQQ+MPXo/jsWAC/+M8j+Ms/PQMzpvlR6XVimp/rmomoNCXbd7x5uk+3cJb6nKHgOBa0NGBJWxNqfG4MBcexo6sXUUVi8cbdnJZZRGKny9ZXeXHPVbMwY5ofHpcDjbU+1Fd5sXL+TNT43BgNR+HznLq7phcjo+GobtxUep38nKkkxe5U4HY54HIIBMPxuTHTaekel9OwTTXWTuTh2MKFyfI2lTa965xanzutHVZiY1kIoRtLbpcDAvo/SxZnjM3kOCOiBCWOPgOTi0/qjSBuWNqK0/xuNJ3mw8Ov7sf8x3bhXz/8AssuPwdrD63TyQAAIABJREFUX5n497c2voueo8O8o0dEtqd3py7Z3RWjwlnqcz76fAB3f2MW1r3WjRs3v491r3Xje1edh1998hWnZRYZdbpsfZUX91/TrPVxD7+6H8/efgkeuLZZ+xzXvrIfR0+cupOrFyPn1FXqxs00/6lq7ZxlSKVCHWBYvHE32te/M3Fu+NUw7t62F4s37tbOEzOdll7n9+CcukpsWNo6qU2dMdU3qXChUd52OsD2VgZi++Y6vwcH+ke02IyNRz2Jsfzwq/ux8eaLJ10fuRwCtT43Ope3pTX7ItczNkoNZ0SUmHRGn6dP8eLFFZchcrIiuNshIITAQz//T7zZ3QcAWNLWhFXPfzSpE9m5qp3b4RCRbSXLlUZbhqXaq/yWeTNw4+b34/Lld57rwjO3XQLgd9prc1pm4anTZdcuatHqesxuqsGStia4nY5Ja9Nj+z2jmYYADLeaY8EyKiV6Awyrt+/D2kUt6NjapbWXZNPSjfIpMHFheW6dHzWVbryw4jJEJVDhdhjOyE1sk26XAyNjEVz3JGeilRujwS+j65bEx6vXP8/cdgm+DoQxFBzHo7/swaZlF+PAiRG8uvcQnrntEjgdAh6XA9Orks8Sz2S72nLCGRElxszos3pCdN2TuzFv/Tu46ekPMDwWQX11BcajitYIASRd80xEZFfJcqXezIfEuyaJd1kcDoGIol97x5lwwsFpmYWnTpdV+7jZTTW4/5qJWRBfHR9L2e/pxUiyreZYsIxKidEAQ43Prf2/etGlV0jQ53EmzafARBs7zT/Rns4+rRIN1RUpL/jU9icgcMtPP2R7K0Pp1mTQe/yb3X34OhDGjZvfR8fWLvSPhBCVwONv9eCK5um4/dnf4Bv/+O/4m83v49P+kZSzbbhttzEORJQYMw0w2QlRYqcxFBzPaTVaIqJikO7JipkLSbfTYZAvHZyWWWTU6bLqOvSV82dqMyOs6PdYsIxKidEAw1BwXPt/9c6v3rT0iCItHZhjeytf6e6iYfR4tWZebJF/vZ2xOrZ2cYArCxyIKDF6DWpBSwOEEDHr5BTDBJ3Yaezo6sW/LEtvPRQRUbFLdbIyeT2/cd5UNVR5sSkhX25a1obpVV7sXNWO3WuuxM5V7ZweXATU6bIXNU1F57I21Pk92ue7addBrF8yeW16bL+Xbr2HXG8xR1RIRnXGNu06OKmujjotPTb/jUeS59Ns66mwvZWvdGsyGD3+oqapcTGrDqzlaoCLNYMmsEZEiVEblDrSvKClAfdcdR5u6HxPWyfXubwNC1oa4pZgqAnaqPos1zYRUSlJzJWxJyt66/mT5U2Vy+XA+dOr8WLH5YhEFbicDjRUeeFyOVDv5glwsVGnftf4PPjqxJhW2Xxv7xAee6MH666/EDMbquBzZ1/vIVm8EdmNXk0Gl0PgyZtm69Z7SFybn2wngVzUU2F7K1/p1mRI+nj/qcfV+T0IhiM52QGDNYNOMTUQIYRol1LuTvU9ned9DmAYQBRAREo5J9MDLTfJivgkk9ighBDaIARwahrRtjsvRfeRYd0ErddpsDAlERWjXOXK2Of2D4cmTRtOlTdVLpcDZ9b49F6SipTDIXD6lIq4C5f+kRBOn1qBxhrfpHgyWwwtMTZn1VdxUJ9Kht65YuyFWzLJBgrSLTZodGzZFgjMtG+hwtONTZOPT1aU+sypEzclOrZ2ZTXAlYsYLxVmZ0T8TwAXm/ieniullMfSOqoyl+1IWWyDOjw4alg8LVl1byZfIip2ucyVsb8zOB5JO2+SvSW7cEnsE82sP+cdLyJjie3N53EiokgcOR5EVOoX/U13+nu6F6Ox2H7LU6rP3eVy4ILTp2DnqnYoioKoBKSc6B/SOR9gDZNTktaIEEJcLoS4D0C9EOL/jPl6GADnmVokl9W1k62T06vgmqoyPBFRscj1TgRq/jvYF0grb1JpMLtbSlSRKdefc5cMouTU9nbGVB+OngjhWxvfRfv6d5Lm33xh+y1PZj53h0Ogzu/B16PjuKHzvYyulVjD5JRUxSo9AKowMXOiOubrBIClJn6/BPCmEKJLCLEimwMtFWaKk+RypCzdoi1MvkRUrDIpIJkONf898faBlMUKqTzo9Yk/fL0bncuTF3FOpx9n0TIqZ4lt7Im3D2DD0tzl30zaF+9Ylyezn3u210rpXpvFKrX+IunSDCnlvwP4dyHEs1LKL4QQfillII3f3y6l/FII0QDgLSHE76SUv459wMkBihUAcPbZZ6d7/LZidqpXsiI+6Up3nRyTb2rlFLNUGkohZjMtIJkONf8dGgzisTd6sHZRC2p8bjTW+nDG1Mm1AshaxRC3RnvMr7v+wqT9qtl+nFPAS0sxxKzdJLaxvb1DePSXPXhhxWUAkNUyuEzbVy7Pw4sdY/YUs597ttdKmdYwKcX+wuz2nWcKIboBfAIAQoiLhBAbUz1JSvnlyf/2AdgJYK7OYzZLKedIKefU19ebP3IbMjuCls1ImR696aZGOF0otXKKWSoNpRCzevmzY2sXHlrYkrNcGZv/9vYOoWNrF+576WNtRyHKr2KIW6M+0eFwJO1XzfbjnIVYWoohZu1Gr431j4TgcTmzXgaXafvK9Xl4MWPMnmL2c8/FtVI612aqUuwvzBar/CcA1wB4FQCklB8LIa5I9gQhhB+AQ0o5fPL/FwD4H9kcrN2ZHUHLRbXfTHHLIyIqRkb5M5cFJJn/KFGmMWG2H+csRCp3VubdTNtXIc/DqXDMfu6FOlcoxf7C7EAEpJS9QsR9EKne9XQAO08+xwVgm5Tyl2kfYQlJZ6pXNtV+s8HkS0TFKFn+zFWuZP6jRNnEhJl+vJymgBPpsTLvZtO+CnUeToVl5nMv1LlCKfYXZpdm9Aoh5gGQQgiPEOJ+nFymYURK+Xsp5UUnv/5ESvmjrI/W5uwy1SuT6UJERFbKV/5k/qNEVsaEXc4LiKxkVRtj+yKrFOJcoRTj2eyMiJUAfgzgLACHALwJ4LtWHVSp4t02IqLMMH9SKWJcE1mH7YtKSSnGs6mBCCnlMQA3W3wsZSGbqV6KInEsEMLYeBROIeDzOFHjs3cAEhGZZZQ/FUViIBDW7ZiT/YwoV4zizEz8cQo4kTXMtD/2EWSlxPiq9bkxGBzPON5Krb8wNRAhhDgPwL8AmC6lvFAI0QrgOinlDy09OtLobdmyYWkrpk+pwLl1fiZNIipLybazAlByW11R8TGKwVn1VTjQP8L4IyoAM1sdluJ2iFQ8EuNrQUsD7rnqPKx8rovxdpLZGhFPAfh7AOMAIKXcB+BvrDoomkxvy5bV2/fhi4FRW2/bQkSUjWTbWZXiVldUfIzirG8kxPgjKhAz+Z99BFkpMb6WtDVpgxAA4w0wXyOiUkr5YcKuGRELjocMGG3ZUulx2nrbFiKibKTazqrUtrqi4mMUg+NRhfFHVCBmtjosxe0QqXgkxleNz814S2B2RsQxIcRMABIAhBBLARyx7KhoEnXLlliNtT6MhqO23raFiCgbRrnR43Im/RlRrhjFmdvpYPwRFYiZ/M8+gqyUGF9DwXHGWwKzAxHfBdAJ4HwhxGEAf4eJnTQoCUWR6B8O4fDgKPqHQ1AUmfHv0tuyZcPSVpxTV2nrbVuIiBKlkzuTbWdViltdUfExirOGKq8l8ZfLcwuiUmUm/+eij2B7JCOJ8bWjqxeblrWlFW+lHl9md834PYC/EEL4ATiklMPWHpb95boAjrply8ur5mFsXIFTgLtmEFHJSTd3ptrOqtS2uqLikywGcx1/LK5HZI6Z9pdtG2V7pGT04qvW5zYdb+UQX6ZmRAghDgohngewHECTtYdUGqwogONwCDRUV+Ds0ypxVm0lTvN7SyYQiYiAzHKnup3VWbWVqK/2TjrRNPoZUa4YxVmu44/F9YjMM9P+smmjbI+USmJ8uVwO0/FWDvFldmlGCyaWZtQBeEwI8XshxE7rDsv+WACHiCh9zJ1Extg+iIoH2yNZqRziy+xARBQTW3dGASgAjgLos+qg7EZv/Q4L4BARmafm0aiUeOa2SzC7qUb7GXMn0YTEc4vZTTV45rZLEJWyJNcPExUzM+f6pb7Gn3KvnM6HzA5EnADwTwA+A3CrlPJyKWWHdYdlH4oi8flAAPsPH8ehwSD2Hz6OzwcCqPW5WSSNiMiE2Dx6ZGgMAPDwdS2Y3VTD3EkUI7b42eymGjxwbTPWvrIfVzy6C4s37kbP0WEoiuTFD5FFYtuWhMSWO+Yanuura/wXb9yN9vXvxLVRIj3ldj5kqlglgG8D+HMAqwDcKYR4F8CvpZRvW3ZkNjEUDOPoiTGsfWW/Vkhkw9JW1FS6WSSNiMgEozy6adnFcDgczJ1EJyUWP7tx8/uT1g+/enc7jp4IlXSBM6JCMCoe+Ord7QiGJ5/rG63x37mqHfXV3kK+FSpS5XY+ZGpGhJTyFSnlagAdAP43gNsAvGbhcdlGMBzF6u374pLM6u37EAxHWSSNiMgEozwaUSRzJ1EC9dwCgO764WA4WvIFzogKwWhgIapA91y/HNb4U26V2/mQqRkRQogdAP4MwH8B+H8xsXvGhxYel21EpdRNMlHOuiICAJz74Osl9TqUe8yjROlT16fHtp3GWp9he+LFD1F20h1YMGqjpbTGn3Kr3M6Hks6IEEJcIoQ4HcAjAM4DsA3AXABLAVRaf3jFr8KtX6imwm22/AYRUXljHiVKX2y9CODU+nSj9sSLH6LspFuI3qiNltIaf8qtcjsfSvWuOgGEpZS/AdAO4P8G8DMAxwFstvjYbGGa36ubZE7zeVgoiojIBKM8Os1/ag0ti+9ROUgnzmPrRexecyV2rmpH8/Rqw/bEix+i5FK1v3QHFozaaKlNry9XVpyXmDkfKiWplmY4pZRfn/z/GwFsllLuALBDCPFbaw/NHhILR3lcTtT63DjQP8JCUUREJujl0diCTEYFwphTqZRkEuex9SJisVg2UXrMtL9UfZUeozZK9mbVeUkmMWZnqWZEOIUQ6mDFVQB+FfMzsztulLzEopSDwXEWiiIiSkOy4r5GBcKYU6mU5DLOWSybKD1m2x/bFgHWnpeUU4ylGkz4VwD/LoQ4BiCIiUKVEEL8MSaWZ6QkhHAC2APgsJRyURbHahuskktElDvMqVQOGOdEhcP2R+lgvORG0hkRUsofAbgPwLMA/lxKqS5+cQD4nsnX+D6ATzI9QLuIXSckhMCCloa4n7NQFBGRvlTrLNMtEEZkR1bEOWurEJnD9kfpKMR5SSnGU8oSnFLK96WUO6WUgZjvfSql/CjVc4UQjQAWAng6u8Msbuo6ocUbd6N9/Tu4ofM93HPVedpgBAtFERHpS8yfizfuRs/R4bgOlpXHqRzkOs7NtC0imsD2R+nI93lJqcaTODXJwYJfLsR2TOy0UQ3g/lRLM+bMmSP37Nlj2fFYpX84hMUbd0/aJ/jFjsshpSz5QiNFKG9/aLvGbD6d++DrhT6Egvr8kYVmH5qXuC22mDXKnztXtccV+FIUiYFAuCyKN9kIc22O5TLOzbatMsOYJUNF3P7K8vyg2OXzvMSG+dzUH8KygpNCiEUA+qSUXUKI+UketwLACgA4++yzrTocyyiKRDgSxT/+9UUYCo7j7e6juKplOmp8bkgpccZUH0+WS4zdY5bKTzHHbOw6y9lNNVg5fyZqfG5EFQVfDo4iIiUq3E5M83uLtbMlixRz3OZa4gmt2XMHRZEYCoYRDEcRjWkrDofgGuYCKKeYLUXJdrjQu+gEgGOBEMbGo3AKAZ/HiRqfx1btjzGbuVQ7omQzUJH4XEVRksaTXW/WWLnzRTuA64QQ3wRQAWCKEOI5KeWy2AdJKTcD2AxMjMRZeDw5p7d1y8abL8aTvzqAN7v7uMVcibJzzFJ5KuaYVddZ1ld5cf81zVizYx/qq7x44NpmrN6+j9t1lrFijttcynQbOEWR+HwggKMnxnTbitq2Eu+gsbaKdcolZsuNXhvdcsdchMYV3LX11Pc2LG3F9CkVOLfOb5v2x5i1Rjbbe+o9t3N5Gxa0NODN7j7tcWo82XmL85Q1IjIlpfx7KWWjlPJcAH8D4FeJgxB2p7d1y6rnP8KStibt39xijojImLrO8p6rZmHNjomLqZXzZ2oXVgBzKZW2TLeBGwiE8cXAqGFbYW0VotzQa6NfDIxqgxDq91Zv34cvBkbZ/iir7T31ntuxtQsPLWzRjSc7b3Fu5YyIkmc07arG5477d7FNwyJSZVK/IY2aB0QpORwCzdOr4fc6tXxa43PbYkorUS5kOoU7HImi0uM0fK7atnauarfddF2iYqLXRo3aXqXHyfZHWS3NMXqu0yF048kuy4D0WDYjIpaUcleqQpV2ZLR1y1BwPO7fxTYNi4iomDgcAj63S8unQ8FxbtdJZSPTbeA8LidGw9Gkz1XXMJ9VW4n6ai8vgogyoNdGjdreaDjK9kdZbe+Z7Ll68WTnLc7zMhBRqvSmXW28+WLs6OrV/s1pWEREqcXm0027DmLD0lZOaaWykOkU7jq/B+fUVbKtEFlMr42eU1eJp5bHf2/D0lacU1fJ9kdZLc1J97l2XgZk6fad6bLjtjGxVUqFEPA4BcJRyW07C4vbc5mUj6UZ3L6T23eaFZtP3U4HIlEFEQlUuB3aTgBUVJhrcyTTiufxu2awrZjAmKWMJN81Q4FTIG7XjBwr+/MDO8rlrhmpnluEu2YUdvvOcpFq6xYiIjKH+ZTKVaax73AInOb3An4LDoqINEZttKG6ogBHQ3aQzTlNus+16/kTl2YQERERERERUd5wIIKIiIiIiIiI8oYDEURERERERESUNxyIICIiIiIiIqK8KftilUVYZZSIyNaYV4nsjW2YyBy2FSpmxR6fZT0QoSgSPUeHcdeWPTg0GNT2XW2eXl1UHxIRkV0wrxLZG9swkTlsK1TM7BCfZb00YyAQ1j4cADg0GMRdW/ZgIBAu8JEREdkT8yqRvbENE5nDtkLFzA7xWdYDEeFIVPtwVIcGgwhHogU6IiIie2NeJbI3tmEic9hWqJjZIT7LeiDC43KisdYX973GWh88LmeBjoiIyN6YV4nsjW2YyBy2FSpmdojPsh6IqPN78NQtc7QPSV07U+f3aI9RFIn+4RAOD46ifzgERZGFOlwioqKXLK8ynxIVlpk2aObciKgcJbafWp+bbYWKll4u71zWBqcDRXP+VdbFKh0Ogebp1di5qh3hSBRulwMuh8CR40F4XE7U+tw40D9S1EU+iIiKSWJeVas0K4rEl8eD6BsOYSAQxo6uXtx7dTPzKVEeKIrEsUAIo6EoPjsWwBNvH0D/SEj3nMaoDbOdUjkzKvw3q74KL6+ah7FxBU4B+DzFc7eZypuay19eNU/L/Q/9fD/qqz14aGELnA5R8Pxe1gMRwMSHVF/t1U0wncvb8ON/+3RSkY+dq9pRX+0t8JETEdmDokj09A2jY2uXll/XL2nF42/14EeLW5lPiSykd36zfkkrHnujB3dt2YMXOy6HlDLuhFQ9NyKiCUaF/165ex76h0Nx/RtvWlKxcDgEBASW/eQDHBoMYnZTDW6dNwM3Pf1BXLxOn+JFMJz/geeyXpoRSy/BdGztwpK2prjHFVuRDyKiYqJe9CzeuBvt69/B4o278eXxoHaSBkzk0TU79mFJWxPzKZHF9M5v1uzYh5XzZ+LQYBBfDgW1ttpzdLhopuwSFROjwn/BkDKpfyu2nQmovMXG7sr5M7Fmx75J8fpx7/GC9AMciDjJKMEkrvNqrPVBCI5wEhHp0bvo6RsOGebXYiqaRFSKjM5vanxuNNb6tAsmXkARGTMq/DcWUYp+ZwIqb7GxW+Nz68Zr5cklRfnuBzgQcZJRgjnN74kr8rF+SSucHIcgItKld9EzEAjr5teGai+LehFZzOj8ZjQcxfolrdi066D2fV5AEekzKvz31fFg0e9MQOUtNnaHguO68ToUHNf+nc9+gAMRJ+kmmOVteOHDL7B2UQteWHEZ1i5qwc/e/QwOB/9sRER69C56dnT1onN526T8euZUH9fQElnM6ALqT86cgp+9+xn29g5pj+UFFJG+2CKuu9dciZ2r2nFGTQW2vPc51i9pndS/cZCdikVs7P5Z49RJ52MblsYPSOezH7CsWKUQogLArwF4T77OdinlP1j1etnSqxJd63Pjv1/cNKlCLpMLEZE+9aInNm/ee3UzZtVXsQo/UQEY7YIBAPde3YzuI8M8xyEyIbGIq6JI3Ht1Mx5/qwdrF7Wgzu9BQ7WXg+xUdGJjt766Im7HyJGxCPpHQgDyvwWtlbtmhAB8Q0o5IoRwA/gPIcQvpJTvW/iaWdGrEs0trMguzn3w9ZJ6HbKnZFv/sQo/UWEYtT+e4xBlTu3vfrS4lW2IbCOxP5jmlwXrBywbiJBSSgAjJ//pPvllu1LMPHkmIkoP8yaRPbCtEmWHbYjsrpAxbGmxAyGEUwjxWwB9AN6SUn6g85gVQog9Qog9/f39Vh4OUU4wZsluGLNkR4xbshvGLNkNY5YKydKBCCllVEr5ZwAaAcwVQlyo85jNUso5Uso59fX1Vh4OUU4wZsluGLNkR4xbshvGLNkNY5YKKS/bP0gphwDsAnBtPl6PiIiIiIiIiIqTZQMRQoh6IUTNyf/3AfgLAL+z6vWIiIiIiIiIqPhZuWvGGQB+JoRwYmLA40Up5WsWvh4RERERERERFTkrd83YB2C2Vb+fiIiIiIiIiOwnLzUiiIiIiIiIiIgAa5dmFISiSAwEwghHovC4nKjze+BwiEIfFhGRLTGnElEhMPdQKWJck91YGbMlNRChKBI9R4dx15Y9ODQYRGOtD0/dMgfN06vZyImI0sScSkSFwNxDpYhxTXZjdcyW1EDEQCCs/aEA4NBgEHdt2YOdq9pRX+0t8NFROTv3wdfTevznjyy06EiIzGNOJaJCYO6hUsS4JruxOmZLqkZEOBLV/lCqQ4NBhCPRAh0REZF9MacSUSEw91ApYlyT3VgdsyU1EOFxOdFY64v7XmOtDx6Xs0BHRERkX8ypRFQIzD1UihjXZDdWx2xJDUTU+T146pY52h9MXcdS5/cU+MiIiOyHOZWICoG5h0oR45rsxuqYLakaEQ6HQPP0auxc1c5qtEREWWJOJaJCYO6hUsS4JruxOmZLaiACmPiDseALEVFuMKcSUSEw91ApYlyT3VgZsyW1NIOIiIiIiIiIihsHIoiIiIiIiIgobzgQQURERERERER5w4EIIiIiIiIiIsob2xSrVBSJgUCYVWaJiCzEXEtEdsKcRXbDmCW7sSpmbTEQoSgSPUeHcdeWPTg0GNT2MG2eXs2GSyXp3AdfL/QhUBliriUiO2HOIrthzJLdWBmztliaMRAIa28eAA4NBnHXlj0YCIQLfGRERKWDuZaI7IQ5i+yGMUt2Y2XM2mIgIhyJam9edWgwiHAkWqAjIiIqPcy1RGQnzFlkN4xZshsrY9YWAxEelxONtb647zXW+uBxOQt0REREpYe5lojshDmL7IYxS3ZjZcxaNhAhhGgSQrwjhPhECPH/CSG+n+nvqvN78NQtc7Q/gro2pc7vydnxEhGVO+ZaIrIT5iyyG8Ys2Y2VMWtlscoIgPuklB8JIaoBdAkh3pJSdqf7ixwOgebp1di5qp0VZomILMJcS0R2wpxFdsOYJbuxMmYtG4iQUh4BcOTk/w8LIT4BcBaAtAcigIk/Qn21N4dHSEREiZhrichOmLPIbhizZDdWxWxeakQIIc4FMBvAB/l4PSIiIiIiIiIqTpYPRAghqgDsAPB3UsoTOj9fIYTYI4TY09/fb/XhEGWNMUt2w5glO2Lckt0wZsluGLNUSJYORAgh3JgYhHheSvmy3mOklJullHOklHPq6+utPByinGDMkt0wZsmOGLdkN4xZshvGLBWSlbtmCAA/AfCJlPL/sep1iIiIiIiIiMg+rJwR0Q5gOYBvCCF+e/Lrmxa+HhEREREREREVOSGlLPQxaIQQ/QC+ADANwLECH06u8T3lzzEp5bX5eKGYmFUV698kG3xP+ZGXuNWJ2UIoxr9/Idj971DIXJsuu/+tjZTq+wKseW/FErP83OyrEO+vnM4P0lEKsVaq78FUzBbVQIRKCLFHSjmn0MeRS3xP5aEU/yZ8T5Rr/PtP4N8hf0r1b12q7wvge7OrUn5vQOm/Pzsphc+i3N9DXrbvJCIiIiIiIiICOBBBRERERERERHlUrAMRmwt9ABbgeyoPpfg34XuiXOPffwL/DvlTqn/rUn1fAN+bXZXyewNK//3ZSSl8FmX9HoqyRgQRERERERERlaZinRFBRERERERERCWIAxFERERERERElDcciCAiIiIiIiKivOFABBERERERERHlDQciiIiIiIiIiChvOBBBRERERERERHnDgQgiIiIiIiIiyhsORBARERERERFR3nAggoiIiIiIiIjyhgMRRERERERERJQ3HIggIiIiIiIiorzhQAQRERERERER5Q0HIoiIiIiIiIgobzgQQURERERERER5U1QDEddee60EwC9+ZfuVN4xZfuXwKy8Ys/zK4VfeMG75laOvvGHM8iuHX3nBmOVXDr9MKaqBiGPHjhX6EIjSwpglu2HMkh0xbsluGLNkN4xZyreiGoggIiIiIiIiotLGgQgiIiIiIiIiyhsORBARERERERFR3nAggoiIiIiIiIjyhgMRRERERERERJQ3rkIfAJEZiiIxEAgjHInC43Kizu+BwyEKfVhkU4wnotLB9kzlgrFOdsS4JSMciKCipygSPUeHcdeWPTg0GERjrQ9P3TIHzdOrmcgobYwnssK5D76e9nM+f2ShBUdSXtieqVww1smOGLeUDJdmUNEbCIS1BAYAhwaDuGvLHgwEwgU+MrIjxhNR6WB7pnLBWCc7YtxSMhyIoKIXjkS1BKY6NBhEOBIt0BGRnTGeiEoH2zOVC8Y62RHjlpKVD8drAAAgAElEQVThQAQVjKJI9A+HcHhwFP3DISiK1H2cx+VEY60v7nuNtT54XM58HCaVmGzjyWzcEpH1krVntlWyK73Y5bkQ2UFi7Po8jFsyxoEIKgh1zdjijbvRvv4dLN64Gz1Hh3VPFOv8Hjx1yxwtkanry+r8nnwfNpWAbOIpnbglIusZtedan5ttlWzJqJ+p9bl5LkRFTS92j54IYcsdcxm3pEtIaV2nLIT4HMAwgCiAiJRyTrLHz5kzR+7Zs8ey46HioCgSX50Yw5dDQQwEwti06yD29g6hsdaHnavaUV/t1X1OGhV381b9hjFrT5lWcO4fDmHxxt1x0wwT4zaL6tB5iVvGrDXKtFhlUeRavTY3EAhPaqsLWhrw8HUXQkrJyu3lqyhiNhm9fiY2doUQcArA4XAwhstHUZ4fJOZepwO47snJ50gvr5oHAcFdM8qLqQ84H7tmXCmlPJaH1yEb0Kueu35JKx57owd7e4cM14w5HEJ3gIIoE5nGk9Fax+B4FIcHR+HzOHH0RIjVoYnySK89J7bV2U01uHXeDNzQ+d6ktgmAW8tR0UgndhmnVAiKIjEUDOPI0Bg6nuvS4rJzWRvqq7xx8XtoMIjxiIKzaisLeMRUrLg0g/JKr3rumh37sHL+TDTW+hBVJKfOUtEyWqN7sG8E7evfwce9x1kdmqgIJLbVlfNnYs2OfZPa5rFAiEs4qKiYjV32K1QI6g3Fj3uPa4MQwERcdjzXhXuumhX3eNaDoGSsHoiQAN4UQnQJIVboPUAIsUIIsUcIsae/v9/iw6FCM7qjXOf3YP2SVvzw9e6i71wZs+VLbz36hqWteOLtAwCASo+zKKtDM2bJjrKJ28S2Wuf36LbNsXGFg4eUM7nItXV+DzqXt6WM3UL3K1Qa0o1Z9Yai0fnOjGl+1oMg06xemtEupfxSCNEA4C0hxO+klL+OfYCUcjOAzcDE2iSLj4cslmp9vDrSn7h+bKrPjQe278Pe3iH8w18Vd+fKmC1fDodA8/Rq7FzVrp0E3r1tL/b2DgEAhoLjuvEthICiyIJNo2XMkh1lE7eJbVUIods2nQKGy60K2WbJnjKJWb3zpml+D9YuakGNz42pPrdu7PIuM+VCOjGrKBLB8QgODQYNz3cqvU4t73KpG6Vi6YwIKeWXJ//bB2AngLlWvh4VlpkdBfTuKK9f0qoNQrBzpWKnrkc/q7YSHpcT/SMh7Webdh3EhqWtk+L74Vf3c7o3UZ7FttXTp1To7jhgtLXcwb4RtlmynNF5k3AIrHutGzdufh8PbN+H9UtaeZeZCkqN1YN9ATTW+rBp10HduJzm92p5t77ay0EISsqyGRFCCD8Ah5Ry+OT/LwDwP6x6PSo8vfoPd23ZM2knjOlTvHhhxWVQJCClxA9f79YGIdi5kp2oA2tq3PePhFBf7cWLHZdru8KohVi7jwwb7gpDRLmXeKd5Vn3VpDt1AOLacGwB5f6RENssWcrovOnVu9u1uNzbO4SfvfsZtt15KZwOYeoucxa7NxHpUmO1vsqL9UtasWbHPjz2Rg/WXX8hZkzzo9LrxDS/+YEHxigB1i7NmA5gpxBCfZ1tUspfWvh6VCBqMhkNR7B2UYu2HScQv45Rb8eMLXfMxQ8X/yn+4a8UJiKyHXX698ur5mE0FMVnxwJY/dI+/HDxhRgIhFHjc2Pl/Jlam+CaXqL80OtvjHYaaJ5ejRdWXKZNN37sjR4AwNpFLRgNR9A/DPZNZAnDnZjC0bilRWbPjxRF4lggpPVHT7x9AP0jIe6yQVlTY/XQYBCPvdGjLR1qrPXhjKm+tAbGan1uHOgf4Q5jZN1AhJTy9wAusur3U3FItR1nY60PbpcDiiLx1YkxBELxgxW3/PRD7FzVzm19KO+yGY1PfK7LIbDsJx/g0GAQs5tqEIlKrHutO65N/Ozdz7jsiChPjgVCSWfoJbZhn8eJ+176WGvD91/TrO1UwJNksoKiSAghsH3l5RgIhLXzInWJqpltpmPjWG/7aPV8TG92KlE6Ymu87e0dQsfWLjTW+rBzVTscDmF4TqV3ndC5rA0/fvvTlDOoqfRx+07KSqrtODcsbUVoPIqeo8O4ofM9LN30Hta91o37r2nG7KYaVn6mgjBTzySd5x4ZGkN91UTnuXL+THx320eT2sRDC1u47IgoDxRFYjSkf6c5HInqtuGjJ0LYcsdcNNb6uF0iWU6NwcTzogUtDaaXqCbGsd720er5GM+1KFt6Nd7UWE12TqV3ndDxXBeWtDXF/X7GaHniQARlxWha4ayGKqxd1IJHf9mD/+oL6HaO9y04j8UpqSCM1uUmu9BQFIn+4RCOHA/qdqrq3tk1Prdum3A6BO+mEuXBQCCMz44FJhWhXNDSACGEbhu+a8seVFW4sHNVO84/vZrbJZKljG7iPHzdhaZn3iT+DqPtFBuqvXjmtksQlRN9GAuwUiZidyLaveZK7FzVrsVqsnMqo+uEOr8Hs5tq0Lm8DS+suAzP3HYJfB5eD5QbDkRQVtSpWrEaa3040DeCTbsOYuX8mTinrlI3CZ1ZM1EjgneJKd+MOka9Cw1FkegbHsMfvh7F/sPH0TccSrp3trqlVSwOuBHlTzgSxRNvH4ir6L6gpQHfu+o8PPzqfgTH9dv/eERBfbUXlR4X2zBZyqgPktL8lrGJv8Oo76mt9GDtK/txxaO70pr9R5Qodiei2B0xkp1TGV0nTKvy4oFrm7XdYf71wy8wMhbB4cFRDpiVEQ5EUFb0pmptvPlifHrkBO6/ZiLBHOgb0U1CXwyMoqrCxbvElDfqrIaolHjmtkswu6lG+5nehYY63fBbG9/F/Md2Ye0r+7U93WPF7p39Z41T0bm8jVutEeWR2rYPD45CCIH6ao9WUO2FFZfhgWsvwP98+1PcOm8Ger8OJh1oSDYFmSgXjC7O0hnsSvwdm3YdxOM3XBQXtxuWtuJ4MKwtHVTvVH91YowXepQzyeJZL5+uX9KKwdEQVm/fp9XluXXeDNz09AdxSzsiEUXL6xycKE1W7ppBZcDhEJhVX4Vtd16KvuEQBgJhPPmrA3jwLy/ALT/9EIcGg9pew7GFv9QCSk/eNLvQb4HKhF7BpA1LW/HoL3u0quKJFxp60w0f+cUn+OebLtbqQMTuna0OqtVXV6Rd7ZyIMqPXtjcta8MTb3+qFVR77m8vxZK2JqzZsS9u+7nYNqy2/9gpyGzDZIXErZ8zGezS2z66sdaHdddfiEqPE0PBca1/W7uoBR1buwBM9GNfDgVxPDjOAqyUE8niWW93scfe6MEPFl6gnVsZ1eXZdueluOnpD1g0uIRxIIKyNhgc1xKFasUVM7V/7+0d0u5MzWqowoG+EW2Pdk51pXzRG1RYvX0fXlhxmeGFht50wze7+/C9b8zCuusvxMyGKvjck59rpto5EeWGXtte+VwXXuy4HP/wVxIelxMSEnV+j+nt59iGyUq5GOzS+x3hSBS3P/ubSY+t8bm1/2+s9WEgEMbfvfBb7lJAOZEqnh0OgYbqCih+Cb/XhSdvmg0hhLYLh1FtrdilsNxZozRxaQZlTe9ibSAQjpumtbd3COte68YXA6Po2NpleAeayCpGaxgBxK11jGU03fDYSBinT61AY43P8LlElB/J1tura5mn+b1oqPZq7Vndfu6+lz7Wtkokyiej9fbZ/A6jPms0HNX+f/2SVmzadZAFWCmnzMRz7GNOn1KhLdkwqm+SWECcMVt6OBBBWdPr+HZ09U5aJ9+5vA0tZ1Tj1w9ciZdXzeP0KsqrTNbk6q1t7FzWhj85cwpOq3RjIBDmmkWiAjPTth0OgTOn+ib3S8va4HSA7ZhKgm59k+Vz8CdnTsH2lZdj7aIWPPZGD/b2DrEAKxVU7CyKP2ucis5lk68ZdnT1xj2HMVt6uDSDsqa3Nuzeq5sxq75Km6YVVSR++Ho33uzui1tTT5QvmazJTZxu6HY5MDIWwbf+5V2uWSQqEmbbtsvlwAWnT4lbq/zQz/drM/TYjqkUeF0OrU7EaDgKr9uB0yo92nKMTGtSEOWawyFQ5/eg5+gwfvz2p1i7qAV1fg8aqr04Y0oF7r26Gd1HhhmzJYwDEZS1ZGvD6qu96B8OYfHG3VznRQWV6Zrc2LXi/cMhrQgrwFgmKgbptG2HQ0BAYNlP4usasR1TKRgIhOP6KGDiLvLOVe0swEpFKbbGz5vdfQAYs+WEAxGUE8kKeyXbX5gon7ItQMdYJipO6bRttmMqVclimwVYqRgxZssba0SQ5RLX785uqsEzt12CqJTcF5gKRlFk2vtT52LvdyKyXrL2zXZMpSrd2M6kHyTKpXzkY8Z58eJABFkutnjS7KYaPHBtM9a+sh9XPLoLizfuRs/RYSYFyitFkeg5OozFG3ejff07puNQtxAY1ywSFZVU7ZvtmEpVOrGdaT9IlEtW52PGeXETUhbPBzFnzhy5Z8+eQh8GWUBRJAYCYYQjUdy4+X3d9Ys5nH6VtwVkjFl7SqxbApiPw9hYzvGaxbzELWPWGuc++Hraz/n8kYUWHEleFWWuNdO+LWzHVNyKMmZzyWxsZ9MPUt6V9PmBlfmYcV4wpj5A1oigvFDXeR0eHOXaXCq4bNaIc80iUXEz077ZjqlUmY1t1kqhYmFlPmacFzcuzaC84tpcKgaMQ6LSxfZNlBrbCZUDxnlx40AEZSXdAjBcm0vFINM4ZMEjouKXy36GbZ5KjRrT4UgU2+68FAtaGgDwfIyyU6y5ktcdxY1LMyhjagEYdf/fBS0N+MHCFggALqcDDVVeuFzxY13p7PdOlKlU6w0zicPEeFc7s1n1VRgMjjOeiYpEsvadLDck/qzW58aB/pFJbb55ejXbOBVMNuvp1X7s8bd6sKStCXV+D36wsAX/1+I/hYRg/0UZMTo/UnOlUczmo1YPrzuKGwciKGMDgbCWdGY31eDWeTNw89MfaElo07I2nD+9WncwgmtzySqpOkRVunEYG+/AxBrDu7bswbY7L8VNMXHPCxWiwtNr38lyA4BJP9t256W6bZ5FzqhQzPZvRgYCYTz+Vg9unTcDa3bs035H5/I2XHD6FPZblBGj86Odq9pR5/cY3sTJ10AvrzuKF5dmUMZiC8CsnD9T69SAiSS08rku9I2ECnmIVIaMOsSBQDir32tU8KhvOJTz1yKi3EuWG/R+Ftu2VSxyRoWUbf8WjkSxpK1p0vlax9Yu9luUsWQFIY1itm8kZMm5GtkLByIoY7EFYGp8bt0kFIkqhTg0KmNWVUg2KniU2GnyQoWoOCXLDXo/GwiEWeSMikq2/Zs6LZ0DbJRLyQpCGsXseFRhHBIHIihzsQVghoLjuknI5WSIUX5ZVSFZr+BR5/I27OjqzflrEVHuJcsNej/b0dWLzuVtLHJGRSPb/q3O70FDtZcDbJRTyQpCGsWs2+lgHBJrRFB26qo82HbXpXAJgWdvvwS3PfObuBoRDVVck0X5pXaIiesOc3HxoMa7Uwj4PE5M8bpx79XN6D4ynPPXIqLcSpUb1J/VV3lxz1WzMGOaH5UeJ169ux3BMIucUeFl07+phQEdDoHn77wUP3q9G29297HfoqwlKwhpFLP1fg+23Xkp+oZDGAiEsaOrF/de3cw4LDMciKCM6BZMWj4HL39nHsbGo4a7ZhBZzYoKyUYFwmqme1iNmcgmUuWG5unVePXudhwZGkPHc10sQEtFJ9P+Ta8P61zehnXXXwiHw8F+i7JmVBBSL2b1diTqXN6GWfVVjMMyw6tESil2b+C+4TF8HQjhyPHg5CIzW/dACIGz6/w4s8bHQQgqGLVDPKu2EvXVXlMnaX3DY/jD1wEcHhzF14H4PbCTFQhL97WIqHDUO3Tq2uWhYBh9w2M4PDiq1XtRByEAFlCj4pNJn6PXh3Vs7YLD4ci634o9R+wfju87M3kclZ7EmB0MjuvG42Bw3FScMJZKh+UzIoQQTgB7AByWUi6y+vUot/RG0TcsbUWV18UiM1QSjGJ8+pQKnFvnh8MhLCuASUT5Fdve66u8eODaZqzeHrON4bI21Fd549o72zrZnVV9mNntRLPddpRKS7J4TBUnjKXSko9b1t8H8EkeXocsoDeKvnr7PlS4DYrPcBYE2UAkouDLoSC+GAjozu5ZvX0fvhg4dYfUqgKYRJQf6h202Pa+cv5MbRACOHlX7rku3HPVrLjnsq2T3VnVh5ndTtSqbbXJnoziUQiRMk6SxVLsud2XQ0FEIpN37uNsiuJi6VWjEKIRwEIAT1v5OpRbsY00OB7RHbUcCUWwfklrXIXcjTdfjNB4lI2aCsJs5xKJKPjd0WHc0Pke/o8Nu3Dk+JhujFd6nNrdomQVoYmouKl30BZv3I2+4ZDW3o22nZ4xzT+prdf63Dx5Jduyqg8LmZxpYXQHPBiOsD2VIaN4dAqkjJNksyliz+1u6HwPvzs6HDcYEdsXtK9/B4s37kbP0WHGXwFZvTTjnwA8AKDa4tehHEmc8vTMbZegsdYX1+gba33oGw5h066DWHf9hWg6zYeD/QE8+asD+Pbcc1DhdukWrCGySjpT9fpGQlh5cg347KYaTPW5dWN8NByFEBPPtaIAJhHlR+wdtCqvS2vv6rbTiW3f63KkLKzGqcBkJ7nuw9QdOASg24YSCSF0H/fJV8NY91o321OZMYrHgUA4ZZzUVXkMY25lQn2flc914cWOy3FmzcTPjWZT7FzVjvpqrxbXPM/LH8tmRAghFgHok1J2pXjcCiHEHiHEnv7+fqsOh0xKbKRPvH0AG5bGz3x4/IaLMKXChR8svADn1FVi87//Hh1bu/Bmd1/cXeRSxZgtPulM+xyPKtogxP3XNGPDG7/DvyxrmzS754waL5wx/Y+di1IyZsmOchW3sXfQxsajePKm2Xjmtktw5tQKbLz54ri2v35JKxwCKQurcVo56SnmXJurPiz2rvLXgfCk2bFqG4rlFNB93KZdB3FoMIjH3+rBVyfGOOOoAAoVs3rxqDdTIjZO7tqyBy6HmPSYzuVtEAJYu6gFs5tqtNc4NBhEJHpqRkSy2RScLVEYVs6IaAdwnRDimwAqAEwRQjwnpVwW+yAp5WYAmwFgzpw5/LQLLLGR7u0dwqO/7MHWO+aibzgEp0Ngis+FO549dWdo/ZJWHOgbQf9ICKMn91ovZYzZ/Es1Sp1OIS6304HGWh9Wzp+JNTsm1od/98o/xta/nYuBkTAGAmE8+asDuOu//REaqissf2/5wJglO8pV3KrrkdVlhS6HwNpX9uPQYBALWhqw9W/nQkpAAlj/i0/wo8Wtcc9nsVoyqxxybezA/5fHx7CjqxdrF7WgxufGUHAcP3v3Mzx83YXa4xVFIiqBmko3nrntErgcAp/2jeCxN3qwt3cIs5tqcOu8Gbih8z3OOCqAYorZ2JkSwXAEn3w1rMUJoC7TiMbNpogqEj98vRtvdvdp1yTqcxprfXA5T91zj+0LVGqtFKMbWi92XI7Tp1QwFi1i2YwIKeXfSykbpZTnAvgbAL9KHISg4qNXQKZ/JIRP+0Zw4+b3MRAIa4MQwERDXbNjH+65ahY2LG3FOXWVXDdPOWVmlDqdQlwNVV5sWtaGOr9Hi+PhsQiW/+RDLN30nja7594XP0aEI+FEthd7ly2qSNz74sda23+zuw/Lf/IhvhwKQgB48C8vmNSHsVgt0SmxA3Obdh3ErfNmYN1r3bhx8/tY91o37rnqPDRUTSzPVfvvGzrfw8In/gO3P/sbSADrXuvWLi5jbwoAnHFU7tSZEj6PKy5OgFN5V32Mx+XETU9/gDe7+wCcuiZZOX8mGmt92LSsTYtFIHmtFKMB5y+HgpwZYSFucUBx9BrphqUT06IA4+JeM+v9aD69WtvukChXzCy7SKcQl8vlQHNDFc6YWqE93u106Mb1uE7FZSKyl9i7bE2nVeq29Qq3E18MjMLnnjy4wGK1RKfEDszt7R3CY2/0YN31F+LXq+fjxY7L0VhbgaPDY+gfDuFYIDSp/37kF5+gM2Y5ZOxNARVnHJFe3u1c3oZan1t7jNHgwfmnV+PFjstx/vRquGJ284vtC3avuRI7V7VrM2+MBpzVc1AOjFnD6mKVAAAp5S4Au/LxWpS9hike/K8Vl+HwYBDjUQU+jxP9IyEAwGg4qjutyeV0oMbHoi6Ue2amRaudy8ur5mFsXIFTAD5P/AVF7PKOqCLx/PufY/2SVqzZsc+waB3veBLZk95yrjq/B+NRRbetn+b34Eevf4IfLLwAQ8HxuGnhLFZLdIp6gagOMPSPhNAwxYszplTgv44FcEPnqaW7z/3tpZP67ze7+7Du+gu19gToF7xk/1veHA6BWfVV2HbnpegbDmEgEMaP/+1T3Ht186TBg8TY8Xmc2tJavb5Ar6B+YlzHLvPgwJh18jIQQfagTqF7/K0erL7mfNz30sdaUb+1i1rQWOvDNL8Hncva0HGyMq3aUB9+dX9cciDKlWRr+hINjITjOpHO5W2Y5vdAOARGxiK45acfxsXtK3sPa7GdGNedy9rgdEy0C8Y0kX3o7qKzfA5qKl0YHB3HP990Mb677SPtZ/9808XYtOsg+kcmTnb/7oXfalXUVepU4NjX6B8OcWCCyk7sBeJwKAKP04HRcBRfnhjDzz/qjZv98NWJMd3+2+FwoM7v0c451ZsCsTUiOOOIBoPjuOnpD3BoMIgb2hqx+prz4XQIHDkexPTqCt3Bgw1LWzEyFsE0/8RSCrM7qqkDzi92XI4vh4IYCITjak1wYMwaHIgoc7EjhUII/PyjXqy68o8xEAjjZ3fMxR8GRvGL/zyCqT43Kj1OdB8Zxi/+8wievX0uhkbDcQ21+8jwpJM3omwoioSUEs/feSkUKXEiOI7guILTp1RAQsYNEugt4ejY2oW1i1qw7rVubFjaivoqLw4NBrV1hGsXtaBj68TGPh/8/Tfw8qp5GA1F8dmxAB76+X70j4RYNIvIZnSXc23dg3XXX4jbn/3NRIHKO+YCAvj82Cief/8L/OWfnoGO+TNxZCiI+iovFEUxHGhQFInPBwL4YmAUlR4nRsNRnFNXyaWJVDYGg+N4/v3PcePcc/B1YOJc8J/fOYB7rjoP88+fjkd/2QMAqHA7sGFpK1ZvnzzIENtO+4fDWLuoBXV+D86s8WnFAbmdYnlTZ8Te0NaIZZefg9uf/Y0WR5uWteH86dWYPsWLdddfiEqPE0PBcTz6yx7UV3vw8HUXIqIo+Or4WNy5X+x2narYOHO7HDjN78HfvfBb3YExxmRucSCijOndNdp488WQUuL+k7MhFrQ04HtXnYfvJMyACIYjWLrpvbjfx6lLlEtG8fnT//i9Vh05dpDAaAmHWtdk9fb4gQf1Z8CpOzQAsOwnH8T9Hr1Oi4iKl1EuqDy5XOvN7j50HxnGI9/6U1xwRjWmVXnwnedjZ0jMxrFAGB1bu3Tvog0Fwzh6YkzbeUO9C1dT6cZpfuYJKn2KouCbrWdNmmX4xNuf4ttzz8H91zTDIYC7t+1FfZVX21VjNBzF9CneSX323t4hrW/eveZKbRDC7N1sKk3qjNi7rvgjbRACmMjnK5/rwosdl0NKiduf/Y32HL1dWGJ30ki8VjGKs1fvbkcwHD/YwJjMPRarLGN6d41WPf8RguOK9r0lbU3aIIT6mDU79qHCzSriZC2j+FzS1qT9O7aAkFGhoaHguPb4mpgiR+rPzFRN5gAbkX2kygXAqQKVioQ2CKF+PziuaIMQ6vdic00wHNXu8Ko/X719H4Jh5gkqD1EJbXkTcOrccElbEyo9TqzZsQ+nT63AocGgNshw4+b3cfuzv9HaSardaPQKXbJoYHlRl144HUL33CwSVSbFkd4uLOpOGsDkaxWjguhRBTirthL11d6kM2/NxKS6lO/w4Oj/z979x8dV3Xf+f5+Z0UhjSbaELJkfNoGwjlN/qQnIgYD325KQEHahYYkJ2Sa2Gwhg15smmzYJdFs/0sfXzRYHWLbZ1LEhTYhN6IZi2HSh+UFJnDzKr2DFjcOaOCwJ1OaHLSuSLUtjjTT3fP+QZjyauXd+ae7M3JnX8/HQAyxpZq6k9z33zLnnfI4GRyfYgSMDAxFNzOtNV29nqy5c0iXJe5eMExNTuvP6FVQRh2/yzXDI/HdqkMCtwvKW1ad2fFncHdN44lRhrO1r+/WOxQuKqprMABsQHIV2f0p9rq+zVdbaWe3MhUu61NvZmndAMpn1mNTXk/Qt0SSyzxtp+hzoaY9qJD6pQ8NxhY3Jez3NtxuN41iNT3BjoNml6ja0RkKuWYqEQzk58tqFpSvW4vpepZQbUOXcrCpmC/pmxtKMJuZVBPBfh8a14fLztH7ngOduAiPjk3pLzzw9svEyTU45rJNCxXnlM/Ou5uLumIxxr2yfdKz+8vH96UJD961bqUXzW/XUbe/2zKtb4SMG2IBgyW4LWiIhnTg5ld79KTUQeeaCmIazrnEbLj9P/zo0nrdAbmpGYPbX21q4t4Pm4HV9Tu0+s7g7prZoOO/1NN9uNIOjE/r10TF204BCIaNFnW3atqZfGzKWiW9b06++jtacHJmZAbDs3CzujunRjaty+n6lFEQv5XtTvGZRsOR3GgMRTazHYweMu753QH929W9JknYNHMw5+bev6dcZXW1s1wlfuQ0KbP3oRfryD16SdGrGQzgjgpmV7R3H6gvXrdDnfy+roFC792uyTR/QGLJ3uVjYbl3P6+x2pmfmjVR2Ff/ta/rTb6AWtre6vsFaSH0INAmv63Nq95nU+bCwvTXv9TT7PE1JTCX1pSdfynseonlEIiG9fWZHi6mko0g4pL6OVkUi04O/2X0/t/b5jAUx175cKTegyrlZxZLf/Iy19TM1ZOXKlXbPnj21Poym8puxCf3s4LF0tdnURSRVACYaCas71qLh+GSQ3phV7eDIrL8cx+ro2IROTjoKG2nH07/WRef0qCvWopH4pHYNHN86A1oAACAASURBVNQXrlvRKKPKVcktmfXHObc/XvJjXrnjah+OpKoaoq3N3j3qhu3PqLejVRsuPy9dYO+CJQtmFaKkcnpgNURm60H2TgORkMkp7leuwdEJXbf1qYLnYROhf1CCUtvnUr6/1OdOZTl7FkUTzIgoKrPMiGhyXbGoTl/QljO6l9o6KaXBTxbUqVDIqK+zTdJ04/8fLlrCsgkAFeV1N239zoF0O9MVi3o+BmhGrudAnhmHpci885zvPATclNo+l/L9pT43S37zK2ogwhjzCUnftNYO+3w8qDKmoiMoyCoAv9HOALXHeYhGQZbzK3ZGxOmSnjfG/FTS1yR9z9bTmg7k5TaNSBLTSlG3vKa+pUaiU19/41ic/AKoiOx2x2tNcSnPQdsEuCt0rmTfeU5tgci5hWzVbHfLeS1m0HkraiDCWvvnxphNkq6UdKOkLxtjHpL0t9bal/M/GrWU2jYmc0rQjpsu1sSUkzNNKLWFIVBLbpnNzGehrwNAqSrRrtA2AcUp9Vzh3IKXamaDHFZe0XtNzcyAeHPmY0pSt6SHjTFf9OnYUAFu28a8OjTuupXM0FiilocKSPLe6iiVz0JfB4BSVaJdoW0CilPqucK5BS/VzAY5rLxia0R8UtIfSDoq6auSPmutnTTGhCS9JOlz/h0i5sJt25h50TBbyaBuFdrqiK2QAFRaJdoV2iagOKWeK5xb8FLNbJDDyit2RsRCSR+01r7fWvv31tpJSbLWOpKu8e3oMGfRSFiLu2OzPjeeSOZ8bnF3TNFIuJqHBrhyy2xmPgt9HQBKVYl2hbYJKE6p5wrnFrxUMxvksPKKHYg411r7auYnjDE7Jcla+2LFjwoVk9o2JnXiLO6O6S0983I+x1YyqBdumc3MZ6GvA0CpKtGu0DYBxSn1XOHcgpdqZoMcVp4pZvMLY8xPrbUXZfw7LOnn1trllTyYlStX2j179lTyKSFpasrRkRMTmkw6agmH1NfRqlDINHJl76r9IGS2sjKrERtjFDZSKBTKyWeDVqavyg9AZv1xzu2Pl/yYV+642ocjqaqGamtLaVe8vrdB26ZG0lCZDbJ85wq7veWgf5BHve+a4efz1LGifpi8NSKMMX8q6b9Iihljjmc8cULSvXM6PFSF41i9NHjCtcJrT3s0fRIMjSUa8SRAgBRTjbgS2+sBgJtit1jzaquW9nZoOD7ZyB1LoGK8zrd8fYF852cTvLGDh0pvj5kvS5V4LXbfOCXv0gxr7V9Zazsl3WmtnT/z0Wmt7bHW/mmVjhFz4FXh9ejYhA4cHtV1W5/Sqi0/1HVbn9KBw6NyHJveq/m14XENjk7IcQrPmgHKkZm1N4+fzFuNONVwu2UWAPySfU08Ojbh2la9fixO+wSUoZS+gNfj6R+gEorN0lzeK7H7xil5ByKMMW+f+d+/N8ZclP1RhePDHHlVeD056bieBCPxBI05qiK7sX99JJ63GjENN4Bqc+uUjk+4X1ePjE7QPgElKrUv4Ib+ASqlmCzNdeCL3TdOKVSs8o9n/nu3y8ddPh4XKsSrwmvYyPUkiCeSNOaoiuzGfmgskbcaMQ03gGpz65T++uiYa1uVfZ2kfQIKK7Uv4Ib+ASqlmCzNdeCL3TdOKbQ049aZ/77b5eM91TlEzIVXhddY1P0kSFpLY46qyG7st+1+WVtWr/CsRkzDDaDa3DqlX3ryJW1f0z+rrdq+tl+7Bg7O+j7aJ6CwUvsCbugfoFKKydJcB77YfeOUvMUqU4wx69w+b63dUdnDQaWFQkbLFnXq0Y2rcqoP37duZU6hlLaW6RMw8wSjMYcfUo19Kmt7D47oG0//Wg+tv1TW2pwCQamGOzuzzdhwA6iO7HZKkgZPTOiMrrZZ19XuWIs+/b5l2v/GKO0TUIJS+wJu6B+gUorJktt1oZT3Sl7vzZqtUKVU5ECEpHdm/H+bpCsk/VQSAxF1yK3aq1uF11IGKGjMUWlujf2n37dMp89vm7VLxuDoRDqjS3s7aLgBVI1Xp7Qrltv2FOpYUtUfyFVMX6AQtzd23bEWzjeULN8gQaoNdxxH29f2a/3OgbLfK1V6p4+gKmogwlr7R5n/NsYskLTTlyPCnJSyJYzXScAoHaqh0Igw2xsBqLVS7lzl61jSngHuKnV3OPP843zDXLi15dmZunJ5nx68+RKFQ4b3SnNQ7IyIbOOSlub7BmNMm6QfS2qdeZ2HrbWfL/P1UCSvAiqPblxV9Mgbo3SolnxZq0SWUd/Ouf3xkh/zyh1X+3AkgLdKXBNpzwBvle53cr6h0rIz9f39R7T/jVEyNUfF1oj435JSe5KEJC2X9FCBh01Ieo+19oQxpkXSPxtjvmOtfbbso0VBVA5GoyDLABoF7RlQPZxvqDQy5Y9iZ0RkbtU5JelVa+2hfA+w1lpJJ2b+2TLzUdwGqyjbXAuoAPWCLANoFLRnQPVwvqHSyJQ/8m7fKUnGmLCkTdbaH818PFVoECLzscaYf5F0RNIT1trn5ni8KIAtYdAoyDKARkF7BlQP5xsqjUz5o+CMCGtt0hgzboxZYK09VsqTW2uTkt5hjOmS9Kgx5nxr7QuZ32OMuVXSrZJ09tlnl/L0cMGWMP4js9VBliuHzCKIGim3tGfNoZEyG2Scb8Ujs8UhU/4odmnGSUk/N8Y8IWks9Ulr7SeLebC1dsQYs1vSVZJeyPravZLulaSVK1eydKOAYrb/otikv8hs8ea6XR1ZrgwyiyAKUm65NkMKVmYbXbHnW7Nvq0tmi1dOG97s+Sqk2IGIx2c+imaM6ZU0OTMIEZP0XklbSjw+ZGA7IgQJeQXQDGjrgGDi3IWfyFdheWtEGGPOliRr7TfcPgo89xmSfmiM2SfpeU3XiHisMofdnLy2IxoaS9T4yIBc5BVAM6CtA4KJcxd+Il+FFZoR8b8kXSRJxphd1trVxT6xtXafpAvncGzIwtYxCBLyCqAZ0NYBwcS5Cz+Rr8IKDURkzht5q58HgsLYOgZBQl6Byjvn9pJWSZbllTuu9v01GgltHRBMnLvwE/kqrND2ndbj/1EDbB2DICGvAJoBbR0QTJy78BP5KqzQjIgLjDHHNT0zIjbz/5r5t7XWzvf16DALW8cgSMgrgGZAWwcEE+cu/ES+Css7EGGtZe5IHWELGARNKGTU0x5N53ZoLEFuATQcr23duG4DtcO2uqi17Hw5jtXg6ATXhBnFbt+JGmMLGAQRuQXQrGj/gNrh/EO9IZO5CtWIQI2kRsxeGx7X4OiERuJsAYPgKXbrouy8Ow4laQAE20g8oTePndTdH7pA29f2q7ejles2UCVz3TqRfklz8vPvznaeuZgRUYfcRsy2r5nuxGRWXmULGNS7YrYuYoQYQKNxHKs3Rk5q07dfSLdrW1av0F3fO8B1G6iCuWydSL+kOfn9d2c7z1zMiKhDbiNm6x8Y0CevWDrr+9gCBvUutXVRpuzcMkIMoNEMjSW0/oGBWe3abbv26ZNXLOW6DVRBMf0PL/RLmpPff/e5ZLJRMRBRh7xGzM5d2M4WMAiUYrYuYoQYQKPJdx3nug34by5bJ9IvaU5+/93ZzjMXSzPqUGrELPNkWNwd07zWMFvAIFCK2brIK+/NPEKM5nDO7Y/X+hDgk3zXca7bgP/msnUi/ZLm5Pffne08czEjosqKKYLiNWK2sL1VvZ2tOqt7nno7W5s6uAiO1NZF2bnN3MLowZsv0ZXL+yQxQgwg+PJdx7NRFA/wR2oL8WgknN5CvJjzizvXzakaf3evPnGxGu16wYwIn7jtXSypqCIojJih3hSzF3epz5dTkHVtvzZfe75CoRB5BxBoxV7HvdrChe1R2kJgjkotPpjZ11k0v1WPbLxMk1MO/fAmUer7r0r3jQtpxCKqzIjwQSoo1219Squ2/FDXbX1KBw6P6ujYRNFFUOY6YgZUilee5zIK61qQdeeAQqEQeQfQEIq5jnu1hf9y6FhF2lqgmZVSfDC7r/OBLz+loRMJnbEgRr+kiRT7/suPvnEhjVhElYEIH3gF5eQkxW8QPH40fBSCAgDvtrAr1tIQnUyglkrpazTimzz4pxZ5acS+MwMRPvAKStgYtm1B4PjR8LGFEQB4t4Uj8UlJwe9kArVUSl+jEd/kwT+1yEsj9p0ZiJgjt6IhXkGJRcMUv0Hd8iqA40fDRyEoAHBvC7esXqFtu19O/7tQW9toxcuASimlr1FOX4dzr3nVYlAgX56DmkWKVc6Ba5GpNf06vatVO266WHd850Wt7l+invao+jpbNb+1RV2LohShRN3JVwAn1fBlfy37Ql5K0R4KsgLAqbbwkY2X6eRkUiEZvXHspCTvN02ZbW0sGtbh4xMNVbwMqJRS+hrF9nVSvN4DvK2vQy0twb1DjeIUk5dKFLPMfo6lvR05eZaK2wyhHjEQMQeuRaYeGNDma8/XW3rm6VPvfZvW7xzICUVvZ+72XUAteRVSfWTjZerrbCt4IS+nkm+qIBAANLuhE4mcNzRndLWpK5a/rf36x96pTd9+IaftfnTjKtpXQMX3NUq9QeL1HuCbN1+isxbEFIkw6byRFcpLJXa4KPY5Bkfd+/BBuA4wEDEHXuuD5kXDenVonM4BAsOrkOrJSUdS4Qu5V9Ee8o6gOuf2x2t9CGgSXm9oHt24KqfDmv2986Jh1rUDFVLKDRKv9wCDoxNqCYd0ZlfM45FoFPnyUol+cbHPEeT6JgzXzYHX+qC++a16S888bbpmuS5c0pX+WlBCgebjVUg17DFom7kW7fWRuCaTSfIOAGUopROZ/b3hkHvb3RIJBXK9MFCvsvs9RnI994bGEppKOq6P41xsHnMZHJiacnTk+ElNTCX1wMcv0cMbLk33r92eI8hFLBmImIOe9qjuWzu7aMjWj16kv/rHF/Weu3+kzY/t12fevywdnqCEAs2nvTWsrR+9aFaWv7KmXy0Rk3PhzN47+Ybtz+jXR8e1a+AgeQeAEpXSicz83hv6F2t+LKI7r18xu3jZ2pU6cXJq1v72L75xXL8Z400QUA63fs+RExO654YLcgrN7ho4qEh4+u3V1JSjF988PutcPHB4lPOwCZQ7ODA15eiV34zp5cET+o/3PqvL79qt//ytf9GfXf1buqF/sb7+sXcqae2svnmQC8CzNGMOQiGjno6oNl97vuZFwzqtPao7v/cLfX//EUnTo1a37dqnTdcs1+bH9gcmFGg+iaTVl3/wkjZds1xdsRaNxCf1P578pVb3L0lnN7UmzW2qWCrn5B0ASlNKkbzM773ld96qG+9/Xr0drem2ezyR1GntLVq97RnX+lWnL2gLRAEzoJ649Xs+8eBe3Xn9Cm2+9nydfdo8/d/BE/rG07/WJ694m/o6WuU4Vq8fi6drxaUex7LV5lBq8dOUIycmdPA38Zzl/f/5W/+iHTddrHVf+4lrvYigFoBnIGKO4pNJ3Xj/85Kkb936rvQgRMqh4bh+6/TpcAQlFGg+k1OOvr//SE5+P/5v35pz4fSabtYVayHvAFCiUjqRmd87npjSoeH49EDDzoH09/zos5d71q/iTRBQOq9+T8gY3Xj/8/rxZy/Xb53eqb/4wPnq62hVZGZp1JHRicCu3cfclDs4MJl0PGv//GYs4TmoFdQC8CzNmKOWcCg9FWYkPuk6DScWjaRDAtQjrylkI/FJSbMvnPm+l7wDQOlSncizuucVbD9T35vZ/0hZ3B1TxKNuxEh8kjdBQBmK6fec3dOuM7tO7ZaRmEpqaCwR2LX7mLtS2vWUlnBI44mkZ/2RTI3QnjMQMUd9Ha36ypp+Le6Oadvul3PXajI9HQHgtr5sy+oV2rb75fS/UxdOr+/dNXCQvANAlfR1tGrbTP9Dmm6Lt63pV19Hq2d7zpsgoHTl9HuikbB2DRzUltWz3xdsX9tPPwme+jpateS0WM77yXvX9mvXwMFZ39sI7TlLM+YoEgnp7X0d+p+3vkuJKUfhkNGXf/9Cdc2Lal5rWAvbuTOM+pc9hSzpWP3l4/u19+BIzoBa9vcaYxQ20heuW8FyDACokkgkpLcv6tRD6y/VVNJRJBxKTwtftqhTj2y8TOMTSf366Jju+t4BDZ6YYLAYKEM5/Z6e9qg+/b5luueJA9p0zXL1tEfV19mqMxfE6CfBUyQS0jmntWt+W4v+563vkuNYtbWEddq86Tztf2O0pJoT9c63gQhjzBJJOySdLsmRdK+19q/9er1aamkJ68wF01NmElNJndU9jzdkCJzM9WWOY/WF61bo87/nvq4tqGvRAKCRRCIhndkVy/l8KGTU19kmp92qvTWiL3/kwkAVMAPqTan9ntTgxReuWxG4AoKorUgkpL75bTmfD2pBynz8nBExJelPrLU/NcZ0Showxjxhrd3v42tWnOPY9ABDoQJSvDFDLRWb1WKQZ5TjnNsfr/UhAMiQ3ZY7zvS2b43UkQWqpdR+Fn0pVNJc8lTJ9wiV5NtAhLX2DUlvzPz/qDHmRUlnSarbgYjsP1J3rEUvDZ7I2XqFra9Qb6amHL1+LK4joxMaGkto18BBffp9y8gqAECOY3V0bCK9VONLT76UXqrBdQIozHGsDhwedX1PIKku3+QBUm52r1zepz+/ernCIVPzvFalWKUx5hxJF0p6zuVrtxpj9hhj9gwODlbjcFyl/kjXbX1Kq7b8UNdtfUoHjozqnicO5GyVkl21FM2lXjKb4jhWB46M6iNffU7Xb3tGmx/brz+47Fzd88QBsgpJ9ZdZoBjktjJS/ZsPbn1al9+1W5u+/YI+8/5l6u1opU9TYWS2cQ2NJdJv5KRT7wlG4onc9w+HR+U4tsZHXBwy2/gys3vhki79wWXn6iNffa4u8ur7QIQxpkPSLkn/2Vp7PPvr1tp7rbUrrbUre3t7/T4cT24NzPqdA1rdv2TW9zXCVimYm3rJbMrQWELrdw7Myu5tu/Zpdf8SsgpJ9ZdZoBjktjLc+je37dqnDZefR5+mwshs40pMJdPnUMqh4bjiiaTrAEVQBvjIbOPLzO6Gy8/Tbbv21U1efR2IMMa0aHoQ4pvW2kf8fK258mpgsquRNsJWKWgs+bJLVgGguXldI7piLfRpgCJFI+H0doopi7tjSlrren4xwId6kZndrlhLXeXVt4EIY4yR9LeSXrTW/je/XqdSvBqYvs7WWfu4NsJWKWgs+bJLVgGguXldI8YTSfo0QJF62qO6b93KnPcEbS3u5xcDfKgXmdkdiU/WVV793DVjlaS1kn5ujPmXmc/9F2vtP/r4miXLLFD54M2X6C8f36/v7z+SbmDOmN+Ws0c3BWhQT7pjLdq+tj+9PGNxd0zb1/brzAXTDQ0V0gGgeaU6oZlF9rav6dcZXW2a39riWmSvXiusA7WS2o4ze/vEZNLRN2++RINZxcIZ4EM9SLXl89siemj9pYqGTc57hvvWrVQ4JL02PF719t7PXTP+WVJdX7XcKuBuX9uvzdeer1AoxK4ZqHuOY/XS4An99T/9UpuuWa6e9qj6Olt15oKYQiHjWeGZ/AJAc/B6AyXJ9RqxtLeDvg/gInv7xKkpRweOnNCGB069qdu2pl//ZmE75wpqznOnl75T14OWSEgnTk7pA19+qibtfVV2zahXXgUqQ6GQejtbNRyfDHQBGjS+VIa/v/+I1u8c0PXbntFHvvqchuOTnhWeyS8ANJfUG6izuuept3N6ZqfXNeLIiQmuHUARjpyYSA9CSNPnyoYHBjTIuYI64NXGD8cn09cDI6N1X/tJzdp7P5dm1D2vAk6pgh2Fvg7UWqGMkl80mnNuf7zkx7xyx9U+HAkQbF7Xj8mkw7UDKILXuTKVdGp0RMApxbyPrfV73aaeEeFVwClVsKPQ14Fay5dR8gsA8OJ1jWgJh7h2AEXwOlci4aZ+e4U6Ucz7gFq/V2jqM8WrAm5q7WShrwO1li+j5BcA4MXrGtHX0cq1AyhCX0ertq3pn3WubFvTr76O1gKPBPxXzPuAWr9XaOqlGV4FnFLFOQp9Hai1QhklvwAAN/muH1w7gMIikZDevqgzZ3e9SKSp7/OiThTTlte6vW/qgQgptwJuqV8Hai1fRskvAMCL1zWCawdQnEgkpDO7YoW/EaiBYtryWrb3DNkBAAAAAICqYSACAAAAAABUDQMRAAAAAACgahiIAAAAAAAAVdP0xSoBALnOuf3xWh9CxTTSzwIAANAIGm4gwnGshsYSbDmFwCG7AABM45qIRkSuETR+ZrahBiIcx+rA4VHdsmOPDg3Htbg7pvvWrdSyRZ2c5KhrZBcAgGlcE9GIyDWCxu/MNlSNiKGxRPoXJUmHhuO6ZcceDY0lanxkQH5kFwCAaVwT0YjINYLG78w21EBEYiqZ/kWlHBqOKzGVrNERAcUhuwAATOOaiEZErhE0fme2oQYiopGwFnfHZn1ucXdM0Ui4RkcEFIfsAgAwjWsiGhG5RtD4ndnA1IgoplBGT3tU961bmbOOpac9WqOjRrMrtsAL2QUAYFop10SK/yEoUrm+54kDWt2/RD3tUfV1tqo71lLrQwNc+Z3ZQAxEFFsoIxQyWraoU49uXMUFCTVXSoEXsgsAwLRir4kU/0OQhEJGS3s79Kn3vk3rdw6QWdQ9vzMbiKUZpRTKCIWMejtbdVb3PPV2tnJSo2ZKLfBCdgEAmFbMNZHifwia4fhk+g2dRGZR//zMbCAGIijugiAitwAA+IfrLIKGzCJo/MxsIAYiKO6CICK3AAD4h+ssgobMImj8zGwgBiJShTJSvwQK+SEIyC0AAP7hOougIbMIGj8zG4hilRTyQxCRWwAA/MN1FkFDZhE0fmY2EAMR0qmiRUCQkFsAAPzDdRZBQ2YRNH5lNhBLMwAAAAAAQGPwbSDCGPM1Y8wRY8wLfr0GAAAAAAAIFj9nRNwv6Sofnx8AAAAAAASMbwMR1tofS/qNX88PAAAAAACChxoRAAAAAACgaoy11r8nN+YcSY9Za8/P8z23Srp15p/LJB2QtFDSUd8OrDb4marnqLXWt2VBHplNqdffyVzwM1WHb7ktkNlaqMfffy0E/fdQy7a2VEH/XXtp1J9L8udnq5fM8ncLrlr8fM3UPyhFI2StUX+GojJb84EIj8ftsdau9OWgaoSfqTk04u+EnwmVxu9/Gr+H6mnU33Wj/lwSP1tQNfLPJjX+zxckjfC3aPafgaUZAAAAAACgavzcvvPvJD0jaZkx5pAx5uN+vRYAAAAAAAiGiF9PbK39/Tk8/N6KHUj94GdqDo34O+FnQqXx+5/G76F6GvV33ag/l8TPFlSN/LNJjf/zBUkj/C2a+mfwtUYEAAAAAABAJmpEAAAAAACAqmEgAgAAAAAAVA0DEQAAAAAAoGoYiAAAAAAAAFXDQAQAAAAAAKgaBiIAAAAAAEDVMBABAAAAAACqhoEIAAAAAABQNQxEAAAAAACAqmEgAgAAAAAAVA0DEQAAAAAAoGoYiAAAAAAAAFXDQAQAAAAAAKgaBiIAAAAAAEDVMBABAAAAAACqpq4GIq666ioriQ8+5vpRNWSWjwp+VAWZ5aOCH1VDbvmo0EfVkFk+KvhRFWSWjwp+FKWuBiKOHj1a60MASkJmETRkFkFEbhE0ZBZBQ2ZRbXU1EAEAAAAAABobAxEAAAAAAKBqGIgAAAAAAABVw0AEAAAAAAComkitD6BYjmM1NJZQYiqpaCSsnvaoQiFT68MC8iK3CBoyCwCAf7jOImj8ymwgBiIcx+rA4VHdsmOPDg3Htbg7pvvWrdSyRZ2cuKhb5BZBQ2YRZOfc/njJj3nljqt9OBIAcMd1FkHjZ2YDsTRjaCyR/uEl6dBwXLfs2KOhsUSNjwzwRm4RNGQWAAD/cJ1F0PiZ2UAMRCSmkukfPuXQcFyJqWSNjggojNwiaMgsAAD+4TqLoPEzs4EYiIhGwlrcHZv1ucXdMUUj4RodEVAYuUXQkFkAAPzDdRZB42dmAzEQ0dMe1X3rVqZ/Cam1KT3t0RofGeCN3CJoyCwAAP7hOoug8TOzgShWGQoZLVvUqUc3rqLCLAKD3CJoyCwAAP7hOoug8TOzgRiIkKZ/Cb2drbU+DKAk5BZBQ2YBAPAP11kEjV+ZDcTSDAAAAAAA0BgYiAAAAAAAAFUTmKUZxXIcq6GxBOuuEDhkF/WIXAIAUBlcUxE0fma2oQYiHMfqwOFR3bJjjw4Nx9NVPZct6uQkR10ju6hH5BIAgMrgmoqg8Tuzvi7NMMZ0GWMeNsb8whjzojHmUj9fb2gskf5FSdKh4bhu2bFHQ2MJP18WmDOyi3pELgEAqAyuqQgavzPr94yIv5b0XWvt9caYqKR5fr5YYiqZ/kWlHBqOKzGV9PNlgTkju6hH5BIAgMrgmoqg8Tuzvs2IMMbMl/Q7kv5Wkqy1CWvtiF+vJ0nRSFiLu2OzPre4O6ZoJOznywJzRnZRj8glAACVwTUVQeN3Zv1cmvFWSYOSvm6M2WuM+aoxpt3H11NPe1T3rVuZ/oWl1rH0tEf9fFlgzsgu6hG5BACgMrimImj8zqyx1lbkiXKe2JiVkp6VtMpa+5wx5q8lHbfWbsr6vlsl3SpJZ599dv+rr746p9elGi0k+foHr3RmU8hu0/Ptjz2XzJJL5FFXbe05tz/u5+GkvXLH1VV5HfiirjKL5lPmNbUu+wdoDn5m1s8ZEYckHbLWPjfz74clXZT9Tdbae621K621K3t7e+f8oqGQUW9nq87qnqfezlY6zKi4Smc2hezCL3PJLLlErfjV1gJ+IbMopN6uqWQWhfiZWd8GIqy1b0o6aIxZNvOpKyTt9+v1AAAAAABA/fN714w/kvTNmR0zfiXpRp9fDwAAAAAA1DFfByKstf8iaaWfrwEAAAAAAILDzxoRAAAAAAAAszAQAQAAAAAAqoaBCAAAAAAAUDUMRAAAAAAAgKphIAIAAAAAAFQNAxEAAAAAAKBqGIgAAAAAAABVw0AEAAAAAACoGgYiye+xfQAAIABJREFUAAAAAABA1TAQAQAAAAAAqoaBCAAAAAAAUDUMRAAAAAAAgKphIAIAAAAAAFQNAxEAAAAAAKBqGIgAAAAAAABVw0AEAAAAAACoGgYiAAAAAABA1TAQAQAAAAAAqoaBCAAAAAAAUDUMRAAAAAAAgKqJ+PnkxphXJI1KSkqastau9PP1AAAAAABAffN1IGLGu621R6vwOgAAAAAAoM6xNAMAAAAAAFSN3wMRVtL3jTEDxphbfX4tAAAAAABQ5wouzTDGhCXdYa39bBnPv8pa+7oxpk/SE8aYX1hrf5z1/LdKulWSzj777DJeYm4cx2poLKHEVFLRSFg97VGFQqbqx4HgqHVmS0G+IVU/s+QOlRCkthaQyGwzCvr1jsw2tnrPZ8GBCGtt0hjTb4wx1lpbypNba1+f+e8RY8yjki6W9OOs77lX0r2StHLlypKef64cx+rA4VHdsmOPDg3Htbg7pvvWrdSyRZ119UdCfallZktBvpFSzcySO1RKUNpaIIXMNpdGuN6R2cYVhHwWuzRjr6RvG2PWGmM+mPrI9wBjTLsxpjP1/5KulPTC3A63sobGEuk/jiQdGo7rlh17NDSWqPGRAXNHvlEL5A4A0Ay43qGeBSGfxe6acZqkIUnvyficlfRInscskvSoMSb1Og9aa79bzkH6JTGVTP9xUg4Nx5WYStboiIDKId+oBXIHAGgGXO9Qz4KQz6IGIqy1N5b6xNbaX0m6oOQjqqJoJKzF3bFZf6TF3TFFI+EaHhVQGeQbtUDuAADNgOsd6lkQ8lnU0gxjzNeNMV/L/vD74PzW0x7VfetWanF3TJLSa2d62qM1PjJg7sg3aoHcAQCaAdc71LMg5LPYpRmPZfx/m6TrJL1e+cOprlDIaNmiTj26cVXdVhMFykW+UQvkDgDQDLjeoZ4FIZ/FLs3YlflvY8zfSfonX46oykIho97OVs+v1/u2J0C+jBbKNwAAAIDGU8z7gFq+1y12RkS2pZIafrPZIGx7guZGRlFvyCQAoBlwvUPQ1TrDxdaIGDXGHE/9V9L/lnSbv4dWe0HY9gTNjYyi3pBJAEAz4HqHoKt1hotdmtHp94HUoyBse4LmRkZRb8gkAKAZcL1D0NU6w0UvzTDGfEDS78z8c7e19rF8398IopGwrlzep9X9S9QVa9FIfFK7Bg7W1bYnaG6ZW/NcuKRLGy4/Tz3tURlj5DiWqYGounzbRVFzBwAQVNnXsFi0/rdHBCTvOhC13uKzqIEIY8wdkt4p6Zszn/qUMWaVtfZPfTuyOtAda9Enr3ibNjwwkF43s21Nv7pjLbU+NEDSqa157nnigP7gsnN12659rFNETaUymb3esDvWwlpaAEAgea2l33HTxVr3tZ/M+lw9bY8I5KsD4dVnq1aGi50R8e8lvcNa60iSMeYbkvZKaqiBiOzRonBI6UEIaXqqyoYHBvToxlXsRIC6kNqa5y//w2/r/7x+XHd/6AKNxCe1bffLumXHHrKKqvPaLmokntCbx06SUQBA4HitpX9k42X6h0+sUjyRVNJatbUwGwL1JTu7vR2tevPYSbW3hhVriWhpb0fNtvgsZdeMLkm/mfn/BT4cS025jRZtX9Ov3o7WWdNVvNbNMOUYtTQ4OqFN334hnd0tq1foru8dKHuNF3nGXGRvF+U4Vm+MnPTMKHkDANQzr7X01rE6fCLherdZEtc2VEy5faXM7F64pEufef+yuplBXdSuGZL+StJeY8z9M7MhBiT9V/8Oq/rcRjrXPzCgT16xdNb3ua2bSQ1iXLf1Ka3a8kNdt/UpHTg8KsexVTt+NK+hsYTWZ83cuW3XPn3yiqVlrfEiz6i0fBmNRcPkDQBQ11Jr6TMt7o4paeU6U+Lo2ATXNlTMXPrmmdndcPl56UEIqfY7vRQ1EGGt/TtJ75L0yMzHpdba/+nngVWb10jnuQvb0388r3Uztd76BM0tX3bLWeNFnlFp+TI65VjyBgCoa6m19NnvCay1rte3k5MO1zZUzFz65pnZ7Yq11NVOL8UWq/wHSX8n6R+stWP+HlJteFUNndcaLrhuxnEcbbpmeXpnjW27X9begyNs34OqyJfdcqZZFbOVD1PpUYp8GZ2ccmbt+pJqRx3HqeERAwBwSqr+UXY9iEjIuF7fwkZ19YYPweHWx57LNpvZtbvqaaeXYpdm3C3p/5W03xjz98aY640xbT4eV9V5jXQubG9Vb2erzuqep97OVpdBCKujYwltfmy/Pnzvs9r82H595v3LdOXyPrbvQVXky245vKYfpvLM0g2UKl9GU9skf+b9y2a1o0fHEmQKAFBXDh+f0IfvfVa/88Xd+uDWp3X4+IR23HRxzvUttbVnJrb2RCFefey55ilVu+uMBTHX/litdnox1hbf0TPGhCW9R9Itkq6y1s6v5MGsXLnS7tmzp5JPWZJy7vIOjk7ouq1P5YwsPXjzJVrcPY+7xLVRtV96rTObUskZCvm2+QmFjGfm2f1gzqqS21pl1iujjmN1aHhcH/nqc2QqeOqqrT3n9serciyv3HF1VV4HvqirzCJYvPo/j2y8TEZm1vVNUiW3rG7o/gFOyZexIY+iqKXmqUqzmot6wqJ3zTDGxCT9nqQPS7pI0jfKO676lV3pvRheU2XCIcMgBKqmnOzmey637RdTeZ7L9DA0L6+MhkJG4ZAhUwCAuubV/5mccnRW97yc78/XlwLc5MtYpfJUyfcMc1VsjYhvSbpE0ncl/Y2k3dZaFvDKe+0zU68QZPkaKTKPSiNTAIB6V+q1qp7e8CEY8mWsEfNUbI2Ir0s6z1q7wVr7AwYhTumOtejBmy/Rwxsu1fa1/bpyeV9N19oA5XIcq8HRCb02PK7B0QnP9fle6/3JPMrllqkdN10sK1swjwAAVEP2terK5X168OZLlJhKcp1CRZTbxy62D19vipoRYa39rjHmfGPMckltGZ/f4duRBYDjWL00eGLWep3ta/vV1xnVG8fiTMNCYBSqC5Epe+mGMUZhM721EHlHOUIho6W9HXrkDy9TIukoZKTh8Umt+9pPKrG2FgCAOUmtq5/fFtFD6y9VNGx0eHQiXd/I6zrFLmMoRXZ/KOlYxVryzw4tpQ9fb4qaEWGM+byk/zHz8W5JX5T0gSIfGzbG7DXGPFb2UdYptz1d1+8c0L5Dx9lNAIFydGzCdX/io2MTrt8fChn1tEd1/OSUbtj+jC75qx+Qd5TNcaz+dXhcLw+e0H+891n9/LXjWr9zgP3XAQA1l72TwQ3bn9F4IlnwOsUuYyhVdn/od+/crQ9+5em8uXF7PxqUPlOxSzOul3SFpDettTdKukBSsYtUPiXpxTKOre55FRSZFw2n/z8oQUBzOznpnuWTk96rsILc8KG+DI0l9OrQuD778D4dGo6rK9ZC8UoAQF1w6+8cGZ0oeJ2in4RSZfeHpMK5CXIR+WIHIuIzdSGmjDHzJR2R9NZCDzLGLJZ0taSvln+I9StVUCTT4u6YRuKT6X8HJQhobmFjXLMczjOjK8gNH+pLYiqpedFwOk8j8Un2XwcA1AW3/s7QWKLgdYp+EkqV3R9KyZcbr/ejQegzFTsQsccY0yXpPkkDkn4q6SdFPO6/S/qcpIYsbtnTHtX2tf2zCorcef0Kbdv9cvp7Ul8LUuEQNJ9YNKw7r1+Rk+VY1LsR82r4JPKO0kQjYY0nkun8bNv9srasXkFBVABAzbn1d3YNHMx5D7B9bb+6Yy15HxeUN4iojez+UMri7piMMa596yAXkTfWlvZmwRhzjqT51tp9Bb7vGkn/3lq70RhzuaTPWGuvcfm+WyXdKklnn312/6uvvlrS8dTa1JSj149NT9E6OZlUZ1tE/+nBveliIXdev0Jf/O4BDZ6YCEzhkAbg6y846Jl14zhWrwyN6dWhcc2LTjeCb+mZp3N62j3z6lYch7zPiW+/qHrPbCp/h4+fTE9HvHJ5n/703/2Wjp+cUve8Fp25IKZIpNixc1RJXbW159z+uJ+Hk/bKHVdX5XXgi7rKLILBqxjgv1nYrjeOn9SR0QkNjSW0a+CgPv2+Zem+TwWLCDZt/6DZuPWHFnfHdPeHLtDf/vOvZuUr+3F1VhS1qBfPOxBhjLko34OttT/N89i/krRW0pSmd9qYL+kRa+0ar8esXLnS7tmzp9Ax153MP34sGtaUY3Vy0tHLR07oS0++pL0HRyRNj1A9unFVw+0BW4eqduYFNbNuymnEUo+JTybJ+9xVJbf1mlnHsRqJJzSeSGpi0tEbx+K6+/u/1N6DI2SpftVVW8tABIpQV5lFcLj1kYbGErpu61OzptFnX68q9AaxqfsHzaZB+kNFZbbQ9p135/malfQezy9a+6eS/lSSMmZEeA5CBFkoZHIC8drwuG68//lZn2NdGOqZW46LfQx5x1yFQkantbcqnhjXFf/tR7O+RpYAALXk1kcqpgZEOX0rNLdm6g8VGoj4irX2IWPMW621v6rKETWI1Lqw7FFS1oWhEZF3VApZAgAEAdcr+KkZ8lVowe3tM/99eC4vYq3d7VYfopEFuXAIUCryjkohSwCAIOB6BT81Q74KzYgYMsb8UNK5xph/yP6itfYD/hxW8IVCRssWderRjavqqXAI4AvyjkohSwCAIOB6BT81Q74KDURcLekiSTuVv14EXLAuDM2EvKNSyBIAIAi4XsFPjZ6vvAMR1tqEpGeNMZdZawclyRhzurX2zaocHQAAAAAAaCiFZkRIklKDEDP+UdOzJJBHHe7nCpSNPKPWyCAAwE9cZ1AK8jJ3RQ1EZOE3XIDjWB04PKpbduzRoeF4urjIskWdBBSBQ55Ra2QQAOAnrjMoBXmpjLy7ZhhjznX59H0+HUugOY7V4OiEXhse15vHT+qeJw6kt1s5NBzXLTv2aGgsUeOjBLxlZnhwdEKOYyVJQ2OJdEMrkWf4LzuLI3EyCADwT7l9Ha++ExpbMXkhG4UVmhHxsKR+Y8yT1torJMlau9X/wwoWt1GxLatXaHA0ob0HRyRNBzQxlWQaD+pSvpHdxFRy1h7G0qk8z/U1OReQzS2L29f0q7ejVb0drdpw+XnqirVoJD4px3FqfbgAgDpWbF+jnL4Od8WbV6G8+JWNRus7FxqICBljPi/pbcaYP87+orX2v/lzWMHiNip226592nTNcq3fOSBpeu/XWDRMg4W65DWy++jGVYpGwlrcHZvV4C7ujikaCZf9ely84cUti+sfGNA9N7xDiaSj23btOzVAsbZfvZ1tZAYAkKOUvkY5fZ18fadG3ukAhfPiRzYase+cd2mGpP8o6aSmByw6XT4g71GxnvaoJKWDMuVYphejLuUb2e1pj+q+dSu1uDsm6VSeU/kuB8s94MUri2csaEsPQqQ+t37nAJkBALgqpa9RTl/HrxmjqH+F8uJHNhqx71xoRsRV1totxphWa+3/V5UjCiCvUbEzu2J66rZ3p6fOvHEsToOFupRvZDcUMlq2qFOPblxVsalgXLzhxSuLjiyZAQAUrZS+Rjl9HT9mjCIYCuXFj2w0Yt+50IyIG2f++x/8PpAg8xoVO31+m87qnqfezlaFQiYdykw0WKgHhUZ2QyGj3s7WWXmeC84FePHKYlsLmQEAFK/UvkapfR0/ZowiOPLlxY9sNGLfudCMiBeNMa9I6jXG7Mv4vJFkrbUrfDuyACl2FDUVyuy1PTRYqDU/Zj3kw7kAL15ZlERmAABF87uvUe2+E4LDj2w0Yt8570CEtfb3jTGnS9ot6SMzn56SFPd8UJNKjYoV+h4aLNSrYjJcydfiXIAXryySGQBAsarR16hm3wnBUulsNGLfOe9AhDEmIumPJS2U9A1NL+VYLOnrkv7M96NrQNVosBptaxc0pmLOBbKMTJVuP8kXADSm7Pb9jAUx2nfMST30GRpt4KvQ0ow7Nb07xrnW2lFJMsbMl3TXzMen/D08lKoRt3ZBcyLL8BP5AoDGRPuOSiNT/ig0EHGNpLdZa23qE9ba48aYP5T0CzEQUVXFjMSxpzHqTbkjyGQZxSonY+QL5Trn9sdLfswrd1ztw5EAcJNq33s7WrXpmuXqirXozWMntWh+q05rp31H6SrVZ6iHWRX1pNBAhM0chMj4ZNIYk/N5+KfYkbhG3NoFwTWXEWSyjGKUmzHyBQCNKTGVVG9Hqz7z/mW6bde+9LVh+5p+dcWa+40fylOJPgOzKnIV2r5zvzFmXfYnjTFrND0jAj5xHKvB0Qm9NjyuwdEJjcTdR+KGxhKzHteIW7sguLxGkLNzm513x7FkGUUZiSf05rGTuvtDF2j72n71drS6Ziwb+QKAxhSNhPXJK5amByGk6f7H+gcGCl4bUtz6JWh8Xn/3SvQZiu0TN5NCMyL+k6RHjDE3SRqQZCW9U1JM0nU+H1vTchsx275muoOdORrnNhLXiFu7ILiKGUH2GiFe2ttBlpGX41i9MXJSm779QjojW1av0F3fO1DwLgVtJQA0pp72qM5d2F72HWzuXDenfH/3SvQZmImZq9D2na9JusQY8x5J/48kI+k71tonCz2xMaZN0o8ltc68zsPW2s/P/ZAbn9uI2foHBrT52vN14/3Pp7/PbSTObWuX7lgL65FQE6kR5MyGNzu3+dbdeW1TxBo7SNPZWf/AwKzs3LZrnzZfe37BuxTlbINF7gCgNkppf0Mho3mthfsfXqghFCyVujYX+rvPdevMYvrEzabQjAhJkrX2B5J+UOJzT0h6j7X2hDGmRdI/G2O+Y619ttSDbDZeI2bnLmxPBzjfSFzm1i6M6qKWihlBzjdC7LZNEZlGSr62spi7FKVsg0XuAKA2yml/F7a3ln0HmzvXwVHJa3Ohv/tct85kJmauogYiyjFT5PLEzD9bZj5YYFUErxGzea3hkkfi8o3u9bRHubsHXxVz17mUEWLHsXrz+EmNTUxp0zXLtW33y9p7cIQ7FU0qX1s5l7bM7e4Kd8gAoDaKaX/d2u1y72Bz5zo4KnltTv3deztateHy89QVa9F4IqlYtDJ/93JmYjY63wYiJMkYE9Z0bYl/I+lvrLXP+fl6jcJrxGzhzJZDqYZ2aCxRMMBeo3uO43B3D74rZrpcsSPEbqPeqXoAew+OcKeiCRVqK6XSp2x63V05bV4Ld8gAoAYK3anOd1e80JtRt2sEd66Do5KzV3rao9px08U6fPykPvvwvll/+3J3W3HLFzcvTvF1IMJam5T0DmNMl6RHjTHnW2tfyPweY8ytkm6VpLPPPtvPwwkMrxEzSSUPHniN6iatuLtXJjJbnGKnyxU7Quw26n3brn3adM1ybX5sP3cq8mjUzBbKTjlTNr3urjy0/lLukFVZo+YWjYvM+qPQDIVy74rnu0Y0y53roGe2krNXQiGjjraI1n1tX0XeH7Gks7BC23dWhLV2RNJuSVe5fO1ea+1Ka+3K3t7eahxOIKTWIZ3VPU+9na0KhUxZ276kRnVTW86kTgJrLXf3ykRmi1NKXt3yns1r1DuVce5UeGvkzObLTjltplfOrLWubSm5808j5xaNicz6w6svm2p/y70rnu8aUUy/pBEEPbOFslGqySmnYu+P2K6zMN9mRBhjeiVNWmtHjDExSe+VtMWv12sG5TS0XncMh8YS3N2Drypd7Mlr1PvMrphOn9/WsJ0ElK+cDOa7u7JsUawp7pABQD0pNPut3LviFKUMvkrXXajkDAvyVZifSzPOkPSNmToRIUkPWWsf8/H1Gl4lTw639W/b1/arO9bCFnWoiHLymi97Xms2Kz0IQf4bRzkZTOXsnicOaHX/EvW0R9XX2aruWEtRFbMdx+ro2IROTiYVNkaxaLjstaUAEGTlXk8zH2eMUdhIoVDI8/Hl1nSgKGVw5MvSXHezyFQoS6VkOl++6GtO83PXjH2SLvTr+ZtROQ1tvvVJS3s79ODNl+jI6ISGxhL663/6pT79vmVqjYS07ms/YT0T5qTUvBazlq41EtLma8/XvGhY44mkWiOVXV3Ger7GUk6bGQoZLe3t0Kfe+zat3zlQUg7c8nPn9Su0aH6bzulpJ0MAmka511OvwtTfePrX+vT7lrk+vty74hSlDIZq9s3yZanU4/DKV3eshb7mDDO9y2Z9WLlypd2zZ0+tD6OulTqCNjg6oeu2PpUzGvfoxlWS5Pq1zdeerxvvfz7n+wNUxLJqZzGZza+UvObLam9na8GvV0I1XiOPquS22TJbzl2HcnPg9bjN156v889aEKQ2tFh11daec/vjVTqa0r1yx9W1PgRMq6vMNrJKt6OpwtSVvh4H5M50U/cPatw3m9NxeG0HXg8/j8+Kyqyvu2ag8kqdflRofZLb1+Zl7ZfLeiaUq5S8FspqNdbasZ6v8ZQzZbPcHHg9bl40TIYANJVKt6NdsRZfrseVnNYPf9RL36zcWn3Z+aqXn6ceMBDR4Aqtf3P7mpW0fW2/umItGolPatfAQdbLwXeFslro65W4q8F6UUjl58DrceOJZEVziuApdbZGOTMoypkRwkwN+KXc9fFejxuJT3I9bjKpnCSt1dc/9k596cmXtPfgiKTa9M0q1Uekr3lKVbbvRO3k29bG9WtrV+rMrjZFw9PRiIZD+txVb1d3rKVmPwMal+NYDY5O6LXhcYVDyrsFU74sp9btXbf1Ka3a8kNdt/UpHTg8KscpbelZpbeBQvA4jlU4JG1f019yDtzyc+f1K/SWnnkVzSkA1Duv62lqfXxmO/jK0JiOjJ707AtsWb1CuwYOcj1uIpnXy9/54m5t+vYL+txVy3Thkq6a9c0yM33hki59/WPv1AMfv0RWtqTrOH3NU6gR0QTyjTxnf60lLL34xqg++/C+WcXWlp3eqdPac6eu1endPdaABoBb0Z8dN12sjraIJqcc1zx55a2S6wdLOV8qnPemXgNaDzIz2dvRqk9esVTnLmzXvNawFrYXt4/8qV0zHIWNZu2aUWpO67R9zVRXbW0914goFTMifFNXma2FarYrxayPv3BJlz531bJZ/c7MvkAxu2Y0gbrvH1Q6V17Xy2/d+q6aXg8dx2okntAbIye1/oHSClpnP0+dX9/nihoRmJZv/Vv2114bHk9fDKTpNUuffXifvnXru6T22Y9lhwHMxdBYIp0daTpr6772Ez26cZXO6p7n+hivLFdyvZ3Xa5D3xpeZyUPDcd14//PpgYJi/8ahkFFfZ5vr10rJKXkDUGnVbleKWR+/4fLzcvqdhfoCqC9+5MrreimppjU9QiGjpKP0IETquG7Zsaekm1/UJpnG0gzMkrTW9cRPukycSXXaeztatX1tv+7+0AV689hJjcQTVTpaBFklBw9S6+0yVXq9ndvAyS079mhoLDfvmUtOBkcnmHofEH4XkColp6XkzQs5BJpLoXO+Eu3KXGW3g6kilJmatXBfUBXKVTnXomr068pFscnKYUYEZk0PagmFXAuoREJGrw2PZ+2n6+iOD/62zuiK6V+HxnXHd36hwRMT2r6mPz0VGfBSTLGe7Klr3bEWDccnc6ayVWMvcMdxtOma5ekirtt2v6y9B0dyLjzcyQ6uuRSQSmXVcRwlrWStzZlu6ZbTHTddLCub077OtaNDDoHmUuicdxyrxFRSd3/oglnXsHLfQJU7tTy7HRxPJF3b3ZZISIOjE408db1h5LteeeVyaW+Ha38uZS79Or+XPZTaV2iCZRhlYyCiyWU3EFcu79O2Nf3akLHuaduafv3FP7yg7+8/MqsBOTqW0O2P/Dz9fVtWr9Bd3zug9Q8MNNpeuPBBoYuM28Vr25p+fenJX87KYqqTtWxRpx7duMqXhn563X9Cmx/bPyvv33j61zkXHq87A5wT9a/cjk8qq/c8cUB/cNm5um3XPtc3Atk5jUXDOnx8Quu2Pp3z/XOtqk0OgeaS75zvaY/mXE9TfbbBExMl32Wey0CnWzvo1u6eODmldV/7CQOpAZDveuWWy3ueOKBPvfdtWr/Tu8ZCuf26agzCl9JX4KZAfhSrbFKZo3MfvvfZWY3Hlcv79BcfOF/WWhlj0oMQKYu7Y3po/aW6YfszOY3OpmuWa/3OAf34c+/W4q5YrU6ypi9GFRReo8SOY/Xm8ZN5M5b6dzXeWHkVTXrw5kt05oLYrFH9xFRSq7b8MOc5nrrt3YXWu9Z9MapmUE6x0lQ+Nl2zPD1YlZIvo165emTjZYqEzJyKYb02PF5uDktRV20txSopVlmEuspsObzaoXznfDQSdm1rNl97vk5f0Fbym6JKFIjO/Dli0bCmHJsuVB0OSR/4cmUKUDeIuu4f5Huz/caxeE4ut6/tL+laWYpKFi93U8zsx2oeTx2jWCXcZTYYd3/ogpzpVN/ff0Sf/z2rs7rn6bXh8VmDENL0aOZk0nGdhtUVa9Hi7piSjqNDw+M6c0FMkQilSODOrVhPKp9jE1OeGcv8dzXW5HlNOwyHjF4aPDHr4vvgzZd4TjNF/SunWGkqH6WudfbK1fhEUmv+9jn1drRq87Xnl7xzh+R9h8qY3GV2AGqnlGnb+dqhfHelvdqa8/o6yrpp5PfSsdeGx1mDX4e8sppv9kJLJHfJd0971Le/r5/1G7xz630OUU8iP3rGTShzmtRIfNK1GEyqs2qMcf16Szjk+vnxRFJ3Xr9Cf/ytn+kjX31OB46MUiANJUnlc2gs4ZqxkfjkrH9Xo3CRV9EkY0zOlMO/fHy/tq/tn7U/9J3Xr9CJk1OcCwGWrxhXKh9e7alXRr1y9eujYzo0HNfegyO68f7nteZvn5ORKenNgts+5alldqu2/FDXbX1KBw7TPgO1lHpjc93Wp4o6L/O1Q27nfGq6uFdbE2sJlzUY6fV8kooqRliouGE9FypsVoWymhrEP6t7nno7Tw2aR0JGd16/YlYuT2uP+vb3LSc7xRbTLKfYK1nOjxkRTShzdG7b7pe1ZfWKWWuaM2tCXLm8T1+/8Z069Ju45kXDGk8kteS0mHpd1kfcImZjAAAgAElEQVRtW9OveCKp//qPL2rvwRFJ0vqd+etFUMAF2VL5dMvm1o9epC//4CVJsztZpZqacnTkxIQmk45awiH1tkc1cnKq5KJJYSP1drTmFLFc2B7V5mvP17xoWCPxSX3xu9PrcJtgKl7DyndX44wF03m454kDOZn9ypp+tYSn27rsJR5GVt+8+RINjk5oaCyhXQMH9akr3qY//18vuL5OKbLvUGUus7twSZc2XH6exiam9Obxkzp9fhvtLlADheo6ZPeP8rVD+e5KV7qgs9vz3Xn9Cn3iwb3pouVndLXNKlye2d+Tpq+dmT9LZjtXjQLUKE1mVku5hsQTSX3xuwdy+knb1/TnLD30qrGQfR6kjsetz1ZM/bHsIujZM1u9lkGWM7uBLOfHQEQTypy+t/fgiO763gFtvvZ8ndfXoUhodk2IwdGERsYS2vTtF9In0D03XKCQMVra2zGrkzs8ntCHtj8z67XynaAUcIGbVD5T2dx0zXL1tEe1INai+378K/3+xW/Rn1+zXLGWSFkDV1NTjn5xeDRdkPXK5X36oyvepj/Msxbfq4M3Ek/oc1ctS++BnuqMObK68f7nc16bqXjBlW/acyoff/GB8zU8ntDXP/ZOnZiY0pHRCf2PJ3+pm/7tW3XmgjaFZ6apnjg5pTu+82JOYcvta/t1VlebBk9MzHrtcu+eZC4zSS2zu3BJlz7z/mWeBTUBVI/XGxvHcVz7R4vmt+YtYuu1tKzSBZ1Tz/fIxssUTyT1q8ExffG7B07dhHpgIF1/Ymlvh45PTObUvLnz+hWzHpP9c/hZgBqlS2W11GtINBLW4ImJdG0vafpvffu/f3vBv6/b+4QdN12siSnH871Dvuy4Pd+DN1/iOhj40PpLc+o/lFNEmiznx9KMJpQ9fW/wxIROX9CmxV0xWWtn1YTYcPl5+vRDP5t1gn76oZ/p1aFxDccn09OwTp/fps7WiOf0I7dpT/WwnzXqT2Y+9x4c0ebH9mtiytHnHt6nhwYO6cb7n5fjqOyG/MiJifQghCSt7l+SHoSQvHOYOe0wdacqnkimByFSj/3sw/tkrfuSJqbiBVe+ac/SdD6stbr6S/+s993zY1239Wmt3zmg7+8/ot7OVn3kq89p1ZYf6oNbn9bh4ye17tJz0h05aTo763cOKJG0eV+nWNltbiw63YHacPl5Oa9LuwtUn+NMFwR/eMOl2r62Xxcu6ZI0fc4nrVz7R1NO+e2D19T5coVCRkbTxXpvvP/59IBC6njnRcO654kDOnBkVD87eCw9CJH6+mcf3qdPXrHU8+eo9PFiblJvwr2uIUfHJlyXN3hdO7ti0YJ/X7f3Ca8OjRd87+CVHbfnOzI64ToY+PpIPGcJSqF+gBey7I0ZEU0o3+hc9mifV/G1t/a2azwxpTdGHIWMFAqFdMb8Nm1f25+zHU93rMV1ZH9+W4QCLsiRmc/4ZFIvHzmhu743+67Jr4+Oqb01UtYyh8xCqxcu6dJ5ve2uOZzwyOHUlKMDR0a1fueAa7HXQ8NxWWuZitdgirmr4XW35F+HxtXb0ao7PvjbOqMrpmg4JGuta3Ymp5yi757k23XGrc3dcdPF+s1YgnYXqDG3czS1JfSn37dsTu1DNZa8pl5jPDGlM7va9E9//LsKGSnpWN3341/p6V8NaSQ+qdX9S/JeK8/r69BTt707vWvGG8fi3DGuU6k34V6FxFNFlt1mKZSS2cwdVKTcJTzzomHX148npnRk1CoSMoon3F/HbQZSqh5Z9nV7QaxFFy7p0t6DI7O2vmZ2Q2UxI6JJeY3O9bRHZxXaG08kXe/s/mpwTL975259aPszemVoXH/26D7936NjWtY3fYI+ddu79ejGVVq2qFO/ibvPfPAqhMldY6Tyubgrpr7O1vRU9VRn7UtPvlT2G6dUodXU9MKDv4m75jDpWE1Ozn4Nx7F6/Vg8PdiWrzhh6mKVeS5wsQq2Qnc13O6WfOWjF+k7P39Dt/+7t+v2R36uK+7+kX7/vmdlJc/sFHP3JF/hMK/ZZh1tEZ3ZFaPdBWrM7Ry9bdc+/cUHzp+1A0amYtqHUotfliPzNf7mB/9XQycS+tjXf6L33P2j6eK6l75FOz9+sbbtfjm9O4LXtTLWEtYZC2I6fHxCH9z6NIV061hqQMHrGpIqsizlzlIoNrOfeHCvDrw5ms7Ch+99Vp+7all6tpDk/b7kxZnHHXhzVJ94cK9rjtzOq10DB3MKjG9ZvUJ3fu8X+sz7p187c7Ce2Q2VxUAEcpy+oFXfuvVdenjDpXprb7vuueGCnB0AvvTkdMHAQ8Nx/cnf/0yr+5fonicO6MiJiVkFYFLT1zNHGi9c0qVN1yzXVNLRgzdfoiuX96Wfm7vGyBQKGZ3R1abN156vb936Lm26Zrnu+t504cdSKyCnPhc20rY1/frkFUt12659+tKTL2nbmtyL0Bce368jJyZmPdcbx+JKZtypShXUzHzsjpsultX0nR1JOmNBjItVk8hcN/2jz16u+2+8WN3zWvTvfvsM/cnfz17i9oXH9+tvPnLRrOxsX9uvnvZoURW83d7I3PPEAR0+flLjCfc7VpNTjk6f36b71q3Ulcv7tH1tvx7ecKkevPkSdWdsiwvAX161Iay1s4pLptqHK5f36cGbL1FiKlmwqv89T0zXVkpdM//XTw/qzeMnXa+HhXYJ8HqNVNtzy++8VX/4zZ/Oaoc2fvOnkqaX/fZ1Tte0cLtWpvp7LNMNjlDIpK8hqRs6X//YO7Xz4xerJWxmDRgUM9NuasrRG8fiao2EtOOmi/Wl33+H63LXzCU8b+mZlzPgv2X1Cm3b/XL6+zdcfp5rjtxuFnz6fcu0rK9TD62/VA9vuDTdz/z+/iO6bdf0czFY7x+WZiAtc6pgb0erPnfVMg2OTui//uMvtOma5Vra1yEj6Y8f+lnOWsC+zlb9wWXn6obtz6SnZW1b068vPflLre5fkp725FbkZvvafm2+9nyFQiGmOCFHVyyq0xe0Fb3MwWtaemskpHVf+0m6QOWfXb1ch4bjOjQcV3d7y6yKzqmlIH929XLXQklexV47WsM6fHxC67Y+TSHAJhUKGS1sb9WBE6fa0rtuyJ2W/P39R/RH71k6K3cLZzJdTBHf7DcyFy7p0sf/7Vv1oe3PaNM1y/MW1lza26FPvfdtOcvoyGn9OOf2x2t9CPBRoaJ3mdPZHcfR0bGEPvJV92nvmRzHySmCu/WjF6WLkBdT7K+QzLYnHDKuAyohY/ToxlXqjrWklymmrpXnLmzXvNawFrZPD9CXsxMBaieVzX/4xKqcAqRbVq9I958KvXnPLhyemkHotptKaglP5q4Zj25cpXhiSi++OTpr+e6h4bi6ZgbWs3OUb5mItVbXb8stuJ8avOAmqT+YEYG0zFHpvQdH9MXvHlDXvGi62u3rI3G9MjTuWtG9ozWSU7xmwwMDWt2/ZNZIuFuRm/U7BxQKhbhrDFeZF45iljl43V3JLEg0OJrQZNKmR8WTjrT5sf368L3Pav3OgfRFNBIyOc91x3denHUne/DEhPrmTy8jSTruBca4s9NcRuIJvXnspO7+0AXacPl5Gp5Zg5ppcXdMrx87qfU7B/The5/V5sf2KxQKFX13MHuK6YbLz0vPush391GShuOT6UGIfK8BwB/FFL1LTQEPhUJFn69Jq5w+1sZv/lSr+5ek/11Msb98stset7atJTzdp4tEQunr95c/cqGWnd6pWEtIRrm1dbKfgzvQ9SsUMko6yilAmjmDoNCb9+zC4YeG4/rDb/40PfshJXMJjyS9cSyuobGEetqjikUj2vzY/lk3Rxd3xzQSn0z/f3aOvJZWeOXwzK4Yg/Q+8m0gwhizxBjzQ2PMi8aY/2OM+ZRfr4XKyB6V3ntwRJ/9+59p+5p+Xbm8Tx1tEZ3W3qI7r5/dwb37QxcokVEAMCU1Kpm5DeOy0zsZ+UbJSlmT53V3pbezVRcu6UrPyvnid19Mv1n79k8P6StZyzO+sqZfrZGQ653skJE2XbNcP/iT39WDN1+iZX2d3NmBpOkZOW+MnNSmb7+QHmCIhI3++4ffMStfWz96kXYNHEz/O9VpKzZD2W9kUmuxJc1qc3/wJ7+rb936rlkdKXIK1FYpA+ylnK9eRS67MpZeeRX7K/b872mPpvuFYxNTOX3CbWv61ddxqpB0aqnJ8ZNTumH7M7rkr35QkZ0IUFteufyt0zuLqos16fG+4f9n7/7j26ruPOF/jn5alp3YOHYIOGkylHrqyZoGGwLJa2ehDCktadlsAp2hSfixNM5mGPow/RFmpnmgm/IsacKwk+1k4tCWQiB9oIQMLOxAGBY6rwm/GhPIkzE1LIXUgRA7rp3ItixZuuf5w7mKftwrXUn3Xl1Jn/frpVeLox9X0vd+z7lH53zPvKbajFhQi96n1z5pDHjRk9Z327pqepmGGotGlx3qxeG5M2o4CGEhK5dmxAB8W0r5lhCiHkCvEOJFKWWfha9JRdCaKjg0FsGchhrc87WFuKHntcSSjd23XgpFAn6vCyPjUfjOFABMn2aojkqq2zA+dPMlWacjEhUr284F66+4AMDZX4yGQlFsWt6OpqAPrQ3TtVFiynTV5ZY6P0YnY5rP9cmpSWx+tg9PdF+e0kgVssc0VZbh8WjGr0S37zmEB274Ap7ovhyTU3F43S543MDGL38ef37lhWiu9yfiyGgMpU8xVYv/Jg9GbH62D5uvW4iF5880tLsH45TIPuoAey75nK9691X7YsDZYn+Fnv9q7abvXfN53PzQm2iu8yeWmE1E45jTMD0TIpneTC/uRFC+9GIt4DO2o5lX57rh+Gg40S87ryGAc2fUZI0ftY7Y3HMCODkWhZQSd335DzEansL2l97DvSs6DB2Pkd09yHyWzYiQUh6XUr515v+HALwL4HyrXo+Kl22vX3WU/dDAKP7swTdw5f2/wnd++Q6mYgomonGcHIvg/utTi1r+w+rOlF/8dq7uxJMHf5cxZbhndSfcLrBCMhVNUSTcLmgWn9z+0vtoCvpStqQ9NDCK7t29WLXzNUxEFZzfWIvPNAVxfmMtvF635jnx4xsXYWbAi0f/82J43CLjtdNH5/nLTnVRfyVaNLcBPWs6EwXjzmuogZQSX7z/V/j3P3oZl/+3l3HV/b/CdX9/IFGgDjA2ZVuVPFMouYCY+ritqzow95wAFEXB734/jsHQpO4vkMzDRM6RXEzS7YJuTkgvOqnWZMjWF9Mq9pdvO9UQ8MFzpj6E2o5+fdfruOXnv8ZkVMm4v96v54qiYCgUYXHnMqTXVjUGvLqFUJPjNeh3ZcxE3bqqA/fvfw+bn+1D0O9JDNBnmxWk1hEbnZjCn+56HX/24BuJZbb7+wYTMWakMCt3xLCfLcUqhRDzASwC8IYdr0eFyTYamD7yuWhuA753TRvWnCn+p16gbbv+IsyZWYPfDo1j96sf4c8u/Qz++ivtqPW70VjjxYzL5iMUieGRWy8FABwdnsD3//EIhsYiLJZGRUkvtrr5uoWY11SL46PhxE4b5zUEIKXUHIWPn6kknhx/6eeE1+3C0FgEt+85lFLk68LmOrw/NJby2ukFuag6+DxuLGtvySgY17OmE3Nm1uT8JTJbHk7eaz3915rkHTsmpxS4xfTfBk9P4uaHfp1RlE6970Qkjg9PjjMPEzmEVsHlR269FE9tWIKpmJJSsE+rsO1nZwWx57bFGAxFMDwexbNvH8P3r23H3V/9o4xif+psKrdAYt29kXPf5RKo9Rc3U2NZewtOjkdZNLdMabVVjQFvoi+U/p0CyCiI/8pvTuChmy+B2yXg97hQ43Xhxzcuymjfss0KUo/j09OThmKsZ00n2lrqM2btUGkIKa399UMIUQfgVwDulVI+pfHv6wCsA4B58+Z1Hj161NLjocKkN4wP3XwJNj19JCMpPHbbYtz7XB/29w2m/H3fhqUAgBU7DuDYSHh6p4xn+zIer07TK5KlLRhj1pmGQpFEfKlaGwPYtLwdm5/tS2kM3/30dErDtGVlBx5+9UP8cMW/Q0t9Td6v8UT35YkdY5L/nmc8Wxa3jFn7KIrEsZGJRIV7VWtjAE9tWILhsWhB1er1doPRe+xQKIIjH5/SzNNqXOrFcx5x66hcy50m8vfRfdeW+hDs5qiY1WL0vCy2Pco3p6TL5/Fa991z22LNPGlSP7DSlEX/IFvsAoVfAxiJtXxibM9ti9HaWMsBL2sZ+nAtnREhhPAC2AvgMa1BCACQUu4CsAsAurq6OCfUodJHPuM6BZEEkDIIof5dLYKkPiZ5erzW/ZyMMetMuQonJY+un6OzXef3l2dOKTXyGjGdoktOiWfGrH1cLqG7pd1UTCl4DWquNdbporF4zqJ0Ti9aybi1XiGDN3YMXjj1uHIxI2aNnpd699MrApj++HxzSrp81tRr3dfp+adamJlnc32nhV4DGIm1fGJsMBQxXMuCrGXZQIQQQgD4KYB3pZR/a9XrkH2SCysNhSKa06Q8OsVn1Kl66r+NhqdYLI1MlU/hJOXMdp3p93XnuB7Ue41ccU/VJdc00kI6P/l22n0ed86idCxaSeQ8Rs9LvfvpFQFMf7wZAwH55LP0++r1I5l/yleu2C3mGsBIrBmNseHxKObM1J/9SvaxcoHMUgBrAHxRCPH2mdtXLHw9spFmsbM1nXALYM9ti7GsvSXxd7UIUlPQh54104Vpdr7yQcaWTyzqR8UwUuRPLZSkSIlHbr00JU63rupAwJe9A6T3Gi11fm4/RglWbEent8e52nHTKlr3mabarHmW2+YROY/R8zLf9ii9iGDAlz2nWI35p/Jk+06T/83oNUB6u5ZvMeXk6w71dbas7MDe3gEOeDmE5TUi8tHV1SUPHjxY6sMgg5ILp8UViR+eqQ2hDkrMCvrgcrlSpk/FYgo+OTU9LWoqrkAIgXNn1OQs6petSJsG2xZ9MWadJVucpBezvOOqCzF/Vi1cQmDwdARNdT7MbwoaWquv9Rp5xqgWW+KWMWsPE+Ih4/n01sgC2kXrLmyuw+nIFMLROOISqPG6MvJs8nF6PS54XALhqOFjdlSuZY0Ie5T50gxHxaweo+1MY8CLkfCUoftpFRH0e1xYm1R03O5ikWbnyQpWNv0Dre8UQOJvanFUr8eFmCJTCrCmt03F1DBRJV93DI9Hsbd3AHde3caiqNYrfY0IqmzqFKj04jTHRsLo3t2ruc7Q43GhtbEWAZ/HcMNjVjKiypdt6p66Hra5zo/vfKktY0eDeQYLF+m9RqFT7qkymR0P2dbIDoUi2dd6B3MfJ/MskXNo5Y98zlGtKepaOeKpDUsKqlljFrablSf9Oy20bSm2hokq+bpjzswaXDyvgwNeDsK9S6ho+a4zzHefXr1kNDweNecNUFVQ43T9FRckBiGAswNnI+GpEh8hUXZ6udOMtd7Ms0TOVsw5qlvYMqbk1R8jylehcWtmMdN8rzvIPhyIoKLlWrtcLFZWJjOocVrOO7YQaTEjBzPPEjlbMeeo1f00Ij2Fxi1jtjpwIIKKZnXBISYjMoMap+pOAskYT1TOzMjBzLNEzlbMOcrCkFQqhcYtY7Y6sEYEFS2fvaQLoSaj9PVlTEaUDzVOZ8/wo2d1J7of7WU8UUUwIwczzxI5WzHnqNX9NCI9hcYtY7Y6cCCCTGFlwSEmIzKLyyVwTtCPhoCP8UQVpdgczDxL5GzFnqMsDEmlUEzcMmYrHwciqCwwGZGZGE9EmXheEDkbz1EqR4xb0sMaEURERERERERkGw5EEBEREREREZFtOBBBRERERERERLbhQAQRERERERER2YYDEURERERERERkGyGlLPUxJAghhgAcBTALwMkSH47Z+J7sc1JKeY0dL5QUsyqnfibF4Huyhy1xqxGzpeDEz78Uyv1zKGWuzVe5f9Z6KvV9Ada8N6fELL+38lWK91dN/YN8VEKsVep7MBSzjhqIUAkhDkopu0p9HGbie6oOlfiZ8D2R2fj5T+PnYJ9K/awr9X0BfG/lqpLfG1D576+cVMJ3Ue3vgUsziIiIiIiIiMg2HIggIiIiIiIiIts4dSBiV6kPwAJ8T9WhEj8TvicyGz//afwc7FOpn3Wlvi+A761cVfJ7Ayr//ZWTSvguqvo9OLJGBBERERERERFVJqfOiCAiIiIiIiKiCsSBCCIiIiIiIiKyDQciiIiIiIiIiMg2HIggIiIiIiIiIttwIIKIiIiIiIiIbMOBCCIiIiIiIiKyDQciiIiIiIiIiMg2HIggIiIiIiIiIttwIIKIiIiIiIiIbMOBCCIiIiIiIiKyDQciiIiIiIiIiMg2HIggIiIiIiIiIttYNhAhhGgTQryddDsthPi/rHo9IiIiIiIiInI+IaW0/kWEcAP4GMBiKeVRy1+QiIiIiIiIiBzJrqUZVwH4gIMQRERERERERNXNroGIPwXwi1x3uuaaayQA3ngr9mYbxixvJt5swZjlzcSbbRi3vJl0sw1jljcTb7ZgzPJm4s0Qj9E7FkoI4QPwNQB/pfPv6wCsA4B58+ZZfThERWPMUrlhzFI5YtxSuWHMUrlhzFIp2TEj4ssA3pJSntD6RynlLilll5Syq7m52YbDISoOY5bKDWOWyhHjlsoNY5bKDWOWSsmOgYg/g4FlGURERERERERU+SwdiBBC1AK4GsBTVr4OEREREREREZUHS2tESCknADRZ+RpEREREREREVD4sL1ZpFkWRGB6PIhqLw+dxoynog8slSn1YRFkxbqncMGaJqJwwZxERWcuqPFsWAxGKItF/IoRvPnIQx0bCaG0M4MG1XWibXZ/xIbBBIqfIJ27V+zN2qZT0Ynb2DD/CUcYlEdnHSJuYbztLzjL/rufyfsxH911rwZFkyvfY7DouIrvFYgr6B0Po3t1rep61o1hl0YbHo4lGBgCOjYTxzUcOYng8mnI/tUFaseMAlm55GSt2HED/iRAUxfB2pkSmMRq3AGOXnEEvZt8ZOMW4JCLbGG0T82lniYgoP4oi8cmpcGIQAjA3z5bFQEQ0Fk+8edWxkTCisXjK39ggkZMYjVuAsUvOoBeztT534v8zLonIakbbxHzaWSIiys/weBSDoYhlebYsBiJ8HjdaGwMpf2ttDMDncaf8jQ0SOYnRuAUYu+QMejE7Gp5K/DfjkoisZrRNzKedJSKi/ERjcQyPRy3Ls2UxENEU9OHBtV2JD0Fdm9IU9KXcjw0SOYnRuAUYu+QMWjG7dVUHdr7yQeI+jEsisprRNjGfdpaIiPLj87ixt3cAW1Z2pOTZnjWdpuTZsihW6XIJtM2ux74NS7MWLVIbpPSiRVY3SCwySFqMxi1QutgtFmO/sqTHrNfjwthkDENjEQDWdvIZS0T5q9TzxmibmE87S0RUDpyU15uCPtx5dRseeLEfm5a3oynoQ0u9H+fNDFTPrhnAdGPTXO/PeR+7GyStis09azrR1lIPj6csJpyQhYzErXo/J3WmWK28eqXH7KygtDwurazITFSpjORgJ3Vo85FPm2i0nSUicrpseR2A7flczcX3ruiw5HUr7kpZbZDOb6xFc73f8i9Iq6BS9+5efHIqzMrylBe7Y1cPq5VTMqvj0uqKzESVKlcOLvfdmJzSJhIR2UUvr58cj5Qsn1uZiytuIMJuegWVBkMRdqKpLLFaOdnJ6orMRJUqVw7mYDERUXnRy+uTU0pF5nMORBRJr6CSOnWGqNywWjnZyeqKzESVKlcO5mAxEVF50cvrboGKzOcciChSU9CHnjWdKZVEt6zswN7eAXaiqSyxWjnZyeqKzESVKlcO5mAxEVF50cvrAV9l5vOyKVbpVC6XQFtLPfbctjixHOPhVz/EnVe3sRNNZYnVyslOVldkJqpUuXJwue7GRERUrfTyOoCKzOcciDCBx+NCa2MtAj4P5syswcXzOnhBRmWL1crJTlZXZCaqZNlyMAeLiYjKj15er8R8zoGIJFrbXAGFb5VSrttmUXlRFInRcBThaBxxKVHjdWNWMP+qtsXGK+OdVPnm0vRGNxZT8OnpSUzFFXjdLrTU+bkdMlW0fPJnPvdVzy31McdPhVMew7xNRGQNM/KrFTk6/TkbA16MhKdK0g5U/UBE8pcRVyR++Fwf9vcNJqa8+D0urP3Zm1n3ttfa8/WRWy9FJKZk3d+bqFiKIvHR8DhOnJ7Ed588XPCew0b2o891HMU8niqHGpNHhydQ63NjIhrHZ1uCGIvEDcVHLKbgNydCWP9ob+K+O1d34g9n13MwgipSPvmzkFyr95gLm+vw/tCYY/arJyKqFGb0i816jvRBh/S8v3N1J7a/9F7K9a9d/feq7tWl77F940/ewE1LFmDR3IbEtihHhyeybpWiKBKfnp7EeCSGTcvbE489OjxRkduskLMMj0dxdHgiMQgBnI210XDU8J7Dw+PRxBr9x9ddhk3L2/HAi/2G45XbxJFqNBzFidOT2PT0EXx91+vY9PQRjExM4YEX+w3Fx+BYBOsf7UVznR89azpx//UXYSgUwe8nGEtUmfLJn1r3feDFfnx6ehIfj0xgKBTJyPF6zz84FtH8ez5tBxERZTKjX5zPcyiKxFAoktIOpF/nrthxAP2DoYz+2PpHe7Gyc27Bx1mMqh6I0PqCN+49jPVXXJD471pfajXS5K1S1C/4hp7XsGrna9j8bB++86U2LJrbgFqfuyK3WSFnicbiurEWjsbzSGAKblqyAJuf7cPXd72Ozc/24aYlC6AoiuHjYLwTAISj8YyBsQ2PvZVo5FR68TEVV9Bc58d3vtSWiMdNTx/BoMYFFlElyCd/pt930dwG3LRkAW7oeU130EDv+WNxpei2g4iIMpnRLzb6HJoDDidCGA1nXud27+7V7I81BLwFH2cxqnogQu8LVr+M1sYAJqKpX0TyVil6AxnfXvY5TETjFbnNCjmLz+PWjbW4lIaTYFwCG/cezvGKrRsAACAASURBVIjluM51X/rIa6VuK0T504u79MrO6fGhxhQAbL3+oox4XP9oLy+EqCLls81m+n3XX3FBxrnyzUcO4uR4JJGjhRBY1t6S8fwet6votoOIiDIVs32y2h+KS4mHbr4Ei+Y2ZH0OvZkT4aj2da5Wf2w0PJX3cZqhqmtEqEGS/CWpX4a6RqbO78ZDN1+SWOv8mabaxBeoN5BxXkMAXreoyG1WyFmagj58pqkWW1d1pNSI6FnTiRqd+NZKLlKn4yll5kiE3pq1R269NKOeCuO9+tR4teOupd6f+Lsao41nBn3TY+rJ9ZfzQoiqRj7bbKbftyno0zxXJiJxrP7pGylrgAEk1gD3rO6E3ys087beOcyBZWeYf9dzeT/mo/uuteV1iGhaodsna/Wxt67qwI+e78fQWETzOfSuR+MSmrm8Oa0/ptaIUP/dzv67pQMRQogGAD8BsBCABHCrlPI1K18zH1pB0rOmE7OCPuzbsDRR0GPT00dSgkilN5BxdHgCf3T+DJzfUFtx26yQs7hcAvObgjgn6MVjty3GUCiC4fEo/u6f38NdX/684SSoF8taHU+9kdenNixhvBNmBf2acTdnRg323LYYg0kxeufVbWibXZ8RU8PjUV4IUdXId8vk5PsKITTPlQ9PjmfMKHqi+3L89VcUfHhyHN//xyOJTu0zty9FOFr5+9UTEdml0O2TtfrY333yMB5fd5nuc+j14Wu8roxcvmVlB/a8/hH23LYYbpdIFLC8d0UH7v5q5e2a8XcAnpdSrhJC+ADUWvx6eckVJEMh7UJO+zYsRXO9H01BH3pWd6I7qbr7/ddfBEVKhKNxDCPKizGynMslMBUHvvGTN1KSUN/xEJ65famhJJjPyK3eyOtUTMH5jY46xakE9PLq8HgUN2rEqHq/YyNhLJrbgPVXXIDzZtbg72+8GH++5y1eCFFV0Ns3Ptd9YzEFPWs60b37bD+kZ3Unvv+PR1Iec2wkjJgiE7MkVGqfJj13V+J+9UREdsonr6vS+0MNAS9Gw1PwZHkuvT78rKAfs4J+PNF9OT4ZDWN4PIptL/Tj0MAonjtyInE9CyDv4zSLZQMRQogZAP4YwM0AIKWMAnDcAt9sQZKrSIjLJTCnoQabr1uIWp8bU3EFfq8Lt+85lBII3MKQrKYXq+Fo3PDggN/jSsTyRDQOv85WifnMnqDqpJVXs+VTn8eNZe0tuGnJgsR692XtLXjstsXwnBmx54UQUSpFkXh/aAx/98/vYdPydjQFfWip92NGwIOhsUjKfVsbA3ALGF7yVEgHmoiIiqPVH1Jn7DfX1xiaKZfeZ5JSYtXO1AUJTlnuamWxyj8AMATgISHEISHET4QQQQtfz3RGCo00BHw4d2YNvv3LdzAejScGIQBWmib7FFMUB5ieCrb2Z2/ilp//Gl/f9Tpu+fmvsfZnb2rGrjryqr4ef60mI7LFaFPQh+9f255SdG9/3yC+8ZM34PO40Vzv5yAEURp1Cu/+vkF07+7Fqp2v4cafvIFoXGrmaBYVJiJyNq3+kLrbRbbrSXXw+PzG2ow+U7HXCFayciDCA+BiAP8gpVwEYBzAXel3EkKsE0IcFEIcHBoasvBw8mfkgit5FOoPz61ngbUq4MSYLXZwIJ9thpJj/sDGK7Fvw1LO+nE4J8Rsthh1uQTcLsH8SSmcELdOlm2ZnFaObghwENlqjFkqN4xZZ7GiP+TkHxCtrBFxDMAxKeUbZ/77SWgMREgpdwHYBQBdXV2O2iTeaKERdRRqKKRdnbSQESdFkRgej3J9pgM5MWYLLYqjyne5hdnTdhnv1nJCzOaK0UKX/DB2KpcT4rYYVsdmtnNGL0ez9oO1yj1mqfowZlM5oU9h9hLoYq8RrGTZjAgp5acABoQQbWf+dBWAPqtezyrZprqkM2vESd26ZcWOA1i65WWs2HEA/SdCUJSqzw+URT6xmq6Uo6WM9+qRLUYLiUHGDjmVHbFZyDlTTDtBRFTJnNKnsKJP7tTcb/WuGX8B4LEzO2b8FsAtFr9eSWltq+UW0+s48xl50tseMbm6KZGZco2WWjlCzHgnoLAYZOyQUxUam/nkWif/ykVEVG7yzdtW9Y2rKbdbOhAhpXwbQJeVr+E0LpdAU9CH/hOhjG1UjK6jz2e9PpFZ9KbyqiPEhcZzLox3UuUbgzNqPIwdcqRC8lohuZa7WxARmSOfvG1137hacruVxSqrlt6ImtHdM5xc3ZSqT7HxnAvjnXLRi0EhBGOHHKmQvGZ1riUiIn355G3ma3NwIMICxf7C6+TqplR9rJ6xwHinXPRi0C3A2CFHKiSvcXYYEVHp5JO3ma/NYXWNiKpUbLXTbGuDnFDNlapLMfFsJF6raS0cFUYvBl0uV87YYc4kO2jFWb55zexK6UREZFw+/VGj+Zp9kOw4I8ICZvzCq1Xd1CnVXKm6FBrP+cSrU6v5kjNki8FsscOcSXbQizMAeeU1zg4jIioto/1RI/mafZDcOCPCAlb9wssK8VQKhcYz45XMwhgkJzMrzjg7jIioPBjJ1+yD5MaBCItYUe2U65GoVAqJZ8YrmYkxSE5lZpxVS6V0IqJylytfsw+SG5dmlBHuLkDlhPFKpcYYJDswzoiIKB3bhtw4EFFGuH6UygnjlUqNMUh2YJwREVE6tg25cWlGGeH6USonjFcqNcYg2YFxRk43/67nSn0IFa+Qz/ij+6614EjIKdg25MaBiDLD9aNUThivVGqMQbID44yIiNKxbciOAxE2436yRNN4LlC+GDNUiRjXRERkRKW1FxyIsJG6n6y6lYu6Vqhtdr2hIKq04KPqoBW3AIo6F6j6ZMufAJgbyZFytdvF9guIiKh8FHMtV4ntBYtV2khvP9nh8WjOx6rBt2LHASzd8jJW7DiA/hMhKIq0+rCJCqYXtyfHIwWfC1Sd9PLnyfEIcyM5kpF2u5h+ARERlY9ir+Uqsb3gQISNitlPNp/gUxSJoVAEH49MYCgUYYecSkYvbienjJ0LjGVS6eXPySmlqAFexhdZRS//HT8VTsQb95knIioPxfYZih1IqMT2gkszbKTuJ5scREb3kzUafJU4bYfKl17cuoXIeS4wlimZXv50CxTUMDO+yGp6+e/YSBjf/uU709u41fkK7hcQEZE9zOgzFDuQUMx1pFNxRoSNitlPVg2+ZFrBV4nTdqh86cVtwOfOeS4wlimZXv4M+IzlxnSML7KaXv4bDU8l4s3jEtxnnojI4czoMxi9ltNTzHWkU3FGhI2K2U9WDb70kbj04MtntI3FL8lqenHbEPChIeDLei5oxXJznR/RWBwfj0wwZquMXv4EYCg3psuWK5kbqRDpcdMY8GbE5paVHdj2Qj+A6XgLR+PcZ56IyEG0+gBmLIswei2np5jrSKfiQITNCt1P1mjwGZ22w2nJZIdccZvtXEiP5UVzG/C9a9rw9V2vM2arlF7+LKRh1suVAZ+buZHyptemXthch30bliI8FccHg2PY9kI/Dg2MAjjbNnOfeSIiZ9DL5bNn+IteFmHGQEKltRd5L80QQriEEDOsOBjKTg2+8xtr0Vzv1wxco9N2OC2Z7GIkbrWkx/IdV12I7z55mDFLGQqJMb1cGVMkcyPlTa9NHQlPobnej9aGAM6dWYOhsQiAyphSS0RUafRyeUyRpiyLKLRPXKkMzYgQQuwBsB5AHEAvgJlCiL+VUm618uAof0ZH2yqx8ipVlvRYjkvJmCXT6OXK46fCjDPKW642tRKn1BIRVRq9XD4VU5jDLWB0aUa7lPK0EOIbAP4XgI2YHpDIOhAhhPgIQAjTAxgxKWVXEcdKBhmZtlOJlVep8iTH8lAowpglU2nlSuZGKoSRuKm0KbVERJUmWy5nDjef0aUZXiGEF8B/BPC0lHIKgNHNU6+UUn6BgxDOUomVV6myMWbJDowzKgTjhoio/DGX28vojIgeAB8BeAfAvwghPgPgtFUHRdbjNFEqN4xZsgPjjArBuCEiKn/M5fYyNBAhpdwOYHvSn44KIa408lAA+4UQEkCPlHJXAcdIFuEUIyo3jFmyA+OMCsG4ISIqf8zl9jG0NEMI8S0hxAwx7adCiLcAfNHAQ5dKKS8G8GUAfy6E+GON514nhDgohDg4NDSU39ETlQBjlsoNY5bKEeOWyg1jlsoNY5ZKyWiNiFullKcBLAPQDOAWAPflepCU8pMz/zsIYB+ASzXus0tK2SWl7GpubjZ84GScokgMhSL4eGQCQ6EIFMVoeQ/SwpgtPcZ0fhiz5mDc2asc45YxUt3KMWapulVCzDLvli+jNSLUhTFfAfCQlPIdIUTWxTJCiCAAl5QydOb/LwPwXws/VCqEokj0nwgl9sRVi660za7neicqS4xpKgXGHeXCGCEishfzbnkzOhDRK4TYD2ABgL8SQtQDUHI8ZjaAfWfGKzwA9kgpny/4SKkgw+PRxMkJTO+F+81HDmLfhqVc/0RliTFNpcC4o1wYI1SI+Xc9V+pDICpbzLvlzehAxH8G8AUAv5VSTgghmjC9PEOXlPK3AC4q8vioSNFYPGUvXGD6JI3G4gCmRxKHx6OsDEtlQVEkorE47r/+IoyGp7DzlQ9waGA0JaaJrJArl6qYU6uD1vdsNEaIiMgcduddtvHmMjoQIQG0A1iO6eUVQQA1Vh0UmcfncaO1MZBykrY2BuDzuDWnM/Ws6URbSz08HqPlQ4jsoRWv919/Ee77p99gaCwCn8dd6kOkCpYtlwLT8TkajuL46CS6H+3lFNEylqujqTcVePYMf9YYISIic+Vqm81U6DIQDl7oMzoQsQPTSzG+iOmBiBCAvQAusei4yCRNQR8eufVSHB2eQK3PjYloHJ9pqkVT0Kc5nal7dy/23LYYrY21PEnIdtmS9cnxSEa8fvuX72Db9RdhZsCLpqCvlIdOFSY9FhsDXjy4tiujA9IU9CU6J5+emsSmp49wimgZM9LRHB6P4oEX+7FpeTsaAl6MhqfwwIv9+OGKf6cbI0REZL6moM+2vFvIMhC9NuXC5jqMhKeqfnDC6EDEYinlxUKIQwAgpRwRQrBlLRORmJLoHKsnAKA/nWkwFEHA52HHmWyV6wJgcko7Xs+bWcOBMzJVto7Dvg1LMzoOQ6HpQbL7r7+IU/PLnJGOpqIouGnJAmzcezgRH1tWdkAqEm2z6zVjhIiIzOdyCdvybiHLQLTalAde7Me3/uRz6N7N2ZNG599PCSHcmF6iASFEM3IXqyQH0OtUDY9HE9OZkrU2BhK/AhLZKVusAoBbCM14dbtE1SVuspZeLI6Ep9Bc78f5jbVorvcn4k7tnIyGpzRjlFPzy4eRjmZcIjEIof77xr2HEZfTnWKtGCEiImvYlXf1rpuytfFabcrKzrmJQQggs79bTYwORGwHsA9AixDiXgD/CuD/seyoyDTZOlVNQR961nQmTir1V529vQPsOJPtcl0ABHxubF3VkRKvW1d1IOBjrJK58v3VQ+2c7HzlA2xZmRqjnJpfXox0NKWUmvEhJfeuJyKqVOoykHzaeK02pSno4+zJMwwtzZBSPiaE6AVwFQAB4D9KKd+19MjIFNmKuLhcAm0t9dhz22IMhiIYHo/i4Vc/xF1f/jwkJD4emdAt1MWiK2SG5FgSZ2Y86BUcagj4MHtGDTZftzBR72T2jBo0BMy5yGNcEzAdB7liMV3yGtVtL/Rj83ULsWBWELV+N2YFp3+dYXw5R7bvQmu98SO3XprSJno9LhalJCJyADvb1uRlIIqiIC6nB6aHx6O6r6vVprTUs7CxymiNCAB4H8Bp9TFCiHlSyt9ZclRkmlxFXDweF1obaxHweTBnZg0umd+BE6cjWLvjVc11S4VWjCVKlx5Ly9pbsHN1J9an7TigxqrLJTC/KYj6Gq/pDQ7jmoCzcfDAi/3YsrIjpQZAtl89cq1RZXw5R67vIv27DPjcGW3iI7deyqKUREQlVoq21eUSaAr6DL+uVv8gW/HraiOMTCUUQvwFgLsBnAAQx/SsCCml7DDzYLq6uuTBgwfNfEpCfqOFQ6EIVuw4kDFKpxbqyvXvDmFbz54xWzitWFrW3oJ7vrYQUkpbfzV2SFzbEreMWX3JcbBobgPWX3EBmoI+nNcQwLkzagqORYfElxXKLtfm+13o3f+Z25ciroAzXMqP42J2/l3P2XA0leOj+6615XXs+F7yeC/sH2goVdtqxutWwSxJQ2/G6IyIbwFok1IOF348VCpqEZdkeidArrXRev8enopDUWSlnURkIa1Y2t83iLu/KjFn5nTR1OOnwnkl6EITeyGVkKnyJMfBoYFRdO/uBQAc2Hhl3ssrku8b16kpwPiyTiFtnNZjdNu8aBznN9ba+ZaIiCiJkb6b2Rf8iiIRnooV3aZrXZtVI6MDEQMATll5IGSfbFOZstWUAPRrTnwwOIbxSIxTjckwvVjyelwFTbWLxRR8ciqcqHeyt3cAd17dZigmc8U9VYdscZDPFND0+z508yWazyuE4ACuBQpp4/TyTlOdT/f+RERknVyDCLn6bmYv3VCf79NTk+wzmsRoS/pbAK8IIf5KCPGX6s3KAyPrZNsmsTHgxc7VqTtp7FzdicaAF4B2xdgtKzuw/aX3q3brGSqMXvVhj0tk3cZTi6JI9A+GcONP3sCqna9h87N9uGnJAjzwYr+hmCykEjJVnmxxkGt72WTp993+0vsZO75sWdmBe545gv4TISgKd1swU7bvKt+843GJjPtvXdWBsckYvzciIouoF/0rdhzA0i0vY8WOAxntZa6+Wz7tthHq821/6X3ukGUSozMifnfm5jtzozKWbSrTSBjY/tJ72LS8HQ0BL0bDU9j+0nu4d0VHYm/ettn1eHzdZTg2EsZoeArbXujHoYHRxHMTGaFX4O/4qXDeU96Gx6MZezJv3HsYm5a3G4rJXMUGqTpki4N8lu+k3/fQwCh+9Hw/Hl93GY6fmsTweDSRN/uOhyqhVoSjZPuu8s074Wgcs2f4E7v1jIan8KPn+zE0FuH3RkRkEb1BhOS8m6vvZvayW/X5jo2Ese2F/sS1UmtjAHNmBthnLIDR7Tt/YPWBkH2yTWWKxuLY3zeI/X2DKY+5+6tnT1qXS8DncePbv3yH05KoKFpr5ApZJqHX2DQFfYZjkuv1CNCPg3ziUuu+Q2MRxKXEqp2vpdyXtSLMl+u7yjfvhKNx3PLzX2e8Dr83IiJrGB1EyNZ3M3vZbfLzqXWk1CKVHIQoTNalGUKI/37mf/+nEOKZ9Js9h0hmyzaVST3Jki1rb4EQAh+PTGAoFIGiSM3n6FlzdgkHUaEKWSahFbfqXs1aj1MUiaFQJBHTsZiS8t+cck3p8olLvfvWeFPjdNHcBjx08yWIS8m4M5He5+92IeMcV3NBNBbHntsWY1l7S8pj9NpFDrwTEVknW95N78Ol53P17+o2mWYtoeAyXvNl3b5TCNEppewVQvwHrX+XUv7KzIMpt21jypleAZj0wi7L2lvwF1d9Dv/l0d6MQi+KIgsuDmgxx23PRflJj8/GgBcj4SndZRNaBYl61nSiraUenrSicloxfsdVn8N6jRi3OY65PZfDFbprhtfjgsclMBVTMDQWxfpHe9Fc58f3rmnDd588XOq4K4Zjc2365z82GcPan72Z8ll/dlYQ7w2NJZZ1qXljVtAHl8ul2y6W6XdF0xwXs9y+Mz/cvtM6Tuof6OXdC5vr8P7QWF5/z9Z/1Httvba+CrbdNIuhDyXrQITdnHQCVDNFkTg5HsFEJI6YInHzQ29q7pULoCT79xrguI4GFc7oRYDRxiF9/+eeNZ3Y/GyfE+K46joa1UBr4OuuL38eLiGw+qdvOCHuilEWuVZrz/dl7S34m2vb8Y2fGPsO2PmsGI6LWQ5E5IcDEdZxWv9AK+8Oj0c1rz2e6L4cN/S8VnSbyoFn0xj6sLLWiBBC/H8AdEcqpJQdeR4UlYlYXGL1T9/A/ddflHWNlplFYIi0GClYBBiv8ZC+7rAh4NUpUhfDUAi84KC8JXeehEjdjWF/3yD6jofw81suYf60idZa45WdczEUihj+DtLzS/KSDg5MEDkbB3vKU3LeVdvViWhMM2/H4oopbarRPieZI9f2ncsBfDXLjSqMOhL4yWg4sSuG3hotrpslO5hd9Tg9bvVi/N1PQ5rbRRFlk77lmJpLkx0bCcMtBPOnTbTaKvWXtUK+AyPbyhERkTmSc+5vPg1p5m2P22VKm2p2n5OyyzoQIaU8mu1m10GSfdSRQLWDtvOVD3T3ymXRFrKD2QNe6XG7t3cAO1d3psTxlpUd2PnKB0XvOU3VJ/3XFL2L3U9PT2LrKu5Dbgettqql3o+9vQMZ7VvPms6c34HZe9MTEZG+5Jyrd13SUuc35ZqEP7Lay9D2nUKIywD8DwCfB+AD4AYwLqWcYeGxUQmoI4Hqib5x72Fse6Efm69biAWzgqj1uzEr6E9MQc22fy+RGdSLiPT1eoVesGntO90Y8GLfhqUIR2N499MQtr3Qj0MDowA4Ek75Sf81JTmXphdE9HpceGrDEkzFFOZPC+md83de3YYHXpzeC74p6ENLvR/nGdgLnr+YERHZJznnHhoYxbYXpvP258+tR8DnSbSdZlyTmN3npOwMDUQA+DGAPwXwSwBdANYC+KyRBwoh3AAOAvhYSrm8kIMk+6gjgcknelPQh/MaAjh3Rk3GCW10XT5RocxqXHK9RnO9H0MhaBau5Eg4GZW+b/mhgVE8/OqHeKL7ckgpOeBQIlptVdvsety7oiNRy8MtgJHwVM7vx+y96YmISJuiSIgzSxmT29XNz/YVXCssGzv6nHRWrhoRCVLK/wPALaWMSykfAnClwYd+C8C7hRwc2S95Cqt6ok/FFUxO8ZceKh21cTm/sRbN9f6iGoRs67u53IiKpRVDtyxdgMmpOObMDBQdv2Qel0ugKejD6ckYbuh5DYv/2/82VO+BeYKIyHpqf+2eZ47oLhO3gpl9TsrO6IyICSGED8DbQogfATgOIJjrQUKIVgDXArgXwF8WfJRkG5dLYM5MP35+y6VwCSCuSDz4L7/Fq78dZsVYKgmzt83LVRGZI+FUrIaAFz+/5VK4BfDp6Un86Pl+DI1FmEMdaHg8mlie0RDwYjQ8hQde7Me9Kzp0vyv+YkZEZL3k/tpQKJpzlnahuD1z6RgdiFiD6dkTtwO4E8BcACsNPO6/A/gegPqCjo5spygSH49MovvR3sTaqC0rO/D+4BiisThPVrKVFfs5663vVhQlZTu+OQbWihMl04rXLSund7lOryHAXFo6KdurAthw5Wdx+55DKd+ZoihZn4PLEomIzJecnwGguc6PYyNhHBoYRffuXgDAgY1XmjoIYXY/k4wzNBAhpTwqhAgAmCOl/IGRxwghlgMYlFL2CiGuyHK/dQDWAcC8efOMPDVZaHg8mhiEAKY7zxv3Hsa26y9CjdeFd4+fThmkUIuuuVyuqulIM2btU8x+znoXej6PG8vaW7Cyc27iF9C3PhrGyfEounf3VmRDxJi1hxqvzXX+xC/sE9E4vndNG7775GH4PG4oisRIOILjoxGsf7Qy480sZsatmg8URck41x+44aJEZ1dt857ovtyMt0BVhrmWyo2TYlZrUGDrqg786Pl+AMD6Ky5AU9AHIQQURWa0l0YG+NPvIyEL7mdS8QzViBBCfBXA2wCeP/PfXxBCPJPjYUsBfE0I8RGA/xfAF4UQj6bfSUq5S0rZJaXsam5uzuvgyXxavxY31/kxtzGAUCSOwVAEzXXTJ+axkTC6d/fi7WOnqmofdcasfRRFwabl7Xh83WXoWdOJRXMbDFWn16sD8fvxCBRFwR1XfQ6bn+3D13e9js3P9mH15QsSFybA2Ybo5HjEjrdpOcasPaKxOJb8QRPuv+EiNAV9GA1P4RdvHkV9jRe/+OZiNAa86D8RwuGB04lBCIDbP+oxK26T88Hbx05lnOt3PvEOvr3sc4n7HxsJwy2AoVAEH49MYCgUqYq2jYrHXEvlxkkxq/Xj03efPIyNX/5DfOdLbdj8bB9W7XwNN/S8lnLNoSgSvx+P4N3jp7FixwHcvucQjnx8Cr/7/QQGQ5Mp90vvG05EuAtSKRktVnkPgEsBjAKAlPJtAPOzPUBK+VdSylYp5XxM77jxv6WUqws+UrKcokjEFZmyf+6iuQ343jVt+Pqu13HF1lew6ekj+M6X2rBobgOA6ZO1IeBlR5pMpygSJ8ejKQMG3/lSG5a1t+SsTq83k+KdgVN4+9ipxEXgorkN2LS8HYqUmg3R5FT26dlEyQI+N1Zf/hms/dmbWLXzNWx+tg83LVmA7S+9BymB309Mx2Wtz82Oj42S84HaXiU7NhLGuTNrEv+9rL0FJ8ejmgVtiYjIGnpLZ8+bWZPYAlv9m3rNoQ4uvDNwCt2P9qK5zo/vfKkNm54+giu2vYL/tOPVRP7W6ht+eHI85boHmC6Gqc66IGsZHYiISSlPWXokVHLD41H88Lm+lMq0d1x1Ib77ZOrJv3HvYay/4gIA0yfraHgq8W/sSJNZhpOmTwNnY+/717bnrJSs15jV+tyJC5FFcxsSI+xK2gAcMB3bbs6SpzzEFIkNj72VEbMrO+diZGIK49EYjo2EMRqe0ow3bv9ojeR8oPfZu89M321tDOBvrm3XnCHFgXYiIuuoWyMnU/Oz3uC9OrigDvCvv+IC3UELrb7h9pfeR8/qzpQdObas7MA9zxzhALQNjA5EHBFC3AjALYS4UAjxPwC8avRFpJSvSCmXF3SEZJtoLI79fYPY9kJ/Yjr8gllBzZO/IeBFa2MAf3/jxdj5ygcA2JEmc+kNJrhdIuc6er3GbDQ8lbgQSW6sPj09ia2rUreG2rqqAwEf45mMm4opmjHbFPSh1ufGRycn0NoYwM5XPsjYiqxnTSe3f7RIcj7Q+uy3ruqA2yXwz3/5x9h83UK4BDhjhYjITsYAaQAAIABJREFUZnpbIwd82n06n8ed6CuqfTu9WW9qTYj05xkai2BOQw2e6L4cT66/HJuWt2PbC/3Y3zfIAWgbGN014y8A/A2ACIBfAHgBwGarDopKQz1BkyvTvvyd/4DWxkDKSd3aGEDLDD8eu20x9rz+EQ4NjHIfdTKdGo/psWdksEttzPQKHm1Z2QG/x5V47h8934+7v9aOzdctRK3PjYloHLNn1KAhwHgm4/Ri9pygD+GpOLa/9D62rOyYLgD8Qj82X7cQ82fVwuNyYY6JW5FRqqagDz1rOtG9uxeHBkbx8Ksf4pFbL8Wp8BRGJ6YQ8LnxrV+8jb+59vM4d2YN/N7Ccw8RERVGb2tkABl9OvWaY3g8mjLAPxGN6+Zvrb7hg2u70BDw4Xg0jFU7X0s5Hg5AW8/orhkTmB6I+BtrD4dKSesErfG4sHVVR2J5RmtjAP/wjYsR9HlwTq0Pt/3xZ7F2yQJuP0em02swjAx2pTdmXo8LY5MxDI1FcGwkjIdf/RD/91f/KNFYHRoYxQ+e6cMdV12IOQ0BBLyMZ8qfVsz+/Y0X4/E3j+Ibl83H0FgkMeNM3VEj6PNgVp2fsWYhl0ugraUee25bjMFQBOcEfRgei0KREtG4gh8804ehsUhib3pAv9NLRETW0dsaWWuAwuUSKe3uthf68ddf+Tx2ru7M2JVKvb/e8xTz4xcVLutARK6dMaSUXzP3cKiUtE7QxoAX4Skl5ZfioP9sx5lb25BVsjUYRh+fHJ+zgjIjtpMvNobGIjh3Zg1aGwK8KKSCpMesEAJuAdz2x59Nibfu3b2JzhEHIezh8bjQ2liLgM8DRVEQ9rsztus9N2lWSjG5h4iIzKV3zaF37aKXv/Wep5gfv6hwuWZEXA5gANPLMd4AwFa4wmmdoPObgqiv8bJDRrYzc7BL67l4sUFmyxazjLfSSv5umutrsn4XHGgnIioPWvk63/xd7I9fVJhcAxHnArgawJ8BuBHAcwB+IaX8N6sPjJyDHTKqVIxtshPjzTn4XRARUTK2C/bLumuGlDIupXxeSnkTgMsA/B8Arwgh/sKWoyMiIiIiIiKiipKzWKUQwg/gWkzPipgPYDuAp6w9LCIiIiIiIiKqRLmKVT4MYCGAfwLwAynlEVuOioiIiIiIiIgqUq4ZEWsAjAP4HIA7hEgU7BAApJRyhoXHRkREREREREQVJutAhJQyaw0JIiIiIiIiIqJ8cKCBiIiIiIiIiGzDgQgiIiIiIiIisk3OXTOIzKYoEsPjUURjcfg8bjQFfXC5RO4HEpmIcUjlhjFrHD8rIiIC2B44GQciyFaKItF/IoRvPnIQx0bCaG0M4MG1XWibXc+kQLZhHFK5Ycwax8+KiIgAtgdOx6UZZBpFkRgKRfDxyASGQhEoisy4z/B4NJEMAODYSBjffOQghsejdh8uVbBcscg4JCfTil/GrHHZPisj7RQREVnPjnzMttPZOCOCiqJ2kBVFwcnxKLp392YdcYzG4olkoDo2EkY0Frf70KlCGRn9LjQOOb2PrKYVvz2rOzGrzofmOn9K3DJ3atM7vxVFyfuXMZ7zRES55Zsr7ZqpwOsOZ+OMCCqYmkRW7DiAt4+dSgxCAPojjj6PG62NgZS/tTYG4PO4bTtuqmxGRr8LicPkeF+65WWs2HEA/SdC/EWVTKUVv92P9qLveAjfu6YNi+Y2JO7L3KlN7/yOS+T1yxjPeSKi3ArJlXbNVOB1h7NxIIIKNhqO4tNTk7j/+ovwuZY6NNf5U/5da8SxKejDg2u7EklBHQFtCvpsO26qbNlGv9VpgNFYHHtuW4xl7S0AjMVhcrz3rOlEc52f0/uoaJlTUxXN+K31ufHdJw/jjqsuBJAZs9W+5CD5/UtIPHLrpRntjJTS0C9j6nMdG53Ap6cmE20bp/QSEWUqZFBBURRsWt6Ox9ddhp41nVg0tyEjH5vRrvG6w9m4NIMKoigSx0cnsenpI4kpVVtXdeBHz/fj0MAoAO0RR5dLoG12PfZtWMqprmQJdfQ7+YKjtTEAr8eVOeV9TSc2X7cQLpcraxxqxfuWlR3Y9kI/p/dRwTSXYazpxLL2FuzvG0zcr7UxgNHwFI6NhHFBSx0ObLwyJXdWezEuvff/zO1LEY6ebWeGx6OauSG5ndJ6LvVcPzQwyim9RERp8l3+oCgSJ8ej2PxsX0qeffjVDxP52Kx2jdcdzsYZEVSQ4fEouh9NXYqR/mtdz5rOlBFHdWTz+Knpx8yZGUBzvZ/JgEylN/rtcYnMKe+7e+FyuXLGoVa8b9w7He+c3keF0lyGsbsX37+2PSV+t6zswM5XPkBrYwABrxvnN9amxGzy8yya24BNy9sxHonh09OTVTEzQu/XuLiClM+qMeBFz5rOrL+MaT3Xxr2Hsf6KCxKP4TlPRHRWvssfhpNqygFn8+z3r21P5GMzl264XALN9f6MtpNKz7IZEUKIGgD/AsB/5nWelFLebdXrkb30Rj//oDmIfRuWYDAUwaykEcdq/8WO7KM3+n38VLjggkXZ4p3T+6hQenHldgk8tWEJJiJxfHhyHNte6MfQWER3Oqn6PIvmNuA7X2rDxr2HqyrPGvk1TlEk3h8aw9/983vYtHy6s9tS78d5MwOGCio3BLyc0ktEpEH9ASi9j6+XK/XyrDRwH85IqyxWLs2IAPiilHJMCOEF8K9CiH+SUr5u4WuSTfSmvw/8fgKrf/omWhsD2LdhaeLf9EY2921YiuZ6f8bzExVDHf1OphezRn7dFEJoL/dwuyr6Ao+slS0mm+v9UIISQb8HP75xUdbppOrzrL/igsQgBFA9edbIuZ3cBqnLXtR2Kvmz0Xsu9b6c0ktElCrf5Q96efa3Q+Oo9XnQXO8vqs9G5cOypRly2tiZ//SeuVX+HNEqoTX9feuqDty//z3NkVCObFKpFVOwyC2ALSs7MqbLu3k9QkXIFZNGp5Oqz9MU9FVlnjVybhttg/Sei0sJiYj05bP8oSnoQ8/qzow+1faX3k/kZBaZrA6WFqsUQrgB9AL4LIC/l1K+YeXrkX3SRz+9Hhc8LqH7y53X49ItIEhkh2IKFrlcLjz86ofYtLwdDQEvRsNTePjVD3HP1xZCUWSiYGA+e2gTFVtEKznmZs/wY3LKq5lnhRD4eGSiYuNS73MEkNglR29Wk3of9XNhYTMiZ5t/13OlPgQqksslcG6DH5uvW4hanxuj4anEEkQhRKJfxVxc+SwdiJBSxgF8QQjRAGCfEGKhlPJI8n2EEOsArAOAefPmWXk4ZDKt6e8Inv2/yZ1kRQI9qy9G96NvpeyyMTYZw6ygLKvEwpgtX5oxm4OiSEhI/PVX2vHhyXHc90+/wdBYBFtWduCeZ47gzqvbcGFzHd4fGnNsDRTGrHMVEpOAdt2dX3xzMfbcthiDoQiGx6PY2zuAO676HO555gj29w06Li5zySdu0z/H9M9nWXsLdq7uxPaX3sPKzrloCvpwTtCHv/vn9/Hqb4dTPpdCvxMi5loqN6WIWUWRODURQ43XhW//8p1Ejv7bGy7CUCiCWFzBeTMD8HhczMUVTkhpz2oJIcTdAMallNv07tPV1SUPHjxoy/GQebR+CQaQ0Une8Y2LEZlSoEiJ0fAUdr7yAYbGIlasX7ath82YrWxaF3v/8I2LMRaJJbaqbW0M4Inuy3FDz2uJX1sXzW3AHVddiAtaggh4PUZH8W2JW8ZsZRgKRbBix4GUmPveNW347pNnC1X+/JZLMDYZQySmWJVzHZtr0z8fAOj+9/PxtS+0JnbASd6aM/1z4QyniuW4mOUv/NXro/uuNXrXsu4fpOdTtwv42o8PoLnOj/VXXIDzZtZAAtjw2NkfK3vWdOLz585g3i1fhr44K3fNaAYwJaUcFUIEAPwJgC1WvR6Vht5uGLNn+DOKU2547C1sWt6O7t29Kc9R6euXqXxpFVn9L2fi+NDAaOJvU3El5YKwGncuIHul1zxYf8UFiUEIAGiu82MoFEkZmFAvuqsh52rVhLh4fpPmNrxqu6R+LtzliYjIHFr5tGd1J5rr/Dg0MIru3b3oWdOJzc/2ZWxlXemFlsnCYpUA5gB4WQhxGMCvAbwopXzWwtejEtDbDSMc1S4Mll5khhVwycmybeWnUnfPUNeb6+1cUMje10R60vdtbwh4sw5MqBfdd1x1YVXkXK197fWKeapbc6qfi5n71xMRVTOtfNr9aC/uuOrCxH3S2y/1ftUwaF7trNw147CUcpGUskNKuVBK+V+tei0qHb0LtbhERiewtTGAc4I+VsClsqF1MdPaGMBENJ74/w+u7UJLnT9R3ZkNKtkhvaL4RDSedWACmI7DBbOCVZFztSqut9T7dc/n5LaIuzwREZlDL58umBXUbb8A/lBZLSwtVkmVT2+fX69LoGd1Z8pa3J41nZhR48ET3ZdDSsl1t1RSRtaAqxczWkuPDmy8MuVxydWdufc1WS095gI+d0qsqh279Dis9burJufOnuHH4+suQ1wCNV4Xzglkns89qzsxp6EGDYGz5z/3ryciModePvV7XHhqwxJMxRTU+FzoWdOJ7t29KX2tahg0r3YciKCiaF2o7VzdibufOYKhUBSbr1uIBbOCqPW7MSvIPdjJGYyuAc+6fVQw9TnVSvuKIjUHL9igktnSd3doCPgSsVrjc2Hn6k6sTxoM3rm6E+cEKj8O9c7vWUG/oe3g9AYgeQ4TEeVHK59uWdmBu8/sOqb2uxoDfm7VWYU4EEFFSb9QA4DR8BRWds7Fzlc+wC0//zVaGwPYt2EpEwo5ht4acK3CSLm28tOaWcG9r6kYhe7YkByrQ6EItr/0HjYtb0dDwIvR8BS2v/Qe7l3RUfHFv3Kd33rvP/lznz3Dn/i1jucwEVFhXC6BC5vr8Pi6yxCJKYgrEg/+y2+xv28QfcdDibzMbZOrEwciqGgul0BT0JfxC5Raof3QwCjX1pKjmLUGPNvMCjaoVAizdmyIxuLY3zeI/X2DKX+/+6uVn4sLOb+5UwYRkfkUReL9obGM64P3B8d4fUCW7ppBVUTrF6iNew9j/RUXmLK2VlEkhkIRfDwygaFQBIoizThsqlIBnxsP3XwJHl93GXrWdGLR3IaC4pTV9clsZsWUXqHVbDFernk2/bgDvvzfO89lIiLzDY9H8cCL/di0vB2Pr7sMm5a34+FXPzTt+oDKG2dEkCn0foFS14YVs7aWv1SRmRRF4sTpCDY9fSQRT1tXdWD2jJq845TV9clsZsVUvnUOyjXP6h33I7deirU/e9NwjQeey0RE5lMUBTctWZDY1lydEdFQ62XtHeKMCDKH3q9v5zUEMjqy+f7qxl+qyExa8fTdJw+jrsaT9wWXVtwva2+BEKLsflUmZyhkJoOW5Po9BzZeiX0blqbk4vQ8PBouzzyr1z7U1Xgy3jsA3bbHrM+diKhaGOnPxyUSgxDA2RnTDQGv4we6yXociCBTaO3Z/uDaLpw7oyZjEKL/RAgrdhzA0i0vY8WOA+g/Ecp6scZfqshMevE0FVPyfq70uF/W3oI7rvocbuh5zXB8EyXTy6WF/GqkFv86v7E2UQwM0M7Dx0cn0VyXWtekHPJstvM5+b0DyNr2mPm5ExFVOqP9eSmlZo4GwEEI4tIMMkfWbQ6T5LNbgYp7upOZzIyn9LgXQuCGntfyim+iZEZzaTG08nD3o73YfN1C3PLzXyfuVw551uj5nKvtseNzJyKqFEb78+zDUzacEUGm0fv1LZner1fhaEx3Whd/qSIzWRlPMUXh7B0qmpFcWgy9PLxgVrDs8qzR8znbzDp1evHxU9P/PmdmwJLPnYioEiiKRHgqZqi/wz48ZcMZEWQrvZHRSEzBD587jDuvbstYM8ZfqshMxcaTokgMj0cRjcXh9bgwNhlLFMV76OZLOPJPjqYoEnFF6sSpC8/cvhThaPnk2Wznc/K5KoTQfM9ej6ssi3QSEZWCuiTj01OTujl1KBRJycfsw5MezoggW2mNjG5Z2YGtL/wGNy1ZgAde7Ncsjmb1L4RUXQqNp/Q1kf9px6s4cfrs2vrtL72Pras6OPJPjjU8HsUPn+vDlpUdGXn4nmeO4MTpSNnNCNA6n9PP1XueOYKdqzszzk2PS5RlkU4iolJQl2Rsf+n9jHbkwbVdGJuMZdSNAMA+PGnijAiylfrr1RPdl+OT0TCGx6PY9kI/Dg2Mou94CJuWt3MaOzmW3o4bm5a3o3t3Lw4NjOJHz/fj8XWXAQBH/slxorE49vcNYigUxUM3X4JT4amMPFwJNU3Sz9X9fYMAgCe6L4eUMnFuHj8V5nIqIiKD1GVux0bC2PZCPzYtb0dDwIvWxgACPje+9uMDrJNFhnEggmzncglIKbFq52spfz82EkZT0Mdp7ORYeuvMGwLexH8PjUXg87jZ6JIjqcvjDg2M4vfjUXx91+sp/14pF+Fa5+r+vkHc/VWJ8xtrE39jITUiIuOSc+ahgVF07+5Fa2MA+zZML+vjwC7lg0szqCT09mxvqfdzGjs5ll7cTkTjif/PpRjkZMnL40bDU5rxXAkX4Xrnavp7YyE1IiLjsuVMo3mXSMUZEWSq5OJg2aalq4ksuUBYz5pOnDczwGns5Fhacfvg2i7MnuHHgY1X6hbK4xINcgI1Js+p9eKJ7svhFkDPmk507+5NiedKuAjXO1fT35vWFrxuMb20g+csEdFZ6W1I8jI3l0sYzrtEKg5EkGnU4mBGqo9zJwwqR1njNnj2fvmcC0R20I3JlsrMw/m0MWoHmucsEZE2/X7N2R8Q2benfHFpBplGq5Bfturj3AmDypGRuM33XCCyml5MjoSnKjYP59PG8JwlItJnNEeyb0/54IwIMo1eIb9oLM5p6lRRcsVztnOByA7pMaooCmMyCT8fIiLjcvVr2M+nQnAggkyjV3084HNzyitVDCPLLliJn0pJK0Z71nRiWXtLYhtLoHpjkp8PEVF+svVruByVCmXZ0gwhxFwhxMtCiHeFEP8mhPiWVa9FzqBXSTemSE55pYphZHoiK/FTKWnFaPfuXnz/2nbGJPj5EBHlK1u/hkvbqFBWzoiIAfi2lPItIUQ9gF4hxItSyj4LX5NKSK9IzfFTYU55pYphZNkFCzZRKenFqNslGJPg50NElK9s/RouR6VCWTYQIaU8DuD4mf8fEkK8C+B8AByIqGBqkZpknKZOlcRoPGudC0R2yBajjEl+PkREhdDr17CfT4WyZdcMIcR8AIsAvGHH65GzcJo6VRLGMzkdYzQ7fj5EROZhTqVCCSmltS8gRB2AXwG4V0r5lMa/rwOwDgDmzZvXefToUUuPh0rD5mq6ls6lZcySRfFs3QnBmK06NuXcss21rPBetRwXs/Pves7KQyIH++i+a43e1fH9A+ZUSmPoy7d0IEII4QXwLIAXpJR/m+v+XV1d8uDBg5YdD1UN2zIfY5ZMZEvcMmbJRMy1VG4cF7MciKheThiISMY8SyYyFLNW7pohAPwUwLtGBiGIiIiIiIiIqPJZWSNiKYA1AL4ohHj7zO0rFr4eERERERERETmclbtm/CtsnAJHRERERERERM5ny64ZREREREREREQAByKIiIiIiIiIyEaWb9+ZDyHEEICjAGYBOFniwzEb35N9Tkopr7HjhZJiVuXUz6QYfE/2sCVuNWK2FJz4+ZdCuX8Opcy1+Sr3z1pPpb4vwJr35pSY5fdWvkrx/qqpf5CPSoi1Sn0PhmLWUQMRKiHEQSllV6mPw0x8T9WhEj8TvicyGz//afwc7FOpn3Wlvi+A761cVfJ7Ayr//ZWTSvguqv09cGkGEREREREREdmGAxFEREREREREZBunDkTsKvUBWIDvqTpU4mfC90Rm4+c/jZ+DfSr1s67U9wXwvZWrSn5vQOW/v3JSCd9FVb8HR9aIICIiIiIiIqLK5NQZEURERERERERUgTgQQURERERERES24UAEEREREREREdmGAxFEREREREREZBsORBARERERERGRbTgQQURERERERES24UAEEREREREREdmGAxFEREREREREZBsORBARERERERGRbTgQQURERERERES24UAEEREREREREdmGAxFEREREREREZBsORBARERERERGRbTgQQURERERERES24UAEEREREREREdnGUQMR11xzjQTAG2/F3mzDmOXNxJstGLO8mXizDeOWN5NutmHM8mbizRaMWd5MvBli6UCEEOJOIcS/CSGOCCF+IYSoyXb/kydPWnk4RKZjzFK5YcxSOWLcUrlhzFK5YcyS3SwbiBBCnA/gDgBdUsqFANwA/tSq1yMiIiIiIiIi57N6aYYHQEAI4QFQC+ATi1+PiIiIiIiIiBzMsoEIKeXHALYB+B2A4wBOSSn3W/V6REREREREROR8Vi7NaARwHYAFAM4DEBRCrNa43zohxEEhxMGhoSGrDofINIxZKjeMWSpHjFsqN4xZKjeMWSolK5dm/AmAD6WUQ1LKKQBPAViSficp5S4pZZeUsqu5udnCwyEyB2OWyg1jlsoR45bKDWOWyg1jlkrJY+Fz/w7AZUKIWgBhAFcBOFjokymKxPB4FNFYHD6PG01BH1wuYdaxElmCcUvlhjFLROWEOYvKTTXG7Py7nsv7MR/dd60FR0JOYtlAhJTyDSHEkwDeAhADcAjArkKeS1Ek+k+E8M1HDuLYSBitjQE8uLYLbbPrM07cajy5yZnyiVv1/oxdKiW9mJ09w49wlHFJRPYx0ibm284SlVospqB/MITu3b2MWap6lu6aIaW8W0r5h1LKhVLKNVLKSCHPMzweTTQyAHBsJIxvPnIQw+PRlPupDdKKHQewdMvLWLHjAPpPhKAosvg3Q5Qno3ELMHbJGfRi9p2BU4xLIrKN0TYxn3aWqNQUReKTU+HEIATAmKXqZvX2naaIxuKJE1Z1bCSMaCye8jc2SOQkRuMWYOySM+jFbK3Pnfj/jEsisprRNjGfdpao1IbHoxgMRRizRGeUxUCEz+NGa2Mg5W+tjQH4PO6Uv7FBIicxGrcAY5ecQS9mR8NTif9mXBKR1Yy2ifm0s0SlFo3FMTweZcwSnVEWAxFNQR8eXNuVOHHV9VRNQV/K/dggkZMYjVuAsUvOoBWzW1d1YOcrHyTuw7gkIqsZbRPzaWeJSs3ncWNv7wC2rOxIidmeNZ2MWapKVu6aYRqXS6Btdj32bViatWiR2iClFy3iyU2lYDRuAcYuOUN6zHo9LoxNxjA0Nl3eh3FJRHYw2ibm084SlVpT0Ic7r27DAy/2Y9PydjQFfWip9+O8mQHGLFWlshiIAKYbm+Z6f877sEEiJzESt+r9GLvkBOkxOysoGZdEZKt82kSj7SxRqalxfe+KDrapRCijgQij2CDR/9/e/cdHVd/54n+9J8kkQxJIigFUsFouoikPFENVZLdLa6vdK9VLoXVXwaprgaWtbW/91d3lar+495Zi29VtKVhrraKtFmX14q6ytbLdxZ9EKqVpqZdqGxRJiATyYzKTzLy/f8wPZibnzJyZOWfmzJnX8/HwYUjmx5mZ1+dzPvM5nx+VitklN2IuiagcWPeQFzHXRCdUxBoRREREREREROQNnhsRYbdoVNE3FOYQKnItZpTchpkkqgwsq0TFYRkiKhw7IrKIRhX7Dw+MWyxp9tRmVjLkCswouQ0zSVQZWFaJisMyRFQcTs3Iom8onKxcgNge1p97cDf6hsJlPjKiGGaU3IaZJKoMLKtExWEZIioOOyKyCI9FkpVLwsGjQYTHImU6IqJ0zCi5DTNJVBlYVomKwzJEVBxOzUiROc8r4K/B9NZAWiUzvTUAf21NGY+S6AR/bSyjbU31WL1oJloCdRgORxDwM6NUHolMZtabAX8NegdCnEdLVAZG89jNyirbOETWsA1GVBx2RMSZzfN68Przcc39r6T9bnKjv9yHSwQAmNzox4PXn4/Dx0dw89a9aTltCfCLHpXe5EY/fnDN/LS6NJbREOfREpWBWftmVlvTuLLKNg6RdWyDERWHHRFxZvO8nlhzEbatWcireORKPp+gqaEW19y/d1x2t61ZyL2qqeR8PsHsqc1p9aZCcc3GF5hRojIwa99sW7NwXFllG4fIOrbBiIrDjog4s3leo2NRDlMkVxsdi3KOIrmKzydpDbC3jw4zo0RlYta+CY7Gyh+/LBFZYzTFiW0wosKxIyLObK5kJKpYsnEXhxOTa2XLbjSqzCqVHTNKVD5m5e9AzyCGQmNs0xBZYDbFaXKTn2utEBWo6nfNiEY1uYDaIzdcgEvapwCIVSKbV3Tgzqe7uC0PudrkRj82r+jA9NYAgFh21y+dizuf7kJ/MIzegRDePjqM3oEQolEt89FSNUjUq4nctQbqTDPK+pTIWYl1WzLL3z3PvWHapskswzx3ULUzm+LkrxE8csMF2Lp6ATav6MAl7VO41gqRRY6NiBCR2QAeTfnVBwD8L1X9J6eeM19GvZubV3Rg3RVz4PP5EI1GsaOrJ+0+HG5FbuPzCU5q9GPt4na0BOrQHxzFXc/uBwAc6h/Bqi2dHNFDJWN21Whqc/24jO7p7sftn2R9SuSkxLotj668EAePBtPKH4BxbRqzMsxzB1UzoylObU31ePtoejtr84oOzGprYlkhssCxjghV3Q/gXAAQkRoAbwPY5tTzFcKod3PVQ53JBWZ6B0IcbkUVwefzYd32rrSs/ujaDyVPjgAXUKLSMLtq9NiqBeMyyvqUqDR8PoG/tgZf/dnrOctgtsUtee6gamU0xenGi2eNa2elfo8gouxKNTXjYgAHVPWPJXo+S8wWcEpcHTAazsjhVuRGRlk946RGLqBEJWdWr6oq61OiMrLapsnVNiKqRmxnEdmvVItV/hWAn5TouSwzW8ApcXXAaBs6bm1FbmS2ZSJH9FCpZatXZ08NsD4lKhOrbZpcbSOiasR2FpH9HB8RISJ+AJcD+JnJ31eKyG6bAzDnAAAgAElEQVQR2d3b2+v04aSxcnUgsQ3dqa0T0NZcz0YzlTWz2WRm9aTGel6BJgClzWy2epX1KeXDrXVtJbNSBjkatHDMrLd5sZ3FzFI5iaqzKyGLyBUAPq+ql+S67fz583X37t2OHk8moz2B82kcF3t/ckTJPoByZDYf+eSTWS67krzZpcisHVliHisC61oXcKKseLj8MbNkm2hUcWQohJHRCGpEEPDXoCXgSFmp+PbB6bc9nfd93vrGZQ4cCZWIpcyWYmrGX8OF0zISEr2bheDK0uR2VvPNLJOdiqlXAeaRyCqnykqxZZjI68zKXkugckZDEJWbo1MzRGQCgI8DeMLJ5ykXs5WljfbkJnIzZpnchHkksoZlhag8WPaIiufoiAhVHQYw2cnnKCeuLE1ewSyTmzCPRNawrBCVB8seUfFKtX2nJyVWlk7F1XKpEjHL5CbMI5E1LCtE5cGyR1Q8dkQUgStLk1cwy+QmzCORNSwrROXBskdUvFIsVulZVvfkTuXhlaipghWS5WKxLJAZszwCQO9AiJkhTymmLixH3U1USZxqa7DsERWPHRFFSqwsnajoDh0LmlZGXAme3Cx1lXSnOwlYFiiVWd5SV+1nZsiL7Mh1th0u2OFL1czp80au3WVY/oiy49QMGyQquiUbd2Hh+uexZOMu7D88gGhU027HFXapEljNczFYFiiB9SdVMydzXYq6nMjNynneYPkjyo0dETawWtFxhV2qBKU4cbMsUALrT6pmTuaanXdU7cp53mD5I8qNHRE2yFbR9Q6E8PbRYfQOhFBX6+MKu+R6hZ64o1FNy3u2Xn+uNk0JZnkLjkbSssTMkBcVkmurdS0776jaleK8YVYeWf6IcmNHhA3MKrpIVNOGZA2OjHGFXXK9QhvG+QxB5GrTlGCWtwM9g2lZag3UMTPkOfnWhfnUtey8o2rndFsjW3lk+SPKTVTdM1dp/vz5unv37nIfRt6MFsPZvKIDd//899jR1ZO83fTWAJ76wkJEouDCNc4q2RtaqZnNppDFnXoHQliycVda7//01gC2rVnIRdSsK8mLd1tmjfK2YdlcfPOZ/djT3Q/gRJYmN/qZGXdhXWuDfOrCfOpaLvBqiJmtMk62NbKVx8mNfjvLX8W3D06/7em87/PWNy5z4EioRCxllrtm2CB1C59oNIqIAmORKJZ2zEDvQDjZmD54NIhgOIJTWyeU+YiJxks9WU9u8uOpLyxEMGztxF3IEMRcq01TdcisP8eiip6BEFYvmolNOw9gT3d/MkvMDHlRPrnOrGvnzWjB6kUzMRweQ+8A0upqbi9IZF9bw6hDI1vbh+WPKDd2RNhgbCyKnsEQAMXRoVGs2tKZ7P1cv3Qu7no2dmWPQ7LIrfK9cpZ6QhYR+HzAj679EO557o20q9jMO1nh8wlaGmrx+55Bw/qzdzDELBHhxHSLg0eDmDejBbf95Vn46s9eH1dvA0j70nTypAC/ABEVyHDk8/IOtDXX45L2KeNGPyfOVz6fpI3k6xsKszOCKAU7Ioo0NhbF7w4PYPWWTqxd3I5127vSVsi99fG9yd9zPjO5ldnqzlaH+65fOhc/eeWPuOUTs/HNZ2JfHJl3smpsLIp3jo8kOyGAE/XnuivmYNqkBmaJCCfmvH/uwd346iVnJjshgBP19hN/e1Fanc4pGUTFMWojrdrSiXVXzMGNF58JANjR1TNuDQpOjypOvtM5OJWj8rAjokg9gyGsjjeeWwJ1hkO0zp7WnJwvxoqH3CifqRVGJ+REh9vNW/fi0ZUXcggi5aVnMITegZBhBmdOacL0Fl7NJQLSp1sMh8cMy8zIaMRyxzIR5WbWRprgr8HqLZ14bNUC3P5JHdf2yeciD1E14q4ZRRqNRJMVTH9w1HCF3IC/Fm3N9WxIk2vls7qz2Qk5tSOOead8jEai6BsKG9efdTXMElGKxJz3Wp8YlhmfT7htIJGNzNpI/cFRHDwahKri1NYJ49o+3MKTKDt2RBSprsaXrJw27TyA9Uvncns5qjj5bHGV7YTMdSGoEHU1Pjze2T2u/ty8vIP1J5GJgL8GG5all5kNy+bCn9IuSWDdTFQ4ozbS+qVzsWnngaxli1t4EmXHqRlFmtJUj03LO7B6Syf2dPfjxy+8iYdvuAC1PuHwdKoY+azunDpHOXWNiB+/8CY73qggU5rqcePFZ+Ke536PtYvbMbnRj7bmepwysYH1J5GJloAfUyc2YN0VczDBX4PhcARTJzbgfRPG19Gsm4kKl2gjPbHmIgyHInjzyFByIeVsZcuovcSySHSCox0RItIC4D4AcwAogOtV9UUnn7PUamt9OGtqMx5btQBjkShqa3yY0lSP2loONqHKYnWLq8xOCxFBjQD/uGQuO96oIIl69I7L57AeJbLI5xOcPrkRzQ114zqQuW0gkb18PsGU5gZEGxWN9bX47lXzcpYtlkWi7JweEXE3gGdUdZmI+AFMcPj5yqK21odTWgK5b1gmRnsfsxKkYti1L3cmZrV6ua0eZRYpG7fkw6wudqqOJioFt5QvI/mWLZZFInOOdUSIyEQAHwZwLQCoahhA2KnnI2PcOogqBbNKbsEsUjbMB5FzWL6Iqoelca8islBEGuM/LxeRb4vI+3Pc7QMAegH8SET2iMh9icegwkSjit6BEN4+OozegRCiUc15H7Otg/qG2CdEpWE1t8wqFaqQujEbZpGyyScfdmeTyOvsrH9Z/ojczeqIiO8DOEdEzgFwC4AfAngQwF/keOzzAHxRVV8WkbsB3AZgbeqNRGQlgJUAcNppp+V39FWk0B5ibh1kP2bWunxyy6w6x8uZdeLqGbPoDm7NrdV88Mpu9XFrZiuJXfUvy581zCyVk9WVwMZUVQFcAeBuVb0bQHOO+xwEcFBVX47/eytiHRNpVPVeVZ2vqvPb2tqsHnfVKbSHmFsH2Y+ZtS6f3DKrzvFyZp0YvcAsuoNbc2s1HxxZU33cmtlKYlf9y/JnDTNL5WS1I2JARL4GYDmAp0WkBkBdtjuo6rsAukVkdvxXFwPoKvhIq1yhPcRGex9z6yAqlXxyy6xSIZwYvcAsUjZW88GRNUT5s6v+Zfkjcj+rUzOuBHAVgL9R1XdF5DQAGyzc74sAHo7vmPEHANcVdpiU6CFOrVSntwZQl2N7OytbB7l5dWKqbHW1PsPcGl3ZYFapEGZ1YyJjhWSmkC3XmE3vyPVZGuWjNVA37j65sklE4yXK1xNrLsLIaBQ1AgT8+ZcZq+WPdTdR+VjtiBhAbEpGRETOBHAWgJ/kupOq/grA/CKOr2I4XZEleohT57ptWDYXgyNjOKlRsz5Xtq2DOIeOEuzOcDSqGBwZw4Zlc3Hz1r1p+TK7ssGsEpBfFo3qxkTGislMPluuMZveYfWzTM2H2X1mtTWZZtPoeflliOiEvsFwUXVqtnNDgh11N8uue5x+29N53+etb1zmwJGQVRJb+iHHjUQ6Afw5gFYALwHYDWBYVa+282Dmz5+vu3fvtvMhS6JUjdD3hkJ4vfsYJvhr0B8cxaadB9A7GMK2NQsL3qO4dyCEJRt3jesxLuYxXaBkZ4BKzWwmJzKcyFZbUz1WL5qJlkAdhsMRnDNjEt7XmH+2PJrVVCXJrdszW0gWzRqCpcpMFWTTjOfq2kI+y2z3mdzoz/klhR1ZJeW5zHqRXXVqrk6CYp+nhGW34tsHhXQSlAI7IhxjKbNW14gQVR0G8CkA/6yqSwB8sNAj85pSLYgTDEdw3QOv4sp7X8Kqhzqxp7u/6PlunENHgDMZTmRrT3c/Vj3UiSvvfQnXPfAqguHCssWsVodCspi4On1q6wS0NdcnG4Clygyz6R2FfJbZ7mOWzVRcVI8onV11aq7yV+zzsOwSFcdyR4SILABwNYBElxYnOcaVqhHqxEruXB2eAGcybHe2mNXqYGcWS5UZZtM7Cvksi/382ZFFlK5S6m6WXaLiWO2I+DKArwHYpqq/EZEPAHjeucOqLKWqMJ1YyZ2rwxPgTIbtzhazWh3szGKpMsNsekchn2Wxnz87sojSVUrdzbJLVBxLa0QkbyzSqKpDTh1Mpc6nK+X8TicWxfHgQjucA5onpzLsxAKYHstqqoqfA2oHu7NYqsx4PJtmPFnXFvJZFvP5c42IkvJkZr2oEupurhFhHdeIqDqWMmtp14z4tIwfAmgCcJqInANglaquKfz4vKOQrd6KeS67Fz9z4jGpsjiVYbuzxax6n91ZLFVmmE3vKOSzLObzL2UbgqhSVELdzbJLVByr23f+E4BLATwFAKr6uoh82LGjqkBshFKlY4bJLZhFqjbMPFFlYtklKpzVjgioardIWg8fV2LJokqH6ZJHMc9UbswgVQPmnKh8WP6ISstqR0S3iFwEQEXED+BGAL917rAqW6XP92RFTKmczDOzRlZU+jo8VNlKOVe9ktsORIVyQ73L8kdUelZ3zVgN4PMATgVwEMC58X+TgUreVzhRES/ZuAsL1z+PJRt3Yf/hAUSj1hc1JW9xKs/MGllVqjqVmaRMpcxEJbcdiArllnqX5Y+o9Cx1RKjqEVW9WlWnquoUVV2uqn1OH1ylquR9hVkRUyan8syskVWlqlOZScpUykxUctuBqFBuqXdZ/ohKz+quGW0APgfg9NT7qOr1zhxWZUvsK5xaobltX+HEMLhoNIqIAqoKf20NK2Iax6k8Z8ua2TBNNwzfpNIrVZ2aq/6zkj9mtHIZfXbZMtE7ELL1c66EtgORXRLlbTg8lndbwAksf0SlZ3WNiCcB/CeAn4OLVOY0udGPH1wzf9w8s8mN/pI8f66KOzEM7jv/vh+fvegM3Pr43uRxPnLDBayIKY1TeTY76dfV+sbN09y8vAOntjbg0LEQ529WIacymFlX1tX6TOs/K/OHOce4cpl9dpOb/IaZiEQVSzbuyutzznVuLnfbgahUUsvb2sXtltsC+dSn+XZisPxZd/ptT5f7EMqqkNf/1jcuc91zuIGo5p6DJSK/UtVznT6Y+fPn6+7du51+mpIo11UxKw3h3oEQlmzchbWL27Fue1da5X9J+xR86WNnYtVDnZXckC7ZgXops9k4kWezrE6dWI/Lv7trXKPkgevOx7U/emXc77etWeiVrbNKkttKzazdGTTK34PXn4/QWNSw/uwbCie/eCZk5i9Rt3o4o5k8U9eafXZPfWEhDh9P7wDdvKIDd//899jR1ZN222yfs9VOKo6ocZxnMlvJUsvbvBktuOnS2WkXxbK1BazUp4V2Cru4/LmqfeCljohCvryzI8ISS5m1OiJiu4j8d1X91yIOqKqUa19hs7l2qRV3YqhpS6Bu3HC4HV09WHfFHGxbs9CNFTGViRN59vkEs6c2j8vaoWNBw2GaPgGnDVUxuzNoVFdec/8reOoLCw3rPyvT1ji1rXKZfXbBcGRcPRWNRtM6IRK3zfY5Wzk3A+VrOxCVUmp529Pdj7ue3Y+1i9tx9rRmBPy1WdsCVupTq+UtE8sfUWlZ3TXjS4h1RgRF5LiIDIjIcScPjApjpSGcGBLfHxzF9NZA2m2ntwbg8/nQ1lyPU1snoK25np0Q5JjEST81a4l8pkoMhTb6PacNUSGyffE0qv/McpmaPyu3IXfK9tmNr6d8eX/O7KQiOiGzvO3p7se67V0I+GtztgWs1Kcsb0SVwequGc2q6lPVgKpOjP97otMHR/mzUnEn5sE93tmN9UvnJm/P+XDkBol8puZy/dK5+MEv/4ANy5hXske+jVyjXGbmz8ptyJ3y+ewK+ZzZSUV0gtP1KcsbUWXIukaEiJyX7c6q+lrWBxd5C8AAYgtcjqnq/Gy353y64uU7DzVz1wyPTMPgHNAKF40qjgyFMByK4M0jQ7jnuTfQOxjCg9efj6aGWoyORb2U1wRXzQH1ukLmEHPXjHE8Vdfm89nl+zlzIVPX8FRmK5mT9akHy5ur2gdcI4JrRFhgyxoR34r/vwHAfACvxx94LoCXAfyZhef4iKoesXIwVDyzefeZFa/PJ5jc6EffUBhjWXbXqKIGNbmIzyeY0tyAaKOisb4W371qHkQE/hpBOJJ7gV2iXLLVlWZ1n5X5w0a3YV3qTkafi9X54fl+zlbPzUReY3d9avV5ZrU1sbwRuVzWjghV/QgAiMhPAaxU1V/H/z0HwE3OHx4VwkrFnau32IO9yVSBEh1mZtvNMpNUDLMvk3bWfaxL3akcnzMXwqNqU6r6j/UsUWWyuljlWYlOCABQ1X0ArGznqQB2iEiniKws5ACrVTSq6B0I4e2jw+gdCCEatfcqsNmKwn1D4XF/nzejBWsXt2MoNIZ3j4/YfixE2fKeyOLSjhnJTghgfGbtfl6qDHZ/hrnqxmIej3Wpe/QHw3j32Ai+9elzsHlFB9qa6m37nIETuXn3+AjrF/Icq/Wu3fWpGSeeh+0DIudZ3b7zdyJyH4AtiHUuLAfwWwv3W6iq74jIFAD/LiK/U9Vfpt4g3kGxEgBOO+0060fuYaXo2c21onDi72b7O1dzLzMza69cec+23Wwxq2BX0xUUr2bWic/Q7tXWWZcWzqncRqOKQ/0jWPvkvuRnsX7pXNz17P6iP+dUB48G8U5/EMs2vcjPu0p4ta5NlU+9W6rdK+x+HrYPiErD6oiIawH8BrFtPL8MoAvAdbnupKrvxP/fA2AbgPMNbnOvqs5X1fltbW0WD8fbStGDnGtF4cTfVy+aaftV6ErHzNorV95zbTdb6CrYpbpS4wZezawTn6Hdq62zLi2cU7ntGwpj1ZbOtM/i1sf34saLZxX9Oaea3hpIfr78vKuDV+vaVPnUu6XavcLu52H7gKg0cnZEiEgNgPtU9TuquiT+33dUdSTH/RpFpDnxM4BLAOyz5ag9rhQ9yNm2RYpGFQrFlr+5AGdObUJbU/qcVu7FTHbKlffWQB0eueECTG8N4HtXnWfb1ojcZ7zyOfEZFrsFZ+Zw3tZAXfL+zJs7ZOYmMWXmA22NUGhBQ7DNth3etPNA8jb8vMkLjOrdtqZ6hMci46YxlGpLY7ufh+0DotLIOTVDVSMi0iYiflXNpytwKoBtIpJ4nkdU9ZkCj7OqJHp2UytBu3uQzVbwBjBuONqGZXPxzWf2Y093vyPHQtUtW96jUcUbvYPJPF7SPgUP33ABan1S9CrYpShn5CwnPsNidjcwG847q60JPYMh5s0lUnNj15SZzNyICO54al/yvAnw8yZvyKx3581owS2fmI0r733JsAyVYrcYu5+H7QOi0rC6RsRbAHaJyFMAhhK/VNVvm91BVf8A4Jyijq5KJXp2MxuzdvcgG63g3TsQGjcc7eate7Huijm47oFXHTsWql7Z8p45PHJHVw+6Dg1g25qFRa8+X6pyRs5x6jMsdHcDs+G829YsxLSJDcybS6TmxmzKTCF1TGpuolHFVz4+G12HBvh5k6dk1rs3XjwLN281L0Ol2i3Gzudh+6B6nH7b0+U+hKpmtSPinfh/PgDNzh0OAeXdb9xsONrMKU3YdetHuBcz2S5b3p0cHlnOckb2cNtnmC2vbjvWapb6WQyHxxypY/h5k1dlZjui6rlpDCy/RKVhqSNCVb/u9IFQunLtN242HC1QV8P9z8kxZnl3enhkucoZ2cdNn2GuvLrpWKtd4rPoHYBjdQw/b/Kq1Gz3Dnhz2hnLL5HzLO2aEV8jYoOI/KuI/CLxn9MHR6VntuBPa6CO+ylTyTm10BX3BycnWM0r8+cerYE6bF7R4fhiekRexTJERIWyOjXjYQCPAlgMYDWAzwLodeqgqHyMhqO1BurSFgz08n7K5C5ODI+spv3BqbSs5JX5c4/EYrh3//z3WLu4HZMb/ZjSXI9TJgX4WRBZwDJERMWw2hExWVV/KCJfUtX/APAfIvIfTh4YlU/mcDSjBSwLXcyLKF92D4/MtqAg80zFypVX5s89Uj+LHV09AGJXc/lZEFnDMkRExbDaETEa//8hEbkMsYUrpztzSOQ2di8YGI0q+obCXACIyoL7g1M5FZM/1p3WWXmvWBdQtSu2TmEZIqJiWO2IuFNEJgH4KoB/BjARwFccOypyFdMFLP016B0I5XUC47BkcpKVRpVZniNRRTSqzCHZwiyLhS7AyrrTumhU8VbfEP7YN4wJ/hoMhyN4/+QJOH1yY9p75fRiuERuZkedUmwZYucqUXWztFilqm5X1WOquk9VP6KqHar6lNMHR+5gtADbg9efj8PHQ1iycRcWrn8eSzbuwv7DAzkXXTMbltw3FHb8dZC3JRpVuTI5udE/bmGt9Uvn4s6nu5hDskW2LBa6ACvrTuv6g2EcPj6CtU/uw5X3voS1T+7D4eMj6A+mv1dOLYZLVAnsqFOKKUNWz9lE5F1ZR0SIyD8DMK0RVPVG24+IXMdoATaF4pqNL+Q9z5nD+MgpVufe+3yCkxr9WLu4HS2BOvQHR3HXs/uxp7sft3+SOaTi5cpiIQuwsu60LhiO4Oate9Pe/5u37sWjKy8EGk/czonFcIkqhR11SjFliOvlEFGuqRm7U37+OoDbHTwWcimjoXOHjgULOoFxKCzlI59hm/k0qnw+H9Zt72IOyXbRqCI8FsG3Pn0O+oOj2LTzAPZ096dlsZAFWFl3WhdRNawLIgaXVcw+Cw4ZJ6+ze1rFyXnulMHOVSLK2hGhqj9O/CwiX079N1UHszmEUyfWF3QCSwzjy3w8DoWlTPnOX82nUcUckhOMMrt+6Vzc9ex+9A6Giuo0YGata6gzrgsa6izNRuV6HFQViqlT3LC+BBFVPlG1NhdLRF5T1fOcPJj58+fr7t27c9+QSqZ3ILYOROaJ4ok1F6FvMJx2Etq8ogOzpzSjtjZ7Y68EV5pK1lJkZp1jlj2zYZv5NIyiUcWRoRBGRiOoEUHAX4OJ9XU4Ghwt5xXQkjwZM+scs8yuu2IOpk1qwOypzYhGFT2DIYxGoqir8WFKU33OOjPBhVfpXVnXGtYFK+Zj6qR6BMMRBPw1GIsqRseihu9jvnUPVRRXZrZcCq1TzMrIY6sWYNrEBsPHyHyu1kAd3ugdZIefNa5qH5x+29MlOBpveesbl+V1+0Le43yfw2GWMmt11wyqUmZD50bHoqiv9WHdFXOSq5KPRaL409HhcSuTZypkWDJVn3yHbVqdq2r0JSWx+CobRFQMs8zOnNKE6S0BRKOK3x0ewOotncmcbVregbOm5u7ABVh3WpVZF9TV+jA4MobLv7sLbU31uOUTs5NrSBiVdQ4Zp2pRaJ1iVkbe6Q/iWHB03LnT7ELBrLYmrtFCVMVyLVY5gBOLVU4QkeOJPwFQVZ3o5MGRPfLp8c68bV2tz3DonIjgmvtfMbzy19xQx8YyFS3bsE2zTGdrVKXeJ3OBrD/2DWPtk/u4aBZllasuNctsbfw2PYOhZCcEEMvZ6i2deGzVApzSEijti/G41LqgdyCUPF+tXdw+biHLzLJezJBxF45aIbKdWRnpGwrjy4/+aty5046FKVm2qJKVYhRJJY6iyHoJRlWbVXVi/L/alJ+b2QlRGfLZHsnotoMjY4Zbd0IV3/r0Odi8ogPzZrQAiJ1YJvhreNWIbGG2LVhroC7vLb9Ss33w6PiFVif4a9DWVI/NKzrw6MoLsXlFB9qa6pllSrJSlxpldv3SubjjqX14q28IUZN6cywSLctrqhapV29bAnU5y3qhWxJyO0KqFq2BOmxaPn4b7E07DxiOHso1yigaVfQOhPD20WH0DoTGlRmWLSJv4tQMj8unF9rottfc/wqe+sLC5NC5gL8Gh4+fuLqUuRjbcDjChYbIFmZTLQq5spJ6n/7g6LgrOT6RccO1Nyybi4CfWaYYK7lLZPaxVQvwTn8QfUNh3PXsfgDA4eMjaflKrTdra6ytEUGFSb16G1XNWdYL3ZKQ2xFStTgaHMU9z/0eP7r2QzgWHE3WdXu6+w1HD+Ua4ZhrfSeWLSJvcrz1IyI1IrJHRLY7/Vw0Xj5zXc1uGwxH0NZcj1NbJyASxbiTwa2P78WNF8/ChmVz8f7JE7iKO9kmMbz61NYJaGuuh88nBc3fTr3Ppp0HsH7p3LQrOdMmNYwbrn3z1r0Y49UWirOaO59PoKpYtulFrHqoE3u6+7F60cxx+UrUm5uWd2BKExvSTprc6Mfm+NXbSFQtlXWjuicXri1B1SI8FsGOrh7csnUvQmNRrNveleyEMBo9lG2UkVknQ99QOO35WLaIvKcUIyK+BOC3ADiVowzymetqdtuAvwa9A6Fkhd/WVJ92m4NHg5jZ1oimhlq0BDhnj5xVyPzt1Pvs6e7HXc/ux7or5mDmlCYE6moQjUaxdnE7WgJ16A+OYtPOA9jT3Y/RMQ6Zp5hi6tKWQJ1hI/qsaU2o8flweGCEc54d5PMJTm5pwLor5uCUlvTPcN6MFqxeNBPBcAS9A6GiPgNuR0jVIpH1xPl07eJ2TG7045SWgOGuGT6fYFZbEx5btSBtxyCrFxdYtoi8ydERESIyHcBlAO5z8nnIXD5zXY1um9hNIDEv78p7X8Itn5idnN+cuF3AX4v3NVq7akRUjELmb2fep3cwhGmTGjC9JYDJjX4cGQpj3fYuXHnvS1i3vQs3XTobl7RPYSOHkoqpS4fDkeTPCZe0T8F7w6P41Pdf4JznEmgJ+DFtUgP+2Dec/CzmzWjBTZfOxrrtXfiLDTuL/gwKXVuCqNKkZn1Pdz/Wbe9CY31t1q073+gdxGc2v4i/2LATn9n8It7oHUQ0qslOhlSZnQwsW0TeJKrONXpEZCuA/wOgGcBNqro42+0rYc/lSlTMrhkKxac2vmC4O8Z1D7zq1m0OuU+4xxWyerbZfcz2Q3/khgswvXVCKXPtqn3CabxC69LE2jqpc6AfueECXHXfy+NyV2Fzniuqro1GFf3BMA71j2DVlk6sXdyOddu7bP0MuLK/61VUZt0sn6ybnWe3rVmIyY3+nGtE5Pt8HuSq9kEpdoCg0nBw18z7XkYAACAASURBVAxLmXVsaoaILAbQo6qdIrIoy+1WAlgJAKeddppTh1PV8tkn2ueT5Jy98FgEEVXDIXMz2xqx69aPVOPJgJl1ASuZNmq0GN3HbFgoEFsgywv5ZmbtYbUuHRuLomcwlByCPLG+Di1T/WmLH3LOc2525ja1Pji5pQFPrLkIwXDhn0EhWwiT91VTXZvZXjQ6XybKyXB4zLSsWV0clmXLGdWUWXIfJ6dmLARwuYi8BeCnAD4qIlsyb6Sq96rqfFWd39bW5uDhkBWZWyQd6BkyHDJ3oHcIx0fGPPElLV/MrPvls9WX2bDQ37474Jnh8sxs6YyNRfG7wwNpQ5B/F89Q6uKHVoYjVzu7cptZH1z+3V3oGwwj4C/sM+BWgmSmmuraXOUg9e+/e3cga1krZHFYskc1ZZbcx7GOCFX9mqpOV9XTAfwVgF+o6nKnno/skbl68T3PvYENy9J3GFi/dC7uee6NcasaE7mFlVW4E4zmnqbuh86cUz56BkNYvaUzLXurt3SiZzCUdjvOeS4ds/qg1icFfQb51C9EXpWrHKT+3Wi3KtZ3RFSKXTOogmQOF97T3Y9vPrMfP115Id4+GkR/cDS5V3Ti9kRuk2vYe+aw6lltTdi2ZiGC4TH89t2BtIxzuDzlYzQSNczeWCR9Bxarw5GpeNm2pp49tRlPrLkII6NR1AgQ8OcekcJpNURZytVoBG8fHU6b2pu6u8bZ05oR8NeyviOi0nREqOpOADtL8VxUHH9tDS5pn4KlHTOSWxk+3tkNAPjqz1433TqpyhcRIhdIzaCI4JL2KdjR1ZP8+/TWAOpqfegZGMFwKII3jwzhnufeQO9gKLkwVh9guHgdh8uTVXU1PsNt5nw+SQ5ZdqKurPY6ONvrz7X1X99gOK+F8szqF9YT5GZ21xFm5epAzyCue+BV/OjaD6X9PbG7RmKBymqur4goxtHtO6nytAbq8MWLz0zbyvALH52Fn//mEDav6DAcVsf5slRumRn8zOYXcePFZ+KS9ikATuR1cGQMn9r4AhbdtRNrn9yHmy6djbam+uRwUg6Xp2JNaarH95en15Ubrz4PD73wJvqDYUfqymqvg3O9/mzl2so0C6v1C+sJcisn6gijcrVhWWzqLmA8tfcH18xHa6CuqusrIjrB0e078+X1rY4qgdkWS2sXt+Pc6ZPg8/ksb39Yxm3ouD1XlTHL4GOrFkA1tk95jQ+4/LvG2V71UCd23foRnNo6oZxXll21PRcV7sjACI4Oj6LGJ4hEFT/45R/wWOdB7Lr1I7jy3pdsryvLWAe7oq618vrNyvXbR4excP3z4x4zUR9ke/zU+oVXdCuGKzJbak7VEanlCgC+8Mie5LRGAJg3owXfvWoeACTLSd9Q2G1txkrgqvYBt++sXnls91ne7TupMpnN+Ys1snyGWzVxviyVm1kGVTX5ZeLto8OGt2kJ1GF6awABfw16B0LJLyonTwrwiwUVRCG47oFXxzW0U+dMz5vRgtWLZqIlUIfwWATRqBact2qvg628/tSt//KdZmGlfiFyM6fqiNQtPIOjY7jx4lm457k3kp0RvYMh+Gtr0joYqr2+IqIT2BFBaczm/E1prk8Op8ucSzt1Yn3W+bdETss1BzzbbYbDETx4/fk4fDyUc544kRWJIcuZeWqoi2WwrakeN106G7c+vteWvFnJv5fl8/oTQ9RTP5tNyzsAADu6egynWVT7+0uVz6kMG5WnDcvm4pvP7E+uv5Q5ZYnliYgSODWD0hidVDav6MDsKc04Ghw1HE73xJqLDBf7mtXWhKPBUc8OcQeYWbcwym3mFzvDbC/vwMktDRiLKj618QXDoaIlXFTLVUMvqThGUwEAYP/hAbx7bARrn9xn29DkRLa/8+/7sbRjBiY3+jGluR6nTAqgttbRpaBcUddaKf8JPQMjhmU92zSLfB6fXM8VmXVStrrH7gybTfl4dOWFpudLlqeCuKp9wKkZ1YtTM8hR2baUMxtONzoWHXef1kAd3ugdHNehcVLKFA+ecMguVrZCzHYbs2kb4bGI6SigYJirfZO51KkAqWZPbUZjfY0tQ5NTv3CcPKkeX/rYmVj1UGfVNe6tboUajSqGQ/lPs+BWq1Qpsn3JdyLDZu1CAKadqixPRJTAXTNonEQD+tTWCWhrrh+3BVqqxHC6zPscDY6OW4l81UOd+NXBY1whmRxhllsrtzHLtogYrqj/evcxrvZNBfH5BIG6WtO61KrMVfD3/OlYshMCMN79wcuslP++oTDePDJk+N5Hopq1HFt5fKJyOzIUMjxnHRkKOZLhbO3CbFieiAhgRwTlIdfWhtGooncghLePDiM8FkFbU3pv+MGjQcxsa8S3Pn0O3j02gv5gdTSQqfRSs9g7EMrZUWCW7RqB4dWeGe8LYN6Mlqr7skf2yKcuNctv5raTE/z2jLLwsvBYBP/260N48PrzsXX1Amxe0YFL2qfg+1efhzuf7mI5poo3Mmo8QmEkHEmrT/I9R5rhltdEVAxOzSDLMofTBfw1GIsqDh0Loq7Wh8GRMVxz/yvjFixKrJ48vTWA7veCuO6BV5Pz8yfW1zk9h5mqTCHzT82GivYNhZOLaiV2OYg1sAS3X96Orz/VhT3d/cldD8q07SdVmNS8RaNRRBRQjeXHaFqbUX4zh0T3B0cNF4CLRBXvDYWqcipRapkM+GvgE2DJeaemnac2Xn0eoqrY0dWD2z8ZGXe/anvPqLLViBjWAwd6h3DPc2/gxotn4Yy2RvgA3Pl0V9oCrYVM4+I0CyIqBr8BUl4Sw+lOnhTA4eMhfGrjC1i4/nl8auMLOHx8JDkK4uDRIG7euhc3XjwLAJIdE/c890by76u2dOKdY0EOaydbZV4ptjpqwWioaOJqzyXtU3DTpbOxbnsXlm16Edf+6BUEwxHc8onZya0/U4fJc8oG5ZLI13vDo/jM5hdP5KYntuhkrvxmDonetPMANl59XtqVyfVL5+LOp7uqcipR5tSV17uP4Y/vxc5Lqe/tmodfw8DIWHI4eeb9quk9o8oX8NfgO585J60e2LBsLv7t14dw06WzsfbJfVi0YSeuuu9lfPaiM2wZ2cdpFkRUKHZEUEGMvuzdvHUvVi+ambzNwaNBzJzShF23fgQ//dyFaaMjEn/vGQhxOCzZys49yhNXe27/5AeTWy0mHu/mrXsxbVIDfnDNfIxFtaDOD6puRvXoqoc6sbRjRtrtjPKbOSS6dzCEyY1+rF3cjkdXXoi1i9tx17P7saOrBxP8NcnHqZZcGk1dERhPtWqoq0kOJy+0I5PIDVoCfkxvDWDdFXPw6MoL8dD15+Obz+zHxe1Tx53Dbn38RJuN07iIqBw4NYMKYvZlryVQl/z39NYAan2CaRMbcGQohN7BUNrtp7cG0DcUxsmTGkpyzFQdrO5RbnX4tc8niKga5r1GYh0Vh44FOT+f8mZWj2bOrzbKr9GQaIVi3faucdnvD46mPX415NJo6oq/xmdYN5zSEsC0iQ1Zd4eqhveMKo/ReSyqwHUPvAoA2LyiA72DIbQE6rK22fJdLJeIyA4cEUEFMVspeTgcSf68fulc3PHUPuw/PID3BfzYvKJj3LDhxzu7efIjW1lZPCvf4dcNdcZ5b/DHdowpdOVwqm5muZnSXG9p8bfMIdEnNdaPy/6GZXOxaeeBtMf3ei6jUUUkquOmrryvsQ4bls0d994mOiGAwncBICo1s/NYXa0vmeFNOw9g/dK5GA5HDHOdWFuGC0wSUTmIqnvmPc6fP193795d7sMgC4wWBNy8ogMnNfrx7vEQ3j0+gk07D2BPdz+mtwawbc1CtAbq8M6xE9MxHu/sxlc+PtvSAkl5Lh5WsgmKzKw75crLe0MhvN59DBP8NegPjmLTzgPoHQxh25qFhnuf51oAM/Pvl7RPwT9c1o6aeCeFxcW7SpJbZtY9zHI1q60JR4OjBS3+lsh+cDSC/uEwJjbU4cjgiTr3Sx87E2dPm2j4eAUs0uiKujbzuGt8wG2P78VnLzojORx9emsAD1z3IbQ21mEkHFsgtKHOh5Ma0+e0m53bZk9p5sLK3uCKzBYqNesigjue2ocdXT3Jv1/SPgVfv3wOQmNRvHkktkBlW7MfX7/8g3hvaBSrtnSOa7P5fD4uMOl+rmofnH7b0yU4GnKjt75xmdWbWsosp2ZQQRLDgp9YcxGGQxG8eWQI/7BtH3oHQ/j+1edhYsOJaCWGtdbW1mN66wQE/LU4eVIDzjttrqWTXyG7IFB1S1wpNhKNKg71j2Dtk/uSeVq/dC7uena/6fDrbCuDJxqGExtq8diqBfDXCA4PhHDVfS8zr5SVWa6Kfcy25nocPhbEwMgY1jz8WjKH37vqPEw1WUyuUutZw46D5R3oHQjjrmf3Y+3idrQE6tAfHEVzfS0mNzYAjeaP1TcURluTHw/fcAF6453md//895Y7zYmcYpT17111HloCfjzWeRDzZrTgsxedgU9vfjGtLJzc0oCWgB9TJwa4uwURuQq796lgPp9AIFj+w5dx3QOvYk93Pw4eDeJvH34NI6NR3HTpbMyb0ZI2rLWQ1ZW5eBjZqW8onLwqBJxYtOvGi2dlHX5tlN3MobGf2fwihsMRrHqok3klSzJzBcCWXRsiinGL033+kdcQjhg/TqXWs4YLfm7pxI0Xz8Ke7n6seqgTV977EtZt74LPZ97kSS3LnX/qx9X3vYxlm17Eqoc6saOrpyLeC/I2o6x//pHXsHrRzOT20pllftWWTkSisXqGu1sQkduwI4KKYraw1wR/TfLLXbFzD7l4GNnJLE9nnNSYd06NGoY9AyHmlQpmV4eAmiywajYds1Lr2Wzl2co6Gwmp77vZwn5ufy/I28yy/t5QGKsXzcTkRj9zS0QVxbGpGSLSAOCXAOrjz7NVVW936vmoPMx2KOgPjia375zeEiiq593qLghEVpjlaUJ9Td45NWoY9g2FmVcqmF0dAvnWm5Vaz2Yrz/kMQ0993xML+FXae0HeZpb1vqEwzp7WjFqTXWGYWyJyKydHRIQAfFRVzwFwLoBPiMiFDj4flYHRDgXrl8ZWaZ/eGkCgzvzLXTSq6B0I4e2jw+gdCJkOPbayCwKRVWZ5OqnReE2JTKm5FRFc0j4l7e+Pd3aP2yGGeSWr7Nq1wWq9mchzeCyCR264IJnnSslttvI8udEPf20NwmMR9A2Fs05vSX3fEzsNsAxTuRi1jyY3mu8+FvDXYtrEBraViKiilGTXDBGZAOC/APytqr5sdjuu5l6ZolHFkaFQctHKe557A72DoawLneW7MBp3zSA7FbA7QPJ+mbndtLwD9zz3e+zo6il21wNXrYpN5WHnopG5cp5t9yOLK+m7oq41ep0A8j7H2LDzDbmfKzKbTbY6IBrVrLuPFXpuI9dzVfuAu2ZUL7t3zXC0I0JEagB0AvhvAL6nqrdmuz0byJUtnxNg70AISzbuGjeE0Gz7xDy5vqFBlckst4+tWgBVLbbh56qGBpVPqb5M2FAPu7auLeS18UtcVXBtZhNyZZc5rUquah+wI6J6VdT2naoaAXCuiLQA2CYic1R1X+ptRGQlgJUAcNpppzl5OOQAqyfEzNtV6sJoADNbzcxyq6o4tXVCmY4qN2a2siRWt0/Um4eOBfP+wmGlbnZ7PVxMbnO9NrP3J7OTgl/6KB/5ZNYsW7mym217aiuYaUrF9gGVk6MdEQmq2i8iOwF8AsC+jL/dC+BeINYTV4rjIXtYHUJsdLtHbrigYhdVYmarUzSqiETVMLeRqCIaVdc25pjZylPMFA2r93X7ApXF5Dbbayvm3FXoNBmqDlYzmy1bTpZLZpoysX1A5eTYYpUi0hYfCQERCQD4GIDfOfV8VHpWt5kzut2dT3dxQT+qKH1DYdz5dBe+d9V54xYLu/Pprry3VyTKpphtPK3e18sLAWd7bcWcuwrZSpUoU7ZsOVkumWkichMnR0ScDODH8XUifAAeU9XtDj4flZjVYb2Zt5s3owVLO2agub4Wj61agBqB1YXRiMomPBbBjq4efPGjs7B2cTtaAnXoD47irmf3Y093P27/ZPYh30T5KGbahJX7JnI6scGb9bDPJ5g9tTltC8/WQB36hsIYDo9h7eJ2bNp5AHu6+wFYO3eZ3Y4oX9mylS27xZ5XmGkichPHOiJUdS+AeU49PpWf1eGDqbebN6MFN106G7c+vpfDAqmiJHL8zrERrNveVdSQb6Jcihmeneu+1ZLT1Ln0Rq95/dK5yY7EXOeuBDdNXaHKlStbubJbaHllponITRybmkHeZ3X4YOrtVi+ameyEAE4MCzx0LJjcK5vIjRI5fryzG+uXzk3m/pL2KXjkhgsQHovg3eMjHPZKtihmeHau+x4ZClVdTo2GpN/6+F6sXjQzrQynnoe8PHWFystKtqJRRe9ACIeOBW0rr8w0EblJSRarJG8yGj5oNFww9XbD4THDYYEHjwbx1Z+97smrcuQNiRz/45K5iEajyeHsR4bCuOq+l3HwaBBbVy/gsFeyhdX6Nd/7RqOK4VD1Dc82G5J+9rRmfOljZybLcObV5kI/A6JscmUrdRTEtz59jm3llZkmIjfhiAgqSmL44KmtE5LDCHsHQnj76HDalaXE7Sb4a5M98QnTWwPoD45WxVU5qmyJHE+dFMApLQH4fD6seqgz2UjsGwob5ltEONqH8pZZv+bzZcHovtGo4t3jI3jzyJBhTr08PDsxJD3V9NYAamvSy3DiPPTu8ZHkTjiFfgZE2SSydfKkWC5TR4amjuDpD47aWl6ZaSJyC3ZEkG0SPfhLNu7CwvXPY8nGXdh/eCDtC5jRsMD1S+di084DALx/VY68JfMq66adB9KmbSTyfcdT+8aVBaJSStTP7/QHcc9zb4zL6eblHZ4enm02JL1GYHi1+Z3+IMssOc6s3ZR6bjE6r3A6BRF5AadmkG3MtoXatmZhcrRE6rDA4GgEB3oGk4uFAd6/Kkfekrnw157ufvz4hTfx6MoLcejYCPqGwsl8dx0aSCsLRKWUqJ/XLm5H72AIdz27P7n7y3A4gpNbGjx9ZdRsSHpiFFPm4n19Q2F8+dFfscySo8zaTY+tWpDM5Z7uftz17H6su2IOZk5pQqCO0ymIyBs4IoJsY3VbqMSwwOktAUyb1IDewRAA9vJT5TG6yvqVj89GrU+wbNOLWPVQZ9btAYlKJVE/J66u9g6GsOqhTnz1Z69j2qQGtAS8X+8aDUnPNkqPZZacZtZuqhGk5bJ3MIRpkxowvSXA6RRE5BkcEUG2yXdbKC6aRJUu36usHO1D5ZKonxNXV9cubsfkRj9OaQlg2kRvj4bIJlGGH1u1AO/0B9NGMbHMktPM2k0+n4/tIyLyPI6IINsUsi0UF02iSmf1KitH+1A5pWZyT3c/1m3vQmN9bVV3QiT4fIJpExvQWF+Lddu7kp0QLLPktGznCraPiMjrOCKCbMMRDkQxLAvkNsxkdnx/qByYOyKqZuyIIFslevCJqh3LArkNM5kd3x8qB+aOiKoVp2YQERERERERUcmwI4KIiIiIiIiISoYdEURERERERERUMuyIICIiIiIiIqKSYUcEEREREREREZWMqGq5jyFJRHoB/BHASQCOlPlw7MbXVDpHVPUTpXiilMwmuPU9KQZfU2mUJLcGmS0HN77/5VDp70M569p8Vfp7bcarrwtw5rW5JbP83CpXOV5fNbUP8uGFrHn1NVjKrKs6IhJEZLeqzi/3cdiJr6k6ePE94Wsiu/H9j+H7UDpefa+9+roAvrZK5eXXBnj/9VUSL3wW1f4aODWDiIiIiIiIiEqGHRFEREREREREVDJu7Yi4t9wH4AC+purgxfeEr4nsxvc/hu9D6Xj1vfbq6wL42iqVl18b4P3XV0m88FlU9Wtw5RoRRERERERERORNbh0RQUREREREREQe5JqOCBGZISLPi8hvReQ3IvKlch+TXUSkRkT2iMj2ch+LHUSkRUS2isjv4p/XgnIfUzkxu5WD2S0vL5eVfHmtbLmV1zPnxRx5uZ72eh4Bb2YS8HYuK1WlZ63SMyUiX4nXY/tE5Cci0pDvY7imIwLAGICvqurZAC4E8HkRaS/zMdnlSwB+W+6DsNHdAJ5R1bMAnANvvbZCMLuVg9ktLy+XlXx5rWy5ldcz58Ucebme9noeAW9mEvB2LitVpWetYjMlIqcCuBHAfFWdA6AGwF/l+ziu6YhQ1UOq+lr85wHEPoxTy3tUxROR6QAuA3BfuY/FDiIyEcCHAfwQAFQ1rKr95T2q8mJ2KwOzW35eLSv58lrZcjMvZ86LOfJ6Pe3lPALezCTg/VxWokrPmkcyVQsgICK1ACYAeCffB3BNR0QqETkdwDwAL5f3SGzxTwBuARAt94HY5AMAegH8KD4c6j4RaSz3QbkFs+tqzK6LeKys5MtrZasieDBzXsxR1dTTHswj4M1MAlWUywpS6Vmr6Eyp6tsA7gLwJwCHABxT1R35Po7rOiJEpAnA4wC+rKrHy308xRCRxQB6VLWz3Mdio1oA5wH4vqrOAzAE4LbyHpI7MLuux+y6hJfKSr48WrZcz2uZ83COqqKe9loeAU9nEqiSXFYKj2StojMlIq0ArgBwBoBTADSKyPJ8H8dVHREiUodYxfywqj5R7uOxwUIAl4vIWwB+CuCjIrKlvIdUtIMADqpqogd/K2IFqaoxuxWB2XUBD5aVfHmxbLmaRzPn1Rx5vp72aB4B72YSqIJcVhgvZK3SM/UxAG+qaq+qjgJ4AsBF+T6IazoiREQQmyfzW1X9drmPxw6q+jVVna6qpyO2gMcvVDXv3iI3UdV3AXSLyOz4ry4G0FXGQyo7ZrcyMLvl58Wyki8vli0382rmvJojr9fTXs0j4N1MAt7PZaXxQtY8kKk/AbhQRCbE67WLUcBim7W2H1bhFgJYAeDXIvKr+O/+TlX/tYzHRMa+COBhEfED+AOA68p8POXG7FYOZre8WFao1Ji5yuPlepp5rFxeziWVR8VmSlVfFpGtAF5DbDegPQDuzfdxRFXtPjYiIiIiIiIiIkOumZpBRERERERERN7HjggiIiIiIiIiKhl2RBARERERERFRybAjgoiIiIiIiIhKhh0RRERERERERFQy7IgoERGJiMivUv47XUQWicj2ch8bkVUi8vci8hsR2RvP8QUOPMciEbnI7sel6mRU9+Z5//tEpD3+8985cYzkfSIyXUSeFJE3ROSAiNwd37INIvKTeJ36FRE5K57TPSIyM+Mx6kXk5/G/XykiO0VkfnleEVULEVEReSjl37Ui0lto+zXe/t0X/3m+iNxj17ESJYjIYMa/rxWR7xb5mKxzbVZb7gOoIkFVPTf1F/k2iO0iIoLY1q3Rcjw/VSYRWQBgMYDzVDUkIicB8DvwVIsADAJ4wYHHpuozru5NJSK1qjpm9ndVvSHln38H4H/beXDkffFz7hMAvq+qV4hIDWL7rf+jiHwLwEWq+v74bW8D8KSq3m7wUPMA1CXyLCJ/W5pXkC5XmSHPGQIwR0QCqhoE8HEAb9vxwKq6G8BuOx6LyE6s50qDIyJcQkTOF5EX4ldBXhCR2fHfvywiH0y53U4R6RCR94nIv8SvorwkInPjf79DRG5Kuf2+eO/z6SLyWxHZCOA1ADNK/Rqp4p0M4IiqhgBAVY8AmC4iTwCAiFwhIkER8YtIg4j8If77mSLyjIh0ish/ishZ8d+3icjjIvJq/L+F8c651QC+Er/q9+fleKHkbfErIz8Tkf8LYEfm6DQR+a6IXBv/eWf8qt03AATiuXxYRNaJyJdS7vOPInJjyV8MVYKPAhhR1R8BgKpGAHwFwPUAfglgSjxXtwP4MoAbROT51AcQkSkAtgA4N37bzNES3xeR3fERa1+P/+4vReSxlNssimceIvLXIvLreBthfcptBlN+XiYiD8R/fkBEvh0/ruTtqWr8G4DL4j//NYCfJP4gIo0icn/8PL5HRK6I//70+Dn/tfh/40Y6pta98fbr/fE69w+p9amILBeRV+LZ3ywiNfH/Hohn+Nci8pX4bW8Uka54+/inDr4nVKFE5JPx71d7JDbKbGr893eIyL0isgPAgyISEJGfxrP0KIBAymMMxs/7r8e/hyUeY1zbNv77v5ATIzP3iEiziJwsIr+M/25fNbZ5OSKidAIi8qv4z2+q6pKMv/8OwIdVdUxEPobYVbelAH4K4DMAbheRkwGcoqqdIvLPAPao6v8QkY8CeBCA6VW/uNkArlPVNXa9KKoqOwD8LxH5PYCfA3gUwC7ErtIBwJ8D2AfgQ4jVLS/Hf38vgNWq+obEpnJsRKxhfjeA76jqf4nIaQCeVdWzRWQTgEFVvatUL4w8zazuXQBgrqq+JyKLcj2Iqt4mIl9IuRp9OmJXue8WER+AvwJwvt0HT57wQQCdqb9Q1eMi8icAnwXwSEquBAb1n6r2iMgNAG5S1cXx26be5O/jWa4B8JzELk78O4DNItKoqkMArgTwqIicglhnQgeAo4h1xv0PVf2XHK/jTAAfi3ekUHX5KWLn/+0A5gK4H7FzPgD8PYBfqOr1ItIC4BUR+TmAHgAfV9UREZmFWOdFrmHtZwH4CIBmAPtF5PsA/hti2V2oqqMSu6B2NYDfADhVVecAQPy5AeA2AGfER262jHsGqhap534AeB+Ap+I//xeAC1VV4/XqLQC+Gv9bB4A/U9WgiPxPAMOqOjdep76W8niNAF5S1b8XkW8C+ByAO2HQtgVwNoCbAHxeVXeJSBOAEQArEWv7/mO87p5g/9vgbuyIKJ2sw4MBTALw43hlrQDq4r9/DLHGxO2IdUj8LP77P0OsowKq+gsRmSwik3Icwx9V9aVCXwBVN1UdFJEOxBofH0GsI+I2AP9PRM5G7EvYtwF8GEANgP+MV7YXAfhZSqO5Pv7/jwFoT/n9RBFpLsVroapiVvf+u6q+V+iDwJWTCgAABU1JREFUqupbItInIvMATEWsY7iv4KMkLxPEzutWf1+Iz4jISsTadScDaFfVvSLyDIBPishWxK5o34JYR/BOVe0FABF5GLF6O1dHxM/YCVGd4lk6HbHREP+a8edLAFwuJ0bjNgA4DcA7AL4rIucCiCDWkZXL0/FRlyER6UGsbr0YsS+Hr8bbCwHEOjn+L4APxC/MPY3YxRIA2AvgYRH5F+TONHlX2rlfYqMcEx1h0xHrlD0ZsSnGb6bc76n4FCQgVi/eAyTLwN6U24UBJEZSdiI2ZQkwb9vuAvDteH37hKoeFJFXAdwvInUA/kVVUztOqgI7ItxjHYDnVXVJvLLfCQCq+na8sTsXsR7hVfHbi8FjKIAxpE+5aUj5ecjmY6YqE2+E7gSwU0R+jdjVvP8E8JcARhEbKfEAYh0RNyGWxX6TL4I+AAtSKnwA467yETkltT7MVm9mcx+AawFMQ+wKIZGR3yB+4SBBRCYiNkXS9Iu9iHwesatsAPDfs9zuDMTq2w+p6lGJTadIZPhRAJ8H8B6AV1V1QLJXsqkdI5nlgG2I6vYUgLsQW8dpcsrvBcBSVd2femMRuQPAYQDnIFa/jlh4jlDKzxHEvqcIgB+r6tcybywi5wC4FLGMfwax6U6XIfYF8nIAa0Xkg5zrTxn+GcC3VfWp+IjIO1L+llnPmXUWj6pq4m+JrAImbVsA3xCRpxGry18SkY+p6i9F5MOIZfYhEdmgqg8W9pIqE9eIcI9JOLH4z7UZf/spYlcxJqnqr+O/+yViQ9MQL0RHVPU4gLcAnBf//XkAznDyoKl6iMjs+IidhHMB/BGxLH4ZwIvxK2yTERte+Zt4Jt8UkU/HH0PiDQcgdvXiCymPn+isGEBsWCZRqfwRsSsY9fGRZReb3G40fuUiYRuATyA2HelZh4+RKtdzACaIyDUAEB+C+y3EOm2Hze6kqt9T1XPj/72T5fEnItZ4Phafp/yXKX/biVib4HOIdUoAsWlzfyEiJ8WP5a8B/Ef8b4dF5Oz4dKPMKaRU3e4H8P+ltEMTngXwxUQHV3yUGBBr1x6KL4y+ArELFIV4DsAyia2TAomtkfZ+iS2Y7VPVxwGsBXBePLczVPV5xNrNLQCaCnxe8q7U71yfzXK71O9acxCblpSLYdtWRGaq6q9VdT1iC7SeJSLvB9Cjqj8A8EPEv79VE3ZEuMc3AfwfEdmF8ZX1VsTmHz+W8rs7AMyPDxP6Bk4UpMcBvC8+L+pvAfzeyYOmqtKE2PShrnju2hHL4cuIDZ/8Zfx2ewHsTekpvhrA34jI64hdGbwi/vsbEc+wiHQhtkglEBtuuUS4WCWViKp2I1a/7gXwMIA9Jje9F8De+NBKqGoYwPMAHuOQdTITrwuXAPi0iLyB2Hl5BLFdWOx4/NcRy+xvEPuyuCvlbxHEhg//Zfz/UNVDAL6GWHZfB/Caqj4Zv8tt8dv9AsAhO46PvEFVD6rq3QZ/WofYdOK9EtuWc1389xsBfFZEXkJsWkZBI2pUtQvAPyC2lslexKYrnwzgVMRGZ/4KsU69ryHWft4SH7G5B7G5+v2FPC952h2ITRn+TwBHstzu+wCa4rm7BcArFh7brG37ZYktSPk6gCBiC8AuAvArEdmD2Kg5o/LlaXLiuwIRERFZFb/69hqAT6vqG+U+HiIiIqJKwRERREREeRKRdgD/D8Bz7IQgIiIiyg9HRBARERERERFRyXBEBBERERERERGVDDsiiIiIiIiIiKhk2BFBRERERERERCXDjggiIiIiIiIiKhl2RBARERERERFRybAjgoiIiIiIiIhK5v8Hj6Swd2ALFtEAAAAASUVORK5CYII=\n", - "text/plain": [ - "
    " - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "import pandas as pd\n", "import seaborn as sns\n", @@ -1880,7 +1809,9 @@ { "cell_type": "code", "execution_count": null, - "metadata": {}, + "metadata": { + "collapsed": true + }, "outputs": [], "source": [] }, @@ -1901,7 +1832,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 38, "metadata": {}, "outputs": [], "source": [ @@ -1914,12 +1845,12 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 39, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2oAAAEzCAYAAABANfAdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xl8VdW9///XOkNOJiATCVOQIaAMFrGoiAohIFPBqWK9WrW2frFqW60/H3W4t946XGv7uLettbWWohVbsVURQUGQKSAWFRCReUiYCUMmCJnOtH5/JB5IiRIgyT5J3s/HI4+cvfc6OW8gZOVz1tprGWstIiIiIiIiEj1cTgcQERERERGRulSoiYiIiIiIRBkVaiIiIiIiIlFGhZqIiIiIiEiUUaEmIiIiIiISZVSoiYiIiIiIRJnTFmrGmPONMZ+f9HHMGPOAMSbFGLPQGLO99nNycwQWERGJFuojRUSkqZgz2UfNGOMG9gOXAfcBxdbaZ40xjwDJ1tqHmyamiIhIdFMfKSIijelMpz6OAvKstbuBa4HpteenA9c1ZjAREZEWRn2kiIg0mjMt1G4GXq99nGGtLQCo/ZzemMFERERaGPWRIiLSaBo89dEYEwMcAAZYaw8ZY0qttUknXS+x1p4yB98YMwWYAhAXF/fNzMzMxkku0kKEw2FcLq3bI23Ltm3bCq21HZ3O0VzOpo9U/yiiPlLapob2kZ4z+Jrjgc+stYdqjw8ZYzpbawuMMZ2Bw/U9yVo7FZgKMGTIELt69eozeEmRli83N5fs7GynY4g0K2PMbqczNLMz7iPVP4qoj5S2qaF95Jm8hfEfnJjSATAHuKP28R3A7DP4WiIiIq2J+kgREWlUDSrUjDHxwNXA2yedfha42hizvfbas40fT0REJLqpjxQRkabQoKmP1toKIPXfzhVRs8KViIhIm6U+UkREmoLu3hQREREREYkyKtRERERERESijAo1ERERERGRKKNCTUREREREJMqoUBMREREREYkyKtRERERERESijAo1ERERERGRKKNCTUREREREJMqoUBMREREREYkyKtRERERERESijAo1ERERERGRKKNCTUREREREJMqoUBMREREREYkyKtRERERERESijAo1ERERERGRKKNCTUREREREJMqoUBMREREREYkyKtRERERERESijAo1ERERERGRKKNCTUREREREJMqoUBMREREREYkyKtRERERERESijAo1EREREWlW1dXV/OUvf+HQoUMUFhY6HUckKqlQExEREZFmtXDhQl577TWOHj3Kq6++6nQckaikQk1EREREmtXs2bMjj+fMmeNgEpHopUJNRERERJpVOBx2OoJI1FOhJiIiIiIiEmVUqImIiIiIiEQZFWoiIiIiIiJRRoWaiIiIiDSrf79HTfesiZyqQYWaMSbJGPOWMWaLMWazMeZyY0yKMWahMWZ77efkpg4rIiISTdQ/ipydsrKyOselpaUOJRGJXg0dUXsOmG+tvQAYBGwGHgEWW2v7AItrj0VERNoS9Y8iZygQCFBUVFTn3OHDhx1KIxK9TluoGWPaA8OBlwCstX5rbSlwLTC9ttl04LqmCikiIhJt1D+KnJ1Dhw5hra1zrqCgwKE0ItGrISNqvYAjwF+NMWuNMdOMMQlAhrW2AKD2c3oT5hQREYk26h9FzsKuXbsadE6krfM0sM3FwI+ttZ8YY57jDKZxGGOmAFMAMjIyyM3NPZucIi3W8ePH9X0v0jqpfxQ5C0VFRdxyyy0ApKSkcMstt+Dz+fR/QOTfmH8fej6lgTGdgI+ttT1qj6+ipiPKArKttQXGmM5ArrX2/K/7WkOGDLGrV69ulOAiLUVubi7Z2dlOxxBpVsaYNdbaIU7naErqH0XOziOPPMLHH38MwC233MKMGTNIS0vjzTffxBjjcDqRptfQPvK0Ux+ttQeBvcaYLzuZUcAmYA5wR+25O4DZZ5lVRESkxVH/KHLmwuEwmzZtOuV8YWEhBw8edCCRSPRqyNRHgB8DrxljYoB84E5qirw3jDE/APYAk5smooiISNRS/yhyBjZv3syxY8cACHvisC5v5Nonn3zCdddp7R2RLzWoULPWfg7UNzw3qnHjSLR7/vnn2bFjh9MxWoz9+/dTXV3NrFmznI7SYmRlZfHjH//Y6RgiDaL+UeTMrFixIvLYFazk9b9Pjxx/9NFHKtRETtLQfdRE5CxUVlbi9/udjiEiIuK4YDDIokWLvvL6mjVrtJ+ayEkaOvVRBEAjHWfo/vvvp7S0lOeee87pKCIiIo765JNPOHLkCABhTyyuYFWd6+FwmHnz5vG9733PgXQi0UcjaiIiIiLSpKy1zJgxI3IcSOtbb7tZs2ZRUVHRXLFEopoKNRERERFpUitXrmTjxo0AWOMikH5BnevhmAQAjh49yltvvdXs+USikQo1EREREWkyVVVVvPDCC5HjQMcLsL7EOm2quwyOPJ4xYwYFBQXNlk8kWqlQExEREZEm89JLL7Fv3z4ArNuLv8ugU9oE07IIxSUBNYXdr3/9a8LhcLPmFIk2KtREREREpEmsXLmyzlTG6szLsN64UxsaF1U9rsJiAFi7dm2de9pE2iIVaiIiIiLS6Hbu3MlTTz2FtRaAYPuuBNL6fGX7cGJH/J0ujBxPmzatzr5rIm2NCjURERERaVQHDx7k0UcfjazgGI5JoKrXcDDma5/n7zqYYLtOkeOnn36a9evXN2lWkWilQk1EREREGs3Bgwf56U9/ysGDBwGwLg+VfUbXP+Xx37ncVPXOIVy72EhVVRU/+9nP+OKLL5oyskhUUqEmIiIiIo1i9+7dPPDAA5FVG61xUdl7JOH41AZ/DeuNpbLPGMKeWAAqKyv52c9+xqpVq5oks0i0UqEmIiIiIudszZo13HfffSdG0oyLyqxRhJIyz/hrheOSqLxgPGFPzShcVVUVDz/8MLNnz27UzCLRTIWaiIiIiJw1ay3vvPMOP/vZzzh+/HjNOZfnrIu0L4XjkmuKNW98zXE4zG9/+1uef/55AoFAo2QXiWYq1ERERETkrBw/fpwnnniC3/3ud4RCIQDC3ngqLphwTkXal8JxSVT0v4bQSVMnZ86cyU9+8hNtii2tngo1ERERETljmzdvZsqUKeTm5kbOheJTqeg/iXBCWqO9jo2pKfwCyefVee277rqrzmuLtDYq1ERERESkwfx+P1OnTuW+++7jwIEDJ853vICKft/CxiQ0/ou6vVT1zqEq81Js7RL/5eXl/OIXv+DJJ5+ktLS08V9TxGEq1ERERESkQbZs2cKUKVOYMWMG4XAYAOvyUtk7m+oew8DlaboXN4ZAp4FUXPAtwjGJkdNLlizhzjvvZPny5U332iIOaML/TSIiIiLSGhw/fpyXXnqJ2bNnRwo0gGC7TlT1vArra9dsWcKJ6ZQPuJbYvZ/iLdwOQElJCY8//jhXXHEFP/7xj+nUqdNpvopI9FOhJiIiIiL1stayePFi/vjHP1JSUnLivMtDdbchBNL7Qe1UxGbl8VHV8yoCyT2I3fURrkAFAB999BGrV6/m9ttv56abbsLr9TZ/NpFGokJNRERERE6xfft2/vCHP7Bu3bo654Ptu1J13uXY2PYOJTshlJRJ+cDr8e1dRUzhNgCqq6v5y1/+wvz587n33nsZOnQoxoliUuQcqVATERERkYiioiKmTZvG/PnzsdZGzoe9cVR3v4xgck9nRtG+isdHdc8rCaT1IXb3v3BX1oz87d27l0cffZQhQ4Zw77330qtXL4eDipwZFWoiIiIiQnl5OW+88Qb//Oc/qaqqipy3xhBI709118HgjnEw4dcLt8ugYsC1eA9twndgLSZUsyn26tWrueuuuxg/fjx33HEH6enpDicVaRgVaiIiIiJtWHV1Ne+88w6vvfYax44dq3Mt2CGzZkn8uA4OpTtDxkWg00CCqb2J2b8W75GtGCzhcJi5c+fywQcfcN1113HrrbeSlJTkdFqRr6VCTURERKQN8vv9vP/++/ztb3+jsLCwzrVQXDLVmZcS6tDVoXTnxnrjqO4xjEB6P3x7P8VzbD8AgUCAN998k/fee4+bbrqJb3/727Rv7/y9diL1UaEmIiIi0oZUVVXx3nvv8Y9//OOUAi3sS6S6y8UEU3uBafnb7Ybjk6k8fyzuYwfw7VuNu7zmz1tZWcn06dN58803ue6665g8eTLJyckOpxWpS4WaiIiISBtw/Phx3n33Xd544406S+1DzUIh/i4XEUjrCy63QwmbTqh9Fyr6TcJTupuYfZ/hrioFoKKighkzZjBz5kyuueYaJk+erHvYJGqoUBMRERFpxQoKCnj77beZO3cuFRUVda6FvXH4O11IoOP54G7le44ZQzC5B8Gk7niKdxJzYF2kYKuurubNN9/k7bffZuTIkdx000307dvX4cDS1qlQExEREWmFNm3axJtvvsmyZcsIh8N1roVjEmoLtL7gamO/DhoXwdTeBFN64SnZTUzB57grigEIhUIsWrSIRYsWcdFFF3HTTTcxdOhQXK6WPw1UWp429j9TREREpPWqrq5myZIlvPPOO2zduvWU66HYJAKdBhJI7d0qpzieEWMIpvQgmHwe7qN7iTm4AU/Zwcjlzz//nM8//5zOnTtz7bXXMm7cOK0UKc1KhZqIiIhIC7dv3z7mzJnD+++/T1lZ2SnXg+07488YSKhDt+jarDoaGEMoqTuVSd1xlRfWFGzFOzHUbPZdUFDAiy++yEsvvUROTg7XXnst/fr1w+jvUZpYgwo1Y8wuoAwIAUFr7RBjTArwT6AHsAu4yVpb8lVfQ0REpDVSHylO8fv9rFixgrlz57JmzZpTrlvjJpjSE3+nAYTjUx1I2PKEE9Ko6p2N6TaEmMOb8B7Zhgn5gZql/RcsWMCCBQvIysriW9/6FqNHj6Zdu3YOp5bW6kxG1EZaa09ew/URYLG19lljzCO1xw83ajoREZGWQX2kNJv8/Hzmzp3LwoULT9mgGmqW2Pd37EcwrQ/WG+tAwpbP+hKpzryU6i4X4ynOJ+bwZtwVRZHrO3bs4LnnnuNPf/oTI0aM4Fvf+haDBg3SKJs0qnOZ+ngtkF37eDqQizohERERUB8pjaysrIwlS5Ywf/58Nm/efMp1C4Q6dMOf3k/TGxuT20OwY1+CHfviOn6EmCNb8BTlY2wIqBnVXLhwIQsXLqRr166MHz+eMWPGaIl/aRQNLdQs8IExxgJ/ttZOBTKstQUA1toCY4y+I0VEpC1SHylNIhQKsXr1aubPn8+KFSsIBAKntAnHJBJI60MgrQ/Wl+hAyrYjnNiRqsSOkHkp3qI8vIXbIqtFAuzfv59p06bx0ksv8c1vfpNx48Zx5ZVXEhurUU05Ow0t1K6w1h6o7WgWGmO2NPQFjDFTgCkAGRkZ5ObmnnlKkRaqtLSUUCik73uR1u2s+kj1j/JV/H4/x44d49ixYwSDQTp37szkyZMj1y2AOwbricW24L3P/rnqxOO7BiU4F+SMJQApwCUQDmKC1TUftYuPfCk/P59du3bRrl072rdvT1xcnCNppeVqUKFmrT1Q+/mwMWYWcClwyBjTufadws7A4a947lRgKsCQIUNsdnZ2owQXaQlmzZpFaWkp+r4Xab3Oto9U/ygnO3r0KEuWLGHBggVs2VJ/rR+KTyWQlkUwpTfW6wL8tR8t08lLcExbV+5YjkYRcuMp3Y23cDvuYweob+Jp165dGTt2LFdffTWdO3du9ojS8py2UDPGJAAua21Z7eMxwJPAHOAO4Nnaz7ObMqiIiEi0UR8p5yIYDPLJJ5+wYMEC/vWvfxEMBk9pE/bEEkztTSCtD+H4FAdSSoO4PTWbaKf2xlQfr50auR1X9YnFXvbv38/LL7/Myy+/zEUXXcTYsWMZMWIE8fHxDgaXaNaQEbUMYFbtKjYeYIa1dr4xZhXwhjHmB8AeYPLXfA0REZHWSH2knLHt27czf/58Fi9eTGlp6SnXrXERTMokkNqnZmEQl8uBlHK2rC8Rf5dB+Dt/A/fxw3iKtuMt3okJnbjH8MvNtJ977jmGDx/O2LFjGTx4MC79W8tJTluoWWvzgUH1nC8CRjVFKBERkZZAfaQ0VHFxMYsWLWLBggXk5eXV2yaUkFazMEhKT/BoAYoWzxhC7TIItcuguvtQPCV78BZtx330QOR+tqqqKj744AM++OAD0tPTGTNmDOPGjaNbt24Oh5docC7L84uIiIjIVwgEAqxcuZL58+fz8ccfEw6HT2kT9sYTSM0imJZFOC7JgZTSLFwegqm9CKb2wvgr8BTl1RRtlSdGVA8fPszf//53/v73vzNw4EDGjRvHyJEjSUhoSQutSGNSoSYiIiLSiL6c2rho0SKOHj16ynVr3ASTzyOQ1odQ+85gNN2tLbEx8QQ6X0ig00BcFUV4C7fjLcrHhKojbTZs2MCGDRt4/vnnGT58OOPHj+eiiy7S1Mg2RoWaiIiIyDkqLS1l0aJFzJ8/nx07dtTbJpiYTjCtD4HknuCJaeaEEnWMIZyQRnVCGtWZl+I5uhdP4Q48R/dibM3UyOrq6siG2hkZGYwbN46xY8fSpUsXh8NLc1ChJiIiInIWgsEgn376Ke+//z4rV66sf9VGbwKBtCwCaVnY2A4OpJQWweUmmNyDYHIPTKCyZmpk4XbclSWRJocOHWL69OlMnz6dQYMGMW7cOK0a2cqpUBMRERE5A3l5eSxYsICFCxdSUlJyynVNbZRzYb1xBDoNJJAx4CunRq5bt45169bx3HPPkZ2dzdixYxk0aJCmRrYyKtRERERETqO4uJjFixezYMGCr5zaGEpIrxk9S+kJHl8zJ5RW59+nRpburRllO7qvzqqR8+fPZ/78+XTq1IkxY8YwZswYrRrZSqhQExEREalHdXU1K1euZMGCBXzyySdatVGc43ITTOlBMKXHiVUjC7fjrjqxauTBgwd59dVXefXVVxk4cCBjxowhOzub9u3bOxhczoUKNREREZFaoVCIdevWsXDhQpYvX055efkpbWqmNnavndrYRVMbpVnVWTWyvBBv0ZdTI/2RNl+uGvn73/+eoUOHMnr0aC6//HJ8Po30tiQq1ERERKRNs9ayY8cOFi1axOLFiyksLKy3XTAxg2BallZtlOhgDOHEjlQndqQ68zI8pXvxFNVdNTIYDLJixQpWrFhBQkICI0aMYPTo0QwaNAi32+3wH0BOR4WaiIiItEm7d+9myZIlLF26lD179tTbJuxrRyC1N4HULGysppBJlDp5amSgEk9RPt7iPNzlJ950KC8vZ968ecybN4/U1FSys7PJycmhf//+GGMcDC9fRYWaiIiItBkFBQUsWbKEJUuWkJeXV2+bsCeWYEpPAqm9CSd0BP0SKy1IzaqRAwh0GoCpOoq3KA9vUR6u6rJIm6KiImbOnMnMmTPJyMggJyeHnJwcsrKyVLRFERVqIiIi0qodOnSIZcuWsXTpUjZv3lxvG+vyEEzqTiC1N6H2XUHLnEsrYGM74O96Mf4ug3GVH8FblIeneCeuYFWkzaFDh3j99dd5/fXXyczMJDs7m5EjR9KzZ08VbQ5ToSYiIiKtzpEjR8jNzSU3N5eNGzfW28YaN8GkbgRTehHskAlu/VokrZQxhBPTqU5Mp7r7ZbiPFeAp3om3ZFedRUj27t3L3/72N/72t79x3nnnRYq2Hj16OJe9DdNPJBEREWkViouLWbZsGUuWLGH9+vX1trHGEGrfjUBKT4LJ3cGtRUGkjTEuQh26EurQlerzLsd97ADe4nw8Jbsx4WCk2e7du5k+fTrTp0+nZ8+ejBw5kpycHO3R1oxUqImIiEiLdezYMZYvX86SJUv4/PPP693rzGIIte9SW5ydp82oRb7kchNKyiSUlAnhIJ6j+/AU78RTurdO0bZz50527tzJyy+/TN++fcnJyWHkyJFkZGQ4GL71U6EmIiIiLUpVVRUrVqxg0aJFrFq1ilAodEqbmuKsM8GUngSTzsN6Yx1IKtKCuDwEk3sQTO4BoSCeo3trirajezHhE//Htm3bxrZt23jxxRcZOHAgOTk5jBo1ig4dOjiXvZVSoSYiIiJRz1rL+vXrmT9/Prm5uVRUVJzaBgi161RTnCX3wHrjmj+oSGvg9tT8P0rpCaFAzR5txfl4ju7D2BOj1l9urP3CCy9w+eWXM3bsWIYOHYrHoxKjMehvUURERKLWoUOHmD9/PgsWLODAgQP1tgkldCSQ0otgSg9sTEIzJxRp5dxegqm9CKb2gmA1ntI9eIvycR87gOHExtoffvghH374IR06dGD06NGMHz+erKwsh8O3bCrUREREJKp8OXo2c+ZMPvzww3rvOwv72hNIyyKQ0ksbUYs0F4+PYFofgml9ajbWLtmFt3AH7vIjkSZHjx6N7NE2aNAgbrzxRoYNG4bb7XYweMukQk1ERESigt/vJzc3l7feeott27adct26Ywik9CSQ1kcbUYs4zHrjCKT3I5DeD1N5FG/RdryFebgC5ZE269atY926dXTq1Inrr7+eCRMm0K5dOwdTtywq1ERERMRR4XCYRYsWMW3aNA4fPnzK9WD7zgQ6nk8wqTu49KtLS9Zu1cunPV92yfebK440EhvXAX+3Ifi7Xoz7WAHewm14SnZhbM3UyIMHD/KnP/2J6dOn893vfpdvf/vb+HxaffV09NNOREREHPPFF1/wxz/+ka1bt9Y5b42bQFpvAukDCMcnO5RORM7ISXu0GX853sOb8R7ZiitYDUBFRQVTp05l9uzZ3H333YwcORKjkfGvpEJNREREml1FRQW/+c1vWLRoUZ3zYU8sgYwBBDqeryX1RVowG5NQM8rW5SK8RXl4D27AXXUUqFkk6Mknn+Ttt9/m5z//ufZj+wptvlB7/vnn2bFjh9MxpJXasWMH7dq14/7773c6irRSWVlZ/PjHP3Y6hsgZ2b9/P//5n//Jrl27IuescePvNAB/52+AO8a5cCLSuFweAh3PJ5DaB2/hVmL2fxYZYduwYQN33303TzzxBIMGDXI4aPRp84Xajh07+HzDZkLxKU5HkVbI5bd0TUpmTf4hp6NIK+SuKHY6gsgZW7t2LY8//jhlZWWRc4GUnlR3uwTrS3QwmYg0KZerZvGRlF74Cr7Ae2gDxlpKS0t58MEHeeCBB5g0aZLTKaNKmy/UAELxKVReMMHpGNJKDR6UwJp15advKHKG4rbMczqCyBnJz8/n0UcfpaqqCqgZRavqMYxgWh+Hk4lIs/H4qM68hGBSJrE7luAKVhEKhfi///s/OnTowPDhw51OGDVcTgcQERGR1q+srIz/+q//ihRpYW88FRdMUJEm0kaF2nWiov81hOJTI+d++ctf1pkS3dapUBMREZEm99vf/pYDBw4AYF0eKvuOJZzY0eFUIuIk60uk4vxxhH01e6tVVlbyi1/8gmAw6HCy6KBCTURERJrU559/zpIlSyLHVT2v0pL7IlLD46MyaxS2do/EXbt28c477zgcKjqoUBMREZEmEwwGef755yPHgZSeBFN6OphIRKJNOD4Ff5eLIsd//etfKS7WglkNLtSMMW5jzFpjzHu1xz2NMZ8YY7YbY/5pjNFauiIi0uaof/x6M2fOJC8vD6iZ8ljd7RKHE4lINPJnDCDsaw9AeXk5L7zwgsOJnHcmI2r3A5tPOv4V8FtrbR+gBPhBYwYTERFpIdQ/foV9+/bx17/+NXLs7zJIS/CLSP1cbqrOuzxyuGjRIj7++GMHAzmvQYWaMaYb8C1gWu2xAXKAt2qbTAeua4qAIiIiTc0YE2uMuc8Y84Ix5uUvPxrwPPWPX6G0tJRHHnkksspjKC4Zf8aFDqcSkWgW6tCVQEqvyPFTTz1Ffn6+g4mc1dB91H4H/AxoV3ucCpRaa79ckmUf0LW+JxpjpgBTADIyMsjNzT3rsE1hyJAh9L8wQDg2weko0kqlxbu5a5C+v6Txuc4fQ7zPG3U/V1uovwFbgLHAk8Ct1B0l+yqttn88F+FwmP3790f2Q7JAOLYDuLR9a1v3z1Wnb6M+s437xgRcVaUYGwYgNzeXvLw8vF6vw8Ga32l/YhpjJgKHrbVrjDHZX56up6mt7/nW2qnAVIAhQ4bY7Ozs+po55v7772dN/iFteC1N5q5BCUzThtfSBOK2fMA3e2Vw2223OR2lNciy1k42xlxrrZ1ujJkBLPi6J7T2/vFsFRQU8Nhjj7Fz506g5g9f1TuHYEosUO1oNnFeu9M3UZ8puCqOE795LiYcACApKYmnnnqKCy9sW6PyDZn6eAVwjTFmF/APaqZ0/A5IMsZ8Weh1Aw40SUIREZGmF6j9XGqMGQh0AHqc5jnqH//NunXr+OEPfxgp0gCqMy8jmNLDuVAi0uKE41OozMrBmppSpbS0lAcffJD333/f4WTN67SFmrX2UWttN2ttD+BmYIm19lZgKXBjbbM7gNlNllJERKRpTTXGJAM/B+YAm4Bff90T1D+e4Pf7mTp1Kj/96U85evQoANa4qOx5FYFOAxxOJyItUahDVyrPH0fYEwtAIBDgV7/6FU888UTk50xrdy77qD0MPGiM2UHNnPyXGieSiIhI87LWTrPWllhrl1lre1lr0621L57ll2tT/WNeXh733HMPM2bMIByuuack7Iml4vzxBNP6OJxORFqyULtOVPSfRCguOXJu6dKl3HnnnW1iRcgzuqvXWpsL5NY+zgcubfxIIiIizcMY811r7d+NMQ/Wd91a+5uGfJ222D8Gg0FmzJjBq6++SjAYPHG+fWeqelylZfhFpFFYXzsq+k3Et+cTYgq3AVBcXMwjjzzChAkTuOeee2jXriF3P7Y8Wn5JRETasi+Xl2udvXwT2bFjB7/61a/Yvn175Jw1bqozLyGQ3g9MfWuqiIicJbeX6p5XEkzuTuzOj3AFKwGYN28en376KQ899BBDhw51OGTjU6EmIiJtlrX2z7Wfn3A6S0tgreWNN95g6tSphEKhyPlQQkeqel5FOC7JwXQi0tqFkrpTMTAd3+5/4S3ZBUBhYSGPPPIIkyZN4kc/+hE+n8/ZkI1IhZqIiLR5xpiOwP+jZqXHSN9orf2+U5miTVlZGc8++ywfffRR5Jwjy+bbAAAgAElEQVQ1bqq7XlyzYIg5l9veRUQaxnpjqcrKIVi8E9/ulbiCVQC8++67bNmyhV/84hd07Vrv9pUtjn6qioiI1KzM2AFYBMw96UOAPXv2MGXKlDpFWighjYoB1xLofKGKNBFpdsGUnlQMvJ5Aco/Iue3btzNlyhRWr17tXLBGpBE1ERERiLfWPux0iGh06NAhHnroIQ4fPhw558/oT3W3S8DldjCZiLR11htHVe+RhA5vxrf3U4wNU15ezn/+53/yv//7vy1+g2y9BSYiIgLvGWMmOB0i2pSWltYp0qzLQ2XvkVR3H6oiTUSigzEEMvpTccG3CHtr1oeqrq7m0UcfJT8/3+Fw50aFmoiICNxPTbFWZYwpq/045nQop02bNo29e/cCtRtYZ40imNLT4VTSWsTFxWGMIS4uzuko0gqEEztSccGJDbKPHz/Os88+i7XW4WRnT4WaiIi0edbadtZal7U2tvZxO2tte6dzOam0tJQPPvggclzV8ypCHVrHDfrivOTkZJ555hkWLlzIM888Q3Jy8umfJHIaNrYDlX3HYk3NiP+2bdvYsGGDw6nOXpu/R23//v24K44St2We01GklVqy101ceej0DUXOkLuiiP37g6dvKA1ijLkGGF57mGutfc/JPE5buHAhfr8fgFB8KsGUXg4nktYiLi6Oxx9/nMGDBwMwePBgHn/8cR577DEqKysdTictXTghlUBq78jm2O+9916LvVdNI2oiItLmGWOepWb646baj/trz7VZBw8ejDwOJvfQJtbSaKqqqk75xfnCCy+kqqrKoUTS2gRTekQeFxQUOBfkHLX5EbWuXbtysNpD5QW6h1yaRs6gBKatK3c6hrRCcVvm0bVrhtMxWosJwEXW2jCAMWY6sBZ4xNFUDqpz31DNX4tIo4iNjWX9+vWRETWA9evXExsbqxE1aRwn/cyKj493MMi50YiaiIhIjaSTHndwLEWUOPmeIXdZy31HWqJPZWUlTz75JGvXriUYDLJ27VqefPJJFWnSaDzHTvzM6tCh5f44b/MjaiIiIsAvgbXGmKWAoeZetUedjeSsq666ij/+8Y+Ew2E8ZQdxlRcRTkh1Opa0EiUlJTz22GNUVVVpJE0aV8iPt/b+NICcnBwHw5wbjaiJiEibZ619HRgKvF37cbm19h/OpnJWeno6I0aMiBzH7v6XpkBKo6qsrMRaqyJNGpVv7ypMKABAZmYml1xyicOJzp4KNRERkRodaz+7gWHGmBucDBMNvvvd7+J21yxz7S4/QkzBeocTiYh8NffRfcQc2Ro5vuOOO3C5Wm6503KTi4iINBJjzMvAy8C3gUm1HxMdDRUFevfuzR133BE5jtn/Ge6j+x1MJCJSP1N1jLi8ZZHj4cOHM2rUKAcTnTvdoyYiIgJDrbX9nQ4RjW655RY+/vhjNm3ahMESl7eUin4TCcclnf7JIiLNIegnbvtCTKgagJSUFB588EFMC99WRCNqIiIisNIYo0KtHh6PhyeffJK0tDQATMhP3LYFmOrjDicTEQFCAeK2L8RddRQAr9fL008/TVJSy38zSYWaiIgITKemWNtqjPnCGLPeGPOF06GiRVpaGs888ww+nw8Al7+c+K3zMH7tESkiDgoFidu+EM/xQ5FTDz/8MP37t4733VSoiYiI1NyfdhswjhP3p01yNFGU6du3L0899RRerxcAV/Vx4rfMxVVZ6nAyEWmLTKCKuG0L8JQdjJy77777GD16tIOpGpcKNREREdhjrZ1jrd1prd395YfToaLNpZdeyhNPPIHHU3OLu6v6OPGb38N97IDDyUSkLTFVR4nf/G6dkbQpU6YwefJkB1M1PhVqIiIisMUYM8MY8x/GmBu+/HA6VDQaNmwYTz75JLGxscCJe9ZiCr7QPmsi0uQ8xTtJ2PQuruoyAIwx3HPPPdxyyy0OJ2t8KtREREQgDqgGxqDl+U9r2LBh/P73vz+xwIi1+PatJn7zPEztDf0iIo0qWEVs3lLi8pZiQn4AfD4fTzzxBN/5znccDtc0tDy/iIi0edbaO53O0NL07duXF154gccff5wtW7YA4C4/TMLGd/B3uQh/xgBw6dcMETlHNoynKB/fvlW4ApWR0+np6Tz55JNccMEFDoZrWvoJKiIibZ4xpifwY6AHJ/WN1tprnMrUEqSnp/OHP/yBGTNmMH36dEKhECYcwrdvDd5Dm/F3vZhAWhYYTeARkTNkLe6j+/DtW427sqTOpfHjx3PfffeRmJjoULjmoUJNREQE3gFeAt4FdKPVGfB4PNx+++1cfvnl/PKXvyQ/Px8AV6CC2F0r8B7cgL/LRQSTe4BLBZuInIa1uMsOEnNgbZ0VHaFmI+uHHnqIYcOGORSuealQExERgSpr7e+dDtGS9enTh6lTpzJv3jxeeeUViouLAXBXlRKXn0s4JgF/en8CHfuCx+dwWhGJOuEQnuJ8Yg5uxF1ZXOdSbGws3/nOd7jppptISEhwKGDzU6EmIiICzxlj/hv4gJpFRQCw1n7mXKSWx+PxcM0113D11Vfz1ltv8frrr1NRUQHUbJIdu28VvgNrCaT1IZDej3BcksOJRcRpxl+Bt3Ab3kObcQUr61xzu91MmjSJ2267jdTUVIcSOkeFmoiICFxIzYbXOZyY+mhrj+UMxcXFcdtttzFp0iRmzZrF7NmzKS2t2RjbhIPEHN5MzOHNhBLTCaT1JZDSE9xeh1OLSLMJh/Ec3Yu3cBvu0n0YbJ3LsbGxjB07lsmTJ9OtWzeHQjpPhZqIiAhcD/Sy1vqdDtKaJCUlceedd3LLLbewePFi3nzzTXbu3Bm57j5+GPfxw/j2fEwwpSeBtD6EEjPAGAdTi0hTcVWW4D2yHU/RDlzBqlOup6Wlcf311zNp0iTat2/vQMLoctpCzRgTCywHfLXt37LW/nftCln/AFKAz4Db1MGJiEgLtQ5IAg6fyZPURzaMz+djwoQJjB8/njVr1jBnzhw++ugjQqEQUDPK5i3cjrdwO+GYRAKpvQim9iYcl+xwchE5V8ZfjqcoH29xHu6K4nrbDBo0iEmTJpGdnY3Ho3GkLzXkb6IayLHWHjfGeIEVxpj3gQeB31pr/2GMeRH4AfCnJszaZNwVxcRtmed0DGmFXFXHWFt2HnH7S07fWOQM1XR4GU7HaC0ygC3GmFWcuEfNWmuvPc3zWn0f2ZiMMQwZMoQhQ4ZQUlLCokWLmDt3Lrt27Yq0cfmP4yv4Al/BF4TiUgik9iaY0hPra93LcIu0KsFqvCW78BTl4S47SH1j5GlpaYwbN45x48a16emNX+e0hZq11gLHaw+9tR9fztu/pfb8dOAXtMBOKCsry+kI0ort2FHGsdISvtlLv0xLU8jQz7DG898nPTbAlcB/nO5Jrb2PbErJyclMnjyZG2+8ka1btzJ37lyWLl3K8ePHI23clcW49xVj960i1K4TwZReBFJ6gCfWueAiUr9QEM/RPXiK8vEc3Yexp+504vV6GTZsGBMmTGDIkCG43W4HgrYcDRpbNMa4gTVAFvBHIA8otdYGa5vsA7p+xXOnAFMAMjIyyM3NPcfIjevCCy/kwgsvdDqGtFJ//etfCYVCXH/99U5HkVYs2n6utkTW2mXGmIuoKa5uAnYCLzbkuWfbR0Z7/9jcvvnNb3LxxRdTXl5OWVkZx48fp6YOrssCuENYtw/riYF636uXaPXPVadvc9egtrP8emtgQgFMsBpCQQxdgC6ntImPj6d9+/YkJibicrmorKzkww8/bP6wLUyDCjVrbQi4yBiTBMwC+tXX7CueOxWYCjBkyBCbnZ19dklFWqBZs2ZRWlqKvu9FopMxpi9wMzWjZ0XAPwFjrR3Z0K9xtn2k+sevV15ezocffsjixYtZs2YN4fCp785bl5tgh+4E0rIIte+qDbVbgHYNaDNtXXmT55BzYC2u8iN4C3fgKdmJK1hdb7Pzzz+f0aNHk5OT0yaX1m8MZ3S3nrW21BiTCwwFkowxntp3DLsBB5ogn4iISFPaAnwITLLW7gAwxvz0bL6Q+sjGlZCQELl/paioiGXLlrF48WI2btwYaWPCIbwlO/GW7CTsiSWY2otAahbh+FStHCnSyEzVMbxFeXiL8nBVH6u3TWZmZqQ4y8zMbOaErU9DVn3sCARqO6A4YDTwK2ApcCM1q1rdAcxuyqAiIiJN4NvUjKgtNcbMp6ZPa/Bv+Oojm0dqaio33HADN9xwAwUFBSxZsoTFixeTn58faeMKVhFzaBMxhzYRiksimJpFIK0P1hvnYHKRFi4UwFu8E0/hdjzHD9XbJD09nZycHEaNGkVWVhZGb5I0moaMqHUGptfOwXcBb1hr3zPGbAL+YYx5GlgLvNSEOUVERBqdtXYWMMsYkwBcB/wUyDDG/AmYZa394DRfQn1kM+vcuTO33nort956K/n5+SxcuJCFCxdSWFgYaeOuLMW9bzUx+z8jmHwegfR+2p8tSpRd8v3I43arXq73vDjPVVmC9/AWvEU7MKHAKdcTEhLIzs5mzJgxXHjhhbg07bhJNGTVxy+AwfWczwcubYpQIiIizclaWw68BrxmjEkBJgOPAF9bqKmPdFavXr24++67ueuuu1i7di0ffPABy5cvp6qqZiNdY8N4i3fiLd5JKDaJQPoFBNKywB3jcHKRKBQO4SnZhffwlnpHz1wuF5deeiljx45l2LBh+Hw+B0K2LdpRTkRE5CTW2mLgz7Uf0gK43e7I/mwPPPAAy5cv5913361zP5u7qhT3no/x7f8Mf3o/AhkDsF4t8y9COIj3yDZiDq7H5T91IZfMzEwmTpzI1VdfTUpKigMB2y4VaiIiItJqxMfHRxYh2bFjB3PmzGHhwoVUVlYCYEJ+fAXriDm0kUDHC/B3GoiNiXc4tYgDQgG8h7cQc3ADrmBlnUtut5srr7ySa665hosvvlj3nTlEhZqIiIi0SllZWTz44IP88Ic/ZOHChbz11lvs3bsXABMOEnNoA97Dm/F3GoC/8yBwex1OLNIMbLhmBG3/mlOW1k9KSuL6669n4sSJWlI/CqhQExERkVYtPj6ea6+9lokTJ7Js2TJee+018vLyADA2hK/gC7yFeVRnXkIwpacWHZFWy112EN+ej3FXFNc5n5aWxs0338zEiROJjdWU4GihQk1ERETaBLfbTU5ODiNHjmTlypW88sorbNu2DQBXoJy4/FyCR7ZQ1eNKbGx7h9OKNKJgNbF7PsFbtKPO6YyMDG677TbGjBlDTIwW2Yk2KtRERESkTTHGMGzYMIYOHcqCBQuYOnUqJSUlAHjKDpKwcTZV5w0lmJql0TVp8dzHCojdubzOQiExMTHceuut3HzzzVq9MYqpUBMREZE2yeVyMX78eK666iqmT5/OzJkzCYfDmHCAuJ0fEijdS1WPK8CjX2SlBbJhYvZ/RkzBF5z8dsPw4cO599576dSpk2PRpGFUqImIiEiblpiYyH333ceoUaN4+umn2bdvHwDekl24K4qpzBpFOD7Z4ZQiDWcClcTmLcVTdjByrl27djz00EOMGDHCwWRyJrSNuIiIiAhwwQUXMHXqVCZOnBg556o+Rvzmd/EU5TuYTKThXMcPE79xdp0i7eKLL+bll19WkdbCaERNREREpFZ8fDwPPfQQF198Mb/+9a+pqqrChIPE5efiP36I6sxLweV2OqbIqazFe3gzvr2fYmwYqLkf88477+S73/0uLpfGZ1oa/YuJiIiI/JucnBz+9Kc/0a1bt8i5mMObid8yF1Nd5mAykXqE/MTmLSV2z8eRIq1du3Y8++yz3H777SrSWij9q4mIiIjUo2fPnrz44osMHz48cs5dXkjCxtl4jmwDax1MJ1LDfayAhI2z8Zbsipzr27cvU6dO5bLLLnMumJwzFWoiIiIiXyExMZEnnniCH/3oR7jdNVMeTchP3K4VxG1boNE1cU7Qj2/XCuK3vo/rpO/D6667jj/84Q907tzZuWzSKHSPmoiIiMjXMMZw44030q9fP/7nf/6HAwcOAOA5doCEDbPwd/4G/owB4PY6nFTaBBvGU7gD3/7PcAUqIqcTExP56U9/yqhRoxwMJ41JI2oiIiIiDTBgwABefvllbrrppsg9PyYcxLf/MxK+eAvv4c0QDjucUlota/GU7CZ+wzvE7VpRp0gbPnw406dPV5HWymhETURERKSBYmNjuffee8nOzubXv/41u3btAsAVrCR290piDm7A33kQgdRe4NKvWdIIrMV9dC++A+twlx+pcyk5OZn777+f7OxsZ7JJk9JPEBEREZEz1L9/f6ZNm8b8+fN55ZVXKCwsBMBVXUbsrhXE7FtNIP0CAun9sN44h9NKixQK4C3cTsyhTbiqj9W5FB8fz3e+8x0mT55MfHy8QwGlqalQExERETkLHo+HiRMncvXVVzNr1ixee+01yspqFnVwBavwHficmIIvCKb2xp/ej3B8KhjjcGqJdqbqGN4jW4k5shUT8te55vV6ue6667j11ltJSkpyKKE0FxVqIiIiIufA5/Nx8803M3HiRN577z3efvttDh8+DICxYbyF2/EWbicUl0wgrS/B1F4aZZO6QkE8JbvwFm7DU3bwlMsJCQlMmjSJG264gfT0dAcCihNUqImIiIg0gsTERG6++WZuvPFGli9fzptvvsnmzZsj192VJbj3foLdt4pgUncCaX0IdegKRmu7tUnW4io/UlPIF+VjwoFTmnTt2pVvf/vbjBs3TlMc2yAVaiIiIiKNyOPxkJOTQ05ODhs3bmTOnDksW7aMqqoqoHaUrWQX3pJdhD2xBFN6EkjtTTiho6ZGtgGuylI8xfl4i/Lq7H8Wue5ycdlllzFx4kSGDh0a2b9P2h4VaiIiIiJNZMCAAQwYMICf/OQnLF26lPfff5+NGzdGrruCVcQc3kzM4c2EYxIJpPYimNqbcFyyg6mlsRl/OZ6ifLzF+bgriuptk5mZyfjx4xkzZgxpaWnNnFCikQo1ERERkSaWkJDAxIkTmThxIrt372bevHksXrw4slokgMt/HF/BF/gKviAUl0wwpReBlJ7Y2PYOJpezZQKVeEp24ynOx112kPrGShMSEhgxYgTjx49n4MCBGI2oyklUqImIiIg0o/POO4977rmHKVOm8MUXX7Bo0SKWLVvG8ePHI23clSW496/Bt38NoYQ0Aim9Cab0wMYkOJhcTivox1O6G29RPu5jBzDYU5p4vV4uv/xyRo8ezWWXXYbP53MgqLQEKtREREREHOB2uxk8eDCDBw/m/vvv59NPP2Xx4sV89NFH+P0nlmV3lxfiLi/E7v2EULtOBFN7E0juAR79gh8VwkE8pfvwFOXhOboXY8OnNHG5XAwePJjRo0dz1VVXkZiY6EBQaWlUqImIiIg4LCYmhiuvvJIrr7ySiooKPvroI5YsWcKqVasIBoMAGMBTdhBP2UF8u1cS7JBJMLU3waRu4NKvdM3KWtxlB/EU5eEt2XXKfmdfGjhwIDk5OYwYMYLU1NRmDiktnf5Xi4iIiESR+Ph4rr76aq6++mqOHTvG8uXLWbJkCZ9//jnhcM1ojbFhvKW78ZbuxrpjCCT3IJDWh3BiulaObEKuylI8tcvpuwLl9bbp27cvOTk5jBw5koyMjGZOKK2JCjURERGRKNW+ffvIIiRFRUUsXbqUhQsXsnXr1kgbE/ITU7iNmMJthGI7EOjYl2BqljbVbiyhQM1m1Ee24jl+uN4mXbp04eqrr2bUqFF07969mQNKa6VCTURERKQFSE1N5cYbb+TGG29kz549LFq0iEWLFnHgwIFIG3fVUdx7V2H3ra7ZVLvj+YTad9Uo21lwlRfiPbIFb9HOejej7tChAzk5OYwePZr+/ftrxUZpdKct1IwxmcCrQCcgDEy11j5njEkB/gn0AHYBN1lrS5ouqoiISPRQ/yhO6t69O9///ve588472bRpE++//z6LFy+msrISAGMt3pLdeEt2E45tjz+9P4G0PuD2Opw8yoXDeEp3EXNwE+7yU0fP3G43V1xxBePHj+eSSy7B49GYhzSdhnx3BYH/z1r7mTGmHbDGGLMQ+B6w2Fr7rDHmEeAR4OGmiyoiIhJV1D+K44wxkU217733XpYtW8bcuXPZsGFDpI2r6hixez7Gt38NgbS++DP6Y33tHEwdhYJVxBzZivfQlnrvPevevTsTJkxgzJgxpKSkOBBQ2qLTFmrW2gKgoPZxmTFmM9AVuBbIrm02HchFHZGIiLQR6h8l2sTHxzN+/HjGjx/P7t27mTt3LnPnzqW8vKbwMKEAMYc24j20iWBKT/xdBhGOS3Y4tbNMoIKYgg14j2zBhIN1rnk8HnJycpg0aZI2oxZHnNF4rTGmBzAY+ATIqO2ksNYWGGPSGz2diIhIC6D+UaLNeeedx7333sv3vvc9PvjgA2bOnMnevXsBMFi8xfl4ivMJJtcWbPFta5TI+MuJKViP98hWjA3VuZacnMw111zDNddcoyX1xVENLtSMMYnATOABa+2xhr6rYIyZAkwByMjIIDc39yxiirRMpaWlhEIhfd+LtGLqHyXaJSUl8YMf/IDy8nJKSkqoqKg4pY11hwnHxINxN1uuf6468fiuQQnN86LWYgIVmKAbM+Ai4KLIJZ/PR3JyMu3atcMYw/r165snk8hXaFChZozxUtMJvWatfbv29CFjTOfadws7A/WuV2qtnQpMBRgyZIjNzs4+99QiLcSsWbMoLS1F3/cirZP6R2mJNm/ezKuvvsrKlSvrnLfGEOh4Af4uFzXL0v4n3yU3bV39e5I1mnCQmIMbiTn4BSZUdwXH888/n9tvv51hw4ZpeqNElYas+miAl4DN1trfnHRpDnAH8Gzt59lNklBERCQKqX+Ulqpfv3788pe/ZNu2bbz66qusWLECqFkpMubwZryFO/B3/gb+TgPB1XwjbE3CWjxFefj2rTllkZB+/frxve99j0svvVQFmkSlhoyoXQHcBqw3xnxee+4xajqgN4wxPwD2AJObJqKIiEhUUv8oLVrfvn15+umn2bx5My+++CLr1q0DwIQD+PavwVu4narzLifUoavDSc+Oq6IY3+6VeI4fqnM+MzOTu+++myuuuEIFmkS1hqz6uAL4qu/iUY0bR0REpGVQ/yitRb9+/fjd737HypUr+fOf/8zu3bsBcFUfI37bAgLJPajufhk2ppnuIztXoQC+/Z/hPbQJg42cTk5O5s4772TChAna/0xaBH2XioiIiLRxxhiGDRvGpZdeypw5c3jppZciy/p7S3bhObqf6u6XEkjrC1E8CuU+up/YXStw+U9Mc3S73UyePJnbb7+d+Ph4B9OJnBkVaiIiIiIC1OwddsMNN5Cdnc2f//xnFixYANRMh4zd9RGe4nyqelwZfRtmB6vx7f2UmMLtdU5fdNFFPPDAA/To0cOZXCLnwOV0ABERERGJLikpKTz66KP8/ve/JzMzM3Lec6yAhA2z8BTucDBdXe6ygyRsfKdOkda+fXsee+wxfvvb36pIkxZLhZqIiIiI1Osb3/gG06ZN4+abb8blqvm10YSDxO1cTmzeMgj5nQtnw8Ts/4y4Le/Xmeo4YsQIXnnlFcaMGaPFQqRF09RHEREREflKPp+PH/7whwwfPpxnnnmGffv2AeAtzsNdfpjKrNGE45ObNZMJVBKbtxRP2cHIufbt2/Pggw9q71JpNTSiJiIiIiKn1b9/f6ZOncr48eMj51zVZcRvfhd3yZ5my+GqKCJ+05w6RdqgQYOYNm2aijRpVVSoiYiIiEiDxMfH8/DDD/Pzn/+c2NhYoHYq5I5FeAvWN/nru0v3EL95bmSqozGG73//+/zmN78hPT29yV9fpDmpUBMRERGRMzJq1CheeOEFOnXqBNRsKBi7bxUx+9c22Wt6incRt2MxJhwEaorGZ555httvvx23291kryviFBVqIiIiInLGevXqxf/f3v3HVlXecRz/fO8Pys9AuQ21habU8WNhtgppsdfNSYYkXfxDFpdsxaydOuv+GCEzS3R/zKhxiYY/MCFzhiymJZkajVvUhZShE9wfc2OyEDSoFBaxUAWK/OiUwm2f/XEPl9vS0tJ7es+5ve/XPz3P0+ec84Vw8/DJc+5znn/+edXV1WX6So7/R9O635ecu8aZ1y92+oimH35H5l23oqJCzz33nJLJpK/3AcKEoAYAAIAJmTdvnjZv3qyGhoZMX0nPfsVPfuTbPaLnejT9yB6Z0iGtqqpKW7duZdt9THkENQAAAExYSUmJnnrqKTU2Nl7pO/qeoud6cr629fcNWUmrrq7Ws88+q7KyspyvDYQdQQ0AAAA5KSkp0RNPPKFly5ZJksy5dMC6dGHiF3WDmnH4b4qk0tcoLS3V5s2blUgk/CgZCD2CGgAAAHJ2eWWttDT9TrVI6oJKuvdO+HrxEwcV/d8pSVIsFtOTTz7Jzo4oKgQ1AAAA+GLBggV65JFHMu34qUOKZr3vbLzs4lcq6X4/025paVFtba0vNQKFgqAGAAAA3zQ2Ng558fREtuyf9vmBzDb81dXVam5u9qs8oGAQ1AAAAOCrhx56SJFI+r+ZsfM9ivSdGP/JqX7FT3485FrxeNzvEoHQI6gBAADAVxUVFVq7dm2mPe3EwXGfGz91KLOaVlNTM2Q3SaCYENQAAADgu3vuuSdzHPvyU2ng0rjOi/ceHnKNyytzQLHhXz4AAAB8t3z58sxLqW0wpdiZo2OeE/n6jKJf9UqS4vH4kO+6AcWGoAYAAADfmdmQxx9jX3465jnZY5LJpGbPnj0ptQGFgKAGAACASXH77bdnjmNnuyXvu2ejiZ25EtSyzwWKEUENAAAAk6K6uloLFy6UlH788VrvVLNLX2VecB2JRNhEBEWPoAYAAIBJYWa67bbbMu3Ymc9GHRs90505rqur05w5cya1NiDsYkEXgMKydetWdXV1BV1Gwejq6lIqldKmTV+vbZYAAAisSURBVJuCLqVgLFmyRBs3bgy6DACAT5LJpF599VVJUuzsZ+p3jZLZVeNiZ6+EOFbTAFbUgEk1Y8YMTZs2LegyAAAITG1trWbNmiVJivT3KXLhzNWDBgcUO3ss08xehQOKFStquC6sdFyf3t5ePfzww3rssceUSCSCLgcAgLyLx+Oqr6/Xnj17JKUff7w4o3TImOj5zzMvua6srFRVVVXe6wTChhU1YBJ1dHTo6NGj2r59e9ClAAAQmGQymTmOeu9TO99wv370s40633D/kHesJZNJ2QiPRgLFhqAGTJLe3l51dnbKOafOzk719vYGXRIAAIFobGzMhK9o30nZpQtXfunckE1GeOwRSCOoAZOko6NDg4ODkqSBgQFW1QAARWvevHlasWKFJMnkFD135ftokQtnFbnYJ0maOXOm6urqAqkRCBuCGjBJ3nrrLaVS6eftU6mUdu3aFXBFAAAE59Zbb80cZ6+gRbN2e6yvr1c8Hs9rXUBYjRnUzOwFMzthZh9k9c03s11mdsj7WXqtawDF6M4771Q0GpUkRaNRrVu3LuCKAPiNORIYv+wt96PnjkvOSZJiZ49n+levXp33uoCwGs+KWrukpmF9j0p62zm3VNLbXhtAltbWVjlvEnLOqaWlJeCKAEyCdjFHAuOyZMkSzZ07V5IUSV1Q5OvTktI7Pl7W0NAQSG1AGI0Z1Jxz70o6Paz7bkkd3nGHpPU+1wUAQOgxRwLjF4lEtGrVqkw7ei69Jb+5AUnSokWLVF5eHlR5QOhM9Dtq5c65Hknyfi7wryRgaujo6FAkkv6IRSIRNhMBigdzJDCK7I1Con1fSAOXRvwdgDy88NrM2iS1SVJ5ebl279492bcEQmHnzp1DNhPp7OzUypUrA64KQFgwP6IYzZw5Uxs2bJAkOYsoMWdGpn3DDTfwOQCyTDSofWFmFc65HjOrkHRitIHOuW2StklSfX29W7NmzQRvCRSWffv2aceOHUqlUorFYmpqahL//oGiMK45kvkRxSiVSumuu+5Sf3+/JKl5wwa99OKLkqT29nYtXrw4wOqAcJnoo49vSGr1jlslve5POcDU0dramnn0MRqNspkIUDyYI4FRxGIxLV26NNM27+f06dNVVVUVTFFASI1ne/6XJP1D0nIz6zazByQ9LWmdmR2StM5rA8iSSCTU1NQkM1NTU5MSiUTQJQHwGXMkcP1uvPHGq/pqamoyr7QBkDbmo4/OueZRfrXW51qAKae1tVX79+9nNQ2Yopgjges30uONNTU1+S8ECLmJPvoIYBwSiYTuu+8+VtMAAPCM9IjjokWLAqgECDeCGgAAAPKmoqLiqr7KysoAKgHCjaAGAACAvBnppdYLFvC6QWA4ghoAAADyJh6Pa+7cuUP6ysrKAqoGCC+CGgAAAPKqtLR0SHv+/PkBVQKEF0ENAAAAeTV8K/5YbMyNyIGiQ1ADAAAAgJAhqAEAAABAyBDUAAAAACBkCGoAAAAAEDIENQAAAOTV8O35AVyNoAYAAIC8am5uzhy3tbUFWAkQXuyFCgAAgLyqr6/Xli1bdOzYMTU1NQVdDhBKrKgBAAAgr8xMK1eu1OzZs3mHGjAKghoAAAAAhAxBDQAAAABChqAGAAAAACFDUAMAAACAkCGoAQAAAEDIENQAAAAAIGQIagAAAAAQMgQ1AAAAAAgZghoAAAAAhAxBDQAAAABChqAGAAAAACFDUAMAAACAkCGoAQAAAEDIENQAAAAAIGQIagAAAAAQMgQ1AAAAAAiZnIKamTWZ2cdm1mVmj/pVFAAAhY45EgCQiwkHNTOLSvqdpO9LWiGp2cxW+FUYAACFijkSAJCrXFbUVkvqcs4dcc5dlPSypLv9KQsAgILGHAkAyEkuQW2hpM+y2t1eHwAAxY45EgCQk1gO59oIfe6qQWZtktq8Zp+ZfZzDPYFCVCbpVNBFAHlWHXQBARtzjmR+BCQxR6I4jWuOzCWodUuqymovknR8+CDn3DZJ23K4D1DQzOzfzrn6oOsAkFdjzpHMjwBzJHAtuTz6uFfSUjOrMbNpkn4s6Q1/ygIAoKAxRwIAcjLhFTXnXMrMfiFpp6SopBeccx/6VhkAAAWKORIAkCtz7qqvlQHwkZm1eY84AQCALMyRwOgIagAAAAAQMrl8Rw0AAAAAMAkIaoDHzH5gZs7Mvhl0LZJkZj83s5ag6wAAAED+8egj4DGzVyRVSHrbOfd4wOUAAACgiLGiBkgys9mSvi3pAaW30ZaZrTGzPWb2ipl9YmZPm9m9ZvYvMztgZt/wxrWb2e/N7B0zO2Jmd5jZC2Z20Mzas+7R7J33gZk9k9XfZ2a/NbP9ZvaemZV7/Y+b2a+84wfNbK835jUzm5m/vx0AAADkG0ENSFsvqdM594mk02a2yuu/WdImSbWSfiJpmXNutaQ/SNqYdX6ppO9J+qWkNyVtkfQtSbVmdouZVUp6xhtzi6QGM1vvnTtL0nvOuZslvSvpwRHq+5NzrsEbc1DpQAkAAIApiqAGpDVLetk7ftlrS9Je51yPc65f0mFJf/X6D0hanHX+my79HPEBSV845w445wYlfeiNa5C02zl30jmXkvRHSd/1zr0o6S/e8fvDrnvZTWb2dzM7IOlepUMgAAAApqgJv/AamCrMLKH0StdNZuaUfjmtk7RDUn/W0MGs9qCGfn76RxiTPS51jRIuuStfFh3QyJ/LdknrnXP7zeynktZc8w8FAACAgsaKGiD9UNJ251y1c26xc65K0n8lfcfHe/xT0h1mVmZmUaVX7PZcx/lzJPWYWVzpFTUAAABMYQQ1IB2a/jys7zVJG/y6gXOuR9KvJb0jab+kfc6516/jEr9ROuztkvSRX3UBAAAgnNieHwAAAABChhU1AAAAAAgZghoAAAAAhAxBDQAAAABChqAGAAAAACFDUAMAAACAkCGoAQAAAEDIENQAAAAAIGQIagAAAAAQMv8H1Ugwh+QDPLUAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3AAAAE3CAYAAADrKKMqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xd4XdWd7//3Pl1dsiy54V427r03jOkJBEggIRMI5JJMpuaZTPil3JDkhptJMsydyZRkQgoDAYKpJhCajXGT5Y5xwfZ2k3uTZPVy6v79ceRjyzZYsiXtc3Q+r+fhkfbaS+KDLc7S96y11zJs20ZERERERESSn8vpACIiIiIiItI2KuBERERERERShAo4ERERERGRFKECTkREREREJEWogBMREREREUkRKuBERERERERShAo4ERERERGRFKECTkREREREJEV4LtfBNM1BwGvnNeUDuZZl9TBNcwTwNFAIVAIPWJa1tzOCioiIJBuNkSIi0tUuW8BZlnUQmHD22jTNX5z3db8GfmlZ1rOmaX4JeAK4vhNyioiIJB2NkSIi0tUM27bb3Nk0TR9wDLgZOArsAQoty4qapukm/g7jcMuyyjsjrIiISLLSGCkiIl3hsjNwF7gDOGZZ1gemaU5u+TwK0DJAHQf6A20ZnPzAVOAEEG1nDhERSR1uoA+wEQg6nKUzddQYqfFRRCR9tHuMbG8B9xXgyXZ+zceZCqzuoO8lIiLJby5Q4nSITtRRY6TGRxGR9NPmMbLNBZxpmn2B+cD9LU1HgH6mabrPWx7St6W9LU4AVFU1EIu1fRmnSKorLMymsrLe6RgiXcblMigoyIKW1/3uqIPHSI2PkpY0Pko6upIxsj0zcA8Cb1qWVQlgWdZp0zQ/BO4Dnm35uKUda/ujALGYrQFK0o5+5iVNdeflgA/ScWOkxkdJW/qZlzTW5jGyvQXc31/Q9nXgadM0fwBUAQ+04/uJiIh0Fw+iMVJERLpAu3ah7GCDgLLKynq92yJppagoh/LyOqdjiHQZl8ugsDAbYDBw0Nk0KWEQGh8lDWl8lHR0JWOkqzMDiYiIiIiISMdRASciIiIiIpIiVMCJiIiIiIikCBVwIiIiIiIiKUIFnIiIiIiISIpQASciIiIiIpIiVMCJiIiIiIikCBVwIiIiIiIiKUIFnIiIiIiISIpQASciIiIiIpIiVMCJiIiIiIikCBVwIiIiIiIiKUIFnIiIiIiISIpQASciIiIiIpIiVMCJiIiIiIikCBVwIiIiIiIiKUIFnIiIiIiISIpQASciIiIiIpIiVMCJiIiIiIikCBVwIiIiIiIiKUIFnIiIiIiISIpQASciIiIijquqqqKurtbpGCJJTwWciIiIiDhq+/atPPTQQ/zjP/4te/daTscRSWoq4ERERETEUS+99DzRaJRIJMLixS85HUckqamAExERERFHHT16OPH5wYNlDiYRSX4q4EREREQkadi27XQEkaSmAk5EREREkoZhGE5HEElqKuBEREREJGloBk7kk6mAExEREZEkogJO5JOogBMRERERx2jGTaR9PG3pZJpmAPg34AagGVhrWdbXTNMcATwNFAKVwAOWZe3trLAiIiLJROOjyNWrq6trdR0MBgmHQ3i9PocSiSS3ts7A/TPxgWmEZVljgUdb2n8N/NKyrBHAL4EnOj6iiIhI0tL4KHKVKisrLmo7c6bSgSQiqeGyBZxpmtnAA8CjlmXZAJZlnTJNsxiYBDzf0vV5YJJpmkWdFVZERCRZaHwU6RinTp24qO3kyZMOJBFJDW1ZQjmU+PKPH5qmuQCoB74PNAHHLMuKAliWFTVN8zjQHyhva4DCwux2hxZJdUVFOU5HEJGrp/FRpANUVZ2+qK2mplxjpcjHaEsB5wGGAFssy3rENM3pwBvAPR0RoLKynlhMD69K+igqyqG8vO7yHUW6CZfL6K7FiMZHkQ6we/eei9p27tzNvHkaK6X7u5Ixsi3PwB0CIrQsBbEsaz1QQfwdxn6maboBWj72BY60K4GIiEhq0vgocpVisRj791+8v8++fdrzR+TjXLaAsyyrAlgO3AjQsrNWMbAH+BC4r6XrfcTfhWzz8hAREZFUpfFR5OodOXKIxsZGAAy3Dww3EN/E5PTpU05GE0labTpGAPg68KRpmv8PCAP3W5ZVbZrm14GnTdP8AVBF/GFuSSNr1qyipGSl0zFSRk1NNR6Pm6wsretvqzlz5jN79jynY4h8HI2PIldhy5bNic/tWBTDm4UdqgXgww83c9NNtzkVTSRptamAsyzrAHDdJdp3A9M7OJNIt1VTU4NhoAJOpJvQ+Chy5WzbZvPmDec1RLHD9YnLTZs2qIATuYS2zsCJXNLs2fM0O9IOP//5Y3i9br75ze85HUVERMRR+/fv5dixo60b7RhgADb79u3h6NEjXHNNfyfiiSStth7kLSIiIiLSYZYtW3LJdk/ONYnP33//0n1E0pkKOBERERHpUkePHmHDhrWXvOctGJb4fPXqFZSXX3xOnEg6UwEnIiIiIl3Gtm1eeWURth0/59Cd1afVfXdmMe6MngBEo1EWL36pyzOKJDMVcCIiIiLSZTZsWMvWrVsS1/7ica3uG4aB77y2devWsG3bFkQkTgWciIiIiHSJqqoqnnvuqcS1N38o7kDBRf08mcV4cgckrp966nfU19d1fkCRFKACTkREREQ6XSgU4r/+6/9RXx8/KsDwZOIvnvCx/f29JmO4/QBUV1fxq1/9O5FIpEuyiiQzFXAiIiIi0qlisRj/8z+/oazsQEuLQaDvdAy392O/xuXxE+gzLXG9e/dOnnvuqcSzcyLpSgWciIiIiHSaWCzGH/7we9avL020+XtNxJPV67Jf68nph69obOJ65cr3eeGFZ1XESVpTASciIiIineJs8bZq1fJEmzd/GN6C4W3+Hr7CUXhyByaulyx5m0WLVMRJ+vI4HUBEREREup9gsJnf/OaXbNmyOdHmyRuEv/ckDMNo8/cxjPhyy2Y7SqTuKABLl75NXV0NDz30NbxeX4dnF0lmmoETERERkQ5VVXWGn/70xxcVb4E+0zCM9v/6aRguAv1m4cm5JtG2bl0pjz/+T9TW1nZIZpFUoQJORERERDrMRx9t5//8n//N4cMHE23eHtdecfF21tkizps/NNG2b98efvzj/83evdbVRBZJKSrgREREROSqRaNRXn31Rf71X39GbW1NS6uBv/dUAr0mXFXxdpZhuPD3noK/eGKi7cyZSn7+88d4883XicViV/3vEEl2egZORERERK7KyZMnePLJJ9i3b0+izXAHCPSb2abdJtvDMAx8hSYuXw5Nx9dBLEQsFuOVVxaxc+d2Hnroa/TsWdSh/06RZKIZOBERERG5IrFYjCVL3uKHP/xOq+LNndmLzCE3d3jxdj5PTl+yhtyMK6Nnom3Xro949NFvs2LFMu1SKd2WZuBEREREpN2OHTvK00//rlXhBga+ojH4Ckd2yJLJy3F5s8gceD2h8u2EKncDNsFgM3/4w+/ZuHEdDzzwFXr16tPpOUS6kgo4EREREWmz5uZmXn/9VZYufZtoNJpod/nzCfSdjjtQ0KV5DMOFv3g8npx+NB9fTyxUB5ydjfsOt912O5/61B06bkC6DRVwIiIiInJZtm2zefNGFi16hjNnKs+7Y+DrOQpfz1EYhtuxfO6MnmQOvplg+Q7CZyzAJhIJ8/rrr7Ju3Rq++MUHGDt2QrvOoBNJRirgREREROQTHTx4gEWLnmXPnt2t2t2ZRfh7T8Htz3MoWWuGy0Og1wS8uQNoPrmJWPMZAE6fPsUvfvE4o0eP5fOf/xLXXNPf4aQiV04FnIiIiIhcUlXVGV599UVKS1e32hTEcPvxF0/AkzcoKWe03Bk9yBx0A+HqAwRPb4VYGIifUffDH36H+fOv5847P0dubnIUniLtoQJORERERFqpr6/jrbdeZ9myJYTD4fPuGHgLhuMvGo3h9juWry0Mw4WvYBienGsIlW8nXH0AsLFtmxUrlrF2bQk33ngrt9zyaTIzM52OK9JmKuBEREREBIhvULJkyVu8++6bNDU1tbrnzu5LoHgCLn+uQ+mujMsTINBnKt6C4QRPbyHacAqAYDDIn//8GsuXL+W22+7g+utvwu9P7qJUBFTAiYiIiKS9xsZGli1bwtKlb1FfX9/qnitQEN/lMau3Q+k6hjuQT0b/64jWnyBYvpVYsAaAhoYGXnrped599y1uueVTXHfdDQQCAYfTinw8FXAiIiIiaaq+vo6lS9/hvffepampsdU9ly8XX9FYPDnXJOVzblfCMAw8OX1xZ/cmUnuYYPl27HADALW1Nbz44h95663XufHG21i48CYtrZSkpAJOREREJM1UVJSzdOk7rFq1nGCwudU9w5uFv+folg1KOv8wbicYhgtv3iA8uQMIVx8gVPERdiS+ZLS+vp7Fi1/knXf+zHXXLWThwpvo0aPQ4cQi56iAExEREUkT+/fv5d1332Lz5g2tdpUEMHw5+AtH4ckb2G0Ltwud3ejEmzeYcE0ZocpdiRm5pqZG3n77DZYseYtp02Zy0023MXDgIGcDi6ACTkRERKRbi0QibN68gWXLlrBv356L7rv8efgKR+HJ7Z82hduFDJc7XsjlDyFSc4hg5U7sUB0A0WiUtWtLWLu2hGuvHcXChTcxYcJk3G7nDi2X9KYCTkRERKQbqqysYOXK91m16n1qa2svuu/O6oWvx7W4s3p3m2fcrpZhuPDmD8aTN5BI/XHClRbRpvLE/d27d7J7904KCnowf/71zJu3gPz8AgcTSzpSASciIiLSTcRiMT76aDsrVrzHhx9+cNEySXDhyRsQL9wC+Y5kTAWG4cKbcw3enGuINlUSOmMRqT0CxP88q6rO8NprL/PGG4uZOHEKCxbcgGmOxOVKzxlM6VptKuBM0zwINLf8A/Bty7LeNU1zBvAEkAEcBL5kWdbpjo8pIiKSnDRGSjKoqCinpGQlJSUrOXOm8qL7hicDb/5QvPlDcXkzHEiYutwZhWT0m0WsuIFw1X7C1fuxo0Egvrxy06b1bNq0nqKiYubOvY7Zs+dTUKBZOek87ZmB+5xlWTvOXpimaQDPAg9allVimub3gZ8BX+ngjCIiIslOY6R0uXA4zIcfbmbVquXs3LnjErNt4M7shbdgGJ6cfmn7fFtHcXmz8BePw1c0mkjtUcJVe4k2VSTul5ef5tVXX2Tx4pcYN24C8+YtYOzYCXg8WvAmHetqfqKmAM2WZZW0XP+a+DuMGpxERCTdaYyUTmHbNgcPlrFmzUrWry+loaHhoj6G24cnbxDe/GG4/bkOpOzeDMONN28g3ryBRJurCVfvJ1xzEGJhIP53tHXrFrZu3UJOTi4zZ85m9uz59O8/wNng0m20p4B7ruUdxRLge8AA4NDZm5ZlVZim6TJNs4dlWWfa+k0LC7PbEUEktXm98R2riopyHE4iIh2sw8dIjY9yvqqqKpYvX86yZcs4fPjwJfu4s3rjzR+CJ7sfhks7JHYFdyAfd+/J+IvHE6k7Srj6ANHGcyul6+pqWbLkbZYseZshQ4awcOFC5s+fT15enoOpJdW1tYCba1nWEdM0/cAvgP8CFndEgMrKemKxi6f8RbqjcDiK1+umvLzO6SgiXcblMrp7MdIpY6TGRwmHQ2zZ8gGlpavYsWMbsVjsoj6GJxNv/mC8eYNx+br1/2dJzXB58OYNwps3iFiojnD1AcI1BxOHgwMcOHCAAwcO8OSTTzJu3ERmz57LuHETtcQyzV3JGNmmnxjLso60fAyapvkr4HXg34GBZ/uYptkTsNsz+yYiIpLqNEZKR7Jtm/3791JaupoNG9bS2Nh4cSfDjSe3P968wbgzi3UEQJJx+XLwF4/HVzSWaMMpwjVlROqOgh0vwKPRKFu2bGLLlk1kZ2czffosZs2ax6BBg/V3KW1y2QLONM0swGNZVk3L8pAvAB8Cm4EM0zTntKzx/zrwYqemFRERSSIaI6WjVFZWUFpaQmnpak6dOnHJPu6MovgZZTn9MdzeLk4o7WUYLjzZffBk98GOhgjXHiZcU0as6dwuofX19SxbtoRly5bQr981zJo1l5kz5+hsOflEbZmB6wW8YpqmG3ADO4G/tiwrZprm/cATpmkGaNkiudOSioiIJB+NkXLFgsFmNm/eyJo1q9i9e+cld5E0vFktS/O0RDKVGW4fvoJh+AqGEQvWEq452LLE8twM67FjR3npped5+eVFjB49jtmz5zJx4hR8Pp+DySUZXbaAsyzrADDxY+6VAmM7OpSIiEgq0Bgp7WXbNnv27GbNmlVs3LieYLD54k4uD96cAXjyB+HOKNKyum7G5c9tOY5gLNHGU4RrDsYPCbejQPxnZMeOrezYsZWMjEymTZvB7NnzGDp0uH4WBLi6YwREREREpA0qKsopLV3NmjWrKC+/9Hnu7qxeePMG48m5BsOlX9G6O8Mw8GT1xpPVG7vXZCJ1RwjXHGy1i2VTUyMrV77PypXv07t3H2bPns+sWXN1UHia06uDiIiISCcIBoN88MFGSkpWfuwSSZcvB0/eYLx5g3B5Mx1IKcnAcHvx5g/Bmz+EWKi+ZYllGXb43Dl/J0+e4JVXFvHqqy8wZsw4Zs+ez8SJk/B6tcQy3aiAExEREekgZ3eRLClZycaN62hqarq4k8uLN3cg3vxBuAKFWhYnrbh82fiLxuDrOZpoUzmR6jLCdUcgFgHiP2Pbt29l+/atZGVlMW3aLObMma9dLNOICjgRERGRq1RVdYbS0tWUlKz6+F0ks3q3LJHspyWSclmGYeDJLMaTWYw/NplI7RHCNWWtllg2NDSwfPlSli9fSr9+/Zk9ex4zZ87RQeHdnF49RERERK7A2SWSpaWr2blzx6V3kfTlnNtFUksk5QoZLk/8wPb8wR+7xPLYsSO8+OJzvPzy84wZM57Zs+cyYYKWWHZHKuBERERE2igWi7F3r3X5XSRzB+DNG4IrQ0skpWO1WmLZeDp+UPh5u1jGYjG2bdvCtm1byMzMZNq0mcyaNVe7WHYjKuBERERELuP48WOsXVvC+vWlVFSUX7KPO7MYb/4Q7SIpXSK+i2UvPFm9zu1iWV1GtOncz2djYyMrVixjxYplFBf3YubMOcyYMZtevXo7mFyull5dRERERC6hqqqKDRtKWbt2DYcPH7xkn3NLJAfh8mZ1bUCRFm3ZxfL06VP86U+v8Kc/vcKQIcOYMWM206bNIDdXz8ulGhVwIiIiIi0aGur54INNrF9fyq5dH13yuTZcvvgSSe0iKUno4l0sDxKuO5zYxRLgwIF9HDiwj0WLnmH06LFMnz6LiRMnk5Gh5zRTgQo4ERERSWtNTU18+OFmNmxYy44d24hGoxd3Mlx4svviyRuEJ6sPhsvd9UFF2qH1LpaTiNQfJ1JziEj9cSD+xkQsFkscSeDxeBk/fgLTps1k3LiJ+P1+Z/8D5GOpgBMREZG0EwwG2b59Kxs2lLJ16xbC4fAl+7kzi/HkDcSb0x/Drd38JDUZZzfWyR2AHQkSrjtCpOYg0aaKRJ9IJMzmzRvZvHkjfr+fCRMmM23aDMaMGaedLJOMCjgRERFJC+FwiG3btrJx4zq2bv2AYDB4yX6uQA+8uQPw5A7Q1v/S7RgeP76CYfgKhsWfl6s9QqT2ELFgdaJPMBhk/fpS1q8vJSMjgwkTJjN1aryY83hUPjhNfwMiIiLSbYXDYXbs2MbGjev48MMPaG5uumQ/lz8fT+4AvLn9cflyujiliDNcvmz8PUfi7zmSaLCWSO1hIrWHiYVqE32amppYu7aEtWtLyMzMZOLEKUydOoNRo8aomHOI/tRFRESkW4lEIuze/REbNqxj8+aNNDU1XrKfy5eDp2Wmze3XTnyS3tz+XNwtm5/EgjVEag8Rrj3caifLxsZG1qxZxZo1q8jKymbKlGlMmzYT0xyJy+VyMH16UQEnIiIiKe/sAdvr15eyadMG6uvrLtnP8GafWx7pz9MOkiIXMAwDdyAfdyAfX9E4Ys1VROoOE6490qqYa2ioZ+XK91m58n3y8vKZMmU606fPZMiQYSrmOpkKOBEREUlZJ04cY82a1axdW0JV1ZlL9jG8WecVbfkq2kTayDAM3Bk9cGf0wFc0nljzGcK1h4nUHsGOnJvZrqmpZtmyd1m27F169ixi5sw5zJ49j+LiXg6m775UwImIiEhKqa+vZ+PGtZSUrKKsbP8l+xiejJZn2gbgCvRQ0SZyleLFXCHujELs4glEmyoSz8zZ0XMbAlVUlPPGG4t5443FDB9uMnv2PKZMmU5mpjYE6igq4ERERCTp2bbN/v17ee+9d/jgg01EIpGL+hhuP57c/vFn2jKKVLSJdJL4GXNFeDKLsHtNJNpY3vLM3FGIhRL99u612LvX4rnnnmLq1BnccMPNDBo0xLHc3YUKOBEREUlakUiEjRvX8d5771BWduASPVx4cvrizRuMO7sPhqFnb0S6kmG48GT1wpPVC3+vyUTqjxOuKSNaf4KzB4aHw2FKS1dTWrqaYcNGcNNNtzJx4hTcbrez4VOUCjgRERFJOsFgkPfee5f33nuHmprqi+67Aj3w5g3GmzsAw+N3IKGIXMhwufHm9seb259YpJlIzSHCNWWtzpjbt28P+/btobCwJzfeeAsLFtyI1+t1MHXqUQEnIiIiSSMWi7Fu3RpeeeWFizclMVx4cwfi7TECd6DAmYDSoexYlHBN65nVUNVevHlDMFyanUllLk8AX6GJr9Ak2nSG0BmLSO1hzs7KVVZWsGjRs7z33rvcc899TJkyXcue20gFnIiIiCSFPXt28/zzz3DoUFmrdsMdwNtjON78obg8AYfSSUez7RhNR0uINpxo1R48uZlI3XEy+s/Vkthuwp3Rg4x+M4kVTyBctZdw9f7ExicVFeX893//B8OGjeC+++5n8OChDqdNfirgRERExFG2bfPmm39i8eKXsG070W64A/iKxuDNH4xhaDamuwmdsS4q3s6KNpwgdMbCXziyi1NJZ3J5M/AXj8PXczTh6v0EK3ZANL7pyb59e/jJT37I5z//JW644WbNxn0CFXAX+OMf/8CRI4ecjiHd1OHDhzAM+PnPH3M6inRT/fsP5ItffMDpGCJtFgw28/vfP8GmTevPNRpufD1MfIUjMdx6Nqa7itQdvcz9YyrguinD5cbXYwTevEEEKz4ifGYvECMWi/H883/g8OGDPPDAV/B6fU5HTUoq4C5w5MghrL37cAfynY4i3VAsGn8Hed+RCoeTSHcUbb54oweRZBYMBvnnf/5Jq7Pc3JlFBPrOwOXNcjCZdIVYc9Vl7l/6YHbpPgy3j0CvifgKhtF0bG3i73zNmlVUVlbwzW9+B49H5cqF9CdyCe5APpkDFzodQ0SkXRoPLXM6gkib2bbN00//tlXx5i0Yjr/XRD33lC7s2NXdl27D5cshc+BCmk9uIlITfwZ29+6d/PGPT/PAA//L4XTJR6+QIiIi0uXee+8d1q0rTVz7e00k0HuyijeRNGW43AT6TMPXc0yibcWKZaxevcK5UElKM3AiIpLWTNPsBUwDegKJp+Yty3rSsVDdXGVlBa+88kLi2ps/FF8P08FEIpIMDMPA13M0sVBty5EDsGjRs4wfP4nc3FyH0yUPvc0lIiJpyzTNO4H9wI+BJ4C/a/l4v5O5uruXXvojoVB85zmXPx9/r0kOJxKRZGEYBoE+0zB8OQA0NTWyePGLDqdKLirgREQknf1f4CHLsiYCDS0fvwZsdjZW9/XRR9vZsGFd4trfe5IObBaRVgyXh0DxxMT1qlXL2b9/n4OJkku7CjjTNH9omqZtmuaYlusZpmluNU1zj2maS0zTLO6cmCIiIp1igGVZL13Q9jTQrrMYND62TSgU4plnzq1M9eQOwJOpPxoRuZgnpy/urD7A2U2PfkckEnE4VXJocwFnmuYkYAZwuOXaAJ4F/sayrBHAKuBnnRFSRESkk5xueQYO4KBpmjOBoUCbp4Q0PraNbds8++xTnD59Kt7g8uLvNfGTv0hE0lqg92Qw4i/HR48e5uWXn3c4UXJoUwFnmqYf+CXw14Dd0jwFaLYsq6Tl+tfAvR2eUEREpPP8FpjT8vm/AcuBrcCv2vLFGh/b7s9/fo2SkhWJa3/xeFyeDOcCiUjSc/my8Red25VyyZK3Wbr0HQcTJYe27kL5Y+BZy7LKTDOxS9QA4NDZC8uyKkzTdJmm2cOyrDafvFhYmN3msF3B69U6fBFJXV6vm6KiHKdjpAzLsn5+3ud/ME1zBZBlWdauNn6LtBkfr5Rt27z00kssXnxupaonbxDe/KEOphKRVOHtYRJtqiRSdxSARYueITvbz+23345hGJf56u7psgVcy3KSqcB3OiNAZWU9sZh9+Y5dJByOOh1BROSKhcNRysvrnI7RistlpEwxYlnW4bb2Tbfx8UqEQiGeeuo3rc57c2f1ItBnatr+4iUi7WMYLgJ9Z9B4eDmxpkps2+a3v/0te/bs5y/+4kE8ntQ+Fe1Kxsi2/BfPB64Fzr67eA3wLvAfwMCznUzT7AnY7Xl3UUREpKuZprnLsqyRLZ8f4dzSx1YsyxpwmW+l8fETnDhxnN/+9lccPHgg0ebOLCaj32wMQ6tdRKTtDJeHjGvm0XRkFbHmSgBWrnyf48eP8fDDf0VRUXpthnTZAs6yrJ9x3sPXpmkeBD4N7AS+ZprmnJZ1/l8HdEiDiIgku6+e9/mXrvSbaHy8tFgsxvvvL+Xll59PnPUG8cO6/b0nYxg6wUhE2s/l8ZM58HqaT2wgUhtfpb53r8UPfvAd7rvvfubOvS5tZvaveM7RsqyYaZr3A0+YphkADnIVA6GIiEhXOG9zESzLWtkJ3z9tx8eKinKeeuq37Ny547xWF/5eE/AWDE+bX65EpHMYLjeBvjMI+fMIlW8HbILBZp566rds2bKJBx54mIKCAqdjdrp2F3CWZQ067/NSYGxHBhIREekqpmn6gAeBCUCrhxAsy2rXWXDpPD7ats3Kle/zwgvPEQw2J9pd/nwCfWfgDuQ7mE5EuhPDMPD3HIUnqxdNx9dhh+LPfW/duoVHH32E++57gFmGJ0TTAAAgAElEQVSz5nbrN4xS+6k/ERGRq/M0MB54AzjlcJaUVFlZwZNPPsGuXR+d12rgK7wWX88xGC497yYiHc+dUUjW4JsJnt5GuGoPAI2Njfz+979m48b1PPTQV8nL655vHqmAExGRdHYLMNiyrGqng6SirVu38Lvf/TcNDfWJNpcvl0DfabgzejqYTETSgeHyEOg9CU9OP5pPbMAONwCwbdsWfvjD7/KXf/m3jBw52uGUHU9PEouISDo7DPidDpFqotEor7yyiH//98fPK97is26Zg29W8SYiXcqT1YusIbfgLRieaKutreFf/uWfeOON14jFYg6m63iagRMRkXT2B+BPpmn+OxcsobQs631nIiW3WCzG737336xff+5sN8OTQaDfLDyZRQ4mE5F0Zri8BHpPjs/GHVuLHQ1i2zaLF7/ImTMVPPDA/+o2z8WpgBMRkXT2ty0f/+mCdhsY0sVZkp5t2zz33NOtijd3Vm8CfWfg8gQcTCYiEufJ6k3m4FtoPlZKtKkciJ8Zl52dzWc/+wWH03UMFXAiIpK2LMsa7HSGVLJ06dssX740ce3NH4a/9ySd7SYiScXlzSBj4AKaj69PnBn35puvU1zcm7lzr3M2XAdQASciImnNNE0PMAvoBxwF1lqWFXE2VfIJhUL8+c+vJa49uQNaDubuHkuSxFmBQIBgMIjf76e5ufnyXyByGYbhItB3Ok2xMNH64wC8/vqrzJo1F7c7tXfH1VtmIiKStkzTvBbYBfwR+HvgeWC3aZojHQ2WhNavL6W+Pr5hieHJJNB3uoo36RD5+fk8+uijvPrqqzz66KPk53fPrd+l6xmGi4x+szDc8b2qKisr2LJls8Oprp5m4C5QU1NNtLmaxkPLnI4iItIu0eZqamr0st5OvwJ+A/yLZVk2gGma32ppX+BksGSzffuHic+9BcMxjNR+B1uSQyAQ4JFHHmHcuHEAjBs3jkceeYTHHntMM3HSIQyXB2/+EEKVu4D4a9mUKdMcTnV1NAMnIiLpbALwr2eLtxa/aGmXj+HyZTkdQbqJYDDIqFGjWrWNGjWKYDDoUCLpjgxv93rN0lu1F8jLy6e8NkLmwIVORxERaZfGQ8vIy9PSo3Y6DswHzj8yYG5Lu5wnEMhMfG6HGx1MIt2J3+9n586diRk4gJ07d+pZOOlQdqQp8XkgkOFgko6hGTgREUln3wNeN01zkWmaPzdNcxHweku7nGfQoHMbdoarD2Db9if0Fmmb5uZmHn/8cbZt20YkEmHbtm08/vjjKt6kw9h2jHB1WeL6/NeyVKUZOBERSVuWZb1umuYk4F6gL7AD+IFlWXucTZZ8Zs6czUsvPU8w2EwsVEuk7gje3AFOx5JuoLq6mscee0y7UEqnCFeXYUfiqwZycnJT/vk3UAEnIiJprqVY+79O50h2GRmZzJu3gKVL3wYgeHIz7sxiHeAtHeJs0abiTTpSLNxA8PSWxPWCBTfg9focTNQxVMCJiEjaMk0zj/jxAROB7PPvWZZ1kyOhkthnPnM3mzatp6rqDHY0SPPx9WT0n6uDvEUk6dh2lOZj6yAWP9azuLgXt976aYdTdQy94oqISDp7CbiO+CYmL1zwj1wgMzOLhx76WuI62nCC4OltDiYSEbmYbdsET24m2lQOgGEYPPzwX+H3d48VA5qBExGRdDYDKLQsK+x0kFQxZsw4br31dt5++w0Awmd24/Jl4ysY5nAyEZG48JndhKsPJK7vvvtehg0b4WCijqUZOBERSWclwEinQ6Saz37280ycODlxHTy5qdUubyIiTgmd2UPw9NbE9cyZc7jttjscTNTxNAMnIiLp7EHgLdM01wOnzr9hWdaPHUmUAlwuF1/96t/w858/xqFD8cKt+cQGMMCbl/pbdItIagqd2Uvw1AeJ6xEjruXBBx/GMAwHU3U8zcCJiEg6+wnQH+gFDD/vH60HvIxAIMA//uN3ueaas0cJ2DQfX0+wfIfOiBORLmXbNs2nPiR4anOibejQYXzjG490i10nL6QZOBERSWdfAEZYlnXC6SCpKDs7m29963s8/vhPOHbsCAChih3EwvUEek/BcOnXDBHpXHY0TPOJ9UTqjibaBg8ewj/8w7fJyMhwMFnn0QyciIikswOANjC5Crm5uXz3uz9g5MjRibZIzUEay94l2lTpYDIR6e4iDadpKHunVfE2YcIkHnnk+2RmZjmYrHPprTEREUlnzwCvm6b5n1z8DNz7zkRKPZmZWfzDP3ybZ555ktWrVwAQC9XRePA9fIUj8fUcjeFyOxtSRLoNOxYhWL6N8Jk9rdpvuulW7r33L3C5uvcclQo4ERFJZ3/T8vGfLmi3gSFdnCWleTweHnzwqwwdOpznn3+GYLAZsAlV7iRcexB/0Tg8uQO73WYCItJ1bDtGuLqMUMUO7EhToj0zM5MvfekhZsyY7WC6rqMCTkRE0pZlWdoysQMZhsG8eQsYNWoMTz75BLt37wTADjfSfHwdrsrd+IvH487qrUJORNrMtm0i9ccInd5GLFTb6t7YseN58MGvUVBQ4FC6rqcCTkRERDpUz55FfOtb32PFimW89trL1NfXARALVtN0ZCWuQA98PUw8uf0xjO691ElErpwdixKpPUzojEUsWN3qXl5ePnfffS9z5sxPuzeEVMCJiEjaMk1zPPBvwAQgu6XZAGzLsrrf3tNdyOVycf31NzJz5mzeeedN3n33LUKhIACx5jM0H1+LcfpDvD1G4MsfiuHWH7eIxMUizYSr9hGu2ocdbW51LyMjg1tvvZ0bb7wFvz/gUEJnqYATEZF09jzwCvD3QNNl+soVyMjI5K677mHBght4443FrF69kkgkvvGnHWkidHorofKP8OYNwJs3BFdGYdq9my4i8WWS0cZywjUHiNQeATva6r7P52P+/IV8+tOfIScn16GUyUEFnIiIpLPewA8sy9LJ050sP7+A++//Cp/5zGdZvvw9li9fSm1ty7MsdoRw9QHC1Qdw+XLx5g/GkzcIl6d7nuEkIufEwo2Ea8oIV5dhh+svup+fX8DChTczf/4CsrNzHEiYfFTAiYhIOnsa+CLwnNNB0kVubh6f+cxnue2221m3rpSlS9/m6NEjifuxUC3B01sJnt6GJ7svnryBeLL76lBwkW7EjkWI1B0lXHOIaMNJ4hv/tjZw4GBuuulWpk6dgcej///P16Y/DdM0XwMGAzGgHvg7y7I+NE1zBPHBrxCoBB6wLGtvZ4UVERHpYD8D1pqm+T0uPgfu+rZ8A42RV8br9TF37nXMmTOf/fv3snr1CjZsWNdy/ABAfNe5SP0xcHnx5FyDN3cg7qxibXwikoJsO0a04SThmkNE6o6BHbmoT0ZGJjNmzGLOnOsYNGiwllN/jLaWs1+2LKsGwDTNzwBPApOAXwO/tCzrWdM0vwQ8AbRpwEtm0eZqGg8tczqGdEOxSPwXE5cnPR+6lc4Vba4GejodI9W8DJQBi7nyZ+DSaozsaIZhMGzYCIYNG8F99z3Apk3rKSlZyZ49u891ioWJ1JQRqSnDcAfw5A7AmzcQV6CHfsETSWK2bRNtqiBSe4hI7RHsaPCS/UaOHM3cudcxadJUfD5taHQ5bSrgzg5MLfKAmGmaxcQHqBtb2p8H/ss0zSLLsso7NmbX6d9/oNMRpBs7fPgQhgH9++uXbOkMPfUa1n4TgELLskJX+g3SaYzsbIFAgDlz5jNnznxOnTrB2rVrWLduDadPn5sctaPNhKv2EK7ag+HNxps7AE/eQNz+PAeTyxUxXGDHPvm+pBzbtokFq4nUHiZcewg73HjJfn369GPGjNnMmDGLoqLiLk6Z2tq8oNQ0zd8BNxHfXvkWoD9wzLKsKIBlWVHTNI+3tLd5cCoszL58py70jW/8jdMRpBv77ne/C8BPf/pTh5OISIvVwCjgw6v5Jp0xRibb+NjViopyGDNmBA8//CB79+5l5cqVrFq1iurqc2dB2eF6QpU7CVXuxOXPx5M7EG/eAFzeLAeTS1u5AgXEmio/4X6PLkwjVysWqiNce5hIzaGLDts+q2fPnsybN4/58+czeLCWSF6pNhdwlmU9DGCa5v3A48CjHRGgsrKeWEybf0l6CIejeL1uysvrnI4i0mVcLiOZi5EyYIlpmou5+Bm4H7T1m3TGGKnx8ZyCgj7ceecXuP32e9i9eyfr1q3hgw820tR0btVrLFhNqLyaUPlW3JlFePMG48npj+H2OphcPokn5xpCn1DAeXL6dWEauRJ2NEi49gjhmoPEmiou2ScrK4vJk6cxY8ZsRoy4FpcrPrNaUXHxjpPp6ErGyHZv6WJZ1jOmaf4GOAr0M03T3fLOohvoCxz55O8gIiKSNDKBNwEf8dmxs9xX8s00RnYut9vN6NFjGT16LA888BW2bdvK+vVr2Lp1C+FwONEv2lhOtLEcTm7Gk9MPb95g3Fm9tPlJkvH1MIk2nCbacOKie+6sPvh6mA6kksux7SjR+pOEa8qI1B+/5DJYn8/PpEmTmTZtFmPGjNMukh3ssn+apmlmAwWWZR1pub4dOAOcJr7k5D7g2ZaPW7S2X0REUoVlWQ+df22a5jjgAeJHC1yWxkjneL0+Jk+eyuTJU2lqamTLls2sW1fKRx9tw7ZbZi7tKJHaw0RqD2N4AnjzhuAtGKollknCMFxkXDOHcE0ZwZObEu3+3lPw5g1WwZ1kYqF6wtX74ue1XWIzErfbzdix45k+fRYTJkzC79eGbZ2lLeVwFvCSaZpZQJT4wHS7ZVm2aZpfB542TfMHQBXxQU9ERCRlmKZZRLxg+zIwnvhzcd9o45drjEwCGRmZzJo1l1mz5lJdXcX69aWUlpZw5MihRB870tzyvNwu3Nl98BUMw53VR8/gOMxwufEVDGtVwPkKhjmYSM5n2zEi9ccJV+1rOa/tYoMGDWHWrLlMmzaT3NzcLk6Yni5bwFmWdQqY8TH3dgPTOzqUiIhIZzJN0wvcATwI3AzsI75T5CDgXsuyTrfl+2iMTD75+QXcfPOnuPnmT3H48CHWri1h3bo11NSc3fzEJlp/nKb64xjeLHw9RuDNH6qDwkXOY0fDhKr3ET6zBzty8QkrBQU9mDVrDjNnzqVvXz2r2NX0aiUiIunoFPGDt58CfmhZ1gcApmn+tZOhpGMNGDCQAQMG8tnPfp4PP/yA5cuXsmvXR4n7driB4KkthCp24u1h4isYrk1PJK3Z0SChM3sJndkDsdanqxiGwdix47nuuoWMGzcxsRmJdD0VcCIiko62AXOIz5DtNU2zzLKsKoczSSfxeDxMmTKNKVOmcfLkCVasWMaaNStpaGgAWn5pLd9GqHIXvh4j8PW4VoWcpBU7GiJUuYtQ1V6IRVrdy8nJZe7c65g//3qd15YkVMCJiEjasSzrOtM0BxJ/Lu1bwH+YprmE+DNt+s29G+vduw9f+MKXuPvue1m9egXvvPNnKitbtj+PhQlVfES4+gD+4vF4cgfqGTnp1mw7Rri6jFD5tos2Jiku7sVtt93BzJlz8Hr1sphMVMCJiEhasizrEPAY8JhpmnOIF3MxYKtpmk9alvX/ORpQOpXP52PhwpuYP/961q4t4c03/8Tp0/GjAO1IE83H1+Gu2oe/92TcgQKH04p0vGhTBc0nNxNrbr34oG/ffnz603cydeoM3O4rOlFFOpkKOBERSXuWZZUAJaZp/j1wF9oxMm14PB7mzr2O2bPnsXZtCS+/vCix4Um0qYLGsiX4eo7G13OUtrWXbsG2o4TKdxCq3NWqvbCwJ/fccx9TpkzX821JTgWciIhIC8uymonvRvm801mka7lcLmbPnsekSVN5443FLF36NtFoFLAJVewg0nCSjL4zcPmynY4qcsWiwVqaj69tNevm8Xi57bbbufXW2/H7/Q6mk7ZSASciIiLSIiMjg3vv/SJz517H//zPb9i3bw8AsaYKGsreIdBnOt7c/g6nFGm/cE0ZzSc2gR1NtI0aNYYvf/lhbU6SYjQ/KiIiInKBPn368u1vP8pdd91zbjlZLELzsTUET2/FtmPOBhRpI9uO0nxyM83H1yeKN4/Hwxe+8CW++c3vqHhLQZqBExEREbkEt9vN7bffxejRY/n1r/+TiopyAEKVu4g2nSHQbyYuT8DhlCIfLxZupOlYKbGmikRbnz59+frX/57+/Qc4mEyuhmbgRERERD7BkCHD+MEPfsLYseMTbdHGUzSWvUuk8bSDyUQ+XqT+JI1l77Yq3iZPnsb3v/+YircUpwJORERE5DKys7P5xjce4Y477k6cDWdHmmg6tJxgxU4tqZSkYdsxguXbaTqyInG2m2EY3HPPffz1X3+DjIwMhxPK1dISShEREZE2cLlc3Hnn5xg6dDi//e0vqa+vB2xC5duI1B0l0Gca7kC+0zEljUWbztB8YgOxYHWiLS8vn69//e8wzZEOJpOOpBk4ERERkXYYO3Y8P/rRTxk6dHiiLdZ8hsayJQTLd2DHop/w1SIdz45FCJ7eSuPBpa2Kt5EjR/OjH/1UxVs3oxk4ERERkXbq0aOQb3/7Ud5++8+88carRCIRIEaoYgfh6gP4i8bgyRukw7+lU9l2jHD1fkLlH2FHmxPtPp+Pu+66hxtvvFWHcndDKuBEREREroDH4+H22+9k0qQpPPXUb9i/fx8AdqSR5hMbcFXuxlc8Dk92v8RzcyIdwbZtIrWHCZZvxw7Xt7p37bWj+PKXH6ZXr94OpZPOpgJORERE5Cr063cN3/3uj1ixYhmvv/4KtbW1AMRCtTQfLcHlz8NbMAJv3iAMl9vhtJLK7FiEcHUZoao92KG6VvcKCnpw552fY/bseZp16+ZUwImIiIhcJZfLxfXX38isWXNZsuQt3nnnTZqbmwCIBWsIntxIqHwb3oJheAuG6/w4aZdYuJFw1V5CVfshFmp1Lysri9tuu4OFC2/G5/M5lFC6kgo4ERERkQ4SCAS44467WbDgBt566w1WrFhGMBh/NsmOBglVfESocheenGvw5g3GndVLz8nJJdl2jGj9ScI1B4jUHQPsVvczMjK5/vobufXWT5OZmeVMSHGECjgRERGRDpaTk8vnP/8X3H77naxatZxly5ZQWdlyoLIdI1J7mEjtYQxPJt78wXjzBuPyZTsbWpJCLFhLuKaMcE0ZdqT5ovvFxb244YZbmD17ns50S1Mq4EREREQ6SWZmFrfc8mluvPFWPvhgI0uWvM3+/XsT9+1IY3xWruIj3JnFePIG4s3pj+HWUrh0EosEidQdIVJzkGhTxSX7mOZIbrrpVsaPn6Rn3NKcCjgRERGRTuZ2u5k6dQZTp87g6NHDlJSspLS0hPr6cxtRRBtPE208TfDkZjzZffHkDsST3QfDpV/XuiM7FiFSd4xw7SGi9Se4cIkkxA/hnjVrLnPmzKNPn35dH1KSkl4RRERERLrQNdcM4AtfuJ/Pfe4+tm79gNWrV7J9+4fYdssv8HaMSN1RInVHweWJPy+XO1DPy3UDth2NP9dWezj+92tffOi72+1m3LiJzJ07n7FjJ+B2a+dSaU0FnIiIiIgDPB4PkydPY/LkaVRVVbFhQynr1pVy6FDZuU6xCJGag0RqDmK4/Xhy+uPJG4A7o0hny6UI244RbTxNpPYw4dqjF+0iedbQocOYPn02U6fOIC8vr4tTSipRASciIiLisIKCAm6++VPcfPOnOHHiOOvXl7Ju3RpOnz6V6GNHg4Sr9xGu3ofhycCTOwBv7gBcgR4q5pKMbdvEmioJ1x4iUnsEO3rxZiQAffr0Y8aM2UyfPpPi4l5dnFJSlQo4ERERkSTSp09f7rzzc3zmM5/l4MEDrF9fyoYN66iurkr0sSNNhM9YhM9YGL4cvLkD8eYNxOXLcTC5RIO1RGoOEq49hB1uuGSfwsKeTJs2k+nTZ9G//wAV39JuKuBEREREkpBhGAwePJTBg4dy771/wd69Fhs2rGXjxvWtNj+xQ3WEKnYQqtiBK6MQb+4gPLn9dVh4F4mFm1qWRx4k1lx1yT55eflMnTqdadNmMnTocBVtclVUwImIiIgkOZfLhWmOxDRH8sUvfpldu3awfv1aNm/eSHNzU6JfrKmSYFMlwVMf4MnphzdvCO7s3tr8pIPZdoxI/XHC1Qc+dgfJzMxMpkyZzvTpszDNkdr6XzqMCjgRERGRFOJ2uxkzZjxjxozn/vu/wocffsC6dSVs376VaPTsroZ2YidLw5OBN28w3vwhOiz8KsWCtYSqDxCpOXjJ59o8Hg/jx09ixozZjBs3Aa/X60BK6e5UwImIiIikKJ/Px7RpM5g2bQZ1dbVs2rSetWvXsG/fnkQfO9JEqHInocqduLN64SsYgTu7r5bxtZFtx+LntVXtIdpYfsk+pjmSmTPnMGXKNDIzs7o4oaSbyxZwpmkWAs8AQ4EgsA/4S8uyyk3TnAE8AWQAB4EvWZZ1uvPiioiIJA+NkZJMcnJyWbDgRhYsuJETJ46xevVKSktXUVtbm+gTbThFU8MpDG82vh7D8eYNwXBrluhS7GiIcPV+Qmf2YkcaL7qfn1/AnDnzmTNnvnaQlC7Vlhk4G/hny7JWAJim+TjwM9M0HwaeBR60LKvENM3vAz8DvtJZYUVERJKMxkhJSn369OPee7/I3Xffy9atW1i9ekWrw8LtcD3BU1sIlm/HmzcEX+G1uLyZDqdODrFQPaHK3YRryi46aNvtdjN+/CTmzr2OMWPG6ZBtccRlCzjLss4AK85rWgf8FTAFaLYsq6Sl/dfE32HU4CQiImlBY6Qku/hh4VOZPHkqlZUVvP/+Ulatep+GhpYt7mMRwlV7CFfvixdyPUfi8qbnEsBYqI5gxU4iNQe5cFOS7OwcrrtuIQsW3EhBQYEj+UTOatczcKZpuogPTK8DA4BDZ+9ZllVhmqbLNM0eLQOaiIhI2tAYKcmusLAn99xzH3fccRelpSW89967nDhxLH7TjrUcEr4fb95gfD1Hpc2GJ7FgLcGKj4jUHubCwq1//4HccMPNzJgxC6/X50xAkQu0dxOT/wTqgf8C7uqIAIWF6fHiIALg9caXWhQV6aBVkW6oQ8dIjY/SeXK49967uOeeO9m8eTMvvPACu3fvbrlnE645QLjmIN4ew/EXjsLw+B1N21likWZC5TsIV+/nwsJt3Lhx3HvvvYwbN06bvUjSaXMBZ5rmvwDDgdsty4qZpnkYGHje/Z6A3d53Fisr64nFLj47Q6Q7CoejeL1uysvrLt9ZpJtwuYxuX4x0xhip8VG6wsCBJo888ii7dn3EG28sxrJ2tdyJET5jEa4+gK/nKHwFwzFc3WPzcjsWJlRpETqzG2KRVvdGjx7L7bffxYgR1wJQUVHvRERJI1cyRrbp/0TTNH8CTAY+ZVlWsKV5M5BhmuacljX+XwdebNe/XUREJMVpjJRUZxgGo0aNYdSoMVjWLl5+eRH79++N34yFCZ3eSrhqH4Fek/Dk9HM27FWwbZtI3RGCp7ZgR5pa3bv22lF89rOfZ+jQ4Q6lE2m7thwjMBr4HrAHKDVNE6DMsqy7TNO8H3jCNM0ALVskd2JWERGRpKIxUrob0xzJ9773Iz74YCMvv7yIU6dOAmCHG2g6uhp3dl8CvSal3PNx0WAtwZObiTaeatXer19/7rnnPsaOHa+lkpIy2rIL5UfAJX+iLcsqBcZ2dCgREZFUoDFSuiPDMJg8eRrjx09i5cr3ee21l2loiC8ljNYfp6HhJL6eY/AVXothuBxO+8nsWDR+iHnFLiCWaM/NzePuu+9lzpz5uFzJ/d8gcqHusZhZRERERDqUx+Nh4cKbmD59Jq+88gKrVi2PnyNnxwiVbyNSd4RAn+m4A/lOR72kaFMlzSc2EAvWJNoMw2Dhwpu4887PkZmZnsclSOpTASciIiIiHys7O4cvf/lh5s69jmeeeZJDhw4CEGuuorFsSXyTk56jkmY2zrajhMp3EKrczfm7Sw4dOpz77/8KAwYM/PgvFkkBKuBERERE5LKGDBnG97//GO+++yavvfYKkUgYiBGq2EG04SSBfjMdPwQ8Fqqj6dhaYs3nNnz1+fx87nNf4Prrb9RySekWVMCJiIiISJu43W5uu+0OJk6czJNP/iaxW2W0qYKGA+8Q6DMNb25/R7KFa8poPrEZ7HNHA1x77SgefPCrFBf3ciSTSGfQ2xAiIiIi0i7/f3t3GyNXdd9x/Duz3sUP+BmvsdcEKhsfgx8x5sHxA1ZDIYXY2MGtgPLgEJECDeENSFBVomlVhUipSqtQwasoiRqkuoIqtC8qWjukthwKKRQlhpOkaoCsAS8Lduy1d9czc/tixuO1vaztndm5c3e/H8nynDP33vnLGuvsb8+958yZ08Hjjz/Bli1/cGJWq3SM3s7d9O1/s/ysXIMkSYneD/6b3n2vVMNbS0sLt912J4888qeGN406zsBJkiTpnOXzeTZu3MJlly3m2We/TXf3RwD0d++l1HeQ8R3Xksu3jmgNSbGfo527Kfac2B5g9uw53H//V7n44t8Z0c+W0uIMnCRJkoZtwYKFfP3r32DJkmXVvsLhTo68s5Ok2DfEmbUpFXo58s5/nBTeVq68iiee+CvDm0Y1A5wkSZJqMnHiJB5++FFuuOGmal+p9+NyiCvUP8SVjh3l6Ds7TtoiYNOmL/Lggw8zfvz4un+e1EwMcJIkSarZ8efO7r77y+Ry5f3tS30HOPLuTpLisbp9TlLo48i7Oyj1/xYo38p5330PsnnzVleZ1Jjgt1ySJEl1s2HD59i27b6TQlzvvp/UZWGTJClxtHM3Sf8hoBwa77//IVavXlvztaWsMMBJkiSprtat28C2bfdV24XDnfR/9LOar9v34RsUj+yvtr/ylT9h1aprar6ulCUGOEmSJNXdunUbuPHGm6vt/o/2Ujz68RBnDK3Q8yHHPvlFtb1581auuurammqUssgAJ0mSpBGxdettLFp0ebk567kAAAsWSURBVKWV0PvBqyRJ6Zyvk5SK9H3wWrW9YsWVfOELm+tUpZQtBjhJkiSNiJaWFrZtu4/W1vJ+cKXeTygc/PU5X+fYgV9Rqjz3Nn78BO66614XLNGY5TdfkiRJI6a9fTY333xLtd3f/dY5zcIlSZH+7rer7S1btjJ9+vS61ihliQFOkiRJI+r66z/PhAkTACj1H6JweN9Zn1s4+C5J4SgAU6ZMZcOGz41IjVJWGOAkSZI0oiZOnMiGDddX24UD/3fW5x47eOLY66+/kdbWtrrWJmWNAU6SJEkjbv36DdXXhcP7KBX6znhO6VhPdduAXC7H2rXXjVR5UmYY4CRJkjTiZs+ew/z5CyqthMLh35zxnMJv36u+Xrx4KdOm+eybZICTJElSQwzcdLtwqPOMxw88xg27pTIDnCRJkhriiitWVV8Xez4gKRU+9dhSoY/i0Y+A8u2TK1asHPH6pCwwwEmSJKkh2ttn09Exr9xIShR7PvzUY4s97wMJAPPnX8qUKVMbUKHU/MalXYCybffuH7Nr18tpl5EZ7777DrkcfPObf5l2KZmxdu11rFmzPu0yJEl1smzZFXR2lp9/Kxzex7jJHYMeN3CrgeXLr2hIbVIWOAMnNdDUqVOZMWNG2mVIkpSagWGscHgfSZJAvjKnUPk7SUoUDr9fPW7ZMgOcdJwzcKrJmjXrnR05R7NmTaar61DaZUiSlIr58y9l0qRJ9PT0kBSOUuo7wHkXLKH/47dpm7EIgOKRLigdA2DGjJnMm3dRmiVLTcUZOKmBDhz4hMcee4yDBw+kXYokSaloaWlh6dLl1XbhUCdtMxdx/qWbaZtZDnCn3j6Zy+UaXqfUrAxwUgO9+OIL7N27lx/+8Pm0S5EkKTXLl59YUXJgWBusb+CxkgxwUsMcOPAJu3a9TJIk7Nr1Y2fhJElj1pIly8jnyz+Glno/plTorb5X6j9E0l9+1KCt7Twuu+zyVGqUmpUBTmqQF198gVKpvBxyqVRyFk6SNGZNmnQ+CxYsrLaLA2bcBs6+XX75Ylpb2xpam9TsDHBSg+zZs5tisbxhabFYYM+e3SlXJElSek5ajbLngxOvD594vXTpiobWJGXBGVehDCF8C7gVuARYGmP8WaV/IfBdYCbQDdwdY/zlyJUqZdvq1Wt4+eWdlEpF8vkWVq9ek3ZJkmrkGCkN3+LFS9m+/TkAij0flrcTSEoUj+yvHrNkybK0ypOa1tnMwP0zsB5455T+Z4CnY4wLgaeBZ+tcmzSqbNy4hSQpAZAkCZs2fTHliiTVgWOkNEzz5n2GyZOnAJAU+yj1HaB4tBuSIgDt7bOZNas9zRKlpnTGABdj3BVjfG9gXwihHVgJPFfpeg5YGUKYVf8SpdHj+DLIroYsjQ6OkdLw5fN5Qris2i4e6aJ4tKvaXrTIxUukwQx3I++LgM4YYxEgxlgMIeyr9HcNeeYpZs48f5glSNmyffv3yefzlEol8vk8L730LzzwwANplyWp/uoyRjo+aixYuXI5r732ClAOcEll826AK69cwaxZk9MqTWpaww1wddPdfbi6Mp80mu3c+SMKhfIiJoVCgR07drJ1650pVyWNvHw+ZxgZBsdHjQUXXviZ6uti78cnBbj29nl0dR1KoyypYYYzRg53Fcr3gI4QQgtA5e+5lX5Jg1i9eg0tLeXfmbS0jHMRE2n0coyUzlJHx0WMG1ceG5NjPVDsB2DChIm0t1+YZmlS0xpWgIsx7gfeAG6vdN0OvB5jPKfbJ6WxZOPGLeTz5Yff8vm8i5hIo5RjpHT2Wltb6eiYd1r/xRdfUn1uXNLJzhjgQgh/F0L4DTAP+PcQws8rb90PPBRC+AXwUKUt6VNMmzadtWuvI5fLsXbteqZOnZZ2SZJq5Bgp1W7u3NMD3GChTlLZGZ+BizF+DfjaIP1vA9eMRFHSaLVx4xb273/f2TdplHCMlGo3WICbM6cjhUqkbBjuM3CShmHatOk8+eSTzr5JklTR3n76Xm/t7bNTqETKBgOcJEmSUnPBBacHuFmz3DZR+jQGOEmSJKVmxowZp/VNm3Z6n6QyA5wkSZJSM3nylJPabW1tnHfeeSlVIzU/A5wkSZJSk8+f/ONoLuePp9JQ/B8iSZKkJpKkXYDU1AxwkiRJaiJu4C0NxQAnSZKkppHLGeCkoRjgJEmS1DSSxFsopaEY4CRJktQ0nIGThmaAkyRJUqquvnp19fW11342xUqk5jcu7QIkSZI0tt1yy610d+8nSXLcdNOmtMuRmpoBTpIkSamaM2cuTz31FF1dh9IuRWp63kIpSZIkSRlhgJMkSZKkjDDASZIkSVJGGOAkSZIkKSMMcJIkSZKUEQY4SZIkScoIA5wkSZIkZYQBTpIkSZIywgAnSZIkSRlhgJMkSZKkjDDASZIkSVJGGOAkSZIkKSMMcJIkSZKUEQY4SZIkScoIA5wkSZIkZYQBTpIkSZIywgAnSZIkSRkxrtYLhBAWAt8FZgLdwN0xxl/Wel1JkrLM8VGSNBLqMQP3DPB0jHEh8DTwbB2uKUlS1jk+SpLqrqYZuBBCO7AS+L1K13PAt0MIs2KMXWc4vQUgn8/VUoKUSX7vNZYM+L63pFlHIzk+SsPj915jzXDGyFpvobwI6IwxFgFijMUQwr5K/5kGqDkA06dPqrEEKXtmzjw/7RKkNMwB/jftIhrE8VEaBsdHjWFnPUbW/AxcDV4F1gHvA8UU65AkjawWygPTq2kXkhGOj5I0dpzzGFlrgHsP6AghtFR+u9gCzK30n0kfsKvGz5ckZcNYmXk7zvFRknS2zmmMrGkRkxjjfuAN4PZK1+3A62dxf78kSaOW46MkaaTkkiSp6QIhhEWUl0meDnxCeZnkWIfaJEnKLMdHSdJIqDnASZIkSZIaox77wEmSJEmSGsAAJ0mSJEkZYYCTJEmSpIwwwEmSJElSRhjgpFOEEKaHEHpDCE+lXctgQgirQgj/kHYdkiRJajxXoZROEUL4KnArcDlwUYyxP+WSJEmSJADGpV2A1ITuBR4FHgc2Af8UQvhzYBEwBVgI/BR4Evhr4GLg+RjjowAhhB9V3r8auAT4W6ATeAiYCzwaY9xeOfbzwDeAFqAL+OMY469CCBuAp4BXgNVAAtwWY3yr8t63YoyrQgjjgH8FZgITgP+qXMPQKUmSNAp5C6U0QAhhOTAD2AF8h3KYO+5K4HYgUA5zTwK/DywD7gkhXDrg2HnAdcA1wF8AS2KMnwX+EPibyme1A98H/ijGuAz4ATDw1sjFwDOV9/4R+LNBSi4Cd8QYVwFLKAfBewc5TpIkSaOAAU462ZeB78UYE+B54NoQQkflvX+LMR6MMRaBN4GXYox9McYeIALzB1xne4yxFGPcB3QDL1T6fwp0hBDGUw53/xNj3Ft57zvAihDC5Eo7xhhfr7z+ySnXPy4PPBJCeKNS0+8CK2r6F5AkSVLTMsBJFSGENuAO4N4Qwq+Bt4BW4J7KIb0DDi8O0h54S/Kgx1bCH5Vjc5Rvjfw0Q13/uDuAtcC6GONS4O+B8UNcU5IkSRlmgJNO2Ay8HWOcF2O8JMZ4CXAD8KUR+rw9lGfcFlXa9wCvxxgPncM1pgEfxRgPhRCmUg50kiRJGqUMcNIJX+LkZ9CIMe6h/P9kfb0/LMbYBdwF/CCE8CZwZ+XPufgeMDmE8HNgO/Cf9a1SkiRJzcRtBCRJkiQpI5yBkyRJkqSMMMBJkiRJUkYY4CRJkiQpIwxwkiRJkpQRBjhJkiRJyggDnCRJkiRlhAFOkiRJkjLCACdJkiRJGfH/HiCi3XRyvBsAAAAASUVORK5CYII=\n", "text/plain": [ "
    " ] @@ -1965,12 +1896,12 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 40, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2oAAAEzCAYAAABANfAdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xd0HOXZ9/HvbJW06r3Lkiz3XnG3Mb33Hgj1IZSEBEgjT0inJXQSOphiYmMw1QX33nuT1XvvbfvO+8fKI43W7xNDMJbh+pzDsXZ2d3Z2V5yZn677vm5FVVWEEEIIIYQQQvQfhlN9AEIIIYQQQggh9CSoCSGEEEIIIUQ/I0FNCCGEEEIIIfoZCWpCCCGEEEII0c9IUBNCCCGEEEKIfkaCmhBCCCGEEEL0M/8xqCmKMlhRlL29/mtTFOUBRVGiFUVZoShKfve/Ud/FAQshhBD9hZwjhRBCnCzK11lHTVEUI1AJTAbuBZpUVX1cUZRfA1Gqqv7q5BymEEII0b/JOVIIIcS36esOfZwLFKqqWgpcCszr3j4PuOzbPDAhhBDiNCPnSCGEEN+arxvUrgM+6P45QVXVaoDuf+O/zQMTQgghTjNyjhRCCPGtOeGhj4qiWIAqYLiqqrWKorSoqhrZ6/5mVVUDxuArinIXcBdAcHDw+LS0tG/nyIU4Tfh8PgwG6dsjfljy8vIaVFWNO9XH8V35JudIOT8KIedI8cN0oudI09fY5/nAblVVa7tv1yqKkqSqarWiKElA3fGepKrqq8CrABMmTFB37tz5NV5SiNPf2rVrmT179qk+DCG+U4qilJ7qY/iOfe1zpJwfhZBzpPhhOtFz5Nf5E8b19AzpAPgMuKX751uAT7/GvoQQQojvEzlHCiGE+FadUFBTFCUEOBv4uNfmx4GzFUXJ777v8W//8IQQQoj+Tc6RQgghToYTGvqoqmoXENNnWyP+DldCCCHED5acI4UQQpwMMntTCCGEEEIIIfoZCWpCCCGEEEII0c9IUBNCCCGEEEKIfkaCmhBCCCGEEEL0MxLUhBBCCCGEEKKfkaAmhBBCCCGEEP2MBDUhhBBCCCGE6GckqAkhhBBCCCFEPyNBTQghhBBCCCH6GQlqQgghhBBCCNHPSFATQgghhBBCiH5GgpoQQgghhBBC9DMS1IQQQgghhBCin5GgJoQQQgghhBD9jAQ1IYQQQgghhOhnJKgJIYQQQgghRD8jQU0IIYQQQggh+hkJakIIIYQQQgjRz0hQE0IIIYQQQoh+RoKaEEIIIYQQQvQzEtSEEEIIIYQQop+RoCaEEEIIIYQQ/YwENSGEEEIIIYToZySoCSGEEEIIIUQ/I0FNCCGEEEIIIfoZCWpCCCGEEEII0c9IUBNCCCGEEEKIfkaCmhBCCCGEEEL0MxLUhBBCCCGEEKKfkaAmhBBCCCGEEP3MCQU1RVEiFUVZpChKrqIoRxRFmaIoSrSiKCsURcnv/jfqZB+sEEII0Z/I+VEIIcTJcqIVteeAZaqqDgFGA0eAXwOrVFXNAVZ13xZCCCF+SOT8KIQQ4qT4j0FNUZRwYCbwBoCqqi5VVVuAS4F53Q+bB1x2sg5SCCGE6G/k/CiEEOJkOpGKWhZQD7ylKMoeRVFeVxTFBiSoqloN0P1v/Ek8TiGEEKK/kfOjEEKIk8Z0go8ZB9yvquo2RVGe42sM41AU5S7gLoCEhATWrl37TY5TiNNWR0eH/N4L8f0k50ch/ktyjhTi/09RVfX/foCiJAJbVVUd0H17Bv4T0UBgtqqq1YqiJAFrVVUd/H/ta8KECerOnTu/lQMX4nSxdu1aZs+efaoPQ4jvlKIou1RVnXCqj+NkkvOjEP89OUeKH6ITPUf+x6GPqqrWAOWKohw7ycwFDgOfAbd0b7sF+PQbHqsQQghx2pHzoxDfjNvr44VV+Vzz8hbePeykudN1qg9JiH7pRIY+AtwPvK8oigUoAm7FH/IWKopyO1AGXH1yDlEIIYTot+T8KMTX9NTyo7y6vki7fe/83cy/84xTeERC9E8nFNRUVd0LHK88N/fbPRzR373wwgsUFBSc6sM4bVRWVuJ0Olm8ePGpPpTTxsCBA7n//vtP9WEIcULk/CjE17fkQLXu9ubCRlq73ESEmE/REQnRP53oOmpCiG/AbrfjcsmQDiGEEOKYtKgQ3e0Ym4UQq/EUHY0Q/deJDn0UAkAqHV/Tz372M1paWnjuuedO9aEIIYQQ/cIjFw7l1rd3UN/uxGKEP146HLNRagdC9CVBTQghhBBCfGdGpESw6VdncrSmnfIju7lgVPKpPiQh+iX584UQQgghhDgpmjpd3DFvJ4MeWcolL27kYGUrABaTgZGpEYSYlVN8hEL0XxLUhBBCCCHESfHnLw6z8kgtLq+P/RWt3Dd/N063l2dX5nHlvzbzziEnTdKeX4jjkqAmhBBCCCFOip2lTbrbJY1d/PHzQzy7Mp9dpc2sLvdw7/u7T9HRCdG/SVATQgghhBAnxbj0KN3t9OgQ1h6t123bUtRIS5dU1YToS4KaEEIIIYQ4KX5/0TDOHBKP0aAwPDmcl24Yx4BYm+4xMTYLNqv0txOiL/m/QgghhBBCnBQxoVbe/PFEAFweH7tKm7l16gAK6zuobXNiNkCI1cg1r2zh3tkDOWtYwik+YiH6DwlqQgghhBDipCpv6uK6V7dS2WIH4M4ZWWTH2fj1xwcob7JT3mTn7vd28dXPZ5IVF3qKj1aI/kGGPgohhBBCiG+suKGTf60t5NO9lbg8vuM+5qU1BVpIA3h9YxEHulv1H+PxqWzIbzipxyrE6UQqakIIIYQQ4hvZVdrM9a9t1QLaR4Mqeee2SaiqSlFDJ/FhVsKCzNS1O3XPU1WICDYH7C8nIRS310dtm4PkiGAMBv86ayUNnaw9WkdmXCgzc2JRFFl/TXz/SVATQgghhBDfyJubinVVtPV59aw5WsffvjxCfl0HIRYjf7hkOJeNTWF1bp32OKvJwD/XFhJkBJcPjAaFH08dgEFRmPb4auranWTEhPDyTeNp6nTx47e24/aqAFw/KZ3Hrhj5nb9XIb5rMvRRCCGEEEJ8a97dXEp+XQcAXS4vj356iDmD43jphnGcOzyB9OgQnN3hzuGFhPAgdjxyFo9cOIxffbRfq76VNnbx6KeHeHldoRbSABbsKKOuzfHdvzEhvmMS1IQQQgghxDdy27QBWEw9l5MzB8XR1GdNNLvbS02rgwtHJfHKjybg8ernsVW3OvCp4HB7KW3s0t2XV9ceMO/Np/rnsx3j7fWzEN8nMvRRCCGEEEL8R+0ONy+uLmB/RStTsmO4e1Y24zOiWf7ATJYdrCE5MojzRyTx2oYi9pa3aM8LDzKxvbiJAbE2zEYDU7Jj+Wh3hXb/kMQwom0WAMalR7K7rOe5Zw6J55xhCWwvaULtzmPnj0gkOTIYh9vLbz8+wGf7qogJtfD7i4Zz4aik7+bDEOI7IEFNCCGEEEL8R79YuI8Vh2sB2FLUSFOniz9cMpzMWBs/mZ2tPe7uWf6f39taSnWrgzaHh0c+Ocie8hb+fvVofn/xMDqdHtbn1xNl8fHMtWMAWLijXBfSpg2M4Y+XDCcsyMxHd0/lyeW5FNd30mp3s7e8hY359Xy8pxKA2jYnP1+wl8lZ0cSGWr+rj0SIk0qGPgohhBBCiP+Tw+1l5ZFa3bYv9ldR1WLn831VlDf1DFk0GhTunTMQq0l/mbl4TyWdTg/NnS62FDXS5fJS2aHyq4/24/H6eHL5Ud3jy5q6CAvyd4Y8UtPG1qImatudbC5s5JY3t7OrtFn3eJfXx5Hqtm/zbQtxSklFTQghhBDiB+xgZSuvbyjC7VX50ZQMzsiKCXiMxWggPsxKbVtPm/1Qq4mZT67B41MxKPDElaO4ekIaqqpS3+HEZtVfZlpNBnyqyvvbSmm1u7Xt+ytaWZ9fT4fTrXt8m91DS5cLl9fHmtx63X2tdjdJEcG6bcFmIwYUWu1urfV/ZYudL/dXERli4eJRyQRbjN/sQxLiFJCgJoQQQgjxA1XdaueaV7bQ5fICsPxQDZ/dN51hyeG6xxkMCn+8ZAS/WLiXLpeXyBAzDrdXa+rhU+GJZUcZkhjOfR/sprSxi/gwC0aDojX76HJ5mf7EGsakRQQcx8HKNhLDgyjp1UwkM9bGhL+sxONTyY6z6R5vNCj8ZE4WFpOBT/ZWEhFspqXLzY1vbCPIbOCJK0cxLCmcy/+5mQ6nB4D3t5by8T3TMBpkDTZxepChj0IIIYQQ3xPlTV2U9emc+H9ZebhWC2ng76a49GA1Na0O6vssUn3eiESW/mwG790+ia2/mYujTzfGNoebXy7ap3VurGt3kRMfyoycWO0xrXY3mwsbsfWqbGXEhPDMijwtpFmMCnfOyGRveYsWBAvrOxkYFwqAzWLkDxcPIy3Kxh8uGc7e359DalSwVqVzuH384bNDzNtSqoU0gH0VrWwpbDzhz0aIU00qakIIIYQQpzmP18fP/r2XLw9UA/7OiC9cPxaT8f/+m3xin+GDAGty63hhdQEGBa6blM5fLxuB26vy84V7WXKgGrPRwN0zs7huYjovryvUnnfNhFQ+2F6u21dRQycxoRbdNrdX5ednD2RzQSMWZwvxiTG6tvwur0q7w0NfMwbF8sFdZxBqNRFsMbJwRzmrcmvJjgsNaOvf3OXG3WcZACFON1JRE0IIIYQ4zS0/VKuFNIClB2tYerDmPz7vWPv7YzJjbRys8jfk8Kkwf1sZG/IbWLiznC/3V6Oq4PL4eH51AXOHxjE0qWeIZGWznekDY3X7n5kTy8ycON22UKuJJ5cdZWNBA6vLPeTXtQcc14ycWCx9QubmwkZeXleIy+vj9Q1F/PKj/Sw/VMs/1xYGrKU2JSuGO6ZnEtprntzo1AimZgfOvxOiv5KKmhBCCCHEaa6sKXC44/biJrYWNRJiMXLzlAGkRYcAUFTfQbvDw6jUCIwGhVdvnsC+8mYqW+wcqGjjX72qZMceX9TQGbD/T/ZU6bosrjlaz18uHU5+XTtVLQ4AalodXDcpnQ6nh8/3VZESFUx5U5duSOL+8laGJIaRW+MPbJeNSebCUclEhlh4YXU+BXUdNHS4OFrTztGadkoaOqlpc+iOpbrVwd2zsthT1sLQpHB+NjeHKJuF5T+fyZL91USGmMmICaG0qYvMWP98t6ZOFwt2lNPl8nDFuFQyY220Ody8saGYgroOzhwSz5XjU7/J1yHEt0KCmhBCCCHEae7sYfE8veIobq+/smQ0KHywvUyb47V4TxWrH5rFX784woKd/uGJI1LCef/2M9hc2MAvF+2n3ekhIcyKAhyrTxkUsJgMzBkczztbSrXXsxgNWmfF3vZVtGohDeBgVRuLdlXw4DmD+cnsbA5XtfGbjw/onqMYFD76yRSO1nYQZjWxu6yZs55eh1FR+MnsbP665Iju8auP1jFjoL5KF2Q2cO+cgYQFmVm4o5yHF+0nO87G3bOyuWZCGje+sZWDlf5Qee2ENP5wyXAue2mTFnDf2FjMZ/dN59HPDrKpwD+P7csD1bTa3dw2PfPrfBVCfGskqAkhhBBCnOYGxofx9q2TeH1DESoQYjGy5EDP0MeGDidvbCjWQhr4Oy2+tamYeVtKaO+ucNW2OxmRHE67w0NpUxc+FX67+CD3zM7msStG8u6WUmxWIz+dm0NyZDCvbyjG1T0XzGI0kNFdteutptXOjpIm7pi3k1a7G7NR0YVBi9HA9CfWcOPkDGYOiuVXH/UEuZ8v3MughDBdY5P4MCsPnTOIA5UtNHe5MShw72x/SHtrUzF//PwwACuPwI6SJuYMjtdCGsCCneWkRgfrqpBdLi9vbyrWQtoxi3ZVSFATp4zMURNCCCGE+B6YNjCWt26dxNu3TmJ4cmALfJcnsLlGaVMnzV369cs6XT1t9495a1MJY9MiSY4Mot3hYXdpCwNibLx3x2RGp0UQFmQiMcJKiNVEWK95YYoC03Ni+csXh7WujG6vSmSImTu6A1CH00Nzl5sX1xTwxsZi3euqqn9uWbDZ3yUyyGTgj5eMYFRaJCt/MYtRqRH4VHh+dT5PLc/lkz2VuufvLmshv64j4H13HKdZiS3IFLBId2yYNeBxQnxXJKgJIYQQQnxPeH0qBytbOW9EIlmxPWuPTR8Yy12zsogM6RmuqChw9YQ0xqRF6vZx9rCEgLXGDArc+tZ2Vh6pI7emnWdW5vHGxiIigs0cqGil3eGhrMnOn744zC/PH4LN6g9WqgoPLtxPebNdt78Wu5vs+NCA4++9VMAxG/IbsLv9211eH1Hd72Hxnkr2V7QC/vD30ppCLdAdYzEZuHh0MkqvtxMZYuauWVm69x0fZuXWqZn84uxB2mPDg0z84uxBAcdT2WJn2cFqavvMkxPi2yZDH4UQQgghvgdKGjq5+c3tlDV1YTEa+M0Fg8mIsdHc5aa4voOPdlXw5i0TeX9bGW0ON9dNTGNqdiwv32TjiWVHKajrYPbgOO4/M4esWBu/7jWX7NIxKczfXqZ7vVVH6jAoCn2Kb6w9WkensydwNXQ4GZ8RRVOnS9sWHmTmzY1FAe8hJz6UnSXN2N1eFGDu0HhWHqnT7vepsGBHOZOzYiisD6yUzRwcR35dB42dLgwKPHzOYM4elsAbt0zgg+3lhAeZuXtWFjE2Kwv/ZwqrjtTS4fQwa1AcW4oaiQqx8Pl906lvdzIyJYIv9lexeHcFZw9LZHpOLB/vruDhRfvx+lTMRoUXrh/HeSMSv+5XJcQJkaAmhBBCCPE98PSKPG3elcvr4/GlR3nvjknc8/5uHG7/sMfsOBtLfzYTS/cQv82FDfz6owOUNXUxNTuGm6cMwGIyMGNQHA+dM4gOp4eZg+IYlhTOR7srcPYaPtnucLP2aF3AcSQdZ222GQNjOXNIPKuO1LKnrIVWu1sbChkRbMbp8XLdxHQ+3VupVc9U0H7uLdhi5JkVeewrb9FvNxu5ZkIal45O5k9fHKap04XFZEBVVc7IimF9XgMb8ut5blU+j1w4lKSIYM4fmYTD7eWKf27mcHcHy8TwID67fxoPLdrH2qP1AMzbUspz143hsaW52lIAbq/Kk8tzJaiJk+aEgpqiKCVAO+AFPKqqTlAUJRpYAAwASoBrVFVtPjmHKYQQQvRPco4U/UV5s75Fv9Pj4/2tZVpIAyis72RDfj1zhybg7l4k+1ijjs2FjTy25AhzhsTzwIK9eH0qBgVy4sOYmh3Lny8bwZ8+P0yH04PFZOBwdc/6Z6buoZIzB8UyKiWc9OgQLTQaFHh2VT5zBsdx5pB4dpfpA9ZNk9OZkRNLm8PD25tLdPdVtTjIiQ/V5pnF2Cw0dLh4f1tPdS86xMzwlAh+OjeH2FArl/9zE3u6X2NHSTNdLi/lzV3M735OYX0nlS12Ft8zDYCVR2q1kAZQ0+bg9Q3FWkg75t0tJbT2mc/X3KtKKMS37evMUZujquoYVVUndN/+NbBKVdUcYFX3bSGEEOKHSM6R4qQraeik5DjrmR1zwYgk3e3BCWHEHacZxrFqWk2rQ9dNEWB/ZStPLu+pGvlUeGJZLgDXTEhj+yNzef66MQGNSc4eGs/kzGhW59bzy48OYHd7+PnZOQSbDdrQyDVH69ldFvj3is/2VXHda9u4691dhFj0c8wU0DUDuWR0Mmv6VPG63F7evX0yEwdEU9HcpYW0Yz7fV8XaXP1z9pS10NLlD1lOd2CTFZ9PDZinZ7OaA9ZVu2ZCWsBzhfi2/DdDHy8FZnf/PA9YC/zqvzweIYQQ4vtAzpHiW+Px+rh3/m6WH6oF4NzhCbx4wzjMRv3f2++YkYlPVVlyoJohSeE8cFYOHq/Kx7sraeyu/ASZDGwtbGRKVgwpkcG6yhfAlKwYPt2r75zY5nCz6kgtqVEhDE4MY1BiWMAxqihsKuxpbV/f7qKy2Y69TwiqbnUwNi2SfRX+MJUZbqCwV6ORLpeXkSkRNHe5mDUojg/6zIv7fH81yRFBlDT2HHNyRDDr8+p5Y2MxXp+K1WTQDdFMjgwiNsxKVWtP84/E8CBU4K53drLicC1Gg6KF07AgE7dMHYBPhTc3+btQBpkN3HfmQMakRTIoIZQN+fVMHBDN/8zM1vZZ1WLH7vaSHRfYJEWIb+JEK2oq8JWiKLsURbmre1uCqqrVAN3/xp+MAxRCCCH6OTlHipNq2aEaLaQBLD9Uy7KDNQGP+2J/NS+uLmBfRSs7Sppwun2kRYew9IEZRAT7/zbv8Ph4aW0hr6wvwmBQeOyKEYxNjyTaZuHKcan86vwhXDcpXb9jFW6ft5Nzn13PX788zKD4MEYkh2t3x4ZamD1YvwA1+ANeeJC+JlDT6mBPeQs+1V+tiw1WAp538egkLhmdTJfTQ6hV//y4MCuXjU3hWLHLajJw2/RMbnt7B+vy6tlY0IDb69OGYsaFWXno3MH8/qJhZMf5u2BG2yw8edUonluZz1eHa1Hxd8sMMhu4/8yBLPnpDNKiQ7h12gCtc2ZksAWPV8Xu9vL5vipW59bz1PKjPLbUvxj3I4sPMO2J1cz9xzquf3UrXa7A9v9CfF0nWlGbpqpqlaIo8cAKRVFyT/QFuk9adwEkJCSwdu3ar3+UQpymWlpa8Hq98nsvxPfbNzpHyvlRnKh1RYHzoJZsOcCRI4cZGGkgOsiAy6vyyzVd2LvzQVF9Jw++u4H7xwZR2ual1a4PDp9sy2fTgUK2VPm3z0g1cWFcE1s2bUBp9nBGkhGvCg1dPorbeqpTr28oprqinINVPfszeF1EtRcQF6xQb/dXpQzAsoM94dJqhCHRRvbV6+d4tTo8GBUFb/fwyGATvLE2l9pe0+0MgA+wGGFSlIPnV+VrwyldHh9rd+fq1n3zqXBhppHB0UZSwwzU5O4GYLDNSXE9NHW6+Mfnu2h16ttVOtw+oroq2L+rikKzwnO7HRQ1+JuZ1LQ5uPfdbcxMNbG7zK29zmsbivE2V/L+wZ7vaEtRI3+ev4ZzB5gR4r9xQkFNVdWq7n/rFEVZDEwCahVFSVJVtVpRlCQgsO2P/zmvAq8CTJgwQZ09e/a3cuBCnA4WL15MS0sL8nsvxPfXNz1Hyvnx1PvqUA2f7asiOTKYO2dkERdmRVVVdpc1Y1AUxqZHaY/tdHpoc7iP29HwZEsd1sEnz63H3Z1mjIrCshIPKh5MBoXnrx/LyJQI7CvW6J7XpgZTa8ukQ3URZM7XNRVJiI1mY0GDdnt9hYeb5ozm5XWF7C7zp6SIYDM5CeEUt/XMK1OBQkcw/v45fnV2sKWP4qZpTRysaiM+zMrHuyt1HRsz48J46vqxnPPMet0xejDij2H+YZn3zc3hqeVHdY+ZnhPLrdMzGZsWyfvbyvAd7rlfBYIj46CsWvccV1AMz++px6uqXD42hRsmpbFk2Rbt/n31XqZkxVDS1jNcM8Ri5PEdTtw+lYtGJVPn8gE9wzKbHCrekFhA/1resCSgVLfNGp3M7NnD+Tpq2xws3lOJyaBwxbhUom2Wr/X8YzxeH9tLmogKsTA0yV/5VFWVnaXNdDo9TBsYi9looLypi6dX5FHS2Mm5wxO5a0YWBkNghVOcOv8xqCmKYgMMqqq2d/98DvAn4DPgFuDx7n8/PZkHKoQQQvQ3co48fX25v5p75+/Wbq/JrePTe6dx85vb2VnqDyZTs2N4+9ZJ/HtHGY8tycXu9jIpM5pXfzSeEIuJD7aXcaCylWkDY7h8rL/JxM6SJlYcqSUr1sblY1O1xh29tTvcfLG/GrfXx0Wjko97Qe70eMmv7SAz1sbA+FDm3TaJNzcWo6qws7RZa23v8ak8uSyXtQ/P0XVHBH/l6Fcf+ddCC7EYCbWa6HB6GJ8RxfDkcF1QA1idW6fryNhqdwcMPRyeHM6QxDCO9Or4aDUZ+Ml7O2nvXjttaFIYbq9+blpzl4tfLNyr2xZts1Da6tKqaQ6Pj435+k6LAMmRwVS3OPjXml141cDGH4ri7zp5rKo2NTuG5Yd7qnmLdlUc93tIjw4mOTKV5YdqSAi3Uljf06jl831VjM+IorKlJ6gNSwrn8nEpfL6/J6iFB5n48bQBLNxVgb3XYt3nDu9p2V/c0Emn08OIlAjd6+/p/oPA6LRIalodXPD8Bm2tubc2lbD0gRmEB/mrch6vj492V3Cwso1pA2M4r7txzFeHalh5pJbM2FBunpJBl8vLta9soai76cwV41L4+1Wj+fHbO1if5/9ss+JsLPqfKfz4re3ae95T1oIC/M+sbET/cSIVtQRgseJfpt0EzFdVdZmiKDuAhYqi3A6UAVefvMMUQggh+iU5R56mPt5dobudX9fBS2sLtJAG/nb1C3aU8cfPD2uNJrYXN/GvdYU0tLv4qHsfi3ZVUNFkJzs+lHvn70btDh6rc+t45UcTdK/T6fRw6YubtAvpF1cX8MVPpxMfFqQ9Zm95C3fM20lDh5NQq4lnrh3D2cMSmJodi6qqDP7fZbp9Nne5ueaVLeTXdWA0KCSEWxmbFsWXB3oCRZfLy10zMhmaHE5pYxfxYVYMCtoQQqNBYeBxmmCkRAbz2s0TWHKgmrgwK5XNXaw8UkeIxUiXy0uIxcj4jCg25PeEviPV7cwaFMe6vF6hS4WDlT0t8IcmhfHctWM459kNutera3cyKCGUvFp/4IwLs5IZa+O3i3sW37aaDLi6g+CMnFg+26evcGXG2tjcq7EJgFHxNwTpXVU8b2QSOfGhzB4cR3Wrnb8t0Y9aTo4IoisxjLKmLoYlh/P3q0fT4fSQFWujrKmLxIggnrtuDAcq2/ylPSDYbOA35w9lSnYMAA8u3Kf9noxJi+Td2ydhNhq45c3tbCtuAvzB8oysGN2C4JUtdpYeqObaif75gr/75CD/3lEOwLtbS/ntBUOIDLHwy0X7tedsLmxgVGqE9rsF8PHuSkYmR2ghDfzDYl9cU6ALpuCfCylBrX/5j0FNVdUiYPRxtjcCc0/GQQkhhBCnAzlHnr5iQvVVLEU5fpv2vNoOLaQdc7SmXRdMAP69o5yUqGAtpIG/6UdVi53kyOBe22p0F9J17U4W7argntkDtW1//uIwDR3+tvkdTg+/++QAc4fEYzAoKIrCOcMS+KJXVSc9OoTlIi/vAAAgAElEQVTt3Rf9Xp9KfbuTmYNidUENYFdZM69uKNZuXzcxjcL6DjpdXurbnfxlyRFdx0SDAu9vK2NPWQvPXjeGtzaV8OWBniYmqVHBLPnpdJ5fVRDweYCKUVEwGhQuGZPEol36TpIVTXb2V7YRZob2XtPWKprt2uubjQrv3DaJp1fk6Z7r9Ph46YaxDIi1sSGvnvV5+tdWFHQhFCDKZsFq8ge1sCATD50zmHaHh1lPrcXrU1FA1/kRYH1+vTa3b19FK212D3e/t0urslU02/lkTyWf7K3Shnna3T62FDVy89QBbCtq1EIa+AP4B9vLiLZZtZAG/j8IxIYGLqNQWNfJF/urmJIVw6Jd+j8svLu1NOA5G/IbtAqc7rPuVRU8xuPzBQTXzBhbwOPEqfV11lETQgghhPheuGf2QBLCey50b5uWyQ2T07H2GiIXYjFy67QBAUMT5wyOD1jvKyLYrHsu+MPCgh3lfLSrAkf3hXyfzAdAQ4eTNkdPWundLh/8Ye5YeJm3uUQLaQpw4+R0okL0F+dur0pNq113jBHBZg5VteketyG/gQ/vnorD7dXWU3N6fGTF2kiNDNaO9XB1Gw8u3MfWIn2VqqLZznvbylh2qIbeU5uSIoJYl9eAV1VxeX0s2lXJkD4t/ePCrDz04T4tpMWHWbloVJKurb7bq7LicG1AIDEo8PSKfC58fiMvry8K+Dy3FDZqxx4ZYuYPlwzj9Q3FWuhqd3gobujkyWU968Wp+Nvyj0v3t9+/anyqrgGLy+PjnS0luqGQAJsKGml36Bu1FDd0Ynd5KazvoK+qFgd17Y6A7bGhFmJ7/fEg2Gzk1Q1F3Dd/D+c/tz5g6KbNYiIiWP+9m40Kl45JRun1XSSEW7lrRpZu3xajgWsnpvPoxcMJMvv3mxVn4+dnDwo4LnFq/TfrqAkhhBBCnJYGxNpY9/ActhU3kRwRRE6CP0h8ePcU5m0uxWiAH0/NJCsulHdum8RTy49S2+bg0jEp3DwlA0WBRz87hKr6L3wfPGcQwWYj24qatGF5BkXhuVX5AMzfXsaiu6dw3ohEnl+Vr4Uxo0HhzY0lzN9Wxu8uHMZNZ2Rw/ohE3tnS05wi2mbhqeVHuXNmJv/4St9IY1txE1eMTWF9r4pWeJCJZ1YWaLetRgMf3DGZq1/paaYB4FNVSho6KeozBK65y6WrtAAcqGzlgpGJFPeqBkbbLDy5TN/44/4zB1LX7mDBDn0FaEpWDI0dLpq6XIxKjaC2TR9WGjqczBocp6sUAqw5WqdbwNpsVMiIDqGgOwS1dPnn0YUFmfD6VIYlh7P2aM8wv5YuNzaLia5e88fAHz6PzfM7xuH28vE90/D5VN7bWhpQxUqKCCbGZtHWpAMYkRJOp8tDbVvPwuFRIRbG/vkrnG6fbu6cokBsqJWVh2t1FT+TQeHNTSWAf97c3KEJvNV9G6Cu3cWUrBi2dAdlk0HhgbMGER9uZUdxE53d7+1/ZmZzzvBE3rltEgt3VhAVYubOGVkkRASx+J5pvL25hC6Xh2snpjM8OYLhyRFcMDKJ2jYHOfGhKIo0EulvJKgJIYQQ4gcpyGxk1iD9+l+jUiP5xzWRum0jUiKYd9sk3babpwxg+sBYDlW1MSkzmoRw/xyzVQ/OYm1ePWty61id29Psc1dpM9uLm5icFcPn903nk72VfLy7gn0VrYC/NfyfvjjMhSOTeOTCoUQGm/l0XxWljV00drh4c1MxmwrqAwJUc6eLl9b0hLLUqGBGp0bqhj06vT7y6jq4a2Y2z6zsGUZY3epg9t/XEhViprmrJ7RkxtqwWU264YwxNgvLDtZowSMjJoQJ6VF8tEc/pDHIbCSiz/A7o6KwYGe5FpYOVLSSFacfZhdiMbHsQDWKgjZ8ND06RBfSAB69aDivbdRX0TqcHlY/NIswq5k/fH6Ivsqbu7BZjFqgObbvNrub3JqepijXTUynssXOzW9so7C+EwVt6hlpUcE43F6CzAZtyODEAVFszG+gqfuzs5oMXDommYU7ewKex6cyOi2CuNAgJg6I4vFludr7Myj+ANt7ofCyJjvNXYHLMQyMD+V3Fw3lUFUbZ2TGkB4TAsDGX53J5sJGMmNtDOte225GThwzcvS/12nRIfzvRcMC9hsRbA6ozIn+Q4Y+CiGEEEJ8A1lxoVw8OpntxU38fMFeXlpTQLTNwo/OyNCCW2/HLvojQszcMnUAVrN++KTL46OyxY7VZOQX5wwmuc9SAEdrOzhrmH7t9MgQsy6AVLc6yI4PnGu0raiRwYlhvHf7JK4an6K7r7nLzYjkcG3o5u6yFg5VtjI1O4bwIBOZsTYaO134VH/wMCqw4K4zmJYTG/A6b20q1ubBWUwGsuJsXD0hVVfR8vhUBieEYTH6X09RIDvOxqrcei3EJIYHcePktID9FzV06Ibxgb8xyUurCxj1x+UBTWKCTAaeX1WgfUbhQSbOHZ7Aol0VWkiLCDbz18tG8L8XDeP5lflakw0VMBrg71eP4sbJ6by6oYjKFgcOt4/YUIu/AUivgOv0+DAbAy+tR6ZE8PotE6hvd+rmMPpUyDjOvDCzwUBqVM93bzEauGZCGsOTI7hmQhoVLV08/OE+Hl+ai9vr48JRSVpIE98vEtSEEEIIIb6hd7aUcP8He1i8p5Knlh/lJ+/7W/7fPCVDN0fMZFD4zcf7WXawp9J1zrAE3b6CzUYe/fQg87eVAejm0IF/mOTIlAgePncQN0xO58UbxgbM3/L6VLLjQhmdqm8F/8GOcu5+bxdfHqhmSGLgRf3QpHDd/LCmLjeDEsLY/4dzGZygn1/mVeHdLaX89uOeTowWk4GJA6Jo6OipBrk8Pv5y6QimDwwMdLvLWrQhorNy4nTDCcG/wHRmrA1jr+F4BgX+vb2cXaX+KpvFqHD20ASum5jOvC2luL2qttbc6NQILh6dTIhVH4aPN7yv1e5mWHI4RoMSMD/Q64PBCeFsLNDPz2vocFHXa7jjMUkRQZj6rEW2v7yViX9dqWsgcsycIfGEBQUugdB7WOYNk9MZ2f19bipo4MbXt/HhrgpeXlfIVS9vweUJbILTl8vjY8XhWlYdqQ1YOkH0XxLUhBBCCCG+oYU7y3W31+fVU9PqYGhSOMsfmMkFI/zraXl8KsUNXdw3fw/VrXa8PpXzRiTym/OHMColAovRgN3tZVdZC79dfIBP91Zy/9wcEntV5rw+lSeWHeWZFfnMHRLPRaOSuWFyuu71rSYDP/v3Xo5Ut3PP7GyGJetD1oId5YxJj8Ro0AegESmB4a24oZMfv7Wd/Lp23fZgs5EPdpTj6BUQRiSHMywpcB//3lEesH5aSmSwrinH2rx60qL01cPE8CB+sWAf3u4SVESwmTlD4unqtYi2y6ty4xnpx23OccmYFJ69dgyGPsHM51OP2xkxt6aNi1/YSG6NvuFKkNnAHfN2UNNnTp3FaGDW4DjdOnPRNgvPrszD41OxmAxkxISQFhXM/spW6tudHKhsJa47WCsKXD8pvbsTZc97unZCKuvy6nUNSuZvL9OazSzaVaGrypU1dbGtWB8i+2p3uLnohQ3c+c5Obp+3k8v/uUn3mqL/kqAmhBBCiB+0xXsqOPeZ9Zz7zHo+6m4g4fR4WbSrgpfWFAR071NVlU0FDby7pYTgPsMXLUYDwRb/5VVadAjBFn21xONT+XBnOdOfWM30J9bw3rZSrpqQqlWXjll+qIbGDhePXDiUV24ah8Wo6Pbx/OoCXB4f8WFBPHHlSK6flMawpDCtKuby+nhjYzEmJfBS7/75e/wt6RX/fLR/3TSeGyZnkN1r3pjRoLCxoJ61R+u1+VrRNgvDksJ59roxujW/wL/uV4jVpOv+GBdq5bN9Vbi8PcnixsnpnDdcX0kEMBkNWrfCUKuJESnhdPQaLtlqdwd81gD7K1o53KebpaL45+6N/8uKgOO8fUYmZw6Jx9zr87x4VBKPfnaYA5Wt2ly97DgbEcFmHG4fte1OCup6hlyGWU1MHRjDPe/vpsPpIchs4NZpA2i3uzmWXV0eH+PSoyhv1neJdPt8rHpwFssfmMljV4zk718d1aqAAEsP1mgdOI9xeXxacOtbfQPYW97M25uKqesOk6qqsvxQDc+tzGd3WTOf7K3S1qUD/3p2X/Zp2iL6J2kmIoQQQogfrP0VLfxi4T6tSvHgh/vIirPx1PKj2qLJz63K54M7JzM+IxrwLz78fvfwRJNB0a1H5fL6uOTFTTx33VjGpEUyJi1Ct5aWQfFXRapb/RfV5U12PthepmuiAf5Fo6/p7tIYH2bVOgce02Z3M/upNVS1OlAUuHf2QIL6BBmnx8ekrGgOVLVq+06ODKaiOzyoKtS1OUiOCObG17ZR1WInOy6USZlRhFiMvLGxRNuXClw7MY3aVgePLD4Q0IDE5fHxr7WFAJgNCldNSGVUSiS/6bVQNUBjh5Ngs1HXqMNmMeoal3Q4Pdo6cr35VFXXRTE1Kli3xlqw2UhGTAhXj0/lL0uO6D7PWYPi+PG0AYxJjWTmk2t04SgjxhYwfHBoYjhf9FmHzmoysu23c3G6vcz5xzptu8Pto6C2A3ef76iqxU5mrE3XKTM5IpgbXttKbZuTSQOiA0JZh9PDJaOTOdgrfJ6RFU1ieBC//mg/H+4s1312kSFm/vGVv7Po0yvy+PS+6by1qVjrGvrMyjwuHJkY8Fl2OD0B20T/IxU1IYQQQvxgbchv0F3QA3y0u0ILaeAPIW9v9l/41rU7+GB7mXafx6cyJs2/9tYxpY1dPLhwL51OD+XNduLDrBgUf0Xqr5ePDKiylDV2MWdwnFZRyokP1V3c17U7yY4L1T0n2mamqvVYBQX+ubYgYC5YqNXI6xuKUVX/Ol3PXjuaMKv+b/SdLi8PLNjL9pIm7G4fhfUdtNk9TM6MCfisdpc28/GeSho6XDR3uYkMNnNGVjSXjUnWhTa3TyXUaiIlKihg/a9txU0s3lulBY2RsQbumZMd8FqxoVZd1SsyxMySAzVaSJuZExvQsMXu9vLyTeNJiAgK+E5jQy1MHBDNhoIG2p2B6571nboWGmwKaFqSHW/jq0M1rDhSG7AIut3tCZgvGB5sprzXnLdBCaFUNHdprfy3lzQRFaJ/jYtGJdPqcHPscGJsFh67fBSL91Ty7x3leNWekHbH9Exaen3ubQ4Pb24s1uY4HpNb06773iNDzFwwMgnR/0lFTQghhBA/WMebV5UVG9iJ79iQPo9XDVi02qeiW0cLoLC+k4c+3MfSgzXatrOGxHP9pHQW765ge0mztj0m1Mrq3J61v3ISwsiv0w+3jAu1UNtmos3hYURKBEEmffXMp0JOQigPnJXD1qJGgsxG3XpiDR0uKlscTBsYy5FeLemHJoVxpFo/B21bcRNDk8IIsRi1bo3nDk/gUFWr7nEtdjd/uGS4/3X2Vunu213awmvd3R8V/NWvGTlxzN+uDxFRQQbiw4IwGhRd+Nlc2Ijbq2JQ4NIxKXy2V78MwMGqNsalR+m2GRWFx5YeoaCuQ7dOGcC6vHpGPLqcnON0xIwMMXPXzCzmby2j0+Uh1Gri39v9cw8tJgMuj4/BCWHsKmlmfZ6/8hdqNemqUqVNXVojFZNB4bbpmby2vojevyojUyLJq9V3pfSpKr+/aBhfHqhmXHoUV45L4bznNmj3N3a6+GBH2XEbgPSuCvbeX9/QaTUZ+fS+aXywvQyDQeHGSRnEhVkDniv6H6moCSGEEOKU21HSxONLc/lwZ/l32pVuzpB47pieicVowGI0cNu0TG6dlqlbX00Biuo72FXaRHJkMGcOidfd9+OpAwKqWRMyovjqcK1u25KDNby0pkALaQYFzhoaT3WLvsK2pbCB9OgQ7bbRoLCnvJW27nlKBytbAy7Gg8wG7v9gL8+tymdgfCiXj9W34Af/+mXzNpdotzNjbbx96yQGxuurdYnhVv7+VZ4W0sxGhT9fNoJRqfr15SKCzVz8/EYeX5qra04SHmziQGXP+mcqEGWzcNWE1IBjqmj38fCi/VpIS4wIIiMmRHttnwprcmuJtumDRajVRGljJ70/hiibmeWHaims78SnQlSImcTwICKDzVqIyq/rJCUyWAvewWYj728r45V1RUwbGMOvzhuifc7gr6b+/apRTBgQpVsGocPp4erxqVw2Jpnbpg+gvr1nLpzHp9La5aJvjGrudOra7oP/O3h8WS67Spt5bUORtvC17jNq7mJatv73y2hQuGJcsq7ZjM1i5JYpGcwY2Ot3V4G7Z2eTFRfKIxcO4zfnD9XWYDtV9pQ18+cvDvPa+iLaHe7//IQfMAlqQgghhDilPttXxdUvb+HldYU8vGg/v1i4D/AHi78vP8qCHWU4Pd0X7j6VbUWN7Cpt1u1DVVU83zDg/e6iYex79Bz2Pno2v794GIqi8PotE7h5ir+jogocqGzjljd3UN1qp7ihp9oVGWJmwoAo/nr5CC4b479wPntYAs9fP5bkSP3QvKSIIJ5bla/d9qn+eWQRIfouhFaTkfNHJHL52BRumJzO41eOxN6nS1+Xy8sL14/lnGEJTBoQpc2RU1V4b2sZkX0WMjYaFOraHbp5VCWNnZQ2dmJ39wSTnPhQ0qL1F/Jur8qne6poaHdqQxnTooJxeXza/rzda6M9evEw3rplIn2LPc2dLh76cJ9uW0pkMGVt+u/MYjTg6fPkFruHu2ZmaWEw2GykqdNJfl2HFoYuG5OsWxoAIDLEwsoHZ9Fi14cBp8fL5l/P5fbpmbrPddmhWt0C2D2v79a6LvZ2+dgUrpmYhskQeDmdEBFEVJ/vdVhyhC6YzMiJpbrFrpsf99neyoBq19yhCTy7qmcuns1i5Llrx/C7Tw5p3SiNisI/rhnNgp0VrD7as9D67dMzuWR0csDx/bc6nB4qmvVLGdS1OVidW0tjr/mFO0qa+PMXh3lnSwkOt5dNBQ1c9fIW3thYzF+XHOHG17eh9h2nKjQy9FEIIYQQp9Rbm4p1t7/YX8XcIfE8+OE+rdKy9GAN/7xxHNe/upV9Ff4heNMGxvD2rZNYcqCav3x5hOZOF5eMTuZvV4zE7vLyjxVHOVDRyhnZMfz8rEEBzTZ6C7bo7zMbDbR06ecydTg9vLq+iOKGngvU5i43H+2qZOKAKHISwrhyfCozcvwVjT9dOoL75+/ROgNePCaZp7/K0+2zod3JBSOTeG9rKT7VX2WraXPwyvoiAB69eBiXjk7hyWVHdY0ngsxGxqRFcvHoZH7/6UHdUEqAZYdqdGtxXTE2RdcSH/yh7sXVBVQ297Ser2t3ctX4VN2QTUWB1zcW6YZ3zh0Sz9vdDSuOcXt9LD1Ywx8/P4zZqNA7WnY4PTQ39xzP+PQo5t02kfF//gpPrwd6vD6ibBbdsY5OjeCp5Ue134VrJqYyb7P+tStb7ETbLLouj0FmA//z7s6AxidTs2Px+HzHbagRa7Nowx3Bv9zBE0tzcXd3yTyWKUYkh/Pcqjy2Ffs/d7NR0YYixtgs7C5t0V7TYjTwwFk5rM2rp9Xe85qHqtoCwpzT62PBzRN4ankuVS0OrpmQSofDw8HKnuYinS4vRfUdHKjsGYrqVVWWH6xlyUF9A5SlB2r43YXDAt7niVp7tI43Nvr//7x9eiazB8fz1qZinliWi8PtY0JGFK/dPIENBQ08uHAvbq9/aYJ/3TgOt1flJ+/v0j6zFYdrCQsy6Ya47q9oZW95C2P7DGMVflJRE0IIIcQpZTHqL0cMisLCneW6C7q1R+t5ZV2RFtIANhU0smhXOQ99uI/6dicen8rHeyp5c1MxP1uwl/e2lrGvopVX1hXxpy8OA/6/8C/cUU51a08QqG618+neSgp6rRfm8fqw9mmEoSj+Dox97Spt4qqXt/DU8qP86I3tPNPdiXDO4Hgeu2IkRsXfGfDpr/JIi9YPfSuo7+CdLf6QdtmY5IAw+cq6IiwmA6/fPIEJA6K0BhubCxs555n1HKpq5bwR+q5+NouRzX0WaP7yQDVnD03QDRU8a2iC1n3ymFa7m5pWh7Zos8Vk4J7Z2QFz8HaVtQQshB0ebGJ796LObq+Kyahw0+R0Xrh+rC4oAVS12nlxTWHAhWhtu5ND3R0PzUaF26Zl4nD7dMsXfLyrAlufYF3X5qTN7taGNMaFWjlS3c6mgkaau9xYTQZibBYuGpVEu8PN9CfWsGBHue7zsBgNvLaxGJfHR7TNwgUjk3D2qhqqKkzNjuHPlw7nzplZWkg79n7PG57I7y4cyt8uH8HGgp4uli6vjy6Xl6o+Qbmp08UV4/TDQS8YmcSne6vYWNBIUUMnT32Vx46SwIWyew/D1I7fbMDc5/8lq8lAU6eLdXn1ukpXQ4eTD3eWs6mgQatoFdR18MfPD/HHzw9RWN/B0Zp2bp+3kw35DWzIb+COeTvZVNDAX748olVwd5Y28691hfz1y8NaUHV5fPxtyRHe21qqa+qyIb8hoAkLQIhF6kb/P/LJCCGEEOKUumfOQHaX7dAu9H50RkZA9Qf8Len7OlTVFtBUYXdpC+vz6nXbvjpUQ5DJyJvd1TurycC82ybR6fRw93u7tH08evEwLhyZxLWvbtV1Xgw2G7l5agZVLQ7CrCatc2CMzaKrdgC8vqGIn87NwWhQeG1DkW4YYG2rg5+emUNpUyeHKlspqO95jaUHqzH1udD2+lTe2VLCkMRwfnP+EK781xbtPrvbyzubS0mODNYqOimRwbxw/RgeWKAfZujxqTy5PFcbKhgWZOLxK0fyxsZiXeOSjJgQ3uo1j83l8TE2PZKwIJNuEWanx6tbm+vysSkBQ+E8XpWsuFBW59YFVLtiQy28vK5Qux1kMnDOsEQ+29/TlMTtVRmREs7yQzW6/Xa5fFwz0V/1a7W7SQwPorRXd8XkyCAGxYeyNq8nmDg9PubfOZ7C+k5+uWi/tl3F3/7eZjGxKrdnyGBTp0vXdfKYpIhgxqRFBRwT+KuyDR0uXafHY/Lr2okINmtLIwDMHBRHRkyIVsELsxq5bmIat761Q3uM16dSWN+hq/LZrEaCzUaGJYVzuNr/uxdiMVLR1EVKVDBHu4dvKor/jwVTHluF0+PDYjLw/HVjSY8O4dpXtmi/w5eNSebh84Zw+UubtG2LdlZw4xnpumDl8al8vq8qIGzl17YHrFfX0OEiM1Y/91FR4KYzMthc2Kj9Ll00KonBifrAL3pIUBNCCCHEKTVrUBwrfj6LdXn1DIwPZdrAWHaUNLE+r15bwPnSMcnceEYG87eXadvCrCZ+dEYGi3ZVaH/hB5iaHc3hqlatfT3450PN21Ki3XZ6fLy0poDGDpcu6D29Io/KZrsupAE8c+1oHv5wv3YhazUZuHNmFjefkcHl/9yse6wKtDncRIVYsPepfHh9/gvtMWmRHKzUd1F0elRunZbBy+uKtG0NnU5+/+khgOM2CGnocLJgZ7l2u7LFTmF9JxeMTNTtZ3hSOHvKexp8tDs8LD1YQ0mDvyGH2WhgwoAoRiSH8+oG/VDUTQWNZESHcLi6DZ/qH4rYd5HpI9VtnDcikR29hmBGBJu1Sib4w67FZGDmoLiAddIcHh+hx1nMeVtRY8A2gwIfdHdlnJYdE7DcQVWLgylZMQHPOVLVTkF94By080ckERli1gW1Y8+xmgza7xvA4eo2Ln5xI4BuTTezUWHxnp7OlL3X1jMaFFYcrtW6UFpNBm6YnM59cwZy9jPrtQDW7vTywup8fH3mbJkMBj66eyrvbS2lqcvF2tw6nu2e6zg+I4qp2TH8c00Bm7qXlLAYFe6ZM5DzRiRy97u7ehZB9/j4y5eHmZARpVui4JO9VSSEB+m2tTs91LUHrmV3RlYMKw7X0tgrmJ01LIG4MCsLd/Z0tLxyXCoXjkpiU0GDNg/wuonpzMiJY93Dc1idW0dSRBBTswOXgQB/Rdvp8WGz/rCjyg/73QshhBDiO1HS0El4sJlom+W49w+ItTGgV1v8iQOiWfmLWazOrSMtOpjZg+IxGBQ+vHsK724pxWQ0cOu0AQxKCOPlm8bz2JJc6jucXDE2hVumZpIZG8rP/r2HNoeHhHArP52bw+3zdupe0+7yBjSJ6HJ5qW3XDwcEWJNbr7uQdXp8RAabiQ8P4u5ZWfxvd5gCcLi9TPzLSq6ZmMaPzsjg95/13Gc1G3hsaS7gX+esN5vFyNaiJh4+dzAAH++uoLBXxe2L/VWMTo3Qhn9aTAaGJoUHBIwtRY18ub9nrlKIxci0gTG6oAawNrdOe67L6+NQVRv3zM4OCGpfHarVVThHpkZolZye9+zTdZRMjAhiQEwIW4t6hu3Z3V6ev24s+ytbKG3UB2GL0UBLp0sXfjJiQljQ6+I/IthMTryNnaU972NTYSMzB8VS1quKFRFsptPpITHcSk2bE6W7Vf/vPj2IyajoFow2GxU+3VvJ0Zp23Wsr+IfqHQs5QWYDF49O5sNex+PxqczIiSUjJoSdJU3k1vRUGB1uHzdPycDtValrc+i+I6fHx8xBcRgNSkAlqrrVwRXjUlm0q+d18mrauPOdnTx07mCWHazWNYTZVdrMiORwXdXW5VWJDDYzJDE8IGzVtTu1jpq99R3mCzApMxq3119FA7hkdDIXj05mUEIYT684SnWrg0vHJHPDpHSuHp/GwPhQ9pa3MHFANDdNzsBsMrD24dmsPVpHerSNKd2hLNpm4arxPUM+W+1unB4v8WH+5jsLd5bztyVHaLW7OXdYIk9fO/oHOzzyh/muhRBCCPGdaLW7uf3tHewsbcZsVLh3zkAeOGsQ4G8zH2wx6hZz7nB66HJ5iA8LIi06hFumDgD8i0I/vGgfe8paGJ8RxZNXjdK6E45KjWTpz2Zg6NUifs6QeLb99izKmrrIirNhNho4a2g8K4/0XDD/aEoGFc12nlp+VNt22ZgULhmTzOf7eoJOUkQQI1PDWaDPeaw6UsvTK/KIC/pLe0MAACAASURBVLPy8LmDKazr4OM9lfhU/3pW87eV8a8bx/H2rRNZn9dAi93Fx7t7qi4dTi+XjUmmps3B1qImOl1e9pa3cKiqlbUPz9EukI/xqeDo1XnD5fER9//Ye+/4OMp7+/8925t21Xu1ii0Xuck2LriADaE69AABQgjckASSkJBcQgrhpkB6AiGhQ+iEmGLTbePeu2VbtmTJ6r3vavvO749ZjfbZUW7u/ebml0D2vF68zM7OzD47O6t9znM+n3OSTALBAKXkMFYFGg2EsZn0gqnGrIJk+jziJH7IG+RUl5v8FCudQz7sZgM3Ly7mN+vrhP12nu7jrElpbK0b78NKTzJxJoZ8dQ75mDuBQcQ9rx9R3RnHss5S7SYmpdt5J6accHK2A2Ocm+KQN6hO5mNxzuRMJCS21fdiMegY8gZ575gSjfClFZN4dnuT2tMVCssUptrITbZgMijlggeax4lfrsvCjHwXSRajQJZ8wQiRCfqrClNt5CXb2CuLZi56SaLP46dzyK/2+8Xi9QOt3LvmqKak1GUxkmQxcO9Flew83cfG2m78YZnOYR/feu0w80tSNeeKD9oGaBnwct6vNwuxCaCYylw4I4f1J8YVvjmFyXxxeSkbT3arZbwz8lysnpnHZ+YV8p8XTGHUH6Ig1YZeJzE118n507J5dEsDr+5rJcVm4qrqAm5bWsofN5/mVx+e4ufvn+Tzi0v45vmTuWZeofr6tZ3K+adkK/mFv3j/JI9taSAQjnDe1CzuvaiS76w5qt7P7x3rpHKLk6+uLNe8x38HJIhaAgkkkEACCSTwD8OT2xrZF7XSD4ZlfrO+jpWVWfzgrWOqxf7qWbn85ppZ/HFzA7/dcApfMMKKyRk8fN0ctfTpm38+zJ6oqcLOhj6+9doRHryiittf2M+x9mHykq384qqZLCxNwxsI88imeg40DzCvOJUvLivFqIeHr5vD7z+q58PjXeQkWyjNcLB6Vh4FqTbWHm4jxWbmW5+aTLrDzNOfm8efdp4hFJH5yooyZuS7eHF3i6okZTnN7IyqRU19o/x2Qx23L5ukef8HmweYV5LGLWeXsOlkt0DUAGbkJ5PU6xGUp2BYZmtdD+dMyRTs4s+ZksmHcdlsH53s4fxpWbxztBMZpRRuZkEyb8WRvI21PYKhx8rKTEZ8IQ61jJdfOq0Gfvz2cVWdGfIGmV2QTLrDJFjfmw16gaRV5btItk6klMpC8PTZ5enCcREZVhUZ+MNt57LgJxuEI092ujlvWhY1MSWWJoOOUCQihGMb9RL3rT1Oss3IA5fN4O6/HBHOs62uTxNtEI7I3HBWMTkuC5f/QSxb9QTC3HfpNP7w0WniUZGdJJQ0GnQSL+weD/COfa8Oi563j4wTz9iA7LIMO2/FLARYjDrKMhyc7Bqhpn2YmvZhXFYjKyaP56GNXa9ZBcnsOzOgEpmVlZncunQSG2u7VcV0UWma6tQ4huqiFM6tzOKWJSWYDDoeunY2j25pwGU1ct8l07CZDKz54iLuW3ucI62DzClKZjQQQqeDn71Xy9rD7ViMer62spz5JWncHdPnd/drRyjLdBCOyDwQVYsBHv6onlkFyaycmkUwHOG2P+3jo2gI+7KKDO48t5yHP6pX9//geBeZSWZh0QHQBK3/OyFB1BJIIIEEEkggAQ1C4QgdQz5Nptb/Fmfier0AntvVJOSgvXmoncVl6Tz43vgk76OTPTyz4wxfXlEGwL4m0fluf9MAP1x7THUIbBv08o1XD7H12+fwndePqv1C2+v76Bzy8cAVVQx7gzyz4wwjvhC1nSPsqO/jna+ezYGmAT48riht79V08PJtC/EEQmyJutRtr+/lgSuqeOsri9la10soIvPqvmb1GEDtM4otqwN4ZscZHtvaiE6C7100lfwUq2oooddJ7GzoZXaBVnn65fun6HH70UmwoCSVq+cVMLsghfUnugQnvXBE5u2j44Rgf9MAV1fnk+uyqD160/Ocmty5P+9v5dp5hZj0EoGwTJrdxOrZeTwVN8HfUNtNZbaT7ad7ichQmZOkCSQ/0jrEf63OZ/2JcRKZ7bQI47Ia9VxdXSAQNYAOd4Sbn9mLNc7tMstpJtVmVE1I9DqJQCjCB9FrPiU7CW8grJqIDI4G+cUHJwWbfFDu49xkq2Di0TPi58svHgDQmJzYTHoWPbARWUYghBlJZp7f2YQvGEEnKeR02BuiIeb+1knwnxdMwWU18u2/HBXez6QMO7eePQmjQeLpbWcEExlfMEJVvksgpUPeoCbUXCdBWaaDKTlJdA/7OWdKJvevns5DG+tUkpZkMTA1x8mO02Jv36LSNG5fXgoo6vS3/3JUJY6feXwX67++jOd2neHFPQrxrGkf5ljbMJfMzOXNQwrpHw2E+ck7tdy8uJh4bK/vnTD+4lDLICunZvFuTadK0gA2n+rRhH+DUoJrN+kFV8sl5ema/f5dkCBqCSSQQAIJJJCAgOd3neEHbx0nHJGxGvU8ffM8ZhUk8+B7tWw40U1ZpoN7L6qkNMPB2sPtPL+rCZtJz5dXlFFdLJZmnTctS1B3XFYjZr22HybeWGNs2zPbG9HrdVTlJ3MopsdqdmEyJ+L6pNqHfAx5g6w7IqpJaw+388AVVbx/rDPOuTDCi7ubBZORYV+IRzbVc7RtSJ2kR2T42XsnmZ7r4sH3aqntHCEvLszaoJN4aGO9StLSHWbMBom2QZ96jt9urGPjXcv40osH2NXQTzgis/54Nx2DXlbPymXt4XZMBh3FaXZVSYvIsL9pkN9dO5t3azopSbfTEJ3kp9iMVOW7NORnw4luwUiltX8Um1mPxz8++TXqdTwQQ4z7PAHS4jK9QAkdj+1ts5sMWE16wSnSbNAJQd6FqVbKMhxqGDMo/WnBcISiNBtNfQq5cpgN1PSFoE8Zvz06xmSrka5hPy/vVUoPV1VmcqrbrR4HUNftJtUmqnhdI35uOKuQ53YpZMOk13G8Y1yRzHVZSLWbBEI0OBqgPNNBXbebKdlJgoIZjsgsLU9nwaQ0DjYNsD7aZxaR4VSXm6I0cRFDRqJtwMv+aJlvLGE0G3R8780aBkeDmogHi1EH2upIStLsVGQ5aOz14LIa+eKyUr6zpkaNKnh5bwuLy9J5ZNO4+jfiC3GkdVBzrg+Od7L2SAeXVOUgSZKQIdcz4ue9Yx2sOyJmsO1rGtCEto9d13gUptrURZNYDHmD/OSdE/iC2r44p8WoMWu5YHoOl83O54H3aukd8XPZ7Dzml6TyjVcP4/GHuG5BIUsrMmjpH+WB92qp73KzYkomd62qYNgX5O4/H2ZrXS9TcpJ44PIqpue5tBf2Y4QEUUsggQQSSCCBBFSEwxGVpIEywf7yCwe4Ym4+T28/A0Bz/yhnej381+pp3PHSQfXYXQ39bL57OetPdPPIpnpkGb5wdgk/vXwGr+1vxWkxcP2CItIcJp7f3TReJmY2cNPCIv6yv1VYSd9e36sGL+e4LMwpVMhass2EhKJSxBKSjCQzR1oHyXFZBXOJ3GRl5T7Vru3lsRh1xJnsMeQNCmHRACO+IF9/5SAno5b0bYM+sp0WBkYDZCSZkSRo6R9Xbdz+IAadKe4cIWxmgya77Fj7CDctKsEfjJCfamVvo6geBsIRfrj2GOtiSunOm5rFr66ZRUOPm0c2nRbeQ3yQ86A3xKdn5fJGVBkx6CTmF6dSH0O2QCG62U6LSrBWVmZyIE6J29c0wJ3nlrG9XlHYJJRyvN0xY27u97KgROu6+P03a3BHyWJZhoMhb4BY88fRQJgtd6/gP57bx2DM9d94skeT2WbUSywqTePNmEUAp8XAc7uaMRkkLp2Zx94z/QK56xj2kZMsqjgRWbGIdwdCmA16gagBTMpw8KXlparTY+xYV0zOpLZjRCXndpOeZ2NCwMfIWnGajZq2IbzRksnuET/ZLgudQz6cFgO+YIQXd7cIgdqVOUk89FG9Sva8gTBhWRby5EDpk9Rkk0kSX15RypPbGglHZHSSpBqd/G5jPSsrM4mHzWQgx2UR3r/dpGf55EyhTNOk1zElJ4mSdDtNfR70Oolr5xfy4HsnVcMZvQQpdhNWo57ndinXQ0IMBTfpdVxZnc/ZFek8tKEetz/E9QsKyUgy89S2RgpTbXz3okrKMx0s+/km9fv4wfFOXv2PhXz3jRp1rCe7lH/bBr2qalfTNswtz+7liRurmZGfrHm/HxckAq8TSCCBBBJIIAEV7UM+zcRvYDTA5pNiLllDr4c1B8V+K28wzHO7mvjO60dpHfDSNujlh2uPU5RmY3FZOtvqe/nCn/bxwLu1/OH6OayYnEFphp2yTAcfnezhqZvnsag0jSnZSayamslwjPrVMeTj4qpc7GYD/Z4Auxr72Vbfx4rJmSRFbd17Rvx87um9VBenYIsJRB72BtlW18t507KozBmf8Jdm2Ll9eRmzCsSJ3LXzC/lMjAECKOHQJ7tEYjMaCLH+rmW8fefZWAxi2VcwLLNyqjghNht0zP/xeg0xTLIY+NZrR3jvWCdPbG3UELnJ2Um8f0zsTdvd2M+QN8itf9qnns9u0vOTy2YwZwITj30xtvmhiMykDLtmn4PNg4IK1jboozLXKeyT47Lwuw31KsmWgRSbtj/NGwipOWQWo46zJqWpJA2UoG+nVVTwkswGXjvQoimt1EsSty+fJJhy+IIR3jzczuQsB9NznVRmJ6n3SyAks+ZAK66485sNOgIhUdlxWY38en0dj29p5OGN9Zhi3A8lSck/K7/3XZr7xGy0LKeFP24+jYxCfK+qzhfuV4DFZem89ZXF/PLqmSpJi72OR+87D5fVqJIvWYZsp5nnb1nA+VOzBUXOEwjTPaR1I51fksa0uM/oyrn5nD8tm+9dPJWfX1klKFagEPm0GPfVGXkuFpWmEfu1N+gkvr6qQiX3ep3EpHQ7X19VwV2vHqax10NEVj6zwlSb4AoaluGquQVCbIIMzMxP5qKqHC6ckc0Lty6ga9jHszvOkGo38cPV01g2OYOrH93JmoNtrD3cznWP7+KlPc3CoklEhpf2NGsI9YYTXZpFha5hP5c8vJ171ohlqB8n/Nsrag899BD19fV/e8cEEvh/QH19PUlJSXz1q1/9Zw8lgU8oysrKuOOOO/7Zw0jgE4SCVJtgmACQ6bRQlulQV64Bkm1GyjMdmuMHRwOabe8c6eD5GNOF3Y39LClLxxsMq/bzh1oG+eq55bx461kAPLbltNADBnCqa0QoXQTIS7FwoFmsG/uotpvLZuepRg9dI36+8tIBnrixWg0DBmgf9OL2iZNWnaT0KX3r/MkkWQz8bkMd/lCEt492aEw1dJLE2T/7CJNBx4rJGUI5oE6C53c1U5xmoyDVxrb6XtUWfdgXIjPJTPeIn1S7iVyXRSjH6x7xc/mcPN450oEvFCEckUmyGIVeqhSbkWe2N9I1PC5JeQJhJmc7mF2YzEt7munzBJAkWD1zXE0bw94z/czIc3I06vJXle/SZMed6BjmwunZ6uMki4HlkzPUDLMxJNuMgvNkRpKZdTH9ab5ghOQJyirPmZJJx0AjoyGFCAz7QvxuQ716/cbJoMwjmxr49dUz2dHQJ7z+yS43T95UzSt7WzgR89lGZLhgWhanukbwBSNIKOR57P1KElwxO5/XDow7OwJUZieR6bQwGgjhtBhVRXfYpxDP6bkuSjMcvHusQx1fKCJzdIJyw35PgGse3UUgpLhuxtriu30hfrO+TiDGAEO+EC0DoxoiAqimPGO4aEYOHn9ILQE26XV847wK2ge9aqi3QYfGFXTEFxJz0CozeWhjPZtjQuJdViMNPR41OD4ckel1+2nsdQsLDf2jQY0yCzBBdSTZLgsPXzcHUO6tSx7apo5rQ20Xty8rFa5RMCwL36kxFKfbSbYZGYwxxynPciDLCIRxDC/taeaWJSWUTfD36l8d//ZErb6+nkM1JwjbtHanCSTw90IXkMlLTmF/Q9ff3jmBBP6X0I/2/+2dEkjg/wHXVBcIJVydQz421nZRmGqjuX8Us0HHsDfIwxvrKc2wc7rHg06CFZMzJ7RPd00wST/eMSw4HQKsPdJOZU4SL+5pwayXBKMHp8WgyZwC8PhCmvYevU7S9MsMjgZ5dV+LoBp4gxFe298iZFxFZMWpcvnkTBp7PYIa0esOUF2UwsmuEdIdJhp7FZUlEIrw4fEufnnVTA61DPDSnhZVDTnTN0phqk2joi0oScVpNdIyMCpMOEEhEfsa+/FFX7u+2015poMhb1BVO93+0IR9fX3uAF97+5A6EZdlqC5O0RC1EV9IJS2gGILMKhD7AIvSbLxT0ykcU5CiNZfZWtejTridFgPLJmfw2j6RABWl2jWOiY9vbcSsgzvPKeUPmxqI1boKUmwUpFnZVtdHMCxzomOY7711jOsXiEonwKaTPYzE5eHZzXoe3dKAL6hEGJw7JYuX944TPFlWCGZsueEYzAYdxWlONa9uDMGwzJ3nlmMz6VlzUHx/I74wc4tSVNOWdIeJIzHHjwbCTM5OYsAToHvET123m7puNw6zgWB4fPHBrNepClAsWS1Os2nGc/PiYj775G51n0A4wo7TfeyKCQkPRaAw1cLgaJBhX4hFpWnsPSN+717c06yx+O/zBDQGNMM+pTw0HvkpVnXhAZR7YFdDv9CPaDPpCUVkVj+8jbNK0zTk0ReMTEiyspIsLImq8aDck3/e24I7SpyD0biFmrYhmvu92KOEOD5IYWCCBaSPA/7tiRpA2JaKd8qF/+xhJPAJxeyZdvYf1rqeJZDA3wtr7Tv/7CEk8AlEIBTRWMiDQmqGfUG+saqcX36oGEe4A2HcPR6euLGaX354kg3RAOVUuwl/UJksnT8tm+m5Lk1e1JzCFLbV9wrbbCY9X3z+gPrYbtbz9ZXlPLX9DEPeIB8c7xImrwCvH2onPqbKYTZA3FTNatTTGxf+CwjlZWMYm7hPRAy/d/FUZhYkc/vz+1WiBsqYMpLMXDG3QDWzGMOwL6gZ94mOYcH5L1ZxuXlRMU9F+wHH0Ov284NLpvL9aLB2rztAn7tfcCZMthoJhSNCrxzAtvo+KrIcnIqWbmYmmSnLcGicASel2znWPkQwLGMx6Jie4xJ6vADaBkdVVz4JhQTujSmrHPaFkCfIG9tS18PcwhSKoiHYY26J/gi8sLsZKe4CWYx6/HHlgoOjQdLsJsFZUy9Jah+UcpyO+cWp1LQP0e9RyFvPSEAgoGPY1zSAQTfeN2XUSxxuHVIJUYpNWzp523P7lOsTpzqHIhGB2FwwI4fnYhY7ABZOSqN1YFTI8nP7Q1wzr4DOIR+pdpPqVgrK5bhwRg5fOLuEV/e2cCbuszjaNiSMAaBr2KcpHbUaDXz43WW4fSHc/hAXP7RNIId6SSIlLojeZtIjxzFYJZC9T/gumw06fvHBKQCWVqRjNeh5/3iXqv4VpFj50ooy3jjUxntR0n+4dWjCPLjZhSm0DXjZHr0vXVYjf9isGKWUZdj59qemcMdLB9UFDIBblpSw83SvahrjCYRJMhuEcHpQyOPHEYketQQSSCCBBBJIQEUwHMETCE343OBokPpu7cLT5lM9nIhx1+v3BPj6qgrmFqXw+sE2bn/hAMlWI8sq0ilOs2HSS/z4nRNYjDrVQS7dYSI/Tq3x+MMaY4+IDFfOzSPDYRK2ZSSZqIo6vJ3pG+VQyxAFKVZsJj16Semf23iyR+2bGsNvN9QJE3IJ2Fbfy7m/3MS8YrHXy2zQ8fln9nD/2uOsmCL2n5n0Ou5+7TAPb6wj3SFOentHApRmOEi2GbEYdVwzr0AgaWPv/9azS1gxOYNUu4k5hWLfXEV2EqfiyuFk4NKZOaqiOOgN8rOY8O4xNPS4VZIGkOk08+k5eYISadRLbK3rUUmLLxShqV8co06CdUc6VcMXGbRGFtHrdOnMXOwmfZQ0w7H2Ybaf7mPt4Q6NA2CfJ8h180Wl7HSPm864niybSc/P3jupkrQ0u4mZBaKrny8Y4YvLSlWSNoYBT0Do5cpymjnUMqi+33SHiQVx5GFgNMiqqVkkmQ1qma96fYIRKrIcrJ6Vy53nlAklqACNPW5N2HT3iG9C9dQSzYebKFBblmUeeKeWrfWis6dBJ/HktkbsJlHh6nH7Na6Mn11YhFGn40dvn2DZzzcJiyMSSl/qtrpe9DoJnaQsaowGwpyKlh06zIrRiCcQpq7bzYgvRF6KlXMmZwiK8/b6PtqGxEWClgEvVXlOdsep5/VdIywpG7fdz0+x8p01R9l+uo9Fk9K454Ipwve+vsfD1vpegaQB1HWNCCWvwIR/v+JLpj8uSBC1BBJIIIEEEkhAhd1s4JKZuRM+N7tQCa+NhVEvkeXSljseax8SbONbBrxUF6XS6w4QiE52e0YCLJ+SwYtfWMB/XjBFMIsYQ/xkV3lNnWBMAeANRDT9LJ3DPu44p5xY0SwYllk9S3x/A6NBrpqbz6R0u0oCTvd4+PP+Vp64sZqLZuRg0kv4QxH6PEGe2t7IgCfADy+dxsx8F1lOM4FwhK5hP+tPdJOZZGb55AzyojlRrYNe6rrdjPrDfPj1Zdy/eppqgDIGCaUU8KOTPfzig1OYDTrOLk9X1cLdDf2Cs+IYhr0hQTs80zcq5E6l2k0aB8uatmFe2NWkHmfQSXzngkp63KKC2D3iZ0aU/OokRR2NP9ewN0S2c/zzN+gkXtzTwluH28lyWjg3zmFwxB9icrZofpFiM2Ix6nnkujmqdX0oItMy4CXLaUavkyhMtVGV5xIm6n2eAKl2rZHJOzUdmu3uQEgthy1Ks2KMIzO97oBGVZJQVKTKHCfLKjI0phySJDEjz6UxEQFItpn49dUzmZbrJMdlQSfBO0c72dc0gClmsaAsw8GzO5vYXt/Hm4fbhUUDh9nA+hNd7DnTT1vUmCM/xUpphoNQRKZ1wIsnEEYnwbziFCRJKX0du0ZLy9N56nPV3HBWEZtP9QhqHcBFM7KFx+GIzOKyNE1A+JTsJM31bBvwMhB3L4zFecTCbNBxpG1I06NoNxuYnJ3EL66q4oErZtA64FXvxx0NfRP2pul1kmASBDCvOJXFpWLO2ow8l5BBV5HlmNBg5+OAj6cOmEACCSSQQAIJ/MPwsyurqMpPVizFA2G6RnxMzkrirvMqyEyy0Drg5cU9TTgtRu5aVcHMgmSe2taolgo6zAam5DjhoNgX1Tro1VjHt/SN8t03a9RssNhcJQl4fGsjVqNOdc2TJHhpTwtmgzjRrsp30dQ/qk5oQXEj7BrWOuUZJyB/TqtRQ0IaejwsLE3Dbjbw9lExY2pnQx/P3DyfmxYVM/v+D4TnjneMsOZLi/n1h6d4dEuDuj0QjqglYLEr/Mk2I5G4Us2dDf3cuLBIILt13W5WVmaysbabiAwmvaQZMyCYO/R7AlTmJAmKT4bDxF9iyltDEZmjbUPMLkzmYPN4iWBeilV9HJHh3ZpOclwWwZVy0BtAJ0ksKEklL9kqOIE29HrIcWlDjVdNy2RGnpM1B9toHfAyMBrkj5tPMyPPpfY5jSEYlvnD9XM43DqoUWUgmssXc8+4rEaejyk9zUu2UJBiY1cMyW3q8zIz3yWEYDstBj44Nt6PB4ryONbbt+dMPxlJZnpixtc15ONHb58ARMMOo15i3ZEOPjzexe3LSznVNcI7MeYqgbDMjz49nYWlaVzwm63Ca3oDYX5+ZRXD0d7L+9cdF55fWpFBKBzhdM/4ZxyRYXK2UyhBBchLsXHOFGVhJTauQr12NqOml2vEFxLKaQF0OklwwwRF3SxKtQv3i8WoE8Zg1Eu4rEbuWVMDoPYDmvQSLQNentzWiCTBtfO0fYcOswGnxaCSYKNe4qq5BSwtz+D+dcfpGPKyemYety2bxNXzCvj+mzUcbB5kXnEqP1w9jVOdI7x5qJ0sl4XPLSpGN8F3/uOABFFLIIEEEkgggQQEmA16bllS8lefv315KbcvLxW2vfnlxby4p5lQOMJn5heSZjfx6OYGlbyZ9DpuXFjEweYBoQwvN8XKhpieHX8ows2Li3lm+xl1EukNRjhncgbHO0ZUlzx/KEJmkpnSTAe7G/rUfiuTXkcgHEGSFEXomR1nhH4inQRrDrQJE2sJxRAj3WEW3PCyksxsOdXD/JJUTAYdgRhFxR+KsLuhjwWT0pia62R7/Xi/V7bLgiwzoQX+1roewejEaTGw+Zsr+I/n9wm9ZVajXtNrBEre1bh5hMz+pgFcMSRzQUmqRnlzWoyqY6VBJ/Gp6dmaPrrWQa9A8KbnOSmIIWpj+PziEjbUdlHf7WZgNKi6YHaP+Lm6Ol8z3oJUK/MjqeyJGdN31tRQXZRCusMskKWjbUOUpNsF90mnxcBtz+1XH8e2sjnMepVwShLcsriEJ7Y1Cq9fkZVEdXGqQNRA+WwGRoM094+Sn2IVxgHwpeWlQpA0KIsI1y8o5HSPmxyXVVCoQhFFqTUZdPw5aqTiD0X4zfo6llVkaK7L/JJUZBlS7EaBROelWDm7PIMntjZM7HiYZptwu9OqndJX5bsIR2Qe3XKat4+0C9dOAt482K4J5j7aNiyQNJNeJ3x2oNyb/qCy6ABQkm7HaTFozE6+tKyM324cD0KXZcWo6JV9oqlLXbdb/d6C8lleMjOXz55VyJPbzuAPhrn+rEKm5jqZmuvUlB1nOfU8ekO1sC29zMyiMlFp+zjif1z6KEmSXpKkg5IkrYs+LpEkabckSXWSJL0iSZJWe04ggQQSSCCBTzgSv48KClJtfPtTU7j3oqnRfiwTr39pETcvLuYz8wp49YsLmZbr4smb5vHpWblU5bu4a1UFC+OCkQGQ461AlGymPo+otgx6g4TCEcGkIyJHuHx2nuDk5wtGuGZefvR5iKBMrGfmu3BaDMjAqS43J7tGKM90qH0/XSN+bn/hAL/bUMevrp6pBFtHz7nzdB/XPLaLx7c08F+rts1yVAAAIABJREFUpzMlezyfrXPIx5IHNzI118kFUXt7nQTXLygU7P1BMd94bMtpwSFQkuAb51Vw/YIioRy0KM2GPy4HTAY+PSsXc7Scrm1wVGOuotNJ6uuGIjIv720RxgsQjkQEle94+zBzisRyMb1OYmt9D5fPzucXV83U9Kf1uf1kJI27B0pATdsQ180v5N4Lpwj77msaIBRHRI16Sehfm5rj1ChsTouRr6wo40vLS4XyV1mG+p4RoeRt7P1+GDWhGYPFqOP1g+0094+il2BVXDkvKMpSclwOW4bDTEOPh5Z+L8M+rZKZ7jBp+sMAZhW4hJK9T03L5uU9Laz81Wa6hv3qPeUwG7j3wkquenQHT2xrVO3yDXoJSYLlFRk8vqVBJYKgGO7kJlt45COFVEqSch2vW1DI1dUF/GFTPT977yTH2keIyMprTM1xIqMYb4yRtKXRctnYz/SiGdkam/3J2UlMy3USjvmCtfSPkubQhskP+7XXKNlu1HxGaXYTT988j7PL05lfksoj181hblEKZZlJ/PTyGfzqmlnMLfr3dGf/3/SofRU4EfP4QeDXsiyXAwPALf+XA0sggQQSSCCBjwkSv49/BUVpdn5wyTQeuKJKDZUuSLXxm8/M5q2vLOHOc8tZPTtPyDFLs5u4bekkClLFkrmLqnI4f5rYU/OpadmafpqwjKZMC5jQVrw43T5hf1FusvjaL+5pZsXkTHbfcy6uOOXij5tPMynDwUu3nkXsy/Z5Avx+42mWVWRg1ElEZPjgeJdqeDKGglQrv990WsiP+ull0/nC2ZP4qLZbsDBfOSWLc6eIpMJu1vPa/lb80Ql364CPSRkOlZhkJplJjhtzMCxTmeNUCYJJr8MbEElTRIbJWUl887wKitJs2Ex6whGZLad6+dZfjnCkdVDTU5jptLDm9kVct6AQo15CBmrah/naK4cmVIHyU6wYo9dMAvKSrUJZ5cBoQNNLptdJuP0h+iewWx/xKY5/Y0ixGdnV0MehlkGVzJ8/NUtwSgzLcLR1SNMLqddJBCMxWYJJZpr6Pexs6KNt0MuGaC9i7P5PbjvD2sNiua9Jr0RZjBHQ4jQbty0t4ant48qfDJw3LYtd3zkXs1Gvce1cVZnFvntXUpbp0PQRfnHZJNoHx6+ZLMNXVpTxk8tmoNdJmqB0tz8khL6PoTBVG7sgSZKmLy8YihCMI+hhWWZZhahepTvM3LZ0knCNkm1GPreomKvnFqjbbCY9X1xeyuKydJ67ZQGv/sdCLpiRoxnLvyv+R0RNkqR84CLgiehjCTgHeC26y7PAp/8RA0wggQQSSCCBfzQkSbJIkvRlSZIekSTpqbH//gfHJX4f/05kJJlZd+cS7lpVwV2rKlh35xJykq28+IWzuKa6gLPL0/nZFVVcXV3AA1dUccuSEmYVJPOFJSX85PIZ3LiwWDjfxVW5XL+gSHB3zEwy89mzijTEYllFhsbUoyjNrpm0S0g8tLGO339UT3wxYiSqLAyMBoib09I5rPQwjU1se0b89HkC3LyomFyXhaXl6Vw8waS0LTrxfnrHGWH7K/tacFkN6phT7Sbuu3Sa6sI4BoNOojhNKbvsHvFT0yZmykkSfHCsU1UtA+GIpnfQbNBx7eO7eXF3M3efP1kgkgAbTnTz08tnCCYRL+1p4T/XHGFxaZom9mDYG8JqHJ92mvQ63jvWxRhnKs1waEhBx5CPy2eLxi+D3iDP7DjDy3tasMQwY5tJz/6mAYF4X1WdrxnHRCR+NBgm12XBoFN6qu48p4zndjXhiVHsLpqRo3GSzEux8tvPzKIyO0lVooZ9IRxmQ9TAIpn7Pz2Np3c0qUTxTN8of4qz7QeFqPa5/RxsHtA85w9FeHlvC00T9JmN+MIT7l/bOcwD79YSiojX1GbSc1apVsVePTtXdegcw/nTslk9K0/Ydt2CQm5aWCRsu2B6NjctKuEnl81gXnEKF83I4cVbF5DjsrLujiV887wKvraynHV3LCHHZeXBK6t46daz+NkVVWz65nJ1EScBLaT4jIQJd5Kk14CfAknAN4HPAbtkWS6LPl8AvCvL8vQJjr0NuA0gKytr7ssvv/x/Nvj/C7S0tDDqDxKxuP72zgkk8P+AdJue3lHtH9IEEvh7ofMNYTMbKSgo+Ns7//+MFStW7Jdlufpv7/mvAUmS/gzUAtcB9wPXAydkWf7q3zjuE/v7+HHCsd4wR3pC5CbpWJxrwKCTOD0YZktrCKsBVhYZSbfqONAV4vX6IKNBmRUFBi4uNbGjPcSzx/z4w5BulbhrroXmkQiPHvaPuyJKEIo+sOghdm6capG4otzI4jwj9+/00jA0PjG+stzIa3Xi5D7HLmHSSzQNR5CAs3L07OwQfyPyHRIZNh31g2FGYgQUu1EJMI41vLywxMiRnhCt7vH53Iw0HUf7xAl6ebKO+kGld6/UJVE/KAvlpekWiSsqjNT0RqjtD9PnG382wwoDfgQiWp6s42tzLexoD/LCCfE9XjPZyCsnxW0FDomW6BiTzZBl03FyQBzjnEw9B7rH35zdAJ4o78pzSOQ5dOzpFK/VRSVGMu0SAz6ZN+rF11yaZ2BLm0hAryg3sqM9RIdHGYsOIC7jblWRgQ+bxOOqM3XU9EWEz74qXcfKIiPPHQ/Q4xXn079dYUMvwbG+MH84LJZvzsvScXpIpj/mGp8Xfc34WblZL37eOlAXC7JsEt87y8K9230M+WV1/1tmmHjscEC9Z/VSVGnWwWenmjg7z8Bf6oJsaA5i0ktcVmZkeYGR+oEwr9cHcAfh7DwDK4uMhCIyW1pDNA9HmJauZ162QuZO9IU51B0i16FjcZ5hQsfWBP46/qe/kX/TTESSpIuBblmW90uStHxs8wS7Tsj4ZFl+DHgMoLq6Wl6+fPlEu/3T8NWvfpX9DV2JwOsE/mH4wkw7TyQCrxP4B8Ba+wFzJ2Vxww03/LOH8klAmSzLV0mStFqW5WclSXoReP+/O+CT/Ps44AnwtVcOcqrLzcLSNO5aVcELu5vx+ENcXV3A9Gj53o76Xup73Cwtz6A4XVFwRnxBDrcMUZHlIDPGtn3EFyQYlie0U58IgVAEvU6a0J4/Hsv/yrb4mtPlwF0TbLvDF6Rt0Et5ZpL6epcuG2Z7fS8nOoYFJ0NfGK6dX8Cr+1oJR5TJ9uNHAyydP4u/3Oni1+tP0THk5cIZOVw2O5+mP+4QnPAKMpPZ06g8loGdHWHuOKeM1/a3MhpQcuNa3TKt7nDU2XKczFw6u5CX9ogmID2ygyRHCNxKltTcohQWl6ZxdGO9sN/U4mzqDrUr5g2DsuCoB+AOSzx6JMDZ5ekE+weB8ed6vHD3+ZP55QcnicjKTV43GOGbW/ysrMwEREdMvy0Du6lLVfpKM+ycjsmNG/RDaZYLBkT1KCsznaLwCIFQhByXhQMxRiZtbpmq4gzoFJ0ZzcmZbGgaiF4rkagtqiqjzn1GLadcWZnFGY+fDs/4eVdMyWRDbbdwnDEpHZOhWzCPmVZawIJpBl7e00KfJ4DVpOdIb5gjvf5o6e44o56e5+SgP5XndzURjsiCKyVAQW4Oe7vG76kvLCnhg+NdyDHX3GU18NPLq/jKi+MB8AClmQ4WlqaRYjNxw8IimvpGGd20U32+IttFv9FJSB437AjL8JPLpnNRVS6uaN/dihVosBz4gnYzKyfYtnyCbf9X6I4aBsX+/TjQPKD0fpan47Qo72F3Qx8HmgeZX5Ki9rBtOdXDO0c7aO4fpalvlHSHiQcur6Iy16l9oY8B/ieuj4uBSyVJuhCwAE7gN0CyJEkGWZZDQD7Q/t+cI4EEEkgggQT+lTE2wxuUJGk60AkU/41jPrG/jxf+bqs6uV1zoI21h9vVErKX97TwxpcX8+f9LTy9/QygmBc8fmM1drOBzz+zlxFfCINO4ieXzeDqeQX8/P1aHt/SSDAS4aIZOfzq6llsr+/lB28do2PIy0Uzcvjp5VVYTYrT4Xdfr2HNwVbsZgN3nz+Z6xcU0dDj5j/XHOVo6xALS9N44IoZZCZZomNq5t2aTorSbHx5RRlZTguBUITt9b2YDTrOmpSm2nO3DXrV8GMp6mpgMuiwGPQCyx5zmHt0s+j8B0rvTryRxrtHO3lsSwNb63qxmfQsKVOc/h69oZqHNtZxuGWQBZPSaBvQlq+VZzpYf9cyfvT2cV7aMz7B9oci3LKkmFf3tTLiC/Hnfc1YjXqhL0+vk4TA3/1NA9y+fJKwn8NsoLlPfN1hX4hblpTQOjDKhhPdat/W1rpeSjPE3r1sp4XMJDObvrmC657YSeuAcm94g2F2N/YLjph2s5434mIZqotTBKIGUJhqpa57RH0dq1HHuzXj/VSLy9IFogbgMBlwmPWqiUhZhl0g0QadhFGvIyLLfPasIp7a1kB3jCSZmWRm/QmxZ6u5f1S1jR9D94ifC6Znc7x9mIHRALIMz0bLFavyXXx+STE/f/+Uun+fJ8DSinRa+71MyUliVWUWX3/1sPq8PxRhdkEyJoOOy+fkqZb+Y9hY260pPfUFI0zJTlLu0ZjBmQ06bCYDrQNeTnaO8Oq+FqFn7GjbEEVp2n6zolQ7x9qHmJTuIHuC3MN4+IJhNtZ2YzboWFaRgUGv40THMA9/VM/gaICrqwvUskhZlnng3Vqe29WEzaTn66sUI5z/Dt5AmHvWHOHtox3kuKz88NJpLK3I4O4/H+b1qJvkFXPy+dkVVdyz5qjqFJliM/LnLy5k/YluHni3Vj3ffZdMJctp4fYXRGLbNujl0t9v49h952MyavtU/9XxN4maLMv3APcARFcMvynL8vXRMpErgZeBm4A3/4HjTCCBBBJIIIF/JB6TJCkF+B7wFuAAvv/fHfBJ/X3sHvYJhg6A0OcTCEd4YXcTr+xtEZ5/ZNNpIhFZdQ4MRWR+/M4JitNt/P6jcbKz7kgHcwpT+OUHJ1XF5Y1D7eSn2Pjm+ZN5aU+zOikbHA3y3TdqWFSazp0vH1R7rTbWdvPd12t47MZqntvVxPfeqFHPv7uhn1duO4srH92p2s0vKEnl+S8s4Ofvn+TxrQ3IMlTmOHn+lvkci5pd9HsCFKRaeeyGaiZnJfHktkbWn+iiINUqZIelO0wakgbKhHAs82w0EOb+dcdZNTWLdIeZM70eDjQPcqB5kFn5YquFyaDjzpcPYTboqC7WhvIeax+OuaagkyJUZifRMuBlRp5LEyQMEInAPRdO5gdvHkdGMZAYiTNNMegkJqXbWVKWrjGcSHeYmFecyvvHOhkYDdI57OPu145w7fwChkbF8/S5A8wscHKgeQizQcfSigzePSqqXuEIQkSCBLx1uJ2wDEVJEp9ZXMGD750Ujhnw+IUIBYNO4o1DbSopSbObKMt0UB9DAEMRmYevm8nCSem0DY7yZJxV/+HWQWEcoBCfz55VxJsH23D7Q8iy4ki5r2mASel2vnJOGfe9NZ5ldqR1iPwUbTbcuVOyyEu20tw/SkOvtopmZkEyWU4Lfe4A/qBY8jkaCHP9gkIeilFBc1wWzv3VZmHxQCdB17CPP0YXD9YcbGXRBP1mNpNeuHazC5K54+WD9HsC6HUS3794KjctKtYcN4YBT4BPP7Kdpii5n1WQzFM3VXPt47sYHFXWtLbX92E3GVg5NYu3DrereYGjgTD3vl5DdVEqk7O1piVjeGRTvZpR19w/yldePMD9q6cJxPu1/a3MyHMJdv4Do0Ee3dzA+3GZd49sOq1kN06AYFjm5X0tmn7WjwP+nhy1bwMvS5L0I+Ag8OT/zZASSCCBBBJI4P9fyLL8RPR/NwOT/s7Tfax/H+3mvz01cJgNgj03KKWK8fb5w74gxztEIwuAfU39GgOMgy0D9HsCHG4RVRRZhgNNAxpDjL1nlGyntYdE9eZk1wi//6heyATb3djPC7uaeCwmfPpExzBPbG3kzUNtatZbS7+XH649xuLSdH754anosTA918nnFhXxyw/q6HUHeGVvC0kWA95AmFBEZtXULCLxTngRmfpuN7sa+vjoZI+6/VDrEDcvKqa+x82QN6ja8vtDEbbX9zEjz8nR6HutynOpE2P1OodlrCY9bn+InQ19gsshKIQozWHij5tPCzW3TX0eMpPMdI8odvChiMy9b9RgN+mFHDZQHDJvX17KzoY+BmJe/8/7Wrl4Zo6gmJWk2znQPP4e1h8XSR8on1+aw4zDpCfJYmRf0wBj3L9pRJ4wtLttwKcSDYfZQHVxCptirmOfJ4AlTiHRSfCX/a18+cWD2E16jfqY5bSwsjKLhz+qJxyR0UmKK2VN+zBzC5PJS7Hy1uHxMs6GXg/H2rT3r9mgE4hQis3IrtO9vBslvEa9hF6ShO/ImgOtqnpoM+qJvf1nFybz4fEuClOtFKXZSbWbeDN6X4+d4caFRUzJSuI7MYsSsgx6ScJq0uONnnBSup1XY+z785OtOK0G9R4PR2QefK+WK+fmq9/11oFR/rj5NN3Dfi6bnaeWDY7hUMsgf9zSoLkX36npYOXULA40aQ1QDjYPCEStrmuE+9Yeo77bzTlTsmjsFV1APYEw+yY4T/0EbqFD3iDxFhsRWcnc+2soSNGqjB8H/G/s+ZFleZMsyxdH/79BluX5siyXybJ8lSzL/r91fAIJJJBAAgn8K0GSpM9G/71rov/+p+f5JP0+2s0GZuaLK9PZznGL7cJUG7cuncQlVaIb382Li7ksziHObtLzuw31mlyv1bPyNATjdLebOf/1oUbdGZuIxud+lWcqj3OSxTIuo17SkEhgQse8pn4P7XHqYX23h7ePij1XNe3DnOkbVQN5QcnZ+t7FlaycmsXWuh4NITXpdbx+sJX9E0w+HRYDX19VobHqB5hdOK6qHWkbontEHF9phl0oCRzxh1hekaFmfvmCEa55dJcQ3A2Khfq6O5bw8HWzBQLnCYSZluvkrEmpqlPmlrpeLvjtVnRxgVcmg46tp8bJUobDRJpD7DkMhmX+Y+kk0h0mrEZF2Wno9dA24OVkl3tClaWuy01KjDKY47JQ2zVezun2hzSuk6Dkd43BatRx/rRsPjzRTTgiM+wL4Q2GyXZakFAUuY213Ty0sY47VpRxzbwCwUBkf/OgkMs2hq4RH/qY62Az6Xn9YLtK0tIcJv742TkqSRu7BtNynVQXpTAz38XqmTlCKeloMMyVc/P43KJivnFeBe/WdFLbOUJzv5cdp/smVGyL0mwMTpDd1jXsIxAMo9dJnDc1C0ccWWkd9NISF+Y9GgjTE82nC4SU++X5Xc18cLyL2184wOFWcbEEULMFYzFm6R9fSikBf9h0mqnff49vvXYYbyDErX/ax/b6PrqG/by0p1kllmNIMhu4Yk6+8LdCr5O4fkEhU2OUMkmCz8wv4Nal4nrabUtL+NLysgnJmsti0IRkf1zw9yhqCSSQQAIJJPBxhz3671+v0fk3QyQS4XCrSDoGPAFuX16Kw2zgliUlWIx6fnn1TJZWZERXyDOZX5JKJCKT5jCzobaLbXW9ysQ3OvktSrVhNxu4cWER50/Lxv5ZAz9ce4y2QS8ZSWZ1Bd/tD2E26LAY9Qx5g4RlmS+9cICr5iqB1bXRfqw9Z/q565VDfG1lBfvODNA26EVCsXmfXZiCeXezauCQZDFw65IS1h7uoNc9zptLMxzML0llT2O/um1GnlN4HVAUnWSb1gRly6keNtQqxKVjyIfdpCfLaaG5XyF1rx9sx6CTBPVFr5P4/Uf1PLSxnvQ4kmPS62iI6+Xq9wS5aWERO073keYwcUlVLvfGqCqgEL/BGFUqFJE1yqjTYuTZnWe4cII4AL1O4otnl3LjU3vUbaOBMIWpNpr7RlXiO6sgmR2n+9R9etwBlpSLZYBmg461h9upzHFyzpRMfrj2uPB8z4gfk14nkN5t9b2C2cbCSamsietzs5v02E16VYktTLWxP4awhsJacgPwg0sqeX5XM9uj447I8OiWBq5fUKjZN9dlwWbSq6TQYdaz5VSv+vyi0jRkWWZnw/j90ucOMDiqzeJLsZt49vPz6Rnxq6WKsZia6+LssnT+cqBN2B6OyNhN4mdn0En8+O0TxPO3ZKuRk11RxUmW+eB4F2dNEoOhLUYdl87M5Tfr69RtVqOe5b/YxPQ8JzcvLqFtUCRyI96QoEZmJJm5YWExG2u7ORxVgEsz7Ny8qISfvnuCRzePK9VpdhMef0hdGHl1XytWo54zcT2Sbn+Ia6oLWHekndxkKz+4ZBo2k4E7zy1nR30vOp3EbUsnMSXHyYu3LuBPO5voGPJxycwcFpWmc86ULGYWJHOgaYD5JaksLlNy3J7+3HxufmaPQIyHfCHqukYoz/r4/ZlPELUEEkgggQT+bSHL8qPRf3/4zx7LvwpiCcoY/GGZP2xSJputA6P89PIqjHodn56ViyEmkFink7hpUTE5LoswwQWoKkjmexdXkmZX1Lkl5el8eNcyAC747Vbx9UIRitNsQkncm4fauWVJiTC+NQfbuP6sIh69YQ6rf7+dcEQZ/92vHebha2dz7xs1dI/4GfGF+MpLB/nT5+fxxNZGdjf20zboVciS3cSnpmVztG2IzmEvH53swWzQkWo3qT09JoOO/U39pNlNqlI1pzBZzTsbgycQ5rLZeWrZJCik6dOzcvEEwgRDEbbU9agT7l53gDmFyfS6A/R7/DgsBoYnUE0+OtlNc7+Xum5o6HFTkm6nMdoHpddJLClLZ90RUQUsSrXx3Qsr+eorh+gZ8TPoDfL7j04TCEWYX5zKnjPjZKN90MuWGKVMHXs4giTJICtEKdupNaHISDKxamomNW3DyLJM57Cf9iEf7UM+6rvdGqOOY+3DKkkz6SWW5OrZ2CISnR63H7tZr+aYScCuhj680d4uo14ix2WmOUZRC0ZkCuJCm/U6iQPNg3QNi6K2NxjGGwyhi7HlTzIbeH73uKPmyikZrK8Vr0koLJM3QX+aXi+R7bTQGXUr1OskPre4mKe3N/KTd04QDMtCKWSqzcRP3j5OKKKEfMdjS12P+r4LUm34g2G6RsbfQ7LVwK+umcXuhj4e3SL24c0pTKF1wEvrgBejXqIsw8HjWxooSFF6LRt7PWpodk3bMM9sF48HhfjHaqmfXVDIW4faVJIGysJEn9vPE1vF40vS7ZoSxtrOEdIdJnpjwrpn5Ll48MoqHryyCoB71hxRjXTykq28+sWF6rVJtpm489xyzTiXVWQwvzgVw5gSfKqHzz+zVwiJH8MTWxt48MqZmu3/6vhflT4mkEACCSSQwCcRkiRlSJL0HUmSHvvfBF5/EqGX/vvnX97bwpHWQW54cjdl977LOb/cpPaL/Wb9Keb9eD0/WndcU+6483Qv83+8gSUPbmR3Qx8ef4i7Xj1E1X3v0+cWJ9KFqdp+krAs0xlXpgiK+cmHx7uJEWjwBSO8U9NBd8zk9kDzIDXtw3xtZQXtQ+MKQq8ngNNqQKdDPYc/FMFpMXD9/ELFgt8TYE/jAHqdxM+urOKaakXdi+1/AqUs7uQERHdwNMj0XBc3LirSqCJGvY5etx+3P0znkJ8jrUNC+dbZ5ek094+Pt3skwLLydMxRghyOyPxmfR3nVo6XdklAY4+HodGgWuI2hg+Pd/HUzfP4xnkVavjz6R4PT2xrZFK6Xd3PaTFwqGVQzU7zBMLUd7uFklWTQcdjWxr58Hg3FqMeV5zq2DHk44azitTXmZnvEtSbQFjGZkAIJwel/HSMpOkluGBGtkrSQCkttBhFrcGk12Ex6Lht6SSynRYlOywi8/jWRtqGRMUoy2nmhd0t6mcxLdeJLa60b8fpPkx6cZo87AvyXo1IiC+fk8fXXj6kkjQJ+MWVM5ldkMxP361VjXjCsszMfBf3XlgphKMrsRAOZUFAr6Mi06Ea18hESxvD8eYjETaf7GFrXZ+wXUIJIl84KY1nb57HJVU51LQP4wmEaRnw0jnspzeuJPZUl5v5JePltmPGOaMx9/ZjWxrYVi8uvIwGwuxrHtCUaUZkGbtZvJYdQz5CYRlrtKdwZr6L7hEfM+57n5ue2sPWUz2C22nboJfHY/pJe0b83Pz0HsrvfYdLH97G8fZh/KEwX3v5INPve5+5//Uhz+1q4sltjROSNNDeYx8XJBS1BBJIIIEEElCcGbcC64F/64T6/AlIUixkGX67oU51OGzo8XDHiwf51qcmC+VVkgQuqxGPP0Sq3aSSpo4hH9987TDnTM5kTbTsa9gXUkwtbEYCoQgt/aOayR4yrDsqlsMZdBL3rztOeaZDM86J8tf63AH6PH6NEUGfO6BRXbpH/JzqHtFsa+rz8EqMWYPFoCMYlpGRGQ2EWXe0A6NeUifoep3EplM9bDrVQ4rNqJQTxihBZRkOdseUXgIsKk0nxW6kfdA7Ye7cyS43/pjJe+ewj6+vKmdSup3HtzYiA7VdI3zt1YMk24yCCYReJ/Hq3haKUm1CThhARZaDqblO6rpGWFKezpPbzgjP948G+M5FldR1jTAwGuT1GIe+xl4PVXGOlnaTnpf2NKvXIi/FKqgyAA1DEeHzqC5OYV9M7lxYRmNiAUp55OTsJP6yv5WB0QCBcITfbawn12XhhoVF/Pz9cRdJbyDMJVU5BMIRyjOTeHyrWIrY0OPRXGcZiYJUixorkO4wadTm/1o9DYNep97HynFQ2zXMjHyn5vrqJInKnCRNsGJhqo17Lqxk2Bvg2R1NwnP+UIQZeS5BpUq2GdW4AIBUuwmdpCi0J7tGONk1wqluNyNxJi3N/aPMKUwWehyL0mxqrh9AIBRmOO44TyBMSQyJB+U+emzzaY2LZn23G48/jMWoIxRWSnBj7/fVs3LpcwdU4rf5VI9QjjyG7hEfo4EQNpNSIj1myHOkdYg7XjrAtfMLVdfIYV+I779Zw4KSVM15xnBpXP/sxwUJRS2BBBJIIIEEwCbL8rdlWX5VluW/jP33zx7UPwN2s5EVkzP+6vNX1Qi7AAAgAElEQVTzilPUsrsxdA772BxXOifLcO+FU9j1nXM1E9OWfq/Q5wPKZPDcKZn0ugNRS/kwhqhBAiiKxNiEf05hMhaDjlBEpmPIx5a6Xo0Kd6pzRFBJ9DqJgVE/FZlJVGSJxG5xWRqfniWao6yYkqkxvrCZ9BqHO18owg0LCwWlLBiW+fziYm5cWCQoDgOjQS6Ynq2GDgNsO92rSUlvHRjlpT0tbD7Vy+sH2zUqVuzxY/AGIoJDI4A/JHPl3HySogqdTlLUs/vXHddkeQG0DHhZd6SDk11untx2htw4k4iuIR/3rDnK0zvOEAhp1zPyU6yqdX1Gkpkcl0WIdthwoousGGMai1FHbX9EUEHSJiCm+Sk25heLk/AH3ztJz4ifa+eL1759yEdDj9YpcFFZOreePQmjXkeSRbx+TqsBW9zCQESWhey3iaITet0Beoa1JGNPQz9X/3GnqiCN4VT3CDc8uScazj2OrmEfn39mL1975TB1cYsDDrNBIGnnT8sSlGJQFkTi74nDLYOa+zfHZeG3n5nN4rI0bCY91UUpZDjMwj59niAL4vrcclwWntzWiF6SkKKvF47I1Pd4VJJ2dnk6FoNO7Q3zBSNcOTdf4+i5p7Gf3Y2iEniiY1jz/f3gWBczf/gB33ujRmPIc7rHw8FmrTvsgpK0CZWz6sJk5pdoYww+DkgQtQQSSCCBBBKAddHg6gSAL68oIyNqdFGWaed3n5nFTQuLuPfCSp65eT4L4iY9hak2jYkBwM/eP0n1j9ZrrOszk8yk2sWJZZrdJKy8g9LfFW+4AYrjoy9OrchxKaHMYzjSNszcwhRm5icDShncY1sa+fqrh3ju8wuE8z743kk+M6+Q25eXquTu7SMd+IMRdZXepNeR7jBpnAENOonMCXq3itPtVE6Q69Q17BMmr019o1xUlYPVpARuL6/IoLZTNHPR6yW1XycQivDesU7BJVEnwX1rj03YZxaJyDx783xuO7tEIDTdI37OrczEEFUeq/Jd1HWJJKHfE+ArK8o4d0omxWm2/4+99w6Pqzy3vn97T9eMNOpdsrrl3m3cbYzpgZgaApyElkJCCElOSE5CIJV0QggcSggYQg29GJvm3nuRZcnqxep1NL3s748tbc0zW+fk+877ns8QZl3XXJf17JnRs5v8rL3uey0tw0xR1BK7aFJlMkhsON5J26jD4F3nlWsh42MIhBQSRsmLLMEFU7MRzyK4/SHmFiYL+3ZmyMMv103j3s9N1cYV4PXD7dRPQMoMsiSQ9LJMB4FgmKse3c0DH9bSOxLQSnPNBpkBd5DTXePfc8XcPMHcBGBoAlXvbzsa+OOHtcJYZqKFw62D9HuCeINh7GYDC4tTMcgSbn8YBVUlq8h0sKAoha+uKOHEmfHzPeIPs7AolXmTUrh0Zg7umCDshh63jpTlp9jIcYq9bk6biYVFqVr5ptNm4k9fmM2QN8jR1iG1dLF5QOgbA9Vl1Wk1cW5lBqsqMrhgWhYdQz4iivqwRBk9PrHITrLq7snaLpcuc25abhIz85OFsQyHhZn5Ti6dmcPSMvVvSyiiPph5dk8zOTEPDEoy7KyKeZhkHs3D2/jtFXx9ZSnOqPLhKbl6d9VPC+JELY444ogjjjjgTlSy5pMkyTX60gcofQagKArfevGwZjhQ1+3m1UPt/PTy6dy2ogS7xcgPL67kslm5JFqMzC1M5j9vmMs18wv5t8VqP1JKggm7xagtAvvcAQpTEzQL+W6Xnz0N/eQlW5EktaysLMuh63exmdRFbixWTk7XqRXFGXad0tDU78blFxfYH1R3cbR1UFig+kMRXj7QSiSiCDbw/zjYxn2XTWNabhKBcISWfi/H24c0giJJYDHJHGkZFBQBWYL73qpiV10vJRnjJWM2k4FgOJaaQO+IH29AXcQfbO7HEaP4OK0mnTNfeWYiv75yBmajrBGwbpefXKd6TMdKP/+2s4mrHt3FwARZZaHwuJpV2+UiJUbNsluMDHgCXDkvX+szG4MvFOG3V87k6ytLuWVZsUb4xvDYtgYunSk6TBamJtA46v4XUeDtY2dwxvDwpWUZPH/bOVw16vIZUWDH6T5ueHIf/xWirePzkq28fKBNO485Tgtvf3OpUCoIKsF+/MZ53HPpFF0PWDAcISaZAIMskWg1YpAlkm0mpmQn4ooi7QYJnrl5oa6E0h0Ic92CAt21nZti4x9fW8KcQpG0AGQmWVhalk6a3Ywppk/ObJRZU5mpKUepdjNdwz521PVq5NNuNvDtNeX8YkO1tm9D3iB13SP855Z6RqLIX02Xi+mjTqdWk4zDauTRbQ18fKqHfU39JJj1XVKx5xpUAhYb1ZDttHLTkmIKRslaeaaDUCSCSZYoTlfvF5NBosvl551jHWw43kFJur6MeXZBMqsmZ2CUJWbkOXnoujlcNS+fu86rIC/ZxrTcJB67cR4ZiRZKMxz0jvgZinJ9fHZP84SE/tOAOFGLI4444ojjMw9FURIVRZEVRbGO/jtRURS9HPIZwLA3xJkYN8Mddb08+OFpfrWhmtouF0lWE3+4Zhb3XjaNBcWpuHwhDLLEzy6fzsmfXsBb31yqUwJMBklnGd/jCvAfF1XSOxJgb0M/O+r6yHZaSbObMcoS3mCYb790lHMrMylJt5OXbKMgxcbtzx3GYTVqphuLilMpSbPrnrwXpdl1ZWZWo4H2IX2mmixJmiFENGo6XVSdETl7ks3I7AInigJuf5j3T3ZRmuHgRxdXAiq5UIlIB1fOzSPJps7TGwzz7vFOof8uyWpkb1QZqMuv2uKPLYYlVPMLQwxzkCRVxYjtg8pItLDp2ysEYhBRoK5rRCARuclWdpweN4jwBSOkOyza8TLIEn3uAM/tbeH25w7p3A6tJplbnjnAq4faWF2ZoStvDYYiQr9VgtlAllMss4socF2lmdIoMvvgh7Ucbx/S9S11DfuxmQw6k5pNVZ2aZX9mkkU3z44hPw29bh3xkmWJ010uXckuqGWz0X1zk7MS2VHXh8sXIhxRGPIFdWphWIHqjiHdebJbDLx+uF1nTFKe6eDCP23ja38/JJTrGWSJ3fV9/Pmj06zf3UwkaiJGWaK2y8Vrh9sJhhWWlKaxvDyd2lE1MDLqzrn1+6vJSLLoyOGh5kGBpI3h6ytLef62Rfz0smmC2usJhPHFGObIEmyp7aEk3Y7ZoAZ/ZyVauO/tk4z4QhSk2kizm7GbDWw43snP3z1JYWoCm769nLYBL1tqetnT2E9zn4cfXzxFKI2NKNAx5NWdY6MsMX9SCu/ftYK371jG1Jwk3j3egScQ4hfrpvPut5azenImH5/q4u5XjvFejOELICimnyZ85s1E2tvbMXiGsJ3acLanEse/KD5uNWBzf6a9CeL4X4LB00d7u/4/3Tj+Z5Ak6TJgxeiPWxRFeedszudswR/UX1PhiMIDoyVez+xu4s1vLOORLXW8OdrM/9jWBh64dhbr5uRT1zNCXdcIk1IThJDpqTlJVMWEQo9lbkWjc8jH+VOzeP/keIDwlppudv1gDfe8eYIPRsd7XH7yU6w8fuM8bll/QDPkSEkwEVFUVWTM8MQgS9qi1RsM89O3q0X7dwme39fCtFyRm5uNMut3NwrZWgDF6Q4+PtUtvHdPQx9XztOXhO1p6GfYKx7T+YWpWM0yPS4/50/N5tcbTwnbE8wGblpapBmD7GsaEOzNJQn2Nvazt7Efp80kLK4HvUH+uq0BCWKCrUP0Rzn+SajkIhpGWeL1byylc8jLbesPCNtOd43wx2tmsaWmh4PN/Vo0QbfLz49fP8F1Cwp5aleT9v6Z+clsrOrUfvYEwmQ4RCKdbDNR4pRpqRq/TnyhCH/+6DSlGQ5gnEQZJInfbKzR1EOHxcDUnCT2RRmPdA/7Kc8QFRmDLHHXS0eEfjNQCe3v3h8vWxyz6i9MTRjPJkN9wLC4NI2aqLJQRVFt6KMJvNNm4v73xg1MxsaGvEG2jV6HCWYDCWYjl8/OZV9jv2ZOEgwrZCVZOG9KFplJVh6IiXdYNyePxaVpbDzeycc149fdrvo+ymL21x0Is+lEJ3sb+3TRCP1uP7Vd+h64bzx/GFD7T2ORn2LjW2vKeOeoSow6h/0a6cl1WrlgWhZPjRJyfyjCmUEfX15SxJM7xm37d9b38cK+VsElNaKgC4kHyEy08p21FbxzrINQRCEQCvP4aATAQx/X8crXlvD64Xb+Nhor8Ni2Bn58yRRS7Wa+8/JR3feNYXd9LxdOz/4vt39SEVfU4ogjjjji+MxDkqRfo5Y/nhx93Tk69plDbON+LHzBCM/uaeKtGIL19M4mHviglgv/tJ1vvnCYLpePWQVO0uxmbCaZt4910D7gFZSNuUUpOrJgNsoMecW+mYgCfW4/J9pFx8C2AR/P7GnWFBVQDTvWTs0UiFU4onDtggLhs25/mHVzckkwG7TFbNWZYZaXpbNqcgaypPaDHW5R+3lsJnXJZDHK1Ha6hH44AKfNyF+3NerUgFjbd1BzwjZVdXGoZZBfbzylM1IoTrezs040XOgdCbD+poWsqEgXFt9D3iCrJ2doJh3NfR5ePthGUlQfk0GWSIopp2wf9DG7QCy7O9E+zMUPbufxbQ3YYkrepNHti0vTdH16TX0edtaL9u3ZTn3f3pKyNP79ggpNQRr0Bvn9AZ+gqqj76mfH6XGSZjJIzC9KYcAzfl2M+MOkxRhhgGoCMqZGyqPOo7VRxKs808Efr5lFa79YSjolJ4nt31+tczcMhpUJDSr2jAZom40ya6dk6kwzlpen68xYPIEwb35zKfdcOlWn0vaNBPjmuWUoE9jLm40yw94g7oD+IUpsuWGa3cyP3jjBW0c7UBT1ek20GJlXmMLmmh7N+t9hMbB2apagsO1vGhDUTZvJwBPbG/nzR3UUpdt11+mZIZ/QXwfqvRZbpgsTu7D2jviF451oNfLi/hZ+/34tgVCE766tEKIp/KEIT+9s5O97xTLWp3Y28WKUvf9E2H6697/d/knFZ15Ry8vLo9NvxFsZ7yGP438H586y89ej7n/+xjji+P8I26kN5OVlne1p/KvgYmC2oigRAEmS1gOHgR+c1VmdBayuzPyn73GYjRgkiVAUY5AlSQvFBpXQJVlNlGcZ2DNa2ucPRUixm7hyTj5P72pi66jltlGWtF6pSETRWbhbTTK3Pr2fpAQTHVGbMhItE5o8DLj1Y/YJCJNRlgVCB2o/3ZeWTGJLjVgS97lZubx99AzeYIS20YVoZqKFbpefRKuRzmE/naMOgMkJJgySxIAnwKYqVQEcU7jKMx3UdomLWxlYUJSq5dG9sK+VojRxUWw1yZzudhHRt7jxjdVl/HJDtRAxMOQNctvyYjYc78AXjExY8nbx9GzWTs2iptPFW0fPaIHMexr6WVmRoZUFypLqCDmmYuQl2wRiMiPPyXEdifZQkmGnYVTJspkMZCZaGPIGBWLW7YUpOYlUd4wrPYFghPooZ9H8lARKM/UxBnazAbNB1vqw0h1mwU10cUkaO+tFwjvoDVKW4RCuOVAJxh0vHKbfLZZcWk2yEOqcYDaQnGDSyoMDociEypAvGBbC4EElXDc9tZ+mXtUQpC9K4SzJsLPsN5sJRxQhiDvJauSl/eMkJHqbxShrx8RkkFhckk63yyd8rz8UYfP3VvGN5w8Jcxnxh7WS3GjcvKyINLuVwy0DPBaVZfbxqW5dv6hxNAw+dh/31vcKap7VJGuukWPXmMkgaUqjxSDzrTVl/P79Wk0Fbuh1C/EPYzAY1Ly56JJfi1GecF+i8a01Zf/t9k8q4opaHHHEEUcccaiIlhc+vTZh/4ewmo0sKRVdHXOSxtWYHKeVm5cV86UlRdqYySBx4+JJOlOGYW+Qlj6xH2zAHaSpzy0skkMRhesXFmj/HrP8nl+Ugskg4QtG6Bj2U9M5wsw8J9ZRdavH5WdnfZ+gYiVajdjMYi+Tw2LEH47giOqRkyQIhMNkxChjFqPMBH4fmA2yELoMsLA4laM/Wasje6GwQlG6XXBZNMoSL962iN9dNVO3gLeYDNTEOD12DvsoSFX7rWRJJb6/eLeafU0iWTEbZe566YhuDmajzKuH2mgfVBfupzpdwv4D/Oq9UzyyuY7KHNHGHdTj+Jfr5nD/uhlUZInb2we9gglG55BeQUmzW/jtlTO16AFvMMztzx2iL8ZlENReu7HzVZHloDumP62x101agkk4p2l2M68cateuuZJ0OwMxYc77mwaojLGoN0hw2cM7hevPYpQ51eniSOsgLf1qj1Sa3czMPCdGWRJKSMsy7Iz4RNJ7ZsjHJTPGjVNkSf3dx9uHNAXZIEtYjTK1XS4C4Qh97gB5yWo/13lTsuga8mnluREFitIS+Mt1c3SOqekOC3ecW8YlM7IFZ8pgWGHd3FydA6nJIBGKRHSmIDaTAbMsC9EQCWYDdV1utp3u0QWzg3puxoxHxojumPKb47SS41R7Jge8IRRFLW1dVpam3c9jJO1LSyYJZN0fjtDU59b1OfpDYcFN1m42cNPSYm5fXaqNSRLcsaaMO84t113fY8hMNPP5OfkTbvuk4zOvqMURRxxxxBEHcD9wWJKkzajixwrgh2d3SmcPz992Dm2DbrbX9nLpzFxsJgPbTvcw4lezzuwWI/dcOpXzpmRxutvFivIMitLtvHHkjGARf+2CQmq7XDwd1bu0tCxN52QHE6eMV2QmCuHHABlJFqFfCFRjjDS7haNtQ7h8Id451sGcgmTyU218eLKbEX+I5/a0kGAycOG0LLbW9uINhnnziBpOPS03idPdI2qpY+sgR9oGWVmRwY7TvYQVtfStptMlqBkAZwa9PLK1nqwki2DAkmo34/KJql5YUfjh6ydo7HULhEOWYM2UTP5xsA2iCECC2cjfvrSA090j3P7cuBoSCEVYUJSCw2pkW02PGhA+aomfbDMx6A1ilCVuPKdQF1hdmZ3IrcuL+daLhwmE1B1xB8Jsru4m0WLEFaW6bT7VzTvHOkiyGslJFg06jLJEdVTJW8+ISjrGSt4MkkRKgoltp3uFxXcwrGA2SELPX7JF0sKMAWq7RqjIcuDyjZcrFqTYeGjzuFpbnG7HbjYIylFDr1tQ8ABS7CbaBlTiNRY2fbxdJMRfXqJm3T27p0UbiyjwnfMrWDcnj+n3bhLe3+cOsroyU+vPBLWvqqlvhAunZZOXYhWOu6LAeVMy+drKUq56dLfwXVaTzL2fm4o3EObjU13CNm8wTLLNJKjW2u9LstI1gfFN17APfzAs9CdePjuPS/68A1fUteWwGAlHFF4YVeoSzAZWVmRwqGVA6zOUJTAbJAKjhEpCDbOePymV718wmZue2i/8bqfNpHtYMOgNkpKgj9cwyvr7vzTDQUGqTShJvXRmLpfPzmNjVSe9Lj8XTs8mN9nGlJwkFpekcaxtiHNK0rS8uB13r2ZnXR+T0hKYmpPExhMdlGU6qMj+9PpCxRW1OOKII444PvNQFOUF4BzgtdHXYkVRXjy7szp78ARCvHbwDFtqenjjcDuRiEJrv5ePq7t440i79pQ/oijUdLrYWNWJyxfk0Rvm8s3VZczIS+KKOXmsnZrFDy+u5FvnljEz38m6OXk8dN1cbl5WLLjgnVuZyUXTc3TzuGBals4KfMoEiy6zwSCU/QEcaRtkQVGKYGDgCYaRZVkYC4YV5hQmE4qS0RRFXWQur0jX3rO/eYC8ZBsOixEJdSF7qGWQx7Y2MOILaU/zJaCl30Ndt+gyV5CaoAWFRxRV2fnaihIyE608sqWenphogX53gLUPbOP5vS3EIt1h4Zp5Bbr+vqVlaaypzCTJauJo25CmPI4hoigMe0MaSRvDoDfIt88rZ3FJGjPznWQlWbS+v2FfiEF3QOjTmpXv1GVmJSeYsI2Wl4YVhUe3NdA9AZn44GSXtqCXgEXZ+qVoeZaDFeXpJFqMLChK1RH7xl43GUmiEmoySDgsBu16SXOY6Rr2M+IPEVFUpXaiXLuUBAtWk74sNhxW+MozB3UqjScQ4s0jZ8hKslCW6dDs8avOqPdB15B+n00GmcZetxY8PoZ+d4CvPHuQO186ooubGPIGueFv+/DHqLh9IwHueeMELx9oE+6hzEQL71d1sbexXyNpK8oz6HcHBJJmkiWunpcn3heBMEVpCcI9FFFgWVkGayozqcxOREEtiX16VxM/euOEzvXSIEs6M57sJCvnTRXL8y1GmVuWFQtZecXpdr6wsJDnbz2Ha+cXsLw8nd9eNZOr5xdwsmMYq1HmCwsLyE22EYkovHG4nbeOniHbadVI2qaqTn72zknqukcoTEvg1++d4r63T3LHC0d0IfWfJsQVtTjiiCOOOOJQMZagagCWSJKEoiivnc0JnS1856WjmmPfpqouXjrQyolRJeKNI2do7vMwtzCZr/19XOn58GQXj1w/lxf2tdDnDnC8fZhd9X1s/PZyEq0martcHGsbomPIy2M3zmfDnct46OM6fMEwNy0p4pzSdH508RT+uqOBiAJfXVHCysmZ3H/FDH61oZpBT5CVFRncvrqUYCTCY1vH+2e+urKElw+0Cfb6SVaTsEAdw0TmHglmI1KMRZ5BQrfAax3wcuzetTz0cR1PRPUtDftC/PzyabxysE3rr4soqmLyhQWFVGYn8ubRdpqjykDDimoqEhsJsKYyk4+iHCV31PVSkeXQDDEk4L0TnVSdGdY5O3YN+zkwOuf+pgDpDjOJVkkjgYdaBjnUMkiO06qZSgA09bn5+bvVGGSJX35+Oj9756Qwp153gBynhbYB9TMHWwbJTrIKc5+Sk6QzyOhy+YT3LS1LE0xSFKB9RMFhMQo9dIkWE+8eU6+//U39TIrp17MYZWxGWXPuNMgSJoPMsbbx3z+3MJkPTorOnCA6gBplidcOt9LcN67iGGWJaxcU8JuNpwSTmtkFyTT3uRkY7YnsGvYzLTdJR8iPtw9RmJqghbdLEtT3jPDeCXV/pNE5TMlJEvr63IEw51ZmYDEaqOse4fTo9yqoZbdfXlrErrpewbwjGI5w67JinDYTl8/JZcVvtwhzOdo2SFGsOUpEQUEkWYAuOgPUuIO7L6zk7lePaQ6VAK39Xi6blasZCskS3L6qjDmFyXQN+zjUMkh+io3fXTWLOYXJ3LKsiM01PaQmmLlrbQWyJPG5WbksKU1nak4i507J4sV9LTy+rQFJkvjaqlKumV/A9/5xlFcOtgFqP+orX1vMUzubNIX+qZ1N3H1hJZmJFr77j3HHx+f3NtM1es13u/xc89hujt93vs4g59OAT9+M44gjjjjiiOP/MiRJ+hswE6gCxh5hK6jq2mcKI/4Qm052CmMnYsrFXtrfKizcAA40D/D49gahHK1z2Mezu5t54MNarWRwT0M/f93eQI/Lr5WPbarq4o/XzGJRSSqPbKljwBPkNxtPkWQ1ceGMbJ7f28xhzxBbT/fw24013HfZNHKTbby8v5XkBDNFaXb+4+Ip3LJ+P4OeIBKqIvG7TbUkJ5gYHF1cSxK8cahNMwEBlbgdbhlgXmGyZvUuS2rOljPBxHAU2ctwWHj98BkSYxwUGf19sW6IvmCE1n4Pz+5p1jLfxpDjtE4Yfj2RunPtggJsJiNP7WzUFvAt/R61NC6i4AmEWDMli8ZekTT0jgTY/N1VfOflIxxuHRw/L0M+vrm6jLYBD4daBjVSEY4o3P/eKS6Yli0YOSwsTmV3jClHttOqGY4M+4Icbh7Q2cE393oEMuf26wtcfWFVpRrDujl5uuiD/hG/RuYk1PLPDSfUUsGitAS+f8Fkbh+1mNf23aXvhdtU1aWRNKfNxPlTs9SS0yj85YtzAHguRsnMS7ZyJOoYApzqcJGSYNLIG6j9hmPkzSirvZtP7WzStivA5+fkMbsgWWfAMiUnidWTM/nR68eF8UA4wk1LizjSIv5+Bbh5WTFGg8Sbh8+QZjcL95/TZiIhRlUtSbfT0u8Ryk9zk63sa+wXCLzZIPPi/lZePdQ2oRJ5+excZhU4CUcUVlRkkGa38NDHp0kwG/nBhZO5bXkJh1sHWXz/Rwx4gjgsRn58yRSSE0ys+cMWjQSvnpxBil3NYRvDPW+cwGE2aCQN1H7UR7fU82qMwcgzu5soiHGj7IpRp0MRhZf2t/HlpUW6/fikI07U4ogjjjjiiAPOURRl6tmexCcBFqNMklXM5op1yEtJMJEY8wReksA+wRPrQW9QZ0xQ3TEs9CUBPLmjEadtfNEbDCv8/N2TdAx7OdyqLmgVBZ7e1cSqyRn8fmON1lO1t6GPN76xlD0/XMOPXj/Oq4fGF3ODniA3Ly3ibzubUBQIoT5lv3VZMe+d6KR90Mv+UYL2hQUFDHqDbDzRqfXG2c0G3IEwsqQqYPe+VUVBio3idLtWyigBv3+/VldqmJds09SxAU8Qi1Fmak4SbQNeOoZ8vHu8Q1DFTAaJkx1DQi+cQZJ4aX8rl8zI1YUPD3qDXDQtm/eqOvmwuouCmF4yu9nAq4faCMZYRUoS5KVY+dysXG5+Wuw1cvmC/PCiSvY19mlZaTUdw5gMkmAAUZrhoDTTzksH1D6n+l43ZoOELKvmL8vL0zkQY3xypHWQc0pSNRfQBLOBAV9YuD621HSr6mYUFCTuvrASbzDEzrpettaOW6039XmwmA2CUgZgMxuwmmR8wQgWo8zcwmTBEXLIG2TQq3cHre4YFojXGAbcQTIcFnqijE4ykyycinKrzE+x0Tbg1fYnFFE0G/9otA94ONUxLNxXVpPME9sbeHhzPdYYJ8UZeU6+8dwh3QOTC6ZlYTRIXPzgDi0gfOw4WIwyLf0eWvo9SJLqgBlRFPY09NMwet1Oy01iYXEqT+1s0nosk6xGlpSma4p6MKxwrG2IrCSLVhpZkm7nltGcvcrsRK6ZX8CNT+7TiOeOul4kSeKdYx3asRzxh7jnjSrOKUkVlMrNNT3kxly3gHSIjmcAACAASURBVM40B2DIp95D0Y6PNpOBlAT9g5NYlGba/+l7PomI96jFEUccccQRB+yWJClO1FD7af7j4kot98huNvCVFSXazyaDumj++qpSgaxdv6iQLy8pIi9q0VWSbuerK0pw2sSF1MqKDF3emFGW6Izp73H5QjT26ONN3q/qEowvQhGFd46puVGxi3xAl9MFan9QbN5TdadLZ9LgDoS5YVGhQCZaB7x8c3Upj94wl0SLUSNavmCESakJnDclk6+vKiUrxlHSH4owNTdJW+yHIypJW1qahiyp82zs9RBR1NI9h8VIWFGo7RrhgQ9rdUpeVpKF90YX1IoCLQNeyrPUAGSjLOEOhPnL5jpqO0eE4y1JEj987QQX/Gkb+SniInl2QTK1XS6NpAH0e4IsKErVvsMoS0zJcWiEawyBsML3Lqjg3MkZSJJEXoqodBSk2ITPJFqMxLRg4Q6E+fLiScKYNxjmnjdP8KsNp3SlogAPflgrkLTpeUnsqu/T3Ab9oQjyBNeFQUbI9bObDTz4UR3P7FZzugzSeB7broY+ekb8JJgNJFmNnFuZyZHWIaFX78q5eTpDDZcvRE5UnprFKLOnoZ8TZ4Y1knbFnDxsJoPWO+gLRchPsWkmJG5/iEMtg5rDZWmGnd9cOYOHrpvLG4fbNZIGqir6pSVFgiOkokBKgpm2gZjrvWNYC1Efw7AvJOTVjeGnn5vG87ct4oFrZmlED+BUp4uHPjqtUwffPnaG1gHR8bVjyCvMawyx2XUAl0zPoSxzPMxbklRzojvXlGtjsgR3nlfOHeeWC39j1s3OFXLbpuclsbw8g08j4opaHHHEEUccccB6VLLWCfgZjb1SFGXm2Z3W2cG1CwpZWZHJqc5h5hSm4LSZuP6cSRxvG2ROYQpZoxbg276/mm2neyhITWBuYQoA7317ORuPdyLLEhdNz8ZuMfLsLQv54we19Lj8XDE3nxsXF9HU5+HJHWqflyzB11eVUt3h4sGPTmvzWFaWzrq5+bwR5bCnPvFP5fl9Ymna7vo+ntjegDkmnNhkkNha263r52rt9+pUIrNBwmIUSw+NsqSZZIjfK7O0LF0gjKCWqWUkWvm4uhtjzFySE0w6a3eAonS7Lu+rJMPOoZhSN1BVkOqOYRxW1WjjnWMdwvbPz86jMDWBO14YLwUMhCNcPjuXiqxE3j56RihbPdQywNqpWXxwsmv050Ge3SMGCgMYDZKgFP1qwyluPEckVGaDzB831eKJYl9j/VqlGXbyUxI0h0pQS9QW5xjY3TFObiTgL1vqWVOZyeTsRDbXdAsZa/XdIzht44rv5KxEoTcN4PJZeTr1yWE1YjHKGlFItBjZeGLcaXFGnpNBTwB3YHx+sgwXTc3hnePjx9gTCPPcrYtw+0O6Es3j7cNMSksQehH73AHNuMNkkFg3J48X94vhzPkpNp26FwhFeOT6eQx4Ajy6tV7Y5vaHuXZB4ejx0hPQRMsEmYEGSWdYYrcYCYYmKEeNUW4TzAb+/HEdCjBvUrLu/SP+sKZejiEv2caMvGReiLpP107N4stLithU1andd/MmpXDLsmKGvUGe3NGIJEl8dUUJyyoyePEr57B+VxPdw34un6P2tK2syOCcUcfHhcWpGpnbfvdqdtf3UZRmZ3J2Ir9cN4OXDrRSlmlnefk/z4b8pCJO1OKII4444ogD/gbcCBxnvEftM41sp5XsKCUgL9kmqGUAKXYzl8/OE8aSrCauWVAgjM3MT+bpmxYKY/dcOpVVkzOo6XSxvDyDydmJnD81mySbiW21PVRmJ3L7qjKcCSYe/uJcXtzfQpLNxO2rSpmSncT5Rzt4f5Rc5CfbONqmkhrvKJtYXJrG3oY+gmGFllHL7xynlQF3AF8owv5mVdkZC+GVULOvDJJaTjW2uA5FFJ7b26IZV4BKLL//yjH+bUkRqydnCGWcVqNBWJzmp9gYcAeQZQmrycCQV1QrzAaZwhjlCWBmXjLvHe8UysSsJlkjb8NelShEhwhLwNtHz0yoULhGy8Zi3d6DYYXjMQHjW2q6Bat082g5bDQiCtgtqro07AthMkhcOiuH1w6JPUSLS9NYVJxKfc8Iwz59SWGeXeJnl01jT2MfG453akTqo1PdXDAtG3MMcQ5FYFVFOrvq+ynOsJNoMeriGnyhsC5KYX9TP/5QBLNB4sLpOWw8IRLc9kGvroTOIEskTVBWJwEdQz5dSfCuul5NYTMZJM6dnMmmk+NkMBhW8Ab0xCg32UZJup36KPU422ll5k83oSiKFrswhjmFyQRCEe554wSvHmoV9tVpM6mmHIw/mLCZDGw41kEwomjjkqSSzo1V4/Mb2zZmiGMxyswpTGZvQ78W6l3dMaydc1Dvhavn5zM9L4mfvXOSYFghx2nle+dPpiA1gQyHmT0N/czMd3LneeUkWk28c8dy3j12hiynlSvm5CNJEt85fzJ3nlehOqqOqmHpDgvfPX+y7nhNz3MyPU+MukyymrhgWrb2c4LFyE1Li3Wf/bQhTtTiiCOOOOKIA1oURXnrbE/ik4KPT3ZxyzMHUFAVpV13rybTqe8j+T/F8vIMoSRJliVuWVbMLcvEBdYlM3O4ZKZo3//4v83n5JlhfKEwL+1r4aUDoilESbpdZ4BxTkmaYJIBahmZAppJR1hRF9kXTs/l9cOqkjdWznb9wkKe29dCRFHL0x7f1sBvrpxJeWYiB5r7WVGewV82nxa+v3vYT3mWg6ozw7h8ITqHfCwuSaWux02Py08gHOH+jadYWZHOrnqVWKYmmKjrHuGHF0/h/g3VuANhyjIdukwqTyDMt9aUsa+xn9quEfpHg61PdbpItZvpHzWWMMoSH5/q4eNTPTrFcVFxqq6c0CjL+KMIRa7TyvLydJ169/axDm3BHgwrNPfpy1T31PfR3D+uMEUv8gFeqQvxVlM1N0UFqI/hYMsAhSk2jkaZeOSn2HjzqDqPnhG/rnTTZjLwh/drhd+XYjdrKlcgrLCzrheH1aQdH1Czxb6+qozvRbkHBkIRPqjqFIj74pI0Ht9Wz5aoPrmsJAsVWYlsPz0+FgwrJNr0JC8/xcrUUVVURuLy2bn8blONZgJikiUumJ7FO8fGDX38oSCFqQm0DnhYVpbOTy+bxjO7m7T+QFAJ0/WLJunU0Kvn5fPW0XaCo0xOARYUpTLgDlDXM24+47AaWTApRXjo4A9FKM9M1JW4XjY7l3BEJf/XLSxkflEq84tSuWhGDq39HqbnObVIhe9MQLQmZycyOVs/boith/4fQlEUlvz6IzqG/EjA986v4Bvnlv/Tz30SEe9RiyOOOOKIIw44JUnS85IkXSdJ0hVjr7M9qbOFm0dJGqiK0sL7P+aFfS1aE39Ln4c/f3SaJ3c0MhRlvODyBfn7nmb+ul3M0PIFw7x5pJ1ndzcJeWGHWgZ4/XCbMObyBdlV3yssokENl44NkS7NtDM1J4mlMf0nJoPE+TH5TQBTchKxxBg1pCda9H1F/pAuvwpggiozDjT182F1F4daBvnPrfWkO6zC9klpCTrb+rYBr3DcxsaunJsPqD1hz+xp5sPqLl7/xhLmTUrhzIBHWFiPTSccgfvXzRDMXwC8gRAPf3EuX1lRIqg+gbDC8vJ0yjMdSMDexn6tF2sM8yal0h3Vu9TUpxpSFEXZ5K+sSBfCiQGaej1MzUnUfq7IdAgkDVRCtP6mBcJ5CIQi7Kjr0S3UG7pHeDuKHK4oT0csYFWP2x3nllGR5WD15AxdVpnRoFcR+9wBbl9VKpzOHKeVNZWZvPXNpayerF5PEUUN8w6Gw/zgosk8esNc7v3cVIGkgVo2uXaC6y0r0SKodJNSE3hqZxMnzwyjKJDqMDE5O1FwagxGFFw+vep2bmUGcwqSOdQ8wH1vV7G3USRPEUXNydNDwR+TmxcMR4Q4BABvICwo6GOYkpuoGzunJI2fXT6Nv3xxLkvL0rXxQChCWaZDyL3rGPLSGnMNtA962dvQhz+q7PJY2yCvHWrT/d34x4FWHt1ar/uOnXW9/HbjKTYc70AZ3e+67hEe+KCWaT/ZSMeQf3Tv4Xfv19IzQW/jpwFxRS2OOOKII444wIbam3Z+1Nhn0p7/3aNtE47/8LXj7Kzr5a61FVz+l53aQu+5Pc1suHM5igKXP7yThtHyrUe21PP2HcvISrRw7WO7tXKqP35Qy5vfWMb63U1aj1qC2cCztywiEIrwlWcO4PKHMBtlfn/1LFZWZPDVZw+wp6Efi1Hmu+dX8JUVpTz44Wke3VpPOKJw3cIC/v2Cyazf1cSwT7Xnf+dYB3euKeexbfX4ghEyEy0MeYN8fWUpfxrtgzMZJGbkOZmVn8x/RvUBnVOSxurKTDacGFc1rCaZdXPzeH5fi2hB3+fWzBX8oQj9br9m/59oNfKN1aX8csMpgYyWZyVq8QBjMMgSH1aLPU9ba3sY8YU4OJqN1tzn0fqzxsrdHt5cxxPbGshwWARlLM1hYVJaAmkOM49vaxC+12YyaAoiQEOvm5uWFJGVZMEgy3QMedl2WnTl3HG6j6ao3quttb2UpNsFY4lsp1UgpS39HkHZU8+1keZ+j2aMMQZPIEJeslUrU11UnMLB5hg7/E4X03KTtDw3UInfo1vqCUYUjLKsizzwBsKsm5OnXWugqqhfWlLE9tO9bK1V93NvYz/f+8dRnvzyAl2fYigCNpOR/U0Dul5CUEOon4gpNyzLdPD49gatF8tqlFk1OYP1u8cVrx5XQDgPY6jIcmjzGsP7VV2cGTXb2XC8k1n5Yumf2ShzxVy1/y3aWOWi6dnsaxoQ+uaWlKo9XtHXywXTsnBYjIJt/8UzsjnRPkyu06pZ3l88PZu/7Wjkm88fZkpOEn+8Zha5yTa+8swB9jaq9+j3zp/MrcuLufvVY/zjYBuKovanPfzFufx1RwO/31RDRFGVyOduPYfXDrXxyBb1/rMYZdbfvJBFxanc8Ne9Wi7ggx+e5pWvL2ZarpNndzdxz5tV2txvWlrEFXPyuerRXROalQBc9egutn7/3Am3fZIRV9TiiCOOOOL4zENRlJsmeN18tud1NvDfWV2/e7yDp3c2CU/jG3rdbKnp5oPqLo2kgeqq+PL+VrbX9WokDVSb+id2NPDUzvGFsycQ5uHNdfxqQ7VmzhEIRfj5Oyd5Ylu9VnrlD0X49XunePfYGR74sBZvMEwgHGH97mZynFa1JDEYwRuM8I+DbfiCYU2l6nb5eXhzPfW9bv507WyMsmok8ti2BvY19vHTy6aS4VBdGnfX9/HGkXa+u7aCNLsZSVK/98evn+BHF08hP8Wm9s+srdBKysYQCCssLk0DVMe/7/7jGF9cWCjkqJ0Z8nJtTB9fgtmos/fPSrRqJG0M3kCY125fIvRfBcIRspIsJI+eOwlVabr0oR1sOHaG2QXjBhBGWSIzSXSjBDXz7vHtjfxyQzV/29kkWMRnJlp0Lp0AcyclYx5VT7KSrKQ7xNJMXyjCdQsLcIy6gxokqOsZ4SdvVpEQY2yR7RwnaQB7Gwd0IcwWoywYrCTbTHgCIe0cnOwYZlKa2J+3vCKdu9aW88VFBdo+1Pe4+bcn97EvRpXaXNPN8bZBPEFRbTIZJH757kme3NHIs7ubhWNjNshUnRmidcCrkbR1c/K4aHq2YFTjC0V0LqMAXcOqqc0YitIS+MKCAs0pUgLWTsnSSNoYekfUiInkBBOlGXbu+9xUHt3aQJrdTLrDTHmmg9tXlfL9V0/Q3OfBIEuUZzr46ooSntrZyI46VRVMtZv59/MrONw8wBPbG/EEwliNMo/eMJfGXg/P723hzJCPcEThrvPKGfKFtHNQ3THMXS8d4YltDZrC5w9FuP+9al492MbLB9q0hxofnOzi+b3NPPDBeKZi17Cf322q4Ynt4w8S/KEID318mgPNAxpJA9X585ldKsmNJt2gZt49s7vpvyRpAHp7lU8H4kQtjjjiiCOOzzwkSSqWJOmPkiS9JknSW2Ovsz2vs4El5foSrjGYZBmLSb9id09gkACqYUF4Amt8fyCsy1Yb8Yd0vVJ9I35qu0TFIaLArglUjd31fYJNOcCexn7eOyGGd2843sHHp7qEcsCDLYO4fGEhI2tnXR8OqxGXL6QtNk91uqjvcfP7q2eR47SyfnczRlkfKPzO0XGXynBEYVutWNZ3qsPFoCfI329ZxJxREnWkdZC2Aa9G1kwGmSynRdeDleYw82ZMnx1Aks3Enh+uYU1lplAc+OzeFn531UwWFKmunKGIwt/3tOhKQLuGfYLyFY4oXDE3D7vFQLfLr+XBjcFilHnnaIemjHUN+3QLZVlSe/R+e/VMvrKihOhLwR0Ic9msHOZlGrhlWZGOpILaDzZ21MxGmSFfUCjxLEpL0F1HyQkmHrhmNml2lTS+X9XFVf+5m3BENBfZ3dBHTrJY6pedZOXyh3eybbS00ShLlKTbWVWRQSCGdN26vJjvrK3gvsumCtsAhr1BDBOssPvdAaHMNN1hZvvpPo3Q5TitvPut5Ty9q1kLnlaAzTVd5MbM1WSQqelycdd5FXz4nZU8vauJD0520e3y0zsSYGVFBgeaBrR7IhxRGPAEGPIG8UaV9fa7A7gDYTqGx699XyjCztO9VHeIJbsfVncL/YKg3hOxZi4RBY606R1La7pcuqiMziGvbmwiZ1RQ/554A2FdBIdBkrQewv8Kj395wX+7/ZOKOFGLI4444ogjDngDaAIeAv4Q9fpMYvP3VmKbgJDdvKyYm5aWCMqJLMF3Xz7KMzubBLdBgyzRPuBlbmEyFVnjeUgmg8QXFhayvDxd+O4r5+Zx+axcYWzt1CzOj3JyA9XV7pr5BTqFpzI7UZfXVpJu12WZpTvMOnIFMODx68bqukd0JXp13S5ue+YAx9uH6B3xs7+pn9WTM5g/KYW1U7P44UWVxFJTTyCsC1Gu7hhmWXk61Z3iYlgGFhSlEAxHONqqKjVZowqYQVLdBtfvbtaZguw43cs1j+3WxQUoCvS4/Dqr//wUG0tL08hxWlk7JVNHsoIRhePtQ5rTpcsXIs1hpjI7kTmFydy1tkLIEAOQJYlLZ+YgS6rSFFHgHwfbuP3vh2iJ6TEC8AYjHOwO8+SOJnacFvu+HBYjG6s6tWO5sCiVYa+4b71uP9lJIoGZlptEWFGEvq9TnS7qJygxzEq0aETQaTOR6jALZC4UUXj21kVMzXXqPnu0dZAHPqzlvreqMMZcjFVnhvjTh3XCWLrDwqGWQc2hszzToeun6xjyMewL0hRjyhKKwJ1ryrX7yGEx0tTnYfvpXu59q4rfbqrRPdDYUttDW0yOWe9IQHhAMQazUX8/JNvNOjKfn2JjZkzJ5ayCZF0/aHKCiesXTdLUVlD/Tly7oJDSDIfw3qvnF2gPEcZw/aJJeAMh4X5OMBtISTAz/xcfaEHz0XjnWMdELaTq75iXT1mmvtfu04A4UYsjjjjiiCMO8CmK8mdFUTYrirJ17HW2J3W2UJzuoPrnF9P060vY/v3V3H/FDF79+mJ+cFEleck23r9rJT++ZApGeTxb60DLAEtK05gxapsdjij842AbP3mriq+tKNW+OxhW+PEbJ/jNlTOEhdgjW+q5fXWpsGg73DLIgqIUfnLpVCqzE5k3KYX1Ny1gVkEyf/rCHCqyHCQnmJAk+Pm71dhMMrlOKxKq4vP64XY6hn1afpTFKHPPJVO5eVkxCVHZaCsqMvjykmJB1TEbZG44p1CnaE3LTcIV88Q/GFawmGQ+ONnFbc8e1MUYtA96tPK/MXgCIW74617sZnE81WFhf5NY7mg1Gfju+RWCIhUIq4rXGDlWgGNtQ7TFEKJEq5G67hHdItZkkDnYMkDHkI8PqruF/jNQ1ar2mIDkAXeA/BQbh1sGefDDWt1CfsgbpDwzkU13rtD1itV1uYTznZFoYVvtuEoXDCsUpSUwf1IKF8/I1ilIO+t7mZqTJIzNyE/m77cuojJ7fBH+8OZ6ttSI6h9AbrJVULNyk63sbujXiOCwN4g1pjdNktQSw8OtA8KDgaL0BPY3DaAo6nkIRVRLeqtJZkpOIp3DIul/+ItzCEXE43G6e0RHWpJtJn78xgkd6bKaZH70+nFkSeLh62brjEC21HSTahfLTidnJXLRDNEpdXl5OrfEXPtzC5P50jlFTM4aP4bZTivNfW6cNpO239lOK9Udw2w/3YtRlrCaZJaUpvHnL8zm6vkFfO/8CsozVUOXZ29exJScJB78wmxm5jlZWJTKYzfO51THMPVRhjhjJZ7R13tldiLT85zc9PQBTT01yBK/vWoGj22rF9T75eXpZCSaNTVNQc3te+T6udT+4kI2fGs5+/5jDb+7ehafVsTNROKII4444ogDHpQk6V7gfVRTEQAURTl09qb0yUBBagLXLSwUxlLtZuYXpeqezjf0uKnpFMug3q/qwh2zsDzZMczTO5uEMrbmPg/P7WkRFm3dLj+Pbq2nON1Ofc8IwbDCd14+yjO3LOSyWbksKk5lya8/1koTO4f9XLewkMMtA1qo86AnqPbrrC7lqR2NfPOFw8zMd/LXL83jYPMg7x7rYFttDzc/vZ+fXT6d7ad7aR/wEFHgsa0N/Pzy6bx6qI2mPje5ThuJFhNmo6w5YIK6kNwa5QTYOuDlqytKeOVgG33uACOjqlSO04oCdA35aB9UX7KElsclS1CQnMCAJ6ApWaCSrdieLlDdBrfWiKYTZ4Z8PHrDXO55s4oelx+XL8RP3qpiYVEq+5rUPiJZUslGdPC12x9i7dQsPqruIqKoTo8ZMY6YJRkOzfBkrHyuJN1Ox5APbzBM1Zlhqs4M80F1F6bYY2SQ8QTGrwObyUCPS7x+ZEmiIjuR/hHR8RPUY/TANbO5580T2n68d7yT0gwHbTGE8lDLgBADYDcb2FTVqalZVpPMrDwnZwbHS20VYGFxKkdaB7Xr+vLZudy/oVqwp59TmMzUnESaekVi+73zJ7O0LJ373q4SArpBvY7T7GYGo1TVNLtZiI9Is5uJKAofRRnK5CVbMcqy5px5qtPFvW+fFOICQFXr5hSm8PbRM7h8IablJnHzsiK21faytDQNTyDMrIJkLp+dw18211GWYScn2cZ5U7KIKAorfrcZlz9EYWoCNy0t4sPqLt46Ou62uaoig1SHWcvIC0UUzEaZx26cR6LVxMOb6/jzR3UEwhEcViP5KTbeONzOv79ylGBYwWYyqOZAUbEJANtP9+rKnU91unhxX4tgiBKOKOyq69eVuVqNBnpc4rUy7Aty8ShBnZorEvtPI+KKWhxxxBFHHHHADOA24NeMlz3+/qzO6BOOqTlJZMaUFa6anEFRuhjeXJxu1+V/SdLE5VYTBSK3D3j57cYarY+lodfNXz5Wy8o6Rk0OotE24BFMTQAae928vL+NY+1qmeGxtiF+855aLjZGVk53j/Dnj06zbk4uh1oGOdI6yBtHzvCdl49w32XT8PjDvH+yi4c212GQ1IW1LMF5UzIpSNVnzKXazUL5HahE5OalRUJpZERRlQWbUS0V3N3Yhz8YEXraTrQP88T2BkGpkyX46dsndZbs+Sk2JmclCS6ToMYe3HBOITaTjNkgM+DWH+sBd0BYDPe4/Fw2K4fidDtrKjMpy9AHad99USXzY0rXTrQPcdH08ZJVgyyR47QKvUgt/R7mFoqf6xnx8/zeFjZWdVLbNYIxqrwzL9lGn8ePLyT2Ij0+6vwZjWBIYXqek2SbiVn5Tq6YkydY1PuCESwxxNcgS8zKdxLd/tTa59ZliNV2uihKE5Uws0Fm/a4mzrn/IzbH9PLZTAZ++vZJIcw6x2mlb7Q3bAzr5uTpymMLUhNIiFFie0cCfGVFsWZAkpJgYk9DH8/vbcHlC3H+tCye/NICbl1/gAc/Os3O+j7aBr18dWUJX3n2EO8e6+BY+zCbqroIhiPc99ZJrVy2pd9DVfuQrgf0YMuA7p7yBMJ0DPlo6fPw+/drtBLhwy2DPLq1nl+8W62db28wzK/fO6V7YDPiD2lqdzTyJ7ifFhWn6kpF10zJ1JVQr53yX/fYfhoRJ2pxxBFHHHHEAeuAEkVRViqKsnr09enzcv7/EWajzNM3LWRlRQalGXa+taacW5eX8IvPz9B62NIdZn7++encvrpUM3cA+NLiIr60pJiMKKKXnWTlqytLKY0hA0vK0nXKXVOfm8013SRajExKE4nh6smZrJmSKYytmpzB4VaxnPBo2xCHmsVFeNuAl9cPiUYdA54gj22tF2zovcEI187P56p5+Wyu6eGFvS1CaaFBlthU1am5MI4hJcGkczIE1bzBG6U+hSIKNy0pIjXq853DfnKcVn65bjoGedwYY8ATpCDFppWotQ14ufbx3ToibDMb+PueFrzBCL5QhL2N/ZrLJYDTZkSaoMmnY8hHY6+bj051cyTGSMIoSzyzu0lQikAlkXsaxhf74YiiyzIDCIfDGCTIcFi4flGhrqR0SWmaRtaa+jz825P7dL8rHFGt8KMRjETYVd/HoDfI0bYhWgb0bovnTslkUXGq9vPy8nTeO9EpkMmDLUNCdhxAqsPMLzdUaz8XpSWwanIGx9pVZ1N/SCXZcwuTuXBaNmFFLHmckp3I3Rfqw557R/y6c5busJAQY7LitJnY09DP7IJkfnzJFOZPShHm/H5VF0/tbBRIX4/Lz+NbG3Tk/a2jZ3QmHA29bopinDPLMh0siyFEhamq8ruvqU93bht73Ax4xIcUPS4f1y8SlfnrFxXytZWlQinm1fPy+fKSYs6tHL+HL52Zw6Wzcll/80KWlKZRnung7gsruXZBAQ9+YQ7Xzi+gMjuRm5YWcd9l0/hXwj8tfZQkyQpsAyyj739FUZR7JUkqBl4EUoFDwI2Koui16jjiiCOOOOL45OMokAzom1v+G3zW/4+cmpvE+psXCmMLi1PZ9YM1NPe5mZRm1xaf276/ml31feQl27SSpHe/6GFDYgAAIABJREFUtYzXD7UjSxLr5uaR7rCw/uaFXP3obs31btOJDgpTEwQziqOtg9z01H4kCW5dVsyAO8jmmm763AF+taGaLyws4IuLCvmouot+d4CPqrtJd1jwBccXqguKUihITdDKuUAt4yuZQDVKd+jt7Jv6PWw4LjpKzsx3UtPpwh+KaOYdaVHK2okzw/zkjRMsKk7V7Myzk6wTWt87bSb6Y0hJU5+H8sxEYtq/SE+00BpFRrpdfhYVq6WOigJJViMLi1N1hiIrKtJ588gZQhGFIa+a12YySNrCf1puklCK2jnsZ/XkDFoHvJwZ9OIJhNlZpxKy6HK8C6fnsOF4h/C7guEIKQkmjUCkJJg4Oqpw9oz4dTEEoDqGhqJISCiiUJJhF66FJJuR4+3j8Q/r5uTy+uEzwvf0jfgpz3JwerT3a2pOEjlOmxAavaWmh4VRxG0M2UlWWge8hCMKxel2IZB5bE7ugEgwwxGFH186lfJMB7N/9oGwbaxEdCwHbwx7GvrUns/RMtiitAQ2HO/Q3iNLKjlq7vNo8z7cMsi8SaIqCejMTQCynFYkCYFUTctNon3QKwSXN/V5GPYGsRhl/CE19mHQE+QvH9eRkmDCaTNRnG6ntsvFtY/tAdRSUl+Uk+SFM7JJsBh448j4ebhibj4/uLCSypwkDrcMsKAolctn5yJJElu+t4rNNd0UpCSwuDQNSZL425cXUN8zglGWtMiFuYUpPH/bOcJ+pdrN/Oaqmbr9/VfB/5seNT9wrqIoI5IkmYAdkiS9B3wHeEBRlBclSXoUuAX4z//Fuf6vweDpx3Zqw9meRhz/gpB9wxx2TcLWrv8PKI44/k9h8PQD/1plHmcRWcApSZL2M96jpiiKcvk/+dy//P+R/xOYjTLlWaLLmt1iZG2MO1xmoqqiReNg84BG0gAOtw5x94WTaehx0zbgZcAT0MoVFQXW72rm7gsn88ohNah7zH7+oevm8OK+Fm2h2zPipyTDTvuAF0mC4+1DTEpL4MLp2ew43UtGooU5hcmUZyUyPS+JE+3DSMCcScnkpdiYnJ2o9d+lO8w6t0GA6blOjkVlxoGaNba7ro+R0TK3sKKabqyqyGBLbQ+dwz5ePtBGfopN6LX6wwe1pDvM9Eb1a+Wn2Mh2WgTyNzZ+OIaEJSeYuGN1GQ6rkS8umkTbgIfHtjUIC/Wx3rgxRBS4dm4+Z4Z8DHoDlKbbhQBrUNWVH186lTV/EL12yjMdVGQ7ON09gs0kC+HPoO6z2x/CZJA4f2q2zvDjVKeLLy4s4Pl9rdpYv0f/bKM800EgFGHIE2RpebouzLux14PdbBDKCitzEgWDjprOYR2RBMh1WjWCAmqJ4p4oMheJRHR9Uv5ghDS7SOQzEy1UZiXyt52NOG1G+qPKTHtHAjyxXc0BkyX1IUC/OyAYkNxxbhk76noFgxdZkrhoeo4QzB4aJY8Hmge08s/l5el8ZUUpbx/r0AhtSYYdCVhels6u+j5CEYWyTAeNvW7MBpnSDDuyJNHa79EiGkIRhWvm5dM64GH3aPnngCdIusPCpDQ7m6N6I33BCMvK0vEEQqybm88Vc/O5eEYO5VmJHGsbZHFJGjcuLkKWJa6apyrRwvFKsnLtAlFtA3RmK59F/FOipiiKAoxd3abRlwKcC3xxdHw9cB+fwv+EysrKzvYU4vgXRl2di+HBAeaVxBfTcfxvICv+N+z/Hu6N+rcELAOu+2cf+lf/P/JsoHcCI4nGXjcRBWbkO9lVJ9q4B8IRnYEJwN5GvflAeaaD9gGv9vT/lYPt/PCiSjIcFp7d00xjr5tXD7Xzk0uncOXcfH7+zkkONQ9yqPkwn5+dy23LS6jtcuHyhQhHFIGMSBI4rEadamGQZJ2NvcsXoqZLNAGJRBR+etk07n2rSjgWcwqTOdE+RDCscKR1kCse2cWfrp3NfW9XaX1Pbx/tEMibLMGmqi42VXUB4A1EuPO8cpaVprN99PhNyU5kzZQsXjrQJsyjutOllTgebR0S1BJJgmd2N7OjrldQ3kBVil452K59LsdppWvYR0SBrCSLQPjePd7B9NwkTkSNTc5K5JfrZrC1tlcLhq7ucJHjtGrEfXpeEn/d3qgd8x6XXzePHKeV86dl8ftNNUQUcFgMnFOcps0NVLJc3z2iO1f7mwY0klaZnUgw5rw193u5dn6+cMwMslpCOHbc5xelct/npvHo1nr+/PG4RX+aw8zFM3J4dnezNhZRVMfRVw6K56Cm06Xru4soCoNe/b0x5A3+P+ydd3gc5bm+79m+Wkm76r1bxUWWe+82NcR0EkooKUAagVTSz0kjCamEkgQSIPRqTC9uuOFu2bItWb33stL2Or8/VhrtaJ1fOOcAIfDd15UraDQ78+1oYebZ932fh8vn52LUa6jITKQyx8ofttazfno62VYziWYdf9rWyB2v1QGRFtc/XTmPH7xwgm11k5/B65cV8NBetdtkw4AzJtagod95xqrzl9aWsKxksj3SqNOQbDFg0Gnxh8IEw2G0mv/U2Ol/H+/K9VGSJC1wGJgG3AM0AXZZlidqvZ1Azj957Y3AjQAZGRns2LHj/7jk95bKykoqKyv/3csQfER58MEHCYVCXHzxxf/upQg+wnzY/rv6n4gsy29LkjSHiLi6AmgB/vxuXvu/vUd+2O+P/y5snjAmLXjHCyI6DTwd9WBsUY99UWrTUKRRizedBNOkPgwa8Ec/azuHYvLCXj3UwIlB9ZzOfVvrSDVLKqG3ubqbbHmIB477lO2pZgmLHvpcMt4Q/HVnMyYt+EMwcZbXT/aim9KJZtX4GNJMvkcAgj5OnVa74gH4XWMqITLo9PPi7qP0jKjbIqWwn08W63EEZE4MBhmMGsu6Z3s90kgbuxonqza1vQ4OVtdQlqShfiSy2vwEKSbQ2ECY5fk6Tg2F6HHJ+IJhanscmLQQGm/fSzJK2J3qB/qeUS/fXWjEEYD2sSAvqgtz5BvduK0amkcj5z7d5+Dz971Jl13dRuj3+fjWAiNhGQ72uVVVun6njwUZWg71RS6kQQML4+3cv6tP+Rs5fSEe2Hoi5rr2Dg6TqAdnAIxaKEvSUj0wedHqeh2UJ6nnw0w62DQuqpJNsDRLxystk9c0LIM1PEZ//RGeO6B2hRxy+gkOq1syARyDvWglVNEL1a39DHnUQk0CnoiqNkpEhOFEoLvVKHHrXCOXbvYyYRgar4eLphnoHJkUeKOeIA+9dYT2YfV13nmynfjx6zFBusaJ1ipzKKrbsyxJQ6nezhtRr00xSbjbatjRMflBf67Bz0tNkYO9dKyb7UcbuKkqtgot+P/zroSaLMshYI4kSTZgEzD9TLv9k9f+FfgrwIIFC+Q1a9b871YqEPwHsmnTJux2O+JzLxB8OJEkqQz4NJHq2RDwFCDJsrz23R7jf3uPFPfHf86MOWM8vLeVsCwz4PCp2qxcAbhuaQHbTw/gDYRYNSuLz55bQVZxL3dtbcDlizjfffr8GZTMGOZnL9fSPeqhMsfKNzfOYPuf9qhs48+aW0LDjiaVDX1SooXEOAMMR5mNSHDabyUsT7bsDXpkbl47nZ9FmUt4Q5H1PXmwQxGFQRnKMuKJM+io7rBzaniyQiXLkYfubpfM8w1BtJKk2MgDpKUkw5BaiE4rKSHYXM+kHAS0BjKyc0gIhDg91g+e6FkqDeaMIqBOdZwRQzqN9kkR3OGQSYiytQdITozjaxvn8u1nj9PjmqxcekNw5aI8XjrWDVoNiRYDA+5JwxWTXsO9J0KMeoJkWU2AWgxftnoO+5qHVa2LW9uD5NjMSkUNwGg0cue4UihLj2eygB0hoI8HIu2m/jCcCqTS41JXqIaDejZMtyrRAnEGLfUjk+txByE/O53qAXU75OVLy3nzVB8HWofJTDQx4PQqgmrYC2FLKqCeU8zJyWXNmpmUtx6kK8oB0qTXsK1bUlXxbHF63moPEJYjokuSJGxxevqjqsp5yWaS4wwci2qplYhc++g20VGfzN7RRHyhyb+7MwC+uHQi3xVNMrO0kL29zaq5svnTcijPSOCBPS0Mu/ycOzOT/944k6cPdzCwv50Rl59FRcn8+JMzef1EL6XdHXgCIRYXJXPrhjJerenh0f1tWAw6bjurjIN7TwKTqu9AX5gHl6/EdAaXR8E/53/k+ijLsh3YASwBbJIkTQi9XCD2awKBQCAQCD7c1AHrgU/KsrxCluU/MfWJ8l0i7pHvHdOzEvnlpbP59WVVZ5xTOdI+Qvuwm36Hj7/tbuWOV+vwBUM0D7roc/h4ZF87X3n8KFlWMx0jbhzeIHubhrjhoUP85rLZquDluh4HN64sVn6WgAvn5PD5lcUqk491FekkT4kZAJVUUvCHwjGVO40k0TqktjhPNOmZk2dTVHwgLKPTSszISlAcGHfUD6qCpbWSxEvHu1lXrna2dPtDPLC7hcf3t9M/JXA502okLcEUYzKh16qrhjIRl82JaACJiLnExrv3xDgyWs16njjQgdMXYsQdoGnAhW38uhp0GrSSxKgn8pqeUS8VmQkkRblY3vzIEY62x85vnzsrQwmnnpGVSHfUvGJ9v1PlFHp+ZaZKwEDEFKR8ynxkQUqcYlaSGm/g8gXqGSmImKFEX5+kOD1ZNhMhWaY0PZ7zKzNjTFzGPAEyEifXE2/Ucc2SfJ480K5yvTTqNPgCYfocfkWkXTwnB7cvqFz/sAzrKtKUGbEJ+sZ8MU6hMpBonlJahsiXC1Moz0xQXbP0BCPeQAhJkhSn0hlZiXTbPfzs1Vp6R73YzHq+fW45P3n5FHe8WkfbkJsxb5ClJam8cLSLn79aS0O/k84RD00DLk50jXLHa3V0DHuo63Xw5ceOxFjpJ5p06LXCbP5/yr+8YpIkpY1/S4gkSWZgA1ALbAcuG9/tOmDz+7VIgUAgEAjeJy4l8pX4dkmS7pckaT0g/YvXKIh75PvP51YWqfLDPjE7i5oudR/dmyd7eWx/u2rblto+HtrboqqUdY546LJ7VEHbL9f0kJJgZElxxPFPBn73Vj1aDXz3vApFrG2t7SfTaiIx6gE0M9HE0pJk1fpMeg3XLytSWb9DJCdrKjqNFCPofMEwRakW1eyULxhmxbQUAEKyzImuMXY3DPCLi2dx/bJCPru8UPU+Q7LMytJUZe3twx6+/exx/mvjzPHqVoQ9U+b9IGKo8eotK7l8fo6qDNxl9zA334ZGipiXbJgSgQDwmaUFfOuccn51aaXKzAPA4w+p3qs/FKZ/il18nEHL33a30m33otVKZwws/uzyQv746TmcV5mJwxtUiW6IhERHC80FhUk0D7gUt8lBp5/jU9o7AfY2DynGKnnJZu67eh63PXWMw20jNPQ7+fueVuKnCKbTfQ76xkWxTiNx91VzSTTp+cELJ1R/j+UlyTEldW8whD+k3to/5mNOnk21bU6ejUvmqT87CwuTuHFlMXlJk5+7iswEhhxe1ZcLZRnx3PlGnWLLPysnke+cV8H9u1rw+EPKmm5YXsieqOy0/nE7/83V6qiKx/a38coUE5bqDjtvnupTbQuGZVaXpylfMGgk+M65FapsQMG74920PmYBD4/34GuAp2VZflmSpFPAk5Ik/Qw4CvztfVynQCAQCATvObIsbwI2SZJkAS4CbgMyJEm6D9gky/Kb/+IQ4h75PpNlNbPtm6vZ2zREqsXIjOxEDrQMqzKhClNjzQ0MWk3MgzUQkyUFcKhlWBVsHArL/H13K73jZhgTPLqvjZtWF3PnG5FZst4xLzf+4zBP3biEmx89Qm3PGMiwra6fv35mAffuaOT1k730O3w8caCdteXpbDo6+fCr12ooSI6LvG6cFIuB0SnVK0DVpgbg9Icw6iLvsdPujtkf1Pbv/lCY9iG3ylGzfdjD9KxE6vschMMyMvD3Pa28eKyb9RWxQqwoxUJNp53OEQ9OX2ySxT/eaVWqaLY4vSrzbG6+TTHdUJBhebaWEdlCUZqF16NEgD8YprHfgVYjKcYaeq3EWdMz+NLjR1QujhPRAFlWE0adlmOdwxOHp8fujQkeH3D6WT89nZ31A0hIzM23qaz6O4Y9bKntV0KcJ1hZmordHaBn1MOcPJvKfj4Yltle149Bq4nJ/fME5Bg7/sZ+JxajFpdvUtB5A2F8wRDpCUb6HT5mZifi8AT45jPHybGZmZmdSFWejcqcRDbes4fOEQ+5SWZuXl3M9tMDbK2d/JuUZcRTkmZRXacTXWPsb1aHWQMc64wVru5AEJNeqxKcCUYdaQlGxXUVIlXEOXk21eca4NJ5uXxxdQmH20aYkZ1IbpI6j07w7viXFTVZlo/LsjxXluXZsizPkmX5J+Pbm2VZXiTL8jRZli+XZTn2v3wCgUAgEPwHIMuyS5blx2RZvoBIq2I1cPu7eJ24R34AGHVa1panU5lrRauR+PlFs5TWqmyriR98Yga3rC/FFBUO/IVVRdywvEhloz8nz8b1ywoxTGnBWlKSEnNOrUZizKM27HD5QuxtUj/o9ox6eeJgB6d6xpCJhFf/6vU6Ou1uClMttA258fhDtA65efl4Nz+7aBba8b7G3jEvr5/s5arF+Uo49pDLz+6GiKviBAnG2DBqnUbiRy+e5O7tjbxwtFu1vy1Oj14T+4in08ZWNIpTLfztuvmqis+g04/bH1JVQBJNOl470cNEUczuDjAtPZ6kOD0pFgNz822KSJv4/dryNApT4og36nihujum9a1n1Mue7hCnesboHfUwpcBEKAxp8ZPtfPPykwjKskp8QCQP7B83LOKhGxaqMtYgUgksy1C3zwZDMltr+wmEZELhsKo1cIKp4dOR9cgcaR+hdch9RqfRpgEXf9zagGHKde4YcVOYEkdynIE4gxaNFHFPnBBp8/JtJMcZON3noHUo0tJ764ZSki0GasfP02X30Dbk5ktrSvj+CyeUKIfOkYioPNCsDm+v73PiD8baR1RkxlYpL52Xqwr21mkkrlpcwFfXlSrb9FqJWzeU8e1zK5SqrEGn4YcXTOfqxfl8akEeOo1EglHH98+fzvSsRFLijZw9M1OItP8D78pMRCAQCASCjwuyLA8Dfxn/n+BDyNkzM9lfmkrHsIeSNAu6cQGw81tr2d04yLT0eGbnRlrI3vz6Krac6iPOoGVdRQYGnYa/XjufP2xpwOkLcvXifK5clM/BlmGeH68K6LUSN64q5kDLMH/c2qCc99L5uei1khLyPLHvwFisDj/VPcaBFvXDcyAkU9czpjILgUj1yD4l3HpaejzBkExDvxOHL8jB1hFykyJGGzaznkVFyYr9/sSxP7OkgM3VXdjdAbad7lflpOm1Ek/sb4up4vSNeVWB0RM4vEFVD3BVno1dDepWSY0E1y0rxOkNUt8XK1y+uGYav3njtJIH5guGsZn1nFeZScewm91R1/Fwm52FhUmqgO1Mq0m1tv0tw3SOeGIs+XvHvFz74AEgMoMVTWq8QRF2Wo3E2vI0xVQEIm6LQ06/6lpZDFoe2Tdpoy8BayvSVS1+tb0Osq0mZYbOYtCyO6qV1KTTkGQx0DPqVUSVViPxxTUl3B1l2w+Rv/XUMPIdpwdoGVTPNJ7uczDo9KkCqiHyWavMtaq+RKjITOD65YXsqB9QKpLLp6Xw2RVFjLj9PLSnFYNOw9c2lDI3P4lnv7iMR/e1MeLyc8m8XKrybMzLT2J1WRq1PWMsLUkhe7zFd+e313Kqe4z85DiSLBEh/avLZvPfF85Eq5HELNp7iBBqAoFAIBAI/uOIM+goz1SbRqQnmrhkntooItGkj9m2pjydNVPMOH5zeRXnVWbRNuRiXUU6xWnxLCtJoTA1jn1Nw1TmWvn0wjxG3AGOttup6RpFq5FYX5HOmvI0JXAbIg/kS4pT8ARCqpYwjQQrylJ5dMo8XVlGfEz4dIrFyN4mtTBy+0M8+YUlbKvrj6kcAXgCQZVjYzAs84nKLF6p6SEQkhkZr3gtK0nhSPsI3kCYQ20jHGobITPRRO9YRHTotRKj3oBqPbsbB5mZnajKQ+sd9fKHLREhq9dIqly5BJMOly9I04C6+mX3BLhyUT73bFeLFSCm0unwBmL2efNkLzrNpFBLsRhUQeH9Dh9VuVY6RjxMS4vnUJu6pXVqPhmA2aDh8gW51PaMMS09gUOtw6qw6ZwkM59ZWsC2OnW756xcK59amIdBp2VbXZ9KZHqDYdaUp6ks9UNhmaEztN7OyrbysqFH1WZYmh5PRqJRJcbn5ttISzAxLd1CY/+kiFtZmsZX103jliePcrxzlPKMBH53xRxmZCey+cvLee1ED7lJccqc5DfOLucbZ5er1pAab+TWDWUxa5uRnRgzK6jXaqiaMksHCEfH9wEh1AQCgUAgEHzs0WgkzpqRodomSRIXz83l4rmTQi8twcjlC3Kp6RolFJZ5/WQks+u2DaX8aVsjwXExcMdrtdz16bmc7nXwzOFOrGY9t59bwbkzs/jSmhLu39VMMCxz3qxMrltWiN0d4N4dTUBk5uqW9dNoGnCqZsqsZj1XPbBfERtGnUYx6EiNN+ALxHpQegKxJqaFKZaYFs6KzARm5iRytN1OXpKZ0JQ+RFmGT1ZlU5Rqwe4OkGU18UxUUHMgLHPuzAz2NA3h8AZxeIPc8NBBVkxLVVWabGY9G+/eE7nmUXNbs7ITY9bUN+pV7ZMUp1dl6gGsrUhThVkDLClO4Yv5SXTZ3RxoVVc1x7xBpmcmKC2FRp2G3Q2DUcYeUswcY++oF50kqa43wP6mYd482YckRQLEo9FpJCpzbDxBh2r7hhnpSBqJJw+0E5bhnJkZfHpRPta4iAmJwxukMsfKN84uV1pV9zUPMzvXys8vquTWJ48qIk0jwdkzMvjxxhkkmvS8+JUVeAMhlWCalWNlVo4VwX8mQqgJBAKBQCAQ/A94fEpF7K3aPvKT41QVqFdrerlhuZ0NMzKwmnUsKExmXUVECN64qhhrnJ5gUOaqxfkYdVq+fW4F51dm0dDnYGVZGqnxRn5y4SxuffIoLn9ofBZMT8vg5Dl8wTDXLs3n8f0dDDr9vHS8J0a8zchKiKkELShM4vED6vcQCIXZUR8RSsMuP0adRiWS9FqJX74WyWG7Zkk+Z83IVAk1ALNBF2PjH2fUcP2yQvY1DxFv1HGobbLqFJZhcZaWtVWlWM06frj5pOoaJlkMfGJ2Fk8f6sRi1LGqNJWH32lTHV8raTDoNEo2XiQEuoe/jOezTRVXJ7pGlZ+LUizMyknkpeOTJibVHXbWlKWxo34yu29WTiKf+fsB5ecUi4GcJDPHx6MBZDkSkJ2bZKZzxINOI/Gtc8r51MI8DreNsOloJ5Ik8amFeayryKAqL4m8JDNmg44rF+Vh0GnYMD2DMU+AfoePqxcXkGk1Udc7xqgngFGnITcpjiGXT2VgEpYhNcFIomnS+VJUtT5aCKEmEAgEAoHgI0XvqBdJgowoI5H3kqkZVgathrEztOk9uq+NzcqDdTO3bSjjumUFfOKu3Uqo86P723j1lpXsax7iv186xaDTxyersrnjkkrOmpHB51YW8eTBDtLijZwpOaJ31KcSN75gmOuWFvDM4U4GnX7u3t5EUaqFEbefQChMeoKJF6q72TA9XZnVykw0xThk+oJhvnteOU5fiL2NgxyOmqF6dF87n19RzJLiZMUt06zXnrFVscfuw+EJsWF6RKRGCzUAgwZ++9Zp1cwZRCpSy0pSuXuiRdLhY9jlUwVGQ8SxcEKkJZp0XDA7SxUE7QuGWVOWhsWow+72q2zoW4ZcTMuIdQydOL9OI7G2Ip36KcYhDl8Qi0F9vcIy3HPVPDSSRKbVRFqCEZcvIlotRh1FKXFctSifjmEPF96zW4kLeOFoF098YQmX3rdXcVN8eG8rm7+ynM8/fEhp63ziQDujHrV7JaAycHmvkWUZaaqLjeADRQg1gUAgEAgEHwlCYZmvP12t2MBfPDeH31xWxdGOEe54tY7eMS8XzcnhtrPKsLv9/PyVWo52REwsvn/+DKxxsSHCZ+K2DWXc8NABxTL/q+umsbQkheeOdCltiekJRt4+ra5kPbC7meR4gyLSIOJ8+PiBdv64tUERHJuOdlGUaiEv2cxdWyNCpX/Mh06rbr8rSbOcsYIy4PCp5p1aBl388dNz+MbTx2gZdNEy6EKnkfjLZ+Zjd/s51TPGySnZdACv1fSRnWRCc4b8K4c3yGOfX8Jj+9v47xdP4QmE2FLbrzL6MOu1ihnIO81DrK9IV83iGXUaaodCRHdnWs16vnlOOSunpfL7LfWqc456gly/rJDXanoIhGWWlaTwclQ1bMwbZNgdKxazbCbSE0wcO0N+WllGAm/XDyrXPtdmVqppwbDM2/UDquy5CTZWZfNOlNV9cZqFu7bWs7txiJnZkcD2x/e389z47OLxrjFu/MchPjE7WxFpEKng/WVnk8ryfswb5C9vN6tm7wCa+p1MS4+nsT8y96eR4FML8mLWdibCYZknDrZH2ihzrFy7rAC9RsMftjaw6Wgn6QkmvnNuBYuKkrl/ZzN3b28kFJb57PJCvj5lnk3wwSGEmkAgEAgEgo8Er5/ojapgwfNHulhTlsYPXjihmGzcvb2RZIuBnQ0D7DgdeSBvGXTh8oX4yYUzuf35GvaMG2f84uJKSjMS2HS0k2cPd5JsMfKVtRFRtuvb69hZP0BpxqTD5OOfX8zThyLzaJ9dUcjF9+4FJise/8wNr3fUqwiFCY512GkbUhuGBEMy1yzL56G9kfa/pgEXTl9Q5eSYmWjiDH4Z7G0aVFXegmGZo+0jPLa/XWlXnMgsmxBb1Z12qjsjQdTRGHUarrz/HS6am4NZr1O5WAZCMreuL6Uq38bNjxxSvW5XwyDrK9J5Y9w9Mc6gxe1Xv2+3P8jJLjsP7WlBd4aIge2n++hz+Ig36s5ooZ9k1iu5ahBxX4w29IgWiukJRu7Z3qS895tXF1PTOUrEIZQMAAAgAElEQVRnlJB2+0MsLkqmaWDSvOP6ZYUkmHXMzE7E7g6wrCSFYbdfyTE70m7nK48fQTOlGtU96mXEHVsVC07NJSCST5ZsMTAclQFXmWvj2+eU8+i+Ngacfi6em8OiomT6xrz0jXmZlW1Fo5Go7Rnj+5tqqOt1sLosjTsuqeQvO5u5b3wG8qVj3dT2jjEnz8Zd466mHcMePvfQQe69Zh4/f7VWOedd2xqpzLXFzG8KPhiEf6ZAIBAIBIKPBM1THAYB3mkaUjkhAuxsGODtqBkkgO2n+/nRiyd561Qfbn+Ig60jfPWJo7x+opfbnjrGnsYhXjrWzZX378PlC/DXnU18d1MNl//5HX71emR2Kz3RRNuQi4f2tvCNp49x9eJ81TmyrCaqcqzkjNucAyRbDHxuRWGMGFpQmMzMKW57kgRdU6osfWM+blpVrOSs9Y552d04gC6qClaRmcCKkrSYa9Pv8KlmykJhmVvWTeO8WVmq/dz+ELesK+XiuTnotRK+YBinL8Sj+9pp7I+15d/fOsQDu5qxmg2q7RmJRkWkAYy4A6SY1GImy2rmyYOdNA24ON3nUFoyNRJMS7fQNhR5/05fkNdqerAYJ6+bTiPxzOEORaStLkuNyZ+zmfV8/awyfvCJ6Qy7Jk1DQmGZI2125hckqfY36jQ8E2VgMjM7kXn5Nr7y+FFOdo/RZfewu3GQmk51xEF9n5PSdHV+W2q8gXNnZmCMEpil6fFcNj9H9ZlINOnwBUPoNZIiRpcUJ2Mz61n7mx38bXcLGYlGFhUlc9fWBpb9chsb797Dht+/TbfdzZcfO8KRdjtuf4jXTvTyk5dP8eyUecIXq7tj/h1w+IK8dqKXqVR3jMRsE3wwCKEmEAgEAoHgI8H66RlEd+lpNRIXzctRhUFD5GF76kN0aUYCB6fkntX1OnixWu0oOOzy85e3m7l/Vwv+YBhfMMx9O5rYWT/AN56u5lDbCGE5kvl1sHWYzy0vUl57snuMLz9xhEc/v5j0BINyvNufr+Huq+YqodcAzxxq5+yZGawqTVW2ZVlNJFliw5kb+12quS2nL8QXVhaTmxR5+PcGQmRYTVxQOSnATHoNZ8i/pmXIpariTKDRyKyfnh4zSxYMhZmeNSkojToN7zQNs6dxiH6HTwkhtxi1XDolJgEgTh9xfEyxGLiwKptBh1f1e6cvyJNfWMzfr18Y0+bpCYT5wfkzWFOWxkVzssm0moguTB7vHEU7pSonaSS8gRBOX5ApRUzGvAFePzkpVBJNOmbnWglEVSJPdo+pMtYg0r5akKIOdbaZ9bx2YrItMz85jtVl6XzhkcP4gmHMei1fXFPMV9dN4+zf76LL7kECPlEZcQF9ZF87fQ4f/mCY5Dg9n1tRxAO7W3D5Q7j8If6wpYEXjnbxhy31Srtt84CL373ZQPOU/LUDLcOkWNSi2WrWMzNL/UWATiNx1vTYytnCwuSYbYIPBiHUBAKBQCAQfCSYkZ3I/dcuYGlxCstKUnjgugUsLkrhjktmKyJoXUU6N68u4ZeXziZ7fPYoPzmOn180izlTsqGKUi0Up8WaTUwNpwY42T0aE1p8uG2Ekz3qSkvHsIdH97XS75gUQ/uah2kbdKuO2zzo5h/vtNERVUHrtntpH3Kpqi8Xz81RCaUJjnXalRmn1iE3tz55lJVlk6LPGwjz7OEuyjImBatBK/HSsR52Nw6iHVe8E1ruD1sa+fpT1TGit33Egz8Y4pK5Ofz3xhkqh0WIVIJWl6Xh8oX4w9YGEkzqqZu2MZkT3WMMufxsPtZN2hQDmPQEI9c+eJDrHzxI+5RW0GSLge9uqmFH/QC7GgYV844JHL4gayvUlcRhp597dzTxhy0NJEwxUMlIMFLbo54Vsxhjp4SMuti5wHNnZlKSZkECClPisHsCKiH4hZVFbK7uUgS1JxCibcjNPdub8IciO8rAO83DHGlXV7CG3YEY506A/S1DMW2ug04veclm1baiVAtLi1OUnDqtRuL28yq4aXUJG6ZnIEkR4fbzi2extiKdn100iyyridR4I7efVxGTOSj44BAzagKBQCAQCD4yrJ+ewfopVYHL5ueysSobTyCEddyxcV5+Eru+s46+MS+ZiRHDjJ9cOAunL8jepiF0GomWQRfHO8eUoGcJKEmPx6CP/Z5bI0nMy09SPWRX5dooTLEozogwHuosx5ay2kdiA6w7R9y0TKmONPQ7mZtnUwxJmgecfOuccp4+1KHsOyfPRteU43WPetnTqA7QloGbVpWQHG9gX9OQYmkPkVbAy+bn8PyRSXHhD8lMz0pgzBOkb8yLViMpc3RNAy4yrcYYV0YJSWV17/AGOWdmBma9lsJUixKYPUF+chyBUJhuu5eMRCMjroAiZMa8QUrT4zHoNOQmmdlWOylehlx+ilMtKqMOvSYiPCESKp5jM7P9dNRafEFuWF5IOCyzfnpGTNwAwIL8JN5pGlIEqMWgVYmmSIZaIj99JTLXpddKrCpLo3VKjEBN96hqRhAipi9TZ9Yc3gBlGQnsaZw0KjHoNGcU4/FGHbY4vUrgd4/60CCRGm9kyOWjINnCroZBdjUMopXgi2tKuGZJgSL2H7huAWPeACadVmmzvGZJAdcsKYg5n+CDR1TUBAKBQCAQfOQx6DSKSJtAq5HItpkVV8NMq4m/XrsAi0GrPFTvbBhgSXEKF1ZlIwON/U4e2NXCspIUsm0mpeJ0x2t1WAxaFhYmKXNRB1qG8QRClI9XrSTAqNfg9AVVc0pGnYaKjEQyEtVtjZfOy6UqVx1WXJoRz5YooXCsc5Tnj3TRPzbZMljdYacwVd3aWZgSx/JpqaptEnCie5SiFAuVubGhyLY4Q0zFxqjTsunLy3jqpiUx1bOj7aMsK5k8R1GqhYozCIyMRBMycLQ91oVxwOGjx+5Fr5FYW56uiLQJ9FoNX1k7jbXl6aqWRACrWcevL5vNJfNyWFqcgicqALy+z3nGStjGqmzWlKfzy9fq2NOgFrJGnYbfvlVPOCyzpDiZVWWpuKLcNDUSPHDtAk73TVbhAiGZms5RpSI5QUGyhcIp7ZF9Y76YKmCKxchTB9qxjX9WE006UiwGfrT5JFpJItGkI9tqwhan5/5dLdjdASwGLYuKkokzaKnvc9A27GbQ6eNHF0xnIKqVNCTDjtMDqops5Bz6MxqzCP79iL+KQCAQCAQCwTjNA07VwzhATecob9X2qbZVd9ipyrURLRV2NQ5y9sxMpaIkA5uru/nqumnE6bXIRCpKTx3q4NqlBZRnJACRrK/vPH+ci+fkcOm8HDITTZj1Gv78dhO3nlXKmvI0UuMNnD0jg7XlsaYgR9tHYtacaNKTaI40TknAhukZXD4/j8+vKMJi0KLTSMjAg3taOf+uXRQkW5T1QMRa//xZWWyYrm57O95pZ/EvtvLnHc0xD/f+YHhK1U7mk7OzVKJFK0k8dbCDzeNmFhIov89PjqOu14EMBMIyTx7siBE3nSNuvvjYEW5/vkZlJAJwfmU2vaNedBopRihBRCRHm6ysLksjx2bmpkcPc6pnjOHx6lZZRjzzC5LwBcPKWvY1D8eEeYdlGPUElBmxCUKyzE8vnMnsXCtlGfEUJMdx5xunaR1yk2jSsbYijXijlvZht/J3m56VQEmahd4xL+5AGLsnwNx8GxfOyaFn1Ksc1+UPcdXifFUVzeUPMTM7URXJALCzfjBGTHv871/umuC9Rwg1gUAgEAgEgnHKMhJInmK8sKQkhaQ49bakOEPMAzpA65RWRYC9TcO4A+qH6MZ+Jy1D6n1fPNaNXquhd8yLJxDmYOsIP3mplt9eXkVRqoU3T/Xxxy0NikEHRESY/QxByD2jHsbGw5Bl4MG9rfQ7fPzgghncffU8VRue2x/i2cMd/PCC6UqF0BMIcdOjh/n1pbP56UWzOL8yE4iIE1mGt2r72FiVrbgyzspJxBdUv8eWQTd7mgYxj5uAJJp0XDQ3WyUeZOCzywt54cvLOfsMFvAXzslmw/R05hcksao0VeXg6fKFOG9WJufOzOR3V1Txck0Pv3urnqcPdbK7cVBlLGMz69lc3a2874rMBP5+/UIOto7ERCPMyrGe0UAjP1ktGk06DV9/+liMKKzpHOV7m06QGm/kq+tKaRuebEMd8wbJtcXh9MUK6+h8PYhUHDuG1S2sobDM0BnMXpLM+ph1VGQlxhi4iJbG/yzEjJpAIBAIBIKPHS5fkDdP9aKRJM6Zmak4CvaOevn6hjKeOdxB54iH8yuz+NKaiIPi956vIRiW0Wkkvnt+BckWA9vq+pWH/5WlqVyxII/HD7QrVTWtRuLCOdk8c7hD5Zg4M9vKoSkiwWTQsi8qRBkiGW93vnGag62R2Td3IIxOA2sr0nj79ABhGQ632dGNZ6DJwMLCJIxT5uhCYZlnD3dwqmeMKd2EAOi0Gl470auqEA44fOxvGeaiOdlIwKs1auv2YCjMRDTcia4xVUUOIkLmd2/WKy2IY94gg85YkbGtrp/7d7WQOMVoRCtJPLAr4nRo1mtZUZoa89q5+TbmFyRh0mljAq0rc23MHHeUfOV4N3bPZBWqrtdBfa+D+r7I7GH0+24bcnFqSgC4JMHh1hFyk8xYjDp0GomT3ZF9JgT7+op0ttb1K8faVtevtDBGY9RL4xlyk2JtVo4VSUI1z1iVa+XcWZmqGb8sq4mbVhXzyvEe+h2ReIGMRCPXLC3EZjHwi1dr8QbCLClO5uZVJViMWrKTTBxutXPhnGwunZ+Lxx/i91vq2ds0SGWOlW+dUxHz5YTgw4EQagKBQCAQCD5W2N1+Nt69h/bxakVZRjwvfHk5v3+rnvt3tQCR6slLX13BoNPH+X/cTfOgi5I0C9cuLeScmZlkjjtGvnzLCl4/0UuOzczGOdkYdVruvWoef9vdgmY8RHlxcQpfP6uc37x5mlBYJtGk49zKTBLNOn7xaiSDTSPB19aXsq2un9Yod8Nsq4nOKcYgwTCkJ6iDrYNhmS+uLqFt2E1Nlz3G0dBm1vObN+uVn406jVLZ0kiwrbafGdlqoQVw39tNfPGxIyTFGVRh0RDJdBv1TFa4GvsdFKbE0TrkxqjT8IVVxfxpW6PqeE5vgA3T09kybgRiM6KESY95gxi0EoWpFuIMOoZdPtqHI1UmTyDE0fYR1brNeq1y/YpTLTGCy2rS0W33cLTdjoy62mTWa7ny/newj69fI4EkSVhNOg63TQq+1HgDFoOOtmG3EoRt1GlYV5GuCLUJsm1qx0oAk0FDWoKRgXFRZdZruXJRAXPzkvivl04x6PSxpiyNW9aXMuLyc9vT1Rxtt1OZY+W3V1QxLT0BfyjMi9XdZNnM3LqhlEyrmVduWckTB9oIhWU+s7SQpDg9h1pH8I6LYqcvCBLcu6OJ378VMWw51DZMfkoczx/p4okD7UBEYHeOeHjkc4tj1i749yOEmkAgEAgEgo8Vm452KSINIkYTD+9tU0QaQPuwm7+83cQ7zUNKLlXTgItXa3pYW57Op/7yDkfaR5hfkMSdl1WRaTXx69frePl4Dzk2M9/7xHTm5U+GJ791qlepvIx5g/x480n+dt0CDreNUN1uZ1FxMmsr0llakkLbkJvqDjvZVhN3XTmXmq5Rdke5AKbGG6nMTuSpKe/rWIedvVEVuWybicxEE1lWM4POSHVsAl8wzCdnZ/HS8R7CciQ/rW3YRV6SWYkEKEyJ4/h4kPOI249Rp2FOng13IMTFc3J465R6bi8kQ3lmPK1DbnzBMPuah0hPMCqVH4hkn20sTePWDWUAfP3Rvdh9kyU+f0jm15fOJiXeyMa7d6uOP+zy8+JXVrDpaBdjnoDKpbF50MWcXBvVnRGRZTXrqe60K+2fgFLF0mkkFhQmsSvKPCQswx0Xz+S7z59QndNq1jM3P0nVvugLhklLUBu/mPQa0hJMMWK2rsdBUpye0vR4pmclcuGcbO7a2sArx3tIjTfw+yuquGhupD1Rp5GYkZXIkNNHbpIZs0FHKCzTMuiitmeM3jEvtT1jlKTF88CuZv62u4VgWKa+z8mnF+Xx4rFu5bwnusZ4cE8L9+5oUra5/SH+sKWe073qkPJdDYN4/CHMhlizFcG/FyHUBAKBQCAQfKzwBmJ7/wadvpht3aNe6vucqm2nesb45rPHODAuevY1D/OtZ4+xsjRNEXo9o14+//Ah9t6+TmmpPNapzlM73mnnm88cZ8u4SUnERl5idVkax8bFRveol/0tw1yzOJ9/vNNKy6AbnUbi6sV5XLYgjycPdXBivEVvQUESTQPqtXbbvfzt+oU09Dl544S6bVGSIg6K0YRluGJBHh0jbtITTLzTNKSq7vmCYfKS43jxWDc/f7VWlcEGUJoezxsnJx0pD7aOcOPKYk72jFLTOcqYN8ipnjF+/OJJrliQy68vq6IwUUP9yOTfwxan56ZHDtPn8MWYhVTmWPnG08cIyzJLSlKYSk6ymdKMeJy+IGvK0vjO8zWq3y8uSuYLq4oVobNristj+5A7piUx02qKmWEDON3rYGZ2InZ3gJR4AwNjPn73VqRiadJHXDybBp1Ktl59n5PzZmWyra6fzdURQdU75uM7z9WwuiydJIuBn71yiicOdETWMuyhe9TLZfNzeXBPKwAuv4dbn6xGr9WoohReO9GrzApG0233xKx91BOgODWeQeekaM+xmVVzj4IPD0KoCQQCgUAg+Fhx0dxs/rKzSXHOS0swctPqYt481UvH8KShwyVzcxj1BBRRBrBiWipvTqkkHW4bQSOpW+uGXX5erelRctVm51g5GjVDtbgohW116uNsOdXHia5RVQ7ZfTuacPuCtAxGBFMwLHPP9ibWT8+gbXBSRJ3uczAr20pfVPUq2WLggj/uYmI0zmrWMzo+p6WVJNV6JvjT9gb8wcgLMqeET9vMejYd7VJ+ru9zcum83PFjypRlJNDQrxaLwbDMY59fwuJfbFEZgTx/pItFhcm81Ta5bVq6Ba8/RKc94nLo8oXIspooTrOQbTWrKmgN/U7V+5GAbbV9yjzcO01DaCWJUNTFLM9MZFlJKs8c6mDLqX40Ekr7qFGn4b63I+JnIgsuNd5Adbtd5ahp0mnwBsNKdTIpTs8X5hbxXy+dUvbxBsLMK5is7k2wpbafKR8TfMEwp3rGWFyUzI6ojDeIVEhzprRTBsMyu+rV+0Ekvy36emgk+NTCfAYcPlV23KcW5jM3z8YX/nGInlEvtrhI0LU0dWGCDwVCqAkEAoFAIPhYkTU+4/PMoQ50GokrFuSRnmDiyRuX8ucdTfSNeblobg7nVWZRlWfjxy+e5FiHncXFKfz3xpkMOn2KuQdEwrNn5VjZ2zTZdmjUafj+phpFOMQZtCwpTuF4Z8T4o3PETbLFoDLXyLKaYpwTA6Ewtb3qWahgWOaJA+04ojK4HN4gc/NtjLj91PU6yBqfoYvyL0Ejwdw8G0c77ATHW+qSLXoc3iBGnZaSNIuq8tc75uW8WZnsbRrCYtSyuixNqfhM0O/wsrdpiFBYZkttPwatRpV9dqBliMf3t2M16+kbmxSRCSYdv33ztGqmzOkNqoTmxPt6+IZFPLC7halcNCebfkckiyw90cizhydFpN0T4LxZmWyt7ccfClOWEc/Nq4s53DbCt549rjrO6rJU3q6frK7JMtyyfhpdIx6eO9Kl2nd5aSpbo4K2R9wB6qa0Ekbenz6mDTLbZooxUzFoNdz0yCGCYZm0eHU7ZbbVxOKiFJWJi04jccm8XJ4+1Km6zudXZnPD8iL+urMZlz/IVYsKmF+QxD1Xz+ORd9po6HeyviKd8yqzANj17bW0DrnITYpTqr6CDx9CqAkEAoFAIPjYkWMzK3NS0dt+etEs1bZsm5n7r12g2vaby6v45jPHONJuV2bUrHF6GvocbD89QGq8gWUlqaqZIbc/xOKiZI60j+D2h5TqUnQVpHnQRfyUdr+VpWnML7CxrW6yKhJv1FGarm47hIgByuu3rmLA4SPZYmDxL7aofu/yhWLaI4ddAX51aSWnexw0TPld5Pd+Rj0BRj0BnjzQgUGnUbXTNfY7VTEFeq3E2ooM3q4fwBsIc6J7jO9tquHaJQU0D7oIjivH4lRLjMAZ8wZZVZrG21EVI71WYtr3X4uxxodIJfPEuKHHjKxYI5Qxb0ARM/V9Tp451InrDDliU6uhELHLbwrGRi0kx8W6I66tSOONk72MjFdoUywGZGSyrCa6R72EwjIzsxJ5taZHMV/RaiRybGbah91MFOw6RjxkWU30jHpJTzBy5+VVLC5KpmXQxVMHO0iK03P7+dOZV5DEgzcs5E/bGvD4Q1y7tFBxxLzz8irV2uIMOm5aXRKzZp1Ww7T02Gsm+HAhhJpAIBAIBALB/4CCFAvP3LwsZvuDNyzC6Qti0ml47kinSqhBZA5u6szQmvJUXj3eS2Bc7Dh9oYi9vk7L7sZBttT2sauhn0vm5rC/ZRi7x4/TF+S+HU3kJ8epTFF+9sopXP4Qn1tRRMewm2ybWVXBuXxBLi2DLlXlL8Vi4DvPTc5y6bWSEiMwJ8+qMiCRiThkGnVauuweVk5LjZnzCoRkPreiiDdOqts6W4ZcnDMjk1dqegA43B5p64tuK6zKtfH986eTGm+kumMEly9E71ikDbJ92E2KxRCpIsqwpDiZnVHnPtXjICPRqFTtKjITOBBldQ/w8DutfPe86UxlemYiuxsHlfedYNKRaTXRdUzttpmXZOb1kz3KzxKwpiKNrz91DJc/hF4rsbEqm2ybibu2Trpd5iWbWTYthft3TVZGQ2GZVaWpPLq/XXWOjVXZfHZFESkWA7rxGcL/2jiT/9o4U7Xf8mmpLJ8WG1cg+GghJgcFAoFAIBAI3iPijTp0Wg0bq3KoyrMp2+fl27hyUX7M/rlJcYpImyAQCqsywXxBmeZBF/MKknCNByUPOP04vQGuXTp5TKcvxE9fPsWh1mEuvnev4tgoATevLqY0PZ4DLZMibVp6xHgjmgSTnq+um8ZZM9KZk5tETK1JhqPtI/SOennmcGdMXpteK/Hr108zJXuZLKuJvU1qUddl93L1dD1Wc6Ru8E7zEJ++fx+3nVXK1m+sial+Dbn8/O7y2dx2VilFqZaYa/nphXnMzrUiAb5AUBE6E0jAjzZPujrqNBLnzsrkvp1NikhLitPzpyvncNtT1VRHXb+rF+fTN+bF4Z0UlpctyKV10K2IzUBI5nDbCHsa1Vl4HcOeM+bHlaTHx8ysLSlOISPRFLN2wccTUVETCAQCgUAgeI8xG7Rs+uIy9jUPIUkSi4uS0Wgkbj+vgru2NuAJhDi/Motb1peys36Qmq7J2bBzZ2Xxq9frVMcbcftxTRFVw+6Ayn5+ghequ1QuljIRt7+H9rYSXdArSoljwOFTcskgMlv30N5WHOOtmdG5ZQatBq1GUuW3tQ25+eEFM9hc3cXxzlFc/hCH2kaIN2rxBsLKjNbm6m7SEoxKeyBAbpKZJGNIaf2ESKvlkwc6+OY55czOtapET4rFwFeeqAZAK6EyCzHoNLQOuRRx2jLkIS7Kbl4jRdoNh1yTgiklPtLGGG3eMuIOsP30gCqcXCYinv0htaDutnvoGfWot416mZefpLg9QsQF8jNLCnjzZK8i6krT47l6cQEJJj1/2taALxDmhuWFrK1IRyCYQAg1gUAgEAgEgvcBjUZi2ZT2tJtXl3Dd0kL8wTDWOD0AD96wkHu3N9E65OKcmRl8amE+xzvtKhOJKxbkMeT0q1wVi9MsnDUjgxeqJ1sstRqJ+QVJPLpP3VIXp9fFxBJ0jHiYkZXIO+PZa5IEc/JsvBZl5e8Lhrl2aQG2OD3z85N4bH87oI4aOHtGBq/V9Ki2OX0hPr0wlycPdirH6RzxqHLVuu0edp2hchSWZe7d0agSaTOyEqntiWodlCNzadk2ExpJ4rPLi/jJy6dUx3H7Q9xz1VyOdY5SnGbhztdPq37f7/DFBINDZH5uKgsKk9ha268SeitL08ixmXn60KQb5caqbL62vpTqTjvNAy5Meg0/vGAG8wqSeO1rq9hc3UWiWc/F83Iw6DRcNj+Xy+bnxpxPIAAh1AQCgUAgEAg+UMwGrSpcODXeyI8+OUO1z++umENVbiunesZYWZrGZfNz8QZCBMNhttX1My09nh9eMIOStHjaht08tq8di1HLbRvKOHdWJq/V9CoxAsVpFr68bhqH2oZVro4DDp/K0OP7509HkiSVUAOo73Wwv3UYWYZZ2YmY9BpF9Jn1Gh7Y1UxZRgKH2iadMC0GLW5/bP7YhunpPD7uHBmW4dhgmBybmS67Z/x4Ws6ZmcHlf96nel2KxRDpQYwqasUbdXxlXSnffvYYVz6wLyZOICPRyOMH2hXBl2hWP/auKUvji2tK2FY3KcAunZfLNUsKOdJuV/LOzp6RwcVzc6nITOSOV+vosnu4YHYWn19RRDAsk2OL41DbMPMLkrh5dQkmvZatX19NQ7+TjEQTVnNEkOenxPHV9aUx10Qg+GdIsiz/673eIxYsWCAfOnToAzufQPDv5mtf+xp2u52HH374370UgeADRZKkw7IsL/jXewpA3B8F7w9H20dw+oIsKU5Br9Uw6PRx97ZGmgacVGQmKAHdE2yYns5vL5/DhffsVoKuC5LjaBtWm2rcsr6Uf+xtxR7VsnjdskKOto1wfLyFszwznmsWF/LDqJkwk17DZfNyYww0rpifyzOHOxUNtrY8TZX9BVCVZ6NgPGwbItW/e6+axy9eq1Vl32XbTIy4AhSnWbh4Tg4/e7VWdZylJSn4g2Eqc6zctqEMa5wepy/IrvoBMqwm5uUnKft2DLuR5YjAEgjeS97tPVJU1AQCgUAgEAg+gsyNEh0QqdxNuAe2DblihNqoJ8CTB9t54LoF1PY40Gslhl1+vrfphGq/zhG3SqQBHG4bVjlanu51srNhgBtXFfPgnhYCIZl4g6cZl94AABlCSURBVI7SDLUlvE6KhFdHlw22nx6gKteqqv5dNi+H1HgjLx3vRpYjc2X7W4ZUIg0iVvt7b1/HzoYBGvtj4wYqc6x873y182O8Uafki0WTd4ZIAIHgg0RYyggEAoFAIBB8zChIsXDD8kLlZ51G4mDrCHe8VseFd++hPDOBc2dlsWF6hsqUQ5Ii7YET7XwTlKYnUN+nFkZH20c41DqsGHMMuvw8sq+N751fgWncLdKkQxXcPHGOKxbmxjhH/vntJpXxx2P72ymcUu0qz0hg1Z3b+dqT1fxpWyNG3eSjrkGr4aI5Oe/uAgkEHwL+pVCTJClPkqTtkiTVSpJ0UpKkr41vT5Yk6S1JkhrG/z/pXx1LIBAIBIKPCuL+KPhP58efnMmbt63iO+eWK+6MAC5/iEf3tdEy6GL76X5+flEl587MZFVZGn/9zALm5Nm4dmkByZaIa+KiomS+d/50yjLUIdwLC5NjxFtjv5O9TUPKjJszAD12D7ooVXbJ3FyePNCpcpe8843TMWYoYTkS8FyemYBRp2HD9HR0Wo3iWAkRE5PL5+dy5aI8nrl5KTOyE/9vF00g+AB5N62PQeAbsiwfkSQpATgsSdJbwPXAVlmWfylJ0u3A7cB33r+lCgQCgUDwoULcHwX/8ZRlJDDg8MVsbxl0sf63OxSx9MMLZvC5FUU09jtY9evtivnGZ5bk89OLKrl7WwMtgy4gYoW/qiyNn1w4ix9tPqEyJ1lZmkp9lIEJRGIGnrt5KYfbRyhKjWdxUTLn37VLtY/LH+LqJfn8aPNJZdslc3N45XgPp8ePt79lmPJMdWslwA3Li/7PAm3I6SMUlkmfYlgiELyf/MuKmizLPbIsHxn/ZwdQC+QAFwITDgkPAxe9X4sUCAQCgeDDhrg/Cj6MPH2ogxW/2saCn23hnu2NAIy4/Pzq9Tq+9NhhNld3xbxmaXGKKpw73qijZdClqmj9cUs9obDMPdubVBb1j+5vZ2d9P795s15pcQzLsGJaKvfvamZLbR8aCRJNOi6ck83vrpjD6vI01fln51qZX5jMtUsLeeFoF3N+8maMePzk7Cy67V6lHXJGVgI3rirm4XdalX0c3iDIqEKk5+Xb/qlIq+0Z44FdzextnAzi3lzdxTUP7OeWJ45S3+dAlmV++MIJFv1iK4vv2MpXHj9CIBTrZikQvB/8j8xEJEkqBOYC+4EMWZZ7IHKzkiRJJPQJBAKB4GOJuD8KPgyc7nXwneeOK3Ncd75xmrKMBO7e3sixjkgA86s1vbh8ITbOyeaBXc009DlZXZ7GUzcu4aVj3fSOecmxmfnla+rAbW8wTCgsq0QaREw9arrGmMrb9QPsapgUQGPeIBfOySYtwcgPPjEDjz/Etrp+zJoQt59XAcCDe1p5ZTyPzRcMIwFnz8xgYWEyVXk2Lv/zO8rxTvU4eP5IJ1PNy80GLY98dhEvHuumJC2eqxbnEw7LPHekk6MddhYXJbOxKpuXjvfwtSePKq//0poSqvJsfO3JauVYuxsH+dWllTyyr03Z9vLxHtaWp3OpyD4TfAC8a6EmSVI88BxwqyzLY5Ik/auXTLzuRuBGgIyMDHbs2PG/WKZA8J+J3W4nFAqJz71A8BFG3B8FHxa2tgdihMvDW6o51h1UbXtw+0me2HWKmsEQAK/U9HCoppYSq5Z7DnvxhiKRZdHI4TDrfvk6s9O0qu16Ddy79TQaCVUFLuAYYSov7zmGptfAmF9m6yk3Dj+MAZ/9+35+utzM9vopIhAo0o3g6LHzdENsFau6vg2bEexRxTeTz87N/ziAMwDTkzXk+Np5scnPm22Ra/D4/na2HDzJ0b6g6lrdv7OJuenq9zbs8vPYtmMx591++BQpjsaY7QLBe827EmqSJOmJ3IQek2X5+fHNfZIkZY1/W5gF9J/ptbIs/xX4K0RyYtasWfN/X7VA8B/Cpk2bsNvtiM+9QPDRRNwfBR8mUjpHeeTUbtW2C5ZMZ//mE0pbIkBeZirb6tQfy2q7kUaPDm/IC0REklmvYVaulYMtIwTC0OmUGfCG+d0VVWyp7efNk70EwjITHh/5yXHoNBJGnYahcBhwqc7REUigXpOOMV6Lwz85a+YNQZ8pj7PmaznwymTumVGn4bHTYcUcRKeRVKYnNcMSznGRppUic3S/fL0O73hyQO1wmIOeNHZ2d6jWsadXItliAWeU0YkkMbesgAO9zap9r9swlz2PHFKunyTBDecsYH5B8tTLLxC857wb10cJ+BtQK8vy76J+9SJw3fg/Xwdsfu+XJxAIBALBhxNxfxR82KjMtfKjC2ZgNesx67XctKqYTy3M46vrSpW5rRSLgVvWT1NZ7kMkY23AqZ4L8wbDJMUZVNt8wTCJJj1XLcpXiSaAknQLDl+Q2l4HDf0RkZaeYCTBFKkLHGwd5hev1vHWqV6m0jfm487XJ9sts60mZmYnqhwcZWSWFCczJ8/GFQtycfomfxeS4VTPWIwzZF2vA4tBXZewGLV8fkWRatuVi/K5eXUJs3Ii82waCW5aVczainT+dt1ClhanML8giT9dOVeINMEHxrupqC0HPgPUSJI00bj7PeCXwNOSJH0OaAcuf3+WKBAIBALBhxJxfxR86PjsiiJuWF6I/P/au/foKqszj+O/55zkhNzI5SQQAgQINyFEruIFxLQCplex02WlWpE60JZVdYqdjrM6tc5qbe3qWKfLmWnrciyh03qZWqulLAQcUdTWgshFQAhyjQm3kJBAQsJJ9vxxjoccomBIwnlDvp9/cvZ+93ve5z0rWfs82fvd20m+yMobd18/UjdOyNe+6gZdMTRbyQG/7p09Wg/+eZtanZSelKB7Z4/WqzuP6OcvlUffa+aY/poyJEsrtx6K1vlMevT/ypWdGmg3wpWTmtRuEZCi/L56rc1iHZK0cX+tRuSmadeR8IhWQXaKNlbUqLnNqF9t42n1z4hdYbGlVfrRTcU6UNOo1dsO6WyFOanKTY+NYcaoXN04YaC++8ct4c/EpHtnjdaciQM1LCdVa8uPamx+X5UW5cnnMy2761ptr6pTVkpAeZHrzxiVqxmjcttdD+hu503UnHOvqf1U5Q9c37XhAADQM9A/wqvMTGc/KjkkmKohwdRo+c7pwzR7bH/tOnxCk4dmqW+fRE0cnKnc9CStLT+isQMytGDGMPl9pncP1uuFjZVKDvhVfyqkTRXHJUkpAb8yA34dO9ms/MxkOTn5zdTS5uGvwtw07ThYr8rjp6J1makB7as+My3yZFOo3ebWjadb9PnL8/X2/tpo3RVDs/TTF3dEl/v3W3gkTZJG9EvT3KlDNH1krn60fLsqahr16eIB+tqMQiX4fZo6LEsbDxzXlCFZGpoT/hyuLAzqysJgu89vzAD2WoM3dGjVRwAAAFwaBmenaHB2SrTs85luu2qIbrtqSEy7n908QQ994XItfmajlm2uitY3NLdoUclwPbxypypqGvX7t95X3z4Jagq1qinUqvGDMrSoZLgk6dev71Grk/ok+DQuP0MVNY3R96k+2axpI4LaW90Qrfv0uAHy+02JftPpFqd+6UlacO0wLfzNhmibFifNGJmjO6YN1fQRuQok+JSRkqHfLbiq3b2O6JeuEf3a77EGeBmJGgAAAM4pkOBTYU5qu/p33j+utk+q1Z0K6T/mTtC4gZkampOq3725X//92p7o8bH5fVU8KEMrtsY+p1ZVe2bELTs1oK9fV6gv/OKN6CIeh+ub9Nzble2un56cqE9e1r+Tdwd403kXEwEAAADunF6oiQXhjbETfKa7rx+poTlp7drlZSRHpxc+sz52xcUN+2s1LCclZjGT4oEZWrfvzHL+x042a+lf9sWsVClJ9adOa2ybaYl+n+nWKws6f2OARzGiBgAAgPPKSEnUc4um6b0jJ5SRnKictCQdrjul5VuqtP/YmWmLf790vR74XJHmTByoYGrsqpEBv08/XLZdDc0t0brCnBRtef94TDufz5TXt48O1p0ZaQumJemN96olSYk+0/c/X6Rrhud0x60CnsCIGgAAAD624blpyklLkiT169tHqxdfpxvGnpl+WNtwWv/07GbVNjSrZHT42bEP3DxlUMzCIpK0/1ijsttsA+AzaXJBlpIi532w1cDL7x6Obqp9utXp2Q0V3XWLgCeQqAEAAOCCBRJ8qmuz35kU3m/tkVU79b3nt6o5FN7bbP60ofrH0svUJzH26+fJ5pCONTRLCk+pfPCmYj3+2m7ti4zSNZ5u0eb3a1XfFHuNw3WxWwEAlxoSNQAAAHTK2fuM5aQFtGxz7OIfv3+rQjsO1is96cyTNwNSTeWHTkTLoVanNTsOa2ebOknaVlmv2WNjFw35u0kDuyp8wJN4Rg0AAACdsuDaYao/dVp/3lKlQVnJuq90jL5ati6mjc9Mdz25QUdONEfr8lJ8qjrZEtOu/lRIEwsyY/ZQu7owqJ99abweX7tHWyuPa/rIXN06lYVEcGkjUQMAAECnJPh9+k7pZfpO6WXRukUlw/Wvf9oWLX/5ysH6xZrdMecdbGjVlCFZWt9m1cdbphZo4uBMffeP72hLRa2uKgzqh3PGKSWQoLuvH9n9NwN4BIkaAAAAutxnigfo9V3Vevdgna4blat7Z47Wss1VOnDszGbXJmn6iBxdMzyoQ3VNKi3O0ydG95MkLf3q1DhFDngDiRoAAAC63J1l66PL7v/2zf3Kz0zWL2+brPuf36ptlXVqPN2iypNO//5SuSYWZOq5RdPiHDHgLSwmAgAAgC514FhDu73R/ry5SkX5GXr2G9foysLsmGNv76/V9qq6ixki4HmMqAEAAKBLZacGlBLwx2xs3dzSqkk/WKU+CT7lpifFtDeT0pL4Wgq0xYgaAAAAulRqUoLu/+zY6KbV2akB7Tp8QsdONqvy+Cltqjiu1IA/2n7u1AINzk6JV7iAJ/GvCwAAAHS5W6YWqHRcng4ca9Rzb1foidf3xhy/e+ZI1by/R7OnTdakgqz4BAl4GCNqAAAA6BaZKQEVD8rQ5CHZ7Y6tLT+qIw2tGpPXNw6RAd5HogYAAIALEmpp1Zu7q7X7yIlztvt0cZ4WlQxXasCv5MTwlMfXyo/q2fLT+oen374YoQI9DlMfAQAA0GFVxxt1y2N/1b7qBknSHdcM1QOfL9KLWw/qV6+8p1YnLbi2UJ+5fIDMLLoh9nU/fTl6jiSt3HZIxxtPKyM5MV63AngSiRoAAAA67Fev7I5JuJa8sVdXDw/qG//zllpduO6bT27Q4OxpunxQZrRdMDUQc15aUoL6JPoUamlVgj882auhOaQfLNum1dsPa2S/NH3/c0UanZd+cW4M8AgSNQAAAHTY4fpT7epe3nE4mqRJknPh/dN+vrpca8uPasyAdM2dWqB3D9aroblFpvCo222Pv6l1e2tUlN9XD988Xk/97YCe/NsBSdKR+iYt/M16vXxviXw+u0h3B8QfiRoAAAA6bM6EgVq+5WC0PDAzWZ8YlaunIgnWB97aV6P1+2okSZsqjqv+1G69cd8n9da+GtXs3aoX9tVo3d7w8a2VdfrW05vU0toa8x77qhtUUdOogiBL+KP3YDERAAAAdNjsojz96iuTVVqUp9uvHqKnv3aVZhfl6dYrC+T3mXwmfWnKYFXWNsact/voSW08UKttlXU6UN+qjftrYo5vr6rTmAGxK0EGUwPKy+jT7fcEeAkjagAAALggNxTl6YaivJi6B28q1rdnj5ZTeKPrb/5ugyo3V0WP56QFdMev10XLBdkpqjsVipbHD87Udz8zRgePn9Kbe44pP6OPfvLFyxVIYHwBvQuJGjrk0Ucf1a5du+IdRo+xa9cuhUIh3XPPPfEOpccYMWKE7rrrrniHAQDohKzUQPT19z9XpBNNoegzavWNIR1Vc/R4VW2jSkblat3eY7p8UKZ+/IVi9Uvvo6e/drVONIWUkujn2TT0SiRqQDdKTk5WU1NTvMMAACBuctOTtGT+1Gj5hkdejTluZvqv2yYpJdD+a2laEl9V0Xvx248OYaSjY6qrq7V48WLdf//9CgaD8Q4HAIC4+3pJoRY/s0kusjrk7VcP+dAkDejtmOwLdKOysjLt379fS5cujXcoAAB4wk0TB6ls/lTNmZCv+UUB/ctnx8Y7JMCTSNSAblJdXa0VK1bIOacVK1aouro63iEBABB3r5Uf1cLfrNcfN1ZqydZm/fr1PfEOCfAkEjWgm5SVlak1sg9MS0sLo2oAAEj6t5U7dOp0uH90kh5euVNNoZb4BgV4EIka0E1Wr16tUCi83HAoFNKqVaviHBEAAPFX29AcU25oDqkp1PoRrYHe67yJmpk9YWaHzeydNnXZZrbKzMojP7O6N0yg55k5c6b8fr8kye/3a9asWXGOCEBXo48EOu7mKwbHlD81boD69kmMUzSAd32cEbUlkkrPqrtP0kvOuZGSXoqUAbQxb948uciSVs453X777XGOCEA3WCL6SKBDFpWM0OJZozQ2v69mDPLr4ZvHxzskwJPOm6g5516VdOys6hsllUVel0ma08VxAQDgefSRQMc993aFHlm9U9sq6/RqRYseXrkj3iEBnnShz6j1d85VSVLkZ7+uCwm4NJSVlcnnC/+J+Xw+FhMBeg/6SOAcfrlmd3QPNUkqe2OfGppD8QsI8Khu313QzBZKWihJ/fv315o1a7r7koAnvPjiizGLiaxYsUITJ06Mc1QAvIL+Eb3ViZMNMeXW1latfXWtkhIsThEB3nShidohMxvgnKsyswGSDn9UQ+fcY5Iek6QpU6a4kpKSC7wk0LNs2LBBy5cvVygUUkJCgkpLS8XvP9ArfKw+kv4RvdW30iv07f/dFC1/5ZqhumFmURwjArzpQqc+viBpXuT1PEnPd004wKVj3rx50amPfr+fxUSA3oM+EjiHL04epD8sukaLZ43SPZOSdP9nx8Y7JMCTPs7y/E9K+ouk0WZWYWZ3SnpI0iwzK5c0K1IG0EYwGFRpaanMTKWlpQoGg/EOCUAXo48ELsykgizdff1ITeyXIDOmPAIf5rxTH51zcz/i0PVdHAtwyZk3b542bdrEaBpwiaKPBAB0lwud+gjgYwgGg5o/fz6jaQAAAOgQEjUAAAAA8BgSNQAAAADwGBI1AAAAAPAYEjUAAAAA8BgSNQAAAADwGBI1AAAAAPAYEjUAAAAA8BgSNQAAAADwGBI1AAAAAPAYEjUAAAAA8BgSNQAAAADwGBI1AAAAAPAYEjUAAAAA8BgSNQAAAADwGBI1AAAAAPAYEjUAAAAA8BgSNQAAAADwGBI1AAAAAPAYEjUAAAAA8BgSNQAAAADwGBI1AAAAAPAYEjUAAAAA8BgSNQAAAADwGBI1AAAAAPAYEjUAAAAA8BgSNQAAAADwGBI1AAAAAPAYEjUAAAAA8BgSNQAAAADwmE4lamZWamY7zGyXmd3XVUEBANDT0UcCADrjghM1M/NL+k9Jn5I0VtJcMxvbVYEBANBT0UcCADqrMyNqUyXtcs7tds41S3pK0o1dExYAAD0afSQAoFM6k6gNlHSgTbkiUgcAQG9HHwkA6JSETpxrH1Ln2jUyWyhpYaR4wsx2dOKaQE+UI+lovIMALrIh8Q4gzs7bR9I/ApLoI9E7faw+sjOJWoWkwW3KgyRVnt3IOfeYpMc6cR2gRzOz9c65KfGOA8BFdd4+kv4RoI8EzqUzUx/XSRppZsPMLCDpFkkvdE1YAAD0aPSRAIBOueARNedcyMy+KelFSX5JTzjntnZZZAAA9FD0kQCAzjLn2j1WBqALmdnCyBQnAADQBn0k8NFI1AAAAADAYzrzjBoAAAAAoBuQqAERZnaTmTkzuyzesUiSmX3dzG6PdxwAAAC4+Jj6CESY2TOSBkh6yTn3QJzDAQAAQC/GiBogyczSJE2TdKfCy2jLzErM7BUze8bMdprZQ2Z2q5n9zcy2mNnwSLslZvYLM3vZzHab2XVm9oSZbTezJW2uMTdy3jtm9pM29SfM7EEz22RmfzWz/pH6B8zs25HXC8xsXaTNs2aWcvE+HQAAAFxsJGpA2BxJK5xzOyUdM7NJkfrxku6RVCzpK5JGOeemSnpc0l1tzs+S9ElJ35L0J0mPSCqSVGxmE8wsX9JPIm0mSLrCzOZEzk2V9Ffn3HhJr0pa8CHx/cE5d0WkzXaFE0oAAABcokjUgLC5kp6KvH4qUpakdc65Kudck6T3JK2M1G+RNLTN+X9y4XnEWyQdcs5tcc61StoaaXeFpDXOuSPOuZCk30qaETm3WdKyyOu3znrfD4wzs7VmtkXSrQongQAAALhEXfCG18ClwsyCCo90jTMzp/DmtE7ScklNbZq2tim3Kvbvp+lD2rRtFzpHCKfdmYdFW/Thf5dLJM1xzm0yszsklZzzpgAAANCjMaIGSF+UtNQ5N8Q5N9Q5N1jSHknTu/Aab0q6zsxyzMyv8IjdKx04P11SlZklKjyiBgAAgEsYiRoQTpqeO6vuWUlf7qoLOOeqJP2zpJclbZK0wTn3fAfe4nsKJ3urJL3bVXEBAADAm1ieHwAAAAA8hhE1AAAAAPAYEjUAAAAA8BgSNQAAAADwGBI1AAAAAPAYEjUAAAAA8BgSNQAAAADwGBI1AAAAAPAYEjUAAAAA8Jj/B/qLPncrLuurAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3AAAAE3CAYAAADrKKMqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XeYW3eV+P/3VddoNL17mmdsy91xbymOk5BCEgIJSdhsQmBZ6sKXXWC/fBdYeBZ2l90fLGSBQAgE0kglTk/sFMe91/GMR+PpvWlG09Sl+/tDmjtzR4Y44Nge57yeJ0+iqyvpI3niqzPnfM5RVFVFCCGEEEIIIcSFz3C+FyCEEEIIIYQQ4sxIACeEEEIIIYQQ04QEcEIIIYQQQggxTUgAJ4QQQgghhBDThARwQgghhBBCCDFNSAAnhBBCCCGEENOEBHBCCCGEEEIIMU1IACeEEEIIIYQQ04Tp3U5wuVzlwPOTDmUAaW63O8vlcs0BHgayAQ9wj9vtPvV+LFQIIYS40Mg1UgghxLn2rgGc2+1uBi4Zv+1yuX466XG/An7hdrsfc7lcfws8AGx8H9YphBBCXHDkGimEEOJcU1RVPeOTXS6XBegArgXagTog2+12R10ul5H4bxhnu93uvvdjsUIIIcSFSq6RQgghzoV3zcBNcTPQ4Xa7D7tcruWJ/44CJC5QnUAJcCYXJyuwEugCou9xHUIIIaYPI1AIHACC53kt76ezdY2U66MQQnxwvOdr5HsN4D4NPPQeH/OnrAR2nKXnEkIIceG7DNh5vhfxPjpb10i5PgohxAfPGV8jzziAc7lcRcAVwN2JQ23ADJfLZZxUHlKUOH4mugAGB8eIxc68jFOI6S47OxWPZ/R8L0OIc8ZgUMjMdEDi7/2L0Vm+Rsr1UXwgyfVRfBD9JdfI95KBuxd4xe12ewDcbnevy+U6CnwCeCzx7yPvobY/ChCLqXKBEh848jMvPqAu5nLAezl710i5PooPLPmZFx9gZ3yNfK8B3FemHPs88LDL5fpXYBC45z08nxBCCHGxuBe5RgohhDgH3lMXyrOsHGjyeEblty3iAyU310lf38j5XoYQ54zBoJCdnQowE2g+v6uZFsqR66P4AJLro/gg+kuukYb3c0FCCCGEEEIIIc4eCeCEEEIIIYQQYpqQAE4IIYQQQgghpgkJ4IQQQgghhBBimpAATgghhBBCCCGmCQnghBBCCCGEEGKakABOCCGEEEIIIaYJCeCEEEIIIYQQYpqQAE4IIYQQQgghpgkJ4IQQQgghhBBimpAATgghhBBCCCGmCQnghBBCCCGEEGKakABOCCGEEEIIIaYJCeCEEEIIIYQQYpqQAE4IIYQQQgghpgkJ4IQQQgghhBBimpAATgghhBBCCCGmCQnghBBCCCGEEGKakABOCCGEEEIIIaYJCeCEEEIIIYQQYpqQAE4IIYQQQgghpgkJ4IQQQgghhBBimpAATgghhBBCCCGmCQnghBBCCCGEEGKakABOCCGEEEIIIaYJCeCEEEIIIYQQYpqQAE4IIYQQQgghpgkJ4IQQQgghhBBimpAATgghhBBCCCGmCQnghBBCCCGEEGKaMJ3JSS6Xywb8BLgaCAB73G73Z10u1xzgYSAb8AD3uN3uU+/XYoUQQogLiVwfhRBCnGtnmoH7b+IXpjlut3sR8J3E8V8Bv3C73XOAXwAPnP0lCiGEEBcsuT4KIYQ4p941gHO5XKnAPcB33G63CuB2u3tcLlcesAx4InHqE8Ayl8uV+34tVgghhLhQyPVRCCHE+XAmJZSVxMs/vutyua4ERoFvA36gw+12RwHcbnfU5XJ1AiVA35kuIDs79T0vWojpLjfXeb6XIIT468n1UYizTK6PQry7MwngTEAFcMTtdn/D5XKtBl4CPn42FuDxjBKLqWfjqYSYFnJznfT1jZzvZQhxzhgMysUajMj1UYizSK6P4oPoL7lGnskeuBYgQqIUxO127wP6if+GcYbL5TICJP5dBLS9pxUIIYQQ05NcH4U4S0b9YY7V9eELhM/3UoS44L1rAOd2u/uBrcA1AInOWnlAHXAU+ETi1E8Q/y3kGZeHCCGEENOVXB+FODsO1vbytV/s4tsP7OZrv9hNVaPnfC9JiAvaGY0RAD4PPORyuX4MhIG73W631+VyfR542OVy/SswSHwzt/gA2bVrOzt3bjvfy5g2hoa8mExGHA6p8T9Tl156BevXX36+lyHEnyLXRyH+Sk+8dYpwJAZAMBzlqbfrWVSRfZ5XJcSF64wCOLfb3QhsOM3xWmD1WV6TEBetoaEhFAUJ4IS4SMj1UYi/TkxVGR4L6Y55R4LnaTVCTA9nmoET4rTWr79csiPvwX/91/cxm4380z/9y/leihBCCHHeGRSFVfPy2VPdrR1bsyD/PK5IiAufBHBCCCGEEOK8ufd6F/lZdtr7fczMT+WalSXne0lCXNAkgBNCCCGEEOdMbcsg9R1DzCnJYE5JBmaTkZvXz5QxAkKcIQnghBBCCCHEOfHq3haefadBu33nxll8aFUpw74Qbe5eMu0mUu3m87hCIS58EsAJIYQQQohz4rW9Lbrbr+5rJSvNxq9fqiESjWExG/jiLYtYXCldKIX4U85kkLcQQgghhBB/NVVNPvDEW6eIRONjBELhGE+9fercL0yIaUQCOCGEEEIIcU5cv6ZUd/va1aVJYwSGRvW3hRB6UkIphBBCCCHOiQ+vLae8MI2GjiFmF2cwryyTjr4xdp+YGCNQOSONujYvc0oyzuNKhbhwSQAnhBBCCCHOmQXlWcwtzeC1va1s2tFIYVYKN6wpo9Pjo7ZlgKrG+D/LXbl86aOLzvdyhbjgSAmlEEIIIYQ4p17Y2cxz2xupbx9ix/Eu3K2DlBY4CYSi2jmH3H00dQ2fx1UKcWGSDJwQQgghhDgrRv1hfvfqSY43eJiR4+CT189lZmFa0nmH3L262w2dwxTkpiad5wtE3re1CjFdSQAnhBBCCCHOiqffrufIqX4AWntHuX9TFf/5ubXsPN7FyZZBygucXL2imNwMO10en/Y4q9mAqsZQlIlOlflZKZQXpPLq3ha6PT6Wzslh6exchsdCPLLZTW3LIOWFTu651kVeZsr5eLtCnBcSwAkhhBBCiLOivmNId9szHOSpt0/x1qEOAA7U9tLWO8ptGypp7xtlYDiI0aAQDMfYfTzeyGRmYRqLKrLYuKyY+5+v5mTLIAA7q7r41A1zOV7v4XBdHwA1zYM88GIN3/nkinP4LoU4v2QPnBBCCCGEOCtmzUjX3c5Os3HI3ac7tv9kL3kZdv7r82v513tXYJjybdQzHOCWyyoIhaNa8DZu+7FOalv1x5q6hgmFowjxQSEBnBBCCCGE+IsMjgSpa/MSjsQHcd++cRZLZ+dgNCiU5qXyhVsWkuaw6B5jtxoxGQ0YDQbK8p1YTEbd/WZj/Oup1WLEaFB09zls5qQ9dTNyHFjM8edo7Bxm0/ZG9lR3E43Fzup7FeJCISWUQgghhBDiPduyv5WntzYQU1UyUi187c6lzMhx8OVbF+vOu+2KSn7+XBWhRJA3Fojwnd/u4wu3LKQ4N5Wb1s/kybdOAaAAN68vB8AfjJCTbqNn0A+A1WzkpvXlpKVY+PVL1TR0DJPltHLjuvj5B2t7+eXzJ0hsoaOqwcNnb17wfn8MQpxzkoETQgghhBDvyVggzLPbGoklOo54R0O8sKPxtOcurMjm//viOjKdE5m4Lo+PRze7AbhyaRGXzMrGbFLIzbCTnW5DVVX+949VWvAGsG5hPpVF6eRm2Ln9ylmYTQoDI0EeeLGa57Y3sOVgmxa8Aeyr6cE7Gjz7b16I80wCOCGEEEIIodPeN0rvoO9P3j/iCxOJ6ksUe71+fvXCCb714F7+8GYdwUn70lJsJgZHQkmvAfDKnhaO1nsIR1R6vX5+samKTs8Ynf1juvPdbRMNUl7c1Uw4MhGuvba3FV30BqCAQVEQ4mIjJZRCCCGEEAKAYDjKfc8co7bVC8DaBQV85sZ5KFMCoYKsFMoKnLR0j2jHxvxh9p+Mz3fr8viIxlTu3Dib7cc66egfozg3VQvaAFLtFt4+3E5dm1f33P5glKHREHarCX9wYg5cptPKo1vcGA0KQ1Mya9GYyhWXFNHUNUw0Fo/kyvKd/PaVk8wuTue61aVEoyoPb67lYG0fuRk27rpmDvPLs87CpybEuSUBnBBCCCGEAGDn8S4teAPYU93NukUFLDhNoPOPH1/Cy3ua6RnwM788k6fertfdf7zew8hYiIOTulCW5TvpH/IzFojQ5/Xz2JY6irL1M9ysZgOPbanTBW9F2SnUtQ1S3TQAgMWkLyJbVJHN+kWFVBSlUdXg4ViDR+tgWdXoYWAkiN1iZG91DxAPMH/5/Al+9KX1WM36JipCXOikhFIIIYQQ4iJU0zzAr144wcOv19I98KfLISfzDAWSjp1o9PDbl2t4+u16BoYn7u/yjBGJxKickcbaBQWkp+q7TeZm2pNGCMQbnlh1xzo9Ppa7cjEaFHIzbLhKM3XrVYBFldm6kslQJMaGS4q4fEkht185iy9+dCHhSIxwJMbllxQlZfX2VncnzagbC0To8ujLNIWYDiQDJ4QQQghxkTnV7uXHTx0l0WOEQ+4+fvi5taTY/vxXv+Vzc9l8oFV7nNlkYPP+Nu3+A7W9/Mdn11DbOshPnz6mbTs7WNvHp66fywMvVuMPRrFbjGxYUkR9+5Bur5zdYiSq6jermY0GBoYCxGIqWU4bwZB+ppsKqFP3twHOFAvXrS7FbjVxqt3Lz5+rYsQXJsVqwmE3Mzw2secu02ll1ox0TrVPBHEOm4nCbMef/TyEuBBJBk4IIYQQ4iKzt6ZHF/SM+sOcaPIwMBwgEIr8ycdVFqXzf25bwuLKbFa4cplbmqm73zMc4GTLINuPdep6hrT3jdLvDeAPxoMvfyjKo1vcXLOiWDtHUWC5K4+PXDoTk3FiT53DbqapewQVcLd5GfHpm51kp9m4cV0ZxbmpuuMv7W7ma7/YRW3LIH944xQjvjAAvmAEULUyS6vZyJ1Xzebm9TNZuyAfk9FAYXYKX7xlYVL5ZDgSS2rOMuoPn3EGU4hzQTJwQgghhBAXmYwpw7MBXt7dQnvfKBazgduuqOTqFSXUtXnZciCeYbtmRTGu0kzKC50U56biGQ5giiWnvpwpZlKsyV8h69r1ZYtjgQgpVhMKE1m0Z7c18O+fWc0PP7eW2tZBirId/NvDB3WP8wwH+eR1LvbV9JCVZuOaFcVUNQzw0ctmYjAoPPhyDb5APAgNhKI8vbWeXq9f9xwjvjA/+YdL6ewfoygnhcGRECoqf3/TAv7+Jth+rJNX97aw72QPN64rJzvNxjNbG3jrcDuKAteuLOWjl1fw2r4WNm1vJBJVKS9w8tXbl5CWkvzZCnEuSQAnhBBCCHGRuXJZMQdqe2nvi+/xKsxO0TpAhsIxnnyrnpK8VH781FEi0XiQdqy+n+99aiUPvFitPQ4g1W5m1B/Wbj/7TgM3rSvjyKl+7fj6hQUUZKdoXSjHdQ34dJm6cCTG0fp+1i8qpKN/jN0nuslyWhkYmegqmZ0W3yP3Dx9bjC8Q5gePHtLKIeeWZuiamwAMjgRZPieXnVVd2rGls3NJc1joHfTznd/uZ8QXxm418tmbFjA8FuL3r9Vq59a2eLn9ylm8vr9VO/bS7mYKs1N49p0GLZPZ3D3Cq3tauPOq2WfwJyDE+0cCOCGEEEKIi0yq3cz3Pr2K+vYh7FYTm7Y30uWZKAOMqSp7q7u14A3irfjfPtKhC94AygqcdPaPMZgIsk62DGI1G/mvz6/ljQNtmEwKVy8vIRKNcdDdp40WmF+eyezidHaf6NY9X066nd+8XMORU/3asYxUK2OBMKgqnR4fD7/u5tW9LSyqyNbtZatt9eIqycA9qUnJ6vn5fPTyCpwOM0cTz5mbYWfEF+KJt+q00kp/MMpjW9wUZOm7XvZ6/Rxr6GequjZv0t67HimlFBcA2QMnhBBCCHERMigKc0oyKMlLZfGsbN19qXYzs4ozkh5TkGln6ujrVLtZC97GNXYN89tXTvL8ziaefaeRbz24l2A4xldvW0x6onyzpnmQnVVdLJg5sY/ObDTQ5/VpgdY4VVW598b5hCcFlH3egG5u3LgUm4nxsXTlBU4+dsVMrGYjMwvS6PL46PL42Ly/lR89eZQ+r76r5sBwkKw0W9LntKhS//kowLqFBdp7GbdsTm7SeoQ41ySAE0IIIYS4CEVjMTbvb+WnzxxjcDjARy+roCQvlUUV2Xzl1kWsnJfHJbNytPMXV2Zz5bJirllZoh1Lc1i4eX15UgORouwUDtdNjAjwDAd581Ab2493MTQpY9bQMUxJnlO7HY7GeOKtehx2s+75bBYjbT3JwVppvhODYSKkzHJaOXKqX1fWeLA2vo7JJZQAbb2jzCnRB6mXzM7h5vUzycu0A/Hg7ZbLZrLClcfd17rIy7RTkJXCp26Yx6ziDL5+5yUsd+VSWZTGXdfMYc2CAnyBiXLSfq+fX71wgu8+tJ/ntjcmNUAR4v0gJZRCCCGEEBehP25r5PV98X1dxxs8LHfl8s27lvHgSzX852OHSU+1cNc1c7htQyUqMCPHQTAcJT/TzuVLCinJS+XSxUVYzUY+/5EF/P71Wlq7R5hfnsUKV65u4DeAdySIzRJNWkfHabJoy+bksre6m1AkhqJAz6Cf1/c0YzQoRBONUzKdVuravMQmNVJZUJ7Jjip9SWZ73xgjvhDqlHpHBfjY5RUU5aRwonGA/Ew7d13rItVm5j/+fg1HTvUxNBZiSWU8iL1y6QyuXDoDgC37W/nG/bswGQ3cuK6c9YsK2Xqkg6/+bAeBYJQls3L43M0LuO+Px+lIlJy29Y4CKh+7vPKM/4yE+EtIACeEEEIIcRHaW60PdA7X9ZHltHK0Pl6+6B0N8eDLNfzPl9aTYotnxH781FHqE7PSjAaF4txUcjPsvLiriTF/mCsumcGtV1SgKLBpRxOexGBvBdhb3YNKfFzAeCyV6bSyel4+VY0DurUoCnztzqXsPtHFtqOd2vFoTOXSRYUU56VSlJPC/zx1TPe4/uEgBgUmN8dUVZWv/WIXkaiqdbwE2Li8mKKc+Jy3lp4RmrtHaO0d5et3LqWq0cPDr9WiAk8YTvG5mxewYm4eEB9c/uTb9drzP/TKSdIdFh7fUkcs8caO1vfz3I4GLXgbd/RUvwRw4n13RgGcy+VqBgKJfwD+r9vt3uxyudYADwB2oBn4W7fb3Xu65xBCCCEuRnKNFBeqjFQr3tGJckan3Uxrz4junFA4RpfHR+WMdJq6hrXgDeLB1FuHO+j3+mlONCbp8viIxVTu+tAc/uXu5bx1qJ2OvlGONXi0x6lqPFNms5joGhhj84E2ls7Owd3qJRiOEo2pbDvaya6qblYmgqbJFAUOunuxNCTv9AmFoxgUhZiqYjIq3LiunM37W7VmLCpQmp/Kp2+YR2m+k16vn1d2t2hBXZfHx6t7mtlf26sdi8ZU/ritQQvgTrYO6l5TBQ7V9WnB27h+bwC71aTrilkgg8HFOfBe9sDd5na7L0n8s9nlcinAY8CX3G73HGA78MP3ZZVCCCHEhU2ukeKcOtHk4f5NVfzu1ZN0ecZOe87tV87Cbo0PqjYZFe64ajbzyrN051jNRvIy7IlzTvO1UFW14G3ceMfGTKeV2zZUsmTSPrpxaQ4Lh+v66Oz30dY7ypFT/XzsigqtPBIgEo0RCIUxT3rdFKuJHce7qG8foqZ5UDfw22410do7SiTxHJGoSnP3sDY8fFw4EqM4NxV36yDulkGmTrLzDAeSHjOWmCvnbh2kd8DPVMvn5GKz6Id+L6rM5pPXubAnZuIVZqdw2wbJvon3319TQrkCCLjd7p2J278i/hvGT/+1ixJCCCGmOblGivdNXZuXnzx9TCtTPHKqnx9+bi0pNv3XusIcB+sXFdLZN8aliwtZs6CASDTGqC/MO0c7iERVguEo3/3dfr519wpK8lJZOjtHa+9vtRi5fk0pp9qHdI1JFEXhew/tpzgvlVuvqGThzCzd3rXxx04NnFqmBIIA/UNBorF444/ivFSynBaON0yUW0aiKrdtqMBmMZHltPK/f6zSPd47EmJ2cTqnJmUOl8zK4bsP7aejPx7YWkwGQpGJ5iKr5xeQ6bSx9UiHduyKS4rYeqSDRze7tWMGRcFiNvDhtWUsrMjmK7ct5uHXahn2hVg4M4srlhShKAqhUJR9J3spyknBao4HeQ2dQ7x9qB1FUbhmRQllBRONXIT4a72XAO7xxG8UdwL/ApQCLeN3ut3ufpfLZXC5XFlut3vgTz3JVNnZqe9+khAXCXPiL/bcXPmLXIiLzFm/Rsr1Ufwpz2xv1M0nG/WHae33cVmiAQfEywL/9aG3ae+NNxCpaRkkLyeV1QsL+dDambx5qF071zsaYldND2sWFpKdYWfNwgJml2Ry1coSstPtfNVs5qdPHmZoNESq3UyfN56hau0dZWAkyF3XzUVRJnaffWh1KesWF/HOkYm9bQBtfWOYTQbCiWDKZjEmGn/EtfeOUpCVXFI55IuwaXsT0ZiaVLK4ckEBO45OBGJlBU7S02xa8AYQisRYMS+fmKqyYVkxVy4vIRqNkZftYOfxTrLTrFy/fib//vsDutc1GuDR712LzRrfH/jinhZ6BuPv/UBtH5UlneRnpfBQYih4dfMApzqG+ee7V/Dffziivc9DdX3c/42N5E2ZPyfEX+pMA7jL3G53m8vlsgI/BX4ObDobC/B4RnXdhYS4mIXDUcxmI319yb+FFOJiZTAoF3sw8r5cI+X6eO7FYipdnjGy023YLBdunzebKbnU8YXt9Ty++SRLKnO45bKZNHUNa8HbuFd2NlKRn0pnz1DS45vavby4vVHb5+VuGWTd/Dye3tvMK3tbUICb1pWz+0QXo5MqDGtbBvn1puO69vm7jnVy2+UVfGhlCW8lAkWTUaG5a1g7Z1FFFvPKsnh660SzEACDEt+rN+IPY1Bg/eJC3tjfqt3vD0aYWejEoCgsnZNLMBCme9KA8pbuETJTrUnvr7LIyeBwEHeTh8J0GzFV5fltDQTDUTp6R/n6/+7AmaKf+Yai8OCmKoxGhcuXFPHq7ibd3S/vbKQkT/93W3PXMM+84daCN4BgKMobe5v50KTxDGcqFlN1YxTeb+29owz7QswpyTh9Sa046/6Sa+QZ/e3kdrvbEv8Oulyu+4EXgfuAsvFzXC5XDqC+l+ybEEIIMd3JNfLi0OUZ4ydPH6N/KIDNYuTe6+eyal4+e050s/1YJyk2EzetL6e8II3+IT9vH+ogGI5y2ZJCygvSgHiDjVF/OGlQdDAUxTpl/9RfY+OyGRys7dWyV3arEXeipf94V8RLFxcmPc47GuIr9+1AQSXVbmbUH59nZjQoGAyKrknH4EiQtw628+y2Bu3YS7ubmVnoxDM8MdQ7zWFhzD+REQPwBSP87tWTHHL3kZ1u48qlRTz1doPunFF/GKORpI6SNc2D2rpiKhiV5OBlZmEaH98wi/qOIfZUdyXdPz7jbZzDZmLTtkatjHLH8S6uuKSIYHhiH1wgFGVJpZN+r18r/VRVlS0H2gDYfrQTi8lIKDwRmFnNRjJS9UGfQVHIzdC/PpB03ruJRGM8tsXN7hPdpNjM3H5lJesWFiadEwhFSZ00Uy+mqgwMB8h0WjEaDKiqyhsH2jjo7iMnw8Ytl1WQl2HnYG0vWw62YVAUblhTyuLKHH736kl2HI9/nrkZNr5513IyncnBsDj/3jWAc7lcDsDkdruHEuUhdwJHgUOA3eVyXZqo8f888PT7ulohhBDiAiLXyIvHM1sb6B+KNxINhKI8utmNwaDw4Ms12jm1rV7+7dMr+fdHDml7wnYc7+Tb96ygs3+MR7fU4Q9GKC9w8uVbFxOORHngxWqaukYozE7hszctOO1eqBd2NvHWoXbMJgMfuXQmly8p0t0fDEfZvL+V5q4R5pZlcvXyYr77qZU0dg4TCEb4n6f1rfaPNfQzs9BJQXaKlp1y2Ew0TcqAAaxfVIDVbGTdwkKOnOrT9r6N8wwlN/MoL3Ay5o/Q6/WTYjVx/epSapoHGBiZCOoKs1PYU90DQO+gn+d3NGGzGAmEJgKmMX+EJ96cyL7lZti47JJinntHn5HrHwroyi4BirIdfP3+XVrjkcljC5wpZrYfmyjdtFtNrHDlsu3YRKA3PBZiYCjAVIsqs7ludRknWwbpGRjTPWYsEGHF3FxtaLgC3HLZTGYWpnG8wcNYIIIC3LiujOWuHN442MZg4jNZUJ7Jsjm5QLxJypsH21EU+NDKUmYVpwOwr6Yn/osCq4kb15XjbvOyPfH6w2MhHnqlFldJJtnp8V8OHKzt5dEtbkZ8YeaUZPDFWxYyNBbi588dp88bICPVwuduXkBrz6g2EqG+Y4jGzmE+c+N8fvn8CS1QbegY4gu3LNCCN4A+b4AtB1q5Y+PspM9JnH9nkoHLB/7ocrmMgBGoAb7odrtjLpfrbuABl8tlI9Ei+X1bqRBCCHHhkWvkRaJn0Ke7PRaIcOCkfuqDPxhh8/42XUOPSFRl+7F4S/zxjE5z9wibdjQyOBygqWui/f6DL9fwg8+s1j3nIXcvL+ycKM17+LVaKgrTKJ5UmvfQKyc5UBtfy9H6frwjQW7fOItZM9IJR6I4bCYtmIF4Ru0Xm05otyuK0phXmsEreydKEQHMRgMnWwZ550gn88szyUm3aUFsSV4qw4lM2GQjvgj3XOciK81GVUM/T7w1EXCVFThZOTePqkYPMPF5BsMxrlo2gx3HuwhFYswsdGqfy7iMVCvXrC5l0zv1uuYn3QM+LXhLd1i4bUMlB2p7de/XYFBY6cojNcVMNBpj66S9d/5ghFAkuRS5YkYaNS2DWpBVOSONisJ0Nu1opL1vlHRHcuZpeCyMAqDA6nn5rFtYwM/+WKWtxWw2sHR2Lj95+rj2vBCfR2cyGujoG+VHTx7Vmr0crffwg8+sonvAzwMvVmvn17QMMK9M3y00pqq09IyQnW4jEIrw0KsntYC4rs3L8zsa6egfo88b//Pzjob43Wu1SeUg5S2+AAAgAElEQVSkvYN+dh7v0n3G0ZjK8UljICbebyjpmLgwvGsA53a7G4Glf+K+3cCis70oIYQQYjqQa+TFY+nsXLo8Wt8ZZhY6Kc5L1QKncQXZyY0oFEXRleMBdPaP0TPgSzoWCkexmCfKKSd3T4R4G5BTHUNaABeORDk4ZXzgnupubt84C4Beb4DsNBu+4CiqCkU5Dl22CqCxc5irls9gqv21vfgSwceJpgEuX1LEsjm5vLS7iYaOYa1E02IyEI2pRGMqB929HHT3cu/1c3l1SkA4OBLk8iVFully44/feqRDK5VU0GfNIJ71/H/379IFFhmpFi2gBBgaC5GfmcLQqD6wiEZVygqcdA/4ku4DsJgNWMwGrfyxojCNLfsnMmQGg8LfXD2bB16q1jpldnl8usA4J91GXVu8TBUV9tb0UFGUpg1Fh/hMvee2N9I95c99V1U3S2fncriuL2mMwpFT/UljIPzBeFA+mcGgsGl7Ay/sbGLl3DxdNhOgrXc06XV7B/3MnpFOvMg7zmRUKC9wsl2ftGVxZQ7VTQNaeawCrF1YkPRZiguD7E4UQgghxAfeLZfN5Ob15cwsdHLpokL+4WOLuXp5MXMSJW4GReH61aVsWDqDBeWZ2uPyMu3cuLaMnHT9vrclldnMK8vUHUu1m/nyfTv4zm/24U4Mi66ckZ60lkPuXl7e3UwwHMVoNOCctMcJIMUW78QYU1Xue+YYrb2jWjC0dHYOaVOacZiMBp7b3qjdNpsMXL+6VAvexjV1DVOUk0JDh77UsjjPgTpliPUbB9p0jUsgvgfwWw/u1YIaBcjPtFNW4NTtc2vsGmHp7InZcUaDwrAvhHdS1qo418HyRNnhZMca+pna0yPTaeWpt+vZdrSTo/X9WCY1eclKs7LtaKcWvGWkWrlhTZnWTRLijULeOtSRNObAbjXy5Y8t4iu3LmbN/PyktUwNmCAemE5lMio88049jVNKWOPrsZA0bwEYGAlQmJ2C3WokJ91GLKbSkZip99z2Rpwp+p+JBTOzWFypn8c3vzyTj15eQVGOI7EOA3dsnM1lSwpZsyBfC6Q3XFLE0tk5fPOu5Vy9vJhV8/L46u1LWDgzO3lh4oJw4bZYEkIIIYQ4R0xGA7dcVsEtl1Xojn/zb5fTPeDDbjGSnihH+6c7LsHd6iUQjrKgPAuzycA/3r6EZ7Y20Ov1s2xOLjesLYtnbxSF2pZBrBYjnkQ2qaN/jF9sOsGPv7SOFa5cblhTxluH21FjKqFIjJrmQWqaB2npHuFLH1vEnVfN5revnNSyN10eH//081189PIKXYYKoKrBk9REpTjPQfOkksVIJMbliwvZU92Nd1LGKhKJ8eKu5qTsmM1iwmAwEJsUsEWiMQpzHLpsW1GOg8bOiSBFBe69fi7bjnUmZRq9oxPB2qKKLI7V60v4PMPBpGYgJqPCa3tbtGDQaFC4ankx70waIwDxbNXdH5qDxWxkT3U3A5OarnhHg7oS2HEOu0nrfql9brlOlszOYevhDtzj2bcERYFls3M40TRAbyIYNBoUTEZFNxMvzWHhWIOHYCJjNvm+BeWZPPtOg64pjKLEA9/qpsHEezaw3JXL5v2T0mjAClcuPYN+egf9LHflcuO6csKRGFaLEXfrIOUFTm7fOJt0h4Xv/90qOvvHSE+1ag1PPnvTAu64chaKopDmiAf82ek2/uaaOUmfjbjwSAAnhBBCCPFnFEyZ36UoCnOnZNcKsx185bbFAERjMfq9AbLTbXzxloUA/OCRg1oAB/EujN0DfkryUrltQyW3bajk//5qt7aHCeBwXR++QIQ1CwqYV57F/zx5hLZEl8lgOMrLu5uwW434g5O6KYajurK+0vxU0qdk5FRgxB/hSx9dxKNb3HR5fEQiMboGfHQN+DAbDYQTwZpCvBRvXllmYm9b/FjPoF/LYuVl2rn9ylmcaBrQBXAA24910tAxpOs2WZKXSmPnREB5tN5DeaFTF2TmZdi05hvjfwbFuQ4Ouvu0Y9GYSlm+E7vVRCg8EZSl2ExUzkhnb3WPbmYcxAOkbUfbdUFqqt3MicYBRvzxPW4q8UYsd2ycxUu7mnV7FO1WIwVZDhZVZHHfH6u0clVXaQblBU5doGU0KFy2qEC39zAaU7lhTSlrFxbyzpEOqpsHdeu7YkkR7xyd2MMXicYY8SXvRVwwM5u7r53IUPZ6/aSnWLjnWlfSuYqiMCM3uU19+mnGLYjpQUoohRBCCCHOkqauYf75l3v4f7/eyzfu362VSs6aUippMRvoHhjTzfqbWvpoMRtp7hoipqqkOyz4gvp9T6P+CHddM0crp6uckZZUFtnaM6p1QBxnNhn4j8cO8dTWer7wkYVcuXSGroovHI1xxZJ4y3qVeCfIqkYPd26cxSeunk3plE6avYN+spxWfIGwroQwLcXMnuoe+rwBYmp8cPcXb1moK0Edl5tuJyvNSorVxJoF+dqw8HH+YOS0HTx3VnUyMimjpihw6aIifvDIQV7f30pT1wjGRM2lokCK1URr75gWvM2akcas4nS6Et06VeLnfPfeleRnpbCnunvKOqL80x1LqGkZ1O01bOocpmdAv+ZoTMU/Za/auFPtXvoGk7t8pk4plwWoLEqjLD8egCnAZUsKtRLUgeEA331oP9/81R7+8ec72VWVPFZBXHwkgBNCCCGEOEse3ezWmmMMjYV4+HU3AB+5dCar5uVpQ5lD4Ri/fL6aX7800X3w1isqsU5qcBIMR/nRU8f4t98fwB+Mt7GfzG418sdtjayel8+PvriOb929ImmwtMNm4qC7l2Wzc1hUkUVGqlULPOrbh/jNKzVJ+6kAlNMMjx7yhSjLd2oBkXauAr95uYb9J3u1wGjZ7ByKpjR8CYSixGKqrqQRwGhUOFDby8BwEF8wQm3LYNK2sGhMpb1vTBcg5mXaOdni1TJ7ZpPCd+9diXc0QCSq6h57x8ZZfOeeFbrulQCDI6GkZjO+YITBkQAHa3uT3qvVbOBATQ+jU7Ji4UgsKcA0GhSGx0LYJs0ATLWbeXVvK4+87uZEs34sZE66jcuXFOpmxs0pSae+Y4iWnnhDGRUYGQujJD6ITdsbtWYzgVCUxxKjLN7Nlv2tfPs3+/jPxw5xsmXwXc8XFxYJ4IQQQgghJvEHI+yt6eZYfb8uQ3YmuqYEAz0DPmKqit1q4vMfWciSSn1jiP0n4wO5X9/Xyu7qbu6+1sXN68t157T2jLLjeBe3XlHJLZfNZNaMNMxGA/5glMGRIG8eamf3iXim6K5r5mgln1azkbFAhKrGAQ6f6sdiMuIL6AOPho5hIpGYLshYXJnNSlde0nvbX9PDDx8/TGPnsC6QWuHKo9Ojf98j/jAl+Wm6Y0aDwiOba9mf6OypKPFGG5VF+uykdzSU1ACmKCeFfTU9WoDosJvImFICGI6ohCNR1NP8keVl2qlq9CR1d6woSmPxlD+TomwHP990gvufP0GXx6e9V4X4SIRHttQlZQhdZZk0dA6RajdjMChkOa1YzUYOuvu0jpHXrirRhpRDvHlKaX4qK+bmcfXyYr551zIe2VKn25eYk27n6JT9gcfq+4nG4kH41J+3YDjKwHDyjLvJ9tX08OTb9XT2j3GqfYj7njnGsE9GBkwnsgdOCCGEECJhcCTIDx45qGXRXCUZfOMTS9lxvJNNO5oIhqJsWFrEx6+chSHxzb66aYBn3qlnaCxEltOqleNBvDHEsVP9LE2UMZ4uIHz8DTd1bfEmHzuPd7F2YXLHw1NtXg7W9hKNxVhcmU39lE6R1YlsTlWjh7mlGXzu5gXc9+wx3XiDw3V9uEozqG2daMiR7rDwwq5m7fbCmZl85bbFHKvvZ15ZJqfavagqlOU7dV0UVRWuWl5MUXYKvmCEQ3V9uvfmD0bYebxT2/tmsxhZMiubfTW9uudwlWQwMBKcaNFPoonHpOyUxWzQ7fOD+CDw3AwbdZN6e9gsRh58+SS9g37dHre5pRk88rpba15iSNw3vzyTj19ZyW9fOak9R6rdzJoFeTy3fWLfm6rGW+rvOTFRThmNqVQUpVGU4yA/w84re1t0rf1Xzcvj9SmNRzynGR5uNhmoKEzDOxpkYCRAdaM+K3f0VD/5mXaaJ3XIzMmwYTQYaOoa1n4GxzntZn781FFU4LpVpVy7qpSqRg+Pb6nDMxxgxdw8puZWQ5EYda1eVsxNDtrFhUkCOCGEEEKIhK1H2nVDmN1tXnYc7+SR191aWd/m/W2U5KWybmEho/4wP3vuuNamfmg0xOzidDr7xxgLROgfCvCz56q4Y+Msrl1VypoFBRxv9OiCi8kBFUB77ygpVhO+RCmc0aBwuK5Pe/2mrhFMRkVXJhgKR7VRAafah+joHyPTadNlc2xWI+FIDIfNhD8UZVZRmlZ+N+5ki5ffvFTD3poeIB7sfPlji6hp8Sa1wfcHIzy6pU67PR40pdrNtPfpZ5t9/uYF+EIRXQAHcKJxgFMdEx0qDQq4SjN1ZX2hcAyrWV80ZjUb2Tdpf1pehh2bxUhr4v2Mr+PvPjyPviE/f3jjlHZuTIWPb6jk+jVl7DnRjXvS5x9vLpM8HmDqKAcAh83Mp2+Yx5G6vqS5bO39Y0nnp6ZYyE636QK5odEQT2+NN2t582A7GalWBid16CzMSWHDJTN4ZLObcCJTes91c3G3DuqGgptNBiqK0nTv5am36ynItPPASzXa+vbV9DC3NHkP4oxcR9IxceGSEkohhBBCiIRgKJZ0rLV3NGlP1vistMbOYS14G5dqNyd9oX/7cDtvH27nNy/XoKrx4dYfubScz928AJNRnxNR1YlMnd1qYu38/KTXn1+epe2Xm12czqhfv+/pVPsQN6wtw26Nn2M0KASCURo6hxkLRFCAe66bS9aU+XWpdrMWvEE82HnrSAcLZ2bqyiYdNhPHG/p1j01LsfDNu5Zx1bLkoeFHGzy8dahdt6csJ92mC94APnHNbFafZuaa2WTQyh+z06zEVJXJ88pLC5y60QQQD8YcNhPdnuSArLl7hKffrqd+yuvHn99O2qR9gRaTgermAV35pUK82+iXf7qd57Y3JD1HJBLT/bkWZKVw4GSPLni7dlWJbgxETFUpyE7RXjs7zcpH1s/k8TfqtH2LwVB8yPe2o526oeDhSIzCrOQh84fr+5N+FmOxGMvm5KIQz25+fEMlhdkSwE0nkoETQgghxAUpGI7qmnqcC5cuLuSdox3aF+acdBsbLpnBO4c7dEFUpjO+/6okL1U32wugrMBJTcsg0UlfnM0mI09vrdfOC0ViNHWNsGxOmOw0m9aS32Iy0OcNaKWP/mCEvtOU3rX3jmrnNHWNUFaQqtuXZTUb2XW8i1Xz8plbmklrzwiv7dO3s99/socU68RXQZNR4aZ15Tz2xkRWDWDMH+b+56u1rGFBVgpfvnUR33/4oO68cCTG7hNdtPbos3oA+2q6dWWQ6xYWUJzj4Ol39MFPY8cwDVOCqhSriZMtE5mlyhnp7D+pz+T1DPgoynEwPCkDlZFq4T8eOwygG2NgMRk4UDvx+MnZTKNBoarRQ8WMdLKc8WzYkbp+OhIZRbPRwKWLC/EFI+xLBLpjgQhWs5FoLEYkqlKc60jKqq6Zn8/zk8YRAEkB5/ia0x1ZnGr3Mrc0k06PTxeAqcT3TVrMyTmY03XpXFKZzaHaPi2bCzCnNJOPXV7BiC+ExWTEajm3/4+dzqg/TIrVpDX5EX+eZOCEEEIIcUHpGfDxb78/wBd+vI1//e0+XZnf5Nbt74eSvFS+88kVXLeqlI9eNpNv3xPv7PjpD88j3THRHfC57Y08+dYpMp1WlszK1vYVzSx0ct2qUm5eV66da1AUrl5enJSp8wwH+NGTR7TgDeBDK0t0+9YgHiBcvaIYo0FBUeIDoAcmlXlGojHSHRYtqDQZFYKJeXDbjnayaUcjxXnJGZaTLYO6AdsF2SlsWDpD18nSoMSDmslr6h7wYTQoXDIrJ+k5tx/r0vZr2a1G0h0WrllRnLSHrX/ITyga02X1FAWO1vfTO2kW3qLKrKSuiicaByieMtfMFwhrQZOiwLyyDF35aEyNZyo/fuUsQlN+hopzU1m7oIDKGelEYyrN3SMcPdXP4bo+TAb9V+VwNMaiimxtePe4YDjK1+9cyn9/YS0LK/RNUYDTznIrzHLoZgym2Ex4hgPsrenBMxxk14luDtb2Jj0u02klw2llcqyzbE4uvkBEy/oZjQofubQci8moHTMosHp+PjeuLQPAmWI5L8GbLxBGTfw2YHAkyL8/epCv3LeDr9+/S5s1KP48ycAJIYQQ4oLy8Ou1WhDQ3jfGb1+u4Su3LebXL9VQ1+alMDuFT394HpVF6ew41smOqi6cdjM3r59JWYGTUX+Y3VVdhCIx1i4oIDtRJtgz6KN30M+c4ow/+8W1ODeV2zfO0h1bv6iQw3V9HDk1UTb4xsE2inJSOFw3cay5a4Rer5/r15QxvzyLlp4RXKUZ5GfGZ4pNDpgqi9LZfqxT9zptvaMU5TjonLSHyjsWZOvhDuaXZ/I318xhaDSUNAA602nj8x9ZSEffGM9ta6CqaaIZRu+gH1QFZ4pZCyRWuHK1GXXj2nvH+MObdbqAeemc3KTAE+Dh193aPjWzycDGpTPYfEDftGN2cQaXLirkWH1/UpbSMxTg+R0TGaminBSuXzeT375YrXuOkbEwGU6rbl9iptNKfpYdz3AAs8nAgpmZ7DkxUfapqpDmSB5SbbMYyU23asO6x6U5LPz9TfP532eP6873joaS9t4pwIGTPYQi+oDUYTPRO+jjqbfrCYaS2/hnp1lx2EzaGIMZuQ5ae0d0++2Wzs7RuomOa+4eZsXcPC2Qq5yRRorVyBNvTuzps5oNbFxWxI+ePKYdi0ZVctLtPPBitfaaMRXsFiOWvyKrHY3FqGsbIsVq0jJ+/V4/bx5qJxiOctniIiqK0hgYDrBpeyOdnjGWzMrhw2vL8AwH+eXzJ2jpHiE3w8ZnbpzP1sMdWjmydzTEb16u4cdfWo/JKDmmP0cCOCGEEEJcUJomddyD+B60P7xRp3Uq7PL4+PWL1Xx8QyW/e61WO8/d6uX7n1nFfz52WNtb9Pq+Vr73qZXsqe7m+R1NqMT3eX39zksozU8uOftzpmaCVBWte6R2DDhwspffvVpLa88I88uztNEBX751Mc9ta+DwqX5C4SiDIwFdt0SAgZEgsViM3AwbJqOBgeGANnOsqnGA1/e1cs+1LuaXZ1KTCOIUYNfxLhw2E7dcVqEFrOMU4JW9LboskKrCzKJ0jjdMZDwKslLYU92je+yxeg93XTNblxkpK3DqmoyEIzGG/aGk9+ILhLn/+RPabbPRQDgaY05JetLnlpNuZ+X8Ah5/vVZXMugdDelKDR02E0ajwiF3HwD+IHhHklvgB0MR0h0WrfMkxPcFVjUO6Lowmk0G5pVl8uuXqpPa7ytKfIh5qt3MqD+cyGQp7EmUTiqJSDA73cbGZcU89OrEz6ICWC1GLCYDly4u4pltDbrP5pPXuvjh40d0r3ekrp8ZOQ5dA5ji3FSuvKSI9t4RhsZClOenUTWlU2UwHONgbV/SZ1DbOpg0927q/1vvZmgshNloIMVmYsQX4oePH9a6rK6Ym8e9183lB48eYjjxOe883sW371nB7149qTWUaeoaIZbIbLYkXr/PG+DBl2qwmPSB2ogvzOBIkNwM+3ta5weN8Xvf+975eu0M4Kt+f+i08zqEuBjt2rUdo9HA2rWXne+lCHHOKIpCSooF4D7A+y6nC7k+0tgxrMtMzClOp3PApyvD8wUiqCq6+WPhaAyVeInd5GNGg4HX9rVqe6BCkRjDvjDpDgsPvFjNy7ubGQuEmVOawfBYiEded/PsOw20940xpyQDk1Fhy4G2+BfiSc1C5pRksLgym2MN+rKvwZEAHf1jqGo8+9U/FGDVvHwsZiNbDrTR0TdGJKrSO+inKNtBIBwfcO2wmegfCjDqj+ALRCjLdybN+YpEY2xcVszq+fk4bCZOJDJtkZiKu81LcW4qMwudHK7r0/Z1XbOimGNTZokNj4VIS7Fo++vSHRa+9LGFVDV4dF/6U1NMHG/waM+V5rBw58ZK9k3Zg5aWYiEQimrZurxMO4FgVLf3Kqaq/PcX11Kcm5qUaUpNMfPEFrdW3mg0KBRlO3T7+hTgW/cs54WdzbrH+oMRcjPsWoBqNCh0eXxa2Wd5gZN0hwXPpAHiZpOBOzfOYtW8fB7d7Ka9b4yhsRBGg4Kqxp9DJR7AhSIxjAa4ekUpp9r1f4XdculM/uHWxRyp76O+XR+U3rFxNp+5cT5tfaNasD0uO91G95T9bflZdm7bUMnR+n4iURVniplPXT+Xnz1XhXc0RCSq0tQ1TJrDomt+AnDz+vKkfYFrF+TT1jemK39dNjuXo/X9vLKnGe9IkMoZ6YQjMR5/o45HN7upbh6gvMCJ1Wzk/udP8PvXatlyoI2YqtLcNcJB90Sg2Nk/pu0ZHDfegGdqkDkWCNPr9ROc9H59wQjLXbm6EQn5WSnctK5cG1T+QfCXXCMlAyeEEEKIC8onr3OhbIa6Ni8zi9K451oXm7Y36rJDM3IdFOem6r5QAmSmWqY+HbGYqivfA/COBLnv2ePaF+gXdzWT7rBw0N2nZZd6Bv2EIlFK85xaq3eI7+26blUpjV3DPLLZjUGJfwmzW01cv7qUZ6Y05hj/Yq+qKrUt+i/y/UN+fvIPlzIWCPOtB/fq7jvZMkDmlPLBQDDKV+7bwezidCqK9IOyAY439nOwthd/4n057GZuWj+TmpZBrREHxLOQNZPWMuwL4bRbuHRxIZt2NGpBTFm+U/dlfHgsRFSNN3cZDyIMSrwb5+RgZIUrl5Mtg7oGLBaTgR89cZTeQb+upNJsMhAMRXVjERQFstNsdEwqJVWBvkF/UmbNZDQwMhYkJ93GvLJMDrn1TTsGhgM4U/Q/F+FIjBVz83hma4OunDIaU7n72jl4hoK8urdl0nHwjiY3kxkcDfLjJ48kdQEFePNgG4+/UUdWWnI5554T3bpxAXarkTs2zuLJt+u1z3HEF6aqcSBp/6CKypySDOravBgNCrkZdn71YjW5mXaiMZVoVEVVVZ7eGv85THdYiMZUls7OoaVnhMbOeMliQ8cwwUiUYCjKtqPxUt7BkSA/H6riiiVFWrlwJBrjhZ1NrJibm/Q+Yqf5LVOG04rdatStOz8rhRKTkT2TRj+UFzi546rZKIrCsYZ+irId3Jm4Lf48CeCEEEIIcUFJT7Xy5VsX64594uo5RKIq1U0DlOancve1LtIdVmqaB6hrH8JoULhhTRlXLS9m94lurQwtPdXCdWtKaegcoqFzYo5ZRVFa0lyzqqYBXWkgQFWDh36v/ou7PxglEIpqWa2YCqgq3/jEUkryUtl1olu3h81qNvLc9kauXDqDkvxUXZfGFJuJr92/C5vFiDPFogvWMlKt3LC2jO1HO+n0+LBbjXgSZX5HTvWftjFGMBTVfXEe84fZc6Ib86Q9RTnpNvIy7brmKaoKm/e38uahdu3Y+kUFOGzmpGzKWwfbteBtvHPlpkn72QDq2ofISrPR1DV5ALVd+1yiMRWr2cBHL69gflkWD75co3t8NKoyIyeF45OyOzaLkV+/XKPbk2e3GrVgbsQf4Xijh6nf/2MqLK7M1gWDqYmB17bT7AeLRmMMjCQHa8FQVBd45mfatcAH4s1qVFXFYFBIc5i1z3dgOBifvReMoqKSn5miyzCbjArf/7vVjPrDuiAboL7di8Vk0DdeUWHDJUV88joXf9zWyOG6+C8xegf9FGansHxBLi/vngg+h8ZCfO9TK8lItfLVn+3UPf8hd19SwNTl8dE05f8NgKIcB4rSp1UGpKWYuW51KS09I1rWOz8rhauXF1OQlcIjm90EQ1HyMu3cdkUlzhQzigI1zQOU5jv5m2vmYDUbuftaF3fjSnq9yevffqyTcCTK+oWF5J9mXMIHjQRwQgghhDin9p/s4ZC7j7xMO9euKiX1NEOSp0q1m/nCLQu126qqcqzew6LKbK5dVUplcTppiSzLt+5ZwWF3H6FIlOWuPFLtZv7Px5eweX8rPYN+ls3OwVWaydYjHbrMXHm+k67+MV1gMyPHQXa6XTcvzGwynLYFfFWjh+MN/Vy+uIi9Nd209oyiqiq9Xj8v725mV1UXn7t5AQ+/XkuXx6fLro2XlqU5zAyPhVGI74d7bEsdaxfk871Pr+Lv/utt3es1d4+wqCJLC7DyMu2U5juTSunq2ry6MjXPUIDLFhfqAjObxZjUAXD3iR6+dfdyth7p0LJCM3L0LfIjUZVOz1hSxiUajWn71CBeHjhVMByjuWuEp99ugCmT7krzU3lt/0RTlLL8VAKhqO7PxpliJjvNSnP3REA8NBri6uXFukDUH4zw2r5W8jPtZKfbaOocZtQfZtQfD4BTbCZ8ibLR/Ew7f3hzIts6riTPwdFJZagmo4KrNEO3npiq8omrZrN2YQH//MvdusePBSJ84xOX4AtEeH1/q+6+SFSlpXeU7v6xpH2EaQ4Ln7xuLs9ua9B+5mpbvdS2ellUkU17n35kQ5fHR89pBpF3e3y09o5itRh1ZYx5mXbsFpPuMekOC8tcuboyWYvJwJVLi5lbksn2452kWE18aGUJDpuZf/z4Ek40DlDTMhBvsmIzsXZBAZfMyqGpc5jGriGON3pYt7CAz9w4P2ltk3X0j/HOkQ4U4MplM8hItfL9hw8wkCh/feNgO9+7d+UHPoiTAE4IIYQQ58z2Y538flLjkZMtg3z7nhXsqe5mT3U3GQ4rH15XRn5mCj2DPrYe7iAWU7nikiJmTGod/9iWOrYe6QDi5XZf+MhClrly2VvdTUPnMK6SDK5YODFQOhZTWVKZQ1mBE3OiccLd17p4Zms9vkCEhRVZXLuqlLllmTzwYjWDI0HyM+387YdcWHa/Ju0AACAASURBVC1GGruG6RnwYTLG906lOay6kk6jQeGP70yU461bWICrNIP/n733jm7kvs9+PzODXgiAINj7cglye9+VdlfV6nKPi9xLnDjt5L0pTvLe5H0dJzc3duzEb5zEShzHLZZlFduymtVWK2mrtnG55HLB3nsFSXRg7h8DDvHD0LGd6yYLzzk8hxwMBr9pxO+Z5/t9nmdySMjCclyzTf/YISKxJI++1K/vwxrednQTV/rnuNC9Tn5Od05xz3X11Je7BUWrwu8QSNj0QpRUKoO/yKYrddUBp0GRUoHlSELPP7OaFX793la+87KooknA/Y916OSt1Gfjvbdt5jPfahPWW1hOIOVYg7TW+QwK1tR8lOu3lQvKZInHJoSGA+xpLmFrQzGPvCiWoabSqsGQYzWaYntjsUDgzCaZhZU4b9hXjSTBc+dGdZI+tRAlWOs19KNV+B285UgjSPD3D4r71lhZxEfvaeU7L/czMr0+9lRa3bDU7+SVCR4+3ofNogDrRKnIaeHvssctNxActIcT//xoO3lVvpgUmfOhGS73zfHG6+sYnFwWHE+v9M+xtd4nqLZlPjvXb6vgXI6pictu5sFjPXqswhpJLC6y8s6bmvT4gv7xMD63lY/c08rW+mJW7khpZEqCtx5txOO04HFaUBSJc13TXOye5cZdlUTjKf7j6S6WsttvrvHyift2sxzVTGzWylmPXRjlkx85oGc7tvXM8lLbmFZ6fKgOu0Xhr79+XieYJzsmeevRBp28gfag42THBG+7YZPh2L+eUDAxKaCAnyMKJiYFvB5RMDH5ifEr/f34ree7BTOJheU4NovC158JMb0QZXh6hYvdM+xrKeVTXz3HteFF+ifCnOqY5EBrKU67mdVYkvsf6xQ0m9mlGBOzER453qebLaiqSkudj5faxvjct9t46fI4L18eZ0u9D4/LSmWJk96xJaYWoswuxoglUty0u4q6MjeT8xFUtB6y7Y1+djX5mZiLoKoqDpuZm3ZX4XNbmQ/HKfc7sqV86yWNo9MrbKry6Bbpa4gn0jxzbpi5cJzaMhdtObEEALftr2Zgcll3+stFeDVBKp0hkcxQW6pll3UOiuWNLruZkZmVdWVRght2VgomJnaLwsBEWO85S2dU7FYT2xv8uikKQHONh6Gccs/VWIrtm7TjsFa+KUlaD1xuT5qiyFSVuIR9sFtNDE+FhTDw7Zv8hlK9Q1vLqCsv4kT7hHD9m00y+1pKhfUtZoXByeVsiLaKxSyTTGWYmIvQPx6muMjK+Kx4HIucWplqJoct2SwK7X1zzCxGhdJG0FS+ybkoU/MRYR9lCbbU+5iYi5BIZZDQlKvpxSgZVSWRyuCymzGbZM2MJtdsJ5VhU2URNotCY2UR6bRmqqPvqyJxaGuZfuwzGZWuoUWKi2yCqQvA+29vZmxWM2CpDjj52Bu3YLMoDE0ua9dJmYttDcVCEDrAfbdu5jfetAWvy4osS3QNLuhjrC9z01BRRCSe4qW2MeaW4rT1zFJd6mJ6IcLnHmyjfyJM5+A8oZEFVqJJ4UHCXDhGU7WHSz0zQtzFaixFTamLqoCLa0ML/MNDl5lciDI6s8qrV6dQTLJArlPpDEVOqxBrAbCtwU9zjZdfFfx3viMLIQsFFFBAAQUUUMB/ieVIgn/53hX+8ivneOHiuqI0vRDh5JUJJubWlYlkKkPHwBxjeaVda3A7RTMJJTt5zMXCcpxnzg4Liks8mdbVmo2IrYrKS22imvXipTHiyTQPHuvVyUp4NcF3Xu4H4MSVCd1GP6OqPH9hlLaeGT7/yGX6xsOMzqzywPM9nLs2zRe/10nHwDxTC1rm1UMv9nLDzkruPFhDc40HeQM1ZnAiLKhfa66Rw1MrPHtuhN7RRe4+VCdYqX/uwcuU+ezC+4ocZo5dHKNvPMxyJMn2Rj+f/MgB9rUEdDVxDZIkCT1i4dUk4Ugyqwhp2NZQTDItHsThyWUePzWo/+11WWms9Bj26UJoRugle8uRRoF8gHZduOwmlGzStN2qEPDYSGdy14mytd6XN3Z4/NQgn3ngkrGPLaPywoVRvG4rwRovRQ6z7q4YT6ZpqHSTygvoDg0vGtSu3tElIQzeZTczMRdhcj5CW8+sUM4roeUQnu6cZGhqBVnSgtRddjOtdT6eOjOsl2Hu2lxCOCLGGUTjKf7q1w9yw84Kw3H0uq0cbC0j4LEbgsXTGUimjBd5sMajh3IDbG0o5qEX+/SeSqtFodht47PfamNwcplIPEXfeFhXY3OxFIlzsXuWeCLN8+dHdMU3lkjzn891M7sY5VvP9+hlsfFkmgee6+b4pXHhwUnfWNjgiAkQT2Q2vCfWtnXu2rSwnUg8tWFZ8uZqDw0V63EfxUVWju6sZGJu1UC2BybCXOyeIZaTw9c5OM/jJwcMmYevdRRKKAsooIACCiiggP8S//PfzuhkaujZZRbCcapLXXzp8auoqjbRff+dQbbWF/O337yol3Tduqea997ezEo0yfnQNDaLwt2HagkNL+oT33uuq9MmiTn9VxIYsswAugYXePrsMC6bmZY6sRRuX7CUHywOC5Nhq1khEksJPT+APqGd3EDlau+bMwRXXwhNG5Si9t45ViJJzl1b7xPK7V9yO8yEcrLOGsrdhgyuSz1z/OPvH+V05ySJ7DHLqCpnr07zift2c7xtnIpiBy/mEdOO/jlOd0zwzed6SKYyWM0yAa+dW/ZWE4mlhDFpY50VHCIvdM8Y3C1tVkU/JwCLK3HcdhMmRSaVZV5uh9nQJ3e2a4qdm/xC311FsYOXL0/of5sVGXNeIHZGVTlzdQqLWUZVtaDrlWhKH0MqreL32NjeUEzX0ILea7a4HMfvthpI49j0Kk67WTB2sZhkqgMuJhciWEwKiytx4fXKEocQCwGwEk3ygTuCzC5FWY2meCknaD2jqrzj5k3cvr+GP/ink8L7LvfOsanSI/RKuh1m/vCfT6KqmqqWS5r7x8J6j2A+zSnz2Q0PQKxmhcs9s9nSTdjVVEJLrY9vvbAe6N03Fubps8OCA6c2bu39a4TXrMg8dVrrwysuslJbKuYhqqpGXPNz8RaW42zawPn0wJZSLoRm9Osk4LXTPbrIy5fHhHvC67Lw1ae7SKZUqkudhu0cbC1jeHKFoSntPmmoKOLQljLqy930jS1hs5jYvqmYLz/RpUd37G0O8PG3bOU/n+3WDWWKHGb+9H17OXdtmu9mH9YAvPvWzdy+v8bwua9FFAhcAQUUUEABBRTwQ3Glf87Qe/RS2zhOm1mfmKnAd1/uZ3hqRSAFL1wcZV9LgC9+r0OfcNeVu/l/f+MQr16bJjS8wMJynH0tAToG5piYiyBJcN3Wcm7cVcn5a9O6c6TXZSGUDfKOJ7QQ7Pff3swzr44wvRjlkeN9VJQ4BBIyuxTjK0910VghOk7WBFyoqmar/tz5dUXRpGhlesdznAUBakvddI8s6j1EoJk/5BOl2oCLPS2llPns3P9Yp/Da6OyK0JsGWlnhi5fGWI2KZGQlmuTLT3YxuxTDblUoclrITRhzOcx887luIro6kqG82MHRHRU8/GKv4JTYUFFkYAgZFWpLXfq5KvXZ2VRZZCiz6xxa0CflALfsreKJk0PCOpFYUsg/87mt2PNUr3AkyaGt5UI5aanPLpC+5UjSQDySyTTvvyPIxz5zXFg+OLlMa51PcAx1OcxUFDvpGpono4IsS8yF43q57tZ6n8HhcXYxRlXAJZRGOm0mHjneSyyRoa7cRT7SaZXHTw4alE+nzYTVLGMxyySSGaoDYiB3Mq3SXO3B67ZSHXDpKjBo98+Weh+VJU7a++aE7D+P00JliZMSj41X2jVSrKqaC6nPbYwnsJiNxXUNFUW865YmTnVMsrgS5+SVdSv/+XCc6oC4n1azQlO1h5ZaH2296yW++1tLaaz0cCEnY3BfMMDDx/pIpbUy0q2NxWxv8AvEEuCOAzVCP+jQ5Ap+j425rHp3w84KWut8vO/2ZibmI/hcVhori/g/j7Tr5/nI9gpUVCF38UL3DC9eHBPcQMORJE+dHuRCt1ie/PCLvQxMhHn7jY2UeF7bQeEFAldAAQUUUEABBfxQOCxGm3WTIhNNiJPtWCLN0gYlUK+0TwhqydDkMhd7ZnjkeK9ennXm6hT/60P7eP78KC+1jXOqY5Le0SX+4F07tZ6ijMrpzknOXl2f8GdUzXFvOqcnaGI2wq/d1MjTZ9bLLzsG5tkXDGC1rE/4z1yd0uIFDtYJStSuJj9b6ovZ31rKuSy58BdZuXF3JbVlLr70xFWWI0nMiowiY3AMTGVUJmZXUTMq1QGX4BDotluoLnUSiaeIxlPIEswsRvnGMyGsecfY7TDrZWnReBrUBE6bidWY9r79LaUcuyiqchNzEX5wdphnz627LzrtJj7xnl2c6pgSyFNZsV2YBE8vRDGbFBxWk06iSn12uvL66850TrOrqUQwWCkvdgiulAvLcerLRUXHrMgcz1ERS7123A4z0zkOjquxFNsa/XTkKHzJdIaPfeY4LrtJuIZKPDZu2FmJw2aie2SR5UiS+XCc+XAcj9PCfW/YzFOnhxjO6Z3qHFxga32x0DNoMcmCsup2iArewMSyQDKqSpwC8ZJliUxG1csac/u9KkpEAgeaqrxRH5v22RZu3l3F8+dHheVOu5k/vm83/54XswBaH97aGEAjkdvqi7nUPaN/dnONl+YaD994JsTsUoyaUiMpBVVX6GwWhQ/f3cKF0LRA3pprvNQEXDzwXLe+bE9zCQ6bWS9lVNFUcpfN6Cqbr2oDbKnzccueauxWBbvVxCe/co6R6RUk4JY91UzORwSSfuLKBPlupaAZ5OQj/6ETaL2eZ69OMTazwqc+enCD4/DaQYHA5eGBB77OyMjQj16xgAL+GxgeHkKS4NOf/qtf9FAK+BVFTU0d73nPB37RwyjgVwibqr1CaDNoVvduu0UIgq7wOwxxAGU+O0UO42Sud3RJsJxPpjKcaJ/g5ZxytenFKE+dGeZ9tzfTPx6molgsuZJlydAnBRrhyZ+85ZsgALxwYQxVRVAMz4dmuDo4z8Uc+/u5cJxTVya5bX8N128t55lzIyTTGToGFoQJvyxpFuhr/WF1ZW4qS5yMz66iyBLzy3Hml+PIWVOR3H2NJ9LsaylFQiNXZztFZ8ZoIk2wxktoZJGMCscujlHstjKfM/ZSn0jKQHNpnJyLMpRTuun32LhhR6UhbHx4akVQwJLJNLIsk86sT7zT6QyXetaPTbHbSlVAjBUAjeCbFZlkOoPVrNBQ4RbWmV6MUlfupo+w8B6rWaalzkcmk6F/fFm/RsKRJAGPjaVIgkQyw9RClH/9fid3HazFaTMJ5ZpLqwnMJhlHHokwKRIVfgezS1HSGRWPy0rf2JKwzi27q3js5KCwbFNFEW872oDPbePbx8R4ATWj8ttv3YbDauKzee6VM4tRQ37bhe4ZncisOYCC9iDg7NUpLnXPYDbJQo9eJqPye59/WVgGmtL2/IV1UlzkNPPH797N577dJijFh7eVc/9jnfp1OrsUE4i6SZHoHlnSyytjiTTtvXN0j4rndGhq2VBS2d43z+ZqsU8ynVEp9YnqliRpRD9XGQaoDDgJRxKUFXt4+sywfp+qaOr9dVvLyIffYxe2Y1Ik3A6TIdy9uMhGVdakKB+jM6vMLEYJeF+7KlyBwOVhZGSIUE8viu1Xx92mgF8eZNLaU9bekdkfsWYBBfzkSMcKBo8F/PSRzmQExz4ga6e+SmudF7Oi0N4/x/DUCsNTK1T4HdSUuliJJFlYjtExOC9MZMt8doK1Xr0cbA1aCLL42ZPzq/zZv57Ryw4byt2MZ8ss48k0L1wYFVQwSYLz16aECSpo4cK5as/aunMbmC+ERhaFSSZA3/gSt1FDWx5BWo4k+dgbt7ASTXKifVywmR+aWuZvP34dA+NL/Ov319WTjIpQIreGZDJNx8A86YyKwypOz2rLXHr56Bo8TgvlfgddgwuoaCV1xUViSZ3FLDMfjgpkcW4pRiaT0QnWGmJJkfQurCTY0xzQQ6JBK4/MJfLzy3ECXjuyJJHJngSX3SyUlsaTaZwb5PxVlzpZjWmqqMUkE0+u58YdaCkllRYn3l63FatFEVSt586PcuveKvLx8LE+JhfEY+yym4VsuPINcsRiibSgaAFcHZrn1WvTWC2K4WGELEu0982xuBw3kBNVRT8mboeZYI2X8zkPBlJpldv31xAaXtR7vhKpDGaTrJM7l91sMOqoCjgp9dpZiSbpySldDa9qf+eSN9BiDfID36sCTlrrfETjaVrqvHzh0SvC6yPTK4Z7Uc2oBlMSRYaA10ZXju7hsJq43DtLdcDJzGIMs0kmnkzzrRd6kGUJf5ENSdIeODz0Qi8q2rnZVGXsrasscSKxrrmZFInOgXlqylyYZBmX3czYzArfOzEIaH2GO5pKWIkkeSHnXOf2/4F273vyzJReaygQuA2g2Lw46m79RQ+jgAIKKOAnQmTohV/0EAr4FcTYzKqg9OSibyzMlvpiYdnEXISb91QLpVayBLfvr2E1mmRiPsIrl8eFHqEih4WZpQhel0WcgKoIPWODU8t88I4gX/1BaO1lQHOqG5tZJRJPMbWgre9xWliNpUinM7T3zenZU2tYc8vMhUmRGRhfMkzilyNJ2vtmqSh2CIHHNotCLJ7iuq3ldA0uCAROliXaemY3VCCdNhNFTgvhrGJQlDUHWfvISFyzW1+b8N57XR1/9fXzwqTa6TDjtpuFgrL5cFxX/bTjLnGl3+i+d21kSSBvt+6txmyS6RwQ151eFMlDft8XaP2Qa0RFAhor3bT3iaWX5cUOgcQrssR3s5lzdx6o4bm8ssEr/XN6yegaFFkyuDWqqsrUQkQg8T63VSBvNovCh+9q4Yt5PYnLkaRADswmmWfOrfdoOawm3A6zbp4ST6RZyqjCZ5lNMidyHkSsGb6UFdsF1XM5ktzQObWqxCmUjIJ2XX7ivt1ML0SZX47x/TxFcG9zgIaKIqGfbA0blWZKsmQglw0VRbzlaCOh4QWOXRw1EJyVaNLwECOVzgjlymtjXVM/y4sdyBKMz0X0+IOWWi/xZFrPLsxkVJKpNJ/66EHN3CXn8/JJpsNmYnx2lW2NxTqxDg0v6oqaSZF5zxs2C2WeybSKx2URFHRAUJFBO39Lq4mCAldAAQUUUEABBfxqosRjM5SCraHIadnQNGFgXFRPMqo22T3VMalP2mQJfv3eVh453sfiSoLz17SJ2PbGYlTgQEsZr14TSwlVFYOTI8Dmaq+gRoDmqphIZXQTjngyTX25G4/LyuXspC+eLWerL3czNLlMKlsaqcgSJR4biytxUmmVrqEFuoYWuPtgLeOzdqYXo8iSpth849luHjs5yEfuaqF7ZFFX/jIZlQdf6EFCK6dcU1lkCT37raHCzcHWMipLnPz9Q5eF8SuyxMJynKHJZfrGltjTHNAVKoDwSgLVeEoIeG06gYsl0py5OimU5UkbnJ/2vlnefuMmoaxvxya/HrGwhlg8hd1qIprdx8bKIvrH18sgVWAlauw96uifozrgpNzvZGo+ohvTADxzbgS3Y53Mgtb39f7bgzx8vJfxuQiZjMq14UVDyWxZsYO2nvUx+txWA1GPJdI4bGZDv2IilcZhM5HOqNr5n1oRyhQtZhlFEa/tRCrDR+9ppW9siWKPje+81C+8vrWhmHfevIn+8TBffrJLeM1mUSj12XUl2GpW+MrT13BYxfGWeGz8/UNtpNIqDptxmn66c1IndbKETvoVWeLps5qz5BoxNWVJD6z3a26t9/HGw/UMTS7z2QfbdKImSxJFTjPhSFJ4YLO1wUfnwIIQMr69sZiJuYigxq7GkgaCf2140aB0LUeTLK0mDAQR4GP3buHVrikkSeJK/yyns6XETpuJ67aV6/sCGqEc3OB/gSLJyHmE1WYxCeZGTpsJr+u1rcAVcuAKKKCAAgp4XSMYDJYFg8E3BoPBDweDwY+s/fyix/XLAofNzPvvCGLPm2iaFJl33bKZuw7WCSYch7aWbRiyu7gSF9SijAr942FDyZfNYqK52stjJ/oNVuo2i8L4rLGfrW9syTBxD3jtOtFYQzSRNkyYQZs0544tnVG5dW81+faNZ7um+ZvfPMT7bm8WJrTh1QS942E+81vX89tv3SaQWhVIptJ84r7d7NjkF943MLFMS52PhZW4kNMG2vFa6+lZWk0wOR/hxl2V+uvD0ysMTCzpWWsAAY9N6OkDjcA05uRolfpshoyxSCzFl5/s0skbwL7mgIEwSbIkHNN02sggzYpEa50PkyJhNctIwNDUCv0Ty5zpnDI4Yqoq3LavWsg3m12Kcf/3O7ltfw1qXllifbmbNx2u5+Nv3io4ZMLGNvcuu5nPP3xZIG9Ws8zEXITVWIpYIk3vWBg1TyJLpjIGAuVxWviPJ7s43jbO8+eNCtjiSpy//Oo5/vPZEHLefi5FEhzaUsaH726hucajK16ReBqrRWFTZRGHt5ezHEno5yESS1Fe7KDIacHtMLM3GGBmcZ00ZVS4aXcVW+p9YvkmcPOuSlJ5x+7dtzbxh+/ejdNm5mzXlPCejKqypzlgKJdObZBHZzUrhgc6kViK0jxFy25VDAY9lSVOvvBou5B9CDAyvcy/P3kVq0Wh3O8QMgNXYymiG5iS7G7yUx1Y74112kzcuq9aiAowKRLvurVJX89pM/HBO1swm4z/B15LKChwBRRQQAEFvG4RDAbfAvwn0ANsBTqBbcAJ4D9+gUP7pcLh7RXsayllJZLEbJYZmlymrtxNkUN7iv23v3GI9r45ij02ttRpk8nukUXOXJ3CpMjcdbCWMp9DsC8HhMnXGiLxlOD0J0nQXO2lb3yJWCJNz6im3pT67IRXE8QSab0/bE1pslkUBiaWDa6C0ViS0TxDE1mSiMXFnLi1cWiK1Poys0nWlAqH8el9Kq1N+Hdu8pPOC8lOpDK01PmEXrQ1PHlmSHe8BC2X697r64USVNAy69x5vWSReJqbdldy/JK23ZmlGCWI+Xkep0XIo5taiNFUJeaVba72CqVoAN2jS9SWriuHdqtiMAAcmloR7PwlCf2zfG4LB1vL+cGrw/r6GVWl2G0l1z7FYpbpGVnkd966nUdf7tfPTzSe4jsv9Rs8B1VVcxKcXohSlKfu2K0K565NIaGFWteUugzK7OFt5cST6bx+tAy7NpdyPqd3L5HM6PEIiiyxY5OfSz3rxyi8mqSyxMHEbAQ1e5yH8hShyhIn8USauXCMjv55OvrnqS11GQxJ4ok0v/nmrZgU2XCPyLLE53/vCIsr8Q1JY3mxg4UNgrotFuMUX5E10rQSTRoebmj7lDAsS6TSgjILWpl0Pnn2ua2MTK/o96DZJBONp4nGNcXRYTOxpc4nHHfQ3C27Rxb1hwqvdmlOp/nYtbmE1ViKtt5ZJODwjgp2NJUQrPPxatc0sXiK/a1l+NxW3nFzE7s3BxibXWFrfTElXjuHt1UwuxTF47S85skbFAhcAQUUUEABr2/8NfDhUCj0cDAYXAiFQruDweCH0chcATmwmhWsHm3is73RL7zmcVk5unNdHTIpEh9741bec1sziixhs5hIZzJc7pvVyIoEN+6s5MZdVQxOrujExue24sxTPVRVmwjnm3hsrvYYJrslHhtFTku21EpjXv4iraxufC5COJIkHEliNSvYrQrh1QQZVaVjcN7QJ/T4yUHseerB5HyEv/nGBT54V1Aoh5MkeP78CNMLUT50VwtHd1Zy/JJo8//K5XEOb6/g7NUpnZQEvDY6NnCO3NHo51ixQzDs2L25BJ/bJrg5WkwyI1MiaZhdinGgtZQr/XNYzArbGooNx8njNAuT8swGtZiT8xGdvAFU+J14XaJJioSW73XHgVraemaE/LyF5QQLy0ZiUVvmZm+wlGMXR+keWSKRzNDeP09oZMmg1oRXE9SWuRjO9lTJkkZSI1k1Zmk1obsPFhdZmQ+vq4+xRJryYoeBwMmyZFDWJGBgbAmzSabS76SixKGphVmkMyqVJU6BwAH4XFZu31/L7FKURDItRDiAllvWN74k9HEOT6+wpzkgGNmU+uwsLsd56sywUKIKcKC1lG88E+J4m+aamtuf6bCamFmI6Mcnd3sXu2eEEkuP08L+1lI6+uf4p+9eMdj6SxI6uVort1RkSe9fkyQo8zlYXInrTqsANaUuMhlVWFZf7kZVVb0XDjSFzmI2EqfKEgfdefe2ORvAvhbDsa2hmN2bA+wNljKzGEWRJYqLtAcVNouJG3L+96yhqdpDU55D5ms9+y0XPxGBCwaD/xv4JLA9FAp1BIPBQ8C/AnZgEHhfKBSa/uFbKKCAAgoooIBfKtSGQqGH85Z9DZgE/ujH3Ujh+3FjOHOs3BVZ5uNv3sa7btEc+9bUkw/d1cIte6pYWk3QUuvlxJVJIeAZoKmqiBfzCJG/yGYwX/C6rIYJ+/xynK0NxYzPrU+Y48k0R7aX80JOllo6oxrs/aOJNLs3lzA0uaz3BfWOLfHAcz38+Qf2caJ9nMdPDRKNp0mlVS52z2C3Knz4rlZqS1186/kekumMFij+9DU+/uat/Pq9W3js5ACZjMob9lXz7KsjRBPr+2Axy/yvL78q2Lwf3lbBO25uondskeNtYyRTGWRZ4h03N3ElzwRDlmBgPJxVP9KcvDKph0uDRlZWoklBUWnvm+fwtnJOdU5mCbOD2TzDiv7xMH/87l10DMzrx1wFPv9wO7VlLo7uME6iS7x2rttaxpnOddL66Ev9NFV7qPI76c5RBuPJNME6H+05SqCvyCqQkz3NAYOC47CZ+PMP7qOjf46vZc1t1rCRenRteEEoQ3TYTMTiKeay53doatng5gngdVoocpiFPLrF1QRfffoagKHEGCA0sqCTzVzsbwkwOrPCfDhGpd/Ju25p4rPfbhNIVX25/epkRAAAIABJREFUm0Nby6kucfDZb6/3R2YyKq11PmrLXGRUeC7HeMVqUbhuS5khiP7WvdXcc10dRQ4LD73YJ3yO02aiqcojRFCoKty8u0q451RVMyXJ37bdajIoj4OTy+xs8gsEzqTINFYUcapDfJiwt7mUk1cmBVVyxyY/v/mmrYSGFzCbFZqq1onYa9l45KeJH7sHLhgM7gEOAcPZvyW0spPfCYVCzcDLwN/+LAZZQAEFFFBAAT8jTAeDwbWwocFgMHgdsAn4sWtsCt+PPxl8bquh9K22zM32Rj9mk8LRHRUc2VGBIkvYrSbue8NmrttWweHt5fr6dWVubt9fw9tvbNT7tOxWE2+7oZG6cjGouLbUTaVfLNVUZAlfkVhqCBjUP9AmzPkunP3jYcyKzN6WgJBnB9AzqrlY+j02wekR4Py1ab77Sj/TC1Fml2J86/letjf69X2Q0BwCcyMQUmmVLQ3F2KwK33imW5/oZjIqoeEFbttXI/SP7Q2WMpMXj9BU6aGuzIXNolBT6hR6o9ZwdWhe7xMbn40Y1DCH1cSZq1O865ZN/NpNjcJrw1MrTM1H8OcQHylLJG/fX8v7bm8W1u8dXRL2cQ0zWfdIWZbY3lhsCIa/NrxAiUc8b9F4ij/+l1N864UeQ8/elf55nbxZzDLXbysXyBvAoS1l5B+OdEYVrtGqEidPnhnSyZsiS9y2r5qxHIU0Gk/TXOPBX2TVydzl3jl6RpcEc499wQBffybE9EKUVFpTrrpHlwyKWFOVh9v31zC9aFQx68rcvOuWzUIIOWilmBuZgwS8drwuK9F4iqVV8ZhG4+kNzVI8G5h8BLx2Q+9adcBJbZkrb5mLtxxp1HMhJQneerSBm3ZXcdPuquy9rfDOm5vY2lDM7719Ow0VbgJeG2+7oZHD2yuQZYnW+mKBvBWwjh9LgQsGg1bgn4H3AC9mF+8DYqFQ6ET27/vRnjIWGr8LKKCAAgp4reBLwBHgUeAf0L7jMsDnfpw3F74ff/owKTIfubuV993WjKJIet/OR+/Zwt2H6oglNDdJSZJ4w74adm8OMDG3yqYqD3ariQ/d2cL93+9kbGaVCr+Dj9zTitdloW98ib6xMBazzDtvbuLQlnJOtE/oOVvlxQ7uPlTHpZ5ZIXvr8PYKVmMpoWfMZlH47X94CbtFwWU3Cw53JR4bGVXdUCmwmBXBuQ80hfBtNzRyrmua6lInTrsF8soqx2ZW8DotQikeaI6c4y/06CTFrMgc2lom5LABIKGrIcPTq5hNsuDKmFumuAarRaHUqzlumhSZSDzFK+0TvNI+wZEcMr2GhZU4f/7B/Tz4Qo9WJqrC1aEF/u5bl7j7UJ1hfS2AWetRlCSNHExkVdJMRqV/PIzDamY559iaTQoBj414Mk0ylcHnturvSSQzyBJUlDhJJNOU+ex0Dq7HIiSSGaQNkt+dNrOhfHZocjkn4sHCkR3lfPvYeudeOqMawuJBu4b+9L17+fjnjgvLFVniI2/ais9tZXxuVVAR0xmV6QVjLqDDZuKfvnOFwcmwwUHzTNckL1wcxZ/3EMJiltlcbcxYDHhtfO7BS3QOLhhcYw9sKeUN+2q4EJrRjUmCNV7uOlhHR/+8ft1XB1zctLsKn9vKN5/rZjWWornGy5uONLASSXL/Y52Mzmg5kB+9p5W6cjd/91vX0zO2SJnPod8PH7gjyH23NiFJEqasy+e2Bj/bGsSy7AL+a/y4JZSfAv4zFAoNBIPBtWW1gB7dFwqFZoPBoBwMBotDodD8RhvZCH6/60ev9HOEeYP63AIKKKCA1wrMZoVAwP2jVywAgFAo9Omc378eDAaPA85QKNT1w98l4HXz/Ti3GGV4apmdmwPIssRyJIEEuDYw9PhZYaNrOxBw09IUEP6+f0sFq9GkECD9+T+4men5CC6HGUe2tPMLf3wzZ7MlXQe3lWOzmPj07x3lOy/2MrsU5cbd1Vy3vYLdW8r5wkNtdA8v4PfYdOUlEk8jkaYq4NSXXR1c4HPfvsz/81vX8+7bgjz8QjfpjMrmGi/vui3Imc5JQfFJq1pZIWj9UbWlbjwuC0tZd05Flvj+yUG+f3IQt8PCcmTdaKK61M3lnnUykExnGJxeZXtTCVeypYg+t9VwjpKpDPccbuD5V4eJJ9NMzq0aSg3NJoXdwVJa64v5zDfOC+8PjS7hdVtZzFEmZ5ZiXO6fx5YXQh6Jp/B67XpGGmjk7ezVKf04WM2KwYJ+NZbi7bc08Z0Xe/Xer4XluO6y6XaYKfM7dQIHWr/XB+9pJRJLcblnFgbFXLstjX7OX5vWS0CdNhOySRFy7IL1Pq7lvC8cSTC1ZMxB3FxbzPD0im66IssSoZElPvfQZWwWE4nk+nkqclpo3VTCs2eHhD69NVSWuvGPrPfK7WgqoWNwgf6chwYlHhsBn4Pe0UUWl7VtT85HKPHamV2M4rKb+c237WDX5gBPnB5keiGKBNy0t5r+yRWdzCaSWoj77mCAYF0xb7lxExazwj9VejnZPk5xkZWju6owmxQ+9z9u5ErvLOmMys7NJSiKTG21jzuPNLIaTeF1ryuuX2wtN9xzANVVRkfanydUVWV2MUaR08yVvjk2VRXhK3rtl2H+SAKXLSfZD/zpz2IAc3MrBsvSXySSSaMTVQEFFFDAawXJZJqZGWM2zi8Ssiz90pGRH4ZQKDT8o9fS8Hr6fvzS41c53akRHbMis7XBx+W+OWRJ4sZdlbz3tmauDS/y0LFeFlbiHNpSxjtu3kQimeGxEwP0j4dprvHyxsP1WM0KY7OrvNw2jiJL3LS7klKfg1gixZmrU0RjKfa3lgqGA4OTYS6EZvB7bFy/tRyLWZt0t/fOMTkfYWeTn4qcMslEMs3wtKYG5PbhScDqcprVHHONLTVaidbyUpS1O+fN168rRjMzyyjA//i1HQB88XsdQumciubimLusa3CeH5zsp7TIyv6WAF6XjTcfacBqUbj3+noePzWIqmpmE6sR0flveHqZP33vHkZnVjh7dUro6VuOJNhUWcTI9Ap2qwlFMl4f/aOLdA6sPydw2kxU+h3COhLQ0TujE5lESsVuUZBllUQygyJL9I0t0Te2xBMnBjCbxF5DsyLz+2/fweOnBrnSP0cklmJ4cpmvPnmVzdXGkreHngvp5M1qVti5yc+rOSphLJHG47QIx9BuNfHosV5AM8qo9Ds527VuLLIcSeLM6zuzW0189psXdEfDXGWtxGPjxKVRfT8UReKdtzTx1aeu6f15Kmj6ex5sikSl36H3UTpsJp49O4TLpnDjrkoWlmO0980zNR9haj6Coki6aiZLEjfsrOCP/vEVgcCukeX6cjcvnh8RynQDRVahFxA0IvKm6+v49AN5Iek+O7/39u3YzAoBr50vffeybq6jAhevTePPKztNpjPcfbCW2jI3S9mwdhNwY1ZZXcxRBCt92nvn51fJx0wswdDkMumMSmM2viGyot1bk/MRzl+bxuuycnBL6Y/l/Ng3vkRn/zxVASe7mwPIkkT3yCIn2idw2Ey8YV81JR47Vwfn+f6JAWKJtF6WOTgZ5us/CDE+t8qOTSV86M4g4UiSLzzaLpB8gFv2VPG+24M/ZBQ/f/x3viN/HAXuRqAFWHu6WA08A/wjoP+HCwaDJYD6kzxdLKCAAgoooICfN4LBYFcoFGrN/j6CwRxdQygUqv0Rm3pdfD9OL0R18gba5K+tVyvxS6sqxy6OEaz18ZWnuohlzTiePTeC12Wlb2yJC92aQtQ7tkQ4kuDe6+v566+fJ55d95X2cf7yIwf4/MPtuuvcE6cH+fMP7KPC76RjYI7PP9SuqyTnr03zR+/ezVee6tLdFR99qY/ff8cOtjX46Rtf4v883M5KNInFJPPhu1s5uKWMZ18d5mTHJEVOC2892khjZRGDk2GeeXWEVDrDLXuqaa3zEYmleP78CFMLUfY0B9gb1NS9SCzF0NQyjZVFQomixSRvmC13uXeOs1fXCcfozAp/8K5dvOVoI/4iGyeuTBDw2IQSQdBIxyvt45T6HHqJWS58bit942ESqQQXu2dx2k2sZsOzXXYzkZi4vdGZVT54ZzFdQwt6EHKF32HI34sm0nzud67nYvcs38yJMNAm56Id//jsKvc/1smH7goK+wgwF45RVeJkbHYVWYJgrZeuoXWXwXgybehVA5CRaKgsIrySwOu20De23t81Mr1i6H0DdPMMSYKKYgcOu1m3/l8b+237avC6LFQHXPzDw+tmIOm0ysXQjOHmN5sk3dkSNAL2g1dHcFgVbt1bRTqtcrxtXDcnGZ5eZcemYmEb6bTK+27bjMNmZlOVh+OXxgTb/VRa5c1H6mmp8+GymfiLL58T3t89uojPbRUy/bwuKyevTBrKPSPxFH/5H+fIqCp789wtQXPq3NlUIgSue5wWzl6d4pvPdbOp0sMbD9djt/5wSqCqKk+cHuLUlQmKnBbefuMmNlUV8Y+PXNFNdDZXe/jDd+3CYlboG1/i09+8pO/zySsT/Ml79/zQ7QOc6ZzkS49f1c/HTburuH5bOZ954JJ+75/tmuJP79vD5x9u17f99WdCeFwWHniuR1cwz1+bxmE1sbgSN5A3gGMXx3jLkYafa/XATxs/ksCFQqG/Jaf5OhgMDgL3AleB3wgGg0eydf4fBx762QyzgAIKKKCAAn5q+FjO7+/7727k9fL9ODgZ/pHrXB2c18nbGrqG5ukYEDnrhdAMAa9dJ2+glco9cXpQJ2+gGSu81DbOu2/dzAvnR/UJnPZZC3QNLnAqxxo/nVH5wdlhtjX4eehYr96TlkhleOD5buKJNA9m1RzQzDX+7w/s5dPfvKQrMm09s/zFB/fxn8916yTgdOckH7m7Fa/bwj9/p4N4UnM13NdSSt+YlksXjac4fmlcUFXsVhOTc6Ji0TEwz9xSjKmFCF/JOhf2jC7hsJp0wiBJ2r6sEVN/nhtihd+hZ67pxy+a4qZdlVzsmcG6gcqhyBIlXjvmHDI4PhcxOC06rCY++2AbzdXGkrfN1R4+cEeQz367TS/tHJ1Z4aFjvYYeQLMi65byGZUNe8VsVoXyYofeayhL0DE4nz12CjfsqhAIHGiqld2q6KYxFf71mAVVhenFKPU2sXwPNDv5gfEwnQNzhtccNpOBKA1PaWRxZ1MJgxNhhrMlkpF4mhNXJtm1SezViifTQpj6OiQePzXISjRJRZ4CCtA7FuaJU0PYrYrgEgpQFXBR4rFx/NI4K9Ekfo+NvvEwfVkSZlIkJEmipdbLlf71e+xC9wwttV5yfSLdDjNnr673xJUXOyjz2Xn6rFZs0DO6xPxyjI+/eZswvtnFKPFUhqoSJ6+0T/DdbDbj1EKUf3j4Mu+7rVlwQO0ZXeLM1Slu2FnJCxdGBcIaGllkYCJMQ8V6yHpGVbk6MM/CcpydTSU88+qIQKZfuTxOOp0R7v2llQTPXRgxZNCd65o29If2jC4a8vZyMTq7SkvtrzCB+2EIhUKZYDD4fuBfg8GgjaxN8k9rYAUUUEABBRTws0COuQihUOiln8H2f6W+H3c3lwjZU/mQJDi4pYyTVyaFiVVDRRETcxHBtMNhNTExayzFslmMxGNqPsI3ng3pSkguFGOmtD6+/IncciTJ5V7Rej4ST/HChVGhLDCdUTl+aUxQcABOtI+zGkvp66bSKv3jSxzeXs4Tp4b07SkyXL+9nEQiTXGRjZ5RMdtKkSXiiRSvdomKVSSe4uN3bMHjsvLUmSFhQj4XjnPbvmpevjxOPJlhPhzD7bAIpKjIYc6xdk8ysxQTSJWqwvdPDhiI30I4zluONnClb46BiTCReIpIPMXEXITKEgfjs+vKxfMXRpGQdPK2hpGZFZqqPPqY7VaTYLYBGiHKDVQ3KRIvtWmEwu+xsqOhhBfb1u3qo/E08URaUJokCS52z7B2ecmSdi3lIpVWKffbBbOZ2jIX93+vQ79WbBZFf9AgS+tB5Kl0huGpFSbnIyytJlhaTTA+F6HMJ/ZKxRPpDb0SenPIpkmRuPNgLQ8eWzeXWY4sCREEZT67Xua6klVP115vrCiiY2Celey62xqKMZtk5nLuo1Ra5S8+uJehyWXhegGNsJUXO5hdilJV4iKeSoth9vEU1/Jy185fm0F9k4okSaiqyleevsaJrBFKS63XcKzjibRwnNewRoQljIS2vW+W3tEl9rWU4nNbuf+xTj043W5V8LmM0Q0uu5GQ15QaSw0bKosIjSwKRLyxsgiLWeHFi2OG9U2KTLDmF9ub9/8XPzGBC4VC9Tm/nwK2/zQHVEABBRRQQAE/LwSDQQvwIWAXIMwMQqHQB36Sbf2qfj+aFUULBM5ZtrXeqxl4SBJ3HayjpdbHR+9p5Vsv9LAcSbA3WMpdh+poqvLwxcc6icZTyJJGruauxoTJeUNFEW86XE/X0KJeEmdWZCGXSpYk/Um8SZH4wdkRdjb5udybk10FTC9EONBSxg9eXW9lDNZ4qS51cylnXUmCmjKjIUqJ1y58FmgmLbmB2qApAYMTYq9pOgMum5lnc5TB3P1MZ1T+4j9epW6Dzz2xVhqXNpLkkekV4ll1Jp7MQCShK1EWk8y2Rr8hW2tfMKCTuoyq8uLFMUo8NoFMlxbbueNALZV+J//yvQ7h/bWlbo5sr+ChFzXnxUQyw5NnhqgscTKeQ8D9RTaBQKTTGYMlvUmRuH1/NavRNOFIQhjr3FKc1bhY8glw9uq0ftxMisSezQGhZy6jYvgcu0XhRPv6tuvKXDhsZoHoxxJp7r2+jkvds4zNrjKe/dkXDFDhdwjuo9F4igq/k8GcjDObRdGJDWiB0yUem1CmZ7Mo1ARcgiEMQEudj0Nby7GaFU60jzO1IObs3XdbM9sb/HzvlX76c+IBOgbm2d5odGj83iv9TMxFDA6VF0IzujlMPJk2xDWEIwkq/U4heNtpN/HIS33saPSTURH28drwIjvyPl+StJDy0x2TunPlmjLdO7bExNwqEgjE+bETgwA8dmKAj71xi07eQCPttaUWpPmIvi83767i9gO1XOie0Xv69jQHuHFXFQvZ0PN0OsOeYICbdlXRUFHE156+pvXANfp5581NWMwKiiTxSvsY8WSuQY+0oSPpawn/bQWugAIKKKCAAn4F8DVgJ/A4MPUj1n1d4kL3tGEy2jm4iL/IRk2pS8+AOriljP2tpaTTGd2wYFujn7//ncM8c26I770yqL8/nVE5sr2CA62lbKkvRpYl/uy9ezh3bZpILMUTpwZJRtcpoyRBmdfOVDY7q613lq31Po7sqNAnm6HhRT77YBt//bEDmE0yz54fIZ5IExpZpMLvoLXOR9fQApKklZFV+BzsbQ7oPXpOm4lL3TPs2OSnLWsgYVIkZhejlPsdQg9RfYWbyhKnUCLqsJq4kJfVrigSh7eX8/JlbYyqqoUcB7w2PY/MpEjCdnJVomCN16BAxpMZbt1bzemOCawWE26HUaUwm429czVlLmwWk16qOjUf5U++eIqP3NNqWNdmUQxKGkBDhZtYIkV4NUF1wIXLbhbIbSKVYXdzgJHpFZ2ApdIqj740AGgB1vmIJ9KYTbJe7lZebGdyfp3cpNLqhk2qizkZcf4iG1aLQjSHlAxPrbC1QexNk4DD2yp47tyosPxi9yy3H6gW15VgKFs+bDHJVJe6hGsA4Na9VVzqFs1GVqIp/B679tAjZ+CbKj1U+B08dXrI8EBAkSXae2a53DPLSsxIaO1WRXgY4LKbBeLsdVko8dhRZIlQjro2OR8RrnHQrqnyYgdz4RixrNK5HEny9Jlhnj4zzA07Kgyfr21fewCgyBK/dtMm4sk06YwYvu1zWfmbb5wXshG3N/qFUstIPMWZTvGBA4DbaeF/f2g/nQOaiYnFJPPlJ67icVrY31LK7s0B3SjlLUcbueNALclURs/ra6ry8Fe/fhBVVXVytrgSZ2I+IpA30Ahjfknnaw0FAldAAQUUUMDrGXcCDaFQaPFHrvk6Rd/oxj1wc+EYc+EY88sxPvnhA1zpn6N7ZJGmKg87m0q0dZZitPXOEl41Tkoj8SQXu2dYjaU4uKUMi1mhOuAiNLKIKc9S3mZRDIpFaGSRzXn9WrNLMcZmNDUkt8/ueNs477utma6hBVQVJuYi/P3DbXz649fzhn3V/P1Dl1mNpfQeow/cEeTZc8NMzkf1HqjWOh/RuGZk0jcWpm8sTLDGy/RiFK9Lm2Q+e25EGI/ExuWht+yporHSw9DkMg883yO8tquphL7xJWYWY4RGFg3h4gGvnRcujGaPYZpnXx3hyI4KTl2ZIKNqhLDIYTEoiVUlLu67dTOf+OJpfVk4kuTVrmneeXMTj53o15W+423jlBcb+7Y6B+Z185PByWV25PWDyZLEmc5JKvwONtd4aeuZYWE5Ibw/t7zTYhKVVglN2XkkG6uwhtVYUugxrCpxMjK9ToLmwjFDaZ0kS9y6t5rukUVdJVKBT33tHHar6Krpdpg5llNqZzXLWC2K7jqZSGU2KArU+sFcDrNwbdaUuvjOy306eVtTq45sL+d//vtZoQzVbjVR5DCztJrgdNYMRsq+Z+3UOe0mXu1afzDQVFUklGyC5mL4m2/aykMv9pKPhooiqgNOBiaXyWRUOgbmuZY1s7lpZyXHL48L6/dPhIWePCm7n2vqbTqjMjARpr1vjtxWtEs9s7T3zRqC7aMJYw9kMpURFGFZkmiscGtqX1MJNrPCn/3bGb0ku3d0yaBCDkxoPYHBGi/N2XLI3rElLoZmKPHaOLK9gm8+1y04suZiej5SIHAFFFBAAQUU8BrFMGBsvihAR7Hnvz48w1MrfOelPp44rUff8eYjDezY5OfTD1zUJ4K5KotJkbiYVS6Ot40ztRDB67Ly1ay5Rz5qy9zMLEaFEkC3w0Isb3IoS9A/FtZLrnLRlmfLnkhmuDowDxIGs4Oe0SVBBQLtab7FJCpTg1PL/P6v7eALj17Ryw3zP2Ot32sNkgQPv9iH1WLi6AZqRyqd0dU50ExAtjUUE44k8BfZcNlNzCyuj00FViJJnTCk0irffXmA9962mSfPrOeOPXFqkIlZMawbILya4M57a/G6rPzb45368sn5CPuzJXHJVIZDW8t4/ryoXMXiGvk+1zWN3aqwGkvp5YQTcxED+UykMmxr8NE9uojXaaGhooiTOSWVKrASS2G3KESzBNxqVrial+dW4rEJJYAArbVexmdXdZUqk1H58pNdvPWGRgYnwpzNkqBoPE00nsZhMxGJpXDaTMQTKcFEpKGiSCc5a5hZiurvWcOV/nlSOdf0rqYSasvdfCeHgKoq7A0G6B0PG3oId2zys2OTny89flU4BvuDAYocVtwOM8fbxB6u3rEwXpdFcBE1KTKfuP8UqiqSPwl45KU+TIrMb7xxi+AuCnAuNG1wtVwb8xoObS0TCCRoZK2+3G14z+QGgeRWkyz0/ymyxMWeWf33fS2lSKDfP7IkccOuSqGfVgUu9czoRO3xkwN895UB/fX3vGEzJR47X3i0XVdrL3bPGK6RXPi9RlfT1xKMGnsBBRRQQAEFvH7wdeCxYDB4XzAYvCX35xc9sF8W3Liz8r983ee2GiaZz54b4dlzI8KkOJnKcNv+Gt58pAE1rz7v+KUxnjg1KCyzWmS9nKtraIHZpZhupiBJmmHCwMSy7gAooZWsffP5btr7RcdBi0mm1GecsAV8tg2VpuqA02CrHvDaDWpCMpnhsVcGiOb0GZlNsl66p4Ku9NSXu6nwO1BVbZzReIpnz40IZYVaJIHx2brFrCmQl3pmDaYVAPGkOK6MqlJcZKOpSsxku9A9a3BEvDq4wP/1TyfoHDS6NKbSGVajSVaiSc51TRvcFpejSSZmVzm6s4IDrWXCa+mMSkOl+Plel5W23lkisRTjc5ENJ9gvXx7XyZsE7G8pNaxjyVM1ZUkjh3/0rl3syqq/ACvRJI8c79uwBPPdtzbxyQ/v5y8+tI9YUiTwiysJQ2yBqqKTN5tFYWtDsU7eQCPO12+vEJTfNfSMLtE9YhT5F1fidPQbj7vZpDA4GeZS76zgHgoaoc293ko8NqYXojrpUlVorvHicVn0/U6lM3z7WK+BqGVUuHXveumoImu9YbkPNM5d05xjc+FzWw33h8Uk8/1sn9tae5nVrNA5uEA4kkSWtHLi3DGkMyqxeEqI5cioKteGjNf46Mwq3z8xwOJyTHfQXMPTZ4c5dnFUOM9XBxeoCWycrWY2SWyqNOYVvpZQIHAFFFBAAQW8nvG7QBnwN8CXc37+/Rc5qF8mmE0Kv/u2bVhMMhJQVmynJqCFZvvcVn79nlaUvEmmZshhtPCWJYjEkoZQX6tZ2VAFGJ4WjUKi8RQ37KoQFIJ0RuXGXZXC5C0aT7FrcwlOuzbJTKQyvHhxnLo81eBfvttBJqNy54FavUROkmBxOc573rAZS7aU06RImBSJg3kkpaXOSzgviDuZyuifm4vbD9ToCkIuinKyqBKpDCeuTAjue1azQsfAnE4MFlcSlBc7BDKVW6YI2vE/0zklKHlreP/tQe65rk5XUDKqytJKglNXJoVyT5Mi0TW4oJcfLq0mKPXZ9c+1WhQm5iIMT6/wUts4AxPGUtvJ+VVMJpkyn53339HMfJ5D6Mj0sn5MZAn2tZYKCpcKBpUVYEudj4+9cQu1pS6kbK/Z8bZx/uWxDsPDgXRGNTgcKrKEv8jO134Q4s/uP2Moc40lUrraK6EZouQ6OcYS6Q2v71NXJoR+s7XPevL0EE/mKNRry0PDi5zunCKXF5f57JzumKRvPMzQ5DIzSzHM2etQliVS6Yxe6grQWGE0xTGbZEOsRziS4KbdVcKyO/bX8JajmlrusJnYXO013IepdIY3Ha7Xey2dNhMzC1Has6WvboeZ3ZtL9OsEtHv3tn3VQplqRlVJJI3kNpFMG/otFVnm8PZynQhKklZ++70TA3zqa+cN21jb53ySx2l0AAAgAElEQVS89WgDOzf5UWTNGElCM7/5/V/b+Zo3MSkQuAIKKKCAAl63CIVCDT/kp/EXPbZfJhy7OEYildGcHuejvPloI5//vSP83W9dT2t9MfdeVy+sf+91ddy6t1ogGTaLwjOvjvDc+VGDSjG1EDXkAhxsLcOUR/RkWcJuNpIj9waBvBaTrAdcg7Z5n8tKIKd0anElwTeeDbGnOaB/vKrCcxdGsZoV7rlOy2NPpVUuds9ysXuG33nrNqqzBPbq4IJgXQ5QWeKgsVzsrZEkLXuuKvs+fX8kidU804qMqpWtBTw2ihxmDm8rF5TMte3lTrQn5yMEa7wUF1kxKVpJ3NmuKQOpMikSn3/4MsuRJGV5yqOK1qvlcVqwWRT2twSI5U24VRX+8iMH+OSH95NKia8NTy1zeHs5sqSRXatZZmo+SiqVYWohyuRclKo8RcTtsOjKVEbViHM+qgMu3ntbs1CO+fUfhFjOBlTnTv6XI0mDMmQ2yZzqWC9j9Xts/O7btvPtYz0MTISzJDGNz22lsbKIXZtLhPJEFajewLq+2GPDkmMW43aYOR+aYTJbQuqym9kbDBis8G0WhbcdbRDOX0aF67eV8yfv2c1Nu6sMiuHNu6v4nbdu4zfeuMVAsMKRpEFFDnhshgzB/S2lnM4pV3XaTNy0u4pvH+ulvW+OSCzFteEFonmuoP4iK//xVBexeIobd1XSWu8TxrccSWK3GO9J6wZxCx6nldY6n/63BOxoKmH35hJhvfHZVU5dmWTX5hJu2lUpnOPFlQTb8sxp7jxYy92H6oTzcWR7BQ2VHn7/HTu557p6kmnt/1ckluLBF8S+09ciCj1wBRRQQAEFvK4RDAZNwPVAFTAKnA6FQsbH/q9TTM5HhB4kFXjqzBB/9O5dJFMZrBaFW/dW01BRRPfIAvUVblpqtQnW//7Qfs6HNEv4XAVCRVNRRmdXCWddFhdW4tSVuagKuGjrneWV9gmsZlnIoHPZNcOHIqdFf1+pz040lhT6gkyKzP5WY++OSZGYWxJJwuRchP+PvfcOj+O+r34/M7O9L3rvxIIk2EmJVG+URTVLltzlWHacN7ETyyn2fWMn17nxfVNvurvjbstWLKtavReKpNgrgCXRewe2YPvuvH8MMNjfDpzXSW4eSeae59GjB7PA7OzsLPd35pzvOQNrlJUPTIYNtrex2SVsZoWxvBTBRCpLW62XSCzF1EKc8dkYP3+1j8s3VdE1uEAomiSnwvNHR3HaTOzb3cCLR0dJZbSS4sJACtBKjFdUlpdOjFHitjKfR24qSxxCdD2A32Pl1sub+PsHTgrb1zf6KfFYOXhuajkEROW1U+NsbxcTIWVZYv+ZCV25OXhuWkjLBC0s5E+//Sbr6rxU+MVjcDssoMKHb1xHU5WH/7dAKQmOLFDisTKyHArjtJsMYTW9oyE2t5bq6o4ia3a+67bXcuLCjH4dqsDDr/dz22VNhnO3UjwvSZq90GZRhMCTZCpLe72X4SlxHjCZyvK5D2zjyUODnLwgzkuqORWzIpPOrs67HeuZ0Yl1damDpbhIfKLxNL95y3q+8K1DwvZcTjW8boASt5XZUMJQYA4wOh1dDq5RsZhkQe1aSmRYjCbxOi1Ulthx2fJ7AbVzcN32umUiOyn83aFzk5wtsOQuRFL8xrsCXBgNoaoqh7pWw3lfPTm+ZqWBz20RjstlNzG9GKPCZ2d6eV7TbJI51TdLqcfGvksbSGVyBIcX+LeXtOCV5io35X47h7undYJ44vwsOwLG5NI9G6u4aksNAxNh2ut9BBr8qKrKn3/sEnqGFyjz2dnQqG2bDyd5rSCoZXRmiZnFuMEa+k5CkcAVUUQRRRRx0SIQCHSgVQjYgRGgHkgEAoHbgsFg91t6cG8TxOLGBMn+8TCf/qfXkSS4YUc977uujdlQnGcOjxCJpdjeXs4nbtlAXYWLugoXY7NLBguZ22EhvCSGU8yFk8iyrNvokukcfreFqhIn3UMLhJZSHOqaorXWw91Xt3L8/Awne2d5cUGbwdvY7Ke6xMlsKM4Pnu7BbTcTia+GJ4zOLOFxmgWFxW41caxHJHqgJWg6raJ6YlIkRmeXDAqJ1aIwMCEWLc8uJrh5d6MQHLGUyBCNp4UF+GwoQVOVm+GpKGaTzI5AuaHXrbHSTYXfTnBkEVWF072zhoX84ETEoNSBRnq3tpXxxhlxn7FkGqfNxFIioykhLaWGoJeqEicbm0sZmY4wNBnRZ6MujIbY0lZKLJEhtJTCbJIJLaV44+wkb5yd5PYrmoXybgCbxST09i3FM1T6HczmEUS7VeHjN3fwx988pNkUcypPHhqi1GvTCfsKUukck3MxgeB7nBY9fEZVNXWqsIA+Gk9zuGvaEATid1v5/S/vJ5nOCkEgJkXiwLlVElPhs9NQ6eJocNUqOTEXo77CpQd1gKZw/fE3DxKNifeCVLTAjvzn8DotTMzHhCAgWdJ+N1DvoyuvhD2by1Ff4SKezCyTU42IJlJZ7FaTIa11MZrihp21PHdYTEgFiKeyuBxm5vKsrU6biePnZ/C5rAarM2jzof3jIb1MXpLgqUPaTNqGJr9G1HrnONytnZ/GKjeVy8RsZjHBzGKC0Zklbr2skRePrRLrgckIDWt0JPpdVko9VuaWw3jKvDa++1Q3mazKdTtqaa/3caZ/jh8+08NcOElncwm/ddsGxmaX+OrDZwznYwWF18U7DUUCV4BQaJFsYpHY0Itv9aEUUUQRRfyHkE0sEgoV/1n/D+JrwLeAvwsGgypAIBD47PL2a9/KA3u74Lkjw2tuX7FyPXN4mKZqN99+oltPjjsWnKG6dIjt7WU8/Go/i9Ek9eUuRpY7yEyKxOJSklKPTVg8bmjyG2K/FyMp5IJ5lb6xMJ++azM/fj4obB+dXqLS7+BkHlHwOMy01Xo5fmFWL2q2WRS8TgtTC3FCSylCS9pz+N1WFqNJsjmVw93TyBLCQj+TVfm3l3qFmHXQLGtdBQvCWDLDXMg4g7YWySrxWAktJVmIpJhf42+aqt2aMrH8FDkVLGaZjkY/w1MRFqMpJudjTM7HhJh+CTjSM83JCzOGtMFoLK0vwlWge2je0F0WjaUo9VjZu7Oebzy2mlAJmnXuSx/fxXw0xZe+d0R47MCZCTqbSzi4THx8LgslbmOaaWdzCRNzMT2Uw2JWePnEuGF+63TfHDVlTqE/rcJnFxIsHVYTpR6rQPSSqSwbGv364h80q+MPnl29bhRZoq3Wy/mRRcFGW1/hoqXGw4WRRb1OAGBmMU5LrTF+vsJnZ2o+RiqTw25ViCUyAtFf3+hjZiHB7PL1rqrgtpu565pWAg0+g1JXXerkf354Oy8cHTEkYu7ZWMVNlzbwx984KGyfnI8ZVCWzSeJP/vVNZhYTwvvrspt54sCAUAXgtJtYimf0XsJC+yfA2GyUza2lVJc6OXhuUlBh+8fDVPjF5x+ajBhmDKPxNEOT4nzryvPnE3KtwiBGbbmLXesr8DmtPPDSalXC04eGqSt38ZPnz+vX8tmBeR5+rZ+p+dgvJW8AR3umuOWy5l/6+NsdxRm4IooooogiLmZsBf5hhbwt45+WtxcBuNaYLytE9+CCEPsN2szX3z9wkrMD84zOLDEyE+WGnXW01njIZFWCw4vMhROULc96+V1Wjq6hhFX47QYlwG5ROH1hFpMsLmPMJtmw2A3H0oL9EDS1ItAgBorkVJVt7WWG2aSOBh+37G4QfjeVzrG5tVSfy3rl5DiWgpmf0ekozxweFgIqVgJJ5LyNsgTnBhb0IJKekUVaazzC/ODh7mnDrF08meW+uzbjtImL7Gg8zX13baKyxK4TiHRWxWpWKPfZMCkSgQaf0BEHmtp5+xXN2K3a65BliYHJCK+cHOc7T3Thc4nXwcxinM98+Q2++dhZQyqkSZF18gaaClQYMiFLEldtqRFskKFoiicODAjnDGA+khDssJ3NJXgKCsxjyQx1BTN2dqvCiWU7pCTBppYSQRUE6Gj0c+vlTQZVtcRtZUtrmSGgR5YlQtGk0AvnsJk4dn5GV0Q3NpUY9ud1WVkqmC+LJtIoisSb56YMNykUReInL5w3fCYkCd44M8Hv/uNrhnk4u1UhXjBT6bKbdRtsTtVuaHx4bzsep0UgbzaLQntBr2I0nmbvzjoqSxyU++xIEpzum+fguSmefnPYUL+RTGUNZM2kSIb5VlmWiCUz5L9kWZaWlTyVEreV5mo3FrPMmf55TvfN8eybI8LNnhV0Dc7r5G0Fg5MRxv+dCgEAu81ITt9JKN6qLYDX62MmnMHReP1bfShFFFFEEf8hxIZexOs1ptwV8e9iHLgaeClv25XL24sAPrS3XSg5LoQE7Oms4nDPlFDiW+azcW5QVNNmFuMMFtx5T6SybGop5eA5TU1ZWu4B87utTObdRV9RkCRJs3599+keHFZxsbgQSeIvUHqcNhNVpQ7hec2KTHWpGCgCmpWtEGaTsqaVzOMwCwvHZDrLzkA5HqeF106N66XTORUaKl3kVJXR6SVW1vBel4W2Wi8bm0r44bNBw/6ddpNegD42u0S5z0asoK7gj772hiFAwmKSiSUzxkLlZIb6CpdWED68KAQ+gLaAP3F+lpsvbUSWJR58ZbXXLp1V2baunOnFONMLMdKZnK5KTs7H8bsspFJZVDSCUeG362rn6nEp3LK7kacPD5PLqeRUlYde7TcQ/2wOdnWUc/z8rFZFUO02qDXTC3E6W0roHV+dFzObZI4FV8lOXblTOAZVhWjcONq6FE/z0rFRoSgc4Pzool4ynm93tJoVuodWbxJsaS0VysgB+sbDBsVzcCKCSZGBvAJxu5nvPKE5tfNJqyJLRGJpDuWRYK/TgtdpYS6c0OsX4skMfreVhYg2AxfKUx8VWeJzH9zGv/z8tHBs4Viaq7fW8ExBFH8qnaPEY1RJL91Qya2XNfHckRHBBh1PZuho8AndjGaTzPmRkFAin8mqBPNmSVesvyt22pXP58rsXy4H85EkV2yuZmBi9X1XQbC8rmBra5khTGh9o59ILGWwDefjuu11v/SxdwKKClwRRRRRRBEXM74APB4IBB4IBAJ/EwgEHgAeX95eBJpS8qcf3YHdoiABHY1ePravg9pyJ3XlLn7rtg201/u4767NNFW58Tot3Lirnpt3NxpUhdoyJ64C5cTrstA3HhK2xVNZGivdgp1PqwuoFRLpYsksV22pxrpMRrI5ldlQQliILiUynLwwS8WytWwliv2hV/uozLN7ScCjr/cL/V8SmtoxOBkWFCSzSTYoX6AlHN6wo14gAqAtSidmRUITWUqzodHPyd5ZA5lqrvbo5G0Fqqrygeva2NDkR0IjvqFl6+SK1U1CqyL49hPdhpTI1lqvsJBOpXO01nhoqHRhVrTY+aGpCA+91m8gX6CRb7Mi865LGoSof9AW1h6nefk4NcujXCCjbWj2gyTOHh08N2lQ9mRZ4nTfnE5+Rqaja4Z+5HeHOawm/C4rsTzSGomlDe9DIpmhoXJVpZNlicHJCCcuzJLJqiiyRHWpg9Yaj0CAVRVu2dPIx/Z1CCQaNJWqMPnSYTWx79IGKvx27FYFSdLsjSvqX22Zk90bK4WZuZyqEY+P3NjOp+/abFBcy7w2PnlHp0FtctrMfOtz1wjpjqB9FqLxNE0FNQMdDT5+9nKvgTiXeq28fHxMf99W6hP+6sfH+f0v76dr0NjN1tHg554b29nZUY5JkXQFMqeqbG0rMxS5e50W1hWofEuJzJpdjIU3IEC7EXLvvg5KPVrJ+Z1XNrOjo4L77trMujovboeZq7fW8O4rmvnQDe1cu72WqhIHl66voKXGjSRpFtq//B+XGvb9TkNRgSuiiCKKKOKiRTAYfDwQCGwH3gfUAGeBLwaDwfP//l9eXGip9vK3n7qMxUiSmjInkiRx6YZKFqNJfeYm0ODni/fuYjGaxO0wo8gyH7i+jZ+/2kcqnSPQ4GPf7kbqK9x858kuMlkVi1nmfde28WbXFNN58yplXhs2q1H1cq/Rr6aqCL1YAD6nlWw2R2iZBCVSWSr9Jt57TauuLGWyKlMLcW66pJ5nDo+goqk/s6EEN11az/NHRsnmVFQVTvbOcdWWaoamIgxNRklncjx7ZAS71aTPb8kSPHt4hFdOjBvSG+OpjJ6guQKP08yPnlu9zOxWE4osUeGzc2FsEYfVVEAWtACVDU0lQioowPZAOSUuK4/uH9C3xZJZNreWEo2lsVkVNjb56R0TiXJ9pZvdGyr56/uPC9vnIgna6316CqfNouhzUSd7Z6kqcQgkr77SZUh1bK3xMDId1efZfv5KH41rhFQsJTL63JPFLLO9vVxQnjJZlQ31Pv01y5JEJpcTrJA+l0UPq1lBeClFa61HSHWcDSX0JEm3w0xHo48j3athJNmcym2XNXGyd5a+cTENcn2Dn3g6g6JIZPOJoQSttR49zVGWJMZmlxibXcLjMPOuSxp49PUBYV8bmkq4rLNKeJ2g2UBfODaKWZENimAileU7T3YZwmsSqQx/9NU3DDcUJEl7r/KvlQ1Nfpw2Ey8cHdW3+d1WGipcqyqiqhHZD1zfxv3Pr8btD0xEhOvabJL56YsXsJg0Un80K/bfxZOZNTvlCjsSpeXzka+WyZLEtdtriScz7D+jVUA0Vrm5dlstDpuZq7bUCPuor3Dx++/dIhDpnKpy4656PnDdOswmmVQ6y/HzM7TWet/R6ZMrKBK4IooooogiLmosk7X/9VYfx9sZLx8f5YGXeklnclSXOrh+Rx0Pv9pPLJmhpszJfXdvRlVVvvLwGcZmlvC6LHzi1g1cs62WockwB89NMT67xPHgDFduqaHMZ+PpQ0PYrWY8Dgvvv66NeDLDmX4trOLefR1YzQqHuqZ1gtRe5+WmSxs4eG5SD6WwWhT27qrjxIVZPbgDoKXGY6gGmAsnBAK1gsI4foB4ImtYfM6Fkobf9TjMXL+jlp6hRZ0cJdNZZhazXL2lhtN9syxEU3qYyQrhqy1zEk8ZLY53XNksLPYtJhm71URoKcVsKMH+0xNrBkssRpKYCgfH0KyiK11nXYMLeBxmXfWRgFdPjDE4ERYsb6CRH5MscUlHBVvXlfGtX3QJ+81kc5R7bcwsv661rIkOq0kII5mY07rq8uF2mIXEzVQ6hyIb1bbWWi/hWIqp+RiBBj89QyKBnVqIs2djlb7YB3A5zDp5s5kV1tV7OZMXmR+JpVEk43P1j4f1ZMcVVPjtPPxaH/3Llj4JzdJnNcv6c0jA9TtqeeHYqt04HEvTOyqSZu25U/zTg6eEUBFFlgSrqCRpJCm9HIoyljfTZTUrpNJZPE6LbmGMxNK47CZiiSx2q8LNexp56JV+4XllSTKQ/8VIkvqCnrtsThWebwWXrK9kc2spj7zWr8+apjI5nj86jMNmEpTZQIOPtjqvYLu8bnsdOwLlnOmf0xW2K7fUsGdjFZlMjuePjmI2ydy6pxG71URztZvacictNR7aar10DS3w5IFBkuks122v4/JN1Zzum+X7T/ewGE0RqPfxyTs6CS+l+JeHTjMbSuCym7lhZx2P7x/Qz/Xlm6r4zVs2GF7fOwlFAldEEUUUUcRFi0Ag4AXuA7YBwiomGAze+JYc1NsM0Xian764armamIvx0xcu6ARnfHaJn7/cSyqT0/vRQtEU332ym5subeCNs5rKEIml+f4zPdRXuvjnB0/rhOvNrin+7N6dXLG5muGpCKPTSzzz5jAf27eeP7t3Jz967jwL4QRtdT5MisyffnQXP3k+yPBUlNYaD06bhU/e0cmPnwtqs1HNJdx5VQuL0aQQ9a7IEiPT4iyVBIYADglNUbJaFKFwvLLETs+wuPhVgfdc1crXHjljOG/b2ss4cE6cwUlnsvzB+7bQOxoS5rVAC6A4W5DAmcrkCDS4BOIRjae5dlsNh7s1cptbtiyCtrBPLpdvO6wm+sbDQn5EJpvjvde28vKxUWaXSfDgZIRSr43IUopUJofDamJ0uTdtcFKzL+YrjaCFduQrbvNhrQphZc7QZTfjdRvnCcfnRFKwta2M109PCNuS6YxQ/9BY6RIU2rP985R6bULCp9WisP/MBBazTJnXTnWJg2PnV9/7RDprUGkBlpJpYVatudrDC8dW1SmzSeb6HXWUeW38OE8tVYFrt1bz8skJYdtggQoJkMpkBcWyo8EndKsB7N5QiSwh1BWoKrz3mlbWN5Xwv34gpnymMzm++bmr+YMvvyFsj8YzfPkzV2CzmliIJHnw5T7h8XgyQ4XfLsyWlXptVJc69GsItITThgq3IZW0fzyMJCFYPwESqRy/fXsHTx8aZjaUYNf6Cm7Z08hiJInFJBOJpWmv99HZUsLTh4ZprvbgcVq4Zmst9RUuvv1EF6d6Z6kqdXDP3gB2q8Kf/ush3S7aWuvhf9y6kX9+8JSuSn7nyW7cDjP/+osu/feCI4v8/NU+ZhfjOrGNxtM8tn9AsF6/cWaSu69pW3Pm9Z2CIoEroogiiijiYsaDgAI8AvzyzOmLGPPhxBpBE6I6NTEXI5ESVZiFSNKgPqgqvHZqXFDLMtkcr5+e4NWT4zr5ONw9TbnPznw4odcKjM8NEVpK0tHg50iPtjifWogzMBnhi/fupNRrY2Iuxqm+OX783Hk+dnMHlSUOjgVnmJyP6XUBbocZu9XE7GKcnApHuqdxWBW8LiuRWJpoPM2PnztPiduqVQhEUqiovHR8DLMik82jRLOLcf7oq2+wta1MeJ2KLPHM4REcVhOhzKrq57SZ+cefndJ/XrHJyRJUlTgEwriyn8L0RoDachd/d10bf/Dl/SRSq++NSZHY1VHF0GSU+ioXp3vFcI1sTmXvzjoe3z8obJ8LJfjyZ64kEk/xJ996U3jsVO8s77u2lR8+G0RVl0NKfHaDZbK2zMnVW2v50bM9RONpXjs5oStIoJGhgQJbYv942GAVHJmKCnbIqhI7b3aL9jxVVbl+ex0XxhZJprJ60E0qnSO8lOKW3Y0CgQPwOs1C/YPXaeFM3yoxtlsUg70vncmxpbVUqC9YgaIYLb5WkyyonKB9NvLtnp41SIPDZsKon2qE5FTfHA6rmWR6dSau1GvjVO88LrsYpFNT5sRmNfGT5y/w+ukJw7kdnIqQy66WgdutJqLxNM8eHsFilpGQ8DotxJJpfvhsEAko9diQJM1+2j20QPfQgiEoqNJv58DZKbwuK++9ro2NTSX87OVenn1zGBXt2t63u5F//UWXngrK8r6PdE/rKmzfWJivPHyaHYEK4XX1jYV54dioYabxcNe0YSZweCpiUNoLAlcBmJ6PvaMJXDHEpIgiiiiiiIsZu4GbgsHgV4LB4Hfy/3urD+ztgroKlxD2Aca0xi1tZWxqKRW2NVW56WwuEbYpskRztbFDK5PN6eRtBf3jYSE6HrTgikL1YmIuxpMHhvQZJNDCMXrHwtx1davhWCOxNJ3NJYKyEEtmuWR9pUAs5yNJtrWVU1/h0hf96WwOt91Me50X0NSJhUiS10+Pc9vlTdSUObGaZbI5lZ7l4nHLMgFzWE3LKYSryOVUbtxZT07VZoxGpqM6YZPQCNfx87P6Plbw4+fO84VvvYlcYAGUJImD56YYmYly4MykIeY9k1X5vX96XQ8cWYHbYeYvf3yMJw8MGZIIK/wOGird+iJYVeFocMYQULFrfQUHz00K5zWTyXH9jjp2dVTwkRvbKeD9pDI5nHmW0F0bKg3dXcGRkBAso50biZO9M1T4HUgFQTnReJpITKwtUGTNOrjyPtosiqGvLJ7KYi2ogpAl+MkLF7j/+fNCII8swQvHRoX3xazIDExGdPKmyBK37mk01BZMr9FNdqRnmhfzkl4tJhmP08Kx4AznBuZZiCb1oBu71YTfbeGrj4gl1dWlDn7r1g28enKcl0+MkcnmyGRVJLSkTIBsVkVFO+93XtmM06boNtdUOqfbFVcssVryY9LwGVqIJLlxVz1ttV52tJczsxjnTP8cZ/rn+KefneJ03yzPLJM30AJcnjgwyMkLYlH8oXOTBEdEVXsunBQ+hysoDLsBaKnzUOoRr40NTSVsaRVvqNgL5mktJpl19e/sxOYigSuiiCKKKOJixn5g/Vt9EG9nyJLEH75/K3s2VtJa6+F917bxhXu2c8n6CurKXdyyp5E7rmzmfde1ce32Wip8dna0l/OpOzu5YnM1t+xpxOMwU13q4JN3dHJZZ5WQmFdd6uDm3Q2GJL9Ag4/SgoV7qcdmWMhJEoa78KB10/3spV49tEJ/PbJkSFEECEWThm3zkYQhkXGt1MFMVqWt1svv3L7RYNVrqHTzqTs6uefGdkNHlizLDE2Jts50JsdVm6sF62Mqk+P67bXC7y1EktSWi1UINWVOQR1NprO865J6drSXAxohTKVzzCwmqK9wocgSLruZSCzNxFyMN85O4nFahAVvJpM12D0BNjaXCNH3Lx4bI5s12hQHJ8Ic6Znmu0/1GNQnp81EKC8a/uT5GYO6YzUrbG4t1W8iuB1m5sIJ5sJJjvZMkypI2/Q6Lfq85srP1++oE66RRCprINOKLNE9NC/87HFa9Hm4nKpS6rFSV+7UiWgqk8Niknn/tW3cdnmTcF1lcyq5nCr0+QFiFYQi017nNZC8913XJhSSA9SWO/nivTv5/D3bOT8iKtudzSX8xW/tprHKLYS2gEbCSgpIDmjJoXMh8ZqfnIsxX9C1ls2phkRRWZaoKXNy2+VNyxUZ4u8fC4rqJ0BoKSmQdQCfy0pTwQ0dz3KKbT6Zri1zsndXPTdd2oAiS0jAzkA5V22u4b67N9PR4MPvtnLt9lruuKKZD96wjr0766krd3J5ZxV//vFL2NRSgt2iUF3i4Asf2WE4vncaihbKIooooogiLmbcCzwVCATeBARpJxgMfuktOaK3Icp9dn7rto3Ctt95d6fws0mR+ciNAcPf3gPPUjEAACAASURBVHV1K3dd3Sps++wHtnJ+ZJFUJsf6Rj8mReb33rOJB168wFwowSUbKtl3aSPN1R6+/uhZEqksdquJD+1tp9xro3togfmwVqZ8654mtq4r45WTY7pKpCgSzxxe7bnKT+7L5VQOdU0Js08SWhl3YXfX0GQEn8siKAJ+j5UC0UePoy8L2Az7SGWyfO3Rs/px5aOz2W9YHEsS2KzG5ZmsGO+5W0yKMPe2llfM47RgNSsGS+HOQDm3ffwSPvkPrwrbB5fTBldCJkZmltbswQtFk8LC/Uz/HHde2SykNzZXe4SfFyJJrt1WSyqTpdLv4MQF8ZjSmRx3XNnMI6/1sxhNIUsSUwtxphbG8Lks/MPvXc4XvnVI+Jv5cJI9Gys5OzCvhcMkM4KFLrSUMigwoAWQrHSnuexm0pkcscQqGdzcWirY/UCLtve5RIKZyuRY3+Rfszj6dP+ccC34XBZBgUtnc3hdxu41s8mYQumymTl+fkZMwFzGyjU0NBkhVlDkLUsSsURa6LIDrRbC7bQIRNHlMDO9KCqEZkXmQoEV2mqW+f7TPQBUlxgTHdc3+jk7MC9UIezeUMW2deV8/+kesjkVu9XEe69to6rUwWIkydmBeSp8dj66r4OGSjd//vFdHOqawmkzc1lnFSZFS6y9eXcj2bzzVl/h4v/60HbDMXzwhnXCz3/wvq2G33kno0jgiiiiiCKKuJjxF0A9MAjk3wpeY2ri4sbThwY50z/PvTd3UOEz9jb9RyBJEoEGsbdqfaOfP//4JcK2TS2l/P3vXs747BK15U5sy6XVf/3be+gbC1HisemR4J+5e7MewR6Np4VFZyqT4+qt1byaFzqRzalcur6Cwz3T+sI2m1OpLXcSWUoRjqV1i1ptmZNkOstsKMF8OMl8WCsMjyczJNNZcjmVR17r5/VT49x+eROP7R8kp6qUeKxM5C3ss1mVxko3JkWibzzMyd45bGZFSPBTVRibjQqk02ZRuGZLDacuzOoLbK0LLiNYTy+Mhij32ZnJW4Q/+HKfQfkDeP7oCM8fHcVhNRWEtTgMquNsOEFztYeBCY2MbVtXtuZsXndBOmS5z0b/hKgITS3E6B5cQEVLh8yHzaLw9KEhrthcjYTELw4M6o8tRlMcC85QW+4UVCafy8Khc1OoaDNjhVUFsizRM7QoJG3aLQon8+YDN7eUCAEiANOLcSGYBTT1z12gInqcFgYmIjz8mhgY4rKbDbNz6xv9HCx4nqoSh0D6fS4L54cXBeLndVroGVrQw2zySbsiS+zdWc/J3lm+/NDp1ZsYsoTPZSUUS/HmshVZliXKvDYisbQQmFPus5PN5gRy6XdbsZhkwaZpMclcsamal06s2j0n5uO01Xr1FNadHRXsWl9BS62Xpw4OshhNcVlnFTs7KgDobCllfCZKU7VHV7L/8P1byWRzgipa4Xdw++XNFGKtFNZfBXOhOA++3MfO9eXsDFT+p/bxdkKRwBVRRBFFFHEx4wNAezAYnPg//uZFjE/87Uvklt1xf/yNQ1y2qZJP3CIqcplsTrM3FcpT/0XYrSZaa73CNpMiGwjg5tYyNi/PvnzjsbOG/TisxoWf0242iFZ+t5XxgoX3QiRJY5VbT7Zb2bZ3Zx3P53VqzYYSeJ1W3n1FE+cG5mmu8fDs4RFhX8l0hqGp1UVxIp1le3MZ5/rnSS4TtnMDC+xZLnruGpwnkcrypR8e5WP7OhicCDM0FaXcZ2e4wH6pAvfdvYmp+RjfeOycruAkUlmqSx2kMzky2RyL0ZQQ/b8SvGExyZR7bYDK5Ly4mB/II2LnBub51J2dHAvO6ESjsdKtR8vnn498cmIxyTp5W3ntDZUuzCaZ4SmtM25yPs4TB4bYtk6cYwIYmgwL4SklHivJ1GqsjKpqM1v5HXouu0koMG+v8xo63o5fmKW61CHURLTX+9i7s57vPdVN/3iYbE5dVgPjukJZ4bez79IGvvboWeE6umpLDcl0ljcL5jUL57UUWaJvPEQ2p2KSJToa/XQ0+vh5Qfx/R6OPN7tWbazJdJYbdtQRiaXwu22U++384Oke4RiyOZVt7WVC51sup7KltYznj4rXZEOly2B7zGRzuB3iZyaVyZHJGW2y126v5RO3bUAC/YZKhc/OvfuM7nSv04LXWWLYXmhp/c+gkASubPvh093sX07DPdwzjc3Sw9f+8Or/8vO9lSgSuCKKKKKIIi5m9APGifkidLx8fITCNduBM1MMjEf47ds3Uul38N2nujkanMbrtPChG9r1u+2P7R/guSMjmBSJ2y5r4oad9QC8eGyUpw5p/VD7Lm3ghp31nB9Z5OFX+wjH0ly+qYqbdzcST2Z4/I1BBicjrG/0c8ueRkyKzLHgNCcuzFJZ4uCGHXXYrSamFmK8cWYS87JKcKpvTleWmqrc7Oyo4JWT43ocvs2icN22Wo72TAupgdvaypiciwlkrcJvN6hYkoQh9ALg+IUZPZL9/GhIS7LMm/Pa0lbGZAGpi8TSOnlbwfRinJmFuL4oT6ayPH1omLY6r54GWEiVzSaZv7n/BDsD5YbEPkWW+YtP7ub5oyP89IULwmNb15Vx8OwkqUyOMwPzmBWJlhoPE3MxNjT6yeRUhlgli6lMjt6xkKASZXLiLBogdMsBtNV5DT1kTpuZ91zdwl/88JiwPRrXEkNX5sPKvDYOd08LwSztdV6OnxdtjolUll0dFUwtxNgZqOAnBa91LpzA47QI9j6v08J9d23myw+f0a2Qr58aZ3t7OZ+/Zwd/+5PjAjmdWUzwd5+6DLNJ5kz/vOEmQDKdNQTPmE2yoHr5XBZBkcvkVLoGF9ZUmFbsrPkYmoroKvMLx0YNXW4SrKm8FobUAJR6rJR5bcI1X13qZF2tRyDMVSUOrR7j7KR+fflcFtScyuunxtnQ6NcJ3NGeaU72ip/R3tEQL58Yw2qWuWFnPTVlTsZmojx5cIhILMXlm6vZvaGKvrEQD73ax0IkyZ6NVdx6eROyJPHS8VEe3z9AOqtyw4467ryqBdCSJ7/9RBejM0ta5cBtG3HaTHz7iW5O9c4a7BSJVJb+8UVaat65QSZFAldEEUUUUcTFjB8BjwcCgS9jnIF76a05pLcXCu/Wr2BiLsb3nuphc2spR3o0dWAxmuJfn+iio9HPhdFFHtu/Wkr9kxcu0FrrJZ3Jcf/z54XtlX47X3vsnE64Hnq1H4/DwrHzeWRoZJFoPE1DhYvvLc/fAHQPznPvvg7+/HtH9EQ9v9vKn310J//y0Gkm5+MMTkb4uwdO8Nu3d/LKiTHO9M+RSGX525+e4H3XrePg2Un6xkMkUlmePTzMtdtqeerQEEuJDCZFwmEzsb29nK7BBd26Vum301Dpxu+26mSgutRhUMUWoymu2FTN8Qva/FImo9JU7WYwr4urs7mEibmYMGtX5XfQX6AULUQSvHJidUGtLh9HfaWb40GN3KQzOV45OS50j4FWHv3Nx89x6foKw3uZyaik8whfOquypbWUjgY/PcNGoihLEn1j4lzU2EyMjU1+zi0TNEWWyKli5UTX4AI1ZU5hXmxgIsy3f9FlmB2UJVkI97BbFGZDIskdn4tRV+ESzlMup+rdchdGQngK5rzqK9zs3ljJv/6iS38+FZWFaFLolstkVR59rZ+NTSUGVVkCvvX4Oc6PhrBaFMN8WXB4QSftkgQNFW7qyp28kVdavhhNGeLuc6qKrWBeT5Elbt7dwPmRRf36bqhwCRbhTDaHokjCOdzTWUVrrVd4/U1VbmKJjNCjV+G3M7OYYD6S1HvfyrxaWNAzh4dRZAmnzcS6eh9Ws8I/P6h1HjptJi7rrCKRyvLtJ7sBePLgEB+5sR1FWZ2RA+gZWuD917XxNz85rh/fkZ5p/uzeXfzNT07o1/25Qe1a+9Gz53UF9dH9AzjtZtpqvUIX3y8ODNJQ6WZHoFwnb6BVDvzw2SBVJQ5O9orkPh9PHBjkvrvfuXNxxRTKIooooogiLmb8LlAN/CXwnbz/vv1WHtTbCffc0P5LHxueijAwKZKMdCbH2EzUkIYH0DsaEuxsKzjUNWXoQDvVN8eZPrHH7GjPtKH4uWd4keeOjOiLW9DsjQfOTQo2wHgyy8kLM/SPrypH4ViaV0+OUeq16n8/vZjg2SMj/NatGwBtId81uMD9z5/nf35oG47lBfbkfJyvP3aWj9zYzof3tnPttlqu216H2yHOSLnsZo4Gp4gltHm1F4+Psqm5VEjTfHT/ALfsaaS+QrMTKrLEG2cnsRSEh3Q0+g2qltWssKujwhDRX1Pm4NbLmvS4/NBSije7pnjsjUE+eMM6bBYFCY2MTC6IM2+gzbM9dWiI/vEwfeNhfC4LsqQFWDRWudYsxs4PwFAUac1us3v2ruOmSxporNJm1RLLPW45VdVnotbVeYknRWF8ZGaJcp9oQQwvpQTytrHJr88NgkZw22q8lC6rTmaTzGJUS0O8akvN6nEvJPj6o2dJFVRZhGNp/vYnxw2zfTVlTs4vE6hkKouERnqcNhPb1pUJiquqwqbWEsP7A1q1RD7MiswrJ8b1n30uK7/z7o30joWF69tqWSPQRpH57ds38r7r2rjvrs2Ayj8/eJrwUgqrWeaeG9up8Nv5xYFBnbztDJSzZTmsJZdTyanaMd1+RTOHu6fJ5jQCHo6l2bauTO9rg5XkV8kw0/fskRFePzUubOseWuCVE2MCQV9KZHjuyIihMuC1UxNCUidolt3eghsGAH1jIdKZrGHWcHAiLFh+18LNlzb8u4+/3VEkcEUUUUQRRVy0CAaDzb/kv5a3+tjeLtjQUobDuvZyYUOTn0BBn5JJkTh4btIwPwNQV6H1TBVCUznEbQ2VLjwFlQEri+R8KLKmkBVCWWMWL5XJCXZJ0Oa0CpWu8NJq8MMKEqksB85OEsuzs6kqnLgwy8Fzk7x8Yoz7nz/PXDiBdbmzS5Elrt5aI5Rtg7YgLVzk946F+NPf2InFJOsL3WQ6S1WJg9oyJ7KkFZwX2uKGp6N876kuw/lLpXN0NhvVo6HJCBubSlBVjeCoaJ17+da6dXVeRmfEou5QNEVnSynJdI6BiQj942EhyGRjk5+ZxVUFK5XO4XFaBBKnyBJ/+9OTjM5EDd2Cqgp3X9dGR4OfWDJDKiMyHpMi6SqXSZHYESgXziGsXSfRWO3mQ8s3IdKZHIOTEf75wdP0jYuEIBJLG65NkyIJ1kmP08Kn79pkqDrIqXDDzjp2ra9cM9xldDrKdAFJtphkjubNnVWW2A1pmZIEOwIVvHFGvGlxYTRMR14VhyRB19ACX3v0LK+fGsdmVThwdpVYJdM5BsbDHO0R59x6hhcN84CxZIbgsPEmS6HiCpoiLBe8XEWWDHUBiizhcxutm1WlxjCk2nKHoXqhttxJ6xr/blSW2Hls/6ChnsLjtJBIGa+F1eOBtnrjHN47CUUCV0QRRRRRRBFF/Lv4yh9cw+fv2cHNuxvZuq4Ur8vC9vZyfvPWDbzrkgau31GHy25GkbXo89dOTfDzV/q4emuNMAv05YfOYDUpXL+jTl/Ym02yVhFwwzpMyzH7FrNMudfOPXsD+oJYkSU6W0q4/YpmYaG7b3cjN+yo11UW0FSvwcmIUNYsyxKRWJq6gu60XR0VtBeQ0BKP1dCxBmsvOLV5mtVFcCyR4eqttdx2WSMdDX7mw0nDot60xiI/lcrSPTRvICE5VWVyPqYrOPFklo4GHxvyFvCJVA5VBbfdrBO5swPz/PX9xzEXhDo4bCZC0aShOL3CZ9cXycPTUT3xcwU+t1W3s+rbnBZuuayRbe3l+N3GrjG/28pnP7CV63fUCfa+swPzRGIi+ZIkePS1fnqGFxibWWJyPqaXV0toc2orM1qZrMrYzJJB4avw29kRKBf2OTIV5USBlS6TzeGyiSTDZlGE97GhwmXoZwsvpdjQWEJVicPwtw+82MsrJ8Y43D0tnHOLWeZk75xOlGwWZc2AFpMiGzoLY4kMvaMhoUQcNPLXUuPhXZfUc/2OOsG+OTEX4+XjoxQilswYCtx9LgutNWJAkMtuZmdAPD4JCDT4DTdPfC4rFT678Hu37mni9svFz+gte7TPaEPenN7m1lLWN/oFVbWhwsXlm6oFstdc7ebKzdW6TRM0Yr1vdwOPvD7AU4eGCC+ltPoNi4LLbmZiLsb4rEaYLWaZpio3e3fVUVfu5Mot1fzjp680nJ93GoozcEUUUUQRRVy0CAQCW4B/BLYCK6sLCVCDwaDll/7hRYh1dV7W1XnXfOzDe9vZ0OTnyw+d0betFBnnK0CJVJaHX+vDalb0YIF0Jsf3n+nhrqta9WCEVDrHd5/q5k8+soOVRodsTuWx/YO01fn47Ae28fNX+pCAtuU5ny/95qW82TXFz17uJRpPc2qZbOzdWceZ/nkm52Oc6de2tdd7AQmfy4JZkdnYXEI8meFk7ywep4V1dT6q/Hba6rz0LlvltrSWsrWtjPMjixxeVucq/HY6m0v0GcAVzCzGhQ4xp82E02bSFaPzI2KsvSTBmYF5zgzMCwmKoKU75se7r2Ct/rAP7W3nu091kc7kW9VSwjxcLJHhgZd6sVkUwZangk4ykqksyVQWl92sW9wUSVsMp/Ksk4oi8+SBIf1nm1khsUwMJQlePTnOseAMN+9pEOxzoJGwlflBCa2aoDCQpKXGy2WdVfhdFr7ysJgsOjkf47odtbx0TIu0l4BoPMPHb1nP+ZFFIrE0qgpHg9MGgq6dl1Vy5rCZqC5xCGrU8HSUDY1+uvLskw2VLh55vZ8Xjq0SpPoKF3arIpRrp7M5bt6tFdgfPDfJUF4QSCKV5c4rWwxkOJ7MUFvu0q830EjrX/74mP761OX/pzI5njqonffLNhoj8TNZlYZKlx5AIgFXb61lV0cF332qm0xWxWpReP/16zArMqMzUc6PLFLht/OeK1voHQvTWutlLpTQzk2pg288dg7QbqS01HjwuazCeWisdPOxm7UOt4m5JXa0VzAbinPVlhp2b6xiLpSgrtxJJpujo9HPB69fxxe/e1hQbQMNfh7fPyjMIoaXUuw/PSHMTWayKmZFFmYbVRX2bKzk5ROifbO+3MWf/MZOwzl6p6NI4IoooogiiriY8VPgIeA+wLhKLuJXRuE8D4Alv2R6GeFYmkw2KWyLLMfl5yObU3n99LhARgCOdE9x4sKsro50Dy3w2Q9sZX1TCU67WSAloNnqpgp6zaLxDIEGHy8f1xb/Tx4a4mM3d1Dpd/Do/gGm5uPsPz3B3de0csvuBn7wTJBTfXOc/voB7ryyhX2XNvLs4WGOX5jhgRcvCETHalbIFCgpS4kMH7u5g+89tRrskFNV2uu9eJ0WjuRZ22LJDOsb/QxOhoknsxzpmcZuVYQkwngqS02B3U6WJE73z7K61NdgVhT+6P1b+NzXD+rbRqaj7GgvZ2x2iblQgoYqlyE1EaCh0knXoGanmw0ncdhMpDOa2mc1K7pCtoJEOst7r2ll/5kJPZI/Gk/zzJvDwjkCbcG9Ev6ioqlyiiIJRdWhaJLvLisvbodZuJbaar3cszfAwHiYgYkIKtA1OM+3Hz9nUM5iiTSBBh/B4UVMikRbrVewRsYTGaxrJDbu3VXP6EyUcCyN2SRz9ZYaQ6ql02ai1GsTCBxoNr7R6aiBuCqyxA+f6cGkiKEtS/E082HtfJgUiau31PDi8dW+NRXY2VFO72hIsI4ePT9DidvKfF6qZjiWYnYxTpnXRku1h6u21nDw7CSHuqawmmWu2VbN7Vc0870nu/UbDQ0VLv7w/Vv5yx8dW+0alOCjN7Xz1UdWyXM2p5G/QgvqyHSUqhIHkViKv/zRMV1JvjAaorrUwbef7GZseVZtfC6GxaQItQ0AZwfmDHOIc+Ek0yHjP82FnzEAt8NiCMP5z/bGvd1RJHBFFFFEEUVczKgCvhgMBovF3f9FtNf72NxaqisLfreVm3c3Mr0Q15UvgMs3VRGKpnjuyGq6ZXO1m0Cjn8N5SpYEdDSWGO6o53KqsEBXgTe7p1jfVGKYTQIo9dowFyhHdqvCayfF/T53eERYBAM8e3iYTS2l+oJZVbVqBL/byiGh4yvL9dtrSWdzpNI5IcxjBYWWQQCbxYTXuXase/dQHmFLZulsLqF3TEvKHJqMMDQZYXt7OSNTEeYjSbI5lYNnpwyzcFk1x6sFrxUgnsqwlEiTzuboGwvjsotLQqtZYS4kno9YIsOdV2oBF06byRDMIUlQV+4SzjVAeCktqFk+l4VcQTdFKp3j6m21vHF6nExWNaRVRmJpGqtcjM0skcmq9I6F+ObjZ4U0T4De8ZCBLCZTq0EXDqvJYA9V0QJignkF2p0tJZy4MKvPTKYzOR55fcBAyCLxtF5NsYLmajcPvLhK9EyKZi2W0KySvXlKX0uNh9oypxDOk8mqhnMIWuVC4XyYhMS7r2jmRO8smWyOZCqrJ1TGklmsZoWx2SU9ATOWzPLiUa12IF8lHp6O8vCrfcK1q6rwxulJQyXFUjyNy2bWCSdonylFkTjZPSvYgLM5lZePj+nkbQVdQ/NCTQRo147VorA/71zUV7i4cnMNR7qm9dsSHqeFmy9t5MJoSH+tlX47N+ysR5IkPf3WvhzI8uuIIoEroogiiijiYsYPgA8B97/VB/JOhyRJfObuzfQML7IUT7OptRSrWeGTd2zkuSMjjM0ssamllCs2V5POaLHnZ/rmqatwcvfVrXhdmmLx+ukJ7FaFu65uZVdHBb0763nh2Aiqqt1Nb6zysP/MpPDcY7NLfOn7R2iq9nDphkq9QNlpM5FIZrjpkgYef2MQ0BSQEo/NsPCXZYmCtTGyLDEfTgjbsjl1zSRNSZZ44+SkvsAvVAJ+/kq/wbY4OBnGYTXp8e2g2fnWKjVur/cJPWKgkcK7rmnV7W2gLbrXN/rpGdIKs+dCSZ44OITTZhIW1jaLIiyeo/EMW9eVcW5gnnQmRzKdNZAVj9PCI6+vVkPIy114K8qYqsI/PngKZ8F8WU2pQ7AiLkZT1JSJM4ZWs8yrJ1YVp+Yqt0DgQCMw+WTiza5pKvx2wWLqdlgIRVeJRUuNR5htC8fShlkzm0VhS2spTx8cIr78/ozPLLEQFglsNJ6mrdYrJCKGoimBLO4MlDNeoCxlsiqfuqMTWZb4ysNnhMdMikxDpdjhBpDO5XDYTMSW3zNZgpHpiKF6wKRIeq3GJesrmJgVn3tsdkmwZYJGWIcmxesfMKjloKm9lX47U3nnuKbUyVIiw9jsEtmcRkzXN/r5+wdOGmYuAUq9duE6Aa1T7j1XtfC9p3oILaVoqnLzvmvbcNhMqKrKuYF56ipcfHhvO5V+B/fdvZn9pydw2s3su7QBh93M//zQdrqG5kmnc3S2lGA2Kbz7imatB3A+RqDBv2bA0a8DfqVXFQgEHgWagRwQBT4dDAZPBgKBdrQvv1JgDviNYDB44ZfvqYgiiiiiiCLeVvhr4GAgEPgCxh64636VHRS/I1chSRLr88I1QFOZbr9cvAtuNsm895o23nuN+PcfeVeAD+9tR5LQZ+c2t5XqXXTReJoHX+nlkvUV+hyaw2bSKwsGJyNsainl3n0Bvv90kKVEhuePjlJZ4uDzH9nOPz94mlgiw5HuaT0wBTS1r77CxbZ1ZTrRA7jpkgZsFkWw29WUOdkVKBdUAoD5cEIgPNmcypWbq3j99CrZTKSybG8vo2twgUQqS3gpzaGuKS7vrGJiLsbgZJhYIsOZfpGoyRKMzy4hyxK5vOdwOyxrJ3DKkqG8eGdHOUvxDAvRJLs3VJFMZw0zZ1aTLBRlz4YStNZ6GJiIUOGz01YrkuecqhWxm0wyP3+lT9++lEjTVO0mmcrid1lZ3+jnodf6hedy2c00VbmZmo9RWepgZFpMvewdD2EuOJ61iO3ujZUcPDvJzGLCQDQAKnw2Q8qox2Fh27oyTvbO6oT3eHBGJ28A85Ek60scjOWRSIfNJJC3yzZWcqAgRn9iPmZ4TyxmmU2tpYSiSUyKLNj/luJpfvrCBcH4alIkDi3v12KW2baunOn5GP3jq6SrzGujpcajfw5ASykNNPiYy7vpUOa10dkizmmaFIlrttXwZteUTuq1kKBS5iNJXdVSZIlzy9ZmRZbY1FJCOqsKfXaXb6rCZTfzbF45ff6NirpyF9fvqMPnsnD/8+dJZXJU+u2856oWKvwO/u53L2MpnhGSJH/zlg0UYktbGVvaxHAVWZbobC41/G5NmdNwg+DXDb8qLf1oMBgMAQQCgXcD3wW2A98AvhoMBn8cCATuAb4J/EpfeG9nZBOLxIZefKsPo4hfQ+Qy2j+qssmY1lVEEf9VZBOLgDHdrIh/Fz8HBoBH+M/PwF1U35H/3ZALZLAT58Xo81Q6x6aWUi7vrEZW4BuPnhMeP9s/p8f4r2BqPsbx4IyuZoCmiuzeUEnX4ALhWIoDZydx2c383p2dnOyb41TvLP/2Ui+dLSV86IZ1HD8/y/RCjKn5GE8cHOKmS+o5eG4KWZbYu7NeCFRYgctuzMGxW0yGOb3R2SXGZpZ0FW4unKC93ksqnWNoKkJO1bryzCZZIHDdQwtsaPSxsbmEc8vqnCyBqhodwX1jYRYiSQINfnZ1VKCqKs8eHtZVuHKfDdca1Q/VJRq5mpyPGY4bYDYUp6rUuFi2Ls84TczF6B0LYTHJQkfbsfMz+rxbIplZsyz8sx/YytceOaurTucG5oTSbKtZ4Uj3NDOLCcyKxMbmEqYWxoT9ZHKqQOwkCdrrvPzg2aD+OycuzBquO9Dm7pw2E/FklqoSO9GEOFt3qm8Oj8MsVFNYTDITBcrh7Zc30z20wNcfPSuQt5oyp0AQAS7pqBCsxKl0jupSB8eCYlDOXDjBhibxZgnAzvZycjmVC6MhKksc/OYt6ynz2rhlTyMHzk7itJmoKnHwFz88jixpCmWFz05oKcV3lucNPQ4zl3VW8UweecsT4wAAIABJREFUKcvmVNwOi9AFB1pZemH5eCKV5VN3duKymWmv9yHLElduqWFLWxn94yE6W0p1Mq7IsqEGoIj/M34lArfyxbQML5ALBAIVaF9Qe5e3/xT4SiAQKA8GgzOF+3inoL6+8a0+hCJ+jTE8PIQkQX19cZFdxH8Hyor/hv3HsRUoDQaDxtX3r4iL6TvyrUCl3xjd//gbA8wsJrCaFTxOi2ANLPHY1uygWyvMQJK0wIcVRONpBiYiHAvO6HNNZ/vnKffZsVkUfUbuwmiIVCbHF+/dxdcePcPPXu7F4zCLYSYWhZO9swbiMjIdxVwQGV/msRksbTkVNrWUMpi3PZ3JsWNdOccuaJdQPJnhx89f4P/52E5GpiOEl9LkVDg3uEBjpYvRmSVyqorLZtZnwI4vE+I7r2oRZrcSyQzb28t5+fiYTiTtFoU3u6f0IJnFaJJSj5W5cFJXjFYUuUKL3NRCTC9nT2Vy+N0Wttf7SaSy5FRVSGGcnI+zta2Uk72r21ZSNvMtg9kctNZ4cDssWC0K6XSW48tzXOmsyqsnxw1W0V0dlSRTuVVlToXxOZE0gVainf+3frdVULcK+wNX3o+N68o43TdHIpWlqcrNQIE196P7Aly9pZbPf+uQoCb63BbWN/oNNtFCMgQwMRvD57LqNQqgqa/nCiy1ZpPM/S9cwG5V+OD1bVy1pZavP3aW031zWEwyd1zZQpnXxtceXQ0l6R8Pc+22Wp28rbzWuQLrMGhKtckkk80j8iuVH8N5SZtWs8LGphK9mB20gJJvPd5FNJ6mxGPl0+/ZrJe5F/Efx69sDA0EAt8GbkR7/24C6oGxYDCYBQgGg9lAIDC+vP1X/nIqLTX6ft9KfOYzv/tWH0IRv8b4/Oc/D8Bf/dVfvcVHUkQRRSzjdWADcPK/spP/ju/It9v341uF99zQTnA0xPHgNLIsUVvm1O12yXSWxWhSj6O3WxV++z2baK7xcqpvTg9ZuHZHHR/ct4ETF+boX07PqyxxsHNDNQcLLHBZMIRSjM/GDMXWQ5MRHj0wqNs3w7E0boeZD7+rg/uf7SGZyuopezvXV3K6d4ZUOsfw8rHbrSbiSS398Nj5GawWRSc8oAWXjK5BNNQ1lKK+ySXCSyLBUBSFr37uOlKZLPf9/SvCY8GRRU4PzAvzZJF4hsVYBq/LqqdD1lS46CuYnyr12fm7z1zNZ//lNSHuHWDPpmqGJyN0tpbySkEXWSSWpqnWx/RCzHB+Ae6+oZ1S3ygvLttle4YWuD9hJE1ms4LHbcVlN9M7Ks4iZnMqW9eV68XXNotCealTCNFRgbG5mMGOenZgtYOvssRBY5WHw12ralM0nubaHXW8nBedryiSTvJMisSmdeUC4QZIZaG83G0IsYnG0oY+QFmSWEpmhboGsyLzZrd4jXqcFkHx9TotVJc76RnU5gzjySz/9lIviewqUU5lcjz4Si837GownNOJNWoqXE4rHcuzlKCFlLz3xg7qa7zc/4w2cyfLEvfs20C5307feJjFqNZ5+Il3d+L22DncNUWZz8bWdeX8+JsH9Zsb8+EkD77ax9/83ju/j+2twq9M4ILB4CcAAoHAR4D/D/i///84gLm5qPABKqKIX2ek01nMZoWZGePwcBFF/LpClqW3MxkZAJ4LBAKPYJyB++KvupP/ju/I4vfjKn7vzk6mF+NYTbIhBCKdydHZXMLrpyeIJ7N85Wcn+dyHtvPJOzr5ysNnCEVTnOmd5UTXBJ+5exP/9OBpBibCRGMpotGE0JFmNsl0Nvk5eHaCUF5Ue1utB4tJFohAQ4WL/gICEYmlmZoTiR6Ay6oYUgXbaj2MTi+xsBy4kUxlKfPaSKWzhGNpxmaijM1EDRUC/WPGABWzpBqUp0gsxSf/5kUkSTI8Vl3igJwx5fBkcFonbwB9oyFDRP3sYpyvPniSTEb8e1VVORGcIpHKMTYTxWk3kR8B8r/Ze+/wOO7zXPue2d6BXSx6b0sSJMHeRJFULy6SbMuyY8dFdhInOUlOEuecL/nS7OSknJP6xef4OE5sySUushTJskR1kSLFXsACAkv03hdlC7bP98cAgx0sHDu2ZNHS774uXr52dmZ2ZnblmQfv+z6PxWTg2y+utC3mzkmZjDIn2kYYnNDfGwcnIqyvLqRjUBURsizROTCriQrrKut/r9vCyasrs4nxZIbHX1lj7FRR2N7sp70/hNEgU1Xs1FWzJkKxvMB3SYI7tlVgMxkYnY7i81h4+fxKu2Y6ozA2mX9vLy2wcr13mpJCm646Z5Alnj89qJ6XpGYKLkRTnM9pn9ze7NcqpsvUl7uYDevF4Hw0SWOFPqMxq0B7j37GUVHAvMYfAOpLnbrfiCSBx2akJ57C67LQWOHhA4cauBKc4Mkj3YB6vL/07g0sxpP8wRcvkEhmMBokPn5XAL/LzC//5Uva97ut2Z+XZTg0ERbPQkv8JPfI/GnQH0EwGPw6cAswDFQEAgEDwNL/lgND/8HmAoFAIBDcSNiBZwAzanVs+V/tT7IzcY988ygusOFxWtjSpG9BL/JYdYYiC7EUT7/ex7df7tJE2PR8nEee7eSlc8P0jakVs2g8zddfCPKJuwOYliohqXSWLz55lYfvWUdJoW3JTEXNI/vIHU3aQ7LRIFHitRNYFRDtc1vzloGaWbba3t/jsGjibRmDLOVZtscTGVobVowa5iJJzEYZW06r3Vee7aS5qgCPU50lKvPZmZpbREHNm4vG03hzIha6R+YZnFBzu5Zx2U2kM/kzbvfsqWH3hhKKPOrsdmghwbnOSS2we5lKv5N4MtecI83ellJa6rwcaC3TCUiA2jKXdg6pdJZnTw3muSAaDRKLyTROm4lAdQHbmvSGFfFkhr0tpdSVudnc4OPuXdV50QaJZEYXQG9YchY92zlJLJ5mIZrMy7MDMBsN2JYEotEgcd9NdfyfJ6/y7KkB2rqnudITyttmIZbSbP6NBokHbq6jscLDn3/tnCbeJAnWVxeQyBH0WUWNMYitqkxmsllWDwcqiurqmYvXbWFTg/7amE0ydWVu3TKLycDEbAyTUcYgS3icZt57Uy1ffrpD+37cdhOfuDvAU6/3MzgRIRROcKZzkrFQlEcOd2rrTc4ucqp9gm+/0q1VjtMZhX8/1sfzZ4Z085IXrk/RUK4/lq1NYpTkp+FHCrhAIOAMBAJVOa/fA4SASdSWkw8vvfVh4KLo7RcIBALBzwvBYPCTuf+Av0d1jLz9x9le3CN/9tyzu4YHDtRTU+Ji57piPnJnc57j4kI0qc18LTMyHaV/XO9GmM4onLw2oZtNisbT9I6FmZ6PoyjqA/PxK+NqZpa0st3ZzkkWkxm25TyIzizEmZ6Pc9v2Si2WIFBVwNZmP/ffXK893HscZhor3ZooWqbIY8vLsvM4LcytMkhJprOUefUVoss9M3zuk7v4m1/by/aAP++6la+qKJ2+NsH7D9VrAd7hWIpL3TM6Mw+DLPHyhWHW1xRSVayvECSSGe7dU0N1iZPaUhcOW35TVyqdIbR0TVbXfUwGfWURVNGxfP6yLCGhOotGFlMEB+d0AnGZW7ZVUF/u5krPDP/2UldeILnFbNBcFQF2bShmPKSvBkViKV01z2UzcbJ9XHOltFmM2K1G3W9qcm5R53Todpi5PrSSI5fOKFSXuLjUM62rairKisNqLvFEvni2mo2sq14xKpGAhnIPXo9Vu05uh5mP3tFMIpmmvtxNgdNMQ7mb7c1+nTNkeZGD5uoCzgWnSKWzZLIKdouRuUhCJ5wXYikGJyOs9sE52zmlm+UEGJqKMBvWt9HORRIk0/nnct/Nddy8uYzqYid37qziw7c3560j+PH5cVooHcBjgUDAgdoaHgLeEwwGlUAg8Bng0UAg8MfALPCxN+9QBQKBQCB44wkEAn7ULLiPA62oc3G/9WNuLu6RP2NkWeI9+2p5z75abVlNiYuBnPa7fRvLcNhMnM/Ryy21hbTUenUW/TaLgfI1HBQji8m8DLSu4fm8PK1rfSFdFQvgyWN9fOa+Fl45P4yCOm/2N9++yB9+bAcVPjtffEp1VXzkcJCW2kLsFqM2F9feH6LMZ9e1F85FEsir/txutxrJKvqH6UxW4avPdnC5dwazUd9aKEtgNeWbY1ztDekeyrMK7G0pJp1WBWomqzA+E+ORw53sXFes21aS4MTVMS3kHNAZtrgdZs4tXf+xmRh2i1GrMFlMBhQlm5eVF09kWEykKPHa2ddSosucA1X85IY/tzb6MBtlXs6ZS0umszRVeih0WdjSWMQjSxlpueeca9kPagVQWjqnujI3DqtJ1y4bjqUYmspvjd3a5KPUayORzOAvtHPkot4Bs3tkHssa191uNeJxmDWDFoMsrQqGV0Xj8jK7xcC+jWXMRRO8lHOu9++v4969NfzjY5doX5p/k4CHbm3kq8/qz1uWJMZXzVSOzcTWzKDze2x5y9bXFHCld0bXWryp3kt5kUN33rvWl7B/UykXr0+TXVKBDeVuNtb51rT8F/xk/EgBFwwGJ4A9P+S9TmD3G31QAoFAIBC8mQQCARPwXuATwF1AN6pTZC3wwWBwlWf3D0HcI28MfuehVp4/M8TU3CI71hWzc10xW5qKsJoMBIfmqC938+HbmtSQ51iSU+0TFLosPHiogeoSF69dGtXs3Cv9Tu7YWc3RtjGd5fu6mgIGxsM6d74Kv0MnYEA1VjlycUQnEPrGwvSNhTl+ZZzcDOn2/lnu21+rCThQH6ofPFTP9470avsILSQo89mZCMXIKhCLp/PyziqKHFxaMqxYrqhUlziZCyeILKa095ZZXalaxu+x4bCadLlhoIrdXBG2vdmvCbRlmio9rKspxGYx8urFEZ3RRiyR5jfev4kXzgwRHJrjap8qOJaz3gqcFoaXrkM8FOOlc8N5Ak+W0YWPD09GmJrLN+AwGw0oClzpncmLBzDIMkUFVqbm4kvnZdQZj/SOLtBSp7fnl4B0OqMzPrFbjLx6cVSLpjCsEe7+8vnhvOgFWUK7blXFTvwFtrw5tzt3VvHC2ZXqWSyRIaMotHXpZ9pOtI+ze0OJJt5AFaZHLo7m/QEinclSW+rWzhvA57Zw185qLnZNazOajRUe7thZxWwkwUvnhlEU2L+5lN0bSqkocvLYq91MzcfZua6Yu3dXoyjqfq4PzVNf7uae3dWYTQb+8OPbOdMxSaHLws2by/KujeCn4+0ZTy4QCAQCwX/MBGrw9iPAnwSDwQsAgUDg197KgxL8ZLjsZj5wqEG3zGkz8al35wcCqwHijbplf/yJnVzpnUECNjWoGVW/en8Lj73aQziW5KZNZdy6tZKKIif//HQ785EkZT47v3B7M5d7Zvjuq93avjY3+NaMLLCYZK0ikcvq2TCAmYVEXluo32Njej5OdqnCtZhQZ7tqS934C6xcH5rLyxRrrPDwygW1OrK8XX2Zm4GJMMl0lqNto5ob5jLff72f2rJ8e/fhqahuRmtkKppXyVqIpXjyWB+SpLaD5mKzGGiq8PC/h6/qljusRv7kk7v4h8cuMZczExheTLFznZ+znaq48TjMeW2GMwsJsoqCxSTrZso6BkLaLNzqwPZYPKWrOu7ZUMyrF0d1+3XZzVpV1yBL+DxWTravCNqGCjetDUU8kRNOnskobG7wMRGKLbVJohPZFqPM+lovbd0rImxoMpJnlvLDWIynVTGaMyNpNMiYjHLe92CzGDnQWs6rOZWxO3ZUsqXJTziWpHNwjpJCGw+/az21ZW4+/6ndnOucxGU3sXt9CZIk8dCtTbz3pjoURcFuVX/P1SUufvdDW/OO7V17a3nXXv2y2lI3taXuvHUFbwxCwAkEAoHgnchlYD9qhawrEAj0BYPB2R+xjeBtiskos61ZPze2tcnP1ib9svU1hfzNr+1jPpKk0GVBkiTKixwkUhkOnxogmc4yPBnmA4caudA1rQmjQpdFC/xu7wtp1ZHWBh+376ji2KUxrWrmsBq5fUcVp9ondIKpocLN5V59FS2ezDAwEebFc0O4V2XfmYwy8VS+OLRZjbrqzGIinVfx6R8L01JbyPWheTLZLFub/VxfVWEaC8W4c2cVL54dQgEKnGYt3gFgPBTDn1PpWkxk+NdnOrBaDLpAdaNB5tHDnboIheXrcDGn4jQfTeJZFfhskCUefS6oiTeTUWZ9TaEuYy6dUbh3TzWFLivpTJbvvNKt28d8NIksSTpxPRGKMTQZweexct9NtXxlVTtiOJbSzb8tk1UU3A4zlcVOrqyqeCbSWezW/Mfu2jI3ZzsnNfMah9XIXbuqaOue1pwbJQkOtJZT6rXz5HG1rVQC3r23hpHpKK6cWAGzSebevTXUl7tpqvIwNBFhQ52XllovAP/tF7aRSmcw5bTZFhfYuHdPfoZobo6b4MZCfDMCgUAgeMcRDAYPBQKBGtS5tM8C/18gEHgBdaYtv3wiECxhkGW8br35SFvXtFbVCYWTHD49yD27q3jiNfVhezac4G+/08Zf/cpe/vgTOznXOUmJ18au9SUYDTJ/+LHtHGkbxSBL3LK1ghKvnd9+qJUnjvYyF0mwb2Mp9+6poa17RnPRXGZZWC3EUtgsBq2itpjI5DklGmRJ50b5H+GwmTAaJFIZOB+coshjJcxK+6LDaqS9L8SmBh8HW8sZmgzz5PF+3T421Hg5OrdS3brUM8PuDcWcuTaJsnQ80/NxLaDaaFBbJv0FNm7dVsG3X9aLLavZQKXfwfBUFKNBpqW2UNcamkpnsa8hOiKLKS52TWsmMrlMzcUxGiSyiqTmxhVYNcfImfk433mlW9c6unzuz57Un6vTZuLq0nxl1/A8Prf+Om+s93JoSwWn2ic0sehzWzjYWk59uZujF0cxmWRu315JocvK7390Oy+fHyYcS7K3pZTmqgKaqwswmWQGxsPcsrUCr9vKH/zzKZ0gf/je9Zpb6p4NpezJL0LrxJvg5xMh4AQCgUDwjiQYDA4Afwb8WSAQ2I8q5rLApUAg8JVgMPjf3tIDFPzcMDKtN7gYnY7SMaD/O0BoIcGJq+M8f2aQsZkYG5ZMVVwOM69fHef1K2PYLEaqip2UeO2Uee1saSoimcqwZ0MpkiTxWw9u5t+P9tIzOs+GWm/e7NRiIsOWxiItnDwcS2E2yrjsZhKpDFlFYWgygsVk0Cp+xYU2NtQWcuTiiK61cC6c0FwYQY1iqCtz0ze2gNNmIrKYIhpPMzIdZS6S4BfvCvDU8X6tlU9CdYBcjdVs5Ffe20JWUbjYNaW1SIJaLfvY3QG6huZ47dIoRoOsm0OsK3NrodbpTDZvzgvUVtVcE5i6MjevXVqJmZAk9diySn7V0CAb89wXo/E0h7aUc/TSKIqiGpDEc0LaAWpKnETjKSI543gzCwkeOFBH9/ACVcVO7t1Tg91q5BP3BDjaNoq/wMaDtzQiSRInroxzsWsKn9vKrnXFlPkcnLgyppmDlBTaaa4q4H8/cUWrSl7pDXHHjsq8a9A7usCu9SV510Xw9kIIOIFAIBC84wkGg8eB44FA4DeBBxCOkW8bgoOzHLs8ht1q5M4dVRQV2Mhks1zpCRFPpmltLNJaxQYnwozNxFhfU4h7Vbvef8TmhiKdmNpU76PQZaFjYKUr12iQeOpYn5b9dq1/lm+93MWmeh/PLQU6x5MZvvJsB9UlTv7Pk+1MLAWMP3tqkD/5xA6i8TSnrk2QSGUYnopSXKifMyv12hmdjumWJdNZWuq8vHZJrYT1j4fxOMzctauKo5dGmZxd5B8eu8z6mgKMBgOJZJrdLaWcWeWKCHBoSxmfevd6/ul7l4ksrlTjBicieF1WPv3uDTxzaoDp+UWSqSwvnx/SGX8AHLs0ytG2UZw2E1ub87PAXjk/wnCO46PbbkKSJXavL2EmHNeZxlzrD+HOaR/0ui0czRFrRoO0VFFbqVoqCnz0zgDragr48tPXdPubjyZpqfPqTE1sFgNH2laqiFsbfbx+VX9tJmYXqS93Mz2/MsPntJmoK/NgkGUCVQXYrUZeuzSquWL2jKrCLpXOarNq0XiEf3r8Cr/0ng08dqRH29d3X+3GbjXoWkoXE2n6xvODsNdq7fxhpNIZpufjlBTaNbOX0EKc9r4QZT4HjUv5eaGFOKevTWA2GdjbUqLNxAneOoSAEwgEAoFgiWAwGEd1o/zWW30sgp+e7uF5/te32rSWtbOdk/z5p3fxj9+7okUCFLos/NHHd3C0bZSnluaLzCaZ336wlUB1IcHBWfrGwgSqC7Rg5FQ6Q8/IAkUFVoo8Nj5xzzrsFiNdI/M0Vrh56NYm0pksPaNqYLbZKPPufbU60wuAvrGFvDkjRYGjbaOaeAP1Yf3Y5TEmQjFdZtfk7CIttYV0DMySVdQcuuac0GpQzT8GJ/QP+vPRJOHFlM4SvmNgjs9+qJVXLozy9eeDyNJq90aJrx4OIgElXr1wtJoNnO2cZM+GEkZnojxzcgBgyXFToanSQ1ZRGJwIk0qr30VkMcVEKEZxoU2b9Wqp99G+as7PZJT5nYe2MDQZoeuMPsYhq8BNG0voGJjDX2DDbjVyNEdsrQ5FX+bw6QG+8WIQ36pWWJvFwNhMFItJJp1RKC9ykMlkWUysfBcn2yfzYisaKz08cHM9gxOXiCymsJgMrK8p5O++06at84t3BTh8akD3eT84OUBtqd4wJpZIc/G63m0S1LnE1dgtRu7ZU80LZ4bIZhV2bShh38bSvPWyWYWLXdPMzC+ypamI4kI7l3tm+PLT7UTjaXxuC7/x/s3E4mn+/rFLWi7inTuruG17JZ9/5KxmtvPS+WH+9JM714xHEPzsEAJOIBAIBALB25IT7eM6c4r5SJLnTg/p8txmw6pd+gtnB7VlyVSW77/ez7rhef49R3R97O4AzZUF/K9vXWQ+mkSS4H0H6nnX3lru2lWFq92EY6k6UeC08Mef2MmrF0aYjybZWOfl9avjOmFWW+qmscKjEx0SULZGNp1BlvKClEEVOMsFrlQ6y/WhObY3+7nYNUVWgXAsiXfVPJbNYiSTyd/XyasTWiVx+bptbSpien6RoUnV4VIBJkKLlBTamJhdRJbUyuG3X+7iByf6qVvDwXJfSylet5W/f+ySbvlcOKkLgm7vncFhNeqcOU1Gmf/3y6cB8kSl227i8GnVfKV/PLzmZy/EklpLpdkkI0uSNnM3PR/H57YSCscpcltZiCW1+TeAmzeXcXpVJVJBwWxaiWCoK3Nx965qvvDEFSKLKWQJ3ntTDU+f0Iu1Z0/2s7rjM5PNUlvq0lVqLSYDrY0+Xrusd8ZcV13A1b6QduwGWWJLo4+J2UUeOFDH9uZiSrx2hqciPHd6kMVEmoNbKtjc4OOLT13VMhG/d7SX332olUef69Su88xCgm+91IXBIOlC7Zfz9XK/j4lQjEvd06JN8y1GCDiBQCAQCARvS1xr2Pnn2sovE0uk8qo10Xgqr2Ly7MkBOspmtQBmRVGDu+vL3fzDY5e1h99jl8f4/MO7+OaLQW3+6pmT/XzwUCOvXx1jeEoVQ+c6JwlUF3D37uqlzC2FUp+d6hInVcVObT7LaJAoLrRRW+bmSs+MNmdWXezU5aIBpDKqwFgWC1lFzaFrqvTQNTyPxWzg9h2VbKzzcuzymDbzZTUb1ow52BHwc+zKmG6ZAvzq/RvpHV3ga88HteWRxRSGVdfXaJB4dGmd3Nk0UHP0JlfluDVUqMe5mEjjL7AyE15pS8wqCv4CK+U+B8WFdk5dG9dtOzAepqXOS3tfCEkCt91M58CKe+amOh/nV80N2iwGvvDwAXrHF/jbb7fp3mvvC1Fd4qRndKUFs7jARlfOHwDmo0levTDC7NJxZpd+E/Kq9PVURqHMa9PWA9i5rpjRmRhOm4noYopCt4X799dx/voUboeJxUQGi8nAtmY///JMpzYP2FTh4fadVXzlmQ6tInvi6gS/96Et/PU3L2iCq61rmk+/Z4Mu0D6dyfLcmUHdcQCMz8Yo8ugrkpmsgrLGb2K1kBb87Fk7xVEgEAgEAoHg55zbtldSkjMntiPg5+5dNbrWObNR5rbtVbQ2+HTbHmwtzzO0yCqKLqsM1Ifc19pGdZWLiVCMc8FJjl1eET6KAueCk1jNK387V4DHj/ZS5rVpphwjU1H+8bHLfPLedZprYjqj8JVnOvE4zNRXrGRrDU5G8Bfo2xmLC206m/5lSr12ABLJDE+/3k/n4Bwfvq2J5WfxeDLD6Ix+fk6WVJv+3hG986XZKPNPj1/mWr/e5RLAYjRysLWcujIXjRUenTCOJzMEqgqoK3NRV+rCsMZT6NTcoha/YDUZSK+qOioKeD1WZhbimFe5KdosRqxmA7VlLu7fX6cJ7WW6R+YoXOXCGY2n+fV/eI1/efpanjBJZxVdRpx/lcAB1ZxmYlZ/3VIZhZs26VsZo4spgkOq8LOYZD52dzNtXdNc6p4msphCAR66tYkTV8c5cXWchWiKVDrLtmY/o9NRnZlL/0SY4OCsrp12dDrKc6cHddUyBbjcnd+OKSGxrrpAt2xrk59bt1bqlm1pLOKuXdW6iIpKv4PWxvzZRcHPFlGBEwgEAoFA8LbE7TDzZ5/eTXBwDrvVqM2w/eHHd3C0bYR4MsNNm8qoKHLwmfs3cuTiCGMzUVobitja7CcUTmjzXADlPgf15W5dBaa8yJEnCkAVORISSm7EsqS29OUST6S52K2f+4ol0hy/NKZzGMwqCscuj9KzSkzNRRLsbSnhYtc0VrOBB26uI5VWdPb6BU4z54OTuu1eODPI+ppCnUgdGA/znn1qXEEmqzA6HSWZXlmhscJD39gCyXSWmYUEMwtTOhMRWZY0l0iv28JdO6vpHtHPrbkdZs4Hp8gqCn3jYcxG1Wkyq6jVt56c9YemonnzZrF4mlcvrARUG2Q1ekCWVDG9XG3qHwtrbpnLmIwGFEXBZjGQzigUOi1aBXA+msTe2evuAAAgAElEQVRslDEa1Zy6zQ0+Iquqm1PzcbYH/LqAbofNqDNpASgptNE9Mo/dYqS8yEGRx8qpnFbMRCrL6HQsL8T9bMcEnYP6vL1L3dO4VmX8pdNZpDWqYB5nvvGOxWzQXUNZkggtxAnHUlQUOZBliZZaL/ffXIfZZMDtNNPWNU2Zz87Nm8swGQ18/tO7OdsxicVkYOe6YkxGUf95qxECTiAQCAQCwdsWo0Gmpc6rW+ZxmHnvTXW6ZRaTgbt2VeuWvf9gA3VlLh59Lkg4luJqX4jrQ3Pcv7+Otu5phqciqshJZXRiQZJUo4ytzUW69jWX3UxjhYfnz6yEZleVOCnz2slt3pOAmtL8ea4itw0JciUhmazCqWsTKMqyi2Unn/vkLm1GDcDnti4JlZWKjUGWWMviY8e6Yh440MBjR7oZnY7q3qvwO/IEWV2pi431PoYnwzoHyNBCgun5RS2Xbvm6ZBRF16qZTGf55D3rKHRZmFxI6AQcQJnPjtkkk0hmWFdTwAtnh3Xvb6zzcnNrOYuJNP/6TIfuvfIiB+MzURZiKRxWozY/tnxNVgdrJ9NZfv+j2/A4LASH5ngxJ9x8+ZqZDBLlPjuTc4s4bSbmIkmii+r5OaxGtjX7Od0xQXIpXLx7ZB7nGq28fo8tb9nyPnKFndthxl9g09puQf1tTIRimIyyVvktcJp55uSArk3VajZoLbwuu4l9G0s5cWWMwaXW3NlIgvv213Hf/pX/FlpqV0K/tWOwm7ltu746J3hrERJaIBAIBAKB4IdgMhp0c2bJdJbZSILp+bjWHjg9H6e21EXTkgOkokDvaJihiTDvO1DHcq2krWuaMx0TfPi2Rk08DE5EONk+roUvgyrQTraPsz3g15aVFNpoqPBwYEt5zrHJFHmsuipaKp3l6RN9uipRz+gCG1eJ2Dt3VnPHjirdTKAswV984wJPvNZLoErfYgewrdmf12Y4H0syObtI9RqCc3J2kVRmRTTeubOKyjVs7l88N8zfffcS33iuUxe2bZAlTl+boGt4nsHJiM5Gf5nwYorHjvTw6oXhvPeaKj18/lO7+cOPbc9zzpxZiFPms+uWFbos+Avs/O132vjS99vpHVtg+XAkSXVzPHVtktGZGEUeG45VwiwaT7O+1quJt2Uy2awu8sFfYOW1S6N4HGZt/zazgXPBKaLxtPZ7sVmMDE1GNGOZDbWFbG0qon88zNW+EKl0ljKvnUNby1UhGU8TT2aQgHfvrdHNG4ZjaktmeFFf9Wvvy2+DFdz4CAEnEAgEAoFA8EMwrjGopSiKrjUP1Nmt1fNxk3NxRqZjukrXbDjJQjSlm1ObiyRZX1OAzbIy09U5OIfdYuQ9+2oANWvsr//tAuU+O7/3oS0c3FJOa4NPN3u3TCqdX1tb3a7XMThLc1UBn3t4FwdaywDVgCORzPCDE/0AvGtvjZYPZpAlJkIxPnZ3AIfViIQqavrHwrx4bojHj/ToWkkNssTE7CLpnGN5/co4O9cV6ypSlX6HLvctk1XY3OBjb0up2uKpu8ZxtudkxzltJnpHF5gIxegdC2MySNrx1pW5UBSFz/6fE/z5184zF9a3rpqMMm1dK9XRiiIHv/n+zZy/PslITuUxq8Dt2yvZ3uTXHct4KJb32zAZZa50TyOv6m5ciCYJVBXwoVsbef+Beqbm4oxMR5mPJlEUeN+BOl1ougLs3VhCMmfGDVSTmNWmL2OhmFbhzN1+9fcNavvk6nD1qmJn3nqCGx8h4AQCgUAgEAh+CIHqAppzqlEOq5F79tTk5XdtbfJTX67PYPO5rXjXmI9bSxTOR5MsJvQP7IMTEV3EAMAzJwcYmY5ytG2Uc8EpzgWndCYToJql5FbKzEaZyVVGG+19IUILi6TSWbyufHOO3tEFYvG0Nt+VySp855VuWhuL+Pvf2M89e2p0lb9YIsOhLeXUl7tx2kxsqvfmCYtoPKXZ7YNa8VsreLp4KdMtvUbUgcVspLHCzaEt5dSW6sVHKqPwmfe28Oef3s3D967n2VOD2j5C4YT2XdgtRhxWE4vJlf2nswo1pa41BbHJKK/ZblpT7MS6JIgk1OrnyWsTZBVVwEqSKnIHJiIcuzzGU6/3EVol8hVUG//VrPUbyWQVPKsC5i0mA43l+mqpBBxoLdOtazTI3NxazqfuXa/N1K2rLuD+m9X2ydBCnLau6bwZTcGNiZiBEwgEAoFA8I5GURS+/3o/xy6P4rCaeP/BejY3FNE3tsCzJwcwGSTu2VONv8DG5nofl3tmqCp2YrMYiSym2FTv4779dcQSaSKLKa71hSgrcvDJe9bhdVs52zmpzV9tb/Zz9+5qXr86pi0zG2Xu2FHF1b4QoZyH+Q21hbx2SS/gMlklb1k4luJAa5k27wSq6cmmei+yLFFT4uJa/yywUr0xGWX+4usXCIUTmNYQCyajgfGQfh4tk1U4dXWcmXCc8BoP+sHBOXqXLPfbumfygrKbKwsIDq2YdGQVSKQyurk+o0HipfMr7ZC5c14eh5kTV9XogO6RBc2UZhlZUkPQjQaJqpL8ls71NYVsbvQhSxL//PQ13XvTc4t87fkgp9rHkSVJm9MzGWUOn1YzAiUJTbTKEry25DK6qd5LIpnheo65TSarcGhrOUdyXCwXExkSSb1IB9jR7Of60BxjSy6gJqPMbdsqMcoyr15cMWy5c2cV5UUO+scuEUuk1RzCg/Xcsq2CsVCU1y6NYbMYeP/BBmpK3Xzw1kaePNaLoqjV1KpiJ9msQk2Ji9BCgo31Ppw2E8cuj/Lo4SBZRcFklPmN921iY70v7zgFNw5CwAkEAoFAIHhH8/qVcZ463geo5htfeOIKf/SxHfzPf7uoWbVf65/lv39kG9988bpuFuuX3rOBPRtKuNQ9w8h0hA8cbKDqwVZkWWJybpFLPdM8/K71JFMZHFYTDUuzbvXlbk3AJdNZBibC/Ob7N/Poc51Mzi6ytcnPffvrsJgNPHmsT/u8O3ZWLYmxFUxGmeQawsDrsnD00hiXumeQUIViMp1FklRL/OXYgFQmi8koY7cYWYgml+INevLa6+xWI995tVv3erkVtKnSo2uFBHXO7LZtFVzomsZpM7FzvV8n4EA1yPiND2ziyMVRXE4LHX0zOhGbTmd5+N71uB0m/vGxy7ptZyNxLffNYjKQSmdoX4o2uNI7o53vMoMTYV5fEoBWs4HcJtgyn50jOWLJaJDYv7lMJ8AUBdbXFJDJwvWc87jSG8ozypFgzcpmkcdKS52Xjv4Qsixxx84qrBYjm+p9VJc48bmt7N2oOqN+5M5mSrw2Ogdn2bOhVAvP/t2HtvBq2wi1pS4ObilHliUObqkgqygYDTLNVQUMT0b4yjMdmpPpN1+8TkO5h7/9TptWAf3ekR4sZgNPHevTBGsqneV7R3qEgLvBEQJOIBAIBALBO5qOAb0gSmcUjrSN6nK2FODE1bE8I41XLgzTPTKvWds/cbSXz9y/EbNR5gtPXNEeoN+9r5b3HagH1Fmms516W/8Xzw6zY52fvjHV7v1scJKbW8vYvb6Ec52TjIdi1JS4uGVrBc2VBfzdd9s0E5V799ZQXeLiVMfKPu1WI+dyHDAVwO0089E7minzOfiHxy7pPj+VztLU4NFtMzQZ4a5dVXQNzePzWOkbW9DN7sUTaT54awMd/XMUOM0k01kWcgxfPA4zr14cIavAbDjBd1/tYV11gWaVL0lq6HlwaI7/8r5NbN1Qxq//z5d1As5klJmLxAkOzmI1G3SzYl6XlZs2lrKvpZSZ+UWeyBG6WQV2byhhcnaRWCJNY4VHV81azqRTFIWGCg/9Y/p4hnRGoao4v4pnMhowrtFP2VjhoXt4jsSSgUlNqYuXzw9hNMhaG6fDauT7r/cDqpD77Ie20DcW5i++fl6rQN60sZSKpbbS1y6N8p2Xu5fy3FRh6rKZ+LvvXiKTVTh+eYzOgVnef7CB//H1c5p5ysmr4xxoLdfFUKQzCq9eHM6b3bzUNZ2XGyjaKG98hIATCAQCgUDwjqam1MXJ9nHttQR5D/wARR6brr0O1Nmio7lVGuC50wNIkqR7gH7u9CD37qkmFk8v5ZZJZHL2I0loD/egmok8eayPWDytWcj3jC7wjReus7nBpwvIHhgPc/euampKnAxMRJAk2LWumONXVs4JIJHIcOLqOIMTkTwzC6/bQiyRb3wxMBamb3yBaDylGYQsYzDI/PtrvZppiskoU+A0MxdJ4rAaWV9byKn2lfyzZCrLlqYi7tldzZd/0KGJicnZRf7txeuUl3ry2jkLXRaeeG1FmC3nvtktRqbmFrVWyOWg8lyGp6L0jy1gMRuo9OfP2tWWuXjo1iY1guAH+pZKgyzx8rkhXQsnQDqTZSgnlw7Uat1Tx/uQgO0BP5V+B08d79fel4B37avVzGFAdS491T7B5d4Z3XzdifZxHry1EZfNxBNHe7X3sorCE6/1Uuq1635X54JTFLqtOufLaDydF2IOUFPixiDr8wUri5047Sbd93TTprK8bQU3FkLACQQCgUAgeEdz67YKBifCnGqfwGYx8L6DDezdWErn4CzHL4+hoBo+3LGjinAsxYvn1Hwwo0Hmzp1qhSoXRYFUWt/SmMlm+afHL9MxMIdBlqgpcdK7VG2TJLWlsn9cLwzCsaQu/wsgODiryzMDuNg1zeFTAwxMRLTPP9I2yq71xZzJqcoZjZLudU2pi4VoktlwgtCC+i93zsvtMNO51Co4MbuI1WxAltTqFqgzbcsti6BW8fZvKqNvbIGxmRjTc/rjXF6nodKTVwkanYnxF189o83QAWxpLKKtW1/xLC9y8NE7m2nrmtZm00B1hWyq9Ggh6+VFDvqWqmrxZIaT7RO6rD6jQWJvSykz83H+/GvndIJneb3lFlNZgpY6L5IkcTknIN1mMVBSaNe+NwU1KsJi0otjBYiuOl9QK7GrRbEEvHh2CLvFSDypF9SrTWGWsa8S4wAtdYXE4mnt+u1YV8z+zWWkMmqLZCKVobmqgHv31GAxyVT5nfSPh1lfU6iLqhDcmAgBJxAIBAKB4B2N0SDz6Xdv4GN3BTAYJAyyWgX65L3rec++WhLprNbW9uHbm9ge8DMeirGxzovXbeXAlnJtfkoC7t5dTSyR5mvPBbXPqC520TGgiqFMVqF3LMwv3N7EMycHmI8meeXCCBazQWdykc5ktYrWMrVl7jynRMPSvN1qNjf6aKn10je2QG2pi0dyjgdgPpLIa5/zua3sWFeMy2biTMcECznCJp7McNeuKo62jZJMZUik8gXF2c5JLYMuFE7gtpt0bZWPH+3lTMek2nKYE9rdUOHh4vUp3b6GpyIYDZKu2qgoCld6Z5ha43wbKz2YjAZsFgPZrJIXRL494OdU+ziJVJZKv5NCl4XDpwfzqlX15W6dUMsqsHdjKc+cHNCtt5jI5LlFZrIKRZ782bdtgSLOdExo9v4GWWI2ksir5smypH2O1WwgnZOjd3BLBYHqAtr7QloVbXuznzt3VXP++rQ2g9hY6WFHoIS9LWWMh2JIEpQUqhXK27ZXctOmUmLxNN4ck5l79tTkHbPgxkUIOIFAIBAIBALAbMqvZBQV2PKWNVfpowU+emczG+u8jExH2VTvpbZUdUcsclu50hui0u/g+vAcA6se1pezwJZJJDO0Nvq41jdLKpNlPKSKFK/LQiicwGE1Mj2/SEO5R9faV1HkwGHVP9LJskRoPsEdO6q4ubWcrKLw5PE+nRgsL3JwfVX1MJNRONsxwcxCQpfrBmpl6sWzQ1oFrntkAZ/botngN1S46RnRz5IBfPKedXz1cKf2emgywj27q8hkFa1KdqlrCofVRDS+Ivaqip3ctKlMM5gxyBLDU1GtKrncTglqtfDwqZWKnHVVVcpklDl9bUKbUesfD/PEa715FTAgz6ofoMznoMBhZiSnIuqwGrVA9mVKCm1EFpMUOi3Mx5JYzQb2bijhC49f1Rw3m6o8lBbaNRdLAJNBZmtzka5CGk9m2L+5FFmSCVQVsKelBEmS+NOHd9HWNYW/wMb2gB+DLPMnn9xBR/8sBlkiUFOoxUis1VpqNRuxmoUE+HlGfHsCgUAgEAgEPwWyJLGt2c+2Zr9u+cZ6n+bm57SbeD1nJs1iMqzpUuhxmEmtyj9rqHDDyAKhcIJoPM3odIz37KtlcDLCpe5pBicjDE5GWF9TyMx8nMm5RbJZdWbqcs8M/89HtvEvz1zTibdSr527d1UzF+nWVapiiZQmcmbDCfwFVhZiKfweK7s3lPD40V7dsZUXObBajIxMRVmIqKJvNrxiQuK0mQiv0T4YjaeZCK1k02UVcDlMyLIaiyBLEl0j82yo9fL5h3cxNBnhK8/q59QKXBZ2rStWP386wplrevGzt6WUjoFZJAm2NhXxygX9TGP/eJi6UpcuxsDnsdI7uiJqDbLE3bur+cozHQxNrrhsehxmFEXRKnUSsC3gZ3YhwSsXVmYib9tWwdW+kGaIowCj0zEMq4RjKpPFZsl/LG+p9bF7Q4luWUWRQ6sIrxynLJwj30GIIG+BQCAQCASCN5mtTX4+cc866svdbKzz8rsPbWH/5jJd5cxuMeY9rAOYjQZCYX3Yc3Bojp4RffWsZ3SeqhK99X/3yDyHTw/oTCoA7ttfy1cPd+rE2+07KjXxtozJaGBzvY+R6SjPnOzPEx6z4aRWlZqaT5DNKnjdK5W70ZkY3zvSg9mof+TMZpW8Ga9MVuFT965X31cUIrEU33zxOolUhh3r/Fprq4ai0NY9zfOnB5mazW+p9DjMzEUSzIYTvHJhJK8ql0hlONI2qom3pkoP1cVORqZXhKXFJGM2yjrxBnBwS5muNVQBbGYjvavcLM92TuW1aEbjKapX5dRZTAbu2lmtq3pW+h1sbSrKOy+BQFTgBAKBQCAQCH4GHGgt50Cr3iDijz6xk9faRlFQONhaTnGhnXv2VPPc6UEURW0jvHdvDWc6J3Wzb2U+OzPzcZ0ZiMVkwGzMbwPNrbwt0zEwp6uUAYTm43jdFp2Nv8Nq1CIP4kn180sKbUTjafZvKuN0h97pcj6a5O9/4yb+5lsXdUJIkdBFCBy/Mq4zFQHwF9i4tirSAeD68JxasfRYGV8yFpGWzmu5hbJvLIzHYdbE0oHWsryohkxWobnKw+TsIq2NRRxt0weiT80t5jlxxhKZNecLc+fylnHaTdgsRp3ZiM9jpa7MxQ9OrMzPbW9WM/5mFhJcCE5R6DLzC7c3U+qz8/lP7eJ8cAqTQWZbwL9mW69AIAScQCAQCAQCwVtEcYGNDxxq0C178FAjt22rJLKYoqrYiSRJfOSOZr71UheJVIaaEhfvvamOpkoP//pMB4qiCpoHDtRTX+bmQteUZoayvdnPzZvLePXCiBZ/IEsSW5uKeO2SXsBML8SZXRJvRllid0uJzp5+mf2byhhemt+rLnYxG14x/Ch0WTDIMqlVAiebUbS5rGUiiyl2BPxa9ty1vhCjq1w3QTWA+V/fvkg4p+K1d2MpJ67qxWNdmYs7d1XTMzJPOqOQzeqPQZYlbt1WyUvnhxmbjuaJLY/TwobaQt2cW3mRg0NbKjh5dUK7fg6rkTt3VdM3FtYyBAucZm7fXklFkYNHnwuSzmRxO8xqsHuJkwKnhY7+WapLnNy5qxqLycCv3b+RTDarqyw6rKY8kS8QrEYIOIFAIBAIBIIbDK/bqnMJPNBazs51xYQXUxQvGavs21hGfbmHruE56ss92lzUX/7yHtq6p/G6LGys9yFLEv/l/Zt44Yxq8nH37mo2NxRx754aDp8aQEGtFA1OrLQJprMKVX4ndqtJV8kyGWSePN7L8pie2SiztamIK70zpDMKs+EEv/+lkxzcUs6zOaYimxt8eY6NEqppSi5zkQQ7An4uXJ8iq6hzblNzizrxBqr4W+1Q2VDh4fCpQa70Ls2lrfIn2b2+mC891a61TErSihGKxWzgg4caaKwsQFHgUvc05T4HD97SQHGhnc9+aAtHL42qrY67qnDbzfzuQ1to7w8Ri6fZ3ODDZjFy06YyWhuLmAjFqC5xYVpqHb11WyW3bqvM+57z2kIFgh8DIeAEAoFAIBAIfg6wWYx5RhelXnue02CB08KhLRW6ZVsai9jSqJ+n+sChBg5tLWchmmJ8Jsq/PNOhe39idpGP3lnFbCTB8cujOG1mSrw2fTh3OkuJ18bFrhUhFY2nicXTNFR4tDm9tq5pPnx7E1f7ZlhMqNXBDUsxDKuZjyY1p8u5cIIXzg7qjEYAKvwOtjQW8a2XukhlsnhdFmpLXTqTFUVR59paG4uoK3XRMTin24eiwLtvqqWxwkNdmVtzlPzgLY188JZG3TGtqylkXU2hbpksS2xawzjEaTPhrPDkLRcI3iiE7BcIBAKBQCB4h1LksVFf7qal3ofZpH8sPHVtnN/8x2OgKPz1Z/bxRx/fQSAnPmEZqym/HrAQS+pMVhTUqlZLrVdb1t4XwmI2UOBcse1vrPDk5beNhxa5c1eVVlFz200c2lLB2c5JzbEzFE7w9Ov6nDZQWxJn5uM88lwnV3qm896vL3fTUufNiwMQCG5khIATCAQCgUAgeIfjcZj57Ie2srnBR1Wx6mS5mMgQjaf592N9XF4SP3tbSmmqXKkubW7wcc/eam0bUNsSd68vzfuMrALnV4V1nwtO6pwWu0fmcdpNunVqSlyMTEVZGkFjIZbiqeN9dA7qDU96xxbYHliJcjAaZCQJXr04wtRcnIGJCHaLEQm1ffLQ1go21nkRCH7e+JF/bggEAj7g60ADkAC6gV8JBoNTgUBgD/AlwAb0Ax8NBoOTP2xfAoFAIBC8nRD3SMHbicYKD//1wVaePzPId17p1r13uWeGo22j9I+H2VBTyP3767BbTZQXOXjqWB9KVqGmxEVtqYuDW8uxmY2Uee2MLWW9GWSJu3ZV0Tu2oBmsgNoWevyK3owkHEuxucFH58AstaUuPnpXgD/+1zO6dS51T1NT4qJ/fCUcvbbUxa1bKxifiRJZTHOgtZxT1/T7jiXS/OnDuyhwmHGvEdgtEPw88ONU4BTgfwaDwUAwGNwM9AB/FQgEJOAbwK8Hg8Fm4DXgr968QxUIBAKB4IZD3CMFNzSRxRRHLo5w7PKoLndtIZpkbCbf8RFUIbeaa/0hLnZNMxtO8PrVcY5fGaOm1MXjR3t49tQAw9NRBibCDE9F8Dgs/Nmj5zTxZjRI/M4HW/F5bNSVruSfGQ0SD9xcl5fP5rAa+a8PtvJ/P3uIBw7Uc/zyGE6bvipX5nPwrr01Wo5eqdfOg7c08I+PX2ZkOsZ8NMnTJ/pxWPXbFTjNVBTZf2zxlkpnCQ7OMjMf15b1jS3wyOFO/u2l60zMxv6DrQWCN4cfWYELBoMh4EjOolPArwI7gHgwGDy+tPz/ov6F8eE39hAFAoFAILgxEfdIwY3MfCTB5x45q+XAPXd6kD/+xE4OnxrgmZMDZLIKDeVufuvBVpw2E9F4ioVokoYKDx++vUldJ5Pl1u2VPP16v27f7f1q++LFLn1LZM/oAscuj+ry1NIZhUs9Mxy5OEJyKcvObTfxB7+4neJCOw8cqOfrzwVRUFsbHzhQD8C5zkm++ORVzXhk2XWyyGPl3r01fOmpdhIptZo3H00wPBXJiz3wui1kswqDkxEKnGY+9a4NGGSZTDZLdDGtCbmpuUUefa6T3tEFmqsK+Pjd61hMpPmbb19kLpJEkuB9B+ppbSziL79xgfTS7N2p9gn+4pf35AlMgeDN5D81sRkIBGTUG9P3gWpAmxYNBoPTgUBADgQC3qUbmkAgEAgE7xjEPVJwo3H8ypguxHtsJsYrF4b5fo4Y6xld4IWzQzitRr53tJd0Jkt1iZPffrCVmzaW8eSxXq72zmC3GHWizGE1cqV3hlKvnam5leqUzWxYsyo1NBnWxBuoc2xDk1GKC+3s31TG5e4ZLnVPY5AlLaz71YsjOtfIdEbh9z68hUB1IYdPDWjiDdR5vel5fTA5QIXfSXWJi7pyNwc2l1NX7uZS9zRfPdzJQjRJXZmLX39gE19++hrdS6Yrl3tmePS5Tqxmg3b9FAWePNbHfCSpiTdQK5wXu6a4ebPIbhP87PjPWu78ExABvgA88EYcgM/n/NErCQRvE0wmtU3E73f9iDUFAsHPIW/oPVLcHwU/LTZbfptgclXuGsDUQpzDpybILHn3D05EePniKNPzi5zKCcu2mg3El+bXxmZi/P13L7F3UxllPgdjM1FkCRaTGU5endDy1UANw/Z6bMCc7nOzsoTX5+Tls4O0dasmKemMwvdf7+fgjmqcq9ocJQku983y+NE+LKvaLkFtbcxlx/oSznZOaoLw9Svj/MWv7uMrz3YSjiWXtgnz1Il+Tbwt0zU8R125vpU0k1VwOS15n1tZ6hH3dcHPlB9bwAUCgb8BmoD3BIPBbCAQGARqct4vApT/7F8WZ2YiZLP5/2ciELwdSaUymEwGpqbCP3plgeBtgixLb3sx8mbcI8X9UfDTsqXey5M2E5FFNQS7yGPl4OZSXj47pC0DKC+0a2Jrmb7Rea71r/65KqyvKaRjYMX98dSVMf76V/dyqWuab77UpS3PZBX2bChmcjZO79gCo9NRZEkiu2QlKUnwxccv890Xr9NclT9zd/bKKIl4Wres1Gvn+VMrUQG5grK4wEbngN6VsqbYwbmOlcy6dCbL4690aeJtmd7heWpKXAxM5BqiuNne7Oda38o1qC52ctvWcs60jzOyFHWwobaQmiK7uK8LfmJ+knvkjyXgAoHA/wC2A+8KBoPL9enzgC0QCOxf6vH/DPDd/9SnCwQCgUDwc464RwpuVLxuK597eBcn28cxGmT2bSzFaTPx2Q9t4ekT/YSjSfZtKmPfxlKOtI0wG15pQdze7GdyNqZrjywpdOR9hgIEB2bJKPl/bMgqqrX/ymuFrU1FtPeFtHbKmckRD7QAABI4SURBVIU4E7P6SptBlmjrnqZzcKViF6guyMuHiycz/NYHNmM2GbjcM83zZ4Z07y9E9UINVBOTUq+d8dBKm+fGei/7N5Xx5R9cY3AiQkOFm4/fs47iAhsmg8yF61P4C2zcu7cGu9XEnz68k46BWcxGA02VHqTlgDqB4GfEjxMj0AL8AXAdOBEIBAD6gsHgA4FA4BeBLwUCAStLFslv4rEKBAKBQHBDIe6RghudQpeFe/fU6JZVl6hzX7l89kNbePJYH6GFOLvWl3BoawVFBVa+9FQ70Xgat93ER+5oJryYpHNwVstkMxok/vXZTgDsViOxpaqZxWSgyu/kTIc+OcNhNelm4QAWE2mKC21Mzi4iSbBvUynHL4/p1ukbXaCm1EU4ttLq6HNbSaWzPPFaL+FVYs0gS9yyrYLRmRjtS1U0j9PM7durOLilgm+/3MXYTJTWhiLed6Aek9HAn35yF5lsFoO8YtK+f3MZ+zeXrdq3zMY63w+/6ALBm4ykrPEXk58RtUCfaBERvJP467/+M0wmA7/zO3/wVh+KQPAzI6c9pA5VyAj+Y2oR90fBDUIylWFidpEynx2jQRU2vaMLXOyaor0vpMthkyW4fUcVp9rHWYilMBklDLKstTkaZIk/+MXtfO35IAM52zVWuOkeWcjZj4S/0MpEaFFbVlvq4r79dXzp++3EkxlsFgMfvr2ZRw936to/iwtseJxm3rW3ls0NPrKKwrW+ENF4ms0NPmyW/6z9g0Dw5vKT3CPFr1ggEAgEAoFAsCZmk4GqYv18Tn25m/pyN9eHVpmSKDAzH2chps7XpdIKiiHLwS3lpDNZDrZWIEsS8xG1VVOWJW7aWJrX6phVFNZXFzIzHyedUXDZTTx0ayP/d0m8AcQTGSZCsbzZvU31Pj5yZ7P2WpYkNtaLapng7cWPE+QtEAgEAoFAIBDo2LexVPe6rszNwiqDkHRG4ZatFXzqXRtorPTwjReDmjV/NqvQMTDLlqYi3TZ2i5GjbaOklxwzI7EUfWMLzOdEIijARCg/rqCq5O1tmCQQgKjACQQCgUAgEAh+Ag5uqcBiNnAhOEVxoZ27d1dz/PIYXcMrc2pWs4GukXnKixwYDbJm6b/MzHycKz0z2muTUWZbcxHHr6zEFyjA2IzewASgwGmhutjJ0FQEgP2byrhpU2neegLB2w0h4AQCgUAgEAgEPxF7NpSyZ8OKaLpzVxVZReHVC8PMLCSIJzN884Xr9AzP88vvbWFrk5/jV1YMSurK3VzomtZep9JZoqviAwDWVRcyOBFhYEIVayWFNi51TzM1v+KSWeF36gxIBIK3K+JXLhAIBAKBQCB4Q5AliXv31GAx62sEpzsmuNYf0mIFrGYDezaUcMeOqrx9pDNZPDkh3ns2lHA+OKWJN4CbN5frxBvA+aDe8VIgeLsiBJxAIBAIBAKB4A3FajboXpsMMo8c7tCy3OLJDAqwsc6L02bS1pMk6BycYz7H2KShwqOr0gFc7JrUXDGXKS60vcFnIRDcmAgBJxAIBAKBQCB4Q7lvfx1Gw0rA9W3bK5meT+jW6RmZ5wtPXCGyqLpWSpI6x5ZalRPXMRhidVa2xWzkQ7c1YjKqj7JlPjv37a97E85EILjxEDNwAoFAIBAIBII3lE31Pv7qV/bSMTBLpd9JdYmTC9enmJhdyXYrL3JwOcfARFFgNpzI21ddqRuP3cKrF0cANTz83j01bKj1sntDCbPhBBVFDqTVKk8geJsiBJxAIBAIBAKB4A3H67Zy06Yy7fWv3r+Rf3nmGuMzMTbW+7h7Z5VOwIHqQvm+A/U8faKfVDrLpnoft22vxGIysC3gZyIUY1O9D3+B2i7psJpwWE0IBO8khIATCAQCgUAgELzpnLg6zvCkOgM3MhWhqMDGlsYi2rrV+TZJgotd0/SOLvAr791AfbmHAqdF276l1ktLrfctOXaB4EZCzMAJBAKBQCAQCN5UxkMxXjg7pL2emotz+NQgv/6+jfz6A5uoKHKgqLndzEeTfOOF67jsorImEKyFEHACgUAgEAgEgjeVuTVm2yZmY7x8bphUJkMildGvH0kSXczPgxMIBKKFUiAQCAQCgUDwJtNY6aHIY2U6J7utc3COq30hAAqcZt36NSUu3A79MoFAoCIEnEAgEAgEAoHgTcVokPnvv7CNZ08PMBdOEE+m6RiY096fiyS5aXMZXUNzVPmdPHRr41t4tALBjY0QcAKBQCAQCASCNx2fx8ov3hkA4CvPdABzuvd3t5Ty8bsCeQHdAoFAj/gvRCAQCAQCgUDwM+XW7RWYjSuPobIs8XffusjvffEEPSPzb+GRCQQ3PkLACQQCgUAgEAh+arKKwnOnB/mrb5znkcMdWih3Kp2hrWuazoFZlCWrydpSN597eBfvO1CPy24im1WXz0eSfOPF62/ZOQgEPw/8/+3df2xdZ33H8fe91wn56Z910tgJcVLiJ/0BjdIMMAlJVRiUjZQfrRgppS1dJVZtlTaNiiLQNDGhBa3TyrSwIsEqWo1Oy9YAKaCqrCGNS7rSriErSZ+WNHHza40bYjcBQfG9lz/uqWtnaRP72j732O+XFDnnOec+93ujG3318TnnOV5CKUmSpKr94LEe/nP78wA8e6if/UdP8pd/tIIv3fsEvX2VxUsuWdLMn3/sUvK5HPObZ/EHXYvZ8sjzw+Z58Re/OuP8h3pP8dyhfpYuqGfx+XPH98NINcwAJ0mSpKo98UzvsO2Dx07xwI8PDIY3gKf3/4K9B06Qz8G+Iy/TuaiRS4c8zBtgxbLzeDIeo+fFU1y0uInli5vo3n2Uu7+/l+RRcVz73mW8d9WiifhYUs0xwEmSJKlqrY0z6Hnx5OD29Gl5Bkql/3fcjp8e4fFnjg1uX71uKU1z38QLvadYen49A8USm7Y8DcADPz7A9e8PfP+xnsHwBvCd7v0GOE1Z3gMnSZKkqn103QWc1zADgGl1eTa8ZxnrLm2nrpAbPKZxznR2P//SsNf915OH+OT7A3f+xeVcc/lSduw+Omz/g4+/wCunPej7t8XS4P100lTjGThJkiRV7fzmWWz8dBeHek/RXD+DOTOnAfC56y6je/dRZkwvcMXKdv7qXx4f9rpiqcyX7n2C/Ude5i0LG8jlhs9bKOR5z2UL2bJj/+DYFSsXkjv9QGmKMMCpKo8++gjd3dvTLiMzXnihh1wOvvzlv0m7lMxYs2Ydq1evTbsMSdI5yOdzvHn+8AVGliyoZ8mC+sHtK9/+5mFhbFpdnn2HXwbg2YP9nNcwg5f6K/fN5YA/fOdiui45n/bWOTx7sI+lbfX83vJ54/9hpBplgJMmUENDA3V1hbTLkCQpNetXL2FpWwP7jvSzrL2Bv/u3XcP2n/zVb7nt4yvoefEUFy5uGlxxcmVnKys7W9MoWaopBjhVZfXqtZ4dGaHW1rn09p48+4GSJE1SFy9p5uIlzQBc0FbPviMvD+57y8IGLuxo5sKO5rTKk2qai5hIE6iv7wS33347/f19aZciSVJNuPmDF9G5sIG6Qp6LOpq48crlaZck1TQDnDSBtm7dwp49e/jud+9PuxRJkmrC7JnTmN88i/bW2cxvnsWsGV4gJr0RA5w0Qfr6TtDdvZ1yuUx39yOehZMkCfj6A3vYsfsoPf93km3/c5h7HoxplyTVNAOcNEG2bt1CqVR5Zk2pVPIsnCRpyiuVyvzvvuPDxnb9/KXXOVoSGOCkCbNz56MUiwMAFIsD7Nz5aMoVSZKUrnw+x/zmWcPG2lpmvc7RkuAcVqEMIdwBXA10AG+NMT6djHcC3wRagOPA9THG58avVCnburpWs337NkqlIvl8ga6u1WmXJKlK9kipejd+YDn//O2n6f/lKzTXv4nr3hfSLkmqaedyBu7bwFqg57Txu4BNMcZOYBPwtTGuTZpU1q//COVyCYByucxVV3005YokjQF7pFSlhjnTmdc0k0I+x/ymmTTMnp52SVJNO2uAizF2xxgPDh0LIcwDVgL3JUP3AStDCD5dUXoDuVwu+ZlyIZLGhD1Sqt7Xt+7huUP9FEtl9vb0cfcPnkm7JKmmjXad1kXA4RhjESDGWAwhHEnGe0cyUUvLnFGWIGXL5s33ks/nKZVK5PN5HnroAW655Za0y5I09sakR9ofNRUUS+VhD/EG2He4n9bWuSlVJNW+1B+0cfz4qcGV+aTJbNu2HzEwUFnEZGBggIcf3sY111yXclXS+Mvnc4aRUbA/aqpYsqCe/UdfC3FL2+rp7T2ZYkXSxBlNjxztKpQHgfYQQgEg+dmWjEs6g66u1RQKld+ZFAp1LmIiTV72SGkEbv7ghVzQVk8+B2FRIzdeuTztkqSaNqoAF2M8BuwCNiRDG4CnYowjunxSmkrWr/8I+Xzl5rd8Pu8iJtIkZY+URmZBy2w+f/0qvnPHh/jsJ1ZyXuPMtEuSatpZA1wI4R9DCIeAhcAPQwg/S3b9CXBrCOFZ4NZkW9LraGxsYs2adeRyOdasWUtDQ2PaJUmqkj1SkjTRcuVyatfXdwD7vcZfU0lf3wm+8Y2vcvPNf2qA05Qx5Pr+JcCBdKvJhA7sj5qCWlvneu+bppzR9MjR3gMnaRQaG5vYuHGj4U2SJEmjYoCTJEmSpIwwwEmSJElSRhjgJEmSJCkjDHCSJEmSlBEGOEmSJEnKCAOcJEmSJGWEAU6SJEmSMsIAJ0mSJEkZYYCTJEmSpIwwwEmSJElSRhjgJEmSJCkjDHCSJEmSlBEGOEmSJEnKCAOcJEmSJGWEAU6SJEmSMsIAJ0mSJEkZYYCTJEmSpIwwwEmSJElSRhjgJEmSJCkjDHCSJEmSlBEGOEmSJEnKCAOcJEmSJGWEAU6SJEmSMsIAJ0mSJEkZYYCTJEmSpIwwwEmSJElSRhjgJEmSJCkjDHCSJEmSlBEGOEmSJEnKiLpqJwghdALfBFqA48D1Mcbnqp1XkqQssz9KksbDWJyBuwvYFGPsBDYBXxuDOSVJyjr7oyRpzFV1Bi6EMA9YCfx+MnQf8E8hhNYYY+9ZXl4AyOdz1ZQgZZLfe00lQ77vhTTrmEj2R2l0/N5rqhlNj6z2EspFwOEYYxEgxlgMIRxJxs/WoBYANDXNrrIEKXtaWuakXYKUhgXAvrSLmCD2R2kU7I+aws65R1Z9D1wVfgK8GzgKFFOsQ5I0vgpUGtNP0i4kI+yPkjR1jLhHVhvgDgLtIYRC8tvFAtCWjJ/Nb4DuKt9fkpQNU+XM26vsj5KkczWiHlnVIiYxxmPALmBDMrQBeOocru+XJGnSsj9KksZLrlwuVzVBCGE5lWWSm4ATVJZJjmNQmyRJmWV/lCSNh6oDnCRJkiRpYozFc+AkSZIkSRPAACdJkiRJGWGAkyRJkqSMMMBJkiRJUkYY4KTThBCaQgi/DiHcmXYtZxJCWBVC+Ne065AkSdLEcxVK6TQhhD8DrgYuAhbFGF9JuSRJkiQJgLq0C5Bq0E3AbcDngKuA/wgh/DWwHKgHOoEngY3A3wOLgftjjLcBhBB+lOx/O9ABfAU4DNwKtAG3xRg3J8deCfwtUAB6gU/HGH8eQrgcuBP4b6ALKAMfjzHuTfbdEWNcFUKoA74HtAAzgceTOQydkiRJk5CXUEpDhBAuBZqBh4G7qYS5V10GbAAClTC3EfgA8DbghhDCsiHHLgTWAe8AvghcEmN8F/Ax4B+S95oH3At8Isb4NuBbwNBLIy8G7kr2/TvwhTOUXASujTGuAi6hEgRvOsNxkiRJmgQMcNJwfwzcE2MsA/cD7wwhtCf7Howx9scYi8Bu4KEY429ijL8EInDBkHk2xxhLMcYjwHFgSzL+JNAeQphBJdz9NMa4J9l3N7AihDA32Y4xxqeSvz922vyvygOfCSHsSmq6AlhR1b+AJEmSapYBTkqEEKYD1wI3hRAOAHuBacANySG/HnJ48QzbQy9JPuOxSfgjOTZH5dLI1/NG87/qWmAN8O4Y41uBrwIz3mBOSZIkZZgBTnrNh4FnYowLY4wdMcYO4H3Ap8bp/XZSOeO2PNm+AXgqxnhyBHM0Ai/FGE+GEBqoBDpJkiRNUgY46TWfYvg9aMQYd1L5f7J2rN8sxtgLfBL4VghhN3Bd8mck7gHmhhB+BmwGdoxtlZIkSaolPkZAkiRJkjLCM3CSJEmSlBEGOEmSJEnKCAOcJEmSJGWEAU6SJEmSMsIAJ0mSJEkZYYCTJEmSpIwwwEmSJElSRhjgJEmSJCkjfgfMxkXiEuJHhAAAAABJRU5ErkJggg==\n", "text/plain": [ "
    " ] @@ -2010,12 +1941,12 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 41, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5AAAAFACAYAAADK7ZMiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3WdgXOWZ9vH/maYp6l2WbMmybMu9F8AU02sgZbNhswnJpu3um4TUTSUJCwmhJZuQkB4CKZQAIbbpGAy4F9xtybZk9d7baOp5P4w8lmxhy2A8lnz9PslzzpxzP6ORPJeeZpimiYiIiIiIiMjJWGJdgIiIiIiIiIwOCpAiIiIiIiIyIgqQIiIiIiIiMiIKkCIiIiIiIjIiCpAiIiIiIiIyIgqQIiIiIiIiMiIKkCIiIiIiIjIiCpAiIiIiIiIyIgqQIiIiIiIiMiK2WBcQK8nJyWZRUVGsyzjtent78Xg8sS7jtBur7YKx2za1a/QZq23btm1bi2maGbGuY7QYq/8/wth9j6tdo89YbZvaNfq8k/8jz9kAmZWVxdatW2Ndxmm3Zs0aLrnkkliXcdqN1XbB2G2b2jX6jNW2GYZRGesaRpOx+v8jjN33uNo1+ozVtqldo887+T9SQ1hFRERERERkRBQgRUREREREZEQUIEVERERERGREFCBFRERERERkRBQgRUREREREZEQUIEVERERERGREFCBFRERERERkRBQgRUREREREZEQUIEVERERERGREFCBFRERERERkRBQgRUREREREZEQUIEVERERERGREFCBFRERERERkRBQgRUREREREZEQUIEVERERERGREFCBFRERERERkRBQgRUREREREZEQUIEVERERERGREFCBFRERERERkRBQgRUREREREZEQUIEVERERERGREFCBFRERERERkRBQgRUREREREZEQUIEVERERERGREbLEuQORc19TUxK233hqz+9fW1gKQm5t7Wq+7cOHCU25XUVERX/jCF05rHSIiIu9EOBymvr6erq4ugsEgAOPHjyc5OTnGlYnElgKkSIz5fD527NlPyJ0ak/tb+zoBaPCd3l8H02cF2FbeeAp1tJ3W+4uIiJyqxsZGNm7axNbtb1FdWYk1zoHd48KwWjDDJt7WDtxuN7NnzebGG25g3LhxsS5Z5IxTgBQ5C4TcqXiLr43JvV0lzwGc9vuHnZ5TuuaROkRERM6k1tZW1q1bx5o336C9vZ248ZlYx6WRPPsCrE7HkHPdpkmwq5edlXVs/t5tTJ8+nY9+5GYFSTmnKECKiIiIyDmls7OTzZs38/raN6mprsY5IRvbtFxSsmZhWIy3fZ5hGNiT4rHPjsc1LZ+yA9V857bb+OAHP8C1V1+DxaLlRWTsU4AUERERkTGvqamJLVu3sn7TBmqqa3DlZmLNSyd10UUYVuspX89it+GZMZG48Zn885UX2bR5M1+59UukpKS8B9WLnD0UIEVERERkTKqvr2f9hvWs27AhMjw1LxNrXhppCwsxbKceGodjS/SQcNkCmvce5n++9U2++qUvU1xcfFquLXI2UoAUERERkTEjFAqxbds2Vj3/HNXV1cTlZ2ObkUdKxomHp74bhsXAM6uQ/tQE7r7/Xj78wX/h6quuwjDem/uJxJICpIiIiIiMCTt37uSPD/8JLyFsReNIWXAhhvXMzUt05mZgu2IRTz23ktIDpfznZz+H0+k8Y/cXORMUIEVERERkVGtvb+cXv3qQippqnHMnEZ+XGbPeP1uCm8QrFlKypYRvfufbfP0rXz3tey2LxJKWihIRERGRUWvv3r38zze/Sa3VT9K1S3GOz4r50FHDZsW9dDr+/HS++73bePKppwgGgzGtSeR0UQ+kiIiIiIw6pmnyzxUr+OeqlXjOm05cTnqsSxrCMAxck/NwjEvj5S3reHP9Wj78gQ+xZMmSWJcm8q6oB1JERERERhXTNPnbY4+y6uUXSbp68VkXHgezelx4LppDcGoujzzzJP/5//6b1rY2Nm3aRENDA8FgENM0Y12myIipB1JERERERg3TNHno4T+xfvtWEi6bj8XpiHVJJ2UYBs7xmTA+k0BHD73+fv70zyfxtXbi7+0jbIaxDuxFaZomhmEhPjGBxOQkiiYWcv7S8yguLo6eIxJLCpAiIiIiMmo8/OdH2LDzLRIunY/FYY91OafMnhyPJRCH+8JZuAceM00TQmEwAAzMcJhwv5/evn62Ndew5Xe/JtTXzwdvej9XXXWVgqTElAKkiIiIiIwKK1etYu3mjSRcvnBUhse3YxgG2I6GQsNqwWK3YUtwE5eVCjMLCXR088xrL/Hyq6v5r89+jilTpsSwYjmXaQ6kiIiIiJz11q9fzz9W/pP4S+ZiiRs74XGk7MkJxC+fh29SJnfdew+rV6+OdUlyjlIPpIiIiIic1Q4cOMDv/vgHEi6dj9XjinU5MWMYBq6CHOypifztySdobG7i5n/9SMy3LZFzi3ogRUREROSs1drayr3334976XTsKQmxLuesYEv0kHDFQl7btJ5f//a3WsVVzigFSBERERE5K/l8Pu66525sU3Jx5mbEupyzitUVR/zyeby1fw9//dvfYl2OnEMUIEVERETkrPTLX/2K7jgD17T8WJdyVrLYbcRfPIfX1q9lxcqVsS5HzhEKkCIiIiJy1uns7GTf4UN4FhVrjt8JWJwOEpbP5ZlVK1m3fn2sy5FzgAKkiIiIiJxVdu3aRXtHB/EXzsKwac/Dk7F6XMRfPIff//GPlJeXx7ocGeMUIEVERETkrNHY2MjPfvEA1njXOb3i6qmypyTgXjSVu++9l/b29liXI2OYAqSIiIiInBX6+vq46567cUybgGFXz+Opck7IwlKYxY/vvQe/3x/rcmSMUoAUERERkZgLh8P83wM/pz8xDtfUCbEuZ9RyzZhIhxHkd3/4vbb3kPeEAqSIiIiIxNzfHn2UiuZ63AumatGcd8EwDNxLprF93x5efuWVWJcjY5ACpIiIiIjE1OrVq3l17Rt4LpiFYdXH03fLYrfhWTaLRx9/jNLS0liXI2OMfkJFREREJGa2bNnCXx5/lIRL5mJxOmJdzphhS/TgXjKN+376E1pbW2NdjowhCpAiIiIiEhMlJSU8+Jtfk3DRHGyJnliXM+Y48zKxFeVw9333alEdOW0UIEVERETkjCspKeGe++/Dc94M7GlJsS5nzHJNn0inJcSvf/tbLaojp4UCpIiIiIicUbt27eKe++7Dfd504salx7qcMe3Iojq7DuxnxcqVsS5HxgAFSBERERE5Y9avX89PH/g5ngtnEZej8HgmWOw24i+azT9XrWTLli2xLkdGOQVIEREREXnPBYNB/vinh/j9nx8m4ZK5ODJTYl3SOcXqceG5aDYP/ubXlJeXx7ocGcUUIEVERETkPVVXV8dtP/g+m0r2kHTVYuypibEu6ZzkSEvCvaiYH997D83NzbEuR0YpBUgREREReU94vV4e+cuf+c73bqMjzYnnotlY4uyxLuuc5pyQhXVKLrffeQednZ2xLkdGIQVIERERETmtOjs7efyJJ/j8rV9k/cG9JF27FHdxPoZhxLo0AdzF+YTGpXDnXT/C6/XGuhwZZWyxLkBERERERr9gMMju3bt59Y3X2b1zJ86CHOIvnYctKT7WpckwXLMK6d5Swo/u/jHf/da3iYuLi3VJMkooQIqIiIjIO2KaJgcPHuSNN99kw6aN2OLdGBPSSXnfBVjiHLEuT07AMAzcC4tp2rSPu+65h29/4xs4HPqeyckpQIqIiIjIKenp6WHNmjU8/9KL+EJBbPmZxF82H1uiJ9alySkwLAaeJdOo37CXe+6/j2987evY7ZqjKiemACkiIiIiI9LT08Pfn3qK119/HWduBvaFRSSmJ2tu4yhmWCx4zptB9fo93HPffXz9q19VT6SckBbREREREZETCgaDrFy1ii9+6Utsqiwl+bqleM6fgSMjReFxDDAsFjznz6Sqp40f33sPfr8/1iXJWUwBUkRERETeVnNzM9/9wfdZ+fpq4i+fj2dRMVa3M9ZlyWkWCZEzqO3v4oc/vgufzxfrkuQspQApIiIiIsPauGkT3/j2t+hMiSN++VzsWlF1TDMsFjxLZ9AQ7OPOu35Ef39/rEuSs5ACpIiIiIgcZ9WqVfz2j3/Ac9Ec3NMLNFT1HGFYDDxLp9OEn9vvvIO+vr5YlyRnGQVIEREREYkyTZO/PfYo/3h+FYlXLMCRnhTrkuQMMwwDz+Ji2h2mQqQcRwFSRERERIBIeHzo4Yd5dcM6Ei5fiNXjinVJEiORfSKn0umyKETKEAqQIiIiIgLAU//4B+vf2kLCpfOwOrWVw7nOMAzcC6YoRMoQCpAiIiIiwsuvvMJzL79I/MVzsDi0mbxEREOk09DCOgIoQIqIiIic87Zt28bfnniMhOXztEWHHOfIcNY2S5C77rlb+0Se4xQgRURERM5hNTU1/PLXvyJ+2WxsCe5YlyNnKcMwcC+eRoO/h/t+cj/BYDDWJUmMKECKiIiInKO6u7u56567cc6dhCMjOdblyFnOsBh4zptBRUczv/zVg4TD4ViXJDGgACkiIiJyDgqFQtz3k58Qyk7GVZgb63JklDAsFuIvmMWew4d4+M9/xjTNWJckZ5gCpIiIiMg56M9//Sv1vR245xTFuhQZZQyblfiL5rBu6yb+8cwzsS5HzjAFSBEREZFzzLr163ljwzo858/AsBixLkdGIUucnfhL5rLqxedZ/eqrsS5HziBbrAsQERERkTOnqqqK3//xDyQsn4clTns9yjtndTtJWD6Pvzz6N5ISE2Ndjpwh6oEUHnjgAR544IFYlyEi7zH9rItIT08PP773HlzzJmNP1Qd+efdsiR7iL5rNL3/9K+0ReY5QD6Rw6NChWJcgImeAftZFzm2hUIj7fvoTwtnJeArHxbocGUMc6cl4zptBY2MjFRUVFBQUxLokeQ+pB1JERETkHPDIX/5CXXc77rlaNEdOv7hx6RhuJz+86y7q6+tjXY68hxQgRURERMa41atXs3bThoFFc/TxT94bljgbthn53H7nHTQ3N8e6HHmP6DeIiIiIyBi2fft2/vLYo8RfPEeL5sh7zj05D6NoHN+//XZaWlpiXY68BxQgRURERMao8vJyfv7LXxB/4WxsiZ5YlyPnCHfxBMzCLL7/v7fT2toa63LkNFOAFBERERmDqquruevuu3EvnoYjIznW5cg5xj0tn3B+Brf94Ps0NjbGuhw5jRQgRURERMaYqqoqbr/zDuxzCnGOz4x1OXKOck8vgKIcbvv+96iqqop1OXKaKECKiIiIjCGVlZX87w/vxDF3Eq6JObEuR85xrinjsc0p5PY77qCkpCTW5chpoAApIiIiMkbs2LGD2++8A8e8IlwFCo9ydnAV5OBaOo2777uXNa+viXU58i7ZYl2AiIiIiLx7L7z4Ao8/+STxy2bhyEyJdTkiQ8SNS8dy2QIeeexRqmtq+ejNN2PRljKjkgKkiIiIyChmmia/ePCXbN+3h8QrFmJLcMe6JJFh2ZPjSbpyEW+u20L54XK+/MVbSUxMjHVZcooU+0VERERGqaqqKmpqa9nTWEXilYsUHuWsZ3E6iF8+l3pLgP/51jc5dOhQrEuSU6QAKSIiIjLKhMNhVqxYwfdvvx0zzoZn6Qwsdg0sk9HBsFjwzCvCOnsiP/zxXfxzxQrC4XCsy5IR0m8aERERkVGkrq6Onz/4C9r6+0i8ahGWODvgj3VZIqfMOSELW2oiq9a8wvadO7j1818gJUXzd8926oEUERERGQWCwSBPPvUU3/nebXSmu4m/dJ6GrMqoZ4t3kXDZfBocIb72jf9h48aNsS5JTkI9kCIiIiJnuZKSEn7129/Q77CQdPVirB5XrEsSOW0MiwXP7En4c9L43SN/YuPmTXz6Pz5FfHx8rEuTYagHUkREROQs1dXVxS8e/CX3/OR+AlNy8Fw0W+FRxixHRjJJ1yyhpLOJL3/tq2zZsiXWJckw1AMpIiIicpYJh8OsXr2ax/7+BPYJmSRddx4Whz62ydhn2Kx4Fk7FPz6DXz/0B95ct5ZPffI/SEpKinVpMkC/iURERETOIqWlpfz2D7+nO+THc/Ec7KnaJ0/OPY6sVOzXLOHA7nK+/LWv8tGP3Mzy5cuxWDSAMtYUIEVERETOAvX19Tzy179QevAgzjmFxBfkYBhGrMsSiRnDZsUzbzKOgmweW/UML7+6ms9+6tMUFhbGurRzmgKkiIiISAw1Nzfz5NNPs2nzJpzFE0i+/jwMmzXWZYmcNewpCdiuWEhnWS133PUjFs6fz7995GZt+REjCpAiIiIiMVBRUcGq555l67ZtOCfnkXL9+VicjliXJXJWMgwDd1EezglZ7N57mK987atceumlvP/Gm7Ra6xmmACkiIiJyhvT09LBlyxZeeOVlmltacEwaR8oNF2CJs8e6NJFRweKw45k3BeeUCazbs5dXb32N5cuXc8N116lH8gxRgBQRERF5j4RCISorK9lfUsLmbVuoKD+Ma1wG1vxMks+fgqEFQUTeEavHiWfJNOJmFLC+ZD+vfvVV5s2fxzVXXsXkyZM1f/g9pAApIiIi8i6EQiE6Oztpa2ujpaWFlpYWKqqrqKyqoqm+AUeCB2tGIpbMFFLnXITFro9fIqeLLd6FbeFUXDMnsr+8jt0/+ymeOCeXXHQx5y1dSnZ2dqxLHHP0G0xERERkGKZp0tvbS2trKy0tLZGA2NpKU0szbe3tdHZ20N3VTX+fF4fLid3jwupxYrockODCXpxD6pLJGp4qcgZYnA480wswp+Xjb2rnxV2bWfHsKpKSklgwdx5z58xh6tSpOByaZ/xuKUCKiIjIOenYgNjS0kJ9QwN1DQ00NTfR0dpG2DRxJnqwelyYLgfhOBtWtxNLjgdrYSoJTgdJToeGooqcJQzDIC4rlbisVNwLphJo6WBtzQHWbt+Ct6WDjOxMpk6eQlHhJPLy8sjLy8Ptdse67FFFAVJERETGvJqaGlpaW7n3J/fT0dlBR3sH3Z1dYEBcQjy2+EhANN1xWJNc2HILSImfhuGway6VyChlWAwcmSk4MiOL63iCIfxtXWxrqWf7G+WEO3vxtnVis9tIzUjnox/+CPPmzYtx1Wc/BUgREREZ83bs2EF3Vxfbt27D5orD5nbhyknH4jj6UcgIhjC6+jC7+ggAgdiVe0rCxbPpK9kb6zJOu7HaLhi7bRst7ToyXsCS4MIT7yLo7aexoZHy8nIFyBFQgBQREZExb9myZaxbt47Pf/7zsS7ltGtvb+djV98Y6zJOu7HaLhi7bRvt7SouLo51CaOCAqSIiIiMecnJyXg8Hs4///xYl3LarVmzRu0aZcZq28Zqu2QozfgWERERERGREVGAFBERERERkRFRgBQREREREZERUYAUERERERGREVGAFBERERERkRFRgBQREREREZERUYAUERERERGREVGAFBERERERkRFRgBQREREREZERUYAUERERERGREVGAFBERERERkRGxxboAEREREZHhPPLII1RWVsbs/g0NDQBkZ2ef1ut2dHTw5ptvntJz8vPz+fjHP35a6xB5JxQgRUREROSsVFlZSWVlJfn5+TG5v8/ni8l9jxXLEC1yLAVIERERETlr5efnc9ttt8Xk3nfccQfAab//mjVruOSSS065DpGzgeZAioiIiIiIyIgoQIqIiIiIiMiIKECKiIiIiIjIiChAioiIiIiIyIgoQIqIiIiIiMiIKECOIa2trTz00EO0trYOe+yLX/zisMdERERERERGYkQB0jCM9xuGYRqGUfxeFzQShmH8p2EY2kn1GA8//DBVVVU88sgjwx7bvXv3sMdERERERERGYqQ9kDcDa4GPvIe1jJhpmr82TVNJaJDW1lZeeOEFTNPkhRdeGNLTeKJjIiIiIiIiI2U72QmGYcQDFwDLgRXADwzDuAS4HWgE5gJPA7uBWwEXcJNpmmWGYfwJ8ALFQD7wSeAW4Dxgk2manxi4x83AtwEDeNY0zW8MPN4D/Ay4fuA6N5qm2WgYxg+AHtM07zMM4zPAZwEHcAj4mGmafe/qVRmFHn74YcLhMAChUIhHHnmEL3/5yyc9BlBbW4vX6+XWW28984WPUEdHB//4xz9iXcZ7orGxEUt/V6zLiDlLfxeHDnWf1e9DGN3vxUOHDuFyuWJdhoiIiIxiJw2QwE3AC6ZpHjAMo80wjPkDj88BpgFtQDnwe9M0FxuGcSvwBeBLA+elAJcC7wNWEgmjnwa2GIYxF2gC7gYWAO3AS4Zh3GSa5jOAB9homuZ3DMO4B/gMcOcx9T1tmubvAAzDuBP4FPDAcA0xDOOzRMImGRkZrFmzZgTNHx1efPFFgsEgAMFgkBdeeIF58+ad9BiAz+cjGAzS0dFx5gsfoVAodFbX925YrVaKJ+Uzb44nJvd/tdoKwKWn+f7pbiufPoVrbu/Op6uj/az/Po/m92IwGMTn873t776enp4x9XtRRERETr+RBMibgf8b+PqxgX8/C2wxTbMewDCMMuClgXN2E+mtPGKlaZqmYRi7gUbTNHcPPGcvUECkZ3KNaZrNA4//FbgIeAbwA6sGrrMNuGKY+mYOBMdkIB548e0aYprmb4HfAkydOtW85JJLRtD80eGtt97iueeeIxgMYrPZuPrqqznSvhMdA6K9KT/72c9iUPnIrFmzhrH0/Rrsz3/+M7954lm27eyNyf1dvSEAfn+a7//pOZ5Tuqartp0FhVln9fsQRvd78Ujv7tvVP5rbJiIiImfGCedAGoaRRqT38PeGYVQAXwf+lchQU9+gU8OD/h1maDD1DXPO4POME5QQME3THPg6xPCB90/A503TnEVkWK3zRG0aq2655RYslsi302q18vGPf3xEx0REREREREbqZIvofAh4xDTNfNM0C0zTHA8cBpadxho2ARcbhpFuGIaVSA/n66fw/ASg3jAMO/DR01jXqJKWlsbVV1+NYRhcffXVpKWljeiYiIiIiIjISJ0sQN4MHLtaxFPAv52uAgaGwX4LeA3YCbxlmuY/T+EStxEJoS8DJaerrtHolltuYcKECcP2MN5yyy3MmjVLvY8iIiIiIvKOnXAOpGmalwzz2M+Bn7/deaZprgHWDHz9iUGPVwAzB/178LG/AX8b5l7xg75+Enhy4OsfDHr8V8CvTtSOc0VaWhqf/OQnh+1hTEtL4+c///kwzxIRERERERmZke4DKSIiIiIiIuc4BUgREREREREZEQVIERERkXNAyAzHuoSoQDhEMBx6x8/3h4IcXaj/7PFu2jQSZ2Ob5dwzkn0gRURERM5JjzzyCMBZtQhdeVcLr9SWMCctlyWZE0f0nJ2tNfxm35t47HF8ZdZl5HiS3vZc0zT5fck69rXX84HCeVyYXcS+9noeKt1AtjuRG/Nns7q2FG8owLLsSbhtDrJdiQBU97YzIyUHm8V63HXX1B2g1dfLzJRxPLjvDSyGwddmX06uJ3nIed6gn8BAEPMGA9gsR/s76no72NVWyz8qdjIxIY2vzr4c+zH36vL309LfzcSEdAwjsltc2DTZ215HhjOebHcSBzoaWdtYxqKMfGal5g77Ovzl4GYOdjbhstoJhkPDtmmwpw/v4MWafcxLG89/Tr/whOe+E639vfz3useYnzaez0w79Q0RXqsrpaGvm+smzMQXCvJCzV4mJqSxLLsoes6T5dvZ1lJJQXwaH528mHh73HHX8Qb9xFltWIyx1Q91Nv6sn60UIEVERETeRmVl5dB/d7dxsKuJpZkFxNtPz9bTNb3tPFS6gWSHi89MW4bTaj/h+b8rWUubr49tLVXMPib8+EJBWvt7yHEnRcMTwJbmSkKYdAX6+cW+Nfxw0Y2YpknQDB8XwFp9vWxtqQLg72VvMSUxkz8f2ERXoJ+uzn5+sms1ISI9Yfs7GgBwWe1YDIPeoJ+lmQV8cur5Q65Z0tHAo2VbATjY2UR/KADA70vW8cWZy+kJ+GjyduO22nhg7+uEMFnW66K6tw0Dg2ZvN6/XH+Ll2v3YBoLL4e5WbtuyEothcEH2JK6bMJODnY3cv2s1JnB+5kRumXpepB3lb/FqXSkAn5u2jMfLttHh9/JWSzU/P//D+MNBDne1MjEhDafNzr72et5sOISJSV/Iz6HOZna01ZDpTODS3KkA9AT6Odzdit2wsKJyN9W97QBsb63GHwrisEY+Zjf0dbG5uYK5aXlMiE8FoC8YYFXlbpaPm4rH7hj2+7yjpZodbbVckjMZgA5/H3GmydaWKnp3v8rHJi8haIbwBgMUJKTR7uvj4QMbae7vYXZqLv86aUH0Woc6m3msbBsAgXCQrkA/u9vqWNtQRlFiBtnuJJq93bxcux+ANl8fLpuDj09ZEr3GtuYq/nRgA/5wiPGeFL4x98rj3jvvxCu1Jbxef5ALs4u4Mm/accdX15ZQ1tXCDfmzyHG//R8+3q1jf9bl7SlAioiIiIxAb8DP/btewRcOsq+9ni/OXH5arvt63UFqejuo6e1gb1s9CzImnPD8Tr8XAANwWI5+lAuEQ/xo+ws0eLu4dNwU/nXSQiDSa9fj74+eFzZNvEE/d+98mUZvF5+cch6LMwuixxMdTgzABMJmmO9vW8WRgZMOixX/MMM0vaEAR+JqS3/vccc9tjgMDExMnNajNdf1dXLblhUEBobXHrkvHB2uaWLS6uulrKsZgOCgobjt/j4AVlTu4uLsIrY0VUWfX9rZFD2vsqc1+vWqyt3R181usWAxDH68/UXqvV3YDAvfmHMljiHByGBDYzkbmyuASGj+9NTzuXvnyzR5u49pp4NZqbnc/tZz2A0Ln59xCfftepnugI/X6g5w/9IPUt/XSUt/N+uqmnmj4RChcBh/OMjMlHFkuhLo8PcxIT6VJ8rfAmB3ay1hXy+DB6/u72jg6YrtbG+pIWSG+fjkJdT3dUUD/at1pWxtruRLMy9lbeMh2nx9WDEIYZLscEd7Uw0MHtz3Bv857SIyXPFkOuNp6u8BwG0b+oeMNfUHot/76t52Wvt7SInzsKW5kgnxKRzubqW6t51f73uTz05bRoevD4/NQZztxH8QWVG4/U4SAAAgAElEQVSxC184yD8rdh4XIBv6OqOvgzcU4NbT9DMn744CpIiIiMiImIQHPsafzvmEM1PHsa6xHI/NwcTENJ6t2k2Tt5ubCuaSEuc+7vxcTzJVPe3keZKxDhre2RPw0eDtAuDQQNgC+OuhLUP+PSMlh+qedur7OgHY2lxFTW8Hbb5eXFY7BzqbmJGSw572ekwYElyGC48AizMK8IeDOCw2rp0w47jj4+NT+MbcK2j3eVnfUDbkWGDQazncDD+bYWVqUhYfnDiXn+xeTWiYeYBOq52vbnqa1EGvV2FCZFuzvqCf9xfM5f5dr2ACtQPtjhwLUNndFn3dgmaYhw9s5EOF8zGikdiksqct+pxdbbX86eBGmo8JjwDz08eTYHfSMhDC/li6nu6AD4gM/fz6xqf5SNHRnsEjfwwAeKu1Ovr13rb66Nc9QR99/T2D6olItDuj78P6vk4KE9Oh9ujxrkA/Dx3YEO0ZXZY1idlpucxKzcXExGpYeLWulEZvN38v38atsy7lK7Mu47tbVxI0w1R2t/GHkvXU9LZzU8EclmZO5FBnM1bDYGFGAVmuRP50YAMbmyqwW6ykO+MpNE22t1Zz944Xqehpw4rB/y66gXRnPMfqGOjlzHDFU9PbwbhhhlXH253E2+LoCfrIGRgmLbGnACkiIiIyAh57HLfOXM6BziaWZU86bdedk5bH/Us/iM1iobyrhRWVuwEwDAufmLL0uPO/MusyyrpamJSYPuTxlDg3NxXMYW9bPTfkz4o+nuGMHxIgNzdVctm4qcxKHUddbycTE1J5pnLXkGs1DgpU49xJJDlc3Jg/iyfKt1Pe3cL8tPGUdjbiD4WYlTaOzQO9czmuRJ6p2EmOO4kb82cPGUY7MSGdiQnwam0JAFbDGDYMDpbhTCDJ4cQwDIqSMlk+biqv1JaQ4YzHgoXG/kidR4bEtvn6os+dlpJDeVcLP9m9eqC31opvmABsNywszpjIpubD0Tb/355Xh5xTP/B6QKTX7q2WSNizYET/qADwZkMZ78ufHW1bWXdL9JhJJAwe6Ggiy5XIhwun8VrdQZoHwuZgR+YXDumRHXSfZVmFfKhwPt0BH419XVT1tJHm9DAxIY3D3Ud7W0Pho+G8pb+HOWl50VZcOm4qaxsO4Q+H2NfRwBNl27g8tzj6PTnQdbQHd2Xlbr47/xrOzyoc8j31hoKR1ywcZlHGBNoaDjEpMSPaWxzCZH97AxfmHJ1nCfBm/SH+cmgzKQ4X7QMhutV7fM91vD2O2+ZfQ5O3m6KkzOOOS2woQIqIiIichGmarG8sJxgOc8346ae0gEjYNLEYxgnPcQ0M80uNc0eHiWa7EqL3/l3JOna0VpMa5+Grsy9nZuq4Ya9zzfgZXDN+aA/gxyYvYWFGPk+Wb6fe24kvHOTB/W9yx8IbgMgcvWer90YXrgFw2xz0hwKETJN0ZzyfLr6AvxzchMfu4Buzr2RNwwF6g34A5qeNjwaqem8X9d4udrTWMD0lhynHfOgPhEMcPBJmTbg8dyp72uqjPYDH6vB78Qb99Ab8eOwO/qVwPh8omIvVYiFsmrxYs481dQfoGNSTB5HgtSgjn1frSqPtclsdQAibYRkyDPaOHc/z4cL5GJiR4bcGMPRyQ0R67yIB0WGx0h8ORo9ZDIPpKdnU9XawtaUKh8XKteNnsKutjpredqyGhUWZBdTV7uOS3GlYsPBY+bbj7tEZ8DI9OYfm/u7jAqYFg9mpeTxeto0tzUfn7ZV2NnF13nSavd2ETRNfOEid92hva3lXy5C5mRmueBZl5LOusRyIzClNdXr40MS5/P3w9iH3jLPYeHDP68xIzWFpViFxA9f4aNEixrmTyPekMi9jPGvKW5mdV8SD+yLfY5fVzpJBw6OP2NcR6WFt93uZlJhOWVcL899m6HZynJvkY3rid7bWYJomc9PHD/sceW8pQIqIiIicxNbmSh45uAmIDF89spDKyTxRto1X60q5IHsSH5u85KTnZ7gS+P6C6+jw9UV7XNoHFswBaO7vYVNTBVePn05/MEBpZyPhk/TiWS0WZqaOoy/o5w+l64FIKPUGA7hsdrLdidy+4Hp+ue91ans7APhc8YX8dM9qIBLitjRXsnkgrJR2NEaHslqAhw5sOO6edsNCutNz/OMWKy6rHW8oQAiTjU0VTE7MjAbIY3v0AuEggXCQZyp3MDNlHG6bgx2tNZyfVUiuJ5lrxs8gwebgifLtjHMncXhgrqMJbG2pImPQ0Mm+UCTwZjjjh/Qohk2Tpw/viLYpx5VIepyHDFc8R6Ld4J5AINpL1x8OYgCfnHoe2a4k4qw2st2J3DJlKWVdzbT7vbxUW0LfQNhell3AlKRM6tgHwPbWmqPfJ8Blc9AzcG5ZVzO+gXCaGuehzRfpoQtj8kbDQfa0Hx3mesTLNfv54eIbSbDH8f/WPT7kmN8Msbm5Ysiqqx8pXEhNbwdd/n4+OHHecdfL8yRTnJTFKwMLEO1sr+WVulJuX3AdFsNCksOFy2rnNyVvMq0hmzlYmJOWx8cmL6En4OOy3KlDFtp5snw7+9rrOT+rkDZfHznuJP69aBG+UBDPMCu+DmdLcyW/L1kHwLXjZ7AgYwJ5npQRPVdODwVIERERkZMY3ON4st7EwdY1lmMC6xvLRxQgAdKd8UPmjCXFuciPT6Wypw2bYWF6SjYAD+57g9LORpb1ufjWpmd4/8S5QxbDOdbizAI6/H2sqNhFc38Pd+98ie/NvxaLYZDm9DApIZ3a3g6SHS6afd2YRIZrTknMIM+TjN1iJRgORYPWjOQcLBaD3W11kddlUPibnZrLwwc20ujt5j+mnMeU5CxMMzKH9LLcYlZVRYbp9gR87GqtYUJ8Cgk2Jx+fvJi1jWW8XFsyJHi8UX+IN+oPRYPctpYqCuLTKExMY0XFLgJmOBoej9jaXDkkXDutdvpDAXLcSVyfP4vXag9Q0d1CEHPI3M4j4TJ1UAC2GAZfnLGcnx4ztPWI3oCf/MxUAuEQfz64mU6/Nzr3sS/oj9Y9+Zge2SvzplHa2QhACKLhEYiGR4C+gH/I80o6GqNfz0rOoS8UoKy7BdOI/HHAZrFyY/5s3qg/FF1oCCDXPXTLFIfNxrfnXT3ksfZBvbmX5xYPGf4M0OTt5vmqvSzImMCGxsNsaa7EBPZ1NDDTjLw3hxvi3ebrja7y+lTFdv69aDEXDJx3si1SBusPBqJfP1e9lxeq9/G1OZczKTFjxNeQd0cBUkREROQkFmRM4NPm+fjDIc7LKhzx8y7PLebVulIuzC46+clvw2pY+Pa8q/EG/dgs1miwah3okTJNkza/l+er954wQALsba+PLlrT0NdJIByKDke8uWgRSzIn0hvs59f71kaujckrdaWEMfnRovfRF/Dzj8qddPi9fKhwPr5QgH3t9YRNk7npeWxvqcZjj2NWai5/OrgRgDcaDpHtTuLenS/R7vdyU/6coUUZBlU9kYVeqvs6uD5/NlOTs9nw5trj6j8SBzt8fWz39bF90MIzw7UVoCA+jRkp2TxbvReILDA0LSWHQ93N2C1WJnlSKOtuwQCmJmVR2tmICRzobMJpteMLBclwJrxteDSBpw5vZ3dbLW5bHFtbjt8OwgTmpuWx9Jh9O2emjqM4OWtIIBzO4GGycHQl2mVZhexpr6c74GNp5kTmp+fxRsMh0p0erp0wkyvypvH1jU/jDQWIs9jYMdDj6bY7qOxuY05aHs9X7+XFmn0szZzILVOWsigjnx2t1aQ4PCzKyKcwIZ31DeVDeoZXVO3mueq9BM0wVsMg3hbHrLRcrHX9vJ1Eu5NcdzK1fR0Dw4/3RwPkiZR2NOILBZmdFtmy5oLsQnzhILtbaynpbCSMSWt/rwLkGaQAKSIiIjICi04SzoZzQ/4srsqbdlr2y3PZhu4X+B9Tz+ON+oPYuyM9RAtPsv0HwKSEDEo6GrEbFj5UOD8aHiHSy1aUlMGKyl1DwgJAp78fjy0Oh9XGf02/aMixB5fdTCgc5jtbVmAS6SFaVbUHm2HBBBamT6C8uyW6PcTejqNDL4sSMzAHFptxWm1kOSPzPsuO6fUqTEin0dsVnXd5okG7DsNKnM0W7QGs7W2nwdsV3fbkirxpVAwsbhMIh5iXPp5pKTlsaa6kpHNokDuyOM/bzdE8ImiG2TewhUa0jmO2PJk4sCosRLak2NxUwZzUXJIcLooSM0h1uNk8KHwOXWTo+BZbDQuGYUTnf+5tr+NwdwuNA6vDZroSKYhPja7U6gsHeaFmHy/V7MdqsUTanjaeg11NhAfm+F6ZN43nqvfS0t9LS38vh7taKUxM554l72dV1W42Nh2m/8jCOQPXNU24c9ENuGwO1tStedvXyGax8vXZl/PDHS/Q3N/D4oz8485ZU3eA2t4Orp0wk5Q4N/va6/nZntcA+GjRYi7KKcJiWLg8t5jzswp5pmInHptjRO/9E6nsbqPZ202C4/Ts7TrWKUCKiIiIvEfWNpTxl4ObyfUk8T9zrhwS2Lr8/dy/6xU6/V7+a/pFTE3OOuG1drXW8nj5NooSM7hlylImJWYwKTGDNfVr+Nl51+I8yX57AO8rmM3CjAmkxLmHBFJfKBitbUlGAVubKwc+mOfT3N9DQXwaX9/0NH1BP58pXnbcXpX9oUB0qGTQDNPii4TFpZkFPHJwM1muBMa5kugL+slwxnPt+BnYLFbafb28ObCthwWDu3e+zCU5k1lVvYdlhguLYcFqWLgqbxrPVOzEFwpGg4vdsJDgcA5ZeRUg3hGHL3S0xy5ghgmEIs9ZklnAlXnT+N3+o72bKyt3cd/SD/Jc1Z7oY4NXBz2RY+dGDpYeFx9dxMZtdTA1KYtQOMxvS9bi8XbzTOl64iy26FBVy6BtOuIsNqalZOMLBtnfeTSYuqx2rpswk6crdhAyw2xrrsJjc9Ab9NMd8EVDM8BrtaXU9XVw3YSZvFSzPxq+w5iEB4Jtd6Cf6ck50VV0X6ktIcURWbDGZli4b/crZDkTWJY9iSvypnHthJk8fGAjDouNBm8n9X1dhDF5vGwbH5sSGaLd7uvDGwwMuy3Hq/Wl0UWBCo9ZRbiyu41Hy7YCkYD96eIL6BnUnsFfQ2Shp38rWvQ2r/6p+cXeNbT7++gKvH0PqhylACkiIiLyHtnaXImJSU1vB/V9nRQM6oU60NkY7dna2lx50gD5Ys0+Wvp7aOnvoaSjgS/OXE6uJzKnbSTh8YhxA8/xh4LU9nawpv4gG5sOsySzgLreTmp7OwhjYjMsfLp4GSYmt21dGZ1PuKO1hmkp2ZR3tZAW5yHdFY/HHsc1edNZXVca7XUzgD1t9fQGfZR3Rz78J9qdvF5/EJth4a7FN/HQwKI+AH0DvX0vDsyTM02TXHcyLpudPe31Qxa+gch8wltnXcprtaW8ULOPLn/kw/+RQJnkcNI58FiOKxG33cFlA4sfDd4+xBcOsaO1hivzprG+sZwF6eMp724dEiDnpuZS0tkU7ZE84kQ9oYNXQO0L+fn53tdwWR20+nq5AOfAvY8G3SO9vpHtRoLsaK3houwirJZxbI7e0KS0s4k8TwpVPW30hQJkuRLoDwZw2hz0Bn24bXY+WDCPPx+KPOvZqj3ctehGano7eK3uADvaBoaxWh1MTsogw5nAnvZavMEARYkZLM4sYHpKNisrd1Pd205jfzdPVezg1boDZLoSmJeex/JxU6nsbuOuHS9gAhuaDtPp9zI9HHmvBMIhPjFl6QmHex+7r+XgbUqO/AFgYUY+HX4v/aEAl49w4ap34sgfU05ldeVzmQKkiIiIyHvk8tximrzd5CekMj5+6EqRxcnZTIhPocPnZWlWZG5cdU87q6p2Mzkpk8tzi4ecPzNlXHRBkw6/l01NFXxg4tx3XNvP9rzGoa7m6Mf4LccsOhMywwTDIUwiYQ7AabVxae4Ufrp7dXTeYo47iW/PvYqbJs5lUlIGv9j7OnB038PBBvcMAlycMzk69DMtzoMBtPiO7gcYCIdwYWdqchZrGw5hDFqop6a3g38c3sH7J87FY4+LrjB7RLLDHQ2QF+VM5qKcouhiLeM9ydH5kzbDwh9K15PhjOeq8dNZkD6Bb2/+Z/Q6CXYn/zXjYqq623hg72t0DeoJy/MkD1kwByIr0x7dJOSovmCAvkELwHisDnzhoz2qSzMLSLC7eG1gxdMjr+EXZl7CNz2raevvxRsOsrutFisGBfGpVPS00ejt5jtzrybHk0RJRwMT4lOJs9p4tGwrQTOMf2Dho+KUbKYkZ/LdLStp9fXSF/LzfHVkNdjpydlcnjuNGak5QGRvUpvFwpPl22np78EfDtHu76Pd30dpZyNJdhd2i5XpKTns72ggbJqUdDQyOZwW3TblmYqdTE7KHLIg1NV5M4i3OYm3xzFtYDGoI7oH9f65rJE/iFgMgyvzpg3zap5eX551KT/853o8xwwTl+EpQIqIiIi8R2amjuNHi28c9li8PY7vzLtmyGNPlG/jQGcTO1prmJ2aS+bAXpAAWe6jX1uABHscrf3Hb77e1t9Lm6932I3XSzoa6A8FmZuWR1VPGxDpCUpyOMnzpLCnPbKiaoLdSYrDxYamcuak5vG5aRdS1dPGsuwi0pwemrxH9yas7+uk3ddHljuRTGcCdos1EvwGtus4ItedxPlZk9jRWsOizMj8twZvF5+YspSChDQynQn8vfwtXqs/EH1Ok7cbw4BVlbsxiWx1cSScdQX6eaFmH3PT8igdNP/QabUxNy2Py8YVs7JqN/s7Gni8fBtVve18YspSILK1yRFHAlxzfw9/L3+LVZW7h8wBtRoWvr7habqC/RjABZkT6Q74yHQncs346dy2ZdWQ1/jfixbzyKFonyE2w8LVedNZVb1nyHm9IT+57iRq+zoH6nYQb49jSWYB6xrLsWBQ1dNKh68Pj82BzxbgyGDdMCYOiw0LBpMS08n1JGO1WJiVmhu9/uemX8iKil3MSh0XXVG2sqctuvjSYPs6Gqju7eCi7CKuz5+FN+inrLOF6yfMItudyFst1TxXtTv62v+mZOgCR6lxbq7Mm4ZxoJ54Wxw9QR8dfi+3b3uWHyy4nrSB+1stFi4eN/m4+0PkDyrz0sbT3N/N5XnFw57zXkmJc5PkcJ3Re45mCpAiIiIiZ4lcTzIHOptItDtJOGZfvKlJWYz3pNDm62NiQhpPHt7O89V7ud48Oiy2zdfL7W89S38oyPUTZnFD/qzoscELktw8aSHLc6bwYu1+wpgEwiHKupqZmpRFQ18nnYF+ugP9VPW281L1fi7PLWZXWx3PVe/l/QVz+UzxBTxdsSO6b+SutlqMtlqePLw9sk3GhFlMTsrku1tXRHsdP1N8AXfvfAlvKMjBribWNZRRORBiL8+dynhP6pDwCBAmTENfF66B4atBTOyGlVxPEhUDz/1DybqB/RgNPDY7faEAG5sqsFts3DxpId/eEulNbOo7OgT22H0DM+I8tPj6MDGHhF6I9Pa6g5HeMRPY2FzJDxZcR6Yrgbb+nuj+kgAJtjgqjtlOJGiGsVgsXJU7nW0tlZHFb7oir0m8w8nVqbk4rFbW1ZfR6u/DbXOQ4Yynub+Hyp52nqnYSZe/n96gH7thIWiGWZA+ga0De4OmOj1DAnFDXyd1fZ3MSc1j9vzcIbUEQiHeTnegn2er9zAxMY2tzZVsbKoAoDgpi2U5RXy6eBkv1+4nwxkf3RMUInM3Pzn1fKYkZbLmQD3vy5/No2VbMAF/OERrf080QJ6I3WLls9MuoC/oJ97+9ovZdPj6eGDvGvpDAf57+sXRYdxy5migr4iIiJyzVlbu4p6dL1FyzAqasfLhwgV8ffYVfG/+tYDBPTtf4usbn6a0oxGPPY7vzr+Gn5z3QYJmJAj0Bv2EMaMrbbb7+qKrZNb3dQ65du+gYZZPlL/F2sayo8eCfryhAKWdjXQes5BICJMXa/dTPzCnb31jGTNTxzE9OSd6zj8qdvLk4e2YQF1fJ9nuRBIdThYNrLQ5JzWXbHcS5qB5b32D9jx8pbaUfe1HV2e9OPtoL5WJyaSEQQuuGPCFmcujwxx94RDdAR8mJgl2Z3S4rS8UJNXp4WOTlxBvi6Osu4WVlbuA41dVbfb1DpmDd/RWxy+TEzLDlHU1EwiHuHP7i0OOdQd9rGsoP+46/cEAHyicyw8X30i2JwnTNLEYBqUdjbxWf4ALsibROrAIUX8wQMagYZ+t/b00eDvxhvzR3tKSzsbocMudrTXR7Tk6/V5+tP1FfrN/LY+VbY0OJz1yzAT+rWgR+YMC9HhPChdmDezHaFhIi/MQZz06p7aks5E/lq5nTloun5p6PvF2J4vS87l2/Ay+OedKvrfgWqYM6u2+eNxk7lz0PhZl5HP9hJlMGTS3t9Pvjc5VPVYwHOLHO17iqxufZlXl7mHPAdjVVkdNbwct/b1sHgi5J/NMxU6+t3UlGxsPj+h8OTH1QIqIiMg5qbW/l1UDK28+fXjHcRuq729voK63g4QT9Iacbke20gDY3VZLWVdku4l1jWVDFtn5t0mLeL5mH4UJadTvKOH/rX2cmyct5OJxk7kxfw51fR3cVDB0v8UFAwuSvNVSTXl3C71BP5muBJoGtn04rhbgyrzp7O9oiPYUArR4e6jv7WRB+vjoxvBHAqzDYmNOWi4ZTg8V3a38a+EC3l8wF4/NgWEYfGXWpfyxdAMhM8wHCubyfPVeqnrbyXMn4x+0oMzCzHxKK1qxGVZcNjvXTpjB7/ZHehoD4RC/GOiBshjGkJBU7+1iUXo+We4EZqSMo9PvxTMwpBJgbX0Z102YSWX30facyOBQmRrnji7Q4wsFWddQRu8xczwhEriP9VLtfpaPm0J/KEhDXydFEJ1vGgyHebXuaM+rAfz3jIvZ1HgYA4YMhz2iJ+DjhgmzWFm1m/5QkCfL32JDQznBcCi6ME9JZyNfWPc4k5My+UzxMr63dRX9oQBJdhedgcgCQf9etJjzsiZis1iZk5ZHnNXGOE8y/1I4n/z4VNY2lFHe3UKmM4E/lW5kb0c9fUE/BnBV3jQmJqbT6fcSCIeGbFWT7ozn08UXDKl5f3sDD+xdg8Uw+NrsyylISGNXay3tvj4uyC6kw++Nvs92ttVy/aDe88Gmp2STEufGFwoyNz1v2HMG8wb9PD+wB+jKqt3R+cbyzilAioiIyDkp0eEk25VIg7eLKUnHr4D6yMGN9AR99AT9BMOh6AIsZ0phQga57mRa+ntYnFEw5FiWO5EbJsxiVdVujFAAE5NNzYe5eNxkrp0wY9jrWQyDK/KmMT0lh1/vfxO31c4nppzH2sYyyrqaOdzdysyUHHyhEAe7mnDZHFw7YSaX5xazqmo3bzaUETLDhDC5f9crfG325UxMSONwd2TIpttm5yuzLmd8fAoP7FnDnvY6Jiak8c25V0VrSLA76fJ76QsF+F3JOsKYWA0LNX0d0ZBnt1jJ96RQZ3eSGuemqb+bX+x9nc9MvYDfla7DJLIFypHFfazHrJz5Vms117inc/fOl4iz2JiZerSntCPg5aHSDVwzfga72mqivbUnY8CQhXKObDfhttrxhYNMScqisruVQDhMYKB32DLwzCPzKZ86vINtLZWYwAxrAh8rmk1pZyObmyt5sWYfdsNCwAyTHOfGbrFSlJTBfTtfGVLHlbnTKOlooKm/h2cHzals8/VGt8eIPubtxQQOdDZR0l4fXUH2SHg0iPyxYktzJcFwmKcOb6c/FORTxeezKCOfC7InsTizgPKuFmp723m8/K3otU3ghZr9eENBXq8/SLYrkW/Nu4oTKetqjrx/TDjc3ULIDPPLfZEFl9r8vbitkR5Vh8XGteOHfw9DJJz+ePFNmKaJYRhve94RTqudqUlZlHY2Mict96Tny8kpQIqIiMiY197ezooVK5g7dy7JyZE5U3aLlf/P3n3HyXXV9/9/nem7s70X7UparXovluQmycbdYLBNJ5iUbwgJEEiAfOOQQBKHBBJIA74QfgktAZtm40JwxZLloi5ZXVqttNree5l+f3/M7NXM7soe2TLLrt/Px0MP7dy5M3POzkh333vO+ZyPzt/MV7/6VW745G2THlPpz6OZ+LYKv+7wCOB3e/jc+tsu+oPy9+t2cbK/g6vx4Xd5ub4idZuD4XCQhxteJtvj463VK3EknqPSn8e9a27G43DSONzHVaU1vHP+WgZCY+R4MghGIxzqaSLfm0l3YBiv08Udc1dRlpHDj87uxyI+VfMH9Xvt8Fjky+LDS66hKiufgdAYpxJ7F54f6k0J37s6z9nbdYwHq/HRy/7EthnhWJSXe1uApM3qgV82H7fH9lbkVzAYHsMYw9nBbjwOF36Xm77QGFErxvG++OsHYxE8DlfKRNQjva3s7TpPgdfPkrwyVhVU8njTcToDqSOxc7MKOInB7XBiSB3pHBeKRijLzGVTyTzqBjpT7htveVlGDgbY131h3aDX6WJlYSU/PnchlIWtGHMyc9lSvgiAZ9vqGEoa4cx2+7i7Zi1fOvRkynYiTmMo9mbRPqH9kaRasN+r221/XZmZyxUl86jy53O4p4UHGw6lPO47p17i6ZaTfHLFdWS4PCzOKyXD5cbtcBKNxXA6DOFYDKdxUD8QrwrcPjZI20jqlOmJtpTXcm6oB5fDwaaS+TQMXVgrGrMsXuqIT/0NxSJ8v243DzYc4k9XvoV8b+aUz5dOeBw/75Mrr2c0EnzFtZWSPgVIERERmfUeeugh2tvbefDBB/nd3/1d+/hjDz/C2bozk44D/MHSa2nxP4PPmf4ei2+Ei/2gnJlYA2eM4b4Nt+OfUHTnl03HeK79DBBf57a2qAqAZ1tP8UD9frtapgPD1oqFtI0OcGvVcpbklTHHn88XDz1hB7hMl4exSChlcuZ4IPU4XHgdLr5ft4uPLN3Cz84dJByLPy6GxQP1+/mthRuB+N6N47JcHmiBZo0AACAASURBVALRC9tYLMguon4oPmW3ZbSffOKhqTdRNbQ9aU3njvY63lOzHqfDwYHu+HYcuY4L4SDDeeFH3Jc6z3H3vDXs726iYbjHLpLTExyxR9rWFlbxf/c8ZO9hOT+7kOHEuspQLILrIjs+RrBoGe3nv+v22EF4flYhzSN9hBO328cGmZMo9OI0DjYWzyO7dZRzQ92TtjVpHh3gh/V7qfTnkeeeXBW0rr+Ts4nv0bioZdEXGp10bko7rQth8o9XXEdeIpQlh7hFuSWcHugkasVoGOrh2dY6ezS7OquAL1xxB92BYf7x5acAcBsH3cELo57dE0ZAJ8rxZPBHy7fw9aM7+OzeR8hyxT+vhV4/b6teSWlGNg+di//Co210gNFIiBP97Vz1CntJpsthjMLjZaQiOiIiIjKr9fX1sWNHfKrcc889R39/f8pxy7JSjo9zO5xkujx2UEp2oq+dp5pPMBYJT7rv1+VDizbz24s2U5aRMyk8hmNR8pK2JRgvWHO0t5UH6vcDF/ZojGHxbOtpTvZ38KP6/URiUZ5uOZkSOkYnhMcqfz6/vWgzf7RsS2Irin6aR/p5rr2Ow4mN6sft7jzH6cToXJU/n1X5FVT78/njFdfhSRrZrU7sk5nj9nFdYhTO43TZU1TDVuruij85e4BiXxalGTlkujwpUziPTSiKFIxFuHWKqb2PNx/nUE8zmW4Pf7vhbdxUuZQP1m7kM6tvZCSpyI8DQ74nk1UFU0+BjFoxnIkfq88N9/CJFddRkZFj33/LnGW8u2Ydf77mJkYiQVpG+vn+6d1TPhfAlw8/xQvt9WwsnktpRjaZTg8Gw5ePpE5p9SUVEkrXU80n+Jv9v+Cjzz+A1+nirvlruGfhJj616gYW5hTb53WMDbK99bRdlCjXk0E0aZ/QQCxCIBrBEA/6NUmPvZiGoR57HeX4iO9IJITH6eKaslr+7oq3keP24TIOSjOyWZ5f/irPGDe+LvbePT/nRN9vRkGs2UwjkCIiIjKrPfTQQ/YPwbFYzB5tvNjxZCdOxIvEvP/975/yub/zBrb7UnznP//rFe//Oo/x9TSe5xRwDz941fOOAx/lvycd/xmPTT4Z+GsennTs3gmPfyTx9xDwR/w05b7UeBwXw6JjbJC/3fBWPr/30ZSqruOyXB42FM/lhsqluB3xUNIxoWiQAWJWjNFIiOc76olZMYp82fbzmcQ6xr7QKO8uWYfH4eJAd6M9BdcAc7MKU7bvKPD5+av1t7O78xwZLg9rCuPFXsYiYQ73tnA1vknbhSSzgK7gMJGBGLdXr+AbTffH7/hGS8p5U5c/emUPJb1H37G/60z6fDyV+PtbaTznIPDxxHv2rW+l84gLhoD3f+2hScf7gD/k/kt6LoD7+PElP0YujQKkiIjIm5wx5sPAhwGKi4vZvn379DboMtuxYweRSHyqYCQSYceOHdTU1Fz0uPzmuXogg2y3l2A0kijEEsPlcBI80cgTJ5pYMBZmAZOnKHqcLsqCI2w/v52usSFqgdqk8xzG8PJLezhsDDluH2tDDsDBsd37uDriY3ckPqq4aSD+mNN7D+GNRbgyKdLmeTIZHByj0rrwvM899xz5nvg00SCwnTP2fbcE87CiIbYO+YnEonY11qnFONd1+NK/YfKaTfX/3/Dw8Kz7f/H1UIAUERF5k7Ms61skBhoWL15sbdu2bXobdJmdPXuW7du3E4lEcLlcbN26lW3btl30eLKdO3cCcOOHf4vvnH4JgLdULGZlQSXNI31cU1ZLhuv1rZH8lyPPcLK/gxy3j3/Y+HZcDief3fuIvabsX698JxmJ9Y4T7e9q5NjufbyQG6A8M5e/Tox6PXjuEEvzyjg71G2PuH127S18//QumkbiU3WX5ZXxiZXXA3Cyr4NvndxJMGlN4lQynG7GomEMhv93zXtxGMML7fV8vy51OqYBPrz0GuZk5vOD+j1ku33sTdp8/v0LNrC2qJp79/w85fUcGBbmFnNqoJOrB3w8tf1ZwOKF3DE+vHgd60vm2uf+uH4/D7Wewud0E/BMPZpngEW5foJRi4bhC/sPjvcjWaYzStSKJbbBiJ876oq37YXc+O3NRfPY1d2QUpQn123syqYXBPit2kVcW147Zbue+tUz/NTdAcT3XoxYsUk7TnocTkKxKA4MzooCAEruvs6eeuzC4HK4mJ9TwB8u28pndj1IMBahMjOPz62/UBRqNBLi3FA3g8Exvpt4n6r9+dxWvYKzQ90syC5iTVEVO9rq+OGZvQB8dNkWQrEo3YERHj1/GLfDydqiKl5MFLq5ec4y7pq/ZlK/tm/fbv8ber79DP9dt8fu1+LcUv501VtoHO7lX448gwMHH1u+lS+9/CQWUOT1k+vNoGNsiPcv2MD64rmTnh/io8Wf2vUgo5GQ/ZmHeEXe8V8sJAvHoriM41WL7tx3330Ak/4PmNgvUYAUERGRWe7OO++010A6HA7uuuuuVzw+lTWFc1hdUMlwJMS2ikWUZGSzNL/ssrRvOLE9xGgkRNSycIG9R+LaoqqU8Fg/2MX21tOsLapmXVEVKwsqOJa4b3wka1PJfDaVxPe6+1H9fjrGTmGIj7a9q2Y93zj+HBYWx/vb+dqx7Xx02VYeOLvPXvM3HmicxhC1LLLdXobCQTYUVVObW8KvWk9xVWmNvTa0NCN7Up8s4FR/B03DfZzs75h0/6rCOZzq77CDU4bTjQF+f+k1FPmyefDcQbJGhxJtia/v+9apF/iE28Oy/HICkTCNiT0DA1NMBR3vgwWcGuigdsL6vKmmj45GQ2S7vPY+ilPZ091AjtvHYPhCGE0Oj8lTZJ3GQTQWHy39z5Mv0DY6iMvhYEleKbHACCR+7xBNqjSbzO/0sLqwhMbhXsZXd46Hx2V5ZRzvbycSC3Oiv4PmkT4+sfI6Dve2cFVJ6ih6/WAX/3Hi+ZRqpm1jg7zQUc+R3lYMhi9ccQebi+fhd3nwOd3kezPpGBvkxjlL2FJei8MY6gY62dd1nlAsyhPNx1lZUJFSFGmia8pqqczM4xeNRznS18r5oR5GwiGO9LYwmlg7XD/UzXsWbOBgdxOL8kp49PwRIL4P5MUCJBicic+eMykUGmNwmdTwuKOtjvvP7KUqq4DPrLoBj1PR53LQd1FERERmtfz8fLZu3crTTz/Nli1b7G08xo8/88wzKcen4nO5+aPlW9+Q9v3e4qvZ2V7HyoJKvIkfcNcXV7O+uHrSud899RKdgWH2dzfxkaXX8lx7HZVuH1eWVrCtfCFnBrrI82ZQ5MsC4K75ayjNyKYkI5s5/niRmn+96l3xTeXHBjnS28pQOMjSvDLaElVOx0cEo5bFbVXLua16BYC9Ufx1FYvs9oSiEaqy8uNhKfG4DKebSn8e64qq+OnZg0B8ZHF9UTV7u8+zKLeEXI+PJ5vj60stsLf22NXZwO8svpI/WHYtP2x42A6P4470tLCn6zwvdZzF63CxLK8MCziRKJpjiAeJiaOoRb4sSnzZvNh5NuX4eNAcl7xtxlRikBIek11RPJcD3Y327e/V7eKXTcd429yV9rYkAK2jA1wduzDdtTQjmyJfFuFYjFAswvL8cp5uOcVgJJgyapvs+IQiQc+31zMvu5A7500eFdzX1Ug4FqVzbIg5/nyaR/pYkV9hv59uh4Njfa3cf2YfRT4/v7/0Gv7+4ONErBhlGTkszS9jS1kt3zrxvF2lFuBwb8srBkiA+TlF9mOCsSjBWJiNxfPY19WI0zhYV1RFgdfPdRWLGAmH2N/VSE9gZNK+p8kcxvCpVTdwrK+NdYnKwhezryu+72bjcC8dY0NUJQo1yeujACkiIiKz3p133snRo0cnjTLeeeedNDc3v+Lo4xutwp/LexZsSOvc4oxsOgPDFHgzub9+L73BUXLCPj5QewVPt5zk5w0v43W4+OzaW/hF01G6xob5rYUbqfSnhuMleaV0B4aYl1VIjsfHexas51R/Oy2jqXv5Pd9ez9vnrZ6yLXs7G/j2qZcozshiU9FcXuw6B8RH926tWs7uzvM0jvQB8N4F69lasYgPxTZjgK8cfobGkd6U5zPEQ9hAaIzuwDBmwn25bh+3Va3g03seBOKVVednF7GjvQ6HMcQsCwvswkjJinxZbCmvnRQgx8Oj3+VJqbpa5PXTndg+JJnLOFhZUMHBnuZJ983NKpgU+DoDQ2xvPU12YssUi3iYJql37WNDbCqp4bbq5fzH8Z081nh00nMnW1Mwh0MTKt2+2HGWFzvOUp2Vz/zsopT7ri1bwKmBDvI9mTQn3o+YFeODC69kSV4pc7ML+N/GY8Sw6AwMc26w2/6+tI8N0j42iGVZKeERYGlueiPwH1y4kZ83HGZudgEFXj8An09MO+0JjPCfJ1+gLCOHt85dyefX337RfU+TlWfmUp6Z+6qvfUPlEroDwyzIKabS/+rnS3oUIEVERGTWy8/P54477pg0ypifn8/nPve5y/Y6rSMD3F+/l2JfFh+o3YjTMXnHtHAsymAoQKHPf9HnOdHXzkBolEM9LawsqODqsgUAfGTptZwe6GRedgHfO72b3uAobocLl3HQmljbGIxFeL69nt2dDQA80Xyc3118VcrzH+5pIWpZnB3qIRyL4nY4KfRl0TI6gBMDJj4CaWExGBqjbqCTX7WeZkNxNddVLAbgQE9TohLqEAtzLoxEeR0uvnv6JQoTo6A+p4tlie0Y3A4nJ/raOTPYZZ9/Zcl8cjwZbCtfSH9ojM/ueYSwFeVmZx4+p4dANL6FyJqiarK9Pnu/wlxPBk0jffYU4Km4cLAwr4S3Vq8gasVSpp+uTmzJ0Rsc5aY5Szk72M2zbaeBeEAZCgcZtZ/HsDCvlPrBLhbmlmAwHO1rTQlVR3tbcRpDzAIraUJq/VA3H1q0mTWFc/inl5+idXQAsHAkqrtCfKSsNqeIAz1NKe1fV1iFy+FgOy/ax/wuL04M0QmTXl3GYe+tOP4eH+ltYVvFIr648R0MhgL8+Z6fAxCKRTnU08wPz+ylyJfFu+avo2mkLzHimLp1hgG2t9VR4sumOiufmpwiSjNyWFaQ3hYb3YER9nc3sr+7kYrMXFYUVNj3PXz+ZTt0L8otYVFeqR0eT/S1s6vzHFeV1rA4rzSt15podeEcVicq4MrlowApIiIicpk80XyM0wOdnB7oZF1RdcoPywDBaIQvHHycjrFB3lq9krfNXTnpOba3nub++n327YM9TSzIKaIsMxeP02U/5x8svYbzw700HjiKMYYVBZXsSfww3hUYIsftYygcYGne5JGiqqx8+npHsbA40ddOTU4hpxJrFWtzSjg1GP/a7/LyZ7sfsreyqB/s4urSBXicLq6vWEzTcB9lmTlsKa/lYE8zlmWR6/HRNjbIUDjIHy/fxpysfHKT9qSsysoj35NJX2iU+dmFvHfBBnyJQkT/fmw74cS01UgsSjhpPWL7WHx09E9WvoWhcIAct49DPc0c7k3d2gIgw+FmLBYmQoxcTwatowN0jQ3xsWVb+frx54haUXtaaWlGDsPhANdXLiLb42UkEuJYb1vKWsgIlj1N9snmE/SHJhbNgZMDk9d62o+PRvll0zGyXT4g3o9YUgBsGe3n9EBHvCBQ0vrM8UCZ485gKBF8X+isT3luA9w0ZynFvmz+48TzLMwt4Y65q/jmieeIWhb7uhu5Z+Emjve18Z6a9fSHRinNyOHbp17EIj7K+EJHPb+/5GqqswoIRMPkeTLoD42xpnAOp/o7GYuG6AoM8TcbbsdhLm0b+dbRfjtQt44OpPybGB9F9DpdFEz4hco3T+wkEA1ztLeVr1x59yW9pryxFCBFRERELpNFuaXs7mzA7/JOmjYK0BccoWNsEICT/e1TBsieKaZOHu1ro2zClD2Xw8mCnGKaEtMha3OK7eqi87OLuLp0AWWZORRPUeTmqtIaO3jdX7+XP115A6FEYIoZyw4yFiT+xANAlT+fH589QNNIH++tWc/fXXGH/ZwfW76V3uAoL7afoW1sEJdxMDe7kCx36i6OA6EAH1q0meqsAvxuD7s7z9EfHOO6ikXx8Dk6gNM4yPNmku/105OYsjsQHOMTL/4ELIuVhRVcWVrD2qIqvA7XpMI3ySOAJ/ra2NPVYBcZKvL6WVswh+1tdQB0jA3yo7MH+NHZA9wxdxU3Vy7jUHd8iqjBpDwXMOV+kxMtyimhdXTALnrzZMsJuiZMy01mgLqBLop9WawtnMP2ttMMJo2shmNRst0+IkCBN5Pe4Kh9nwUc6G5mJBJkNBKiaaSPTcXzcDmcRKMRRiMh/uPETiwg2+3ly5vv5v4z+1J6daCniTODXfzT5rvwOd18du2ttI8OUJtbzPPt9TzTcooFOcXcd+CX1OQUcee8NQyExqb8jEN8v0u3w4HL4eSaslraRgexsFhTWEnMsuwCTLdWLWdRbgl5nsxJI/JFPj/NI/2vOFIv00MBUkREROQyubpsAUvzyshwuafceqMsM5cbK5dQN9DJHXNX2ce7A8PsbD/D0rwybq1aTjgWJRgNs6fzPG6Hc8pRxIkKfX7+ZsNbGQ4H+c6pl2ga6bO3TphoaV4ZboeTcCxKb3CUrx7bzsqCSvI8Gdw0ZxlOY+gOjuA2Dn5Yv4+KzByq/Pkc62tjZ3t8T8P/PrMHv8vDxuJ5lGXm8JXDT2MBhYl1bhErxkPnDlE/2AXG0B8cxeVwMJQIRu+vvYLSjGy+fSq+PcpoNMSHl1zD0y2nqBvoZLQjRCASIteTwVUlNTzWdGFt4N6uRvZ2NfInK6/nzvmreaB+f0r/AkmBcnPJfJ5oOXHhex0cYXtbHdX+fHuN5rgXO+p55PyFfRcnhkdg0lrAcbkuH1eXL2BdUTVVWfnsbD/D/9TtAbBHDx2JyrYTrcgv50hfGwBNE9oEMBYNEYgavrD2Fna21bOjvS7l/q7AUMrtb57Yyebi+TzXXmf/EiDejiADoTG2ltdyuLeF3qRfVoST+pXj8ZHjiRf62VK+kC3lC/nK4adpHR2gdXSAl3uaGQoHub16BVeV1vCj+v3kezOpID4d979OvkieN4N719xMjieD31q4kfvP7OOv9j3G4txS/mTl9fZU1QUTKuSO+9OVb+FMYsqw/GZRgBQRERG5jCZOxZvonTXrAOgcG2JXxzlWF87h26depH6wm6ebT/LlzXfx3kRRnfcs2IADY28/8EzLSX527iBFviz+Ys0t9tTPcbmeDHLcPtoTo5ytE4rijPO53Nw1bw2PNh4hZll0jA3SMTbIP2++G39ixHC8H59dewvDoSCf2v2zlOdoSay5PD3Qid/lsUPKcDiI0zjwOVw835E63ZKk7HWyv50M54X2u4wTv9vLmcFO6gY7KQn57BG8YCyC1+kiGE0daQxGI6wprEoJkBNHJKfaYxGgJqeI1tEBu2CMAQaCk6emAvaWJuOmer78DD9vn7eacCzKp3c9aIdGgEA0wuqCOdxStZQzg930HznD+F6TbuOgYbiXV2NhMRwJpoRHA2S4PPaoqM/pIhCN0BcaZUd7HQtziinLzGVvZ4MdqgdCY1RnFfAPG9/O0d4WvnosvpXNeOXeZN2BYfZ1NbKioJxVBZWcHuikyJdl71F6qKeZ59rq7F8KvCNaTH1PCzEseoOjNA73saIgg3AsaleoPTXQQTAWwed85f1T/W4vqwoqp4jwMt0UIEVERER+zULRCF889CQjkSArCyrwJn6Y9jidKWvMJv6Q/XDDYaJWvHDNmcFOViQKwUB8BOkHdXvoD43xzvlrOdnfwbXlC3i29RQvdZzj+srFbE7sDwlwfeVirq9czI/P7ueZllNku7185fDTvL/2CmonjPp8v25Xyu17V9/Mvx77FWOJ/fyS95AcD28j0ZAd+nLdPkYiITusOTEc6G7iSG8r75y/hiebT/J8+xnWFs2hOquA0wOdmKQJny92nCXT6caBsfdw9Ls88fB98kKBGQdm0nTWw70tZLq8jCRt0eE2Ts4OdnN79XJ+1XKaoUgQA4QnbP8xbm3hHPZ1Xyhwk+/JoMCXlVIMqGGoh28e30mu25sSHse1jw3wQsdZhsJBFvn8LMnN5MxgJ2ErRnhCIaBMp5tl+eXsS9oWxO/yUu0vSNl65I+WbqEwI4unmk8wP7sIv9vDj+r324WC6ga7qBvsIs/tY0FOMZaB/V2N5Lh9/Kr1NEU+P++qWcfhnmYynB6eazvDlvJa+zW/cfw5mkf6eeT8y3xo4Wa+vOkuMl0eHms8wrmhHhqHe+333ud0YVkWZZnZlGfkYIyD79ftZlPJPE4PdDIYDuB1uFheUE7DYA8V/jx7lHMqHaODfPnw00StGJ9ceT3VWQUXPRfi+4G+WiiVy+PSVsGKiIiIyOsWjsXsYinD4SD/Z/HVfKB2I3+2+iZ7L8ipFGXER4lcxkHNhKl/R3pbeKnzHCf622kdHeAjy65laV4ZP6o/wPnhXn569kDK+S0j/Xz31EvMzSrgo8u2MhQO0jI6wDdP7KR9wshly2i//XVlRi5l/hw+v/Y2NhbP46bKpXywdhNrCudw1/w1eBxOe43bDZVLuGnOElwOJ/OS9uAbn74YjkUZCAUYDAfoD42xp7OBa0oX4HE4U6aPjkRC9IXGUqZZjkRC3Lf/l+zuarCPJRemGY+fA6ExPrp8KznuC2ElbEVpHOnj4fNH7FHOqaNjnNvhIjMRTgywtWIRN1UunXTewZ4mjk3Yo3G8HUOhAM+318enf4YC+FxuIlNMZ63IzOXTq26cNCrpNA7GomFiSSH3kcYjZLm9/PbiK9lasZANxXOn3N6iPxwgy+3leF8bjzcf5xvHd/JE83F+cGYv1f58vE43h3qb+cGZPbSM9NM2OsA/HHqCzrH41NioZfG907vwuz04HQ6uLavlgws32Xt/Fvuy+NiyrXQHhnnk/BFWFlYyHA4wEBrjyeYTnB/qTTxPjAPdTfzL0V/xuX2P0huYvN533NG+VgbDAUYiIV7umVwoKdlXj27nEy/+hJ+dO/iK58nloRFIERERkUtwvK+NR88fYXl+OW+doghOOvxuDx+ovYLjfW3cMW8VfrcnZeTnYj6z6kaO97WxIKeIzAlrLOf488lIFL+pTYRLh3GwKLeEUwMdLElaR3mou4n76/fRHxpjV+c5/nzNzXblzaFwkIfPH+YPll5rn/+emg184/hzxLBoGRvg8abjvGPean5vyYXtQa4pj281srV8ITErxv7uJpqH+3i69RRAynq7iBXDbZy8de4KNhTPZW9XA/2hADvb6wGTWGc4eTTJAHkuH/2R+Ahb8+jk9YLjxqNZKBblJ2cvjMpNfL65WQWTwtrEQjV5ngy+tOlOopaFz+ni0fOH+Z8ze6Z83a7E9M5xRb4sNpfMZ1fnOUaTfmlwqOdCKB+fImuITzu+7+D/Tpq6menycLyvLSXoNo308f+deIGmkV5uqFzK2+autIs0TbQkr8wO2zme+DRlBwaXw0ndQGeiHQ78Lg//23SMhqGelMd7XW4ebjhMltvLT88dxO/yEEhMKZ6XXYjL4bTPHY2E2FQyj6daTrK2sIoVBeXs6TxPT2DY3l9zLBqmY2zoolO+1xZV8WLHWcKxGBuL5055DkAgEuZoXysQX3959/y1Fz1XLg8FSBEREZFL8OC5QzSN9HF2qJuryxaQ78285OdoHx3g/vp9hGNRFuQUU1qZk9bjMlxuijOy7D0Zk6f1lWRk83dX3EEgGk5Zz/aJldfRGxih0JfFSx1n2d/dyJHeVvt+C/h/x3bgdbrs9YMlvhzODnZTnZXP3q7zZDg9KaN7oQlrEY/3tXG4t4UtZbVU+PMYDof5ft1uYpZFlsvLcCSIMQYracQtbEUxxpDl8rKlfBGPnD/MaCSE0xhKfFkwcOE1xqdthq2YHR7TMb4m8NxQD1lOD8PREJUZubQktgRZmFPC7yzezN8ffIKhpCmuK/IrWJ5fzr88vAsLiz2dDeztPs9d89aypnAOv2g6Zp9b4MmkNxQPmw5j7Gqv47oCwyzLL2MgNEZ3ez05Hm/K6OqCnCIsC84OddtHp1r35zCwqqCSJ7zH7RBmgLrBePj7VctJtpTXcte8NXzn9EtYifsdxsFNlUvZXDqfnsAwLoeTm6uWcbC7iQJfJpkujz0tOGbFON7fzvL8cp5rq0tpx2gkxOPNxylNVPUdiYSoyMxlIDjGvOxCnA4Hhb4sriqtwIFhdeEc7pi7yl6/e01ZLS0j/fyi8SjdgWFqc4tfcX/HAq+fv1p320XvH+dzubmxcgn7uhu5tWrFq54vr58CpIiIiMglWJRXQtNIHxWZuZO2qEhXV2DYno7ZdpFCNxfz1aPbGQwHeLGjnr9ce2vKfVlu76Q2OY2D4oxs+oOjfO/0rinDyUA4AIntB8szc3mm9QSPNx9jfnYh54Z6MMTXHI6vd2sa6aNxuDf+ei4vXz+2g4gV43R/J59bfxsu48TndDEaCbMgt5jfWXQlpwc62NV5jkAkzPH+dhwYHjx3iKO9rdyzcBN7u87jNIZry2q5Y+4qtu/YTnVWAR6Hi+rianZ1NqT2i5SaPFMKJAVdl9OJI4odHnPcPu6ct4r7Dv6SQOTCeQZ4rv0MdYNdVGXl0zjcS08iIH7r5PMszr0QepzGwbsXrOebJ3biwHBH9UqO9LVSnVXAc211RC2LTKebrx3bwUgkRI7Ly7tq1nOi60LRn+sqFlHkzeKBs/sZCgWm3MYFoHV0kNODHXbBGkgNmqPRMH+2+yG8Dhc5bh8D4QAW8H9X38Tc7AJ+fu5lftkcD771g118cNEme3/O9YVV7O9pwgIeO3+Ev9/4dr6y+W6O9rbaYXTcUDhIjtvH4txSosRoHR3gJ4np0W+zCjne10Z/aIzdXQ3865XvTOlDpT+Pu+av4TunXqJzbIiGoR5e7mlmbVEV87ILX/G9fCXvrFlnF6eSN54CpIiIiMgleHfN0udS7AAAG6xJREFUeraWLSTfm4k7adrepVieX8EtVcvoDYxyW3V6oyZNw31kub1kuNwMhgMMhYP8xd5HeHu0KK3H+1xust2+lKmct85Zxi+bj6eclxxoB0LxqqQW8RGn8eqjpwc6+cLBxwHIdfviax4tyE5MjQzFovzx8utpHxtgWV45HqeT1YVzWF04B4gXPPn0rgeJxaJ0B4Ypzsjmr9ffzlgkzFcOP0372CC3RwpwO5yMhIPs6Tqf0kaPcRKy4vGxyJfFhuJq+oNjRGJR+kKj1A92T+p/fyi1wupgOMCOtjOMJgoBjRsPS22jA0RGByZt5TFefRbguvKFrC2q4mPLtvFY4xG6AsN8atUNfGbXg3bV1rWFc3ih8xwAQ5EgG4qqqXe+bD/H8d42anNLOD/UQ4HXzy1zlvJ48wkms/ivky/Zt7Ld3pQwOS4Yi6SsFX3k/Mssyi3lqaStTI70tfKFA7+kOruA99Rs4GDPhQJBfcFRnm09xXUVi9lUOp+mkT6ebjlpfxfGK77u7T5PWUbqyPlQYi0rQIbTnVIIadyOtjq7+NC5wR6GI0F2tp/hK5vvttfGThSzYinFpWR6KUCKiIiIXKLSzPSmnF6MwxjunLcm7fOfbT3NA/X78DpcfHzFNp5tPc3+7kaiVsweFXw18Q3ib+F7p3fRPNLP9RWLuLlqOWErxtMtJ+PtwhDDIsPpZnFuCbdULWdPVwPb2+qIWRbL8supH+y2CwBBYvQSWFVQwe8uvorjfW187dgOXA4Ht1ev4M/3/Jx8byb3rrmZ7ETVTZ/TzR8svYZ9XY1cW7bAfq7G4V57H8ThSJCWkX4C0TCZSdNCM5xue8olQJbLy53z1tAbHMHjcJLl9vHN4ztTQpHP6eL26hXs72yiYeTC2r5dXQ04jcHn9KRUaR0PyqEJFV2z3V42FFXzbFt8K42xaISusWH2dJ2jYbiHhuEeluSV4UwKOy90nrOf75qyWh5rPGJPAc53Z7C1YhFPNB3HAnqCIzQNXwiobhyEJ5T38bu85HszuaN6Bd84sXPKEeX5WYXUD8dD9NG+NuoHu+zKreMGwgGO9LZyrPfRlFeIYfFA/X7WFVWT68ngnTXrKPZl88P6vZNfJ7uQxXml9AdH8TpdmOEL39vfX3r1lIFwSV4pz7ScwuNwkun2MBwJ4nG6Lhoen2k5yU/OHmRJXikfX7GNcCzKL5uOkeXyckPlkos+Tt44CpAiIiIyq41Fwpwe6Ji0Nu31CkTD/PvR7bSNDvB7i69iRUHFZX3+ZE3D8VAVjEUIRiO8c/469ie2eBiLphcgAdpGBzmeqBLaHwrgMIZ31azjRF87LaP9VGfl8+4F6ynLyMXvjhfpmZ9TxLqi6viaz9IF3H9mL4d7Wsh0e1JG9Q73tjIcDnJqoIOoFSMajXGgq4kYFj3BEc4P96Z8j1YWVLIyaRsSiAeSRbklnBvqIWrF7JG05H0X52UVcG6ox97XcDgS4Imm4zzYcAiAt1Qs4SPLrqU7MMy5wW7qBrt4S8ViSjNz2FA0l8/ufSRlPWfUspifXcDxvnZiWOR5MhPfnwtFdMYNh4O8Y/4aHA4Hdf2dvNBRz77u81xbeiEEP3L+MB9Zei1fP77DDvfjr1aSkcUj5w+zEU/ivQszEg6ytqiKjtFBIlaMY/1t9nO5nE7W5M/hoPugHdpHIkFGIkF2TFijmGw8PALU5hRTkZnDc+31rCusYkPxXL518nn7/thFniWaFDivLqthIDzGwe4mApEwJRnZuBxO3la9kidaTtA5NsTdNWtpaw2wpjCPxbmlBKMR/mrvI8zLLuJ3Fm+2RxCX51fwj5vegdM4CUbDHO5tYVl++ZRtGAoFeLzpOBYWJ/rb6QuO8nx7PY83xUfNi3xZrC2qush3Qd4oCpAiIiIyq33t2HbODHaxdWzqao+vVcNQD/WJqXgvdNS/oQHyrdUrGIuGKPRmsSy/nNFw0A5V0ViMoVDAHt0bVz/Yxc/OHaQmu5h31sQrU2a5vfYoY8NQDw83vMzb5q7kU6veQv1gNy6HIx4OSz12gARYmFvCwtwSxiIhe2/CHIeD31t0Jf91+sK0yn8+/EzKFNnVhRX0h0ZxGMPDDS/jcThZNEXhlJhl8eC5g7SNDrKusIrTA52EovHN5uNrOHNoS1QXrR/qTlRpjesOjPDz8xemhO7pOse7F6yjyJdFkS+LK0rmAfFAtL+7kWvLawlGwuzuarCjU5bbx6dX3cBAOMCSvFL2dZ3ngTP7IDEJszwzFwNcVVqDz+nm3TXr+Y8TO2kc6SMYjbC9rc5+P7oCwzzUcIgVBRXsnrBuc09nA+HYhWAWiEX42vEdxCwLj8OZ0i+IB8y93Y0EI0GiVizlB/cCr5/KzFxakqYcl/iy6QwM2bezXF4+vPSaeMCbvw6fy82ZRMXVZOOfCYDyjBzunr+GAu+Ffy8uh5NVBZX8ovEoAIU+P3+y4i10jA6yIzEa++C5QywKRPE6i8h0uXm04QidgWE6A8N4nE68Thd3zF2Fz+kmK7GlSobLzZbyhfbr9AVHebrlJDXZRawvrub++n3252lVQQUFXr+9HYuB17wGWV4fBUgRERGZ1XoSe81FrRgxy7L3KHy95mUVMi+rgLaxQTaXzL8sz3kxBT5/yrYapwY6U8aNphpDerjhMPWD3dQPdnNl6Xwq/XlUZeVz79qb+UXjUQ71NNMw3MMcfz7ri6tZXlDOn770UwLRCPu7G/E53RgDf7h0i73Vgs/pZkV+OUf72lhfVE3TaL9dXMeAXY103DMtp+19FnuDo3zt+A6+uPEdZLo8tIz0c3awG4cxPNF0nI5E8Gkc7rX3wsx2e8ly+2hN2ppiYsiCeAB1EN/L0WkcfOHgL/nYsq3kJirkto4M8GjjYQ50x6e13rNwE32hMU4NdACwq/McDUM9LMwt4VsndiZ9Ty18Tg+3Vi1jYW5JSqh6+9zVHOpuJoZFxIpR6PXTFxolZlnUDXaRmbRWEuKBZ1PJfJom7FU4PjI+sV9byxeyq+McwVgkZTRwVUEly/LLubq0Bgv4r5Mv0Draz9WltSzNL+MfDj0BgNfh4q75a7jvwP8yFA5yfcVi3rNgfUof/E4PKwrK2d11HrfDSZ4ngzxvJl87/hzZbi9jkTDvq93ANWWpW8yMFycq8Pmp8ufTNNKXGDGOsLuzgd2dDTgS6x9z3D6eb6+Pv57Lw+3VF9/65odn9nK4twUDVGe9DV/ic+AyDt634AocxnB95WIKfX6y3F4WTNgLVX49tBpVREREZrX/s+RqriytodiXddnCI8SL0ty79hb+/ap328Vhfl0W5BSR68nAYQz53kxyJow+AizOKwGgyOdPCQ3VWQUsz4+PljqMsbf8MBg8jvgP7OFYNFFptY+93RcK2Bhj+PiK6/j3q97NvOwinmw+wUgkxKqCSnsqoSOpcMr4tMvxI8FohPrBLkYjIf7x5Sf5nzN7+OGZvXZ4hHhxm+vLF1GRmUdOoo93zYuPiPkn7H1ZmrRdyXjE6g+N0Tjcx3dP77b78k+Hn7LDI4DX6eKPlm3huvJF9rHhcICd7WewSA3kY9EQ3z71El869GTKNGi/K3Vrkyp/fsr9o9EwnqQiS1luH9sqFvG5dbfhTBx3Gwd3zl1NbU5xSkGafE8mb5+7ij9bcyPXV1xoI8DRvlYW55bicbo41tfKy70tdAVG6AmOUJaZQ0EiNF9ZWsOCnGK70M54caRcb4YdvG6Ys5T2sSH7+/QnK6/nRGKK81A4SMSK2eEv15Nh96cmJ164ye1wcu/am/nK5ru4vmIxEA978fcj/r0o8vrt9z/5cziV8RFFt8OJx+nivQs2cM/CTXxm9Y0p+0WuLpyj8DiNNAIpIiIis1ptbjG1ucVsb91+yY+dO/fiG5hPpzxvJl/c+HailsULz+2c8pzbq1eysXgeOZ4Me0Rv3JbyWioyc8h0eanw5wLxMPlnq2/kRH87xb5svnVyJwbDivzJU3O9ThelGdn2/oyrCiq5pmwBfcFRdnc18POG+JTSm+YsZTQSojQjh0fOH6Y4I4sFOcVEYjF7Kmemy8NgOJBSHMcCXI4L4xw3Vy3j5qplNA718sWXnyRqxViYU8zHVmzjiabjvNhxluFE4Bk3PnplWZY9glfk9fOumnWsSYTd5Gm6W8oX8kzrKYKJ0bUF2UUcw8H47xxGIqFENdB4iMr2+Pjgwk0c6GrkqrIaXA4nh3qbASj0+pmXXcjb5q6kabiPaCzGwrwS3A4nlf48nIknzXL7uLlqGbdUL7fb0Tk2RI7bh8/lxu+OFwh6xumxw3jMsux1r/OyC8lx+xiOBFmRX47P6eYv195GV2CIuVkFGGN4d806zgx28bbEyJ/TOPjMqhsIRiP4XG4W5BTx6PkjLMsvo9CXhc/pJhAN4zQGt8PJ1sQU03ghpFtoGx1gTdIvTJzGYYfjX51q4Ya163im5ST7uxsZi4ZZU1TFe2uvIBgNTzl9Odn7a69gaV4Zc/x59hYjVycVWXoj/ab+W/9NpAApIiIichH33HPPdDfhohzGgeNVBlSLE5u+T6U2t2TK88cf8+VNd4MhpaJoskp/Hp9ffzujkZC9h1+Bz8+NlUswGLxOF9vKF9pVMq+vXJzy+I8t38qp/g62lNUSAwq8mbzQcZbB0Bg3zlnKS+efn/iSVGcX8I+b3sFgKECFPw+At89bzdvnraYnMMJgaIxjiX0I75ofr3Lrcbr45IrrOdrXypUlNRRnXBi1vKFyKaORMBlON7fPXcG2ikV0jg0xP7sAl8PFfY/uJhiNsLx8EWsK5+CasG3LNWULuCYp4Hx4yTUEYxE2l8y3R7vLM3Mn9aPEl809C5ezJK9sUhXRkgnvmcfpoiorn6gVY9WcZZRmZNujbwVeP3+/8e2EolE7DPvdHvzuC3sqvqVyCW+pXJLynMYYfC43AIvzSlmcFOz+cu2tHO9rY1VhJfmJ0cxxFf5c+xcOU3EYQ4U/lw8u2sTdNWsZDI1RNkX/L8btcLIxsWb11+03+d/6bxoFSKG2tvbVTxKRGU//1kXkUjgdr77SaWLYgXjBlVuqlr3qY5fll0+qvrml/NX/n8py++wiLMkKfX4KfX7m50zeF7Mmp8iedpksw+XmPQvW27dzPRn2yNc4r9PF+2o3vGq7ANYXV6d1nsOYSx5ZcxqHHYqTuR3O17wf6VSKM7LYmrHw1U98FZkuD5kTphzL7KAAKXz84x+f7iaIyK+B/q2LiIjI66UiOiIiIiIiIpIWBUgRERERERFJiwKkiIiIiIiIpEUBUkRERERERNKiACkiIiIiIiJpUYAUERERERGRtChAioiIiIiISFoUIEVERERERCQtCpAiIiIiIiKSFgVIERERERERSYsCpIiIiIiIiKRFAVJERERERETSogApIiIiIiIiaVGAFBERERERkbQoQIqIiIiIiEhaFCBFREREREQkLa7pboCIiIiIyMWcP3+e++67b9peG7jsr9/f38/OnTsvqR1z5869rG0Qea0UIEVERETkN9J0hyav1zutrz9u7ty50/69EBmnACkiIiIiv5Huueee6W7CG2L79u1s27Ztupsh8ppoDaSIiIiIiIikRQFSRERERERE0qIAKSIiIiIiImlRgBQREREREZG0KECKiIiIiIhIWhQgRUREREREJC0KkCIiIiIiIpIWBUgRERERERFJiwKkiIiIiIiIpEUBUkRERERERNKiACkiIiIiIiJpUYAUERERERGRtChAioiIiIiISFoUIEVERERERCQtCpAiIiIiIiKSFgVIERERERERSYsCpIiIiIiIiKRFAVJERERERETSogApIiIiIiIiaVGAFBERERERkbQoQIqIiIiIiEhaFCBFREREREQkLQqQIiIiIiIikhYFSBEREREREUmLAqSIiIiIiIikRQFSRERERERE0qIAKSIiIiIiImlRgBQREREREZG0KECKiIiIiIhIWhQgRUREREREJC0KkCIiIiIiIpIWBUgRERERERFJiwKkiIiIiIiIpMU13Q0QEXCO9pJx8n+n6bV7AC776zsW30TGyScvoR29QOllbYOIiIiIXF4KkCLTzOv1smbF0ml7/ZaWCACVlZc3vGV63ayvuZTnLKW2tvaytkFERERELi8FSJFpVlJSwr/9279NdzMuu+3bt/PBD35wupshIiIiIpeR1kCKiIiIiIhIWhQgRUREREREJC0KkCIiIiIiIpIWBUgRERERERFJiwKkiIiIiIiIpEUBUkRERERERNKiACkiIiIiIiJpUYAUERERERGRtChAioiIiIiISFoUIEVERERERCQtCpAiIiIiIiKSFgVIERERERERSYsCpIiIiIiIiKRFAVJERERERETSogApIiIiIiIiaVGAFBERERERkbQoQIqIiIiIiEhaFCBFREREREQkLQqQIiIiIiIikhYFSBEREREREUmLAqSIiIiIiIikRQFSRERERERE0qIAKSIiIiIiImlRgBQREREREZG0KECKiIiIiIhIWoxlWdPdhmlhjBkCTk13O94ARUD3dDfiDTBb+wWzt2/q18wzW/u22LKs7OluxEwxi6+PMHs/4+rXzDNb+6Z+zTyXfI10vVEtmQFOWZa1YbobcbkZY/apXzPLbO2b+jXzzNa+GWP2TXcbZphZeX2E2f0ZV79mltnaN/Vr5nkt10hNYRUREREREZG0KECKiIiIiIhIWt7MAfJb092AN4j6NfPM1r6pXzPPbO3bbO3XG2U2f79ma9/Ur5lntvZN/Zp5Lrlvb9oiOiIiIiIiInJp3swjkCIiIiIiInIJFCBFREREREQkLW+6AGmMucUYc8oYc8YY8+fT3Z7XwxjzbWNMpzHmaNKxAmPMU8aYusTf+dPZxtfCGFNljHnWGHPCGHPMGPOJxPEZ3TdjjM8Ys8cY83KiX3+TOD7fGLM70a8fGWM8093W18IY4zTGHDTGPJa4PVv61WCMOWKMOTRe6nqmfxYBjDF5xpifGmNOJv6tXTlL+rU48V6N/xk0xnxyNvTt12G2XCN1fZyRfdM1coaZrddHmJ3XyMt5fXxTBUhjjBP4OnArsAx4nzFm2fS26nX5LnDLhGN/DjxjWdZC4JnE7ZkmAnzKsqylwGbgo4n3aab3LQhcb1nWamANcIsxZjPwJeBfEv3qA35vGtv4enwCOJF0e7b0C+A6y7LWJO0BNdM/iwD/BjxuWdYSYDXx927G98uyrFOJ92oNsB4YBR5iFvTtjTbLrpHfRdfHmUbXyJlpNl4fYRZeIy/r9dGyrDfNH+BK4Imk2/cC9053u15nn+YBR5NunwLKE1+XE98Qetrb+Tr7+DBw42zqG5AJHAA2Ad2AK3E85TM6U/4AcxL/6VwPPAaY2dCvRNsbgKIJx2b0ZxHIAc6RKKQ2W/o1RT9vAl6YjX17g75fs+oaqevj9LfvdfRL18gZ8Gc2Xh8T7Z7118jXe318U41AApVAU9Lt5sSx2aTUsqw2gMTfJdPcntfFGDMPWAvsZhb0LTGF5RDQCTwF1AP9lmVFEqfM1M/kvwJ/BsQStwuZHf0CsIAnjTH7jTEfThyb6Z/FGqAL+E5iStV/GmP8zPx+TfRe4P7E17Otb2+E2X6NnFWfgdl2fQRdI6ejYa/TbLw+wpvjGvm6ro9vtgBppjimfUx+QxljsoCfAZ+0LGtwuttzOViWFbXiUwfmABuBpVOd9utt1etjjHkr0GlZ1v7kw1OcOqP6leRqy7LWEZ/W91FjzJbpbtBl4ALWAd+wLGstMMIMm4rzahLrie4AfjLdbZlBZtO/21ltNl4fQdfIX1OTLqfZeH2EWX6NvBzXxzdbgGwGqpJuzwFap6ktb5QOY0w5QOLvzmluz2tijHETvzj+wLKsBxOHZ0XfACzL6ge2E1/DkmeMcSXumomfyauBO4wxDcADxKfo/Cszv18AWJbVmvi7k/hagY3M/M9iM9BsWdbuxO2fEr9YzvR+JbsVOGBZVkfi9mzq2xtltl8jZ8VnYLZfH0HXyJlill4fYfZfI1/39fHNFiD3AgsTla88xIdvH5nmNl1ujwAfSnz9IeLrI2YUY4wB/gs4YVnWPyfdNaP7ZowpNsbkJb7OAG4gvij7WeCdidNmXL8sy7rXsqw5lmXNI/5v6leWZX2AGd4vAGOM3xiTPf418TUDR5nhn0XLstqBJmPM4sShtwDHmeH9muB9XJieA7Orb2+U2X6NnPGfgdl6fQRdI5lh/Zqt10d4U1wjX/f10SQWTL5pGGNuI/6bHyfwbcuyvjDNTXrNjDH3A9uAIqAD+Dzwc+DHQDXQCLzLsqze6Wrja2GMuQbYCRzhwnqBvyC+zmPG9s0Yswr4HvHPngP4sWVZf2uMqSH+W8kC4CDwW5ZlBaevpa+dMWYb8GnLst46G/qV6MNDiZsu4IeWZX3BGFPIDP4sAhhj1gD/CXiAs8DvkPhcMoP7BWCMySS+lq/GsqyBxLEZ/579OsyWa6SujzOyb7pGzqB+zebrI8zea+Tluj6+6QKkiIiIiIiIvDZvtimsIiIiIiIi8hopQIqIiIiIiEhaFCBFREREREQkLQqQIiIiIiIikhYFSBEREREREUmLAqSIiIiIzBjGmDuNMZYxZsl0twXAGPMRY8w9090OkV8XbeMhIiIiIjOGMebHQDnwjGVZfz3NzRF509EIpIiIiIjMCMaYLOBq4PeA9yaObTPG7DDG/NgYc9oY80VjzAeMMXuMMUeMMQsS533XGPMNY8yzxpizxpitxphvG2NOGGO+m/Qa70s87qgx5ktJx4eNMV8wxrxsjNlljClNHP9rY8ynE1//vjFmb+KcnyU2bheZVRQgRURERGSmeAfwuGVZp4FeY8y6xPHVwCeAlcAHgUWWZW0E/hP4eNLj84HrgT8BHgX+BVgOrDTGrDHGVABfSpyzBrjCGPOOxGP9wC7LslYDzwG/P0X7HrQs64rEOSeIB12RWUUBUkRERERmivcBDyS+fiBxG2CvZVltlmUFgXrgycTxI8C8pMc/asXXbx0BOizLOmJZVgw4ljjvCmC7ZVldlmVFgB8AWxKPDQGPJb7eP+F5x60wxuw0xhwBPkA8nIrMKq7pboCIiIiIyKsxxhQSHxlcYYyxACdgAf8LBJNOjSXdjpH6825winOSz4u8QhPC1oXiIVGm/jn6u8A7LMt62Rjz28C2V+yUyAykEUgRERERmQneCXzfsqy5lmXNsyyrCjgHXHMZX2M3sNUYU2SMcRIf4dxxCY/PBtqMMW7iI5Ais44CpIiIiIjMBO8DHppw7GfA+y/XC1iW1QbcCzwLvAwcsCzr4Ut4ir8iHkKfAk5ernaJ/CbRNh4iIiIiIiKSFo1AioiIiIiISFoUIEVERERERCQtCpAiIiIiIiKSFgVIERERERERSYsCpIiIiIj8/+3XgQAAAACAIH/rFQYoiwAWgQQAAGARSAAAAJYAGmAoqk6qDVYAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5gAAAFICAYAAAA1aVG7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xd4XPd95/v3md7QOwEQJAFy2ClRpERSpLrkFlm24xTXxE68yZYka29217t3n9x47zorO7EtW7Jkq7jIimNbVrG6rC5RFMUmiU0cFpAAiN5mBoPpM+f+geEQIECJlEANAX5ez0MJM+fMme85gzKf+TXDNE1ERERERERE3i9LoQsQERERERGR2UEBU0RERERERKaFAqaIiIiIiIhMCwVMERERERERmRYKmCIiIiIiIjItFDBFRERERERkWihgioiIiIiIyLRQwBQREREREZFpoYApIiIiIiIi00IBU0RERERERKaFAuZkNmBe7v8iIjK76Xe+iIjINNIf1MmagMPAJuB4gWsREZFzqwF4BWgBjhS4lpnACawFuoFMgWsREZFzxwrUAduBxNk8UAFzsrrc/18paBUiIvJBqkMB80ysRX8fRUQuJJuAzWfzAAXMyboBhodHyWbNQtcy7SoqfAwORgpdxrTTec08s/XcdF4zi8ViUFbmhdzvfnlXs/Zv5Gz9HofZe246r5lntp7bbDyv9/P3UQFzsgxANmvOuj+eJ+i8ZpbZel4we89N5zUjqbvnmZnVfyNn4zmdMFvPTec188zWc5ut58V7+PuoSX5ERERERERkWihgioiIiIiIyLRQwBQREREREZFpoYApIiIiIiIi00IBU0RERERERKaFAqaIiIiIiIhMCwVMERERERERmRYKmCIiIiIiIjItFDBFRERERERkWihgioiIiIiIyLRQwBQREREREZFpoYApIiIiIiIi00IBU0RERERERKaFAqaIiIiIiIhMCwVMERERERERmRYKmCIiIiIiIjItFDBFRERERERkWihgioiIiIiIyLRQwBQREREREZFpoYApIiIiIiIi00IBU0RERERERKaFAqaIiIiIiIhMCwVMERERERERmRa2QhcgIu/sl7+8l46OtoI9fygUBKCkpHRaj2u3W0mlMmf1mMbGJj772S9Oax0iIiJnY2QkTGvrEY61tXKso41EMkE2k8HpdLFwQQvNC1pobl6Ew+EodKkiBaGAKXKe6+hoI3DoMFbX9Aa8M5WJjwXM/nC6IM9/ah0iIiIftFAoyBtv7GT7rm309HThrq6AMi+2OcUY9mIMi4V4IsXW7oO8tmcHmZEo1151A5s2XYnL5S50+SIfKAVMkRnA6irF03RtQZ472vYcQMGe/9Q6REREPgjRaJTdu99gy7YtdB3vwNVYjW1+FZWXL8SwWqd+UGM1AKnhEV7av51nn3+aT33ij7n00nUYhvEBVi9SOAqYIiIiIiLA6GiEffv2sG3n6xxtPYK7rhJrUzUVl16BYTtNqJyCvawI++XLSQ2Feeiph9n11g4+/5k/o6io+BxWL3J+UMAUERERkQtWMDjMm2/uYseb2+nu7BwLlQ2VVKy6Aovj/b1VtpcXU/LhS+nafYR/+tY3+MqX/z0LFrRMU+Ui5ycFTBERERG5oCQSCXbu3MbLW15ioL8PV0M1tqYqKte1nFVL5ZkwrBa8Fy8kXl3KHXfdxo0fuYlNm65Sl1mZtRQwRUREROSCMDo6ylO/f5ytr7+Ks6oMW0sdFZuWYFjP/cp9rvoqbNev4YkXnqL12BE++6df1EyzMispYIqIiIjIrJbJZHhl84s8+dRj2BurKPnwZdh8H/zsrrZiL8U3rOHQ9gN8+zvf5K+/8p+orKz6wOsQOZcUMEVERERk1hoeHuKun9xBMB3Hd83F2MuKClqPxW7Dt34ZsYMdfPs73+QTH/8069ddri6zMmsoYIqIiIjIrLR//15+ft9PcPgbKFq65LwJcYZh4PHPxV5VyqPPPc7WbVv4/Gf+jOrqmkKXJvK+KWCKiIiIyKyzZcvLPPzYQ3gvX46zprzQ5UzJXl5M8Q1rGA608+3vfJP5C1r4w5s+TnX1XCyWcz8uVORcUMAUERERkVnlxRef44lnH6f4ukuwFXsLXc47MiwWvEvm4W5poPdYNz+468ckRyJU19Yxt2EuPo8Xu92BxWIFTEzTxOFwUlpaSmlpGQ0Nc7HZ9JZezh/6bhQRERGRWeOZ557i2RefGQuXPk+hyzljFrsNz8JGWNhINpEkNjTCvmA/2Ug3ZLJggmGACVjSWYinyERipCJRlixdzobLLsfvP3+6AcuFSwFTRERERGaFrVtf5ZkXn6Hk+jVYPa5Cl/OeWZwOnHUVOOsq3nXfTDTO0fZeDv7qZ9TX1PGZP/q8ZqaVglLnbhERERGZ8fbv38sDv7uf4qsumtHh8mxZPS68i5so+chl9HmyfOtf/g8vvPhsocuSC5haMEVERERkRuvoaOdnv7ibok0rsZX4Cl1OQRhWC95lC3DOreXpF39P/0A/n/7Un2iyIPnA6TtORERERGasUCjEHXfeinutH0d1WaHLKThbkYfi69fw5uF93HnP7aRSqUKXJBcYBUwRERERmZHS6RQ/uus2rAtqcc+tLXQ55w2L007R1RfTERnk7p/+iEwmU+iS5AKigCkiIiIiM45pmvzrv91L2JrGs3x+ocs57xhWC74Ny+kI9vHLX92LaZqFLkkuEAqYIiIiIjLjPPHkk7x99CDedUu1NMdpGFYLvk0r2X/sIA8/8kChy5ELhAKmiIiIiMwohw4F+O1DD+LbtBKLXXNWvhOL3UbRVRexdedWXnttc6HLkQuAAqaIiIiIzBhDQ4Pc87Mf412/FFuRp9DlzAgWp4OiK1fx4O9+S2vr4UKXI7OcAqaIiIiIzAjJZJIf3XUbDn8jzrrKQpczo9hKfHjXL+XOe+5gaGiw0OXILKaAKSIiIiLnPdM0+fl99xB1W3AvaSp0OTOSq74K++IG7rjzNpLJZKHLkVlKAVNEREREzntPPPUYrd3teC9bokl93gfP4iZibgv/+m8/18yyck4oYIqIiIjIee2NN3bw0uYX8G1aiWG1FrqcGc0wDLyXLSHQdpgXX3qu0OXILKSAKSIiIiLnrUOHAvzy1/dRdOUqrB5XocuZFQybFd+mlTzx9GMcOhQodDkyyyhgioiIiMh5qbOzg7t+cge+y5djLy8udDmziq3Ig2/DMu752Y816Y9MKwVMERERETnv9PX18sM7vo97jR9nXUWhy5mVnHWV2Bc3csedt2rSH5k2CpgiIiIicl7p6urkez/4NvblTbibagtdzqzmWdxEzGPl5/fdo0l/ZFooYIqIiIjIeaO9/Rjfv+07OC5qxt3SUOhyZj3DMPBeuoTW7g4ee+J3hS5HZgEFTBERERE5L+zY8Tq33n4L7rV+3PPqCl3OBcOwWfFdsZJXtr7C9u1bC12OzHC2QhcgIiIiIhe2dDrFbx/8NW/sfZPia1djLysqdEkXHKvbSdGVq/jNA7+ivLyC5uaFhS5JZii1YIqIiIhIwQQCb/PNm7/BnuNHKPnwpQqXBWQvLcK3YRl33n07XV2dhS5HZigFTBERERH5wHV1dfLju3/IT+67G3NpA75NK7A47IUu64LnnFOJa3ULt93xPS1fIu+JusiKiIiIyAcik8lw4MB+nnn+abq6O3EuaqT0Y+sxbNZClybjuOfPwUyk+P5t3+Hvv/p1ioq0BqmcOQVMERERETlnTNOkvb2N17e/xq5d27F4Xdha5lB26UYMqzrTna88i5sYTaa55dZ/4Wt/99/wen2FLklmCAVMEREREZl2Q0NDvLb1FV7fvpVkJo2tqRrfdauxFXsLXZqcIc+KBUQzh7nl1u/w1b/9ezwevXby7hQwRURERGTaHD58kGee/z1HjhzENa8Ox2WLcFeUYBhGoUuTs2QYBp6LWojuOsgPbvsuf/uf/gsej6fQZcl5Tv0SREREROR96+7u4tbbv8dd995Jly9D+Sc24Vu7GEdlqcLlDGYYBp7VixgtsXPLrf/C6OhooUuS85wCpoiIiIi8Z+l0ivsf+BXf/f636CsyKP3YeryL5mKxq6PcbHEiZMbKnNxy6z8TiUQKXZKcxxQwRUREROQ96e3t4Vv/8k3ebA9QduMGvEuaNHHPLGUYBp6LFxKv9PC9H3ybcDhc6JLkPKXfACIiIiJy1vbseYvvfO9mEnPL8G1cgcXpKHRJco4ZhoFnVQvJ2mK+9/1vEQoFC12SnIcUMEVERETkrLz++mvc+8uf4rtqFZ5FczXG8gJiGAbelc2kG8v5zi3fIhgcLnRJcp5RwBQRERGRM/b8C8/wwCP3U3zdJTgqSwtdjhSId/kCmF/Nd7//bYVMmUABU0RERETOyCubX+Lp55+i5IY12Et8hS5HCsyzdJ5CpkyigCkiIiIi7+qNN3bwyBMPU3TNaqxed6HLkfPE+JAZCoUKXY6cBxQwRUREROQdHTx4gF/++j6Kr7oIW5Gn0OXIecazdB5mUyW33PovRCIjhS5HCkwBU0REREROq6+vl3t++mN8G5djLy8udDlynvIuX0C6tojv3/ZdotFoocuRAlLAFBEREZEpxWIx7vjxD3CumI+ztqLQ5ch5zrOqhVipkx/+6BaSyWShy5ECUcAUERERkUmy2Sx3//RHpCp9eBY1FrocmQEMw8B7ySJCtgx33nM7mUym0CVJAShgioiIiMgkjzz6IN3hQbyXLCp0KTKDGIaBd91SukaHufe+n5DNZgtdknzAFDBFREREZII339zJlu2v4d24AsOit4tydgyLhaKNKzjYeYwHHvoNpmkWuiT5AOk3hoiIiIjk9fR08ctf/QLfphVYXY5ClyMzlGGzUnTlSnbu2cWzzz1d6HLkA6SAKe/q1Vdf5tVXXy50GSJyjulnXURisRg/uvM23Bc146goKXQ5MsNZnA6Krr6YZ178PVtf31LocuQDooAp72rz5pfYvPmlQpchIueYftZFLmzZbJZ7fvZj0lVFuFsaCl2OzBJWr4uiqy/mgYd/w44dOwpdjnwAFDBFREREhEcee4iu0IAm9ZFpZy/xUXTlKn74ozs4dChQ6HLkHFPAFBEREbnA7dy5jS3bt2hSHzlnHJWleDcs566f3EF7+7FClyPnkH6DiIiIiFzAjhw5xK/u/yVFm1ZqUh85p5x1FXguXcwPf/QDjh/vKHQ5co4oYIqIiIhcoHp6urjz7tvxbViGvby40OXIBcDVWIPrkoXcevv36Ow8Xuhy5BxQwBQRERG5AAWDw9x2+y04L27GOaey0OXIBcTdVItrdQu33v5dOjvVkjnbKGCKiIiIXGCCwWG+94N/xtJSh2dBfaHLkQuQe14dztUL+cFt36W19XChy5FppIApIiIicgEZHh7iu9//Nua8KjxL5xW6HLmAuZtq8axfwh133sa+fXsKXY5MEwVMERERkQtEb28P373lW5gLqhUu5bzgnFNF0ZUr+dl99/DqlpcLXY5MAwVMERERkQvAwYMH+O4t38KypAHvknmFLkckz1FVRsn1a3jk6Ue5/4Ffkc1mC12SvA8KmCIiIiKzmGmavLL5Re766Y/wXL4Md0tDoUsSmcRW7KXkhrW8cXgvP/zR9xkdHS10SfIeKWCKiIiIzFLxeIzv3nILjz/3JCXXr8FZW1HokkROy+K0U3T1xfTZktz87f9NR0dboUuS90ABU0RERGQWOnbsKP/0rW9waKSfkg+txVbsLXRJIu/KsFjwrl6EZeU8fvDD7/LyKy9gmmahy5KzYCt0ASIiIiIyfVKpFI89/jBbXn8Vzxo/nqbaQpckctbcTbXYy4p44sWn2ff2Xr74uS/h9foKXZacAbVgioiIiMwSra2H+advfYMdR/dT+tF1uBUuZQY7MS6ziyjfvPkfCQTeLnRJcgbUgikiIiIyw8ViMR763f28ufsN3JcsokjBUmYJwzrWZTZRW849997FJRet4ZM3fRqHw1Ho0uQ01IIpIiIiMkOZpsmOHdv439/8X+wfPE7pH6xXq6XMSs45lZR+dB27u47wzZv/kdbWw4UuSU5DLZgiIiIiM1BfXy+//PUv6Bnux7NhGY7qskKXJHJOWZx2ii5fTqy9hzvu/iFrV1/KTTd+CqfTWejSZBwFTBEREZEZJB6P8+RTj7Jl62bcy+ZRctmlGBZ1SpMLh3tuLc6acnbvPMjuf/oHPvPHn2fZshWFLktyFDBFREREZoBsNsu2ba/xu8cewlpTSunH1mN1q+VGLkwWpwPfhuUkuga491c/p2V+C3/0qT+htFQt+YWmgCkiIiJyHjNNk/379/Lg7+4nZmRwX74MR1VpocsSOS8451Ti+FgZ7fuO8s2b/5Frr76Ba6+5AbvdXujSLlgKmCIiIiLnIdM02bdvD48+8TChaATnyvkUNdZgGEahSxM5rxg2K95VLTgXzOGVXdvZvOVlPv6xT7BmzWVY1H38A6eAKSIiInIeiUajbNv2Gi++8jwJM4NjWRMlc5crWIq8C1uRh6IrV5HoHeLhZx/jqWee4MaP3sSqVasVND9ACpgiIiIiBRaPx9i3bw/bd23j8KGDuOqrcKxeQHF1mYKlyFly1pTjuL6MRGc/9z/5IA898gAfuu4jrF27TutnfgAUMEVEREQ+QOl0mr6+Xnp6umg91krg0AEG+/vx1FZiaaig/KbLsTj1Jljk/TAMA1dDNc76KpJ9wzy59XkefvQBLlm9lo0brqS+vkEf3pwjCpgiIiIi08A0TeLxOKFQkJGRMKFQiJGREMPBYYZCwwwNDRIKBolGIriKfdhKfZglHhzLG6iqXIZhtRb6FERmHcMwcNaU46wpxz0aY+/hTt748S247E4uWb2WVSsuprFxrrrQTiMFTBEREZEzkM1mGRkJMzg4kP/XN9jPwNAAoeFhIuEwJuD0ebC6XRguB6bTBi47FrcT66Jq3N4mfB4XhlVvZkU+aFavG9+qFsyVzaQGw2xrP8hrO7eSjsVpaVmEv8XPvHnNNDQ0YLNpFtr3SgFTRERELniZTCbX4hgmHA4RCgUZDg4zMDTA4NAAw8NDREIhrA4HjiIvFq+LrMeBxevCOrcE25JaKjwuLA69tRI53xmGgaOyBEdlCQCZaJzO7kE69m8j+8pzxIIhSsrKqaubQ0NdPVWV1VRX19LUNE/das+AfguKiIjIBe9//b//QFvrUQyrFbvbhcXjBLcDq8eJtdSNtb6JMq8Lw3b6bqzZWJxs7AMsWkSmjaOyBHKB053Jkg6P0h6M0HpgF4zGSQyG+Md//L+UlpYVuNLznwKmiIiIXPBqamoIhkIn78gAkeTYP0bIAtkC1fZ+WSwWstmZWv3p6bxmnpl2btbcP7BQVF2Dw+EsbEEzhAKmiIiIXPD+89/8Lf39I4Uu45yoqiqaleem85p5ZvO5yUkaYS4iIiIiIiLTQgFTREREREREpoUCpoiIiIiIiEwLBUwRERERERGZFgqYIiIiIiIiMi0UMEVERERERGRaKGCKiIiIiIjItFDAFBERERERkWmhgCkiIiIiIiLTQgFTREREREREpoUCpoiIiIiIiEwLBUwRERERERGZFrZCFyAiIiIicrbuvfdeDh9uLWgN4XAIgOLikmk7pt1uJZXKnNVj6usb+NSn/mTaahB5P9SCKSIiIiIzTltbG52dHQWtIRwOEw6HC1pDZ2cHnZ3HC1qDyHhqwRQRERGRGam+vpG/+Zv/UrDnv/XW7wBMaw1VVUX094+cdQ0i5wu1YIqIiIiIiMi0UMAUERERERGRaaGAKSIiIiIiItNCAVNERERERESmhQLmBSQYHObrX/86oVBw0v033/y/J90vIiIiIiJyNs4oYPr9/jK/3x/3+/23nOuC3gu/37/G7/f/a6HrON89+uhD7N+/n0ceeXDS/YcOBSbdLyIiIiIicjbOtAXzc8BrwGf8fr/jHNbzngQCgR2BQOBzha7jfBYMDrN580uYpsnmzS/nWytPd7+IiIiIiMjZOtN1ML8M/FfgfwAfB37r9/v/EVgMFAOLgJ3AzcB3gCbgwUAg8F8B/H7/i7ntlwLzgO8DncDfAHOA/xoIBO7P7fth4P8CVqAf+KtAIHDY7/dfBdwCvA6sB0zgTwOBwNu5bf8SCATW+P1+G/A4UAG4gW25YyTP+urMIo8++hDZrAlANpvlkUce5Atf+PJp7x8vFAoSCoX41rf+vw+87jNlt1tJpTKFLmPa2e1W2tvbyGashS6l4LLpOO3tbef19yHM7O/F9vY2SkpKCl2GiIiIzGDvGjD9fv8qoBx4HqhlLGz+Nrf5EmANEAF2MRYwP5I77lG/339nIBA4lNu3Abgyd4zDwPcCgcAGv99/KfAgcL/f768GfgFcGQgE9vv9/r8A/hW4LHeMZcCXAoHAX/n9/v8H+F+Mta6OlwE+GwgEBv1+vwH8PFfzj87iulBR4Tub3c97W7e+SiaTBiCTSbN166t87Wt/d9r7x7PZrBjG2Bvn89n5Xt97ZRiFruD8MRO+D2Fm1DgVwxj7ea+qKppy++nuFxERETnhTFow/wK4NxAImH6//0HgVr/fX5/b9nQgEAgB+P3+3cBbgUAgAST8fn8AaAZOBMz7A4FAFujy+/2DwEO5+3cC9X6/38VYkHwrEAjsz237KXC73+8/8a4mEAgE3sh9vRW4cYp6LcDf+/3+jzDWCloGRM/gPCcYHIzkW/Zmg3XrLufll18kk0ljtdpYt+5y+vtHTnv/eF5vEV5vEV/72v8sUPXvrqqqaFLds0FVVRF///f/jcMdA4UupeAsNheNjZXn9fchzOzvxROtw1PVP5PP651YLMas+0BRRESkkN5xDGZuvOVngS/7/f5jwNuAHfiz3C7xcbtnprg9PsBOuW8gEDjRl8wGGIx1fT2ddzr+CZ8FNgKbAoHACuB2wPUOx7wg3HjjJ7FYxprCLBYLH//4p97xfhERERERkbP1bpP8fAI4EAgEGgKBwLxAIDAPuAH40jmq5zXgIr/fvzh3+8+ANwKBwNl8bF4KDAQCgRG/31/CWOC84JWWlrFx45UYhsHGjVdQUlL6jveLiIiIiIicrXcLmF9ibAxkXiAQeC33uCumu5hAINAPfAH4Za7L7edz/87GvUCR3+/fB9wPvDK9Vc5cN974SZYuXTqplfLGGz/JwoV+tV6KiIiIiMj78o5jMAOBwEdOc3/zFPf9+Sm3r5rq69zteafcNsZ9/RTw1BTHf5GxCYUm3T7l6xBw3VR1X+hKS8u4+eabJ42jKi0t4+tf/4cCVSUiIiIiIrPFma6DKSIiIiIiIvKOFDBFRERERERkWihgioiIiIiIyLRQwBQRERGR9yRjZumJh0lnM+++8zips9x/vDdCHWwbPvaeHx9Oxdky1EpfYvIiBalshoFkBIDRdIJjo4M81P0WhyJ9tEWHeLj7LVpHz35t6lQ2Q3c8RMbMvue6Xxs6yuO9exlNJybcb5om4XSc1tEBUtkMW4Za2T/S/a7H64oH2RFsJ5lNn1Udb4/0sHX46Fm/5u+kIzbM4dH+aTve2Z6TTK93nORHREREZDZLZTP8umsnX626ls54kHrXmS/XtW3bawBceun6Cfc/0/82HbEgH6paQr37g13+yzRN4tkUbqvjPT2+NzHC68NHWeitZu9IFx2xYa6t9LN56AijmSSfrV9LjbOI7cE2SmwudoY6ODjax3xPBX8xd8Ok42XMLFbDwpHRfoKpKM3eKp7qe5u9I12sK5vPH9QsP6v69oa7eKD7TQAa3mXf4VQUh2HFa3NOuP8n7VsYSI1ixeDjtSu5pHQuT/buY+vw0bGaMZnnLudYbCi/QPub4eP5cLgr1MHXmq8hEOmlJx7GbrHyXH+ADeULGEnHORYdZHVJIzaLlW3Dx3hx8BDRTJK0mWVZUR2fqV/Du3mhP8DB0X6urGhhcVEtR6MDPN63F4CUmWFTeQt7wl0s9tUwlIoSTsf4acdr1LtKOR4PAvCVuZfT5Ck/eT2SUV4dOkKTp5wmdwV3tr1K2syyJ9zF0qJaVhbX47ba37GuY9FB/rVzOwA7gu2sKJ6Dy2JndUkjdov1Xc9rKq2jA/y04zVM4BO1q1hTOvc9HeeEFwYO8txAgPmeCr7UuB6LYbz7g97F6X7WZWoKmCIiInLBOhId4ECkFxhrIfr0nIvz23oTYX7e8Tp2w8qfN66jzOGZ8NjXX98CTHzT2RMP89LgYQB+3/82X5r7wb4hvff46xwa7WdD2Xw+egbhLZyK47LacFjG3hL+tmsX3YkwO4LtZDEB+H3/AULpGDAWtByGlZeHxs7RYYyFivbYMOFUnGK7C4C0meWn7a/RHhvikpK57Ai1A2DByB93d7jzrAOmcUpYSGbTdMWDzMl9MJAxs4RTcY7HhvlN9y4cFht/3bSRUruHp/v2s2+km5HMWAtgBpOHet6i2Obi1eHWCcftSoQAcpXC+Gc1MfnukefJYhLLJoll4YXBg+wKthPKxAHYMtTKf26+hmf6DxDLpvKP3TfSzeHRPuZ7Ktkb7uKpvv0U21ykzAzxbJrrKhfzoaqlPDd4EICn+vezuKgWG9Z82HVb7PykfQuhdJxXh47kg68J+XA5dn5Z0maWfSPdVDt8PNKzm454kK3BYyz21pDOPe5ItJ8j0X6e6X+bf9e0kWpn0Rm9Fj2JMD39YQAGk6N8tGbZhO19iRHaokPsDXfSFhtiQ3kzn6u6dNJxwul4/jq3x4Y4HhtmZXE9C7yVZ1THqfaEuwA4Gh0kkk7kvyffj6l+1uX0FDBFRETkglXvKqHENvYGdLGvZsK2veFuwumxwHAg0sv68vnverwSu5tim4twOk6ju4ydwXZK7R6a3+Ob5XfSEw/TmxxhWVEdNsNCMpvmUK6b4fZgOx+uXvaOrTevDx/j0d49lNhc/Id5V+C1OSmyuehOhHFb7fisTnqTI4TSMeyGFathwTRN9o+e7H7Z6C4jZWboS0T45yPPcFPtShrdZYSSMdpiQwDsj/Tk989istBbRU9ihI3lC6asqy8xgomJacIvjm/DYRkL+CV2N8uK6vh4zQoOj/YT5gid8SC3H3uFz8xR1DPlAAAgAElEQVS5hGXFc/hZx1aORgepdPgwgUQ2TVcizJHoAFuDx6Z8vmg2xUJvNYdG+wCodPhYUzKX7cE2BlOjADS4SjmWOx+f1ZkPqeOdCJcAQ7nH+X01vBk+PmG/33TuIjoudI4/1mO9e/jQwqX523NcJTzWu5eBRCQfwg6O9BHKfV+mzcndVE+E+J3BdvaEOtmeC/fjHRgd+1DFikEmd+R4Ns2Tffv4s8Z1RNIJHunZjd1i5abalfkPIOZ5KvhM/Rqe6tvPcCqaP148myKTzWIYBhbDYDA5yg+PvTyhS/DW4FE+x+SAubK4nuFUlEQ2zc5gO7Fsit3hTv7B/9FJ+56JKypaeKb/bfy+mmkJl3L2FDBFRETkglVkc/HV5msBWF48Z8K2ZUV1bA+2YbNY8Puqz+h4bqudv51/FeF0nDdDx3mo5y0M4N/P25RvZXu/TNOkKx7mx20vkwW2usr4q3kbcVhsFNlcjKTjpMwMg8kIVe/QGnUkF0ZD6Tj9yQhem5M/qb+Eg5E+hpIRRtIJepNj4xR9NidfaLiUHxx9ceIxogN8onYVD/e8BYx1H/1dz25Mxlo3k2aGaCZJpd3LQGoUu2Hhj+asxmN1EM+kuLNtM8OpKH88ZzXzPZUcHu3n5x1bAVheVJdvOX1h4CBrSudSbHPz7MABopnUhC6ynfEgboudo9HBsXNKxZjrLsNh2Ci3eXgp1DnlNbAbVpb4allVXE8oFcNiGBTlPnDYWNHMQDJCLJOiLzGSD5hThcsTXWpPMDA4Gh3kD+su4oryZt4Od/PM0FirZOwdxgcmc4Gx2lHEaCbBvnB3PgCe0Js6OXa00lHEkVw9FgzWljbxei5IH4j0kjzNOEmf1UEkk+Ty8maORgfoyLV8Hhrt55bW51nsrc1/MNDkLufSsnn5xy4rqqPZU8mR0X7i2TTbgm3sCnWwJ9yJgcHnGi7FblgmjTctsbmnrMViGFxduYhQKsbmoSP567B/pJulRXWnvVanc1FJAxeVTOxAncpmxrp15z6kkHNLAVNEREQuaDZj6jkPa13FfH3hDWd9PJfVjstqJ5ULCyaQzr73yV1O9dvuN3grfDIwdcSHaYsO0eQp54ryZp7o20eDq4wyu+cdjgJXViwknI5T4yxmrntsrJ7TYqPE5uLXXTsBmO+uwG21s758PsPJ6KRjOA0rfl81Fxc30J+MMMdZQntsGIAqp4/OeIgSmyvf2pUyszzas4dim4saZ3F+3x3BduZ7KnOtl2N8Vhdeq4OMmWVHqJ2doXY+UbuKaCY1qY6Xh46we6QrfztlZuiMBclgcqx9kDRTX/+UmSGaTtCdjvNE3z7qXSXcWLOCvsQIx+NBYpkUtc5inujbd9rr6LTY2VTRwrHj2/L3ZTD5SfsW/nLu5dgNK88NHcpvM08JjFPxWOz0JSdPQjRei6cq30oM8MnaVbisdg6N9hFKxUi8Q5CNZJJYMNg/0j2hNRVgIDlKt22si7DBWCvqqVxWO8tyH8g83f82MPbaAuwb6eLjtSv5WPUy9o1054N33RTHGS+aSU64HUzFJtw2TZM3w8exG9ZJHwa9mxcGD/Jyruv6X87dwDxPRX7bQDLCPe2vkTWzfKlxPbWu4rM6tkymgCkiIiJyDlxXtRiv1UGZw8vccZOtvF8nxoyeYDMsFOUmsllfvoA1pU1nNOFKvbuUv563adL9I+kEBgYmJg6Ljc82rMU0TR7v3Ttp36sr/RTZXPxhbuxqPJMiZWaxGgbXVy2mKx7GZ3Nw29GX8o/ZkwuCTe5yqh0+hlMxVhXXA2OtcDAWdFNmhi/P3cCjPbs5FhvCZKwVbFN5M53xEEmOTKglmIrlxykC+Za/04XLE+5q30KFw0tnPEhnPMgCTyW/ygXsqZzodHzieVwWO/d37cpvP9FF1QTu79pF1jTz405PZYEJ1dU7x1q5j8VPBscTXa5P8FmdzHEVU2b30pMI56t6M3ScI7HTz3BbZnMznD4Z2rKYDOS68p6qNTqQP8cDkV4a3GX5beFUnK5EiBZPJTaLleurFvNE7z5SZgYDWF40h654iNWlc1lfvoAjo/10xUOsKW2a8rlM0+R4PEi53cPHqpezM9TOXFcZa0/Zf3uwjUd69wCwLjrIH9SuOO25nsqY8PXEbuMHI32M5K7v/kiPAuY0UMAUEREROQecFhtXVS6a1mMGIr00uEoZSo1yack86twllNrdlDu8+X1OFy6jmSSP9uwhZWb5WM2yKVs4B5Oj/KZ7V76VLTDaS2c8yJahVt4Kd+K02Kh1FlPjLMZnc0wYlzqUjJIyM3htDoptLtxWB83eSrYMtebj1fhA1RYbwm2xU+ssotpZNDYGLzdeMJFNsyPUztHoAIO51s9im4sWXxUtvip+lutGC+CxOIhmx1q/TjyP3bByedl8Xg+2EcumqLB7SWbTU4+dTMdYWTyH1ugAZXYP7dGhSfsAlNs8DKWjk6Kiw2KlxO7NTww0PkwG0zFOZcdCKn8Vxkdi6EwEJ+0fTsdxWeyU2Fz4bE6WF83hkd7dmPTT4ColaNhImulJ4bLolLGil5XN49mBQH5yHwCXYcNltU+oc567guOxIdK5uvaNdHNd1WJgbFKlO9peZiSdYHlRHX9av4a1pU3sCnbQER/GgsGOUDu7w51UOXz8p/lX0uytotlbNeU1BXiibx+vDR+l2Obi7+ZffdqxzhPHcx7jiooWiu1Td7s91dUViyiyuSixuSfMrNsdD5HIpqmwe8liskLdZ6eFAqaIiIjIDBBOxfnX49vJYtLirWJTZUt+W19ihAORXpYX1U0Im+NtG27Ltx4eGe3jb+dfPWlm3Hg2NeGNvAUDp8WWnzwokU3TFQtS6yxmNJ0klc3QkRjm3o7X8+MHTyi3e1nkq6bZW4nTYiORndyWGMum6IgH2RZsoyM2THeuRe5E7PJYHYTTcVJmlppx40mHkqOcqDyaTeb3L7K6iGWT1LtKWFe+gBdzs92Gc+NSAZyGjYR5svuo1+rgQ9VL8ftqeGHgEFuCR6e8fg3uUojDUGpiV+FgKsqfVi/hnnGh91QTY+TJVk6XxUY0m8q3GFtzrWteq4PRcV1G49kUG4sXUO7w8ptxraWRdAKP1UEyffJ87IaFlJllJJPAhoX/MO8KYtkU9a4SFngrubttS/61uqpyERsrmglEenmo+y0imQTHYoMT6m50lfHaUCsOi43FvhoiuXU4x0/y84dzLmLb8DGS2Uz+e6w/GSGeSU1aJmZnsJ3twTYWeCq5tspPV3wsmIfTcUYzCZzWqePJZWXzeTN8nM54CI/VkZ946FSJTJq22CCN7rL8cj02i5V1ZRODayyT4q72V0lmM/i9NXyhcfIERPLeKGCKiIiIzAA2iwWbxUIym8E57s21aZrc076F0UySN0Id/N2Cq6d8fL375Bi4lJmlNxGmxO6eMNNsvauUT9auoicRpi8xwpHoAC8MHGSOs5jDuW6TKbL5iWQ8VgejmcSkcGnktgFsHjxC9h3GoFowaHSVsW342MlzAjaWLcBpteUnoDk6Okg6m8FmsfIncy7hUfZM2B/AbrEwkslyLDbEg91vMN9dwdHYYD5cAlTavXQmx0KN3bDwh3UX0zo6wM86tk7qyrqhdD617hK2DR9j90gXXouDy0vm82roZAhNmVneCp0c/3ki4J3OpopmVhQ30BEf5sHcmp7FVifXVS+mxjnWPdNpsU0ImAAZ02QgEZlwn4mJzXJyDPGq4nqORYfykyMZwBvhDl4dasVltbHUV5d/rYpsTi7LTd7j99WwqaKZJ/v2n3J82BXugFxP3D+dcwmfnrOaw5E+Li9vnrBvs7eKX+TGoXosdq6qXDQpXAI83PNWfkmVRDbNx2qW8fzAQeZ7KnBabGRNc8rZjy2GwVeaNnIw0sccVwmu06zZ+fPjW2mPDVPjLOJv5l815T4AWTNLxhx7vVNTzMYr750CpoiIiMgM4LE6+HdzN3I8HmRF0ZlNcvJW6DjXVS3hge43+VTtKr7UuI7n+gNUOYsIjPZxX+d21pY2cVPtyvxjlhXVcUnpXP7voafHjhGeegZWgHKHh4WOKvaNdJMxsyxwV7C0eA7lDg8N7lKOx4Z5I7dMhxWDOmcJnYkgJmDDwlebryGdzfDz468THzcpTb2rhK3DxyaMn0yT5dmBABvLmunITQ5U4yjG4yjKz3ZrN052Dz6Ya3U9lXVcICu2ualxFvHrrp35cGkzLPlupK8Fj/L1yhvYGRzrujuaTU4Il2NMdoRPLgXisthJTdEV94SrKv1YDIMqp49QMsa24DEaPGUsL5qT7958opX0RMuvz+rEArwweChfI8DVlYt4xfIGNsOK22JnXdl81pQ28dpQK0PJKD3JMK/kZmaNZlLsCLVTYfcSTMWIpBMcGu2j2VvF73p2k8ym+Xj1Cp7o2zfhupfZPAynx+rJmiarSurzY2YBDkX6uPf468BYd+FkNsPFpY1cVjaPN0PHKbY56UmMUOsspqqqiOpxr1c4HeOtUCdHRvvpT4zwZN9+Fngq+VLjuklrnmZNk/uOb+PIaD8frV7G+tMsczOUm4xqKBnFNM1JxznBa3PyxYbLOBodmDTeU94fBUwRERGR98k0TTrjQcrsnilbbaZLrat40iQkhmHw5bkbCER6Jy3BsHnoCNexhDdCHVxTuWjCeLhvBJ4AxpYW+Vj1Ml4damVXqIPB1CiXlc5jY3kzrwwdoc5ZzJFc62Wzu5Kh1CjD6Rh+79i6oc/2B6iwe+lPRmiPBzmeCGFgsKq4Pj/5EEC1s4hYNplvI7y0tIn7jm8jkkkwkj4ZyP6wdhUYBg/kWvfG64wHufnI7wFoAPqSI/z3+kvoTYyQyKY5Fh3Mh5fTWV8+n/ausYDqtTp4tHdPfjZbYMIYRRibVXVD+XyKwy76kyP0JN75+COZBBcXN3BwtJ/RTAKXxU48N1NrqW2sxTiUivFo7x4SmbFxoftGuqlzlnBlxcluz06Ljf/ecj3RTBKP1cH/OfhUPgTXOov5o7rVbA0eJW1maXSX8R8XfgiA3eHjxDOpCWtkltk9BFNj40cdFiuZXIAMRPoYzSTZnfsQoS06lA+XS721XFTSQF8ywrMDBwCIZBJkzCz7RrqpchZR7fBxPB7Mv6brSubRlQwTz6R4sm8fW8e1SlswuGzefP563iZeGTzMSCaB31vNfZ3bAfJjbVujA2Ot9Kd0lQ2lYxzOfWiwK9Rx2oD5R3NWszPUzqri+tOGyxOavZXnZI3aC50CpoiIiMj79Pv+A7wydBif1cnfLrgq3z30/Tgxs+WJdRnfSY2zaMIYxRNWFY+tBzjfU0HxKcfZWN7M68GjrC2dx6vDrTyTCxEAe0Y6+Z8LP8ymiha2B9vyAbM1NpAPE8FUlIe63zrtDKkvDx3GgsEKXx2xbJrrqxZzR9sr+e02izU/5nK8B3Jrap46bnGxt2ZCKyeMdRFtjQ6wrmw+w6koje5SIpkEZXYP8XSKPZEuTvV47z4sGFgwaI8P4zAmTorkttiJ5QKhz+rk7vZXAfhi42VUOXzcfuyVSUtqnOqtcCefr19La3SAvmSEg6N9ACwrqmUgGeFn7VsnTQDksdrzgajC7mV9+XwcFlt+rKHX5sgHcdM0+eGxl8bWGc0F+m8cfIJyu4f+5MlutF6rgz+oXs6KknoOjPTyWO8euhNhSmxuvFYH68vmkyGbW7fSpMTuIpYYO/fFRbUsLa7DPtqHwdjsqzXOYm4/+nI+xFsxIFfzPHcFVqs1HwIbT1n39cTEUXaLlWuq/MDJtVhP1Oo0bKwoqZ9yHGaJzc3K4noOj/axvmzqcAkKjecDBUwRERGR96krN07wRGvc+w2Yx6KD/LRjKwbwpcb1E2a+PCGdzdAeG6bOVYzb6uDwaD/HooNcWtqUn11zY8XYOLm/mLsBGJsAxW6xYjEMPFY7Da4yFvtq6IxPnL200uHLt5ytKJrDoUgfR6OD+eA1NjHOkvyYu/HGz5KaxSRupvl8w1p+3LY5v8+6snlEM0lshgWbYeXq8oU8PfD2hLB64iunxcYibzU31a6kIzZMsCd6ItPgtNjoiof43pHnGUyN0ugq5RO1F1Ht9GEYBh9OLaU/GaEjOsSW4aPEsykiue6rJ57r1GUrxq8fOX4W1oFEhIXeaj5Zu4r7u3aRNDMYGNS7Shg1rCTGtRhmMXlp6DAdseH88ywvmsNVlX4e7d2TD5dWDD5cvYwSu4ul41qfv9p8zaTr+unai3mo+y2CmRiduRlrT14rk4yZZSA5cYzmaCaJ1+ZkNJ3gt91v5FtSU2aa/zD/uvx+X2u+loyZxW5YeapvP/3JCA/2vMnbkR4+17A2P663xOaeEGAzmJAbx1hqd1PvKs2H0SsqFtIRG6bU7iaeTVPrnLz8R7O3iptqVxJKxdhU3nLaCX5gbAzmH89Zfdrtcv5QwBQRERF5nz5SvYxnBw7Q6C6bsiXxbHXEhvOzuXbEhqcMmL/q2smBSC+VDi9/0biBX3S8TgaTjtgwX5q7ftL+O4Lt/K7nLSodPj5bv4bH+/YBMJpJ8NdNm0hk07wVOk5fMkJ7bJin+vbzqbqLeLr/bfZHeiYca21pE0ejg/kQaMPIL2vhtNggm86HzBpnMSPpRL61si63zMnvenYDcE2FnwW+SrIDJwLfxJbLRDZNqc2Ny2qn2O4mlk2RyKbxAh6rk12hjpPXLR7k1mMvUuXw0eAq5SM1y2jxVuG1Onhu8GB+P5thocLuJW1m+WTtKnaPdLIj2E6WqdestGLwbH+AvmSEncH2/BhIE5O+RITLiuawM9wx4TFtsYnLnVTYx9baDKfGwqUdK1nD5Jn+t/mLpg2TntM0TYaTUQ6M9pLIptlU0UKzryq/lAuAw7ASzV+1yVwWO+UOL88NHMyHS7th5fqqJQDsCnbw0uAhlhXXcUPVEkbTCYpsLt7Ovd5vR3q47ehL2A0rfzxnNbcfe3nK6+OzOuhPjvBA1xt8rGY5Ld4qKh0+lhTVEk7FsRrGabuOn8n4R9M0aYsN0ZMIc3FJIwacdhZZKTy9MiIiIiLvU62rmM83TN8yB6tLGmmLDWFgsLq0ccp9+nJjAYeSUbKYWA0LGTODY4p1MEfScfaPdGMytnxEJJ2g1O4mmIpR5yrBMAyurFjIsqI6ftD64tjxsJDMpjHNiYGi1lHEquIGtgfb8velMfPBMJJN4rbYSWWzVDq8fKhqCYZhcHn5Ao6MDuTXVDyhxOGmzlXCpvJmjseD3FC5hKF0lN927cpHmVeGj1Bsd5MyMxNaGMkt7ZE5JfT0JyP0JyN4rA7sFuuEWmFsnOWJbp53d2zB763h8rL5bB5unbLDbwaTjJlmT7iTLOaEWXOTZppiu5vrKxdP6GZ8qqVFNdzVvoW0maXK4WOJr5aXhw6TYWzsY/0pXUp/17ObHePC5OHR/vzssACLPFUcjJ7oYmrm/1tic2MzLKwtbeKikgZ8NifH4yfHmH6+fi3NvrFxuM8PBAimY7w8eJgryxfyZN9+3sxNyuS1Oii3e+nIPXZXqCPfelnp8DHXXUaLp4oyh4eMmeXu9i0AvDJ4hH0j3Sz21WDDymN9e7Bi4StNl1PFyQ9fQqkYgUgvC33VU67JCmPLsNzd/iqhVIy0aWJisnX4GAPJCCuK5vDpORfz686dtMeGubF2xaQxyFIYCpgiIiIi5xmvzfmugfWTdRfx2lAry4rnUGJ385Wmy9k8dASXxc5oOoHX5qR1dICqqiK+c+Q5PlS1hKHUKHXOEuZ6yvmP865gIDmaDzbxTAqXxc5Ntas4Fh1ge6iN/ZFu/nLuBvqTkXyLXJO7nB8cfQGHxcYSX22+tWt8MLu8fAFem5PFvpr8uMKPVC8DxkKD3WLlC/WX8ljfXp7o3UuZ3c0NVUt4PXiMw9F+NpY3U+MsmjChzuN9e/liw6UTAmUsk6LZXc7RcWs3jt/elxjhUHTq2WTHC4z2Ehg9/Xa3xU4im+Li4kb2RrrJZDP57sIAb0e6Weyrzd+2wKQ1P/+tcycOw0razFJsc7G+fD7H40GshpGflTWVHQuu8UyKw6fU3RYbotLho8zuYU3J3LExulOc24kQ6rM5aIsNUecs4ZqKRTzd/zYt3irmjmsNX1pUy5bhoyzwVOKwWCcs/VFqd3ND1WLu69yO1TBYUTyHLCatowNcV+XPTxZlmia7Qh1UOrwMJEcJpWOE0jGORgexMPZ9kSbLr7p2ctHcRp7o3Uudq4RHe/aQNDOUDXn4L83XTnndj0UHGUhOfGGGU2O39450cUWiJd+6/trQUQXM84QCpoiIiMj7lDGztI4OUOMsptj+7pPyTIf5ngrmeyryt9NmNr+kSMrM8Km6i+iID3MZ80mbWbKY/OcFJ8f2ua0OGt1jY0X7EyP8uG0ziexYR1drrsvlaCbJQHKUpb7afMDcFxlrCU1k07wd6WGhp4rD0YH8JC4ApXYPF5U0kDVNXh44xN5IN82eSmyGlRcHD+K2OriqYiHDuZlD3wp1MpJO8FjvXgCS2cyk2VrtWEhls9gtNjK5cBfPpjgaG8wv5wHkw2Wl3XvaCYjezakBMZZNUe8swWqx8Ln6NfwoN57UwlhX2Z7E2Oyym8pb8FoduC12Hup9a8Ixg+kYf96wjmA6ht9bjd2w8oWGS3m8dy+P9e7lD2qW85uuXfy3mhv4cdtm1pY0sS14jFBusieAgWQEu2HhQKQnvz7o6ewMtnM0NoTbYudrzdfydwuu5oWBg3zj4BO0eKv4YsNlfLRmOVdVLiKdzdKfjPDh6qUcjQ7QmxihMx7CZrHyP1puwDAMrIaF66sWQxXsDnfym65dbCibT0csyON9e6es4cQ19Fjs+dc6EOll6/Cx/GuTzKbJmFke7H6TvsQIN9WupMFdBoxN2NPgKiWcjrOmZC5vR3pxWqwMpaKsLmmkyuGj0V1GZyzIRSX1U5UgBaCAKSIiIvI+Pdz9Fm+Ej+OzOvnqgmvecbKS8UzTzHdvfb/cVnu+9c5rdRKI9DKam3V0WVEdq0smd7VNm1me6ttPVyw4YYbWDCbVDh/VzmJavFU8NHJyNtbIKTOoxrIpPlV3ES8MBPBY7awrW8BFJQ3sDXdxf/eu/GL2XfGTE9NEM0mcFhtVDh+RdIIVxXPyY05hbEShBWNCQEyR5d+6djDHWULXKZPcbCibz5vh48Qz6XzLYjAVYyA1uVmyzOYmkkmQMk9tYwSnYeOG6sU82bef7CnbOxMhOhMhuuOhfA3ZU9optwfb+JM5q2nxVvHK0OEJz+8wrDzWu4fBVBSHYSVlZriouIFdubGb5Q4vfbluu/3JCM8MHMBtsXMqq2GZMlyeOnb1aO4DgVg2RTKbxm2158dvHh7tJ5yKUerwEM+k+eGxl0hk03y8ZgXXVPp5sPtN5rhKqHUWcyDSy0g6wdqyJmyGhXgmxW+73iCLSU88zKopgt34VuQlvlo+VrM8v5bo9VVLeGHwIL2JEUpsbj7XsIa26FD+w5FXho7wmfo1wNiHIH89bxMAj/Tspjv3un+h4VL8vrFlcv6qaSMZMzstP0MyPRQwRURE5IIWCoW4447v8bnPfZni4pJJ237+87v48z//yqRt4w3mgsRoJkE8mzqjgBlJJ7izbTMj6TifrV/LQl/1lPu1jg7wVriTi0oaJrRYnqrS4eOv5m1iKNft9Xutz5PF5M9Yn3/Dfqq94S62Dh8FxiahGas/zSJvNV9svCy/35UVLXTGgoTTcVLjxh/WOYq5tsrPcDLKUCrKUGrsGgBsGW7Nh8vxXBYbLd5qVhbXc0np3Anb/v/27jxOjrO+9/2neu+enn2f0SwaLSXLsiTLsryvGAyOAUPYSQwkBJKQQM5Nbk5uzk1y7znJK8tJwjkBEkJyCQlmDwFi8MJisGXkXV4kSyrto9n3rfet7h/dXeqeGcm23PZ4xt/366WX3dXd1U919UzNt5/n+T0f7rqSRDZNIps+Z+9jZ6COG5o2sZcTzrZ0LsdcOsH6YCNpO0skk2Q6E1v2+TMl8xgXz99M2hn2TZ9ashZmqROxSUKu5asEJ3JpvjL0BFfX99Hmr8FluJzQmLazTuBM2vkwX5zvCPn3/xfbLy3bX+kw3ABu3r3uMr5aWDeyVLU7QHugjsFz9Gp+9tSDXFPfRzx7dn+fPf0gfaEmGnwhp/d3MDHLO9t3Uu8N0R+b5lh0nK8PPwXke0/f2nYJHsNFjSfAbCZO0O0BO78u52jJkjNZbFwYNPvD3NG2nSqPnzcUlibZVtNBsz/M508/7Ayl3VmzjjpPkLlMnM1VZ38O5tNxTsen2VzVQrMvDOQLNC2es6lw+dqigCkiIiKva/ff/30sy+K++37Ae97zgSX3nTx5fNn7Sr2tdTt7p4/TF2qitrBEyAs5E59mujBs8ODCyDkD5teGniSeS/PM/CCfXH8jjb6qJY+JZJI8Oz/I+lAj22o6iGSS56grWq7ZF3ZC1hX1vdxTqCxbXIMznctiGPn1D3+1+yr+ZeBRJlMRbPJz9D7RdwMAR3Jnq8zWePLHn8ktDWktvjDv69xNyzkq7W6sauahqeM8OzdIm78Gr+F2iswUHZgf4uDCMKVR++GZfNg8EZ9css/FPXtF72rfiRWZ4MDCUNn2xetTLieWO/c6mD6Xm4emjwP5XthiG25r2crJ2DRDiVmimSTZRRVr67xB+s6zfuPFtZ1srmqhyu1nvmTYbMDlpckf5vbWbfzH8NMkc1nmsomy58ZzaX48ZZX1iCZyGQ5FRjEAs6qFaDbFjY2biGfT/NPph0mTo6UQ6iA/tPXYiXGi2RS/2LaTe8afpz8+Q388f35qPIGydjX7w/z2+huXPZZIJuV8UTGSmOeahvyc468NPckjM6fYUNVMjSfA5/sfZj6TwGe4+Z2+m+kI1FHl8dFU0q4XUpwjmrFzXF7Xg8t4MT8Z8nIo7ouIiKKbD20AACAASURBVMjr1tzcHI8//gi2bfP44/uYn597Ufct1hao4d0du5b0yJ1PX6iJnmADdd4gu8/zvGCh8ErWznFfIQAu9vWhp7h3/BD/fGYfyVyG6VR0SWXV5XQG6/hk3018ovd6rqxfz9ZwG17D7SxD8mdH7+NPj97Lp088wI8nLCYK4XJbuJ1P9F7v7GdLdRsf7b6a6xo28NDUMfZNn2RzITAHXF6q3D68hhu34VqyVmOp2XSMH04cZiy1wGhynnWB2iVBOWFnynr2SnX565Zsa/YuH0Z+NH6EAwtDbK5qYVfNOmd76VDdS6o7uLymm0DJkhjLDVsturq+jw927nHafHatTbi4upP3dV5G1s6RxSbo8nJtfR/13hA+w81jM6fPud+bGzdzKjbJnx67j0truvAablwYBF1ewm4/OTvHd0afZTwdxTAMPt59Dbtqu7it5eKyNVnf2baTq+v7aPGFnfDrNlxY0XEGE7P8c/8+9s+ecZaYiWSSeAtxocFXxXQ6RjKX4fnIyJIgPp9JYFa18Mvr9nBV/Xre23HZOY+nL9TIdQ0b2Rpu4+amzQAciowylY4ympzn0MIIOWwihSHeKTvLPePP0xNqeEnhEuC5hWG+M/osd48d4PHZc7/HUjnqwRQREZHXrfvv/z65Qk9bLpcr66k8330Aw8NDxGJRPvWpj7/sdvw133pRj3sceJz/77yP+X2+V3b7A//w/Zfcnq8s2scMcLrk9iOFf+dytOT/S0v1TC+674X88Dz3HQbwl4e9N7dsZT6bYDgxRzKXIWPnODA3vOzzi718s6kYWxva2F8yXLXIiozzK11XYkXHSZAfRprJZflI11U8NnOKJxc9fjoVpdFXhRsXmZL5mRtCzTw6e4qdNV0kCsNUPYabNzRv4eDCCCk7y/OREZ6c7ectzduWtOOBkjU847kUf2LexudP72UwMcvC6Agk0/C/8r2mC5z78/R5zv9ZWAC+ueh2UWnJoofP8fwnC//g/Oeu1GPLbPsG3+cbi7a90Gfuxfga3+drF/jcUGjpyAFZngKmiIiIvCSNjS+tB+G1bP/+J8hm80P1stks+/c/zic+8fEXvA9AI+1WXpXHxz9ed+6hyy/FWzYvDXZFl/Ys7WG+snc9/+P7Pwfgjxa14XPt7zvnvv5+3fvLbv9l6zuWPObFHNMfNd8GwK/920+JJpfv0ZXKMQxobl5+aDec/77XGwVMEREReUmmpiLkche2/MNrza5dl/Pooz8nm83idrvZtWsPExMLL3gfQHt7vnrmb//27wIwnYrx9eEncePiA+t2U+15dZYrKZXJZfnO6HMciYySzGW4pWkL775oFxMTC5yITnB4YZTL6rqZTEX51vB+GnwhPt5zLR7DzUQqQqu/GrfhIpZN8Q+n9zKbjnFzo8lsJk5fqJEdhaVH/vTYvaRyWeq95WsY5mybuXScGm/AKbzy7ZFneHpu4JxtLi4J0u6vYSQ5T1egnktq2nlufpgt4TYurekkZ9v8zakHyp637mcnGIrM8o/P7iWeTdGfmCZWUsQm6PLy4a4ruWvwcRYKhYeKfqHlYu4bP8S6YD1n4tNlg4kNjLIlV5bz6z3X8ej0SY7OjQHwl0/9EBub6VS0bFkRgM1VzRyNnnstzhsbN5HMZegK1HFgYYTfufRmPr73q2wOtXAiPknQ5eWWZpPt1Z38+fEfkrazGMA72nbwvdHnSNT6cdf6Cb39aryFdTZtbHyGm1RJQSaA3mADpwvVZfPv/dlKvZ7C+XpryzYuq+/hwPwQP5mwlq3Ee/a9ys9v9bs8/OGmW51zfs/YQfYVikd9sPNyLqrOrxHa3Fxd9jO02EB8hi+eeQSw+Uj3VXQHG875WID5dIIqj+8VL/Lzmc/8DcA52/5Cx7UauVzGBX+ZqIApIiIir1u33no7jz/+CNlsFpfLxZvf/Asv6r7lPDM/6CzFcWB+mKsb+i64XVk7x+GFURp9VbQHzl29drEjkTGeLQz1vLRmHTc2bQLyy5HcNfg4aTvH8dgEbf4acthMpqJ8Z+RZZtMxhpPzbA238YF1lxNy+/jU+htJ5jJUefxlr2EAIbePVC5Olbu8mqqNzXByjrSddQr53Np0EZtCzcSyKZ6YO8NYSbVRn8vDh9ZdgdflptVfzfHIBOPJBe4ZPwTk10j8yeQRAi4vnkXDTos2hVto89fwv0/9tGx7PJfmm8P7nXBZ7wkxk4nRE2zgqoY+rqhfj8swuGvwcY5ExsqOoVj4yG94nIqvRW5cBAwPz5YUB0pk09zQtImjkXGemjtTFu7McBtz6QRjqYWSfZytXmsD1zVspMYboM1fA4DXcHM0Ns7O6k4ORUf57uhzTCQjTmEcG/jx5JEl82ybfWFnCZfF4dKNQZ03CPH8OWz0VhEpVA0GnMq5ZxKzXEYPfaEmvpnev+T9LlV8dQ8u4tk0z80NUu0NUO/NDyd1FV+zxPPzw/THZ7go3Ep3qKEsHHYF6/n9jbdgQ9nc0aLx5AJhj5+Q28ePJ47ws6ljdPhr+VjvtU5AlpWngCkiIiKvW7W1tezZcxX79u1lz56ry5YiOd99y9lc1czPp0/gwmDDeaqBvhj3jx9m38xJ3IaLT62/kYZC5dhjkXG+ObyfRl8VH+m6aslyKHbJsiBHo+N8of9h/lvzW/IFYdw+0pkEVW4/V9Sv53h0kkQuzaHI2QqwpesrelxuPC63c3smHcNruAl7/Hys+xpOxaaWVL69b/wQj8ycwoPBHe07SOay3D12gGq3n7e2XcI72nZw1+DjRLJJ/Iab3mAD7YEafC4PsWyKfx95uqyATzqXj1DxXJotVa0ciY6VvV40m+Qbw0+xzl+3bLXYRl8VU+koLgze07mLrmC9c1+xmuh7Oy7jy4OPczJ2tgJtFpuPdF3JfCbBt0eeKdtnlhyf63+w7LWGk3N8a3g/btug2u13Qm2V28fB+WHGUwtlAbnWG+TdHbu4f/wQD04dY//cGf7L+pv50uBj/M+udzpB8tmFIed1npw7Q9Dldd6f+Ux5r2yxHYs1eELsquvCY7h4en6QS6o72F3Xw78MnJ3RWPzSIJHL0Bmo5dMnHsCFgctwlRU9KlXsDW3313JxdRt/cfzsrMsPd13Jr3RdRZXHT2vhi4aB+AzNVPO1wrIn+2ZOsiXcSo0nwOnYFG9u2crmcCvBZYIlwCPTJ/nB+POE3F5+q/dGrMKXAsPJOSKZBHWFpUuenO3n7rGDtPmrafaG2V67zik4Ja8OBUwRERF5Xbv11tuZmhpftofy1ltvZ3R0ZNn7ktkMaTtLzrZxGQbrgvX8wcY3YUBZMLsQxbUks3aOREng2j83QDyXZjAxy5HoKDtKqp8CBNzekn2kiMbzy2m4DIOP9VzL6dgUZriFoNvH29su4RvD+3FhcE1DH0OJOa6qX1+2v1g2xZfOPMp0OkYil8aDi4/3XEt7sJYdteWvDWeXN8lg8+8jz9BY6MlayCb56tCT/HrPdfzBpjc5vYZWdJynZwfZXd9NPJMuC5cGBm9t28be6ZNUewK8o20H/3LmEc4sWrYEYDC5dP3HWk+AO7uu4FRskkQ2w4NTx2jyhbmlyeR4dIK2QC113iBel5sWX7gsYEK++m1HuJbeYCPRTJJYLkU0m38/08uEroydIwMks1l8uEmRJZ3Lcio+VXhPck6PaMjt4/7xw85w1WgmRdLOlC3zsTgwF9eqLPIbbrbXdPIg+5a0pajBG+LdHbuYT8f5j9FnSeYyjCUXuL1lG82+MBOpCHvqeripaTNVbj9ZO8fe6ePOuq5mVStWdIyg4WVH7TrSdobTsSkafWHe37mbnG3jd3v4Qn952R8XBn1VTcyn4wwn5ugI1PLIzCl2dZfPZT0ZmySVy4fpn00doyNQxz3jzxNy+3hLy9ay3s0zheVQYtk0k6kIb2jewo8mDrOxqtkJlwBPzQ2QtXMMJeYYSszxfGSUP9r8Fi1P8ipSwBQREZHXtdraWv74j/942TlUtbW1fPKTv7dk+3hyodBbZPPjySO8qfkiALwvM1gCnIlNc1ltN1XufO9PR+Ds0huX1nZhRcbI2jm+Nfw0yWyGPfW9zv2bwi3c0badp2bPlPVGQn6dxZ0lofCSmk4avFV4CsNTl3MiOlnWK5YhxxfO/Jxf7b6KdYXewKnCfE634eLKul5SuSxHo+NAft3L6XTUCUoD8WnWBeuIl8yVnE5H+LNj9xFwebm1+SLGkgs0+qryy7iEGtgczs/fOx2bcsLl4qjgMVzOEM+iuUyChXSCdYH6kh7KMU5EJxhJzmNg8Lt9N1PrDfLYouUr2nw1dAbz7/udXXvwuTwksml+MmlxaGGEWDa1bMgshsIU+dBUOkzVRb73E2AkOe/0DBrke1ofnDpW9tibG7fw46kjS16jKGlneWLuTNm2arefrG0763RG0gn+fWg/U5mY85ieYAP7Zk7S7q/hqrr17Khd5/SEuww3F4XbeHTmNG7DYCqdX1LG7/Fwe9s2UrkM8WyavVPHeXTmFNc1bgQom/va7K2ir6qJ6VSMvzv1UzJ2jq3hNrbX5Ocsl/bk3tCwiQMLw4wm5zHDreydOs5z80OFdtZzSeE5ADc3bSaRS9PsC9MbasRlGGwJty55X/bU9TCRXMDAIJ5LU+sNKFy+yhQwRURERF6ifK9iPjbFMqmK7ffpuQG+PfIMBvCr3VfTG2osu39zuIU7u67gn8/ke62ORSfKAibA7roe7i3MYXwhxRBVaioV5T9Hn6PaE+CWJpOAy+PM0wNI21memx9iPBWhJ9jAI9MnGSyE2f74NNc1bKA72EA0m2QmHXPCZZXLx7aaDgBuaNzI14eeot4bIp7NkMplSeWyVLn9vKtjY8n7MciPJg5T5wmW9Vw6+3T7uSjcxptbtnLX4BOMp8q/JPjSwGOMpc7O+XRhMFFYh9PGpj8+ww5fiN11PTw524/HcJO2s07g+sHYQR6ZOcXWcBs7a9cRdHt5c8tWwm4/3x19lnihINDF4TbWVzUxHJ9j//zSgkZt/hre3rad/XMDPDHbT70nSLXHz6lCgaGJVMRpF8DO2i5ubN7EE3P9zC1ab/J8FrJJNlY1c7xQVChFrixcmlUt7K7r4StDTwD5NSIfmz3Nb/fd6DymPVDL/7XxTZyOT/HlgceBfG99f2yaLw08Ss62naDc5q9hU7iFDn+Ns75psTDPdDrqhP7DkVE+sO5yALZVd/DMwiBew82uui6ubdxAIpumyuN3ikF5DBexTIq/PP5DWv01fLDzcpr91Xyo68oXfA8ure3i0tr8cjCnYlN0lwyLlleHAqaIiIjIS9QdzC/4ns5leVPLRRe8n0gmyWhynt5QIx7DxXQqHwZs8nMee2lc8pzuYAO7arsYS85zQ+PGJfcDtPiqGVhmKOlitm2TyKXL5r3dM3aQE4XhohdVt7GtuoMnCz1lzb4wOdtmIDHLvplThNw+wq7yOXOHFkb5xPrriWZTfGckv3qiC4NPrL/eqay7OdzKH5u38Z+jz/H4bD8+w02rvwYz3MJDU8f58cQRtla3YS2MkSZXNnS0VCKXdoLLx3qu4XMnH2QmezaQlYZLgBw2ucI8Va/hpqUwt/Xtbdv5hZaL+dNj9wH5Ico523Z60w5FRsvmqobcXuo9oUK1WYPnI6OciE3yW7034DZcPDnXjw1cXb+e9kAtc+k4/3rmUS6t7QJgMh11hqEuJ2fbTCej3NG+nX1TJ0jkMsym40uq4S7HY7gwq1qwCr3IRdVuP+/r3M10OlZWPXYstcATM/0E3B6nxzCHzZcHHidlZwm4vNzZdQVHImPO3FDI97wmcmlSuQxvab2YvqpmXBhOL3lfqIl6b5CZdBwb+Pn0Ce5o3slgMv+53FPX43weioWkLq3tot1fi8/l4d7xgyxkkixkJhhMzLI+tPRn4XwCbq9TvVZeXQqYIiIiIheg+MfxctUuX4x0Lsvfn36I+UyC7TWdvKdjF9c09BHLpvC7PM6QwplUjJl0jPWhRgzDwGUYvLN953n3/d6OXfztyQecELHYkYVRYrk0B+aHORYd58r69dzeml8Hsr9kGYtWXzUbW5tp9odp9lXjMgyORsY4MD8M5Kun1rjLl2Np81fz2VMPMp2OUe324zPc1HgD7J0+gc/l4YaGjTwwdZTZdIwT0XyQTdlZPtpzdT6czfaTw+bgwggNnhDTJT1wi7k5O0cv4PZyaX0XD0weLdxnLKmyWiptZ/mP0Wf5xPobgPy82Q+uu5zn5oY4FZvifxy9h55gA2fiM2TtXNm+Ytk08Wxx6HB+eyKXYSYTo9Vf7TxyMD6L23Dz8PRxbOCR2VPOPkpbtjnUxEhywQmQz8wP8sz8IFfW95IuBPrlaqS2esOMunxlwS+aSZLKZdkQamIyFaHWE6DOG+Kqhj68Ljduw6AjUOv0OgN8b+w5AFyGi4ur2zEwCLi9pDJZmv1huoL1hNw+jkXG8brcjCYXSObS3D16kLuNAySzGd6/7nKqPX6emO1nR00nAbeXdn8tM+l84J9MRcv+u1xBIsgXQHpmboAqdwAXRn6YuP/FV1KWlaeAKSIiIrICUrmMUxRnMpkfXhhwe3lr2yXOY2bTcT5z+mekcllubNzELc1bXtS+63whPtx15bK9mMejE9xVGCJZ9PzCiBMw2wO1nIpN0ewL0+TPr4MXcHk5FZti3/SJsqCVw2Z7TSejk2d7CqPZFNPpfCgsBqbJVJTJVD5cHV4YYdwZTllPJJNkZ20XbsOFbdvUeoPMpuN0BmqJZlK0+2vYXNXKg9Nn5yh6CnErZWd4craf9aEmErk0Ne6gEyyL7az3hphJLx9SR5LzPD8/QmewljpviE1VLWRzOZ4uLPVyfFHhn6JGbxWt/mqeLNnmx02Hv47n5oadbeOphWWLEi02mY4t2zv56MxpAq78n+vFGZ8eXHQE6phORxlLR4gX5lsWv+Yozr0tLosyl0nwke6rnfnBP508WhYuS9m2zcnoJN8a3k+dJ8hNTZu5uLo9f8y+Kn5z/fUAfPrEAyRzaQwDooX5l4fmh3lmfogcNsei47yxeYvT6xt2+7m5aTMAV9T1ciY+Tb0nxD/1/5ybmzazoarZacNXB59wCiP1BBv4tZ5rXvD9WyySSZKxc0uWSJFXhwKmiIiIyAqo8vh5Z/tOjkbGubZxw7KPWcgknCqbxZ6fF6uvqol1hTmW948f4qr6PvZOHyeTO9vb1RtsZD4Td4q1APxCyzaenO3HjcEPxg6yoaqJ74zmh7p6DBfY5b2Cg4kZ7mjdzj0Tz5PKZRlLLi2WVFoRdbxkrmFfqIlELsO+6RMcWhjhTU1bOBXLh4updIxYNgUZeEf7Tp6eH3CGyq4PNVAcCHt4YZS7xw6eczmNc4VLALfh4mvD+ZjowUWjr4oPd11JT7CB0eS8U7nV7/KAbZMs9BQGDA/eResuJsnyv0/9lLe1XuIMkS19p1wYrA82cjI+uaRfdXpRG6vcPqdibbu/hmQu6/T4uQ0Xb23dxpeHHj/ncZUdIy4yuSypXL56bXewgWfnhwi6vFR7AoynFgi5fLyxZQvbajr4lzOPsJBNspBNssvuXraH/iPdV2JFxukNNfCjiSPMZxJEMymnx3wiFaHOE3LC/Z76XqfH/61tlzCfjvNXJ34M5Je2KfYiQ75ycVF/fJqD88PO3N2inG3zk0mLSCbJm5q3lK3VOpKY4wv9Pydr5/jAusuXLQQkrywFTBEREZEVUixIci5dwXqnsuobmswX3F/WzpUt7XDv+CE+2noNe6dPcCw6wWgy39N4Q8NGgm4fV9b3OkuqnI5N8dTsGQ5HxsqWRimt+Jqxc2wKtVDvDXI4OkYml6Xa42cgMUvI5SWVy5YtNVJU5w0xW1LwB/LzRB+ePuEUghlNzvPM/BDeQqGdYtBo8VUzFJ8pm4cZ8vicgOl1uc8ZLku5CgV5SttQ+rwMufx8xLl+7mjbwd+d+ikAXYF6fqX7Kr545hGnR3goNcdQaukQz/lMgiORMf5401uYyyT5X6cecO7LYXMivnyP6GLt/hqn93QsFeH/3HALnz75APOZBEk7w+f6H6LOc7Z3zu/yLtlHMdRnyfFvA48xkJxla7iNG5s288n1N1Ll9jnFfmK5FD3BBlK5TD5MFxTPwVhygaORMS6ubudUbIp4Nu18dtaHGpcUlbqyrhe/28Nvr7+BhUySxsJc16KQ20eLL8x4KrKkkNV7Oy/jm0P7GS3Mnz0Vm1oSMA8vjDhVd4cTc9zUtImthZ7WocScM2T4TGy6IgEzmU2TtW1s28ZQRdoXpIApIiIiUkFZO8dTs2eo9gReVpGRZDbDU3Nn6AzUlfUwLpazbZ6Y7WckMcv+uUFa/NX8Wvc1+N0ektmz1V/tQs+jG4OdtV00F4a/Fn1j+CkWMkuHaXYG6thQ1cS3R54B4HhsvCykPTbbv+Q5m0JNHI+d7anrCdZT6wlwOj5Ni6+ajkAtu2q7+OLAI85zwm4fzy3ki+rUegLMFQKlz+XmZyVLeHgNN82+aqYKtw8ujNAXagQbTsanKOUz3M5SIW7DVTZX8VyqXH6enO132h7Lpvju6LNsDjUTz6Xw4GJ0UbXaak+AWCZJFpsn586QyGW4uq4XoxBqz8eNwbs6dvGd4Wec5U2urt/AQHyGZCFoJ3MZLq/t5idTR53nzWcS+Aw3Mc6eWwAvbvqqmrCiY862gcI6ocViRZfXdtMbaiSezRBye9lU1YIbF3994ifEsykavCHCHj+76rrI2jn+4fRDZOwc908cdvaZtrNsq+7g/vGz2wDWBxu5qqEv//67PDT6yuPGlwYepTNQx6/3XsdsOk7LoiVynpztZzQ1T40nQDqX5Wh0jMH4OnwuDz8YO0izv5qdNeucodAjyTm+NvQkv7vhFuq8QS6p6eBEdIJkLsOVi9Z1vRCD8Vmn9/jn0yfPOdpAzlLAFBEREamgB6eOOYVmfrX7KtaHmpz7BuIzHFoYYWdt1znXniz6wfhB9s8N4MLgU303LekFKnpitp+7xw44t0eT8xyLjrOtpoPb2/LzKjsCtXywYzfDyXnqvaEl4RKgzhNiIZOkxu1nZ10XLd4wx6ITHI6M0hWoY2fNOk7GJp15o4sVe8zqPEFua72Ez51+kIydo8Nfy0B8hql0jCvqermt9WJnvmWxtxIgUjI0sjfQwLOR/FzGwcQs9d4QkC869LHuazBcBqUrRNqFxxVdVttN0O1lQ6iRfx3MDyVt8IaceYlQHj5/b8MtjCfm+cbIU9w9foCewNmlLaZKKr7e0rSF6xs38rWhJzgdmyZreAi4vfxW7/V8b/Q5Z87hwYVhTsUmnXC5q6aL4eQcU6nIkvUzN4dbuaSmg3ZfDZ/pfxCAJ+f6afBVMZKcp9VXTdjj5/mSKrYuDG5q2sxDU8eBfJGk25u3MpCY4abGzc6XAefyzPwQ++cGnHmqU6koBxYGnR7LSCaJgUE6lwM3S9YYhXzQH0nOOcNi671B3tR8EVvC5/9S5Xh0guPRCS6ubqcjsLR4zzOFyr3FHut4Ls1js/1kcllOxCY5EZtka7iN31p/A98vVDz2uTz4Cj3xfpeH93Zedt42vBTRkrmxkRdRxVdYtiCViIiIiFygXElvUs4u3/6lgUfZO32Crw4+scwzl9+PvWRgZ7nSReQDLi8ew8XXh59i3/RJZ/7cb/ZeT60vxEXVbbQFapbdz9UNfRjkg96WcCtWdJxnF4Y4GZvkwenjXFbXze9vfCNvbL7IGYbrLflTsjvYwPs6LuNTfTcxkVpwQkmrv5qpwhzD0eS881zDMJw1Cn2u8j6PU4npsttN3ioCLi9jqQV+On3MeXy1J8D6UCN1nqATVG9u3Mw72nfw5pattPpruLpuPc2+MKlcBp/hdvZZXPai0RvChcEPJ46QLMxPHUzM0hWo45r6vrJ2JHMZhuOzXN+4CRtI2hnmMnH+5uRPypYxAZw5lADV7gBhj39JuATIFOd5ejxOT2Qil3HWxZzLJJhNx5zhzQDvaNvOTU2beUvL1kIlXZv7Jw7T6K3CLvTqFbk5+/konq20nS0r1jSYmOXBqRNsqWqlxhMgZWeZSkf59vB+YtkUjZ5QWZsNoDfUwEXhNnbUdLIh1MR72y/jSGSMH08cIWvnOLwwyn+37uEfTu115rIWhd3+cxbguaFxI9UeP1fW9VLnCeI2XGwNt9ETyq+vGXL7aPKFafZX88F1l/Ou9kv5eM+1F1zN+YWY4VYavFXUeoLc2LjpFXmNtUY9mCIiIiIVdGPjJkJuH9UePxuqzvZeGuR7V5K5DH73C/8JdnvrNlr91bT6a2jyLe1xLNpd243HcOE2XNR5g3yh/+dAfqmLtJ3lXc27nMdmclm+NPAYg4kZ3t62vWz+52QqUihMY/Pg5LGyuZw+w+0EgqdmzzhzF3PYeAwXzb4wd7Rtp7nQK1taWOfp+UGafWH8Lg+3NJfPI31/526syBgHF0Y4XBLQ5jMJugJ1TkXUBl+IY7EJp51FiWyGS2u7WBeo41h0glg2xVOz/WypbiPo9vLZUw8uCTcu8oVvRgrFiKbSMf6xf68zJBcgS35pkMlUlPd17OLe8UOE3D76o5PsnT6+5BykcucfevvgzLGy2x4MMoWAd6zQK1ztCfDBwpqe72zfyanYJA9NHSeaSZUNQ/W7POyo7eJkdJLnF0bwuNxkczlsbB6aPk4sm6LNX8Nocp43NJn4XR7uGX8eOFuJdjk58muibqvuYN/MSQD6EzP81fEfYQOdgVqGEvngagPjyQjrgvW8u2MXP508yl1DTzg9fEej48SyKVJ2lqHkLP3RKZ6eH+S3mm/k9tZtbK/pPGcg9Lk8NPnCbKhq5rbWbWTtnFMBd2NVMyG3z3muz+Uh7PG/4Pv/ctUWPvsB99K5rrKUAqaIiIhIBXlcbq5u6Fuy3TAMPtp9DSdiEy+q8EjA5MNCCAAAFwBJREFU7T3v3MvS/RaDYs622VPXQ398muHEHMOJOd615WzAnEhFOF2Yp7h/boBLa7uIZ9PMpmNcUd/Lg1PHyNg5rOg4zd4qdtd20+qvZmt1u/NHdpMvzFQ6StDlIZ7LgG0Tz6Zp9lczGJ/hkZlTHFwYocYTcIY5BtxePt5zLclshvvGDxHPptld201XqJ4dteuWLJvhM9x8tOcaHpg8SjqXD5EBl4+j0TF2VHc6ATdtZ7h37Hk+tO4KotkUNjZz2SSfP72XzkDdknAJ+ZCVI0c6E8dtuNhe3cGzhWGZi9nY3D12kGg2VRZAFysdbtviCzNRCOvnkll0r7fQs2oWPhd13iCX1nbx08mjxHIpDiwMO0OQt1W3c2BhmJ9NHmUiFckvF1LSS2kDv9F7HfFsmmg2xX1jz9Pqr162um9RvSeEYcDp+DSn49NsCjU7gb7Y0qlUjK3hNgwbgh4flxQK7yxkEvxk0irb30TJlwCQn/96YCE/5PmJ2TNcXtez/Pti5/jP0eewyQ/bvai6DVdJr/PiL1oenznNf44dwAB+rfsaugu9nLKyFDBFREREXiUNvhANvuX/uK4El2HwtrbtjCbm+dzpB5eEnBZ/NZurWjgTn2FPXS+JbJrPnvoZc5kE1zT0UesJOvMNJ9JRqtNB7mjfUbaPt7Vdwt1j0OavYTIZ4VBklN113cym4/zTmX1O+JvPJGj2VrEu2OAURtk7fZyHp08A8NTcGd7SspU9db3c2rKVk7FJxpILGMDuuh4S2TQ7ajr54pl97Js55RR1+fboM/RWna08Gs+l+fyZh8vamMNmIDHDpTXrnDUtl5O18zMI39q6jWPRCS6v7WEyFeHJuTN4XC5uaNzMV4deeDjzrtourmncQMjt429P/KTsfS+2+1z8hntJz9hfHf8Ru+u6neAJZ4PeU3MDPDU3UPLos4WE/IbbCZxhj5/vjT7rBMW3NG/FZbj48fhhkpT3+F1e181MJs70bD/13hD98bNDlBs8IZJ2hmg2xaHIKB/vuZau4Nk5qkG3jyZf1bLL6HQGatlV+CKh1Zfv3R5LzvO90ed4Z/vOJY/3GPk1PocSs2WvcS7F0G9DWZVhWVkKmCIiIiJrxKnYFFOpKDtrOvlw15VMLfqj3224uLPrCuf2RDLi/JF+ZGHMCZdF48kFplJR7hk7SL03xG2t29g7dZwjkTGORMa4c90e3rduN9OpmDP3rtREOsp7Oy9zChrVFNZCLLp3/BBWZJw2fzUTyXyvlw3smznJSHKOSCbpFP8phrScnSOSzm+r9QRZuihKnt/w8JaWrRxcGFlSPbba7cMwXMxnEjwzP8iz84O8p+My2oO1/NvQY9hAe6CWA/NDNHhDxDMpbmrewkImzt5CQC5y4eLWlq14XW5OxSbL5l6Wtruo3hNkJhN3biftLDnb5mhkjIDbSzPVzGcS/HTyGFfW9ZYVJnJhOEV1ikJuL7Fsyhl+fXBhBPfI07y7YxedgXoOR8aocvvYUbuOsMfPVQ3r+XPrPqJ2yfIz2Lyt9RIur+vmn/v3Ob2xkO8h31Hdyb6ZUzR4Q0t6ET2Gi3e1X8qXBh4rW94G4OqGDeyo6QRwhv9CvjLrnx+7nxpPgI90X1U2XPaj3VczmYosqS67nC3hVgbjM6wL1jvLlMjKU8AUERERWQPGkgt88cy+wvy4eW5r3caGqubzPqfZH+YNTSanY1NsqmrmvsIyFB7DRcbOkbGzPDh1DCs6DuQrntYVKrq6MKgprMX4vdFnORErX+PRbbiodvv57OmH2FHTybs7drGnvpej0TGORMbPtjsxz8nCcz24sI18z2I6lyVRMsR1S1ULAbePZ+cH+cKZvbSSX19zU30fsWzSqT5adF3jRg5HxpZdmuTGps3UeUPcNfh4Yd4pHJgfYnO4hZDbRzSbIpFNcyAx7DznZ1NHnSqrpToDtc4cwRczF7A0XBY9NnOKHxTmSV7e01t4/wxubNpEsz/MvePPk7ZzS8IlgM/w0BwMs6fJdPbx7PwQNzVt5samTZjhFmo8Aao8fiA/pDVr2E6XaF+okesbNmAYBq3+GjwuF6ns2eOYSkd5dOY0AFvC+bmtiz0xe6YsXNa4/WwKt3JxSUXZhkIVZI/hYrwQmqPZFCejk2XrXHpdbtqXqS67WDKb4V8LodZtuMqKXcnKUsAUERERWQOy9tm+stSLWO+x6Kamzc7/rwvWk7Nt3IaLp+cG2F7TyWQqwv65AQIuD82+MJvDLbQFaqj2+Gn15yvSVhd6Jv0uD29o2kzOhivre/mzY/cD+bUq3114jV9ad0V+fcPIGM/MD3F5XQ8HF4Z5em6Aqxr6MMMtHI9OsKu2m8lUhIemjnFRdRvXNGzgxxNHsMGpxuoyDG5rvRjIB9qn5gYwq1q5oWkj3cEGBuIzzhDVvlATyVyareF2riisj/iJ3hv4/tgBpgtzUP0uD7/Rex3DiTlm0jHuHT/kvDfJbHnvnAuDFl81HtfZYaxmuJU72rZzeGGMrJ3D7/ZwLDJOg6/KqQLrwqDFX81kMoJhGLypeQux7NJ+2IydI5nLsqe+l3g2zY8mj5Td7zXceF0ufB4fLsPFVQ19RLIpHpw6Rqu/mtpC+F8c1o5FJsqC+/WNm5xjcBsuPtp9DcejE2RyWX46dYy0nXWC7fHoOHDxkrZuqmrm6bkB/C4PNzRu4or6Xid0L3dcxfehyRd2qvm+VDlyzpcHi3tOZWUpYIqIiIhcgCuuuHqlm1CmI1DH+zouYyIV4aoLXGC+t+SP/eKyEH1VTfSGGgm5fYQLvWAbF/WMvr1tO2a4lfZAecXbm5s289js6SVFXbwuNxfXdHBxoedqc7iFd7TtwCj0QhXb0eALsTnc4jzvivpeRhJzeF0eZikfqvqO9p38Quu2siVPuoL1fLLvJjJ21gnDpdoCNXy055qybXXekNNL2xtqZCIZIZ5Nk8yleWDyKEGXlyZ/mNtaL+Y/PNaSfe6u62H3ouONZpLcP5EvbnRD4ybWLZpfmMplyGETdOV7By+ubmd9qJEGX74dVzf0MZOJsZBO0uALYZOvVlzl9vFZ1/POft7YvIUr6noJeXx4jOVXI9xY1USjt4pIJsk723cuOZct/mpneOqldV0cjYwznJjldHyam5vM5XbJtpoO+qqaCqF3+WBZtKu2i6lUlLe1bX/BtWDPJ+j28cvr9nAiOnnOokGV8lr7WX+tU8AUERERuQB79ly10k1YonSoYSW90Hw4r8vtVBUtdV3jxhdVCRdwwuX5VHsC/HJhDunn2bvk/sXraQI0FoZmXojOQB2dgTrn9o0lvb0vRZXHzzvbLz3n/T6Xhzc2b3Fuv79zd9n9XpebO9p2LH7asmq8gRe4P8h/2XDzi9pXtSfAZXXdXEb3Cz72xa5DuVxxnwu1sap5SUB+JbwWf9ZfyxQw5QVde+0NK90EEXkV6GddREREXi4FTHlB11xz/Uo3QUReBfpZFxERkZdr+cHZIiIiIiIiIi+RAqaIiIiIiIhUhAKmiIiIiIiIVIQCpoiIiIiIiFSEAqaIiIiIiIhUhAKmiIiIiIiIVIQCpoiIiIiIiFSEAqaIiIiIiIhUhAKmiIiIiIiIVIQCpoiIiIiIiFSEAqaIiIiIiIhUhAKmiIiIiIiIVIQCpoiIiIiIiFSEAqaIiIiIiIhUhAKmiIiIiIiIVIQCpoiIiIiIiFSEZ6UbICIiIiJyIYaGBvjMZ/5mxV5/cHAAoKJt8HrdpNPZF/34oaEBOju7Kvb6Ii+XAqaIiIiIrDo9PT0vKYi9Empqalb09QE6O7vo7Fy30s0QcShgioiIiMiqc+eddzIxsbDSzai45ubqNXlc8vqhOZgiIiIiIiJSEQqYIiIiIiIiUhEKmCIiIiIiIlIRCpgiIiIiIiJSEQqYIiIiIiIiUhEKmCIiIiIiIlIRCpgiIiIiIiJSEQqYIiIiIiIiUhEKmCIiIiIiIlIRCpgiIiIiIiJSEQqYIiIiIiIiUhEKmCIiIiIiIlIRCpgiIiIiIiJSEQqYIiIiIiIiUhEKmCIiIiIiIlIRCpgiIiIiIiJSEQqYIiIiIiIiUhEKmCIiIiIiIlIRCpgiIiIiIiJSEQqYIiIiIiIiUhEKmCIiIiIiIlIRCpgiIiIiIiJSEQqYIiIiIiIiUhEKmCIiIiIiIlIRCpgiIiIiIiJSEQqYIiIiIiIiUhEKmCIiIiIiIlIRCpgiIiIiIiJSEQqYIiIiIiIiUhEKmCIiIiIiIlIRCpgiIiIiIiJSEQqYIiIiIiIiUhGelW6AiLywbGKWWP9PVuy1gRV7/fJ2NK1oG0RERETk/BQwRV7jurp6VvT15+byvyZqa+squl+v1006nX0Jz2ha8fdCRERERM5PAVPkNe4DH7hzpZvwimhurmZiYmGlmyEiIiIiFaQ5mCIiIiIiIlIRCpgiIiIiIiJSEQqYIiIiIiIiUhEKmCIiIiIiIlIRCpgiIiIiIiJSEQqYIiIiIiIiUhEKmCIiIiIiIlIRCpgiIiIiIiJSEQqYIiIiIiIiUhEKmCIiIiIiIlIRCpgiIiIiIiJSEQqYIiIiIiIiUhEKmCIiIiIiIlIRCpgiIiIiIiJSEQqYIiIiIiIiUhEKmCIiIiIiIlIRCpgiIiIiIiJSEQqYIiIiIiIiUhEKmCIiIiIiIlIRCpgiIiIiIiJSEQqYIiIiIiIiUhEKmCIiIiIiIlIRCpgiIiIiIiJSEQqYIiIiIiIiUhGelW7Aa5AbwOUyVrodr5i1emw6rtVnrR6bjmv1KDkm90q2YxVZ09fItXpcsHaPTce1+qzVY1trx/Vyro+GbduVbc3qdy2wd6UbISIir6rrgIdXuhGrgK6RIiKvLy/5+qiAuZQfuBwYAbIr3BYREXlluYF24AkgucJtWQ10jRQReX244OujAqaIiIiIiIhUhIr8iIiIiIiISEUoYIqIiIiIiEhFKGCKiIiIiIhIRShgioiIiIiISEUoYIqIiIiIiEhFKGCKiIiIiIhIRShgioiIiIiISEV4VroBrzWmaW4G/hVoBKaAOy3LOrayrXrpTNP8a+AXgV7gEsuyDha2r+rjM02zEfgysIH8oq/HgY9bljVhmuaVwD8CQeA08EuWZY2vVFtfKtM0vwusB3JABPhty7KeWe3nrMg0zT8B/h8Kn8fVfr4ATNM8DSQK/wD+q2VZ96/2YzNNMwB8GriF/LE9YlnWx1b7Z9E0zV7guyWb6oAay7IaVvuxvRrWynuk6+Pq+50Eukayys7ZWr0+wtq8Rlb6+qgezKU+D3zOsqzNwOfI/xCsRt8Frgf6F21f7cdnA39lWZZpWdZ24ATwF6ZpGsBdwCcKx/YQ8Bcr2M4L8SHLsnZYlnUp8NfAFwvbV/s5wzTNXcCVwJnC7bVwvoreZVnWzsK/+9fIsf0V+YvmZsuyLgH+qLB9VX8WLcs6XXKudpL/PfnVwt2r+theJWvlPdL1cfX9TgJdI1fjOVuL10dYg9fISl8fFTBLmKbZAuwCvlbY9DVgl2mazSvXqgtjWdbDlmUNlG5bC8dnWda0ZVk/K9n0KNAD7AYSlmU9XNj+eeA9r3LzXhbLsuZKbtYCubVwzkzT9JP/hfSb5P8AgjVwvs5jVR+baZph4E7gjyzLsgEsyxpbC5/FUqZp+oAPAl9ca8f2SlhL75Guj6vrd1KRrpGr75wtY9Uf1+vhGlmJ66MCZrkuYMiyrCxA4b/Dhe1rwZo6PtM0XcBvAP8JdFPybbRlWZOAyzTNhhVq3gUxTfOfTdM8A/wZ8CHWxjn778BdlmWdKtm2Js5XwVdM03zONM2/N02zjtV/bBvID4H5E9M0nzRN82emaV7L2vgslnob+ePZz9o7tlfCWn+P1tTxrcXrI+gauQrP2Vq7PsLr4xr5sq+PCpiymn2G/DyMz650QyrFsqyPWpbVDfwh8D9Xuj0vl2maVwGXA3+/0m15hVxnWdYO8sdosDY+ix6gD3jasqzdwH8F/gMIr2irKu9XODvETmStWXPXR9A1cpVZi9dHeH1cI1/29VEBs9wA0Gmaphug8N+Owva1YM0cX6FIwybgvZZl5cjPW+gpub8JsC3Lml6hJr4slmV9GbgJGGR1n7MbgC3AqcKE/3XA/cBG1sD5Kg6zsywrSf4PhGtY/Z/FfiBDYTiMZVmPAZNAnNX9WXSYptlB/rP5lcKmNfO78RW01t+jNXN8a/36CLpGrgZr9PoIa/waWanrowJmiUIVq2eA9xc2vZ/8NxQTK9eqylkrx2ea5p8BlwF3FH5xATwFBAvDFAB+HfjmSrTvQpimGTZNs6vk9luBaWBVnzPLsv7CsqwOy7J6LcvqJf/HwK3kv3letecLwDTNKtM0awv/bwDvI3+uVvVnsTBk6afAG8GprNkCHGUVfxYX+TDwA8uypmDt/G58Ja3192itHN9avD6CrpGssnO2Vq+P8Lq4Rn6YClwfDdu2z3f/645pmlvIl+KtB2bIl+K1VrZVL51pmn8HvBNoI//NypRlWRev9uMzTfNi4CD5H+R4YfMpy7LeYZrm1eQrWwU4W/p6bEUa+hKZptkKfA+oArLkL5y/Z1nW/tV+zkoVvqG93cqXYF+15wvANM0+4NuAu/DvEPBJy7JG1sixfZF8SfI08N8sy7p3rXwWTdM8Sv5c3VeybU0c2ytprbxHuj6uyt9JukauonO2lq+PsLavkZW6PipgioiIiIiISEVoiKyIiIiIiIhUhAKmiIiIiIiIVIQCpoiIiIiIiFSEAqaIiIiIiIhUhAKmiIiIiIiIVIQCpoiIiIjIK8w0zetM01xVy1aIXAgtUyIiIiIiq5Jpmj8DdgBtlmUlV7g5IoJ6MEVERERkFTJNsxe4DrCBt61sa0SkyLPSDRARERERuQB3Ao8CjwEfAr4FYJrml4AYsJ58AH0W+EXgDwqPGwPeb1nW04XHnwY+B/wysAH4OvCHwJeAawv7f7dlWTOFx78N+HOgE3gG+A3Lsg6X7Ouzhbb1APcBH7IsK2Ga5o3AXZZlrSs89g+AXwNagAHgv1mW9Z2KvkMiK0A9mCIiIiKyGt0JfKXw71bTNFtL7nsP8H8DTUASeATYX7j978DfLtrXLwJvBDYDbwXuJR8ym8j/vfxJANM0NwNfA34HaAbuAe42TdO36LXfTD7gbgc+fI72nyAfgGuB/xe4yzTN9pdw/CKvSQqYIiIiIrKqmKZ5Lfkewm9alvUU+bD2gZKHfMeyrKcsy0oA3wESlmX9m2VZWeAbwKWLdvkZy7LGLMsaAvYCj1mW9XRhXud3Sh7/XuAHlmX9yLKsNPDXQBC4umRff2dZ1rBlWdPA3cDO5Y7BsqxvFR6XsyzrG8AxYM+FvicirxUaIisiIiIiq82HgB9aljVZuP3VwrZPF26PlTw2vszt8KL9vdjHdwD9xTssy8qZpjlAfrhs0WjJ/8cKz1nCNM07gf8D6C1sCpPvMRVZ1RQwRURERGTVME0zSH4Yqts0zWKY8wN1pmnueIVffhi4pKQtBtAFDL2UnZim2QP8E/AG4BHLsrKmaT4DGBVsq8iKUMAUERERkdXkDiBLPuilSrZ/k/y8zFfSN4E/ME3zDcBDwKfIz/Hc9xL3U0W++u0EgGmaHwG2VbCdIitGczBFREREZDX5EPAvlmWdsSxrtPiPfPXWD/IKdqBYlmUBvwR8BpgkXxDorZZlpc77xKX7OQT8DfniQ2Pkw/LPK9takZVh2La90m0QERERERGRNUA9mCIiIiIiIlIRCpgiIiIiIiJSEQqYIiIiIiIiUhEKmCIiIiIiIlIRCpgiIiIiIiJSEQqYIiIiIiIiUhEKmCIiIiIiIlIRCpgiIiIiIiJSEQqYIiIiIiIiUhH/P/vzNnOVqWSjAAAAAElFTkSuQmCC\n", "text/plain": [ "
    " ] @@ -2061,14 +1992,12 @@ }, { "cell_type": "code", - "execution_count": 22, - "metadata": { - "scrolled": true - }, + "execution_count": 42, + "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvUAAAHVCAYAAABxBgQmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xd4XNd54P/vuXf6DHoHCIC99yKSogpty7ZsKbZlO3GqktgbJ7v7OPEmu3E2iRyvnR6nrLNZO07y2yeKHac4lizJliVbMimSkswu9k6CIHoZDKaXe8/vjxmMABIEAXBIYMD3g2eeO5i5c++ZM+29577nHKW1RgghhBBCCFG8jJkugBBCCCGEEOL2SFAvhBBCCCFEkZOgXgghhBBCiCInQb0QQgghhBBFToJ6IYQQQgghipwE9UIIIYQQQhQ5CeqFEEIIIYQochLUCyGEEEIIUeQkqBdCCCGEEKLIOWa6AMWourpaz58/f8b2H41G8fv9M7b/uUbqs7CkPgtL6rOwpD4LS+qz8KROC6vY6/PQoUP9WuuayawrQf00zJ8/n4MHD87Y/nft2sXOnTtnbP9zjdRnYUl9FpbUZ2FJfRaW1GfhSZ0WVrHXp1KqbbLrSvqNEEIIIYQQRU6CeiGEEEIIIYqcBPVCCCGEEEIUOQnqhRBCCCGEKHIS1AshhBBCCFHkJKgXQgghhBCiyElQL4QQQgghRJGToF4IIYQQQogiJ0G9EEIIIYQQRU6CeiGEEEIIIYqcY6YLIIQQxUJrTTKZJJlMEo/HUUrhdDpxuVy4XC4cDgeGIW0lQggh7j4J6oUQIseyLDo7O+nu7qa7u5v2zg46ujoZ6OsnEYuTTqUwTBOHy4npcgJgZzJYGQs7Y2FZGZwuF4HSUsrKyqioqKCmsorqqipqa2vzF5/PN8PPVAghxFwjQb0Q4p4ViUS4cOECp8+c4eSZ07RfacPp9+IsC2D73Si/B0dzOe6VjXjdTpTDRE3QEq+1Rqcz2PEkw/EkQ/EkF/qvoNrPoeIprHCcRCiM6XBQWV1FQ3098xqbaGxooL6+nrq6OkpLS1FK3cVaEEIIMRdIUC+EuGfYts2FCxc4fOQw+w8dor+3F19tFboigGNeGZXrH8RwO6e9faUUyuXEcDlxlAXGXSegNXYiRSoS42I4zvnLJzFOHsGOxEmGwmjLpqK6ktqaOhobGqgsL+fIkSNUV1dTXV2N1+uddvmEEELMXRLUCyHmtHg8ztGjR3nzwH6OHz+O6XFjNlTiWNlE9cOrJmx5vxOUUpheN6bXjaumYsx9AcBOpbEica6FY7T1XmaHczEv/uvXyETiJIYjmA4H5ZUVVFdXU19bS31tXT7gr6mpkZZ+IYS4R0lQL4SYc6LRKIcPH2bP6/s4e+YM3roqaKig9L1bMP2zu6XbcDkxKp04K0uz/6c9+B5eB0CJ1tjJNHY0Tmc0TnuwA9V5CRVPY8cSJIcj2JZFZXU19fX1NOdSe5qammhpacHj8czkUxNCCHEHSVAvhJgTwuEwBw8eZM8br3Px/Hm8DdWoxioqP3h7KTWziVIK0+PC9LhwVpXdcH++pT8c4+pwjMvtZzHOHsMORYkNhigtL6OltZWlixaxcMFCli5dKuk8QggxR0hQL4QoWqFQiIMHD/La6/u4cukS3sYajKYqKp94CMN5b369GS4nRlXZDUG/37bJDEdpGwxz6eQh1L7XiPUOUltfx5rVq1m9chXLli0jEBi/L4AQQojZ7d781RNCFCWtNZ2dnRw8dIg3D/yIzmudeJtqMOZVU7nu3g3kJ0MZBs7yEpzlJfnbfJZFsj/E610XeePEUWI9gzQ1N7Fty1Y2b9pEY2Oj5OcLIUSRkF9AIcSslkgkOHfuHIeOHOHAwQMkUklcTTWYrVVUbV2MMs2ZLmLRUqaJq64SV10lkA3yh7sHefHom3z7hefxejxs2bSZ+7dvZ/HixTKxlhBCzGIS1AshZpWRIP7EyZO8deIYXdc68dVUomtLcW9bTnlFibQe3yHKNPE01UBTDb7Ny8gEw7x57RJ7v/QjTFuzY/v9PLBjBwsWLJDXQAghZhkJ6oUQM0JrzfDwMG1tbVy5coVzFy9w5coVQsEh/LWV6OpSnItqqd62FOWQ1vi7TSmFs7IUZ2Upes1CMkMRXm87z+4v7sNtOnjogQd48IEHaWpqmumiCiGEQIJ6IcQdkk6nCYVCDA0NEQqFGBwcpKu7m47uLnp7ewj2D6IVeKvKocyHKg/g3LqMmjL/XR87XkxMKYWzogRnRQl63SLSg8PsunCCl195hfLycnY++BAP7NhBZWXlTBdVCCHuWRLUCyEmzbIsQqEQwWCQwcFBhoaGGBoaYmAoyFBoiFBomJVLl/GLn/g46WQKl9+H0+fB8LrA7cL2uTBLfDga5lMRWDlnhpq8lyilcFWV4aoqw7d+CameQb576HW+9cy3mNfczEM7HuC+++6jvLx8posqhBD3FAnqhRBj2LZNX18fnZ2ddHV1cfVaO+0dHfT19BKLRnB6PLj8XgyfB+1xYrtMDI8LI+DGqKoCv4fyx+9HuZ2Sdz3HKUPhbqjC3VCFb/NSgp39fGvvK3z9X75B07x5PLTjAbbedx8VFRW33pgQQojbIkG9EPe4cDjMhQsXOHf+PKfOnqHt8hUMlwNXWQkEPBDw4Ggpx7u6iYDPfcvUGJU2MJyuu1R6MVso08TTXAfNdfis5YQ6B3h236t841//heqaGjZv2MjGDRtYvHgxpoxYJIQQBSdBvRD3mFQqxdmzZzl05DCHjxwhNDSEt6YSXeHHUVdG+artmF73TBdTFLFsgF8LzbX47BUk+4bYfekkP3xjL+lIjBUrV7Ju9RqWLFlCS0sLDof8FAkhxO2Sb1Ih7gHBYJD9+/fzo0MHuXj+PJ7KMqgrx7VxEVWVpShD0mTEnaEMA3ddJe7cWPhWLMHlrn4uvbEL6zvPkRyO0DhvHiuXLWfRwoU0NjbS0NCAx+OZ4ZILIURxkaBeiDmqv7+f/fv389rr++jq7MQ7rxajsYrKDz4oHVTFjDF9HnyL5sGi7P92KkNkIMS+zgu8cfY4VjhGPDiM1+ejrqGepoYGaqprqKyooLy8nIrcMhAISAu/EEKMIt+IQswhwWCQ1994nd1799Db04unuRZzfg1V25agTBkmUsw+hsuR72w7IqA1VjROcDhKX7gXffYaRjIDiRRWPEk6GieVSGKYBh6vF4/Xi8/nw+v14vV48Hi9+L1e/F4fPp8Pj8eTvc/rJZFIcPHiRUpKSggEAni9XunQLYSYEySoF6LIhcNh9u/fzw9f28219nY8zXU4FtVSuWO5jPcuipJSCkfAhyPg42a9O7TW6IyFTmewU2liqQyRdCZ32zB6aBDdb0HaQlk2yrIhY7F95Tqe+d53yCRSpOMJbNvC4/Ph9/spr6igprqa+ppaqqurqayspK6ujpqaGgz5LAkhZjkJ6oUoQtFolIMHD7J7314unj+Pt6kWs7mGyi0PoWRkEXEPUEqhnA5wOjB9k8+/N9JeAu/dkv9fWxZ2Mo2dSNEfT9IbDXL8fBfGiTTEUqSGo6TicSqrq2lsbGR+cwstzc0sXLiQ2tpaaeUXQswaEtQLUSRisRgHDx7ktX17OX/2HN7Gaox51VQ+8RCGUz7KQkyHMk1Mn4np8zBeTxMfYKczWOEYbaEoly6dwHjrAMmBEDqdobm1hWWLl7Jk8WKWLVtGWVnZ3X4KQggBSFAvxKzW3d3N4cOHeePAj2i7fAVfQw1qJJB3ycdXiLvBcDowKktxVpbmb/MBVjzJwOAwr7WfYc+xQ8R7BigtL2f1ypWsWbWaFStWyMRbQoi7RqICIWaRaDTK2bNnOXbiBAcPHyIajeBuqsVsrKRqw8PSIi/ELGJ63ZhNNdBUA4DP1mSCwxzu6eLoC+eJ/f3fUV5Rwab1G9i4YQPLli3D6ZSRp4QQd4ZECELMEK01AwMDXL58meMnT3D85EkGevvw1VWhqwK4Ni2moqpUcnaFKBLKUDirynBWZVNwvLYmPRBiX8d59h05QCI4zOKlS9m2eQubNm2isrJyhksshJhLJKgX4g7TWhOJROjt7aWjo4NLly9z4fIlOtrbwTBwV5WhK0twrW6mumq1DD0pxByhDIWrphxXTTkAvmSKrs5+/mPPD/j6v3yD6upqtt23lS2bN9PS0iIH8EKI2yJBvRC3IZVKEYvFGB4eZmhoiKGhIUKhEIPBIF29PfT09BDsH0Cj8ZSVYJT4sEu9OJtLKVu7HdN7swH7hBBzjeF24V3QCAsa8dk2id4gPzh9hBd/8H2chsF9W7awfes2li1bJkNoCiGmTIJ6MSdorclkMqTTadLpdP56JpO54TJyu2VZZDIZwuEw3//+9/OPTaVSpNJp4skEiUSCeCK7TCaTJJIJErE4iXicZCKBtjVOjxunz5MN0N0utNuBdjsx/R7Mta1UlCxHuZzSCieEyFOGgbu+Cnd9FXrjEjJDEfZfu8KbXzmEFUuwceMm7t+2jdWrV0sevhBiUiSoFzNGa00sFiMSiRAOh4nFYsRiMaLRaP72SCxKLB4nFo8Tj8dJJBKkkslc8J0mk06RSWewMhkMw8BwODAcBoZpYpgmyjRQRu5iGpC7jqFQhoE2FNtXrOGNI2+gDYVWCm0q1MhjHSbKbaL8TpTDg3JUYricBJwOSl1OMA0J1oUQt0UphbOiBGdFCaxZRCYc43h7L8e+9o8kgyFWr1nDjm3bWb9+PV6vd6aLK4SYpSSoFwVl2zahUIhgMEgwGCQUCjE0NMRgMMhgKMjQUCgbwEejJGJxTIcDl9eD6XFlh2h0OsBpYjtMtMPEcJoopwNV4kBVBDCc5SiHicNh4hwJuk3ztoJrI+3Bt2V5gWtCCCGmx1Hiw7FyPqycjzee5OK1Xi58+5t85at/y6IlS9ixdRsbN26U4TKFEGNIUC+mJBqN0tfXR39/P/39/fT09tLd20PfQD/DwRDRSASXx43T78P0ucHtxHY5UB4nhseNMb8Sw1NPidtJmdslnUKFEGICpteNb0kzLGnGm8rQ3dHHv+96mae//jVq6+q4f+s2tmzeTFNTk5w1FOIeJ0G9uEEsFqOrq4uOjg66urpo7+qku6ebwb5+MukMnrISTL8H7XWhfS5MnxezphGffyEBj1sCdSGEuAMMlwPvggZY0IDPWkG8d5CXju/n+e99F5fpYOOGDWzeuImVK1fi8XhmurhCiLtMgvp7WCwW49q1a7S3t3P5yhWutF+lp7ubRDyOr6IMo9SH7XNjlHhxLG+kdMtiDI9LWoOEEGKGKdPA3VCNu6Ea3yZNZijCoc4ODn/jFLG+IAsWLWTLxk2sWb2a5uZmGU1HiHuABPX3AK01vb29tLW1cenyZc5fukjHtWtEIxF8leWoMh+6xIezuRTfqkZK/B4J3IUQokiM6Wi7CrypDH3d/bxwcB/PfvcF7GSKZctXsHHdOlauXEljY6N8xwsxB0lQP4d1dnbyN1/5Mh3XrmE4nbgrS7HLfJgVAdwL1+AL+FCGfLELIcRcYrgceFvqoaUeACsa50r3IFf2vsK//Mc3sdMZFixawKrlK1m2dCmLFi2SUXWEmAMkqJ/DOjs76YsNU/FjOzA8rpkujhBCiBlg+r34FjXBoiZ8gBVL0N0/ROfpw3x/32tE+wcpLS+npaWFpQsX0dLSQmtrK1VVVdKifx2tNbZtY1lWfqm1HnM/ZM+ejFwMw8gvTdPM3y5EoUlQP8eZLpcE9EIIIfJMn2dMS77PtsmEorQFw1w6fQjjR3tJDISw0xkqqquor6+nubGRxoZGampqqKiooLy8HJ/PN8PP5OYsyyIejxOLxcYsR+Y7icVixOIxorHsJZFIkEgmSSTiJJMpUqkUmXSadDqDlclNWJix0LadDcoNIxusGwquC9CVUtngXueCfK3RWqNtO7vUOv94Izd3imm+Pb/Kjm3b+dR/+zQOh4npcOAwHTgc2YvT6cTpdOB0OHE6nbhcLjwuNx6PB7fLhSt38Xg8+Yvbnb3f6/Xi8/nweCTFdq6SoF4IIYS4hynDeDsnP8cH2Kk0VjjG1XCMy9fOYZw7gY4myMQSpKJxtLZ59yOP8Jnf+W0CgQCBQIASf4DSkgABfwC3250PPLPBqBPTNPOddke3WNu2nW/5HrmMnuV7ZJlIJojF4sQTCWKJXJCeTJCIx0nEEyRzs3/bGQuH24XD5cJ0OTFcDlRuHhQcJto0sB0GyuHIzofiMVEBF8rhzc5/kpsLxZWbiBBz1MSFtxkQjwT62Bpta9B2dmlnA3/l9KC2LMHSmoxlk7Tt7AGBrcGy0ZaFttOQttGJ3P8ZG2XZKFujcuupjIXOWNiZDHY6g5VMk0mmsKwMLrcbj9fLx3/+F9iyZcttPR8xe0hQL4QQQogbGC4nRlUZzqqyce+30xmU5SW6pJZIKoOdiqKHhrB7MxgZKxdcZgNMbDsbkNp29sEjKSsjSzWq1Tu/zAbTmG/P9q1zkw4aDgfKZaJ8uUDcVZOdlNDpoMTpyAbms7Q1WqmR5wfjlVCljTEHWIWmbRudzhA9eoHu7u47th9x90lQL4QQQogpM5wOFAbuusqZLoqYAmUYKLcre+ZCzCnyis5hSinivYPw2rGZLsqsZq9eT+yE1FGhSH0WltRnYUl9FpbUZ+HdrTpNBYdR62bn2QwxPWp0r20xOZs3b9YHDx6csf3v2rWLnTt33nK9VCrFyZMnkdd4Yt3d3dTX1890MeYMqc/CkvosLKnPwpL6LLy7WadLliyhpOTOpfrMBpONmWYrpdQhrfXmyawrLfVzmMvlYsOGDTNdjFlv165dbNy4caaLMWdIfRaW1GdhSX0WltRn4UmdiumSeaOFEEIIIYQochLUCyGEEEIIUeQkqBdCCCGEEKLISVAvhBBCCCFEkZOOskKIaXn66adpa2u74fahoSH27NkzAyWaOSMTuNyJEStmY322trby5JNPznQxhBBCjCJBvRBiWtra2mhra6O1tXWmizLjksnkTBfhrhnvQE4IIcTMk6BeCDFtra2tPPXUU2NuK/YxgafjC1/4AsANdVEIs60+R56rEEKI2UVy6oUQQgghhChyEtQLIYQQQghR5CSoF0IIIYQQoshJUC+EEEIIIUSRk6BeCCGEEEKIIidBvRBCCCGEEEVOhrQUYpraI0GOD3awpaaVGm/JTBdnSo4PdhBMxri/biEOw7xj+/nu1RN0RIf40Pz11HgDBd32UDLGd9tP0ugrY2fj0kk9RmtNwsrgdTgBsGyb77afxNY2729ZjfMO1cX32k/RFh7gx1rX0ugvK8g2h5IxXuk8y4KSajZWN0/6cQf72uiMhYimU9R4AzzStLwg5RFCCDGzJKifw55++mkAnnzySf7t4iH2dF/gXU3L+dD8dTNcsuJna81fHn+FaCbF/r42PrfpsZku0qRdCPXxf07uBuBQ31UealjCppqWgu/n0nA/3247BoAGPrnigYJu/5uXj3CgLzsR0vySKuaXVE24vtaa/33ih5we6ubReSt5YsF6Xuk8wwtXjwPgc7h497wVBS0jwLVokGeuHAUgZVt8avXOgmz3ny8c4K3BDhSK31z3bp4+9yYxK81/XfkwrSWV4z7m8nA/f3dm35jb6r2lrK5sxNI2f3NyN2eGevjYwk083LgErTVKqYKUd7pODHZyZqiHnY1LqPYU9sCw2Ezm9bC1TTAZp8Ltw5jh167Yjf4NLXaWtnnm8lvEMkk+vGADAad7posk7gAJ6uewkZkftdb8sPMcNtnlTAf1ttbEMyn80/hSSVkZnr96HKcyeaxlNaYxcxlkIz+YBsX1w2lrO3/9TKiHM6Eefsv9HhaUVo9ZL2Gl+WHnOWo9JdMK+ivcPjymk4SVpsE39dbpvniYb10+SoO/jA+0rr3h/kq3HwCnYU7qByqWSXN6qBuA73ecoTVQxfNtx/P3l7m8kyrXC23H6YgN8cT89dROcIbmxGAn/3zhAI2+Mnymi5iVoslfftP1O6MhDvW3sb6qmeZAxYRl6E9E8tcdhsGrHWfoig8DcKDvyk2DetPIvlt17n8DRanLA8BgIsbJYBcA+3ouYhqKf75wkDKXh+21C3msdTWmuruft3Aqwf899RqWtrkSHuC/r3vkru5/OvriYQ4PtLOuch71vtKCbFNrzVfP7OXowDU+2LqOR5tX3nTdL5/aw7HBDjZWN/PLKx4syP5nu47oECk7w4KS6luvPAVzafbkw31X+X7HaQD8TjcfWbBhhksk7gQJ6u8BSikealjM3u6LPNSweEbLYmvNXx1/lbOhHt4zb8WUv1he7TzLy9eyX0xVHj876hfl77sSHqDE6aHK4y9omcdjKMWvr3mEk8FONlYXvpV7Ol7tOEtXLMTjrWsmDFCXltexubqFg/1X87eNd3D0zOW32NV1DoDf8rxnyj+YFW4fn9v0GIPJKItKa6b0WIBnr7zF4YF2GGhnZXkDi8vGbuND89exuLSGWm9gUi24fqeLzdWtHOxvw9I2L3ecImVbACwqqWJFeT0d0SHODvWwuaY1H+yOdmm4n+evvn0gMFHQ9ErHGQaSUQaSUT61aideh5OFE9Thl078kGAqxu6uC3xx24dvut43LhzMvy4AadviQO61dCiDzTWtN31sS6CSX1v9TvoSYdK2xfHBTi6E+mgJVOYPeABWVTTwes8lLG0zmIzxnfYTVLp9PHCXvz8choHLMIlbNr5cytRs979P/JC+RIQfXDvDww1LWFFRP633/2jRTIrD/e0A7Ou+MGFQfyp3YDaynOvOh3r582OvoNF8Ytn93Fc7f6aLNCvVeEswlMLWelqNLKI4SFB/j/ipxVv4qcVbZroYxDIpzoZ6ADg6cG3KQX2F2zfu9R92nuVfLh7CaZg8teF91BWohWwijf6yguVH366Lw33866VDQDbF4xeXbZ9w/XfPW8HxwU5sbH5i4SZaApX0xIcJJmMsL68HwJkL9BXgwOC5tmO8NXCNlGVNGFSMVuH2jXmdpqLJX8HB/qt4c639f3X8VeaXVOXPNBlKsbaqaUrb/OnFW7gS6ac/EaUtPEhroBKN5lJ4gN89+DyQzbk/3N8+bqtwmcuDqRSW1rcMMjfVtHJ6qIcmfxlLympxmzf/un2x/STBVAwAx6iUCcu2863qI0YH39d7oH7xLdOQVlTUs4J6/uLYK5wN9XB6qJtVlQ0MJN9u/W/0lVHvK+VqeJB07szOa93nxxxE3ykpK8MLV09gKMXjLav5zPr3cGm4f9YcPN+Kzr1i0UyK568e56Vrp/izrR/GcxsHJQGnm+21Czg6cI13NC6bcN2PLtzIvu6LPNywZNr7Kya98XC+znvi4Rkuzew1v6SK39v4GAkrfcvvCFG8JKifo86HemmPBPMdAmeLgNPNu5tW8NZAO481r57y47fWLqDc5cNlmGPSRa5Fh4Bsq2VvInxXgvrZpNTpwWmYpG2LykkE0fNLqvjz7R8BsukrvfEwXzj8Imnb4gOta3msZTUfnL+OOm8p1Z4AUSvFd66eyD/+2Stvcadr+P0tq1hRUUeFy8c/nnuT00PdnB7qZlN1yy3TU27G73TxuU2P8+nX/52MtumMhdheu4CrkSAJK40jl16S0Vb+Mba2CaUSVLh9BJMxLJ0NIMLpVH6dvkSERCbN5XA/C0qqCSZjGErx+5sfp8oTuGUe9NGBa/nrv7A0e0A2lIzxx0dfZmVE89bANdZVzQPgwwvW892rJ6j2BBhMRumIDrGmsokN1c1srJp8h9kGXxlnQz2UON0EHB7eO28l8Uwav8PFppoWDGWwqqKB33jzWwC0RYL5PhJ30mvdF3jp2ikge1D4cMOSompZ/NVV7+DwQDtH+ttpiwxiKKMg/RJ+4RYH6iPe0biUd0yy4/hcsLV2Pl2xYZJWmkeaJj7gudcVKh1MzF4S1M9Rz1x5i7iVIm6l6IkNz0iQG04lOBvqYVlZHSWjUhk+unADH104+Rb6rliIoWScFRXZFuRl5XU3rPN4yxqSVoZKt59VFY0Tbu9gXxungl28q2n5hDnOo1na5ulzb3I1EuSnF29hSVntpMt/N9R4S/idDY/Sn4jc8vmPGD3Sy1AqTjqXitKXy9d2GiYP5tIt+uIR3IaDpJ0BYE1lE22cLORTGNdIys+C0mpODXVT7vLmc+mny2mYvKNxKbu6zvNwwxLe0biUgWSUcpePbbXzORvqYXvdwvz6Xzqxi9ND3eyoW8RHFqyn2uNnIBFlbWW2ntsjQYLJKADfvnKMT695J39+7Af0JSLM85fz1Mb337JM729exX9cPsry8rr8+/tyeCDXeu/hrYGOfFC/vmoe63PXb8fHFm1iU3Uzdb5S/E4XkD2TMVrA6eFdjct4pfMsMDaX/06pcPnGvT6y/85oiFWVDXc9v3+y6nylvM+3ih11izjQd4WlZXUTnqURt8dhmFP6PblbBpNR0pZ1zzUwiZkl3zRz1JKyGo6TDWDKp5n+cLv+8virdMSGaPSV8XvTHB2mOxbi9w+/SEbbPDF/HY82rxp3vQq3j/+0fAeQza3/eq6D4pNLt4758Y+kE/zDmdex0XTEQvzP9e+dVDmuhAd4s/cKAC9dO3VHg/q0bfH0uTfpT0T52SX3TfrAo8FXNu0WzSq3n/tq5mMo+NA4nVJrvAF+b9NjBJNRarwllLm8fIGXydg2f3z0JRJWhl9e8UB+/12xENF0ksUFqqcPtK5lU3ULFW4fPofrtrf30YUb+ejCjfn/f3X1O/LXl446aEzbVj7d5chAO08u3crnNj1O0koTcGYPVKs8fhzKJKMtluTy/mOZbCt+dFRr/kTWVc3LB+0jVlTUs6qiAWd4mB2NhU+lSFkZSl3eW3YQ/olFm6j0+OmMDvF46xr+hlcLXpbRNtW08BuuRzCVGpOLHkkn+IMjLxLLpJkfqOLJpVsn/dm4G9rCg5wMdrK1dgFVHj+lLg/vkuFC54yUleFg/1Wa/RW3PFN4NTLInxx9GUvbfHLFA0WTOiaK3+xs6hC37Yn565kfqKI1UDVjrUShVDy3TEx7G8FknEwup7c/EZ3UY15qP8XVyCBv9l7mQqhvzH0uw5FVb2aTAAAgAElEQVQfKWUyaSoj6r2lVHv8KLKt1HfS6WA3+/vauBTu5/u5TsF3Qtq2eK3rPEf72/nDI99jf98V0rZ904PAKo+fxWW1Y4LAaCbJ5fAAXbEQr/dcArI5/Z8//F3+7NgP2N15fkpl2t97hS+feo2zQz3EM2nawoPYuXSXJn95QQL6qRiTNJErR3a0nbfPPPkcruyQmoEqHmtZA8DPLr6PZWV1/Mxt9GPxmE5+dfU7aPCV0RIYfzSb6Ypn0nz+8Hf5vUMvjBkB6GYeaVrOk0u35c+S9CciPHXgOfZ2XyxouUYsLau9oXNpLJMmlkkDcCUywF8ceyX/3ii0r5/fz2d+9Ez+PX0radviL46/wrfbjvGV03vuSJmKxes9l/jL46+MSSmbC/75wgH+35Fd/M7nPktb78SdkDuiQ6QiMaLPvs7ZzqsTrjsZwWCQz3/+8wwNDRVsO4Xapphd7kpQr5SqUkodzV26lVIdo/6f0q+0UmqvUuqsUuotpdR+pdTaUfe9pJSacBag3OPXj3P7RqXUo1Mpy2znMh03Haf4O1eP839O7qIjeuc+0P955YM8VL+Y/7Jy+sOqraio54n563iwfjEfaF0zqcesqmxAkW29b7quI6vLdPDbGx7lP698iI8vu39S29Na85XTe+hPRHmwfvEd74DWHKigxOlBofIpR3fCt68c4+sXDvDl03uIZpIABJOxKW3D53BR6vTgNh2syx3sWLadD7Z6E5PvuJayMvy/s29wdOAaT59/kz88+j3+8Oj3+PqF/VMqUyE5DJP5uYB6pAPxeAylcI06eP73y4c5G+rhPy4fueNlnI7B3Kg8kO1/MxW21gwmo/QmIrwwiQOCQqn1lvDkkq35A7s7E85nGyNe677AUCrOy+2nxl2nOzY8JhVJAUbuq/ZeHhve1jb/dP5HnBnq4evnZ+5zeyfErTSpQ+fJdA7wwrefm3DdTdUtVJ7qweoeJLT/9htmnnnmGc6ePcu3vvWtgm2nUNsUs8tdacLVWg8A6wGUUp8DIlrrL97GJj+mtT6qlPol4E+A9+X2M7lcivFtBFYD37uNbRSF9kiQ53I/xlprPjUq9WAqhlMJ0rZ10yEkF5fVFiT94mYpNzfzQP1i1lY24TGdYwKtEVMdkSVupTmXC3xOTTDySKFUuH38/pYfI2llJj12+mg9sWFeuHqcBSXVvHOCjmPWqM6gH2xdS38yOuXZRZ2Gyee2fgit3x4W0+tw8ljzakLpOO+b4LVrjwQ5H+plS00rJS4PDsOk1ltCd3yYWk8pp4ayrWFXwgNTKlOh/cbaR+iJh8cd6SiaTnF8sIO0bY3pozDSP2FkyMzZpslfzqPzVnJxuJ8npjhvhaEUPkf2bNf1KUN32o76RSwtq2N/3xVSVoZTwS5WV06uD8lklTg9rCiv5/RQN1vGGR7xaH87Xzm9B0MZ/I+1j7CgtBqHYfIbax/hdLB7wiFF5zpDGbQGKrkcHphzI6w8Vr2EfWf/HoAD+95g6Mc/Rnn5+Olf0eEw3W+dAQ1v7t3HT370x2+67q0Eg0F2796N1prXXnuND3/4w9Pa1ujt7N69G1vr/PXpblPMPjOeU6+U+k1gZLq2v9Va/7VSajHwbeAw2YOB08DPa63j1z38DeBTo7Z1DVittR5SSv0v4GNAOzAIvKG1/qvcqj+plPoqUAb8InAE+CzgVUrtBH5fa/3Nwj/bu+v06WwLwU//9E/fdJ03gDf4u7tUotnrq1/96qTWCwM/zb/c2cIU0N9Pcr1/4gUAXpzGPgxlcP38Wx+Yf2Ne/mgJK80Xj32fhJXh6MA1fn3tuzCU4jPr38O1SJAFpdXs6brA8cEO3tcydpQkS9sYqLs206nLdIybQ5uyMjx18DmimRSJ8CCLRo3G9Gur38mR/nY234GZegvliQU3nLCclJHvFb78As8DzxeuSHfNZD/vX+cFvj7B/b/DjS22/2+aZSpm49XnPmAff3v3C3OH/OCFFzEAG7Btm29961t8/OMfH3fdZ555Bp07W3mrdW+lUNsavZ1MJpO/nrat2yqfmF1mNKhXSt0H/AxwH2AC+5VSu4EYsBL4hNb6TaXU08AvA3913SYeBZ4dZ7vbgMeBdYAbOEo2fs2vorW+Tyn1AeCzWutHlVKfJ3tA8OmblPWTwCcB6urq2LVr1zSf9e2LRCIzun8hRnv25RcpdXryaQeTeX9qNJujTrR24I7E2DU4dv1OsrmB6zDoHDjFhcxRElYGl2kymIjhMAxKnG58DteYjtC21qTsDG7TWfB5fm2tx6RWxK006+MG4OFHGQiFQmOedylw7sog527Y0tQU+vOesW0MQxXdTMhCzJRdu3axe/duMpns6F+ZTIbdu3ezcOHCcdefyrrjGf2Zv91tjVcmPbovimVPe5vF4l6KmWa6pf5B4D+01jEApdSzwAPAy8BlrfWbufW+RjagHgnq/1Up5SfbPriRGz0APKu1TgJJpdQL190/kkR2CJg/mYJqrb8KfBVg8+bNeufOnZN52B2xa9cuJrP/PXuyHbaeeuqp295nNJ3iSqSfRaU1eEwnKSvD1y7sJ5pO8bNL7pv2BEO3Es+k+Kvjr9KXiPL+llX8+6XDAHx4/nreO8kJkG5lsvVZSEkrwzcvHcZG8+MLNt7WxDTXs7XmXKiHWm/JmOEfh1OJ/BB70x3nfbTf/dzv0RYZ4EVvkK218/N9FCZbnxeH+zgd7GZH/aIJ3z+DiSi/feA5NJoyp4eQe6TjdZRqT4A/2PIBINuC/9mDz9OfiLK2son/uurh/DbCqQR/cfwVhlIxfmX5gwRc2ZmHPeat6z1pZfijoy/RFQvx4ws35lOUhlNxfv/IiwynErj9Xso9gSm9j3riw1yLDLG2qmlM6s71xqtPy7YxDYNnLh/lpWun2FLTyidyoz9N5Hvtp3jmylFKnR5+b9P7x3T4naxbfa8c7m/n5VyZJhr95c/e+j4XhvtQwB9s+SC/e+A5bDQlTs+EM+pC9jX52vkfsb+vDYDHWlbzgXFGbRrPdD7vI5PbAfzkok03TAD1mR89w1BuYIC/vv8nxk37K7SUleFcqJfWQOWYIYPvtpn4/rxbvvCFLwCwc+dOLl26xK5du8hkMjgcDh5++OGbPu+prDue0XV6u9sar0xKqXxgb5rmtLdZLObye/R6Mz36zURNRdf3gxr9/8eAhcC/A389xe0CJHNLi5k/sCkKXzz2fb50Yhd/c3I3kE1J+Piy+/nU6p13LKAH8Dpc/M8Nj/IX2z9CnfftPtBxK33H9nk37Ou+yGvdF9ibWxaSoRTLy+tvGM/9787s5d8uHeaLx35AysoUZD8jHzWvOfVRaRaV1vB465pbvn9cpiM/gtO8QDlVbn9+kqhE5u33Qdq2GMx19O29bmbJc6FeOmMhYpk037h0iM8f/i5/cOR7+dz3ifTGw3TFQgAcG+jI317q8vJHWz7EX23/cao9gUk847dF00n+6MhLfPXMXv7p/I+m8LgUnzv4Ar/6+r9xpL+d13suoYH9fW1kJvFcLgxn+4YMpxP5+Qiu1xsP8+yVt24YOWqy/v3SIS6HB/i3S4cnfJ/V5OoskDvjsjCXvrT4ulFvxuM2HTzYsCT/RX/9ePaF9mD9Yh5rXs1jzat5sH7xDffvqF+EgeK+mta7EtADfPXMXv765C7+6OhLWLkRwsSd88QTT+RT/gzD4MMfvvmB51TWLeR+J7sdh8OBw5F9n5qmeVvlE7PLTAe0rwF/q5T6M7LpNx8kG7ADLFBKbdFaHwB+Ctg7+oFa65RS6reBS0qppVrr0We59wJfUkr9KeAC3g/8n1uUJQxMOHLOvcrWOh8AXB8s3U1rKpv4mcX3EU7HeXfTihkrh2VnR3joiYf5mSVbmOev4HK4n9PBbrbVLZjU5EgNvjIUCtA03KXJSTJ29off1jZ27hi5OxbC73BPq6XPaZi0BCr4saXb72jueMDp5rc3vJf2SJB1VfNwGiZXI4Ps720bs1+P6eQTy+7n6MA13nldS+qy8jqa/RUMpeL5FqreeJhwOnHL16vJX84D9Yu4NNyf7/gbTad49spRfE7XpFuIR0taGRK5gHd4CkO+tkUG6IoPA3Cgr41H5i3ne1dPUe3x89cnd/HRBRsnPAvzwdZ1pCyLlkAF8wPjd2T86um9tEeDvNpxli9u+/CUg9SlZbW82XuFBSVVE56B+LklW9lc00qTvxyvw8mn17yTvnh2NuhwKkFbZJClZbU33f/Sslo+s/49JDKZOzZK1LNX3mJv90Xe2bhswn4iH2hdy4+1rCloP48DfW189+oJNlQ1j7vv/nj2OzmYipG2LUxzptvo5raKigoefvhhXnnlFR566KEJO5ZOZd1C7ney23n44exZzEKUT8wuMxrUa633K6W+ARzI3fRlrfXxXEfZk8AvKaX+AThDLvXlusfHlFJ/CfwG2Zz7kdvfUEp9DzgGXMltP3SL4rwK/A+l1BHgD+ZCR9lCMZTil5bv4EBf27itVHfTQw0zu3+As6Ee3ui9DGTHxP+5JVv5y+OvkrQyHBvs4LcmMaHViop6Prvx/Wj0pCbQ6U9EuBweYG1l07TnHfilFTt4vfsSKyrq8ZhOdnee558vHsDncPK7G95/01GMJuIxnWyrWzCt8kxFnbeUOu/bBz8tgcpxx27fXNOaH30knknx58deoTce5pdW7OB3N74PyLbaP992jJUVDZM6ADOU4ueWbB1z20vXTuXPsMzzjw2iz4V66Y4Ns71uwU2D2kqPn08sv5/zod4pHaAuLq1hRXk93fFhHm5YwrLyOpaW1fLHR18G4Lm2Y2PSjq7XHKjg19e+a8J9jLy/nIY5pg/B1cggXzm1h97IIPN8N3/P/vzS7byveXV2XocJglzTMMaMXOM0TBr95Vja5o+OvsRAMsq6yia21LRyeqibR5qW03jdZ2VkxuGpiqSTvHTtFPXeUnbULxp3Ha01L7Wfwkbz0rVTvL9l4lG4Ct1x+7krb9GbiNAZC/GupuX5WX9H/PyybbzacY71VfMmlUYmbt8TTzzBtWvXJtWyPZV1J3Ko7ypXl5RRc7H5trc1ukxa64KUT8wudz2o11p/7rr//xT403FWtbTWnxzn8Q9c9/+fjLo+eny1P9FaP5XLvd8L/NH1j9dadwOLc9f7gM1TfT73ivFmvLxXNfnLKXV6CKcT+bHLVS4RwFAGlm2jVG5UmAmMN0TieFJWhj8++hLhdPKGXPGpqHT7eXzUWP+Xwv1AdlKf7nhoWkH9bHY5PEB7NAjAmz2X85OGLS2r5TfWPnJb2x5JBTNQVI+qt+5YiL889kp2xuJokJ+aYPKpLTWtbJni8Icu08Gn17xzzG01ngClTg/D6cSYEXgm4/rOvwC/suJBDg+0g4bvtp9kZ8NSSl0e3ui5zEAyStJK5+c1GI+hFPW3cfYpbVv5+RK6YsP8w9k30Gi6YsN8Zv17pr1drXU+8P7W5SPsy00sZaB4vfcSrYFKPrJgQ34dpRRba+fzRu9lto0ztOWdtrqyiVc7z7K4tAbvOH1uFpRU84nl0zuoEdNTUVHBZz/72YKvO5H/uHyEAZLw6Fo8Jbf3HX19mQpRPjG7zHT6zZ30D0qpZYAH+P+01sdmukBzRW88zPlQL+uq5uVnZ72XlLm8fGHLjxHPpPP54P997SOcGeqm2hPgv73xTTwOJ7+57t1TzrUeT9q2iWZSAPTHw3zn6nE2VbdQ75vcQcHNvL9lFZF0gmpPCSsmmFjpVs6FejnQe4WttQtYXHbrfOjJ6ouH+eKxH5CwMvzKigennGKxsKSaRaU19MSGb9oaC9mDps5YiGZ/RX6s/VvZUb+Iel8pXtNJo7+clJUhaWdIWhk0I0PF3Z0854DTw//a/DjDqfiU3hN7uy/w9QsHWFRSw6fXvANH7qxCicvDyvIGnjr4fDaYjob45ZUPsqFqHru7zgGKO/nMPKaTTyzPplE9UL+Ivz/zei5Nanp589F0Mtvyn4jyeOtq/IA/971lKMW+noucH+7jXKiXLTXzaS15+wzQLyzbzs8t2Trp90UhfWzRJh5tXkmJ031PT2h1r1tRUc/e7ossKq3GbczlkE0Uwqx8h2itL5CbrOo2tvGxW68lpipjW/zpWy8TTidZ2nv5tls8i5XHdI455d0cqKA5UME3Lx3OBnepDGeHeqiuv/2g3u908SsrHuRksIuDfW0813acN3ou8/u5UV+mqisW4vm24ywsrb7lxGNXI4OUOj2UTxBQffnUa8QyKY4MtPPFbR+ZVpnG87UL+/Mjirx49cSUg/qRA6uJHO5v518vHmQoFWddZRP/ZQpnQRaV1nBxuI/dXedpiwyi0ezpvsgvLt1OW2SQUCrOb/3oWX584UY21bSgtebvz+zj+GAnTyxYd8MIKlORsS32dl+kzOVlQ3UzPocrP9PqZL3Rcxlba84P99IbD49JbXEYBqZSZLTO57SXu31YWgOa4dT1U4YU1ug0qt/e8F6uRoKsqmiY1rYuhfvzfYKebzvOx2jkQ/PX0RePEMukaA5UcH64j3KXd8xZlxEzEdCPmM7kc6IwElaaWCY146lNP7v4Pt7XvIoKl++uzc0hitesDOrF7GVrne/gF8u1Hou33V+3kBODnXgdLtZVNRVsuyPpT28NXAMYMzb7VP3bpcOcCnZxqP8qqyoaaLhJ6+4rHWf4t0uH8ZhOntr4vjFnHbTWdMZCRNJJ6lU217jQAcg8fzlnhnoA2HgHOuJeCQ/wt6f35P9viwxO6fHtkSB/9tYP0Lk/gIFElOODHfmDEYCXO06zqaaF4XSCg/1XAdjddeG2gvoX20/xwtXsrNC/vuZdLCuvm/I2djYupTs2zOKyGupy6TJ7ui5wZqibR5tX8T/WvZurkexwpQCVbh8LS6o5QXbW1bul0u2fVN+Hm1lSWovXdBK30vgcLpSVfe2PDLQD2YPmz296nFKXd9w0l+tdjQzypRO7cJsm/23Nu244G9cXD/P3Z/bhNp18csUDt302M55J8X9PvUYoFec/Ld8xbl8SUXhfOrGLa9Eg7hkO6pVSBTnjK+4NEtSLKXGZDj61aifHBzt5oH7uTlYxXY3+cj63+fE7tv1fX/Mujgc7WX8b/RsafKWcCnYRcLgnDM6u5oLchJWmLx4Z88MSzSSJpLOjtrhMk19atIPl0wgsJ/KRBRtZXl5Pldt/QwfJQjCVkRt/KBuw/tSim+e/jydupfPBvM/hwmU42FG/iL87kx2oy+9wEcuk8nnzJU4PG6uaOTbYwYMTpANNzvUj/k7d9Tn9wWSMr13Yn72eivGb697D/JK3R8hxGCa/ue7dfP65N4sqHcTjcPKH932QY4MdLC6t4cSbB6l0+/E5nMQyaeb5K/IHNZNxuL+dcDpBOA0nB7t4uHHJmPv3dl/kSu6zc7i//bY7958MdnEulB2KdE/XBX5myX23tT0xOd2x7ChThRj+V4i7RYL6Oay1dWqd8CZrWXndtFoGxe2r85VOKQAZz0cXbGR9VTN13pIJWxEfb1lLwspQ6y254fUOOD2UOr1E0kne1bg8nypRSIZS+c6td0JzoIJfW/1O+hJhttctnHD4xfEsLavl55bcR38iylHfeUxlsLF6Hg/VL6YjFuInF22iwVeW366hFL+88sGClP19zasION2UOr0F+yx6TWe+w229d/z3mFKqqAL6ET6Hi221b4/SVOH28blNjxNMxsYcuEzG5poW3uy9jNtwsKaq8Yb7V1U08ErnWVyGydIC9DFZXFpDhdtHJJ1kfbUMVnC3fHzZdv5x3rmbnskUYjaSoH4Oe/LJJ2e6CGIWMpRiaVntLder8Qb4zysfuun9IyOcvLNp+mkkM21FRT0rmH4n4QdyQ7weV88B2RGP7kZLqsMwbyt9Zzweh5Pf3fg+OqMhlpbf+v1R7Mpc3mmljM3zV/DH933opvcvLa/ji1s/jKFUQSaiKnf7+MMtH8TS9pQPPMX0ra5s5M8+/T9nuhhCTIkE9UIIIYDpB7piLM8kcvOnwlAKQ0lAL4SYmExBJ4QQQgghRJGToF4IIYQQQogiJ0G9EEIIIYQQRU6CeiGEEEIIIYqcBPVCCCGEEEIUOQnqhRBCCCGEKHIypKUQYtra2tr4whe+MOa2oaEh9uzZM0MlmhltbW0AN9RFIcy2+mxra7tjE9sJIYSYPgnqhRDTIoHd29zum8/MO9e0trbKay+EELOQBPVCiGm52YzFu3btYufOnXe3MHOY1KcQQojJkJx6IYQQQgghipwE9UIIIYQQQhQ5CeqFEEIIIYQochLUCyGEEEIIUeQkqBdCCCGEEKLISVAvhBBCCCFEkZOgXgghhBBCiCInQb0QQgghhBBFToJ6IYQQQgghipwE9UIIIYQQQhQ5CeqFEEIIIYQochLUCyGEEEIIUeQkqBdCCCGEEKLISVAvhBBCCCFEkZOgXgghhBBCiCInQb0QQgghhBBFToJ6IYQQQgghipwE9UIIIYQQQhQ5CeqFEEIIIYQochLUCyGEEEIIUeQkqBdCCCGEEKLISVAvhBBCCCFEkZOgXgghhBBCiCInQb0QQgghhBBFToJ6IYQQQgghipwE9UIIIYQQQhQ5CeqFEEIIIYQochLUCyGEEEIIUeQkqBdCCCGEEKLIOWa6AELMZrZtk0wmSSQSNyxTqRS2bWNZFplMBsuysG0b27Zvuj3DMPIX0zRvuO5wOPLLkdtM08xfrn+cUuqG6yOUUvml1vqml5HnMFJ2y7LQWmNZ1pQvtm0Tj8f5zne+k/8/u7SwMiPLDLZto207v3+0xtY6ext63LpTKJRhYCgFueeqlMIwTUyHA9N0YDpMTNORryen04nT6cThcIxZulwuXC4Xbrc7/7/b7cbj8eBwyNeiEEKI4iO/XuKek0wmGRoaIhgMEgwGGR4e5uv/9DSh4CCRcJhwOEwkGiUaixNLJHE6TNwOE5fDxO0wcJkGbsPAYYCpsheDt68rNKBu2K8GtAY7d93OXR9ZWjZYGmw0ltbY9sjt2YDX1tnbLVtntzMSlOtR/5PdyeiwWGuNUipbIqUwVDZARoGBwjAUhlIoBYZSuQuYudvNkf9vWOaeuwKTkecOteu2ETz2BgYaA7LL3GMMBc58GbL7I1dbSo0sb6y73BPJ1p0m//yy9ZKtQ0trUiPXyV20wkKR0WQvdnaZtnX2YtmkRi4Zi2Q6g2Eo3E4nbrcLr9uN2+3G6/Xi8/uzl0AJPn8Av9+fvwQCgTFLOTAQQghxt8kvj5hzkskkvb299Pb20t/fT293F71dXfT199E/GCSVTlPm81DmdlDmNFiwcRvq9Os0O038TgNfuYGvxoXf4cHnMDCNmwSZYlzHXCYPzy+Z6WJMi9aajIakZZO0NClLk7BSJDJJ4vFBEmGbhKUJW5peWxHXingGYpZNLGURS2eIJlM4TQcBn5eSQDbQLyktpaS0jJLyCkpLS/OXkpISSktLCQQCY86yiLdlMhnC4TDRaJRoNEosFstf4vE40UiEZDxGMpkgmcheUskkyVQqfwbNsrJnjCzbYvO27fzXX/7kuPsaOdtlGgaGaeSvm6aJ0+HAkT/z48TpdOBw5s72eDy43R6co84AjSxHX/d4PPmDRDkrJIQoNPlGEUUplUrR3d2dv3Rdu0p3Zye9ff1EYnGqAh6qPE4qnJpKJ6xxm1TWOqhsrsTvNMa0Bh9zmaxtLp3BZyNmC6UUTgVOwyTgnN42tNYkLU00YxNNW0TTQaLD/UQGbIbTmi5tEMmQvz+cTBNPpfF7PJT4/ZSUBCgrK6O0vILSigpcLjdvvvlm/gBg5CDANM3CPvm7QGtNLBZjeHiYcDicX4ZCIYZDQwwHBwnnbotEo0RicVLpDH6PC7/Lgddh4nUYeEzwGOBVNh4D/KaiwjRwGQqXqXC5FU6vwmGMnFUyMZSJqRTtHpNfWxG4SflyZ8tGzgAxcnYsjaXTZOwYGVuTSWsyyewZn8zIWR9bE7MhjSKtIa0VKRtSdna9ZO6MUDJjk8xYJNJpDJU9K+Rxu/F5PXi93lFnhQL4AiUESkoIBAI3XEpKSuSgQAgxhnwjiFnLsiz6+vqyQXtXF13X2unquEZXTw/hSIzqgJcar4Mqp6bWrVjlc1C9PEC5uyyf1iHE3aaUwuNQeBwGVZ7JPcbSmljaJpK2CacjROLDREJtRC7a+Nfcz2u7v0cko4mkMkST2bMBbpeTgM9LIJf2EygpoaS0LJce5Mfn8+Hz+bJBos+X7z8w0nLscrlwOp03T3e6zkj/iFQqNW4/k1gslm9Nj0bCRIeHiUbCRMJhhsORbJAeT+B0mATcTgIuBwGngd8Ev2ETcCjmOw0CTgNftUGgwYfPGcBrqkmXcTI6laLcPfM/fVprLA2J3FmheMYmkYmRsCLEQz0kBrO3dduKmK2IWxC1bGJpm2gyTTSZxuV0UJo7ECwtK6OsvILyqv+fvfuOb+s8Dz3+e8/BJECC4BKpRYqUKFmSZdmW5W3LaRw7ThqncZYz7Iwm6Uh7b26amzSt09y4bdJ0J02b2aHsHTtxPOPIlpeWrWHtSXFvEJwAzjnv/eOQFCVxgBQoENTz/XzwIQic8fIQ43nX8xYTjRZRWFhINBqlsLCQSCQiFQAhLgHyLhdZZVkW7e3ttLW10draSktzE831p2lpbaUzFicS9FOa56XEB6U+qAl6KV0RoihQIIG7mDdMpcj3meT7TCo4u4tgr8/k1uVntyw7WjNkjfQGpBiwOhmIt9Pf6TBoaWJaMaQVQzYM2ZohW5O0HVKOQ9JySNk2ScsdlmIYbtDszqswRudYOFpjj0yedtz5G4ah8Hk8+EfmmZiG2zJuKIKmImi6redBE8o8Bnkeg7ygQThiEPJECHmjeGQ4G+BW/jwKwjPsFdJaM2hpelM2fakh+lID9DY20HvKodVWxG1FPGnTM5SidyhBOPZ3r94AACAASURBVBikqDBCUXExxaVl7q24mOLiYkpKSohGoznZ+yOEOEOCejGrHMchFovR3t5OR0cH7e1ttDU3u+Pc29uJ9fYRCQYoyfNS7FMUezRXBz2UVfooXlWOVwIAIc5jKEWeV5HnNSgNzvxjfHSS9dj7GjTu5GpzzMToSScxi4tOjXkNLJhiW0drepMOsaRNLNFM7GQ9rUfgiK3oTjh0DyXpHUwSyQ9REo1SUlZGaXkFJaVllJSUUFJSQmlpKT6f76L8bUKImZGgXsyY1pq+vj66urro7Ox0bx0ddLa10NHeTld3N93xPvJ8Horz/ET9BlHTodRvsNLvoWR5kKg/X1ruhMgSYzjlkNs+K+/D+cpQiojfJOI3qZxgDrvlaHqSNl1DA3THjtPdeoT9tkF3UtM1mKJ7YIi8gJ/iaNQN9MsrKC1bgOM4nDp1iuLiYsLhsFT8hMgiCerFuEYC9pFgvauri472Njrb2ujq7BgO2HvxGgaFeX4K/SaFHoh4NEv9JlfkmRRGAxT6w/hM+ZAXQoi5zGMoigMeigPjhwWO1vSmHLqGUnQPNRA7XMfJVyG67nq+8vd/S1d/AltrogX5FBcVUVRSQklZOcUlJRQVFRGNRolGo+Tn50umJyFmiQT1l7C+vr7R1I9tbW20NzfT1tpMe0cHXbEeTMMgOiZgL/Roqvwm64MmkUI/hf48/KZ8OAshxHxnKEXEZxLxmSwb8/hev8kn1hYCMGSNDPHpIdbRRazxIPsdg3gKepIWscEkiZRFJBwmGimgMBolWlxCYXEJhYWFo5N7I5EIBQUFMsZfiGmSoH6esyyLpqYmWlpaaGpqpKn+NC2NjTS3t2PbDiWhAEV+kyKPpsinqA6YFC31El2xgIBHAnYhhBDpCXgMyj0G5XkTz/xNOdqdwJtIEE80Ej9VT/dRh9OOQdxyn4sPpehPJAkHA0Ty84lEIhRGoxQWlxAtKiYSiYwG/4WFhQSDQRn2IwQS1M8bWmva2tqor6/n9OnT1J88Tv3petq7uikOBygLeinxOiwOmFxZ6KGsoojwOfnahRBCiNnknWKYzwhbazfFa9Imnuwi3tlBb8sh6ixFr62IWw7xIYv4YBKNpjA/n8LCCNGiIqLFJUSL3WE/Y29e7wwXnxAiR0hQn6MaGxs5efIkJ48f4+Sxo9Q1NBLwmCwM+yn3OazIM7llsZcFteUyEVUIIUROMccM95nKkOW4rf/JfuJ9vcS7TtB8EA5Zip6UQ2woRXwwQV7ATzQScdN4LlhASVn5aHafkpISIpGINHSJnCZBfY5paGig7tQpfvb977A47GOxX7Mp7GXxlcWEvTL+UAghxKUl4DEIeAzKJhn24wy3/McSNt2JFrpPNNB4WLPfMuhO2HQNJEhYNkWRAspKSyldUE5peQVlZWWUlpZSWlpKQUGBBP1iTpOgPsf09vbiNQ3+cn1RtosihBBC5ARDKQp8JgU+k6UTpPVM2A7dQzZdiU66GtpoO7GHw5aiK2HTOZAgZTuUFBZSWlpCWXnFaNA/0tKfn58vQb/IKgnqhRBCCHHJ85sG5SGD8tD4Lf5DlkNXwqJrqJ3OU800HoFXh4P+roEEtuNQPBz0F5eWUVy2YHTV3uLiYoqKimQBLzGrJKgXQgghhJhCwGOw0ONjYWj8592g36ZrqJ3uhha6TjictA1iKU33UIqe/iECfh+RgnwKI8OTekvKiBYVjabxzM/Px7ZtbNuWlJ5i2iSoF0IIIYS4QG7Qb7BwgpZ+R2sGUg49SZt4Mka8s5Oe5kOctN2MPv2Wpi9ps+66G7j/vvsI+n2EQ3mE8vIIhUKE8/MJ5xcQyi8gFA6Tl5dHMBgcvY387vf7CQQCeDwS4l1q5D8uhBBCCDHLDKUI+0zCPpNFk2y3N8/LP9y4kIGUQ5/lMGglGbCGGIy309/pMGhpuh1FQiuGHBhyIGE5DNkOQymbhGUxlLQwDEXA58M/cvP7CPj9+AOB0VsgEMQfzHN/H64M+P3+KW9SYZib5L8ihBBCCDGHjK0AzITWGku7k38TtiZha5J2iqSdJOnESfRpknFN0nZI2poeB5IoUlqRdCDpQMLRJJ3hbSyHhGWTtGwSlo1pKHxeL36fd0ylYUzgP1xh8AUCBIJ5+Px+fD4fvuHtRu57vd5xf3o8HrxeLx6PB8OQhTDTJUG9EEIIIcQ8opTCq8BrmIQzvObWSIVhpEKQGAn87QGSTh/JhCY5qEnabqVg0NbENaS0IoUi5UBSu6sLW477M+U4pGxNynZI2TaWo7FsG8t2MA2FxzTxmCbm6E/DfczjwRx+3BzzvGGamB4PHtNkYWUV//6lf8H0eDBND6bHxPS4FQbT48Ezcn/4eOfeTNOktraWSCSS2Qs5CySoF0IIIYQQaRlbYZhg+kDGaK2xNW6QP3zfcdxKhe1obK2xtY2tLWzHXYnY0e5POwV2UpO0F7Kk66j7+PA+I9skNQw6YAM2CgewtXKPr8HS0NQ7xC13vpG3vOUts/vHZoAE9TnIchx+dqo328WYN4oLbLmeGSTXM7PkemaWXM/MkuuZeXJNM6vY0XQOOuM8M/6aAqbSmGOe6jI0WuvZKVyGqVwp6FyyYcMGvXPnzqyce3BwkCeffFJy3WZQMpmU65lBcj0zS65nZsn1zCy5npkn1zSzMnE9169fT3l5eYZKND1KqV1a6w3pbCst9TkmGAxSUFDApk2bsl2UeWPLli1yPTNIrmdmyfXMLLmemSXXM/PkmmbWpXQ9ZUqxEEIIIYQQOU6CeiGEEEIIIXKcBPVCCCGEEELkOAnqhRBCCCGEyHEyUVaIOWzz5s3U1dVluxjTEovF2Lp1a7aLcVG1tLQAzEp2hEvxes6m2b6elZWV3HfffbN2fCGEmIgE9ULMYXV1ddTV1VFZWZntoohJJBKJbBdBzAG5VgEXQswvEtQLMcdVVlbywAMPZLsYabuU0oeNePDBBwFm5f90KV7P2TSb13PkdSCEENkgY+qFEEIIIYTIcRLUCyGEEEIIkeMkqBdCCCGEECLHSVAvhBBCCCFEjpOgXgghhBBCiBwnQb0QQgghhBA5ToL6S4S2Uuj2erRtZbso4iLSWme7CDlDpxI4Lz6E/eg30W2ns10cIWZMH9+N88wP0fGObBdFCHERSVCfYzZv3swLL7ww7f2cn/4Tzrc/i/Pwv81CqcTF4Lz4MM6v/gMda09v+0e+ivMvH8Z56ZezXLL5wfn5v6JffBgOvojz2LeyXZx5QacSGa1Y6paT6Fhb+ttbKZztv8bZ+0zGyjDX6b4YzsNfQe96Aufx/5rdcyWHwEqiHXtWz5NpuqMB55Gvz9vXhXPwJZznf4Ye7Mt2UeYMnUriPP1dnCf/B50YTHu/zZs3s3nz5lksWWbJ4lM5pq6ujlgsNq19tNbQcsL9pen4+Ns4DvrXX0c3HEbddi/Gyo0XWtRZ5ex/HjqbUBvuROXlj79NeyO67lWMlRtR+dGLXMLM0o1H0S8+5P6iDNQbPjL59olB9OEd7v1Xt8J1vzu75UsOQbwTVbJoVs8zq7pbz9wP5/brZS5wdj2OfuZHUFGN8fZPoszpf91o7aAPbUf5g+i+bvRT3wbTg/HuB1Ali6fef+dj6Bd+4d7PK0Atv3LaZZgN+sgOnIPbwLFRl12HserazB3c4wWvH5KDqGD4gg7l7HgUfWQHxjWvR9Vec9ZzWjs43/9bCNTgPPI1VDgKviDq+t9FGeYFnXe2Ob/5DjQehcPb0FVrUQXF2S5SxujWU+hHv+H+0teDuuP92S3QHKEPvIDe/bT7S0EJ6to3pLVfrq0SLUH9JUAphbr9fvT+51HrNuE8uRl9eDvqujdibLjT3SjWhj4yHAS+/BSkEdTrtjqcn38J/EGMe/4PKr9oNv+MM+dtrUM//p/uLwNx1J0fPH+b9gb0tz8LaJzdT2P+/t9dlLLNmoJi8AUhOQhpBM7KH0Rdfgv6yA7Ulb8zq0XTqSTOdz4HsVbUVbcD5bN6vtlivP6DOLueRBUvRF3/pmwXJ23OE/+NProLdcObMWbwv9ZdzW5FMbogo+UaqVTSfALinTCD4+tXnkZv+T4aoHq9+6BtQawN0gjq8frHv59FeiCO88jXYLgHQ596FV11OSqQl5Hjq0AI495Po1tPgenB+fU3UOtvQy1cPr1yJofQW38CgPPsTzDPCepJJaCzCRbVQP0h9FC/+3h0AWr19Rn4S2aPipajG49CXgH4M3Pd5wyvH5QB2gF/MNulmTNUtBytFGiNKqpIf0criR7sQ3e3ZvwzcjZIUH+JMFbfAKtvcMcNP/JVYDh4HwnqIyWwqBaajqb9gawPbYf+GPTH0Cf3odbdev42/T3onY9B6RK3DJngC4BhgmPDBC1RuvEIMNztP/JlMwnd1YKuP4RacRUqryAz5cwglV+Ecf/noLcbwoVuS1N5Fcaamybcx7j9frj9/tkv3EAcYm4rt246BgtzM6hXS1djLl2d8eNqK4Xe9yyqoBhVsz69fRKD0FYH5dWTbzc04PbEAPrlJ2GaQb0+sQfnF18Gw8B465+hFtdOa//JGBvuxHn2R6glq6CwbGYHsZKjd1X1FW6QEoqcCfAnoB0H/eT/oNvrUdffjSpfhqrM/P92Rjw+CIRgZGhEuBC8voyeQhUvhEgpzlc+CraFbj6O+cEvTO8gXj8sXA5Nx1BLLzv/HL4g6rXvhRMtsOYm2PU4oFAFF6dx50Ko174XtXIjFC9EzbPAVxVVYLzjU+hYq/s3Zpju64b2Blh62Yx637JFLV2Fcd/n3N6x0iVp76fb68GycH76TznROJg7/xGREcrrR626Fn14B+rym888bnow3/FJtGOn3XWqVl6DPvACeAOoZZePu43e8kP04W3u/dIl03ozTXje6AKMe/8C3d2CWnH1BGXbiD74EvR2oV73vimP6fzg8zDUhz70EuY7PuWWt+kYzi//HfIKMN76cVRw/GE+F4vKL4L8IuyHvgzHd8Me0OXV7hf4NOjuVvAFUKFIZsoVKUHd+HvougMYN9wNx5pnfCxtpaCnHYrKUWp+TPnRL/zCHQYCGO/887RaTJ0f/R2018PSy6Bkw4TbqUAeLL8Kjr+CWnPj9MvWXg9ocGx0Z+OkQb22LfSe30IwH+Oy66Y8tqrdgFk7cdnToa5+ndvq6A9grLsF1t2S3o7Nx9H7nwNA50cx5lDPi/IFMN79ALrpOHj8qIXVsxMcmR7IL3J7NQpLp19OpTDe9gno64aCknG3MdbdCl1bMG/dhK65wv0uWFB5oSWfdcowYa5U8mZD+TKUUm6lOIOvLZ0ccntlB+Koy65Dvf5DGTv2xTDd70pgtG0Q7WS0LLNFgvpLkHHXh9Gv/5D7pgecfVuhqwl1zV0Tjk8fj1pQhfkH/zz5RnnDLemmxx0+kiFqQeWkXx4qGMa899NpHk2DnXLvphJnHj34IvT3QH8P+vTBKVs9tJWCxEDGguWzjn1iD/rUq6j1r0GFo+7njNc/7a5j5+BL6Ee/CV6fOy55Ot2QkzCufSNc+0b3lxkE9To5hPPQl6HpGNgW6rLrUa///YyULddo7UDX8DXsaJw0qAcw3/THaO1MWglyXnwI3d6AcdM9qKIzPSnqitugqwVMD2qKnjS949Ez49P9eajqdWn+RTOnTA/qmjuntY+Od6LrD0GoEPpjqKq1s1O4C6AKSlATBMoZO4dSGPd+GppPwpKVMzuG6YFIehUCtXhm55iIdhz0vmfc1+aam0a/r8TU9BP/5Ta4FS7AuP9zmas0JodgoNc9R5oJG3KdKl2MHuzDuOf/ZLsoaZGg/hI18gGpm0+gn/xv98GhftQdH8jseW55OyxcjiqqQEUm/hLTg33QegoWrUBd9LGvCuMtH3OHEI1p7VQrN7pDjEIRdwjBJPRQP853Pwc9HajfeQ/GFbeNv53W7jj3QAhVuSa94jk2zsNfcVtTm09ivPNTqKWr3a7jcGHafyUAzccB7VZeOhogQ0H9Bas/5N6G6YbDWSxMZqkb3gzhqDv8ZkwrvY53ukF75eqzvnSVMjBe/yGcQ9vcltBTU6clnCyg180n3Kw+gINbCRjdLxCasvKkG46g6w6gRyq+AObcnQjp/PxfobMR8gpQH/oHjIs0Sd555TfuOHbHwX7k6xh3fSjrgagK5qMdC+d/PoNaXIu64/2Tv1aO7MR58SHUsnUYt7ztIpZ0nLLs+S36t99zfzG9qDR6h4RrNCVvrM2dh5WhXmYVLkTd+QGo24/a8PqMHHPO8/rdEQ5z5btyChLUX+oCeWPGp2d+eIkyPVO3cGuN88MvuK2TlWswz6kR61OvouMdqNU3ojzejJcRQC1agVq04uzHFq/E/OMvp3eArmbocYMvfXIfTBTUv/IUessP0IC65+MY6XQBK+WOJR7sg1CBGwCuuCq9cp17qA13ouOd7ryBmullAtFdzei9z6Cq17mVikyqqHZbBIcnVBo3vSWzx88i5fGirnrtWY/poX63G3uoz22FHJOhwnn5SfTWn7jj7yvXwKmz0+7p9gaId0D1uvSGKBUUu2O4h/pRpWlMLh17ruQgzs/+2e3Gr6hB3X4/KhhOv0KaDSPd5I6NCs9Cr1lyyO1RqqhGDfeU6eQQ+rffh+RwT9/hbejCUtSNv5fx80+Xs+MxiHegD3SgNt51XkVe2xYkh1DBMM6LD0FnE7qzCX3162al1zFtxpjXdgaz6eiT+9DHXkGtuzUnhgrNhPGad+Ps+DWq+oqMDxsdmZ8n5qasB/VKqWLgN8O/lgM2MNKvs1FrnRx3x/GP9RzwUa317jS3/yfgDuCXwHbggNb60OR7zS8qWo7xrr9wa/TLZxYoXjDHdsdRA3S3nPWUbjmF87N/ATTE2lFpth7pjgY3yE438LlQ5dWoNTei2+sxNt41cbkG4mfu73oivXGdysB411+im0+4kwXPPWZvN84T/wneAMYdH5h04pcqKMZ8859Ofc5xOI98Ddrr0Xu2YPzRv2a0R0XlFWB84G/BcXJq8tWMJQZHJ3Cfu0CQ3rPFndx4ZCfqNb1nP9fdgvO9B90hSte+Ma2gUYUi7gSx3i5UxeQTb8/f2XBb5S3A48W4PM0x7ZPQsTb0wRdRy65AlVdd8PHOZdz9J252r+orZuW97/zsn92gvnQJ5ns/6z7o9UHZUjh0ZHQ77cyNMbhq5TXo5uOwYNl5Y+N1chDne38DXc2o296Fqr4C3dkEFTWz0sgzLSuvgYPbwOMZ93NvJnQq6a7VYlvoxiOY7/vrCzveQO+ZRBBzqCdBLa7FzOCkd5E7sv7tqbXuBNYDKKU+C/Rprf9hts+r3H7R3weKtdYppdR3cHunL6mgHkCVVULZmRYLHe9ENx5FLVuXsTRrk57f9Ljj/I/scMf4juXYjM5USXOBEx1rw/nucOBzzV2om++ZVnl0bzd62y+hZDHG+tektY8yjLSGLqnVN6K3/9r9JTF1Vp7R/SKlqAnGtuq9v4W6A+79qrXjZiHKCHO4l8S20F3NqAVVGT28UgaY0wvCdGLQzXJipzBuv39OZi4aj4qUuBO4Gw67radjn7viNvTzP0NVrz8/sBrsc1M6gjuBMd3zhQvdLCvTLafXj/H2T6Ebj6BWnpOn/NSrEC5MK1/8WM7DX4GOBvTLT2L8wb9kvBKnogtQGVqXQZ/chz60DbX2pjND8EbWM+huRWvtpgxWBsY7PgVHPgf9cdTGW1Ejc0yyzLjqdvTlt7hZd1rrcHY+BsvWupmzultH52/oE7sx7/k4+qrbIZiPMrI8UX3PM9B01C3bgRdQV2y68GOappvGsrdrRu+Hc+ktP0Afesm9X7IoI4kghLgQai4tI39uUK+U+r/AfcNPf01r/WWl1HLgIeBl3MrAQeB+rfXgeC31SikP8EXgJiAAfElr/U2l1K9xW+n3AT8FPgb0DN/erLU+NVE5N2zYoHfu3Jm5P3wa3vWud2XlvCK7vve97034nD71Ks4vvuQuyvPOP59euq6hAfThbaiKGlTZ0km3dbb9Cv38zwF3nLgxQeC0ZcsWNm3alHYZLoSz+2n00991y3T93WdlOdFDA5NWSnUqifOrf4fuNow7PzDtPN5jPfjggwA88MADMz7GRM69ns7up6GrBXXdG7NWiXF2PIbe+mMwTIz3fGZagb393c9Bax0Ewxgf+eeLHjym+/rUWuP82x+780/yCkaTAui6A+hXt7rZP85pQZbPZyHmp8m+g2ebUmqX1jqtVGJZb6mfiFJqI/BuYCNgAtuVUs8AA8Bq4INa65eUUpuBjwD/MsGhPgy0aa03KqX8wEtKqSeANwEdWuuRXoKVwE+01r+YoDwfHj4WCxYsYMuWLRn6S4WY2pSvt6rXupkJdu6G4PirBo+ru9Xd7/Bpd9x1frE7hn88dgAqX+N2nPQHYLwyDcTpS+nZeX/YKXds7dghFZYFi28FNPT6zpQp3gGD/e5chLwCd22DcyUHIRmFUBR27IZIw4yLNrLK82z83X19fecc1wBjIWx/OePnGpedAtTZqfF6B2DR8FCcl18F37H0j1dxI0SvBH8Ann128m37Y262jWD++S2rtuXexvvfTuL86zmJhTeBlXIzTY3dJ7QSTnfD6TSPI4TIabkS883ZoB64Gfip1noAQCn1C9zW9ieAk1rrl4a3+w5usD1RUP864DKl1DuHf48AK4Cm6RRGa/114OvgttRfrJbIc23dupVYLMY//uM/TriN7ukA9ITDNaai6/ajj+9GXX7rtCfWjR4jlUQ//R300ADG77xn+llazj1ea527ElwaY3Cd53/hDp8xvWdSVS5cjvnOPx93+3Nb7rR24OQ+KCwbnfGum465uezHKqvEfM9nzj73sz92x1gC6o73T7o4lHYc9KPfQDefwHjNu8dNETjSAjzZ6033deN8/c/cX4oXYt7/4ITbnsv+ykfd8d3D1Ovej7F24jJPxtn7DPrlh9i66BZuWRo+b3VTrbU7dyK/aNpDLpwXH0a/+BCEoxj3/T9UIHTmuP097qTI/KLR4RD2l//orPSk6vo3YVx/99nlGezF+d7fQm8nxl0fRl1ATvWtW7dCcoib9/8ETC/GOz511uqDzv7noOUUauNd0155+UJ6PrRtXdDwFn18N85D/+YuTvW2T4xOJtcDve7/I78IY+P0Uk5Oh/2lPxzNtW3+r6+dKVdvN85/fsoN6tdtwnzte9M+5nSupx7sczNGLapNa5GirVvdhcAm67Fxnvvp6BA89br3Yay9ecJtx2N/96+h9SRUVGPe+xdnPzeyhoU/D+NDX0Sdk0ZY2xY0HkE3HnP/f5FSt6flAlZVnenrU6cSOF/9mPs+La/GfNdfTL3TGM6BF9GPfRMA4y0fY7zUpfroyzi//hoUVWC8/ZOT/g91e4ObwcyxUbe8HWPDHdMqTyZdzN7OS8GFXM90voPnkrkc1E+WC+zcMUOTjSFSwB9prX9z1oPusJx5R9cfwvnpP4HWGPd8bEZZSlTlmgvObqGP7EDvf969H12Q9gTXcY91cp+bpg6NcfefTL0qZ0+b+9NOuYuv9HahppGnWSkDzulW12WVsGyduyz6klXQ035ekAig1r/GXcXSn4c6d1n1c3XUow9vB8DZ9TjmTPN+hwpRtRvQJ/aePydhKotWwonh0WqGB1U28zGhKhA680YcE3SDu+CV88JDcHgbVFRjvPPT00r3p4fH1tLX7Y6HHXN8FYqgB3qx//svoa8b400fRd1wN3rnE25LL7hZdc4tbzAf4/1/4869GF7R012J9L/R7Q2oDXe4Ey7LKtNavEgP9g1XkAbRdftHg3rd2YR+/L/c+33dmHf/yZTHcpKD8NIjo4sG6eQgzq+/AUP9GHd+EDXFCq3aSuH8+IvQctJNsbpu05TnHPc4bac5a3Gq4aBe5eWjfuc90zuWdtCPfQvdcARj072oNDI4qctvRu/+LWrt2RN0df2hM3MLju+GaQT106GC4fM+CyaiB/vQsTaYIkOXKl/mLldveFCl7pA35+BL6JefRF12HcZVt09+ou7hNQy6Ws5/bmSV2lTizPUZe27TA0tXo5auRq+9CQLh0df+xaa8fox7Pu6+V9bMIJvKmDklui+GYrjhIN7pzvUwPTgHX3SvQ3u9O+Rr6cSpiVXpYoz3fhb6e8ZdQVeIXDCXA9tnga8ppf4ed/jN3cA7hp9bppS6Rmu9A7gXeG6S4zwO/JFS6hmttTU8zOY0kDpnu14gy9P9L5xuOz06oVS3ns586sE0qdIlaNPrBkzTzbhxDh1rY6TepmOtk9b2ANTNb3WHChQvcidX9fdMGQRNen6t0b/4Epw+gNpw56T5m1VB8XkpOScULYfSJdDeMHUFYBJKKdQb/xDddAzd3TKt1lnjjX8AJ/eiAyFU4QLUBeT0VrUbMN7yMThSf1YmCPvAizDcogZA8wk36Bhn2IRuq3MX2Vp17VmL8xg33oPjOKjyZePPGWg8cmbC36FtGK97H1x9B86ux6G7FXXd+EG53vUExFrh+rvd3qTm42cqo1u+DwO96OO70cvWjdtLpFNJaDgMtu2Oby/KB48XtXxMulB/0B2+kUqk3WOlv/25M5XTtW9FH30ZTuwBwPnRF93AfrLAo7vVvc6APrgNZhjUq/Wvca+P6UVddv2MjjG2TPqg28Hq7HwMM42g3rjtXehN955XAVRLV6FNjxuwhSJuRTrLkxT1Cz+HXjfQ1PWHJlzbQi2/CuP9n3ezuoTd95t+9kfuInetdegrbpv0/Wvc9RF34ug4Kwgbd34Qvftp1NLLpkxlON0eo9mgFtagFtZMax/ddAznV191h2Nd+Vq3AWW1+9rUT21G73sWFi7HeMenMNbditN0DIoXQsWyqctTvNDdVogcNWeDeq31dqXU94Edww/9h9Z63/BE2f3Ah5RS38LNVvP1Mbs+rpQaCdi3Au8BlgK7h78Y2nArNvBaAQAAIABJREFUCOcG9d/HrUR8nCkmys5lau1NbouE1qgMpJ+bcTnKlmJ88PNgpS4ooAZQa292h21ojZoiOHFe+Q36ladQa28+0316gecnMQinh7PLHN0FM+h10FYK55GvQkcDxu3vc790vX6M9/wVWMkLTg+pO5twfvh3bo7u9gbUpndOvRNuDnVWXD1lRSldqmrt+YslPfeTM/cLSlBX3IYaL6C3LZwf/z0kBtFHdmG+5zPo3i7oi6EqqjHf9omJT7xklZuyr6/rrGDHuHriLnRdf9id7AluKs073u+2oI7uPPzxGAjDBJUd51f/Dif3odvcCof5vs+ct40KRzHe/Rm3lyeN3hitnTMBPYAyUAtr0L6gOw+grxvn2R9hvuevJj5IcYXbe9N4bOqW30moYDhzS8EXlEB5tdt7MMXaFWeVYZweHRWOYrz/b3G+8/+grQ7nh1/A+MAXprUidsblDed0V0AwPOmmqvDsoZFq6WVuhWdx7aQBvR4aQPd2oa59w7iVGFVYlvZ7P1fpV59zW+n7ujGuueusHh9dt9+903TMrURXrZ161fNMlevIDnTTcdTVr5sTFSZxaZpTQb3W+rPn/P5F3Mw157K11h8eZ/+JBgN/avh2rtFmM631s0BO9bnpgTjOE//trsRqGG6O8qWrUXe5X8LO3mfQA3H3Q+air9LKaCvUBR/H60v7i0q/8HM3KHz+5+hrXp+RFR1VIM9dtOnormmlytNNx9EndrstnIN97jABwHnlKczhVlallNuKe6GsJKOL7iSHLvx4adJWCkxz8nzgI0MCDA/G+/56igXEhv9fSqHjnTib/wqSg6ib3oKx8Q0T7xUIYb77L6dX+HDE7dGxLRhe7VgFwmi3I99N6Xr5ze4cgIkW4RlZKt1OMdkoQFVUDkXlaRVLKQNueivsfgpqrwH8qGg56gOfR//g8xBrRS1cMfkxDBP1xj9M63wXi/J4Me79tFvRz8CQD1VQDN6gm+8/OYTz2Lcw3/K/M1DS8WnHcYdj5RehxskBrq57I+qXz4PpmTIbkD66C+fRb0LpYoy3/hnqzg+irn/zhJXHEc6j33B71nwBjA/9/QWNhc9VauU17rDFcCGcu2DgzW9F73gUVXvNuA0Hs0X3tOP86muARne3YP7e7L0OLxZ9dJe7qvUVm7LW4y+mb04F9WJ69J4to13y4LZSm8NvPn1iL/qpze4Tdgp14/xZoXMyavlV7vCJ5VdmdIl245a3TauFXju2u0hNctBdvfANf+AON0kOoVbMfELmRNSCKtRdH3YXkbnqdRk//nj0kZ04v/46FBRj3PsXqGAY3d163lhedccH0PtfwFh3y6QBvTI9GG//v+4Y25Ub3cXDksOTeNtnnplmwvNFy90xtL1dMPqlpd1FhLw+uOVtU06ONO74gDvcof3o2Vl5LpC58fWwcXgZ9uGsC0ZePvq9f+WOGc6RJcvP5VZi0wvoncPboe202ygxQepOdfcfob/3N+6QQz27iz3plx5Gv/RLNArj3Q+ctxqpUsaULfQjnP3PuxXx5hPu37hoxej8iUmNTP62rbTX7RhLWymoPwSlSy44eUG2qMo1GB/9t3EbEoyVG2EavUAZ4/W7r+tUIuMruGaDdhz3s922cJqOY35k4sQcYm7JuaBea32M4cWqLjW6t8sNmrT7b1MV1aOtiijj7C7tMa0U2kqNZgWZ74w7PoC+5e3nTdQcSx/fjXPsZZQ/hFo1S18AI8FLctD9ufOx0Rb0Cxm3Phlj1bWzctyJ6KM73cAi1gatp9CGB+en/wiLbkKf3IdadvmZcqVZNlW65Mywgvwi1HW/i+5sSmvl1AnLaVvu0K1xKhSqqOKsAFm/9Etoq3Ofazk55Yq/o2OCd6WfcehCKK//khjzqzub0I8MZ7uJd6Le8JFxtzPKKrGvuh1O7kNNMtTqvOO3nkKfPuTmmk83uB3NEqUvuDfMuPwWnMaj7pyassqpdxjZ7/W/j967BbVk1YyCR/3Yt9BHdkCoEOMDn8/aJNkLdVFWCZ8GlVfgrvrdXo/K1srsGaQMAwoXQGcjFOdmA8KlKueC+kuZs+UH0BcD//DEsKq1GL//BbQyUMH8s4IWtbgW9Zb/jX5yM+x6Am2lpp2tIlepSVrL9GAfzi//3c3mAeh9z8DamWfmmbAMysB4+yfRpw+ill85OvkSr/+8pdpzkT71Krq3280BX1YJi2rdCWraAQ26o2E0qL8Qxg1vvrBydjTi/PAL4NjuMIepJm0vXA6Htrnj6NMcLiNmgcd3ZmjUZAuI9Xa7FWZAv/ALqFrjDjvc9QRqzQ3jD9nSGudHX4RUAn1iD+Y7PplWkdQNb3YnPReUTCub1rjHqlmP+cdfnv5++UUX1OuqR+ZqDPSAlUi710RMTRUvdCfazhPGOz/lDu2tmN5EZpFdEtTnkLPGqA+3RKuCkgknOaqyKneiIaAbDs9y6XKExwu+IAz1zfqpVHTBaFpDtfEu9OKVkB+dF5OonMf/E/p73BVF3/ynbsvO2pvc1HGJEGrdrdkuIgD69EFIDLj3T+2bMqg31r8GXbkGAqFJK4didqlICcY7/9ztpZksM1QgD8JR6OtGDbco6ud/BoN96Od+jt5wJ8owJzlT+iuqK3/QDexzmHH7+9C7Hoeqy+fFMBExe5Q/b8ywRJErJKjPIerWt1O1r4mG3sG0AkOVl4+66R70iT0Y177xIpRw7lNeP8a7/hLn1KuooT5U1eVw6NTFOfc0U7fNaSVL3KC+eKEb0APKF0Dd8X7YsmXOTOAbnVRnW6jV6eXCHrtolMgetaAKtaBq8m1GMkh1No5OmlTV69H7n4Nll48f0CuF8bZPuL1oqy8wTWeOUWVLM5fNSIhLQGVl+sPj5gIJ6nOIMkzu+9OPT2u5YmPjXbDxrtkrVA5ShaWY68cs0nSRgvr5xLj7o9ByEi5gsaqLQYUimPd+OtvFELNI5eVD3pmc8MYd70fffM+kk1ZV+TJU+dR5y4UQl7b77rsv20WYFgnqhRDTpjxeGCetnxBzwUTZcoQQYj6bW1PIhRBCCCGEENMmQb0QQgghhBA5ToJ6IYQQQgghcpwE9UIIIYQQQuQ4CeqFEEIIIYTIcRLUCyGEEEIIkeMkpaUQc1xdXR0PPvhgtouRtlgsxtatW7NdjIuqrq4OYFb+T5fi9ZxNs3k96+rqcm6xGiHE/CFBvRBzmAQIucHv92e7CGIOqKyslPesECJrJKgXYg7LtdXsALZs2cKmTZuyXYx5Q65nZsn1FELMVzKmXgghhBBCiBwnQb0QQgghhBA5ToJ6IYQQQgghcpwE9UIIIYQQQuQ4CeqFEEIIIYTIcRLUCyGEEEIIkeMkqBdCCCGEECLHSVAvhBBCCCFEjpOgXgghhBBCiBwnQb0QQgghhBA5ToJ6IYQQQgghcpwE9UIIIYQQQuQ4CeqFEEIIIYTIcRLUCyGEEEIIkeMkqBdCCCGEECLHebJdACGEyHXJZJL29nY6Ojro6ekhHo/T3R2jOxYj3hMnmUqRGr5ZloVlpfB4vPh8vtGb3++nsDBCWWkJxcXFFBUVUVRUhNY623+eEEKIHCBBvRBCpMGyLFpaWmhqaqKhoYGGxmZaWlro7GhnYGCAUDhCIC+MxxvE8ATweAN4/Xl4goUEwiZBw4NhGBiGB2UYaMfBcSxs28KxLRJ2ivq2QU7UH8e29pFKDDA00Mt1113Dn/6vj7FkyRKql1WxdOkSqqqqKCkpQSmV7csihBBijpCgXgghxrAsi+bmZurr66mvr+fkqTqampro7uoiFC4gLxzFG4jgzysgXLaW0qoCfIEQSs3OaMZwMMaSlbfS39vF9j0neO7Fl4nH2vB4TGpra1m7ZjUrV65k6dKlGIaMqBRCiEuVBPVCiEtSIpGgqamJxsZGGhoaqTtdT1NTI11dnYTCEUL5RXgDEYLhMpasWkltXiGGaV78gioIFZQQKigZfUhrzdBAnHh3M089s5NfPPQrhgb7WbnqMq6+aj3r1q1jwYIFF7+sQgghskaCeiHEeWzbZnBwkKGhodFbIpEYfV4pNTr0w+v1jo4J9/l8OI6DZVl4PNn9eEkmk8RiMbq7u+ns7KSlpYXGpmZaWlrp6GhnYKCf/IIigqFCvIECgqFiFtcuZ0Uomp3gfRqUUgRDEYKhCLAKgGRigFhHA48//RI/+OGPCQYCrLtiHRuuvoo1a9bg9/uzW2ghhBCzSoJ6IS5BI+PD6+vraWlpoa29g/b2Drq6OonFYiSGhvD6fHi9PjweH6bXi2l4QCkYM3FTo3FsG8d2x4ZbVoqbb7qB+++/H9M08fkC+AMBAsO3YCBAMBgkmBcklBckLy8Pn883WjEYuW8YxmjFYeRm2zaWZY2ZbGoxMDBAb28ffX199Pb109/fTzweJx7vIZlIEAyFCQTD+PwhPL4w/rwCQqVrKK4swD+LQ2aywefPo2xRLWWLatFaM9Dbxanm0+z/9o/o6W5l+YoVXLvxGq688kpKSkqmPqAQQoicIkG9EPNcKpXi5MmTHDlyhGPHT3D69Gna29sIhQrIyy/G68/HFwjjCyymvHoVlcEwHm9gxpMwQ3kxbrjzD9xJoFYK20piW0ksK4Vtpei1ksS6U9jtvTh2F9qx0do+6yfo4bqDW4HQWqOUMRzsm6AMlDJQhhfT68Pj8ePxlhCILiK8IMgyfwiPb+Z/Q65TShEqKCZUUAxciZVK0N1Rz+O/eYnv/+CHFEYK2XDN1Vx91VWsWLFCxuILIcQ8IEG9EPPMwMAAhw4d4uDBQxw4cJCGhnrCBVFCBWUEwyUsWHYDy9ZFMU3vrJVBKYVpet1z+PNm7TwiPR6vn9KK5ZRWLGeZduiNtbH3YB3PPb+NxGAf6664gms2XM3atWspKCjIdnGFEELMgAT1QuQ4y7I4evQo+/bt45Xde2hqbKSwuIJgfhn5Jau5esVteDy+bBdTzBFKGRREyymIlgPXMjTYS0dbHT/++aN87evfoLy8gg1XX8n69eupqamRVnwhhMgREtQLkWO01jQ3N7Nnzx5efmU3R48cIVxQRLiwgoKytWxYeTumKW9tkZ5AMJ+KyrVQuRbHtol3N7Nz7yl++8zzDA70Ulu7kvVXXM6aNWtYvHixBPlCCDFHyTe/EDkgHo9z4MABdu/ew569e0mlLKIlSwgXLebKW67B6wtku4hiHjBMk8KSxRSWLAbcjDo9nY08vfUVfvHQr7CsJKtWrWLtmtXU1tZSWVmZ9SxHQgghXPJpLMQcNDg4yKFDh9i7bx979+yjs7ODaMki8iIV1Fx+B8Fw9JKdBCouHp8/j9KFKyhduAKAocFe4l1NPL31FX75yOP098VYuqSS1WsuY8Xy5dTU1BCNRrNcaiGEuDRJUC9ElmmtaWlp4ejRoxw8dJjDhw/T2dFBYVE5eZFySqs2suyKMgxjbudOF/NfIJhPYNFKWLQSACuVoDfWyp6DTWzfuY9YVys+r4eqZdWsWrmC6upqqqqqiEQiWS65EELMfxLUC3ER9ff309DQQH19PSdP1VFXd5qmxgZMj4+CaDmBcAkLll1P9RUlEsSLOc/j9RMtXUq0dCngVlATg7309rTx0svH2LJ1Oz3drfh9PpYsraR2RQ3Lli2jqqqKkpIS6W0SQogMkqBeiAtgWRbJZJJEIkFfX9/obWQRpNbWdtra2+no6CDW3YXjOOQXlhAMRfEFCwkVX8a6qhvxSdpHMQ8opQjkFRDIK4CK5cCZQL8v3s6uV+t5cfteenvacGybxUuWUFNTTU11NcuWLaOiokIm4gohxAxJUC8uKalUio6OjuFVR+P09fXR09PD5s3fZnBwkMGhBImEe0smEqSGVy51VzNNYVs2KSuFlUphWSm01ng8XjxeHz5/AK8vgMcbwDR9KNOHLxDGH1xERc1KqoL5eLx+aZ0Ul5SxgX5Jec3o48nEAP3xDg6d7GDv/qfo62lnaKifxYuWULO8huU11dTU1EigL4QQaZKgXsxLg4ODnDhxgrq6Ohobm2lsaqKttZXe3h6CoXz8/hBeXwDTG2D92uUcOhVzF0vy5GEYBRghD3kFHgzDxDBMlGFgqOGf5vDjpsdd1VSCdCGmzefPwzdm6A6AlRqir6eDY/Xt7D/0NL09PyCZGGLp0kpW1q5gxYrlrFixQibjCiHEOCSoFzlPa01jYyOHDx/m0OEjHD16jK6uDiLRMoKhInzBCIH8amrKr8QfzD9vrLovEGNx9ZVZKr0QYoTHGzgrpSZAKjlIb6yNfUdb2fnKAXq6W/D5fNTULGf1ZStZsWIFVVVV+HyywJoQ4tImQb3ISfF4nFdffZVXXtnN3n37cByIFC8kGC5l4fIbWZ5fLBNNhZgHvL4gRWWVFJVVAm4lfmggTm+slWde2Mejj/+GeE8nFRWLWH3ZSlauXEltbS1FRUVZLrkQQlxcEtSLnDDSGr9jxw5e2raDlpZmikoWESpcRO36NxAIRWQYjBCXAKUUwVCEYCgCi2oBsK0UfT1tHDrVyu5XHyHW+U38fh8rVqxg9WWrZKEsIcQlQT7hxJzlOA7Hjh1j2/btbN+2g6FEgmhpFYXll7Nk9R3SEi+EAMD0eIkULyJSvAgYac3vId7dcmahrN4Yixcv4eqrr2T79u0yNl8IMe9IUC/mlGQyyf79+9m2bTu7Xn4ZjzdApKSSJas2ESqQvNZCiKm5rfmFBEOFwCoArFSS3lgrgwmL7//oYXq6WvD7/VTX1HDZqlqWL1/OsmXL8Pv92S28EELMkAT1Ius6OzvZt28fO3bu4sD+/eRHSsgvWsqqq9/kdrELIcQF8nh9REuX4PPHWLH+zjFj81t49sVXeeyJ3xLv6aCsdAEralewsnYFNTU1LFq0SFJqCiFyggT14qIbGBjgyJEj7N69h9279xCPx4mWLiFUuJArbnqnLMQkhJh1Z4/NXwmAY1v0xTs43drK0RPP0tfzEwYH+1iy5ExKzZqaGlkNVwgxJ0lQf4nRWmPbNrZtY5ompmnO2peT1pr+/n4aGho4ceIER44c48TJE/TEYkSKFhCKVFCx/EZWREpRSlrChBDZZZgeCqLlFETLRx9LJYfo62njwPE2Xtl7mJ7uVhRQVVXFypUrWL7cDfQLCgqyV3AhhECC+nmjp6eH06dP09DQQHt7B52dXXR1dxPv6aG3N04qlcJxHLR2MAwDZRhoR6O1xuv14vX68Pq8+P0BgsEgwWCQUChEKJRHOJSH3+/H5/Ph9Xrx+Xx4PB5s2yaVSpFKpbAsi0QiQWdnF+0dnXR2dtIT60YpRbigiGB+CXnhEpasvI2V4ShKurOFEDnA6wsQHbNIltaa5FA/vT1t7NxXx/MvvUysq5VgMEh1dTWrVtZSU1PDsmXLCAaDWS69EOJSIkF9jkomk/z4Jz/h2LETNDTUk0qliBSW4s8rxOML4wuECRaVUVARwufPwzQ9w4G0Oqtl3nFsHNvGcSwcO4VlpbCtJHYqSTyZpHsgidXciWNboG20dtCODdoGZaAMEzBQw6utev15+MPLWFJ6OcsDYTxemXQmhJg/lFL4g2H8wTAl5dXAcLad/h56e1rZuu0AT/zmWXq624hGi6ipqaF2eNhOZWWlLJIlhJg1EtTnqM7OTn7zm6epXr2J1ddcjS8QntEwGsMwh1NDyheNEELMhFKKYLiQYLgQGB6f79gM9HXTEWuj/tmX+eUjj9Pb00VxSSnVy5axfHk11dXVLFmyhLw8mUckhLhwEtTnMK8vQNGCqmwXQwghxDkMwyRcUEK4oGT0Mce2GejrpL2nndNbX+GRR58iHusgnF/A4sWLqamuorKykkWLFrFgwQJp1RdCTIsE9UIIIcRFYJgm4UgZ4UjZ6GNaOwz1x+nv7eSV/Y1s27Wfgd5u+vt6yC+IUF5ezpLFi1i4sIKSkpLRWygUyuJfIoSYiySoF0IIIbJEKePM0J2KmtHHHcdmaCDOYH+Mo/UxDhxrxkr0MzTYy0BfD8owiEQKKSgooDASIRqNEo1GKCgoGE5y4N7y8vLIy8sjGAzi8XgkFacQ85gE9UIIIcQcYxgmeeEoeeHoec9prbGtBInBflLJQXoTA3Q19mOd7MCxEzhWEstKYlsJUskEycQQqVQCAK/Pj98/cgvg9/sJBgIEAgECwQB5weBwRcDNghYIuBnRRioHI7dAICCLcgkxx0hQL4QQQuQQpRQebwCPNzCt/RzHxrZS2Lab5cyxrdHf46kU3UMp7PZebKsT7VjDt5S7jZXESiVIpdxKgmVZ+P1+Nm3axCc+8UnyQiHC4TAF+WHy8/PJzw8TDofP6i0IhUKjFQSPR8IPITJN3lVCCCHEJcAwTAyfiZfpVQbGox0Hy0rgzxugpHIjVirBQCpBvCOB1dyKbdUPVwgSoxUCK5UkmRwimUhgmia+kV6DgJ+AP4g/4Mfv9+Hz+Qn4ffj9fgKBM2ukjL15PJ6zfo69jV1TxedzjyO9CuJSIEG9EEIIIaZFGQZeXxDDSJBfWDytfbXWOM5wL8GYngPbSpF0LIaSNrFBC8cZwrb70I6N1jY4DnpkvZThNVO0dnBsC+3Y7rorjo1tWe4xbRvLSmGlUng8Jl6vW2Hw+X3DCy2OGVoUDBIKnelNOPc2MgwpEHCHLMncBDEXSVAvhBBCiItGKYVpejFNL1yE9QlHKhGOZWGPViaGKxFWksH+FG09CWyrd7iCkMIZHaKUwrKSWCn3lkwlsC3b7RUY7gnw+fyjK62f25tgmgaGYeIZ/mmYBoozFYKRuoHWoHFXeS8uivIfX/0aWmvQ+qznxl5DAIVi9epV3HbbbbN/IcWcJ0F9DksmBmk8uSfbxch5hcvLaDxZl+1izBtyPTNLrmdmyfXMrPl0PQ3Ti2F6geDkG2qNbbursI/8TFg2g0kbxxnAcZzRngM3KHfQY36Oc0AYDvSVUtxy03XsfHnvyCOc+eFWB/SY/WwrRWtbmwT1ApCgPmcVFxfzmttuI5Wysl2UnOf3GdQskpzPmSLXM7PkemaWXM/MkuuZeeFwiBuvuybt7Wtrl89iaUQukaA+R/l8Pt773vdkuxjzwpYtW7jnnnuyXYx5Q65nZsn1zCy5npkl1zPz5JqKmZLp4EIIIYQQQuQ4CeqFEEIIIYTIcRLUCyGEEEIIkeMkqBdCCCGEECLHyURZIXLc5s2bqaubOynlYrEYW7duzXYxztPS0gJAeXl5lksyPZm6npWVldx3330ZKJEQQoi5SIJ6IXJcXV0ddXV1VFZWZrsoc1oikch2EbJmLlX6hBBCzA4J6oWYByorK3nggQeyXQzATce2adOmbBfjPA8++CDAnLlO6crE9Rz524UQQsxfMqZeCCGEEEKIHCdBvRBCCCGEEDlOgnohhBBCCCFynAT1QgghhBBC5DgJ6oUQQgghhMhxEtQLIYQQQgiR4ySoF2IWJVM23fGhbBdjXkimbPoHU9kuhhBCCDEnSVCfozZv3szmzZsv+DiJpE1LRz9a6wyUKvc0t/cxOGSRSFps3dXAT584QnvXQEaOnUjafPvh/fzXz1/lpT1NGTnmTGiteeSZE3zle6+w90j7uNskUzY/+PVB/uMHu6lr6pm1sqQsm9bOfhxn/Neb42h6+5Ojr8ee3gT1Lb3E+xJ862f7+PqP93DoZNeslE1rTd9AclbfCzv3t/Djxw9zujme1vYpy6ZvIMUzO+uxbGfWyjXCcTRPvVjHT584QnePVEbnm8GExZ5DbbR3Z+Yzbq7L1PekELlCFp/KUZlYIdKyHb77yAFi8QRrV5TwuhuqLrxgGXS0rpuUZXNZdTFKqQm3276vmZ6+BDeuX0Re0Dv6eE9vAtvRFEUC5+2jtealvc1s29NERSjJw789Tn1LLwDPvdLI7/3OitFtd+1voXcgxXXrKgj403/LxPsT9PQlAahv6eW6K848F+tN0D+YZFFZftrHm6m+gRSHT7mB8O5DbayrLT1vm6a2Ppra+wF49WgnlQsjGS+H1pofPnqYtq4BVlRG+d1NNec9/+MnDtPY2sflK0rYuK6CzQ/vJ2U5rKyKMjhkAVDXFGfVsqKMl++J50+x/3gnlQsLuOf22km3PXSik/3HOrm8toTaqvTKMjCY4tmdDYAbXN33pjVT7rP3cDv9gymO7G8lEvazflVZWueaqbqm+GjFb9u+Zu68admsnm8iWmuee7mRts4BbtmwmNKivKyUY7759bMnqGuK4/OafPht6/B5zWkfYyhpoR0IBuZ++CArKYtLzdx/V4ppO14f42hdN1esLKWiNDzhdsmkTSyeAKClo/9iFS8tx+tj/HLLcQCGkjZXXbaAHa8209zezw3rF1ESDeI4mh8+dojm4WBUoXjt9ZUANLX38aPHDuM4mjfdVsPypdGzjn/wRBcv7j7Tem4YilDQS/9gioWlodHHTzb28MxwIIbWbNq4NO2/oTSax4Y1C2hq7+fGKxfR25/E7zPpH0zx7YcPYNkOt1y9mA1ry2d0jQASSYu+gSRKKRxHYxjnV37CeV6qF0c41Rhn7fKSs57rG0jykyeOMDiUIlrgp28gxWU14wepnbFBevuTVC4smLSSNZHt+5r/P3t3HiTXcR94/vvqvqv6vg/cF0EcJHiLpHiIEimJpCjZOmzJko/ZXTt2ImZnJiY2RrZjtRGe2JmJ2N2Z8e7KOzO2vCPJkke2pSElUqII3icOAiDRuBrdQN9dXdV1H+/I/eM1Ct3oG91AdzV+n0AFuqpevcp69arql5m/zGRsqhdkrvPNMC0GR7MA9A2l2b21Dt242jq9o7uWTK7EnXualv3ciykUdXoH7R6K/qE0lqXoG0rh87hobZz9GXrprX4M02IknqOsW5y5mODg7iY2tc9fGfJ6nNRGfSRSRVoX+FzOJxLyVP5WSvHrdy8xMJrl4UPtq1YJq4v58HqclMrmnK97MYOjGQ6/f5nm+iCP3N1JrqAogst3AAAgAElEQVSjGxY1kdkV64WMTuR5/9QIAG8eG+SZaZXs9ebw+5cZGMnwiTva6WqNrHVxFmRMfZ5M05q3t2whY4k8f/PzHixL8exj2+hsWd+vV4hbjQT1G4xhWvy3wxcwLcXgWJbf/cLeebcN+N08fFcHFwdS3L235SaWcnHmtB8c01TEkwVePzIIgG5YPPf4dlLZUiWgB4iGrwY98WSh8qM1lsjPCuq901qofB4njz+wCYdDI5vXqa/xV+4L+txoGigFwYCHxUymi/QOpNjcESMW9vLgnR0AnDw3zg9/3kPQ7+bhQx2VVIqJFaQ4nOtP8MJrF0lOVcw++GiEu+Z4HzVN45lHt/H+qWFeOzLA4FiWzz60GU3T6BtMk5gqw+4t9Tx0qGPO50qmivx/P/sY01Lct7+Ve/a1LrmcSimKZZMTZ+OV2x66s33Wdm6XkwcOtnHmYoJDtzXT1hjmgYNtTEwWuf9AK5GQd8nPuRzn+pP8t1cv4HI6qIl4uW1bPSfPjvPyu5cA+I0ndtDePLNHpak+wOBolqa6AL98uw+lIJEu8vtfvH3e53E6HXztqV1MZkozzrGFfHh2nCDgdGh0TQugEqkiH56xW9Tf+XB41YL6SMjLt57dS7FsLDsQB3jnxDCjE3lGJ/K0N4V58a0+DMPiqQc3s2MZvSvRkIeAz0W+aMzbMPHxhQnGk3kO7Wme0UN3MyVTRY5+PArA28cH131Q/5lPbOLkuTidLeFl9TpeMTSWrVS0B0YzEtQLsc5IUL/BOB0aoYCHVLZENLR4EHpwVxMHd61+y+dKbe+q4fH7utB1i307GyiXLfxeF4WSQcNUQBQNeelui3BpOMP+nQ0cuu1qQLtrcy0j8Ry6YXFg5+zXt6UzxjOPbsUwFUMXs5Wg4Nofusa6AF99ahe5gs6mtsUDp7/95VnS2TLHTo/xu8/ZFar+oVSlVyBX0PF6nNyzr4VUpsR9+5ceHE9nmBbPv9aLNS3NerGWt1Pn4liW4lx/kkLJIOBz090WoSbipVg22d5dM+9jswW9UtFK58rLKuvzr/Vyti9JY22AfEFne3ftvCkrd+1tmVExmauSslxKKc72JSmVTbye2ekG/UNplLIri/cfaGN7dy1vHR+s3J8vzh6c+9zj25mYLFAb9fHDn/cwnijQXB+ctd213G7nslJJgj435O0K+PRemEjIQ13Mz8Rkgc0dq5sq5fe5rju1ors1Qv9QmmjYS0k3Ky3Dw/HcsoJ6v8/NfftbGR7Pcdu2+ln3jyfz/OKNi4CdXvbUg5uvq7wrFQp6qIv6mEgV6Zrn+8EwLc73J6mvCSxamTNMi1feu0SpbPLIXZ2rXlmJhLzcf6Dtuh+/Y1MtFwdSGKbF3m2z0/iEEGtLgvoNRtM0vvLkTobjOTqaw/RensTlclRli8r0Hw2/z8HXn95DKlOiZSo9xuHQ+MJjc+c+u13ORccIbG6PATB0ceFyNNUtHqxdYZp24GtOi7Z/8UZfZdaW3Vvq6GyJ0L2ECsJ8xpN53jw6iMvpoGxZaJqdYnNokTSe/TsbefPYIFs6YvinKi+hgIdvPjt/b84VHc1hHryjnclMiXuXWRE5f2kSgMlMkX/823cs67HXaySeo1Q26WqN8P6pETs/O5GncY6A+sCuRsaTeYJ+dyV95tCeZkxTkS/oZHJldMPC7bo6r4DL6aicF1/+9E4mUkUaapfW+n7Fm8cGGRjJcP/BNtqb5h5b8fSjWzl8eJAn7985I+XJ7XLyW5/bRalkEvC7Kesmv3jjIsWyyRP3dxNdYa9GNl9mcDRLV1sEXbd4+8MhaiO+RVPF7tjTzPbuWlLZEn2DKbZ11WBZijt2L6/hIJ4s8Kt37J4Sw1Q89dDMoN3jduJ0aJiWqpzLa8HtcvC1z+2mUDQIB+duRPn1u5c4dS6Oy+XgW8/eRmiBHr+zfQlOTvVoRUNePnHH7B6tteT3unj2sfWbCiXErU6C+g0o4HezpSPGqXNxXnqrD4BnHt1aCWKrVdDvJrhG3exL9dzj2zl3Kcm2aek+9TE/uYKd1rMaAw9fPzJA36A9e8oDB1rJ9IWwLEXPxQRbO2vmbI0GOLCriQOL9MpcG7xOdyWgu3B5klfeu0RbY4hPP7Bp0fz6+w+0cvJs/IYP8rxicCzD3/z8DACP3dtFsWxW7iuUjMrYg3xRx+nQqIv5+cqTu2bsw+12sq2rhu8/fxqATF7n4XlSk9xu55Ja6ad75b1LHDs9BsAbRwb48jXPf4XP48Lncc4ZMDodDgJ++70615+sVJ6O94zx0J1zl3UplFL84IUeMrkybU0hIkEvp3snAGhpDC46uNvvc/FX/3CKsm7RUOPnt68ZEHy6d4IPTo2wc3PtjN616TxuRyVo93lnn8/RkJevPLWLxGSBbV3z9zDdDC6nY96AHqgM8DYMa8YYkbnUxfyV191UJ4ODxcKUUgyMZomFvQueg+LWIUH9BvTSW330XEzQNm2gW7FkrGGJbh31Nf5ZXeyff2QrI/EsjbXLC/zm01QbpG8wTcDnYu/2Rn6uwWgiz4tv9nG2Pzlj5p7leOv44FR+doQvPLZt3mD9g1MjpLNl0tkEh25rWTSl4NBtLfMGbzdCNn81XSaTK3PP7S0Uijo979nX3zs5TFN9kH/49XncTgdffnIndbHltbJPpxsmbtf8s4iMJfL0DabYuamWSMiLUorjPWOV+9vmaKU/15/kdO8E+3Y0oLB7Z+pj/nnfk+b6IB63E8Ow6Ghe2YxKlqUqKUe5vD5jfy+92c8zj2ylZo4Zpa7QNHA4HICFa44K4utHBsjmdcaPDHJgVxMu5+xtIiEvX3lyFxOpAtvnCdobawNz9rysN4/c3Uk05KG5IbToOIWmuiDffPY2DNOiNnr956S4Nbx+ZIC3jl6g78QL/Mm//Ge0NEtK1K1u0aBe0zQTOAlogAn8kVLqrQW27wbuU0p9f+r6fqBVKfXCahRY07TDQAtQBMrA7yuljk/d9wLwVaXU5CKP/6dKqQ+uuX1Vy3mjFUsGzjlmOtENi1Pn7O7beLLAvftacbk0dm2uu9lFFFPcLgcdzauX/nT/wTa2dMaIhDx27rOiMrf6SipvPb32tJf9Q2mKJXPevOrt3bUMjtmDRGORGzN4dSW2d9WQ3N9KsWxy555mPG4nOzddPf/LusnlYXuGm5JlMjyemzOob64P8swjW5nMlNg7xzSgYP+ovn9qhE1t0TnTEkzL4scvnqFUNjnbl+S3PrcbTdPY1lXD2b4k27trOLCrkXP9SbpaI3jcTpRSvPBarz3YfTRDk7/IX//0Y3ZtruMzn7ja01MoGqSyJZrqAtRGfRza00ShbMwIwk3TYiyRRyk1b4Xg9SMDXLg8yb37WtmxqRan08HTn9zK+UuT7N1eT2NtgFLZ5NjpMZLpIh9diPPAwfnTQpwOB7/56R1cGs7MOU6jqzXKR+fjtDeF5gzor2isC9C4iq3VL77ZR0/vBFvrdd47Ocz5S5Pcs69lST2YFy5P8sGpEXZsql20x2liskBJNyszHIWDnmXNmnWjBoSLjWciVWT4wjukEwP85O/+jj/87/9grYsk1thSWuoLSqn9AJqmPQH8GfDQAtt3A18Fvj91fT9wJ7CawfLXlFIfaJr2TeBfA48DKKWeXME+b0Q5b4h80WA8WUADxhP5GQPv3C4He7bU0XMxwb4dDcuapWSjm8yUOPrxKO1NoSXPLb5eTU/3cDg06mN+7tjdxL4d199Sc2hvM28fH2JrZ82sgD6bL+N0OvB7XRzY1chtW+twuRzXNbXlciRSBVKZMt1ts6fRtCzFr97pJ5kq8sjdnZXPgaZps877rtYItVEfpmlx775W8iWD4XgO71SazXw2d8wf8J3tS1RmPrk4mJp3IO4V04v/2Ye2ULrXxO1y8B9/ctKeKrQlwnOf2o6madRGfYwnC9RG/eh5O2VjaCxbeXypbPC9n35ErqBzx+4mWhqCvDk1GNvrdlXGPfzs8AV6B1KMJfJzjg0pFPXK1JFvHR+sDGbtbovOGPexf2cjPRcTGIa14LSdV9TF/PP2fnzqvi7u3deyYG75ajNMi4/O240d+aLBG0ftgdCvfTCwpKD+lXcvkc6VGRzLsmdr3bw9MyPxHD98oQdLKT51X/ecg3yFWC37t4X5yV9+DMD7777F5Fd+g1isutNsxcosN/0mAiQBNPsX9n8DPgMo4H9VSv0N8K+AXZqmHQd+APwh4Nc07QHsCsEvgf8EbAbywB8opU5omvanwCbsVvjtwD8B7pna/yDwOaXUtdNQvA38sytXNE3rA+5USsU1Tfs28DXgMhAHjiil/s3Upl/SNO3PgRjwu8C7wP8yvZxTr2VdMk2LbNKeO/0f/9Hvzbvduz+H//NmFarKffe7313rIqzYfNNRLtXebQ1zzmjROzDJT399AZdL48uf2cVHF+JcHs5QKBl4PU6efXTbDcnnnMyU+OuffYxpKu7e28L9B2fO2jEwmqn0Sr13cpinHtoy124qrozHcLudRN1OfvPTO6+7bNl8medf62WxxWedDge/8cQO+oZS7LimIun1ONENi/zUIOpM/uqsQr/x6Z2MTuRoaQjyq18NoAVDMwap5gpGZfD1aCI/I9BWKC4Np+lsiTA6Ya8LkBi7RGIMvvrVry5Y3l/+ePHX/vbzi2+znn1wzfWXfrS8x3/jxSU+zxK32wg2wvdnNXrlVy9UGgssy+InP/kJ3/rWt9a2UGJNLSWo908F6D7sgPuRqdu/gN26vQ+oB97XNO014F9gp7d8FkDTtFHsQPuPpq7/O+CYUuoZTdMeAb43tR+ALcAngd3YAftzSql/rmna3wFPAX9/Tdk+PcdtaJp2J/AccGDqNR4Fjkx/3UqpuzRNexL4E6XUY5qm/fH0cs6xzz8A/gCgqamJw4cPL3LYbiBreVMKilvDjTons3mdlqAdQL77zgTZvI4bcGuADi/+8hJ1UX/lxyWbza5KWXTDotlvz6E/MZTgcPrcjPstpeiMFDEthaM4yeHDlxfc3+SknZW3GmVTCtpDBaypqN7ncfL2W6/P2gbNzlsEOBq/erulVCV9blezSbFsEvC5ZpWt9wyYRpHG0AiXzo9w6fzV+7Y3lCnrFmFnmt4zw+xtszBMi4HeMS5fgJMBN5tqHGQ85VmBrBC3kjX9vb4OS/0OffXVVzGMKwOxDV599VU2b16b6V3Xs9X6TaoGy02/uRf4nqZptwEPAD9QSpnAqKZprwKHgPQi+3sAO+BGKfVrTdPqNE270sz0c6WUrmnaScAJ/GLq9pPYaT1X/BdN04JT2xyc5zn+QSlVmCr3z665/ydT/x+5Zr/zUkp9F/guwJ133qkefvjhpTzshjh8+DC7dtmzZXz7299es3JUG92w6L08SWNdYMaAtcOHD7OU93MskecHL5zGNBWffWjzilJ4JiYLZPP6qixW853vfAdgSa/heqSzJV56qw+vx8WDhzr40S96SGXLlUW5AO48tK2SrrHU47mQkXiOjy9M0BABy1TcM0+6Rlk3KZXNGT0FpbLJC6/3UiwZfOaBTcSm3uvXX7eD7tU6TpPpImOJPF1tEbzumV+lFwdT/PTX5/G4nXzlqV3EwnaetL2a8EfkiwafvKtj3tmIKivGjmRoCZqzypwv6vynn5ykrFvsrqvj8alZlS6PZPjxi/bMP3ua6njwUAd//sPjhGracbkc/Pn/8a/mfT2vHxngxJlx9u9sZHNHlN7LKXZtqaN2gUGxq2E8keevf2anEOzf2cgjdy89//x6rMb5OZeReK4yW1J3W2Te6XbXgzN9CQZGMtyxu6ny+bheN+p4rtSv373ED7/37+0F/9Zh+Ray1GPa29vL4cOHMQwDl8vFQw89VHWv9WZYr+fojbCs9Bul1NuaptUDDVxtgFquuR53pRO7NPU8lqZpulKVzm3rmrJ+DfgQO9XnP2D3Giz2HNOVpv43kRmAbohMrsyPfnGGkm7w7KPb5l0V8mZyuxzLWgDnWo21Ab717F4Mw1pw9o/FJFKFyuqsDxxsW5UFluYzMVng/VMjdDSH2bP1+vJ7IyEvX/zUjsr13/78HnIFnUSqwPOv9lIT9VXWDlgtP33lPNm8vVDXH37lwLzbedxOPO6Z+c3nLyW5OJAC4MMz4ytOS5pPLOKbNyDqG0xhWopCyWBoLFsJ6hOpIvmpKQ4HR7PzBvXTV4yNOGYvfqXrFmXdzrWfvjhWR7O9Cm8yXeL+A6143E6a6gL0YPcmLOTIx6NYluLo6VGO9YxS1i3OX0ryjWduW/hALIFumPQNpmmuD85K1WqoDfDso9tIpovs3b6yHPR4ssBYIs/27poFB+HeCE11AfbvbGR0Ise963gsUyZX5oWp1LFEqsiXntix+IOq0OkL9jSs+YK+4EDxavbss8/y6quvAvaMU1/4wrWhkLjVLCug1TRtJ3br+ATwGvCPNE37K6AWeBA7v70NmD6nWuaa669hB+Xf0TTtYSCulEov9wM31aL/L4ELmqbtUkqdnnb3G8D/o2nan2G/xqeAv1hkl9eWU6xA/1CaVNauO53tS66LoH41rEbueDZ/dXXWVKa0yNYr86u3+xkcy/LxhQk6WyJzll83TEYn8jTVBjBMhVJq1kqWZd3kJ788y2SmxJMPbqazJUJNxMf/+Fs3ZjEpv89FNq9f18JCrQ0hvB57esfV6Am5Hvt2NDI0lsXndbFl2mDb9qYQ+3c2MjFZWHAQeyTkpb7GTzxZwOueY572sJenHtrM0Fh21sJO11YSf/MzOzn7fnDO6SWn27utnhNnx7ltaz1n+hKU9bmnpLweL7x2kQuXJwn63fzuc3tnBdyb2qNsYmUr4+YKOt9/4TSGYXF5OM0Tq7AmxHJomnbDexlWg9vlwON2UiqbBAPre92PlTi0t5lTb2sE/e4NGdAD1NTU8NBDD/Hyyy/z4IMPyiBZsaycerBbwL+hlDKn8tzvxW4xV8A/V0qNaJo2ARiapn0I/CXwV8C/mNrHnwF/CvxnTdNOYA+U/cb1Fl4pVdA07d8C/xR7wOuV29/XNO2nU2Xrxx4blVpkd69ML+d6Hih7PSxL8fxrvVweSfPwoU52b7mxU1x2t0Woi/kplQ12bl69mWaUUihlz/iyHhWKOoapFgz+O1siPHCwjVS2xH37l75k+1vHB5mYLPKJg21L7jKPhr0MjmXx+1yzWrSv+MkvzzE4lqU+5mcyU0IpxRce3zZjGs7BsSxD4zkATp2Lr3iF4uM9Yxw9PcptW+vn7Kl47vHt9A2m6Wyx69mGafHiGxdJ58p86r7ueWdWUcperOgPvnj71MJFS68UWJbi2OlRHA4H+3c2XFcg8Ot3L3Hh8iT3H2jla5/dPev+pQZ+bpeDr312F6WyyXvvvDnnNju6a2cNvp2Ly+lYUnD+6D1dPHJ3J5qmsX9nI/3DabZ2rk6QkMnZ44DyRR3DsG5IK7puWBhTizsVZF2Oefm8Lr721C7GEvkFZ3dayMSk3SOytXNtF/5ayF17W3ixcWM0Ji3k2WefZWBgQFrpBbCEoF4pNWckMJUa88+YNvvM1O068Og1mx+65vrTc+zvT6+5HprrPqXUw9ds92+n/d097a5/o5T6U03TAti9A//22scrpeJM5dQrpRJzlHPDSGVKnOtPAnZAdaOD+lDAwzee3rP4hsuQyZX5m5/3UCgZPP3I1hUHlqttPJnnhy/0YJgWT39y64I/mMtNuRkcy/DOh8MAODQWnenlisfv62J7Vw2ZfJnh8eyMaQqviCcLACTTxUoPwuBodkZQ39IQpKHGDvpXuuZBPFngtSMDGIbFm8cGOXRb86wAOuBzzzhH+wZTnOmzz98PPhrlwTvaZlWelFL87UtnuTyS4eDupnlXgJ3P8TNjvPqBPauU1+Ng95blpYLkCnplUamX3uwjFPCs6Bx1OhwEfHbwm0wXOfrxKB3N4RVPx3pxMMX7p0bY1hmblf5z5X2oifrmTDEbHs8yPJ5j15a6ZfWiPHF/N8d6xuhui86qaFmW4uV3+0mkijx6d9eCi5kVywZ///J5cvkyTz64eUYPYCzs5bMPbWZ4PMfB3QuvnHyrWyh1bDGFos73nz+Nbljs2pxClshaWzU1NfzxH//xWhdDrBMbOZ/8u5qm7caeteevlFJH17pAq00pu8UkFvbinNbyda4/ybn+JPt2NlSWdI+EPXS2hBkYsedZno9hWrx7YhhNg7v3tszY71obGM2QnmrxOz2VTrKejMbzlWXgB8ay190KNpdI0IvX7aSkm9TXLG1BHqUUDk0jnSvz63cvAfDsY9vYdE1g/+kHNnHqfJxtXTHO9iUxLTVrsSWfx8Vvf37PinNTs/lyJUUCYHN7bEn7a6oL4ve5KJYM6qI+/t//ehLDtPjsQ1sq88yXdZPLIxkALlxKLjuod09rzT7y8SjFssnBaUFvrqDz0lt9OB0aT9zfjdcz8+sz4HPRWBtgLJHHUnblebXO0V++1cfAaJYPz4xzYCxLNq/z4B3tRMPLX6jolfcuMZkuMTCSYfeW+gXn1p8uX9T50YtnME3F5ZEMTz+ydcnP2VAb4FP3dc9538BohpNn7amB3j0xzFMPzT97x6WhdGW+/hNnx2el9W3vrq36NSjWO92wZ1kCe85//zrL4CmVDcYTBZpXeZyPENVgwwb1SqmFJ2TeABKpAn/1Dx/R3hTiN6bm3DZMi+df68WyFMPjOX73ub2A3er3xU/tWDQoO3F2nHdP2C3CAZ970dUTb6am+iB1MR+T6RIfXZgg4HfziTvmX9lyPsdOj3JxMMVde1tob1q9YRTbu2voG7IXITqwhONW1k2AedNipgsHPXz96T1k8+UljU8YT+b52xfPomnMaHG98pzTbemMsWUqzWKx1umV5qaW9aspEt2tET7/yZk9DkNjWV54vZdIyMszj2ytHJtw0MPvfmEvumHRP5SuVJ6GxrKVoN7rcXHX3mbO9ie55/blD1Tcu60Br9vJ60cHGE8UOPzeZbZ31VRm3TlxZrwyALezJTHrs6FpGl96Yjvff/40qUyZ7QssarUcStmfRbArHsdO270BTqfGk59Y/vR1rQ0hJtMlGmr8MyoySynHlSkNLGuRCfqXwTAtfB4nxbI5YzXcuUx/3rnO5cWksyXKuollqSWn8I0n8njczuuqQG1EkZCXpx7awtCo3SN29IOhtS5ShVKKH7zQQyJVZPMSFkkTYqPZsEH9raBUtn/UBseylVzzV9+/jEOzpwuKRWb/CC0WlIWmNbuE1tEgqkLJ4Me/OFNZcAfspdsXCupT2RK/eqsfv9/FJw918tNXzjMcz2LZ8SC5gs5vf271UoQ8biefXWJazOhEjh+/eAal4Iuf2r6kQD0c9Cx5oO7FgVQlr7hYtls2NY1lB5qZXJkfv3iGkm7y7KPbZqxkuxjDtHj+1V7iyTyP39dNZ4u9qutnPrGJkXiOO/fMTrs5eXacdLZMOlvm8nCmUtmAqzPdbOuK0TdYS6FkcGDXzMD6gYPtPHBw+RW9K7Z319I/nOZkJk405JnRGt/aGMLh0HBoWuU4mJbds6UU3H17C16Pi9955jZMS61K3vjL7/QTT+RxRUw++9BmAn43f//yOcq6RcMSe2yu9cT93VNTGXqXNTYl6Hfzhce3MzSWZe8qrZTa0zvBC69fRNNY0jSxkWmBdWPt8l5/vqjz1z/7mHpPicPvX17S2IaPL8T5xRt278xXn9o1Y/XuW9n2rppVq7SuJtNSJNNTa1tMFta4NELcfBLUV7FYxEtrQ5DdW+rRNI2+wVRlGrzOlvCsVtCl2N5dy5d8LkBbtNXsZsrmy5WAPhL04HQ6Fp027ujHo/QP28sm1EZ8DE5127ucDgzToqlu7bpnL49kKlMSXh7JrPrsQNu7avj4wgSaZucaX7icYltnzbJb2vuGUkxOzdBzpi+xrKB+ZDzHhcv2gk/HTl9NRdm1uW7evPxt3TX09CUIBzy0NM79XG6XkycfvHELrDx2Txe3ba2nJuqb0ZLd1Rrh957bi0PTKrMDnTobr4x18PtcHNzVhKZpuJyrM5D7/KVJYk57NqmnH9mKy+ngG0/fRq6gL+u9mE7TtOsOTjuaw6v6vZCYCsCUotL7spDWhhBfemIHuYLOju7lBZXFkmE3hHhgMlNc0mPGE3ZgaFqKRKooQf0653I6+PQDmzjbl+TArkb+6uO1LpEQN5cE9VWqq6sLgC8/uatyW23Mh9djT1W2vbsWt2tpubLXmj5Acr1oqAlw3/5WhsdzPHCwbUk/rm1NYY73jOF2OdjSEWNgNMPoRJ5P3tVBbdRPU93a/UDv2lxH70AKZakVDzydSyzi43em5hdXyp4v/Xqmh9zUFqU26qNUNtm5zDn+G2r91EZ9JNNFti8xANvcHuOPvnoAh6at2TR0mqbNW8m6dgGs6VMChm5AcvG9+1s59/EQ9+xrqbT8L6fHZr07uLuJXEHH43Iu+fy63kpFbdTPo3d30n8+wSfuWtrUk3fe1kyuoOP3udjaJdMFVoPpjQZXfieFuFVIUF+lvv71r8+6LRry8s1nb6NUMle0ONJ6tdC83nPZ3lVDy3O343I68PtcMxZQWmtBv5vfuEmLvmiaVsnJXq5QwFOpHCyX1+PiG0/vwTDVsnK3nY71Mzh7MVs7a/jSE9tRihsycPv27Q0khvzLmvq0mvg8Lh6/t/umPd++nY0kRzwzVpReSNDvvqG9QuLGmut3UoiNTIL6DSbgc193ALcRbZQWzWqlaRpu1/pcU2C1rMeeLSGEELee6mkSE0IIIYQQQsxJgnohhBBCCCGqnAT1QgghhBBCVDkJ6oUQQgghhKhyEtQLIYQQQghR5SSoF0IIIYQQosrJlJZCbAD9/f185zvfWetiADA5Ocnrr7++1sWYpb+/H2DdHKelWo3j2d/fLwvxCCHEBidBvRBVToK1pQLwN9AAACAASURBVPF6vWtdhDXT1dUl54kQQmxwEtQLUeXW26qJhw8f5uGHH17rYmwYcjyFEEIsheTUCyGEEEIIUeUkqBdCCCGEEKLKSVAvhBBCCCFElZOgXgghhBBCiConQb0QQgghhBBVToJ6IYQQQgghqpwE9UIIIYQQQlQ5CeqFEEIIIYSochLUCyGEEEIIUeUkqBdCCCGEEKLKSVAvhBBCCCFElZOgXgghhBBCiConQb0QQgghhBBVToJ6IYQQQgghqpwE9UIIIYQQQlQ5CeqFEEIIIYSochLUCyGEEEIIUeUkqBdCCCGEEKLKSVAvhBBCCCFElZOgXgghhBBCiConQb0QQgghhBBVToJ6IYQQQgghqpwE9UIIIYQQQlQ5CeqFEEIIIYSochLUCyGEEEIIUeUkqBdCCCGEEKLKSVAvhBBCCCFElXOtdQGEEEJUt3K5TDKZJJlMkslkyGazZDIZ0qk0mVSaTDpDsVCgVCpRKpcolcuUyiXKuo5SFkoBKJQChQLA7XThdrvxuD143G7cbg8+r5dgKEgoHCYcjRCOhAmH7UssFqO2tpZYLIbLJT9tQohbj3zzCSGEmFe5XGZiYoJ4PM7ExATj4+OMj4yRmEgwOZlkMp2iVC4TCYQIe4ME3X4CTi9+hwe/00ut20ebqwmv340n5MbjdOF2uHA73bgdLhyahoaG/U+rPK9pmeiWgW6ZGJaBbhmUTYOCUaIQL5IfSTBkDFO0yuTNEhk9T7qYJVvIE/QHqJkK8hubm2hsbqKhoYGGhgYsy1rDoymEEDeOBPXipsvn84yPjxOPx4nH46TTdmteNp0hk8mSzWbJ5XPoho5pmpimhWkZmKaFZVk4nU7cLhdulxuX60prnptQKEQkEiUSixCJRYlEIkSjUerq6qivrycSiaBp2uIFFAsqFotMTk5WWmaTySTZTJZcNks+m6O+uZE/+Z+/Tb6QR9cNLMvEtK68jyaWZeHQHDhdTlxOl32Z+tvn9xMMBggGQwTDQYLhEMFgkEgkQiwWIxqNEovFCAaD8l6uEsMwmJiYYGxsjPHxccZGRxkbHmVsbIz4xAT5Qp5oMELMFybqCRJ2+qnzhtjk6SbcvoewJ0DA5Vv198PlcOLFs+zHmcoiVy6QLudIl7Ikz2c4d3qYD4wcyWKG2+86wO9/6/doqK+nubmZ5rYWmltaaGxspLm5mWg0KueWEKIqSVAvbohyuczQ0BADAwMMDgxwue8SY2NjTCQTWJZFTTBKzBsi4g4ScHgJuHy0uUMEXHUEGnz4XN6pVjwHTs2BwzH1v6ZhKgvDMqddDHTTIG8UyWeL5JJ5xvUJLqkyOaNIqpQlmU9jWAa10Rrq6xtobGqktaONlpYWDMPANE2cTudaH7Z1oVgs2sHd2BhjY2OMDI8wNjzC2Ng4ydQkpmkQCYSJeIOEPH5CDj9+pwef00vE5cfd5OYTkd34ary4HE4cmma/jw4HDs2BAwcWFqZlYSo70L/yf9EsUzTKFCdKFMcyJIw4Q5ZO3iqR1QtkS3kyxRy6qRMOhqmN1VBXX0d9YwN1DfXU1dVJJe4almWRSqXsFvap93V0aISxkVHG4uOks2nC/hC1/ihRT5CYK0ibL8ye2D5qmsOEPAEcVXQcnZqDiDdIxBuEcOOs+y8EM/zhvi+SKKZIpNMkxgboe/8MiVKaidwkumnQWNdAc3MTzW2ttLReDfhrampwOGQomhBifZKgXqxYNpult7eXCxcucOHMOQYGBkimJqkL19Dgj1HvibLVX8/dLVuIdofwu7wrCrYcmgO3Y/mnbskoM1nKMlnKMDmQ4fyFD3m3/AZbDuzkW9/8JvU1dbS0tNDR3Ulbezvt7e20tLTg9Xqvu6zrlWVZTExMMDQ0ZF8GhhgaGGBkdJRsLkttKEaNL0zMHSLmCbHb18r9HTuIbg3hc3oWfP8uuDJ0R+tvaPl1yyBbzpMq5UjnsqR6Epw9NUDayJMqZZmcUYmrp6Gp0b40NFBXV0dDQwOxWGxDVORM0ySRSFRSZOLxOOOjY/ZlfJxEKonX7aU2YFeko84gNd4wm/zbqNl2B1FvEKej+o/DcoQ8fkIeP52R5ln3FY0SiUKaiWKKxKlRjhy/QLKUYSI/SaFcpC5WS2NjE82tLTS3NtPY2Ehjo31ubcTvCiFE9ZCgXiyLaZr09fVx5swZzp4+Q29vL5lslrZYIy2+WrYE6rl/03ZqfZF1Fyh4XR6aXLU0BWtn3H4hkOFf3PUNJoop4vlJxj8cpPf908QLk8QzSaLhCK2tbbR3ttPW0U5rayutra2Ew+E1eiVLl8/nGRkZYWRkhMGBQQYvXWZoaIjR+DgBr4+GYA11ngi1ngh3+jdTv+MgUW8Ih7a+WyPdDhc1vgg1vsi820yvxKUGsgz1nqXHPE6qnGUynyFXyhMJRairqaWmrpa6+jpq6+uoqampDLiMRCL4/f41afEvl8tkMhnK5TIffvghqVSKRCJBIj5BIp4gmUiQTE2SyWUJ+4NE/XZ6TMQZIOoJss/bSU3XHmK+MB6n+6aXv1r5XF5aww20hhtm3Vc2dZLFDIlCisSFND09Q7yjZ5ksZEjkUgT8fhpq7UpkU0szjU1XA/66uroNUYkUQqxfEtSLBZXLZc6dO0fP6R5On/qI3r6LxAIROkNNtAcauHvzo9T5o+s+CFyM2+miOVhHc7Buxu2mskgW0oznk4z3THDkZB8vFlOMZSZwuVy0NDbT2NxE07QWu6amJqLR6E3ppjcMo9JKeyUvenhgiJHhEUbHRynrOvWhGLW+KHXuCJ3+KAdbOqnbHMO7wQO9+SpxVxiWSaacY7KYJZPNkU4k6f14iKxRIK3baT65UgHDNAj6A4SCIcLhEKFQCJ/fj8/vwx/w4/P78Xq9eDweHA7HjMuVysCVFC/DMDAMA13XKZfK5HM58tk8+bx9KRQK5PI5srksumEQ8gW4/8EHeOOFVwi5fIScfiLuANu89YTrOom0BAl7AuuuAr1ReZxumoJzn1OWUmTLeRLFNMlUmsmxAS4bZ0mWMyTzabLFHNFwlIb6BpqaG2maSuu5cgmHw5IuJoRYEQnqxQyWZdHb28upk6c4cew4vf19NEfq6Ag0sj/cxecP3k3A7VvrYt40Ts1BfSBGfSDGrmm3K6XI6nni+RTJiTQTQ31cMD4iWcqQzKcolIuEgyEiYXuwbqymhlhtjHAkUgkAp//vdDqxLAvDMLAsa2qAsEm5XCabtQcPZzNZsukM2UzGbrVNJskV8kT8IaL+EBFPkKgzSIMvwo7oHuqa7yPkDkigMA+Xw7loaz/YwX/BKJLXi+T0IoVSiXJBp2yWKJk5MpaOrgx0ZaKmpmW0sFDY5wnY55FTc+DEHlfgxIFLc+B1eah3evC66vH5PHhDHnxOD0GPv5LmdMGf4Z4dn74JR0SshEPTKrn83dGWWfcblmmP7ymmSY5kGO4/y2njmJ3ak51EaVRy+VvaW2lqbqa5ubnSKyifYyHEYiSoF4yPj3P8+HFOHD3O6TM9RHwhNodbuCOymefuvB+va/kzUGx0mqYR9gQJe4JsonXW/bplkCsX7MGd5Ty5sQKZgRHGrX4MZWKoq9P16ZaBqcypgcAONKYGlaLhcjjxOzz4HPZA1Ea3ly5XK8G6LURbQ4Q8/qrvJVnvXA5n5b0W4nq5HE7q/FHq/NE578/rRZLFNBO5NIkPh7h05CwTxTTjmQSaQ6OlqZmWtlbaOuzxPu3t7TQ0NMjAXSFEhQT1tyBd1+np6eHY0aMcP3qcbCbD1toONodaeWTfcxK8rAK3w0XMFybmW/9590KItRdw+wi4fbRdM2OPUoqcXrTH+IxNcvlyD8fL7zGanSBfLtLa1EJHZwedm7ro7Oykq6uLSGTh3ichxMYkQf0tIplMcvToUY689wE9Z3poDNexJdTK02330RJqqKop64QQ4lahaVpltp5r03qKRomxfJKxsQQXLp3g7dJrDKfG8Xg9dHV00r1lM92buunq6qKpqUla9YXY4CSo36Asy6Kvr48jHxzhyPsfEI/H2VrbwfZIO58++OVbKi9eCCE2Ip/LS2ekecbUnEopUqUsw7kJRk4M8qv3P2I4E6egl+hq72DTts1s3rKFTZs20dLSIoG+EBuIBPUbSKlU4tSpU3zw3vscO3YMr8PD9mg7j9Xtp2NTM07JvRZCiA1N07RK6t+uuu7K7Tm9wHA2ztCZOK+d+CU/zIyTK+XpbO9g89YtbN5qB/qtra0S6AtRpSSor3LFYpE33niDI+++z5lzZ2mLNrIt3M43dz4174AsIYQQt5ag28/Wmg621nRUbivoJYay4wydi/PGqV/xo2ycbDFHe2s7m7ZsYtOWzXR3d9Pe3o7bvbGnwBViI5Cgvsq98sorvPzTF7m/eS9P3nEHfpesaCiEEGJxfreXLTXtbKlpr9xWMEqMZCcY7ovzQc/r/Cz/90xkJ2mqb6Szq5POTV10dHTQ2dlJbe3ca0AIIdaGBPVVzjAMNkda2du4da2LIoQQosr5XV42xVrZFLs6Va9uGozlE4wmElwaOs0HpbcZy0xQtgwee+wx/u//8H/R2tFGS0sLLS32oloej0yFLMTNJkG9EEIIIebldrpoCzfOmm4zpxe45MzjGE1x+dJpPtTfY6KQIpFNEQmFaaivp76hgYamBuobGqirq6O+vp5oNEowGJQFtYRYZRLUCyGEEGLZgm4/HqfBrpbdM243lUWqmGGylCWVyDI5NMhl6xzpco7JYoZsMY9u6oQCISLhMJFIlGgsSigcIhAKEgwGCQQClYvP55u1CrfH48HpdFZtxUAphWmaM1YQn/73xMQElmWhlKpcgMrr1TQNTdNwOBy4XC6cTmflf6fTKYOdb1ES1AshhBBi1Tg1B7X+KLULTNZwZdXtnF4kq+fJTRQojmVIGnFGLJ2SMiiaZYpm2V5927xy0Skb9sWyLFxOJ06HE5fzakDrdDhwOBxoDkflb4fmQHNoU8GwA03j6v9MqxhMryMoUCim4mlQyr5uKSylUJZl/68sLEthKQtlWZiWhXXNxbQsLGVW/lZK4XA47JXEp5dR03jgwQf4rz/8sV1WtBkVF2UXyv4fsJS9P9My7f9NE9MycTmdeNwePG4PXo8Hr8eL1+vFH/ATCAYJhoJ2JSpoV6JCoRDhcJhIJEI4HCYUCknFoApJUC+EEEKIm2o1Vt22lJoKak1MZWEqcyp4ngqwUVf/VnYYbAfpqhKsXwmObVf/VgrsWPpKyH+lhdy+xTEt4L4SfDs0zQ7Mp/+taXbgPnXdMfX3tcH6dBcCGf7Jwa9c93FRSmEoE900KJt6pVJUtnRKhk4xXaKYKJExMsStMkWlUzBLFPSSXdEqFyiUivh9PiKhMNFIlGgsRqw2Rqy2hmg0SiwWq1wikYhUANYJCeqFEEIIUXXsQNmJy+Fc66KsK5qm4dZcuB2u615o0lSWHeTrBbLlPNlsgWwiw6AxylmzRNawe1gyxRz5UoGQP0gkHCEWjRKtmaoA1NgVgCuXcDhMOBzG5ZLQ80aRIyuEEEIIISqcmoOQx0/I46cpuPDUpaayyJULZPU82XKB7ESe7EicXnOAnFkkpxfJ6QVypTy5UgGv20M4GCIcChMMhQiFQ4QjYYJhOwUoGAzi9/sJBAL4/f7KJRAISIVgEXJ0hBBCCCHEdXFqDiLeIBFvcNFtLaUoGiXyU4F+wShRSJYojGeY0OMMKZ2CVaZs6RTNMiWjTNEoU9LLFMpFNLSpMQIePB4vPq93auC0F6/Xg+fKda8Hr8+H2+PG7Xbz4osv4vF4cLvdNDY2sn379ptwZG4+CeqFEEIIIcQN59A0Am4fAbePemLLfrxhmZRNvTJWoGzqlEwdwzLRywZ6wcCwDMpWlrw5iWGZ1N7eTt+bH2Mok7xRZKw8yb/7D//+Bry6tSdB/QYwUUhxZqJ/rYtRtYxYkDMTibUuxoYhx3N1yfFcXXI8V5ccz9Unx/T6uDQnLpcT8M643XC42RppAyCrFxgdS65B6W4OCeqr3JYtW/jow1OcZHCti1K1utlEnxy/VSPHc3XJ8VxdcjxXlxzP1SfHdHXNOJ5uuOeee9a2QDeQBPVVbvfu3ezevXvxDcW8Dh8+zJe/8uW1LsaGIcdzdcnxXF1yPFeXHM/VJ8d0dd1Kx1MmFhVCCCGEEKLKSVAvhBBCCCFElZOgXgghhBBCiConQb0QQgghhBBVTgbKCnETfO9736O//9aYdnRycpLXX399rYuxpkZGRgBobm5e8b7keK6erq4uOjs717oYQghxQ0hLvRA3QX9//y0T1AsolUqUSqW1LoaYRj6DQoiNTlrqhbhJurq6+Pa3v73WxbjhDh8+zMMPP7zWxVhT3/nOdwBW5f2W47k6rrwnQgixUUlLvRBCCCGEEFVOgnohhBBCCCGqnAT1QgghhBBCVDkJ6oUQQgghhKhyEtQLIYQQQghR5SSoF0IIIYQQospJUH8LUkqtdRFuCqtoULyYwMyV17ooQgixKKUU+nAGq2isdVGEEFVI5qmvcn/53f+ElS3xO//D7+PwLf52Zt7sJ/f2ZXw76ol9budNKOHqKA+kQIGnI7rkxyR+eAJjPA9A+JObCN7ZdqOKV7X0kSzZdy5jFXSsbJnwg934dtSvdbE2LKUUpd4krpgPV13ghj9f9u1L5N4dxL+nkcjjW274893qlKVQhoXD4wQg+85lCqdGCd7RRuBAy6KPT//qAoXjIzijXuq/eRDN7VxxmayiQfLvPsbK68Q+twN3Y2jF+xSimliZMuP/8QjhT3Txo3deAODrX//6GpfqxpCgvoop3eTC0dNgKSZ/1kPtl25b9DGFk2OgoNgTx3rCrPz4rDdW0WDyZz2osonvtiYyL50HIPb5nUsKOpVSGIlC5XqxJ07gjlbyR4awCgbBu9sXfe1GskDpYhLftjqcYe/KXtA6lf7VBfThTOV69p3LNy2oL56fIPXfzuCsC1D7m7fh8Cz/60gfzZI/OoR3c+2qldsqGhR7xnG3RnA3BhfctvDRGOZkkcCdrTi8i5c/+3o/uXcHwOWg/psHccV8q1Lm+eSPDqN0k/zxYcKPbkZzaJX7ch8Mog9lCN3Xiav+xlcwrqV0k9RL51FFg8intuIMe8kdHUIfTBO8twN3/cLHfr2xygaJ/3ICI54n8qmt+G9vIvu6vYJt5s3+OYN6ZSlSz5+hPJgm8ugWjJEsAGaqhFU0cK5CUF/qTaAPpAEonBjF/ZgE9eLWYaZLWPkyZqJA9q3L9F/e2KtKS/pNFVOWAstOpVGlq921yrBI/M1JRv/3tymcHp/xmOAdrWg+F/79zes2oAconolT7ptEH8pQOhuv3G5mSwBk37rE5E97MJIFzGwZI56f8XhN04h9fieOiBfN7yZ4qI3iuQkyr1wk985lcu8NLPj8SikSPzhJ5uVekv/149V/geuEq2EqmJsK9nzb6q57X8tN6yp8NIbSLYyRLPpw9rqeM/WLcxROjTH5s55VS1lIPX+G9C8vkPjBCazS/PssD6RJvXCW7FuXyL6xtB8KM2OfvxgWVl5fjeIuyL+vGRwa/r1NMwJ6YyJP5pWLFM/ESb/Su+T9pV46z/hffEDxQmLFZSuenaD48Til3iS5D4YwkgUyL/dS7ImTebkXM1cm/tfHGf+LD9DHcoD9nZf+dS+TP+25eizXCWOiUPkeKp6No2ka3q21APi2zv25MibydgNLpkzug0HCj2zGs6mG8Cc3rVpDgqc9iiPkAZcD7zzlEGKjcgTdlR6vK5/HjUxa6quYw+vC1RBEFQ2iT+2o3G5M5ClfSgFQODGCf1dD5b7goTaCh9ZfGopSCk27GnR42iJoXifKsAjc0Yq7JQxKEdjXQnkwTfbNSwBYZRN9MI0qm0Qe30Jg/9XWMN/WusqP6eRPeyieuVo5cPgXP/WVadn/G+aqvMb1KPL4Vvx7GnHW+NGcjiWlcF1LWYrk335E+dIk4Uc2L/lxgdubKV9O4aoN2O/vdXBGvBhjORxBD5prddoolD71vptWpdI8F83tAA1QoC2xghx+aBOax4mrLoCn9fpe81Io06JwchR3c4jm/+n+Wfc7Am40vwtVMJacBlQey1H4cASA9C/O4fvDu1dURldjEM3tQBkWnrYwDr8bR8CNlddx1QYo9SYrLdeFj0ZxN26mdCFB/shQ5TVEHltZSpEyLJSlVqWBw90UwrezHn0kS/BQOwCxZ3ahCgaOgHvOx7hq/LhbQujDWfw7G/C0Raj94h6sgk7mjX7cDcEV90A5I14a/tEhsNSqfUbE2jJzZaxcWVKplkBzOnDW+mn89N325/CVtS7RjSVBfRVTpgUODWfUi6vGX7ndVRfA0xm1fyhub76ufZu5Msm//QiraFDzzC7cTav35WGVTZI/OoU+niPy2Bby7w9ipIp2as0Wuybtqg/Q8N/dBZbC4XPh23y1hu2MeNE8TlTZxOF3ocp20K2PzN3aa5XNSkDvCLiJfGrrojV2TdOo/dIeiucTMypFG43m0PC0L32cwlzMdIly/ySAXdnaYwfCVtnATBRxNQVnVNiu8G6qoemP7lnRc8c+u4NS/yTu5tCqBSzRJ7eTPzGCpyOKwz93MAZ2EFf7m3sx0yV8SzxHnCEP0ce3LmlbpZuVHpTlyr5zmdxblwGo/creWe+xw++m/ncOYiYLuNsjS9qn5pxWFuf1lWs6d0OQ+t+/E2VYuKJ2GlLdN/ZjJAp4OqJY6RKOsAdVMis9SK5aP7gcYFi4FkmNmovSTVTRQBkWZrrIxPdPoHSL2i/uWdZ4nbloDm3WOCVN09CmBfRKN+20mqlWeM3loO639qMMa8b5m365l+JUL2vdNw+sOBVJc2jXfS6J9cXMloj/52OookHowW5Cd7evdZGqwnwV641GgvoqNvn3pzFGs7NaCTWXg9rf3LuifZcvJjGmurwLH43NCuqVpci+0Y9VMAg/1L2sFl5jLFfJ484fH8aYmOqyPj1eCeqBeVvPnGEv9d86iJku4W4J4/C5MFMlgvd0zLm9w+PEv7+ZYk+c4N3tS04xcTeHcTffuNbU1aLHc0z+3Wk0t5OaL+7GGbrabW9myyR+dBJVMIh9YTeeJbSIW0WDwim7lXcpAb8z6sXdEUW/nEIVDcxsGWVaTPz1h5iJAv7bGol+ZvuKXuN0hY/G0EezBA+1YRUNSr1JuxxbVyddwRnxEn6ga0nbrjQQnE/pYpLk332Mw+eGndcxW5V19U81T2+DM+TBGfIseZfuugDBB7oo908SfrB7+WWaqwzBmc/vDHkr568z6rNbmBWV1CFnzEf9tw6gSuayWymVaaGPZjFTRdK/uoC7OYQq2OlVpYvJG/ZeXmEVDSa+dwwzVSL8yCaCd1ztMb22Qqp5p777HBqaa/2mSa4XRqoIpoWr9uaPDbnZzMkiairV0Bi9vrRFsXFJUF/FrrRMq7I5K31lpTxdMZxRL1bRwLd9dvdv8UzcHvCHncqynB95d1PQ7kkYyxE81Eb+2LA92HDf0nsVnGFvpbUr8uj8XfBKNzFzOtHHty65hbTaFD8ex5ws2n+fjs9Iryr3JTEnClP3jS8pqE+/dN7u2XBqNPz+nYvm9mqaRvSJrcT/8hhMtTiqsok5NVD5evPl56LHc6ReOAvY+elmqogxmqNwcpTGP7z7utKH1qPShQSYCitXrvRELUfo3g4cfheOkAdvZ2zVyhW+twPunbvyvFJKKdK/vIA+mCb88Ca8m2rs77Spr7XSxSTJvz+NI+Cm7mu3X8cTTF0Aq6Dj215PoWccVTbx7226/nJbitLFJK5a/4we02sZiQJmyh4HUO6bnBHUXyvyyc24m8O46gI3fDB1tSsPZ0j84ASYitgzu1Y0LmiprLKJKuo4Izf/vXG3RQje3Y4RzxN6oPO69lEeSJN7fwB3W8RO42kJ49+5cXukbyUb4xfwFhV5YivaGRfOgHtVA/orA9Aa/uDQvJUFZ9RXySc2CzqZ1/sIHmpfMKhKv3IRfShN+KHuGT0JN+rLROkm8e8dx0wUCN7bseTW12rj6Y5VKljF8xMzgnpPdw2OiNfOU25eWstmZcCrApY4+NVV46f+dw5gZcs4LhzD4XcTfnQzpfMJgvesXveww+uqpF84Ax4wLYzRHA6fa0PlC/v32eMNHAE3mnf+wbrKUhgTeVw1/hmvX3M5qm4KVzNRqOTsZ9++jHdTzYz7i+cm7AHG6RLlgfSyvzc0lwNXXQBHwEPk4S125eDL11E5uEbm173kjw2jeZzU/94ds3ofrnC3hPDva7Z7mebpVZxe1sAKKhoLyR0dIn9kCGVYeDfV2L8jU9/xejxH+sXzWLkywXs7COy9vvTNm8kYz4Fpf0/po9kbHtRbBZ34945jpUuVqZKVbqLU/L3Lq0nTtOvqKdOHM2TfvoSnM0bh5ChGPE/p/NUB7+6m0IKVUlEdVhTUa5pmAiexwzsT+COl1FsLbN8N3KeU+v7U9f1Aq1LqhZWUY9r+DwP/VCn1wRK3/9fAk8AL/397dx4dWXUfePz7q11VpX3pVqv3BegFeqG7DTaYThODsTF4AniBGOx4gjPJTDKTTDz2eDxxDnNOZiY5yWQ8niQktrE9tnGMHYfg2IYDNBDMDk0vNL3vi9TaVfvy7vzxnqoldZVUkkrLk36fc3S669VT6enqVtWv7v3d3wVeBA4ZY1xT6iS0uhF/c2XLvmVO99H99/tAoOFjG0qmXwQWVdP46c1kz/bT/+RRAKxEjtpbi4+GZzvjJF4/C0DsX07R8InJpQeVIz+QKYwWZ072whwN6v0tUbuOlUVhJHJQIb0iZxHbdZzwupYxH6/2ltUkFkbxL6we10iUr74K6qvA7g5EtiwismVR2d9fDm91kMZPbSTflSS4ugGTN2SO9+BvrVxOfTGZcwPk2mOE1jdPqPTmePmbIzR9Zot9Y9euwz2wUAAAHTtJREFUkuf1PXGQ1MFO/K3VNP76xim/rqnkrQniawqT60zgX1JL+lg3gSW1iN9LPpYhe7YfvIKvOXJZwF8uT9iPpzpQ0RK1+X57lsxk7Hx9SgT1IkLtLeObLTTGkDrYiTcamPTal0EDzx4vLABP7m0nvGlhIc2w96eHyDtplwPPHndFUF+1tpnsuQFMNk9kyyLyA2l74XyZawhMzmLg+ROYnGWnko5RmjbXk8Lqd2ZcTvYSWFpnzxQYQ/09Gwi0lbdGZbr1P3PMriZ3tIfg6gZynYnC2jR8norsiaBm3mTfnZLGmE0AInIr8CfATaOcvxy4F/iec3sTsBU7qJ4JnwOajTFpEXkEeAJwTVA/FTLnBgov+NnzsVHfSAqLt5wRe0/IW3pkvyaItzZEvi9FYOnU5q4O8jVUEdneRuZ0H9Ebiwf0xhg7RSeWHpaLPlXSp3rt2vvjKC2X603R+0/vIj4P9XeuvWzBjyfko/7uDWRO9tolDEcQrxPsessLej1VfqLvmZoUi0rwN0XwN0UwxhB77gS57iQ1U1hnPT+QpvtRe3o/c7afutuvHPubpkDqUCfJve1UbVhQqIiSOWvXH89eGMDkrUt/61kuc7qP9LFuqq5eUMiDFr+Xxvs3YSWydH1vD4mXTxNcVU/9r60ndfBioVxkaGVDWXsCTJfqnavwRE7jb62+rJKQyVn2TEpTeEJ/m/grZwq17hvu21iRiknB5XWX1qHUV+FtGFJkoSZYCOoDyyqXtjWVxO+l9oNrAOh76gjJ3RfwL6mh4eNXlzWDnXyno1BRyVsdIHr96Ckt/tYo4U2t9ozLe5eSOd1XSJHLnOydtUG9vyVK9twAnuogNbddQb4zgbcuROZUL77myLjW16jZq5KvjDVAD4DYz6T/CdyGPXb434wxPwD+O7BWRHYD3wd+B6gSkRuwPxA8BXwDWAkkgAeNMXtE5CvACqAVuAL4feA65/HPAh8xxhQt+iwiXufn7gCCwNeMMX8jIo8DEeAVEfkH4A7gJhH5L8BdxpijFWybKXPgwAEA7r333so/+FsTOP9vyjzv/4z/ciZljI+Nf/vNr0/LZfT8YB/AZeU3R5Pc214o7Zc62Fl0E5vgsjqCJd6EG+5ZT+poN8GVla/Rm9h9noFdJwisqKPujqsqmgY2lszpvsKbcSzonbIdkoftB5G3xjh76vT9/DAmnSdzuq8Q1NfcvJL4G+eoWts8ZQF9Pp6x04Aq9Lc12Tw9P9qPyVqkj/fS9OnNhfvE60GCPqxYBrA/0AIEltYhIR9YhsDK+gld0+Br5YEDB3j44Ycr8rtMq/G+HpfrmVF+3g/Ke4hZ155vAY9P8Pu+Oo7zR76vVPC9bUrb9Pmpe+jZatb10Sky2aC+ygnQQ9gB907n+K9hj8JvBJqA10TkeeAL2OkxtwOISDuw1Rjzb53bXwXeMsZ8VER2At92HgdgFfArwDrgJezA+/NOQP5h4CclrvGzQJ8xZpuIBIEXReRJY8wdIhIbMtOwAnjCGPNYsQcRkQeBBwEWLFjArlGmxKdaLBab0Z+vJm7fUrv0o+fsPjy9B8v6HpPNk19mBze+rgOwa8j3Gcj3JjGWwVsbGj0FZfeEL7ukXFcSWvOQ6sL37AXwSMn+acUzmJzBWx2oTHk9y5BbnrDLnnqTeHZdmPxjlmCuyWOyeTxVWdjVPub5vb3237kSz9PB9swvSWIyecTv5cDQx20FeruH94sRTDqPyVn2LM84mj7fn8Yks0jQh7eMBZtWIot4xA7AR5Fri9t10/0DeIu0kdmQw0rl8YQzyOD9TsZe/rVfjuualFJqpLkaQ1Uy/eZ64NsisgG4Afi+MSYPtIvIc8A2oH+Mx7sBuAvAGPOMiDSKyGCuxs+MMVkR2Qt4gZ87x/dip/WUcgtwjYjc7dyuBdYAx8fxe2KMeRh4GGDr1q1mx44d4/n2itq1axeDP/+FF14A4Mtf/vK0X0euM0HqUCfBNY34GsP0/uMBe7vzX11V0cWvgyOlE8mZTh3tpvfHdkZV1TULqL11zbD7c10JnvuX57mu7eopXVj40EMPAXD9ys1YmRzR7YvHlcNoZfJ2sDSiDZL7O+h73a4GE97SSs2OyW3GM17xN88xsOs4wRX11P3KWkRkWP8clD7RQ88P9wPF/w7jYaVzhTxybySAlcyWvYHSdBl8XlbidWKwPU02T7Yjjr8lMq6+k+tK0PmNNwFGLS9qjCF9uAsJ+QoVc9q/+rKdJy6w4A/eN+rIeOzFU8T225vC1d+1btSZoVxP0p5xWN14WTqZlc6ROdGLv62maEpAx9deKezGu+D331v2DMXg3+TGG29kx44ddH7zzUJKT/Nvbatonv2gxL52Uvs7CG9uLVpFbKjkuxftheWDm+0NYYyh54f7yZzsJXLdEqpLpBPOhGLP96kSf/UMA8+dACB64zKiYyw4dqvJtqkxho6/fAmTtfBEArT89vbKXZwLDW3PwffimYzhplLF0m+MMS+JSBPQzLjGgoYp9n2DS//Szs+xRCRrLu1JbzH67yHAvzPG/GKC16RK6P7Rfqz+NIndF2j57e3U/6t1l52TOtpN5lQv4c2LJlSazUpk6fp/u8kPZOzNqdY0OpsaJfG1RIsuhoq/eobU0W6i1y8luKKe8KZW8gMpIkXyxH2NYby1oWmrFDLR3XxLVVXwL66xd+HM5Amumv4t4MtdDOutCV3aNGgCtaStdI58Xwp/S5S+nx22g0+/l+bPba1IQG8se23FTOZqG2Ow4ll7W/MiwbP4vRPL1x0sC2kYdYYk8eZ5Bp45BkD9xzcQXFpH9Y3L7PSeDQvGTnUZtjnV6IG2r750+ceeH79D9kw/3togTb+59bKfG71hGfHXz1K1rmVSKUeR7YsZeOEEwRUNUxLQA4Q3LCC8YewqNlYmR98TB8HY+3g0/caWYfeLCA0f24CVyU9LhZXZKrSumdSRbrAMVWUs+p+vRIS6O9eSevfipMq1zkUmZ83pjdgq9g4mIldhj6B3YWdsfU5EvgU0AO8H/hBoA4YOQQyMuP08cB/wkIjsADqNMf2TzOX8BfBvROQZZ6T/CuCsMSY+4ryR1+Iq8TfOYTJ5ItvaJjSindhzgeQ+e0Sp3B1UCwF1id0l8/EMvT85AJYheyFG4yfHXz4uc36gUNs5daiT4Mr6UTc1ysczhZGcgWeP0fSZLdR8YHpHr6eTrzZE8285W8BPQfWC9LFushfjhDe1Fg14k/s7yF2ME97WVrKUH9iLlps+vRkrniUwZAfT1NFuYi+eIriqnur3FR99tDJ5Oh95C6s/TXhbW2FRmslbmPwENmYawWTzdH13D7mLcap3riRybWUr9pSr76eHSB24SHBNI/UfXVuxx/U1VNHw8avJXoxT5QSY+XiG2Asn8VQHiL53KSKClbq0LGlwc5vwptay135Eti/GE/HjqfKXXN9RDmsg41xj1l7LMOL1Jbxx4WV7WqSOdhN/5QyhNY1EtrWR60rYMwFXNJXcSbJqfQtV62dHYCheD57qIFZ/Gm996cGP+RzQg705WeO9ky9DOh8EV9QPqxKV604Sf+0sgaW1c3qX9NEk371ob3wpQq4nOSdLeFYqpx7ssaAHjDF5J8/9euBt7PGhzxtjLohIF5ATkbeBR4BvAV9wHuNPgK8A3xSRPdgLZR+YwDX9VEQG351eAj6OnZ7zprOA9yLw0SLf9yjwtyLyu8DdblkoC/Zo9uAIGx4uq1xisnnSx3vwL4wWLVE4uOkLlqG/O1H2E77+ng2kj3QRXFV8ml18HsTvwaTzE94UKLCklsDyOvJ9KcKbWzHpIZsaXbh8UyNPyHepLN4srUJQaeL12B+nKyzXlaDnR3bqUvbcwGUzMdmO2KWNoGKZMavCFEpeDhF7/gS5zgS59hjhja1F0y2seKZQQi57foC6268k8dZ5AouLp2eMV643Zde6BlKHO2csqE8f7R72byUFltQO2zE1/tJpknvttQH+hdWEVjXYKWEIUuUjOIFa3+KRipRArP3IlST3XCB0RVPZI/EDzxwj35sie7af0Lpmur63B5Oy07Qmu7v2dBCvh8Zf30iuPUaggpuFqbnLWIZ8X8peS1XGyHPfk4fJnu4nufeC/do5RbNTs1n2tJMBbgy5jrgG9SMZY4qGEk5qzB86X0OPZ4GbR5y+bcTtO4s83ldG3I4Wu88Ys6PEpf5n52vk4w59nBexF+G6z5AndLHR1N6fHiJ9uAtP2E/zg1svG9EVEQJtNWRO941ret9XF8JXJG0l2xGj/8mjeOtDNHzyanLtcYJj5JOW4gl4abhnw7Bj1TevJH20m8h77E2NEnvbib98mtBVzVTfuMx+c+xLTWuetZXJk+9J4muOlF0febbLOvnGANmOkRNbIAGfPYqaN6SOdBF75fS4S2EGltWR60zga4ngqSr+cuSrryJ6wzK7NOkNy/BWB8vafMVK5+h+dC/5niS1H7mKUIkPn76mMFUbWsic7Z/RUp7V719O/K1zVF29oOLlKRNvXyB3MU7kPYvt3ZgHyxh6BW+N/eYufi/R901sh8rRWJk8PX+/j1xnnOCaRqLXL8XXUIXJWaSPdeNriQ5LzQu0Vpe18/FQgSW1JHtT+Foi4PXYU+zYAxpu4Y0E8I5RoSpzps/emGt5/bhT+VKHOkkf6yG8ZRH+lsrub6KmX8+P9pM50Uvwikbq7xx7Zs8bDZIFJOibtzXpw9vakMd9iFdKDka63ewp9qsmzBPyUX/Perv+eZHg2XJ2iLVSOUzOKvqErr9nPfme1LCaxeOR70+TOdVLcGUD8VfPkj0/QPb8AFXrWgpT/pUyMo879uIprIE08ZdPE3nPYjwB76Ua+mPInBvASmSxUrkJzyYYy9D93bfJdSYIrWum7sMzU8e8XFYiS643ZW/YNEpqW2BxDQQ8kLGKpin46kI03reRru/shqxF/KXT416bULNzJeFrF+GNBkYNYqPXL4HrxxdwZ88NkHM+jKTe6SgZ1Cd3XyDXk6L6xuUT3tSoEsKbWwmtbabru28Te/4ktbeuJrG3nZw/QebcwIRrlGfbY/Q/eQSwd8Os+8hVRJzAzhP2T2iNw7h+vvNaAJB6x57+brxvI31PHiF9yF6Y2/zg1kmtZ6i5dTWRrW146+wKUA13ryd9onfO5RP3P3OcXHuMzIlevI1VkLUIrmkccyDBSuXo/aeDdipkR4ym+zePer6a3YwxZE71Ac7GimWo/eAaQlc04muJTvi9zu18daHCB9q5tAP5UPPzLzsHBZeXDkZqbltD4o1zBFfU46kqnl8qXg++CW7gY4yh6/t7sPrT+BdGCW9uJXXgIp5IAF+Fd7wtJrSmgcSb5wksqxtXzmk+lqH70T1YbWn6fnF4zNEOK52j758PYaVy1N52Bb66ENkLMQaeO16oolEsJWg2sdI5Oz89niF87SJqdq4sea43EqDlN7eRj6XtXWuL8C+IElrXQmp/B0aE9j//Jfk1qXFdk6+2/AXUJmeRd/KOR/tAku2M422O4F9UTa4nOSy4MzmL/qePYdI5ojuW0//0UTDQ35ss1H+fClYyS//TxxC/h5qdK4t+uM62xwrpZYm3L5A9NwBLLZJ7LgwL6k3OKvtNyRPyFRYpe4akK1Vqh9Kx+Fur8S+qtn8XwOQNHX/9Gjg1/006Z6+TmERQLyLDXr9GphvNFf6FUXLtMTzVAbuql4HI9UuoHmO3bPF58FT5sOLZeZl2MdeICDU7V5Lc115035Ki3+PzjFmBSbmfBvXzgL8pMqkSgmMylxbWWckcVRsWEFhejwS807Kwq+bmVfZiv/GOPhhzqbZSiQWXxpjCTIC3JUL6iJ3vnNh9npodKxh47nhhxMS/qJpoicWes4WVyGLFnY19iqTUjOQJ+0suNBxU96Er6E5myTi7VJp0Diudq2glmczZfgZ2HSffl8KKZ0ctzdj/zDESb5zDWx+i6YHNlwXPqXcvktxj17T31obwt9oB51QHufE3z5E6cBGw89hHLvYECCyqJrCinnx3gsj2NgaePQEiwz5sxF48ReyXpwisqKf+rnVjVqXx1oZoun8Tue7klEw5J/e1kz7WQ2Rb22WlGMFOoWu8byO57gTpoz3k4xkSr50FnN05r22rSKCZ60yQPt5D6MrGy9YOZTviWMlsyUENK5MnubedzIkewtcuGnWQZCbVfGAV4Y0LseKZwnqXwfKeoxGfh8ZPbSJ7IUZw+dzJ2U8f6wavZ1ILs90qvLm17IBezR8a1KtJE49Qf9c6Uoe6Cmka073ldKk369F4q4PU370ez75Xqdmxuug56WM9xF86DUBobTMS9GKyFsGldgDoX1hN5lQfnmjAfqxZtH19Mb76KqpvWk7mTH9F86f9C6KFoF6q/BVvh9iLpwojvWDvJltK9py9GCrfk8JKZPHWDg/qfc2RwloA34II0fctJd878dSzchVmOzyCr7n4rJj4vTTcvb5wO7i6Ed9zzw1LC0oe6AAgc7wHk8whY3zoArt061SsMbESWfp+dhiwa883PVA6rcPXEMbXECYfy9gfKAXqPnzlmB8ay2GMofsHe7ESWZL7O4btUpvrTND1nd3kOhOF9QND5QfSdH7rLUzSHpjIdiZo+dzIpV6zg4jgX2D3o5oPrCLXmyLqrC0ai7c6OKdG6RP72ul3+t5Y+yIoNV/M7ghEjWnZstkxMhxYXDtt0/mVFFxWh+d4oGQ5Rm9NsBAA+hdV2+Ux86YQiFTftJzQVU14a4KzPqAfFNm+mEiF9yKpvmEZwZUNeGuCeF//ZWUfHAgsrSVzshcJ+fDWhoheVzqQqb5pBbEXTxFYVou3SGqPf0GU5n99LSZrFQLdiaaejUdoTaNdf9zrKXvPhmKj8JHti+0yoKsbKhIQT4YEvHhq7FKMvjI/FHmjARo+tmHsE8fDOJvUgT0DN0Q+kbFLY0LREqjZjnghoAdcs4i03FKjc5UZMkNRzmyFUjB7Yqap4o4oRJV0//33z/QlzGn+5ghNn96ClcyWrAw0OHI23010IWc5otctIXRVs50ONEZKV2BJLQ2fGL2MYbHSrtOhEqPl4WsWEr5m8qUjK0F8Hpo+tYnsxfiw/Qem/To89uZM6WPdhEbsZh1cWkf1zhV4zgeK/t2Dy+sIrW0m15MkvGURVVdp3rEbhLcswsrmEZ+XkG5Epco012MmDeqVGoM9Ajn36tm6zUR2JFZTzxOe3GZTleJfEC35ATtybRu+fy7+HBavZ8w9FtTsIz5PyQ3rlJqv5mZNH6WUUkoppeYRDeqVUkoppZRyOQ3qlVJKKaWUcjkN6pVSSimllHI5DeqVUkoppZRyOQ3qlVJKKaWUcjktaanUNDl58iQPPfTQTF/GlOvt7eWFF16Y6cuYUSdPngSoyN9b27MyTp48Oec3nlFKzW8a1Cs1DTSYmF+CweBMX4IaYdmyZfo8VErNaRrUKzUN5voudkPt2rWLHTt2zPRlzBnanpW1a9eumb4EpZSaEppTr5RSSimllMtpUK+UUkoppZTLaVCvlFJKKaWUy2lQr5RSSimllMtpUK+UUkoppZTLaVCvlFJKKaWUy2lQr5RSSimllMtpUK+UUkoppZTLaVCvlFJKKaWUy2lQr5RSSimllMtpUK+UUkoppZTLaVCvlFJKKaWUy2lQr5RSSimllMtpUK+UUkoppZTLaVCvlFJKKaWUy2lQr5RSSimllMtpUK+UUkoppZTLaVCvlFJKKaWUy2lQr5RSSimllMtpUK+UUkoppZTLaVCvlFJKKaWUy2lQr5RSSimllMtpUK+UUkoppZTLaVCvlFJKKaWUy2lQr5RSSimllMtpUK+UUkoppZTLaVCvlFJKKaWUy2lQr5RSSimllMtpUK+UUkoppZTLiTFmpq/BdUTkInByBi+hCeicwZ8/12h7Vpa2Z2Vpe1aWtmdlaXtWnrZpZbm9PZcZY5rLOVGDehcSkdeNMVtn+jrmCm3PytL2rCxtz8rS9qwsbc/K0zatrPnUnpp+o5RSSimllMtpUK+UUkoppZTLaVDvTg/P9AXMMdqelaXtWVnanpWl7VlZ2p6Vp21aWfOmPTWnXimllFJKKZfTkXqllFJKKaVcToN6pZRSSimlXE6DehcRkQ+KyEEROSIiX5jp63EDEVkiIs+KyAER2S8iv+ccbxCRp0TksPNvvXNcROR/O228R0S2zOxvMDuJiFdE3hKRJ5zbK0TkFac9fyAiAed40Ll9xLl/+Uxe92wkInUi8piIvOv00+u1f06OiPwH5/m+T0S+LyIh7aPlE5FviEiHiOwbcmzcfVJEHnDOPywiD8zE7zIblGjPP3We83tE5B9EpG7IfV902vOgiNw65LjGABRvzyH3/UcRMSLS5NyeV/1Tg3qXEBEv8DXgNmAd8EkRWTezV+UKOeAPjDFrgeuA33Ha7QvA08aYNcDTzm2w23eN8/Ug8FfTf8mu8HvAgSG3/wfwF0579gCfdY5/FugxxqwG/sI5Tw33l8DPjTFXARux21X75wSJSBvwu8BWY8wGwAt8Au2j4/EI8MERx8bVJ0WkAfgj4D3AduCPBj8IzEOPcHl7PgVsMMZcAxwCvgjgvD99AljvfM//dQZRNAa45BEub09EZAnwAeDUkMPzqn9qUO8e24EjxphjxpgM8Chw5wxf06xnjDlvjHnT+f8AdsDUht1233JO+xbwUef/dwLfNraXgToRaZ3my57VRGQx8GHg75zbAuwEHnNOGdmeg+38GHCzc74CRKQGeD/wdQBjTMYY04v2z8nyAVUi4gPCwHm0j5bNGPM80D3i8Hj75K3AU8aYbmNMD3YQe1kgNh8Ua09jzJPGmJxz82VgsfP/O4FHjTFpY8xx4Aj2+7/GAI4S/RPsD+WfB4ZWgJlX/VODevdoA04PuX3GOabK5EyrbwZeARYYY86DHfgDLc5p2s5j+1/YL5yWc7sR6B3yBjW0zQrt6dzf55yvbCuBi8A3nXSmvxORCNo/J8wYcxb4M+zRuvPYfe4NtI9O1nj7pPbV8v0G8DPn/9qeEyAidwBnjTFvj7hrXrWnBvXuUWzkSOuRlklEosCPgH9vjOkf7dQix7SdHSJyO9BhjHlj6OEip5oy7lP2iPIW4K+MMZuBOJfSGorR9hyDM4V+J7ACWAREsKfgR9I+Whml2k/btQwi8iXsNNHvDh4qcpq25yhEJAx8Cfivxe4ucmzOtqcG9e5xBlgy5PZi4NwMXYuriIgfO6D/rjHmx87h9sG0BeffDue4tvPo3gfcISInsKd/d2KP3Nc5qQ4wvM0K7encX0vxadP56gxwxhjzinP7MewgX/vnxP0qcNwYc9EYkwV+DLwX7aOTNd4+qX11DM7izNuB+8ylTYO0PcdvFfaH+Led96bFwJsispB51p4a1LvHa8Aap4JDAHshzeMzfE2znpMb+3XggDHmz4fc9TgwuNr9AeAfhxy/31kxfx3QNzjlrMAY80VjzGJjzHLsPviMMeY+4Fngbue0ke052M53O+e7fjSkUowxF4DTInKlc+hm4B20f07GKeA6EQk7z//BNtU+Ojnj7ZO/AG4RkXpn9uQW55jCrmQD/CfgDmNMYshdjwOfELsq0wrsBZ6vojFAScaYvcaYFmPMcue96QywxXl9nV/90xijXy75Aj6EvUr+KPClmb4eN3wBN2BPqe0BdjtfH8LOmX0aOOz82+CcL9gVBo4Ce7EraMz47zEbv4AdwBPO/1div/EcAX4IBJ3jIef2Eef+lTN93bPtC9gEvO700Z8A9do/J92mfwy8C+wDvgMEtY+Oq/2+j70eIYsdIH12In0SO1f8iPP1mZn+vWZZex7BzukefF/66yHnf8lpz4PAbUOOawxQoj1H3H8CaHL+P6/6pzi/mFJKKaWUUsqlNP1GKaWUUkopl9OgXimllFJKKZfToF4ppZRSSimX06BeKaWUUkopl9OgXimllFJKKZfToF4ppZRSSimX06BeKaWUUkopl/v/UBLJ3bujFzEAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwEAAAHaCAYAAABYeUXQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xd0m/l95/v3U9ELCYKkWNQoCZJGbaQZzYynuI0zduxsbG/iNG+KU7zZXCebntyb7NnN5mb37k1yzq43e3avsyk3cTbOdVyScRnXuMxoJM1oJI1GI6hL7AQJgujlKfcPgBQpkRLFIlLC93UODgDiwYMfHoLE7/N7fkVxXRchhBBCCCFE81DXugBCCCGEEEKIe0tCgBBCCCGEEE1GQoAQQgghhBBNRkKAEEIIIYQQTUZCgBBCCCGEEE1GQoAQQgghhBBNRkKAEEIIIYQQTUZCgBBCCCGEEE1GQoAQQgghhBBNRkKAEEIIIYQQTUZf6wI8oDzAo8AwYK9xWYQQQgghxINLAzYAx4HKYp8kIWB1PAp8Z60LIYQQQgghmsbTwHcXu7GEgNUxDDA5WcBx3DUpQCwWZGIivyav/SCS47ny5JiuLDmeK0uO58qS47my5HiurPv9eKqqQktLABr1z8WSELA6bADHcdcsBEy/vlg5cjxXnhzTlSXHc2XJ8VxZcjxXlhzPlfWAHM+76oIuA4OFEEIIIYRoMhIChBBCCCGEaDISAoQQQgghhGgyEgKEEEIIIYRoMhIChBBCCCGEaDISAoQQQgghhGgyEgKEEEIIIYRoMhIChBBCCCGEaDISAoQQQgghhGgyEgKEEEIIIYRoMvpaF0AIIe5n1WqV8fEU4+MppqYyVCplyuUSxXKJYqlEzaph6AamYWKaBh7Dg8fjIRgMEg5HZi6hUBhN09b67QghhGgSEgKEEGIRXNclnZ7gypVLXLx8gYGhAdIT45QKRbzhIHooAD4DV9dwdRXV0FF0HcWj4jo1XDuPm7dxbQcsG7VqQ7mKXapgFcpUy2V8gQAtra3E29rpjHfS1tZGW1uceLydQCCIoihrfRiEEEI8ICQECCHEPFzXZWxslLNnz3Du4jmuXb2C7Th4O1pwW4MYfTH8B3oJ+X0o6vIr567j4JQqlHJFruRKXBw8i3q+gp0vUZnKowAtsRjxtnY2dHQSb2snFmsjFosTjUaX/4aFEEI0FQkBQgjRUK1WuXjxPKfPnOLMG6epWjXMrja09gjBdx1EC/hWrTVeUVW0gA8t4IPOWx93KlWsXJHBXJFroxdRr57FzZep5grUSmUiLVHCkRZirTHaY+3EYjFaWlppaWklGm1B1+XfvRBCiBvkW0EI0dTK5RJnzrzO8RPHuHghibc1grKhBc9TDxGIrp8uOKrHxPSY0HZrq79r21j5Etl8iUwhz/nBcdQLVdximVq+RKVQxBcIEIlGibXG6Ih30B7vaHQ16iAcDq+b9ymEEOLekBAghGg6xWKB118/xbETx7h6+RK+jhhqT4zY+59C9ZhrXby7pmgaRiSIEQnO+7jrONjFCtVCif5CmaupS6hXz+Lky1SncjiWTTTWSk93L5t6NtPT00t3dw+BwPz7E0IIcf+TECCEaAr5fJ7Tp1/j2Ilj9F+7gm9DHK2njdj+p1FNY62Lt6oUVUUP+iDoY76I41RrWNkCVyZzXEq+gnv0W5TTGTxeH5s3b2HXjl1s25ago6MTVZWZpYUQ4kEgIUAI8cCanExz5sxpjr92nMH+6/i6GxX/Q29FNeTf3zTVNDDbopizuhoFXRc7V2QglaH/1Es8/5Uv4FoWm7f0sXfXHvbs2U9LS+salloIIcRyyLegEOKB4TgO/f3Xef3MSV47/RpTmQze7jhaT4y2w29F0WUe/sVSFAU9HEAPB6CvmwBgF8qMjqUZeu1FPv/854hEozy872H27T1AT89GOUsghBD3EQkBQoj7luu6pFJjXLiQ5Oz5s1y6eB7F0NG6Ypj7NhKL70ORiumK0QJefFu6YEsXAcehlsrw8mCS7x57CcV2OPjwIzx66DE2bdosA42FEGKdkxAghLhvFItFhoYG6O+/zsWrF7l08QKO4uLpaEWJRwg+ewg95F/rYjYFRVUxO1oxO1rhINQyeU5d6+fVP38VHZVHDj7KI4ceo7u7RwKBEEKsQxIChBDriuM4ZLNTjI+nmJgYJ5Uao3+on8HBAYqFAr7WKEpLALUlSPDZg2jB1Zu7XyyeEQ1iRLfh7uvDmszx6rXLHPnvR/B5vTz+6Ft45NBh2tria11MIYQQDRIChBCrznVdqtUK+XyeXC5HPp9DUWoMDo4yOZVhcmqSbHaKXC5LIZtF93gwQwGUoA/Xb6K1BPD27SEQCqzI6rxi9SiKgtEaxmgN4z+wjVoqw3cvn+br3/wKsbZ23nL4CQ4cOEQ4HFnrogohRFOTECCEWLZarUYqNcbY2Cjp9ATpTJr0ZJrJqUly2SmKuTwAhs+L7vOgek0Uj4nj0VC8JmrUg7qhA4+3F3/AJwN4HxCKomC2t2C2txA4tIPy8ARfOfkSn3/+s2zo6ubwwcc4cOCgBAIhhFgDEgKEEIvmui6ZzCRXr17h8tVLDAwNkEqNUsjm8IaD6OEArt8DPhMt7EHtaMfr34jf55EpOZucoqp4u+PQHSdg7yQ/NM5XTr7IPzz/WTo2bOCRA4+we/de2ts7pHuXEELcA/KtLIRYkOM4DA0NcO7cWc5fvsD1a1exHRtvvAW3JYDeFcK7cw+BkF9m4RGLpmga3t4O6O0gYO+kMDTB188e50tf+xKmrrN71x72PrSf7dsTeL3etS6uEEI8kCQECCHmyOfzJJNnOf3GKZLn3gRDQ+9sRWuLENwuA3HFyqoHgnbobcd1XaypPGcHxzn7pb+n+JcTtMTa6NvSx7at29m0aQvxeLusRyCEECtAQoAQgkxmkpMnT3D8xDFGhofwbWhD6YgSfJdMuSnuHUVRMKIhjGgIHoKA7VBLZ3lzfII3j1yj+o8ZnGqNWLydzo4NdHd209HRSXt7B62tMUzTXOu3IIQQ9w0JAUI0qXQ6zcmTr3LsxFHGU2N4ezvQt7bR9uQOFE1aWsXaUzQVMx7FjEcB6qsWlypUsgUuZwtcvHwSTpexpgpU8gU0XSMQChEOR4hEokTDEQK+IH6/H7/fj8/nw+v14fV6MU0PHo8Xr9eDYZhydkEI0XQkBAjRRLLZLCdPvsKR40dIjY3h7W3H2NFO7OldUvEX9wXN50HzeaCjdc7PXdfFrVrYpTL5UoWpYoWr+SHctIVas8FyoGrh1mo4NRunZuHULKxaDduy0A0d0+OphwOvl0DAj8fjIxQIEg6FCQZCBINBQqEw0WiUaLRVxisIIe5rEgKEeMAViwVOnz7JkeNHGOi/hq+nA70vTuypnVLxFw8MRVFQPAaqx4Bo6K6e67oubs3GtRrBoGqRqVk41RqDlQzO2BhK1UKp2rjlKnaxTCVXQNVUguEIra2tdHV20dXZRXt7Jx0dnQSDIRk7I4RY1yQECPEAKpVKnD59kmOvvszVK5fxbWhD2xgn9sgzMlWnEDdRFAXF1MHUWewKFTNnHopl0vkSY9khTg1fxs0WKWeyKCh0dnWxdVMfmzdtYePGTbS2xiQYCCHWDakNCPGAmJqa4uzZ13n11KtcuXQR34YYWk+c2IFnUE35UxdiJc0+82C0zD3zEHBdnHKVXDrLqxNXOXH5DSoTU7i2zcaNm9mV2M32bTvo6dmIpsnCeEKItSE1AyHuU67rMjjYz+nXT3Hy9ddIj4/j7YqjdrUS2/c0qmmsdRGFaEqKotTHLjQWR4PGoOZimfFUhn86f4Kvv/hNqrkCvZs28VDiIXbv3kNXV4+cKRBC3DMSAoS4TziOw/DwIBcunOfN82e5cuUSiqFjdLVh7Ooi1vGQLNglxDqm+b34NnXCpk4AnEqVzOgk37p4kq9/5+tgu+zcuZt9D+0jkdhNIBBY4xILIR5kEgKEWIccx2F8PMXgYD/9A9e5cv0qA9evoXlN9PYoajxK5N2H0QK+tS6qEGKJVI+Jd2MHbOwAwMoWuDQ0zsVvfoHS//pLOru6Obj/EPv2HiAeb1/j0gohHjQSAoRYI7Ztk8tlmZgYZ3w8RWo8xUhqhFRqjPGxUXSvB7M1ghv2oW8IEd37OJpfpiQU4kGlhwPo4QDs3ETAsimMTPDNN1/hy1/9IgF/gAP7HubA/oNs3LhZ1jUQQiybhAAhlsi2bSyrRqVSpVqtUK3euC6Xy5RKRUqlIsVikUKpSDafJZudIpvNUsznqZTLGF4PZiiIGvTiBDxoQR/6Q93EnkxIn34hmpiia3h72qGnncDhndQmsrwycJmjf3kcahZ79xzg0MOPsG3bDhlcLIRYEgkB4r7mOA7VapVKpUy5XKZarVAul6lUKtRqVWq1WqNyXm3cr1Kt1ahZVv0xq4plWTcutoVtWY0Kfv3ati1cx6FWm37MwrFsXEDTNDRDR9V1VENH1TUUXUcxNDB0XEPDNVQUw0D1GmgtEVRvO2GfB9VjSB9+IcQdKYqC2RbBbIvAge1Y2QJnr49y5tN/RS1XYNeuPRw68Ai7dj2EaZprXVwhxH1CQoBYNyyrRjabI5fLks/nKBTyFAp5cvkc2VyObD5LsVikXC5SLpWplMtUK5V6Rdw00AwD1axXyBVdA10DTQVNxdUUXFUFTUHR1HrlW1NRPCqKTwVVR1FNFE0B9cbjqqqiqfWfeTW1vriWqt7YhxBC3GN6OEBwz1bYsxW7UObKwCiXXvgslU/+GVv7tvPowcM89NBe/H4ZWCyEWJiEALHqHMchm51icjLN5GSaqakpJjNpJjJpMpkMuewUxUIBq1bD9PvQfR5UrwfFY9Rb0k0d1WugxkzUDTFUswOvaeA3dRRDl8q4EKJpaQEvgcQmSGwiUKkyMpDi8995gb/9u7+mq6eXQ/sPsXfvAWKxtrUuqhBinZEQIJbNdV0KhTzj46n6ANdUiuHUMBMTE2QyaYq5PIbHgxHyo/o9uF4TvAZqwIvW1obh76bVa6KYhsyRLYQQS6R6TPx93dDXTcCyyQ1P8LUzR/nCC88TCoU4sO8gex/ax6ZNW2RgsRBCQoBYPNu2SaXGGB0dYXR0hIGRAUZGhkmPp0BR8ISDqEFffYBrwIe2rQ1foIdgwFfvRiOEEOKeUHQNb2879LYTcFxq4xmODV7gyImjWMUSO3bsZP+eA+za9RChUHitiyuEWAMSAsQtXNdlairD4OAAQ0ODXB+8xuDQIJmJccxAACMSxA15UcN+9D09tEYSqB4ZjCaEEOuRoiqY7S2Y7S3wMNiFMv1DKa69+FU+9em/IdrSwq7Ebnbu2M22bdvxemX9ESGagYQAweRkmsuXL3Kt/xrX+q8yPDSI47p4WyMQ8aNGAugHt9IW2YtqyEdGCCHuZ1rAi397L2zvJeA41CaynBwZ5OQXz1IaS9PW0UFiW4K+rdvYvLmPSCSy1kUWQqwCqdEJ/vsn/it5LJR4GL03TGR/D6rPI/3zhRDiAaeoKmY8ihmPAhCwbaqpDCfGrnPiq2cpj6XxeL1s3ryFbVu209PTS1dXN4FAcI1LLoRYLgkBAsu28R7qw2iVfqFCCNHMFE3D0xnD0xkDIOC62NkC/eMZrp07jvvyP1FOZzA9XjZ0dbGpZxMd7Z20tcWJx9sJhyMPVAOS67rUarWZdWgqlcqs6yqWVaNWq1/qty0cx66vNWM31ppxbBzHwXVv7HOaqiooioqiKKiKgqKq6KpWn/pa01BVtXG58TNN04hGAxSLtcZ9HV3X0TRt1rWBruuzLgamaaJp2gP1+xHLIyFACCGEEPNSFAU9EkSPBKGv/rOg62LnS6QzOUbHr6BeP4ebK1HJ5rFrNSItrUSjLUQjUWLRViKRKL29nTiOjs/nx+/34/P5MYzVmRFuuuI+XVmfrriXy+XGpTRzXSwVKZbq16VykVL5xho01UqFWqWCoqnohoFq6GiGgaJr9YumgV5fUwZVxVUVXFUBVQGlfq00bt/yPhWF6VRQv3LBrd9xXRccF1wXZeY2s267KC64tlN/suOC4+A6Dq4969p2cB0bx3ZwLBvbssB10XQdzdAxDBPDNPF4PJimB4/Xg9fjJeALEPQHGr8nH7FYnERi14r/nsTakxAghBBCiEVTFAU95EcP+fH2dsz8PAg4NQs7V2SyWGailOf86ATqtRrK8Rp2pYZTqWFXqtSqFXDB8Jjomo5uGGi6jtG4VhsV53rluV6Zdh0Xp9GqXr/YWJaNZdWwa/VV3+3GRVFVNMOor+jeWNVdMaZXc68vJuloKoqpoRg6alhHaQuhGi2oho7P0AgYD95aNHMCgmXjWha1mk3VsslZFk6thlsdx0mNoFg2VC1KV4f5oz/8r2tddLEKJAQIIYQQYkWoho7aGl5U91LXtnFqNtj2TMXUsm1q0y3c071mXJd6U3ijVV1VZ1raVUXBo2v1aai1+rWs6L4wRW0cG2Nx27uWTfHK0OoWSqwZCQECgFomP6efohBCCHHPKQqKri16c9d1cWsW1FaxTM3Mdta6BGIVSQgQbOvbzuUrF4HUWhdl3dI0FVv+Ga4oOaYrS47nypLjubLkeK6se3k8+7bvuCevI+49CQGCH/nQh9e6COtePB4ilcqtdTEeKHJMV5Ycz5Ulx3NlyfFcWXI8xUqQTnNCCCGEEEI0GQkBQgghhBBCNBkJAUIIIYQQQjQZCQFCCCGEEEI0GRkYLIRYNZ/5zKcYHByY9zHD0KjV7HtcorWVzU4BEA5HVnzf6+14dnf38MEP/tBaF0MIIcQC5EyAEGLVDA4OMDjYv9bFWDey2SzZbHati7HqBgf7Fwx/Qggh1gc5EyCEWFXd3b187GO/esvPm3GKu49//I8A5j0ey7Wejuf0+xRCCLF+yZkAIYQQQgghmoyEACGEEEIIIZqMhAAhhBBCCCGajIQAIYQQQgghmoyEACGEEEIIIZqMhAAhhBBCCCGajIQAIYQQ61bJrpKuFta6GEII8cCRENDkjh07wrFjR9a6GKJJ/YcLL/C54VNrXYw7ylllXslcJ1MrLWs/juviuu4KlerBl6kV+eNL3+CPL3+DVzLX1ro4QtxCvkPF/UxCQJM7evQljh59aa2L8UCq2BbHM9cYLk+tdVFWVaZWJJkfxXadu35uwa7yytR1ClZlFUq2cv6i/2U+N3KKP73+4pL3cWKqn2ulCQbLGcp2bebn3xhP8smB46Qq62Ohr/VkrJKj5NSP1dVies5jjutyKjvIhcIYRbvK86Nn+O7EpbUopmhi8h0q7meyYrAQq+QzIyd5IzeMoWj8Wt878WoGJ6cGCGgmO0Oda128O7JdhyvFCTo9YYK6Z95tSnaN/3b12xTtGgcjvXxwwwEAqo6FgrKo19kRaMevmUsu52gli1c1iBi+Je/jTsq2BdSD3bXiBJ8cPE5A8/CRjU8Q0r2L2sfZ3DAANddmuDyFoihUHYtvjJ9vbOHyYz2HV6S8RbvKXw8cI29V+OHuQ3R5o3f1/DPZIQbLUzzZunXe333NsfmH0dcp2VX+Wcc+wsbijsHd6gvEeSSykXStyFtj2+Y89lL6Ml9OnQVgZ6CDc4VRADq8IbYH2lfk9ccqOb4xfp6Nvhbe0rp1RfYphBDrhYQA0VTyVoWxSo5N/lY0ZXVPhFWdesXRdh1s1+G76Ut8NXUOgJ/qfZy+QHxVX38+g6UMXxs/xyZfK29r23Hbbf9++CSns4OEdS+/vPUdGKp2yzYVp0ap0ao9WSsCcLU4wV/2H8VQVTyOhaku/G/m3yXee9e/h3S1wKeHX8OrGuwItPP82BkMReNfbX6auCd0V/tarB/rfoRPD58kZ5X5eipJ0a5RtGtcKoxzINKzqH28pWUrpxUNU9V5IzfCy5kr+FUDn2pQcmps8EZWrLwX8mNcL00C8FL6CldLE1Qdm5/ofYzuOwSCVCXHp4ZexQUmawV+uPuRW7Z5IzfMa1P9ALSZl3l3++4VK/tsmqLy/g37532s0vj7AvBqBgAqCiFt5QLJl8be4EIhxZncENsCcdpX6fMlhBBrQUKAaBpVx+K/Xf02WavMw5Fe/nmj1Xq1fKBzP0czV9nkayVs+OZ0l7FdF8d1UZXFtZavlC+nznKlOMGFQoqHQl3EPcEFtx2v5oF6f/iKY80bAqKGnw90HuBKaYJnWvsAuFAYo+ba1Gwb17ZwXfiz60fo8UX5nviuOc/XFJXh8hRfS52j19dyx2ACcCxzbaaCW3Ps+rVrk6rmsVyHoO7Bo+pM1UrLCgUFq8LfD58E4Ln4Lsaq9e46k1aJgGYS0DxsW2SQy1llooafXl8LAOO1+rEtOjV+ZuNb0BWNHt/dtdbfzhZ/jIjuo2hX8WnGzFiGN3LDdwwBhqqhKSqW6+BVDb41cYGRcpb3tO8m3Djb0ukJYzS26Zlnf2W7tuoh+5nYNnRVxa+ZPBLZyL5wNyHdQ6c3PGe7qVqJ17P1SvzNj91J3AxxoZDCrxkLng0TQoj7lYQAseosx0afpwJ5r5Vti6xVBuqtnelqkVQ1x7ZAfFUqLGHDx7tmVXqfad2GR9XxayavTl3nrwaO8tbYdp6N71zx115IjzfKleIEYd1L6A6Vmvd37uM7E5fYHmi/bQXoYLSXg9HeG/cjG7lQSGEqGnndJFXJkymOc7k4zt5Q1y0t3l8eO8ul4jjJwhi7Qp10eG5fUesLtHFk8gqGovH2th34M1cJ617S1SJ/M/gKpqIR1D2ka0Weau1bciv1ial+zhfGANjsa2V7IM7FQopHo5t45qauKTmrzOdHTmOqOt/fuQ+PqjNYyhA1fOSsCv/j2nexXJuAVSGge3hP+0N8YzzJRl8Lm/2xJZXvdsKGj1/reycOLnmrwqVCiopjsy/UfcfnRg0/P7fpKUYrWUxF438NvQrUx358dPPTAHR6w/xK3zupOjYxM0DJrnEuN8Kl4ni9u1NlCgWFVzLXiZtBNvlbV/w9GqrGW2PbZ+7vCNa7AF0pTvC54VPEPUF+uOsQnxw8zlB5Ct+EwW9t/567/ltvMwM827ZzWV3WxINrvY9nEuJ2JASI26o5NpqiLrnF+qupN/nWxEV2Bjv48Ar1d56P7TpcLU7Q7gkt2Ec7bHj5/s599YpcZBP/7eq3KDsWj0Y38f2d+1atbNN0VePJ1j4qjjXTwvzaVP89DQHPte9mb7ibFsM304ViIV3eKD/UfeiuXyNmBvhXm58B4OPKy3g0nSpgKhpH01f43s49c7oIdXmjXCqOE9Q8hBfRv357oJ3f3PYuNEXFo+q0mn5SlTzHJ+uzx1Rdm3Sja9KV4sQtz8/USvzDyGl8msH7O/fPe4YDYJOvFV1RcV2XVDXPW1q28uGew/NWIl+evMq5fL1P+lZ/jHS1yLfTFwlqHt7etoOaWz9jUXEsAnjo8IT4kXm62dxJ0a7ymeGTOK7LBzccuG04UxQFDYWI4eMXt779rl6nyxuhyxvhZKPLD0B5VvcbYM7f2SeuvThzpmSai8vnRuozP32k9wm2BtruqgxL9fLkFSZqBSZqBa6VJmdmY3Jxudt5mV6avAzAkckr7Al3zXlstJLl00OvEdK9/FD3ITy36fY2H9d1KTm1FQsXQ+UML6YvsyPYwf7wncOeWL7Xs4Mzn/vXpvp5ONJ7h2cIsb7I7EBiQa9N9fN757/If73yrTmzmdyNU1ODAJzLjy55H4vx+ZHT/Hn/y/zJlW/P6St8s0ejm/iR7keImr6ZSk2mUWG8VzyqzmPRzfg1gycbXWjupS5vBN89bNVsMfw81dpH1bV5JdvPq5nrcx5/rn0XP7/paT625a23lKtgVfjs8Cm+ljqHM2tqTb9m4lF1ClaFP7nybf5y4ChV98bvvc0IsNHXSq8vykvpy3O6Yh1JX+Z8YYxT2UHeaAzWnc9Gfyu/3vcsm/ytvJYd4K8GjlGwqvNv62uZGQZ9ItPPYDkDQN6ukKkV2RPaQCLQsaiQczsnpwY4lx/lfGGMV246jqthb7ib3cFO4maQH9jw8C2PlxsDw2cHAFPR8GsmXvVGyMzb9661dHdoAwoQ0EwuF1N8qOsQz7Yl+MjGJ9CXcBYAmHf8ztHJqwxXspwvjHEhP3bX5fyrgWP8QWOK3JX43/jZ4VOcyg7y6aETFO35P6diZVUb3RFn356amuK//Jc/JJtd3Kxwd7v9au/n5n2t5H7F+nNPzwQkEomjgAcwgR3AmcZDryWTyZ9awv5+Bvi/gWuNfV4CfjqZTI41Hn8B+Ggymbx6h/18F/j9ZDL55Xke+wjw7WQyefFuy3e/O5MdwgXGqjnGKjk2LuGU/tOxbfzTxHn2hLru2PK8HNP91/N2hbJdu2OrXJsZ5AOd+7lWSs/pUnCvfF/nXr6vc+89f93VNlLO8k8TF9jij/FYy+aZn2/xx3gxXZ++sc28dRxC9wL94f9p4gKvTtUru93eKLtumlWp5NRmppAEhcPRTQxXsryvYw8j5SyfbbREa4o6U56N/lZemryMoWjzDsYdq+Q4kx0kqHs53LJ5Jphoioq2wBmxRLCDPn+ci8UU18uTvL9zP6qicrU4znfSl9jka+VnNz3Jx9XvzH/gFqnX14KhqLiwKl1sZivbNUxV50d7Hl1wm4FyhqHGFLhh3cvh6Gb2hbv4pOdNHNdlV2wbXtVgT6hrwX3crelAt1C3nv3hbizH4rMjp/nWxEW8qrGosSbz+YXNbyVvV2gx/Lc8tiPQzquZ6/g0c9HjOQpWhS+OvYFHNWa6mr06dZ3XsgP8aPcjJIIdSyonQKsZYLiSRVNUvjR6lu/v3LsuumE+yB6O9PIlox4UH4luBOCFF57n8uWLfPnLX+BDH/rRO+7jbrdf7f3cvC9wV2y/Yv25pyEgmUw+BpBIJDYDrySTyZUYmflCMpn84UQioQKfAn4X+Fjj9Z5bgf1/BBgCmi4EvKV1K2PVPBs84QUraXfyWMvmOZXB1fJ9HXv59sRFtgbaFj1V5KHoRg41/nE/SFzX5WR2ABWF/YucuWal/OPo61wrpTmTG5rpow2w2Rfj3fHdbPBG7qpbyHRg0FCIzvN7bTOD/LOOvVwvTfK2tu1zAsY3REfnAAAgAElEQVTsVWYN5UZl6KHQBn5l6zsxVO2W7jRfHD3DS5NXZu6HdS8f6NxPn7+NHl8Lgdt0vzkU7eVKcZw2T5AWw0fFqWE3zl5kakVGV2AdgF5fC7/W9ywuLGmgatWx0BXtjt37vjNxkRdSb9LtjfKzG99yS2WyvzRJUPOgKwqmqmG7Lt/fuW9OJVZVlFsGgi/XQGmSP+9/GV1R+ZmNTy44sD0464zLchofDFWjRb01AADsDHXy29ufQ1PUBbuU3ey76cucytbPju4KdtJfmiRvV7Bdh/P5sWWFgB/c8DC263AuP8pr2X62B+Psk25Bq0pVlJnvG01RmZqa4tixI7iuy7FjL/Hud7+XcHjhWb/udvvV3s/N+zp69CXcxgKHy92vWJ/WzZiARCLxvwPTMfMo8LFkMllMJBK/D2wDIsAm4A3gI8lkcs43ajKZdBKJxLeBZ2ftcwB4NplMnkskEnuAPwe8wGvATuDfzGr9f0cikfgdoBv4ZDKZ/J3GmYYDwJ8kEokc8MvJZPKbq3IA1sjg0AClYpFf+qWPLrjNdeAof3rvCrUMLwF/vdaFEAD8W54HwO/388nB41wujhM1fPzK1ncueozJYy2b6fSE8WvmghW+wy2bOTxP0Nwb7gYUvpu+xFdSb+LVdHaHNgDQYs5fsbtUHJ9z31R1vJox7/7ne73doQ1oisqfXz8yM4NRVPeRsUr8P9e+S8h15rRgD5Qm+czwSVrNAD/UdeiOlcmqYy05ABzPXOMfRk7T7gnxc5ueuu3ZsuluUoPlDBmrNCdcvZi+xJfGzmIoGht9LTPdIGZ3/xkaGqB4h/8ry/X7fGZR2/01z6/L/wnHbrr/tcZlpfzPxt+fWH1+f/1swAsvPI/j1M9UOY5zx9bzu91+tfdz874s24JGQ8Zy9yvWp3URAhKJxPcBPww8AeSp1+P+j8YF4GnqlfFx4C8bP/+tm/bhAd7DwnXATwL/IZlM/m0ikXiMen1xth7gGSAMXE4kEv8zmUz+aSKR+EkW6Cp0J7HYwtMv3gvx+J2nR7zXU1SK5qMoCr956HvmfWwxn9E4S5/m8x3xBO/oSyx6+9+Lf9+SX2u234jP/37//TeSwI33HSfEwxtX7mzU7Y7n98b38L3b9yxqP78b/94FH3t//ADvT9z+JK4i/1dEE1GU+t/eiRPHse16KLZtmxMnjvELv7BwEL7b7W82/fe+3P0sVCZmjcNa7n7vB4v5PnrQrIsQQL31/m+mW/cTicQngP+LGyHgH5LJZKrx2P+kPg5g2nOJROIksAU4Afz9zTtPJBKtwPZkMvm3AMlk8mgikTh702Z/l0wmHSCTSCSSQB9whWWYmMjjOHc7H8XKiMdDpFK3735wsZCiHPGgRTw8/i9+kHe2JfjkwDFUReXDPYfn7X7RrBZzPNcLx3V5JXMNVVE5FOldVoUsUyvyh5e+DtQHWhYaAw5/rPvRW/rnz+eP//N/Yrya5z+9+hVCupc94S52Nro83ItjWnNs/qz/CIOlDN/fuW9J3b/+ZuA4Z/MjMys/365L0Gzj1TwhzUvJqXJ0sr5eRKZUwlBV/uOrL8zMXKQAEd3Hv9z89C0t/H83dILTje4jz7bt5Gvj9cXm9oe7+cGug3O2Xeh4Hpu8yj+Mvj5z36sa/GrfOxY1OPyTA8d5Mz8CwE9vfIIt/jYGSxm+OPYGvb4WnovvYsoq4WsM1J62YUO9G8rHPvarC+57pJyl6lps9C1tbMPnhk/x6tR1Hm/Zgu06HMvUZ4f68Z7H5nRFWyzHdRksZ4iZgfqZp0V+PpP5Uf564BgKCj+18XG2+NuoOha/d/5LQH0Bs9/b+b45z3Fdl1en+nFch0eim+55Y8zRyav8Y+Mz8YHO/fekW+Ts4/ntiYt8JfXmPX39/3jhKzMD1P9t4r13PUh8IR//+B8BkErlOHjwUV5++UVs20bTNA4ePHzbz9Ddbj/b7OO5nP3crkyKoszMrrXc/a5399N3/HxUVVlSw/N6CQEK3DJ720K155u3nR4TEAG+CvwbboSH2+3/ZuVZt23Wz7FZNVv8MYKal5pr89bYNk5nBxlrDLB9Ize0JjPXiOVTFWVR3VcW8krmOrlamYJTYbSSw6vqlB2LNjNIsZTGp5lsmLXo0tHJq1wpTvC22PZbFmPKWmXKTo1LxXE+1HVwJgDcK4aq8dFNTy1rYTarMRDVdh2cu5hkcroLjUfTea59N18eO8tYNYuCwiP+OFeLE3R7o3y45zA+zZh3oOtmXyuns4P4NZN94W7GqjkmqgWeuou/ze3BdlrSfrK1EjYuZafGRLVIj+/OIWBPuItkfpSYGWCDJ4LtOnxy8PjMehuKohCdZ9DsnVwvpvnE9RdxgQ9uOMDBJUyteGKqH7dx/ctb34HjukQMH9uXuBL3F0bPcDRzlYju5ZfuYkrVRLCDX9zydlRFIdaYTchQtJnQPN+Cda9lB2amTwWW9fc6UJqkaNfuKviYs7qdmWswePjxls2U7BqGqi56xe3l2h/p5sX0ZR4KbVixAHCz5557H8eOHcG2bVRV5d3vfu9tt9/wxAGcl18EWNT2K/W6i92XpumAi2VZy96vWJ/WS0X3q8C/TyQSfwIUgJ9mbvfI70skEr+bTCbHgZ8AbumXn0wmpxKJxEeBbycSif88PUNQ47GJRCJxKZFIfCiZTP5dIpF4FFjsCkJZ6uMRHjiaos70s+7whLFdl5fSl1EVhe2Bu29JWy/ezI3wzYnz7Ap28vYlzgrSrM7nx+ZUTqDekgkQ0b38et+7MFVtZrDlZLU406KYs8r87KYn5zzXq+pkUfCqOl3zzMSzElzXpebac9YeuNlyWlo/sGE/xyavsdHfsuAaFIsx1Vi118VlezDOk7G+O1ZGDrdsZlsgjk8z8WkGH7qp9X8xWgw/v9r3TpL5UT4/cppub3ROiLud/Y0pQnVFRVEUqo5FrrE40rVSmvFqft7Znu4kXSvOxKnZA7jvxlOxPo5PXuOJ1q0EdQ/v37B/SfuZNlypz3I0ZZVnznjN9mL6EsPlLO9o20Fro7I/7ebxKoqi8Aub38q10sS8q0qr3Pg8qsuokF4vpfnEtXqYem/7Hp5o3XLLNiPlLGWnNmdRuocjvRiNAeLT42TuJVPVea59ZQeN38l72h/iXW07V3XGpEgkwuHDT/DSS9/h8OG33HEQ7ZHKEPrOHmpvXOORw48vedCtGfQR3r2ViVNJ9j3y6LIG785+D4899hbAXfT7EfefdRECksnkPyYSib3Ay40fHQX+YNYmXwP+IpFIbAXOAr+4wH5eSyQSnwV+vXGZ7cPAnyUSid8EjgOvA4uZ+PZ/AP8pkUj8Ng/gwODZurwRfnt7fUKl+22sQKZW5OjkVTb7Y7yQOst4tcBQeYrHWjbfs5U+S3aNF8bOMlEr8JboFnaF7/2X63LNbhU0FI2aa8+0fmetCmFjbiXYpxkENQ95uzLvwN2A7qFXNfiXfc/iW4UpYmuOzSeuv8hweYr3dexd0kxUr2Su8/zo62z2x/gXjcXABkqTfGnsLN3eCO9pf4h3xhc/rmAh72l/iLP685iKTpc3ykg5yyeuv4iKwkc3P7VgZfrmCufdsl2HqmOTCHbwG9vedVfPvVyor/T8SHQjUcOPqeps9cdmBlBnaqUlhYC94S5GKzkqTm3JZxy/J75rRWcfeqZ1O3879ApwI7BNGypP8aWxeg/SqmPddtrUaWHDy15j/tl5DkR6UAAHlwPhpbeE563KTJjKWeVbHu8vTfKJay/iUJ+96dHoppnHbl78rBms9pSpFcdidHcb2uVWtj5158UAdwc7yRzajjlV5nvfvfTxSGdzI5T396KNpQgfXt7fxJH0Fc5tDxC+3sm73/1eXBdGRoblLMADak1CQGPe/rabfvYHzK34zzaSTCZ/cp79/CnMnbYmmUz++Kzbs/+7XgYeTSaTbiNwfIB6oCCZTD510z6emnX788Dn7/imHhArVfmfqBb4zPBJ/JrBD2w4iEeb/6PmuO7MPPCHIhuX/PqfGT7F5eI4L6YvcyDcw3i1QLc3OmfGkruVtyoYirZg2W/2nYmLvNJ4L1eKE/xr79tRUfi7oRMYqsYPdx1adH/ye8W+abaazf4YP9n7OHmrwrZAnJJdZaiS5UphnKdit1bWvJrBL2x5hlQlP6elcTZdVVclAED9czY9T/3r2aElhYBXp65juQ4XCynS1QJxT4ivjye5VkpzrZTmQKSHLu/SpsidLWx451SYvzGenFnY7lsTF/jn8yzGtVxFu8p/v/odJmtFPtB5gIPRxXe7Kdk1/t+Bo1iuw5XixMxZng9uOMBXUm/SYvjp8y9tFWBNUe9JS/BQeYrBcoa9i1inpOhUZ7p+nc0N8yibZx4Lah48qk7FsWa6/CzXSkzfuyvYyffEd1GwKzwT23bL45laaSbEp6v3dlHEZjRUzjCqV/G9/wmSzhR3igHv69zL29t24Dv4A8v67t3sjxEKhzE/8BR7O249G3Q3Xpy8RNWnwfsOYQb8eDWDX/zFX1vWPsX6tS7OBNwjzwD/IZFITI8P+OlkMilL4K2So5NXuVZKA3A2P7zgcuqvTfXz+ZHTAPW+0kscIOZtdAUxVI33dOxmX7iLwcoUU7XSgtNB3s6Z7BCfGnoVn2by85ufXtQMNbMHUquAhsorU9cZaKweeyY3fNeV1JxV5mIhRZ8/fksr/M0KVoWvpM4R1r28vW3Hbb9UKrbFJ66/SKqS4we6Hm5Mp1k3u/tCUPcQ94TYf5v5xkO6d1ndZJaj3RNiX7ib68X0vCFlMQ5HNzFWybHFH5tpdd/ib+NCIUVE99Fi3LnSN1kr8umh1/CoOj/YdXBRoSfuCUFj0G3cmPv5Gi5P4dOMJfW3n+1KcZx0Y0Xsc/mRuwoBKgqaomK5zpwzRBHDd8ugZKgHMo+qL2n60tVQsCp84tqL1Fybi4UUP9J9+ypZItBOtzdC0a5x4Kb/V2HDy/+25a2kqwW23ib4nM+PcmKqn4ORXnbcNP4lZ5X5q4FjVGyLH+15hA7P4rpk3Y6iKPNW/qc9FNrA22LbKdpVnlni34dYvG5vlC3+GKOV3KK/y1aiYShmBvj1vmexce+4UOadHIps5BvjSXaHNqzqAp9ifVj3ISCZTP7OCu3ni8AXV2Jf4s76Am28PHkFU9Xp8bYsuN3siurNldaLhRR+zVxUX/J/vuFhErkhenwteFWD/2/4NQp2lVNTg/zi1rfddfkvFlK41FtSh8pT7ODOA1oPt2wmYvi4XkyTCHXQYvrZHojzUvoSuqKxZYGW8tv5i/6XGa3kaDMD/Out77jttrNX1+3yRm47e89wZYqRShaAU9nBOSFgtu9MXOTo5FW2B+K8r3MvmqLecvZgLamKsqR+8rM9HOm9JaQ+E9tGzAxguc6ivlSPZ67NhN4zuaE53S4W8va2HRiKhqYoc7rEvJK5xudGTmMoKj+/+Rna5xlYulhnsyMzt7cH2nkzN8J305fYE+qat//4bB5N52c3Psm1Upq9d+g6cmpqgE8Pv4ahavz8pmeWXN6VZLvuzOrC1cYZl9sJ6B5+fvPCZW8x/POuHDzb3w2doOxYXCyk+J0d75nz2Ln86MxZq5NTAzzXvthhaUunKgrPxneu+uuIOlPV+emNb1mT19ZVbUUqdG9v28FbY9vvuy7BYmnWfQgQ95eqY6GgkAh28Jvb3oWmqLdtTTgQ7kFpDJKb3dr88uQVnh89gwJ8dNNT9PgWDhJQr7BMTzPnuu5MP1n3LmZzma2+WnKOsO5lx10Mkk4EO+as+rnZH+O3tj+HirLoVUVnKzYGKBbnGagIkKrkiBg+TFWf6aaw0Oq6s3V7o2wPxBmp5HgsunnB7b6aehMHON7oMtPti/KF0TNs9LXyUxufWLVZNu5GzipzZPIKG70t7FzEtKWLMVye4lODr+Lgkm4r8ExsG0fSVzBUjcPRTbdMu9rnb+Ol9GU0Rb1lysvJxniVm0Ogrqi8rW37zP2LhRSfGz7F9JjRmuswXs3fMQScy4/ytdQ5/l38xjSUeavC8cw1am59vm9NUdkaaOPP+4+QqZW4XkpzKNp728HUAJ3e8C0zPs2nvzSJC1Qdm5HKFI7rLGvA60oIG14+3HOYa6X0bT/jK6nNDDJQzsw7TqLPHyese6k41qKm1xVirUgAaB4SAsSKuV5K8xfXX0ZTVH5m05N0LKIFU1GUeaeIuzGTCjPTES6Woih8pPcJzuVH79iCuZDpVVVXwnJOz364+zCnsgPzttR/afQNXpy8TJsZ4Bc2v5XHW7bQ6QkT0Mx5pyWczVA1fqL38Tu+/rZAO+cL9Ym2JmtFxmsFXOozw0xWiwuu4nsvfX7kNOfyoyjAr/S9846ttYtRtGszfanzVoUj6St8OVUfGOrTDPbd9PvoC8T5jW3vQkO9ZQzJZxvjVV5KX6bFdRYMTkfSV8hY9c/9Vn+MTk94TqBcyNdS52bO6mRrJcKGj8+NnOJcfvRG+fxtxMwAm30xTtYG6PJGMJSVGyT5ZKyPdK1ISPdwfLJ+ViSir/06IzuC7UtaM2Cpfqr3CfrLk/TOc/az1fTz633P4iKVLCHE+iAhoMnVpwBbGRfyKaquDa7N5cL4okLAQp6JbcdyHQKayc7g3beaLbYFc73r9kXp9s0/KPVqqb7Y1Hi1QN6u0KL6Fxycu1T/oucwRzNXGShleCa2jdFKji9Uz7DFH1uxAZLLNd2arSvqip2Z6Au08b6OPUzWirwttp3T2aEbr7dA5XmhWaimxwcYqsbtqn57whu4UBgj7gnyY92HFz0gfXugfSYETPcvvrm71nSQ/uCGAzwd20ar4V/RVX1bDD8/3vsYJbvG/3mhvrj6fNNsPug8mj7vlKDTFEW57WdA3H9W8jtUiHtNQkCTO3z4iRXb18ORXs4XxtAVdckt8NN8msF7O/asUMkeTM/Fd/O18XNsC8RXpPV7Poqi8HjLFmg0bLZ7Qsv+3a6093fuY6u/jW5vZEUHKD/ecqPP/OHoJnyagalod93l6IMbDpAIdNDji/Ip5eaFym94ONLLnlDXzJz8i/Vc+y4ebww4n678v79zP5t9MfJ2hfFqfmZxMVVRlhXO78SnGTzZupVvKkdlxXHRFFbyO1SIe01CgFgxraafn9/89FoXo2lsDbTxc4GV6bJ0PzNVfcmzSi2Woii3dAFaLI+qL3pWnqWMG4H6jD2z+TTjjgN/V8t72h/i4h3G8AghhFh7az+qTwghhBBCCHFPSQgQQgghhBCiyUgIEEIIIYQQoslICBBCCCGEEKLJSAgQQgghhBCiyUgIEEIIIYQQoslICBBCCCGEEKLJyDoBQohVNTjYz8c//ke3/NwwNGo1ew1KtHYGBvoB5j0ey7WejufgYD/d3YtbG0EIIcTakBAghFg13d09a12EdSUcDq91Ee6J7u5e+d0LIcQ6JyFACLFqPvjBH1rwsXg8RCqVu4elebDJ8RRCCHE3ZEyAEEIIIYQQTUZCgBBCCCGEEE1GQoAQQgghhBBNRkKAEEIIIYQQTUZCgBBCCCGEEE1GQoAQQgghhBBNRkKAEEIIIYQQTUZCgBBCCCGEEE1GQoAQQgghhBBNRkKAEEIIIYQQTUZCgBBCCCGEEE1GQoAQQgghhBBNRkKAEEIIIYQQTUZCgBBCCCGEEE1GQoAQQgghhBBNRkKAEEIIIYQQTUZCgBBCCCGEEE1GQoAQQgghhBBNRkKAEEIIIYQQTUZCgBBCCCGEEE1GQoAQQgghhBBNRkKAEEIIIYQQTUZCgBBCCCGEEE1GQoAQQgghhBBNRkKAEEIIIYQQTUZCgBBCCCGEEE1GQoAQQgghhBBNRkKAEEIIIYQQTUZf6wIIIQSA67o4jjNzcd3pa7fxmAu4M/cXoigKiqIACqqqzNxXVQ1N01BVFVVVG9sIIYQQzUlCgBCL5DgO+XyeYjFPoVCgUChQLBYoFPIU8nmq5SKVSplquUy1WqnfrlaxbBvbtnEcB9txcGwbu1GhnY+iKKiKMqeyqqqNSqyqzlRk69ezKraaNutnKqqqoUzvQ1VRlfq1oqjU68j1SrCCMlMhrlewb1S8XdfFna6UOw6OYzcuNyrrtmU1bjfep+1gN27feL+N9z7n4t74eeO11OkKu3KjAq8q02WcfX2j/HO4Lm79Chd35tpx678/pxEmnMZr1Y+nit44dvr0RdcxDAPDMDFNE8MwMTweDNPE4/Hh8fnxeLx4PJ7GxYvX68Xr9eHz+WauNU1bjY+iEEIIsWwSAoSgXkHMZDKk0+Ok0xNMTqaZSo8zlUmTncqQy+fJFop4DZ2AxyCgq/gNlYAGftXFr0FYU/BoKqam4DEUTK+CqanoioqmaGgq9YqnUr9eqB3aodEq7tK4uDjUb9uui+PWK9mOW8N2XWy3Xtm1XXBsF9uqP8d26zHDcacrw43b1CvJ02ZHkVnZAIV6OQFUpd53sF5Jr1+rUH9P+o33pCqgzbrWFBVV0dAU0NS5200fC216n3DPWuenj6/tulgu2I6L5bpYDliN2zW7Rs2pUnNcqrZLLedSdVxqjkvFdsg4KlUXKo5CxXEp2y5ly6Fs2ZRqFuWqhaap+Dwe/F4vfp8fn9+PPxjCHwjiD4YJBkMEAgH8/gDBYJBAoH4xDOOeHIdm4TgO1WqVarVKrVZt3K407tcaIb0RXBuXYNBDLleed3/TAX06gCtKI0zqBrqu1wNl4/aNQFkPlbquo6rSE1cIsfYkBIimUalUGB9PMT4+Rio1RmpkiInUKOnJNJlcnqDHoNXvodVUadEdOk2VhKkRbleJ9AYJGRF0VbqQPAiU6QCCgrlKr+G69dBQslxKlkPRqlC0ShRzKYqTDkXLYdBRKdhQtFzyNYditUa+UkPXVII+P4GAvx4UQmGC4SihcIRgMDTrEiQUCmOaq/Uu1hfbtsnn8+TzufoZuELjTFwhTyGXpZCbolQsUCoVKZXLlMtlSpUKlZqFoamYuoapaZi6iqmqGJqCoShoKmiAqtY/E/UQC/OdrauHaaUe0JkdzsFyGyHSqYfz+m2Hml2/WLaNZTtomoqh65iNgGCaJqZhYJoeTNPE4/Fien14ff6Zs05e7/QZp7lnm3w+H6bpkWAhhLhrEgLEA8WyLCYmxhkbG2VsbITUyBBjI0OMT4xTLFeIBby0+XTaDJder8qBoE6szUeLJyQVfLGiFEXBoyl4NIh6Ft8tyHVdKnY9FORrNvlamnxunHzaJmfBkKOQt6BQc8hVauQrVVRFJRTw4/f5CASDBBuhIRCMEAzWzzQEAsHGdQCfz49pmms6LsJxHEqlIsVi/TJdmc/n8+RzUxRyU+SzU+TzOfKFAvlikUq1ht9jEPQYBAyNgK4Q0CCgukR1hS5DJaCreKMqPl3Fqwfx6WG8mjJzVmutOY0zTjXHpeY4VO16WKzaNapOtX6/4lAp1j8H02edKo2zTqWZM04OJcumXLWo2TY+j4nfVz/j5PcHCAQbZ5vCUUKhMKHQjfAYCoXweLwyLkaIJichQNx3HMdhcjJNKjXG2NgoqdFGRX88RSaXI+rz0u43iJsu3R6VhyM68Y4wEY+2bioCQixEURS8uoJXV2nz3flf9PQZh3pocMjXMuQLaQoZh4LlMuEoFC0o2C7Fmk2halGqWtiug9c08Xk8+Lz1MQ0ejxfDNDFMD6bpqV97vOiG0RibcmOcSn1siXJjLIjjYFlW/X7NolopUSmXqFbKVCoVqpUK5WqFUrlMqVymUrPwGjp+U8enawRnKvUOQQ1aDJWgoRJs1Qh0eAgZPny6et//DauKgqmBqSms1AR9tlM/21SwHIqWRdGapFicoJB1yF9zuWYr5Gzqn4+qRa5cBRTCwQDhUIhwJEq4JUYk2ko02kpLSwvRaAuRSBRdl2qCEA8q+esW61KlUmFycqLRfSfF+NgI46PDjE+MM5nNEvSYxP0mcY9C3IQdPp14n5eYNygt+qKp3DjjoBLzLv55luNSth3KlkvJdihbRSp2garlUqu61Oz6+If6OIjpsSqN7jCA0xjVogIabmO8h4uhKHgUaJkeH6PWx8d4AvX7Pi2AXw/h1ddP6/z9TlMVgqb2/7N33+GRnfdh77+nTh+UARbYRd8Gkksuiyg2iRQlkZIoWRIpW82OHyuJ7diOadlWrlskJ7lxnCfXdhJH9nVsK/JN3CTLoppFSVRjE8uyk7vcne0FvU4vp94/zix2wQWwKINF+32eZ54ZzJw5552DKe/vLb+XuLn4HqeK45GzXLJWhZw1RG7gHLlTPgOuQsbyyVQscmWLaDhEYzJJU1MzTS1tNLe00tTUTHNziqamZmKxuPQoCLFBSRAgrjjf9ykWC2Qy00xPT5PJTDE5Mc7U+AhTkxNMZ7NULYvGaJiWiEGLCSkT+sM6qb4QqfD2WiuaEGK5dFUhrmrEZQ7ylhTWVcK6yrbo/G8Az/fJWx7TVYdMdZTpgSEmTsExG6arLtOlKo7n05hM0NzcTHNqWxAoNKeCv5tTJJMNMl9BiHVKggBRVxdX8INLhsz0JJnJcTJTk0xnM2TzBQxNpTESojGk0WhAs+HTFdZpbtNo7mkibmz8bn8hhNjIVEWhIaTRsMCclorjMV11mapmmJ6YZGrwEK85CtOWx3TZoli1aYjHaG1JkWhooqmlrTbkqJnGxiaampqIRKLSmyDEGpAgQCyJbdtMTU3WUmlOMT01wfTkGJmpSTLZLJl8HlPTZir4DQY06j67TY2GhEZTS5jGUIyQJi1DQgix0YV1le26yvbY3D0KjueTqbpMVQtMF7JMT55gwFV4zYZM1SFTquL50JiM05BooKGpiYbmVhoam2loaKShoYFkMrhI6lwh6kuCAHGJSqXM+PgYo6NBhp2JkUGmJseZnJ6mWK7QFA3RHDZoNpWggh/SaEpoNEoFXwghxEV0VQkysi0wyb3ieGQsl1x4XrIAACAASURBVGy1SLaUI5s5yZijcNyGrO2Rq9rkyhamoZOMx0nGEyQbG0k0NpNsaCKZbCCRSNaChSTRaEyGIAmxCBIEbGHFYpHh4UGGhwcZGjjL6NAA4xMTVKwqLfEI28Ia20yfvWGNVJNOanuShlCTDNMRQghRN2FdpV1XaV9gfoLv+5Qcj5zlkbOK5Mo58rnT5GyfQVchZ/vkLZdcxaLquMSjkSBgSDaQaGgk2ZiiobGp1rMQ9DAkEklZ1VtsaRIEbAGe5zExMc7AwFnOnTnF4NlTjIyOULUsticitEdUdoQVbkjqbGtPkjQllaYQQoj1Q1GUYG0IQ5t36NF5jlcLCGyPvDVJdnqM3KjLgKvyugPZqkuualOoWMQiYRqTSRoam2hsbqGxuXUmRWpTU7OkSRWbmryzN6nDhw/z+KNPMHDmBAPDI8RMnc64SWfY5664wY5rkjSGNJmMJYQQYlPRVYWmsE7TZVLmurXsR1nLJVMdJzMyTPacz5CjkrE8pmtpUuPRCE0NDTQ1t9Dc2kZzqpVUKkVzcwtNTc1bZsVusflIELBJfenv/oaW0hjvSkXo3NFKzJDxkUIIIcR5mqIEGepCGj2JubdxfZ9c1WWqajNdHWD6xGkG0gqvWj5TFYfpUoVoKExTYyPNqRZS29pJtWyjuTlFKhUECdKTINYreWduYte3RNjTuITVg4QQQggxQ1PO9yrMXV3yfJ+c5TFVsZmqnmPy+GlOHVZ40fKZLNtky1US0QjNTU1BT8K2dpqbW2prKaRobGySngSxZiQIEEIIIYRYBvWi3oSdhC553PWDFKnTlSpT5TNMpU9yygmChOmKTaZcJWQYNCaTwTyEVGuQIrWhgYaGxpn0qLFYTIbvirqTIEAIIYQQYhVoikIqrJMK6zBHkOD7PgXbCwKF6iSZ0TEyAx6jrkrO9slVnZmMR4lYlEQsRiweJ5VKYYRjxBMNxOMJotEYsViMSCRKNBolGo1hmqYEDmJBEgQIIYQQQqwBRVFImBoJU6NrnnkJALbnk7NcCrZHwc5QmJ6iaHsUbJ9RT6HsQsnxKdkuZduhZDl4vk/YNAmHTCLhMKFQmHA4TDgSJRSJEApHCYUjtftDmGaYUMjENEOYZnAdCl24bZqmrL+wyUgQIIQQQgixjhnq+R6FxT/H9nwqjkfF9am4HhWnRNUtUi6PUy34WLXHM76K5UPFA8sDyw0eqzoeluthuS6W42I7LrqmYRo6pmFgGAYh07wQJIRCmKEg2DBDEcxwuBZEBAHExbcvXF+4reu69FxcYRIECCGEEEJsMoaqYJgaC3QwLInn+ziej+X6VGvXludjuWUsrxT8nfexsj5V18NyfTK+guUrWJ4SbOv5tUDDu3BxgiDD8zwMXcc0dAxdxzCMmWDDMAx03cAwzeBvM4SuG+iGiW4YaHrwuK7r6LqOpmnouo6qaui6hqZpqGpw/caLqmpYVoJcrlrbRq3dr6Jp+sx2mzFAkSBACCGEEEIsSFUUTE3B1CC+Cvt3fR/b9bFrwYJdCzIcz8L2qtiej+P6WLaPXQgCEtcPFodzPJ8SCo6v4AKuBy4Kju/j+cG16weBjOsFx3L94NrzfDzA9Txcz69t49ce83BcD8/3URUFTVWDIEHV0GvBgqZp6JpGsqGJX/qV/2sVzszqkSBgE6u4PkXbW+tiCCGEEEIsiqoohDWFsLbWJbmYj1cLGpyLgwjPx6n1kPzpa8fXupBLJkHAJtXa1sbfvzAI5Ne6KJuDooDvr3UpNhc5p/Ul57O+5HzWl5zP+pLzWV91OJ8tzc11KsyVo/jyJloNvcCpyckCnrc257e1NcH4uAQA9SLns/7knNaXnM/6kvNZX3I+60vOZ31t9POpqgqpVBygDzi96OetVoGEEEIIIYQQ65MEAUIIIYQQQmwxEgQIIYQQQgixxUgQIIQQQgghxBYj2YGE2OAeeuiLDA4OrHUxlswwNGzbXetiXFG5XBaAZLKh7vveiudzNa3m+ezo6ORDH/roquxbCCEWS3oChNjgBgcHGBw8t9bFEIuQy+XI5XJrXQyxhgYHz23IoF0IsflIT4AQm0BHRxcPPviptS7Gkmz0lGzL8dnP/hHAqvyvtuL5XE2rdT7PvweEEGKtSU+AEEIIIYQQW4wEAUIIIYQQQmwxEgQIIYQQQgixxUgQIIQQQgghxBYjQYAQQgghhBBbjAQBQgghhBBCbDESBAghhBBCCLHFSBCwCR149ikef/zx2Xe6Dubpl1CzI2tTqMuIvPwwie/9GdqULKKzFSmVAvEffo74Y3+FYpXWujhiGRSrDK5dn525DtHnvkL06S+gVOX9IOanZkcJv/5D1PzkrPv1sZOEX30EpZRdo5Ktc55L9MA/En/s8yjFzFqXZsM7cOBpDhx4eq2LsWSyWNhmY1d5/uEvom7v43q9irXnNgCiB/6R8PFn8HWTzP2fxo8k17igF2hTA0ReewSAyEsKhXf+wpUtgGMRPvoj3EQrdte1V/bYW4yan8A3I/ih2Kz7Q8eexhw4CIDd2kf1mruXtmPfB0VZ1KZKOY8fioKqLe0YYl7GwCHij30e34ySu+/X8OLNK9qfefpFwkceA8CPJCnf8N56FFNczK4QPvwYXjyFtfPmK3LI0NGnME+/ROXqt9Xnu9b3ST7yJ6iVPKHjz5D9wG8DoFRLJL73ZyiujTF6jPy9/3rlx9pkjIGDhNNPAuBFGijd8uNrXKKN7dlnnwLglltuX+OSLI0EAZuMlh1BcSwAzLMvzwQBaqW28qVjo9hV/MiVK5NildGmB3FaekG79C3nxZrwIknUci7Y5gqLvvgNwuknAMi+91O4qa4rXoYNwaqgZ4ZwUt1z/h8vxzz2DPFnvoCvm9ipbvip3555zGntxVc1QMFt6Vnafo8/Q+zZL+G09mG37UHLDlO+4X14ydZLto289E0iB7+Lk+om955PgqphDBwi+sLXsNt2Ubr1I4sOJpZCmx5GsSt13+96YQweRvFclEoefeI0Vi0I0CbPoY+dxNp58yWB33z04aNEn/8aPqAAbkPb6hV8C4u+9M2Z771cPIWzrW/1j3ngSyi+j5ofJ1uvBhffr117F+5TuPA5VmTAw1zUahEfBQUfp7lzrYsj1ogEAZuM29yJH46hANWr3zZzf+mWn8CLp3BaevCSrajZEcwzr2J3X4fbuD3oMtVNfLPO0YHvk/j2H6NnR7A69lF4x89dukkoRvb9v4VayuA27ajv8Rej9mPho9StAqhUS4QPfhcv1kT1qrvm3U7LDBN/9H/h6yb5d/wr/GhDXY5fd75P8tv/Pfg/dl5L4e0/O++m2uQ5FKuEs71/1v3G2AkAFMfCHD0+6zGnfQ+ZBz4DKEs+B6ETB1A8F2P0OEZtv4rvU3jbP79kW2PwEAD65FmUSh4/2kj44HfRcmNouTEqV9+NV+dKpzZ+muR3/geK76GUG+bthYu8+A2M4TTlG96L3XFNXcuwEKVawtfNZQV251X734I+cRovksTq2Dez3+Qjn0VxLIyhw4vu4QsdexrVKgJQePOPY/W9ad5t1fwkkdcewUl1Ue1/65LKbJx9FcW1sXpvWpXAb16uEzTUeO6a9UbpoydQi9MA+IqCrxsLP8GxCJ18DrdxO862ncs+rtvciT55Dqe1d9n7mEVRyN/7SxgDB7F6bpy52zej5N71IPrYCay+ZfZyuA7xJ/8aNT9B8faPbbrGIfPk8ygEAZTb0r3GpRFrRYKAzUbVcBu3owL2jqsBiD73EKETz1K++u0zP6iJ7/85WnEa7+iPKL75AeJP/G98I0Luvb+Ol2ipX3k8Fy03BgQV3vn4oShuKFq/4y5B6cYfw0204CVacevUIhJ55VszrWxuQzvO9r0AGOcOEjvwJZxUN4W7PoF56gW0/AQA5sBBqnvfsqLjKuU8oaM/wm3pwe64+tLHq0VCx5/FaenBaduFUi0SfeHreKEo5Rt/bP5Kiedc+D9OD817/KDC+8covk/xlp+YVTErX3sPaimLlh1BLecuea4fbVziqw1U974VLTOC09yJPnEG1aniNrbPuW15/3uIvPwwdsfVM8ezu/ZjjJ/Gae5c8TCWuWiFKZRaK6Xi2LWf3dnU4jSRQ98HqJVvZUGAce4g0Re+irNtF8XbPzZvJdc88Syxp7+AF2sm995fX3Rr/Ru5jdvJve/fvOFeH7za6/a8S580D6vvJsyBg7iJFuyd8wcAANEXvop57jVCJ54l8srDlG9436I+Q8bZV0k89nkAinZlxZ+7uShWGfDxzYu+1+wK+uQ58Fxiz3yR4h0/WffjXo42cZbEI3+Cgk+16zqqV9112e+96PNfIXzsaXxFJfuB356zl20xcu96EC03Pu/nczncph1zNh65qa4VVdyNkaOYZ18BIHz4UYpv/ell72s9sjuvxRg7idO4HTeeWuviiDUiQcBm53mEjjyBgk/4yONUrn9PcH+ti9RXVYyRYyi+j2KV0KYG6hsEaDrFt/wU5pmXqfTfWb/9zsVz0bKjuMltl2/V9D1iT/09+vgpSm/+0IKt9csqSiQRHEZRZ1WswkceRy1lMUuvoU0PYXXtJ3T0KdAN7De0nC9H7NkvYZ57Nfixvv/Tsyq1SqVA/NH/hTF+Cl/VyDzwGcJHniB04lkgaKWbt9VVMyje8ZOYZ16issC5UktZlFr3/PmWRqWURcuO4rTtJn/vL6FmRggdfYr4il9twOq7CavvpuBYxQxacWre1kq7ez929/5Z91X2vYPq7lvxjQioixs6oJQyQeDRvueyrblWz/WUM/egVEt4U6fn3MYLJ3CadqBPD634faAWp4k99XeoVgktP0F539vxGuaudJkDh1B8H60wiTY9FLyeOvFDMfL3/CL66HGqu29b9PPsruuY/th/WdT/4uL3t1otEXn54VkVen34KLHnvoyT6qZ4+8dn9qlcPIHZqdNk5otok+dIPvIn4Hvk7/nFmfejYleCHgBAzY3X/biLodiVmRZgL55a1P9ccZ3ghu/PlH9ZdBO3uWP5z18O10bLjgWBxxJ6XpzmLtxoI2o5Oyso10ePE3n1EewdV1HZ947VKPEVUdn3Dqq7bgl6/5fZI6WU88Se/RK+plO87SNghOtcSrHaJAjY7FSV6u5bCZ04QHXPhQkr+Xt+EfPca1idwbhMLTOCF0kGvQe+V9dxlFbfmxbs0q+X+A8/hzl0GLt9L/l7f2nBbbXMCKGTzwEQPvj9eVteFatUqyQkllSWyrX34Da048UaZ/3oVfvehD56HLepIxjrrJtkPvJ7UKehSP754EdRCR36AVphgvKbPojb0E7y23+Mlp9d8Tg/3tpXVNzEwq171s6bLzuB0O6+jtIN70OtFKhcew+KVaLhm38Q/L3nDkq3fYTEo58Lej/e9zPLeIEe2sRZvOS2YHLvGx+ONeLElt6jsJQWcMUq0fBPf4haLVDZfTul2z+68BNULehlAXjuj+beRtPJ3ffrqOXconsj1MwIiR/8BWg6+Xf+ArQG79Hwa99FrWVYcuMteAu08pWveQdqbjzorVrBMI/5OG27cNp2Lf2JiwzGSjd9EByb8LFgUp77hmAncuj7aNlRtOwolavummkZtnpvomhXUMo51NI05umXsHpvvGT/y6WPnUBxqsHtkeMz59aPNuI2bEOplijd+uG6HW8pnO17Kd72UdTiNOVFVmJLNz+Am2jFbdqBV8dW/Csh8d3/F2P8FFbXdRTu/peLfp4fSZC9/9MoTnXW90P0+a+iTw1gjByl2vem9TuEcxH88MqaYsJHn8Q89yoQfNZXo0dNrC4JAraA0u0fo3T7x2bd5yVaqFzz9pm/8+9+EG1qgMaH/gMoKrl3//K8rYfrlT5+atb1QtxEy0zLq/WGluHz1Nw4yW/916D17tc+d8njxuDraBNnqfa/9dIvU0W9pMUZwNp9a1CRvrjl5aKAyzh3EH38FJWr7lzW8JjibR/B2bYTX9WJP/OF4E7NoHDXJ2Za5j0zQuHun8WPNmLtuoVsYzu+Hpp/LLxdpeGbf4BSKVB46z/D6VxgQp+iUrnu3pk/1fwEaqUQFKM2nIglDA15o+iz/0j42FO4sWayH/gt0M1l72u5FKuMWq29pnwdW3M1fUnDkUJnXkIrTgFgnHsN+oIJ1W6qC45Rm2fyc6DNP97bbe0l9/7fXFm515KqUrr5/qDnz3MpvemDsx62uq5FHz6KF2tEqb0PAVAUqnvfQvzRzwc9ZzyO09yBl9xWl2JZfTdjDh4Gz6O6+9ZZj/mRJH4kuarzn5RqEcWq4CXmDgAvbhBaDD8UpbL/XbU/PCKvfBu1lKF04/vxI0trILmiPA994gyw8O9C5OWH0cdOBkNDL56voOkXGlZqnJYe9KkB3ETrnA0RW4nT0oOvqKCoMrl4g1pXQUB/f/+zQAgwgb3AwdpDL6XT6Utn+V1+fz8L3JNOpz922Y0vPCcMfA3YDnwH+BagptPp7y31+BuNMXBopgXRGDxCda4gwLEInXgWL9EyM+dgvSjd+mFCR5+65Ed3TrpJ7r3/BhwLzLm7MPWpAVSrPOdjan6C+A//EsX30TPDc05Cndc8Xa9KMRPkbPY9tOkhCu/8V4vf53lGmGr/W1HKebxQHLVaCLL5qBrlq+8mcuh7wVDtWNPMU9zUwpPCwq//cGbeQuz5r5JdKAh4Ay/RQvHWD6OPHqdybVCJyL/z5zHPvLLEvpWAXltHQitOoZSy+Mscm7wSXjxFaf+7g7kVTVd4aMNFgqFkP8JXdezOYDIujoUXSZK795dxk60bupVy0XST0ps/NOdD1f478fQwiaf+luQP/pz82/7FTHCuDx+FWms9mo6vh+pWJD8cJ3/PL9Ztf0uh5idJPvyHqFaZwh0fx9q1iO9DgkYNNTdGdc8dCwbXxsChmZTOvhGe99yvC6pK8baPEDr5/LzDUdXMyMzrib70TfLvWjidaOmWn6C653bcRMuCAfZWYHdcQ/b+T+Or2tb4rtmE1lUQkE6nbwXo7+/vBZ5Pp9M3rEEx3gS0p9Pp/bWy/B7BedqUQYB56gUir34Hq+s6qrtvwzz9Eqgqds/1c24ffembhI88ho9C7n2fqttE2npY8rAjVZ03AACwOvdR7b0JtZzjkmq7qgUt+L57+cwai6XpwcWx8Bco12L4kQTZD/42aik70+KoWsUgc55dRps8t3Crs10JJvA1d2Bv78d/9dsogL1taUM7zNqQq+JbfnpmiIfX0E5lf/uygoDimz9E9LmH0KcGaPj2fyf3nk/WrfV2KfSJs2ilDJEjj2HtvnVVW3XV3Bh+KHbJkCW3uYPMh39v1n3xx/4Kc+gwbqyJ7P2fXrUybSSqfSGQV2sLRxmDrwdDqYDK7tupXnXnla3EeC5qbnzZE2wXomWGZxovzJPPLyoI0KYGiP/gL1Hw0fKTC+aM9+IpfFVD8dxg/tUaU/MTGEOHsTqvw59jKKC1+zasN8xJMQZfR6mWsPpuwos24saa0IrTi0uTqijr6ndvra1GMgVx5ayrIGAh/f39vwOcT6XwLPBgOp0u1Srpu4EGoAc4BPyLdDqdX2BfCvDbwP2AAZwFfg5oAf43sL2/v/9l4G+AnwWU/v7+9wB/m06n/2A1Xl89DQ0NUioV+eQnl9KSfAb4pwt/fve3Lv+U5//jUou2cX1zgSwezz8B//BEfY/3/FPwj08tevNodI7x8aEY7kUVx8pVb0OfHsKLNs6ZOWiG59Lw8H9Fy41R3XULxTt+kswDnwkCikWMG4+88i1Chx/Dads9swAYnluXydduay9O2y6MybMo1WKQg36ZFRGlUiD+5F+D71N46z+bN3WneeIA0ecewmnbTeFt/wJUNaj0Dx3GC8XwVnHhvVD6SWIH/hHPjJL9sd+Ys5JzMa0QrJqqlnN1TUGpTZ7DPPsqVt9NuI3b67LPK6W65w7Uch6lWpyZA3Xx0CAv2TJvEJf43p/hhRMUb/9o3Vp9hwbPUSqXefAzVyJIexX+aYk9is8/An/7yCK3/Wvgr5dcqnXr+a8RDAQQYumi0eVlV1tLGyII6O/vfz/wMeB2oEBQOf+3tQvAncANwARBJf7fAgvVYn8G6ARuS6fTXn9//4PAH6TT6Z/p7+//BeD30un0bbVjNwJ6Op1eRK14tlSqXvlPluZKprwW64OiKLS2XqZtvTUBe34XgMuuBvGz/xmAaO3C5fZ9sXs+Avd8hIurTPNVky9b5rm8558FF4LIf/kS8PHfAGDBfpfWd8Jt78TgovP27p+Ed/8kGkHLwWIZRlApX/Trbr0P3nrfoo9j1v5vAHVtY269Bq66cmsX1F17MCJ05ie69j+FYMr/fP+NcO39Uc+R38oiJz0LITYWRVnmb9oa2hBBAHAP8HfnW/f7+/v/EvgvXAgCvp5Op8drj/0v4HKt9R8gCBpe7O/vh+A8TNa70JOTBTxvrqzgq2v79g4MQ+MXfuFXF7W9UikEE5wumqCqjZ8m8YM/xzfC5N/9K4Rf/yHhI4/jheNkP/A79ZsQZVcxRo7itPRedoJZ5MVvzORSL9764WVnIggdeYLYc18GoHTD+6hcG1QGLn790eceInzkcQDy7/h5Gm+4lfHxeTuX6suu0PyFIOZ04ymyD3xmwc0/+9kg40w9yxc68gTmwEHK196z5LSR0ee/QujIE1R334qzbReKawfzNN6Qcaq1NXGhzHaFpi/8Ngo+bqLligxl0SbOkHzkTwEfX1FRnSq+ojD9U380q6yhY08TPfBl7PbdFN7+cytqXbftIL3iYv9XanaU2HMP4Sa3Ubr5gQWz5sw6n28QPvR9oi9+A4DcPb80s27FYjV++d+hlrI4jdvnnEgc/8FfYA6+PtNztN7Envr7mVS4+bf/3IU5FAtobU3g/LefxddD5N77qboN3dnevgM1P85v3dpL8ZYfn3c4W/S5rxA+8hhQ+59t6yP6wtdRnCqlN92/8Hew5xGqrVNS7b9z0dmWlsVzCR1/Fi8Uxe6ZfwTvQu/PldAmz2Gee41q702LzlwUOvY0ilUO0h3PkU46dORxYs89BCzv8zKf8MHvEX3pn/CMMLn3/+asuVlLtVrnc6s6fz4bvvb7aLkxvHCczE/8x0W1qirVIn/6//w7ACYGRpa93spKqKqyrIbnjRIEKHDJGjvz1a7n2naubf59Op3+Pyst2GYwV5owt7WXzEd+f+YDoGVGAFArBZRqLWjw3KCytIKuh8Rjn8cYTtfGMH9mwR8rq+cGQsefwdfNFU1Kdpt2BBkN8PGNEI3/8GlQNXLv+uWZDDnnv5x9RcWLXOEJT3oIu7UXY/w0dnvw46NUi8HExRWs6roU1avupHrV8tZ1KN38AKU33b+094Vu4jbtQJ8exGldxLjcOnBbesj8+L8HfCIvfoPw8Wewu667JFip9twIvofT0jM7APD9Ve928xra5pxgqlRLxH/4l6jlHIW7PnH5RZEuyos/K0f+IuXe9SDG0BGsrjkmhXsexuBhIJg0uh6Vr7sXpZLHizdj77hq0c/LPvC7+LpZtx91pZiZWTTRSW5DLWbmDQJK19+Hr5t4sSac7Xsxjz8zswChF2uifP198x9IVWetGL+awocfI/ri14GgweRKrnYNQTas8hIXBbtcdqRq/514kQZ8M1K3AACC1NF2+168aINMpF33Fp+2O3T8GZRKsXb72Q21fsRGCQK+C/zH/v7+PwWKwL9k9kTd9/f3938mnU5PEAz1+eFl9vd14F/39/d/PZ1OZ2oZgfam0+lX59g2B1yZWsl6c9EHoHTzA0Re/Tb2tj685Db00RMkfvAX+GaY3Ls/uezJQWotxWEwhtkBdf6sFG6qi8xH/tOyjnMxp20X2Q/+Dvg+5ukXLmREGjpMtRYEVK55O07jDvxI4rKTPo2BQxiDh6lc9dZFp1UNpZ8MFlC75u2XtkoqCvl3PRhUEOLNmMeeIfbMF/ESKXL3/frGSEu31MqxopJ7zyfR8hN1XU30cs6fy9LtH6N80/tnr+5aE3/67zHPvoKvmWTf9yliz3wRtZRBLWZwWnqw2/egTw9SvvHHrth4eWPoCEYt5WHo+DOULlMJquy7B/QQXii2qFbwN/ISLbNWf55FVSnf+D5CJw5QufruJe/7SvASLRTe8fNLf94KWmrnEj7yGEo1+L6JpJ8gfPwZpj/yn+bOxmOGKd/4vgtlSbbhKyqK7+Gsp3kZ/kUpf/0r3/O9KhRl3uQYK+W2LJyNTayt/Dt+HvPsK1gdi/+edFp6g6ZlwLk4xewGsCGCgHQ6/Y3+/v7rgGdqdz0L/P5Fm3wP+P/6+/t3Aq8Dv3LRYx/o7+8fuOjvz6XT6X/f39+fAh6vDQdSgc8CcwUBXwa+XJsovCEmBq8Gt2n7rDSYxrnXUJwqilNFHzmGtZi0nHMovOWnCR99Eqtr/xXN+X5+VWTfjOJrRtCV3T37S9/ZcfmVWxWrFKT19Fz0yTMU7vxE0HK40NAmu0r0wJdR8FELU2TnqpSpWhBYKQrmwMFa1o4JtOzIqizqtC7UegPWyrytvefTSHoO5tlXMcZOzjxkjJ+aqYzj+8uqaC6H3bYLN9aEWilidS+isqLps9YFmYtamCT82vdwW7qXnEe+cu09VK69Z0nPWS2RF7+BMXCI8vX3rVpFbrmc1r6ZygKAb4QWvTCjs62P7Pt/E8V1VnfVXcci/uTfoJYyFO/4+GUD28o1b8c3wvhmZFkBpth81MIU0ee/ihdrCtbu2EDzYLxEC5V971zSc5y2XUEgABvu93ldBgHpdPo0b5gHl06nf5/ZFf+LjaTT6U/MsZ/PAZeu8hQ89ofAH85x//e4qJchnU6fIJg/IC5i7boFc+DQir/43ZZuii1rM4bYGDxM9PmvovhesFLrMrK8+KqOb0aCbCO+T8NXfw90g9x9vzb/j6du4jZ3oE8NzDv0xRg8TPzxv8KNpyjdkBU7bAAAIABJREFU+H7UwiRu445gSIq4ooq3fxz36I9wtvXhRpsIv/5DFMfC13TcVDfa1CCqVVxx2kBteojIi1/HbdpB+cb3L9ib4kcbyD7wu0ErbJ0yAEWf+0qQzen409itfRtuZVgApZyfmTcUeeVbs4MA1wkqI3VcDX1e86y6bnfvDz7Dvk/hjnfgbNu18BA/u0L8if+DWilQeMtPzb+gXx0Zg4dnVoENHXmc0m2XXxF73l6i81ynTqUTG0H4tUdm3kP2jv4rPkRsTVyhobr1tjFLLdac27SD7P3/9vIbriXHwjzzMm5z55wtzOGD30OpdWW7jTuWV5nSTXL3/Rr6xBn0sZPBYlaOhTZ+Zv4gQFHIvftXgjz8b9hGHzlG9LmHUFwbxbHQM8Mo+Ite1VWxysEKl1t8EZt68qMNlG9478zf2ff+OtEXvo4fbaB08/0o1RJqafqyi65dTuTlhzGHjsDQEayu/bNXLp2LooBSnwAALpoHY4Q2xpCzOfihaLCi68SZWRUP49xB4o//FV60kdx7fnXunjq7CsYKFwzzPOI//AuM4aOU3vTBucfl1z6bi8nfH37tu5iDrwe3008umL9/udTcOPEn/g++Eabwtk/gtnTjhePB+7qYIfHtP6b05g9dft7JPPTR4yS+/xfwyT9DLUxJXvktwE11wfFn8PXQulhLQsxvwwcB6XRaVsQRYFeCCn9Lz0zFOvbslwidfA5fM8jc/+lLJmJZXddhjJ3ASbaSu3fhVSIX4sVTWPEUTmsf+sgx9OwokYOPYPdcj2/Ok4yz1hvwRpHXvotemzjohWK4ydZFL9BlnDtI/LHP44di5N7763Ufz3ylKOU8iues2/JHjjxBqNbK5WzbidV7I+5lMlsthtPaizlwEC8cx4unFvekOk5OLt18P/aOq3CT2+ZdM2Ex9NETGIOvU91926Iy6mjjp9EKk1g9N6y8V0PVyL37V4KJ9JEkilUmdPwZ9KE0iueiFSaDAOENE5zPZzcq73sn5Zvev/zDl6aDQA4InXxuRZNz1fwkkUM/AMBHWdKE5qUIHX8GfeocAObZV6nuuZ3MA7+LPnqS5A/+JwCRV75N4R0/t6z9m2dfQ3EtIAgIrPgt9Sm4WLeqe9+C09qHF4rJBOh1bsMHAUIAxJ/6O8yzr+IbITIP/Dv8UBSltmomnoPi2pekjKpeczfWrluCcbmLrHwo1SK+qs/ZYujFmoKKa3YUrTCFmh9fcuuw1XkNxshR3OQ2su/91JJaJo3B11F8D6WSR5s4s24r0QvRpodJfvu/gWtTuOufY3fvv3SbibMXJqXf+8uXXUALgrkb+vAxnG07L5uK9nKcWvDmawbucoZnWBUiL3wda+ebcZsu9ARVrr0Hu2MfXjS5qGw02tQAie98FgWf/J2fgNblzcuZoWorH9PtWCS+/z9RXBtjOE3uff9mwc216SGS3/kfKL5HOTMyayLssqnaTBATPfCPhE69gI+CG2vCS7RivzHlrVWZaW03T7+49CDA9zFPHgBFw+q7iWrvjRhDaSrLzK51npYZulDE7utXbby9veMqwkceD7KutQUNDopdwTdDuNFGtFLm0nO2BNXdt2EMHUaDLTtnwBg4hDZ5jmr/W+fMxrcZreX8LrF4EgSITUGxKsENxw5SlxKsJeAmt+G09sxMBH6jpQx7MAYPE3/0c0He8Pt+bc5Wzsp170KtFHFSXcsaI169+m6svpvxjfCSxxhW++9EnzyLF0muKIXqWtKmzqE4tVbD8dNzBgHmmZdQqwWoFoK0lXtuu+x+4z/4C4zx03VZg8DadQvZ5k58I7z0oQ2+j54ZIvL6OOa5Vy8py8VBweWYp19ErU1ajj37D3DjCoOAelBUfN0Mgm798gGsYldmhuQpVnEVy6WQv/eX8RJz9LCYYcpX3x1k67r23iXvOnTs6eD8AwVFoXjnz6y0tOC5xH/0Nyj4eJEkxTs+tvJ9zsNp38P0h38vmC+hGai5MRq++UcoTpXCrR/G2XHV4num5uA2bSf7wd+hlQUm3y9AmzwX9HCG4+Tf8a82XCVazU8Qf/RzKL6Plh2heNcn1rpIQsyQIEBsCsU7Pk4o/SRO266Zll4/2kD5TR+o2zH04WBIgWKV0MdPYc0RBDjbdpJ736dWdJzl/si5Tdsv2/K63lk9N1AdTqNUS8FCPnNt03tT0LprRrA7FhfsqMVMcF3OzTtpcylW0srl147tGwuuU3xZ1d6bgknKvo+XqOv6wMun6eTe/SsYo8cXlbXI2baTwu0fR8tPUNm3cPai5Sjd8hO4zZ04TR1zBwA15Zvvp3zz/cs8ykV9jHVMkemrOgpVvGgjrPC9clkX9ThqmRGUWnCpTw9iLXNRxnoJnTiAVpyG4nQQ9O+8eU3Ls2SqFnzf+K7M1RLrjgQBm9Ctt95BIrHKPxrrjBdrWtFY3sWo7n0L+sRpfDMapDQV9aebFN/60wtu4qa6yPzE/72k3Rbu+gSh489g9d54ZbLDzEdRcJs7KN72NqwVDo3wmjvJ3v8Z9InTWB3XsF4+8V5D28x6G4ux3PTCi+GbkcumRl2pIJ2qgq9qWH1vqs9Oa3MbjOGjWHP0hq0mu3Mflb13oJaywfoSa8zquYHQyQN4ofiKhiWtFS/WRO5dD6JPD1Lt22ABjFi0W2+9Y62LsCwSBGxCt9xyuywpvgq8ZCv59/zqWhdDLIPb2ktpvSziohlLzsM/Hy/ejCXZVtaWolLdW/8KwFKDqbpRNUq3fuTKH3ceTtsupj/6n9c2eF8ht7X38tm+xIZ2yy31+U6/0jbup0oIIYQQm98GDgCEWM/kkyWEEEIIIcQWI0GAEEIIIYQQW4wEAUIIIYQQQmwxEgQIIYQQQgixxUgQIIQQQgghxBYjQYAQQgghhBBbjKwTIMQmMDh4js9+9o/WuhhLYhgatu2udTGuqIGBcwCr8r/aiudzNa3W+RwcPEdHR1fd9yuEEEslQYAQG1xHR+daF0EsUjKZXOsiiDXW0dEln1khxLogQYAQG9yHPvTRtS7Cssiq1vUl57O+5HwKITY7mRMghBBCCCHEFiNBgBBCCCGEEFuMBAFCCCGEEEJsMRIECCGEEEIIscVIECCEEEIIIcQWI0GAEEIIIYQQW4wEAUIIIYQQQmwxEgQIIYQQQgixxUgQIIQQQgghxBYjQYAQQgghhBBbjAQBQgghhBBCbDESBAghhBBCCLHFSBAghBBCCCHEFiNBgBBCCCGEEFuMvtYFEEKIrcrzPIrFAvl8nmq1guM42LaN4zg4jo3v+5imiWGYM9fhcJiGhkZM01zr4gshhNjAJAgQQohVUi6XmZwcZ2IiuIyNjTE+MUEul6VYzFOplDHNEKFQFN0Ioagaau2iqBoAvufgug6e5+C5DrZVpVIuYBgmiWQjjQ2NNDc3s3fvThoaWtm+vYN4PL7Gr1wIIcR6J0GAEEKsgO/75HI5RkaGGB0dZmhoiKHhIcbHRrGsKrFEI+FoEiOUIBRJEm7aTXJ7DDMUxTDCKOrSR2X6vo9jVahWClQrRcbzeQaefJlyYYp8dgLTMGlv38HOXbvYvWsPvb19hMORVXj1QgghNioJAoQQYhF83yefzzE6OsLIyBADAwMMDg0xNjYMQDyZIhRtJBRpIN56Ndv67sAMx1EUpe5lURQFIxTBCEWIN7ReUs5qpUAxN8mRkyO8+PKrZKdGSbVsY/eu3fT3X8WePVcRjUbrXi4hhBAbhwQBQghxkUqlMjN8Z2JijOHhYYZHhpkYHwVFIZ5oJhRrIhxtpKH9WrbvuQvDjKxKZX85FEUhHEkQjiRItfUC4Lkuhdw4g5PDHH34O2Qm/4q2th3s27ePq6/eR3d3L5qmrW3BhRBCXFESBAghFsWyLDKZ6ZnL9PQUpVKJSqVCuVKhUqlQrVbwXC94Qq1SrCigqhqGYWCawQTXkBmisTGO72tEImFCoTDhcIRwOEQodP7vMKFQ8Leu6yuqZLuuS7lcplQqzlznclmy2QzT09NMZzLB65qewrYtYvHaEJ5wglC0gebOG+nsb8IIbcwhNaqmkWxqJ9nUDtyI5zrkpoc5dHyAZw4coFousLf/Gq7ffz1XX72PWEzmFAghxGYnQYAQYpZKpczw8BBDQ4MMDJxjYHCAsbERbKtKJJokHI1jhGLoRhRND6HpBpregBZtIZ40UBQV/w379D0Xz3OxXYeK5eCVHYanpnFdC9+1g0mvjoXr2sHFtnEcC8e2sO0qvu+jaTq6bqAbBoZuoGoqihKMp1cVBUVRgrHyrovrOriui1vLsuM4NqYZxjBDGGYYTTdrryGCEYpihrbT2rObrqsSGKHoumnVXy2qptPY0kVjSxcA1UqB6bGzfOf7j/KFL/4tbW3buX7/DVx77X62b9+x6c+HEEJsRRIECLGF+b7P+PgYJ08e5/jxY5w4eZxcNkOioYVIvIlQtIlk27W0717bIS++5+F5Lp7r4Nay5Pi+D76Pfz7k8IPr85l1VFWtXetouiEV2QWEwnHau6+hvfsaPNchOzXEy4dO8OhjP0RTFfbt28/+/dezZ08/hmGsdXGFEELUgQQBQmwhvu8zMTFOOn2Y118/xMmTx1HUYKhINNlG91V3E0uklpWxZjUpqoqmqmi6gVRBV5eq6TS1dtPU2o3v+5QK0wyPneHoQ18hlx2nt3cX+6+7jquvvpbW1m1rXVwhhBDLJEGAEJtcsViYqfSn04exHYfGlk7ijTvYd9t+wpHEWhdRrFOKohBLNBNLNMOuG3HsCpmJAZ567jUe/tY3CZkhrr56H1dffQ27d+8lFoutdZGFEEIskgQBQmwyruty+vRJXn/9IIdeP8TExBhNqQ7iTTvYfcN7iMSaZGiMWBbdCNOyfTct23cHvQT5SYbHz3H84W+Tmfw8zalWruq/iv7+q9m5czeRyMacSC2EEFuBBAFCbHCe5zE8PMTRo4d5/fXXOX36BNF4I4mmDlJdN9G3vx1VlfSPor4URSGWbCGWbAFuxPNcCpkxTg8Pcujw18hMjdDUnGLXzt3s3r2Hvr5dpFItEoAKIcQ6IUGAEBuM67oMDp7j5MkTHDt+jBPHj6LpJslUB4mmTm6889YNm8pSbFyqqpFs3k6yeTsAnudSzE0wOj3C6UefJPvQlwCfzs5udvbtpKenj+7uHhKJ5NoWXAghtigJAoRYx1zXZWxslOHhQc6ePcvxE8cZHh4gFm8g1tBGLLmNfbd9SMb1i3VHVTUSjW0kGtuAYFK6VSmQz47x+vFhXnj5NbLTo4TDETo7uujp6aWrq4vOzm4aGhqlx0AIIVaZBAFCrDHHsYMFq6anmJqaZGpqipGRYYaGBpmamiAaSxKtrVKbbNtHR//b0Y3QWhdbiCVRFIVQJEEokqClfRcQBAaVUpZCboJDxwZ54eVXyWXGUVWFHds76enpoaurm87OblpaWlHXWdYqIYTYyCQIEGKRXNelUiljWdasi21buK6L4zi4roPjBBfbtrHt89vZWFaVYrEYXEpFyuUS5XIJq1olEksQjiQww3F0M0o42kDH3p3sjjehafIxFZuToihEYo1EYo2wfTdwvsegSCE3wfGBcQ6lT1DITmBZFdrbO+jt6an1GnSzbVu7BAZCCLFMUrsQAnAch8nJCcbHRxkbG2NsbJTp6WkKhQLFYoFSuYhlVTGN8yvk6miagabptQWpNBRVRVHOXwcLVSlK7XFNR1U1dCOJkdxGS0sI3QijG8EKtudXvhViqwt6DOKEInFSbb0z99tWhWJugnNj4xw79SSF7ASVSpHt7R309fXR17eT7u5emXwshBCLJEGA2HJs22Zw8BynT5/kxMmTnD17mlw2QzSWJBJvwAwnCUWSmNEOmhojbDMjGGYE3QhJ5UKINWKYYRpbOmls6Zy5z7GrFLLjnBkdI33iUfKZUTzXpbOrh927ds8EBtFodA1LLoQQ65MEAWLTcxybU6eCvPmHjxxmbGyERLKZWLKVaKKVvmvvJRJrkDSaQmwwuhG6JDCwKkXymVEOHRvk+RdfJjM9SkOykd6+nbXAYBdtbTKMSAghJAgQm9LExDgHD77KoUMHOXX6BPFEM4mmDlq6bqL3um1omrHWRRRCrAIzHCPVvpNU+04AfM+jWJgiMz3C408/zzcf/ia2Vaazq5c9u/fQ17eT3t4+wmFJqyuE2FokCBCbgu/7DAyc45VXXuLlV14kn8/T1NpDMtXJTXfdhmGG17qIQog1oKgq8WQL8WTLzH1WtVTrLRjguRdeIjs9SlNzip19u9i9ew+9vTtpaYmvYamFEGL1SRAgNizXdTlx4hgvv/Iir77yMj4qjdt62b7rdvY2tslkWyHEnMxQlFRbH6m2PuDCwmZj0yOceewp8l/7Cq5r09kpcwuEEJuXBAFiQ6lWKxw58jovvfQihw8fJBJrINnSw+4b7iMab5KJu0KIJXvjwmYwe27Bcy++RHZ6jGSygZ6ePnbt3Elv70527OhE02QukRBiY5IgQKxrnucxODjA4cOHOHToIIODZ2lobqehpZfrbv8woYh02Qsh6m++uQX5zChPPfcq3/3e9ykWMrS17ZiVolQWNRNCbBQSBIh1pVKpMDBwlrNnz3Dy5EmOH0+jGyGSqU4aWvZy8963o+kyqVcIcWXNNbfAcSyK2XEGJsY4fvoJ8pkv49hVdnR0s2vnTnp6+ujp6aWhoXENSy6EEHOTIGCL8jyPQiFPLpclm82Sy2UplYq4rovrunieh+O4eL5HyDQxaxfDMAmFQoRCYcLhCJFIhHA4QjgcJhQKXbZr3Pd9qtUqmcwU09NTTE9PMzU1xdj4GAPnzpLNTpNsbCWSaCGaaGHfbR8iHElcobMihBCLp+smDakOGlIdM/dZ1RKFzBhHz4zxyqE0uelRdF2nq6ubXTt30d3dS3d3D9FobA1LLoQQEgRsep7nMTU1ydDQIAMD5zg3cJahwUGyuWlCZphQJIYZimGYEVQ9FEymVWor3ioKiqLgeS6e50Dt2nMdPNfGcSwcu4pjV7GtKo5jAwqarqPrOrpuoCgKjmMHwYXj4LoOum4QiSUIhROY4RiaESUcTdJ19d30x5skX78QYsMyQ1Ga23pprq127Ps+1XKefHaMV46c5ZnnXiA7PUY8nqC7u5edfX10d/fR2dlFKBRa28ILIbYUCQI2uX/4h7/npZdeINm0jVC0iWiijZ37ryEcXZ3FsYKAwQ0CBc8F30fVdFRVRVF1VFWTybtCiC1DURTC0SThaJLW7bsB8H2PUmGaQmaM515O89gTT5LLTtDc1EJ3Ty+9PT10dfXQ0dGFaZpr/AqEEJuVBAGbXLFUpLv/drZ17L0ix1NVLQgudPnhEkKIuSiKSiyRIpZIzdznuS7F/CSZ3DhPP3+QHzz6GLnsBE2NKTo7u+ju7mbHjk527OgkmUxKY4oQYsUkCBBCCCHWmKppJBq3kWjcNnOf57mU8lMUchO8+NoJnnr2efKZcRRFoa19O+1t7Wzfvp1t29ppa2unuTklmYmEEIsmQYAQQgixDqmqRryhlXhD68x9vu9jV0sU81OM5zMMjB3FKj9HsTBNtVwinkjS2NhMKpWiJdVCKpUimWwgkUgQjydIJBLokmFNCIEEAUIIIcSGoSgKZjiGGY7R1No16zHXdbDKBaqVPLlynolTo9hHTuJYZWyrTLVSolopohsmkUiUcDhCNBIlEo0SrV0itUxvodAbr0OYZmjmdigURtd1GZYkxAYmQYAQQgixCWiaTiTeSCQ+/7oEvu/XsrpVatcWrlMlU7aYyJdwnSy+5+B5Dr5r47r2RRnhbFzHxrEtbNsCfAwjhDmTNjpMJBwhEokSjUWJzQQXMdrbU9i2QjQaC4KNSJRwOCzDl4RYQxIECCGEEFuEoigYZhjDDK94X57n4jo2rmPhOlYQJNhVKo5FIVvFnZzGdUbxXCsIIqwKtl3FtivY1QqO4wS9CuEokUgteIgGt88HEMEaNLN7JS5et8YwTEzTQNcNNE2yzwmxFBIECCGEEGLJVFVDNbVlBxSe5+LatfVmnGrt2rqoVyKD79q19WmCXgnXOd8zEaw74zo2Tu227/lomoau62hasF6NdtFtXdcxdAPdMIIgQtdngogLw5yCYU+maV4UgIRnFsQMhyOYpik9GGJTkCBACCGEEFecqmqooQhGKFKX/fm+h+e5+F6w6v359Wr88+vXeF4w1Ml1cT0H23Pxyg5uwcFzK7UhUM7McKgg0LBmhkAFw6CquK6DYYYImbXeiXD4ouFQ4VqvRmRWQBFcQhiGMROQnL8EqbXV2rUyc33Bxbd9PM/HMFyy2QLg4/s+AJ7nA/4bzkrwXE3TaGhoqMt5FpuHBAFCCCGE2PAURUXTVNBWN/uR73m4ro1TGwbl2latl8Iia9lMlSxcp3RhbkUtoAhuu3iuOzs48T18z8P3ffzzty8cjVk3FQWFYFiXDygooHDRMCiF8zeD2CB4fqVc4ld/9Tfo6eld1XMjNhYJAja5cDjMoRce5fThJ9e6KBubwqUNLGJl5JzWl5zP+pLzWV9yPuvD94PTuMTz6fu+DGESl1DOdyOJuuoFTk1OFmrdc1dea2uC8fE8rutSrVbWpAybSSoVZ3KysNbF2FTknNaXnM/6kvNZX3I+62up51NVVcLh+gy72ozO15k2KlVVSKXiAH3A6cU+T3oCNjlN04hGY2tdjA0vHo9TLkvAXE9yTutLzmd9yfmsLzmf9SXnU9SD9A0JIYQQQgixxUgQIIQQQgghxBYjQYAQQgghhBBbjMwJEGILeOihLzI4OLDWxZjFMDRs213rYsySy2UBSCY3Xj7tep3Pjo5OPvShj9ahREIIIdYz6QkQYgsYHBxgcPDcWhdj3cvlcuRyubUuxpoZHDy37oJFIYQQq0N6AoTYIjo6unjwwU+tdTFmrMeUbJ/97B8BrKvztFj1OJ/nX78QQojNT3oChBBCCCGE2GIkCBBCCCGEEGKLkSBACCGEEEKILUaCACGEEEIIIbYYCQKEEEIIIYTYYiQIEEIIIYQQYouRIEAIIYQQQogtRoKATezAgac5cODpJT/P83x831+FEq2+UsXm2YMjpM9M122fVm0V1tND9VtEyvc31jnOlyy+9tgpvvbYSXJFa62Lsy64rjfz3rjYVK7Cq8cmyBYWPk/Fso3jepe8D8pVh6deGeal9PiK3yOlisMzr41w+NTUivYjVp/n+VQXueKz7XicHclTrjqrXKrNb7m/k0JsBrJY2Cb27LNPAXDLLbcv+jnnRvM8/tIw8YjBe27vJmRq+L7P4FiRSEgn1RhereLWxQuHxzk9HCyY1NIYIdWw8vK+eGScjh2NPPHyMImoueJzMJ2r8t0Dweq9997aRVMitOIyLsSyXYplG11bOOYfz5QZGC2ws6OBhrg567GzI4WZyv8/PXGajtYYd960A1VRVq3cq8n3fZRllv3UUI5yxeHQySmqtsudN+ygZ3tiZr/fOzBA1XI5OZjj/rt3zrmP145P8vLRCXRNwXV99u9tYf/u1MxjJwaDgLOlMUJXW3zespQqDooCkdDcX+Uvpcc5WdtXqjHCtqbIsl7zWssVLYYninS3J+Z9rRtZ1Xb51o/OkC/Z3H5dO7u7Ghbc/rEXBxmeKBGL6Nx/984N+zlcS4WSjaYpy/qdFGKz2HzfpmJFTg/l8TyfXNFiIluhozXG66emefHIOApw31t66lKxXi3RSPCW1lSFkKnVZZ+6HlSeFUDVVv5jOzheoGoFLX5DY4VVDwKeeHmYfMlGAXIFi+QbKvgQtEJ+/8AAtuNxbrTAB+7qm/V4NKSjqQqe7+N6PmdHC+SL9iXBwpXi+z6W4xEylv4/Hpsq8YPnBzENjXff1kUsYiz6uWdH8jz58vCs+wbHizNBAIBae4uo6vzvleHJEgCOG7T0nxjIzgQB58+pqirEa2XLFS1+9P+zd99BkmT5Yd+/meW962rvxtbMrPd7u7e75z3ucAY8GII4iEKAIgIASYAU/1AEKQQiKISIoMiTEApREEiBAAQIgkTgiDPA4fZ2cevN7PgaP9O+q6vL+8p8+iOra7pn2lT31Ez3TP0+ExVdVVOV9TLL5Pu993vvfTCH067zwmPDOB025pZKfP/taXRN41PPjhGPB255nZV9s+kaHqeNbKHGhakco/0+hvp8He/3bjKV4ruvX6daN7g0nedzz0/sdpG6LluoUSg3AJheLG4ZBJQqVg9ApWagTAVd+F3qJVMLBX747iy6rtFomjjskhQhepMEAWKNwxNhUtkKAa+z3WpYqVonHAVUu9z9XGsYzCwW6Y962xWe2/FYIs5AxEvA5+h4e9VaE5fTtmHL8GOJOACffLY7rfYTQ4F26+z40K0Vt266MJVlNlW6ccdGdQUNVna/UmvSNMw1PQcnLi5hmFaFVdNgIOol4N38+CqlME2FbYseiO0yTcV337jOUrbKI4f7OLYvwvX5ApGgu6P359p8kUbTpNE0mU+XOTC6cYXrnbOLXJ0t8NCBKInJCOaq9JxQwIkG9IVdGIaJzaajaRqfemacmVSJ8cEbLfjZQo1G0yTe+k49cijGu02TpmFSqTU5OhlpPzYxESEadGMqxdtnF7FpEPA5WcpWAatX5uBYiFSmglJgKNX+v5s9cihGf8SDz+Mg4HPy569cIVesc+F6lq9/8mD7vWkaJmevZChXm3jde+y0oGh/9rKFGu8nU+3vZLcVSnVePT6Hw67z0184dkdeY8Xq3qh42MPkUIBMocaxfZEtngnPPzLI+etZxgcCXf9+dUsqU+H1k/OEfE4+/OjQbhdnjVSmisL6XDV7IAjIFmrkS3VG+/2bNk6I3rPHfu3FbhuIevnKRw+sue/hQzEr5cBtZ6R/49SEnXj53RkWlyt4XDa+8tEDt/0DpWsao5ukT9zs9ZPzXJzKMRL38bGnRtd9jK1VpoGo97YviFm9AAAgAElEQVTKtiLgdd7S0n6nrLQYgtVLEvSt33KvaxqDMS/X54vUGyazKSv1YoXf6yRfauD3OPjiS5PY9M1PmvWGwbdfu06hXOfDjw4xORTszg4B5VqzXemdmi9QKNW5PJPHZtP4sQ9PkspW6At7NtzXAyNBphYKuBw2huMbt4Y3mlbFGODU5WUSkxEmh4IYhqJpmBwYC/GtV67y5qlFphdLfOxJ6/MT9DvbvS1KKU5dXuZ4cgmgneoxEPVu2qIdj3g4cWGJhVaPwSGvE13XsNu0dnB+aDzMUq6KTdfYP7L+8dU0bc0+rvSOOR069YaJS9fQNY3Tl5Y5cTFNvlRvf973Cl3X+PjTo7zy3izlapNTl5bXTVnrhgtTOdK59QOqbjpxMc2J80uMDfp56fERdF3jhceGO35+X9hDX3hvp3advZohV6yTK9ZZzFQYHNy8d+NuOjIZIVus4bTrZC52p8d4rypVGvzlj65hmIojkxGeOta/20USe4gEAWJLToeNJ47emR+OlbSYemNlgOSdqYDkinVcTh23c+1HfmqhCFgpHaap7rtWkmP7IjSaBtMnHfg8m3/dJ4eCTC0UcTlst6R8vfT4MAvpsnW/sir5zptSceoNg0yhRl/YQzpXbY8huDZX6GoQUKk20TWrZ+rQWIjpRaunwzQUb55eYG6pjNOh8+WP7L+ljADRkPuWQHc9DrvO6ICf6YUi+4ZvlH+l56BpmBQrVgrHXKrEm6fmefqBgTU9SicupDlxMd2+/cGFJUYHfLd8DtczEPNiu7SMpln7+XiirxUIWAGYx2VvBx6d+sjjI0wvFskWa/zp31wiGnTxmQ+NY1+VTrIX08vjYQ/7R4KcurRMwOu4Y70VI3Ef565msN3h9JpLUzkUtILuW79L94Oxfj/X5wt43Q4iwTub8rhdXveN7877r+7BD3wX1RpGuydNBpKLm0kQIHbVC48Oc3E6y2i/f0fd2nNLJc5fyzIxFGByeP2KZvJahrdOL+J06Hzhw5NrcsAfPdzH2SvL7BsJdS0AqNUNpheL9Ec9BLxbt1Y2miYXrmcJ+Z1d72lxOmw8dWyAN76/dWrUxFCAgdgBbLp+S/e43aYz0u+nUK7zF69epd40+cjjw+3yKqX4zuvXyRXrjA34eeHRIUbiPrLFOkcmtk5v2I7r8wVa5zQ0XeOZBwc4dzVDPOJpt9w3miamefuzL330iZF2qs/N7DadDz8yxJunF6g3TM5fz3FsX5TAqh6Ian3tSbdcbTI1X+TQeHjL1x6Ievnqxw6gaXStkuhy2jgwGuLbr10DYDlfo1Rpcmx/FI/bwcJZ156tkD6WiHNgJITHbb9j6RsDMS8/8YmDdzwQOrIvwokLS4wPBvbs8b5d+0aCjPT7sNv0+65x5V4SDbp59qEBMvkaDx6I7XZxxB4jQYDYVZGgi6eODez4+a+fnKdUaTK1WGRsYP1AYiV1pN4wyRXra4KAw+NhDt9UITNNa/DrTisaL79npTi5nTa++rGtU5zePbvIhakcAD/2wiThOzxQeDNbtVCnMlWqrd6bmVSpHQQYrcHkAJlCDZtN3zC9aitNw+TkxTROh41IwIlSrAmO9o0EuT5fxOnQGe33tyvJDrvOcw8Pcu5alqGYF3eXZpHZLDidHA5SrDR4P7lELOS+pYX60cNx7DadyzM5qnXTGk8R6zytrJPB7UvZCh6XnThw7mqGQrnBwwdjmz73oQMx3j2XYiDqIeBzoGlWSlG3BtNvZWqhSKZQIzER3tbg7vUGta+nXG1waTrPQMy77RmRdvK9N01FudbseBzS0cnImnEg96t7IcC5l6Zq3qlDY1s3OojetOVZMpFIXAWqrYsbeBX4h8lksrHJc74BvJZMJs+3bj8KHE4mk39y+0W+5XX+J+Aq4ASuAH8/mUzOt/7/L4FfTiaTl7bYzsvAv04mk9/a4DXa+yL2lrDfRanSJOhzbljZfuhAjGrdIOB1MNi3eQWsWmvy7deuU6o21kz9uB0rKU6N5vZSnG5+1IWpLG+fWWQo5uWlJ0b2xDSAo/0+huM+qrXmmuDJbrMq4NfmCgzGvFRqzR1P5Xjm8jKnLq2d1/75RwbZP2Kl4USDbr780RtTb7787gxTC0U0Db704j7GB/13ddaiBw/EODQWxuHQb3mPXE4rlW5lyk+7Td9wrMJOnL6U5r3kEg67zi//TJS3zywCYJomzzw4uOHzRgf82xo7003ZQo2X350BrIG4zz+y80Gj6WyVd84tEgu5eeJIvJ2K9erxORaXK9h0ja99/MAdrYwqdWOg+uHxMM88uH6jRtMw0VtjMMTekC/WWcpag4SX81Wiwb07893tyOVy/Mf/+O/5xjd+gWBw74zNELuv07P015LJ5KlEImHDCgK+AvzxJo//BrAErFScHwW+AHQ1CGj562Qy+bVEIqEBfwT8C+C/AUgmk5/rwva/wdp9EXvIS48Pk8pWiQZdG87uE/Q7+XiHrdLpXLWd5z21UNhREPDiY8NcnMoxukHPxM2eONpPyO8k5Het6QW4cD2HYSimF0uUyo01aSa7xemwbXgs949YM9a8czbF6cvLfOml/R23qhqmag9IXa8Fv1q7dREl01ScuJhuL8qlaRrvn1/i2lwBr9vOl17at+XaCN2yVQv6i48Nc3k6x74NBvDmi3VePT6Lw67z0uMjHbfIZwo1wAo4wcrnV+rGugGzqRJ/+8EcIZ+Tjz012vU0mqmFIg67zuA2ejd0XWuX83YHIR+/sMTicoXF5Qr7hoPtsSwrFW1NY8frQXSq0TTbvY1zS6V1H3NtrsCrx2fxexx89rmJu9bjIjY3kyq28+WnF4r3bRDw3e9+i8uXL/Kd7/wX/s7f+endLo7YQ7bbVOduXTKJRMIPfBN4qvV/v59MJn8rkUj8PPAk8O8SicRvAv8K+A0gmEgkjgOvJJPJX0kkEp9p/Z8NSAG/mEwmLyYSiY8A/xZ4C3gWaAA/i1W5fxCYAr6STCbX/Nomk0mVSCR+iBVsAO1ejC+0AphjwO8BPuA4cBD4zVWt/y8lEol/DgwDf5JMJv/5Ovvy68lk8q+3eczEHWSzba8CspWBmJeRuI9CuUFih9314YCLJ7cxA4PDrrNvOMgr78/ywYUlXnh0GL/XwaGxENlCjf6oB98W03HuFelWZahSM6jVjY4qnReuZ3nz1ALRkJtPPTvG4fEwXrcdu01jKVvFNBWJiVu7sy9O5zjZGnQ72u/ngQNR3mm1hJerTeoNa5rTmcUi75xdpD/i5dmHBnZcKSyU6qSyVcYG/NuuTA/GvJt+Ti9MZ1nOWxX66wuFjrvvHznch2neSJP53HMTlKpNRvutGYEuTGWp1Q0W6xWWspUdrw2glOL6fBG3y9aeJet8630D+PhToxTKdRaXKzx0MLZpSlvQ5+RTz4yRLdTZP7p+UGQYJm+fWaTRNHnqWH87MGwaJjZda7+HA1EPs6kSXrcd/6rvyAuPDnF5Ns9A1HvHp390Omw8criPqfkCDx1cP+f62nwBpaBQbpDOVTedlUrcPWODgfag+IkuTl6wl+RyOd5663WUUrz11mt85jOfl94A0dZpEPCniUSiChwAvpdMJr+XSCR+C9CBh4AA8HoikTiRTCZ/L5FI/Byr0msSiYQHqzL+tdbtfuD3gZeSyeSZRCLx94E/AJ5pvd4x4OeSyeQvJBKJ/wX4LvBsMpmcbqX4/BTwv68uYCKRcAKfY+Meit8H/k0ymfxPiUTiSeDNm/5/HHixtS+XEonE7663L/eS2dkZyuUSv/qrv7jbRbkn/c2f7c7rfmedT/Bf/MHtb9fr7U6wNJsqcf56lv0jwTXTiII1UHfFUq6CQm05OPrKXAEF7RmFokE3o60xAIOxjStLq/Pv9w0H6I94ePqBfk5dWmY47sNh17k2V+D05TT5UoN8Kcex/RFC/u2PuWg0Tb792nVqDYORft+2Z+XZykjcT/JqFrtd39ZUtAGvkxcfvzG1ZDTkJrrq/L5/JMRMqkTI5+xokb/Z2WnK5fK2fzPe+e6N63+6rWdurdPtvfKfu/zCO/C9Dh6z+liJvcHr9e3awod32ne/+y1M0+opNE1TegPEGttNB3ID/08ikfhHwCeAX00mkwrIJxKJP2rd9+0OtvcM8EEymTzTuv17wO8kEomVGkUymUweb11/D5hIJpPTrdvvYrXir/hEq4dhH/AB66QcJRKJIFYvwh+2Nv5OIpE4cdPD/u9kMmkCuUQicRYr4LnQwb5sKBbbnZzbFZJ6KlbTNG3dVWW3Kx4P8Mix9fPN/96XHtz2tn5mh4syxeMBHntg6Jb7jh660QszPBTiyYc7n3/d0codX+84/dJPP7ajcnYiHg/w0JGdD5BfvZ2bbz/+YOc593c6dUaIvUjT1v/O73WdlPm9997GMKx0SsMweO+9t/ilX5KGwfXci5+B27WtdKBkMllNJBLfwkq50bCm6l6t02H26z13tdWrtRjr3F493cPKmIAAVkPMfw/8txu83nZe87anFkmni12ZpnAn4vEAffEhgmGDf/Srv961mVJW/OF3zmOYCrtN46c+fbir274dJy+mOX5+CZuutXM9P/vceMcL65SrTc5cXgYUyWtZNM3azj/5uSdJpQr84J3p9rz0n3t+oqPW1U5V602++/p18qUGDx+K8cihPs5cWSZ5LcuhsdC2pnfLF+v8+atXUAoOjoV452WrKyGVKtx2Ob/35hQL6TLRoIvPf3hyzf81DZOp+SJXZvPMrFqpOOS/dYG0eDzQlfJs5C9euUK2WEfXNX78pX143PYtB2U2GtbJcr1yTS8WmVsqkRiPdDxLzcrMI3eycl1vGHzvzSl+/ssPcflqettjRwzD5N1zKZpNk4GBYXRd45d/+dfWPKbRNDl9eRmP07Zhmly52iRXrDEQ83Zl8Gux3MAwzXbPzfX5Am+fWWQg6uH5R4Z2fExfPzHPxWlrNq7Pf3hiwzzwO/353KuuzRV45f1ZwFqf4tmHNh5gvpHXPpjj0kx+zSKMe/V4fvObvw1057fxbur0eD7++FO88caPMAwDm83G448/fc/t692wVz+fndJ1bUcNz9uqGSYSCR14CWuQ7Cngv04kEq8BfuAngV9vPTQPrE46u/n268DvJhKJI8lk8hzwc8D7yWSykEgktr0TAK3n/iLwWiKR+DcrMwS1/i+XSCTOYKUR/WEikXgcK42pEzeX/Z6xnK+iFPztB3N84umxrm57MOZlJlXqaj5+Nzx0MMZw3MfFqSznr1sn+pUpLTejlELTNN45u8i1ucLq/2hfNZUiHHAxvVjC6dC7vmCR22nnCx+epFI32lMNHtsX5di+6La3pVDtkLfTKfBSmQpKKfq3SEf52JMjLGWr6wZAdpvOvpEg/VEPx88vcW2+gGGoXQmGn390iPPXsowO+NdMC7tTo/3+dppSJzL5Kn/11jQa8Klnx3aUhtSJ95MpMq3xBK+fnOdTz45v6/mXZ/Mkr2UBqyK/kltfKNdpNk0iQTcOu86jh/s23Y7Xbb/t74RhmBimwumwrcnxBxgfDNySfrbptlYNNl/tiaNxfB474YBry4Ggs6kSLueti+fdjnK1yenLy0SDrvbCc3vJcNzHSNxHudpcdyxOJ6ZbDQAzqRKmUjIj0i769Ke/wFtvvY5hGOi6zmc+8/ndLpLYQ7Y7JsCJVfn/DawBu/8zcLL1mN9PJpPfaV3/34B/nUgkfh34p8D3gV9PJBIfAD9sDQz+WawKuR1rYPDfvd2dSSaTJxKJxJ9g9QT845v+++8B/0cikfg1rJSiD4BcB5tdsy/34sDgm+tfpqk4e3WZ4+eXsNt0Pv/8BP4OFrVa7SNPjFCsNG45Ue8F9YZBrlhnqM8a5Dva7yeVqXDiYpqhPu+aSrVSilfen2Vqocgjh/pwt2bt0DXwex3YdB27XWvdp/FYIs5ovx+/17HjKTANw2QxUyEact8yR7rNpuP33P5AxpDfxceeGiVTqHFoLMS7P9z88dMLRX7Qmrbxxcc2nxrV3sFgbJ/HwfOPDHF0X4TpheKuDLqzFsnprBVTKcXfHp9jYbmMrmkcP7+0ZaV3K9OLpfZ0sTOLpW0FAcu5KsfPLxGPeDYcbLoiuGq7O5l+NORztmfrWRkkuZyv8u3XrmOaas30rKutBM63K5WpcLa12NvpS2lqdYOXHh+5rSlMV3oEh/q8fPyp0TXldDpsPHxo4/d2aqHA3x6f41f+7hN8/20riPvscxPEwt0JBN45s8i1eauhIRpyE9nFdUHW47Bba3w0DZOLUznK1ea2FzF87HAfZ69mODASlABgl4VCIZ5++kO89tqrPP30czIoWKyxZS0mmUxObvLf39jgOd8Cbh5I+9xNj/kO8J2bHkMymXwZa0aeldv/AfgPq27/y43+r3Xff7VB2a8Az7RmEToGvIwV0JBMJj9y0zY+sur6evtyT4gEXNSbJh++aR7uN07Ot+ctr5vWwkwfenh7c3XrutbV+c676e0zi+1pI194bLh9XzpXZTZVYmIw0G4ZrjdMrs8XAbg0neOLL+6jP+Ih5HcS2ShNYJuLD93sh+/NMpMqEfQ5+OKL+zasSF2azvHOmUUG+7y88Njwtk+mw3FfR7OQKKU4dzXTvl2qbrgEyLZFg+6Op90rV5tomjW9pVKKuaUyfq/jrnzOqnWDq3PWDC6GUpy8mG7PUrRTE0MBrsxa37PxwcC2Ks3vnksxny4zkyq11j3YuKJ4dDJCtWa9Zyuz7RimYjZVJBxwrRmYnSnUuDhlrdC9MlNQf9TLF1/Yh2Ga/KdL1v7mivV2700mX4ORta+ZvJbh7TOLDMa8fOzJ0fYaHbWGwfX5AvlinWjIzb4NVvFeYZqK107MkS811vTAzaRKtxUErBz3uaUylZqxrffx4nSepnGj5UQB5VqTbq216nZZgb9N13De4ZmLbsfx5BJnW78L2019PDQe7mhVbHF3fPrTX2B+fk56AcQtemnF4OeB/7G1ngDALySTycxmT7jXOR02nA7bLSfAfLm+5nZf2MP0QpGB2J2fTu9uiIXc5Ip1gj4njtY88bGQm3Suis/jWDNHt8tp48BoiKn5AkcmI+i6xuQWFZfbtbKybqHcwDQVNtv6FcPktSz1phWk3Ml1AuaWysylywCE/U4Su3Dynk+X+f5bU6BpfOqZMaYWipy+vIzdpvHFF/d1JZ3nZhemspy6uMzEUIDHEn2MD/pJYlX6okFXu1foZtVak8VMhYGYd9PVboM+axxEqdLge29MUW8YfPSp0Y5WsI0GXcyny3hcNi5P5wgHN69Qn7+e41PAK+/N8rWPH+TNU/Ncms7jtOv8+Ef2tz/zr74/S65Y58L1HF//5MH2OhY3j3GYGAyQmqhQqxsc239rOtql6TxKWZ+dDy5YvSaapvGDd2ZIZSrtx/k9jg2D5oXlMn/z9nS7p9LnthP0O6nWjFtW8d7Memk/D+yP8n4yRTTk5uV3Z+gLu3nqWH9HQdjB0RALre/D4fEwPo+9PeXqZsrVBn/15jSNpsFHnxzdsNL85NF+BqJegn7nHflcd4va8Ia414RCIX7lV3596weKntMzQUAymfwenc3gdt975oEBjp9fIp2r4vc4OH05TaHcpD/q4dPbzCfeiz708CBHJqzBmystlE8/0M+B0SBBn/OWBaSee3gQHt7+4LfVlvNVzl7JMBz3bdn6+aGHB0lezTI+tPliYgdGgyznqwzGvLddWWg0TcrVBtfnC7fkVQd8Duw2jaahODAW4oMLaSq1Jo8fiXec8mSaikyhRsi/9vgqpXjr9AILyxWeOBLfMK0glalYlUGlSGUr7QXbmoaiWjfuSGXp5MU0pYqVn/3QwRgvPT7CiR95MQyTzzw3seEK1N99Y4p8qU5f2M1nn5vY8nXm0+X2/lyfK3QUBDx+JM7kUJDktQynLlttFQGvY8MB7ivByEqZS5UmAPWmSSpbIRZy43HZcTtt5ACnQ9+0QqzrGk8/cOtsRbW6wRunrOFWK4PvT11aJhJwMTkcpFprth+rwYYBLlgpaCst7kcnIzx4MIrbub1T0qXpHK+fnCcScPGpZ8fbjRgHRkMcGA3x129Nkc5VSeeqHBgNddSaPTbg5yc/dQhgw9V/1zOTKrUD/Kuz+Q1fS9e1HS1CeLc9lujD57ET8Dq7lgolhNhbeiYI6GWzqRKGqRhrda9Hgm5CfmuAa6VmtKcSLZa7lwaym3RNu+WkpWlaxzME7cQbJxdI56pcmckzFPNuOhvTQNTb0VzwiYkIh8fD2867LlebuBz6mgAjV6zRNKzxD1//5KF2ZWlqocCl6TxPP9BPJOCmUG7w7tkUYFUsO1307G8/mOPaXIFI0MXnn59olzlfqrcHaJ+8lN4wCDg0FmIpW0HTNLwuO/GwG7uuEQm5uzooc7X+iIcrlQLRoGtND5jNpm+4kq1SinIrXWqlor2V4biPSNBFvW6wbyRIqdLgzdMLeFx2nn5gYN3X0lqfYdecVbnX2Hx13ZWViEuVJvPpMs88OMDpy8s0myY/eGcGp13nCy9M8tITI8wsFumPejcMcjZzYSrbTp8bH/BzfcG67mwFIS88NsyF61kcdp2Rfv+mqWAHRkPtQfYPHth+AABWZVspWM7XyBVrt3zHh/p8VlqZx0HgDo9fGon7CPoc1Bsmk/fBwlN2m76jSQmEEPcOCQLuc9W6wffftpZY+NBDgxwcswYFDca8nL2awaZrPJboYylb5dCYDBjaKb/XQTpXxe2yYe9iStV2A4BTl9K8n1wi6HPyuecn2pVbm67TbM0V/cp7M7z4+AgOu87fHp+jaSgW0mW+/qlDoFktlaaptrV4zlLWSgHJ5GvtqWPBGiAcCbjIFGqbzqzjdtn56JOjzKZK7c/rE0fjHN3hqs2dWFmhN1uo0zTMW3qI1qNpGh95YoSrswUObLDa7c08LmvWpxVvnV5gpjXN7HCfb9NW4UcTcUJ+FwGvY8MxKjerNwwGY14+9NAgr7ameqw3TYrlBgMx77qDfDvVF/aga4CmcWRfhH0jQRx2vT2+IBZyE+twMHY44OJLL+3b+oGbODIZIVusEwutP/bkgf1RJocCuJy2jt7f2+F1O/jSS/vv6GsIIUQ3SRBwn1s9PWS9cWOqzOG4j6997AC6ruGw6yS2zmoQm3j+4UH2jwSJBt13vLKxmdnW1Hz5Up1ipdGeeSQccJIt1FAKZpfK1gDpoQDhgIulbJVw63HRoJsfe2GSesPYVs/JMw8McOZKhomhwJr9t9t0Pvf8BPWm0VFLb9MwV12/s4nIHpedXLGO22Xb1qDroT5fu9K7E31hN8lr1kw84cDmgZZN19qB+2YeaOXtP/1A/5p0r0cO99E0rLn2+6O33xM2GPPy4x+xKrp7IZ99pN/PVz+2+QDivVBOIYTYiyQIuI8988xzKAWBeJymqW6Z89m1wcBHsX02m76tOeTvlIcP9fHO2UX6Ix7Cq1ryNU1rLZZlve99rXSpTzw9xnKuuiZ9aiez8Yz0+zdM9dF1reNUj/HBAM8+OECtYdzRXgCAlx4fZm6pTDzi3lFqzE7tHwnRF/bgsOs7nmb2ZiuBV2Ji7TEL+px89MnRrrzGCqlUi/vJM888t/WDhLhPSRBwH3v66Q/tdhHEXTYY865JPVnN7bTzE584iE3X2uMFHHadgT224NvdmlrQ6bDt2gDNvTq9rhC9Rs6TopdJECBED3FuMqWlEEIIIXrHvT8pvBBCCCGEEGJbJAgQQgghhBCix0gQIIQQQgghRI+RIEAIIYQQQogeI0GAEEIIIYQQPUaCACGEEEIIIXqMTBEqRI+YmZnim9/87d0uRpvDYaOxahXrvWB6egpgTx2nTnXjeM7MTDEyMtalEgkhhNjLJAgQogeMjHR31dj7VTAY3O0i7KqRkTH5rAghRI+QIECIHvCVr3x9t4twi3g8QCpV2O1i3DfkeAohhNgOGRMghBBCCCFEj5EgQAghhBBCiB4jQYAQQgghhBA9RoIAIYQQQggheowEAUIIIYQQQvQYCQKEEEIIIYToMRIECCGEEEII0WMkCBBCCCGEEKLHSBAghBBCCCFEj5EgQAghhBBCiB4jQYAQQgghhBA9RoIAIYQQQggheowEAUIIIYQQQvQYCQKEEEIIIYToMRIECCGEEEII0WMkCBBCCCGEEKLHSBAghBBCCCFEj5EgQAghhBBCiB4jQYAQQgghhBA9RoIAIYQQQggheowEAUIIIYQQQvQYCQKEEEIIIYToMRIECCGEEEII0WMkCBBCCCGEEKLHSBAghBBCCCFEj5EgQAghhBBCiB5j3+0CCCGE6F2maVIulyiVSlQqZWq1GvV6nXrd+lur1TCMJkoplAJQKOsKmqbjcDhwOp04HA4cDidOpxOXy43P58Pn8+H1+rDZbLu6j0IIsRdJECCEEKLryuUy2WyGXC5745LJkstkKORzlColSuUytXoVt9ONx+nGY3fjtNlx2Ow4dTsO3Y5Ds2PXdFCgaRoAGhqgUEBDGTSVQcM0aJpNGsqgZtSp1KuU61Uq9QpOhwuvx0vAHyAcDhOKRglHIoRCEcLhMJFIlHA4IsGCEKKnSBAg7glKKer1ervFcOVvrVbFMAwMo9n6a10AHA4Hdruj9deOw+HA5XLj9wfw+/34/QEcDscu71nvsN7DGpVKhUqlwvIyzM2lV72HBqZprnoPFTabHbvduthsNmw2O06nA4/H27p48Hi88j7eZUopisUC6XSa5eUl0uklMuk0y0tLZDLLZPNZTNMk5A0SdPkIOLwEbB5CDi+jrkH8ffvxOdx4HC48dhe6ducyU02lqDXrlJtVivUy+XqJ/HSZpSuXuGJYt7OVIsVqiaA/QDQSI9bXx9jkKB5PkHi8n76+OD6fvx2ECCHE/UCCALEnKKXI5bKkUossL6etSsXSEstLaZazafLFAgBel4mY9MYAACAASURBVAevw43H4cZrd+HSHeiahk3T0dFbf60TdVOZGBg0lUnTNGioJjWjQblRpVQrU6pVsNls+Dw+QsEg0Vgf0b4+Yn19RCIxotEYsVgMu10qmFsxDINMZpl0eonl5TTZbJZ8NmO1/Oay5As5ipUSNt2Gx+HC5XDhdbpw6U6cuh1ds2HTNPTW+7dSKTSViYGJoVoX06RhNqg2G1SbNaqNGpV6BU3T8bo9BPwBAoEgwVCYYDhk/Q2GiEQihMMRgsEQui5DoTpRrVZb76dVyV9aXCSdSpFeTpPJZrDbbES8QcKuAGGHj7DTz4RrnPDYA4Rcftx2556oNOuaZgUbDhcxT2jDxzVNg3ytSKZaIJsvkHr7MplGieVqnnQpCyhikT76+uLEBweI9w9Y1+P9BIOhPbGvQgixHRIEiLuuWCwwPT3F3NwM8zOzzM3OsJBawK7b6POFCbn8hO0+hlwBjgYShOMBAk4vTlt3K+NKqVZQUGm3BmYvprl4dopso0i2UiBXyRP0hxgeGiIa72dgcIh4vJ/BwaGeO/E3m02WllKkUgssLMyTmp9nqVUpzBfzBDx+op4gYacfv81N1OljwjlMYPAQgXEvPocHu979dAulFE3TaLX0VijWyxTzZQpLy8w0ZzjXrJCrl8hVClTqFQK+IOFQmGg0RjTeZwV/USvoi0SiOJ3OrpdxL6rX62Qyy61Kfpr00hLpRSsIX86kqTcbRHwhIu4AYYefiNPPqHuMyPgxwocCuO3313Gy6zainhDRDQKFcqNKpponXcmzfHGZs2evsVzNs1zOUWvW6YvEiMXixAf66WsFCH19cSKRqKQZCSH2JG1lgJXoqkngSjpdxDR35/jG4wFSqcKuvPZqlUqF69evcv36Na5fvszU9DUq1QpDwTj9rjBxd5h+X4S4N4LP4dnt4t7CMA0y1QJLlSzpSo50Pc9SNU+qtIxhmgzEBxgcGmZwZJjBwWEGBgaJRKL3bGuzUopSqcjCwjwLC/Mszs+xMDvHYmqBbCFLyBMk5g0Rcwbpc4eIuINE3AFCLv8dqeB3m9XaWyJXK5KrFcnWCuQaZbL1ItmqFfS5nW7CoQiRaJRoXx/RWIxIJEY4bOWP+/2BPVmpW/2dbzQa5PM5q0cmnyWbza5K17Fa8muNGkFPgIgnSMTpJ2T3td/PiDuAz+HpqSD3dlSbdZarOZYreZareTKNIplageVKjkKlRCgQIhaNEYvH6evvJxbrIxaLE4v14fP5euI475Vz0v1Cjmd33evHU9c1YjE/wD7gaqfPkyDgzpikR4OATGaZS5cuculCkksXL5DJLjMUjDPs7WPE18ewP07UE0K/D056pXqFVCVDqpwlVc2SquZIlTNU6lXi0TgDA4MMDA8zODREX5914vd6vbtdbACq1Qqp1GL7sjg3T2pxgVR6EdNU9PujxNxB+pwh+jwh+rxhIu7gPVHRvx2mUpQaZbLVlSChSK5RItcoka+VKNSKlGsVfB4fwUCIcDhMIBjCHwzga4018fmsi9vtxuVy4XK5cTqdOwoclFI0Gg0qlQrV6sqlSqVSoVgsWJd8nmK+QLVaIpvNkSvkqdWrBDx+gi4/AaeXgN1DyOEj7AoQcvsJufz4HJ774nu41zVNg2y1QKZWIFPJk6kXyDZKZKp5lst5TGUSC0eJRvuI9ceJ9cVbQYJ1cblcu70LXXGvV7L2Gjme3XWvH08JAvaWSXokCMhmMySTZzl/9gyXLl2gXqszHh5i3NvPZGiQQX8ftjs46G8vqjXrLFWsgGCpkmWpkSdTLZAuZrHZdKLhGH19fcT6+wmFIwSDQQIB6xIMBvF4vDtuGWw2G5TL5fbA6Ww2QyazTGZ5mWw6TSaTIZvL0Gg2iPkjRN1Boo4AMXeQqCdInyeCz+HuiZbJnTJMg2KjYgUF9RKlRpVyo0rZqFE2a5SbNcqNCrVmg3qz3v5r0204HU5suo6u62iajqZp6JqGrusYpjUgumms/G1imAY23Ybb4cLlcOK2O3HZrIvX7sKnu/A63PgcntbFTcDpw+twSwX/HlFp1qwgoWr9TmTrRasnoVogU8rhdrrag5XjA4PE+/tbqUb9BAKBe+a7eq9XsvYaOZ7dda8fTwkC9pZJ7tMgoFwuc/HieZJnT5M8d5ZSqcj+yAj7/ENMhobo84TvmZPS3aaUotysWif3Sp5MrUChWaHUrFBsVinWyhRrJRrNJi6nE4fdibM997n1VynVnkHHNE1M06o0VqtVytUyhmHgdXnwOF147G6CTi9Bu4+g00vI5W9dfPgdOw80xPatjFuoGw0MZaJac92bSrWv65qGTbdh02zYdGuQu3W7t4JoccNKz9RyxQoSlqt5Ms2iNRahlKNhNumLxOjvH6R/eIiBgSEGBgbo7x/A5XLvdvHXuNcrWXuNHM/uuteP506DABkYLDZlmiYzM9OcOXOSMydOMLswy3h4kH2+Ib468QKDvj5pceyQpmntFtvRQP+Gj1upLDbMJg2jScNsUm/91cCaQUfTrRbl1ow6bpsTj8ONU7dL5X4P0jQNR2v+eyE6pWsaAaePgNPHRGjwlv+vNGssV/KkK1lS5+Z5/+QFlspZ0sUMXo+PwYFBhkdHGRoZZWhomIGBofsmvUgIcfvkjCRuUS6XOXfuNGdOnuDsuTO4bU4OhkZ4IXyMyfGPS0XmDrPrtvs+914Icfs8dhcjgTgjgfia+02lyNUKLJYyLFxb5tT5N/hBJUOqsEwoEGR4eJTRiQlGR8cYGRkjHI5I44EQPUhqcwKAhYV5Tp8+wanjx5menWIiMsyhwAjPH/sxop7gbhdPCCFEh3RNa830FCQRm2jfbyiT5UqO+WKa+VPTvPzuSeYLKZqmycjQCGOTk4yNTzA6Ok483n/PznImhOiMBAE9yjAMLl26wKmTH3D65AnqtRqJyDjPhg6x76mXuj4nvxBCiN1l03TiXmtK5odW3V+sl5krLjF7ZYl3z73MXxSWKNerjAwOMzo5yfjEJGNj4/T3D0pgIMR9RIKAHlIulzhz5jSnPnifc8mzRL0hDgdH+YnJlxj0xaQ7WAghepDf6eVQdJxD0fH2feVG1QoMppY4fuFV/rK4RLFWZnhgmPHJScYmJhkdHWdgYHBPrpshhNiaBAE94vf+/f/K2eQZ9kVHSARH+cSjXyXg9O12sYQQQuxBXoebA5FRDkRG2/dVGjXmSkvMzqQ4celHfLf45+QqBQb6BhgdH2dsYpKRkVGGhkZwu/fW7ERCiFtJENAjTp87xa89+dN4HfLDLIQQYvs8Dhf7wyPsD4+076sZDWuMQXqJS9Pv86Py90kVl/F7fQwNDjM0OsbwyAhHjx7EbvfL7ERC7CESBPQQmXFGCCFEN7lsDiZCg2umMDWVSaZaYKG0zOKlNO+fucxf/cWfs1TI4vN4icf6iQ8O0D84RDweJxKJEYlE8Xpl/RIh7iYJAoQQQgjRNbqmE/OEiHlCHGNf+35TKfK1IkuVHMtLORZmkpyrv0uuViRbKWCaJuFQmEg4QjgSJRAOEgiECAQCBAJB/P4Afr8fj8eLwyGTVwhxuyQIEEIIIcQdp2saYXeAsDsAq8YarKg26+RrRbK1IvlsiWJqmVljlpJRpdSoUqyXKdcrVOtVQMPjcuNxe3C7PbjdbpwOJw6nE6fLhdPlxOl0YXc6sNvt2O12bDYbNpt1Xdf1NRdN07HZdDRNQ9NW/tK+vtrNt5VS6/xVmKZCKbO10ru1MrhSJoZhtv4a7VXgTdPAMMz29dUrwxtNw7rPWLnPwOmwUanU29tUpsJUZrt8GtpKYa1FJe02bDYbdrsDm92GzW7HZrPjah0np/PGX5fLhcfjxePx4PF4cblc0kNzn5IgQAghhBC7zm134rZH6fdFN32cUoqmaVA16lSbNarNOjWjQdNs0mg0adRWVlrP0zANqsrAwMRQChOTpjIwlVUpN7EqzyvXlVJYVXjVrtSvVK5vKQewumq8UlHWaAUQK/+0lWtWL4mmaehYlfP2dW6sAG/dtp5hrQyv42j/n956nklIc6zZ/q3luxGUmMrEUCaGqmCYJoYyqJkGeUzrWClrhfq62aRuNKxj26hRrVdpGk3crYDL5/Xj9/utXplgEH8wgM/nJxAIEgwGCQSsi8wYdW+QIEAIIYQQ9wxN03DY7DhsdgJO724X575ntAKuSqNGuVml3KhSLlQpLedJG4tcN2qUGhWKjQrFWolStYLb5SLgs9K4gqEQoXCYYDjcChZC7aDB6/XJ2hO7SIIAIYQQQgixLptuw6d78Dk8HT3eVIpKo0qhUaZYr1CslCnmi6QuL3Gl2QoW6mWKtTLVRg2f20vAH7R6GAIBAsEQ/mCgNQbE6mnwer14vT68XhkP0k0SBAghhBBCiK7QNQ2f04PP6YEtliNqmgblRpViK2AoV6qU8mXyzQzzRo2SYfU8VJo1qo0q5VoVXdfxrowFWRkX4nHj9njweL043W5rjIjThcu1Ms7BjcPhxOl04nA4bvrrvDsHZg+SIEAIIYQQQtx1dt1G0OUj6Ops8VKlFA2zaQUFzRrVZoOaUafWrFPLNKgulagZGQqmQUNZYx3qRpO62aBhWuMemoZ1n/W3QbPZQNdt2G12HHY7DocDh8PJ13/6Zzl48PAdPgK7S4IAIYQQQgix52mahtPmwGlzEHL5u7JNpRSGsgZIN02DptnkO9feJJ1ekiBA3B90Xed3z3wLXab52hFN09ozRYjukGPaXXI8u0uOZ3fJ8ewuOZ7ddfPxXC7leaIHBixLENAj/uk/+++oVMq7XYx7ViTiI5Mp7XYx7ityTLtLjmd3yfHsLjme3SXHs7vWO57DwyO7VJq7R4KAHhGP9+92Ee5p8XiAVKqw28W4r8gx7S45nt0lx7O75Hh2lxzP7urV43n/93UIIYQQQggh1pAgQAghhBBCiB4jQYAQQgghhBA9RoIAIYQQQggheowMDBZij/izP/tjZmamd7sYd43DYaPRMHa7GLsqn88BEAyGbntbcjy7Y2RklK985eu7XQwhhLjjpCdAiD1iZmaamZmp3S6GuIvy+Tz5fH63iyFaZmameioQF0L0NukJEGIPGRkZ45d/+dd2uxh3Ra9OybbaN7/52wBdec/leN6+lfdDCCF6gfQECCGEEEII0WMkCBBCCCGEEKLHSBAghBBCCCFEj5EgQAghhBBCiB4jQYAQQgghhBA9RoIAIYQQQggheowEAUIIsQNqJo95Po0yzLv3mqbCPLWIeXIRZaq79rr3CrVQxPzRFGpWpkrtZapQwzydQuVru10UIfY0WSegB7z11usAPP30h3a5JELcH1SqhPlXV6wbxTra40N353UvLqPembNu2DW0o/G78rp7kVoqQ9NEG/S37zN/eA3KTdSVLPrPPIimabtYwjvHvJCGYgPtgTia07bbxdlzzO9dhkIddSaF7SeO7XZxxD2ml+pMEgT0gDfffA2AJ0OHUacW0fZH0B8b3OVS9R5VbaLenQOXDe3xITT9/qyg9ITVrfDG3WuR15w22q/WhcqfahhQrEPYvecqzGqhhLqSQdsfQev33bh/Oo/58jVoWj0w2ofH0A9Grf/0OqHcBJ9jz+2P+cECZCrWdz/o2tE22sFn3bDuqBtoz4zc+rhyA2pNtIjndop871r5fkpvmdiBlTqTBAHivqKOz0OlifpgAfVwP5rt9rPBzGQadXwebTKMvs7JqBeoUh10Dc3j2PxxJxdRF5YB0Pq8MBm+G8XrGlU3UCcXwe9ET8Ru3G+YqOt5tIgbLezexRLePdqAH+3FcSg10I723b3XnQyjf0IHU6GNh25rW8owMf/LBcjW0A7H0J4b7U4hu8T8mytQM1CXs1aL93AALe5FXVxuBwCAFcS06J/cD/NFGPCts8Xdo1Jl1Pvz1nUFto9O7mw7l7M3AgBYNxBU+Rrmn5+3ekk+NLrmu9or9E/uR13LrfmOqKYJC0Xo86K5pOqzEZWtQqkBw/49F0iL7pNvQg/RJkKoc2kYDXQlAACrYkuliTq7hHpscNOuaVVrot6cAZuO9swImr3zMpgXl1FvzcKQH/2liT3Tiq5mCph/fRl0Df2zB63K/UZCrdY/XYOA8+4UsIvU+/Oos0vW9aATbShgXX9rFpVMo+w6+pePoPk2D4buF/r+yB3ZrporWBWYg9F1P0/aaLA7L1Q3IGvlTKvFUne2uQlVboBd7zx9xW2HmgGGaX32Ti2if/0BtINR1EwBHDqMBdEeuJESpblsMHF7wdEd4XNY5W2YWwbKaqmM+fYsWsyD9tTwmoqYti+MupwBuw4P9aMdXqeCn6vdCJLSZaD3ggAtfGuDhPk3V2C2CEEXtq8c2aWS7W0qW7UCSFOhPTaI9sjAbhdJ3GESBPQQ/dlR1GODXUkjWKHtD6NOLMJowDrJbUKdXbJassBqjdlGC5U6t2RVWq7lrJa/HXand5taLIECDIVaKm8aBOiHY6iIG5x2tNDdL7+aK6Ku59AORtBimwQrG3G3fi401nyGVKVpXWma0DCAvRUEqOk85luzaAM+tOdG93TrljIV5vevQtNEzRSwffXoHXstzeNAe3IINZVH38bJ3jy3hLqaQ38wvm5AosoN1HtzEHC1t6uuZq18facN/QuH0AJbf/71zxywPrOnU5CugKaBZgVBtp95qPMd7RJ1NWtVzocD2/4caV4H+o8fgVJ9TWrTesz352GhhFoooe2PwKrfFK3fh+2nHtz8xUYCaEf7UKUG2sOdv69quYI6t4Q2GrztXqY9KdcaJFyso0y1ZxqS9pRK80YK1aoeNnH/kiCgx3S7G1R/fAj18EBHrfpa1GPlM2ugRbaXNqIdjKKWZ2HQB/7utKJv1DKp6gZqJo/W70PzOa0ZJuIBzHdm0Z4YWtsydySGSlfQ7Jp1wt5qP+K7k6ZgVS6vWJXL6fyOKpfaw/1W8OJ1rAki9GdGUD6HFdjtwXQg88QC5GuofM1qNd5hGVW2CjatowrsjmmAy2YFVO47//OsP9gPD/Z3/HjVMFBvzABglurY1gsC3p9HXcxY1/u9aEMB1FzRCpZrhlWh7+AYah4H2v4IZr8PrmTRttGDqRoGzBSsz2SHvxfmhTRqoQhO27ozL5knF6HUQF1YRnu4v6N9WLM/PofVI3BzWU2FSqatz9ahKNqg3+rp8Dq23WOoqk3U27PgsaN/ZHs9puar1yFTRV3MoP/kAxv22CjDRL05i6o00J8Z6fj47jb9hXFUMo02GZYAoEVVm9b32aahPTuCNuRHe3IICnW0R6UXoBdIECBuW6dpPdp4CP3HEzuqSOlH+lCJWNdacTdrmTRfvgqzRZTHjv4Tx6yxFAf6UKdSaCNBGLoxG4nmcWD7xL6ulKldNlPBUhkibjRHd3pt1LXsjRaeHVYuNU1bdxyD5nOsOzixW1TDaM360kB/YXzbgx218RBqsQxR944DSHUth/mDq1ba12cObNmau5qZTFtpcMN+9I/t27QComka+ucPoeaLaCOBHZV1p9RUHvONaejzbpxyZ9ch4oZMFS2+QW/SSi+dTQOfdby1Y3FUtmqNm9lGOpOqNFDfuQTlBlrQCR2+9+Yr12EqD247+teOdvQbpZLpG4FKsQ431YG0yTAqXYF+b3u/ukGdW7JSHQHsOvpD/aiJEHjs2/7+q5OLqEtWALbtcUc+B2SqVhBq2+R3diqPOp8GwLRr2F6a3FYZd4s26F8zk1QvUA0D9d68NWbt8cFbgmiVTKOuruqdP9pnNQyIniFBgFiXKtTB2Dh/VTVaLXp93m3l9uN3WgP7QvV2TnmnupnGsbplUs0WYExH87Za6VbSW1r5yKy0ejt0CN75Vi/z5atwPQ8RN/oXD3e832YyjbqcQT/ah3bTyV+9N98OArQXxm95rirWUZczVqrDOilNqlSHanPdNCLVMFAXM2hRD9qdGJA5U4Bpa953dXYJ7bmxbT1df7AfdSgKDtuOWwDVcsW6YiqrMruNIECdT1vHfroApfqWLcia19FRr5JKV8DvtPLgu8A8k7IGBJZysFxZk4bSLlsrSCFXs4KBdegP9aPiXqvHqBUQaCEXts8e3H6hlirttAR1LY820WGlttKw/taa1ne49RulTGWNa3HoVqv76l69wzF4HasSvE6wqD/UjzoSs3oPu5lStuozufL53OnsQbcz7kh/acL6rsW9m/e4RNzW9k0FV3Kow0W0ob1buVaGCQUrhbTXegBUMt0ex0XAiXZk7SQGWsyD0gBNQ4ttHGCrqbz1u5eIyZS095nbDgISicRVoNq6uIFXgX+YTCYbmzznG8BryWTyfOv2o8DhZDL5J7dbnnVe5wvJZPJr23iOE/j/gFHg+8B/BpzJZPJ73SzbXqRMZf2wZ6uYf3nRGhz00gT6vltPvOb3LkOqDP0+bJ/b/OSuZvKgrFxe9e6cNTZAA/2LiW2nBXXLSsskGqg3ZlBvzqJ/9gBa3If+4jjqXBptLIjmsLUHHupfPnIjULiT0q0KZ7ZqvR+btcq1KFOh3pgGBWa+hu2mIEAbDlgtnXEv2jqVA/Plq7BUQZ1sDb5cFditmW3kmRH0o31W6/xfX7HKGPXAXBGla9YxWmf7qmag3py2TjbPjGzvRBL3gscaJNrpoFg1WwCnrR3QqGs5K7h7IL69oLVFO9oHhZpVAdzmgGDtSKw1qD3QcQuy+dYMarGM/tQQ2sCtFSzznVnUqRT4HOhfSnTlxKztC6Pmi1Zr+yYpU5pdh00qDMCOWlxVpoJ5fAGt34e+Mth3yA8jASs94WjnY4j0D49bAeNwYE0KpDqTurHOgsOGtuq3TT8cs1Jxqk3MPzwF//g5VMNY0xqvOWyoXA1l07qWBqMlYlZQYtO5OXjfLmvckcf67LcCAlVpgMu+ZQVYc9g66jnQQm60B+LWpBCAylX3dBBgfu8yLJRgIrTjWZnuVVrA2Z5SeL3ed200iP7lI1ZPwQafZ5WpWKmkAPka2vPba4QRe1u3egK+lkwmTyUSCRtWEPAV4I83efw3gCXgfOv2o8AXgK4GATv0GDCRTCYfAEgkEv8S8AP3bBDQycqiqtzA/NYFqDbhSOxG6shyBdYJAshUrb/Z6qbbNa9kUD+8DmBNqbgyp7rirs7hrGbymO/Now0H0J8YardMmh8soOZLoBQqVUaL+9AiHrQP3Tpd4l0JAAD9uVHMM0to+8Id50BrumZVlhetwOyWbX5oFPVgv9WD05pH/aYttP5o7att+VWzjay0iC9VrBMr3Bhwp5R1WYe6kL4xKDzqWTOjy5b75nOif+0oGKqjyq6ZTKNenwZA/+wBaJio16zbNE20Jzpb2Mu8tIw6sYi2L4z+6CDaixMdl3k1/VAMDm1jEHymgjpjtd6Z789j+8ytQbZKla0rpQbq4jLm2SX4B0/vqHztch6OoQ5E1nzmzPfmUNMF9McG0Ma6M1hUzeRR0wWrVXFVsGG+NWsFk9dyqLEgWtCFZtexfXL/2udP5630sJAb/dP710+ZCbkg7EYValaP5so+rdo3baPgutJYNbtOBVYFNOpaFvMH16y0sM9tMRtYhzRNQzsQva1tqFwNlSqhjYfWpGmZHyxYU5NGPeifP9i1WeG0h/qtc4VNQzt4e2W/k5SpYGXmq4U7PwPWXqNNhNG/4LTG4W0wGcSWvU4r5wTFml4rcX/odjqQu3XJJBIJP/BN4KnW//1+Mpn8rUQi8fPAk8C/SyQSvwn8K+A3gGAikTgOvJJMJn8lkUh8pvV/NiAF/GIymbyYSCQ+Avxb4C3gWaAB/CzwL4AHgSngK8lkctNvfCKR+GfA17COwQzwC0AI+ANguFWW/xf4B4CeSCQ+AfxfyWTyf7jdg3Q3qXSZuWvXKRs1fvVXf7GzJ7276vr7wP+5xePf7LAw729x+27ZaH92qzyreL1etJEgtpHtTwOpf/qAVWEPbZDCNV9A/Wjamsrzxw6hrXqc/tFJa2Gm4XUGX44E0B6Mowr1G1PG9XmsS7aG9sSgtXppzLPhCUWLtrqdac1CUm1ua980m279EmxBzRVQy+X2bTNTRV+dR77FDFZrtvXevFXJPr6AeiDetfEZW/I7rVSOwsYpc/pTw5jvzaEN+K21JwqtlJlSHe028tVXv/eq3LBm/gLMd+awdSEIUA3Dmv3IVKiFIrYvJm68dthtpem57dBqvVfVptVKuXo2qovL0DCtcTOpMgzfeozUlaw1DmNl2608Z+1IzGolt+vrzoAzOztNuVzmn6R/B376dzbfmXc3/+895/t3aLt/9P+3d+fBdZ3lHce/77mSJcvavEjybiW289oJzmInzkLSZAgNLQ1tSFmaEkg7pQt0GDoDDO10GBjazlAahpmGMJRpWSZMaTtlKZOWJJ0pSUgTaAjBiYG8cRLbsbzK8qLNWs/bP96jxdbddHWle+Xz+/xj33Pv1T16de8953nP8zzvPP3c+fBMpXdgkXse+JdK78TCaGiYe4C/GJQrCPh3a+0QsBl4zDn3mLX2b4EI2AE0Ac9Ya19wzn3VWnsfcL9z7mEAa+1SpqXtWGvbgYeAW51zv7DW/gHh5Pz65PUuB+5zzv2htfZB4FHgBudcl7X2v4B7gH/MtbPW2nuBLclzYmvtB4DPOefeY619f7Jv1yaPNUCjc+6jsx2UlSsre4m0ra0J2pow9TUwMFzRfZHiGGPC361U+RaCbmuCmzpz3Ad05pnR+/UsQcnv7yp+v9qa4Kq1MzfP5XfN9TpXznwd3lDCCtkfvL7wY+aoNgksZoxDoVn9tibYPrN7R3tnmXvCf+zm8v48gI+8Mfv2O7eF68GFvLOI9qBtTXD9zNoXANpzB9jV3D5WRBbOnI/Fi0S504HqgW9Za/8MeDPwYeecB3qttd9Mtn2/iJ93PbDHOfeL5PZXgS9aayf+Is4597Pk/z8lpO8k1/t5jnCCn89vEq5G/NRaC2EcLMpW+QAAFPdJREFUzhaxX7PS09NPXKFly9vamuju7sMPj7G6fgXUreBDH/v4eSkt/ng/8TOHw0qvt2wsqmjKnxsNed1FdpjxB86E1npDY6HoEIjusmHWb3gc+ofxJwbDrF1NFAphk9nk8cdeDYu7ANHbLstbuBTvP41/9mhocXbzhtC3/6WT0FA7uaiT7xuBhpqZHRJ6Bomf7grpBzdvyHrJfGI8c/6eo+P4Q71hRdMDZ/F7jmM6W0JucpKv788MEV2/Pufv8cADnwPI+zpz4ftHQr/8hhrM7nULXiTn+4aJv+NCrcnWFXTcdXlZf9f4h69PdkahrSHMEkO46lHKuggkbWTrC+dTQ3h/+eePhYLuHcV12BgdDau/znUc/PAY7euXl/29M/6DA2FtDgjpL7MoiM7F94XPvNnQnDe9K372SFgjADA3byCaZdqJP9SLH4sxnS1Fn9yvWRO6XH3oQx+Z/MxPfg811xG93VZloOC7evFH+0OKVZnWUPEnBkJtGMD65jl3QSv0HSqzMx/j6YfGwt+8fwRz3Vr8T46ENMw3biDaWr1pX+XQ1tbEsfufgiUZHtz7LQCOfflZMm9fHAvLRZEpaeK5rOlAzrkha+3DhPmciSyy6Yo9I8723OmmJ6KPZ7ldqI+cAf7aOfeVIvdn0TJ1NZMtFS/MaY/3dsOZoVD1v20VFOjs4o/2E//3a2AovDruxOt3tpLpbCXedyoUrnY0QnNdSAv4nguBQWty0BqLQ355chCLrllNPHYU09aQNwAAQpHk4Cj+1dOYqzvw+05NpjL4+pqQ5pKjW4bfGxYj8j3nQn5rCa0ZJ1oS+roM0Tu2n38SeGIA//Kp8LgXjlesOM00LiHzpuJe24+Mh4WDmuuYa7EiJB066mvCAlCnhzCbiy+u9cPjYZGlFQWKUXetwQ+H9BGu6oAnDoZ81iWlf83Npg7EP3d0st2e71hWlhPmYs1l/Q/vkz71YzHm8rbzAp7o2jX4yEBr/ew6Io2Mh3zxLAG1aaorqkWw2bYSf3IwpO+UsAqw2dA8o7zlvH2c1lPf7FyTO9CbtshUsYX6hfgTA6GzU5nqjMz65rKsJO3PDhE/dSh0dtq9NqSm9Y8seLva+eaTOqdC3ympc3IwpJQCdA8Q3b0NRsZn3ZZ50ZpoEbwkrNUym9q1xaqsQYC1NgJuJRT87gXeb619mlBY+zvAREpNLyH/nhy3nwH+yVq7zTn3EnAf8Lxzri+ZuZ+r7wEfttZ+xzl32lpbB2xzzu3J8theYP6aoFeQ2dCMP9Qb8o+LWEDJnxiYLOb13QOzKoqLtq6AaTMJfmDqygAZAxtbMI21552Am7bCnYcmH3vp8tAysWNZ6MAy7YAe7zlOtLox90F+fRMcOAP1NcSHzmJ6BjE72mfM+PkjfbCmMftM4ESO+8h4KH6efmxvqQvdbc6NVXUXjen8T47iX+4JtWBvW1LyTDqcX3Qe3bqJKM9K0X5gJCzo09GIWdeEH5kKFs2OdqJ8Rb1jcWhx6IEY6E3y5Pccw9ycIzWknCbaM9ZGWReFqlZ+/5nJBcBgKn8ekhP2W2dXEB3vP4N/8mC4Cnfn1rA2QAlMU2ltRf1YHE7YW+ryztoX21N/sltYZ0tZCmvjnx4NExRLMuHKQhHj472Hrl5orJvXjmr+Fycnr6D5ljrMjetCo4QFaoqwEPzJwanud7+ycfJKcSHxL7vxPz+J2byc6JoS0gsXWPza6fC5bm8ouD7JpI5loRC+bzhcVVq2BCqzvmVltDdgGpZAb31oh3xZmdMrq1C5awKWEE7+P00o2P0C8GLymIecc48k//8ycL+19qPAxwglSx+11u4BnkgKg98L/LO1toZQGHxvifv2Vmtt17TbX3XOfcJauwp4IgkqIuCLQLYg4DvAe5NC4UVXGJxPdNnKsChNTVTUwc1sXYE/PhBm+GbZJnHGz2qqw+xcjT/WT3TN6jmvpBtd0YbftnLq97iyI3Sj6R0OXSHODOFrIxjzMw6i0eYV+HXNxD/vhhdPhEtQTXWT7QN9/wi0hVZzZkd71u4y0c0bploSXpAqZZbWhhmV4fFFs7rm5GynYe4dIboHYTAEfPG+HnjpZAiGbp85uxg/dShpN9pN9M7tYVYmCRYnO+LkMh5PXT+MCCfjo3FoYZqFP9qP7x/BbF5eltSo6JrV+DWNYYa3jItJlcof7Q+Fteub4NkjYWZr97qZ78/aaOqyawntU2c4dDb8HQZGQ3ed9bO4muI9fv+Z0C6zhNl/H3vi/9wXFjOzK7N2+Zp0Xk/93FcmTEdj1jatpfITndVGxsPnYmntZAe3XO9D//yxEDhEJqRTlinl50JmbVNY1yJj4IXwXWhu74SG8nSGqgb+7PBUZ7rT+bvbnfe8nx0P68rsOY6/qqPq1xzwrie8x7r6plo5F2BqM2R+bfMC7F11yrx1KwDmxer+25bTnIMA51xnnrt/L8dzHgYevmDzTRc85hHgkQseg3PucUI+/8TtrwFfm3b7U7nuu+DnfB74fBE/fz+hbehFaTZpBKahlswdlxZ+YJGiKzvgyrkvTe6Hx2HJ+YGMiUzoZf2jLljZEHL2H96XdfbHnx0i/vERiOOp5y+dNi7TO9n0ZS+wNi31mBtyn3CY2gwsVHeZMjDXrgkpIM11c78UvLYRVi8L49g/GgKyo/1we5ZZ3omT0MiErjCt9SG968QA0c78rT3N8qVEt20K6UaXrwpXZM6NZU0l8z2DxI++Gm70DhfdNrSQalmR1B/vn/r9NrVM5vXTVIe5YBbTbGghuv0S/Ng4tNThh8dmnV7k+0bA+/B+ubwNf2ooXGGc5Xj4fafwT3eFK1C3baKYVLT45Z7QyrWzJVy+T07sfIGWkJM99esy83ZSnfV1r11DHIXFmczKhjAz/eirkInCWiXZuntNXDWNfVgAjXkKAja1EL37itDS97ljAPjBsbxpVYuN6WyB7pUwMrt0D9PZGk6sN7VUfQAAyaRdspbPZMArcgGtGJwCfjyG3mHiZ7owu9eWrVf0fPBH+4mfPgSt9US3bSq4r/GPD4cVEdc3EW1vw79yKszsrm8msivxW0Lf8/iVUzlnf/ye43AkKbC6pDWsuDst/3ki7clsWY65uvovA5fKJz3+jQm53CZP2s6sfu4vT8KxkAPN2mVhVirHFZHolo1hJritYfJENJrFmJvOVkzntA250hjGpgI+3zvM+PdfwXQsKxhoLBojU78fNdHkCq+5cqDNhuYw2/zE6/ilNWG2uchAwJ8YIH7kVfCe6PZLMOubydxVYtrm9L/LuC/q5NPvOR5aue7txlzVEWpDDp0luqrwBMP0nvoLxbTUn1cX5A/1hitWozH+SF/WIMDsWhOubLXWz/mqacH9q6+By9tgzIdA/CIrCDWZKO+ETS7Rjevxu9YsmhVzoy0roIrXcJDqoCAgDQZGw2VM1xPSMMpQ6Dlf4pdOhp7nfSNh4asCOfQThZh09RGfGISRcXxXL5n3hDaCE0GEuaQ1pKWMjIdZ4unal8HEQlYHzsDuLC0mCauQXqz8maGpE7m3bC5rwZw/Fjo80T8SijBvWs/EDK8/MUD8PwdgaU143fqasgUf5+3DwMh5BW6moxFzy0boH8F39UL3IP74AH7Lipyzwv7Q2VAA3lpPdEeORaoWWLz/NHT1hRWN25pCd48nD4Z0nJ2rMbEPs51Xd4QuH3lqfybTrc4lV2yKDQJOnZuqFeo5N6cCVbNtVdj3jMFcmv97yo/HYWa2tT58x61rCit872iHHN2Z/IEz+KExzGUri+v4NDoeFgcbHCW6ZcOcamNyMZuXhxWtMwazKfvvbBpqSzpxLXmfMtGMK0bCrAIAf6yf+EeHMauWYt64Af/a6ZAyumUF0bZVhX+AyAJQEJAGEwsk1URFFQBXktnUgn/9bOgQVEwO41UdYQbw0taQYtI9ONld6LzHZaKc+cHRtlWMv342tAFckilPXvQi47t6J9OefFdvWYOA6OrVxKNHwoninpBn7F84AR/YjX/tdHjdobEwCzrHWpNs/Okh4odfDifB01pNRkmHongsDifATUtCAXcO8Sunw4xt92BYMbnCRd5+eBz/5OvgkxPx7R1hIa2kra5Z0zh1FaWIgCXatZoYj1lVuBvXdGbz8tBVZNyHxbjmYCKNrxh+b3doyQqY2zYVrCHwh3uJHz8YboyMY4pJRTzSN3mV0L/Ug3njPAQBzXUlXTnx43EIoE8OEt20PmcAIZURv3jivO57/v+OhMm4nsN4u7IqW81K+igISAGztBZfmyG6e1vVd3mILl2O39gSZsWK+JKMtq2CZFbFj4xD9wCUcLk8etMloc//qqVVMcO70MymVvwrp0Ned5mvFJn2ZWR+Y2tI3eo5Fzb2h8495pJW/P7QmWneOiedHQr1ARAKVS8oRYh2rcFvXg7LavP+7aMtK4iP9oeWtquqoGVejQnpTgOjk4WtpqMRXxOFv+Ms8/HNygYyd8y+KNDUZham+9KMF5723yWZ2Z1UFdusum1ZGOOhMczGubfgLKvTQ6EbFhC7HjIKAqqKWd+MP9wXJqWa60J9zMGzsDpHhzmRClAQkALXXx9qrqs9AJhgSpyJN0sysK60A7WpiSa7AaWRaVpSeh53sa+xc3XoOb9vqj7DdDSSuecN8/q6bGwJM9RDYyFVJNu+FXGFzGxoJvO787yvs2AyEdGdW0Ngk5zwm7YGondeDvg5rR2wGJg3tIfgsS6sA1Lw8euaQ7vTobGiU85MQy3RO7bDeFx9kwOt9dDeACfPYTYr97vaRNtX4S9phdrQtCK6dVOY/FgsHeJSbOKcKQ0u7qOEALB7942V3gWR0H7uurX4XWvAL9xK2iYyC5pPvZDM0toZLThNXZWdrM4TExnMLPt4RyUE+iYyEFXfmJqaiMxbt+K918xylZrejtdEJmuqqlSfNJ0zKQgQkQUVCjJ10iJSDgoARKRU6auAFBERERFJOQUBIiIiIiIpoyBARERERCRlFASIiIiIiKSMggARERERkZRRECAiIiIikjJqESpSRQ4fPsQDD3yu0ruxIGprM4yOjld6Nyqqq+sQQFn+5hrPuTt8+BDr1m2o9G6IiCwIBQEiVWLduotzQSvJrbm5tBWuZX6sW7dBn0MRSQ0FASJV4u67313pXVhQbW1NdHf3VXo3LhoaTxERmQ3VBIiIiIiIpIyCABERERGRlFEQICIiIiKSMgoCRERERERSRkGAiIiIiEjKKAgQEREREUkZBQEiIiIiIimjIEBEREREJGUUBIiIiIiIpIyCABERERGRlFEQICIiIiKSMgoCRERERERSRkGAiIiIiEjKKAgQEREREUkZBQEiIiIiIimjIEBEREREJGUUBIiIiIiIpIyCABERERGRlFEQICIiIiKSMgoCRERERERSRkGAiIiIiEjKKAgQEREREUkZBQEiIiIiIimjIEBEREREJGUUBIiIiIiIpIyCABERERGRlFEQICIiIiKSMjWV3oGLVAYgikxFd6LSr3+x0XiWn8a0vDSe5aXxLC+NZ3lpPMtrMY/ntH3PzOZ5xntf/r2Rm4EfVnonRERERCQ1bgGeKvbBCgLmRx1wHXAUGK/wvoiIiIjIxSsDrAGeBYaLfZKCABERERGRlFFhsIiIiIhIyigIEBERERFJGQUBIiIiIiIpoyBARERERCRlFASIiIiIiKSMggARERERkZRRECAiIiIikjIKAkREREREUqam0jsg5WetvQz4OrAS6AHe55zbV9m9ql7W2pXAQ8Bmwkp7rwB/7JzrttbeAPwDsBQ4ANzrnDuRPC/nfRJYaz8JfArY4Zzbq/EsjbW2Hvg88GZgCHjGOfdH+T7r+h7IzVp7J/BXgCFMhn3KOfdtjWdxrLX3A78NdJJ8tpPtJY1f2sc223jmOy4lz9F3aQ653p/T7j/vuJRsS+V46krAxelLwIPOucuABwlvXsnNA591zlnn3JXAq8BnrLUG+Abwp8lYPgl8BiDffRJYa3cCNwCvJ7c1nqX7LOHk/zLn3A7gE8n2fJ91fQ9kkbzXHgLe65y7GrgX+Lq1NkLjWazvAr8CHLxge6njl/axzTaeWY9LoO/SIuR6f844LiXbUjueCgIuMtbadmAn8M1k0zeBndbatsrtVXVzzp1yzj0+bdOPgE3AtcCQc+6pZPuXgHcl/893X+pZa+sIB/MPEg5moPEsibW2EXgf8AnnnAdwzh3P91nX90BBMdCS/L8VOAqsQuNZFOfcU865Q9O3lfp+1NhmH888xyXQd2le2cYTch6XIMXjqSDg4rMBOOycGwdI/j2SbJcCktnADwDfAzYybSbBOXcSiKy1KwrcJ/Bp4BvOuf3Ttmk8S7OZkCLxSWvtT6y1j1trbyb/Z13fAzkkgdS7gP+w1h4kzBreh8ZzrkodP41tARccl0DfpaXKdlyCFI+nggCR8z0A9ANfqPSOLFbW2huB64AvVnpfLhI1wKXA8865a4GPA98GGiu6V4uUtbYG+Avgt5xzm4C3Af+KxlOql45Lc6TjUnYKAi4+h4B11toMQPLv2mS75JEUE20F3u2ciwk5g5um3b8K8M65UwXuS7tbgW3AfmvtAWA98CiwBY1nKQ4CYyTpEs65HwMngXPk/qzreyC3q4G1zrn/BUj+HSDUXGg8S5dvjEq9L/WyHJdAx6ZSZD0uWWvvIMXjqSDgIpNUrP8MuCfZdA9hBrG7cntV/ay1fwPsAu5yzg0nm58DliapFwB/AvxbEfelmnPuM865tc65TudcJ9AFvAX4OzSes5Zcfv4B8Ksw2UmlHXiZHJ91fQ/k1QWst9ZaAGvtdmA1sA+NZ8nyjVGp9y3c3lenHMcl0LFp1nIdl5xzj5Hi8TTe+8KPkkXFWruN0G5tOXCa0G7NVXavqpe19gpgL+Gk6lyyeb9z7u3W2psInSrqmWoNdjx5Xs77ZEoy63Jn0vZO41kCa+2lwFcILRRHgb90zn0/32dd3wO5WWvfA/w5oUAY4JPOue9qPItjrf174G5C8HQS6HHOXVHq+KV9bLONJ6FuJetxKXmOvktzyPX+vOAxB0iOS8ntVI6nggARERERkZRROpCIiIiISMooCBARERERSRkFASIiIiIiKaMgQEREREQkZRQEiIiIiIikjIIAEREREZGUURAgIiIiIpIy/w+HaiA7QW+U2AAAAABJRU5ErkJggg==\n", "text/plain": [ "
    " ] @@ -2101,11 +2030,73 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "##### TO DO (potentially)\n", + "## Extended challenges\n", + "\n", + "Below we give some challenges that use the topics learned about in this worksheet." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### ➜ Challenge yourself: correlation\n", + "\n", + "\n", + "* ShOULD show: correlations numerically calculated for the film thickness dataset, but then also visualized with ``data.plot('TopRight', 'BottomRight', kind='scatter')``\n", + "\n", + "\n", + "import pandas as pd\n", + "import numpy as np\n", + "df = pd.DataFrame(np.random.randn(1000, 4), columns=['a', 'b', 'c', 'd']) \n", + "pd.plotting.scatter_matrix(df, alpha=0.2, figsize=(6, 6), diagonal='kde')" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAGICAYAAACA+N0EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsvVuMZVma3/Vba9/3Pve45L3u1eG+NzM9AzNje8zY4gEkLAYbgwXiDYS4CQGSzZMlxIOFwBLiJhDwYJBlIyQ8gxiExx5hZsaMezzdPT093dGVVZWdl8iMiBPnuu9r77V4WDtO5bUqMysys7om/i+VFXHOjn322Xt96/u+////CWMM5zjHOc5xjnM8D+SrPoFznOMc5zjHTy7Og8g5znGOc5zjuXEeRM5xjnOc4xzPjfMgco5znOMc53hunAeRc5zjHOc4x3PjPIic4xznOMc5nhvnQeQc5zjHOc7x3DgPIuc4xznOcY7nxnkQOcc5znGOczw3zoPIOc5xjnOc47lxHkTOcY5znOMczw33VZ/AC0AA/AxwF2hf8bl8HhABfwr4DaB8tafyucD59Tw7nF/Ls4UDXAK+BVRP+6bPYxD5GeD/fdUncY5znOMcP6H4E8BvPu2LP49B5C7AfJ6h9blD8aeF60qGw/ilX8+iatDaEIcuQoiPfW2lWqQQSAnGgOs8uUp7MM3QxiAQXNlJzvq0PxGv6nrWjcaVAinttWy1RjWGwJO02lDULZHvfOy1ux9F1XKyKgCIA5fJIHxh5/4kvKprCaC1JqtaAtfB9569K2CMQbUG1xHIT7i/nxbHi4KialFNy5WdHqHvPNP7pRSMxwl0a+jT4pUHkb29vX8c+GvY0tPv7u/v/3v3/e6vAP8cMAd+ZX9//z9/ikO2AFqbn7ggUquW33//hNB3+NKbkzO7uT4NTq/hy7yeedlwtMgBGPdDhon/xNemhWK6LFCNBsBzJTujiCT0Hvt61xGkRUMSeq/k/ngV13O6KEhLhedILm8naGO4c2yD6SD2yauGptW4UnJ1t/dUx3Qd+xna1uAn8o/MtTzF4aygqBsEgqu7CY58tkByOMsp6obAc7i0dTabGc+VfHCwAgy+J7my/XTf5WPwTG2AVx5EgB8Dv7S/v1/u7e39L3t7e1/d39//3n2///f39/d//VWd3MvCdFHwn/3N73A4t7u7r7+9xb/5y1996p3h5wsfvyAYY2i1wXXkJng0rcYY+yBVdUsSeizTiqY1jPr+5iHfHkZMBuFnIkC/LFTdNcpKxdEiJ/JddDdHSLV6c7mfZhnW2mAwOFJyZTvBwB+pa/m8KKqGrFAkkUcUuFTKrtO10mf2Nwaxz6Tv4ziStn15QfWVB5H9/f179/1vw6NR8K/u7e3Ngf9gf3//Oy/vzF4emlbzX/3vf8AqV/w7f+5rHM5y/ubfu87/9v+8z1/4pXdf9em9cBhjWOUKRwp6kUccemwPQRtDP3o0ozicF5R1Qy/ymPRDtLY76rbVqFYzSHzysmGe2t6gEDxQbjld9IwxFFWD50o899HU3xjDdFnStJrtYfjY1/wkYNIPWKwrTpYlWhvKQDPuB1RVi+85DGOPSmni8OOXg0o13DnOcKSkF7mb94x6wUv6JK8ORdUghSDoSkRbw5CsUAS+84lZiGo0h3ObWedVw2sX+mwNQ+6e5GAMWak2mbMxhnWuEAL68ZMz8MfheFHQtIa6aXjj4uA5PuXz4ZUHkVPs7e19Ddje39//w/t+/F/s7+//lb29vXeB/xHb8HkqbG09dyr30vHXf+0H/Pjemr/8r/4MP/+1ywAscsXf+Yc3+Wd/8R1ee4k3xKvAMqtZdAu+FII4dOk9JniADSxl3QC2Li+Hgq2hDRB3TzLqRrNIK/qxj0BgMA9kc7VqKaqGJPJY54plViEQXN5O8NwHF4OiashKtTnH7WF05p/9ZSAKXPLSXrPZuuKi7zBMAm7nKUdHBXHk8dalj7/HjDHcPEw5XhQkoUdeKqLQpU5b+rH3zOWcnySs8prZypK/Lk5iQt/FdSTDpwie83XFMquYryuGvQDflazzGoMtrQLMV9UmiKxzxWxt/5YQ4onPweNQVM0myEXBy1vaPxNBZG9vbwL8l8C/cP/P9/f3Z91/39vb23umY56cpD8RPZHrt5f8r3/3R/zCVy/y7qU+x8drAP7pn73G3//2bf6Hv/0H/Fu//NVXdn6uK0+bbZ8KxpgnNsjv/+njXnL/e6UQjHsBadk80CvR2mxKBGXdsj10uLQV02qzeaCMMdyb5WhjyMpmEzQMZlPeWaYVy6ymF3kMEh8pBNoYQv8z8ah8ChjGg5C6brg0iYHTRmzDKqtxJDhCcmESPTbj0sbgSEHoOxhj2BqG5FWD7zqf+3LW/aWh9qE15ePua2Cz4RkmPlt9G3ROuoDUtgbHEZsGuDGGo0XOdFEy6vmPfRY+DuN+wCpXzxR4zgKv/MnY29tzgf8Z+A8fKm2xt7c32N/fX+3t7W3zGTjXs0ZeNvx3v/p9tgYhf/HPfOGB3/Vjn1/6qav8n//gxxwtCnZHP5m74KbV3DvJabVhdxxtFvSialikFaHvMurZOq4U4oEdVKvte5vWsDMKbc/DszvAh3eBUgrG/ZC8VJvg4nsfLYbLtGKRVhxMMxxHMu4HvHlpgBQCz5P4rmS+tr+PQ5dVXjPuB1zd6XGyLFimFULwxIb9ZwGt1hwvSowx7IyiTQaWFopVrmhazbULfaLAfoZe6DJdFizXFSerAt+VqHbCm5cGtmmuNY4jmS4KVGvoxT5R4DJMAuLQRTUa1xGfyJ77SUcSujRti+86m+9fNa0tRwEXJjGB51CpltmqxHMl/cjjZFWhWo3nSuLAY9gLWOf15ri744jQd/FcSdNqbh6uuXOckVcNQsAXHrNxaVrNKqvt34h9qrpluirxHMHOKHrmEthZ4LOwMP95rLbjr3bZxl8G/uL+/v6/Dfyne3t7X8Eq6//SqzvFs4fWhv/p137AbFXxl/7ln3ps+vlLP3WV/+t3bvLrv3vrkSDzk4JKtTTaNg/zstl8zkVaUdQt61yRPKF8VdW2xwHwo1tL8krhu5I3Lg1wpGTY8x/YBQ8T/4lMrlWuqBuNajS9yMN1JMZAL/IIfIdVXrPMKlqtycuG3XGEEIJWa7Kq6c65JvAcZqsSIWwZ7bO0C8+KhrJuSAtFWTdcHCc4ruDm4YpKaYa9APe+slMSeejWUNYts3XFuOudFBPFdFlRNw2ulJuGu+/KB5hED5f/Po8oqoajjuzSG/v3/bzdZK9Fx267cXeF6MqxlWo3pI9xLyQMXFTT4jqSUeLjus4D93xZtwhhy6Zproh8l6xUjwSF+bralFh9z963qmlRjT3G05SxiqohLxt6sUfgffo+3ysPIvv7+38D+BsP/fgfdL/711/+Gb1YnNaWf+W3PuTb7035C7/0Du9cGT72teN+wDf/2C6//b17/Pk/9fZPZGM38l0Cz6HVhl780UMT+i63jzOMMRyvXC6Nk42GYfOawCH0XZpGbx7YVa44mhcEnsN0WTDqBU9czLU2pKUi9Bxq1TJdFjhS0E98As/hYJrR6JatfrTh+g8S/wGKsCPFZpcZBy7rXJF3QSX0nVey83sSQt9+znWmyArFOld4roOUglq1qLqhUg2eZ7O+JPLx3I/6RruThEHio43daR/PSxxHkAQeSeQRhy7GGGariqbVDHs+nis/1/2QutGYLozWjSbwNMtM4UjwXVvaiwKXuycZCFimNf3YZxD7zFYVUgocR3BwnHGyKnAdh0Hic2X7o0y6qltWWU1aKDzHZuOuI3Dko/f06c8E9ven/S5HiqfSqxhjOJoXGGxv8crOp+8dv/Ig8kcFq7zm//jtG3zrh0cs0xrXEfyLf/pd/qmfufax7/vjX7vE7/zhId9+b8rPfvHCSzrbs4OU4hEevDGGfuwy6Qdoozk4ymnUg+UusP2Pi139fpD43DpK2RrKrjmpcB1LW33SYn68LDasGtexu2htbMZS1S3rvGKVK7Ki4YuvT7gwtn/r/nMQwp5/qzWOlOSl1QbAg+WyzwJ8z+Habh/XdZjOCxuUjbHamWFEawyzdUWtNNujyGaAsc/2ULM7jrgwjrkwifG6XfJiXdFPfKS01ywOXMq6ZV3U1Krl7knGuB9yYRJ9DnpGj0c/8ja9tn7k8f7BkuNFQeg7fPmNLRBW8zFfVyShy9XdhCs7iQ3SoYcQH2XjlWpptaHVLnWXlbiOZJ5W1E2LlJI3Lw3Iq4bJICR+TOm0F7mUdcMg9nEdSS+SxIGLEDxVWVEIG3wabR7ZtD0vPp/f/GcM83XFf/LXf5dlWvONd7b5xrvbfPWtLQYfI6I7xRdfGzPuB/z2H9z7TAeRZVrZBfqhEtPD0NpwcJLRtJYeukhr2rYlrxRF5T2Sji/SirJuGfV8vvzmBIA7x6ltBEtpd2SO2AST+3fFxnz031E/IC8Vy7TmhzcXRL6DajRR4JKEHnXTPtLvUI0mLxVx6OJ1u07fkxul+8vW8DStZrYqkUIweUL2FQUuV7YSRolPWiiy0gbRySBktq7ICltv3yaiVm3HOBPkZUPdaNa5YjJw2B3H1Krl4MRSetNccalJNhqbWmlcV5KVijvHLYMkYNwPPne6JinFA/3IsvpI31HWDXnX25MCBknAha4Mukgr6kYz7gUfZdMaHE8QBy6HM1siu9j1U8q6oR97hJ7DlhBs3UdJP5imlHVL4DkcznOiwKXpelSn5/gsuLgVU9Y2sz4LnAeRFwxjDP/9r36frGz4j/6Vn+bNT6BSPgwpBT//lYv82v93k0VafWY4+eu8pmkNw8Qqnu/XZHzcOapGU9UtJ+uK0HMAQ6MhKxS9y48u4ou02gi13r4ytGWZVpNEHk6X5RzOC4qyQRvNW5eHm4Vsexiyzm1wiQKXfuRRVA0CW5q4tBWzym3/4HGlg8N5bhuZueLqTsLdk5y6aRl2C+bLxiqrPyqlBS6OFLZMeF9t3TbXC6bLAs+ThJ6LkALRMavSoqZtrT4mDFza+9Texwur/D/V1LTaCtg+vLtm2PM5XpZsjyL6sUfgSU5WJcu0wpiPdrivwv7kZeLaxR6Hs5ym0bx3Z0mtWtJcMRmGCOx1KOtmQ1kH2B1FBL7Lxa2YutFkpaJpNGnZkFeK7VHE7shmcw8HhLsnGb/3o2OktJmN6wgWmeKNC5+8dGeleoSsAmwymLPC52vb8BnE9z444Yc3F/y5X3z7mQPIKX7+KxfRxvC7Pzw647N7PhRVYxeQzDKe7l+AH7cY3w/fk0hpFRxaaxZZhZR2F3d/eaisG4q6oVatbSYWinVe47o2+zia56S5olaattWcrEpmq4pbhymrvMYYW+cfJj5Fqbh9lLIuFNvDiEvbMa9f6DPqBSShSxJ5pIV64Dxr1ZIVilafKuINddNuPv+rgOPYjOGUOXU4zy27KvuI8ZOVDfO0JK8aamV7SVFXasoKxeGs4NbRmlZratVSN5ph4rHMFMfLktm6JO8at1HoEgYuk0GA7zr0I6sPWWY1Rd3iug7bI7vzNl3Z7PMOV0qu7vToRf7G9mWQ+GwNws3963ZMQ/t6QdNacafnSOra9uY+vLtGNZp1prh1lHJwkpMWatP7O0VWKIQQNI3GkTbj9h3BwwmfMYa0UJt7c5XVHC8KDuf5I/eralqO5vkDge5TXZMzOco5noi/861bTAYBv/iNy899jEtbts76uz884s988+N7KC8D9++WZNfcuziJMeaTRU5CCK5sJzjS7thOVdK7449KBtNlwfXbSwLfYWsQsjOK8Fy5sdhwHYFqDIu0JlkW7I4jW1KQguNlgZCwzhS9yGWeVly/vUAIQT/2+drbW+yOYo4XBZVqN/2N+8/7VE9SKU1atHzlzR6eKxnEPkXdvrJscJ0rfE/iOgLP+Sjg3q+HCj2HwHM4qkoi30FiTScDT3K8LK0Ro+NwNLfBJysUjmspz0KA5zqb2vruKKKoPNrWcG+WMVuVJKHLdGFV/K9d6GEMvH7RKrDPgunzMtFqW74LPOepWE2rrN4IAUPfZWccIYW1jqlVi9OJB23/LaaqNbN1ySqv2RlFXNnpkVcNd6YpqjEbjYkrBdNF0d3Xmq1hSKs1q0zRi/0NFd11BHemmSWJLEqS0GO7K7XdL9i9NEkeCEbmocA0W9vsPq8sW/LTfm/nQeQF4nhR8P0bc/7sH3/zU9eKv7m3y6/85oefiZJW4DlcnFgh32kf4f7GatNq2tbuTG1JyLA9DCnrlrbV9BOPyzsJRhtUo9Ed1fYUq8zW8g9nGetc8cZFmzWcWqC02mCMBmGb7KHvsndtzN1pRqU0eaFQumaVS1aZIi8bstLWnLOi6cSGikVasTOKef1i74FFGWwzNC0sHz8tGgL/1TjV3o9a2cXKcxzi0MV3HZZpxe44omk1Ugp8z2GUBDgXBUXVcrwqyMuGpjUITi02XLQ2LNKKtFBs9UOu7fZwHEkSOg8sKlLYnbQQtiSWdkygddFwtCgYJsGmefxJi5HWduHMygYpn02N/SJwsrQZ26mj85OeUdXozUKstbH02MjjzYsDmlZz+zjF9W3vcxD7lLWlBRd1iyMEritYZTWq0eyOIu4cZySRYDIIuLbbY5UpFl02ecoEOzjOuDfPqVXLle2E2brig4MVYeASuJJR3yctFRNje1Rt98xJKVBtyyDxbXlNikca9L7r3Ec4+fTN9fMg8gLxra789Atfvfipj/XNP7bL3/7ND/lH+8f86Z+++qmP92nxJDZO0+qN3brvOpsS0PGiQBtDXiruHGsabRj3A7YG4SPCwa1BwMGxZKFhti5xJESBQ7FoiHyXVmuG/ZBe6LHbsbfm65If/HhGVjWM+wFXtmKMMeRlTdb5Y8WBRxK5GIN98B2rts6LFs81m6xICMGlSUxVt0SB80DmNVuVm0a/ajRCCgYvgeartVXVN63N/lTTcrzImacVd6YZb1zqEXoel7cTXFfiOJIogEo5NI0CA2Hk8bULg643oihKRZrX7AxCZuuS3UHIraMSrVN8V+J7ku1hxJXtBIGlkE76IfdOMoqqxXVqeqGP6wpMlw2dBqZB4j9wXaq65d4s79yEbbCTgscykF4anoLNVKmWeyc5BsPWIERg7fTTQjFMgu6+cjmYZniuw4/vrQk8p7v/BVmumJ1UrLIa15Fc2enxhWtDKqVtCcx1SSJbOlSqpao1t47WTFclP7q1wJOCRVbT77RNgSd586Lt+0W+w2xZgoCqaVnnNYfznMNZwJuXBxu24cMY9wPiwMVxxJnQs8+DyAvEd69PeW23dyaeS1e2Ey5v25LWZyGIPAlt+5GFiBQCz3VoGs0w8VmkNZWyu9pKNahGU9QtfW0569oYKqWp6obXLw0QUmwa+NNFQdQ58y5T6z0kDNw6TIlDh7sndkGtVEs/8rh5lDHq+YS+w+4oIvJd4tDy+beGEXvXxkyXliEzWxcbn6JxP7AGg7HPu1dHtonfBRfVtKw6xfGd4xSv23k7XdPzRcJgEEBeWlFk6EsqpVml9vrM1xU7I4fFuqI1msh3cKTHpB+wzGqSwPY3bFPVY50pELbZXnRkhQ8PVizXJX5XnuyF1kng8lbCF14b2e9X6y7o26BiGVmCQeJjjNmUVBbdrvwUpWrtLtvYjMr2D16tUHN7EJJ25b+PzUIwNB1zrR97CGk/w72TjF7sMxmErPKastYcnKRsDyNcaQN53fU97s1yJoOQvGz4wtURZd1wOM/54EChWk3oSZLIY7Guu+9JbDzJpBA4QrI1CLg0iXn7ygAhBMu04oO7K8qqxXUEUehs+mAny+KJQQTYeGydBc6DyAtCWiiu31nyz/zcG2d2zG/u7fCrv3WDZVo9lfnbq0DgO4x6AbVqbTPR/cgXKA7topaWiqxwOwsNn4OTjFuHaxZZbRdjY3Bdh4uT0JZgqoaDk5zXLwyoVYvrCqSUqFbTtC03DwsMmtC3O8DWaPqhj5CCXuATBgbPk/zo1hJtNJe3a77+9javXeiTl/YBX+fVpvTVT3y8brEN+Oj8s9IGPs+VhIG3abq/DNW6IyVBFzikFJwsK9663McYS1bwXQcB3Li34sO7K7JS8ZU3Jizz2vqKNS1bw4B7M9tQTUKXcT/E9ySjOGCRlpSqZVU0UNhA7Eirx5E79hxarTmY5qimxXNs0L3fZh9sb6momkccgXuRS1m5RL5L6Du4rvxE1+AXDSnFJ9Lsk9AlK1zurnOkFAR+wKgXsEgrq7tZlczXJVnRcO8kIwota64fWyHnIq2II5ftQUQcOWz1AzxP8oc/XpOVNbcO12hjN19fen1C3bY4XcaiW8N0VaKURrUtSeTieS7zdWVFhpXi3klOFDo40sVzpNVV3aevehk4DyIvCH/wwQnGwNff2TqzY35zb5df+a0bfOf6lF/8xpUzO+5Z4+GezWmN2Ar3YvoPPbhlZWv2TatpWmtNYipFWlRkRcuw5xN4kiCQGONysrKNyVHf5/2DJYPIZzwIuboDdWspxL3YZ5VVzFYl28OIrX7A71+fMuseyi+/MbHaD2wte76ueH23xypXFJUi8N0Hyi13plknMpMIwA8d+pFllL1Ix9S0UMzXFVrbEmAU2H5GFDhM+hH9dwOqusEIWKU1x8uCO9McrTW//8GM0LfluMkgZLaquHOcolpLhe5FrjUXFIYwcEkClyL02Ops7wPPsonev7OiH/uM+wGqsZTWu7OcyHfQWrM1jNDaMBmEXBjHG2Hm/XCk5MJLXNjOCkIIRr2AojNSTDsH3lVeU9fWO8x1JTfurahqe//ebFckse3hXd5OGPcD8lxRqJZ5WvGb3z1gldkya1Y0hL7tcS3yCoxBNe1H/cPY42RZoVrLBFvndaeJsn5e26OQtLCOyr7n8IXXegy7rLCqWzxXnpmo8Ek4DyIvCD+8OScO3Oem9T4OV3YStoch371+8pkOIg8jL22pCmMfgrK2fZKdUYQjBbvjCG3sztBzJZEvuXOcscwUbdPy47sFl7f7eFKiHMMqU7iO4Ec3F+yOYw7nBdKRzLOK2bLk2m6PYewxWxYczYuN55XRlqIZBA5F3eK5Dsu0plItjhScrEoMbLQXuyO76LVaM+8YLatcc3EcUzctcei+8N30KqttBnCc0e+8wd641N+IHw/nBXcO19Ra43V00jhwcVwYxC5COMzXBb4nqTuDwDBwbc/DdZGe4fqd1aYkN7gSIKXVAf3w5hyJ4N1rYzxXolubfWWlnSbZtpYh99N7O/ieg5vVTAbhT7QNyukCnoTeZvENfIdJP7QaJ2VFmaqbpRIF9h6SUlA3LbPjkryo8HyXL702YWsQcDgvSHPFKq+ZryvSogYDAsNrF/sgYHeYIB3BbFlyZ5qzNQjohR5NYxgmHr3IY2sYUVYNwpE0qqVULVuDkO1ByOGiIC0aeqEPCUyXJdl90yxfpEnmeRB5QXjv9pJ3rg7PtNQhhODr72zz97978FRsmM8KepFH3rFBjLGW7bWyKvU0VzjS1t1PvX+kFMSRx83DlBt3V6zLhltHa6LA4dJ2jEYzXShKZed9lKpluqy6SYaavLSZSD/2MdMcrVuO5hnjQYDjCJTSfHh3ackBBqq6IStaZquC1hh2hjFh4D7QaB/1/I2P1qke4mXMbEgij3rd0nYBOPKtel4KQV41TBc5y6xmVdRcHMc4UnJpK8QgeOvygKN5SaVsptePJW9dGeBIgRSGG/dWVqkfuDjdlMjAcwh9afU2mUK3mjvTlMnA5wc35yxSuxAWZYNq7Mbg/YPlIyOJa9WyzOrPnL/Yx0Ebw92TvCOANA9kTqdlr6JqOFmWDBJrO+I5kjcuDjozz4obBysOsgZZtHxwsCSOXO7OMlwhKSqFMVZvZFqD40qKuuXiOMFgOJplrIuGRVqjW832GwHDJMR1JWVt+1a+76C14cZxijZQNy2Xt5Iu+2BDM647qxbVTfx8kRXX8yDyArDOa+6e5Pz8Vz49K+thfOPdbf7uP7rND27M+ca722d+/BcB33O4utOjqBraViNQzNfWffTG3TWDxMPzJFv9kKxsGCa2p3JlS3NvlnGyKmlbO5ZVa7i6nfB+tWZ3EoIRDBOf+apCCGuBfmFsNStvXx0yGQT86NaCZd6A0RsTxQ8PVhhjeP3CgCT0cBzBvROFEHbHLoC0qFmmNa02TAYB28NoM/sBns6r6NNimPgMYg+/oxprrSmKhqybz+27Dv3E78Sagkq1FKVmd5zQi2xjXBttFzxXkoTWSPGDOyvunqTWv0kK9i4NqOqGUtlMIwxcIt+hagQY+PHhmrJqOZ7n5HXLuB/StoYwdJivKgLXIRsoRj0fz3U4WZVUqiUrVWco+Gh2oo3ZqLzPGrbJb7O4U7LEJ7/pI6uch0V/pwi6fk5gHMLAsY4NZcvbV4f0I4/f0IY704wgcCz1uWrJS83lbWt/susasqJGGdtvGcYBaVHz4QcrEJAELlsDn2EcUCnrJuBKiWqs2Db0XQLP9sYWaUlRWR+tOHBxXYd+Z3J62uyPgkdV8GeN8yDyAnD9zhKAd6+OzvzYe9dGRIHDd64f/8QEEbBiqKN5hittNiGFFU5pDGnZYDRsjyJGreZkadXwqj0dSwqx7+A7gqppMEbQiz1G/YhR7HFnllMqa4P91uURRhu+/d4xB9OU2HdxPGkproEDxjK+DqY1viuYLiu2hhH92GXY93GR7G7FLLOaG/dWRIFLL7SeXjuj59tRa23Iq2bTUH5WCCHYGcUsswVSCH50Z8m475Pliqs7Pa7sGEBw62hNP7bUY88T3JnaSYT92OPyVkJZt1SNtSzfvzVnvq7oxR6h71hiQ1pTN3YU8N5rI2bLkKNlQVbU3J6uWabWQmYy8NHG8NqlhFVqVdZF3bLKK4rbDaPOQ6tSLVKIx2bjWamYLkprXbMdn3kJLK8alpllijlSPpVNjexKq0XV0I+tIl21+oGMX3WeWQfTjHsnGaN+yLWdBM9zcKVkexzzjS9sczDN2BnHpFXDMPHYHUYsM4VqW7YGEb7n0GjNIPH43vtTDqY5SeTgORJBy0ljzUONMWxhe6w26Dt8+Y0JlWqgy+zfv7NQdwbhAAAgAElEQVTk9Qt9Xrv40UCxKHCfKlM+HccL1vfueXAeRF4A3ru9xHUEb17qn/mxXUfylTe3+O71E7Qxn6l5Fg+jrBvma+utdKr2tZbjEZe2E6LIRbca13WIQ3vznw7mSQuF4wh02zVsJwmqhdtHOVt9n91xzKRbrNKsspThtmWdlfze9Sk3DlYYbbiwnXBtOyGJfZLI5dZRyiK1pa9h4pHVLZN+gNFwaTvBcySOgHWuOxplTVE1vHN1SFYqDIZbhymq0bxzZfhUOofjRUFR23Lem5cf3yNrurkpT6KanmYRWamYrwtCz5Y4slKBMAgjOFrk1LUVxqVlS5rb2ntetNy4t+KDgzVZpZj0rBVM02iyrObeLOPmYWqvA3YxSfOavKqZzQuqpmWZdc1bV6A1tgGsYO+1Ma3WtK1duLVuaI3hC1eH9CLviY3dvGwsdVYbqloTh2cbRNzOnNPa3D/9M3K6+BpjuHOcscprRr2Ay9vWdNPzJMYY3ru1sJlGpyUa9wMQhkvjiMNZzu4oxpVWzHfzMCfLG17bTdjqh/Rjn8NZhjGS927PuXEvRQqDbu01WBc1/dCjlA2zVcUHB0vuTDOW6xrHsQr3n/3yBSR2Q3S0KLkzzYhD77ECTtW0nKwqPEcyGQQPZH5p8dE4XteVPM+29DyIvABcv73k9Yv9Fzb/4xvvbPOtHx5x4+6at56wKL1qnCxL3j9YkBVW89FobctGXV/BdSTbg4jmqukcTIMuQ8g6mqPVb5S1RhWKty4NrMo59HAcyReujpBC8Ou/e5M7JxkC2BmFfHh3xd1pRllrHEdQ1dZtdroqcZxo42rrew4GQeQ7rAvFpe3EDmSqGt682OfKdsJ8bQ0PB7FngyFW1LjOGlxXcDDNeefq42fB3I/TkarGyiQewf2Djy5O4idy+CeDkLsnGVII5mmFbg3LvMYRAulYh9lcNazWNf1YWTtx38HzJO/dWdrFwkDmNtDNVWlbTVG2gGGVVeyOY5LQ2sXcOym4Ny+s4BLbOwpdn17o0xqN1tbE0nUkx/Oc+WFJrXQXWMVmNOzjAuMg9ju6trQZ4hkj8B0ub8do/XyaCN3Z5qdFTV427IzCTS/Kc+01PZ6XXBhHYAyLdU0/rrk0ibg0iZitnY3AcpVVLLOSdV5xaTuxoxGMoKwVH95NMcYgOx+ytjWkRUOtDJ5rxZvGWEWNAPqRTxy6DOKAJHC5c5IxX1e4rnjierNIa8q6oYSODPDgqINTPO+G9DyInDFUY3d9L9Lj6qtvbyEEfOf69DMbRKbLwnpPlYq8UFzZTqgbTdjdwKdZ1MVJbO0wMHz/gxm+63C8yPE9hzSzN38ceTiuw6VJ3JV2LEvl+x/OuHWcEngOge8QBh7LdYnnSOLQWrNc3IrxXJdeaGv771wZcttbU9YBg9gl6+jF799Zss7rzQL4J79+mYtbCbePUppWs84r8sqSGaRjhwKNnjL93xlZN+EocB95UGtlF5patQS+Q9W0T1z04tClH/u02iAFNN0wqVZrhlHIqCfs4COsPcm1nZgvvrHVZSErVNPg4nBtp4c2hrrRrDKreNcaruz02Ht9gudaO5lbd9cYrM2N70mEFEiEDSDGZkeLtMYRcPM443hZWIZX7HHrOMWRglUmuLqbPFKuCnznTAYifRw+zSbOkZJ+5LLKKwJfdpmTLUkezXJ0Y+eLJKGHag1Sam4fr0kCl6s7PVqdsns5JAolR/OMrFBcmMTkheIHN2b4nqSsGjzXwZXCZudbCTePUmtQKrH6EaXxPMnuOObahT6h6xCFrvXqkmC0wXUFWhsC7/FBIPCdjaOvNlaYGofWM6sXeUj7aDw30/A8iJwxPry7pmkN7z7FDvV50Ys83r064jvvTfnlP/nWC/s7T4uyc9u1E98EFyYRg9jncFZweSvmrcuDTdlnldfWckTKTS1cSsEirVlmttnue45lC7XW52cQ+fiuDR55qchLxeGi6OaqB0Sey+4k4OZhRqsFw9izFugIskJRK8O4b9laN+6tWOaKQexZ19qVAtHVvY3NGq5sJ7StYd6Z55W1Is0bAs9l1At589KQdVGTPKX3k+c6TAYPLmiL1JYXZquys2exvYRe6FGrlqJuScIHG9JSWMbVh/dW3DlKyUuFajTbQ2vPHgV2933vxDK2ZmvFB3dXneq/xZEOceTiSLgwTlhlCoNGTgXCgcW6piwV87rhw7tr1qXi0naEIyRNa5itCgyCwJUEvktR28FUroTb99ZIR1BW1lPLAeLYpx95G5PLzyLK2m4iktB9YFfetBoD9EKfda7Yv7nA9SS+Y00+i1pZCx0Mq7Tu6LY+87TiaGav//EiR7UNZW17Q2muiAYB87WdNbI1CHj7cp+mNbx5uceHByle5zztSCi69233Q959bUjg2bn2t48z9m/OrUOwtj03geB4ZUXIDwfPQezjSonvCe6eFLRakxaKa7s2iH9a65nzIHLGeO/2AuCJI2/PCt94Z5u/9RvXmS6LM7FVeV6s85qTVWmVuYEVPNkGbsuwb3dqnis5OE5RraHRmjRXlHVL6DsbF9LpomBd1BRlQxK6FGXDtZ3EMk4Cl6rWfO/9KVU370K3lrk1SHzeutjn2++f8OGdFU2rcSVIKVlkJbO1wyCxlu+OFKyKGiEER4uSwBU4jkEKid9RXFutOV4WfOf6MWlec7wocVzJqGdHxPZjb1NDPpoXXJzEdpf+jKWAtFCobpcppdjMlDCw8ZhSquXtK6MH6ty3jzNu3l3x3u0ldWPwHHAciedJPrxbEgcuw15AVjTcPk4plGKcBPTjAM+x80KOliX9JOD20XozV973XRpt+Pb1E+ar0mpLXEsnvjgJu7kj1iGgMQan1dCJHxfrEtd1NlYd82XFoOcRG8OFcfTC2UHPi9MsEEA1D86IuXdilf3a2OAthBXFms6eZHcckZe2J5V1tNxlGqA17N9ecLIoCXw7z2WRVggjSGKPvLJsKSltIz/wHAax4GhWMl0UrPKaOHC5dqHHMJEgNL3IRzWG2BcsioZ705zpumDc95n0wi4AwmJdYsyjfdjjRbERKJ7epmf5lZwHkTPGe7eXVpX9grnxX39ni7/1G9f5/fdP+KWfenVeWk1rq/yR79oShyMRwoqdatUijOD2UcrdWc4g8Qk6U8bAk3ZAkjY4naGdwPLaW6CfuPRC68s0W5fcPclpW9skTbOGwLdGja7jMF1VmyBkjCHwHUxjcBy7y4pDS7cs64ZJL6TRhjhw+dHNGXXdsjMOmfQDjpZWMSwQ5JWypS6tqauWQewxjH0q1bJMawaJzyItMVgn453RswdyKQUXRhFFF1BP53LUqrXEAGMb0K9fGrDbCTOni4J13qBaDcYGy1q1HM1LlmnJsYZJXmGEzWDKqiWaeHzp9TEnyxLValxX8OPDNYedi0AcWvuStjEcLwoWWUWlNKAQaO4dr8lqjSMNoW9r6m9fHvHmpQFR0JkO+g690CEOPWtXrlt6kfeZGyF8P+5n8d5vp2+ModWGYRJQqZatnZD5umJd1JYunNV8kCsklkxgxbOWGn3zaE1eWD1I0xqE/5FGw3Ns2XW+LllllhGVVw1og9Lalnt9awezSht2xgFHcwVasMoUFycxZd2wMwnQ2DJWXreMEp/Qk8zXNd+5PuWLr03QWP+yKHDIywa6+//KtmXpnaXG6TyInCF0R7f7qS/svPC/dXESszuO+M716UsJIkXVQrdA349hYqmQw8T2CIQQFFXDuBdYc8XIxWBZL02jmfSCzXS+RaY4nBd2h594lMqqgvNCEfsRl7Yi4sDl7izv6JYtRa25NyuQAvJKMeqFvH6xx84wIitUN8/aMOl59GK/qwNbaxPPdfjGF7bpRR4376b84OYJdWvIy5atocOFcULTat65MmAQB6SV4vaxLTGMesGmKT6I/W5kqv3JqbDrWTDph7iOwHloypzsbDb6iU9ZNRR1y7Irfe2MIra6aY1R5BD7dv73zjCyAjZgndXsTiyTaBh5uK7EdeDabp+f+WLD965PmS1K4shFG0Na1PQCq86fLiuEtL0O33MQBu7OcmplkNKy1nbHDmWtqZQiK2q+fyO1kyGF4MrukMBzaLWhH/tM+uFL0dI8L1zXZgIPU4CF+Ijqm0QegeeQFWoT6LcGEdvDiGVacmkrJi8Vi7SmUFaAKbspkltD+32d9q2CQOI4gp1xjOeVzJY100WJkHY64PYoZmuQWHZcoSjKlpNlwTqrMcJ05pku/cjHjOx1HQ4CsqzGdR1C17Flx7REa2gazeEsJ4k8tDY4jmCe1g+M+z2T63imR/sjjrvTjKxsXog+5GEIIfjGO9v8vd+7TVk3T7RmPyucrApq1XJxEj/wt6QUbA0fnLMRBW7HNNGMetZFVgqbtazLhmHPR2urLM+15t5Jzt5rI774+hjPkRwtChbriv1bGrAeQJVqOZ4XVFWD0tpu7wxASX/pcW23RxS4XO/KiVJKLowjikpv6t7rvObWvZQkdvnDGzPWWcPpBIe8qBkPQrYHMZe2E5LAI8xtCWyZ1vQij6u7Paq6JQwc5t3Y3sBznisLibuZHo/DZBCyd23EbFVyNC+t4lnKbhKjx+sX+ziO4I0LfUrVdmw0O+429h008MHBinvTFCME68zSpT84WHM4r0gil+ncTqQUQNtqjhclviuRUjLuBWhjOmPAlnVe4bmGpLO/nx9nZEXN+wdrdKPxA5d+5JIW9j788ptbGGOeaV7IKqtZ5dby/FnNRVutbcb1jLvro7kdTJaXFY6EcT9ESsEqt8O6TrUii7Tk4CRjmdW8ttvjnasj3rrUp6pjStUwXdmekermvQC03WfSxmbay8zaqfiOLX1mVUtrWgyCsqjxOreG13YTOxgMuDNdU9WavG65spXQTzz2rg5ZFQ1Xd62m5NbRmij0cIShbTWR71KqltnCDiDrx3b8QVYo4tDt+mjBmU6hPA8iZ4j3NiLDF9sPOcXX397i//7WLf7wxvylZD/AExe+hzFMfKq6RTVWUHXj7oqitqNdL23FJJFPL7IMlCiwxnWrrCYKHMqq4fY0BWPYGUakhaJuNGXddiNELY20NZqsgEVWkd20E+ri0KFu7IN7NCtptSGv7UTAKHQ5WVcczDKUNmwNAsq6wXcEDXamuJAwXZQcaus3dfMwJQwkvmuzolEv4N5JxnRRUKqWOLATB8/SCt6K3qwba1415BUgDEpZ+xMAOlfhtFB4riSrYJlWFK7kaJ5z6zhjntqxwrNlRVYp2tZQqpZlZhcYRwiUtur8vFKkBTgSAt96a5VVyyJtGSYeke+yNYhQuqVSmqxsNtbo22M71fD9O0t+fHfJz3/lMnmleO/2giTy+NIbk81QpycxpiyF2qrMnzWIHM4Kytoqt59lcJgxtty37O47IaxR5Xxlz2V2b00Sud09x8aVWgh4bbfP9388Y//WkqpqKJuWrWHEfFmQFQ153bAGktDrKLaKdW5JIf0kZBi7RK4grzVt7JAXilVW870PT2hbzSy1Y3DjyMV1Bb3IZRB5HMwKHCFY54ovvT5ilQesspp7sxzfk8xXBeLIWvz0Y7+zbhFcmNiBbIEvz2QQ1f04DyJniOu3l/Rj74FRry8S714bEQUu370+feFB5HRX9rRMjrxsOFrkrDKF79oSl8HOGhn2rWkcWE+ig6kVu8WhSxx49EKPrUHIrcOUD/IlQeDRC12i0KHVlpIYeoK6cTBCM19VNG1LGLjsjgIcx7Fq5U4t3Qt9hICisl5QWdkQuLa56fsOAkngumwPQ1zXIa8aHEewXthsY51pPCkZ90O2htaaxdJjreHg85SznnzdFOtC2SFE0pa2PEcS+A7X7yxZ5TXTeYHjSgZxhuMK8kLhus5GRLnKamrVUpUNbdtSqIZV3hB6giiQYBzrEmAMvmMFcVmh2BnH7Pgho35AWbXMlgWOAwbBhXHI6xcHfHh3TVFZH6dxYu32v/rGFj+6s2SZ1cSBY+3ms2rDdjsNuAJbJnpcxpCELutCEQbPvkM+tShRjX6m9+2Mom4wk8AYsSEAhL5DUTeb3Xov8gg8SavtzPR7s9zOR89r8kIhJVzZ7jFKPOq2YboqMdogJShl+12n1zsvW1xH4QgPhGDcs01zKQTDJOBkVTJblVSNZhi5vH11yFuXB6RFy71ZgesKosDa4CwzxRsXekzXFXeO1xws7Ehnm4E7XLvQZ2cYcTgvKCtrGJqViuNFYTcpZ4TPRBDZ29v7a8A3gd/b39//d+/7+VeA/xars/k39vf3f/8VneJT4b3bC969OnppdWDXkXz1rQnfff/Fq9dPex9Pi6YzfksL24TeGgY0rcGRkjS3Q5IQMF+VGGMnJapGs2oqtkcRJ+lpU9Dge3bAz+u7Pa7fXloPp9yOaR30fNrWmjqCoG6gqhXLtEa3LZe2B8SBS143pHnNUWkfqDcv9xj3I5pGc7IucQW4jmDS81GtYbrIOVqUlKrB70Rm331/ymsX+viuw+442ggD+89QtrkfWhuWmXURjgOXfuwxXZZ2OFfdcm23R+hbw8dbRylpqbg7yygqhee41KrB6+r1o15A6Dv8OK1JCytAjBMfk9mFrCxrssLguy7Ks+QBxxGEoUfsuwSBtMaCkcfbVwYcHOcs8hphDFujmF/42mXa1vDhwRrPlZ2BprUin2XW20xrzSCxQXaZVShl2B6F5KVCOhKDHYccPSbRmAzCTZN6ndfPREwZ9QLSQjH6hNkgD8NzJRfGsXVwXpZkZcMg8btxwwYhDMvUOkYPewFaG24erQFLhz79ri6MYlwpWec1rpA4DjRNi+M51K1m2A/sHPa6psUaMArhIYVkXTT0E48LYWwzHtVQVIpGQ+YIMIJ7JwV1CyeLnMs7CfdOMnZGMaoxXNtNCEPbd9Qago7tpzU4wrIAm7YlrxrqhWY8CDpnAXNmrLlXHkT29vZ+Ckj29/f/xN7e3n+zt7f3M/v7+9/qfv0fA/8SoIH/Gvizr+o8PwnLtOJ4UfJP/mMvlyn19be3+Yc/eLXq9emiICsbRj1/U4roxZ6dD9JYVfIgtg66i7RCKc33Ppjy3u1lJx607KjbRxmt1rx9ecgo9pgv7W5LG0MwlCxLO2skUy1ag+916vdIYtZ2Joadt3DqMCssXXK3x+Hc9lkqZXsa2sDrO31WRY10BL7vcGea4fsuRhvq1i54vusQ+g4nq6qb0a7YuhCShFaXscptqS0y5pk3D/N1xXRZcLIq2R6GaBPjudZzynPlhjkFtpQyW5VsD0K+/0GORrF3bYTBUHsOruOwNQi4fZiS5QrPc/BdQVU7KNWyLu0xXceQZjVSGALXYZR4rHLbwF9kFavMpWpbRr0A1ZjNGNbf+cMjJv0QKWzw2wxzEvDtH51Q1g1bg4jdUUyr6azTDW9fGeJIewyEvS8eh7ppNxnFqXfV06IXecTP2A8xxrDq5po3jSbwHVTTbpyMPdd+l1vD++bNS8HWIKSoGqJQEnoOvcgncF0OZhlH84JaNRRlQ6VatKErITnWKt/1UFWD3+lsslJRVA2hLynahtmypG41vchFtdALLTFinlY0LbhdqRWsCr2oWuLAoZ5pLoytoHPYC6hVQ1Ypbh9nfKUXUtXazi3xHA5n+eY5OavBdq88iAA/B/x69+9fB/4J4DSITPb3928B7O3tvZxGw3Pivdsvtx9yilP1+ndfkXpda0NaWrriOlebG1N29eXJIERrQ6s102WJQJCELu/dtkI+VwhGiccitQKsUx3DIPaZLu0YWCEFShvKxuoZokaT6xZXSq5uJ+RVi26tWZ421updCJhniqN5xvY44upuQq/zzgo8yaXthNcvJRRVyI27guN5jufZUb4CwFhVeD/2eOPCwI45ze3kxX7sEfpuNzDKPtRCiG7xaNgZRU9V9jvdCQph3y+AC5OYWrWPUGPj0GPv2phFVnF3Znn/61Lx9be3+NGtBSfrkqJWmzGpw8RDG5gA66LBcwSeNOSFQgjwPAeJICtaeqHLfN2JHuuG2bpCCGEFoZMIEDSN7kgLmnEvACGY9APmWU0SS5pWE/iSyTDkeG6FoBcnEb7rMOr5n3g9As8hCT3qRn/itMGTZUlZN1zs/KyeB+tCMe9G+caBnQroew7+JzSck9CjVpqqsX2PQeLTjx3qw5ayami1RkpJFHokgc/lnZgL48j6Y0k7TMxxJXFgm+eB51CrhnXRoAGMYNyPOpYXHM0zJv2QVmuEa7NPR0p8T7IzDjHCKueP5gV1o6lrzXRVdnqthjhyubydEK6thbzvSRtECkUc2ufO96wb8fPisxBERsD73b+XwJfv+518wr8/EVtbL9ZS4WHc/u0b+K7kp79y+UyZD5+EHeCLb0z4/o05/9o/f/aGj5+EUz+rrGw2NtSPe80itfTbtGhAayrVEnlWCDjqW3FcXip8144Qna5KQl+ySBVR6HFxHFIpTZG43JkKPO8jT6te7POFayMWaUVW2tGtaa4oas3tkxzfW/DVtyb0Io+f+9JFtoYB+3dW3D7OGSY+F7fijQHi6dwQKQTDnjV6FAj8RjPoZraffr/3lw9XWcWtoxSwfYC3Ln/yZmLU87vFIMJ1pFV3C/EI0y4v1f/P3rsGSZae9Z2/c7/kPSvr2te5KWc0uoJAIQmBsNECARiBsddeYr0G7w3bfFh72S/eiGXDxrEOB2sCiI3YXaMFYzbWSFqvzWKwTYDwggWyAA3SzCg1mpmenu6ue97z3M979sNzMrt6urqn+lJd1a3+f6nqrsrMUyfznOd9n+d/YWco3lq2qUNRoDJFzTNxbJOlmotrZ+z0A7Ky5TiLcupVBzvPMSOdLJObW7vuUWgaYZRTr5oUhdjHn1muMJwlFKrAd20oCgxDEcQZDcsgDDPiLMMyxIm40/C4uF7jxUsDpkHCxbUa51Zq5LnYpxQFPLlRf9vdWVHacGS5iEhvZUA5R5rlTELZQUzD9G3P8a1gHGjl3Mq48DC8uTPl2t6U3WFAHOf4jkXdd/FsA8cxKJTGUsPDMgzOr1SoVBwub00IogzHlHNnahqTMCMv89ujRJHnqowmqAGKrX5EriAvNJJUUXNNPNekwMGxTZ7ZqFOrOARRRpTIvKUoIMkyVpoeK23JGLFNiQvQda2cC2YEkZAQBpOIIM5KIeLdJ3SehiIyBOZL6Hr57znULb5/W+zvT++oh3+veKG3yxPrdYaD2QN7zTmev9DiU599ld6ru3fETjkKTFOn1br9iq/T9N7W/dO1TfbHkaS6UeC7Jqttn2bNYW8Qsj0MSLL8erujKPAdWfGrPOfF14ekWcZK26fqmfiuQX8Sk5Y3vTPLNQxdpygC8kwn0HVMXWEZOrqmSdJbnKPrM6AoMzB0vqG7QlFIK8x3TCxTZzxNmUUZrZroTFzbRNczNE08imS2IzRdyS4piMqkxDTLsY/o2aRpkib4dsyu+cC4KODaXsBKy6PqWdQrDq9dFcfoMJIVqqHLrGMySyTF0NbRDYP+JEGbyQ3bsU2qviE5FK5NmsuuznNsbEsjzQrCOCVJFDvDgK1+yIW1KhXHJsvzxTnYHYZUHBPH1Kl4EuI1DlIsUzu0HTUvGGmuaNdcLFMnjHPGgRQFfRq/rfuCYeiL8+zeg5Cx4lpopdbiqJ5Rg2m8yLe5tDklyXOUUlxYqdKoOWRKlOCdpsdS3WW55bLTD9kdBuxPQgoFNc9klhUMZwk1z8G3NSZBTJIW5SxGsTUISTNp2VqmgW7o+J5Fu+qSFwXPXWxxZrnKNEzZH4e8sTlFUdAqd3xnVyq0qu4NO7p5kay4FjRYhGOBLIaMe5iP3FMR6Xa7q8A3Ax24bpDT6/U+eQdP8zngvwJ+FfgO4BcP/Kzf7XbPIgVkdC/HepyYBAmXtyd84qNPnMjrv+fpDp/67Ku88Oo+3/7+0xmb67smF1ZrTMqIUNc0WKq7NCpiOz7PWM9zoeR6rsVy26Pq2nzlcp+8KEgy6A8jDFOst885FrujkGmcMA0ShrOEveFcWeyhl0UgzURnMgsTDF1jME6oVmyiJCdKMqq+zWg6JkkyBtOYVsVho+Oz1PDYHgRs9QN0TWOjUymZOtdvXvPVm2ubnF+pUhTFfc0Sz5ViEqYkqcK1jYUKf6nuoQpV6hgS6v512/UgTCkQ4oVt6ASpwtAK0ryATDELQ0BjMEn4wLMr1E2Tq3sBVUcKe7vm0h9HfPm1fXbHGYYulufPP7GEUnLzsS2DesUmV+Luaxky3O00XCqexeb+jBdf73NupcozZ5voukaUXC8YI00IFJapL4wBj6Ju1zWNjSVf5mT3qI26VfGYG4Iaus6gnKM1KjaXtybEaY5pasIiS2AaimfcUt2h6du8uTtjEoiD8ngS88VXdrm6MyXOFaaug6Zh6AVBolAoRkFOkhTkRUGYZBJtbGho6NR8h5W2R6vqlG1hWG86NCoOuqbJtRLlKAosQ+d9zyyzUu5qb7cDVKpgc39GmkvErwhf7757ctfvQrfb/QTwT4FXkBbUi8C7gN8DjlxEer3eH3e73ajb7f5/wAvA5W63+3d6vd5PAf8D8H8hBepv3O2xHje+cnlIAbzzYvtEXn9jyWe56fLC1/ZObREBFr3Xatm2ubAqornBJMIxNEZKqMGbuwFnlquYuih8n96o89IbAyxT2kyduge6hmVorFkVPMdgZxhweWu62OnEacYTa1XiXKEVokhuNxwm0wzd0BiNYy6uN3Btk0vXxkyClCQTo8bBNMaydJ4512S79FYqkOJwq0jiOM0X2fFzW4kkzSXz/Ii0aKUKZlFauubK67y+OWFnIMPQVt2hXXgkXr6Ynby+KcFZa0s+V/YC1js259fE1n44kQwXOweV5ximAgVhIiJCYo1ZlFH1LOJyRzB3MRbfqALPNrFtDTTYGwVYhkFegGuJo3CzYoMGnmOV+RlSyPZHEUGU8t3rCRkAACAASURBVOq1MbkqWKq7tOrO9YJROh9YpmSAS7/+6Ds445iYiHGas7Uv73mrZi+CrfaGIdMoJcsLzi3XMA2Drb0ZrYaL55p4tsMsTIhSRaX8+yezmO1hhELYWrolKZOtuktTiWbHMEwKTWZZlq7hOgbnVqpkqWKlLTb7G0sVntqosTuOhRmXSbx0o2qz2vIWszq3jE7Olbg+WKbOeJYsXHs7DaFXp5kS2xygULfOsDkq7qWU/z3gR3q93qe63e6g1+u9v9vt/gg3zjSOhIO03hI/Vf7/nwLfcg/H+EDw0qU+nmNw8RhCqI6Cefb6737xwWWvj4NkITar3wGTptMUKmPdF1+lMM7QdY1m1WUSZiV/XVZlnmMuqIjvfKItu4hJxJWdGfWqTdV1ePpsgyhW7A1nWBZ4SsdzDNaWqmSqIAiFNpqpnPc+3aHuu8TXcuy25Fg0qjbbfR1Th/44IIoSnj7XotPwRPzoij3IWksKiCpEGfxW0VxS9rfn35tGzuZ+QEFBo6KOlKy3NwoXWfRnl6tC1cwLNA2SJKfu2TQrDkop4lThOSbvvNjmlTeHvLkzZaUtiZGuY7LeqRJFKV+9MuTqXkCltCFxLJ1re1O2+yG+q8ugtiKznjjIeX1rSBgLxdgyoVGzcE2Thm8xmiZEiaJRsfEdQ3YgpkGj6rDcuG5xMo+knQYptikttjDJaCqHlZZHURR4zvXCaho6PACLrVmUEic5pqFhGsYNO5HRNCaIUzTEq02YeTqGLpYllqHjlPOFjU4F25KdtKFrC+NRXYP1jk8UpVRcgyAUqrtGgWsZWJYwrM4sV4hjxSSM2R9FrLc9wiijWnFo+g4KqC1ZaLoEUCkKRoHsUpQqGE9jpmFKqyYiz6W6R6t2/RqcK/EHkwjbMBgFCbmysS2Ze9iWTtW1iI9AYjgK7qWInO/1ep96y//9ErAF/Lf38LwPHV661OfZ8637HvF5J3jv0x1+6wsPLnt9ruodjNUdFZFGxV4wQcI449LmhFevjZlFCc2ag+canFupUfVMZkHGC69u88rVKa6tY+nSG7ZMncEoZhqINsDzLKIkx9B0ibP1LAbjiCjNyfOc4SRhez/g2l7AsxeaEro0STANg9eujYnSnCSTG4Wmi2Fds+owLq3tGxWHlbZPmuVc25tRIOFAB+1eap61yGaveVbpZSVFJc+PNs5T18Xo5WM11jo+jiPZ2Y4tRVc0I4ncmEyDrUHAtZ0ZO8OQ5aZ4qu0OM6I4Z3+ciPgwkeApU9cYBymaruNYJhfX6qwtVSTO9sqAq3szKBRxBo6po3IovII3d1IKRKCpCnBdk9FUVrmtukuaSkCVKoQW/MR6ozwPijjNmIQpui6zG9PQOLtcu6uwqLtFmil2hyFBJA7S7brLSsmim4YpL17qUxSFeKSVpqBoSCyAUrz4ep/BOKJVv64Qb5TFVyGDetcxsXSNldU6tqHx0usDKo5JxXWJUkUQxhiGRBSMo4T+OGYSpmQ5GIZGmim2SgKFbmiMpwn1msMslt3i1d3pQuh4brmGa0/FWDGV+V2tIm3EK7szDF181OatLdOQRMY3tkTns9RwcFKFbd37PeteishOt9td7fV628Clbrf7IWCPB7KmOD3YGQTsDiM+fowhVEdB91wT1zb44tf2HkgR8RxRdnu3SaXbG4aEiWy740QMApfqzqLY7g4DXn5jn/4kWng2OaYJJdNEbk6y04oThVdayxeFolAFeQFb+zOWWj7Vigw2LQPCkqY6nqUUCqIsI1dyIU1mKZ5tsdzyCKKEq7szciXK7SRV6EZO1ZNW1N4oxLIMXMtgMI7Y2g/YGYUsN72bdiKqEDdf1zEWw/h23SXL1JGzqzuluaJriyngaBqTZoozncqi5dAfCzX62u6UpYZLs+aysx8wCRNGgQxO89xhMou5sjtjPIsJgoRC0xmNY/yOtDyMMrdC1zXiJKfTdLi2a5OrmaRBGqLrGExjgrJXX/Us0MB3DLIsZ3cYkCtJpuyXFOPLWxOaVYfVtodlGViWQZ4X1A2NqzszVKHQNVH/P8giomkSJDa3dofrRTuMxcIlTjKqrslKW9h6NV/OT5YLE8wpqbEaIpLN0pzllkfVt5nFGYNxRL0iyYM7w4A4y5lGKUoV1CoWnuVj2Tr7Y9FKBVFGnCiKIgZ0kqyg6lhUfJO9kVCubV0CsvaHIa9ujuiPYqolgaHiibYpywtaVYc0k11+nueMpxmdpoNfOkzXfYfdUShssDTn8vYUy9QJIvOeZ3j3UkT+d6TV9BngHwG/gwzAf/qejughw5+8sgfIcPskIdnrbV54dY/iLoRvd4qVllxot+qnZrliHKQMpxFXdicsNzzMMjGvWXXIckUQZsSZtGZqro4qCvbGIfWKydW9mcxOdI1OzUYpSgW3yXrb46tXRoyDmP1JjNLguQstzNJSfn8UMBjHJJmojg1NR9fBtXVGM8kTOb9aw9A0kjRndxSy2vToNB06TR/D0PjqlSEV10BlMEkzvvLGgAKFY0mBaR0QahVFwdZ+QKYUvmMuLCXuZIcGlIPSlCQV4d1cxwAsclccy8AyNArk5rLW8rmwXofNMXGak2Q5YZKVs6YY24RUQZqlaEVBK5MiOYvElHJ3ENCue+yOIsJUrPlluKuDVpDlOVqqYZs5u0MRt5ma+JAlmdjYhHGKoflsD0JRSKuCdsPBc66TEMazhFbdYRZlzEIR2c3FhcNJXC4anGNzXTANnfUln3Yqn735QmYwicVxt+5QFA7thsTdRnG2YArNypZrEKRc3KhxbTcgiDOKAqoVG0gxTZ0kVeyPQ/pjSUPMc3GRsG0d37XKUKlcNEyTqPy+IIgLfEeujUIT25VpmKLpGr03Rzxzts7nXtxnHKQUSpUzMI/lpsc4yIiTjCwrCOJMFrWDEMvU2R3CUkPj6TOSq17zbJJU4ega80/W/D24p3N7tw/s9Xr/4MD3/6Tb7X4WUZ6/fM9H9RDhT17Z4+xy9b7bK98N3vt0hy/0dnlje8LFteMXHt5uICeUwaIcMks8p6Hr+GUv3NA1NF1jtSVtIgqNXCnWWlXGs5RcKd7YGuM4JhfW63i2webejGmYkClFp+GwP4owTA2Vg+OYrC9VSiaVGClSKAydcvVsYRqiidgfRyzVXd7/TIevXB5g6Dr9SSTW3XWX0TRhFKSMZzpPblQZDkXcZpky+Ly4Xr+hn14U13PU0/zuL8pJkJDmMvT0HGl7FBQ36I4aVYedYUjNt8iUiN6aVYdJU4K6CmTXtj+MqboWw2kk52qSgKaxO4yol467szhjexjSaQblrqdAR8yRGxUR1UV2jqFpaLqBaRYEcU6jClGc4tgWrqUTxYqtQUCeS2xu1RH22EGa73zhcGVnimvppLliEsiqfs7YMk39nkRvbwf7AGEhTnI2+0LHr3oWF9bqXN2dMpxEDKfiepwreP6JNiov2OhUKIqCtXaljMTNxPpkGJWu1AU7AwkTq7omW3shhVZQdWVmaJk6FccgMzWu9QPCKFvs4mq+6HIcS+ZLSw2ZG4WJwjDgxTcGjKdiPNpp+rznyTZnOlXJfbd0NvcCGjWHPCuwTZ0kU2z2Qy6sVklziUEWc1IT3xX9XFhazNyJ0/KtcN90Ir1e7/L9eq6HBZMg4ZUrQ773QxdP+lCAUr0OfPGVvQdSRG6HXEn2yDxpz9Q14lQRxCnDqU6c5LRrjhSYIMEyZZfgOjqzMCWKRW9h2/Lz4VhxeXvGaBbju5JLresahYJMKcIwA00G77Xyog5tudHlSkGhYVoSN+tYBqtLProhqvpZmBBEEkmraRqWYTANZpKJUXdRBZjlPGajIyKuLFfomlam1GmlR1R2T4NKMcgTT7CKJ+FPWVlQwjiT82MbOJaOZ4vtyv4wZn8cUXXkb+tPY67sThmX+fSuLaaANc8kSRVpqthLQsIoRzdgte0RlaFbvmNyZrlKnGSieE4Vpq5Rr9iYlo5nmYyDBM+xWGtV8DyTzb0ZcarIlOIdZ5s84VniL3YIucM0dFbbPtsDYT/NA8zmsO6RJXQn0HUWRdrQxdm2WXPE+mQUYxjGolXbLIfWpqHhOSa1zCJNCzRdWwRYbfUDpoEYX1LANM5peKLbqHkWk9IJ2HctHFMYUnlRYBqy66s5FlXPYBolOFOd8ys1xoGYl7785gjbzDAMi422z0rLJ05z3tieEMU5S3UHTdeIM4XvyOxsY8mjKKBdcw7VgHiOed+CqU6D2PChxQtf26coeGA27G+Hum/zzLkmX+jt8v3f8sSJBgKNZwlpOQ9YqrsURUF/Ei9+Nmc5zaKc4VT694amMY1S1ts+/UmEVkCt4ojifRKy2Z+SZoosNxcpiIaucWGlXf6+xvpShWmQUHdN8kIjTcXMLs0VNc9mtelR9S1Wmh6OZfLNz65gULA9CjENKWB66Z4rLaWEpzYaInIr6avTMGVvFC60I6ahH0k0+HbwXYtzq/K3aZqGUQZEZbni8vaE/XGEaxtcWKvTqEqL4rUrQ16+NCDNcy4sVwnTvAw0SgmTHM8RfUjdt6jYGllRsDNIqHim7Kxsg91RyGZJZV5r+Sw1mvRHEVkuliDzkCXHvH7Tn0YpnYbLUtND12TOkCtJ9zNuYzXuOSYbSxXZtVDgWvLvAh4Iq3AOif31SXNFxTXJlWgtDF3nA91lVMHCgcHQ9QWJYnsQcHl7TJRkbO8FGKbG+ZUqk7JoNyoWvmsxmknuuu+avLEtMcQVz+LschXH0vBck7wAcoVbGjVe2w8xdGGBDWYJSzUHTde5sFIhTlw6LY+qZzOL8pJurLAMk1GQUq/YFEXBxY0anmOQ5gWeK+f2Xim8b4fHReQe8Ee9Hdp1h/OrD9Zi5Xb44HMr/PK/+SpXdmecWzm543Jtg3Fwvc8fZxIOVXMtLu9MGQcxSw0PCjAM4banShTNlq6TZ4pEKeJRgWvrKCXzF1VIW0LlBVlRGj0qiZTtT1JmYUyj6uC5Jk3XwtQ9ZnEGBTiOwUq7IsPkNEcLU2zL4OKZBpal4zgmtm3QrDjEWU6SKNKSudU8UCCiMplRFQVJeuu50N3gVjOBebtszrRpVCSqN9dkpRxEKaMwJYgyBuMQw9Dkd7IcrxzUN6s2V3YDXMsgyxVRUrAziIiilDhX1Fybqm/x3MUWr1weUmgFtiGzKkptRpIVxJmsthNVsFRz2OlH1KomX7s6pl2zubQpTrjzRYRWWvLPYVsGVwYhmVK4tsnafRRn3gkc28ApeUCmoXFm+dbXiyoKpkHK7iAkSRSDSUxeKHzLKV0AxHfr/FqVqmeTqYIsU/JZ0SBMFKaZsz+KMfSC5aaProulTZzmMqPKcjzXIklyTF1jexjhOzoFGq2ai2dbTIKUN8ZjXMdC5QXPXWjhueKTlSQ6RRFhWyZnlj1s60bRoSoKtvsBSaroNN37loHzuIjcJSZBwpdf7/Pxbzp3qiJAv/HZFX7l377C51/ePtEi4rsWZ5cNru7OCOKM7X7Iesfnzb0Ze6OQXAlvv+ratGo2Z5cr9McJSw2HtY7HLMzZ6Qf4voln6RiGxd44QakCy9DwKxYaIlRzHJ3+JKQocmzbxDRE7KUBa0u+cONNA983GU5iNODKzpROw6FZdek0XGq+TdU1JeccyU/ZigLe3J5x5i1Gf42qTZoLJfh27LR7wWAigVL1qk3dt3livcb+SFa59QMeZRttnygSJlkYZzKrcMSJ2Pcs1nyfKJGbRpopVloe24MCp1CEiVo42FoYYg1vm8RxzjPnmhhl1kieFyw1RJPwxvaE0TRZ3OyyVDGYxuwMA/bHkr+y1PCkhYgooyue5MPMZyTzFhCw8Cw7zQjjjJ1hSJ4X7E9igpKOniuxv7dME12X1u0zZxrsDCLiRKHrYnE/mqXUKxaWJYy3TlPmRRXX4ouv7jELRROluxarbY+n1htMwwTL0EjSgkJBxbNpVBxsS2d7f8YsimjXhQWXqwLLNOiPI+xMK0M/bybXJGleRiYI2+xxETlh/Iev7JCrgg89v3bSh3ID6r7NOy+2+MOXtvnBb33yRAucaYjb6HgmJnGDSUyjYjGaGsRpXlpi63SaPk+s15mFGZou9tm+U6CVz1H1xOBxueXy5tZUBG9Vg2cvtGnXXV6/NqYoJEOh4hqkuWK55VH3baZhhqVrrLUrtGoOg3HMa5sT0lx0E1XfZqXikWSKpbpbZmWIIV5SBilZZZtlGqbMwpSqb7G+dPcOsm8HVRQLpfRomlD3bTzH4uzKgd1QkrFVtqCeOdfAMDTG05gwTnFMgyjLqfo2O8NAaL+ZYqXpYeo6ioLhNCZKE2oVm+WGrFrHoST87Y4iznYqnFmu8urVMXmu6DQlG7xAwzmr0x/HtGo2r1wZ06zbvH51TM03JQXRMdkfxaS5GBRWvLlBpxSReYb5LErvyPL9JJBmOdsDIR7kRUHVNam4Btv7IRudChfWaoynKaMgwTQ0ru2FbO7P8GyD4SwhClOaNYcLa1WyTKGAJFGlHY+i7lnoaGy0fTaWK7RqLsMgZjCNJU7X0qn6pnig6eLoUPMtwiTHtXR2BhFpnss14xqYphSzeWtQclLEXXvuPp2k+V1n4ByGx0XkLvG5F7c4u1w50dX+rfDBd67yC7/+Mq9dG/PUmZN10F9peSRZLpRaQ/IY1toVDF2cZrcHAW6Zt+DYBpOZqJxHQULNN+lPYgxDE6tx06RVd6l5Nq2aw/pShbwQnyPT0KhWLCzDkES5TIadWSbtsJW2T5QIS8w2dVxLo+pJiuKcPrs7CElzRafhlsNhuRgbFaHz7o8iCiQA637G4b4VuqYthumVW/g7zVfygLCokoxMFZxZrsqAWtOYBZINr2uiGM/znJWWS6oUVcdixwzo1L3yRmWRpoowzjH1glrFpm3ofO7Lm4ymEvI1V3k3KjamobM/jmhWHTS94Lkn26Sp+EMVBWUImSrtUPSb6M73c7B73EgzcTOm0HjH2QY5BeNpwmAas1kKWJOrCs/R2RmE7AwjcqWoejZRLPYj7bpHs2qz3Q8l9VHTsC0D1xYyhW7qPLHRwDINxmEmOTmGznq7QtW3WKo77A4jbNug4tmstC2aVQfT0tkfh9KiaricWaos9DeSYljmh8wScaw+htbhw/EunjLsDAJevTrmL3zsqZM+lEPx/meWMY0ef/Di9okXEUPXWW747A5DTFMG0Lou/klJFrHS9DAMfWFF/Xo6oj+RZLw8EypwUTL26xULy9CoVWyevdii7tk0qjZ5JgFAKIVpGhQU1DyHaRBzdS+gXXOp+zaqgI3lCp4tQ1VNE/5vFGdkuSJMZNYxCVKWm95NCwTb0h+Yrcxqy79t+lzFtUirYsDo2kZps5+w0vSJkhxd0xgHMVlecHV3iucYDCYpjZrGestnHMSA/I39SUiU5NQq0ipzXIuvXR3SrDk0qg79sewqtvsznjzTwLEN4tQoM+cNVtoe+8OYV64OsE2ZoTQqLrYlWSIHd8NxIlqWSlncTjMmQbLIsK/5juhnTB3H0BfzOU0D0zD4xm6HN3cmjGYJzZpNw7dYW6qyNwxLX70WrmOS5QUV3ySMJC7ac0zqFYu8JE88c7bBasvFNDXapfGi50iA1SScUKiCZ841WG5Im3ZvFNI3dUxTZxyki4CzXInLcpjk5EqsVo4Lj4vIXeDff3kLDVnxn0b4rsk3vKPD517c4i98+1NHNrY7zuO5sHbdV2w4jbm2N2VnEInuYrVGs+oQxhmmbmBoGutLkuNhmTpxohjmOW/uzCRCN0jYHUV4tsE3vmMZTdNp+DaaXlD1bDGZS3N0HXRTZ61VQZXq9tEs5txKlbWlKrNIqMRfenWPLC8wy9jbW63+V9s+6X2yijgKblVA5lHIzVLwOItSLEOnURHKdL1icWVnRs2zeHKjwbMXWrx8qc80FFHa8xebDKcRX359T8SpFDimmDi6rk3v0j5F6X48N1R0HYMzKxXW2xXQpK0ydwoejiO+cnnIJEjYSSPOdHzOr9RuojunmWKrL35iSapusI05TZif335p7QMyx7m8Pca2GpxdrrHc8hhMY7YHIZY54H3PLOM5Np4tdiarLR/fNVkvKeHLTZ8wlqyPKJUExTd3puSqYDLL2R/HjGfiRP3kep3nLrQWNvK5KsrsFLFjqbg2zdKLrebb1DwbVSgsyyTJcgbTeKH/aNUcmlVn8Vk5DjwuIneIXCn+3QvXeNeTS/c9u+N+4tved4bPv7zDF3o7fPhd6yd9ODdgEkjk7TiIsS25qPZHEZMw4fLOGK2AyTSjXXd48kyDOMl55U1Fnk+J05ydQYhtajRrLqaxT6fhkeaKLFZ4dlEyvsRk7uxylfUlnz95Za80wxM9wpXdCbqmL+xNcgXLLUmhu5Xrrq5pd2zVMQ1L2wvfui/zqeE0pj+OxOqiZlNxbdJMSYbIVJIWk0SJh5UpSukzy1XadZdpMKHddMmUoj+OGYxFuBlFOXpVLxlICZNIhq+zIGe5KZ9xyxCdyEtv9NnpB6x3Kni2Safh8NKlAVGSESUpui700v1ReIhmpljclO+HUvo4MJjEYiWSiU26bYmuaCcOsS2Drf2QjU6Vmm+z3vbRCGSeNI3xHINO06XqW7TrYkDp2AZXd6fYls4syonLGYttifmlZKBnTMtdT5IXuKbBtb2AOMvK2F/Ro8RJTqt+o+5jZxgwCVLQCtZ9KRS2KSmReU0cBe6HyeLt8LiI3CG++Mo+w2nCf/qdGyd9KLfFs+ebrLY8PvvFa6euiFQ92b5fXKtTcU1qnsVoFvP65pidQcgsTLBMWVFPAzFBbNUcnjrbYHNviqZDEKboZaiT55qM9gLadYc4yeiPY84sVzAN8UpSShTThg5Vz6Q/jtF1yHMRY2majlvaTrhH6NOHsXhzuZZx29V0EImeBGQle9RM66zUvxxWdGZhymgmpoo7g4DVts9K06Pm2YuEwCDOMEwNEx00uLY3I0lzVtoeFBpXticMpzGeLSaKriPpiL5rEcQpldK5+OJGlTDOadUc8rzg0taEVzfHpInY3r/n6Y4Ua89iuelydqWCyjV57UPSPS3TYKXpEaeKeuX4Zkr3giBKmQaiY6r5Jmc6Qgmfe5ZVfWnDLTc9TEMrQ7J0lhoevmuyVHfY6ge8tjnB0DWhqueKnUGE7wrVeuEIbJkkWcBgljALxRHb0DQsWycI5zRyScB0bXEJrrjWDY7QWabQSuFkrSJMvijNeWNrgu+aLL/FSeN2VkV3i8dF5A7x2S9epVVzeM9TSyd9KLeFpml82/vO8Ku/8zWu7E45exsO/INGq+bceCGUFhi6rlH17UWOxf5IshhUXlDzLD7yrjXGQcpLl/qEcUrNs1ht+YzDjLUlj839AMvUhTmlzQOjCt7YnmAaElvarru8uT0pxWApUSptnE7Do1E93LspV4osLxazkOE0FmVzlsuc5pZJhgee64i7kPnNyjYNaem95XGNaqlLsGT2M1+ULjVc+pOQ8SxhvVNhre1jmwbTKCWIUvrjmLW22NuPA/Gu0g2Ndz+9RKYKnt5oiPdWmpOmBWeWKziWEBVqngVamTGSKzzXpOpbnOlU0DTQdZ16xeX8SpUkE7Fjkio292flzfb6Tct3LfxTuIEPYzlHSa6oeiaZEopsmkkeTPd8iyTNF4sMxzJYa1dYa984a7AtkzhVi6x21zNJpgm7w4CqL1k660sVKp5J3beZBMkiDqHqWiw1HCqOSavqkBfw1Ea99PkqMAydNFU32OBcXK+TqxHTKGMyEyLFJEgokGyatrpueDrPRDno73Y/8LiI3AG2+gEvvt7nEx994kRt34+Kb3nPOv/P773Gv/7Dy/y1733nSR/OAmGcCc2wdEnVNLAsg/MrNaHYJjlhmmNocHlnxmASLfjtZ5erhFHK1iBkHCQoNGqeyXiWlvG1LDKkt8tEQt3QWaq7xEmO75icW6nRjlLGs4Q4zan7NudXD8+CyZXi6u4MVdqEN6syYI3TfOGGeyvMV4JKFUf2KArLYKsky8mVsM4OoupZPP9Em1mUEcaZDH0rNv1xxMuXBiSZYqXlLlagcZZztRTDZbnCMA3e3B1glTG6w3HCekesNKI4YxpJKl+ei8ZD04Qc8eRGg3ZZ/OMkX2RqzKIU2xIqd5YrOg1xOJ6/Z7MwPfIO7KSwNwy5vDvF0KRIP3Wmyd4w5MrujL1RxLufbAvL7G1W8IOJ5HzYpgzeC1WwsVTFtSWgaxKIbY1rG5xZrqBrGrWKxVcuDdgeiGMCGvSnkll/fqUm9vlxhmnobPcD4jTHs68777q2ydmVGoNJBEiWTc23GU5iKq55w30qKEWyYZzf1/P3uIjcAX7zDy9jGjrf9r7Tmx54EFXP4lvfu8Hv/PFVPvHRJ0/FIDPN1MI7KckUy02PWZSRZjmGIdncrVW56fTHwnGXzG4JsVKqwHct8myKpYsNR6vmygpRkwV/o+oQpxnTMOPCaq00+0swDI3N/UBCgdKccZDil6vqWyHLCzIlrq5zB+JG1aHiWbdsOR3EnVKBW1VHWk2lF9Zh0LSSnlwWpiTNubIzZTAVIeW8FQKw3HAZz2J0TZcVrybtkdE0oQDOrvhlfos8XzN3SNKcy9sTcegNM9aXq6S5Yq0tkcEH4TsmVdciVUI4mM86+mPZLR2nnuZ+YRZluJbBaJaw1JCCGCaSB5PlRRkAdvPj9kcRQZzRqNpUXJPdYYBpiq/b+57ucG1/RqoUq20fXdcZziJMXajspi5q8k7D5x3nYbldYW8YsN0PsQyx59d1cWIeTiPCKCcvZLY2X1DNUfOu/1/Vk8JR9y2COCNO8sUcr1lzZLdyn7U5j4vIETGYxPz7L2/y0fdsHKvT6P3Gd37TeX7nj6/ym5+/zA9//B33/fnTTD7sR92ZTYOE3UGE5whFdDSNmQQJu4MQxzaoeTZhLAredt3FNNpc25tSq9g4nfe3cgAAIABJREFUlsH+KGJ3FGLZJq6rEUQyfDyzJCwYyzSIkpw3tmTVN5zGrC1JzGic5tKaysTjqV23oRDtyq3gWAZF6bYaRmLPIoZ9x7MTFafVo1+WWa7Y3JfsCpAkvJUlWaUmWcZ4lpa7Idjo+Gz1AzF2zAqccmjcrDnMolTEb76NpmsE5ep3ueWVw10W70uayUwkiDNRs9dd+pOIvVGEE6QAC/bQYeZ/pw31Mldlre3Tqokn2bnlKkopXMc8dDCtVMEkFPfhcTnTGM0Sgijj2fPNG7qXhq7z9JkG01DiEFzbWDjrhnEmjg77M2aR2OPn6vowPM0VszCTeYxrQQGd5o2fV13XWGmKeHMSpNR9m9EsEcFqAY2aje+Im/CdxhMcBY+LyBHxrz9/mVwVfOcHz5/0odwRlhouH3rXGr/7xav8R9907qZB271gHCT0x9ENRoRvh0mY0qhapFkhmRfTmJ1BKB5YuSi1J2HCasunKAp6lwcSQeqW7CZN2CehJn5YSarYGwk3vl136Y+lddAsg7AsS1pcjbrNLMrKeFDRpEzDpMysVrfVflR9a2EqqBS89c/MciVuvvfAvgqiTGxgPOuORHhKCePJtgwqroHvWmRZQZopXro0WKQ0vuNcE9PQZWeWKnZHEa6t89RGA9vUubY/W/wtdd+m6kv2RLtu45gGkzAlSoSiujuMiNNMnrvmMJrFjGYJw6mQDc6tVInT6/Tg0463zugAPNfk2QvtWz5G10UQOhhH1MpzpYqi/DyJDclqSwwe54JPxxY/sS+/tk+YSBS0rsHmfsBwGjMOE3xHbvSuLZ+Bds1hFiQkWY5h6HSa19mD88/dLEwZB4mkRpaGnVo5jxsHKUmW41gpGx3/NvO7u8fjInIE7A5DfvuPr/Dhd62dityQO8UPfPRJPv/SNp/+7Kv82Cfedd+eNyn796qQm9ZRiojvCPOnUTUlPY8UzzEWrBSQG2qa5YSxpCFGaU6WicdSu+5imwbnVipMgpTtQYihaRi6xnCSsLkfsDsMqTgWq0te6YUlka0HC+hqyxdrk0yx3Q84u1K9qQgURSF2HZ4ljBrbuGGoCSJI2x9HGLqEHt3NDqUoRBhWlPkrR3VBmAQJWV7QrrlMZsJoU6WfU5op5iza5ED7Q9M0njrT4PxqDcvU0HVdwpFKW/QsU6X5ZM7OMCQIExpVZ9ESyVWxOJ/zVp7nmDjlLMC1DeoVm5ovqvbTLii8F9Q8iyBKSXMJI7NNA8yi9A0rVflveUyUZAtR69b+jLMr1XLgbjKcJhRFQcU1iZOM8Uxs+M8sV4iSHDQYl0FlaZZLwBoaqlDkecF4ltJuOAsNka5rlCnLFBSoY7Ipe1xEjoDP/O6r6JrGD37r6VSovx1aNYfv+uB5/uXvX+Lb3xjw7IXWfXneRtUuzd/k5nEYVMlvdyyjzN3waObO4mZr6BorTR+3NDJ89coQgNFMdhNLdVcG0xWLfmmzMd/q26YpWR+GjudYZEpWy7MwwzINbNNY7DwOE1zebp4hFNqwVCTrJWX45gIRlYU0L2/cd1NExJlXI82Lm4rUrRAlGftjGabWPJtOU0wP40SG255jcLZTZXcUsv4WO3Bdv1HvYpkGq22PIJLMknGYcmlrzDRImXkmvmux2vYXPmbzSN1zK9UbWpm6LoX2YIF5lCGKdfk7Hduk03AZzRJypeiPIwxdW5AKoiSTvPlEdm9JmtOpi3nicsPBcy0uajLHHE0TxoFYyRuGhm1KkmSWKXaGIUku7sCuIxb2RSGBXqtL4hc3dwNo1RzqFXk+y9SPLY74cRF5G3zptX0+//IO3/fhizdteR8mfPcHL/AHL27zf/zGy/yPP/rNi+3yvUBuPjdTBVUZ0pNmaiEus0xj4YZrGnrJONFuYi35rkWcyu5AKcVGp4IqV+ogF+38fXBs4wbqcqNi8/SZJrapY1uSCX47ZtBy02MWpriOecOKeZ4ZPgkTNKS/r1QBh1yD9YpNEGVMwhTXihfF8k6xtuQTJ2pRTN8OUTIXXYpSfbnp4drmwj4G5MZilBqHmn97dpFrS5LiOEhIyqFulGXE45zVltBCTVNnc3+2sBI/2Bqp+fapN1O836h6FqqQm3jdF2pt1bOYzBLCeMokSNnoVGn4lqjb+yFLdZcsk0K/VFqavBUH3ycN8YFbqrtEiQSnbe4FVH2Lumksdn5ppnBt46bibej6sYuiTz9P9QQRRBm/+BtfYaNT4Xs/fOGkD+ee4NgGP/o9z7E3jPjV33n1WF9rnvVdUDCayvBx3o4C0VlsDwKu7UmhOYjlpodj6dQqFgUirjMPDO2jVNxrr+xO2Rlcf7xkuifUKzbPXmhzYa1Goyorvr1hWNpGCIqiWIiuGlXnpnmIoetoaNQrUoQ6De+W1jGOZVDxTKqeSZTmi1bFncLQdXzXPHL7J4wzmlUbx5ZZiGnotGrO4qaUK8XOIGB/HLE9CNgfScTv7eDYBkt1oQefX6nhWrKLu7w9Yas/I0nESrxAsjW+XpHlasFC8x1zsSvsNMSjbbVdERptoTEYR1zZnZLlikIrGE4jgigrtVHJoc9fr9isND1WWz5BlLEzDBhMYpbqLq6lU/FMKq7JSssrySc6Xtkm3h9FjGaHP+9x4fFO5BZQRcEv/PpLjKYJf+MH3n0sA6kHjXeca/KdHzzPb/7hZZ452zg2G3vHNnAsgzRTnFupkimx0J5jXlAKpH9sHVjL2JYY+k2uiq/VasvHsYUqKjnWIVGa0R/FrHd8NC1muemx3Q9Ic8VY1zl7YKawU9ImQfKyXdtkZxASJhkV1zqUaGCZOhsdnzQrjsSU8h2LWSixtg8qna/iWqWdvth/H0QYZ+wMQqZBimnoC8JCfxyxXN54blWs5juKimsyCxNeuTrGMnWu7QW06951K/Hb0KJBdqO7oxClilI78misV8ezhP4kwtR11js+o6mIBUEKynzVr2lzCnAqEcWZYqnmkuXig5UrtRBw1ku91EHMh+fDcgaiCrEwWW1XGEzEYsU0ZJ61N5LW2dzTDJAW2ANySX5cRG6BX/v9S/zJK3v8pT/7DE9unGxe+f3ED37rk7x2bcwv/cZXOLtcPRYre13TbqsPaNYc0KTFdVhbbRpkOAc0B3A9OtW1DbI8l6+ZYhKmQsMtf/XgY/rjiKt7M4Iow7PFWt2xjMVuYX7xHwZN0xhMQvbHYmd/u+LguybnVquLWNvjwHiWCLOtIqrnevn1sNbZfLfQrNsYmr6wrx9MYwxTImDnLcFbWax4rsnGco04K4iTrGyNsaBHW4aOZd5MNJibFwZxtji/kyA51T5zd4L5bi4rZ2CObTAJ5TN/cKG53JR21bW9GZlStOsuaa4IY6Gkd5ouL70+YBKmXFit8fTZm922i6KgWbWZhTL/MA1d5oEaDCeymzfKlE5goZLX0G4SqR4nTqyIdLvd7wP+DsIf+HSv1/vpt/z8F4HngBD433q93v/5oI7tD17a4l/83ut85F1rfPwDZx/Uyz4QmIbOj33/8/zkL/4Hfu4zf8p//1c+cOwGbYcdQ6dxa5ZbQcHuMCLLFTXveotmGoqWoVYqzLf64nDan0R06i5pfn3nMHf79W2Trf0QxxL2jKZptGsu0zC97d8dxhlpmbo3KwvV7XCcLCTJp5chen8cLeZIt5q9VD2LuGTzdBouGho7w4CikBvN/GFz08vDRIGGLruxVtVmc3+G6xgEcU4QpwwmsVCdTf0GtuLuMFzQlBsVG13TKAoe2Ir4QaBRcQ6QSa5boOg6N2mldF1jveOTZQW2pbPVD4jinLW2j67pbA9mFAVc3ZveVERUUbC5H5BmOc2qs3jP94Yhl7YnmLpGs+bQqjpoiOvDctNfLAoeZOfkJPeYLwAfAT4M/Llut3tY8MUP93q9jz3IAvLi631+4f99me65Jn/lu7qPJMukUXX48R98D+NZws995k9voICeBtjlYLFe+mjNMZzGZKo0GNT1hRpc1zQ816RVuz7fMAy5kFRRcHGtxlrbY/5MVd9io1O5rRXJXDE+N3k8SWiahlfesI5yQzYNndW2z2rLx9BFq9FpeLTKm9G8eM53CnGaC3HgLTB0nUwVWJZBrqSYWaYhdGdLvh7ELJI5ySyUNtrZ5SpnVyqPVBGZt1YPLoKscnd3mDOxUTLWonKe5DqSvOk6Bitl4NRqW7JjhtN40Y7K84I0k+vy4I55Vopro0TsT+oVm7MrFc6uVLHKFtaDjn44sXe31+tdnn/f7XZz4K0s5gL4J91udx/4m71e743jPqZLW2N+/p9/ifUlnx//84/GHORWeHKjzn/xfc/zv/zzL/GPf/1l/uvvf/7UcPqHU1kdR2l+gzuA75iMg2TBgJoH9swv4oPQNY2NJVlJDyYxhqHjOybbg4AwFm+t27VY5jfB04KVlld6ad3dum9/FBGlOVqqaNUKDE0rhYIJFde85a7GtY3FSrfm23QaEmSV5eqmVmSzKvHDQZLx5s6U1bb/wGZEJ4miEDZinOa0au6hjha2pWPqOplSkqeuaXzgHcuESYbvWvRHEdOyCJ/pVMTF2rcJk/yGLJBm1cbQNc50KgvmoXHC1+2JLxG63e53A1/r9XqTt/zob/d6vX632/0W4KeBH7qT511aurMbwObejJ/99JdoVGz+3o995CaPoEcR37VcI8wUn/y1F/nNjQb/2fecDpNG8b+yMfUbh4Ptuku9Yt9gpXG7Va6maaVrrOwkVFEsVnWzKKP9EI265lqSu3+Cg9/KPw76b90Krm0u5mbzQmMah9u+NKtOOUuKUIX4jX09FBHx15JdQxClhxYRQ9fZWK5QFMViwSM2+uXvavMv2uIfhy1yGqV322nCAy8i3W73J4DvAX4R+HfAfwd871t/r9fr9cuvv9ftdv+nO32d/f3poVv0wzCaJfz9X/4CWa74ib/8PlSSsbv71pr2aOIj71zhtStDPv3br+CZGt/+DTfOgExTp9V6sCZ6q22hNr4dh/5OoWsajYrDLEypV7++NA2dhssszHDsO9ex3MnvV1yTIBKiQ+WIzsUPOyxTAtCiJL/tnE3XtFtGArTrEidsm/pDx2R74EWk1+v9Q+AfdrvdGvDrwF/t9Xqzt/5et9ut93q9cbfb7QLD4zqeIEr5mV99gdEs4Sf+8vsfCtfR+wlN0/jhjz/DYBzxy//mq9iWwUfefbIhVgsWyjHgMJ+krwcY+vGd04MwDf3r7hoC6NyjHZKuacdijvggcJLtrL8JPAF8UuoEP4Iwsf5ar9f7KeBXut1uC5mN/NhxHEAQpfz0P/siV3an/PiffzdPbRw223/0Yeg6f/0H3sXPfvpP+eS/ehld145NQ3JSUEWBuoeZwqOIonSMfXxOTj9O8+dXK05p1vE94CLw+tu1s7b6AT//f3+J7X7AX/+Bd/H+Z5Yf2AGeVsRpzs/86gv03hzyQx97iu/+4Hksy6DVqtxRe/C0QRUFm3sz0lzh2QaWaVD1rAfOYoHr7cHjPp+SLijtlVvdeDb3Z8RpTs2zT0XWzJ3iQZ3Lk8bc7j9XimZVLHjEqeD+tgt1XZvPkp8ALh31cSc+WH+QmN9Mfv/LW/zWF67g2gZ/6y++l+cu3try+esJjmXwt/7j9/ILv/4yn/7sq1iGznd/6OGxe5mG6ULNe5CCmWWKNFcURcGVvYClukOY5Asvr0cNcZovst1zVRyqyldKhsF5XnB5e0KU5qw0Hx1l+aOEJFULZ+DNvRmeazLdz6i4Js3qybdnH9kikuWKP+rtstUP2O4HbPUDru7KykvT4IPPrfJDH3vqkVHS3i9YpsF/+eee57kLLc6cIorrUTB3UJ2GsmKbr8Btq6RLxhmN0q7jYQhLulvomrawdr/V36nrGq2qw/YgFO1CmY1+0jekx7gZniO7jixX2KZBkknssO8YjGYxzap9onq2R7aI/MFL2/zjX3sJkGHqasvjo+9Z5+xKlfc8tXQD9/oxboSuaQ9NBPBBuJZOGKVUffumm+d8sZDliqjMWn9UYZmSbTLPubgVGlUH3zXZ3Je44sN8woqiWHh0PQwBUyeJJM3RNO2+7+Y0TVvsJlVRXLfxKTUmJy2IfmSvpA8/v8bF1RpLdffYfPQf4/QgSiRT3TB0iXi9xYUlmRiPfsvmVhkqb4VlGgsdyGHnbHcYEsTZDVb+j3EzpmHK3ihEQ2Nt6fhElrqmLfQ9RVGceAGBR9gKXtclsvVxAfn6QFJml2gaJNnpsnE57dC0mw0Y50hKx+U0yw+19XgMwdw6qKC4Kd7guHAaCgg8mjsRD4S58SgzNh4UjHKucNrPZ7PmSA56IfYcp7X18rCczznWOxVmUYpnnwyb7XY4Tedyqeli2wa6plHzT77FdDc4cM3ckejlUSwiHwNoNG5O3HuMu8fDcD6XHiKS3cNwPh8WnJZz2Vk66SO4b/gY8PJRf/lRLCKfBRgMZie+OjkuDKcx0zAt+6/eTeaD9xOmqdNo+I/0+XyQuJ/nc2cYkqQ5pqGzdkhM8aOOR+2zOZhEzKLsgVzXh0HXtbnF0Wfv5HGPYhEJQXjwx/XBypVidxhRFCeT2hYl+aIHm6YKzTq+rfP8HB7n+fx6wv08n1GUkSlFlqm7fq4sV4v8+uWmdyoV0bfCw/DZHE1jJmFK3bff1nbm4HWdZQWaeWJ/U3gnv/woFpFjRxBli4SzO+HWzy2jk1Sx1HDf1kH1VmjXHExdOzID5+sJb2xN+Ge//QpppvjeD1/kvU93TvqQjg3LTY9pmB4pwvdWmEUZcZoznqXsjyLW2v49+0A9xnUMpwm5KnjlypBOw2O56S5cpd+KpbrLeJZgWzcnRp5mPDxHeorglgM0DQ33DthfaaYW0aXTML3r1zcNnXb97ovQo4rPvbjF3/+nf8RmP2AaZfzcZ77Ey5f6J31YxwbHNlhquPcU+jT/LIdxim3pTKOUR9AK6cTglUJOQxfx5zS6dSTzw3pdP96J3AUs0+DsShWKO7PJniePxUlOzX+4PiinGWmm+NRnv8ZvfeEK3XNNfuwT78Iydf7uL32BX/rNHn/3P//gQ7Wye5BwLPks13yLSSDRtg8js+i0YqXl06o77A0jiXZ+yArEUfC4iNwlJBvgzh6jaRqrrZsHoEGUYRra49bUEaFUwZdf7/PatRFb/YBXrowYTGK+4xvP8hf/zNOLvv5f+rPP8DOfeoHPvbjFt75344SP+uSRZjlpVuA5xg2FQtc0WjWXVu2xBdBxwDJuzrB/O6SZIs1yPMc89UX9xItIt9v9IPCPgBz4Qq/X+28O/OwngR8ABsC/7PV6//OJHOQ9IklzclXgOSaqKNgdhKS5otNw2RtFbPUDaq7Fk2fqj3Qk7/3ANEz5+c/8KV+9MkLTpI98YbXGj37Pczz/FiPNdz/Z5txKlX/7hTf56HvWT/3FeBwIoozRLMaxDCZBSkFxaDTwYCKMv3rFPjSZD64XoXuZwTysmEUp/XGMaxuHGlreC5I0pz+JsU1pZ+VKsbk/QxUFVc+6wUz0qMhyRZLmuGUU73HiNHwa3gD+TK/Xi7rd7q90u91393q9Lx34+d/u9Xq/9aAOpigK9sey9WzX7t0yJUlzNvcDCgpaVQfbMgjLofxolrA3EprmUCmyvMA6De/IKYUqCv7Xf/FlXtsc81e/+1k+9PzqbYuupml8/APn+OS/epmvvjmke771AI/2eBHGGYOJ3NRuZyI6mESkuWISppi6hq5rZIcwmUazWL5O40OLSJYrru3J57hROXnn2AeNcWnuOYsUzcy+68XeDfeXuotjGQynMVGSESXiX2bo+sIdIM/vfD5VFMXCOt5zzEO7H/cTJ94o7vV6W71eLyr/mSE7koP4B91u97e63e77HsTxxKm4mcZpzub+jM39GZMguevny1VBgXwQsrzAtiSfWkOj5ll0Gi4V16JT9+5pQPr1gM99eYsXLw34T77jHXzrezeOdCF/03MruLbB73956wEc4YPDcBqTZDnjICF9i83LwcH43MOp4losNVxqnk37kAIwz6Y4ONSdhimb+zPGQfKWz/GDsfU4TZifH8cy7okGffD+MppK4XZsue4NXaJxLVOn0/CoetZNC4T5exslGZv7MwaT+KbXKIrr9OfsLorQneLU3LW63e57gE6v13vpwH//bK/X+8lut/sM8Engo0d9vjJc5Y6R54pcN8gyRRCn+I6F0mB5uXZXzwdQa3ikmWKp7mIYOmurjYV52jlVsDP8/9l7kxhJsvTO72fPdjPfw2PLtbKrqqN6KXY3m8twm6EGQ4GCBGkuIqDRQYAuAx0knQRoAN0EnXTQRRB1FARBFHgQBAgjDUQOZkCQ0xwuPd2s7uqKWnOP1Xe3/S06PAuvzFqyttyKXd8lIzMi3T3czd733v/7LzmrrKbG+n1VtSKvJN02LjMvG9LY/1Jx+B93SaX5P//kXW7sd/m73/30843Qd/mlgx3+6o1T/uPf+foTM8Z72hWHHlWj8F2xsf8wxnAyKyhrybAT0u+EjAcxvSbA88THwhp52ZBGHlv9aPMzedlw+2RFFHrUjeb6XpdRL6JpNP2fs3x6gF4aPNLOZF00aG0+0fLE9wRSGepGbZp5Pw1IQhdXiA1R58Jk8cHKyobzeYnn2p9plGV7dmLvoQ2VEA7bg+ihNeRJ1nPRRA4ODkbA/wj83oP/fnh4OG3/fKuN0P3U9UXSzmIXtONQFZrZPCMKPM7OVp/rsS7KAabTD0XJA3B8ntFIZYPkpeR4kiO1IfAcMA5S60/toqq05mRaoLRhZxB/YTjuIj3uWddfH54xW1X8J7978Jkx3l//9h5/+toRP3rrnF/95u4TeoVPtwadkDTyOF+W3D1ds9W30MhGv1RK+m3cwaMIGxfus8Bm91s1itN5QdUoGqnZbdXwj8oA/3mI2v245lBUcvMeamMeipkoKsnZvNgYwjZS4woIfcGDTOpPc6rOSmkNHpWxmyFlacHuR7znSeR/rB7lcdczbyIHBwce8L8B/9Xh4eHxB77XOzw8XB4cHIx5iq9VOA7CtR7+UukP3RjLrCavJP00+EgIqpGK03mJcGBn+Mn2Bf002CTyucJhnddMVzVR6NKNfQJfsFxXdGOfXhq0A0790EVijEEbQ1GpjYvtumj+1rgY//Mf3mVnEPPtr312g6KvXxuw1Qv5s58c/a1pImBhi6q2n/Uqb0hHdve6zhvKquH+ecZ2m1ZojGGZN9TS7oAvrskHoa9lUTNdlaQtvDLoBCShz87wowe7Smurl3IcTmcFRS3pPLB4/bwM4KXSLLOa0Hc/RNg8nee8cWtOLRWTRcn+OMEYax754B63kTaLxHMFRSUxxmzeR60NUml6iU9dK3xPsD2MUUrjuh9/wnxa9Tx8yv8h8MvY2QfAPwH+0eHh4X8O/PcHBwffxs5u/uun/cJswMzDi7DWhunKjnCk0lz5iPS/Vd5scOq8fP9ImZX2yPtBLv6DR9fZqkIDVSPZHoZ0It/u8Dz7vI1UvH1vidKaa7vdzfNfwBhp29SKSn4si2S2qlhkFWnkP3amyZOo42nO23cX/N6/9dLnumGE4/B3vrXH//Pnt5ivq781gWS+Jwh9l7rRm+tn3I8JPJfpqqSWiumqpKoVRSktFi8V2/2Yl670cdpsCm1sM3n73sIyegKPy+MEx3EYD+IP7cAvYqbzSpJGPnujeEMWOV+WRKUV0m4P4seeA/4kyhizIR58nt17VkrK2jaJfiek/8D3LgTGq7zeDNC7ScCoF25gwWVeM12WCMchCl2mi4oodBn17Fpxf5K1TSSw+rS2xHPC5HzmTeTw8PAPgD/4wD//oP3eP376r+jR5Tj26NlIRfQATFBUsm0YPknkscobHAeiwMMYw3xdMVmU1rba8LEMmLpRpJEdqIWeRyfxma+qzY7R0oXtYHNd2IG/1mYDY5SNQjgOceixzGrSyEcbq5D3XSt2vFDLZ2XD2ETPPfX1L392AsCvfGPncz/Gb7y6zz/9wS1+8NNj/p1f/fLkxj+qHMdh0AlZFzVZUdNIO6+4UKEDoO2irzFkVYPnCqTWaGNwHQdtDA4W8rrQzS6zilEvtOK4xCcOH15YJ4uSo0lOozRCgNIxw25kT76eZR9qbUklX4aar+sNO21v5BAFn7wsNlJTVJI4tPf3Mqut8v8DivStbsSV7ZTF2qcT+eDYE5rnCjCAA3V7mszKZmPCODAhg45BKbMhMlh4UX3o9HFxEvI98VRmIB+sZ95EvmzlOI6NHpV6M6TVxnA6KzDYxfzydoerux0c7AJ/eHvO/fMMHMP+VsqwndEbYzibFxto6mye00jDqBfw8pUBndjn9smq5cQ4m5xlrTXGOFwe212JEA4OcOtkxbgfEXjuplkBzFcVy5Zhtr+V0ksDFuvqS6NO/os3TnnpSv+RVNZPqr1RwouXe/yr14753V+59qX4vT9Nnc0L1kXNMmvY6keczgtc4SCANPYYdkOauaafhmz1QrJSMepFSGlQjmK2qlgVNUUp6SUBUle4Am6frvGEtfa5vtcFDMfT1pfPGIQAIw2dKMD3BH3P6kvqRvLWXbvp+bK8w6aNnPXch+cUeWnnGb5nXZIfdKc4meZIrfFyQRx49NKAulEPzZ+MMWSVJPAF435kT3XYjd7984zpsmR/KyXwXaIWGoxD22C6qTVsFO1GoawVWhvunWdIZRj3QnppiBAOZ/OCOydrtDF868boqTeSr5rIp6iqUZwvSlxhWTGR7z00a3CwC7nSZjPkutgpnM5y7pytKeumHYb69FrLk7JlYQEcTbINf9xozU7L7RaO3dEpbbhztqaqJL00pJcGBO1xtqoVq8LeBI0yjHo+ged+tLVKewpK29PSxW7qea375xn3zjL+0T94+Qs/1m+8us//+s8OuXm84sZ+7zG8umdfrnBY5g2LrEZqTRJ41FLZBch12BLOhyDXddFwNM0mTJfLAAAgAElEQVRwcHAcC2+u1g1h6OJgB8OqhTvzquFkllNVkkVe4wpnQ3Pd6vqMBw839kYZ0theT08r4e+LllLazhS1ecgeZ11acWYtFVWjNqeO+bpmti4tVCfA98VmbjTuR0ilcZz3kYWskDhCUDWK67td3jtassprlhmUlaLXCUgin6s7Ccu8YdiN6D3A8opDz8Loy5J12bQxEKA0DLvh5t/j0KOsFd3k/TXLdy0k+STnJs/v6vEc1SqzXPyzVUUUeMShx+XtdDNwvzidVI0i/sBReLoqWWU1q7zmhb0+l1qG1Tv3FsyzEt91SUOfRmqWWYVShiT0+Mm7U8b9iGXecL4oUcoaNzpY3NYONC1M5QqHOHDJS4HvCrZ60UOznEE3xBWOxdDb5jdZlhSVZJk5XBrbk5XvPX/uoT9++xyA7x98fijron7llR3+9z96i3/12vHfmiYy7EYcTTJC3+F0nmOUg+fZYfe4H6O04WiyRgiHvZEleTSyXTQNrMuaybIk8sVG2R41mpevDDmaZNSN5m/eOcd1BHnZcHmng+8KqkYzW1dsD+OHTohJ6G3meJ9kff68lHEc0nam9OBJpBv7FGVD4Lub+yavrANAFFgluO85zFcVSejR74RIpbl1mlGUkjTymKxKstYJ4MLCxAB3TuzGctSPecHp43vWiuYC5raMrxLfs83HOoAXeK6DUgbXfX8DEAbCqt270eb/L9s1q5G2UQlhmVxPgj33VRNpq5EaqfRmV56XdvEOfJc09shK2V40AoN56GKD9z8grW3GstJ6M/hMY59BNyAOXSbLEq0tjKWNwYsEo16II6CfhpxMc8vPD1yyskYIQVY0HE3XbPcTemlAL/FZ5TW3T1eMuhFb/YhL45SdYfwQRFXWEqkMaeShtKEsmk2jeBDOma0q8sr+fpe306cehvOoeu3dCVe2O49FIZ1EPr/49TF//voxv/f3X3ruGuZnqXVhrdsvTqp1Y9ASokCQxh7dJCAOPLKiQWmN0pbwMV9XnM8LPE8QeoLFuqaqFW47ZHewQsY0clFKU9ZWGe/g4PuC0Bf0OgH3JjOyQvLTm1N+49X9zU73Yhj/ZaqtXkjTaKRS7WbqgrkGYBdtrQ2q1XY5OAgBvdTfLPR141BUkvfuLzlbFDiOQzfxMMZhbyslDjy2BzH3zzNunyyppGK+bpDaChlvXHpYh3b3dMXRtKCfBEitEcIh9C0rqygli3VlYTDfxXOtiealFhoDO3fJS4krrEPzqg2xuzROH/t1/1UT4cLSIXvI0uFkVlBUksRYu5KrOx0ubyescknoi4/8IOpG8ZP3JkyXFVv9sN0ZhOxvJZSVZJW3g02piQKPom5whWCeVUyXJafz3J4sXIe6Ubiuw+5WwmRZUDeGopK8cKkHDszWJYt13ZrnhR+CpOpGcTItWOYVrhB22Coc5k7F9iBm3ItYB661XWhVr9oYtIbnhepfVJK37i74t3/56mN7zN98dZ+/+NkpP377nF965Yufbp5VrfLaaga0fZ8WeUUjDcpoe/ot5MbnSTjW7mS6LPjR2xPWecPBtQH9NMATNQ7WgDEKXc7mlnl483jN/jihltbj7XSS4wqHOydrHAfWWQPC2nJIqQl8F61tXo5Umu3Bl8eBwRUCqTQGOF8UXIvsgp63cJbUZnNyF45D4DtUOdw8WXM2LzDa8P2DHZZZTRK6KGXoxC6+69JLA3xX0EsDykqRtYu549iNp9X2aG4dr3BwWoGzx2JdM19V3Dtfc2mUEEc+13Y6hIHH0STjbFZw9yzjuy+OaaRmf5Q8NI9JI594x8NxLBECsL+L0l81kSdRD1o6NEqzLhrKWrLIasLAxfctG0LgMux+PK1uVdQ2nUxaPPL+edYeUy12aYw9WnZin2t7XYyG+5OMZWYvmLxSKGPoBAH9js/uKGGQhqzGDafzgn4asNO3UNXdU4tpZ0VDP7W7dKk0xtDqArA7kLwhClxUq6a9IAMI4WzEY6M2DCcMni8462e3ZihtePVzaEM+rr75wohRL+RPfnz/S91EuklAvSiRtWSZ1Uhpab6B51EFEoyhkQrPdVgXDXklcR1w2t10XasWhk25vtshDH26sU8crDcw1nwDc9UUtWJdSaQMuHW8Zncroagk13c7m2umah7WKH1ZmghA4FvY6MGFuJsElG38sNMiD9oY8lIT+IL5aUUaebiOhZM8N0Bpw3gQIRwYdAOujLsbKKxq7KlOGUuw+fqVEIOmE3uczgqOpzmrrKLfzjwbaU+IwnXQ2jDohkTB+66+da04vDNrTRah84GB+gURYNANMbwfRfG468vzKT/BCn2XUTeilopBJ9wMm+PQY9z/9EOpfuuAqpSmkRqtYbYsN9+/tJWyPYzICsnN4xVNoyhrybqww/Vu5FF7gsvbVpAkHIde6tOJPdaFx7gf0U2CDVsEbDDRySwHsDhsbMVhceixM0zsoDPyGfWscOzBm6SqFZNl2Xr1PH9U35+8OyEMXF660v/kH/6UJYTDb766z//9Zzc5XxSfyyH1adZ0WbLKG7rJwz5KaeRxOte8eW+xSTfc6keMehEn0wzP9Ygjn3vnGWfznKJSBC0U1U8d9rYT6sYSO65sd2ikZrIsub7XJfRditoO6yPf5XRe4vkCajuXiwKXQSfg+l53wxAEex+5wkEq86ULVtodJR9iV4WBuyElNFJhluC6dv44X9d87VKfZV4Rhx5J5LeWJpo3bs+YLAorVpaG/a2EJPJbWrS1qslqiTaaazsdDHAyLRHAdFltbFGGvQiDYasXMe7HG+rxqze2eC/y8V2H6doaQ04WJZ04Z6sffWju4bniierBvmoibT04BOwmwQWF+1PdDI3UZC074hsvjLhzsqZqJPfOclzXYs+OcKhqxeHtueWGV4paarYGMd3ERzgBae1jDISBv0ma09qhrG2zud/S+6Q2XN9J6acBruvwzr0lge/guQ5hIKhq2wQvUtK0MR/ivkulOZ5lKAW1tKej52nnaIzhtXcnfPP68LEPA3/zF2wT+dO/OeIf/tbXHutjf55arCuUtqyoD4acXdi3n84K8kqShB5p5HM2L3jz9gKlFKHv8sq1If2O1XZc3u5wPi85Os8YdgPO5iVKaS6NOwy6AVHg4buCO+dr8kpSVIq9UUJVSxzaBdPAdj8hjTwwcDzzqRtFJ/EZdEK2evFDzKyTWc5iXWEMm2tNaf1czdceVcJ5tD7E99yN/QtAGgdMFiVhYJlZq9wKiddFTdMotIaykpzOC84WBWnoUUuLFBRlw8VI1QCXxinny4KsrIljl7xs8DyBmzds9SJevNwn9C1Dy2BwHNgeREhliCM7r/U9QVFbyHzYtQP+6bJECIdRL/qKnfUs6lE+QQ9WIzWnMyu8WmY1V7ZTa7etNL4vGA9STDtsf/3mFGmsgGjQUnSLsubGXo97EwtPBYHAE/ZGvnOacX9S8NadOVUtqaXhfFHhuhbf3BslvHu0YrWucITDziBmmTcEvkcvNQjx0UFXxhiOJzlZISkqye4wIfCfr5v9eJozWVb8u7/2wmN/7HE/5ls3RvzZa0f8+79x4zOlUz7uysuGWevm6rTzrQerlwYssxpjWlFZbi13GmUZN4HvsTMKGfQC7p9lLPNmQzmXtcITghcv9ZgsK5TRODisiga0YZ03OMLi/XnZEPqCd++v6CY+xhjGwxDhwPX9Hp0kYLYqef3dCT+rFV/b6/J3v3eZqlbcPFpy82SF14pZ+2nA3dM1o37I1Z3ul+5UAvYEmJXW2qib+Bv7I8ex88p13nB4Z4Zpf1a3FjTjfmh/Xmsc4XA8yemnPnkpaRrN2aJgfxjjCofZqqITexxPMt64vaCsaxLfY1bXCGDcC7hxqYsxcPdszck0p240UmuKUvK1Sz2SyOfFSylHE4tGXMDVF9ZMYJv6k/wMvmoin7PysuG9oyV5KVtGit2V2V2/4PB2xnxd8+bt2nK+cVjlNa5rsVfPgSQOkNJweHdOVkryQtLvBGwPIspKUdQKMPiuw7JR1LVmohT9brShaspGWgW7gTgQ9JKAZV6Trr2PFecZ7BwoiezFdXk7fe6grNdvzgD45o3RJ/zk56vf+s4lfv//+gmv35x+Lj+ux1WOY0kQnitwP6KZDbuW6HFhVRP6Lr5rYZOvXx3QSwOr5ygaFuuaspbtIDdkb5iAYziZFBxN12AcluuaV64NOZ7l+L7DMpeUteRsrhh1AopKscorS8JYV6RxwKBj/bhm64q3j1cUpbWIj0KPl64MUMYymTzPIfAc5qsa12XT8DqxXYRd4Tx319kHKyut59h0VbIziFm0i3FZ21Og77kssoqsPXnM1zV1LTHY08x0WVI1msBzOZ7kxKHLbKXZHcUYDZ3YI28UVaXQSrPIaoRjMMawziVaa5TUuK7DoIWxsqLh9ZtTPAGLvKEbe0htLOkh8gh8lys7Keus5v75mm4a2KaRg9HgPeFN0ldN5BPqwrL9gzVbVZzNC5ZZzaATkoSWhjpf1yzWDVWjOV8UHE+sgrgb+3QSm2yYBB6OsIPvvPIQwmGdN2RFQxwK3rg5p1YaMKjWM2eQhsx0hcZsxIq3j1f4vss49MjyhkXWMFs3bPXClsvukkQWhlgXDWnkYzAIx5pL5lVDNwksK0vp5ypV8fWbViez84Sw3O++NKYT+/zJj+8/0yayKiTgYAyP1FUMuyGd2GO6qtpUzJgk9DanqKxoWBU1x+c5gS+4KsDz4NZJRl42LFa1NWcsJavWtjxoF/3zeU1RacpWtZ1EPi4gBEip+NFbC5TWSKk3KvTQd2mUQbQp0XHo0g094ihACGUhVd/Dc61+JS8lceA9BAmBPV2dzqwSfmcYP3MX4ONJbu/rvCHyXa7udFnlDVJZyDrwLO05Cl32w5QgEGx1IxZZzWJdIbXmdJ7RSE3dWLHloOtu4h2my4rdYULTKG6frwk8l++9tEVZW2EiBs5XBaHvsjdKSCKPP/qL27xxZ0bTaF663ENHPjf2Orx0tY/v2ntWKcPhnTnH05w49Pje17cZdSPOFgUns4L9Lcvemq0qVnlNNwkeW7DYV03kEVVUktNZges67I0SPFe0x9zGQgCVQmOsijdw8b02E8B1GPcjMHbgpTWczDIckTLux+wMYqbriivbqfXWArqJx92zjKNpQZ7XuL4L2lBK2wCi0GKeQlhmzc37c6LIxxOCnX6Cg30Noe/S74TtsVsThRZPl1pzMsuJWu3AeBCzM4ytlcKZjeK8yKB41nVhFfP9g+0n9hy+J/j1b+/xz//6LsusfmbCODvMtQunNuaR2HXVWMh0uizxfcHV7S7DbojXnm6H3Yg7pyvWqwbf92iUZWgppdndSpBSkbau0KvcKp+PJxm1tAPlcT/FtHnreWsW+t7ZilVWMs8sHX3cjxh0A3YGMUlkB8yu284ThGBdNuwOY6IgRSrrKTVZlChlqJXaZONst8aOWSk3jK6saD7X9fegb91nbUJ1ox7KWolDuyiPeyFXtjs2Q0Vqzk4L0tiKgk+nJRrNqze26KU+UhnCwOoy7p5lxL6HUjXaGO5PsvYE6eF5sMok/Y5PJRWuI/A9h2EvYtiJ6CQB54uCfjfg2m4XqTQ/euuM196bMFtWOMJg6PHi5T57owTfdcnKBin1B9y6LSOvqEqkUhuWWeC7FhrFcPNkZTfA3fBj45A/bX3VRB5ReevfL5XhZJpT1YqyNUBUynB1p2MpeZ2IyaJkuqhYFxXaWEbFlXFKXll3z2Vm1eQYw4uXe1yqNVUtaaQijjy6UYwxDq6wsZZZ0VDWiqJSOEAYCBwEWtkd4r1JjtKwP4q5utul37WD8WHXNpD5umK2rpgs3w+xMa2mYJnXG5ZJFHibKM6q+WCo5LOpWycr8kryjReebJztb33nEv/fX97hX/3kmN/91WtP9Lk+rrZ6kYUfWxeCR1Xou1SNQilDWTecelaTYf3YQkJPWPGZAIxhqxMSuA73JnY2MugHrHPF+aLi9smS+5MMTwii0CPwBAoYpSF1LZksS9a5xBW2eXmuIPQcjDFcHnfZ6oUMOxGucFCNIQ49fM/qITqRTzfxuX+eU1aKspJ4njUczCqFIyxZJA494sBl0f7e0eckdkyWJXVLL/4sUbDn84J12RB4Lvtb1rX40rhDJ/YxvD8X9T2xgasni5JKWtfed+4vGXYC9scdzucFQgjS2P7uO07CvTOr/SgbSSLgeFIQBS6rXLE9iKka3ULLGmk0w16I1vZEcjLLeO2dCZNVSVkpcByS0KesNVUjuXOyot8JN/dsLwn41o0thr2ITuwhpSHwrMtA5LvW/BFLFFpkFQKDNpqTSUboi09lOvlx9VUTeaCmy5J1uxvqpwGdxKeoJI5jF1jjWKO2bupz/zwjDDwGaUAaexRlw+mstM65iUcaBXiey2+8uk9ZS47Pc6tA7QS8c7REacPZrGC+Knlhr8/+dsqV7ZTjWU7oCqTn2ryIRjFIAhxhbekDz8F3hb0xXZdV3nDreMm3v7bF9b33rTyWecNskVNWkv1RwqgXEniCk2nRXjSuZY4FLr0koJH6ubFIf/3mFIBvXH8y85CLujxOefFSjx/89Nk1kQsq+acp3xO8dLnP8TTjbF4ilbW90cYydmqpLWtonrPMa+5PbWJmXjbkZcPpDIa9iLqWzFY1TWOQQrHVty68O4OYLJeUjaJuDFJK/Mijm7YuCMbamkip6HcCtnohVaO5vB1S1vbUbtP9LA192A1ZrCtGvYhaaYZdz9rvtCI7sO7BV1t78887L3FakO2zMpDKdgGuWzbaxX/vpR8mN5St067rwMkkJ/BdsqJm0AmYryviwDp7X9/p4girCbEOvBKtFDgB42FM5Lu8sNtlf5wgBJzOSl57d0ovCdgeJGhtuHVqh+hK2+Y96ARcSTyG3YjtQczNeyvbdLrRQ+9dGvu8dLlPWSvuna9RynBpnLK39X6onKWBhxsdm+faNeHSOP3c2UM/F01kXTSb0KcLXYAxhtN5Qd3Y2NoodDdOt8uspp8GhL678e8/mmTWQG2vi1ba0oDbNLfQ95BSc3Sescgr+lXIIA3xPMFibXd9nucy7AacTguMgNW6QhrL4V6VDZcd+NFbU85nJYOeT6MUvTTm8rjDt14Y8to7E44XBftbPU5nBVWjyQtJHLsYYygry+uPA2uON+qG9mic2gYEDnfPMoRjobY0Dpi2qXhx6LLVjzdMrosFQTgOV/c+X8zwF6nXb864sp1+4WP2p6nvH+zwh//ibc7nxXNh1/FxupCLigKPF/b69NKQo0mGKxzuna14886CN27NyIva2o3Hgrtna5RUzLIaNGy3i9iw4+N7DtpofCwUVVSSN2/P6MT2PRcYrux0SSOXvFJ4rovnQlYowlCQBC43j9fUUlmBbaM4W9hMjOmiQgjYH6f0OyEGw7jNrvkoyO6LDtt3hrF1l/iMIVijrj0FXsyWLizXPwiJPWhllFXWpRtgrz29JKHHndM1vu9QSklZaX763jnnyxItrQuGK+DyVsruMCHLJf/69ZONuWNZ2yYWBx7zdcV8WSOVQkmbTjoepOwOI05nBW/eWXK+sLD0K9cgDge4jsOgE2yscM4XBaNeiHCcjZ7swXLamShYIoEVWn9+2/6fiyZiefiadWF3254rqBubBwBWaZ5ECWnkk5XNR9Lh9kbWYNH3BHkpGXSCDVR0OstZZmUbHiXoJT5NC4G9cXvGySwnCTyubHdIEw+lwe0ajiYFwoGDqwMC1+X26dJeRGvB3iil1wn4xrUBUejhCGs5vcwrktCeHgyGbhiQl5Kbx0tuHq3aRmdx01euDVlmtXX3bH9Xi397m4t3sizYHSYss3rze+eltMN2Yz2ZnmbZ0K0Fv/3dy0/l+b738pg//Bdv82/eOud3HqO9yuetC13IKm8eaX0fB1YvUjeKW8eZtSZXGj/wCT2HolHQZnrEgRWm+Z6g3wkZdCIbU2DAcVyyosI4UEtLGEkin04UEAcO01WDQTMe+Oz2E+6dr8GBN+4urJdce6pQSrFYV/iesJ5wrsPZrODFS30a/X5o1pPQK/iewBWfncKaRN6m8VSN4rilyW4P4ocaklSaVdFQS0kS+7hCEYUeoe+ijSErG47OMzSWOl9Kxck0p5Eaz3VplKRWHkra5MKf3pqSl9Y+6cKrTDaSOHQZ9SPmq4KycdnbjfjNb19Cac3RNGe+rqgbjSdcOklA6Nvm7+DQ71inDYM11pRKk0TBIxv0qBfie4LAc78Qqebnoomkkce7xys8IVBbBs+19s2B59JIvUlf2x7EHxvStMxtYIxwHHZHMVe3uxSl4vbJGoBruyn9bsN+mIAD2miKUlGWDUpqCiM5nWYIz+Ol/RQ/iMkrhXBs3kcUupSNpf3FaUA3sfYG58uScTfCcSDwBPvD2A5NtWbQDUl8O9PICslsWdFoQ9Q6il7ZTjHYnVQa++wMYmqpKWrJfF2RFw1SWygkfaBxprG/MWQM/adLyXz77oJG6ic+D7mo3VHC5XHKv3nr7LloIt3EZ76u6KePXhTj0Ns0/6KS3Dqx+HuaBuz3I86X1j02CgVVrVvIy2G6KDibZ1yMv5Sx871lUSMcQaM0o17MsqhRaOarkkEnYHcwZG8roawl01VFJ7IeUY3URL4A32N7YDNMjLEDc9cVOAJ60aNPlMu8RilDPw2emmbHGLOJXtjqRdSN2lgfVY36wKnGcHS+Zr6uubHf41e/ubsJspotKybzkmVZW0ujyKNYSoa9iLKShIFHP/FxPIdV2fDO3QVFbZMOk1FiVe6LEqkdqloTeALf8wg8SVFKbh2vSCKXo/MMA2wPI+LAZdSP2R8lzFbWG29/K7GbV6m5sp3SS/xPnDG5wkoCJi1Z6POq2n8umkgYeAw7tisvspqd1pTu0jjFGEPVKBZZ3Q61NINOQPiBQdPFAGuZXXDxXVzPoZv4uELQiQO+fSPC8wRFKfnZrSnrsmbRpg/mVc3posB3Ba5j+O1fvMLh3TlamY0r8OVxysnEwXWctsEozrRGacOVnYR+Glpef9Xw0qUevusyXZc00jDoBCgDruPgCes0fHh7RlEptNF8bX/A9b0uszagygG2+nbHtTuMH0qvC/337R7EU1Ycv35rhnAcDq4OntpzfvflMf/vn99mXXz0KfRpltOaJVaN4mxuyROjbvgh0agVv1lYYpU33NjrMVsXGGMzLQzQiTxwHLyewzyruHO85p37C9Aw7AaMOgFp4tNPI5LEsow6oUcUeQy7AZNlwcnMLpS9TkjgewSBdZ12hYPrWofpO2c5dWMtdwLX5YX9LpVUnC8K3rqz4OD6gMBzNzG0DmyCk4pKMm2tgYwxXyh47LNUWSuWWWNTGFsvq7JWaGM+lMOjtIXEjdEs83KTdy6VZt2eHI029GKP2brCaPsZDDsh01WFMZq75xmOsT5Wviu4ttvh2y+MeOP2AoGDkpbEc/css2p1IaikttBVYV24O7HP16/0ubHfJ46sSeO6aKjqhlvHKzqJ9T8Trv1sPo1bwKpoyNo446Ty+Tx8yJ+LJhL4At91bWjPB7qz0oaTaUFRN0yXVjncjQNevtrfRNtmpSQJXJTULHWF79nHGHZCtLY3RCM19xdrtnoBk0VtGVKriqLUFJX19s9K695792zNT96bMExDytqa2+2NEso6sV5Fi9LaJ0hDHGnKWtFLfM4XFWnoUTSKqrbRpY20ynRXCA6u9rm81WGyqjiZ5JzMC8qyod8N2d96X726zGu2+zGOcIh89wsxMx53/ezWjK9d6j1VC5bvvbzNP/3BLV57d8KvfWvvqT3vR9W6tKaZq7ym37FCwpOpzT0XwmHYC1FKc/88b2m9Idf3uqyLhveOlxZfx2HY8emlIVorbp9mrPOGdVlTNVbb4fsuW/0IIRyE49BPwrYh1fRSH89zee9oRV7USF9wdJZxdbuLaAfjUlnKeN1YTVQvCZivau6errl1suTGpR55ZTdei3XF9iBhlTdMV7ZhXOS7P3jyeJrOAb4nWBU1WdEggN1h8pE78axoOJnmG5gojQOqRnHreEVWSC6NE4zp0GsFlTePV7gtCeEiwOoCTi9rje+7pKFHNw4oG0vNDQOXspHMlxXCtRuIdd7gOIayCexMxRUWrag09yc567yh37H2THWjOZ7mpLnPurQnyihwGXbDzYbYd8VHDs4DT2yICf7n1Og8P6vHEyxXCC5t21PHR3VnqTWTZc1kXjDoRjjC2plEwQP5yy17I/A9zuYlvTTgynaH3VHC23fn3DpecbYsWWYxYZtXbfFGmK0kWtsMAgO4Htw+WdNNfCaLCn9RczLJ+OaNLQSmtSywVL9+6rPM6/bms9Ymo15IVRdk6wrhCyLf42iaczK3mpQwcJFKIxvNsBcRePaiksrmmIBlnDzIyc9LO5hPY/9TW7487spLyXtHS/69J2B18qh6Yb9LL/H58dvnz7SJ5GXDKqu5e7Zmux+TlxLZitZWuXVZvrTdoRcHLNrrsqgawsBSVO+cRsxWJVIqzucaR9TUjeJ0XlBUDUkYkJU5gSsoK8W1nQ5gNyBR5PLe8ZzzWYUj4PpOB60VjgMag+9Z+GqVNdSNJivtYweBz/5WwrATcfNkyaqokUpzRWk6cUDgOe+f6h/oEReIcei77I9SpH4fVn5SNVmUlI1i1EYn7Axi8sjDcz96HnA0ybh/nm2gHt8VjPsx791f8cM3TzHA6SzjlesjVgW8eW/O3bMMYxx2+pZa6wChL1iX9r00WqOVpenen2TcPlnhOAaBwyK3p5g49DYhVqNuwjdeGCIcB6kNWdHwzr05Qlg69XY/xhMOt08zikoSBR6zddmmoVqpQKdFSy6Nkw/NPuLQ2wTlfcXO+oQSjvP+lftAea5gkFrn3mGnj9bWbfdiRqC0ZWwssoqiVHQSrzWZczmfF60mo+Z0XgJPWAQAACAASURBVNBI096sLjxg6CYcp70RBYPUoxsFhJ7AdWC5rlgVDb7n0ChNNw6YZzW+cFrOecA8W1OU0uK33YDpouTtu0vSyOPqTodvvzTiX/7wPmjNfF2xM0zwfcHlnRThwP4oZXsQ20S7C8v7D0SXTpZ2t1Q1iu4zyl4/vD3DGPjmU5qHXJRwHH7hxTE/fPNs45H0LCov5cY5upN4bHVjykayLhrunK4RrvVb6nV8bh2tAEMvjchLyfYgIvIFnSRg2PE5nhQsljVVo+21JuyptRvbkKO8bDie5hhjE/wa6bFcN2SlJAqFHeRmNcYBT0DgW/bSbF0R+g4nF8zGvuGF3TF7WynTZcFdDVJZWOryuIPWbOYLvSRoEzl5qGGEgUvI43dLqFp4Kg496kaxaqHl+do679qTl9cSbdQmd+Wijib2tFfW1qA0jWyUQtMoGx9h7ClgmZW8fXfB3ZPcBtNdWBUVDcYY0ijAD1zSwKYXrkrJrZMMpTXa2LmT63okoR1wx6FL4Llc2esyTALunecsshq0pmwUrivoxj5KW+j93vmaTmTFjJ7rcDbXxKFr7d99gePAPKuIfJedUfyhe/uLxj/83DSRR1W/E1BUFhvdHSabnfzxPGedVwjHfrgrbdMO09ga1OWl3GQQ3Njvced0vfHM8VrWgwaaRtt5RbvrCwPL+T6eZNigAkPTKG4e20TDNPYRuHQjSxE2WrNc13TSlgK4tlS+delyZWx3pt99ccwyrzFY2p7v2jmN7wkbPtQmLw46IVLaofyDFQYueakJffeZ+Ru9fnNG4Au+dunxWb9/2vrOS1v86WtHvHNvwcG1p9vELqqbWKjkyk7KqBsS+h5lLQk8O2eYr2runKx48/aMWtpMi3UhqWrJ37wzQRvN7iBlb6sDxjonSKWpGmvVcT7LyCqJbCRhK3IMPHtCdRx7OjXYBX5d1BgcUIbKwM2jNZfGHfuceUMcuBZ/b9XR7x2tEa4d8CahS9MYzheldW54oJ7WzKmsJcdTy7a6cLP2XUscSNoG5rlWy3LvPKORisBzN7tyoNWAmI2IFyAOXIz2SWOfqpIUZcOf/PiIvJQEPgS+z6gf0Yt8ThY5Va0ZdF1GUUytNFkhqesGXwjqWrHIKgwCy8J3cISDKxx2t1J2Bwl3T1cWvioaeomP6wp6sb/xxzq8Pefm0Yp13uB7NtWykbY5vbDf5etXB9w9zfBdQdFIslI+9s/g56KJWJNEPhZn91yx0YNc1CpvOJ8VnC1KotBlux8ReO5m8S0qqxzuJTaIpmmUDYmqJNNVTSf2iEOB16ab5bVk2I3ppvZo+eadGWAIPJcksvkBUmnWhcF1HBph8DyHxbq2YqVW65FViqySBJ6gG7lc3kupak2/GxAGgrK2JIF1rYh8t01js4E1ge9+pKBQac2oGzBIg2caSvXaexNeuTZ8Jq/hmy+McIXDj9+ePJMmUtbWumM8iDdCPLAzrGhks0LevjvnvaMls3VN1Si2uiHdxKWsFVktqWvLiIrDbb53sM3RJGO2qvCEw18dnoFj8AT4sW9x9naAu8pr+qlPFLQZNI0CB86mORpAWz3DzftLwtDDFXYzYgAB3DlbE/gu61wS+JZ+usgq3rm3YGcY8wsvbj1EVPk4P7rHWUq/T01XymyINEqbD500VasPkUqj2xTDC4v28cBqa+ZZjZSKZV7zk3cnrPN6QxRQypohep7gGy8M2R1ayEsrB4VtphcuA7UCbRz2txJWmUtWKYpakgqPy6MOBs2oG+J7DtNVSaMsy9M6EQh2hgn7WwlbA+uL9dbtOatCMlkWvHi5x6poWOcNUeBx/yznlWsjtvrRBoH4KJPPL1rPRRM5ODj4H4BfAn54eHj4Xz7w798G/mcsmvqfHR4e/s2nfcx5mxseeGIjItwdJp84sC0q680fBS6VVHZX71kDxd1hzM3jFbNVzaDjc3+Sc2XcoZP45LUkiT1WeUUcWB1KJ/XZHdrm09SSuB0kTlcFi6zBaE0c+1zd7nLnZInRhm5qMeaqMWRljWoTCoXroZRhOLRDfCd2eeXaiMtbHd65N+dkVtpALKPJC5tXcPdMcXXXRn3OVtWHzO/gg/x4ayQnlWbUix5azJ50ncxyTmcFv/NLz4ZmG4cer1wb8ON3zvm9v//SU3/+01nRpubJD21owG50ru91+fPXj3FwcB3Y6sV87XKPcT/mzTtzVkXDuBsy6lo33jjwoAs/eO2IOycrssri9L7noAHXwO4gppGKRkGRW7+ndS7Jypo0CfA9l7yyTtWLvKKa25P49vUhX78+5PbJisNbcxwBWsNvvLqH7wnmq9qehLT9nS6aSFUrTmY5TiuEe1IbhjTykR3LbLwQrTqOs7EAerC2B/FGH3breMXRNLOnqUHCqBcR+C47g5jZquJnt2a8fW/B6TS3c8VuQOB5xJGLJ1zmy5rIc9kbp0ipyM5qykbjZhW11CjjkIYel8cJb7Vwl2NAeLA1CNBGEIeC7UHCm7dnrIqa0Ico8rmx1+X6fo9hJ+RkmpGXEhyLPPQSHyWtiapDQxQIAl9Q1A3gEPp2M2uMsZBou5l9HPXMm8jBwcEvAunh4eFvHRwc/P7BwcEvHx4e/mX77f8W+I8ADfxPwH/waR93XTY2ua00G5zzwd3JR9V0WbLMbW755e2UV64NiVtjxTQJKCt7HCxrye3TqqUFSpRW1LWiKK3wp6gl66JmPIwIfZ9rOxFRIDhbFCyzxlpKKMOoa2Mww0Aw6Fn7d89zmCxLAr+FC5yGrBBUlST0XZLQ56XLNlho1I84X5ScLkpWWUXVSF7Y63K+sPYto05IXWuyoqSoFL4vGHUfhheqB/jxi6x+iMr8JNPQPlivvTMB4NWvPVmrk0fVL7w05g/++C1OZzk7n8GD6XGUcByr5n7ETjEOfa7v9Difl2jlstUPCXxLs01DjyS0tiI/fPOcwHdRWvPuvSXvHS2ppEJKQ6fv4TgCrQylUlRK0esEGG0QrmG+LjlfVPbvAraGMd8cJpzO8tYmRCGwTWi+tIQTa8RY0U0CVlnNi5f7bPdjfnpzSui5dB6gzOYtbIwxzFYl/U74xDYrn2TmaFrPuAvrGaks7DddVNxrJFrbuOxLWymBb2cVTdNa2rsOeSUZ9yP+3ncvsc4b3ro7R2q7WMlG0uuEqJMVRSVxhcNW30Y49FMfHGfjoG2AvFTcP8u5utNhnUsO13Obeb/QeA70W+sZJTVb/ZB7Z2tWhbX9399KCTzB3jBmsqqskFQbXNfh6DzfROMu1raRgT11Pa77+1M3kYODgwD4b7CL+iXgPvB/AP/d4eFh+aj/+wn1a8Aft1//MfB3gIsmMjo8PLzTPv9nAsovlLFb/QitLX3wk7DAi2GzNmbjAfTi5QHGGJLI3xx7G6npJwGrvKaqNZ3Ew/cFtVJUlcQYw84wQdaS67td4sjip5OltYNIY5fAi+l3Qq7uJmCc1hVYoktjPa0aw9ZeyLAbkxWKylUksdW7NMowX9XM1zVB4KKUJo5ddgYpwnEYpHYA2I19ru92OFtVzJYl+sTCZw++D53Ip6wkxtjZ0Lv3l5S1pP+UGVqvvTtldxg/9cX7wfrOi1v8wR+/xY/fmfA7v/R0X4cV8qmNi+zH1c4oYn+cUje6TTI03J9nBJ5AAKvabhb6HZ+TSUFVS4Rr3WI94YFxQDhkZY3numx1QnZGCbN1xQ8Pz8jKBgeN67qEvmDci7i8lRKHHtNVQVMb0tijmwQUtWxzu31rIhoHjAeWVXZ4Z4HrgmqtgS6uuE7sWRZa3qC0pqjUxqb8aVbdqM3MZHeUEPrWLqiT+NbZ1gQthPy+IUgUePz6L+zh+w5ZoailZJ413DvL+O7L26wKyfmiwBMWhq7aDJJl3th5ZBIw6kcM0ogkcpkuCjqRx1I1VvGfVYiJYxMusYJNB2tMaYWRdvPZ69h3M/IEvZE138SBazsdfvjmOWChuK1+ZAWhjcb3LEvVsaqWx+oc8FlOIr8PHAD/BXALuA78E+Ay8J9+gdcwAN5pv14A33rge+Jjvv7E+ubLO2j96TIybLhMxe5OF6VtlOzF7MP60RSsas143OGXuzH3z1aUtWa2LIkTyzqplWSZK8ZDF9koXM8ljlyMIzhZlGz3I67sdcnLmDBwN5YrSRRSNpJhL6aShsWqomq0dd5MI8bDhDjxWWY133hhSJY3vNmqui+NbYriqBtS1ZrRMLYXz6qin4Zc2etaRsn9BUHgM+yF9Nsj+oO1u2uNG6tGUSgbMNRJfLa3n45vVt0o3rg94+9959JTeb6Pqwu8+W/ePn/qsJrnCjrxx1/iWhvKWiKEJWzEgWBnK8FoQ9VoMHYut1gXzLOGr1/pWXFqVvPipR7d2Gdd2eCqZWa1HUqDQfPCXo/s5rSFcT2M1uAIfN+yhL778tbmmnNiuLJtZwuqjV2+ttelF3lktcIVDlndAAYpDXUjH5pB+J7L5e0Ok0XJqqhb/cXTtdYBNkQasDG2F6ehqzv2nrmwOIpbe5OL6iUhv/29K4DDn//02BJZiobZMkcpTRK4rMsGR0DQKsuFEHQTz97XocedsxV51dCLfUb9GAdB3kgCz5pbHk/WxFHAjb0OAjYmjNo4NEpxdJ4ThjbPJU2ssLiftmaY4wSpYqLQJQltpO5Wz8X37d/rRlO3kQCPqz5LE/mHwIuHh4fz9u+vHxwc/Gvgbb5YE5kDF/azvfbvF6U/5utPftBZhv4E+OqiFq1tOlhrbhH7nJV2jnLreMX5okCq1ndLCPLK3oSxC+erikvDiEHaJV/bk4kXuZzPS6ZZyeGiQmrF20LQSX2ubXfoxB5n05zzWU5WNgx7Mb7rMO7aDBKpDEoqXn93wt6ooJ8E3NhJkbXi3btzjNLEvmB3EOIJh7JSTBcF67zk5HTF9ighdB3KrGK9LBBa0Y9dTKOYTTPu3p9/pB5Eac1qabF5R4WcYb3AhsP0Q+/Z46zDO3MaqXn1xWcXDnVR33lxzB/91R2KSj5XmfPH05yisnY1aeRR1hae+sb1AaNuxFt35yzzirvnOd00YLpu+P7LA5LIJwldKqnpKUWeT6mqxuZ9A+8crdke2lND6Lk0SjHoxjT6QuTqcu/c0n1nq5JRL+BHb08QrqW3DjsBv/atXZR22I4DpNJc3uqQBD5lrXjxcv8jKdODboDjgOc9bEP+SZkqj6vS2Ccr5ebrB+uTVPOO4/DSlT51rTia2YTHn743Y7quyQqbTRMFHq++vEUSeRzemvHO0QqlJD+7OeN8niOVZUReHif0OyFnkxxlNFnloJWmbCp8IejEPnsj+zPrsmaV2fz1rJB0Yo+qUmRFzXxV4bqCYSckjjyiwDLK7p9bGHLYCVG+3YiEgUvZzn4fRxDdZ7lLjoGEhxf5GDj6gq/hB8A/Bv4Q+AfA//LA96YHBwdXsA1k8QWf52PLaY+tUlrlZ+i7G6qv59kckFXR0MwLotbMMAxc3r2/IqvtjuXSt1Ku7XappeK1d6e8e3/BbF2SRAHCMWjjUDaaqlRc3+vguRZvlcpw72zF5a2EVS45mxb4Lc1WlpKqsdGa42HMyTwjCT1WZcM3ro+4tJVyOi9ZZAW11MShvXj6aUBVK6pGcedkRdVoawHdDTia5hhjqFuV8UVVtZ2NXN62YUJPc6j+2jsTfE88VauTj6vvvLTFP/uL27x+c8r3D3ae9cvZlFQaIZyNWV4UeDiOJUwUleTuaYbSlsUjjIVvT+YWzlquDVklbeaGgiDw8RuFkpqzWc6//OFdhOfSjz2GXojSlra7Lhr++u0JJ7MS13VxHZv8dzQpcIVAaoVWMW/cWfLtGyOEcEiiC5V9ThJ6RP8/e+8ZJEma3vf90pvy1b7H7KztPbd7h8PxQBxwOBhBAIEDBYKgJIghMiCRYMhQglzIMCiGIsgIhkKERFH6IASgCIJB0JwAQghSMBRuYQK6A4Hb3dvD3vb6cW3LV6XPfF99eLNqunt6fHdPz0z/v+x293RVdlZmPu/7PH9zCwGboev7HtZCSDa7AXkhmWu4x04FNg19H503TnO6wxjLUkzMvewxKZVIN4hzmlWHIM7oDWMcx6BZcZFS0hknDMcJQZRTrzjM1T1aNUcZakqI4oSigN1BpKJtM4FuaJgGJLnEtHVEWpDnhdJzSbi6M8J1TYSm3Hz7qaA7iJVDhaFRsU06pYCyP06Yb7gELZfnVlp4jqJuT+edU6FxkhWMg5Rqqdk5t1B5YF3UbYvI2tra9+z58heAX1tbW/tfgWvABeA/BP7+gxzA+vr619bW1uK1tbXfBV4Hrqytrf136+vrfxP471FzF618r2NB3bcxdXXj9EYJkzyj5qtCsdL28SyDJFOrls4wBKkRpzlvXx8CGllW8JGnWsSJ8vHvDyPSko9uWTquqeM4JoNxSn+SEF0taJZZ6psdZYZ3dXfCIMjQkWi6Rs0zGGaSJM0pCiUSrHoW1bbP6lyF5Tmft68MlD2KkERxTsUxcB1jZuM+taYwDZ1xmBCnFSZhRlaoi7RVDvajJGe7f8PB9LiVwwfxxvtd1i42T7wvfhiePdfAd0xef7d7qorIQlNlbS+3fYRUDtEVz0IDtvuR0jYJZW2f5soYdEsLKYqpR1RBw1eCuSgtcCydUZIzCdV8olV1GI4TZRFkGkRJoTQNWcH7qQp7ciwdq4y8pWQVjaOCt68MuLjgszxXY7Ht8e61If1JihAxrZrNfPPO86U0L8jKmWN4Cyft48SovC+yQjAu3Xl9R+WXDyYp72+O6I8TbEOnWbep+w4Vz2J1XkkI4jRnPImxbY00zXFtg0mkkg67w5gwFkyiFN2AumsyDHLqnskkUuLBrU4EUtCoWdRrjsp1yXPSVHBte4Kp6+z0QyxDI9jMubBQRdcKhFTegK6TMwzUTsXWVfz2hcUqrapDXkhcW+d6ZzJbeAyCBNc2WW4/eCTxnXYiP3fI9/7bA1//FPC3H+Qg9tJ6S/zN8vtfB77jQV77bjAOU4SQeLZRiqxuMDd0XY2iCqG22gtNnyRVaYVoyqKkVbUYBwlf/eYOG52AZsXENQ2iNMc2VCpao+qSZSOGoeKbT6IMp9xOOlJjMIpAlu8jJHmhLBIMy1S+XYXkwnyVZt2mXXe5tqOsp8Mkw9A0PMecrXRW5itEsUqQ812lyJ1OBz3HwBbqfUeh2npPcxRA7cZOEtu9kO1+xPd++vyJvu+tYBo6H3+mzdff65xYa+VucDC8airIVGaAIUndwXct5hsu33i/SxDn7A4iNKQiXwhmrgj9sVKb50Kl3yFV29IAPFtnOEmJM5WoGSfKi2sUp1yoVEFTZJXpMY3DDMfReX9zxDDKCUsbluEkwdA10mJ/S3kcpmz3Qqq+itidstGcac8+FzNzxpOE76iBv2noDIIEIdS9fXGphiyJNpNIuVGMAuW426rZJStrSH+cICS4lsmlcw1qvsl2PyTLFaW5KOezhqaxPOfhuzlRkmEXBb1JotyUhcAyTKq+he9abPUiNE1pUDqln55lGPiuyTBMMQ2X+YZDf5xxfrFGGGbYlpImSKmeBY6lNEYbnYCKaxHGynNrGiA2ifKbzGbvFbf97fX19acf6NUfAYRlXjqoC3kaTKRpN/qzrmOy2PLIheTCQpVcCN65OuDazpgoFiS54LV3uiAFUggVRlNQqooFQmhUXYtLK3Uub4+RKApgGKbEuaBd8xBFQV5I1Zu2TIJEfW3pKoEtiDJyKXBti51+xOWtUXk8NRzLYLMb4FgGbllwHFun4VmstisUUuXAj8OUSpmf/c61ITXfYrntUfWUg6uUktoJZ41/7Z1dQDnpnha8/Nw8f/DNHT7cHPPMav3Ov/AAOEx4l+WC7V6oHBRK5tCtEJfmnctzPp5r4dkGH26NyPOCPBfYFiCgWXWo11y2dgOV4ieVMWnNs3EsjaeWapiGTncck+SSJFc2II6tIwpBGORo82CYOlEqSk8sA8c0QNPZ7IaEiWA8SfjMR5d54WITQ9f3mfqlWcHl7QmjQFn9eI65T8PxMJl5eSGwy+C43jgtfcNUHPB0h7TY8MiFmgNd3prwjQ96TMJUSQfK81mvOHiWwe5ACQVHQcpCyydKcnKpTFOTrFBu3q7KhOmWlGrXMsnLAKy5eplaqGlc3w0oymwS0wDTVC7Li3Mew3GCkIIwzHj2XGNGJR6HGUmW49rFrK2Y5gXtuoqVCBOlXJ/aOj0ITs/k8CFh7w1ccZWdgbKJThmHqn1QcS3OLVTRYNZyefFimw82hoyjvAyf0ZjEucpMLlQrKReCuNymB3GBqWsUhWSp7TEYxewOYjRN0q4rEZASXmmYukY2iDEcDcfRqZR+WmGktskbnQzHNtHzAl2HYRCzVB6nRF2Euq4sFKYcfSnlrEUwjlTGepjkbPUizi9UZ7YOJ41X3+5wcak6S5w8DfjEM3NoGrz+budYi0hY7hZMQ2N5zp+Jv6I0Jy9v7nGQYtScQ1sOSabs1uNUGe/NN1RyYNVTu1W0GNe2aFRsnlquEpZZ5xXXRnOVnYdtmaq1FWbYlsZi00fXlPZE0ySGptxrHcckTAqyMAMhCGM4N6fzyRcW2R0oy/cPN4e06i6feC5nZa5CngvqexYlmqaRlgsiz1a57lOkWaHcsl3zROdxoIr2oCTWDCYpSy1PHYtjMI6UozLAfNOjWbWJs4xJlDIJEpJCUHEsLFMNwS8sVplvuFzrhJi6zrn5Ku9cH2CaOjLLGAaKwm8bBoah2J+ua9IunbirnskoyJBSZ+1im6U5n7ULDf7o7S5Rqmj+y20P37XVDLcbMAxzar6FaWg8f77JYJKS5qp9ttQyME2NVs2h5luz3We94pBmxb7P537xxBcR5ebplzdf+cAVCSHqwRsmOVGqHDhNXeN6Z0JnoEzwnlqpIaRGmqtdw4WFKkutCpMwYWcQEycZy+0KaxdajIOYN68oFlKWFziWSivMMsUtr7gWum5jGTq+pz5sQ9cxTSVerPsOrmPSG8UIKSgKFUn6zrUBo0AVlY9eapEXioGx3PahnItsdcMybtemWXXwyqGsWn09vHbNMEh57/qQP/0dp2vDWy2zql9/r8OPfv6ZY3ufaTRpVkiSVOC76qHqOyZjUzFo+uOY7UHEYtNloemXNjZqF6BrGmkm2O5FqqVpq5jjNC9o1V0KoRYTpqEWJnXf5tMvLLB+ZYhGQZwpf6hRmNAJFLOoXUu5sFQlST3GQUaS5zQrVmmnYtDdiYjSQvlJ1T2QmlJLC4HnWlRdpZx2LYNhWhAl+aw9lReCqmdiGhUWGu6+9txOPyIXyq34YumycFIwDJU4mBdiphfxbIPuKGEcqtCvZtVW4VxtnyDKWGz5TMKMuqmxMl+h5VkYpsHVzoQPtkZEiboHm9U6blkwRSZxXA0hJLanUxRKJzMOUmzbZHneI4xUS23aery4WCNKMr55ecBC00U34CNPtbAtQ6UnFooiXfNMxlHOZi9Ulki+2pWeX6woWneYEic5aSbwPZNLy/Ujmzs98UUEuCmbeZrsB9Afx3SHCTXfQtc0NrsTOsOE+dRjru6ydrFJbxQTp4I4SfFdC8/18ByVTFgtb7DeOC0LiCBOclbna2x0A2Q5FwmTgqxQDCktUsJIpVexyQupolDTgj9c31FbY1FgYHB1d1L+DQZSFJxfrJFkgo1OQNWz0TVldb87iBkFioK8Ol/hmeU63XFClKiidhRUv3vF6+92kMCnXrifKJzjxcvPzfOlV96jM4yObZdU8y2StFA01z0iQ9PQOTdfYVjawisTTklnEBEkiv1zcbGq2i9Vm81ugG5obHYjhIAkUZY6cSIoZKEe0IV68L94qY3j6Oz0YwZBVlrqgBCCOBMEcU5nkFD1bSZRimObeI7F0pwSES7NVYjjnMWWR72iXBwGYUKjqnzXWjWHxXaF3jghTnOCWLWtlAGohmOZ2JbEO3DPTRsCJ5kpMoWuaazOVdSiylKzwivb49kcpFq6aa/OK92UaRjMt1w2diekRUF3kDIYpep3g4wgSklyQW8UYRuqHZgXaudXq9gor0WNMCpmccS1ioUmdVYXqwRhgaEr/cn714dEqRrcd8cxlmnQGSbUK8pmvl5RZImlts9cXXUTfM+irutlVgi8tzFESuiOYxq+TZjkXFiocVS3/FkRQW1np5GYU6vqds3FNDXeutwnzQuGIay0PLXSzwomYcpHL7XwHZNv5oLeeIyG6gEPxhndUYLvmbMYXimhUXEIooya72CaOi9eajGJMi5vjEBXthdZJqh5JqZl0KzazLcqVGydMC64ujvh6u5YaVFMjZpnU3ENHLsUEZWr0nrFIknVYFCIgnbNQ9NUsZxav5imGtBN21/TIiKlUsWehAni197eZb7hcn7heHUo94PPvLjIl155j9//xhY/8rmj3ylt9UKsQ4w/96LmWaVATJlzfrg9IcsEy3OClTmfzrBM2avYJaMq5433u7x1ecA4SpV/lmuQFpKtbkSr5vDB9RGmrswS8zRnICTVkrWla7oKKnNM5uqOGq5Ldb0jNTzbRJQLGt8xVSTzJCVMMvrjlOW2z8WlmrLc0DXlJltINnYDZWLa9FiZ81Xu+wENzlLbf6jaHF3XsHV1D/RHCZqmTFgNXVM+XIXk8tYYz1U5JHFSkBaC7X6Ma2fMNVzqFZu5eo0/emuHXqASRE3TQBSS4SQlLQrlztv2MTR4/b0u1YpyBK+6yn+rVXVZbBgIUbDRjZRi3VWfj2erWOx3rnapVRyaNRfDMBiHSRlSJri4VKXqWrP2p7K9twiijLmqM9Pl3G92yGF4ootIlgsGgcpI1jQ1pFwoh2dqi2jRrKn0t5pnz274hZbHRifgnav9mX13Xgh82ySIMsZRQpIW6gFvmWz1QupVm4vLNVzHIM0KBpMUU9PRNdULTQvFAKlXlSuwyJVyXNlSeFzbmTAKE6QES7iDDAAAIABJREFUzzWYq7mYhs5co45n6WwPFaOk4ps8s1rnnWujciteYBgGz6zWlRK93MI2qipXwtT1fTfuVk9lKFRc61i9s6Ik580P+3z3p849NOv522Gh6fGRp1r83tc3+eFvv3TkLK28UJket8sV13WNp1fqTKKMzihisxsSZBlpXuCYxoxV16w6KrwsyLi6PWaSZBS5sum4MO+DrjMOMvqBSs5Tnm0WSZYTx8rnzXfMsqBXGYcZmqax1PQQUqDrOivtCq5j4tkGb13usz2IlDBX19ApWzo1de12RxFFeT0HSY5l6YSJ0kbc6uFlGvpDYWUdBtc2kFg0qw41zwZNtV6L8jPLCwfFcpbUXIvVeY+K7/DUYgXTNFi/Yil333LgnmWCNBdkQjIOE156bo7BSDFCs0yw2HRp112GQUKeCp66UOO1dzqzWczaBYe1iy2yvGCrp8xbdc2gVVN2OY5lMJjEjMOM3X5M1bNZavlKt+OY1H01F1touiXd92i7Dk90EemVAfX9cYJpqpDIMMkphMAwNLZ6IavzFRYadWxLnaqltk9nFDEOM4Iwo+9kLLQ8hFCrd6lp+K4ScoVJwXCS4DkGuq4x33S5uFjj97+xhRCyzBzRObdYU31rQ6OQKO1HJuhNErqjiEmUMQzi2aDfsnSs0o774nINXdOoVhLeuTogKwS7g4TnztWV8V4mGIUpq1T2ZTuYhs7SATbMNG8eVEE9Trzxfpe8EHzLC6eHlXUQ3/nSCv/Hr77J+pUBH3nq6O3hvTLy9k5QrU2D7iAGKQnCnPc2hqzMVWa97lGo8kiW2x47Q5fxRK2C5xs+Vd/i6k6gyBuGUUbcGlQ8G9sq6I1SikISJgVRXDCJc0Zhhq7D+cUqc1WXC0s1FlseX39f5ZZoaKRCsFT38Gwlcr20UqM7itE0Ncer+ZZaEJVpm5b18GIG7gWLLRXg1hnG9MYxdd+mUbHpjxI8V5lcJrkS5DaqDt/x8ipIjZ1BxJXNMUGckeQFvmuwdrHJ1e2Aa50JRplGaBkGtaqt0gmrNrapHAWiRLLZC6lVbRzbUCFVhsq0X2orq5lxtK3CrJC0ag4ffarF6+91GYWZ6mQUgv5YWc/XfAvXMY99xvREFxHDUElmc3UHxzbJc4HrKjfUrV6AZd0Q7nmOyXJpFFfzbLK8oDtKeOF8nf5YOZhWfYuiUGKit8KUpu/QqDjUfJNCgG0ajMMMz9GJU+Xv9tFLbcI4QwCa1HBdk51eSG+clC7EOaMgxbZU6yPOBOMgLVkihRI/lcyqSyt1+uOYNCtwHYu1Cy06oxjLKJ1D7wBN02jXXII4O/ZV4Vff3KZRtXn+/MNXqd8K3/LCAp5j8ntf3zjyIrI6d/sWXmcYsduPaNVdlts+pqEU/cOJmq29e22oVOuoXZ1pGPTHMaZh8PxqgyQXVD2LNCtYaPmMygFxkuW0a1WiRODaOoWEimsyiVQ6YloUGLpkEufM1V0mQUrFtflgczQz+ctztdjwy8WRpmnKgNG3QdOI04K5uksQ5zQqKuf74G4zL1T8s3uXhfQoIaSczSUOg1YmHKa5WkhFacG5ujtzeFAakoSskPiahmkYswWYqav7/LmVOu26w7MrDUZBxqVltaP82KU5mlWHwUQxKqNU2Zds9ULSNMd3fYpCUnFN8lxZw1zZnoCE5dIbr+6rUKpPvbCAqeusXWix1PboDGJ0Q5Et+pOYq7tj5hoeq3OVWQdCSFlSv8/aWUeCubqL75hYpnHoDGAYJIyClIpnKrpukmOZhsost0zaVdB1ZZ+QF4IoyXEsnc3uhDDOyQplV2AaOr2hEnh5jk6WSSZRSpEr6xND1+iPM2xTY7Hts9jyqVcsNE1nMImZRIXqwWYFtq1sGXIpWZ2vsNj22egEpY04ZLlE1wW6BquLVRZaHrZp3PFGLYSYrZSOgvZ3O4Rxxhvvd/nuT51/KIPUu4VtGXzbR5f4vTc2+be/72hV1LquHertVgiBBny4OSYt82zmGy47/Yg0Lzi3UOG9jRGGoXN9d0xRQJKriIIwytkZRMRJznPnGyw1XYTUmIQZhq5zabWGqSvDvihOMUydz7+0SpAoe5xRkFFxDXyvQhTnjMKc3VFMlOQ0qi6arjFfd3lmpUYhlQhusxti6CrsaDhRQ+Lpw/Z2C5GtXkheiFI1fXL6kDjN2e5FaBostz0GQUaWC+Yb+/NzTEOnUXEIk5xW9cbfESdKhb7dC9npRUzCjA83Ryy0POabSoO1Ol+lN45pVF3QNOYbLr1RzGK7QqPqlq7fPt/1SZv3rw/pjFIqrloQqAWfSVLopLlgtx+pz7obUAiVBZJmBU8t1Wct1lbNQdNgoenj2Qa9UUJnGCk9EDfcyaWUbHaVALLqWjNN3IPiiS4imqbNojIPolVz8ByDhYbH5e0xWZ4rS2VLByHxXKu8qTyW277yx0lzxmHKVjdiFCQYusFgnDCJcqQmmUQxQtpc3Z4QpzlxUjBJ1PbY0BVLqzuM8GyTZsWl3XRJEp9vfNgjCHMsU+2SWjWH+YZiY5iGPsuiCOIcTZMU5SpU25PzPkWcqmyDvWysrV5InObUffuO5nNHgT96e5e8kHz2o0vH/l4Piu/65CpffvU6v//GJt//Jy4e63up6ONELVIcgyxXrq9SqmTBJFUitaeXa4zClHGQYpo63UHCOFBeV+MwwzZ1dgYRVd+k4ljUqzamodEbJei6xkYnIM0KDCnZGUS0qg6NqoOhK3bVM6t1JnHKhxsjklQthsI0Z6sTMgwS0ryGa+kkmZilYRZC0h0mDMocmttZ50gpKYqpp9PJOiREiWJASqk0IVMW5t78nEmUEZa78al+SpT5J+9eH7KxGxBlquVtWUrE61hqMXlppQ5oao4Sprx7fYBrW+XswuTd6wOudwx03ZhFNiSZ0pp5jiK+vL8xwbL1sl2maP/NisPOIKLimliGRrViIYREL7spe+9bw9CQQNVTxz8VdEoJWbm7mratjwJPdBG5E1zbLFdLKg1uMElYaHoYprqRCylpVtWDN8lUHoAQinZ3bVcipKI5allBlAl0KRmHBa2KQ+QYDLUEXdOVyNG1qPkmFc+e6Qccx6DimKzOVZh4WcmacWeq02mAlmFouLZFs2KTJMruZO8CPy/7pINxOmPGrM77WKYxsxgHNQ86iUioP3hzm8Wmx9MrJ6sHuB9cXKrx3LkGX371Ot/3mQvHaoMSlq6yaS64tFwjzZTCWdll6AyDiJpvousGS22flbmKEqHGOb1RRCEFq20Pp8z26I4SdnLVErNMxY7qjFRAWZQVOGiMQ/Ww9BwD39WZb6gVdVso88BhkFFIySRK2A0yRF/g2cYst1zZhRTs9EPQlJ3+dOV7K2iaxkLTI0wyNbg+QVQ9iyhRcdnNml3av4gZuURISXcYI1E7rfNlHMJuP2K7H9EdJlRci5WWB62yWEp499qIQZDy3LkGF5aqbHYnymMvKWhUHZacCmlWsNMruNyPCeOMFy81+XBzjGcb6GhUHRN0Dd9TFvyObXBxsYrnmlQ9i8rYRAgQUrDQuOF5FcbKbqZS5sjHSTHbNbfr7uyaVbERLmGSzwrLUeCsiNwBaVbQGyVkuWCh5c6sGkRdccilkAwnicpXEJK8ECy2PCaRSjy0TYNcCJIkU8FYlk695vBMo0F3qFoUVdcmSsus5qxgpe1jWzqdYcxGVjDf8Li0XKfmq91Flhdc7wTs9iM+3BxT8UxeuNBkqe0j0XBtY0YEyHLB9d2J0qRItUpJsgLDgNW5KrquKepxnB2av37U6I1i3rzc54f+5KVTyco6DN/9Lef42V99k29+2OdjTx9fmW1WbfpjZYxX9WzlkT39WU1FH4NqE1mmTsU1WWr55LmgVXOYRIrksTpXYRAkvPFuFzSQo4TnzzfKtmmC75istqs0qg6FUPT2Tj8izgs6/YQ0E6zMVXj2XINRkLLTj8gyJWoTUq3i01Sg+zrrVwZc253g2jpL7QpZLm6KGDgMvmvepM86CVjmfvfecwsVpLyhT9HLCN3sAM09zZVQsl1zaNVczs0rMW8UZ3ywNVZJqrmgKATXdiZMohzbUvOhjd2Aum/x1Eqda7sTkMro8tpOwO4gouIaCKmR5AWWZeDaSvm+WBJ2bNNgZxBhGirbpebbBHHO5a0xpqlmIFJK3t8Y0Zi2o8vF6cFFz3G0q8+KyCHIyzmFpmmkZRxlISSLTX/fB9AbJ1zfVayXC4sVRoFa6VdcmxcuNBFSsNzy2RqEaGiMY6Vgf/58k/OLVTrDqBQqFrzz9hBD1zg3V+G5C022uyFZHgOSKM33eSxpmoauaYyjjCjNyIWaxzx7rqH60FIZ3Tm2gVEaSAopldmjqZdWKSmjoM9C02Oh6Z2Y7cnvvL4BUjGfHhV869oiv/gv3+HLr14/1iLiu9Yt26vK50g9wKWUilkYGSy3fV56do4wybFNHcvUMXSdcZhS8206w5jFhpr7XVisKmJIxSKIcixL4+r2hM3OhKKQymixpKZOlfGLLZdRkNKs2YyDXOWKVx2kkFQ9k0mcEcQ53VGpRwKu7Iw5N1/Z1zKVUumWQD3ITssCQit1YXuxMlchyYp9dOT5hss4TGf2QlNMtVc6StTbGURc2RqpdqGuWGuuY9CbJHi9iIbvUPNtXMvg7at95mo247hgoWHjORa2ZbA8p2ZEjq3YWZvdgCzPMUu9maZpjIKEnUGEEEI59QpJfxTPIgNOkrByVkQOoD9OGAYJjqVu0KpnzbI28kIwnCSzmyAIUzrDaKZOX52v0B1F9MdJSZ/UZ8M1z1bWEefmfebqaompa8p+vjOICSK1U9E1MHWdhaZHUuYESKEYOK6jdCdmmauc5wV5ViBQug9QLbidfsg4VK93fqFapjWqgrI6XyFMcnb6EXVftc5axeHeTEeNQgh+9+ubfOzp9onmtz8oLFPnO19e4de+eoXeKD6RudFBaJo22yleL10KkqygEBLT0PEdxXIaByndUczOIEbXleahkJJG1eJ6Z6LyLHKVUbPTD4kSZTQ4V3fQdY2675SUVoedfsgkLGjVHM4vVgljNaAfTBLOzVfJC8lSq1Ky+ZxS66AcgE1Dn7WCQM0ZpsFvWmnBclqh69pNose9LspCytKFW7WcludUBs/7myO2+4GKHa5rVDwHTdMYjGOStCjbdyZL81UqrkmWCz7cHDPfNJlvOGho1Ks213bGmIbOJMqo+Rab3YA4FTx7rk4QZ6VRq04hBLapUg9NUyeMM+DmYz9unBWRA5gO2vbeoIah0R0lINXqYHoT2LZy9wXVezR1jVff7pAXBf1RwsefmSfOcl640CxpmDp2mVWwO4hmlhZpnrPQ8Kh4FheW60rxW/r5+K6FoWtc7wZs9UIuLtVo110sU2dlvoqu6+z0I6KkYHcYs9hU5nHbfaWIPrdQUYrVkr0zpXJWXfU9zzFOpIAAvPFej/444Se+7/kTeb+jxBc+eY5f+8oVfvu1jWP107obNGsOg3EysxMZhSm90olaCNUjT7OCnb7SOcRpwWIzIEhyBpOUKFbJnEGc4XsGrmny9Eq9tDgxaVYdNfyWkvmmi4bGUttjFKb0Sx1IngvGUUarbvMMDRpVVXw6w5iKa9y009jLwjst9vr3i94wVhG43Ah10nQNQ1esrkurNZaaPh9ujZCKvM8kznn93S7PnWvQrLlkWcHi1NAxKSikZK7uIoRkHKls9qxQVN1hkCGEpMglKYI0T5mru5yfryKkpF51GAbp7Ho4qP86bpwVkQNolX3p6QeSZir7Q4mx8lmLCFSYlaYxE1spCrBGXih/HQ2JU84m9rYpwlh5CiWpcv1tVh1efKpSctfheieYeW5ZpkYQZiRpQb3iEMY57bpqD+i6xkJpxWKa2iwLRAmVTKSEolD0xbhsd+i6oq7WfJuTlvn9xr+6Qqvm8PJzp1dgeCssND0+8ewcv/P6Bl/83KUTK7x7NQ1CKosa31EW4lGSM5wkhEkGlLbyaFQ8k1GgYWiqLTU209miRArVFjUMqFcc5ps+DV/10JNMpWFWPWWb0a67BFE2i3vVNI0oVj5rnm0SlXRZx1bzmdX5CgtNjyjJb/ajcy20prpvHnQWkhdCmTmaR7ObkVLl/91tcZvSBqYsL4Cllodj6cRpTl4oLYYQ4Dg6YZRjGBqOZZDlkigtcG0d09SpVWyMMhBPdTyg5itCT8010XSNrh5TKxeOWSHUM8dRupxp7lGcqNz0LBc3teeOG2dF5AAO9qXN0iDRd5WfVr1iz26CuYZLs2bPLLylBhcXlbHihcUqlmWQZAU7gxDPtsqBt4FjKVquZyuKX5wKdE3bQ5WMuL47RkjVn203XIwyW7tZcxhMEq5sT8iLgoWmz2LLJUpUWl0hBHXfYmNXYpka4yhnsenxzGqdIM5LE7yTN1t8f2PEW1cG/Jvf89yJPYCPGt/9qXP8L1/6Oq++0+EzLx5/6uEkyugMI6yyfbkz2Gv7rrQjErVbtk1D5YP4Fhu7AVXfpl51WJUwV3NYblfojmLCOMe2DYyyZfrUcg1D1+mNYkZhqphg5SLJ0FWexiTMFFvIMlidr6j5mqGz0Q0wdEUjn36mKrf78If7UQzSVYyuCnlalNBqPZjvWl4orYsQkoWmd1fHOFd3sAxFwZ0O301Dnxl1bnYDAC6u1GjXXAwd3vpwQBBnnF+oYJk6aSqYxGqH0a67+KXfVZTmVFxbschSQb1iMddQc8tm1eb9jdHMwn2+4RElBVd3xkSlhk3TYKMTsDqvdkjThYdt6sc2hzorIneAcvj09zE49mJaQLrDmHGUkuYFTy0r6moYq6SxrV5Eo6JCfs4vVrFMg3MLKuJ2p6/EYXpp9JbmgkkcoGugoeE7BptlXrVfUv2u7U7I84I4K8jyAtdWLaxBkBLEOUttn4WmpxyBy+PUNG2fWE6Ug05D107Es+j/+cplfMfk8y+vHvt7HRc+8cwc8w2XL3/t2okUkSBWO4ysEDOdCCjG4F44lrFP46CVZp5qdqez2HIxdG0WaZCkBfOl79UUpqFT9Wyqnkl3FOPaJv1xQn+kWjdxmnNuobqPsXRuvsJi0yPNBZ5zMgsTxYJUe4Gj0JiotrV6ncN2UIdhqqe5FVo1h/44oVFxZv/uWz+ygKZps+fEJE5VyJSpSBAS9bzwbJPnLzTo9COiJCdOVXvq/GKV/jiZtds7A+Uu3R1Gs1C9hqXa30LKshUPW92QNC/wXYvFY5pDnhWRQzAK0tKi2WSh6R3K4DiIuLyxh6EKs2rXHZbnfMI4R0dtNz3HVDG1mroQDR1W5nz6pQis5lt0hjGubShVqWeVbS9BkiYstdWqy9CVwKhZ0g1ty9gj3lIOqs2a8vrxbzFkG05ShoEadJqGfqzDuGu7E7729i5/6k8+9dBcWo8Cuq7xhU+d40uvvMf1TsC5+eN1H677tlpFWkaZuukyCTOqvlq1LrU90kzsWxx4jtpJhLHygMvyQkUQCMlCwyVNlc14bxTRGyn183CSYho6rbqatZimaq84lqKn25aBRO0C2FMrNE3DtowjtdC4EyxTp11zibPiSIbznm3i2SpRsOYfjSOBa5uszKnrXErJTj+iM1R5865tMpwk9EYpuqaow7XSnmYSZ8iqhhkXuI5qaUmpdGedYYRjKUcJxRhVBcF3LQxDiZUXGz5SU4sKp5y9Tq1b0mP0wnt07+hjhFoZyHtiLrVrDr1RTLPq4FoGlmlgGgag5iQ7/ZBLK/WbipGh6zP7gVGQMonU7kX55FTZ7AYsNNUso1Gx6Y9j+uOYRtWh5lmzlc70AeO7SksyDjPQoDOM8V3zpq3s3i+Pu4f6S7/9Pq5j8q8fs+L7JPAdL63wK7/3Ab/+1Sv85A995Mhed7qq3nuteY65j+E0FaVOYegaQgiyQuCUNuZT54Plts9bVwbomurdF5nSkrRqDuMg453rA9Ks4I/e7tCq2Eo4W7MxzRt6iaWWT7Nqq4JimydaLG6HesWmjmo1Pyh0XWPpCGxXsrzAKN0j9mISZVzvBsRJTpRmLDQ8hJq1Y1kGIHEd1Yp0HbOMLDZJc9UpqLgG61cHNKsOtqkMHZGq9S2kxLENnlttYBg6jQPUaV1TSvYwzo+VDXdWRA6BouUlzDe9u+7fKxV4BdPUy6wBFV06nKQzjUZeCOIyFe4wuLZBf6ws3Wuuha5rtOouV7bHyELyztU+g3HCZj9kvuHSuNje87vmPosTQ1cDfsPQDu2FNiq2Yp7pN1ujHCXevjrgtXc7/Nh3PXOk3lMPC3Xf5vMvr/LKq9f5ke+4dCSBVVFJuYYb1t53g+u7Adv9CF2Djz8zN7uulC8XaEgM0yBJBaM4I0xzzi1UqFdtPMckyZRPV5IXzNW9mV3JtL+uqK4WnnPjcxtOEpJc5Yw/jCCz04jOUDlt26YxEzIqB4sUIVRExDhQTsmbeYjvGniZwULLw9C0GftN17RSZ2bOtDr9iXIaz3M5i1CeFqqN3YDOMKIQagGQZMVNzKy6bx87nfqsiBxAXvafmzVnNmC8W2jl6g0Ulz8rBI2K0otM4tK88TZ22HapTZnmIIPSrYRxNmPNxJmgWXVwLJNm9fCLY2o7YegaS63DH3IHZyTHASklX/rt92hUbL7v0xeO9b1OEj/42Yu88up1fu2rV/jz37/2wK8XlzokUA+fuy0i4zCjN1I6pTC+Eeg033CRUtIodSW2aaBrzNTmpqHz8afn6AwjlloeeSFYavlKJQ+3FDwmWTHTeiAliydMJX0YEFLSG8YIqQbghy0qp7EJaV4oPytdozeKZ/5Uq/MV5hsekzhlMEnQdZ1nzzVmmR+HwTQ0lts+oiTKpJlgue3PCogsZQJRmjOcpDSqNlGSKyPWE6ZnnRWRA9BLM0RFr73/7fJC02MSZTOR0lRJeqcPeLlMeJveyKahBu5SwkJD+WaFUc5i20PXDz++YZDMLuAsl1gP6VP+ypvbvHttyL/7A2tHmqT2sNGuu3z7x5f5ndc3+YHPXnzg3UjNt0hzJfqr3sa48CDqFYvKxMYytH2Dbb0UJq7MVSgKSbuMTXXtG5ogXddYbPm4tlr1Nm6xINkLo7x+pzvrJwFhnDMpCQ5WmB06UG/XVKCUX3YPQM1ukqzA0HWqZbS2GynPMbdkdd2JLeXYBheWaowC5T6xt4OhaRrthsNwopUKeHOWzHrSeKhFZG1t7S8B/1755d9dX1//hwd+/grKzVgC/8P6+vpvHfcx6ZrG6rxPmokHSgCzLYP2AWvpu/29vb3nhaZHzbNK8Zeyv7jTheJYBpMom9GGHwbCOOMf/9a7PL1S5/MvPbqMrFvhRz73NF99c5svvfIef+VPf/yBXut+BWI13+biUhXTUP30vXAsg3PzlUOjaPfiVj5K6vrZvysxjRuxB8fZAj1NsEwdDWUd5Nyii3CYD9hc3aXiWtiWTpYJktJ+/V6jD6Z6ncNwfqHKQkMN4R+mgPNhXwm/ub6+/rNra2sW8BXgHx7yb753fX09P8mDMnQdzzkdWgZVCAw2OoFyFi0NGW+Hmm/j2sZsVwWKLBCnRdleO/5V5JdeeY9xmPKf/vhLpzoz5H4x13D5wW97il/5vQ/4rk/2jyX58E6YOumahwx0gfv+nPcq4Beb6n4YhSm+q0SOBxdEe33dHjc4ljEzabzVgmwwSchzQbN2g4SjlUF2eSHY6oVIJEla3Nbu517Po6Hr+O7Df0491CNYX1//sPzfHDiMgyaAf7m2tvaP1tbWTsKl/KEgywVXdyZc2R7PtAD7f65s5tOsmClk7wQlGlMfb14IumUUcG+cHOWhH4pX397lldc2+P7PXODScv3Y3+9h4Qc+e5HFlsfP/fM3Z5qOk4Zt3Tlw7FaYerMd1J3svcYkanAcxMrjTez5oZCSzW7Ale3JLA/8cYRp6LcsIFGSM5gkTOKMQTkvUtELyczafwp5m5t3HKZc2Z6w2Q1u++9OIx72TmSKvwL8s0O+/2fX19d7a2trPwH8NeA/u9sXnJur3vkf3QXyQsXReq55bFv44SShnqsLx6s6Mw74FFe2RizO18gLwQtPz2HeYz+6EJJYQFEoAdrCMSbJbXQCfv5ffJOLS1X+zOefPbb3OQ1wLIOf+pGP8bd+4Y/42V99k//oz3ziVKnxwzhX9iD+4S3Q7V6owsyijPOLN+6Xum/NLHgqrsUkylQCp6Gx91XyXMxmb0Gcn4ho9bTBNLRZu8sqP/tumQY59dZabCkz1akOJSxNFKfRDqDahxIVsTvVBj0qOJEisra2tgz8owPf3lpfX/+31tbWPgv8KeDfOPh76+vrvfJ/fxn4i/fynt3u5ND40XvFNPVPQ+PCUvWBe49ZroZte1ePeSEIJmqV5xmwm+5fwQwGIUmmFO+9XnBfrQNXh0xIyHN2d8d3/Xumqd+1tcT1TsDP/JPXMAyd/+BHP/HQ5jEniadX6vw7/9oL/P1fX+f//Bdv8ZM/9OJsB/gwkaTKbgfU9VXzrX3tTWA2JD94OWmatm9WstD0SNIC29o/DLZM5R6cZIpB9CTCKmm9eXEj2Org/bnXAThOVYQxqMXddFBf8SziVPlfPWr3zYkUkfX19S3gCwe/v7a2dg74n4AfWV9fv6mPs7a2Vl9fXx8BnwPeO+7jPAzy4N7+AWrIcJLQnyQYus7qvD+7oacDy1tBpcDlePbNosE7QZZJbUkumKs7x9K7FkLyO69v8E9feRfLNPjpH3/52CwWTiO+8KlzjKOMX/6d9xmFKf/+D3/0SJPjHhSTKJulYE49lUBpUsIkv6WrwRS6dsNeXAjJ7jBCCMl8w3siaL53gmXub3fN112C0ifvbnameSEYjJPSzPVmB+S9GEwSgiijUXVOje7qYbez/jqwBPzS2toawA8Ca8Cn19fXfw74rbW1tQiIucedyFFhoekRRBmubT7wgHhqjVIIUdqT3N3vmYbviZlEAAAgAElEQVR+34KhNBMziuIwSI+0JdcfJ/z+NzZ55dUNuqOYFy82+ckf+siRCPAeNXzx2y/RrNj8wm+s89d+9iv88Ldf4vMvrz40mxfHNlhsKofnKM1nGoIsF7MH2/1cV2GiXgtUH/9hZKucdui38aNzbXP2uUzbW2kmZrOmJC2o3aIuCylnc5fBODk1RUR71IY4d4FLwAdH1c46SkwHmY5lnFiSoBCSjW5AXgjadfeeHxrTdla3O6EoHU+/8UGPP3xrh3evDwF48WKT7/vWC3zq+fnHlqVzt9jsBvyD33ibb17u41gGH3+mzcvPzvPixaZyQNhzPk/q+sxyFfFsmbemi97La212Q6SExZb3UL3QHsa5PA6opMpkdo/erp01ba/XffvIC7iua9NZ8tPAh3f7e2dF5AmALLOx76dXP71R/6//d51feuU9RqHa1ZxfqPKZFxf41hcXWZk7XiPCRxEfbI743a9v8uo7uwwnKZoGf/0vfIZnzzce+QefkBJu4Wp9knhcisi9QM4ceo9+bnK/ReRht7POcAtESc44TPFd64G3rZqmYTzgDsHQND72dJu1iy1evNg864XfAU+v1Hl6pc6f//4X2OgEbHbDWXb2vSDLBf1JUsagnszu9U7QNe2BZoNnuHv0xwlZIWiXGhRN0zCN03Xyz4rIKUV3GJMLQZQUVA5x4T1pfOfLq3zuEysP9RgeReiayrnf68Z7LxhMlHdaiLIteVKU4mdQC8lpXIMOM7fv04ZHi0v2BMEqLRbMY0wkO8Ppx9SIU9e0U6VBOcPxwzSU5QpMbeNPJx7HZY0H6uH7KPdJV+crZIXAPKApOWkYxo1i9iifz9OCez2fc02PetVB1zkV+pPThMf92jRNnUurNYS4teXKUWLPc+aetjyPYxH5AkCjcdazP0qcnc+jxdn5PDqcncsjxxeAb97tP34ci8grAP1+8EisTgaThEmkGE/tmntXGc8nCdPUaTT8Bz6fp/3vPCkc1fk8w9m5PIjOIJpp0Rab/m2ziw6DrmtTd4pX7uX3Hsc7OQKlj3gULixTV1bRmgaGzqk75unxPOj5NHXtVP+dJ4WjOp8PijDOeW9jyPmF6olplo4ap+VcnhYYhk4apqWr8wPdY9G9/OPHsYg8UvBdk/OLFTS0h867P074rsW5BQNde7z/zkcBl7fG/Mw/eY1RmGEaGn/hB148Y949BmhUbCqueVfhd0eJs0ndKcBBQ8bHFabxZPydpxlRkvO//fIbmKbOX/2xl3j+fJOf/+ff5I/Wdx72oZ3hCHCrbJnjxFkROcMZniD8+h9coTOM+ctf/BiffH6e/+TPvsTTq3V+9lffnNnYnOEM94KzInKGMzwhCOKM3/zDq3x6bYEXLjQBFWr1V3/sJZpVh7/zj1/jD9/aoT9O+HBrxDfe794UrHSGMxzE2UzkDGd4QvDlr10nSgq++O2X9n2/XrH5r37iU/zP//R1/vd/9o19P6t6Fj/9517m6ZXHN6HyDA+GsyJyhjM8ARBC8tuvbfCRp1pcXKrd9PN23eWv/8XP8MZ7XfqThEbFwbZ0fuHX1/l7v/QGf+svfRuOfXpV02d4eDhrZ53hDE8A/vjDHt1RzHd9cvWW/8Y0dD71wgLf8y3n+fTaAp94Zo6//MWP0R8n/OYfXj3Boz3Do4SzInJKIIRksxtweWtMGGekWUGcnvWjQVmPh3FOIYT6Wkg2OtNzdXaO7ga//doGNd/iW15YuKffe+58g48/3ebLr16fnf8z3B5RkpPlN58rKSXbvZDLW2NGYfoQjux4cFZETgmSrCDJCiSS7ihmoxuw1QtnKu8nGTv9iJ1ByFZXZYYnWUGaq3MVxGfn504YTBJee6fD5z6xcl8mjl/41Dn644Q33usdw9E9XuiPE7b7IRsdFQS3F9OUSYlkEj4+1+1ZETlmjMKU652AUXDzyiOMM65sj9nsBliWjmMpMZ5j3RhVHbwQn0Tk5aouLyRSShzLmJ2ru8layXLBtZ0J13YmZHmx72e3+3weF3zlj7cRUvKdL92foPDl5+aouCb/6q0zLcmdML1fJZKi2K8YNw0N3zHRNQ3L1LneCeiN4ju+ZiEEG52AK9vjWTTxacJDH6yvra19FvgZoAD+cH19/af3/OxvAD8K9IH/e319/e88lIN8AAzGCUJK+mNBvbI/mnYcZQgpSbKCPBezhEApJYOJjpTyvrPVHyfMN13GYUbFtdA0DU3jntIUwyQnL1sxYZzTqN4YEPdHCZLDP5/HBV95c4unV2r3nUBp6DovPzfPa+90yAtxZkl/G7RqDpoGlmncRETQNG0W5rbZDcjygiwvqPkWlnlr0kKSqp03QBBlDzWS+DCchqvhMvA96+vr3wksrq2tfeLAz//z9fX1LzxKBSTJitmKwS0/cM+5+SKpeVa58zCw9+QFaJpGq+bQrru3VHgHccZ2P3ysZgLpnvO2F65tstD0bmnaGCU52/1bt/58x8TUdUxdv+k1PPfWn8/jALWCnfDZjy4/0Ot8ywsLhEnO+tXBER3Z4wnT0JlveDQOLEjUXC+b7VT88rlgmcbM0v5WcG0T2zRIsoIwyU/dPf/QS9r6+vrWni9z1I5kL/722tpaH/gv1tfXXzu5I7s/xGnOVk/17tt1l8WmR144h67efNfiont/0bedQYxEkqQFF92bKZuPGrK8YLMbIpE0q849RcF2RzF5IYiTAt81b7J9sEyd84uHJwve7vN5HPCVN7fRNPgTH1l8oNf52KU2hq7xxx/0+Nil9hEd3ZOD3X5ElOaYus65hQqNqkPFszB07Y6hc7qusTpf4fKWQEhJZxidqnv+oReRKdbW1l4C5tfX19/c8+2/u76+/jfW1taeB34e+M67fb0ycP7YkRcCKW+ExkzClESoi6JZd9A0jckkoe6ZzDW8m373fg0JY6G2uZ5rsnAgerUQku1uQCEkS21/3y7ntCIvJBJZ/v/Nc6C8EKRZwVYvwnUMltv+rFjYpk5eCCZhymYnoHWPVvOPawGRUvLVN7f4yFOtB85nd2yD5841+OaH/SM6ukcTUZLTG8WYhs5cw8E07u7eml7ThVBXeVF+fS+ppZapk+YFzl3cz2Gc0x3F2JbOYtM71nTUU1FE1tbW2sDfA/7c3u+vr6/3yv++s7a2dk+v2e1Ojt0eOkmL2a5jseXNepUyzxFCksc613YnCCl578MU3dCoeRYr8xWStKA3Vhfj6lzlnguJrUnQJaYU7O6O9/1sEmV0hsrNOZzEtOvuff+NpqlPMwaOFZ5j0qq55LmgWdvfCuiPE4ZBwkYnACSWadCs2PjlLm6h6TEOU4SArBAMg2RWRNKsYHcQoesaiy1vXzrgJMqYRBk136JynzvC04z3N0fsDmJ++IBC/X7xkUstfuV3P2AcptSe0FndKEgJkpzuIGYUuFxYqt4y9z6Mc0Zhiu+azJfXqO9YJGnBTj9CSIlhaOhozDXcO846lud80qy4q0XhOEophCBKBElW3PIYjwIPfQm2trZmAv8A+C8PtLZYW1url/+d55QUvL1ISpqpRA3Hp2hWb8wzqp6lZiRZxjhM6U8SgigjKjUgeSEO5ZTfCbqm4do3t25AsZm2eyG9YYJ7ClXGUkq2Sr783jlGo2Iz13BvioENyzmJEGrXJ9H2xYVqmkbVt2eDTH9PQZhEGVkhyjnV/k5pdxgTpznd4Z0ZMo8ivvb2Loau8el71IbcCh+91EYCb115cucinmuSZQLD0DAMjThV11RvFHN5a7zvWuqN1PXVG8VYppqV+K5JmgskkjQrGAUpuRCM70I3crt7/iAqroWGhm0ax96JOA0P5h8HPoOafQD8N8BPrK+v/8fA/7i2tvZxVLH7rx/eIR6OqqtWFVJKav7hK9l23aXmW1zRNS5vj7FMHc8xqWgaRSGxLX0fi2NnEBHFOc2ac9Nw7m4RZwULLR/k6WzVZLmYCSknUXZHmm6r6tCfJDx7TpkG+u7NbBZd01id89Xqbk8R8l2TcZih69pNBTVOczqDGNtWK8HHbTfy6tsd1i429xXVB8HTKzVc2+CbH/b4zIsPNmN5VFH3bV640FDFYg/FfBJlSv8RZcw11M7ftg3yWGCX1+pmNyDNBK2ag+9aeLYqKEJIKndBVRdCMgxSDEO7I2uz6llUXPNY21hTPPQisr6+/ovALx749v9X/uynTv6I7h66rrHQvDHnkFISJQWWqe17yFmmQbPqIMvu2nYvpOJZLM/5+1YVhRCEpXhuHKb3XURqvkWaqd7p3hX7acG0kCZpccsCkuWC7ijG1NUD3nfv3FLTNA3jwE3j2iYXl6o33UxJWigqpqWR5YKdfsT5Bf22VMtHCZulWPV7P33+yF7T0HWeP9/k7WtPtmW8ZRosH6BL13ybUZDuW0wuNFzSio1lqvTSabciSnIWWh7dYYwGNGv2jK11OwwmyUzpbhn6HdtfJ1FA4BQUkdOEomyX3O/qvT9WH7KGxrmFyr7XMU0D09QZTVJcx0CE4NrGvt5ymgmQgMYD6UMq7unu8WuaxlLJl78VhkEy2634rnnXq2kpJVKyb8ZUCAnI2ecxpQQrymSBV7YITuqmOwm89k4HgE8+N3+kr/v8+QZv/E73rnaQTxJaNeemmGGtpO8XQmBbOp5tkmQFVd+iN4rZ7EyYxDlV1+L8YvWOs0tjzzW9d/GZF9PY6YezYDwrIiWyXLDZDRBSMt/wbnmDSCkphDy00OSFIM8FeSFvEmXVfIvBWLElgihjdzQmiHw+/swcmnZjNSykYLcXMRgnPHuusa/I5IWgN4oxdJ123UECvWFMISRzDfdUtq7uB0LKkhwQU3FNuqOELBc0qs6MpWWbhooB1TXiNOfy9hjbNBBCMAxS5hseF5dqxGnOtZ0JgyBlqe1zbr5SFhV1I7ZrDpap06haZPl+pt2jjFff6fDUUm3WWjkqPH++AcC714Z88vmjLVAPG4UQaNrto2WFlMRJjm0Zd3W/bfdCeuMYISTL7QqLLY+8EGx1E0ZhRhDnNKsOO4OQvBAUQuI7JkLC7jBC1zQWmx71ik2j6mCaOoauzVrgvXHMhxsjHNvghQvNh7KTfqKLiJASURaENC8QZb/psDZLdxiT5qVnk1Q7hb0rhzQrmIQZl7fHzDdcJmG2jxERJTkSJT7cHUSEUc4H8YiFlsdyu4IQgu4wYhxmBElGsyrZ7AQ4KwajMCVJldBIRemC6xhICZOy/TUK0gdiYZ0mTMVUrapDnCrjxf4koeJZbPVCRkHKZidkvuHy3Lk6r73fpTuMqXoWtqkTpznjMGO+7pIJVZDSrGA4TjA09bl7jokGFBJ0DfrjlHE4wXcsLq3UDn1AZOVnb5n6LRcSpwGTKOO960O++LlLR/7az6zWMQ2Nt68NHqsiMg7Tsn2qszLv33JVf1DvMd29CqlsTvYuQISUhEnGZicgF5LuMKHmmyzPVTAMndX5ClJKxmFGb5zw+jtdnl6pze7j3jBG1zWsMlY6zQoce3/LdbcfEWcFcVYwiTJatbMicmIohGCzE5ILQaumht9V16IQ8ib7izjNGUeKQjooKbPjKEXXNaRU7ZY4LZAoqqqh6+QH6cVlgdLQaNZcRmGGZerkhaQ7jOmPE8ZRxnCcEBcFUsAzy3V2BxE7/Yj/n703+bEsy/O8PueeO7/7Jntm5ubmQwwZGZ6ZVZXZlLqhGzUtkLo2SIgdEn8BQiyaBWLDAiToNRILYMmyBQtYICGhXjS01HR1dVd1VQ6RlhEZ4ZO52/jmO56Jxbn20j3CMzImj4jMrJ8UksUzc3v23rv3/KbvsNi27A1jAiEYFQmRDBDCV9PWuZeW83XPai2y6FvrAbGpOjplGRfxJw7jJJJ0naEzjvEgxljnbyQBxjiWm5ZGacpWcb5sEM4j0rQ27BUJq7IjjiSbRvXjBH/gp3HI04sSbS17w4QH96dsKkWrDA/P1ihtqRrNnYMBMhDUrSYK/U3bdJrzue8Ub37fePDJEca3IX7+aIED/vCt2Vf+u6NQ8ubRiPef/m4htOoeZaWtpVOWLHl1EnmR72GdY7VpCUPBpvQowBeviUAIZBDg8EXetW64f6tgvml562jUS57E/PLZqlek7jhbVJStwmpHGAaMhwkygKuVn04A7E8y7uz7BLY3Stk2ikjKbwx2/XubRLR2Oz2l61WNUoZxEb+yHYzCoK9MLAeTjCAI6JTm6WXJYtMwTCMGWUinLJNBDIGHo1rnCITg0dmah2cbkjjgj9894F4wYJRH+CLGsak75htfdcSJ5M54wHCQMB6mnF5uuVrXnF/XGGOYjTKstZwvKox1jIuEYRbtDmLnHBeLGoejbvWvZWp/k9Eqw3UPf9w2ijduDftRkiOOJNb5G0iGjkEaMcwjjLNsa8WkSDDW+vcqkhztZVSNolHajwsmGSDorOHHH1zx/LoiiUOOZxl3bw24XvvxX9XDfYNAUDbKXw/a4oTgclmTxpKq1bv9luphmcY6qsYwGgT9zubbl0R++nBOGkveOn49rObv3h3zf//Zk8/MWfhtiEESsq06hln0CRSfsZarZYN1jskwoW404PiL969YrBvyNGRaJORZRNNprI1pOj/yOpxmLDatv87qDmMc0yIhSyR5GtJ2mlGe0HSKsjEEa1+c1o1B4NifZBxMcs7mFapPYJfLmkmRUGQRs1FKkUc94dbRdOqVqg2vM35vk0gSS4ZZ7L07jGHbKLR1HO29vPCdrxtW2xbnBOMi3s2Yz+cVq23H+bziHDieDSjyiMtFzeWiZn+Ssdx0zMYpD882rLa+itiUHbNxzv1bQ87mFefziiAI2Bum1K1C4ji9Llk/WrLcNNy7VTAtPHfCGMti07KtO7Rx5GmEc37scxNCePy6Np7I9G0MGQja1jDftBSp5UwGlJ1G9mi3sG/f287vqU4vHY/P16wqTRpJ3joe8aN3ZsggYFV2hDLgrdtjykZzerkligJ++XiD1pbLVc0wi+iUZjZOmRQxHz1fIwPB+aIiEAGLTctoENK2Aabn/Nyw5x1uB8HslE9044EfTUQywFr3hRQHXmf87OGc792fvrZF63fvTfi//vQxHz1f8+D+9LU8x9cZ1nr7haCXIPk4wKKs9Y7XpbRlf5JxelVyuah4vigZZjHGWAad4a3box1oI5QBdw8KpiOfJAI8bH9Vtr5wtZan51uMhSAIKLKIPAkwvXrDoOeYIXwhmychVaNIoqDfjQouFjVCwMEk5WLhpZDkxvNDileQaOtW70ARX5WQ4+9tEgH8oTKMOb30C/XwY4euNpZ11THftBjrCCQM8xBlHOMi4nIZUPYjk03VUraK62XN1apF91V1HAe4m/FHEe9kEox1NJ2myCOqVnO5rPjo+RoHLDcdg0zy5HLLnYMBeSo5u1a02lDWiiQOOZymKOOr82dXJdNhjHN+nHa0l9Mqjzp68bU0nfFS1N/woRfKgL1xwqb2r+mDZyuCAG5NB1SNZn+ccmua88vnKxbrlufzkqtlw6bqSJKQQRYxGsSM8oiy0b77WlZcLmquVg0I2CtipJQczTK6zpJEkvmmRQbCk72cY7npCENBpyxGQ935G0wg+OE7MzalIo6CXbV9U0Bsa0Wa6J4d332rRloXy5rLZcOf/M17r+053rnjl+u/eLr63Ugizu32oZ8YQ+NRlIHwo+ubLmVTtjw8W7NYtzRDw7RIKIDn1xVNpwkCL/uu+9F0HEnOrmueXGxolOFwktEqw6ZSuw58kIXcvzXk7dsjNrViXXYc7uVUdcfJ4wVRFBDJgDz1k4erVcO29p3HYuPRjEksuV43TIqEpjMMjl5OIpdLz5SvW/1Km+QvEr/XSQQ8LO54f9DPQeXHvucZopEMiCP/s6utX3y3nWHbdP0yV3LnoEBry4fP1oAnGWZRwM8+mhOHkruHBVksKVtFkXv13nXZcbmsSWLJ86uSZ9cl+2O/nxECpIQ/e+8SgDgOaGtDFPoW+Wgvp6o1F4uKqlHM1xFFHu0W/qEMPBES77/x/LrCWEsah5/otr5sNJ2mbg1FFv5GdMhq29JqS9sa2k7z4w+vmY4SZqOMplMI4RWKi1RyOa/54NkaKfqEHEoCBE/O1wzSELeXEYaSpk+YF/OaVdkyyEOKrOB4f8DtWc7PHy85u66Yr1vevj2k6fxnPRslPLrYYqylUZZNrZCBYJT7z3Q2fvVrebHY+LYhuX720BtH/cFbr08kscgi7hwMfmf2IjfKu02rGRef3CvEkWR/ktJ2lij03ef7pyvmaw94AT+ZOF/UWOt449aQy3XDd+9OWG073x0IQas0m1rRKY0epuyPUgIhmG8a4tAvzmejlDCUDHPB/VtDgkDw80cLr+xQC75zZ8jhJKduNB+cLqg6w8E4xbkY6/xi/2CSobSHFb/qtXbafKWgkN/7JAL+jX3VmyqE4GgvZ5hHbKuOyTBhufVkH+scRRZxOM0ZDWLevTflX79/xd2DwksYOEdnLdtaE0eOs+uSJA6JVp54dDjJaTpDqyyLraJuNUkUYC383R/dolWaH3+4wBhDGAqECBkPEvJE8satEXujhA+frZhv2p4ol1Pk0W7xd8OFABgXMWfXFRbLdJAwGyWfeti7HmIrA7/E/7SwznE+9zuYqtXc2f/1pMC217GqO70jExrrWJWK4/2C0SChrDXzTcO0SNjWir0iQtyQOp0n0a1rxV9+cMXDQcwffWdGnkgulw3aOaQM6JTD4tUAykaz2Dasq26nUTYqImbDjHERU6wjdI/lH2QRnTbc+w17pDQOOZ4NcI5vHXDhZw8XTIfJV14ofDy+e3fCP//p2bdynPdFosiiXwvr75Th5NESbS1Hezn74wznLHkqUdowzhMmg4hVpalbxQfPVkwGCbpH8wkBgQx6QI5Cm4DRIOL7b+5xvij58BROL0tEIPjZwzlvHg0ZDjyIZjpKyNOQW3s5y03b7+oUHz5bs9h6cmOe+nFtqzzF4GCaIUVAGH7yczna8+fOVymH9NdJ5DeENnYnuy62HbNRyrrnIQDcv+WoasWz65IwDIjCgCKNON7P2ZYKEYDDstx2ROEN2ifYzV6FgKAXFUwTP6f8p3/1nLYztNoQyYA/enuPN24NuVq3WAfDQYS1jkhKnHXgHD/7aMnFouFv/eAWwEsOfn4RHPX7FMWzq4qjvXx3AFaN4nrdksSSg7F/fYt+h5P8JlYs/iZxPVT200IGguW2o9Nesv1gmtF2nuF/tOfx88ttgzLWcy4F4ASTQcIoj4nDkKrRXK0arlY1VaNZli3vHE8YDiLuHxZYawHB1aLh7KoiiSTOObJYgoDHF1sCIVDKkaeSG+3go5kXxcyTkKyfI6/LjpOnC5SyfO/ehL2xr/DO5iUCwa297FNe7dcf1jl+/mjBD78ze+3EyXfvjvknf3HKk4stbxx9e2TJX0fUne7Rl44n51uMdXzneIwxEEcepRcIwXy7wgG3ejHWycAngPceL3A9naBqPfx8te34yw+ue08gRdkoon7XkUSSVdlx51AQRwGdsoSB4K3jIUIInl2VSOm5Inka4nrnQyEEWluWmw4ZemjwZJi8ROwNAvG5FK4/S/x1EsHffOuy8/DZj8F7/cHWEr4wi9wbpVjnuJhX1J2hVZpIBmhteev2iLN5SdNZokhy/7Dg/LpCC4syjuEgJE98x3AwTuk6wyiPGWQRf/rTc55flf5kdt6P+Tt3J3zv/h7rWvH4bEMahyij2ZSaOAqYjhKenm+pOsXlCk4eL3DWQ2hX25YsDbl/NGRbwSANkdIvo4f5r+C/q7LrJVcsahDz4lTYfXJEDPhOx1jHIA25PRvQdPo3XpyhDDicZjSdxjm4Nc25MxtQtpoolCzWLUezAdta8fhsTas0eRYTRwFNZzi/rrje+JssCISX5C4F++OUMBQM0pAsiUgiyZ+dXNB1isu1h/Puj1KGWcjVuqXRhiKLEUIQSYlSipPHC7I45IfveFjsYtPy/tMll8saYyx/3qPI6s7j8cdFTJFHTIpvTyfy7LJkWyu+/8br31O8e8/rmP3iyfK3Polsa8X1yhOBb+3ln0A2DdKIg2lK01luBhZZHPFv/eAIpS2hFDtFXuscWjmkhDAKuFhU4Pw5kiYhsQwIpeD0ckOexVwuKprOO5tqHEr56cVbx0P2W8WzK0MSS6ajFAE8vdzS3Nx7WYQylkfnPoGEUmCsF3R1rR9jhzJA4NGGRR6xrRVxGHylqr5/nUTwiKmrZd3LBxQeYtdqxoOYbaXIEonSlqI/JLe14icfXTFfNdw/GhJJSRRKpqOEThvazrCpNFoZP0tVmiiSGAtNo3l8vmE0CAmCgKr1PIXVtgM8010b6xd81rHetDy52LKqOq7WDYM04vmiIpICay2RlBB4opO1jm3Vcb1p0MaPpKxz/OLRktv7A6bDhItFDTg21a/IiUUWsdy2xL00yziMdz4nr2p7287sRmVKe1x8FL6cfNdlhzbecvbFUeHx/oDFpuH0qkIEHdtSYfE3mQz8jsFqx2LTsSwbbk0dxhiezyueXZWkcUgaB4SBQFuLlLLn6kTUrWax3TLKQqLAUVmwxt/kfikudhyUg3HC5aLi2bV3RPzo+ZptpbhclvzdH97hYlkRCI/MGaT+ZvRgCD9PVsp+Jr2jrzN+/th7fTzoD/jXGXujlP1xyi+eLvmTv/X6lvhfR5S9eGKrDErbT/h1hDLgO8djnPPFxUfPV6zLjkEW7SD2z69KTq8qssgzys+WFR8+X/OdOxOss9SN4Y/fnVLWio+erUnigKtlTdn0XY5zdMoSOD+KvVqELLcd+8OMMITb+wMEsNx22D5RHEwyPjxbk4QSIfD8JgQEgsWmRQjRdz+KqvW2B502CLzJ1Ve1z/t23QXfUFjnuOxHVoMs5MYTSWm/iI4jSRL9aml8erHhw9M161LhXMC/+8fHRDKg7jRXi4pOW4c26rkAACAASURBVD48XVNkIadXJYEQ1F3DbBSz2lpCKanbiMNJzrZRLNcedeScH64UWeg/cOO4WDa89/Aabf1s1llHGkufMBpNLC2ddty/VTApUtJEIgVEcUDbkw2t6YmOQjAdpShtCHr4p7WO+aalbjRxISlrxTCPP9Vv3L7QnrhXtCpN5/caN79//wWRSp+gvbf086uWOAwIpeP0suNwmiOAQApGw4RGaUIpuV41XPXyLm1niGNP5ryZxTvAWctHz1Zcr2qKLCFNJNMiIU1SklDigK4nE0op+NmjBa0yRFJysSi5WFRo4/jl6Ybj/TWbWjFfN7xxNOR4L2PbaLSxTIuYNInYGyUvcSSqRlG12o/dviHuxMmTJbNR+tL7/Trj3XsTfvzhNc6532rdsSL3UFqPsux43kNg94YJq1KRxtIrHAg/2rpa1Xz4bMPtWeZFTqXgbF6jlCaSEc+uS55cbL0mWwBRIBkVMZfLmoOx541sK00YSg73QubrlsWqxliLcR4J9mxeYjRsporpMCZNI5z1Ow8H5Klkvm6wxuGk33tq46i1Ie6X6zdjY2UsAsHNR+QHuF+d19JfJxF8FTsd+vFGHHqRNA/5DZgOEwR+9nmTucMwoGoNYRSwP01JY8nTi9JXM9oxGSSIwEuyb6qWbWOw1tD1h6KUmiwOiKSgrDWdMdQbzSCTpEnuMeFZzPWygUAw33QIHCIQXK1qJkWKNhrnBNtKMRkmTIcpdw+L/lCW3DkY0CrDxaIijfy+ZZiHgKBq9Q7+u20UZa1olCFs9K8dX70YWRKyP84wxjJ8RbKRQYBAeFTKKwALzvlKtlMV66rj/SdLELCuOpyD+4cFrTLsjxOW25ZAdggHRRIxyCX745yLoGGcx0ghiELB04uS5bZjXSsaZXnzaESS+CX7KPVkLBM4pkXMfN3u4LybuiOUkiyWdNqRhAGbuuNyUbOpNHEoETiy1EOxizzmcJK9tFC39ldFSKvsp4ILXldY5zh5vORH3/nqWeq/Lt69N+Gf/eSMs3nF7dnX/5q/qrgRLNXG8uHzNR888SrF++ME3asl/PCdGUkUAo6Hzzestg3KGH70zj7WORabhlAKf531GljaWbaVRqCpO0MaSZTxBOTZJGU8jIhkwN4g5cQYGmU5nKbEMmRdd7Tastw03JqmPH7uycpCwN2D4U4z7m4eUtaG6TDppZYkaRSy2vbwdW0Y5QmjQYQMAjZVRxTKr1Rj63c6iXzWCskYz0SNpCRLJAMb9fpUIeuqY1m2fQsY9GOrlO+/OaFpPN772WXJR89X7A1TDqYZoyLi2fXWM6FVSNlotHEo44hD/zeFoUAZyyCJqFvFttUcTFLuHw3ZG6b88nTFYl17kbbKH35xEuIEOGdZlIo08nIr9w+GTIqENw4LLOxmoeeLmrLWbErF3gguFhVFFnF75kUIr3qBtxtC0g28+LPEi0gWv2yucM5xa+oX9rdneU+IDHc/I4QfDRzt5Wybjs225clF52VEQknb+sX6KI/4w7dnPL3ccrWoUdpxvO/1xdp+yRhHAmcEloCrZcPR1KsmZ2EA0qGMIYsSpoW/eTrtyBLJ3YOCMNxwvqi5XNY0jabuOvbHEbNJzh+8uc/FqmZVdpSNIo0CNmVHEsud46L9WKYVwndYXg7lm6nIn135fci791//KOsmbvYi7z9d/VYnkZsIZeAldIyv4K9Wno2+Kjs+PN1way9jNvKovlZpRllMHAb8P3/5jMW28QnEOdaVYpCEvHlcMCpSmsYwyELCMEAZzSANiROJ0R70seyX6YHwBZJSDuUsYWC5d6vgzdtjznvNuHXZEQQBozxiOIjpOsN87Z/7aJpRDOKdfty20Tx6vuHNYwE4psOU8QtoS20s614i6MsoMv/OJpHzeUXV+IP502TE61ZzsfTzfSMdH5yuEMILzUWhn5+DbwEXmw7XY7GPpgOeXmz5xeMFy21L1Wp++WzFj76zz2yYentc42iUR145oO00QsDtWcq20fz04RwpBKGUHE59l9A0hipqeXZdsSw7us4QhSEO4aGFBhrtJeMbpZkWMWEomBQRZ4uaLAkpZv6wU9rsqnttDU3nHdSSSKJ7siN42F8oB18YO34jkgjehTCJvZta3L/tVaO4WNbg/GzXfz/lfF6RJsHO98TiuF42dMqSZzHLdetdDOMAayyPL0u0cTy63HI4ScHBO3eGuF7pdFW3bOuW1aZjuV7w7GLL3VtDylrjrOX+7SEOwWLr3xOEJx4qZQiClIPxgEmRsC5bAgFhIGiNAQd5FpLEoef/vGIXcnvWEzy/oT3JSe82+L2vkfx3a5oxyiNOHi/5ez86/tqe98uE0oaLpffxOJxmn7jm374zAgFN67vyxbZFCkGWSg85H6V8/40ZdWsYZDE//WjOulRUlaKWnkcGkMReM+vscsNwEDMuBjy7LHl8tmGQSd46HlN2iufXXvmi7RyzSdITYMEoSxaHpFFEFkvSWHJ60WKd2zkmjgYx68pbR9eNwjqLvtgwSGMQkCeSTsO2Uqy2LVVruD3LCXtwzdOLDTIQKOOVOg6nX2wM+jubRDxM1O8NPi2JvDjTX25bltuGZc+9uLWXMUgjZCB2Hsllo6kaxXSYePkO7ZfM2jicczw627CufLVQ1RrrLI1SVLVCSrlDcCxWLauyQ2vDnYMht2c5Tac5m1e896SlalqaRqEMyNCRpwEBgjQJ6cqWQeL3NJNR7H1MSsXt/ZxpkbA/TrDOe3Y0rSaUAZtasVjXTMcx83WDwy+xQxnsZNW/aGRJ6GXYnUdrfTxaZfsL3xD289rLZc228WO12TgjSwLOl42HGieSJ+deKubZ9ZbFqmU0kHRa07YGJwRPL7aM8wTjLD98+xBrHfcPhqw3bU+sdFTKsCo7OmP9snNV91alfjlvjAUhGPaaaXkiGRcRx2bAfNMyGvgbcVl2NJ2hSCTRxw6dqlFcLhvCMOD2K5A9X1ecPF4wGyXsf8XS758WQgi+e2/yW0U63NZ6B3+vGv2J3d+N8RbAR89XJLGk04ZAiJ3A4e1Z7rswAZtt13v/uH6/VlErg3UBf/GLS3TnCEJBkSY8m2+ZbxrmGw+ECWTAfN2ijN9j3MgwPbuq0NoyG6dYZ/iLDy6pWsOyVDtk1tEsp24NZW2YDGLq1rDedjTKX9OzYboDtXTaEsqQ5bahbjXTYdxPRyxXq444CliXkkEW8UV0mX9nk0ga+YXy8De0aXkaMRt5ZFOeSE6vSlplEUHHTz6quDXJOZhmTIcJi03D1bKhyL1/cZFHOziuNpZVpQikd9cLAIRgtfVeGMY4tPEH+nLjl8Q3ZjJVq2g7xarsWFeKLAoRBKRJxKhvkZWGq7WXLFhXHTIImI5T8jji9NpX6Juq4w/fnvHzx0u/HM9j3joee22gvjVf96O5bePb2O/emXxpslgoA27P8p5IZT+xWL5JLN4nwbGt/M+lUcid/QHTofc5D/BJfbFu6ZQjzyTCAcJxvmixFgjAaYuy0CrNR8+24KBuLcuyZdso0kSyKTWBsNSdHx9qY4lCx2qr2J+EpLEfL0yLhDAU3DssevmZmqO9AW812o8EKq+5NRslbFvLs+stRRZzMMmoW4+0E0BK+I11Is45fv54yR+9/fr5IR+Pd+9N+Fcnl8zXzW+FFUGehDs/8xcVKurWa7fdXLudNlytGprWC7OmSbhzGj2cZljnUMqwzFuiyMv4zNc1kyImqjsIApT2MH2U4E/fu2CY+TF521kulg0y8BMOAUSJH0GtKkXVKLSBYNPx8PkaEQTe4lngN41OsNz4biRLQ5yDO/shURSxqbxe3zvHY4o+6XW94Om2UoRSsKm8dNJo4F9XIEDK4CXTq88Tn/mKf/Dgwf8A/KOTk5N/9sJj/zbwH52cnPznX+jZX2PsTzLsK3RwXhU3FUbbhbx7d0ISSp7PPaqqbDRFT3BrlWc107NQ4zBguWkZFTHTQcq9Xub57LpCOa8SXGQxzlmaLkRbi9aazTZgkEcc7WWozuAEPL2q/AHQ/+4iTdAGmq6jrS0fnq0o0thzKw4KojDgrVtDrPMy0WAB58Uka0VZa5rW8L3+xh7mXuZ+MItYbn1lnachjTJfCet6ue1YlZ6geLQnXsKhB4Hg9myANs4rJcugV+SNyfrR13qmyJIl16uWuvV6YLenKVEkd9W9l3LRWAFSQKMsZdNx8nSJM4Jaa3RnyOMIZ/H/Fm8/KgNJkUkQgmnhK7e204SB35NY50dx20qxTjpw9OOLbCcXEwReBaCsDUII6sZrJK22HZNh+o2x12/2Id/7GvchN/Hu3V/xRf72Hxx97c//eSOJ5U6R4CbhrsuOi0VFqyxvHg1JYsl81aC0pdNen261bakaza1ptoMAd8YyX/nHL5c1rTJ0xpAlEUEgeOMg53RR07UWZQyIiOP9gVdtaDVBEJDIgOEgIopCiizkfF75HZ7SxKFgU2uO9nLKyqMmN1WHcY40jYjCgL1xRh5LZqMU0xdgWfqyPl4cSW7PBsSh5MNnK+Io8JbTk5QolNStH2t/0QLo8/yr/xj4Lz722L8C/g/gW5dEvkgksdzZVA5PI55ebIljyeHUI6biUFJkIXEUsFi3vH+6ZLnpGNYxAsFekxJJuUNJda2mDAM2jdfa0toTDstOc+9Wwd3DIdu64/l1Tac0xcB7LQ/zhFZ51FTtvFijUuASOD7IubXnhQoHeUwah1xtWoy2jIYxq42i7Yl/eRruwAXjItkt1SZFx/lc9qOsr1776cW9szaeTWudl8C+sf29f6tAGz/fVdpyZz8nDgW/PF3zL39xQacNRsDhJENKKCvvdKjjkE4Z0lQS9npagyTiYum1wRCC6TDhzq2CxaoliQR39gccTgecLby+0dm8wjoo8phISqyll2LRLLYdaRwyKmKu1jXPr0uGecQP3tzj/SdLqlozK7zOUhgKEiT3bw1fu8zIp8XJEz9OevA1kAw/HvcOC7JE/tYkEfik97g2v5LgOXls2BsndJ1hPIgJpWaQeB+acREh8ACUuvXIx2XZYo1jtW2pW4OQMBvFHO3laGO4ezTmgycr4tBzrmbjlOul/9lAGMI8ZpBHDHvC8Z3O+J3ettndK9Y58iwiiQP2RkPazjAdptzZL0giSd3vWk3f+SjtNb4+PsYfZF4lAqDpDOOBPw++bPf8ef61Az5+4shXPPZbHaEMGA1iDiY5aRySRJI7+4N+l+HhnFer2outOdFDQGFSpPz4ozlFGjEcRLuD/icP535UEwg6Y5AEJGFAnoVMRwmBFFwuG+ZrX+3cPxrxvfsZf/VBjcMSBAEy8K33wSTjzVsjHIKm9fuTPI04nuXkcciyZ6k/Pt8yymNm48RzK5RGa8swjwkCQZHFhAdeoPHjxKovGpMiRgZehv7Fi1Ibu0Mzddp/feNDsS47rtZ+4Z4mkkEWE0nBKAvZIjDacr4oqRpDGge8dTxmvmqYrxsIIA0l415jS2u/k5JhQJHHTIuYqtIstw3GwnScY4wlCgXbWnE4zYik34EgAqpVg7N+OhlFkjwJKbKYSBo2teInH84JQ8HhJN9J3NyeDTjez3dd183rvOmcrPX+I69bpPHnj7xe1sHXuA+5iSAQvHNnsktkv40xLuLdgXuzL4ljyZ1JQRxKFpvG70JbzVBpkjhgW7V88HRNpyzaGvLUa7zJICDvz43zeeVlUQq/txzkggBBEvuCtGq1Z7hrh1KaD+Y1h6OUSAb+um46sjQkj0P2RwkikGRJQBJK8jRiVXUo5W24H51vep6L7/DHLyhLe7M1D//1Oltml6C+ivg8SeSfAv/dgwcP/suTkxP74MGDAPhv+se/VDx48OC/B/4m8OcnJyf/4IXH/xD4n/H39n96cnLyV1/2uT5rjPLIV7YOrjctYSDYn6SInrl873BIfF0S7QeMBzHa+E6jU5qn5w0/f7ig7QxZLL1LXmdIwr76jyRK+eV625ODNrXCGMfj8y1ZKumMoesssZQM84hQhoxyTygSgZc/ED3n4/tvTNnWikB4bSoZeJaGEAF1q3jv0ZJOabIk4mg24HDikVFX6xpr4N3709281zmPKvu8B594hWQMsDtgW2U42ss5u67otFfdrVvNjz+4RoZeNvt8UTNf1yRRSBBIjmY57z2cc73psMZy9zBnb+zVSje1wlqLtpZWW5JYEgR+bj3OfdVWtbonjgraVlE1htOrkiKNsMaRZt7LelN2bKuWPPNcEE/4jHn79oj3T1cUWUTVeFbzMI8oshhlDNu6I5IFgRC0ynA+9yi/W3s5MhC7DmxvlH6lN+2LYa3jvUcL/sZ3978xwt/37k/43/7JNatt+xKE9Nse1jqez/0S+/7hkBsCXtn4Tv4G+h5HkjSRlGtF0AMrbnhk54uSYRYxHWUUnUbjk5Ix/nBfbDxy00u1++s+T333IAPolGW+abhY+oXfpmw5mCRY59FdOEHdKYosQ4YBkZSUrWZRdtw/GCClpKw7BH786pxjNkpf2gVfLLyhVSDEVyb//mJ8niTyD4D/E3j+4MGDR8B94DnwH3yZP+DBgwd/DAxOTk7+nQcPHvxPDx48+FsnJyd/1n/7v8WP0SzwPwL/4ef9/Z6R3XhFzGHymW+0ceHF0zaVYl11KLwExmgQMx7E/UxTMF+3XC0b8iSk6/yM/mrZsK01kfQjk+ODghDHcBBTd37GenpdUXVeWoUeTtopQ91p6sZfDIMs5PYs43rd4YCrdcO/eO+MJPYyJftjfzglkeTpZUkoPOxykwRI6ZNbp2zvi+KTVDtMeHZd8ej52psyycDraEUj0jjkbO4NdQZp5JVzv2Ssy9Z3PLGkanyrDb4r2TYdac8EvlzVHgdfeY+Rs+uK06steSzplMEax2KjGA0S0lhyvao9sz0L0drRBZ50aJ3jbF4zHkYcTjM2vSdDGHpF3zDwhlfbRnFrP+d66QUfW2UpMsE495/j5bLm7uGAoyr3CXdTMxzECAJm49iPMfOYZY/OaTq960SazhcGxlo2laJTliKNXova7UfP15SNfi1WuJ81vv+mH6O993jB3/7Bb8dIC240s7yuVKfD3fX+8UQ4KRLm64Y09rysnz9a8K8/uOZ8XqGNxcTe/fCN20Pq1jDfNKxL5XdpkeB6pVDaokOfWKIwZG+UUPU7tagvIq3WyFAwX4ndqKlqFXksqVqDaw3xKGXVj1yvVi3fuTMmSyTbWpMYb+3davNKGfjXFZ85iZycnDztD/x/E7gHPAH+xcnJif2Sf8PfAf5x//U/Bv42cJNE9k5OTp4APHjwYPxFfvmq7HYZ+uZg/XiY3lc5jeVLSSYKJXnq2FTe5yKJ5e73CATzbc35oiEJJVkSsTdOKOuARdDRtAoXy54k5xhmMeNBQhgJ3ns4p+4MTavpekjeqIgJw4BBFrEsfes8HcTM14r9ScqTixKlDGXdgWiZ5DHrquPd+2OMcRSpF2O7N8vptD+8lluPaLrRpHLAk4sNcSg5W1Rcr5u+bfbjLhd5/SDwB+FnjRuU2YtOetpYzucVP3+8oKz9a9h7e5/9Scqil1mZrxq0McShJI28ImkcD/jpL6+oWv83ySDZfWZRFLAuvTe7MQ4CiTLw7/0bx3TacXq55ey62nVTaRSwdzRib5zy8PmKQR6y3AqyOCBNQs6uqt5wzEvRNMqwLhX7E+8Z0naGq3XDuu6Iw8AjcowfBbx5NOLJhSeUdtpya5pR9QvKQRoiA0EYBChtyRJem3nVTz+aI4AfvPnNmUPdPxySJyHvPfxmkkin/LimyD5fol5X/lpqOsPxCyoDShuq1is633TkeyNvA+G7YM16650tZeAo8pCq1tSN5nxZ02nHfNXSGUORRhyMM9p2y3SUsDeKuV5bAhmQxZK9UUqjLW8fFbSmF4INJBbHJE+oWsWzeU1eemRV22pE4AEmdw/935wnoeeq9OOx2Tjl9LLkreOAOAw5nOZeHVu7navhVxmfa6PSJ4x/3v/3VcUE+GX/9Qr4gxe+F/yar39jzGYegZENEtxlyfmipLWQDpKXDO2tdTw+36CdIJaSo1cwb49vewTK5cIfOr88XdG0mkVpMMbRBY5iEHuXwyzsxx4xt/cHzMY5Vac5PhzinHfH0wiWm5ZICgSCnz28Jk3iPkkFfhciBFerhjSJWJQtSSSxCMbDlE4bbCAYZzGrytCoijiKyJOQW/sFyjg2TxZYIZhXHePxgKODEGsdTjiu5jVpmnA3T9Da710utorvTgd89819Nr13yvAzjGBuiIQCwe1ZvoNIrsuuVxLuSBOPwLoZ6ZzPa06eLNhWijz1ukIAgyxiWsSsNi1PL7d0xqKMJ10N85A49Ozh08sNVaOJQoUxOYMsZhIGLHqL0/m6282ptbX0OGGs9clUGc8RaJX1HaWAYe47HIdv/6NQ0rSG5dZDKfM4JIslk2HitYiEl7b3shiihzm/fO0cTDOs8zDO17UX+clHc944Gn6mz+p1RRAIvvfGlPceLb6R5/fIKL1zDPysIfsR9XrrzeHaznMzzuZex2pbBdw5KNjWiuW2QyA4mmasy85DKIXtiX2Csun45bOVlyta1cw3NWEgaBpFGAYEvc/NplZkScRsmHr1X+Moa0OFZW8UczjJmW8arLGcLSuMcaShwGHRxheCSeg7lbYzO2uF61XDpIhJooC6UZQOzq5D7h16JKc2roct+87rd82UagmM+q9H/f/fhP01X//GuL7e7iC+gTVEzlGVDY9PX77QjLVcXm0BKLcSaV/9NM+uvLRJ11ku1w0H44Sm9pyLSEAgHMtVzdWyZlV1BAGsNi0/Li9Q2vDBowXfe2vC07MVT87XNL18x2ycgnOoTnvUUSJ5dlUSBoAIEPiqPhymzEYx9w4LLpc1z65LlquGy0XN8YE3ynlwb8pHpyvAcb2oej8SSTdRzEapH29py2QQEYiUVhma1lA3fudwGoqdmqhuFU0WeS7F9NdLWjQvMPo7/SuOSBp7AqPfOSjuHXiJ9zSWO5iiMhZlAspae60f6Xc4QQAHk8xXV7XyFZ8QCOGoG0WrPHnQAQ/P1/zv/++H7E9SL2DpHPcOB1yvW6qmg95tUYiObVmzKhs2pcAaiws8Ou1wkvP28ZDNVuGAqjUsNi1BAHf2C5bbhiQM2Z+kpHG4G4ve3s/plP210N40Drk9y1+beVXVeHOif//v3P/Kf/fnje+/MeXPf3HpRQa/JgHIT8RnEH57UQrpcJpRNhqj/WPbWu0skOFXEoVKW9alouk0ZROilGF/nNFqw3gQYYwjCb1ZVFl3KGV6AIchjgSq80VE22muVzWDNMYaiwKulh4oIhCE4Zg/OBrStZrTeUnTKoreCmFapJwvak6vSmbDhHu3hgxSz1drOkOWSs7nNXrkXTrvHHrTNOdgVbasti3O+X2PV8kIdvu6rxOd9bri/wP+E+B/Bf4+8L+88L35gwcP7uITyOqLPsHN4am0ZZx/kqG6P/ajiFeNusCTdR6dbzhfNFR1RxRJnl1XvHFrxLpS7A0TLueVPwyrjlD6BbcQgvXWH4p5EvIv37ugrBQGR1kprBMczTJPZGs6tHKs645AeJXayTAiS6NdpXvv1pBBErGONQEBCA8niqRkkIT96ET28FNJmniY73gQ8+atEVkaYqzdSURvKoXpfcKT2OvneM6Jl8f+LG3vaBCjtP2E2U2eRhzt5VytGpxzXK1ahoPam20pQxoGvPH2Hk2rWVeK95+se6JmwLTwniZFHrGpHFVjWEjFuAhZVC3aOG/kJSVVY2iaLdermiSSxHFIWSu/59CW1dYrJHfaUjYaax1CCoLQqwfEUcit/ZwkDKHw78tkmDAaxBjrxflE4N/jG5b/TaKUQUCWfHpF9zoVfd97tMA6943uQ27ixsPkvUeLrz2JzMYpVaM+VffNOcfZvKJTlr2R77JlEDDKY0xvmzDq//2tabbbeT7p7ZNXW+9h/uRiQ6sMZeMLs9kopW79fe+dORXGQascASDwoBEnhFeuvq6RskUASRRQ1R1KOaywbKuWpnUIGfSOiIIkkdyepmgj/E7ReA3eptPew91anPWir0Y7mq4vapzvslTvh5TE3v2zU5aPztakcchh31X91ieRk5OTP3/w4EHz4MGDfwr8JfD4wYMH/9XJyck/BP5r4B/h0Vn/2Rd9DtFrK/26+DRrTPA8DYHfLQjh/TQOpylSBPzouyP2himPz9c4IWiUpmo0aSxp+1GJ37UEXnLBOKxTvSChYLFqGKYRRoOMAnRne7dDcNYhHOyPEhABs2GCQ5BFkiCA2ShhOIh586jwSJF5Rdkq3joa8Udv7e1Y8WWjuVpXZE3EuIiRfVK6mdHfEDPLxhvWaOM8G/8zRCi9kc+rYjRIOJoN2JQtC91yNq8RvW9DEoeEUpKmgtPrGhl4748o9SKYR7MBzrgeguw4mGSczSuE9WrKWSwJpKBrDZ2x5L1iaZqGbGoPRChrz5lpWo1ykKcxo0FKnvndVll77bHZKCGOfVJJE0/60try8GxD3Xq73CARvQJzsDPketU183XKov/rD67IkpC3j0e/+Ydfc9ye5YyLmPceLb52Ha00lr+R76S03e37tr3dwU1Mh8lL+yqv+ya5Wvqx1o3FrXWwqRTDLKQRXrEiDn2BYg00qiMMJQFeINQGgiQJOZ4VdLrl6YWmMRopA8LgxUThO+IwCliX3r00Szwct8hC5ltFGHhLXaW9KkLZaDblltv7A6LI7++OZhmtAnDsjxIi6UEkgRBYfDG92LQY4/2Syl4L7MvGN55EAF6E9fbxD/vH/wr4u6/rea31M8o49BLLV8vGG91Ps5c0kNJYcreXVh+k3iwmlF4D6sYLPAwCxnmM6nWhbsyp4kh629lR5tvN2DJKU85lzaZShJH0tqyZr6r3Rylp7MmMUgqKLGJbG5II/vz9a472fJWUpxHDNOLd+1MO4h6/0gAAIABJREFUpxkfPlvz8PmaLI2YFC3jIkYZywena9I44PSq5MG9MWfzimEesz9JdxDGqtE8PFsThYIsjr5SGODbt0dUjeLkyYLLZUPaW3+2Sntl5IOcUMLBNCcQ8NbxmItFRaO9//zt/XznKrkpO/JUIgOYjmKiMKRTepfklbFobdhWCmWchzX3Kqwy8G5uf++HRzx4Y8qzq5qqUUgpmBSxN5/KIgJxMwLouF61/qaNJT/4G3u7w+TDZ2uqRnO8P3hpIXuxqPqONnktS/QXw1jLX35wzY/emX2l8+0vGkIIvv/GlJ89XHwr/UWiMCBPPLrq07xybkJpS576wzoKBUUWcr1uGGYRVavQ1rEuFQeTjKrxnUHbGQ4mKUIIqiagaS3DLGS+qXh26RPSIA+ZFAl5PzlQWpMkEaEQTIuM+abx+mz9Lk0pPylIY1/cvHNvnyyRXC9blk3LxbwkjiT7k4w0jnj7OOfJ+Zanl1uu1y0P7k843h9gjCPqFakvl7Vf6YiA9CvolL8VSeSbiqt1Q9Uov9foLViv1jWB8IfaTQghuHs4JE1Cnl9X3JkVuAC09oKLSnv3sMNJijbeiyQIQGvPhG47zbpW7I8TDqZ5T1DywoTKWLSDo70Bm6olSxOaVnGwN6BuTU9WSnj0fIO2lo+edWwrTRxLwiBgUiQ7V8QgCBikEbEMqBp/uG7rjk4FJFG48y53eP2qTvmuZ7X1CDYhwOZe72s4iD9VTPCmkhlk0SvbYescm7IjCASDLOrZ/lHvYyCwLmZcxOyNUt65M/EHfT+Xnq+9lIQ2BmctR7MBR9OMqlEo2xuHGce29hITkyLmel0zv6qxFpSGMIA08ZwOY1sCIJZ+fvyTh3Oaxns+ZKlkU3eUlTer+sEbe6y2Hdb50acTjjePxzu+S9X4/Y3Ds+1vkoh1bofOKmv12pPI+09WbGvFH3/34LU+z+eJ79+f8s9/es6zq5I7B8U3/ee8FEIIDqefTVXgYukLDK9JNSCOPDFwWsRcLBv2hilPmpLLZUUSSWajmNkoxTk/rXj33pjN1u/9fnm64mLR0BmD0ZAa+M7xiCgMeHLhbW39lMP7qW+bDqUN1sHhOPPCn2mINjAdZrxxa0SeSK7m58SRJM8itlXHtlGevd5qnl2V1J33Lhrm3vrhJnGOC09AXlfdzr30y8bvdRJ5MYo05Oza4743tWIyNJ8wbknjkCSWKGVpW0OeSObK+j0DHnU0HvpZq7WwLhs2taFRjmpekYQBy0YxiEPaThMIgXPeDz2LBFo7FuuGW5OUPA0JJl5RNEtCylr37n6WURGB8BV0JAXz1gu23TsccGsvJ5J+fnq5qjmcpAwH3khpMky9EVPVcb4okYGH1ereT6XtDAjHYttirPvUVvdyWe8Ozld1LuuyY7n1WloyELxzd8zl0vsmtJ1mvm453MuJQ8l06K1rF5uGrjU9as0x33ZsA8m6MQRScjjJEELw/LKk6hTjQcztvZzhIGGxrmm63ss6DtgbZThre4JWSqMNozzict2itaVWnvz5vcmY61XDuuoosognl1vyOGTbKm7PBrxxNMRotxMYjKOAMBQ0nf3E+yPwhcHe7PUzx//8/UtCGfCHb++99uf6rHHDF/nZo8W3Lom8KrTxUPgb58KbaFrNpvLFWiAEx/s5R3v5Dh6fp75wKRtF3Wlmowlla3l4tiYMBEmleOfOyCtSxyFSBhgDYQR5rxW3qjouFxWrskNgydOYpvXTCwEMspj9acqd2YDlpmVV+x1MnoRUreZgb8DZ3KO3BmmM1hZrLU8vS+JYUnWGQPiz5eOj/Jtl+o2K95eN3+sksj9K2UR+npolIfcPC+YbL0cOcDjNydNwN1pyzhEgeiOXAOvgb7wz43rT8MHTFVe9mZFXy+28YGMSIQPj1XyNo20NVjsQAeNBwnzbMBrELPoFV6cN15uGsvUckyKLeet4iLGWpxdl75HssBbGo5hWGdrOcr32BlNN52emN3/fcqsIQ0mRx6zLDim9sVYgDKuyJU9Djmc53ppZ7LzTf1N4iWlDEIhXji+E8PDFqtPewhOv0bOpWt5/svS7nVSyrTrPCbGWw2nGubNMh2OqVnE06/j5oxXbSvHkYsObR4XnbTRe7kGgmAwt90cZVghC6QgDn0Devj1isW08edMa3joaMSlinl6WNJ1hvW25c1CwKhVx5CXe41CyP055+HzDdJT4OXpnvHSM9gTMqtXsj9N+J/Kr28d3J94BM/kKXeNeFc45/uIXl/zhW3svCV1+07E/zjiYpPz80YI/+Zvfft/167WXRl+XgjsHv/LT2Rv5YmtUxDi8dE0SeaHO67WH2791e8h7Dxekqa/24zCgbTWn65aDcUKrhtw7KHh6teVwkpPFkroziCDg2VXFxaJi22qstVgEjfJTkCwJPRoz8GN0pR3XmxYh/FRh3NvsLta9isY49dSCWLKpFUWWcGc/4XBikNLzqj46W1N3muP9XyX2r1Jt+ttzBb7mUNoSSvHSYRcE4iVE1myc9szu1i9xvc47z+e+bX3n7pjRwLOTB1nIMIuZDH2l//Tcy7FvmxatDY3SPWvd62sNc48QA7h7WHCxqFHau6PhIJaSqlbUnaXrF4BlbRmkEfNNjbaO4/2cSZEyHcb86XvnLNcd29KwP0m9E1+rWFeKPPV/26ZWDCYJgzTyM1tlQHmSYxB4M6rj2eAl+OnhJEMZ9xsdDo/2PJ59UypOr0puz/Id2dA7prWcXm1plSWSwlvPxgGrbcvDs63nZPQwX2McSRTwxtGIIk98UlICKQOsNRjjk/DpRcB85d0Iszhkf5IwKRKenq8w5v9n701jJMvS87zn3H2JPffau3u6s7vJnkUczog7xxQJiARpmhYJWjJgW4Zoi7YBbzJkyDAE/zBgC7IBwbBkyOYPUyblMWGR9EqK1Iw5ojicoTh7z2RPd1V3dVXuscfd7znXP86NqKyqzNqrsqqnXqCArFwibty4cb9zvu9dKpZaAaFn8YnX17BMgz/ZSjEMg5WOQyuwEULf4JO0oBU4GKZASkVcaE3JCxstLMtgvS6qa92gVqVnGHUapVeZGMLAMME94QZePcL86uNwdU/3u3/mB154rM/zIHjtYo8vfmsfqdRN4tOnEXo4nd2msWn4NpsXOnXErJ6lxWmBEIJO6LDc8fXirVQUkfakc+oCZNQxz1+/0ufcckjDczDQjr+OZdBouEzinKyQOvLZd7Qrr62jCebt3lbokeSSKI0YTTN2hwmeY5Bmks0LHXptl1lUcDiOiVJJ6JpYtkWnUWEIeHGjTX+iJQBSVlzbj2iF7iMXGsJ3SBEZTHS7wrF0bOtJQ79RPRuQlY45NUxBkukbelZITEOw2vVpBjZpVnLtMOLKzoQXzrRYX/LZGUSUqiL0bfrTFIMK09BbRs+1aASCpabLSsejEzrawM2QGKZO/Ns5iDEtSRTnOozKKBhOc0zLZPtgRuDZfPTlZUqpsytM08Bx9CrKEBUHo4RJnNMKHV453+H6QcThRIuLxjMdaOM6FrZtIMuK5fbt9uV3CvA6Cr0DAWHoopHlisDTH6S8kOSFwjQN8rggSlRtzmhRFoqqUkwTySx1sGtVt945VZzpBbx1fcw0Lri6N6USIGqrklGUkqSSJJeEoY3v2viuiZSK5ZZPkkteOd9mtRtweXui3ZBHMUtNj7OrTa7uTcDQ2QmVqmj7DpvnO+yNEgxDsNbz2R+lrPUCmr52Vc1rAZs2jNSD+KWWy0FtBLnWDfRipDagtEzx2HcHf/rWAULAR15+kAihx4vXLnb5g69sc3Vvxgsbp88aOwlpXkKFpsI71m1tHdMwFu3KUire35uxN0ooS8k4znV3whA0Am0zcm61wbX+DMcymSQ5Uil2hwkvrLd4c5QgqgoMPdhuBS4rHR/XNVlr+5SVYjzNMS2Ba9vaPUIofMvkYJzSnySMZhlnelor0m44qApMEwaDnN1+TMOzWOuFTBxDm7aaBufXGpSVYn+Q1AzRG6/vURb574giktSCuLzUQ2/zmCKiqopxlNEMLDzXZKMXas1FLrFMg9DTrq6gt4J5IRfhNtcPInzXZLmj+erbgwil0HoPWdFtWgih16er3ZCXzrYYTjK+9PYhSV5hmApR6axzSxoYdVRNw3doBBZZnU5YobNDtt4bkksdorXU9BjW7bfBJGM0ywndlItrheaYLzXYHUSA3h6f7/lcvj7WWg3XpBU++AC4FTjkhU4r9I4E/HiORejbNBJtnW2bJkle6FZax2Cl5zGLayt722QS60H27iAmr3vC1w9m2vq9VHSbbu0DJkHoAaIsQFSCwShFCFHntmu2TMO3Ob/aYDjLaIYupiVIM62JkVK33lpNF0nF/jBhmhScXQ7ICkWUFgwnGa+cb/G1yxNc26wjiE2E0H9rCs3my+rkxHlP/V5YP48CX/r2AS+f6zw2U8eHwVwv8ua7g6e6iJiGwDQEoWfdtbUjleLawZRxXFLKklUhFrPDrJD1rhpeWG+x1MqZRjnXDiICx+DawRSAoqarB462hHdsgefaWJbJGxeXuLKrkzyVgryqsA2LnUHM7iCmlHB2OaAV2Di2yf4wZant0Wl6vHV1RFbolutyRzGLJa4tiZKCwPP50JkOax1tCDpfIO4NY5KspBU4HxyK7+NGt+EyjjJ81zqx+hpCLIZWyy130c7xHBZBNFWlNQ46dldT5SzT4OyyDlwyhd516LZWgWVAr+XT9C0ubTQ1Q0ppFlWn6XKmF3B9ENe/nzNJNMuqVLrNtrYUcH61SVFWIMC1LaaRztWAilbQrMV8mhEUpVoXcThJEPVrwqjqY9LMrFag2VRVBbuDBNsyWe+dvDu7E1zHPHaAahj6pt5tutrLioooMbFtUzOw4hyEdiS9tNHCd03evj7mm+8O2OnHrHU8PMfGEgkFFcstD9+3CT0L2xQUOvacSZQR1wuEZmBzdrlJVsj6gyG4uNrk6t6YOC21K++ZNu8fzHh3d8I0zogTnWGfZHKh1Hdt7a+2N0jqIKICudrAFIJMKlqBw8W1JtNa0DhXti+3/cfSKrgV+8OYawcRv/hjLz/253oQtEKHcysh33xvyE9936XTPpwTYdSxBVJWtMKb37cslxRKYRsGhqHbh1mp5xS9RkCv5TKY6tfaCmwORgkX1ppUVZMo1YFwFUJfO4VOTMxyWSeWCmxTMIkKqAS+Y2n7kqmOyU2zgmmiM0VKVZKXFXFaEPgB51YaHIwzDsex9mdrubx8oUtnmFAqxcW1BlEm9ZxF3Gip3mTzVFWLEKooLek9gjr/HVFE5gFNd8NqN9D03PqGWkrFm+/2GU1zhKEviv4ko9tw6bX0ljT0bFqhi5QKYYIwtEma71q0A20R7bsm24MU3zZwHB1HKRV0Wi5xoVClhEpgCAMhKgJH0G46fPzlFQaznG+9N8A0DN54saHbKnHBNM7q8CmH0SylUbt3mobBei/AtAzOtH2kqug0XEazjFat0l3vBVzdm+I6ui2mo2Mf/TDYtbWdu1IVqlMxnGb4deug1dDHovPWY67vRxyMMjxXO5a+cKZJoUpMDM6vN3nxTIuirPjE62sMJhn7w5iruxPe259hCO2Euj+MMYyKr18+ZG+Y0Gm4hL5Df5Lx3t6Mc0t6t9HwLKK4pNF0SPKSSVTcyIdPBZc2PFzbZH+UkJeqdjZWXFhrLDIZuvXwda7wl/JhfUjvDX/61iEAf+YpbGXN8drFHp/50nUtKn2Miv2HwSzRGeMAs7hYOPdmuWRnEHEwSvFdk07oYgjoNT1MU/Dy2TbthsvhOOEzX7rG+/s5Td/m4nqL1W5AVki+9s4hjmlgN/SC4xvv9lntarpuK3AoK0WcSWyrJCwkl3cm7A8TLY4t9a7Cs026TW3A6Dkey21/MaNZ7YR0mw6t0KEROFxab+p4b8/iej9BSQW10Lg/ThFCL3LmwsN26BKlxYkOHfeL74gicj84qo0YzTKmcandcGVV7xQgyQqUcnWiWZQznKaUsmIyzXFMrd2oKvA9m+WOhywV+6OEw2FBp+HS9FuAoNtwKctKZ2hYJusrAWVRkeQSyxBkpURJCVTaeiEuePV8SOCamKYHho56NQ0oZcV6L2Sl42LVOhGBoNfSN8TOEXtrTVU1tb21e3s/+FHi6E0krANxJrHOnV9f1bz97X6MUhLXMnBtg9VuwMW1BqFnM5pmtEOdiNhuuIt20t4gZppIVrs+RalY7vg4ps5tubx1wHCasdL16TS03qXIFWlRMpwkJKlEmILzKw1KpSiWVN3yFHRbbt3iMLl+GGEagkIqGoGtiRKWDg9b7ekhflHq89p8Qq2sf761z4XVBsun5U91D/jwS0v84z95n62rQz780tNZ7DzbrIkzN3zNVE30qCo0Zdaes7V83a4MnEVu+eE4o5CaVjtLSqZRTrvhMppmi12OEFoj9er5Hm9dH+M5kvWlgKt7ERdWQ4ShZ69bV4eUUncMLMPAswXNQKcjRqlOLew0HcpCsTdKMAW8fL6NIQRr3QCpFFf3ZwwOIhq+Q+hbhL5mcUWJNoCc1WQSuF2h/7B4XkTuANs0WKnnHEIIDANkBRfXm7x+qcdolhGnEgQkmbY8aJiCVmBzvR8xjQpmsVa3F2XFOCqYxCWOpWMqDcOoA6dqGw8DDM+gUSps20AIgWWZNAOXNC+wDMH1fsRSy2MwzVjvBfTaHlFWMom0rfvZ5SaTONcePrU1x3H+TXezenlYVJU2ZLQt4+bCHGlPMX1MQucxlNrU0nUNXn+hS8tzKFXFy+faDKcZe6OEb7w35OxyyLmVBtv9qI4ErVjraufgwNXce980KBUopR/39Ys9BtOMvWGCaQjmhcJ3TV4+38H3bA7rHYdtipoCbfD1y332hglUFaFrAQrLMbFMzb5Z7QUkmcR3zSdGsz0cJ7yzPeFf/pEXn8jzPSheOd/BsQ2++k7/qS0iOgpbC0VNw6h9rWLd7slLLfINXHotrdk6etPVlHbdJj8YpWRFydW9KRfQyvgkLTkYp4SujegJzq016LVdxlHB4SipF3QVsoJ3diY6p6hhYwKB6xC4Nt//xhpRpl3ClaroNh12+vEiIC9KS86tNAg8i91BRH+c1oVLswrzQjKJcr2Y6nhYhnhsjLnnReQO8BxLM3UCZ+G7s9YNFlzupu9QlHrl0VrW/lVVBaMowxlnTGYJpdRZBKahHW8Dz8T3TS1uHCa1p43NLJVkdUiNZRo0fAfftVAKzq42uLY7IS8VIpcMJ9rUsBk6NH3N5kjykoZ0sEyDwSTl2kFUzwlCPQ+pqsfSsjoOg0nKdj8ir8OtXjnfQQhBmpdUtdOqaRiLAmNZBpfWmlw7iNg5iKiWBauutispZUVZ6oH3bj/CNAwavk1RVpxfabDWCzAMg3d3Jwg0Pdcw4LKqcB1tOfM9m6tM44K3r42wTYMoK3jtYocXzuiImuW2t9jqXzuY8s33RvTHGQ3fpqoqNpYCQJCkBWle4TmKSZzrmN4j18RJyArJNNJRpw+T/PfFb+0D8L2vrT3wYzwJ2JbB6xd7fPWd/lNpgTLH0RtqmmvSTZbrhNKltofvaZLNXFi71PKwTL24u7TepB06TKOcaVIwTQp2+hG2ZdCfZJrEoyre3R7TbrqkWUk7tLWuJLQZTQuyoiBwbWzL4EwdGxBnkqW2x/nVFtMkYzjN6TVdui0Phfb9smo7pPmsoygr0qLELA2Wznq1t1aBaQh6LYdWqIsdwPpS8MhbjM+LyC2oqor+JGU8y5GqwrENltsedm5gm1qUGKclByPdC5+/KdomWr+pDV8rzNuhQzOw6TU9Pvxij25zTJoXnFlukJf6xt7wbT1EtwymUcGbVwYstd16RREysFLe/taY/jRnFBWcXQ71DsXU1tLC0K2p9W7Iak/3PZWqkFIbzr2/N8U0TaraxDC8RwrvgyLLJZM4pz/SQr9WqBlMfp2aCNRxot5ih3JpvUVRKqJM0gkdZKnzVLJcixmX27olF3g6E+XsSoAQembVDl1UVXH9cEZRVlRKExBc7aXP5e0xWVFxab3B6y/0NBsrzvEcm/1hjOdYNAMbIbQp3eXtKdNI22YvNV16Tc3MCj27XqFqYeI8ZkC/Zt3yNE19rdxqF3M4TilKSZSWD5X78cVv7nNpvXlfmRmnhTde7PHltw/ZHcS35aw8jdA+WRaWKRbtraD+rEdpAWjzxW5T6zwANpZCmoHD1d0pUlV1Vk2tR0MbHgoB1w8jpnFexzG4pJmkqMPYVjsuvmOz1vNrR4qMolJc3hkTZ9pqPi91IuLm+S4vbrTJCh2YNbcsEcDLZ9tIVS0clO26hWXXlu9z7dLjmFM9LyK3ICsks6QgzrTTbs/WnjjL7Rsf3CQrORwnyNrHyW375IVavFHdpsf3vupSKqX1GXnBt69pq/PAc+g2XUxD56P3Rym+I9kfJoSexcayh2PZ2tbc1rboWVbSH6c0PFtH6Zp6FZUXiigpePl8myyXdBp6673c8elPU0LP1pkC8wsol4+9iFiWwDS035cRC9oNd5FdMIcQWuS3P8mwTMFSy+NDZ/VrGEcZF9eb9FreYmi93PC5uN5arOYtU6uHtw9n7A1jVjoeF9eaRHHBtcOIcZQxnOr2le+ZOHaMZcCljRYrHR8htE5gMssJfQulNF0ySrSWBiE4sxLy4kaLoh6+rnR9LFP7q82zUqpKi8uKumBTSJIj2dyLc2IKilLTSh90Ub4/jHl3d8ovfOpDD/YATxhvvKjt6b/2Tv9UioiqKgbjFHlkB3EnzAknQJ1LoxlceSHRJjxaEDutd6BKaW8437VqnZbWnOSFJEklFzea2KZBUUjeuj6mqLVTlqFb1FHtbTeaZVyJtGHiy3XUrVD6ulJKq+Wlqkizgv1xupiDzAuIqnQAXpLrXHhtpVSRpHqIbxhiYbIohND3kEeM50XkFtiWHm6Fno1pCpq+c9vswKptx+O0ZDzNF/ROTf/VORimYVCWiivXp+RSMplphlfomUSpX/f3Q5Kk4L29aS0YskkLnQnyXZd6HIwSSikRBgtLeVMIAteued8meanwHGthaTBnY7x+qYdjmXQaDuMoR1XcE0PtYWEamvK83vMppS4c81ZPr+UhZUU7dBhMdGLg/OfjSCcgZoXF7iChKBWX1luaNVUbOLpHVuB5qehPMg7HKe9sj7EMuLIzI820QLOstJgyzbTzsqhv+oFnEWZavxIlKbuDmCSXNAKHWVpwaaNBnEleOdehVNozy6rnJLqVduNmNO+Tz2mdQnDsKm+l45PWZpoP2tr5/Df2APj4q0+P4eKdsNzxObMc8uW3D/mJTzz50Kw4LZnVO4hJlN+XHkKIG8XesU3OrugiaJnGQht2OEqI0pJC6uu003BomAZxVmKYgt1+zErHZ5aUnFtusNT0kUphGDrO16hFtGmmyLKS3LZotRxaTW21YpomF9d9bFNft1vvj0nzcqFFazf0Dvz9val2Fw4cVjr6NfYnKVFaMEsLNpYCWqFD+zG2FJ8XkVtgGgZnVnQu+kmrl9CzdYiRKyiV0l43tTX8HGUd7dqpaaTAQugYuhaDScb1g4isVJSFHqRnpX6sZuCxP07ptT3GM21jvtTxWG55rPb0hRmlJUWh6DTdxfMWpeTKzoS8LHFtm5fONGuHX01B3R3EhJ792EODDENgGCb2kaurlDrLep5x4Doms7TAEOIGA8q32RkkVEpRlFK3hQQ4lslaL7iJYebUmfGzpCBNSyxHYBmCONetAlFTps+uNFit7Uvmqzf9+v3FTm5S22PPC0Cv5S+EWfO2wZ0cjUPPxls1NfnimN8zhHioAq5Uxee+us3rl7o37Yifdnx8c4X/4w/fZTjNHrur8a1wLOPGDuIhUyWP3geagaNzgKYZjlRMa3V6VcFgmmmvqp0JoqpQVUU7dFnueOwOYiZj7dPmuyYby13yXNLwTN7ennB2uYFrWlzdm2rD1LZBr6ljJt7fnzCNtW2RztKxCX2rNm8tSHNJKTPe253SabgUhcI0tdas1/Qe+0zqeRFBb1+H00yzIFoupmFgmCefeMs0uLTRZBzlOLZZs35uoCgll69PyKVkpROwagcUpSTOSmxL53TvDxMc28CxDV650MM0IYoL3tmeMJ7lC2fcZqA56Gt5ubiRvrc7QUpdQEzD4HCUsFNGOLZBqSRpLsnLiu1a6Bd6tg7TCeyF0OhJY1QL90Cv1puBg+dYKKXYHSQopcWQr5xrcv0gZpboQXhWKta7IQ3fvqmICCE4sxQwjjLcro+UisC2cG2T4Ux/sFuBjVTqRCba+lKw2AHNRWd5oXSeQ417pT8/Tp+oN98d0J9k/Pwz0sqa45Ovr/Hbf/guX/zWPj/xvU/WkHG+g6gqHnm+fcPXPmvbhxHLHY+Vtl7t62tc4NkWhqho+g5nV0Jsy+T8mp6l5aUidC3dYlKaofXCRouVto9hgOOYSKVIsrJWqyumSYnnmniu1o5Moowr2xN816QVOmS5nnmWUhM+OqGzCFh7Elkzz4sIWrk5H5aZRxL/7oRey6MZOLeZOgLEqXbiBXDtnFfOdwBdXMya3RF6FlLp5/EdbS0dp8UiSH6p7bHWCXAck42eJCtKmqEW6IWexXCqeeraLVgPb7tNl3bg0m1ol1nryAB4ue2hVPXAegZV55c/6KrGsU1I6uwWSz+GbRnEqZ4lpbVbbqfh8tqlHofDhKsHM8xCkpUlzcbtxx2nkrVOQAVsnu9QVVrDs9PXdhGzRHuhbV0d8dql7m2zimbg8Pqlbj3wttkfJlRoO4tW6Dw1rKLf/+fXaPg2H3uKskPuBRtLIRfWGnz+G7tPvIjAvS8A7oRybhB6y26m09ARykd3nsttn3aoC0eWa7ue+TVUSoVnmVR1y3PncMY4zimlwjRN0kKi6l25bZq4jkWa60Vnt+XSDd3aBbsgSlJI1HVJAAAgAElEQVSyUre5O4bgo68sM4m1fkmgtSmdJ8TEhOdFBNB6kPnW935WLSf9buDpAKZS3WypYFsmqqr49rWRNmILHXzHwjD0QH+l4zOJC205LwQ7gwi7tifvNL0jj28TeDZZLuk1XfrjjDSXDCYp51abXFxrEqfl4hirqnrorO+dQ70q2lgKHujD2Qoc7Hq2cPTvA0+LuFSl44Dnv9ttujR8h+1BROBaDMapdjw+Asc2qDDxHWvRxw59hw+dc1jtBnzxW3tEiSTJSvJCER7TFp+fy/mxDCY6h3o0y594C+Y4XN2b8pV3+vzsD73wyFfUTwI/8MYGv/573+ad7TEv1ZTqpw1Vpaknt7YipVJsH0aLttSt18PR3z8cJ8RpuSgurq0FxkIIluvB/lwgOpik2JYmiCy3PSoMziz5ZKWiE9pkhTYsXWrrNNTAtug0tRt3M9Bhbpe3J1RVtehGdOu0RLOWCDxJPC8iaOHRmeUQVVWPhP5mWyabF7paJ+HbC3pn4Oo85mmckxYSK5OcWQoWK3DXMXn9Uo9ZUvCNKwNKqbUpRakWxoK3Hrdb23CoSt1k2fKoh+hVrZpPc3nTcPleMYlyBtMUx9JWKEc/gL2Wt8hwMA2xGMRf3GhSKv1hTDL9AT3a0lrrBdoB+Jibayt0eOlsi4OhDvKSUvP275Tkttz2yQqFY2uWWMO3npi25iT85ueu4DkmP/Y95071OB4UP/jGBr/5ucv87hfe56/+7NNXREqptMiwpsce/dxIWS1YhXkpT3wMpSpmST3Er120p3Fxw6PKMW+idrdCh1IqGkGTpq9JODv9GCpFM3R4oe1RlLo1JYR2E4/TktDTmpJOw+VjLy/rGeuRNuppWcw8e0ubxwTbMh76TYjTkp1+xCTKF31/HfSkrZx3BzGOZdAKXHzHYrXjs9zxWesFN22X46ykEdjImt30/t6U9/amC6+fW2GZBq3Qxa4jaB8H7NoyO3jAMJs51z4v5Yk+U7NYZ7G/tzdZtOG6TQfXNug0HGZxsXgc0CtB1zZPbDu1Q49O08V1LGZpyXCa3fU456/PMo1Tz8P40rcP+PLbh/z091967NTsxwXftfjRj57lT761z3u709M+nNugHXB1S/XWeaFjm4sVfu8Ou1LDEIvrpuHr7J7RLGMW6/btrV0Ay9TWPqudANsyGc0ySqn0otA2sS2T4TQjyUr2hjH9cYqSN2fUCCFO/fqc4/lO5AFw0mxgME11tkYhafj2TWIgYGH38cKZJlV1cs+2FdgUhWSp6XBlZ8Y4zUgPZjR9+9goWtCMoxUeH3NnrevfJLC7X7RDl8E0xas/JLciKyS7w4g4LfWqsK0ZUr2Wj2kYTOOCrCw5GClUq7on0V6n4eh8+1jnVt/LiEO30TS9+06MrMeNg1HCr/xf3+TcSsiPn8I84VHip77vIv/0azv86u9u8df/0p954u2WO8F3LHzHolTHB7Hdq8PA0fz2nX6EELqAri/5d1yc7g0TTbpJC2zLJHCrhauDEDrQbqntkRSnQ4i5Fzw97+YzgkmUa13HIF682XPMRT22dXMATKfh0g7dhZhJcHzfMssl1w9mjGc5G8sha72QlY6HWYvz8kIu7FeeNQSexbmVk40DDQPtNYSo431vfPDaDXfR+wW411oW14QJWSoORulC3HVtf8Ykyk/8u1v9vp40dgcx//WvfYmqgn/n5954qm66D4LAs/lLP/4Kl7cn/OrvbD3UYuRRQ4eRBZxdDh96bgg6kG3O1nSd4xdMRzGfA+alYhRlXN4ZM4lzTFM7NqzW2o/7FQk+yXN8qjuRzc3NvwL8m/V//87W1tav3fLzz0KdUQv/xdbW1j95skd4O+btlDQvKWW1YBqBFli1CgfLuiEqG04zxpGOV20GFjv9iKyQt/X3AaZxTlHrS9KsJPBszq02FrkHrqNtGT5oSLKypjybfPilJcJjWnIN30YpvUpr3SW6d47+JNVBXVHO+dUGcVou1PujmoH1NEFVFX/wlW3+199/G9sy+Gv/ysdYO7LCfZbxidfWuHYQ8X/+s3eZRDn/2p9/9bbr/1nHPBpAoIfpgW/fdTGy0vWJkgKlKnYHMYYQpJmm6c/bW/eb9zNPcvVr77/HjdNuZ/3jra2tv7+5uWkDnwd+7Zjf+bGtra1T2ctJpdgfJqgKVjsedp2VXk4zPMc8li1z62pmPpBTdejRfCcxZ3Ichfbv0SE288fxHIsXNtqaHmxo+xDt/WQ91WwdVVVEiRZX3W3WlGQ3bu53Wj/d7aafFZLDOihsua3tala7PqFn0awN6wqpdMjPE1Dv3yuqquJrl/v8xmcvc+1gxmsXu/zln3yNpfbDp849Tfi5H36RVmDz6c+8w9/4+5/nxz9+nj/38fNPJMzrcUIqRZyWCx1URYW4i0B1Drf+fDQDHa9sGIJey+VwrAPwAs++awE5HCWkuaTXcgk8e8HMTPLyJrLN48KpfpK2trberb8sgeP6NAr4vc3NzV3gl7e2tgZP6thA3+jnN/1ZUtJtmvdtod5tuAioDQRtmr4kyUvat+ge8kKvPpY7HoFr3XbhzOnBe/2YQmpL5/Ort6cKPi04HKfaQh/BudXwjkPAZmCT5LoN8KCDe7h5J5cV2g01Sgs2lsKbXHaV8m5iaamqQqAJDVkuaYXOE2shvX1tzG/8f+/w1vsjVjoev/Qzr/OJ19ZOtZ32OPHnPn6e735xid/47Dv89h++y+984X0++foqP/LRs1xabz412pz7wcEoXXjprXV9HMu86To+6sV1EmzL4OL6jZjBjaXwrmxC0Nqzub3LOMoJPJt2bXUUenffCT0KPC3LsX8b+M1jvv8Xtra2Bpubm38R+M+A//BeH3Bp6eFvsJ1SIuwZSlWcWWncNYv5JJw98vXKyvGD8fd2xuRKgIILy83bLp44Ldg5jIiKiqWWj+OYLC83ntoP3dF5UXWX9qxtmZxdvrNJX1Zbdd/pPQhcmyi5sZPTlvq3F/yj5zZOCw5G2lpfVro4F1I99jbSt98f8b99VhePVujwr/7EK/zwR8488/OPe8F6L+Df/bk3uHYw43e/8D6ff3OPP/jKDudXG3zfd63z8VdXnil7l7l1jkDgrJr0jmi6pNIUYikrljveYl5yLxk0dysgoMk5rm2SFTfMVZuB81Bu0feLJ1JENjc314F/eMu3d7e2tn5xc3Pzk8BPAj97698d2Xn8I+Bfv5/n7Pdnj2S4FFo6yGg2SZg99KOdjHevjRjNMmzTpO2amLfcTOZ9TqEUSZLRcHwODx/nEWlYlkG3e/8urEstj2lc4NY384fBnOoId84yDzyL82sNBNxzcY3rVppUFWVZYbpgPoHC/Cv/zzfJcskv/tjL/PBHNp5YsNXThHMrDf7yT73GL/7Yy/zxN/f4p1/d5tOfeZtPf+ZtXjrT4rVLXS6sNnVwm6UNTQupKMuKpbbHC2ceQUD4I8Bq1ydKSzzHuO1azwu1oOb3x+lCd/KoYhmEEHrX8gTaVifhiVy5W1tbu8CP3vr9zc3Ns8DfBn5ma2vrtnbW5uZma2trawL8APDO4z7O4/CkVvqdUM9HXNs8di7guyZxauAFWl9yL6uU04R1j/Yxd0Ipda6IPLIYOEkrM8f9fpB04JjCdwTthkMpqycyL/lPfvFjhL79HbHzuBsCz+JTHzvLpz52lv1hzBe/tc+fbB3wf//R1ZsiBI4i9Cz+7n/8o0/2QE9AM3B4+VybqqoW7geg26RzDUlRKhzHJKpFiVI+WvbUabY/T3v5858Da8D/vrm5CfDngU3ge7a2tv4n4J9sbm4mQMp97kSeNax0PRzHwHNuN02L0oKDUYIhdPbG015AHgWmcU5/ovMTNpa08aRS1SNnVLn23VtpjwPdlvdUUV2fFqx2A37q+y7xU993ibyQtQdasXAmsGrbnDuJ/04Dt7ZZq6pipx9TlDrXY7UbUFUVVj0bbNwjw/BZwGkP1v+tY7795fofW1tbH3+yR3R60B5Zx/eB0+wIw6uUTzUr61EhzW+85lJWHzg66HPcHY5tniiufdohVUVRMzOT+loWQjwVfmyPGqe9E3kc8EH38j8oK72ljodt6xyO5i3OoY8b89nMkz6fKx0fJzZ1nnRwd5rjs4LTOp8fRDzN59KyDNaXwsXA23oGFn5HOhz3xWoQt6quPwD4q8B/f9oH8RzP8RzP8Yzil4G/e6+//EHciXwWYDiM7nl1srTUoN9//Eynk6CqipXl5j0fQ5yWDKYpAqFX7PajW+Xcei4sy6DdDu7pfJ72eTzp+Uup2BvorJB2qOmPR/2JHvfzH8Wdzudpnr/jnjsvFQfDBFWphTX/k3jee8X9XJuP6xgeFqf13Mc9r2GIORPzs/fzWB/EIpKA9o65nwvrtLbD8wFyKsER90bT0/kYus+a5iWW+WiHdEfPxfzrez2fp91WOO75s1yHegEkaYllGuwNNGV4Yyl4pHbvd3v9dzufp3n+bn3uLC+Js5zDccpgnPKhc50H1krdz/Pe79/d72f9UR7Do8BpPfcdnje5n8c59SJS60T+W7Ri/U+2trb+gyM/+5vAvwQMgd/e2tr6b07lIB8BxlFOmmurE9c2Gc8yVMUifz3LJcK8t0yAdugglaa/hneho1Z11vPTYhv9sEiykjjVVvmWeW922L5r6ezpUkcKz5ICVVVkueTq/oy1bvDMW2/cK5SqQGjb/VIqOg33RLZf4FqUZUWSlrRDhzgtH0sR+U5FkpX8j7/1dd56b8APf+QMn3x97bQP6YHwNFwR7wH/wtbWVrq5ufm/bG5uvrG1tfW1Iz//j7a2tn7vtA7uUaAoJcM6LreqtM3HcKazLRzLxDIMGoGNIe/NodcwxD0peqtKm7plhbwpmW08y4izknboPlUeUndDVVXs9mNGUcYkyjm3GtIO3BOdgY/iKLsr9GyitGQ4yWg1bPrjlNC73WrmWYSqKvpj7Vi81PJuYvLFacnBKCEvJYa4MZjutY736NIGowbNwCHN5AeKlnraSPOSv/XrX+Lq3pRey+N/+O1vYBqCj7+6etqHdt849eXp1tbW7tbWVlr/9zgPrf9qc3Pz9zY3Nz/6hA/tgVCUisNxwjS+YTVuGjrgSEode3m0ZdUIbM6saJ3C/jA5UUyXFZLrhxF7g/hEAdatkKo6YvhYi5yUYjjLyIobhe1pgFIV+6OEvWGMVOq2nxWlQghBXuq42ygtiZKSuA4SKqVifxjf0eJ9DtsyOLsccnYlJM0kh5OU8T383bMAfW4K0ry87VzMjS7LUrE7TBnPco7bhKR5yeEoIS8kdp1ncWGtudglS6Vuu06H09piP/5gnMfHjV/9nbd4b2/K3/g3Psl/+Ut/lovrTX7t996iKO8spn0a8dQsQzc3Nz8MLG9tbb155Nt/Z2tr629ubm6+DPwK8EP3+nj36511kqfVrRjPMgaTlMCzj7VZ3j6cYbsOCmh3goUbrx+6XNuf4Toma2tNVlaaKFUR+jbTOGevH+N4DvvTnIZvs74UEngWqgLTEOwPYhp1eQ2bJ1t/3Arbc4jSgqWWR6MeKBcY2miw4bByjEfUvZ6LR4lZUiwK3TQuFjuHwTTj7WsjPNvk0kaL86sNpKoQAiZRsTgPw2mGU1QMp6l2RnXu3hbUmfY5vmszmmUfCC2KY5kYQqCqCs+9+Ry0QpuskIxljpIlk0hiGM3bFiU6e0V7PjUCi9C1F7uVopQ6TraqFtYdVVUxjvTOejTNaD1B36ZnEX/4tR3+6Bu7/Is/+AKf+K51Dg6m/IUffYm//Q+/zD/7+g4/8tGzd3+QpwhPRRHZ3NzsAf8d8AtHvz/3ztra2vp2rWi/Z9yPd9bKSpODg3uL7rx+GC1ERCovblOXT8Yp0yTHEIK+fSN8ajjNiKKMKAJDqcXNL56lFKU2F7xybYBjGeSBQzxLKaX2dFpqexhCMBolmIbAFRUjIe7pRgkQmIIkykjqD7ojKkwLRClve923nosH9c66X7i2iagzII/OhQYTnRY5k4okK2kGDr5jMUsKVju6ny+VWpxngcA0RV2QxB3bdUIIOg09IwlO8DHS783p5VffDUmm7b7nPky2ZXB2JTw2OdO2TM4shxRSESUFUla8vz+jGTh0jrzHlimQSs/rmqHNKMrptT0s0yAr1KLoZLnWQAihrT3irHxmY3yfFHb6Ef/gd9/i1Qsdfvr7Ly2+//rFLudWQj731edF5L6xublpAf8A+Gu1x9bRn7W2trYmm5uby5zisaZ5iWkY2JZ2hR1OJb57uz0JQK/l4rs66+Poz5uBTV5Iqqpilmobh/mMwrZMPKEjXw/HiRYV+jZpoVfm1w/0DqYZODR9i52+pqv2mt4D2YAYQmA8QkbSo4DrmJyt23rz81ZVFaYB41mO75qEnkWSlQgDQt+mlBXt0MY0DG0nL7XHWJpLDseaYNL0HdqNk63dl9s+vebxVjJZrm03Kqo7Gj+eFo4aU8pWtdgBzMkGUimipFyEG82x2vYZjFOyQgcfqapiME7Y3ptiGILVjk8pFYFrsdOPEQJ2+jFnl/Xu2ItNskLddO2tdoN7si7/TkZRSv7eb30D2zL4Kz/9XTedKyEE3//dG3z6M2+zO4gXKajPAk69iAA/D3wvevYB8J8Cf3Fra+vfA/7W5ubmd6NnN3/9NA5uPMsYzjIEgjPLIe3QoX3MjXuWFAynGb57vH2JZRqs9QL2BzEHowTbMvAc8ya2i9Yu6HhYIQSVqpimBXZ9U0jSEt+xFgFOz0r/VPfYU2zLYKXrn0hjvm1XFxfEqaTdcOi1XEpVLVoyftsi9GySrFzMAWzX0a689QZ0EhXEqf7ZmeXw2EKi6qLuWMZtTrqFVE/1uT7ahiqlYhLn2KaxuKZ2BzHXD2ME8JGXlhat1byUdFsuUipUVduSC/14SlYUUhF6NoFnoyo9T+tPElzbpNdyyEt9XiZRftNQ/nkBuTP+0eeu8P7+jH//5z98rP3JJ19f49OfeZsvfnOPn/6BF07hCB8Mp15Etra2fh349Vu+/Uf1z47z1nqimN88kqwgyQps6+Y3X/eDc3b6Ma5jIhNNm5zfsFQ93HZtk7yU7I0SpnGGIYybfIHWl0KGw5gKvSoppU5Ha/o2cVLqeN3QIfAs2qG+ARwNtiqlwjghTS1OC1TFqTGQJnFBqRRlrshyeUea6CTKF9RTqgrPMYlSTUwIPYtS6l68bRm8tzuloiLJysVsScmKbtPBy0w9O0F7GElVcevmq6oq9gcxaSFr4aa3cPG1TP18eeHUfysoSvlINSUPC4HAtU1MofVGSoEQcHY5xLZM4qSkLCV5Idnuz2j6812yfg2WabLa9fFdi2bDY9fQOxHvSJu013SZxjorI0pzHFssite8lXa/NjxzssfT2iJ8HHhne8zvfOEqP/LRM3z4peVjf6fbdHlho8lX3uk/LyIfJHSaLuMop5AVw+mNWNpS6j78LCkYzTKkVMRpxXL7RvAMwPZhpFsilaLdcMmLElMYLHf9m1bGlmkstA+uY+E7JsNpynCW4jkWnaa7aFfcuooZzTJGswzLNDizFN60Ikyykv2Rbu1I5R27i3rcaHhWLfITJ6rrS6kLzJyCqipNURVCsNYLCD2L/WFClBaYhqF3FpZR39gN4rTEDRyKDPJCtwY9x+KtayOEEKRZubhpVZXeX+wN4jrXGlqhq782BFFqsrEUIoSg1/I4HCULR+GzK8enNB6OE2aFQhXlQw2Wi1JhmneOVi2lIkr1zlfKijSTFEpiIGg1nMVO7NxKyDjKkEo7yo5dff2+fK5zk3OxHsJbnDsmKdOxTRzb4GCUczhOuLiuWVpZLilLxfZhtLjm7qWdFacl+yPdglvtPDstm4eBqir+5/93i07D5Rc+9aE7/u5HPrTMb33uCuMoP5XP6oPgeRG5CyzToNNwMU2xCC8a1dGvrm3SrnNAGoHNUsu7KVFsOM3YujpkPMvwA5uq0hnipdL95nkRORwlfP3qiOu7E7pNh4urTd65PibLS4SAduiSZiffnOaOt6XU1EvHuLHCuzlh8O5Eg6qqHnlvO/BsLqydvAuapwtmpeRgmCCEHhAvt/1F331/GLPTj8hLxUrHI8kKVtoeUmktw7WDGZYhuLI95b3dKbmUrHZ84kQiBIx8i3bDpZSadVSWaqGfyYuS1a6/CA26lY8h6/Omqgql4NaumFSKWaLbadMof+Ai0h8nXD+c6QH4UnDs+coKyW4/XtB1LdNAoWgFDhWw2vFvMAI9m5fPdxhMUq4fRFzZnlAhMA3BCxst+pOUONO73O4dkhzzQmFbJqXU7CvDEAvKdZBLVjo+02m+ICis3kG3c5QafLdsmA8KvvDmHu/vz/iln3n9rmLNj7y0zG9+7gpffeeQH/rwmSd0hA+H50XkFsySAkNwE1un03QQQhcU37U4qFf2eaHwXZP1XkBVaWV0VVXEWVnvUjRn/mCc0JEK1zQwTYNzK43FarGqKg7GCcNJrlsrWcFgkpEXkk7DpRk6eI5J+w70007DYTitcG0TxzY5GCVcO5jRbbpcWm+x3NaakdYdxGJSKaSquLo3Zf9gSuDqttmjch8VQhCnOrr2VlZZmkt9QzQMWrVjb14o4rRcsKvyUtEMHKZxrinPowTHMuk0XPaHCWlWsnd1wLt7YwwMJBXjWU7oaaFc4NmcKSVJLpkleU0D1mQJpQz6k5TltkdWqNsG6Estj0mU49jmsTb8pmEsMrUfZvgep1rzcqP9dnsRKep5hOfqxMhm4GAI/X3XMZnG8+wZo75ubFzboigrclVhm4IoybmyM2G7H+G7JqWsaDY9HKNiFpeM4xzPNum1PKRSTGY5Ralo+noe1XQt4lRiGvpad+qdoH4NBXcygW0E9qJ4PKh4sSilvh6egZW6UhW/+bkrnF9t8InX7q5Iv7DWoNt0+erb/edF5FnEJM4ZTLQAb7WjC0kpFYfjFAGLGUSv5TGNc0LfZjDJSPJy0WIazXLGkR7ENwIbWVWsdHQgjetYBJ6FEDdaUtOkYDBJ6U8yAs9EGILRNKeUkpZv0wr06rYdOnBCD9lzLDaWbryV7+9PibOSJCtoBTaWaS5uzsdhzkLKS0mr5ROlBYNxStwuueA8Gs3IJMoZ1OLGlY6HbZnsDRIGk5RO09HKfctgtetzdW+KVIorOxM2L3SI6laY5dusdn2+fqXPcJrRDl2EYDHkjXOFa5mMoxzTFChlk5eanRSnBUrp30vSkiSXfNelHuNZxtcvj1EVvHqhw4tn2rcdu2UaJ6q651jtBiwvNx4qsnip7TEcRscGkwHkhaQoJb5jYhgGvZa7aK2VUrE7iBnPckazDCpwbAPbNnEsg3bDIc1LHNvAdU2u7E4pCsk0zjm/0mA4yxmPYywDhtNch2ZVFYejhP1RQuDavHK+QX+UMIpyug2bSVximmLRenlvb4pjmaR5eWLcr1G3CB8Uc/3KfC6z1Hvgh3oi+Mrbh+yPEn75Z7/7nmZHQgjeeHGJL3xzb9Eyf9rxvIgcwdFuz/zLWaLVvwBRUuK75mKQG7gW1yb6pnE4SpCtimmUMYsLAlcXiw+dazONC7Jc0gxsQs9mYylcrGgPRgl7gxQ/sMESjGc5e/WA/dxqoI0CBURpycvn2xjCIPD0jqeqNCMmTkvGUUZeSkLXxjQEg3GKbZkMZ3rlXsGJPdaskIvWiG2ZGAjCekWtHrDjUFWaUOBYZq3l0Gc0Tkve35sBgiTXzCqoeOlsZ7GKty3Bzm5CBRRK0fQsDMPAtU2KUlFKbe0xp9+udQO6LQ8rk0ymDoahZ1aeo2dEUVpSSEVeSqoKerXuZv54eSFB6B1RlBbM4oJG/V7NUUrF/iihLNWJpo0PS1oI6mvjJOwNE62JMQzOrerVflEqxlHG4ShhEhe0fC3+myU5+VSx1HSJhcAwBCtdj0trLZK8xCAizSW+azJNCoSVAxVXdiIMQ9BpumS5ZBYXRHGBbRnkpSTKSqSqyKVueea54vrBjHbDpeHbGIZgEuWPLTO+qm6w0uQ96sBOE7//p9foNl0+9srxw/Tj8OGXlviDr2zz9rUxr17sPsajezR4XkSOQFBhCj2cDOtdyGCScjhK6bVdXMdc7DxGsxTP0QPGolSMZxmzpCRKcjzXYpoUGPWAdL0bIJXC92zaocNgkpJkJaZpsL0/o0Irfl1DUJYSxzbxXRNVQZqVFKpiGudkhaTh23Sbjl4FGrDeCxlHOZMoZxJnrPcCPNvi1Ys9pFIoVWEacxnfDUilmMZ6rtPwbdJcU2NfOtem45mMZhnmLUyd+8HBKCHOSmzTYGM5JMkKhpMU2zYJPFsPkA2DSZQjZaVNFX39/arSc6PDcUqSl2z0AizLIM1KlNJFJi8kliW4fjBjueVzZjlgzTTZ3Z+QTnJM2yRO9Q0vLRQrbY84LVnpeMySYlEgVrs+L5xpU5aKC2vNxVwkzSXhuv6dNC/Z6cfs9nXRykvJh852HuZSuw39cco4k6gju9pbIdCtnGle0Gm6OJbBTj/m+uGMNJe4tkEzDMmkYjiO6c9yKqXbRo5tYpuCawczTZH2LEZRQZSWGIZAmBZJkhJ4Jp5tcnY5oKr0okaRkBWK8VS/V65jYgmYlhJZKmxT09KTrKThO5oarCp2BxGWabDcOZnWfb+wTIOVjk+ayUcelfyosdOPePPdIT/3wy/elwHqaxe7mIbgq5f7z4vIswSd0aEV3fPVd5LpD9hyx6cdOrh1TzzJYTjJKFVFVVU0fM2zf29vimUKXmr7FFISJboNkxeSw7H2KtpYCvAciygttNdTrK07Liw1yLOcyLPpNCRZrkgySdN3UKX+/5WdCQK9ErMsk4ZnkeWSwLcxDbAMg8E0pcgrCqV4+WybZqjZOrf26g/HupAJNONotR6sWqZOUHyYlsP83E3jHMcymcaaAq2pnQIzNAgbNpfWbQJPt2bycgsouuUAACAASURBVB4hCq6tNSC7g4QkLbh2MMNAcDhOqag4sxTSCh22+zGdhm4JTpOCYZQwjQtGUUkpc9Z7AWWpsA3BNM6ZRDauY+E5Fo5tsDuIUarilXNtLEvTiGdJQZTkbPe1nueFjRazRNO7J3FGK3AxHzFNuqoqpklO19U05ZOKyFov4NvXRkyjnG9c6fOhcx0qKsL6Ogh9ze7b68e8sztjEuUUhWS1u0R/kjFSGY5jandepVjt+PQnKVFS8uqLDXb2NEEgKxUI/R5mhSQvSqK4wKBivRcwmKREaYnvmASujeuagKDh2zQDm4Zv8+7uhO3DCEOIe2oH3g9CT+8Sn/ZWz+e/sYcQ8IMf3rivv/Ndi1fOd/jaO/27srmeBnxHFJEs1wwd5w689KO03PmXtqU9phzbXAwBu03Nta8U7Awiba4o9MC9qn/u2gaBZ7LbT1CVgW0KkrRkOMuwLIFjmfieRV4oXNvEd0xeOtvmG28fsNLxeO1Sj29fGzONcw5HCQ3fJs4kpiGYxgWWKUhziWUKdgYRZ5YaLLc9PMfi6t6EoqzwPX08J9lQPE61SCkVw2nG7iBmteujFIuVaOhZnF3WsaF7g5QkkwSuWPhWaVGmD+h23fsHM6pC6ZlH3UZUVDR9h5WOJgtMo5w4tLEtg2mSQ1Wx1g3ptVxWegFSVjUNOifJtGdY4Nk32pRpubjJLbVdqqrCEFqUtz+MCWrh3cvnOrRC5yb2lW4d3W5/cz8QQtD0NXmjeQdml2FoZT9Ca0QMAa1A75ovrDUxDAPTANs2cGwTIQRSQpzqoXua6RlInkuWuh5pWnJmKaCUFb5r4dWt2k7ToT/OF2adnmORlzlxJhlHOVFaItCstbOrDfJCMpqmNAKbKs71MS6II3ph8J2Gqqr442/u8eqF7gN5sr3x4hKf/szbHI6Te3LsPk184IvILCkWFhjrveDEXq2qKkLXxvNMmnWCW3+S4TomZt2PB/2B912Li+sNHNtACMFSyyMvJe/vz5glOZWqiLKSsqgQBrx0pkVeSvpT7Yf1wlrA2dUGgWNpewnPJsklpqlFhtuHMWeWA/aHhuboDxOG05Ru02W16y/EcEopxrOcN9/tc261Uc8GfPYGEc3AwbYMopqKfOtNbrntM0uO/9nDIi/0a2mFDoahZw+vX+oRpTkNX39vOM04nCSageVauEf0I55jcWGtSZQVTOOcUlbkRYnveDR9izNLIe8fzIAK2xJYlsHV/Yh2y2Wl42uaq2XxyoUOa72Aw1GyyNGoKs30MlJdUHzHWtAuD8eJLgiGWFh+2KbBuZWQCkHoW7e1JYbTbOFcu7bWeuBzttT27ujhdjhO2T6c4ZhGTeM1aPjOTWwxqRTbhzFrHV/vUD2Tpu9impBniiwvtd5mlLKxFBJXJVmpMGpyAnVMgVKa8ffu3gzXMjCEVSdomlRUqFmGIUx6DZfxLGUc6XyWqoKljlnPbBq4joljmXSbj24X8qzg3d0p+8OEn/yzFx/o7z/8ki4iX7s84FMfe7q9tD7wRaSUCqkUSSqJguNZI1FScHVvqldvBjiWJCskqqYiHqevMAyDsyuNI//Xy63dfszhOKXh23QaLhfWG7VgLsQyNf22VBWGMHj1Yncx1N0ZJlzeniAEvCIAtHK6LCXDWY5hCPrjlLOrDd54cYm81POa3UGCZQqyeihsWyaffG0N29YsJU1HFqz3fMya3++7Flkh6+Hzg808SqmoqurYAbPvWqx1AzwnZ7ntLYgApnlDyT+/cVv14B10wQdtAPjmu30ub89oh3oGdGY5wHUMdgYpw2lGkpacWwlRqsKzTdJM+5s5lkXoWyy19AzkK2/38V1NRjiz1OD64Yyvv3NIVirWuj4vnmnjuxZ5UXJ5e4JtCjpNj42lgOt9rU0xhOD8WoPhNKPbdG/qxd9ExrhHi/4HwV4/Wpyfj3xoidC7cQxSKrb7MaWUSFlRqopmw6EZ2AihvccqtIh1MNM7hff3J1xcb5IWep735bf2GU9SWoFDt+VxZXvM/iijLMsFjbhRL3Z6Lb9eoOiZU5QUdFouG8shQe0bZxjijiSBDzr++M09TEPwPZsrD/T3G0sBy22Pr73Tf15EThutwGHnMEZV2hqie0uSm1SK6wdT+pOUwLPqNlRMnBXMkpKmb3Nx4wbNNcnKm8wVpdKiq1mcsz+MyUpteufYBqZR4dgms6Rgt5/wzvUR/z97bxJjWZbmef3OPXe+9432bHDzMSIywjIiMmvIzCoqKUolNcWiF4DogkWJFRISAhbs2CCBBOo1EgtgBxtEC6lpkEBCqhTdXUV3dXXlUDlEZlpEePho7ja9+d15OCy+axbuMQ8eGR5V+a3MzczfZO/dc873/f+/vzGGycBjlZZsD8W1/s6jJfdPN1R1i63hwfGGppGd8yh28W3NeZ5hWaI7n65yThcpWV4TBTbD2Ed3rRClFMoSDtRsVYhjfZZRVpII2I89BqHDJqsvkSFPLoafpKrOqWww7zNYgpzWdkbh5ZwF4P7JhpN5Sj9yub4d0zQtL+73aVvBX2yyijcfLCnKiqxoeXS+ISlqTheKV64N2BnJfGO5zmlbQ5LXnC8K+X7bsj0KuHmlzzh2MC2UTcudRys2aYnvaXZHEc6uxYPTNY+nKWlR4zuaJJPZ1NHZ5lK8MBmFaK0v1VZF0zBb5RikxXWxiBhjLtuCW1078ZOxoD99jfoeZ13YVJo3RE9s7u+drHnn0QqtFb5jc3S+QSsxG+6OA7JCsC5xv6MeNy1pUXH7aIllSetrnebYxkgkbl7x4HTD4/OEqmkJXc3eJCbJa7b6QSc0KBj1fIaezY3I49aVHsukYpEUzNY520MBViqlZD6WVUS+/VR7NSvqSyL236RqjeGvfnnKN1/c+sxUY6UU33xpi3/208dUdfuB/qTnpf7GLyKWpRj1vcv+93tL+vXvau5Hsc/jQhzB2pI5ysUOc7bKWaWCed+fRJRVc5kcWDeCyLYVXN8NZXZha06mKcfzjDtHS+pWzInTZckw9nlwuiFwNfeOV8wSgdzFvkPoOWRVTc93AYvx0MVzY7JSkN9vvDPj4fmGumn4zRcn7E8ieoHNMpX2j+/Y2Fpxtsh4NN3g2Zqjs4S8aqgaQ+zbl7Lbz+JMvzC8gciDP85J0hrJ+aibtvPQSG9flxbXO9TGL+7OOJklTJc5k3FAVjYoY0jSiuk6x9EWm1w8EGeLrIsYLgl9Tew55Eo4TjvDkPsna954R/T5w9hjMvQZ9V3quhEfT1riaHVJVn5wumG+zrtF2WHUyVV/++UtVhuZQUmrq+bKVsgqKelHLpusYtUZStvmi5Wb7k9i1kmFpQUKenFhmQx8FpuC41nCKikZ9XyqWk7SE6VYrAtevj5AK4Vja65sh7x1f8nP3pmBAkcrRn2fuoVBYINSbJKSNKska8XRLNOKOJO/Wz+UIb7n2ICErEnrVJPlKXXbstwIhr9pDcPYY7rMqduWLK8JO3LBBdi0QhFonism2eetO49WzNcF/+4fvvS5buebL27xj394xJsPFrz+wvNriPkbv4iAQOTuPBbJal7WT7nRHdtiu+dS5SWDWD4MOyM5ri8TYVJBi+/aLBNxOtOdCNZpxek8o6pbsqIiDl10X9oh909Wcsp4OOfuacomKwl9m37ksj8JqLp8jDcfbJitSrKqwXcsWmMoq4amaolGNklasklrfNflleuyGzyZp0yXOWXd8LM7M67u9shLC9+xUKFNVlacP5BWTF409EOPpm2ZhL60a2IPpZRIPb1P/+ENPE0/dN8FJX5EJXlFXbfsjEIenSeicuvw42BEwWMpfM8Wdpil2J/0MI2hblvuH695fJZwOk0Bi6ppKMsG3xXHeVG1rJIU19HMN8dcGftgFKuswrIsLMtiq+fzi7sLDtWCLG8Y9z1CTwOGP/vxI+rGEPmaazs9fNe53PXtb8Vs9RsenGxwHc3Q1h2Cvu1Oje/uDvWvQCm0NRSO13yTExY1/U4JFfoOcejidA5337PZ6ns8OEtYbkR99buv7XL/ZEPbtpzMU+ruNOJ3aq1ez78kFCSZmDUDz6Ysa3zPRhnhjz08z+hHLlG3+PQjl7Ku+RdvnKAtaVO2RuS9SkkssWNb1GWLrdXl6a7qWsV1Y7h/LlLgCxjkV71+8OYZ2lL85te2PtftvHpjhK0tfnJ7+utF5MuupjWXqI1N/vQiAggYcfiueSsr6k5lpVlnJetUlCl5ISeOm7t9XEeT5CWLdUk/dri63cPWqiObCjpjnVXcPUlZpgUYw83dXifftHC0xXlWYQyEviWZJdoiy2tyz0FruP1wySoraVvD/ljMi5YFm7SkrBriQPwkVdVQWhaeZ/H2Q1m8Qk+MdBjFtUnE7aMFJ5uSF68OLlVqn+aI3Lbmkth6ASb8uN8/mct8qBeK8/7bB9usEmn7XcyN4s5JL20X8Rlc3Y7Y2wo4niYsNyVF2aC1heMozmYy9ymqlsnA5tZuTy6sSUG2kdPL+SLldJahLLi+HWOUDNPnq5ymaXC0pue7nC+L7iRZMwhd9idx16oUUu3JLCUvauYbOQnFgU0vcFmlJau0ZDIIuDKOaI155he/uhHsS+DpSzqzqKRa8qK5VPY5tsWtvR7GGI7ONizWBcqSVtF0kdM0LfN1yc4o5OHZhuN5ImbKQMQMvqc5X+XkdYsyLYHnkHe0A0crGtuiF3r4vk0/cMlKaQPub0eEri3tq6UQFwaxZLeEvk3T+ZMAtkdBd3p5d8MilGYIA5vVSrh0SVZ95RcRYww/PDzj1VujDw06+6TluZqv3xjyk3em/AkvP6NH+Ozrq/0X+4TluRrftak7/s97q2la8lIor+fLjKJqWKcVu2OfotL0I5fpsqBqWgau0zmdxf086LkEruaV60NWScFf3z6nqSXbwXcttBb8ROjZ3Nzt4TiapmnoRwHTpZi47h8njIYeJgXHtdkZ+GyyhjuPFiRFwyCSHefjacqmW3iubQtl9vVbW126HJxMM4KOqXSRvbE3jmiMYVM0wLuZ65+2Hk9Tqrp5ym3/UbVMSjZZeRmb2g9d8rLhdJFxtsw5X2RkpTCixn3BoGgtbY6f3D7nt7824fpOTFXDKilojGEYOTzw3a6Xr3BsS1p0rSz8ZWtI05KsrFFa4WhN6AsROc1Lwef3PK5OYsq64Y07MzAGx7bZGgSMeh4vXxugLYvzRca94/VlOub2MMC1Nb6nWYvYr1vIv5igqrOFvA+LaSP4Eq2xLKgqaWONeh67o4C0qIl9WYx9V5NXjbyvyhbHVtQN9COXVVqQ5DVl2WAZYTSVdcN8LV6eujU4lkjRlVLkVSt5Kq20P3/nYIfZumC6kie/XJd4Y42tNbvjENOdMPa3YixLsclKtLYuESjvXRwuTIjjrZj5LKFuzGdmaT1P9fAs4XSR8Xd/78Yzub1vvrTF//q9tzidp0/NGJ+n+luxiFhKfWhSWGskIvRslhL7zuWMQHwlNvsTeWNHXsYqLcUXooWEukhKqqplEEl2+fkyp64M56uMujZYlsPV7YjTWUbkWyyTEoMQaU8XGfN1wXyVk1c1eWmjLRhGnmBOkoqsNCRZzbgnrK7AtS+HnbqTng56MstRliiF0ry+lA0neUXoSRb8qOdRFA3XJp9NMWOQk0hRNZ9oEdFaAYqmMTSNJDqezGUhElWYTeDa3NiNGUQej6YJp7OM00XKVt/nx2+fUxmD2xnVXr01koF5bXj7aMl5R1IuatmRtwYWy4K8qBnEDo6lGMUuWmvuPt6gLYvJyGNvK2YYuXz/l6fkeU3g2eyMAr7z6i7feGGLTVpx+9GS82UmCJu8ZncU0LaG7aFExMaBI0DL9zimm9ZcbkY+KwKlNYaiW1zzoma6KtnbCihrOX1oWzHwPG7t9ThfFhjMZUrhJhUacpZXZGVLP3a5thcQeQ7bQ1HnnS0SLEfJyboUIGVe1gSWy+N5imuLX8S1RdZuW4rtgcfxLKFp4dE0xTQJ17Zjxn2vG5bbbA1EYLHclKgWXNu6VNHd2O196HtG/w1Tcf3g8BQF/PbLn02V9d76jW4R+cntKX/0nV8vIs9lta2hrmW3WdYte+Oww2PL7ttSgsaYDAOiwLlUZp3MUmarHFsLl6isGx6ciQKpFzq0DuwOfcwg6BzVNUdnG3a3QmxtkZUNaV5z/3RN1QpKw0KxymreKZZEvo1lQehLLGxrYLrKWWcV2lLYWlG3cDbPpL/fqu6kEIIx3H68FjVW6HLD1Xzr5QmOrT/ScPlR5dga3fknPkn1Q1figAGM4e7xmqYxjPser1wbstiUHYwvoKjktYgCG5Yyt7qQJte1YX+7YXcrIOrIwqO+x/kiJS0M9x6vefHqAFsr+rHHMBZ2Vuzb7Ix90rzi7vGK+TrHc23O5jk39/o8PF1T1C390OMPf+sat670BBK5zHjj7pzQd5itMuLQJS3ErNq2oGzFZBB8YBjTw9M1p7OU0LM/867xpBNqNF3C4CCWQfZW38eyanxPTtW2rZl2+fPDWIyKyrLYHvicK8Mw1lzbibuTkqKpzeXijRLMynSdX5Kpb+zFHJ2scR1YpxWmhcUmB6WwtMJfywJ9Ns+IQ4eybsiKumthiXT7eJpw+2hFVTd4roVB2nASkvX8qoueZf3gzTNevj58ZkiW3VHIla2QH755xh995/ozuc1nXX/rFxFbW2zHLkUmVFjLUl2OenEpP0yyirhzFItBT9DhrqNp6pZxp0BJMolZzfIKqzPAXRmHaCXYkapqJOLWt6nKlkfTDUXVUreGYWSx2JQs1oJT8T3NS1d6DCYhtrIwQOhpzi1po5jWUFcS4tS0rew8Q4c2q3jhSp+mNZwucoY9D9+1iYInUxAbCSnalAwiofzKBctj+0M2UBe78U9T474PBmbrnGEsCrllUjLfFKzTbqh7ptkehpwthOh7dSsEFOtU1HSOI+7x//eHD8EotFJEri3D+caQlQ2zZcbuKJQFXhl2t2LqusEYxd3jJYtNwWpTEAViWvzx2+dsigbHgivjgLpt+RdvHLNICqqqZZNWtAh1OfJtLCUKPttWGGMuc01GvXdDvlpjLlMwy88RpXtxG4Z33esXDvll0goBOtYUVUPo2VSNZJ0Hns3tR5JBkxUNbmRBK8PztGhIipLFSthXypLnoVFoRIa+TgqBLJYNWsFsU4o/SSnapiGKXDDiUl8lNeerjP084s7xmiSXlhpKcb7KWCaCh7mxFxO6Tncq/Ztfx7OUo7OEP/mjZzu/+PbBNv/3X9xjlX72rJovsv7WLyLQDdbfs3MMPM0qUaBgti67NkFNVtVgJDmvrlrZaXetJM8R6WzgaFZpwTIXeerOKGK6ygHDKhFCbFJUpFkjgEQFfuBiVuIDMG2LrRxs2+bmTo/H04T5qiDPZRdaIFyuVVbi2DZFWXM+z8lyh5euCcrcsjUvXu1zfaf3lFa9rBrePlry8HRD3RFhfdfm6nbEOimf6etqKXV5gjvp8CFF2XRS6Yp+6PLoXIbnSomyJ/JdfNfCsRVtC65r8fAsYbkquhlKy94oZBj5zDcZbWOYLiXVcXerR93IcP10Li3FvKPOep5DFNgUZUvTSCiYwhAFDtNFxht3ZlR1S9UYXFuR1w3jyKMXunztap9RL0ApODpPeHCyoR+7eE51uYhYnTemSIv3+WayomaVlAS+/bGCBCEJlJeblqpuiUOH+8drMLIxyPKasm6Ec1U2VFWNpSyOzxKO5ylGKTzHZpnVNK0M6NOiom1l8Yh8G8u26Mceji2zpbQQv5PvagLPYrYpaGkxrSKrFH1L4TmOnC6MEK1/evucvXFE7Dtoy+JqZzZsWxhGDgp1qXj821A/fPMMgG+/8mxaWRf1nYMd/q9/fo8fvXnGH/7W82c8/Fu9iORlzXxdgP3+l8F3ba7vxpRlzc/uzpmtctKsJgzsy92eoWWZVPzi7ozXbo45uDGkbVvevL/g53fnKBTLTc7eVijUWqXY5DWbvEIZxc7Y52wBk4HXLR4QBxZ1axN6mu2+SxzYQgcuKs6WGVcmMVlRELoaBVjKMF2XWFoR+LZo7+uG2HeJfRe3439dqNOyjrnVmpazzkcxjEUCHIefHE/RGiNDXkeghWleE8bv//9VLffTtjDquWzSinE/YBh5lzvidx6tyEq50O6NxONQ1C07Q4/Q9+n7Do8RuXDgOpwvMwLPZpUobFejLHOpKMIIvmSVliRZSdsoiqahH7iM+z5x4FJUDWfzlJtX+sS+w/kyJy9lVuN5FsbAJq2woJNBO12an/xO4Isi7r1o/X7kfmAba7bKRdJd1h8ria7qhuNZRmsSXtofEPo2VdWSFjXHM5GKr5KScd9jnZXUteFf/vKMcc/jfF3QGvBshVEyqD6bp6R5hW1Z5E1DFNj0QodxL8DzbOqq4s5xwjorKPKa8cAl9AKiwCXJKpRSDGOX2HcY9TzmG4uTWcKmkPfAuGq4f7zmW1/f5uhsQ920lHXNKoVR37/0UD3vsMRnUT84POWFK71nCpsEuL4Tsz30+cHhrxeR564WG3EoLzcFgX4/oNFSiqoxnM5SZuuC7aFH00iexdtHC05m2aXfYn8rYnccsdrkvHW0ZJ3VWBhsx2e6KtgkNUku7KKyaKmbhtNFTuRpsqJhnTe0CqLAZ9TzsS1xeeeVZEPUdYvraMaxqMFWScFsJVTWXuAw7gdsDfxup+lQt4I0eXSePu0sN4asaBj1Aq5NIqrGsLcVferh5uk8k5AjW18SeM8XGaH9dOuirBvqVsKN1qm4nK20xLJsqrrl7YdL5uucwBMT2r3TDVle4TqaNKsY9ktZvH2NrX2OZ7kg3psG37WwLQvXEjXadJlytXseVSWoe+FCKRxHaLLaAt+xeenqENeRU1gcuuxNIh6dbbCVJgoluc8gt3uBhrG1ReDazE1BL3Ce8oaUVcODkzWrZfo+9LnnSLvQsfXHwgjXaXWZiPl4luDZNnUjLLJx38NzLbRSuLZFL3CYrysCV1NU1aUpNvQdPFvQ7E1jcG1LYoVHPqBIc0HAj2IXbVlsDVySvGRdNSRpzSgyXNsOCTwLy1jYjoA/FxuRu4tCUMmpD0M/DFglBTtbIWdLOSlttBAfXnthyI2dZxNs9jzXdJlz5/GaP/7DF5/5bSul+PbBDn/6Vw9I8uozu+C/qPpbvYj4rqSwybD8g3+nqBq2hx7zTSGei+2IX96fc3SedDnrNiezlJ++M+VklmJrMWs1TYvSimHocHoRp1s3eI3iZJ5RVRVZWbNO5HEYYxF6DjuDgIZW0OargryS9sv2yKcXeuwMQx7ONszXBWXdss5KHNtidxTgezZ3H684Pk/5ztd3CXybTV6xSqpOsSWGyUHsEjfSytGWYmvw6XdOZScVrur2ciHxXP2+FCvXsaCDH0ZdaFEUOCRZ1eV1y4kwzSUlT4bKLY2l0FpRFi2bTJDmSVazScvuRCDxsZOhy2KZM99Ia3C6EFDlYlOSlw1aSRzvOikvZa/aUkxGPoPQ54UrAb1Idt2TfoC24fpOD4ViviqIPBE1ZHlF0xjCwH43lTIt8TrC6iopcXyXtKjJi6e9SFsDn14ksMSPU20Nex6ni7S7nQZba7S20NqwWMtptue7HB7NWaUVt3Zi4sDm7uMlSikizyZ0HQLPZhA7PD7fcL4sMV12fBRoNmnFclNxeF+EF9d2IsYDj5NZSmvk8Tm2jba0nO5KQ1oIxt8gcxFtdVy6BjZZiW0rzuYpllKyUarby+jdrKy7kDbxUVnq/RHJX/X64VtdK+tg5wu5/e8c7PD//OV9/vqtc37/m58OLf9F13OxiBwcHPy3wHeAHx4eHv5nT3z/G8D/iJDL/+PDw8OfPMv7HXZ4i+1JzE/fPCYvGq7txE9BGuva0DRyYdkbBcSBy/ag4J67JstrfMfGsSzysuGX9xeUtaToBZ5N7Ds8nok7eJXK7rpqpMe92DTkZQuYzjHsCl5biVpMK4W2DMezTCJubc2kF3DnZMXtoxVpIbTZQc/jyijC1orFKqeoappWcbpI2R75uLak/BWlDLh9zybNK6LAuZQ9103LMi2fIul+XE0GPutMslACTzw4u+PwffGw54scSyviwMZSsntOi5pH5wkow+k8papaxgOfvG4ZuDbxWFPWLS2G6Up8JcYYbCUL0HLTstXziSN5XcLAZZElkste1F0Mr0JbUALDnssmrymrhroFz7VogDxvuDqRbJIrW6LK813NN18Ys0pr+pFL1dT86K0zPMemHznEvoNtWTStIfTeXSgC36ZWkrf+3hOt6lIUP0nFgcMr10eczlNAzGtR4LJJ5ATgaMVPj6fcfSyUrnHsdacEyVS5OgkZ9cXvkuYNyrIoyoq6NbTLmqb1ZTHuXo+sqkUQ4tn0QhdXG5SC1aakrhvWSUkjcAHGfZdBZFO3BoxBW3Ky8j0NxrBYS0zuC1f71LXsHUwLR2dCKogC55KovTsKv/LGwifrh4dnYpL9ECvB5y1pk3n84PDs14vIe+vg4OBbQHR4ePgHBwcH/8PBwcHvHB4e/lX34/8G+BOgBf574N9+1vdva4vjWcIv7s27zI+S3/raFo6tqZuWvKrZm0Rkec2w7zPuicroraMFjm3huRrP0TSNwbZAObagMTrZ6iavMG3bSUQFnufa1eUFSSmD79l4jk3TSFRr6Gq0UqSOTVXLSclSCmUZ8alY4Nli1vrtl7dZpqVEtzaGxabEdzWWErPd1iDg0TRlmQgJ+JVrQ0ax+1SPetolLQL4UcJ0kTHqeR/Zx77I2Lgo90O8ERd04bo2hD7MNwXD2GNvHPAvf3EqmPe6YbEueenqgNYIYHK2zlmthThb1gZbGSzXYhB5XNsO2WTiMu/FLtMuX2W6SalK2XEYDE0rEmltWVzdjkiyCoxIsi0sQPHTd6aUtbQX49DjtZsjPM9hpMUV//btyExSagAAIABJREFUBQZD6Noc3BwTeCJCMPBUyyryHcbjiHPX+twpftpSl36lyUBAhkfnGzZZQdMqRrHHQ3sji2a3GFRNy6jncW2nh+dYnK9yTGuIPLno13VDbdnkpRCkPdvCsaTVdmHcBPGPTFcFbStKNtPllgx6Hrf2Y0LPRSmLo/N1l5vj8K1Xtnk8TVlscmoDO8OI67s9VpuSwwcLOVnlFTd240vyQX2JPZFseGPMJZD0q1arpOTNhwv+zX/11hd2H0opvvXKNv/kR0dkRf1cLcDPwyP5LvC97uvvAb8HXCwi48PDwwcABwcHgy/qAWjLukR6WwqyzoglCHM4X6Rc3Y7Z6dAo13d7/MFv7nPveHkZMTuKXdKiZbbO2R0FPDpPSPK1XMyMwrFVp36RUKoWYUNpy8Z1NXFos1gXpFkFrcHz5PtOJa2bqmo4medUTcMg8ohDm71RzHJTss5LVpsK17XYGvhs9QS/blniHNeWInBtlpuSo/OEK1vh5QW/NeYSHlhWLYt1QZJXKGAy/PgwnDSX9MYP85/UjcTcVrUMpPOypeiG+9sDn6YVaeytbqe1txXxxp0pp/MM37MoK4O2BCvi2JKCOF2VhK7mfJVyNE3oBaJK2ysikTzXNW1tSMuacRywPQ55YS/G0Zqf352yzmoiv0N+LCSCNy8brjuao/OUshFTZejaFJUg9wNf43exr/1QJLV1t+h7rsy1oqp5JjGwgWdzZRxhMKLGK5suudClHzg4jubFvBTfhyeto91RiG2LkdW1rXfhh6scS1m4jpE2ZuDQ1BI/4LuaK1sxxrQ8nqWkeQEYHk8rPNvC8xxcxyLybMaDAMfSzFY5jTH0IpdBIMKPUd+nbbvXydWX7dFVKsFWdWPohQ6ua5MVGU1rLvPR12n5bjhYVjH4DAFOX3b96K0zjIFvPWNV1nvrOwc7fO/7D/nx7XN+77W9L/S+Pk09D4vIELjdfb0EXn/iZ9aHfP2xtbX16fDmf+d3brJYF2yPAxabEmPAch3QGi/w2JQtWx3SwRhD1hga5OsLjpYbGLbG4lc4WxX4nkuat0ShhPn0ez5xKMl4GsWDsw2btCSIHDzH5uq2Q1I0qFYugLujCNcRxtF0XaEdjULx4vURvVAYR1VtmG9E/28quLobsDOJpaWAYpZUJKVkf7x4dUAcuMT9kH7k0raGB6dr/MijZ1tsjwJOpimjYcTW0P/YMCFJCyxQKPYn7z/GLzYF58u8+5fhbJExiL3LfvhvvrxN/9GCthUact0abl3pszcKn1D1KFabkvm6wBgwrcGxLVZpyWJTohC0x6s3fV7fjnl0sibwNL+4N+d8kVN01OKzhWDxj85TQk+iVV+7ucXb9oIHpwJY1F3P/qLlUpSS4x54dhfOBOu8JskrQKTFddteEnUbZeFfpA9+wiqqpjOPPv32fvI2slKSF0PfQStFGNg8tG2qtmKxKhn3XaoOCnkyz8hyYb/NVjnKQOhqotDjxq4spPdON2jdUZjLirTLYgk8h/lGCMdp2WJUN4MJHbaHPgpZ4GwtUEtR3HmsNiVJJvd5bTvGUhZIx4udYUBeNmwNAhzLEkNp97zpbk91QP2mNczXBf3I+VSZ5F92/eBNSSS9IFJ/UfW1awMGkcsPDs9+vYi8pxbARSRcv/v3RbUf8vXH1nS6+cTmuCD2ybOS0FHcvjdjti5wugHwMhEFV2lrTk8F8Sw715qqqFlsSol7zSsenCS0rVxQqqol9DRm4NGalsh3mPTlgzgIbJmV1A1l3bDelPi2Zp3llIXABo1R6IFH5Nk0RnJGklQkl+t1wY1JyKJtma8yqqLu2EcODoYXdyJ8BSfzlLOpDOGHsctikWI1DbfXGQoY9z1O53LBdG1N7Fjc2OtxfLKizivO8grbthiNPli5ddGSMBjq96DQ66bldJ4SBfblbn3c9/EdiWB1O+e/ZVlYyqKsalxbLuLXdnuMBwHLToGW5Q1F02IaQ9UYJkMX39Gsk4oWwf3bWm5vucn55b2MsqxxbbAszcksxXcdkk5NprQAJMu6Ii8bbuzG9EKHVVIR+ZqibLFtaYqNez6x79CPXUY9H09brFMRK5RVg98Nj53uk9R+imCqVVIyW+dY6qPRH5HvkPo1ceBQVDWn8wzLUuwOAtZOiefZlElJmtdg5MKulMwkJE5XcX0nZHcck+YlWVZRmxZHO4z7PlHVUrSG1SrHcSRrPssr8Y9UNQ/OE7St2R0HJFlFP3TICpGd/+zOgsezjKZpcbRmGLloLXMQrRW9UFSBWSneln4oEusLqbPv2lzvInaPuzlQ07Sf6BT8PFSaV/zi7px/43euf2bUzSctq2tp/bOfPn5Ktv9l1/OwiPwF8B8B/xvwR8D//MTPZgcHB9eQBWT5Rdx5VtQs84T5Mns3/MUIqtqyFFd3IoqyYRx7ZKVgSrKi6kKjhD57IRUNPE1eCGq7baAXubx4dcA6raibhnXa0NIwW5dkRY1tIQNnS5hL00VxiRi3bYXrKF7cH5CXNZHnUlbinG9Ny+kiY6vvM8hrIt/h8XkClpBeV2nJ7UfiqH/p6oDgPMHtiK8XuBXLUoS+pC/KRV1zPEtxA/dDI4TfW6Oeh6XUJTrjySoqye6om5Zb+z1cW5OXDRjZbYJkm9edCEH+3ZBkFVorfnl/xsPTNXHgUrcNfd/hbJXT82xmC1Gm2bbId69uhdi2xeks5dEsI8lqQk8Q57YNSVGTbRpBoez32N2KGEYuP7sz42wuHpatgU8/snl4nnJjJ8LvhubDyMOxNS9d62Mpi6ysOZ4mYpYMZK61Ow4pyoadsZgNL+qCYxaHzge2uS4Ubk/OCD6oHNtifxJRNy0/fuucNBMKb9MYepFHktcy5FdizlynNUlSgmXRGJlX3TtNuPN4TdV5cCylME5LWQtx+qVJyNk8ExVa3eDYmpNFTjFLqauW+TIXk2fPx3cslpuStk3ZdJ+FtjUUpsG2LX5xd0ZaNNi25rWbI7KyZraSE+lkEDDuSwbK+SLDC4USobWFQmi+X/TF+FnWj29PaVrzzA2GH1bfOdjmH//oiJ++M+U7X/9ilGCftj7yanFwcPBff5IbOTw8/C8/6wM4PDz84cHBQX5wcPDnwI+B+wcHB//F4eHh3wf+K+AfILPS//Sz3sdHlWjr5U0bena3q7TYZCWzVcHeOCQcyQXlbJGRZjXvPF4xjD3GfZ/As+lHEpmqLYuHZ2vunUhKYVLIrq4XOBQK6rokzStWWUXbtBjT0mAxilyh3SqwtEVjDHlaU9aGrUEgruGywtKKtGzo+TbH01R2yZ1cth+7OFraBW/enzPblISuzbcPtvmNlyaczFKqpmWxKVklBa6tubIVMox9hrHHg9MNTdtyNs/oex8vRQWZJV0Yq9rWMF1ml4FNTWuYDANOZynni5xr2zG39vr85S8e8+bDBVXZ8PWbI4Y9n9/4WkhV1xxPM1ZZxY/fPudknnC2EDaZ72iaFoqqxrGVnBQshVKaF67EaEtx/2SN4znQyEJlacUgdjhfFJzMcpQlJ4s4Eq/M6Txlk5Zs0pJRz2MQOwSug+8abK2ZDHxGsYfWskEwBk6XGW7npC/KmhWGa7uR5LS7khVz1i0iRdVwupCddd20H2hAG/Y8ASvW7ScKB8vLBm0r0rImcG3OFhmuY2Frzd4k4Ois5mSa05oWBWS5tPvyStztaVYJPsfVeJ4IB24frZgMfI5mCcfnCZ6jeenKgEVayWDet3G0xXjoC7YfiEKH118Y8ddvn7NJ5VSZ1w2mldPPyVw+J7ZtsTcKGMRPmzJbY7qcHpguM2LHwrEt9sYhVdMS+c/D3vaT1Q8PzxjGLi/s9z/+l59BvXJDuFx/+fOTr8YiAjxJ/PKBP0aG3veAG8DvAv/w8z6IJ2W9Xf397vs/Af61z3v7H1Wh7+AGLjQNvcBmsSlJ8kp6wOrpgXHo2/RjUSWtUmn1DCJXCLllQ1YIpr1tDLNVjmVZTAayU2xMQ4vB0hYKQ163GNPgaEVrRG683XNZ5XJRSXORc57NM4xSnMxSHNtiELs8LBqi0CH0bb5+fURVN7i2xbDn4zmaxabkbJ6yPQpEuVMLF+t8meHZgqewLEFjVHXLySxlusrEpOZ+vCHug2qxKdBly3yd49hCus3ymk1WEbSSLb8zCsEoXG1RqZb5umCVlmz1A65MJAhsushIcyEC1I3BdWzAotfT9GuXvKqxLQuUoGnSosa3baHRLjLK2uA5in7oULeAMti2hTEina6rhrePVrjawrEk0RKl8R05ueRVfZkP3utaL9NlznJTXAIlbcfiZJZR1JJN8tqt0QeiPYwRtVxRSqTue+ce8m95sU9mKVevfLR2JPA0u6OQJK9xLCWZLbOUyHd59caQO7Uo/aarlLxocLUm8BRNI3v81kgejUFxbRLyaJrTtjUPTta0QFk2ZLrmyEvAKNZJgedavPbimFEvoChFmr0zCjidZcSBh+86TAY+q02J51osk5pB7LHclGhbEiEnfZ9J56e5QOcHrk1WyimaRk5knqvxeD5aNJ+k6qblZ3dnfPf1vWciqPgkpS2L3311h3/yo6Pnxnj4kYvI4eHhf3Dx9cHBwT8A/uTw8PAfPvG9vwf8e1/cw/vV1CD2KLvwqVUqbuG6MeyNw8sPvlyEWnbHXSzuNMO1tej1leLeoxV3Hq3Iyxbf14yM7DwtJTns81XBJqsYDXwWCbgaitoiDl0mQ58b+wNmi4yyzRn3XWZLQCm2Bh6nixzTtjSt3JbjarSS5MV7p2vOFhlRYOM7NpEni9zWICQObIpa2mv7W5EMPS1FmtcoJbj2JK+oW8HZR77D1e2Y6XTzYS/Vh5Z+Yid9EaIUBzZXJiKtjbqLx0tXB8xWOVE33A59uXCfznPJiEf65KOey8kiw0LhOhaea9O2LeBTVjVZ1XJ9O8KyxMH9/V8es8zkpOJqCy+t6EUKlMKxFJZlMei5FFXLPMnxbE3dKGwLtN1Sty2zdUYQOBjzLghxmZRs8oplWohiz3NwusetKwmvysvmfYuI52gi3yXJGxxHs06rS5MiCJrF/QQO9rYVpZjniFR5ELnsb4WsNhXDnkdWNgxil7RseGm/T5LXpLnNMPbYpDWBr3E9m7JpBa1jFDf2YqxucJ1XDf3QoR/7HE8T4sAm9jWzVck6KzlftmzSx3z3mzs0jSBuZDPjYTCUVYvjaLZHAbZt0Y/EKHtlErNYZ9R1S1GL/Dgrah6ebiTWd+jL4H0ccnb2RSXTf7F1+2hJUTZ841ecOvjd1/f43vcf8v1fnj4XGJRPc278u8C//57v/Z/A//TsHs6XW7aWHevF4Nc8MSRdZ5W41oGr2zFNa1h3H9LZMiMra4qqIa8abl7pczLNwIDr2hydpazTkiyv5WLTKjzXJg5tvvnimN1RgHYd3r43k5aNthj1fIraYFsWN3diaA22rXj9hQllLUPrnUGIMbA3Doh9l69dG2BZSmYlsXvpX9Fd4uKF1DIOHGarnLNUhuraUigshrH3mTLX207yGfUCfAscbXF0nlDXLeOe1/XSpaXRCxwGkUtq1/L6GlEftY0h8G2ubsedw7zgjbszNqlAJq/uxPRDh9O50Ie/NghwHc0LV3rcebxi1PMIfJd1WuK6FmnZUNYFka8ZxB6uowldm1VasEkaci0Lp7LEWHc6zwk75L5rax5PE3zPlpyYRUZrYGcQEvhaMsU78u3eKPzQ3eAwdi/9N+81G+Zlwyop2Z9EZEVD4L7fZ9N2GSwXi8iVrajLqy+o65a9SYyllCjV1jm744jfeHGL248058ucm7sxW0Ofo/MUR1uC529ELn10ltIaJFKgEWr0/lZA2Sp6gUc/8FisM9K2JcsrTqcZ13Z6WAryomZ/K2Kr77N9M8BCTtOBp/E9+5KXlgx8fM++xMas05K6banLlrJqnyuvw2epn92ZoS3FqzdHv9L7vbXXY28c8hdvnHzlFpG3kbnEf/fE9/4T3pXnfuUr8Gy2ByHrtGadldx5vCb0xZH95HH16Dylqg2eY4kCTCsmA5/HM4+qzkiSmnFf5gxV09C2sjA4sYPvafpRROBqYt/hxf0BoWfzw7fPOV1klB3eozEtju1IO62sKFsIHJFabg1Cfn5vJniQsuHBMsfTFlUreSgvXOmxziqquiUvG66OIharEoMhr8Sl/WTC4d74s+c9ZIWohZSC3xhHnWeivsToa21d+gaSvOJ4lgqq3Nass4qTmeR+e56NtVKkhUAT37w/52Se0RhEjeVq1puCOHSIApfdUXDZ0nO0Ig49xp6NpxVni5yirNG2IvAcxj3JY0fBg7N158+R1qBSCoxc1E0Lwx2XPK+4d7IWo2MlQ+hRLAP0KJBky4v2zEeV62iu7UQYwwea6BwtMclu9P4Wzulc0CfrtKIXOpcno5NZynxV0I89er7N0tWYRN6TxkDV5eNsDXw2acXpPOPGdozvaY6nYvp753hNURQUNWhboS0ZlO+OApoG0qJhMnTZGfrkZYa2FWHgyJxnmWNbFnXb8gdbV2kbw4PzTRfEBVHgsj30ubYdX4oFLp57FDhkhQzf37uomg6l/0nQMM9L/eydGS/t93/li6FSiu++vss/+vM70i78BO/FL7I+zbP/D4F/dHBw8J8DR8BVoAb+3hfxwL6sirudelpURIHsqgJPerkXC8mFxFIWEpv5Wiiwy3VOHEjGA2g8V5Okwtc6uDFAW2JUaxpYZQWhL4mId4+XPDyVEKmmkwi3LZi2lvS+sqEsK7IO2e1lJZFnM11lzNYFq6QgyWqysiLyHLb6ouEXBZYtO3Creir3ehR7nC0zYt/5XIFBWVFjMBgjJk14N464ek8ccZbXaEtxfa+Ho0XZskpL8RWoltDXHJ9lFI0o2MruorJalzywNmwPQ4Z9D9+VltfDkw1vlw3LtCTyHfp9H98Gz7WZLVOUMkwXGcsO095i8B1NmtdsDQJef2GLdVaCkcV1exRQ1y1JUVOULbujgLJsWeeyIN/Y639ifMlFfZjfYXsYoLu8+ve+npYFaXeCCVxN5Mt70hjDw9OETSYRwMPIYdXls3iuZpkUOI6cBsqyZrkp8D2Hk0XCb740oWla3n5Y4GvFyli4jkIr09EWNKYVtInbzcqi2OeqUZS14WyRc1QLL85SIlqYr3Menm5YboQevDMO8T2bTVZJcNZ7Fs7Idwh37Q9cJE7ncpr3XfsLQ4c8y1qlJfdO1vw7f/DCl3L/3/3GHv/H/3eHf/rXj/jjP3zpS3kMF/WJF5HDw8MfHRwcvIw4yveBx8BfHB4eVl/Ug/s8VdYtxRPgt09Tt/Z62FpJfO26YJEUaCVoiKJq2R4GHXpAet13j9fSEuokttdHAYEnOPeTWUroC9Lk6qSH71o8mqaskkr68106ogFcV2KCQk9jWoWypNVkTEsvdNka+ISeZn8SkmQVvuewZSmOzhKaVgKa1lnJMik7tpPNIBaJ6pWtsOvpy598k8mikhY1Q/PZZZW90BHVUOerKdLiQ+OIe5FLUYtyaLYuKEohDU8GAd+8NeLuWUKW1dx5vCRwFXEQYBCDoWVZjHsuw8hlbgreuDPlfJnjuBLh6jjSZlqvM2wFr93a4p//7JjjRYG6uO9KYoOj0OWVa0N8Vzhege/QKhBfSIBlFUS+cJ+Srg04iF2RdT+j8hz9Ph/TfJVzMk9RKELPoawaxmP/qSAiy5LWUd+3AQlQ2x74eF3U8CariH2H+aZguSk4W2WsU4s0rdibxOxthWR5Q1I1+LamblsCV7O/G2MjSsXpUvLd66pFoagaSTHUlsW1iRjq9schedFSNy3zTc7OIMDRFk1jPnLY+2Hvs4uTcVE2H/jz561+fmcGwDde3PpS7n8yCPitr034sx8/4t/6/Re+1OTIT3UO6xaMP/+CHsszrbN5RlHVEqfa+2CUwmwl2dS9/tPHQcsSyuggFumtMdKKMcawP4lxtMULt8Y0TcsvHyzYGQXdvEMxin1e3h/w4DwhyUqKusEUgh/Pypr5WpRUTWMoipqqMWSFnDa0Eofvla2QVVLJ0d+S8KBeoLm52xf8hK359td3OJ6mnC0zQsfmwbmwlJK84dH5Bq21tHw6uaRkg8sbbb4uuHu8xtaKYc+jNQJ8/Czl2Jr9Lrddv2ee0rTSCrq4cHiO5uokYrrMeOvhEt/RXNkacn0nxHUcvnZ1wNkik7x4FLsjn6puufN4zSot8Bybdx6tOV3kLJOcsmppgeuTkEFH4p2ucgySxX6BfKmblrZFCLe+Q5I3BJ6NMYKLbxrD1S1RrF3dDtmbBB0jCgY9l8WmZGcY4nsSSbvcCEpkMvQpSvFZfB7j1yoVP02/U2oZZHYVeAFpXvHwbEPgSo75tZ2YfuQSBTZXJzFKCcp/e+BTt4Yr44gocPj53Rm7k4hVVrPclDQtxKHIr0cDj9q0qA6rYtvCf+v5Wk46qYhMotChH7nUjfCutmKbaztx5+TX2BpuP0rEG7UsGHUkhAuBymTgX57EqrrhZJZhkBnee4UIWwOfdVpdqree9/rZnRlx4HBz98vD3P+db1/jR2+d8/1fnvLdb3x5Dvav9mTrI8pI5iBN+8EmrqJsLpVYs3XOxVs3K2qMkQFwUTaC5p5naC2KI8m0lkVJa4tJ5xUpyppNVrLclPz1bdklr5ICUMSdqc+1LbZ6nrQcHBvPtfj5vTlVB9DzXQdtywxhGAc8mm5EPdUYTKu4c7zGc2xmq4yr2zGjnng8Xr814p/++DHHZ9LqsLXiypZPXjbcO14ziD20VoK3UIrZuqAXOWyyinHP+9yICdMNe43W3alBsdwUzDfiR9nbCp+aKfkXsbMd0+vO4w2tgZf2+9zYEdGCpaQVN+vSHl+9MaaqG+6frsmLGs+xsJQYKH3PYRC7uK7D+SJluc55cLLBdS2Ughu7I1651uNknrFJK65MQrSWgLCdUcD20O92wIrzVckLV3rsjELSXE5r13c8dkYBj88TpquCk1lCFDg8mibsTyLSov7MyIs0rzieJkyXBft7Lb6jCTz7ss9+YdhcZ4Lwnwx8UbV1v+O5NlUt6JKbe+96FTxHdz6iBN/VNG2L1qKuWiYlW8MAXyumm5Kybri5G7Na59AaqrqRpE5bdwRpxXRZUNaG+boCS+TCo75P5MvcrihrwPDO4yW7XTDXJn2XhZUWDXX3WUzzmkH89CIS+c5zIVf9JGWM4Y07M167NfpMQpRnVa/dHLE3DvneDx7+ehH5ImrUObHfa3S6KNtWlwPCwLOp84qsqDnp0AvjvgwHl0mJoy3Kqmu9DN/dXaXd/4l8m6uTiB8cnpKXLW3b0rbmMmhp1PfZHYmayLNlVqItSYgbx4ICcX2HqqjpRw55BfN1SlW3jPsB81XGJsupG0Fpj3o+t4+WourSFjvDgHHPv4yCvTIOCT1NktcYT3DqCgkWatoWz5HHcGu3Tz/6/MC7JK9ZpSXadWgrYShd9PTLWvJBLPtpv82LVwedt0YS+1pjeHC64cZuj/1JTOBq7hyvuH20pO7abmXZkBc1oOhFHv3IY7UpGPd8XrzSZzLpsUkKHp+tqaoW39N844URN3b75B3IMvRdmRV5Dlf2Q5KsxnMtzpcFp/MUr6PwNq2IEnxPAIiSZW8kI6M2ouTr2lGf50KilCIvWwzmkov1ZPsq9G3KzYXEV116V/Ky7mJ3K5aJtF1dR9MPBbl+60qfJKvYHoU8Ot/gWBZJLhudyLNxLJE/R67N8TzlzqMVRVnj+5qgtiVj3hGT4fJRRdMKoLNuGvq+x/bQlxOFZXG82DBfNsw3OaHvMF1mkpz4xOks9GzWqXX5nL7K9fAsYZmUvP4rlva+t5RS/Ovfvsb/8qdvcvtoyUtXvzBG7UfWV/uv+REVdTkXH1baEpRE0xpGPZ+zbtd5UW0Hg1t3KXO2tig65VS/i0W9e7xmvs4pyoYX9ge8sNfHYs3JPKFuGkZ9n0HoYlkWRd1eZm+vEskUT/KanbFPa3zGw5BfvHOOY1syZCxqfE8zij0U4gQexT7KEm+CQthYk0FA0xpu7fVQSuFoacXd3OsJ4yktsS3FyTxllZYdAdhhdxiSV82lw/zJ512UDa7zyVUytlaXEL2L3uwg8pivc3zXfl/rQil1uVtNsookr9hkFUlWcf94ze44ZBCGJGnN+SpHW4pmGJDk4uIPfc3+JKYXOZemtR+9fc7+Sk5WUeiBquiFNq9cG9GLXeargmHkoyx49eYY37sYsPvkVUMc2MyWiqpqiQIJGrt/smGZlFzficR70/Mp6obfeXXnMnTJsTWB99lbWYFn8+J+j9N5xs5WiG6fngkMY49eh025SNE8nWU03RxrFLs0bct0WfDjt85xHIudYci47xH4NsPIYRyPWKc1801OHNmkWU1roKoatG0xbkSIMV1mEtBmWbx4ZYCttfCwYsHbRIHmX3l1F6UkAsF3NMdNxnJdsUhKVplI41++NmTcM0/hcxzb4tr2Fwso/FXVz+5MAfjGC1/OPOTJ+v1v7vG//9k7/On3H/x6EfkyynoitwFEgdW0wgHqRy7LjSwgpoWsy/VYpe9edE1rmK4K1qlAGpsWbmxHwoRqDfcfb7i+E6MsUJbHdCmId8+2OD5PuXO84vBew7Dn8oqlWSaCqZitc4ZxQC9wGPV9VkmJ112smka8A+u0wncs6kaEAAJZdFhsSgIl2PfJMBAUxyKjrkWZtDv02RmFsovt2nmO/S776uhsw/EsIfTsD8wL/6DyXZv9Sch4K2b9/7d35kGWneV9fs56z91v79ssGmk0H5uQhIRMwiaBDVUu2xgcYkwSxzh2hdiO48Jlx44dLymSIuVyeY1D4thxihSLwYYAhoBZFGyCg5AAsekIDZrRSLP1dvuu59yz5Y/v3Nu3e3o0Pd197+3le6q61NPq7vPdt88977e87++XKuDmHJOcs/VDoxOPFgzQAAAgAElEQVRE6axeeq8858Q4Xz27yMWlJqt1ubIoF2yqDQ/fl6uBy6st2p5U9p0Zz3L6WJmnF2W10DOLDVpexDfOrTJVsvF86Y8+Wc7yrfOr5LLS88IypSmYH0SyNyVOaHoBM2M56q0O9bZUIbi0LB36OmEsja2CmHJep9buEIQxY4XMngoEFrK2NDubKmzZeNe/3Vhr+Zy7UieK5dbXqfkSlmXwnYs1ak2flicVCs5eqqIjmyLDKCZOEhqtDrmMyfGZArVmQGRqXF5tUkvVmNu+rI4ar0iPkXLBZqJk43dCSnmTM8crxDE02x0MT267dtIt00Y7IOcYjJWyVOt+75xsM7Wm3J4rp9a8B5Gvf2eFhan8dc9ah4ljm7zyznk++dAFVh7w9tzffTsc6SSymTCKMfSuC5/GWDEjtYl0nbW0WbC/ZHV2Ikc7iFiuyTp7xzI4e6lGFEOzHaFpCZ0owkh0rqx4ZCzZ6bswWaDuBZCAH0as1H2Wah62aVDMZchnTWbH5U16dbVNQkI+ZxOEEX4Q0fBCoiBGy8mmwYYn7W+l4J9sLqy3g9Q4Sm6pOY5BkhhkbBM/iDZ0SncTaZIk+IHct+4ENyWajGXKst4b9R77QcTlZen7Pl50KOXtno1qtSktbZudkHxk9npMLFN6m9cavlxh2ga2qWMZGpVShqYXUPeaeO2QJ1sdbFPn2HRBrlwCGbOlNY/5ybysSosSgijm4mKTbMagUswwWXKoNwN5TpMx5UoMyDs2C1M5OmFCrdkhmzFpeuHIfC/CIKFSsPH8kHZHNmyOFTPMjGVJkgRDD0kAz4/QtVRQVJNnfas1j2q6otGAmhfgBxCmdgYOsvAhThLmpwrMppOISlHKnTz4lYs0WwHTYzlOTBeZLDvEWkKpYKcaYzonp/NUig5z4w6dINogG9ROXSe9jhz7wuTBW5n4QcS3n67y6nuOjXooPV51zwKfeOgpPv3I07zx/tNDv75KIn1cWm71zgy60tzdw75p+9qZZ7mQ4dhUwlTF4dJiizCJpYaQpROGEYWcRSkv5dyvrrXphDFtT77xj6dVLq12yGQ5y2TJ4c6TZa5WPXRdKp2Olxwpa9HOsFT1qJRsLi21pTCgLiuQbpkr0vai3oMxn5F7520/5GpVer5bujw38QMpHqlrGqfmSkxXshj6euOXlvZTeE2/t/W210RR3Ct66He3C8OYQtZkqiwF+6bHsjL2SUKUyHJl86x8IBZzNpdXZZOVF0Q853iFLz12la+dW6HZ6hCGMRmz64/hY6RbMuMlB8s0OPt0lZW6PAMp5CxaXsSp+SITZYfpMdnMuVLzOD4jH3IrtU6v8bCY1a97zjYMJsqOTMQrLXIZk6U1j7mJPKfmS5SLGaZLDmutDueuNKjVfebGc5ycLfDUYoNao0MMPLVYJ5+RzYOFnI1tGJQLDqWswXNPjKHpGrZl9srBE2RJuOeH0qSr7jNedmj5IQvp+6TVCrhtoUKlKIs4VuoBcdJhrJDpJVzT0FL3UJ8glJOIg4b7VJUwSkZ+HtLPZDnLi85M8bmvyHLfm+1l2i0qiaQkSdKr29+uD4mha5TzFhkry/yE9ER44ukqV1Zb3JYayMxNFMg5Jk88vYrXiakUbCn6t5YwUZKCiRnL4PhMkZlShu4CQNM08o7FqdkiEyVpMLRa9zl9zOLETElKanSiDVLqliXltMeLGRbjBM8P6YQxpbxNOZ/BMnSu4hEnCZ0w3mBv26WUt5kZYLOXlJ+XhQfdKrfuauvYVIHpSo57njONrml4nVCe85g6bT/kxEyRsxdrNNodLi83ydoGx6cLlHI2r/kuBydn8/i5FQxD59b5MgtTBRqtADSNqcq6F0YQSQkZTZOVcxnbSJ0XTXJOKs+Sk1uDpqFRysvD7Omx7LP6fnQLLQbZwWxbBidmi2m/SNJbRc6O55kdl2MzLYMLVxuMlzM4GZOlmk+rFTI/Kbdag9ACLaaUszi1UIGTCYVilk67w+0nKqlj4/oZnmnqLExmefSJVa6uNjkxU2SinOudf919+zTlvnM1ryOFNwH8cH1Fa5lSHVnTNJyMseEM8qDw9SeXsUydM8cqox7KBr7n3uM87C7yha9f5v67hyuFopJIipZ6g7S8cFu16nGc8PUnV2i2A8ZKNuNFhwRZ9lspZHBsk5mJHJPpjG28mOXsxTU6odyO8tOy3vFShkohw+njFZp1ryftXmt2eGjpCmiyu9nJGJQim2Lelg51pkGSSJvR7qH/as2j5UfU27I/xrEM2qn1qKFrTJSz8iwggbmJ9URRb8m9/v4D9kFS6dsK8jtRr/Gyks9weqGMrmk02kHPYXB2XOpTdft6VmvSebLRCsmkh/YZy+SBe0+gxbIxcH4iB+nDyvMjPv+1i/idWHrbZ23CyOAeMUnTkz4jhZydesLIt0TLj9B1qV9VyFmMGw6Wdf09/KYXsOZFrFZbTFeyWybovULXNOZT6ZrNCavth1xebvSkaDKW3K4L4kSKJ1oaYQxtP6aYtclaJlNjDs0gIepoPHauSqJB3jEx+jxn8o7J/ERR9jQFMbmMyeVqi6evNKk1A04vlDF0jWrTx7FNynkpcz+2adU2Uclimga6xoHpCennG0+uII5XrmsHPSpuP1bm5GyRv/7SBV5x1/zQVIVBJZENOLa5bUMmeTgbkJBweamFZUi58zCS21tTFbkl5XciltbaXF1tp0ZXBkEgtaOyls6x6SKTZfnQadY9JstZSjmbR88u4YfyATtWzLBY9dE10NpBz0lP0zRMY72RzzIN9CCi0erQ0jVKOZvZcSnS2H2onZorE8dJzyQon7VYTj+P4oS5PSg37z7sx9OV1rPRCSOyjsGtcyWKOVlIAOsquiAVlb1OyLnLdSxDGkNZhi7dJaO4Jx8+N5Hn5XfOE0Yxy2secRRJH5Uw5tJySyaUTkQpn2FhKp96w5u90tcgjCnmpLpw/1vQ0LQbNhNGUUJXxTwcwgzbNPSejL9UPZZNo9+5uCYLA3S5gsplTPKOxVgxwTakt4imyWICqa0my4THxnLUam0Way1s05A9MlHMydlizx6hf5sXgFXpZ9Jod6i1ZFOuH8iy7WNTBUzj2nOj7lnjQWRprc2l5RavvHN+1EO5Bk3T+J57j/HfPvotvvnkylA76VUS2SEZ22B2LMdq3WeiJA8R0aTlrJ3O/oDeAXYpbxHHCYWsRTEnbXcnSg6Tlew1s4Y4lqcGcQTHpwuU8zZBmFCt+ySp9HjXarS/DDfnSN2idipv0vDWD9f7qbcDGp7cbtB0recot7njfCf0N3FWG36vlPd65NOmzpxjMVHK9F5/MdWKqjY6LFXbqQ+4nPGfXigRx1LAcLOBUXd7sNEKqDY9Wl6IbenpeYj0OXFsA1PXydg6YTskCCIylkWcigCaht5bldVaHcJYdmyvpdtbW50XFXMWRsYiCTcWX+yWThBxZVXaGc+M5zbIW1QbPn5aOCArC2M0DblqTWzmxnPMTeaZLGc5Pg21pqzCkva+skgg65gYhsbcZJ61tRaGnqPWDgmDiISEpZonz9zimKtVD02DmbEcmqZRzttU6z6aBqWc7MvyA6myMMomvEHxte9IqZM7bht9ae9W3PfcGf78M0/w2S8/o5LIfsXrhFxalgeaM+M5Ts6WMM0mQZhqR+UsklhuP3UTg20ZzI7nCKMEcVxWSl1ZaZEgLXiDML5mtn612maqkiWOE26ZK6FrGis1H9PQ8IOYJy9V8Toxx6cLHJ9el13IpuWbXfkPXZNeHJuxzXUr0lzGpJi1Npyt7AYzVYWN4nhbqzpd0zaUy3artwBmxrNUGz61puzInp3IMVHOMjOWxetEvWZOkIfzi6ttWmnizDom37nYIUoSSDReJKaYHcvJ5Jx21WtAPhPKyqy2rJbrj1cQSm2olZpHoxXQSZWJt7ID1jS5XRin24d7RcsPe6oLbT/EMtcTmJNW2lmGjmHI5sGcY5HLWEx1CxOQib1rYDQ9ZhAnLfJZS65SUlXinGNxfLqYdunHPH5hjXOX61TyGXJZk6euNDA0iCLpnTJRkqvtSiEj+4RShYFCVna4D3M7ZVh87ewyk2Vn3wpEmobOy144z8f/33lWasMr91VJ5CY4d6nGSt1HQ8OxdXRDx+9IJzxN0zi+RTNVHCdoaOQd6ReRJFIXqesRYW8hnGYYOp4XYJuye3pprU3Tl6Wbjq3j+REamtSOipMNsz5dkzPlrnz9VjPCbEb2dQC9RsC92uM1dOmcGMXJtkXh4iQhCGIsS5eS7Gn1lpd2tNfbUlNpophKzIQygfSrxC6veWRyMWtVj4UpgzBVAM5hMl50erNnDdCN/tWbfNC2/JCWH3Jlpb2uBZZ+n4aGaWp088MwH5D5dHWpcW2n91gxI9WldXmfXVpq9b7eLyFyZbVFJ4hZXGvLptR0AmGZxjWrz5xj0fZlD03GlEmqXLClyVW7QxQlG17/5r/xbjTE9jNBGPHN8yu87I65fS1V/4q75vnY353nbx69xOteNhyFYZVEbgIzfcPousbVVU/OTDWNyZKz5aF0kiQ88UyVlZrPeDHDsekCV1ba1L0OE0VZwrvVDVnK2dSaPnFaqtsJYip5m5YXcmKmgNeJpPpuaiIVhFF6PrL+ht7Kv6Kfrexc94rNTZw34sqKNF5ybJOpioPnSz3ZMIwJU/n6Qs5KK41kn4Gp6yxM5XvxW2v4NKse1dUWRurv0j18nhvPXffBH8Uxzyw2OX+lzlRZbqclaTd4V+/MMHRsU6eZkVL2w3xQWqbxrJ3eQRixWPWIkoTVmk8QSQvf/j4WLZ2I6LpGrRkwO5HrVWBdXpGqwZOTckUbRjENT9ogoEElb1PKZ4iihLWGTxjJjv6jhnuhSieIeeE+3crqMl3J8oJT43zuqxf5vr9/cigNnUfvbtgFp+ZKlPMZshmDb19Yo92RD5XnnthaiC1JpIBenMhGumJT+kA0WvKQMtvqbLnkjJOkt10i9bMyrDU0eeietyn1nW12q5g0NOYncwNNDoOi02twjDB0vVdifLXappSzsE1dSo2bOlHaWxKl50Ya8qGvG9Csd1hry33/Qta6btd0P20/4tJykyiS6gMvvK246ZxpfUa/H6uJGl7q5xLHJEkik96mW3Gq4lBvSQ/0MIp750YtT1a/JSS9uC5W2+kq2eTETJFCVk6OltakAm+t2eH85Tq377MS10HzsLtIxjIQJ4brYrgTXnnXAv/pg1/j0bPL3H371MCvp5LITWDoci+87YcUstJa9dmUR/1AnpXUWyGnZovkHGlgZRl6KmOydfiLOYswlIekhVQ3yRnf+nu7/gsJXWe4g5dEJisOjXZwzYF0VzdsvKhTzMuO/bGSQ7Md0AkiqnWfSjHVdXJsivmETjskDOOeJWs/jXbASs2TDpbpOYyT+tU7NkyPZTccmkdxLK1rM8a+lejI2gYXrtQxdVmiHsUJlcLGiYljm5ycLeL5EaX8eoy7VVK2qeNkpNpAnMhud8PQNtzbs+M5nllsksnZ113lhpFMZIahU61LK+nu3+cgE0YxX3rsKnffPjn0Rr6dcOfpCSoFmwe/fFElkf1GJ4i4cKWObcnKnqmxEo5tXHfrpt4OmCg7FLMWnTDhy48v4tgG02M5FqbzWMbGG3Kt2SEIo7S7OrOtvddyKsDXTXD7me420WauJwNumXrvYV9rdlipe6kQoCWLElqdXiXV3ESe+dkyF4trVFIPjCCMNiTVtaZcFTa9gLEog2nomIbOHacnemrM/Vxeafd+Ryk9x5ImTdKffRjxvl7MusQJPfvhYs6WvvHbjHGSrnhzfa8jaxtcXZFyMZec9dXcRDnLdz1/hpYXkrUNlqptnIzZW50FYcTFJSlnkzEN/D575PKQ+o8GxTfPrdL0Qu577syoh7ItTEPn5S+c56P/9xxL1fae6rxteb2B/vYbIIT4SeCfpf/8fdd1373p/z9IumMB/DvXdT8z3BFuZLHapt4OSNoJp2ZLG5rmtqLgmLS9EDSNMJTnGHJPObxmdtb2Q1brsl+j5YWpL7fGXGqW1NX12vyAMA1920KJo6TW6rBS88ik1WpbPeiu9xph3fmuq2DcpX9WPFnJkgRhz59c1zSOTRV6Sb6YtVipR2Rtc8OBcnd7ZzPdLR6/E7IcRsRxQrXhM15yiOKEhQEnkUY7YHnNwzR1ea6zxWQllzGoNXWSVBpmu4e+cZxwaVlK8OcyJtPTRcIoRtc1Eg2iJGGt6TNeyvSq7Mr5DOV8hkvLzVTDLZDl0mnPyrqHz3qfjHWDs7mDwN8+epG8Y+4rqZMb8Yo75/noF87xf746ePvcUU9d/9p13T8WQljA3wHv3uJ7Xu267t7WTe6QBJgsO4RRsq3snnMsTsyYdIKodyBs6PKBsHl7pCunnpDIMwItYa0pJTR0XaPa8LEMnbnJ/La3B6oNnyhKqBRHr5ja7MpgBFKqZfO2WzVVkr3ea6wUbOK04mu85JBPZ8BbPvzTh1iSQBBF1OsBhqZRyNncki+l3yN1zmxLv+6W5PRYtuc3slLzSbR1efPMs3Sv7xVNL0i3KWVf0FYl05ZpXNcQKwhjojim0Qo2rBpAbn8mSddQzOOxcys0GlIxYaLkUG9K3/qttq66Cgm6tl7Km01/fxRLOZ/u3+AgbP88Gys1j0ceX+I19x0fqQXtzTJRdnjhrRO9Kq0bFdrshpEmEdd1z6WfhsBW5sox8CkhxGXgp1zXXRnW2LZiupKl0Zb19tt9kF9OK48KWYu70v3JzX/QWrNDzY+kvW5RJqfHzq+SJNLitVsGHETxNQZP16PlhVQbcl9a0xiJRHQ/5bzNcs3HsY0tz23aqYnV9V6jZRobNL26D6c4Sbi62sbvRGRTg62pSpZasyNVhdPGusW1NpV8htmJfG8srbTh0p7UtxxTv4JBxjJlT48trY2HIXtRytm90uftPIzbfshitY1p6DiWQa3doVr3KRfsDasGkOd7U5UsV1aaaLrG5eUWpiYbLU/OFNPep62bBifLXUfD9f+vabLwo8sBPJrbkk89/DQJCa8ash7VXnD/3Qt89QOP8pVvL3Hvc6YHdp1Rr0S6vBX40BZf/weu664IId4M/Crwtu3+womJm5OZnprae6/kKE5Y8yJyyP39uT770n5aUU2aIRWyzM+V5F59xqLlyR6U6bEsq3WfbMbc9v6mH0QEmgaJ3Oap3ITUxCBiITvnr1+EUClkWK1fP8lcjyCQ0h0gk7GFTNLjPfkUufKJI6kf5nVCynmb7rNRY+vts81Ypt6biQ5rhyabkZ7m26XRDlJxzainoJAgJVkyW5zd5RyT8ZLDasPHyZpEnZDx9D55tr9Bt7HwsLNS8/j0w0/zkufNDPxcYRDccesEEyWH//3Fp7hHTA2sv2Uod4IQYhZ476YvX3Zd901CiO8Cvhf4wc0/17fy+CDwYzdzzeXlxrbVeKemiluaAe0JUUTLk+qxX3/8Cp4fMV7KbKgCCr0AzTTw2h1WV5oAGHGCHkc4pkG76ePokAThTY0zZ0jdqcDrsOh1tvUzm2NhmjpjYzculd0tXf/6tp8QRvG2l9+WpcvO7U5EKW/Tbvob/n+5IGVoynmbOFkXfxwvOanroj7Qpf4wKWRlo6Bp6FQKNmvNDidniji29EfZavVcLmQwDJ2Z6SLN9Eyun6W1ds/N86BqXu2EJEl4z6e/TZIkvP7lt456ODtC1zW+/6W38Gcff4xHHl/kHjGY1chQkojrupeB+zd/XQixAPw28AOu616znSWEKLmuWwNeCpwd9DgHQTlvp9pXEY0VWYNvGGxIIqW8fc3DW9e31mi6GSzTwDogE8amJ2fRcZTQ9sNtv3Zd03oyFIXcxiTSPX/JZUyymfw1P7cf+z52QzYjezu6XG/lJ89Y4t5BfCFr9QRA+0mSpCfpXm91jlQS+dxXL/Kwu8gb77/tQK5Curz0jlk+8cWneP9nz/KCWycGckY16inYrwEzwF8KIR4UQmSFEHcJIboVW58RQvwN8K+Bt49slHuAaehSLrzZoe1vdfxztMlnLQxdx9pCl2onBGHM5eUWi9U21cb2VmFHgTCKubgk49JVb74emqZRzNpoaEOzCdgPPOwu8q5PPM7zbxnjtfedGPVwdoWh6/zj1wiuVtt84MHBzMNHfbD+z7f48lfSD1zXvXe4IxocXRmNUt4+8M1XgyBjXb/KaCdIJeS05DS6Oavfw0ySrMdlO9u9E2Wn14dy2AmjmA88eJZPPnSBU3NFfur1dxwKNeLnnhzju+85xqcefprb5ku85Pl74PfQxwHZ7DgcdEtGD9s2yn4kY0ul2SCMR2pnu9+Q7oJZOkF0pFYXN+LKSot3fvgbnL9c54EXLfDDD5zed8ZTu+GND5zmwtUGf/qxb1HIWjywh8UzKokMkZsxvdoOQRgRx4dXOXWndD1XshmTYm7UO7Z7T/f12Za+o/6fQtYCNZHp8ZkvXeCP/uKrmLrGz7zhDl50ZvBSIcPGMnV++g138Fvv+TK//xeP4uRsTs/uTSI5fO+wI4LfkTITl1aavcNPhWS55nFltdXryD5sLK6tv77kEL6+YdH2Q/74I9/kd97zCCenC/zmj993KBNIl0LW4hfffDcnZ4q84388xCcfurAn949aiRxQgmhdZqLfSlaxHo8oTv1WNsvaHnCCVAJGCh6uu2cqts/jF6r86V99i8W1Nm9+jeCBu+ZGruowDPKOxc+/6S7e9dff5r2f/jZPLzb4J68Ru+rGV0nkgJJ3TDqBTZwkG5RZFbIHZK3ZIdvXoX2YmCxnWWt1yKWSOIrts9bs8JHPP8lnH3mGibLDL/7I3bzsnhOD6xPbhzi2yS/96Iv5kw89yoc/f44LVxu89XXPZ25iZ/1gKokcUDRNG7mUyX4lYxlMH+Da/huRsQ2m7cP7+vaatWaHJy/VeMRd5KHHrhKEMa960TF+6P5b9/SM8iCh6xo/+PJbOTFT5L9/7Fv81RfO8xPf97wd/a6jGUGFQnFoWFpr8+efeYKWF+J1ovQjxA/k593tTcc2ePFzpvnev3dy3/qkD5sXnZniebeMsZujEZVE9iFtP6TpBRSztqq8GiBrDT81ccocyW2hMIpZS5WMD/JxctuPuLzSwtB1HNugmLPI2EZaDSklb26ZLXJqrnSoynb3it2uxlQS2WckqSptQoLnRzclwKfYPi0vZLWxLpFyFLcGV+qpknEbFoKDq6JwfLrAb7zlvlEP48hy+E4dDziapmGk1UTGIasq2k8YqX8LXCvNf1QwuzLuaEpFQbFjDuNKxABuentiP2xndMewMJWnE8RkrOtb7w5jHP2fb3cco47jdq+fzZgsTBeI42RLP/ZBXf9G8Rxm/CbK0tyrK3M/qr/dTq97s/fmIMawF+yXuPf9+6beENohbFZ6GfA3ox6EQqFQHFBeDvztdr/5MCaRDPBi4BJbuyUqbo4sUsb/s8Czy74qtoOK596hYrm3GMAc8BDg3+B7exzGJKJQKBSKIXE0TxQVCoVCsSeoJKJQKBSKHaOSiEKhUCh2jEoiCoVCodgxKokoFAqFYseoJKJQKBSKHaOSiEKhUCh2jEoiCoVCodgxKokoFAqFYsccRgHGGyKEuN913QeFEBXg3wLPB84Cb3dd99IQrv8C4O1ACZnIE6AK/Lrruo8O+vp7gYrh7hlVDA9D7HbKKO/bwxr3I5lEgF8DHgT+CPgw8CtI4cY/A147hOv/Z+Af9t+0Qoh54H1I8bOhIIT4Odd1f1cIcSfwB8ib2gR+yXXdG4lYHukY7jJ2XUYVw5HEbo9itltGed+O7J4dZOyP6naWJoTQgTnXdd/ruq7nuu6ngGE6E23Wfx6FHvQPpP/9LeDHXdd9JfA64B3b+NmjHsPdxK7LKGM4itjtRcx2y6jv21HdswOL/VFdiQB8GoiFEBXXdatCiCIwLOPltwJ/KIQYY31Zuwz81JCu32VcCPEqYNx13ScAXNddEkJsV5XzKMdwt7HrMooYjip2exWz3TKq+3aU9+zAYq9UfI8wQohf7/vn7/W9oX7Ldd23jmpcBwEVu5tHxWx0DDT2SZKoj/TjzJkzbxnx9X951DFQMRz9x6hieBhid9BifhjifpS3s7bikWFdSAhxD/ASYAxZofF3wJ8M6/rPhhDi91zX/Vc7/PEjHcNdxq7LwGO4n2K3RzHbLUO5b/dT3NPx7Dr2Kols5LFhXEQI8TtIB8ZPpdcsAW9BOjH+7DDG0DeW5wOR67r9r/09u/iVRyaGA4hdl4HGcJSxG2DMdsvA79tR37ODiv2RTCJCiB8Bfh4IgQ8B/9F13QT4OPCqIQzhHtd1X7Hpax8UQnxuCNfuIYT4bWAGCIUQE8iqjUXgP3CDOBz1GO4mdn2/Y1QxHEns9iJmezCGUd63I7tnBxn7I5lEgH8JvMR13VAI8VbgQ0KIf8rwyu2+JIR4J3JGUkPOSF7NELeCUu5NS/0QQrwQeL8Q4he2+bNHPYa7iV2XUcVwVLHbi5jtllHet6O8ZwcW+yPbJ+K6bgjguu47kdn4I8D8MC7uuu7bgP8CTAP3pv/9r67r/twwrt+HKYSw0zE9Crwe+A1kF++NOOox3E3suowkhiOM3V7EbLeM7L4d8T07uNiP+mR/RNUQP3HmzJkTm762cObMmXeOemxDjsN9Z86cmd70NePMmTNvUjEcXOyOagz3ImZ7MIYjFfNhxF71iQBCiHe7rvvmUY/jIKNiuHtUDIePivnuOarbWZuZG/UADgEqhrtHxXD4qJjvEpVEJGo5tntUDHePiuHwUTHfJSqJKBQKhWLHqCQiGYWC7mFDxXD3qBgOHxXzXaKSiORNox7AIUDFcPeoGA4fFfNdoqqzFAqFQrFj1EpEoVAoFDtGJRGFQqFQ7BiVRBQHGiHEOSHEd496HArFdhBC/JkQ4u2jHsdeopKIQqFQKHaMShJ8igsAAAIxSURBVCIKhUKh2DFHVQp+pAghfgn4SaSK5wXgV1zX/eBoR3WgebEQ4veREhYfAv6F67reiMd0YBFCHAd+D3g5cqL5Htd1f2a0ozqYCCHuRjoX3g58jEPYIa9WIqPhLPINWgZ+E/ifQgil4bNz/hHwWuA24Azwq6MdzsFFCGEAHwXOA7cAC8B7Rzmmg0oqvf4h4F3AOPB+4IdGOqgBoFYiI8B13ff3/fN9QohfBu4D/teIhnTQ+UPXdS8ACCH+PfAHqESyU+5Demv8Qtd3A/jbEY7nIPMSwAJ+N3VP/IAQ4m0jHtOeo5LICBBC/CjwNuRMD6AATI5sQAefC32fn2dIxliHlOPA+b4Eotg588AzaQLpcn5UgxkUajtryAghTgJ/DPwMMOG6bgX4OkrDZzcc7/v8BHBxVAM5BFwATggh1ARz91wCFoQQ/e/tE6MazKBQSWT45JGHa4sAQoi3AC8Y6YgOPj8thDgmhBgH/g3wvlEP6ADzReTD7x1CiLwQwhFCvHTUgzqgfAEIgZ8VQphCiDcgtwsPFSqJDBnXdb8J/DbyBrsC3AF8fqSDOvi8G/gk8J3041A1cw0T13Uj4PuB08BTwNPAD490UAcU13U7wBuAHwNWkXH8y1GOaRAoAUaFQqFQ7Bi1ElEoFArFjlFJRKFQKBQ7RiURhUKhUOwYlUQUCoVCsWNUElEoFArFjlFJRKFQKBQ7RiURhUKhUOwYlUQUCoVCsWNUElEoFArFjvn/DuMjI3OySS0AAAAASUVORK5CYII=\n", + "text/plain": [ + "
    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "df = pd.DataFrame(np.random.randn(1000, 4), columns=['a', 'b', 'c', 'd']) \n", + "pd.plotting.scatter_matrix(df, alpha=0.2, figsize=(6, 6), diagonal='kde');" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### ➜ Challenge yourself: plotting data in real-time\n", + "\n", + "The plots above are all static. What if you want to monitor your process in real-time? See goal number 4 above.\n", + "\n", + "Let's give it a try. We will monitor the CPU usage of your computer. You can install a small Python package to get the CPU percentage used. You will need the non-built in package called ``psutil``. Install it with: ``python3 -m pip install psutil`` or with your package manager (e.g. Anaconda)\n", + "\n", + "```python\n", + "import psutil\n", + "# Measure the CPU used in a 0.9 second interval\n", + "psutil.cpu_percent(interval=0.9)\n", + "```\n", "\n", - "* MUST COVER: time-series of stability data from which a database was built on\n", + "Run that code multiple times and check that the values change.\n", "\n", - "* ShOULD show: correlations numerically calculated for the film thickness dataset, but then also visualized with ``data.plot('TopRight', 'BottomRight', kind='scatter')``\n" + "Now you would like to watch that value on a graph, changing in real-time. See these pages for inspiration on how to visualize that with Python:\n", + "* https://makersportal.com/blog/2018/8/14/real-time-graphing-in-python\n", + "* https://learn.sparkfun.com/tutorials/graph-sensor-data-with-python-and-matplotlib/all (scroll to the end of the page)" ] }, { @@ -2167,7 +2158,7 @@ "height": "calc(100% - 180px)", "left": "10px", "top": "150px", - "width": "221.984px" + "width": "221.974px" }, "toc_section_display": true, "toc_window_display": true From d1f3b24c50777fd8cfb54c260dcbb42710d89b38 Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Thu, 25 Jul 2019 12:07:32 +0200 Subject: [PATCH 078/134] Emphasize that each challenge has a goal. --- Module-10-interactive.ipynb | 79 +++++++++++++++++++------------------ 1 file changed, 40 insertions(+), 39 deletions(-) diff --git a/Module-10-interactive.ipynb b/Module-10-interactive.ipynb index 13173ca..256e83a 100644 --- a/Module-10-interactive.ipynb +++ b/Module-10-interactive.ipynb @@ -1070,20 +1070,19 @@ "source": [ "#### ➜ Challenge yourself: correlation plot for cheese taste!\n", "\n", - "```python\n", - "cheese = pd.read_csv('http://openmv.net/file/cheddar-cheese.csv')\n", - "pd.set_option('precision', 3)\n", - "from IPython.display import display\n", - "display(cheese.corr())\n", - "cheese.head()\n", + "The **goal** of this challenge is to discover how the columns in the [cheese taste data set](http://openmv.net/info/cheddar-cheese) are related to each other. In this data set the concentrations of:\n", "\n", - "cmap = sns.diverging_palette(220, 10, as_cmap=True)\n", + "1. acetic acid,\n", + "2. $\\text{H}_2\\text{S}$, and \n", + "3. lactic acid are give for 30 samples of mature cheddar cheese. \n", "\n", - "# Draw the heatmap with the mask and correct aspect ratio\n", - "sns.heatmap(cheese.corr(),#, mask=mask, cmap=cmap, \n", - " square=True, linewidths=.2, \n", - " cbar_kws={\"shrink\": 0.5});\n", - "```" + "A subjective taste value is also provided as the 4th column.\n", + "\n", + "* Display the correlation matrix of every variable with the other variable. There are 4 variables, so there are 6 pairs of correlation values. \n", + "* Visualize these correlations in a heat map.\n", + "* Describe the correlations.\n", + "\n", + "***If you want to cheat*** scroll down to see a partial solution." ] }, { @@ -1188,11 +1187,16 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "hide_input": true + }, "source": [ "#### ➜ Challenge yourself: random walks again\n", "\n", - "In the [prior module](https://yint.org/pybasic09) you created a random walk. Here's that code:\n", + "The **goal** of this challenge is to understand what a random walk looks like, visually, as a time-series.\n", + "\n", + "In the [prior module](https://yint.org/pybasic09) you created the numbers that represent a random walk. Then you looked only at the distribution. Here's the prior code:\n", + "\n", "\n", "```python\n", "from scipy.stats import norm\n", @@ -1226,17 +1230,22 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 45, "metadata": { - "collapsed": true, - "deletable": false, - "editable": false, - "hide_input": true, - "run_control": { - "frozen": true - } + "hide_input": true }, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5IAAAFOCAYAAAD0EiJvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xl41NXZ//H3zGQm+x6yE0jYFxFZRNlEqBuiRfto1brUiigKKk+fp1Jri9haRa3WCnXFVlof6tofSt1BRUVQQRbZIYQlk32fzExm+/7+CERjFiYhIRA+r+viMnzPd873ziJX7jnn3LfJMAwDERERERERkSCZuzoAERERERERObkokRQREREREZE2USIpIiIiIiIibaJEUkRERERERNpEiaSIiIiIiIi0iRJJERERERERaRMlkiIiIiIiItImSiRFRERERESkTZRIioiIiIiISJsokRQREREREZE2USIpIiIiIiIibaJEUkRERERERNokpKsDOBHY7fauDkFERERERKRLpKent/k1WpEUERERERGRNlEiKSIiIiIiIm2iRFJERERERETaRImkiIiIiIiItMkJWWzn1Vdf5dVXX+XRRx8lKyuLXbt28dxzz+HxeOjRowdz5swhNjYWoNWxY+H1evF4PACYTKZjnk9OXIZhAGCz2bBarV0cjYiIiIjIie+ESyRzc3PZvXs3SUlJQP0v+U8++SS33347AwcO5PXXX+ell17itttua3XsWLjdbgAiIiKURJ4iDMOgrq4Ov99PWFhYV4cjIiIiInJCO6G2tnq9XpYsWcKMGTMaEri9e/dis9kYOHAgAOeddx5ffPHFUceOxZFkQknkqcNkMhEWFobf7+/qUERERERETngn1Irkyy+/zIQJE0hOTm64Vlpa2rA6CRATE4NhGDgcjlbHoqKign7uD/um5Ofna4vjKSoiIqJdfXRERERERE4lJ0wiuWvXLvbu3cvPfvaz4/5su93e6O8ul0urkacol8vV5OdBRERERKQ7a89CygmTSG7btg273c7s2bMBKCsr44EHHuCiiy6itLS04b7q6mpMJhNRUVEkJSW1ONbdXHXVVQ3FYHw+H1deeSUXX3xxpz3voYceYsCAAVx22WWdMv9rr73GlClTiI+P75T5RURERET8AQOLWQtEneGESSSnT5/O9OnTG/5+++23c/fdd5OZmcnKlSvZsWMHAwcO5IMPPuDss88GICcnB4/H0+xYd7RgwQKys7PZt28fM2fOZMyYMY229nY1v9+PxWIJ6t7XXnuNkSNHKpEUERERkU6RX+3hzv/s44HzshiQFN7V4XQ7J0wi2RKz2czs2bN59tln8Xq9DS0+jjbWkQJrVmF8/mGHzwtgGvcjzGMnt+k12dnZREdHNzojumzZMlavXo3f7ycpKYn/+Z//ISEhAYfDwcMPP0xeXh5JSUkkJSURHx/PrFmzmqw6trQKuX79el544QU8Hg9+v59rr72WyZPrY77rrrsYMmQI27dvx2az8dBDDzV67VtvvcVrr72G1WrFMAzmz5/P6tWrKSsrY/78+dhsNu69914yMjJYsmQJmzZtwuv1kpOTw9y5cwkPD+ehhx4iJCSEgoICSkpKGDZsGHfeeSdWq7XZ+bOystr77RARERGRbmJPmQtvwGDNgRolkp3ghE0kFy9e3PDxgAED+NOf/tTsfa2NdVdbtmwhJiaGPn36APDBBx+Qn5/P4sWLMZvNLF++nL/+9a/ce++9LF26lOjoaJYuXUp1dTW33HILEydObNPz+vfvz1/+8hcsFgvl5eXccsstjB49mujoaADy8vJ45JFHml2NfOaZZ3jhhRdITk7G4/EQCAS49tprWbFiRcMKK8A//vEPIiMjeeqppxpe99JLLzFjxgwAtm/fzqJFi7DZbMybN48VK1Zw2WWXNTu/iIiIiEihwwvAeruDG0ckH+VuaasTNpE8kZjHToY2rhp2hvnz5wP1VWV///vfN1SW/fzzz9m1axczZ84E6reYRkZGArBx48aGVdqYmBjGjx/f5udWVlby8MMPc+jQISwWCzU1NRw8eJDBgwcDMGXKlBa3tJ5xxhksXLiQcePGcdZZZ7V4kHfNmjXU1tbyySefAPWtYI4kygDnnnsu4eH17ySdf/75fPrpp1x22WVBzy8iIiIip5aCGg8AB6s8lNR66RGprgwdSYnkSeTICt7HH3/MH//4R5YuXUpCQgIA1157LVOnTm3yGsMwWqxAa7FYGq3geTyeZu97/PHHGTt2LPfffz8mk4nrrruu0b1HErzm3H///ezYsYNvvvmG//7v/2bu3LmMGTOm2TjvuusuRowY0eJcxzK/iIiIiJxaCmq8JIaHUObysd7u4MJ+qs3RkcxdHYC03aRJkxg1ahTLli0DYOzYsSxfvpyamhqgPiHcs2cPAMOHD+e9994DoKamhs8//7xhnvT0dHbu3AnUV8nduHFjs89zOBykpqZiMpn4+uuvyc/PDypOv9+P3W5n0KBBXHPNNYwaNYrdu3cDEBkZicPhaLh37NixvPrqq9TV1QHgdDrZv39/w/jHH3+My+XC7/fzwQcfcMYZZ7Q6v4iIiIic2gocHs5IjyQ5MoQN9tquDqfb0YrkSermm2/mlltu4eqrr+b888+nqqqKu+66C4BAIMCPf/xj+vbtyw033MDChQv5+c9/TmpqKkOHDm3Y9jpt2jTuu+8+brrpJnr27MmgQYOafdbMmTP585//zLJly8jJySEnJyeoGP1+PwsXLsThcGAymUhOTubmm28G4PLLL+fhhx8mNDSUe++9l2uuuYa///3v3HrrrZjN9e9v3HDDDfTq1QuAYcOG8dvf/pbi4mKGDRvGtGnTWp1fRERERE5dTq+fKreftGgbIWYTH++rxus3sFrUCqSjmAzDMLo6iK72wwb0TqeTiIiILoqmY/l8PgKBADabjdraWu644w5uu+02Ro4c2dWhBa2ze1p+X3f63ouIiIicqnLL3cx9J49fTUgnxGzij5/k8/spPRmWGtnVoZ2Q2lNnRCuS3VxNTQ133303gUAAj8fDlClTTqokUkRERETartrt47n1xdw0Mpm4sFPvV/4CR309j7QoG2nRNmwWE+sOOZRIdqBT76fqFBMfH8+zzz7b1WEck3nz5nV1CCIiIiInla/ttazOq6ZPQijTByV2dTjHXUFNfeuP1Ggr4VYzZ6RF8sXBGm4amYy5hUKU0jYqtiMiIiIi0s3sKXcDsPag4yh3dk8FNR5iwyxEWOtb1J3dM5oyp4/dZfVflze2lbFybyX+wCl/yq/dWlyRXLVqVVATWCwWzjnnnA4LSEREREREjs2ewwnTjhIXFS4f8eGn1kbEwhoPaVG2hr+PzowixAxfHKih0uXjxW9KAHhrZwWzx6TRNzGsq0I9abX4E/Xss8+2WMXz+/bs2aNEUkRERETkBOEPGOyrcDMsJYLNRU7WHao55XooFtR4GZb6XQHFKJuFYSmRfH6gmk/3V9MrLpSfDE7g79+UsPDTfBZfko3NYsbh8eP0BEiOsnZh9CeHFhNJm83G/PnzjzrBjTfe2KEBiYiIiIhI+x2q9uDxG0zOiaW41svag45TKpGs8wUoc/lIi7Y1un52VjSL19X3k/yf8ekM6hFBbFgI81cdZMWOCi7oF8ev3ttPldvHM5f2ISrU0hXhnzRaPCO5cOHCoCZ48MEHOywYERERERE5NnsPn4/smxjG2T2j2VxYi8Pj7+Kojp8iR32hnR8mkmdlRmE1m7igbxyDetSvVg5Pi2R0RiSvfFvGQ5/mU1jjodYT4LWtZcc97s5WWOPp0DOhLSaSaWlpQU2QmpraYcFIy6666iquv/56brrpJn72s5/xm9/8hm+//faY5iwtLWXu3LlHva+wsJC33nqr0bV58+aRn59/TM8PxsaNG/nqq686/TkiIiIi3cWecjdhISbSo22cnRWN34C1B2u6Oqzjosrt4/82lwKQEdM4kYwJC2HxJdnMHJ3S6PrPz0imzh9gc6GTm0elMCk7hhU7Kyip9R63uDtbpdvHrLdyWfhpPl5/xySTQZ269fv9fP755+zbtw+3291o7JZbbumQQOToFixYQHZ2NgCrV69m3rx5PPzwwwwePLhd8yUlJfH4448f9b7CwkJWrFjBJZdc0nDtoYceatcz22rjxo24XC5Gjx59XJ4nIiIicrLbU+YmJz4Mi9lE/8QwesWGsmJnBVNyYjG10vqizOnFZDKRcJIW5sktdzN/1UGcXj/XDEsiJz60yT0pUbYm1zJjQ5kxMgW3L8BF/eMZlRHFZ/treGFDMbePSSXK1niLqz9gYDG3/HVc+k0xHr/BlUMTienkHp5Orx+nN0BSROtnOg9W1REwYN0hB498ls//js/Aajm2NihBfWZPPvkkBw4cYPjw4cTGxh7TA09Gq3KrWLm3slPmntInjsk5bf+aTpw4kR07dvDKK69w33334fV6WbJkCZs2bcLr9ZKTk8PcuXOprq5m1qxZvPLKK4SE1H+7f/e73zF27FiGDx/OLbfcwvLlywH4wx/+wMGDB/F6vWRkZPCrX/2K6Oho/vznP1NYWMiMGTPIyMhgwYIFXHXVVTz44INkZ2dz1113MXDgQLZu3UpZWRmTJk1i5syZAOTl5bFw4ULcbjd9+/YlPz+f6667jrPPPrvR53PgwIGG+wKBABdeeCGjR4/mzTffxDAM1q9fz+TJk7nmmmtYu3Yt//znP/F4PFitVm6//XYGDx7Mxo0befLJJ+nfvz979+7FYrFw991307t372bn/+lPf3qM3z0RERGRE8uRQjsX9IsDwGQyMW1gPIvXFbK12MXQlIgmr9ld5mLZ5lK+KaglLdrGXy/JOd5hd4jl28vxBwweuyibXnFNk8jWXDzguzOkPSKtXDY4gVe+LePLQw5GpkdyYb84cuLD+MemEj7eV8UffpTVsD32+8qcXt7YVo5BfQ4x68xUJvSOOerznV5/Q6uSYG0pquXxzwvwBAyWTO9DaEjLnR3t1fWrq5cPTuCNbeW8vKWUa4f3aNPzfiioRHLjxo089dRThIeHH9PDpGMNGjSINWvWAPCvf/2LyMhInnrqKQCeeeYZXnrpJWbMmEHv3r1Zt24d48aNo6qqik2bNvHrX/+aqqqqRvPNmTOn4Y2CJUuWsGzZMmbOnMldd93FU089xTPPPNNiLEVFRTzxxBM4nU5+9rOfMXXqVDIzM/njH//IFVdcwXnnncfOnTu57bbbmn398uXLGTNmDNdffz0ANTU1REdHc+mll+JyuZg1axYA+fn5/OMf/+Dhhx8mMjKSffv2MW/ePF5++WUAcnNzmTNnDsOHD+fdd9/lwQcf5Jlnnml2fhEREZHu5kihnb4J37WzOKd3DEs3lvDmjvJmE8lFawspd/k4LSWCTYVOCmo8Tc4XnujqfAHWHnIwoVd0m5PI5lwzLIkzM6P4NK+aj/OqWXfIgdkEJsBiNvHWjopmE8k1B2owgHkTMnh1axnPfF3EWT2jsFpaTvJ2lrqY9/5+HruoN9nxwbUheW93JU99WUhsmIWaOj9f5TsY36vlhNVe48FmMXHd8B7Yazy8u6eSK4Ymtpp8Hk1QiWRmZiYOh+OUTSQn58S2a9WwsxnGd/ub16xZQ21tLZ988gkAXq+XPn36AHDhhRfy3nvvMW7cOFauXMm4ceMIDw9vkki+9957fPjhh/h8PtxuN5mZmUHHMmnSJMxmM1FRUfTq1Qu73U58fDx5eXlMmTIFgAEDBpCT0/w7XMOGDePpp5/G5/MxfPhwzjjjjGbv++qrr7Db7dx5550N1/x+P+Xl5QBkZGQwfPhwAM4//3wee+wxamtrg55fRERE5GS2r6L+GFrO9xLJ0BAzF/SN4/WtZRQ5PI22d7p9AQ5U1XHF0EQm9Y5l1lu5bDy8Mnky+SrfgdsXYGIQq3/BMJlM9EsMp19iONcN78GaAzXsLHVxYf94PtxTyYqdFZS7fE22AX+6v4bs+FDOzoom3Gpm/qqDfHHQ0WpcmwtrCRiwudAZVCJpGAavbyujf1I4903OZPaKfXyUW3XURDIt2obZZOLi/vGsPejg0/3V/KhPXPBflB8IKpGcM2cOTz/9NKeffnqTra3qIdl1du7cSe/evYH6H6i77rqLESNGNLlv4sSJLF68mKqqKt59911mz57d5J7Nmzfz5ptvsmjRIuLi4vjwww9ZsWJF0LHYbN/9Y2M2m/H7/Q2Jbmt78Y8455xzGDJkCF9//TXLli3jnXfe4Te/+U2T+wzDYPTo0dxzzz1Nxg4cOHDM84uIiIiczPKrPZhNkPaDs4BT+8fxxrYy3t1dyQ1nJDdczy13EzCgb0IYadFWkiOtfFNQy0X9T652IavzqokPD2FIctNVwmNltZg5JzuWc7Lr86AL+8WzfEcFH+6p5MrTkhruK3Z42Vnq4rrDW0aHpUaQEmXl/T2VrSaSu8rqk/+dpa6g4jlQ5aHI4eUngxOJsFqY1DuGf28vp9LlI66F8632ag89Y+t/Jk5LiaBXbCj/CeLcbGuCWsv8+OOP2bFjB2vWrGHlypUNf1atWtWuh8qx++yzz1i+fDlXXnklAGPHjuXVV1+lrq4OAKfTyf79+wEICwtj3LhxPP/88zidToYNG9ZkPofDQWRkJDExMXg8Ht55552GsYiICGpra9scY1RUFL1792blypUA7Nq1i9zc3Gbvzc/PJyEhgQsvvJDrr7+eHTt2NPvs0aNH89VXX7Fv376Ga0fuPTLP5s2bAVi5ciXZ2dlERka2OL+IiIhId5Jf7SElytqkkEpihJXRGVGsyq3C970WELsPJzH9EsMxmUyckRbJliJno3tOdI46P+vttUzoFd1qEZyOkh5jY3hqBO/uqWzUTuOzA9UAjM+KBsBsMnF+nzi2FDnJr/Y0O5dhGOw6nEC2lkh+ne8g7/Bq81eHHACMyogEYFJOLAEDPt1f3exr/QGDQoeH9MOrzCaTiakD4sitqGNHSXDJa3OCWpF8++23WbhwYZu2OkrHmz9/PlarFbfbTe/evXnooYcaKrZec801/P3vf+fWW2/FbK5/f+CGG26gV69eAFx00UXccccd/OIXv2h27jFjxvDBBx9www030KNHD/r379+QbPXp04eePXty4403kpWVxYIFC4KO+de//jUPP/wwr7zyCv3796dPnz5ERkY2ue+jjz7iww8/xGq1YjKZGlZNJ0yYwO9+9ztmzJjRUGznnnvu4ZFHHqGurg6fz8fQoUMZOHAgAH379mXlypUsWrQIi8XCr3/961bnFxEREelO7DUeMlrYlvqjPrGsO+Rgfb6DMT3rk509ZW4SI0KIP7ySNTwtgvf2VLK71MWgNqzulTm9xIWFHJdE7ofWHqrBFzA6bFtrMC7sH89Dq/P58pCDs7OiMQyDT/Oq6ZcYRur3vv5T+sTyf5tLeH9PJTeOSG4yT6nTR6XbT3q0FXuNlzKnl8QfVGAtdXp5cPUhkiKsLJqWzZf5DvokhDXclxUbSp+EMFblVnHJwIQmzyiu9eIL1CfAR0zKjmXpNyW8v7eqTd/n7zMZ3z9o14I777yThQsXEhYW3OHPk43dbm/0d6fTSURExy+Ln4pcLhdhYWGYTCby8vKYO3cuS5cuJTo6usOfdaQoVGtFgY5G33sRERE5WQUMg5++vIsL+8Vx08iUJuP+gMFN/28vfRNCuXdSTwBufXMvveJC+fXE+gUjR52f617fzRVDE7lmWHBVPbcVO/ntygNc0C+emaOaPrezLfw0n12lLp6f3qfd2zTbyh8wuH1FLuEhZh67qDffFNSy4KND3Do6pcm24Ac+OURehZvnpvdtMs/nB6p5+FM7N49K5rmvi5k3IYOzs6Lx+APYDhfoef7rIlbsrMCgvurqv7eVc9WwJK763rba5dvLeWFDMc9P70OPyMaJ6Pp8B/d/fIiHzstqlDQ++lk+W4qc/O3yvmRmZLT5axDU1taLL76Yv/zlL+zatYuioqJGf0Ra8+233zJjxgxuuukmfv/73/PLX/6yU5JIERERkVNdmdOHx280bGH8IYvZxJScWNbbaylzenHU+Smo8dIv4buCmlGhFvolhrHBXksQ600UO7w8tDofXwBW7q2k1uMHoNbjZ1NhLavzqsktdx9llvYLGAZbipwMS408bkkk1H8t/2tIIrkVdXyZ72DpxhJSoqzNFq8Z1COc4lof1XX+JmO7St2EmE1MzoklxGxiZ6kLe7WH61/bw1++KKDc5eO9PZWcmxPLyPTIhtYiZ2ZENZrn9NT6BHFzYdPjaPaa+m2131+RBBiRHkWl209eRV27vgZBbW1dsmQJAOvXr28ydqTtgkhzRo8ezejRo4/Ls4YPH35Mq5EiIiIiJ7MjCUNGTMsVV3/UJ5bXtpbx1o4KhqfVHzfqm9h41+H4XjEsWV/Mf3ZVMG1A062SR3j9Bn9cfQhfwOC/x6bx2JoCVuVWMTknlrnv5FHkqO9dGGUz88ylfYgKbVufxGDkVdRRU+dnWDNtTTrbpOxYXt5SxhNfFFDrCTB3bFqTs6lAQyuW3HJ3w9f8iN1lLnLiQ4mwWsiJD2VnqYuDVXV4AwFW5laxwe7A6zf4yZAEDAO+KdhHfHgI2fGNW5xkxYUSG2phc6GTKT9IZvOrPUTazMT84Ot/xuFYNthrGT+07Z9/UInkqZYsBvPui3RP+t6LiIjIyepIQZfWEsm0aBs/6hPLv7eXs/fwSuH3e04CTBsQz7dFTpasLyYzJrRJ8nPEJ3lV7Kuoa9iO+Z9dFby9q4KdpS5Kar38clw6EVYzf/j4EK9vK2tULbajbClyAnBa6vFPJEPMJq4YmsjidYX0jgtt8YxmzuGWHnt+kEj6AwZ7ytyc17c+8RuQFM5/dlUQMODnZ/TAbDLxwoZixmVFkxlTnzjOOjOVsBBzk9VXs8nEaakRbC5yYhgGAQO2lTgZ3COCgpr6Qjs/fE18eAg58aGstzva9/kHc1N5eTk2m42oqO+WUB0OBx6Ph4SElt+lOFlZLBbcbjehoaHHdYlcuo5hGNTV1WGxdPw7ZSIiIiLHg73aQ6jF1KS34Q/NHJXCvgo3m4ucpEVbm6wUmk0m7hqbxrz3DjB/1UGibWbSY0JZMLkn4db6k3EBw+CNbeVkx4dyVs/6HGFq/3geX1OAvcbLz05PakisJmXH8NaOCqb2j29yfu9YbS6sJT3aRlJEx84brHOzY9la5OTCfnGYW8gbokItpEZZGxJ3jz/AtmIXRQ4vdX6DfodXhPsnhfPWzgrSo21MG5CA1WJiUI9wMmO/e2Pg/L4t930clhLJZ/tryK/28GW+gxe/KeGifnHkV3sY3EJBnRHpUbyxraxdn3tQieQjjzzCrFmzGiWS5eXlPP300/zxj39s14NPZGFhYXi9XpzO+nc4lEx2b0dWIW02G1Zr1/wjJCIiInKs8qs9pMc0XXn6odAQM/MmZPLLd/MY3KP5BCPCauG+KT35cE8leZV1fH6ght1lLoal1q+orTvkIL/awy/HpTc8b1xWNP/YWEJqtI2fDE5smOtnp/fgs/01vLSphLvGph/z51nk8OD2GWTE2Pi22MWk7ONXrfWHrBYTc8cd/XPKSQhrOCv6ypYyXt1an7yZTfVnKAGGpUSQFm3l1jNTGrbI9k8Kb37CZgw7vCq75mAN/297OdGhFt7ZXQk0PR95xIj0SF7b2omJpN1uJysrq9G1rKws8vPz2/XQk4HValVSISIiIiInDXuNp8l5x5YkR1lZPC2b0JCWa28mhIdw5WlJVLl9fH6ghn0VdQxLjcQwDF7fWkZqlJVxWd8VUbRazDwxNZtwq7lRG5AekVYu7B/H2zsr+MWIZGLCgkpBWvTEFwXsKHFxQb843L5Al5yPbKs+CWGsOVBDtdvHytwqhqVGcN3pPYgJtZASVZ/kxYWH8PSlfdr9jNQoKz0iQnh5Syn+ADw+tTdv7ihnVW51iy1hBiaFE2kNqv5qE0G9KiYmhsLCwkbXCgsLVX1TREREROQE4PUHKK71tlixtTkxYSGtJpJHxIaFkBge0rA1M7eijt1lbn48KKFJ38ioUEuzvSQnZ8fiN+CLg8Gfxyt1eqnzBRpd8/oD7Cp1Y7WYeXtX/Wrb0JMkkQR4Y1s55S4fF/WLo39SeKOek8fKZDJxWmokvgCc0zuG7Pgwbh+Txv+MS2dMz6hmX2Mxm5g5un0tW4J6O+Dcc8/lT3/6E1dddRUpKSkUFhby8ssvM3ny5HY9VERERERE2s/p9ePyBhqa0hc4vASM1gvtHIuchDByK+oTySMtJs7qGfyiUnZ8KBkxNlbvr+aCfi2f8zvCUefn9rdyiQ0L4bYzUxuK1ORW1OENGNw1No295W5qPQFij3GF83joc7jK6ls767ecjs7onAW5cVnRrM93cM3p9T0mQ8wmJrRQBOiISdmx7XpWUF/16dOnExISwj/+8Q/KyspISkri3HPPZdq0ae16qIiIiIiItN+fPrOzucjJrDNTmZwTy8Gq+l6AnZdI1lf3rPMF2FLkJCPGdtSiPt9nMpmY2CuGf20ppczpbUiAW/JlvgO3zyDCbzB/1UFuHpXMtAEJ7ChxATA4OYLxvbrubGRbxYSF0CMihBKnj3N6xzTbJqQjjMqI4sWf9D0uNV6C+u6bzWYuvfRSLr300s6OR0REREREWnGouo6v7bXEhFp44osC3txRzv7KOiwm2rS1tS1y4sMIGLC33M22YhfntKPAzfhe0SzbUsqaAzVcMrC+84O92sPL35Yyc1QKkbbvqsd+cbCGpIgQ/npJDvetOsjy7eVM7R/P9hIXKVHWNiWxJ4qchDBKnA6m5LRvBTBYx6tQaIubou12e1ATBHufiIiIiIgcu7d3VhBiNvHnqb35yeAEzCYTlw9O5PGp2Y2SsY50pBfiB3urcPkCnNaOc4mZsaFkx4fy8b5q/AEDp9fPA58c4uN91aw9WNNwn9Pr5xt7LWf3jCY0xMwF/eIorvWxrdjFjhInA9tQyfREckHfOC4ZEE9OQnAFkU50LSaSv/71r4Oa4De/+U2HBSMiIiIiIi2r9fhZmVvNhF7RJEZYuf6MZB67qDfXDe/6Uh3KAAAgAElEQVRBr7jQTntuj8gQom1mVudVAzC0hb6ER3NB3zj2lLu5+/39PPqZHXuNh0irma/ttQ33rM+vxRswOPtwRdizekYTFmLm5W9LqXD7Gdjj5EwkR2ZEMWNU+wrbnIhaXBOuq6tj/vz5R53A5/N1aEAiIiIiItK8VblVuH0Bpg1IOK7PNZlMZCeEsbnQSc9YG3Ht3Fp6Yb84Im0Wnv26iN1lbm4c0YP8ag+f5tXg9RtYLSa+OFhDXJilYeUxLMTM2KwoVuXWJ7En64pkd9PiT8Ctt94a1ARTpkzpsGBERERERKRl7++pZEBSWND9IjtSTnx9Itmeba1HmEwmJvaOYVhqBDtLXJyZGcWXhxy8v6eK7SVO+iSEsd7uYFJ2bKM2Iudmx7Iqt5qwEHOnrrxK8FpMJCdNmnQcw6j38MMPU1JSgslkIiwsjF/84hf07t0bu93O4sWLcTgcREVFMXv2bNLS0gBaHRMRERER6S7yKtwcqPJwSzv7/h2rI70QjyWRPCIuLIQxh9uHDEuNxGo28VW+g0/3V+PxG5zft3GLkKEpEfSICCEzNrTZPpVy/JkMwzC6OogjnE4nERH1P5hfffUVr732GgsXLmTBggWce+65TJw4kdWrV/PRRx81bLttbSxYKhgkIiIiIie6f2ws4Y1tZfzt8r7EdUHvxDpfgHd3VzK1f3yHt6+4b9VBdpW5qPUEuGxQAj8fkdzknoIaDzaL6aitQ6Tt0tPT2/yaFovtdIUjSSTUJ5Umk4mqqir27dvH+PHjARg/fjz79u2jurq61TERERERke7CMAw+21/NsNTILkkiAUJDzPx4UEKn9EAclRFJrSdAerSNq4clNXtPWrRNSeQJ5IRrwPL000+zadMmAO655x7KyspISEjAbK7Pec1mM/Hx8ZSWlgK0OBYTE3xvm/Zk4CIiIiIinW1PiYOo0BDKaj0UOrzcPL5Pt/zd9bKYRD496OJXP+pPdnrn9lmUjhFUIvnmm29y6aWXNrm+YsUKpk2b1qEBHSnys3r1av75z3/y05/+tEPnb462toqIiIjIiSZgGMx4dTduX4DUaBshZhMDo/3d9nfXhT/KAGqxf68ViBwfnba19fXXX2/T9Y4wceJEvv32WxISEigvLycQCAAQCASoqKggKSmJxMTEFsdERERERE5mJbVear0BchLCKHJ4GZMZRZTN0tVhiQBHWZH89ttvgfoE7cjHRxQVFREe3nE9XNxuNw6HoyEJ/Prrr4mKiiI2NpbevXvz2WefMXHiRD777DOys7Mbtq62NiYiIiIicqLbXuzkk7xqrh6WROz3zj8eqPQAMGNkChkxNmydcDZRpL1ardp6++23A1BaWtpolc9kMhEXF8f06dMZNWpUhwRSWVnJI488gtvtxmw2ExUVxXXXXUdOTg75+fksXryY2tpaIiMjmT17dsPya2tjwequ2wNERERE5MRVXefnybUFfHnIAcCPB8bzi5HftfZ4Y2sZL24s4aUr+mklUjpVe7a2BtX+Y9GiRcyePbtdQZ0MlEiKiIiIyPG2aG0Bq3KruGZYD3Ir3Ky3O3huel9iQuuTxie+sLOxwMnfLu/bxZFKd9dpZyS/n0QGAoFGf0REREREpG3yKtyszK1i6oB4/mtoIj89LQm3z+DtnRUN9xyo9JAVa+vCKEVaFlTV1tzcXJYsWcKBAwfweDyNxl5++eVOCUxEREREpDsyDIO/bSgmwmrmp0Prj4/1igvlzMwoVuws58eDEggNMXGouo7z+sR1cbQizQsqkVy8eDEjR45k1qxZhIaGdnZMIiIiIiLd1qZCJxsLndw0Mpno0O/OPv7XkER+dcjBR/uqGJUehdtn0DNWv3vLiSmoRLK0tJSrr74ak0mVokREREREjsWaAzWEh5i5qF98o+sDksLJjg9l5d4qkiOtAPTU1lY5QQV1RnL06NFs2rSps2MREREREen2NhXWMjQlAmsz7Tym5MSyp9zN5weqAbQiKSesoFYkvV4vjz76KAMHDiQurvE+7e5czVVEREREpCMVOTwUOrxMGxDf7PjE3jH8bUMxH+VWEx9mabT1VeREElQimZmZSWZmZmfHIiIiIiLSrW0udAJwempks+OxYSGMzoxi7UGHViPlhBZUInnFFVd0dhwiIiIiIt3e5kIn8WGWVs8+Ts6JrU8k45RIyomrxURy27ZtDB48GIBvv/22xQmGDh3a8VGJiIiIiHQTaw5Us7nQyc9HJLOpqJbTUyNbLWI5Mj2KcVnRjOsZfRyjFGmbFhPJJUuW8Kc//QmAp556qtl7TCYTixYt6pzIRERERES6gXd2V7K50Mm2YhdVbj+np0a0en+I2cSvJmQcp+hE2sdkGIbR1UF0Nbvd3tUhiIiIiEg3ZBgG17++h9gwC/ZqD34Dnp/ehx6H23uInAjS09Pb/JqgzkgC+P1+du7cSXl5OYmJifTv3x+LRVWkRERERERaUun2U13n58qhiWTGhrK33K0kUrqFoBLJ/Px8Fi5ciMfjITExkbKyMqxWK3fffbequYqIiIiItCCvsg6A3vGhnJYSyRlpzVdrFTnZBJVIPv/88/zoRz/ikksuaTgY/Oabb7JkyRLmz5/fqQGKiIiIiJys8ircAPSKC+viSEQ6ljmYm/Ly8pg2bVqj6lIXX3wxeXl5nRWXiIiIiMhJL6+yjsTwEGJCdSRMupegEsmEhAS2bdvW6Nr27duJj4/vlKBERERERLqD/ZV19I5XP0jpfoLa2nr11VezcOFCRo4cSVJSEqWlpWzYsIE5c+Z0dnwiIiIiIiclX8DgYFWdzkVKtxRUIjlq1CgWLlzIF198QUVFBT179uTKK69sV5lYEREREZFTQX61B18AesdpRVK6n6Dbf6Snp3P55ZdTU1NDdHR0o/OSIiIiIiLS2JFCO73jVWhHup+gEsna2lpeeOEF1q5di8/nIyQkhLPOOosbb7yRqKiozo5RREREROSkk1dZR4gZMmJsXR2KSIcLqtjOX//6VzweDwsXLmTp0qUsXLgQr9fLX//6186OT0RERETkpFPp8rHmQA1ZsaGEmLWTT7qfoBLJrVu3MmfOHDIzMwkNDSUzM5Pbb7+9SSVXEREREZFTXaXLx70rD1Dh8jFjZEpXhyPSKYJKJNPT0ykuLm50rbS0VMV2RERERES+xzAMHlydT7HDy+/O7cmQlIiuDkmkUwR1RnLo0KE88MADTJgwoaH9x6effsrEiRNZtWpVw32TJ0/utEBFRERERE5020pc7Ch1cevoFIYqiZRuLKhEcvfu3aSmprJ79252794NQGpqKrt27WLXrl0N9ymRFBEREZHupKbOz2tby9hd5qLC5ee+yZmkRLVcPOfNHeVE28xMzok9jlGKHH9BJZLz58/v7DhERERERE44L35TzMrcKvolhlFc6+X1reXcNia12XsLazysO+jgJ0MSCQ0J6gSZyElLP+EiIiIi0mWq6/wsXlfA7jJXV4fSRKnTy0f7qrigbxwPX9CbKTmxrMytotzla/b+FTsrsJhhav+44xypyPGnRFJEREREusynedW8v6eKX723n2WbS/AHjKBfW+nysafM3eR6nS/A8u3l+NowV3OWby8nYMBlgxOA+v8GDIO3dpQ3udcXMFiVW8XYrBgSI6zH9FyRk4ESSRERERHpMt8UOEiOtDKxVwz/2lLGZ/urg37tsi2l3PPBfty+QKPr6w45eGFDMZsLa9sdV7Xbx3u7K5nYO6bhTGRatI1xWdG8s6sSR52/0f07S1zUegOMzYpu9zNFTiZKJEVERESkS3j9ATYXOhmdEcmdY9OIDrWwsQ3J34HKOur8BhsLaptcB8iv9rQ7tvf3VlHnN/jJkMRG1/9rSCJ1/gAvbmzcGu9ruwOLCU5PVaVWOTUEVWynqKio2etWq5W4uDjMZuWjIiIiIqcSf8DAYjYd0xzbSlzU+Q1GpEdhNpkYmhzBlkInhmFgMh19bntNfaL45SEHZ/X8biXwQFV9InnoGBLJ9fkO+iSEkRUb2uh67/gwpg9K4I1t5ZyVGc3IjCgANthrGZQcQYTV0u5nipxMgkok77jjjhbHzGYzI0eOZMaMGcTF6WCxiIiISHdX5PBw19t5nJsdw00jU9qdUG6w1xJiNjX0WzwtJYIvDtZQ5PCSGt1yiw2AWo+fSrcfswm+znc0Smz3Vx5bIun0+tlZ6uKywYnNjl8zLImv8x08ua6QJy/OxuMPkFdZxw3De7TreSIno6CWEm+55RYmTJjAE088wUsvvcQTTzzBhAkTmDFjBo8++iiBQIAlS5Z0dqwiIiIicgJYnVeN0xvgP7sqeeCTQ7i8gaO/qBnf2GsZkhxO2OFWGacd3ha6pcgJQG65u8lZxCOOrEaOz4qhqq4+8YP6QjtFDi8A+YdXJttqS5ETvwHD05rfpmq1mLlrbDo1dT4e/iyfLw85ABiRHtmu54mcjIJKJF955RVmzpxJamoqISEhpKamcvPNN/P666+TkZHBbbfdxrZt2zo7VhERERE5AXy6v4ZBPcK57cxUNthrebOZKqZHU+r0sr+qrlHy1TPGRlyYhS1FTvZVuPnlu3n8c1NJs6+3H15tnDYwnhBzfYEdgINVHgygX2IYFW4/Do8fp9fPnBW5rM93BBXbxoJawkJMDEwKb/GePglh3D4mjc2FTl7YUExiRAi94kJbvF+kuwlqa6thGJSUlJCRkdFwrbS0lECg/t2nsLAw/P7m3y0KVk1NDYsWLaKwsBCr1UpqaiozZ84kJiaGXbt28dxzz+HxeOjRowdz5swhNjYWoNUxERERETl2FS4f/9lZweVDEiit9bG/so6Zo1K4oF8c7+2pYHNhLT89LanZ1+4pc1Nd52NEelSj65sOF8gZnvpdImky1W9z3VLkxF7jIWDAeruj2TOT+TUeTEBOfCinpUTy5aEafn5Gj4bzkWOzotld5ia/2kOl28eBKg8rdlY0nGlszcYCJ0OTI7BaWl9zmZwTS6HDw8tbyhiZHhnUuU6R7iKoFcmpU6dy//33s2zZMt5//33+9a9/cf/99zN16lQANmzYQP/+/Y8pEJPJxKWXXsoTTzzBo48+SkpKCi+99BKGYfDkk09y00038cQTTzBo0CBeeuklgFbHRERERKRjvLyllFe3lvHnNQV8kleN2QTjDre5OC0lkh2lbuoOt+B4eUspy7eXYxgGRQ4P81cd4LHP7RhG456O20tcRNnMZP1gFe+0lAjKXT52l7kZlhpBca2v2eqr9moPyVFWrBYzY7Oisdd42VPuZn9lHVaziVGHE8b8ak9D0rqxsJZKt6/Vz7XI4cFe42F4WnDbVK8+LYk7zkrl6mE6HymnlqASyR//+MfMmjWLyspKvv76a8rLy5k1axbTp08H4Mwzz+See+45pkCioqIYMmRIw9/79etHaWkpe/fuxWazMXDgQADOO+88vvjiC4BWx0RERETk2NXU+VmVW0VKlJV1hxz8e1sZp6VEEBdev7FtaHIEvoDBzlIXZU4v/9pSygsbinl+fTELP7Xj8ASo8QSaJIM7S10MSArH/INVvNNS6hO44WmRzB6TCsCGgqYtQew1HjIOF+QZ3yuaUIuJ9/dUcrCqjsxYG+nRNkLMcKiqjo2FTtKjrQQMjtqnclNh/fnMM4JMJE0mE1P6xJEQHtRGP5FuI+if+OHDhzN8+PDOjKVBIBDggw8+YOTIkZSWlpKU9N1WiZiYGAzDwOFwtDoWFXX0bQsiIiIi0rr39lRS5ze4Z2IG/95ezsf7qpnQK6ZhfHByOGZTfYGaveVuAgZM6BXNip0VANxwRg9e/KaEHaUuMg+30nB4/Byo8jChd0yT52XE2PjvsWmcnhpJXHgIGTE21ttruXRgAr6AgWFAiBnyq70M6lNfDCfCamF8rxhW59UQFmLi9NRIQswmUqNsbCysJb/awy9GJLMyt4pP9lUzbUBCs5+rP2Dw7u4KUqOsZMS0XjVW5FQXVCLp8/n4+OOPycvLw+12NxqbPXt2hwf1wgsvEBoayoUXXsiXX37Z4fP/UHp6eqc/Q0RERORk4/MHeG/5PkZnxTN2SA4j+vdi9d5SJvfrQcj3zg8OTClkV4WPWo+foWkx/OmKkbzyzSGsFjOXDUvn/23/lP21pobfudbsKwNg/MCepKfHN3nu1d/73Wxiv1pe35hPIDyOua9vIikqlN9fPAS3byeDMns0zHnNWZGszF2P2wdDs5JIT0+nb0oZH++uL9Zz3rDeRESVsWj1XvzhcfSMb1qR9Y1N+ewtr+OBaUPIyEjpuC+kSDcUVCK5aNEi9u/fz8iRIzu9kM3SpUspLCzk7rvvxmw2k5SURGlpacN4dXU1JpOJqKioVsfawm63d1j8IiIiIt3Fqtwqih113DKqR8PvS0NjoLiosNF9AxOs/HtbOQYwc1QKBQUFTEi1AFBQUED/xFA27C9rmOPzHSWYTRBv1GK3u1qNoX+Mgccf4PqlX1LrDXCgwsWilVsBiDJcDXMmYtAz1sbBKg9xpjrsdjtJtvpzm/HhIYR7qhieACbgD//Zwi/HpRMVaqHS5cPjNwizmln0SS5DksMZEuPT74dySmnPwlpQieSmTZtYtGgRkZGd2xtn2bJl7Nu3j3nz5mG1WgHIycnB4/GwY8cOBg4cyAcffMDZZ5991DERERERaZsvDtSwo9TF9cN74PIG+Ps3xfRLDDtqf8ShyRG8sa0ci6l+W+sPDewRwVf5JVTX+YkJtbCj1EXvuFDCrUcv1zE0JQKbxYTbZzD/3J68sL6Yd3ZXAjTafmoymbioXzzPry8iJyGs0fjpqRGYTCZ6RFq5eVQKS9YXMfedPFKirHxb5MQALCYwgJtHpaj6qkgQgkokk5KS8Hq9nRrIwYMH+fe//01aWhr33nsvAMnJyfzv//4vs2fP5tlnn8Xr9Ta0+AAwm80tjomIiIhI26zYWc63xS6q3D5CzCZq6vzcd27PJgVxfmhQcjgWE4zMiCImrOmvl4MO92PcWeJiRHoku0rdTM5pej6yOTaLmf8el05cqIVByRH8fEQPFnx0CJvFRGJE42dN7R/HiPRIkiLqFyR6H64IO+J7hXMuHhBP38QwnviigDKnj5+elkhcWAgHquroFRdKdnxYUHGJnOpMxg9rMTfjrbfeYu3atVx00UXExcU1Ghs6dGinBXe8aOuCiIiInCqKHB6e/rKIib1jODfnuyNL/oDBNa/uIspmodRZ3yJj+qAEbhyRHNS8X+c76BlrIyWqaZGaOl+Aq1/ZxfRBCYzvFcPcd/L477FpnJPdviNTv//oILXeAA+d3+uo9+4sddEvMeyoybDIqazTtra+++67QP3W0+8zmUwsWrSozQ8VERERkePv63wHj62xU+sJUOPxN0okD1bV4fYZ3Dq6B4UODxsLnFw9LKmV2Ro70rexOaEhZnISwvjsQE1DK4+BPcLb/XnMm5iJwVHXQgAYkNT+54hIy4JKJBcvXtzZcYiIiIhIJ6r1+HlwdT49Y2306RnGyr1VVLl9xB7eirqrrL4yf/+kcM7NieXqYR37/OGpkby6tYyc+FBuHZ3S7MplsKwWE/Vlc0Skq6hzqoiIiMgpYHuJC1/A4Bcjkgm3mvlwbxXfFNQy6fD20t1lLiJtZtKjrZ3y/KuGJTFtYDxxzZyhFJGTT4v/J8+dO5fHH38cgFmzZrU4wVNPPdXxUYmIiIhIh9pa7CTEXL/V02oxERNq4Rv7d4nkrlI3/RLDO61iaYjZpCRSpBtp8f/mW265peFjVUIVERERObltLXbSNyGc0JD6lhtnpEXyTUEtAcPA4zc4UFXHmZlt68UtIqeuFhPJgQMHNnxcVVXVbH/GtWvXdk5UIiIiItJh3L4Ae8rcXDY4seHaiPRIPsmrZm+5G4/PIGBA/0QVphGR4By9Cyzw9NNPN3v9mWee6dBgRERERKTj7Shx4TdgSPJ3ieIZaZGYgA/21J+VBOifpB6KIhKcVjeqFxUVARAIBCguLub7LSeLioqw2dpfbUtEREREjo+txU7MpsYtN2LDQhidGcV7eyoBSImyNlRwFRE5mlb/tbjjjjsaPv7hOcm4uDiuuOKKzolKRERERDrM1mInOfFhRFgtja7Pm5DBnnI339hr6RUf2kXRicjJqNVE8uWXXwZg/vz5LFiw4LgEJCIiIiIdx+MPsKvUzdT+cU3GLGYTA5LCGZCks5Ei0jZHPSMZCAQoLy/H6/Uej3hEREREpAPtq6jDGzAY1COiq0MRkW7kqImk2WzGbDbj8XiORzwiIiIi0oF2lboAFdIRkY4V1InqqVOn8uc//5nLLruMhISERo1qU1JSOi04ERERETk2u8vcJISHkBhh7epQRKQbCSqRfOGFFwDYvHlzk7Ej5yhFRERE5MSzu8xNv0StRopIxwoqkVSyKCIiInLycXj82Gs8TM6J6epQRKSbOeoZSRERERE5Oe0pcwPQL1FVWUWkYwW1Iun3+3nvvffYtm0bNTU1jcbUFkRERETkxLS7rL7QTl9tbRWRDhbUiuSLL77Ihx9+yODBg8nNzWXMmDFUVVUxZMiQzo5PRERERNqoyOHBMAx2l7lJj7YRZbN0dUgi0s0EtSK5bt06HnjgAZKSknjllVeYOnUqp59+Os8++2xnxyciIiIibbDuYA1/XJ3PpOwYdpW6OD01sqtDEpFuKKhE0uPxkJiYCIDNZqOuro6MjAzy8vI6MzYRERERaaMv8x2EmE18sq8aA+in/pEi0gmCSiQzMjLYu3cvffv2JScnh1dffZXw8HASEhI6Oz4RERERCZJhGHxTUMuZmVGc3zeON7aWcWZGdFeHJSLdUFCJ5M9//nPM5vrjlDfccAPPP/88LpeLmTNndmpwIiIiIhK8Q9Ueypw+zkiLbPgjItIZgkokk5KSiIuLAyAtLY3f/va3AFRWVnZeZCIiIiLSJhsLagE4PTWiiyMRke4uqKqtd955Z7PX586d26HBiIiIiEj7fVNQS3q0jZQoW1eHIiLdXFCJpGEYTa45nc6G7a4iIiIi0rmq3T5qPf4Wx73+AN8WOTkjTauRItL5Wt3aOmvWLKC+auuRj49wOByMGzeu8yITEREREQB2l7m4b9VBesaG8uB5WZhMpib3bC9xUec3OF3nIkXkOGg1kZwzZw6GYfDggw8yZ86cRmNxcXGkp6d3anAiIiIip7rtJU7u/+gQvoDB9hIXW4tdDE1puuq43l5LiBlOa2ZMRKSjtZpIDh48GIAlS5YQGhp6XAISERERkXq7y1wsWHWI+HALvzu3J/Pe38/rW8uaJJKGYbDuUA2npUQSYbV0UbQicioJ6pDjBx98QF5eHgC7du1i1qxZzJ49m507d3ZmbCIiIiKnrINVdSz46BDRoRb+8KMs0qJtXDIwgQ0FteSWuxvfW+2hoMbLmMyoLopWRE41QSWS//nPf0hOTgZg2bJlTJs2jcsvv5wXX3yxU4MTERERORX5Agb3f3QIiwnun9KTxAgrABf1iyPCauaNbWWN7v/yoAOAM5VIishxElQi6XQ6iYiIwOVykZeXx0UXXcTkyZOx2+2dHZ+IiIjIKefbIifFtV5uHZ1KWvR3rTwibRbOzYll7UEHTu93FVzXHaqhb0JYQ8IpItLZgkokExMT2blzJ59//jmDBg3CbDar/YeIiIhIJ1lzoIawEDMj0ptWYJ3QKxpvwGDd4VXICpePXWVurUaKyHHVarGdI6699loee+wxQkJC+OUvfwnAhg0b6Nu3b6cGJyIiInKqCBgGZpMJf8Bg7cEaRmdEEhrS9E37AUnhJEWE8Nn+as7NieWLgzUAOh8pIsdVUInkiBEjeOaZZxpdO+usszjrrLM6JSgRERGRU0mxw8tdb+9jxqgUkiJCqKrzMzYrutl7zSYT43vFsGJnOYeq6vi/zaX0TwyjV5wq7IvI8dPuvakhISGEhASVh4qIiIhIK3aWuqj1Bli8roBlm0sJtZgYmd7yCuP4XtH4AnDvhwdweQPMOTsNk8l0HCMWkVPdCZUJLl26lHXr1lFSUsKjjz5KVlYWAHa7ncWLF+NwOIiKimL27NmkpaUddUxERETkZHCgqg6zCVKibGwrcTE2K7rZba1H9E0IIzXKSqHDy/XDe5AVq9VIETm+TqhqOWeeeSYLFiygR48eja4/99xzXHDBBTzxxBNccMEFPPvss0GNiYiIiJwM9lfWkR5t43eTMhmQFMa0AfGt3m8ymbh8cCJjs6KZPijhOEUpIvKdEyqRHDhwIElJSY2uVVVVsW/fPsaPHw/A+PHj2bdvH9XV1a2OiYiIiJwsDlTVkRUXSmq0jYcv6M2Q5IijvuaCfnHcPSEDi1lbWkXk+At6a+vmzZv5/PPPqaqqYt68eezduxeXy8XQoUM7Mz7KyspISEhoaDViNpuJj4+ntLQUoMWxmJiYoJ+Rnp7e8YGLiIiIBMHt9VNYs4NLTsvU7yQictIIKpF85513ePvtt5kyZQpr164FwGaz8be//Y0//OEPnRrg8WC327s6BBEREeki/oABcFxX9gpqPLy1o5wbRySzv9KDAcRb6vQ7iYh0ifa8iRVUIvn222/z29/+luTkZJYvXw5ARkbGcfnHLjExkfLycgKBAGazmUAgQEVFBUlJSRjG/2fvvsPbrM6Hj3/Po+EpyXvFduzYTpyEbLIHCUmAMMuG0sEoUGgDpaVQ2h8tlLJampfSpKwCbSmrEEiYISF7TzKdxHG895Yl2bIsPef9Q4mDiWM7wXZsOJ/r8nUlGo+OZEl+7nPuc9/ylNcpiqIoiqJ0xV82lKAJwQPTB/TaY35x1M4n2fWMiA2hyasDkKzadyiK0o90aY9kU1PTScGZ1+vtlfYfNpuNlJQUNmzYAMCGDRtITU3FarV2eJ2iKIqiKEpnfLpkd1kjWZWNvfq4+yr8j7cm305BfTMmTRAfau7VMSiKomzShMcAACAASURBVHwTXYoEhw4dypIlS7jqqqtaL/vss88YPnx4tw7m1VdfZdu2bdTX1/PYY49hsVhYsGABt99+O4sWLWLx4sWEhITw85//vPU+HV2nKIqiKIrSkRKHhyavTpMXGpp9WAMM1Dd5KXe2kBkd1COP6fbq5NQ0YTYIdpS4GBTuJdFmVkVzFEXpV4SUUnZ2o7q6Op5++mkcDge1tbXExMQQHBzMgw8+SFhYWG+Ms0ep/QiKoiiK8t208mg9z20pB+CJOckMjw1m0dYyvjhq55HzkxgVF9Ltj7m7zMUfVhXxg1FR/HePv3jgzFQr901RhXYURTk7emyPZHh4OE8++SQ5OTlUV1cTGRlJenp6a7VURVEURVGUvqCh2ceq3HouGxLRpRW+IzVuDAJ8EgrszQyPDeZQVRO6hGc2lLJgXgrRIaZuHeO+ikY0AZcMCWdVbgOlDg8DbWp/pKIo/UuXI0EhBBkZGUycOJH09HQAdF3vsYEpiqIoiqKcrjf2VPHarip2ljrbXC6l5LPsOiqdLW0uP1LjZlhMMCEmjcL6ZlweH0V2DzNTrLT4JE+vL2mt6tpd9lc0khEZSLDJwMxUf10HVWhHUZT+pksrkrm5ubzyyisUFhbi8XjaXPfOO+/0yMAURVEURVFOR6WzhS+O1gOwocDBhERL63X7Khp5YXsFw2MaeHxOMkIIWnw6+fVuLs+MoMUnKbQ3c6TGjQRmDbIxMi6Y57aUs7eikTHx3ZPi6vbqHKlp4ntDIwCYlxGG0+NjRGxwtxxfURSlt3QpkFy0aBHjxo3jrrvuIiBAzZgpiqIoitL3vHegBhCMSwhma7GTZq9OgNGffLX0YC2agAOVTazNb2Bmqo28uma8OgyODMLl0dlU2MCh6iYEkBEZyPCYIF7bVcmKnPpuCyQPVTXhk3DOscDRGmjktnGx3XJsRVGU3tSl1Nbq6mpuvPFGEhMTiY6ObvOjKIrSXZzNvrM9BEVR+iEpJUdqmliZW8/cNBuXZ0bg9ursKnUBUGRvZkepi2vPiSQjMpDXdlXi8vg4UuMGID0ykOQwMw6PztYiB0k2MyFmAyaDxsxBNrYWO7C7vd0y1pVH7Rg10WMVYRVFUXpLlwLJ8ePHs2fPnp4ei6Io32Fr8+z84L0jrMtvONtDURSlH8mqbOTuj3K5f1kBZoPG1cMjGREbjC3AwPoC//fJh4dqMRsElwwO587xsdjdPn6zvIBVuXbCAg1EBRtJPlbsJreumcFRJ4K8C9LC8OqwJu+bfzftLHGyrqCBa4ZHEGwyfOPjKYqinE2nTG39+9//jhD+amctLS0888wzZGZmntTuQ/VtVBTlm9pX4eK5LWVI4POcemakWM/2kBRF6Sfe3ldNU4vOT8fHMinJQniQ/9RmSrKFVbl2nt1UyvoCB7MH2bAFGrEFGnlgegJv7q0mp9bNxMRQhBAM/EqxmyFfCSSTwwIYEhXE8px65qbbTjsAfG1XJVuLHVw2JIIlB2tItJq5Znhk9zx5RVGUs+iUgWRcXFyb/ycmJvb4YBRF+fbKrXWzq9TFlcPaluTfXebiz+tLiAs1My4hhKWH/FUVY0K7t9y+oijfPg3NPvZVNHLl0AjmDQ5vc92sQTY+O1LPrlIXExJDuWFkVOt1U5KtTEqysL+ikXiLGcAfZAYYsDf72gSSAJcOCeevG0v50Xs5TEgM5a4JcVgCOg8opZSsz2/A4fHx0o4KAJ6am4zJoNqnKYrS/50ykLz22mtb/11fX3/SSuTxy5XvHp8uu9SbS+n/dClpcPsIC+pSXa4O/XdPFTtLXdQ3e/nJuFiavTpv7q1mycFaEq1m/jArCYlk6aE61uTbue6cqM4PqijKd9q2Yge6hMnJlpOuGxIVxBvXZhBi0lozrL5KE4KRcW0L6CSHBZBT4ybRam5z+YwUK9EhRtYXOFiWXYfJILhvSufNuytdLdQ0ebnj3FgSbWYaPTpDY1R1VkVRvh26NCV27733tnv5fffd162DUfq+vDo3N7+fw3q1j+074bPsem5bcpQyh+ek6+qavOiya73VXB4fe8pdhAca+OhQHc9uKuXOpUdZcrCWeRlhLJiXQkyoidhQM8Njglid24Ds4rEVRfnu2lzoICbESHpEYLvXh5oN7QaRp3LVsAhuHRfT7mTp0Ohg7jg3lquHR7Imr4EdJU52lTqZ/3Euu77Ws/K4A5VNAAyPCWJUXEi7Aa+iKEp/1aVAsr0TusbGRjRNpWZ817y1t5qGZh/Pby+nurGl8zso/ZaUks+P1OPVJZ9k17W5bluxg1s/yOlyYZztJU68OjwwfQATE0NZndfAAKuZJ+Ym89MJca3l+QFmpdoodXjIPlZNUVEUpT2NLT52lzcyKclyWsFiR8YmhHJB+skZWF913TmRJNnM/HVjKY+uLqbQ7uHjw3Xt3jarspEQs0ZymGqdpijKt0+H+Wp33XUXAB6Pp/XfxzmdTqZOndpzI1P6nNxaN1uLnZw/yMbGggae21zG2IQQVh1tYGaqlatU8YCT7KtwYXf7mDaw/xWPyal1U2BvxhJgYOVRO98fGUWwyUCxvZkFG8vQJWwrdjIz1dbu/RvcXnQgLNDIliIHEUFGMqODeCBqAKUNnlOeWE1JtvDarkpe3F7BUxckY1Z7iRRFaceOEhdeXTIlqXdX+UwGjfmT4vn9ykIuygjDIGDZkXoczb6T9k1mVTUxLDoIrZsCXUVRlL6kw0By/vz5SCl58sknmT9/fpvrwsLCSEjofH+A8u3x9r5qQswat42LYXBkIC9sr2BPeSPRwUb+vbsKgya4YmjE2R5mnyGlZNHWcuqafExIDO13AdHKo3bMBsEvp8Tz6OpiVuc2MDYhhMfXlmA2CoZEh7C33NXuntmmFp1ff16Aq0Xn4ZmJ7Cx1MSfNhiYEmqDD2fkQs4F7J8fzxLoSXt5Rwc8mxvf0U1UUpR9ak2cnPMjIkLPQj3FIVBBvXjsYgyY4UtPEJ9n1bClyMPcrq5n1bi8lDR7mDGp/sk1RFKW/6zCQHDZsGACvvPIKAQEqLeO7LL/Ovxp548goQs0GLsoII9CoMTAsgIFhAfx1Yymv7qpkS5EDIWBykoXLMtsGlUdqmthZ6uL6cyK7LQ2pLztY1USZw5/+u7e8kXMHhJ7lEXWdx6ezrqCBSUkWxiaEkhEZyFv7qnltVyUGTfD7WYlUu1rYXeYit85NRmQQB6sasQUYSbCaeW1XJRXOFqyBBn67ogCv7n9PdNXEJAvXDI/kvQM1DI8JPuWqp6Io303FDc3sLHVx44ios7bad3wCLT0ikLhQExsKGtoEklmVjQAMU8V1FEX5lupSKUYVRCqbixwIYF6G/4+kEIJZX5ll/eXUBGyBFeTXNeP06PxzZyXBJo3Zaf7bu706f15fSqWrhYyIQMZ9Laiqb/J2S2XQvmRlrp1Ao4YAthY7+lUgua3YicujM/vY7/iqYRE8vb6UGSlWbh4TTWSwiXq3F4A9ZY2Emg38bkUhAJOSLGwsdPC9oRFcmB7G774oxCclw0/zZOr7I6PYXebirb3VTB9oVZWCFeU7xqtLDIJ2Jx4/PlSHURNcNLjj/Yy9QQjBtIFW3s+qwe72Ygv0/y3LqmzCbBCknaIQkKIoSn/Xv3LtlLNmZ6mLjMjA1j+QX2fUBHeOj+PJCwayYF4Ko+KC+ce2cvaUuwB4e281la4WQs0a7x2oaXPfveUubn4/h+3F7Ve964+aWnQ2FDQwbaCFsQkhbCt2drnCaV+wv6KRYJPGyDh/8Dcl2cob12Twq6kJRAb7+zuGBRpJDQ/gy3IXb+6txqAJZqba2FzkIMlm5qZRUSRYzfy/i1N4+oKBpx0IGjTBNcMjKXe2sKXY0e3PUVGUvkmXko8O1XLj/7JPKvQF4Gj2sSrXznkpVsJO8Tept00baEGXsKnwxHfVnnIXQ6KCMBnUJJiiKN9OKpBUOmV3e8mpcZ+0ingqRk3wwPQBxIWa+f3KIn6/spClh2qZm2bjxpFRZFU1tab8SCl5Y081ElhxtO/2Ja1r8p7W7TcVNuD2SuYMsjEpyUK920d2df+pQlrmbCHBYm6TMhbaTvPt0XEhZFU2si6/gcszI7hncjz/uGwQj885USQnLNDY2vD7dE1IDCXeYuKDrFrVDkRRvgN8uuTR1cX8c2clAEsP1uHT2372P8+pp9knuTwz/GwMsV0pYQEkWs2szvNXss6vc1No9zBFtftQFOVbTAWSSqe+LHMhgXEJIZ3e9rhQs4GnLhjITSOjKKhvxhZo5MdjYpibFoYtwNC6KvllmYtD1U3EhprYWeqkwX16AVtv2FLk4Ob3c/joUG2nt9WlZE2endd3V5FgMZMZHcS4hBCMmj+9tb8od3iIt5g6vd3o+BB0CaFmjSuH+ffExlvMp1y5Pl0GTfC9oREcqXGz/9jkg6Io3165dW52l7m4cWQU906Op9LVwpdlrja3WZNnZ3hMECnhfSdlVAjBnDQbh6ubKLY3s77AgSZgqgokFUX5FuvS2V5jYyOffvop+fn5uN1tV1X+7//+r0cGpvSuV3ZWUNLg4fezkk66bmeJC1ug4bT3eVgCDFw3Ioorh0XSousEm/wrWpdnRvD6nir+uLqIuiYv0cFGfj0tgfuXFbC+wMElQ/rOLDP4U28B/rmzkmavpNmns73EidmgERVsZEaKlYmJoRQ1eFi0pZxD1U2kRQTy84lxCCEIMRs4JyaYNXn+4jVDonq/wuDpaPFJKl0tzEjpvGXJsJggYkJMXDUsglDzySuW3WFWqo0391az9GAtI2K7PpmhKEr/U2z3AP4ALC7UTFiggWVH6lv3mFe5Wiiye7h5TPTZHGa7ZqXa+M/uKr44amdjYQOj40K6bVJNURSlL+rSN9yCBQvQdZ0JEyZgNp9ZiprSu7y6xNjFPWlSStbnN1Dn9lHv9rbZc+LTJV+WOTl3QOgZV8YzGQQmw4kg48phERgN8M6+GhpbdH42MY6MyCBSwgJYk2fvc4Fkdo2bzKggLAEGXt9ThQCGxwQhhOBgVRMbCx2khAVQ3OAhyKQxf1Ic5w+ytXm9bhgRxdMbSnng8wLmpNm4e0Jcny0eU+lqQZd0KR3VbNB4+XtpPTqeAKPGhelhvLu/hnKHh7gzTJNVFKXvK27wYBD+7x+jJpibFsbirBqqXC1Eh5jYfWx1ckx835tUCgsycu6AUD4+XEeLLrlxZN8LdhVFUbpTlwLJI0eO8Morr2A0qpm1vsynSz7PqWdVrp0jNW6mJlu4cWQUSbaOq+4W2T3UuX0A7C5ztWm1cKTGjcOjMzah+yqO+tMVI5mZYmN3uYvpA/0rX7MGWXltVxXFDc0kWvtGpeAWn05eXTOXZ4bz/ZFRbC5yMjwmqLXgjE+XrMq18+GhWqYkWbjt3Jh2iz8MjQnm+csG8fa+apYcrCXEpHHruFi8uiSvzk16RGCfaYlS5vCvCHQltbW3XJQRxuIDNXx2pJ5bxsac7eEoitJDiuzNrUEkwAXpYbx3oIZPs+v48ZgYvixzERFkZGAHvWjPpjmDbGwrdmI2CCYl9Z9K3YqiKGeiS3skMzMzKSkp6emxKN/Qx4freHF7BV5dcmF6GDtLXdzzSR5r8uwd3u94ZdVAo2Bnadu9KCuO1mM2CMb2wOxvWJCRmam21pW54wHltj5UvTW/vhmvLsmIDMRk0JiRYm0NIsEfFM9ND+Pvlw7iV9MSOqwgGGTSuGVsDJcMDmPpoTre3FvFLz/L5/5lBa0FGvqC44FkQh9a+YsMNjEpycKKo/U0e/WzPRxFUXpIcYOHRNuJ756YUBNTB1r4NLuOuiYve8pdjI4P6TMTb183bkAoEUFGJiVaWrdzKIqifFt1aYnx7rvv5sknnyQ9PZ2wsLY9m6655poeGZhyeqSULDtST2ZUEE9fOBCAH4zyp1P+fUs5caH+wi/t2VvRSFyoiczoIHaWuvDpEoMmqGvysiavgblptnYrdna3yGATcaEmsqubevyxuup4pdWMyO7b13jruFjy65t5Z18NUcFGEq1m/ru7iqnJFgKMZ7/+VZnDQ7BJw9oLv/PTccmQcDYWOlib38AF6We/d5yiKN2rxScpc3iYnNS2QM2NI6PYVOjgmQ0lOD16n0xrPc6oCRbMSyHA2DcDXUVRlO7UpbPWt956i5qaGux2O2VlZa0/5eXlPT0+pYsOVDZR6vBwYcaJE2xroJEHpw8gKtjIE+uKqXB6TrqfT5fsr2hkZFwwY+NDcDT7yK3zB0+fZvvLrl+eGdFrz2NIVBCHqt19ptXDkZomwgINRAV3X1q3URP8ZkYiP5sYx8JLB/GziXHUNHlZcrDzqrC9oczRQrzF1Odm/IdFB5EaHsDSg7UntQNQFKX/K3N60CUk2dpmQyRaA5iVamN/ZRMCGH2sv21fFR5kVKuRiqJ8J3Tp7HjTpk387W9/Izy8bxVB+a6rdLZwuLqJKckWPs+pJ8SsnVRq3Bpg4OGZiTywvICHVhTy6PlJbfZM5tS6aWzRGRkbwqi4YASws9RFki2Az7LrmJAYSoK191Ich0QFsTa/gSqXl5jQs79H70iNm4zIoG4PqqwBhtZVtWExwUxOsrD4QA1z08OICDq7e5HLnJ7TrtDbG4QQXDM8kr9sKGVToYPpXagqqyhK78ivcxMTauo0gMqvc3O42t1m0vO4YnszQLt75K8fEcnafDspYYFYVSVURVGUPqFLK5KxsbEYDGp2ra95Y08Vz2ws5XdfFLKp0MHMVFu7qZGJtgCemJOMT5c8tKKQ3NoTLVyO748cGReMNdBIemQgnx6u495P8nB4dK4c2nurkUBra4zDfSC91enxUdzgYXBkzwdVPxodTbPPX7jnbPLqkgpnC/GhfWd/5FdNSbaQZDPzzv5qtSqpKH1EbZOXX36Wz8NfFOHuYA9zlauFR1YV8Y9t5TQ0+066/njrj0Tbyd8/saFmfjklgVvHqWJbiqIofUWXAsnp06fz5z//mQ0bNrB///42P8rZIaVkf2UjiVYzhccKwlyQZjvl7VPCA3nqgoEEGARPrivB6fHh9uqsz28gJSygtdfVvIwwwgKNpIQH8NPxsafcV9lTUsIDMBvEWQkkv55Om1NzbH9kL/R9TLCayYgMZFOho8cfqyNVra0/zv5qcHs0IbhhRBRFdk+XX6uv/153lDipbmzpieEpynfSpsIGfBKO1rr5y/qSdid53F6dJ9YWU3+sQnhOzcnf8UUNHqKDjQSeYq/41IFWhsf07bRWRVGU75Iu5Yd8/vnngH+v5FcJIVi4cGH3j0rpVKWrhepGL3ecG8vEpFCK7B5SwjteOYu3mPn1tAE8tKKAf2wtp9mrU9zg4bczEltvMzstjNlpZ6+QiVETZEQGcuhrgeTSg7WEBRo4L/XUwfI39fruKnaUuHjovAGEBxn53/5qjBpk9FKa59RkC//6sooKp4fYs7Qi2Bcrtn7dlGQLyTYzi7NqOk1vLXN4+MWn+fxiSjyTkyzk1rp5bE0xc9Ns/HxSfC+NWFG+3TYWOBhoC+CiwWG8uL2C/+2vbtNDUZeSZzeVkVfXzC+nJrBgYyk5Ne6T2koV25tJ7KRdlaIoitJ3dCmQXLRoUU+PQzlNByr9gdbwmCCigk1EBXdtBSkzOoibRkbz+p4qAO6aEMv4xJN7Xcmcg+jLFkNZEXg8aA/9GRHRO82Vh0QF8eGhWjw+HbNBo67Jy7+/rCQy2MSMFGuPFIHRpT+ttM7t48HlBSRYzByubuK+KQm9UrEW/AHSv76sYmOhg6uGRfbKY35dmcO/UhffhwNJTQjmpIXx6q7KToPuL47acXt1Xt1ZwbiEEN7aVw3AvorG3hquonyrVTe2kFXVxE0jo7h4cDi7y1x8ml3PNcMjMRn8K4tv7a1mc5GDW8fGMCPFyjv7qsmucbc5ji4lxQ0eteKoKIrSj3S514DP5yMrK4sNGzZw8OBBfL6T9zcoJ8gWD7K6AuloQOrd/1odqGzEYtZIPoOmzFcNj+CCdBu3jo3hooxwpJToqz9Bf+9fSIcdmb0f/dk/QH4OJKWCswG55L/d/hxOZUhUEF7dnyYFsDLXjk/6V2Hz65t75DHz6pqpc/u4ZngkAQbBoaom7pkUz4xeLOgSG2omPeLspbf6dMmecheBRg1bYN/eEz3h2ORHRz1HfbpkdZ6duFATlS4vz24qY1uxk3iLiXJnC5XOtumtHp+OV+27VJTTsrHA/3019Vgf4Isywmho9rG5yP/ZXJffwP/21zAnzcblmf6CfemRgRypaWqTdl7lasHjk+3uj1QURVH6pi6tSJaUlPD000/j8XiIjIykpqYGk8nEgw8+SGJiYucH+A7SFz4OWV/6/xMWibjuVsS507ptNW1/RSPDYoLRung8KWXrY2tC8LOJ/rQ+6XKgv/Y32LPN//+1n4GuQ0Q02v2PI2zh/gBz+QfIOZcjktO6ZfwdyTy2J3FzoYMhUUGsyKknNTyA/LpmthQ5SO0khfdM7Cjxn/RclhnOFZnhVLq8pPdCkZ2vm5ps4d+7q6h0tvRq1drGFh9/3VDKjlIX14+I7HOtP74u3mIm2WZma7GTy07RnmZfRSM1jV7un5rA+oIGNhY6sAQYuHdyPL9ZXsi+ChezQ8N4P6uGz7LrqXK1MCgikL9eNLDPP39F6Ss2FDSQGh7AgGPVvUfHhxAbauLzI3WkhAWwcEsZw6KD+On4uNbP1eDIINbkNVDd6CU6xP89V1jvT6tPVqmtiqIo/UaXViT/+c9/MmfOHJ5//nkef/xxXnjhBebOncsrr7zS0+PrFVWu7i28IcuKIOtLxOTzETfcDtYw5Et/QX/uUWSzu/MDdKKmsYVyZwvDPJX4nvsj+juvoC//AH3xv9GXvon0+FftZFMj+r/+hu/3P0Offz365x+cdCx90eOwfxfihtvR/rgIho2GAQNbg0gAcfE1EBLqDyi/MoMs62uRLd1ftCQsyMjsQTaWHqrjhW0VlDtbuGpYJEOjg9jawQrUN7Gz1ElGZCBhgcbW6rVnw5Rj7VvWFTR842NJKcmqbOy0uumhqiZ+9Vk+u8pc/HR8LN8f2TspzN/UhEQLByobcbZT/RFgda6dEJPGxKRQbhkbQ6hZ4/sjoxgSFYQtwMC+ikYqnB5e311FeJCRGSlWjta62Vnq6uVnoij9U0F9M9k1bqYNPJG5oQnBhelh7K9s4rE1RQSaNH49fQAmw4nJmePfrzlfSW89WudG4C+4piiKovQPXQok8/PzufTSS9vM0l9yySXk5+f31Lh61R1Lj/L2sb1T3UGu+QyMRsS1t6DNvgztd8/4A8oDu9H/8QSyxfONjn98f+Swlf+BvMPItZ8h330NuWIp8uO3ke+95h/HWy8hN62GmHhIyUC+9xpy56YT4yw4CkeyEFf/GG32ZYj4JAx3PYTht8+0BpEAIjgUcemNcHAP+rOPIPfvRH/pL+i/vhn9vpvwLfyT/1jd6K4JsQyLDuLznHosAQYmJ4UyMSmUvLpmKpzf7PX7OrvbS3a1m3MTTt4r2tviLGbOiQ1mRU49uux6muXXK5MCHKpu4qEVhbyzv/33tpSSt/dV89CKAlp8kj/OTmLe4P7TK3ZCYii6hB2lJ08uNLb42FTkYNpAK2aDRrzFzL+uSufiweFoQnBObDB7KxpZeqgOAfx6WgL3TI4nOtjI4gM1gH+CaVc7x1YUxe+/e6oINmmtPXGPm51mw6hB9bGMgK/3xk0ND8AgIPsrlVtza93EW8yd9qFUFEVR+o4uBZIRERFkZWW1uezgwYOEh/efk86OnBMbzIeHak/rxP24r+9/lM1u5OZViLFTERZ/hVGhGfyB2s3zIWs3+oLfo7/+D/S3XkIe3IPUdWRlGfqWNV1asTxQ4SJI95DiLEf77V/RFr6D9uybaM8vRsy5Arn6U/TX/+EfxyXXYvj5/6Hd+wdIy0R/dUFr0CfXfgZmM2Lq7E4fU8y6GHHdbZB/BP1vjyL3bEVceCVi8izIPYy+4GFkcd5pv36nYjJoPDRjAGkRgVw1LAKTQWNion+1rrtXJb8scyGBcQNCuvW4Z+rC9DDKnS3sLuvaytiqXDs/WXKUvLq2753jEw6LD9RQ+LW9pVJK/rO7irf2VjN9oJXnLk1lRGzfeP5d5V9BNrS7T3JToQOPT3L+oBNVfo8X/gAYERtMTaOXz4/UcV6qjegQE0ZNcMXQCLKqmvjkcB2/WpbPo6uLqW3ydvvYG5p9HFAFf5R+7FBVE9uKnVw5NALr1wqShQUauW1cLPdMimdk3MnfK2aDRkp4YJsVydxaN2kRajVSURSlP+nSHskbb7yRp59+mnHjxhEVFUV1dTW7du1i/vz5PT2+XjEr1cbe8kaK7Z4uF6+RLR7kFx8iP30XceGVaJfe4L982zpoakTMnHfSfbQps9FbWpAfvomsLIVmN3LVxxAYBO5jM7OzL/OvXnbgYH4lQ+rzMV53CyI6zn9hyLHVtKt+hDy8F7luGaQORlxyPQDCZEa7+yH0x+9HX/gY2i8fQ25di5hwHiK485U4oWmIuVcgp8xG7t2OyByJCPdXFpUXXoX+9G/QF/we7YGnEHED/JfnZEFTE2LEuE6P3x5roJEF81Ja/x9vMTPQFsDmQgeXn2Jf3JnYUeLEFmggrZfafHRmclIotgADy47Un1Qevz27y1xUN3r5vy8KeeT8JDIi/XtMD1U1ERVspNknWbi1nKcuSG7dU/vm3mrez6rlooww7hwf2+W9tn2JJgQTEy2szrOTU+Nuk468KtdOgsXEkKj2f6cj4vyVIb06XDXsxHtpbnoY7+yv4aUdFViOnRzvr2js1qJL24udLNpaRp3bx7MXp/TInl9F6Uk+XfL6nipsgYZT7lG+uJPshozIQNblN6BLidOjU9Xo5WL1WVAURelXDI888sgjnd0oISGByZMn09DQgNPpJDY2lltuYdALDQAAIABJREFUuYXMzMxeGGLnSktLeeqpp/jwww/ZsGEDw4YNw2KxdPn+nkYXn2TXMSgi8JTBhPR6kas+Rn/pL8jPP0B+/j7s2Q7WMNizHTFsNAiB/NdzEB6FuOpH7RbsECnpaBdeiXbhlYg5l0NiCsJkRkydgwgKRm5ejZgwAxHS/vhdTc28tr+BGb4SRl51+UmPIQwGxJARSHst2g/ual0VBRABQYihI5FrliE3LIdmN9qP5iPCuh6UCbMZkZSKCDpRol0EhyJGnIvctBK5Zxtiymyor0F/6jfIHesQ0y9ABHTPCYLLo7My1855KdbWE/1vorHFx8Kt5UwfaGVCYtffMz3JoAkamn2syrWTHhHI7nIXAUYNW2D78z5v76smMtgICJYfqWdumg2zQfDyzkrGJYQyb3AYHx+uwxZgJKP8IEfzy/l/h1o4f5CVuyfG9csg8riMyEDWFzSwJr+BaQMtBJsMVDg9vLqrisuHRnDOKVZZLWYDa/IaGBEbzCVDTrz/jZog1GzAp0v+MCuRFUftBBpFh++NmsYW9pU3Ygs0EnCKRurHrcmz8+cNpcSGmnE2+wg0aoyO718rwcp3V2OLjxe3V/CPreUU2T38aHT0GbfrcHl8rC9wMCYuhOpGL2vyGrhqWCRxfbj1kKIoyrfZ6cROx3UaSOq6zqOPPspFF13EOeecw9ixY087UOtpCxYsYM6cOfz0pz/FZDKxePFiZs6c2eX7600NLDtYjfHwHsav+CdiYHqbPYIy9zD6c3+ELasheRAiNQMRHY927c2I7/0QuXUtcvdW5KaV4GhAu+N+RGRMp48rDEbEgIGI0RMRqYMhbShy9SdQW4U4d1q79zmwbgtrXCFckxlGQnL7DdVFqBVt/PR2g1FhDUcMGIjcvBpSB6NddkMXX6VOnovFikgahPziQ7DXITeuBHsttHhAaP5AuxvEhpr46HAdgUaNUe2kTJ2u1XkNbClycuf42C734uwNcaEmPj5cx9r8BnaWuiisb2Z2WthJt/Pqkld3VXJeipWbRkbz0eE6YkJNBJs1Psiq5ZLB4Zw/yMbhajcrc2qZ8cFfeLF5IG6Dmf+r/JyAkeMQWv/dkxRo8r8PlmXXs7PUxdSBVlbk2DlQ2cg9k+MJMbf/3IQQzEixMm2gFaPWNpBOiwhkZqqNYJOBQ1WNHK11c+lXgk0pJRsKHCw5WMtruyp5Y2816wscuL065w7oeAX5g6xaGpp9LLw0ldw6N7vLG7ksM1xViVX6hY8O1fH+wVomJlq4bkQkswfZzvi9GxNq4qNDdQghaPFJ9pQ3ctu42E4nYxRFUZSecSaxnZDtVen4mrvvvptnn30Ws7nvzRTa7XbuvfdeXn31VTRNQ9d1br31Vp577jms1q6low0YMKCHR6koiqIoiqIoitI3lZSUnPZ9ujT1d8011/Dyyy9TVVWFruttfs62mpoaIiIi0DT/U9E0jfDwcKqru68Kq6IoiqIoiqIoinJCl4rtvPjiiwCsW7fupOveeeed7h3RWbBt1RccajLxmxWF/HbGAAJNGttza7gu1oPFpCGSB32j43t1yQ/ePYLbqxNo1Fh4WWqHaZT6J/9DLvkv2sPPgqcZ/ekHAZDAj6c9wqSMWOZP6burqFLKNulOvuefhANfov32GURCctvbNjXC0YPIwlwIDkFExsLQUQjjqd+aLT7JrR/kMDwmmN/MOPPX4d9fVrLkYC2vXplOeFCXPgpnzcMrC6l0tvDC5YPavLZv7KnivQM1/O/6wZgMGpVbt3DHEStSaIxzF/G7LX9vva0+/QLeHHEdk5MsDI7yF+SR2fuROQehqbE1NRsknDMOSgshKhbD/Y/39tM9Y4erm1iTZ+fmMTHdkiKnS8kP3zvCpCQL8yfF89GhWv65s5JHzk9izFf2Njo9Pn703hGuGBrBj8e0n9Ze4fRwx9JcfjYxrrVdwv/bVMr2Eif/viq9TVVZRelrXt9dxftZNbx2ZTph3fR96dMlt3yQg93t48aRUdwwIqpbjqsoiqL0ji79NVi4cGFPj+OMRUZGUltbi67rramtdXV1REV1/Q+SsNhIC9YxarDkYC3ZNW68umRzhZFfTo1j+GmMx+72UtPoJdikER1iwqAJDlc10eTVuWVsNG/sqebvm8u4dVwsyTYzuoRmn96md5aYdTFy2WL0T/8HlWUQHoX24FMU7zuIsySYzJi+XZzj63tmtBvuQH/sF+jPP4n227+C0QQHdqKvXwH7d8JXVrYlIK7/ib8Q0SmYDIKZqVY+za7D7vaesghNR4obmll2pJ7xA0L7fBAJcH6qjWc3l5FV1dSmuEVBfTMJwQYMn7yD7nETuW45w0fezv6gBIZOHIN28SKorwVvC9rQUfzY2HYCQww+BzH4HADkRVcjl/wX2VCPdut9yFUfI9//N7KkEDGg7QRAXzUkKoghx4Lk7qAJwfCYYPaUuVif38C7+2sYGRvM6Li2BUZCzQZGxIWwucjBj0ZHt7tvrMju73+aZDuxReC8FCtr8vz7YCcl9Z1954ryVbqUrMu3MyoupNuCSPAXFpsx0MpHh+tIUxVbFUVR+p1TToHfeeedrf9+9913iY6ObvfnbLPZbKSkpLBhwwYANmzYQGpqapf3Rx5nNmikRQSSVdXEwDAzj56fhFET/H5lIRVOT5eOIaXktysKue+zfO78MJc/rCpCSsmuMheagLlpYdwyNobd5Y3c80keN/wvm6vfOsyN/ztCVuWJnnIiOBRx3jzYuQmK8tCuvw0RGUN20igAhkR334lybxDhkWh3PgCVZeiP/wr9vpvQFz0BBTmIud9D++VjaM+9jfbn1yApFbllTafHnJMWhleHNXkNAMiKUv9Krs/X7u2llHxyuI4dJU6cHh9Pri3BpAluPze2O59qj5mcbCHQqPHF0Xqkz4dsaQEgv85Ncvlh5EdvIVd9ArYwZp6bBsDwmGBEfBJi6CjEiHMRxo6LCYmQULSbforhrt8gAgIQ0+aC0YRc80mPP7++bHR8CFWNXp7ZWEqzT/LjMTHtBoqTk0Ipc7RQ8LWenccV2v2XJ9lOtBgaFReCLdDA2vyGnhm8onSDzYUOKl1ezuvGNjjHXToknKnJFobH9q+/a4qiKEoHK5JerxeHw4HFYmHr1q3cfffdvTmu03L77bezaNEiFi9eTEhICD//+c/P6DgXpIdhDXDyi8nxhAYYeHxuMncsOcqn2fXcMrbzKqxFdg/FDR4uGRKOWRN8cLCWLUVOvixzMSQqiBCzgYsHh3NuQih7K1zk1jVjMWt8eKiO5Tn1DPvKSpOYe4W/x2T6UBg7hcYWH9tLnISYNRKtfa/oUWfEkBGIG25HfvERYtJMxKgJMGwMwvCVqppBwYiJM5HvvYasKEXEJpzyeAPDAsiIDOSLo/VcNtiKfPkZKMgBixUx4yJ8uuRQVROZ0UEYNMHyHDsv7agAwGwQ+HTJH2cnEx3SeaVWWXgU/cO3/C1M4hMRF1yJMPd842zpboSaKqitJiA+kTlpNj7NruN7q18ksbYAzw/nU+EKYVb1UbRfPIoYPgaA2VISF9/I0G844SAsVsT46cjNq5HzrkVEfLO0M+n1gsvRpiJyfzA3LYwEi5mwQANxFjOBp0iZnZho4YVtFWwucpDSzupKkb2ZiCAjoV+pJGvQBNMGWll+pB6Xx3fKKrP9gTy4B2ITEBFnf4JR+WbKHB62lzgJNmnsr2hkdV4DA6zmHlk1j7OYeWB6392qoSiKopzaKQPJuXPnctddd2GxWGhubuauu+5q93bPP/98jw2uqwYMGMATTzzxjY8zJy2MOV9psRAVbGJSkoUVR+u5cWTUKU8gj9tS5ADg6mERhAUa2V7i5F9fVlLhbOHGkSdOwmNCTcwJPfE4tU1e1uU3cGeLTpDJ/xjCFo72h+fw2cJ5aUcFXxy14/FJ5qTZ+m3fP23WJTDrkg5vI8ZP8weS29chLu24NcmcNBvPb6vgyIpVpBfkgC0cufRNWs6dwXNf1rMuv4FxCSH8eEwMr+6qYGRcMBemh7HyqJ2pAy2cE9t+/zOp69DiQQQEImur0Z97DHwtyKAQ2LYOjCbERVef8evQEdnUiP7i05B3BBqdJ67QNK4ZO5NVQTN53TqGh9zVFPz7VRg3n5Qhqa1BJPjTMUecon/i6RIXX4vctQn9pT+j3f9Eh3tXOyP/s9D/e735XrSJ5yHLi5EHdiNmXIgw9Z3WK19nMogu9XoMDzIyKi6Y5Tl2rhkehcnQ9nNaZPe0SWs97rwUK58crmNLkaPdFi99nfT5kO/9C/nFUggIQlx3q7937Fn4npJlxf4WRBlDEcPHISzdv4L2XfDW3urWVXKDgGuGR3LdOZGqNYeiKIrSxinPCm+44Qbmzp1LVVUVf/rTn5g/f35vjqvPuGxIOBsLHazJs3NRRscrKVuKHQyJCiTyWCGdH4yK5qn1/lK6Yzo4ET0/1cbyHDubixycP8h24oqYeF7dWcmn2fXMHmRjbpqt36W1ni4REQ0Zw5Db1iMvub7Dk9HpA628sqOClVkVpA8fg3b592l+6jcs+HAvW31hTE22sLnIwe6yPAKMGvdMiic6xMTUAUFgOHVAJN99Fbn6U8TYyciyYmhuQvvNXxADkvEteBj5xYfI2ZeBuwn9haegsRHCIxHhURAeAU4HsigXkTnqtPt0yg/fhKzdiOkXQnQsRMYgbOHIPduwrl3GlYNCeCN2OgeunEXZho3ghYFz5pzWY5wOETcA8eP5yJf+glz8L8T1Pzmj48i8bOTmVRBiQf7zr/i2rIas3aDryOx9aHc84L/h4X0QGQMx8QghkLqO0PrPyesVQyN4dHUxGwsbmJl64rMspaTI3txmouq4wZGBxIWaWJvf0O8CSZl3BP2D/8DBPYjzLkJWlCJfX4TctQntRz9HREQja6vBZEJYbG3vKyX59c2UO1to9PgYn2jBGnDmK7LS60V/+S9QlAfrliGNRsSP70GbNPMbPsvvnqO1bsYlhHDXhDhMBkHYGexDVxRFUb79OvzrEBkZSWRkJA8++CDDhg3rrTH1KZnRQQwKD+CTw3VcmB52ysCm0tnC0dpmfjz6RFrXpKRQMiIDqXC2kBZx6kICmdFBxFtMrMq1c/4gGx6fTmG9hw0FDXxyuI7LM8O5bVz/2MvXHcSEGcg3XoCSfEhMPeXtgn3NTG44wvrIEdx24RwC4uJZM/F6tvrCuC3dxOUTB7C12MHCLeXcNi6G6BATsq4G/Yn7ITUD7Y5fI4wm9O0bEAaDP3AsL/GnFCemIg/sgqYmtPkPtxab0eZdg77gYeSmVcjdWyE3G4aNhrpqZF42OBvAHAChFuTHbyMnz0JEde13JwtzkSs/Rpx3EdpNbTMAxOBzkJfdwOVSsGxZCQ+vKQMGEWAQxIX17OSCNn46+tFD/gB6yDmI0ZOQ7kbkkjegxQMhFnA2IGsqEVPnoE2Y0fZ5SYn+v1fAYkN7dBHy7ZeROzciZl4M1jDkkv+iL3wMKkqhqtx/p+NBh7MBccGVaNfc3KPPsbuMiQ8hyWZmycFazkuxtn5fVDd6cXtluyuSQghmpFh570ANNY0trRNRfYncuRH9s8WIqXMQk2ch9+1ArvwIjh6CwCDED3+GNuNCpK4j1y5Dvvca+iPzIXYA5B+BgCC0O+5HjBwP+Iu3PL+tnOU59tbHCDBUMD3FSpWrhexqNz8cHc0lQ8LRpWRJVi2DIgI7XBmWy97z7ym/6zcQHo2++F/IVxaguxxosy/r8dfoTOwqdfLXjaU8e3Fql9Lse0OzV6fU4WHaQEufGZOiKIrSNxkeeeSRRzq7UWzstzuIcTgcp7xOCIFJEyw/aictIpAB1vb3xq3KtbOrzMVPx8dhOTarLoRgXEIIU5MtRHRwciiEwOXRWZlrJ6uqkRe3VfDZkXoOVTdxXoqVuybEnZU0sbMmMsafnubxIEZPbPcmstGF/vc/ElhWwBfx40lLjCLJFsC/K4PQ6qq5d/UziJHjSRwQzZVDI0gND/SvWCz8k78SbmkhsqwIsnYjP3gduXMjxCX5g8iaSrTfPYOYdy1i2hxE6uATDxwVi9y7AzavgvJixA13YLj+J2jnzUO76CrEvKsRl1yHOHe6/1ie5taT545IXUd//kl/ddW7f4swtxNwGE0YTSbGJIQQEWjknNhg5g0Ob1O8pcdkjkTu24ncshoxYQb6q8/C9vX+PZwH90BtFTgdsGMDYtxUROiJlEK5YyOsWIq4/idog4fD2MmIC76HNnoiYvBw0ASsXw5Rsf6KvUNHI0xmxIAUCLXAljX+y/rB3jshBMZje3KHxwQTG+r/PR6ubmJtfgNXDYskpp2T86hgE58criPAqDEy7uRgSeo+5FsvI2urESnppzWmZq/Ooq3lJFrNWM9gZUnfsAL56rP+SYNdm5Cfvw87NoLRiLj8RrRb70NLH9r6/EVqhn8yqLTQ//6feTE47P7PtMuBnnOIFw82srxScEVmOHeOj2Nuuo1mn87afAdmg0ZYoJGVuXYGRwbycXY97x6oYUuRk6nJltbv1zavT+5h5GvPIcZPQ7v0ekR4pH9/b2khfPGhf+9mYsppP/ee9vKOCgrqPUQFm8jsI9kmR2vdLM+xc3lmBIm98d2iKIqi9AkWy+nvg1f5Kl1wXqqN9w7U8u8vqxiXEIpBOzmo21LsJMlmJuFrhXAig01dWmE4f5CN97NqqW/ycvHgMIZEBZESHkiCxfTdCiLxt2MRsy9HLv8AOf0CRFomsrYauXebv6BHwVF/4CIEo25/AFuBgfUFDQyLCWJ/bQtXZ8YisgT6M79DTJ4FSYP81Uf37YCcLMTt90NDHfKdV/ztRuZdgzyShXzlr+DzIS7/PsJ6LI05Oq7t2IRAm3c1+gtP+wOimfPaXm869vuPiEJMnY3c+IU/RTc8ssPnLHdsgNzDiFvuRYSEdnjbZFsAySN69wRPGE1oP/kV+p9+gf7ovdDoPLEKdaxvqKyrQX9kPvqr/w/tgacQRiOyphL5xvOQlIqY5k/BFUJAwIkVeu3SG5CTZvnTeI+/18+7CPAXHNIfuQf938+hPfxsrxQ5+qZmplr5754qPj5c1xoUnmj90f74E6xmJiWF8ml2HVcOi2jTDghAvvsacvUn/pXuqbM7rcD7VbtKXazKtVPpauFPs5O6/H0iqyuQn72HXPc5DBuDdvdDcPQQctcmxIjxMGLcKdOORXQc2Tfej0nTSI8MRM65nObX/sa6A2V8njCJHGsYV5Zt5IcxUWhjLkNoGvdODuKeSf73UlOLzkMrCvjTmmJ8Euam2dhc5OCZjSU8fcHA1p6bsrnZX7F4xRKwhiNuuOPEGExmtDsfRH/6QeTbLyGHjT4pvfZsqmls4csyF+DfX3/F0IizPCK/3Fo3AIM6yKJRFEVRFOjiiuS3XUcrkuAvXhIZbOTT7HqiQkwnpam2+CQvbC9nZqqtw72QHQkxG7h6eASXDIlgTEIoyWEBWAMM37kgslXaEOTmVcjsAyBA/v0x2L0VmpsRaZmIsVPQvncThnPGUulqYUOBA0uAgS/LGrljSjLh4ycic7Lgyy2wY6M/UCvKRZx/qX/lcFAmxCeizbgIbcaFiLGTkHu2g8GI9pNfdXyiHpeISElHzLmi4yIxCcn+9L+WFsSIc095M+nzIV/8M4RFoN10V5/9nQuLFUKtsHMj4qKr0eb5Cw4dH68ICkZEx/pXnipLIS4J/eVnwNmAdt9jHZ7Ei+DQdp+3MJoQCUn+Y1aUwtBRCHMAsqnRXxDJ1PcqGBs0Qb3bx5o8O/Mywggwaiw5WIOrRef6Dhqux4SY+CS7HmuAgczoE4Wg9NWfIJe+6a/gXF6CSElHxCV2eTzvZ9WSV9dMpauF1PDALq0y6as+9n/mivMQMy9Gu/lehDkAER2HGDnev3e2g/dpbZOXB5YVcKCykXmDwxFGI69rg3mdQQRHR3NTkuR7JRsQaz71p4OPGOdfzTx2TJNBMDY+lC3FTs5PtXHn+FgSbQF8eKiOphadsQn+yRb52rPIdcsQ0+ai3f1Qm5VwAKFpiEFDkCs/hrpqxNgpJ41VNrtB03r9c/dZdj27yxuZmWJlR6mLCzPCWoutSSnZVuzEFmjs9QI3y3PqqXC28INR7fdDVRRFUb6d1IpkD5qUGMrQ6CDe3FPF9IHW1j/44C/r79Uh/RvO4PbXaqw9QQQGI667zV/k5fV/wNBRaDfe4Q/ivvY6zRho5dPset7cU02CxUxKWAAiPBnDb/6M9LZAeQkgwRzYZoVRGz/9xOMFh6L9bgF43IjAjlPMhKbBqAmdP4foOMS0C5CrP0G3hvlTXtv5Hcsta6CiBO2uh/p8YRntvIuQQ0dCdHy714tzpyGK8pHL30duX++/z89+22Erl86IYWMQ3/sB8sM3kdn7ITEFsg9ARBTaH//xjSrJ9pRZqVaWHKxlfYGDCYmhbC12ckVmxytOg6OCGBkbzNKDdVwyOBwjEvn+f5DLP4BRE/yraw/eir55NYbRk7o0Dp8u2VniTwkttDfzry8rGZcQelJF2a+SWV8i3/4nnDMW7Qd3n1Hbl1d3VtDk1cmvb6auyUtYoIFNhQ7GJYTw8Ez/Z1hOeAS5+F/Izz8AqUPmSBACRk5AmEzEhJp48fJBrZ+ZiYkWLh0SzkeH6xgRF8wEvQq5bR3i4mvRrvzhKcciBgz0Zx18/Da+IwdAlxAdixiYjiwv9qdmxySg3fsHRGTnbZ66g5SSlbl2hkYHcfXwSNbkN7ClyMG8wf5MiE+z63lpRwXXj4jk+yN7N6U7t7aZQeGBKohUFEVROtWlMzCv18uaNWvIz8/H7Xa3ue5Mezb2N0IIvj8yiodXFrGrzMnU5BMz37l1KhWoJ4hzp/nTWMMjEbMuOWWQNSQ6iOhgI1WNXqYmW9qcAAmjyR94dOXxTCbo5jYU4sY7wONGLn0DHHa4/idtnof0tiA/fhuS02BM14KDs03EdBwUalf+ADnrYuTaz8AWjuhi0NPhMS+5DjlqPPpbL0N9LWLcVOS2tcitaxFTZ3/j43e3lPBAUsMDWJ1np7bJC8C8wZ1XZL16eCR/WFXEB7uKuHrNC5B9ADHzYsR1tyFMJn+f1dWfIF0OREj7M4dSSrDXgcFAtlPD3uxjUpKFOWk2Hl1dzOo8Oxektz8WWVWO/tIz/tX6O37d6aRKe3aXuVhf4GBSUihbipzsKXeRERlEpauFq4ZFnFjBFgKuvhl8Pn8hp7XL/AcYPQntpw/6C2AJgSwpQH99EQA/mnAeWbZM/r65jL9WfkhUcAjiwis7HZO4+Frwef2vizjWJmTNZ/7vlhkXIbesQX/y12j3/B6RnHbaz/l0Ha52U9Lg4apJcf4tERZzayC5r8LFP3f6e95mVTb1+Fi+yqtLCuqbuWRI/+r12huktwWy98OAlH7XC1dRFKWndCmQXLhwIQUFBYwbNw6bre/sMeltQ6KC0AQU1DczNfnE5bm1bgKNGvEWVeGuOwkhEF2o1qkJwfQUK+9n1TJ1YPc3zP4mhNEIt/wCLDbkiqX+NL5b7kUYTf4Kl/9ZCNUVaPf89Fu1AiDCIhBX3NS9x0xMxfBrf79YKSWyvAj56bvIyTMR2pm3jegpM1OtvLariiK7hwlWH9GLX8RXVQ7uJkR8IiSmIoaOhPAo5PIlyC1rOCclg6nR5/PWYZ3BdTojb70PbfKs1mOKybOQXyxFbvgCps+FwOC2ExPZ+9GXvuFfsQW2pV+KIXE6YxNCCDUbiA01saPE2RpISp+vNa1T6j70f/4VdN2/inwGQaSUkld3VhJvMfHLKQn8ZMlRvixz4Wj2ATA2oW3qvxACrrsNMW0uSOlfDX33Nf++2hkX+vcuL3kdAoLAGobxrRf5pW0A94/+Gf+P4Tw2NxlDcMd7isE/SSSu+lHbseo6HEunlefNQ3/uUfTnHkP74yJEcOdbFLy6ZH1+AxMSQwkxn977b3uJE4OAKccmviYnhfLBwVqeWFvM/opGEixmhkQFsb6gAa8uMbazL196vf50b2eDfwIsJaPte+HwPvS3XkL78T2I1IwujavY3kyLLkkN7/t7kXubfPvlE5MdcQPQbvslIqVrr6uiKMq3VZcCyT179rBw4UJCQrqnyXl/FWDUSLCYya9rbnN5bl0zqeEBKjX1LLpmeCSZ0UGkhve9VWGhaXDtrf5WF4v/jaytQkyaxf9n776jq6i2B45/z9z03kgCCRBagIAU6UUUQVEU1GevP6yA6EOfIjYUKwI2QCwgSvGhPkEFLEgRQu8g0lsoKZT0Rtqd8/tjMBhJQhJyU2B/1mItmJk7c4YhIXvOPnsTsxe9dhnqpntRl3Wo7mHWKkopjBvuwPzkHfTGVaguV1b3kM7RK8KXGVtOkVNg0j96Kjr/FISGgacXeu8OWLcc/dfBSkGry1GH9/H4n1s40uUZ3m/3EO+3bUyRxNL6jSA8Aj3nS/ScL8E3wKoUXL8x5s/fWr05ff1Rt9wPbu5sjPEjKvMonroRYKNNiAdrjmZgNzWGNpkzeRbuNkX/QbfCqkVWwadHnjnvrHNJDqfmciQtlyGdQnB1Mmgb6sEfCVmk5dgJ83EprGL7d0opCGto/T48AjMrC/3L/9ArF1kHtGhjrVv29UcfPUTYr3MYvPs7JkTdzXf1fLmnQiOlSNClwhpgDH0e8+0R6O9noO57vMTPadMkf9sG3o33Zn2ajWua+PJEVyvVW8fsQyeeRNls0CiyxCJb+xJPE+HvVlhU6arGviw+mEZceh5tQj35v/Z1OJSSw9JDaRxKziEyqGhQr0/EY378NsQfPbvR1x/V6QrUjXdBXi7mZ+MgIw1z6niMlz8oU3B86Mz/bZJdU5Tetg4dvRB1xbUQGo7+/SfMD17B+M8bqIblq6IshBAXkzIFkkFBQeTn5zt6LLVCQz9XDiafTe81tSYmJZc+jX1K+ZSeryFUAAAgAElEQVRwNE8XG13Ca9Zs5N8ppVDX3Yrp44f+fhb6q4+t7TfeiXHjndU8ulqqXVeoWx/907foy7uXXvjoAuj8fKunacOm5Zo19i/IpmPWYZJMJ1pf3grj1geKVJ3VqcnoXVutNjLdrkbVrY82TTxPxvO8ayBPLTzCz3tT+L/2Z9ftKaUwhjxvrRXNOY3ett6aKQHw8iHlX4/yS52OrE84jS1bccwtl74H1qB/jEXd+TBtQj1ZfDCNg8k5BOxYzeyAzpjK4MSXP/F/O79Dte+K+kcf0PJYdSQD48xMG0C7up6sPJJBakIWN5YxXVLdfC8qoiloDXXDi6yLVg0aowY/R++EWP7cncP/dqfRup5PsS1TyktFNEP1GWDN+Ha5CtWs+N7JeeujeWdjKlsC/WiSEcvSA5obG7rSYPMiqygSWM/D1Q11y/2o3v2LzJjbTc3+pNNc5ZePPhkPQSE08HVl1m1FZ7f+KrKz61R2kUBS79hspR/bDNQDT6CCQtDpqegta9G//4TeuAp8fK3WK//3JHrWZOv7zaPPnvffb0xKDi42RZh3zStiVdXMpQvQq5egGkWit6yBBk1Q9wy2skk6dMcc/yLm+69gPD/OyjAQQohLUJkCyV69ejF+/Hiuv/56/PyKrq1p3bq1QwZWUzX0c2XN0QxO55u4OxskZOSTU2DKG1xRJkb3PuhuV1u9LDPToXHz6h5SraUMA+P2BzEnvo6eOx1116OF+7RpwtZ1mOuWwZ7tGEOfR0W1L/c1dHYW5uS3YN8Oay3mPUPANCEhFho0tmaeAJ2VgV7xm5X65u2L6nkNeukC/pOUhHrkP9jaP3rOuZVfAKp70fWdyjAgNJz6QNMAd3aezD73cyH1zhYvuuYm9N4/0SfiWeDfjpk7UrEnp9G2riduTop6Ps70IgC9dAH2nVtoZbdB1OP8EZeO04Z9mGHh9PDNZz7tMJpkM+i+WyqcYq21ZtWRdNqEeOB7pl9l2zMBnubctNaSKKXOu15Y1Q3nsSCTvQsPM2FtAp8ObFzYEuRCqJvuQW9da7Ww+c8bqH+0/9Fas2TdPrYEX8ngBna6J6cwNDWQGXNX8fIfs1Fdr0Jddyvk5mAu+MYK8tf8jnHbIFTLtgDExidyukDTdOUczDlbwMUF6jZA1a0PQcFWP9WOVxDg7kqolzO7Tp7m5pZnrr9/F+bkt601rI+/iAqyejwrgC5Xoo8cxJw+AY7FoB4bgdHpCsy0FPSPX6EP70dd1hE14K7C6rZ/T20Ga0a5oZ9rsS2uLiV69x/ob6dBnVCraJjWGI+ereatAoMxnn0L842nMf/7CcYzb15USxOEEKKsyhRILlxorQv4+uuvi2xXSvHRRx9V/qhqsIZ+rmjgaFouzYPcz/bcqoEplaJmUkpBSD3rl7gg6rKO1izS0gXolm1RZ6rp6h9noX+dC74B4OyC+eN/MVq2K9cPezo9FfODVyHhGKrzlejVS9G7/rCKJhXkW5WEB4+01vXN+hhOZ1mVR9NSrBkgN3fcho9CRVbsZVtUsDvzdieTW2CW2gJCR7ZmRlYIP25PpnO4Fw9dHkzdv80o6dP3oO056OxM/DIzaJiZwPb1x0j3bUEzD82IG1pjX7SfZc7dGeRtvSg8mJzDnlOny1V05WByLscz87mt1dl0zjqezoT7uHAyK59WwR6lfLr83J0NHu0Ywujfj7EsJr3EAkLlodzcMQY/hznhNcx3nsO4/3F0eqo1u3dlf+x7d/Cj92VEuuZyfc82KNWK21ftZcaRSKZdN5I2nS+jfYgXrk4Gxr9fQW9Ygf5+Jub7o6wZ7cbN2RubA2H9aN63N8q5J8QdQccdRe/9E9YngzbR66MxnhxFVLA7m46mY+7dibIp66VGYLAV5HqdmwWjGjbBeOk9OHWicJZMXX+blVa/bb1VAKugAHX/42i7HfO1f1tB0s33weXdiEvLo02oB9q0w4E96O0b0fFHUV7eVpGZawbWyPXIlUmnJFlti0LDMF581wr08/LOWTOsgkJQt9yH/u+n6I0rL2gmXwghaqsyBZKTJ0929DhqjYZ+VmrakdQzgWRKDk5GyY3GhRCOpW4dhN6/E3Pa+6ib7wNnF/Svc1G9+qHuHYJescgq3rJnO5yZFfqLzs+HXVshoA6qfqOi+7770mrL8uQoVKv26M69MBf/iOrQw/rBfN5/MV8aDFkZ0Li51SqjfiOraur+XeDjW65+j//UKtiD73clsy/pNJeFFD+bl5lrZ+K6BNbHZtI/0o9HOoScM5uk3D1QD1jVtbXWtPluBT/n1cNUNh6LCkEpRaemwaxbd5xj6Xk08HXl6+2JbIzLpL6vS5nTRlcdScemoGv9oinmd14WRGJ2vkP6IbYL9aBpgBtzdybRp7FvpcykqUaRGCPfwfzwVWv27wy9eQ0rPJpwMqAXj3QMLXwpcWO3ZuzMj+O34/DziniCPZ0Z1iWUxv6ubK7TjjrD2xG1azl681r0mqXsa3ozHjYIu7LXOevqtd1u9c+dMQnzo7do7taY3326EDv5fcJOnwJvX6tNSTFBZOH4nZytlOC//mwY1tq+K67FnDEJve539L/uR/+5CRKOgV8g5qfvcLp5O5Lq3kO4ix1z3AtwcA/YnKBuODr2MKxdBk5OqD4DLvjvuCbT/5sGeblWFsNfwWMJhadUr37olYvR332BbtMR5Va5L0uEEKKmK3MDNrvdzt69e0lOTiYwMJDIyEhstov7zWRxQryccXNSHEm1ihIcSsmlvq9rqX3ZhBCOo5ydMYa+gDl9IvrrKdbGlm1Rdw+2Zk969EH/9C3mL99hOxNI6oICK91v5W+QnQW+/lZPyjMFSXTiCfSGaNTVA1CtrJRY1bYTtradCq+rm7bEnPmRtQbuhjsL+1kqpSCy1QXfV4s67iisFhDFBZKHknN4OzqWlJwCHu4QzIDm/uedcVVK0bZ7BxZEx2JTcMWZKsetz8wW/nk8m1AvZ7YfzwJg+taTvHtdRJGA53BKDr8dSGVjbCZRwR70beLLkdRclh5Ko11dT7xdi/6/0CvCcevHlVLc3jqQMSviWHkknasaVU5VcVW3PsbLH1jBVFhD9OH92L+cyPftrqeBLYdODc9ex8VmMKp3ffLsJjtOZDN100le/f0YhrJaVro7GUy6sT91+t6ENu3s//UIkW5OxRZnUzYbquc1mAUF6P9+QsugFGjdhT23/ptw20lU88vOSbct1331GYBetRgdvdDqXxvWEGPUh+jVS4j7+VeoC/V+nQEnDqPuH2YV73H3QGttpZD/8BW6fVdwdUf/sd7q8epXen9UR9E5p9Hro8HZGaN75bQA0tlZ6G3rrZdQdeuf93hl2DDuGYz5znPoZb9Ys79CCHEJKVMgGRcXx9ixY8nLyyMwMJCkpCScnZ0ZOXIk4eGX1iJzQyka+LpyODXXKrSTnEPHsPOXnxdCOI4KCsF45k34YwP6z02oW//vbGDn7IK69ib0d19iLv0J1aE75oyJsGMLqtMVENkKPfsz9IKvUXc+AoD+7QdQBuqam0q+ZrMobG987LB78nKx0dDPlV3FrJMEmLrpBAWmZsw1Dc+p6lmaViHu2BR0CPPC58xaxhAvZ4I8nNhxMpu63s7k2jVXRvgQfTidFYetAK3A1MzadoofdyfjbCjahHqwITaT6MPpADQJcOWeNnUu/MbLqXO4Fw18XfhuRxI9GnhXylpJAOXtC+26WL+vE8pmow7H9sDT7QOLDQJdbAaX1/Piw/4eLNibQp7dJDLQnfGr4vh4/XFe6R1Orqk4mpZH5/MUBjOuuh7dOJL6QaF4/xLPHpdgru3WttTPlOmewiOgRRv0gm+gIN+q0GuzoXr1I86nOezMIYxsjBfGo85U0oUzRZ7uHYL56hOYH4+B5FOQkYZ2dUcNvMsKvKpoNk6bdqvtz6J5Vjq5MtBNWp5dNwxWqvDWNahrbylS4Oq85962zvp7KUeaqmrSAppFoVctQV93a7Evc/TOrejMdIwaWF1aCCEuRJkCyc8//5y+ffsyYMCAwm+S8+fPZ9q0abz66qsOHWBN1NDPlXWxmfy0N4W0XDvt6l7abVGEqAmUUtCuC+rMD/9F9vW6Dr1hJfqbKehvplgFRh54AuOKawEwj8VYFS979AUfX6taY7feqICgc85VlVrWcWdZTDp2UxdJ2zyZmc+uU6e5t21QuYJIAA9nGy9eGU5937PrKJVStA7xYEt8Fv5uNlxsise7hBKbnsvnm0+yNT6L45n57Ek8zfXN/LinbR18XG1k59vZHJdFfV8XIqppnbihFA+0C+bN6Fg+2XCCJ7uGOqTwyYocH7xdMunRtPR/E65ORpF1ove1rcPnm0+ycH8q9X1dMTVEBp7/makGTVBAZKAbB5JyiuzTWvPfPxLJyrczuFP5ZiiNvgMx92yHOqGojj0Lt8fhiU3lUO+FN1BO52YbqaAQqxjRd19C05YYg/6NufxXq+/nD7OgWSuMOx8pEoBWNp2RZvU63bUNLu+G0aMv5mdj0T9/i3roaas375J56B++stYxp6Wi7h1S9vNvWAGBweUugqZ69EVPnwgHd0PTotV+dXYm5ufvWlWWm0ahAqv+ZYsQQjhKmQLJw4cPM2rUqCL/Od9www388MMPDhtYTdbQz5XFB9OYsfUkncI8C9PDhBA1k3Jzt4qQHNprpa5FtSusogmgbrkfvXkN5lv/ARTYC1D9/lV9Az4jKtiDX/enciglh2Z/Cz5WnJkFvLKCaaPFZVFcFuLB8ph0lh5K57IQD9ycDP7dtS4ztp5i58lscgpMnu5et0j6qIezjSscmLpaVp3CvbijdSD/25FEI39XBrSo3HTL3AKTDbEZ9IrwKfcyhhua+7PmaAafbjzBX+8CIoPKHnQ3C3RjS3wS2fn2wr6Tv+5P5budSSisNah+bmVepQKXdbRSVjtfUVh1GCAuPZdQbxeciwki/6KuuRnVsh2ENUQZBrY2ndD7d1mFfFYtxpz9GbYRb5f4+Yoyl/6EXvs7xMZYmQJ/ewmkruqPXjwf3Wcg5vzZsH2j9ULJxx+9/Bd0q3aodqVXAQaruBa7/0D1+1e5X0SoDj3QX09Br/kd9c9AcuFcyMwAmw39y3eo+0vuUSqEELVNmf73CQgIYNeuXUVafezevRt//7JX9LuY/FVwx93ZxrAudaXstxC1gFIKmrSwUtH+uc/LB+PJUehNq8EwoH4EKjSsGkZZVKtgK3j8flcyXcO9aBPqiZ+bjWUxaUTVcSfEq/L6/V0WYqUm5hSYhYFmhL8br15trRXTWtfo73V3twniSGouX2w5SfcG3gR6VF5f0U1xmeQUaK5oWP6g2VCKV3rXZ0NsBn+eyMbNyShsj1IWkYHuaOBQci6tQzzYfjyLqZtO0CTAlYPJuWyIzSxXxVplGKjHRpyzPTY9j3Cf0v89KaXgH0WpVLMoVLMoTP8A9LfT0Af3FPs1VlH6RLyVRdCgsZWq2rmXlaL71/X73YJe/gvmmGdBa9Tdj6F63wD2AvTh/ZjTJ2EMD0Q1albyRQC9eTWYZoWqryo3d9Tl3dEbV6LvfATlar0o0Mmn0EsWoLpeBW7uVmGe/rehAoNLP6EQQtQSttGjR48+30GBgYG89957HD16lAMHDvD7778zZ84cHn74YcLCqv+HrQuVkZFRruO9XW1sic/ikQ7BNC1DipIQouZTAUGo1pejWrVHhTc6/weqgIezjd2nstkUl8XaY5ksPZSGk6GIPpzOba0DK/X7j6ezwdKDaWTnmwzpFIqnS9GZqZocRII1voZ+rvyyL5UwH1eaBlZequ3s7afIyrPzSMeQYtdHno+zTRHh70bncG8ur1e+NfVeLgY/7E6mvo8LLeq488byWDxdbLxzbUNWHskgM9fOlRdYZMhuar7ccpJOYV4VX6pRr6HVSzX5FMaZYEznZMPhA9YsonvF1lDqhXMgZh/GS+9jtO+K8ikaNCtXdyuNNe4wxuMvYXTuhVIKZdhQLdqg10ejl8yHnGxo2hLl5ISOO4o5/gU4nYWKbGVVy535kVUV96Z7Knb/Hl7oFb9BSpI1+7h/l5Xym5qEMfQFVGRr9O8L4HR2YZsiIYSoSby9y59hWabXoh07dmTs2LGsXbuWlJQU6tevzx133EG9epdmHzwPZxsf9q8ZP2gKIS5ur/dpQG6ByeHUXCatS+CLLSdxMqBHg8pNKVVK0bWBNweTcgj2qrzZvKpU39eFYE8nNsVn0q/ZhfeVBMjOt7MpLot+zfwqpb1Iefm4ORHq5cy+pBwOJOcQm57HsC5WoN+lvhe/7kstkvZaEScy8ykwL6yNlXJzR119I3rB15jfz0T/udlKRQVw97B6X0aUPiv4Tzo/H716KbTtXGp1WDXwHtSNdxVJ1QVQIfUwXvsIPXcGetGP6A0rrFTYRT/A6Wz0/Nno1pej9/wJcUcwhjxf3ts+K7IVqmNP9IZoKw0XwDcAdeejqKAQazxXXm+txe7aG1UJlZ2FEKK6lTm/pl69etx6662OHIsQQohiuDoZNA9yZ1y/hkzbfBI/N6dz2mxUhkc6hFT6OauSUoqOYV4sPZhGnt3E5QIquB5KzuGrP04Rm55HvlmxtNbK0izQjd2nTvP7oTScDUWPBtZb427h3izYk8LW+Cx6XMD4YtOtdlZh50ltPR/V50YrYPt1DjSKRN10Lyo0DHPOdMwPXsV49q1z+rWWRm9dC5npGL2uK/26SkEJ7ciUhyfq/sfR3Xpjfvs5+sevIDQc49m3MSe+hvn5+1YV2rad4fJu5brff45BDX4OnZtjzcJ6ekJYRJGZfHXzvejtGzG/+ADj1YmFrVVq+my/EEKUpMRA8rPPPmPw4MEATJo0qcRvdE888YRjRiaEEKIID2cbT3atW93DqNE61vPil32p7DiRXe400r+btuUkMSk5tA315NqmfjQvR4GcyhYZ5M7KIxn8fiidLvW9CtOOW9Rxx8fVxrpjmeUKJDfFZVLP24V6ZwLH2LQ8oBICSU9vjBfGg5NTkXYcRsOmmONfxJzwGsbrH6E8yvZc9IrfrCqqUe0uaFwAqmlLa2x7/oCIZigPL4x7h2JOfgtc3TDuHlwpAZ1ydYPmrYvf5+aB8fB/MMc+j/nBK5CbA6nJGKMnofwDi/2MEELUZCW+rg0OPrsYPDQ0lJCQkGJ/CSGEEDVF6xAPXGyKTXGZFT5HfHoeO05k86+WgYy8IozbWgVW66xRszPrPXMKTHr/bT2kzVB0CfdiQ1wGKacLynSupOx83lgey39+PVz4dxSbnoe/mw0vlwuf5VZhDYoEkWD14TSGvQjpqejvZ5bpPOa65bD3T9RV16OMSuoNahioqPaFgaxq1wV124MYj/ynytpyqCYtUDfdA8diwMfPSrFd/kuVXFsIISpbiTOSt9xyS+Hvr7nmGvz8zl1vkpqa6phRCSGEEBXg6mTQNtSDTfFZPFqOtEG7qTGUlaK4+GAqhoKrm1xYEZvK0tjfDUNZhd7a/6MYzr+iAlkWk8bMbacY3u38s9XrjlnBY4CHE28uj6WOpxMnswpoE1KxYjhlpRo2RfUdgF48D93lKlSzqBKP1UcPomd9BM2iUH1vcui4jH63nP+gyr7mDXeg+9+OUgr75LfRKxaib7gD5VLxNapCCFEdyvSab/jw4cVuf/rppyt1MEIIIcSF6hjmxYnMfNYcPX9F7r2Jp3l3VRz3zdnPsJ9iiEnJYemhNDqFeRHgXo7+jA7k6mTQt4kvt7cKPKfgTz0fFwa2COD3Q2nsTzpduD3frlkek0aBqYscv+5YBuE+Lrx/fQT9m/vTPMide9sGMbiT4zOM1MB7IDAYc/pE9Mn4c/br3FzM1UutdFMPb4whI1FONeMZVLa/XnAYfQdAZgZ6fXQ1j0gIIcqvTIGk1vqcbdnZ2RiVlG4ihBBCVJYrI3xpHuTOu6vjWXE4vcTj7KbmrehYth3Ppmt9LzLz7Dzz62HScuzl6s1YFYZ1qcuAFsVXLr29dSB+bjambjpR+P/1yiPpfLAmgYX7UwqPS88pYMfJbLrV98bNyeCxjiE82zOMO1oHEX4BFVvLSrm5Yzz0NGSmY77+NOaK39AZ6ejsTMx5szFHDEJPnwAurhhPvITyuQR6VUe2hvBG6KULiv1ZC6zqteZv36P37ajiwQkhROlKfdU3dOhQAPLy8gp//5fMzEx69OjhuJEJIYQQFeDubPDa1fV5MzqW91fH4+dmo03ouf0R/zyRTVqOned7hdGtvjensvJ5OzqWXLs+J4W0JvNwtnHnZUF8tvEEMSm5NA5wY3O8lcI6Z0cS1zTxw9XJYENcJqaG7g3K3yussqjIVhivTsD8/D30rMnoWZPBydnqBdm+K0bfgdCs1SVTyVQpheo7ED19Anrh96jrrer4+nicVYwnJxvzm6kQexjt4Ykx6sPCdiJCCFHdlC7pFRiwa9cutNaMGTOGF198scg+Pz+/i6aPZHz8uSk2QggharfcApN//xyDs00xoX+jc9JCJ61LYPWRDGbe1rSwVYipNfl2jatT7cq4ScspYND3B7g1KpC72wTxwNz9BHk4czg1l0Ht63BLVCBvLDvG0bQ8ptzUuNoDNW3aYf9u9OF9kHQK1bMvqkGTah1TddGmHT3tA6vP5Y13oeMOw9Z1Zw/w9rVah8yZbrUuee6dizblVwhRfSoS15X6nSgqyloMP23aNFxdZRG4EEKI2sPVyeChy4N5e0UcC/enckPzs6mS+XbNumMZdKnvVaTfpKEUrk61bzbM182JVsEerD2WQYd6nmTmmQztHMjiA6nM3ZXM/qQctiZkcWNz/2oPIgGUYYPmrVEltMq4lCjDBg8+hc7PQ//0Dbi6oQbeg6ofAXY7RF6G8vbBdPdCTxmH/mYK3DME0Oj/foqOO4Lx1GiUW+UWTDKX/4LeuRVjyPOoEvp0CiEubWV6peXq6srhw4fZvXs3GRkZRfL477zzTocNTgghhLgQncO9aBvqweztp7giwgcfV+sH4j+OZ5GZZ3JFOfov1nTd6nszZdMJ5u1JxlDQLtSTYE9nRi46wq5Tp+nd2JfbWkm/wppIOTlhPDYCvX4FqvXlKN9z14canXpiHt6PXvQD5OWBUug1S0EpzC8nWsWJKuklgd66Dj37M9AavWkVqsuVlXJeIcTFxTZ69OjR5ztoyZIlfPDBByiliI6Oxt3dnZUrV+Lj40PXrl2rYJiOlZFx/sp+Qgghah+lFI0D3Ji/JwUXm+KyEGvt47d/JpKYnc+QTqHnpLzWVoEeTszbk0Jseh4t67jTv7k/gR7O3Bjpz+2tA+lS37vWpexeSpRhQzVojHJzL/mgqHaAQi9dAMdirJnLNh1h6QIwjEpZX6qPHsKc9DrUbwTunnBwN+rK66tlJlsfj8X8+G2w21ENm1b59YW4lHh7l3/9fJlmJOfNm8eLL75Iy5YtefDBBxkxYgRbt25l9erV5b6gEEIIUZUa+rnStq4nSw6mcUfrILLy7Kw9lkGvCB+cbRdHEAkQ6OFMiyB39iSepkM9r8LtXq6SlnixUEqhBt6NGRwKOacxrupvZYkdPoCeNxu9eS2q5zWgTev4q/qXaz2lzsvFnDIePL0xnngZvXMr+ssPYfsmdEg99O5tqJ7XoJxdHHSHZ8ZhmujNa9AzJ0HOaXTMfnSzKFTd+g69rhCifMr03SU9PZ2WLVsC1jcx0zRp3749EydOdOjghBBCiMpwbVNfxq2MZ2tCFrtOZpNn19zUsvh2GrVZj4be7Ek8Tcew2lN1VpSf0bV34e+VUvDQ09DqcvRv31trKM/uRPUZUOw5dH4+mCbqbzUw9PzZcCIO4+nXrfTazr3Q82djzpgImRmgTfSmVRjDXkJ5eBV73guhC/LRc2eiN66AtBSIaIZx7xDMCaMxv/gQ4/lxlbpeU59MAB/fSl9fKsSlokyBZEBAACdPniQ4OJi6deuyadMmvL29cZKqYUIIIWqBzmHe+LrZ+GF3MgeScujZ0Jv6VdA7sar1j/SnWaAbEf5u1T0UUYWUkxOqRx90t96QfArcPTA/G4de8I21zc0Dtm+EZlEoT2903BHM9162gsPQMFREM6hXH71oHuqKa1FR7c6ed8Dd6Nmfoq4ZCCH10LOnYI57AeO2ByGqHepMT3FtmlaxoNBwVKcrKpQKq6N/Qy+ZB+27ojr0QF3eHeXsjLpnKHrKOMy3nwH/IIyuV6E69qzw35c+sBvz529hxxZofhnGM2/WiCJUQtQ2ZVoj6ebmRl5eHnXr1iUgIIAJEyawbNky7r33Xpo0qf3lumWNpBBCXNxshiI910704XTspubZnmH4ul18L0MNpajj6VzdwxDVRCmF8vBCubiiwiKstZTZWegVv6F/+ga9Lhq8fKx0VWWg+txoVYbdsx3+2AD+gRiPv1gkdVU1aIzqfztGq8tRDZuiGjdHr11mnXPt76jQMFRwPStoXfANbFkDCbHQsg3KpeSXNTo/D71lLXrdMmgcCXYT/dlYaNgUY/irGOERhbOPKqwB2GyQmgwJseh1y1Ade6K8yl8sS2ekYb4+HLKzUK07wJ+bIDAE1aBx+f/ChbiIVGSNZKl9JEtSUFBAQUEBbm6V88ZzxYoVzJ8/n9jYWAYNGsR1111XuC83N5ePP/6YQ4cOYbPZuP/+++nQocN595WH9JEUQoiLX3x6HkMXHKJHA2+euyKsuocjhMOZX06wKrvabKjrb0NvXAUn4sDLG2PEGFS9BoA1m8jxWPDwRPmdv7Kvzs9Hb1uP/vlbiD+G6n41evUSVNfeEBqGXvA1+J0JSosJ0PSurZifjYPsLGtD0yhUy7boBV9b44psVfK101IwRz0ODZtg/OcN0BpMO8qpbC9QzGU/o2d/hvHqRKjXAHP8C3A8FuP1T1DeF08VZyHKqyJ9JEuckdRaF07zm6aJ1rrwl1IKm81W5JgLoZSiW6XXbdMAACAASURBVLduZGdnExAQQNOmZytz/fjjj+Tn5/PKK6/Qtm1bxo8fz7XXXouTk1Op+8pDZiSFEOLi5+1qo3mQG9c09cNNqpeKS0GjZuikUxj3DMHo0RfVoy+4uGLccj8qLKLwMKUUyrvsawWVzYYKa4DqdjX6eCxsiLZmEh9/AaNlW1RUe/SGlejlP6Pq1i9SJEfb7ZgfvQHOrhiPjYDLOsDvC2DvnxDVDuPG0tvKKTd3cPeAZT/DiXj0d9PQv/+E6t4H5XL+IkDm11OsQHrg3dZ9N2qOXroA/ecmyM8HTy8roFbyPUJcWiq1auugQYOYMWMGAHfffXeJJ/j222/LfdF/atDAeiNWXFC6Zs0ahg0bBkDdunVp0qQJW7dupVu3bqXuE0IIIf7p8nqVXyBEiJpK+QViG/r82T+7uqFuuKPyzu/qhjH4Odi61mo9ciaVVTVujjHqfcyJb2DOmoxxWYfCdFm9PhqOx2EMfR4V1Q4FmFqj50zHuOX+sl2313VWeu3GlRDZGvbvRM+djnrgiVI/p0/EQ8w+1G2Dzp4rrAHqoafRv85F/28a+n/TwMUFWrbDeHA4ytMbc300es3vGIP+jfKXXqxC/KXEQPK9994r/P1HH31UJYMpTmJiInXq1Cn8c1BQEElJSefdVx4VmcoVQgghhBBA+O3nbqtXj5zBz3DqxaH47v0Dr2tvQhcUkPDLdxhNmhNyw61nJxBuuRt9813lynIzx05Bn87GFliH1C8mkDF3FgE33IpTcF3syYm4tmxz9tjsLJS7B+nLFpCuFKED7sApKPjsyW6+C26+i/y4o+Tu2kb+oX1k/jIXY/wLuHe9koy5swCwfTKG4HFTMTykKrIQUEogGRQUVPj7rKwsIiIiKnyRkSNHkpiYWOy+qVOnYhjVmz4gaySFEEIIISqXDqoHYQ1JmTuLtFYd0Yt+QJ+IQ9/5CgkJCZVzkfh4dO+BsGIxp14cCqbVQ9N4YhSqbSf03j8xP3gF/IMg5zS0aMPJvAIo7mc/5QStOkKrjhgt2lEw+S0y5s5Cde2N6tCd/E/GEDf6Kevc0rlAXGQqMrFWpq+CN954Ax8fH3r27EnPnj0JCQkp10XGjh1b7oH9JSgoiFOnTuHjYy2ATkxMpFWrVufdJ4QQQgghqo9SCtV3IHrGJPSMiejVS6FtZ2hd/sKIpV7H1RXj4f+go3+FRpHoZb9gzv4Uo1EzzOkTwS8QwhrCvp0YV/Uv2zmbRWG89B46Zl9hOxN13+PomR+hZ38K9w+TliHiklemQHLq1Kls27aNVatW8dxzzxEeHk7Pnj3p3r07vr6+Dh1g165dWbx4MU2aNCEhIYGDBw8yfPjw8+4TQgghhBDVS3W5Ej13hhVEtuuC8dhzDgnAVJMWqCYtANDhjTDHPY/5xtOQlozx7NulVoIt8Zx1QlF1Qgv/bFxxLWbSSfTP/4PA4EpdbypEbVTu9h95eXls3LiRRYsWsX//fmbPnn3Bg1i1ahVfffUVWVlZODk54erqyssvv0x4eDg5OTl8/PHHxMTEYBgG9913H506dQIodV95SGqrEEIIIYRjmOuj4ehB1C0PVFlKqDnzI/TKRag+AzDuerTSzqu1Rn/xAXrdcowhz6M6dK+0cwtRnSqS2lquQDIvL4/NmzezatUqtm/fTmRkJKNGjSr3RWsaCSSFEEIIIS4e+nQ2et1yqy2Iq2vlnrsgH3Pcmf6TL3+ACq5bqeevSfTWdeit61D3D0M5l61Xp6idHBZIbtmyhVWrVrF582bCw8Pp3r07PXr0wM/Pr0IDrWkkkBRCCCGEEGWlk05ivv4UBIVgDPo3ePuClw/KyQmdmwvxR9H7d6L3/okKCELdOsjqgXm+85om7NoGTVuW6fjKptNSIOkkNGyK3rgS/cWHoE3UwHswBtxV5eMRVcdhgeTTTz9Njx496NmzJ6Ghoec7vNaRQFIIIYQQQpSH/mMD5kdvFt3o7gk52fDXj9d1QiHxJITUs1JhwxqUfL6MNMxp78POrVC/EcaTr4CvPxzaC6FhKC8ftGlHT3kXrU2Mwc+hDFvl3U9uDuabT8PxuLP3EdkaPL1g+0aMVyeh9+1AL/8FY/BIVIi0z7uYODy19WIlgaQQQgghhCgvHXcUjseiM9IgMw3S06yZyfCGENEMFVAHvWc75tR3IS8X48lRqMjWZz+vNRzcg962Hr1uGWRloq6+ER29ENzcQBmQmgTB9TCeeRO9chH6p28AKn2W0Jz1MXrlb6hb/w9OxIOTM+rWQZCTjTnqcVBAdpZ17W69MR56utKuLaqfwwLJ/Px85syZw+rVq8nIyGDGjBn88ccfJCQkcN1111VosDWJBJJCCCGEEMJRdHKi1c8y6STGkJGoNp3Qpon++jP08l/BZoPI1hi3P4Sq3wh9LAZz1mTw8UO1uAw9bza4uUNqMqp7HzDt6PUrMJ55A9X8sgsf37Z1mJPfRvX7F8Ztg87Zb65chJ79GermeyElCb3sZ4w3Py1S1VbUbg4LJKdOnUpKSgo333wzb7/9NtOnTyc5OZk333yT999/v0KDrUkkkBRCCCGEEI6kM9IwPxwNRw9Cm07g7Ayb16CuvRl1w50oD8+SP3tor/XZwDoYz48HbWK+9R/IycF44+MLWk+pc05jvjwEfP0xXhiPciq+qI4uKLDWgKYkYb74KKpHX4z7Hj//+Y/HQXYmqnHzCo9ROF5FAsky1WDeuHEjEydOxM3NrbD3T0BAAMnJyeW+oBBCCCGEEJca5e2LMeJt9JL56MXzrODqXw9gXH/b+T/buDnGm5+Ai2thFVpj0HDMd55D//I/1L/+r8Lj0r99D2kpGENfKDGIBApbtyj/QFT3PujVS7CfiIeTCahe/VD9bz+nR6hOScIc9zxkpKF6XoO6/UGUh1eFxypqljIFkk5OTpimWWRbeno63t7eDhmUEEIIIYQQFxvl5o668U50nwFWANawSdk/61O0W4Jq0sIK6BbNQ3fvgwoNL/d4dHIietEPqE5XoJq0KPtYrr8NvXMr5JyGOqHoH7+CYzHQdyAYBgSFgIcn5qfvQF4uqnd/dPRC9K5tGE+/jgoNKzqO2Bhr/44t1lj6314tVWtF+ZQptXXmzJkcP36cQYMGMXLkSN5//32mT59OaGgod999d1WM06EktVUIIYQQQtQ2Oj0F8+XHIawhxqPPoALqnN2nNRzai960Gr1vB6pVO1TfgZCdZQWBSSfRB3bDsRgrPTYopGJj0Bq9+Ef0nBmg/zbx5O0LGWlWddmOPdEx+zEnvQ5gBZP1GwFg/vId+odZ4OQMjZrB/l3gG4Dx6LOo5q2Lu+TZa+fnQW4OysvH+rNph1MnpKJsBThsjWRBQQFfffUVS5cuJS8vDxcXF/r06cN9992Hk1OZJjVrNAkkhRBCCCFEbWSuWYqeORkUVvpox57g5Yv53TSrlYiTE9RvDIf3A+pssOfiCh5eqP63YfS+4YLHoROOQdIpsNvRCUfRB/eimjTHuO7Ws8ccj8V8/xXIykD1ug5sBvq3H1Cde6HuGYzy9EYf2I05Y5JVmGjoC+Drh148z1prmZONatQcdftDkJWO+dFbkJWB8doklI8/5tdT0L//hLrzEYy+Ay/4ni4lVdL+46+U1n/mQNdmEkgKIYQQQojaSiedRP/0rdVCpKDA2ujugRpwtxVcunugT8SjVy8G/zqoNh1RgcHVNNZT6B9noTesANO0xnf/40V6YuqMdMwPX7XSZbUJ7h7QuDk4u8Kfm8DD07pPm83qd9m2M0bfgZjjXgAfP0hLQd18X7HrNkXxHBZIxsbGsnv3bjIzM/Hy8qJly5aEh5c/D7umkkBSCCGEEELUdjrnNOzaij4eh+rRF+XrX91DKpFOPAFHDkD7bijDOHd/dhb6mykQEobq3b+wSI+OPYw58yOw2zEefwG9PtpKjfXyBhc3jFcnoP/7GXpDNLRog3H3Y6h6Dar69mqdSg8ktdZ88sknREdHExgYiL+/P8nJyaSkpNCrVy+GDh16UUT5EkgKIYQQQghRe2itUUqhCwowx4yAowcxho9Gtb4cbdrR0b+hf5wFOadRl3dH9bkR1TSqesecEIuOPYzRqWe1jqM4lR5ILl68mHnz5vHUU0/RtGnTwu0HDhxgwoQJDBgwgGuvvbZio61BJJAUQgghhBCidtIpSXD0EKptp6LbM9LQC+eiVy2G7CzU7Q9iXHuL48axbR2ERaDqhBa73z7ueTiwB2PcNJRfoMPGUREVCSTPnUf+mxUrVvDggw8WCSIBmjZtyqBBg1i5cmW5LyiEEEIIIYQQlUX5B54TRMKZ3p23P4Qx7kto3xX9/Uz0wT2Vck196jj2j95EHz1o/Tn+KObHY6xCQcUdH7PfqkirTfT6FZUyhupWaiAZGxtLVFTxU8BRUVHExsY6ZFBCCCGEEEIIURmUqxvGoH+DfxDmlPHo9BTgTOuSvTvQp46f8xmtNTo9Bf1X8aK/70s6ifnuS/DHBsyZk9Gmif75O9Aa9v6JPrDr3M8s/tEqGhTeCL32d8pZ7xSdk43OSC/35xyp1N4dpmni7l58M1B3d3dM0yx2nxBCCCGEEELUFMrDC+Ox5zDHjsQc+QiqfVd03BGIPwqBwRijJ6HcrLhH55zG/PQdq32KUuAfiGrWCho2hfRU9MaVViuS6261Umd//Aq9cSWqd3/0xlWYP3+HbfirhdfWSafQm1ej+t4EQSHo2Z9aFWkbNC7T2HVWJuZr/4aURHBxQbXrirp/WOF4q0upgaTdbmfHjh0l7pdAUgghhBBCCFEbqEbNMF75EL38F/S6aAisgxp4D3rB1+i5M1D3DkFnpGFOfB2OHkT1vwNsBhyPQ+/aBuujrb6cIWEYj42ARpHo/TvRv86xArwb7wS/QPQPs9D7d0HTlnDkAOb3M63rX30juLqiv/0cvW4ZqqyB5OzPIN1qaUJqklVIKP4oxhMvn9PGRR85iDnvvxgPPYXy8qn0v8O/KzWQ9PX15ZNPPilxv4+PYwcnhBBCCCGEEJVF1WuAumcI3DOkcJuZnYleMh8z9zR6yzow7RhDX0C161J4jNYaMtLAy7tIz0vjrkcx3x6BuvJ6lI8/9L4B/dv3mOOeBydnKMi3enre/iAqsI71ocs6otctR994Z2Fbk5LozavRG6JRA+/BuOEOa1u7rpifjcMc/yLGqA9RnmfPoX//Cf7chP52Gurhpyvjr6xEZeojebGTqq1CCCGEEEJcmnRuLubrwyHxOKrjFaj+t6HCGpb98ycTICi4MMDUCbHoXVshORECglDd+6DcPc4ef2C3tcayaUurZYmzsxWo7t6GXrccGrdAdeiOXr0E/dP/IDQM4/lxKKezc4A6Zh/m2Ofhsg4Yj794phVKPuYzD1gHZGdhPDkK1ebcIkTFqfT2H5cKCSSFEEIIIYS4dOmMdCjIR/lXTVsOc300+vP3IKo9KjQMHbMPYvaBqxvk5pw9sG1njLsHn53N/Ps5Fs9D/28a6s5HMPoORP+5CXPi6xhDX8CcPxuyMqyZ1cbNCz+jC/LR0b+hLuuACq5buL0igWSpqa1CCCGEEEIIcbFT3lW7ZM/ociVmeip67nR0zF4IDEHdOwTV4xqIPYzeuhbVog0qql2J51B9B6L3/omeMx3dpCV64ypw94Q2HTGCgjE/eAVzzAho2RbV7WpUeATmrMkQsw+9rxu2oS9c0D3IjCQyIymEEEIIIYSoerqgoEjKark/n5WB+fpTYBiQnYlq2wXjoaesfTmn0dG/opfMh9Rk6wPuHtCgCRzYjTF+emEALamtFSSBpBBCCCGEEKI20gf3YI5/Aez2YtdFatOEIwfQ+3eh2nWGvDzM1/6NuutRjD4DgIoFkkaljF4IIYQQQgghRJVTTVqg7nwE6jeCYlJhlWGgGkViXHszKrgeKjwCGjZFr1l6QdeVQFIIIYQQQgghajGj9w3YXpmAcnIu0/Gq+9Vw9BD6yAF0Xm6FrimprUhqqxBCCCGEEOLSoTPTMUcMgoICAOr/vKnc55CqrUIIIYQQQghxCVFePhiDn0PHHgFbxUJCmZFEZiSFEEIIIYQQly4ptiOEEEIIIYQQwuEkkBRCCCGEEEIIUS4SSAohhBBCCCGEKBcJJIUQQgghhBBClIsEkkIIIYQQQgghykUCSSGEEEIIIYQQ5SKBpBBCCCGEEEKIcqlY98lK9vnnn7Njxw6cnZ1xc3Nj0KBBNGnSBIDU1FQ++ugjTp06hYuLC4899hjNmjU77z4hhBBCCCGEEI6htNa6ugexefNm2rZti5OTE5s3b2b69OlMmjQJgI8//piQkBBuvfVW9uzZw+TJk5k4cSJKqVL3lUd8fLwjbksIIYQQQggharx69eqV+zM1IrW1Q4cOODlZk6ORkZEkJSVhmiYAa9eu5ZprrgGgRYsWuLi4cPDgwfPuE0IIIYQQQgjhGDUitfXvFi5cyOWXX45hGGRkZADg4+NTuD8oKIikpCRCQkJK3Ne0adNyXbMiEbgQQgghhBBCXKqqJJAcOXIkiYmJxe6bOnUqhmFNjK5evZpVq1bx2muvVcWwhBBCCCGEEEJUQJUEkmPHjj3vMRs2bOCbb75h1KhR+Pn5AeDt7Q1Aenp64cxjYmIigYGBpe4TQgghhBBCCOE4NWKN5ObNm5kxYwYvvfQSwcHBRfZ17dqVxYsXA7Bnzx7y8vJo3LjxefcJIYQQQgghhHCMGlG19eGHH8bJyanIesdXXnkFb29vUlNTmTRpUmGLj0cffZTmzZsDlLpPCCGEEEIIIYRj1IhAUgghhBBCCCFE7VEjUluFEEIIIYQQQtQeEkgKIYQQQgghhCiXGtdHUojyiI+PZ/LkyWRmZuLl5cUTTzxB3bp1S9xenCVLljBv3jwA2rVrx4MPPohhGCQnJzNp0iQOHTpE3bp1eeedd6ry1kQpHPncN27cyJw5cygoKEBrTe/evRkwYEBV3p4ohiOf+eHDh/nkk08wTRO73U7z5s156KGHcHZ2rspbFMVw5HP/S15eHiNHjsTV1VW+z9cQjnzuO3fuZMyYMYWfc3Z25u23366yexMlc/TX++HDh/nyyy9JT08H4IEHHqB9+/ZVc3MXKy1ELTZ69GgdHR2ttdY6Ojpajx49utTt/3TixAk9ePBgnZaWpu12u37zzTf18uXLtdZaZ2Vl6Z07d+pNmzbpkSNHVsHdiLJy5HPft2+fTkpK0lpb/waeeOIJvWvXLkffkjgPRz7z3NxcnZ+fr7XW2m636/Hjx+uff/7Z0bckysCRz/0vM2bM0B9//LF8n69BHPncd+zYIc+6hnLkcz99+rQeNmyY3rt3r9Za64KCAp2enu7oW7roXTSprfHx8bz00ksMHz6cl156iYSEhFK3F2fJkiU8+eSTPPnkk0ybNg3TNMu0T1SPtLQ0YmJi6NmzJwA9e/YkJiaG1NTUYrf/9Qbq79atW0enTp3w8fHBMAz69OnDmjVrAPDw8CAqKgo3N7equylxXo5+7s2aNSMgIACw/g2EhYVx6tSpKro7URxHP3MXFxecnKwEHbvdTn5+fpEZK1E9HP3cAXbv3k1CQgK9evWqmpsS51UVz13UPI5+7qtWraJFixZERkYCYLPZCnvSi4q7aP6nnDp1Kv369WPChAn069ePKVOmlLr9n06ePMmcOXN46623mDBhAsePH2flypXn3SeqT1JSEgEBAYU/8BmGgb+/P8nJycVuT0xMBODTTz9l06ZNACQmJlKnTp3CcwYFBZGUlFTFdyLKoyqfe1xcHPv376d169aOvi1Riqp45snJyYwYMYKHH34YNzc3+vbtW1W3J0rg6Oeek5PD9OnTefTRR6vytsR5VMXXe0JCAiNHjuTFF19k+fLlVXRnojSOfu6xsbHYbDbGjBnDiBEj+OSTT8jMzKzKW7woXRSBpKPfYsibrYvLkCFD6NixY3UPQ1Sx8j73lJQUxo0bx8MPP1w4Qylql/I884CAAMaPH8+UKVMoKChg/fr1Dh6dcJSyPvevvvqKfv36ydf3RaKsz71Ro0Z88sknjB07lqeeeoq5c+eyffv2KhihcISyPnfTNNmxYwdDhgxh7NixuLu7M3PmzCoY4cXtoggkHf0WQ2ataqbAwECSk5ML04xN0yQlJYWAgIBitwcFBZ1zjqCgoCJpi4mJiQQGBlbNDYgKqYrnnpaWxhtvvMHAgQPp3r27g+9InE9Vfq27ubnRvXt3yTqpARz93Pfs2cPcuXMZNmwYH374IUePHuXZZ5+tgjsTpXH0c/fw8MDDwwOA4OBgOnXqxN69ex19W+I8HP3cg4KCaNWqFf7+/hiGQc+ePTl48GAV3NnF7aIIJCtKZqZqN19fXyIiIli1ahVg5b83atQIPz+/Yrf7+Picc44uXbqwceNG0tPTMU2TpUuX0q1btyq9D1E+jn7uGRkZvPnmm1x33XX06dOn6m5MlMjRz/zEiRMUFBQAUFBQwMaNG2nQoEEV3Z0oiaOf+7vvvsvkyZOZPHkyTz31FA0aNODdd9+tuhsUxXL0c09JSUFrDUBmZiZ//PEHERERVXNzokSOfu7du3fn4MGDnD59GoBt27bRsGHDKrq7i5fSf3011WJpaWkMHz6cL774AsMwME2Thx56iA8//JCnnnrqnO0TJ0485x/g/PnzOXXqFA8//DBgpbMuW7aMF154odR9onrFxcUxefJksrKy8PT05IknnqBevXolbgdrJrpjx46FLxEWL17M/PnzAWjTpg0PP/xw4b+Xxx9/nPz8fLKzs/H19eXqq6/mjjvuqLb7FRZHPvdZs2axcOHCws8B9O/fn969e1f9jYpCjnzmK1asYN68eYVf9y1btuSBBx7AxcWl2u5XWBz53P9u586dzJo1S9p/1BCOfO4LFy5k0aJF2Gw2TNOkV69e3HTTTdV2r+IsR3+9R0dHM3/+fJRSBAcH89hjj+Hn51c9N3uRuCgCSYDRo0dz9dVX06tXL1asWMGyZct49dVXS9z+TydOnODVV19l3LhxeHl5MWbMGHr06MFVV11V6j4hhBBCCCGEuNRcNIGko99ilOWNphBCCCGEEEJcCi6aQFIIIYQQQgghRNWQKTUhhBBCCCGEEOUigaQQQgghhBBCiHKRQFIIIYQQQgghRLnU+kAyPj6el156ieHDh/PSSy+RkJAAwMyZMxk2bBh33HEHR48eLfUcw4YNO+8xQgghhBBCCCEstT6QnDp1Kv369WPChAn069ePKVOmANC5c2dee+016tSpU80jFEIIIYQQQoiLi1N1D+BCpKWlERMTw6hRowDo2bMnX3zxBenp6bRo0aJC51ywYAFr1qzBbrfj7OzMo48+SkREBAB33HEHd911Fxs3biQjI4P77ruPrl27VtbtCCGEEEIIIUStUKsDyaSkJAICAgr7ORqGgb+/P4mJifj4+FTonFdeeSUDBgwAYPv27UydOpW33nqrcL+Hhwdjxoxhz549fPDBBxJICiGEEEIIIS45tTqQdIRDhw7xww8/kJmZiVKqcM3lX7p37w5AZGQkKSkp5OXl4eLiUh1DFUIIIYQQQohqUasDycDAQJKTkzFNE8MwME2TlJQUgoKCSvzMsmXL+OWXXwAYOHAgV1xxReG+goIC3nvvPV577TUaN25McnIyQ4YMKfL5v4LGv2ZBTdOs7NsSQgghhBBCiBqtVgeSvr6+REREsGrVKnr16sWqVato1KhRqWmtvXv3pnfv3sXuy8vLwzTNwkB00aJFDhm3EEIIIYQQQtRmtTqQ5P/bu59X6No4juOfORpkxlCOySwsxhDFQrHxByh/wGRnoYYYRiQLWzZWQqZkahZMWc3WwizsKMQWJUn51dGIURrNzLNQ0/M8noXp6Ta3ud+v7bm+V+e7/HR9z7kkDQ0NKRwOKx6Py+FwaHx8XJIUjUZ1cHCgp6cnzc/Pq7q6WouLi/+5RyaTUXl5uaqqqtTf36/Z2VmZpqnOzs7vbAUAAAAAfgRbLpfLFfsliimZTGpyclKRSIRvHQEAAADgC378ieT/sb29rZ2dHQ0MDBAiAQAAAOCL/vgTSQAAAABAYYxivwAAAAAA4GcpqdHWl5cXra6u6u7uTna7XQ0NDRoeHpbL5dL5+bkikYjS6bTq6+sVCoVUU1Ojm5sbRSIRJZNJlZWVyefzKRAI5Eddj46OFIvFlMlk1NTUpGAwqIqKiiJ3CgAAAADFU1KjralUSldXV2pvb5ckbW5uKpVKaWRkRBMTExobG1NbW5vi8bju7+8VDAb18PCg19dXeb1eZbNZLS8vq7GxUX6/X29vbwqFQpqbm5PH49Ha2ppM05Tf7y9ypwAAAABQPCU12up0OvMhUpJaWlpkWZYuLi5UXl6utrY2SVJvb6/29/clSW63W16vV5JkGIaam5tlWZYk6eTkRD6fTx6PJ1+3t7f3nS0BAAAAwG+npILk32WzWSUSCXV1dcmyLJmmmX/mcrmUy+WUSqX+UZNOp7W7u6vu7m5J+lRnmqYeHx+/pwEAAAAA+E2VbJCMRqOqqKhQX1/fl9ZnMhktLS2po6MjHyQBAAAAAJ+VZJDc2NjQ3d2dpqamZBiGTNPMj6tK0vPzs2w2m5xOp6SP08uVlRU5HA4NDg7m1/27zrIs1dXVfV8jAAAAAPAbKrkgubW1pcvLS83MzMhut0uSmpqalE6ndXp6KklKJBLq6emR9BEiw+GwDMPQ6OiobDZbfq/Ozk5dXFzo9vb2Ux0AAAAA/KlK6q+t19fXmp6elsfjyV/f4Xa7NTMzo7OzM62vr+v9/T1//Udtba2Oj4+1sLCgxsZGGcZHrm5tbVUgEJAkHR4eKhaLKZvNyuv1KhgMqrKysmg9AgAAAECxlVSQBAAAAAD8eiU32goAAAAA+LUIkgAAAACAghAkAQAAAAAFIUgCAAAAAApCkAQAAAAAFIQgCQAAAAAoCEESELJF3wAAAAxJREFUAAAAAFCQvwDvFObUB2faMAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "from scipy.stats import norm\n", "from matplotlib import style\n", @@ -1258,24 +1267,14 @@ "ax.legend(['Regular steps', 'Deviating steps']);" ] }, - { - "cell_type": "markdown", - "metadata": { - "deletable": false, - "editable": false, - "run_control": { - "frozen": true - } - }, - "source": [ - "#### ➜ Challenge yourself: reaction kinetics of bacteria\n", - "\n" - ] - }, { "cell_type": "markdown", "metadata": {}, "source": [ + "#### ➜ Challenge yourself: growth rate of bacteria\n", + "\n", + "The **goal** of this challenge is to understand the growth rate (reaction kinetics) of bacteria. To see what the growth looks like visually, but also to discover when the growth rate is the fastest, the most productive.\n", + "\n", "Back in [module 3](https://yint.org/pybasic03#Challenge-4) we integrated an equation for bacteria growing on a plate:\n", "\n", "$$ \\dfrac{dP}{dt} = rP $$\n", @@ -1778,7 +1777,9 @@ "source": [ "#### ➜ Challenge yourself: pairplots and the peas\n", "\n", - "Generate a pairplot set of scatter plots for the 6 taste attributes of the peas. Now you can visually confirm just how correlated the data are.\n", + "The **goal** of this challenge is to see how the judges' values for the 6 taste attributes of the peas are (co)related.\n", + "\n", + "Generate a pairplot set of scatter plots for all of the 6 combinations.\n", "\n", "##### Compare and contrast\n", "\n", @@ -2082,7 +2083,7 @@ "source": [ "#### ➜ Challenge yourself: plotting data in real-time\n", "\n", - "The plots above are all static. What if you want to monitor your process in real-time? See goal number 4 above.\n", + "The **goal** of this challenge is to visualize data that is coming from a real-time live stream. The plots above are all static. But what if you want to monitor your process in real-time? See goal number 4 above.\n", "\n", "Let's give it a try. We will monitor the CPU usage of your computer. You can install a small Python package to get the CPU percentage used. You will need the non-built in package called ``psutil``. Install it with: ``python3 -m pip install psutil`` or with your package manager (e.g. Anaconda)\n", "\n", From 2a9c72e805988e045f2ff370f02596d1e57b5f01 Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Thu, 25 Jul 2019 12:12:34 +0200 Subject: [PATCH 079/134] Updated the README with details from WS10 --- README.md | 9 +++++++++ 1 file changed, 9 insertions(+) diff --git a/README.md b/README.md index 3922886..2681b16 100644 --- a/README.md +++ b/README.md @@ -75,3 +75,12 @@ notebooks. * Bar plots; categorical vs numeric variables * Histograms; visualizing distribution and Central Limit Theorem +[Notebook 10: https://yint.org/pybasic10](https://yint.org/pybasic10) + +* Statistics and Data Visualization: combined and continued +* Goals of your data analysis project broken down +* Data tables; correlations; pie charts are not so useful +* Time-series; trends, induced delay from a moving average, random walks +* Scatter plots; showing 5 variables in 1 plot +* Extending the box plot: violin, swarm and raincloud plots + From b0b6bb359608dd4093a54f84e6b24aa918c27b35 Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Thu, 25 Jul 2019 12:13:56 +0200 Subject: [PATCH 080/134] Updated title of last section in the WS --- Module-10-interactive.ipynb | 8 +++++--- README.md | 1 - 2 files changed, 5 insertions(+), 4 deletions(-) diff --git a/Module-10-interactive.ipynb b/Module-10-interactive.ipynb index 256e83a..d9f2642 100644 --- a/Module-10-interactive.ipynb +++ b/Module-10-interactive.ipynb @@ -7,7 +7,7 @@ }, "source": [ "

    Table of Contents

    \n", - "" + "" ] }, { @@ -1820,9 +1820,11 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Other noteworthy plots\n", + "## Extending the box plot\n", "\n", - "Here we will consider alternatives, or additions, to the box plot, which we saw in the prior module. These alternatives are:\n", + "Here we will consider alternatives, or additions, to the box plot, which we saw in the prior module. \n", + "\n", + "The additions, in the order of progressively adding more information, are:\n", "\n", "* violin plot: shows the distribution\n", "* swarm plot: shows the raw data, and how it is distributed\n", diff --git a/README.md b/README.md index 2681b16..270fac3 100644 --- a/README.md +++ b/README.md @@ -77,7 +77,6 @@ notebooks. [Notebook 10: https://yint.org/pybasic10](https://yint.org/pybasic10) -* Statistics and Data Visualization: combined and continued * Goals of your data analysis project broken down * Data tables; correlations; pie charts are not so useful * Time-series; trends, induced delay from a moving average, random walks From da354646e5c79cfb227050d587e7a17f0ff7da6d Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Thu, 25 Jul 2019 12:17:40 +0200 Subject: [PATCH 081/134] Cleaned up TODO; pointer to utility of the challenge --- Module-10-interactive.ipynb | 10 ++++++---- TODO.md | 21 ++++----------------- 2 files changed, 10 insertions(+), 21 deletions(-) diff --git a/Module-10-interactive.ipynb b/Module-10-interactive.ipynb index d9f2642..a2fa6e2 100644 --- a/Module-10-interactive.ipynb +++ b/Module-10-interactive.ipynb @@ -7,7 +7,7 @@ }, "source": [ "

    Table of Contents

    \n", - "" + "" ] }, { @@ -241,7 +241,7 @@ "4. Data tables\n", "5. Time-series, or sequence plots\n", "6. Scatter plots\n", - "7. Pointers to some other interesting plots\n", + "7. Creating better box plots\n", "\n", "In between, throughout the notes, we will also introduce statistical and data science concepts. This way you will learn how to interpret the plots and also communicate your results with the correct language." ] @@ -1820,7 +1820,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Extending the box plot\n", + "## Creating better box plots\n", "\n", "Here we will consider alternatives, or additions, to the box plot, which we saw in the prior module. \n", "\n", @@ -2099,7 +2099,9 @@ "\n", "Now you would like to watch that value on a graph, changing in real-time. See these pages for inspiration on how to visualize that with Python:\n", "* https://makersportal.com/blog/2018/8/14/real-time-graphing-in-python\n", - "* https://learn.sparkfun.com/tutorials/graph-sensor-data-with-python-and-matplotlib/all (scroll to the end of the page)" + "* https://learn.sparkfun.com/tutorials/graph-sensor-data-with-python-and-matplotlib/all (scroll to the end of the page)\n", + "\n", + "You can apply this challenge directly for acquiring and plotting data from your own sensors. For example, you can inexpensively buy a Raspberry Pi board, add some sensors and create a home monitoring system for temperature, humidity" ] }, { diff --git a/TODO.md b/TODO.md index c275e81..fcee767 100644 --- a/TODO.md +++ b/TODO.md @@ -52,7 +52,6 @@ a = 3 b = 4 q = a if a < b else b - Example: analysis_type = ['MACHINE_TTR', 'MACHINE_PH', 'CellCount method1', 'CellCount method2', 'CellCount method 3'] @@ -127,24 +126,12 @@ NumPy **Exercises** -* Random walk -* Average of the dice thrown tends to be normally * 3D array: calculate summary values across each axis -* Raspberry PI question + Statistics part ----------------- -* summary: min, max, mean, nanmean, nan-versions -* percentiles -* regression -* EWMA monitoring -* DOE model analysis? - -https://towardsdatascience.com/simple-and-multiple-linear-regression-in-python-c928425168f9 - -Plotting ------------- - -Back to the bacteria multiplication problem -Seaborn: Viz: https://engmrk.com/module7-introduction-to-seaborn/ \ No newline at end of file +* regression -> WS11 https://towardsdatascience.com/simple-and-multiple-linear-regression-in-python-c928425168f9 +* EWMA monitoring -> WS12 +* DOE model analysis -> WS13 From 138bb0a9ef4576d150c3b8e6b2b053c989de6f6b Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Thu, 25 Jul 2019 12:27:52 +0200 Subject: [PATCH 082/134] Finalizing the challenges --- Module-10-interactive.ipynb | 60 ++++++++++--------------------------- 1 file changed, 16 insertions(+), 44 deletions(-) diff --git a/Module-10-interactive.ipynb b/Module-10-interactive.ipynb index a2fa6e2..e69bcfd 100644 --- a/Module-10-interactive.ipynb +++ b/Module-10-interactive.ipynb @@ -2035,48 +2035,31 @@ "source": [ "## Extended challenges\n", "\n", - "Below we give some challenges that use the topics learned about in this worksheet." + "Below we give some challenges that go beyond, but build on, the topics covered in this worksheet.\n", + "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "#### ➜ Challenge yourself: correlation\n", + "#### ➜ Challenge yourself: Seaborn library\n", "\n", + "The Seaborn library wraps Matplotlib up, and creates easy-to-use function for common data visualization steps.\n", "\n", - "* ShOULD show: correlations numerically calculated for the film thickness dataset, but then also visualized with ``data.plot('TopRight', 'BottomRight', kind='scatter')``\n", + "* Take a look at the [Seaborn Gallery](https://seaborn.pydata.org/examples/index.html) to see some examples. Which ones can you use in your next project?\n", "\n", + "* Great blog post about [9 different visualizations](https://www.marsja.se/python-data-visualization-techniques-you-should-learn-seaborn/). We have looked at all of these, but it is nice to see them all on one page.\n", "\n", - "import pandas as pd\n", - "import numpy as np\n", - "df = pd.DataFrame(np.random.randn(1000, 4), columns=['a', 'b', 'c', 'd']) \n", - "pd.plotting.scatter_matrix(df, alpha=0.2, figsize=(6, 6), diagonal='kde')" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAGICAYAAACA+N0EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsvVuMZVma3/Vba9/3Pve45L3u1eG+NzM9AzNje8zY4gEkLAYbgwXiDYS4CQGSzZMlxIOFwBLiJhDwYJBlIyQ8gxiExx5hZsaMezzdPT093dGVVZWdl8iMiBPnuu9r77V4WDtO5bUqMysys7om/i+VFXHOjn322Xt96/u+////CWMM5zjHOc5xjnM8D+SrPoFznOMc5zjHTy7Og8g5znGOc5zjuXEeRM5xjnOc4xzPjfMgco5znOMc53hunAeRc5zjHOc4x3PjPIic4xznOMc5nhvnQeQc5zjHOc7x3DgPIuc4xznOcY7nxnkQOcc5znGOczw3zoPIOc5xjnOc47lxHkTOcY5znOMczw33VZ/AC0AA/AxwF2hf8bl8HhABfwr4DaB8tafyucD59Tw7nF/Ls4UDXAK+BVRP+6bPYxD5GeD/fdUncY5znOMcP6H4E8BvPu2LP49B5C7AfJ6h9blD8aeF60qGw/ilX8+iatDaEIcuQoiPfW2lWqQQSAnGgOs8uUp7MM3QxiAQXNlJzvq0PxGv6nrWjcaVAinttWy1RjWGwJO02lDULZHvfOy1ux9F1XKyKgCIA5fJIHxh5/4kvKprCaC1JqtaAtfB9569K2CMQbUG1xHIT7i/nxbHi4KialFNy5WdHqHvPNP7pRSMxwl0a+jT4pUHkb29vX8c+GvY0tPv7u/v/3v3/e6vAP8cMAd+ZX9//z9/ikO2AFqbn7ggUquW33//hNB3+NKbkzO7uT4NTq/hy7yeedlwtMgBGPdDhon/xNemhWK6LFCNBsBzJTujiCT0Hvt61xGkRUMSeq/k/ngV13O6KEhLhedILm8naGO4c2yD6SD2yauGptW4UnJ1t/dUx3Qd+xna1uAn8o/MtTzF4aygqBsEgqu7CY58tkByOMsp6obAc7i0dTabGc+VfHCwAgy+J7my/XTf5WPwTG2AVx5EgB8Dv7S/v1/u7e39L3t7e1/d39//3n2///f39/d//VWd3MvCdFHwn/3N73A4t7u7r7+9xb/5y1996p3h5wsfvyAYY2i1wXXkJng0rcYY+yBVdUsSeizTiqY1jPr+5iHfHkZMBuFnIkC/LFTdNcpKxdEiJ/JddDdHSLV6c7mfZhnW2mAwOFJyZTvBwB+pa/m8KKqGrFAkkUcUuFTKrtO10mf2Nwaxz6Tv4ziStn15QfWVB5H9/f179/1vw6NR8K/u7e3Ngf9gf3//Oy/vzF4emlbzX/3vf8AqV/w7f+5rHM5y/ubfu87/9v+8z1/4pXdf9em9cBhjWOUKRwp6kUccemwPQRtDP3o0ozicF5R1Qy/ymPRDtLY76rbVqFYzSHzysmGe2t6gEDxQbjld9IwxFFWD50o899HU3xjDdFnStJrtYfjY1/wkYNIPWKwrTpYlWhvKQDPuB1RVi+85DGOPSmni8OOXg0o13DnOcKSkF7mb94x6wUv6JK8ORdUghSDoSkRbw5CsUAS+84lZiGo0h3ObWedVw2sX+mwNQ+6e5GAMWak2mbMxhnWuEAL68ZMz8MfheFHQtIa6aXjj4uA5PuXz4ZUHkVPs7e19Ddje39//w/t+/F/s7+//lb29vXeB/xHb8HkqbG09dyr30vHXf+0H/Pjemr/8r/4MP/+1ywAscsXf+Yc3+Wd/8R1ee4k3xKvAMqtZdAu+FII4dOk9JniADSxl3QC2Li+Hgq2hDRB3TzLqRrNIK/qxj0BgMA9kc7VqKaqGJPJY54plViEQXN5O8NwHF4OiashKtTnH7WF05p/9ZSAKXPLSXrPZuuKi7zBMAm7nKUdHBXHk8dalj7/HjDHcPEw5XhQkoUdeKqLQpU5b+rH3zOWcnySs8prZypK/Lk5iQt/FdSTDpwie83XFMquYryuGvQDflazzGoMtrQLMV9UmiKxzxWxt/5YQ4onPweNQVM0myEXBy1vaPxNBZG9vbwL8l8C/cP/P9/f3Z91/39vb23umY56cpD8RPZHrt5f8r3/3R/zCVy/y7qU+x8drAP7pn73G3//2bf6Hv/0H/Fu//NVXdn6uK0+bbZ8KxpgnNsjv/+njXnL/e6UQjHsBadk80CvR2mxKBGXdsj10uLQV02qzeaCMMdyb5WhjyMpmEzQMZlPeWaYVy6ymF3kMEh8pBNoYQv8z8ah8ChjGg5C6brg0iYHTRmzDKqtxJDhCcmESPTbj0sbgSEHoOxhj2BqG5FWD7zqf+3LW/aWh9qE15ePua2Cz4RkmPlt9G3ROuoDUtgbHEZsGuDGGo0XOdFEy6vmPfRY+DuN+wCpXzxR4zgKv/MnY29tzgf8Z+A8fKm2xt7c32N/fX+3t7W3zGTjXs0ZeNvx3v/p9tgYhf/HPfOGB3/Vjn1/6qav8n//gxxwtCnZHP5m74KbV3DvJabVhdxxtFvSialikFaHvMurZOq4U4oEdVKvte5vWsDMKbc/DszvAh3eBUgrG/ZC8VJvg4nsfLYbLtGKRVhxMMxxHMu4HvHlpgBQCz5P4rmS+tr+PQ5dVXjPuB1zd6XGyLFimFULwxIb9ZwGt1hwvSowx7IyiTQaWFopVrmhazbULfaLAfoZe6DJdFizXFSerAt+VqHbCm5cGtmmuNY4jmS4KVGvoxT5R4DJMAuLQRTUa1xGfyJ77SUcSujRti+86m+9fNa0tRwEXJjGB51CpltmqxHMl/cjjZFWhWo3nSuLAY9gLWOf15ri744jQd/FcSdNqbh6uuXOckVcNQsAXHrNxaVrNKqvt34h9qrpluirxHMHOKHrmEthZ4LOwMP95rLbjr3bZxl8G/uL+/v6/Dfyne3t7X8Eq6//SqzvFs4fWhv/p137AbFXxl/7ln3ps+vlLP3WV/+t3bvLrv3vrkSDzk4JKtTTaNg/zstl8zkVaUdQt61yRPKF8VdW2xwHwo1tL8krhu5I3Lg1wpGTY8x/YBQ8T/4lMrlWuqBuNajS9yMN1JMZAL/IIfIdVXrPMKlqtycuG3XGEEIJWa7Kq6c65JvAcZqsSIWwZ7bO0C8+KhrJuSAtFWTdcHCc4ruDm4YpKaYa9APe+slMSeejWUNYts3XFuOudFBPFdFlRNw2ulJuGu+/KB5hED5f/Po8oqoajjuzSG/v3/bzdZK9Fx267cXeF6MqxlWo3pI9xLyQMXFTT4jqSUeLjus4D93xZtwhhy6Zproh8l6xUjwSF+bralFh9z963qmlRjT3G05SxiqohLxt6sUfgffo+3ysPIvv7+38D+BsP/fgfdL/711/+Gb1YnNaWf+W3PuTb7035C7/0Du9cGT72teN+wDf/2C6//b17/Pk/9fZPZGM38l0Cz6HVhl780UMT+i63jzOMMRyvXC6Nk42GYfOawCH0XZpGbx7YVa44mhcEnsN0WTDqBU9czLU2pKUi9Bxq1TJdFjhS0E98As/hYJrR6JatfrTh+g8S/wGKsCPFZpcZBy7rXJF3QSX0nVey83sSQt9+znWmyArFOld4roOUglq1qLqhUg2eZ7O+JPLx3I/6RruThEHio43daR/PSxxHkAQeSeQRhy7GGGariqbVDHs+nis/1/2QutGYLozWjSbwNMtM4UjwXVvaiwKXuycZCFimNf3YZxD7zFYVUgocR3BwnHGyKnAdh0Hic2X7o0y6qltWWU1aKDzHZuOuI3Dko/f06c8E9ven/S5HiqfSqxhjOJoXGGxv8crOp+8dv/Ig8kcFq7zm//jtG3zrh0cs0xrXEfyLf/pd/qmfufax7/vjX7vE7/zhId9+b8rPfvHCSzrbs4OU4hEevDGGfuwy6Qdoozk4ymnUg+UusP2Pi139fpD43DpK2RrKrjmpcB1LW33SYn68LDasGtexu2htbMZS1S3rvGKVK7Ki4YuvT7gwtn/r/nMQwp5/qzWOlOSl1QbAg+WyzwJ8z+Habh/XdZjOCxuUjbHamWFEawyzdUWtNNujyGaAsc/2ULM7jrgwjrkwifG6XfJiXdFPfKS01ywOXMq6ZV3U1Krl7knGuB9yYRJ9DnpGj0c/8ja9tn7k8f7BkuNFQeg7fPmNLRBW8zFfVyShy9XdhCs7iQ3SoYcQH2XjlWpptaHVLnWXlbiOZJ5W1E2LlJI3Lw3Iq4bJICR+TOm0F7mUdcMg9nEdSS+SxIGLEDxVWVEIG3wabR7ZtD0vPp/f/GcM83XFf/LXf5dlWvONd7b5xrvbfPWtLQYfI6I7xRdfGzPuB/z2H9z7TAeRZVrZBfqhEtPD0NpwcJLRtJYeukhr2rYlrxRF5T2Sji/SirJuGfV8vvzmBIA7x6ltBEtpd2SO2AST+3fFxnz031E/IC8Vy7TmhzcXRL6DajRR4JKEHnXTPtLvUI0mLxVx6OJ1u07fkxul+8vW8DStZrYqkUIweUL2FQUuV7YSRolPWiiy0gbRySBktq7ICltv3yaiVm3HOBPkZUPdaNa5YjJw2B3H1Krl4MRSetNccalJNhqbWmlcV5KVijvHLYMkYNwPPne6JinFA/3IsvpI31HWDXnX25MCBknAha4Mukgr6kYz7gUfZdMaHE8QBy6HM1siu9j1U8q6oR97hJ7DlhBs3UdJP5imlHVL4DkcznOiwKXpelSn5/gsuLgVU9Y2sz4LnAeRFwxjDP/9r36frGz4j/6Vn+bNT6BSPgwpBT//lYv82v93k0VafWY4+eu8pmkNw8Qqnu/XZHzcOapGU9UtJ+uK0HMAQ6MhKxS9y48u4ou02gi13r4ytGWZVpNEHk6X5RzOC4qyQRvNW5eHm4Vsexiyzm1wiQKXfuRRVA0CW5q4tBWzym3/4HGlg8N5bhuZueLqTsLdk5y6aRl2C+bLxiqrPyqlBS6OFLZMeF9t3TbXC6bLAs+ThJ6LkALRMavSoqZtrT4mDFza+9Texwur/D/V1LTaCtg+vLtm2PM5XpZsjyL6sUfgSU5WJcu0wpiPdrivwv7kZeLaxR6Hs5ym0bx3Z0mtWtJcMRmGCOx1KOtmQ1kH2B1FBL7Lxa2YutFkpaJpNGnZkFeK7VHE7shmcw8HhLsnGb/3o2OktJmN6wgWmeKNC5+8dGeleoSsAmwymLPC52vb8BnE9z444Yc3F/y5X3z7mQPIKX7+KxfRxvC7Pzw647N7PhRVYxeQzDKe7l+AH7cY3w/fk0hpFRxaaxZZhZR2F3d/eaisG4q6oVatbSYWinVe47o2+zia56S5olaattWcrEpmq4pbhymrvMYYW+cfJj5Fqbh9lLIuFNvDiEvbMa9f6DPqBSShSxJ5pIV64Dxr1ZIVilafKuINddNuPv+rgOPYjOGUOXU4zy27KvuI8ZOVDfO0JK8aamV7SVFXasoKxeGs4NbRmlZratVSN5ph4rHMFMfLktm6JO8at1HoEgYuk0GA7zr0I6sPWWY1Rd3iug7bI7vzNl3Z7PMOV0qu7vToRf7G9mWQ+GwNws3963ZMQ/t6QdNacafnSOra9uY+vLtGNZp1prh1lHJwkpMWatP7O0VWKIQQNI3GkTbj9h3BwwmfMYa0UJt7c5XVHC8KDuf5I/eralqO5vkDge5TXZMzOco5noi/861bTAYBv/iNy899jEtbts76uz884s988+N7KC8D9++WZNfcuziJMeaTRU5CCK5sJzjS7thOVdK7449KBtNlwfXbSwLfYWsQsjOK8Fy5sdhwHYFqDIu0JlkW7I4jW1KQguNlgZCwzhS9yGWeVly/vUAIQT/2+drbW+yOYo4XBZVqN/2N+8/7VE9SKU1atHzlzR6eKxnEPkXdvrJscJ0rfE/iOgLP+Sjg3q+HCj2HwHM4qkoi30FiTScDT3K8LK0Ro+NwNLfBJysUjmspz0KA5zqb2vruKKKoPNrWcG+WMVuVJKHLdGFV/K9d6GEMvH7RKrDPgunzMtFqW74LPOepWE2rrN4IAUPfZWccIYW1jqlVi9OJB23/LaaqNbN1ySqv2RlFXNnpkVcNd6YpqjEbjYkrBdNF0d3Xmq1hSKs1q0zRi/0NFd11BHemmSWJLEqS0GO7K7XdL9i9NEkeCEbmocA0W9vsPq8sW/LTfm/nQeQF4nhR8P0bc/7sH3/zU9eKv7m3y6/85oefiZJW4DlcnFgh32kf4f7GatNq2tbuTG1JyLA9DCnrlrbV9BOPyzsJRhtUo9Ed1fYUq8zW8g9nGetc8cZFmzWcWqC02mCMBmGb7KHvsndtzN1pRqU0eaFQumaVS1aZIi8bstLWnLOi6cSGikVasTOKef1i74FFGWwzNC0sHz8tGgL/1TjV3o9a2cXKcxzi0MV3HZZpxe44omk1Ugp8z2GUBDgXBUXVcrwqyMuGpjUITi02XLQ2LNKKtFBs9UOu7fZwHEkSOg8sKlLYnbQQtiSWdkygddFwtCgYJsGmefxJi5HWduHMygYpn02N/SJwsrQZ26mj85OeUdXozUKstbH02MjjzYsDmlZz+zjF9W3vcxD7lLWlBRd1iyMEritYZTWq0eyOIu4cZySRYDIIuLbbY5UpFl02ecoEOzjOuDfPqVXLle2E2brig4MVYeASuJJR3yctFRNje1Rt98xJKVBtyyDxbXlNikca9L7r3Ec4+fTN9fMg8gLxra789Atfvfipj/XNP7bL3/7ND/lH+8f86Z+++qmP92nxJDZO0+qN3brvOpsS0PGiQBtDXiruHGsabRj3A7YG4SPCwa1BwMGxZKFhti5xJESBQ7FoiHyXVmuG/ZBe6LHbsbfm65If/HhGVjWM+wFXtmKMMeRlTdb5Y8WBRxK5GIN98B2rts6LFs81m6xICMGlSUxVt0SB80DmNVuVm0a/ajRCCgYvgeartVXVN63N/lTTcrzImacVd6YZb1zqEXoel7cTXFfiOJIogEo5NI0CA2Hk8bULg643oihKRZrX7AxCZuuS3UHIraMSrVN8V+J7ku1hxJXtBIGlkE76IfdOMoqqxXVqeqGP6wpMlw2dBqZB4j9wXaq65d4s79yEbbCTgscykF4anoLNVKmWeyc5BsPWIERg7fTTQjFMgu6+cjmYZniuw4/vrQk8p7v/BVmumJ1UrLIa15Fc2enxhWtDKqVtCcx1SSJbOlSqpao1t47WTFclP7q1wJOCRVbT77RNgSd586Lt+0W+w2xZgoCqaVnnNYfznMNZwJuXBxu24cMY9wPiwMVxxJnQs8+DyAvEd69PeW23dyaeS1e2Ey5v25LWZyGIPAlt+5GFiBQCz3VoGs0w8VmkNZWyu9pKNahGU9QtfW0569oYKqWp6obXLw0QUmwa+NNFQdQ58y5T6z0kDNw6TIlDh7sndkGtVEs/8rh5lDHq+YS+w+4oIvJd4tDy+beGEXvXxkyXliEzWxcbn6JxP7AGg7HPu1dHtonfBRfVtKw6xfGd4xSv23k7XdPzRcJgEEBeWlFk6EsqpVml9vrM1xU7I4fFuqI1msh3cKTHpB+wzGqSwPY3bFPVY50pELbZXnRkhQ8PVizXJX5XnuyF1kng8lbCF14b2e9X6y7o26BiGVmCQeJjjNmUVBbdrvwUpWrtLtvYjMr2D16tUHN7EJJ25b+PzUIwNB1zrR97CGk/w72TjF7sMxmErPKastYcnKRsDyNcaQN53fU97s1yJoOQvGz4wtURZd1wOM/54EChWk3oSZLIY7Guu+9JbDzJpBA4QrI1CLg0iXn7ygAhBMu04oO7K8qqxXUEUehs+mAny+KJQQTYeGydBc6DyAtCWiiu31nyz/zcG2d2zG/u7fCrv3WDZVo9lfnbq0DgO4x6AbVqbTPR/cgXKA7topaWiqxwOwsNn4OTjFuHaxZZbRdjY3Bdh4uT0JZgqoaDk5zXLwyoVYvrCqSUqFbTtC03DwsMmtC3O8DWaPqhj5CCXuATBgbPk/zo1hJtNJe3a77+9javXeiTl/YBX+fVpvTVT3y8brEN+Oj8s9IGPs+VhIG3abq/DNW6IyVBFzikFJwsK9663McYS1bwXQcB3Li34sO7K7JS8ZU3Jizz2vqKNS1bw4B7M9tQTUKXcT/E9ySjOGCRlpSqZVU0UNhA7Eirx5E79hxarTmY5qimxXNs0L3fZh9sb6momkccgXuRS1m5RL5L6Du4rvxE1+AXDSnFJ9Lsk9AlK1zurnOkFAR+wKgXsEgrq7tZlczXJVnRcO8kIwota64fWyHnIq2II5ftQUQcOWz1AzxP8oc/XpOVNbcO12hjN19fen1C3bY4XcaiW8N0VaKURrUtSeTieS7zdWVFhpXi3klOFDo40sVzpNVV3aevehk4DyIvCH/wwQnGwNff2TqzY35zb5df+a0bfOf6lF/8xpUzO+5Z4+GezWmN2Ar3YvoPPbhlZWv2TatpWmtNYipFWlRkRcuw5xN4kiCQGONysrKNyVHf5/2DJYPIZzwIuboDdWspxL3YZ5VVzFYl28OIrX7A71+fMuseyi+/MbHaD2wte76ueH23xypXFJUi8N0Hyi13plknMpMIwA8d+pFllL1Ix9S0UMzXFVrbEmAU2H5GFDhM+hH9dwOqusEIWKU1x8uCO9McrTW//8GM0LfluMkgZLaquHOcolpLhe5FrjUXFIYwcEkClyL02Ops7wPPsonev7OiH/uM+wGqsZTWu7OcyHfQWrM1jNDaMBmEXBjHG2Hm/XCk5MJLXNjOCkIIRr2AojNSTDsH3lVeU9fWO8x1JTfurahqe//ebFckse3hXd5OGPcD8lxRqJZ5WvGb3z1gldkya1Y0hL7tcS3yCoxBNe1H/cPY42RZoVrLBFvndaeJsn5e26OQtLCOyr7n8IXXegy7rLCqWzxXnpmo8Ek4DyIvCD+8OScO3Oem9T4OV3YStoch371+8pkOIg8jL22pCmMfgrK2fZKdUYQjBbvjCG3sztBzJZEvuXOcscwUbdPy47sFl7f7eFKiHMMqU7iO4Ec3F+yOYw7nBdKRzLOK2bLk2m6PYewxWxYczYuN55XRlqIZBA5F3eK5Dsu0plItjhScrEoMbLQXuyO76LVaM+8YLatcc3EcUzctcei+8N30KqttBnCc0e+8wd641N+IHw/nBXcO19Ra43V00jhwcVwYxC5COMzXBb4nqTuDwDBwbc/DdZGe4fqd1aYkN7gSIKXVAf3w5hyJ4N1rYzxXolubfWWlnSbZtpYh99N7O/ieg5vVTAbhT7QNyukCnoTeZvENfIdJP7QaJ2VFmaqbpRIF9h6SUlA3LbPjkryo8HyXL702YWsQcDgvSHPFKq+ZryvSogYDAsNrF/sgYHeYIB3BbFlyZ5qzNQjohR5NYxgmHr3IY2sYUVYNwpE0qqVULVuDkO1ByOGiIC0aeqEPCUyXJdl90yxfpEnmeRB5QXjv9pJ3rg7PtNQhhODr72zz97978FRsmM8KepFH3rFBjLGW7bWyKvU0VzjS1t1PvX+kFMSRx83DlBt3V6zLhltHa6LA4dJ2jEYzXShKZed9lKpluqy6SYaavLSZSD/2MdMcrVuO5hnjQYDjCJTSfHh3ackBBqq6IStaZquC1hh2hjFh4D7QaB/1/I2P1qke4mXMbEgij3rd0nYBOPKtel4KQV41TBc5y6xmVdRcHMc4UnJpK8QgeOvygKN5SaVsptePJW9dGeBIgRSGG/dWVqkfuDjdlMjAcwh9afU2mUK3mjvTlMnA5wc35yxSuxAWZYNq7Mbg/YPlIyOJa9WyzOrPnL/Yx0Ebw92TvCOANA9kTqdlr6JqOFmWDBJrO+I5kjcuDjozz4obBysOsgZZtHxwsCSOXO7OMlwhKSqFMVZvZFqD40qKuuXiOMFgOJplrIuGRVqjW832GwHDJMR1JWVt+1a+76C14cZxijZQNy2Xt5Iu+2BDM647qxbVTfx8kRXX8yDyArDOa+6e5Pz8Vz49K+thfOPdbf7uP7rND27M+ca722d+/BcB33O4utOjqBraViNQzNfWffTG3TWDxMPzJFv9kKxsGCa2p3JlS3NvlnGyKmlbO5ZVa7i6nfB+tWZ3EoIRDBOf+apCCGuBfmFsNStvXx0yGQT86NaCZd6A0RsTxQ8PVhhjeP3CgCT0cBzBvROFEHbHLoC0qFmmNa02TAYB28NoM/sBns6r6NNimPgMYg+/oxprrSmKhqybz+27Dv3E78Sagkq1FKVmd5zQi2xjXBttFzxXkoTWSPGDOyvunqTWv0kK9i4NqOqGUtlMIwxcIt+hagQY+PHhmrJqOZ7n5HXLuB/StoYwdJivKgLXIRsoRj0fz3U4WZVUqiUrVWco+Gh2oo3ZqLzPGrbJb7O4U7LEJ7/pI6uch0V/pwi6fk5gHMLAsY4NZcvbV4f0I4/f0IY704wgcCz1uWrJS83lbWt/susasqJGGdtvGcYBaVHz4QcrEJAELlsDn2EcUCnrJuBKiWqs2Db0XQLP9sYWaUlRWR+tOHBxXYd+Z3J62uyPgkdV8GeN8yDyAnD9zhKAd6+OzvzYe9dGRIHDd64f/8QEEbBiqKN5hittNiGFFU5pDGnZYDRsjyJGreZkadXwqj0dSwqx7+A7gqppMEbQiz1G/YhR7HFnllMqa4P91uURRhu+/d4xB9OU2HdxPGkproEDxjK+DqY1viuYLiu2hhH92GXY93GR7G7FLLOaG/dWRIFLL7SeXjuj59tRa23Iq2bTUH5WCCHYGcUsswVSCH50Z8m475Pliqs7Pa7sGEBw62hNP7bUY88T3JnaSYT92OPyVkJZt1SNtSzfvzVnvq7oxR6h71hiQ1pTN3YU8N5rI2bLkKNlQVbU3J6uWabWQmYy8NHG8NqlhFVqVdZF3bLKK4rbDaPOQ6tSLVKIx2bjWamYLkprXbMdn3kJLK8alpllijlSPpVNjexKq0XV0I+tIl21+oGMX3WeWQfTjHsnGaN+yLWdBM9zcKVkexzzjS9sczDN2BnHpFXDMPHYHUYsM4VqW7YGEb7n0GjNIPH43vtTDqY5SeTgORJBy0ljzUONMWxhe6w26Dt8+Y0JlWqgy+zfv7NQdwbhAAAgAElEQVTk9Qt9Xrv40UCxKHCfKlM+HccL1vfueXAeRF4A3ru9xHUEb17qn/mxXUfylTe3+O71E7Qxn6l5Fg+jrBvma+utdKr2tZbjEZe2E6LIRbca13WIQ3vznw7mSQuF4wh02zVsJwmqhdtHOVt9n91xzKRbrNKsspThtmWdlfze9Sk3DlYYbbiwnXBtOyGJfZLI5dZRyiK1pa9h4pHVLZN+gNFwaTvBcySOgHWuOxplTVE1vHN1SFYqDIZbhymq0bxzZfhUOofjRUFR23Lem5cf3yNrurkpT6KanmYRWamYrwtCz5Y4slKBMAgjOFrk1LUVxqVlS5rb2ntetNy4t+KDgzVZpZj0rBVM02iyrObeLOPmYWqvA3YxSfOavKqZzQuqpmWZdc1bV6A1tgGsYO+1Ma3WtK1duLVuaI3hC1eH9CLviY3dvGwsdVYbqloTh2cbRNzOnNPa3D/9M3K6+BpjuHOcscprRr2Ay9vWdNPzJMYY3ru1sJlGpyUa9wMQhkvjiMNZzu4oxpVWzHfzMCfLG17bTdjqh/Rjn8NZhjGS927PuXEvRQqDbu01WBc1/dCjlA2zVcUHB0vuTDOW6xrHsQr3n/3yBSR2Q3S0KLkzzYhD77ECTtW0nKwqPEcyGQQPZH5p8dE4XteVPM+29DyIvABcv73k9Yv9Fzb/4xvvbPOtHx5x4+6at56wKL1qnCxL3j9YkBVW89FobctGXV/BdSTbg4jmqukcTIMuQ8g6mqPVb5S1RhWKty4NrMo59HAcyReujpBC8Ou/e5M7JxkC2BmFfHh3xd1pRllrHEdQ1dZtdroqcZxo42rrew4GQeQ7rAvFpe3EDmSqGt682OfKdsJ8bQ0PB7FngyFW1LjOGlxXcDDNeefq42fB3I/TkarGyiQewf2Djy5O4idy+CeDkLsnGVII5mmFbg3LvMYRAulYh9lcNazWNf1YWTtx38HzJO/dWdrFwkDmNtDNVWlbTVG2gGGVVeyOY5LQ2sXcOym4Ny+s4BLbOwpdn17o0xqN1tbE0nUkx/Oc+WFJrXQXWMVmNOzjAuMg9ju6trQZ4hkj8B0ub8do/XyaCN3Z5qdFTV427IzCTS/Kc+01PZ6XXBhHYAyLdU0/rrk0ibg0iZitnY3AcpVVLLOSdV5xaTuxoxGMoKwVH95NMcYgOx+ytjWkRUOtDJ5rxZvGWEWNAPqRTxy6DOKAJHC5c5IxX1e4rnjierNIa8q6oYSODPDgqINTPO+G9DyInDFUY3d9L9Lj6qtvbyEEfOf69DMbRKbLwnpPlYq8UFzZTqgbTdjdwKdZ1MVJbO0wMHz/gxm+63C8yPE9hzSzN38ceTiuw6VJ3JV2LEvl+x/OuHWcEngOge8QBh7LdYnnSOLQWrNc3IrxXJdeaGv771wZcttbU9YBg9gl6+jF799Zss7rzQL4J79+mYtbCbePUppWs84r8sqSGaRjhwKNnjL93xlZN+EocB95UGtlF5patQS+Q9W0T1z04tClH/u02iAFNN0wqVZrhlHIqCfs4COsPcm1nZgvvrHVZSErVNPg4nBtp4c2hrrRrDKreNcaruz02Ht9gudaO5lbd9cYrM2N70mEFEiEDSDGZkeLtMYRcPM443hZWIZX7HHrOMWRglUmuLqbPFKuCnznTAYifRw+zSbOkZJ+5LLKKwJfdpmTLUkezXJ0Y+eLJKGHag1Sam4fr0kCl6s7PVqdsns5JAolR/OMrFBcmMTkheIHN2b4nqSsGjzXwZXCZudbCTePUmtQKrH6EaXxPMnuOObahT6h6xCFrvXqkmC0wXUFWhsC7/FBIPCdjaOvNlaYGofWM6sXeUj7aDw30/A8iJwxPry7pmkN7z7FDvV50Ys83r064jvvTfnlP/nWC/s7T4uyc9u1E98EFyYRg9jncFZweSvmrcuDTdlnldfWckTKTS1cSsEirVlmttnue45lC7XW52cQ+fiuDR55qchLxeGi6OaqB0Sey+4k4OZhRqsFw9izFugIskJRK8O4b9laN+6tWOaKQexZ19qVAtHVvY3NGq5sJ7StYd6Z55W1Is0bAs9l1At589KQdVGTPKX3k+c6TAYPLmiL1JYXZquys2exvYRe6FGrlqJuScIHG9JSWMbVh/dW3DlKyUuFajTbQ2vPHgV2933vxDK2ZmvFB3dXneq/xZEOceTiSLgwTlhlCoNGTgXCgcW6piwV87rhw7tr1qXi0naEIyRNa5itCgyCwJUEvktR28FUroTb99ZIR1BW1lPLAeLYpx95G5PLzyLK2m4iktB9YFfetBoD9EKfda7Yv7nA9SS+Y00+i1pZCx0Mq7Tu6LY+87TiaGav//EiR7UNZW17Q2muiAYB87WdNbI1CHj7cp+mNbx5uceHByle5zztSCi69233Q959bUjg2bn2t48z9m/OrUOwtj03geB4ZUXIDwfPQezjSonvCe6eFLRakxaKa7s2iH9a65nzIHLGeO/2AuCJI2/PCt94Z5u/9RvXmS6LM7FVeV6s85qTVWmVuYEVPNkGbsuwb3dqnis5OE5RraHRmjRXlHVL6DsbF9LpomBd1BRlQxK6FGXDtZ3EMk4Cl6rWfO/9KVU370K3lrk1SHzeutjn2++f8OGdFU2rcSVIKVlkJbO1wyCxlu+OFKyKGiEER4uSwBU4jkEKid9RXFutOV4WfOf6MWlec7wocVzJqGdHxPZjb1NDPpoXXJzEdpf+jKWAtFCobpcppdjMlDCw8ZhSquXtK6MH6ty3jzNu3l3x3u0ldWPwHHAciedJPrxbEgcuw15AVjTcPk4plGKcBPTjAM+x80KOliX9JOD20XozV973XRpt+Pb1E+ar0mpLXEsnvjgJu7kj1iGgMQan1dCJHxfrEtd1NlYd82XFoOcRG8OFcfTC2UHPi9MsEEA1D86IuXdilf3a2OAthBXFms6eZHcckZe2J5V1tNxlGqA17N9ecLIoCXw7z2WRVggjSGKPvLJsKSltIz/wHAax4GhWMl0UrPKaOHC5dqHHMJEgNL3IRzWG2BcsioZ705zpumDc95n0wi4AwmJdYsyjfdjjRbERKJ7epmf5lZwHkTPGe7eXVpX9grnxX39ni7/1G9f5/fdP+KWfenVeWk1rq/yR79oShyMRwoqdatUijOD2UcrdWc4g8Qk6U8bAk3ZAkjY4naGdwPLaW6CfuPRC68s0W5fcPclpW9skTbOGwLdGja7jMF1VmyBkjCHwHUxjcBy7y4pDS7cs64ZJL6TRhjhw+dHNGXXdsjMOmfQDjpZWMSwQ5JWypS6tqauWQewxjH0q1bJMawaJzyItMVgn453RswdyKQUXRhFFF1BP53LUqrXEAGMb0K9fGrDbCTOni4J13qBaDcYGy1q1HM1LlmnJsYZJXmGEzWDKqiWaeHzp9TEnyxLValxX8OPDNYedi0AcWvuStjEcLwoWWUWlNKAQaO4dr8lqjSMNoW9r6m9fHvHmpQFR0JkO+g690CEOPWtXrlt6kfeZGyF8P+5n8d5vp2+ModWGYRJQqZatnZD5umJd1JYunNV8kCsklkxgxbOWGn3zaE1eWD1I0xqE/5FGw3Ns2XW+LllllhGVVw1og9Lalnt9awezSht2xgFHcwVasMoUFycxZd2wMwnQ2DJWXreMEp/Qk8zXNd+5PuWLr03QWP+yKHDIywa6+//KtmXpnaXG6TyInCF0R7f7qS/svPC/dXESszuO+M716UsJIkXVQrdA349hYqmQw8T2CIQQFFXDuBdYc8XIxWBZL02jmfSCzXS+RaY4nBd2h594lMqqgvNCEfsRl7Yi4sDl7izv6JYtRa25NyuQAvJKMeqFvH6xx84wIitUN8/aMOl59GK/qwNbaxPPdfjGF7bpRR4376b84OYJdWvIy5atocOFcULTat65MmAQB6SV4vaxLTGMesGmKT6I/W5kqv3JqbDrWTDph7iOwHloypzsbDb6iU9ZNRR1y7Irfe2MIra6aY1R5BD7dv73zjCyAjZgndXsTiyTaBh5uK7EdeDabp+f+WLD965PmS1K4shFG0Na1PQCq86fLiuEtL0O33MQBu7OcmplkNKy1nbHDmWtqZQiK2q+fyO1kyGF4MrukMBzaLWhH/tM+uFL0dI8L1zXZgIPU4CF+Ijqm0QegeeQFWoT6LcGEdvDiGVacmkrJi8Vi7SmUFaAKbspkltD+32d9q2CQOI4gp1xjOeVzJY100WJkHY64PYoZmuQWHZcoSjKlpNlwTqrMcJ05pku/cjHjOx1HQ4CsqzGdR1C17Flx7REa2gazeEsJ4k8tDY4jmCe1g+M+z2T63imR/sjjrvTjKxsXog+5GEIIfjGO9v8vd+7TVk3T7RmPyucrApq1XJxEj/wt6QUbA0fnLMRBW7HNNGMetZFVgqbtazLhmHPR2urLM+15t5Jzt5rI774+hjPkRwtChbriv1bGrAeQJVqOZ4XVFWD0tpu7wxASX/pcW23RxS4XO/KiVJKLowjikpv6t7rvObWvZQkdvnDGzPWWcPpBIe8qBkPQrYHMZe2E5LAI8xtCWyZ1vQij6u7Paq6JQwc5t3Y3sBznisLibuZHo/DZBCyd23EbFVyNC+t4lnKbhKjx+sX+ziO4I0LfUrVdmw0O+429h008MHBinvTFCME68zSpT84WHM4r0gil+ncTqQUQNtqjhclviuRUjLuBWhjOmPAlnVe4bmGpLO/nx9nZEXN+wdrdKPxA5d+5JIW9j788ptbGGOeaV7IKqtZ5dby/FnNRVutbcb1jLvro7kdTJaXFY6EcT9ESsEqt8O6TrUii7Tk4CRjmdW8ttvjnasj3rrUp6pjStUwXdmekermvQC03WfSxmbay8zaqfiOLX1mVUtrWgyCsqjxOreG13YTOxgMuDNdU9WavG65spXQTzz2rg5ZFQ1Xd62m5NbRmij0cIShbTWR71KqltnCDiDrx3b8QVYo4tDt+mjBmU6hPA8iZ4j3NiLDF9sPOcXX397i//7WLf7wxvylZD/AExe+hzFMfKq6RTVWUHXj7oqitqNdL23FJJFPL7IMlCiwxnWrrCYKHMqq4fY0BWPYGUakhaJuNGXddiNELY20NZqsgEVWkd20E+ri0KFu7IN7NCtptSGv7UTAKHQ5WVcczDKUNmwNAsq6wXcEDXamuJAwXZQcaus3dfMwJQwkvmuzolEv4N5JxnRRUKqWOLATB8/SCt6K3qwba1415BUgDEpZ+xMAOlfhtFB4riSrYJlWFK7kaJ5z6zhjntqxwrNlRVYp2tZQqpZlZhcYRwiUtur8vFKkBTgSAt96a5VVyyJtGSYeke+yNYhQuqVSmqxsNtbo22M71fD9O0t+fHfJz3/lMnmleO/2giTy+NIbk81QpycxpiyF2qrMnzWIHM4Kytoqt59lcJgxtty37O47IaxR5Xxlz2V2b00Sud09x8aVWgh4bbfP9388Y//WkqpqKJuWrWHEfFmQFQ153bAGktDrKLaKdW5JIf0kZBi7RK4grzVt7JAXilVW870PT2hbzSy1Y3DjyMV1Bb3IZRB5HMwKHCFY54ovvT5ilQesspp7sxzfk8xXBeLIWvz0Y7+zbhFcmNiBbIEvz2QQ1f04DyJniOu3l/Rj74FRry8S714bEQUu370+feFB5HRX9rRMjrxsOFrkrDKF79oSl8HOGhn2rWkcWE+ig6kVu8WhSxx49EKPrUHIrcOUD/IlQeDRC12i0KHVlpIYeoK6cTBCM19VNG1LGLjsjgIcx7Fq5U4t3Qt9hICisl5QWdkQuLa56fsOAkngumwPQ1zXIa8aHEewXthsY51pPCkZ90O2htaaxdJjreHg85SznnzdFOtC2SFE0pa2PEcS+A7X7yxZ5TXTeYHjSgZxhuMK8kLhus5GRLnKamrVUpUNbdtSqIZV3hB6giiQYBzrEmAMvmMFcVmh2BnH7Pgho35AWbXMlgWOAwbBhXHI6xcHfHh3TVFZH6dxYu32v/rGFj+6s2SZ1cSBY+3ms2rDdjsNuAJbJnpcxpCELutCEQbPvkM+tShRjX6m9+2Mom4wk8AYsSEAhL5DUTeb3Xov8gg8SavtzPR7s9zOR89r8kIhJVzZ7jFKPOq2YboqMdogJShl+12n1zsvW1xH4QgPhGDcs01zKQTDJOBkVTJblVSNZhi5vH11yFuXB6RFy71ZgesKosDa4CwzxRsXekzXFXeO1xws7Ehnm4E7XLvQZ2cYcTgvKCtrGJqViuNFYTcpZ4TPRBDZ29v7a8A3gd/b39//d+/7+VeA/xars/k39vf3f/8VneJT4b3bC969OnppdWDXkXz1rQnfff/Fq9dPex9Pi6YzfksL24TeGgY0rcGRkjS3Q5IQMF+VGGMnJapGs2oqtkcRJ+lpU9Dge3bAz+u7Pa7fXloPp9yOaR30fNrWmjqCoG6gqhXLtEa3LZe2B8SBS143pHnNUWkfqDcv9xj3I5pGc7IucQW4jmDS81GtYbrIOVqUlKrB70Rm331/ymsX+viuw+442ggD+89QtrkfWhuWmXURjgOXfuwxXZZ2OFfdcm23R+hbw8dbRylpqbg7yygqhee41KrB6+r1o15A6Dv8OK1JCytAjBMfk9mFrCxrssLguy7Ks+QBxxGEoUfsuwSBtMaCkcfbVwYcHOcs8hphDFujmF/42mXa1vDhwRrPlZ2BprUin2XW20xrzSCxQXaZVShl2B6F5KVCOhKDHYccPSbRmAzCTZN6ndfPREwZ9QLSQjH6hNkgD8NzJRfGsXVwXpZkZcMg8btxwwYhDMvUOkYPewFaG24erQFLhz79ri6MYlwpWec1rpA4DjRNi+M51K1m2A/sHPa6psUaMArhIYVkXTT0E48LYWwzHtVQVIpGQ+YIMIJ7JwV1CyeLnMs7CfdOMnZGMaoxXNtNCEPbd9Qago7tpzU4wrIAm7YlrxrqhWY8CDpnAXNmrLlXHkT29vZ+Ckj29/f/xN7e3n+zt7f3M/v7+9/qfv0fA/8SoIH/Gvizr+o8PwnLtOJ4UfJP/mMvlyn19be3+Yc/eLXq9emiICsbRj1/U4roxZ6dD9JYVfIgtg66i7RCKc33Ppjy3u1lJx607KjbRxmt1rx9ecgo9pgv7W5LG0MwlCxLO2skUy1ag+916vdIYtZ2Joadt3DqMCssXXK3x+Hc9lkqZXsa2sDrO31WRY10BL7vcGea4fsuRhvq1i54vusQ+g4nq6qb0a7YuhCShFaXscptqS0y5pk3D/N1xXRZcLIq2R6GaBPjudZzynPlhjkFtpQyW5VsD0K+/0GORrF3bYTBUHsOruOwNQi4fZiS5QrPc/BdQVU7KNWyLu0xXceQZjVSGALXYZR4rHLbwF9kFavMpWpbRr0A1ZjNGNbf+cMjJv0QKWzw2wxzEvDtH51Q1g1bg4jdUUyr6azTDW9fGeJIewyEvS8eh7ppNxnFqXfV06IXecTP2A8xxrDq5po3jSbwHVTTbpyMPdd+l1vD++bNS8HWIKSoGqJQEnoOvcgncF0OZhlH84JaNRRlQ6VatKErITnWKt/1UFWD3+lsslJRVA2hLynahtmypG41vchFtdALLTFinlY0LbhdqRWsCr2oWuLAoZ5pLoytoHPYC6hVQ1Ypbh9nfKUXUtXazi3xHA5n+eY5OavBdq88iAA/B/x69+9fB/4J4DSITPb3928B7O3tvZxGw3Pivdsvtx9yilP1+ndfkXpda0NaWrriOlebG1N29eXJIERrQ6s102WJQJCELu/dtkI+VwhGiccitQKsUx3DIPaZLu0YWCEFShvKxuoZokaT6xZXSq5uJ+RVi26tWZ421updCJhniqN5xvY44upuQq/zzgo8yaXthNcvJRRVyI27guN5jufZUb4CwFhVeD/2eOPCwI45ze3kxX7sEfpuNzDKPtRCiG7xaNgZRU9V9jvdCQph3y+AC5OYWrWPUGPj0GPv2phFVnF3Znn/61Lx9be3+NGtBSfrkqJWmzGpw8RDG5gA66LBcwSeNOSFQgjwPAeJICtaeqHLfN2JHuuG2bpCCGEFoZMIEDSN7kgLmnEvACGY9APmWU0SS5pWE/iSyTDkeG6FoBcnEb7rMOr5n3g9As8hCT3qRn/itMGTZUlZN1zs/KyeB+tCMe9G+caBnQroew7+JzSck9CjVpqqsX2PQeLTjx3qw5ayami1RkpJFHokgc/lnZgL48j6Y0k7TMxxJXFgm+eB51CrhnXRoAGMYNyPOpYXHM0zJv2QVmuEa7NPR0p8T7IzDjHCKueP5gV1o6lrzXRVdnqthjhyubydEK6thbzvSRtECkUc2ufO96wb8fPisxBERsD73b+XwJfv+518wr8/EVtbL9ZS4WHc/u0b+K7kp79y+UyZD5+EHeCLb0z4/o05/9o/f/aGj5+EUz+rrGw2NtSPe80itfTbtGhAayrVEnlWCDjqW3FcXip8144Qna5KQl+ySBVR6HFxHFIpTZG43JkKPO8jT6te7POFayMWaUVW2tGtaa4oas3tkxzfW/DVtyb0Io+f+9JFtoYB+3dW3D7OGSY+F7fijQHi6dwQKQTDnjV6FAj8RjPoZraffr/3lw9XWcWtoxSwfYC3Ln/yZmLU87vFIMJ1pFV3C/EI0y4v1f/P3rsGSZae9Z2/c7/kPSvr2te5KWc0uoJAIQmBsNECARiBsddeYr0G7w3bfFh72S/eiGXDxrEOB2sCiI3YXaMFYzbWSFqvzWKwTYDwggWyAA3SzCg1mpmenu6ue97z3M979sNzMrt6urqn+lJd1a3+f6nqrsrMUyfznOd9n+d/YWco3lq2qUNRoDJFzTNxbJOlmotrZ+z0A7Ky5TiLcupVBzvPMSOdLJObW7vuUWgaYZRTr5oUhdjHn1muMJwlFKrAd20oCgxDEcQZDcsgDDPiLMMyxIm40/C4uF7jxUsDpkHCxbUa51Zq5LnYpxQFPLlRf9vdWVHacGS5iEhvZUA5R5rlTELZQUzD9G3P8a1gHGjl3Mq48DC8uTPl2t6U3WFAHOf4jkXdd/FsA8cxKJTGUsPDMgzOr1SoVBwub00IogzHlHNnahqTMCMv89ujRJHnqowmqAGKrX5EriAvNJJUUXNNPNekwMGxTZ7ZqFOrOARRRpTIvKUoIMkyVpoeK23JGLFNiQvQda2cC2YEkZAQBpOIIM5KIeLdJ3SehiIyBOZL6Hr57znULb5/W+zvT++oh3+veKG3yxPrdYaD2QN7zTmev9DiU599ld6ru3fETjkKTFOn1br9iq/T9N7W/dO1TfbHkaS6UeC7Jqttn2bNYW8Qsj0MSLL8erujKPAdWfGrPOfF14ekWcZK26fqmfiuQX8Sk5Y3vTPLNQxdpygC8kwn0HVMXWEZOrqmSdJbnKPrM6AoMzB0vqG7QlFIK8x3TCxTZzxNmUUZrZroTFzbRNczNE08imS2IzRdyS4piMqkxDTLsY/o2aRpkib4dsyu+cC4KODaXsBKy6PqWdQrDq9dFcfoMJIVqqHLrGMySyTF0NbRDYP+JEGbyQ3bsU2qviE5FK5NmsuuznNsbEsjzQrCOCVJFDvDgK1+yIW1KhXHJsvzxTnYHYZUHBPH1Kl4EuI1DlIsUzu0HTUvGGmuaNdcLFMnjHPGgRQFfRq/rfuCYeiL8+zeg5Cx4lpopdbiqJ5Rg2m8yLe5tDklyXOUUlxYqdKoOWRKlOCdpsdS3WW55bLTD9kdBuxPQgoFNc9klhUMZwk1z8G3NSZBTJIW5SxGsTUISTNp2VqmgW7o+J5Fu+qSFwXPXWxxZrnKNEzZH4e8sTlFUdAqd3xnVyq0qu4NO7p5kay4FjRYhGOBLIaMe5iP3FMR6Xa7q8A3Ax24bpDT6/U+eQdP8zngvwJ+FfgO4BcP/Kzf7XbPIgVkdC/HepyYBAmXtyd84qNPnMjrv+fpDp/67Ku88Oo+3/7+0xmb67smF1ZrTMqIUNc0WKq7NCpiOz7PWM9zoeR6rsVy26Pq2nzlcp+8KEgy6A8jDFOst885FrujkGmcMA0ShrOEveFcWeyhl0UgzURnMgsTDF1jME6oVmyiJCdKMqq+zWg6JkkyBtOYVsVho+Oz1PDYHgRs9QN0TWOjUymZOtdvXvPVm2ubnF+pUhTFfc0Sz5ViEqYkqcK1jYUKf6nuoQpV6hgS6v512/UgTCkQ4oVt6ASpwtAK0ryATDELQ0BjMEn4wLMr1E2Tq3sBVUcKe7vm0h9HfPm1fXbHGYYulufPP7GEUnLzsS2DesUmV+Luaxky3O00XCqexeb+jBdf73NupcozZ5voukaUXC8YI00IFJapL4wBj6Ju1zWNjSVf5mT3qI26VfGYG4Iaus6gnKM1KjaXtybEaY5pasIiS2AaimfcUt2h6du8uTtjEoiD8ngS88VXdrm6MyXOFaaug6Zh6AVBolAoRkFOkhTkRUGYZBJtbGho6NR8h5W2R6vqlG1hWG86NCoOuqbJtRLlKAosQ+d9zyyzUu5qb7cDVKpgc39GmkvErwhf7757ctfvQrfb/QTwT4FXkBbUi8C7gN8DjlxEer3eH3e73ajb7f5/wAvA5W63+3d6vd5PAf8D8H8hBepv3O2xHje+cnlIAbzzYvtEXn9jyWe56fLC1/ZObREBFr3Xatm2ubAqornBJMIxNEZKqMGbuwFnlquYuih8n96o89IbAyxT2kyduge6hmVorFkVPMdgZxhweWu62OnEacYTa1XiXKEVokhuNxwm0wzd0BiNYy6uN3Btk0vXxkyClCQTo8bBNMaydJ4512S79FYqkOJwq0jiOM0X2fFzW4kkzSXz/Ii0aKUKZlFauubK67y+OWFnIMPQVt2hXXgkXr6Ynby+KcFZa0s+V/YC1js259fE1n44kQwXOweV5ximAgVhIiJCYo1ZlFH1LOJyRzB3MRbfqALPNrFtDTTYGwVYhkFegGuJo3CzYoMGnmOV+RlSyPZHEUGU8t3rCRkAACAASURBVOq1MbkqWKq7tOrO9YJROh9YpmSAS7/+6Ds445iYiHGas7Uv73mrZi+CrfaGIdMoJcsLzi3XMA2Drb0ZrYaL55p4tsMsTIhSRaX8+yezmO1hhELYWrolKZOtuktTiWbHMEwKTWZZlq7hOgbnVqpkqWKlLTb7G0sVntqosTuOhRmXSbx0o2qz2vIWszq3jE7Olbg+WKbOeJYsXHs7DaFXp5kS2xygULfOsDkq7qWU/z3gR3q93qe63e6g1+u9v9vt/gg3zjSOhIO03hI/Vf7/nwLfcg/H+EDw0qU+nmNw8RhCqI6Cefb6737xwWWvj4NkITar3wGTptMUKmPdF1+lMM7QdY1m1WUSZiV/XVZlnmMuqIjvfKItu4hJxJWdGfWqTdV1ePpsgyhW7A1nWBZ4SsdzDNaWqmSqIAiFNpqpnPc+3aHuu8TXcuy25Fg0qjbbfR1Th/44IIoSnj7XotPwRPzoij3IWksKiCpEGfxW0VxS9rfn35tGzuZ+QEFBo6KOlKy3NwoXWfRnl6tC1cwLNA2SJKfu2TQrDkop4lThOSbvvNjmlTeHvLkzZaUtiZGuY7LeqRJFKV+9MuTqXkCltCFxLJ1re1O2+yG+q8ugtiKznjjIeX1rSBgLxdgyoVGzcE2Thm8xmiZEiaJRsfEdQ3YgpkGj6rDcuG5xMo+knQYptikttjDJaCqHlZZHURR4zvXCaho6PACLrVmUEic5pqFhGsYNO5HRNCaIUzTEq02YeTqGLpYllqHjlPOFjU4F25KdtKFrC+NRXYP1jk8UpVRcgyAUqrtGgWsZWJYwrM4sV4hjxSSM2R9FrLc9wiijWnFo+g4KqC1ZaLoEUCkKRoHsUpQqGE9jpmFKqyYiz6W6R6t2/RqcK/EHkwjbMBgFCbmysS2Ze9iWTtW1iI9AYjgK7qWInO/1ep96y//9ErAF/Lf38LwPHV661OfZ8637HvF5J3jv0x1+6wsPLnt9ruodjNUdFZFGxV4wQcI449LmhFevjZlFCc2ag+canFupUfVMZkHGC69u88rVKa6tY+nSG7ZMncEoZhqINsDzLKIkx9B0ibP1LAbjiCjNyfOc4SRhez/g2l7AsxeaEro0STANg9eujYnSnCSTG4Wmi2Fds+owLq3tGxWHlbZPmuVc25tRIOFAB+1eap61yGaveVbpZSVFJc+PNs5T18Xo5WM11jo+jiPZ2Y4tRVc0I4ncmEyDrUHAtZ0ZO8OQ5aZ4qu0OM6I4Z3+ciPgwkeApU9cYBymaruNYJhfX6qwtVSTO9sqAq3szKBRxBo6po3IovII3d1IKRKCpCnBdk9FUVrmtukuaSkCVKoQW/MR6ozwPijjNmIQpui6zG9PQOLtcu6uwqLtFmil2hyFBJA7S7brLSsmim4YpL17qUxSFeKSVpqBoSCyAUrz4ep/BOKJVv64Qb5TFVyGDetcxsXSNldU6tqHx0usDKo5JxXWJUkUQxhiGRBSMo4T+OGYSpmQ5GIZGmim2SgKFbmiMpwn1msMslt3i1d3pQuh4brmGa0/FWDGV+V2tIm3EK7szDF181OatLdOQRMY3tkTns9RwcFKFbd37PeteishOt9td7fV628Clbrf7IWCPB7KmOD3YGQTsDiM+fowhVEdB91wT1zb44tf2HkgR8RxRdnu3SaXbG4aEiWy740QMApfqzqLY7g4DXn5jn/4kWng2OaYJJdNEbk6y04oThVdayxeFolAFeQFb+zOWWj7Vigw2LQPCkqY6nqUUCqIsI1dyIU1mKZ5tsdzyCKKEq7szciXK7SRV6EZO1ZNW1N4oxLIMXMtgMI7Y2g/YGYUsN72bdiKqEDdf1zEWw/h23SXL1JGzqzuluaJriyngaBqTZoozncqi5dAfCzX62u6UpYZLs+aysx8wCRNGgQxO89xhMou5sjtjPIsJgoRC0xmNY/yOtDyMMrdC1zXiJKfTdLi2a5OrmaRBGqLrGExjgrJXX/Us0MB3DLIsZ3cYkCtJpuyXFOPLWxOaVYfVtodlGViWQZ4X1A2NqzszVKHQNVH/P8giomkSJDa3dofrRTuMxcIlTjKqrslKW9h6NV/OT5YLE8wpqbEaIpLN0pzllkfVt5nFGYNxRL0iyYM7w4A4y5lGKUoV1CoWnuVj2Tr7Y9FKBVFGnCiKIgZ0kqyg6lhUfJO9kVCubV0CsvaHIa9ujuiPYqolgaHiibYpywtaVYc0k11+nueMpxmdpoNfOkzXfYfdUShssDTn8vYUy9QJIvOeZ3j3UkT+d6TV9BngHwG/gwzAf/qejughw5+8sgfIcPskIdnrbV54dY/iLoRvd4qVllxot+qnZrliHKQMpxFXdicsNzzMMjGvWXXIckUQZsSZtGZqro4qCvbGIfWKydW9mcxOdI1OzUYpSgW3yXrb46tXRoyDmP1JjNLguQstzNJSfn8UMBjHJJmojg1NR9fBtXVGM8kTOb9aw9A0kjRndxSy2vToNB06TR/D0PjqlSEV10BlMEkzvvLGgAKFY0mBaR0QahVFwdZ+QKYUvmMuLCXuZIcGlIPSlCQV4d1cxwAsclccy8AyNArk5rLW8rmwXofNMXGak2Q5YZKVs6YY24RUQZqlaEVBK5MiOYvElHJ3ENCue+yOIsJUrPlluKuDVpDlOVqqYZs5u0MRt5ma+JAlmdjYhHGKoflsD0JRSKuCdsPBc66TEMazhFbdYRZlzEIR2c3FhcNJXC4anGNzXTANnfUln3Yqn735QmYwicVxt+5QFA7thsTdRnG2YArNypZrEKRc3KhxbTcgiDOKAqoVG0gxTZ0kVeyPQ/pjSUPMc3GRsG0d37XKUKlcNEyTqPy+IIgLfEeujUIT25VpmKLpGr03Rzxzts7nXtxnHKQUSpUzMI/lpsc4yIiTjCwrCOJMFrWDEMvU2R3CUkPj6TOSq17zbJJU4ega80/W/D24p3N7tw/s9Xr/4MD3/6Tb7X4WUZ6/fM9H9RDhT17Z4+xy9b7bK98N3vt0hy/0dnlje8LFteMXHt5uICeUwaIcMks8p6Hr+GUv3NA1NF1jtSVtIgqNXCnWWlXGs5RcKd7YGuM4JhfW63i2webejGmYkClFp+GwP4owTA2Vg+OYrC9VSiaVGClSKAydcvVsYRqiidgfRyzVXd7/TIevXB5g6Dr9SSTW3XWX0TRhFKSMZzpPblQZDkXcZpky+Ly4Xr+hn14U13PU0/zuL8pJkJDmMvT0HGl7FBQ36I4aVYedYUjNt8iUiN6aVYdJU4K6CmTXtj+MqboWw2kk52qSgKaxO4yol467szhjexjSaQblrqdAR8yRGxUR1UV2jqFpaLqBaRYEcU6jClGc4tgWrqUTxYqtQUCeS2xu1RH22EGa73zhcGVnimvppLliEsiqfs7YMk39nkRvbwf7AGEhTnI2+0LHr3oWF9bqXN2dMpxEDKfiepwreP6JNiov2OhUKIqCtXaljMTNxPpkGJWu1AU7AwkTq7omW3shhVZQdWVmaJk6FccgMzWu9QPCKFvs4mq+6HIcS+ZLSw2ZG4WJwjDgxTcGjKdiPNpp+rznyTZnOlXJfbd0NvcCGjWHPCuwTZ0kU2z2Qy6sVklziUEWc1IT3xX9XFhazNyJ0/KtcN90Ir1e7/L9eq6HBZMg4ZUrQ773QxdP+lCAUr0OfPGVvQdSRG6HXEn2yDxpz9Q14lQRxCnDqU6c5LRrjhSYIMEyZZfgOjqzMCWKRW9h2/Lz4VhxeXvGaBbju5JLresahYJMKcIwA00G77Xyog5tudHlSkGhYVoSN+tYBqtLProhqvpZmBBEEkmraRqWYTANZpKJUXdRBZjlPGajIyKuLFfomlam1GmlR1R2T4NKMcgTT7CKJ+FPWVlQwjiT82MbOJaOZ4vtyv4wZn8cUXXkb+tPY67sThmX+fSuLaaANc8kSRVpqthLQsIoRzdgte0RlaFbvmNyZrlKnGSieE4Vpq5Rr9iYlo5nmYyDBM+xWGtV8DyTzb0ZcarIlOIdZ5s84VniL3YIucM0dFbbPtsDYT/NA8zmsO6RJXQn0HUWRdrQxdm2WXPE+mQUYxjGolXbLIfWpqHhOSa1zCJNCzRdWwRYbfUDpoEYX1LANM5peKLbqHkWk9IJ2HctHFMYUnlRYBqy66s5FlXPYBolOFOd8ys1xoGYl7785gjbzDAMi422z0rLJ05z3tieEMU5S3UHTdeIM4XvyOxsY8mjKKBdcw7VgHiOed+CqU6D2PChxQtf26coeGA27G+Hum/zzLkmX+jt8v3f8sSJBgKNZwlpOQ9YqrsURUF/Ei9+Nmc5zaKc4VT694amMY1S1ts+/UmEVkCt4ojifRKy2Z+SZoosNxcpiIaucWGlXf6+xvpShWmQUHdN8kIjTcXMLs0VNc9mtelR9S1Wmh6OZfLNz65gULA9CjENKWB66Z4rLaWEpzYaInIr6avTMGVvFC60I6ahH0k0+HbwXYtzq/K3aZqGUQZEZbni8vaE/XGEaxtcWKvTqEqL4rUrQ16+NCDNcy4sVwnTvAw0SgmTHM8RfUjdt6jYGllRsDNIqHim7Kxsg91RyGZJZV5r+Sw1mvRHEVkuliDzkCXHvH7Tn0YpnYbLUtND12TOkCtJ9zNuYzXuOSYbSxXZtVDgWvLvAh4Iq3AOif31SXNFxTXJlWgtDF3nA91lVMHCgcHQ9QWJYnsQcHl7TJRkbO8FGKbG+ZUqk7JoNyoWvmsxmknuuu+avLEtMcQVz+LschXH0vBck7wAcoVbGjVe2w8xdGGBDWYJSzUHTde5sFIhTlw6LY+qZzOL8pJurLAMk1GQUq/YFEXBxY0anmOQ5gWeK+f2Xim8b4fHReQe8Ee9Hdp1h/OrD9Zi5Xb44HMr/PK/+SpXdmecWzm543Jtg3Fwvc8fZxIOVXMtLu9MGQcxSw0PCjAM4banShTNlq6TZ4pEKeJRgWvrKCXzF1VIW0LlBVlRGj0qiZTtT1JmYUyj6uC5Jk3XwtQ9ZnEGBTiOwUq7IsPkNEcLU2zL4OKZBpal4zgmtm3QrDjEWU6SKNKSudU8UCCiMplRFQVJeuu50N3gVjOBebtszrRpVCSqN9dkpRxEKaMwJYgyBuMQw9Dkd7IcrxzUN6s2V3YDXMsgyxVRUrAziIiilDhX1Fybqm/x3MUWr1weUmgFtiGzKkptRpIVxJmsthNVsFRz2OlH1KomX7s6pl2zubQpTrjzRYRWWvLPYVsGVwYhmVK4tsnafRRn3gkc28ApeUCmoXFm+dbXiyoKpkHK7iAkSRSDSUxeKHzLKV0AxHfr/FqVqmeTqYIsU/JZ0SBMFKaZsz+KMfSC5aaProulTZzmMqPKcjzXIklyTF1jexjhOzoFGq2ai2dbTIKUN8ZjXMdC5QXPXWjhueKTlSQ6RRFhWyZnlj1s60bRoSoKtvsBSaroNN37loHzuIjcJSZBwpdf7/Pxbzp3qiJAv/HZFX7l377C51/ePtEi4rsWZ5cNru7OCOKM7X7Iesfnzb0Ze6OQXAlvv+ratGo2Z5cr9McJSw2HtY7HLMzZ6Qf4voln6RiGxd44QakCy9DwKxYaIlRzHJ3+JKQocmzbxDRE7KUBa0u+cONNA983GU5iNODKzpROw6FZdek0XGq+TdU1JeccyU/ZigLe3J5x5i1Gf42qTZoLJfh27LR7wWAigVL1qk3dt3livcb+SFa59QMeZRttnygSJlkYZzKrcMSJ2Pcs1nyfKJGbRpopVloe24MCp1CEiVo42FoYYg1vm8RxzjPnmhhl1kieFyw1RJPwxvaE0TRZ3OyyVDGYxuwMA/bHkr+y1PCkhYgooyue5MPMZyTzFhCw8Cw7zQjjjJ1hSJ4X7E9igpKOniuxv7dME12X1u0zZxrsDCLiRKHrYnE/mqXUKxaWJYy3TlPmRRXX4ouv7jELRROluxarbY+n1htMwwTL0EjSgkJBxbNpVBxsS2d7f8YsimjXhQWXqwLLNOiPI+xMK0M/bybXJGleRiYI2+xxETlh/Iev7JCrgg89v3bSh3ID6r7NOy+2+MOXtvnBb33yRAucaYjb6HgmJnGDSUyjYjGaGsRpXlpi63SaPk+s15mFGZou9tm+U6CVz1H1xOBxueXy5tZUBG9Vg2cvtGnXXV6/NqYoJEOh4hqkuWK55VH3baZhhqVrrLUrtGoOg3HMa5sT0lx0E1XfZqXikWSKpbpbZmWIIV5SBilZZZtlGqbMwpSqb7G+dPcOsm8HVRQLpfRomlD3bTzH4uzKgd1QkrFVtqCeOdfAMDTG05gwTnFMgyjLqfo2O8NAaL+ZYqXpYeo6ioLhNCZKE2oVm+WGrFrHoST87Y4iznYqnFmu8urVMXmu6DQlG7xAwzmr0x/HtGo2r1wZ06zbvH51TM03JQXRMdkfxaS5GBRWvLlBpxSReYb5LErvyPL9JJBmOdsDIR7kRUHVNam4Btv7IRudChfWaoynKaMgwTQ0ru2FbO7P8GyD4SwhClOaNYcLa1WyTKGAJFGlHY+i7lnoaGy0fTaWK7RqLsMgZjCNJU7X0qn6pnig6eLoUPMtwiTHtXR2BhFpnss14xqYphSzeWtQclLEXXvuPp2k+V1n4ByGx0XkLvG5F7c4u1w50dX+rfDBd67yC7/+Mq9dG/PUmZN10F9peSRZLpRaQ/IY1toVDF2cZrcHAW6Zt+DYBpOZqJxHQULNN+lPYgxDE6tx06RVd6l5Nq2aw/pShbwQnyPT0KhWLCzDkES5TIadWSbtsJW2T5QIS8w2dVxLo+pJiuKcPrs7CElzRafhlsNhuRgbFaHz7o8iCiQA637G4b4VuqYthumVW/g7zVfygLCokoxMFZxZrsqAWtOYBZINr2uiGM/znJWWS6oUVcdixwzo1L3yRmWRpoowzjH1glrFpm3ofO7Lm4ymEvI1V3k3KjamobM/jmhWHTS94Lkn26Sp+EMVBWUImSrtUPSb6M73c7B73EgzcTOm0HjH2QY5BeNpwmAas1kKWJOrCs/R2RmE7AwjcqWoejZRLPYj7bpHs2qz3Q8l9VHTsC0D1xYyhW7qPLHRwDINxmEmOTmGznq7QtW3WKo77A4jbNug4tmstC2aVQfT0tkfh9KiaricWaos9DeSYljmh8wScaw+htbhw/EunjLsDAJevTrmL3zsqZM+lEPx/meWMY0ef/Di9okXEUPXWW747A5DTFMG0Lou/klJFrHS9DAMfWFF/Xo6oj+RZLw8EypwUTL26xULy9CoVWyevdii7tk0qjZ5JgFAKIVpGhQU1DyHaRBzdS+gXXOp+zaqgI3lCp4tQ1VNE/5vFGdkuSJMZNYxCVKWm95NCwTb0h+Yrcxqy79t+lzFtUirYsDo2kZps5+w0vSJkhxd0xgHMVlecHV3iucYDCYpjZrGestnHMSA/I39SUiU5NQq0ipzXIuvXR3SrDk0qg79sewqtvsznjzTwLEN4tQoM+cNVtoe+8OYV64OsE2ZoTQqLrYlWSIHd8NxIlqWSlncTjMmQbLIsK/5juhnTB3H0BfzOU0D0zD4xm6HN3cmjGYJzZpNw7dYW6qyNwxLX70WrmOS5QUV3ySMJC7ac0zqFYu8JE88c7bBasvFNDXapfGi50iA1SScUKiCZ841WG5Im3ZvFNI3dUxTZxyki4CzXInLcpjk5EqsVo4Lj4vIXeDff3kLDVnxn0b4rsk3vKPD517c4i98+1NHNrY7zuO5sHbdV2w4jbm2N2VnEInuYrVGs+oQxhmmbmBoGutLkuNhmTpxohjmOW/uzCRCN0jYHUV4tsE3vmMZTdNp+DaaXlD1bDGZS3N0HXRTZ61VQZXq9tEs5txKlbWlKrNIqMRfenWPLC8wy9jbW63+V9s+6X2yijgKblVA5lHIzVLwOItSLEOnURHKdL1icWVnRs2zeHKjwbMXWrx8qc80FFHa8xebDKcRX359T8SpFDimmDi6rk3v0j5F6X48N1R0HYMzKxXW2xXQpK0ydwoejiO+cnnIJEjYSSPOdHzOr9RuojunmWKrL35iSapusI05TZif335p7QMyx7m8Pca2GpxdrrHc8hhMY7YHIZY54H3PLOM5Np4tdiarLR/fNVkvKeHLTZ8wlqyPKJUExTd3puSqYDLL2R/HjGfiRP3kep3nLrQWNvK5KsrsFLFjqbg2zdKLrebb1DwbVSgsyyTJcgbTeKH/aNUcmlVn8Vk5DjwuIneIXCn+3QvXeNeTS/c9u+N+4tved4bPv7zDF3o7fPhd6yd9ODdgEkjk7TiIsS25qPZHEZMw4fLOGK2AyTSjXXd48kyDOMl55U1Fnk+J05ydQYhtajRrLqaxT6fhkeaKLFZ4dlEyvsRk7uxylfUlnz95Za80wxM9wpXdCbqmL+xNcgXLLUmhu5Xrrq5pd2zVMQ1L2wvfui/zqeE0pj+OxOqiZlNxbdJMSYbIVJIWk0SJh5UpSukzy1XadZdpMKHddMmUoj+OGYxFuBlFOXpVLxlICZNIhq+zIGe5KZ9xyxCdyEtv9NnpB6x3Kni2Safh8NKlAVGSESUpui700v1ReIhmpljclO+HUvo4MJjEYiWSiU26bYmuaCcOsS2Drf2QjU6Vmm+z3vbRCGSeNI3xHINO06XqW7TrYkDp2AZXd6fYls4syonLGYttifmlZKBnTMtdT5IXuKbBtb2AOMvK2F/Ro8RJTqt+o+5jZxgwCVLQCtZ9KRS2KSmReU0cBe6HyeLt8LiI3CG++Mo+w2nCf/qdGyd9KLfFs+ebrLY8PvvFa6euiFQ92b5fXKtTcU1qnsVoFvP65pidQcgsTLBMWVFPAzFBbNUcnjrbYHNviqZDEKboZaiT55qM9gLadYc4yeiPY84sVzAN8UpSShTThg5Vz6Q/jtF1yHMRY2majlvaTrhH6NOHsXhzuZZx29V0EImeBGQle9RM66zUvxxWdGZhymgmpoo7g4DVts9K06Pm2YuEwCDOMEwNEx00uLY3I0lzVtoeFBpXticMpzGeLSaKriPpiL5rEcQpldK5+OJGlTDOadUc8rzg0taEVzfHpInY3r/n6Y4Ua89iuelydqWCyjV57UPSPS3TYKXpEaeKeuX4Zkr3giBKmQaiY6r5Jmc6Qgmfe5ZVfWnDLTc9TEMrQ7J0lhoevmuyVHfY6ge8tjnB0DWhqueKnUGE7wrVeuEIbJkkWcBgljALxRHb0DQsWycI5zRyScB0bXEJrrjWDY7QWabQSuFkrSJMvijNeWNrgu+aLL/FSeN2VkV3i8dF5A7x2S9epVVzeM9TSyd9KLeFpml82/vO8Ku/8zWu7E45exsO/INGq+bceCGUFhi6rlH17UWOxf5IshhUXlDzLD7yrjXGQcpLl/qEcUrNs1ht+YzDjLUlj839AMvUhTmlzQOjCt7YnmAaElvarru8uT0pxWApUSptnE7Do1E93LspV4osLxazkOE0FmVzlsuc5pZJhgee64i7kPnNyjYNaem95XGNaqlLsGT2M1+ULjVc+pOQ8SxhvVNhre1jmwbTKCWIUvrjmLW22NuPA/Gu0g2Ndz+9RKYKnt5oiPdWmpOmBWeWKziWEBVqngVamTGSKzzXpOpbnOlU0DTQdZ16xeX8SpUkE7Fjkio292flzfb6Tct3LfxTuIEPYzlHSa6oeiaZEopsmkkeTPd8iyTNF4sMxzJYa1dYa984a7AtkzhVi6x21zNJpgm7w4CqL1k660sVKp5J3beZBMkiDqHqWiw1HCqOSavqkBfw1Ea99PkqMAydNFU32OBcXK+TqxHTKGMyEyLFJEgokGyatrpueDrPRDno73Y/8LiI3AG2+gEvvt7nEx994kRt34+Kb3nPOv/P773Gv/7Dy/y1733nSR/OAmGcCc2wdEnVNLAsg/MrNaHYJjlhmmNocHlnxmASLfjtZ5erhFHK1iBkHCQoNGqeyXiWlvG1LDKkt8tEQt3QWaq7xEmO75icW6nRjlLGs4Q4zan7NudXD8+CyZXi6u4MVdqEN6syYI3TfOGGeyvMV4JKFUf2KArLYKsky8mVsM4OoupZPP9Em1mUEcaZDH0rNv1xxMuXBiSZYqXlLlagcZZztRTDZbnCMA3e3B1glTG6w3HCekesNKI4YxpJKl+ei8ZD04Qc8eRGg3ZZ/OMkX2RqzKIU2xIqd5YrOg1xOJ6/Z7MwPfIO7KSwNwy5vDvF0KRIP3Wmyd4w5MrujL1RxLufbAvL7G1W8IOJ5HzYpgzeC1WwsVTFtSWgaxKIbY1rG5xZrqBrGrWKxVcuDdgeiGMCGvSnkll/fqUm9vlxhmnobPcD4jTHs68777q2ydmVGoNJBEiWTc23GU5iKq55w30qKEWyYZzf1/P3uIjcAX7zDy9jGjrf9r7Tmx54EFXP4lvfu8Hv/PFVPvHRJ0/FIDPN1MI7KckUy02PWZSRZjmGIdncrVW56fTHwnGXzG4JsVKqwHct8myKpYsNR6vmygpRkwV/o+oQpxnTMOPCaq00+0swDI3N/UBCgdKccZDil6vqWyHLCzIlrq5zB+JG1aHiWbdsOR3EnVKBW1VHWk2lF9Zh0LSSnlwWpiTNubIzZTAVIeW8FQKw3HAZz2J0TZcVrybtkdE0oQDOrvhlfos8XzN3SNKcy9sTcegNM9aXq6S5Yq0tkcEH4TsmVdciVUI4mM86+mPZLR2nnuZ+YRZluJbBaJaw1JCCGCaSB5PlRRkAdvPj9kcRQZzRqNpUXJPdYYBpiq/b+57ucG1/RqoUq20fXdcZziJMXajspi5q8k7D5x3nYbldYW8YsN0PsQyx59d1cWIeTiPCKCcvZLY2X1DNUfOu/1/Vk8JR9y2COCNO8sUcr1lzZLdyn7U5j4vIETGYxPz7L2/y0fdsHKvT6P3Gd37TeX7nj6/ym5+/zA9//B33/fnTTD7sR92ZTYOE3UGE5whFdDSNmQQJu4MQxzaoeTZhLAredt3FNNpc25tSq9g4nfe3cgAAIABJREFUlsH+KGJ3FGLZJq6rEUQyfDyzJCwYyzSIkpw3tmTVN5zGrC1JzGic5tKaysTjqV23oRDtyq3gWAZF6bYaRmLPIoZ9x7MTFafVo1+WWa7Y3JfsCpAkvJUlWaUmWcZ4lpa7Idjo+Gz1AzF2zAqccmjcrDnMolTEb76NpmsE5ep3ueWVw10W70uayUwkiDNRs9dd+pOIvVGEE6QAC/bQYeZ/pw31Mldlre3Tqokn2bnlKkopXMc8dDCtVMEkFPfhcTnTGM0Sgijj2fPNG7qXhq7z9JkG01DiEFzbWDjrhnEmjg77M2aR2OPn6vowPM0VszCTeYxrQQGd5o2fV13XWGmKeHMSpNR9m9EsEcFqAY2aje+Im/CdxhMcBY+LyBHxrz9/mVwVfOcHz5/0odwRlhouH3rXGr/7xav8R9907qZB271gHCT0x9ENRoRvh0mY0qhapFkhmRfTmJ1BKB5YuSi1J2HCasunKAp6lwcSQeqW7CZN2CehJn5YSarYGwk3vl136Y+lddAsg7AsS1pcjbrNLMrKeFDRpEzDpMysVrfVflR9a2EqqBS89c/MciVuvvfAvgqiTGxgPOuORHhKCePJtgwqroHvWmRZQZopXro0WKQ0vuNcE9PQZWeWKnZHEa6t89RGA9vUubY/W/wtdd+m6kv2RLtu45gGkzAlSoSiujuMiNNMnrvmMJrFjGYJw6mQDc6tVInT6/Tg0463zugAPNfk2QvtWz5G10UQOhhH1MpzpYqi/DyJDclqSwwe54JPxxY/sS+/tk+YSBS0rsHmfsBwGjMOE3xHbvSuLZ+Bds1hFiQkWY5h6HSa19mD88/dLEwZB4mkRpaGnVo5jxsHKUmW41gpGx3/NvO7u8fjInIE7A5DfvuPr/Dhd62dityQO8UPfPRJPv/SNp/+7Kv82Cfedd+eNyn796qQm9ZRiojvCPOnUTUlPY8UzzEWrBSQG2qa5YSxpCFGaU6WicdSu+5imwbnVipMgpTtQYihaRi6xnCSsLkfsDsMqTgWq0te6YUlka0HC+hqyxdrk0yx3Q84u1K9qQgURSF2HZ4ljBrbuGGoCSJI2x9HGLqEHt3NDqUoRBhWlPkrR3VBmAQJWV7QrrlMZsJoU6WfU5op5iza5ED7Q9M0njrT4PxqDcvU0HVdwpFKW/QsU6X5ZM7OMCQIExpVZ9ESyVWxOJ/zVp7nmDjlLMC1DeoVm5ovqvbTLii8F9Q8iyBKSXMJI7NNA8yi9A0rVflveUyUZAtR69b+jLMr1XLgbjKcJhRFQcU1iZOM8Uxs+M8sV4iSHDQYl0FlaZZLwBoaqlDkecF4ltJuOAsNka5rlCnLFBSoY7Ipe1xEjoDP/O6r6JrGD37r6VSovx1aNYfv+uB5/uXvX+Lb3xjw7IXWfXneRtUuzd/k5nEYVMlvdyyjzN3waObO4mZr6BorTR+3NDJ89coQgNFMdhNLdVcG0xWLfmmzMd/q26YpWR+GjudYZEpWy7MwwzINbNNY7DwOE1zebp4hFNqwVCTrJWX45gIRlYU0L2/cd1NExJlXI82Lm4rUrRAlGftjGabWPJtOU0wP40SG255jcLZTZXcUsv4WO3Bdv1HvYpkGq22PIJLMknGYcmlrzDRImXkmvmux2vYXPmbzSN1zK9UbWpm6LoX2YIF5lCGKdfk7Hduk03AZzRJypeiPIwxdW5AKoiSTvPlEdm9JmtOpi3nicsPBcy0uajLHHE0TxoFYyRuGhm1KkmSWKXaGIUku7sCuIxb2RSGBXqtL4hc3dwNo1RzqFXk+y9SPLY74cRF5G3zptX0+//IO3/fhizdteR8mfPcHL/AHL27zf/zGy/yPP/rNi+3yvUBuPjdTBVUZ0pNmaiEus0xj4YZrGnrJONFuYi35rkWcyu5AKcVGp4IqV+ogF+38fXBs4wbqcqNi8/SZJrapY1uSCX47ZtBy02MWpriOecOKeZ4ZPgkTNKS/r1QBh1yD9YpNEGVMwhTXihfF8k6xtuQTJ2pRTN8OUTIXXYpSfbnp4drmwj4G5MZilBqHmn97dpFrS5LiOEhIyqFulGXE45zVltBCTVNnc3+2sBI/2Bqp+fapN1O836h6FqqQm3jdF2pt1bOYzBLCeMokSNnoVGn4lqjb+yFLdZcsk0K/VFqavBUH3ycN8YFbqrtEiQSnbe4FVH2Lumksdn5ppnBt46bibej6sYuiTz9P9QQRRBm/+BtfYaNT4Xs/fOGkD+ee4NgGP/o9z7E3jPjV33n1WF9rnvVdUDCayvBx3o4C0VlsDwKu7UmhOYjlpodj6dQqFgUirjMPDO2jVNxrr+xO2Rlcf7xkuifUKzbPXmhzYa1Goyorvr1hWNpGCIqiWIiuGlXnpnmIoetoaNQrUoQ6De+W1jGOZVDxTKqeSZTmi1bFncLQdXzXPHL7J4wzmlUbx5ZZiGnotGrO4qaUK8XOIGB/HLE9CNgfScTv7eDYBkt1oQefX6nhWrKLu7w9Yas/I0nESrxAsjW+XpHlasFC8x1zsSvsNMSjbbVdERptoTEYR1zZnZLlikIrGE4jgigrtVHJoc9fr9isND1WWz5BlLEzDBhMYpbqLq6lU/FMKq7JSssrySc6Xtkm3h9FjGaHP+9x4fFO5BZQRcEv/PpLjKYJf+MH3n0sA6kHjXeca/KdHzzPb/7hZZ452zg2G3vHNnAsgzRTnFupkimx0J5jXlAKpH9sHVjL2JYY+k2uiq/VasvHsYUqKjnWIVGa0R/FrHd8NC1muemx3Q9Ic8VY1zl7YKawU9ImQfKyXdtkZxASJhkV1zqUaGCZOhsdnzQrjsSU8h2LWSixtg8qna/iWqWdvth/H0QYZ+wMQqZBimnoC8JCfxyxXN54blWs5juKimsyCxNeuTrGMnWu7QW06951K/Hb0KJBdqO7oxClilI78misV8ezhP4kwtR11js+o6mIBUEKynzVr2lzCnAqEcWZYqnmkuXig5UrtRBw1ku91EHMh+fDcgaiCrEwWW1XGEzEYsU0ZJ61N5LW2dzTDJAW2ANySX5cRG6BX/v9S/zJK3v8pT/7DE9unGxe+f3ED37rk7x2bcwv/cZXOLtcPRYre13TbqsPaNYc0KTFdVhbbRpkOAc0B3A9OtW1DbI8l6+ZYhKmQsMtf/XgY/rjiKt7M4Iow7PFWt2xjMVuYX7xHwZN0xhMQvbHYmd/u+LguybnVquLWNvjwHiWCLOtIqrnevn1sNbZfLfQrNsYmr6wrx9MYwxTImDnLcFbWax4rsnGco04K4iTrGyNsaBHW4aOZd5MNJibFwZxtji/kyA51T5zd4L5bi4rZ2CObTAJ5TN/cKG53JR21bW9GZlStOsuaa4IY6Gkd5ouL70+YBKmXFit8fTZm922i6KgWbWZhTL/MA1d5oEaDCeymzfKlE5goZLX0G4SqR4nTqyIdLvd7wP+DsIf+HSv1/vpt/z8F4HngBD433q93v/5oI7tD17a4l/83ut85F1rfPwDZx/Uyz4QmIbOj33/8/zkL/4Hfu4zf8p//1c+cOwGbYcdQ6dxa5ZbQcHuMCLLFTXveotmGoqWoVYqzLf64nDan0R06i5pfn3nMHf79W2Trf0QxxL2jKZptGsu0zC97d8dxhlpmbo3KwvV7XCcLCTJp5chen8cLeZIt5q9VD2LuGTzdBouGho7w4CikBvN/GFz08vDRIGGLruxVtVmc3+G6xgEcU4QpwwmsVCdTf0GtuLuMFzQlBsVG13TKAoe2Ir4QaBRcQ6QSa5boOg6N2mldF1jveOTZQW2pbPVD4jinLW2j67pbA9mFAVc3ZveVERUUbC5H5BmOc2qs3jP94Yhl7YnmLpGs+bQqjpoiOvDctNfLAoeZOfkJPeYLwAfAT4M/Llut3tY8MUP93q9jz3IAvLi631+4f99me65Jn/lu7qPJMukUXX48R98D+NZws995k9voICeBtjlYLFe+mjNMZzGZKo0GNT1hRpc1zQ816RVuz7fMAy5kFRRcHGtxlrbY/5MVd9io1O5rRXJXDE+N3k8SWiahlfesI5yQzYNndW2z2rLx9BFq9FpeLTKm9G8eM53CnGaC3HgLTB0nUwVWJZBrqSYWaYhdGdLvh7ELJI5ySyUNtrZ5SpnVyqPVBGZt1YPLoKscnd3mDOxUTLWonKe5DqSvOk6Bitl4NRqW7JjhtN40Y7K84I0k+vy4I55Vopro0TsT+oVm7MrFc6uVLHKFtaDjn44sXe31+tdnn/f7XZz4K0s5gL4J91udx/4m71e743jPqZLW2N+/p9/ifUlnx//84/GHORWeHKjzn/xfc/zv/zzL/GPf/1l/uvvf/7UcPqHU1kdR2l+gzuA75iMg2TBgJoH9swv4oPQNY2NJVlJDyYxhqHjOybbg4AwFm+t27VY5jfB04KVlld6ad3dum9/FBGlOVqqaNUKDE0rhYIJFde85a7GtY3FSrfm23QaEmSV5eqmVmSzKvHDQZLx5s6U1bb/wGZEJ4miEDZinOa0au6hjha2pWPqOplSkqeuaXzgHcuESYbvWvRHEdOyCJ/pVMTF2rcJk/yGLJBm1cbQNc50KgvmoXHC1+2JLxG63e53A1/r9XqTt/zob/d6vX632/0W4KeBH7qT511aurMbwObejJ/99JdoVGz+3o995CaPoEcR37VcI8wUn/y1F/nNjQb/2fecDpNG8b+yMfUbh4Ptuku9Yt9gpXG7Va6maaVrrOwkVFEsVnWzKKP9EI265lqSu3+Cg9/KPw76b90Krm0u5mbzQmMah9u+NKtOOUuKUIX4jX09FBHx15JdQxClhxYRQ9fZWK5QFMViwSM2+uXvavMv2uIfhy1yGqV322nCAy8i3W73J4DvAX4R+HfAfwd871t/r9fr9cuvv9ftdv+nO32d/f3poVv0wzCaJfz9X/4CWa74ib/8PlSSsbv71pr2aOIj71zhtStDPv3br+CZGt/+DTfOgExTp9V6sCZ6q22hNr4dh/5OoWsajYrDLEypV7++NA2dhssszHDsO9ex3MnvV1yTIBKiQ+WIzsUPOyxTAtCiJL/tnE3XtFtGArTrEidsm/pDx2R74EWk1+v9Q+AfdrvdGvDrwF/t9Xqzt/5et9ut93q9cbfb7QLD4zqeIEr5mV99gdEs4Sf+8vsfCtfR+wlN0/jhjz/DYBzxy//mq9iWwUfefbIhVgsWyjHgMJ+krwcY+vGd04MwDf3r7hoC6NyjHZKuacdijvggcJLtrL8JPAF8UuoEP4Iwsf5ar9f7KeBXut1uC5mN/NhxHEAQpfz0P/siV3an/PiffzdPbRw223/0Yeg6f/0H3sXPfvpP+eS/ehld145NQ3JSUEWBuoeZwqOIonSMfXxOTj9O8+dXK05p1vE94CLw+tu1s7b6AT//f3+J7X7AX/+Bd/H+Z5Yf2AGeVsRpzs/86gv03hzyQx97iu/+4Hksy6DVqtxRe/C0QRUFm3sz0lzh2QaWaVD1rAfOYoHr7cHjPp+SLijtlVvdeDb3Z8RpTs2zT0XWzJ3iQZ3Lk8bc7j9XimZVLHjEqeD+tgt1XZvPkp8ALh31cSc+WH+QmN9Mfv/LW/zWF67g2gZ/6y++l+cu3try+esJjmXwt/7j9/ILv/4yn/7sq1iGznd/6OGxe5mG6ULNe5CCmWWKNFcURcGVvYClukOY5Asvr0cNcZovst1zVRyqyldKhsF5XnB5e0KU5qw0Hx1l+aOEJFULZ+DNvRmeazLdz6i4Js3qybdnH9kikuWKP+rtstUP2O4HbPUDru7KykvT4IPPrfJDH3vqkVHS3i9YpsF/+eee57kLLc6cIorrUTB3UJ2GsmKbr8Btq6RLxhmN0q7jYQhLulvomrawdr/V36nrGq2qw/YgFO1CmY1+0jekx7gZniO7jixX2KZBkknssO8YjGYxzap9onq2R7aI/MFL2/zjX3sJkGHqasvjo+9Z5+xKlfc8tXQD9/oxboSuaQ9NBPBBuJZOGKVUffumm+d8sZDliqjMWn9UYZmSbTLPubgVGlUH3zXZ3Je44sN8woqiWHh0PQwBUyeJJM3RNO2+7+Y0TVvsJlVRXLfxKTUmJy2IfmSvpA8/v8bF1RpLdffYfPQf4/QgSiRT3TB0iXi9xYUlmRiPfsvmVhkqb4VlGgsdyGHnbHcYEsTZDVb+j3EzpmHK3ihEQ2Nt6fhElrqmLfQ9RVGceAGBR9gKXtclsvVxAfn6QFJml2gaJNnpsnE57dC0mw0Y50hKx+U0yw+19XgMwdw6qKC4Kd7guHAaCgg8mjsRD4S58SgzNh4UjHKucNrPZ7PmSA56IfYcp7X18rCczznWOxVmUYpnnwyb7XY4Tedyqeli2wa6plHzT77FdDc4cM3ckejlUSwiHwNoNG5O3HuMu8fDcD6XHiKS3cNwPh8WnJZz2Vk66SO4b/gY8PJRf/lRLCKfBRgMZie+OjkuDKcx0zAt+6/eTeaD9xOmqdNo+I/0+XyQuJ/nc2cYkqQ5pqGzdkhM8aOOR+2zOZhEzKLsgVzXh0HXtbnF0Wfv5HGPYhEJQXjwx/XBypVidxhRFCeT2hYl+aIHm6YKzTq+rfP8HB7n+fx6wv08n1GUkSlFlqm7fq4sV4v8+uWmdyoV0bfCw/DZHE1jJmFK3bff1nbm4HWdZQWaeWJ/U3gnv/woFpFjRxBli4SzO+HWzy2jk1Sx1HDf1kH1VmjXHExdOzID5+sJb2xN+Ge//QpppvjeD1/kvU93TvqQjg3LTY9pmB4pwvdWmEUZcZoznqXsjyLW2v49+0A9xnUMpwm5KnjlypBOw2O56S5cpd+KpbrLeJZgWzcnRp5mPDxHeorglgM0DQ33DthfaaYW0aXTML3r1zcNnXb97ovQo4rPvbjF3/+nf8RmP2AaZfzcZ77Ey5f6J31YxwbHNlhquPcU+jT/LIdxim3pTKOUR9AK6cTglUJOQxfx5zS6dSTzw3pdP96J3AUs0+DsShWKO7PJniePxUlOzX+4PiinGWmm+NRnv8ZvfeEK3XNNfuwT78Iydf7uL32BX/rNHn/3P//gQ7Wye5BwLPks13yLSSDRtg8js+i0YqXl06o77A0jiXZ+yArEUfC4iNwlJBvgzh6jaRqrrZsHoEGUYRra49bUEaFUwZdf7/PatRFb/YBXrowYTGK+4xvP8hf/zNOLvv5f+rPP8DOfeoHPvbjFt75344SP+uSRZjlpVuA5xg2FQtc0WjWXVu2xBdBxwDJuzrB/O6SZIs1yPMc89UX9xItIt9v9IPCPgBz4Qq/X+28O/OwngR8ABsC/7PV6//OJHOQ9IklzclXgOSaqKNgdhKS5otNw2RtFbPUDaq7Fk2fqj3Qk7/3ANEz5+c/8KV+9MkLTpI98YbXGj37Pczz/FiPNdz/Z5txKlX/7hTf56HvWT/3FeBwIoozRLMaxDCZBSkFxaDTwYCKMv3rFPjSZD64XoXuZwTysmEUp/XGMaxuHGlreC5I0pz+JsU1pZ+VKsbk/QxUFVc+6wUz0qMhyRZLmuGUU73HiNHwa3gD+TK/Xi7rd7q90u91393q9Lx34+d/u9Xq/9aAOpigK9sey9WzX7t0yJUlzNvcDCgpaVQfbMgjLofxolrA3EprmUCmyvMA6De/IKYUqCv7Xf/FlXtsc81e/+1k+9PzqbYuupml8/APn+OS/epmvvjmke771AI/2eBHGGYOJ3NRuZyI6mESkuWISppi6hq5rZIcwmUazWL5O40OLSJYrru3J57hROXnn2AeNcWnuOYsUzcy+68XeDfeXuotjGQynMVGSESXiX2bo+sIdIM/vfD5VFMXCOt5zzEO7H/cTJ94o7vV6W71eLyr/mSE7koP4B91u97e63e77HsTxxKm4mcZpzub+jM39GZMguevny1VBgXwQsrzAtiSfWkOj5ll0Gi4V16JT9+5pQPr1gM99eYsXLw34T77jHXzrezeOdCF/03MruLbB73956wEc4YPDcBqTZDnjICF9i83LwcH43MOp4losNVxqnk37kAIwz6Y4ONSdhimb+zPGQfKWz/GDsfU4TZifH8cy7okGffD+MppK4XZsue4NXaJxLVOn0/CoetZNC4T5exslGZv7MwaT+KbXKIrr9OfsLorQneLU3LW63e57gE6v13vpwH//bK/X+8lut/sM8Engo0d9vjJc5Y6R54pcN8gyRRCn+I6F0mB5uXZXzwdQa3ikmWKp7mIYOmurjYV52jlVsDP8/9l7kxhJsvTO72fPdjPfw2PLtbKrqqN6KXY3m8twm6EGQ4GCBGkuIqDRQYAuAx0knQRoAN0EnXTQRRB1FARBFHgQBAgjDUQOZkCQ0xwuPd2s7uqKWnOP1Xe3/S06PAuvzFqyttyKXd8lIzMi3T3czd733v/7LzmrrKbG+n1VtSKvJN02LjMvG9LY/1Jx+B93SaX5P//kXW7sd/m73/30843Qd/mlgx3+6o1T/uPf+foTM8Z72hWHHlWj8F2xsf8wxnAyKyhrybAT0u+EjAcxvSbA88THwhp52ZBGHlv9aPMzedlw+2RFFHrUjeb6XpdRL6JpNP2fs3x6gF4aPNLOZF00aG0+0fLE9wRSGepGbZp5Pw1IQhdXiA1R58Jk8cHKyobzeYnn2p9plGV7dmLvoQ2VEA7bg+ihNeRJ1nPRRA4ODkbA/wj83oP/fnh4OG3/fKuN0P3U9UXSzmIXtONQFZrZPCMKPM7OVp/rsS7KAabTD0XJA3B8ntFIZYPkpeR4kiO1IfAcMA5S60/toqq05mRaoLRhZxB/YTjuIj3uWddfH54xW1X8J7978Jkx3l//9h5/+toRP3rrnF/95u4TeoVPtwadkDTyOF+W3D1ds9W30MhGv1RK+m3cwaMIGxfus8Bm91s1itN5QdUoGqnZbdXwj8oA/3mI2v245lBUcvMeamMeipkoKsnZvNgYwjZS4woIfcGDTOpPc6rOSmkNHpWxmyFlacHuR7znSeR/rB7lcdczbyIHBwce8L8B/9Xh4eHxB77XOzw8XB4cHIx5iq9VOA7CtR7+UukP3RjLrCavJP00+EgIqpGK03mJcGBn+Mn2Bf002CTyucJhnddMVzVR6NKNfQJfsFxXdGOfXhq0A0790EVijEEbQ1GpjYvtumj+1rgY//Mf3mVnEPPtr312g6KvXxuw1Qv5s58c/a1pImBhi6q2n/Uqb0hHdve6zhvKquH+ecZ2m1ZojGGZN9TS7oAvrskHoa9lUTNdlaQtvDLoBCShz87wowe7Smurl3IcTmcFRS3pPLB4/bwM4KXSLLOa0Hc/RNg8nee8cWtOLRWTRcn+OMEYax754B63kTaLxHMFRSUxxmzeR60NUml6iU9dK3xPsD2MUUrjuh9/wnxa9Tx8yv8h8MvY2QfAPwH+0eHh4X8O/PcHBwffxs5u/uun/cJswMzDi7DWhunKjnCk0lz5iPS/Vd5scOq8fP9ImZX2yPtBLv6DR9fZqkIDVSPZHoZ0It/u8Dz7vI1UvH1vidKaa7vdzfNfwBhp29SKSn4si2S2qlhkFWnkP3amyZOo42nO23cX/N6/9dLnumGE4/B3vrXH//Pnt5ivq781gWS+Jwh9l7rRm+tn3I8JPJfpqqSWiumqpKoVRSktFi8V2/2Yl670cdpsCm1sM3n73sIyegKPy+MEx3EYD+IP7cAvYqbzSpJGPnujeEMWOV+WRKUV0m4P4seeA/4kyhizIR58nt17VkrK2jaJfiek/8D3LgTGq7zeDNC7ScCoF25gwWVeM12WCMchCl2mi4oodBn17Fpxf5K1TSSw+rS2xHPC5HzmTeTw8PAPgD/4wD//oP3eP376r+jR5Tj26NlIRfQATFBUsm0YPknkscobHAeiwMMYw3xdMVmU1rba8LEMmLpRpJEdqIWeRyfxma+qzY7R0oXtYHNd2IG/1mYDY5SNQjgOceixzGrSyEcbq5D3XSt2vFDLZ2XD2ETPPfX1L392AsCvfGPncz/Gb7y6zz/9wS1+8NNj/p1f/fLkxj+qHMdh0AlZFzVZUdNIO6+4UKEDoO2irzFkVYPnCqTWaGNwHQdtDA4W8rrQzS6zilEvtOK4xCcOH15YJ4uSo0lOozRCgNIxw25kT76eZR9qbUklX4aar+sNO21v5BAFn7wsNlJTVJI4tPf3Mqut8v8DivStbsSV7ZTF2qcT+eDYE5rnCjCAA3V7mszKZmPCODAhg45BKbMhMlh4UX3o9HFxEvI98VRmIB+sZ95EvmzlOI6NHpV6M6TVxnA6KzDYxfzydoerux0c7AJ/eHvO/fMMHMP+VsqwndEbYzibFxto6mye00jDqBfw8pUBndjn9smq5cQ4m5xlrTXGOFwe212JEA4OcOtkxbgfEXjuplkBzFcVy5Zhtr+V0ksDFuvqS6NO/os3TnnpSv+RVNZPqr1RwouXe/yr14753V+59qX4vT9Nnc0L1kXNMmvY6keczgtc4SCANPYYdkOauaafhmz1QrJSMepFSGlQjmK2qlgVNUUp6SUBUle4Am6frvGEtfa5vtcFDMfT1pfPGIQAIw2dKMD3BH3P6kvqRvLWXbvp+bK8w6aNnPXch+cUeWnnGb5nXZIfdKc4meZIrfFyQRx49NKAulEPzZ+MMWSVJPAF435kT3XYjd7984zpsmR/KyXwXaIWGoxD22C6qTVsFO1GoawVWhvunWdIZRj3QnppiBAOZ/OCOydrtDF868boqTeSr5rIp6iqUZwvSlxhWTGR7z00a3CwC7nSZjPkutgpnM5y7pytKeumHYb69FrLk7JlYQEcTbINf9xozU7L7RaO3dEpbbhztqaqJL00pJcGBO1xtqoVq8LeBI0yjHo+ged+tLVKewpK29PSxW7qea375xn3zjL+0T94+Qs/1m+8us//+s8OuXm84sZ+7zG8umdfrnBY5g2LrEZqTRJ41FLZBch12BLOhyDXddFwNM0mTJfLAAAgAElEQVRwcHAcC2+u1g1h6OJgB8OqhTvzquFkllNVkkVe4wpnQ3Pd6vqMBw839kYZ0theT08r4e+LllLazhS1ecgeZ11acWYtFVWjNqeO+bpmti4tVCfA98VmbjTuR0ilcZz3kYWskDhCUDWK67td3jtassprlhmUlaLXCUgin6s7Ccu8YdiN6D3A8opDz8Loy5J12bQxEKA0DLvh5t/j0KOsFd3k/TXLdy0k+STnJs/v6vEc1SqzXPyzVUUUeMShx+XtdDNwvzidVI0i/sBReLoqWWU1q7zmhb0+l1qG1Tv3FsyzEt91SUOfRmqWWYVShiT0+Mm7U8b9iGXecL4oUcoaNzpY3NYONC1M5QqHOHDJS4HvCrZ60UOznEE3xBWOxdDb5jdZlhSVZJk5XBrbk5XvPX/uoT9++xyA7x98fijron7llR3+9z96i3/12vHfmiYy7EYcTTJC3+F0nmOUg+fZYfe4H6O04WiyRgiHvZEleTSyXTQNrMuaybIk8sVG2R41mpevDDmaZNSN5m/eOcd1BHnZcHmng+8KqkYzW1dsD+OHTohJ6G3meJ9kff68lHEc0nam9OBJpBv7FGVD4Lub+yavrANAFFgluO85zFcVSejR74RIpbl1mlGUkjTymKxKstYJ4MLCxAB3TuzGctSPecHp43vWiuYC5raMrxLfs83HOoAXeK6DUgbXfX8DEAbCqt270eb/L9s1q5G2UQlhmVxPgj33VRNpq5EaqfRmV56XdvEOfJc09shK2V40AoN56GKD9z8grW3GstJ6M/hMY59BNyAOXSbLEq0tjKWNwYsEo16II6CfhpxMc8vPD1yyskYIQVY0HE3XbPcTemlAL/FZ5TW3T1eMuhFb/YhL45SdYfwQRFXWEqkMaeShtKEsmk2jeBDOma0q8sr+fpe306cehvOoeu3dCVe2O49FIZ1EPr/49TF//voxv/f3X3ruGuZnqXVhrdsvTqp1Y9ASokCQxh7dJCAOPLKiQWmN0pbwMV9XnM8LPE8QeoLFuqaqFW47ZHewQsY0clFKU9ZWGe/g4PuC0Bf0OgH3JjOyQvLTm1N+49X9zU73Yhj/ZaqtXkjTaKRS7WbqgrkGYBdtrQ2q1XY5OAgBvdTfLPR141BUkvfuLzlbFDiOQzfxMMZhbyslDjy2BzH3zzNunyyppGK+bpDaChlvXHpYh3b3dMXRtKCfBEitEcIh9C0rqygli3VlYTDfxXOtiealFhoDO3fJS4krrEPzqg2xuzROH/t1/1UT4cLSIXvI0uFkVlBUksRYu5KrOx0ubyescknoi4/8IOpG8ZP3JkyXFVv9sN0ZhOxvJZSVZJW3g02piQKPom5whWCeVUyXJafz3J4sXIe6Ubiuw+5WwmRZUDeGopK8cKkHDszWJYt13ZrnhR+CpOpGcTItWOYVrhB22Coc5k7F9iBm3ItYB661XWhVr9oYtIbnhepfVJK37i74t3/56mN7zN98dZ+/+NkpP377nF965Yufbp5VrfLaaga0fZ8WeUUjDcpoe/ot5MbnSTjW7mS6LPjR2xPWecPBtQH9NMATNQ7WgDEKXc7mlnl483jN/jihltbj7XSS4wqHOydrHAfWWQPC2nJIqQl8F61tXo5Umu3Bl8eBwRUCqTQGOF8UXIvsgp63cJbUZnNyF45D4DtUOdw8WXM2LzDa8P2DHZZZTRK6KGXoxC6+69JLA3xX0EsDykqRtYu549iNp9X2aG4dr3BwWoGzx2JdM19V3Dtfc2mUEEc+13Y6hIHH0STjbFZw9yzjuy+OaaRmf5Q8NI9JI594x8NxLBECsL+L0l81kSdRD1o6NEqzLhrKWrLIasLAxfctG0LgMux+PK1uVdQ2nUxaPPL+edYeUy12aYw9WnZin2t7XYyG+5OMZWYvmLxSKGPoBAH9js/uKGGQhqzGDafzgn4asNO3UNXdU4tpZ0VDP7W7dKk0xtDqArA7kLwhClxUq6a9IAMI4WzEY6M2DCcMni8462e3ZihtePVzaEM+rr75wohRL+RPfnz/S91EuklAvSiRtWSZ1Uhpab6B51EFEoyhkQrPdVgXDXklcR1w2t10XasWhk25vtshDH26sU8crDcw1nwDc9UUtWJdSaQMuHW8Zncroagk13c7m2umah7WKH1ZmghA4FvY6MGFuJsElG38sNMiD9oY8lIT+IL5aUUaebiOhZM8N0Bpw3gQIRwYdAOujLsbKKxq7KlOGUuw+fqVEIOmE3uczgqOpzmrrKLfzjwbaU+IwnXQ2jDohkTB+66+da04vDNrTRah84GB+gURYNANMbwfRfG468vzKT/BCn2XUTeilopBJ9wMm+PQY9z/9EOpfuuAqpSmkRqtYbYsN9+/tJWyPYzICsnN4xVNoyhrybqww/Vu5FF7gsvbVpAkHIde6tOJPdaFx7gf0U2CDVsEbDDRySwHsDhsbMVhceixM0zsoDPyGfWscOzBm6SqFZNl2Xr1PH9U35+8OyEMXF660v/kH/6UJYTDb766z//9Zzc5XxSfyyH1adZ0WbLKG7rJwz5KaeRxOte8eW+xSTfc6keMehEn0wzP9Ygjn3vnGWfznKJSBC0U1U8d9rYT6sYSO65sd2ikZrIsub7XJfRditoO6yPf5XRe4vkCajuXiwKXQSfg+l53wxAEex+5wkEq86ULVtodJR9iV4WBuyElNFJhluC6dv44X9d87VKfZV4Rhx5J5LeWJpo3bs+YLAorVpaG/a2EJPJbWrS1qslqiTaaazsdDHAyLRHAdFltbFGGvQiDYasXMe7HG+rxqze2eC/y8V2H6doaQ04WJZ04Z6sffWju4bniierBvmoibT04BOwmwQWF+1PdDI3UZC074hsvjLhzsqZqJPfOclzXYs+OcKhqxeHtueWGV4paarYGMd3ERzgBae1jDISBv0ma09qhrG2zud/S+6Q2XN9J6acBruvwzr0lge/guQ5hIKhq2wQvUtK0MR/ivkulOZ5lKAW1tKej52nnaIzhtXcnfPP68LEPA3/zF2wT+dO/OeIf/tbXHutjf55arCuUtqyoD4acXdi3n84K8kqShB5p5HM2L3jz9gKlFKHv8sq1If2O1XZc3u5wPi85Os8YdgPO5iVKaS6NOwy6AVHg4buCO+dr8kpSVIq9UUJVSxzaBdPAdj8hjTwwcDzzqRtFJ/EZdEK2evFDzKyTWc5iXWEMm2tNaf1czdceVcJ5tD7E99yN/QtAGgdMFiVhYJlZq9wKiddFTdMotIaykpzOC84WBWnoUUuLFBRlw8VI1QCXxinny4KsrIljl7xs8DyBmzds9SJevNwn9C1Dy2BwHNgeREhliCM7r/U9QVFbyHzYtQP+6bJECIdRL/qKnfUs6lE+QQ9WIzWnMyu8WmY1V7ZTa7etNL4vGA9STDtsf/3mFGmsgGjQUnSLsubGXo97EwtPBYHAE/ZGvnOacX9S8NadOVUtqaXhfFHhuhbf3BslvHu0YrWucITDziBmmTcEvkcvNQjx0UFXxhiOJzlZISkqye4wIfCfr5v9eJozWVb8u7/2wmN/7HE/5ls3RvzZa0f8+79x4zOlUz7uysuGWevm6rTzrQerlwYssxpjWlFZbi13GmUZN4HvsTMKGfQC7p9lLPNmQzmXtcITghcv9ZgsK5TRODisiga0YZ03OMLi/XnZEPqCd++v6CY+xhjGwxDhwPX9Hp0kYLYqef3dCT+rFV/b6/J3v3eZqlbcPFpy82SF14pZ+2nA3dM1o37I1Z3ul+5UAvYEmJXW2qib+Bv7I8ex88p13nB4Z4Zpf1a3FjTjfmh/Xmsc4XA8yemnPnkpaRrN2aJgfxjjCofZqqITexxPMt64vaCsaxLfY1bXCGDcC7hxqYsxcPdszck0p240UmuKUvK1Sz2SyOfFSylHE4tGXMDVF9ZMYJv6k/wMvmoin7PysuG9oyV5KVtGit2V2V2/4PB2xnxd8+bt2nK+cVjlNa5rsVfPgSQOkNJweHdOVkryQtLvBGwPIspKUdQKMPiuw7JR1LVmohT9brShaspGWgW7gTgQ9JKAZV6Trr2PFecZ7BwoiezFdXk7fe6grNdvzgD45o3RJ/zk56vf+s4lfv//+gmv35x+Lj+ux1WOY0kQnitwP6KZDbuW6HFhVRP6Lr5rYZOvXx3QSwOr5ygaFuuaspbtIDdkb5iAYziZFBxN12AcluuaV64NOZ7l+L7DMpeUteRsrhh1AopKscorS8JYV6RxwKBj/bhm64q3j1cUpbWIj0KPl64MUMYymTzPIfAc5qsa12XT8DqxXYRd4Tx319kHKyut59h0VbIziFm0i3FZ21Og77kssoqsPXnM1zV1LTHY08x0WVI1msBzOZ7kxKHLbKXZHcUYDZ3YI28UVaXQSrPIaoRjMMawziVaa5TUuK7DoIWxsqLh9ZtTPAGLvKEbe0htLOkh8gh8lys7Keus5v75mm4a2KaRg9HgPeFN0ldN5BPqwrL9gzVbVZzNC5ZZzaATkoSWhjpf1yzWDVWjOV8UHE+sgrgb+3QSm2yYBB6OsIPvvPIQwmGdN2RFQxwK3rg5p1YaMKjWM2eQhsx0hcZsxIq3j1f4vss49MjyhkXWMFs3bPXClsvukkQWhlgXDWnkYzAIx5pL5lVDNwksK0vp5ypV8fWbViez84Sw3O++NKYT+/zJj+8/0yayKiTgYAyP1FUMuyGd2GO6qtpUzJgk9DanqKxoWBU1x+c5gS+4KsDz4NZJRl42LFa1NWcsJavWtjxoF/3zeU1RacpWtZ1EPi4gBEip+NFbC5TWSKk3KvTQd2mUQbQp0XHo0g094ihACGUhVd/Dc61+JS8lceA9BAmBPV2dzqwSfmcYP3MX4ONJbu/rvCHyXa7udFnlDVJZyDrwLO05Cl32w5QgEGx1IxZZzWJdIbXmdJ7RSE3dWLHloOtu4h2my4rdYULTKG6frwk8l++9tEVZW2EiBs5XBaHvsjdKSCKPP/qL27xxZ0bTaF663ENHPjf2Orx0tY/v2ntWKcPhnTnH05w49Pje17cZdSPOFgUns4L9Lcvemq0qVnlNNwkeW7DYV03kEVVUktNZges67I0SPFe0x9zGQgCVQmOsijdw8b02E8B1GPcjMHbgpTWczDIckTLux+wMYqbriivbqfXWArqJx92zjKNpQZ7XuL4L2lBK2wCi0GKeQlhmzc37c6LIxxOCnX6Cg30Noe/S74TtsVsThRZPl1pzMsuJWu3AeBCzM4ytlcKZjeK8yKB41nVhFfP9g+0n9hy+J/j1b+/xz//6LsusfmbCODvMtQunNuaR2HXVWMh0uizxfcHV7S7DbojXnm6H3Yg7pyvWqwbf92iUZWgppdndSpBSkbau0KvcKp+PJxm1tAPlcT/FtHnreWsW+t7ZilVWMs8sHX3cjxh0A3YGMUlkB8yu284ThGBdNuwOY6IgRSrrKTVZlChlqJXaZONst8aOWSk3jK6saD7X9fegb91nbUJ1ox7KWolDuyiPeyFXtjs2Q0Vqzk4L0tiKgk+nJRrNqze26KU+UhnCwOoy7p5lxL6HUjXaGO5PsvYE6eF5sMok/Y5PJRWuI/A9h2EvYtiJ6CQB54uCfjfg2m4XqTQ/euuM196bMFtWOMJg6PHi5T57owTfdcnKBin1B9y6LSOvqEqkUhuWWeC7FhrFcPNkZTfA3fBj45A/bX3VRB5ReevfL5XhZJpT1YqyNUBUynB1p2MpeZ2IyaJkuqhYFxXaWEbFlXFKXll3z2Vm1eQYw4uXe1yqNVUtaaQijjy6UYwxDq6wsZZZ0VDWiqJSOEAYCBwEWtkd4r1JjtKwP4q5utul37WD8WHXNpD5umK2rpgs3w+xMa2mYJnXG5ZJFHibKM6q+WCo5LOpWycr8kryjReebJztb33nEv/fX97hX/3kmN/91WtP9Lk+rrZ6kYUfWxeCR1Xou1SNQilDWTecelaTYf3YQkJPWPGZAIxhqxMSuA73JnY2MugHrHPF+aLi9smS+5MMTwii0CPwBAoYpSF1LZksS9a5xBW2eXmuIPQcjDFcHnfZ6oUMOxGucFCNIQ49fM/qITqRTzfxuX+eU1aKspJ4njUczCqFIyxZJA494sBl0f7e0eckdkyWJXVLL/4sUbDn84J12RB4Lvtb1rX40rhDJ/YxvD8X9T2xgasni5JKWtfed+4vGXYC9scdzucFQgjS2P7uO07CvTOr/SgbSSLgeFIQBS6rXLE9iKka3ULLGmk0w16I1vZEcjLLeO2dCZNVSVkpcByS0KesNVUjuXOyot8JN/dsLwn41o0thr2ITuwhpSHwrMtA5LvW/BFLFFpkFQKDNpqTSUboi09lOvlx9VUTeaCmy5J1uxvqpwGdxKeoJI5jF1jjWKO2bupz/zwjDDwGaUAaexRlw+mstM65iUcaBXiey2+8uk9ZS47Pc6tA7QS8c7REacPZrGC+Knlhr8/+dsqV7ZTjWU7oCqTn2ryIRjFIAhxhbekDz8F3hb0xXZdV3nDreMm3v7bF9b33rTyWecNskVNWkv1RwqgXEniCk2nRXjSuZY4FLr0koJH6ubFIf/3mFIBvXH8y85CLujxOefFSjx/89Nk1kQsq+acp3xO8dLnP8TTjbF4ilbW90cYydmqpLWtonrPMa+5PbWJmXjbkZcPpDIa9iLqWzFY1TWOQQrHVty68O4OYLJeUjaJuDFJK/Mijm7YuCMbamkip6HcCtnohVaO5vB1S1vbUbtP9LA192A1ZrCtGvYhaaYZdz9rvtCI7sO7BV1t78887L3FakO2zMpDKdgGuWzbaxX/vpR8mN5St067rwMkkJ/BdsqJm0AmYryviwDp7X9/p4girCbEOvBKtFDgB42FM5Lu8sNtlf5wgBJzOSl57d0ovCdgeJGhtuHVqh+hK2+Y96ARcSTyG3YjtQczNeyvbdLrRQ+9dGvu8dLlPWSvuna9RynBpnLK39X6onKWBhxsdm+faNeHSOP3c2UM/F01kXTSb0KcLXYAxhtN5Qd3Y2NoodDdOt8uspp8GhL678e8/mmTWQG2vi1ba0oDbNLfQ95BSc3Sescgr+lXIIA3xPMFibXd9nucy7AacTguMgNW6QhrL4V6VDZcd+NFbU85nJYOeT6MUvTTm8rjDt14Y8to7E44XBftbPU5nBVWjyQtJHLsYYygry+uPA2uON+qG9mic2gYEDnfPMoRjobY0Dpi2qXhx6LLVjzdMrosFQTgOV/c+X8zwF6nXb864sp1+4WP2p6nvH+zwh//ibc7nxXNh1/FxupCLigKPF/b69NKQo0mGKxzuna14886CN27NyIva2o3Hgrtna5RUzLIaNGy3i9iw4+N7DtpofCwUVVSSN2/P6MT2PRcYrux0SSOXvFJ4rovnQlYowlCQBC43j9fUUlmBbaM4W9hMjOmiQgjYH6f0OyEGw7jNrvkoyO6LDtt3hrF1l/iMIVijrj0FXsyWLizXPwiJPWhllFXWpRtgrz29JKHHndM1vu9QSklZaX763jnnyxItrQuGK+DyVsruMCHLJf/69ZONuWNZ2yYWBx7zdcV8WSOVQkmbTjoepOwOI05nBW/eWXK+sLD0K9cgDge4jsOgE2yscM4XBaNeiHCcjZ7swXLamShYIoEVWn9+2/6fiyZiefiadWF3254rqBubBwBWaZ5ECWnkk5XNR9Lh9kbWYNH3BHkpGXSCDVR0OstZZmUbHiXoJT5NC4G9cXvGySwnCTyubHdIEw+lwe0ajiYFwoGDqwMC1+X26dJeRGvB3iil1wn4xrUBUejhCGs5vcwrktCeHgyGbhiQl5Kbx0tuHq3aRmdx01euDVlmtXX3bH9Xi397m4t3sizYHSYss3rze+eltMN2Yz2ZnmbZ0K0Fv/3dy0/l+b738pg//Bdv82/eOud3HqO9yuetC13IKm8eaX0fB1YvUjeKW8eZtSZXGj/wCT2HolHQZnrEgRWm+Z6g3wkZdCIbU2DAcVyyosI4UEtLGEkin04UEAcO01WDQTMe+Oz2E+6dr8GBN+4urJdce6pQSrFYV/iesJ5wrsPZrODFS30a/X5o1pPQK/iewBWfncKaRN6m8VSN4rilyW4P4ocaklSaVdFQS0kS+7hCEYUeoe+ijSErG47OMzSWOl9Kxck0p5Eaz3VplKRWHkra5MKf3pqSl9Y+6cKrTDaSOHQZ9SPmq4KycdnbjfjNb19Cac3RNGe+rqgbjSdcOklA6Nvm7+DQ71inDYM11pRKk0TBIxv0qBfie4LAc78Qqebnoomkkce7xys8IVBbBs+19s2B59JIvUlf2x7EHxvStMxtYIxwHHZHMVe3uxSl4vbJGoBruyn9bsN+mIAD2miKUlGWDUpqCiM5nWYIz+Ol/RQ/iMkrhXBs3kcUupSNpf3FaUA3sfYG58uScTfCcSDwBPvD2A5NtWbQDUl8O9PICslsWdFoQ9Q6il7ZTjHYnVQa++wMYmqpKWrJfF2RFw1SWygkfaBxprG/MWQM/adLyXz77oJG6ic+D7mo3VHC5XHKv3nr7LloIt3EZ76u6KePXhTj0Ns0/6KS3Dqx+HuaBuz3I86X1j02CgVVrVvIy2G6KDibZ1yMv5Sx871lUSMcQaM0o17MsqhRaOarkkEnYHcwZG8roawl01VFJ7IeUY3URL4A32N7YDNMjLEDc9cVOAJ60aNPlMu8RilDPw2emmbHGLOJXtjqRdSN2lgfVY36wKnGcHS+Zr6uubHf41e/ubsJspotKybzkmVZW0ujyKNYSoa9iLKShIFHP/FxPIdV2fDO3QVFbZMOk1FiVe6LEqkdqloTeALf8wg8SVFKbh2vSCKXo/MMA2wPI+LAZdSP2R8lzFbWG29/K7GbV6m5sp3SS/xPnDG5wkoCJi1Z6POq2n8umkgYeAw7tisvspqd1pTu0jjFGEPVKBZZ3Q61NINOQPiBQdPFAGuZXXDxXVzPoZv4uELQiQO+fSPC8wRFKfnZrSnrsmbRpg/mVc3posB3Ba5j+O1fvMLh3TlamY0r8OVxysnEwXWctsEozrRGacOVnYR+Glpef9Xw0qUevusyXZc00jDoBCgDruPgCes0fHh7RlEptNF8bX/A9b0uszagygG2+nbHtTuMH0qvC/337R7EU1Ycv35rhnAcDq4OntpzfvflMf/vn99mXXz0KfRpltOaJVaN4mxuyROjbvgh0agVv1lYYpU33NjrMVsXGGMzLQzQiTxwHLyewzyruHO85p37C9Aw7AaMOgFp4tNPI5LEsow6oUcUeQy7AZNlwcnMLpS9TkjgewSBdZ12hYPrWofpO2c5dWMtdwLX5YX9LpVUnC8K3rqz4OD6gMBzNzG0DmyCk4pKMm2tgYwxXyh47LNUWSuWWWNTGFsvq7JWaGM+lMOjtIXEjdEs83KTdy6VZt2eHI029GKP2brCaPsZDDsh01WFMZq75xmOsT5Wviu4ttvh2y+MeOP2AoGDkpbEc/css2p1IaikttBVYV24O7HP16/0ubHfJ46sSeO6aKjqhlvHKzqJ9T8Trv1sPo1bwKpoyNo446Ty+Tx8yJ+LJhL4At91bWjPB7qz0oaTaUFRN0yXVjncjQNevtrfRNtmpSQJXJTULHWF79nHGHZCtLY3RCM19xdrtnoBk0VtGVKriqLUFJX19s9K695792zNT96bMExDytqa2+2NEso6sV5Fi9LaJ0hDHGnKWtFLfM4XFWnoUTSKqrbRpY20ynRXCA6u9rm81WGyqjiZ5JzMC8qyod8N2d96X726zGu2+zGOcIh89wsxMx53/ezWjK9d6j1VC5bvvbzNP/3BLV57d8KvfWvvqT3vR9W6tKaZq7ym37FCwpOpzT0XwmHYC1FKc/88b2m9Idf3uqyLhveOlxZfx2HY8emlIVorbp9mrPOGdVlTNVbb4fsuW/0IIRyE49BPwrYh1fRSH89zee9oRV7USF9wdJZxdbuLaAfjUlnKeN1YTVQvCZivau6errl1suTGpR55ZTdei3XF9iBhlTdMV7ZhXOS7P3jyeJrOAb4nWBU1WdEggN1h8pE78axoOJnmG5gojQOqRnHreEVWSC6NE4zp0GsFlTePV7gtCeEiwOoCTi9rje+7pKFHNw4oG0vNDQOXspHMlxXCtRuIdd7gOIayCexMxRUWrag09yc567yh37H2THWjOZ7mpLnPurQnyihwGXbDzYbYd8VHDs4DT2yICf7n1Og8P6vHEyxXCC5t21PHR3VnqTWTZc1kXjDoRjjC2plEwQP5yy17I/A9zuYlvTTgynaH3VHC23fn3DpecbYsWWYxYZtXbfFGmK0kWtsMAgO4Htw+WdNNfCaLCn9RczLJ+OaNLQSmtSywVL9+6rPM6/bms9Ymo15IVRdk6wrhCyLf42iaczK3mpQwcJFKIxvNsBcRePaiksrmmIBlnDzIyc9LO5hPY/9TW7487spLyXtHS/69J2B18qh6Yb9LL/H58dvnz7SJ5GXDKqu5e7Zmux+TlxLZitZWuXVZvrTdoRcHLNrrsqgawsBSVO+cRsxWJVIqzucaR9TUjeJ0XlBUDUkYkJU5gSsoK8W1nQ5gNyBR5PLe8ZzzWYUj4PpOB60VjgMag+9Z+GqVNdSNJivtYweBz/5WwrATcfNkyaqokUpzRWk6cUDgOe+f6h/oEReIcei77I9SpH4fVn5SNVmUlI1i1EYn7Axi8sjDcz96HnA0ybh/nm2gHt8VjPsx791f8cM3TzHA6SzjlesjVgW8eW/O3bMMYxx2+pZa6wChL1iX9r00WqOVpenen2TcPlnhOAaBwyK3p5g49DYhVqNuwjdeGCIcB6kNWdHwzr05Qlg69XY/xhMOt08zikoSBR6zddmmoVqpQKdFSy6Nkw/NPuLQ2wTlfcXO+oQSjvP+lftAea5gkFrn3mGnj9bWbfdiRqC0ZWwssoqiVHQSrzWZczmfF60mo+Z0XgJPWAQAACAASURBVNBI096sLjxg6CYcp70RBYPUoxsFhJ7AdWC5rlgVDb7n0ChNNw6YZzW+cFrOecA8W1OU0uK33YDpouTtu0vSyOPqTodvvzTiX/7wPmjNfF2xM0zwfcHlnRThwP4oZXsQ20S7C8v7D0SXTpZ2t1Q1iu4zyl4/vD3DGPjmU5qHXJRwHH7hxTE/fPNs45H0LCov5cY5upN4bHVjykayLhrunK4RrvVb6nV8bh2tAEMvjchLyfYgIvIFnSRg2PE5nhQsljVVo+21JuyptRvbkKO8bDie5hhjE/wa6bFcN2SlJAqFHeRmNcYBT0DgW/bSbF0R+g4nF8zGvuGF3TF7WynTZcFdDVJZWOryuIPWbOYLvSRoEzl5qGGEgUvI43dLqFp4Kg496kaxaqHl+do679qTl9cSbdQmd+Wijib2tFfW1qA0jWyUQtMoGx9h7ClgmZW8fXfB3ZPcBtNdWBUVDcYY0ijAD1zSwKYXrkrJrZMMpTXa2LmT63okoR1wx6FL4Llc2esyTALunecsshq0pmwUrivoxj5KW+j93vmaTmTFjJ7rcDbXxKFr7d99gePAPKuIfJedUfyhe/uLxj/83DSRR1W/E1BUFhvdHSabnfzxPGedVwjHfrgrbdMO09ga1OWl3GQQ3Njvced0vfHM8VrWgwaaRtt5RbvrCwPL+T6eZNigAkPTKG4e20TDNPYRuHQjSxE2WrNc13TSlgK4tlS+delyZWx3pt99ccwyrzFY2p7v2jmN7wkbPtQmLw46IVLaofyDFQYueakJffeZ+Ru9fnNG4Au+dunxWb9/2vrOS1v86WtHvHNvwcG1p9vELqqbWKjkyk7KqBsS+h5lLQk8O2eYr2runKx48/aMWtpMi3UhqWrJ37wzQRvN7iBlb6sDxjonSKWpGmvVcT7LyCqJbCRhK3IMPHtCdRx7OjXYBX5d1BgcUIbKwM2jNZfGHfuceUMcuBZ/b9XR7x2tEa4d8CahS9MYzheldW54oJ7WzKmsJcdTy7a6cLP2XUscSNoG5rlWy3LvPKORisBzN7tyoNWAmI2IFyAOXIz2SWOfqpIUZcOf/PiIvJQEPgS+z6gf0Yt8ThY5Va0ZdF1GUUytNFkhqesGXwjqWrHIKgwCy8J3cISDKxx2t1J2Bwl3T1cWvioaeomP6wp6sb/xxzq8Pefm0Yp13uB7NtWykbY5vbDf5etXB9w9zfBdQdFIslI+9s/g56KJWJNEPhZn91yx0YNc1CpvOJ8VnC1KotBlux8ReO5m8S0qqxzuJTaIpmmUDYmqJNNVTSf2iEOB16ab5bVk2I3ppvZo+eadGWAIPJcksvkBUmnWhcF1HBph8DyHxbq2YqVW65FViqySBJ6gG7lc3kupak2/GxAGgrK2JIF1rYh8t01js4E1ge9+pKBQac2oGzBIg2caSvXaexNeuTZ8Jq/hmy+McIXDj9+ePJMmUtbWumM8iDdCPLAzrGhks0LevjvnvaMls3VN1Si2uiHdxKWsFVktqWvLiIrDbb53sM3RJGO2qvCEw18dnoFj8AT4sW9x9naAu8pr+qlPFLQZNI0CB86mORpAWz3DzftLwtDDFXYzYgAB3DlbE/gu61wS+JZ+usgq3rm3YGcY8wsvbj1EVPk4P7rHWUq/T01XymyINEqbD500VasPkUqj2xTDC4v28cBqa+ZZjZSKZV7zk3cnrPN6QxRQypohep7gGy8M2R1ayEsrB4VtphcuA7UCbRz2txJWmUtWKYpakgqPy6MOBs2oG+J7DtNVSaMsy9M6EQh2hgn7WwlbA+uL9dbtOatCMlkWvHi5x6poWOcNUeBx/yznlWsjtvrRBoH4KJPPL1rPRRM5ODj4H4BfAn54eHj4Xz7w798G/mcsmvqfHR4e/s2nfcx5mxseeGIjItwdJp84sC0q680fBS6VVHZX71kDxd1hzM3jFbNVzaDjc3+Sc2XcoZP45LUkiT1WeUUcWB1KJ/XZHdrm09SSuB0kTlcFi6zBaE0c+1zd7nLnZInRhm5qMeaqMWRljWoTCoXroZRhOLRDfCd2eeXaiMtbHd65N+dkVtpALKPJC5tXcPdMcXXXRn3OVtWHzO/gg/x4ayQnlWbUix5azJ50ncxyTmcFv/NLz4ZmG4cer1wb8ON3zvm9v//SU3/+01nRpubJD21owG50ru91+fPXj3FwcB3Y6sV87XKPcT/mzTtzVkXDuBsy6lo33jjwoAs/eO2IOycrssri9L7noAHXwO4gppGKRkGRW7+ndS7Jypo0CfA9l7yyTtWLvKKa25P49vUhX78+5PbJisNbcxwBWsNvvLqH7wnmq9qehLT9nS6aSFUrTmY5TiuEe1IbhjTykR3LbLwQrTqOs7EAerC2B/FGH3breMXRNLOnqUHCqBcR+C47g5jZquJnt2a8fW/B6TS3c8VuQOB5xJGLJ1zmy5rIc9kbp0ipyM5qykbjZhW11CjjkIYel8cJb7Vwl2NAeLA1CNBGEIeC7UHCm7dnrIqa0Ico8rmx1+X6fo9hJ+RkmpGXEhyLPPQSHyWtiapDQxQIAl9Q1A3gEPp2M2uMsZBou5l9HPXMm8jBwcEvAunh4eFvHRwc/P7BwcEvHx4e/mX77f8W+I8ADfxPwH/waR93XTY2ua00G5zzwd3JR9V0WbLMbW755e2UV64NiVtjxTQJKCt7HCxrye3TqqUFSpRW1LWiKK3wp6gl66JmPIwIfZ9rOxFRIDhbFCyzxlpKKMOoa2Mww0Aw6Fn7d89zmCxLAr+FC5yGrBBUlST0XZLQ56XLNlho1I84X5ScLkpWWUXVSF7Y63K+sPYto05IXWuyoqSoFL4vGHUfhheqB/jxi6x+iMr8JNPQPlivvTMB4NWvPVmrk0fVL7w05g/++C1OZzk7n8GD6XGUcByr5n7ETjEOfa7v9Difl2jlstUPCXxLs01DjyS0tiI/fPOcwHdRWvPuvSXvHS2ppEJKQ6fv4TgCrQylUlRK0esEGG0QrmG+LjlfVPbvAraGMd8cJpzO8tYmRCGwTWi+tIQTa8RY0U0CVlnNi5f7bPdjfnpzSui5dB6gzOYtbIwxzFYl/U74xDYrn2TmaFrPuAvrGaks7DddVNxrJFrbuOxLWymBb2cVTdNa2rsOeSUZ9yP+3ncvsc4b3ro7R2q7WMlG0uuEqJMVRSVxhcNW30Y49FMfHGfjoG2AvFTcP8u5utNhnUsO13Obeb/QeA70W+sZJTVb/ZB7Z2tWhbX9399KCTzB3jBmsqqskFQbXNfh6DzfROMu1raRgT11Pa77+1M3kYODgwD4b7CL+iXgPvB/AP/d4eFh+aj/+wn1a8Aft1//MfB3gIsmMjo8PLzTPv9nAsovlLFb/QitLX3wk7DAi2GzNmbjAfTi5QHGGJLI3xx7G6npJwGrvKaqNZ3Ew/cFtVJUlcQYw84wQdaS67td4sjip5OltYNIY5fAi+l3Qq7uJmCc1hVYoktjPa0aw9ZeyLAbkxWKylUksdW7NMowX9XM1zVB4KKUJo5ddgYpwnEYpHYA2I19ru92OFtVzJYl+sTCZw++D53Ip6wkxtjZ0Lv3l5S1pP+UGVqvvTtldxg/9cX7wfrOi1v8wR+/xY/fmfA7v/R0X4cV8qmNi+zH1c4oYn+cUje6TTI03J9nBJ5AAKvabhb6HZ+TSUFVS4Rr3WI94YFxQDhkZY3numx1QnZGCbN1xQ8Pz8jKBgeN67qEvmDci7i8lRKHHtNVQVMb0tijmwQUtWxzu31rIhoHjAeWVXZ4Z4HrgmqtgS6uuE7sWRZa3qC0pqjUxqb8aVbdqM3MZHeUEPrWLqiT+NbZ1gQthPy+IUgUePz6L+zh+w5ZoailZJ413DvL+O7L26wKyfmiwBMWhq7aDJJl3th5ZBIw6kcM0ogkcpkuCjqRx1I1VvGfVYiJYxMusYJNB2tMaYWRdvPZ69h3M/IEvZE138SBazsdfvjmOWChuK1+ZAWhjcb3LEvVsaqWx+oc8FlOIr8PHAD/BXALuA78E+Ay8J9+gdcwAN5pv14A33rge+Jjvv7E+ubLO2j96TIybLhMxe5OF6VtlOzF7MP60RSsas143OGXuzH3z1aUtWa2LIkTyzqplWSZK8ZDF9koXM8ljlyMIzhZlGz3I67sdcnLmDBwN5YrSRRSNpJhL6aShsWqomq0dd5MI8bDhDjxWWY133hhSJY3vNmqui+NbYriqBtS1ZrRMLYXz6qin4Zc2etaRsn9BUHgM+yF9Nsj+oO1u2uNG6tGUSgbMNRJfLa3n45vVt0o3rg94+9959JTeb6Pqwu8+W/ePn/qsJrnCjrxx1/iWhvKWiKEJWzEgWBnK8FoQ9VoMHYut1gXzLOGr1/pWXFqVvPipR7d2Gdd2eCqZWa1HUqDQfPCXo/s5rSFcT2M1uAIfN+yhL778tbmmnNiuLJtZwuqjV2+ttelF3lktcIVDlndAAYpDXUjH5pB+J7L5e0Ok0XJqqhb/cXTtdYBNkQasDG2F6ehqzv2nrmwOIpbe5OL6iUhv/29K4DDn//02BJZiobZMkcpTRK4rMsGR0DQKsuFEHQTz97XocedsxV51dCLfUb9GAdB3kgCz5pbHk/WxFHAjb0OAjYmjNo4NEpxdJ4ThjbPJU2ssLiftmaY4wSpYqLQJQltpO5Wz8X37d/rRlO3kQCPqz5LE/mHwIuHh4fz9u+vHxwc/Gvgbb5YE5kDF/azvfbvF6U/5utPftBZhv4E+OqiFq1tOlhrbhH7nJV2jnLreMX5okCq1ndLCPLK3oSxC+erikvDiEHaJV/bk4kXuZzPS6ZZyeGiQmrF20LQSX2ubXfoxB5n05zzWU5WNgx7Mb7rMO7aDBKpDEoqXn93wt6ooJ8E3NhJkbXi3btzjNLEvmB3EOIJh7JSTBcF67zk5HTF9ighdB3KrGK9LBBa0Y9dTKOYTTPu3p9/pB5Eac1qabF5R4WcYb3AhsP0Q+/Z46zDO3MaqXn1xWcXDnVR33lxzB/91R2KSj5XmfPH05yisnY1aeRR1hae+sb1AaNuxFt35yzzirvnOd00YLpu+P7LA5LIJwldKqnpKUWeT6mqxuZ9A+8crdke2lND6Lk0SjHoxjT6QuTqcu/c0n1nq5JRL+BHb08QrqW3DjsBv/atXZR22I4DpNJc3uqQBD5lrXjxcv8jKdODboDjgOc9bEP+SZkqj6vS2Ccr5ebrB+uTVPOO4/DSlT51rTia2YTHn743Y7quyQqbTRMFHq++vEUSeRzemvHO0QqlJD+7OeN8niOVZUReHif0OyFnkxxlNFnloJWmbCp8IejEPnsj+zPrsmaV2fz1rJB0Yo+qUmRFzXxV4bqCYSckjjyiwDLK7p9bGHLYCVG+3YiEgUvZzn4fRxDdZ7lLjoGEhxf5GDj6gq/hB8A/Bv4Q+AfA//LA96YHBwdXsA1k8QWf52PLaY+tUlrlZ+i7G6qv59kckFXR0MwLotbMMAxc3r2/IqvtjuXSt1Ku7XappeK1d6e8e3/BbF2SRAHCMWjjUDaaqlRc3+vguRZvlcpw72zF5a2EVS45mxb4Lc1WlpKqsdGa42HMyTwjCT1WZcM3ro+4tJVyOi9ZZAW11MShvXj6aUBVK6pGcedkRdVoawHdDTia5hhjqFuV8UVVtZ2NXN62YUJPc6j+2jsTfE88VauTj6vvvLTFP/uL27x+c8r3D3ae9cvZlFQaIZyNWV4UeDiOJUwUleTuaYbSlsUjjIVvT+YWzlquDVklbeaGgiDw8RuFkpqzWc6//OFdhOfSjz2GXojSlra7Lhr++u0JJ7MS13VxHZv8dzQpcIVAaoVWMW/cWfLtGyOEcEiiC5V9ThJ6RP8/e+8ZJEma3vf90pvy1b7H7KztPbd7h8PxQBxwOBhBAIEDBYKgJIghMiCRYMhQglzIMCiGIsgIhkKERFH6IASgCIJB0JwAQghSMBRuYQK6A4Hb3dvD3vb6cW3LV6XPfF99eLNqunt6fHdPz0z/v+x293RVdlZmPu/7PH9zCwGboev7HtZCSDa7AXkhmWu4x04FNg19H503TnO6wxjLUkzMvewxKZVIN4hzmlWHIM7oDWMcx6BZcZFS0hknDMcJQZRTrzjM1T1aNUcZakqI4oSigN1BpKJtM4FuaJgGJLnEtHVEWpDnhdJzSbi6M8J1TYSm3Hz7qaA7iJVDhaFRsU06pYCyP06Yb7gELZfnVlp4jqJuT+edU6FxkhWMg5Rqqdk5t1B5YF3UbYvI2tra9+z58heAX1tbW/tfgWvABeA/BP7+gxzA+vr619bW1uK1tbXfBV4Hrqytrf136+vrfxP471FzF618r2NB3bcxdXXj9EYJkzyj5qtCsdL28SyDJFOrls4wBKkRpzlvXx8CGllW8JGnWsSJ8vHvDyPSko9uWTquqeM4JoNxSn+SEF0taJZZ6psdZYZ3dXfCIMjQkWi6Rs0zGGaSJM0pCiUSrHoW1bbP6lyF5Tmft68MlD2KkERxTsUxcB1jZuM+taYwDZ1xmBCnFSZhRlaoi7RVDvajJGe7f8PB9LiVwwfxxvtd1i42T7wvfhiePdfAd0xef7d7qorIQlNlbS+3fYRUDtEVz0IDtvuR0jYJZW2f5soYdEsLKYqpR1RBw1eCuSgtcCydUZIzCdV8olV1GI4TZRFkGkRJoTQNWcH7qQp7ciwdq4y8pWQVjaOCt68MuLjgszxXY7Ht8e61If1JihAxrZrNfPPO86U0L8jKmWN4Cyft48SovC+yQjAu3Xl9R+WXDyYp72+O6I8TbEOnWbep+w4Vz2J1XkkI4jRnPImxbY00zXFtg0mkkg67w5gwFkyiFN2AumsyDHLqnskkUuLBrU4EUtCoWdRrjsp1yXPSVHBte4Kp6+z0QyxDI9jMubBQRdcKhFTegK6TMwzUTsXWVfz2hcUqrapDXkhcW+d6ZzJbeAyCBNc2WW4/eCTxnXYiP3fI9/7bA1//FPC3H+Qg9tJ6S/zN8vtfB77jQV77bjAOU4SQeLZRiqxuMDd0XY2iCqG22gtNnyRVaYVoyqKkVbUYBwlf/eYOG52AZsXENQ2iNMc2VCpao+qSZSOGoeKbT6IMp9xOOlJjMIpAlu8jJHmhLBIMy1S+XYXkwnyVZt2mXXe5tqOsp8Mkw9A0PMecrXRW5itEsUqQ812lyJ1OBz3HwBbqfUeh2npPcxRA7cZOEtu9kO1+xPd++vyJvu+tYBo6H3+mzdff65xYa+VucDC8airIVGaAIUndwXct5hsu33i/SxDn7A4iNKQiXwhmrgj9sVKb50Kl3yFV29IAPFtnOEmJM5WoGSfKi2sUp1yoVEFTZJXpMY3DDMfReX9zxDDKCUsbluEkwdA10mJ/S3kcpmz3Qqq+itidstGcac8+FzNzxpOE76iBv2noDIIEIdS9fXGphiyJNpNIuVGMAuW426rZJStrSH+cICS4lsmlcw1qvsl2PyTLFaW5KOezhqaxPOfhuzlRkmEXBb1JotyUhcAyTKq+he9abPUiNE1pUDqln55lGPiuyTBMMQ2X+YZDf5xxfrFGGGbYlpImSKmeBY6lNEYbnYCKaxHGynNrGiA2ifKbzGbvFbf97fX19acf6NUfAYRlXjqoC3kaTKRpN/qzrmOy2PLIheTCQpVcCN65OuDazpgoFiS54LV3uiAFUggVRlNQqooFQmhUXYtLK3Uub4+RKApgGKbEuaBd8xBFQV5I1Zu2TIJEfW3pKoEtiDJyKXBti51+xOWtUXk8NRzLYLMb4FgGbllwHFun4VmstisUUuXAj8OUSpmf/c61ITXfYrntUfWUg6uUktoJZ41/7Z1dQDnpnha8/Nw8f/DNHT7cHPPMav3Ov/AAOEx4l+WC7V6oHBRK5tCtEJfmnctzPp5r4dkGH26NyPOCPBfYFiCgWXWo11y2dgOV4ieVMWnNs3EsjaeWapiGTncck+SSJFc2II6tIwpBGORo82CYOlEqSk8sA8c0QNPZ7IaEiWA8SfjMR5d54WITQ9f3mfqlWcHl7QmjQFn9eI65T8PxMJl5eSGwy+C43jgtfcNUHPB0h7TY8MiFmgNd3prwjQ96TMJUSQfK81mvOHiWwe5ACQVHQcpCyydKcnKpTFOTrFBu3q7KhOmWlGrXMsnLAKy5eplaqGlc3w0oymwS0wDTVC7Li3Mew3GCkIIwzHj2XGNGJR6HGUmW49rFrK2Y5gXtuoqVCBOlXJ/aOj0ITs/k8CFh7w1ccZWdgbKJThmHqn1QcS3OLVTRYNZyefFimw82hoyjvAyf0ZjEucpMLlQrKReCuNymB3GBqWsUhWSp7TEYxewOYjRN0q4rEZASXmmYukY2iDEcDcfRqZR+WmGktskbnQzHNtHzAl2HYRCzVB6nRF2Euq4sFKYcfSnlrEUwjlTGepjkbPUizi9UZ7YOJ41X3+5wcak6S5w8DfjEM3NoGrz+budYi0hY7hZMQ2N5zp+Jv6I0Jy9v7nGQYtScQ1sOSabs1uNUGe/NN1RyYNVTu1W0GNe2aFRsnlquEpZZ5xXXRnOVnYdtmaq1FWbYlsZi00fXlPZE0ySGptxrHcckTAqyMAMhCGM4N6fzyRcW2R0oy/cPN4e06i6feC5nZa5CngvqexYlmqaRlgsiz1a57lOkWaHcsl3zROdxoIr2oCTWDCYpSy1PHYtjMI6UozLAfNOjWbWJs4xJlDIJEpJCUHEsLFMNwS8sVplvuFzrhJi6zrn5Ku9cH2CaOjLLGAaKwm8bBoah2J+ua9IunbirnskoyJBSZ+1im6U5n7ULDf7o7S5Rqmj+y20P37XVDLcbMAxzar6FaWg8f77JYJKS5qp9ttQyME2NVs2h5luz3We94pBmxb7P537xxBcR5ebplzdf+cAVCSHqwRsmOVGqHDhNXeN6Z0JnoEzwnlqpIaRGmqtdw4WFKkutCpMwYWcQEycZy+0KaxdajIOYN68oFlKWFziWSivMMsUtr7gWum5jGTq+pz5sQ9cxTSVerPsOrmPSG8UIKSgKFUn6zrUBo0AVlY9eapEXioGx3PahnItsdcMybtemWXXwyqGsWn09vHbNMEh57/qQP/0dp2vDWy2zql9/r8OPfv6ZY3ufaTRpVkiSVOC76qHqOyZjUzFo+uOY7UHEYtNloemXNjZqF6BrGmkm2O5FqqVpq5jjNC9o1V0KoRYTpqEWJnXf5tMvLLB+ZYhGQZwpf6hRmNAJFLOoXUu5sFQlST3GQUaS5zQrVmmnYtDdiYjSQvlJ1T2QmlJLC4HnWlRdpZx2LYNhWhAl+aw9lReCqmdiGhUWGu6+9txOPyIXyq34YumycFIwDJU4mBdiphfxbIPuKGEcqtCvZtVW4VxtnyDKWGz5TMKMuqmxMl+h5VkYpsHVzoQPtkZEiboHm9U6blkwRSZxXA0hJLanUxRKJzMOUmzbZHneI4xUS23aery4WCNKMr55ecBC00U34CNPtbAtQ6UnFooiXfNMxlHOZi9Ulki+2pWeX6woWneYEic5aSbwPZNLy/Ujmzs98UUEuCmbeZrsB9Afx3SHCTXfQtc0NrsTOsOE+dRjru6ydrFJbxQTp4I4SfFdC8/18ByVTFgtb7DeOC0LiCBOclbna2x0A2Q5FwmTgqxQDCktUsJIpVexyQupolDTgj9c31FbY1FgYHB1d1L+DQZSFJxfrJFkgo1OQNWz0TVldb87iBkFioK8Ol/hmeU63XFClKiidhRUv3vF6+92kMCnXrifKJzjxcvPzfOlV96jM4yObZdU8y2StFA01z0iQ9PQOTdfYVjawisTTklnEBEkiv1zcbGq2i9Vm81ugG5obHYjhIAkUZY6cSIoZKEe0IV68L94qY3j6Oz0YwZBVlrqgBCCOBMEcU5nkFD1bSZRimObeI7F0pwSES7NVYjjnMWWR72iXBwGYUKjqnzXWjWHxXaF3jghTnOCWLWtlAGohmOZ2JbEO3DPTRsCJ5kpMoWuaazOVdSiylKzwivb49kcpFq6aa/OK92UaRjMt1w2diekRUF3kDIYpep3g4wgSklyQW8UYRuqHZgXaudXq9gor0WNMCpmccS1ioUmdVYXqwRhgaEr/cn714dEqRrcd8cxlmnQGSbUK8pmvl5RZImlts9cXXUTfM+irutlVgi8tzFESuiOYxq+TZjkXFiocVS3/FkRQW1np5GYU6vqds3FNDXeutwnzQuGIay0PLXSzwomYcpHL7XwHZNv5oLeeIyG6gEPxhndUYLvmbMYXimhUXEIooya72CaOi9eajGJMi5vjEBXthdZJqh5JqZl0KzazLcqVGydMC64ujvh6u5YaVFMjZpnU3ENHLsUEZWr0nrFIknVYFCIgnbNQ9NUsZxav5imGtBN21/TIiKlUsWehAni197eZb7hcn7heHUo94PPvLjIl155j9//xhY/8rmj3ylt9UKsQ4w/96LmWaVATJlzfrg9IcsEy3OClTmfzrBM2avYJaMq5433u7x1ecA4SpV/lmuQFpKtbkSr5vDB9RGmrswS8zRnICTVkrWla7oKKnNM5uqOGq5Ldb0jNTzbRJQLGt8xVSTzJCVMMvrjlOW2z8WlmrLc0DXlJltINnYDZWLa9FiZ81Xu+wENzlLbf6jaHF3XsHV1D/RHCZqmTFgNXVM+XIXk8tYYz1U5JHFSkBaC7X6Ma2fMNVzqFZu5eo0/emuHXqASRE3TQBSS4SQlLQrlztv2MTR4/b0u1YpyBK+6yn+rVXVZbBgIUbDRjZRi3VWfj2erWOx3rnapVRyaNRfDMBiHSRlSJri4VKXqWrP2p7K9twiijLmqM9Pl3G92yGF4ootIlgsGgcpI1jQ1pFwoh2dqi2jRrKn0t5pnz274hZbHRifgnav9mX13Xgh82ySIMsZRQpIW6gFvmWz1QupVm4vLNVzHIM0KBpMUU9PRNdULTQvFAKlXlSuwyJVyXNlSeFzbmTAKE6QES7iDDAAAIABJREFUzzWYq7mYhs5co45n6WwPFaOk4ps8s1rnnWujciteYBgGz6zWlRK93MI2qipXwtT1fTfuVk9lKFRc61i9s6Ik580P+3z3p849NOv522Gh6fGRp1r83tc3+eFvv3TkLK28UJket8sV13WNp1fqTKKMzihisxsSZBlpXuCYxoxV16w6KrwsyLi6PWaSZBS5sum4MO+DrjMOMvqBSs5Tnm0WSZYTx8rnzXfMsqBXGYcZmqax1PQQUqDrOivtCq5j4tkGb13usz2IlDBX19ApWzo1de12RxFFeT0HSY5l6YSJ0kbc6uFlGvpDYWUdBtc2kFg0qw41zwZNtV6L8jPLCwfFcpbUXIvVeY+K7/DUYgXTNFi/Yil333LgnmWCNBdkQjIOE156bo7BSDFCs0yw2HRp112GQUKeCp66UOO1dzqzWczaBYe1iy2yvGCrp8xbdc2gVVN2OY5lMJjEjMOM3X5M1bNZavlKt+OY1H01F1touiXd92i7Dk90EemVAfX9cYJpqpDIMMkphMAwNLZ6IavzFRYadWxLnaqltk9nFDEOM4Iwo+9kLLQ8hFCrd6lp+K4ScoVJwXCS4DkGuq4x33S5uFjj97+xhRCyzBzRObdYU31rQ6OQKO1HJuhNErqjiEmUMQzi2aDfsnSs0o774nINXdOoVhLeuTogKwS7g4TnztWV8V4mGIUpq1T2ZTuYhs7SATbMNG8eVEE9Trzxfpe8EHzLC6eHlXUQ3/nSCv/Hr77J+pUBH3nq6O3hvTLy9k5QrU2D7iAGKQnCnPc2hqzMVWa97lGo8kiW2x47Q5fxRK2C5xs+Vd/i6k6gyBuGUUbcGlQ8G9sq6I1SikISJgVRXDCJc0Zhhq7D+cUqc1WXC0s1FlseX39f5ZZoaKRCsFT38Gwlcr20UqM7itE0Ncer+ZZaEJVpm5b18GIG7gWLLRXg1hnG9MYxdd+mUbHpjxI8V5lcJrkS5DaqDt/x8ipIjZ1BxJXNMUGckeQFvmuwdrHJ1e2Aa50JRplGaBkGtaqt0gmrNrapHAWiRLLZC6lVbRzbUCFVhsq0X2orq5lxtK3CrJC0ag4ffarF6+91GYWZ6mQUgv5YWc/XfAvXMY99xvREFxHDUElmc3UHxzbJc4HrKjfUrV6AZd0Q7nmOyXJpFFfzbLK8oDtKeOF8nf5YOZhWfYuiUGKit8KUpu/QqDjUfJNCgG0ajMMMz9GJU+Xv9tFLbcI4QwCa1HBdk51eSG+clC7EOaMgxbZU6yPOBOMgLVkihRI/lcyqSyt1+uOYNCtwHYu1Cy06oxjLKJ1D7wBN02jXXII4O/ZV4Vff3KZRtXn+/MNXqd8K3/LCAp5j8ntf3zjyIrI6d/sWXmcYsduPaNVdlts+pqEU/cOJmq29e22oVOuoXZ1pGPTHMaZh8PxqgyQXVD2LNCtYaPmMygFxkuW0a1WiRODaOoWEimsyiVQ6YloUGLpkEufM1V0mQUrFtflgczQz+ctztdjwy8WRpmnKgNG3QdOI04K5uksQ5zQqKuf74G4zL1T8s3uXhfQoIaSczSUOg1YmHKa5WkhFacG5ujtzeFAakoSskPiahmkYswWYqav7/LmVOu26w7MrDUZBxqVltaP82KU5mlWHwUQxKqNU2Zds9ULSNMd3fYpCUnFN8lxZw1zZnoCE5dIbr+6rUKpPvbCAqeusXWix1PboDGJ0Q5Et+pOYq7tj5hoeq3OVWQdCSFlSv8/aWUeCubqL75hYpnHoDGAYJIyClIpnKrpukmOZhsost0zaVdB1ZZ+QF4IoyXEsnc3uhDDOyQplV2AaOr2hEnh5jk6WSSZRSpEr6xND1+iPM2xTY7Hts9jyqVcsNE1nMImZRIXqwWYFtq1sGXIpWZ2vsNj22egEpY04ZLlE1wW6BquLVRZaHrZp3PFGLYSYrZSOgvZ3O4Rxxhvvd/nuT51/KIPUu4VtGXzbR5f4vTc2+be/72hV1LquHertVgiBBny4OSYt82zmGy47/Yg0Lzi3UOG9jRGGoXN9d0xRQJKriIIwytkZRMRJznPnGyw1XYTUmIQZhq5zabWGqSvDvihOMUydz7+0SpAoe5xRkFFxDXyvQhTnjMKc3VFMlOQ0qi6arjFfd3lmpUYhlQhusxti6CrsaDhRQ+Lpw/Z2C5GtXkheiFI1fXL6kDjN2e5FaBostz0GQUaWC+Yb+/NzTEOnUXEIk5xW9cbfESdKhb7dC9npRUzCjA83Ryy0POabSoO1Ol+lN45pVF3QNOYbLr1RzGK7QqPqlq7fPt/1SZv3rw/pjFIqrloQqAWfSVLopLlgtx+pz7obUAiVBZJmBU8t1Wct1lbNQdNgoenj2Qa9UUJnGCk9EDfcyaWUbHaVALLqWjNN3IPiiS4imqbNojIPolVz8ByDhYbH5e0xWZ4rS2VLByHxXKu8qTyW277yx0lzxmHKVjdiFCQYusFgnDCJcqQmmUQxQtpc3Z4QpzlxUjBJ1PbY0BVLqzuM8GyTZsWl3XRJEp9vfNgjCHMsU+2SWjWH+YZiY5iGPsuiCOIcTZMU5SpU25PzPkWcqmyDvWysrV5InObUffuO5nNHgT96e5e8kHz2o0vH/l4Piu/65CpffvU6v//GJt//Jy4e63up6ONELVIcgyxXrq9SqmTBJFUitaeXa4zClHGQYpo63UHCOFBeV+MwwzZ1dgYRVd+k4ljUqzamodEbJei6xkYnIM0KDCnZGUS0qg6NqoOhK3bVM6t1JnHKhxsjklQthsI0Z6sTMgwS0ryGa+kkmZilYRZC0h0mDMocmttZ50gpKYqpp9PJOiREiWJASqk0IVMW5t78nEmUEZa78al+SpT5J+9eH7KxGxBlquVtWUrE61hqMXlppQ5oao4Sprx7fYBrW+XswuTd6wOudwx03ZhFNiSZ0pp5jiK+vL8xwbL1sl2maP/NisPOIKLimliGRrViIYREL7spe+9bw9CQQNVTxz8VdEoJWbm7mratjwJPdBG5E1zbLFdLKg1uMElYaHoYprqRCylpVtWDN8lUHoAQinZ3bVcipKI5allBlAl0KRmHBa2KQ+QYDLUEXdOVyNG1qPkmFc+e6Qccx6DimKzOVZh4WcmacWeq02mAlmFouLZFs2KTJMruZO8CPy/7pINxOmPGrM77WKYxsxgHNQ86iUioP3hzm8Wmx9MrJ6sHuB9cXKrx3LkGX371Ot/3mQvHaoMSlq6yaS64tFwjzZTCWdll6AyDiJpvousGS22flbmKEqHGOb1RRCEFq20Pp8z26I4SdnLVErNMxY7qjFRAWZQVOGiMQ/Ww9BwD39WZb6gVdVso88BhkFFIySRK2A0yRF/g2cYst1zZhRTs9EPQlJ3+dOV7K2iaxkLTI0wyNbg+QVQ9iyhRcdnNml3av4gZuURISXcYI1E7rfNlHMJuP2K7H9EdJlRci5WWB62yWEp499qIQZDy3LkGF5aqbHYnymMvKWhUHZacCmlWsNMruNyPCeOMFy81+XBzjGcb6GhUHRN0Dd9TFvyObXBxsYrnmlQ9i8rYRAgQUrDQuOF5FcbKbqZS5sjHSTHbNbfr7uyaVbERLmGSzwrLUeCsiNwBaVbQGyVkuWCh5c6sGkRdccilkAwnicpXEJK8ECy2PCaRSjy0TYNcCJIkU8FYlk695vBMo0F3qFoUVdcmSsus5qxgpe1jWzqdYcxGVjDf8Li0XKfmq91Flhdc7wTs9iM+3BxT8UxeuNBkqe0j0XBtY0YEyHLB9d2J0qRItUpJsgLDgNW5KrquKepxnB2av37U6I1i3rzc54f+5KVTyco6DN/9Lef42V99k29+2OdjTx9fmW1WbfpjZYxX9WzlkT39WU1FH4NqE1mmTsU1WWr55LmgVXOYRIrksTpXYRAkvPFuFzSQo4TnzzfKtmmC75istqs0qg6FUPT2Tj8izgs6/YQ0E6zMVXj2XINRkLLTj8gyJWoTUq3i01Sg+zrrVwZc253g2jpL7QpZLm6KGDgMvmvepM86CVjmfvfecwsVpLyhT9HLCN3sAM09zZVQsl1zaNVczs0rMW8UZ3ywNVZJqrmgKATXdiZMohzbUvOhjd2Aum/x1Eqda7sTkMro8tpOwO4gouIaCKmR5AWWZeDaSvm+WBJ2bNNgZxBhGirbpebbBHHO5a0xpqlmIFJK3t8Y0Zi2o8vF6cFFz3G0q8+KyCHIyzmFpmmkZRxlISSLTX/fB9AbJ1zfVayXC4sVRoFa6VdcmxcuNBFSsNzy2RqEaGiMY6Vgf/58k/OLVTrDqBQqFrzz9hBD1zg3V+G5C022uyFZHgOSKM33eSxpmoauaYyjjCjNyIWaxzx7rqH60FIZ3Tm2gVEaSAopldmjqZdWKSmjoM9C02Oh6Z2Y7cnvvL4BUjGfHhV869oiv/gv3+HLr14/1iLiu9Yt26vK50g9wKWUilkYGSy3fV56do4wybFNHcvUMXSdcZhS8206w5jFhpr7XVisKmJIxSKIcixL4+r2hM3OhKKQymixpKZOlfGLLZdRkNKs2YyDXOWKVx2kkFQ9k0mcEcQ53VGpRwKu7Iw5N1/Z1zKVUumWQD3ITssCQit1YXuxMlchyYp9dOT5hss4TGf2QlNMtVc6StTbGURc2RqpdqGuWGuuY9CbJHi9iIbvUPNtXMvg7at95mo247hgoWHjORa2ZbA8p2ZEjq3YWZvdgCzPMUu9maZpjIKEnUGEEEI59QpJfxTPIgNOkrByVkQOoD9OGAYJjqVu0KpnzbI28kIwnCSzmyAIUzrDaKZOX52v0B1F9MdJSZ/UZ8M1z1bWEefmfebqaompa8p+vjOICSK1U9E1MHWdhaZHUuYESKEYOK6jdCdmmauc5wV5ViBQug9QLbidfsg4VK93fqFapjWqgrI6XyFMcnb6EXVftc5axeHeTEeNQgh+9+ubfOzp9onmtz8oLFPnO19e4de+eoXeKD6RudFBaJo22yleL10KkqygEBLT0PEdxXIaByndUczOIEbXleahkJJG1eJ6Z6LyLHKVUbPTD4kSZTQ4V3fQdY2675SUVoedfsgkLGjVHM4vVgljNaAfTBLOzVfJC8lSq1Ky+ZxS66AcgE1Dn7WCQM0ZpsFvWmnBclqh69pNose9LspCytKFW7WcludUBs/7myO2+4GKHa5rVDwHTdMYjGOStCjbdyZL81UqrkmWCz7cHDPfNJlvOGho1Ks213bGmIbOJMqo+Rab3YA4FTx7rk4QZ6VRq04hBLapUg9NUyeMM+DmYz9unBWRA5gO2vbeoIah0R0lINXqYHoT2LZy9wXVezR1jVff7pAXBf1RwsefmSfOcl640CxpmDp2mVWwO4hmlhZpnrPQ8Kh4FheW60rxW/r5+K6FoWtc7wZs9UIuLtVo110sU2dlvoqu6+z0I6KkYHcYs9hU5nHbfaWIPrdQUYrVkr0zpXJWXfU9zzFOpIAAvPFej/444Se+7/kTeb+jxBc+eY5f+8oVfvu1jWP107obNGsOg3EysxMZhSm90olaCNUjT7OCnb7SOcRpwWIzIEhyBpOUKFbJnEGc4XsGrmny9Eq9tDgxaVYdNfyWkvmmi4bGUttjFKb0Sx1IngvGUUarbvMMDRpVVXw6w5iKa9y009jLwjst9vr3i94wVhG43Ah10nQNQ1esrkurNZaaPh9ujZCKvM8kznn93S7PnWvQrLlkWcHi1NAxKSikZK7uIoRkHKls9qxQVN1hkCGEpMglKYI0T5mru5yfryKkpF51GAbp7Ho4qP86bpwVkQNolX3p6QeSZir7Q4mx8lmLCFSYlaYxE1spCrBGXih/HQ2JU84m9rYpwlh5CiWpcv1tVh1efKpSctfheieYeW5ZpkYQZiRpQb3iEMY57bpqD+i6xkJpxWKa2iwLRAmVTKSEolD0xbhsd+i6oq7WfJuTlvn9xr+6Qqvm8PJzp1dgeCssND0+8ewcv/P6Bl/83KUTK7x7NQ1CKosa31EW4lGSM5wkhEkGlLbyaFQ8k1GgYWiqLTU209miRArVFjUMqFcc5ps+DV/10JNMpWFWPWWb0a67BFE2i3vVNI0oVj5rnm0SlXRZx1bzmdX5CgtNjyjJb/ajcy20prpvHnQWkhdCmTmaR7ObkVLl/91tcZvSBqYsL4Cllodj6cRpTl4oLYYQ4Dg6YZRjGBqOZZDlkigtcG0d09SpVWyMMhBPdTyg5itCT8010XSNrh5TKxeOWSHUM8dRupxp7lGcqNz0LBc3teeOG2dF5AAO9qXN0iDRd5WfVr1iz26CuYZLs2bPLLylBhcXlbHihcUqlmWQZAU7gxDPtsqBt4FjKVquZyuKX5wKdE3bQ5WMuL47RkjVn203XIwyW7tZcxhMEq5sT8iLgoWmz2LLJUpUWl0hBHXfYmNXYpka4yhnsenxzGqdIM5LE7yTN1t8f2PEW1cG/Jvf89yJPYCPGt/9qXP8L1/6Oq++0+EzLx5/6uEkyugMI6yyfbkz2Gv7rrQjErVbtk1D5YP4Fhu7AVXfpl51WJUwV3NYblfojmLCOMe2DYyyZfrUcg1D1+mNYkZhqphg5SLJ0FWexiTMFFvIMlidr6j5mqGz0Q0wdEUjn36mKrf78If7UQzSVYyuCnlalNBqPZjvWl4orYsQkoWmd1fHOFd3sAxFwZ0O301Dnxl1bnYDAC6u1GjXXAwd3vpwQBBnnF+oYJk6aSqYxGqH0a67+KXfVZTmVFxbschSQb1iMddQc8tm1eb9jdHMwn2+4RElBVd3xkSlhk3TYKMTsDqvdkjThYdt6sc2hzorIneAcvj09zE49mJaQLrDmHGUkuYFTy0r6moYq6SxrV5Eo6JCfs4vVrFMg3MLKuJ2p6/EYXpp9JbmgkkcoGugoeE7BptlXrVfUv2u7U7I84I4K8jyAtdWLaxBkBLEOUttn4WmpxyBy+PUNG2fWE6Ug05D107Es+j/+cplfMfk8y+vHvt7HRc+8cwc8w2XL3/t2okUkSBWO4ysEDOdCCjG4F44lrFP46CVZp5qdqez2HIxdG0WaZCkBfOl79UUpqFT9Wyqnkl3FOPaJv1xQn+kWjdxmnNuobqPsXRuvsJi0yPNBZ5zMgsTxYJUe4Gj0JiotrV6ncN2UIdhqqe5FVo1h/44oVFxZv/uWz+ygKZps+fEJE5VyJSpSBAS9bzwbJPnLzTo9COiJCdOVXvq/GKV/jiZtds7A+Uu3R1Gs1C9hqXa30LKshUPW92QNC/wXYvFY5pDnhWRQzAK0tKi2WSh6R3K4DiIuLyxh6EKs2rXHZbnfMI4R0dtNz3HVDG1mroQDR1W5nz6pQis5lt0hjGubShVqWeVbS9BkiYstdWqy9CVwKhZ0g1ty9gj3lIOqs2a8vrxbzFkG05ShoEadJqGfqzDuGu7E7729i5/6k8+9dBcWo8Cuq7xhU+d40uvvMf1TsC5+eN1H677tlpFWkaZuukyCTOqvlq1LrU90kzsWxx4jtpJhLHygMvyQkUQCMlCwyVNlc14bxTRGyn183CSYho6rbqatZimaq84lqKn25aBRO0C2FMrNE3DtowjtdC4EyxTp11zibPiSIbznm3i2SpRsOYfjSOBa5uszKnrXErJTj+iM1R5865tMpwk9EYpuqaow7XSnmYSZ8iqhhkXuI5qaUmpdGedYYRjKUcJxRhVBcF3LQxDiZUXGz5SU4sKp5y9Tq1b0mP0wnt07+hjhFoZyHtiLrVrDr1RTLPq4FoGlmlgGgag5iQ7/ZBLK/WbipGh6zP7gVGQMonU7kX55FTZ7AYsNNUso1Gx6Y9j+uOYRtWh5lmzlc70AeO7SksyDjPQoDOM8V3zpq3s3i+Pu4f6S7/9Pq5j8q8fs+L7JPAdL63wK7/3Ab/+1Sv85A995Mhed7qq3nuteY65j+E0FaVOYegaQgiyQuCUNuZT54Plts9bVwbomurdF5nSkrRqDuMg453rA9Ks4I/e7tCq2Eo4W7MxzRt6iaWWT7Nqq4JimydaLG6HesWmjmo1Pyh0XWPpCGxXsrzAKN0j9mISZVzvBsRJTpRmLDQ8hJq1Y1kGIHEd1Yp0HbOMLDZJc9UpqLgG61cHNKsOtqkMHZGq9S2kxLENnlttYBg6jQPUaV1TSvYwzo+VDXdWRA6BouUlzDe9u+7fKxV4BdPUy6wBFV06nKQzjUZeCOIyFe4wuLZBf6ws3Wuuha5rtOouV7bHyELyztU+g3HCZj9kvuHSuNje87vmPosTQ1cDfsPQDu2FNiq2Yp7pN1ujHCXevjrgtXc7/Nh3PXOk3lMPC3Xf5vMvr/LKq9f5ke+4dCSBVVFJuYYb1t53g+u7Adv9CF2Djz8zN7uulC8XaEgM0yBJBaM4I0xzzi1UqFdtPMckyZRPV5IXzNW9mV3JtL+uqK4WnnPjcxtOEpJc5Yw/jCCz04jOUDlt26YxEzIqB4sUIVRExDhQTsmbeYjvGniZwULLw9C0GftN17RSZ2bOtDr9iXIaz3M5i1CeFqqN3YDOMKIQagGQZMVNzKy6bx87nfqsiBxAXvafmzVnNmC8W2jl6g0Ulz8rBI2K0otM4tK88TZ22HapTZnmIIPSrYRxNmPNxJmgWXVwLJNm9fCLY2o7YegaS63DH3IHZyTHASklX/rt92hUbL7v0xeO9b1OEj/42Yu88up1fu2rV/jz37/2wK8XlzokUA+fuy0i4zCjN1I6pTC+Eeg033CRUtIodSW2aaBrzNTmpqHz8afn6AwjlloeeSFYavlKJQ+3FDwmWTHTeiAliydMJX0YEFLSG8YIqQbghy0qp7EJaV4oPytdozeKZ/5Uq/MV5hsekzhlMEnQdZ1nzzVmmR+HwTQ0lts+oiTKpJlgue3PCogsZQJRmjOcpDSqNlGSKyPWE6ZnnRWRA9BLM0RFr73/7fJC02MSZTOR0lRJeqcPeLlMeJveyKahBu5SwkJD+WaFUc5i20PXDz++YZDMLuAsl1gP6VP+ypvbvHttyL/7A2tHmqT2sNGuu3z7x5f5ndc3+YHPXnzg3UjNt0hzJfqr3sa48CDqFYvKxMYytH2Dbb0UJq7MVSgKSbuMTXXtG5ogXddYbPm4tlr1Nm6xINkLo7x+pzvrJwFhnDMpCQ5WmB06UG/XVKCUX3YPQM1ukqzA0HWqZbS2GynPMbdkdd2JLeXYBheWaowC5T6xt4OhaRrthsNwopUKeHOWzHrSeKhFZG1t7S8B/1755d9dX1//hwd+/grKzVgC/8P6+vpvHfcx6ZrG6rxPmokHSgCzLYP2AWvpu/29vb3nhaZHzbNK8Zeyv7jTheJYBpMom9GGHwbCOOMf/9a7PL1S5/MvPbqMrFvhRz73NF99c5svvfIef+VPf/yBXut+BWI13+biUhXTUP30vXAsg3PzlUOjaPfiVj5K6vrZvysxjRuxB8fZAj1NsEwdDWUd5Nyii3CYD9hc3aXiWtiWTpYJktJ+/V6jD6Z6ncNwfqHKQkMN4R+mgPNhXwm/ub6+/rNra2sW8BXgHx7yb753fX09P8mDMnQdzzkdWgZVCAw2OoFyFi0NGW+Hmm/j2sZsVwWKLBCnRdleO/5V5JdeeY9xmPKf/vhLpzoz5H4x13D5wW97il/5vQ/4rk/2jyX58E6YOumahwx0gfv+nPcq4Beb6n4YhSm+q0SOBxdEe33dHjc4ljEzabzVgmwwSchzQbN2g4SjlUF2eSHY6oVIJEla3Nbu517Po6Hr+O7Df0491CNYX1//sPzfHDiMgyaAf7m2tvaP1tbWTsKl/KEgywVXdyZc2R7PtAD7f65s5tOsmClk7wQlGlMfb14IumUUcG+cHOWhH4pX397lldc2+P7PXODScv3Y3+9h4Qc+e5HFlsfP/fM3Z5qOk4Zt3Tlw7FaYerMd1J3svcYkanAcxMrjTez5oZCSzW7Ale3JLA/8cYRp6LcsIFGSM5gkTOKMQTkvUtELyczafwp5m5t3HKZc2Z6w2Q1u++9OIx72TmSKvwL8s0O+/2fX19d7a2trPwH8NeA/u9sXnJur3vkf3QXyQsXReq55bFv44SShnqsLx6s6Mw74FFe2RizO18gLwQtPz2HeYz+6EJJYQFEoAdrCMSbJbXQCfv5ffJOLS1X+zOefPbb3OQ1wLIOf+pGP8bd+4Y/42V99k//oz3ziVKnxwzhX9iD+4S3Q7V6owsyijPOLN+6Xum/NLHgqrsUkylQCp6Gx91XyXMxmb0Gcn4ho9bTBNLRZu8sqP/tumQY59dZabCkz1akOJSxNFKfRDqDahxIVsTvVBj0qOJEisra2tgz8owPf3lpfX/+31tbWPgv8KeDfOPh76+vrvfJ/fxn4i/fynt3u5ND40XvFNPVPQ+PCUvWBe49ZroZte1ePeSEIJmqV5xmwm+5fwQwGIUmmFO+9XnBfrQNXh0xIyHN2d8d3/Xumqd+1tcT1TsDP/JPXMAyd/+BHP/HQ5jEniadX6vw7/9oL/P1fX+f//Bdv8ZM/9OJsB/gwkaTKbgfU9VXzrX3tTWA2JD94OWmatm9WstD0SNIC29o/DLZM5R6cZIpB9CTCKmm9eXEj2Org/bnXAThOVYQxqMXddFBf8SziVPlfPWr3zYkUkfX19S3gCwe/v7a2dg74n4AfWV9fv6mPs7a2Vl9fXx8BnwPeO+7jPAzy4N7+AWrIcJLQnyQYus7qvD+7oacDy1tBpcDlePbNosE7QZZJbUkumKs7x9K7FkLyO69v8E9feRfLNPjpH3/52CwWTiO+8KlzjKOMX/6d9xmFKf/+D3/0SJPjHhSTKJulYE49lUBpUsIkv6WrwRS6dsNeXAjJ7jBCCMl8w3siaL53gmXub3fN112C0ifvbnameSEYjJPSzPVmB+S9GEwSgiijUXVOje7qYbez/jqwBPzS2toawA8Ca8Cn19fXfw74rbW1tQiIucedyFFhoekRRBmubT7wgHhqjVIIUdqT3N3vmYbviZlEAAAgAElEQVR+34KhNBMziuIwSI+0JdcfJ/z+NzZ55dUNuqOYFy82+ckf+siRCPAeNXzx2y/RrNj8wm+s89d+9iv88Ldf4vMvrz40mxfHNlhsKofnKM1nGoIsF7MH2/1cV2GiXgtUH/9hZKucdui38aNzbXP2uUzbW2kmZrOmJC2o3aIuCylnc5fBODk1RUR71IY4d4FLwAdH1c46SkwHmY5lnFiSoBCSjW5AXgjadfeeHxrTdla3O6EoHU+/8UGPP3xrh3evDwF48WKT7/vWC3zq+fnHlqVzt9jsBvyD33ibb17u41gGH3+mzcvPzvPixaZyQNhzPk/q+sxyFfFsmbemi97La212Q6SExZb3UL3QHsa5PA6opMpkdo/erp01ba/XffvIC7iua9NZ8tPAh3f7e2dF5AmALLOx76dXP71R/6//d51feuU9RqHa1ZxfqPKZFxf41hcXWZk7XiPCRxEfbI743a9v8uo7uwwnKZoGf/0vfIZnzzce+QefkBJu4Wp9knhcisi9QM4ceo9+bnK/ReRht7POcAtESc44TPFd64G3rZqmYTzgDsHQND72dJu1iy1evNg864XfAU+v1Hl6pc6f//4X2OgEbHbDWXb2vSDLBf1JUsagnszu9U7QNe2BZoNnuHv0xwlZIWiXGhRN0zCN03Xyz4rIKUV3GJMLQZQUVA5x4T1pfOfLq3zuEysP9RgeReiayrnf68Z7LxhMlHdaiLIteVKU4mdQC8lpXIMOM7fv04ZHi0v2BMEqLRbMY0wkO8Ppx9SIU9e0U6VBOcPxwzSU5QpMbeNPJx7HZY0H6uH7KPdJV+crZIXAPKApOWkYxo1i9iifz9OCez2fc02PetVB1zkV+pPThMf92jRNnUurNYS4teXKUWLPc+aetjyPYxH5AkCjcdazP0qcnc+jxdn5PDqcncsjxxeAb97tP34ci8grAP1+8EisTgaThEmkGE/tmntXGc8nCdPUaTT8Bz6fp/3vPCkc1fk8w9m5PIjOIJpp0Rab/m2ziw6DrmtTd4pX7uX3Hsc7OQKlj3gULixTV1bRmgaGzqk75unxPOj5NHXtVP+dJ4WjOp8PijDOeW9jyPmF6olplo4ap+VcnhYYhk4apqWr8wPdY9G9/OPHsYg8UvBdk/OLFTS0h867P074rsW5BQNde7z/zkcBl7fG/Mw/eY1RmGEaGn/hB148Y949BmhUbCqueVfhd0eJs0ndKcBBQ8bHFabxZPydpxlRkvO//fIbmKbOX/2xl3j+fJOf/+ff5I/Wdx72oZ3hCHCrbJnjxFkROcMZniD8+h9coTOM+ctf/BiffH6e/+TPvsTTq3V+9lffnNnYnOEM94KzInKGMzwhCOKM3/zDq3x6bYEXLjQBFWr1V3/sJZpVh7/zj1/jD9/aoT9O+HBrxDfe794UrHSGMxzE2UzkDGd4QvDlr10nSgq++O2X9n2/XrH5r37iU/zP//R1/vd/9o19P6t6Fj/9517m6ZXHN6HyDA+GsyJyhjM8ARBC8tuvbfCRp1pcXKrd9PN23eWv/8XP8MZ7XfqThEbFwbZ0fuHX1/l7v/QGf+svfRuOfXpV02d4eDhrZ53hDE8A/vjDHt1RzHd9cvWW/8Y0dD71wgLf8y3n+fTaAp94Zo6//MWP0R8n/OYfXj3Boz3Do4SzInJKIIRksxtweWtMGGekWUGcnvWjQVmPh3FOIYT6Wkg2OtNzdXaO7ga//doGNd/iW15YuKffe+58g48/3ebLr16fnf8z3B5RkpPlN58rKSXbvZDLW2NGYfoQjux4cFZETgmSrCDJCiSS7ihmoxuw1QtnKu8nGTv9iJ1ByFZXZYYnWUGaq3MVxGfn504YTBJee6fD5z6xcl8mjl/41Dn644Q33usdw9E9XuiPE7b7IRsdFQS3F9OUSYlkEj4+1+1ZETlmjMKU652AUXDzyiOMM65sj9nsBliWjmMpMZ5j3RhVHbwQn0Tk5aouLyRSShzLmJ2ru8layXLBtZ0J13YmZHmx72e3+3weF3zlj7cRUvKdL92foPDl5+aouCb/6q0zLcmdML1fJZKi2K8YNw0N3zHRNQ3L1LneCeiN4ju+ZiEEG52AK9vjWTTxacJDH6yvra19FvgZoAD+cH19/af3/OxvAD8K9IH/e319/e88lIN8AAzGCUJK+mNBvbI/mnYcZQgpSbKCPBezhEApJYOJjpTyvrPVHyfMN13GYUbFtdA0DU3jntIUwyQnL1sxYZzTqN4YEPdHCZLDP5/HBV95c4unV2r3nUBp6DovPzfPa+90yAtxZkl/G7RqDpoGlmncRETQNG0W5rbZDcjygiwvqPkWlnlr0kKSqp03QBBlDzWS+DCchqvhMvA96+vr3wksrq2tfeLAz//z9fX1LzxKBSTJitmKwS0/cM+5+SKpeVa58zCw9+QFaJpGq+bQrru3VHgHccZ2P3ysZgLpnvO2F65tstD0bmnaGCU52/1bt/58x8TUdUxdv+k1PPfWn8/jALWCnfDZjy4/0Ot8ywsLhEnO+tXBER3Z4wnT0JlveDQOLEjUXC+b7VT88rlgmcbM0v5WcG0T2zRIsoIwyU/dPf/QS9r6+vrWni9z1I5kL/722tpaH/gv1tfXXzu5I7s/xGnOVk/17tt1l8WmR144h67efNfiont/0bedQYxEkqQFF92bKZuPGrK8YLMbIpE0q849RcF2RzF5IYiTAt81b7J9sEyd84uHJwve7vN5HPCVN7fRNPgTH1l8oNf52KU2hq7xxx/0+Nil9hEd3ZOD3X5ElOaYus65hQqNqkPFszB07Y6hc7qusTpf4fKWQEhJZxidqnv+oReRKdbW1l4C5tfX19/c8+2/u76+/jfW1taeB34e+M67fb0ycP7YkRcCKW+ExkzClESoi6JZd9A0jckkoe6ZzDW8m373fg0JY6G2uZ5rsnAgerUQku1uQCEkS21/3y7ntCIvJBJZ/v/Nc6C8EKRZwVYvwnUMltv+rFjYpk5eCCZhymYnoHWPVvOPawGRUvLVN7f4yFOtB85nd2yD5841+OaH/SM6ukcTUZLTG8WYhs5cw8E07u7eml7ThVBXeVF+fS+ppZapk+YFzl3cz2Gc0x3F2JbOYtM71nTUU1FE1tbW2sDfA/7c3u+vr6/3yv++s7a2dk+v2e1Ojt0eOkmL2a5jseXNepUyzxFCksc613YnCCl578MU3dCoeRYr8xWStKA3Vhfj6lzlnguJrUnQJaYU7O6O9/1sEmV0hsrNOZzEtOvuff+NpqlPMwaOFZ5j0qq55LmgWdvfCuiPE4ZBwkYnACSWadCs2PjlLm6h6TEOU4SArBAMg2RWRNKsYHcQoesaiy1vXzrgJMqYRBk136JynzvC04z3N0fsDmJ++IBC/X7xkUstfuV3P2AcptSe0FndKEgJkpzuIGYUuFxYqt4y9z6Mc0Zhiu+azJfXqO9YJGnBTj9CSIlhaOhozDXcO846lud80qy4q0XhOEophCBKBElW3PIYjwIPfQm2trZmAv8A+C8PtLZYW1url/+d55QUvL1ISpqpRA3Hp2hWb8wzqp6lZiRZxjhM6U8SgigjKjUgeSEO5ZTfCbqm4do3t25AsZm2eyG9YYJ7ClXGUkq2Sr783jlGo2Iz13BvioENyzmJEGrXJ9H2xYVqmkbVt2eDTH9PQZhEGVkhyjnV/k5pdxgTpznd4Z0ZMo8ivvb2Loau8el71IbcCh+91EYCb115cucinmuSZQLD0DAMjThV11RvFHN5a7zvWuqN1PXVG8VYppqV+K5JmgskkjQrGAUpuRCM70I3crt7/iAqroWGhm0ax96JOA0P5h8HPoOafQD8N8BPrK+v/8fA/7i2tvZxVLH7rx/eIR6OqqtWFVJKav7hK9l23aXmW1zRNS5vj7FMHc8xqWgaRSGxLX0fi2NnEBHFOc2ac9Nw7m4RZwULLR/k6WzVZLmYCSknUXZHmm6r6tCfJDx7TpkG+u7NbBZd01id89Xqbk8R8l2TcZih69pNBTVOczqDGNtWK8HHbTfy6tsd1i429xXVB8HTKzVc2+CbH/b4zIsPNmN5VFH3bV640FDFYg/FfBJlSv8RZcw11M7ftg3yWGCX1+pmNyDNBK2ag+9aeLYqKEJIKndBVRdCMgxSDEO7I2uz6llUXPNY21hTPPQisr6+/ovALx749v9X/uynTv6I7h66rrHQvDHnkFISJQWWqe17yFmmQbPqIMvu2nYvpOJZLM/5+1YVhRCEpXhuHKb3XURqvkWaqd7p3hX7acG0kCZpccsCkuWC7ijG1NUD3nfv3FLTNA3jwE3j2iYXl6o33UxJWigqpqWR5YKdfsT5Bf22VMtHCZulWPV7P33+yF7T0HWeP9/k7WtPtmW8ZRosH6BL13ybUZDuW0wuNFzSio1lqvTSabciSnIWWh7dYYwGNGv2jK11OwwmyUzpbhn6HdtfJ1FA4BQUkdOEomyX3O/qvT9WH7KGxrmFyr7XMU0D09QZTVJcx0CE4NrGvt5ymgmQgMYD6UMq7unu8WuaxlLJl78VhkEy2634rnnXq2kpJVKyb8ZUCAnI2ecxpQQrymSBV7YITuqmOwm89k4HgE8+N3+kr/v8+QZv/E73rnaQTxJaNeemmGGtpO8XQmBbOp5tkmQFVd+iN4rZ7EyYxDlV1+L8YvWOs0tjzzW9d/GZF9PY6YezYDwrIiWyXLDZDRBSMt/wbnmDSCkphDy00OSFIM8FeSFvEmXVfIvBWLElgihjdzQmiHw+/swcmnZjNSykYLcXMRgnPHuusa/I5IWgN4oxdJ123UECvWFMISRzDfdUtq7uB0LKkhwQU3FNuqOELBc0qs6MpWWbhooB1TXiNOfy9hjbNBBCMAxS5hseF5dqxGnOtZ0JgyBlqe1zbr5SFhV1I7ZrDpap06haZPl+pt2jjFff6fDUUm3WWjkqPH++AcC714Z88vmjLVAPG4UQaNrto2WFlMRJjm0Zd3W/bfdCeuMYISTL7QqLLY+8EGx1E0ZhRhDnNKsOO4OQvBAUQuI7JkLC7jBC1zQWmx71ik2j6mCaOoauzVrgvXHMhxsjHNvghQvNh7KTfqKLiJASURaENC8QZb/psDZLdxiT5qVnk1Q7hb0rhzQrmIQZl7fHzDdcJmG2jxERJTkSJT7cHUSEUc4H8YiFlsdyu4IQgu4wYhxmBElGsyrZ7AQ4KwajMCVJldBIRemC6xhICZOy/TUK0gdiYZ0mTMVUrapDnCrjxf4koeJZbPVCRkHKZidkvuHy3Lk6r73fpTuMqXoWtqkTpznjMGO+7pIJVZDSrGA4TjA09bl7jokGFBJ0DfrjlHE4wXcsLq3UDn1AZOVnb5n6LRcSpwGTKOO960O++LlLR/7az6zWMQ2Nt68NHqsiMg7Tsn2qszLv33JVf1DvMd29CqlsTvYuQISUhEnGZicgF5LuMKHmmyzPVTAMndX5ClJKxmFGb5zw+jtdnl6pze7j3jBG1zWsMlY6zQoce3/LdbcfEWcFcVYwiTJatbMicmIohGCzE5ILQaumht9V16IQ8ib7izjNGUeKQjooKbPjKEXXNaRU7ZY4LZAoqqqh6+QH6cVlgdLQaNZcRmGGZerkhaQ7jOmPE8ZRxnCcEBcFUsAzy3V2BxE7/Yj/n703+bEsy/O8PueeO7/7Jntm5ubmQwwZGZ6ZVZXZlLqhGzUtkLo2SIgdEn8BQiyaBWLDAiToNRILYMmyBQtYICGhXjS01HR1dVd1VQ6RlhEZ4ZO52/jmO56Jxbn20j3CMzImj4jMrJ8UksUzc3v23rv3/KbvsNi27A1jAiEYFQmRDBDCV9PWuZeW83XPai2y6FvrAbGpOjplGRfxJw7jJJJ0naEzjvEgxljnbyQBxjiWm5ZGacpWcb5sEM4j0rQ27BUJq7IjjiSbRvXjBH/gp3HI04sSbS17w4QH96dsKkWrDA/P1ihtqRrNnYMBMhDUrSYK/U3bdJrzue8Ub37fePDJEca3IX7+aIED/vCt2Vf+u6NQ8ubRiPef/m4htOoeZaWtpVOWLHl1EnmR72GdY7VpCUPBpvQowBeviUAIZBDg8EXetW64f6tgvml562jUS57E/PLZqlek7jhbVJStwmpHGAaMhwkygKuVn04A7E8y7uz7BLY3Stk2ikjKbwx2/XubRLR2Oz2l61WNUoZxEb+yHYzCoK9MLAeTjCAI6JTm6WXJYtMwTCMGWUinLJNBDIGHo1rnCITg0dmah2cbkjjgj9894F4wYJRH+CLGsak75htfdcSJ5M54wHCQMB6mnF5uuVrXnF/XGGOYjTKstZwvKox1jIuEYRbtDmLnHBeLGoejbvWvZWp/k9Eqw3UPf9w2ijduDftRkiOOJNb5G0iGjkEaMcwjjLNsa8WkSDDW+vcqkhztZVSNolHajwsmGSDorOHHH1zx/LoiiUOOZxl3bw24XvvxX9XDfYNAUDbKXw/a4oTgclmTxpKq1bv9luphmcY6qsYwGgT9zubbl0R++nBOGkveOn49rObv3h3zf//Zk8/MWfhtiEESsq06hln0CRSfsZarZYN1jskwoW404PiL969YrBvyNGRaJORZRNNprI1pOj/yOpxmLDatv87qDmMc0yIhSyR5GtJ2mlGe0HSKsjEEa1+c1o1B4NifZBxMcs7mFapPYJfLmkmRUGQRs1FKkUc94dbRdOqVqg2vM35vk0gSS4ZZ7L07jGHbKLR1HO29vPCdrxtW2xbnBOMi3s2Yz+cVq23H+bziHDieDSjyiMtFzeWiZn+Ssdx0zMYpD882rLa+itiUHbNxzv1bQ87mFefziiAI2Bum1K1C4ji9Llk/WrLcNNy7VTAtPHfCGMti07KtO7Rx5GmEc37scxNCePy6Np7I9G0MGQja1jDftBSp5UwGlJ1G9mi3sG/f287vqU4vHY/P16wqTRpJ3joe8aN3ZsggYFV2hDLgrdtjykZzerkligJ++XiD1pbLVc0wi+iUZjZOmRQxHz1fIwPB+aIiEAGLTctoENK2Aabn/Nyw5x1uB8HslE9044EfTUQywFr3hRQHXmf87OGc792fvrZF63fvTfi//vQxHz1f8+D+9LU8x9cZ1nr7haCXIPk4wKKs9Y7XpbRlf5JxelVyuah4vigZZjHGWAad4a3box1oI5QBdw8KpiOfJAI8bH9Vtr5wtZan51uMhSAIKLKIPAkwvXrDoOeYIXwhmychVaNIoqDfjQouFjVCwMEk5WLhpZDkxvNDileQaOtW70ARX5WQ4+9tEgH8oTKMOb30C/XwY4euNpZ11THftBjrCCQM8xBlHOMi4nIZUPYjk03VUraK62XN1apF91V1HAe4m/FHEe9kEox1NJ2myCOqVnO5rPjo+RoHLDcdg0zy5HLLnYMBeSo5u1a02lDWiiQOOZymKOOr82dXJdNhjHN+nHa0l9Mqjzp68bU0nfFS1N/woRfKgL1xwqb2r+mDZyuCAG5NB1SNZn+ccmua88vnKxbrlufzkqtlw6bqSJKQQRYxGsSM8oiy0b77WlZcLmquVg0I2CtipJQczTK6zpJEkvmmRQbCk72cY7npCENBpyxGQ935G0wg+OE7MzalIo6CXbV9U0Bsa0Wa6J4d332rRloXy5rLZcOf/M17r+053rnjl+u/eLr63Ugizu32oZ8YQ+NRlIHwo+ubLmVTtjw8W7NYtzRDw7RIKIDn1xVNpwkCL/uu+9F0HEnOrmueXGxolOFwktEqw6ZSuw58kIXcvzXk7dsjNrViXXYc7uVUdcfJ4wVRFBDJgDz1k4erVcO29p3HYuPRjEksuV43TIqEpjMMjl5OIpdLz5SvW/1Km+QvEr/XSQQ8LO54f9DPQeXHvucZopEMiCP/s6utX3y3nWHbdP0yV3LnoEBry4fP1oAnGWZRwM8+mhOHkruHBVksKVtFkXv13nXZcbmsSWLJ86uSZ9cl+2O/nxECpIQ/e+8SgDgOaGtDFPoW+Wgvp6o1F4uKqlHM1xFFHu0W/qEMPBES77/x/LrCWEsah5/otr5sNJ2mbg1FFv5GdMhq29JqS9sa2k7z4w+vmY4SZqOMplMI4RWKi1RyOa/54NkaKfqEHEoCBE/O1wzSELeXEYaSpk+YF/OaVdkyyEOKrOB4f8DtWc7PHy85u66Yr1vevj2k6fxnPRslPLrYYqylUZZNrZCBYJT7z3Q2fvVrebHY+LYhuX720BtH/cFbr08kscgi7hwMfmf2IjfKu02rGRef3CvEkWR/ktJ2lij03ef7pyvmaw94AT+ZOF/UWOt449aQy3XDd+9OWG073x0IQas0m1rRKY0epuyPUgIhmG8a4tAvzmejlDCUDHPB/VtDgkDw80cLr+xQC75zZ8jhJKduNB+cLqg6w8E4xbkY6/xi/2CSobSHFb/qtXbafKWgkN/7JAL+jX3VmyqE4GgvZ5hHbKuOyTBhufVkH+scRRZxOM0ZDWLevTflX79/xd2DwksYOEdnLdtaE0eOs+uSJA6JVp54dDjJaTpDqyyLraJuNUkUYC383R/dolWaH3+4wBhDGAqECBkPEvJE8satEXujhA+frZhv2p4ol1Pk0W7xd8OFABgXMWfXFRbLdJAwGyWfeti7HmIrA7/E/7SwznE+9zuYqtXc2f/1pMC217GqO70jExrrWJWK4/2C0SChrDXzTcO0SNjWir0iQtyQOp0n0a1rxV9+cMXDQcwffWdGnkgulw3aOaQM6JTD4tUAykaz2Dasq26nUTYqImbDjHERU6wjdI/lH2QRnTbc+w17pDQOOZ4NcI5vHXDhZw8XTIfJV14ofDy+e3fCP//p2bdynPdFosiiXwvr75Th5NESbS1Hezn74wznLHkqUdowzhMmg4hVpalbxQfPVkwGCbpH8wkBgQx6QI5Cm4DRIOL7b+5xvij58BROL0tEIPjZwzlvHg0ZDjyIZjpKyNOQW3s5y03b7+oUHz5bs9h6cmOe+nFtqzzF4GCaIUVAGH7yczna8+fOVymH9NdJ5DeENnYnuy62HbNRyrrnIQDcv+WoasWz65IwDIjCgCKNON7P2ZYKEYDDstx2ROEN2ifYzV6FgKAXFUwTP6f8p3/1nLYztNoQyYA/enuPN24NuVq3WAfDQYS1jkhKnHXgHD/7aMnFouFv/eAWwEsOfn4RHPX7FMWzq4qjvXx3AFaN4nrdksSSg7F/fYt+h5P8JlYs/iZxPVT200IGguW2o9Nesv1gmtF2nuF/tOfx88ttgzLWcy4F4ASTQcIoj4nDkKrRXK0arlY1VaNZli3vHE8YDiLuHxZYawHB1aLh7KoiiSTOObJYgoDHF1sCIVDKkaeSG+3go5kXxcyTkKyfI6/LjpOnC5SyfO/ehL2xr/DO5iUCwa297FNe7dcf1jl+/mjBD78ze+3EyXfvjvknf3HKk4stbxx9e2TJX0fUne7Rl44n51uMdXzneIwxEEcepRcIwXy7wgG3ejHWycAngPceL3A9naBqPfx8te34yw+ue08gRdkoon7XkUSSVdlx51AQRwGdsoSB4K3jIUIInl2VSOm5Inka4nrnQyEEWluWmw4ZemjwZJi8ROwNAvG5FK4/S/x1EsHffOuy8/DZj8F7/cHWEr4wi9wbpVjnuJhX1J2hVZpIBmhteev2iLN5SdNZokhy/7Dg/LpCC4syjuEgJE98x3AwTuk6wyiPGWQRf/rTc55flf5kdt6P+Tt3J3zv/h7rWvH4bEMahyij2ZSaOAqYjhKenm+pOsXlCk4eL3DWQ2hX25YsDbl/NGRbwSANkdIvo4f5r+C/q7LrJVcsahDz4lTYfXJEDPhOx1jHIA25PRvQdPo3XpyhDDicZjSdxjm4Nc25MxtQtpoolCzWLUezAdta8fhsTas0eRYTRwFNZzi/rrje+JssCISX5C4F++OUMBQM0pAsiUgiyZ+dXNB1isu1h/Puj1KGWcjVuqXRhiKLEUIQSYlSipPHC7I45IfveFjsYtPy/tMll8saYyx/3qPI6s7j8cdFTJFHTIpvTyfy7LJkWyu+/8br31O8e8/rmP3iyfK3Polsa8X1yhOBb+3ln0A2DdKIg2lK01luBhZZHPFv/eAIpS2hFDtFXuscWjmkhDAKuFhU4Pw5kiYhsQwIpeD0ckOexVwuKprOO5tqHEr56cVbx0P2W8WzK0MSS6ajFAE8vdzS3Nx7WYQylkfnPoGEUmCsF3R1rR9jhzJA4NGGRR6xrRVxGHylqr5/nUTwiKmrZd3LBxQeYtdqxoOYbaXIEonSlqI/JLe14icfXTFfNdw/GhJJSRRKpqOEThvazrCpNFoZP0tVmiiSGAtNo3l8vmE0CAmCgKr1PIXVtgM8010b6xd81rHetDy52LKqOq7WDYM04vmiIpICay2RlBB4opO1jm3Vcb1p0MaPpKxz/OLRktv7A6bDhItFDTg21a/IiUUWsdy2xL00yziMdz4nr2p7287sRmVKe1x8FL6cfNdlhzbecvbFUeHx/oDFpuH0qkIEHdtSYfE3mQz8jsFqx2LTsSwbbk0dxhiezyueXZWkcUgaB4SBQFuLlLLn6kTUrWax3TLKQqLAUVmwxt/kfikudhyUg3HC5aLi2bV3RPzo+ZptpbhclvzdH97hYlkRCI/MGaT+ZvRgCD9PVsp+Jr2jrzN+/th7fTzoD/jXGXujlP1xyi+eLvmTv/X6lvhfR5S9eGKrDErbT/h1hDLgO8djnPPFxUfPV6zLjkEW7SD2z69KTq8qssgzys+WFR8+X/OdOxOss9SN4Y/fnVLWio+erUnigKtlTdn0XY5zdMoSOD+KvVqELLcd+8OMMITb+wMEsNx22D5RHEwyPjxbk4QSIfD8JgQEgsWmRQjRdz+KqvW2B502CLzJ1Ve1z/t23QXfUFjnuOxHVoMs5MYTSWm/iI4jSRL9aml8erHhw9M161LhXMC/+8fHRDKg7jRXi4pOW4c26rkAACAASURBVD48XVNkIadXJYEQ1F3DbBSz2lpCKanbiMNJzrZRLNcedeScH64UWeg/cOO4WDa89/Aabf1s1llHGkufMBpNLC2ddty/VTApUtJEIgVEcUDbkw2t6YmOQjAdpShtCHr4p7WO+aalbjRxISlrxTCPP9Vv3L7QnrhXtCpN5/caN79//wWRSp+gvbf086uWOAwIpeP0suNwmiOAQApGw4RGaUIpuV41XPXyLm1niGNP5ryZxTvAWctHz1Zcr2qKLCFNJNMiIU1SklDigK4nE0op+NmjBa0yRFJysSi5WFRo4/jl6Ybj/TWbWjFfN7xxNOR4L2PbaLSxTIuYNInYGyUvcSSqRlG12o/dviHuxMmTJbNR+tL7/Trj3XsTfvzhNc6532rdsSL3UFqPsux43kNg94YJq1KRxtIrHAg/2rpa1Xz4bMPtWeZFTqXgbF6jlCaSEc+uS55cbL0mWwBRIBkVMZfLmoOx541sK00YSg73QubrlsWqxliLcR4J9mxeYjRsporpMCZNI5z1Ow8H5Klkvm6wxuGk33tq46i1Ie6X6zdjY2UsAsHNR+QHuF+d19JfJxF8FTsd+vFGHHqRNA/5DZgOEwR+9nmTucMwoGoNYRSwP01JY8nTi9JXM9oxGSSIwEuyb6qWbWOw1tD1h6KUmiwOiKSgrDWdMdQbzSCTpEnuMeFZzPWygUAw33QIHCIQXK1qJkWKNhrnBNtKMRkmTIcpdw+L/lCW3DkY0CrDxaIijfy+ZZiHgKBq9Q7+u20UZa1olCFs9K8dX70YWRKyP84wxjJ8RbKRQYBAeFTKKwALzvlKtlMV66rj/SdLELCuOpyD+4cFrTLsjxOW25ZAdggHRRIxyCX745yLoGGcx0ghiELB04uS5bZjXSsaZXnzaESS+CX7KPVkLBM4pkXMfN3u4LybuiOUkiyWdNqRhAGbuuNyUbOpNHEoETiy1EOxizzmcJK9tFC39ldFSKvsp4ILXldY5zh5vORH3/nqWeq/Lt69N+Gf/eSMs3nF7dnX/5q/qrgRLNXG8uHzNR888SrF++ME3asl/PCdGUkUAo6Hzzestg3KGH70zj7WORabhlAKf531GljaWbaVRqCpO0MaSZTxBOTZJGU8jIhkwN4g5cQYGmU5nKbEMmRdd7Tastw03JqmPH7uycpCwN2D4U4z7m4eUtaG6TDppZYkaRSy2vbwdW0Y5QmjQYQMAjZVRxTKr1Rj63c6iXzWCskYz0SNpCRLJAMb9fpUIeuqY1m2fQsY9GOrlO+/OaFpPN772WXJR89X7A1TDqYZoyLi2fXWM6FVSNlotHEo44hD/zeFoUAZyyCJqFvFttUcTFLuHw3ZG6b88nTFYl17kbbKH35xEuIEOGdZlIo08nIr9w+GTIqENw4LLOxmoeeLmrLWbErF3gguFhVFFnF75kUIr3qBtxtC0g28+LPEi0gWv2yucM5xa+oX9rdneU+IDHc/I4QfDRzt5Wybjs225clF52VEQknb+sX6KI/4w7dnPL3ccrWoUdpxvO/1xdp+yRhHAmcEloCrZcPR1KsmZ2EA0qGMIYsSpoW/eTrtyBLJ3YOCMNxwvqi5XNY0jabuOvbHEbNJzh+8uc/FqmZVdpSNIo0CNmVHEsud46L9WKYVwndYXg7lm6nIn135fci791//KOsmbvYi7z9d/VYnkZsIZeAldIyv4K9Wno2+Kjs+PN1way9jNvKovlZpRllMHAb8P3/5jMW28QnEOdaVYpCEvHlcMCpSmsYwyELCMEAZzSANiROJ0R70seyX6YHwBZJSDuUsYWC5d6vgzdtjznvNuHXZEQQBozxiOIjpOsN87Z/7aJpRDOKdfty20Tx6vuHNYwE4psOU8QtoS20s614i6MsoMv/OJpHzeUXV+IP502TE61ZzsfTzfSMdH5yuEMILzUWhn5+DbwEXmw7XY7GPpgOeXmz5xeMFy21L1Wp++WzFj76zz2yYentc42iUR145oO00QsDtWcq20fz04RwpBKGUHE59l9A0hipqeXZdsSw7us4QhSEO4aGFBhrtJeMbpZkWMWEomBQRZ4uaLAkpZv6wU9rsqnttDU3nHdSSSKJ7siN42F8oB18YO34jkgjehTCJvZta3L/tVaO4WNbg/GzXfz/lfF6RJsHO98TiuF42dMqSZzHLdetdDOMAayyPL0u0cTy63HI4ScHBO3eGuF7pdFW3bOuW1aZjuV7w7GLL3VtDylrjrOX+7SEOwWLr3xOEJx4qZQiClIPxgEmRsC5bAgFhIGiNAQd5FpLEoef/vGIXcnvWEzy/oT3JSe82+L2vkfx3a5oxyiNOHi/5ez86/tqe98uE0oaLpffxOJxmn7jm374zAgFN67vyxbZFCkGWSg85H6V8/40ZdWsYZDE//WjOulRUlaKWnkcGkMReM+vscsNwEDMuBjy7LHl8tmGQSd46HlN2iufXXvmi7RyzSdITYMEoSxaHpFFEFkvSWHJ60WKd2zkmjgYx68pbR9eNwjqLvtgwSGMQkCeSTsO2Uqy2LVVruD3LCXtwzdOLDTIQKOOVOg6nX2wM+jubRDxM1O8NPi2JvDjTX25bltuGZc+9uLWXMUgjZCB2Hsllo6kaxXSYePkO7ZfM2jicczw627CufLVQ1RrrLI1SVLVCSrlDcCxWLauyQ2vDnYMht2c5Tac5m1e896SlalqaRqEMyNCRpwEBgjQJ6cqWQeL3NJNR7H1MSsXt/ZxpkbA/TrDOe3Y0rSaUAZtasVjXTMcx83WDwy+xQxnsZNW/aGRJ6GXYnUdrfTxaZfsL3xD289rLZc228WO12TgjSwLOl42HGieSJ+deKubZ9ZbFqmU0kHRa07YGJwRPL7aM8wTjLD98+xBrHfcPhqw3bU+sdFTKsCo7OmP9snNV91alfjlvjAUhGPaaaXkiGRcRx2bAfNMyGvgbcVl2NJ2hSCTRxw6dqlFcLhvCMOD2K5A9X1ecPF4wGyXsf8XS758WQgi+e2/yW0U63NZ6B3+vGv2J3d+N8RbAR89XJLGk04ZAiJ3A4e1Z7rswAZtt13v/uH6/VlErg3UBf/GLS3TnCEJBkSY8m2+ZbxrmGw+ECWTAfN2ijN9j3MgwPbuq0NoyG6dYZ/iLDy6pWsOyVDtk1tEsp24NZW2YDGLq1rDedjTKX9OzYboDtXTaEsqQ5bahbjXTYdxPRyxXq444CliXkkEW8UV0mX9nk0ga+YXy8De0aXkaMRt5ZFOeSE6vSlplEUHHTz6quDXJOZhmTIcJi03D1bKhyL1/cZFHOziuNpZVpQikd9cLAIRgtfVeGMY4tPEH+nLjl8Q3ZjJVq2g7xarsWFeKLAoRBKRJxKhvkZWGq7WXLFhXHTIImI5T8jji9NpX6Juq4w/fnvHzx0u/HM9j3joee22gvjVf96O5bePb2O/emXxpslgoA27P8p5IZT+xWL5JLN4nwbGt/M+lUcid/QHTofc5D/BJfbFu6ZQjzyTCAcJxvmixFgjAaYuy0CrNR8+24KBuLcuyZdso0kSyKTWBsNSdHx9qY4lCx2qr2J+EpLEfL0yLhDAU3DssevmZmqO9AW812o8EKq+5NRslbFvLs+stRRZzMMmoW4+0E0BK+I11Is45fv54yR+9/fr5IR+Pd+9N+Fcnl8zXzW+FFUGehDs/8xcVKurWa7fdXLudNlytGprWC7OmSbhzGj2cZljnUMqwzFuiyMv4zNc1kyImqjsIApT2MH2U4E/fu2CY+TF521kulg0y8BMOAUSJH0GtKkXVKLSBYNPx8PkaEQTe4lngN41OsNz4biRLQ5yDO/shURSxqbxe3zvHY4o+6XW94Om2UoRSsKm8dNJo4F9XIEDK4CXTq88Tn/mKf/Dgwf8A/KOTk5N/9sJj/zbwH52cnPznX+jZX2PsTzLsK3RwXhU3FUbbhbx7d0ISSp7PPaqqbDRFT3BrlWc107NQ4zBguWkZFTHTQcq9Xub57LpCOa8SXGQxzlmaLkRbi9aazTZgkEcc7WWozuAEPL2q/AHQ/+4iTdAGmq6jrS0fnq0o0thzKw4KojDgrVtDrPMy0WAB58Uka0VZa5rW8L3+xh7mXuZ+MItYbn1lnachjTJfCet6ue1YlZ6geLQnXsKhB4Hg9myANs4rJcugV+SNyfrR13qmyJIl16uWuvV6YLenKVEkd9W9l3LRWAFSQKMsZdNx8nSJM4Jaa3RnyOMIZ/H/Fm8/KgNJkUkQgmnhK7e204SB35NY50dx20qxTjpw9OOLbCcXEwReBaCsDUII6sZrJK22HZNh+o2x12/2Id/7GvchN/Hu3V/xRf72Hxx97c//eSOJ5U6R4CbhrsuOi0VFqyxvHg1JYsl81aC0pdNen261bakaza1ptoMAd8YyX/nHL5c1rTJ0xpAlEUEgeOMg53RR07UWZQyIiOP9gVdtaDVBEJDIgOEgIopCiizkfF75HZ7SxKFgU2uO9nLKyqMmN1WHcY40jYjCgL1xRh5LZqMU0xdgWfqyPl4cSW7PBsSh5MNnK+Io8JbTk5QolNStH2t/0QLo8/yr/xj4Lz722L8C/g/gW5dEvkgksdzZVA5PI55ebIljyeHUI6biUFJkIXEUsFi3vH+6ZLnpGNYxAsFekxJJuUNJda2mDAM2jdfa0toTDstOc+9Wwd3DIdu64/l1Tac0xcB7LQ/zhFZ51FTtvFijUuASOD7IubXnhQoHeUwah1xtWoy2jIYxq42i7Yl/eRruwAXjItkt1SZFx/lc9qOsr1776cW9szaeTWudl8C+sf29f6tAGz/fVdpyZz8nDgW/PF3zL39xQacNRsDhJENKKCvvdKjjkE4Z0lQS9npagyTiYum1wRCC6TDhzq2CxaoliQR39gccTgecLby+0dm8wjoo8phISqyll2LRLLYdaRwyKmKu1jXPr0uGecQP3tzj/SdLqlozK7zOUhgKEiT3bw1fu8zIp8XJEz9OevA1kAw/HvcOC7JE/tYkEfik97g2v5LgOXls2BsndJ1hPIgJpWaQeB+acREh8ACUuvXIx2XZYo1jtW2pW4OQMBvFHO3laGO4ezTmgycr4tBzrmbjlOul/9lAGMI8ZpBHDHvC8Z3O+J3ettndK9Y58iwiiQP2RkPazjAdptzZL0giSd3vWk3f+SjtNb4+PsYfZF4lAqDpDOOBPw++bPf8ef61Az5+4shXPPZbHaEMGA1iDiY5aRySRJI7+4N+l+HhnFer2outOdFDQGFSpPz4ozlFGjEcRLuD/icP535UEwg6Y5AEJGFAnoVMRwmBFFwuG+ZrX+3cPxrxvfsZf/VBjcMSBAEy8K33wSTjzVsjHIKm9fuTPI04nuXkcciyZ6k/Pt8yymNm48RzK5RGa8swjwkCQZHFhAdeoPHjxKovGpMiRgZehv7Fi1Ibu0Mzddp/feNDsS47rtZ+4Z4mkkEWE0nBKAvZIjDacr4oqRpDGge8dTxmvmqYrxsIIA0l415jS2u/k5JhQJHHTIuYqtIstw3GwnScY4wlCgXbWnE4zYik34EgAqpVg7N+OhlFkjwJKbKYSBo2teInH84JQ8HhJN9J3NyeDTjez3dd183rvOmcrPX+I69bpPHnj7xe1sHXuA+5iSAQvHNnsktkv40xLuLdgXuzL4ljyZ1JQRxKFpvG70JbzVBpkjhgW7V88HRNpyzaGvLUa7zJICDvz43zeeVlUQq/txzkggBBEvuCtGq1Z7hrh1KaD+Y1h6OUSAb+um46sjQkj0P2RwkikGRJQBJK8jRiVXUo5W24H51vep6L7/DHLyhLe7M1D//1Oltml6C+ivg8SeSfAv/dgwcP/suTkxP74MGDAPhv+se/VDx48OC/B/4m8OcnJyf/4IXH/xD4n/H39n96cnLyV1/2uT5rjPLIV7YOrjctYSDYn6SInrl873BIfF0S7QeMBzHa+E6jU5qn5w0/f7ig7QxZLL1LXmdIwr76jyRK+eV625ODNrXCGMfj8y1ZKumMoesssZQM84hQhoxyTygSgZc/ED3n4/tvTNnWikB4bSoZeJaGEAF1q3jv0ZJOabIk4mg24HDikVFX6xpr4N3709281zmPKvu8B594hWQMsDtgW2U42ss5u67otFfdrVvNjz+4RoZeNvt8UTNf1yRRSBBIjmY57z2cc73psMZy9zBnb+zVSje1wlqLtpZWW5JYEgR+bj3OfdVWtbonjgraVlE1htOrkiKNsMaRZt7LelN2bKuWPPNcEE/4jHn79oj3T1cUWUTVeFbzMI8oshhlDNu6I5IFgRC0ynA+9yi/W3s5MhC7DmxvlH6lN+2LYa3jvUcL/sZ3978xwt/37k/43/7JNatt+xKE9Nse1jqez/0S+/7hkBsCXtn4Tv4G+h5HkjSRlGtF0AMrbnhk54uSYRYxHWUUnUbjk5Ix/nBfbDxy00u1++s+T333IAPolGW+abhY+oXfpmw5mCRY59FdOEHdKYosQ4YBkZSUrWZRdtw/GCClpKw7BH786pxjNkpf2gVfLLyhVSDEVyb//mJ8niTyD4D/E3j+4MGDR8B94DnwH3yZP+DBgwd/DAxOTk7+nQcPHvxPDx48+FsnJyd/1n/7v8WP0SzwPwL/4ef9/Z6R3XhFzGHymW+0ceHF0zaVYl11KLwExmgQMx7E/UxTMF+3XC0b8iSk6/yM/mrZsK01kfQjk+ODghDHcBBTd37GenpdUXVeWoUeTtopQ91p6sZfDIMs5PYs43rd4YCrdcO/eO+MJPYyJftjfzglkeTpZUkoPOxykwRI6ZNbp2zvi+KTVDtMeHZd8ej52psyycDraEUj0jjkbO4NdQZp5JVzv2Ssy9Z3PLGkanyrDb4r2TYdac8EvlzVHgdfeY+Rs+uK06steSzplMEax2KjGA0S0lhyvao9sz0L0drRBZ50aJ3jbF4zHkYcTjM2vSdDGHpF3zDwhlfbRnFrP+d66QUfW2UpMsE495/j5bLm7uGAoyr3CXdTMxzECAJm49iPMfOYZY/OaTq960SazhcGxlo2laJTliKNXova7UfP15SNfi1WuJ81vv+mH6O993jB3/7Bb8dIC240s7yuVKfD3fX+8UQ4KRLm64Y09rysnz9a8K8/uOZ8XqGNxcTe/fCN20Pq1jDfNKxL5XdpkeB6pVDaokOfWKIwZG+UUPU7tagvIq3WyFAwX4ndqKlqFXksqVqDaw3xKGXVj1yvVi3fuTMmSyTbWpMYb+3davNKGfjXFZ85iZycnDztD/x/E7gHPAH+xcnJif2Sf8PfAf5x//U/Bv42cJNE9k5OTp4APHjwYPxFfvmq7HYZ+uZg/XiY3lc5jeVLSSYKJXnq2FTe5yKJ5e73CATzbc35oiEJJVkSsTdOKOuARdDRtAoXy54k5xhmMeNBQhgJ3ns4p+4MTavpekjeqIgJw4BBFrEsfes8HcTM14r9ScqTixKlDGXdgWiZ5DHrquPd+2OMcRSpF2O7N8vptD+8lluPaLrRpHLAk4sNcSg5W1Rcr5u+bfbjLhd5/SDwB+FnjRuU2YtOetpYzucVP3+8oKz9a9h7e5/9Scqil1mZrxq0McShJI28ImkcD/jpL6+oWv83ySDZfWZRFLAuvTe7MQ4CiTLw7/0bx3TacXq55ey62nVTaRSwdzRib5zy8PmKQR6y3AqyOCBNQs6uqt5wzEvRNMqwLhX7E+8Z0naGq3XDuu6Iw8AjcowfBbx5NOLJhSeUdtpya5pR9QvKQRoiA0EYBChtyRJem3nVTz+aI4AfvPnNmUPdPxySJyHvPfxmkkin/LimyD5fol5X/lpqOsPxCyoDShuq1is633TkeyNvA+G7YM16650tZeAo8pCq1tSN5nxZ02nHfNXSGUORRhyMM9p2y3SUsDeKuV5bAhmQxZK9UUqjLW8fFbSmF4INJBbHJE+oWsWzeU1eemRV22pE4AEmdw/935wnoeeq9OOx2Tjl9LLkreOAOAw5nOZeHVu7navhVxmfa6PSJ4x/3v/3VcUE+GX/9Qr4gxe+F/yar39jzGYegZENEtxlyfmipLWQDpKXDO2tdTw+36CdIJaSo1cwb49vewTK5cIfOr88XdG0mkVpMMbRBY5iEHuXwyzsxx4xt/cHzMY5Vac5PhzinHfH0wiWm5ZICgSCnz28Jk3iPkkFfhciBFerhjSJWJQtSSSxCMbDlE4bbCAYZzGrytCoijiKyJOQW/sFyjg2TxZYIZhXHePxgKODEGsdTjiu5jVpmnA3T9Da710utorvTgd89819Nr13yvAzjGBuiIQCwe1ZvoNIrsuuVxLuSBOPwLoZ6ZzPa06eLNhWijz1ukIAgyxiWsSsNi1PL7d0xqKMJ10N85A49Ozh08sNVaOJQoUxOYMsZhIGLHqL0/m6282ptbX0OGGs9clUGc8RaJX1HaWAYe47HIdv/6NQ0rSG5dZDKfM4JIslk2HitYiEl7b3shiihzm/fO0cTDOs8zDO17UX+clHc944Gn6mz+p1RRAIvvfGlPceLb6R5/fIKL1zDPysIfsR9XrrzeHaznMzzuZex2pbBdw5KNjWiuW2QyA4mmasy85DKIXtiX2Csun45bOVlyta1cw3NWEgaBpFGAYEvc/NplZkScRsmHr1X+Moa0OFZW8UczjJmW8arLGcLSuMcaShwGHRxheCSeg7lbYzO2uF61XDpIhJooC6UZQOzq5D7h16JKc2roct+87rd82UagmM+q9H/f/fhP01X//GuL7e7iC+gTVEzlGVDY9PX77QjLVcXm0BKLcSaV/9NM+uvLRJ11ku1w0H44Sm9pyLSEAgHMtVzdWyZlV1BAGsNi0/Li9Q2vDBowXfe2vC07MVT87XNL18x2ycgnOoTnvUUSJ5dlUSBoAIEPiqPhymzEYx9w4LLpc1z65LlquGy0XN8YE3ynlwb8pHpyvAcb2oej8SSTdRzEapH29py2QQEYiUVhma1lA3fudwGoqdmqhuFU0WeS7F9NdLWjQvMPo7/SuOSBp7AqPfOSjuHXiJ9zSWO5iiMhZlAspae60f6Xc4QQAHk8xXV7XyFZ8QCOGoG0WrPHnQAQ/P1/zv/++H7E9SL2DpHPcOB1yvW6qmg95tUYiObVmzKhs2pcAaiws8Ou1wkvP28ZDNVuGAqjUsNi1BAHf2C5bbhiQM2Z+kpHG4G4ve3s/plP210N40Drk9y1+beVXVeHOif//v3P/Kf/fnje+/MeXPf3HpRQa/JgHIT8RnEH57UQrpcJpRNhqj/WPbWu0skOFXEoVKW9alouk0ZROilGF/nNFqw3gQYYwjCb1ZVFl3KGV6AIchjgSq80VE22muVzWDNMYaiwKulh4oIhCE4Zg/OBrStZrTeUnTKoreCmFapJwvak6vSmbDhHu3hgxSz1drOkOWSs7nNXrkXTrvHHrTNOdgVbasti3O+X2PV8kIdvu6rxOd9bri/wP+E+B/Bf4+8L+88L35gwcP7uITyOqLPsHN4am0ZZx/kqG6P/ajiFeNusCTdR6dbzhfNFR1RxRJnl1XvHFrxLpS7A0TLueVPwyrjlD6BbcQgvXWH4p5EvIv37ugrBQGR1kprBMczTJPZGs6tHKs645AeJXayTAiS6NdpXvv1pBBErGONQEBCA8niqRkkIT96ET28FNJmniY73gQ8+atEVkaYqzdSURvKoXpfcKT2OvneM6Jl8f+LG3vaBCjtP2E2U2eRhzt5VytGpxzXK1ahoPam20pQxoGvPH2Hk2rWVeK95+se6JmwLTwniZFHrGpHFVjWEjFuAhZVC3aOG/kJSVVY2iaLdermiSSxHFIWSu/59CW1dYrJHfaUjYaax1CCoLQqwfEUcit/ZwkDKHw78tkmDAaxBjrxflE4N/jG5b/TaKUQUCWfHpF9zoVfd97tMA6943uQ27ixsPkvUeLrz2JzMYpVaM+VffNOcfZvKJTlr2R77JlEDDKY0xvmzDq//2tabbbeT7p7ZNXW+9h/uRiQ6sMZeMLs9kopW79fe+dORXGQascASDwoBEnhFeuvq6RskUASRRQ1R1KOaywbKuWpnUIGfSOiIIkkdyepmgj/E7ReA3eptPew91anPWir0Y7mq4vapzvslTvh5TE3v2zU5aPztakcchh31X91ieRk5OTP3/w4EHz4MGDfwr8JfD4wYMH/9XJyck/BP5r4B/h0Vn/2Rd9DtFrK/26+DRrTPA8DYHfLQjh/TQOpylSBPzouyP2himPz9c4IWiUpmo0aSxp+1GJ37UEXnLBOKxTvSChYLFqGKYRRoOMAnRne7dDcNYhHOyPEhABs2GCQ5BFkiCA2ShhOIh586jwSJF5Rdkq3joa8Udv7e1Y8WWjuVpXZE3EuIiRfVK6mdHfEDPLxhvWaOM8G/8zRCi9kc+rYjRIOJoN2JQtC91yNq8RvW9DEoeEUpKmgtPrGhl4748o9SKYR7MBzrgeguw4mGSczSuE9WrKWSwJpKBrDZ2x5L1iaZqGbGoPRChrz5lpWo1ykKcxo0FKnvndVll77bHZKCGOfVJJE0/60try8GxD3Xq73CARvQJzsDPketU183XKov/rD67IkpC3j0e/+Ydfc9ye5YyLmPceLb52Ha00lr+R76S03e37tr3dwU1Mh8lL+yqv+ya5Wvqx1o3FrXWwqRTDLKQRXrEiDn2BYg00qiMMJQFeINQGgiQJOZ4VdLrl6YWmMRopA8LgxUThO+IwCliX3r00Szwct8hC5ltFGHhLXaW9KkLZaDblltv7A6LI7++OZhmtAnDsjxIi6UEkgRBYfDG92LQY4/2Syl4L7MvGN55EAF6E9fbxD/vH/wr4u6/rea31M8o49BLLV8vGG91Ps5c0kNJYcreXVh+k3iwmlF4D6sYLPAwCxnmM6nWhbsyp4kh629lR5tvN2DJKU85lzaZShJH0tqyZr6r3Rylp7MmMUgqKLGJbG5II/vz9a472fJWUpxHDNOLd+1MO4h6/0gAAIABJREFUpxkfPlvz8PmaLI2YFC3jIkYZywena9I44PSq5MG9MWfzimEesz9JdxDGqtE8PFsThYIsjr5SGODbt0dUjeLkyYLLZUPaW3+2Sntl5IOcUMLBNCcQ8NbxmItFRaO9//zt/XznKrkpO/JUIgOYjmKiMKRTepfklbFobdhWCmWchzX3Kqwy8G5uf++HRzx4Y8qzq5qqUUgpmBSxN5/KIgJxMwLouF61/qaNJT/4G3u7w+TDZ2uqRnO8P3hpIXuxqPqONnktS/QXw1jLX35wzY/emX2l8+0vGkIIvv/GlJ89XHwr/UWiMCBPPLrq07xybkJpS576wzoKBUUWcr1uGGYRVavQ1rEuFQeTjKrxnUHbGQ4mKUIIqiagaS3DLGS+qXh26RPSIA+ZFAl5PzlQWpMkEaEQTIuM+abx+mz9Lk0pPylIY1/cvHNvnyyRXC9blk3LxbwkjiT7k4w0jnj7OOfJ+Zanl1uu1y0P7k843h9gjCPqFakvl7Vf6YiA9CvolL8VSeSbiqt1Q9Uov9foLViv1jWB8IfaTQghuHs4JE1Cnl9X3JkVuAC09oKLSnv3sMNJijbeiyQIQGvPhG47zbpW7I8TDqZ5T1DywoTKWLSDo70Bm6olSxOaVnGwN6BuTU9WSnj0fIO2lo+edWwrTRxLwiBgUiQ7V8QgCBikEbEMqBp/uG7rjk4FJFG48y53eP2qTvmuZ7X1CDYhwOZe72s4iD9VTPCmkhlk0SvbYescm7IjCASDLOrZ/lHvYyCwLmZcxOyNUt65M/EHfT+Xnq+9lIQ2BmctR7MBR9OMqlEo2xuHGce29hITkyLmel0zv6qxFpSGMIA08ZwOY1sCIJZ+fvyTh3Oaxns+ZKlkU3eUlTer+sEbe6y2Hdb50acTjjePxzu+S9X4/Y3Ds+1vkoh1bofOKmv12pPI+09WbGvFH3/34LU+z+eJ79+f8s9/es6zq5I7B8U3/ee8FEIIDqefTVXgYukLDK9JNSCOPDFwWsRcLBv2hilPmpLLZUUSSWajmNkoxTk/rXj33pjN1u/9fnm64mLR0BmD0ZAa+M7xiCgMeHLhbW39lMP7qW+bDqUN1sHhOPPCn2mINjAdZrxxa0SeSK7m58SRJM8itlXHtlGevd5qnl2V1J33Lhrm3vrhJnGOC09AXlfdzr30y8bvdRJ5MYo05Oza4743tWIyNJ8wbknjkCSWKGVpW0OeSObK+j0DHnU0HvpZq7WwLhs2taFRjmpekYQBy0YxiEPaThMIgXPeDz2LBFo7FuuGW5OUPA0JJl5RNEtCylr37n6WURGB8BV0JAXz1gu23TsccGsvJ5J+fnq5qjmcpAwH3khpMky9EVPVcb4okYGH1ereT6XtDAjHYttirPvUVvdyWe8Ozld1LuuyY7n1WloyELxzd8zl0vsmtJ1mvm453MuJQ8l06K1rF5uGrjU9as0x33ZsA8m6MQRScjjJEELw/LKk6hTjQcztvZzhIGGxrmm63ss6DtgbZThre4JWSqMNozzict2itaVWnvz5vcmY61XDuuoosognl1vyOGTbKm7PBrxxNMRotxMYjKOAMBQ0nf3E+yPwhcHe7PUzx//8/UtCGfCHb++99uf6rHHDF/nZo8W3Lom8KrTxUPgb58KbaFrNpvLFWiAEx/s5R3v5Dh6fp75wKRtF3Wlmowlla3l4tiYMBEmleOfOyCtSxyFSBhgDYQR5rxW3qjouFxWrskNgydOYpvXTCwEMspj9acqd2YDlpmVV+x1MnoRUreZgb8DZ3KO3BmmM1hZrLU8vS+JYUnWGQPiz5eOj/Jtl+o2K95eN3+sksj9K2UR+npolIfcPC+YbL0cOcDjNydNwN1pyzhEgeiOXAOvgb7wz43rT8MHTFVe9mZFXy+28YGMSIQPj1XyNo20NVjsQAeNBwnzbMBrELPoFV6cN15uGsvUckyKLeet4iLGWpxdl75HssBbGo5hWGdrOcr32BlNN52emN3/fcqsIQ0mRx6zLDim9sVYgDKuyJU9Djmc53ppZ7LzTf1N4iWlDEIhXji+E8PDFqtPewhOv0bOpWt5/svS7nVSyrTrPCbGWw2nGubNMh2OqVnE06/j5oxXbSvHkYsObR4XnbTRe7kGgmAwt90cZVghC6QgDn0Devj1isW08edMa3joaMSlinl6WNJ1hvW25c1CwKhVx5CXe41CyP055+HzDdJT4OXpnvHSM9gTMqtXsj9N+J/Kr28d3J94BM/kKXeNeFc45/uIXl/zhW3svCV1+07E/zjiYpPz80YI/+Zvfft/167WXRl+XgjsHv/LT2Rv5YmtUxDi8dE0SeaHO67WH2791e8h7Dxekqa/24zCgbTWn65aDcUKrhtw7KHh6teVwkpPFkroziCDg2VXFxaJi22qstVgEjfJTkCwJPRoz8GN0pR3XmxYh/FRh3NvsLta9isY49dSCWLKpFUWWcGc/4XBikNLzqj46W1N3muP9XyX2r1Jt+ttzBb7mUNoSSvHSYRcE4iVE1myc9szu1i9xvc47z+e+bX3n7pjRwLOTB1nIMIuZDH2l//Tcy7FvmxatDY3SPWvd62sNc48QA7h7WHCxqFHau6PhIJaSqlbUnaXrF4BlbRmkEfNNjbaO4/2cSZEyHcb86XvnLNcd29KwP0m9E1+rWFeKPPV/26ZWDCYJgzTyM1tlQHmSYxB4M6rj2eAl+OnhJEMZ9xsdDo/2PJ59UypOr0puz/Id2dA7prWcXm1plSWSwlvPxgGrbcvDs63nZPQwX2McSRTwxtGIIk98UlICKQOsNRjjk/DpRcB85d0Iszhkf5IwKRKenq8w5v9n701jJMvS87zn3H2JPffau3u6s7vJnkUczog7xxQJiARpmhYJWjJgW4Zoi7YBbzJkyDAE/zBgC7IBwbBkyOYPUyblMWGR9EqK1Iw5ojicoTh7z2RPd1V3dVXuscfd7znXP86NqKyqzNqrsqqnXqCArFwibty4cb9zvu9dKpZaAaFn8YnX17BMgz/ZSjEMg5WOQyuwEULf4JO0oBU4GKZASkVcaE3JCxstLMtgvS6qa92gVqVnGHUapVeZGMLAMME94QZePcL86uNwdU/3u3/mB154rM/zIHjtYo8vfmsfqdRN4tOnEXo4nd2msWn4NpsXOnXErJ6lxWmBEIJO6LDc8fXirVQUkfakc+oCZNQxz1+/0ufcckjDczDQjr+OZdBouEzinKyQOvLZd7Qrr62jCebt3lbokeSSKI0YTTN2hwmeY5Bmks0LHXptl1lUcDiOiVJJ6JpYtkWnUWEIeHGjTX+iJQBSVlzbj2iF7iMXGsJ3SBEZTHS7wrF0bOtJQ79RPRuQlY45NUxBkukbelZITEOw2vVpBjZpVnLtMOLKzoQXzrRYX/LZGUSUqiL0bfrTFIMK09BbRs+1aASCpabLSsejEzrawM2QGKZO/Ns5iDEtSRTnOozKKBhOc0zLZPtgRuDZfPTlZUqpsytM08Bx9CrKEBUHo4RJnNMKHV453+H6QcThRIuLxjMdaOM6FrZtIMuK5fbt9uV3CvA6Cr0DAWHoopHlisDTH6S8kOSFwjQN8rggSlRtzmhRFoqqUkwTySx1sGtVt945VZzpBbx1fcw0Lri6N6USIGqrklGUkqSSJJeEoY3v2viuiZSK5ZZPkkteOd9mtRtweXui3ZBHMUtNj7OrTa7uTcDQ2QmVqmj7DpvnO+yNEgxDsNbz2R+lrPUCmr52Vc1rAZs2jNSD+KWWy0FtBLnWDfRipDagtEzx2HcHf/rWAULAR15+kAihx4vXLnb5g69sc3Vvxgsbp88aOwlpXkKFpsI71m1tHdMwFu3KUire35uxN0ooS8k4znV3whA0Am0zcm61wbX+DMcymSQ5Uil2hwkvrLd4c5QgqgoMPdhuBS4rHR/XNVlr+5SVYjzNMS2Ba9vaPUIofMvkYJzSnySMZhlnelor0m44qApMEwaDnN1+TMOzWOuFTBxDm7aaBufXGpSVYn+Q1AzRG6/vURb574giktSCuLzUQ2/zmCKiqopxlNEMLDzXZKMXas1FLrFMg9DTrq6gt4J5IRfhNtcPInzXZLmj+erbgwil0HoPWdFtWgih16er3ZCXzrYYTjK+9PYhSV5hmApR6axzSxoYdVRNw3doBBZZnU5YobNDtt4bkksdorXU9BjW7bfBJGM0ywndlItrheaYLzXYHUSA3h6f7/lcvj7WWg3XpBU++AC4FTjkhU4r9I4E/HiORejbNBJtnW2bJkle6FZax2Cl5zGLayt722QS60H27iAmr3vC1w9m2vq9VHSbbu0DJkHoAaIsQFSCwShFCFHntmu2TMO3Ob/aYDjLaIYupiVIM62JkVK33lpNF0nF/jBhmhScXQ7ICkWUFgwnGa+cb/G1yxNc26wjiE2E0H9rCs3my+rkxHlP/V5YP48CX/r2AS+f6zw2U8eHwVwv8ua7g6e6iJiGwDQEoWfdtbUjleLawZRxXFLKklUhFrPDrJD1rhpeWG+x1MqZRjnXDiICx+DawRSAoqarB462hHdsgefaWJbJGxeXuLKrkzyVgryqsA2LnUHM7iCmlHB2OaAV2Di2yf4wZant0Wl6vHV1RFbolutyRzGLJa4tiZKCwPP50JkOax1tCDpfIO4NY5KspBU4HxyK7+NGt+EyjjJ81zqx+hpCLIZWyy130c7xHBZBNFWlNQ46dldT5SzT4OyyDlwyhd516LZWgWVAr+XT9C0ubTQ1Q0ppFlWn6XKmF3B9ENe/nzNJNMuqVLrNtrYUcH61SVFWIMC1LaaRztWAilbQrMV8mhEUpVoXcThJEPVrwqjqY9LMrFag2VRVBbuDBNsyWe+dvDu7E1zHPHaAahj6pt5tutrLioooMbFtUzOw4hyEdiS9tNHCd03evj7mm+8O2OnHrHU8PMfGEgkFFcstD9+3CT0L2xQUOvacSZQR1wuEZmBzdrlJVsj6gyG4uNrk6t6YOC21K++ZNu8fzHh3d8I0zogTnWGfZHKh1Hdt7a+2N0jqIKICudrAFIJMKlqBw8W1JtNa0DhXti+3/cfSKrgV+8OYawcRv/hjLz/253oQtEKHcysh33xvyE9936XTPpwTYdSxBVJWtMKb37cslxRKYRsGhqHbh1mp5xS9RkCv5TKY6tfaCmwORgkX1ppUVZMo1YFwFUJfO4VOTMxyWSeWCmxTMIkKqAS+Y2n7kqmOyU2zgmmiM0VKVZKXFXFaEPgB51YaHIwzDsex9mdrubx8oUtnmFAqxcW1BlEm9ZxF3Gip3mTzVFWLEKooLek9gjr/HVFE5gFNd8NqN9D03PqGWkrFm+/2GU1zhKEviv4ko9tw6bX0ljT0bFqhi5QKYYIwtEma71q0A20R7bsm24MU3zZwHB1HKRV0Wi5xoVClhEpgCAMhKgJH0G46fPzlFQaznG+9N8A0DN54saHbKnHBNM7q8CmH0SylUbt3mobBei/AtAzOtH2kqug0XEazjFat0l3vBVzdm+I6ui2mo2Mf/TDYtbWdu1IVqlMxnGb4deug1dDHovPWY67vRxyMMjxXO5a+cKZJoUpMDM6vN3nxTIuirPjE62sMJhn7w5iruxPe259hCO2Euj+MMYyKr18+ZG+Y0Gm4hL5Df5Lx3t6Mc0t6t9HwLKK4pNF0SPKSSVTcyIdPBZc2PFzbZH+UkJeqdjZWXFhrLDIZuvXwda7wl/JhfUjvDX/61iEAf+YpbGXN8drFHp/50nUtKn2Miv2HwSzRGeMAs7hYOPdmuWRnEHEwSvFdk07oYgjoNT1MU/Dy2TbthsvhOOEzX7rG+/s5Td/m4nqL1W5AVki+9s4hjmlgN/SC4xvv9lntarpuK3AoK0WcSWyrJCwkl3cm7A8TLY4t9a7Cs026TW3A6Dkey21/MaNZ7YR0mw6t0KEROFxab+p4b8/iej9BSQW10Lg/ThFCL3LmwsN26BKlxYkOHfeL74gicj84qo0YzTKmcandcGVV7xQgyQqUcnWiWZQznKaUsmIyzXFMrd2oKvA9m+WOhywV+6OEw2FBp+HS9FuAoNtwKctKZ2hYJusrAWVRkeQSyxBkpURJCVTaeiEuePV8SOCamKYHho56NQ0oZcV6L2Sl42LVOhGBoNfSN8TOEXtrTVU1tb21e3s/+FHi6E0krANxJrHOnV9f1bz97X6MUhLXMnBtg9VuwMW1BqFnM5pmtEOdiNhuuIt20t4gZppIVrs+RalY7vg4ps5tubx1wHCasdL16TS03qXIFWlRMpwkJKlEmILzKw1KpSiWVN3yFHRbbt3iMLl+GGEagkIqGoGtiRKWDg9b7ekhflHq89p8Qq2sf761z4XVBsun5U91D/jwS0v84z95n62rQz780tNZ7DzbrIkzN3zNVE30qCo0Zdaes7V83a4MnEVu+eE4o5CaVjtLSqZRTrvhMppmi12OEFoj9er5Hm9dH+M5kvWlgKt7ERdWQ4ShZ69bV4eUUncMLMPAswXNQKcjRqlOLew0HcpCsTdKMAW8fL6NIQRr3QCpFFf3ZwwOIhq+Q+hbhL5mcUWJNoCc1WQSuF2h/7B4XkTuANs0WKnnHEIIDANkBRfXm7x+qcdolhGnEgQkmbY8aJiCVmBzvR8xjQpmsVa3F2XFOCqYxCWOpWMqDcOoA6dqGw8DDM+gUSps20AIgWWZNAOXNC+wDMH1fsRSy2MwzVjvBfTaHlFWMom0rfvZ5SaTONcePrU1x3H+TXezenlYVJU2ZLQt4+bCHGlPMX1MQucxlNrU0nUNXn+hS8tzKFXFy+faDKcZe6OEb7w35OxyyLmVBtv9qI4ErVjraufgwNXce980KBUopR/39Ys9BtOMvWGCaQjmhcJ3TV4+38H3bA7rHYdtipoCbfD1y332hglUFaFrAQrLMbFMzb5Z7QUkmcR3zSdGsz0cJ7yzPeFf/pEXn8jzPSheOd/BsQ2++k7/qS0iOgpbC0VNw6h9rWLd7slLLfINXHotrdk6etPVlHbdJj8YpWRFydW9KRfQyvgkLTkYp4SujegJzq016LVdxlHB4SipF3QVsoJ3diY6p6hhYwKB6xC4Nt//xhpRpl3ClaroNh12+vEiIC9KS86tNAg8i91BRH+c1oVLswrzQjKJcr2Y6nhYhnhsjLnnReQO8BxLM3UCZ+G7s9YNFlzupu9QlHrl0VrW/lVVBaMowxlnTGYJpdRZBKahHW8Dz8T3TS1uHCa1p43NLJVkdUiNZRo0fAfftVAKzq42uLY7IS8VIpcMJ9rUsBk6NH3N5kjykoZ0sEyDwSTl2kFUzwlCPQ+pqsfSsjoOg0nKdj8ir8OtXjnfQQhBmpdUtdOqaRiLAmNZBpfWmlw7iNg5iKiWBauutispZUVZ6oH3bj/CNAwavk1RVpxfabDWCzAMg3d3Jwg0Pdcw4LKqcB1tOfM9m6tM44K3r42wTYMoK3jtYocXzuiImuW2t9jqXzuY8s33RvTHGQ3fpqoqNpYCQJCkBWle4TmKSZzrmN4j18RJyArJNNJRpw+T/PfFb+0D8L2vrT3wYzwJ2JbB6xd7fPWd/lNpgTLH0RtqmmvSTZbrhNKltofvaZLNXFi71PKwTL24u7TepB06TKOcaVIwTQp2+hG2ZdCfZJrEoyre3R7TbrqkWUk7tLWuJLQZTQuyoiBwbWzL4EwdGxBnkqW2x/nVFtMkYzjN6TVdui0Phfb9smo7pPmsoygr0qLELA2Wznq1t1aBaQh6LYdWqIsdwPpS8MhbjM+LyC2oqor+JGU8y5GqwrENltsedm5gm1qUGKclByPdC5+/KdomWr+pDV8rzNuhQzOw6TU9Pvxij25zTJoXnFlukJf6xt7wbT1EtwymUcGbVwYstd16RREysFLe/taY/jRnFBWcXQ71DsXU1tLC0K2p9W7Iak/3PZWqkFIbzr2/N8U0TaraxDC8RwrvgyLLJZM4pz/SQr9WqBlMfp2aCNRxot5ih3JpvUVRKqJM0gkdZKnzVLJcixmX27olF3g6E+XsSoAQembVDl1UVXH9cEZRVlRKExBc7aXP5e0xWVFxab3B6y/0NBsrzvEcm/1hjOdYNAMbIbQp3eXtKdNI22YvNV16Tc3MCj27XqFqYeI8ZkC/Zt3yNE19rdxqF3M4TilKSZSWD5X78cVv7nNpvXlfmRmnhTde7PHltw/ZHcS35aw8jdA+WRaWKRbtraD+rEdpAWjzxW5T6zwANpZCmoHD1d0pUlV1Vk2tR0MbHgoB1w8jpnFexzG4pJmkqMPYVjsuvmOz1vNrR4qMolJc3hkTZ9pqPi91IuLm+S4vbrTJCh2YNbcsEcDLZ9tIVS0clO26hWXXlu9z7dLjmFM9LyK3ICsks6QgzrTTbs/WnjjL7Rsf3CQrORwnyNrHyW375IVavFHdpsf3vupSKqX1GXnBt69pq/PAc+g2XUxD56P3Rym+I9kfJoSexcayh2PZ2tbc1rboWVbSH6c0PFtH6Zp6FZUXiigpePl8myyXdBp6673c8elPU0LP1pkC8wsol4+9iFiWwDS035cRC9oNd5FdMIcQWuS3P8mwTMFSy+NDZ/VrGEcZF9eb9FreYmi93PC5uN5arOYtU6uHtw9n7A1jVjoeF9eaRHHBtcOIcZQxnOr2le+ZOHaMZcCljRYrHR8htE5gMssJfQulNF0ySrSWBiE4sxLy4kaLoh6+rnR9LFP7q82zUqpKi8uKumBTSJIj2dyLc2IKilLTSh90Ub4/jHl3d8ovfOpDD/YATxhvvKjt6b/2Tv9UioiqKgbjFHlkB3EnzAknQJ1LoxlceSHRJjxaEDutd6BKaW8437VqnZbWnOSFJEklFzea2KZBUUjeuj6mqLVTlqFb1FHtbTeaZVyJtGHiy3XUrVD6ulJKq+Wlqkizgv1xupiDzAuIqnQAXpLrXHhtpVSRpHqIbxhiYbIohND3kEeM50XkFtiWHm6Fno1pCpq+c9vswKptx+O0ZDzNF/ROTf/VORimYVCWiivXp+RSMplphlfomUSpX/f3Q5Kk4L29aS0YskkLnQnyXZd6HIwSSikRBgtLeVMIAteued8meanwHGthaTBnY7x+qYdjmXQaDuMoR1XcE0PtYWEamvK83vMppS4c81ZPr+UhZUU7dBhMdGLg/OfjSCcgZoXF7iChKBWX1luaNVUbOLpHVuB5qehPMg7HKe9sj7EMuLIzI820QLOstJgyzbTzsqhv+oFnEWZavxIlKbuDmCSXNAKHWVpwaaNBnEleOdehVNozy6rnJLqVduNmNO+Tz2mdQnDsKm+l45PWZpoP2tr5/Df2APj4q0+P4eKdsNzxObMc8uW3D/mJTzz50Kw4LZnVO4hJlN+XHkKIG8XesU3OrugiaJnGQht2OEqI0pJC6uu003BomAZxVmKYgt1+zErHZ5aUnFtusNT0kUphGDrO16hFtGmmyLKS3LZotRxaTW21YpomF9d9bFNft1vvj0nzcqFFazf0Dvz9val2Fw4cVjr6NfYnKVFaMEsLNpYCWqFD+zG2FJ8XkVtgGgZnVnQu+kmrl9CzdYiRKyiV0l43tTX8HGUd7dqpaaTAQugYuhaDScb1g4isVJSFHqRnpX6sZuCxP07ptT3GM21jvtTxWG55rPb0hRmlJUWh6DTdxfMWpeTKzoS8LHFtm5fONGuHX01B3R3EhJ792EODDENgGCb2kaurlDrLep5x4Doms7TAEOIGA8q32RkkVEpRlFK3hQQ4lslaL7iJYebUmfGzpCBNSyxHYBmCONetAlFTps+uNFit7Uvmqzf9+v3FTm5S22PPC0Cv5S+EWfO2wZ0cjUPPxls1NfnimN8zhHioAq5Uxee+us3rl7o37Yifdnx8c4X/4w/fZTjNHrur8a1wLOPGDuIhUyWP3geagaNzgKYZjlRMa3V6VcFgmmmvqp0JoqpQVUU7dFnueOwOYiZj7dPmuyYby13yXNLwTN7ennB2uYFrWlzdm2rD1LZBr6ljJt7fnzCNtW2RztKxCX2rNm8tSHNJKTPe253SabgUhcI0tdas1/Qe+0zqeRFBb1+H00yzIFoupmFgmCefeMs0uLTRZBzlOLZZs35uoCgll69PyKVkpROwagcUpSTOSmxL53TvDxMc28CxDV650MM0IYoL3tmeMJ7lC2fcZqA56Gt5ubiRvrc7QUpdQEzD4HCUsFNGOLZBqSRpLsnLiu1a6Bd6tg7TCeyF0OhJY1QL90Cv1puBg+dYKKXYHSQopcWQr5xrcv0gZpboQXhWKta7IQ3fvqmICCE4sxQwjjLcro+UisC2cG2T4Ux/sFuBjVTqRCba+lKw2AHNRWd5oXSeQ417pT8/Tp+oN98d0J9k/Pwz0sqa45Ovr/Hbf/guX/zWPj/xvU/WkHG+g6gqHnm+fcPXPmvbhxHLHY+Vtl7t62tc4NkWhqho+g5nV0Jsy+T8mp6l5aUidC3dYlKaofXCRouVto9hgOOYSKVIsrJWqyumSYnnmniu1o5Moowr2xN816QVOmS5nnmWUhM+OqGzCFh7Elkzz4sIWrk5H5aZRxL/7oRey6MZOLeZOgLEqXbiBXDtnFfOdwBdXMya3RF6FlLp5/EdbS0dp8UiSH6p7bHWCXAck42eJCtKmqEW6IWexXCqeeraLVgPb7tNl3bg0m1ol1nryAB4ue2hVPXAegZV55c/6KrGsU1I6uwWSz+GbRnEqZ4lpbVbbqfh8tqlHofDhKsHM8xCkpUlzcbtxx2nkrVOQAVsnu9QVVrDs9PXdhGzRHuhbV0d8dql7m2zimbg8Pqlbj3wttkfJlRoO4tW6Dw1rKLf/+fXaPg2H3uKskPuBRtLIRfWGnz+G7tPvIjAvS8A7oRybhB6y26m09ARykd3nsttn3aoC0eWa7ue+TVUSoVnmVR1y3PncMY4zimlwjRN0kKi6l25bZq4jkWa60Vnt+XSDd3aBbsgSlJI1HVJAAAgAElEQVSyUre5O4bgo68sM4m1fkmgtSmdJ8TEhOdFBNB6kPnW935WLSf9buDpAKZS3WypYFsmqqr49rWRNmILHXzHwjD0QH+l4zOJC205LwQ7gwi7tifvNL0jj28TeDZZLuk1XfrjjDSXDCYp51abXFxrEqfl4hirqnrorO+dQ70q2lgKHujD2Qoc7Hq2cPTvA0+LuFSl44Dnv9ttujR8h+1BROBaDMapdjw+Asc2qDDxHWvRxw59hw+dc1jtBnzxW3tEiSTJSvJCER7TFp+fy/mxDCY6h3o0y594C+Y4XN2b8pV3+vzsD73wyFfUTwI/8MYGv/573+ad7TEv1ZTqpw1Vpaknt7YipVJsH0aLttSt18PR3z8cJ8RpuSgurq0FxkIIluvB/lwgOpik2JYmiCy3PSoMziz5ZKWiE9pkhTYsXWrrNNTAtug0tRt3M9Bhbpe3J1RVtehGdOu0RLOWCDxJPC8iaOHRmeUQVVWPhP5mWyabF7paJ+HbC3pn4Oo85mmckxYSK5OcWQoWK3DXMXn9Uo9ZUvCNKwNKqbUpRakWxoK3Hrdb23CoSt1k2fKoh+hVrZpPc3nTcPleMYlyBtMUx9JWKEc/gL2Wt8hwMA2xGMRf3GhSKv1hTDL9AT3a0lrrBdoB+Jibayt0eOlsi4OhDvKSUvP275Tkttz2yQqFY2uWWMO3npi25iT85ueu4DkmP/Y95071OB4UP/jGBr/5ucv87hfe56/+7NNXREqptMiwpsce/dxIWS1YhXkpT3wMpSpmST3Er120p3Fxw6PKMW+idrdCh1IqGkGTpq9JODv9GCpFM3R4oe1RlLo1JYR2E4/TktDTmpJOw+VjLy/rGeuRNuppWcw8e0ubxwTbMh76TYjTkp1+xCTKF31/HfSkrZx3BzGOZdAKXHzHYrXjs9zxWesFN22X46ykEdjImt30/t6U9/amC6+fW2GZBq3Qxa4jaB8H7NoyO3jAMJs51z4v5Yk+U7NYZ7G/tzdZtOG6TQfXNug0HGZxsXgc0CtB1zZPbDu1Q49O08V1LGZpyXCa3fU456/PMo1Tz8P40rcP+PLbh/z091967NTsxwXftfjRj57lT761z3u709M+nNugHXB1S/XWeaFjm4sVfu8Ou1LDEIvrpuHr7J7RLGMW6/btrV0Ay9TWPqudANsyGc0ySqn0otA2sS2T4TQjyUr2hjH9cYqSN2fUCCFO/fqc4/lO5AFw0mxgME11tkYhafj2TWIgYGH38cKZJlV1cs+2FdgUhWSp6XBlZ8Y4zUgPZjR9+9goWtCMoxUeH3NnrevfJLC7X7RDl8E0xas/JLciKyS7w4g4LfWqsK0ZUr2Wj2kYTOOCrCw5GClUq7on0V6n4eh8+1jnVt/LiEO30TS9+06MrMeNg1HCr/xf3+TcSsiPn8I84VHip77vIv/0azv86u9u8df/0p954u2WO8F3LHzHolTHB7Hdq8PA0fz2nX6EELqAri/5d1yc7g0TTbpJC2zLJHCrhauDEDrQbqntkRSnQ4i5Fzw97+YzgkmUa13HIF682XPMRT22dXMATKfh0g7dhZhJcHzfMssl1w9mjGc5G8sha72QlY6HWYvz8kIu7FeeNQSexbmVk40DDQPtNYSo431vfPDaDXfR+wW411oW14QJWSoORulC3HVtf8Ykyk/8u1v9vp40dgcx//WvfYmqgn/n5954qm66D4LAs/lLP/4Kl7cn/OrvbD3UYuRRQ4eRBZxdDh96bgg6kG3O1nSd4xdMRzGfA+alYhRlXN4ZM4lzTFM7NqzW2o/7FQk+yXN8qjuRzc3NvwL8m/V//87W1tav3fLzz0KdUQv/xdbW1j95skd4O+btlDQvKWW1YBqBFli1CgfLuiEqG04zxpGOV20GFjv9iKyQt/X3AaZxTlHrS9KsJPBszq02FrkHrqNtGT5oSLKypjybfPilJcJjWnIN30YpvUpr3SW6d47+JNVBXVHO+dUGcVou1PujmoH1NEFVFX/wlW3+199/G9sy+Gv/ysdYO7LCfZbxidfWuHYQ8X/+s3eZRDn/2p9/9bbr/1nHPBpAoIfpgW/fdTGy0vWJkgKlKnYHMYYQpJmm6c/bW/eb9zNPcvVr77/HjdNuZ/3jra2tv7+5uWkDnwd+7Zjf+bGtra1T2ctJpdgfJqgKVjsedp2VXk4zPMc8li1z62pmPpBTdejRfCcxZ3Ichfbv0SE288fxHIsXNtqaHmxo+xDt/WQ91WwdVVVEiRZX3W3WlGQ3bu53Wj/d7aafFZLDOihsua3tala7PqFn0awN6wqpdMjPE1Dv3yuqquJrl/v8xmcvc+1gxmsXu/zln3yNpfbDp849Tfi5H36RVmDz6c+8w9/4+5/nxz9+nj/38fNPJMzrcUIqRZyWCx1URYW4i0B1Drf+fDQDHa9sGIJey+VwrAPwAs++awE5HCWkuaTXcgk8e8HMTPLyJrLN48KpfpK2trberb8sgeP6NAr4vc3NzV3gl7e2tgZP6thA3+jnN/1ZUtJtmvdtod5tuAioDQRtmr4kyUvat+ge8kKvPpY7HoFr3XbhzOnBe/2YQmpL5/Ort6cKPi04HKfaQh/BudXwjkPAZmCT5LoN8KCDe7h5J5cV2g01Sgs2lsKbXHaV8m5iaamqQqAJDVkuaYXOE2shvX1tzG/8f+/w1vsjVjoev/Qzr/OJ19ZOtZ32OPHnPn6e735xid/47Dv89h++y+984X0++foqP/LRs1xabz412pz7wcEoXXjprXV9HMu86To+6sV1EmzL4OL6jZjBjaXwrmxC0Nqzub3LOMoJPJt2bXUUenffCT0KPC3LsX8b+M1jvv8Xtra2Bpubm38R+M+A//BeH3Bp6eFvsJ1SIuwZSlWcWWncNYv5JJw98vXKyvGD8fd2xuRKgIILy83bLp44Ldg5jIiKiqWWj+OYLC83ntoP3dF5UXWX9qxtmZxdvrNJX1Zbdd/pPQhcmyi5sZPTlvq3F/yj5zZOCw5G2lpfVro4F1I99jbSt98f8b99VhePVujwr/7EK/zwR8488/OPe8F6L+Df/bk3uHYw43e/8D6ff3OPP/jKDudXG3zfd63z8VdXnil7l7l1jkDgrJr0jmi6pNIUYikrljveYl5yLxk0dysgoMk5rm2SFTfMVZuB81Bu0feLJ1JENjc314F/eMu3d7e2tn5xc3Pzk8BPAj97698d2Xn8I+Bfv5/n7Pdnj2S4FFo6yGg2SZg99KOdjHevjRjNMmzTpO2amLfcTOZ9TqEUSZLRcHwODx/nEWlYlkG3e/8urEstj2lc4NY384fBnOoId84yDzyL82sNBNxzcY3rVppUFWVZYbpgPoHC/Cv/zzfJcskv/tjL/PBHNp5YsNXThHMrDf7yT73GL/7Yy/zxN/f4p1/d5tOfeZtPf+ZtXjrT4rVLXS6sNnVwm6UNTQupKMuKpbbHC2ceQUD4I8Bq1ydKSzzHuO1azwu1oOb3x+lCd/KoYhmEEHrX8gTaVifhiVy5W1tbu8CP3vr9zc3Ns8DfBn5ma2vrtnbW5uZma2trawL8APDO4z7O4/CkVvqdUM9HXNs8di7guyZxauAFWl9yL6uU04R1j/Yxd0Ipda6IPLIYOEkrM8f9fpB04JjCdwTthkMpqycyL/lPfvFjhL79HbHzuBsCz+JTHzvLpz52lv1hzBe/tc+fbB3wf//R1ZsiBI4i9Cz+7n/8o0/2QE9AM3B4+VybqqoW7geg26RzDUlRKhzHJKpFiVI+WvbUabY/T3v5858Da8D/vrm5CfDngU3ge7a2tv4n4J9sbm4mQMp97kSeNax0PRzHwHNuN02L0oKDUYIhdPbG015AHgWmcU5/ovMTNpa08aRS1SNnVLn23VtpjwPdlvdUUV2fFqx2A37q+y7xU993ibyQtQdasXAmsGrbnDuJ/04Dt7ZZq6pipx9TlDrXY7UbUFUVVj0bbNwjw/BZwGkP1v+tY7795fofW1tbH3+yR3R60B5Zx/eB0+wIw6uUTzUr61EhzW+85lJWHzg66HPcHY5tniiufdohVUVRMzOT+loWQjwVfmyPGqe9E3kc8EH38j8oK72ljodt6xyO5i3OoY8b89nMkz6fKx0fJzZ1nnRwd5rjs4LTOp8fRDzN59KyDNaXwsXA23oGFn5HOhz3xWoQt6quPwD4q8B/f9oH8RzP8RzP8Yzil4G/e6+//EHciXwWYDiM7nl1srTUoN9//Eynk6CqipXl5j0fQ5yWDKYpAqFX7PajW+Xcei4sy6DdDu7pfJ72eTzp+Uup2BvorJB2qOmPR/2JHvfzH8Wdzudpnr/jnjsvFQfDBFWphTX/k3jee8X9XJuP6xgeFqf13Mc9r2GIORPzs/fzWB/EIpKA9o65nwvrtLbD8wFyKsER90bT0/kYus+a5iWW+WiHdEfPxfzrez2fp91WOO75s1yHegEkaYllGuwNNGV4Yyl4pHbvd3v9dzufp3n+bn3uLC+Js5zDccpgnPKhc50H1krdz/Pe79/d72f9UR7Do8BpPfcdnje5n8c59SJS60T+W7Ri/U+2trb+gyM/+5vAvwQMgd/e2tr6b07lIB8BxlFOmmurE9c2Gc8yVMUifz3LJcK8t0yAdugglaa/hneho1Z11vPTYhv9sEiykjjVVvmWeW922L5r6ezpUkcKz5ICVVVkueTq/oy1bvDMW2/cK5SqQGjb/VIqOg33RLZf4FqUZUWSlrRDhzgtH0sR+U5FkpX8j7/1dd56b8APf+QMn3x97bQP6YHwNFwR7wH/wtbWVrq5ufm/bG5uvrG1tfW1Iz//j7a2tn7vtA7uUaAoJcM6LreqtM3HcKazLRzLxDIMGoGNIe/NodcwxD0peqtKm7plhbwpmW08y4izknboPlUeUndDVVXs9mNGUcYkyjm3GtIO3BOdgY/iKLsr9GyitGQ4yWg1bPrjlNC73WrmWYSqKvpj7Vi81PJuYvLFacnBKCEvJYa4MZjutY736NIGowbNwCHN5AeKlnraSPOSv/XrX+Lq3pRey+N/+O1vYBqCj7+6etqHdt849eXp1tbW7tbWVlr/9zgPrf9qc3Pz9zY3Nz/6hA/tgVCUisNxwjS+YTVuGjrgSEode3m0ZdUIbM6saJ3C/jA5UUyXFZLrhxF7g/hEAdatkKo6YvhYi5yUYjjLyIobhe1pgFIV+6OEvWGMVOq2nxWlQghBXuq42ygtiZKSuA4SKqVifxjf0eJ9DtsyOLsccnYlJM0kh5OU8T383bMAfW4K0ry87VzMjS7LUrE7TBnPco7bhKR5yeEoIS8kdp1ncWGtudglS6Vuu06H09piP/5gnMfHjV/9nbd4b2/K3/g3Psl/+Ut/lovrTX7t996iKO8spn0a8dQsQzc3Nz8MLG9tbb155Nt/Z2tr629ubm6+DPwK8EP3+nj36511kqfVrRjPMgaTlMCzj7VZ3j6cYbsOCmh3goUbrx+6XNuf4Toma2tNVlaaKFUR+jbTOGevH+N4DvvTnIZvs74UEngWqgLTEOwPYhp1eQ2bJ1t/3Arbc4jSgqWWR6MeKBcY2miw4bByjEfUvZ6LR4lZUiwK3TQuFjuHwTTj7WsjPNvk0kaL86sNpKoQAiZRsTgPw2mGU1QMp6l2RnXu3hbUmfY5vmszmmUfCC2KY5kYQqCqCs+9+Ry0QpuskIxljpIlk0hiGM3bFiU6e0V7PjUCi9C1F7uVopQ6TraqFtYdVVUxjvTOejTNaD1B36ZnEX/4tR3+6Bu7/Is/+AKf+K51Dg6m/IUffYm//Q+/zD/7+g4/8tGzd3+QpwhPRRHZ3NzsAf8d8AtHvz/3ztra2vp2rWi/Z9yPd9bKSpODg3uL7rx+GC1ERCovblOXT8Yp0yTHEIK+fSN8ajjNiKKMKAJDqcXNL56lFKU2F7xybYBjGeSBQzxLKaX2dFpqexhCMBolmIbAFRUjIe7pRgkQmIIkykjqD7ojKkwLRClve923nosH9c66X7i2iagzII/OhQYTnRY5k4okK2kGDr5jMUsKVju6ny+VWpxngcA0RV2QxB3bdUIIOg09IwlO8DHS783p5VffDUmm7b7nPky2ZXB2JTw2OdO2TM4shxRSESUFUla8vz+jGTh0jrzHlimQSs/rmqHNKMrptT0s0yAr1KLoZLnWQAihrT3irHxmY3yfFHb6Ef/gd9/i1Qsdfvr7Ly2+//rFLudWQj731edF5L6xublpAf8A+Gu1x9bRn7W2trYmm5uby5zisaZ5iWkY2JZ2hR1OJb57uz0JQK/l4rs66+Poz5uBTV5Iqqpilmobh/mMwrZMPKEjXw/HiRYV+jZpoVfm1w/0DqYZODR9i52+pqv2mt4D2YAYQmA8QkbSo4DrmJyt23rz81ZVFaYB41mO75qEnkWSlQgDQt+mlBXt0MY0DG0nL7XHWJpLDseaYNL0HdqNk63dl9s+vebxVjJZrm03Kqo7Gj+eFo4aU8pWtdgBzMkGUimipFyEG82x2vYZjFOyQgcfqapiME7Y3ptiGILVjk8pFYFrsdOPEQJ2+jFnl/Xu2ItNskLddO2tdoN7si7/TkZRSv7eb30D2zL4Kz/9XTedKyEE3//dG3z6M2+zO4gXKajPAk69iAA/D3wvevYB8J8Cf3Fra+vfA/7W5ubmd6NnN3/9NA5uPMsYzjIEgjPLIe3QoX3MjXuWFAynGb57vH2JZRqs9QL2BzEHowTbMvAc8ya2i9Yu6HhYIQSVqpimBXZ9U0jSEt+xFgFOz0r/VPfYU2zLYKXrn0hjvm1XFxfEqaTdcOi1XEpVLVoyftsi9GySrFzMAWzX0a689QZ0EhXEqf7ZmeXw2EKi6qLuWMZtTrqFVE/1uT7ahiqlYhLn2KaxuKZ2BzHXD2ME8JGXlhat1byUdFsuUipUVduSC/14SlYUUhF6NoFnoyo9T+tPElzbpNdyyEt9XiZRftNQ/nkBuTP+0eeu8P7+jH//5z98rP3JJ19f49OfeZsvfnOPn/6BF07hCB8Mp15Etra2fh349Vu+/Uf1z47z1nqimN88kqwgyQps6+Y3X/eDc3b6Ma5jIhNNm5zfsFQ93HZtk7yU7I0SpnGGIYybfIHWl0KGw5gKvSoppU5Ha/o2cVLqeN3QIfAs2qG+ARwNtiqlwjghTS1OC1TFqTGQJnFBqRRlrshyeUea6CTKF9RTqgrPMYlSTUwIPYtS6l68bRm8tzuloiLJysVsScmKbtPBy0w9O0F7GElVcevmq6oq9gcxaSFr4aa3cPG1TP18eeHUfysoSvlINSUPC4HAtU1MofVGSoEQcHY5xLZM4qSkLCV5Idnuz2j6812yfg2WabLa9fFdi2bDY9fQOxHvSJu013SZxjorI0pzHFssite8lXa/NjxzssfT2iJ8HHhne8zvfOEqP/LRM3z4peVjf6fbdHlho8lX3uk/LyIfJHSaLuMop5AVw+mNWNpS6j78LCkYzTKkVMRpxXL7RvAMwPZhpFsilaLdcMmLElMYLHf9m1bGlmkstA+uY+E7JsNpynCW4jkWnaa7aFfcuooZzTJGswzLNDizFN60Ikyykv2Rbu1I5R27i3rcaHhWLfITJ6rrS6kLzJyCqipNURVCsNYLCD2L/WFClBaYhqF3FpZR39gN4rTEDRyKDPJCtwY9x+KtayOEEKRZubhpVZXeX+wN4jrXGlqhq782BFFqsrEUIoSg1/I4HCULR+GzK8enNB6OE2aFQhXlQw2Wi1JhmneOVi2lIkr1zlfKijSTFEpiIGg1nMVO7NxKyDjKkEo7yo5dff2+fK5zk3OxHsJbnDsmKdOxTRzb4GCUczhOuLiuWVpZLilLxfZhtLjm7qWdFacl+yPdglvtPDstm4eBqir+5/93i07D5Rc+9aE7/u5HPrTMb33uCuMoP5XP6oPgeRG5CyzToNNwMU2xCC8a1dGvrm3SrnNAGoHNUsu7KVFsOM3YujpkPMvwA5uq0hnipdL95nkRORwlfP3qiOu7E7pNh4urTd65PibLS4SAduiSZiffnOaOt6XU1EvHuLHCuzlh8O5Eg6qqHnlvO/BsLqydvAuapwtmpeRgmCCEHhAvt/1F331/GLPTj8hLxUrHI8kKVtoeUmktw7WDGZYhuLI95b3dKbmUrHZ84kQiBIx8i3bDpZSadVSWaqGfyYuS1a6/CA26lY8h6/Omqgql4NaumFSKWaLbadMof+Ai0h8nXD+c6QH4UnDs+coKyW4/XtB1LdNAoWgFDhWw2vFvMAI9m5fPdxhMUq4fRFzZnlAhMA3BCxst+pOUONO73O4dkhzzQmFbJqXU7CvDEAvKdZBLVjo+02m+ICis3kG3c5QafLdsmA8KvvDmHu/vz/iln3n9rmLNj7y0zG9+7gpffeeQH/rwmSd0hA+H50XkFsySAkNwE1un03QQQhcU37U4qFf2eaHwXZP1XkBVaWV0VVXEWVnvUjRn/mCc0JEK1zQwTYNzK43FarGqKg7GCcNJrlsrWcFgkpEXkk7DpRk6eI5J+w70007DYTitcG0TxzY5GCVcO5jRbbpcWm+x3NaakdYdxGJSKaSquLo3Zf9gSuDqttmjch8VQhCnOrr2VlZZmkt9QzQMWrVjb14o4rRcsKvyUtEMHKZxrinPowTHMuk0XPaHCWlWsnd1wLt7YwwMJBXjWU7oaaFc4NmcKSVJLpkleU0D1mQJpQz6k5TltkdWqNsG6Estj0mU49jmsTb8pmEsMrUfZvgep1rzcqP9dnsRKep5hOfqxMhm4GAI/X3XMZnG8+wZo75ubFzboigrclVhm4IoybmyM2G7H+G7JqWsaDY9HKNiFpeM4xzPNum1PKRSTGY5Ralo+noe1XQt4lRiGvpad+qdoH4NBXcygW0E9qJ4PKh4sSilvh6egZW6UhW/+bkrnF9t8InX7q5Iv7DWoNt0+erb/edF5FnEJM4ZTLQAb7WjC0kpFYfjFAGLGUSv5TGNc0LfZjDJSPJy0WIazXLGkR7ENwIbWVWsdHQgjetYBJ6FEDdaUtOkYDBJ6U8yAs9EGILRNKeUkpZv0wr06rYdOnBCD9lzLDaWbryV7+9PibOSJCtoBTaWaS5uzsdhzkLKS0mr5ROlBYNxStwuueA8Gs3IJMoZ1OLGlY6HbZnsDRIGk5RO09HKfctgtetzdW+KVIorOxM2L3SI6laY5dusdn2+fqXPcJrRDl2EYDHkjXOFa5mMoxzTFChlk5eanRSnBUrp30vSkiSXfNelHuNZxtcvj1EVvHqhw4tn2rcdu2UaJ6q651jtBiwvNx4qsnip7TEcRscGkwHkhaQoJb5jYhgGvZa7aK2VUrE7iBnPckazDCpwbAPbNnEsg3bDIc1LHNvAdU2u7E4pCsk0zjm/0mA4yxmPYywDhtNch2ZVFYejhP1RQuDavHK+QX+UMIpyug2bSVximmLRenlvb4pjmaR5eWLcr1G3CB8Uc/3KfC6z1Hvgh3oi+Mrbh+yPEn75Z7/7nmZHQgjeeHGJL3xzb9Eyf9rxvIgcwdFuz/zLWaLVvwBRUuK75mKQG7gW1yb6pnE4SpCtimmUMYsLAlcXiw+dazONC7Jc0gxsQs9mYylcrGgPRgl7gxQ/sMESjGc5e/WA/dxqoI0CBURpycvn2xjCIPD0jqeqNCMmTkvGUUZeSkLXxjQEg3GKbZkMZ3rlXsGJPdaskIvWiG2ZGAjCekWtHrDjUFWaUOBYZq3l0Gc0Tkve35sBgiTXzCqoeOlsZ7GKty3Bzm5CBRRK0fQsDMPAtU2KUlFKbe0xp9+udQO6LQ8rk0ymDoahZ1aeo2dEUVpSSEVeSqoKerXuZv54eSFB6B1RlBbM4oJG/V7NUUrF/iihLNWJpo0PS1oI6mvjJOwNE62JMQzOrerVflEqxlHG4ShhEhe0fC3+myU5+VSx1HSJhcAwBCtdj0trLZK8xCAizSW+azJNCoSVAxVXdiIMQ9BpumS5ZBYXRHGBbRnkpSTKSqSqyKVueea54vrBjHbDpeHbGIZgEuWPLTO+qm6w0uQ96sBOE7//p9foNl0+9srxw/Tj8OGXlviDr2zz9rUxr17sPsajezR4XkSOQFBhCj2cDOtdyGCScjhK6bVdXMdc7DxGsxTP0QPGolSMZxmzpCRKcjzXYpoUGPWAdL0bIJXC92zaocNgkpJkJaZpsL0/o0Irfl1DUJYSxzbxXRNVQZqVFKpiGudkhaTh23Sbjl4FGrDeCxlHOZMoZxJnrPcCPNvi1Ys9pFIoVWEacxnfDUilmMZ6rtPwbdJcU2NfOtem45mMZhnmLUyd+8HBKCHOSmzTYGM5JMkKhpMU2zYJPFsPkA2DSZQjZaVNFX39/arSc6PDcUqSl2z0AizLIM1KlNJFJi8kliW4fjBjueVzZjlgzTTZ3Z+QTnJM2yRO9Q0vLRQrbY84LVnpeMySYlEgVrs+L5xpU5aKC2vNxVwkzSXhuv6dNC/Z6cfs9nXRykvJh852HuZSuw39cco4k6gju9pbIdCtnGle0Gm6OJbBTj/m+uGMNJe4tkEzDMmkYjiO6c9yKqXbRo5tYpuCawczTZH2LEZRQZSWGIZAmBZJkhJ4Jp5tcnY5oKr0okaRkBWK8VS/V65jYgmYlhJZKmxT09KTrKThO5oarCp2BxGWabDcOZnWfb+wTIOVjk+ayUcelfyosdOPePPdIT/3wy/elwHqaxe7mIbgq5f7z4vIswSd0aEV3fPVd5LpD9hyx6cdOrh1TzzJYTjJKFVFVVU0fM2zf29vimUKXmr7FFISJboNkxeSw7H2KtpYCvAciygttNdTrK07Liw1yLOcyLPpNCRZrkgySdN3UKX+/5WdCQK9ErMsk4ZnkeWSwLcxDbAMg8E0pcgrCqV4+WybZqjZOrf26g/HupAJNONotR6sWqZOUHyYlsP83E3jHMcymcaaAq2pnQIzNAgbNpfWbQJPt2bycgsouuUAACAASURBVB4hCq6tNSC7g4QkLbh2MMNAcDhOqag4sxTSCh22+zGdhm4JTpOCYZQwjQtGUUkpc9Z7AWWpsA3BNM6ZRDauY+E5Fo5tsDuIUarilXNtLEvTiGdJQZTkbPe1nueFjRazRNO7J3FGK3AxHzFNuqoqpklO19U05ZOKyFov4NvXRkyjnG9c6fOhcx0qKsL6Ogh9ze7b68e8sztjEuUUhWS1u0R/kjFSGY5jandepVjt+PQnKVFS8uqLDXb2NEEgKxUI/R5mhSQvSqK4wKBivRcwmKREaYnvmASujeuagKDh2zQDm4Zv8+7uhO3DCEOIe2oH3g9CT+8Sn/ZWz+e/sYcQ8IMf3rivv/Ndi1fOd/jaO/27srmeBnxHFJEs1wwd5w689KO03PmXtqU9phzbXAwBu03Nta8U7Awiba4o9MC9qn/u2gaBZ7LbT1CVgW0KkrRkOMuwLIFjmfieRV4oXNvEd0xeOtvmG28fsNLxeO1Sj29fGzONcw5HCQ3fJs4kpiGYxgWWKUhziWUKdgYRZ5YaLLc9PMfi6t6EoqzwPX08J9lQPE61SCkVw2nG7iBmteujFIuVaOhZnF3WsaF7g5QkkwSuWPhWaVGmD+h23fsHM6pC6ZlH3UZUVDR9h5WOJgtMo5w4tLEtg2mSQ1Wx1g3ptVxWegFSVjUNOifJtGdY4Nk32pRpubjJLbVdqqrCEFqUtz+MCWrh3cvnOrRC5yb2lW4d3W5/cz8QQtD0NXmjeQdml2FoZT9Ca0QMAa1A75ovrDUxDAPTANs2cGwTIQRSQpzqoXua6RlInkuWuh5pWnJmKaCUFb5r4dWt2k7ToT/OF2adnmORlzlxJhlHOVFaItCstbOrDfJCMpqmNAKbKs71MS6II3ph8J2Gqqr442/u8eqF7gN5sr3x4hKf/szbHI6Te3LsPk184IvILCkWFhjrveDEXq2qKkLXxvNMmnWCW3+S4TomZt2PB/2B912Li+sNHNtACMFSyyMvJe/vz5glOZWqiLKSsqgQBrx0pkVeSvpT7Yf1wlrA2dUGgWNpewnPJsklpqlFhtuHMWeWA/aHhuboDxOG05Ru02W16y/EcEopxrOcN9/tc261Uc8GfPYGEc3AwbYMopqKfOtNbrntM0uO/9nDIi/0a2mFDoahZw+vX+oRpTkNX39vOM04nCSageVauEf0I55jcWGtSZQVTOOcUlbkRYnveDR9izNLIe8fzIAK2xJYlsHV/Yh2y2Wl42uaq2XxyoUOa72Aw1GyyNGoKs30MlJdUHzHWtAuD8eJLgiGWFh+2KbBuZWQCkHoW7e1JYbTbOFcu7bWeuBzttT27ujhdjhO2T6c4ZhGTeM1aPjOTWwxqRTbhzFrHV/vUD2Tpu9impBniiwvtd5mlLKxFBJXJVmpMGpyAnVMgVKa8ffu3gzXMjCEVSdomlRUqFmGIUx6DZfxLGUc6XyWqoKljlnPbBq4joljmXSbj24X8qzg3d0p+8OEn/yzFx/o7z/8ki4iX7s84FMfe7q9tD7wRaSUCqkUSSqJguNZI1FScHVvqldvBjiWJCskqqYiHqevMAyDsyuNI//Xy63dfszhOKXh23QaLhfWG7VgLsQyNf22VBWGMHj1Yncx1N0ZJlzeniAEvCIAtHK6LCXDWY5hCPrjlLOrDd54cYm81POa3UGCZQqyeihsWyaffG0N29YsJU1HFqz3fMya3++7Flkh6+Hzg808SqmoqurYAbPvWqx1AzwnZ7ntLYgApnlDyT+/cVv14B10wQdtAPjmu30ub89oh3oGdGY5wHUMdgYpw2lGkpacWwlRqsKzTdJM+5s5lkXoWyy19AzkK2/38V1NRjiz1OD64Yyvv3NIVirWuj4vnmnjuxZ5UXJ5e4JtCjpNj42lgOt9rU0xhOD8WoPhNKPbdG/qxd9ExrhHi/4HwV4/Wpyfj3xoidC7cQxSKrb7MaWUSFlRqopmw6EZ2AihvccqtIh1MNM7hff3J1xcb5IWep735bf2GU9SWoFDt+VxZXvM/iijLMsFjbhRL3Z6Lb9eoOiZU5QUdFouG8shQe0bZxjijiSBDzr++M09TEPwPZsrD/T3G0sBy22Pr73Tf15EThutwGHnMEZV2hqie0uSm1SK6wdT+pOUwLPqNlRMnBXMkpKmb3Nx4wbNNcnKm8wVpdKiq1mcsz+MyUpteufYBqZR4dgms6Rgt5/wzvUR/z97bxJjWZbmef3OPXe+9432bHDzMSIywjIiMmvIzCoqKUolNcWiF4DogkWJFRISAhbs2CCBBOo1EgtgBxtEC6lpkEBCqhTdXUV3dXXlUDlEZlpEePho7ja9+d15OCy+axbuMQ8eGR5V+a3MzczfZO/dc873/f+/vzGGycBjlZZsD8W1/s6jJfdPN1R1i63hwfGGppGd8yh28W3NeZ5hWaI7n65yThcpWV4TBTbD2Ed3rRClFMoSDtRsVYhjfZZRVpII2I89BqHDJqsvkSFPLoafpKrOqWww7zNYgpzWdkbh5ZwF4P7JhpN5Sj9yub4d0zQtL+73aVvBX2yyijcfLCnKiqxoeXS+ISlqTheKV64N2BnJfGO5zmlbQ5LXnC8K+X7bsj0KuHmlzzh2MC2UTcudRys2aYnvaXZHEc6uxYPTNY+nKWlR4zuaJJPZ1NHZ5lK8MBmFaK0v1VZF0zBb5RikxXWxiBhjLtuCW1078ZOxoD99jfoeZ13YVJo3RE9s7u+drHnn0QqtFb5jc3S+QSsxG+6OA7JCsC5xv6MeNy1pUXH7aIllSetrnebYxkgkbl7x4HTD4/OEqmkJXc3eJCbJa7b6QSc0KBj1fIaezY3I49aVHsukYpEUzNY520MBViqlZD6WVUS+/VR7NSvqSyL236RqjeGvfnnKN1/c+sxUY6UU33xpi3/208dUdfuB/qTnpf7GLyKWpRj1vcv+93tL+vXvau5Hsc/jQhzB2pI5ysUOc7bKWaWCed+fRJRVc5kcWDeCyLYVXN8NZXZha06mKcfzjDtHS+pWzInTZckw9nlwuiFwNfeOV8wSgdzFvkPoOWRVTc93AYvx0MVzY7JSkN9vvDPj4fmGumn4zRcn7E8ieoHNMpX2j+/Y2Fpxtsh4NN3g2Zqjs4S8aqgaQ+zbl7Lbz+JMvzC8gciDP85J0hrJ+aibtvPQSG9flxbXO9TGL+7OOJklTJc5k3FAVjYoY0jSiuk6x9EWm1w8EGeLrIsYLgl9Tew55Eo4TjvDkPsna954R/T5w9hjMvQZ9V3quhEfT1riaHVJVn5wumG+zrtF2WHUyVV/++UtVhuZQUmrq+bKVsgqKelHLpusYtUZStvmi5Wb7k9i1kmFpQUKenFhmQx8FpuC41nCKikZ9XyqWk7SE6VYrAtevj5AK4Vja65sh7x1f8nP3pmBAkcrRn2fuoVBYINSbJKSNKska8XRLNOKOJO/Wz+UIb7n2ICErEnrVJPlKXXbstwIhr9pDcPYY7rMqduWLK8JO3LBBdi0QhFonism2eetO49WzNcF/+4fvvS5buebL27xj394xJsPFrz+wvNriPkbv4iAQOTuPBbJal7WT7nRHdtiu+dS5SWDWD4MOyM5ri8TYVJBi+/aLBNxOtOdCNZpxek8o6pbsqIiDl10X9oh909Wcsp4OOfuacomKwl9m37ksj8JqLp8jDcfbJitSrKqwXcsWmMoq4amaolGNklasklrfNflleuyGzyZp0yXOWXd8LM7M67u9shLC9+xUKFNVlacP5BWTF409EOPpm2ZhL60a2IPpZRIPb1P/+ENPE0/dN8FJX5EJXlFXbfsjEIenSeicuvw42BEwWMpfM8Wdpil2J/0MI2hblvuH695fJZwOk0Bi6ppKMsG3xXHeVG1rJIU19HMN8dcGftgFKuswrIsLMtiq+fzi7sLDtWCLG8Y9z1CTwOGP/vxI+rGEPmaazs9fNe53PXtb8Vs9RsenGxwHc3Q1h2Cvu1Oje/uDvWvQCm0NRSO13yTExY1/U4JFfoOcejidA5337PZ6ns8OEtYbkR99buv7XL/ZEPbtpzMU+ruNOJ3aq1ez78kFCSZmDUDz6Ysa3zPRhnhjz08z+hHLlG3+PQjl7Ku+RdvnKAtaVO2RuS9SkkssWNb1GWLrdXl6a7qWsV1Y7h/LlLgCxjkV71+8OYZ2lL85te2PtftvHpjhK0tfnJ7+utF5MuupjWXqI1N/vQiAggYcfiueSsr6k5lpVlnJetUlCl5ISeOm7t9XEeT5CWLdUk/dri63cPWqiObCjpjnVXcPUlZpgUYw83dXifftHC0xXlWYQyEviWZJdoiy2tyz0FruP1wySoraVvD/ljMi5YFm7SkrBriQPwkVdVQWhaeZ/H2Q1m8Qk+MdBjFtUnE7aMFJ5uSF68OLlVqn+aI3Lbmkth6ASb8uN8/mct8qBeK8/7bB9usEmn7XcyN4s5JL20X8Rlc3Y7Y2wo4niYsNyVF2aC1heMozmYy9ymqlsnA5tZuTy6sSUG2kdPL+SLldJahLLi+HWOUDNPnq5ymaXC0pue7nC+L7iRZMwhd9idx16oUUu3JLCUvauYbOQnFgU0vcFmlJau0ZDIIuDKOaI155he/uhHsS+DpSzqzqKRa8qK5VPY5tsWtvR7GGI7ONizWBcqSVtF0kdM0LfN1yc4o5OHZhuN5ImbKQMQMvqc5X+XkdYsyLYHnkHe0A0crGtuiF3r4vk0/cMlKaQPub0eEri3tq6UQFwaxZLeEvk3T+ZMAtkdBd3p5d8MilGYIA5vVSrh0SVZ95RcRYww/PDzj1VujDw06+6TluZqv3xjyk3em/AkvP6NH+Ozrq/0X+4TluRrftak7/s97q2la8lIor+fLjKJqWKcVu2OfotL0I5fpsqBqWgau0zmdxf086LkEruaV60NWScFf3z6nqSXbwXcttBb8ROjZ3Nzt4TiapmnoRwHTpZi47h8njIYeJgXHtdkZ+GyyhjuPFiRFwyCSHefjacqmW3iubQtl9vVbW126HJxMM4KOqXSRvbE3jmiMYVM0wLuZ65+2Hk9Tqrp5ym3/UbVMSjZZeRmb2g9d8rLhdJFxtsw5X2RkpTCixn3BoGgtbY6f3D7nt7824fpOTFXDKilojGEYOTzw3a6Xr3BsS1p0rSz8ZWtI05KsrFFa4WhN6AsROc1Lwef3PK5OYsq64Y07MzAGx7bZGgSMeh4vXxugLYvzRca94/VlOub2MMC1Nb6nWYvYr1vIv5igqrOFvA+LaSP4Eq2xLKgqaWONeh67o4C0qIl9WYx9V5NXjbyvyhbHVtQN9COXVVqQ5DVl2WAZYTSVdcN8LV6eujU4lkjRlVLkVSt5Kq20P3/nYIfZumC6kie/XJd4Y42tNbvjENOdMPa3YixLsclKtLYuESjvXRwuTIjjrZj5LKFuzGdmaT1P9fAs4XSR8Xd/78Yzub1vvrTF//q9tzidp0/NGJ+n+luxiFhKfWhSWGskIvRslhL7zuWMQHwlNvsTeWNHXsYqLcUXooWEukhKqqplEEl2+fkyp64M56uMujZYlsPV7YjTWUbkWyyTEoMQaU8XGfN1wXyVk1c1eWmjLRhGnmBOkoqsNCRZzbgnrK7AtS+HnbqTng56MstRliiF0ry+lA0neUXoSRb8qOdRFA3XJp9NMWOQk0hRNZ9oEdFaAYqmMTSNJDqezGUhElWYTeDa3NiNGUQej6YJp7OM00XKVt/nx2+fUxmD2xnVXr01koF5bXj7aMl5R1IuatmRtwYWy4K8qBnEDo6lGMUuWmvuPt6gLYvJyGNvK2YYuXz/l6fkeU3g2eyMAr7z6i7feGGLTVpx+9GS82UmCJu8ZncU0LaG7aFExMaBI0DL9zimm9ZcbkY+KwKlNYaiW1zzoma6KtnbCihrOX1oWzHwPG7t9ThfFhjMZUrhJhUacpZXZGVLP3a5thcQeQ7bQ1HnnS0SLEfJyboUIGVe1gSWy+N5imuLX8S1RdZuW4rtgcfxLKFp4dE0xTQJ17Zjxn2vG5bbbA1EYLHclKgWXNu6VNHd2O196HtG/w1Tcf3g8BQF/PbLn02V9d76jW4R+cntKX/0nV8vIs9lta2hrmW3WdYte+Oww2PL7ttSgsaYDAOiwLlUZp3MUmarHFsLl6isGx6ciQKpFzq0DuwOfcwg6BzVNUdnG3a3QmxtkZUNaV5z/3RN1QpKw0KxymreKZZEvo1lQehLLGxrYLrKWWcV2lLYWlG3cDbPpL/fqu6kEIIx3H68FjVW6HLD1Xzr5QmOrT/ScPlR5dga3fknPkn1Q1figAGM4e7xmqYxjPser1wbstiUHYwvoKjktYgCG5Yyt7qQJte1YX+7YXcrIOrIwqO+x/kiJS0M9x6vefHqAFsr+rHHMBZ2Vuzb7Ix90rzi7vGK+TrHc23O5jk39/o8PF1T1C390OMPf+sat670BBK5zHjj7pzQd5itMuLQJS3ErNq2oGzFZBB8YBjTw9M1p7OU0LM/867xpBNqNF3C4CCWQfZW38eyanxPTtW2rZl2+fPDWIyKyrLYHvicK8Mw1lzbibuTkqKpzeXijRLMynSdX5Kpb+zFHJ2scR1YpxWmhcUmB6WwtMJfywJ9Ns+IQ4eybsiKumthiXT7eJpw+2hFVTd4roVB2nASkvX8qoueZf3gzTNevj58ZkiW3VHIla2QH755xh995/ozuc1nXX/rFxFbW2zHLkUmVFjLUl2OenEpP0yyirhzFItBT9DhrqNp6pZxp0BJMolZzfIKqzPAXRmHaCXYkapqJOLWt6nKlkfTDUXVUreGYWSx2JQs1oJT8T3NS1d6DCYhtrIwQOhpzi1po5jWUFcS4tS0rew8Q4c2q3jhSp+mNZwucoY9D9+1iYInUxAbCSnalAwiofzKBctj+0M2UBe78U9T474PBmbrnGEsCrllUjLfFKzTbqh7ptkehpwthOh7dSsEFOtU1HSOI+7x//eHD8EotFJEri3D+caQlQ2zZcbuKJQFXhl2t2LqusEYxd3jJYtNwWpTEAViWvzx2+dsigbHgivjgLpt+RdvHLNICqqqZZNWtAh1OfJtLCUKPttWGGMuc01GvXdDvlpjLlMwy88RpXtxG4Z33esXDvll0goBOtYUVUPo2VSNZJ0Hns3tR5JBkxUNbmRBK8PztGhIipLFSthXypLnoVFoRIa+TgqBLJYNWsFsU4o/SSnapiGKXDDiUl8lNeerjP084s7xmiSXlhpKcb7KWCaCh7mxFxO6Tncq/Ztfx7OUo7OEP/mjZzu/+PbBNv/3X9xjlX72rJovsv7WLyLQDdbfs3MMPM0qUaBgti67NkFNVtVgJDmvrlrZaXetJM8R6WzgaFZpwTIXeerOKGK6ygHDKhFCbFJUpFkjgEQFfuBiVuIDMG2LrRxs2+bmTo/H04T5qiDPZRdaIFyuVVbi2DZFWXM+z8lyh5euCcrcsjUvXu1zfaf3lFa9rBrePlry8HRD3RFhfdfm6nbEOimf6etqKXV5gjvp8CFF2XRS6Yp+6PLoXIbnSomyJ/JdfNfCsRVtC65r8fAsYbkquhlKy94oZBj5zDcZbWOYLiXVcXerR93IcP10Li3FvKPOep5DFNgUZUvTSCiYwhAFDtNFxht3ZlR1S9UYXFuR1w3jyKMXunztap9RL0ApODpPeHCyoR+7eE51uYhYnTemSIv3+WayomaVlAS+/bGCBCEJlJeblqpuiUOH+8drMLIxyPKasm6Ec1U2VFWNpSyOzxKO5ylGKTzHZpnVNK0M6NOiom1l8Yh8G8u26Mceji2zpbQQv5PvagLPYrYpaGkxrSKrFH1L4TmOnC6MEK1/evucvXFE7Dtoy+JqZzZsWxhGDgp1qXj821A/fPMMgG+/8mxaWRf1nYMd/q9/fo8fvXnGH/7W82c8/Fu9iORlzXxdgP3+l8F3ba7vxpRlzc/uzpmtctKsJgzsy92eoWWZVPzi7ozXbo45uDGkbVvevL/g53fnKBTLTc7eVijUWqXY5DWbvEIZxc7Y52wBk4HXLR4QBxZ1axN6mu2+SxzYQgcuKs6WGVcmMVlRELoaBVjKMF2XWFoR+LZo7+uG2HeJfRe3439dqNOyjrnVmpazzkcxjEUCHIefHE/RGiNDXkeghWleE8bv//9VLffTtjDquWzSinE/YBh5lzvidx6tyEq50O6NxONQ1C07Q4/Q9+n7Do8RuXDgOpwvMwLPZpUobFejLHOpKMIIvmSVliRZSdsoiqahH7iM+z5x4FJUDWfzlJtX+sS+w/kyJy9lVuN5FsbAJq2woJNBO12an/xO4Isi7r1o/X7kfmAba7bKRdJd1h8ria7qhuNZRmsSXtofEPo2VdWSFjXHM5GKr5KScd9jnZXUteFf/vKMcc/jfF3QGvBshVEyqD6bp6R5hW1Z5E1DFNj0QodxL8DzbOqq4s5xwjorKPKa8cAl9AKiwCXJKpRSDGOX2HcY9TzmG4uTWcKmkPfAuGq4f7zmW1/f5uhsQ920lHXNKoVR37/0UD3vsMRnUT84POWFK71nCpsEuL4Tsz30+cHhrxeR564WG3EoLzcFgX4/oNFSiqoxnM5SZuuC7aFH00iexdtHC05m2aXfYn8rYnccsdrkvHW0ZJ3VWBhsx2e6KtgkNUku7KKyaKmbhtNFTuRpsqJhnTe0CqLAZ9TzsS1xeeeVZEPUdYvraMaxqMFWScFsJVTWXuAw7gdsDfxup+lQt4I0eXSePu0sN4asaBj1Aq5NIqrGsLcVferh5uk8k5AjW18SeM8XGaH9dOuirBvqVsKN1qm4nK20xLJsqrrl7YdL5uucwBMT2r3TDVle4TqaNKsY9ktZvH2NrX2OZ7kg3psG37WwLQvXEjXadJlytXseVSWoe+FCKRxHaLLaAt+xeenqENeRU1gcuuxNIh6dbbCVJgoluc8gt3uBhrG1ReDazE1BL3Ce8oaUVcODkzWrZfo+9LnnSLvQsfXHwgjXaXWZiPl4luDZNnUjLLJx38NzLbRSuLZFL3CYrysCV1NU1aUpNvQdPFvQ7E1jcG1LYoVHPqBIc0HAj2IXbVlsDVySvGRdNSRpzSgyXNsOCTwLy1jYjoA/FxuRu4tCUMmpD0M/DFglBTtbIWdLOSlttBAfXnthyI2dZxNs9jzXdJlz5/GaP/7DF5/5bSul+PbBDn/6Vw9I8uozu+C/qPpbvYj4rqSwybD8g3+nqBq2hx7zTSGei+2IX96fc3SedDnrNiezlJ++M+VklmJrMWs1TYvSimHocHoRp1s3eI3iZJ5RVRVZWbNO5HEYYxF6DjuDgIZW0OargryS9sv2yKcXeuwMQx7ONszXBWXdss5KHNtidxTgezZ3H684Pk/5ztd3CXybTV6xSqpOsSWGyUHsEjfSytGWYmvw6XdOZScVrur2ciHxXP2+FCvXsaCDH0ZdaFEUOCRZ1eV1y4kwzSUlT4bKLY2l0FpRFi2bTJDmSVazScvuRCDxsZOhy2KZM99Ia3C6EFDlYlOSlw1aSRzvOikvZa/aUkxGPoPQ54UrAb1Idt2TfoC24fpOD4ViviqIPBE1ZHlF0xjCwH43lTIt8TrC6iopcXyXtKjJi6e9SFsDn14ksMSPU20Nex6ni7S7nQZba7S20NqwWMtptue7HB7NWaUVt3Zi4sDm7uMlSikizyZ0HQLPZhA7PD7fcL4sMV12fBRoNmnFclNxeF+EF9d2IsYDj5NZSmvk8Tm2jba0nO5KQ1oIxt8gcxFtdVy6BjZZiW0rzuYpllKyUarby+jdrKy7kDbxUVnq/RHJX/X64VtdK+tg5wu5/e8c7PD//OV9/vqtc37/m58OLf9F13OxiBwcHPy3wHeAHx4eHv5nT3z/G8D/iJDL/+PDw8OfPMv7HXZ4i+1JzE/fPCYvGq7txE9BGuva0DRyYdkbBcSBy/ag4J67JstrfMfGsSzysuGX9xeUtaToBZ5N7Ds8nok7eJXK7rpqpMe92DTkZQuYzjHsCl5biVpMK4W2DMezTCJubc2kF3DnZMXtoxVpIbTZQc/jyijC1orFKqeoappWcbpI2R75uLak/BWlDLh9zybNK6LAuZQ9103LMi2fIul+XE0GPutMslACTzw4u+PwffGw54scSyviwMZSsntOi5pH5wkow+k8papaxgOfvG4ZuDbxWFPWLS2G6Up8JcYYbCUL0HLTstXziSN5XcLAZZElkste1F0Mr0JbUALDnssmrymrhroFz7VogDxvuDqRbJIrW6LK813NN18Ys0pr+pFL1dT86K0zPMemHznEvoNtWTStIfTeXSgC36ZWkrf+3hOt6lIUP0nFgcMr10eczlNAzGtR4LJJ5ATgaMVPj6fcfSyUrnHsdacEyVS5OgkZ9cXvkuYNyrIoyoq6NbTLmqb1ZTHuXo+sqkUQ4tn0QhdXG5SC1aakrhvWSUkjcAHGfZdBZFO3BoxBW3Ky8j0NxrBYS0zuC1f71LXsHUwLR2dCKogC55KovTsKv/LGwifrh4dnYpL9ECvB5y1pk3n84PDs14vIe+vg4OBbQHR4ePgHBwcH/8PBwcHvHB4e/lX34/8G+BOgBf574N9+1vdva4vjWcIv7s27zI+S3/raFo6tqZuWvKrZm0Rkec2w7zPuicroraMFjm3huRrP0TSNwbZAObagMTrZ6iavMG3bSUQFnufa1eUFSSmD79l4jk3TSFRr6Gq0UqSOTVXLSclSCmUZ8alY4Nli1vrtl7dZpqVEtzaGxabEdzWWErPd1iDg0TRlmQgJ+JVrQ0ax+1SPetolLQL4UcJ0kTHqeR/Zx77I2Lgo90O8ERd04bo2hD7MNwXD2GNvHPAvf3EqmPe6YbEueenqgNYIYHK2zlmthThb1gZbGSzXYhB5XNsO2WTiMu/FLtMuX2W6SalK2XEYDE0rEmltWVzdjkiyCoxIsi0sQPHTd6aUtbQX49DjtZsjPM9hpMUV//btyExSagAAIABJREFUBQZD6Noc3BwTeCJCMPBUyyryHcbjiHPX+twpftpSl36lyUBAhkfnGzZZQdMqRrHHQ3sji2a3GFRNy6jncW2nh+dYnK9yTGuIPLno13VDbdnkpRCkPdvCsaTVdmHcBPGPTFcFbStKNtPllgx6Hrf2Y0LPRSmLo/N1l5vj8K1Xtnk8TVlscmoDO8OI67s9VpuSwwcLOVnlFTd240vyQX2JPZFseGPMJZD0q1arpOTNhwv+zX/11hd2H0opvvXKNv/kR0dkRf1cLcDPwyP5LvC97uvvAb8HXCwi48PDwwcABwcHgy/qAWjLukR6WwqyzoglCHM4X6Rc3Y7Z6dAo13d7/MFv7nPveHkZMTuKXdKiZbbO2R0FPDpPSPK1XMyMwrFVp36RUKoWYUNpy8Z1NXFos1gXpFkFrcHz5PtOJa2bqmo4medUTcMg8ohDm71RzHJTss5LVpsK17XYGvhs9QS/blniHNeWInBtlpuSo/OEK1vh5QW/NeYSHlhWLYt1QZJXKGAy/PgwnDSX9MYP85/UjcTcVrUMpPOypeiG+9sDn6YVaeytbqe1txXxxp0pp/MM37MoK4O2BCvi2JKCOF2VhK7mfJVyNE3oBaJK2ysikTzXNW1tSMuacRywPQ55YS/G0Zqf352yzmoiv0N+LCSCNy8brjuao/OUshFTZejaFJUg9wNf43exr/1QJLV1t+h7rsy1oqp5JjGwgWdzZRxhMKLGK5suudClHzg4jubFvBTfhyeto91RiG2LkdW1rXfhh6scS1m4jpE2ZuDQ1BI/4LuaK1sxxrQ8nqWkeQEYHk8rPNvC8xxcxyLybMaDAMfSzFY5jTH0IpdBIMKPUd+nbbvXydWX7dFVKsFWdWPohQ6ua5MVGU1rLvPR12n5bjhYVjH4DAFOX3b96K0zjIFvPWNV1nvrOwc7fO/7D/nx7XN+77W9L/S+Pk09D4vIELjdfb0EXn/iZ9aHfP2xtbX16fDmf+d3brJYF2yPAxabEmPAch3QGi/w2JQtWx3SwRhD1hga5OsLjpYbGLbG4lc4WxX4nkuat0ShhPn0ez5xKMl4GsWDsw2btCSIHDzH5uq2Q1I0qFYugLujCNcRxtF0XaEdjULx4vURvVAYR1VtmG9E/28quLobsDOJpaWAYpZUJKVkf7x4dUAcuMT9kH7k0raGB6dr/MijZ1tsjwJOpimjYcTW0P/YMCFJCyxQKPYn7z/GLzYF58u8+5fhbJExiL3LfvhvvrxN/9GCthUact0abl3pszcKn1D1KFabkvm6wBgwrcGxLVZpyWJTohC0x6s3fV7fjnl0sibwNL+4N+d8kVN01OKzhWDxj85TQk+iVV+7ucXb9oIHpwJY1F3P/qLlUpSS4x54dhfOBOu8JskrQKTFddteEnUbZeFfpA9+wiqqpjOPPv32fvI2slKSF0PfQStFGNg8tG2qtmKxKhn3XaoOCnkyz8hyYb/NVjnKQOhqotDjxq4spPdON2jdUZjLirTLYgk8h/lGCMdp2WJUN4MJHbaHPgpZ4GwtUEtR3HmsNiVJJvd5bTvGUhZIx4udYUBeNmwNAhzLEkNp97zpbk91QP2mNczXBf3I+VSZ5F92/eBNSSS9IFJ/UfW1awMGkcsPDs9+vYi8pxbARSRcv/v3RbUf8vXH1nS6+cTmuCD2ybOS0FHcvjdjti5wugHwMhEFV2lrTk8F8Sw715qqqFlsSol7zSsenCS0rVxQqqol9DRm4NGalsh3mPTlgzgIbJmV1A1l3bDelPi2Zp3llIXABo1R6IFH5Nk0RnJGklQkl+t1wY1JyKJtma8yqqLu2EcODoYXdyJ8BSfzlLOpDOGHsctikWI1DbfXGQoY9z1O53LBdG1N7Fjc2OtxfLKizivO8grbthiNPli5ddGSMBjq96DQ66bldJ4SBfblbn3c9/EdiWB1O+e/ZVlYyqKsalxbLuLXdnuMBwHLToGW5Q1F02IaQ9UYJkMX39Gsk4oWwf3bWm5vucn55b2MsqxxbbAszcksxXcdkk5NprQAJMu6Ii8bbuzG9EKHVVIR+ZqibLFtaYqNez6x79CPXUY9H09brFMRK5RVg98Nj53uk9R+imCqVVIyW+dY6qPRH5HvkPo1ceBQVDWn8wzLUuwOAtZOiefZlElJmtdg5MKulMwkJE5XcX0nZHcck+YlWVZRmxZHO4z7PlHVUrSG1SrHcSRrPssr8Y9UNQ/OE7St2R0HJFlFP3TICpGd/+zOgsezjKZpcbRmGLloLXMQrRW9UFSBWSneln4oEusLqbPv2lzvInaPuzlQ07Sf6BT8PFSaV/zi7px/43euf2bUzSctq2tp/bOfPn5Ktv9l1/OwiPwF8B8B/xvwR8D//MTPZgcHB9eQBWT5Rdx5VtQs84T5Mns3/MUIqtqyFFd3IoqyYRx7ZKVgSrKi6kKjhD57IRUNPE1eCGq7baAXubx4dcA6raibhnXa0NIwW5dkRY1tIQNnS5hL00VxiRi3bYXrKF7cH5CXNZHnUlbinG9Ny+kiY6vvM8hrIt/h8XkClpBeV2nJ7UfiqH/p6oDgPMHtiK8XuBXLUoS+pC/KRV1zPEtxA/dDI4TfW6Oeh6XUJTrjySoqye6om5Zb+z1cW5OXDRjZbYJkm9edCEH+3ZBkFVorfnl/xsPTNXHgUrcNfd/hbJXT82xmC1Gm2bbId69uhdi2xeks5dEsI8lqQk8Q57YNSVGTbRpBoez32N2KGEYuP7sz42wuHpatgU8/snl4nnJjJ8LvhubDyMOxNS9d62Mpi6ysOZ4mYpYMZK61Ow4pyoadsZgNL+qCYxaHzge2uS4Ubk/OCD6oHNtifxJRNy0/fuucNBMKb9MYepFHktcy5FdizlynNUlSgmXRGJlX3TtNuPN4TdV5cCylME5LWQtx+qVJyNk8ExVa3eDYmpNFTjFLqauW+TIXk2fPx3cslpuStk3ZdJ+FtjUUpsG2LX5xd0ZaNNi25rWbI7KyZraSE+lkEDDuSwbK+SLDC4USobWFQmi+X/TF+FnWj29PaVrzzA2GH1bfOdjmH//oiJ++M+U7X/9ilGCftj7yanFwcPBff5IbOTw8/C8/6wM4PDz84cHBQX5wcPDnwI+B+wcHB//F4eHh3wf+K+AfILPS//Sz3sdHlWjr5U0bena3q7TYZCWzVcHeOCQcyQXlbJGRZjXvPF4xjD3GfZ/As+lHEpmqLYuHZ2vunUhKYVLIrq4XOBQK6rokzStWWUXbtBjT0mAxilyh3SqwtEVjDHlaU9aGrUEgruGywtKKtGzo+TbH01R2yZ1cth+7OFraBW/enzPblISuzbcPtvmNlyaczFKqpmWxKVklBa6tubIVMox9hrHHg9MNTdtyNs/oex8vRQWZJV0Yq9rWMF1ml4FNTWuYDANOZynni5xr2zG39vr85S8e8+bDBVXZ8PWbI4Y9n9/4WkhV1xxPM1ZZxY/fPudknnC2EDaZ72iaFoqqxrGVnBQshVKaF67EaEtx/2SN4znQyEJlacUgdjhfFJzMcpQlJ4s4Eq/M6Txlk5Zs0pJRz2MQOwSug+8abK2ZDHxGsYfWskEwBk6XGW7npC/KmhWGa7uR5LS7khVz1i0iRdVwupCddd20H2hAG/Y8ASvW7ScKB8vLBm0r0rImcG3OFhmuY2Frzd4k4Ois5mSa05oWBWS5tPvyStztaVYJPsfVeJ4IB24frZgMfI5mCcfnCZ6jeenKgEVayWDet3G0xXjoC7YfiEKH118Y8ddvn7NJ5VSZ1w2mldPPyVw+J7ZtsTcKGMRPmzJbY7qcHpguM2LHwrEt9sYhVdMS+c/D3vaT1Q8PzxjGLi/s9z/+l59BvXJDuFx/+fOTr8YiAjxJ/PKBP0aG3veAG8DvAv/w8z6IJ2W9Xf397vs/Af61z3v7H1Wh7+AGLjQNvcBmsSlJ8kp6wOrpgXHo2/RjUSWtUmn1DCJXCLllQ1YIpr1tDLNVjmVZTAayU2xMQ4vB0hYKQ163GNPgaEVrRG683XNZ5XJRSXORc57NM4xSnMxSHNtiELs8LBqi0CH0bb5+fURVN7i2xbDn4zmaxabkbJ6yPQpEuVMLF+t8meHZgqewLEFjVHXLySxlusrEpOZ+vCHug2qxKdBly3yd49hCus3ymk1WEbSSLb8zCsEoXG1RqZb5umCVlmz1A65MJAhsushIcyEC1I3BdWzAotfT9GuXvKqxLQuUoGnSosa3baHRLjLK2uA5in7oULeAMti2hTEina6rhrePVrjawrEk0RKl8R05ueRVfZkP3utaL9NlznJTXAIlbcfiZJZR1JJN8tqt0QeiPYwRtVxRSqTue+ce8m95sU9mKVevfLR2JPA0u6OQJK9xLCWZLbOUyHd59caQO7Uo/aarlLxocLUm8BRNI3v81kgejUFxbRLyaJrTtjUPTta0QFk2ZLrmyEvAKNZJgedavPbimFEvoChFmr0zCjidZcSBh+86TAY+q02J51osk5pB7LHclGhbEiEnfZ9J56e5QOcHrk1WyimaRk5knqvxeD5aNJ+k6qblZ3dnfPf1vWciqPgkpS2L3311h3/yo6Pnxnj4kYvI4eHhf3Dx9cHBwT8A/uTw8PAfPvG9vwf8e1/cw/vV1CD2KLvwqVUqbuG6MeyNw8sPvlyEWnbHXSzuNMO1tej1leLeoxV3Hq3Iyxbf14yM7DwtJTns81XBJqsYDXwWCbgaitoiDl0mQ58b+wNmi4yyzRn3XWZLQCm2Bh6nixzTtjSt3JbjarSS5MV7p2vOFhlRYOM7NpEni9zWICQObIpa2mv7W5EMPS1FmtcoJbj2JK+oW8HZR77D1e2Y6XTzYS/Vh5Z+Yid9EaIUBzZXJiKtjbqLx0tXB8xWOVE33A59uXCfznPJiEf65KOey8kiw0LhOhaea9O2LeBTVjVZ1XJ9O8KyxMH9/V8es8zkpOJqCy+t6EUKlMKxFJZlMei5FFXLPMnxbE3dKGwLtN1Sty2zdUYQOBjzLghxmZRs8oplWohiz3NwusetKwmvysvmfYuI52gi3yXJGxxHs06rS5MiCJrF/QQO9rYVpZjniFR5ELnsb4WsNhXDnkdWNgxil7RseGm/T5LXpLnNMPbYpDWBr3E9m7JpBa1jFDf2YqxucJ1XDf3QoR/7HE8T4sAm9jWzVck6KzlftmzSx3z3mzs0jSBuZDPjYTCUVYvjaLZHAbZt0Y/EKHtlErNYZ9R1S1GL/Dgrah6ebiTWd+jL4H0ccnb2RSXTf7F1+2hJUTZ841ecOvjd1/f43vcf8v1fnj4XGJRPc278u8C//57v/Z/A//TsHs6XW7aWHevF4Nc8MSRdZ5W41oGr2zFNa1h3H9LZMiMra4qqIa8abl7pczLNwIDr2hydpazTkiyv5WLTKjzXJg5tvvnimN1RgHYd3r43k5aNthj1fIraYFsWN3diaA22rXj9hQllLUPrnUGIMbA3Doh9l69dG2BZSmYlsXvpX9Fd4uKF1DIOHGarnLNUhuraUigshrH3mTLX207yGfUCfAscbXF0nlDXLeOe1/XSpaXRCxwGkUtq1/L6GlEftY0h8G2ubsedw7zgjbszNqlAJq/uxPRDh9O50Ie/NghwHc0LV3rcebxi1PMIfJd1WuK6FmnZUNYFka8ZxB6uowldm1VasEkaci0Lp7LEWHc6zwk75L5rax5PE3zPlpyYRUZrYGcQEvhaMsU78u3eKPzQ3eAwdi/9N+81G+Zlwyop2Z9EZEVD4L7fZ9N2GSwXi8iVrajLqy+o65a9SYyllCjV1jm744jfeHGL248058ucm7sxW0Ofo/MUR1uC529ELn10ltIaJFKgEWr0/lZA2Sp6gUc/8FisM9K2JcsrTqcZ13Z6WAryomZ/K2Kr77N9M8BCTtOBp/E9+5KXlgx8fM++xMas05K6banLlrJqnyuvw2epn92ZoS3FqzdHv9L7vbXXY28c8hdvnHzlFpG3kbnEf/fE9/4T3pXnfuUr8Gy2ByHrtGadldx5vCb0xZH95HH16Dylqg2eY4kCTCsmA5/HM4+qzkiSmnFf5gxV09C2sjA4sYPvafpRROBqYt/hxf0BoWfzw7fPOV1klB3eozEtju1IO62sKFsIHJFabg1Cfn5vJniQsuHBMsfTFlUreSgvXOmxziqquiUvG66OIharEoMhr8Sl/WTC4d74s+c9ZIWohZSC3xhHnWeivsToa21d+gaSvOJ4lgqq3Nass4qTmeR+e56NtVKkhUAT37w/52Se0RhEjeVq1puCOHSIApfdUXDZ0nO0Ig49xp6NpxVni5yirNG2IvAcxj3JY0fBg7N158+R1qBSCoxc1E0Lwx2XPK+4d7IWo2MlQ+hRLAP0KJBky4v2zEeV62iu7UQYwwea6BwtMclu9P4Wzulc0CfrtKIXOpcno5NZynxV0I89er7N0tWYRN6TxkDV5eNsDXw2acXpPOPGdozvaY6nYvp753hNURQUNWhboS0ZlO+OApoG0qJhMnTZGfrkZYa2FWHgyJxnmWNbFnXb8gdbV2kbw4PzTRfEBVHgsj30ubYdX4oFLp57FDhkhQzf37uomg6l/0nQMM9L/eydGS/t93/li6FSiu++vss/+vM70i78BO/FL7I+zbP/D4F/dHBw8J8DR8BVoAb+3hfxwL6sirudelpURIHsqgJPerkXC8mFxFIWEpv5Wiiwy3VOHEjGA2g8V5Okwtc6uDFAW2JUaxpYZQWhL4mId4+XPDyVEKmmkwi3LZi2lvS+sqEsK7IO2e1lJZFnM11lzNYFq6QgyWqysiLyHLb6ouEXBZYtO3Creir3ehR7nC0zYt/5XIFBWVFjMBgjJk14N464ek8ccZbXaEtxfa+Ho0XZskpL8RWoltDXHJ9lFI0o2MruorJalzywNmwPQ4Z9D9+VltfDkw1vlw3LtCTyHfp9H98Gz7WZLVOUMkwXGcsO095i8B1NmtdsDQJef2GLdVaCkcV1exRQ1y1JUVOULbujgLJsWeeyIN/Y639ifMlFfZjfYXsYoLu8+ve+npYFaXeCCVxN5Mt70hjDw9OETSYRwMPIYdXls3iuZpkUOI6cBsqyZrkp8D2Hk0XCb740oWla3n5Y4GvFyli4jkIr09EWNKYVtInbzcqi2OeqUZS14WyRc1QLL85SIlqYr3Menm5YboQevDMO8T2bTVZJcNZ7Fs7Idwh37Q9cJE7ncpr3XfsLQ4c8y1qlJfdO1vw7f/DCl3L/3/3GHv/H/3eHf/rXj/jjP3zpS3kMF/WJF5HDw8MfHRwcvIw4yveBx8BfHB4eVl/Ug/s8VdYtxRPgt09Tt/Z62FpJfO26YJEUaCVoiKJq2R4GHXpAet13j9fSEuokttdHAYEnOPeTWUroC9Lk6qSH71o8mqaskkr68106ogFcV2KCQk9jWoWypNVkTEsvdNka+ISeZn8SkmQVvuewZSmOzhKaVgKa1lnJMik7tpPNIBaJ6pWtsOvpy598k8mikhY1Q/PZZZW90BHVUOerKdLiQ+OIe5FLUYtyaLYuKEohDU8GAd+8NeLuWUKW1dx5vCRwFXEQYBCDoWVZjHsuw8hlbgreuDPlfJnjuBLh6jjSZlqvM2wFr93a4p//7JjjRYG6uO9KYoOj0OWVa0N8Vzhege/QKhBfSIBlFUS+cJ+Srg04iF2RdT+j8hz9Ph/TfJVzMk9RKELPoawaxmP/qSAiy5LWUd+3AQlQ2x74eF3U8CariH2H+aZguSk4W2WsU4s0rdibxOxthWR5Q1I1+LamblsCV7O/G2MjSsXpUvLd66pFoagaSTHUlsW1iRjq9schedFSNy3zTc7OIMDRFk1jPnLY+2Hvs4uTcVE2H/jz561+fmcGwDde3PpS7n8yCPitr034sx8/4t/6/Re+1OTIT3UO6xaMP/+CHsszrbN5RlHVEqfa+2CUwmwl2dS9/tPHQcsSyuggFumtMdKKMcawP4lxtMULt8Y0TcsvHyzYGQXdvEMxin1e3h/w4DwhyUqKusEUgh/Pypr5WpRUTWMoipqqMWSFnDa0Eofvla2QVVLJ0d+S8KBeoLm52xf8hK359td3OJ6mnC0zQsfmwbmwlJK84dH5Bq21tHw6uaRkg8sbbb4uuHu8xtaKYc+jNQJ8/Czl2Jr9Lrddv2ee0rTSCrq4cHiO5uokYrrMeOvhEt/RXNkacn0nxHUcvnZ1wNkik7x4FLsjn6puufN4zSot8Bybdx6tOV3kLJOcsmppgeuTkEFH4p2ucgySxX6BfKmblrZFCLe+Q5I3BJ6NMYKLbxrD1S1RrF3dDtmbBB0jCgY9l8WmZGcY4nsSSbvcCEpkMvQpSvFZfB7j1yoVP02/U2oZZHYVeAFpXvHwbEPgSo75tZ2YfuQSBTZXJzFKCcp/e+BTt4Yr44gocPj53Rm7k4hVVrPclDQtxKHIr0cDj9q0qA6rYtvCf+v5Wk46qYhMotChH7nUjfCutmKbaztx5+TX2BpuP0rEG7UsGHUkhAuBymTgX57EqrrhZJZhkBnee4UIWwOfdVpdqree9/rZnRlx4HBz98vD3P+db1/jR2+d8/1fnvLdb3x5Dvav9mTrI8pI5iBN+8EmrqJsLpVYs3XOxVs3K2qMkQFwUTaC5p5naC2KI8m0lkVJa4tJ5xUpyppNVrLclPz1bdklr5ICUMSdqc+1LbZ6nrQcHBvPtfj5vTlVB9DzXQdtywxhGAc8mm5EPdUYTKu4c7zGc2xmq4yr2zGjnng8Xr814p/++DHHZ9LqsLXiypZPXjbcO14ziD20VoK3UIrZuqAXOWyyinHP+9yICdMNe43W3alBsdwUzDfiR9nbCp+aKfkXsbMd0+vO4w2tgZf2+9zYEdGCpaQVN+vSHl+9MaaqG+6frsmLGs+xsJQYKH3PYRC7uK7D+SJluc55cLLBdS2Ughu7I1651uNknrFJK65MQrSWgLCdUcD20O92wIrzVckLV3rsjELSXE5r13c8dkYBj88TpquCk1lCFDg8mibsTyLSov7MyIs0rzieJkyXBft7Lb6jCTz7ss9+YdhcZ4Lwnwx8UbV1v+O5NlUt6JKbe+96FTxHdz6iBN/VNG2L1qKuWiYlW8MAXyumm5Kybri5G7Na59AaqrqRpE5bdwRpxXRZUNaG+boCS+TCo75P5MvcrihrwPDO4yW7XTDXJn2XhZUWDXX3WUzzmkH89CIS+c5zIVf9JGWM4Y07M167NfpMQpRnVa/dHLE3DvneDx7+ehH5ImrUObHfa3S6KNtWlwPCwLOp84qsqDnp0AvjvgwHl0mJoy3Kqmu9DN/dXaXd/4l8m6uTiB8cnpKXLW3b0rbmMmhp1PfZHYmayLNlVqItSYgbx4ICcX2HqqjpRw55BfN1SlW3jPsB81XGJsupG0Fpj3o+t4+WourSFjvDgHHPv4yCvTIOCT1NktcYT3DqCgkWatoWz5HHcGu3Tz/6/MC7JK9ZpSXadWgrYShd9PTLWvJBLPtpv82LVwedt0YS+1pjeHC64cZuj/1JTOBq7hyvuH20pO7abmXZkBc1oOhFHv3IY7UpGPd8XrzSZzLpsUkKHp+tqaoW39N844URN3b75B3IMvRdmRV5Dlf2Q5KsxnMtzpcFp/MUr6PwNq2IEnxPAIiSZW8kI6M2ouTr2lGf50KilCIvWwzmkov1ZPsq9G3KzYXEV116V/Ky7mJ3K5aJtF1dR9MPBbl+60qfJKvYHoU8Ot/gWBZJLhudyLNxLJE/R67N8TzlzqMVRVnj+5qgtiVj3hGT4fJRRdMKoLNuGvq+x/bQlxOFZXG82DBfNsw3OaHvMF1mkpz4xOks9GzWqXX5nL7K9fAsYZmUvP4rlva+t5RS/Ovfvsb/8qdvcvtoyUtXvzBG7UfWV/uv+REVdTkXH1baEpRE0xpGPZ+zbtd5UW0Hg1t3KXO2tig65VS/i0W9e7xmvs4pyoYX9ge8sNfHYs3JPKFuGkZ9n0HoYlkWRd1eZm+vEskUT/KanbFPa3zGw5BfvHOOY1syZCxqfE8zij0U4gQexT7KEm+CQthYk0FA0xpu7fVQSuFoacXd3OsJ4yktsS3FyTxllZYdAdhhdxiSV82lw/zJ512UDa7zyVUytlaXEL2L3uwg8pivc3zXfl/rQil1uVtNsookr9hkFUlWcf94ze44ZBCGJGnN+SpHW4pmGJDk4uIPfc3+JKYXOZemtR+9fc7+Sk5WUeiBquiFNq9cG9GLXeargmHkoyx49eYY37sYsPvkVUMc2MyWiqpqiQIJGrt/smGZlFzficR70/Mp6obfeXXnMnTJsTWB99lbWYFn8+J+j9N5xs5WiG6fngkMY49eh025SNE8nWU03RxrFLs0bct0WfDjt85xHIudYci47xH4NsPIYRyPWKc1801OHNmkWU1roKoatG0xbkSIMV1mEtBmWbx4ZYCttfCwYsHbRIHmX3l1F6UkAsF3NMdNxnJdsUhKVplI41++NmTcM0/hcxzb4tr2Fwso/FXVz+5MAfjGC1/OPOTJ+v1v7vG//9k7/On3H/x6EfkyynoitwFEgdW0wgHqRy7LjSwgpoWsy/VYpe9edE1rmK4K1qlAGpsWbmxHwoRqDfcfb7i+E6MsUJbHdCmId8+2OD5PuXO84vBew7Dn8oqlWSaCqZitc4ZxQC9wGPV9VkmJ112smka8A+u0wncs6kaEAAJZdFhsSgIl2PfJMBAUxyKjrkWZtDv02RmFsovt2nmO/S776uhsw/EsIfTsD8wL/6DyXZv9Sch4K2b9/7d35kGWneV9fs56z91v79ssGmk0H5uQhIRMwiaBDVUu2xgcYkwSxzh2hdiO48Jlx44dLymSIuVyeY1D4thxihSLwYYAhoBZFGyCg5AAsekIDZrRSLP1dvuu59yz5Y/v3Nu3e3o0Pd197+3le6q61NPq7vPdt88977e87++XKuDmHJOcs/VDoxOPFgzQAAAgAElEQVRE6axeeq8858Q4Xz27yMWlJqt1ubIoF2yqDQ/fl6uBy6st2p5U9p0Zz3L6WJmnF2W10DOLDVpexDfOrTJVsvF86Y8+Wc7yrfOr5LLS88IypSmYH0SyNyVOaHoBM2M56q0O9bZUIbi0LB36OmEsja2CmHJep9buEIQxY4XMngoEFrK2NDubKmzZeNe/3Vhr+Zy7UieK5dbXqfkSlmXwnYs1ak2flicVCs5eqqIjmyLDKCZOEhqtDrmMyfGZArVmQGRqXF5tUkvVmNu+rI4ar0iPkXLBZqJk43dCSnmTM8crxDE02x0MT267dtIt00Y7IOcYjJWyVOt+75xsM7Wm3J4rp9a8B5Gvf2eFhan8dc9ah4ljm7zyznk++dAFVh7w9tzffTsc6SSymTCKMfSuC5/GWDEjtYl0nbW0WbC/ZHV2Ikc7iFiuyTp7xzI4e6lGFEOzHaFpCZ0owkh0rqx4ZCzZ6bswWaDuBZCAH0as1H2Wah62aVDMZchnTWbH5U16dbVNQkI+ZxOEEX4Q0fBCoiBGy8mmwYYn7W+l4J9sLqy3g9Q4Sm6pOY5BkhhkbBM/iDZ0SncTaZIk+IHct+4ENyWajGXKst4b9R77QcTlZen7Pl50KOXtno1qtSktbZudkHxk9npMLFN6m9cavlxh2ga2qWMZGpVShqYXUPeaeO2QJ1sdbFPn2HRBrlwCGbOlNY/5ybysSosSgijm4mKTbMagUswwWXKoNwN5TpMx5UoMyDs2C1M5OmFCrdkhmzFpeuHIfC/CIKFSsPH8kHZHNmyOFTPMjGVJkgRDD0kAz4/QtVRQVJNnfas1j2q6otGAmhfgBxCmdgYOsvAhThLmpwrMppOISlHKnTz4lYs0WwHTYzlOTBeZLDvEWkKpYKcaYzonp/NUig5z4w6dINogG9ROXSe9jhz7wuTBW5n4QcS3n67y6nuOjXooPV51zwKfeOgpPv3I07zx/tNDv75KIn1cWm71zgy60tzdw75p+9qZZ7mQ4dhUwlTF4dJiizCJpYaQpROGEYWcRSkv5dyvrrXphDFtT77xj6dVLq12yGQ5y2TJ4c6TZa5WPXRdKp2Olxwpa9HOsFT1qJRsLi21pTCgLiuQbpkr0vai3oMxn5F7520/5GpVer5bujw38QMpHqlrGqfmSkxXshj6euOXlvZTeE2/t/W210RR3Ct66He3C8OYQtZkqiwF+6bHsjL2SUKUyHJl86x8IBZzNpdXZZOVF0Q853iFLz12la+dW6HZ6hCGMRmz64/hY6RbMuMlB8s0OPt0lZW6PAMp5CxaXsSp+SITZYfpMdnMuVLzOD4jH3IrtU6v8bCY1a97zjYMJsqOTMQrLXIZk6U1j7mJPKfmS5SLGaZLDmutDueuNKjVfebGc5ycLfDUYoNao0MMPLVYJ5+RzYOFnI1tGJQLDqWswXNPjKHpGrZl9srBE2RJuOeH0qSr7jNedmj5IQvp+6TVCrhtoUKlKIs4VuoBcdJhrJDpJVzT0FL3UJ8glJOIg4b7VJUwSkZ+HtLPZDnLi85M8bmvyHLfm+1l2i0qiaQkSdKr29+uD4mha5TzFhkry/yE9ER44ukqV1Zb3JYayMxNFMg5Jk88vYrXiakUbCn6t5YwUZKCiRnL4PhMkZlShu4CQNM08o7FqdkiEyVpMLRa9zl9zOLETElKanSiDVLqliXltMeLGRbjBM8P6YQxpbxNOZ/BMnSu4hEnCZ0w3mBv26WUt5kZYLOXlJ+XhQfdKrfuauvYVIHpSo57njONrml4nVCe85g6bT/kxEyRsxdrNNodLi83ydoGx6cLlHI2r/kuBydn8/i5FQxD59b5MgtTBRqtADSNqcq6F0YQSQkZTZOVcxnbSJ0XTXJOKs+Sk1uDpqFRysvD7Omx7LP6fnQLLQbZwWxbBidmi2m/SNJbRc6O55kdl2MzLYMLVxuMlzM4GZOlmk+rFTI/Kbdag9ACLaaUszi1UIGTCYVilk67w+0nKqlj4/oZnmnqLExmefSJVa6uNjkxU2SinOudf919+zTlvnM1ryOFNwH8cH1Fa5lSHVnTNJyMseEM8qDw9SeXsUydM8cqox7KBr7n3uM87C7yha9f5v67hyuFopJIipZ6g7S8cFu16nGc8PUnV2i2A8ZKNuNFhwRZ9lspZHBsk5mJHJPpjG28mOXsxTU6odyO8tOy3vFShkohw+njFZp1ryftXmt2eGjpCmiyu9nJGJQim2Lelg51pkGSSJvR7qH/as2j5UfU27I/xrEM2qn1qKFrTJSz8iwggbmJ9URRb8m9/v4D9kFS6dsK8jtRr/Gyks9weqGMrmk02kHPYXB2XOpTdft6VmvSebLRCsmkh/YZy+SBe0+gxbIxcH4iB+nDyvMjPv+1i/idWHrbZ23CyOAeMUnTkz4jhZydesLIt0TLj9B1qV9VyFmMGw6Wdf09/KYXsOZFrFZbTFeyWybovULXNOZT6ZrNCavth1xebvSkaDKW3K4L4kSKJ1oaYQxtP6aYtclaJlNjDs0gIepoPHauSqJB3jEx+jxn8o7J/ERR9jQFMbmMyeVqi6evNKk1A04vlDF0jWrTx7FNynkpcz+2adU2Uclimga6xoHpCennG0+uII5XrmsHPSpuP1bm5GyRv/7SBV5x1/zQVIVBJZENOLa5bUMmeTgbkJBweamFZUi58zCS21tTFbkl5XciltbaXF1tp0ZXBkEgtaOyls6x6SKTZfnQadY9JstZSjmbR88u4YfyATtWzLBY9dE10NpBz0lP0zRMY72RzzIN9CCi0erQ0jVKOZvZcSnS2H2onZorE8dJzyQon7VYTj+P4oS5PSg37z7sx9OV1rPRCSOyjsGtcyWKOVlIAOsquiAVlb1OyLnLdSxDGkNZhi7dJaO4Jx8+N5Hn5XfOE0Yxy2secRRJH5Uw5tJySyaUTkQpn2FhKp96w5u90tcgjCnmpLpw/1vQ0LQbNhNGUUJXxTwcwgzbNPSejL9UPZZNo9+5uCYLA3S5gsplTPKOxVgxwTakt4imyWICqa0my4THxnLUam0Way1s05A9MlHMydlizx6hf5sXgFXpZ9Jod6i1ZFOuH8iy7WNTBUzj2nOj7lnjQWRprc2l5RavvHN+1EO5Bk3T+J57j/HfPvotvvnkylA76VUS2SEZ22B2LMdq3WeiJA8R0aTlrJ3O/oDeAXYpbxHHCYWsRTEnbXcnSg6Tlew1s4Y4lqcGcQTHpwuU8zZBmFCt+ySp9HjXarS/DDfnSN2idipv0vDWD9f7qbcDGp7cbtB0recot7njfCf0N3FWG36vlPd65NOmzpxjMVHK9F5/MdWKqjY6LFXbqQ+4nPGfXigRx1LAcLOBUXd7sNEKqDY9Wl6IbenpeYj0OXFsA1PXydg6YTskCCIylkWcigCaht5bldVaHcJYdmyvpdtbW50XFXMWRsYiCTcWX+yWThBxZVXaGc+M5zbIW1QbPn5aOCArC2M0DblqTWzmxnPMTeaZLGc5Pg21pqzCkva+skgg65gYhsbcZJ61tRaGnqPWDgmDiISEpZonz9zimKtVD02DmbEcmqZRzttU6z6aBqWc7MvyA6myMMomvEHxte9IqZM7bht9ae9W3PfcGf78M0/w2S8/o5LIfsXrhFxalgeaM+M5Ts6WMM0mQZhqR+UsklhuP3UTg20ZzI7nCKMEcVxWSl1ZaZEgLXiDML5mtn612maqkiWOE26ZK6FrGis1H9PQ8IOYJy9V8Toxx6cLHJ9el13IpuWbXfkPXZNeHJuxzXUr0lzGpJi1Npyt7AYzVYWN4nhbqzpd0zaUy3artwBmxrNUGz61puzInp3IMVHOMjOWxetEvWZOkIfzi6ttWmnizDom37nYIUoSSDReJKaYHcvJ5Jx21WtAPhPKyqy2rJbrj1cQSm2olZpHoxXQSZWJt7ID1jS5XRin24d7RcsPe6oLbT/EMtcTmJNW2lmGjmHI5sGcY5HLWEx1CxOQib1rYDQ9ZhAnLfJZS65SUlXinGNxfLqYdunHPH5hjXOX61TyGXJZk6euNDA0iCLpnTJRkqvtSiEj+4RShYFCVna4D3M7ZVh87ewyk2Vn3wpEmobOy144z8f/33lWasMr91VJ5CY4d6nGSt1HQ8OxdXRDx+9IJzxN0zi+RTNVHCdoaOQd6ReRJFIXqesRYW8hnGYYOp4XYJuye3pprU3Tl6Wbjq3j+REamtSOipMNsz5dkzPlrnz9VjPCbEb2dQC9RsC92uM1dOmcGMXJtkXh4iQhCGIsS5eS7Gn1lpd2tNfbUlNpophKzIQygfSrxC6veWRyMWtVj4UpgzBVAM5hMl50erNnDdCN/tWbfNC2/JCWH3Jlpb2uBZZ+n4aGaWp088MwH5D5dHWpcW2n91gxI9WldXmfXVpq9b7eLyFyZbVFJ4hZXGvLptR0AmGZxjWrz5xj0fZlD03GlEmqXLClyVW7QxQlG17/5r/xbjTE9jNBGPHN8yu87I65fS1V/4q75vnY353nbx69xOteNhyFYZVEbgIzfcPousbVVU/OTDWNyZKz5aF0kiQ88UyVlZrPeDHDsekCV1ba1L0OE0VZwrvVDVnK2dSaPnFaqtsJYip5m5YXcmKmgNeJpPpuaiIVhFF6PrL+ht7Kv6Kfrexc94rNTZw34sqKNF5ybJOpioPnSz3ZMIwJU/n6Qs5KK41kn4Gp6yxM5XvxW2v4NKse1dUWRurv0j18nhvPXffBH8Uxzyw2OX+lzlRZbqclaTd4V+/MMHRsU6eZkVL2w3xQWqbxrJ3eQRixWPWIkoTVmk8QSQvf/j4WLZ2I6LpGrRkwO5HrVWBdXpGqwZOTckUbRjENT9ogoEElb1PKZ4iihLWGTxjJjv6jhnuhSieIeeE+3crqMl3J8oJT43zuqxf5vr9/cigNnUfvbtgFp+ZKlPMZshmDb19Yo92RD5XnnthaiC1JpIBenMhGumJT+kA0WvKQMtvqbLnkjJOkt10i9bMyrDU0eeietyn1nW12q5g0NOYncwNNDoOi02twjDB0vVdifLXappSzsE1dSo2bOlHaWxKl50Ya8qGvG9Csd1hry33/Qta6btd0P20/4tJykyiS6gMvvK246ZxpfUa/H6uJGl7q5xLHJEkik96mW3Gq4lBvSQ/0MIp750YtT1a/JSS9uC5W2+kq2eTETJFCVk6OltakAm+t2eH85Tq377MS10HzsLtIxjIQJ4brYrgTXnnXAv/pg1/j0bPL3H371MCvp5LITWDoci+87YcUstJa9dmUR/1AnpXUWyGnZovkHGlgZRl6KmOydfiLOYswlIekhVQ3yRnf+nu7/gsJXWe4g5dEJisOjXZwzYF0VzdsvKhTzMuO/bGSQ7Md0AkiqnWfSjHVdXJsivmETjskDOOeJWs/jXbASs2TDpbpOYyT+tU7NkyPZTccmkdxLK1rM8a+lejI2gYXrtQxdVmiHsUJlcLGiYljm5ycLeL5EaX8eoy7VVK2qeNkpNpAnMhud8PQNtzbs+M5nllsksnZ113lhpFMZIahU61LK+nu3+cgE0YxX3rsKnffPjn0Rr6dcOfpCSoFmwe/fFElkf1GJ4i4cKWObcnKnqmxEo5tXHfrpt4OmCg7FLMWnTDhy48v4tgG02M5FqbzWMbGG3Kt2SEIo7S7OrOtvddyKsDXTXD7me420WauJwNumXrvYV9rdlipe6kQoCWLElqdXiXV3ESe+dkyF4trVFIPjCCMNiTVtaZcFTa9gLEog2nomIbOHacnemrM/Vxeafd+Ryk9x5ImTdKffRjxvl7MusQJPfvhYs6WvvHbjHGSrnhzfa8jaxtcXZFyMZec9dXcRDnLdz1/hpYXkrUNlqptnIzZW50FYcTFJSlnkzEN/D575PKQ+o8GxTfPrdL0Qu577syoh7ItTEPn5S+c56P/9xxL1fae6rxteb2B/vYbIIT4SeCfpf/8fdd1373p/z9IumMB/DvXdT8z3BFuZLHapt4OSNoJp2ZLG5rmtqLgmLS9EDSNMJTnGHJPObxmdtb2Q1brsl+j5YWpL7fGXGqW1NX12vyAMA1920KJo6TW6rBS88ik1WpbPeiu9xph3fmuq2DcpX9WPFnJkgRhz59c1zSOTRV6Sb6YtVipR2Rtc8OBcnd7ZzPdLR6/E7IcRsRxQrXhM15yiOKEhQEnkUY7YHnNwzR1ea6zxWQllzGoNXWSVBpmu4e+cZxwaVlK8OcyJtPTRcIoRtc1Eg2iJGGt6TNeyvSq7Mr5DOV8hkvLzVTDLZDl0mnPyrqHz3qfjHWDs7mDwN8+epG8Y+4rqZMb8Yo75/noF87xf746ePvcUU9d/9p13T8WQljA3wHv3uJ7Xu267t7WTe6QBJgsO4RRsq3snnMsTsyYdIKodyBs6PKBsHl7pCunnpDIMwItYa0pJTR0XaPa8LEMnbnJ/La3B6oNnyhKqBRHr5ja7MpgBFKqZfO2WzVVkr3ea6wUbOK04mu85JBPZ8BbPvzTh1iSQBBF1OsBhqZRyNncki+l3yN1zmxLv+6W5PRYtuc3slLzSbR1efPMs3Sv7xVNL0i3KWVf0FYl05ZpXNcQKwhjojim0Qo2rBpAbn8mSddQzOOxcys0GlIxYaLkUG9K3/qttq66Cgm6tl7Km01/fxRLOZ/u3+AgbP88Gys1j0ceX+I19x0fqQXtzTJRdnjhrRO9Kq0bFdrshpEmEdd1z6WfhsBW5sox8CkhxGXgp1zXXRnW2LZiupKl0Zb19tt9kF9OK48KWYu70v3JzX/QWrNDzY+kvW5RJqfHzq+SJNLitVsGHETxNQZP16PlhVQbcl9a0xiJRHQ/5bzNcs3HsY0tz23aqYnV9V6jZRobNL26D6c4Sbi62sbvRGRTg62pSpZasyNVhdPGusW1NpV8htmJfG8srbTh0p7UtxxTv4JBxjJlT48trY2HIXtRytm90uftPIzbfshitY1p6DiWQa3doVr3KRfsDasGkOd7U5UsV1aaaLrG5eUWpiYbLU/OFNPep62bBifLXUfD9f+vabLwo8sBPJrbkk89/DQJCa8ash7VXnD/3Qt89QOP8pVvL3Hvc6YHdp1Rr0S6vBX40BZf/weu664IId4M/Crwtu3+womJm5OZnprae6/kKE5Y8yJyyP39uT770n5aUU2aIRWyzM+V5F59xqLlyR6U6bEsq3WfbMbc9v6mH0QEmgaJ3Oap3ITUxCBiITvnr1+EUClkWK1fP8lcjyCQ0h0gk7GFTNLjPfkUufKJI6kf5nVCynmb7rNRY+vts81Ypt6biQ5rhyabkZ7m26XRDlJxzainoJAgJVkyW5zd5RyT8ZLDasPHyZpEnZDx9D55tr9Bt7HwsLNS8/j0w0/zkufNDPxcYRDccesEEyWH//3Fp7hHTA2sv2Uod4IQYhZ476YvX3Zd901CiO8Cvhf4wc0/17fy+CDwYzdzzeXlxrbVeKemiluaAe0JUUTLk+qxX3/8Cp4fMV7KbKgCCr0AzTTw2h1WV5oAGHGCHkc4pkG76ePokAThTY0zZ0jdqcDrsOh1tvUzm2NhmjpjYzculd0tXf/6tp8QRvG2l9+WpcvO7U5EKW/Tbvob/n+5IGVoynmbOFkXfxwvOanroj7Qpf4wKWRlo6Bp6FQKNmvNDidniji29EfZavVcLmQwDJ2Z6SLN9Eyun6W1ds/N86BqXu2EJEl4z6e/TZIkvP7lt456ODtC1zW+/6W38Gcff4xHHl/kHjGY1chQkojrupeB+zd/XQixAPw28AOu616znSWEKLmuWwNeCpwd9DgHQTlvp9pXEY0VWYNvGGxIIqW8fc3DW9e31mi6GSzTwDogE8amJ2fRcZTQ9sNtv3Zd03oyFIXcxiTSPX/JZUyymfw1P7cf+z52QzYjezu6XG/lJ89Y4t5BfCFr9QRA+0mSpCfpXm91jlQS+dxXL/Kwu8gb77/tQK5Curz0jlk+8cWneP9nz/KCWycGckY16inYrwEzwF8KIR4UQmSFEHcJIboVW58RQvwN8K+Bt49slHuAaehSLrzZoe1vdfxztMlnLQxdx9pCl2onBGHM5eUWi9U21cb2VmFHgTCKubgk49JVb74emqZRzNpoaEOzCdgPPOwu8q5PPM7zbxnjtfedGPVwdoWh6/zj1wiuVtt84MHBzMNHfbD+z7f48lfSD1zXvXe4IxocXRmNUt4+8M1XgyBjXb/KaCdIJeS05DS6Oavfw0ySrMdlO9u9E2Wn14dy2AmjmA88eJZPPnSBU3NFfur1dxwKNeLnnhzju+85xqcefprb5ku85Pl74PfQxwHZ7DgcdEtGD9s2yn4kY0ul2SCMR2pnu9+Q7oJZOkF0pFYXN+LKSot3fvgbnL9c54EXLfDDD5zed8ZTu+GND5zmwtUGf/qxb1HIWjywh8UzKokMkZsxvdoOQRgRx4dXOXWndD1XshmTYm7UO7Z7T/f12Za+o/6fQtYCNZHp8ZkvXeCP/uKrmLrGz7zhDl50ZvBSIcPGMnV++g138Fvv+TK//xeP4uRsTs/uTSI5fO+wI4LfkTITl1aavcNPhWS55nFltdXryD5sLK6tv77kEL6+YdH2Q/74I9/kd97zCCenC/zmj993KBNIl0LW4hfffDcnZ4q84388xCcfurAn949aiRxQgmhdZqLfSlaxHo8oTv1WNsvaHnCCVAJGCh6uu2cqts/jF6r86V99i8W1Nm9+jeCBu+ZGruowDPKOxc+/6S7e9dff5r2f/jZPLzb4J68Ru+rGV0nkgJJ3TDqBTZwkG5RZFbIHZK3ZIdvXoX2YmCxnWWt1yKWSOIrts9bs8JHPP8lnH3mGibLDL/7I3bzsnhOD6xPbhzi2yS/96Iv5kw89yoc/f44LVxu89XXPZ25iZ/1gKokcUDRNG7mUyX4lYxlMH+Da/huRsQ2m7cP7+vaatWaHJy/VeMRd5KHHrhKEMa960TF+6P5b9/SM8iCh6xo/+PJbOTFT5L9/7Fv81RfO8xPf97wd/a6jGUGFQnFoWFpr8+efeYKWF+J1ovQjxA/k593tTcc2ePFzpvnev3dy3/qkD5sXnZniebeMsZujEZVE9iFtP6TpBRSztqq8GiBrDT81ccocyW2hMIpZS5WMD/JxctuPuLzSwtB1HNugmLPI2EZaDSklb26ZLXJqrnSoynb3it2uxlQS2WckqSptQoLnRzclwKfYPi0vZLWxLpFyFLcGV+qpknEbFoKDq6JwfLrAb7zlvlEP48hy+E4dDziapmGk1UTGIasq2k8YqX8LXCvNf1QwuzLuaEpFQbFjDuNKxABuentiP2xndMewMJWnE8RkrOtb7w5jHP2fb3cco47jdq+fzZgsTBeI42RLP/ZBXf9G8Rxm/CbK0tyrK3M/qr/dTq97s/fmIMawF+yXuPf9+6beENohbFZ6GfA3ox6EQqFQHFBeDvztdr/5MCaRDPBi4BJbuyUqbo4sUsb/s8Czy74qtoOK596hYrm3GMAc8BDg3+B7exzGJKJQKBSKIXE0TxQVCoVCsSeoJKJQKBSKHaOSiEKhUCh2jEoiCoVCodgxKokoFAqFYseoJKJQKBSKHaOSiEKhUCh2jEoiCoVCodgxKokoFAqFYsccRgHGGyKEuN913QeFEBXg3wLPB84Cb3dd99IQrv8C4O1ACZnIE6AK/Lrruo8O+vp7gYrh7hlVDA9D7HbKKO/bwxr3I5lEgF8DHgT+CPgw8CtI4cY/A147hOv/Z+Af9t+0Qoh54H1I8bOhIIT4Odd1f1cIcSfwB8ib2gR+yXXdG4lYHukY7jJ2XUYVw5HEbo9itltGed+O7J4dZOyP6naWJoTQgTnXdd/ruq7nuu6ngGE6E23Wfx6FHvQPpP/9LeDHXdd9JfA64B3b+NmjHsPdxK7LKGM4itjtRcx2y6jv21HdswOL/VFdiQB8GoiFEBXXdatCiCIwLOPltwJ/KIQYY31Zuwz81JCu32VcCPEqYNx13ScAXNddEkJsV5XzKMdwt7HrMooYjip2exWz3TKq+3aU9+zAYq9UfI8wQohf7/vn7/W9oX7Ldd23jmpcBwEVu5tHxWx0DDT2SZKoj/TjzJkzbxnx9X951DFQMRz9x6hieBhid9BifhjifpS3s7bikWFdSAhxD/ASYAxZofF3wJ8M6/rPhhDi91zX/Vc7/PEjHcNdxq7LwGO4n2K3RzHbLUO5b/dT3NPx7Dr2Kols5LFhXEQI8TtIB8ZPpdcsAW9BOjH+7DDG0DeW5wOR67r9r/09u/iVRyaGA4hdl4HGcJSxG2DMdsvA79tR37ODiv2RTCJCiB8Bfh4IgQ8B/9F13QT4OPCqIQzhHtd1X7Hpax8UQnxuCNfuIYT4bWAGCIUQE8iqjUXgP3CDOBz1GO4mdn2/Y1QxHEns9iJmezCGUd63I7tnBxn7I5lEgH8JvMR13VAI8VbgQ0KIf8rwyu2+JIR4J3JGUkPOSF7NELeCUu5NS/0QQrwQeL8Q4he2+bNHPYa7iV2XUcVwVLHbi5jtllHet6O8ZwcW+yPbJ+K6bgjguu47kdn4I8D8MC7uuu7bgP8CTAP3pv/9r67r/twwrt+HKYSw0zE9Crwe+A1kF++NOOox3E3suowkhiOM3V7EbLeM7L4d8T07uNiP+mR/RNUQP3HmzJkTm762cObMmXeOemxDjsN9Z86cmd70NePMmTNvUjEcXOyOagz3ImZ7MIYjFfNhxF71iQBCiHe7rvvmUY/jIKNiuHtUDIePivnuOarbWZuZG/UADgEqhrtHxXD4qJjvEpVEJGo5tntUDHePiuHwUTHfJSqJKBQKhWLHqCQiGYWC7mFDxXD3qBgOHxXzXaKSiORNox7AIUDFcPeoGA4fFfNdoqqzFAqFQrFj1EpEoVAoFDtGJRGFQqFQ7BiVRBQHGiHEOSHEd496HArFdhBC/JkQ4u2jHsdeopKIQqFQKHaMShJ8igsAAAIxSURBVCIKhUKh2DFHVQp+pAghfgn4SaSK5wXgV1zX/eBoR3WgebEQ4veREhYfAv6F67reiMd0YBFCHAd+D3g5cqL5Htd1f2a0ozqYCCHuRjoX3g58jEPYIa9WIqPhLPINWgZ+E/ifQgil4bNz/hHwWuA24Azwq6MdzsFFCGEAHwXOA7cAC8B7Rzmmg0oqvf4h4F3AOPB+4IdGOqgBoFYiI8B13ff3/fN9QohfBu4D/teIhnTQ+UPXdS8ACCH+PfAHqESyU+5Demv8Qtd3A/jbEY7nIPMSwAJ+N3VP/IAQ4m0jHtOeo5LICBBC/CjwNuRMD6AATI5sQAefC32fn2dIxliHlOPA+b4Eotg588AzaQLpcn5UgxkUajtryAghTgJ/DPwMMOG6bgX4OkrDZzcc7/v8BHBxVAM5BFwATggh1ARz91wCFoQQ/e/tE6MazKBQSWT45JGHa4sAQoi3AC8Y6YgOPj8thDgmhBgH/g3wvlEP6ADzReTD7x1CiLwQwhFCvHTUgzqgfAEIgZ8VQphCiDcgtwsPFSqJDBnXdb8J/DbyBrsC3AF8fqSDOvi8G/gk8J3041A1cw0T13Uj4PuB08BTwNPAD490UAcU13U7wBuAHwNWkXH8y1GOaRAoAUaFQqFQ7Bi1ElEoFArFjlFJRKFQKBQ7RiURhUKhUOwYlUQUCoVCsWNUElEoFArFjlFJRKFQKBQ7RiURhUKhUOwYlUQUCoVCsWNUElEoFArFjvn/DuMjI3OySS0AAAAASUVORK5CYII=\n", - "text/plain": [ - "
    " - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "import pandas as pd\n", - "import numpy as np\n", - "df = pd.DataFrame(np.random.randn(1000, 4), columns=['a', 'b', 'c', 'd']) \n", - "pd.plotting.scatter_matrix(df, alpha=0.2, figsize=(6, 6), diagonal='kde');" + "* [Seaborn tutorial](https://www.datacamp.com/community/tutorials/seaborn-python-tutorial): a structured tutorial is always worthwhile. Look at this to understand topics we have not covered in detail: \n", + "\n", + " * colour maps, \n", + " * adding and rotating text, \n", + " * 'contexts': adjusting the plot settings for different use cases: talks, posters, on paper or in notebooks\n", + " * change plot style\n", + " * adding a title\n", + " \n", + "* [Interactively create Seaborn visualizations](https://engmrk.com/module7-introduction-to-seaborn/) within this webpage (if you can handle all the advertising!)" ] }, { @@ -2101,18 +2084,7 @@ "* https://makersportal.com/blog/2018/8/14/real-time-graphing-in-python\n", "* https://learn.sparkfun.com/tutorials/graph-sensor-data-with-python-and-matplotlib/all (scroll to the end of the page)\n", "\n", - "You can apply this challenge directly for acquiring and plotting data from your own sensors. For example, you can inexpensively buy a Raspberry Pi board, add some sensors and create a home monitoring system for temperature, humidity" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Some tips\n", - "\n", - "* Great blog post about [various visualizations](https://www.marsja.se/python-data-visualization-techniques-you-should-learn-seaborn/)\n", - "* Seaborn tutorial: https://www.datacamp.com/community/tutorials/seaborn-python-tutorial\n", - "* [Interactively create Seaborn visualizations](https://engmrk.com/module7-introduction-to-seaborn/) within this webpage (if you can handle all the advertising!)" + "You can apply this challenge directly for acquiring and plotting data from your own sensors. For example, you can inexpensively buy a Raspberry Pi board, add some sensors and create a home monitoring system for temperature, humidity and noise." ] }, { From c757cf434cf9a2fd8e1a0b24a5d8a3eccb7784cf Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Thu, 25 Jul 2019 12:33:47 +0200 Subject: [PATCH 083/134] Finalized challenges and added notes for WS11 --- Module-10-interactive.ipynb | 12 +++++++----- Module-11-interactive.ipynb | 4 ++++ 2 files changed, 11 insertions(+), 5 deletions(-) diff --git a/Module-10-interactive.ipynb b/Module-10-interactive.ipynb index e69bcfd..a9eac95 100644 --- a/Module-10-interactive.ipynb +++ b/Module-10-interactive.ipynb @@ -1294,7 +1294,7 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 55, "metadata": { "hide_input": false }, @@ -1362,7 +1362,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4wAAAE3CAYAAADhWM89AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xt8VPWd//H3zCQzuWdyhUm4BIKESAQssVQtXoKKtCBYi1Cq3a213WKlVYtdt+7CPlTWBmip/kqX7dZ1e6HQqlUWUEBFrfWCIBeDICByCxlyD7lnMnPO749AFI2EXE9O8no+zGPmnO85M5/h8fFM3jk3h2mapgAAAAAA+BSn1QUAAAAAAPomAiMAAAAAoE0ERgAAAABAmwiMAAAAAIA2ERgBAAAAAG0iMAIAAAAA2kRgBAAAAAC0icAIAAAAAGgTgREAAAAA0CYCIwAAAACgTQRGAAAAAECbCIwAAAAAgDYRGAEAAAAAbQqzuoDeVllZJ8MwrS4DuGBJSTEqL6+1ugygw+hd2BW9C7uid9Eep9OhhIToDq0z4AKjYZgERtgOPQu7ondhV/Qu7IreRXfjkFQAAAAAQJsIjAAAAACANhEYAQAAAABtIjACAAAAANpEYAQAAAAAtInACAAAAABoU7uBsbKyUt/97nc1depUzZgxQ3fffbcqKiokSbt379ZNN92kqVOn6o477lB5eXnrer09BgAAAADoXu0GRofDoTvvvFObN2/W+vXrNXToUC1fvlymaer+++/XokWLtHnzZuXm5mr58uWS1OtjAAAAAIDuF9beAl6vV5MmTWqdnjBhgtasWaOCggJ5PB7l5uZKkubOnaspU6bo0Ucf7fUxAAAADFymacowTYVCpkLGJ35ChkJGy5hhmDJMyTwzbZr6xPyWx9Z5pinD0JnlWp6bZhvLtflaallGH0/rzDLmmVpbnrc8Si3rytQ5889ZxpQMnV3G/NTrtDyXKbk9YWpsbG7jvT5exjjzpuY5r/XJ9zoz3vpve+6/87n/7jpn2c+sq3OfmDI/Nf3p9zDPmf7k7Ate9zPv2bnaP13zp1Zv1/mXb3vw81bp6Hu3rNP2SoMSo7T8R1d36LXaDYyfZBiG1qxZo7y8PPn9fqWlpbWOJSYmyjAMVVVV9fqY1+u94M+QlBTTkY8M9AkpKbFWlwB0Cr0Lu6J3zxUMGWoKhNTUHFKgOaTmoKFgyFBz8OxPy7zAmengmenWnzaWPftz9nUMw1TwTMA7+xgKGQqGTBlGy2MoZChonA2GH88LGZ34jdpCDkfLUXwOnXl0qOW581PzWpdpa9551tPZZc+3nkMOZ8v6cjjkPDPvzH9n6vx44uPXdXzms0hn1v3E9OeNf+rh49f7vPmf/Ddr7z3aqe3z3qN1rc/7LJ9a79M+/b4X4vNWcXzOu3TiLdqsKyHW3eHX6VBgfPjhhxUVFaXbbrtNL774YoffrC8oL6+VYbONCga2lJRYlZbWWF0G0GH0LuzKrr1rmKaaAiE1NAXVEAipMRBUY1PLY0PTx2Gv5dFQU7BlOtBsfDw/aLTO++R4dwQyh0MKdzkV5nIqLMzZ8jzMqTCXQ2FOp5xOh1wuh8KcLT/ucJdcnjC5XA65nGd/nK3TTmfLep+c/vQyZ6edTsnpaFnG6WgJPU5nyy/UzjPPna3PWwLVucvrzPyWYHV2ftvLn3ndTz53fBzEOhMuLpRdexe9x+nseP9dcGDMz8/XsWPHtGrVKjmdTvl8PhUVFbWOV1RUyOFwyOv19voYAACA3QVDhuobg6prbFZdQ1C1jc2qa2hWXWNQdQ3Nqm8MqiEQVENTUI2Bj4NgY6AlIDYFQhf8Xu5wp9xhLnnCnXKHu+QOc8kd7lSkJ0zeGE/ruDvcKU+4S+6wM8uFu84EPcdnw5+rJfyFnxMGna3Lu5xcnB+wowsKjCtWrNDevXv1m9/8Rm53y27MnJwcNTY2aseOHcrNzdXatWs1bdo0S8YAAAD6EtM0VdcYVE19QNV1AZ2ua3msrm9WTX3gnCBY19is2sbgeQOfQ1KkJ0yRHpciPGGKdIcpOjJcSfGRinS7FOkJU4TbpQh3yzIt0y3zIj1hinS75Ha7WsNfT+7lAtC/OMzPOyPyjEOHDmn69OnKyMhQRESEJGnIkCFauXKldu7cqcWLF6upqUnp6elatmyZkpOTJanXxy4Uh6TCbji8BHZF78Kuzte7IcPQ6dqAKmuaVFnTpIqaJlXVNqmmLqDTZ8JhTX2zqusCbR7G6XBIsZHhio4MV3REuKIjwj5+HhnW+hgT0bJMVETLvChPWKcOJcPAwnYX7XE6HR2+pku7gbG/ITDCbtj4w67oXdiNaZqqrgso6HDq0NHy1kBY2frTqNN1gc9csTDM5VBctFtxUe5PPYa3PEZ/PD8mMpzghx7Ddhft6Uxg7NBFbwAAAOysoSmostONKq1qUFlVg0rPPj/dqLKqBgWCxjnLR3rClBjrkTfWo/SUpNbnibEeJcRGKCHWo+iIMA7xBNBvERgBAEC/EjIMlZ1u1Knyep2qqJf/zOOpinpV1wXOWTbS41JyfKQGJUQqZ0SiUryRyhyWoHCHlBjrUaSHX5UADGxsBQEAgC0ZhqmSqgYVltSqsLRWJ0vr5K+oV0llvYKhj48bjYkM1+CkKI3LTNLgxCileCOVHB+hFG9km3sHOawPAD5GYAQAAH1ebUOzTpwJhp8MiGcPIXU4pNSEKKUlRWl8ZpIGJ0XJlxitwUlRiokMt7h6ALAvAiMAAOhTGgNBHTtVoyP+Gh09Va2PiqpVdrqxdTwmMlxDU2N09YR0DUmN1tDUGKUlRcsd7rKwagDonwiMAADAMiHDUGFJnQ4XndYRf7WO+mtUVF7XeiXSpLgIjfDF6ppL0zVsUIyGpsQoLtrNRWYAoJcQGAEAQK9pag7po6JqHSqs0qHC0/rw5OnWG9bHRYUrwxen3DGpGuGLVcbgOMVFuy2uGAAGNgIjAADoMU3NIR0qrNL+o5U6cKJKx07VKGSYckhKT4nRlTmDddEQrzLT45QUF8GeQwDoYwiMAACg2xiGqaOnarTvaIX2Ha3QhydPKxgy5XI6NCItTlO/OEyjh8ZrVHq8oiK4GA0A9HUERgAA0CWn6wIqOFyuPYfLtP9opeqbgpKkYakxmjJxiC7OSNToIV553FyUBgDshsAIAAA6xDRNHS+u1Z7DZdrzYbmO+qtlSkqI9WhiVorGjkjUmOEJiovi/EMAsDsCIwAAaFfIMHTgeJV2HCjV7kOlqqoNyCFpRFqcZk0eofGjkjU0NYZzEAGgnyEwAgCANoUMQx8cr9KOD0q082Cpauqb5Q536pIRSRo/KlmXZCYpnquYAkC/RmAEAACtDMPUB8cr9c7+Yu08WKbahmZ5wl0aPypJuVmpuiQzSZ5wzkUEgIGCwAgAAOQvr9Obe0/pzb2nVFnTJI/bpQmjkltC4shEuQmJADAgERgBABigahuatW1fsd7ce0pH/NVyOhzKGZmoOXmjNGFUMiERAEBgBABgIDFNU/uPVerVXSe161CZQoapoakxmpM3Sl+6eJDiYzxWlwgA6EMIjAAADAC1Dc16o8CvV3cXqbiiXjGR4ZoycYiuyBmsYYNirS4PANBHERgBAOinTNPUR/5qvbrzpN75oETNQUOj0uN10/SLlTsmReFhHHIKADg/AiMAAP1MyDD07oFSbdp2XEdP1cjjdunKS3y6ZkIaexMBAB1CYAQAoJ9oaArq7+/5tWX7CZVXN2pQQqRuu2G0Lh87WJEevvIBAB3HtwcAADZXWdOkl98t1Ku7Tqq+KajRQ+I17/qLNH5UspwOh9XlAQBs7IICY35+vjZv3qyTJ09q/fr1Gj16tAoLC/WDH/ygdZmamhrV1tbqnXfekSTl5eXJ7XbL42m52trChQs1efJkSdLu3bu1aNEiNTU1KT09XcuWLVNSUlKXxgAAGGhKqhq08c2jenPvKRmmqYlZqZr6xaHKTIu3ujQAQD/hME3TbG+hHTt2KD09Xd/85je1atUqjR49+jPLLFmyRKFQSIsWLZLUEhjbWtY0Td1www169NFHlZubq1//+tc6ceKEHn300U6PdUR5ea0Mo92PDPQZKSmxKi2tsboMoMPo3Z5TXFGvDW8d1Vt7i+VyOTR5nE83fHGYUr2RVpfWL9C7sCt6F+1xOh1KSorp2DoXslBubq58Pt/njgcCAa1fv1633HJLu69VUFAgj8ej3NxcSdLcuXO1adOmLo0BADAQnKqo13+v36ef/vfb2r6/RNflDlH+9y/XbTdkERYBAD2iW85h3Lp1qwYNGqSxY8eeM3/hwoUyTVMTJ07Ufffdp7i4OPn9fqWlpbUuk5iYKMMwVFVV1ekxr9d7wbV2NFEDfUFKClc1hD3Ru92jtLJBa7Z8oJe3H1d4uEszr8rU164ZpYS4CKtL67foXdgVvYvu1i2B8ZlnnvnM3sXVq1fL5/MpEAhoyZIleuihh7R8+fLueLsu4ZBU2A2Hl8Cu6N2uq21o1sa3jurld09KMjVl4lB99fLhiot2K9jUrNLSZqtL7JfoXdgVvYv2dOaQ1C4HxuLiYm3fvl1Lly49Z/7ZQ1jdbrfmzZun+fPnt84vKipqXa6iokIOh0Ner7fTYwAA9CdNgZC2bD+uTe8cV2MgpCtyBmvml0coOZ7DTgEAvavLgfHZZ5/V1VdfrYSEhNZ59fX1CoVCio2NlWmaev7555WdnS1JysnJUWNjo3bs2KHc3FytXbtW06ZN69IYAAD9gWGa2vZ+sZ5+7bAqa5p06UXJ+tpVI5WewukUAABrXFBgfOSRR7RlyxaVlZXp29/+trxerzZu3CipJTA++OCD5yxfXl6uBQsWKBQKyTAMZWZmavHixZIkp9OppUuXavHixefcHqMrYwAA2N2HJ09rzUuHdMRfreGDY/VPN43V6KEcRQMAsNYF3VajP+EcRtgN5yPArujdC1NR3ainXj2sbfuKFR/j1tevztTlOYPldDisLm3AondhV/Qu2mPJOYwAAKDjgiFDL+0o1Lq/H5FhmppxRYamfWmYItx8NQMA+g6+lQAA6GUHT1TpD5sP6GRZnSaMSta86y5SMvdRBAD0QQRGAAB6SXV9QE9t/VBv7D2lpLgILbjlEl16UYrVZQEA8LkIjAAA9DDTNPX2+8X600sH1RgI6auXD9f0yzPkcbusLg0AgPMiMAIA0IMqqhv1+80H9N7hcmWmxekfv5Kt9ORoq8sCAOCCEBgBAOgBhmnqtV0n9dSrh2WYpr4x5SJNmThETidXPwUA2AeBEQCAblZW1aAnNu7XgRNVujgjQf9w4xilcFEbAIANERgBAOgmpmnq7wV+rXnpkCTpH6eN0eRxPjm4pyIAwKYIjAAAdIPquoB+t+kD7TpUpjHDvLrjq9lKjmevIgDA3giMAAB00a6DpfrfTR+ooSmkOXmjdP1lQ+VkryIAoB8gMAIA0EmB5pD+vPVDvbLrpIalxuj+b1ysISkxVpcFAEC3ITACANAJRWV1WrVurwpL63TjF4fpa1ePVJjLaXVZAAB0KwIjAAAdYJqmXn/Prz+9eFAet0v3zB6vcZlJVpcFAECPIDACAHCBGpqC+t2mD/TO/hJlD0/QndMvVkKsx+qyAADoMQRGAAAuQGFprVb+tUAlVQ26+aqR+uqXhsvp5MI2AID+jcAIAEA73n7/lP530weKcIfpJ9+4VFnDEqwuCQCAXkFgBADgcwRDhv788od6eWehLhoSr+/PzOEQVADAgEJgBACgDRXVjfrP5/bqcFG1brhsqL5+TSZXQQUADDgERgAAPuXDwtP61bMFamoOaf6sHF02JtXqkgAAsASBEQCAT3h9T5F+v/mAkuIidP/cCUpPibG6JAAALENgBABAUshoOV/xpXcLdXFGgr4/M0cxkeFWlwUAgKUu6GSM/Px85eXlKSsrSwcPHmydn5eXpxtvvFEzZ87UzJkz9frrr7eO7d69WzfddJOmTp2qO+64Q+Xl5T06BgBAZ9U2NGvFX/bopXcLdV3uEN1763jCIgAAusDAOGXKFK1evVrp6emfGXv88ce1bt06rVu3TpMnT5Ykmaap+++/X4sWLdLmzZuVm5ur5cuX99gYAACdVVxRr0d+v0MHjlfp29PGaN51o+VycnEbAACkCwyMubm58vl8F/yiBQUF8ng8ys3NlSTNnTtXmzZt6rExAAA641BhlZb84V3VNwb1k3mXavL4NKtLAgCgT+nyOYwLFy6UaZqaOHGi7rvvPsXFxcnv9yst7eMv3cTERBmGoaqqqh4Z83q9Xf0YAIAB5p39xfrthv1KivPonlvHa1BClNUlAQDQ53QpMK5evVo+n0+BQEBLlizRQw891OcPE01K4mp3sJ+UlFirSwA6pS/2rmmaeuaVD/W7jft08YhEPfjtSYqLdltdFvqYvti7wIWgd9HduhQYzx6m6na7NW/ePM2fP791flFRUetyFRUVcjgc8nq9PTLWEeXltTIMs1OfF7BCSkqsSktrrC4D6LC+2Lshw9AftxzUa7uLNOniQbrjK2PUVN+k0vomq0tDH9IXexe4EPQu2uN0Ojq8A63TZ/XX19erpqalIU3T1PPPP6/s7GxJUk5OjhobG7Vjxw5J0tq1azVt2rQeGwMAoD0NTUE99tR7em13kaZfMVzfnXGxwsNcVpcFAECf5jBNs93dbY888oi2bNmisrIyJSQkyOv1atWqVVqwYIFCoZAMw1BmZqb+9V//VampqZKknTt3avHixWpqalJ6erqWLVum5OTkHhu7UOxhhN3w10LYVV/q3dO1TfrFX/boZGmdvnVjlq7i4jY4j77Uu0BH0LtoT2f2MF5QYOxPCIywGzb+sKu+0rslVQ36+dpdqq5r1g++lqOcEUlWl4Q+rq/0LtBR9C7a05nA2OWrpAIA0FedKKnVL/68W8GQofu/calGpsVZXRIAALZCYAQA9EsHT1TpsaffU4TbpX/5xkSlJUdbXRIAALZDYAQA9Du7PyzTfz63V0lxEfrxnAlKio+wuiQAAGyJwAgA6FfeKPDryec/0LBBMbrn1vGKi+IeiwAAdBaBEQDQb2x557jWbv1Q2cMTdPfXLlGkh685AAC6gm9SAEC/sP7No3r2bx9pYlaKvjdjrMLDOn2rYQAAcAaBEQBga6Zp6tnXj2jDm0d1+djBuuOrY+RyEhYBAOgOBEYAgG2ZpqmnXj2sTduO66rxPn1r6hg5nQ6rywIAoN8gMAIAbMk0Tf3ppUN6+d1C5X0hXfOuHy2ng7AIAEB3IjACAGzHME39YfMBvba7SFO/OFS3XjtKDsIiAADdjsAIALAVwzD1P8/v15t7T2n6FcN18+SRhEUAAHoIgREAYBshw9BvN+zXtn3FunnyCM24coTVJQEA0K8RGAEAtmAYpp44ExZnX5OpaV8abnVJAAD0e1x3HADQ5xmGqSc27tfb+4r1dcIiAAC9hsAIAOjTDNPUky/s11vvn9LNV43UVwiLAAD0GgIjAKDPMkxTv3vhA71RcEozvzxCM67IsLokAAAGFAIjAKBPOnvrjNff82vGFRma+WUucAMAQG8jMAIA+hzTNLV6y0G9trtIX718uGZNJiwCAGAFAiMAoE8xTVN/eumQXtl1UjdOGqavXcV9FgEAsAqBEQDQp/z1bx/p5XcLdcNlQzX7mkzCIgAAFiIwAgD6jI1vHdXGt47pqvFpmpM3irAIAIDFCIwAgD7h5XcL9cxrH2nSxYP0ralZhEUAAPqACwqM+fn5ysvLU1ZWlg4ePChJqqys1He/+11NnTpVM2bM0N13362KiorWdbKysjRjxgzNnDlTM2fO1IEDB1rHtm7dqhtvvFHXX3+97rnnHjU0NHR5DABgX28U+LX6xYOaMCpZ3/lqtpxOwiIAAH3BBQXGKVOmaPXq1UpPT2+d53A4dOedd2rz5s1av369hg4dquXLl5+z3tq1a7Vu3TqtW7dOWVlZkqS6ujr927/9m1atWqUXX3xR0dHReuKJJ7o0BgCwrx0flOh/nt+v7OEJmj9rrMJcHPwCAEBfcUHfyrm5ufL5fOfM83q9mjRpUuv0hAkTVFRU1O5r/e1vf1NOTo4yMjIkSXPnztULL7zQpTEAgD3t/ahc//V/72tkWpwW3HKJwsNcVpcEAAA+Iaw7XsQwDK1Zs0Z5eXnnzL/99tsVCoV01VVXacGCBXK73fL7/UpLS2tdJi0tTX6/X5I6PQYAsJ+DJ6r0q78WKD05WvfOHq8Id7d8JQEAgG7ULd/ODz/8sKKionTbbbe1znv11Vfl8/lUW1ur+++/XytXrtS9997bHW/XJUlJMVaXAHRYSkqs1SUAnfJ5vXvoRKUee/o9pSREacldX5Y31tPLlQHnx3YXdkXvort1OTDm5+fr2LFjWrVqlZzOj49wPXsIa0xMjGbPnq0nn3yydf62bdtalysqKmpdtrNjHVFeXivDMDu8HmCVlJRYlZbWWF0G0GGf17sny+qUv3qnojxhunf2ODU3BlTaGLCgQqBtbHdhV/Qu2uN0Ojq8A61LVxZYsWKF9u7dq5UrV8rtdrfOP336tBobGyVJwWBQmzdvVnZ2tiRp8uTJKigo0NGjRyW1XBhn2rRpXRoDANhD2ekG/eLPu+VyOnT/NyYoMS7C6pIAAMB5OEzTbHd32yOPPKItW7aorKxMCQkJ8nq9+uUvf6np06crIyNDEREtX/hDhgzRypUrtWvXLi1atEgOh0PBYFCXXnqpfvrTnyo6OlqS9NJLL2nZsmUyDEPZ2dn62c9+pqioqC6NXSj2MMJu+Gsh7OrTvVtdH9Cjf9yp6rqAHvjmFzQ0lVME0Dex3YVd0btoT2f2MF5QYOxPCIywGzb+sKtP9m5jIKhla3apsLROP54zQaOHei2uDvh8bHdhV/Qu2tPrh6QCANCeYMjQyr8W6NipWs2fmUNYBADARgiMAIAeY5imfrthn94/Wql/mJalCRclW10SAADoAAIjAKBHmKapNS8e0jv7SzT7mkxNHpfW/koAAKBPITACAHrEX146qJd3FmrqF4fqxknDrC4HAAB0QpfvwwgAwKe9uvuk/rjpgC4fO1izrx0lh8NhdUkAAKAT2MMIAOhW7x4o0R82H1Bu9iB9+ytj5CQsAgBgWwRGAEC3OXC8Uv/1f+8rMy1e//ytXIW5+JoBAMDO+CYHAHSLwtJaPf5MgVK8kfrh18cpws1ZDwAA2B2BEQDQZRXVjVrxlz1yhzt1360TFBMZbnVJAACgGxAYAQBdUt/YrBVP7VFDU1D3zh6vpPgIq0sCAADdhMAIAOi05qChX/21QKfK63X31y7RsEGxVpcEAAC6EYERANAphmnqiY379MHxKt3x1WxdnJFodUkAAKCbERgBAJ3y9CuH9c7+En39mkxdPnaw1eUAAIAeQGAEAHTYi9tPaNM7x5X3hXRNmzTM6nIAAEAPITACADpkxwclWvvyIX1hdIrmXTdaDofD6pIAAEAPITACAC7YwRNV+s36fcpMj9f3Zlwsp5OwCABAf0ZgBABckJNldXr86feUHB+hH359nNzhLqtLAgAAPYzACABoV2VNk1b8ZbfCw5y679bxiokMt7okAADQCwiMAIDzqm8MasVf9qiuMah7Zo9XsjfS6pIAAEAvITACAD5XMGRo5bMF8pfX6Qc352j44FirSwIAAL2IwAgAaJNhmvqf5/dr/7FK/eO0McoZkWR1SQAAoJcRGAEAbXrmtcN6+/1i3XzVSF15ic/qcgAAgAXaDYz5+fnKy8tTVlaWDh482Dr/yJEjmjNnjqZOnao5c+bo6NGjlo0BALrXy+8W6oW3j+uaCWmafvlwq8sBAAAWaTcwTpkyRatXr1Z6evo58xcvXqx58+Zp8+bNmjdvnhYtWmTZGACg+7x7oER/evGgJoxK1jdvGC2Hg3stAgAwULUbGHNzc+XznXsoUnl5ufbt26fp06dLkqZPn659+/apoqKi18cAAN3nUGGVfrN+n0amxemfZo6Vy8mZCwAADGRhnVnJ7/dr0KBBcrlabtrscrmUmpoqv98v0zR7dSwxMbHL/wgAAMlfXqfHn35PibEe/fDr4+QJd1ldEgAAsFinAqOdJSXFWF0C0GEpKdzKAD2rorpRjz39nsLDXHpk/pUanBTdLa9L78Ku6F3YFb2L7tapwOjz+VRcXKxQKCSXy6VQKKSSkhL5fD6ZptmrYx1VXl4rwzA787EBS6SkxKq0tMbqMtCPNTQFlb96p07XBvSTeZfKZRjd0nP0LuyK3oVd0btoj9Pp6PAOtE6dnJKUlKTs7Gxt2LBBkrRhwwZlZ2crMTGx18cAAJ0XDBn69bMFKiyt0/xZORrhi7O6JAAA0Ic4TNM87+62Rx55RFu2bFFZWZkSEhLk9Xq1ceNGHT58WA888ICqq6sVFxen/Px8jRw5UpJ6fawj2MMIu+Gvhegppmnqtxv26633T+nbXxmjyePSuvX16V3YFb0Lu6J30Z7O7GFsNzD2NwRG2A0bf/SUZ147rI1vHdOsySN005Ujuv316V3YFb0Lu6J30Z5eOyQVAGBvr+ws1Ma3jumq8WmacUWG1eUAAIA+isAIAAPMzoOl+uOLBzU+M0m3Tx0th8NhdUkAAKCPIjACwADyYeFp/df/va+MwXH6/swcuZx8DQAAgM/HbwoAMED4y+v02NN7lBDr0Y9mj5PH7bK6JAAA0McRGAFgADhd26QVf9kjl9Oh+24dr7got9UlAQAAGyAwAkA/19AU1Iqn9qimvlk/mj1eqQlRVpcEAABsgsAIAP1YMGToP5/bq8KSOs2flaMRvjirSwIAADZCYASAfso0Tf3uhQ+090iF/uHGLI3LTLK6JAAAYDMERgDop559/SO9sfeUZn15hCaPT7O6HAAAYEMERgDoh17ddVIb3jymq8anacaVGVaXAwAAbIrACAD9zK5DpfrDlgMan5mk26eOlsPhsLokAABgUwRGAOhHDp6o0qp17ytjcJy+PzNHLiebeQAA0Hn8JgEA/URhSa0ef/o9JcVF6J7Z4+Rxu6wuCQAA2ByBEQD6gbKqBv38L7vlcbt035zxio1yW10SAADoBwiMAGBz1XUrk1O3AAAbc0lEQVQB/fzPuxUMGrrv1vFKjo+0uiQAANBPEBgBwMYamoJa8dQeVdY06UdfH6/0lBirSwIAAP0IgREAbKo5aOhXfy3QieJazZ+Vo1FD4q0uCQAA9DMERgCwIcMw9dsN+7T/WKW+/ZUxGj8q2eqSAABAP0RgBACbMU1Tf3rpoLZ/UKJbrx2lKy/xWV0SAADopwiMAGAz6984qq07T+rGScN046RhVpcDAAD6MQIjANjIKzsL9dzfj+jKSwZr9jWZVpcDAAD6OQIjANjEm3v9+sOWg5owKln/OG2MHA6H1SUBAIB+LqwrKxcWFuoHP/hB63RNTY1qa2v1zjvvKC8vT263Wx6PR5K0cOFCTZ48WZK0e/duLVq0SE1NTUpPT9eyZcuUlJTUpTEA6M/ePVCq/9n4gbKHJ2j+rLFyOfl7HwAA6HkO0zTN7nqxJUuWKBQKadGiRcrLy9OqVas0evToc5YxTVM33HCDHn30UeXm5urXv/61Tpw4oUcffbTTYx1RXl4rw+i2jwz0uJSUWJWW1lhdBiz0/pEKPfb0Hg0fFKsfz52gCHeX/tbXa+hd2BW9C7uid9Eep9OhpKSO3bO52/5EHQgEtH79et1yyy3nXa6goEAej0e5ubmSpLlz52rTpk1dGgOA/upQYZX+31/fky8pWvfcOt42YREAAPQP3fabx9atWzVo0CCNHTu2dd7ChQtlmqYmTpyo++67T3FxcfL7/UpLS2tdJjExUYZhqKqqqtNjXq+3uz4GAPQZx07V6JdP7VFCbITumzNB0RHhVpcEAAAGmG4LjM8888w5exdXr14tn8+nQCCgJUuW6KGHHtLy5cu76+06raO7YIG+ICUl1uoS0MtOFNdoxVN7FBPl1qN3fVkpCZFWl9Qp9C7sit6FXdG76G7dEhiLi4u1fft2LV26tHWez9dyI2m326158+Zp/vz5rfOLiopal6uoqJDD4ZDX6+30WEdwDiPshvMRBp7Sqgb9bPVOOSTdd+t4KRi0ZQ/Qu7Arehd2Re+iPZadw/jss8/q6quvVkJCgiSpvr5eNTUtzWqapp5//nllZ2dLknJyctTY2KgdO3ZIktauXatp06Z1aQwA+ovKmiYtX7tLgeaQfjxnggYlRFldEgAAGMC6ZQ/js88+qwcffLB1ury8XAsWLFAoFJJhGMrMzNTixYslSU6nU0uXLtXixYvPuT1GV8YAoD+oqQ/o53/erer6Zt0/91INSeUQegAAYK1uva2GHXBIKuyGw0sGhtqGZi1bs0unKup17+zxGjM8weqSuozehV3Ru7ArehftsfS2GgCAzqlrbNbytbvkL6/XD28Z1y/CIgAA6B8IjABgofrGZv187W4VldVpwS2XaOyIRKtLAgAAaEVgBACL1DcG9fM/79GJklr94OZLdMnIJKtLAgAAOAeBEQAs0NAU1Iqndut4cY3uujlH40clW10SAADAZxAYAaCXNQaC+uVTe3SkqEbfn5mjSy9KsbokAACANhEYAaAXNQVC+uVT7+nwyWr908yxmphFWAQAAH1Xt9yHEQDQvoamlj2LH548re/NGKvLxqRaXRIAAMB5ERgBoBfUNzbrF3/Zo2OnWg5DJSwCAAA7IDACQA+rbWi5dUZhaa3umpWjS0dzGCoAALAHAiMA9KDquoCWr92tUxX1WnDLJRqXydVQAQCAfRAYAaCHVNU2afna3SqratCPZo/T2IxEq0sCAADoEAIjAPSAiupGLVu7W1U1Tbr31vHKGpZgdUkAAAAdRmAEgG5WWtWg5Wt3qbahWT+eM0GjhsRbXRIAAECnEBgBoBsVltbq53/erWDQ0I/nXKqRaXFWlwQAANBpBEYA6CYfnjytx57ao/Awpx745heUnhJjdUkAAABdQmAEgG6w96Ny/erZAnljPFo4Z4KSvZFWlwQAANBlBEYA6KJ39hfrv9fvU3pytO6dM0Hx0W6rSwIAAOgWBEYA6IJXdhbqj1sO6qKhXv3wlnGKimCzCgAA+g9+swGATjBNUxvePKpnXz+iCaOS9f2ZY+UOd1ldFgAAQLciMAJAB4UMQ6tfPKRXd53U5WMH69tfGaMwl9PqsgAAALodgREAOqAxENSqde/rvcPlmvalYbrl6kw5HQ6rywIAAOgRBEYAuEBVtU167Kn3dLykRt+amqVrLk23uiQAAIAe1eXAmJeXJ7fbLY/HI0lauHChJk+erN27d2vRokVqampSenq6li1bpqSkJEnqkTEA6EknS2v1y6f2qLYhqB99fZzGZSZbXRIAAECP65aTbh5//HGtW7dO69at0+TJk2Wapu6//34tWrRImzdvVm5urpYvXy5JPTIGAD1p/9EK/ccfdyoYMvXAN79AWAQAAANGj1yloaCgQB6PR7m5uZKkuXPnatOmTT02BgA95Y0Cv37xlz1KjPXoX7+Vq+GDY60uCQAAoNd0yzmMCxculGmamjhxou677z75/X6lpaW1jicmJsowDFVVVfXImNfr7Y6PAQCtDNPUc69/pA1vHlP28AT94OYcRUWEW10WAABAr+pyYFy9erV8Pp8CgYCWLFmihx56SNdff3131NYjkpJirC4B6LCUFPZq9ab6xmb94k87te39U7ph0nB9/2vjFB7GbTM6g96FXdG7sCt6F92ty4HR5/NJktxut+bNm6f58+frW9/6loqKilqXqaiokMPhkNfrlc/n6/axjigvr5VhmJ39uECvS0mJVWlpjdVlDBilVQ16/Jn35C+r17zrLtKUiUNUVVlndVm2RO/Cruhd2BW9i/Y4nY4O70Dr0p/M6+vrVVPT0pSmaer5559Xdna2cnJy1NjYqB07dkiS1q5dq2nTpklSj4wBQHc4cLxSD/9uhyqrm3TvnPG6LneoHNxjEQAADGBd2sNYXl6uBQsWKBQKyTAMZWZmavHixXI6nVq6dKkWL158zi0wJPXIGAB0hWmaemXXSa156ZBSEyL1w1vGaVBilNVlAQAAWM5hmuaAOj6TQ1JhNxxe0rOamkP6/aYDeuv9UxqXmaTvzRirqIhuuR7YgEfvwq7oXdgVvYv2dOaQVH4rAjBglVTW61d/3auTpbWa9eURmn5lhpwcggoAANCKwAhgQNr9YZn+e/0+OR3Sj2aP17jMJKtLAgAA6HMIjAAGlJBhaN3fj2rDm0c1LDVGd33tEqV6I60uCwAAoE8iMAIYMCprmvRf//e+Dp6o0pWXDNbtN2TJHe6yuiwAAIA+i8AIYEDY82GZnti4X81BQ3dOz9YVOT6rSwIAAOjzCIwA+rVgyNAzrx3W5ndOaEhKjObPGitfUrTVZQEAANgCgRFAv1VcUa/frN+nI/5qXXtpuubkjeIQVAAAgA4gMALod0zT1Gt7irT25UMKdzl116wc5Y5JtbosAAAA2yEwAuhXTtcF9L/P79eew+W6OCNB3/nqxUqI9VhdFgAAgC0RGAH0G7sPlenJF/aroSmkuVMu0nW5Q+R0OKwuCwAAwLYIjABsr7ahWWtfPqQ3957S0NQY3f+NizUkJcbqsgAAAGyPwAjA1nYdLNXvNx9QTX2zpl8xXDOuGKHwMKfVZQEAAPQLBEYAtlRTH9DqFw/qnf0lGpoao3tmj9fwwbFWlwUAANCvEBgB2Ippmtq2r1hrXj6k+sagZk0eoa98abjCXOxVBAAA6G4ERgC2UVxRrz9sOaB9Rys1wherb8/N1pBUzlUEAADoKQRGAH1ec9DQC28f04a3jik8zKFvXj9a116aLqeTK6ACAAD0JAIjgD7t/aMV+uOWgyquqNcXs1M1d8pF8sZwX0UAAIDeQGAE0CeVVDXozy8f0q5DZUr1Ruq+W8crZ2SS1WUBAAAMKARGAH1KYyCojW8d0+Z3jsvldOqWq0fqhsuGKjzMZXVpAAAAAw6BEUCfYJim3tp7Sk+/dlinawO6fOxgff2aTCXEcvgpAACAVQiMACxlmqb2HqnQ068e1omSWo3wxerumy9RZnq81aUBAAAMeARGAJY5eqpaT71yWPuPVSo5PkL/dNNYXZadKqeDq58CAAD0BV0KjJWVlfrJT36i48ePy+12a/jw4XrooYeUmJiorKwsjR49Wk5ny820ly5dqqysLEnS1q1btXTpUoVCIY0dO1aPPvqoIiMjuzQGwD785XVa9/cjemd/iWIiw/WN6y7StZemK8zltLo0AAAAfILDNE2zsytXVVXpwIEDmjRpkiQpPz9fp0+f1n/8x38oKytLO3fuVHR09Dnr1NXV6YYbbtDq1auVkZGhBx98UD6fT3fffXenxzqivLxWhtHpjwz0upSUWJWW1lhdRrcorqjX/71xVG/vO6XwMKduuGyYpk0apkgPBzv0R/2pdzGw0LuwK3oX7XE6HUpKiunYOl15Q6/X2xoWJWnChAkqKio67zp/+9vflJOTo4yMDEnS3Llz9cILL3RpDEDfVlJZryc27NOD/71N7x4o0dTLhmnp96/Q164aSVgEAADow7rtNzXDMLRmzRrl5eW1zrv99tsVCoV01VVXacGCBXK73fL7/UpLS2tdJi0tTX6/X5I6PQagbyosqdUL245p274SuVwOXZc7RNMmDVN8DFc+BQAAsINuC4wPP/ywoqKidNttt0mSXn31Vfl8PtXW1ur+++/XypUrde+993bX23VaR3fBAn1BSkqs1SVcMNM09f5H5XrmlQ+1Y3+xItwuTZ88Qrdce5ES4yKsLg+9zE69C3wSvQu7onfR3bolMObn5+vYsWNatWpV60VufD6fJCkmJkazZ8/Wk08+2Tp/27ZtresWFRW1LtvZsY7gHEbYjV3ORzBMU7sPlemFt4/pcFG1YqPCdfPkEbr2C0MUExmuUFOzSkubrS4TvcguvQt8Gr0Lu6J30Z5eP4dRklasWKG9e/dq5cqVcrvdkqTTp0+rsbFRkhQMBrV582ZlZ2dLkiZPnqyCggIdPXpUkrR27VpNmzatS2MArNMYCOqVXSf1b7/dpl/9tUCn6wK67YbRWjr/Cs24coRiIsOtLhEAAACd1KWrpB46dEjTp09XRkaGIiJaDjUbMmSI7rzzTi1atEgOh0PBYFCXXnqpfvrTn7ZeMfWll17SsmXLZBiGsrOz9bOf/UxRUVFdGrtQ7GGE3fTVvxaeqqjX1p2FeqPAr4amkIYPitWNk4Ypd0yKXE5uj4G+27tAe+hd2BW9i/Z0Zg9jlwKjHREYYTd9aeNvGKbeO1yul3cW6v0jFXI5HbosO1VTvjBEI9Pi5HA4rC4RfUhf6l2gI+hd2BW9i/Z0JjByPXsA7aqobtQbBX69/p5fZacb5Y1x6+bJI3TVhHTFR7utLg8AAAA9hMAIoE3NwZB2HSrT6+/5te9IhUxJY4Z5deu1ozThomSFuTjsFAAAoL8jMAJoZZqmjhXX6O/v+bVtX7HqGoNKivNo+hUZunKcT6neSKtLBAAAQC8iMAKQv7xO2/YV6539JTpVUa8wl1MTs1L05XE+ZQ9PkJNzEwEAAAYkAiMwQJVUNWj7/paQeKKkVg5JWcO8uuGyobosO1XREdwOAwAAYKAjMAIDhGma8pfXa9ehUu08WKYj/mpJUmZ6nL5x3UXKzUpVQqzH4ioBAADQlxAYgX7MMEx9ePK0dh8q065DpSqubJAkDR8cq9nXZuqyMalKjue8RAAAALSNwAj0M3WNzdp3tFIFh8u153CZauqb5XI6lD08QddfNlQTRiUrMS7C6jIBAABgAwRGwOZChqEjRTXae6Rc7x+p0Ef+apmmFOUJ07jMJE24KFmXjExSpIf/3QEAANAx/AYJ2Ixhmioqq9OB41X64Hil9h2tVENTUA6HNNIXpxlXZChnRJJGpMXK5eReiQAAAOg8AiPQxxmGqePFNTpwokoHj1fpwIkq1TY0S5KS4jy6bEyKxo5IUvbwBMVEcmVTAAAAdB8CI9DH1Dc26yN/tT46Wa3DRdU64q9uDYjJ8REaPypJWUMTNGaYV8leLlgDAACAnkNgBCwUMgydLK37REA8LX95vSTJISktOVqXX+LT8NRoZQ1NUFI8F6sBAABA7yEwAr0k0BxSYWmdjpfU6ERxrY4X1+hEaa0CzYYkKSYyXJlpcfrS2MHKTIvTCF+cIj1hSkmJVWlpjcXVAwAAYCAiMALdzDRNVdY0qai8ToUlLQHxeHGt/OV1Ms2WZSI9YRqWGqOrxqdppC9OI9PjlRIfIYfDYW3xAAAAwCcQGIFOMkxT5acb5S+vU1FZvYrK6lRUXqeisjo1BkKtyyXEejR8UKwmjk7RsEGxGjYoRsmEQwAAANgAgRE4D8MwVVHTqNLKBhVXNai0skEllQ0qrmxQSVV96+GkkhQf7VZacrSuzPEpLTlKacnRSkuOVmyU28JPAAAAAHQegREDmmmaqm1oVkV1kyqqG1VW3ajSqpZQWFrV8hMMma3Lh7kcSvFGKtUbqYszElpCYVK0fMlRio7glhYAAADoXwiM6LdM01R9U1CnawOqqm1SeXWjKqpbHiurG1V+JiQGgsY563nCXUpNiFRaUrQmjEpWakKkUhOilOqNVEKsR04nh5ICAABgYCAwwnaCIUM19c2qqm3S6bqATrc+Bs6ZrqoNKBgyPrN+fIxbibERGpISrXGZSUqKi1BiXIQS4zxKjItQXFQ45xcCAAAAIjDCYs3BkOobg6ptaG79qWloVm1987nz6ptV2xBQbUOzGppCbb5WTGS44qPdio9x66KEeMXHeFqnvdEeJcZHKCHGo/AwZy9/SgAAAMCeCIzoFNM0FWg21NgcUlMgqMZASE3NITU0BVXfGFT9mceGpo+ftzWvrT2AZ3ncLsVEhCsmKlyxkeEalBipmMiW57FRLUEwPtojb4xbcdFuhbkIggAAAEB3sl1gPHLkiB544AFVVVXJ6/UqPz9fGRkZVpfVp5imqWDIVHMwpEDQUHPQOPMYUqD57HSo5bHZaF0uEDQUaA6pKRA6EwRDLUEwEPx4+sxjUyAks/1SFOZyKCoiXFGeMEVFhCk6IkzJ8RGKighrnRfpCVNMZHjrT2yUWzGRYQoPc/X4vxUAAACAz2e7wLh48WLNmzdPM2fO1Lp167Ro0SL9/ve/75H3Mk1Tptlyv72QYcowzjyaLc9bp8/Ma2uZUKhlOhgyFAydfTTOmRc6My8YMhU0DIVCpppDxpn5LcuFzq5rmOfMD4Y+GQg/DoLmhaS5NjgcUoQ7TBFulzzhLkW4W34SYjzynHnuCQ+Tx+1SpNslzyeW84S7FHk2CJ4Jg4Q+AAAAwL5sFRjLy8u1b98+Pfnkk5Kk6dOn6+GHH1ZFRYUSExMv6DV+/ufdKqlskGEYZ4KezhsGe1uYy6kwl0NhLqdcLofCnGemw5ytz10up9zhTkVFhMnldCg8zKnwMKfcYa6Wx3CnwsNccoc55Q478zy8/WXCw1penwu+AAAAAJBsFhj9fr8GDRokl6tlr5XL5VJqaqr8fv8FB8ZUb6Qi3S65nA45HQ45nY6W521MX8gyTsenlv/0Mg61hD2XUy6n45xAePa568yj00FYAwAAANB32Cowdod75k20ugSgw1JSYq0uAegUehd2Re/CruhddDdbBUafz6fi4mKFQiG5XC6FQiGVlJTI5/Nd8GuUl9fKsOBQU6CzUlJiVVpaY3UZQIfRu7Arehd2Re+iPU6nQ0lJMR1bp4dq6RFJSUnKzs7Whg0bJEkbNmxQdnb2BR+OCgAAAAC4cLbawyhJ//7v/64HHnhAv/71rxUXF6f8/HyrSwIAAACAfsl2gTEzM1NPPfWU1WUAAAAAQL9nq0NSAQAAAAC9h8AIAAAAAGgTgREAAAAA0CYCIwAAAACgTQRGAAAAAECbbHeV1K5yOh1WlwB0GH0Lu6J3YVf0LuyK3sX5dKY/HKZpmj1QCwAAAADA5jgkFQAAAADQJgIjAAAAAKBNBEYAAAAAQJsIjAAAAACANhEYAQAAAABtIjACAAAAANpEYAQAAAAAtInACAAAAABoE4ERAAAAANCmAREYjxw5ojlz5mjq1KmaM2eOjh49anVJgCQpPz9feXl5ysrK0sGDB1vnn69n6Wf0BZWVlfrud7+rqVOnasaMGbr77rtVUVEhSdq9e7duuukmTZ06VXfccYfKy8tb1zvfGNAb7rrrLt10002aNWuW5s2bp/3790tiuwv7+NWvfnXO7w1sc9HjzAHg9ttvN5977jnTNE3zueeeM2+//XaLKwJabN++3SwqKjKvvfZa88CBA63zz9ez9DP6gsrKSvPtt99unf7Zz35m/su//ItpGIZ53XXXmdu3bzdN0zRXrlxpPvDAA6ZpmucdA3pLdXV16/MXX3zRnDVrlmmabHdhD3v37jW/853vmNdcc4154MABtrnoFf1+D2N5ebn27dun6dOnS5KmT5+uffv2tf4lHLBSbm6ufD7fOfPO17P0M/oKr9erSZMmtU5PmDBBRUVFKigokMfjUW5uriRp7ty52rRpkySddwzoLbGxsa3Pa2tr5XA42O7CFgKBgB566CEtXrxYDodD0vm3q2xz0V3CrC6gp/n9fg0aNEgul0uS5HK5lJqaKr/fr8TERIurAz7rfD1rmib9jD7HMAytWbNGeXl58vv9SktLax1LTEyUYRiqqqo675jX67WidAxQDz74oN544w2Zpqnf/va3bHdhC4899phuuukmDR06tHUe21z0hn6/hxEA0LMefvhhRUVF6bbbbrO6FOCCLFmyRK+++qruvfdeLV261OpygHbt2rVLBQUFmjdvntWlYADq94HR5/OpuLhYoVBIkhQKhVRSUvKZwwCBvuJ8PUs/o6/Jz8/XsWPH9Mtf/lJOp1M+n09FRUWt4xUVFXI4HPJ6vecdA6wwa9Ysbdu2TYMHD2a7iz5t+/bt+uijjzRlyhTl5eXp1KlT+s53vqNjx46xzUWP6/eBMSkpSdnZ2dqwYYMkacOGDcrOzuYwEvRZ5+tZ+hl9yYoVK7R3716tXLlSbrdbkpSTk6PGxkbt2LFDkrR27VpNmzat3TGgN9TV1cnv97dOb926VfHx8Wx30ed973vf09///ndt3bpVW7du1eDBg/XEE0/ozjvvZJuLHucwTdO0uoiedvjwYT3wwAOqrq5WXFyc8vPzNXLkSKvLAvTII49oy5YtKisrU0JCgrxerzZu3HjenqWf0RccOnRI06dPV0ZGhiIiIiRJQ4YM0cqVK7Vz504tXrxYTU1NSk9P17Jly5ScnCxJ5x0DelpZWZnuuusuNTQ0yOl0Kj4+Xv/8z/+ssWPHst2FreTl5WnVqlUaPXo021z0uAERGAEAAAAAHdfvD0kFAAAAAHQOgREAAAAA0CYCIwAAAACgTQRGAAAAAECbCIwAAAAAgDYRGAEAAAAAbSIwAgAAAADaRGAEAAAAALTp/wOh7xs1nKgskgAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4wAAAE3CAYAAADhWM89AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xl4VOXd//HPfZJJQlZIJggRIsQiwQ0UpEWpLVaEqkVbl4pbtSooBFq1SG2rglKtBa0IqEBBiuBaHp+nrv3FXZTVihtiaoyyhEDCkhCyz7l/fwwEogGyTHIyyft1XXPNnHOfmfnOXF9O+MzZjLXWCgAAAACAb3G8LgAAAAAA0DYRGAEAAAAA9SIwAgAAAADqRWAEAAAAANSLwAgAAAAAqBeBEQAAAABQLwIjAAAAAKBeBEYAAAAAQL0IjAAAAACAehEYAQAAAAD1IjACAAAAAOpFYAQAAAAA1IvACAAAAACoV6TXBbS2/Px8r0sAGiUtLY2+RViidxGu6F2EK3oXDZGWltao5dnCCAAAAACoF4ERAAAAAFAvAiMAAAAAoF4d7hjGb7PWqqKiQq7ryhjjdTlhzVorx3EUExPDdwkAAAC0Ax0+MFZUVMjn8ykyssN/FSFRU1OjiooKderUyetSAAAAADRTh98l1XVdwmIIRUZGynVdr8sAAAAAEAIdPjCy62To8Z0CAAAA7cMRN63t2bNHs2fPVkFBgXw+n7p166YxY8YoMTFROTk5mj9/vqqqqpSamqoJEyYoKSlJklp9DAAAAAAQWkfcwmiM0ahRozRz5kzNmDFDRx11lJYuXSprrWbNmqXrrrtOM2fOVL9+/bR06VJJavWx9mTYsGEqLy8PyWuVlpbqqaeeavLzv/jiC02bNi0ktQAAAAAIP0fcwhgfH68TTjihdrpPnz7Kzs5Wbm6uoqKilJmZKUkaPny4xo8fr3HjxrX6GOpXWlqqp59+WqNHj270cwOBgPr27as//elPLVAZAABA6FhrJdeVAjVSICC5geDjmn331g2OH3zb/xw3cGC8dt7Byx24t9+e953XciUbqGeerXuTldx996Eas1Y7OsXILSurdxnbmNcOfqkHf8HfnVdn+lvjtYsd4XmNmh/i99C3XudQn+U7z1PD5h/OIZ9zqPcI4WtFREqLXz7MC35Xo8724rqusrOzNXDgQBUVFcnv99eOJSYmylqr0tLSVh+Lj49v8GdIS0urM71lyxb5fL7GfA0t7rnnntOaNWtUXFyssWPH6sc//rEkaerUqdq4caOqq6t19NFH6/bbb1diYqIk6cUXX9Rzzz0nSfL5fPrrX/+qhx9+WHv37tUNN9ygmJgYPfbYYyoqKtJDDz2kbdu2qbKyUmeffbauvvpqSdLFF1+s888/Xx988IHS0tI0YsQIzZkzRwsWLFBNTY1uu+02FRcXq7KyUscff7wmTZpU73fXqVOn73zPaB6+T4Qrehfhit6ty9bUyFZWBG9VlbLV1bLVVbLVVVLt42rZ6gNjqp0XvK8zXVUlW7P/+TWyNdVSICAbqJFqamQDNbKBQO1jBWpk94U/W1Mjufvu908HAl5/RY1jjGQcyWjfvQmeA6L2dmCs7vwDY8ZxFHxw4FZpHDlm3/kkvvX6coyMvvv6+59b532073wU+09L4eyfr+Br7P8MBy/znfnmW/NVZ775znhDX6+e1zjCex3ytWrvGlf7dxzy/B2HOa/HIZ5z6FOBNP616ptvIhufexoVGBcuXKjo6GiNHDlSq1evbvSbtQX5+fl1psvLy+ucpMV9/w3Z915rkfc2Z5wt5/Szjrjc/t1vN27cqAkTJuj4449Xly5dNH78+NpjNhcsWKAnnnhCY8aM0bp167R48WLNmjVLycnJKi8vV0REhCZOnKixY8dq/vz5kqTq6mrdc889uuqqq9S/f39VV1fr1ltvVZ8+fTRo0CBZa7V9+3Y9+OCDkqR169bJWqvq6mpZa/WHP/xBSUlJstbqvvvu07/+9S+NGjXqO/WXl5d/53tG06WlpfF9IizRuwhX4dq71nWlygqpvEyqKJMqymvvbXm5VFkuVVVKlZXB+4Nutqoy+Nw686ukqn3zQhHIjCP5IqVIX/Dmi9r3ODK41SMiYt9t3+PIKCk2OG1qxw4adw4ei5QinINeJ3Lf+P7HTu3NOE6wloPvD74ZZ19AcoKvUWfMfGu5iO/Orx2POOh19oWw/cGshezv3UZuc0IH06WRyzc4MC5evFgFBQWaPHmyHMeR3+9XUVFR7XhJSYmMMYqPj2/1sfbm3HPPlSSlp6erT58+Wr9+vc444wz9+9//1muvvVZ7rcMePXpIklauXKlzzjlHycnJknTIayCWl5dr3bp12r17d51533zzjQYNGiRJGjFiRL3PdV1Xzz77rFatWiXXdbVnzx7FxMSE7DMDANDR2ZoaqaxU2lsq7d0j7S2V3btHKtuzb16pVFF2IPwdHAz3z2uoqOj6b53ipM7JMocaj4reF/QiZXy+A+Ev0if56nl80DwTEdFyXx6AFtOgwPjUU08pLy9Pv//972t3QczIyFBVVZU2bNigzMxMZWdna8iQIZ6MhZJz+llSA7YCthZrrYwx+vjjj/Wvf/1Ls2fPVufOnfXaa6/pxRdfrF2mMa/12GOPHfLak4cKm6+//ro++eQTPfzww4qNjdWSJUu0efPmpn0oAADaOWttMPyVFEslu2VLdkslu6U9u6U9xcEgeFAw1N7Swwc+Y6ROsVJM7L77TlJ8gkxK14PmdwrO37eMidm3XKd986JjpKgYKSqKS2ABaLAjBsZNmzbp+eefV/fu3WtPgNK1a1dNmjRJWVlZmjdvnqqrq2svcyFJjuO06lh78+qrr+qqq67S5s2b9eWXX6pfv376/PPPFRcXp8TERFVVVemVV16pXX7IkCGaPn26fvazn9XZJTU2NlaVlZUKBAK10yeddJKefPLJ2uMWt2/frsjIyNqtk4dSWlqqpKQkxcbGqrS0VK+//rr69u3bot8DAABtjQ0EpOKd0q4d0u4dsruKpN07pZJi2T37QmFJsbSnOHiylW8zjhSfIMUlSHHxUhe/TI9eB6bjEqTYeJm4/cvEBe87xco4bKED0PqMbejmqXbi28cklJWVKTY21qNqvmvYsGEaO3asli9frpKSEl133XX60Y9+pEAgoGnTpunLL79UamqqjjvuOG3YsEEPPfSQJOmll17SsmXLZIxRVFSU/vznPys5OVkzZszQJ598ooSEBM2ePVs7d+7UnDlzlJeXJ0mKjY3VbbfdpvT0dF122WW677771Lt3b0nBYxgfffRRzZ07V6Wlpbrrrru0Y8cOpaamKi0tTZWVlfr973//nc/Q1r7TcBeux9IA9C7CjbVWKtktvwIq3PCZtKtI2nVQKNxVJBXvDp4h82CRkVJiZymhs5TYWSYx6VvTnfdNJwW3ChL80EJY76IhGntSLwIj4Sbk+E5Di5U/whW9i7bIVpRJRdukwm2yRdukom2yhQXBeTu2BU/0crBOcVKXFKlzikyXFKmLX+qSLNPFXztfcQns4ok2gfUuGqKxgbFRZ0kFAABo62wgEAx/BVtkC7ZIBZtlt22RCrYEdxk9WKdYKeUo6aijZU48VfIfpZTjjtdOJ1JK9gePAwSADozACAAAwpJ1A9L2AmnLN7Kbv5bN/0baulkq3CrVHHT8YHyi1O1omZMGBYNh6lGSf9+tnq2DndLSZNhKAwCSCIwAACAM2L17pE15slu+kTZ/Lbv5ayn/mwO7kBpH6tpd6t5D5uTTgvdHHR0MivGJntYOAOGswwfGDnYIZ6vgOwUANIetKJc25sp+/V/p6y9l83KCxxjuF58o9ewtc+ZIqUev4FlGu/cMXjsQABBSHT4wOo6jmpqaQ16XEI1TU1Mjx3G8LgMAECZsIBDcYvjVF9LX/w2GxK2bD5yJNKWr1Ot7MmeOlEnPkHr0Cp55lJPMAECr6PApKSYmRhUVFaqsrOSPTzNZa+U4jmJiYrwuBQDQRtnKSinvC9kv18v+93Mpd8OBC9YnJEm9+sgMPEOmdx/pmO8FL0kBAPBMhw+Mxhh16tTJ6zIAAGiXbGWl9OV62c8/ks35VNqYKwUCkjHS0cfInD5M+t7xMsdmSsmp/HgLAG1Mhw+MAAAgdKwbkL7JlV2/Tvbzj6Tcz4NnLI2IlHr3kTnnQpk+J0jHZsrExntdLgDgCAiMAACgWWzJLtlP/iP78Rppw0dS2d7gQM/eMmedL9Ovv9TnBJloDlkAgHBDYAQAAI1irZU2fSX78RrZj9dKX/9XslbqnCJz6unS8QNkMk+WSUjyulQAQDMRGAEAwBHZQEDK+VT2g/dkP1ot7d4ZPA6xVx+ZUZcHr33YszfHIAJAO0NgBAAA9bKBgPTFJ8GQ+OFKaU+xFBUtnXiqzMmDZU46VSaxi9dlAgBaEIERAADUsm5A+uJT2TXvyn64QirdI0XHyJx8mszAM6QTB8pER3tdJgCglRAYAQCA7NbNsivekF35lrSrSIruJNN/f0g8VSaKkAgAHRGBEQCADsqWlgS3JK54U8rLkRxHOuFUmUt+HQyLhEQA6PAIjAAAdCDWWmnDx3LffkVat1oK1Eg9egdD4vd/JJPEMYkAgAMIjAAAdAB27x7Z916Xfeff0rYtUnyCzLDzZE4/S6Znb6/LAwC0UQRGAADaKWutlJcj+9YrsmuXS9VV0rGZMuffLDPwDBlflNclAgDaOAIjAADtjA0EZP/zvuy/n5e++TJ4ApvTz5L50U/ZmggAaBQCIwAA7YStKJNd/prsa/+SdmyXuqbJXH6jzJAfy8TEel0eACAMERgBAAhzdvcO2TdelH37Valsr9TneDmX3SCdfJqM43hdHgAgjDUoMC5evFirVq1SYWGhZsyYofT0dG3fvl3Tp0+vXaasrExlZWV6/PHHJUnjx4+Xz+eTz+eTJF1xxRUaMGCAJCknJ0fz589XVVWVUlNTNWHCBCUlJTVrDACAjsYWFsi+/FzwshiuK3PqEJlzLpTJ6Ot1aQCAdqJBgXHw4ME699xzddddd9XO69q1a53AuGjRIgUCgTrPu+WWW5Senl5nnrVWs2bN0vjx45WZmally5Zp6dKlGjduXJPHAADoSOy2/GBQXPmmFBEpc+Y5MsMvlEnt5nVpAIB2pkH7qWRmZsrv9x9yvKamRu+++66GDRt2xNfKzc1VVFSUMjMzJUnDhw/XihUrmjUGAEBHYAu2yF3wN7l3jJNd+67MWT+Tc+88OZffSFgEALSIkBzDuHbtWiUnJysjI6PO/FmzZslaq8zMTI0ePVpxcXEqKiqqEz4TExNlrVVpaWmTx+Lj4xtca1paWjM+KeAN+hbhit4NjZrCApU8OV97X3tBxhelhAsvV8IvrlRE8qF/zEXz0LsIV/QuQi0kgfHNN9/8ztbFqVOnyu/3q7q6WosWLdKCBQs0ceLEULxds+Tn53tdAtAoaWlp9C3CEr3bfLa0RPaVf8q+8ZIkK3PW+TI/vVhliZ1VVlEl8f22CHoX4YreRUM09keFZgfGnTt3av369crKyqozf//WQJ/PpxEjRuj++++vnV9UVFS7XElJiYwxio+Pb/IYAADtia2skM3+P9n/97xUUSEzZJjMqNEyKV29Lg0A0ME0OzC+9dZbOuWUU5SQkFA7r6KiQq7rKjY2VtZavffee+rVq5ckKSMjQ1VVVdqwYYMyMzOVnZ2tIUOGNGsMAID2wLqu7Oq3ZZctlnbvkAb8QM6FV8ocnX7kJwMA0AIaFBgXLlyo1atXa/fu3brnnnuUkJCgBx98UJL09ttv69prr62zfHFxsR544AG5rivXddWjRw9df/31kiTHcZSVlaV58+apurq69vIYzRkDACDc2dwNcp/5u5SXIx3zPTk3/E7muBO8LgsA0MEZa631uojWxH7dCDccj4BwRe82jN1ZKLvsH7Kr35GSkmV+cZXMD4bJOA06kTlaAL2LcEXvoiFa/RhGAADQeLamRvb1F2RfeEpyXZnzfykz4hcyMZ28Lg0AgFoERgAAWpnN+Uzu0kel/I1S/8FyLrtBxn+U12UBAPAdBEYAAFqJ3VMs+9zjsivekFK6yhn/R5kB3/e6LAAADonACABAC7PWyq56S/bpv0sV5TI/vVjmvEtlomO8Lg0AgMMiMAIA0ILszkK5Sx6VPlkrZfSV86sJMmlcJgMAEB4IjAAAtADrurLvvCq77B/Bk9r88nqZs86TcSK8Lg0AgAYjMAIAEGK2aJvcx2dKOZ9K/frLuWq8TGo3r8sCAKDRCIwAAISItVb2/ddln54vSTJXZ8kMHS5jjMeVAQDQNARGAABCwJbslvvEHGndKqnvSXKu/Y1MSlevywIAoFkIjAAANJNdt1Lu4jlSeZnMJb+WOXuUjON4XRYAAM1GYAQAoIlsVaXscwtl33pF6tlbzq3TZI4+xuuyAAAIGQIjAABNYLdukjv3r9KWb2TO+bnMz6+UifR5XRYAACFFYAQAoBGstbLLs2WfnidFd5Iz8S6ZkwZ6XRYAAC2CwAgAQAPZ8jLZJ+bIrnlXyjxZznU3y3RO8bosAABaDIERAIAGsFu+kfvIfVJhgcyFV8r89CIZJ8LrsgAAaFEERgAAjsBd9bbs4tlSTKfgiW36nuh1SQAAtAoCIwAAh2BrqmWfXSj75kvS946XM3YSu6ACADoUAiMAAPWwO4vkzr1f+uoLmbMvkLnoVzKR/NkEAHQs/OUDAOBb7Jefy330PqmyUs7Y22QGDfW6JAAAPEFgBADgIO7ybNklj0rJfjm3TJM5Ot3rkgAA8AyBEQAASTYQkH1uoezrL0j9+ge3LMYleF0WAACealBgXLx4sVatWqXCwkLNmDFD6enBX1vHjx8vn88nn88nSbriiis0YMAASVJOTo7mz5+vqqoqpaamasKECUpKSmqxMQAAmsru3SN37l+lzz+S+cnPZC75tUwEl8wAAMBpyEKDBw/W1KlTlZqa+p2xW265RdOnT9f06dNrw6K1VrNmzdJ1112nmTNnql+/flq6dGmLjQEA0FR2W77ce38n5Xwm86sJci67gbAIAMA+DQqMmZmZ8vv9DX7R3NxcRUVFKTMzU5I0fPhwrVixosXGAABoCvvlerl/mSSV7ZXzu2lyhg73uiQAANqUZh/DOGvWLFlrlZmZqdGjRysuLk5FRUV1AmZiYqKstSotLW2Rsfj4+OZ+DABAB+OueVd24UNScqqc39wp0zXN65IAAGhzmhUYp06dKr/fr+rqai1atEgLFizQxIkTQ1Vbi0hL4z8ECD/0LcJVW+xda632/PMfKl40W1EnDJD/TzMUkdjZ67LQxrTF3gUagt5FqDUrMO7f4ufz+TRixAjdf//9tfOLiopqlyspKZExRvHx8S0y1hj5+flN+qyAV9LS0uhbhKW22Ls2EJB98jHZd/4tM/hM1VwzUdtKy6TSMq9LQxvSFnsXaAh6Fw3R2B8VGnQMY30qKipUVhb8A2ut1XvvvadevXpJkjIyMlRVVaUNGzZIkrKzszVkyJAWGwMA4EhseZncWXcHw+K5l8pcd4uML8rrsgAAaNOMtdYeaaGFCxdq9erV2r17txISEpSQkKDJkyfrgQcekOu6cl1XPXr00LXXXqsuXbpIkr744gvNmzdP1dXVtZfA6Ny5c4uNNRS/uiDc8GshwlVb6l1bvEvuQ1Ok/G9krhwn54fneF0S2rC21LtAY9C7aIjGbmFsUGBsT/hHhHDDyh/hqq30ri0skPu3O6WS3XJuul3mhFO8LgltXFvpXaCx6F00RGMDY7PPkgoAQFtlN+cFtyzW1Mi5dZpM7+O8LgkAgLBCYAQAtEs25zO5s6dJMZ3kTJ4m072n1yUBABB2CIwAgHbHfrRG7tz7pZRUOb+9WyYl1euSAAAISwRGAEC74r7/huw/HpZ6Zsj5zV0yCUlelwQAQNgiMAIA2g03+/9kn10g9esvZ9ztMjGxXpcEAEBYIzACANoF96VnZf93iXTq6XKuv1XG5/O6JAAAwh6BEQAQ1qy1sv+3VPalZ2V+MEzmmokyERFelwUAQLtAYAQAhC1rreyyRbL/fl7mh+fIXHmTjENYBAAgVAiMAICwZK2VfXq+7Bsvygw7V+ayMTKO43VZAAC0KwRGAEDYsa4ru/RR2Xf+LXPOhTIXXytjjNdlAQDQ7hAYAQBhxboB2UUPy654U+bcS2UuvIKwCABACyEwAgDChg0EZBf+TXb1OzIXXCHn/F96XRIAAO0agREAEBasG5Bd+FAwLF70KzkjL/K6JAAA2j3ODgAAaPOsG5B9/GHZ1W/L/IKwCABAayEwAgDaNOu6sv+YLbvyTZkLr5TzU8IiAACthcAIAGizrOvKPjFH9v3XZX42Ws55l3pdEgAAHQqBEQDQJtVeOmN5tsz5v5QzarTXJQEA0OEQGAEAbY61VvapucHrLP70YplRl3tdEgAAHRKBEQDQplhrZZ+eL/vWKzIjfi7z86u4ziIAAB4hMAIA2hT7/BOyb7woc/YFMhddQ1gEAMBDBEYAQJvhvvyc7Cv/lPnhOTKX/pqwCACAxwiMAIA2wX3zJdnnn5AZfKbMlTcRFgEAaAMiG7LQ4sWLtWrVKhUWFmrGjBlKT0/Xnj17NHv2bBUUFMjn86lbt24aM2aMEhMTJUmXXnqp0tPTa//gT5gwQenp6ZKktWvXasmSJQoEAsrIyNC4ceMUHR3drDEAQPhy339d9sm5Uv/BMtf+VsaJ8LokAACgBm5hHDx4sKZOnarU1NTaecYYjRo1SjNnztSMGTN01FFHaenSpXWeN23aNE2fPl3Tp0+vDYsVFRWaO3euJk+erFmzZqlTp0564YUXmjUGAAhf9oP3ZRfNkvr1lzP2NpnIBv2WCQAAWkGDAmNmZqb8fn+defHx8TrhhBNqp/v06aOioqIjvtaHH36oY489Vt27d5ckDR8+XO+//36zxgAA4cl++h+582dIGcfJGfcHGV+U1yUBAICDhORnXNd1lZ2drYEDB9aZP2XKFAUCAZ1yyim65JJL5PP5VFRUVCd8+v1+7dixQ5KaPAYACD825zO5j94rpfWUM/FOmZhOXpcEAAC+JSSBceHChYqOjtbIkSNr5z3yyCPy+/0qKyvT7NmztWzZMl122WWheLtmSUtL87oEoNHoW4SrQ/Vu1X/Xa/vsaYrs2l1d/zJXEZ2TW7ky4PBY7yJc0bsItWYHxsWLF6ugoECTJ0+W4xzYw3X/1sDY2FidddZZeumll2rnf/bZZ7XLFRUVKSUlpVljjZGfn9/o5wBeSktLo28Rlg7VuzZ/o9zpt0uxcXIn3KVtZRVSGT2OtoP1LsIVvYuGaOyPCs26rMZTTz2lvLw8TZo0ST6fr3Z+aWmpqqqqJEmBQEArV67UMcccI0kaMGCAcnNztXXrVklSdna2hgwZ0qwxAEB4sDu2y/3bXVJEpJxb7pFJ9h/5SQAAwDPGWmuPtNDChQu1evVq7d69WwkJCUpISNDNN9+sW2+9Vd27d1dUVPAkBV27dtWkSZOUk5OjefPmyRijmpoa9e3bV9dcc41iYmIkSWvWrNGSJUvkuq569+6tcePGNXusofjVBeGGXwsRrr7du3ZPsdz7fy+V7JZz270yPXp7WB1waKx3Ea7oXTREY7cwNigwtif8I0K4YeWPcHVw79qKcrkP/Ena8o2c306VOe6EIzwb8A7rXYQrehcN0aq7pAIAcCS2plruo/dJG3OD11kkLAIAEDYIjACAFmNdV3bhQ9L6dTJXZ8n0H+x1SQAAoBEIjACAFmGtlX16vuyad2Uu+pWcM872uiQAANBIBEYAQIsoeWaB7JsvyZxzocyIX3hdDgAAaAICIwAg5Nx3XlXJE4/J/GCYzEXXyBjjdUkAAKAJCIwAgJCy/3lfdsljihl0hsyvJsg4/KkBACBc8VccABAy9otP5c6fIWUcp5Tb75eJjPS6JAAA0AwERgBASNgt38id82cptbucCXfIiYnxuiQAANBMBEYAQLPZnUVyZ06VoqLl/GaKTFyC1yUBAIAQIDACAJrFlpXKfXiqVL5Xzm/ukklJ9bokAAAQIgRGAECT2epquY/cJxVskTPuDzI9e3tdEgAACCECIwCgSazryj7+kPTFJzLXTJTp19/rkgAAQIgRGAEATWKX/UN2zbsyv/iVnB/82OtyAABACyAwAgAazX3tX7L/73mZYefKjPyF1+UAAIAWQmAEADSK/eA92WcXSKf8QOayG2SM8bokAADQQgiMAIAGszmfyf37g1JGXznX3yrjRHhdEgAAaEEERgBAg9j8jXLnTJP8XeVk/UkmKtrrkgAAQAsjMAIAjsju2iF35hTJFyXnN1Nk4hO9LgkAALQCAiMA4LBs2V65D0+V9u6VM/FOGf9RXpcEAABaCYERAHBItqZa7mN/kbZuknPT72XSj/W6JAAA0IoIjACAelnXlV30sPT5RzJXZ8mccIrXJQEAgFZGYAQA1Ms+/4TsqrdlLrxSzuk/8bocAADggcgjLbB48WKtWrVKhYWFmjFjhtLT0yVJ+fn5mjNnjkpLSxUfH6+srCx1797dkzEAQGi5b7wo++oymTNHypx7idflAAAAjxxxC+PgwYM1depUpaam1pk/f/58jRgxQjNnztSIESM0b948z8YAAKFj//O+7NPzpf6DZS4fK2OM1yUBAACPHDEwZmZmyu/315lXXFysvLw8DR06VJI0dOhQ5eXlqaSkpNXHAAChY79cL/fvD0q9j5NzwySZiAivSwIAAB464i6p9dmxY4eSk5PlOMG86TiOunTpoqKiIklq1bHERK4FBgChYLduljtrmtTFLyfrDpnoaK9LAgAAHmtSYAxnaWlpXpcANBp9i5YW2FmkbbPvkRMVpaPufUSR3XuE5HXpXYQrehfhit5FqDUpMKakpGjnzp1yXVeO48h1Xe3atUt+v1/W2lYda6z8/PymfGTAM2lpafQtWpQtL5M7/XapeJec3/1Z260jhaDn6F2EK3oX4YreRUM09keFJl1WIykpSb169dLy5cslScuXL1fv3r2VmJjY6mMAgKazNdVyH/uLtOUbOWMny/Tq43VJAACgDTHHNyhPAAAcHklEQVTWWnu4BRYuXKjVq1dr9+7dSkhIUEJCgh588EFt2bJFc+bM0d69exUXF6esrKzatNraY43Bry4IN/xaiJZirZVd+JDsyjdlrpko54yzQ/r69C7CFb2LcEXvoiEam6GOGBjbG/4RIdyw8kdLcf9nsewr/5S54HI5518W8tendxGu6F2EK3oXDdEqu6QCAMKb+9bLwbD4w3Nkzvul1+UAAIA2isAIAB2M/XCl7JPzpJNPk7niJhljvC4JAAC0UQRGAOhA7Jefy50/Q+r1PTljJslERHhdEgAAaMMIjADQQdiCzXJnT5O6pMiZcIdMdIzXJQEAgDaOwAgAHYAt3iX3oSmS48j5zRSZhCSvSwIAAGGAwAgA7ZytKJP78FSptETOxDtlunb3uiQAABAmCIwA0I7Zmhq5j90vbf5aztjJMr36eF0SAAAIIwRGAGinrLWyi2dLn30oc9V4mZMGel0SAAAIMwRGAGin7P8ulV3xhsyoy+UMHe51OQAAIAwRGAGgHXLfflX25WdlfniOzPm/9LocAAAQpgiMANDO2HWrZJc+Jp18mswVN8kY43VJAAAgTBEYAaAdsf9dL3fedKnX9+SMmSQTEeF1SQAAIIwRGAGgnbCbv5Y7+x4pJVXOhDtlomO8LgkAAIQ5AiMAtAO2aJvch6ZIUTFyfjtVJiHR65IAAEA7EOl1AQCA5rElu+X+7S6pukrObX+RSenqdUkAAKCdYAsjAIQxW1Em9+G7pd1FcibcIXN0utclAQCAdoTACABhylZXy33kPmnTV3LGTpb5Xj+vSwIAAO0MgREAwpB1A7IL/yZ9/pHMrybKnHya1yUBAIB2iMAIAGHGWiv79HzZtctlLrlWzulneV0SAABopwiMABBm7IvPyL75ssyIn8s55+delwMAANoxAiMAhBH3rZdl//WkzOk/kbnoGq/LAQAA7RyBEQDChLviTdmlj0n9B8tcnSVjjNclAQCAdq5Z12Hcvn27pk+fXjtdVlamsrIyPf744xo/frx8Pp98Pp8k6YorrtCAAQMkSTk5OZo/f76qqqqUmpqqCRMmKCkpqVljANCe2f+skF00U8o8Wc7Y22QiIrwuCQAAdADNCoxdu3atExgXLVqkQCBQO33LLbcoPb3uNcGstZo1a5bGjx+vzMxMLVu2TEuXLtW4ceOaPAYA7Zld/6Hc+dOlXn3kjP+jjC/K65IAAEAHEbJdUmtqavTuu+9q2LBhh10uNzdXUVFRyszMlCQNHz5cK1asaNYYALRX9sv1cufcK3XrKWfiXTIxnbwuCQAAdCDN2sJ4sLVr1yo5OVkZGRm182bNmiVrrTIzMzV69GjFxcWpqKhIfr+/dpnExERZa1VaWtrksfj4+FB9DABoM+zGXLkP3y118cu5eYpMHOs6AADQukIWGN988806WxenTp0qv9+v6upqLVq0SAsWLNDEiRND9XZNlpaW5nUJQKPRtx1P9cY8bZ85VRHxiep6/1xFpnbzuqQmoXcRruhdhCt6F6EWksC4c+dOrV+/XllZWbXz9m8N9Pl8GjFihO6///7a+UVFRbXLlZSUyBij+Pj4Jo81Rn5+fpM+I+CVtLQ0+raDsYUFcv96u2SMnN9O0fZqVwrDHqB3Ea7oXYQrehcN0dgfFUJyDONbb72lU045RQkJCZKkiooKlZWVSQqe5Oa9995Tr169JEkZGRmqqqrShg0bJEnZ2dkaMmRIs8YAoL2wu3fI/dudUlWlnN9OlenKL8UAAMA7IdnC+Pbbb+vaa6+tnS4uLtYDDzwg13Xluq569Oih66+/XpLkOI6ysrI0b948VVdX114eozljANAe2D0lch+8UyoplnPrPTI9enldEgAA6OCMtdZ6XURrYjM9wg27l3QMtrRE7gN3SNu2yPnNXTJ9T/K6pGajdxGu6F2EK3oXDeHJLqkAgKaze0uDu6EWbJaT9cd2ERYBAED7QGAEAA/Zsn1hMX+jnPF/kDn+FK9LAgAAqEVgBACP2LK9ch+aIm3+Ws5Nt8ucONDrkgAAAOogMAKAB2xFmdyHp0obc+XcOFnm5NO8LgkAAOA7CIwA0MpsRbncmXdLeTlyxtwmM+D7XpcEAABQLwIjALQiW1khd9bd0lcb5NzwO5lTuZ4sAABou0JyHUYAwJHZ8jK5D98t5W6Quf4WmUFDvS4JAADgsAiMANAKbFlp8AQ3G3PljPkdYREAAIQFAiMAtDBbWiL3b3dJW74JnuBmwA+8LgkAAKBBCIwA0IJsye7gdRYLtgSvs3jSIK9LAgAAaDACIwC0ELt7p9wH75B2bJMz4Q6Z4wd4XRIAAECjEBgBoAXYnUXBsLh7h5yJU2T6nuh1SQAAAI1GYASAELOFBcHdUEtL5Px2qsz3+nldEgAAQJMQGAEghOyWb4InuKmuknPz3TK9j/O6JAAAgCYjMAJAiNjcDcHrLEZFybntLzJHp3tdEgAAQLMQGAEgBOyn/5H76H1S5+TglkX/UV6XBAAA0GwERgBoJnfNu7IL/ial9ZTz2ykyiV28LgkAACAkCIwA0AzuWy/LPjlX6nO8nPF/komN87okAACAkCEwAkATWGtlX3pW9v+WSv0HyxkzSSYq2uuyAAAAQorACACNZAMB2afmyr79qswPhsn8aoJMJKtTAADQ/vA/HABoBFtRLnfedOmTtTIjL5L5+VUyjuN1WQAAAC2CwAgADWR375Q76x5pU57MlePk/Gik1yUBAAC0qGYHxvHjx8vn88nn80mSrrjiCg0YMEA5OTmaP3++qqqqlJqaqgkTJigpKUmSWmQMAFqS3bJR7sNTpb175Ez4k8xJg7wuCQAAoMWFZD+qW265RdOnT9f06dM1YMAAWWs1a9YsXXfddZo5c6b69eunpUuXSlKLjAFAS7KffyT3/slSoEbOpPsIiwAAoMNokQNvcnNzFRUVpczMTEnS8OHDtWLFihYbA4CW4r7/htyZU6UuKXJunyFzzLFelwQAANBqQnIM46xZs2StVWZmpkaPHq2ioiL5/f7a8cTERFlrVVpa2iJj8fHxofgYAFDLuq7s/z0p+/KzUubJcm76vUws6xoAANCxNDswTp06VX6/X9XV1Vq0aJEWLFigwYMHh6K2FpGWluZ1CUCj0betyy3bq50P3KnylW8rbsSF6nLTZJl9x2mjcehdhCt6F+GK3kWoNTsw7t/q5/P5NGLECN1///0699xzVVRUVLtMSUmJjDGKj4+X3+8P+Vhj5OfnN/WjAp5IS0ujb1uRLSyQO+fP0tZNMpeNUflZ56misNDrssISvYtwRe8iXNG7aIjG/qjQrGMYKyoqVFZWJil4Upr33ntPvXr1UkZGhqqqqrRhwwZJUnZ2toYMGSJJLTIGAKFgv/hU7r23SruK5PxmipyfnC9jjNdlAQAAeKZZWxiLi4v1wAMPyHVdua6rHj166Prrr5fjOMrKytK8efNUXV1dewkMSS0yBgDNYa2VfesV2WfmS6nd5WT9SeYodukBAAAw1lrrdRGtic30CDfsXtKybGWl7JJHZFe+KZ00SM71t8rExnldVrtA7yJc0bsIV/QuGqKxu6SG5CypABCO7Patch+9T9ryjcyoy2XOu1TGaZGrDQEAAIQlAiOADsl+tEbuggclY+RMuFPmpIFelwQAANDmEBgBdCg2EJB94SnZl56VevaWc9PtMqndvC4LAACgTSIwAugw7K4dcv8+Q8r5TOb0n8hccaNMVLTXZQEAALRZBEYAHYL9eI3cxx+Sqqtlfn2znCHDvC4JAACgzSMwAmjXbE217PNPyP6//5V69JIz9jaZbj28LgsAACAsEBgBtFt2W37wxDZ5OTI//qnMJb9mF1QAAIBGIDACaHestbLv/lv2mQVSpE/OjZNlBp7hdVkAAABhh8AIoF2xJbvk/mO29PEaqV9/Odf+VqZLitdlAQAAhCUCI4B2w360Wu4/ZknlZTK/vE7mrJ/JOI7XZQEAAIQtAiOAsGf37pF95u+yK96UevSWc+s0maOP8bosAACAsEdgBBDW7LqVcpc8Ku0pljn3Upnzfynj83ldFgAAQLtAYAQQluyeEtmn5squeTe4VXHinTLpx3pdFgAAQLtCYAQQVqy1sqvfkX3m71LZXpkLLpcZeZFMJFsVAQAAQo3ACCBs2G35cpc+Kn3+kdSrj5xbJsj06OV1WQAAAO0WgRFAm2erq2VfXSb78nOSzydz+ViZH42UcSK8Lg0AAKBdIzACaNPs+nVyn5wrbdsic9oPZS69TqZzstdlAQAAdAgERgBtki0skPvsQmndSim1m5zfTJE58VSvywIAAOhQCIwA2hRbUS778nOy2f8rRUTK/PwqmeEXyPiivC4NAACgwyEwAmgTrOvKrnxL9n8WS8U7ZX4wTOaiq2U6p3hdGgAAQIdFYATgKWut9Nl/5C5bLG3OC5799Kbfyxyb6XVpAAAAHR6BEYBn7Ddfyv3nImnDx5L/KJkbficzaKiM43hdGgAAANTMwLhnzx7Nnj1bBQUF8vl86tatm8aMGaPExERdeumlSk9PlzFGkjRhwgSlp6dLktauXaslS5YoEAgoIyND48aNU3R0dLPGAIQPW7BZ9l9Pya55V4pPlLnshuBlMiJ9XpcGAACAgzQrMBpjNGrUKJ1wwgmSpCeeeEJLly7VTTfdJEmaNm2aYmJi6jynoqJCc+fO1d13363u3bvrscce0wsvvKCLL764yWMAwoPdli/74jOyq94OXk/xvEtlRvxCplOs16UBAACgHs3a7ys+Pr42LEpSnz59VFRUdNjnfPjhhzr22GPVvXt3SdLw4cP1/vvvN2sMQNtmt2+Vu/AhuXeOk/3PezLDL5Bz33w5F15JWAQAAGjDQnYMo+u6ys7O1sCBA2vnTZkyRYFAQKeccoouueQS+Xw+FRUVye/31y7j9/u1Y8cOSWryGIC2yW7+Wvbf/yO7+p3gJTLO+pnMyF/IJHXxujQAAAA0QMgC48KFCxUdHa2RI0dKkh555BH5/X6VlZVp9uzZWrZsmS677LJQvV2TpaWleV0C0Gjh1LfWWlV+9qH2PPcPVax9Tyamk+J/9kslXvwrRST7j/wCaFfCqXeBg9G7CFf0LkItJIFx8eLFKigo0OTJk+XsO7vh/q2BsbGxOuuss/TSSy/Vzv/ss89qn1tUVKSUlJRmjTVGfn5+o58DeCktLS0s+ta6rvTRarmvLpO++kJKSJK54AqZYeeqPC5B5RVVUhh8DoROuPQu8G30LsIVvYuGaOyPCs0+d/1TTz2lvLw8TZo0ST5f8AyHpaWlqqqqkiQFAgGtXLlSxxxzjCRpwIABys3N1datWyVJ2dnZGjJkSLPGAHjHVpTLfesVuXdlyX3kXqlkt8zlN8q57+9yzv+lTFyC1yUCAACgiYy11jb1yZs2bdKtt96q7t27KyoqSpLUtWtXXXDBBZo3b56MMaqpqVHfvn11zTXX1J4xdc2aNVqyZIlc11Xv3r01bty4Zo81FL+6INy01V8LbcEW2bdeln3/dam8TEo/VmbEz2UGniETEeF1eWgD2mrvAkdC7yJc0btoiMZuYWxWYAxH/CNCuGlLK3/rBqRPPpD7xkvS+g+DJ7IZdIbMsPOkjL61110FpLbVu0Bj0LsIV/QuGqKxgTFkJ70B0H7ZnYWy778huzxb2rFd6pwcPD7xzHNkEjnjKQAAQHtFYARQL1tdJbtulezy16TP10nWSn1PknPJtVL/78tEsvoAAABo7/gfH4Ba1lppY67se6/JrnpHKiuVklNlzrtU5vSfyKR287pEAAAAtCICIwDZrZtl17wju+ZdqWCLFOmTOXWIzBlnS5knyzjNPqEyAAAAwhCBEeigbGGB7Jp3ZdcslzbnScZIx50oc/YFMoOGysTFe10iAAAAPEZgBDoIa61UsDl4XOKHK6W8nODAsZkyl90gM/B0mc4p3hYJAACANoXACLRj1g1IuV8EQ+K6VdL2fafaPuZ7MhdfE9ySmNLV2yIBAADQZhEYgXbG7i2VPl8n++kHsh+vlfYUSxGRUuZJMmePkuk/WCbZ73WZAAAACAMERiDM2UBAysuR/exD2fUfSnn/lawrxcbJnDhIGvB9mRNPlekU63WpAAAACDMERiDMWNeVtm6SzflUdsMn0ucfSeV7JeNIvfvInH+pzPGnSL2Pk4mI8LpcAAAAhDECI9DGWdeV3ZQXDIg5n0o5n0qle4KDyakyg86QOX6A1K+/TFyCt8UCAACgXSEwAm2MLSuV8v4r+9UXsl99ofyv/yu3tCQ4mNJV5uTBwctf9D1Rxn+Ut8UCAACgXSMwAh6ygYCUv1E27wvpqy9kv8qRtm4KDhojde+pTqcPU1mPDJnjTpRJSfW2YAAAAHQoBEagldiqSmnLN7KbvpI25clu/Era/LVUVRlcID5Ryugr8/0fyWT0lXr1kekUq+S0NFXk53taOwAAADomAiMQYtZaadeO4IlpNn8tbfoqGA4LtgTPXipJneKknr1lfnhO8OQ0GX0l/1EyxnhaOwAAAHAwAiPQRNZ1pR3bpYLNsvmbpK0b991vkirKDyzYxS+lZ8gMPF2mZ4bUszfhEAAAAGGBwAgchnUDwa2F27fKFm6Vthfsu9932787qSQldZG695QZcpaU1lOme7qUli6TkOjdBwAAAACagcCIDs1aG7xExc5CaVeh7I5CqbBAdvtWqbBAKiqQamoOPCEyUkrtLqV2k8nsvy8Y9gwGxbh47z4IAAAA0AIIjGi3rLVS2V6pZJe0e6fszkJpR6G0s1B2V1EwJO4slKqq6j4xOiYYCtN6yvQfLHXtLtO1e3Bel2QZJ8KbDwQAAAC0MgIjwo6tqZH2FEvFO6Xi3bLFO4OhsHiXbHHwvvZWU/3dF0hKlpL90tHHyJw0SEpOlUlODc5L9ksJnTm+EAAAABCBER6z1VXBrYCle6S9JVJpiWxpibSnpHaeLd0jlZYcuJWX1f9i8QlSYhcpqYtMn+ODxxTun+6cLCWnSp1TZHy+1v2QAAAAQJgiMKJJrLXBE75UlksVFVJlRfBxeZls2d5gCCwrDYa78uC0LdsbfFy+f3xv/VsA94vuFAyB8YlSfEJwt9D4xOAtIUkmKRgGg8Gws0wkQRAAAAAIpbALjPn5+ZozZ45KS0sVHx+vrKwsde/e3euy2hRrbfBELdWVwePzqg+6VVXVzrffmg6OVwbDX0W5VFkhW1EeDIKVFXWDYWWFZO2Ri4mMlGLjpdi44LUHY+NkUrrWmVanuGAg3B8G9wdEX1TLf1kAAAAADinsAuP8+fM1YsQInXnmmXrnnXc0b9483XXXXS3yXtba4IXWXVcKuJIb2HdzpcC+x4F906570HSg7nSgJhjgampka6qDj/fPC1TXjh28nGqq900Hx+3BYwfNV021VF29LxDuD37VBy4Q31jGkWI6BU/8EhMT3MoX0ym4K2d0zIGx2sfBaRMTI0XF1A2CsXGEPgAAACCMhVVgLC4uVl5enu644w5J0tChQ7Vw4UKVlJQoMbFh17oL3Dn+W+HuoCAYcL81HWjJj1O/SF9wq1xkpBSx73FEpOTzBe/3j0VFB7fcRUQEQ5kvSorad++LPvA46sC0+da0ap8XfeBxZCQnfAEAAAAgKcwC444dO5ScnCzHcSRJjuOoS5cuKioqanBgVFrP4GURIiKCW9MiIiQnQopwgvfOvvv98x0neDt4us7Ygeea+uYbZ1/YOzgI7g9+vrrB0HEIawAAAADajLAKjKHQ8+6HvS4BaLS0tDSvSwCahN5FuKJ3Ea7oXYRaWAXGlJQU7dy5U67rynEcua6rXbt2ye/3N/g18vPzW7BCIPTS0tLoW4Qlehfhit5FuKJ30RCN/VHBaaE6WkRSUpJ69eql5cuXS5KWL1+u3r17N3x3VAAAAABAg4XVFkZJuuGGGzRnzhwtW7ZMcXFxysrK8rokAAAAAGiXwi4wHn300br33nu9LgMAAAAA2r2w2iUVAAAAANB6CIwAAAAAgHoRGAEAAAAA9SIwAgAAAADqRWAEAAAAANSLwAgAAAAAqJex1lqviwAAAAAAtD1sYQQAAAAA1IvACAAAAACoF4ERAAAAAFAvAiMAAAAAoF4ERgAAAABAvQiMAAAAAIB6ERgBAAAAAPUiMAIAAAAA6kVgBAAAAADUK9LrAlpDfn6+5syZo9LSUsXHxysrK0vdu3f3uixAixcv1qpVq1RYWKgZM2YoPT1d0uF7ln5GW7Bnzx7Nnj1bBQUF8vl86tatm8aMGaPExETl5ORo/vz5qqqqUmpqqiZMmKCkpCRJOuwY0Br++te/qrCwUMYYxcTE6Ne//rV69erFehdh47nnntNzzz1X+/8G1rloaRFTpkyZ4nURLe3BBx/U2WefrRtvvFE+n0/Lli3Tj3/8Y6/LAhQdHa3zzjtPq1ev1tChQ2tX4ofrWfoZbUF1dbW6deumq6++Wuecc45yc3P1wQcfaNCgQZo6darGjh2rq666SoWFhVqxYoVOO+00WWsPOQa0llNOOUXnnXeehg8frvj4eC1evFjDhw9nvYuw8NVXX+mdd95RTU2Nhg4dqsTERNa5aHHtfpfU4uJi5eXlaejQoZKkoUOHKi8vTyUlJR5XBkiZmZny+/115h2uZ+lntBXx8fE64YQTaqf79OmjoqIi5ebmKioqSpmZmZKk4cOHa8WKFZJ02DGgtcTGxtY+LisrkzGG9S7CQnV1tRYsWKDrr79exhhJh1+vss5FqLT7XVJ37Nih5ORkOU4wGzuOoy5duqioqEiJiYkeVwd81+F6VhL9jDbHdV1lZ2dr4MCBKioqqvMjSGJioqy1Ki0tPexYfHy8F6Wjg3rsscf00UcfSZL+8Ic/sN5FWHjmmWf0wx/+UF27dq2dxzoXraHdb2EEALSshQsXKjo6WiNHjvS6FKBBbrzxRj366KMaPXq0lixZ4nU5wBHl5OQoNzdXI0aM8LoUdEDtPjCmpKRo586dcl1XUvCX8F27dn1nN0CgrThcz9LPaGsWL16sgoIC3XzzzXIcR36/v3arjCSVlJTIGKP4+PjDjgFeOPPMM/Xpp58qOTmZ9S7atPXr1ys/P19ZWVkaP368duzYoT//+c8qKChgnYsW1+4DY1JSknr16qXly5dLkpYvX67evXuzGwnarMP1LP2MtuSpp55SXl6eJk2aJJ/PJ0nKyMhQVVWVNmzYIEnKzs7WkCFDjjgGtIaKioo6/4Feu3at4uPjWe+izbvwwgs1d+5czZkzR3PmzFFKSor++Mc/atSoUaxz0eLM/2/nflUUiMIwDr8YLDpgEjQYvC+vQJuIFzFgmzLBC/IOzGKfIgiG2bbpIOyCuH+ep55ywscHPzicvu/7d1/i1a7Xa5qmye12y2g0ymazyXw+f/e1IMfjMafTKV3XpaqqVFWVw+HwdGbNMz/B5XLJdrvNbDbLcDhMkkyn0+x2u5zP57Rtm8fj8fmN+2QySZKnZ/BqXdelruvc7/cMBoOMx+OsVqssl0t7l19lvV5nv99nsVjYubzcvwhGAAAAvu7PP0kFAADgewQjAAAARYIRAACAIsEIAABAkWAEAACgSDACAABQJBgBAAAoEowAAAAUfQDjoQMHIPpbxwAAAABJRU5ErkJggg==\n", "text/plain": [ "
    " ] @@ -1393,7 +1393,7 @@ "# Now plot the data\n", "bugs = pd.DataFrame(data = {'bacteria': population}, index=time)\n", "display(bugs.head())\n", - "ax = bugs.plot(figsize=(15,5), legend=False) \n", + "ax = bugs.plot(figsize=(15,5)) \n", "ax.grid(True)\n" ] }, @@ -2045,7 +2045,7 @@ "source": [ "#### ➜ Challenge yourself: Seaborn library\n", "\n", - "The Seaborn library wraps Matplotlib up, and creates easy-to-use function for common data visualization steps.\n", + "The Seaborn library wraps Matplotlib up, and creates easy-to-use function for common data visualization steps. The **goal** of this challenge is to get more familiar with one of the most useful visualization libraries in Python.\n", "\n", "* Take a look at the [Seaborn Gallery](https://seaborn.pydata.org/examples/index.html) to see some examples. Which ones can you use in your next project?\n", "\n", @@ -2059,7 +2059,9 @@ " * change plot style\n", " * adding a title\n", " \n", - "* [Interactively create Seaborn visualizations](https://engmrk.com/module7-introduction-to-seaborn/) within this webpage (if you can handle all the advertising!)" + "* [Interactively create Seaborn visualizations](https://engmrk.com/module7-introduction-to-seaborn/) within this webpage (if you can handle all the advertising!)\n", + "\n", + "* Though not related to Seaborn, it is worth giving a link to the [Visualizations from the Pandas library](https://pandas.pydata.org/pandas-docs/stable/user_guide/visualization.html)." ] }, { diff --git a/Module-11-interactive.ipynb b/Module-11-interactive.ipynb index 7afeab1..54272de 100644 --- a/Module-11-interactive.ipynb +++ b/Module-11-interactive.ipynb @@ -299,6 +299,10 @@ "source": [ "##### TO DO\n", "\n", + "* Regression plots for grades against time\n", + "\n", + "\n", + "\n", "* MUST COVER: time-series of stability data from which a database was built on\n", "\n", "* Bubble plots from this notebook: https://nbviewer.jupyter.org/github/engineersCode/EngComp2_takeoff/blob/master/notebooks_en/2_Seeing_Stats.ipynb\n", From 62c9a3f8b1e34ef7844e97677360d808ea5231dc Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Thu, 25 Jul 2019 14:21:11 +0200 Subject: [PATCH 084/134] Added ... to the function --- Module-10-interactive.ipynb | 13 ++++--------- 1 file changed, 4 insertions(+), 9 deletions(-) diff --git a/Module-10-interactive.ipynb b/Module-10-interactive.ipynb index a9eac95..1f3fe54 100644 --- a/Module-10-interactive.ipynb +++ b/Module-10-interactive.ipynb @@ -315,14 +315,9 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 1, "metadata": { - "deletable": false, - "editable": false, - "hide_input": false, - "run_control": { - "frozen": true - } + "hide_input": false }, "outputs": [ { @@ -544,7 +539,7 @@ "11 92.2 " ] }, - "execution_count": 24, + "execution_count": 1, "metadata": {}, "output_type": "execute_result" } @@ -1219,7 +1214,7 @@ "* Remember: plot the **cumulative sum** of their steps, not the step changes. \n", "* You can add horizontal lines to an existing axis: \n", "```python\n", - "ax = df.plot() # the output of the plot function is an axis\n", + "ax = df.plot(...) # the output of the plot function is an axis\n", "ax.axhline(y = 0, color='k')\n", "```\n", "* You can also use the axis ``ax`` to set labels: ``ax.set_xlabel(...)`` or ``ax.set_ylabel(...)``\n", From 5c2256d4877c3eae676e5430456d37421516efde Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Thu, 25 Jul 2019 14:28:51 +0200 Subject: [PATCH 085/134] Updated equation order --- Module-10-interactive.ipynb | 34 ++++++++++++++++++---------------- 1 file changed, 18 insertions(+), 16 deletions(-) diff --git a/Module-10-interactive.ipynb b/Module-10-interactive.ipynb index 1f3fe54..a1dfe6b 100644 --- a/Module-10-interactive.ipynb +++ b/Module-10-interactive.ipynb @@ -1280,7 +1280,7 @@ "where they are limited by the factor $a$ in the equation.\n", "\n", "The differential equation can be re-written as: \n", - "$$P_{i+1} - P_i = \\left[\\,rP_i -a\\,P_i^2\\,\\right]\\delta t$$ \n", + "$$P_{i+1} = P_i + \\left[\\,rP_i -a\\,P_i^2\\,\\right]\\delta t$$ \n", "\n", "which shows how the population at time point $i+1$ (one step in the future) is related to the population size now, at time $i$ over a short interval of time $\\delta t$ minutes. \n", "\n", @@ -1289,7 +1289,7 @@ }, { "cell_type": "code", - "execution_count": 55, + "execution_count": 3, "metadata": { "hide_input": false }, @@ -1321,35 +1321,35 @@ " \n", " \n", " 0.0\n", - " 500.000\n", + " 500.000000\n", " \n", " \n", " 1.0\n", - " 515.960\n", + " 515.960000\n", " \n", " \n", " 2.0\n", - " 532.428\n", + " 532.428126\n", " \n", " \n", " 3.0\n", - " 549.420\n", + " 549.420469\n", " \n", " \n", " 4.0\n", - " 566.954\n", + " 566.953626\n", " \n", " \n", "\n", "" ], "text/plain": [ - " bacteria\n", - "0.0 500.000\n", - "1.0 515.960\n", - "2.0 532.428\n", - "3.0 549.420\n", - "4.0 566.954" + " bacteria\n", + "0.0 500.000000\n", + "1.0 515.960000\n", + "2.0 532.428126\n", + "3.0 549.420469\n", + "4.0 566.953626" ] }, "metadata": {}, @@ -1357,12 +1357,14 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4wAAAE3CAYAAADhWM89AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xl4VOXd//HPfZJJQlZIJggRIsQiwQ0UpEWpLVaEqkVbl4pbtSooBFq1SG2rglKtBa0IqEBBiuBaHp+nrv3FXZTVihtiaoyyhEDCkhCyz7l/fwwEogGyTHIyyft1XXPNnHOfmfnOXF9O+MzZjLXWCgAAAACAb3G8LgAAAAAA0DYRGAEAAAAA9SIwAgAAAADqRWAEAAAAANSLwAgAAAAAqBeBEQAAAABQLwIjAAAAAKBeBEYAAAAAQL0IjAAAAACAehEYAQAAAAD1IjACAAAAAOpFYAQAAAAA1IvACAAAAACoV6TXBbS2/Px8r0sAGiUtLY2+RViidxGu6F2EK3oXDZGWltao5dnCCAAAAACoF4ERAAAAAFAvAiMAAAAAoF4d7hjGb7PWqqKiQq7ryhjjdTlhzVorx3EUExPDdwkAAAC0Ax0+MFZUVMjn8ykyssN/FSFRU1OjiooKderUyetSAAAAADRTh98l1XVdwmIIRUZGynVdr8sAAAAAEAIdPjCy62To8Z0CAAAA7cMRN63t2bNHs2fPVkFBgXw+n7p166YxY8YoMTFROTk5mj9/vqqqqpSamqoJEyYoKSlJklp9DAAAAAAQWkfcwmiM0ahRozRz5kzNmDFDRx11lJYuXSprrWbNmqXrrrtOM2fOVL9+/bR06VJJavWx9mTYsGEqLy8PyWuVlpbqqaeeavLzv/jiC02bNi0ktQAAAAAIP0fcwhgfH68TTjihdrpPnz7Kzs5Wbm6uoqKilJmZKUkaPny4xo8fr3HjxrX6GOpXWlqqp59+WqNHj270cwOBgPr27as//elPLVAZAABA6FhrJdeVAjVSICC5geDjmn331g2OH3zb/xw3cGC8dt7Byx24t9+e953XciUbqGeerXuTldx996Eas1Y7OsXILSurdxnbmNcOfqkHf8HfnVdn+lvjtYsd4XmNmh/i99C3XudQn+U7z1PD5h/OIZ9zqPcI4WtFREqLXz7MC35Xo8724rqusrOzNXDgQBUVFcnv99eOJSYmylqr0tLSVh+Lj49v8GdIS0urM71lyxb5fL7GfA0t7rnnntOaNWtUXFyssWPH6sc//rEkaerUqdq4caOqq6t19NFH6/bbb1diYqIk6cUXX9Rzzz0nSfL5fPrrX/+qhx9+WHv37tUNN9ygmJgYPfbYYyoqKtJDDz2kbdu2qbKyUmeffbauvvpqSdLFF1+s888/Xx988IHS0tI0YsQIzZkzRwsWLFBNTY1uu+02FRcXq7KyUscff7wmTZpU73fXqVOn73zPaB6+T4Qrehfhit6ty9bUyFZWBG9VlbLV1bLVVbLVVVLt42rZ6gNjqp0XvK8zXVUlW7P/+TWyNdVSICAbqJFqamQDNbKBQO1jBWpk94U/W1Mjufvu908HAl5/RY1jjGQcyWjfvQmeA6L2dmCs7vwDY8ZxFHxw4FZpHDlm3/kkvvX6coyMvvv6+59b532073wU+09L4eyfr+Br7P8MBy/znfnmW/NVZ775znhDX6+e1zjCex3ytWrvGlf7dxzy/B2HOa/HIZ5z6FOBNP616ptvIhufexoVGBcuXKjo6GiNHDlSq1evbvSbtQX5+fl1psvLy+ucpMV9/w3Z915rkfc2Z5wt5/Szjrjc/t1vN27cqAkTJuj4449Xly5dNH78+NpjNhcsWKAnnnhCY8aM0bp167R48WLNmjVLycnJKi8vV0REhCZOnKixY8dq/vz5kqTq6mrdc889uuqqq9S/f39VV1fr1ltvVZ8+fTRo0CBZa7V9+3Y9+OCDkqR169bJWqvq6mpZa/WHP/xBSUlJstbqvvvu07/+9S+NGjXqO/WXl5d/53tG06WlpfF9IizRuwhX4dq71nWlygqpvEyqKJMqymvvbXm5VFkuVVVKlZXB+4Nutqoy+Nw686ukqn3zQhHIjCP5IqVIX/Dmi9r3ODK41SMiYt9t3+PIKCk2OG1qxw4adw4ei5QinINeJ3Lf+P7HTu3NOE6wloPvD74ZZ19AcoKvUWfMfGu5iO/Orx2POOh19oWw/cGshezv3UZuc0IH06WRyzc4MC5evFgFBQWaPHmyHMeR3+9XUVFR7XhJSYmMMYqPj2/1sfbm3HPPlSSlp6erT58+Wr9+vc444wz9+9//1muvvVZ7rcMePXpIklauXKlzzjlHycnJknTIayCWl5dr3bp12r17d51533zzjQYNGiRJGjFiRL3PdV1Xzz77rFatWiXXdbVnzx7FxMSE7DMDANDR2ZoaqaxU2lsq7d0j7S2V3btHKtuzb16pVFF2IPwdHAz3z2uoqOj6b53ipM7JMocaj4reF/QiZXy+A+Ev0if56nl80DwTEdFyXx6AFtOgwPjUU08pLy9Pv//972t3QczIyFBVVZU2bNigzMxMZWdna8iQIZ6MhZJz+llSA7YCthZrrYwx+vjjj/Wvf/1Ls2fPVufOnfXaa6/pxRdfrF2mMa/12GOPHfLak4cKm6+//ro++eQTPfzww4qNjdWSJUu0efPmpn0oAADaOWttMPyVFEslu2VLdkslu6U9u6U9xcEgeFAw1N7Swwc+Y6ROsVJM7L77TlJ8gkxK14PmdwrO37eMidm3XKd986JjpKgYKSqKS2ABaLAjBsZNmzbp+eefV/fu3WtPgNK1a1dNmjRJWVlZmjdvnqqrq2svcyFJjuO06lh78+qrr+qqq67S5s2b9eWXX6pfv376/PPPFRcXp8TERFVVVemVV16pXX7IkCGaPn26fvazn9XZJTU2NlaVlZUKBAK10yeddJKefPLJ2uMWt2/frsjIyNqtk4dSWlqqpKQkxcbGqrS0VK+//rr69u3bot8DAABtjQ0EpOKd0q4d0u4dsruKpN07pZJi2T37QmFJsbSnOHiylW8zjhSfIMUlSHHxUhe/TI9eB6bjEqTYeJm4/cvEBe87xco4bKED0PqMbejmqXbi28cklJWVKTY21qNqvmvYsGEaO3asli9frpKSEl133XX60Y9+pEAgoGnTpunLL79UamqqjjvuOG3YsEEPPfSQJOmll17SsmXLZIxRVFSU/vznPys5OVkzZszQJ598ooSEBM2ePVs7d+7UnDlzlJeXJ0mKjY3VbbfdpvT0dF122WW677771Lt3b0nBYxgfffRRzZ07V6Wlpbrrrru0Y8cOpaamKi0tTZWVlfr973//nc/Q1r7TcBeux9IA9C7CjbVWKtktvwIq3PCZtKtI2nVQKNxVJBXvDp4h82CRkVJiZymhs5TYWSYx6VvTnfdNJwW3ChL80EJY76IhGntSLwIj4Sbk+E5Di5U/whW9i7bIVpRJRdukwm2yRdukom2yhQXBeTu2BU/0crBOcVKXFKlzikyXFKmLX+qSLNPFXztfcQns4ok2gfUuGqKxgbFRZ0kFAABo62wgEAx/BVtkC7ZIBZtlt22RCrYEdxk9WKdYKeUo6aijZU48VfIfpZTjjtdOJ1JK9gePAwSADozACAAAwpJ1A9L2AmnLN7Kbv5bN/0baulkq3CrVHHT8YHyi1O1omZMGBYNh6lGSf9+tnq2DndLSZNhKAwCSCIwAACAM2L17pE15slu+kTZ/Lbv5ayn/mwO7kBpH6tpd6t5D5uTTgvdHHR0MivGJntYOAOGswwfGDnYIZ6vgOwUANIetKJc25sp+/V/p6y9l83KCxxjuF58o9ewtc+ZIqUev4FlGu/cMXjsQABBSHT4wOo6jmpqaQ16XEI1TU1Mjx3G8LgMAECZsIBDcYvjVF9LX/w2GxK2bD5yJNKWr1Ot7MmeOlEnPkHr0Cp55lJPMAECr6PApKSYmRhUVFaqsrOSPTzNZa+U4jmJiYrwuBQDQRtnKSinvC9kv18v+93Mpd8OBC9YnJEm9+sgMPEOmdx/pmO8FL0kBAPBMhw+Mxhh16tTJ6zIAAGiXbGWl9OV62c8/ks35VNqYKwUCkjHS0cfInD5M+t7xMsdmSsmp/HgLAG1Mhw+MAAAgdKwbkL7JlV2/Tvbzj6Tcz4NnLI2IlHr3kTnnQpk+J0jHZsrExntdLgDgCAiMAACgWWzJLtlP/iP78Rppw0dS2d7gQM/eMmedL9Ovv9TnBJloDlkAgHBDYAQAAI1irZU2fSX78RrZj9dKX/9XslbqnCJz6unS8QNkMk+WSUjyulQAQDMRGAEAwBHZQEDK+VT2g/dkP1ot7d4ZPA6xVx+ZUZcHr33YszfHIAJAO0NgBAAA9bKBgPTFJ8GQ+OFKaU+xFBUtnXiqzMmDZU46VSaxi9dlAgBaEIERAADUsm5A+uJT2TXvyn64QirdI0XHyJx8mszAM6QTB8pER3tdJgCglRAYAQCA7NbNsivekF35lrSrSIruJNN/f0g8VSaKkAgAHRGBEQCADsqWlgS3JK54U8rLkRxHOuFUmUt+HQyLhEQA6PAIjAAAdCDWWmnDx3LffkVat1oK1Eg9egdD4vd/JJPEMYkAgAMIjAAAdAB27x7Z916Xfeff0rYtUnyCzLDzZE4/S6Znb6/LAwC0UQRGAADaKWutlJcj+9YrsmuXS9VV0rGZMuffLDPwDBlflNclAgDaOAIjAADtjA0EZP/zvuy/n5e++TJ4ApvTz5L50U/ZmggAaBQCIwAA7YStKJNd/prsa/+SdmyXuqbJXH6jzJAfy8TEel0eACAMERgBAAhzdvcO2TdelH37Valsr9TneDmX3SCdfJqM43hdHgAgjDUoMC5evFirVq1SYWGhZsyYofT0dG3fvl3Tp0+vXaasrExlZWV6/PHHJUnjx4+Xz+eTz+eTJF1xxRUaMGCAJCknJ0fz589XVVWVUlNTNWHCBCUlJTVrDACAjsYWFsi+/FzwshiuK3PqEJlzLpTJ6Ot1aQCAdqJBgXHw4ME699xzddddd9XO69q1a53AuGjRIgUCgTrPu+WWW5Senl5nnrVWs2bN0vjx45WZmally5Zp6dKlGjduXJPHAADoSOy2/GBQXPmmFBEpc+Y5MsMvlEnt5nVpAIB2pkH7qWRmZsrv9x9yvKamRu+++66GDRt2xNfKzc1VVFSUMjMzJUnDhw/XihUrmjUGAEBHYAu2yF3wN7l3jJNd+67MWT+Tc+88OZffSFgEALSIkBzDuHbtWiUnJysjI6PO/FmzZslaq8zMTI0ePVpxcXEqKiqqEz4TExNlrVVpaWmTx+Lj4xtca1paWjM+KeAN+hbhit4NjZrCApU8OV97X3tBxhelhAsvV8IvrlRE8qF/zEXz0LsIV/QuQi0kgfHNN9/8ztbFqVOnyu/3q7q6WosWLdKCBQs0ceLEULxds+Tn53tdAtAoaWlp9C3CEr3bfLa0RPaVf8q+8ZIkK3PW+TI/vVhliZ1VVlEl8f22CHoX4YreRUM09keFZgfGnTt3av369crKyqozf//WQJ/PpxEjRuj++++vnV9UVFS7XElJiYwxio+Pb/IYAADtia2skM3+P9n/97xUUSEzZJjMqNEyKV29Lg0A0ME0OzC+9dZbOuWUU5SQkFA7r6KiQq7rKjY2VtZavffee+rVq5ckKSMjQ1VVVdqwYYMyMzOVnZ2tIUOGNGsMAID2wLqu7Oq3ZZctlnbvkAb8QM6FV8ocnX7kJwMA0AIaFBgXLlyo1atXa/fu3brnnnuUkJCgBx98UJL09ttv69prr62zfHFxsR544AG5rivXddWjRw9df/31kiTHcZSVlaV58+apurq69vIYzRkDACDc2dwNcp/5u5SXIx3zPTk3/E7muBO8LgsA0MEZa631uojWxH7dCDccj4BwRe82jN1ZKLvsH7Kr35GSkmV+cZXMD4bJOA06kTlaAL2LcEXvoiFa/RhGAADQeLamRvb1F2RfeEpyXZnzfykz4hcyMZ28Lg0AgFoERgAAWpnN+Uzu0kel/I1S/8FyLrtBxn+U12UBAPAdBEYAAFqJ3VMs+9zjsivekFK6yhn/R5kB3/e6LAAADonACABAC7PWyq56S/bpv0sV5TI/vVjmvEtlomO8Lg0AgMMiMAIA0ILszkK5Sx6VPlkrZfSV86sJMmlcJgMAEB4IjAAAtADrurLvvCq77B/Bk9r88nqZs86TcSK8Lg0AgAYjMAIAEGK2aJvcx2dKOZ9K/frLuWq8TGo3r8sCAKDRCIwAAISItVb2/ddln54vSTJXZ8kMHS5jjMeVAQDQNARGAABCwJbslvvEHGndKqnvSXKu/Y1MSlevywIAoFkIjAAANJNdt1Lu4jlSeZnMJb+WOXuUjON4XRYAAM1GYAQAoIlsVaXscwtl33pF6tlbzq3TZI4+xuuyAAAIGQIjAABNYLdukjv3r9KWb2TO+bnMz6+UifR5XRYAACFFYAQAoBGstbLLs2WfnidFd5Iz8S6ZkwZ6XRYAAC2CwAgAQAPZ8jLZJ+bIrnlXyjxZznU3y3RO8bosAABaDIERAIAGsFu+kfvIfVJhgcyFV8r89CIZJ8LrsgAAaFEERgAAjsBd9bbs4tlSTKfgiW36nuh1SQAAtAoCIwAAh2BrqmWfXSj75kvS946XM3YSu6ACADoUAiMAAPWwO4vkzr1f+uoLmbMvkLnoVzKR/NkEAHQs/OUDAOBb7Jefy330PqmyUs7Y22QGDfW6JAAAPEFgBADgIO7ybNklj0rJfjm3TJM5Ot3rkgAA8AyBEQAASTYQkH1uoezrL0j9+ge3LMYleF0WAACealBgXLx4sVatWqXCwkLNmDFD6enBX1vHjx8vn88nn88nSbriiis0YMAASVJOTo7mz5+vqqoqpaamasKECUpKSmqxMQAAmsru3SN37l+lzz+S+cnPZC75tUwEl8wAAMBpyEKDBw/W1KlTlZqa+p2xW265RdOnT9f06dNrw6K1VrNmzdJ1112nmTNnql+/flq6dGmLjQEA0FR2W77ce38n5Xwm86sJci67gbAIAMA+DQqMmZmZ8vv9DX7R3NxcRUVFKTMzU5I0fPhwrVixosXGAABoCvvlerl/mSSV7ZXzu2lyhg73uiQAANqUZh/DOGvWLFlrlZmZqdGjRysuLk5FRUV1AmZiYqKstSotLW2Rsfj4+OZ+DABAB+OueVd24UNScqqc39wp0zXN65IAAGhzmhUYp06dKr/fr+rqai1atEgLFizQxIkTQ1Vbi0hL4z8ECD/0LcJVW+xda632/PMfKl40W1EnDJD/TzMUkdjZ67LQxrTF3gUagt5FqDUrMO7f4ufz+TRixAjdf//9tfOLiopqlyspKZExRvHx8S0y1hj5+flN+qyAV9LS0uhbhKW22Ls2EJB98jHZd/4tM/hM1VwzUdtKy6TSMq9LQxvSFnsXaAh6Fw3R2B8VGnQMY30qKipUVhb8A2ut1XvvvadevXpJkjIyMlRVVaUNGzZIkrKzszVkyJAWGwMA4EhseZncWXcHw+K5l8pcd4uML8rrsgAAaNOMtdYeaaGFCxdq9erV2r17txISEpSQkKDJkyfrgQcekOu6cl1XPXr00LXXXqsuXbpIkr744gvNmzdP1dXVtZfA6Ny5c4uNNRS/uiDc8GshwlVb6l1bvEvuQ1Ok/G9krhwn54fneF0S2rC21LtAY9C7aIjGbmFsUGBsT/hHhHDDyh/hqq30ri0skPu3O6WS3XJuul3mhFO8LgltXFvpXaCx6F00RGMDY7PPkgoAQFtlN+cFtyzW1Mi5dZpM7+O8LgkAgLBCYAQAtEs25zO5s6dJMZ3kTJ4m072n1yUBABB2CIwAgHbHfrRG7tz7pZRUOb+9WyYl1euSAAAISwRGAEC74r7/huw/HpZ6Zsj5zV0yCUlelwQAQNgiMAIA2g03+/9kn10g9esvZ9ztMjGxXpcEAEBYIzACANoF96VnZf93iXTq6XKuv1XG5/O6JAAAwh6BEQAQ1qy1sv+3VPalZ2V+MEzmmokyERFelwUAQLtAYAQAhC1rreyyRbL/fl7mh+fIXHmTjENYBAAgVAiMAICwZK2VfXq+7Bsvygw7V+ayMTKO43VZAAC0KwRGAEDYsa4ru/RR2Xf+LXPOhTIXXytjjNdlAQDQ7hAYAQBhxboB2UUPy654U+bcS2UuvIKwCABACyEwAgDChg0EZBf+TXb1OzIXXCHn/F96XRIAAO0agREAEBasG5Bd+FAwLF70KzkjL/K6JAAA2j3ODgAAaPOsG5B9/GHZ1W/L/IKwCABAayEwAgDaNOu6sv+YLbvyTZkLr5TzU8IiAACthcAIAGizrOvKPjFH9v3XZX42Ws55l3pdEgAAHQqBEQDQJtVeOmN5tsz5v5QzarTXJQEA0OEQGAEAbY61VvapucHrLP70YplRl3tdEgAAHRKBEQDQplhrZZ+eL/vWKzIjfi7z86u4ziIAAB4hMAIA2hT7/BOyb7woc/YFMhddQ1gEAMBDBEYAQJvhvvyc7Cv/lPnhOTKX/pqwCACAxwiMAIA2wX3zJdnnn5AZfKbMlTcRFgEAaAMiG7LQ4sWLtWrVKhUWFmrGjBlKT0/Xnj17NHv2bBUUFMjn86lbt24aM2aMEhMTJUmXXnqp0tPTa//gT5gwQenp6ZKktWvXasmSJQoEAsrIyNC4ceMUHR3drDEAQPhy339d9sm5Uv/BMtf+VsaJ8LokAACgBm5hHDx4sKZOnarU1NTaecYYjRo1SjNnztSMGTN01FFHaenSpXWeN23aNE2fPl3Tp0+vDYsVFRWaO3euJk+erFmzZqlTp0564YUXmjUGAAhf9oP3ZRfNkvr1lzP2NpnIBv2WCQAAWkGDAmNmZqb8fn+defHx8TrhhBNqp/v06aOioqIjvtaHH36oY489Vt27d5ckDR8+XO+//36zxgAA4cl++h+582dIGcfJGfcHGV+U1yUBAICDhORnXNd1lZ2drYEDB9aZP2XKFAUCAZ1yyim65JJL5PP5VFRUVCd8+v1+7dixQ5KaPAYACD825zO5j94rpfWUM/FOmZhOXpcEAAC+JSSBceHChYqOjtbIkSNr5z3yyCPy+/0qKyvT7NmztWzZMl122WWheLtmSUtL87oEoNHoW4SrQ/Vu1X/Xa/vsaYrs2l1d/zJXEZ2TW7ky4PBY7yJc0bsItWYHxsWLF6ugoECTJ0+W4xzYw3X/1sDY2FidddZZeumll2rnf/bZZ7XLFRUVKSUlpVljjZGfn9/o5wBeSktLo28Rlg7VuzZ/o9zpt0uxcXIn3KVtZRVSGT2OtoP1LsIVvYuGaOyPCs26rMZTTz2lvLw8TZo0ST6fr3Z+aWmpqqqqJEmBQEArV67UMcccI0kaMGCAcnNztXXrVklSdna2hgwZ0qwxAEB4sDu2y/3bXVJEpJxb7pFJ9h/5SQAAwDPGWmuPtNDChQu1evVq7d69WwkJCUpISNDNN9+sW2+9Vd27d1dUVPAkBV27dtWkSZOUk5OjefPmyRijmpoa9e3bV9dcc41iYmIkSWvWrNGSJUvkuq569+6tcePGNXusofjVBeGGXwsRrr7du3ZPsdz7fy+V7JZz270yPXp7WB1waKx3Ea7oXTREY7cwNigwtif8I0K4YeWPcHVw79qKcrkP/Ena8o2c306VOe6EIzwb8A7rXYQrehcN0aq7pAIAcCS2plruo/dJG3OD11kkLAIAEDYIjACAFmNdV3bhQ9L6dTJXZ8n0H+x1SQAAoBEIjACAFmGtlX16vuyad2Uu+pWcM872uiQAANBIBEYAQIsoeWaB7JsvyZxzocyIX3hdDgAAaAICIwAg5Nx3XlXJE4/J/GCYzEXXyBjjdUkAAKAJCIwAgJCy/3lfdsljihl0hsyvJsg4/KkBACBc8VccABAy9otP5c6fIWUcp5Tb75eJjPS6JAAA0AwERgBASNgt38id82cptbucCXfIiYnxuiQAANBMBEYAQLPZnUVyZ06VoqLl/GaKTFyC1yUBAIAQIDACAJrFlpXKfXiqVL5Xzm/ukklJ9bokAAAQIgRGAECT2epquY/cJxVskTPuDzI9e3tdEgAACCECIwCgSazryj7+kPTFJzLXTJTp19/rkgAAQIgRGAEATWKX/UN2zbsyv/iVnB/82OtyAABACyAwAgAazX3tX7L/73mZYefKjPyF1+UAAIAWQmAEADSK/eA92WcXSKf8QOayG2SM8bokAADQQgiMAIAGszmfyf37g1JGXznX3yrjRHhdEgAAaEEERgBAg9j8jXLnTJP8XeVk/UkmKtrrkgAAQAsjMAIAjsju2iF35hTJFyXnN1Nk4hO9LgkAALQCAiMA4LBs2V65D0+V9u6VM/FOGf9RXpcEAABaCYERAHBItqZa7mN/kbZuknPT72XSj/W6JAAA0IoIjACAelnXlV30sPT5RzJXZ8mccIrXJQEAgFZGYAQA1Ms+/4TsqrdlLrxSzuk/8bocAADggcgjLbB48WKtWrVKhYWFmjFjhtLT0yVJ+fn5mjNnjkpLSxUfH6+srCx1797dkzEAQGi5b7wo++oymTNHypx7idflAAAAjxxxC+PgwYM1depUpaam1pk/f/58jRgxQjNnztSIESM0b948z8YAAKFj//O+7NPzpf6DZS4fK2OM1yUBAACPHDEwZmZmyu/315lXXFysvLw8DR06VJI0dOhQ5eXlqaSkpNXHAAChY79cL/fvD0q9j5NzwySZiAivSwIAAB464i6p9dmxY4eSk5PlOMG86TiOunTpoqKiIklq1bHERK4FBgChYLduljtrmtTFLyfrDpnoaK9LAgAAHmtSYAxnaWlpXpcANBp9i5YW2FmkbbPvkRMVpaPufUSR3XuE5HXpXYQrehfhit5FqDUpMKakpGjnzp1yXVeO48h1Xe3atUt+v1/W2lYda6z8/PymfGTAM2lpafQtWpQtL5M7/XapeJec3/1Z260jhaDn6F2EK3oX4YreRUM09keFJl1WIykpSb169dLy5cslScuXL1fv3r2VmJjY6mMAgKazNdVyH/uLtOUbOWMny/Tq43VJAACgDTHHNyhPAAAcHklEQVTWWnu4BRYuXKjVq1dr9+7dSkhIUEJCgh588EFt2bJFc+bM0d69exUXF6esrKzatNraY43Bry4IN/xaiJZirZVd+JDsyjdlrpko54yzQ/r69C7CFb2LcEXvoiEam6GOGBjbG/4RIdyw8kdLcf9nsewr/5S54HI5518W8tendxGu6F2EK3oXDdEqu6QCAMKb+9bLwbD4w3Nkzvul1+UAAIA2isAIAB2M/XCl7JPzpJNPk7niJhljvC4JAAC0UQRGAOhA7Jefy50/Q+r1PTljJslERHhdEgAAaMMIjADQQdiCzXJnT5O6pMiZcIdMdIzXJQEAgDaOwAgAHYAt3iX3oSmS48j5zRSZhCSvSwIAAGGAwAgA7ZytKJP78FSptETOxDtlunb3uiQAABAmCIwA0I7Zmhq5j90vbf5aztjJMr36eF0SAAAIIwRGAGinrLWyi2dLn30oc9V4mZMGel0SAAAIMwRGAGin7P8ulV3xhsyoy+UMHe51OQAAIAwRGAGgHXLfflX25WdlfniOzPm/9LocAAAQpgiMANDO2HWrZJc+Jp18mswVN8kY43VJAAAgTBEYAaAdsf9dL3fedKnX9+SMmSQTEeF1SQAAIIwRGAGgnbCbv5Y7+x4pJVXOhDtlomO8LgkAAIQ5AiMAtAO2aJvch6ZIUTFyfjtVJiHR65IAAEA7EOl1AQCA5rElu+X+7S6pukrObX+RSenqdUkAAKCdYAsjAIQxW1Em9+G7pd1FcibcIXN0utclAQCAdoTACABhylZXy33kPmnTV3LGTpb5Xj+vSwIAAO0MgREAwpB1A7IL/yZ9/pHMrybKnHya1yUBAIB2iMAIAGHGWiv79HzZtctlLrlWzulneV0SAABopwiMABBm7IvPyL75ssyIn8s55+delwMAANoxAiMAhBH3rZdl//WkzOk/kbnoGq/LAQAA7RyBEQDChLviTdmlj0n9B8tcnSVjjNclAQCAdq5Z12Hcvn27pk+fXjtdVlamsrIyPf744xo/frx8Pp98Pp8k6YorrtCAAQMkSTk5OZo/f76qqqqUmpqqCRMmKCkpqVljANCe2f+skF00U8o8Wc7Y22QiIrwuCQAAdADNCoxdu3atExgXLVqkQCBQO33LLbcoPb3uNcGstZo1a5bGjx+vzMxMLVu2TEuXLtW4ceOaPAYA7Zld/6Hc+dOlXn3kjP+jjC/K65IAAEAHEbJdUmtqavTuu+9q2LBhh10uNzdXUVFRyszMlCQNHz5cK1asaNYYALRX9sv1cufcK3XrKWfiXTIxnbwuCQAAdCDN2sJ4sLVr1yo5OVkZGRm182bNmiVrrTIzMzV69GjFxcWpqKhIfr+/dpnExERZa1VaWtrksfj4+FB9DABoM+zGXLkP3y118cu5eYpMHOs6AADQukIWGN988806WxenTp0qv9+v6upqLVq0SAsWLNDEiRND9XZNlpaW5nUJQKPRtx1P9cY8bZ85VRHxiep6/1xFpnbzuqQmoXcRruhdhCt6F6EWksC4c+dOrV+/XllZWbXz9m8N9Pl8GjFihO6///7a+UVFRbXLlZSUyBij+Pj4Jo81Rn5+fpM+I+CVtLQ0+raDsYUFcv96u2SMnN9O0fZqVwrDHqB3Ea7oXYQrehcN0dgfFUJyDONbb72lU045RQkJCZKkiooKlZWVSQqe5Oa9995Tr169JEkZGRmqqqrShg0bJEnZ2dkaMmRIs8YAoL2wu3fI/dudUlWlnN9OlenKL8UAAMA7IdnC+Pbbb+vaa6+tnS4uLtYDDzwg13Xluq569Oih66+/XpLkOI6ysrI0b948VVdX114eozljANAe2D0lch+8UyoplnPrPTI9enldEgAA6OCMtdZ6XURrYjM9wg27l3QMtrRE7gN3SNu2yPnNXTJ9T/K6pGajdxGu6F2EK3oXDeHJLqkAgKaze0uDu6EWbJaT9cd2ERYBAED7QGAEAA/Zsn1hMX+jnPF/kDn+FK9LAgAAqEVgBACP2LK9ch+aIm3+Ws5Nt8ucONDrkgAAAOogMAKAB2xFmdyHp0obc+XcOFnm5NO8LgkAAOA7CIwA0MpsRbncmXdLeTlyxtwmM+D7XpcEAABQLwIjALQiW1khd9bd0lcb5NzwO5lTuZ4sAABou0JyHUYAwJHZ8jK5D98t5W6Quf4WmUFDvS4JAADgsAiMANAKbFlp8AQ3G3PljPkdYREAAIQFAiMAtDBbWiL3b3dJW74JnuBmwA+8LgkAAKBBCIwA0IJsye7gdRYLtgSvs3jSIK9LAgAAaDACIwC0ELt7p9wH75B2bJMz4Q6Z4wd4XRIAAECjEBgBoAXYnUXBsLh7h5yJU2T6nuh1SQAAAI1GYASAELOFBcHdUEtL5Px2qsz3+nldEgAAQJMQGAEghOyWb4InuKmuknPz3TK9j/O6JAAAgCYjMAJAiNjcDcHrLEZFybntLzJHp3tdEgAAQLMQGAEgBOyn/5H76H1S5+TglkX/UV6XBAAA0GwERgBoJnfNu7IL/ial9ZTz2ykyiV28LgkAACAkCIwA0AzuWy/LPjlX6nO8nPF/komN87okAACAkCEwAkATWGtlX3pW9v+WSv0HyxkzSSYq2uuyAAAAQorACACNZAMB2afmyr79qswPhsn8aoJMJKtTAADQ/vA/HABoBFtRLnfedOmTtTIjL5L5+VUyjuN1WQAAAC2CwAgADWR375Q76x5pU57MlePk/Gik1yUBAAC0qGYHxvHjx8vn88nn80mSrrjiCg0YMEA5OTmaP3++qqqqlJqaqgkTJigpKUmSWmQMAFqS3bJR7sNTpb175Ez4k8xJg7wuCQAAoMWFZD+qW265RdOnT9f06dM1YMAAWWs1a9YsXXfddZo5c6b69eunpUuXSlKLjAFAS7KffyT3/slSoEbOpPsIiwAAoMNokQNvcnNzFRUVpczMTEnS8OHDtWLFihYbA4CW4r7/htyZU6UuKXJunyFzzLFelwQAANBqQnIM46xZs2StVWZmpkaPHq2ioiL5/f7a8cTERFlrVVpa2iJj8fHxofgYAFDLuq7s/z0p+/KzUubJcm76vUws6xoAANCxNDswTp06VX6/X9XV1Vq0aJEWLFigwYMHh6K2FpGWluZ1CUCj0betyy3bq50P3KnylW8rbsSF6nLTZJl9x2mjcehdhCt6F+GK3kWoNTsw7t/q5/P5NGLECN1///0699xzVVRUVLtMSUmJjDGKj4+X3+8P+Vhj5OfnN/WjAp5IS0ujb1uRLSyQO+fP0tZNMpeNUflZ56misNDrssISvYtwRe8iXNG7aIjG/qjQrGMYKyoqVFZWJil4Upr33ntPvXr1UkZGhqqqqrRhwwZJUnZ2toYMGSJJLTIGAKFgv/hU7r23SruK5PxmipyfnC9jjNdlAQAAeKZZWxiLi4v1wAMPyHVdua6rHj166Prrr5fjOMrKytK8efNUXV1dewkMSS0yBgDNYa2VfesV2WfmS6nd5WT9SeYodukBAAAw1lrrdRGtic30CDfsXtKybGWl7JJHZFe+KZ00SM71t8rExnldVrtA7yJc0bsIV/QuGqKxu6SG5CypABCO7Patch+9T9ryjcyoy2XOu1TGaZGrDQEAAIQlAiOADsl+tEbuggclY+RMuFPmpIFelwQAANDmEBgBdCg2EJB94SnZl56VevaWc9PtMqndvC4LAACgTSIwAugw7K4dcv8+Q8r5TOb0n8hccaNMVLTXZQEAALRZBEYAHYL9eI3cxx+Sqqtlfn2znCHDvC4JAACgzSMwAmjXbE217PNPyP6//5V69JIz9jaZbj28LgsAACAsEBgBtFt2W37wxDZ5OTI//qnMJb9mF1QAAIBGIDACaHestbLv/lv2mQVSpE/OjZNlBp7hdVkAAABhh8AIoF2xJbvk/mO29PEaqV9/Odf+VqZLitdlAQAAhCUCI4B2w360Wu4/ZknlZTK/vE7mrJ/JOI7XZQEAAIQtAiOAsGf37pF95u+yK96UevSWc+s0maOP8bosAACAsEdgBBDW7LqVcpc8Ku0pljn3Upnzfynj83ldFgAAQLtAYAQQluyeEtmn5squeTe4VXHinTLpx3pdFgAAQLtCYAQQVqy1sqvfkX3m71LZXpkLLpcZeZFMJFsVAQAAQo3ACCBs2G35cpc+Kn3+kdSrj5xbJsj06OV1WQAAAO0WgRFAm2erq2VfXSb78nOSzydz+ViZH42UcSK8Lg0AAKBdIzACaNPs+nVyn5wrbdsic9oPZS69TqZzstdlAQAAdAgERgBtki0skPvsQmndSim1m5zfTJE58VSvywIAAOhQCIwA2hRbUS778nOy2f8rRUTK/PwqmeEXyPiivC4NAACgwyEwAmgTrOvKrnxL9n8WS8U7ZX4wTOaiq2U6p3hdGgAAQIdFYATgKWut9Nl/5C5bLG3OC5799Kbfyxyb6XVpAAAAHR6BEYBn7Ddfyv3nImnDx5L/KJkbficzaKiM43hdGgAAANTMwLhnzx7Nnj1bBQUF8vl86tatm8aMGaPExERdeumlSk9PlzFGkjRhwgSlp6dLktauXaslS5YoEAgoIyND48aNU3R0dLPGAIQPW7BZ9l9Pya55V4pPlLnshuBlMiJ9XpcGAACAgzQrMBpjNGrUKJ1wwgmSpCeeeEJLly7VTTfdJEmaNm2aYmJi6jynoqJCc+fO1d13363u3bvrscce0wsvvKCLL764yWMAwoPdli/74jOyq94OXk/xvEtlRvxCplOs16UBAACgHs3a7ys+Pr42LEpSnz59VFRUdNjnfPjhhzr22GPVvXt3SdLw4cP1/vvvN2sMQNtmt2+Vu/AhuXeOk/3PezLDL5Bz33w5F15JWAQAAGjDQnYMo+u6ys7O1sCBA2vnTZkyRYFAQKeccoouueQS+Xw+FRUVye/31y7j9/u1Y8cOSWryGIC2yW7+Wvbf/yO7+p3gJTLO+pnMyF/IJHXxujQAAAA0QMgC48KFCxUdHa2RI0dKkh555BH5/X6VlZVp9uzZWrZsmS677LJQvV2TpaWleV0C0Gjh1LfWWlV+9qH2PPcPVax9Tyamk+J/9kslXvwrRST7j/wCaFfCqXeBg9G7CFf0LkItJIFx8eLFKigo0OTJk+XsO7vh/q2BsbGxOuuss/TSSy/Vzv/ss89qn1tUVKSUlJRmjTVGfn5+o58DeCktLS0s+ta6rvTRarmvLpO++kJKSJK54AqZYeeqPC5B5RVVUhh8DoROuPQu8G30LsIVvYuGaOyPCs0+d/1TTz2lvLw8TZo0ST5f8AyHpaWlqqqqkiQFAgGtXLlSxxxzjCRpwIABys3N1datWyVJ2dnZGjJkSLPGAHjHVpTLfesVuXdlyX3kXqlkt8zlN8q57+9yzv+lTFyC1yUCAACgiYy11jb1yZs2bdKtt96q7t27KyoqSpLUtWtXXXDBBZo3b56MMaqpqVHfvn11zTXX1J4xdc2aNVqyZIlc11Xv3r01bty4Zo81FL+6INy01V8LbcEW2bdeln3/dam8TEo/VmbEz2UGniETEeF1eWgD2mrvAkdC7yJc0btoiMZuYWxWYAxH/CNCuGlLK3/rBqRPPpD7xkvS+g+DJ7IZdIbMsPOkjL61110FpLbVu0Bj0LsIV/QuGqKxgTFkJ70B0H7ZnYWy778huzxb2rFd6pwcPD7xzHNkEjnjKQAAQHtFYARQL1tdJbtulezy16TP10nWSn1PknPJtVL/78tEsvoAAABo7/gfH4Ba1lppY67se6/JrnpHKiuVklNlzrtU5vSfyKR287pEAAAAtCICIwDZrZtl17wju+ZdqWCLFOmTOXWIzBlnS5knyzjNPqEyAAAAwhCBEeigbGGB7Jp3ZdcslzbnScZIx50oc/YFMoOGysTFe10iAAAAPEZgBDoIa61UsDl4XOKHK6W8nODAsZkyl90gM/B0mc4p3hYJAACANoXACLRj1g1IuV8EQ+K6VdL2fafaPuZ7MhdfE9ySmNLV2yIBAADQZhEYgXbG7i2VPl8n++kHsh+vlfYUSxGRUuZJMmePkuk/WCbZ73WZAAAACAMERiDM2UBAysuR/exD2fUfSnn/lawrxcbJnDhIGvB9mRNPlekU63WpAAAACDMERiDMWNeVtm6SzflUdsMn0ucfSeV7JeNIvfvInH+pzPGnSL2Pk4mI8LpcAAAAhDECI9DGWdeV3ZQXDIg5n0o5n0qle4KDyakyg86QOX6A1K+/TFyCt8UCAACgXSEwAm2MLSuV8v4r+9UXsl99ofyv/yu3tCQ4mNJV5uTBwctf9D1Rxn+Ut8UCAACgXSMwAh6ygYCUv1E27wvpqy9kv8qRtm4KDhojde+pTqcPU1mPDJnjTpRJSfW2YAAAAHQoBEagldiqSmnLN7KbvpI25clu/Era/LVUVRlcID5Ryugr8/0fyWT0lXr1kekUq+S0NFXk53taOwAAADomAiMQYtZaadeO4IlpNn8tbfoqGA4LtgTPXipJneKknr1lfnhO8OQ0GX0l/1EyxnhaOwAAAHAwAiPQRNZ1pR3bpYLNsvmbpK0b991vkirKDyzYxS+lZ8gMPF2mZ4bUszfhEAAAAGGBwAgchnUDwa2F27fKFm6Vthfsu9932787qSQldZG695QZcpaU1lOme7qUli6TkOjdBwAAAACagcCIDs1aG7xExc5CaVeh7I5CqbBAdvtWqbBAKiqQamoOPCEyUkrtLqV2k8nsvy8Y9gwGxbh47z4IAAAA0AIIjGi3rLVS2V6pZJe0e6fszkJpR6G0s1B2V1EwJO4slKqq6j4xOiYYCtN6yvQfLHXtLtO1e3Bel2QZJ8KbDwQAAAC0MgIjwo6tqZH2FEvFO6Xi3bLFO4OhsHiXbHHwvvZWU/3dF0hKlpL90tHHyJw0SEpOlUlODc5L9ksJnTm+EAAAABCBER6z1VXBrYCle6S9JVJpiWxpibSnpHaeLd0jlZYcuJWX1f9i8QlSYhcpqYtMn+ODxxTun+6cLCWnSp1TZHy+1v2QAAAAQJgiMKJJrLXBE75UlksVFVJlRfBxeZls2d5gCCwrDYa78uC0LdsbfFy+f3xv/VsA94vuFAyB8YlSfEJwt9D4xOAtIUkmKRgGg8Gws0wkQRAAAAAIpbALjPn5+ZozZ45KS0sVHx+vrKwsde/e3euy2hRrbfBELdWVwePzqg+6VVXVzrffmg6OVwbDX0W5VFkhW1EeDIKVFXWDYWWFZO2Ri4mMlGLjpdi44LUHY+NkUrrWmVanuGAg3B8G9wdEX1TLf1kAAAAADinsAuP8+fM1YsQInXnmmXrnnXc0b9483XXXXS3yXtba4IXWXVcKuJIb2HdzpcC+x4F906570HSg7nSgJhjgampka6qDj/fPC1TXjh28nGqq900Hx+3BYwfNV021VF29LxDuD37VBy4Q31jGkWI6BU/8EhMT3MoX0ym4K2d0zIGx2sfBaRMTI0XF1A2CsXGEPgAAACCMhVVgLC4uVl5enu644w5J0tChQ7Vw4UKVlJQoMbFh17oL3Dn+W+HuoCAYcL81HWjJj1O/SF9wq1xkpBSx73FEpOTzBe/3j0VFB7fcRUQEQ5kvSorad++LPvA46sC0+da0ap8XfeBxZCQnfAEAAAAgKcwC444dO5ScnCzHcSRJjuOoS5cuKioqanBgVFrP4GURIiKCW9MiIiQnQopwgvfOvvv98x0neDt4us7Ygeea+uYbZ1/YOzgI7g9+vrrB0HEIawAAAADajLAKjKHQ8+6HvS4BaLS0tDSvSwCahN5FuKJ3Ea7oXYRaWAXGlJQU7dy5U67rynEcua6rXbt2ye/3N/g18vPzW7BCIPTS0tLoW4Qlehfhit5FuKJ30RCN/VHBaaE6WkRSUpJ69eql5cuXS5KWL1+u3r17N3x3VAAAAABAg4XVFkZJuuGGGzRnzhwtW7ZMcXFxysrK8rokAAAAAGiXwi4wHn300br33nu9LgMAAAAA2r2w2iUVAAAAANB6CIwAAAAAgHoRGAEAAAAA9SIwAgAAAADqRWAEAAAAANSLwAgAAAAAqJex1lqviwAAAAAAtD1sYQQAAAAA1IvACAAAAACoF4ERAAAAAFAvAiMAAAAAoF4ERgAAAABAvQiMAAAAAIB6ERgBAAAAAPUiMAIAAAAA6kVgBAAAAADUK9LrAlpDfn6+5syZo9LSUsXHxysrK0vdu3f3uixAixcv1qpVq1RYWKgZM2YoPT1d0uF7ln5GW7Bnzx7Nnj1bBQUF8vl86tatm8aMGaPExETl5ORo/vz5qqqqUmpqqiZMmKCkpCRJOuwY0Br++te/qrCwUMYYxcTE6Ne//rV69erFehdh47nnntNzzz1X+/8G1rloaRFTpkyZ4nURLe3BBx/U2WefrRtvvFE+n0/Lli3Tj3/8Y6/LAhQdHa3zzjtPq1ev1tChQ2tX4ofrWfoZbUF1dbW6deumq6++Wuecc45yc3P1wQcfaNCgQZo6darGjh2rq666SoWFhVqxYoVOO+00WWsPOQa0llNOOUXnnXeehg8frvj4eC1evFjDhw9nvYuw8NVXX+mdd95RTU2Nhg4dqsTERNa5aHHtfpfU4uJi5eXlaejQoZKkoUOHKi8vTyUlJR5XBkiZmZny+/115h2uZ+lntBXx8fE64YQTaqf79OmjoqIi5ebmKioqSpmZmZKk4cOHa8WKFZJ02DGgtcTGxtY+LisrkzGG9S7CQnV1tRYsWKDrr79exhhJh1+vss5FqLT7XVJ37Nih5ORkOU4wGzuOoy5duqioqEiJiYkeVwd81+F6VhL9jDbHdV1lZ2dr4MCBKioqqvMjSGJioqy1Ki0tPexYfHy8F6Wjg3rsscf00UcfSZL+8Ic/sN5FWHjmmWf0wx/+UF27dq2dxzoXraHdb2EEALSshQsXKjo6WiNHjvS6FKBBbrzxRj366KMaPXq0lixZ4nU5wBHl5OQoNzdXI0aM8LoUdEDtPjCmpKRo586dcl1XUvCX8F27dn1nN0CgrThcz9LPaGsWL16sgoIC3XzzzXIcR36/v3arjCSVlJTIGKP4+PjDjgFeOPPMM/Xpp58qOTmZ9S7atPXr1ys/P19ZWVkaP368duzYoT//+c8qKChgnYsW1+4DY1JSknr16qXly5dLkpYvX67evXuzGwnarMP1LP2MtuSpp55SXl6eJk2aJJ/PJ0nKyMhQVVWVNmzYIEnKzs7WkCFDjjgGtIaKioo6/4Feu3at4uPjWe+izbvwwgs1d+5czZkzR3PmzFFKSor++Mc/atSoUaxz0eLM/2/nflUUiMIwDr8YLDpgEjQYvC+vQJuIFzFgmzLBC/IOzGKfIgiG2bbpIOyCuH+ep55ywscHPzicvu/7d1/i1a7Xa5qmye12y2g0ymazyXw+f/e1IMfjMafTKV3XpaqqVFWVw+HwdGbNMz/B5XLJdrvNbDbLcDhMkkyn0+x2u5zP57Rtm8fj8fmN+2QySZKnZ/BqXdelruvc7/cMBoOMx+OsVqssl0t7l19lvV5nv99nsVjYubzcvwhGAAAAvu7PP0kFAADgewQjAAAARYIRAACAIsEIAABAkWAEAACgSDACAABQJBgBAAAoEowAAAAUfQDjoQMHIPpbxwAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4MAAAEyCAYAAABAngUDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XeYVeW59/HvM42hDH0oMggICIgFG2BJQjSJxBQ1MbZEsQU15hxPTt6cGFNMMyftJCemmGgs2DUaS4w5hqijJopSVFBUmpQBpA1tenveP/ZCBxxgYAb27Jnv57r2tde+17PWvrfXcobfrLWfFWKMSJIkSZI6lqx0NyBJkiRJ2v8Mg5IkSZLUARkGJUmSJKkDMgxKkiRJUgdkGJQkSZKkDsgwKEmSJEkdkGFQkiRJkjogw6AkSZIkdUCGQUmSJEnqgHLS3UBr69mzZxwxYkS625D2WHl5OV27dk13G9Ie89hVJvK4Vaby2FVzzJ49e32MsXB349pdGOzfvz+zZs1KdxvSHisuLmbSpEnpbkPaYx67ykQet8pUHrtqjhDCsuaM8zJRSZIkSeqADIOSJEmS1AEZBiVJkiSpA2p33xlsSm1tLSUlJVRVVaW7lYyQn59PUVERubm56W5FkiRJ0j7SIcJgSUkJBQUFDB06lBBCuttp02KMbNiwgZKSEoYNG5budiRJkiTtIx3iMtGqqir69OljEGyGEAJ9+vTxLKokSZLUznWIMAgYBPeA/60kSZKk9m+3YTCEMDiE8HQI4Y0QwushhKuSeu8QwvQQwsLkuVdSDyGE60MIi0IIc0MIRzXa15Rk/MIQwpRG9aNDCPOSba4PSRrZ2XtIkiRJklqmOWcG64CvxhjHABOBK0MIhwBXA0/GGEcCTyavAT4OjEweU4EbIBXsgGuBCcB44NpG4e6GZOy27SYn9Z29R8ZZunQphx56aIv3cffdd+/Vtscff3yL3luSJElS+7LbCWRijKuB1cny1hDCG8Ag4DRgUjJsGlAMfD2p3x5jjMCMEELPEMLAZOz0GGMpQAhhOjA5hFAMdI8xvpDUbwdOB/62i/fokLaFwfPOO6/Z29TX15Odnc3zzz+/DzuTJEnSNjFGYoSYLDdEiCS1CA0xEkmeI9BELSavtxvfEFlX0cCyDeXb1RuP37b9e/t5773fGx+TPpN+3+37vf6brPPeBjtb9/59br8vdjZ+N9vFHXYQ96IHdjd++2HvjW+63OS+d7vNLnYWd7Jyb/pqrj2aTTSEMBQ4EngR6J8ERWKMq0MI/ZJhg4AVjTYrSWq7qpc0UWcX77FjX1NJnVmksLCQ4uLi7db36NGDrVu37sEnbX1lZWXU1NRw3nnnMXfuXEaMGMEf/vAHrr/+ev72t79RVVXFhAkT+NWvfkUIgcWLF/OVr3yF9evXk52dzbRp0/ja177GggULOPzwwzn33HO54ooruPbaa3nuueeoqanhi1/8IhdffDHPPfccP/7xj+nfvz/z5s1j5syZDBw4kNWrV1NWVsa5557Lpk2bqK2t5dvf/jaf+MQn3tdvVVXV+/47at8qKyvzv7kykseuMpHH7b7RECN1DVDbAHUNUNcQt1uuj9AQU6/rk3BSv91rqG94r9YQU/VttdQy1McdX6dqMdlHQxIUGmLjR2yitv24bcGtAbbb13vj4s63ZfuAsk89W7w/3kUdQLPDYAihG/Ag8B8xxi27mGSkqRVxL+rNFmO8EbgRYNSoUXHSpEnbrX/jjTcoKCgA4Ht/eZ35q7bsye5365ADunPtp8bucky3bt1YuHAht956KyeccAIXX3wxd9xxB1/96le57rrrADj//PN55pln+NSnPsVll13G1VdfzRlnnEFVVRUNDQ387Gc/4+c//zmPPfYYADfeeCOFhYXMmTOH6upqTjjhBD796U/TpUsXZs+ezWuvvbbd7SEKCgro3Lkzjz76KN27d2f9+vVMnDiRs88++32TxuTn53PkkUe26n8n7VpxcTE7HrtSJvDYVSZq78dtjJGa+gaqahqorK2nsraeipo6qmrrqWxUq6ypo7KmnsraVC21PvVcU99ATV3qUb3t+d3a9utr6hqoqW+gtn7fR6Hc7EBOVhY52YGcrEBOdha5WYHs7EB2CGRlpZ6zs1LLWVmQHVJjG6/PyoKsZNye1t975r31IfWaEAikxoYAWSE1OV8IEGhUS5bDu+NTy9v2kbWT8W+99SZjRo8hK2v7few4HsJ2+wxNvCept0o9J5X3XrPdQlPrt/37ccdtwg4bv399aHL8ju/BbtZv+0z7oocd7c38ijvbZleTNe5szU73tZMtBv5kF4010qwwGELIJRUE74ox/jkprwkhDEzO2A0E1ib1EmBwo82LgFVJfdIO9eKkXtTE+F29R0YaPHgwJ5xwAgBf+MIXuP766xk2bBg//elPqaiooLS0lLFjxzJp0iRWrlzJGWecAaSCWVP+/ve/M3fuXB544AEANm/ezMKFC8nLy2P8+PFN3icwxsg111zDs88+S1ZWFitXrmTNmjUMGDBgH31qSZLUHDFGymvq2VpVS3l1HVur6iirrnv/cnUdZVWp5bJkXXlNqlZWnQS82noa9iKXdc7NJj83i/zcbPJyssjLzko9J8s9OueSl51Fp0a1d9cnrzvlZm0/JieLvOxscrMDudlZZGcFcpLlnKz3gt22kJedlazLDuRmZZGdhL5t23Z0xWWLmXR00e4HSs2w2zCYzOx5M/BGjPEXjVY9CkwBfpw8P9Ko/uUQwr2kJovZnIS5J4AfNZo05mPAN2KMpSGErSGEiaQuP70A+PVu3mOv7e4M3r60418BQgh86UtfYtasWQwePJjvfve7VFVV7fTa4x3FGPn1r3/NKaecsl29uLiYrl27NrnNXXfdxbp165g9eza5ubkMHTrUewpKktSKYoxsqaxjY0UNmypr2VRRw+bKWjZVJI/KGjZX1LKpsjapv7e+rhkJLi8ni4JOOXTLz6FrXuq5f0E+wwtz6Nophy652XTOyyY/N5vOyXIq5GXTJW/719uWt4VAby8ldSzNOTN4AnA+MC+E8EpSu4ZUQLs/hHAJsBz4XLLuceBUYBFQAVwEkIS+HwAzk3Hf3zaZDHAFcBvQmdTEMX9L6jt7j4y0fPlyXnjhBY477jjuueceTjzxRJ5//nn69u1LWVkZDzzwAGeeeSbdu3enqKiIhx9+mNNPP53q6mrq6+spKCjY7ruPp5xyCjfccAMnnXQSubm5LFiwgEGDBu2ig9TZw379+pGbm8vTTz/NsmXL9vXHliQp49XVN1BaUcOGshrWl1WnHltrWF+ePJdVsyFZ3lBevcvLJbt1yqFH51x6dkk9Rg/oTo8uufTsnEuPzrkU5OfSLT+Hgk6pcNetUw4F+annrp1yyMvpMLeJlrSPNWc20X+y88tXT25ifASu3Mm+bgFuaaI+C3jffRdijBuaeo9MNWbMGKZNm8Zll13GyJEjueKKK9i4cSOHHXYYQ4cO5dhjj3137B133MFll13Gd77zHXJzc/nTn/7E4YcfTk5ODkcccQQXXnghV111FUuXLuWoo44ixkhhYSEPP/zwLnv4/Oc/z6c+9SmOOeYYxo0bx+jRo/f1x5YkqU2rqq1nzZYqVm+u4p3NqefU60re2VzFO1uqWLe1usnLLvOys+jbLY8+3TpR2K0TYwZ0p0+3TvTtlkfvrnn07JJLj85574a/Hp1zyc02zElqG0JzL0nMFKNGjYpvvfXWdrU33niDMWPGpKmjzOR/s/2vvU9moPbLY1dtXVVtPSs3VbK8tIKS0gpWbKxk9lvLqMruyqpNlWysqH3fNgX5OQzskU//7vkM7JHPgO75FBZ0SoJep3cDYPf8HC+t1H7lz1w1RwhhdozxmN2N26NbS0iSJLVF5dV1vL2+nMXryliyrpwVpRWs2FjB8tIK1myp3m5sp5wseneKjCrqxLjBPVNhr0fn5DkV/Lp28p9Ikto/f9JJkqSMEGNk1eYqFq8tezf0LVlfxuK15byz5b3J0EKAgd3zGdy7Cx8YWcjgXl04sE9nBvfqwuDeXSjs1olnn32GSZPGp/HTSFL6dZgwGGP0Mo5mam+XDkuSMk9ZdR1vvbOVN9/ZknpevZU33tnC1qq6d8cU5OdwUGE3jh/Rh+GF3Tiob1eG9+vGkD5d6JSTncbuJSkzdIgwmJ+fz4YNG+jTp4+BcDdijGzYsGGn9zaUJKm1bSirZm7JZl4t2cT8VVt4852tLC+teHd9t045jB5QwKePOIDRAwoY2b+A4YXd6Nstz9/rktQCHSIMFhUVUVJSwrp169LdSkbIz8+nqMibmUqSWl9ZdR3zSjYzt2TTuwGwZGMlkLq8c1jfrhxW1IOzjili1IDujB5QQFGvzoY+SdoHOkQYzM3NZdiwYeluQ5KkDiXGyPLSCmYu3cispaXMXraRRevK2PZthMG9O3PE4J5ccNwQDi/qyaGDetDNiVskab/xJ64kSWoV9Q2RN1ZvYebSUmYt3cjMpaWs3ZqaybNH51yOGdKLTx1xAIcX9eDwop707pqX5o4lqWMzDEqSpL0SY2TZhgr+uWg9/1q0nucXb2BzZeqefYN6dub44X04Zmhvxg/rzYjCbmRleamnJLUlhkFJktRsG8treG7Rev61cD3/XLSelZtS3/c7oEc+HzukPyeM6Muxw3ozqGfnNHcqSdodw6AkSdqpGCML1pTx5JtreOqNtcxZvpGGmLrs87iD+nD5pOGcOKIvQ/t0cZIXScowhkFJkrSd6rp6nl+8gafeWMtTb6599+zfYYN68G8njeTDo/tx2KAeZHvZpyRlNMOgJEmiqrae5xau5/F5q/nH/DVsra6jc242J47sy7+dNIIPj+5H/+7eg1aS2hPDoCRJHVRVbT3PLFjH3+at5h9vrKWsuo4enXOZfOgATj1sIMcN70N+bna625Qk7SOGQUmSOpCGhsiMtzfw4OyV/N9rqymvqadnl1w+cdhATj18IMcP70Nudla625Qk7QeGQUmSOoDF68p4aM5KHnp5JSs3VVLQKYdPHn4AnzxiIBMPMgBKUkdkGJQkqZ3aUlXLI6+s4sHZJbyyYhNZAT4wspCvf3w0Hzukv5eASlIHZxiUJKmdmVeymTtnLOPRV1dRWVvPqP4FXHPqaE4fN4h+TgIjSUoYBiVJagcqa+r5y6uruOvFZbxaspnOudmcNu4APj9hCIcO6u49ACVJ72MYlCQpgy3bUM5tzy/lwdklbKmqY0S/bnz3U4dwxlFF9Oicm+72JEltmGFQkqQMNGf5Rm56dgn/9/o75GQFJh86kM9POJAJw3p7FlCS1CyGQUmSMkRDQ2T6G2u46dklzFq2ke75OVzxoeFcePxQvwsoSdpjuw2DIYRbgE8Ca2OMhya1+4BRyZCewKYY47gQwlDgDeCtZN2MGOPlyTZHA7cBnYHHgatijDGE0Bu4DxgKLAXOijFuDKk/a/4KOBWoAC6MMc5p4eeVJCnjVNXW8+CcEv743Nu8vb6col6dufZTh3DWMYPp2sm/60qS9k5zfoPcBvwGuH1bIcZ49rblEML/AJsbjV8cYxzXxH5uAKYCM0iFwcnA34CrgSdjjD8OIVydvP468HFgZPKYkGw/obkfTJKkTFdVW8/dLy7n988sZu3Wag4v6sFvzjuSyWMHkON9ASVJLbTbMBhjfDY54/c+ydm7s4CTdrWPEMJAoHuM8YXk9e3A6aTC4GnApGToNKCYVBg8Dbg9xhiBGSGEniGEgTHG1bv9VJIkZbDKmnruenEZf3h2Ceu2VjPxoN7879njOG54H78PKElqNS29tuQDwJoY48JGtWEhhJeBLcC3YozPAYOAkkZjSpIaQP9tAS/GuDqE0C+pDwJWNLHN+8JgCGEqqbOOFBYWUlxc3MKPJe1/ZWVlHrvKSB67raemPvL0ijr+uqSGLTUwpncWl47PZ1TvampKXuOZkt3vQ83jcatM5bGr1tTSMHgucE+j16uBA2OMG5LvCD4cQhgLNPVnzLibfTd7mxjjjcCNAKNGjYqTJk3aXd9Sm1NcXIzHrjKRx27L1dU38OeXV/K/0xewanMNJ47oy1UfGcmxQ3unu7V2y+NWmcpjV61pr8NgCCEH+Axw9LZajLEaqE6WZ4cQFgMHkzqrV9Ro8yJgVbK8Ztvln8nlpGuTegkweCfbSJKU8WKMPPH6Gn7+97dYtLaMI4p68PPPHcHxI/qmuzVJUgfQkm+ffwR4M8b47kUrIYTCEEJ2snwQqclfliSXgW4NIUxMvmd4AfBIstmjwJRkecoO9QtCykRgs98XlCS1F3OWb+QzNzzP5XfOJsbI779wFA9feYJBUJK03zTn1hL3kJrgpW8IoQS4NsZ4M3AO218iCvBB4PshhDqgHrg8xliarLuC924t8bfkAfBj4P4QwiXAcuBzSf1xUreVWETq1hIX7cXnkySpTVm1qZKf/N+bPPLKKgoLOvGTzx7GZ48qcnZQSdJ+15zZRM/dSf3CJmoPAg/uZPws4NAm6huAk5uoR+DK3fUnSVImqKip4/fPLOHGZxcTI3z5wyO4YtJw7xMoSUobfwNJkrQPxRh5fN47/OCx+byzpYpPHXEAX588iqJeXdLdmiSpgzMMSpK0j7y9vpzvPPIazy1cz9gDuvOb847kGGcIlSS1EYZBSZJaWVVtPb8rXszvixfTKSeL7316LF+YOITsLG8YL0lqOwyDkiS1on8uXM81D81jeWkFp487gGs+MYZ+BfnpbkuSpPcxDEqS1Ao2V9Ry3ePzuX9WCQf17crdl07wNhGSpDbNMChJUgv932vv8O1HXqO0vIYrJg3nqpNHkp+bne62JEnaJcOgJEl7aX1ZNdc+8jp/nbeaQwZ259YLj+XQQT3S3ZYkSc1iGJQkaS888fo7XPPneWytquNrp4xi6gcPItcbx0uSMohhUJKkPbC1qpbv/WU+D8wuYewB3bln6jgO7l+Q7rYkSdpjhkFJkpppxpINfPX+V1m9uZIvf3gE/37ySPJyPBsoScpMhkFJknajpq6Bn//9LW56bglDenfhT5cfz9FDeqW7LUmSWsQwKEnSLizbUM6/3fMyc0s2c96EA/nWJ8bQJc9fn5KkzOdvM0mSduLRV1dxzZ/nkRXg9184ismHDkx3S5IktRrDoCRJO6ioqeN7j87nvlkrOOrAnlx/7pEU9eqS7rYkSWpVhkFJkhpZtHYrl985h8Xryrjyw8P5j48c7C0jJEntkmFQkqTEY3NX8V8PzKVzbjZ3XDyBE0f2TXdLkiTtM4ZBSVKHV1vfwI8ef4Nb/7WUow7sye8+fzQDeuSnuy1JkvYpw6AkqUNbs6WKK++aw6xlG7nw+KFcc+oY7x0oSeoQDIOSpA5r5tJSrrhzDuXVdfzqnHGcNm5QuluSJGm/MQxKkjqke15aznceeY1BPTtz9xcncHD/gnS3JEnSfmUYlCR1KLX1DfzwsflMe2EZHxjZl9+cexQ9uuSmuy1JkvY7w6AkqcPYWF7Dl+6awwtLNnDpicO4+uOjyfG2EZKkDmq3vwFDCLeEENaGEF5rVPtuCGFlCOGV5HFqo3XfCCEsCiG8FUI4pVF9clJbFEK4ulF9WAjhxRDCwhDCfSGEvKTeKXm9KFk/tLU+tCSp41mwZiuf/u0/mb1sIz//3BF865OHGAQlSR1ac34L3gZMbqL+yxjjuOTxOEAI4RDgHGBsss3vQgjZIYRs4LfAx4FDgHOTsQA/SfY1EtgIXJLULwE2xhhHAL9MxkmStMf+uXA9n/3d81TVNnDvZRM58+iidLckSVLa7TYMxhifBUqbub/TgHtjjNUxxreBRcD45LEoxrgkxlgD3AucFkIIwEnAA8n204DTG+1rWrL8AHByMl6SpGa7f9YKLrz1JQb2zOfhK0/gqAN7pbslSZLahJZ8Z/DLIYQLgFnAV2OMG4FBwIxGY0qSGsCKHeoTgD7AphhjXRPjB23bJsZYF0LYnIxfv2MjIYSpwFSAwsJCiouLW/CxpPQoKyvz2FVGaqvHboyRhxbV8ujiWsb2yeLKQxtY+MqLLEx3Y2oT2upxK+2Ox65a096GwRuAHwAxef4f4GKgqTN3kabPQMZdjGc367YvxngjcCPAqFGj4qRJk3bRutQ2FRcX47GrTNQWj93qunqufnAejy5eydnHDOaHZxxKrt8PVCNt8biVmsNjV61pr8JgjHHNtuUQwk3AY8nLEmBwo6FFwKpkuan6eqBnCCEnOTvYePy2fZWEEHKAHjT/clVJUge1uaKWqXfM4sW3S/naKaP40qTh+C0DSZLeb6/+TBpCGNjo5RnAtplGHwXOSWYCHQaMBF4CZgIjk5lD80hNMvNojDECTwNnJttPAR5ptK8pyfKZwFPJeEmSmrSitILP3PAvXl6+iV+dM44rPzzCIChJ0k7s9sxgCOEeYBLQN4RQAlwLTAohjCN12eZS4DKAGOPrIYT7gflAHXBljLE+2c+XgSeAbOCWGOPryVt8Hbg3hPBD4GXg5qR+M3BHCGERqTOC57T400qS2q0339nCBTe/RHVdA3deOoHxw3qnuyVJktq03YbBGOO5TZRvbqK2bfx1wHVN1B8HHm+ivoTUbKM71quAz+2uP0mSZi4t5ZLbZtIlL4cHLj+Okf0L0t2SJEltXktmE5UkKe2eenMNX7prDgf06Mztl4ynqFeXdLckSVJGMAxKkjLWQy+X8P/+NJdDBnbntouOpU+3TuluSZKkjGEYlCRlpJv/+TY/eGw+xw/vw40XHEO3Tv5KkyRpT/ibU5KUUWKM/M/fF/CbpxcxeewA/vecceTnZqe7LUmSMo5hUJKUMRoaItc++jp3zFjGueMH88PTDyM7y1tHSJK0NwyDkqSMUN8QuebP87hv1gou++BBXP3x0d5DUJKkFjAMSpLavLr6Br72wFweenkl/37ySL7ykZEGQUmSWsgwKElq02rrG/iPe1/hr/NW87VTRnHlh0ekuyVJktoFw6Akqc2qrqvny3e/zPT5a/jWJ8Zw6QcOSndLkiS1G4ZBSVKbVFVbz2V3zOaZBev4wWljOf+4oeluSZKkdsUwKElqcypq6rh02ixeWLKBn3z2MM4+9sB0tyRJUrtjGJQktSmVNfVcfNtMXnq7lF+cdQRnHFmU7pYkSWqXDIOSpDajsqaeS6alguAvzx7HaeMGpbslSZLaLcOgJKlNqKqt54u3py4N/cVZRxgEJUnax7LS3YAkSVW19Uy9Yzb/Wryen53ppaGSJO0PhkFJUlpV19VzxZ2zeXbBOn7ymcM582iDoCRJ+4NhUJKUNjV1DVx51xyefmsdPzrjMM46dnC6W5IkqcMwDEqS0qKmroEr757DP95Yyw9OP5TzJnj7CEmS9ifDoCRpv6tviHzlvleYPn8N3/v0WM6fOCTdLUmS1OEYBiVJ+1VDQ+TqB+fy13mruebU0Uw5fmi6W5IkqUMyDEqS9psYI99/bD5/ml3Cv588kqkfHJ7uliRJ6rAMg5Kk/eYX0xdw2/NLufiEYXzlIyPT3Y4kSR3absNgCOGWEMLaEMJrjWo/CyG8GUKYG0J4KITQM6kPDSFUhhBeSR6/b7TN0SGEeSGERSGE60MIIan3DiFMDyEsTJ57JfWQjFuUvM9Rrf/xJUn7y++fWcyvn1rE2ccM5tufHEPya0CSJKVJc84M3gZM3qE2HTg0xng4sAD4RqN1i2OM45LH5Y3qNwBTgZHJY9s+rwaejDGOBJ5MXgN8vNHYqcn2kqQMdOeMZfz4b2/yycMH8qPPHGYQlCSpDdhtGIwxPguU7lD7e4yxLnk5A9jlHYJDCAOB7jHGF2KMEbgdOD1ZfRowLVmetkP99pgyA+iZ7EeSlEEeermEbz/yGieP7scvzx5HdpZBUJKktiCnFfZxMXBfo9fDQggvA1uAb8UYnwMGASWNxpQkNYD+McbVADHG1SGEfkl9ELCiiW1W79hACGEqqbOHFBYWUlxc3NLPJO13ZWVlHrvKSLs6dmevqeO3r1QzulcWZw8u41/PPbt/m5N2wp+5ylQeu2pNLQqDIYRvAnXAXUlpNXBgjHFDCOFo4OEQwligqT8Dx93tvrnbxBhvBG4EGDVqVJw0aVIzupfaluLiYjx2lYl2duw+t3Adf5g+i8OLenLnpRPo1qk1/v4otQ5/5ipTeeyqNe31b+YQwhTgk8DJyaWfxBirgepkeXYIYTFwMKmzeo0vJS0CViXLa0IIA5OzggOBtUm9BBi8k20kSW3Y7GUbmXr7bA4q7MptFx1rEJQkqQ3aq1tLhBAmA18HPh1jrGhULwwhZCfLB5Ga/GVJchno1hDCxGQW0QuAR5LNHgWmJMtTdqhfkMwqOhHYvO1yUklS27VgzVYuvm0m/bt34o5LJtCzS166W5IkSU3Y7Z9qQwj3AJOAviGEEuBaUrOHdgKmJzPCzUhmDv0g8P0QQh1QD1weY9w2+cwVpGYm7Qz8LXkA/Bi4P4RwCbAc+FxSfxw4FVgEVAAXteSDSpL2vZWbKrng5pfIy8nijksmUFjQKd0tSZKkndhtGIwxnttE+eadjH0QeHAn62YBhzZR3wCc3EQ9Alfurj9JUttQWl7DBTe/SHlNHfdfdhyDe3dJd0uSJGkX9uoyUUmSGiuvruOi22ZSsrGSm6ccy5iB3dPdkiRJ2g3DoCSpReoaIlfcNYd5JZv4zXlHMX5Y73S3JEmSmsHp3SRJe62hIfLHedXMWF3BTz97OB89pH+6W5IkSc3kmUFJ0l6JMfL9x+YzY3U9/zV5FGcdO3j3G0mSpDbDMChJ2iu/K17Mbc8v5ZQhOVzxoeHpbkeSJO0hLxOVJO2xe15azs+eeIszjhzEp/ptJLnNkCRJyiCeGZQk7ZHp89fwzYfmMWlUIT8983CyDIKSJGUkw6AkqdnmLN/Iv90zh8MG9eB3nz+K3Gx/jUiSlKn8LS5Japa315dz6bRZ9O+ez80XHkuXPL9pIElSJjMMSpJ2a93Waqbc8hIA0y4aT99undLckSRJainDoCRpl8qr67hk2kzWbq3i5inHMLRv13S3JEmSWoFhUJK0U7X1DVx59xxeW7mZ3553FEce2CvdLUmSpFYufYitAAAgAElEQVTiFz4kSU2KMfLNh+ZR/NY6fnTGYZw8pn+6W5IkSa3IM4OSpCb97z8Wcv+sEv79pBGcN+HAdLcjSZJamWFQkvQ+9760nF89uZDPHV3EVz56cLrbkSRJ+4BhUJK0nafeXMM3H36NDx1cyI8+cxjBm8pLktQuGQYlSe96dcUmrrzrZcYMLPCm8pIktXP+lpckAbB0fTkX3zaTPt3yuOXCY+nayTnGJElqzwyDkiQ2lFVz4a0v0RAj0y4eT7+C/HS3JEmS9jH/7CtJHVxFTR0XT5vF6s1V3P3FiQwv7JbuliRJ0n7gmUFJ6sDq6hv48t0vM69kE78+90iOHuJN5SVJ6ig8MyhJHVSMkW8/8hpPvbmWH5x+KB8bOyDdLUmSpP2oWWcGQwi3hBDWhhBea1TrHUKYHkJYmDz3SuohhHB9CGFRCGFuCOGoRttMScYvDCFMaVQ/OoQwL9nm+pDMY76z95Aktdyvn1rEPS+t4EuThnP+xCHpbkeSJO1nzb1M9DZg8g61q4EnY4wjgSeT1wAfB0Ymj6nADZAKdsC1wARgPHBto3B3QzJ223aTd/MekqQWuH/WCn4xfQGfOXIQXztlVLrbkSRJadCsMBhjfBYo3aF8GjAtWZ4GnN6ofntMmQH0DCEMBE4BpscYS2OMG4HpwORkXfcY4wsxxgjcvsO+mnoPSdJeevqttXzjz/M4cURffvzZw72pvCRJHVRLvjPYP8a4GiDGuDqE0C+pDwJWNBpXktR2VS9por6r99hOCGEqqTOLFBYWUlxc3IKPJaVHWVmZx672uaWb6/nvl6oY1DWLzw+t4Pl/PtvifXrsKhN53CpTeeyqNe2LCWSa+hNz3It6s8UYbwRuBBg1alScNGnSnmwutQnFxcV47GpfWr6hgv93w7/oW9CZB750PP26t869BD12lYk8bpWpPHbVmlpya4k1ySWeJM9rk3oJMLjRuCJg1W7qRU3Ud/UekqQ9UFpew5RbX6K2PjLt4mNbLQhKkqTM1ZIw+CiwbUbQKcAjjeoXJLOKTgQ2J5d6PgF8LITQK5k45mPAE8m6rSGEicksohfssK+m3kOS1EyVNfVcfNtMVm2q5OYpxzCiX0G6W5IkSW1Asy4TDSHcA0wC+oYQSkjNCvpj4P4QwiXAcuBzyfDHgVOBRUAFcBFAjLE0hPADYGYy7vsxxm2T0lxBasbSzsDfkge7eA9JUjPU1Tfwb/e8zKslm7jh80dzzNDe6W5JkiS1Ec0KgzHGc3ey6uQmxkbgyp3s5xbglibqs4BDm6hvaOo9JEm7F2PkO4++zj/eWMP3Pj2WyYd6U3lJkvSellwmKklqw3779CLufnE5l39oOFOOH5rudiRJUhtjGJSkduiB2SX8/O8LOOPIQfyXN5WXJElNMAxKUjvzzIJ1XP3gXE4c0ZeffPZwsrK8qbwkSXo/w6AktSOvrdzMFXfOZmT/Am74wlHk5fhjXpIkNc1/JUhSO7GitIILb51Jry553HbRsRTk56a7JUmS1IY1azZRSVLbVlpew5RbXqK2voF7p06gvzeVlyRJu2EYlKQMV1lTz6XTZlKyqZK7L53gTeUlSVKzeJmoJGWw+obIVfe+zMsrNnH9OeO8qbwkSWo2w6AkZagYI9999HX+Pn8N3/3UWCYfOjDdLUmSpAxiGJSkDPW74sXcMWMZl33oIG8qL0mS9phhUJIy0IOzS/jZE29x+rgD+Popo9PdjiRJykCGQUnKME+9uYb/Sm4q/9Mzj/Cm8pIkaa8YBiUpg8xeVsqX7prD2AO68/vzj/am8pIkaa/5rwhJyhBvvbOVi26dyQE9OnPrhcfSrZN3B5IkSXvPMChJGaBkYwUX3PIinfOymXbxePp065TuliRJUoYzDEpSG7ehrJoLbn6Jypp6br94AoN7d0l3S5IkqR3wGiNJasPKquu46LaZrNxUyV2XTmDUgIJ0tyRJktoJw6AktVE1dQ1cfsdsXl+1hRvPP5pjhvZOd0uSJKkd8TJRSWqDGhoi/3n/K/xz0Xp+8tnDOXlM/3S3JEmS2hnDoCS1MTFGvveX13ls7mq+8fHRnHl0UbpbkiRJ7ZBhUJLamF/+YyHTXljGFz8wjMs+NDzd7UiSpHbKMChJbchNzy7h+icXcvYxg7nm1DHpbkeSJLVjex0GQwijQgivNHpsCSH8RwjhuyGElY3qpzba5hshhEUhhLdCCKc0qk9OaotCCFc3qg8LIbwYQlgYQrgvhJC39x9Vktq2u19cznWPv8EnDh/Ijz5zGCGEdLckSZLasb0OgzHGt2KM42KM44CjgQrgoWT1L7etizE+DhBCOAQ4BxgLTAZ+F0LIDiFkA78FPg4cApybjAX4SbKvkcBG4JK97VeS2rJHXlnJNx+ex0mj+/HLs8aRnWUQlCRJ+1ZrXSZ6MrA4xrhsF2NOA+6NMVbHGN8GFgHjk8eiGOOSGGMNcC9wWkj9Sfwk4IFk+2nA6a3UryS1GdPnr+E/73+VCcN687vPH0VejlfwS5Kkfa+17jN4DnBPo9dfDiFcAMwCvhpj3AgMAmY0GlOS1ABW7FCfAPQBNsUY65oYv50QwlRgKkBhYSHFxcUt+jBSOpSVlXnsdkDzN9Tzi9lVDCnIYspBVcz413PpbmmPeewqE3ncKlN57Ko1tTgMJt/j+zTwjaR0A/ADICbP/wNcDDR1zVOk6bOTcRfj31+M8UbgRoBRo0bFSZMmNf8DSG1EcXExHrsdy5zlG/nNUy8yvLCA+y6bSM8umfm1aI9dZSKPW2Uqj121ptY4M/hxYE6McQ3AtmeAEMJNwGPJyxJgcKPtioBVyXJT9fVAzxBCTnJ2sPF4Scpo81dt4cJbXqJfQSfuuHR8xgZBSZKUuVrjiynn0ugS0RDCwEbrzgBeS5YfBc4JIXQKIQwDRgIvATOBkcnMoXmkLjl9NMYYgaeBM5PtpwCPtEK/kpRWi9eVccEtL9KtUw53XjqBfgX56W5JkiR1QC06MxhC6AJ8FLisUfmnIYRxpC7pXLptXYzx9RDC/cB8oA64MsZYn+zny8ATQDZwS4zx9WRfXwfuDSH8EHgZuLkl/UpSui3fUMEX/vgiAHdeOoGiXl3S3JEkSeqoWhQGY4wVpCZ6aVw7fxfjrwOua6L+OPB4E/UlpGYblaSMt6K0gnNvmkFlbT33fHEiBxV2S3dLkiSpA3P+cknaD1ZuquTcm2ZQVl3HnZdMYMzA7uluSZIkdXCGQUnax1ZvruTcG2ewubKWOy+ZwKGDeqS7JUmSJMOgJO1La7ZUce6NM9hYXsMdl0zgsCKDoCRJahta66bzkqQdrE2C4PqyGm6/ZDzjBvdMd0uSJEnv8sygJO0D67ZWc94fX+SdLVXcdtGxHHVgr3S3JEmStB3DoCS1srVbqzjvphms3FjJrRceyzFDe6e7JUmSpPfxMlFJakXvbE4FwXe2VHHLhccy4aA+u99IkiQpDQyDktRKSjZWcN5NL1JaXsPtF4/3jKAkSWrTDIOS1AqWb0jdUH5rVS13XjrByWIkSVKbZxiUpBZasq6M8256kaq6eu7+4kTvIyhJkjKCYVCSWmDhmq2ce9OLxBi5d+pERg/onu6WJEmSmsUwKEl76Y3VW/jCH18kOytw99SJjOhXkO6WJEmSms1bS0jSXpi9bCPn3DiDvJws7rvsOIOgJEnKOIZBSdpDzyxYxxf++CK9uuRy/2XHMaxv13S3JEmStMe8TFSS9sBfXl3Ff97/CiP7FTDt4vEUFnRKd0uSJEl7xTAoSc10x4xlfOeR1zh2aG/+OOUYuufnprslSZKkvWYYlKTdiDHym6cW8T/TF/CRMf34zXlHkZ+bne62JEmSWsQwKEm70NAQ+cFf53Prv5bymSMH8ZMzDyc3269bS5KkzGcYlKSdqKlr4OsPzuWhl1dy8QnD+NYnxpCVFdLdliRJUqswDEpSEzZX1nLFnbN5fvEG/t/HDubKD48gBIOgJElqPwyDkrSDko0VXHzbTN5eX84vzz6CM44sSndLkiRJrc4wKEmNvLZyMxfdNpOq2nqmXTye44f3TXdLkiRJ+0SLZ0EIISwNIcwLIbwSQpiV1HqHEKaHEBYmz72SegghXB9CWBRCmBtCOKrRfqYk4xeGEKY0qh+d7H9Rsq3XaUnaJ556cw1n/eEF8rKzePCK4w2CkiSpXWutKfE+HGMcF2M8Jnl9NfBkjHEk8GTyGuDjwMjkMRW4AVLhEbgWmACMB67dFiCTMVMbbTe5lXqWpHfdMWMZl06bxUGFXXnoS8dzcP+CdLckSZK0T+2r+dFPA6Yly9OA0xvVb48pM4CeIYSBwCnA9BhjaYxxIzAdmJys6x5jfCHGGIHbG+1LklqsviHy34+/wbcffo1Jo/px39Tj6Nc9P91tSZIk7XOt8Z3BCPw9hBCBP8QYbwT6xxhXA8QYV4cQ+iVjBwErGm1bktR2VS9por6dEMJUUmcPKSwspLi4uBU+lrR/lZWVeezuZ5V1kd+/Ws2r6+o56cAcPn9gGTNf+Ge628o4HrvKRB63ylQeu2pNrREGT4gxrkoC3/QQwpu7GNvU9/3iXtS3L6QC6I0Ao0aNipMmTdpt01JbU1xcjMfu/rN0fTmX3j6Ltzc08IPTD+X8iUPS3VLG8thVJvK4Vaby2FVravFlojHGVcnzWuAhUt/5W5Nc4knyvDYZXgIMbrR5EbBqN/WiJuqStNeeX7Se0377L9aXVXPHJeMNgpIkqUNqURgMIXQNIRRsWwY+BrwGPApsmxF0CvBIsvwocEEyq+hEYHNyOekTwMdCCL2SiWM+BjyRrNsaQpiYzCJ6QaN9SdIeiTFy+wtLOf+Wl+hX0IlHrjzBGUMlSVKH1dLLRPsDDyV3e8gB7o4x/l8IYSZwfwjhEmA58Llk/OPAqcAioAK4CCDGWBpC+AEwMxn3/RhjabJ8BXAb0Bn4W/KQpD1SVVvPNx96jQfnlHDy6H787znjKMjPTXdbkiRJadOiMBhjXAIc0UR9A3ByE/UIXLmTfd0C3NJEfRZwaEv6lNSxrSit4LI7ZjN/9RauOnkkV508kqwsb1kqSZI6ttaYQEaS2qyn31rLf9z7CjFGbrnwGE4a3T/dLUmSJLUJhkFJ7VJDQ+TXTy3if59cwOgB3fn9F45iSJ+u6W5LkiSpzTAMSmp31m2t5j/vf4XnFq7njCMH8aMzDqNzXna625IkSWpTDIOS2pXnF63nqvteYUtlLdedcSjnjT+QZJIrSZIkNWIYlNQu1NU3cP2TC/n104s4qG9X7rhkPKMHdE93W5IkSW2WYVBSxlu9uZKr7n2Fl94u5cyji/j+aWPpkuePN0mSpF3xX0uSMtpjc1dxzZ/nUdcQ+cVZR/CZo4rS3ZIkSVJGMAxKykhbqmq59pHXeejllRwxuCe/POsIDirslu62JEmSMoZhUFLGmbFkA1+9/1Xe2VLFVSeP5MsnjSA3OyvdbUmSJGUUw6CkjFFVW88vpi/gpueWMKR3Fx64/DiOPLBXutuSJEnKSIZBSRlh1tJS/uuBuSxZX8654w/kW58YQ9dO/giTJEnaW/5LSlKbVlFTx8+eeIvbnl/KAT06c+clEzhxZN90tyVJkpTxDIOS2qwXFm/g6w/OZXlpBRccN4SvTx7t2UBJkqRW4r+qJLU5peU1/Pfjb/Cn2SUM6dOFe6dOZOJBfdLdliRJUrtiGJTUZsQY+dOsEn70tzcoq6rj8g8N56qTR9I5LzvdrUmSJLU7hkFJbcLCNVv55kOv8dLSUo4Z0ovrzjiMUQMK0t2WJElSu2UYlJRWW6pq+c1Ti7j1X2/TtVMOP/nsYXzu6MFkZYV0tyZJktSuGQYlpUVDQ+RPs1fwsyfeYkN5DWcdPZj/mjyKPt06pbs1SZKkDsEwKGm/m7W0lO/9ZT7zVm7mmCG9uPXC8RxW1CPdbUmSJHUohkFJ+83S9eX87O9v8de5qxnQPZ9fnTOOTx9xACF4SagkSdL+ZhiUtM+tL6vm+icXcveLy8nNzuLfTx7J5R86iC55/giSJElKF/8lJmmfKa+u44/Pvc2Nzy6mqq6Bc44dzFUfGUm/gvx0tyZJktThZe3thiGEwSGEp0MIb4QQXg8hXJXUvxtCWBlCeCV5nNpom2+EEBaFEN4KIZzSqD45qS0KIVzdqD4shPBiCGFhCOG+EELe3vYraf+prKnnpmeX8KGfPc0v/7GADx5cyN+/8kGuO+Mwg6AkSVIb0ZIzg3XAV2OMc0IIBcDsEML0ZN0vY4w/bzw4hHAIcA4wFjgA+EcI4eBk9W+BjwIlwMwQwqMxxvnAT5J93RtC+D1wCXBDC3qWtA9V1dZz54xl/P6ZJawvq+YDI/vylY8ezFEH9kp3a5IkSdrBXofBGONqYHWyvDWE8AYwaBebnAbcG2OsBt4OISwCxifrFsUYlwCEEO4FTkv2dxJwXjJmGvBdDINSm1NRU8e9L63ghmcWs25rNccP78MNXziKY4f2TndrkiRJ2olW+c5gCGEocCTwInAC8OUQwgXALFJnDzeSCoozGm1WwnvhccUO9QlAH2BTjLGuifE7vv9UYCpAYWEhxcXFLf5M0v5WVlaWccduWU3kH8tr+ceyWspqYVSvLC4Zn8/o3lWUL51L8dJ0d6j9IROPXcnjVpnKY1etqcVhMITQDXgQ+I8Y45YQwg3AD4CYPP8PcDHQ1Nzxkaa/txh3Mf79xRhvBG4EGDVqVJw0adIefgop/YqLi8mUY7dkYwV/fO5t7pu5gsraej4yph+Xf2g4x3gmsEPKpGNX2sbjVpnKY1etqUVhMISQSyoI3hVj/DNAjHFNo/U3AY8lL0uAwY02LwJWJctN1dcDPUMIOcnZwcbjJaXBm+9s4Q/PLOHRV1cRgNPGDeKyDx3Ewf0L0t2aJEmS9tBeh8GQukv0zcAbMcZfNKoPTL5PCHAG8Fqy/ChwdwjhF6QmkBkJvETqDODIEMIwYCWpSWbOizHGEMLTwJnAvcAU4JG97VfS3qmtb2D6/DXc/sJSZiwppUteNhceP5RLThzGAT07p7s9SZIk7aWWnBk8ATgfmBdCeCWpXQOcG0IYR+qSzqXAZQAxxtdDCPcD80nNRHpljLEeIITwZeAJIBu4Jcb4erK/rwP3hhB+CLxMKnxK2g/Wba3m3peWc9eLy3lnSxVFvTrzjY+P5uxjB9Ozi3d5kSRJynQtmU30nzT9vb7Hd7HNdcB1TdQfb2q7ZIbR8TvWJe0bMUbmLN/IHS8s46/zVlNbH/nAyL788PRD+fDofmRnNfW/vCRJkjJRq8wmKimzrd1SxZ9fXsmfZq1g8bpyCjrl8PkJQzj/uCEML+yW7vYkSZK0DxgGpQ6qpq6Bp95cy59mraB4wTrqGyJHD+nFTz57EJ84/AC6dfLHgyRJUnvmv/akDiTGyCsrNvHoq6t45JVVlJbX0K+gE1M/eBBnHl3kWUBJkqQOxDAotXMxRuav3sJjc1fzl1dXUbKxkrzsLE4e04+zjhnMB0b2JSe7qdt9SpIkqT0zDErtUIyRRWvLUgFw7iqWrCsnOytw4oi+XHXySD42dgA9Ouemu01JkiSlkWFQaifqG1IzgU6fv4bp89fw9vpyQoCJw/pw6YkHMfnQAfTu6i0hJEmSlGIYlDJYZU09zy5cx/T5a3jqzbWUlteQmx04bnhfLj5hKB8bO4D+3fPT3aYkSZLaIMOglEFijLy1ZivPLljHcwvX8+LbpdTUNVCQn8NJo/vx0UP686GDCynI9xJQSZIk7ZphUGrjNpRV889F63l2wXqeW7iOtVurATi4fzcumDiED4/ux/hhvcl1EhhJkiTtAcOg1MasL6vmxSWlvPj2BmYs2cCCNWUA9OySy4kj+vLBkYV84OC+DOzROc2dSpIkKZMZBqU0ijFSsrGSOcs38vDr1fxwzjMsWpsKf13ysjlmaG9OGzeIE0b05bBBPcjOCmnuWJIkSe2FYVDaj8qq65hbsomXl6cer6zYyPqyGgDys2HiiM6ceXQRE4b15tBBPbz0U5IkSfuMYVDaR6pq63nrna3MX73l3QC4YM1WGmJq/UGFXfnQwf048sCejBvckzVvzeHkk8ant2lJkiR1GIZBqRVsLK9h/uotzF+1hfmrt/D6qs0sXldOfZL8uufncOSBvThl7IB3w1/PLtvf82/9Qi8BlSRJ0v5jGJT2wJaqWhatLWPRmjIWrt3KwrVlLHhnK6s2V707ZkD3fMYe0J1Txg5g7AHdOWRgDwb37kwIhj1JkiS1HYZBaQf1DZFVmypZXlrB2+vLU+FvbSr8rdlS/e64TjlZDC/sxrHDenPIwO6MPaAHYwYW0KdbpzR2L0mSJDWPYVAdUk1dAyUbK1i2oYKlG8pZtqGCZRvKWVZawYrSCmrr47tju+RlM7JfN04cUcjI/t0YUdiNkf27UdSri7N7SpIkKWMZBtXuxBjZUlnHyk2VrNpUyarNlazcVMnqTVWp15sqeWdL1bsTuQB0zctmSJ+ujB5QwCljBzCkdxeG9OnKkD5dGNgj30s8JUmS1O4YBpVRyqrrWLe1mrVbqlhXVs3aLdXvPq/dWsXqzanAV1FTv912edlZDOyZz8Ae+Uwc3oeinp0Z0qcrQ/umQl+frnkGPkmSJHUohkGlVXVdPZsqaiktr2FjeQ0bK2oprUgtl5bXpILf1qrkufp9IQ8gNztQ2K0ThQWdGFHYjQ+OLOSAnvkc0LNz8sinb9dOZHlJpyRJkvQuw6BarK6+ga1VdWypqmVL5bbn2ka1WrZU1bG5Mgl9Famgt6milrLqup3utyA/h34FqZB3eFFPCgs6vfu6X0H+u697dM416EmSJEl7yDDYATU0RCpq66morqO8pp7y6joqauopr6mjojr1urwmqVVv/1xWXUd59fbBr6mzdY2FAAWdcujeOZc+XfPo3TWP4YXd6NUlj95dc+nVNY/eXfJSz13z6Nkll15d8sjNztpP/0UkSZKkjqfNh8EQwmTgV0A28McY44/T3FKLxBiprY/U1jdQW99ATX0DtfWRmrrkdfK8bUxNfQO1dannqtoGqmrrqaqtp7ruveV3641q1bUNVNXtsD4ZU1PX0Ox+s7MCXfOy6dophy552XTrlEOXvBwO6tuNgvxUwOuen0v3zjnJcy7dk/q29d3ycjxzJ0mSJLUxbToMhhCygd8CHwVKgJkhhEdjjPN3tk1FXeTxeaupa4jUNzRQVx9piDF5Hf9/e/cXItdZxnH8+5zZmd2mBdP0j0o22oohtBdaRWqgXizRi6jVeFEhYrFIIRcqVFCkeiOKXnhjRRQhaLBKsZYqGqQgpe2iN9bW1n8lBGMQG1oaJG1tKKTZ7OPFeXdydrs1m+3Onvnz/cDhzPued3Yflh/LPDPnnFl1fC7L2sXkXH+c/fHCYvM5q//MhcVFXjmXnO03c3VDd2bZeHHZVxa8/r8PzEx1mOlWzHQ7zHQ7TE9V/f3lW3rnjzXWTXc7XDbdYUtvikuX9r0ptkx3uLTMLY17ncobq0iSJEljaKibQeBG4FhmHgeIiHuBfcBrNoMnX04+c88TF/2Lpqqg09jqcUWngqmq6s9V/WOx7DndTsWWXkW3U9GbqsdLW68TZb5q7KNxvKI7tXy8tLbbeO5SQzfdrfc2apIkSZLWa9ibwe3A043xCeC9KxdFxAHgAMC2q9/EN266hCqgE1CVrRNQVUEFdCqWHY/6Z6yxpCzb67RYtrOrHz772oc0pk6fPs38/HzbZUgXzexqFJlbjSqzq4007M3gah3aqzqxzDwIHATYtWtX3vqRPYOuS9pw8/PzzM3NtV2GdNHMrkaRudWoMrvaSMN+u8YTwI7GeBZ4pqVaJEmSJGlsDHsz+BiwMyKujYgesB843HJNkiRJkjTyhvo00cxciIjPAb+l/mqJQ5n5VMtlSZIkSdLIG+pmECAzHwAeaLsOSZIkSRonw36aqCRJkiRpAGwGJUmSJGkC2QxKkiRJ0gSyGZQkSZKkCWQzKEmSJEkTyGZQkiRJkiZQZGbbNWyoiHgJONp2HdI6XAn8p+0ipHUwuxpF5lajyuxqLd6amVddaNHQf8/gOhzNzPe0XYR0sSLicbOrUWR2NYrMrUaV2dVG8jRRSZIkSZpANoOSJEmSNIHGsRk82HYB0jqZXY0qs6tRZG41qsyuNszY3UBGkiRJknRh4/jJoCRJkiTpAmwGJUmSJGkCjVUzGBF7I+JoRByLiDvbrkdqiohDEXEyIv7emNsWEQ9GxD/K/vIyHxHx3ZLlv0bEu9urXJMsInZExCMRcSQinoqIO8q82dVQi4iZiPhjRPylZPdrZf7aiHi0ZPfnEdEr89NlfKwcv6bN+jXZIqITEU9GxG/K2NxqIMamGYyIDvB94IPA9cAnIuL6dquSlvkxsHfF3J3AQ5m5E3iojKHO8c6yHQB+sEk1SistAF/IzOuA3cBny/9Ws6thdwbYk5nvBG4A9kbEbuBbwF0lu88Dt5f1twPPZ+bbgbvKOqktdwBHGmNzq4EYm2YQuBE4lpnHM/MV4F5gX8s1SX2Z+Tvg1IrpfcDd5fHdwMca8z/J2h+ArRHx5s2pVDovM5/NzCfK45eoX5xsx+xqyJUMni7DbtkS2APcX+ZXZncp0/cD74+I2KRypb6ImAU+DPywjANzqwEZp2ZwO/B0Y3yizEnD7I2Z+SzUL7qBq8u8edbQKacfvQt4FLOrEVBOtfszcBJ4EPgn8EJmLpQlzXz2s1uOvwhcsbkVSwB8B/gSsFjGV2BuNSDj1Ayu9i6I35uhUWWeNVQi4jLgF8DnM/O//2/pKnNmV63IzHOZeQMwS30G0XWrLSt7s6vWRcTNwMnM/FNzepWl5lYbYpyawRPAjsZ4FnimpVqktXpu6RS6sj9Z5s2zhkZEdKkbwXsy85dl2uxqZGTmC8A89XWvWyNiqhxq5rOf3XL8Dbz61M7/CW0AAAFUSURBVH5p0G4CPhoR/6K+5GkP9SeF5lYDMU7N4GPAznK3pR6wHzjcck3ShRwGbiuPbwN+3Zj/VLkz427gxaVT8qTNVK49+RFwJDO/3ThkdjXUIuKqiNhaHl8CfID6mtdHgFvKspXZXcr0LcDDmeknLNpUmfnlzJzNzGuoX8s+nJmfxNxqQGKc8hIRH6J+96QDHMrMb7ZcktQXET8D5oArgeeArwK/Au4D3gL8G/h4Zp4qL8C/R3330ZeBT2fm423UrckWEe8Dfg/8jfPXr3yF+rpBs6uhFRHvoL6xRof6ze/7MvPrEfE26k9ctgFPArdm5pmImAF+Sn1d7Clgf2Yeb6d6CSJiDvhiZt5sbjUoY9UMSpIkSZLWZpxOE5UkSZIkrZHNoCRJkiRNIJtBSZIkSZpANoOSJEmSNIFsBiVJkiRpAtkMSpIkSdIEshmUJEmSpAn0PxXaxKWuYLC+AAAAAElFTkSuQmCC\n", "text/plain": [ "
    " ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], @@ -1383,7 +1385,7 @@ "population[0] = p_initial\n", "\n", "for idx, t_value in enumerate(time[1:]):\n", - " population[idx + 1] = population[idx] + delta_t * (r*population[idx] - a * population[idx]**2)\n", + " population[idx + 1] = population[idx] + (r*population[idx] - a * population[idx]**2) * delta_t\n", "\n", "# Now plot the data\n", "bugs = pd.DataFrame(data = {'bacteria': population}, index=time)\n", From 6bab67cc1239ff1745e473311a274562ad224163 Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Wed, 7 Aug 2019 10:27:52 +0200 Subject: [PATCH 086/134] Added sections on 'Preparing for this module' to all notebooks, to be consistent. --- Module-01-interactive.ipynb | 48 ++++++++++++++++++++++++------------- Module-02-interactive.ipynb | 28 +++++++++++++++------- Module-03-interactive.ipynb | 28 +++++++++++++++------- Module-04-interactive.ipynb | 28 ++++++++++++++-------- Module-05-interactive.ipynb | 24 ++++++++++++------- Module-06-interactive.ipynb | 26 ++++++++++---------- Module-07-interactive.ipynb | 14 +++++------ Module-08-interactive.ipynb | 14 +++++------ Module-09-interactive.ipynb | 4 ++-- Module-10-interactive.ipynb | 4 +--- 10 files changed, 136 insertions(+), 82 deletions(-) diff --git a/Module-01-interactive.ipynb b/Module-01-interactive.ipynb index 0696c21..dfb7561 100644 --- a/Module-01-interactive.ipynb +++ b/Module-01-interactive.ipynb @@ -32,7 +32,11 @@ "3. Types of variables\n", "3. Calculations with variables\n", "4. Built-in constants and mathematical functions\n", - "6. Exercises" + "6. Exercises\n", + "\n", + "## Preparing for this module\n", + "\n", + "* Have a basic Python installation that works. You can follow the instructions below, which should generate the output shown." ] }, { @@ -60,12 +64,20 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [] + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Hi, my name is Kevin.\n" + ] + } + ], + "source": [ + "print('Hi, my name is Kevin.')" + ] }, { "cell_type": "markdown", @@ -712,6 +724,10 @@ "/* margin-right:auto;*/\n", "}\n", "\n", + ".table tr {\n", + " text-align:left;\n", + "}\n", + "\n", "/* Formatting for header cells */\n", ".text_cell_render h1 {\n", " font-family: 'Merriweather', serif;\n", @@ -744,17 +760,17 @@ " color: #008367;\n", "}\n", "\n", - ".text_cell_render h4 { /*Use this for captions*/\n", + ".text_cell_render h4 { /*Use this for Challenge Problems*/\n", " font-family: 'Merriweather', serif;\n", - " font-weight: 300;\n", - " font-size: 100%;\n", + " font-weight: bold;\n", + " font-size: 150%;\n", " line-height: 120%;\n", " text-align: left;\n", - " width:500px;\n", - " margin-top: 1em;\n", - " margin-bottom: 2em;\n", - " margin-left: 80pt;\n", + " margin-top: 12px;\n", + " margin-bottom: 5px;\n", + " margin-left: 0pt;\n", " font-style: regular;\n", + " color: #8B008B;\n", "}\n", "\n", ".text_cell_render h5 { /*Use this for small titles*/\n", @@ -828,7 +844,7 @@ "metadata": { "hide_input": false, "kernelspec": { - "display_name": "Python [default]", + "display_name": "Python 3", "language": "python", "name": "python3" }, @@ -842,7 +858,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.5.5" + "version": "3.7.3" }, "toc": { "base_numbering": "1", diff --git a/Module-02-interactive.ipynb b/Module-02-interactive.ipynb index 89a5287..218ba57 100644 --- a/Module-02-interactive.ipynb +++ b/Module-02-interactive.ipynb @@ -33,7 +33,15 @@ "\n", "They seem unrelated, but they hang together conceptually: they are all about sequences, or collections: characters in a strings, items in a list, and loops to process the sequence. We will formally compare all sequence types later. For now let us just use them.\n", "\n", - "At the end, and in between these sections we will cover some topics related to commenting." + "At the end, and in between these sections we will cover some topics related to commenting.\n", + "\n", + "## Preparing for this module\n", + "\n", + "You should cover these resources (it can take quite some time!)\n", + "* https://runestone.academy/runestone/static/fopp/Sequences/toctree.html and go through the entire chapter 6. You can interactively code on this website. Please also answer the \"Check your understanding\" questions as you go.\n", + "* https://runestone.academy/runestone/static/fopp/Iteration/toctree.html and go through all of chapter 7, skipping section 7.8 unless you are interested in image analysis 😊\n", + "* https://runestone.academy/runestone/static/fopp/Files/toctree.html and only complete up to section 10.5 (reading a file). We will cover writing to files in a later session.\n", + "* https://www.w3schools.com/python/python_lists.asp and go through the presented examples on lists.\n" ] }, { @@ -560,6 +568,10 @@ "/* margin-right:auto;*/\n", "}\n", "\n", + ".table tr {\n", + " text-align:left;\n", + "}\n", + "\n", "/* Formatting for header cells */\n", ".text_cell_render h1 {\n", " font-family: 'Merriweather', serif;\n", @@ -592,17 +604,17 @@ " color: #008367;\n", "}\n", "\n", - ".text_cell_render h4 { /*Use this for captions*/\n", + ".text_cell_render h4 { /*Use this for Challenge Problems*/\n", " font-family: 'Merriweather', serif;\n", - " font-weight: 300;\n", - " font-size: 100%;\n", + " font-weight: bold;\n", + " font-size: 150%;\n", " line-height: 120%;\n", " text-align: left;\n", - " width:500px;\n", - " margin-top: 1em;\n", - " margin-bottom: 2em;\n", - " margin-left: 80pt;\n", + " margin-top: 12px;\n", + " margin-bottom: 5px;\n", + " margin-left: 0pt;\n", " font-style: regular;\n", + " color: #8B008B;\n", "}\n", "\n", ".text_cell_render h5 { /*Use this for small titles*/\n", diff --git a/Module-03-interactive.ipynb b/Module-03-interactive.ipynb index d7f9773..976dd09 100644 --- a/Module-03-interactive.ipynb +++ b/Module-03-interactive.ipynb @@ -34,9 +34,17 @@ "\n", "On the side we will cover some aspects of debugging.\n", "\n", + "## Preparing for this module\n", "\n", + "* Review the sections from last week again, to fill in the blanks in your knowledg: [Strings and Lists](https://runestone.academy/runestone/static/fopp/Sequences/toctree.html), then [for loops](https://runestone.academy/runestone/static/fopp/Iteration/toctree.html), then about [files](https://runestone.academy/runestone/static/fopp/Files/toctree.html) - up to section 10.5\n", + "* New: Check your knowledge of if-else branches: https://www.w3schools.com/python/python_conditions.asp\n", "\n", - "### First, a quick warm-up, with 10 questions:\n", + "Also recommended: \n", + "* Get a Bitbucket or Github account set up \n", + "* Get the Git software client installed and running \n", + "\n", + "\n", + "## First, a quick warm-up, with 10 questions:\n", "\n", "1. How many characters will be returned? ``\"my_string\"[0:5]``\n", "2. And here? ``\"my_string \"[5:100:2]``\n", @@ -680,6 +688,10 @@ "/* margin-right:auto;*/\n", "}\n", "\n", + ".table tr {\n", + " text-align:left;\n", + "}\n", + "\n", "/* Formatting for header cells */\n", ".text_cell_render h1 {\n", " font-family: 'Merriweather', serif;\n", @@ -712,17 +724,17 @@ " color: #008367;\n", "}\n", "\n", - ".text_cell_render h4 { /*Use this for captions*/\n", + ".text_cell_render h4 { /*Use this for Challenge Problems*/\n", " font-family: 'Merriweather', serif;\n", - " font-weight: 300;\n", - " font-size: 100%;\n", + " font-weight: bold;\n", + " font-size: 150%;\n", " line-height: 120%;\n", " text-align: left;\n", - " width:500px;\n", - " margin-top: 1em;\n", - " margin-bottom: 2em;\n", - " margin-left: 80pt;\n", + " margin-top: 12px;\n", + " margin-bottom: 5px;\n", + " margin-left: 0pt;\n", " font-style: regular;\n", + " color: #8B008B;\n", "}\n", "\n", ".text_cell_render h5 { /*Use this for small titles*/\n", diff --git a/Module-04-interactive.ipynb b/Module-04-interactive.ipynb index d210e72..c25799b 100644 --- a/Module-04-interactive.ipynb +++ b/Module-04-interactive.ipynb @@ -31,7 +31,11 @@ "2. What do we mean by vectors, matrices and arrays\n", "3. Using a Python library: introducing NumPy\n", "4. Creating vectors, matrices and arrays with NumPy\n", - "5. Special matrices in NumPy (e.g. identity matrices, random numbers)\n" + "5. Special matrices in NumPy (e.g. identity matrices, random numbers)\n", + "\n", + "## Preparing for this module\n", + "\n", + "* Not much, just a general understanding of scalars, matrices and arrays." ] }, { @@ -799,6 +803,10 @@ "/* margin-right:auto;*/\n", "}\n", "\n", + ".table tr {\n", + " text-align:left;\n", + "}\n", + "\n", "/* Formatting for header cells */\n", ".text_cell_render h1 {\n", " font-family: 'Merriweather', serif;\n", @@ -831,17 +839,17 @@ " color: #008367;\n", "}\n", "\n", - ".text_cell_render h4 { /*Use this for captions*/\n", + ".text_cell_render h4 { /*Use this for Challenge Problems*/\n", " font-family: 'Merriweather', serif;\n", - " font-weight: 300;\n", - " font-size: 100%;\n", + " font-weight: bold;\n", + " font-size: 150%;\n", " line-height: 120%;\n", " text-align: left;\n", - " width:500px;\n", - " margin-top: 1em;\n", - " margin-bottom: 2em;\n", - " margin-left: 80pt;\n", + " margin-top: 12px;\n", + " margin-bottom: 5px;\n", + " margin-left: 0pt;\n", " font-style: regular;\n", + " color: #8B008B;\n", "}\n", "\n", ".text_cell_render h5 { /*Use this for small titles*/\n", @@ -922,7 +930,7 @@ "metadata": { "hide_input": false, "kernelspec": { - "display_name": "Python [default]", + "display_name": "Python 3", "language": "python", "name": "python3" }, @@ -936,7 +944,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.5.5" + "version": "3.7.3" }, "toc": { "base_numbering": 1, diff --git a/Module-05-interactive.ipynb b/Module-05-interactive.ipynb index df5287b..e2c1fbf 100644 --- a/Module-05-interactive.ipynb +++ b/Module-05-interactive.ipynb @@ -40,6 +40,8 @@ "\n", "You will learn these by discovery: copy and paste the code, but look at the code first. Often there are other interesting ideas from prior modules, or even other new features we will learn about later.\n", "\n", + "### Preparing for this module\n", + "\n", "

    Start a new version controlled repository for your work. Put each section in a new Python script file. Commit your work at the end of each section." ] }, @@ -1196,6 +1198,10 @@ "/* margin-right:auto;*/\n", "}\n", "\n", + ".table tr {\n", + " text-align:left;\n", + "}\n", + "\n", "/* Formatting for header cells */\n", ".text_cell_render h1 {\n", " font-family: 'Merriweather', serif;\n", @@ -1228,17 +1234,17 @@ " color: #008367;\n", "}\n", "\n", - ".text_cell_render h4 { /*Use this for captions*/\n", + ".text_cell_render h4 { /*Use this for Challenge Problems*/\n", " font-family: 'Merriweather', serif;\n", - " font-weight: 300;\n", - " font-size: 100%;\n", + " font-weight: bold;\n", + " font-size: 150%;\n", " line-height: 120%;\n", " text-align: left;\n", - " width:500px;\n", - " margin-top: 1em;\n", - " margin-bottom: 2em;\n", - " margin-left: 80pt;\n", + " margin-top: 12px;\n", + " margin-bottom: 5px;\n", + " margin-left: 0pt;\n", " font-style: regular;\n", + " color: #8B008B;\n", "}\n", "\n", ".text_cell_render h5 { /*Use this for small titles*/\n", @@ -1319,7 +1325,7 @@ "metadata": { "hide_input": false, "kernelspec": { - "display_name": "Python [default]", + "display_name": "Python 3", "language": "python", "name": "python3" }, @@ -1333,7 +1339,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.5.5" + "version": "3.7.3" }, "toc": { "base_numbering": 1, diff --git a/Module-06-interactive.ipynb b/Module-06-interactive.ipynb index 3ad82f9..19e06eb 100644 --- a/Module-06-interactive.ipynb +++ b/Module-06-interactive.ipynb @@ -58,9 +58,7 @@ "\n", "You should have:\n", "1. Completed [worksheet 5](https://yint.org/pybasic05)\n", - "2. Read sections 12.1 to 12.5 from [Foundations of Python Programming (FOPP)](https://runestone.academy/runestone/static/fopp/Functions/toctree.html)\n", - "\n", - "
    " + "2. Read sections 12.1 to 12.5 from [Foundations of Python Programming (FOPP)](https://runestone.academy/runestone/static/fopp/Functions/toctree.html)" ] }, { @@ -778,6 +776,10 @@ "/* margin-right:auto;*/\n", "}\n", "\n", + ".table tr {\n", + " text-align:left;\n", + "}\n", + "\n", "/* Formatting for header cells */\n", ".text_cell_render h1 {\n", " font-family: 'Merriweather', serif;\n", @@ -810,17 +812,17 @@ " color: #008367;\n", "}\n", "\n", - ".text_cell_render h4 { /*Use this for captions*/\n", + ".text_cell_render h4 { /*Use this for Challenge Problems*/\n", " font-family: 'Merriweather', serif;\n", - " font-weight: 300;\n", - " font-size: 100%;\n", + " font-weight: bold;\n", + " font-size: 150%;\n", " line-height: 120%;\n", " text-align: left;\n", - " width:500px;\n", - " margin-top: 1em;\n", - " margin-bottom: 2em;\n", - " margin-left: 80pt;\n", + " margin-top: 12px;\n", + " margin-bottom: 5px;\n", + " margin-left: 0pt;\n", " font-style: regular;\n", + " color: #8B008B;\n", "}\n", "\n", ".text_cell_render h5 { /*Use this for small titles*/\n", @@ -901,7 +903,7 @@ "metadata": { "hide_input": false, "kernelspec": { - "display_name": "Python [default]", + "display_name": "Python 3", "language": "python", "name": "python3" }, @@ -915,7 +917,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.5.5" + "version": "3.7.3" }, "toc": { "base_numbering": 1, diff --git a/Module-07-interactive.ipynb b/Module-07-interactive.ipynb index dc2a153..ec5cae6 100644 --- a/Module-07-interactive.ipynb +++ b/Module-07-interactive.ipynb @@ -973,17 +973,17 @@ " color: #008367;\n", "}\n", "\n", - ".text_cell_render h4 { /*Use this for captions*/\n", + ".text_cell_render h4 { /*Use this for Challenge Problems*/\n", " font-family: 'Merriweather', serif;\n", - " font-weight: 300;\n", - " font-size: 100%;\n", + " font-weight: bold;\n", + " font-size: 150%;\n", " line-height: 120%;\n", " text-align: left;\n", - " width:500px;\n", - " margin-top: 1em;\n", + " margin-top: 12px;\n", " margin-bottom: 5px;\n", " margin-left: 0pt;\n", " font-style: regular;\n", + " color: #8B008B;\n", "}\n", "\n", ".text_cell_render h5 { /*Use this for small titles*/\n", @@ -1064,7 +1064,7 @@ "metadata": { "hide_input": false, "kernelspec": { - "display_name": "Python [default]", + "display_name": "Python 3", "language": "python", "name": "python3" }, @@ -1078,7 +1078,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.5.5" + "version": "3.7.3" }, "toc": { "base_numbering": 1, diff --git a/Module-08-interactive.ipynb b/Module-08-interactive.ipynb index 796d101..30ab927 100644 --- a/Module-08-interactive.ipynb +++ b/Module-08-interactive.ipynb @@ -427,17 +427,17 @@ " color: #008367;\n", "}\n", "\n", - ".text_cell_render h4 { /*Use this for captions*/\n", + ".text_cell_render h4 { /*Use this for Challenge Problems*/\n", " font-family: 'Merriweather', serif;\n", - " font-weight: 300;\n", - " font-size: 100%;\n", + " font-weight: bold;\n", + " font-size: 150%;\n", " line-height: 120%;\n", " text-align: left;\n", - " width:500px;\n", - " margin-top: 1em;\n", + " margin-top: 12px;\n", " margin-bottom: 5px;\n", " margin-left: 0pt;\n", " font-style: regular;\n", + " color: #8B008B;\n", "}\n", "\n", ".text_cell_render h5 { /*Use this for small titles*/\n", @@ -518,7 +518,7 @@ "metadata": { "hide_input": false, "kernelspec": { - "display_name": "Python [default]", + "display_name": "Python 3", "language": "python", "name": "python3" }, @@ -532,7 +532,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.5.5" + "version": "3.7.3" }, "toc": { "base_numbering": 1, diff --git a/Module-09-interactive.ipynb b/Module-09-interactive.ipynb index 89ecf4b..39f3a05 100644 --- a/Module-09-interactive.ipynb +++ b/Module-09-interactive.ipynb @@ -1948,7 +1948,7 @@ "metadata": { "hide_input": false, "kernelspec": { - "display_name": "Python [default]", + "display_name": "Python 3", "language": "python", "name": "python3" }, @@ -1962,7 +1962,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.5.5" + "version": "3.7.3" }, "toc": { "base_numbering": 1, diff --git a/Module-10-interactive.ipynb b/Module-10-interactive.ipynb index a1dfe6b..a6696dc 100644 --- a/Module-10-interactive.ipynb +++ b/Module-10-interactive.ipynb @@ -29,9 +29,7 @@ { "cell_type": "code", "execution_count": 1, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [ { "data": { From dd1bf3262c95811669e6a55ceee5ed44d8986c48 Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Mon, 28 Sep 2020 15:34:41 +0200 Subject: [PATCH 087/134] Renamed file to reflect what it actually is. --- Module-11-interactive.ipynb => TODO-module.ipynb | 0 1 file changed, 0 insertions(+), 0 deletions(-) rename Module-11-interactive.ipynb => TODO-module.ipynb (100%) diff --git a/Module-11-interactive.ipynb b/TODO-module.ipynb similarity index 100% rename from Module-11-interactive.ipynb rename to TODO-module.ipynb From fef789e6911a5ec4395eb8eeebc74376e5b37fd3 Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Mon, 28 Sep 2020 16:00:47 +0200 Subject: [PATCH 088/134] aAdded filter for notebooks; updated module 11 to be more focussed. --- .gitattributes | 2 + Module-11-interactive.ipynb | 602 ++++++++++++++++++++++++++++++++++++ 2 files changed, 604 insertions(+) create mode 100644 .gitattributes create mode 100644 Module-11-interactive.ipynb diff --git a/.gitattributes b/.gitattributes new file mode 100644 index 0000000..305a9b0 --- /dev/null +++ b/.gitattributes @@ -0,0 +1,2 @@ +*.ipynb filter=nbstripout +*.ipynb diff=ipynb diff --git a/Module-11-interactive.ipynb b/Module-11-interactive.ipynb new file mode 100644 index 0000000..dc7f55a --- /dev/null +++ b/Module-11-interactive.ipynb @@ -0,0 +1,602 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "toc": true + }, + "source": [ + "

    Table of Contents

    \n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "> All content here is under a Creative Commons Attribution [CC-BY 4.0](https://creativecommons.org/licenses/by/4.0/) and all source code is released under a [BSD-2 clause license](https://en.wikipedia.org/wiki/BSD_licenses).\n", + ">\n", + ">Please reuse, remix, revise, and [reshare this content](https://github.com/kgdunn/python-basic-notebooks) in any way, keeping this notice." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Module 11: Overview\n", + "\n", + "This is the first module of several (11, 12, 13, 14, 15 and 16), which refocuses the course material in the prior 10 modules in a slightly different way. It places less emphasize on data structures and gets on more with the actual calculations.\n", + "\n", + "\n", + "1. Printing\n", + "2. Creating variables\n", + "3. Types of variables\n", + "4. Basic calculations with variables\n", + "5. Constants\n", + "6. Exercises\n", + "\n", + "## Requirements before starting\n", + "\n", + "* Have a basic Python installation that works." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Printing\n", + "\n", + "* The ``print(...)`` function sends output to the screen. It is useful for debugging. \n", + "* The ``print(...)`` function can use 'strings' or \"strings\", in other words with single or double quotes.\n", + "\n", + "Print the following text to the screen:\n", + "\n", + "> Hi, my name is \\_\\_\\_\\_\\_\n", + "\n", + "Now try to print this paragraph:\n", + "\n", + "> The Python language was created by Guido van Rossum in the 1980's when he worked at the Centrum Wiskunde & Informatica in Amsterdam. Yes, he's from the Netherlands, but has moved to the US and worked for Google, but now at Dropbox.\n", + "\n", + "You can verify the above by typing just the following two commands separately in Python:\n", + "* ``credits``\n", + "* ``copyright``" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print('Hi, my name is Kevin.')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "```python\n", + "long_string = \"\"\"If you really want to write paragraphs,\n", + "and paragraphs of text, you do it with the triple quotes. Try it\"\"\"\n", + "\n", + "print(long_string)\n", + "```\n", + "\n", + "* Verify how the above variable ``long_string`` will be printed. Does Python put a line break where you expect it?\n", + "* Can you use single quotes instead of double quotes ?\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can also create longer strings in Python using the bracket construction. Try this:\n", + "\n", + "```python\n", + "print('Here is my first line.',\n", + " 'Then the second.',\n", + " 'And finally a third.',\n", + " 'But did you expect that?')\n", + "```\n", + "The reason for this is stylistic. Python, unlike other languages, has some recommended rules, \n", + "which we will introduce throughout these modules. One of these rules is that you don't exceed 79 characters per line.\n", + "It helps to keep your code width narrow: you can then put two or three code files side-by-side on a widescreen monitor.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Creating variables\n", + "\n", + "\n", + "We already saw above how a variable was created: ``long_string = \"\"\"If you really......\"\"\"``.\n", + "\n", + "You've done this plenty of times in other programming languages; almost always with an \"=\". We prefer to refer to \"=\" as the \"assignment\" operator; not \"equals\".\n", + "\n", + "What goes on the left hand side of the assignment must be a '*valid variable name*'.\n", + "\n", + "Which of the following are valid variables, or valid ways to create variables in Python?\n", + "\n", + "```python\n", + "my_integer = 3.1428571 \n", + "_my_float = 3.1428571 # variables like this have a special use in Python\n", + "__my_float__ = 3.1428571 # variables like this have a special use in Python\n", + "€value = 42.95 \n", + "cost_in_€ = 42.95\n", + "cost_in_dollars = 42.95 \n", + "42.95 = cost_in_dollars \n", + "dollar.price = 42.95 \n", + "favourite#tag = '#like4like'\n", + "favourite_hashtag = '#일상'\n", + "x = y = z = 1\n", + "a, b, c = 1, 2, 3 # tuple assignment\n", + "a, b, c = (1, 2, 3)\n", + "i, f, s = 42, 12.94, 'spam'\n", + "from = 'my lover'\n", + "raise = 'your glass'\n", + "pass = 'you shall not'\n", + "fail = 'you will not'\n", + "True = 'not False'\n", + "pay day = 'Thursday'\n", + "NA = 'not applicable' # for R users\n", + "a = 42; # for MATLAB users: semi-colons are never required \n", + "A = 13 # like most languages, Python is also case-sensitive \n", + "```\n", + "\n", + "What's the most interesting idea/concept you learned from the above examples?\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Variable types\n", + "\n", + "\n", + "Do you know C, C++ ro Java? On those languages each variable must have a ``type``, which is automatically detected based on what is on the right hand side of the \"=\" sign. In these languages, you **must** write something like:\n", + "\n", + "```c\n", + "int a, b; // first declare your variables\n", + "float result;\n", + "a = 5; // then you get to use them\n", + "b = 2;\n", + "result = a / b; // you will get an unexpected value if you had defined \"result\" as \"int\"\n", + "```\n", + "\n", + "**It is different in Python**, where there is _dynamic typing_. Python figures it out from the context:\n", + "```python\n", + "a = 5\n", + "b = 25.1\n", + "result = a / b\n", + "```\n", + "\n", + "Repeat these lines of Python code below, then add the following:\n", + "```python\n", + "type(a)\n", + "type(result)\n", + "```\n", + "\n", + "What is the output you see?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Each variable always has a **type**. Usually you know what the type is, because you created the variable yourself at some point.\n", + "\n", + "But on occasion you use someone else's code and you get back an answer that you don't know the type of. Then it is useful to check it with the ``type(...)`` function.\n", + "\n", + "Try these lines in Python:\n", + "```python\n", + "type(99)\n", + "type(99.)\n", + "type(9E9)\n", + "type('It\\'s raining cats and dogs today!') # How can you rewrite this line better?\n", + "type(r'Brexit will cost you £8E8. Thank you.')\n", + "type(['this', 'is', 'a', 'vector', 'of', 7, 'values'])\n", + "type([])\n", + "type(4 > 5)\n", + "type(True)\n", + "type(False)\n", + "type(None)\n", + "type({'this': 'is what is called a', 'dictionary': 'variable!'})\n", + "type(('this', 'is', 'called', 'a', 'tuple'))\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can convert most variables to a string type, as follows: ``str(...)``\n", + "\n", + "Try these conversions to make sure you get what you expect:\n", + "```python\n", + "str(45)\n", + "type(str(45))\n", + "str(92.5)\n", + "str(None)\n", + "str(print)\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Calculations with variables\n", + "\n", + "The next step is to perform some calculations with the variables. \n", + "\n", + "The standard expressions exist in Python:\n", + "\n", + "| Operation | Symbol |\n", + "|----------------|--------|\n", + "| Addition | + |\n", + "| Subtraction | - |\n", + "| Multiplication | * |\n", + "| Division | / |\n", + "| Power of | ** |\n", + "\n", + "\n", + "Please note: \"power of\" is not with the ^ operator, and can mislead you. Try this:\n", + "* ``print(2 ^ 4)``\n", + "* ``print(2**4)``" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Given the above, use Python as a calculator to find the values of these expressions:\n", + "\n", + "If ``a = 5`` and ``b = 9``\n", + "\n", + "* ``a / b``\n", + "* What type is the result of the above expression?\n", + "* ``a * b`` \n", + "* What type is the result of the above expression?\n", + "\n", + "\n", + "The distance $d$ travelled by an object falling for time $t$, given in seconds, is $$d=\\frac {1}{2}gt^{2}$$ where $g$ is the gravitational constant = $9.8\\, \\text{m.s}^{-2}$. Calculate the distance that you will travel in free-fall gravity in 10 seconds:\n", + "\n", + "```python\n", + "t = ____ # seconds\n", + "d = ____ # meters\n", + "print('The distance fallen is ' + str(d) + ' meters.')\n", + "\n", + "# This is actually the better way in recent versions of Python. Use an \"f-string\":\n", + "print(f'The distance fallen is {d} meters after {t} seconds.')\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Try it now the other way around: the time taken for an object to fall is: $$ t= \\sqrt {\\frac {2d}{g}}$$\n", + "\n", + "We will introduce the ``sqrt`` function in the next section, but you can also calculate square root using a power of 0.5, as in $\\sqrt{x} = x^{0.5}$.\n", + "\n", + "Using that knowledge, how long will it take for an object to fall from the top of the building you are currently in:\n", + "\n", + "```python\n", + "# Creates a string value in variable 'd'. Verify that it is a string type.\n", + "d = input('The height of the building, in meters, which I am currently in is: ') \n", + "d = float(d) # convert the string variable to a floating point value\n", + "t = ____ # seconds\n", + "\n", + "# You might also want to investigate the \"round\" function at this point\n", + "# to improve the output for variable t.\n", + "\n", + "print('The time for an object to fall from a building',\n", + " 'of ' + str(d) + ' meters tall is ' + str(t) + \\\n", + " ' seconds.')\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Python, like other languages, has the order of operations rules (same as the PEMDAS rules you might have learned in school):\n", + "\n", + "1. **P**arentheses (round brackets)\n", + "2. **E**xponentiation or powers, left to right\n", + "3. **M**ultiplication and Division, left to right\n", + "4. Addition and **S**ubtraction, left to right\n", + "\n", + "So what is the result of these statements?\n", + "```python\n", + "a = 1 + 3 ** 2 * 4 / 2\n", + "b = 1 + 3 ** (2 * 4) / 2\n", + "c = (1 + 3) ** 2 * 4 / 2\n", + "```\n", + "\n", + "While it is good to know these rules, the general advice is to always use brackets to clearly show your actual intention. \n", + "> Never leave the reader of your code guessing: someone will have to maintain your code after you; including yourself, a few years later 😉 " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Write code for the following: \n", + "\n", + "Divide the sum of a and _b_ by the product of c and *d*, and store the result in x.\n", + "\n", + "You can start as follows:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "a, b, c = 2, 3, 5\n", + "# write your code here\n", + "x = _\n", + "print(x)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The above operators return results which are either ``int`` or ``float``. \n", + "\n", + "There are another set of operators which return ***bool***ean values: ``True`` or ``False``. We will use these frequently when we make decisions in our code. For example:\n", + "> if \\_\\_<condition> \\_\\_ then \\_\\_<action\\>\\_\\_\n", + "\n", + "We cover **if-statements** in the [next module](https://yint.org/pybasic02).\n", + "\n", + "But for now, try out these ```` statements:\n", + "\n", + "```python\n", + "3 < 5\n", + "5 < 3\n", + "4 <= 4\n", + "4 <= 9.2\n", + "5 == 5\n", + "5. == 5 # float on the left, and int on the right. Does it matter?\n", + "5. != 5 # does that make sense?\n", + "True != False\n", + "False < True\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Related to these operators are some others, which you can use to combine up: ``and`` and ``not`` and ``or``\n", + "\n", + "Try these out. What do you get in each case?\n", + "\n", + "```python\n", + "True and not False\n", + "True and not(False)\n", + "True and True\n", + "not(False) or False\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In the quadratic equation $$ax^2 + bx + c=0$$ the short-cut solution is given by $$ x= -\\frac{b}{2a}$$\n", + "but only if $b^2 - 4ac=0$ and $a \\neq 0$.\n", + "\n", + "Verify if you can use this short-cut solution for these combinations:\n", + "\n", + "* ``a=3, b=-1, c=2 # use tuple-assignment to create these 3 variables in 1 line of code``\n", + "* ``a=0, b=-1, c=2`` \n", + "* ``a=3, b=6, c=3`` \n", + "\n", + "Write the single line of Python code that will return ``True`` if you can use the shortcut, or ``False`` if you cannot." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Built-in constants and mathematical functions\n", + "\n", + "You will certainly need to calculate logs, exponentials, square roots, or require the value of $e$ or $\\pi$ at some point.\n", + "\n", + "In this last section we get a bit ahead, and load a Python library to provide this for us. Libraries - we will see later - are a collection of functions and variables that pre-package useful tools. Libraries can be large collections of code, and are for special purposes, so they are not loaded automatically when you launch Python.\n", + "\n", + "\n", + "In MATLAB you can think of *Toolboxes* as being equivalent; in R you have *Packages*; in C++ and Java you also use the word *Library* for the equivalent concept.\n", + "\n", + "In Python, there are several libraries that come standard, and one is the ``math`` library. Use the ``import`` command to load the library. The ``math`` library can be used as follows:\n", + "\n", + "```python\n", + "import math\n", + "radius = 3 # cm\n", + "area_of_circle = math.pi * radius**2\n", + "print('The area of the circle is ' + str(area_of_circle))\n", + "```\n", + "\n", + "Now that you know how to use the ``math`` library, it is worth searching what else is in it:\n", + "\n", + "> https://www.google.com/search?q=python+math+library\n", + "\n", + "All built-in Python libraries are documented in the same way. Searching this way usually brings up the link near the top. Make sure you look at the documentation for Python version 3.x.\n", + "\n", + "Now that you have the documentation ready, use functions from that library to calculate:\n", + "\n", + "* the *ceiling* of a number, for example ``a = 3.7``\n", + "* the *floor* of a number, for example ``b = 3.7``\n", + "* the *absolute* value of ``c = -2.9``\n", + "* the log to the base $e$ of ``d = 100``\n", + "* the log to the base 10 of ``e = 100``\n", + "* the Golden ratio ${\\dfrac {1+{\\sqrt {5}}}{2}}$ \n", + "* check that the factorial n=9, in other words $n!$ is equal to 362880\n", + "* and finally, check that the Stirling's approximation, $n! \\approx \\sqrt{2\\pi n} \\cdot n^n e^{-n}$ for a factorial matches closely [you will use 4 different methods from the ``math`` library to calculate this!] (``math.sqrt``, ``math.pi``, ``math.exp`` and ``math.pow``.)\n", + "\n", + "```python\n", + "\n", + "print('The true value of 9! is ' + ___ + ', while the Stirling approximation is ' + ___)\n", + "```\n", + "\n", + "* verify that the cosine of ``g`` = $2\\pi$ radians is indeed 1.0\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Exercise" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "1. The population of a country could be approximated by the formula $$ p(t) = \\dfrac{197 273 000}{1 + e^{− 0.03134(t − 1913)}}$$\n", + "where the time $t$ is in years.\n", + "\n", + " * What is the population in 1913?\n", + " * What is the population in 2013?\n", + " * Does the population grow and grow without bounds, or does it reach steady state (it stabilizes at some constant value eventually)\n", + " \n", + "1. Explain to your partner whom you are working with, what some of the benefits are of writing your code in Python files.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# IGNORE this. Execute this cell to load the notebook's style sheet.\n", + "from IPython.core.display import HTML\n", + "css_file = './images/style.css'\n", + "HTML(open(css_file, \"r\").read())" + ] + } + ], + "metadata": { + "hide_input": false, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.9" + }, + "toc": { + "base_numbering": "1", + "nav_menu": {}, + "number_sections": true, + "sideBar": true, + "skip_h1_title": false, + "title_cell": "Table of Contents", + "title_sidebar": "Contents", + "toc_cell": true, + "toc_position": { + "height": "calc(100% - 180px)", + "left": "10px", + "top": "150px", + "width": "349px" + }, + "toc_section_display": true, + "toc_window_display": false + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} From 8bc6fe8f07d4edc31058d5336eb844060114f8f7 Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Tue, 29 Sep 2020 17:20:03 +0200 Subject: [PATCH 089/134] Updates to module 11: adding lists, etc --- Module-11-interactive.ipynb | 335 +++++++++++++++++++++++++++++------- 1 file changed, 273 insertions(+), 62 deletions(-) diff --git a/Module-11-interactive.ipynb b/Module-11-interactive.ipynb index dc7f55a..32af483 100644 --- a/Module-11-interactive.ipynb +++ b/Module-11-interactive.ipynb @@ -7,7 +7,7 @@ }, "source": [ "

    Table of Contents

    \n", - "" + "" ] }, { @@ -25,50 +25,30 @@ "source": [ "# Module 11: Overview\n", "\n", - "This is the first module of several (11, 12, 13, 14, 15 and 16), which refocuses the course material in the prior 10 modules in a slightly different way. It places less emphasize on data structures and gets on more with the actual calculations.\n", + "This is the first module of several (11, 12, 13, 14, 15 and 16), which refocuses the course material in the [prior 10 modules](https://github.com/kgdunn/python-basic-notebooks) in a slightly different way. It places less emphasize on data structures and gets on more with the actual calculations.\n", "\n", "\n", - "1. Printing\n", - "2. Creating variables\n", - "3. Types of variables\n", - "4. Basic calculations with variables\n", - "5. Constants\n", - "6. Exercises\n", + "* Printing output to the screen\n", + "* Creating variables\n", + "* Types of variables\n", + "* Basic calculations with variables\n", + "* Lists\n", + "* Tips on commenting your code and choosing variable names\n", "\n", "## Requirements before starting\n", "\n", - "* Have a basic Python installation that works." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Printing\n", - "\n", - "* The ``print(...)`` function sends output to the screen. It is useful for debugging. \n", - "* The ``print(...)`` function can use 'strings' or \"strings\", in other words with single or double quotes.\n", - "\n", - "Print the following text to the screen:\n", - "\n", - "> Hi, my name is \\_\\_\\_\\_\\_\n", - "\n", - "Now try to print this paragraph:\n", - "\n", - "> The Python language was created by Guido van Rossum in the 1980's when he worked at the Centrum Wiskunde & Informatica in Amsterdam. Yes, he's from the Netherlands, but has moved to the US and worked for Google, but now at Dropbox.\n", - "\n", - "You can verify the above by typing just the following two commands separately in Python:\n", - "* ``credits``\n", - "* ``copyright``" + "* Have a basic Python installation that works as expected." ] }, { "cell_type": "code", "execution_count": null, - "metadata": {}, + "metadata": { + "tags": [] + }, "outputs": [], "source": [ - "print('Hi, my name is Kevin.')" + "print('Hi, my name is ______.')" ] }, { @@ -89,7 +69,9 @@ { "cell_type": "code", "execution_count": null, - "metadata": {}, + "metadata": { + "tags": [] + }, "outputs": [], "source": [] }, @@ -106,8 +88,9 @@ " 'But did you expect that?')\n", "```\n", "The reason for this is stylistic. Python, unlike other languages, has some recommended rules, \n", - "which we will introduce throughout these modules. One of these rules is that you don't exceed 79 characters per line.\n", - "It helps to keep your code width narrow: you can then put two or three code files side-by-side on a widescreen monitor.\n" + "which we will introduce throughout these modules. One of these rules is that you don't exceed 79 characters per line (more recently we see source code going to 99 characters per line as a guide).\n", + "\n", + "It helps to keep your code width narrow: you can then put two or three code files side-by-side on a widescreen monitor." ] }, { @@ -119,7 +102,7 @@ "\n", "We already saw above how a variable was created: ``long_string = \"\"\"If you really......\"\"\"``.\n", "\n", - "You've done this plenty of times in other programming languages; almost always with an \"=\". We prefer to refer to \"=\" as the \"assignment\" operator; not \"equals\".\n", + "You've created variables plenty of times in other programming languages; almost always with an \"=\". We prefer to refer to \"=\" as the \"assignment\" operator; not \"equals\".\n", "\n", "What goes on the left hand side of the assignment must be a '*valid variable name*'.\n", "\n", @@ -147,7 +130,7 @@ "True = 'not False'\n", "pay day = 'Thursday'\n", "NA = 'not applicable' # for R users\n", - "a = 42; # for MATLAB users: semi-colons are never required \n", + "a = 42; # for MATLAB users: semi-colons are never required in Python\n", "A = 13 # like most languages, Python is also case-sensitive \n", "```\n", "\n", @@ -162,13 +145,6 @@ "outputs": [], "source": [] }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, { "cell_type": "markdown", "metadata": {}, @@ -176,7 +152,7 @@ "# Variable types\n", "\n", "\n", - "Do you know C, C++ ro Java? On those languages each variable must have a ``type``, which is automatically detected based on what is on the right hand side of the \"=\" sign. In these languages, you **must** write something like:\n", + "Do you know C, C++ or Java? With those languages each variable must have a ``type``, which is automatically detected based on what is on the right hand side of the \"=\" sign. In these languages, you **must** write something like:\n", "\n", "```c\n", "int a, b; // first declare your variables\n", @@ -230,8 +206,8 @@ "type(True)\n", "type(False)\n", "type(None)\n", - "type({'this': 'is what is called a', 'dictionary': 'variable!'})\n", - "type(('this', 'is', 'called', 'a', 'tuple'))\n", + "type({'this': 'is what is called a', 'dictionary': 'variable!'}) # we learn about dictionaries later\n", + "type(('this', 'is', 'called', 'a', 'tuple')) # tuples are another data type in Python\n", "```" ] }, @@ -289,6 +265,13 @@ "* ``print(2**4)``" ] }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, { "cell_type": "markdown", "metadata": {}, @@ -300,9 +283,20 @@ "* ``a / b``\n", "* What type is the result of the above expression?\n", "* ``a * b`` \n", - "* What type is the result of the above expression?\n", - "\n", - "\n", + "* What type is the result of the above expression?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ "The distance $d$ travelled by an object falling for time $t$, given in seconds, is $$d=\\frac {1}{2}gt^{2}$$ where $g$ is the gravitational constant = $9.8\\, \\text{m.s}^{-2}$. Calculate the distance that you will travel in free-fall gravity in 10 seconds:\n", "\n", "```python\n", @@ -315,6 +309,13 @@ "```" ] }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, { "cell_type": "markdown", "metadata": {}, @@ -366,7 +367,7 @@ "```\n", "\n", "While it is good to know these rules, the general advice is to always use brackets to clearly show your actual intention. \n", - "> Never leave the reader of your code guessing: someone will have to maintain your code after you; including yourself, a few years later 😉 " + "> Never leave the reader of your code guessing: someone will have to maintain your code after you; including yourself, a few years/months later 😉 " ] }, { @@ -393,7 +394,7 @@ "metadata": {}, "outputs": [], "source": [ - "a, b, c = 2, 3, 5\n", + "a, b, c, d = 2, 3, 5, 6\n", "# write your code here\n", "x = _\n", "print(x)" @@ -408,7 +409,7 @@ "There are another set of operators which return ***bool***ean values: ``True`` or ``False``. We will use these frequently when we make decisions in our code. For example:\n", "> if \\_\\_<condition> \\_\\_ then \\_\\_<action\\>\\_\\_\n", "\n", - "We cover **if-statements** in the [next module](https://yint.org/pybasic02).\n", + "We cover **if-statements** in a later module:\n", "\n", "But for now, try out these ```` statements:\n", "\n", @@ -460,11 +461,11 @@ "metadata": {}, "source": [ "In the quadratic equation $$ax^2 + bx + c=0$$ the short-cut solution is given by $$ x= -\\frac{b}{2a}$$\n", - "but only if $b^2 - 4ac=0$ and $a \\neq 0$.\n", + "but only if two conditions are met: $b^2 - 4ac=0$ and $a \\neq 0$.\n", "\n", "Verify if you can use this short-cut solution for these combinations:\n", "\n", - "* ``a=3, b=-1, c=2 # use tuple-assignment to create these 3 variables in 1 line of code``\n", + "* ``a=3, b=-1, c=2 # using tuple-assignment here to create these 3 variables in 1 line of code!``\n", "* ``a=0, b=-1, c=2`` \n", "* ``a=3, b=6, c=3`` \n", "\n", @@ -486,7 +487,7 @@ "\n", "You will certainly need to calculate logs, exponentials, square roots, or require the value of $e$ or $\\pi$ at some point.\n", "\n", - "In this last section we get a bit ahead, and load a Python library to provide this for us. Libraries - we will see later - are a collection of functions and variables that pre-package useful tools. Libraries can be large collections of code, and are for special purposes, so they are not loaded automatically when you launch Python.\n", + "In this section we get a bit ahead, and load a Python library to provide this for us. Libraries - we will see later - are a collection of functions and variables that pre-package useful tools. Libraries can be large collections of code, and are for special purposes, so they are not loaded automatically when you launch Python.\n", "\n", "\n", "In MATLAB you can think of *Toolboxes* as being equivalent; in R you have *Packages*; in C++ and Java you also use the word *Library* for the equivalent concept.\n", @@ -536,16 +537,197 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "1. The population of a country could be approximated by the formula $$ p(t) = \\dfrac{197 273 000}{1 + e^{− 0.03134(t − 1913)}}$$\n", + "The population of a country could be approximated by the formula $$ p(t) = \\dfrac{197 273 000}{1 + e^{− 0.03134(t − 1913)}}$$\n", "where the time $t$ is in years.\n", "\n", " * What is the population in 1913?\n", " * What is the population in 2013?\n", - " * Does the population grow and grow without bounds, or does it reach steady state (it stabilizes at some constant value eventually)\n", - " \n", - "1. Explain to your partner whom you are working with, what some of the benefits are of writing your code in Python files.\n" + " * Does the population grow and grow without bounds, or does it reach steady state, stabilizing at some constant value eventually?\n", + " \n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Lists\n", + "\n", + "We will cover creating, adding, accessing and using lists of objects.\n", + "\n", + "A list is a basic Python type: it is a collection of objects.\n", + "\n", + "Create a list with the square bracket characters: ``[`` and ``]``.\n", + "\n", + "For example: ``words = ['Mary', 'loved', 'chocolate.']``\n", + "\n", + "Try it: one of the most useful functions in Python is ``len(...)``. Verify that it returns an integer value of 3. Does it have the **type** you expect?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The entries in the list can be mixed types (contrast this to most other programming languages!)\n", + " \n", + "```python\n", + "group = ['yeast', 'bacillus', 994, 'aspergillus' ]\n", + "```\n", + "\n", + "An important test is to check if the list contains something:\n", + "\n", + "```python\n", + "'aspergillus' in group\n", + "499 in group\n", + "```\n", + "\n", + "Like we saw with strings, you can use the ``*`` and ``+`` operators:\n", + "\n", + "```python\n", + "group * 3\n", + "group + group # might not do what you expect!\n", + "group - group # oooops\n", + "```\n", + "\n", + "And like strings, you refer to them based on the position counter of 0:\n", + "```python\n", + "group[0]\n", + "\n", + "# but this is also possible:\n", + "group[-3]\n", + "\n", + "# however, is this expected?\n", + "group[4]\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Lists, also have have some methods that you can use. Lists in fact have far fewer methods than strings. To get a list of methods: \n", + "\n", + "```python\n", + "dir(___) # and then fill in an example of the object you want to know the methods\n", + "dir('sometext')\n", + "dir([]) # even an empty list is OK\n", + "```\n", + "\n", + "How many methods do you see which you can apply to a list? \n", + "\n", + "Let's try a few of them out:\n", + "1. Try ``append`` a new entry to the ``group`` list you created above: add the entry \"Candida albicans\"\n", + "1. Create a new list ``reptiles = ['crocodile', 'turtle']`` and then try: ``group.extend(reptiles)``.\n", + "1. Print the list. Remove the ``crocodile`` entry from the list. Print it again to verify it succeeded. \n", + "1. Now try to remove the entry again. What happens?\n", + "1. Use the following command: ``group.reverse()``, and print the ``group`` variable to the screen.\n", + "1. Now try this instead: ``group = group.reverse()`` and print the ``group`` variable to the screen. What happened this time?\n", + "1. So you are back to square one: make a new list variable ``group = ['yeast', 'bacillus', 'aspergillus' ]`` and try ``group.sort()``. Notice that ``.sort()``, like the ``.reverse()`` method operate *in-place*: there is no need to assign the output of the action to a new variable. In fact, you cannot.\n", + "1. Here's something to be aware of: create ``group = ['yeast', 'bacillus', 994, 'aspergillus' ]``; and now try ``group.sort()``. What does the error message tell you?\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Lists behave like a stack, or a queue: you can add things to the end of the queue using ``.append()`` and you can remove them again with ``.pop()``.\n", + "\n", + "Think of a stack of plates: last appended, first removed.\n", + "\n", + "Try it:\n", + "```python\n", + "species = ['chimp', 'bacillus', 'aspergillus']\n", + "species.append('hoooman')\n", + "first_out = species.pop()\n", + "print(first_out)\n", + "```\n", + "* What is the length of the list after running this code?\n", + "* Try adding a new entry ``arachnid`` between ``chimp`` and ``bacillus`` using the ``.insert()`` command. Print the list to verify it. \n", + "> If you don't know how to use the ``.insert()`` method, but you know if exists, you can type ``help([].insert)`` at the command prompt to get a quick help. Or you can search the web which gives more comprehensive help, with examples.\n", + "* First use the ``.index()`` function to find the index of \"bacillus\". Then use the ``.pop()`` method to remove it. In other words, do not directly provide ``.pop()`` the integer index to remove. Assign the popped entry to a new variable.\n", + "* Overwrite the entry that is currently in the second position with a new value: \"neanderthalensis\"." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Commenting \n", + "\n", + "Comments are often as important as the code itself. But it takes time to write them.\n", + "\n", + " \n", + "Comments should be added in these places and cases:\n", + "* At the top of your file: name and date, and a few sentences on the purpose of the code. It is also helpful to note which Python version you use, or expect.\n", + "* Refer to any publications or internal company reports for algorithms implemented \n", + "* Refer to a website if you use any interesting/unusual shortcut code or non-obvious code. This is more for yourself, and your future colleagues. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Variable names\n", + "The choice of variable names is related to the topic of comments. In many ways, the syntax of Python makes the code self-documenting, meaning you do not need to add comments at all. But it definitely is assisted by choosing meaningful variable names:\n", + "\n", + "```python\n", + "for genome in genome_list:\n", + " command_to_do_something_with_genome_goes_here\n", + "```\n", + "\n", + "This quite clearly shows that we are iterating over the all genomes in some iterable (it could be a list, tuple, or set, for example) container variables of sequenced genomes.\n", + "\n", + "Now compare it with this code:\n", + "\n", + "```python\n", + "for k in seq:\n", + " \n", + "```\n", + "\n", + "It is not clear what ``k`` represents. It is also not clear what ``seq`` is either. Choosing good variable names helps the reader.\n" ] }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, { "cell_type": "code", "execution_count": null, @@ -594,7 +776,36 @@ "width": "349px" }, "toc_section_display": true, - "toc_window_display": false + "toc_window_display": true + }, + "varInspector": { + "cols": { + "lenName": 16, + "lenType": 16, + "lenVar": 40 + }, + "kernels_config": { + "python": { + "delete_cmd_postfix": "", + "delete_cmd_prefix": "del ", + "library": "var_list.py", + "varRefreshCmd": "print(var_dic_list())" + }, + "r": { + "delete_cmd_postfix": ") ", + "delete_cmd_prefix": "rm(", + "library": "var_list.r", + "varRefreshCmd": "cat(var_dic_list()) " + } + }, + "types_to_exclude": [ + "module", + "function", + "builtin_function_or_method", + "instance", + "_Feature" + ], + "window_display": false } }, "nbformat": 4, From 9c5fd51c6908d483930bd7038a52d16779f35577 Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Wed, 30 Sep 2020 09:45:57 +0200 Subject: [PATCH 090/134] Small updates/tweaks to language, etc --- Module-02-interactive.ipynb | 217 +++--------------------------------- Module-11-interactive.ipynb | 77 ++++++++----- 2 files changed, 65 insertions(+), 229 deletions(-) diff --git a/Module-02-interactive.ipynb b/Module-02-interactive.ipynb index 218ba57..5042531 100644 --- a/Module-02-interactive.ipynb +++ b/Module-02-interactive.ipynb @@ -77,9 +77,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [] }, @@ -133,9 +131,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [] }, @@ -162,9 +158,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [] }, @@ -187,9 +181,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [] }, @@ -211,9 +203,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [] }, @@ -257,9 +247,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [] }, @@ -289,9 +277,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [] }, @@ -320,9 +306,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [] }, @@ -362,9 +346,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [] }, @@ -401,9 +383,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [] }, @@ -429,9 +409,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [] }, @@ -457,9 +435,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [] }, @@ -495,9 +471,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [] }, @@ -513,170 +487,9 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" - ], - "text/plain": [ - "" - ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# IGNORE this. Execute this cell to load the notebook's style sheet.\n", "from IPython.core.display import HTML\n", diff --git a/Module-11-interactive.ipynb b/Module-11-interactive.ipynb index 32af483..8a82f17 100644 --- a/Module-11-interactive.ipynb +++ b/Module-11-interactive.ipynb @@ -7,7 +7,7 @@ }, "source": [ "

    Table of Contents

    \n", - "" + "" ] }, { @@ -23,23 +23,46 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Module 11: Overview\n", + "# Course overview\n", + "\n", + "This is the first module of several (11, 12, 13, 14, 15 and 16), which refocuses the course material in the [prior 10 modules](https://github.com/kgdunn/python-basic-notebooks) in a slightly different way. It places more emphasis on\n", "\n", - "This is the first module of several (11, 12, 13, 14, 15 and 16), which refocuses the course material in the [prior 10 modules](https://github.com/kgdunn/python-basic-notebooks) in a slightly different way. It places less emphasize on data structures and gets on more with the actual calculations.\n", + "* dealing with data: importing, merging, filtering;\n", + "* calculations from the data;\n", + "* visualization of it.\n", "\n", + "In short: ***how to extract value from your data***." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Module 11: Overview\n", + "\n", + "This is the first of 6 modules. We cover\n", "\n", "* Printing output to the screen\n", "* Creating variables\n", "* Types of variables\n", - "* Basic calculations with variables\n", + "* Basic calculations with variables\n", "* Lists\n", "* Tips on commenting your code and choosing variable names\n", "\n", - "## Requirements before starting\n", + "**Requirements before starting**\n", "\n", "* Have a basic Python installation that works as expected." ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Printing to the screen\n", + "\n", + "In all the cases below, we show an example. Copy these into the empty cell below, edit the code where necessary, then hit the Run button (or Ctrl-Enter)." + ] + }, { "cell_type": "code", "execution_count": null, @@ -97,16 +120,16 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Creating variables\n", + "## Creating variables\n", "\n", "\n", - "We already saw above how a variable was created: ``long_string = \"\"\"If you really......\"\"\"``.\n", + "We already saw above how a variable was created: ``long_string = \"\"\"If you really..... Try it.\"\"\"``.\n", "\n", - "You've created variables plenty of times in other programming languages; almost always with an \"=\". We prefer to refer to \"=\" as the \"assignment\" operator; not \"equals\".\n", + "You've created variables plenty of times in other programming languages; almost always with an \"=\". We prefer to refer to \"=\" as the \"assignment\" operator; not as \"equals\".\n", "\n", "What goes on the left hand side of the assignment must be a '*valid variable name*'.\n", "\n", - "Which of the following are valid variables, or valid ways to create variables in Python?\n", + "Which of the following are valid variable names, or valid ways to create variables in Python?\n", "\n", "```python\n", "my_integer = 3.1428571 \n", @@ -149,10 +172,10 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Variable types\n", + "## Variable types\n", "\n", "\n", - "Do you know C, C++ or Java? With those languages each variable must have a ``type``, which is automatically detected based on what is on the right hand side of the \"=\" sign. In these languages, you **must** write something like:\n", + "Do you know C, C++ or Java? With those languages each variable must have a ``type``, which is must match what is on the right hand side of the \"=\" sign. In these languages, you **must** write something like:\n", "\n", "```c\n", "int a, b; // first declare your variables\n", @@ -245,7 +268,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Calculations with variables\n", + "## Calculations with variables\n", "\n", "The next step is to perform some calculations with the variables. \n", "\n", @@ -304,7 +327,7 @@ "d = ____ # meters\n", "print('The distance fallen is ' + str(d) + ' meters.')\n", "\n", - "# This is actually the better way in recent versions of Python. Use an \"f-string\":\n", + "# The better way to do the above in recent versions of Python is to use an \"f-string\" (format string):\n", "print(f'The distance fallen is {d} meters after {t} seconds.')\n", "```" ] @@ -322,7 +345,7 @@ "source": [ "Try it now the other way around: the time taken for an object to fall is: $$ t= \\sqrt {\\frac {2d}{g}}$$\n", "\n", - "We will introduce the ``sqrt`` function in the next section, but you can also calculate square root using a power of 0.5, as in $\\sqrt{x} = x^{0.5}$.\n", + "We will introduce the ``sqrt`` function in the next section, but for now you can also calculate the square root using a power of 0.5: as in $\\sqrt{x} = x^{0.5}$.\n", "\n", "Using that knowledge, how long will it take for an object to fall from the top of the building you are currently in:\n", "\n", @@ -381,11 +404,11 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Write code for the following: \n", + "*Test yourself*: Write code for the following: \n", "\n", - "Divide the sum of a and _b_ by the product of c and *d*, and store the result in x.\n", + ">Divide the sum of a and _b_ by the product of c and *d*, and store the result in x.\n", "\n", - "You can start as follows:" + "You can start with the code below, and edit it:" ] }, { @@ -483,7 +506,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Built-in constants and mathematical functions\n", + "## Built-in constants and mathematical functions\n", "\n", "You will certainly need to calculate logs, exponentials, square roots, or require the value of $e$ or $\\pi$ at some point.\n", "\n", @@ -507,7 +530,7 @@ "\n", "All built-in Python libraries are documented in the same way. Searching this way usually brings up the link near the top. Make sure you look at the documentation for Python version 3.x.\n", "\n", - "Now that you have the documentation ready, use functions from that library to calculate:\n", + "Now that you have the documentation ready, use functions from that `math` library to calculate:\n", "\n", "* the *ceiling* of a number, for example ``a = 3.7``\n", "* the *floor* of a number, for example ``b = 3.7``\n", @@ -515,7 +538,7 @@ "* the log to the base $e$ of ``d = 100``\n", "* the log to the base 10 of ``e = 100``\n", "* the Golden ratio ${\\dfrac {1+{\\sqrt {5}}}{2}}$ \n", - "* check that the factorial n=9, in other words $n!$ is equal to 362880\n", + "* check that the factorial of $9! = 9 \\times 8 \\times 7 \\ldots \\times 1$ is equal to 362880\n", "* and finally, check that the Stirling's approximation, $n! \\approx \\sqrt{2\\pi n} \\cdot n^n e^{-n}$ for a factorial matches closely [you will use 4 different methods from the ``math`` library to calculate this!] (``math.sqrt``, ``math.pi``, ``math.exp`` and ``math.pow``.)\n", "\n", "```python\n", @@ -530,7 +553,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Exercise" + "## Mini-exercise" ] }, { @@ -557,7 +580,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Lists\n", + "## Lists\n", "\n", "We will cover creating, adding, accessing and using lists of objects.\n", "\n", @@ -581,13 +604,13 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "The entries in the list can be mixed types (contrast this to most other programming languages!)\n", + "The entries in the list can be mixed types (contrast this to most other programming languages where all entries in the list must have the same type!)\n", " \n", "```python\n", "group = ['yeast', 'bacillus', 994, 'aspergillus' ]\n", "```\n", "\n", - "An important test is to check if the list contains something:\n", + "An important test is to check if the list contains something. Try these pieces of code below.\n", "\n", "```python\n", "'aspergillus' in group\n", @@ -686,7 +709,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Commenting \n", + "## Commenting \n", "\n", "Comments are often as important as the code itself. But it takes time to write them.\n", "\n", @@ -701,7 +724,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Variable names\n", + "## Variable names\n", "The choice of variable names is related to the topic of comments. In many ways, the syntax of Python makes the code self-documenting, meaning you do not need to add comments at all. But it definitely is assisted by choosing meaningful variable names:\n", "\n", "```python\n", @@ -765,7 +788,7 @@ "nav_menu": {}, "number_sections": true, "sideBar": true, - "skip_h1_title": false, + "skip_h1_title": true, "title_cell": "Table of Contents", "title_sidebar": "Contents", "toc_cell": true, From b2ce9752259e1059768854ffbd603817a340d75a Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Mon, 12 Oct 2020 14:41:57 +0200 Subject: [PATCH 091/134] Adding draft outline of module 12 --- Module-12-interactive.ipynb | 959 ++++++++++++++++++++++++++++++++++++ 1 file changed, 959 insertions(+) create mode 100644 Module-12-interactive.ipynb diff --git a/Module-12-interactive.ipynb b/Module-12-interactive.ipynb new file mode 100644 index 0000000..06cc3fb --- /dev/null +++ b/Module-12-interactive.ipynb @@ -0,0 +1,959 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "toc": true + }, + "source": [ + "

    Table of Contents

    \n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "> All content here is under a Creative Commons Attribution [CC-BY 4.0](https://creativecommons.org/licenses/by/4.0/) and all source code is released under a [BSD-2 clause license](https://en.wikipedia.org/wiki/BSD_licenses).\n", + ">\n", + ">Please reuse, remix, revise, and [reshare this content](https://github.com/kgdunn/python-basic-notebooks) in any way, keeping this notice." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Course overview\n", + "\n", + "This is the second module of several (11, 12, 13, 14, 15 and 16), which refocuses the course material in the [prior 10 modules](https://github.com/kgdunn/python-basic-notebooks) in a slightly different way. It places more emphasis on\n", + "\n", + "* dealing with data: importing, merging, filtering;\n", + "* calculations from the data;\n", + "* visualization of it.\n", + "\n", + "In short: ***how to extract value from your data***.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Module 12 Overview\n", + "\n", + "This is the second of 6 modules. In this module we will cover\n", + "\n", + "* Using and understanding the Pandas library\n", + "* Creating a Pandas data frame\n", + "* Reading in Excel files (or CSV files) as an alternative to create a data frame\n", + "* Basic calculations with data frames\n", + "\n", + "**Requirements before starting**\n", + "\n", + "* Have your Python installation working as for module 11, and also the Pandas library installed." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Introduction to Pandas\n", + "\n", + "\n", + "Why use ``pandas`` if you already can use tools like MATLAB and Excel?\n", + "\n", + "* In MATLAB you have arrays (matrix) of data. Pandas adds column headings and row labels (indexes) and calls the result a ``DataFrame``. Think of a spreadsheet.\n", + "* In Pandas we often use the variable name ``df`` to refer to the data frame.\n", + "* The advantage of using column heading is that you can then write code like this:\n", + "\n", + " ``df[\"TemperatureC\"] = (df[\"TemperatureF\"] - 32) * 5 / 9``\n", + "\n", + " to convert Fahrenheit to Celsius for the entire column. \n", + " \n", + " You do *not* need to know the column number, like in MATLAB, where you have to write ``X(:, 5) = (X(:, 2) - 32) * 5 / 9``, for example. In a spreadsheet you typically also write your formulas using the column labels, like ``= (B:B - 32) * 5 / 9``, if column B is the temperature in Fahrenheit.\n", + "* Apart from referring to columns (or rows) by name, you can also merge two data frames together: for example to merge data from the lab, and data from the process. You have to specify which column is the common column. In Excel you can use `VLOOKUP` to do this, but it is messy, and with MATLAB you have to write code yourself to merge two data sets.\n", + "* With Pandas, if your row names are time-based, then you can take advantage of that: e.g. you can, with 1 line of code, calculate the average over a week, or a month. In other languages you have to manually program that averaging, including taking into account that months sometimes have 28, 29, 30 or 31 days.\n", + "* Data which are not time-based are equally well handled by Pandas.\n", + "* Pandas also has multi-level indexing, or hierarchical indexing. More on that later.\n", + "* If you do something on a data frame, like calculate an average over all rows, then the output result also gets those labels, the column headings in this case, kept in place.\n", + "* Pandas takes care of missing data handling. So if you calculate the average, it will, by default, ignore missing values. Unlike MATLAB where you get `nan` as a result.\n", + "* With Pandas you can quickly visualize your data, often with 1 line of code: \n", + "\n", + " * ``df[\"TemperatureC\"].plot()``\n", + " * ``df.boxplot(column='activity', by='reactor')`` will create a boxplot of the values in the `activity` column, for every `reactor` \n", + " " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Getting started with the Pandas library" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A library is a collection of someone else's Python code. It saves time to use existing, good-quality libraries, so you can focus on your work. E.g. focus on interpreting the data, and less on how to manipulate/process your data.\n", + "\n", + "You can load the Pandas library with this command:\n", + "\n", + "```python\n", + "import pandas as pd\n", + "pd.__version__ # ensure you have a version >= 1.1\n", + "```\n", + "\n", + "Try it below:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "There are 2 types of objects in Pandas we will use: a ``Series`` and a ``DataFrame``. \n", + "\n", + "* A ``Series`` is roughly the equivalent of a vector, or a column/row in a spreadsheet.\n", + "* A ``DataFrame`` is a collection of ``Series`` objects, next to each other, to create a matrix of data." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pandas Series\n", + "\n", + "Let's see some characteristics of a ``Series``\n", + "```python\n", + "# Create a Series from a list. \n", + "s = pd.Series([ ... ]) \n", + "print(s)\n", + "```\n", + "\n", + "Put your own numbers inside the list in the space below. You learned [about lists in the prior module](https://yint.org/pybasic11)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Notice the index (the column to the left of your numbers)? Let's look at another example:\n", + "```python\n", + ">>> s = pd.Series([ 5, 9, 1, -4, float('nan'), 5 ])\n", + ">>> print(s) \n", + "0 5.0\n", + "1 9.0\n", + "2 1.0\n", + "3 -4.0\n", + "4 NaN\n", + "5 5.0\n", + "dtype: float64\n", + "```\n", + "If you do not provide any labels for the rows, the these will be automatically generated for you, starting from 0." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "What if you have your own labels already?\n", + "```python\n", + "# You call the function with two inputs. One input is \n", + "# mandatory (the first one), the other is optional.\n", + "s = pd.Series(data = [5, 9, 1, -4, float('nan'), 5 ], \n", + " index = ['a', 'b', 'c', 'd', 'e', 'f'])\n", + "print(s)\n", + "s.values\n", + "type(s.values)\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Ah ha! See what you get there in the output from ``s.values``? Pandas is built on top of another library, called NumPy. The underlying data are NumPy arrays, and Pandas adds extra functionality on top of that. We will refer back to Numpy later, or you will see it commonly referenced in Python websites that deal with data processing. So it is good to know about it." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Lastly, give your series a nice name:\n", + "```python\n", + "s.name = 'Random values'\n", + "print(s)\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Working with Pandas Series objects\n", + "\n", + "\n", + "\n", + "### Mathematical calculations\n", + "\n", + "The series you created above, can be used in calculations. Notice how missing data are handled seamlessly.\n", + "\n", + "```python\n", + "import pandas as pd\n", + "s = pd.Series(data = [5, 9, 1, -4, float('nan'), 5 ], \n", + " index = ['a', 'b', 'c', 'd', 'e', 'f'],\n", + " name = 'Calculations')\n", + "print(s * 5 + 2)\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "What type is a series object? Hint, use the ``type(...)`` function." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Calculate the square root of this column `s`. Remember in the [prior module](https://yint.org/pybasic11) how we calculated the square root by raising the number to the power of 0.5? \n", + "\n", + "Since the square root is not defined for negative numbers, such as the $-4$ in row `d`, what do you expect as an answer? Check it out in the space below." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Logical operations are possible too. Try some of these out:\n", + "```python\n", + "s > 4\n", + "s.isna()\n", + "s.notna()\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Accessing entries\n", + "\n", + "Like with lists, you can access the data entries using the square bracket notation. In Pandas:\n", + "```python\n", + "s[2]\n", + "s['e']\n", + "```\n", + "\n", + "Notice the second example above: you can access entries in the Series by their name!" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Selected subsets from the series can be accessed too, again using square brackets:\n", + "```python\n", + "s[[2, 4, 0]]\n", + "s[['f', 'd', 'b']]\n", + "\n", + "# Selection based on logic: I want only values greater than 4. This is called filtering.\n", + "s[s > 4]\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can also access a ``range`` of entries:\n", + "```python\n", + "s[0:2]\n", + "s['a':'c']\n", + "```\n", + "Take a careful look at that output. You might have expected them to be the same length, but they are not! When accessing with the index **names**, you get the range _inclusive_ of the last entry. When accessing by index **number**, it behaves consistent with Python lists.\n", + "\n", + "That makes sense. Names of the rows, the index, do not necessarily have to be sequential, like ``['a', 'b', ... 'f']`` as in this example. Often the index is unordered. \n", + "\n", + "For example, if you had a series related to different Canadian cities: \n", + "\n", + "`['Toronto', 'Vancouver', 'Ottawa', 'Montréal', 'Halifax']`\n", + "\n", + "then with `['Vancouver':'Montréal']` you expect to see the middle 3 entries, inclusive of `Montréal`." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### TO DO LATER: Creating a Series from a dictionary\n", + "\n", + "Now we can combine two new concepts you have just learned: Dictionaries and Pandas.\n", + "\n", + "```python\n", + "raw_data = {'Germany': 27, 'Belgium': 13, 'Netherlands': 52, 'Sweden': 54, 'Ireland': 5}\n", + "tons_herring_eaten = pd.Series(raw_data)\n", + "print(tons_herring_eaten)\n", + "```\n", + "\n", + "The row names (index) are taken from the dictionary keys, associated with each value. Because dictionaries are not ordered, the rows in the series will **not** necessarily be in the order written above.\n", + "\n", + "1. Write the Pandas command to determine which country eats the most herring. It is **not** with the ``tons_herring_eaten.max()`` command!\n", + "2. And the least herring?\n", + "3. What does this do? ``tons_herring_eaten.sort_values()``. Print the variable afterwards. \n", + " * If this command fails, you might have an older version of Pandas. Try ``tons_herring_eaten.sort()`` instead.\n", + "4. And what does this do then? ``tons_herring_eaten.sort_index()``" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Working with Pandas ``DataFrame`` objects\n", + "\n", + "\n", + "Imagine you have 5 temperature measurements (rows) for 4 cities (columns). In actual data the columns would be the temperature measurement from a different part of the process. For this example, each column is a city.\n", + "\n", + "We can create a ``DataFrame`` using a list-of-lists:\n", + "```python\n", + "import pandas as pd\n", + "rawdata = [[17, 19, 22, 20], \n", + " [11, 14, 15, 12], \n", + " [ 7, 11, 8, 7], \n", + " [ 8, 9, 8, 8], \n", + " [ 7, 9, 8, 6]]\n", + "df = pd.DataFrame(data=rawdata, columns = ['Johannesburg', 'Cape Town', 'Pretoria', 'Durban'])\n", + "print(df)\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Tip: Pandas can handle column names with a space in them.😊 This is why when you want to see one column, you can refer to it as follows:\n", + "\n", + "* ``df[\"Cape Town\"]``\n", + "* ``df['Johannesburg']``\n", + "* What type is each column inside ``df``? Try finding out: ``type(df[\"Cape Town\"])``" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Try some calculations now:\n", + "```python\n", + "df.max() \n", + "df.max(axis=0) \n", + "df.max(axis=1) \n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now try some other types of calculations on all the columns: \n", + "\n", + "* ``df.sum``\n", + "* ``df.mean``\n", + "* ``df.median``\n", + "* ``df.std # Standard deviation``\n", + "* ``df.min ``\n", + "* ``df.idxmin``\n", + "* ``df.diff``\n", + "\n", + "Notice that these calculations take place on the columns, by default. What if you wanted to do them on the rows?\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Try the following to expand your knowledge.\n", + "\n", + "\n", + "* Calculations on certain columns. The beauty of Pandas is how easy it is to write equations, based on the columns:\n", + "```python\n", + "df['Johannesburg'] * 4 - df['Durban']\n", + "```\n", + "The above does exactly what you think it should.\n", + "\n", + "* What does this do? \n", + "\n", + "```python\n", + ">>> df.diff().abs().max()\n", + "\n", + "# and this? \n", + ">>> df.diff().abs().max().argmax()\n", + "```\n", + "\n", + "* What is the interpretation of that long command?\n", + "\n", + "You can stack up your sequential operations quite compactly in Pandas. It works because the output from one function is the input for the next one to the right.\n", + "\n", + "**A tip on style**\n", + "\n", + "You can also use ``df.Johannesburg`` to access a column, but this is not good Pandas style, so don't do this. It cannot handle column names with spaces, and if you have a column name that is also a built-in operation, like ``max``, for example, it is confusing." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Time for a diversion: Dictionaries!\n", + "\n", + "A dictionary is a Python ***object*** that is a flexible data container for other objects. It contains these objects using what are called ***key*** - ***value*** pairs. You create a dictionary like this:\n", + "\n", + "```python\n", + "random_objects = {'my integer': 45,\n", + " 'a float': 12.34,\n", + " 'short_list': [1, 4, 7],\n", + " 'longer list': [2, 4, 6, 9, 12, 16, 20, 25, 30, 36, 42],\n", + " 'website': \"https://learnche.org\",\n", + " 'a tuple': (1, 2.0, 33, 444, '5555', 'etc')\n", + " }\n", + "print(random_objects)\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In older Python versions, the dictionary print out will be a random order. Newer versions of Python ***maintain the order*** of the container. \n", + "\n", + "The dictionary has what are called ***keys*** and ***values***:\n", + "```python\n", + "\n", + "# These both return a list:\n", + "random_objects.keys()\n", + "random_objects.values()\n", + "\n", + "# What is the \"type\" of this dictionary?\n", + "print(f'The object is of: {type(random_objects)}')\n", + "\n", + "# You can access individual values from the dictionary by using the key:\n", + "random_objects['short_list']\n", + "```\n", + "\n", + "In the above example, the keys were all ***string*** objects. But that is not required. You can use integers, floating point values, strings, tuples, or a mixture of them. There are other options too, but these are comprehensive enough.\n", + "\n", + "Dictionary values may be any ***objects***, even other dictionaries. Yes, so a dictionary within a dictionary is possible. We will use this below. That is why we partially why we waited to introduce dictionaries until now.\n", + "\n", + "Dictionary objects are excellent ***containers***. If you need to return several objects from a function, collect them in a dictionary, and return them in that single object. It is not required, but it can make your code neater, and more logical.\n", + "\n", + "### Try it\n", + "\n", + "Create a dictionary for yourself with 4 `key`-`value` pairs, which summarizes a regression model. The `key` is the first item below, followed by a description of what you should create as the `value`:\n", + "1. `intercept`: make up a floating-point value which is the intercept of your linear model\n", + "2. `slope`: pick any floating-point value as the slope\n", + "3. `R2`: the $R^2$ value of the regression model\n", + "5. `residuals`: a list (vector) of residuals. You can use a Pandas Series here also!\n", + "\n", + "You can create the above dictionary in a single line of code. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Add a new item to the dictionary\n", + "\n", + "```python\n", + "d = { ... } # create your dictionary\n", + "d['new key'] = 'additional value'\n", + "```\n", + "\n", + "And you can overwrite/update an existing key-value pair in the same way:\n", + "```python\n", + "random_objects['my integer'] = 42\n", + "```\n", + "This implies you can never have 2 keys which are the same. If you try to create a second key which already exists, it will overwrite the object associated with the existing key.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## DataFrame operations\n", + "\n", + "Now you will use your knowledge of dictionaries you just developed above.\n", + "\n", + "We will show code for some commonly-used Pandas operations:\n", + "* shape of an array, \n", + "* what are the unique entries, \n", + "* adding and merging columns, \n", + "* adding rows, \n", + "* deleting rows,\n", + "* removing missing values.\n", + "\n", + "We will use this made-up data set, showing how much food is used by each country. You can replace these data with numbers and columns and rows which make sense to your application.\n", + "\n", + ">```python\n", + ">import pandas as pd\n", + ">data = {'Herring': [27, 13, 52, 54, 5, 19], \n", + "> 'Coffee': [90, 94, 96, 97, 30, 73],\n", + "> 'Tea': [88, 48, 98, 93, 99, 88]}\n", + ">countries = ['Germany', 'Belgium', 'Netherlands', 'Sweden', 'Ireland', 'Switzerland']\n", + ">food_consumed = pd.DataFrame(data, index=countries)\n", + ">\n", + ">print(data)\n", + ">print(countries)\n", + ">print(type(data))\n", + ">print(type(countries))\n", + ">print(type(food_consumed))\n", + ">food_consumed\n", + ">```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### 1. Shape of a data frame\n", + "\n", + "```python\n", + "# There were 6 countries, and 3 food types. Verify:\n", + "food_consumed.shape\n", + "\n", + "# Transposed and then shape:\n", + "food_consumed.T.shape\n", + "\n", + "# Interesting: what shapes do summary vectors have?\n", + "food_consumed.mean().shape\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### 2. Unique entries\n", + "```python\n", + "# Access the column names directly. \n", + "# Does not work if there is a space in the name though :(\n", + "food_consumed.Tea.unique()\n", + "\n", + "# So this is clearer, in my opinion. It is also more programmatic.\n", + "# In other words, you can replaced 'Tea' with a string variable, and\n", + "# the code will still work.\n", + "food_consumed['Tea'].unique()\n", + "\n", + "# Names (indexes) of the unique rows:\n", + "food_consumed.index.unique()\n", + "\n", + "# In newer versions of Pandas, you can get counts (n) of\n", + "# the unique entries:\n", + "food_consumed.nunique() # in each column \n", + "food_consumed.nunique(axis=1) # in each row\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### 3. Add a new column\n", + "```python\n", + "# Works just like a dictionary!\n", + "# If the data are in the same row order\n", + "food_consumed['Yoghurt'] = [30, 20, 53, 2, 3, 48]\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### 4. Merging dataframes \n", + "```python\n", + "# Note the row order is different this time:\n", + "more_foods = pd.DataFrame(index=['Belgium', 'Germany', 'Ireland', 'Netherlands', 'Sweden', 'Switzerland'],\n", + " data={'Garlic': [29, 22, 5, 15, 9, 64]})\n", + "print(food_consumed)\n", + "print(more_foods)\n", + "# Merge 'more_foods' into the 'food_consumed' data frame\n", + "food_consumed = food_consumed.join(more_foods)\n", + "food_consumed\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### 5. Adding a new row\n", + "```python\n", + "# Collect the new data in a Series. Note that 'Tea' is (intentionally) missing!\n", + "portugal = pd.Series({'Coffee': 72, 'Herring': 20, 'Yoghurt': 6, 'Garlic': 89},\n", + " name = 'Portugal')\n", + "\n", + "food_consumed = food_consumed.append(portugal)\n", + "# See the missing value created?\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### 6. Delete or drop a row/column\n", + "```python\n", + "# Drop a column, and returns its values to you\n", + "coffee_column = food_consumed.pop('Coffee')\n", + "print(coffee_column)\n", + "print(food_consumed)\n", + "\n", + "# Leaves the original data untouched; returns only \n", + "# a copy, with those columns removed\n", + "food_consumed.drop(['Garlic', 'Yoghurt'], axis=1)\n", + "\n", + "# Leaves the original data untouched; returns only \n", + "# a copy, with those rows removed. \n", + "non_EU_consumption = food_consumed.drop(['Switzerland', ], axis=0)\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### 7. Remove rows with missing values\n", + "```python\n", + "# Returns a COPY of the array, with no missing values:\n", + "cleaned_data = food_consumed.dropna() \n", + "\n", + "# Makes the deletion inplace; more efficient for large data sets\n", + "food_consumed.dropna(inplace=True) \n", + "\n", + "# Remove only rows where all values are missing:\n", + "food_consumed.dropna(how='all')\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Reading and writing Excel files with Pandas\n", + "\n", + "The basic command to read an Excel file is straight-forward:\n", + "\n", + "```python\n", + "colour_data = pd.read_excel(excel_filename, \n", + " sheet_name='Colours', \n", + " skiprows=5, \n", + " index_col=0)\n", + "colour_data.head()\n", + "```\n", + "You can call the function with various inputs, depending on your situation. Read the full documentation for reading Excel files: https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_excel.html\n", + "\n", + "Similarly, for writing Excel files, it is often enough to just use:\n", + "```python\n", + "df = pd.DataFrame(...)\n", + "df.to_excel(\"output.xlsx\", sheet_name='Summary')\n", + "```\n", + "and it is worth checking the documentation for further function options: https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_excel.html" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# IGNORE this. Execute this cell to load the notebook's style sheet.\n", + "from IPython.core.display import HTML\n", + "css_file = './images/style.css'\n", + "HTML(open(css_file, \"r\").read())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "hide_input": false, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.9" + }, + "toc": { + "base_numbering": "1", + "nav_menu": {}, + "number_sections": true, + "sideBar": true, + "skip_h1_title": true, + "title_cell": "Table of Contents", + "title_sidebar": "Contents", + "toc_cell": true, + "toc_position": { + "height": "calc(100% - 180px)", + "left": "10px", + "top": "150px", + "width": "349px" + }, + "toc_section_display": true, + "toc_window_display": true + }, + "varInspector": { + "cols": { + "lenName": 16, + "lenType": 16, + "lenVar": 40 + }, + "kernels_config": { + "python": { + "delete_cmd_postfix": "", + "delete_cmd_prefix": "del ", + "library": "var_list.py", + "varRefreshCmd": "print(var_dic_list())" + }, + "r": { + "delete_cmd_postfix": ") ", + "delete_cmd_prefix": "rm(", + "library": "var_list.r", + "varRefreshCmd": "cat(var_dic_list()) " + } + }, + "types_to_exclude": [ + "module", + "function", + "builtin_function_or_method", + "instance", + "_Feature" + ], + "window_display": false + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} From 9027b95cd078ab0748745f5dcfa5159e9d69ccd0 Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Mon, 12 Oct 2020 14:49:44 +0200 Subject: [PATCH 092/134] Fixed the tuple assignment --- Module-11-interactive.ipynb | 17 +++++++++++++---- 1 file changed, 13 insertions(+), 4 deletions(-) diff --git a/Module-11-interactive.ipynb b/Module-11-interactive.ipynb index 8a82f17..68d2b3a 100644 --- a/Module-11-interactive.ipynb +++ b/Module-11-interactive.ipynb @@ -239,7 +239,9 @@ "execution_count": null, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "\n" + ] }, { "cell_type": "markdown", @@ -488,9 +490,9 @@ "\n", "Verify if you can use this short-cut solution for these combinations:\n", "\n", - "* ``a=3, b=-1, c=2 # using tuple-assignment here to create these 3 variables in 1 line of code!``\n", - "* ``a=0, b=-1, c=2`` \n", - "* ``a=3, b=6, c=3`` \n", + "* ``a, b, c = 3, -1, 2 # using tuple-assignment here to create these 3 variables in 1 line of code!``\n", + "* ``a, b, c = 0, -1, 2`` \n", + "* ``a, b, c = 3, 6, 3`` \n", "\n", "Write the single line of Python code that will return ``True`` if you can use the shortcut, or ``False`` if you cannot." ] @@ -549,6 +551,13 @@ "* verify that the cosine of ``g`` = $2\\pi$ radians is indeed 1.0\n" ] }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, { "cell_type": "markdown", "metadata": {}, From 27ff205a5136333102d8a3175213cbf240ccfe92 Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Mon, 12 Oct 2020 17:25:42 +0200 Subject: [PATCH 093/134] Updated order and some layout in module 12 --- Module-12-interactive.ipynb | 153 +++++++++++++++++++----------------- 1 file changed, 83 insertions(+), 70 deletions(-) diff --git a/Module-12-interactive.ipynb b/Module-12-interactive.ipynb index 06cc3fb..82c0589 100644 --- a/Module-12-interactive.ipynb +++ b/Module-12-interactive.ipynb @@ -7,7 +7,7 @@ }, "source": [ "

    Table of Contents

    \n", - "" + "" ] }, { @@ -206,6 +206,13 @@ "```" ] }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, { "cell_type": "markdown", "metadata": {}, @@ -319,6 +326,13 @@ "```" ] }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, { "cell_type": "markdown", "metadata": {}, @@ -339,29 +353,6 @@ "then with `['Vancouver':'Montréal']` you expect to see the middle 3 entries, inclusive of `Montréal`." ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### TO DO LATER: Creating a Series from a dictionary\n", - "\n", - "Now we can combine two new concepts you have just learned: Dictionaries and Pandas.\n", - "\n", - "```python\n", - "raw_data = {'Germany': 27, 'Belgium': 13, 'Netherlands': 52, 'Sweden': 54, 'Ireland': 5}\n", - "tons_herring_eaten = pd.Series(raw_data)\n", - "print(tons_herring_eaten)\n", - "```\n", - "\n", - "The row names (index) are taken from the dictionary keys, associated with each value. Because dictionaries are not ordered, the rows in the series will **not** necessarily be in the order written above.\n", - "\n", - "1. Write the Pandas command to determine which country eats the most herring. It is **not** with the ``tons_herring_eaten.max()`` command!\n", - "2. And the least herring?\n", - "3. What does this do? ``tons_herring_eaten.sort_values()``. Print the variable afterwards. \n", - " * If this command fails, you might have an older version of Pandas. Try ``tons_herring_eaten.sort()`` instead.\n", - "4. And what does this do then? ``tons_herring_eaten.sort_index()``" - ] - }, { "cell_type": "code", "execution_count": null, @@ -481,8 +472,20 @@ ">>> df.diff().abs().max().argmax()\n", "```\n", "\n", - "* What is the interpretation of that long command?\n", - "\n", + "* What is the interpretation of that long command?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ "You can stack up your sequential operations quite compactly in Pandas. It works because the output from one function is the input for the next one to the right.\n", "\n", "**A tip on style**\n", @@ -542,8 +545,20 @@ "\n", "# You can access individual values from the dictionary by using the key:\n", "random_objects['short_list']\n", - "```\n", - "\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ "In the above example, the keys were all ***string*** objects. But that is not required. You can use integers, floating point values, strings, tuples, or a mixture of them. There are other options too, but these are comprehensive enough.\n", "\n", "Dictionary values may be any ***objects***, even other dictionaries. Yes, so a dictionary within a dictionary is possible. We will use this below. That is why we partially why we waited to introduce dictionaries until now.\n", @@ -561,6 +576,15 @@ "You can create the above dictionary in a single line of code. " ] }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "regression_model = ___\n" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -568,8 +592,8 @@ "### Add a new item to the dictionary\n", "\n", "```python\n", - "d = { ... } # create your dictionary\n", - "d['new key'] = 'additional value'\n", + "regression_model = { ... } # create your dictionary\n", + "regression_model['new key'] = 'additional value'\n", "```\n", "\n", "And you can overwrite/update an existing key-value pair in the same way:\n", @@ -586,6 +610,35 @@ "outputs": [], "source": [] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Creating a Series from a dictionary\n", + "\n", + "Now we can combine two new concepts you have just learned: Dictionaries and Pandas.\n", + "\n", + "```python\n", + "raw_data = {'Germany': 27, 'Belgium': 13, 'Netherlands': 52, 'Sweden': 54, 'Ireland': 5}\n", + "tons_herring_eaten = pd.Series(raw_data)\n", + "print(tons_herring_eaten)\n", + "```\n", + "\n", + "The row names (index) are taken from the dictionary keys, associated with each value. \n", + "\n", + "1. Write the Pandas command to determine which country eats the most herring. It is **not** with the ``tons_herring_eaten.max()`` command!\n", + "2. And the least herring?\n", + "3. What does this do? ``tons_herring_eaten.sort_values()``. Print the variable afterwards. \n", + "4. And what does this do then? ``tons_herring_eaten.sort_index()``" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, { "cell_type": "markdown", "metadata": {}, @@ -802,13 +855,6 @@ "outputs": [], "source": [] }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, { "cell_type": "markdown", "metadata": {}, @@ -852,39 +898,6 @@ "css_file = './images/style.css'\n", "HTML(open(css_file, \"r\").read())" ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": { From 6bfc898bf5e1de3b58f3064bcb1cc12f12263a71 Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Tue, 13 Oct 2020 14:00:27 +0200 Subject: [PATCH 094/134] Some more updates to module 12. --- Module-12-interactive.ipynb | 130 ++++++++++++++++++++++++++++++++---- 1 file changed, 116 insertions(+), 14 deletions(-) diff --git a/Module-12-interactive.ipynb b/Module-12-interactive.ipynb index 82c0589..d9b613f 100644 --- a/Module-12-interactive.ipynb +++ b/Module-12-interactive.ipynb @@ -7,7 +7,7 @@ }, "source": [ "

    Table of Contents

    \n", - "" + "" ] }, { @@ -44,7 +44,7 @@ "\n", "* Using and understanding the Pandas library\n", "* Creating a Pandas data frame\n", - "* Reading in Excel files (or CSV files) as an alternative to create a data frame\n", + "* Reading in Excel files as an alternative to create a data frame\n", "* Basic calculations with data frames\n", "\n", "**Requirements before starting**\n", @@ -127,8 +127,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Pandas Series\n", + "## Working with Pandas ``Series`` objects\n", "\n", + "### What is a ``Series`` object?\n", "Let's see some characteristics of a ``Series``\n", "```python\n", "# Create a Series from a list. \n", @@ -217,10 +218,6 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Working with Pandas Series objects\n", - "\n", - "\n", - "\n", "### Mathematical calculations\n", "\n", "The series you created above, can be used in calculations. Notice how missing data are handled seamlessly.\n", @@ -561,7 +558,7 @@ "source": [ "In the above example, the keys were all ***string*** objects. But that is not required. You can use integers, floating point values, strings, tuples, or a mixture of them. There are other options too, but these are comprehensive enough.\n", "\n", - "Dictionary values may be any ***objects***, even other dictionaries. Yes, so a dictionary within a dictionary is possible. We will use this below. That is why we partially why we waited to introduce dictionaries until now.\n", + "Dictionary values may be any ***objects***, even other dictionaries. Yes, so a dictionary within a dictionary is possible. \n", "\n", "Dictionary objects are excellent ***containers***. If you need to return several objects from a function, collect them in a dictionary, and return them in that single object. It is not required, but it can make your code neater, and more logical.\n", "\n", @@ -681,6 +678,34 @@ "outputs": [], "source": [] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### 0. Getting an idea about your data first\n", + "\n", + "```python\n", + "# The first rows:\n", + "food_consumed.head()\n", + "\n", + "# The last rows:\n", + "food_consumed.tail()\n", + "\n", + "# Some basic statistics\n", + "food_consumed.describe()\n", + "\n", + "# Some information about the data structure: missing values, memory usage, etc\n", + "food_consumed.info()\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, { "cell_type": "markdown", "metadata": {}, @@ -855,6 +880,26 @@ "outputs": [], "source": [] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### 8. Sort the data\n", + "\n", + "```python\n", + "food_consumed.sort_values(by=\"Garlic\")\n", + "food_consumed.sort_values(by=\"Garlic\", inplace=True)\n", + "food_consumed.sort_values(by=\"Garlic\", inplace=True, ascending=False)\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, { "cell_type": "markdown", "metadata": {}, @@ -864,17 +909,74 @@ "The basic command to read an Excel file is straight-forward:\n", "\n", "```python\n", - "colour_data = pd.read_excel(excel_filename, \n", - " sheet_name='Colours', \n", - " skiprows=5, \n", + "filename = r\"C:\\temp\\colour-reference.xlsx\" # use the 'r' at the start with Windows directory names\n", + "\n", + "# or, you can even specify the web address for the file\n", + "filename = \"https://yint.org/static/colour-reference.xlsx\"\n", + "colour_data = pd.read_excel(filename, \n", + " sheet_name='Sheet1', \n", + " skiprows=0, \n", " index_col=0)\n", - "colour_data.head()\n", + "print(colour_data)\n", "```\n", - "You can call the function with various inputs, depending on your situation. Read the full documentation for reading Excel files: https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_excel.html\n", + "\n", + "Try it: \n", + "* Download an Excel file (or use your own); here is the one used in the demo code above: https://yint.org/static/colour-reference.xlsx\n", + "* Save the file somewhere on your hard drive.\n", + "* Open it up to see the file structure, and to see what data you expect to see next.\n", + "* Change the `filename` line in the code above.\n", + "* Run the code and verify you got what you expected.\n", + "* Adjust the `skiprows` and `index_col` function inputs to see what happens.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Excel files can be complex, with different layouts, so read the documentation about Pandas and Excel files: https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_excel.html\n", + "\n", + "\n", + "\n", + ".head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exercise: mass balance\n", + "\n", + "1. Create an Excel file of a tank reactor: each column is a measurement from the reactor, and each row is a measurement that is taken at some point in time.\n", + "2. Simulate (create) some data. Save that file to your hard drive.\n", + "3. Use the knowledge you learned above to read in that Excel file. Use the ``df.head()`` function to make sure you have the correct values.\n", + "4. Use the mass balance principle: $$ \\text{Accumulation} = \\text{Input} - \\text{Output} + \\text{Generation} - \\text{Consumption} $$\n", + "5. Collect all the columns that are needed for the right hand side of the equation. For example, consider a carbon balance (then the $\\text{Generation}$ and $\\text{Consumption}$ columns are zero). Therefore calculate the input and the output carbon, and check if there is an accumulation in the tank over time." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exporting to Excel\n", + "\n", "\n", "Similarly, for writing Excel files, it is often enough to just use:\n", "```python\n", - "df = pd.DataFrame(...)\n", + "df = ... # code goes here to create/update your data frame, df\n", "df.to_excel(\"output.xlsx\", sheet_name='Summary')\n", "```\n", "and it is worth checking the documentation for further function options: https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_excel.html" From 202baea682ef04e0496aa894b5d844be1fbc5c4a Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Tue, 13 Oct 2020 17:06:11 +0200 Subject: [PATCH 095/134] Updated module 12 with some hints/exercises. --- Module-12-interactive.ipynb | 36 ++++++++++++++++-------------------- 1 file changed, 16 insertions(+), 20 deletions(-) diff --git a/Module-12-interactive.ipynb b/Module-12-interactive.ipynb index d9b613f..06dd8f3 100644 --- a/Module-12-interactive.ipynb +++ b/Module-12-interactive.ipynb @@ -193,7 +193,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Ah ha! See what you get there in the output from ``s.values``? Pandas is built on top of another library, called NumPy. The underlying data are NumPy arrays, and Pandas adds extra functionality on top of that. We will refer back to Numpy later, or you will see it commonly referenced in Python websites that deal with data processing. So it is good to know about it." + "Ah ha! See what you get there in the output from ``s.values``? Pandas is built on top of another library, called NumPy. The underlying data are NumPy arrays, and Pandas adds extra functionality on top of that. We will refer back to NumPy later, or you will see it commonly referenced in Python websites that deal with data processing. So it is good to know about it." ] }, { @@ -223,7 +223,6 @@ "The series you created above, can be used in calculations. Notice how missing data are handled seamlessly.\n", "\n", "```python\n", - "import pandas as pd\n", "s = pd.Series(data = [5, 9, 1, -4, float('nan'), 5 ], \n", " index = ['a', 'b', 'c', 'd', 'e', 'f'],\n", " name = 'Calculations')\n", @@ -466,7 +465,7 @@ ">>> df.diff().abs().max()\n", "\n", "# and this? \n", - ">>> df.diff().abs().max().argmax()\n", + ">>> df.diff().abs().max().idxmax()\n", "```\n", "\n", "* What is the interpretation of that long command?" @@ -542,6 +541,9 @@ "\n", "# You can access individual values from the dictionary by using the key:\n", "random_objects['short_list']\n", + "\n", + "# What happens when you use a non-existent key?\n", + "random_objects['mystery']\n", "```" ] }, @@ -737,20 +739,12 @@ "source": [ "#### 2. Unique entries\n", "```python\n", - "# Access the column names directly. \n", - "# Does not work if there is a space in the name though :(\n", - "food_consumed.Tea.unique()\n", - "\n", - "# So this is clearer, in my opinion. It is also more programmatic.\n", - "# In other words, you can replaced 'Tea' with a string variable, and\n", - "# the code will still work.\n", "food_consumed['Tea'].unique()\n", "\n", - "# Names (indexes) of the unique rows:\n", + "# Unique names of the rows: (not so useful in this example, because they are already unique)\n", "food_consumed.index.unique()\n", "\n", - "# In newer versions of Pandas, you can get counts (n) of\n", - "# the unique entries:\n", + "# Get counts (n) of the unique entries:\n", "food_consumed.nunique() # in each column \n", "food_consumed.nunique(axis=1) # in each row\n", "```" @@ -772,6 +766,7 @@ "# Works just like a dictionary!\n", "# If the data are in the same row order\n", "food_consumed['Yoghurt'] = [30, 20, 53, 2, 3, 48]\n", + "print(food_consumed)\n", "```" ] }, @@ -793,7 +788,7 @@ " data={'Garlic': [29, 22, 5, 15, 9, 64]})\n", "print(food_consumed)\n", "print(more_foods)\n", - "# Merge 'more_foods' into the 'food_consumed' data frame\n", + "# Merge 'more_foods' into the 'food_consumed' data frame. Merging works, even if row order is not the same!\n", "food_consumed = food_consumed.join(more_foods)\n", "food_consumed\n", "```" @@ -818,6 +813,9 @@ "\n", "food_consumed = food_consumed.append(portugal)\n", "# See the missing value created?\n", + "print(food_consumed)\n", + "\n", + "# What happens if you run the above commands more than once?\n", "```" ] }, @@ -842,6 +840,7 @@ "# Leaves the original data untouched; returns only \n", "# a copy, with those columns removed\n", "food_consumed.drop(['Garlic', 'Yoghurt'], axis=1)\n", + "print(food_consumed)\n", "\n", "# Leaves the original data untouched; returns only \n", "# a copy, with those rows removed. \n", @@ -865,7 +864,8 @@ "# Returns a COPY of the array, with no missing values:\n", "cleaned_data = food_consumed.dropna() \n", "\n", - "# Makes the deletion inplace; more efficient for large data sets\n", + "# Makes the deletion inplace; you do not not have to assign the output to a new variable.\n", + "# Inplace is not always faster!\n", "food_consumed.dropna(inplace=True) \n", "\n", "# Remove only rows where all values are missing:\n", @@ -940,11 +940,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Excel files can be complex, with different layouts, so read the documentation about Pandas and Excel files: https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_excel.html\n", - "\n", - "\n", - "\n", - ".head()" + "Excel files can be complex, with different layouts, so read the documentation about Pandas and Excel files: https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_excel.html" ] }, { From 47a871cdc36b3146dc93bc66feb959550aa28885 Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Fri, 23 Oct 2020 18:16:45 +0200 Subject: [PATCH 096/134] Started on M13, with lots of TODOs still --- Module-13-interactive.ipynb | 859 ++++++++++++++++++++++++++++++++++++ 1 file changed, 859 insertions(+) create mode 100644 Module-13-interactive.ipynb diff --git a/Module-13-interactive.ipynb b/Module-13-interactive.ipynb new file mode 100644 index 0000000..b2ca9a2 --- /dev/null +++ b/Module-13-interactive.ipynb @@ -0,0 +1,859 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "toc": true + }, + "source": [ + "

    Table of Contents

    \n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "> All content here is under a Creative Commons Attribution [CC-BY 4.0](https://creativecommons.org/licenses/by/4.0/) and all source code is released under a [BSD-2 clause license](https://en.wikipedia.org/wiki/BSD_licenses).\n", + ">\n", + ">Please reuse, remix, revise, and [reshare this content](https://github.com/kgdunn/python-basic-notebooks) in any way, keeping this notice." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Course overview\n", + "\n", + "This is the third module of several (11, 12, 13, 14, 15 and 16), which refocuses the course material in the [prior 10 modules](https://github.com/kgdunn/python-basic-notebooks) in a slightly different way. It places more emphasis on\n", + "\n", + "* dealing with data: importing, merging, filtering;\n", + "* calculations from the data;\n", + "* visualization of it.\n", + "\n", + "In short: ***how to extract value from your data***.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Module 13 Overview\n", + "\n", + "This is the third of 6 modules. In this module we will cover\n", + "\n", + "* Becoming more comfortable with Pandas data processing\n", + "* Basic plotting with Pandas\n", + "* Merging and filtering data\n", + "* Learning about tuples??\n", + "\n", + "**Requirements before starting**\n", + "\n", + "* Have your Python installation working as for module 11, and also the Pandas library installed." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Introduction to this module\n", + "\n", + "\n", + "In the [prior module](https://yint.org/pybasic12) you saw a number of advantages of Pandas, including\n", + "\n", + "* Quickly being able to make calculations with columns:\n", + "\n", + " ``df[\"TemperatureC\"] = (df[\"TemperatureF\"] - 32) * 5 / 9``\n", + "\n", + "* And generating basic summaries about your data:\n", + "\n", + " * ``df[\"TemperatureC\"].max()``\n", + " \n", + " \n", + "We are going to build on those, particularly for plotting.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Start my loading the Pandas library with this command:\n", + "\n", + "```python\n", + "import pandas as pd\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## DataFrame operations\n", + "\n", + "Now you will use your knowledge of dictionaries you just developed above.\n", + "\n", + "We will show code for some commonly-used Pandas operations:\n", + "* shape of an array, \n", + "* what are the unique entries, \n", + "* adding and merging columns, \n", + "* adding rows, \n", + "* deleting rows,\n", + "* removing missing values.\n", + "\n", + "We will use this made-up data set, showing how much food is used by each country. You can replace these data with numbers and columns and rows which make sense to your application.\n", + "\n", + ">```python\n", + ">import pandas as pd\n", + ">data = {'Herring': [27, 13, 52, 54, 5, 19], \n", + "> 'Coffee': [90, 94, 96, 97, 30, 73],\n", + "> 'Tea': [88, 48, 98, 93, 99, 88]}\n", + ">countries = ['Germany', 'Belgium', 'Netherlands', 'Sweden', 'Ireland', 'Switzerland']\n", + ">food_consumed = pd.DataFrame(data, index=countries)\n", + ">\n", + ">print(data)\n", + ">print(countries)\n", + ">print(type(data))\n", + ">print(type(countries))\n", + ">print(type(food_consumed))\n", + ">food_consumed\n", + ">```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### 0. Getting an idea about your data first\n", + "\n", + "```python\n", + "# The first rows:\n", + "food_consumed.head()\n", + "\n", + "# The last rows:\n", + "food_consumed.tail()\n", + "\n", + "# Some basic statistics\n", + "food_consumed.describe()\n", + "\n", + "# Some information about the data structure: missing values, memory usage, etc\n", + "food_consumed.info()\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### 1. Shape of a data frame\n", + "\n", + "```python\n", + "# There were 6 countries, and 3 food types. Verify:\n", + "food_consumed.shape\n", + "\n", + "# Transposed and then shape:\n", + "food_consumed.T.shape\n", + "\n", + "# Interesting: what shapes do summary vectors have?\n", + "food_consumed.mean().shape\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### 2. Unique entries\n", + "```python\n", + "food_consumed['Tea'].unique()\n", + "\n", + "# Unique names of the rows: (not so useful in this example, because they are already unique)\n", + "food_consumed.index.unique()\n", + "\n", + "# Get counts (n) of the unique entries:\n", + "food_consumed.nunique() # in each column \n", + "food_consumed.nunique(axis=1) # in each row\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### 3. Add a new column\n", + "```python\n", + "# Works just like a dictionary!\n", + "# If the data are in the same row order\n", + "food_consumed['Yoghurt'] = [30, 20, 53, 2, 3, 48]\n", + "print(food_consumed)\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### 4. Merging dataframes \n", + "```python\n", + "# Note the row order is different this time:\n", + "more_foods = pd.DataFrame(index=['Belgium', 'Germany', 'Ireland', 'Netherlands', 'Sweden', 'Switzerland'],\n", + " data={'Garlic': [29, 22, 5, 15, 9, 64]})\n", + "print(food_consumed)\n", + "print(more_foods)\n", + "# Merge 'more_foods' into the 'food_consumed' data frame. Merging works, even if row order is not the same!\n", + "food_consumed = food_consumed.join(more_foods)\n", + "food_consumed\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### 5. Adding a new row\n", + "```python\n", + "# Collect the new data in a Series. Note that 'Tea' is (intentionally) missing!\n", + "portugal = pd.Series({'Coffee': 72, 'Herring': 20, 'Yoghurt': 6, 'Garlic': 89},\n", + " name = 'Portugal')\n", + "\n", + "food_consumed = food_consumed.append(portugal)\n", + "# See the missing value created?\n", + "print(food_consumed)\n", + "\n", + "# What happens if you run the above commands more than once?\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### 6. Delete or drop a row/column\n", + "```python\n", + "# Drop a column, and returns its values to you\n", + "coffee_column = food_consumed.pop('Coffee')\n", + "print(coffee_column)\n", + "print(food_consumed)\n", + "\n", + "# Leaves the original data untouched; returns only \n", + "# a copy, with those columns removed\n", + "food_consumed.drop(['Garlic', 'Yoghurt'], axis=1)\n", + "print(food_consumed)\n", + "\n", + "# Leaves the original data untouched; returns only \n", + "# a copy, with those rows removed. \n", + "non_EU_consumption = food_consumed.drop(['Switzerland', ], axis=0)\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### 7. Remove rows with missing values\n", + "```python\n", + "# Returns a COPY of the array, with no missing values:\n", + "cleaned_data = food_consumed.dropna() \n", + "\n", + "# Makes the deletion inplace; you do not not have to assign the output to a new variable.\n", + "# Inplace is not always faster!\n", + "food_consumed.dropna(inplace=True) \n", + "\n", + "# Remove only rows where all values are missing:\n", + "food_consumed.dropna(how='all')\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### 8. Sort the data\n", + "\n", + "```python\n", + "food_consumed.sort_values(by=\"Garlic\")\n", + "food_consumed.sort_values(by=\"Garlic\", inplace=True)\n", + "food_consumed.sort_values(by=\"Garlic\", inplace=True, ascending=False)\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# TODO \n", + "\n", + "\n", + "• Sorting: move the sorting content to module 13, from module 12\n", + "• Move the \"basket of skills\" on df's from 12 to 13\n", + "• Merging data sets (data from lab and plant), based on a common identifier\n", + "• .iterrows function\n", + "\t• to print row by row\n", + "\t• find a row with an unusual combination\n", + "• Filtering:\n", + "\tdogs[dogs[\"height_cm\"] > 60]\n", + "dogs[dogs[\"color\"] == \"tan\"]\n", + "\t\n", + "\tcolors = [\"brown\", \"black\", \"tan\"]\n", + "condition = dogs[\"color\"].isin(colors)\n", + "dogs[condition]\n", + "\n", + "• Read a folder in a sub-directory: \n", + "\tdf = pd.read_excel(base_folder / \"2020 Latto Benchmark.xlsx\")\n", + "columns = factors\n", + "\n", + "\n", + "\n", + "#----------\n", + "\n", + "Visualization: time-series, bar plots, scatter plots\n", + "\t.plot() has several optional parameters. Most notably, the kind parameter accepts eleven different string values and determines which kind of plot you’ll create:\n", + " \n", + "Each link is: https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.plot.bar.html\n", + " \n", + "```\n", + "\t\t\"area\" is for area plots.\t.area()\n", + "\t\t\"bar\" is for vertical bar charts.\t.bar()\n", + "\t\t\"barh\" is for horizontal bar charts.\t.barh()\n", + "\t\t\"box\" is for box plots.\t.box()\n", + "\t\t\"hexbin\" is for hexbin plots.\t.hexbin()\n", + "\t\t\"hist\" is for histograms.\t.hist()\n", + "\t\t\"kde\" is for kernel density estimate charts.\t.kde()\n", + "\t\t\"density\" is an alias for \"kde\".\t.density()\n", + "\t\t\"line\" is for line graphs.\t.line()\n", + "\t\t\"pie\" is for pie charts.\t.pie()\n", + "\t\t\"scatter\" is for scatter plots.\t.scatter()\n", + "```\n", + "\n", + "• Read in a file with time for x-axis\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Exercises\n", + "\n", + "def iqr(column):\n", + " return column.quantile(0.75) - column.quantile(0.25)\n", + " \n", + "Print IQR of the temperature_c column\n", + "print(sales[\"temperature_c\"].agg(iqr))\n", + "\n", + "• Find 30 percentile of a vector.\n", + "• filter out all points which are above the 30% level\n", + "• Find the mean of these points" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Visualization with Pandas\n", + "\n", + "You can quickly create visualizations of your data with Pandas.\n", + "\n", + "But first, you should check if you are making the appropriate one. This website helps you select: https://www.data-to-viz.com" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Demonstration time\n", + "\n", + "Some examples will be shown on what you can do with data frames.\n", + "\n", + "* Dashboards\n", + "* Calculations" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Diversion: how is time represented?\n", + "\n", + "Try the following in the space below:\n", + "```python\n", + "from datetime import datetime\n", + "now = datetime.now()\n", + "\n", + "# Do some things with `now`:\n", + "print(now)\n", + "print(now.year)\n", + "print(f\"Which weekday is it today? It is day: {now.isoweekday()} in the week\")\n", + "print(now.second)\n", + "print(now.seconds) # use singular\n", + "```\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "After trying the above, try these lines below. Comment out the lines that cause errors.\n", + "\n", + "```python\n", + "later = datetime.now()\n", + "print(later)\n", + "print(type(later))\n", + "print(later - now)\n", + "print(now - later) \n", + "print(now + later)\n", + "\n", + "delta = later - now\n", + "print(delta)\n", + "print(type(delta))\n", + "print(f\"There were this many seconds between 'now' and 'later': {delta.total_seconds()}\")\n", + "print(later + delta)\n", + "\n", + "sometime_in_the_future = later + delta*1000\n", + "print(sometime_in_the_future)\n", + "print(sometime_in_the_future - now)\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "delta = later - now\n", + "print(delta)\n", + "print(type(delta))\n", + "print(f\"There were this many seconds between 'now' and 'later': {delta.total_seconds()}\")\n", + "print(later + delta)\n", + "\n", + "sometime_in_the_future = later + delta*1000\n", + "print(sometime_in_the_future)\n", + "print(sometime_in_the_future - now)" + ] + }, + { + "attachments": { + "image.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAz4AAABgCAYAAADcp6fCAAAgAElEQVR4Ae2dPYt0yZLfa3auhGTL0yfQd2hZC7K0IPQB5A7IEWXIvx9jjHLXEgPryWwY/8IyzhiXlpyxVnB93QVxREbEPzMiMrLOqe7qfrp6/gPP1HnJjJdfRGZG1jndfdr4HwmQAAmQAAmQAAmQAAmQAAl8cQKnL+4f3SMBEiABEiABEiABEiABEiCB7ZNsfJ638+m0nRb/zs8xUi+XJ22bb8RmH3wGH562y8sHq6Y6EiABEiABEiABEiABEiCBqwQeYuPTNkRPbjfBjc/VmPImCZAACZAACZAACZAACZBAIvDJNj7z05LnM54EzfeSLzwlARIgARIgARIgARIgARIggZLAp9/4bNvLdnnSzQ+e+uQnPtgc4b56ilfPTpt/Iw5t9bW6tJl6uWxP8rrdebvgdboT2gx5eCXPy9023Ed78B721/3G/SYv2Pd02fjWHDjykwRIgARIgARIgARIgAReT+ABNj7b1jc6thHo59h5PJ/1Z378RgHXTudNf0RobDCwAcEnxGx944OnTO2z9cemxl/X4963t/Ebn3W/sUlb2yX2DQWvjzJ7kgAJkAAJkAAJkAAJkMDvnMBDbHw2bGJWG59i04EnJ32DkWRI3PM1v/HxG45+HZso92Smt8MmZ2x8YINunizToLM/SfIbn0J+37j9zjOV7pMACZAACZAACZAACZDAGwh8kY3P2IjoRufaJmR+atM3Jn2DMzYvyhby0HdsUAZ7tEFfnMdX7eZX98bGp2/SmtC+Qap0Da08IgESIAESIAESIAESIAES2CfwEBuf/mrb8omP2yi0Ntg0uFffxtMXbF78p21WlhsfJz/9yu2xWcFGJ298cD6CAVu0Lzc+gwyPSIAESIAESIAESIAESOB9CDzExiduFNzP/PTXzBqcsfE4n/Xv/IxNyXgidAp9EtRrGx/ftLdrmyc8kRn69Tdv4/z4E59gGjZvXb43gMckQAIkQAIkQAIkQAIkQAK3EPj0G5/+tKf/TMxq4+Ouy1OZ9KSlbyTG9S4bT4b6hgabGUPZ+7rrvS3kYaODc7fZ8puXLgvtxhMfbnxuSV22JQESIAESIAESIAESIIHjBD7Zxse/fhaP/dObvmEJO4Wt7Xzs11GfthM2M53F2GDgt7nhs4vp/d0GR/qv+w4988Yn2LN8RW7I7nY0nX2DlG3pDvGABEiABEiABEiABEiABEjgIIEH2PjgycjwaLnxKf7mz+jVjsYmY9r0yG1snKrNxtw3vjZXbHxE+dwvbHCcTeE6Nz4xdDwjARIgARIgARIgARIggTcQ+CQbnzd4wK4kQAIkQAIkQAIkQAIkQAIksEOAG58dQLxNAiRAAiRAAiRAAiRAAiTw+AS48Xn8GNIDEiABEiABEiABEiABEiCBHQLc+OwA4m0SIAESIAESIAESIAESIIHHJ8CNz+PHkB6QAAmQAAmQAAmQAAmQAAnsEODGZwcQb5MACZAACZAACZAACZAACTw+AW58Hj+G9IAESIAESIAESIAESIAESGCHADc+O4B4mwRIgARIgARIgARIgARI4PEJcOPz+DGkByRAAiRAAiRAAiRAAiRAAjsEuPHZAcTbJEACJEACJEACJEACJEACj0+AG5/HjyE9IAESIAESIAESIAESIAES2CHAjc8OIN4mARIgARIgARIgARIgARJ4fALc+Dx+DOkBCZAACZAACZAACZAACZDADgFufHYA8TYJkAAJkAAJkAAJkAAJkMDjE+DG5/FjSA9IgARIgARIgARIgARIgAR2CHDjswOIt0mABEiABEiABEiABEiABB6fADc+jx9DekACJEACJEACJEACJEACJLBDgBufHUC8TQIkQAIkQAIkQAIkQAIk8PgEuPF5/BjSAxIgARIgARIgARIgARIggR0C3PjsAOJtEiABEiABEiABEiABEiCBxyfAjc/jx5AekAAJkAAJkAAJkAAJkAAJ7BDgxmcHEG+TAAmQAAmQAAmQAAmQAAk8PgFufB4/hvSABEiABEiABEiABEiABEhghwA3PjuAeJsESIAESIAESIAESIAESODxCXDj8/gxpAckQAIkQAIkQAIkQAIkQAI7BD7Nxuf5fNpO5+fa3JfL9nR62i4v9e3DV0XOaVupOSznQMOXy/nt9h7Qs20v2+XpCrtt266yPaTjXo2et7OD/3J52k5Pl+2tYb3Zunvl082Kv0iHl8t2fvNg3DaJ/+m8LUZ9S9ztdO3+EZwi47SdTsW/m3Mv5u9d7DviA9uQAAmQAAmQAAnchQA3PnfBmIR8aGH9OBufz7MBS/Hi6Q0ENN+ePmLjc4NVy6bLzZONmxs2P1P+LmUvreENEiABEiABEiCBb0iAG5/3gM+NT0l1KhzLVrz4uQl8lY3P1h453fQkecpfbnw+d6rSOhIgARIgARJIBB5z44OCQz7HKyzuLSp1Uwobd//SCp30qltqk1+3k9dxzhd9nay9LmNKpAhyr8/0b8CvyMt94mteKCifh64mf/pG2r6phm7YNjk/Io2CLeif5OLVo8Gr+1S+Tmd2eL1XCsmg215bjK+6PW9niY1+4tUktSFe8yrFyyvMBwV3NNkZ5Z/2XquU/uft0l7VkziM17X09a3BMNgKvc+ah/AxtNmaLU/b5dJe82py3CueKd9HfMy3zKF4TeyqfaK7jY/EoxuYcs/L37NN9hng1fwCv8HORUgPMc7l7Oj4SFKCjHTPeDX3lEu2ZeR4lb/9Vbfgu4sX1OW4pLGHcfDc8ynFHXL4SQIkQAIkQAIk8CYCr9j4+KIoFwqvtwXFeSkBBSN+GASFhisgtDBx9lixMYrDYfeo47QAHW2s0HFyUSiONvYzM66NfnPsNlTZXvycje9jRSY2Uv1ndfzGbPJhtq8XZN2pmSDaDB+MheujbVzRlnSjOEMI4HPYmF0rMsHA6YwyEZ9hA9j74l+vjTawY/g2M5qIhPio3tF/VQQ7KcYm+N4L+yu2oV+xmRlYwMHlclNtOT+1wwWTjVPtEjfO++yg2/kw6VW+nteubRUbjGG/eXKI5TDkk8X16vjIAsAtsUQzkW++FvyQW2AqYwQnTQZ8cONax5HTZ20Grzk/e5532XMbmMxPEiABEiABEiCB1xO4ceMzig98Wz0K99cb0XpORYUXJ0VJLsbceWubCheR5woSEWdFCOqLsk2So0WJK2TKpx/eWNji7dOCEnrROuo3tqlRaOMLNQiZNlD9Rj8IMuxq8Cv5jI6hTdIt956etidXuIqeZD9ktc98X2XglxtY0e37m12jaATbscmsfMu54G2QY5F7peCdOqQLJS+1P9jaC37Ln8ofcOm5Wsmpc0MLb/MjxSdZ3LTIE7Wr9pVtsm49H3LyfdMc7Kl1S+xc/kw2iwyMvVpPGX8vKMjwN0xe5z7LD/mPOPn8DD6a7JAbs0xpFdosNtqVbG8+j0mABEiABEiABG4mcOPGRwuYvulJr/ncrN11yEWxu2WbGreRqIqZUExowTGKM5MW2tTFGJ68oG8szlWOFkT6uk75G6lEj7M3OJMYpsILetHFF3aVLbD32ga0YhuKulWRVfBC3ddk4pUovaZ+4T7s95/ZjuhPFY9CZmFTZgYm83WzJsTHitOWy9eM946E/nbjKkO/ySryIuTzns/eEN9Wj9vYLP0+Yp9tfCKGXLynsRXisbCt4pU3hb4rjgOXpNfa+PGBbuFTZLSxWvyLjqbX3bLf88ZdN57YmJnWwENjMscjyo7joDsWX3MMTvGEBEiABEiABEjgNQRu3PjYgu2LiFQ8vMaI1udqAZMLp1AQmcZDBUddKFZFEYqVsihRg2Mx1TcweCoRC1zxD9ysbfR5v7CL7QdpuX4lDtX9eeOTCrgmPjD1hV/jqO2bbGElbQsZw8xDT3zAXbv5eJmgYJPer+K33AB0v67EZ7V5gC9iQ+zfX3tCjMOnta36NZkhn9c+r/wcoZ/HZ793bQPQX70rdE9POFOeWjyu2ia6E6/Jb8B1n4FL0mvNVmOiSwky+tXFgfM/5Jk2n8ZRJTv0c/KCRouTBaecY1bMghyekAAJkAAJkAAJ3ELgxo1PE62LuRY61wvdWwwpF38IyEXAbsFRF0mxkFc/YqENhePzql1oJva4Jwa5wA3FEDrlzV5tsy/saltiETWkj6OpYMvftme+6Jr86Prbddu84Zr8YLbf/EGG+8x2oK/+3FAVj6JwDCyrPk7h6jD5lZuJnf5nSXKDqv+Koe9b9cuxqJ66BJ+9wGvHlhfY1Byxr9J9cOPTN1iVSYf8LjqKzZhj9sdHISFtKssW4SJyVHIzvYaHe71DsM+uhlit8jP6EseByTkUr24JD0iABEiABEiABA4QeMXG54DU1zSpigiTMxUGVdtQcORNhQmSfvj5kNWGIRbbk+6Fb6FdLvQqe7GB7JuFWAxBjRRbaCNy8jfnau+117Smgi0X24kddItPvvgzv87np/E6ldn09LR4xQrC8FTPVciBmfGIG9EYCxEVbD0WQ2eCHub4zA3kN+tFW1yjqn+wy7X1sbc2WW6MT+FzyQZP5HI+ON1+I3PEPt++i8mMc56qvdkn/ZIBttVtxG+fX12nHXh2tgHLesL4yP3beZBRNUjXrP25+IPKMU4L2YFzZme6Qhv7GR+McZgjdoAfLvKTBEiABEiABEjgLQQ+z8YH3yyXBQA2K+ZqVcykYgJPd0ahpMVXe1LVa2+REwv2XEjF4rzpr4qZVNjt2mIbM3kd6pZvtE23Y6TFo3vaVGTDVLDljQ82JXg6IG7m33jnfPcMrVj2v3mtMEEuXWebGGoP+xXXTmJmeyCGrrceigwrKrO81mKv6PT9nXCNhS9Wk0+mK7CadGmfnqMmXzehLndzHk5y5h+a37Xvho2P32jv2tbzzbGxuLVfa13+nFyPA+7nDZeCyTnlwoEG8quzlzrmDpJzYZ6wNpMu8QH2WaOcT+bnmIfmMTzPMQdycLKbF0iABEiABEiABPYIfKKNj5qqxZn/QWRXLMGbIwVHa9sLTZV3PvJ3fNymQkU8FX9LR4vT8HMNqVLtfkBeL/TMt/Oz/TA1/Dta2FnhhJ8hueHv+ABf9ysVnShg4dco1kZP9csXe3MhN1qnIxePhisWfGmTIF2LTUAuLFs7J1dsB/Okvp9Ke3BHkelzzm8weq9xkPuPOxbTISswhO1n/I2e1s7ZIXIKnyG/yCHcap85frPsuU2w79DGx/Nytu/YNtv32r/j03+hurg+bUY8kHZczRW5TTqfc9wauDyT4V7JRoz9Tsv1q/IzjgPTJbId32QjT0mABEiABEiABG4n8Ok2Pre7wB4k8CAEqqL4QUz//ZhpG/n0Rcbvx396SgIkQAIkQAJflwA3Pl83tvTssxHgxuezRWS2R2LEJy0zGF4hARIgARIggccnwI3P48eQHjwKAW58PnGkxuurfNjzicNE00iABEiABEjgDQS48XkDPHYlARIgARIgARIgARIgARJ4DALc+DxGnGglCZAACZAACZAACZAACZDAGwhw4/MGeOxKAiRAAiRAAiRAAiRAAiTwGAS48XmMONFKEiABEiABEiABEiABEiCBNxDgxqeE95ft8sc/bU8//aW82y/++WU7pzbPP/66/oOMveN9Dp5//NN2/tnJ+vnX7fTjb+7C+xw2vXfX8/OvzpeD/N/HvW8u9eWnX/Zz7yOs/PPL9vRDyrGP0Cs6ftvOPxwYg8mel59+3S5/Thd3T1XX6Yc/bac/vmzxLwXtdv64Bi0eyb44B7Rx88sr/H+DC7s5omzDPPUGdffrWswxd5yD4jrwWRm8jea7rANvM4m9SYAESGCXADc+JaJiUZzaFW3axuOHj9r4tMU06opF0GTw3S7cf8HLhUHB9m7Wf3ZBzfcPLl5XSHaL2lXHe1zXnNj98sGrEntvZyf5nDYUXuxnOZ43xHkOyOcfYPk3zZF7+nfHOehD14F7MqAsEiABEvj6BLjxKWN8pPAu2nzkgtcKjlCsfVzBzI1PmTR3uvgNiteV5d+0qNVClBufEZzpi408B7TzD3jiOyzatm2ZI79tz/5pdOj0GU+48fmMUaFNJEACJHBvAtz4lESxqflNXnmTV2DaazC9qND7/Xp78iKbnj9tuCYFmxQFv2yXn/WVIdzLr320b3JxTz67nmYcbImv3U3f/oYiSPucfxp6u04rVLq+oMtgJF9OP8Rv0cPGB5u90Me3N1ZZTy+YtODo9shmDj6v+I+gZXaxUEYxk3RkW4a4cRT88bFfMAoyr9lvPFo+Va9yNb2QdTB/kCOdYchVFKdzHkZWaDdyGPnTc6e5nvNnehUu+tdsCv0H4XQUY/T008v8qts13fkeGG7bJvlqvIVR/8KgtlVy6seXMfa7rGhjjp/0++PL9hzGsz6VDXna9Q8E0UY/ftCm6Y5PeDefK9u2NR0aU/Or291kFNeQX/3VwMwj2dH0/fFlu7RXXRvP5odx9zFWX2CrMsP9mlHS08wN4++X7fLTztN0aZ/kFNfG3KW+Kq8U1xvnIERIPoPdeFUzMoANIeaWE+FaiJ+LYc9lMA4WzCfJpup1zqA3zffb1uxHDFrslTP8GApz/sz2RT3gMyTwiARIgATem8AX2PiMPzx4Op3v9PM1YwLHgo2CbxSLfuG0MMkC4yb7Xoy5BdkWIcjVgsj1kUVmb0Foup3MUPQ0W2B/bLPyISyEYl/sp4vVsDEseH1RHffVpyFj9lGLtPFaYCwMhv2uaDaWgz8K2qFn9g8FjWuT+FcDLNvf7bFCRO872yxmfcPS+bs2ndN8DbnQbGls+/mB/Mm2iT+ZVZezjtGa3WxPt8/yDoVQaUuRTzNzi1Mv9JC/bhyYD2vd2JS5WGPTEzYaWZflkWuD+Ppc0+LP2dOcSLmEfiMPkH9+47zQ7zc1Sa7wateEz2Ajm49eBI8NaxvPsvlyPiG+81hHTphdrs80Dsyu4R+YjxzRucLHQOUibjMj88fpVa5OBvR6RlMSRT3tttoybEN+alxV74hx7j84w3YwHH0mI/SC2Auu7VKUDbu6nD4+XX7lMYw5xXGa4lOZI7Y4lpDTxxo4OXuNd/cb81viL350OXMcs33S3tkPnkNP5QCvkQAJkMB9CTz4xudluzydttPJ/bvLn123SbxP6go9Ttx54UQh5BaQafGa5USZR4PbFlKnJxfMxeLWJJe6UkEpbZLfuRAJbaZFsmlK/JKO6X4qDOb7M7fVoqmLLdhowdELDBGTbFPR7v9FXN1dFDFRJmKPAsN0+EUexUNgm+1r/SBjFJVZV4ijsHV9Kh8n/q1R1B1kwt8UW2EbfBo2avESZULM3meMmbU2m+H7vm7Y4lmoPbmwyr7m89IeYYG8gkfRX+3n9RdFZR6HZWzmsdpkg4VqT7kiY87pFnvHufL7ZXty84b4bflY+pzHcZIpdjj7K/+RZ4hBqSfIrcef2OpsRwTGp425Pr5abH7ZnvwvqRFbwSTrybmS5ammnCtDvzuaciXKnn0xXWFsJf2BEXSlNrjsPkve7v5qHo1+xjxHd2kD3rv27dsKufwkARIggfck8OAbH/+0B5ufezz10Uk6Fhq5GCna5AUvLLQujL6dHI/XB1yr9WHrgwVHWrWFyRdlhW2p0B3Cq7Z6VxdofJOMgsE4QL/3ZQiV127Gt8uqo9vsiiXtEgsDbHyu8he9w6auOsjOclurZEvvaAehf76J4tp/i4w2vjiodFScfR+T7YufI/kD9e3TbO9PAhCjUo7XXdk25KFo9aq0oEJuDB49Z7wfvmNxHAqoft/b1y/KwUq3+l/khPRSeZ2Ns0/0u3OR786jdmxyh+/I06rIrGR5fVUf0RfGVYtP9qv548f8b9s52Kz+InZN5/lnf80f57lteBzsCzZZG8u5pz/q67rQNyREPRWP8MWKyZvkVLqHEjkKspuc9OQr3Ld5ALHLGzTME+O+KvOxS+rH6WRrZFDJkGsYryIpziFVn9Ys+jRM6EfGs+X9xBT9Qx5Zz+BDtB+yvc1H7BNb5Qmlz1tI4ycJkAAJfAyBB9/4vO8Tn+uLXlEshsUChWMuWFA4ucnfLU5amLl7RR60RSYsYk1vsWhG+3Xx6oVfekWmtxUfUNSZ7XJt+OEXPC1aZnunBdmx0QXQ98kLa8E2f1Pu5AVEoXDKclvLWFCEvu1E+g9fj99XXcqx0lH55Pv4n9EwrStbgu+mC/GUPEj6Szletz/2Huv1nmvGFjkk1+1ab9OLKeSQf83Ly8ZxshWXc2F6RHfhp+Qq2NjGIBdp+XzKXbFJWcB3jXPkNud1XZh6fdrHsYKt8mljpPkVNjWWp/5ay4kwB/gvKJqdKqvpFtuF1RiDYlPq39wOPoW8s0D1uOjTlfH6KgIZc6hkK3JtzJk8n08iqdINFfiUviqn6cl+dt+lfR6P0U7MExpnKFhvEEeLYn5PT7R9/NFv5h/HhdwPueFyxucBBIZP9Q25O15NRXydrKAD+ZHZqHBv82H7JI5O367twRGekAAJkMCbCTz4xqf575/63ONpT5OZF0XlLJN7n6iLNnlxdguxj1QoJvyNdoxCouvJDZreWJj3Rb43LWxbPvHpnbrfuYAK38hiA4IiKfts4iKrdhGLp9oWdeAebKnsT0WH6I0cpHdgnuW2FpV+6B38p8ILTSw+832vq9JR+aR9UFw1ZkFu8AUGoFixoqTkkPSXcrzuyraZxRzTuc2wUo80132x7Yqe5Q9Jt77evhR7KMmxyH7m+9Yv+5HPxeY0/uoxG22s2lSyvL6qD9zrny3GGG/I31CgeqbjbxF13Y2D+YNr+WeAvE1dLzY+YFGN9cBYeQxbmyS9hryG/vC3knwOB3nOEq9bjr3Pc4He/FGd0I9PyMw5v3df+3lOGjtnx5JTlO1lwBq51mPcrsYxXPVBX/1UHWNzA/9jK8QDG1T1AfxyW5xH+3HV27xvH3q5T8Qx+O3u85AESIAE3oHAF9j4vAOVu2583A+smql+wSit94t8buCKGL3VFsi8AciLemsZF9Ih1i9q/ni0EHvdb/oJ9tvihcJm2LTy+1f5bV2xfdZb2Z+K30WBFBfyLPcaB/irfbAZwdXxubgvHBCHinXlk5fVjlMBYj5mWzz/spC0fr0AlXPYBk+87sQWTUJsK/uxCVsVWSrI2wvR/jPGzO4E3w/qzn6W40j9Hq9hzr5XTEsfjA/iU/mxlBWK5Bwb42ptmu44XvQ+9DZiVRs8vTz/6H4+yPI0/OwLNjg5//KcUfG0OME+ZeD9Ud7hPnxHEphN+odn61gL/8k+CBifGqc2x2AsmTx5FQ/XWvusJ9o531cdIj/bP9Tr0cQpyq5kqN3+j0+rfRjDVW41ZXO/bExx7sdJYD/axryN9qOV1/1a+6IeSOYnCZAACbwfAW58SrZ5UdRGccGKC5O0yIuIFQX+1YLy6UlYSAu5zsa2UPiCR4qb0L81ru1X3XFDUvrk5YlP+q0mihe/4EEmvkFs2leLYNVWXdOFdfhV2x9ttUXfbcjwtGzIqRbs63yH/b54i8Wx+ueLUdWDIgX8x/kqJs7vxjl/83kgf8AUsem62xMBxNEXOgq8fxPfWZmufm7f1LdvkCFb+PeCcjztaW20n/MHekwuZOBy/Fzw63IRa1e4djbQPezpuiafIKfl85CV86oqxjTmPifM5sbZ4lblfSUr6rN8dPYgj9WPpmfYqtxaH29LPgddyB4xHN/4+/6tvfmDnOnj2LWTuSDZMsXXdHY5KhcxqXhoDmc97rzHOumGm/4T81XXj/loxEmbq50538d5vq+9Yuy8YncsNjj701OvSoZcC+PfOPZrc3wmbs4EHFY5GfWbHp9jU0xjDCE72rxnX/anSdE+gzkk85MESIAE3o8ANz4l24OLHhbZXnxjEbFFFgvIj+1vUOCVCL8gNuWuD9q4RRv3sTi0xQZFhJjebOiLI5yp7Ze7vYgwe4Ku1sIWMNjSFkTr423oOm2Rb98qDx9XBYrJnux1xYkswLX9ccFWX3VhB1tXBMtt1Rd4gXe3odaFDUX3KXPqsTfdXV5TbDEtroGhWj8W/uZHvOcK+av549mpLU2OsEIxI/HLeTd0qy1DH3ye/46P+dVzo8lMMc355TYvXU95YHJM9vx3fA7oxjfgTQbiVcRJc2bwyHkl99Hf2apMR66dfzabrK3Kjblfycr6mopZtiluPCdbGiunp2yj/VWua4vcnGS29hVjs6N9CEsva+RMGGPGXPNZ44r7FY+ygA9xw99JS7qdaf3Q8i+MJZMFG7St+urbafxafJue+X7rV8Wu6+4HjqPMAZFBJUOuFfNFn2dFtpMr42TkcFddHGgOjLz1m340z20iq2h/6FPZHOYHtG6fKgfzi3yG/r4tj0mABEjgfQhw4/M+XFWqLcJxEXlPhd9AthQVxxbg+E32N7D10VT+HvLn0WJCe78JgXLD9E0soVISIAESIIFHJsCNz3tG7/dQuN6w8WHxcmOy/R7y50YkbP7VCdhTgfAkQK/5pzNfnQL9IwESIAESeB8C3PgUXMOj+P7Y3r8qwGMyYg4wB5gDzAHmwL1yoFiKeYkESIAE7k6AG5+7I6VAEiABEiABEiABEiABEiCBz0aAG5/PFhHaQwIkQAIkQAIkQAIkQAIkcHcC3PjcHSkFkgAJkAAJkAAJkAAJkAAJfDYC3Ph8tojQHhIgARIgARIgARIgARIggbsT4Mbn7kgpkARIgARIgARIgARIgARI4LMR+HQbn5fL03Y6P9+Z08t2OV+2Fy/1+bydTif593R53i5Pp+3pYi3k3nk7bsXzdjZZp1Pr9yLy1A+912WLDb692qD9vIHtT6dftjNsSrduPX25nLe3i/J+3WDB83m7PaTP29l3ujkmN9iHpi+X7el0UltF39N2eTGfLb7eJHT7Vp/P55yjLq+eLtvfn09uLOm94/Z7vxuHbXtu8p7aOKrywLdHTmu/yCfFNd687aSYfw4AABV7SURBVOxVeTWrGH7N95ZXXjU20zwk+VYxWmp91xsy9/Y8vzVfFqb5GN0wvlpM4py5kP9Rl18bqzaPyJhpf/20rTl5zN7fgVflczOjz3n3t+ndJd5jPB4x8oNieMSUj2mj88DtY7H1w9zmjw9Y3cYaxkzZPK811ZhKba7KG0r8HHjq9o/7q6M25q6urZI3WBcXc1tqc1WeM6TZ3ONjcyxq2/35ppjnmx0HeTkzHurwc218JGhVEr+NqSRzCOTOYL55csvyfGGY7lli9kQ113TAYaJoF1VGbvcqEqLTy36VlG7TbRvTYmAdUC+L99GRf0DeoSYWG1ErOeCY+XuHhL1zoyJHrxc8t8bB57D6MuTneyp7yguxMS4I94vrrf6s4zH8WreJd143Nud5KEr9pmfvkt8pRl7H7vhqfd34+6Zw9Euop5vtST4UY/Y93Lo9n82KHJP3MO5dZH7gePygGL4LplcJ1TF8ax3ScjD0adxCDbY2JhTyUzNbe5wsyffwhUJen/L5JFQuaA026s98XvdqVxuj0W9qJznj1kGbByc+fn45PBabbzZPFnJnNtE6ve9ss9tT/GK3hz/7RBsfTc6QDHfCOxccO4P55sltljcSR/1CDT/bAifz4LwjDxkQ9ygiso2w/dqnsoH/11r6ezIgb+3kBbzquNnqJxE3mfmi7VWy79ypyFFh5haEqPHWOMyxlty1mIz8xjfFjpVTnG26X1xv9ccZlQ6zjel2cfq6sbke+4WKj770LvmdY3Tb+PL59tE4Jn2vmEOnXC/G7KTnDhduz2dTerjYuoORdxXxgePxg2J4VzxvEqZj+Ka6rGSkMTqypLf8XbYrZad5psrj3fFb+Xkwr5rs5bpby4hrgbbJXxxO80cZx2a3rr1RJhpXftk94aRPoSbewqte0yH5kT8/z8ZnlZhyfTwizN8aVMkhCeCTob+GdtrOf6+vM8VHgSk5q8HlkqT1jRPBnFzNBiTT83lsOo4tSjYQut0uAZMd+XFsk/90ufRX757OZ3l9q/sLow5lbbLjfHGv8EGA+t7lBzbpnpscNEYjrt4sYdR9N3YhJir3/Bzla0ziNS9XLM75FBo0f8H6eTs7e9trh/01OLj+6s9o4/Q4OvhqSrz+lAN4VdPHoLkVxwaYOaN3WfhX5XSDg7z3+e3Hm5M+HZZxba2yHXjd0CSIfORey4vzuee3+OzjNGmdLwQ7ni7bpb/CN9qGNk1n15HGhP+mL/vhcqvMd2mPuUHlTrEUGVEnYuCsfRMPfcVpjEX1NebLHAN9ETj7NRbvlOPC78bxFfgMb/PROlbIraft8hznfRcay7+Dbdrb0DL+ELdhjdjR8yTyk1bFuJ74+XySb5JbERhZ7s1zsEPyGvNot2vYG+P+tF0u7VW86Nd1+5wsdVDzMOhC7rp5NY3vIAVjKATI/A9y0Qvykb/Qg9jjuh/DLeRP/VX3NocMdZF1uxfGWxFDWLL8hE+IRYix9lrbM6TmPB82a5vr95GPyb8sxHIOawlqCc8g6/H3miVyf5JrzMsYDh/3np6sZHsJwnLSo3mSbe39FnNNLav3koPW5la5UQJiE6/q+HT5nG7LacvHgvVouvIbOvE5eujRql9u95jnr9j4+IGzE5QbmJQJJpOMn3hsknNJXQ0EkeUml1m2+jCSNQU5T25mx8gvY9AvZHlXHDdZeYGZeySbWgPpGxcmnYRGHPTcT+RYAGK/WV++smAthSd++qnwe8GqoxJz2qLj7LGFYcSjmDxFLvw0/k6GxrwtckOuXhvnKLCHntnHTKGfm43ej37vlgMsgk5QjmE54WX9gYcaIHKWY0OZdbUT88zCznuHK07Cp1BA1O3FRi8z+1XkB2I74tZkJ39qddPVzBqyx8bGcs9xhK6xwCibYM8uz2Lhlz7IT+PtGdpYCoXZYnwN28x+N/9NEKoLUxwiX3DyPus1jMkmVPuMNlFGpbZfm/S3OwXn3kEPcs7Dhs7D5Pp5AQV/T8PDbRCr7GezJV0rxmce1zM/y4GeeyrT2444zNdgG+Lvv7TIcrGWuHWiYLBvXwpGO01xVBnDtqLHfEnYjT55zM4dijyxcTJycWYgtnXWTWqKoVzSnwXuuVLFdTZoXEk8VGS1CRv+guE129FG7TLf/Jg3/7vd5pvPm2kcoE3vBLmjBpvG2+SfMuwiBgnLDeenv4fjZnfZuTUYcR7joK35fg4qageRbb6sZC/iOo8BGIrPJveKT10uxrJuxEdsMWYKGdK3uA7VMozdGHbX++EUH70z4riO1zw+utSHP7hx4zMGAr4RWCfpLWyqpKyuIUlGsCWAKZlzss4BzBOc6urJ2JO1+bCwIyRllrfju/R130SFzQT6JpssySfewY6qaAOz6wMIWvtnkqvXbfCCt7SJk868eOSBVbPKMZviGnQlO5pxNsB7DN21YW5ccMSnxcSg/rr/H23nulSHY8LxdxOT4Ku1y/qLNll2ZBjjkNuKlqBjkffebH9sffu80HI6FBXaONpUbAZas2CHtUmLG/IMsfWmLI+TXG1nfnZbIyfIirwWY7PLsF5J3zQPyX2My2xHk1HkeSrO8rhRzSmf4MS1z2QrdINvpScyqYTXLKuWOeZok/MF1/Wzlh/sMr/CvIC5FPE63AaxKuZZGY9X7jeDw5idc6g1iZyL+Fe2ptiJ/3m8hDaWawiuQVXd8OGIfdYxfXQfKltT29Vpj6EwG+t93T7bWvuXc0zsRA40wSE+0JTGUtkGbYtPaQ+mxf00ntGiM2wXhOMVGQsdnaEITX7Itcgp6ByGyJsOOn5iezQJnwtbtE09Xn3/ZkMeq+O+jYf0FC7nu5yn3F7WcRC+iGvJBH3ks9mUa6DRQPunzVkeF6v4XmXZdLR4XMkLzHPZvqDvSkwWTIZ3j3t048ZnJN4ocNZBP45F5caEr64h2OPbrCrJc7LKuZ/gpslGB3TX7wNuSTqNI5Oh11e27hGwiaQ/AvdJnGxKonSwY/M0+lU8difOJFsot1cBAjO5WrzqZp2FGewZ3xDlAkoXl2FvVx0GoxUWHrqPyRS/JkVj4LvEhW4Vo+uco317C3BvvTiweAcjtanEDbyDryYq52HRJsjApNd1eT5HWKxtXTjXL8fcjMzK/Owu1q+fzOO3dfD+dNXXDwpmIql41U0FqY4+1yE+7ptH367PH92KmFuTHyHnK96x/6yr6mOtwm/06watD3J+Jb6T7U2S8GxjvhjPoumGGE361dRSb+nFIlaBsevoc+E1baT/8DuOvUVcvE5nSi/K+jqANVV9inlVME3s6jHmc6mQ0exJPg0TzZ/JvtEiHrlY9DETW+yemU8y9vocturlfWttKm7teozL1dwSFsV6tozhyrbBIsbR2q+Yu5wUO3Px6tQt7wfZVcwjjzpvIkvV1bggR50h08Y93gP/koM0bfaMMZV7I67Tl78p3rUf0ddJ9iKuS7YQ0PpdyU/tP/sU5LpYQ6x8hviFO3rS+l0ZX4hVNE85jBhUeWG6VnYVpjzapRs3PpY8fQIcG5C3OR4Hl8paBSQmcJXkIakwGEOCZH0pGfwgkOCPCbAXQcZAkyrLew0NlTE2G8mmJlLsgi02mNLgqHi8ZuMjcgIzi0ooqMxmY6GDKbPQ8z74gg/wBZ9jgpj88DFJE90yXyx2PkY5fjgfE8EidkHWos3u5SKm1ifwDr5ag6y/aBNkSLr48enjEOMGBvhUFnGc7bpWNjAZbpGc4prGl8Qq+SrjecpF70+pfLqY5wU0yPLFRsxxpjeyzXE8wtO+zfd+iJ/I+Yp31tMsVl0hRrA1f/ZBB0+vfCbm0AMRmVGXlOIXC6IbYjTpVw1LvWbAbqwC4261zaVWvL2qjY+Nj0nTUcUS8/coGDUfMffpdb2GNlluk10wTeymMSZuO3tT+04lcdi3r/ecDtAX+TM1OHBBY4vxca2D802aFYzkeoyL2OjHo7GN82CKQTHvXrNM75leNz47F5GHHMif6vtsZ9S4vC+ywa9i4nn4Yy9fr4f1MdvsGGrckb9eTjsuZPkmLf+cLH9Lj1MseoNo+7X8X25SFnG97k+bRuIXe90kO1j297FJ467L8G36xXHQZIe4jFv9Z9h6ntk9sScwrvKiN95u/02WzohPfHjjxqd5oqB0clgl+K0eVwldXWty4+Cpkjwn2yrYI2miTN1gmG+rRSK4uLI1NNo9iXYnm64uppjcdCBOg3s1sK5YNDNrjeMEE+2FsMxCz/sA3BnMXUrYYOWiIetovZIeMdf/QoKqD7Qd+NzJA12k3cLVHfayIz9/J+RxNQln/UUbkeEmtSAz8DnCYm2rt3v3OMU72mT56mwWecnXOheLeO8ZUzBrXQK3pBsiQ5s0ByH3xnyCXvFz8kN0YexWvPValOtjV/WJOg+fTX5HvpPtlWCTMb68iTKqLv3apF/vXNW76BNiJW3AuGuLr5S9sk23LeV4nie71pB/Po69RbTLxmwV/zC9JA55jKl0r28Rl+CHb7+yb1wPR2bPm2oEscXm0zw/BGXtJI+T2vbcrsfP5Mm5+5JGLydZIYaTIQcu2JjFU9LAvO5e2zXaLu8HW6uYx/ljP2+Gzn6EOFlCLm2RDjlOXYoeNFkhsdP9Kc64H/0QG6ac2dF9bQ6YZHm989yCu/IZYuDuyHX0rWKTax7X1w5bvCpcGoPqnnFyG3Bs8uUz+7lgMlvyeFdesfF5Dydj4qqG6lqb43wxm4oWM00GsJvA5oGQJrM8oEKy5ramJCTFos2E6nq7aGceqNo3J7r6igF0v41P/dqD2oDJqZwohd2VV91S/DqiwLzwI9yvOBZ8gq5FPoUNQbdmPgiy5ttHrwizPMHkAkd8HTEV2ca1xz/wUO1ZdoyP53OExapN9nSnXbIz2qR9Y2GHn3MYE3ccF9Dv/cG1nc8yhmY/YpLsVYmqaxT02e4Vg2jj5IfYgzhXMrKeZo3KBLMcc7W36ncrmx3bV+ICvyhj1UWul7Ep5gEvJOjCDdXZY2Vywau38l+sHG6DWJkUi9/5PL8WXMbF22t94x+Vthzoa1eMtWotmJr9mBtK3aFNlWsYd+bjIftA03+abBlPFgsY5ptdPXb9zO4cv9g953vtX64d8niMc5NpkJi59czHMBpxw5mLYYiLE+H1yHHKPde0XqtzbeR09r6Rk/DouWeNDvAPHK/aWtnQjdl9etJaBl29q8rtOVLZUOZzFzDNq3on55Vvb7Uo1o10a5zWPkfWMQ7oW+Yjbso6MD94ULlj7ezNlwe1fdLc5+Cy/2Pe+CQbn0VCC3g36dgGpS9qGAj49qTFwPr4Vy5ikkkj+bWbfaBc3fhgQfDJlBM1DbwrubBOzJyAWYed+4HWfR22lYNlNblesRPfjnnWIrt9W2ALmfriJ2T1Qb496IvdzEblzP1GPPKkjbhioM8yURB2tc237PeUT4WeFZMsa9Vu77rJAcPWXHnAt2H34DG4dv/EF89w9iXmgsqI/f3Yyv1z/l1xrOCqrVXG8CPrWPvecgj9JM983ovwKgeu2Gi3MmuMx57nFh/obt20T/v2GTEq2BQMpJ+zW3VBBuKMGBYy87xU+V3k06RnH8s8VtIXAlUMsn99zhhJlubZK4aU42vOnyDhSKzAZ1ojwB1xaPF11/L4EjnuvhhiMXO52u2T/i7W7Ua4ZmO6sxrrzLCjyvE0jpvcxK7na5dtdrpcxDo5muDXfcPHI/Z1b8dB5ibnY30aDddHOX/1HHZV/YqxY3rHOJ4Z7OsxBm7NizGsbEnXMg8JV/tZxpEbGi/vX477bDvWO/XP7juZU3zTeFYrM7ccc8jFXJzbNynZVj3veeVxlGMIDVq/wQRX58+sDzb6vtnOfD5LbVfqfPByY7/WfuRXvOfPslzEJvTNeZLPvcB23O5nyNLntrGG+GVRTYXY7eeMbMMDn3+ajY9O3n7wG9W+cK0fe/eJvk1QLVCSAD5hdbCMYqoePD0Rp/5YtMwGPxGKmVneTkZkn5q8atBbIueFUDYW6GOyYLuwKLK4M7opkTGpmN/4WypOfpcr9rRBZ32cHh340cdxTWXD/k7OMRJ1ISYVb73mTJsKApHt5ApHZ2fXXR1YvyC/anfomtoa4pj79dg3Pm1cZP9cbMwoiYXzJ+ZC7j8Kpm6H6zsXsdnAfJ59gt2pneOvZjs/JIeGr5jYVxPwyCE/1pO+4jTkbPV3fAJ73eirLjc/9TbumvOtzq3BSPJd2qO/cQgJptfi2FAZ1bUex2ouKTiES1N+x3ypY5BjN/8mv8MxmvQjP8GnWRttEvt7HHQeaTkTYgW5Z/21xMrIy4Se03bebZP6oTjwG6YOdWWry1WzrcetjT/zR9NgHeuYJsVbEOdnt2EfX1Z18wRnYpL/js+ufUFan28xbnFXxxvYFVzQ0NkU8xt5ZuzELsizzj0P3PXKfq/L8qnxh74wN8ivljfdmBtFj4thkFefjDFgOVrkS24De7zEbFtuk++HHKnGDr5IDg01PsjJ+e/4xPvSLvS3L4rSteaH+AiO3jG9ufPzPb4D8sF4ljJ32lQ5BButlhl1l9c9jhvvws3RwB/1/FSby35H2pjMxjLGP/nbfRjzojdnHK/Go8qLOkavRz/6PBuf8tvNR8GryfNVk+RRovCudtoiWk5Y76r4Wwm3ifT34/C3Ak29jUAxvqRQemv+FXIn4EfaTJ30ghSbZeG1LgAXoniZBL4GgXJzqOvJW4fz1wD0AF7InHjbBv8BvOomfqKNDxa/R4TNjU/PqK968Ibi6DGRcOPzmHF7UKun8dXmVPft/WvdmuQWgo60KbqVT6BCuzv5EGTyhAQ+P4H2hUD4IrhthhZfEHx+b35/Fk7x+2IIPtfGB48aH+5rAd346OPhT75xs0Uej7LrzzsUHF9moNgGoL/K92Uc23HE+/3Z88GPP7xOMn8+3LSyE6Ejt+WJRH7tIZ9/UzA+z8arI3dbeI9sao60CbCHzaG4C23shAVfReXxr3Ed3Ymh3/T7451uvP3tCfwO5qxPt/H59lGnBSRAAiRAAiRAAiRAAiRAAl+NADc+Xy2i9IcESIAESIAESIAESIAESGAicNJXnf7Ptv31v2zbX//vdjp9v9WvP+VXR77bTqf/tm3//A/b9s9/sT7/6kDfv9lO3/3v7XT663b67r/e0O/77fTdv9lO3//jdvrDvz2gB/b+YTt99z+0zx/+83Y6/cftdGq24/7q819sp9N/2E5/80/b6ft/v51Of3egT5P1L1Vf6/P9f99Op/90UN/KDl7fjxUZkRFzgDnAHPiaOfDvpHA5/eu/3f7n//pJ1+H/90967fQHOfeVzXUGf9vbX2/H74Q9Ux6TwFci8P8B5eXzuJtZ6BYAAAAASUVORK5CYII=" + } + }, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "https://realpython.com/pandas-dataframe/#working-with-time-series\n", + "• (outfile[\"Start_datetime\"] - outfile[\"Start_datetime_first\"]).apply(lambda x: x.total_seconds() / 60.0 / 60 /24)\n", + "![image.png](attachment:image.png)\n", + "\n", + "temp_c = [ 8.0, 7.1, 6.8, 6.4, 6.0, 5.4, 4.8, 5.0,\n", + "... 9.1, 12.8, 15.3, 19.1, 21.2, 22.1, 22.4, 23.1,\n", + "... 21.0, 17.9, 15.5, 14.4, 11.9, 11.0, 10.2, 9.1]\n", + "Now you have the variable temp_c, which refers to the list of temperature values.\n", + "\n", + "The next step is to create a sequence of dates and times. Pandas provides a very convenient function, date_range(), for this purpose:\n", + "\n", + ">>> dt = pd.date_range(start='2019-10-27 00:00:00.0', periods=24,\n", + "... freq='H')\n", + ">>> dt\n", + "DatetimeIndex(['2019-10-27 00:00:00', '2019-10-27 01:00:00',\n", + " '2019-10-27 02:00:00', '2019-10-27 03:00:00',\n", + " '2019-10-27 04:00:00', '2019-10-27 05:00:00',\n", + " '2019-10-27 06:00:00', '2019-10-27 07:00:00',\n", + " '2019-10-27 08:00:00', '2019-10-27 09:00:00',\n", + " '2019-10-27 10:00:00', '2019-10-27 11:00:00',\n", + " '2019-10-27 12:00:00', '2019-10-27 13:00:00',\n", + " '2019-10-27 14:00:00', '2019-10-27 15:00:00',\n", + " '2019-10-27 16:00:00', '2019-10-27 17:00:00',\n", + " '2019-10-27 18:00:00', '2019-10-27 19:00:00',\n", + " '2019-10-27 20:00:00', '2019-10-27 21:00:00',\n", + " '2019-10-27 22:00:00', '2019-10-27 23:00:00'],\n", + " dtype='datetime64[ns]', freq='H')\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Keeping Conda up to date and installing new packages\n", + "\n", + "Newer versions of packages are released frequently. You can update your packages (libraries), with this command::\n", + "```bash\n", + "\n", + " conda update -n base conda\n", + " conda update --all\n", + "```\n", + "\n", + "### Installing a new package in your virtual environment\n", + "\n", + "You will come across people recommending different packages in Python for all sorts of interesting applications. For example, the library `seaborn` is often recommended for visualization. But you might not have it installed yet. \n", + "\n", + "This is how you can install the package called `seaborn` in your virtual environment called ``myenv``:\n", + "```bash\n", + " conda activate myenv <--- change the last word in the command to the name of your actual environment\n", + " pip install seaboard\n", + "```\n", + "\n", + "Or in one line:\n", + "```bash\n", + " conda install -n myenv seaborn\n", + "```\n", + "\n", + "\n", + "### Updating an existing package\n", + "\n", + "Similar to the above, you can update a package to the latest version. Just change ``install`` to ``update`` instead.\n", + "Or in one line:\n", + "```bash\n", + " conda update -n myenv seaborn\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# IGNORE this. Execute this cell to load the notebook's style sheet.\n", + "from IPython.core.display import HTML\n", + "css_file = './images/style.css'\n", + "HTML(open(css_file, \"r\").read())" + ] + } + ], + "metadata": { + "hide_input": false, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.9" + }, + "toc": { + "base_numbering": "1", + "nav_menu": {}, + "number_sections": true, + "sideBar": true, + "skip_h1_title": true, + "title_cell": "Table of Contents", + "title_sidebar": "Contents", + "toc_cell": true, + "toc_position": { + "height": "calc(100% - 180px)", + "left": "10px", + "top": "150px", + "width": "349px" + }, + "toc_section_display": true, + "toc_window_display": true + }, + "varInspector": { + "cols": { + "lenName": 16, + "lenType": 16, + "lenVar": 40 + }, + "kernels_config": { + "python": { + "delete_cmd_postfix": "", + "delete_cmd_prefix": "del ", + "library": "var_list.py", + "varRefreshCmd": "print(var_dic_list())" + }, + "r": { + "delete_cmd_postfix": ") ", + "delete_cmd_prefix": "rm(", + "library": "var_list.r", + "varRefreshCmd": "cat(var_dic_list()) " + } + }, + "types_to_exclude": [ + "module", + "function", + "builtin_function_or_method", + "instance", + "_Feature" + ], + "window_display": false + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} From f24626a4efdd7d8af4ab613e2fa13d14969c39aa Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Sun, 25 Oct 2020 18:28:05 +0100 Subject: [PATCH 097/134] Updates to module 13 --- Module-08-interactive.ipynb | 4 +- Module-09-interactive.ipynb | 4 +- Module-10-interactive.ipynb | 4 +- Module-13-interactive.ipynb | 634 ++++++++++++++++++++++++++++++++---- TODO-module.ipynb | 47 +-- 5 files changed, 610 insertions(+), 83 deletions(-) diff --git a/Module-08-interactive.ipynb b/Module-08-interactive.ipynb index 30ab927..ca12e5b 100644 --- a/Module-08-interactive.ipynb +++ b/Module-08-interactive.ipynb @@ -7,7 +7,7 @@ }, "source": [ "

    Table of Contents

    \n", - "" + "" ] }, { @@ -532,7 +532,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.3" + "version": "3.8.1" }, "toc": { "base_numbering": 1, diff --git a/Module-09-interactive.ipynb b/Module-09-interactive.ipynb index 39f3a05..e05f894 100644 --- a/Module-09-interactive.ipynb +++ b/Module-09-interactive.ipynb @@ -7,7 +7,7 @@ }, "source": [ "

    Table of Contents

    \n", - "" + "
    " ] }, { @@ -1962,7 +1962,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.3" + "version": "3.8.1" }, "toc": { "base_numbering": 1, diff --git a/Module-10-interactive.ipynb b/Module-10-interactive.ipynb index a6696dc..cd704c4 100644 --- a/Module-10-interactive.ipynb +++ b/Module-10-interactive.ipynb @@ -7,7 +7,7 @@ }, "source": [ "

    Table of Contents

    \n", - "" + "" ] }, { @@ -2117,7 +2117,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.3" + "version": "3.8.1" }, "toc": { "base_numbering": 1, diff --git a/Module-13-interactive.ipynb b/Module-13-interactive.ipynb index b2ca9a2..de9691e 100644 --- a/Module-13-interactive.ipynb +++ b/Module-13-interactive.ipynb @@ -7,7 +7,7 @@ }, "source": [ "

    Table of Contents

    \n", - "" + "" ] }, { @@ -44,44 +44,473 @@ "\n", "* Becoming more comfortable with Pandas data processing\n", "* Basic plotting with Pandas\n", - "* Merging and filtering data\n", - "* Learning about tuples??\n", "\n", "**Requirements before starting**\n", "\n", - "* Have your Python installation working as for module 11, and also the Pandas library installed." + "* Have your Python installation working as you had for modules 11 and 12, and also the Pandas library installed." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## Introduction to this module\n", + "## A general work flow for any project where you deal with data\n", "\n", + "*** After years of experience, and working with data you will find your own approach. ***\n", "\n", - "In the [prior module](https://yint.org/pybasic12) you saw a number of advantages of Pandas, including\n", + "Here is my 6-step approach (not linear, but iterative): **Define**, **Get**, **Explore**, **Clean**, **Manipulate**, **Communicate**\n", "\n", - "* Quickly being able to make calculations with columns:\n", + "1. **Define**/clarify the *objective*. Write down exactly what you need to deliver to have the project/assignment considered as completed.\n", "\n", - " ``df[\"TemperatureC\"] = (df[\"TemperatureF\"] - 32) * 5 / 9``\n", + " Then your next steps become clear.\n", + " \n", + "2. Look for and **get** your data (or it will be given to you by a colleague). Since you have your objective clarified, it is clearer now which data, and how much data you need.\n", "\n", - "* And generating basic summaries about your data:\n", + "3. Then start looking at the data. Are the data what we expect? This is the **explore** step. Use plots and table summaries.\n", "\n", - " * ``df[\"TemperatureC\"].max()``\n", - " \n", - " \n", - "We are going to build on those, particularly for plotting.\n" + "4. **Clean** up your data. This step and the prior step are iterative. As you explore your data you notice problems, bad data, you ask questions, you gain a bit of insight into the data. You clean, and re-explore, but always with the goal(s) in mind. Or perhaps you realize already this isn't the right data to reach your objective. You need other data, so you iterate.\n", + "\n", + "5. Modifying, making calculations from, and **manipulate** the data. This step is also called modeling, if you are building models, but sometimes you are simply summarizing your data to get the objective solved.\n", + "\n", + "6. From the data models and summaries and plots you start extracting the insights and conclusions you were looking for. Again, you can go back to any of the prior steps if you realize you need that to better achieve your goal(s). You **communicate** clear visualizations to your colleagues, with crisp, short text explanations that meet the objectives.\n", + "\n", + "___\n", + "\n", + "The above work flow (also called a '*pipeline*') is not new or unique to this course. Other people have written about similar approaches:\n", + "\n", + "* Garrett Grolemund and Hadley Wickham in their book on R for Data Science have this diagram (from this part of their book). It matches the above, with slightly different names for the steps. It misses, in my opinion, the most important step of ***defining your goal*** first.\n", + "\n", + "\n", + "___\n", + "* Hilary Mason and Chris Wiggins in their article on A Taxonomy of Data Science describe their 5 steps in detail:\n", + " 1. **Obtain**: pointing and clicking does not scale. In other words, pointing and clicking in Excel, Minitab, or similar software is OK for small data/quick analysis, but does not scale to large data, nor repeated data analysis.\n", + " 2. **Scrub**: the world is a messy place\n", + " 3. **Explore**: you can see a lot by looking\n", + " 4. **Models**: always bad, sometimes ugly\n", + " 5. **Interpret**: \"the purpose of computing is insight, not numbers.\"\n", + " \n", + " You can read their article, as well as this view on it, which is bit more lighthearted.\n", + " \n", + "___\n", + "\n", + "What has been your approach so far?" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Start my loading the Pandas library with this command:\n", + "## Box plots: using the Ammonia case study\n", "\n", - "```python\n", + "We will implement the 6-step workflow suggested above.\n", + "\n", + "\n", + "### Defining the problem (step 1)\n", + "Our (1) **objective** is to \n", + "\n", + ">Describe what time-based trends we see in the ammonia concentration of a wastewater stream. We have a single measurement, taken every six hours. \n", + "\n", + "We will first see how we can summarize the data.\n", + "\n", + "### Getting the data (step 2)\n", + "\n", + "The next step is to (2) **get** the data. We have a data file from [this website](https://openmv.net/info/ammonia) where there is 1 column of numbers and several rows of ammonia measurements.\n", + "\n", + "### Overview of remaining steps\n", + "\n", + "Step 3 and 4 of exploring the data are often iterative and can happen interchangeably. We will (3) **explore** the data and see if our knowledge that ammonia concentrations should be in the range of 15 to 50 mmol/L is true. We might have to sometimes (4) **clean** up the data if there are problems.\n", + "\n", + "We will also summarize the data by doing various calculations, also called (5) **manipulations**, and we will (6) **communicate** what we see with plots." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's get started. There are 3 ways to **get** the data:\n", + "1. Download the file to your computer\n", + "2. Read the file directly from the website (no proxy server)\n", + "3. Read the file directly from the website (you are behind a proxy server)" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "ename": "FileNotFoundError", + "evalue": "[Errno 2] No such file or directory: 'C:\\\\location\\\\of\\\\file\\\\ammonia.csv'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mFileNotFoundError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;31m# If the file is on your computer:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0mdata_file\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34mr'C:\\location\\of\\file\\ammonia.csv'\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 7\u001b[0;31m \u001b[0mammonia\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mread_csv\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata_file\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m~/.local/lib/python3.8/site-packages/pandas/io/parsers.py\u001b[0m in \u001b[0;36mread_csv\u001b[0;34m(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, squeeze, prefix, mangle_dupe_cols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, skipfooter, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, dayfirst, cache_dates, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, doublequote, escapechar, comment, encoding, dialect, error_bad_lines, warn_bad_lines, delim_whitespace, low_memory, memory_map, float_precision)\u001b[0m\n\u001b[1;32m 684\u001b[0m )\n\u001b[1;32m 685\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 686\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0m_read\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilepath_or_buffer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 687\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 688\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/.local/lib/python3.8/site-packages/pandas/io/parsers.py\u001b[0m in \u001b[0;36m_read\u001b[0;34m(filepath_or_buffer, kwds)\u001b[0m\n\u001b[1;32m 450\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 451\u001b[0m \u001b[0;31m# Create the parser.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 452\u001b[0;31m \u001b[0mparser\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mTextFileReader\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfp_or_buf\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 453\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 454\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mchunksize\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0miterator\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/.local/lib/python3.8/site-packages/pandas/io/parsers.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, f, engine, **kwds)\u001b[0m\n\u001b[1;32m 944\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0moptions\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"has_index_names\"\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mkwds\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"has_index_names\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 945\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 946\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_make_engine\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mengine\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 947\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 948\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mclose\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/.local/lib/python3.8/site-packages/pandas/io/parsers.py\u001b[0m in \u001b[0;36m_make_engine\u001b[0;34m(self, engine)\u001b[0m\n\u001b[1;32m 1176\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_make_engine\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mengine\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"c\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1177\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mengine\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m\"c\"\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1178\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mCParserWrapper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mf\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0moptions\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1179\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1180\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mengine\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m\"python\"\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/.local/lib/python3.8/site-packages/pandas/io/parsers.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, src, **kwds)\u001b[0m\n\u001b[1;32m 2006\u001b[0m \u001b[0mkwds\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"usecols\"\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0musecols\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2007\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2008\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_reader\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mparsers\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mTextReader\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msrc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2009\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0munnamed_cols\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_reader\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0munnamed_cols\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2010\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32mpandas/_libs/parsers.pyx\u001b[0m in \u001b[0;36mpandas._libs.parsers.TextReader.__cinit__\u001b[0;34m()\u001b[0m\n", + "\u001b[0;32mpandas/_libs/parsers.pyx\u001b[0m in \u001b[0;36mpandas._libs.parsers.TextReader._setup_parser_source\u001b[0;34m()\u001b[0m\n", + "\u001b[0;31mFileNotFoundError\u001b[0m: [Errno 2] No such file or directory: 'C:\\\\location\\\\of\\\\file\\\\ammonia.csv'" + ] + } + ], + "source": [ + "# Loading the data from a local file\n", + "import os\n", "import pandas as pd\n", - "```" + "\n", + "# If the file is on your computer:\n", + "data_file = r'C:\\location\\of\\file\\ammonia.csv'\n", + "ammonia = pd.read_csv(data_file)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Read the CSV file directly from a web server:\n", + "import pandas as pd\n", + "ammonia = pd.read_csv('http://openmv.net/file/ammonia.csv')\n", + "\n", + "# If you are on a work computer behind a proxy server, you\n", + "# have to take a few more steps. Uncomment these 6 lines of code.\n", + "#\n", + "# import io\n", + "# import requests\n", + "# proxyDict = {\"http\" : \"http://replace.with.proxy.address:port\"}\n", + "# url = \"http://openmv.net/file/ammonia.csv\"\n", + "# s = requests.get(url, proxies=proxyDict).content\n", + "# web_dataset = io.StringIO(s.decode('utf-8'))\n", + "# ammonia = pd.read_csv(web_dataset)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Show only the first few lines of the data table (by default it will show 5 lines)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Print the last 10 rows of the data to the screen:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Exploration (step 3)\n", + "\n", + "Once we have opened the data we check with the ``.head(...)`` command if our data are within the expected range. At least the first few values. Similar for the ``.tail(...)`` values.\n", + "\n", + "Those two commands are always good to check first.\n", + "\n", + "Now we are ready to move on, to explore further with the ``.describe(...)`` command." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Run this single line of code, and answer the questions below\n", + "ammonia.describe()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Check your knowledge\n", + "\n", + "1. There are \\_\\_\\_\\_\\_\\_ rows of data. Measured at 6 hours apart, this represents \\_\\_\\_\\_\\_\\_ days of sensor readings.\n", + "2. We expected ammonia concentrations to typically be in the range of 15 to 50 mmol/L. Is that the case from the description?\n", + "3. What is the average ammonia concentration?\n", + "4. Sort the ammonia values from low to how, and store the result in a new variable called ``ammonia_sorted``.\n", + "\n", + "4. What does the 25th percentile mean? Below the 25th percentile value we will find \\_\\_\\_\\_% of the values, and above the 25th percentile we find \\_\\_\\_\\_% of the values. In this case that means the 25th percentile will be close to value of the 360th entry in the sorted vector of data. Try it:\n", + "\n", + " ``ammonia_sorted[358:362]``\n", + "\n", + "5. What does the 75th percentile mean? Below the 75th percentile value we will find \\_\\_\\_\\_% of the values, and above the 75th percentile we find \\_\\_\\_\\_% of the values. In this case that means the 75th percentile will be close to value of the 1080th entry in the sorted vector of data. Try it:\n", + "\n", + " ``ammonia_sorted[1078:1082]``\n", + "\n", + "6. So therefore: between the 25th percentile and the 75th percentile, we will find \\_\\_\\_\\_% of the values in our vector. \n", + "\n", + "7. Given this knowledge, does this match with the expectation we have that our Ammonia concentration values should lie between 15 to 50 mmol/L?\n", + "\n", + "And there is the key reason why you are given the 25th and 75th percentile values. Half of the data in the sorted data vector lie between these two values. 25% of the data lie below the 25th percentile, and the other 25% lie above the 75th percentile, and the bulk of the data lie between these two values." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Add your code here to answer the above questions.\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Introducing the box plot\n", + "\n", + "We have looked at the extremes with ``.head()`` and ``.tail()``, and we have learned about the mean and the median. \n", + "\n", + "What about the **typical** values? What do we even mean by _typical_ or _usual_ or _common_ values? Could we use the 25th and 75th percentiles to help guide us?\n", + "\n", + "One way to get a feel for that is to plot these numbers: 25th, 50th and 75th percentiles. Let's see how, by using a **boxplot**." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "ammonia.boxplot()\n", + "ammonia.describe()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In general, it is worth taking a look at the documentation for the function you are using here. This is available on the Pandas website:\n", + "\n", + "https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.boxplot.html\n", + "\n", + "which you can quickly find by searching for `pandas boxplot`, and the first link as result will likely be the one above." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The boxplot gives you an idea of the distribution, the spread, of the data.\n", + "\n", + "The key point is the orange center line, the line that splits the centre square (actually it is a rectangle, but it looks squarish). That horizontal line is the median.\n", + "\n", + "It is surprising to see that middle chunk, that middle 50% of the sorted data values fall in such a narrow range of the rectangle.\n", + "![alt=\"Boxplot for the percentiles](images/summarizing-data/percentiles-ammonia.png)\n", + "\n", + " The bottom 25% of the data falls below the box, and the top 25% of the data falls above the box. That is indicated to some extent by the whiskers, the lines leaving the middle square/rectangle shape. The whiskers tell how much spread there is in our data. We we see 2 single circles below the bottom whisker. These are likely *outliers*, data which are unusual, given the context of the rest of the data. More about *outliers* later.\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now let us try getting a histogram of these same data.\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "ammonia.hist();\n", + "\n", + "# Search for the documentation for this function. Adjust the number of bins to 30.\n", + "\n", + "# Add code here for a histogram with 30 bins.\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "ax = ammonia.hist()\n", + "\n", + "# `ax` is an array of histograms. In this case, it is 1x1 array (because you have 1 column). So to access the \n", + "# return object you type \n", + "print(type(ax[0][0]))\n", + "\n", + "# With this variable you can further manipulate the plot. Use it, for example, to add an x-axis label:\n", + "ax[0][0].set_xlabel('Ammonia concentration [mmol/L]')\n", + "\n", + "# Superimpose on the histogram the 25th and the 75th percentiles \n", + "# as vertical lines (vlines) on the histogram\n", + "ax[0][0].vlines(x=ammonia.quantile(0.25), ymin=0, ymax=350, color=\"red\")\n", + "ax[0][0].vlines(x=ammonia.quantile(0.50), ymin=0, ymax=350, color=\"orange\")\n", + "ax[0][0].vlines(x=ammonia.quantile(0.75), ymin=0, ymax=350, color=\"red\")\n", + "\n", + "# NOTE: the 0.5 quantile, is the same as the 50th percentile, is the same as the median.\n", + "print(f'The 50th percentile is at: {ammonia.quantile(0.5)}') " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "All of this you can get from this single table which you can create with ``.describe()``:\n", + "\n", + "Which brings us to two important points:\n", + "1. Tables **are** (despite what some people might say), a very effective form of summarizing data\n", + "2. Start your data analysis with the ``.describe()`` function to get a (tabular) feel for your data.\n", + "\n", + "\n", + "### Looking ahead\n", + "\n", + "We have not solved our complete objective yet. Scroll up, and recall what we needed to do: \"*describe what **time-based** trends we see in the ammonia concentration of a wastewater stream*\". We will look at that next.\n", + "\n", + "### Summary\n", + "\n", + "We have learned quite a bit in this section so far:\n", + "\n", + "* head and tail of a data set\n", + "* median\n", + "* spread in the data\n", + "* distribution of a data column\n", + "* box plot\n", + "* percentile" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Time-series, or a sequence plot\n", + "\n", + "\n", + "If you have a single column of data, you may see interesting trends in the sequence of numbers when plotting it. These trends are not always visible when just looking at the numbers, and they definitely cannot be seen in a box plot.\n", + "\n", + "An effective way of plotting these columns is horizontally, as a series plot, or a trace. We also call them time-series plots, if there is a second column of information indicating the corresponding time of each data point." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Below we import the data. \n", + "\n", + "* The dataset had no time-based column, so Pandas provides a simple function for creating your tie column: `pd.date_range(...)`.\n", + "* We were told the data were collected every 6 hours. \n", + "* Set that time-based column to be our ***index***. Do you [recall that term](http://yint.org/pybasic12) about a Pandas data frame?\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "ammonia = pd.read_csv('http://openmv.net/file/ammonia.csv')\n", + "datetimes = pd.date_range('1/1/2020', periods=ammonia.shape[0], freq='6H')\n", + "ammonia.set_index(datetimes, inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAEECAYAAAAxqm/oAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAABc6klEQVR4nO2dd7wVxdnHf8+5hd5BRIqIgJ0m9hJ7wwQ1dmNsiTEaYxIT9Y0pmqgxJmo0aiK2kGhiw0RiDRIsSESKFBEpIghIufRLudxy5v1jd8+ZM2dmdmbP7jnnXub7+Sj37M7OzO7OPvvsM888DzHG4HA4HI7mR6rUHXA4HA5HNJwAdzgcjmaKE+AOh8PRTHEC3OFwOJopToA7HA5HM8UJcIfD4WimVBazse7du7P+/fsXs0mHw+Fo9syYMWMdY6yHuN1IgBNRZwCPAzgQAANwJYAFAJ4D0B/AUgDnM8Y26urp378/pk+fbtNvh8Ph2OUhomWy7aYmlAcAvMEY2xfAUADzAdwCYCJjbBCAif5vh8PhcBSJUAFORJ0AHAvgCQBgjNUzxjYBGA1grF9sLICzkumiw+FwOGSYaOB7AagB8BQRfUREjxNROwA9GWOr/DKrAfRMqpMOh8PhyMdEgFcCGAHgT4yx4QC2QTCXMC+gijSoChFdTUTTiWh6TU1Nof11OBwOh4+JAF8BYAVjbKr/+0V4An0NEfUCAP/ftbKDGWNjGGMjGWMje/TIm0R1OBwOR0RCBThjbDWA5US0j7/pRACfABgP4DJ/22UAXk6khw6Hw+GQYuoHfj2AZ4ioGsASAFfAE/7PE9FVAJYBOD+ZLjpkBGGAiajEPXE4HKXCSIAzxmYBGCnZdWKsvXEYc/L972Llxh2Y/+vTSt0Vh8NRIoq6EtMRH4vXbi11FxwOR4lxsVAcDoejmeIEuMPhcDRTnAB3OByOZooT4A6HI3Fc8vRkcALc4XAkylV/mYZD7nyr1N1okTgvFIfDkSgTP/UWaTelGSpSbt1CnDgN3OFwFIWdjU2l7kKLwwlwh8NRFJwZPH6cAHc4HEXBye/4cQLcgsamNG4bPw+rN9eVuisORywwxormIeI8UeLHCXAL3llYg79MWYrbxs8rdVccjli45ukZ2Ov/XitKW058x48T4BbU1jUCAKor3WVztAzenLemaG05BTx+nCSyoHanJ8Dbt3bel46WR11DE9LpBKWsE+Cx4wS4BVt9Dbx9KyfAHcnx/LTluPaZGUVtc2djE/b9+Ru467X5ibXBnAQ3ZsHqWtzxyieh8wZOgFvQ0JQGAFRXuMvmSI6bxs3Ba3NXF7XNhiZPUDwz9YvE2nAmFHMue/JDPD75c6yt3akt5ySRBW4NmaOlEoztQElJAie/zQkWrIbdDyfAdwEam9JoTPDBdCTLZzVbExWsQFa4NiZoA3duhB5TFq/DlM/WactU+l/5TSH3Y5cT4Of9eQqen768oDqamy3v4DvewhF3/7fU3XBEYM2WOpx47zv49SufJNpOugjCtXk9Nclx8eNTcfFjU7VlKn0VPDBtqdjlBPi0pRtx04tzSt2NorJ5RwNqQmxpjvKktq4BAPD+Yr3GVihOOY6PlZt2oP8tr2Luis2R66is8AS408AdLQLGGOoadq1gSIwx3Dbe07zDNLE42kqaXeUl8e7CGgDA0x8si1xHRcoTzc4GrmHCJ2tw2h/ezbzl3l+8Du8tqlGWJzeLWTKemPw59v35G9iwrb7UXSkaOxvTmOxr3jY28HcW1mBtrV24hyTdvwOam+kxKq38hX6FRF+schp4OD9+YTY+XV2b+Uy95PGpuPSJD0OP21U0iXLiHV+rmbFsY4l7Ujx4hcFGA7/syQ9x7p/+Z9VWUSYYd5HnJlipXV/AxHMQN70x7TTwDOIgDR6QMO2DMYbX5q4qipZiy7wvo9vZmhMd21QBwC5lRuGHa9iDLPLFhu1W5Yujge8aBOtE6hv190z30qxKBXU4DTyDOEhTvgQP0z5emrkS1z4zE3+ZslS6f86KTfh09ZY4umjNqAcnl6RdRzKovjAaQoRBQFRNuhjmjV3ly7VVVQUAzwSmQ3c9gknMMC1+FxPguVcsZaiBr9/meXCo7K9fe+h9nPaH9wrunyOcli4Dvv6nKZm/+eFqakKJqkkXQ7jOWr4RS2q2Jt9QiQk08DABrnPdDJTLMPfOXVqAB+vPQuMNlNnsZVQta+m6bTH3pHgEd2BXWgzCa8X1TWmjiczIGngRLus1T8/ECfe+k3xDJSawX4eZUHQv28y9D7kvu5QAFwepqQYuJmIttQiJ+rAd9/u3Y+2HI1nE+/z7/ywIPyZiW0kt5HluWnKxVcqV4CUqu6aXPpFdwGNyzcNMW7uUAOddcv7x4ReZQDFNIRey3DJpl/oFUgqozL6CioF4nz9bG/4FFVUOJyXAbx43N5F6y5ngSq6r3ZkXwuK9RdkFWbpLHuwLuy27lADnB+kzU7NO9mExkJ/9sLCl93GzK5kRRG54dlapu1A0xPvcZOCJEnUy0tLJxaEhuG1fbq7Dz19WZ++SvTQXrqnFYXe9hSmfrc+pS8UuJsCzfxMXWzDMWf6TVaXxMFGx64pvj13lBSaepckEpc2l4W3qxYiFsqvAv0T/M08dFlh2zf8yZSnWbMmGvQi7K7uWAOeegLkrs/7TYSaUcmNXf9jCXrgtBfE2x33fb3j2o8zfqmdg285GzPxi11k8FQu8oqix/MmGcQch21csCR2IaCkRzSWiWUQ03d/WlYgmENEi/98uJnVF5eFJi/HGx6sKqkP1AIgmFP6iyYRFqeXnW5+sLW0HSkySIU/LCuE0Gw1cCY+yiDrJJ41QvRR/8NwsnPPIFGwsQgiDz9dtw8OTFjf7LyxhuaC6nOQ8O7au0tSVj40GfjxjbBhjbKT/+xYAExljgwBM9H8nxu/eXIBrnp5ZUB2q517UPvifhcQzSIrr/l7YdWiO8I9BSxbgvMYm2rNNvhTXRxS0KgE+z/9S3VbfGKleG258fhZ+9+YCLF1vt4q03GCxauD6tgoxoYwGMNb/eyyAswqoqyio3uzi4OV/7Wwwn91p7ppDc6Ep4ch8pYR/3vNMKAm+uFQCPOV7YBVjkrNttSe8lq5vvusVgNwvfZ0Dm8wiUJWXrjEeN0IG4D9ENIOIrva39WSMBTaN1QB6yg4koquJaDoRTa+pUUf6S4rlG7Zj4ZpaAGoNRhycvCCus9DAS6UYflazFf1veRXTlm7I27dq844S9ChZGlqwywTvLvnjF2bn7Es2W458e+BCW4x5oiCKn4mpqJzhe08aE4pMgOetOYlJAz+aMTYCwOkAriOiY3MbYQyKVwVjbAxjbCRjbGSPHj20jTz74RdYvzXexAPH3DMJp9z/LgALEwr3t0wD//M7n0lTlIVNMj36zmc45M63Mr8XranFyk2FC9jA5eifH63M2/eNx/WZP5oL/KdoS57E5B/fiZ/mznUkOXmtEtAVZBbW1Ib6xjQG/vQ1vDhjRWx1lhO8Aqgzodz56vzM341NaTDGMmFkM3WFtGUkwBljK/1/1wL4J4BDAawhol5eJ6kXgIJm1havrcUtL83FD5+fHV44IqpP0DwTCvdTtXx59Zb8eMvBA3bTi7Px8KTFeft/8/qnqKndmbnBJ9//rtWkk4pW/meXLOBRWFbr5khLtoHrSPLFpRrnGRNKjC+PzTsa0Jhm+M1r88MLN0NyNXA1L8/6MvP3wFtfx1Vjp+eF7ShYAyeidkTUIfgbwCkAPgYwHsBlfrHLALwcVpeOzTu8SZIgNncSqAZhvg2cZbbf+IL8hUKSSIbBn89PX4Hfvale9ryzMY0Plqw36nNTmuH1uav0oScrNZHLWqCsSypBc5JjzxSdxpakAL9E8aUW5GaMs+1sCAt5nSZrbhljmLNiU2x9ipWcSczwswme7f9+mq8Dx7GUvieAyUQ0G8CHAF5ljL0B4G4AJxPRIgAn+b8jE8R5bl1ZoS33x4mLIrehNKEoNPCFa2oxR5HXLrgt/GdQmJYS3Mvt9U24cMwHof0FgEff/QzffWYmXp2rdqGsTKnjD7cU+Z20F8qUxetw0G3/weRFyeaeDENnM01SgPNjJ0ieAWQDucXpC37LS97yetXprDMwoz4z9Qt87aH3MWmB/sO/vjEdGlQqbnihaxIBYuvOrIePKEIK1sAZY0sYY0P9/w5gjN3pb1/PGDuRMTaIMXYSYyx/Bs2CQIC3qdYL8HsnLIxUf2NTWu0Hrtiui0IY7Porl/fusif12Xza+nGCt1u4ZK3Y6NnIN21Xa4cP+C812Wdw3J4xj7+3RDpZmhSrN9fh23+djq07s5PJSUxyfeif04dFPDcpZRDy5Z43Ps38HUyq3frPj2Orf8InawCox2Yg4FVs2FaPn/3L68+ykAibw371H4z49YQIvYwOf1orNu4IfYHkCHCI1gA9ZbMSc0cgwKv0AhzwbNkPT1qMzRqhJvKj52crbeCiAA9+GsWw4g6dtlSvpbTx3aS215t5tsxftQV/n+pFc6vUdGbxWi/Gcr1EsMUt6u54dT7O+7Nduq5CuH/CQkz4ZA3emr8ms802O01zogzkd0bTT6dZzorluN0Y87RNw+Nempmd/Azr0vb6phwBWQzE8wr7SuDPIV8Dj8eNMHF2+EItcCXiEUNSTlu6Ab97cwFuHjfHuP7xs79U3uz8geRtSGmEZlCXTfCgQAibJqjlP2VNIiKaZm2Jg2KlNpN9BLVoLxTNbS5WQMbARCXaZOM2XelMjjrBxX8Zl2NYCZVCqEI2jxbwt/8tw+VPqb/sy0aAZ7ReiaASQ1IGKYu+tPRxVt1scStj3ktj0Rp19pBAG4kyfkyP4YVkZUX40yvTTJMa349IvGwK5V8frcTs5ZsyvxljeHZafiRImwS/phRjqXhzIXhBrhEy28f95aO7i7p3BS8iylB+S85L30n+HEQZNX3ZRry9QL1+plK5p0SYKBltfTv55h12XgNKAS7xAw+LYxzUFWX8mA66JTVZ+15FKvxdK6s3qVyHtQl8lv7guVkAgKV3jwKgTmEXt2EonWYY+79l4QV9Jn26Fq0qUzhyYPdY+wHoJzGLRSCoN2zNvf5xvzh12nNjOo2KlNycyn+NlqMGbjsRye+3PZvy0cAjPJRb6+yEiOpC5mvg4X3JmFAsBlDw5Wcy6BasrsX42Vk/UZ0NXEdS47sYz82qzfm+9kD8K16Xb7SLvXHFX6bh4oQWSJVD3oogVIG4ClnlvvnM1GWYJHGBC0M3hnTKPv+VXn7iGxB7tXpLHb76x8lYI1k74pWOLsHLR4D7HTcZwJlsFRHbEFkjCAqTeguxw5oc+bkwu14OWYH4SaxixH3ZptDy455MizrJdeGY/2GRH6YhLnR3eeGarZircGuV8cJ0dSKS1YqXI5C1dY+bsVK6XeTWf36MK/4yzbhfAbohpDPXVJS5DTzPjv3BMsxduTnjOaMrb6vIlo0ADzD5hIxqFlAdd8tLc/ER5+dqMiaYhQll7ZY6PP7ekky9JoNOLNPQZL74h0ds6e0Fa7UPrw7+AS7GY6NqI24N3Ma0y7+4PliyAb965ZNY+xK28ONZixyTd2lWOvK5GUWa0gzLN2zPW21887g5xhPwJuRP9mV/m2rgSQb4iorYoyAcR+A+KcJfh0ffWWLVVtnYwG1uQ9SXru64wBXPtDNB7AiTvtz4wmwhF174QaKG/+MXZqOuIY0Pbz0xvEEeoanLn5qGnh1bYepPT7KrB7kDLUnNZ/3WnejWvpXa5BVz2zaBmsT7YhOt0oQw9aXWwmy4bafaU0hlngK8F7UsjPLbC2owe/kmjOzf1aj9MDdf3VXXaeD8NSpD+Z03bneGeIfxxZeE+LWLlJ8GbmNCsXyQdaV/8uIcrpyBhmzw3AYmAPEGmnRbFBR1vqCwlV2yc+FTNtnAa+Dig/Plph24f8LCWITrwXe8hY3b6pX3Ie6HtknniBvStk20SiNCxr/Ncn9paIVgn0aopEh9jTu3rZLvgJd0hTfxXPiYfrWxTglQvVSXb9ie86yWowlF7FN9yBgp5BTKRoDbnETwYG/c3mBlDjC92SbFTOoa/fD7AIB2wupSEwGksrHrbOHTl21ETYLBq/g43KKgvvaZmXhg4iIs1Lhe2nDun6co37hxP7Q29Yll4/aHD5vr0GlzNi9PnXBPEUW6xr97cwFGPzw583t+SC5ZXROq8b9QmHMoRw38+n98lPM7VAMvYDyXjwD3n1YbDRzwQrsat2F4nUyKmbgkBmaZdq1yLVWzlm9EGMrY5SEnwXuueP0JbcoY/rNW/AIJwgPE5bb4Wc02jQ08ZhOKhRQQm94RswDPD+ifiy68g+llCQvZTKTx2GLi79wNvA3fZFW1irAEE6r2yxEbE4otZSPAbTAJ96o40rB+ext1gGxza2Eg3/Xap/mFDOu3WdXl9Ud/QF1DE8bNWGF9znkxG/yfOgFji6kQKRSbibB8DTw7/l6etRIn/P7tgoRKdYgA16foMmv31D+8G9KGWgMXL5XoG96WG+vtW0efYlN+gVqGWw2Yu2JzrBOwKqLc+xZhQrGBFx42gY3i1cDl22UDL4pIiyrATR/iv/1vKTZtr8f9by3EjS/Mxlvzw/14c7xQhGaCduN0dlTbwEs3ialbJn3j87OxZN22gpaciwH9RbQauGEb67bqV52mdBq40IpoiuGD0dmOBb5m2fiva2jCY+/lemmYjoWvPjQZvzFQnAqlLsKkdiHjuWy8ULKYxM/N/m2TXsv0MkVx89Ntj/I820ZOVLWlKv3zl+fhnYU16NquGgCwYVu47bxJM4mZ9ePXB93q06VN3heJCtWpJjqJGYKuaEWK0JhmaGxiiGo9qAzRwBmApeu2oX/3dvn7YrouKSLjrx9xcU/bkGiipsjuyb4/fyNvm81YiDMkrgqbSKMBLUIDt5vEzFKI/bKQcqrPblH7qqndiXEz7VNHqU00YQJcrSGKbNhWn7G5msRMzjGhSMIPAPIIjm98vAozlm3ESfe9gx89Pyu0HbFOkVJOYuZ/Imd/BxOQhcQMCbOBv7uwBsf9/u1ct1efuK5Lisj460ccpmEvIFPEryL1F6n5ORcjLrhppNGAf320Ei/MUC+4CqNsNPDgNphNYkY1oZiVPeyuiaFlTE0oKyyXaQPAa3NXYeVGeaCucBu4XVsZAW5wHXPdCOW2dpkGfs3TMzN/T11SeLxt1X1cum4b9ujcBtWSiJY6bEyjYRo4UFi88g6GduOVm3Zg4G7tc7Zd8ZT9akgZNpOYupdGIdMh4jVUCfCpn2/A6IffxzPfOgztW+mvXTFs4LYrtIP4P1EpGw3cRvLwJW1uSpx6m9LEkZeezZyFa2qxbWcjrn1mJh6f/Lm0jO0kpo6ZX2yyCnGbs1JOYUIJa98kqqKsPR7ZM7JhWz2O+/3b+OV4+8QDTRYas05gBQLcxqwnEiaEAmR9/l+ElboqorrcxjUHokpzKDJr+SbMXr7JKBaLznUyLmzmU+Kg/DRwk7K8DdzipsT56a2q64GIKd8enLgI901YiNHD9ojUbna/XbvBi8Ikljhft0oDD+tfmImAR1WTrIlggcvkxfYp0ew0cI0AN8zgXt+YRmWKpKGTTV/ASWQlClixcQdemSNP4RfmRhgXeYaqkGZMzFam8fIbmtIgRDMHFdutsWw08EBztTah2EisGK+t6iH9y5SlOb9NNZL7/FRxfBIHGbY2cFNMXoR83aoHLOx22Ahwm4U8QQydKKdvozXpipqaUAb/7HXlXIDpcE46qYW4niAgb45Fcfzs5ZusV/zyVdu6w5rEUDIxEwLA0b/9b+Q0bMVeWFQ2AtzmvPmyNg9snKmV4nRJ5NHlvjSpL+oA2mkrwBUXIOwah7nJ8di4ERZiby3ED5ynwsIc9a9ZcgFp2hNTxWWVZdKTANU5iK2qrscFYwpLu8fXeukTU3F/SC7c/3yyOrTOsCXtAWu27MQWy1DVATYKVMcC/OQDykaAB+NR9iYV4y/kvKktROT3/v5RpL7JKFVar7BPtKifcCaf5LkaUu6+YOCe88gUbR2VksQUY6csxQn3vq1tz2R72D4VcboRhtXHvywee3dJvq3X8ARM+/zjF2YblRNReWzkeR8pumHqKqqCr/e9Revw2HvyOaGA1+auDvUyqW9K41tjp2PKZ/lmts9qtuKzmsLDQNhMf4RFnjShbAS4buCKS3LPfzTa2z3OSYzSiO9wDfv56csjfWkYuU7mTGKaPcgiMg38l+Pn5WQfCvjbB/IsOUku5An9wskTuNm/sxPC6lr4MXjna/Px74ihD0w18KjRElXLv8PWGQQyqXVloQLc/h5vCQn0VdeQxlvz1+A7f5uRt+/Ee9/Bife+Y92mSLGDaxVVgO9sSEv9V4HswP3bB8swbekG9L/lVSxbvy1nny0zlm2MdqABpYqCFqYpr9myE89J8kjGQe4kprjP7HrY2MBVuQDjjwcejw08ZeAHLgrGLzbkupmaXkfTPkddFarW8AXbtKKcGEvclii9DjM/BkTNbmWC1XqWGGRIUQX4wrW1OOk++VuOH7hBtvn/fea5RenMJLpr8PU/6T/nC6FE8hvXPJ2vPYisCwlWFBWdDVx1OcQH3MaNUEXwYo+LOSvNs9zU7swVEvxXcGVGgGs0cEGAi0LHVICbuirGnojYoHvBc1sIjU3MehyHaeABJvllo2I1IR5De+VjQuH+DuJoBwsydEpEsQXpU5cf4rfrNdy7c5uiti9qbDKiiEiTuYRcoW0WFU4UZnGkhvvjfxfnhRUNBGkUrebvU82z3Ix6cHLO73Vb6zHvS+8FEMQp0X0liWY88XKYdt/UBh63u6HJJObdr6szAZly52ufYOQdb1klLjc91yQ18Fv/qU+GnkMMt6ZsBDg/EIJMIq18O5p20qrI1uhu7av9dj36dm2DVpqVfyYPZNy+o3UNaTw8abE0q4q6D+FlorxIxQd8wepafPfpGRkvh+UGLyQZawUXtTgmhKIy6sHJmL18U+a37n6KGrjY7dgFeMz2Jt0cAODl7Zwt5O2Mcms+XunFEreJt2769SIqEXGmZZv3pT4GOk8crZbPQh7ubLbV52rgpZsyzCfQsoLBwphn1w2L+asj7hViT77vzdj37do21np1A12257OardgupPVat7Uer3+8GgtW1+LA3p1w+VMfRupL6yr5S9N2pKgyrdvy4owVmZeITh7kC3DhS8Y45LFZv+I6v0y7wm8ToblX93b4zrEDcPM4C+3Ux0Zb1uXY5BEtKPdOWGDdrziIQ3ErIwHO21e9f99fvA5rttSVzN4sI7DhZpaOQ28WMNE+YjZTZuiiSX8VBZ1gkl0Ck1n9zTui+duq3NRsxspvXp+P4X27RGpfhP/U1z2Yon+1OD5MlUFTbTNuDTxvJabhcWbJyvOReYyYVqA6ddGV9blp2WBzxVxJ2aI0cNnFDlY1BiFPZRRbuFcIGjgYMLhne0xbKvd4sXXPixMx+H2h6Ad3tLbiemCi1GObAVzbPrJXwKYnomAzPY+4TS2mmPqB81Dmf/ZMt/AkE0/1uN9PkpYTlY1c91jj5gpGF7nwxWuOwLl/DneXLhsbuH5xht2ne5LkpXQCQ2UqhQtG9o1cZ1ICPO5a+cEtvhuiviuiBv/Jj8nh/xvTWX+6egue8k1RpgTXQHc/xV0yDfyYQd1xx1kHatsyPc+4x5aYUMH0hVOMGQrxXJdvkK9CFTVw3foGG+KMdrjP7h2MypWNANcOet2BJdLAb3h2VmYbUWGCY66FG5sNUX1S73ptPr75ZL5tWhs61KpnXJ0RVR51TtKIHRE47Q/v4fZ/fxLpWJtJ9zwvFHjzLN84fE9tZELTy2aT4u7/Tt83tMykBTX4Yn124tmkG8WaYDa99aISlpuoJPoAijM/qul9MxbgRFRBRB8R0Sv+772IaCoRLSai54hIbecwQHfZyskGzl/XpjQzDuKk4+LHphbWKQVRFzKNeXcJ3pUE1Uoi9nPUeytq7rb1JGnrtNLAJSaU4Fr26NAqUhu59Ydz3D49AAC7dVS3V3A/JAMkLP9nUn2Zv2oLamqzXky8ElHIsGiK0WUzdgEO4AYAvIPnbwHczxgbCGAjgKss6spDayYpIwnOX9j6xrRn+9Rc6yT7HuZTff9b+gBAtvCnMuGTNTkuXiaTVDKim1AEAW75BWTabNJJamV+4MEYC3Y9eunByjY+Xb0FkxepQ+iGab+jhvRCx9ZVfntm97CCW4xVyPAe0qdT9IMl2NyrQ+58K1OeH4O6SV/GGF6ds0rp2WNzKY4e2F2733StkVExIuoDYBSAx/3fBOAEAC/6RcYCOMusSTlRTSjF9gPnqW9KexoT1DkEk5wUiWNRTIBJN8V79NB/F2f+jqKB1zU0WaegChCfoeA6m15uU23NdBKQ15y1K4fFDcKFSzOWFaNBXBGJx00gfE77w3v4xhPqL7iw+1KZIqtsWMExfH/DUFUrHlmosrN2y06rgFSBzzbvBabTol+ZswrX/X0mxrwnn/w26X+ryhSW3j0KB/bWv7xMX6amGvgfANwEIDjVbgA2McYCH7AVAHob1iVFe+7lo4Dn2M94DbxYGdR5klxRJkOUZXy6OL4nJgOZMeCnNqvW8voimlDsrrNx3G2LeoOHTucWKvZTvIOMZbVmUpQB9P2/+5yDMovLwoRyFE8l/pBChnfcX6e3vDTXKiBVY5phbW1dzjoM3f1e48d34c0vPFbeRyGX3fS2hApwIjoTwFrGmIVDZs7xVxPRdCKaLtu/fMN2NKWZdkDa2BSThr+ungYedERePkkBHreboIiofept4LxWZlb/p6tqwwspUKWuM73cUVOGqWhKs8xktI0uIto605wmnxHkktus+zJgXDthmlwqRfaClCtekACPfmgspBnLC42gu66BecUqKYmCsCfX9Mk28QM/CsDXiOgMAK0BdATwAIDORFTpa+F9AKyUHcwYGwNgDAC06jUo5+qs2Lgdx9wzCdcdv7fdZ6fhvrgZ0L1dzgPXkNHASd2PBDsoS8kVJ3UNTWjHeUIYp/tKp1GR0ocTJQLqLJb6i6hycppe8Lj9qF//OJtQoBA3QiBrFw/+lQnh0H4xdf08/FecqbcIy/nbwISiqLbUU1uMsTxtWuc6Gti+VV++NucTroHHZEJhjP0fY6wPY6w/gAsB/JcxdgmASQDO9YtdBuBloxY5NmyrBwC8u3Bd7EH6k5g8nHjjV3IufH1TGvBtljYJeOMiThOKrPuiX6vuXGw/qxetrZXGADcl/1PX1oRiaAP3y9XWNRjHbdGPPb0JJe3PqXj7NBq44UsibIREmUfh649DA39u2heRY+IUgiy09SNvf6YsH8R5V+XKtJmPC/syMr0rhXwL3AzgR0S0GJ5N/AnbCvgUVDp/YJ1/ZSGC860fHRteiIOIcgW4H9fCs4HL0U0wFUrSGrh4aXVCj/8yYSz8BRolLobYl43b6jNL2DMLeQo0oRAR1tZmY1kH4/KcR6bgmHsmGdWt64MYMydvYRjLeiBkTCkA9hUWdoT5zwfCJNDkGGMYN2NFXnCoihRltHlTkxwvqAoxETLGUNfQhJvHzcWFYz6IVSM3WV9gOwaD61Sleu5i1cDN6rES4IyxtxljZ/p/L2GMHcoYG8gYO48xZhy8N3i4A1tSY4gNXMfMLzah/y2vZiYYAkw+fXt2bG3dHv/m3OmbUIDSfA4mPYkpnpJJOjHvOBZ6PcLSX4Wxfms9hv96Aobe/h+/TeT8G4bqXAi58TeCcbRIkYjEpu61W+pCff55DZzv1Os3HJOzSXR3y/Fl5q5/UNO4mStx4wuzMebdXA+Kbu1aZRSkNtVm4iBHAzcoTwp9c86KzZnwyBu318fmUcYYS2TuKYjBXqGIaS+2+N5NxyvrCrWBJ+AHHhvBWMsEwG9Ko6nAiE7ThVgkRu5NESYBeZn50RcbMWfFZk/jtK6pcGxW2YUhe3jy414In/9c+7muZclfDzHXY1wLeRiypj0gmp+6ShB9uVmfpWbB6lp8VrMt83Rn/cEpb6yKCsohd76V8zsY/8Fhc1ZsAgDcJyQH/u5xe2OH78ppmgYtxwZu4nGkGQ2n3P8uAO9c02loV5+aUt+Ujry+QEfgYlilcNIWm9QtjIqrdyUR4BkHen8QNjSxgqOmidk4CvFP1cELzTte9dY1bdpeX5LFRr27xJdMYsayTXnbbNKmVQi+wcVOORcICdP7oBpujLGcHKxR9ApV3bq48QBwyeMfAAA2bK3P2S770BKv73rupcMrFNkQt/md6tmxFaorU6jzv4ZaVxsKcK6uuG5z4Iobh05S35hO5Is4kFGqeQPxRaWzc8f1fJRGgMPzcDjZf/s2pVnBUdNqBQFuUl+UwSI7hqH4GvhVR+9lbAJSxc7mmb9qS94iCHFA6sYc71rF0sU3KWVs4IbldbFU2nCCLMqDpnqJyAQ4X3arkIkqmERuJVnI05hmyuTVfOvBcNWdRp2vgYvJw1XwdZmYlkwWpVSkCGkWz+K0+sZ0IgpEkJ5OlpgbMPMwUpWNSolMKCxnMqcxnS5YA98mJA7QaU4/OGkQTj2gZ6Tl3zKzCyuBBG9dlTLufbtqs8/S9YLmFxZf+R0uXoqogRd7haztA6F6wB+atBgbeRNKhHF5w7OzpPkcZSYvvht1Qgb5jACXCP50muH28fOk7RNXr4mSct7IPgCAPSzTAzLG8H8vRZuMFvuV8j0B4jALxqEQyghStqlyaoot6s6kmZtQcj8L6xvTsV9w3Rv4nOF98OilI4018Me/ORJjrzwUgEoDL43AMlVW+nXzMvMM7tleW66hKZ2bmEDYL17TDdvqM6nEeK2EofgauK3GpSu+lIu2F1WTmyukFVPVNebdJUqNPXBbkwnw1VvqsEaxIrCaKx8oKbqz+NYxA/D5b85ApzZmCUBsPX5kiII6Rd71iUOAMyTjvhucr9IJRTNHJBLXF0LJEjrw3W9Ks4Jj6YqXQ5f8N7vSzazuQ/p3RSc/u02YFlUsmKIvMtpWV2Dp3aPwWc1W7VLjhqY0bn5xTua3OMhkrlnrt3lCRNTAS0XcKzGjKhadJdmQZDXV7mzExyu34CAusFNQLljiLYuF8vaC/GiRAXyUP9MxbjOhz8CwaE1t6KQs34f2rXNFTYqAppwy3mK4OAIUMhZvnkubdnl0ClZcj0hJBLjnJ5z93cRi+OQRrsjoh98PPcQ4YAw3qGRHiOdTLGy9aPbu0R6d2lQpM303NDGs4XygxXOSmbnqG71tfJD8NAt3I4wbexOKaTm1rVmHPACVvGx9k3ydQ6PGhKIjRwPP+IHnl4saQZIxZOavTBnQvV3O7+qKFBq4864gQpqxWMJDMDBMXqyO0FgsdM+nyWT76GF74OVZX2rLlMwGLp5A3Ln7dNhq4LymK9N6S+J1wcwmJwHzB7WxKY2dnB1WPCNZGM1gYkdciVl0k5KtF4ow3g4f0FVarimNjK+5VX8k3VD1TfXxGZhQqm0FOK+BWx1phu2d3a9XRwzq2QG/O3dIRpCLE7MVKcoJ5FVQ/xhw/T8+KrieKO0GXH5kf21ZE3F37XEDQ8uUzAtFHMuFauA2R4vxlsOoyIkXoWi/2BonGG46LTyDig0NaZYTmU0UcsskZqlGSfjN5qCBi+V/dPI+0nJRJ8SkfvWKso2KGff9enmrL20FeBVXPjt247shti6zvznnIADAeSP7ooNvZxe/Koi8euPwQimFAW/91p05K8avP0EvfHWX8JzhXmBXk0tRMj9wXmMlED4uMK0Yf0GmLd2gLStGewuD17qlk5ilsIEzoFObKqOsJqZKzY76Rml8CMBz03zq/aV522VzF4wV3w7OhH9FPvx8A56ftjzzW+yf6mH57jORgnAqNHB52W8+8aGQFcb7+/FvHoIXrzkCrQwX2ATwE8qVCpe3QrC9s7w5qcH3PhNfSis27sCSmm3GE/M64lqToQobK+PgO97CRY99kPkdNj8ljr/Ljtgz8/ctZ3iKmYl8KtlKzJxJTMaw1uJiBfz5G9lMJbzGc15INudssCAz+EElncQ0MBjwsSzEuBbFRDcm7p+wKOc3P8Z2KBIvBKYvvqznRlhcMg+touHzH/0fbhqnnqBVPSzL1scTZOkHz36EiZ+uke5rTDPpvESntlUY2V9u2tHRo312BWCwQlZqA48oLAuRj/Uau37tzsZY4vvEpTt843G7OEb8Cl6VAFdtP3pQj8zfgXwqWw0cgoYW1XxywB4dM3//Z94aZaojEVsbeI4JRbLfZBLzzrMPyvx90aH9zBoGcKjiAQ4Elq2o1J1yjeC7nBu0SH5MoIHzZUsxqWvbnHg+cYdW58//45Wb8a9ZX+KeNxYoy8e19PvwAV0xqGdWQRAzsMdD9L4GMXBUXxVJx7i3Yen66NEySXHZA1GiS+yRDSdcpho4Q64KHocP+KK1W/EnTShInuCymJpQKGQS07Pp688hqm3voYuHS7fbPO9RJ4bSglYtI5hoEzXwwD+8WIydstTrh2F58X7FGVfG60e2/jP/OFlT0iOudRCH7tUt53dgQplboImSp5B3zU/P2Bed2lShVyf5KuJYbOAxKQ+FmAHDNHDxdud4uhHllNW2E617hZFm8Tjai+f35eYdhgfG16YpvGZhZaMrokKiC16lXnqeL8AZA7755Ifxd1CDzt1qlWRc5D1ACWrgJsS2kE1ouDJFWLZ+Wyb/YyxNFHDsaQf2wuxfnpIz0coTixdKTAa8Qu6Jajyp8qbynmIklNW2E6FvBcNiWmqd/3loqFEXIBXlS+nDz4bvahzPambSzqAu07MVqzqXm0sIayeuGNFJ8Kt/f5K3LX8SM24N3I64BLhYS4ooJ9CVuC8K876MQZtXnG5cC3niIC/rk8VdVV3bCtWchGSerXwFOOIRYh2E1V3mq84Kb5vHs/mam1CCkib9UL1s7Ewo/N+6xQW5vzdsq8fMLzYCCBfKuSYU877FAX/tZWcnW4gjBu6Kf0zYXQT++hYigMRjdVWpgjKF8cPnZkc6jkc1nuJaSp8kRoJVUYhUJpSch1RfR85x4V2JHxOBZ0JbIfyl6a3XlWtnGFKThyF80PAmlMD+179bO1XxDKp7KLqHmcaxsOWcR6YACBfK/O5ih9YNa662LivAg7597+8f5ZQptQYe10K2/AiS6npVqcGKgapbsQjwMvgCVJlQTCYxqfwFeDwLPaLay1T2NwC49/yhOb+H9+scWp/n164vw7tHnX7g7vjrlYfm+H6qUJ3hyfv39Nr2fz966cGKkvGY0XUpyHI6guQ08HHfPUK6PezrgI982SBZeAQkIMBLZAOXaeDbd8pdQJPO6KRDZY6IxQ+88Cr09Rs0ED6JqTbhiSaU7u3ViSHKZiVmHJg+g6rYEkTeJAsvtK8zWM5qciq8Bk5EOHZwDyOfV9lL6pD+XXCI4F4Yx9eHjjCtJseNMKFH6OA9FS6VIcfxl/nVuV/irU/y/bGjCI4BPXRfUHbXQLaiNQpBLUP94FjvLKxR5mWtKkMNvJy8UJT1G5RRyaJAOIt9lFhQjCYzS2ZCsZ3ouvzI/rj62AGZ3w9fPCKvjOnkZNjqRV4bMnkp2NrAM3WHVy0t06ND/htZ9zUSx8x+4GIvu+6AYAMvLLCkNbKxVN+Yxs/+NRfL1m/LufY/fG42vvXX6Xnlo1yje88bqtxnK0T45fSqF+A7PzkutJ6g3ee+cwT6d2ur7UcSqzRF1Nlr5MTzJZSsBDdyHFBq4H4deeXz/zY5i5JEI4yyUq8ilZsRvl0re1t1QNjDymtDRgLc4GwCbTunPoPKw4oELw5dOcsmpQRC0kRBKkVgr8zf/r+vzV2Fpz/4AnUNaSOhYBKSQERXbxI28D0N5kyC8dC6qgKd21YDmpWkqtyOUfjHtw/Hhm31uO7vM3O2KwV4kpOYiWvg0RtQpbjjlU9RS9ddkRKaUOwuQkUqN7e1TAir7r3tmOC1IRPNzGTlYWBCyRGmQplu7aqldWvb9v9N2pyZEeBCQ8Gv3EnMZPsi8sTkzzN/B/durR8Wt3ObKqPP8qpK+wuoGxrBNTCNS80rDQV5oXB/hw1dGw18/PeOwgMXDpPu+805B+GIvbth1JBeefv26SkPGxGnCUWM/LdB4TYZF4Xcn8w7M88LRdIOwpWzEgazsjsmRbkauOyEVedpq13xkelMhhNj4W9lE2XnpWuPzDsv8yXWOhOKYRUK0unspLOoIREBqzfXYcayjdnyRZbgv3szu0S9SYjNQmS2PDuKPVhnsgsUFNNroYpIaAvvGhh21iZeKCP37IJbz9gPQ/p0Vqbm0127IJOViHpSPLRLAIDd/Xywvzhzf9z2tQNy9l0w5gPZIbHBB3y78fnZ6H/Lq8bHZrRrYXtTmilzkurCIZTMBm77kVmRErVXmQYuv/umAfGDo087cHccO7iHtiyPiVdNRgPXRDasSFGegDQVAETAPecOUe01qkNFE2NaE8qpf8gN7l9KJy6Zl4nJyzOSANdp4P6/pi/guLxQWnMxRsK+Hr8q0ZhFXvzukfi2P/eknphTH99V8lUJqMeIqQb+8veOwl+vPBRXHr2XUfk4+YsftgEAxs1cYXWsygtl/bZ6vHTtkbju+L0z8mr3jq3xnWMHKF+CQIkE+JJ126w18ApBA7fRKqstw3ECWZFnIkBFrxpZtMHgxvHjU3wJVVWk8s4r1ITCacbnj+wb3tcIcqIpnf1iEl8wt//7k7xIeklq4MP6drb6opqzYrORULCpc0ifTmhXXYH+3dU26awJxaxO/pIV4p/dikvyoTvrzm2rcJ7BeOEJ86wAgG8auMYCaldT3ddSv65tM3/37NjaSsmKm6gp2zITlNzh+/TsgFMO6In9enXET07dN/PiJSL83xn7YeBu6ly2JRHglz35obUgSeXZwPPLqO79MYO6Z/5+/ju5vsTnjOgtzcYSZLvZ2RD+BIomlDOH9MLSu0fl9R/wBp6qv5UpytOaZLkVZegeVr7KKMOuKc1QW9eQV5eKJBdS/Ou6o/AHhS02oP8tr+I3r38KAJj6+QZ89MWm0Hpt7MEXH9oPH99+Ktq3UvsABOPBVAPnSxXiHMLH3tbdqyiTtiqTEd/Or0YfaFSXaozo+nz1sQPw0rVH5j1bpSBq9EiZBv79EwdZx3zP1BfpqIjwn6m2WlplirTaq2ob4AnUwL4kKmP3nT8Md5x1UN4xQXk+y4YOMZiTSKvKFO6/YGjOC0TsbWUqlde/VpUVWHTn6Th7eG9838/yITcfqfvG74qiHTcxhkuf8IJTmXgJTFm83rqNgMuO2BP798qGCf4O5zoaYCvftitimfPYLGrx5mPC3IO8f6KYRioK8A5pJclILyPSvIjSScC+MtUwfGv+WnXzBIzo18W6rbjgr2dUk1eQUi4uFaeoAnx3Tvu0lSOtqypyRp2NBp5KUcYWZ3pcm2pzAS6G5pLdWyLg7OF9sEfnNsp2KyvybeCA9+K7/4JhOXGeRUzdr6IoDvznokk7905YaN8IgL26t8Ptow/MCQtw6F75X0dxuAqLZi4rIaQomjO+g39NNXCuXCHra07Yt2f2h/alrj/fe84dggcvGi4cI0d89y2+83Rt3UByi72KRVQBft8Fw7w/Yjr9ki3F2l5vl+n70iP2FIKemz9w4ipIEZLsCz5FZZlojt8n1/bGGEJviKy/4kNUkSL89utD0Ldrm7yyXv/0bajgj4uigTfmCPBofZAJYpG9e3i2vjZcPBr5fS5cghdi5VG1/voNx2T+Dq7zn94xi1HPdydqEoZjBnXPWeRlalaTcf7Ivvja0D2EY+QHiffIxIYfxelGZx+/TwiBkTRRY9cEZrec4GUFSPOSCfBzQ9Ke8TzzrcPQqrIidBJTdXv5z2OZQAgeGP6t2tvXlNtJ7Jw/PWO/nN+e/NbfEJMXTmWK8NWhe+C9m04ILSuiN6FkdxaqgUdd1XnbVw8IL+RzGCfsZc3F4fNeSAYc1TVoz0XHDKp/9J0l0rJXi6YhrjtxLCcHzM1qPHeefSAuPEQ+uWmqgZsQRWipPFqA+K6ZyBfcQii+z4V6DcU10V9UAR7l2a+uSOGogd4kZI75waJ+fhWn7D7zM/cBVxy1F35/3lCpZ4fMUyTMBi7rWjAg9t29A647fu+CBqFpGIEoE4w//efczN9Ru2ijVF597ICMLVe+YKvwh5V/Kd10mjwjvQq1IONelCF1nHtwH+U+nT3+wN4dcdJ+PaX78uJraG3g8n2XHLYn7v663B1VfdmTEZ4iuyuy+AB2X+SiaUjHNU/Lk1oXKsD5e1VIGrnSRbORoPN3BIDzuEGverB//Uo2eP/uHVvjyqP2wsj+XTMTqLJBLZuRr0gRzj24j0Ko5m7Ly2QjO0Jzjw7q3SnHfUiFTvaaCsgo446fWIr6krFJokFEGOzb+20WbNnAfwJ3bavW7GSorjXf17AXpXgOvHanu8avXH+MNgZLkqjuYbGCGh7Uu5Nyn824FE2gOuoa5XNgOgH+1BWHhNbLH95asYDHhNDHnohaE9GHRDSbiOYR0e3+9r2IaCoRLSai54jI7imQICZoAHIHNhFlZnFVJhR+WfUenVvjF1/dHxUpymg1suNkGrgOsY682C6Sh1eeyUdenwqdSDD1OCh08iiq9hvZfm/pcSML9CWDfwBtM6Gr3emy29dsqdPXIfmKCwgVRordeWm6dCaUCPdDHarCvjLVNVR9mRw1sJu2HZ0GLoaEttHW6xvlxnrdylnDb+HMX7byh8fkyJ0ATmCMDQUwDMBpRHQ4gN8CuJ8xNhDARgBXRe6Fj9GnBOX8oy/K1ad7KGx9YsWavIUuvA08GRr9kICyTCq6S3f28N6Zvwtd8BfZhGJ0nGzuIL+U7lx3Grp98vcriUzoN4+bi9WbdUI8t01+BWmYRqa6lroQpfl1RBG6yXMON1Z5VHHcA3Tj65FLRmDhHVnPGBttvaFJLqh1GrjqRfPiNVkXYlYsDZx5BIv/q/z/GIATALzobx8L4KywusIum+zCWmXuIPXPwIQiu/C2K9/EG5RmwEWH9Mv8NjUzq2IDA17o0Gm3npSzrSEjwPP7qxqT+/fqiFMO2D27oWABHvUxDj+OvzfZQD52NvCwB13Wlq1ZyPQrZv22ncp94in89o1PM3/feMpgbb2q87ezgWubUBwk3xxlXkXn8isjzOasu4cpIlTz/vEW586Pp/Vbs0GydF4ofPWzfnEyAKC6MoWRXAx/XoEwDfUhwyicLBFVAJgBYCCAhwF8BmATYyzwBVwBQPrqJKKrAVwNAD379Id6GsJMOAQl5PI7dyNfJlhpF0fQIJkGfv4hfbFmSx3unbDQ+AEP+ifziJCFDg0GkzyjkOmHW2ESPKoANzmsXqLt2HgbAeaz+/zzZ2tCMR1COqEi7vl83TYA3srbDq31q29VtVqZULQtqI5RvDii1KXogOqanRkSt0U3LsV0gzZjuME3oXxWsxUTP83OBemW0vPVd25bjScuG5mZ0wngj05UAwcAxlgTY2wYgD4ADgWwr2kDjLExjLGRjLGRHTt21JaVauDC72Bwyz5txG38gAtiH5tqaDrE+x9oB7I4BzqC8zWNqxDY42QmH9MxGTTFp2D72aj9FKXziaqAmzw0DY3cfId/71JEGP+9o/D2j4/j+qCuy1SAM4kJRRUuNe9Yo1J604zqHEyCaqmupY0iHMlurThk8/YG+Q5dXYqXgUwGjB62R17IWBHVS/i5qw/PE5A2Z97gv60Xrq7N2a7XwHNbOHG/nujLxXEBss/hgB7tsJdBnHcVVro7Y2wTgEkAjgDQmYgCDb4PgJWhFYRcORNLRvA2FQMoAbkTmGJ7wcBQfYqdd3Af/CFYJRWCeIMCDTp4KIwf8ECAGx7QoLGBm2oVgYA7cu9umW0XHdpPVTxyOyImyaJVGviQPp1zAkfpNXCz/vDFgnE3epjc/pp3LCcpTz9wd2U5nWav2mMyH6O6BeKpa7M0hbZizobt8cXflr30qitSoS8cm4+osLr4uPxBf7YJC/r0NvDwPgRj6Bdn7m/9Bchj4oXSg4g6+3+3AXAygPnwBPm5frHLALwcWldYZwzOfD8/TobJajW+tsCEopqU+N15Q3GWYgIlr94QDdxUCwzO13RRSfDWl2lppkMgaKoylcKZQ3phSJ9OVkJZ9vIwoWOb8KBcshl/20lMU/9c/h7ZvpR4AfCnb6iTSUeZHDWxh5pWqy0W4TaqDrn4MHMFIFOXxoSS56FjUJ/qWssW4unk5b67d8gxdwRjY4ewctzUBq4i+CooNC+piQ28F4Cxvh08BeB5xtgrRPQJgGeJ6A4AHwF4IqyiMF9g2eeT+EDeeMpgDOnTKSfCoLI9rrofnjwYC1bXYniCwXBsfJ0B7qvA0KwTCDipALd8IFMp4CE/v2WdoecGED3UqYmdT/5ylUxixqA/pguYxGxr8DUBRHPjM0p0rfYjNG5fldtU266kwosP64eOITZ7G1JE+Oe1R+Gsh9+3Ok7Wtz27tcWBEt9xnQbep0sbbN2ZFdbB/cjXwDUTIQbD6TfnHIR9d++AIwZ0Cy+sIVSAM8bmABgu2b4Enj3cmDAhY6IJVVWkcMZB4YHoxfpG9OuCDwWvjqiEdtPYC8X711Rj7+WvROsn2NMA9UN9w0mDpNujus7ZRO0LypvGjZCZUGTNxbFwpLEAP/A2hgJcd9rKCUGDsaA2oQiTmJo69uuln48ybTfqrVAJ0YoUgcz1iZzjRMRYLjq+PqIPxs1cASLKmUsIqm0Qvg51t8lEwejevhVuPMVuBbCMoiY1DrM9yW7CIE0w8/D2Ih8aUq+84gE9PDttEJQpDFV2DhUXHNIXvTq3wbGSrw/VuZ56gNxGy19rm+tk+8n38CUjcOK+uxmV5R+SQBiZuItGgc9BafsyU6UWE9EJY1M7tgzTScwY5utzsLlKvTq1ls5ThdVVkYr23BayYnfp3aMwacFajJu5AnUNTcL8iFeLjVknKbkjo8gCXL9f1O7ev+UE6epM4/YSWnqgqvXUA3bHv647CkP75H623fbV/aXlbScxiQhfUWQhqTb0JT1h393w30/X5ryEbK6TrQ08RZQxu/z1ykPRrlUFvv6n3EBmratS+NrQPfDNI/rnHW/iLhqFBu4T2NaE0ruLPFqkSKRFUwbHqHorHvruwpoIHdC0azEf8d5Nx1vXBfix1vNCVYT3TfoVZSFJ+/r3dOvOxozHWtAfr6rcurRuhMatFk5xBXjIqYk3oXdnswdF2V5iGrh637C+nfO2nbS/PPhQZhIzhnyIpqtJH7lkRF7WbpvrZL3oiftblQIrnQbuOdc8vkcc9zX3M9m8wsuP7G8xLpPRwJXHJp5M2nw+ImycqK54ZSoFimBDkd5Di+uxd4/2+OFJg/G1YXvg5hfn6OtFiHmsiCp4UQV4mKKTxJLmJLDVAJVxlDMaeOEPnmk8hdZVFTlRHQE7jcFWA4+6gEdbp1XpcMI08PatKpEiYEtdI/p3y59/eOSSEfhgSX4Woq071YJIvZrSxAauODb0yMKw0cCjInMuM1l8VqjsIKLMfBHf3uotdVJtW9enYoqxsopGGMUfchK3wEMkqTehbbVKe5+lDVxHlByHATbXyTbZgEnVYrCh8Drjva9hL6UUZX3EZWP0jIN6SXNB2npSlDuyq5TIJGaESqUKuPDbVLyIi/2ufWYmauty3Qj1k5jFo6gaeBhRQpXupckMnlSYS7Hal649Ul9e0Y8+vt2tUFcioLBM5rYa+AF7dERlijB7xWaDusMnrp++6jCr4+O+r7rkxAFpYbFWoSQxNJO2oMT54tQpNVHmOEzMYHNuO9VIWdq2M1dYvzFvdV4ZXT0tdhIzLPN33CaUxK4jVzFReKJV1YDs370dptxyQk4uxTgR8z6qsLnsRIRXv++lDut/y6sGB+Rvqq5MZXzazzu4j3SxRYDsUzXuB0TXfkDwFR3Xy6MQG7iKuLK8qJBq4BFvhs4PPm+fwWmZmFlMXtQAcvzAle1pmyueBC+qCSVFhHsU2T4Au6wtpcTeBq7et0fnNgUtpdXxxg+ONSqX5KSLzG+cN3vJTA/hxNtfEwEe2Kbj8mxS+4FHrzOOyXAdcQ6T3RRKSwVFM6HEiYkALxcNvOgiUzfZFjWZq4rooU/1xGUDj4PWBQSDLwYys1gVt83U/ZFHdf2j3m6TOC2saBp4dCGcuACPcST/fJTctTaVimZCifPjY5TBQsGkJ4xNafY2cB2JuRFyfxsNnAQl+Ds/OR7rtqrjTsfJL86UP3Q6ZC/lQjV+1dEpIqtkxeeM6I1jB/Uwy6LONAuLIqD05S5AMkTNlG5KxzbxiQvValbpJGbESx71Wt5x1oF4dtpybZlXZq/C8fvIF6jtbCg8ZLUpRRfgxfSRTEpy2p5DUguKAKBnx9bomZANXSTK+1X2Ui50CKiuv60G2q9rW+MAZkHVsQ1fpS939CqT1sBlIRzi9j2vTOU/LSbhG+LshskL3Vt2L99XW2cfXjcqRf/+LlYCVKA4GrhR+RLY9KLEuggjysu3kNC3KmIzYxjeyVSKMoIqPg08/kEhJispZBWzDCLKi5ke9ztDdn0rDEyrtqan608YqN3/raP3Cq3jxRkrpNtNbOhxUXQBbjpwTSO+6dtKhnKygat4/juHx15n2HnLfNFlD6TN9ZAmNY7pioa9CIL48NUVqawJpYynHMSolv/4dvxjQLyfcXu+yEwoUTVwnVAPCyT1swjmwoCD99R7pcVJ8QW44bP37+uPLlpb1vXGtBIzScLSckUh7CxksaxlArxQLTaOtHhA+PgIQpFWV6Y4N8KYNHClCaWASUzh2H6SVaOFIgrT+DXw/DpN5sb2MXSZTZqnLj9Emg4xKUqggWeRZTM5ZlB39O3axjiin464J0UzNAMNPAnEF5EosGUeRtJ7UOAF4ZPLFkL4i9WTJLwGHtfLWJVYpBBEG3gSoSlEl9e4beBElJfYw+Q5bl1VkbcgLPHQMBKKrauVVANvVZnKW8X4t6sOw3s3nRBLW2XjRthCJLh4HhN++JWc360q881esvmgQt+rgbZ1KJflOwph4yNYUu1p4IENvKAmM1SmUujKpe4KKETmiF4oSSgweWtsEhCS4nmYxqBviOnLrBCK/bVdAote9gQrK1KhqxgLITEBbl2+ZUhw8TxEH+5D+uffyyRMKH27tsXSu0fhK/vIoxuaEtYNPgNSIBts+y7zc3/1+0ejR4dW0jg+hVwZ0QaexPiP0wb+69EHSLeLXydhK7gDxPMvheJUTCcNoMReKIGHwsn795SGYS2UpEwo1u5aLUN+5w1O8QG5/Wv5qyqTcCOMi7DhEQiS6soUbh99AM49uA9O3M8sOUUAYwwDhHg9B+zh2dY7SfKEmsa0+dHJg/O2FUMDF+ssxAZ+qST+O5AvwE28UID88y+FCaXYEVVLYELhNHD/xjz2zZH413VHxd5WUhq47erBYt7TX5y5Py6JkGTWBPE8xNOSXZeoGvgDFw7H10f0wX69kpucCvsy6tGhFQBvXqZnx9b4/XlDpWYinl8KyTvSDFZfCqbmgu+fmE2Vd8VR/bFfr4545JLcPJdJ6C/iPEchK0dVDPTnv4JAdaZCMWk/eBNavAmFH1Smn0ZxtBUnbasrMf575i+cYt7SK4/eC3eefVAidesEnioMaFQtcO8e7XHv+UO1GmljgZ/MYeX37NYO7910PL5/gjyvqIzTD8xdht2UZiCQ8Us/yjPxy68egNdvOAbHC6nrkhAm+/TMfaEmoeXu1rE1lt49Cqf5Tg6m12Rwz1zHh1KI88QcJxSUdBLTNr+iig9vPVG6PcmLGUxAdTRYLFEKN8JCEDW5DOJpCOYw2WnKNMq4voxEtzldrXJTTng/+nZtaxVsTJX04B/fPhxXHNUfc287RXt83PGA4qZb+1Z45fqjcefZnrksyQiIgSeaqUfaoJ4d8hYaFZti28CLv5See8ziepB36yBfSp5UlD8A6NWpDS4+rJ/Riq3mxikhKeAC+HtZlUrl/D5l/54YsWcXadS5uN5nTYLXAREpVcK/f+swXDDmg5xtSQwP1cKlg/fsYrTAI8mv0gN7d8THK7fEUE8nfFazFUD8fuA8Xx/RG/v07ICDhByzOviE06XI8NXiTSj8+SX9tkqy/ooU4a6zD8IAA+2geenfudrqeQf3yfydp4BzG3577hBUV6bQt6uXpGLPbm1xzVf2ltYfCLlCc57mTdppHh6ZnElijqTQrz5TGzgATP3piZj585ONyz95+SFRuiQlEFRJauBEZCW8gdyVskkqcCp2ARNK/Bq4inLJsVkm3TBGpUXoJjHP8ENwXnLYnto6AG+QP3DhMDx/zREF9VPnNvYCV/ddZx8kFTRJ3Bdbrxsx6YZNZqWeHVtLfclVxPm8ZU6z9POGOeR+4Re//RbvRsjHy0hcAy/FHZTQHPzAf6XwyeWfzzwBrhEIYWc8eljvgjVw0QbOCyi+7osP6ycVNLL+H7ZXYYuDbG3tT12RqxXbJo22IU4Bfvw+u+Hogd3xk1P1MUVsWHzn6YVXwp1iKRS4pJVSkaLbwA8f0BUVKfJcfmI82UP6d8G0pRtzthX7Yqook25oOWm/nvjFy/NytnVoVZljUs63geeTKV+EcxbdxnjZKV5zmaIo6+Lfv304Hpi4KHKMdZkJRHcp+Jf7qCG98JOQIEtRmfnzk2O9Je1aVeLpb6lzmUahkLyuAfwYDVPg7jl3iDR+T1ztF4OSmFCuO86zjcapIN/vR47jKbY9qjkjDryHLx6RyX2pQjZWA1NFMbSfwAYehM5tz3kEmawYVLk9/ujkwbgroiumbewXvg8PXzwC/TVJuguha7vqzDUpR4Wi0C+fAP7Uwp7/80f2xehhZvHgTWnxNnAgqw3FaVpIYsl2XJRJN7SI427UkF7o161tzkIN0RQgu3/pdLxxs3UENvDLjtgTS+8eleOCRwD6dMmaUaThRhOw35bLvIuUMu7a2CsPjb3O0phQitxecZtLDl5g3Hf+UADAgB7FC+uooznYwE26mDc4Jcc0xRz0SUeggQefynxkPCLChB9+BbN/6fldy2R13JH0+L7w6O5/MUdG0LVyHI1xyVo+kmFJYqEUWYKXVU7MQuCv29nDe6Nf17ZFDayuo5yVsgATjVkURHITSrAv+ZMOzCKB3VmccG1TXYE28Ja+y4R1sRwotJeiiGOjnBeUxaXkbN6RTWdWChNqi7eB88R5rvzgJCKM7N+1bAZsefRCj2rgNTTxWm3uPtkRgQmlGA/Pob7ddLC/vFs34Rrs47/KihXsyHQSM2kyGniZPBc8cXVpS12pBXiR2wsrQER9iWgSEX1CRPOI6AZ/e1cimkBEi/x/S6rulvN8ZTk+MCKq61fX0JT52+QsMpOYRbghFx7SF1N/emImc06OvV4oG+zjBXuSi1B4yuX2ZyYxS9wPnmMHe4G+4tJc+cw8pXjuylEDbwRwI2NsfwCHA7iOiPYHcAuAiYyxQQAm+r+NSOK5KWchWb49y6K6fjkCXJzElBzTlMlcE2PnFBARenJL9flxledGGJh2uG02qx6TooyHbVEYc+nBeOtHX4nthX/k3t0zmb5KMolZbl4ojLFVjLGZ/t+1AOYD6A1gNICxfrGxAM5KqI9GlMGzqKQ5PKRGGriNCaXEJy2+XDICnNtsGxY4KjqFpZhXKTj3chqPrasqMHC3wtMn8gRx1kshE4rdpNUIJqL+AIYDmAqgJ2Nslb9rNQB5BKQiUdYaeBn3LUD16beTn9UX9ukmMUthf+TbbN8qd34+mxItWyauaJhh6D44m8PYaG40Cd5JxaQcTSgAACJqD2AcgB8wxnJCmjFvil86TonoaiKaTkTTa2pqcvfZ91dJOWrgVx87oNRdMEY18E49IJt42sgPPObkvzbwAlx8gcgGZ7E08HKhuiKFIX064cELh5e6K4ly02n74pzhvfG1oXsUve1iD3ujEUxEVfCE9zOMsZf8zWuIqJe/vxeAtbJjGWNjGGMjGWMje/QoLIehjnJZtMPz0zP2w9K7R5W6G0aoLt+1x+2NA/bwVjqGpVQD+IU8cfbODJ1GHZgx+DRm1cXSwMvGhEIY/72jcfpBvcILN2N6dGiF+y4YhtZV+uxJcRGsOwHK0IRCnir1BID5jLH7uF3jAVzm/30ZgJdNG00iDVM5CvDmhOr6ERHa+eYIk0tcShNKMCl5w4n5GXSOGdQdI/fsgjvPPijjfti2ujjLIHTj3Q3b5sW0W0/K23bOiD7o3t6PClmGGvhRAC4FcAIRzfL/OwPA3QBOJqJFAE7yf5eMIIpbUvkgWzo6eUuZf8MX8jSVgQnllAPyp2PatarEi989EgN3a48/XTICPzxpMI7cu1si/Zh88/H42aj9Mr/1GriT4M2JIE9qQL+ubQHwXk5lthKTMTYZ6veKPJdZCMFJxqmHV1akMPe2U3IycjjMMVqJmeeFkn8MK2IwK5HAhBKW3LZb+1a44STzPJe29OnSFl3aZuN0J7Fk31EeBF9XwR0uu4U8iTTqn2Tc47pD66qyiQHe3Ajkrc43Ot8PPL9MUwlt4IEG3tBUeoHJXxvtOHfDtVkT3NtBvitkVZEnxkujrhYhHZPDDiLCLafvi+P2UU8057kRSso0+V6HpXiRBma0xqZ0SMnkMf0ASfpD5aOfn1xuSXNaFIEIG/PNkZi3cjM6tq7SHxAzJdHAgzHrBlZ5cc1X9sa+u3dU7jfJyHPxYX0BAEcN7B5r30zo08WzR7YqkveBDt68VEoFvEu7aqu0a45odGpThSNLMOZLooFn7K1OA29WmGTkOXjPriVznbzjrANx7ODuGNa3c0na5zE2oTiaHRcf1g9L123DlM/Wl7orJdLA/cEdMtfkKDPK3VzbrlUlzh7ep9TdyENnKnQrMZsfd519EK4/wZsEL7UZuMQmFCfBmwOZZeip8ElMh4epYHaXsHmSlCOGdT9K0mgmg0opWnfYsmVHIwDkTdA47VGN6ZVxl7B5Ui7ebiUNBuFMKM2DIMtJp7bFnWFvzuTawN1Ab84cM8ibnPwqF1slo4GX2IpQ0knMUp+8w4zBu3fA6i116OIEuDHmXijlock51PzmnIMyHk4BlHGFLkWPspREgDsnlObFQxcPx5KabUWLHdIS4DVw/SRmETrjKAiZqTBYaVxqGVbaScxSn73DiI6tq8rCNa85wT/ybpg3b2Tv2HIJnleipfTl8fZyOJKiTJ5vRwzI7mV2267oRuj8wB0tHkMbuBP0ZY9M2670wzaEBU5LmhIJcDeJ6WjZmK7EdJOY5Y8swFsQ+bKxxIHTSmwDL0XrDkfyhCd088s5+V32VEoyNwXZnBpLrIGX2AvFSfDmzk9O3QdHlyCIT7nDey6kSx8c0VEAQZTL3G2BAC/tzS2xH7ijuXPd8QNL3YWyxHShnlPAyx9ZesBAqJc69nyJJzGdCHe0THJs4FoTihPh5U5VKl9MFjtxg4qS9CLwKT56YHJZ6h2OUpKzErNMstI7oiGLeyIT6qWgJCaUIX06Y97tp2aynTscLY6clZiaYk6CN0tkdvFSULLXiBPejpYM/3iv2ryjZP1wJIPMLl4KyuM7wOFoYfC27fNGqpNMOBt486Rc7ptTgx2OBAge7/16dQzNEjSiX2d0a98q+U45YqV7+2pccdReJe2DE+AORwIECpqJnvbStUcl2hdHMkz/2cml7oIzoTgcSeCWyDuKgdPAHY4EyGjgTo43W8Z/7yis3FjeE9BOgDscCRDIbSfAmy9D+nTGkD6dS90NLc6E4nAkQcYG7iS4IzmcAHc4EsAJbkcxcALc4UgAZwN3FAMnwB2OBAiSAJQ6Y4ujZeMEuMORAG2rPf+AuoamEvfE0ZIJFeBE9CQRrSWij7ltXYloAhEt8v/tkmw3HY7mRbtWFQCAugaXzcGRHCYa+F8AnCZsuwXARMbYIAAT/d8Oh8Mn0MB3OA3ckSChApwx9i6ADcLm0QDG+n+PBXBWvN1yOJo3bas9DXxHvRPgjuSIagPvyRhb5f+9GkBPVUEiupqIphPR9JqamojNORzNizZVngC/+tgBJe6JoyVT8EpMxhgjIuVUO2NsDIAxADBy5Eg3Je/YJUilCEvvHlXqbjhaOFE18DVE1AsA/H/Xxtclh8PhcJgQVYCPB3CZ//dlAF6OpzsOh8PhMMXEjfAfAP4HYB8iWkFEVwG4G8DJRLQIwEn+b4fD4XAUkVAbOGPsIsWuE2Pui8PhcDgscCsxHQ6Ho5niBLjD4XA0U5wAdzgcjmaKE+AOh8PRTCHGire2hohqASzgNnUCsFlRPMo+2fbuANZZHhOlnaCthiK0w+8Lzi/pdiC0lWQ7POL5JdWO6nom1Q5PMcdosK8K5ucZRx9Mx2lzfh7juqay7fswxjrklWSMFe0/ANOF32M0Za33ybYHbdocE6WdoK1itMPvi+Oamh7Dt5VkO7oxk2A70utZjLFTzDEa7LM5zzj6YDpOm/PzGNc11Y0R8b9Sm1D+HfM+d0zLO0ZHqfvmjimPPuxKx+RQbBPKdMbYyKI1WOQ23fk1/zZ3hXMsRZvuHJOpu9ga+Jgit1fsNt35Nf82d4VzLEWb7hwTqLuoGrjD4XA44qPUNnCHw+FwRMQJcIfD4WimJCLAiWhrEvUq2moiolncf/01Zd8mokiTDETEiOhp7nclEdUQ0StR6rNs+yy//X0TbKNk5+e3V7QxY9NuIWOGqyPx+ydp81YimkdEc/zn4rAitNmHiF72k51/RkQPEFG1pvwPiKhtxLYYEd3L/f4xEd0WpS7D9gI5M4+IZhPRjURUcgW45B2IgR2MsWHcf0sTamcbgAOJqI3/+2QAK20qIKKoGZAuAjDZ/9emvQqL4gWfn0NJpPsXFSI6AsCZAEYwxobAC/m8POE2CcBLAP7FvGTngwG0B3Cn5rAfAIgkwAHsBHAOEXWPeLwtgZw5AN6zcTqAXxapbSWJCXAiak9EE4loJhHNJaLR/vb+RDSfiB7z32b/4YRGXG0fTETvENEMInozyB7kc6n/Jv2YiA61rPo1AEGerIsA/INr81Ai+h8RfUREU4hoH3/75UQ0noj+C2BihHNpD+BoAFcBuNDfdhwRvUtErxLRAiL6c6ANENFWIrqXiGYDOKII5/cuEQ3jyk0moqG258md1yvc74eI6HL/76VEdDs3nmLTZnXtxlC36v6pzvMMIvrUH7sPRvwC6gVgHWNsJwAwxtYxxr5UPRf+V8YDBTwXAHACgDrG2FN+m00AfgjgSiJqR0S/9+ueQ0TXE9H3AewBYBIRTYrQXiM8z4wfijt8GfNfv62JRNSPiDoR0TLuOWlHRMuJqMq2YcbYWgBXA/geeVQQ0e+IaJrf5ne4vtzsj9fZRBR73oQkNfA6AGczxkYAOB7Avf5bGgAGAXjYf5ttAvD1AtppQ1nzyT/9G/JHAOcyxg4G8CRytYC2jLFhAK7199nwLIALiag1gCEApnL7PgVwDGNsOIBfALiL2zfC789XLNsDgNEA3mCMLQSwnogO9rcfCuB6APsD2BvAOf72dgCmMsaGMsYmW7YV5fyeAHA5ABDRYACtGWOzLds1ZZ0/nv4E4McJtRE3qvuXh3/dHwVwuj92e0Rs8z8A+hLRQiJ6hIi+kvBzAQAHAJjBb2CMbQHwBYBvAegPYJj/RfAMY+xBAF8COJ4xdnyE9gDgYQCXEFEnYfsfAYwN2gLwIGNsM4BZAIJn8EwAbzLGGqI0zBhbAqACwG7wXs6bGWOHADgEwLeJaC8iOh3e/T+MMTYUwD1R2tJRcFJjDQTgLiI6FkAaQG9ks9d/zhib5f89A97NjcoOf+B5jRIdCOBAABP890UFgFVc+X8AAGPsXSLqSESdGWObTBpijM0hz8Z+ETxtlacTgLFENAgAgxcXIWACY2yDzUlxXATgAf/vZ/3frwD40B9EQdakowG8CKAJwLgoDUU8vxcA/JyIfgLgSgB/idK2IS/5/85A9oVV7qjun4x9ASxhjH3u//4HPE3PCsbYVv9FcQw85ek5AHcgoefCgOMAPMIYa/TbiPos5MAY20JEfwXwfQA7uF1HIDs+/oas4HwOwAUAJsH7Gnokjn4AOAXAECI61//dCZ6SehKApxhj2/3+xnLePEkK8EvgaRAHM8YaiGgpgNb+vp1cuSYAcZpQCMA8xpjKfCA6vts6wo8H8Ht4g7Ibt/3XACYxxs72heDb3L5tlm0AAIioK7xP04OIiMF76BiAVyX9Dn7X+Z+vUbE6P8bYdiKaAE/TOB+AUsM0oBG5X4Wthf3BuGlCvGM3rN1IaO7fy0m0x+OPgbcBvE1EcwFch2Sfi08AnMtvIKKOAPoBWGpZlw1/ADATwFMGZcfDUyq7whun/43aKBENgDcO18KTOdczxt4UypwatX5TkjShdAKw1hfexwPYM8G2eBYA6EHeRA6IqIqIDuD2X+BvPxreZ48qUpiKJwHczhibK2zvhOyk3+XWvZZzLoC/Mcb2ZIz1Z4z1BfA5PM3qUP8zLQXvnGzNJSqinN/jAB4EMI0xtrGAtpcB2J+IWhFRZxQvbV9S7aruX0rR3gIAAyjrSXVBlEaJaB//SylgGID5SPa5mAigLRF906+nAsC98L7I3gTwHfIn8X0BCgC1APIj7Fnga7XPwzNjBEyBP98AT5F8zy+7FcA0eF9Er0RVdIioB4A/A3iIeSsh3wTw3cCeTkSDiagdgAkAriDf04Y779iIXQP3b9JOeLanf/tv/+nwbKiJwxir9z9lHvRtY5Xw3tLz/CJ1RPQRPBPAlRHqXwFPWIncA8/E8DN4GnIcXATgt8K2cQC+C28gPgRgILxPwn/G0WCU82OMzSCiLTDTgvIIxgxjbDkRPQ/gY3iC7qMo9ZVRu6r7dyE8oZPTHmNsBxFdC+ANItoG7x5HoT2AP/ovh0YAi+GZYsYgueeCEdHZAB4hop/De0m9BuCn8DTVwQDmEFEDgMfgjd0x8M71ywLs4ID3ovge9/t6AE/5Zr0aAFdw+56DZ/Y7zrKNNkQ0C971aYRnmrnP3/c4PDPwTH+erwbAWYyxN8ib4J9ORPXIXo/YiH0pPXkeCI8xxqLMZDsMIKLjAPyYMXZmibsCACCiPeB9ru/LGEtHOL4kY6YcxyoRtfdt2ARvkm4RY+z+hNt8G954mp5kO474idWEQkTXwJsM+Vmc9TrKF/+TeSqAWyMK75KMmTIeq9/2Nb158MxWj5a2O45yxgWzcjgcjmZKQRo4EfUloklE9Al5i3Ju8Ld3JaIJ5C2pnUBEXfztl5Dn6D6XvMUgQ7m6TiNvUcpiIrqlsNNyOByOlk9BGjh5K7l6McZmElEHeP65Z8HzUtjAGLvbF8ZdGGM3E9GRAOYzxjaS5+R+G2PsMH/GeiG8Jaor4E3eXMQY+6SQk3M4HI6WTEEaOGNsFWNspv93LTxXpd7wfILH+sXGwhPqYIxN4dzMPgDQx//7UACLGWNLGGP18BY8jC6kbw6Hw9HSiW0S0/ddHQ5vQqsnYyxY5bUa2RWYPFcBeN3/uzdyg+2s8Lc5HA6HQ0EsfuDkBewZB+AH/vLWzD7fP5QJ5Y+HJ8CPjqN9h8Ph2BUpWAP3Vx+NgxegJohVsYaykc56wVtuGpQfAs/xfTRjbL2/eSWAvly1feBCmTocDoeWQr1QCF40uvmMsfu4XeMBXOb/fRm82A8gon7wAhJd6kdnC5gGYJC/NLwa3kq18YX0zeFwOFo6hXqhHA0vzsBceBEHAW+p6FR4S4X7wYszcT5jbAMRPQ4vdOwyv2wjY2ykX9cZ8Jb2VgB4kjGmCwTvcDgcuzxuIY/D4XA0U1pCSjWHw+HYJXEC3OFwOJopToA7HA5HM8UJcIfD4WimOAHucDgczRQnwB0Oh6OZ4gS4w+FwNFOcAHc4HI5myv8D9OrtTwHl3UIAAAAASUVORK5CYII=\n", + "text/plain": [ + "
    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# The code to plot the data as a time-series sequence:\n", + "\n", + "ammonia.plot(legend=False);" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE6CAYAAACSxCplAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAADhRklEQVR4nOz9eawlx3knCv4izzl336pu3VpYZJFV3CRLFCWLWmxZuyUvckuy/ObBM42GjV6Mbgwa/TAzaHum/Uc3enrgB7yZ10bj4TXs9ky7MYa6HzzaLNmytVHWZkmkJIqkKLJYZLH2ulV3388W88fJyIyM/CIyIpez3Bs/oOqcezIyIjIylm//GOccHh4eHh4eHh4eHh4eHoNFMOgOeHh4eHh4eHh4eHh4eHjmzMPDw8PDw8PDw8PDYyjgmTMPDw8PDw8PDw8PD48hgGfOPDw8PDw8PDw8PDw8hgCeOfPw8PDw8PDw8PDw8BgC1PvZ2IkTJ/gDDzzQzyY9PDw8PDw8PDw8PDyGBk8//fRdzvkSda2vzNkDDzyAp556qp9Nenh4eHh4eHh4eHh4DA0YY6/prnmzRg8PDw8PDw8PDw8PjyGAFXPGGFtgjP05Y+ynjLEXGGM/xxg7zhj7EmPsYvh5rOrOenh4eHh4eHh4eHh4HFbYas7+EMAXOeevA/A4gBcA/B6Ar3DOHwbwlfBvDw8PDw8PDw8PDw8PjxzI9DljjM0DeA+A3wYAznkTQJMx9jEA7wuL/SmAJwH8bhWd9PDw8PDw8PDw8PCoHq1WC9euXcP+/v6guzLymJiYwL333otGo2F9j01AkPMA7gD4/zDGHgfwNIB/AeAU5/xmWOYWgFPUzYyx3wHwOwBw7tw56455eHh4eHh4eHh4ePQX165dw+zsLB544AEwxgbdnZEF5xwrKyu4du0azp8/b32fjVljHcDPAvhfOedvAbADxYSRc84BcE3H/ohz/gTn/ImlJTJipIeHh4eHh4eHh4fHEGB/fx+Li4ueMSsIxhgWFxedNZA2zNk1ANc4598N//5z9Ji124yxM2HjZwAsO7Xs4eHh4eHh4eHh4TF08IxZOcgzjpnMGef8FoCrjLFHw58+COAnAD4H4LfC334LwGedW/fw8PDw8PDw8PDw8PAAYB+t8Z8D+DPG2I8BvBnA/wPAHwD4EGPsIoBfDP/28PDw8PDw8PDw8PAohM985jNgjOGnP/3poLsCAPiP//E/4r/8l/9SeTs2AUHAOf8RgCeISx8stTceHh4eHh4eHh4eHkcen/zkJ/ELv/AL+OQnP4l/82/+zaC7g3/6T/9pX9qx1Zx5eHgMAW5u7+NTL97EQbs76K54eHh4eHh4eFSC7e1tfPOb38Sf/Mmf4L/+1/8KAHjyySfx3ve+Fx/72Mdw4cIF/N7v/R7+7M/+DG9/+9vx2GOP4dKlSwCA3/7t38Y/+2f/DO985ztx4cIFPPnkk/iH//Af4vWvfz1++7d/O2rjk5/8JB577DG88Y1vxO/+bpwNbGZmBv/qX/0rPP7443jnO9+J27dvAwD+9b/+1/if/qf/CQDwx3/8x3jb296Gxx9/HL/xG7+B3d3d0p7dSnPm4eExHHhpdQcAsNlsYak+PuDeeHh4eHh4eBxmPLO8gY39dql1zk/U8fjJeWOZz372s/jlX/5lPPLII1hcXMTTTz/d688zz+CFF17A8ePHceHCBfzjf/yP8b3vfQ9/+Id/iP/wH/4D/v2///cAgLW1NXznO9/B5z73OXz0ox/Ft771Lfyn//Sf8La3vQ0/+tGPcPLkSfzu7/4unn76aRw7dgwf/vCH8ZnPfAYf//jHsbOzg3e+8534d//u3+Ff/st/iT/+4z/G7//+7yf694lPfAL/5J/8EwDA7//+7+NP/uRP8M//+T8vZXy85szDY4TQ5b2MFYGPouTh4eHh4eFxSPHJT34Sv/mbvwkA+M3f/E188pOfBAC87W1vw5kzZzA+Po4HH3wQH/7whwEAjz32GC5fvhzd//f+3t8DYwyPPfYYTp06hcceewxBEOANb3gDLl++jO9///t43/veh6WlJdTrdfz9v//38bd/+7cAgLGxMfzar/0aAOCtb31rol6B5557Du9+97vx2GOP4c/+7M/w/PPPl/bsXnPm4TFC8MyZh4eHh4eHR7+QpeGqAqurq/jqV7+KZ599FowxdDodMMbwkY98BOPjsdVQEATR30EQoN2ONXzy7+o97XYbjUZD236j0YhC4NdqtUS9Ar/927+Nz3zmM3j88cfxn//zf8aTTz5Z6JlleM2Zh8cIIeTNEHjezMPDw8PDw+MQ4s///M/xD/7BP8Brr72Gy5cv4+rVqzh//jy+8Y1vlNbG29/+dnz961/H3bt30el08MlPfhLvfe97re/f2trCmTNn0Gq18Gd/9mel9QvwzJmHx0hBaM7AB9sPDw8PDw8PD48q8MlPfhK//uu/nvjtN37jNyLTxjJw5swZ/MEf/AHe//734/HHH8db3/pWfOxjH7O+/9/+23+Ld7zjHXjXu96F173udaX1CwAY5/2j8p544gn+1FNP9a09D4/Dhi9eWsZuu4MP3H8CCxN6lbyHh4eHh4eHRx688MILeP3rXz/obhwaUOPJGHuac06lKfOaMw+PUYLQnHnFmYeHh4fHMGN1r4ntZrlR/jw8jgI8c+bhMUKImLM+arw9PDw8PDxc8eSVFfzNq3cG3Q0Pj5GDZ848PEYIXc+TeXh4eHiMEHa89mwk4YXA5SDPOHrmzMNjhNCFN2v08PDw8Bgd7LW7g+6ChyMmJiawsrLiGbSC4JxjZWUFExMTTvf5PGceHiMEoTnz+6WHh4eHx2jAH1ijhnvvvRfXrl3DnTveLLUoJiYmcO+99zrd45kzD48RBPeHnYeHh4fHCMCfVqOHRqOB8+fPD7obRxberNHDYwThNWceHh4eHqMAf155eLjBM2celWB9v4Uf3d7w9soeHh4eHh4eHh4elvDMmUcl+PqVFbyyvouWDy9YCfyoenh4eAw/Wt0uPvXiTVzb3Bt0VwYGf155eLjBM2celaDjNWaVwmskPTw8PIYf280OAODF1e0B92Rw8D7SHh5u8MyZR6XwPEQ18MPq4eHhMfwQgrSAsQH3ZIDwB5aHhxM8c+ZRKbzErBr4UfXw8PAYfgjL/oDgzQ46Xey1O/3t0ADgzysPDzd45syjdMgmd35TrgZeI+nh4TGseGl1G1+57PMjAUDXoDn7y5dv468uLfe7S32HP648jipeXd/FpbUd5/t8njOP0tGRdmLPRFQFP7AeHh7DiefubA26C0MDwZwxpJmzI7OLH5kH9fBI4oe3NwAADx6bdrrPa848SkfSlNHvylXAM70eHh4ew49u+EmZNR4VePcGDw83eObMo3x4zVnl8MPq4eHhMfywCQjio+96eHjI8MyZR+nwerNqMAhfvp1mGx2fq87Dw6NkrO41sdVsD7oblcMUEESgfQj32MR5dfgez+OQgHOO799Yw63t/UF3JQHPnI0oOOf4zEs3czkaVg3uNWeVIDGUfRjYLuf461fv4Klb65W35eHhcbTw5JUVfOnVwx80pGOhOWsdRuZM893DY5jAAVzd2se3r68NuisJeOZsRMHRk8j9eHlz0F1JQbYv97bm1aAfoyrohetbwyVR8vDw8BgVdMON1JTmrNXt6i+OKLxg1qNKXNvaw7Ml0L/yPG11qluHXccF4ZmzEcUwC9q8xKwaJDSS/WjPvz0PDw9HZPlPre03j5SPlZXmrHO4x+MovW+P/uB7N9ZxsQTLMZnO6VQ4T11Nlz1zNqIQm51JGgdgMAkuvVljJUhoJPswrv7dHS2s7jVxZ/dg0N3wGHG0E75GyU1kbb+Jr722gp+ubPe7WwOD4LtMxNah1JwlLGg8PKpBUca/X244njk7IhBbOZU7ReD61h7+6tJyJsH17WuruLq5V1rfvOasGiQ1Z35kPcrFk1dW8I2rq2gfQkLRo3+QtUDqLrXf7s2t1f1WH3uUxN3dA1xc7R9z2IkEqemzuh7+VqU51aDghXse/UBRbVe/6FXXc9UzZyOKSHNmKLO61zsA1zIOwls7B/j+zfWSeqZqePwOXRYSm0hfNGf+3R0liL3k9o7Xnnnkh4lYqoXMyCAjwP7t1VU828ck2cLnjBKoBSEFdhitGr2Q1qMfaBZcPEnNmTdr9CiI6D0buDMhqKuaxu50eXLi9dk36qhAHcu9dsfZyTRve55RO/yYbNQAHM6w3h79gymEei2MJ98xmD4eNohnNT3mYbSE8FGbPfqBoibB8tqrUn/tmbMjAhvNmbhW9cb/N6/ewecu3or+ToZ8r7TpowXphDvodPFXl5bxfIUSYPnVVeko6zEciPcLD4982Gm2cSCZ6KlzSQTFkIVKh31viZgz6mL442EcgsPIcHoMDxqBMAku0axxiDRn9Yr64VExIp8zo+asd9EosSthMqpBR5LmDPb1dznHF19ZxmNLc7hvbrJwvw4b5JFcD01VV/eb1bXnJZ9HEv5de+TFX6fylnFQIkTZrLHV5agPQEzc5dwYQbG0doRZo1FzdviQlw7w8LBBPWBodTmaRTVnfaJzXIVQXnM2oog1Z/rDRVzpt6txwqzF4b5mp4v9drdU/7fDBHksNw/aAIDZsUZfWvRHq4eHhytUekScDTKhMigz2ipNwmXEgv10e+KXQ2naSRC9nS7Hj25vYH8QUaQ9DhUaocNm0WA6/TJrdIVnzkYUNudZ7HPW340/b+AK7+Nkhjwku+HhNlmhyFmVKG032/69HAF4KbdHWdDNJNkSaa/VyQxaVQX6FYRDMIFHbeukHvfuXhOvrO/i6Vsbfe+Px+FCXZg1FhTu9CsgiGvNnjkbUQgCyuxzlm2yIU+Y0iSJOQOC9DvJ8uhBL3mturXNZgt/8+odvNjHENQeg8FRIyI9qoM6lcTfslnjN6+t4muv3e274KdfmjOufJJlDtGa63KOZ5c3Sd9D4Se07CPCehREFFwoJ3O2tt/C5y/eitJ7ABXTnY6L3PucjSii90zwX3d2D7B50I40Z6a5K8+XZqeLiXqteN8S9dtPyFSUr+rdAUYK1FD2izkTPm7CnNLDw8MjEym7xt4HxRh1OVDr457f7ZM5Zaw507d3iHgz3N45wMW1HdzZk/yh6Wng4TEwXFrbQbPLcWtnP/qtSiGJ15wdEYhzhTrLvnF1Fc8sbyKACAhiNy2KnlWinaQjsMP9ie9++1ZBR/uqUA0v1b0XSpfKYN49hhORjyrn2Gp6JtyjOHSaM2rXavdZfdSvKJGiGaPm7BCdd8IXaFfaQ8TzHZ6n9Bg04nXFcXvnADe29s03KBBa3KSGt6iJJMdui/an9MzZEUFs1mgICCJ8zoz16P/KwvWtfXzh5dvR34K5M+W5MUEu61MtpUENSb80ZyIi58Qgwqp59BXP3dnCl169gx3PoHkURJo50+9Y/U5M3a/muoTQUsVhMmsMaV40pQGOA5/0vz8ehxucA9+6toq/u7HmdF+j1qNlmhJzVnRPeHF1B198ZRk7zTZW9pr40W3Jt9Kxbm/WOKKwSUItYN4Q8zFSAPCj2xsJqUOHc9SUDjmF0i/Ql6MASgNaqRpecdoHgFofQk97DBbite+1O5ge80eER3647E/90mQFrHd+Vt2e2K9joSVRRvk8DKCes9MVGoXD9KQew4C8M2os1PAeyD5nBfeEtTC10fpBC9+9sZ645lqzP3lHFEIaJ5PKB+0uXl7fSZU1MUhFgnComdmpZJv5A4L4TVxFvzVnMmSnWY+jAa+99igbJtqnX5qzgDF0Oa88IMjLazt49s4WJkNTcOpM4wbGbVTRJZ7zhZVtvLCyjV+49/gAeuThkYYIKNIkAtfkxVS41inTRlea1jNnIXZbHTCGaCMddojNXGbOfnh7HTe201GQqtr41bOUSraZP5R+/n4dRnDOyZ2jSiZWrjtivP17ObxQlKL9imbncXih7k+mGVW1Juva5h5mx+uRL0fV7b2yvgsAUU4vWnPGE5+2+NKry2h2OD7y0KlinawApmGtypf1oNPFeM2b3B8lxKayxdaxnMS66JYw2TAwZ1WYNTLGLgPYAtAB0OacP8EYOw7gvwF4AMBlAP8959zN6HOI8MVXlgEAn3j0zIB7YofI50wiqA6UZHxWtu6a73kQa87y1ZRMXu0JQ4H1/Ra++tpdvGlpLnWtX2aNsfmNfy9HBV5z5uECkkhyMWuseMJ97+Y6AIREPEe3YmMAcR4ypt+n82rOtprDm8TZ9ChVRPtd2Wvi61dW8I57FnB2drL0+j2GE1QAOqf7wzubnfLoziAkyDdLEEK4iBrezzl/M+f8ifDv3wPwFc75wwC+Ev7t0SfE51jMnamJ0jvRxm8wa5S/F6T0O8RB4xZKP/7uCcMYQtr47J3NvrZLzQ3/Wg4vVG9CrznzcIGN2bXpPOinzxlQ/fwWzGbkc0aUOYw+Z6Zx3WyWn2xcmNy/tJp26fDw0IGapoXpzvD+bUJ44lp1ET3wxwD8afj9TwF8vEBdHo4Qh5xMUKmHm/jbKCAs8YCiNmUnnzM5IEgJ/TksECFfycO9T5qzfrTnMVzwzJmHC2wUZ0azxj76nAHVM4Pq+lEZ034n3e4XTI+lWveUAZEbb22/fMbPY3gRmzWWWGfBymJtHKHZdqzaljnjAP6GMfY0Y+x3wt9Occ5vht9vASCNnxljv8MYe4ox9tSdO3fceneEkUUYiS1ONmtUDzfKB0xFqWaNXY7Ng1bCrtxlrsvdP6wHVx6YzVLTVy+ubuO7jmFlVey2OpGvRFYfPA4H1HfstdceLqADXvR+2262cWnNrNnol+ZMHJlVt9dRqjcxqofpvLMOQFbSM/tQVUcTRbXOBa2w6TrDT3Xt96651W4bEOQXOOfXGWMnAXyJMfbTRKOcc8YY2TLn/I8A/BEAPPHEE0O/A3HOwQYcLvz61h6+e2Mdv/jACcyNN8gyZLhajebMdlIU3Su7nOPLl+8mfttutbF50NI+R6L9RF3F+mLCbquDO7sHuH9+qrpGSoStz6DAs3e2CrcpfDDVhrzP2SGG8mq95szDBabp8vUrKzjodPH2exa0Zdp9kgYI7U2/hQ/q+BSJlDzMMAqDDde6nOPS2g4uLExHkfTs2jtMo+dhC+5I36buJ+5b329hutHEiamxnH0ytecGK80Z5/x6+LkM4NMA3g7gNmPsDACEn8v6GqrD51++hW9dWy2tvn5J70x4bWMPAG23KkCF0lcPN5sIe/mlDuk7qbF7aXUnxbDZ1JnVr4N2fofo71xfxdO3NhIhVFU0O118+dU72DwYAlOJnIddFV0YguXhURG85syjCEw+VSLtimlO9evsjcz9+zzBzZqzfvakWpgeJZHLVLl2ZXMPz97Zwour227tHaKx88iBnO+fuu3S+i7+9upK5r0re02su5rRlm3WyBibZozNiu8APgzgOQCfA/BbYbHfAvBZt6bLQbPDcXsnHT6+SH2DhmAaxgyhYaNQ+pKWTz3cIrNGU2M5pXdU2aI+A7ZmHrutDr5waRl3d5u52hFMrIk5W945wGazjRdW3A6KKpB3VMvUfMQhnz2OCrzmzMMFtIN9Mp+YaU71y+csaq/P85tzjq2DduLv6HsJEY6HBaZ3bAr61bE4l8k6nUp7HBZEkU4L3p8HX7+ygq++llY6GE16Hduw0ZydAvBNxtgzAL4H4Auc8y8C+AMAH2KMXQTwi+HffUUVG1OrAodVV4jNyWRdSSV6VCH4TONmKX+3GM+tZhtfv7JCjtN+wbGzzY8mfKEOKKdLCwimV5dY+Qe31nErZPirOvy6nOPm9r5ladNhp7/WKlHQUHQj9Bh+pDRn/m17OIAiTL722gq+cvkuWGjjYdJW9YtZEs30+6Rf3W/hS5fvRIErEmdvzjqHUbttNsPPZkhdH6nfQiTOObYrytfm4Y68rz/vrDHxCGVaqWX6nHHOXwHwOPH7CoAPOrZXKloV7Ey3dg7w09VtvP3MwsB8z4RNvI3ttqmHkfmGrerMAs/f2cLKXjNiXmTsFTA1/JtXlxNmnCYJhCk0sQ1EskqKudtptnE5NCuV2yobP7m7hZdWd/Du+45jaWrcWNZ82OnR6nYxXigga7qdYZTUepQEjST7sELkD3zPfcdxImMNemRDN1u2mm3Uw7PUaNbYp/k26L1su9nGsYlG4nzfaXbw1M11/Ozp+SiapA06nCPgGLifvAyzXxld7tnlTSlZt9t76fdbfHltB8/e2cL77z+BYxPZvvQe1SBvAvfo/pzrfyN3rj639kY6pfqBRvNRBM/f3cL1rX3sVVC3LVrd7EkX+ZyZtGsRc2ZnZmAzdeIcMelr+638Y6b6113d3Me1zT2ybJRcO+eubNKcqUxnVVI5EdHSSrtlKLLd7ODLr94hffBaVWdZHXLstzt9CzIwauhyjtW9pFmwut8MgYV3pVje7a31m9vlmcUfZRi3yvDcMGnHqpxuFCE2qK0hOr+kJ76718SVzT0sO7poXFzdxqdfulXIB7tsWNMb4ff9dgcX13ZwdatnSeL6WuQ6v35lJTMqaF7stjrYPGhhda+n+dypSHt2Z/cAT91c94LQDEQa8ISQo422Jd2Td3R3Wr33PkG4HRkF6Y4NjjZzFmo+qpAZudo9V4HNgzauahgUm/ccJ8G0nBUWxcRYU3Xu5zQzpPDqxi6+d3OdvFaUYYqYM4Np5nSjBqB8gmGn2cbafit6NzZRqUx9WD9oYbPZxrWt2ESyFnLsZZo1Rn0ZofPiLy8tWzn3HkU8f2cLT15ZwYYU8EZ9tcMQHKkfOBpPWT1MwkTTuRHd3+cXMSifyjiKsv6aLV7d2AUA7LSGhzlzNWtcV4Juub4W+T2u7DXxzPKmWwWW+OIry/jy5buRQLyq2fONq6u4srnn96UMiPGR18xfv3qn1ACBFAQzSClG8lo5UbANpT+UOLAInJEXFHN2a2cfP727jfeeW+yLGYHYZO6bm0xds9Ee2Wz0rnbvzJDAs19aisisseDh2iQ0Z2qdZR/gf/1qL9fficleqFabiMG6HgSMlv7WA4ZOh+fWnJnGddQODOeISkcEgiA6aHcBYdF3xMwaPcqFjTmbWXNW3Xyjah4Ucya2ZTqAivneG1v7uLQea4Zi7cHwrFXT+ZEwaww/1/eTGihnzZlj+aIQNFDVmi3OUY3m4ZBBPadW9uzO/LzvzxgcrcQ5MeKaM8Gc5ZvBXc7x1M31RLh0UROVyf4HNzewut8q5FtVFmwCNMRMjKGexPfsiRWbNQ7OTKRrWhwWEM9pCnggrlT1TIJIqdkw+ZoXKAsl5BL1oJjm7LCZs/10ZXsoAv0ME8SsMwlnhong8xh+mGaLjf9zldMtDyNUrD195XGKm3SZLIHq391Ywx0iSvEwyVGsDXXCckIQXsvJ9Ijy/eJjIi1wn9rzoFFUMGE2QcwmmqkiNmaN7W4Xn3rxJq5v0VZxAiPNnMVBMfIty71WB1c29xJ5uMaiYBHppTc91jN1M+Uf6xdsGBST+YQtVveaCS1iFHWLPOz6pDmzSRFgADctLmXBV/VMLvXqSo4FAVkoYs5yas7MpkdDRAUYIPfzJ3e38OOKTF0GjS7nTn4q7S7H926sYTs0gzKGNh+Rd+0xHLDZG2wjB5eNfmvObPK5kX1y5LIo065Bw/bUSScRzneu9/vRI7PGitutUpN8GCDGJ+/ctw1ck243X52iv8IE+YW75jRNo82cVVCnIGypYCPTjZ4VaL/tu6lDL/rJRFx1k5teVt1UVU9eWcE3JL8ds+asT8yZ+JKzuXjoiHGNriU/y0YZJmOyvxq1kedtwdS3UTkuVO3fYQ2O8uLKNr55bRV3du0YtBtbe7i2tY/dcA8zac6GiN4rFZxzfOPqSl8DgXS6fGQEG3lh83RGs8ZKx6e/lh42wbyoEs6EZkHtQRWwfY/qWWtj6UOh3zt7EAqoq2aehuiVDiUiwUTOCWAaXhurqiyMaXxWYqsVc02jzZwVnL3U3eI3Ksz6RL03XP3OcUEdIrJZ44+XN/Gd62knSNeohmnirPeLHDo08jkjOtU3s8aiGkGe+EheUjRmZR16F1e3E/5PLlpNXZksfXHerpsJqHx19hvqexuRbjtDCIp2LQVGa/sG5/uUv2Whrg0tlnebuLPbxMpeviT2rmh2uvjsxVu4uFpNFLlhgc3ekFciXRS0WWN1LapVy3t1XrNGSsAkSg/TWrXtSoreiD4dtYd9PpT6pznzMMJSMNHpcmdhuEmWyw20m/jtgfkpvPnUvHJf7zP2WTT3YbSZs/Azb2wOM3Guv6/fUnhq8kVOibyXd4OSAtswAK7XTKH085rDuW6ucZ6znOpsg/mEetiV8aY553j2zlYio7yFUlO6n/5dnvemZ3HFoEyPyoRK5AwT8VImagZhCYV0jhZOfBN/H85Bcw1XXhQiIuYN66Tzowmb2ZK1t1RFaFO1dnl17anLUbZyEJJ+qmVTUC3ax6U8IeJWs41PvXgzlWLDFbZ9iYhcrv7u1p7DUVoqqtZWHnZNe1FEmrOMcfrLS7fx+Zdvp+83Ba6x0Zxp6PJGwPCzp+cxXqfZK8rfm8JoM2dF5y7JYOS6rVKQmjPl03SfOPRIAk76yWYzEBOLWhCmzcpsg5/ZLNlO3vcfmywSi0th/MrYgKlnL8MfUJbH0t3MV/ugIqqVCdV347Cec8Lt0NYcSi0n/5lizg7pmPXbP0fkNJwdi4MjP/naXbwWhkE/LLA5P0xChO1mG59+6Vamo3weUK3e3TvAp1+6hRUiwEYRLO8c4PZOkhGXE0t3QuEuNVy6IE53dg+wuq/vZxnCp5uh8OD6Vn+ECOpZG/3uXE9/17NstVRpOxXXP+qwZc5aXZ4os9/u4Guv3cVdRQgh63hsUn5kkVyqzkil2Q+55qzY9KX9dAThbyDc+7xqKC4+7kN2ZzgHXl3fxWcv3kqZP3HN92QbMYRKlpq8JibLxgbfFq7l7+4eJO4xMbYxUxb+XcK7blNjRSQa55wbtaQCZ2cn8PrFmerMGk3qQqnO/XZnqHwdZKQ37OHsZ1HUDKktbGC6a1QYcVf0e86KAFJTYe5EAFjdb+HpWxt97ccwwDT2wl3g0loFTCspTOx9Xi2ZGfzmtVU8pbxbOaC0OA+o9aVLoPuNq6v49rW11O8iQFeHc+y2OrimyYtqA6G1s8m9aYIto6gjUp2jNTqVLo4oGFvFDQ/p0To8EFZujpKJ5+9sYW2/lbIikQUoecyvb23vo8N5ZNGkBipUeYtD7nNW8H7iN1nbZFO+HyieuJPjSrhpm5iz9F3pq3EyUZt2Y5jKuzNnvU+buzYPWvjbq6uJaH0myYX6WxmEHCUtpmr96mt38dmXbmX26Y1Ls3j9iVnFrNGuDRvYmDW2ul385aXlyhJ+FoU65If1nIvNGu3Kp6R5stAiRSQV6NgQIz03qn1QkXqlX/mRBoWiPmeCKditIFWNqWv7fUiNI6dMEUwQqTlzPFgFH9Xpcnz58h187+Z67vklzql6wRyuavu62nTuBa6977fJuk7jV3o7ldY++og1Z273UZHYgaQAxUz3xfP2R7c38L0ba1jZa+Lb19dweWMvYspSy0ihWw+55qzg/Qbi3KRVGZQaPdmX5KfxfsSTrd3tRmY2We2Y2i1T2+XO6Nm/B1FC9jOxceiMy7r1jYItc71x0LZ6n9Hi19RjMtu0gdmssQdBYNzokwmMK46Mz1kQS863m208d2fT6b1zw1+HM75l/zVnLlYOowwbYtW0twiayTa4jQtMPdsjIjOXDVkqb6Ix8s7NNucx05erBin3Zk7N2d3dAzx9az21b+h4Pd04OPucVbyeb27vJ3Lb2sQlKAOHVYhTFmLmzG2cdPORJTRn2TRbu8vxyvourm3tY8ciSKDKlGX1up5xfahRxeQ1+jM5aGzKBDlRHHyWOI83km9fXwMAfOLRM+E1SXKu3kfVFX66LghT8SKas7X9FsZqLEpzoEIsN/kAjhcJoW1SifoS3rbJyTsPxDMxzS7jwrhTML7b8Fq/En7mRSpaY4694rk7m7i728T77j9RVrdKh2zW+J3rq9hqdjBZr4Ex4MLCdOb98tRME0mHkzhILcfKHzN5phzOUbV7rkHl1TNVvVciM6hbM1Tak3IEf71PORcp58i1QVNmjc/f3cLl9V185KFTmfd/98Y6DjpdnJ4eT/wegJHn6G67g9lONzVmrsNS9Xr6zvU1TNZjk2RbzUdRHNZ9oig459hrd63Gn7Ra0tzHEpozQ/tUO9KPOvpMpcsOt1mj+Mw5i03Mh8lMrNnp4m9eXU6ERq8SxoAgls+uHopNUrWbvUmKjdSV4TAxObm1cBz42mt38dev3NGWFUXlg9+sHVXbcuoaiaLRD1NliIOXJ773/lrbb+EzL91MSP1sYLLhHpUDIxX4IkcdL63uYLVPazwvmGTW1AxPiGeWN/Gj25ukuZbKz3eJdaH7+7Cg75oz9fOQjmtRs8ZBoUy9mY7BlJVRnPcCfAjzqsQ1qn9Gq5PeNSovqyvEmS4ThS+ubGvNwFQIn8pNxZdHp6n43o11fOly+uzOG725Coi+JDVn4ac3axwIXlzdxhdfWbYS5rhEVg/gpjmTITOBsc+ZeqO43044M9rMWcHZ6+x4Gha/u9fEdrOD5+9uFeuAJeggEfpr6bI8ZZcrTBuTRL16o17q4Jo3wqw5M92XvuiS54xemvHiUBdvFRuizSZiTPysseHX2vKHxe/sNtHl7qHDTb0tqpXrF9Q9+bATxF3OU/PslsV7NwsODuegDc6skbp2eMa4qOasSpjGuUwiqKlxgJF9zjqc4xtXV/HdG2th+2Y1l8kPTVyRhaV5123RCMIiGqnqMxgYfNj2CQ2Iu+asujlFMsslaj6NbR+ivaFMXNu0d6WglAi6UQ2kjcCsOUtfTAZ9o33OXKOSjjZzpnyWWrdBWxUYIhYWb5diRqhyvU8byUDPrDFZiSrd6hXU/6kyRK4mKDbSPyDplEl0KSyvv6aCNF0MP3daHfzFxdu4tLYjlbeo1BHm3DWh5NMhzT3lcJrwOVPKu0oWLawah57ZSWvOhrzDBdHh6VQZNlGsTGaNw6jlKAP9fi418qs8F6lIrira3V5Ap2En1qxC6Q+KOTNc05mHu+B7N9bwuYu3NBYpaiQ4rlyLv1PDo4vgqCuTd4hNgUpsMF7T5HXKGN4U0VrieVUUVN1xDlSvORsEXGglMnG7zvTY0edMho3mLOJXLGmo0WbOIvVgvmlsoyGgfhUvsWxfIh3oicLDa9n3c6kOcRC0OulcK2pV8t+xszFP/G0Lc7TG+LsqZaM3R/v3To5c+GOz05PwvSBpQKsg4m3MGk0Rw9S7qVCtiX6nmGy3ZzKvC47n727h4tp2ZlkZ1zb38KkXb/YtgXva56wvzfYdkbCkm37Lprkv0OEcf3d9DXd201q2QzpkAzBrTO6dcvNti1Bjz93ZxFM313Gn5HxcZcNmVIeR4S8YOR4AcG1rH+0u1zJnSc2Zci3hj5aGzVlrErLYIsq/lvN+3X31IB3AynSf83lFWviUM9GoWjoFmVjrtsP6Nw5a+P7N9aFNW9Nv6NYYBSpvoG4UTQKULMhCJ1GLjpZVzwMdRps5Uz6d7zdqCPQvVSaIygatKbKfYLpKRR1prRP1Lfxb+kENlGIjAZW1YLZ5ztQNnJJOuSwckwY0cqaWTUIq2P9M8+TubhMvrmxnaNeSf8cOp5ryhSWR5r7c2t7H7W1BzMdl1/db+ObVFfJ5X1rtMXPbFlGNykAZPmejAPGu8mokmp0ubmzv4xtXV7V1HzaoR3vVT2ky27JpW0iKXYiSQcDO52wwc6pfzW636P1NZsBUjXYtsZGnO2rDnCXzZWYWJxHlX4toheJMEhA/X00XwEpdH479z/aed8PGQQvr+y38zavLOJCEpqL3HYUWqgqi+qduruPq5h5t7XQE4TLspFmjpoKk5sytfYrmyRJGZM2fEY/WWLiGXO11CxJENm3IMJk1WtVJ+JyRjG2q0jTj5sKYLkw0sLLXC6iQN8+ZaTxshoAM7GKwra9ivzWZLl0MTSrfde9x6/q0Dqchitvwm9HpSvOJA6t7TazsNfHqxi62mx1sHLRwfHIscU89NOjun7Y5+fewMBqtThddDozXy5GLRevRco9QfyqeQ3H00PdUKIrGjBPXTAikiJzDDKtQ+s4WF70Q8WMakzlbmPpWxqgGrLfniITjKlSfs8Q1WXNGdMZdc5bviYRRQxc9gUAnIbTkmeafcqtiPGTUAkZqilN7Uk66TEaHc6Ovmw53dg8Sgqrr27F/U8BYwny88oAg4YP121LrMMEl/6ut5ow6PyjNWdrnTNxv7kfUn4zrQw1dEkP7+/Ndq5I5o/tiP8Ho++1+TbFmPP3dxNioeOT4DFmXCrPfS/pGW7PGv7p0Gz+8tSH1IbvvlaRnsBB4HziYNSIrz5l6v7ME1HANvXkv+yD+6PYGnr2zpSVMgNi0pV8HjEoEDuJY45xjdS9pivaFS7fxhUu3S2xE+Uxcyl7jxkA0+Xs11Oi39iYdut+wWAkI2n3YaTObYXV9hO/fWMfnXy6+Xqre80Wo9R2N5qxR0xN+MuNG9cTG58yUEscVP17exBdevp3w7bEShEqFZEJXmN/rmCV1+J19pEnrGrc6BF5Z2038LQdjEetQCFurWI/UXIwFm8OtOR9GkAJKnYZX4oZk2n6/3cGVjXheUHdTPmcp8bkD7QyMOnPGk59577e9piYfrMassbyNJqrTIFVXr13Z3IsYBYq8denKmZkJvPu+nkbINiCIrp/J8r3PLHeNvXYX21IOG1VyQbZnrjIXbJh4NcJVEsn7qTwaXFvafX0Ypcyco8uT76xpwQj1mzkbBp+zF1a28eSVFaztxwxa2Y9vIsnIppSBMK2hw+rj0G8mRxUKmdYqhVqFAajKRBW9E5qLIs9+Y2sflxSiW0YZ/RbBMHQJrRtSKDiTzxkFK82Z9L2saSLnf7NjvGVGRmLOwq965WexDlPDk3e+iLNa9c3v/RZqsCOfs7iNjYMW6bfrisTeEP7R6PPZeZhAjZhuFHVmt9+6toqnbm1EZuWkdjvxoy5aY/hpOTdH26yR+JbvfuqahdS5CrNG4jfS56xg2xShsNPq4Kcr21iaGsOp6fGEJiQvIyw2NNNtruG8Y/85t85wDoBlSVGdqiTx/ZvrWNlr4pcvnARgF5Ft15AINeVzlhX9SrnBVd5mozlznX9C+te3gCCpv/O/WBuTHgprYY60/RJyEOlgtB6ghDLK36Y9rIzd7crGLmoBw9nZyRJqKweDynPW4RzXNvewKJn82nSlyujAZULsCY8tzYIxhh8vb5ZWd6fLEaihfC3xd2HIehkMdsI6W4jtQbcv1g0MmMzI2Lo1pMuU8RDJP/c7smCTpwsokHtAvSqtz5n6t6swkbKuKcjI1BiLTGp17clX/u76GnZaHXzogSXMjucnqxP5WMMWxNwxpVTwoCHPjb+4eAuvX5y1MmuUp9SW4idP0aQJzZnyCfTmE0VzmzDimjMhwaiibuI35e9K1orl5uzStG1ZIRk4aHfx3J0tXCZUua6PLCaoWXMWf7cZ48is1DXXmuEp4g3Xrc47uwepxXt1cy/BbNkcFLstPQGv3k3ZNJvMWpzNGjOuJ3zOQB/ZL6/tJBJ39lv6pz5zkT0i762iD3l8H+zbMFyzuN8lv14ePHVrA9+9sV64njKR8kfsU3uvru/iezfXlX01u3VB11sEdhwoRPfumZnA2dmJUupUTcnKgo5RKArdcmoYmLN6wgKCY7fVSZyXVrlM5TO0pLGShUpWmjOpTNKssQfrgCCOK5IUaDvVkIboqxyEJ6JlxCfR8J29YtozihaKrU68WWMRWqbV5fjxnU1yMjPo56ca44DqQcLnTMQEkOqrB7FWwPYRRps5Uz6d73eVGvfhcCQ3mio0dNGEi+sWhDMl5YuljG59iaW++jKyVqPGmNaX6srGLr722l3JrNGtL50u10ZGdJWi3t45wEur2/jG1VV86dU7xrI27+9AllJadkIeJ5NZi+vsyTJBzapvp9XBj5c38Z3rscS61nfmbPB1iduqY82ktkgBDiWESP5tWkOHVVCbmt8VP2fMpPf+XpbMn2yaHhnNWfjJWPE5rwo28roQ6O5rSDZ2ZY6qbu9uGAKayGaNnS7HF19Zxg9kX2nHdst6Hlm4ZtUH6XuNNGvUac6KrUcXv6LMusJPQVgnzqvI95MnPgHJQqjg4CfeY/i138G0DgNcg74FLJmEmrzPoAyi3k1CcxbImjO79zjazFnRhRB+2h4k/VgatsxZ8WdXxAGIJxi5iaaLW0FUZdwspUu1gCWj5kgXn7q1gbX9ViotgC0ure/i+btb2CBC0nLH5/vWtVU8d2cru6BlncbQrco1cXAk8pwlCiVvKFNzZnVAhO0122l7/b4xZ6ku5W83r0mkaLJCxZlxw7fR/h/NgCDK3xU/qahd+B2thhFsAbt9vGqfs5+ubOFTL94sXE/cvfImfNFIdTpf3qmGxJyVOK5UNxmyzBql+8PPa1t70W82/UsI5zJL22GP8NemcGt7H6t7zUQ/g8TzOobSd+xnmesidt/ofZHN8GMrIKrdNMOWq33iu+Dr+8mcferFm3juTnlmyWXBdgh46ot0jVqjjGFxQoow7TjU8rthhM9ZnTGzCwKB0WbOooctNmlJXoRiiPqiOku3UdSs0dic9N2Ya0uMtWPDgpEwKeTlKuuMJezVO12OzYNWoryQ9rtqzkyZ5XXPZ824h/bpeRlps+STriBp1qgv7TpXTOVd8odx4qjpl2mG+h6KtJr3vI0Sv0NIVcvfP0SV9ud2smDWGhqWFARlot/BYlRiTi9GoRGbNVbT0Z/cDRPKFyYse/f3NGfFGDTRk+jZcxKm+zrmLIyuKLDX7pRC/FKMPmNmM0pKyJYwb7Poljync79H5bakWaO+zm9fX8OTV1YSv8lneGTWqNWcFQN1v02dnS7H5Y1d5ewNxz/8u2mwJabeUZnB21RNTb+YM8GQvrS605f2XGBLg1N7bVxHGgGAe+cm8f77T2jbURl3qj0gpssCaV3raDUTRpw5Cz/z7kXhffPjDW3dVPkqQTWx1+7gq5fvJvyYCh+kxO2CcKYOQpOE3gQxwawj1AQsYav7zPImvnz5bkKK14kOMAMzSVwzHfCxXbE98yHjqZvr+NzFW2TwB5sxK2qWaLzfcaqY3pUNkSRKUIfXoMwai4zB1c29KLiHUx3iS4mh0DlPCisiYsJSgKOOQ1afDhtrxgmz3Kqf0SzYsm+9arlGYSI5rIChuLZY1BVpzvKaqWlum2zUEmX+6tIyvnF1hS7sAGo9BYwZIzLKTDfpY23Rbhm0iboyksEp3PqgmjUy6InNlLDEcSaSgnSLKl5e28EPbm3gtU1ZS5nskyxMNO0b4vvtnQN86sWbCXrFBSYhrSrYrCJaOBDn6iuaW7AK2D5yRM+Rc4MSoPTm68xYLXUtuk/5zK5T+o7e+9o6aB8RzVlRKUU4TG86OReFfNehqoWggmrltY09rB+0cHF1u/z2pAYF4UxJaGOpgbk+VSLJLGyx5Uv1gCU0mYIolu3fxbtwNckySZ7X91vYabZzz6mrW72Qz5Sk1u5gkw5oy+VrGxCkjKSeAinmiqe1i+aE405dyY00k+3WsCwwfWZ5E1977a5zH+J8fL2/y4hU+fStDXz58t2UFpjW9KeRIjAyNWeOHRxykExsxQ8ZEXyWpqc69MvnbG2/iW9fW80RcKkHxorqzWIUNYfW3SWHthdl8ghgUu0R7yiAWXO231ajImbXmSqTKJ9ZPLMOQNXG2dwfFwoi03vxN7QRb1PWGK6CNMvf0mV6pbalgF6xsKv3KUdIVAN7Jc7s8OvdMK/l7Zxh9eUWuhx4ZX0n6oN8Jm3st/DZi7dwXTJ/dcF2s42XNZoxMR4zDT2jMijYzg1XzVkUxMNQxmSWKJ/GVLRGMIbl3Sa+dPmONeN+KELpFz2zagHD8fGxxG9ynSt7TXz9ygpp/lg6iGdp1Bg6bZ6IHFRYyknUI4hHs3mjGeP1IGHnb5rsVKX1ICCj28l9EpuUMQw4ccn0XN+8tgoAmB1LLwmXUOpNggC3M0vRl9fdnzSHEZ80Abi618Ruq4N757JDmpu6a2PW2ImYEoph7A+BmeIhHZstgxCWpbBfvLSM8wtTheu8Ekp5u10OHnCJ8Kfa5/jejTU0agHecmqerC+Lce+Co9aXkCb9AckgVdymyZHcjojsoWrmjHMADHjuzhbu7DZxZ+8Ap6ftoy6K52TRfwX6gl5nhO9SJ6dgQyeUYawnCGx3ubPghmxHWuvptsyaMyFoGa8FtGDUtS+O5aP7lBuTe6gbg1gLGJamxvDQsWlcWtsxRqwtKvjOq5GeCAXJVFRKqkuq9jbJSCWvmVLjmCDXc2N7H1clrZ58bTUUJNzeOciVpuRb11ax0+rg3PxkSkMmEqlPDyNzZm3WKMpTdaQhTBAZksqEBD0V/Ua1F/9ITXX5pz1jTlu5TwNAu+ueJ4mCHJHl2uZegnkBgKdvrePlNb3drGyGIX+KOgWWd3pSkKqlrvvtDjlxhJTvoEzmLOp3XJOQ0FB177Ta2DhoZT6vOi+z8r/02ouv1ZWAIMJ2nWKsXPOj2ZnkFRvZVs5411SUpuhvzT3JaI0GSREHnryygu/dXI8SjBv7YhgDl5w7eSWaZUBtx7XdMvx7RA377Q522x08f9cugIwN9jtdfPqlWxGzpltf17b28ep6OiWGQKZZY79eWJ9A7+EVtynaIa5ZaSQiYVRZPdK0E/ZQmPmvO2qSRPfyRGscVwjE2Kyx91m2WSMD8NGHT+OR49MlmQT2QJs1ZmnOejNkqlHLJPxc+uKK9N6gP5MoyORXAODd9y3izMwEgN6ZrhsBFz9mCl3wlODcpr8ivYGsuTSJANICPy5d630X8zUvcyY3sZ3KryX3pfdX3jQtsWYw/cTiPQZ90Ua4wZmPt9zvdcMot7d+0MLKXlOj3U7UFtbJlF96sKUt+q4545zjcxdv4cLCFN6skeZa1xV+djjH926uY2lqDO++bzG6/trGHoA9PHRs2ng/tW1QKmtdHWVM4bX9Jr722gp+5sSMtozsnFpWEmoZggGi6ha5ipamxlLXZKibRSSJsOyLatYYMIYO52QgCROxQr0zm0Whk27bvmNqs3OPthW/h6dvbaTyqAlQTqZUUwmfhsyeFCdWqWiatmaxZaHo+ihHc9arY6+kJNTyM93a7pnRCoFNFtOx3Wzjtc291LhkmzUeLu6MDNhTscjAVjClL9ND5Zqz8FNI0jeJqLbG+yNhZ/JErbFsxnKyUSOFj4Kpyatd0Qu2Ykl5GaOaFnWKdnpnmClao3juyXoNGwdphtjZzC83I5u8z5R/FACeXd6MhENAMh0MU3zOAsYSpmNyfeq7dX/eXv0JZtLyPsA+8Enqful7RznzbLUjuj6p/erVnWYG8zJnjSDAHrpodjimlZALVCTvYYHt+zHlre3w9Hkc5yZD4j75fkEDn54eT7cn15XRN9u9rO/MmejXK+u7xZkz5Rl1RGwmpBfDiXmZlfepjCSzB+FClKXcavuqZtCEgNlJGWhJnb58lkSIMeCDD5yIysWas+y+AD2zQtn2vxYwtLqclJy6JtB1CWaRrAuJFWeaD5TmzO6gSB8srS5PHH4mmNT4if7azAmrFiUo078T9UV+JrHZ9QfFGczifRCrNVoLKPb88r3CtyFqK+OBhRlLqo8ZHdo4aGN1YxevW5y17ebQYvOgha8SvoNV8Tz77Q4ub+yWMJcE4Vc1Eyk+863VWNiZRC0UsJkwVQ+wTtRVOAWHnjvrfZSkHNARjYIpMTXz7vuO4+rmPrqcVxqZOQtqO1nMzkXFKklmrtVgCDXJ1rUeMLz+xCza3S5+cnc7xbjnEZaYNGfLOwdodXkqMbooctDpotnpohEwp71AXi/q+etCqyX7FHdAaPTGAoZmlyf6JsYsr3JLCAuofppoiUGi0+XW+0AkLCGKNzs8MmkWCJQVSvEBat06kGaN0m+2mrO+mzWWKaVMRReS/ZJsCHHZRh7JDdSeOctsxgriEKKk7BRzlvV+hfRTt3ZNk8/0vBSBB8SbBEPPLKZnziD7nJkYqd7nO+5ZwIWFqZTmDADaBNNjfC/EbzamMTbrxrRBkJqz7CoT8+ivLi3jJ3e3MhexLJ3k6JkKU0SC3F9XRtGidKpS4ThNaiH7tOMXzV2lOn/ngRhH4YM5Xi+23cpjpzoVZ61j3VzKespvXlvtEVCHIAHqT+5u95X4/f7Ndfzk7rax/laH49Mv3sT1rT2ttF28un69gtx8kDhPWZIYsTGPmlQCSakbRV4zY63PmfJZFWqsR/iZfJaXpsbxs6f1gmrnPJW535/yt6YPL9zdijT3Mg7kvJZKGHHZrJEBeOjYNGbH0lGy86AnO1XHN+7vN6+t4rs31rT3dzjH51++jW9fX3PaC6oQOJJy1PDRStWchfQhxZwNq7XEX7+6jK8owrWsp9c9SUPZk9SAINH9GhrGFMmS6pM8P20ZzIFpzsqAOnDyBk4FZkjdH34mLUPTXIs5QXA5D2SqRbTvYnc/FgTYRxc1RUJg114OyRUYukgHznDRnJ2engBjSZ8z8Y16n64BQfL6nAnndAFTri5Sc2bx7GqRn65s41xG8I6EMIH3tNHPLKcTRybHKf5+c3sfAWM4pajp5dJZUm9O9J3M58TlO6pH0WVZhs9ZZOISMlKNcE3KeGVtB6v7LTxxZsFY183tfbQcfU5bJW626hoYRehyXlVFjOgEWTLW9pvgiE1mfuHe4zhpWI9lg/J1zZvTMn2e9mDyt4rKKMQSVz5zmzVqbit7Jmvbkcz5Hjk+jbX9Fu7sNjVl6TpcdTB554tRgCp9f2GFjhotl5Gf5dzcFJqdbmyyGV5Uc6FF79x13nHC58zyPhm3dw6cgmB0ObDTbOMVwtopL0wCTflS7OOW16xRrzlT196wgEpTJFu7yVD3MhX1IIC8slS61fTs7W4XM40a2FgNK3vuEV5tmbP+a85KPAjVVyU/c8tCrRwdJoSJg/xSTYRaWalnskwnVWSNouDs9YtXL/XJ43geaCQPdj5nscS1V1dcCxXSNr5mqDOnWSOloVN/MRG9tOYs35zPWsSJgCC8l1CTgvzcYlhanS6+c30N3wqjVMqQh84m1UmaObMvWxUGcbB0lEBH4psw96Hm5I8Uvw0dvnN9DU/d2rDuS52x5MFbcEAOgeIscbjrrCTKhI1pk8rAvUSkS6mSWEr6FXHlN7cW4/M0eQqohLP891SDjgX66voulncOojVTtlWjzqwxt7+W4Zo4z964NJcShBFdSvXFWXNWwUxxHRb5Wc7OTuD8wlRKWynPE9mqwLX3HGkNUh6BKOAWyIMD+NurqynzziKgLD7UJPbyb65mjRv7LXzqxZuRP6makiXRzpBq0GSo5ogCWQIm1QdUzL4Uk0ZUcNDpgjHgPfctkim4KC25/JNtSp2+M2dl5tE0bVoieIY8TAftTnIyRrezVFlKSuHaBxeYqtFFiawbpCZi8ukckQ86Xfzg1rpRC+QCMSHVLqkOljaQuyye3YbZlpHXrJEso/xkYvKaOTVnZF+ymLOEMEFPwFDChWVDHha5tI3ZhEmDrdbZr/2+ioA5We199uIt/FjSXIo+RM7ihXqktJdxPQhY4hBwfR4doTgqaHW7KR9k2WxQ1tRUxXjaSEgFcybyQ5JBOHIS6TaQ+3jQ6eJvXl2ONBx51gBFeE8oJosyQfWe+xbx8UdOpwiaF1a28c1rq7HmLC/TpLlPDggiIz8TqGmHJc8z826avBqnJHHsS95nKFGoRppxGph0NVqnCzhP0x1XNvfwA40w6+5uE0/fWo+iIZKmhFbt8kxTZFfQ5Ed6Hoi54WrWeCuMPL4ZPjtt1ijaHX6Ix1eVEFkCrbRZo2I/ZxiDg063F/SIqaGPDP2UvttG9B6A5qw/7YhJ15B051+4tIwvvHw77kv4SQ2v3M9+JNU1+cjoNGcTFj4sOs3Zze0DXN7Yw+X1fEkMVcSaM2XSh5/GjZ8ny56YjCNCUpH/bFAmIaPWZKo5QRAT5n0uoBhnlvgu+5zpCRj5d/FNjOcYwbzLY2e3+SfbNUXEqzoyHt2jHPc7ViCIXFl7GfsK8cRnKcioioEWFGRBvG31vZfJWPYD3762ii+9eifxmzwa8r44SMZzJySSTHmwquydvB6vb+1ju9mJzO7yDIsFTU4I8PQkTizEL1ejpfMxyZ0oXtMQg2Kmb9hP1St5AzPknS+m+1zHn5rOMUOc/BugUik4tqeM3pXNPVze2CXrubS+g9c29nA99JvLeyaVuS67nPdSFZHX4jJyecA9oI16BuWxyhoEdGenWFvqfPvJ3S188+qK9llSmjPl/i7nYdj8NGSBVtZ+99jSbEq7diTMGk1VCR8lkSOMvF8MvcbEQcCsOTN20Rp5pFbjqhM1cY/p0AeS4W+LQLRDHbyAmbhTn++hY9N41729CR0fUG4DXaUZluldFdFWqKC0eIkoWAlVL9cGsaBCIpskS0nNWXY/1W6S64XTZatCv83whKlrXdpvhMClSzx7l3Os7tG+JzbIWg895syd0BTvOx39bBiPbD2EL4BOyy3vi4N8smY3m3GvUpIt16nzybOuiycJ7kePz+C95xZT5ZLMSvipqVOMS94cb1rmTGlfIG9USBMTmBSo6aH2Ja9QJw+zkbW+W12Op26uW+8p1HMy5UtCc2agZbLAoafdyPcZMTu5m+xVU+KCfPbOJr5y+W4krKHQRU9rw+Wz3rEP6tujmcFiQuUqoJt3Os3Zze0DLO82tS+prvAFiTXKepFIv35lRXtGm/YtuSsPH5/B0tR4QigzlNEauzyOXFYGTJuQWJQmh0lVY5PQRBBSCgpFo8LZtEEhS3Mm+m/KrwLQNsd5IEwsdZuyDXEXm0YyzI71YtWIcXE9NEuNCqpUZao7YTVLSH1dHHipZ5bnqEzkmDRnNLNkJ3CQ+6vTMKs1UYSUiRmsAsXNGt3uF2a3B50uPv3iTWw120am9fk7W3jyykru/mUuBxYLClz8ElgkiSzH3GtQEL3XaULkYARZU+XS2g5WCjDSNrBLe1LBS5CqVM+CPBobedq8YWkWi5NjuHBsGuO1INpL1DDrvd/oSSr6kFfr7GwSmKsVMxNIMaMC98zofdBya854T3PgIpzJamNtv4krm3vWAiWT3w3FGKtmZi7P3AsIQs8fcgzCohETkvOllxE0SmBltydM2je8s71WB194+TZ+urJdYG5w5W+qjP7aoKBlzsKXqYsIa6s50+0/ulyPRiGL4ZoL+sqcbR608I2r6QAEeWGcPA4Ti0xCLX3vh1mju105NxL6ol9ZzEBZ/Y81Z/SmvHHQxjeurpCSbJvXaGLOssxSbe/R9yGu7KDdMfZFJiJa3S5euLuVGGMXQplkzqT71cWrZ87i7zamlvLzyoeeru9qXUYtgKFdGZfWdrQBTmzQ73NF1Zhe29wjxiX+XpTYt9GcycIn2/EQc4oy8xgliMNXF7wnKdgwP9szy5v4egFG2gY2a6Z6zZnCnOU4k6gt4p6ZCXzkoVNR8tZEmHXlU/WjLsycKaMmzOdkQSDZoGs7Ot82pjKj8R+/9tApvPPscelaEjHz4Nap61v7+OnKNp67k47cq0NWE+1Iw2tXn5l4ZYlPqrzr69adTZRPmChaVCNtzLPqWpnCMJrqvLG9HykFXNuxeX/dSnecfNApEcR7V5l7Ad1wmswa5Xmp19jp6V1q9udh2PoeSr9MmE3lsieWKEGpKJPMmUnLUJLmzHEhqFJKgUbAMDfeiJ4/S3NWFmpMn1eNgeF26Ii6stdMhYoGcairz+YaSjmreJARIp5Cs9PFFy4tG8PtqtqR1yyTSFOgNWcxEgQm1z+zrV15l/cSXcrFE5tWVtxaU3ucLquDSAnwwPyUVXkVRZkJ6nZTwnkb/y6bvGO2yBY+sFxHa++wST/niPFmUfJ6XSChmrJ2Bg1zHshiEn5bHKRCVTvuuTD7wFBRkaN8nMI8KWCJiLmFozUq9003ajjodCOzsBRTUKL/UcCAhfEGZsZiMishXFMaVwm9vP7WQlDkcl/Wc4sgBtYmWZSQFklCK/H8BXhkzvW+0btE+PWiDL9aj0CNxVYjrnShyjAa2+WShQ6P2zL5Mwqoz0z1s0oz6rzQzTvxyLqAMrpnUOeLTlCg19ily6p9yvotCwNlzkzEjg3y+GkZC2lMXYyh9Euawc77BO919wP3n0A9YPib0Pn9/fefwMxYHU+GyfqyfM7KgrCw1E7M8PkoPyrq0XVSRApUm1mHTcDs/RhEsddCTY4pf1FWrj0mD0YGyIAgFposFfLY8dSXGF+9fBebzXYi3HNCc6apX61qOMwaC95P/Gbar2wCCZgEPpyncwTK19J9MbeVrMp+zlHpLIDRCwgiNDA6zdmw+JwJDCr9hLxP7neyE5sb6+K0FYqAHNH3Xfcex/x4PfpNTPFawACpG+L3sjS3040aVvdbWveKvK1Q3QsYw9vvOZb4LcmP2Fm1uPZJCDJdTOiz2hBnkS1zZiJQY7NGmSBm+OD9J3BpfTe0mOCgSd80TCVJ4jpioKyqt0Y9CNARaVNy1mEzz7lUjoPj0y/dwj0zE3jn2WPmG4n6qdaGYT9MQdMpoYXXKSH00VqTmJIF7tJxqdPYGX3O6K46w9qskTFWY4z9kDH2+fDv84yx7zLGXmaM/TfG2FhWHSryOt8KkAmDHaSMUX6t8G9GXMuqqyzfpjw+ZwwMCxO0ZE5MKVO4/byg1kEtdLCk8k7Iv+g0YKlAIko96hLJeiobzZktuLJQJwxhf5MmhOnrLm+DGiut5sxQT6Ia5cCXL21GoYXjX7MijXGibTowSX+k/8nWknjuziaZR8oWJmbeNeGzuueb7qZHU3/H3Fha5mY77mK/GPWAILFZo43mrPxnc63Tjiir4B1IVRYOkADarFEgPmd7ie/lEPu6pLpxUB1951qdLv7u+ioZ0ES9a3a8kagvtaWVOMTUGWMyE9cJJF3nkqCrDLHQUshqQuxvuqBTKmzOObl7DMD8RAOzYzWr/sjg0Au2KAGnqLqseAECCYGPY9XiTivfU/BoboiAQje29/G5l25FFko6WJk1lqCpv7N7gFfLTM6t+d3kTgOYNW7vPbeIX75wEk+cnscbTszG16RymZozS4LONuS+DBefs38B4AXp7/8RwP/MOX8IwBqAf+TaeNGlUVRzJsrEXHByANtdjr1WZyg1Zxwgd8Ao6bM47CrQnFGHTl2Siqb6JP1G5sDi6UfRRa4SyDJLyjrQ8gyLqxSXKufCK2dFazT5zWT5hxnNqKTvtUR7mvJKVSYzSndpfL4FRt330uoOnruzlcp/Rd5P9DSLQHSBug50Vd/ZPUj5AvX6Qpd/xz0L+MADJ3JL74QEUT2Uikc26y9zJ4RFupwyNUvBRr9g1JxVJOkHMoQCrmcSN+9vcbqVNDqa80qYOJrG5/LGLm5sH+Cl1XQyYHXenZubwJtOzuF1izNhX5Lt5R1iar+gw8nrkXJ/UwRptojGslTNGU/UnQXarFH5JKN2Mqv+yOiZNdLXqPWfTrZeDmRBuMz47bc72LNMbm01vjw+i9b3W9HPbc7xk7tbxlvTFhtE9SWMyzeuruKHtzeKVxRCy5wJYaLmulYZAIbFyTFMNWo4Nz+lpZP1AfMMFgJOpfWwYs4YY/cC+AiA/xT+zQB8AMCfh0X+FMDHXRuvRGJJfNO1GzefPjU4B75xdQV/9cqyub2SnsFZisNpKSWLLwNw26BtQdUZSTDIPsW/6n3HmOGv9IYRZJglZZHKJs1ZWpgabuYQB1RG5aIPRDmXt5GleUvsJ+r4aFriqS9pyAeaTY4elTChk6bTZbOQV7tuev9WIcOJZk1SY1VzlrXs1HVAjcteu4NvXF3F92+umyuTUAt6eZWoiHg2EMyZyhCOWkAQsUcJzZm6TxeRctugzCrjHIH9RZ72jGaNhmu6AFYtR3M6FepdjDE8dGw6CqVdUjwQcg5R52RiXWYF68pgInR3i73FzTrE/OSufmwkHRD+qArFE+Vzkiu6Zy1qneWCumZP+ctLy5l0pOi+TX854jEUCePjdun7db6bVOlB7TdGaDpTz9CcUQJuwF5IoqP1Yv9Zao07SmU0sNWc/XsA/xIxzbMIYJ1zLkTQ1wCcpW5kjP0OY+wpxthT7t0zw+jMaJA6qQOuSnTEfWuhVMI0rqUloXblzWDeAMXGTkkEigYJoW4XEoYxwuQvMdk10RpTVWZqzpQ6LBxdZZiGILXRK3PKllClCG4X9TateZPNYvQMatYrNjFpcu47OU+gLaNvIqRcaaw8ubp67RTrA71v6G90JR7V8tT6F9LWrWYrfVEDRu5m9phu9Ewi1e4U3eb6fdCLbUgwzab1UYW5YFkMX6cb966KMTTX6dZiz29Sf50KCCKgM2vsRHuuRfukm4PSB7VPRC1lwRgUwwJxfkS6TzqGROwtTsxZxnVXzRlJtCrPnojaKSxvRH8cXoOOFgI0Zo0VbUZlBF+zGV+5hKCnxgK9xnG/3cGnX7qFV9Z3CJ+z9B1UXs5BQ9cVMcd1AUFs3WgS16TZlOWzZvvGK9GcMcZ+DcAy5/zpHPWDc/5HnPMnOOdPpK9l37/X6uC5O5u0Uzxswnun7xMLIPI5M5hbZKGsg91VA8eh2wBFfb1PaoPWhR21BUWki+SJZ2cntH0C9JIMdfDVFtQ1pvYhRUxyuWy6OdPBlfK3Ueq0fVOk5sxh6J2iNaba0Wi5LByC99tdLE2N4ZHj03jjUmyLrY2IpFRSppYlbx6+skyeZRg1pqpEMqMR03wVEIypi/abPDSY/Zyd0kQiLfpO+50nTXRXHM5q96s2aywj6t9+u4PPXryF1zZ6EV8r0fCVKEgxEcmAee8TZ7IudacxIJRolSjiOmR5x5i6jzRrtCQKgexkwLpjPA4Iom9LRbbPWTdRdxZstixTGdv1I+avPlBT/zYeWRDuvl/27rUZX7lqGyGfOEeeu7OVuQ+LJNdhS5l96R/ovgjme1Jzbml9zmyDzWSQqyYFCVXeBTbRGt8F4KOMsV8FMAFgDsAfAlhgjNVD7dm9AK67Nm7z6n9wewO3dw5wenocJ6aSIdh7tsZMiUbXOyJUglpGt8uBWnwtS6Vu6mdpPmeu5XU3KNGvqLOuZ9KRJHoDZv8slDbuZ0/P485uE3Ohw3WyS3F5UnNGmGjqDipdH7hCGchPR4XNN5mUBJqIilkHRiMM363rM8Iuzo7VrfyeqI0l6XOW6FwC1pozzbWAMbxxaS7xu224WtqskSaSs5Bbc5brLnMFRkLWwrTT3Fz6BvHs1HrVwaSdsEEjYDg3N4mFiQZ+vBznSSrKGPBM0r1cxORFUhAnYGvWmNvnUfmb3lGo++JS6h5RSUAQY18cy/MMnzMktSMyuhFDQVdgJHZNRH7Gvm8TftwGVO9MflcUdH7WZs1Z+lo7g2GhYX7brcj3z5I5o35TfkzmlkqWcZ17uvOOEnBWtYrqBQQ+4k6t8DqBeC8VjxdH9qRojl7ZdpenrsvNXVzdxrN3zD5rg4JuVMQZOVkPMNWoYVfx7cunOYuhczeSI8+a7lfLuyBTc8Y5/79yzu/lnD8A4DcBfJVz/vcBfA3AfxcW+y0An3Vt3CoXWViEXmSciCoW9Tssk4YrN21mzspZ6rbEnCzVICdB+HnhWC8/1Hg9LVGg1O8u5hbUATo33sCDx6bJ8nJpMiAI0hM6yxcglYdJrVNqhzqkxgzci67trHdUV8JjkT5jDHj3fcfx8xZhb+U5H0tq4s6ZA4KY5zIlHZPfK3X3uE6srUD3jql+ZiGv8KNobkLSRMpY3r59CvJzvrK2g7X9ZqQ1LCWoj213GPDEmYVEOgUgX2QzeZz7bSITtR2dB8nrBrlGsh6HNvdanfi9KzfavkO5n2owg1HwjTOH0le/xIh8zjTjlDvPmdqHjL/zjge1X9A+Z/ZrOSuUfhRxUnOfCz1oq+kvZtao/i2dN5FZo547W91r4sbWPtkvHdtLRWutai+qSec/qRSwaNhKc0bUHyWlln7fbbXxytpOYm6aQumrjFmft2wzNJ0R+UUn6zW8//4TeMup+cR1O2ZXgSzk19xuppTKEfi4RGtU8bsA/k+MsZfR80H7E9cKbMZN0IP6KH8ZRDp6xM5fXbod/dZRGDfV3tmmn4F+D8mFLJ8qgb12F0/fWkdHI6UUvz1yfAafePQMacJoq4rVwdW2Wi6tdXhlxj9TSB98vXpbnS6+c30Ve1LQB6q7M0S48bi8qpWze8vqWNOaM4aJeg2nZ9LmnyqyzRqlPirlsqSm1BPJijHqdsqfMAs2ZpTG+51bzL4vd52GG9VrroeCfID+aHkTX3ttBXttYdZoX4/YD9Wkmva8We8+9U0X15z1F6roIUWiJaK90r3bPGhZP3e7y/FXryzjh7c2Eu0K2KY0STBnFrnzCsNhTttUZWO2RxU5PdMTBiwQlheAff6nrN+ymLOsiZpgwOXbDDSCsT3Dtawk1MJKY5IQwPY6ZWgsZ1HbYFg0yZr8ldScGfrz5JUV/N2NtcRvsftG7/Pk1Bh5PYlqdqNEQBBKo2lgvMS6sTVr1FlqyLd/69oafrS8mXANSAUEkf7un12DO3SjIui4qUYN47UACxNJuq6o5iyrkLXmzKZOBU7UFuf8Sc75r4XfX+Gcv51z/hDn/H/HOTcnWMgJQYSnoptxHplf0X2Ny/1oeTMidADg6uYePv3izdRi0b0wk6pYbKBbB21cWkuH8rWFuonoCOEf3t6IfBAoqBugiYFL3mcPV0m+LEXTmRm45oEgzRoBXNncw83tA7xwN85nRUnxpjU2yoCeGM4iEBrKjUVJq4TmIfxMmjXKBGbyXp15kKowS9yW2KjT9+vMGk1QiWR3Ij/fQcp5WqseX8vXqovWz9Y3I6qbKL550A7rsq/HxazR5Huqrhl17re7HH9x8RZubicl2TLkO/odSl/VOqTM2zLuv7m9jy9fvourW/q9VoZIpXArzDOkPq6tQIuDg3OOVqebMukt06xx86CFp2+uG/co1/ayXrFpTp6bm8RHHz6F2XFaaNbTFmgILYdOqX1wida43Wzjr15ZxkUqZD9RnjRrNBGFyrWsgCACkw07c3MTbMva5jmjkB57lr4W/WTXjig1Va/hfecW8bOnFxLXKY1/VTtRVnofKjiJClvNpK6YvGaFcEemudI0TC9nWrvb1dJUwwBdV95+zwLec9+ilDMx+QymUPp6ZO/VJkETucZzcGdFNGeFYfPyxYRRJTbiT9XSSrUqoZp4aXUHHMDafpMcM/Ucpd5vpDkLr337+iqeWd7MLe1UNxEdcyYf2NQEy5QMGn61hWt4frk0ufkQP5nMPxjST2Ai/t0DgqS1sTvNduamnjZrJJh6h6GjQ/HHFcj9zPLJk3ol/U9dCdshbp+wNGtM1MmTn3nvd74PJtPOfNyZi29SGcxZO0cY8RSNYwAV/CO6X6ngxvY+rksmRTutNlpdjucMPgpyt/t9zjuZNRKdE74Ld3abVu2pebpMPm4mdDnwwso2/uLl29hR/CfKJJZ+cGsDr23uYW3P7vlswJG9b2uvMYZ6EBiJJlutDdBjpG5t75NiVdPfpr3hlTCprmyV8fLqDjb2k9FUpxo1NAIW5VJLttZrjxYA0gKR3l6m7ZZec+YAW+FJ3pQGibaI39R9a22/jc9dvJWZ9iR6Xww4PjmmdXPpB1RLFnVMTcFJxK2uofRT16QLwsdTfmfqeHAA37m+hs9dvJ3S7ucdukrSrmjqHKsFOCFpS9Vlog2l7yAkMZWxJefyUNw2AUEqgw2RpNOcxRGJAgDxAjY5PApM1gPstbvYOGiTuTYCsASzRE024Yzb5RzXJenqbrOD+Yn8RKyAFXNmpRXLZuAAt4XozJxpil9c3caLq9vaw4Vp+hWwdJ2ff/k23n5mgZSUqXOkVwfDm0/NodPlKVvrKLEh6xFL1zb38eLqduZzqwduFnOVhawk1onDQCmq0/6ZhBaJdqTvdcbQ5jwRVt8WcSCIkNBwNvfLhy7XR36zqTOLec26ltesUR4fW8l5dt3x/zKmGjVsHCSDTugOnZvbB7i5fYBPPHomcd02mXnffc6iT574FJDXEfUMwr/ywCYnHuTzSDBnSdhrznqWHQDSzJlVDXYQ/WkahIm272x9v4WvvnYXNcYwp9F8AXYBKnTC0i4X+6G+Drm737jaMwt+MPS91tXvcpIJhl0+r358ZzNVbrwW4JcvnCTrEENAppxR/hbj3+XpwGcydOeny3yxLVsoIIixfFITcXF1G+0ux+2dA9w/P6W/MebNep8plwT5OwdjLFvDi3xrLWt+ty2kC3ZJqDk411nGxPeLLUfWdqq1cw7c3u1p+9Pdz7fjuAombWBbo077nCpnqsOmHV2DmvtdLcOAQWvOLMoIiaNK7MShd2lu3xQQRGyM7a4aVCPcIFLSF4o5632+tLqD795Yjw5S9UC1hbrp6Qjhg4TmLI3U4WPFwLnB5K9FIZk3Iv790voumh2OrWbbqU8Bo6f6j5c3yY2XDIDCgAsL02QQEzHnxH2r+z3pctbGmWUKJtq1hcxozo7VwQC8XpLGJjRnzpL6jGeRvgtCNWDAG0/M4k1KFEdjK0kFBjh6xJx1rrgcVH1WeOW8Zo0uEkHXA4qMcBn2wkUXT0WR6vkopGGSuGcFLoiuGx9Tltj2lztTw5CrzcvjTfVM7L9qMm4dIs2ZYM6USlWtugmi7y3VrLHEIRRnYNNFHaXB9dC0tcPpIFUCLhJpGWJMM9efdFmsv02N8EH3t7mJ/IyJes2GOTvodPGtaz3/aRPhrxPkuqw5UTTrFRXRnBm1qorKXsx8W99pXdwA+Vy0FUy6RbmMkWUia7KqUvd/0/HNoReKddELBPLpF29iO6RF5SVuDpRl/tsWuYJwZMCaOSu5XNb9JA1e1G8oxGA1Z4YR/9a1Vey1OlHerHQ+h/Aw1CSlikoTjSQJJ/l+mahLS7BFaY44vPWBlIuowzl2Wtkh0inYas6y1N6pUMHWHbAt2JMM/tzZY9g8aOP5u9mhV5NdihsSP3e53naXmiM95ix9x36nS24+FKMiRtfE4AqNm+1eYxNEwWWNyq+6ETD8eqi1iNozas7MjEmWdak8j8ZrAXZaHXAAjyzOYH3fPily+oDi+Oprd/HA/GTKP8Dmfpc2syJWmitJlzKaNSp/u2vO0vXEAQHs64oPDUkgovTuwYUpLE6OYZV4j7qAIHKfZOGIqWeDNWtMfqpkkTgDGMzv1TbPXmzWSF93cdMVxFR6ry9vFAXzaUpVYduabHpmY9boGlCqFqYooY6+rWabfIb5iQbu7DaxpszxLM2ZcT5HnyHjrzWZ0j+f0FSS/rvKba+s70SmcNSQvfnUHDgv19SQSjsjI2dmE2tENIG0Pk1QmUqd9jH6zoCsmV1jbia0Aup509N4xjSjiXaT9+iA9c5v3b7Pod+zOOe4vpU055XfpykJdVm7i41pZhGY0j7Zaqjyml+r99tqiFV6zCZ11dBqzm7vHGBT0qikzBrDP3XJiE1SEnmy2miW5DrEAlSd6UWAiV1LMxgVaZ+z7Cki9/MhTRh7Ga9bnMF771ssbNYYMODMzAQeJWzqKaTZ3/TvtPklPQYBI4sn6pfHxhTSmFqkog5BRFibcqibMzGqJqHceC3Am0/O4WSYz6+bMU9NSah1mrPU+tBtctLtQnMmiKCZMXsfBx0zuGzpy5OLOQtv0rvdZddKlTCa8CmX3H3OBMEX/9bVjJ0J5NpW7p8Zq+PeuclcWg6hSYqYM0uGte/MWcq8Pfm3YJ4bQZwTU2YyRHlb5kwQJLFZY7I9J3PmsC6VSOZhHy+Hvk9FIIIXmfMI2r01WbtonlO9qybmjJp3whcmRVhyji+9egcvrGyneivO40xCMYdE28YsToc66+2lxyfHUtfU+2QfJeoMOz4xhgePTWvbs3l7zU4Xn3rxJq6FprTqq0lpomw3Iwu6iroWMWdh77OUWCZzZeo6kP3+8mrOUsLZhLDfLLBLKgCYsQ86SwhRjzrnkwFB0nXF39P7TR5UYtaojI8Wlq8uz9lH3W87VSYVHwsb16ABBwSxIJLCIupBJSZAeqNPEjlUE53Ei1bvzAoW0fts1IIEgyY2k7zRj9V+CgJ9xhBVUJ6kbzo5F/mDJMpIz3JqehyLU2PQkHDWfZXrnB2r4/65yYzyugvk18z7dGaNAH140AFBNBUgfhdibtmOjE0gGRMYgAvHpvHw8enU/TbBX2TY+gVyzR/y3XNjyfDWLiZasc9PEtYbeI59XqxF3Rhc2dzDVy/fda7XzIjQ+1ORunNpzljy06Yseb9mdgkGJmby7fo2+GiNyevR+RFqMF5d38VfXlpOBXewReRzJvYMpT0Xck+cdekIxcA3rq7iB7c3cidnF7DSnFm+sqTmTF8u1pzp9w9q3tU0QrI8NGDaskQR7rqYAmrb0N9zYmoMv3Dv8YR5uq4vMkyRH7X5WS0eZS80fbsYRppWLXbUdq3znFn+Fl8TwtLe33GuNvPKSQtj1fcpl7Xre5Azr6Te3y27XVUQa2YQ08mk5ZZU5qyTYM4MAsbMXtqhkoAgEkyvx/bNmadVdi1inZB0GXG7GnzLhj4bqFmjDcRrVg+qyKwxY0FQk1iuixoiE+kpmqsHvXxVrWY77I9oNd/EVCf0RD3AJx49g2dub2BbIym1mYiM+E7NC5dey4vjQ+eXLPogaXh0DAdFKGrb1x9jlO18EDC8577jmBmr4y8vLafbVusIP3X+IyoePjaNsVqQW2saQZEeZhY3LHCtWaMivKCu9foQ3//6EzOYHqvhHovcbOk6aegO+Rtb+4kAO3lWUzQHNGMgtHbCRI+sw/I3HVzNGrvEfpWVhNaElNBJXncWh5vuAFR9sIwMK7crVwVipixkcMO/37Q0h1Mz4/hJGARIaGVuhH5TO+0O5tFwHvO25jyK4EDvRWceIcneauYzm0+30avbFBCkzTm+9Ooy3nxqHktT49pytpozAWezxnBMRUCOuTAXWrrvnPhmBi3apcGV9ai1Osho8+S0ZiwNN1JDVmOOBwYB1cJiqlFL+M0HLCnMLuRzFn7a+GKLMpliwOi8Z4k24nqkopb7aU7eLDNSpO1eyWDObckz6koxZwmzxnRd2ms5X3UVe32CNimBOTPBpg7XtEJTjSSrVQuYGqMuhaE1axQQi1Q34VK5GTSf1L0AEm86Noey4GoDlnhBlFmSLW5u76cCiZjM7uJC2XXbSrAopkYHV7V/IjiBrozlb7329eMSmxLG12uM4cTUuJQLw7zAxbuMNWfml3phYQqPLs7kXkwR06xIDxNlHHedSZ3GlRAiRASshoAPGMMD81OJMX/HPceMWl2BZruLL796BxsHSY2Eztzo726s4aoUsj2PxiUW3JjLmUIbk8yrSeqoXHKVHlKa/vi92NcVvyP9w5tytGSho+xzRmK2An8GW6RMdMK/p8dqmB2rR8xUFLUw1CA1DNpy0/tPRWtUiuYZa6OPSsEBFfe3DM41++0utpod/Hg5HZFQRlLqr39S8Tzm/Hrp38QZ/+3ra/jy5bvgnOPm9n4qYApFiGfBZV9N0xZ0I1naHm1fDNeoM1cMo1ZQSZr0cVxe343mqzpOapCgtB9V/ok3GzLVVJCd2AdcaEnDv201Z+JTZZCIPSjrCVyjUQukU/AIgVu6LyrUNaTWpeZQMz2DKhiU86ulTYPpPmT114Qq9npbs0bbV5cneqIM4epBtUcF2lLz6o6AWWN2GWHzr06c7GiNdm3Id3c1dSba1ZhTFpFyf+f6Wpo5I/qnwmp6ycqpiOFLFxP9tpo0rswZ2RKt1UveSLeTZY9tU95YR/gZ+5xpiwKwZKQNCJT3UnTjAOgcVoBeIySSugtk9eDsrJ3P4Y3tfWw229ZR76i+uSKOnGfe3tqOpmFmRiQJZ+aMqEf0Lo/PmclvNi7cKxSw1E/auawSGrZjUmYCZRukzBrDT7HW4n08ad4X7X9Ed037QFs1a1QqyLOibRnfPBB328zTrDKZ+3gIQSSazhjqilr+J3e38J3ra7ixfeDUT5v2zNqNJFHhImgsCmrMonNDcw/1LDe29/GD2xt4YaWnOVb9otVclmqzRaxpFwxpFhpC0C2WX9j5rLEU60CnREyaNRI/EjDRBmYGOvn37Z2DpNmwRuB3bXMPTcWaS+2DTG/2zmt9P9Rk17KlmHpbFQI0SvBbJsyaTbvVZ+P/aMJ4ZNaYBhXNvBEwXFiYwrGJnoDCxnR26POcicmtlhRzPrVpceOfRog5bGTOojJBQkIRhW52lphnHHxGxVn2C7Y9OAUC1Y4ho04byISeRmnp1A6V50wg3ofihigNiqnpiFGN/Efs3pGdOUS6UC1g6HTiMNRUNa5jPpWRmFQ1OVPH0yonkUWZor4xuZizcBKMZ6jObKNnCZiI87TmzNg0UTfVXjYDpMJKqKMQMskcShmSaqVPxrWRQ5NRFnRCOvF0981N4u5eE3PjdSzvxkTUK+u7eP7uFi4spAMsdTlHTRmfb15dwdnZyWguiXWTetycgpuqYKtFACwi1xHMPYW2RrCZrIreH2XcDJmyTtegOdN3I9WiDBthgzq3UjXmfNXyfWrEQDLicA6hoBCSCY1pluZMfR9FQ+m/9fQ8+f7HFGLXmtHOKJYQEFnupyaTNRN5pI7V07c2sDgZu6RQtz17Zwsvh/5+chtqF3RaOQrp4Hn27yxvpMqqkRAcM4bFyQaZbspec1YMpjkySzBnjDG8+dQ8nl3exNp+63BozuJNJFlYF0o/K8ytCnmMdKaSFBoBS5h15dWcZSXJKxqZRt64TZoZkyRARRHNmVba6MBA2QQEkcfVZBICpImFh8PIlyIoiy1tkjc8q8pD0NW4jbkqARWgfc3S89AqoIRFP2yj3WmR46AQh8t4BoNqMmskpZxOujM3xEwET/2WhYQAhiU/TeUj5ky6Zu0PZLHfJQkju2rLQjyOgiBLStjPL0zh1x85HUXREnPhyuYe7uw2QT0ZNZOXd5v44e2N2NwzOn+S5cpmzYoOZ2yGn11TNqEsnTGGJ20r2kqypvB2eR7Wlcm8Gfrdqes3sT5lMzFta9Q6MQhscqzHvFBpEGpdZi1VqruRL1dAlxFSf0EPuPpfPXRsGufmJnF6mvZPvn9+Cmdn0wHExgKVOaP7p0IVKZnOYNs1o5qgyRD1U+NC/abm2VNxc3s/9RsVrVE9zl18zlzMo2XXjzJ8zkrb9mWhPoD3njuBn7/3eKqYrWDbTKtlT/rYrDFdVo3MmGy392kRjH34fc50kvfIrDElUbCvG9CYNVr6nL3l1DzecGI2bC/NFNhAd/C5EFkmUJoz6r7Xn+iZqJn8AQRcN2w7Xs6eOwsIm2wBSjpGMdvyolIPvqWpMXzi0TPRIrM1azQtJnMEUCEBNbVB//7rj5zGo8fTUn6dZIdaHxzp6E820liqhCoRKq45c1tQ6/stbIb+bVlOu6r5R7Jd4jc3Xs4JlJmg9R6WGPIcpKFhLahIzR9jJyVGs89mjapPXOTDIjMSjOnNN4nuynu1mlA2mkvKfWdmxvGOexaMfc1DzJfF7NqcV92MQpRwgMJ9YVTfk1PpMPIq5H1EJyw1+pxJv4vbyZQqmT1J10kJUpJ15mPP5PtUk2xKGp91btDMmaif4ZtXV/ETJU9pI2D4xKNnotQ8rk8yVa/hiTMLVgLuRLuCWg0/bKd3xJzJQuiMwllrZ8Ig1BOPFRCt2CbMzgJj6brSmjM9TAFBsvqkE+q6oIytaW2/mUxtItXqqhwgI52abrConhIwvXFpFh+8/4SZ8Quv2ayPgTJnJoiu68waRSLczCTUme3E98dmjfphEQTf3FgDjVoQJcl2jdZ4fWsPa/stw+Gol9AkS9gjelbixgsL0/jFB07oI0lJcNecxeW1piAZ9yXb1/stUCr5rMWpmgDG5XufWZJjMVtsbNUpqYp4ljggiP346ghMxhim6jVis01K+IHeO1Hnoc3GQHWzoYiEbDVnd3eb2CKkjK5E6Fdfu4unb20AiKVbOtgky1ySCMkq2QubABs6yPPOxm9RlTLLJSnBFJXsPGbS7KSyRVPfdDnHM8sbiQPbWF7RYAlCOiuPkwBF0Ig6lncO8BcXb2N5J/Z5Svu49b49EGoKTEvaNXphsqV8yJpv8v7a4cAPbq3jmdsbmfWanuTk9Dg+8egZTBOMhnq/PCa6vf5A2ezlfVq+ItYCNc4prwiTACYVMIFGbrNG6bu6dVGCJpOwlQHkw4gxYoxhefcAt3cOUmV61w2VG5D32XWhySkN706zjW9fW0W727X2TQPsBfcmwjmIzuj0NZ31j4mZ1707tQsue4QQHIk7zOdc8pocVZCD48rGbqG8ZXmFSF97bQVfvnxH6ksM00hQtBA1dHmVHo+fnMPHHzlNXhuvBZifaJDXor6EnyNg1qh/c4LgEKYLctHNgxZeCcPLa5NQ51Cd2Zg1Pnisx8ScCIk2taRtu9+9sY6vvXY3caDUHIksO7PGdHndbXPjjdz5kWzLu0jQde30NGf0NYqROk0wnDJB+86zx/Cmk3Opa6JIJnNmofkS/onHiMUr5lvmYeuIX37wJN4YanZTUKTM6lq005yly6h24Laas7+9uoIvSZsx0U1nZGnOjNEaw8+3nVnA++8/0fvNJIEsynwUqEd+ShuaimLKBCgiIBEpTDEbtz32izK2t7YPcGltF89kRA6M2ksxSz3Y7l0UQSN+Wg81szckkyTVP1D1cTO9lzzMmes8eWl1G7utWPiRdbvcpy7nuLyxh0sWya/zBkVS70+YNeo0ZymfM43qLLx9jgxIYa+RUOeSljkz1GGEdKNK19B5zvTrmDGzWaPOrMpUZ94Q8zbQBTcRzyDz4c/e2cKtnR5jSa1r3RT8wa11XNvaQ9bsNwrEI7NGignQcGcmENcDxvC6xVlM1IPoDHOJICnGStxiYq7UfWRurI6337OAk1Nj2Gp28NStDTx3127PjeuUhST5d/5mh17ProwVVT5v0BdmuNfmDYlbbRQcQ2/WSJn7yAenLlqjLTngelgyxHlWAELyZtVqjARzJrUbHebGiehGQFsRbhZ1FovWGCMrOIj4SX0dgdQHU+Ln8VovVxwVPUdub6Jei8w4gPTBlaVhCRwW3AkiX5C68dpK5aJrhvZ0iTG58qPKQlltDETDqlmsSXNmlYS+wOaeZaJhNGuMiBiG2bFa+Ju+rsLR8wo62qd/s7jPsq7EvFa6aWvqWXR8bAiNuE/p1mJmKXutATrmrPebIJh2W7LZTfJLTDQmd11qj3BJ6p5qL6sc59hvd/DcnS1889pq4ncT5LMoqy1C/lcY8p6oO4/TuU+BF+5u4eb2fqLPU/Ua3nZmAe+451iqDpf+qlpRfUCQfKMg36UKiAMG/PzZY3hcEiLmaU8MWRaBGZlfhRYYZ2bG7RLnFuTgdE3IdFKk/QPNgepomOXdJr53Y1373u6bncCbT84ZnzM+6+Pf3nn2GD58fknD1JnXkS6J8bGJBn71wVMxc+YwrmpaJ1POTfVKwIB7ZycTych3W275W8sUylH1uDJW1Bi70rBRXRYmi8b7DZpXFYON1mjx5iJzEU3hFHPmGOHMmTlLXUq3/9LKNm7tHOA95xYz25fPF1ebeJsXnNDGWdwoM0Q6OsiVlNBFa7R9RzXGEptzELDouQLlWjJfiL5O4wJXpHj0ppomwEyv49HjMzg9M05qzqJ8NeLTUA/dX8M1ze/qBpoKYJCTuG8o2qqi5mxFNFJjBTRnMqLcO4YyRTVnMdPsXlEyFL7NAZH8knVLUnNGf6rgnOcKbqKDWK82UdwSc1sJ1KE+q46Qo5gz8YuY43uSiaUoz1XuLGqnByraW1GCVocu5/jyq3ewGFp5yOksMjVnLsRLYv45dJCqKrw/qTmj17EaBr7LOV5Y2QbQ8/WT6xT+brr2BMzacfXdJsuy1C9uSDBnis8ZYwynZ3ouFDbaYwZGrjlhHaRlzpQzqMYYPnCh50fzmZduAujtqzqLCFdfsyyIZ6BMVgOJN6OE0No6Nb8/ujiDufEGrm7uae+lBLGLEw2M12uRq40MeU5YB5RxtaBSoO7NLpozKgem6xnOtX+UA+NIEBfpBO6GKvIKwg3X1Lpt3ufQh9KnIPsD6ANDWFZGSv8N0VbUv9XNHcBzipOtCfKzyLSkjf+RzWRI1GnBRERqV7DU4SdQluZMXrmmGnvtSe8cLMoTUWMMbelagjkz1Fr0CAkYS/mlmMalHjAsTtKO8CmzRpJJz7ct6DS7CSaZp4kSu1D66d9sAsrIfcl7kOpQD1iccyrjGcyh9HtgLN7cKcLt8sYu5gw+NAJZhJvqI+UCyhneZo3HZc3jJO8hXc6x2+pk9vOZ5c3I9BwogzkT7WeXpQRAkcbAVnPG08RnVG/4KUuUhS+cql2J13TYPkvPhDz0rM1w3tjex3arg+2NHrEpz/es+12IbKb5ngcRU2Bh1qjOBb0/s/05QFXR6nRxbWs/VYYSaHFegEFNaAuTl8ymdsm/FyfHsLHf0pg1hvXp6lLqrAWxT7OcaqjZoQW4Tkw9gA+dXzKe2er67X0XghamN2s0THAdY2kyWWwEDK0uJy121AiOJsF2qk3iN+rduIyqOi91AUHqBA1DvT5nq44cAvjsKrNpfsBeS+ZaR3QtJ1MXtSsxv1nFB8qcuUB+ybIkQBMPxEFzRi9E2/Kpzd1xNmb7nBVDQBBuKpLaNWmj0R12jp2irKJ6knVzpeJyLWBAR/QVmB6rkeYFgIvmzKbf+kJUPpC8QsNo/A3Mc16Jje6wU7+px5Wd5ixdyMVEi9twZ46QmfUsAtOohYkusfRPEn4QBh+hNKIyKGY+0ZzlvrE0NRaGepfqlr6bGHwVtiYW8h7y/N0tPHtnC28/s2C85xUL/yRb/ODWejSv7DRnhNYrIuiSv+se3aQ5E/XLmtfou6JcUdurBwwHipWQLK22PT5sCKZmqCmbqAepJPBZt7v4uCS28YILWtwtzzkdc6ZLr9P7LtVpIqgs+vuD2xu4TjFnSjlhxZE/WmOyrkTdlgzm33voFGoBw+dfvk2WzcqdGAtwe5/UPBAMmGrRArhrztQolDoqgHq3AcvBOEBvMREJBohHqAcBWt1OKngXoApe6HEB7JURAUGPuUwptR0do9ioBSm/Ter8cNec2QuBrOu0Xs9p0GkPiq9R16uARNczi3PXtlNVwGVdyWUFUfz++0+kB5mny5tAjU/doPNMR/tSiV+36Zhl1pjXcZG8P8kDRJAPv3jymMbAbWLLpTk4nl3exKdfupVgCKgaZb8fgQ8+sISHj00nzBpldBJSOEOfXMy/CDhLY4yMYpIpc902zM+p/EAczhw8dci5JjgXyLAkJGEiuG9tH6QC59jWlUVgmmqMiGv05gqDeU9JHB7E9ay8JjZCpffcdxzvJPxmqGiNJqgHftYtNeKg3jNETaTMaPJaSYhgFCJRq808SIRUV5klpazu2clnUHw5qPKqVkVd01OGHEp5CQYdzGn8zOPoZGppSTjZQPZ1EtCtY/X55PNkT9JqGrtEkw8JpCKEKnNKII7EZmrQuivJui0ZzEYtiPKAynt6s9OLbBjnATUzKLLmTIWYG9Q1F6be2IEQpFmj7HNG3Ja3C5RgQEAI7IVJc5KsErSI/n6A3jeooiktILL36Kx2KIzVWGqfo+gi64TgRTrjAFfNFq1NM9RvvJaPxhNwEWT1VXPmkqtBhXyYRPnIgnS+K1eenTbN0lOYk8rhmuINi2jOiIAgJkmUq+OxjvhvEO0W1Tol241v4By4KAgtaWOgmbPeZ03ZrBiL37spIIirhMUFgaTNEzAdTKb2YmlcWJbUIhomlsNGoxKP4nsqlL4NkS+VOTk1hv121yjhVcFDw0bT5i8i4x10upjMSCrdqzNGZt4ZC8WZLOkyho1XzC5ok1eT5ownPimcmBonmYbkYzLiN/WGxEfmG6PG0UT4F048LkF1Rs9r1hgxS8qz6PZQs+YsDXUOx8ygeB8s8XeyD71Pyh9NB5ticeAE9wqcAhBI38tiL+Xmdftqaj1Kf8pz0OUcsDm/4zlFEbY8vw8hI79KdWffR/3U6nTx+Zdv48zMePS7TosfrfXo7NUzZ3Rwm2IzIPU+wk/KrLE3A5Lrq1eHea/Vtm1grkSKGPF8conYZ9xi77XpB7VHONxv++RjtSBVlmrHZPFBtk/sv0WRPNf15ahL1PvIK0SwOFat6xkqzZkaPS1vhLIo5D2jzBrTmgFXmF6cSiDqNhNbZJk1mmy4XadXbD6TvFPeUEUCRmEGQ0kBnTVnUnE5cWjWWInrSabVLKVKMGeGEcrrUxXdT/yWl5GOfM4M7ZnGyrxhZD9nl3NsNZM5xlxD6T90fBq/eH7J6WASz2RDkHa7HK+u7+K719fMdSp7yptOzpGpFHrt2+jOetA52FOgpgEdxjuGmidLhUloUqeEK4a2nAg/6JizbEYz+ZuxCS22W8l5mSXF3Tho4QuXYpMu0Rfh01fIrNHwjjoScy2HrFcboCW7PbjsqzbjqfMZBrL3Xi1DRJprxSgeSr/3aaMNTvmcEQJcIEPSbtGn9CPToyd+zRN9U+2LOo7O+U5Z7I8lzPhubh9Ee61OfiKiA4r5TKbWiPy90/cXDQiif9fyu+19cqQ11MUQPhfx+sQ7FeuCEkgEEW2iEyYQvxE/JvzZoi9liT1iUEoIWRgpUMDlrBLmzHUo8lqk2TJ66n0mxOb12ZRZf33OUoyUCYokUvpTSI8DRmjOeLq8Q5fCevXlU8yZ+kyOM1lv1ig2ioKzQS6umXXyYXJKIWRrAUNHoZ7dmcIY8pmQ5R8mrlJ+czbSVCOBSly8d3YiEXHJdD9t1mhoz1hXshTVN5M5lIzHT87htBSpzMYn84e3N7Gyp/dj0iE5W3McHmEnbMwmOpzjhxZJcFWC7aFj05gZq+EWkWzVxkxRZopMvZTbpbRkc+MNLCu+Ysn7BXFPXzeZt8jrlylziaxLU6fOHIua10bmzPI3G+w0Fc1ZRvkrG+lIa+0ux0EobFLnte6wpdIsqDneEv0Kf7qxfYCrW/t4cGGqV79oR/r80PklbB608N0b64mrhU3CNH2iiULzGzEF4UjNE0tTchtQ+7veTIzWVgL2FhRxG717bMxvVW1s3KaeobFDPmEiSUSCtiLKMmsU9IagsWjNWaDtU/E5rNJzor/xb4m9kqWFLrnNGgnBgIAah4AS3ogiun3UmiYlnqV81qxn1phqW/kE3M0aufaPArAVtlBzkliP5iUa78fpNARubZvws6fnjdf7ypypjs8u7y258cYbR9G9wNVuWp3Q+oALdsgyazRpzkzmlxTUhTfVqOHE5BhevzgTlZlq1HBhYQo1xnBxbScci14f33BiFiemxtzNKaXySdtxqneQrhMHhLKBqmvH1nGUMr97O+HPo0NWsl4VRkZR8wkAs2M1bDU7eOT4DHSQx3duvI7pRrysU+0SlIXKmPXqNHSYKBMT/PZzQ/Sga2Grti0R6ZxzbTtUTXkYR2pLNh1SB5JfijwPXrc4g6WpMdzaTjOHpvZUmJ7AVXMWmzXGpX7xgRPa1APUUJv9mcqDaiKZRShQZrxPvnYXm6FmOD1v6JFy1ZwJCI3D9TBBtSqJZqwXBKEXCGE9cS2nm5cWJoY/r+aswzlqhjOvLJMumUDWjYspWmPXkmHsSGdMl3NyYNSfdPNAMDR5mTM7AR5xn27QCUG16GOWqZogSo0+Z300a0xqReNrOsa0SNsqc8YQ01qiFwnfdpacs/L9SS0SsadI34WAgAwIUgFMic1lOKfDkWk8104hWzvvOsXIFFUmWk3sxwFSris2dJwJ4jkYgLOzdHoPgYEEBKlpCGsT5IndkTYOnc+ZrQO6/OJOhKHOXRLNpTVn8nc7jQDVF/HVpDlzCVsu1ynuqjHgiTMLmFYiJr351DzOzvZyqsjjO1YLtOHgTZC7mZCAZWi5xFWKaY3yHqU0rLYSFmOXwzL6QrQ0JqdUJbwWE3Bx2TMzE/j1R04b/a2Y5jvVLqU5c+4vWZ5u3wTxqmxs2uWoUrrS8rtXNcBZ5XWQD15T6aYcQVbaVU9OjWNpajxzvmVGUYu0qnYEkdn8IqxLKjs33ohMmlWUY9aYj2VT75Lb3W93cGc3yfRS58GmZLKbXh90u1TiVg5gY7+FtoUdrjALN0X3PT7RwH2zE1ZmjSkNuMV4iilJBVPIujvQnC3UWk0wZ5m9MkMMgTynbc3EuOGaDkILJPYLcd/d3SY+9eJNbBC5q7Laz82cWaxZ+hpdF+XiId5fVjJ3WQCuQheMS1feBTZ3yybEsYVDcYYmjlCZ/L0WsMjnDIbxIzVvGetUplNV33O5zgqsGo1me/IYFtGc5Q0EJbC618TljWTkX1faJK+pLc28pssxwzUVLkM5kFD6gYXnc+oqB354awN395q4JzTbogl6vbSQ7Is0ou++7zg4kn5RAm8+NYezM2lOV+2Dyc6fQsKskTiQjMyZc2g8pnxkMxNUJEdX6Gzws95RHBAkvfGKR0+ZlkjfzYddMZhs8V2RIhgT35njZqQnBgHglfUdXN3cI822ZFiZNVKbl8V9AmKt2kjmZE1Gl3MNw9D7fMOJWTwqaYN1fTI1S12zZTDypMSIzbE1bRgqaCTMGtMHvLYqi30AAO6ZmUiEEgfM23ee43i31UEjYOk9TRkPea68ur6LF1e38bGHT0tMdHy9xljq/pRwTdMfivjqdDm+cu2u+UE0SIuXgPfdfwIA8J3rqwBohoihN56mvJM6UJozoW3Imsq6caG03ElrhWI7a8AYfu7sMRybaOD5MF+orS+ebu2Y+jTVqOFD55fQCFgil9nNUPN5e+dAy4Tp2svrcyZD7bJ7EC5aEBcxZ1maM2HWaDAJs9W8OEEVQohPWagrCRgiTYRJQmnbtOa5aozh/PwUrmzs4YGFKVzd2ic16+IueT9OMCrEkMu/CXN4clxN/YbbnjtVr2GiHpjPb+mS677DtX+43//klRUAwMPHpqPfbF+v0ES6CktEaVLjRpQfqwU46HSdpp3NMhmQ5qz36SJNbXU5Xt3YxVazjVaXhyaNBOHKEx+ZSDoeM9KPDegtuHE1MyQB9SDMgkwkU3PIbNaYb9LZBono9YkiK9ygzVMj940oIoh3itiNzBrVe2RCwdCnoqH0xXuRyxTNOk9JYKw0fIZ21L83Dtq4u9fE+kEy0EKqTsfxyZM0/Wuv3cXXr9x11pzpGIMo8W/GGMTlDeA80d+AUXONroFcMxnjmWmuZ7g2TglpHOZN1qu+b24SH334VOI3s+aM+M1Qf6vTxRdfWcZTt9Yz75Pb7XAe+gnFSIYVT2s71TWqe3ZKYEBp07LAlEE2jTW11+uCBdn0JPIvkr2PovMx33yj12r8W1GhF9CzFpC1uLb0vu6Jsm6fHaunzhPBKHc4T0/ojHngei4LmO5yT9MSb1jyPiXmddaee89Mz3Lm5FTaUkYVkJYJ9VEoE1JZ6BCH1dfX4dp2ijkLGKbH6vjVh05hLrQyokavRz8mXV9cdgxqrdtQX67aysdOzkaCIRWqVQWQx6yR/FoIcj22y0vsp87uP47Ch3i9Z3fMZTz67HPWg46wNkGWZLa7XO90qXxmwTZBnW7YdWZjQLixZLwvOSGiqzYm76SzIcooh+CymbNE34jfxMZMPWbsc5Z804mAIOUK8QDEyafFe5EZ9rw56VLMhOV9VCG1fF4TD9dQ+jYaIjXE/F67i71218psQtWcUVCDeGTB1CyHekimozXqbg8cxwWINb5aAtNQARUsxsak1/5I6WkDmNQ/k1mUmXxP4+pWL4iHGvwDIDTjREWyJlUe+0YQpIQ1ac0Z/fTUHMsyBaOQEryQZQSxS+z/rJdUPRVkxqIrsVmjfFvvUNLN/bedWegF0NH4SFKCkSwhW1HYas60ubscBBWxn3Pv7w5Ps7FZNEbuiIWGfdw0BrNjdcyP13E+DEIDIBHAKKE5Ez5niuHEI8enEz4wJ6fH8YlHz9DdNBCvRaFbj0m3lvg3TpTPzZyFN6rMjvx3llY0AEvSZRlLVv4tMheVWTJJCPxL55fw2uYefrqynWxT2RqyQDFgcXvp34qZNbqDak4+/221s7UgALqd3HkHqWVMVdWoBUCrYznvhDAhu/RAzBqpcKQq0uZqSYmpziY+ui9jQtVCQtE26l6W5iNuViIikXaeVsvIk87Vwdb1EEgT7nrIfn3xDflmuUn7Z4IYGdIXL/ySSkSaIMbK585E9WO1AI8tzeJMKGFU+2lRlXRNTzC6hrS31Rq51Kkvk/5uak9nzWylOZNu1B0Wgt5IO3RnH/hZ6FnIKYIAze2UQ7dpNOsBk/Kcado31EBpzszzTXxh8kcmZCtBnRbp766v0Yy9YaibIaVIpRuwOSN0PFMjYMqhni6je3SqyixTYAop/z6qjIYoBML9t1NMcyZjeadpPDem6jUcmxjDbSK6KaBLzh1/ryKAQcCAjz58Gq+u7+DZO1vacrp5YNUnpUigOV8A2tRORn7NWXrfiP42VDlRr+GDDywpdcVIBAQR2lSl8w8fn6E18ARM/miFkZrnhOoM6Z8YQSO4N50W8ABJbXvWq33s5ByOTTTwaugnlRTWcxx0uolxll+DaIfcpxgwPVbH/HgjdU3sSoKmzQLLaAcopjnjWRxp5v1pyK5GtioJMZ7OqZ+EsIzUnKXLi/XesjgfIgGyRZf6ypyJQReMlcmsUb0iT5B2aNZoui9rTtQCoNPRMWK0fFMHmWhJac4MfQSUSUcyiuVtgKkkiYa6j0/0NoFHjk9HB3XentgxkQYmlNDeuWp28kA+IMXG140WF8PDSgRF07uyGQMxL2izBlM/5e8qY5IPVuNL1G5KQq01IbOgeeWNT3dYxDlElHY1dVLrs8t5T1rO08xnWoJOd8TWkVigFynOXGcWc6eDsLunaosZBrtZkjywKSKd48b2fup3wI7Jonm67DNCJkhk5r8eBGh1s8x3jZcToPxMsuBSvykCrLqubAQL1Dv6uxtrAPQBc2LijO541QFBKARgqAUsty8XFTJchSihCgRNxK7uHdRKyHOmQt5TTk6N4WTOgEe6aI0u7y2yaJFueuLMAhYn0oyDK9R+UHSVfC06M421OPaBMGukrr3v3GIi2BCAhPYSSM6RS+u7uLS+i186vxQFYZOvByp9BkLzTjyaWOcNIu0RBbPgTvQh/xgmXXuy+8M5x6dfuoU3nZzDQ8emQb3tZldOKm95XjE9k2W8L/ykaDZqXxRRjlsW54PLCTJQnzMdsnzRTMyZeHzO7XIZ2DI/Zs1ZfNHV56yVIdmtEqbmxus1fOLRM1iaGrcqb4KVWaOJeCWTUAvJJsevXDiJnzmRDjVf5nCqCdSphWN6TKNWzcBMWM0JQ5mZsTqOTzQwn5EEOd0nt3eWYvyp8g4mZCoSZo2aTTBinNV2NH2iann65jr+4qJIYpw8lE2hu2XUEuOi6ZMEWXOmheX6sGnX1tTS1AlKg7LTSpslCtgwWToCLKvOpE9N/L1RY8n9lajDRdNjI5XWwbQuRP+pfVIc/HnOBmO6g5wmgFljUI1ZY1h3zvt1KSJkiHkQMx7x+aIiDt6jttO7J6+liIxz88ngY/IT/MJ9i8bUKkBSmCSvvUigoUwOF2Uf5Y8+WQ9SUZ/zwEzVUb9z4r5861T32tSz+4nT8/jA/SdwfHIMD8xP0TeJnhBd2ZKT1MuaM+FzRlnCEGtAfBev0jbwRWwqSQhXS16/X758F08TvsQyxBA8u7zZ+5sYs2bHHJuBgiims7LLulGe3xPhHkLtB48cn8FYjWGJ8M9UcW5uEvWA4dycOYw+MKSh9LOWVqfb1Zs1Sp9GxovYYEwwShuki4mNMMM3BlACglQid0zDxtSKvC9n92wknraagdjevfc5Vgsw2aglcnvFZYtK0OLvKnPmmjvDpDlTryRMNMxdTJVRuxAwhvfdfwLvuW/RoibpPsd2bfY/XRm7gCASAa7ZIcTaU9vRHvicp9bo1TBiW6vLE2PZCwiSLKvrNRUQJMvcM/I501RqZO6ouSjVrbtmMm8h+yCVk9+ZGENVipyABaNAMmemDnHRl/gnNb9VMvKunlG1gY1kVFe/eH/jRLoCE3E1Ge476n5jwye6JgqX+6kdlpSAIvlDFaZuLB7EXLBhzlQIAUu3y4mxpkfv588ex3vuO54/aq902+LkWMLny9k0i/UI2mube+RcSWvOsusXjyWb0ZUNrfku8Qxc9gfM2RWK2VGh0hbn5qewYKklpGaKzBjL102xDuj8f8nydct5Hhj2fYUXzAX1mV/b2DOWF3NR9Cc5Jr3PLCEbBZVWtAV1dv7smXkAPWG3ioWJBn7todPaVDQyZsbq+OjDp8l6VPTXrFFhiDiAy+u7uGd2IrGBZh08Hc4xZvA5u7G1HzqJ6+uohfY+rlx41jUbzZlM5GX5RFAQyaDzwpkoA0I38nxLtmhiSor4rAcB3nJqHqemw9x0xH1Fjw75/mMTY1jZaxl9FU0wa87yXSPLO5U21OPIFVImGek66Yt2ofQls0aNGaRrQJCtZhuffukW3nn2WBSdrM4Y2pzjoJN28E0FBNFsVGoE2Kw+MfQS4K7vt8iE4L169PdTxKAISU8xvqrfgq7qD51fwkG7S5ajTPx2jZqzGF3O0enyqI+RQI0Dl9Z2cHZWitZHDPGN7X1M1ILoksyEJHxOGUswbkX3iHwBQXotnJsPJabzaYmpqJXaI0QS7mOTjQTza9MTs+ZM098M6ixLQJE7GIYF8tZspTmLCMPkE5kCoKiXJuo1MjiPLcTzUfPAfVgZlnebWN5t4m1nFlJXU8yZRf2/cuEk2l2On672AlLIAvLyfA1VIYQQ3BAazOg/9a68zHF83/x4HffMTGBmrB6dDWVBt4/QNELy/EgJYjmwMF7H+kEbS5NjWDfk5UvWWNySQAvHbVKc57Qmr3c2ykI2a7PGsL68QgT5vtPTE9oAOVWhv9Eaw4cVB+/afgs3tvdxa+cA7zx7LCqXZafa4fpJdHN7P8pXMt2oodmhCYaxWoC9dtfBrNFAQCf6JkuU6fIqoULVI2N2rI56wLAWLrzFyTGnZNAfuP+Ehuize/bxWoD9Tjf36WizOMzEp5THSfpdjU7lUqcrJuoBfv2R0/jR8iZeXd/NrLvHOI7ji68sA6AZ1LeengcHIgJ4wjGwA1VGN09dx8I1EElA/KZCRyK5as5Iv5fQVwwgAoJonmUvHPcrG3vRAdyoBWi3OwmmRNSptqrrNe0jaRgX1tsrvvqaPoeW6W3UApZyBh+PzDDo8r06BUNN1z47VsestM1o97nwmm1qlO/eWMPN7QP82kOncGt7P+rjdrONG9v7eGZ5MzoIqbPg766vAQDOhyZFicT2pv204H6Qy+cs/Jys1/CglKtHhsmsUfxyeno8IYHO63MW30+DSoTrgqKCOBPyWkK4RDVWfZzIaI2ijDK+xR+9VwHlI1dESEcFKlBNw21qH6/XMI74+RPm206900NXD6lV5+jRJVDHJ3ttCCGcrqQaYKVMtBN7Z/zdJhAd9Zj3zE7iXfdOYm2/hYtrO5ntm4XBdLsucE08LfapSEAi3S5Wbh7NWWxJk2/tVBGN1AV9Zc4aAcObTs7h/vlJXN7YjTaNA4WBytScGTReq3ux5GC8Fmj9IMSGXYrmTIgwQIUtToMniIn4u04t+qHzS9hptfHXr9wB4H4ILEw0Emp41yk3FjJngzqwk2aN9nVRJT98filhv2y+X2Y+WOh3ZLfgVcdgikG9PyQuNw9a2G118Mal2XQfLB7XzgySJvx0S80uCbVU3kJzNl4PsE2sRxuivi29M8qs8Xs316NEyZkmhMrtMvEyVmPYayM13xl6TPTGQSvSPOm6nQhwGn7OGswYGGPYzMo7Z7hWZwwfvrCE/XY8ttRe8sjxaVxYSDMI1itK2ucSpjkhd2bU1Ejfb4Zh2v/2ygo2m+3IH1JmJq5s7KJRC4xnAa05099ASood9pM80RptBjc2a0yvureeWcDmQTu9f1jQP+ZcdPS1yXDe6COcqvUk/y4jAbMOpqGkA9/04BIQRCA5tzTneKoPxc45cbtripwsUOOiagRd1sHJqTFc2dzDgqyBr4g746kvMbrg+PGdzVzN12sM7ba7sKUMpPbOEHq9mcQ0SaUEkzdRDzBer4Ex8xmiqzNxrf+Ks2ifanc5vn9jDa87EdNBMm0t4LrOnM0aWTGNW1noeyj9h45NRweDzoE/6+V2OdduJrsSgWIyZ2iEG3YZAUF0sPULGK8FeNe9x42hbMsMUexqwh85pedszy7Pmb5M3vup32xsfaUK4q+KVMc1d4bJ3GduvIG3nJ7XdCG/xDTrd8ZM5k1uBE3EnBnK9xiGtNmFzWYuSxspGlkwZr0+KJozuZ9gKeZOZtYFYXTQ7ipRuoD1/Ra+cvkuPv7IaVKTFrXBkvcBwKwhIEvAkvsWBep1vOHELE5Oj4Mxhsl6LSKsATq8/rGJBp0TLYeAStWcyZ8UKGZAmOkJjZT8Wp+6tQEAKcfp5FEtzhGZOesR4x8+fxLPhoSbCS6rS9WcPTA/iTMzE/hOqMnLW78Q4tE+Z733qlo+2KyZHIq+eM5bqjBUAWSVBI2p5pokOFNhEoyoiOZy+KVD+JwddLr40e0NnFCsV4oyZ6L/Mt3yppNzeGU9WxuiQu4KmbOvQHCbc/NTOD0zYWX144oUk6xoMmV0cmhTBKrU8AJmYYG8j8hFqDNX/YWaYlORQMUOpoAgOp9TbqC5U3CcWvJcvLq1nylstu2GGGZ5Xf782WPWPqgVT5FMDCTPmRj8WAuRvG7jc2YzcKaXcGFhGje3D7QhhVWYNWf077rH4AoxUWMMCxONSPKdNSELS+gctzJB6OUx6wGK99cq+lUFUiBVcwLIKni3ystwEteWcSwvEBgIGrtQ+unypnHRCR/shBjyd/MNKVMQ6TuVsFPOoTYm+WrVIR8S8fftZhtz4w29z1mQnjmUyWrcJzfhg3iERo3hmMYxfbxOmciqQjC39SzfLb+Pn9zdQrvbTTCHLtDlXgJ6Y62DKK7OjbEgwFgtHV6pyEEv91PU9bOnF1Lmr6n6LfZa0X+ZsXn0+AzOzOgj5doxZ/pSmVEXNb+nNGfK39WaNeqvpZJ0Azg7O4EnTi9Y7b3qvsUJxl9gbb+Ftf1Wyiqn6KMLIVFDkvw9dGw6DC+eH65JhG0wVgtwkCFQygPbeQcoc9iRPuoJ4crvv8AvXTiJH93eiKwEZCT6LT8CIRdRGSnqyVz3XaZ8Jq4xtZQ73DVnyb/3pHlF1WUbOC9OKB+XP+3gP1il/6wNBsKcAb1X340OZeD2TswoZRENXW536JnW6KnpcUcHP31lWhMQXbRG6XuH89SBZoraY+5JNRAE64GlOSCFDz5wAq+u7+KV9V3yuuld2WnO7H5zAbVJ6gQKAr/4wAk6mXhOTtHmrmTV9B2kCYOxXTeCRsxZk0yqrHmbRWyk1o/0J2UmIedQ0WlE5So3DkLmTNM+GUqfMbz19Dz22108fzeZSDfvuDgnplaFYBb1KA2SeDn0c1A1CVRbFORzQIVqBsuJ752EsItLWlx1HmRLpk2ggjdlLWubZc+JPeWe2YkE452qxzCgX3vtLnZbHaMWiwpKkIcWUZditQFB9HXrzkyX/jBIzyM0Z1w/1KqwsqwnLxJUREAeqwLHdkYjjPpaWp2ARAsSe35iPUrPa8OcVa05m6zXsDDeIJkzWRiY0JyZaEyD8HOi4ZZuIypnoAnUunpKBLv68/qcCey3u9prVN/0/eghT6TTPPeVjcExZyw+jO/uNXH32ired24RxyfHrF6tq2Rf4P75yVymF6ZbnDVn8ndJXazLUN+7ZtcXG4iNyda0YWGiAWzkC0ksMD/eMN5veiQrySf1W4mqM1WipJtDc+O0JiNvX1zv0jVD/UxJm+NrFm0R5c3rRCPEcN7M7ful/k09l97MRK4j/mMr1ObouqFquQTun5/CKhGYx0pz5shcizqnG7VIwp8qz/V1k33ImI17iiS9xiTfFsM7E7wxJcyykfqrlgjReCrdff0ikQvRyecsbUaVtU5saqfMb7LYSNOaEYGjTNpalbF4173HMSeZ3rqeaQKD0pxRhGOenkS588K/jdpHlTkreN7cMzOBx5ZmSb9QV8hdKWLCaGzD8Fc5deYza1TPZuqUq5o5A/TzQfZxltcxVVzsbQZ+KjLFtxWyCc2TC8300uo25sbrODubnZ/LdbqlmbOOdE3qG8LgU87MmVt/4r39qDJnSJtU7bY7OA67l2s3cOky985OWpsymmvKvqaN1ij9LkeeFL4w1LPpstTngdiYbM0UH5ifxHSjZpVkrwpYbaQVrCNGfH/zqTlMN2q55lCuPuQwebNFLWBayw7X5RX3s/fZCOIEwPLhSB2Urpv5M8ubOOh08ShBbANUnrNsqSrnHCt7rdRhEH2X/hD7lk0i36Iafqov5h9jfPyR01jfb+HJKytkefmd2CCrn+p+XgsYOp0ksUvBZNZoIo7FNTXPGeU29eHzS6S/qct6oST1me/XogFRq0xUqnM4j1hMlw8QSPpwAsDxiUaU2gAwPJdyXyogSIkEzb2zE8bE5jJIzVlOiTmg+J5pqimb6WGM4eGM5NJ5kCuQjQWo87FwnZo9ihrpxByW7lOFuQFLB0BRA9fMjhXXVqrQkS0JYaDUL2qNC8sBsXfJ4/PW0/NkDlgKiTM42h/1IiD1ygsrvfQJn3g0mzlzhfpuWglhafx9rBagyzmZ05ZCZNbozIj3yrvGFSgbAzVrVJmD+O/sTU+eiL/64EnstDr4uiBCiDJyuzZ437lFNLtdfPvamraurDrTRCjHxdUdnJZ8CWRiYrwWYKZRw2Mn51J1UeG580JIWmw3bcYYTpbAjORhcAHLUPzURlNwoCiifqJOv5+qYPUIjPyaCdO4uvpBRb+FP43VArS6vYOlFjC0uxwMwEceOoXrW/v44e2N6B5XEqfDOZ6/u6VlzlJEmfSn7rlEtMephP0+TSzHobTp/lEBQbR9M/Qp676suwLGjIyiKpXN7EPGdVXWM1Wvodkxaxnla5SsyCQ/igKJaDRncn9157PLekn4nLHkpw42zHn0HkhhB92OlZ+mYXtPa32y6wMon7M0Q14W3n7PscTfRs1ZCe0yyGs7FirohDB58t71C/JoVNXP5N5SDlR/otW9Jl5e3SHfr15zlizHGEstGJmpOTszgdefKJ8p1vlGaS0uiAm+FUbxFVptucTCRCORs9JIX0lDwKTfqHJF4TrbzAK4+HsjYPjwhVP2/SAsEmwgSh9dzRlLbxribyvNmTQVJ+o1WkUL4D33LWKv3cH3b65H7drg+OSYsvj1N2rNtZQHublzgOfubmF5N7ZDlgVzAWP48IWTmW0UnTPC4ThvgI+8MPbbcNE1cmD8W3mLa1DL1FWros9zlv7dJBmyeV7dmgN6G2ncDkM73LLHakHKp6LsWaj2y4ZIF9EeZZOTLMmw3qzRri+Pn5xDI2C4vZP2SzDVafrNVEotH0tSXWuioR6yP3t6AXf3mvjx8mbUmiltgus8aBHMWYfzeO4ZmJ2s37OgkzDrypkgZpxJAJcOWJENVTtmvt/MDNrWUyVBk8fnzLUFgYTsXjOMVZkLlgF5OEzzoGAr5NciUPdnkUj7zafSAlHKzBhICx3l80dAPp/eIeXYLRNa02Ai0i1AD6F4d7OR5ky/R9j3y0BrCYuAAu+zTOZMhmufYosEt/tEO2IeDSqkfqa1BGNsgjH2PcbYM4yx5xlj/yb8/Txj7LuMsZcZY/+NMeZk88aQ3jTEYWvzqlLjpdmcT0yNJTK8uwyzrWRId019DrEhbCg5jdwTTBabLPWgWPTF/DBtChW0VrDSpCS7WF15USaxo9ZkkjZbMcQGyZtsIpWVA802ebEtUkmoDddUJA4KDXHPAVzf2ksF9qDaMDV3YWEK5+an8jMIjkILncmQfYPmyyqx2qgxPBjm+4tCk5f4rlthpAM1WiMVEKR0piGa0+Z6bZqNAoIYTJSog/rO7kFpWhGTEEFGqrU+HiGmoSQJsBxEWfQ4ypyiMMyaM/nhK9Ocab4XqlOzYNqq7RviveTxk3MYlywegpRZY7rOfvicaU3oxacyryht/HvPLeLxk3OkNUBau25HX4lnJ5dM9GMR7sxtvtlPT7c+xYGWGI5rohqbIOaRTZ7EKmBjyn4A4AOc88cBvBnALzPG3gngfwTwP3POHwKwBuAfObVMTCRhZpfH54yeaBRRaD/QtrfFNrxJqM8hiAU16qHrqy+sOQsn3TCwZmXtkUVMWLV1JurPV1vRQ8AmIamJADeBkgi9855jiRDetu0KiKktP7cal0C9r2zawTQGWa+jQ/Nmie+cczx9c0Or8TKZElJzytQnmxQFJgSGvkRmLpZVZwmF1PcolxeXWjletk5yKbSchcwacy5P29tsykUBQRL3mQmvjYMWvnF1NdRKDgbtbtfaJ6wMmNc1LZx1qh/pgCAceuasOo1UccjPXllAEMPeUjb2iZCTQrisphNJac6II7Qf2hC9MBK4tLaDz7x0SymfvmFxcgwPSqkU5CJU4BNDb6JvlGWBwFgUXISGjSCVKmG6z3Z+2r4xER9BzJiAMbz7vkV85EHaKk3XjuDJyk4Kb4tMs0beG9Xt8M9G+I8D+ACA/0P4+58C+NcA/lfbhqmBbkeas+yXlXb6t2vLZU26qpADxpTkrMnn0D1XXpvYvBjUZKP6XQ8Ymh1OLt6zMxO4vr1P3GXZXsGBKsOE4FcfPIUibHDDgrmz7adqek/Nu3tmJ3DPrF0uEOowEQIWeY5N1GrYRidaG+ptLnl4egRUdplkP01X7epRNWeTjQBbTZowNa4uonnT+mfhEycZjd4+Y/MkJnNosR/ZElZ5hEjqHOnmYM4aUmARGbTPmRQQxEDIRH107k26brmuPCtdvAdZ4p8635S/RbjpLUMeOJc+qfXribP4+zevrmI1jAx5fmEKJysOGOVu1pjj7QqfM8hzyr2aQSNh1tgHzVnFvBmZU01oBNV3T5k1qqiamQT05wBHL6iVbXkZcr/TvnWm++RyQniVvqFm0KoBvbnUyNAkUce57L6jomyzxl8KXYP+8uXbaIODsd5z1QLLoC9hO6JbRaKUF4GVzxljrAbgaQAPAfhfAFwCsM45FyfDNQBnNff+DoDfAYBz587FvxNl2w4+Z6n7NYdl2AdjuzYwqowlCbhMQ6jPoXsuVyaiaLTGrMVVGYhma6yXDJKgvfD2exYcqq52A85rFtXTIOXvh+u7cnnmKiw7xBqWNWenpsd76TJ202HkATfJbo2xTIl1+l3JfzsQKoz8CsCsAUpEvbMgerM0fR2eLFMPmRWbKZnUxiShOohnwXmfkj5NIbGzUK8xMqqomDeJPRduWhSxXmqKYE1FwNJhnVU0aj1BU6J+i0GjHNdNGldAzreYrl+OlGqzXijY9FswZkAv2qNNmO0iMHWpbLNGOd/ZCPJmCfTD/LJqioLSnIn1qjJfNmaNfeDNjJGBKYigH7NEVFmBhMApMO8RqYuqZYNRkkv/3Ox0E+ebim9eXSUFRrK5efqaoR8F8O77FnFje99ZGSH2XrGHDrNZIzjnHc75mwHcC+DtAF5n2wDn/I84509wzp9YWlqKfqfeU9vJ5yx7YpapubaZx+rkU59D91yu3SzKxw8qCg3Vaj18GDrZICsUrKDMpxwQO5sK+UshKRWzK6f7pSgWw0TEZyXtm0jBcH5+KmxVWSeWmzND8vl0EjcTQ+RCpyZSFEiVcE77QDx6fAa/cO9xTEsBT9JsYnrMdVG9ANpEz8VU1qQ5u29uEscnGnhksXheJbLthFmjveBNhe5wFYd6wsFejqgofer2EUFnPHzcPAYpM3rSjyXfzhznOZPrN7ffiZizdH2JkPyWc8V2RnFwfO21u3juTlLy34/90dQG9ZzufWKp0O2jypjJz16V+WUZQm9bHLT1Zo3qsrMx92MA3n//CfyyJgBbGdCdxbogqmdnJ/H++0/g3JxeyCFXmX5OV0Gu+7WmIQRsp8uxvHuQynfZu6ZvK481hQ1mx+vaiM4miGefC5lkOWZFP+EUrZFzvs4Y+xqAnwOwwBirh9qzewFcd6mLmkiRz1kus0bLQygnY2LHnCV/32110Ox0I7WoPi+S46IaFKdQEKQaPdScuZi2aSpP/1Qmcz6gMbcza5S+m0tCJjeqeKaFiQY+8eiZxG+NIEj8prZrbXPOkomz212OsRpLO1aro6BonfJAZqA6nJMETyPopZyQJYemsP5xGUO70bW4UOzQnf0sycdNlh+rBXjf/Scy64jvzrdPJRjbHORuln9IwpScp/30TMKoehDgYw+fRsCAF1e2rQVoVI1irapatiyIKS3PsdS0UdeMxqRLLZtX6Gu6bW2/FSW6jtsc7KFEm665gQGSWWMPwxyR0Qxpv9JMRtd5atlcJXDRnNnOedVXrWzo9p22gVPJ6lMy2JQqMNLfV9brMTFZ+wRTJmBM5m7tc9bfPWZhooGPPHQK4wMya7SJ1rjEGFsIv08C+BCAFwB8DcB/Fxb7LQCfdWrZMM7pQBppqNJmUnNd1oatqUttW12MP7y9gb9+ZTn6uyzNWRmT9OfOHsMHH7AnzEoB0W1BaBY9JHTSsbLQ740hardEosfWr6RszCgJPtV2bRnzAMm8XUKYo27uJn/UnzkxCwCYsNhw5fvkdvcJKa58g6lmci+zMJlOmjUG+spS7ZUn3S7FrDHHOs9qVxbm9nwbkjdk8eO1gIVaevs+0MxZ7724Bht4732LeP3iTMJMST3f1L/FfkkRovJ8srWSsCX0BsmrmPbCskzXYg1v2p9xlCAPh474LdP3vOrzsWUICJLyOVPN/cqZGs6Q+1VLvI/8dZr6bbpG+U2p5R+RrAf071Pf+T3duQgzA2ZL+/VL/hPT8xgYYwbYac7OAPjT0O8sAPC/cc4/zxj7CYD/yhj7vwP4IYA/cWmYemSdKQFjBMNmRZjY/WbCsYkGVvdbxk1aTGTqgEhkO9dU4SrML2OSnhmAqpbqtthIq5BQlsnY9CHybm4kze8MhH4/OiNhdqyO45ONzPfgsjnLzyrWlioZNpm1HJ8cw8cePo1n72zilfXdzPaoOg46tIQwFuQYq03BGK2RaN9F+2cylasacXtxw3lWeVa3u8msVLHGLvzNmkExXmPI0joL/9Ca5PNlg/mJBuYViXmm5iwKrmMWQJoYxeQT2UEXXKIfc8vUBLUk8mp6ZYxiMBAgOVa6Z2DoCWn7n1LHHaYeqnP89HQv2vB0o4adVoeeB32erzUpqFERhj+PnxjQO4vVyKry3qFau+jqMvWcMmcUMCeaHs75N2hrAJtojT8G8Bbi91fQ8z/LBSrHkk66WmMs9QKtQulTDTuO98+dPY6rW3sJPxIdstTpOpMe20lwYWEKr6zvDkiHUw3Exlp0gVJjWGb+rGE2Jc3btaof6UPnl8jf1bHsco6xgKGpEAkq8RgwliDCBFOmSiJTewshWXV9dnl+6QjvuEw2g8wSv2VrBORHEOZzNo7+9iav2XAes/AO+T3mMWvMarmrCMBUJtm+33p2Ja05S9daDwvVS9gs1BrUv81mjfFvZq2sSRNG39fU2DX1Y3s0DWtZZo2pgCCGMgKzY3XMjzt5iAwUwpyRsfKEtIM8HtXtfqpRxycePYOnbq5jp7VH3tOXaI0JzVk8c1Ra5/65ychXOwumfpuuzYzVASX1Sx4+z0RSmcwaTdpC62iNVqWK4+TUuHaf6ycGtqNQKnXdAV5jDC3lN5vzr4wNe7we4KFjdg7zpoPwlfUd7Gpywtj26fGTc3hsaW7gHH1eUN2uwqxRSMx2DWp29/qHeMwtu5Yi+AY0j9Sx7HLec+hXmTOFeGRIziHBJOUS3Fg8O9N81wYiib71rpNRt8JCcsQrkyaMYjBEeRuJt8lHwRXOZo0EJ1qJWaP0nSPNJNv2W6KfEhirpVe/yYzelNzdFlkJZk0BQeTfTFY5ASH0jNrT3KMnWqrfS0wtlBPkimmjip6bmwTnHHvtLu7uJaPOvv/+E31JauwCsx9r772XcabVWEh4D+jxA5a9rw3OrDH+LtOi6ra9MNHAAwtTVnXm9Ss7NT2Ol9d2kvtFyYOg5u+VYRKUD5tZ48npcZyctsv1WiUGxpxRm5l4gSnNWcBSoZTTPmfp+uQITlONGnZbnUpt5nWHcqfL8aPb+mShLn4Bg4qCXwbogCCCOSvvxUw3eir83ZY5B5AL+s3HLE6OWe+d1l3TUZ8Afv7eY5hpDGY76HD6GShTMjUwx347O5gMXbcFEoxN/HPWYTJZr+F1izN4YD594Ip75UAvpqAvYn3Ia0f4nLUNkbMEyjyL80YDY5D29lztmiG//4TmTHzmNGsU8oJ7ZydxS5NwnLpfnG1VEuwxc2Zuw3Td6BupuU0Xra0/mrPsdZIs71p//F0VEJ+YHMMDC1P47o219H1uzfQFpj7VGIvyPxXFWC3AXrs7MNM0c47I5Cd5sULI81WmDQuZNRrbS/92z8wE3rg0i5mxOt5+ZgELkvm0sS7N76ae5xWw21tTDONKqw4D83YjmTPlUyDvxivfJ5wdTTkaikK3UWxnJAo9yhDzIMvnbKpuNiuVh352vFe2TGfOfm8L7z23iPecWyy1zpT0X/q+ODHWM33oA1JmjV1aiqtuEer6eub2Bv7y0nIuf0VXn1X5oM0K4c8Yw8+cmMWUwRRaNoOqG+Zp5MgtdcZ2zYi+RN8zS2fV5VpeMJbZ5mJZ7b7tzEKUkkFFJxEQRPI5E5/uTQLo7R8fPr+EN52cI9aOXhwv5qlN0Jm8iM0azeWMPmc5qHOtWWM/iF3DtTJiWzAAK3tNXN7Y1eaEIgU9Q0kzGphyaV0WxZtPzWO8FmCiZpngt2QYg+/k1DKVBXlKymcXFVPBFq4+5YwhOtfvnZtMnPGTJpoqxwCZmCwT42atOXPsz6hjgJozB7NG4gSy0TbJWqYLC9O4f26qFJMTfXt03VRSPhlDZhFRGajhqVmaNX7o/JJx8ctVT9Zr+IV7jyekRHkhpOeDyg1ng9xdk+4r8nw24f41zQLoMTuMAecXprDb6uB2qKVgiqaPIfmsIjqUNnqiuK+EVyfvVnpTsOyGZsfqePs9CzglmU2Yxk8wZ3KJh49NY6/dwYMLbvnJ+mnGmmgpQZjkYKTBcN/cJLqc4w6RyFyuUzWDBez3V8qvTBAzqWt63ixinqs0jTEx5vIlo+YsB/GqJtnOKl8mqDaWpsYwUa+RhGYes72dVgc/uLWBC4qZmY2GZphgWupRKo4S9oMzMxP4yEODyQMF2Jn5lRG1Ow/kZs2BeUrqTcLXNPQrNBQ3he3X9clknmgSvJn2fWu92TAutAoxQJ8zQnOmMWuktGw2B66amLJKxgzQBwTJYs6G2p+pRFBPaWvW2Ht3duPEUB5hFIChCz7kbyhf75KaoXwtf+j8EsYKiq2Fc/pbTs2j0+X47MVbANJqfR0xQSUoVe5M/+Lqcyb9UdQ/8t7ZZJJRU0jr8ShHolS+FuCtpxec2y2sOXMpKxVmKCeUvq59OTAKB+VzaLtvJIUBYOo18lKqzOxYHY+emylFOKSDaQ7Kl0xm8DYpHFRofc76oTkj2pgZq+Mtp+axLJmdirforOmVvuuiQw/3ORDD1M/JeoCt5ug8iwlmptnEuVX/9IHCLGm7UlJ7cj2CbjGWZwyvW5xxTv2RB0bGbUijNQ4aA2POTPNBlQrSgT1sNGf92X7EwtNFpMmK/HLUJAIy4oAg5UVrLJPZFcqbYQ7Ckl9xJo9ZPpBBL7LaJYIbNISpjazNU3xNdQecKYQvoCOkbfopl7dg5nIOYsNAQQsCP0vAY4WCU9hlDajjpTNZt6sr6gB5Xeyu4pBXJeZlLF21CrnOh49NIwgYmqGQoMYYjltGX1MxN1bHpsO7zto2VQGljDznozbi8IB0Z/G7jn8LWL5cUiafsyjyKOliMbxnA4VaUN66qBKKqISEjVgw7/5fFMk0JtVzZylhYobmDIjzfqbq0txoeh9JjX1SgGR7nwlDPl1Lx+AyrBEQL6ndSR6ytFljdn39MkV7dHEGADCnCaeblfNmmE3mygSpOSspWmNmQzlBhTIfNth2LTXEtodHyVBb4pwn/JME0smk6T7u5xB+2Otg9XXkqzMNk+ZMhFh2Idh16OcUTjC2DBCzL4+UlCmfKkQofVGzquWwfW71HSdMJA1z8bGTc3jDidlIUl1kP3/f/Yv4lQsnrct3OMeqEj1QZixMDJjJkkR3nynEfNVQtbG6dqm9xLKF6Jv6mLqhGtZjwdSvOMXFsPa+h6I0nup7mriWs08usPX3LU1zlhBQGB7epi7N77utDm5u75PX5H0nJZwzRWvMJbI7/Bgu5iz8bIURocThQQcEGR7N2dLUOD768CncNzdJXm9lRFUb7i2yPFDvTLyjohanTPO9KES/hlrzbs2dJR+ijHxMeaC2KkdrTORoUkqmA4T0Pk35VbR9cDVrtKnTuRc9mHzORFCR+zV7iwsKh9LPWVaWgOfSnGUQ213FHF4lDGyDQKXrlyOFJq9SQynaL7KX1YMAkxY5NQVeWd/Fk1dWsL7fkjoSfzURr3kYN93763dAkJj2TDMaAUuWyVO/KizU1TWsQjtj4IhidHvfYCPkGOZnsCWu8zzCeSISMLkGctQtQ90GnlnexHeur4FzjoNONxHsTl4yKUGXoQ1rzdkwv+wKMDCzRuqFCO5a5O8RIV9z+5z18V3WgwABaCaslWFjccTmXAKMAW86OaeNxGZdT0n9UbE0NY4rm3tDncJAdC0rdLc6C03mdJVCaVYEBFGhmmQFjCVMnoWPUGZAkPDzdaGGm+hCJqy0IXmllBn3/fojp0s5mIrW4NKFZFlWyOdMqoZEZNYIxawx/LSPmhgzgRwKsWHRFXF+DcISYq/dwQJ6JrByv01bgllzRv+uk4D3RRORID6TOdrSJsi8UK/UBO9CUJTWoI4WFsbrzhrlfkO8vUDY5hlgF0qfEu7n7p41EpozQ3uue/snHj2jqSf+XnQPEndPNWrYbqaFn60ux9+8soxWl0f9SZg1KuXNwUI8KAyMORMSYdk2NdaccdQZiw6C3D5nfQ6DqFtk2ZqzYd0mywX1lAywTvJtW3mZG+9bTs3jkePTGM8I5T9IiPnjmlepEQQYqwWZPpFlQ+ePpEIlENUDRxBnrUyzRpY60KrgtapaxWVJDAszZ05lacIkn+bM3H5k1siT5dvhD7ZrV9wnhABmRjLdGzELB8Gc6aI3GrVjJWrO+kHqJ4hPpVW59bxaA7l+dTz1c3A4z26qV79y4SQatQA/vLXeKzOcXQdjvbVsc5yZiuQ3by0HCZ+zPrRHapZz1iX0CVN1mjlrdrqRu87zd7YwM5bcY9VIy8ZojVnB4Fg+H9JRx8CYswsLU5is13BrZx+XN/YAxK+y3e2iXmOxBi2n5qxfZo0Cuj5l5SMa1k2ybNDPWRbhycjvRVELGObGq4u6VgbExpcV0j6tOQvwiw+cwEHfmTPqN2qNJ3+rBUgECBHPk6f3NjMkSfBl31Fk1r3//hO4tb2PF1a2AQDvuOeYc4qCLBTfZ+wrYMp3DuCvLt3O5VvKiG+yUC8ya4xK9cqJKJ62+Q5F7SKghKmrtFmj0JxZNVcqukrESoGyfc5076//Zo29WUWZ6EUBLwq0pdOcqbUO7dlNaPiEuSxlCjpMiEbaYnDtLBqon6p/9mTfsjV8pbYtas1ZuQiypTOxlgW6L672zqz7ZuOUCib/XRVZZ0ItEpYdLQ5tYD5njDHcMzuRTM4Xjn2ry9EIYrOFvD5n/ZZg6trLmnxHJc8ZhSP86KVBCDGo3IEmNAKGiXoN8/1mPqnDkvhNXU8Bo49U2bxpsm5JiDvuDTbFi2jqj000MC0dhGdnJ0rPk1WUIIk1S/ZlI3COvXY3lyAgDmAQQz4TIssLRXMmAsWMW84JtW6ZGFAZZXoe9j4HozmT/pDNi3KYLgLuc7kvmgFZc5ZiPuIfornh2Cm5DlvN2VA57UtQ+0kGUxnSw/eBMMecjXDdJkQ9AzCmTva+CxMM5UrqC2VGmbdq4cc9pbE6aBLWYAlzakvrmN61DNPV8CUfLdZsCPaWpMkLx06zjetb+6gHQXTYUuZaNu4y/Xap0WrOMrizYZVglQ3yOUvbmOjvRwEiUfGpLGJemYZF85PlBa05SyMVAERTUuwTjxyfxvvOncjdh1QZ+bCzKF/Yzr/iiVu0+liz5KZ3ZMin3YzuJ7Qj8pnQiTRnyQk+FpaZadgZiIgaqQiyY4r2jdSchZ9VM2dU7TIzIY9Dfp+z4dtEawniU6/9qefUnMnjpp7ZurQMwxqkwJSXryjhXjXetDSHjz582lIIZNBISc/5gfuX8HNnj8XXCvbRBvZzo/zexHtQvrpFcLszM3SCcSqOgjEgSM7k1UBMp2RFPT9sGJhZo4DMYXMO/PD2JoBeyE7xKqiDggo/XQ9iU0hgAD5nmoWQpY4d0v29fFTHm6XMqI4SZsbq+PD5pYTmhcKwBASxbTWVTFirme492ZmZCetId65P3o/osFW/jaL1R8xLGKjJui2W7RdoU1dCcybt7Ry9PTaOlti79oalWZyYGsMJx2BD4n6ZWE8xZ5TPWZ/MGoVPjgydADCvz5krg9kPJiURyVVh2BNmjREj5dYnmcFVNWc6Mdawnt2qtlgNpgIMMWPJGOrMViBmUSZgmGrUojgHvTby9y8PxN7AkD6Hq+hKtAZy3r80NY5PPHoGbU28BMpPXaa91f2Dh/fUA0ZeM2GqUcNms439lntU5lHGwDVn6uIaDwlG2fyFYrIobZoaGrz/Zo3071nOjKoK+LDCVmPi4Y6ZsbrFYZuciKb8WpWCNFNOF0ubNdLViTPBZS6ZxkocbAlJvUWd1kEBtX0qdn/VEGPmynwwsEJ+jdG7kjVnymB1JR8xcaUeBDg765CCILxRvHdnzRlP3t9PdBOasxh5mTNX9PuJVeJTbj+v5kw+h9Oas3Q76j3DhAuhaWBEJ1HMa7875QgbPYlp/KN9gJjn/U4jI7Y/im6toivCjLO4tQR9BlPM2a7EPKmPyTnw+Zdv46mb69Fv7W4Xl9Z2EnsXBSF0zspnetgwBMyZLAHlUWStMzOxiRZ1iJCmjkTo7X4iS7Kvv6+K3gwfyMcs6dmTAUE8KKTzPw2P5owOCEKUIW6OpJIOC8lUUgyLPD4UQ/JzZ48lUkAU15xV+z7KkpRbPSdLfs0TEVQlvBN+RYpgoSs5jBd9TIrJVoOKUE30TXNGtJ4wa5R9zgyDoTKcxfrUX6jnvzy3xdxwNYJamIh9b1OaMw13Nqxn90S9ho8+fAqPHO+lD6HmxLD2XcBENonXb15rvYuUL7a6f1QNsTe4+oXnwcxYDVOWptxZ0M0RysRQ3uPVfUesp2tbcQLrZ5Y38czyJjYO2jBhyiHv42HCwJmzhHkK773EGmN4xz3HyDICFKHhGkq8X8g6JIaz1xUgfFD5PZVFkCYDIx2ZEXWCGPfT0+OYadQG5ldCMmfEj2r/dN1VNSZWfTAUFgdLcj9R+oKeGeW771tM3ZcXwz5tRffyPKdOc2aqKWXWKn1X93pKc5YX1LoQwVnmx3tED6V1HqjPmcas0UQLlkr09Hnu1hQGgxHXsoSiKu6R/GvaWs2Z3Z40DKgHQSRokk10S+TJK4Xp7dmYrsYMESHI7/N7E8wJFYG3zDn0qw+exC8+sFRiEmqGJ07P4933HQcQM8yUuaO83tTHVNcTgEymTKAxKhO2ZAz8qeWDkKN3yIzXgsQBZ8tzDStzloVhtf0uG1Q+riqe/GiMpjvEuJ+bm8SHL5wc2LyjmqV6kvY5M79bJ+bMcE0cIzIBngpOQjGTBfcfVVM0dBDSatdIfkwfsdbEyEQh0YkiabPGmPwsOq+pPs2O1fGJR8/gdMikUVrnPBrcXCCqp4gfwKzlnCwxd2O/52wcLl98xhD7nDNzNjuBN5+cA0D5BaXbkX8fVkT+k4TmbNgjk5ui+Il3bNqK2gbmrB8aLBlR5HGKOStxDk3UawgYiyPOllDnufmpSJAj6msSvjrJ9ZZ8JpHrV/7V1oeMAfiZEzN4xz0Ldh0+JBh8QBCZOROaM0nCf2vnICbqGYsWHIUa6y24x5ZmMTM28EezxhHhzYw24GXVrX73iNE7kDpDMN/sOpCO1phxn8NzmaRxHeJQTxFlxCAWNmsccnOjvfAwFXzJwngd64r0U+QfsyV9RIJRhjQhMRYwNDsSYSyNizgjRA6chFmjy0NRfTJQfIIHIjVnIiBJwfazQPVOPheTJJL+WcrMo9dvJiXlc8bS1/K4qCxO0sFjRlTuG40L5Yc47MHvTMxj7yzrGgUhna6eOeuX1cj5+SnMT9Tx8uoOAI3mrIJ2y2bA1fXdIjVncvkkhPBIpvdtfcgYY3jd4qxdRw8RhkBzFn/n4Oh0ebRw3nn2GH7toVNRToVjk+Z8TCIq14mpMW0I0GHEMIYtrhIy8VPao3vuLBOxtH+wA0S1TkViozRnrvXqYEo7YDKHEaA2zrKiNQ4iT5YNhBnKhYVpAMCjizPRtajvEBJtmbE1jKNBAi4YaNJ0TTBn4YvYkaL7FvY5M1TQNhB8QtI/AMVZUnNmMC+SUeY86/eUFe8/ftK4A3k1Z4BeK6wNpe/cQn9BvWMqGumoIdKcGcqINWEbs6AKvOX0PC4sTEsCv/6Q3FE6kIreMeVDbAqlHzNn7m0N+xqrCgNnzuTNUNWcBYxhrBZgPtSCvU4iBig8enwaH7j/BI5NuIVOHjRGVSrnCrFg5Q3K82b9Q3wgDfZQzjJrFIdpOiBIVr32bz5gDO+/fxEPHpvSljFFs6TaKrqORZUD35Q1EJqpe2Ym8IlHzyT22UB5ZwnmzDAuQpJMjacIWBGnIom1JfEc6X1+89oqLq3tJsrlhZk56yb6LaNfSaipseIazZkptcSwCgFsIKwvYlNS6Vr4btSgHjbQreFhXZNZoJmz3ufQmzUaNWdpIZCKjsGUsN80l9gb+hWtUTRTlnZUpwmzhdC05dlzRnibKoSB2/6pPmftLk8RRdOhvX8WGGOJiEujgqOiOaPNDMp5dubZs0wIgsZ1Yy0btOYs/l5jDC1w6zxnpnpNODYxRjols9DIziRdJRnMwpozPaMyDHj3uUVsHrRJX7CA9cwTe++MWxM/E/UatpodkvgVDJCYr5EGjcXEh7x3Xt7YjfpSBCazxlZXLwEXxOQwvL4Hj03h8ZPzxhybQQA8dGwaOy3aMf91izPYabZxVYqwpkO/H7mmMGBy+2LfyMOc6c5iXdLrYXjXJpC+sTkDpvQbgqCfatSw2+okTJ/rxB6kwqTl7vceK2gf2qyx/L6U/o6VLmZGIFf+VvdwHRoBS0WCHPIlVhkGzpylQm52OSYH3qv+YpQlmC6IHHQtpep5cTRG0x2CoBw0c5aFIGBAh4jWiPICgpjuuWd2Alc39zBr8FutIr9RpDkb0gk8P97A/Hgs/JK7yWXJcEc1a0xDEFoToXaM8iVuKPNV1BMwJmnqKGKnGIxBBgwEn2i48pQIxG9c+W7D6NcYw5vCABgUfubELLqc4+rWrcw+uQaJyYt6wNDuxoKbOMdh3L6w3u7m2OfUeRtH4Ax/G9K1qQO1T4l3NdynAPDWMwtodrpY2W3itdZeIvm6OMtM81touYchUBzlxyxQRe+CkpkztY9ZuXvTAUHSPmcUJus1tJpJYdGwCiurxsDZIJUAa3Nu1CSN14JEyNthhbyxZ6FolLdRQWQDXkG0RnnKHNG1nIm6ookYFKjNNklc0S8wa2PP896pW16/OIPHlmYxYYhmV6VQYVQOI7mXgrkaqwVAq5NgcKjHqYVEtshrSU1J4SNJSVJNeY6Kjp+NWSNFZL3r7HFc2dzFZL1iIziiezINZkuP2YwSVUYEYZFRZnARE9519jgure9EeefifsT+RbFWzb3+ZJRoRmrmRgmjrDkTdN7qXhNAj9HsRu+5V8akGe4YfM76jVjjR+wNFXSv/IAgSWQJPlI+Z6GPWtbOOFGvYVNhzkbVpLgoBv7cVD4EE7PykYdO4S2n5yvuVXG47AdHRXMmnrOKpIJHYwSL4exs77CTEycPC6hoa+lw1pm1FGs4RCNgRsZMc1thVOVz9vCxaUxXkciTGITxkDHJ2tPEO1aTO8sYizRnYRhmSVsm6qcIr6KvxnT+COKKSuA8O17HG5bmKmOunzizgPPzU85M1a88eBIfemApXSZnPwcZ/W5xagxvv+dYzGAIc7FagMXJBt559ljk2nDfnLsQV360pIAh1ETm7PegYPK3GnLeLAIZrdWC+TgeRt407TH9Rr80Z5H2uLSXnOxllsmw+kxUtEYKk430uzoq9LGKwWvOlMna7naHQtJRFEyjOxOhpmX0OyHioHDf7ATanTk8sDCFn65sA/Bmjf3E8ckxK9/NQUB+Z+IsVaWiWXOlLM2ZjXSzErNGItJhGXjs5BweM5iv5QXVS8G0ZEVrjJgzg5ZJRGtUzRp7Pmchc1aig724zXT+vO2eBdzc2h9IqpZzc5M4NzeJL146SF2TI++pUfgm67XcJz1LvMfeiVaFttIVQaQdi4m+9547EV3Pu8/JTyH8J23LDyOOET74sfBrNLiz2Nc0fh+R2Z7hGd5yah4PH5+OtPPDANIMu0LNWWkBQZQ+ZlWrMqEtS58zSoh4CNiBXBg8c6aMfJePtpnfPTMTCBhwazt9gAK9RaNKMw4DM2oDxhguHJtWfy2tbuq7x2hAfmNnZiawstdKaVgzzRpL6ovN/lPlFBuV6Ut1czxizsz3Cv6XSoQsBFhqQJDoOpg23YKuXzYQeQBN82yyXiP2sD4jw6wRMM+hd993HHd3m87NNmpBGEJ78BO0fM1AD4zFYlVqDMVcHK8FOBiSsTChHgR4YH4yQUyXTbhXjYg5k36LUikYnqEWsISP7CDxvnOLuLvX1KzL8ufQoE1X1TNUFqJQOD8/hWOTDVLL6TVnAwI18KPMrLzz7DEAwF9cvEWKF2qMoa1c6Jcz9TBiaoikWh4DhLTmHz42jXNzk6lcKlnmsHlWUd6VV4UAIA4LPhr7AdVNKsS1Wo4h1jyO1wL8/Nlj2Gl18MzyZlRHs8MxP97AmZnxKAFpLEFPh+5P1p9v/MaVvGrDCqp7iYAgGnrsPfctYqoRYKpRx9KUPs9fVrvDMD5xRMZq6u7wdLRYAFgJ/Z9OTY/jyubesPNmAICfPb2Q+NvGJHCYEOdOlH4rwHwMwszx+OQYjk+O4bWN3dS1KqaQmLo58rDT9TmWr2s2CV09E/UAD8xP4dZ2OjLsCCyxSjBw5owy6Rtl5kxA9wSkc/wheF5XvOnkHGbGakazprw4eqM5+pDfGWM9ny9hCjHVqOGtp+exNDWOyXoNz97ZxNZBG/sK85aHqbG9RSX45Vn7nvuOl2IgFEWGK6GufsBkrpjw11HvY0ni6vTMBK5t7il19MLx/9zZ46l6Aha3Q/qc5dwA4rxq+e7vF2xkeVSREyX5mg7D/io0rqaIqnkh0kJQtMkblmbxk7vbWJoaw5XNvaEYC1cIrXVVCYrLRtKssYdYc+pW18cePl1Sr/KBOqOqsBSLA4JUFBEkA7pn0r2vOMl7+r6jqjkbOB1AaY0Ow7vQEYoUQXMUJ99Dx6ZxerqaqJtHcDhHFoIgpl5ZtDlxRJL+hYkG3n3fIu1rVE0XAQAnJsdwz8w4FkMnc3l9n5gaz6WJUNHNMP0YNlDdNIW4j+4DSwllEs7+GUmEWYZZY14IibqqsR02UM+ciNYIVLIJDtOsXJho4D33Hccbl2ZLr1uML3VWL02N473nFkdmjVIoO5Jf1YgCgki/Rc/gWFctYAN1m6FarkI4X3US6izonkn4OapMozgNqLtGeKkVwsCZM1ryeXjfBh3atv/98PAYBphMpVh0AKdPGHKLyLGOZALsF+49jo8/QktWawHDO88ex+xYT2Jfxfku/CMeXZwpv/KKMT/e02BQDKa6nzMGPHF6AW9cmiUDFtw7OwkgHRExlq5KAUFKlLQKhvFgyJkz2qyx2sStk/VaVOmwHFcnpsYrYZJElaJuygxulEmU0rUqFUOMdUMK1BSZTw+iQwVACiErmEvl5zlz66SOOetyYPOgla6fJT9ljLIgpAgGbtZYEo01dHCZT4eZGR0Eqk4C61EOlqbGsBXlNNG/M+p4oaIlFn3vcoh2HSgpblkYqwVDG02TgjwG7z23iFaX48pGzzzRRHAw9BihR47HTKgcIfP1izO4sDCVSmcQmzVKSahLTBskiPChZ84Mc7QKgvuDD5zAZL2Gr1y+E7bfCyrS7nJ85/pa6e0NGmJvEQwvlTahyn2gaghh8GQV6TUqgGzOLHDPzAS2jrfx8PHREmSRbi2VmDX2PgcV9EUXR2Gr2caXL9/F40r0YFOqilFjwMvC4JmzEqNtDRN0zyAkCg8fm8bFtZ3+degI4TDMn8OOjz58CgFj+JtXQoKPKCO2BoreJDVtOfoh12MlIyH8H44q5DGoBwHqgUZzlrovXZecuFn4HKbakz7F2V+mz9mp6XHUA4YHF6ZwVfKBGzaQmjM1WmOJ7cUR7+I3UIYZ77BCzK3xWg1AG+cXplJlRnn514MAbz+zgMUhzHdJgRKYBYzhjUvlpwepGiY/3TIRmeaWVLVrPVn85ivrycAo+tPi6J61A2fOAOCd9xzD6n4TL632mJXD8DIeOzmHH9zcAEfSdyIIGD728GkEDJ45qwqjP30OPYSmxGjOAP01CkW3DQfezE8xDWLmLP4tHa0xPXpWieklczOTb1teDepEvYaPhgEDLixMYaYxFMdjCkbNWaXthp/Sb69bnMHJQ8aoifGdatSiszpVJirbv36ViXvnJgfdBWuIIZbn9qiOe1lCxSyM1wK8bnEG9w3oPWcxnLHFTA8mZvKoBjMfitPnntkJtLqxKclheBf3zk7i3tlJfOHl2+hI8X7nxuojncdtFOBHd3RgYnbGagEePT6D++bSgWPK0rjL99gc+KLIUYywagOhZVkw5BeiRo5M/J26Lz7ATT5nZbyaN5+aL15JRaCODw5gbb+FV9aEgLO69uW6f+ZE+QE5Bo1YK6s3OfPLv3+Qx/rBhSlcWt8d2TOethAp/2kYY6WuTdceuvqJUYKfuO1RfdvFMBTMGeBOJI0K1EdZIBzgPTyOKkwhdBljeIMmGltZW0SyXXvuzMtXaNw7N4mFiQZmpBDn6uFaVLuTjNZIXT/coM0aOb55dSVKP1EFQXPYx1WAGbSyUZkjMxqDRxQYivdS8Dx2cm50ratGtNuukIVmDNl7vkkTfVTP2uFhzgw+CqMM8VgLEw2s77dwdqaa8PEeMUZ13z6KKPNVFT2w7cwaQ8LtqJ4YFphRck/ZjtRbTs0bo4sxiSGrGQjow7/+WfS/GC2Oak0a060fXggdrsnCJdb4H/bRGDxis0YOxkZ7xEe1965nazJheHayeFP6ipFlxAtiaJgzGYfpZYhnOTk1hg/cfyJxrRGwSNLpUSYOz/w57DCZMzjVU8J93qyxIlgOFRV4gaqmZ9ZYQoMjCjkYSltiZmXGtooRiOo8InPfGHH0aAzBUECEze8cAlrpqEwb2UydMZaZVM80LkdVDjo0zFkiatrgulE6TM/yKw+eInM4eRTDYZo/hx1y7ioXqKumDGLJSnMWaW/8LLOFOlJFd7yAMYzVAtQDRgYSOeyHuaxBFIPJodA/FXJnh3x4I/g1PhyYDgPz7LQ6A+5JcYgpNVELsD/kKTtU2Jgn3js7gYXxBhYnY/cdm/1YMOD9CpgyChge5kz+fojehpiYlDawNyEP0cMOGAHr5fXwIzo6YMqnLbrdOCpgkXeeFArZ13LYGYBqkY89i0xK0ZPM/tpDpzQO5Icb0TiwmFziXIlmV2G7hx1iHE3accEIHyZaZVgxO9YTwBwGMbaYN1ON2sgxZzYYrwd4ZDGZey6wYOtEgnFyPz+ii2yImDNGfh99xASFR7WoMdYz7TlM0+eQI6+plEgUPFGrYbfdyb1n5BUKeal6Dz939hhmx8zHSGqkclJZcdoFvb+ZfP2wQjxevcaASJnQP9L1cI9uTED7NT4coJKAjyoEQzY9VsfqfmvAvXGDhXVibp+xRk1ozvyaExiaWe+cDHZEIPtJeFQLIen0Qz06CHK+M5F6Y1wkL8790t1uFIeT9znr4czMRCoAiAr1wM3LRtjupYf9zYjnm5QSdafMfCuM1njYp75wNTBpxw+DFmdUwBjD2dkJ/MyJmezCQ457ZsZxbm4Sj2miEA8zrMz+id/szBr1mrOjikzmjDF2H2Psa4yxnzDGnmeM/Yvw9+OMsS8xxi6Gn8eKdIRpvh8WHC5t4HDC548bXTibNYbU0US92KbuKhTqWhBuHhVB+FplvO36IX85gtmdkDQKKYl2pUNwuMdXwEYAczRGYvB4xz3H8LrF0WNoVNSDAE+cWcBEPe0rO/ywWA9E7AgbDXSkOcvTrUMKG81ZG8D/mXP+MwDeCeD/yBj7GQC/B+ArnPOHAXwl/Ds3EqH0D6Fo7hA+0tBBHKZZqneP4UFsqpbv/olaLby/+AKzEaB4kyd3lDVS1pqzQ/5uxNOZCLxKfM6OSEAQv8Y9PNKoVHOWMzDYYUYmc8Y5v8k5/0H4fQvACwDOAvgYgD8Ni/0pgI8X6cjh15x5VA2hOet47mxkIMIj11k+C2vhj5Bbc6b5roMIV+4PEXuIdSmGLK8PSTIQxtFFFPGtLmnO+ulzdsiHX4xkYJim8Xgf8sHw8BCw4s5Y6qsQllGRdeOykegtZ+cOH5xOScbYAwDeAuC7AE5xzm+Gl24BOKW553cYY08xxp66c+eOoW76+2HBYZfmDgPGQ6LPs2ajg3bInAmzBleUuqws6vJSdXcIM0MxZtOGQ9oGR33kBZMqm3Gr8qhKNGcV1Dmc6A2myaxRaOznx4cmpprHCGKU5o+r5kyOrgsAp6fHLWrorb3xQxQEJi+sR4AxNgPg/wfgf+Ccb8rXOOccGpqYc/5HnPMnOOdPLC0t2bV1CI+Bw/dEw4e3nl7AG07M4vhEI7uwx1BAJGFvmMTUBH7+3mN4/ORc7lD8AglzaovyIvixX8/2EM7eQqMt8ha5oqgJ7GGB4Mk4Bz7+yGk8SCXvrmSMjoZfiI0AZmGigfeeW8QbRjCwg8dw4NceOoX3nTsx6G44w7T+KUsUsf8HjOHjj5zGm07Oae9vhEzZG/26smPOGGMN9BizP+Ocfyr8+TZj7Ex4/QyA5SIdSYTSP4S7/2F8pmHDeD3Ao4szXks5QmiHURddNWenpyfw4LHpaF0VjQDY+57dB2HW6DVn9mgoTgdzOaXFOgfz+fF6Zjj/wwTx9By9sWCM9SdaY1Tl4Z77kVljxhpfnBzz+4BHbozVgpEKYiamumnOy5fOh0IjEVE5YL17VaZDPh8aQYBPPHoG988TAqcjBptojQzAnwB4gXP+/5IufQ7Ab4XffwvAZ4t0hIrychiw3WoD8GpaDw8KwqxxzFFzJlAmEWpDZ3HuozW6Qpg1npwaw+Mn53CB0vRY4sLCFE5NJc1jPvjAEt5//yKAw3V26CBSF8iRSvvpZntU+JGcltYeHocSsTl1dhmgp/362MOnI9pXCM1l4fk77lnARx4iPaKOPGzEje8C8A8APMsY+1H42/8NwB8A+N8YY/8IwGsA/vsiHUlIsA/R7s/C7OinpycG3RUPj6GDoCkbeYNEFNwq3AOCiHYPzx5VNQRzxgE8eGw6dz2MMbz51Dx5rcYYzs1N4v75ydz1jwouLExheqymMKlJ7qxKn7PDPvNtNWceHkcRjSBAs9Mhr6l0fI3F+39s+ZAs49cZjUzmjHP+Tej34w+W1RFX349RwfvvX0S7y0dKfe3h0W+opm+2KLyqpApsDomIcCva7hFC5HPWrU69wxjDE2cWKqt/mMAYSwj7GCPMev1xkxteO+7hoYcpjyR1hIrAOnGk48NJ65eNoTHUT3LTg+tH2Zgb98EpPDyykDdxcFGzRvlumy5QB4yHGeLddn2Ki8rQl2iNRyQgSzyUh/xBPTwcINa9a/AuwZwJ4Zx8t19hegyNADjw3LSHx5FFXmanuFmjHIjIJiBI79NL1e1Rj/IPDrgjhxRUQJCKWpL+P7wQPpFj3unMwyMFU/Au6gxV888m02b5NabDkGrO/Avz8DgKeP/9J7DdbA+uA45bDffRGp1RZ8nD2aNcUDOxSp+zw86ePXp8Bo8e91F/PTxkiNVg0pxRK0bwckJzZmvW+CsPnjzkO40ZQ8ScHZWt38PDQ+DYRAPHCuSlKzMgiA1OTo9jdb+FyXqxRMpHCYGQnFboc3aUQTJnFTIWh51n8UyZh0cawsqE0pwFrGdVQjJniuVEwqzRsNSO+hk7PMyZ9Fq9yZCHh4cN+p2w/vWLMzg/P4XJxtE+OFwwXgswN1bHz/jEoiONyOdssN3w8PAYBMKFXyc0ZyIqOSXYmGr02IzZML+lF37YYXiYs8T78i/Pw8MjG/3WnDHGPGPmiIAx/OL5pUF349CCWgP+BPXw8KgCtKYeRMjYHo5NNPC+c4tYCC1kEi5MfqfSYoiYM9kxf4Ad8fDwGBkU3Sr8XuMx6ugXgXNU8px5eHjoQa1/nhEo6/jkmHS/p/VtMETRGuPv/n15eHjYoDjB6Hcbj8OHKokeb5bk4XF0QS1/Eexpdixb3+NpfTsMDXOWiODiN38PDw8LiL0ir6mh32k8Rh39Oy79avHwOLIItWMmTf3ceDZz5ul7OwwNcyZjKDvl4eExdBCJjafz+oH5c8JjxEFP4fIntg8I4uFxdCFcyhiAnz97DO+69zgAYGkqNlmkgoWokPcPz6jpMTQ+ZzL8+/Lw8LDBTqsDAJi2MKeg4Lcaj1EHJcmudF77RePhcWTBGHB6ZgIA8MEHTmCmUcdms22dKsWbNdphOJkz/8o8PDwsMBNqzE5K0jsPjyMFKlpjBUeoDwji4XGUkWa+5sd7ERhdcpUyH/zPCsPJnPkX5uHhYYH75iaxODWG6UZezZnfbDxGG/2ewX7NeHgcXRQ1RUwkoS7WlUONoXTv8i/Mw8PDBoyx3IxZ7/4SO+PhMSSoYlozrzrz8DiykH3OiiChOfObiRZDyZx5eHh4eHh4ZKNfAgbPm3l4eBRd/4lcaH4z0WIomTMfwcXDw6Mf8DuNx6iDDAhSyRnKpP89PDyOJApuAIkk1AW7cpgxlMyZh4eHR1/gTwcPDyuw1BcPD4+jgjBrDYKCgp9a4JkzG3jmzMPD48jCm2p5jDooWqmS+RzlOfOrxcPjqKETcmf1osyZHErfW8lp4ZkzDw+PIw9/RniMKvo1db0gw8Pj6KIbMmdBUGwH8AyZHTxz5uHhcWQhTDQuLEwPuCceHvlAkTqe/vHw8CgTIsd0rcTNxe9TegxlnjMPDw+PfiBgDB99+HTC1MLDY6TQJwon0pz5teLhcWRR1KxRht9K9PDMmYeHx5FGvaCZhofHIEFqzjzZ4+HhUQGKmjXK8PuUHt6s0cPDw8PDY0TRN58zJkLpe4LKw+OoolTNmd9KtPDMmYeHh4eHx6iCitZYIdHjCSoPj6OLWolcg99K9Bgqs8ZfurCE/XZ30N3w8PDw8PAYCdBmjR4eHh7lo8yAIH6j0mOomLPpRh3TjUH3wsPDw8PDYzTQbzNDT095eBxd1LzPWV/gzRo9PDw8PDxGFQR9I8Jel4nx0J5J5Dvy8PA4eig1lH5pNR0+eObMw8PDw8NjRCETOI+fnAMATDXKP9qPT/bMWtb2W6XX7eHhMRooM4m091/VY6jMGj08PDw8PDzsIdM398xM4MLCVKkElMCJyXEAwOyYJxs8PDzy477ZCVzd2veaMwP8Luvh4eHh4TGqkCgcxsqVbMsYrwf4pfNLmKjXKqnfw8PjaOCtZxbw2MluZXvVYYBnzjw8PDw8PEYUslN91Q72015r5uHhURABY17IkwHvc+bh4eHh4TGikNkxL4j28PDwGH14MZiHh4eHh8eIgjH6u4eHh0dZ+MD9J9CuIgysBwnPnHl4eHh4eBwCBN7F3sPDowIsTPgkxP2EN2v08PDw8PAYUSR8zjxv5uHh4THy8MyZh4eHh4fHiIJpvnt4eHh4jCY8c+bh4eHh4TGqSPicefbMw8PDY9ThmTMPDw8PD48RhWfHPDw8PA4XPHPm4eHh4eExovDaMg8PD4/DBc+ceXh4eHh4jCjGa/4Y9/Dw8DhM8Lu6h4eHh4fHiMIzZx4eHh6HC35X9/Dw8PDwGFHUAm/W6OHh4XGYkMmcMcb+34yxZcbYc9JvxxljX2KMXQw/j1XbTQ8PDw8PDw8PDw8Pj8MNG83Zfwbwy8pvvwfgK5zzhwF8Jfzbw8PDw8PDw8PDw8PDIycymTPO+d8CWFV+/hiAPw2//ymAj5fbLQ8PDw8PDw8PDw8Pj6OFes77TnHOb4bfbwE4pSvIGPsdAL8DAOfOncvZnIeHh4eHhweF999/Arut9qC74eHh4eFRAgoHBOGccwDccP2POOdPcM6fWFpaKtqch4eHh4eHh4RjEw2cnZ0cdDc8PDw8PEpAXubsNmPsDACEn8vldcnDw8PDw8PDw8PDw+PoIS9z9jkAvxV+/y0Any2nOx4eHh4eHh4eHh4eHkcTNqH0PwngOwAeZYxdY4z9IwB/AOBDjLGLAH4x/NvDw8PDw8PDw8PDw8MjJzIDgnDO//eaSx8suS8eHh4eHh4eHh4eHh5HFoUDgnh4eHh4eHh4eHh4eHgUh2fOPDw8PDw8PDw8PDw8hgCeOfPw8PDw8PDw8PDw8BgCeObMw8PDw8PDw8PDw8NjCOCZMw8PDw8PDw8PDw8PjyGAZ848PDw8PDw8PDw8PDyGAIxz3r/GGNsC8KJl8XkAGwWbLFpHv+8/AeDugPswLPfLYzGqz1B1H6j50s/2+12Hzf2mMRmVZ6jyfpc5U1UfBn0/VYfruAz6Gfo9l4fxbBqGPsj351lbh20MVNiOyTA/Q5X3ezqHvj/vOTVqY/Ao53yWvMI579s/AE85lP2jEtorVEe/76fGZ9Seoaz75bEY1Weoug/9XE/DOgYuYzIqz1Dx/dZzZoifofT36Doug36Gfs/lYTybhqEP8v151tZhGwPimtWYDPMzVHm/p3Po+/OeU6M2BqbnHGazxr8YgjoGff8w9GHQ9w9DH/wz+DEYlj6U8QxFMehn8O/Rj8Gw9GHQ9w9DH/wz+DEYlj4M+v6y6ui7WeNTnPMn+tbgiMGPTww/FtnwY5SGHxMz/PjQ8ONihh+fbPgxSsOPiRl+fGgclXExPWe/NWd/1Of2Rg1+fGL4sciGH6M0/JiY4ceHhh8XM/z4ZMOPURp+TMzw40PjqIyL9jn7qjnz8PDw8PDw8PDw8PDwoDHMPmceHh4eHh4eHh4eHh5HBp458/Dw8PDw8PDw8PDwGAJUwpwxxrarqHfUwRjrMMZ+JP17wFD2ScbYoXWIZIxxxtj/V/q7zhi7wxj7/CD7NWxgjH08HKvXDbovg4afM/bwe7AZWeNz2PdfCn6vMYMx9q8YY88zxn4cnt/vGHSfhgGMsXsZY59ljF1kjF1ijP0hY2zMUP5/YIxN9bOPg0K4nv6f0t//F8bYvx5gl4YCEi38PGPs/9/evQfrNd1hHP8+QhsSglZNkLi0CYNGSMXoRCUtbakZtwzJGBVUlYoy1dFR2pqWURUlSN3T1JigFZWiIhNJMWk1EiKChCEalzbucUlC4tc/1jrOdjhpnHPevd/zvs9nJnP2u9Y+O7+zZ79r7XXZa8+X9GNJHiwq8Mko14qIGFz4t6TqgCr0DrCrpA3z5/2BFz7NASSt3+VR1Z/RwAP55zqT1KM24VSq09eMmbWrQ2VNM5C0N3AQsEdEDAL2A5ZWG1X1JAmYAvwlIgYAA4HewHlr+bXTgKZonAGrgMMkfb7qQOpMy73wLqR6/ADgFxXHVFdq1jiT1FvSDEnzJC2QdHBO307SE5Kuya3mewo3W01H0hBJf5c0V9I0SX0L2Ufn3oXHJA2tLMjauQv4Tt4eDUxuyZA0VNI/JD0sabakHXP6GElTJd0LzCg/5PJI6g0MA44HRuW04ZLuk3SnpEWSrmzpcZL0tqRxkuYDe1cXeU115Jq5T9Lgwn4PSNqtzKCrkK+VOwqfL5c0Jm8vkXRuoXxuutGStZ2fZrOWsqa96+dASU/memt8E4xe9wVeiYhVABHxSkS82F79nUdeL23w+hvg68DKiJgIEBFrgNOB4yT1knRR/vsflTRW0qnAVsBMSTMrjLssq0kr8p3eNiPfC9+bz80MSf0l9ZH0XKFO7yVpqaQNyg68LBGxDPg+cIqSHpJ+K2lOPjcntuwr6cxcX82XdEF1UddeLUfOVgKHRsQewAhgXO5lARgAXJFbzW8Ah9cwjnqyoVqnNN6Wv3CXASMjYghwPR/tcdooIgYDJ+e8RnMTMEpST2AQ8GAh70lgn4jYHfg5cH4hbw/SOdu3tEircTBwd0QsBl6VNCSnDwXGAjsDXwQOy+m9gAcjYreIeKD0aMvRkWvmOmAMgKSBQM+ImF9axPXrlVw+/x44o+pgrFLtlTUfk797VwEH5Hpri5JirNI9QD9JiyVNkLSv628AdgHmFhMiYjnwb+B7wHbA4DzaeGNEjAdeBEZExIiSY63KFcBRkvq0Sb8MmNRyboDxEfEm8AjQcm9zEDAtIt4vK9gqRMQzQA/gC6QOojcjYk9gT+AESdtLOoBUTu0VEbsBF1YWcAlqOS1MwPmSvgZ8AGwNbJnzno2IR/L2XNIXuBmsyIU1AJJ2BXYFpud2aw/gpcL+kwEi4j5Jm0jaNCLeKC/c2oqIR5WeuxtNGhEp6gNMkjQACKDYczQ9Il4rJ8pKjQYuzds35c93AP/KhRmSJpN6vP8MrAFurSDO0nTwmvkTcI6knwDHAX8oJ9q6NyX/nEtrA9+aU3tlzSfZCXgmIp7NnyeTer4bVkS8nRus+5A6m28Gfk0T19/rYDgwISJWAzRJnf0xEbFc0h+BU4EVhay9aS13b6C1sXEzcCQwkzSKPaGkUOvFN4FBkkbmz31IAzr7ARMj4l1o/Ouplo2zo0g9akMi4n1JS4CeOW9VYb81QLNOaxSwMCLam4LW9iV0jfhSuqnARaSC/HOF9F8BMyPi0HwzPquQ905ZwVVF0uakKSNflhSkij+AO2n/uliZp5U0uk91zUTEu5Kmk3rdjgDaHRVoMKv56OyInm3yW8rhNdS2LqhX/+/8NIW1lDW34/PzoVy2zgJmSVoA/BDX348DI4sJkjYB+gNLqgioTl0CzAMmrsO+U0kDG5uT6qp7axhXXZC0A6keWka6Lx4bEdPa7POtKmKrSi2nNfYBluWG2Qhg2xr+X93VImALpYeNkbSBpF0K+Ufm9GGkYd43K4ix1q4Hzo2IBW3S+9C62MOYUiOqDyOBGyJi24jYLiL6Ac+Sem6H5mH+9UjXSKNOYWxPR66Za4HxwJyIeL224dWN54CdJX1W0qbANyqOp974/CTtlTXr8cnnZxGwg1pXGz6y7IDLJmnHPCLfYjDwBK6/ZwAbSfoufLgQ1TjS7IRpwInKC3flxgbAW8DG5YdanTzKcwtpyl6L2eTnO0mDGffnfd8G5pBGsu9o9A5XSVsAVwKXR0SQrpuTWp6zkzRQUi9gOnCs8kqfheupIXV5b2n+Iq4izaH9a+5heoj0PIgVRMR7eeh2fJ6PvD6ph2Vh3mWlpIdJ07OOqybK2oqI50k3zW1dSJqidjZptKjZjAZ+0ybtVuAkUsF9OfAl0tSH28oNrVoduWYiYq6k5axbz2W31lIGR8RSSbcAj5Futh+uNrL64PPzMe2VNaNIN5QfOT8RsULSycDdkt4hlUeNrjdwWW6krgaeJk3lvJrmrr9D0qHABEnnkBr0dwFnkUZCBgKPSnofuIZUb11NunZebKLnziA1Wk8pfB4LTMzT7V8Gji3k3Uyajj+8tOjKtaGkR0jfjdWkaZ0X57xrSY86zcvrVLwMHBIRdyst7PWQpPdovc4aklJDtQsPmFZBuyYiGnV1IrPKSBoOnBERB1UcSrciaSvSlKSdIuKDisOpKZfBa+fz03mSeufnsERa8OCpiPhd1XHVC0mzSOX0Q1XHYmbdT5dOa5T0A9JDsGd35XHNzDoqT7l5EPhZEzTMXAavhc9Plzkh93wvJE0nvqracMzMGkeXj5yZmZmZmZnZp1fLBUHMzMzMzMxsHXWqcSapn6SZkh6XtFDSj3L65pKmS3oq/9wspx+l9MbvBZJm57n/Lcf6tqRFkp6W9NPO/VlmZmZmZmbdS6emNUrqC/SNiHmSNia9zPQQ0jLWr0XEBbmhtVlEnCnpq8ATEfG60tu+fxkRe+XlVxcD+wPPk1Z/Gh0Rj3fmjzMzMzMzM+suOjVyFhEvRcS8vP0W6b0fW5Ne9jop7zaJ1GAjImYX3jH0T2CbvD0UeDoinomI94Cb8jHMzMzMzMyaQpc9c5ZfSLk7aVW0LSPipZz1H2DLT/iV44G/5e2tgaWFvOdzmpmZmZmZWVPokpdQS+pNemnlaRGxPL36JMkvKYw2+48gNc6GdcX/b2ZmZmZm1t11euRM0gakhtmNETElJ/83P4/W8lzassL+g0hvAD84Il7NyS8A/QqH3SanmZmZmZmZNYXOrtYo4DrSIh8XF7KmAsfk7WOA2/P+/YEpwNERsbiw/xxggKTtJX0GGJWPYWZmZmZm1hQ6u1rjMOB+YAHwQU4+i/Tc2S1Af+A54IiIeE3StcDhOQ1gdUR8JR/rQOASoAdwfUSc1+HAzMzMzMzMuplONc7MzMzMzMysa3TZao1mZmZmZmbWcW6cmZmZmZmZ1QE3zszMzMzMzOqAG2dmZmZmZmZ1wI0zMzMzMzOzOuDGmZmZmZmZWR1w48zMzMzMzKwO/A/UMDFc3DiK4QAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Make the plot look a bit nicer:\n", + "ammonia.plot(figsize=(15,5), color='lightblue', legend=False);" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE6CAYAAACSxCplAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOxdZ4DURBt+snudoxy9d0UUBBVEbIiCXVHAiiIooKgoFkBExfaJClhBUEFsiKCCIk2UIiCiglKl94Prve1ty/djd5JJMpkk2+7APD9uL8m0TKa9XRBFETZs2LBhw4YNGzZs2LBho2rhqOoG2LBhw4YNGzZs2LBhw4YNmzizYcOGDRs2bNiwYcOGjWoBmzizYcOGDRs2bNiwYcOGjWoAmzizYcOGDRs2bNiwYcOGjWoAmzizYcOGDRs2bNiwYcOGjWqAuFhWVr9+fbF169axrNKGDRs2bNiwYcOGDRs2qg22bNmSK4piA9azmBJnrVu3xubNm2NZpQ0bNmzYsGHDhg0bNmxUGwiCcFTvma3WaMOGDRs2bNiwYcOGDRvVAKaIM0EQ6giC8K0gCHsEQdgtCEJPQRDqCoLwsyAI+4O/adFurA0bNmzYsGHDhg0bNmycrjArOXsXwApRFM8C0AXAbgDPAFgliuIZAFYFr23YsGHDhg0bNmzYsGHDRggwtDkTBKE2gMsBDAEAURTdANyCIPQDcEUw2WcA1gIYF41G2rBhw4YNGzZs2LBhI/rweDxIT0+Hy+Wq6qac8khKSkLz5s0RHx9vOo8ZhyBtAOQAmCMIQhcAWwA8DqCRKIoZwTSZABqxMguCMALACABo2bKl6YbZsGHDhg0bNmzYsGEjtkhPT0fNmjXRunVrCIJQ1c05ZSGKIvLy8pCeno42bdqYzmdGrTEOwPkAZoiieB6AMqhUGEVRFAGIOg37SBTFbqIodmvQgOkx0oYNGzZs2LBhw4YNG9UALpcL9erVswmzMCEIAurVq2dZAmmGOEsHkC6K4h/B628RINayBEFoEqy8CYBsSzXbsGHDhg0bNmzYsGGj2sEmzCKDUPrRkDgTRTETwHFBEDoEb10F4F8AiwHcF7x3H4AfLNduw4YNGzZs2LBhw4YNGzYAmPfWOArAXEEQtgPoCuA1AK8D6CsIwn4AfYLXNmzYsGHDhg0bNmzYsBEWvv/+ewiCgD179lR1UwAAM2fOxOeffx71esw4BIEoilsBdGM8uiqirbFhw4YNGzZs2LBhw8Z/HvPmzcOll16KefPm4aWXXqrq5uChhx6KST1mJWc2bNioBsgodWHh3gxUev1V3RQbNmzYsGHDho2ooLS0FBs2bMDs2bPx9ddfAwDWrl2LXr16oV+/fmjbti2eeeYZzJ07FxdeeCE6d+6MgwcPAgCGDBmCkSNH4qKLLkLbtm2xdu1a3H///ejYsSOGDBki1TFv3jx07twZnTp1wrhxcjSw1NRUTJgwAV26dMFFF12ErKwsAMCLL76IKVOmAAA+/vhjdO/eHV26dMGAAQNQXl4esXc3JTmzYcNG9cC+/DIAQLHbgwZxiVXcGhs2bNiwYcPG6Yxt2UUocnkjWmbtpDh0aVibm+aHH37AtddeizPPPBP16tXDli1bAu3Ztg27d+9G3bp10bZtWwwbNgx//vkn3n33Xbz//vt45513AAAFBQX4/fffsXjxYtx888347bffMGvWLHTv3h1bt25Fw4YNMW7cOGzZsgVpaWm4+uqr8f333+OWW25BWVkZLrroIvzvf//D2LFj8fHHH+O5555TtK9///4YPnw4AOC5557D7NmzMWrUqIj0jy05s2HjFIJfDESscNhelGzYsGHDhg0bpynmzZuHO++8EwBw5513Yt68eQCA7t27o0mTJkhMTES7du1w9dVXAwA6d+6MI0eOSPlvuukmCIKAzp07o1GjRujcuTMcDgfOOeccHDlyBH/99ReuuOIKNGjQAHFxcRg0aBDWrVsHAEhISMCNN94IALjgggsU5RLs3LkTl112GTp37oy5c+di165dEXt3W3Jmw8YpBJs4s2HDhg0bNmzECkYSrmggPz8fq1evxo4dOyAIAnw+HwRBwA033IDERFlryOFwSNcOhwNeryzho++r83i9XsTHx+vWHx8fL7nAdzqdinIJhgwZgu+//x5dunTBp59+irVr14b1zjRsyZkNG6cQgrQZHDZtZsOGDRs2bNg4DfHtt9/i3nvvxdGjR3HkyBEcP34cbdq0wfr16yNWx4UXXohff/0Vubm58Pl8mDdvHnr16mU6f0lJCZo0aQKPx4O5c+dGrF2ATZzZsHFKgUjOIFZtO2zYsGHDhg0bNqKBefPm4dZbb1XcGzBggKTaGAk0adIEr7/+Onr37o0uXbrgggsuQL9+/Uznf+WVV9CjRw9ccsklOOussyLWLgAQRDF2p7xu3bqJmzdvjll9NmycblhxMBvlXh+ubFUfdZL0RfI2bNiwYcOGDRuhYPfu3ejYsWNVN+O0Aas/BUHYIooiK0yZLTmzYeNUApGc2YIzGzZs2LBRnZFf4UapO7Je/mzY+C/AJs5s2DiFIBFnMZR427Bhw4YNG1ax9lgeVh7Oqepm2LBxysEmzmzYOIXgt2kyGzZs2LBxCqHMlp6dkrCZwJFBKP1oE2c2bJxC8MNWa7Rhw4YNG6cOKrz+qm6CDYtISkpCXl6eTaCFCVEUkZeXh6SkJEv57DhnNmycQiCSM3u9tGHDhg0bpwbsDetUQ/PmzZGeno6cHFstNVwkJSWhefPmlvLYxJkNG6cgRHuzs2HDhg0bpwDs3erUQ3x8PNq0aVPVzfjPwlZrtGHjFIQtObNhw4YNG6cC7P3Khg1rsIkzG1FBocuDrVlFtr6yDRs2bNiwYcOGDRsmYRNnNqKCX4/l4VBhOTy2e8GowO5VGzZs2Kj+8Pj9WLg3A+nFFVXdlCqDvV/ZsGENNnFmIyrw2RKzqMKWSNqwYcNG9Uep2wcA2JtfWsUtqTrYNtI2bFiDTZzZiCpsGiI6sLvVhg0bNqo/CCPNIQhV3JIqhL1h2bBhCTZxZiOqsDlm0YHdqzZs2LBR/UE0+x0M2qzS50eF1xfbBlUB7P3Khg1rsIkzGxEHrXJnL8rRgS2RtGHDRnXFvvxSrDpix0cCAD9HcrbsQBaWH8yOdZNiDnu7svFfxeHCchwsKLOcz45zZiPi8FErsU1ERAt2x9qwYaN6YmdOSVU3odqAEGcCtMTZf2YV/8+8qA0bSvyTVQQAaJdWw1I+W3JmI+JQqjLaq3I0YBO9NmzYsFH94Q/+stQa/yuwzRts2LAGmzizEXnYkrOow+5WGzZs2Kj+MOMQxPa+a8OGDRo2cWYj4rDlZtFBVdjylbm98Nmx6mzYsBFh5Fe4UeL2VnUzog6eQxAC72m4xir2q9Pv9WycJhBFEX+dLEBmqauqm6KATZydohBFEd/vywjJ0DDaEG3JWVSg6MoYdKxfFPHT4RxsziyMel02bNj4b2HtsTz8fPj0dxriMyE585yOxJnO/zZsVCeIAI6XuLDxREFVN0UBmzg7RSEiwJHbnl1c1U3RgNYvt3XNo4NY9Co5L5woqV4cJRs2bNg4VeAPLqS8MGcev1//4SkKmzFrI5pIL6nAjgicf+lx6vFFbx76LU4Imzg7RVGdGW02xyw6UEgkY1Gf/fVs2LBhEUb2UwUu93/KxsqU5Mx3evfHf+l724gN/jxZiP0R0Byjzzm+KI5Tq6rLNnF2ioIsdjxuHICqCXBpqzVGBQqJZAz61f52/y3kV7iRU15Z1c2wcYrDq7A1Ui4iBS431hzNw5680lg3q8pA6C7eYeu0lJwpNGhs2IgOwiX8Y2WGYxNn/xGQpZwVO4XgREkFlh/MNjxwbUzPx/Hiioi1zZacRQdKyZndszYii7XH8rD+eD68p+FB0UbsQEuB1KuUyxsYW/kuTwxbpERueSX258eOOPRJjFTtXh0XvBdNdaqqgs3csxELhCvtitV51eq+ahNnpygkyRknTX5FYAMsMNgIM8sq8VdGYYRappbw2Ct0pKBYRGIiObO/3X8JZC3JKrOlZzZCB++w5AwSI1XpAXbd8XzsiGGQbGJzxmKoOYInsNNRq9Fm0tqIBdxhTh6l5MxWa7QRJqTvzKHOCKMu2mdsn19UDrwY20b9V6Duywqvz7KRaaj12YTa6Y/keCeA09Ott43YgedC3Rn0J+/jqD6ebiDvynvN01ETwvbabCMWCFclmJ570ZRf28TZfwRmJGfkWbQX/pWHc7B4f6Z0rXT5HtWq/1ugdrhKnx/LD2ZjVxQ5wPSni6ahrI3qAXm9sGEjNJS5vaikVPTUY4k4xaCZSqf72iIRZ6yHwZunYxecjgSnjeqDeAdRCY6gWmM1kpzFRakdNqIMyeaMKzkLPORy7CIwGNVOR5TqDObL94siVhzKRucGtdCiVnLY7TrdQPdkYVBVNd/ljl59NufzPwn7W9sIFT9p4paJYLEQabVGj19EXBWwif2iyPWgGLF6iFojV3J2+iHUc4ANG2YQ5xDg8Ytwhys5i9E5xyoTypacnaKQJWf6mwt5EmtTY4Vai4V8bp8fLq8/ovZvpxPoviyu9AIAaibEx6RGe2u1YcOGVajPI2RvoA8qVaVGG02VcBoyY19bH7lzWqp2Mg69Pr+IrVlFcFWFF2kbpxXigwab4TrTiZVao1XYxNkpCjP7mWxzFtuFP1THFbaNEx90l5QHN7fkKLKc1RylUrfX/i7/AdhcbhuRgt5IojWRKjw+Q6dV0UCsnHAQIvC/tnSyXje3wo1DheXYklkU8/bYOL0QR9Qaw2TuxMohiNWSbeLsFAU5QPFtzoxVNugBEzFOYogOQWIdZPnUgz7nNdq1Fbs9WHk4B3tj6ILaRtXgv3aItBE9qIcSuabVGjek52PN0dyYM35iJTkTVb/MNKfRnPOLInZkFzNtD4mdULbtEdZGmJCcC4VInBW4PFiyP1MK7wFE+dxpcZLbNmenKKTvzKC/csorUVzplSRnvLFLjxe3z4+kOGf4bVOUb35Aarx8Rd8c4JQCqytjRZwRGzeiTmnDhg0bhtDoNQZ+WISRXwScMVzz/TFSp5QlZ/r1nUa0GbLKKrG/oAw5FZQ9NHsY2LBRZThYUAa3X0RmmUu6F00miS05+4+A7CusvWz98Xxsyy6GA8QhiLlhEe5eRepRGgJbyK/4316+1WB7+4qiGJ4quyLIXYoE8W6jekKyURVFlLhtItxG+NCTnLFWLW+MxUex8hJJquFKzk6j/Y7YApVTawh5v9PnLW1UNeR5JSKrrBInS1z8DCoQKa5SwhuuiqSIcg/bntImzv4jkNUaOQ5BiM0Ztxz9KyOcKHFh6YEs6ZoQd7w4NzzQae1QS1qwuiRWkjPikTOpKtyq2YgpduaU4OfDOSizCTQbYUJLnOmvWLEOTB2r6vwMpqUap5NaY/DMCzfVwbLjk9i3x8bpDVEEfkvPx6aTBZbyxTsDZxk3RZyFuybszS/DikPZKHN7kVfhxtYsyrbSYtm2WuMpCjNBqAn4C2JohBQAbM0qUnAdfKIIp6pBllzph9GW/wJYEtCoiuFVRvsA4IyB62kbVQvy2Su8PtRIsLcIG6HDyvoUK0mWQwjsn9Guj6zXMtOSkUb1ezqA9Z4+P5EonE5vaqM6INQRlRCU8FbSNmdhrgkFwdBGhZUe/HGyUPHMasn2znuKgnDj6KNypdePA4VlmrQ8AikcJxzqyOysYJuhOwSxF3E1Yi05o0Ebzdr4b8CWXtuINHhnn1hJzhyCAL8oRt0hyIGCMuzIKUFyUBWctaeJHMLtVIWf8Z6780qxO68UlzavWwUtsmFDC+JQxM1wXBMqUoJznaXaaPVMaxNnQZR7fBAESAtpdQdZzGni7J+sQpws1XpBitbCr95LWcE2Q3elH3q7TkeIoshcOaJJxNJlS4S3/V1OX6iEorHyZmfj9IV6feKNqGhLstKLK1AzMU6y5Yh2fYcKywFAiunFlpyJil+z+PlwNtw+ETe0bxReI6MAXrdGy5a10udHotNWuf8vQVaVDW8e00Gsw10SkuM5xFk01BoFQTgCoASAD4BXFMVugiDUBTAfQGsARwDcLoqiNaXPaoQVh7IBAP07NKnilpiDZHNGHagqVcH4TOm66/wfCmTJWWglKYNX2wdDgkKXB6uP5uLcBrU0z2Kl1iir39jf5b8CW3JmwwqYhyQrao1RHnB/ZhQCQPAQL8IfZWUAsh8Kgv46HarkrMRdfYM4814lGt5+8yrc+PVYHno0rYNmNZMjXr6N6gmWAzpL+YM53b7InTsdwQN5cQSYEFZYDb1FUewqimK34PUzAFaJongGgFXBaxsxgryPydSZOlC6T1r4OWqN9P9hnvR9jI3Gmit9+X/7YCiDcBt35BTHtF7W2LA/y+kLtTWhLTmzYQVm1K55+0Esbc6A6I9vQmxKNmeMNKejzRmvX4vdkQ82TlTu9+VrTTps2NADa5iGfe4M5i9lME+sFh2OHLgfgM+C/38G4JYwyrJhEWSTow9U6s2NXHMZhBHcoFiLsiWbM9ohSATac7qAuHxlbu4xkpzFoj4b1Qs2cWbDCswIzrhqjTG0OQOiTwyq54+aMI110O1Ygfdaau2eSIDExitwRZ7ws1F9Ias1RrDMMAuTpXEMybbFos0SZyKAlYIgbBEEYUTwXiNRFDOC/2cCYCo/C4IwQhCEzYIgbM7JybHWuv8wjA5GZImj1RrVmxvLBkyNiKo1+kUUV3oUeuVWxjrd/NN14woFfLVU7dP9+aX4w6JbWTXKPT7JVsKoDTZOD6i/sS29tmEFbIcXgXulbi8OFvAlG7GSnJEtM9r1+VTF8wjV02m/M+2ALELvbLuq+m8iXKlzmFrY7DKDv+q5H3hmrXSzDkEuFUXxhCAIDQH8LAjCHkWloigKgsCsWRTFjwB8BADdunWr9iuQKIoQqthd+ImSCvxxshB9WtdHrcR4Zhqmu1odyZnZQRHuWukXRfxyJFdxr9TjRXGlR/c9FPUrygqvLTyUe3zIKa9Eq9op0askgjBrM0iwI6ck7DqJDaa6Itvm7DSG6tPakjMbVsAbLr8ey0Olz48Lm9bRTeONETeASG9izXxQ9084npKrM7jMYM4zvyjiYEEZ2tapIXnSM1ff6dR7NsxCtHi+1eRn5Ct0eVAj3o36KQkhtolXnzWYkpyJongi+JsNYBGACwFkCYLQBACCv9n6JUQPSw5k4rf0/IiVFyvuHQ9HiyoAsPVWCViu9NWbmxkPe6FzHbQ5WX23L79MQ7CZKdOoXZXe0A2ifz+Rjy2ZRQoXqmq4fX78cjgHxZXVQFUixM0uGk2oBtPDRpRgS85shAOeTRUJu8IbU7HaeyV1/xgPcL7kLJYtiS54r6KIZap6dqy4AjtySrA3v9RafadR39kIASF+f1a2g4XlWHc8zzBvXoUbhVbVaCOt1igIQg1BEGqS/wFcDWAngMUA7gsmuw/AD9aqjgzcPhFZZVr38eGUV9UgREMCxzWs5EqfkvKpNzdJrZFXWYjcO1bacG0GzKp5lHt8WHowG7nl7pDqIUQsjzjLLqtEsduL3XnWNopoINRejaTkQ3b5bOO/AltyZsMK2Ab2ynhivDEVK5szqb4Yj29RFFFS6VVcS/9HwMNxdQHvG/OcfvlM7MvMMi2ltnG6QPJ0Gmb+UPDrsTysPqoVOnBVei3WYUZy1gjABkEQtgH4E8BSURRXAHgdQF9BEPYD6BO8jimisTB5omCwahVkceJpV7ICPapB6EzuYkn/b6I/S9xe/Hosj9lPrjD7zmx8NGILVckyujQBQvTqBVb+O7MQmUGCP1qbn18UkVHqMpmat9npP/NEkNEQ7kJoo/pDIzmzv7YNC2AdTNYczcOqI7kQgjoePGlVrIglUk2sd/p8lwc/H8mRHFco9t4Qy6yO0m2+Gr4xQWr1lWLNRBJFEaVRitdmwzpC/fyhjhoejRBJLTVDmzNRFA8B6MK4nwfgKov1RRSeKKxMmWWV2JNfigub1Kky2zOiE29Gd5vXQkl9w6zozAR25ZQgr8ItES80KsJQNVx5OFuhxsnjQPBcE5sBCVbJIu7K3F4cCaqV0nVFGv/mlmBffhkua1EXDVISuWn5m50+PH4/EsNyyKqtpzpyam1ECDqc7NMVJH7g5S3qor7BHLRhDL3RUuL2Ii64l3LVGmM03qp6LSt1e5GWFK/Y38vcPmzOKMT5jWtL3iTNwCeKcIiocjt5Gny7Mna6HdnFVLBua98l1l/xQEEZduSUoHer+khLMraltxEdhBrAXcof4vwvCjlWn7X6TumQ6pU6ko9wsCu3BCdKXKiIQtlm4fEbDzrJ5ownXZOIM3NqBmaGjhwjRvvM5Qm9z9T2dceLXUgvrmCmlYJrh7gq8yRnaqIzWlw54tHSlHSLk6TU7cMvh3OYNnieaEdZreZweX0xczJwqsEvisivUKoFq9ebaqDhHVVklwfmekZp5NTi/8vgLpXBfYMnHYvmcGMdxKpqaZD2L+qNcyvcOFZcgWyLJhr780uxaF9mWDbYkYbp80bwf5fXh/0FZTheEtAksfpZ6DJ/PZZn6BU0VJR7fCiu9CC/IiD5LIuS9CynvBKbMwptRqgBJAm4gsnhhdfkuSfU3i3zBL57EsPsiMtIt1jhqU2cBSUf0eAZWdV7jgaKK704rkOgmPnOchBMk6PCRDLS16wyXSGqGbJwuKgcf2YUMp+FSzBJxBlHNbNGvBNA5A8MZW4vClwe6duY8UrFa0NhpQfFbi/SS2QVSWeQYo+kWqPUllNov1h2MNuUce9/EbtySrD2WB6KKIc36k9bHZwjxQL/jbeMPnjMRN6+IeWP8YeoKptK2Yuy/jOzOFxUDgAo81Qf4syqWmOhyumW1c9Cf8e8Cje2ZRdbK8AkVhzKxi9HciWGeLRGz/rj+ThWXGGvSwYg/UPPmZ8O50TUQSALhBhkCUZC1XJiwawr/WqJShOOM0IFizjLLHNhT24perWsFxM1ArLItKiVrHlmRnpkZqG3qvcucAJ4xkpKIak1hrm5uhmSM3WZkd7AfzociPVXPzngqtWMx2C9FjgENvc3ziHA5xNDlpzx+vVU2zAse1T6j4AciCq9foBo9P3H1BptRBZm1Nn4krPojTdWyVVFnJFlme1AhZ/3ZIkLBwtlyZAsPag+c5W3fyjUGoO/hS6lBMqy5Mxi+nBBzkDRlmyJIqIjeTjNoN6n8irM7fmhfj+uc7QIjolTXHJGiLPQRrBfFLE5o1DhLp2UxIpk/3dGEfJdnrBsqyIFMw4aZCKGU47if+OBJas1Vp2aiJ83OUyAvCfP4QF5Eq13IocUpxkiX+cD0kwJOkWcIzzJ2emmzrYnr7RaOPqpTiCjjsecqU4HPhvVH7zRYsb+OZrDLRRCKLz69AuXQ9xo0xgxVDedLEAOw0txdeKjmFbUCaYjjHBniEQPSR8rOkaSAseoPhtshMuY4KsgGh+aWUnMqDV6/X4s3JuBEyVsrTiCU5o4k51ihDYtKzw+HCuuUMThSpCcRWinXo2EgKobL/5YrGCGQOGpT5hFfoVbIUWUvG4xN7sYSc7MhAjgQORNLtWEj9Y7WSlXL2WCw8FMJBFnIUrO+KpH1egUwAHdzn9zS7A9SqouVQ2/KFqyU/H6Rfx5sgClQTUormvzU+Rb26geMLM2mPUcHGnEWnJmJp4bs00WqSyWaldVw+yuow0iHNq+HutXl9Qao1xvNCXJpwNI/4Q69s06rtHWG1qZpL1EBXl3Lj9M06lNnEWhTHKwZTkbqREf0AKNtX43a9OTbvEOV37lomdUNquotcfysJ6y2+FLzmJEnJF/QqxO7jpGv0rPlL+RRiRUxmh7NdZCHmoNvLadKtuFWvp3ujpH2ZtXig3p+cgpN0egnSypQHqJC+XBNYwnOatG572IQhRFrD+eF1NHID6/eMowNkKFmbfjqjVGtX9iq+lhxpkXK4Xlg2aY0oNowOx3VO+1ZjR9WIj1yu4IMqijTTxVo09aLSExJkIcALzuNaNVZYQEHZsVWWuFX9KpTZyFOXpZuck9lpv1pLhAd8U6xgVrE6HVGrdnF+P3E1ojSKteDbWHs8Ad2nWoZHPGaFTM1BrDlQiKih/lI5XELFKb3v78UoX9kxWppl4aI3lxqE3nH6BCKzPWUH+3U6TZlkEYReUmGUYFLo7xvcbeMqymVVtkl7uRU+5GXkVoQeytwu3z44f9mdifHx0vctUFZtaGUDnS4YKt1hi9GtVF02t1qGqNLAYTSV2d5qrZpmjOG9KvRelhjDel2EnObHBhkjHh84uWmeE8Xq7IObuRe61rp6Bro9qqfIFf2WaR34ZTmzgL/obqm4N/ONfPF2suPGvwSUaJYiDuBosLbIYAsPqM50o/VHU4q4urHOcsRHE2R31CvdlF4kuLoogdOSWKiPImhJpUfvZ9etzz3sUqqkr1KJJQH3Kq0+ElknBymCUsaGO0iIz/yPXp2WlW3ZWHC+IR86TpoPOnJsyMFqO1JVoHbVapfjF69amnI63lQDj9rJp5TrXYNi6RYyKWuL1YuDdDE2LDKsy2RTrkiur71uqzsJVGFNGWVp7ukvZwIUnODPpp2cEsLDmQpc3Pc1xjRnKmcy6Pdwg4v3FtJMaxySuWvTcLpzZxFu7YZRIYIWWLKpiSM9UvLx/Z9JgHOOqWmcWADCzWhOAtVnwdfMNqmfWE+v1llUXG5FIRfpFYgFnvHgl7QJofy25maKVXlUe1SEJtu3G67nPE7NCsOpQ6HX2pIc5O0z6LtX0OiWlYM0F2jrz2aC6OBt2gny4ws3/wmAilbi8W7cs0NJQPBaxacysqsWhfJvIYDjbCQXZZJbLKlIQ4HVjaF2TusrpLz4lTTnkl8l367YwE8ykjyDw4URIbJoJ6r5XuWy4ntvOZ1lqKaj1RLv9Uh1nizOMXFWlcXh/WHM1FrooJQct4zIT8MDpyqWVG6jP7aS45C2/4su10yMGfc3CP8axhUfFyG4wbI4rA4cJy/LA/U6P+JOr8r6xDBhHJsgYvj8gyo4NvFlbT55ZXKvLwCFuZKAteR+Bbe1l9xQg0LooiV0pK0KxmEjrWS42eWiNPXEiV6fL6qpWtAw3tgl092xkunJzQFmbAy3WqEOJWEesxSxxIpQRjJwJAvsuDLZlFMW1HdQCv74m5wMGCKBCtTGZi4Pd4hInBDen52Kz6trRDabIfsOaXXgDd9cfzsTG9QHOfOOjyiSLKPT6k68RFNQMitTMTe5MHs4Si3iHVsrdGS6nDh+SMLcoVV9OttfqAaLlZ5EzsyilBgcuj0SKhGSihqF9nlrrgE0VJo0ntqFBNW5zmNmdh5mfco6VNZtLHAuEH7hRxLLho84gzbS7tUzmYqJl6ZfDSWyfOAr9mchVXerDueL7CWx+Pc6G+F4mDHItbzCp19dFc/LAv07BNnRrURMf6NVVqjebqMAMzao0evx/LDmZHLeBnuFB3+em6z8lqjebSa7h5NNNCc0gKo2HVGNqxEd0XJaFXYhUfqaoQrs0ZIQrKoxCqhtc0VwxC49AhUwgRxJScWdxYCR3l84v45UgO/swoDHl8kX0qLswYrur69UrTMy+w2vpYq6zrSfwiXk9USz/1IUvOrOVjeWIHlAwU/rlPHrdbs4rw58kC5FW4sfFEAY4UVUhEmWYaqc6tp7nkLMz8nMM5T6pSVWJ0ZVuUv9z8kAeb1++X1GyM6uHVG0lpl3VCz/x3ICloOxMzBp1yWmttY8EscV1U6TX1PaXJr1MOT23TDPhqjQGQA8bJGKnAWMV/xubMIXPOS91e7MwptvTdRc7V6enfMvaSMytaDqcyzBxWeWsLOTOZdW5jBbyWVTA8M0caNFeed8YIdWx6RVEm+kIqgYq9GaLkLLe8ElsyCzXrhh6tp9cPlm3OojyfM0pditi2ZvwSRAKnKxMnUpCJM2v9pDceBYXkzPjM5vWLOFRYjvQSF8pMOAlUE2VGrY4zeF6tEY3By7VnsiCxiSSYA8WCzZIoygvJxhMFAID+HZoEn1Gcc3U+VlnBX6sTgpc8HMlZgcuDBKcghTlQg0w3egOWJwlD2qQ+1Efga/OMvEMBeSdBZ5WxQrizwP22wWexCvgZKjTeGkNYK3bmFCO33I0rWtWPVLMiDlqt8fcT+Shx+5Ac54QgAG3r1DDMTw9N7SHp9DwcaKZj1F9Tuaecnr1q7r2qKq4er+iKCBKDenOGFfYkMoy/wC8di1QUEdICzVJr3JVbgiOF5bihfSPD/H+cLESlz4/GNRIV9x0QmPtoudeHmj6/ps+sdku059PvJwqQHCerJJuVfISL03WdCBeiKKLC6zfV/0ytJZ18gkJyxqmfVQ91U+98pj6Xnd5qjeQ3xFHMIz54amJunx8rD2crXKNHE1yHICbfXb0pupmiXeNFkiykVgkOHpETshROBNYczcVPh3J005Kk9MbPl46q67LUNCbC9X6oScPYeEXF/4GrApcH3+/LUHD9zICnw32qbBgaxxchlLEvvwz5MZrjoUKg1JrcwR1iW3YxtmYVM9W11PS8nzEv9K5PF8Rccqb+PU37NVy1xqpCJOVmegQmLYwSxYCDD6JepXjGah9X6yTwjBWX1SrInk4fCvfmleqqgalBbCqLVbY8epKKP08W4ucj2r07VO/N0QBpi1JyFvy11RqrBHvzS7HiULYpZo4Vz+oOWJOc0aCJQNnmTJ2R5DfHnDm1ibMwR69lw9Ng8twKN0rdPuzKLQmvASbBdhKh/0ybVtTo5RLVRuWhXp1Rn+tgNW4EX3LGy6d9aCXOGXtqypNDPXmjsSCaWUS4gZ91dPh1dfmDyXPK3fCL1l2H81obrlQuVlCvyaf7gdgvippxlmniu/MZB6dnp1WdWiPr2enTx+FKzqIJXj9H8hDk1jGAoW3OfKKI9cfz8cfJgmD9fDEXzw6NPKGZpaHO23A9CBNvpGqbQQfHhs3FkIBYl5xFb0wxieUISj65dZ9Ga0MkkV5s3pSCJUTQ61UHtRDwJWfah0qnb2ybM6teSU9t4kz1G9GyOdIqB8djYfj1sogRVrrArxnOQECtUVmImrsVSKh/qSaIrKqgmOH+AUqjTEaTgun1n6nBVF0M/pZ5fPhxfxYOFpRR6U0UahH82DVBzqeFMPcsg1OFzZkqvVXOogmtxmpP7GglZ9W8wWHCJ2pDZZjxYsVTa6yOUo5IINbvpfb8So9FlidXNbz+gEOn6n5YM+VKv6qIM84zPfVwK/jzZAEW78/U0UhRe4ITVc/k/1ndo+fBUS9NqF3Mc1RiBolOnbhOBt2rObRGcL8KF6yy5RiotuSsKmDlrMQM3K6nemzR5oyGGcmZRK+YPEOd2sSZJB4MbRibkRCw7pKPGGlbIj2wB4oYfGacX6TKIBuBx6eNtaIuir6WjY1FxbVZ8L01yv+ruWzsxdH8d2f2XPCm2xfg8O2mJKDROMSbUWvkeQxT52a5alW0W0NkW3sn/rwQsSu3BPsLSg3T0kgvrsDCvRkxC+CutTmLSbUxh8Qs8Wu/Mm/sE/hEEZtOFCCnXCtlO027rArUGpVrJ12914SrsZ05xdicUYicCMfjijTM9Gp1JPjD9BwPAEgvccHrF3WJM6XkTPVMYY+mhZm9lsdkMQsp/lqI+fXyxTm0Dqx4+SzvV0wNn8gMNFYpvjCJWNN1B8svqvTgr4zCahu2JtbQm2MssOIG6vUij4FiBJrpRErRO8uq9wM9nNrEmerXcn6uhED/o9IHokiDLSkyP8D0CiVlaKVOrP+C19QNtaMUMxxQWgpmNs6ZegFncaesTByeBFQypqZVQqKw/vHGSW65G3vzSg2ka8pr2eBUJ33YnEh+WzJLXcgqJYd5OW2hy4MNx/OY77svP0DMlZrwahQJRMLm7FQA+VahSiTcPj9Olrqw/ni+btmnG9Rbe7Tfkqe2ZaZuwim2ciipCpizOauaMRWraks97PWNJsDUEm2nYiHXNtQMcaaMl2mYnAkp/pp0VgifSALk93PqObBSzw+L7Te2nreGokoPCl0erDycjUqKaUpa71OdhaIFUvzmjEIcL65gazv9B2Gl25lqjToFKCVn1upnnXmMmBFG4+cU99YYdgkh1ecP80Bkpg4aPLVGU2UybM6YhK2mUC3hZoUwrZMUj7yKgEOFUOOc8frDTBcwHbtwdOujsd7yVJf2B1UqL2le13R5uganQYSvw8+Hz0+NJxHIr3Ajr8KNw0XlKHX7UFTpQd3kBEWeuKBCd+ykzcrr6kJoeHx++EUgMS4yfDFpPppcI9S3wo+heOoh5qFQVBIzkfGMBwflkbM6w5QrfcsaFwEX8Qk6KnNmwWtbJHrVIQTWHBJwXA21zZniGS05YzTGuuQstDciSg1+BBgCPgXTUjRU/6RrJf1Bw+kQmJJizZoU4rmMhk8UubZuesgpr1Qwqk6UyvZNDkFQqI9H3SFI8MViral1OsFK/FezkjPW/sGSnGltzkh+fjuk9hg8r9bQC2JoPn9oz6JJnLHbYn6AsfObu6shzUTt/zzCRo0z66Yyy1KDb/eizWhWrXH5wSz8k1lEtcG47VEJz2CC4V1pQa0RRnHO1Pktc0A5zxAY97QN4tasIuzIKdE9mACyakusNhj1IbAqtjVRFJFfoVRFW3owC0sPZkWwEtWv4pHxHOc6ogm9VdUasZbeaF33cyYrA+TsXt3PZma61eor/HWyEEsOhD9for3mE1frZTqSs3in/sGPJtxYLTFjc8YLiWMV27OLsfRAlsK2xxQjlEpEH3SJ+r0esaTufss20kztGmtlEBwqKFdc085YyDwkzNZozEfWWJQZm9Vbcl4dwWRQ6kl4KWqIPtu7vD4cK5LHBSs3y+ZMwz63cHYGTnXiTFT+hprf7DN18MHoqDVGbqGRyuRw1dXPjhVXSIQC63hrpSlNUpNwWYuARMisQxC9dirTB36NzDUqvH6UUjFs1JwLZn38IkOCGSJe7eFKCWV+VhwNUTe19fnB5TKLIvyi8pu5TRBCsSbOqoPN2e68Uqw9locCl0ygRfr1eUcyZlWqjuDNodPVxiHWRI6aKcSbqyw4o+iAKpKIRuuI5CKcdz9Z4sJB1aGbRiTaTZxh6AW0jqdcwfFszlgwJTmj/o/UMKHjv5kjvGlChiLOgv/qCz/DazCre0IdL2SvVtvmB+4FJdiSzZlcR1Glh2m3axWKtSF4ER/jvfN0AqvH9HpRT+32t/R8bM4sktTKmdJtxU09b43BX5Nj89RWa2T8F1p+1jMTXOdoqDUy7jFtzsKsm3VQKPP4sCevFA1SEtCoRqJCEhIqIUwWNF42q+68Zfs5a40RRQCCERfVUpFM/JVRiLwKN65t2xCAOY9s5ZxAqBqbMyPvV6oMVvltZiRnVscf4f7FzCGI5jr0D2tGpYeFgmCMNFcEYhDpgas9wGLKqK55a1gkVrdjReVwOgQ0q5kcgdIig6qKc+YTRaQXV6AepfJrpinR9A4cSZA1oXODmhAEAduziyNWts8vwqF25WsSm4Iu62kIMMesMwuyPOiti3EcAowmZMyaNWjTROIllJcuH83YFLUJVKBbwPpUujZn6murzESWdk2YhIxTECSVWr366CebThSgzOND39YNUDMx9GO1Ih5rsAYydnghFWywQY+NH/dnomO9mqbUGukhVaKyk2edSRWSM9UvEBhPrDM3D6e45IxwMKJRNuOe6joqc8Xk4mylarNpCWeg0uvHzpwSHGGIcq2+MhmgfMmZ/L+ZPpbUSq3GWuO8hbzgWiszp7xSM3mPF1coiC0zG0W5R/8Ar87N0mnmqbVYVms0eK6wOQN7yz5QUKYI3Blr7p/6ncNZI0LNStoQiu2D+To4z0zktxJfLxRszizCHycLwy4nktDYI8aovsOF5fgzo1C1rhrXTs71Jhw7VilI85qmJqFZzaSIlKlWJYsU9AiFcKE3neI5xFmcQgNCRLnHp9gvTcUypffQCPUVzVQyJTmj0ijVGgMw7RDE4oxkMrQtlaAFaSvthEc6y5BfRsU5FeFJz1hnIVnrxFZrDOcs4/GL2J5TzBzMAvTHp9rHAasFCpsz4hOAKi/OIUsFzL7CqU2cqX4t57fKNY7B5shcaKIhoZMGnFw2OTizuHwyl9FaW2Sur34aWqrhFARdW6pjReVYczSXUmu01hafX9T1jGiVi5pVVol9+aVYfzwfPx/O4aY18/0qaS6lyUbQ/cRTa7E6eoxUUI3KK/P4sD27GL+fkDnWzpgTZ1VfFskWPdKMqovJwGExIZTXvDl0ujJqNeM7yu8pE+mB62xK/clM1aeM5Cz4Kwjhj3k1YyNUEwK9fPGUjl0ke1Vv7Y7nODSh1Rp9fhErDmXjb9pW2mK9kXofmrlmqg3U/06mWqOe5Cy8+WjFrsiwrOAvOVgr9ivJ9lNU/AKUhlCYna/4jsF/Y+1M63SAVadvDkEZhJqZjyMMYn0bheTMQUvOzH3HU5s4C3ciBH/NbiSxmBpmibPw313FDoA8wJiLqDa5KZCiuIsl9cjpEJRec6iHmzOLUODyaMICmMXBwnLsyi1BEcMlrWjx/X5Lz8fOnBLjhCbL5LpuVT0jG4cizpkikTJDJCVnpjaIYH1ur1ZfP2bEmaZJodcbqkokqTKKgjPugm9G+v/fdAiiuo7ym5LSid1RftCDLWBuHY+2zdmevBIs3JsRdjly8yI34MP1VKdny5sSTxFnEexXVjMFGKk1UvmDv+klFdI9M+1TMOcMU5tDBcNem4XMUhfyK9yKdjoU72vRlb7FdkZyXsjmG4F/aDV8WQuIVa+WYAupfsb/hK6PJXG2cG8GduZETi05UjDbBaLmH+oZa44KAuolUR6mLXY1/W0Ehs1ZnCDwTRAYOLWJM+llwxu0TFqERRDFRHSmrSNctUZuddT/3FhbpK8tVkwICZ5Ani4yThAU+uo+v4jiSo8iPeH2W5Wc8SLL672facI9qJ8eKiHN53yyC1CqNeqntjpWeOmtxA8TGVtNrFQz1N8hnFpD3W+lwO8gXNXIrx+kSPP7tjKh0RyqLiEIIolYO4tRH+b02ShsyGqN0Wnov7nBgPJhHywD+QOSs/AINNIS6d1DPJi69IizoHdFggqvLyKHXxahLwh8NUoWk02h3maiWfSYDvk7qrIp1Rr1y9x4ogBrj+Up7tF7uKTWqCs5Cw+s/GbK9PlFHCkqV+29wf4PXrs5usSsbxRJ521qSU2siDNCkO7LL4tJfVZg9gzOWmvlMrRwAGheKxm9W9XXrUdNuLPqA+RzmYOa13pnNR5OceIs+BvqWhTMVzsxXrdsVvpoglVFhdeH1UdyFXZMYW+kjOzk4MzaCHkceh7IADPtocYhKHR1t2UX45cjuQounk/awDjEJOMZb4OX9YrNEx80NmcUYvH+TKbzBzN9Fq5aIje/xaHC+1ZmDkkkBWvzqiq1xnD64HhxheTcw1IZ5J8IukIXRSWzQjpMmGTgqPvBqE2nG2kmMtRyo/2OfMaW+dqjzdcI+5AcLEBA+NJiUpYkOQtVTU0nW3K8U5Fm+cFsrD+ex05sAaz55BAErkdGmuhm2libqDcSZxP1zFA6p7DWBrVaowD9w6aGWWJxJDIZ6SaKOFBQhr8zi3C0mJZSKttEMxN56wb5P6usEgv3ZijOK1bAY9KqGZvR8BYOyLH6wo0tGA2YfWXpPMccGywGSmC8piY4Nc+kfKpf4zKp/xH4XiWV3v+I5CxcLkWwm85tWEty+a6HaE0ENVi1HC2qQGGlB/vzSyNfH1UhOTizOLQy14BfnpojKZjQxaYfxTkEhSSTHIpp/XfyLayqZPE4z4UuD8rc3pDH1PGSgMtnFqfW3MZGbdAmp69ZhyCRCOpJoCGuRK10kR9w3FJTQoaWyLZWMc0w3ZZdjDVHcy23QY7HF7iOhKfKLZlF+OVIrkYKzJb0a6E5YBhKziw2sJqDScRG+SWlA59J1VM9xMrmrMDlxsb0/BAcLgUgCOHKzWSEqw6tl4t2bU/ShMKA0dTH+EYO8CVnLq/aK6JxmZo0ivSGyQ3LANTSODP55UQOSfWeXEPX461GG8MqI83kPW2aQKpSyqGXzOwK/NIeEtWOvRR7dvDf3GBcy6wQ3erTNfhF4FBhmdQGek8qcnnww/5MnKDUX62g1O3FAR3JGOmP1Hh9QqWqYHZsWJWcSU48OGl4aon0bszy1ghBQHa5Gz8fyTFNuJ8WrvTD3bOcDgF1ExMU9+gy8yrc+PVYHlP9MeJgvEu8U4DPKyo8B4XN5WSUQw6PfPVGPhLjHAo9f95gZxUa53AwvdvRbSKLFNcNOOMR7702pOcDAGomaKeEFVfqbsYB3Jxain56vfxKdRjyyz4A5le4Ue7xoXktY5fmvOaaUWv0SUQJi2CMzQFTQ0NarDYSB2GaC7viYDba1EkJu8xjQS6v3y9CdIjUwZ9Vv4g/TxYg3unAeY1qM8szItz9EOGMiUuT2IBJIEW5Tp4hublDZADRJs5EEYAA7MwpQU65GzkVlWhcw7zXRfKegvQnjLYg0Bhiu+QLkbGhx5QRhAAj0OsXLTNumPVQc11bF19yRhgtiU4HmzFqtS0W00v5VBmVa6g1AtHpENAgJQHt02rgYEEZ12NtuIzvUCXSSUFGMssrJatJaumtkpBSPuOFxuGBLudkqQvHKake/Sw/yEjIKqsMKUzJb+n5KPP40LJ2skZCRgKp16iOxJlptUaSnlWGFkQFUYBSmKA4T0n3WPXJN1lDnb5V4fWhtKgQWzesZbadoEqIM69fhJPDSTEL2iNLenEFGtZIVAy0LZmFqJ0Yj/ZpNXTyB35pSpdFtGSXBbggelzXcN+DwOX1MQdOvMMBF/wKbnnYxJmofVPCoWGVXebxQhCMuXjqnjCK/xKoT34Wp3II4hQCxBiLsLIaH82cSl54PesJ0d81y0uTdK2TR+mtkcMpEiHZBDRISUBiHH/R5fWBlZg7oXI0IwF1PVbrjYR9DynB5fWh3OvDrlxzDmTMwOXzY/mhbCn4rd78Sg9KdAlxpk5lqNYYqw8WI7DX8CjXSephPDMlkZCYUZFqkU49QYKodmI8csrdKHR5rBFnwd9QvDUmOh3K/S1YGLFdirRaowDg5jMaY2dOMfZHwLZGJqC1zxwGNmeEOEiJd6KY4azKcjxPS6n181mVnNHCfAeAy1rUAwAcLCiHgyNNtWLHzIIfIhyCdTs9Et6AllzyWABahp9IPQv8T84roRJndBWlmvhadFsCV6GGaZElg34NcUa+oyMm0ghrsEzHm1zv9bqRrq+w0gOXz68j3VaUFiwzKPX3ePDBmy9h5fffwuFwoDCX792bIObEmSiKWLw/E23rpKCrDjfXdFnBX58o4s+MQjRISZAWBCCgDghU6BNnwV/WssESWeuVEYkhXOByY83RPJxdP1U3DW2cGqkg1DQIAcQqm8QqapCSoHlGQ3YpK2LFihXYtmMnXA1bodMN15hqi1qt0SEI8Iki05EE77DC+mZmDtx63G2z35ilumbd25b8HbZkFmniqBGwjExZVSlsGgxbEv5hleVN06xabKQQ7vyIjOQsUEZFhIJQ0++UWRogusiB1ojoKHV7cbS4QtMvxmqNpxd1xnTYE2WWgVnGlH6aAKIuOQv+ksMai1Dg5peYncodlRxYeUiOdzKZj4SoCVW6os/YkjnlkehVFlM3UH5gD+N5ayTvnRznRFGlVrXS7GevKCvDgmlTMGnXVox56kncfvvt5jJK9Sgr4sUfBYAd2cWSJB9QhoOhGdaCEOgDWnWMLk/9bS2rNYqB8hXEpMl8gHnHJ5r81P8+1Z5XoeOIxmyb1O0KlK0lBkMlzuIdDlTAD7dPRA2VywWWJ+/qArPfhxe31idq92M5NhkU+ej85AzcuEaitj66LNWzz958Gcu+mG2q3TRiTpyRwXuosDx84kzV73qHWENQH0ZkjEujuE+RCDJbGZyIhwvLNc9I/W6Ot0E11JwkPbBFtPrpjThCggB0S4vHA4MH45eflkv353c+F8t/XIxWrVpx89dMiFPo/jsdAjx+kck5tRpA14ozC2VZUMw43nhgSc7MbRTajcXjFxWbHw88Mb6ivWbGhKkaKaiGv09qC/1OZLGLDcInMMNvA5mtZM6oDyVWQecltg1SXQYvTNRYNG00aFBRpRf5ReU4q15Ns82stiiu9GA1w3YwWjSPy+vDkaLyCIwlcvCLNhFJfkObqzKzUwlnkMHGQ0qcA4WMssIOwaFPnQV+IiQc0Ds0EqKEV81lLerieLELflEM2TOzu9KFl+6/A/u3/Q0AuOOOO/DXX3/hjTfegMNhzrWAuh4jYmd/gVLiSBPXamcITkrXNc4hoGP9mvD6/fg3t1RDuIfCLFHTvvTnyC6rhMcvagKjkySVPj/cPj/iHYKltYCeL+r918pZTdkmuQFEopfgEOD2i4q2kT4LVbhFmAWsdvLOElUJn180vQ5IzBJGcrdPlFSaCRyqGcqiA9Rl64Ee+9npx7Hiq0+Z6Zq3PxPpB/bplhNzhyCR5FJqvAvRdklmDuK0jjyUC6h54sywGlMgmxCLy84izowWEcL91Ju7vMHHe1/1Ac/n9WL1wvlY8dUcuMrLsXndWlzT6zIFYQYAu3dsx5133gk/xyarR9M6aFsnRSM5AwAvg+jhfhfGPTOqMWYWZ94CwZScGRepGEfLD2bj39wSwwMNzZ0UIUIUReYhgW6vVULRRGpNocRwmimFjNGKH27sKrXxdygg/UhsMBPjwltu6b5TGxUbzWO9sWT0lhvS8wMHqNMgAOq/uaVRDUuixl8Zhfg3t5RbvscnYtHeDJwoqdDltpNPF6tPEDIdRPZTQXlAMaMelaxWtVaN11DVjHVtzlS/0YJTCBz8eKYPDVIScX5jfUa1Gen2Z2+8JBFmBFOmTMH48eNNt5WnTk+3YXduiSS5p1FJx7VUuRGn1RoFAO3TaqBmgtZLdigI8E7V/Su3d0N6Pv44WaCb3yeKWHIgCxtPFFhaC6LBcGTyUYOvFlHJWfB8yCLOqqu2xE+Hs7FKxVwzenu9N4lXrUlqhyBSfp0zDM+TJV3GvPfehD8oUW7Wtj363DYIZ53bFQ+9PBnvLlnLbXuVSc4iAXXH0Qs4yzGDJn/wl1pG5LtU2fwAwZF5IV4ppH4revcJQTs1p4pDYK4+c/W4ysvx5qP3Y9vGdQCAj1+eoEnT/cIL8deffwIANm3ahE8++QTDhg1jlte4RhIEQWlzRv5jfU+rDkFCtTkjthgEvFhdTMmZie5UJ9mTV4qWBs47FMwEMSCN3patDRyp7Cf5/4xSFxyCgEYqMT2d2ojrLTLazoznJNI5oo9wp2UkbM4kFZcgIUVsR2kcKihDvsuDbk3qcMvKKHXBY9Hm1BPBxVY9B05F6MW8itZhhCWpVKPA5YYIWWXm0uZ10ZAzHyMNlq1rqDEttftpADx7KymN6rAkqn5DVmvUyRbpkaxbD6XOd2bdGihweZBT7tZJyy7D6CSz6KNpWPHVZ8xnb775Jvr3748ePXoYlMJnnNNPduexvUbTaeh3aVkrBW6fX1bZDD5Ux0IrLsjHtGefQG7GCWQ/8ThGjBhh2GYgMIY1kjOT+WhklVVacoLhF4EytxeHGNpOoYLH0GQJDMzMLRbiOZIz9dyrLmCFKaK13Wio1zI14hwO0DNLzTzhvbvX70dqvBNCghN5FfoeXn/77TesW/yddD1i4uvo1ONipCXFm/IMG3vJWQQ3QvWnotdvjwmxsrSZMFQc6I/KO6hFKvSMkeqkGka9SCh7/cmrz/UxY3jurnThhXv7S4SZGsnJyfjyyy/x+++b0P/Bx6T748aNQ26ukvtBBy8FlNwglktb+Zl++0JVa2RJ6NR3eIdetuQstDFvJMJXOAQRAwE1WaDfm3SLx+fH7ycK8FvQSyUNuuvMhDrREmfm00YLVbGx+PxKySX5j6j7sMbkVpXdhh5+P1GAzZlFptsSJwjKjTfMDjkNBGeKzV1PSyKSMKPapCbg9jHCpUTzsKS0KxJV96zVKO+nyj1HfXCmr1Pi2b5ADxeWI7usUpozkdZq1FNrDPV8wstF9rNODWppGGGMJmnawmtTXuZJfP3+ZOm65zU34mRRKa699lrp3vPPP89pnTlY7Rb6XZrVTEKbOikaaSU9ThKcAt4Z8yg2r/kZR/b8iwcffBCzZ5uz0xGhlSCFwhAFrDnyEAGsO56vUe8MByyND3UQe/qeVbXGIpcHC/dmSPak6pAsinqqqQSNhlodkcCIwaS2ASXHHA2Rxiig0udHUX4u5r32HMbdfAVGXHEBPn39JXjclVIZbrcbDz/8sJSn9w390KnHxQDMh9SJOXEWyTiavEWLOM+gu7rS61MORim7oEnL4lJYbYMV8IrR8xIZx+GakMGnZ4hc6fPj78xCrhSIhyWffoyDu7Zr7qfWqoXHHnsM27dvx6BBgyAIwMCHHkOzlq0AAPn5+Xj88ce5/UY3mby7GWKbRqhqjcw0qls8Is8douSM2RYj4kzBTNA/wLCYC9mcOCx0ajNqEzwJtrrMWK330XCYY1TfD/szsZ2SXJI2SMbiYbVIVZ/Bc4dDUGwCVt9H76B4qsDj92tskGm1QVpSEy3C04x9BCHOSHxIphMOE4f0UEG3sdLnx8rD2ZKEI5Q5wDp4J6lUFukD1eUt6uGWMxtrDkW780qxIT1flpyFSjTp5KMdgtAInQjUqUdQ7mf81VT5VA5Jop9jyeez4PMGxkz7zl3x+OT34XTG4b333pNszX7++Wfs26dv20LAq8fy+mHkTxzKfvnjp6Ua1+JPPvkk0tPTDesSRS2Rfay4An/rMLNyy93YklkoeUNkqhKagCiKhqrIVsE+fmjHARkbVtUaM4Oex4uD785WayT1Vn+Q11cLIYwYWlq1RpX+HKcPSitcePLuAfjwww9xYN8+5GVm4MdPP8TM58cCADLTj+Occ87B9u2B83FCUhIeee4lKb9Zj95VIDmLTT1k0MVTsvOlB7Ox9ECW3JbgL2t40+2MRVBdno2MnuQsyYQNi57kLKO0EkeKKnCkUMm19/l8qCgrQ2lRIX5bvhhLPvsYh3fvVKTJyzyJ7z58T7q+/ZEnsWTfSXz8699YtnUf3n33XbRv3x5AoG8Tk1MwYdKbUvqvvvoKL70kD1byeqSl9ZNlj5Asz39mEMmDjLokXsmKAzFDvc8KWISzoPiftjnTP8DQ98l/pD8TGMQ73XfmFn9lvTyPeNH2jMduUQj5LRZADrm09FK2FRIVvxGBQVEC2IwCI5Cvrf7ukSQsY4GN6fn4+bDSZTHdG/S6WJWEZ1nwkMSLgxXN1tHz8USJC6Vun6R2F0q3mDiTa9LwglbLTPzISrT0bExCDhSvU5EAlZo+Zz1VPzFyzFBeWoJfFsyVrgeOfBzxCYkQAZxxxhm48cYbpWcffvghp/H8egDr/c8azoKKCU6u3ZUufPjaRE364uJiDBo0yFTdagnKseIKHCkqZ+Y9WFiGo0UVOBG0mwt1T4rkvPSLIooqPcwy2ZKzoPDBouRMvQeFopVVFdDbO8ncUo+3f3NLsOF4nu67aCRnqvx+UURehVt79hNFfPTq8zi0519NmWt/+Ab39TgbA3t2xYEDB6T7zzz3Aho1ay5dm3VqckqrNfKKIjZK8RxPRdKk1FFxIOBLzrhNNI1QuFa8eFUkD2/TB5TubzetXIZhl3bBPRecgft6nI23nngIcyZNxNO3Xo25b02CKIo4eeQQJj08BK7ygCi/xRkdMHDkaMTHOVG3UWMkqIJ5k83o8quvwz333CPdf/nll/HPP/8w3699Wg20EkuRcfQwtUEpU5WVFKMoP0/3vaKphsX7VuFIK9RgSfEUXrAEoCAnG+t+XIgThw9qnFj4vF6UFBYgOyMDM54fgxcGD8TC775VtI3VRqXkzLid6mYy54vIThstxFoNj6i6xlHrDWG4+Bnv7hdF5FewbU/MwOhAESDOrB80yffWej+rjlu2PogtgJ6Um14Xq/LN3H5jwj2anGy6TD2bPNNliUqGUYe6qejVsp4mnZJYCf7qlEn6JdQYb7rEmap+glC9QvKIQCVDTR/qthgxdVYvnI/y0kDsxKZt2uGCK/oG2xJI/9BDD0lp58yZg4oKffVpo/nt8YvYnFFoek1hvaeg+odMwV+++QrZJ08AAGrVrYfxMz6D0xk426xbtw5Lly7l1iVC/+zG/J4SscMt1hCRXBJ35BRj1ZFciVnDgh8B6bYoivJeb7EN6q/HJgbDYypHA3rjTk9yllFaiexyt+5HilPRBYo5KgQ8kf56LE+zRy/+ZCZWfv25dD366bG46OobpOvSokJF+hdeeAEvPvuMgiljVgsgpg5B/KLsuSwS4B1QyKTkGUyqJTYC5RCEFWCQhXC9wpmpgwUjyRlpPy++CiDrHO/9ZzPeevIhSUVCjYUfvY/Vi+ajOC9X8rjocDgw/IVJcMbFSSqWeouyKIqYM2cOTpw4gTVr1kAURTzzzDP46aef5HSCAFEU8eabb+LZZ5+F3+9HzTppaNG+Azqddx4u63836jdthrlvTcLyuXMgiiLuf/ZlXDdoKKN/oscE4JWt0JoVAQjKsWTGrTQBa2OhDz8//bAIzzz+KMpLiuFwOjHiuVfR96774HFX4pdvvsJ3M99DQU6WIv99d2+E0+/DZTfeqluvwuZMLe5npFXfYx2keMRgNBC+WqO1/ETtttLnx6K9GejTpgGXaN2VUxKWrYLhwUKQ22TFLkEIWlgHDtD0Gmi9jVUJ0nqP3w+nQ8vEop0RGA2VgwVlqJMUj3rJ/BiP4cBc2JMofASqSLX9idXa1IfkcxoEwi+0TauBokovvH4RPlHUuFkH9CVKpA2hSp2tZgu1h3lEIIsYJWiaqm+Dxjt/+3w+Reykm+4bIakximJActC7T1+0bt0aR44cQUFBAebPn48hQ4ZYaj9BgcuNY8UVaF7TXFBy1vdUE+KCAHjclfh+1nQpzYCHHke33n0xcuRITJs2DQAwYcIEXH/99bohAURRP5wR81AfTCoRISF+9Eg4jSLIKw8wk1wc4rfC48PSA1noWC81ZHf32jiXrDT6z6oKusRZ8GM6HALAIC3MSs701h9azTznZDoWTJ8qXQ8aNAgTXnwJK/edgNfjxuY1P0vPnE4nvvjiC9x11106LTBGTCVnxZUerD+udUAQKriDx8LAYgahpv6PhVqj5U1EFLmEJ2mXkTcfvxhQK5j27BMKwkwQBJxx7nloe3Zn6V5hTrZEmAmCgAee/x/O6X5RoJ7gYNdblIsqvfg9owjTpn8gLbIrV67Erl27ICIQRf3ll19Gw4YN8cwzz0j1lBQW4N/Nm7Dg4xkYdd1luKtLWyz57GP4vF74fT7MemUC7utxDj766COm5zE9WNEGoA/qlV4fl7tKHyI8fj9255YoxoiVgzKTOCPcxl9+wWP3D0Z5ScDGye/zYeZL4/HI1RdjyEXnYNYrEzSEGcHDDz+M48eO6dZLvy+96em1Xd1KrhRA94kSBwvKdB2cmEGs9xW1xDS9uILRL/L/eWFIzQJ1GEvOaOaT2f4gGwJLzeNUAtl89Zz30OPaqC+3ZRfj12P6UvpIwMycib7kTEWchbAnsZaIpqlJuKF9Iyl4q8LNuupXbUcdNnGm6rVEEmJG0NmvQpXQ6dm2CSptB+rdb2zfCBc1q0s9U0ImHrRl//3rL8g6fhQAkFq7Dnr1GyA9O1Hiwp68UvybV4oHH3xQuj916lTddhp1r1eS8PLTEXAlhJS935pF3yAvMwMAULteffS97W4AwPhnJyAlJQUAsH37dsyfP59bn97exLIJI0nDlUhz46xaLUxFMPLKPFnqkoQCVusx8/38UV1xQgPLcQkgf3e1DRmBXnfy1BrpOUqIQp/Xi3eefgSu8sCZpG2HjpgzZw6cTieSUlLwzAefYtL8JRj48GiMfOYFHD58WEGYWdQ+DbQphDzVBjwBuxnON0nBUq1QEmecCROhQ4tVCZyaS0kQ7xBQLzlBen8jyRkALPtiNk4ePggASEqpgekrN2LetsN4fcFSvL5gKfrcNkiRPq1BI7zy5UJce9d90j2noB9XTYCArLJK5JS7Ub9lG9xyyy3Ss7feegui34/Zrz6HiRMnajw5mkFpUQEefPBBfPTRR9I9o0UolPggbp8fSw9mK5w+qKGWjuzOK9UEDDYLtuQMcLlcCk9ANDKPHZEWEBopNWtJ/xcXF+P1F7UevPyiGPQ4KN9TLFp6fWZGj11kp9XDtuxiXYNuMwiXmGBl55Vpxr7LTNwxszBmPgghba3kG4fi/aw6gTCL9BwJKW3OYtIkLrhuzMPk8JtFpcZVtbUK/eDbwLC8IkvxOIl6ktqlfog2x3J+5TVxlU7UwtTNjaT9kUMA6iTGo3aiHM9LEf9NVbl6fdWzt/a4K/HNB+9I131uH4TE5BT5eZBR5BeBESNGoEaNGgCAnTt3YtmyZTrt5783cWJgdt1i7a/SoTf44/N6sOij96Xn/e4fKb1Hw0aNMHr0aOnZCy+8AI+H7X5cFPX383KG+/VwCX51OQRKaby1stUEI7dekdLQEQN1ma1P/c6sfNFUow4VeuOOfPZEHbfSeu+gHi8Cg2EEyMTZgulvYc/ffwXyOp0Y+/pbiI+PV0j+z+xyPu56bCzuGzUaLVq0YLbTCqqUOIvGAUp6ZqoA1bWOqgvXlX4VSc4gBpp7Zav6uLpNA+l271b10atlPak8I5szv9+Pn+bJOrSDnhyPxi1bIz4hoMLjjIvDQy+/ibHTZuP6e+7HtXcPwWvzFqPjBcq4KUTDkmkQTt3ziiIef/xx6fqTTz5Br3PaY+X8LxR5br7lFkxfuRHPfvgF7n16AhKTlTG/rux/B9p16qK4N2HCBBQUFAAw3mysSLBISUeDkhxe/CKjWHs8g3A1mA5BBAFvvPEG9u/fDyBATE9ZtBJde16mSXvr8Efx+V978PXWA/j8z914de4i6dmShd9i++/rFelXH8nFD/szVTZncnuLcnOw4qtPsWPTb4p86p6uHmqNYeZn3OOtV2YcCfAYPrzNlfXMaN1RDjPzsjNWOAvg1HMIQiQwepKz6mJzRlBV4SfoddLlMw5szi1LZGuhEMjSKuCS5nVxfbuG0j29/Yrcj5TklhBneuYVodbCap5DEHBh0zScXb+mdI9+O15fAfpqjYs+no6DO7cBCOzP1909RPGcSHScgoC6desq4oW9+uqr7AM5tyXyXmSWOOOdA8ijt6dMRvaJ4wCAOnXr4rWxT6B1bUJkinj66adRp04dAMCBAwcwZ84cZl0itEQ2AVMdjvRrhCcWbccUatFmxrlIpRMhYtG+TClOotXyWbVVh/VQA51GESm8nhBC31urEil0fDvqYaXPj2P79mAhxUS4c9QYnNv9QmY5evdCgWmbM0EQnAA2AzghiuKNgiC0AfA1gHoAtgC4VxRFSyICr19EgjP0V2EGDBbFoO2S+fxq1Qp12XwiMEKSsxBszgQIqJMUr7hPFkCyJPHc7QPAtt9+lRbImnXS0CeoVqAsU0CPPtehR5/rAAQIG/VhwhlcmFhxJ+g7Pr+Iyy67DNdeey1WrFgBAMinpGVnnnkm3n77bVxxVV+sOJKLxi1b44JeV6H3DTdj3oz3UV5agituuQ0XXH4l/KKIwtwcjL/zRuScSEdeXh5ef/11vPHGGyYlZ+b6nHwaIlpPcjp0dcMVcYMYxVsZ7Sy1ibLiIkyeLMe1uXfMc2jTsRNe+/Rr/LLsRxzatR3ZJ47j8psGoPuVVyvydrygB66/8SYsW/IjAOC9sY/h1S++Bc5oDEB2r8vy1rjzj42Y/NgwyeD1lmEP49bhjyK1dh2t+h6z82PD/VfWpsTOnGIkOB04s25qSGX6RP0F02rAZ/Xw4R0w2L2pX1+thDjNIcpsv5P14lR3CCKrNZqRnEX+3ayWae5QFoVvQBUZtoMEsNUaCeR9Vhv4Xi+oruxUh8MY8fmxevdhlB/ahYrSUlx66aVo2bJlsE1K1EyMB0pc+t7uItjFLGkOT03cjFrj1g1rsfBD+aB49+hxqN+kmSIf0bggtMKTTz6J6dOnw+12Y9OmTfj1119xxRVXKPIYDT+yvrHXdi2M9rlZs2bhfy+9KF3fN3IUmtVPQ3kwzp8oAmlpaRg3bhzGjx8PIOBE7N5770WyilErQtRlerIYnJLkLMLzyUnZPVldUkjrTdmeQpTGBnEodLLUhcX7MtGjWRo3lp4ptcYISOpzyitR6vahTZ0U48QmoNcUnjkNwJe49WpZD8lxTuSWV6JZTXlM0SVVen34ZNIL8AcZV2d3uwi3DH9E16GQHowYMSxYkZw9DmA3df0GgLdFUWwPoADAA1YrD3dqhCs5I2lkjo6yA71+ERUeX7WUnIkAcwUk70AWdCPJGS2xuuKW25GQaGzwy9p04iiuqKZN1D1fkHieP38+zj//fEW6Hj16YOvWrbj++usRp/JE2ahFKzz08pt48q0ZOP/yK+EUBAiCgLQGDXHfGFlFb8aMGSgqKjI8HFkN3ghY5+Ky0lkRb7O8Na5c8CXKygKOJDp0PBt9bw94wHTGx+GS627GvU8/h6fe/hA9rrpakxcApr43DfXr1wcAFORkYextN0jxOAjoWp0CkJ+VicmPDVd4Ivp+1gd47PrLcWzfHlPeGkOVnIXsQpuRb19+GXbmlGjiXzHzM1pqdEC0ArPEU055pcYWKNAWdvoeTevgytb1Q+beEQ6imuMcvmez2BJ3hFmkF1NGQZzFpEV8cCVnUeL0A/x3t25zxl/fHNI+q4VPZ7/y+ghxpl/ujM/not+FndG/Xz8MGjQIbdu2xf3334/S0lLNuGtZKwnnNqyFs+qlBtuiktTpV8MFa71gu5PXh8b8TSU5O7Z/LyaNHCIFu21zdifcNPQhqCH1ZbDA5s2bY+jQodJzlgTKWHImKso2AlutMYDK8jJMmDBBut+h6wW4b+SjwTSCoj2jRo1Co0aNAAAnTpzABx98oG27qL+fs+a/Nth6ZEAzwmnCz+X1ocJkcGtT/SvKe1GhS1b19Ioi/s0t4WbVamwwio9Av6w/no9/skI3S1BDlzgjzESd53p2gQIC5j8p8U60rJ2ie05evXQxdvy+IVCH04nhL7wW9CTK0RAwec8IpogzQRCaA7gBwKzgtQDgSgDfBpN8BuAWq5VHhWPJ+E+vXrl67a4hisD643lYfiibX18V2ZxBZHMp1brLPIcguRknFB5m+t4+SDctDVaZEgeD2Sb5LpkstWrVwu+//465c+di8MhHMWTcRKxatUriimkYmqrucVCTqcfVN6Bjx44AgJKSEixYsMBQDYu1eeScTMerI+7BoPPb4+UH7kJm0OBaWsxBNiiDwoNgrQuk1oLsLKz+7mv8tnwxykrYNmzqd650VeDbj2TPVsNGPiK5HFYPH5YEEwAaNWmCefPmISnYz2UlxbjnnnvgpZzB0Bua1+3Gu2NHobSoQFNWUV4uXn9kKFwupY0bO2g6aaa1cR6qa2ve9zflMpxRLY9rrJacGRHh6k2D1S8VXh/WH8/HXxmF/MIoOB2BuEosj3hmQIgzNUF4qjkEIWsUkZyp12mFWmOMiR7rZYkRL9NcvdbBVWvkPNNzYOUxUKc7duwYxj48ApWUm3ifz4c5c+bgtttukxhZUhsEAe3TakgqaBHyB8IcQ6x9UhkKxUCtUUVEzH9/CryegHJSau06eHLKB/L6T4GsLfQeN2zYMOn/7777DqWlpar289+ctmMzA+Y5IHjzhy8+QXZ24FxVt2FjTPjoSyQEzSjUGWvUqIHnn5eZrxMnTsTWrVs1ZevZnIW6f4SCOJ01ZdnBbMNzJGm+mfaKkMcpCRgv18vOr2e7yUpdVesNFzqNiTOQnLEY3IA5JsmxfXswdexj0v1r7hyMlmeepUjDdoBnkSujA7OSs3cAjIV85qkHoFAURXKiSwfQjJEPgiCMEARhsyAIm603jw+uMaOK60RDfbhmqzUCBUGuBK9fIxaEOgTJGW8BJAs7iyNABvRnb74siWvPufBiNGvb3lTdLCYDUflLYBhmKiRn1IsmJCTg7rvvxlMv/g+33v+QZLgcyKQsQ304pLVhHQ4Hhg8fLl3PmzfPsuSspCAfLw69A/+sWw1XeTm2/fYrxtx6NZZ89jFEv5KYN3tQpQ/cHrcbla4KVFZUYOXXX+DRay/F9AlP4q0nHsKjV1+MdT8u1ORX1/PPujUoLgh4O23VqhXuvOdeqi7++9Ho06cP5i35SbLj27FjBz799FPpOR377sM3XsXOPwI2ZoIg4NmZn2Pgw6OlBSjr+FH8uUoOhwDwuX9WD8KhxOoK1BNeG9jrhn5Gqw4+1OlZ859wW0vcbEN4FgTmamYeNeIDipvq5oS7zMV6oyfLECGaefMjGuqCkSL4fH65ddHoQ36Z1moMmBToP2c5BCHQU2v0SWuuNk95eTnuuOMOVLoCwYRr1amDHj1kW+gVK1Zg0nPjlW1Qt0n7FvovYBFcpxgmIMdHFJGXlYE/V62Qnk348Au0aHcGMx9ZW+j6L7jgApx99tkAgLKyMnz33XeKPJGWnDEPrRDg9Xjw/acfS/due+RJ1KhVW7ZHJO2hqhk+fDjat28vtf3xxx9XemaG/mrHVGuM0mJkxvmaEcz0L52CnKcSHILmGYHL68OifZk4VFjGsDnT5mDF5axq6DWFjHE9hyC6kjPeOgUBHrcb7z/zuMT0qduoCe4Y9TSVRvlrhKhIzgRBuBFAtiiKW0IoH6IofiSKYjdRFLtpnxnnr/D4sDOnmG0UDzPuvbX5yASQbM446hZGiNTGblUCJ0JvASTlBX5ZG0S8Q8C2jeuwcfmP0r3bH3nSdN0sjiAJntiMEQeFTq3HyVB3vroGjY2bqg2333GH1B9r167FyRMnqLTa6uh+2bjiRzx89cXIPHpYkaa8tARzJk3EjOmBeCs8gp8FvxiQdn0++RUMvvAsDDqvPW47/0x8+OI4KYg3ABQX5OPdMY/i1RH3YPqzT+CNR+/HgulvIScnR1Heb8t/kP4fPHgwkhJl3XJ1m3TjBgVfovN556P/iFHS/RdffBGVrsBC5PL60SAlAc6c4/h69odSmqFPjMMFV/TBXY+NVYyXX39QEpaRlLLoudA1QqRUnmlwJaZqjqRBJRrih5GeEKZG4TBoMDcNwfyYVRhGB1FckIeF38zH6tWr4fOFFqcy1nHSSH/6VIwVgmirNUbC65/L68MP+zNxtCgwL6Mi4YsgI4V3SAb4ByKyJ+uF7lSvKW63GzfeeCM2bdok3Xvn06+wadMmjBkzRrq38KsvkHMy3ajpEkLtY1Y+plqjwaGQBh0MeOGH7ykYqWd2vUD37CM7BKHrFXDfffdJ15999plh+2lIEkyzNmc6bftr1U/Izw6EeGncuDF633o7Mx09fxISEvDdd98hLi7AOFq3bh1++eWXYLtlQrS0qBALpk3FlNEPYsnns+D1eCzbAocDmhFufQ8M5DXTv3TRZph8ZB/ZmVNiuA6TINfBmgzbEjuw20KI72TGvgVwbM4MTvvz3n0Dh/7dAQCIi0/A8x/PRc06aVR+5a+i7MgIzkxJzi4BcLMgCEcQcAByJYB3AdQRBIHYxzcHcIKdXR9mPv3fWUXYl1/GjAsU0DVWvrZaJMv6Nn7Vhi2VYEjoMcqK0Pi1Wozu3Fd5v2J9YL/Hg1kvPytdX35Tf5x70cWm62ZJ485vXBtdGtZCrcR4zTNFdHRGh7Hi4+htVHptaNy4CXr37i2V9+G096RnTA5m8F76wf14+6mHpXhhAHBR3+vQqEUr6fqNSa8F7BcMvhIda+P3n5bi+RGD8eAV3fDD7Blwu1wQRRFeyh1w7Xr1Uae+7Gnzn3WrsXrhfPz5ywrMf38Khl7XGyePHAIAuMrLsWXtL1La22+/Xbk5q5pmxMQTAdx43wip/hMnTuDLKf+D3x+Qufq9Xkx7aYKk7nhO954Y/oR86Lm830C53RvWoChfjgPFVmtkH5KNELLkLKRc/AK4B1kYb5L86rQZyLvH6QRfZYEnnTCDeIeAlrWScW7DQOiFvf9sxqPXXIqHh96Hq666Cu3bt8cbb7wBV1BaYRZRcWbBrU9Zr7p+s2qNIds8qq7Nfg66nWrbyKrqQ9PpRQObMyilIzT8EkHBLkC9/j/55JNYs2aNdH31Hffi/OAe9uabb+LiiwP/e71efD9LtlNSM62seM/lgdVXPLsrFtTJyTtnnzyBnxfMle73u/8h3fIBmQGqfn7PPfdIMUbXrFmDo0ePGryBDI9k+2eSOGPdE4DlX30qXQ8bPlzyCi1QaVitOffcc3H//fdL13fddZeCMC8pLMC4267H/GlT8fuKHzHntRfw+sNDkJ+vjasbrVkUFwbDh+TUZV4rIKch+4zs2VObn5ylvH5R85yubn9+KZYeyEJhpbFNdqyh1ytkj0yOczAZi6FIznb9+TsWfzJTur7nqWcldUY5P1GnZJTNrM/6OmO464uiOF4UxeaiKLYGcCeA1aIoDgKwBgA5od0H4AedIiT4/T6Ul8oGi6ZikQWTsHRxRYgMr2JSu4NptLBKTfOJs8hMdbOHOZqrwRwEwd+2aQEvOYlx2gH7yRsvS4f+lNSaGDz2BUvqFqwNtFZiPNql1WCkVg5WVt+zOK5GtgBaohwK1cY5M6Zj37a/mWkBWQ1gwfSpEkcyrUEjjJ48Dc998AneXrwK9ZsGNHXzcnMxc+ZMw29EDtH7tm7BlMeH47eVy1FSWKBJ17ZdOzz74suY/tNGTFvxGzpfdCmzvJyMk3hl2N0oyMnG7yt+lETsZ599Njp16sQNpKu3cctMCxFJKSkY+KAsPVv25Sd46MrueHPUA7j9kvMl7qTD4cD9z72CJGrxa9yiFTqcFxCG+30+rFkkBwnV+8asdhohVOZHuLEJmZ5guenN188C/Z6HCspQ4HJLUkMjpz6mYLY5AtCtSR3UTXDgu5nv4eUH7kJZcZH0+MiRI3jmmWdw8803S4HidaukVY9iLjmTTivM+jl8DWU5Fuqs8Pjk767KaPYb0u1UOzM4FWzj+K701f/IkGzOdPqJnh8bN27E9Omy7e2Ix5/E8ImTFOlpO6WVX38u7QWk9Ly8PLz66qv44uMP4aPsbUPtD9Z6wbY5s67W+N0nchvPOr87zu91VfB5IIGelom6qqZNm+Lqq2VHUV98ITsDMyvpD0et8eCePdj150YAgNPpxLBhwzXppfHDqObRp8eiZq0A0ygvLw9XXnklNm8JKHRNe+1lZB47okj/z/o1GH3nLZJGiPQuUVqLnLQrfZZQwETFpiRnjPKloNTU/XKPF4cKyhRjk+dKf0dOie6zKodOY0h80eQ4J3q3qo/zGtVWPDdH7Mo4evQopox5VNo/ul56BW4YPEyTTmD8x3oaDsKJczYOwJOCIBxAwAZttlGGI3v+xfDLz8PxA/sAmJskRM2BeeATtQSVOpWIwGFn+cEs6Z5PRbip9Z1Z9ajh0F9DQgLPpopGhdePLZmF8OlwKcm9M+umon+HJprI6b8t+wELKZ3vOx8bg7QGDS1x2q3qVivUGvUWHwO1RjW0G5+IO+64A3369AEQiN82fcKT8LgrmVKk1IQ4HNq1XaHa+cwHc3DZTf3hdDiQmJyCAQ8+Lj0bM2YMJj72EPb8/Rf++GU5vn5vMr6b+R6O7d8LIOBc5eienfB6PPjktReUddVOw8hXJuPTTbswd/3fOLB/P/438Xkkp6YiOTUVEz76AiNfmYybhjyIBya8ggcmvIKEpIB6aHb6MTx2/eWY9uwTUnmDBw8GoLabUcIoyDZJ3/e2u9GlSxfpfl5mBv74eTmyM05K96656z607nC2xp7wygF3Sv9/N+NdHNmzC0DAIP/QvztQWlSoIYQsc+MtpjeTL+QyuRIW5bXVTYHeQLdmF2PN0TxUeIlao/lyyHqoDqppnjYL5HtkxDB89c7rCvVb2ib0559/xowZM0y3K9Ybvaj61ZCRJlzpF1d6TB/kvH4Ryw9l459g4HR1NqOQJnJb5P/NxM4LGxbGtJmizKjtsZI0Tg2oaNdhaF4AwN5tf+PFF1/EpZdeiksuuUS6f9NNN+HpF16Cw+FQvMo111yDq64KEjF+P6Y/+wQqK8ohADh+/Di6deuG559/Hs89/QReGX43ivJy5ZfgQEGAUzCt1sgpW0tkicjMzMTSr2Ui6tbhj0rnFaKyl8xgwAYapb1FqzZ+/vnnXCY2C2adYbHec/Z0WZulX79+aNmiuSY9+WVVs9+fggmz5knehisqKjB69GisXjgfC7/8VErXvP2Z0v8Hd+/Csi/UR9PorEYKhyCMOnjOPsi8MavWqKepQWf/Lb0AW7OLFaYBGocg1HVkSIroQK9XUhMCynsp8U4kOh2ok6QMdmNFcub1etGvXz/knAwoAdaoVRsP/2+qJG1WFqBfTqTINdNxzgBAFMW1ANYG/z8E4EKL+eEqL8fHLz+Llz//1jgD5EO4xruZGBieuhICUU63NVvpDe94cQVW5+dqJD16G4u+qFiON1FS6UV2eaWu9MgI6sU9wemQDmc0/skqQlZZpW45amKVfie/34+5b78uXffoex2uHTQ0mM88rHLyaS4aWwJqzVCa1QZRBASHgOemvIsNF3eHq7wc6Qf2Ydr4JzBu6jSo+RAJ8OOD556SNqduvfuifeeugbKDRfe+9TZ8O+Nt5GVmAACWfTsfy76dryjnq3deBw9j3puFC67oI6lv1EqI03AV4xMS0ec2pafMBs1a4M1H74ff71eoXKakpkqetxSSMzWn3mBekCGdkJyCDRs24I033sCbk6fAXSmrqzVs2BCjR49G+5sD7vrVRreX3Xgr5r83BfnZmSgvLcFTt/RFu3PORWFeDvIyM5CYnIySyZPxyCOPcNWM+QhtIxVFkRmPz2wbWEmsSP3M2mZIZTOSFwfVS6xodlpRa4x3CEybjL179+Lrr76SruvUb4CZn36Bm6+8HGPHjsW0aQEbzKfGjEGrjp1w45W9mOXTJcfalb46gK+6fqPuySh14fcTBTi/cW2DlAGQUAqZwbVZ/bpxVAwkHkSIAfVnv6hR6Y2kWmNxpQf788vQlrNfWa3P6BPzxmTLWsloVjNJcsJVWVEOZ1w84uLj8dPXn+OjF5/R5ElOTsb7778Pr46EatasWTj7nE6oKC9D+sH9uLf7WXiuZUscOnRIkXbH7xvwzB03Ytz0T3B5i8t021jq9mLl4RycU78mOtRTxkpkvTpbnV63eIZaIzB27FiUBz0rNm9/piQ1o5Ec72AG1Wa1qV+/fqhduzaKioqwf/9+/P7777j44otNf2mzcc7U2LdvHxZ9Latmjh49WrEPylJVcoddzxnnnodVq1bhggsugNfrxcbffsPG336Tnt/c7xYMfn06Fn8yE59PfgUAsPTz2biZCjkQrZXI53ajtKgwEPuTUYnX72c6TFOUYXKd1EumcEIWZO7QZy4tYyFwhvWLIpwOQZH2VHAIcmHTOiiu9CJJYlAoJxHPlb4aCxYswLZt2wAEtIUe+d9bqNeoCTe/nvouI4NlhCM5CxmHg4Z2Zj4+OYSrOTbkUm1ArNYqYVWxL78MIoACl5vZZ2rag/V9JclZ8NnGE/nYll0cMrdT7UpfbxLTGzZrgGnUA6n/d2zagKyge/gatWrj0UnvMF3xGsGKgwJ1G5iLD+MWT/1DgPY9SRHNWrTC3aPljXzD0u/xwv13adQLv54zC4d3ByQ9CYlJuG/cROkZ2VTjExJx71MTECqGjn0OF119vUSYAeZtgbpfeTWemvw+klLkw1NcfALGvz0T9erVU7QTMLbJk6HllKampuKVV17BO9+vxFUD70KPvtfhpWkf4ciRIxg/fjycQUPsJNVkS0xKxjMffIqUmrWkewd3bZeI2cqKCjz66KOYO3duRA3tTeUDT7UzNOrMim1SJIgzr4EbcRY0ZxwOWDr6AoCPP5Yl6x0vuBAf/LIJLbt2R75XwJQpU3DOOecACHzf2266Hnv37mWWTzc75pIzK2qNjMaVBz1l5pRrbZ1ZUMfp4tm48eAXgd15pfjxQBbKVLGRInlY+juzCEeLK1DAsOUOFQHJGX/d1n0mCIhzOLBz23a89tBg3H1ee9zbrQNGXtWDSZjVq1cP8+bNQ6tWrZjllbq9SKrfGE+/+Ip0z+f1aggzguz0Y5j82HCUlZcxnwPAocJAyJAKihA6kF+GIpfSm2pKvBPxDkGKpaZ4z2AvsKXhypuHDuzH3LkyQfPAhFeYXHxdyRkDycnJuP122QnHhx8GHD6ZZZ5Y9UpL8MYbb0hq0Odd2guXXaYkgtXrVoHLi8X7M5lhT84991wpMDWNTp064aPZsyEIAm4YPAx1GjQMlJWThfVLvw+p3WaRfSIdt1zeA0N7dsKKeZ8FVQ+VfcVzTkLe26orfc0z6gGx8aS/mfrziQB+P1GAxfuzNNL9UJebqIRd0SkzwelA/RTqfKV6rutKnzH/5s2bJ/3f/8HH0KPvdbrNsepEMBTJWZUQZ+WlJXj8hl74eeUKw7R6kjPZI5HyFXgGjwTJwUNmUaWXGQ9IHSOKNdjIwc8vijhRIus0l7tD82bGkpyxoCDOOGqN1B3pv3WLZa96vfoNREpqTbl+0y0NgTjTSb4/vxRLDmQi38U+IOjV4hC0ZS45kIX04gr4IeK6e+5Hr5sHSM/+2bgekx8bLjnjcFe68OG7b0nPb3/0STRt3Va6lgIbCsBlN/XHrG8X46qBd6HjBRcirUEjOBwOXNCrD7pcfLnuOw8cORr9hz3CeCfzfXfFzQPw4Zq/cP+zL+P2R57E2z+uxiV9r1H0A4FWcsYuk8e0aN7uDDz86lSMfX82rr11oBRzjiza8YyDQbtO5+L5WV8htXYd3fcYPXo0KspLg+20SLRYSi3DL5rx5GqtXl4+9bNQ1Rrp/qFdaYcDLTkeAIs4c7srFWEVbh0xColJycgorcQfJwuQmJiIzz//XFJxdAXdmRsZ3sfc5kz6FRW/BPT6wSLWE4N7RKWZmHig9yNCnClhVhVcRECzA4CWODNVgjmQ9rg5zESz36zQ5cHCvRnILWczOwl4qtaVlZUYMGAArrz4QsnxkbvShewTxxXpJk2ahF27duHkyZPo16+fsr3U/+uP52HjiQL0HzwUg8c8j7h4pbpku3btsHr1anz85TzpWebRw3jz1VegB0Kw08TQ9pxirDqaq0iX6HTgpjMao25yAtQgXcAMOaO6nvH2VImg6XrJ5Ti3J1uqp0ec6X2+IUOGSP9//vnnWLRokXnJWQgOQVwuF779VtaUGkS5JJfTKyUR+/NL4fWLulpCL774Ivr27StdN2rSFMuWLUOdOnUAAHHx8egz8G7p+ZzXXsCBAwcAmJDw8h9rIIoi3h3zCI4dPgS/349P/vc8/lq9UpPOa0In1FwQalFfckY9IEsOLe3UyM1ESH2snZ6hrThWGZNmYLZElvSZmU51XVpaipUr5W/Wu/8d/Hr0KmSUHbhnnTyzpNYYSaQf3I+XJ76A/jfdyE1HOI7qw47sepdN7fN0qYnKoNcvqg6xwQVCUGZkHY4cQkD14rVJ07F353Zc2f8OnH/5lSjz+FA7ia03z4N60WMdhAGla3Ez0lMydipdFfjj52XS/V43D0SoIHq+ZkEPTPo1DxaWw+0T4fV7DcX9NBwCe6hvzy5Gu7QacDgceOyN95DWsJHkqWvXnxsxZ9JEDH/hNayY+ymyMzMBAE2aNNEYfJIxF+cQ4PaJOPPCi/FwJzkShN/vlziY2zauw/ofF6JNx0645dZbsXX3PjRu2Qr1Gjdljj0rdK0fIlJr18ENg4ehZkIcSt1edKS4sQrJmWVOPX+5o3Mnxjng9fjgEIBO9WvCIQjYniOrWp7Z5XxM++k37Nv2N7auX4OklBq4auBdmDjkNuSePIHc3Fx8OWMabnhwNEQEDnO1EuMM7eKA0AgT2r0y6z1DVWu0whG0ukEx1S+DrbAii2d5kQrYKGjBOtQt/3Ex8vICnjfrN22GrpdeoUlz/vnnY/GKn3DNlb3h9Xiwbds2XHPNNdi4cSPiFYdgmmMbW+rMr1r/NQb0BlI9sv6qg3HrQZKcqbzlEljxuEna7lGrNUawC8l66zZrRMTBidKAKrRPZDupIuBN98mTJ2PhQm2sR4LU2nWwbt06nHduZ/1CqFch86/E7UO/B0bi8pv649DunbitR2fUr1cPTZs2hcPhwFmlLgyfOAkzngsQDHM+molXJz6PtLQ0fgUccPsg+GtEnGWlH8MPC2RO/p2cUDd6e6fenOvZsyf69euHH374AQAwdOhQrNm4CXDWNrRPDUVytmLFChQXB/aLxi1b4+wLumvSqJ3FkJGvt0c4HA78+OOPeOe997F+5148OfpxtGjRQsG87vfASKxdtAC5mSdRWlSIx0ePxtIlSwy/okMQLL3nX6t/wp6//5KufV4vpjw+HD2b18XNN90k3edpVanXfz2VfIBIztgP/Qg4AvnpUI6Ugp7ifEdZ/GuzsMqYNAPTxFmI6dasWQO3OyAkaN2hIxpT3rp5+dlqjSypicmGUagy4gwAtv3zj+6z39LzUeHxSXGztPEcgpuhxl2j4oc5wpQHJ4WCCwDtoY5OTp54K114btCtUiyEP35ehuc+novO/W7QfScezErOjMTeGlfBwd+/165CRVlQd71NW7TrdK6qAaabikSnAz2bpaG40otduSWG6ZVNkisit/2ivu4u29BaYHIiXD6/7MFKEHDv088huUYq5r37JgBgxVefYv/2f3Bw5zYpz7hx45CQqIzNRkoOSGV9mjbQqiVdLr5ckqA1rpmEc2rWk9+U0XYrc5T+1PEOAbd2UOo/8yVnOip9ovJX8YxuJ5U/0elAmccHEcCZ9VJR6NIGRa5ZJw0X9LoKF1A2EQMfGo2ZLwTc7895ZzJ2bN+Gdueci7/P744br+6DC5qwDkD6bTILksfIYyW/EGtEXfiSM205ZCxbIQrlTYNiiKha165OCuolJyBf9R39fj+mvS1LlK8acJdG7dkvinAIAi68sAcGj3lecn6zefNmTJ48Gc8+K4foqFq1RuWv+lhE9gAB/O9qNs6erNbIfm7FTJccprRrfeR6kRCfvFAVZmujVc/MqDWqGaputxszZ8quqzv3vBR3jnoa9Zs0w6F/d6BmaiqantERHTp21JRZ4vYy36F2Ujxyyt2SDVtaw0a4oGEjdDmzsdLWCYFxvvzLT3Bkz7+oqKjAZ599htGjR2vKlOdokPDXVZnS7wMiqWQFzSXluitdeH/cY3IYkwsvRucLL9IwCro2qgVRtE4wCYKAOXPm4LzzzsPRo0dRVFSE++6+E+M/W4iU5BRueaFENvn666+l/y+5vp+pMeKn5qceEhMTMfqJJ3HGwSy0Cob+oNOnpNbEM+99jDF33AhRFLFs6VL8+++/QGpDbnudgnnHJwCwYu6nmntejwcDBwzAypUrITTpEDgzcs5u9BrtEAL7t966L0J/zRJFESdKXIq5S39PXhDqSK0uZlQzwwGPcDUroVKPwRUrZC2+7pdfaTq/GQEJoD2P8d5BSmPYiiijspItts4qq0SxW1Y71Kg1Bi/VL60+5LDenx6sZlQD6TLIgW/uu5MlwgwIuBOf8dzTyC0qYtRoDK3NmfEgo9vZ3sARyfqli6T/+/YboBmcVqaTQwCapCZpjKL1oCV/tfdZQ1pvojkEZnJF+eT1Bjz0OK68sZ/0nCbMunTpgoceeghqkDLIIcK0KoeqT9XflG4XC4lOB7o2rIWGKYmaeln5lK70ldCTnGnmh94iR2UnKl7kEJSaYM7G4coBd+KinhcH6xHx16qf8PV7k/HikNsx+oH7kJubayhRCYk4C2bSN7szLpWVgmerpi7Sus0ZOfDJ92S1RvPlsF5ZnT81IQ7NayVr0q79/hts3xpgmCUlJeGqgXdpyiIHRAHADYOH4Z7H5Nh3L730UuDwQ+ql22D+FSICrXq78poQz/EOQUpJExkkvVnizKtRa1TWZ0WthRxM1YdkMdjGI0Hbp3AQH9xf+HEEzX01mmjgS85kjQQaM2bMwIkTAQ9p9Rs0wIQPv8RZ51+I+k2a4cKrrkX3S3uhdt162oOlKOLnwznYnVeqaW2NoMqu4UFRCLTrmruGSLdmzpzJXZdCVYvLysrCnJkzMPmx4Xh++L1YsGABnnjiCXTs2BHNmzdH5yb1MLzXBbirS1vs3vIngAAjcNATzzCZbXWTEtAurYZufbxmpqWl4ZtvvkFC0B56x7ZtmP3qc5o1U122aUZRMGNpaSkWL14s3b70+n7s5IKyPrJ3GilX8NSVAaDDeefjwj6y7dD8+fMNv58ZjQ6CzGNHsG3jumDdAl6du0iKkerxeDBy5EiIwVA9PIadUgAgcNugpwlBylGPeaVDEG1Z8v/a9SYUREWtUdU/ujD56dTJfvrpJ+n/br16m85vdqgkq+z1zZgGVTlxlhlUL9MD+SjqjYoMAK0uv/KQw5oPPsWHVufkT06HAORlnsSiz2ZpnuWcTMe0Sf/TzcuDup3kgJ6qE/kcUA7ScxvWQv8OWs8ygiCgrLgIW9auku716TdAk87KVKSJkJoJcWhVK9kgvd4D5r+G+fTUGgHt5iEIAia+PQ2tzzpbcb9e/Qb47rvvkJiYqCmDFEHGltmeMeNIhgcBQNu0Gjijbg1NfjPOX2iYtQsUdS7o3LUSlGq6ZlW0nE4nFnz3HTp16qR5tmH5j2jQoAHOO+88bN261WQDzYFs7Hp9cKy4AquP5DKf8cCXnLHXp3DKDklyJih/zaQFAlKzb6bLUrOnnn6a6amKEDCkRXc8/Di6dw+oKbndbtx///3w+Rie42Ku1hisV6pf+VzaP4ISjMOF5Vh2MFvj3MEsJJszsmao6rMiMSd7ndZDMbD+eD7+zioKOTg7gSnJmclPppSc6aeTJWfy+lFYWIiXX35Zuh791BiFAyVA7lP1PAjlDKjVLAlcX3bjrUiuEWA27t27F9u3bzcsS696Vh9s3LgRHTt2xLNPP4lNK5di7U/Lcccdd+Cdd97Bnj17cOLECXg8HuRnZSjyDXrqWXQ4rxvX86NufFaD/unevTsmTZ4qXa/6dh7WLlJ6I1bXazrOWfD3+++/R0UwPueZHTtqgvnK6YOSiGBGOVYbf+aombHqmSaKwGU33CJdB4gz/js4TMckFLHwo/el6159rkbHC3rgpc++kcbSnj17MHn0CBzduxuZJ08y10ZAy4jlE4jaYNLyEy1x5lMQZxymA6dGK4iKQxAKvM9jdp2lu/fgwYM4ePAgACAlJQXnXNDDMD/RbGOeyxiNUNt3nxLEWUZGBvc5+czqjUpSa1RLgKRkQSKNMeToslhdxOsUQQA+n/wq3EGJ3xnnnodRr78rPZ83ayYWLVqkl10X6gGdFOdA/w5N0KiGlniQ2mKiXAHApp+XwesJ6NOef/75aNX+DE06q5Izgr5tGuCCJnUM2kBJePQIDpYEU7d+feKMlE8/r5Gaih8WL8aNN92Exi1bo1WHs/HFt4vQrl07dhnBXz37ETXOSKuBc+rXDCkKvAIq7qFhck59umqNKuYF61mgDXL+jvVTcX7j2miamqTNZID6DRrgt99+w6gXXsWN943AhX2uVTzftm0b+vbti127Ap4zT5a48NfJAqpN1iEabOzZ5W4UVnosb1RW2mJVrdHPWK/UBIYVqJlOinnH6JYta3+RnC+kpaVh3NixzHLVqlUOZxzmzJkj2Zr98ccf0vqn5MpafoWwIBNlQQI3eH1ug1ro26aBTJwFO+Nk0G6qTEV8moVXZz+SYGFpkPY8Bie7xO3VpA8Fkgodxw7GK4r4+XA2csr1Q7cA5iVnBDRD9f3335ecybRt2xbDHhqpSU/6tNzjQ3GlTDxr2y4y/uODtCS5Rg2Fm/off/xRk1ZUzUddrQPVdX5+PgYMGICCggJmej10v+oa9Ls/0B+sA6lTsLhhMDD8wQdx+U39pesPXnwW+7f/I12TevMyT+KXb7/CsvlzNZ6PeaCDhfcbGHCywFp3tY4cAmkMD6jSfh8k7lSP/SJwfq8rkZSSAiBAeB/4dye3SLMqyN988DZWfSvbBd43fAQAoEHT5rh1+KPS/U0/L8eT/a5Cz7PPwFlnnYVjx45pX0PFGOUpTqnXczU0xJlCrVFblu6zENfsaKz1irNJBIgzGuvWrZP+v/zyy5kMezVYask8pMQrLcjMeO+tcuLs5MmT3OdkkuoNOE28K51fVl4Aii8tq0Ppd9yOPzZiA+WW9Z6nJqBXv4E4P2g4L4qBYMgbN27ULUONjFKXxjOXbNgf5kgURfy8QHbHe/fdd3NVn8wUaUXsDygnky630eS9QP36/SKrEsrPnYKAc89ohx8XL8b0lRvx1g+/oOsFF+i2lxzoZMkZf7VpWycFHeqlhjyZJBG5inuoSGNx1UnWk7hKBwzqICNJaNj1OQQBrWunKPq8R9M0rlSXwO3148+8Slw7eBiGjn8RY9+fjREvvq7wjpmbm4s+ffogIyMDCzduwYpVa1BZUa5omxXIjBt+Op5rYybxakHVySr3kCXpl7+LFcmZPJp001AHGa/Hg6/eeQOvPzxEen733XcjNZWtskzWTvqges455+Cpp56S0rz66qvw+XxRsWcwC42KTvC6RoITNRPiJGJK8loYlCDFc6TlvO+v8dYYhuSMgGujEmaHkvwejnGNy+tHiduH7ao4oWoouf76b0reh/RxSUkJ3nnnHen5xIkTkZSkPRiRPX7jiQL8ciSgCp1R6tI4TFE4eTHZP3Rzu/eWvf8tWbJEk1Z7tmBXou6DKVOmSBpC9erVw1NPPYVLLrkETqcTF154IT755BPs3r0bfx9Ox9PvfIRBT47HqDfewxNTP5DKYu255Oijy6hktE8URRwpLKcY1AIefOlNNG8XYNi6KsrxwuABWL9kEQ7s2Ibpz4/B8F4XYMQV3TDjuafx3rNP4vEbeuHYfnb4DBrbtm3Dpk2bAAAJCQl44IEHAnUwnOyQvZOsTZYlZ+RXUD8XkZicgu5Xyl6O1yz5nlumGanGrr82Yf77U6TrntfciCuvlhmPN943DB3PPluT78CBA+jfv79kT0ignkPq7+1UnVN5w1vNGPRSTAytajC7DYDxuUcP0Vjrzao1mj0n0WXQxFmvXr1M5SemHqz6WI62apyKkjMj4ozo/KsHjrG3RuWvHujcfp0ypTq9Xnz48nPS9ZU334pOPS6GIAh44s33pAOnx+PBVVddhaefflphg6GH308UaIkzRvt4bdfD9wu/xf5tfwMILJCDBg1iDii1tIgHy8QZsyblfWaJep6aDPSxzaTnlhH8lW3OdJMCMElIc+CQ8gfLC4cVGgTLTTqgLxEiQd0JjFrQrKY5m8OTpS4Uu72yrZIg4Jo7B+P9FRuwadMmiQjIzMxEmzZtMOraS/HC4AEYfOHZWDHvM2QZqD2zIHvO4y9vXouqYbxhoH5mmThjlENaF4rNGc9uFgisu4u/+RoT7xuI72bKkv/k5GQ8/fTTumNZfTAl16NHj5ZCL2zbtg2zZ89W2ZzFljzTqDUGf8lck9Xilep90vrHaC5vHfCq1Ro1NmfWwR9v4fUnyW1mnBqlMVzHgyCHRNLHX3zxhUJqpsc4VO9J/+aW4PcTBThZqpTohaJORZfc9bLekgOcP//8E1lZWYq0oupQYYbR6HK5FM5Opk+fjilTpmDDhg3wer34448/MHToUJx11lmoVbsOel57I/qPGIUr+g1EYpJsLsDal6V9Q6cdrO44WerC31lF2J0XcOTlh4iklBQ88dYMpNZOAwC4XS688/QjGHfbdfhp/pcaVcuivFw8cVNvvPXkSORmnNCpHZg1Szb9GDBgAM5s2Uw3bTyRRJDpF2y80bwh80BPiEj64JLrb5burV3yPZfRwjsbCAicA2e9Isc/7dzzUjz25nsKQUFicgq+XLwMDz/6KLr17iPFXAOALVu2YPLkycH2iUgvroBbpc2lbgN9JjWWnCn3NVpTTJ0tGgw0FuM3kuALncyttHT3qiVnZo5xiZJaoxYsb+bxDgFt66QgLejJ3YzqbLUnzsimqf7E5FylWbRE7iUXZAzrEWdLv5iNo/t2AwCSU2pgxPgXpWe16zfA87PmSQuqy+XC1KlT0blzZ0ybNk23TqPByxec8T9wRkYGnhgli9fvGTIUjRs35uYxM2isHjQEFddHvh9aPaw4ZwTyOiRXxJKg8KqWCFXJfsTcNzKnDqFNROrhEeRW+zzFIDCpkcqZGQLcDDHKs2np0aMHFi5cKJVDOwfyetz4+KXx6NWlo8Kg3AzIZpRoIDoz6z2LgHc410rOuFUzymbVxz8EskDeuCAnG0f27ELmsSNY/+NCFGTLB82d2/5Bp06d8OwjDypcQDdvdwa+XvQDWrdurVu+OkQJuW7UqBGeeUYOFvzEE09g819/UfksvEQEoMekI/3TImgnWysxsJGScXqosBzrj+cx+5z1jTYcz8PhwnJpLJF5o0kZrspzhMFiBujB0HMd9Wq81/RKBHEgER309YknnkBcXBxzT1Nrx2QEiTKfnyM5M2gy1WLpv5p10tDtop6B/KKIpUuXKlJqJGc6ldB9sGDBAkmdsU2bNrjtttv0W0LlUy9dLDUoRwhMQcIkIxJT8g6tO5yNSV8vRss2bZn54uLj0bz9mYp7vy37AeNuux5/rf5Jkz43Jxuff/65dD18+HAIgoALGtdGj6Z1NOkTVIdd04S2QTLyuOulV6B27doAgIzjx3Bgx1bdPDyVNQEi3hnzCI4Fz4GJyckYNekdJCQmacbuEW8Cbh8zERNmfo7Z67fiqedflJ49++yzGDlyJP46lo0/MwoV+6RD0Hp9Ve/HPOaM1nme+dlgwg9dlUDBOBYE1EuOR2OGyY95yVkA6enpUmD6pKQkdOvWTT8TBd4YqckgzgRBQNdGtVE/GPvwtJCcyYuIcoDpudI3cnOrBt1HeqqSAHB4907MfWuSdP3w02PRpmULqj1Aw+Yt8MLb0yQOMhAwtB81ahRmzJjBrN8oSF44nmnee+89FAY3hgZNm2PiK6/qlsnjBKgRjuRMl9togYAy4xCE7leeSgigJcbPCHq+JE5ZzJ5NzLgIZkG9ILKLsdbnSXHsqc22NdOOQ1MOJUy0w8jbXd++fTF79mzFnKHh8Xgwbtw4KRirGZDDZKIBgcpTa2R9dL60IkxJhkREiJp7RqC/Q0VFOR599FHc2uNcPHVLXzxy9cV4Z8yjGH1Tb2xY+j02rvgRg26+XmH/4nA4cPfoZ/D2j2vQu3dvkw1W/AAAxowZg7ZtA4e78vJy3HfPIFSUkuDj5oqNFOR+JMSkksPepk4Kbj2zseRFi4yFY8UVyCl3g/U9WSMwu9yNf7KKZHVPaf9Rpov0mSfc7pS9g4YvOaPfjrdfeSlpZXp6OjZs2AAgMP5uv/32QP5gdnpNjlMtRsVBuzv1/FXMT1pNjNdy1cO+110v/a9mClmdj6IoYtIk+czwwAMPKMKw8KA+g7AYxkbMQB6DgTSDTtO0TTv89OuGQFzNOmmoWScNV94yEI/87y3M3rAN7y5Zize/XYEWZ3SQ8hTm5uD1h4dKBFr7tBrwZ6fjtmv7SrHN2rVrJ6mLtaqdgmY1tWt9gkNNnOm/A+sdjfbg+IRE3NTvFun6t2X6DD+1ChqNrRvWYuNy2R6x/4OPoV7jpgDY36O4UlZfHPbo44rD/8yZM3Frr574/aelKCksgLsyYPf69/pf8dIjwzBl9IP45duvUFFWhjgHUFFayvTqqwbPW6Ma6nKSqD0zEjZnEVv2aaY+gF4t6+Pi5nU1ycwytsk4Wb9+vXSvZ8+eSEhIMKW5JKs1atOqPTMq6w38miGCY06c9eo3EBM++lK6Nis5U0NSa9RwFJS/RqBz+3XKzD6Rjkkj75OcarQ9uzOGPTIK5zWqjXPq1wzWF8h75U23Ij09Hd999x3OO+88qYwnn3ySaQiqt/GZ8brG+75erxefffaZdD302ZdQJ8g5YuXrWD+gXhZvRtxq8aRhjpYzT505GDrZBKzg4yxim55U6o2vQUoC+ndoIk0ys2qNvMnE9wBKOKC8Otj3bz2zMTrU1YZR0OPssOaHCK33JzPcWFYKNUfIjFe5oUOH4sSJE9i4cSM++W07Rk+Zji6X9JKe79mzB7NnzzYsBwgEuCZOA4yMdtXqHzRYn5y3WYV9WIZ23Jpew6guH3z33Zg+fTq8HqXXwdKiQrz91MOYOvpBlBTLNkQXXNEHr325EAMeegwOh0NXa0DdJlF9AwGVyGXLlkkc6sOHDmH2/55TvF+soHbeINmw0ISEIOirbzKaS6/V6oCy0lhS5WuSmsiUFNAIhXCLFLFrRsLrN0hEt5+3bBBpZcOUBMyfL3sFvOqqq9CwoTL2FL2O6BnPc23OqPskO4tbrb5z9XVynNLly5ejsLBQUyaLkaIsM1Dqjh07sGfPHgBAzZo18cgjjzDTq/MF2qpcu1jceKN9g02ckfIFbDiej39VcUob1q+HJZ99jL8OHMOnm3Zh3NTpuHLAnUitXQcA0K7TuXjrh1UYPWU6atZJk/JNHf0QFn08DQd3bMPwm6/G/v37g20T8O677xoSpSS0g6TWyE2tfUd17DoWBlJSy/VLF6GshG1LmaTD1BNFEV+9N1m67ta7r8LxhxHTOi4+HitXrsSAAbK37JNHD2PK48Mx5KJzcG+3Dnjgsq54bugdWLPkB/y+4kfMeO5pPNynB4ZdfRnu6XYmHr3mEuz6axPf5syC5Ez9RI+pawWRWJoKXG5laBOqVKvCAaan0+Av097MRPEsj9WdGtTEVa3q85n0wWfV0iFIYnIK6jZsJF3rEWek6XpqjSQQrmEQagPQC6Ks1hjolvLSEiz57GOMu+065GUG9K6TUlLwxNQPUD+1BuKdDilItszpEVG3bl30798fGzZswLnnBoI9u1wuTJw4UarrREkFClwezuYYPPCHSJz99NNPkifMOvUboNsVfeV3ZWRsW6cG+rSuj4Yc75AE1iVncnqzHq7U+ZT164uFWSo4vMkJaFUA5fSBXyPOMZlERrrqAJurQt5Fdghivn/1DpiCICAlzslYbJUcfiDwTdTj0MzCwGpmvIolZDqIb2INdDq/O2rXq4/LbrwVL8yeh9sefkJ6TpxMGGH10VxsySwCIHO39GAmWGaDFNmtdzTJCzUxYQVk3B3YsRXLly01SB1A69at8f2vv+PZmZ+jU/eLpPtqxlSgfP12qomuDh06KLQE1ixagC+mvBp27Bu/KGJbdpFiw+amV0mwyEHaKI4TAetAQ8rILqvEj/uzkF0mq+FqbdwC/7UOSgp4U9qIIGYjQpJanef0+uoTgb8zC7Etq8iwXN6bNKyRiP4dmiAl3ok5c+ZI9++44w5NfrpP9Nb6StViT6/T9BOyrrL6WV10m/Zn4PzzzwcQCA1BM4XMxoEiZX777bfSvRtuuAF16tTRyUHaKUO9dLEYTYLqV/OMoyotCAKyyyuRVcb2xClwCnc4HLjsxlsxZdFK1G8SkBp53JX4cupr6N/ncomgTU5OxoIFC3DDDTdoC1FBzzU5S8Jb5vZiY3o+vH6/ads0ALjiSpkJUJiTjXeefkRyPEVD7+C8Ze0v2L99a6C9iUl48MU3JBtFQF/7h16DSHy5jz76CDVr1lSk9Xo8KMzJ1pRRXJCPYwf2AQjEVXv5/jvxxy/Ldd+TMI5Ic/j7nPJZSnwcSgoL8M0Hb2Pxl3OwLys/rLU7VCbSmqN5+OVIDrOVvG/NOguxPidJprY3Myq/S8NauOVMtmlQotOB2knxzGdSW4K/1VKtMTEpGWkN5ZcjwSfVIAcOorpAf+TiSg8OBQNx6gahDkF0Rqs1FhfkYcyAazFn0kQU5+cBAOLiEzD9i68xuHcP1A8e2tRdTNebkpKi8Eb1+eefY+fOgBvXP04WYs3RXMWGQr+LKecQnEf05ter30A44+Kk9HrZaiXGW46PZAZ0eiscdL16ApIz9jMWIcXSTaYJqYuapeHchrU0z0gSQ+LMhOSLeFBKY0zeaNicAcC17RqiU/2a7IcqLrP64GFOcqZNE6/iKJmNx7TueB5+phZjALh1xKOoUzegunDs2DFFoEgzMJKccb01Bn+7N6mD3q3qB+7xOJBhUm6hOP8gIG+54qtPpXtX3nAzPvhlE6YsWolZ6/7BjfeNQMNmATXs627qh7///htnnaONP8c6wCo8hanUxlnNveuuu3DPPfdI19/P+gDvvzWFkdI8MksrcbCgHNsMPAdK7dQQSwGYXbtYBxpyqzAomSXu9wPPlP2htnHjze1QiDOr42RffinKPbKKlVF2uk1+UcSRogocNBH82sy68ddff0mhM1JSUhR2WKxA1Xr9o5ZeKtZpxmmO2BeqWqy4EgEMGzZMup40aZKknqceS7rEGYCysjJ88MEH0r3+/fvrpGY3RX2uYcc5U+4bymd8tUY9tSpemerPUL9JM7z0+Xdo0/EcTdrk5GT8+uuvGDhwILsiTdnsesk70HT4jpwSZJYFCEvWvNYbgjvyyvDC67Lk6+9fV2HSw0PgcbtVbWHn/3bGO9L/1919H+o2Uh7SmcxZJmEgYPjw4Th27BiuupVtg3hZrytw96inkFxDqxXj9bjx5qMPYP77U5jq/qSvSHN4xBU9ZUoK8jH+gXsw/LKu+Pq9yXj/hXG49cYb8M9JazFBFar5YTCR3D72fLaqTcZK7xAE5OTkSA774uPj0aNHD90y6PL1mPBmVnHZP0F1JM5SklGzThoSgzYmhYWFyM3V//gsdR9649Tz1miWs6i3Wf7wyUxkHj0s3UtITMKTb8/AJb16o1aifMBW97G61t69e+PaawMuVv1+P0aPHq1wo6ogzqh3kTZz7kBkPzxw4IBCX/7K/ncqy9Qv0pS+bXjeGmUYOQcht9SLpYNqAy/wc6IzECuO5T2Hri8pzon2afIiqN64jCQsDgsTrn4Kw1W0Kh+zL0Kj0TWHJSbHXBQ19jSmFgZGxWq1WJ7kzMjeJTEpGf3vkg/5tNczMzBS0eCqNUqHGAE1E5zBe/plhe09LwzqThAEFORkK+wo7hk5Co2at0Sbjp2Q1rARho5/ER/8sglfbtmPD7+ch7S0NK4uPg3FuFY1U6/Z06ZNQzsqnuLU119jqnWbhZmDhtwm7deQiSXjuQboEWeBe4ToL/fQajfKf+RDo3LVZa0RZoO60zA7WkRRhMvrw86cEmxIz1fc54Hei4zqEnT+1wMtjbr99ttRq1YtTRp6TdT1nqyJfQrszi1BRqlL0eaUOCe6N6mDHk3TuG0neOCBBySnOHl5eZg6NRCoWS0V1XcIImD27NnIywswdVu3bo1bb72VnVinLWrpjUMALm6Whi4NtX1lRdOCdJnRAVNSvwpqYDRJTWRy+xu3aIU3vlmO+8a+gFppAUZakyZN8M0330jB6a1A71Xoc5Ik/QObAtU7w2SXu9Hk4r4YOOxh6d6O3zfgw4ljIYoiWtRMQteGtZjveWDHVin+W3xCIm4bIauoXtQsDVe3aaBD1OnPozp16mDc1Ol4Z8laPD/rK4x8dQoGPjwa7367BOvWrsHc96bgy3VbMHbabLw68xO8+OkCNG7VRsq/YPpbGNmnBxZ/MlNlq6wcn7yYm+TJiq8+xSPXXIJVy5fCQ6nE/7t5E157lh3z0qhM1juHCrocMxpKynvsPY3YvAKBgOwpwVh4PJhRWeTml7SjDJNWjeTM4XCgaRs5APDu3bt100vqIjoDTEOcWfRwxuqj0qICrJj7qXR9/T33Y9pPG9Cjz3WMTtXWvy+vFOuO5Un3Xn/9denDrVq1CjfccAN8QQKN3l/M6MQrnjEeVlZW4vbbb5cm2EUX9ZRimAi8jKr6eMxcq4NGz1uj2W+k4SI6BOmeeqIq44Xol8md4CouHqudigMJh9tI0KFuKnq1rMeUnEnxasgvpxwWQiHc1AuoxoGBiUawksSrpFVharNh4L1DpP+XLFmCAwcOmM6bEIbkjIYUe4eTJlzJmUw0Wy9IgIjP33xZMijv1q0bzu56vjadICC5Rg1qHSD3+eUrJWfsXzVq1aqFdZv+QN2gloSrogLPP/+84bvogcxXM17cFGNb5ahD/a56BzkWcUbukDFeQalYkvSimjqT6gmAta4aSc6K8nLxztOP4P5LzsVrDw7Grj9/18RJYsEvivj5cA52Be2K6PhShpIzKww4E1ILgrKyMoWXRhL7Sp1fKTljz2O/6i38oojdeaX4/USBYh4JQsDejbUeaJirooiEhAS8/PLL0r2pU6ciOzubcqUvpVaWFfz1uN2YMkWWFI8ZMwZxcSypnaot1P9qmzNBENA4NQnt0rSSFHZZAnNNItpBusSZag9yCgKuadsAPZvVlfKq+9EZF4eb738IszZswz8HjyA9Pd2UKqMZkHdgqaw6KNpMYUtqUOYDz7yAOx6V4zKuWbQA65csQod6qWibVoPZN8up8+Al192M+pRpTr2keKQmsD2NClR79ZauFu3PRNdLr0CfgXfjrsfGolO3HtKz2nXrokef63DVjbeg80WX4oXZ89DyjLOk57knT+CzN1/GxMEDMe/dN3F4907N2mwkOVv59Rf4+OVnUVZcxEyz6ItPsXXrVt0yNGXqXkQG3O/LeMgO4M5WaQTCYITz2qUq25QQxER5EQVxNd+ineyW1UwsMBq0PYC+YwiThTGyf/PZHLjKywAALc7ogKHPvix55FEnZ0nOduaWILdCFpV36dIF48ePl65XrlyJaeNHo9JVoXgXes0zY3/EejJz5kz880+Aw5OQkIB33nuXaqsxESGJXTmpIiU5o2cur0R1fQ4Ikst/NeGmIM44pVolgIzapHePIM4hoF5yAvOZRq2RSaSHtizoSXYVRLKoZX6Yc6WvvWfGoYy6LTy0atce1113XSC9KCpUhVgwY6tCwHelH4AgyIs7i0F0pKgc+RVuzX01jHpFbSNlFh53JSY/9QjW/bhQuvfKK68YMB+UbTLaKOh1yS+KKPf4DNu5LbsYm3JdeOIt2f7sq6++Cll6Rr6BGXqaxQCSJAZmJWeilhRXOYBUSM6ILZxauiLP6WD9wX+yT6Rjy9pf4Cov5zLCMo4exjO334D1SxahKC8XW379BS8MHoALz+uK7du362dEQO2y1OPD0aKKwDtx4h2pYcZgnUDQ+Z+Fb7/9FiUlAWKxQ4cOuOSSS5hlORXEGbtU9VjQt2c2vw+QIu6++26cc05AXa+srAzjJr6kSaPH0Fr5w3c4fvw4AKBBgwYYOnSobv3MAqC1OePanque1UtOUBAFNOR5oFOWqkynQ7ZpVocaUrfJ6XSiccNGpj1SAkDfNg1wVev6VP3KQtXzN/A/YbQIltQaCTx+Ebc98iR633q7dG/OpInIOHkSbrdbs3Ye2rUd65fI6+u1g4Yo3l0OFA7FrxmwkrJ6j6Rr1LwlXv3qe1x7932K57v++h3fzngHYwdci7WLFyqe6TkEiRME/LVuDWa9Ksdsq1mrNl5//XVsPJqNC67oI93/3//+Z+Z1AgiBAW9cpPGZH9CXkrHu6RJnFs5TZp9J9ZJzPYzXyipQawyIDptTxNnq1asN89EfmeYE6PgDCckhCBBQPVzw+afS9S0PPKxYbDRqMep26lT8yiuv4KmnZG7Nuh8X4pnbb8ShQwele2ybM/OoqKjA66+/Ll2/+uqr6E65btUrS1Ev2AsvDYu0mcrmLPgrisq+YhRKHjsVB26gRoJTdyE0Lzkz0279RCyd/ZDs+kH1P8+GgJOf/4y92an/Ux9FzUnOtImsqGiZJUQee+wx6f+vvvqKKzUw4+WNgCuFkR4J2lsU/s4swtpj7LhYNIyIXbN9QTsoAYAF099WbMb3DRmCa6+9NqIqFnTbd+WWYMWhbEPHHMQm+OxuPXBO90DsKK/Xi7feesuwXWr8nVkoxbYyJzljSL2kA53yvt6r8yRnpHxa8ir9rxKuqOtL378Hbz/1MB65uidee2gwHrnmYmz9/TdmW8qKizD5seHIPnFc05b9+/aia9euuOOOO5Cens58B3dQUsZS7zXqRjMG61JZ1P9GhD6t0nj//fdrxim5osecHnGmF14n8D9VJm8v02mv0+nEa6+9Jl1/OvMDvD3xWbjKy3XPGA5BgN/vx2fT3pXu0cHZjUC3hMWQNJPvpvaNcFmLuroD2yh2oszAZTM/AVmqynpmhagHAl4oa9NmIpoUgZayvq1DCE0d3OMXIQgCHnjuf6jbqAkAoDg/D2e1bY3k5GTcO6AfDu4MMD6yT6Rj8uMjJE2nLj0uxhnnnqeU1KkYL3pzx6xWhINxHqM7pkbNWhj+wiTMWr8VZ5x7niKv3+/HjBfGIo8KHK7H0Nq4/Ae8OHyQ9G5tzu6E9dt3Y9y4cYiPj8ddj8vqjN999x3++OMPU+2PSmBr0/NZC9aQLCkulqSBDocDF198sal28Ee3iT2XOuoZ7rumWhRBEMnZBVdcJd377rvvJP1sPdAfh9gJ9m5VX3voEbXpeVD3z/aN63Ds6BEAQGrtOrj4upsUz7XevtSHX3bFDocDb775JkaMGCHdO7ZvN/rfcB3KSwOcRNaktqJf++GHHyIzMxMA0LRpU4waNUqZX0kDSKA3P3nw6NcbXpwzETuyi7FoX6aCIGCVSNv9EFzVugHOSKuhq9ZIc4m4RIupw6s+rErOzKhYkiRWaTz+e6puMDZnEaLWIYiZhYZxz0CTkAnegTuztBJxZ3SVgqdnZWXh559/NlWW0QGTt0TI6jKBsSKAv6YoNg/Gc6O4JmaYSpe3qIuLKLsZV3m5wglI9yuvxgc68RRpqDd8oy9N9yPZ6Cs4xJlajebWEbK76dmzZ0sOFsyAOKM4UFAmXRvnkf9Xa6Kp31Xv3VmqQLwYQz6/cl6xHILs/GMjRt1yNTYs/R7+oOfRwpxsPDVoAJZ+Pkuxfqz+7ms83Lcnju4NGqwnJKJXv4FofdbZivYsWLAAPXr0YDrW4ofx4/ejJSclJg9O+/btk+IKOZ1ODB48WJNGYBxw9eax+v3o/aSCkmpy34R9fAAA3HTTTejZs6d0vfTzWXjtwXtRkJunSQsEDlN/rFyGw/v3Agi4z3/44YdhFvz9hpdPfhjvdEhxQOk13e0LeDaU44Cyv780XoP/sIgtMjZYz6wQ9dwGBMFUa6RtzhjZzDYhuUYNDHlmouKe3+/Hmp9XYvydN2L9kkV4+8mRyE4PSPsTkpIwfvK7mjrUDG0r2lyspCwpIKvEtAYNMWn+Erz8+Xe487ExEqHpKi/D97P4GiZbfl2FyU89Iq1DdRs2xvgPPkWtYBgUAGjTsRO6X3l1sO0iBg8ejPJyY6dACoSr78+AVckWK/2fmzZKzlS6du0qhX/RK0N+FtoZj8AKI6sKXOkHiLPWZ52DczoH3Mz7fD7Ji6Ee6M1Eikfm0Ma7skqzqzt05Xw5BtsVt9yGhMQkxfNkVYBCrc66fl0OhwMzZ87Ehx9+iPiEgGOIo0eO4LlBt2LuW5Pw3SczJc9BpFgeJ4oeKKWlpQqp2fjx45GUpGy73uGfVkVTL87M97C4/qpd6e8nBy1qd2UTZ4Ffp2qxEgT5u/McgoSqO2wGDosbE68+2ZV+MC1TisgZWNzFRF1O8Fd1gNW40jfRQXTZDVMSUCshjsvhVYO8E+/AXVjpQbFXxB133SXdmzhxosJoWVmmjHCkVWrJhyDwv4GR2oVxW0TFLwv1UxIV5fzxy3KUB2P1NG7ZGmOnfYKE4LrCrU614Rt9MVbbeQd/tROYrpdegfZnBgLXlpaW4vHHH4fbbawKCihVB43qJWCpNUrEklpSo9NRfMmZFuoxLBODgfIryssxfcKTGs9wQGD/++S1F/DBc09h+dw5+GH2DMx4/mmUFhVKaYY8MxGPvfEepn7/C6Z+/zP6XH2N9OzkyZO45557NKEmZMcJDBhJzkJUT+blev/996X/b7zxRonhwgJdvWlJBHVJj0Er+4CSQy9g7ty5aEd5I9z11+8YevPVKCoqUszVitJSzH79RUx94kHp3siRIw3d5+s1RsNEsLiZ0bc8Pj+WHMjCppMF0pjQU3WT5rq09+oTZ2znNuHtrJrvEfxlqTXSI0AZ58x8Gy657mY8MOEV1GvcBImJsrMun9eLd55+BPu2bZHuPfzqVLRu107TTtlmPLiPh02fagvQK1IQBJxzYU/c9vATeOilN6T7y7/8BGu//4aZpygvF9PGj5YIs+btz8RrXy9GvcZNNfXc/+wrSEkNxMDdt2+fwvu4HkLxK2BYJvW/1fBSrO+xYZ0cfJpWaTSCiW3VdDnVSnKWVrceGjVvJV2f2VHmApJgjWYgubwXWGqNfLE9DwXZWdi8ZqV03ff2ezRpklUxsfQWEz0IgoARI0bg0UlvS/eO7v0XCz96H9Nefh4TBw9ASWGBbBht4sDv9/sxdOhQZGVlAQCaNWumcAcspxcUvwT0gkoCMBLjcbb6nrXVh05OBw416ivyXOnFks+lUhBnnOkSqk2VlJ9xzywhrZePVx+vr/gLhvF7+kURJW6lqqBVV/rt69ZAnzYNLG1M5J1YsenUuPe+oZJ68V9//YUvvviCXabq0HFuw1rMUAqB+s3IzgLQM7BngTUM2G68ZajjZKmhZpqIoogfP/1Qen7VgLvgcMiksZVNxOhbs4kzDqGqlsIKAh58bLR0/emnn+KKK65AZSU7xhKNUo9yXBpJzooqPVh6MEvTFmLTF5ZaI+cb+SjimnZZDyFAkI6653aJA59cIxVPv/sxZq7+E2d0kR23rPzmK8x6ZQI+n/yKwkX2k2/NwLV3D5GuW591Dr754UcsXbpUmhNr167F3LlzFW1SO8xQvIvukwB0CSJG/yuIM518hw4dwscffyxdjxw5kplOrSJG31NDY3PGYOACBpx23ScBtGnTBh8tXa1wIHHs0EFMnz5duq4oK8OLQ2/H9598KPVP3bp1MW7cOIPS9dui7kfL8U4F2R6LqNxmlFZKa62eE13iiZSMZ2ZoDcneW5vfqlqjGvrfmv62gV8RWgl1KLj+3gfw0dotyC8pw+7du9GhY0dNmrtHjsJlN94qzQsWQ8IhnU30mAmMe4ybCns26R/jNzy/11U458KLg+WKmPH80zh55JCqPhEfvjhOCg9Vt2FjvDhnARo0ba6ohvw2bN4Cw8bKjpzeeustuFwu8CDq/B8OlGuMtbystWzZ0iXS/2rijLeHhsvwl9XrjU9mMSXOmrdqiVYd5IHfLshNBYC9e/eqUqs4kdQlUSFxCAzJmahNzwOde+X8LyT9247dekheDmloiDM1cWiy4ktvuAX3jZuoub936xZ8OfU1qWVksSsrLsK2jeuw669N8AalBps2bsDdd9+Nxo0bKwJeTpo0SSM1U7RV1WbaTqiR6iDLWmytLoR0enpPMLIPI0+VOtjBdpngpnIPqIyHzWsmIZWSjPLys6UjnPq4ZSlTsdqWopLY6qFLw1q4pm0D3TaxuP//ZBXjr4xCZZtM1KU4TISyPTJUVvRwxllnYeDI0dL1W2+9xZxr6gNb+7QaaJvGdpFrRk2RJop4raTrZY0NOvwGOz853LOfq9Vb/vh5OQ7/G9A2SEhMkozbBdVYYpalU6ae6iVrXHOJM8a92wbdK4UUAYDff/8dDz74IDNOD40yt0oaxE0NHAs6v6Dh9YuoDDKb1ONab7NlhVlQx3hTtCt462RpJVYcykFmMAZaQV4ebrjhBmzeKLttnvr22xg9dBAaNG2OF+cswHk9L2W2IblGKt5d+isuub4f8/n111+PsWNluxANccYhJo32KbNOOIKFSf+ycnm9XgwaNEgixnv06IGrr76aWT5rfddXE2NLK9XtNHOYk5z+MHrL4XDg9kefwi3DZffpEydOxDdffw0A+OyNl3Bgx1bpWf2GDfHdd9+hbjBGo3mExkxkHiLB1iIyUmsk+z05Y7ElZw7dNoWt1qh6G4m5wpCciaL8vViqgJZrFoCzzjoLC39cio6Ux8QL+1yLkWOeVaRlMW/IGNJbR02fSRnvYuaVBEHAU+98iObtA/4cvB4PZr4wFh63Gz6fDzs2bcC7Yx7FHz/LAawf/t9bSGvQUC5D9QsA19w+CC1btgQQCC2xaNEibjtE3YswYJbZwhqTqrUs/eB+yQlhcnIyYy0izAe9mWW+bh7Ob1yb+9zYv2sEIUtuAt+szRky8aMlzpRQLrzywhHuWkA+nNvtxsoFskrjdRSnkkaCaubpO1wwxs1DH8T1l16EzxZ8i79W/YSckwHD7l++mYurstORk52Neg0aocIRh3/WrZYOMvUaN0H9xk2xd+sWTZk9e/bEoEGDmPWpJ15KvBP1kxPQsV6qlCYl3om2dVLgFATsLygLDtDAW51TvybqpyRYHoR0eqXuOKt1oJ4zNggVZ1W94Jk1HGWp313IiIOjB6NgvWpwCUWdXwComeBEiduHM+umQg90/9ZKjEONeHlaa+qVqDO5o/IY3gbNfGLGZ7E0NiSVFRO6aqVuH24a+iB++GQGKisqsGvXLuzcuROdO3dmlqloZwiEo7ocAXyCpJKywaLHwVn1UtEgJQGZpXwpkV7JoiiitLAANSmdeHelK8jACeC2ocOQFnTtzOP6SZA2fDlVn9b1dUMPsD4p355JC4fDgR9//BHjx4+X3Ix/9tln6Nq1K0aPHq1bllpF0oiQZ6nxrj2ai+KgZFg7Ptk9ZVVyRkAkDidKXdj5x0Y8+sxjyMg4KT0f9tQzeGjYA8F2FCIpJQVTv1iA1597Bn+sXApXRTkaNm+Jxi1a4Y5RTzMZhHQbHn74YUmdfdWqVcjNzUX9+gHvdzyCP1TJmU8U4eTseaxsc+fOxaZNmwLlOp147733dNcJWTOCJs7YbeR5a/QbEIwEPmqP8QdO+xqQW3eOGoO/167Csf174PV6MWyI1mbu7tHP4MVnx+GMBnU4tbJhjoHHyKe35jIY1YTo0lNrJCCxsbg2ZzFUa1RKReVn1o7P5upu0aIFXvliIbLSj0H0+9GkZWvUSE4G3LIzGIVtu6Acs/TYVUqR+FJnhxB4N6ZDEJOoXbceRk16F8/cfj1EUcSuPzdi/J03wlVWjoyjSinawMH347zLrlDcY8a5jIvHsGHD8MILLwAAZs2ahbsoMwPtS7HYAuZhJJ23OsTU4/TPVSuk/6+77jrUUAX6lqT3DgAq02oz5zgeyHsIAJrV5DsKirnNGSB3Vqs2baV7R44c4eahB7aPWjj0bM7MesYhbXnllVdQmJMNAGjStCl69L2emV5rs6Bqp0j/b9yGHpddjgcmvIIZq/5Ah07yQXPdr79i9+7d2LBuLbas/UXBYc7LzNAQZqmpqRgyZAjmz5+v68qWxSnv1qQOaqiCNHdtVBvNagYkb3T/Jjgduu7geaAnk4IDZiDlIk9ZwbmluEcaCatZDgu3ycE0+olYm5aZ2Gm8xsgqBXLaJqlJuPXMxhqJrSK7zv+selmSM8vtZaZn188D+VRGBwUA8Pj9SEmtiW69ZS7X10HOtVyeXI5aAsyu37heeuPlpXbTHmSp6dcwJRENUhINxxvLi9qhf3dgTP+rMaRnJwy+qBPeeOMN/Prrr5g08j5po01JrYkhjzzOaDfnnSgmGUlbKzFeUmlWI1y1RnIvLi4Ob7zxBu677z7p/ksvvSS5VmeWxanX5fUhp1xJ9LL2g2JKZVc7P9j1sgK3igCKXB54Tejh7tm5A68OH6QgzAaPeR4PPDFGGlN1k+LRomYSEhMT8eCLr+Pbzbvx1T8H8c6Pa/DMB5+iTcdO1Hup2hJsX4sWLSRPYz6fT8HVJkOS5UzB6A1YNrUAe64qiDPVs5KSEkV8uwkTJuDCCy/UrVdS56fqN6smJnKe6YFIgch6QfLllruxcG8GilyybWt8QgLGvPcxWlDnFho9+l6P/g+OQkqS8drDgpk5y37GLotl4kG+n1Ewd5oBroaeMy699FZgJjetQixrOIRO0KjzOYXAut+4RSs0adUGcU4H4glTntN/LJVcI3EZfU5V257TZVrp1vadu+C6QUOl68P/7tQQZk3btMOTE19WZ6X2cblCvyhi6FDZrGD16tU4ePCgJi+BEUFqBfkVbhwpUjohsXo2UZ/VNq+WTZduueUW3Xys8c2qWuA8U8OKf5QqIc7Iwt+8ZSvp3pEjRxSbuuYdROCfzCL8fDhHmhgCWJwWfW4hsy2CgPz8fLz55pvSvUdHjUJcvFINqWujWrihXSN1dk39PD1/FsgcFwQB4ydNgZMTrLJ5+zORWjtN2a6uXfHNN9/g6NGjmDNnDlq0aMGpTVD9GBMTLE+OVqHnXt3oG8kOQbQLL2Hyq8tQeIDkbnbhgaeLbxU8Xr4AweJiJHCugEOFZVh3LA+lbn4QW1NqjazFy0Q+AtkhiHFaIsm49IZ+0r2vv/5asWaQcs6pXxOXNJdVivTaxKuW9cysynIoITFkdezAPwd3bscrw+7G4d27AATUmp955hn07t0b2zfKxsyDnhyPhg0ptRTGBq+GoPrH6DDTNFWrIs2jT3i95HA48NFHH6F9+/YAgMLCQsyaNQvlHp/CHlUuTFkaPVYOF5bjt/R8xXfROJJg2L8prnXayTp8+fwiVh3NxfYcvrfJirIyTB39IDzuAOHYoEEDTJ+7AP0eGKmo8YpW9dG9aRrFqdWfTzxHO7ffLsdrWrBggfQ/S3ImMWcMhrJebSwpt9qJBo2PPvpIivlVv359PPHEE9x6HYKAns3S0Kp2suKeGejNT976mRLvRN82DXBuw1qK+xlBtdSsskrFeG7aph1mLf4JHTp0UKQ/9+LLMPLlNyEIgqVwInpQN9m6Ey42I04izowkZ0StkcmEJL+sw2uYO6uaCUF+GVJRkXquqDbEJjCJKwTWkTa1U5DkdKB1nYCKPEuyTnLFU99fQagwupy+x5K8qctmtptxb8j4l9B/xCjN/fN7XYU7Hx6N6d8uQY3UmvplUYX6IaJ58+ZSvFFAGRJDDVH3whzoLGuP5eHvzCJDb8gskHFKn9UKc3Owb9vfgecOB66/XiuEIalZjAZW3UTjxNIpzUTimKo1EhAmRM1atVG7dm0UFRWhvLwcOTk5ioMGDY9fxOEgBe3xJwRVGhlvKCp+DOEQBHz11VzJe9i5556LJ598CssO5yrSxTscSGTEi9FUr9oIjb4BbdtwQY+L8Nq8xVj17Ty0q5uKnj174viJk/jr0HGc070nzrusNyrKSrHj9w3IOHoIXZrWx0MjhmvEsnqQKHwTw4gsgCx7L6vQjVNDt435KbXcO/UCquGempzE4brSj2Mcgnnu0s0QiiwOjCkJH6ce9XVRJZ8ok/NZ6x+zQdPp77XmaC5S4p3o1KCWXhYJnuA8Oe+y3tKacejQIWzevBndu3cHwLY/YF0TcNcIUVS8n0NgjTV2Ccw5Y9Cfki2I349Zr0zA8rlzuOkB4JzuPdH3jnslI34FLIwbo0/dolYymqQmYvF+2dEGX3LGuEf9n5CQgDFjxuDBBwOe7d566y006zsALdJS0bNZXd186np9ogi/qFxnlW7FtdJO9RzVe3cWw4AlTWPh45fHS4b4NWrUwPr16+Gt1xR780q5fc1y/uR0CPD6xUA+BpEFAAMHDpRUQ1evXo2MjAw0adJEHlO09VGws4w42rpEK7MP5Ht0PlEU8dFHH0nXr776qinvhU1UzACz5329NzLKXjMhDu4gY4CUQQhlnyhqBnRa3Xr4448/8MX8b5CflIaWZ3ZArbR60vP4CDHpaFgP0yIvWCwGlhFx1jQ1CYcKy9EwRaspo2aQRhLqV2GpEjNtzjhlWK1bQ5w5BNRIiMP17RtJ6uus3gt4kVaavlihTZwOAfCp9n/Gf5p8gqBZm5xOJwY9OR7N2p2BZV8ECKl+D4zEJdfdjB5N66BZzWRsz9YymdRaFYA8ZoYNG4alS5cCAObMmYOXXnoJ8fEMW2qddSoc0OWYnV5xggC3KCqI5S2//iLNh0suuQT16tXT5NMj0gPPtPfiHQIqfYCZkWelP2JscxYAfbBu3bo1tm3bBgDYvHkzk5IFlJxMr1/UN7pU/RrBIQS8hxE89NBDiGdIr/S6XU9tDJA3Qh7oQKZxDgHtO3dF+85d0b9DIGaFO+gGlyAltSZ69A1wMPqd0diStEbNxedteiyD4EgTZ4q2Me6R9YbFiJRtzpRfWuEQJLJMPACBw51PlDmKNMFu1WhbeqY+MJrMx0qkTh+qiodVV/pmJEQOQVAcCiq8flR4/aYcghBOZXxCIm7qdwu+/PwzAAHpmUScESm0cdMV6ZnPoN4ktd4a9bI7LPYLIEt8X37hOQVhllwjFeOmz0Hm4f34e/n3yMzMRFJaA1x83U24+s574XQ6mc5izKj0qpkCPMQFPUGSd+apRfGP7wEMHjwYzz//PLKzs5Geno4Ny37Azbfdqc2nlowzCveLIjO0RrzDoWHWaCVn7LdnjUkjVTAAWLNoAX79QXbO9NZ776NDhw74N7dEaoMa8mGXQZwJArwg78c+9TRr1gyXXXYZ1q9fD7/fjylTpmDq1KmUWiOdLbAp6Y397k3qIDXBqWsjyZKY6jHZ1q1bh3379gEIxPy65x6t92MzMCs5043dZYFRIds5B659opaMFQHUrl0bd907GL8e08ZnDdljIWcd5/VBIJBzHNrUkR0fCQL7LCTZnKmE1GfWraGwgWlYI1E6g2iayTm8hgu9+ag0a5HviYz0IRNnwYxqiQl9bSQVdUBQEANGhAp9T1IXpUkyigl8TZsGOFpcgT15pco61VxPClf0G4gr+g1U3GMRYHJ92ntkXt1www1o3LgxMjMzkZmZiWXLlqFfv37cdwqFOGNNY1pSaVY663Q4AL9PQStsXiPHSL355pu5+VnTmFVzvNMBeHwmxx1hJhinrlKbMxHA2WfL7vRfeukl3UCffsXkFHV14qV8Bgc+0oZDe/7Fli0B+63ExETceeed7I/C6Us1t5DVZuikoQedVQNbq5uA9uCuD9quT84Q2rLHCwfAA+kZluSM3NMEIlUcxiJPnZHiE5wOdG5QE5e3kDkvoTsE0T8wWnVpb1ZqZKVM/TTa/3n16Q1XUzZn1KlwIKXGNX/+fMkek5w31IcGMxu+EQIacipGgE52Uv/efzbj2aefxmuvvYb0I4d1y45zCMjPycErr7yC99+aKt3vcvHlePPb5eh80SW48Z778ccff+Do0aOYNP9H3DRkBBKTAocpluSMP96ol4L5MUKn05MibTpRgP35pdoHquRJSUl47LHHpOsfZn2AmglaIpP3hUgT9GgmtQSDZy9gpl6WB0cah3Ztx4znn5aue996O+4adK+iHt6BiGnfoxNmQ92+p5+W650xYwaysrKYxEp2mRtZZfrOaVLinEhLStAdE+zg3PL/9FyjpWb33HOPaQ0PNRwCcPMZjdG5gVYNi4beODC1D6iSOHT2F8BYNTR0yZnA/B/gz9GkOCeuat0AbevI/as8k8j/k7VWPTbOqJuKtCS+R1kCnj1a2NCMc4boDNpbAuOMYL1qLYMHUErbjT5t54a1FESyklkvahwc0Z+B1MNcpwSgRkIcajO8/pISzX4PwaAegC05i4+Px9ChQ6X7dGgMGqIRRWoAVhZa5d0s0UL6k8zlitJSbN2wVnquR5zJtocMwp/RZ2S+ewz2B4BiIJv4VDElztQqA6IoYuzYsVLwvz///BO//vqrIi0BvUgGJGd6By7lrx7IeWbJgnnSvVtuuQVpaWk6B2LOwZt6pJGccdoIqAYdo95Icqc0QRI5ZdcNLtRn1mUv+FZgjojkEKEM6Z1VyU4ooDdINTEoCALOqJuKVMqZCu9bmekDMi7Yag28dtL/qwmT0GCqfxml82xjdFXIjNc0xcJ32RW9JY90J06cwPfffw9AJp54kkgarPnpF0V4/H6Iopb41HLQ2RP85JHDWDBtKl4YPBAzp7+PCRMm4NoLu+KLKa9KdkhAYLP4+r3JGHn1JejT+QzJGxYAdL/yakz4eC6attEGPVWDx8BhPxIUZZplYig3bNYhXcTJUhfSS7RxcFg9NXLkSOnAfmz/Hmxa8wsjn7GEjibuaclOnMNhrL5nYYKw7EwIvp81HWMGXCuFYmnWtj2GPf+apfJ5HmDV80r9XjfddBPOO+88AEBFRQXeeecd5jfadLIgYKen0wb5cMZuuFmHIEVFRYrwLiNGjNCp0RgOCIhzhG7LpfawzAJJoWYI8hhHemPLGWI7ea2k95aGKQnoZECoAmy1az1vjVb2CUmjhcrUrUkdXNOmATuDBajbwVJrpJ+xtSXC2/jV5z+FQzLq2RUt62ncobepk4I6FJFLj5GDheVYeiALZZS9N/3coT6fQcvU4Um2zDIF+Iw70gZ2qgceeED6f9myZTh8WMt0VJr2GFNnoihi4d4MHCgok3Kp4ab2f7OSM5KOzOXfViyGOxijrVOnTjjzzDPZ+YK/7DBS2nvE5sxjQrPCCq1aRZIz+f+uXbsq1B1WrVplaHjPI87I64ui9mCScfQwvvngbaz7cSFyMzLgrnRh2bfzpec0V0ANvuRMfsgyvubBoxDXmsgQQfCqS4xzon+HJmiQkmgqPQ+m1Bo5SdhBqAmxJOK6tg1xdn2tq/lIdmeSyt6QNXF4r8mVqnGICVNjgpMmNSEOdZPiUdsgCLK2Tda+mYbwZ6W3oEKmhkLC7IxTzFXiml0inNX16LSJVeuWjEL8KNlWKTdlnutugpXzv8Sg3hdh/rSp8HrcVFoR38/6AHee2wYP9u6GJ26+CiP79MA3H7ytCRTarlMXjJ7yAZxOSpJkcn7I7SXZeM+sQs7BkqCUeXyaewSsTbpu3boYPny4dP3B669qAlPzVU/JWk9pK1D/xzsF5frKKMOKdJ11UPd6PHhv3GP4Ysr/pHsJiUl46u0PkZSiVDPTA2k/a52UjM0NmikIgiLo8euvv47B11yB5+65FW+OegB7/9nMrFNbDr8eIyk3yb9u3TrJjrtr167o2rUrv2AOHCGP1wD0QkTQIONAJjzk/UUN2XmPup5AnlA1RWi0rK10s02/waUt6nFDqwBKZhI99ySGhmr+WhH2sezRk+McGq/PoYB/qmPdFxn5QhDXQH/sq/fubo1r48pW9VE3OQGta7NjaEotYTSlhA5ST0vOiJScpQnDmAPkf/IpzYYxkFUlGcxVgyLatWsnxQUTRREzZ87kpv/lSC62ZBZy05Au2BG0gWP1mVshxOC3kYAkczgEeNxuLPzwfekZ7TFYLyM9vpOCawhrPTizbioSnAIaMOwz1WhZKxlxDgEta/Hd6ANVrdYYfM+ePXtKzw4fPmw4tXx+v0at8bfli/HFlFcl18UiAHdFBdIP7se7Y0dhwFlN8eg1l+Dr9ybj3TGPYujl5+OuLm1RkPf/9s47Xo+i6uO/85R7n9t77r3pPaGGQOg1EJASqtLkpQgKKuUVG1hAsSDwWmiKCIIoSlNEepGOAtIRRFoIJJBCSE9uklvm/WN39pndnd1nd5996j3fzye5+2yZnZ2dnZkz58w5huOPUaNGYc6cOZ739J1tUA7aGkKPjkzdrZrK+Gkd4sTP5tj3uojZCzLjGVQzkLV3N/7WJBOoSydtsb2y5+Y7g5bddgpnepW39/38NGfOIzYTDf8sus5xZiFBhL3GddrML4MQNgh1kAYzL7NGZTAxBIGvf/3rSJlrQ59++mnD2yvkoME7nyqGK2b7vReYWp9+6YRBybtTwHDm+qP33sW1P/w2BgftQsqECRNsv5ct+ggfvPUG1qxcYe1LJpMYP348jvrscfjO1X+wDeyNZ/AuYN1g0OqYNJc5Z2GjmDWq70yW4Wo/D6Aer/jss89GbcZwAPHW6/+2zcz6XGY7qGrLnPGt7B4gvQXVIDhnRj94+02cfcjetjVmAHDmxZdh3LTNbOnL91erCVfgN7iqM9sdZ3uj+2QOP/xwywsmALz9+r/xxvPP4tmH7sN3/+dw3PHbX2Wv1z0gAvQNrgkK+w6ZT2kBA8C3Xw0CZQsxEkGEMydyAnloSGjKWl96u4xqxx5j2qN77VUu66irsa35CmtBQ2QMaBeu7tPWFbfmLHf68rHCmtGFwdN8V/MMQl0PGDErOmHHiXNsMbbFrh3zQ1dTVMFYPe7npVEf/89+fipgPbcmO/z6Bp/rTz89G4z9mmuuwZIlS2zHnc/8/qo+3/zIuijzYy8T42+uSTYd6ljxoVtvxJIF7wMAGlva8PnPf977Ose9AWDbXkND2qiZgGjNpDF3co9nKBqVxpoUDpnSo03HSXHNGh0zLgLA/JXrbS7133vvvZxufgeF3SHIS08+ip+f/UXcce2vsN/OO+LBp57B8089huN33AL/e9CeeOLOv+TM29lnn22fqXbgK5wp20E0Z+ogbyCC5myLzibsOTbcYFsl9KDM+hutBcw3MKVu8JlKJDCzuwW7j2k38+Ym365Dvb4tY8yK+MV48cNfcxbtmPb8UGf7pBNSKtSZZLjT1B8M5ko/O8geGgJGjBiBfffd19p3yy23hHYIsmbTAP761mJ8tDZrhifr2sZB9wJfl0MQx467fvcby6ytZ+x4nHjO9zBv4Ud45513cN5FP0VjS6srD/WNTTjmi2fh9mdfwUtvvIXvX3YVWjo6XecF1SxL0mZHrRN8nesWvJLed0KXTahXz9OZ+K331ZxlGRLCEprGjh2Ls8/Pxtv54x//iCf+8U/9hSYfrd2A5X2brEOqQGZbc0pkE9yithEvPfkYfvqV03Dcfnvh1+d/E++/+Qaee+RBnHPkAfjovWy8n81n7YTfPf0adtn/YCV94w5jW+owY0QzNtNo+J2mdCpyjUpbnf2d6T6ZmpoaPPjggxg1apTr2NDgIP7wfz/CY3fcZlzv8c05Z+rdefWfoJB1URXO9txzT31iIYnatgXSnFkDQ/sT+TlAcR7KpJLorI8W4wxQzKm0yxvCp7Z0/Sb8a9FKrUbbJZwFSP+AiSPwqQldWc2ZxqIlf5yTEKZ2XFPjhfWf86qownH2upbaFDbraMT2va2uMAv54uVYSD9GsE+W6CZiW02rmK6AMWj9PvEg7/Gggw7CxIlGrL8VK1bglFNOsfeFIRWXsmvXa/KMfeokW2CzRjO9lZ8swy1X/NTa/+nTzgzkNVZ9Hz0NGRwxrVfrfKtQFNdbo/mwUsJcsaHfGBg1Zgcj8+bNy2mnOiiyBT9//nz86AvHWcdWLP8En9p9Z69LAQBjpkzDxx8uwIb1hmv+r33ta/jqV78aKO/aY7a8qTPK+vOdAxVdOipNNSmkEoQVZkDMjrqaUMGg9x7XiU/6NmmOBKvktckENgwORe4dg8yw+Q8+s52reprTO1WYNMOSSSVw+NQevLx0Nd5buT5n2jO7W9DdUIv75xmBzXUC6nY9LRAANg4YDU8mpGMH3Tle9TRsWYR1RJLQ7HPiNUQKqzmT5x9zzDG47777AAA33XQTvvgV4xt2OQTxeJY+s9w/WNVnxfJKJxMYGBi03omVd3K7ZVd/D/T345kH77F+f+mHP8WWO+6Crq4uJBIJnHjqFzFu1zl45Z9PoHfseNTW1aF/0yaMnjQVve0tyKSSeOT9ZfDC720kE4Qk2T1h1lpmGPrzjTSlQK1PvakmhSalmfFs58xjQePAPfvRCixauxFzJ3dj8doNOObkU/HYY49b5XfmN8/FK/94wkzbneYzHxoaxwmmSZEtsL1fexqhPbjz+qtxw8UXWL/fePVlPHTrjbZzamozOPwLp+OI085yxceUt6xLJTGpTe8Qw8+sUe7paai1zUB79ZETJkzA448/jquuugpL+4HGEb34+21/wttmbJ8//OzH2Hn/uRAe/YcuEG4YUgnCmjVr8OKLxv2ICLvttlvE1OxEtYRIh1gD5lzjpPXWaJk1RjcN1GMkoFsjl88knc5RgTNeXZDUa1NJ1CL7/Go2CyOaZdHVdiFgjEvgLJ/c7VCKDPfzXmfuMz7/9XNeDNjazux2EEd0uscc2VSHXUfXYcWGfrxtrdvyxn8yWH9flWQyiauvvtqaHL3nnntw1113WQ42wgaelm22NUGiXC6/3CiaMwHDMuaCc76BtatWAgC6x4zD/sed5HtdVnMW4wAyAkUVztIJwtYjmjGupQ7zV623Go2W7h4kk0kMDg5i8eLFWL8+hxp0SCBBwFtvveUKBqmjtbMLTW3tGDtlGg4+6TRM2XomWtMJvPTqq5je3YaDdp6VMw1fzRkR5JfidlvsRtgGE9ltL7XovhO6sK5/AA/M+xhA+E6gNZO2qeHDVrkaUzjLp8POB7tZY/C0dGfuN6HLZr/sf70qfJC57siu/fVCFRwBvYA6zhxcrt7Yj/X9g9pF3kEeN5gZpH7g59WMBgtCrZwfQHNWm0pgrWYWN8igfkB5Z9IL6mGHHYZMJoMNGzbglVdewfUPPoWxU6fn9BjpFFjUwUtNktA3AFd9JxhC9KqN/ZbmSc32U/fcgdUrlgMAunp6sfn2O1nXAYag09Y1wuXWGDDe3+oc8ef8qkGKCPtN7MKGgWzZ6tqSqe0NNo9uQdJ2ZBSyxthMc0zpzE8Dqh5aZLppf+KDT7B60wBaalM47uxz8a+H78fQ4CBe/eeTuPmu+7Dn7Nk5wx0ATs2Z9wXamWKPyjI4OIi/Xfsr3HTZxd4ZgNG3fO+6WzB26vTgN3WQNWt0f3Xb9bZi9cYBd/vhUy6TJk3CT3/6Uzwy/2Os3DiAXQ84FGcdsDuWL12MlR8vxSN/uRnHnaJ30FFn1htvD6eO344dqUQCT//jacuD6owZMwLNUgfBryh137UkjEMQib1uefTjrjzk18/Jy8MIk0HQlYtTIximXx1RX4MPVvehVdXAF0g68zNrHIKwAsKHvX0qSRgYCKniiQlX22nirTdThCblLCnkZVIJ1KaSIAoYw9SRpu1YwIKcM2cOvvSlL+Gqq64CAJx33nmYO3cuEolE6BV/ss0eGBJ47qMVmN6ZHQepY2tJmO/spssuwZ1/uc36fcp3f4Sa2ozPFdlvoSDeSENQ9DVnk9saLNMhy0VnKm0zxVj44Ye+aQwJASLCJZdcYtufSCSQqbcPPr5w/oX47VOv4NK7HsVXf/5rTNl6JgCgrjaNCZttiSnTPDpVB1HeU5CJ5CEhUJtMYO9xnWjysUONz2xA/dCDESUCukqwOGfe50S9XrevsSaF9qBaR3Vm0DGrE6C/t+G3DqG5No2ZPS2WKZo9C9FnTHPtj2KC6JWmJZz5nO81+RCkMVdnG6Us1dzcbHOH+/hdfzHz4NCcmX+XfrgQD992E56863asX7vGOq4K63JgtHFgyFZARMDKjf14eP6ybBBU89jg4CD+8uvLrHOPOvFkJBJ2Rw5NPg5ZEgSsH/A2CVTTUdmiswmzx3WCiFBnukCX6Nzrt2XS+phoAauYn+ZM/atDJ4DLNWoDQwIjJ0zCnCOyIRK+dtYZeOzdj1xp2rMqJ8TsZo01ScLcyd3BJjaU/G3sW4+NfevxzIP34tvHHIw//uInlpAxacsZ+OK3v48Ro8da1yYSCVz6y6u8BTNXfvXISTz9mrMkuhtqvdfi+CD717qGBhz6+S9b+/96zZXYtFHvTt9qpwKqMJwTkEkiPPfcc9ZvdT15vviVpd9Ayq9fdWLVZXNjULPmbOPgEF5eskrjVCO/PlrWY9UMc+sRzWjUhJjIhZoVbcy+gFpuHWNb6jF3cndeE75euIRkhyZTZTCCNkWS74RxLvySH/BYc6brc517dFWs3ppQCYafQxCvNae69vt73/se6s210a+++ir++te/micHzIiJWhcXrNmAN5U4bmHHLSr333azrV+ec+RnceZnP4O9Ai4JKnAVyUlRNWcSsoQzqYUARo8ejQ8++AAAsHDhQmD0Zp7XDwpDc/boo49a+7bdcx9884prkUrX4KFbbsRjf7sNM7ebhX2P0ge+nNjagEVrN6K7IZiNuL/mTL/fq44Kx2AiSYTWTNqa+c5VIfOeoQvZlMmBnp8raT/yzW8g71d5zAIFSVJuZ1Xw4RKPY5G45zkhz5ckFE2g+1i4+2YXGXtfqBMYgKCTGOp29sfxxx+PW2+9FQBw343XYZtd98ROR8y1jr/00ku48KKL8cJrr+ODt/5rrQlrbu/AD/9wO0ZPmmKLoVajrNVKgbBw4UJcf/31uPvhx7Bg/nyMnToNq044Dicd91nrO37w5t9bHhfrm5px3BdOwyJrEtMoD53JqiTI92GPgWS0LekkecYmqk3lFvTDmp+oV6vv4z/L1mBgaMjSuoRFds7Hnvk1PHHPndiwfh0+mj8PD91yI3pP+7LndbIaOOtGTSKBmqTbvZJXu7ps0Yf49fnfxEtPPqo5A5iw2Rb4ztV/wNiRPdjrmJPw6tNPYt3qVfjKZw5C7+ixuOfdJdrrjHvmfrcy/6qAMa29Eb2N3p5ygwln2bP2PfKzuP3qy7Hqk2X4ZPEi3Pfnm7D7p4/zvDagbOb6nUqQFTcUAGbNym2VEhR/jbh7hn1UUwazeloDtb3OdktoBH/Jig39WLGh37WWK9/BnJwkSiszf5PbGjDZwxw2KEG84YalJpnAxhwTSlEIWu8Ah4AZcnxkTMLFn3/JpyaOwMtLVllWAiq2fKuPoJkXcQpSuicL2+6S46/tGDnP8qa7uxtnnXUWLrroIgDAZZddhk9/+tMRNGf2331KvdKlFcRx3gdvv4lfXvAt6/e2e+6DL5z/E/Q0+mvNVCIHk4+JknhrBIxXLxuNIQF09oy0jn24cKHvtUMCWPLhh5g3zxgQ1dbV4ZtX/BbpmloQEfY75nhceNOd+PoPf4JkSi9/djfU4ohpvdqgft459jqiP+bprVHZHhTC1en4ee3xz0lhkANWZwDFMOwzvhMTW73dzvq1p8E0Z8H2hUHXSKoTCjrmjO/UxnuJ6l45yFX2pPVXaE0YfO8bbkAj66xfgxJXvVUHG5/61KfQ1WWU98a+Pnz/pKPwg+98C0IInHHGGdh2223x51tvwXv/ec0SzABg9fJP8MMvfBbLlyy2xVBRNaLLFn2EWbNm4fzzz8e/Hn8Ei96fh2cfug8nH/8/OOKII7BgwQL87qILcN2Pz7OuOfjEL6BNMePK2vATtutpwRadGtPViOXg9460gak9tC+BJ2s8TntnxTrMX9WHj9fr1rXa76VDvs/O3tE47uxzrf333ngd1jg8QArN9qBtsksoWlxHhjUfwfPPPouvHbafp2B2yMlfxEW33ouWjk4MDAmka2qw3Z77YK9DjsD48eMDuLj3Pw6ojrKy+0Y2ZWwaflc6PgX66PvLcM87S2yDntq6ehx2SlbQvfPG38WyZsrZxSUThOefz7rt32677cIn6oHvelaPPjPMAIugPI/UnAnvonZOVsbVvsXhdEAtqzy67Rw3Id1mbGkCygSSLoyFTXPm7ov8KLTmrC6VtJt9KqiTgTbNmd8Y02fyM5MOFm7DmZZ2Qtt5jonXvPyZZ55peU1+8skn8dJLL0VecybZoKz31k0s5HrOtatW4idfOhF964z1d5OnTsXXfnG1az2wFzL9Uq85K51wRtkXvqxvE0RzVtW48EO3cObsSF5++ilre/rM7ZGucZuq6Yp2XEudr5Dgl9+wxzw1Z+q2Ipx5Rag3jgXLSxBkwxTUtEGaL0RxSSxpqU37Xu/3SIFmPnX7YlSdOWeUvMxommvT2ngvUfMS9iqv2+h2+zU+0TVnPud7HAzfmGe30+k0rrzySlvaV19xGfbcc0/88pe/dF3b0d1jbS/76EOcd8KnsXD+e0pestx42cUuN8GSO+64A5tNnoi7fne1ZfrWO24iDj3lSy4tl2RcS702FkogzVlI4Vqm2aAM9FznC++0tXnIURv7HDPpNtNfn1csZWMhBOYcdRzqGw0BdsmC9/Huf17LmS+nJUIi26Da2KzD7inx3nvvxf77zMbaVSts+9u7ezHnyM/iwpvuxInfPN/q1Ac0ZlS5vpMgRSuTVeuB//Sc/zezYkM/Ng4OuQY2e3/6GKRrDG3cvDdex6/P/yY2bTQ8le46uh2fmjgie7eQfZp170+WYcGCBQCATCaDzTffPMcVwfF1UhDy+/DCip1n/vbTOjnNGvPtb0Y2ZrBVVxO27MzfO6CalXxMGH3v4fMrnjSjmTU6+2ZdzgotnAHe9UFd46x+x7rTZdvmI09ZpvhBJ9mk5inMmOmt5Wvx4Rq3L4iRI0fiyCOPtH7/7Gc/C2QJo+IWzgaVY0rerDz6p3fbry7F0oWGFV6mvh7X/eFPrtA0fmTb9uEqnMFuUtXRk43psXBBVjh7743X8LldtsKX5+yEj+bPw8YNRgV56u8PWOdsscMunndxMrqpDtt0t0TIb/hjnt4alf2q50np6EBXKbyi1EdBNkxBzRTHt9Rht9HtGN0UXCUcJ4Ea0gJ8R6TZ3qa7GVPaGgKbw+adhwgmb0Hxjb0WJCGb8GrvPtIJfZ50yYZtzF9Zutpml37UUUfhkr/cjy133NXa9+STT1rbs/eZg9MuuAQ/u+Mh3PiPl/Hda/5oadQXv/8evn3sIXjmmWfwk5/9AkfusSO+eugcXPODb+Ph22+10jj8hJPxratuwF6HZddFqWy182744R/+gtq6elvZBdNA5n5m7Sk5rjtsag+27231PF/od3vnIceJzk5WrV9+r1gOHoeEQE1tBtvtlY2L9c8H7vG6zLqfM86ZbtnUfhO6bN4SN23ahJNPPhkDpjY1U9+A8679E258/i1c8/gL+NIPf4ppM+0mebqZ+pzvN0DhylTVQaXz04zSUQ85Sr2xpRUHHn+y9fvvt/0RPzjlWGxYvx7tmbTNPMrzuRzv2Pntvmp6aQQMZyDpgLPVOkY3ZTzNdp1oNWch+0n1dEuB5qM5i1voISJMaW+M3ZxqQOOtMQ5yteuR0vRoo3Qlra5DVjPgLD9dcTqd7zRFWNeXC6/XaFtzpjyC7huXDrRkXCy1fLbracGOI1ut374To+q2QxmgO8955I1P1uLZj1Zq01Y9nd98883472v/9s6IBqdzmn7bmjz7koN0grQxbSUrVqzAgzf/3vr9xQsuwdYztg6Vn+wEfMjLYqakZo1qJe0dN8Hafu5fz2LNyhW474/X44LPHY3Vyz/B0g8X4Mz9d8NxMyfj4jNOxsN3/806/8tHH6aN+xV2tlllr7Ed2GV0m29audJ02ecLgbc+WWuP2aQMJmqTCTSmk9i2xy08Jn1nVcMhZ1qCNtpEhBENtXkLhVEEXCCgK35dQ5NnQelMJTKpJLYa0Zy/Vi5wHsKdFEo489Wc5VfmqpY067odOGhyN2Y6JkfCDnEGhcDry9bY9k3cfCuc+6vfYdw0+0z9vvvui7/ceRf2O/p/MH76FkgmEpi5+2x87RdXW16bVn2yDDvvvDO+/fWv4oN338b7b/4H9/8pa/Z1wAEH4BsX/h9mzd4XZ150KS7//c0YOdIww+7o6cXpF/4C37vuFrSN6Abg0IA4ikhXb4JpznLpUtwkiHwFReesbM485DjunOupVwb7fu84q6Uw/u6030HWsX8+cLenebjsP5wOQXTOaZwDpfvvv9/Sija1tuGiW+/BNrvthbpGdxwyiToYz5oZeZ5u5iF36VrvQTvZob9PoHWamub92P89B7semHWi88bzz+J3F30/cFvpXnPmsGh5KSuc5WvSuMPINswelw2z46s5i0GgIbjd5At4a8+84lWVA2ppFCqfFLHf8cO5nmh53ya8s3ydPpC2p+bMfp6u7VQnfEc1ZrDjyDbXOfnitTbK623o8rnG9OLbbDqUUs9ozaQxqqkue71PXnTvSjs+jvAiZ82aZbnVHxwcxPlfPRODg8HX8/lpp21WMgnCwVN6fCfGr7vuOssaYML0LbDb3MPDB3A3/5Zac1YShyCAUQnUj2uzWTta7vRfevFFnHvUQVj8wXzXdUII/Ovv91u/jzzySOyy4w5a9+gEYI8xHegbGMRzi1Za9w1Ce12N4+P30zJ4fISOSrdo3Ua8tmwNlq7PLhIVsFeG/RTTEq975Ftn5ILjqA4+ouKbb5+DYT0HZvfF93GV6jMNq1XxjnPm3u83MxTkefVlbqBqzpJEGDC7pJpkwrWmIq5aWNfQgB//8Q4MvfMy+latQE1NDY455hgMJLLNnMzWjvsegO9dfzN+8qXPuczaVFpaWnDllVdiqbJvr08dgC9/9jN4Z8FH+HdfwvLMKPGbUVZ/zxjRjHSCsGSd3nOe13V++/zOcp5vac4CNii5hTP7m9y2pxXL+jbh1aWrrbv5hU2QR7bZbS/U1tVhY18fPpz3Dl579p/YaqddXef3a4SzQSGydc9H2Pn977Ozq/se9T8YM3lqjqez4zXD7HWeH7Ln8puAczusyM2ApqzTNTU4+2dXYfz0LfDHn/8EAPDQrTfiqz3tOOP009HT04PbbrsNz7z8KtDWjf2OOQHJpLdWwXkH1RlInOvNAP/2PNc67aB3kNjm7j0Ku1DmgnGgFoeuHsR0F+1mPjhl7KXrN2Hp+k3Ypttt6qkzMwbck45q/yNR+6cdR8UvmAHefbfaBtrXnLmR767J0pzlP0nvH7PXnNgKmfjll1+OGTNmYNOmTXjtpRfxwJ9+h/2P+5yrb9QR1GFNrjxt2LDB5sH9oONOAhGF1oDJ+8h6VCqX+jlLjogyRPQvInqFiF4nogvM/ROI6FkieoeIbiGi4FGRYWrOlJfS0NSMGbO2t37rBDMnI0aMwK9+9Sujsnk0zp31NVaAWbkvcB4Dtj1ex5xVTjYIqxwxjcIHmMyvsqQS+XlfjI5fo1CAu+WZqH0mO7+0ohLn7I0zJX+zxiDaHO99aliAXDHQggYvDkJdYyMOPvQwnHrqqTjppJOQyWQcGpTsr+nb7oCf3HwnttrZCJKbSqdx6MmnYfbhR6Emk0Fnz0jcd999mDhxoq08BIDF6zdhWapB2/n4ac5UJrbWY2xLffT1iCEnLbxMhoLf0P+wc7CaThImmet7LdfkAd51pr4eex6aXcdw5/W/1p7Xb07IOb016hyCqO9kxYoVuOuuu6zfe2piz+XEqtP+hRLk1VoOQRLe9UbXUX+8fmMkrQgR4fAvnIFdDjjY2nfF5Zdj2rRpaGlpwec//3lce+XluPaH38FRW4zBBScfjU8Wf2Tk1ZV5+89CeWoEcllXhLxAdzrp42pVouZMffiCac48tvNK0+ODGXDaviHblswY0YxaRUufcJk1utMsxpozr747azLrXLNo/wsAe47twIwRzVprALd2Pdj4KpVwp+XMQ9g3On36dHznO9+xfv/2x+fhyM1H43snHolPlizyvTZ49fTP05///GcsXWpMo3b09GLvw40+JEGE9oDm0SqyHgWJk1gIgpg1bgSwtxBiBoBtAOxPRDsBuBjAL4QQkwGsAHBKqDtrKtKxnz8t8OWpVArXX389OjsNswd9RdMNCoMXdNDLsja8dpxtuhwsOL0ehn31eWvOzEpXDqJZXG1kPiasnmna0o+WWr6dQJCApH4DcD90M0I7jWyzufAOel+JrNrqczv9wDivi3vs4FcGztcxcsIkfP/6W3HZvY/j1488hxO++T2c8ZNL8aeX3sXvn3zBitOkXiaEwAuLVnlqvPxMCXV1yq+KBAlR4EfCJy+yfQqadK5JIed7VM+Xh/oDvuyDTzrVeuYXH38YH7z9puscubA+rFnjbbfdhk2bDM+S2243C6MnTQmUJ5WgbyPIeZZDENt1/gOvVRv78eSC5aZWMjxEhC9ecAmmzNg257mv/vNJ/OjU47Gxb71t/8DQkM2d/KoCOgMx8ux9LA7NGcHtEMTPrLFwGqn8UZ+9YA5BfNqWuNmgsYySk8vOdYkuzZmmCy2GNsR7MhJ4d8U63PHWYsf57gs66mpsa2XVU4I4PtEd1VkWSGos5yJ6/CZSzznnHGy2mT0E1mvP/gNfPWQfvPrqq57XBa2fud6Yag3x6RNOQdJ0fpQgwu5jOnDQJL1Vmtd9pEwWd1D4oOS8qzCQq+/T5j8BYG8Afzb33wDgsDA31hX03gcdii233NK1f69Dj8Stry/AX/77ES6753Gc8I3zcMvfn8CBBx7om57uWJhvMqwK2dlBOO3xvTxsRbWJjUqpKpsu33IQr/voR4WISaG9X54FFYcJwYGTunHIlO7IeUgHEO6C5tM1G68poJFNGew8qj1Q3nSdiVzHqNaxjGkWJRth52Vh4vAEeQ/Oc4JMzoyeOAVtXaq3OkJSeQan5qwu7RO3LEzm4P/96+LbBAn4bV3vo8WT7VHQgVWUSSRnHRkKKJyNHD8RO8zZ3/p9l0Z7pl9zpjgE8RjI3Hjjjdb2Z4/zjvXlR5yTQfI9qDP+zs/eeT/pbtoZaiBMnhqaW/CjG/+Kr1/6G8yePdvaP3bsWGy7w46WZ0cA+OCtN3DG/rvj7f/+19r31ILleGLBJwCACa31SC161zo2Y8YMy8V2XIQ3a4zwRuSaM9gF/krDZtZYBM1Zoe3+dTHVpEbQ+e51Zo1OCi1MAt79gIDh1Mr5VoKMytR8u9fW+V2nnif7D/cFSR+tGuBfl2pra3HjjTeivdMeSmjtqpWYO3euLcSGShxmjatXr8Zjjz1m/T7vzNOs8EVExnPVBo0HZ95HZisfL+X5EOiuRJQkopcBLAXwEIB3AawUQsieYSGAUR7XnkpEzxPR8x9//HF2v+bcIRAuv/xyy8PTyPETcdt/FuLMiy+z7N5HT5qCQ0/5EqZtvoXjRpp7Z/Pge98g+KqMPWbAnXXOqw6GFSLydUaRLpUbGs1tkySD/rqP7TCyFYdP7XEf0CZd2AY4qnlhKkEuz1BhCPuuwjxzISw7ZOOtas7kAt5lHnGwwszsBpnxdL8r9XeIgQppNwH4a4BUk05nVnS5D6LpU8+xzFICvD+7NsaOpTnLnUzg+9nOV/76ucT24pDPfdHafuKu27HUEWJF1hu17RDw16K8//77lifPZDKJI4862tjO8XAuYUlzju5bDdJWy7Kxu9L3nxXPxlt0p+9c7+lHKp3GzvvPxd8ffhgff/wx3nrrLbz77ru446FHceMLb+HEb55vnbt8ySKccvSn0d/fb/ze0G8da8+k8f4b2bAHca83A/zrX9xmjWq8swqUzWwUw/yy0CMKneZMfv/OOh7ErLEIspm3WaNHfyedfjRpQvFIbBNOCf82ItdB36bB45jOt4PK+q7xuPaRZ/HjP92Br/z0l5bTrQULFmC//fbD8uXLXdfEUT0feOABq12aOXMmRo8ejd3HdGCLzqbQygjZ9so+vpzNGiGEGBRCbANgNIAdAEwPegMhxG+EELOEELNksFhAXzEGhgRmz56Nvz/xFI4+42v41lU3eC4odNnbas8JmsvcBKnHbs0ZfH8HSVtHvnJ8qbzQ6O6aMh9GH2yQ8nJWEOdTlkicDSTY2WfFgp3ntSdfOszAuaOUsAsytteElnrzro7vJGDjTLA/n9eMm59AFMbCxxaiQElECP0aiGntjdhtdLtvbDGd8Ozl1QvQa8nCmMr6ac7GNNehPZPG1I4GFAK7WaN0CBL8+unbbo9p2xiD/IH+fpx//BH474vPWcdlp25bYK96VFT+ynK44447rONz5szByF5Dqz2l3b8MnG2m3gNctJY5G+dMTd///oOWcOZOz+aSP2BdIQCdnZ2YMmWKpfFKpdM4+HOn4bNfyQYGX/D+fFx8wy147ePVruufeeYZ63dBhDOfY7rnDN+6kct1e6UKZuqzF8r8Mo5J76BsHPA2a3R+dkHM/QjA7HGd2N/DAVscePXFXuLNqKY6zB7XibHNdR5n2J/F/ZxhJ3LDH9vk4+F7cEhg6fqNEDUZTN92B+w+93Cc88vrrLA1K1aswJVXXum6Lqg1hR933323tX3wwcZa2qbaFKZ1eHvf9UI+e7MpJI/M04IrKqF6EyHESgCPAtgZQCsRSRF/NIAPw6Slq0jSJGqrbbbBUWd8DSMnTPK83j2TGbATiiiYBBPO7PvX9w/aZhq8ZkzyicdSSWjV6KbmLIxpm0fi7l1xCuclKvNgZo3Ktv+ZntfFRWsmjSOm9aKrPmsSlU4kcMS0Xkw0beed9w1sc072QarsnF0Lq52loNE6hUUVoAaF0HvCS7hDTri+7ZD1NJvd7EnZBd25n8X+uPbza5IJ7DWu0zdujP3qaO2UTbANOdw94ZvnWVYTH3+0ED845RgsfPdt2zmDNuHMvU5PrTNqJ3744YcjlUjg0Ck92KyjMdRgRXeu/FbDVjGZPbWOuaqN85vxMOlynht10tcSbInw6S+ehcM+/2Xr2D233Yy3lq+z52dw0BZbcI899oh244joTdfCQYBi1mhQzh4Z/VHaK4/Bb6yWEwXuH8NozoLW+bZM2uU5OE68JsEHfLRPbZm073gw4dO3hJuYjYaf4myDxvR0m932wufPu9D6/aMf/Qj/+te/7GkGXnOmf4rBwUHce++91u+5c+cGSi8XrZk0DprcjbEtwQNYx0kQb41dRNRqbtcB2BfAGzCENOnm6kQAfwt1Z5/a4nak4cY526zVXMfVYHuk5by382N8ackqPDAv64Q7Ls1ZHOZ6O49qwz7jO3OfGCeabMuBZr6TJ16zY3FRDBt17X1jlKCCmNgVgkZHgE/nfYMK5gnY43bJyRxn4+5ngrZ5ZxMAIBPAjly9Tr3vBs0srnqBX8ratiyAybTdrDHhnZjrfvHNbsdi1hjyO5++7Q743pXXoL7JcKW9sa8PN/78Qts56mSugPtblfVh9erVePzxx639shNPJsjU0vs8S4BvR5rPhHU2sOeYDmzWYQ8+7OzfnL9le6kbiKr1KaiVRK6B3uzDj7a2n3/0IaxZucJ2/Lmn/4nVqw1t2qhRozBpkvfEalSCDlqzF4S/R1bD617PWEmoxeE1+I1z7Xmh+8d+H4cgrjVnTnO/eKpGaNR8JW3vI3qaYSaQVHTrppznT1WsB7zfp3fm+zz6xb2POBrbmpr0/v5+HHXUUVi5cqV1POjYz+vzf+aZZ7Bs2TIAQE9PT95a++x43og9XCqC3LkXwKNE9CqA5wA8JIS4G8A5AL5KRO8A6ADw23xv7GVKoBe8ct8jjgG79ATk10jLiqzrIGzRzj2SiDrTmg+9jRm01IZ3L5oPumzLhrQQM5RxCjZF8LwbGbv5nc9AvxiZUWiqSWFcS13O9xCmcVafVX5bzplhP7OW9roaHDqlByObcpsqeGkkN3oE2MxO5ORM2oavt0bN/cNo//xM5QpN9n7ZG0f5ymcfdAi+f/2t1u8XHn0Ib7zwrPV7yB6VKquxM/fJdvnBBx+0rUsYNcq+TNp/4JN7wCfXnIUNiNySSWMzc9LAK30vbXOuCUg/QTFMLkdPmoLJW20DABjo34R/3Gufi73u17+0tg8++OBY216JX4q6Io+q6VWpRGcggL2svJ6BYEzSbt/bWoQc5Yffa3DW8R5zjbM0L9fWgyK0hbbvUKmg+Qj8UdaJAfp1bOo3esS0XmzZpcSS80jLL+d9Gs0ZYJhHX3/jn9DS0gLAWPd7xRVXWMfznQBRrSHmzp0bKLZaEArRhoUhiLfGV4UQM4UQWwshthRC/MDcP08IsYMQYrIQ4kghRO5Iqgq6DsxrdlXXwbjWAGjuoS3akOW986h2bD2i2baOxItc6nQvk56glWBiq1yzUz3Id5vvB6orwzjjZ5WzKWnUrBX6kfad0IXtelrd93XceEgI1ARYM5Igsg3CpFDmnIl0tS2amdWwz67WLy9nINlzcg+IybYvt0ZAfQRpPhdkoX9wk9fchC4z8wqCOvEW5ZskTNpya2y1kxGPbmhoCN897nBc/f1zMe/1V7F+XdbETgipqRN4+L67ccmZn8dPv/plfOUrX8GRR2Zjp8l1Cc77eObAWaU050rvYKkYGgtnCs7f/maN2X3+WtkwOQD2OixbfvfeeB0GTEH3P88/iwfuzsaNO/300/0SjoxffuMya3Q5BAmQZlNNCqMDTPaUC6qTod7GDMb4rHEKSim7R2dzX59O4Yhpvdb6Zx1F8dZo05x5C2fjmuuwbXdLoDT98u13rFEnnPneR4/fkEpn1igZM34CLr30Uuv3Nddcg0FzkjOwt0aP/WrMyjhMGkfU12J8S/7fRL6UTGenU6l7deDahjfAtxVHg12bSmByW0MgAcqvI5y3ch1WKN6touRpxohmHDqlp+QSfVR02S6EWaMUpNd7mZ9FSr+Myzxg1lwDvhLVI2dZDgmhX9DvGhDb90khydm4B5q4CfDs5LHt6YjE2jKOa71umSepHh39NGFOLZB6fhAX2X5rFMIS2qxRI4lGmS+R6Zz6vZ+gVXHT/ODNv8c3Pr0/9tl8Is455xwMDWV1aGeddRbOPOGzePahe/HYXbfjsssus6V5wgkneOfXQU3S/fX7mdGH1ZzpyBVg1s8hiLrPzyrHP4SDm90OOgz1DcYC+w/nvYMz998Nrz79JC79enY92mc+8xltOJw48CvVeJxckadX0bHNdRjTlNEO+GeP68QOI9tiuH98+K9jlZMm+ZdZUvONF5ME5W7XSmfWmN22C2f281ozaYxvDbauKeq6Mukx2dZexFwIzvi9KkIIHHvssVZc4gULFuC+++4DkJ9Z4/z58/H6668DMFz5z5kzJ1ymNYxoqMW2mknlYlMy4Uw3IJGaDpfmTHOue82Z5hzlOrnws5Am5F6d8uCQwMtLVrsWUUvCrAuIo+MvFXqHIFI4i+/FSAcH6/v9YwCFodhyTEddDTp9Zv5UAmfN5yF2Gd2G/SZ0eR4vJIPCS/Pt/Mbdjjk2DAzmrDv6tANgE2yyu3N1JnWpJKZ3NGLX0e54cfJa1dGLn9OXpGYgJdecDfh4zpLE2RdH9QYmNVlANLNGmc7ICZNwwQ1/RnN7h+14/6ZNuOSSS3D11VdDCOCW667RegWTHHfccdo1Uc6nk69ldFNu01z1etm35RuA3o+scOZ/D7/jvmsjNZc1tbbh+DP+1/q99MMFuOBzR+OTxYsAAO3t7fj5z3/um5988HsHUSdwvc53ThB31tVg+5FtqE3lXrtTDvjlyWpTYsi4XMtUqrV5QSYYtGcU4aWp9TU2s0bf+7n3jWzMYL8JXehuqMUOva2YM17xmB7hPn45z9Uv1tbW4nOf+5z1+8ILL4QQIoQ1hTtXqiOQ2bNno6GhMJ6HS0G8USLD3FgnnDn+SuLQnE1tb8DLS1bbZqzjxquhWJsjUOhwRtaDXGvO6lNJrPdRm6tF31SbxNL18S7mLHYHvOfYjtwnhcQ1+69sd2RqCvpt2O7ryMjQkNAO/BNkN1l0fl+vLFmFvoEhzB4XvqzCrllVO9pcLvyJyHI84kVLbbbpTfmUu7WQW8lM0G9G5sXaznl2rrTCni8Fy9zmYrnuu31vK+avWg9MmoL/+8v9+Pttf8I7r72C/77wL/StWwsAOPfcczH35Pdx6y+zAsKMXffEjB12wuLXX8KyZcswZ84cXHDBBYHuW5tMYPcxHahPJ7HkvY9tx/zWsch6GsTpTFSyZo3+5/muOSP1zQTj6C+ehRVr+2xlLPn973+PMWPGhEovDL6asxiKmgB80rfJqGdOp2SUPcd1XTlKZ0FMpWO4yzbdLXhx8SpkkoXzeuiHr/OdiFqmuFCrpNp3BfGp4EXYNeVEWZPG0Q7z1Tq/oMwRCshPyJKC2+mnn45LL70U/f39ePrpp/GPf/wDmUnBNO26LKnC2UEHHRQmu2VPCYWzEGaNOs1ZgBqtrgGb2NqAcc31BdU8eTUUa3IIZxWsDAuFrniSAc0a953Q5fvxq0nXpZLYbXQ7WjP5OzxJkJG3UsWGC0LkrCnX5fN8Qdz9e9wWgCHsEAETWuuxvn8QS9YZy1edg0eC/VmldyhP74nyuhhendpaeZs15r5RU00KO4xstcxMAP/yk8KZesaUtgb0DQxiUmu4WcJimrHa7mQbmISXzgiEMc11GBICH6/fhM7eUTjmrG8AADb2rccZ++2C5R8vxerVq/GnSy+2rtt86xn41lW/Q3tjPfadkDuekW5dmRzYuI55y2aW8DxCecdx4yeYC58JDRW/z9br0IAgHH3m1zF9ux1w4WnHW+vOvvHd8ws+ONLlqau+BplUUjvQjGK2t65/EC8uXmWt75aENQEtNX6fejaIff45723M4KDJpVtvF0Q2i8NrdxTU2/o75okpN7a1psa4xS/lNp/xkVee/Nbx+028yXZ/3LhxOPHEE3HttdcCAK6++mqcdckV3heqeXJkqa+vD4888oj1+8ADDwyUTqVQwjVnGs2Zh1mjTssWZDzoXMdSaJNAL4cguYSzsl7PFCO6pwxq1phMUOAgrwRjYKRzHxsWaUZX3m8oWu7smqFod953Qhf2CzDw9UMK5jO7W7CTsnbD+fa8BhO6AKWOK917wq45U37kuz5ydFOdbc2tn0trqf1VP490MoHtelpDazrz1pyFOVc5mRDdlb6alu7+tXX1+PrFv7ACJ0saGhrwi2uuR7qmNnD76hcfz2Vi63N9U00Ke43twNYjmjVnxYNfHVQP+TmpChLCwYmM2zljlz1w6d2P4cRzvofzr7sZXz33W37ZjQVdlhprUti+t9U2+CWf833TV7Zd4Xx86mA54pfPupR7wqdS8Rea/SS3wj99wiEseWYlpvup6TiX/WjPJ8L0jkZskcPKIw7U7+m0006ztm+++WYsXrggUpqPPfYY+vr6AADTp0/HxIkT88pjuVEy4czv23DOCuodewTRnBWn+ZEfnlf8ik1+kftQrmYRxSHrECQ+b41xCruqqVq5El1x5h7QhKWpJqVdh+F7X41zA92Ayjm54tXBebnwte4XcJ/rHJ/Bea7zw5D2GUFL7W+uCZ5A5FmFw3wDzvLyMlkPlpaVAe3xHffeDy+++CJOPfVUjBg1BjNmbY97770XE6dM9bssWh40WZnS1oBpHY3W7yQR2utqImmjm3VOZHzI1WzqHO1IovSPquazd9wEHPK50zBjlz2KNMHorQGxtRsRs+K35szyPKpdYlG+fYOOpKU5K3FGchAke0F6nqjtf77Yw5gUXjrTTSbmSnrzziZb2+W83olfc2PX2HtfN2vWLOy+++4AgIGBAfzpmqty5NLMk+O3atJYbVozoITCmQ75cgdMKUe+DL1ZY+70imWKJit3c62+Y/VyvS0pZ5O5ONFqzmLy1pjzRhHRuTIvN4JmzVXEQTuPmHHeSQhhW58kcQeT1udxQ4TJj6C6FL80oqXpxk9zJr3DrY5BOCtmFbYJtgTI2hclvAU5/joZGhLYaqutcNWvf42rHn4WN9//MPbYY4+c1/nl2cir9zG1Lm41ohlbdDZZ8dbyac/3GteBAyYG10QPCoHlfZts+1TBwk8A87Mk8boujIv5uHFqY73uq2tLAt7B2nI+pldRlWu34JevbIiLcs29Qb5jvOzEquZYxDyFIeh639g0Z7YJCp+HD5KWx/71/YNYtHaD9piwLUFwTM45Go5zzjnH2v7bH3/vCmqfCyEE7rnnHus3C2cFRr6+ftMLmew89A5Bykdz1lVfi0OmdHvGC+nP4VWtvJvI+NC9M/mO8rU4JY/tfJH5KpEzqmAEls7sDxFHPKYoOO+qemu0xWhynOmsI/K3X3wVzzyENWsMkmboXBj4rTmTXmbHxRGLKM/3HeZqZ9nlpTnLMdgecpjDOwcGQc0/3ekrgw1H2emKUt4/n7YslUigLkBMTcm8levx2AefYKUapiXgmrMogpvX+ytGU6LVDFh1Q2k3Io5L1dOdk4VeaZXrpJ2v44j8xu1FI8gkRzk/Q9DBdZRHmNDidr2v/QYipK3ibAZeWboaT3+4AkIIbBwcsjm7Uz8Z10SXI90DDzzQCrnRt34d7v/T73LmRa3Tb775Jt577z0AQGNjo6WJqyZKJpzpBrtSupbxe2TnEXnNWRE/3FQi4VmY/V72jibl3MAUGiJg6xHNmD2uM790YsqPk656Y1F/rgDjpURmLZfrbmct9DOnKyiO20qHIE7cZo2OAbKZUE6HIObf6Yr5RtgnD6QNiTpLmeO6w6f2YLve1khp2+6T7/UhErCfS3mtOVOS0SLfvpy5dWpVgntNtAuBwnXEPyuy/yqFJYRq2qvm269J8Nec6fd7aT6LoomwDT69hWVy1YDwOAO8W2uPHUmWcbegpbU2FUPpFBaZryDfUTBX+rrJ/QgZC4lNc+Zzv7CTZkdM68XMnhZNOtntfNsgeXW9x0RR/5DAg/OW4kHFi63NrNFxvnsNJ+Gb3/ym9fvuG65F3zp9qCkdqknjvvvui5qaYGGHKomSCWfypav9Q1ZzJpAisjqCyGvOiuwG0esjy605K9dmMl50T0kAJrc1oKU2T8+KauccY3HO7G7BnPGdqPVzO1tiZP0JG1cpnUjE4jQlLF7rkZw4B4jODkdqTPpzmjUSjpjWa3NvXwhZq1BfcVwmp3kLZ6HO1Q9MomnO/O8/NOTQnJknDpg7gn678jpZz/wFSXduZC0shXDm5b3RVzsWo+asGEN92+DTcVf17lG1Bmr6zvL0roPl2XfrcnXAxBHYY2yndp1eOZH9DgOc65sO5TynkNjWnBXhfuo98nVgI/UJ9R5t56bBIWu5zusfr8H7q9bb8+KoXDovvccccwzGjx8PAFi7agXuvE6/9kw3UaSaNFabC31JyYSzia312GlkG8Yq5jry9Q0MDSGVJKuzi7rmrFhmjRKvPOWKR1SujWTc6J8zroEnabfzJZkgNOcrOBYY2fDlcmnv1pwlMGd8J/YZn5/WMix6IV33jdv3OeVI+Ty5QzEHy4PfOYFMbCLkQzJ7XCc2UzR7O45sw26aINb5kH87EzwBcmwLAPe9uwQvL1mVx11VzUn2uGXWaJ1lHJRePIPGO8zO2MOWnvZcTVFkNWeBbhcrQ4qmx+6tMbwA5ned19rg4ps12jVZ6v0thxd53MtLc+ZMtWz7bo2Gry6dRCpBWlPQciIrPOanOXMlaNtV+Ge35y23hi/We8tUIyYuNfFeJtaqk7s3l6/FC4tX2bTqfut3Jel02rb27NZf/hwXfvEEfPDWf23nJa3JMiOR1atX48knn7SOH3DAAQGeqPIoobdGwsimjD04n/kC+4cE0gmyOt2oa86KPYPpdb9czi6GS5wzHcP40WNDmgEHDTUgSScImVQyf61lWHSdpWaf83tKkL5LVT191gX0HBlWGxXk9Hw09W2ZNBqUjnBUUyb2OFn5DkhCzWg7zxECfQND2JhDy6lNy2FuCNj7BNm+OjVn0lFMWG+izsEA4J740NdD429pNGfKD9W8KILpIhC+LhdFM6BqzlzCR3aHVTdCZkpNI6jmrKwW7Ss486l1plKmne94M8ZckMn1IC7qCUCNs7IXfTLB57yY8qIzo4yatFzH7ak501iD2cypA1rHnHzyydhs5nbW7xce+zu+89lDbQKabMNkGg8//DD6zfiKM2fOxMiRI32epHIpedtiN3kRWLdpAB+u2YBUImF1tjpzrSDLZYq9pMZTc5ZDOivXGay40T5nbA2Tfns4IE0Tu3MN5h3VsCakMBcXes2ZG5cDEI8zZTsxtb0Be40NpgUMpDlTO7sA5+dt51/giptv8lnNUji9IyGadtO6XqMdUfuEQUtzZq/gNeY5jelg7ullijoPsk7zX63mzPxbaOFMl7oqTKjlEH3NWfk1orZYZj7an1REzZlabs4+26mpc+4vN/zi8uU7cC80W3c145ApPQEngXw0Uspz7j2uCzuPasseyzOPQQheN+LPTbYNipa2dG7X26gPMK7zo+DrEMTDeqympgYXXX8T9jz0M9a+9WvX4Gdnn4YN6w1TSTlOkWaU1e6lUVJy4UyVsIUAXlqyGoDhslO+Tl1HoXM/7RTiir7mzONDyOU+ukzb9/gpnGzmMqMaTjTWpLDfhC6bWZyOcnEIEvSu7kX/Xppp48l6GzOBPd2FffJieIct9NvIN31LeAlr4km51wUGScumOVPadgGjjRUOzdUWXU3YcWQrOuvDLRa31pwpX4xLONOtOSuSWaOu+L0mAKOuOQsrYBZDSLF5cnUI7DazRkuQCpcnVcB1as68Bkrl2nc7tcU6ZyplK1gSGeaXAc4N5BguQahPJ22CRrEfXbYNQScm88X6BiJe31VfiyOm9aKxJrdZo2RgSJ0UcmvONg0OaePZNrW24ayLL8cP/nA7ausMoXDhu2/j64fvh0+WLLL8U2zoH4QQourjm0lKL5w5ak+tOWBUzV90QpZOm+Z0DV58s0b9/hzOGgNFc68GitUwDUcaa1IBOlt7RfSLr1VQtGbK7tPcZo365GSfEKYu+ZWV7NhsM/UB0szXt0qZjpUsZJmFFT4IFMmc0Xlf9SU42/ohoa45M89JJDCqKUQIAvNC+d5Da86E/fpiMmTTnGWJKpyFpdhP7Bx8qvePqjlT+2G35sx9H+c15cRE0zTQGifphNdiZyokQZwH+ZW/1Q5o6nmxw8jI5k83bi1EVqQZZ/7WEvo+WCecre8fdJ0nEQK4+50leH7RSmvfwNAQ3l2xzmq7tth+J5x07gXW8UXvz8Nl3zjTMvffMDiERx99FIsWLQIAtLe3Y8cdd4z8bOVOGQhn6gyosDxr9TZmTbR0nYjW1DGH6+1Ck2tm3/u6QuSm/NA+ZkzPbncIwuhwx38qH82Z3iGI5hzNxdasZIgPye9MWSxq+egEkp1HtaFL0crkrzkr7PuIa6Y80HOSfVPXmQdNIvs3m2jSMbEwJIRloZDvY+qEbKdTEd0tiqY509zdZtYYMM5ZnJ5ai92SOPt/tW7LuhHWM2hrJrv21qU585DOyrXvzqSSOGRKN6a2G9YUujpRrnmX+A2b5Ov3/9aMg7q12M72o9DItiHsuvAoNNYkUR/QlDsXXnWkX6OpV9t4Z7sjv6eFa7IBrF9ZuhqvLF2NVRuzsdL2Peo4HPfVb1m/X//XP7F4/rvW74svvtjaPvbYY5FMlq8X7XwpuXBmM08RxktMEmHHkW3acyS6gUZYV+LFIlcnUZ65LgDmg6rvKa4Bqd0x0rAp0VDIcu9pqEVjOlmydSVa4Uyz05k/r+w6NSaB8uBzsuxY7O2JIy8wzCh3H9Phui4q5V5tZfaiPKeX5swvJXdcuyzOtl6nOYuK7ruQzllaao1Bj07rXNI1Zx5mjX5jQa8YRpEoct1NOgQM0hzLNSnqZKRi9jbgqTkL1iaVA6lEwppoUk10SxA9JRJ+by+I6WpWINJM5Bf5vUnhROdROc46dOCkEZgzvivGINSEWT0t2H2M4TlYflIDGocg6vfmfEzn9wTAJpRJiAhHnHomdpizv7XvVz+9CADw4hOP4MEHHzTSTyRwxhlnhHuYCqPkn6naEQoYnUxtMmHr4ILKXOUqnOWiXG2/40YXj6sQTz48SjM8stzHNtdhv4kjSlbvdLfV5UQXaNYvx6GEM59jshtRB+Au5yQ6YTLP9sepKSo75Gx1WE9+5O2x1k+QsVyia05xmzVmh5/51mtdnppqUjhiWi96TCFNp3WOosGNhCZ53eAH8Ndy1sUYu7HYdTbrLl/+zSLbudDCWVMG24xoBuAWDHT3UfeXK7qYfcHi+JUeXWwsiXzHfk3RgI9wVgwNlorleVwnnMVYhzKpJBJEWY+zMaQ5tqXemsiR6W3SrNWxf2/2Z5KxftW9GxQzSCcH/s8p1vadf74NT/7h17jiG6db+04++WRMnz492ANUKCUXzpyu9AeFsCqw7AitQX2OTi9JxuNs1dVk88xT7gwT2czXBjyutJ3bTBbZIZW+vgXLgNtbY47rQjxX2mf6eFDTqbsGZZpCzNussczNjfrMzlTKJa21btMZy9woYJoyLd0j1zgH4MpJso9QtSSWWWPAe3vmyWfEJ2UgreZMOiTJ8/650OVuQDVrtJ3r/Sy54iKGy1NxK61rzRm5j0VZ5thRp3ceU6Hzvla56NYh5grxU2r8hMdsX+b9YgaH/DRnxXmhE1rqsU13s5UXreasAPeNWwB3ft/9Ws2Zer4dOXmkjvc3+HygW+20K/Y4+Ajr96U//gFWr1oFAGhubsYFF1wQNOsVS8mFM3UCUkBgcEhYH85Oo9owd3K3FVOhrc4/HpP0ytVZX+PpArQcKUe3xYVEHfzE9ugsneUkO9tf2gLS3V3niU2nOQubrhd+YQf8zGEkuoYzLm+NpYiTFQRphjKxtQEAME3xDmrlHXJGWxVsfcrRZwZcCtBa0zUpnJkvYp3i3TfvNWc+CQz4DPjkTH8JFGd2zZmPeZFKnPWs2FVWvv/sk2YzEFVzBnhrhT1d6Ye+Q3HRvWOdN9JKw9Kc+Zwjv4mgPgsKwcyeFkxsbVAm/Ioz5LbCgRToHevWEPu50s8KZ8HvcdK530dji13JUl9fjwcffLBqY5uplFw4UxtDp+YsQYSaZAItNcYM7fQcrsKntTdg73GdaMuEc51caip1Vi4s8oNVGyiWzYpHtkMqbaecy6xRdqZuhyC50g3+5hNEmD2uA5Pa6j3P8fNmqbtXvt+xTLLkjbIHUjM1sjGDI6b12trZhOOd2YQzn3KRM8m68pQOK7KhSLLakmwdMf4+tXA53l2x3nZeVPyFsyFbvlWKFYRaV1bCQ3PmF1qiXCcBgiCtL7KmpMox8904nXoEwesbLtdvMhd64cz4W/Zmjb6aM/ckkJNBH1PCYo+5ZNtQLG+N8jZxaUe9NGFBkZq2MG1OS0cn/vf/rsDosWMBAN3d3bj99tur2kOjSjwuXfLAueZsYEi4BkUNpr1/LojI5nGpUhgumjO9mUE8z04snuVEDmjCNqxxo9ecZbeTROiHCBznzC9dP9oyNfpFySAAwnd2VStg5q058xZUyoHdx3Zg9cYB7VqwBBkhQ4x3JgIPfjKpJNZsGtQOfqUAJOurpUGj7OBDbTvnr1pv5SUf/Mwa+4e8Z8DlYLIcXt+ktnrMGNHiG2MzkQAmtzVgXb/7GwCMydB1mwawQPGw5kWxHznpEMDU+8t2I4pw5tUXewW9Lod37Yd2bWxEhynFRg7o69NJrO8fNFtlg5SmDXLip+Uudhvrb9YYf15if8eOLOb0QO747WzDvUgnyOYJcts99saXXvsv2pICqVQKNTWVpXjJh5ILZy6Xm0MCdSXPVXGp5BnMMFgLdAPOqkdleJRmeOSAstTCWS4SCQIGNd4aEZ9DEL9rRjZlsGB1H5pqvBuiQsQ3sjRnZVqBW2rTaKnNTn6p2RTqzPCg06zRjRxoZUzt2ICms0876qtMJ0GkaOp0g5388HUy4DPgkzcueEgEzT7h2A4i6CeJsLXpAEPH5p1NGBICC9YszpmnsE5iopJKEAaGshM32RiH2ftL6+2hCO2cs95mPXCa+8r02/RC107Jd1XevQCwXW8rNg0O4ZP1m/B+fx+I1HYm95ozqeUuB0dxunXMkkLkLhGzcObMY67YvW6HIO41ZzrqUkn0b7JPFhER6utDxKusEkouBjkHYANC+GqSapMJm8vbckVt2HORr5e3SsGyAS+At0a1ylRaB1osUg5NRKnQdaj2wZX+BeZq2KO8d90lm3U0YquuJmR8vNkVclKhXDVnTtRcSuGqJpkA+gdtAo7ucZLmIFvGtdRVSblG2spULgAAJfpJREFU0hlTh+Af5yjf8gti1qgbZO06qh0frF6PulSBjeA02VPHYEHHY0FKSXdOksillYrTuYgfu45qx7sr11lx57L5yK4vymrVwqdv9xJNWs1cJVHJmjM5zlvetwmAIWgOWe/ZOMdPMzzos+as2GQ1fpq2oQDZi98hiJ1cEx+uNWfmGrVcLWMmlcRqh3BWqSbF+VLy59bFQ/ATVg6a3I2ZPS0FzlX+hGkPhovmTD5nrPF1TIZHCebHqCajs1MDJ5cLOm9rbnfWOVPJ78Ym6QT5CmYel+VNodacTWlrQEMBvjldIdSagkmuNk2+Y2dwZ5UaS3NmumFWtGUyfd3AK99X49f/yMGVLoBzU20KW3Q1F0y4ntXbigkt9aGFqgMmjcC+47vc50TMZym933XU12CHkW1ZAUOaiyUT6KhLY6dRbdbShjHN4Sdx1UezTzCYmsiI+S4Vfuutylw2s9B6aw0gfLSbnjf92phiUyzNmaU9ju0l23OZy2TY+Uw6b4066tLudzVcxsdOSq85c1TWgaGhspjpyBfy0J0lyD1LXOyAiKViTFMGA4PNGN9aj/9+shYAmzUWk/a6mkBrN0uB+s5kX+qcFc1VV+LSnAWZ3SyIWaPG02EcbDWiGVv5mK9FRZdLKbTk8tZoCWc+WibprdFp1misOTOFsxgX2MvL/Pqf7Ue2YtGaDWj0MXktFGOb6zC2uQ73v7vRdUz1vOf0wleXSkbu6cn2Ho0erRDayrAkLO1YdtC359hO63jUdk59Crl+Muj55UibZg1+dvKrMqSz7FrT7PuwzPZ8nmFmdwumtDdY2vlyQGuGXUDNWWwOQRx5zJWsUwjtD7jmTDeJWAXiQCRKL5w5Sn5IVLaZ38jGDBIELF7r7kAB46NxzmZUgzAaBCLCxLYG597Y0tZtM5WB+sZ6GzP4pK/fpWHNadYYU16CtD+FrGKVUn112ay1hDP/a6X8qwuELCewnA5BrOMgz3ALXvkKgiGUD/rWs7pUUtOGFZkcZo2Afx3afUw7lq3fFPq26WTCdKFd+goav2bAgCg7raorQ1kXa5MJbCyTsvAjlUhgfEudbTAd98C90FjCmbLPCqXg8wzJBNnWyJaSvcZ2YFnfJo/vMv46VGrTVWcfqk6i6JjQUo+2urRWy8masxKhK/hKFlZ2MoNf3/X2Yu30QpIIA44DxVpMXY7Ul9GsFlNClG9+SlsDxjbXuWKp5DKHjfIVRf3yCjEBkHULXhntgS6bOhfXzvMIWc1jbTKBXUa1YV3/IF5ZutpKY9OgQEttGr2NtZje0WRLR9Wc6f1yRCu/WkdctXJFlz2bQxCP8dgeYzpQn06gPp1CV713nL9c9y2H8sl6ZCxM2oPC7S0WAD4x1z91N9Tig9V95S6bAQC27Wm1/Q5iElhOZGMnKvvyED5KYebYXleD9roavL9qvetYIaqQrLoR4rDr0wt5fsqjkfBKJ5NKYHxLPRavdXuGrYBPrCCUXDjTmfRVsnAm8XoC7eL4KnjesGw9ohmNNUlfs6aoDL/SrHzUd0ZkrPmSphD16SS262lBV30t6lJJ/Pvj1VizcQAbHMJbFKEm6CXOAb9aa/cY0x6LgZDlGS6GtIqBn7mibb2O8zqyD656GjNYuLrPkYbhjn/nUe2udBKUvY92zVnEBiAbVy3a9cUiyFye7pTOmNaalkP7KjWufh5VoyLDQujGJlt0NeE/y9aiq74GH6zuK4uyCIvUWhcqQHHc2M0aDbKa03BpHTqlJ6ZcRUPXRxXCUizrEKRAHkFy4PVMXu8rG+Tdfd1w1ZyVfByg0xpVw7vwGijqBjTDsfJNbmtAT0NhvG4Ow+KsWOSAWPfKrMZJwJrpb82ksfuYDv1ao8JkEQDQWVeDkY216DAXmavfd2d9bSRNhJOhHKYf5YYum34u7q3rQK5JGdti/xxBhCmHWWNU5Iy6U2Nbbuie2eatEShII1hOtbI1k8YeY9qxZVdT7GnL8tX11V31tdhzbEfFfKM64vbkV2gshyDKPusZQqaVTFBJl83o7lyIyflCB6HOhdczyXWOTqFR9ga6qyr4U8uLkgtn+pnP6n0bete2xc8Hw5QDfqZSZHXA7h5G20RE+I7UAdhuo9tx2FT9zGoyQdhpVDuaaowZ+0L073J9xLSOxvgTLzAttYYGQydgOttzImBWTyu27GrSOiwY3WTEtHF6RMzOrioOQWKcaZUC48YyF870Zo3ucANxUpdKWomWS3fVWV9bECFJJinT1pnBVfIQJXatSoGRZZ1WHDVZ5tOlyFAeaCchC1CX4o9zFi6TXsLZkABWb+x3p0/2vyqVPBGSDyU3a4xpjFV2hKlP1SyMloJCB4Fl4qGrvgZrrJgm3u9M173ovCXm+95VF+1e6GZx46ImmShbb5o61DLYc2wH+ocEPlhlmCf6DTgIhiA0tT0rhKoeMjfraMTE1npXOIOsWaMShDrGsEFyEF72wplPHS3EgHuf8Z2oSyXx8PyPzfsbTkUGhgSe/nBF7PcrNbJtkQKvLmxCIduBQiMng+sKEV6jAKjmzJKRjRmsaR/AlPbKmsjSLmspiFmj8bdUTl+8/Cis2TSAv89fhhkO78F+oSoqTQCPi9ILZzF62yonvJ5BzihMaWvA2yvWFS9Dw4hqqD/VziFTupEgwoPzzAGf5hzZNOjGm1pNW4R8qOkEmiPRrH8YrqhlkEokkEp4aM5c17nTUgM3yzWHrvspf2XfH+eas+6GWqQShEmt9VigrIErN7SaM6e3xhjvl/V4l30DcZjxliuybtUmkwAGMKG13nVOJX/+qUQCO/S2oqMM413q0E2YJYiwZVf84UEKjd863TixTHNjSjpsOrnkzXkr7Y5RvHuL4dvXllw4A4CdRrZh+YZNeGu5IaxUw8vYakQzXly0CgL2tROJBOHQKT1IEFg4KxSVX32qHqkp8TVngPcxHfk2GyFkM65iHmSFs+w+t7dGd+kFCkyvmJv5rW2LqkHNpJI4xHQYMLG1Ho3psugeXfhqzgp6X/Ovsm96RyNGVJmgJsu3Pp20+mrXOda5xctXnIxurit1FgIji1it25Va7nFNKuaiNpnA9I5GjCnRe84lcGYtZgz8hMnh6sy8LHqfkU0Z9A9lTUmq4V2MbqrD6KY63PPOEgwq/n6ba1IVHcetEuDSrRz8hJ2aZALT2hsxptntOCYujbt6TZAOX54yHD2sBkFqWVp94gvpSk4b+Nt1XbYD91tzFser2aa7Jf9ECoSu+xAAVmzox7wVcoKzcPdX0968M36HHKUmq5X1Njnjz794qGU9qbUe765cX7F9vN5CJP6nIaJYv82wOQy7Tkw38ZO9d6W+7fwoC+EMCD9IqhScj9KqWQDPMMMVPxe6RIQtPLyxxdVE2O8bXDrj+RU9o5vr0JpJo1Fxce7sXPPV7ti9NeqOVzd6s0aBpxZ8YoWfKMSAptrLVUI+WlnrnGFTGqXHcgwljBA8W41orlzrqgrNdljUSTNC7jbfTxM9XPva8hHOfNYoVDLysVozaazc0I9RjYVxH89kqdR2ezgS56vKt8MOZtZoDtyGa48RgEZH7KmgJTWzu8XXuxgpAlnSZwBd/d8/Wf/L0hIorEmj++7Vi9Th+lm4ZDX+1V4apSdr1ihAVNklXqm5D9u32gOG5w4W7xe+omIF8TwpG+FMpZpehnyWEfU12Htcp+1YOkHWTCcTJ9VTf6odP3OGUOnEcB2bNRaIgEWlc7ygS8Ywa4zhhhWK6gxlQBFmVcG2ECVgpTlM6r6vx9HhUQRlgXSbP1gFY6XhUm1UM3UiyhlUz69chus8aNkIZzavaaXLRuz4PcsBk7q1MZyY/Kim+lPtqLGrwuD8auIYLAXSnFnaG65lQXGWVL4tXoIINckEUgnSOhKp9s5c1SDKwhRwjH8KKJ1VefFa8DdeHjSYjnnW9Q+WOCf5I6tUJpnAhjIP2eEkiHni6KYMWmvT6KjLLt8J0h5LAbxYDlMqgfIRztTtKnobsmLqtIFGhayihy0xCTLienCJVg7k+BuUoaGsV8B83rl9Uih4KtUuABSWaOKZZVIKY2Z27uRujwXk1Y1VDpQdLgnh8GZXwPtWO7Ic/bTjUhCuprFKudJUY0zAVMM0tqw39elkxQlnQahNJTC1wx57LhFArJMBxrXt+TD9yMpIOCPtduWTHVAwhSVJZJj2VFP1qXKimkrJQMGZZBLrBwYjtxlRJ4V4Vt1g51FtaKrx70ZcJRVxlJUNu+C93kw9Xq3Ix0slCbCUCcUbulZ36WYH0PyNlwe6IOCVihTIGmpSWL6hv8S5CUcA68TIa8bSSak5429OUja1PnQw2ApBXSfBFBY508lFXTkkIr4zGXqjVgYvjvzSw10oOydec2bQ25hxOQBx4uxwo4oRQdvSan8z8vnqlEDdLjPfAnprrPaqL5ca+GnHq0GLUykQEUY1ZbB5Z2Puk8uckY21GNtch608vBCXM4HM/jX7gpk1emvOhis5hTMiGkNEjxLRf4jodSL6X3N/OxE9RERvm3/b8skIeWxXC9WlDSxPOH5c5RLarNEcHWVS+TXqYSeFhgIM3JgCIdda5XjbqSp/OVLYzSgaBdeMdkGLoLrLVxJkAmZ4lETp2XFkG6Z3VJ5A4ySVSGBWbysyKfda2fInwPeg8R0RRANtac6iZKtKCaI5GwDwNSHE5gB2AnA6EW0O4FwADwshpgB42PwdGZsr/SqcmqvCRyo7ZGeaS/XOlA9ZU7Vo12eSSfP6/D+wIBMobPIUnrhKKrDmrMrfjXw6vwFeQdacDROHIPyNM4ybgmrOIjoGq2ZyCmdCiEVCiBfN7TUA3gAwCsChAG4wT7sBwGH5ZKT6NWdMoZGas0GWzioG6R45RdEsrOV6hMiaM49tL6S7cu5EgiO/S1lkUdeQ2B1hDF8sj28pRXNWzDVnVV78siQTPtU0W95VXhgMIwkknZFrU06W6TzrZs+1pt4iZq76CNVLEtF4ADMBPAugWwixyDy0GEC3xzWnEtHzRPT8xx9/7JO2frtaqPbZ3HKg1hz0sWhWOQyYwpk0awhLrJ9VgLR4Vj080sxQllmDTycdhOFe8lJIVc24nfNRBdGcFSDN8sQoTD+zRqmxb6ktG59qTAVSSfUnrOZM9a4LAD0NtQFSML692ipyAhOVwCVARI0A/gLgK0KI1eoxIYSAx5hYCPEbIcQsIcSsrq6uYPeqwm6g+p6o/NiupxVbdDahPZPOfTJTFsgg7Gm/aWoNu4xuw4wRzZFd8Uts5tQBzpfOj/l7Do5c7C012jJuUVjyNYGtFqRMJgRw2NQeTNIF7y5IGQ2PdSFBJmBaM2nsObYDW1SgYwemPJg7uRt7je0sdTZC4/f96yxRZPufIMJhU3uw9Yhmz+vTplC2JX9XwYQzIkrDEMz+KIS43dy9hIh6zeO9AJbmkxGbK/0qbP2r8ZnKjdpUAtM6GllLWUEMmF4Xw2rOehoymNTWYH1X+XoANLZz50GaNbLmLDhpx6KD5oizxV4LzFtqUznd+VcT8ukFjLIgouJ4a7SSrO66b5k15vjGO+pquB1gIlOTTFSUEzNZ1f3qvHpogjlpJD0qJ8i41il0qP1DOpHAEdN6Ma5FM+E0zAjirZEA/BbAG0KInyuH7gRworl9IoC/5ZMRnZeXamBt/wAAVtMyjA5p1lgTUnMmiXMQGmScJQR7awyLNGscUV+DGSOaMVGn6QnIxNZ6dNfbzWP2Gd+F2eM6AFRX3+GFDF2geiot5jLb4SKPRLS0ZpiqJGtOnfscwNB+HTqlxxr7yklzdfJ8x5GtOGiydkXUsCfIdOOuAI4H8G8ietnc920AFwG4lYhOAfA+gKPyyYhtBruKWn8yo6P3NGRKnRWGKTvkmDId1UlEnk1FeIcg8r7V00YVGimcCQCT2hoip0NE2Ka7RXssSYSxzXUY11IXOf1KYWJrPRpqkg4h1S6dFXLNWbXX/KCaM4YZjqQTCWwaHNQec47jk5Rt/7OWD/Zz+DvTk1M4E0I8Be/2eJ+4MhJ27UelMHtcBwaGREWprxmm2DhN34KS91elJBCkk7AGbvnedxhhrTkbKpx6h4gwq7e1YOmXE0Rkm+wj0pj1cncTGdaOM4w3fnEkdV2odKyT9XRcnWP9uCkbQ327NF26fMRNcy07p2CYXEQNHJyvWaN6dZAs6DoYxh/5boc4xEXBKIq3xmHikCVblFX+oAwTAvndh3XeJYUzOTmnXs1fmDdlMwGcYGmaYYYtUYWd/M0aVUdEQRyCGH95Vj04KSv+YIkzUqXoHIIU6E7K/9WLXBNZw4vOGMaFn/MuXR/qjD9rD5vF35gXZao54xfGMMOB2eM6sXbTQOkyELKpEeytMTQpsnfOTLzoamIh15xVu3g2rb0R09rZ6y/DqMivwU9zpvtipCwnNWdBzRoPmDSiylsaf8pIOBsuTT/DMJK2TBptecSli9MhSBBGNNRi+YZ+1KXyC6Q8nEjImdMCrjkbzmiFswIKFtUus7BQxjBupJWJTnOWIMOqRCucOSwnbGaNPp/acO9jy0c4U14rmwwxDBOEYges36yjERNa6lGXHt4dRxhqkwk016SwOQcWrWisNWelzQbDMKXA/PBTGs2Z9Equm9ioTxtiRpMZ35InP4JRPsKZ7X3xy2MYJjfF1pwREQtmIUkQYc6ErlJno2rRfQPcgzIMUwj0mnpoXMYatGXS2GtsB1pNCxnbEiZuqTwpI+FMXZhfwowwDFMx5NtUcFvDVDrFGuAMlzhnDMN4o/v+RQ5HWe11Ncr1PNYPQhl5a8xu8/tiGCYI+Q8YubVhqo9CDnrYLIlhhi+6z186e2qqya3v4bF+MMpGOLN5cOHGn2GYAMi2IqqpIbc0TKVTvO6SvxaGGbaY2jE/TX1zbW7hjMf3wSgb4UylLDPFMEzZIQMbN0RdB8b9BFPh6Ktw/BWbHYIwzPBFLikjALuMasOuo9sBAF31WZNFnbMQJ2r7wYKaN2Wz5kyF3xfDMEFY1z8IAGgIYE6hg5saptLRzWQXtF7zR8MwwxYioKcxAwDYZ3wnGtMprN40EDhUCps1BqM8hTN+ZQzDBKDR1JiNUGbvGGZYofPWWIAulB2CMMxwxi18tdQaHhjDxColdv4XiPIUzviFMQwTgDHNdeior0FDOqrmjBsbprIpdg3mb4Zhhi/5miLaglDnl5WqpiyXd/ELYxgmCEQUWTAzro8xMwxTJhSiWhOrzhhm2KKuOcsHm+aMGxNPylI4YxiGYRgmN8WaYGDZjGGYfL9/Wyw0bkw8KUvhjD24MAxTDLilYSodrUOQgvShpPzPMMywJM8GwBaEOs+sVDNlKZwxDMMUBe4dGCYQ5NpgGGa4YEatQSLPiZ9kgoWzILBwxjDMsIVNtZhKRzdWKkh9tuKc8dfCMMONQVM6S+UrnKmu9NlKzhMWzhiGGfZwH8FUKsWqujyRwTDDlyFTOEsk8msBWCALBgtnDMMMW6SJxsTWhhLnhGGioRvq8PiHYZg4kTGmkzE2LtxOeVOWcc4YhmGKQYIIh0zpsZlaMExFUaQRjqU542+FYYYt+Zo1qnBT4g0LZwzDDGtSeZppMEwp0WrOeNjDMEwByNesUYXbKW/YrJFhGIZhKpSirTkj6UqfB1QMM1yJVXPGTYknLJwxDMMwTKWi89ZYwEEPD6gYZviSjFFq4KbEm7Iya/zUxC5sGBgqdTYYhmEYpiLQmzUyDMPET5wOQbih8qashLOGdAoN6VLngmEYhmEqg2KbGfJ4imGGL0lec1YU2KyRYRiGYSoVzfhGur2Ok1rTnknGO2IYZvgRqyv92FKqPlg4YxiGYZgKRR3gzBjRDACoT8fftbfXGWYtKzb0x542wzCVQZxBpHn9qjdlZdbIMAzDMExw1PHNyMYMJrbWxzqAknTW1QIAmmp42MAwTHTGNGWwYM0G1pz5wK0swzAMw1QqygiHKN6ZbZXaVAKfmtCFTCpZkPQZhhkebNfbiq1GDBWsraoGWDhjGIZhmApFXVRf6AX2Daw1YxgmTxJEPMmTA15zxjAMwzAViiqO8UQ0wzBM5cPTYAzDMAxToRDptxmGYeJi73GdGCiEG1hGCwtnDMMwDFMFJHiJPcMwBaA1w0GIiwmbNTIMwzBMhWJbc8ayGcMwTMXDwhnDMAzDVCjksc0wDMNUJiycMQzDMEylYltzxuIZwzBMpcPCGcMwDMNUKCyOMQzDVBcsnDEMwzBMhcLaMoZhmOqChTOGYRiGqVBqk9yNMwzDVBPcqjMMwzBMhcLCGcMwTHXBrTrDMAzDVCjJBJs1MgzDVBM5hTMiuo6IlhLRa8q+diJ6iIjeNv+2FTabDMMwDMMwDMMw1U0QzdnvAOzv2HcugIeFEFMAPGz+ZhiGYRiGYRiGYSKSUzgTQjwBYLlj96EAbjC3bwBwWLzZYhiGYRiGYRiGGV6kIl7XLYRYZG4vBtDtdSIRnQrgVAAYO3ZsxNsxDMMwDKNj9rhOrO8fKHU2GIZhmBjI2yGIEEIAED7HfyOEmCWEmNXV1ZXv7RiGYRiGUWjLpDGqqa7U2WAYhmFiIKpwtoSIegHA/Ls0viwxDMMwDMMwDMMMP6IKZ3cCONHcPhHA3+LJDsMwDMMwDMMwzPAkiCv9mwA8DWAaES0kolMAXARgXyJ6G8Ac8zfDMAzDMAzDMAwTkZwOQYQQx3oc2ifmvDAMwzAMwzAMwwxb8nYIwjAMwzAMwzAMw+QPC2cMwzAMwzAMwzBlAAtnDMMwDMMwDMMwZQALZwzDMAzDMAzDMGUAC2cMwzAMwzAMwzBlAAtnDMMwDMMwDMMwZQAJIYp3M6I1AN4MeHoLgFV53jLfNIp9fSeAZSXOQ7lcr5ZFpT5DofOgqy/FvH+x0whyvV+ZVMozFPL6MHWmUHko9fW6NMKWS6mfodh1uRz7pnLIg3p9lG+r2srASdAyKednKOT1PM7RXx+1n6q0MpgmhGjSHhFCFO0fgOdDnPubGO6XVxrFvl5XPpX2DHFdr5ZFpT5DofNQzO+pXMsgTJlUyjMU+PrAdaaMnyH29xi2XEr9DMWuy+XYN5VDHtTro3xb1VYGmmOByqScn6GQ1/M4R3991H6q0srA7znL2azxrjJIo9TXl0MeSn19OeSBn4HLoFzyEMcz5Eupn4HfI5dBueSh1NeXQx74GbgMyiUPpb4+rjSKbtb4vBBiVtFuWGFw+WThssgNl5EbLhN/uHz0cLn4w+WTGy4jN1wm/nD56Bku5eL3nMXWnP2myPerNLh8snBZ5IbLyA2XiT9cPnq4XPzh8skNl5EbLhN/uHz0DJdy8XzOomrOGIZhGIZhGIZhGD3lvOaMYRiGYRiGYRhm2MDCGcMwDMMwDMMwTBlQEOGMiNYWIt1Kh4gGiehl5d94n3MfI6KqXRBJRIKIblR+p4joYyK6u5T5KjeI6DCzrKaXOi+lhutMcLgN9idX+VR7+6uD2xp/iOg7RPQ6Eb1q9t87ljpP5QARjSaivxHR20T0LhFdRkQ1Pud/hYjqi5nHUmF+Tz9Tfn+diL5fwiyVBcpY+HUieoWIvkZErCxS4MIoLn1CiG2Uf/NLnaESsg7AlkRUZ/7eF8CHYRIgolTsuSo/jgXwlPk3MESULEx2SkredYZhGE8itTXDASLaGcBcANsKIbYGMAfAgtLmqvQQEQG4HcAdQogpAKYCaATwY5/LvgJgWAhnADYCOIKIOkudkTJDjoW3gNGPHwDgeyXOU1lRMOGMiBqJ6GEiepGI/k1Eh5r7xxPRG0R0jSk1P6gMtoYdRLQdET1ORC8Q0QNE1KscPt6cXXiNiHYoWSYLx70ADjK3jwVwkzxARDsQ0dNE9BIR/ZOIppn7TyKiO4noEQAPFz/LxYOIGgHsBuAUAMeY+/YioieI6B4iepOIfi1nnIhoLRH9jIheAbBz6XJeUKLUmSeIaBvlvKeIaEYxM10KzLpyt/L7SiI6ydyeT0QXKO3zsNOW+JXPcMOnrfGqPwcS0X/NfuvyYaC97gWwTAixEQCEEMuEEB959d+m5vWyKu+/AWBvABuEENcDgBBiEMDZAE4mogYi+qn5/K8S0ZlEdBaAkQAeJaJHS5jvYjEAwyPf2c4D5lj4EbNsHiaisUTUQkTvK316AxEtIKJ0sTNeLIQQSwGcCuAMMkgS0f8R0XNm2ZwmzyWic8z+6hUiuqh0uS48hdScbQBwuBBiWwCzAfzMnGUBgCkAfmlKzSsBfLqA+Sgn6ihr0vhX84O7AsBnhBDbAbgO9hmneiHENgC+bB6rNm4GcAwRZQBsDeBZ5dh/AewuhJgJ4HwAFyrHtoVRZnsWLael4VAA9wsh3gLwCRFtZ+7fAcCZADYHMAnAEeb+BgDPCiFmCCGeKnpui0OUOvNbACcBABFNBZARQrxStByXL8vM9vkqAF8vdWaYkuLV1rgwv72rARxg9ltdRcpjKXkQwBgieouIfkVEe3L/DQDYAsAL6g4hxGoAHwD4PIDxALYxtY1/FEJcDuAjALOFELOLnNdS8UsAxxFRi2P/FQBukGUD4HIhxCoALwOQY5u5AB4QQvQXK7OlQAgxD0ASwAgYE0SrhBDbA9gewBeIaAIRHQCjndpRCDEDwCUly3ARKKRZGAG4kIj2ADAEYBSAbvPYe0KIl83tF2B8wMOBPrOxBgAQ0ZYAtgTwkCm3JgEsUs6/CQCEEE8QUTMRtQohVhYvu4VFCPEqGevujoWhEVFpAXADEU0BIACoM0cPCSGWFyeXJeVYAJeZ2zebv+8G8C+zMQMR3QRjxvvPAAYB/KUE+SwaEevMbQDOI6JvADgZwO+Kk9uy53bz7wvICvjM8MSrrdExHcA8IcR75u+bYMx8Vy1CiLWmwLo7jMnmWwD8CMO4/w7AXgB+JYQYAIBh0me7EEKsJqLfAzgLQJ9yaGdk290/ICts3ALgaACPwtBi/6pIWS0X9gOwNRF9xvzdAkOhMwfA9UKI9UD116dCCmfHwZhR204I0U9E8wFkzGMblfMGAQxXs0YC8LoQwssEzRmErhqD0t0J4KcwGvIOZf8PATwqhDjcHIw/phxbV6zMlQoiaodhMrIVEQkYHb8AcA+868UG06yk2glVZ4QQ64noIRizbkcB8NQKVBkDsFtHZBzHZTs8iML2BeVKrvIZFvi0NX8Dl4+F2bY+BuAxIvo3gNPB/fd/AHxG3UFEzQDGAphfigyVKZcCeBHA9QHOvROGYqMdRl/1SAHzVRYQ0UQY/dBSGOPiM4UQDzjO+VQp8lYqCmnW2AJgqSmYzQYwroD3qlTeBNBFxmJjEFGaiLZQjh9t7t8Nhpp3VQnyWGiuA3CBEOLfjv0tyDp7OKmoOSoPPgPgD0KIcUKI8UKIMQDegzFzu4Op5k/AqCPVasLoRZQ6cy2AywE8J4RYUdjslQ3vA9iciGqJqBXAPiXOT7nB5WPg1dYkoC+fNwFMpKy34aOLneFiQ0TTTI28ZBsAb4D774cB1BPRCYDliOpnMKwTHgBwGpmOu0xhAwDWAGgqflZLh6nluRWGyZ7knzDXd8JQZjxpnrsWwHMwNNl3V/uEKxF1Afg1gCuFEAJGvfmSXGdHRFOJqAHAQwA+R6anT6U+VSWxz5aaH+JGGDa0d5kzTM/DWA/CKAghNpmq28tNe+QUjBmW181TNhDRSzDMs04uTS4LixBiIYxBs5NLYJiofReGtmi4cSyAix37/gLgSzAa7isBTIZh+vDX4mattESpM0KIF4hoNYLNXFY0sg0WQiwgolsBvAZjsP1SaXNWHnD5uPBqa46BMaC0lY8Qoo+IvgzgfiJaB6M9qnYaAVxhCqkDAN6BYcr5Gwzv/lsQ0eEAfkVE58EQ6O8F8G0YmpCpAF4lon4A18Dot34Do+58NIzWnQGG0HqG8vtMANeb5vYfA/iccuwWGOb4exUtd8WljohehvFtDMAw6/y5eexaGEudXjT9VHwM4DAhxP1kOPZ6nog2IVvPqhIyBNUYEzS8oF0jhKhW70QMUzKIaC8AXxdCzC1xVioKIhoJwyRpuhBiqMTZKSjcBvvD5ZM/RNRorsMiGA4P3hZC/KLU+SoXiOgxGO3086XOC8MwlUesZo1E9EUYi2C/G2e6DMMwUTFNbp4F8J1hIJhxG+wDl09sfMGc+X4dhjnx1aXNDsMwTPUQu+aMYRiGYRiGYRiGCU8hHYIwDMMwDMMwDMMwAclLOCOiMUT0KBH9h4heJ6L/Nfe3E9FDRPS2+bfN3H8cGRG//01E/zRt/2Va+xPRm0T0DhGdm99jMQzDMAzDMAzDVBZ5mTUSUS+AXiHEi0TUBCOY6WEw3FgvF0JcZApabUKIc4hoFwBvCCFWkBHt+/tCiB1N96tvAdgXwEIY3p+OFUL8J5+HYxiGYRiGYRiGqRTy0pwJIRYJIV40t9fAiPsxCkaw1xvM026AIbBBCPFPJcbQMwBGm9s7AHhHCDFPCLEJwM1mGgzDMAzDMAzDMMOC2NacmQEpZ8LwitYthFhkHloMoFtzySkA7jO3RwFYoBxbaO5jGIZhGIZhGIYZFsQShJqIGmEErfyKEGK1EfrEwAxSKBznz4YhnO0Wx/0ZhmEYhmEYhmEqnbw1Z0SUhiGY/VEIcbu5e4m5Hk2uS1uqnL81jAjghwohPjF3fwhgjJLsaHMfwzAMwzAMwzDMsCBfb40E4LcwnHz8XDl0J4ATze0TAfzNPH8sgNsBHC+EeEs5/zkAU4hoAhHVADjGTINhGIZhGIZhGGZYkK+3xt0APAng3wCGzN3fhrHu7FYAYwG8D+AoIcRyIroWwKfNfQAwIISYZaZ1IIBLASQBXCeE+HHkjDEMwzAMwzAMw1QYeQlnDMMwDMMwDMMwTDzE5q2RYRiGYRiGYRiGiQ4LZwzDMAzDMAzDMGUAC2cMwzAMwzAMwzBlAAtnDMMwDMMwDMMwZQALZwzDMAzDMAzDMGUAC2cMwzAMwzAMwzBlAAtnDMMwDMMwDMMwZcD/A6GmqvXWXRRTAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "ammonia.plot(figsize=(15,5), color='lightblue')\n", + "ammonia['Ammonia'].rolling('15D').mean().plot(color='black', linewidth=3);\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* Try different rolling window sizes: `'12H'` (12 hours), `'2D'` (2 days), `'30D'`, etc.\n" ] }, { @@ -91,21 +520,108 @@ "outputs": [], "source": [] }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, { "cell_type": "markdown", "metadata": {}, "source": [ "## DataFrame operations\n", "\n", - "Now you will use your knowledge of dictionaries you just developed above.\n", + "Last time we looked at some basic data frame operations. Let's recap some important ones.\n", "\n", - "We will show code for some commonly-used Pandas operations:\n", - "* shape of an array, \n", - "* what are the unique entries, \n", - "* adding and merging columns, \n", "* adding rows, \n", "* deleting rows,\n", - "* removing missing values.\n", + "* merging data frames.\n", "\n", "We will use this made-up data set, showing how much food is used by each country. You can replace these data with numbers and columns and rows which make sense to your application.\n", "\n", @@ -137,7 +653,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "#### 0. Getting an idea about your data first\n", + "#### Getting an idea about your data first\n", "\n", "```python\n", "# The first rows:\n", @@ -361,7 +877,6 @@ "source": [] }, { - "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ @@ -390,30 +905,10 @@ "\n", "#----------\n", "\n", - "Visualization: time-series, bar plots, scatter plots\n", - "\t.plot() has several optional parameters. Most notably, the kind parameter accepts eleven different string values and determines which kind of plot you’ll create:\n", - " \n", - "Each link is: https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.plot.bar.html\n", - " \n", - "```\n", - "\t\t\"area\" is for area plots.\t.area()\n", - "\t\t\"bar\" is for vertical bar charts.\t.bar()\n", - "\t\t\"barh\" is for horizontal bar charts.\t.barh()\n", - "\t\t\"box\" is for box plots.\t.box()\n", - "\t\t\"hexbin\" is for hexbin plots.\t.hexbin()\n", - "\t\t\"hist\" is for histograms.\t.hist()\n", - "\t\t\"kde\" is for kernel density estimate charts.\t.kde()\n", - "\t\t\"density\" is an alias for \"kde\".\t.density()\n", - "\t\t\"line\" is for line graphs.\t.line()\n", - "\t\t\"pie\" is for pie charts.\t.pie()\n", - "\t\t\"scatter\" is for scatter plots.\t.scatter()\n", - "```\n", - "\n", "• Read in a file with time for x-axis\n" ] }, { - "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ @@ -438,22 +933,49 @@ "\n", "You can quickly create visualizations of your data with Pandas.\n", "\n", - "But first, you should check if you are making the appropriate one. This website helps you select: https://www.data-to-viz.com" + "But first, you should check if you are making the appropriate one. This website helps you select: https://www.data-to-viz.com\n", + "\n", + "In the module here we will consider:\n", + "\n", + "* time-series (sequence plots), \n", + "* bar plots, \n", + "* scatter plots (plot one column against another column)." ] }, { - "cell_type": "code", - "execution_count": null, + "cell_type": "markdown", "metadata": {}, - "outputs": [], - "source": [] + "source": [ + "### Time-series (sequence plots)\n", + "\n", + " \n", + "Each link is: https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.plot.bar.html\n", + " \n", + "```\n", + "\t\t\"area\" is for area plots.\t.area()\n", + "\t\t\"bar\" is for vertical bar charts.\t.bar()\n", + "\t\t\"barh\" is for horizontal bar charts.\t.barh()\n", + "\t\t\"box\" is for box plots.\t.box()\n", + "\t\t\"hexbin\" is for hexbin plots.\t.hexbin()\n", + "\t\t\"hist\" is for histograms.\t.hist()\n", + "\t\t\"kde\" is for kernel density estimate charts.\t.kde()\n", + "\t\t\"density\" is an alias for \"kde\".\t.density()\n", + "\t\t\"line\" is for line graphs.\t.line()\n", + "\t\t\"pie\" is for pie charts.\t.pie()\n", + "\t\t\"scatter\" is for scatter plots.\t.scatter()\n", + "```\n", + "\n" + ] }, { - "cell_type": "code", - "execution_count": null, + "cell_type": "markdown", "metadata": {}, - "outputs": [], - "source": [] + "source": [ + "\n", + "If you have a single column of data, you may see interesting trends in the sequence of numbers when plotting it. These trends are not always visible when just looking at the numbers, and they definitely cannot be seen in a box plot.\n", + "\n", + "An effect way of plotting these columns is horizontally, as a series plot, or a trace. We also call them time-series plots, if there is a second column of information indicating the corresponding time of each data point." + ] }, { "cell_type": "code", @@ -470,7 +992,6 @@ "source": [] }, { - "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ @@ -729,7 +1250,6 @@ "source": [] }, { - "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ @@ -804,7 +1324,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.9" + "version": "3.8.1" }, "toc": { "base_numbering": "1", @@ -819,7 +1339,7 @@ "height": "calc(100% - 180px)", "left": "10px", "top": "150px", - "width": "349px" + "width": "348.99456787109375px" }, "toc_section_display": true, "toc_window_display": true diff --git a/TODO-module.ipynb b/TODO-module.ipynb index 54272de..4654d32 100644 --- a/TODO-module.ipynb +++ b/TODO-module.ipynb @@ -7,7 +7,7 @@ }, "source": [ "

    Table of Contents

    \n", - "" + "" ] }, { @@ -203,25 +203,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Module 11: Overview \n", "\n", - "In the prior [module 10](https://yint.org/pybasic10) you ...\n", - "
    \n", - " Check out this repo using Git. Use your favourite Git user-interface, or at the command line:\n", - "\n", - ">```\n", - ">git clone git@github.com:kgdunn/python-basic-notebooks.git\n", - ">\n", - "># If you already have the repo cloned:\n", - ">git pull\n", - ">```\n", - "\n", - "to update it to the later version.\n", - "\n", - "\n", - "### Preparing for this module###\n", - "\n", - "You should have:\n", "\n", "\n", "### Summarizing data visually and numerically (statistics)\n", @@ -330,6 +312,31 @@ "* Two" ] }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "* Merging and filtering data\n", + "* Learning about tuples??\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, { "cell_type": "markdown", "metadata": {}, @@ -363,7 +370,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.3" + "version": "3.8.1" }, "toc": { "base_numbering": 1, From 79b5c63905b6c4790d093432f6f8a486aaca2420 Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Tue, 27 Oct 2020 15:39:12 +0100 Subject: [PATCH 098/134] Working on code for scatter plots --- Module-13-interactive.ipynb | 517 +++++++++++++++++++++--------------- 1 file changed, 296 insertions(+), 221 deletions(-) diff --git a/Module-13-interactive.ipynb b/Module-13-interactive.ipynb index de9691e..2efffd1 100644 --- a/Module-13-interactive.ipynb +++ b/Module-13-interactive.ipynb @@ -7,7 +7,7 @@ }, "source": [ "

    Table of Contents

    \n", - "" + "" ] }, { @@ -79,7 +79,7 @@ "The above work flow (also called a '*pipeline*') is not new or unique to this course. Other people have written about similar approaches:\n", "\n", "* Garrett Grolemund and Hadley Wickham in their book on R for Data Science have this diagram (from this part of their book). It matches the above, with slightly different names for the steps. It misses, in my opinion, the most important step of ***defining your goal*** first.\n", - "\n", + "\n", "\n", "___\n", "* Hilary Mason and Chris Wiggins in their article on A Taxonomy of Data Science describe their 5 steps in detail:\n", @@ -100,7 +100,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Box plots: using the Ammonia case study\n", + "## Box plots (and histograms): using the Ammonia case study\n", "\n", "We will implement the 6-step workflow suggested above.\n", "\n", @@ -135,34 +135,15 @@ }, { "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "ename": "FileNotFoundError", - "evalue": "[Errno 2] No such file or directory: 'C:\\\\location\\\\of\\\\file\\\\ammonia.csv'", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mFileNotFoundError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;31m# If the file is on your computer:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0mdata_file\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34mr'C:\\location\\of\\file\\ammonia.csv'\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 7\u001b[0;31m \u001b[0mammonia\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mread_csv\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata_file\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;32m~/.local/lib/python3.8/site-packages/pandas/io/parsers.py\u001b[0m in \u001b[0;36mread_csv\u001b[0;34m(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, squeeze, prefix, mangle_dupe_cols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, skipfooter, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, dayfirst, cache_dates, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, doublequote, escapechar, comment, encoding, dialect, error_bad_lines, warn_bad_lines, delim_whitespace, low_memory, memory_map, float_precision)\u001b[0m\n\u001b[1;32m 684\u001b[0m )\n\u001b[1;32m 685\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 686\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0m_read\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilepath_or_buffer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 687\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 688\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/.local/lib/python3.8/site-packages/pandas/io/parsers.py\u001b[0m in \u001b[0;36m_read\u001b[0;34m(filepath_or_buffer, kwds)\u001b[0m\n\u001b[1;32m 450\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 451\u001b[0m \u001b[0;31m# Create the parser.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 452\u001b[0;31m \u001b[0mparser\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mTextFileReader\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfp_or_buf\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 453\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 454\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mchunksize\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0miterator\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/.local/lib/python3.8/site-packages/pandas/io/parsers.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, f, engine, **kwds)\u001b[0m\n\u001b[1;32m 944\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0moptions\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"has_index_names\"\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mkwds\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"has_index_names\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 945\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 946\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_make_engine\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mengine\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 947\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 948\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mclose\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/.local/lib/python3.8/site-packages/pandas/io/parsers.py\u001b[0m in \u001b[0;36m_make_engine\u001b[0;34m(self, engine)\u001b[0m\n\u001b[1;32m 1176\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_make_engine\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mengine\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"c\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1177\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mengine\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m\"c\"\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1178\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mCParserWrapper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mf\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0moptions\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1179\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1180\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mengine\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m\"python\"\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/.local/lib/python3.8/site-packages/pandas/io/parsers.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, src, **kwds)\u001b[0m\n\u001b[1;32m 2006\u001b[0m \u001b[0mkwds\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"usecols\"\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0musecols\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2007\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2008\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_reader\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mparsers\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mTextReader\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msrc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2009\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0munnamed_cols\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_reader\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0munnamed_cols\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2010\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32mpandas/_libs/parsers.pyx\u001b[0m in \u001b[0;36mpandas._libs.parsers.TextReader.__cinit__\u001b[0;34m()\u001b[0m\n", - "\u001b[0;32mpandas/_libs/parsers.pyx\u001b[0m in \u001b[0;36mpandas._libs.parsers.TextReader._setup_parser_source\u001b[0;34m()\u001b[0m\n", - "\u001b[0;31mFileNotFoundError\u001b[0m: [Errno 2] No such file or directory: 'C:\\\\location\\\\of\\\\file\\\\ammonia.csv'" - ] - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "# Loading the data from a local file\n", "import os\n", "import pandas as pd\n", "\n", - "# If the file is on your computer:\n", + "# If you have saved the file already to your computer:\n", "data_file = r'C:\\location\\of\\file\\ammonia.csv'\n", "ammonia = pd.read_csv(data_file)" ] @@ -175,10 +156,10 @@ "source": [ "# Read the CSV file directly from a web server:\n", "import pandas as pd\n", - "ammonia = pd.read_csv('http://openmv.net/file/ammonia.csv')\n", + "ammonia = pd.read_csv('https://openmv.net/file/ammonia.csv')\n", "\n", "# If you are on a work computer behind a proxy server, you\n", - "# have to take a few more steps. Uncomment these 6 lines of code.\n", + "# have to take a few more steps. Uncomment these lines of code.\n", "#\n", "# import io\n", "# import requests\n", @@ -201,7 +182,9 @@ "execution_count": null, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "ammonia" + ] }, { "cell_type": "markdown", @@ -319,9 +302,9 @@ "The key point is the orange center line, the line that splits the centre square (actually it is a rectangle, but it looks squarish). That horizontal line is the median.\n", "\n", "It is surprising to see that middle chunk, that middle 50% of the sorted data values fall in such a narrow range of the rectangle.\n", - "![alt=\"Boxplot for the percentiles](images/summarizing-data/percentiles-ammonia.png)\n", + "![alt=\"Boxplot for the percentiles](https://raw.githubusercontent.com/kgdunn/python-basic-notebooks/master/images/summarizing-data/percentiles-ammonia.png)\n", "\n", - " The bottom 25% of the data falls below the box, and the top 25% of the data falls above the box. That is indicated to some extent by the whiskers, the lines leaving the middle square/rectangle shape. The whiskers tell how much spread there is in our data. We we see 2 single circles below the bottom whisker. These are likely *outliers*, data which are unusual, given the context of the rest of the data. More about *outliers* later.\n", + " The bottom 25% of the data falls below the box, and the top 25% of the data falls above the box. That is indicated to some extent by the whiskers, the lines leaving the middle square/rectangle shape. The whiskers tell how much spread there is in our data. We we see 2 single circles below the bottom whisker. These are likely *outliers*, data which are unusual, given the context of the rest of the data. More about *outliers* later.\n", "\n", "\n" ] @@ -330,7 +313,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Now let us try getting a histogram of these same data.\n", + "Now let us try plotting a histogram of these same data.\n", "\n" ] }, @@ -370,16 +353,20 @@ "ax[0][0].vlines(x=ammonia.quantile(0.75), ymin=0, ymax=350, color=\"red\")\n", "\n", "# NOTE: the 0.5 quantile, is the same as the 50th percentile, is the same as the median.\n", - "print(f'The 50th percentile is at: {ammonia.quantile(0.5)}') " + "print(f'The 50th percentile (also called the median) is at: {ammonia.quantile(0.5)}') " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "All of this you can get from this single table which you can create with ``.describe()``:" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "\n", - "All of this you can get from this single table which you can create with ``.describe()``:\n", - "\n", "Which brings us to two important points:\n", "1. Tables **are** (despite what some people might say), a very effective form of summarizing data\n", "2. Start your data analysis with the ``.describe()`` function to get a (tabular) feel for your data.\n", @@ -433,84 +420,9 @@ "source": [ "ammonia = pd.read_csv('http://openmv.net/file/ammonia.csv')\n", "datetimes = pd.date_range('1/1/2020', periods=ammonia.shape[0], freq='6H')\n", - "ammonia.set_index(datetimes, inplace=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAEECAYAAAAxqm/oAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAABc6klEQVR4nO2dd7wVxdnHf8+5hd5BRIqIgJ0m9hJ7wwQ1dmNsiTEaYxIT9Y0pmqgxJmo0aiK2kGhiw0RiDRIsSESKFBEpIghIufRLudxy5v1jd8+ZM2dmdmbP7jnnXub7+Sj37M7OzO7OPvvsM888DzHG4HA4HI7mR6rUHXA4HA5HNJwAdzgcjmaKE+AOh8PRTHEC3OFwOJopToA7HA5HM8UJcIfD4WimVBazse7du7P+/fsXs0mHw+Fo9syYMWMdY6yHuN1IgBNRZwCPAzgQAANwJYAFAJ4D0B/AUgDnM8Y26urp378/pk+fbtNvh8Ph2OUhomWy7aYmlAcAvMEY2xfAUADzAdwCYCJjbBCAif5vh8PhcBSJUAFORJ0AHAvgCQBgjNUzxjYBGA1grF9sLICzkumiw+FwOGSYaOB7AagB8BQRfUREjxNROwA9GWOr/DKrAfRMqpMOh8PhyMdEgFcCGAHgT4yx4QC2QTCXMC+gijSoChFdTUTTiWh6TU1Nof11OBwOh4+JAF8BYAVjbKr/+0V4An0NEfUCAP/ftbKDGWNjGGMjGWMje/TIm0R1OBwOR0RCBThjbDWA5US0j7/pRACfABgP4DJ/22UAXk6khw6Hw+GQYuoHfj2AZ4ioGsASAFfAE/7PE9FVAJYBOD+ZLjpkBGGAiajEPXE4HKXCSIAzxmYBGCnZdWKsvXEYc/L972Llxh2Y/+vTSt0Vh8NRIoq6EtMRH4vXbi11FxwOR4lxsVAcDoejmeIEuMPhcDRTnAB3OByOZooT4A6HI3Fc8vRkcALc4XAkylV/mYZD7nyr1N1okTgvFIfDkSgTP/UWaTelGSpSbt1CnDgN3OFwFIWdjU2l7kKLwwlwh8NRFJwZPH6cAHc4HEXBye/4cQLcgsamNG4bPw+rN9eVuisORywwxormIeI8UeLHCXAL3llYg79MWYrbxs8rdVccjli45ukZ2Ov/XitKW058x48T4BbU1jUCAKor3WVztAzenLemaG05BTx+nCSyoHanJ8Dbt3bel46WR11DE9LpBKWsE+Cx4wS4BVt9Dbx9KyfAHcnx/LTluPaZGUVtc2djE/b9+Ru467X5ibXBnAQ3ZsHqWtzxyieh8wZOgFvQ0JQGAFRXuMvmSI6bxs3Ba3NXF7XNhiZPUDwz9YvE2nAmFHMue/JDPD75c6yt3akt5ySRBW4NmaOlEoztQElJAie/zQkWrIbdDyfAdwEam9JoTPDBdCTLZzVbExWsQFa4NiZoA3duhB5TFq/DlM/WactU+l/5TSH3Y5cT4Of9eQqen768oDqamy3v4DvewhF3/7fU3XBEYM2WOpx47zv49SufJNpOugjCtXk9Nclx8eNTcfFjU7VlKn0VPDBtqdjlBPi0pRtx04tzSt2NorJ5RwNqQmxpjvKktq4BAPD+Yr3GVihOOY6PlZt2oP8tr2Luis2R66is8AS408AdLQLGGOoadq1gSIwx3Dbe07zDNLE42kqaXeUl8e7CGgDA0x8si1xHRcoTzc4GrmHCJ2tw2h/ezbzl3l+8Du8tqlGWJzeLWTKemPw59v35G9iwrb7UXSkaOxvTmOxr3jY28HcW1mBtrV24hyTdvwOam+kxKq38hX6FRF+schp4OD9+YTY+XV2b+Uy95PGpuPSJD0OP21U0iXLiHV+rmbFsY4l7Ujx4hcFGA7/syQ9x7p/+Z9VWUSYYd5HnJlipXV/AxHMQN70x7TTwDOIgDR6QMO2DMYbX5q4qipZiy7wvo9vZmhMd21QBwC5lRuGHa9iDLPLFhu1W5Yujge8aBOtE6hv190z30qxKBXU4DTyDOEhTvgQP0z5emrkS1z4zE3+ZslS6f86KTfh09ZY4umjNqAcnl6RdRzKovjAaQoRBQFRNuhjmjV3ly7VVVQUAzwSmQ3c9gknMMC1+FxPguVcsZaiBr9/meXCo7K9fe+h9nPaH9wrunyOcli4Dvv6nKZm/+eFqakKJqkkXQ7jOWr4RS2q2Jt9QiQk08DABrnPdDJTLMPfOXVqAB+vPQuMNlNnsZVQta+m6bTH3pHgEd2BXWgzCa8X1TWmjiczIGngRLus1T8/ECfe+k3xDJSawX4eZUHQv28y9D7kvu5QAFwepqQYuJmIttQiJ+rAd9/u3Y+2HI1nE+/z7/ywIPyZiW0kt5HluWnKxVcqV4CUqu6aXPpFdwGNyzcNMW7uUAOddcv7x4ReZQDFNIRey3DJpl/oFUgqozL6CioF4nz9bG/4FFVUOJyXAbx43N5F6y5ngSq6r3ZkXwuK9RdkFWbpLHuwLuy27lADnB+kzU7NO9mExkJ/9sLCl93GzK5kRRG54dlapu1A0xPvcZOCJEnUy0tLJxaEhuG1fbq7Dz19WZ++SvTQXrqnFYXe9hSmfrc+pS8UuJsCzfxMXWzDMWf6TVaXxMFGx64pvj13lBSaepckEpc2l4W3qxYiFsqvAv0T/M08dFlh2zf8yZSnWbMmGvQi7K7uWAOeegLkrs/7TYSaUcmNXf9jCXrgtBfE2x33fb3j2o8zfqmdg285GzPxi11k8FQu8oqix/MmGcQch21csCR2IaCkRzSWiWUQ03d/WlYgmENEi/98uJnVF5eFJi/HGx6sKqkP1AIgmFP6iyYRFqeXnW5+sLW0HSkySIU/LCuE0Gw1cCY+yiDrJJ41QvRR/8NwsnPPIFGwsQgiDz9dtw8OTFjf7LyxhuaC6nOQ8O7au0tSVj40GfjxjbBhjbKT/+xYAExljgwBM9H8nxu/eXIBrnp5ZUB2q517UPvifhcQzSIrr/l7YdWiO8I9BSxbgvMYm2rNNvhTXRxS0KgE+z/9S3VbfGKleG258fhZ+9+YCLF1vt4q03GCxauD6tgoxoYwGMNb/eyyAswqoqyio3uzi4OV/7Wwwn91p7ppDc6Ep4ch8pYR/3vNMKAm+uFQCPOV7YBVjkrNttSe8lq5vvusVgNwvfZ0Dm8wiUJWXrjEeN0IG4D9ENIOIrva39WSMBTaN1QB6yg4koquJaDoRTa+pUUf6S4rlG7Zj4ZpaAGoNRhycvCCus9DAS6UYflazFf1veRXTlm7I27dq844S9ChZGlqwywTvLvnjF2bn7Es2W458e+BCW4x5oiCKn4mpqJzhe08aE4pMgOetOYlJAz+aMTYCwOkAriOiY3MbYQyKVwVjbAxjbCRjbGSPHj20jTz74RdYvzXexAPH3DMJp9z/LgALEwr3t0wD//M7n0lTlIVNMj36zmc45M63Mr8XranFyk2FC9jA5eifH63M2/eNx/WZP5oL/KdoS57E5B/fiZ/mznUkOXmtEtAVZBbW1Ib6xjQG/vQ1vDhjRWx1lhO8Aqgzodz56vzM341NaTDGMmFkM3WFtGUkwBljK/1/1wL4J4BDAawhol5eJ6kXgIJm1havrcUtL83FD5+fHV44IqpP0DwTCvdTtXx59Zb8eMvBA3bTi7Px8KTFeft/8/qnqKndmbnBJ9//rtWkk4pW/meXLOBRWFbr5khLtoHrSPLFpRrnGRNKjC+PzTsa0Jhm+M1r88MLN0NyNXA1L8/6MvP3wFtfx1Vjp+eF7ShYAyeidkTUIfgbwCkAPgYwHsBlfrHLALwcVpeOzTu8SZIgNncSqAZhvg2cZbbf+IL8hUKSSIbBn89PX4Hfvale9ryzMY0Plqw36nNTmuH1uav0oScrNZHLWqCsSypBc5JjzxSdxpakAL9E8aUW5GaMs+1sCAt5nSZrbhljmLNiU2x9ipWcSczwswme7f9+mq8Dx7GUvieAyUQ0G8CHAF5ljL0B4G4AJxPRIgAn+b8jE8R5bl1ZoS33x4mLIrehNKEoNPCFa2oxR5HXLrgt/GdQmJYS3Mvt9U24cMwHof0FgEff/QzffWYmXp2rdqGsTKnjD7cU+Z20F8qUxetw0G3/weRFyeaeDENnM01SgPNjJ0ieAWQDucXpC37LS97yetXprDMwoz4z9Qt87aH3MWmB/sO/vjEdGlQqbnihaxIBYuvOrIePKEIK1sAZY0sYY0P9/w5gjN3pb1/PGDuRMTaIMXYSYyx/Bs2CQIC3qdYL8HsnLIxUf2NTWu0Hrtiui0IY7Porl/fusif12Xza+nGCt1u4ZK3Y6NnIN21Xa4cP+C812Wdw3J4xj7+3RDpZmhSrN9fh23+djq07s5PJSUxyfeif04dFPDcpZRDy5Z43Ps38HUyq3frPj2Orf8InawCox2Yg4FVs2FaPn/3L68+ykAibw371H4z49YQIvYwOf1orNu4IfYHkCHCI1gA9ZbMSc0cgwKv0AhzwbNkPT1qMzRqhJvKj52crbeCiAA9+GsWw4g6dtlSvpbTx3aS215t5tsxftQV/n+pFc6vUdGbxWi/Gcr1EsMUt6u54dT7O+7Nduq5CuH/CQkz4ZA3emr8ms802O01zogzkd0bTT6dZzorluN0Y87RNw+Nempmd/Azr0vb6phwBWQzE8wr7SuDPIV8Dj8eNMHF2+EItcCXiEUNSTlu6Ab97cwFuHjfHuP7xs79U3uz8geRtSGmEZlCXTfCgQAibJqjlP2VNIiKaZm2Jg2KlNpN9BLVoLxTNbS5WQMbARCXaZOM2XelMjjrBxX8Zl2NYCZVCqEI2jxbwt/8tw+VPqb/sy0aAZ7ReiaASQ1IGKYu+tPRxVt1scStj3ktj0Rp19pBAG4kyfkyP4YVkZUX40yvTTJMa349IvGwK5V8frcTs5ZsyvxljeHZafiRImwS/phRjqXhzIXhBrhEy28f95aO7i7p3BS8iylB+S85L30n+HEQZNX3ZRry9QL1+plK5p0SYKBltfTv55h12XgNKAS7xAw+LYxzUFWX8mA66JTVZ+15FKvxdK6s3qVyHtQl8lv7guVkAgKV3jwKgTmEXt2EonWYY+79l4QV9Jn26Fq0qUzhyYPdY+wHoJzGLRSCoN2zNvf5xvzh12nNjOo2KlNycyn+NlqMGbjsRye+3PZvy0cAjPJRb6+yEiOpC5mvg4X3JmFAsBlDw5Wcy6BasrsX42Vk/UZ0NXEdS47sYz82qzfm+9kD8K16Xb7SLvXHFX6bh4oQWSJVD3oogVIG4ClnlvvnM1GWYJHGBC0M3hnTKPv+VXn7iGxB7tXpLHb76x8lYI1k74pWOLsHLR4D7HTcZwJlsFRHbEFkjCAqTeguxw5oc+bkwu14OWYH4SaxixH3ZptDy455MizrJdeGY/2GRH6YhLnR3eeGarZircGuV8cJ0dSKS1YqXI5C1dY+bsVK6XeTWf36MK/4yzbhfAbohpDPXVJS5DTzPjv3BMsxduTnjOaMrb6vIlo0ADzD5hIxqFlAdd8tLc/ER5+dqMiaYhQll7ZY6PP7ekky9JoNOLNPQZL74h0ds6e0Fa7UPrw7+AS7GY6NqI24N3Ma0y7+4PliyAb965ZNY+xK28ONZixyTd2lWOvK5GUWa0gzLN2zPW21887g5xhPwJuRP9mV/m2rgSQb4iorYoyAcR+A+KcJfh0ffWWLVVtnYwG1uQ9SXru64wBXPtDNB7AiTvtz4wmwhF174QaKG/+MXZqOuIY0Pbz0xvEEeoanLn5qGnh1bYepPT7KrB7kDLUnNZ/3WnejWvpXa5BVz2zaBmsT7YhOt0oQw9aXWwmy4bafaU0hlngK8F7UsjPLbC2owe/kmjOzf1aj9MDdf3VXXaeD8NSpD+Z03bneGeIfxxZeE+LWLlJ8GbmNCsXyQdaV/8uIcrpyBhmzw3AYmAPEGmnRbFBR1vqCwlV2yc+FTNtnAa+Dig/Plph24f8LCWITrwXe8hY3b6pX3Ie6HtknniBvStk20SiNCxr/Ncn9paIVgn0aopEh9jTu3rZLvgJd0hTfxXPiYfrWxTglQvVSXb9ie86yWowlF7FN9yBgp5BTKRoDbnETwYG/c3mBlDjC92SbFTOoa/fD7AIB2wupSEwGksrHrbOHTl21ETYLBq/g43KKgvvaZmXhg4iIs1Lhe2nDun6co37hxP7Q29Yll4/aHD5vr0GlzNi9PnXBPEUW6xr97cwFGPzw583t+SC5ZXROq8b9QmHMoRw38+n98lPM7VAMvYDyXjwD3n1YbDRzwQrsat2F4nUyKmbgkBmaZdq1yLVWzlm9EGMrY5SEnwXuueP0JbcoY/rNW/AIJwgPE5bb4Wc02jQ08ZhOKhRQQm94RswDPD+ifiy68g+llCQvZTKTx2GLi79wNvA3fZFW1irAEE6r2yxEbE4otZSPAbTAJ96o40rB+ext1gGxza2Eg3/Xap/mFDOu3WdXl9Ud/QF1DE8bNWGF9znkxG/yfOgFji6kQKRSbibB8DTw7/l6etRIn/P7tgoRKdYgA16foMmv31D+8G9KGWgMXL5XoG96WG+vtW0efYlN+gVqGWw2Yu2JzrBOwKqLc+xZhQrGBFx42gY3i1cDl22UDL4pIiyrATR/iv/1vKTZtr8f9by3EjS/Mxlvzw/14c7xQhGaCduN0dlTbwEs3ialbJn3j87OxZN22gpaciwH9RbQauGEb67bqV52mdBq40IpoiuGD0dmOBb5m2fiva2jCY+/lemmYjoWvPjQZvzFQnAqlLsKkdiHjuWy8ULKYxM/N/m2TXsv0MkVx89Ntj/I820ZOVLWlKv3zl+fhnYU16NquGgCwYVu47bxJM4mZ9ePXB93q06VN3heJCtWpJjqJGYKuaEWK0JhmaGxiiGo9qAzRwBmApeu2oX/3dvn7YrouKSLjrx9xcU/bkGiipsjuyb4/fyNvm81YiDMkrgqbSKMBLUIDt5vEzFKI/bKQcqrPblH7qqndiXEz7VNHqU00YQJcrSGKbNhWn7G5msRMzjGhSMIPAPIIjm98vAozlm3ESfe9gx89Pyu0HbFOkVJOYuZ/Imd/BxOQhcQMCbOBv7uwBsf9/u1ct1efuK5Lisj460ccpmEvIFPEryL1F6n5ORcjLrhppNGAf320Ei/MUC+4CqNsNPDgNphNYkY1oZiVPeyuiaFlTE0oKyyXaQPAa3NXYeVGeaCucBu4XVsZAW5wHXPdCOW2dpkGfs3TMzN/T11SeLxt1X1cum4b9ujcBtWSiJY6bEyjYRo4UFi88g6GduOVm3Zg4G7tc7Zd8ZT9akgZNpOYupdGIdMh4jVUCfCpn2/A6IffxzPfOgztW+mvXTFs4LYrtIP4P1EpGw3cRvLwJW1uSpx6m9LEkZeezZyFa2qxbWcjrn1mJh6f/Lm0jO0kpo6ZX2yyCnGbs1JOYUIJa98kqqKsPR7ZM7JhWz2O+/3b+OV4+8QDTRYas05gBQLcxqwnEiaEAmR9/l+ElboqorrcxjUHokpzKDJr+SbMXr7JKBaLznUyLmzmU+Kg/DRwk7K8DdzipsT56a2q64GIKd8enLgI901YiNHD9ojUbna/XbvBi8Ikljhft0oDD+tfmImAR1WTrIlggcvkxfYp0ew0cI0AN8zgXt+YRmWKpKGTTV/ASWQlClixcQdemSNP4RfmRhgXeYaqkGZMzFam8fIbmtIgRDMHFdutsWw08EBztTah2EisGK+t6iH9y5SlOb9NNZL7/FRxfBIHGbY2cFNMXoR83aoHLOx22Ahwm4U8QQydKKdvozXpipqaUAb/7HXlXIDpcE46qYW4niAgb45Fcfzs5ZusV/zyVdu6w5rEUDIxEwLA0b/9b+Q0bMVeWFQ2AtzmvPmyNg9snKmV4nRJ5NHlvjSpL+oA2mkrwBUXIOwah7nJ8di4ERZiby3ED5ynwsIc9a9ZcgFp2hNTxWWVZdKTANU5iK2qrscFYwpLu8fXeukTU3F/SC7c/3yyOrTOsCXtAWu27MQWy1DVATYKVMcC/OQDykaAB+NR9iYV4y/kvKktROT3/v5RpL7JKFVar7BPtKifcCaf5LkaUu6+YOCe88gUbR2VksQUY6csxQn3vq1tz2R72D4VcboRhtXHvywee3dJvq3X8ARM+/zjF2YblRNReWzkeR8pumHqKqqCr/e9Revw2HvyOaGA1+auDvUyqW9K41tjp2PKZ/lmts9qtuKzmsLDQNhMf4RFnjShbAS4buCKS3LPfzTa2z3OSYzSiO9wDfv56csjfWkYuU7mTGKaPcgiMg38l+Pn5WQfCvjbB/IsOUku5An9wskTuNm/sxPC6lr4MXjna/Px74ihD0w18KjRElXLv8PWGQQyqXVloQLc/h5vCQn0VdeQxlvz1+A7f5uRt+/Ee9/Bife+Y92mSLGDaxVVgO9sSEv9V4HswP3bB8swbekG9L/lVSxbvy1nny0zlm2MdqABpYqCFqYpr9myE89J8kjGQe4kprjP7HrY2MBVuQDjjwcejw08ZeAHLgrGLzbkupmaXkfTPkddFarW8AXbtKKcGEvclii9DjM/BkTNbmWC1XqWGGRIUQX4wrW1OOk++VuOH7hBtvn/fea5RenMJLpr8PU/6T/nC6FE8hvXPJ2vPYisCwlWFBWdDVx1OcQH3MaNUEXwYo+LOSvNs9zU7swVEvxXcGVGgGs0cEGAi0LHVICbuirGnojYoHvBc1sIjU3MehyHaeABJvllo2I1IR5De+VjQuH+DuJoBwsydEpEsQXpU5cf4rfrNdy7c5uiti9qbDKiiEiTuYRcoW0WFU4UZnGkhvvjfxfnhRUNBGkUrebvU82z3Ix6cHLO73Vb6zHvS+8FEMQp0X0liWY88XKYdt/UBh63u6HJJObdr6szAZly52ufYOQdb1klLjc91yQ18Fv/qU+GnkMMt6ZsBDg/EIJMIq18O5p20qrI1uhu7av9dj36dm2DVpqVfyYPZNy+o3UNaTw8abE0q4q6D+FlorxIxQd8wepafPfpGRkvh+UGLyQZawUXtTgmhKIy6sHJmL18U+a37n6KGrjY7dgFeMz2Jt0cAODl7Zwt5O2Mcms+XunFEreJt2769SIqEXGmZZv3pT4GOk8crZbPQh7ubLbV52rgpZsyzCfQsoLBwphn1w2L+asj7hViT77vzdj37do21np1A12257OardgupPVat7Uer3+8GgtW1+LA3p1w+VMfRupL6yr5S9N2pKgyrdvy4owVmZeITh7kC3DhS8Y45LFZv+I6v0y7wm8ToblX93b4zrEDcPM4C+3Ux0Zb1uXY5BEtKPdOWGDdrziIQ3ErIwHO21e9f99fvA5rttSVzN4sI7DhZpaOQ28WMNE+YjZTZuiiSX8VBZ1gkl0Ck1n9zTui+duq3NRsxspvXp+P4X27RGpfhP/U1z2Yon+1OD5MlUFTbTNuDTxvJabhcWbJyvOReYyYVqA6ddGV9blp2WBzxVxJ2aI0cNnFDlY1BiFPZRRbuFcIGjgYMLhne0xbKvd4sXXPixMx+H2h6Ad3tLbiemCi1GObAVzbPrJXwKYnomAzPY+4TS2mmPqB81Dmf/ZMt/AkE0/1uN9PkpYTlY1c91jj5gpGF7nwxWuOwLl/DneXLhsbuH5xht2ne5LkpXQCQ2UqhQtG9o1cZ1ICPO5a+cEtvhuiviuiBv/Jj8nh/xvTWX+6egue8k1RpgTXQHc/xV0yDfyYQd1xx1kHatsyPc+4x5aYUMH0hVOMGQrxXJdvkK9CFTVw3foGG+KMdrjP7h2MypWNANcOet2BJdLAb3h2VmYbUWGCY66FG5sNUX1S73ptPr75ZL5tWhs61KpnXJ0RVR51TtKIHRE47Q/v4fZ/fxLpWJtJ9zwvFHjzLN84fE9tZELTy2aT4u7/Tt83tMykBTX4Yn124tmkG8WaYDa99aISlpuoJPoAijM/qul9MxbgRFRBRB8R0Sv+772IaCoRLSai54hIbecwQHfZyskGzl/XpjQzDuKk4+LHphbWKQVRFzKNeXcJ3pUE1Uoi9nPUeytq7rb1JGnrtNLAJSaU4Fr26NAqUhu59Ydz3D49AAC7dVS3V3A/JAMkLP9nUn2Zv2oLamqzXky8ElHIsGiK0WUzdgEO4AYAvIPnbwHczxgbCGAjgKss6spDayYpIwnOX9j6xrRn+9Rc6yT7HuZTff9b+gBAtvCnMuGTNTkuXiaTVDKim1AEAW75BWTabNJJamV+4MEYC3Y9eunByjY+Xb0FkxepQ+iGab+jhvRCx9ZVfntm97CCW4xVyPAe0qdT9IMl2NyrQ+58K1OeH4O6SV/GGF6ds0rp2WNzKY4e2F2733StkVExIuoDYBSAx/3fBOAEAC/6RcYCOMusSTlRTSjF9gPnqW9KexoT1DkEk5wUiWNRTIBJN8V79NB/F2f+jqKB1zU0WaegChCfoeA6m15uU23NdBKQ15y1K4fFDcKFSzOWFaNBXBGJx00gfE77w3v4xhPqL7iw+1KZIqtsWMExfH/DUFUrHlmosrN2y06rgFSBzzbvBabTol+ZswrX/X0mxrwnn/w26X+ryhSW3j0KB/bWv7xMX6amGvgfANwEIDjVbgA2McYCH7AVAHob1iVFe+7lo4Dn2M94DbxYGdR5klxRJkOUZXy6OL4nJgOZMeCnNqvW8voimlDsrrNx3G2LeoOHTucWKvZTvIOMZbVmUpQB9P2/+5yDMovLwoRyFE8l/pBChnfcX6e3vDTXKiBVY5phbW1dzjoM3f1e48d34c0vPFbeRyGX3fS2hApwIjoTwFrGmIVDZs7xVxPRdCKaLtu/fMN2NKWZdkDa2BSThr+ungYedERePkkBHreboIiofept4LxWZlb/p6tqwwspUKWuM73cUVOGqWhKs8xktI0uIto605wmnxHkktus+zJgXDthmlwqRfaClCtekACPfmgspBnLC42gu66BecUqKYmCsCfX9Mk28QM/CsDXiOgMAK0BdATwAIDORFTpa+F9AKyUHcwYGwNgDAC06jUo5+qs2Lgdx9wzCdcdv7fdZ6fhvrgZ0L1dzgPXkNHASd2PBDsoS8kVJ3UNTWjHeUIYp/tKp1GR0ocTJQLqLJb6i6hycppe8Lj9qF//OJtQoBA3QiBrFw/+lQnh0H4xdf08/FecqbcIy/nbwISiqLbUU1uMsTxtWuc6Gti+VV++NucTroHHZEJhjP0fY6wPY6w/gAsB/JcxdgmASQDO9YtdBuBloxY5NmyrBwC8u3Bd7EH6k5g8nHjjV3IufH1TGvBtljYJeOMiThOKrPuiX6vuXGw/qxetrZXGADcl/1PX1oRiaAP3y9XWNRjHbdGPPb0JJe3PqXj7NBq44UsibIREmUfh649DA39u2heRY+IUgiy09SNvf6YsH8R5V+XKtJmPC/syMr0rhXwL3AzgR0S0GJ5N/AnbCvgUVDp/YJ1/ZSGC860fHRteiIOIcgW4H9fCs4HL0U0wFUrSGrh4aXVCj/8yYSz8BRolLobYl43b6jNL2DMLeQo0oRAR1tZmY1kH4/KcR6bgmHsmGdWt64MYMydvYRjLeiBkTCkA9hUWdoT5zwfCJNDkGGMYN2NFXnCoihRltHlTkxwvqAoxETLGUNfQhJvHzcWFYz6IVSM3WV9gOwaD61Sleu5i1cDN6rES4IyxtxljZ/p/L2GMHcoYG8gYO48xZhy8N3i4A1tSY4gNXMfMLzah/y2vZiYYAkw+fXt2bG3dHv/m3OmbUIDSfA4mPYkpnpJJOjHvOBZ6PcLSX4Wxfms9hv96Aobe/h+/TeT8G4bqXAi58TeCcbRIkYjEpu61W+pCff55DZzv1Os3HJOzSXR3y/Fl5q5/UNO4mStx4wuzMebdXA+Kbu1aZRSkNtVm4iBHAzcoTwp9c86KzZnwyBu318fmUcYYS2TuKYjBXqGIaS+2+N5NxyvrCrWBJ+AHHhvBWMsEwG9Ko6nAiE7ThVgkRu5NESYBeZn50RcbMWfFZk/jtK6pcGxW2YUhe3jy414In/9c+7muZclfDzHXY1wLeRiypj0gmp+6ShB9uVmfpWbB6lp8VrMt83Rn/cEpb6yKCsohd76V8zsY/8Fhc1ZsAgDcJyQH/u5xe2OH78ppmgYtxwZu4nGkGQ2n3P8uAO9c02loV5+aUt+Ujry+QEfgYlilcNIWm9QtjIqrdyUR4BkHen8QNjSxgqOmidk4CvFP1cELzTte9dY1bdpeX5LFRr27xJdMYsayTXnbbNKmVQi+wcVOORcICdP7oBpujLGcHKxR9ApV3bq48QBwyeMfAAA2bK3P2S770BKv73rupcMrFNkQt/md6tmxFaorU6jzv4ZaVxsKcK6uuG5z4Iobh05S35hO5Is4kFGqeQPxRaWzc8f1fJRGgMPzcDjZf/s2pVnBUdNqBQFuUl+UwSI7hqH4GvhVR+9lbAJSxc7mmb9qS94iCHFA6sYc71rF0sU3KWVs4IbldbFU2nCCLMqDpnqJyAQ4X3arkIkqmERuJVnI05hmyuTVfOvBcNWdRp2vgYvJw1XwdZmYlkwWpVSkCGkWz+K0+sZ0IgpEkJ5OlpgbMPMwUpWNSolMKCxnMqcxnS5YA98mJA7QaU4/OGkQTj2gZ6Tl3zKzCyuBBG9dlTLufbtqs8/S9YLmFxZf+R0uXoqogRd7haztA6F6wB+atBgbeRNKhHF5w7OzpPkcZSYvvht1Qgb5jACXCP50muH28fOk7RNXr4mSct7IPgCAPSzTAzLG8H8vRZuMFvuV8j0B4jALxqEQyghStqlyaoot6s6kmZtQcj8L6xvTsV9w3Rv4nOF98OilI4018Me/ORJjrzwUgEoDL43AMlVW+nXzMvMM7tleW66hKZ2bmEDYL17TDdvqM6nEeK2EofgauK3GpSu+lIu2F1WTmyukFVPVNebdJUqNPXBbkwnw1VvqsEaxIrCaKx8oKbqz+NYxA/D5b85ApzZmCUBsPX5kiII6Rd71iUOAMyTjvhucr9IJRTNHJBLXF0LJEjrw3W9Ks4Jj6YqXQ5f8N7vSzazuQ/p3RSc/u02YFlUsmKIvMtpWV2Dp3aPwWc1W7VLjhqY0bn5xTua3OMhkrlnrt3lCRNTAS0XcKzGjKhadJdmQZDXV7mzExyu34CAusFNQLljiLYuF8vaC/GiRAXyUP9MxbjOhz8CwaE1t6KQs34f2rXNFTYqAppwy3mK4OAIUMhZvnkubdnl0ClZcj0hJBLjnJ5z93cRi+OQRrsjoh98PPcQ4YAw3qGRHiOdTLGy9aPbu0R6d2lQpM303NDGs4XygxXOSmbnqG71tfJD8NAt3I4wbexOKaTm1rVmHPACVvGx9k3ydQ6PGhKIjRwPP+IHnl4saQZIxZOavTBnQvV3O7+qKFBq4864gQpqxWMJDMDBMXqyO0FgsdM+nyWT76GF74OVZX2rLlMwGLp5A3Ln7dNhq4LymK9N6S+J1wcwmJwHzB7WxKY2dnB1WPCNZGM1gYkdciVl0k5KtF4ow3g4f0FVarimNjK+5VX8k3VD1TfXxGZhQqm0FOK+BWx1phu2d3a9XRwzq2QG/O3dIRpCLE7MVKcoJ5FVQ/xhw/T8+KrieKO0GXH5kf21ZE3F37XEDQ8uUzAtFHMuFauA2R4vxlsOoyIkXoWi/2BonGG46LTyDig0NaZYTmU0UcsskZqlGSfjN5qCBi+V/dPI+0nJRJ8SkfvWKso2KGff9enmrL20FeBVXPjt247shti6zvznnIADAeSP7ooNvZxe/Koi8euPwQimFAW/91p05K8avP0EvfHWX8JzhXmBXk0tRMj9wXmMlED4uMK0Yf0GmLd2gLStGewuD17qlk5ilsIEzoFObKqOsJqZKzY76Rml8CMBz03zq/aV522VzF4wV3w7OhH9FPvx8A56ftjzzW+yf6mH57jORgnAqNHB52W8+8aGQFcb7+/FvHoIXrzkCrQwX2ATwE8qVCpe3QrC9s7w5qcH3PhNfSis27sCSmm3GE/M64lqToQobK+PgO97CRY99kPkdNj8ljr/Ljtgz8/ctZ3iKmYl8KtlKzJxJTMaw1uJiBfz5G9lMJbzGc15INudssCAz+EElncQ0MBjwsSzEuBbFRDcm7p+wKOc3P8Z2KBIvBKYvvqznRlhcMg+touHzH/0fbhqnnqBVPSzL1scTZOkHz36EiZ+uke5rTDPpvESntlUY2V9u2tHRo312BWCwQlZqA48oLAuRj/Uau37tzsZY4vvEpTt843G7OEb8Cl6VAFdtP3pQj8zfgXwqWw0cgoYW1XxywB4dM3//Z94aZaojEVsbeI4JRbLfZBLzzrMPyvx90aH9zBoGcKjiAQ4Elq2o1J1yjeC7nBu0SH5MoIHzZUsxqWvbnHg+cYdW58//45Wb8a9ZX+KeNxYoy8e19PvwAV0xqGdWQRAzsMdD9L4GMXBUXxVJx7i3Yen66NEySXHZA1GiS+yRDSdcpho4Q64KHocP+KK1W/EnTShInuCymJpQKGQS07Pp688hqm3voYuHS7fbPO9RJ4bSglYtI5hoEzXwwD+8WIydstTrh2F58X7FGVfG60e2/jP/OFlT0iOudRCH7tUt53dgQplboImSp5B3zU/P2Bed2lShVyf5KuJYbOAxKQ+FmAHDNHDxdud4uhHllNW2E617hZFm8Tjai+f35eYdhgfG16YpvGZhZaMrokKiC16lXnqeL8AZA7755Ifxd1CDzt1qlWRc5D1ACWrgJsS2kE1ouDJFWLZ+Wyb/YyxNFHDsaQf2wuxfnpIz0coTixdKTAa8Qu6Jajyp8qbynmIklNW2E6FvBcNiWmqd/3loqFEXIBXlS+nDz4bvahzPambSzqAu07MVqzqXm0sIayeuGNFJ8Kt/f5K3LX8SM24N3I64BLhYS4ooJ9CVuC8K876MQZtXnG5cC3niIC/rk8VdVV3bCtWchGSerXwFOOIRYh2E1V3mq84Kb5vHs/mam1CCkib9UL1s7Ewo/N+6xQW5vzdsq8fMLzYCCBfKuSYU877FAX/tZWcnW4gjBu6Kf0zYXQT++hYigMRjdVWpgjKF8cPnZkc6jkc1nuJaSp8kRoJVUYhUJpSch1RfR85x4V2JHxOBZ0JbIfyl6a3XlWtnGFKThyF80PAmlMD+179bO1XxDKp7KLqHmcaxsOWcR6YACBfK/O5ih9YNa662LivAg7597+8f5ZQptQYe10K2/AiS6npVqcGKgapbsQjwMvgCVJlQTCYxqfwFeDwLPaLay1T2NwC49/yhOb+H9+scWp/n164vw7tHnX7g7vjrlYfm+H6qUJ3hyfv39Nr2fz966cGKkvGY0XUpyHI6guQ08HHfPUK6PezrgI982SBZeAQkIMBLZAOXaeDbd8pdQJPO6KRDZY6IxQ+88Cr09Rs0ED6JqTbhiSaU7u3ViSHKZiVmHJg+g6rYEkTeJAsvtK8zWM5qciq8Bk5EOHZwDyOfV9lL6pD+XXCI4F4Yx9eHjjCtJseNMKFH6OA9FS6VIcfxl/nVuV/irU/y/bGjCI4BPXRfUHbXQLaiNQpBLUP94FjvLKxR5mWtKkMNvJy8UJT1G5RRyaJAOIt9lFhQjCYzS2ZCsZ3ouvzI/rj62AGZ3w9fPCKvjOnkZNjqRV4bMnkp2NrAM3WHVy0t06ND/htZ9zUSx8x+4GIvu+6AYAMvLLCkNbKxVN+Yxs/+NRfL1m/LufY/fG42vvXX6Xnlo1yje88bqtxnK0T45fSqF+A7PzkutJ6g3ee+cwT6d2ur7UcSqzRF1Nlr5MTzJZSsBDdyHFBq4H4deeXz/zY5i5JEI4yyUq8ilZsRvl0re1t1QNjDymtDRgLc4GwCbTunPoPKw4oELw5dOcsmpQRC0kRBKkVgr8zf/r+vzV2Fpz/4AnUNaSOhYBKSQERXbxI28D0N5kyC8dC6qgKd21YDmpWkqtyOUfjHtw/Hhm31uO7vM3O2KwV4kpOYiWvg0RtQpbjjlU9RS9ddkRKaUOwuQkUqN7e1TAir7r3tmOC1IRPNzGTlYWBCyRGmQplu7aqldWvb9v9N2pyZEeBCQ8Gv3EnMZPsi8sTkzzN/B/durR8Wt3ObKqPP8qpK+wuoGxrBNTCNS80rDQV5oXB/hw1dGw18/PeOwgMXDpPu+805B+GIvbth1JBeefv26SkPGxGnCUWM/LdB4TYZF4Xcn8w7M88LRdIOwpWzEgazsjsmRbkauOyEVedpq13xkelMhhNj4W9lE2XnpWuPzDsv8yXWOhOKYRUK0unspLOoIREBqzfXYcayjdnyRZbgv3szu0S9SYjNQmS2PDuKPVhnsgsUFNNroYpIaAvvGhh21iZeKCP37IJbz9gPQ/p0Vqbm0127IJOViHpSPLRLAIDd/Xywvzhzf9z2tQNy9l0w5gPZIbHBB3y78fnZ6H/Lq8bHZrRrYXtTmilzkurCIZTMBm77kVmRErVXmQYuv/umAfGDo087cHccO7iHtiyPiVdNRgPXRDasSFGegDQVAETAPecOUe01qkNFE2NaE8qpf8gN7l9KJy6Zl4nJyzOSANdp4P6/pi/guLxQWnMxRsK+Hr8q0ZhFXvzukfi2P/eknphTH99V8lUJqMeIqQb+8veOwl+vPBRXHr2XUfk4+YsftgEAxs1cYXWsygtl/bZ6vHTtkbju+L0z8mr3jq3xnWMHKF+CQIkE+JJ126w18ApBA7fRKqstw3ECWZFnIkBFrxpZtMHgxvHjU3wJVVWk8s4r1ITCacbnj+wb3tcIcqIpnf1iEl8wt//7k7xIeklq4MP6drb6opqzYrORULCpc0ifTmhXXYH+3dU26awJxaxO/pIV4p/dikvyoTvrzm2rcJ7BeOEJ86wAgG8auMYCaldT3ddSv65tM3/37NjaSsmKm6gp2zITlNzh+/TsgFMO6In9enXET07dN/PiJSL83xn7YeBu6ly2JRHglz35obUgSeXZwPPLqO79MYO6Z/5+/ju5vsTnjOgtzcYSZLvZ2RD+BIomlDOH9MLSu0fl9R/wBp6qv5UpytOaZLkVZegeVr7KKMOuKc1QW9eQV5eKJBdS/Ou6o/AHhS02oP8tr+I3r38KAJj6+QZ89MWm0Hpt7MEXH9oPH99+Ktq3UvsABOPBVAPnSxXiHMLH3tbdqyiTtiqTEd/Or0YfaFSXaozo+nz1sQPw0rVH5j1bpSBq9EiZBv79EwdZx3zP1BfpqIjwn6m2WlplirTaq2ob4AnUwL4kKmP3nT8Md5x1UN4xQXk+y4YOMZiTSKvKFO6/YGjOC0TsbWUqlde/VpUVWHTn6Th7eG9838/yITcfqfvG74qiHTcxhkuf8IJTmXgJTFm83rqNgMuO2BP798qGCf4O5zoaYCvftitimfPYLGrx5mPC3IO8f6KYRioK8A5pJclILyPSvIjSScC+MtUwfGv+WnXzBIzo18W6rbjgr2dUk1eQUi4uFaeoAnx3Tvu0lSOtqypyRp2NBp5KUcYWZ3pcm2pzAS6G5pLdWyLg7OF9sEfnNsp2KyvybeCA9+K7/4JhOXGeRUzdr6IoDvznokk7905YaN8IgL26t8Ptow/MCQtw6F75X0dxuAqLZi4rIaQomjO+g39NNXCuXCHra07Yt2f2h/alrj/fe84dggcvGi4cI0d89y2+83Rt3UByi72KRVQBft8Fw7w/Yjr9ki3F2l5vl+n70iP2FIKemz9w4ipIEZLsCz5FZZlojt8n1/bGGEJviKy/4kNUkSL89utD0Ldrm7yyXv/0bajgj4uigTfmCPBofZAJYpG9e3i2vjZcPBr5fS5cghdi5VG1/voNx2T+Dq7zn94xi1HPdydqEoZjBnXPWeRlalaTcf7Ivvja0D2EY+QHiffIxIYfxelGZx+/TwiBkTRRY9cEZrec4GUFSPOSCfBzQ9Ke8TzzrcPQqrIidBJTdXv5z2OZQAgeGP6t2tvXlNtJ7Jw/PWO/nN+e/NbfEJMXTmWK8NWhe+C9m04ILSuiN6FkdxaqgUdd1XnbVw8IL+RzGCfsZc3F4fNeSAYc1TVoz0XHDKp/9J0l0rJXi6YhrjtxLCcHzM1qPHeefSAuPEQ+uWmqgZsQRWipPFqA+K6ZyBfcQii+z4V6DcU10V9UAR7l2a+uSOGogd4kZI75waJ+fhWn7D7zM/cBVxy1F35/3lCpZ4fMUyTMBi7rWjAg9t29A647fu+CBqFpGIEoE4w//efczN9Ru2ijVF597ICMLVe+YKvwh5V/Kd10mjwjvQq1IONelCF1nHtwH+U+nT3+wN4dcdJ+PaX78uJraG3g8n2XHLYn7v663B1VfdmTEZ4iuyuy+AB2X+SiaUjHNU/Lk1oXKsD5e1VIGrnSRbORoPN3BIDzuEGverB//Uo2eP/uHVvjyqP2wsj+XTMTqLJBLZuRr0gRzj24j0Ko5m7Ly2QjO0Jzjw7q3SnHfUiFTvaaCsgo446fWIr6krFJokFEGOzb+20WbNnAfwJ3bavW7GSorjXf17AXpXgOvHanu8avXH+MNgZLkqjuYbGCGh7Uu5Nyn824FE2gOuoa5XNgOgH+1BWHhNbLH95asYDHhNDHnohaE9GHRDSbiOYR0e3+9r2IaCoRLSai54jI7imQICZoAHIHNhFlZnFVJhR+WfUenVvjF1/dHxUpymg1suNkGrgOsY682C6Sh1eeyUdenwqdSDD1OCh08iiq9hvZfm/pcSML9CWDfwBtM6Gr3emy29dsqdPXIfmKCwgVRordeWm6dCaUCPdDHarCvjLVNVR9mRw1sJu2HZ0GLoaEttHW6xvlxnrdylnDb+HMX7byh8fkyJ0ATmCMDQUwDMBpRHQ4gN8CuJ8xNhDARgBXRe6Fj9GnBOX8oy/K1ad7KGx9YsWavIUuvA08GRr9kICyTCq6S3f28N6Zvwtd8BfZhGJ0nGzuIL+U7lx3Grp98vcriUzoN4+bi9WbdUI8t01+BWmYRqa6lroQpfl1RBG6yXMON1Z5VHHcA3Tj65FLRmDhHVnPGBttvaFJLqh1GrjqRfPiNVkXYlYsDZx5BIv/q/z/GIATALzobx8L4KywusIum+zCWmXuIPXPwIQiu/C2K9/EG5RmwEWH9Mv8NjUzq2IDA17o0Gm3npSzrSEjwPP7qxqT+/fqiFMO2D27oWABHvUxDj+OvzfZQD52NvCwB13Wlq1ZyPQrZv22ncp94in89o1PM3/feMpgbb2q87ezgWubUBwk3xxlXkXn8isjzOasu4cpIlTz/vEW586Pp/Vbs0GydF4ofPWzfnEyAKC6MoWRXAx/XoEwDfUhwyicLBFVAJgBYCCAhwF8BmATYyzwBVwBQPrqJKKrAVwNAD379Id6GsJMOAQl5PI7dyNfJlhpF0fQIJkGfv4hfbFmSx3unbDQ+AEP+ifziJCFDg0GkzyjkOmHW2ESPKoANzmsXqLt2HgbAeaz+/zzZ2tCMR1COqEi7vl83TYA3srbDq31q29VtVqZULQtqI5RvDii1KXogOqanRkSt0U3LsV0gzZjuME3oXxWsxUTP83OBemW0vPVd25bjScuG5mZ0wngj05UAwcAxlgTY2wYgD4ADgWwr2kDjLExjLGRjLGRHTt21JaVauDC72Bwyz5txG38gAtiH5tqaDrE+x9oB7I4BzqC8zWNqxDY42QmH9MxGTTFp2D72aj9FKXziaqAmzw0DY3cfId/71JEGP+9o/D2j4/j+qCuy1SAM4kJRRUuNe9Yo1J604zqHEyCaqmupY0iHMlurThk8/YG+Q5dXYqXgUwGjB62R17IWBHVS/i5qw/PE5A2Z97gv60Xrq7N2a7XwHNbOHG/nujLxXEBss/hgB7tsJdBnHcVVro7Y2wTgEkAjgDQmYgCDb4PgJWhFYRcORNLRvA2FQMoAbkTmGJ7wcBQfYqdd3Af/CFYJRWCeIMCDTp4KIwf8ECAGx7QoLGBm2oVgYA7cu9umW0XHdpPVTxyOyImyaJVGviQPp1zAkfpNXCz/vDFgnE3epjc/pp3LCcpTz9wd2U5nWav2mMyH6O6BeKpa7M0hbZizobt8cXflr30qitSoS8cm4+osLr4uPxBf7YJC/r0NvDwPgRj6Bdn7m/9Bchj4oXSg4g6+3+3AXAygPnwBPm5frHLALwcWldYZwzOfD8/TobJajW+tsCEopqU+N15Q3GWYgIlr94QDdxUCwzO13RRSfDWl2lppkMgaKoylcKZQ3phSJ9OVkJZ9vIwoWOb8KBcshl/20lMU/9c/h7ZvpR4AfCnb6iTSUeZHDWxh5pWqy0W4TaqDrn4MHMFIFOXxoSS56FjUJ/qWssW4unk5b67d8gxdwRjY4ewctzUBq4i+CooNC+piQ28F4Cxvh08BeB5xtgrRPQJgGeJ6A4AHwF4IqyiMF9g2eeT+EDeeMpgDOnTKSfCoLI9rrofnjwYC1bXYniCwXBsfJ0B7qvA0KwTCDipALd8IFMp4CE/v2WdoecGED3UqYmdT/5ylUxixqA/pguYxGxr8DUBRHPjM0p0rfYjNG5fldtU266kwosP64eOITZ7G1JE+Oe1R+Gsh9+3Ok7Wtz27tcWBEt9xnQbep0sbbN2ZFdbB/cjXwDUTIQbD6TfnHIR9d++AIwZ0Cy+sIVSAM8bmABgu2b4Enj3cmDAhY6IJVVWkcMZB4YHoxfpG9OuCDwWvjqiEdtPYC8X711Rj7+WvROsn2NMA9UN9w0mDpNujus7ZRO0LypvGjZCZUGTNxbFwpLEAP/A2hgJcd9rKCUGDsaA2oQiTmJo69uuln48ybTfqrVAJ0YoUgcz1iZzjRMRYLjq+PqIPxs1cASLKmUsIqm0Qvg51t8lEwejevhVuPMVuBbCMoiY1DrM9yW7CIE0w8/D2Ih8aUq+84gE9PDttEJQpDFV2DhUXHNIXvTq3wbGSrw/VuZ56gNxGy19rm+tk+8n38CUjcOK+uxmV5R+SQBiZuItGgc9BafsyU6UWE9EJY1M7tgzTScwY5utzsLlKvTq1ls5ThdVVkYr23BayYnfp3aMwacFajJu5AnUNTcL8iFeLjVknKbkjo8gCXL9f1O7ev+UE6epM4/YSWnqgqvXUA3bHv647CkP75H623fbV/aXlbScxiQhfUWQhqTb0JT1h393w30/X5ryEbK6TrQ08RZQxu/z1ykPRrlUFvv6n3EBmratS+NrQPfDNI/rnHW/iLhqFBu4T2NaE0ruLPFqkSKRFUwbHqHorHvruwpoIHdC0azEf8d5Nx1vXBfix1vNCVYT3TfoVZSFJ+/r3dOvOxozHWtAfr6rcurRuhMatFk5xBXjIqYk3oXdnswdF2V5iGrh637C+nfO2nbS/PPhQZhIzhnyIpqtJH7lkRF7WbpvrZL3oiftblQIrnQbuOdc8vkcc9zX3M9m8wsuP7G8xLpPRwJXHJp5M2nw+ImycqK54ZSoFimBDkd5Di+uxd4/2+OFJg/G1YXvg5hfn6OtFiHmsiCp4UQV4mKKTxJLmJLDVAJVxlDMaeOEPnmk8hdZVFTlRHQE7jcFWA4+6gEdbp1XpcMI08PatKpEiYEtdI/p3y59/eOSSEfhgSX4Woq071YJIvZrSxAauODb0yMKw0cCjInMuM1l8VqjsIKLMfBHf3uotdVJtW9enYoqxsopGGMUfchK3wEMkqTehbbVKe5+lDVxHlByHATbXyTbZgEnVYrCh8Drjva9hL6UUZX3EZWP0jIN6SXNB2npSlDuyq5TIJGaESqUKuPDbVLyIi/2ufWYmauty3Qj1k5jFo6gaeBhRQpXupckMnlSYS7Hal649Ul9e0Y8+vt2tUFcioLBM5rYa+AF7dERlijB7xWaDusMnrp++6jCr4+O+r7rkxAFpYbFWoSQxNJO2oMT54tQpNVHmOEzMYHNuO9VIWdq2M1dYvzFvdV4ZXT0tdhIzLPN33CaUxK4jVzFReKJV1YDs370dptxyQk4uxTgR8z6qsLnsRIRXv++lDut/y6sGB+Rvqq5MZXzazzu4j3SxRYDsUzXuB0TXfkDwFR3Xy6MQG7iKuLK8qJBq4BFvhs4PPm+fwWmZmFlMXtQAcvzAle1pmyueBC+qCSVFhHsU2T4Au6wtpcTeBq7et0fnNgUtpdXxxg+ONSqX5KSLzG+cN3vJTA/hxNtfEwEe2Kbj8mxS+4FHrzOOyXAdcQ6T3RRKSwVFM6HEiYkALxcNvOgiUzfZFjWZq4rooU/1xGUDj4PWBQSDLwYys1gVt83U/ZFHdf2j3m6TOC2saBp4dCGcuACPcST/fJTctTaVimZCifPjY5TBQsGkJ4xNafY2cB2JuRFyfxsNnAQl+Ds/OR7rtqrjTsfJL86UP3Q6ZC/lQjV+1dEpIqtkxeeM6I1jB/Uwy6LONAuLIqD05S5AMkTNlG5KxzbxiQvValbpJGbESx71Wt5x1oF4dtpybZlXZq/C8fvIF6jtbCg8ZLUpRRfgxfSRTEpy2p5DUguKAKBnx9bomZANXSTK+1X2Ui50CKiuv60G2q9rW+MAZkHVsQ1fpS939CqT1sBlIRzi9j2vTOU/LSbhG+LshskL3Vt2L99XW2cfXjcqRf/+LlYCVKA4GrhR+RLY9KLEuggjysu3kNC3KmIzYxjeyVSKMoIqPg08/kEhJispZBWzDCLKi5ke9ztDdn0rDEyrtqan608YqN3/raP3Cq3jxRkrpNtNbOhxUXQBbjpwTSO+6dtKhnKygat4/juHx15n2HnLfNFlD6TN9ZAmNY7pioa9CIL48NUVqawJpYynHMSolv/4dvxjQLyfcXu+yEwoUTVwnVAPCyT1swjmwoCD99R7pcVJ8QW44bP37+uPLlpb1vXGtBIzScLSckUh7CxksaxlArxQLTaOtHhA+PgIQpFWV6Y4N8KYNHClCaWASUzh2H6SVaOFIgrT+DXw/DpN5sb2MXSZTZqnLj9Emg4xKUqggWeRZTM5ZlB39O3axjiin464J0UzNAMNPAnEF5EosGUeRtJ7UOAF4ZPLFkL4i9WTJLwGHtfLWJVYpBBEG3gSoSlEl9e4beBElJfYw+Q5bl1VkbcgLPHQMBKKrauVVANvVZnKW8X4t6sOw3s3nRBLW2XjRthCJLh4HhN++JWc360q881esvmgQt+rgbZ1KJflOwph4yNYUu1p4IENvKAmM1SmUujKpe4KKETmiF4oSSgweWtsEhCS4nmYxqBviOnLrBCK/bVdAote9gQrK1KhqxgLITEBbl2+ZUhw8TxEH+5D+uffyyRMKH27tsXSu0fhK/vIoxuaEtYNPgNSIBts+y7zc3/1+0ejR4dW0jg+hVwZ0QaexPiP0wb+69EHSLeLXydhK7gDxPMvheJUTCcNoMReKIGHwsn795SGYS2UpEwo1u5aLUN+5w1O8QG5/Wv5qyqTcCOMi7DhEQiS6soUbh99AM49uA9O3M8sOUUAYwwDhHg9B+zh2dY7SfKEmsa0+dHJg/O2FUMDF+ssxAZ+qST+O5AvwE28UID88y+FCaXYEVVLYELhNHD/xjz2zZH413VHxd5WUhq47erBYt7TX5y5Py6JkGTWBPE8xNOSXZeoGvgDFw7H10f0wX69kpucCvsy6tGhFQBvXqZnx9b4/XlDpWYinl8KyTvSDFZfCqbmgu+fmE2Vd8VR/bFfr4545JLcPJdJ6C/iPEchK0dVDPTnv4JAdaZCMWk/eBNavAmFH1Smn0ZxtBUnbasrMf575i+cYt7SK4/eC3eefVAidesEnioMaFQtcO8e7XHv+UO1GmljgZ/MYeX37NYO7910PL5/gjyvqIzTD8xdht2UZiCQ8Us/yjPxy68egNdvOAbHC6nrkhAm+/TMfaEmoeXu1rE1lt49Cqf5Tg6m12Rwz1zHh1KI88QcJxSUdBLTNr+iig9vPVG6PcmLGUxAdTRYLFEKN8JCEDW5DOJpCOYw2WnKNMq4voxEtzldrXJTTng/+nZtaxVsTJX04B/fPhxXHNUfc287RXt83PGA4qZb+1Z45fqjcefZnrksyQiIgSeaqUfaoJ4d8hYaFZti28CLv5See8ziepB36yBfSp5UlD8A6NWpDS4+rJ/Riq3mxikhKeAC+HtZlUrl/D5l/54YsWcXadS5uN5nTYLXAREpVcK/f+swXDDmg5xtSQwP1cKlg/fsYrTAI8mv0gN7d8THK7fEUE8nfFazFUD8fuA8Xx/RG/v07ICDhByzOviE06XI8NXiTSj8+SX9tkqy/ooU4a6zD8IAA+2geenfudrqeQf3yfydp4BzG3577hBUV6bQt6uXpGLPbm1xzVf2ltYfCLlCc57mTdppHh6ZnElijqTQrz5TGzgATP3piZj585ONyz95+SFRuiQlEFRJauBEZCW8gdyVskkqcCp2ARNK/Bq4inLJsVkm3TBGpUXoJjHP8ENwXnLYnto6AG+QP3DhMDx/zREF9VPnNvYCV/ddZx8kFTRJ3Bdbrxsx6YZNZqWeHVtLfclVxPm8ZU6z9POGOeR+4Re//RbvRsjHy0hcAy/FHZTQHPzAf6XwyeWfzzwBrhEIYWc8eljvgjVw0QbOCyi+7osP6ycVNLL+H7ZXYYuDbG3tT12RqxXbJo22IU4Bfvw+u+Hogd3xk1P1MUVsWHzn6YVXwp1iKRS4pJVSkaLbwA8f0BUVKfJcfmI82UP6d8G0pRtzthX7Yqook25oOWm/nvjFy/NytnVoVZljUs63geeTKV+EcxbdxnjZKV5zmaIo6+Lfv304Hpi4KHKMdZkJRHcp+Jf7qCG98JOQIEtRmfnzk2O9Je1aVeLpb6lzmUahkLyuAfwYDVPg7jl3iDR+T1ztF4OSmFCuO86zjcapIN/vR47jKbY9qjkjDryHLx6RyX2pQjZWA1NFMbSfwAYehM5tz3kEmawYVLk9/ujkwbgroiumbewXvg8PXzwC/TVJuguha7vqzDUpR4Wi0C+fAP7Uwp7/80f2xehhZvHgTWnxNnAgqw3FaVpIYsl2XJRJN7SI427UkF7o161tzkIN0RQgu3/pdLxxs3UENvDLjtgTS+8eleOCRwD6dMmaUaThRhOw35bLvIuUMu7a2CsPjb3O0phQitxecZtLDl5g3Hf+UADAgB7FC+uooznYwE26mDc4Jcc0xRz0SUeggQefynxkPCLChB9+BbN/6fldy2R13JH0+L7w6O5/MUdG0LVyHI1xyVo+kmFJYqEUWYKXVU7MQuCv29nDe6Nf17ZFDayuo5yVsgATjVkURHITSrAv+ZMOzCKB3VmccG1TXYE28Ja+y4R1sRwotJeiiGOjnBeUxaXkbN6RTWdWChNqi7eB88R5rvzgJCKM7N+1bAZsefRCj2rgNTTxWm3uPtkRgQmlGA/Pob7ddLC/vFs34Rrs47/KihXsyHQSM2kyGniZPBc8cXVpS12pBXiR2wsrQER9iWgSEX1CRPOI6AZ/e1cimkBEi/x/S6rulvN8ZTk+MCKq61fX0JT52+QsMpOYRbghFx7SF1N/emImc06OvV4oG+zjBXuSi1B4yuX2ZyYxS9wPnmMHe4G+4tJc+cw8pXjuylEDbwRwI2NsfwCHA7iOiPYHcAuAiYyxQQAm+r+NSOK5KWchWb49y6K6fjkCXJzElBzTlMlcE2PnFBARenJL9flxledGGJh2uG02qx6TooyHbVEYc+nBeOtHX4nthX/k3t0zmb5KMolZbl4ojLFVjLGZ/t+1AOYD6A1gNICxfrGxAM5KqI9GlMGzqKQ5PKRGGriNCaXEJy2+XDICnNtsGxY4KjqFpZhXKTj3chqPrasqMHC3wtMn8gRx1kshE4rdpNUIJqL+AIYDmAqgJ2Nslb9rNQB5BKQiUdYaeBn3LUD16beTn9UX9ukmMUthf+TbbN8qd34+mxItWyauaJhh6D44m8PYaG40Cd5JxaQcTSgAACJqD2AcgB8wxnJCmjFvil86TonoaiKaTkTTa2pqcvfZ91dJOWrgVx87oNRdMEY18E49IJt42sgPPObkvzbwAlx8gcgGZ7E08HKhuiKFIX064cELh5e6K4ly02n74pzhvfG1oXsUve1iD3ujEUxEVfCE9zOMsZf8zWuIqJe/vxeAtbJjGWNjGGMjGWMje/QoLIehjnJZtMPz0zP2w9K7R5W6G0aoLt+1x+2NA/bwVjqGpVQD+IU8cfbODJ1GHZgx+DRm1cXSwMvGhEIY/72jcfpBvcILN2N6dGiF+y4YhtZV+uxJcRGsOwHK0IRCnir1BID5jLH7uF3jAVzm/30ZgJdNG00iDVM5CvDmhOr6ERHa+eYIk0tcShNKMCl5w4n5GXSOGdQdI/fsgjvPPijjfti2ujjLIHTj3Q3b5sW0W0/K23bOiD7o3t6PClmGGvhRAC4FcAIRzfL/OwPA3QBOJqJFAE7yf5eMIIpbUvkgWzo6eUuZf8MX8jSVgQnllAPyp2PatarEi989EgN3a48/XTICPzxpMI7cu1si/Zh88/H42aj9Mr/1GriT4M2JIE9qQL+ubQHwXk5lthKTMTYZ6veKPJdZCMFJxqmHV1akMPe2U3IycjjMMVqJmeeFkn8MK2IwK5HAhBKW3LZb+1a44STzPJe29OnSFl3aZuN0J7Fk31EeBF9XwR0uu4U8iTTqn2Tc47pD66qyiQHe3Ajkrc43Ot8PPL9MUwlt4IEG3tBUeoHJXxvtOHfDtVkT3NtBvitkVZEnxkujrhYhHZPDDiLCLafvi+P2UU8057kRSso0+V6HpXiRBma0xqZ0SMnkMf0ASfpD5aOfn1xuSXNaFIEIG/PNkZi3cjM6tq7SHxAzJdHAgzHrBlZ5cc1X9sa+u3dU7jfJyHPxYX0BAEcN7B5r30zo08WzR7YqkveBDt68VEoFvEu7aqu0a45odGpThSNLMOZLooFn7K1OA29WmGTkOXjPriVznbzjrANx7ODuGNa3c0na5zE2oTiaHRcf1g9L123DlM/Wl7orJdLA/cEdMtfkKDPK3VzbrlUlzh7ep9TdyENnKnQrMZsfd519EK4/wZsEL7UZuMQmFCfBmwOZZeip8ElMh4epYHaXsHmSlCOGdT9K0mgmg0opWnfYsmVHIwDkTdA47VGN6ZVxl7B5Ui7ebiUNBuFMKM2DIMtJp7bFnWFvzuTawN1Ab84cM8ibnPwqF1slo4GX2IpQ0knMUp+8w4zBu3fA6i116OIEuDHmXijlock51PzmnIMyHk4BlHGFLkWPspREgDsnlObFQxcPx5KabUWLHdIS4DVw/SRmETrjKAiZqTBYaVxqGVbaScxSn73DiI6tq8rCNa85wT/ybpg3b2Tv2HIJnleipfTl8fZyOJKiTJ5vRwzI7mV2267oRuj8wB0tHkMbuBP0ZY9M2670wzaEBU5LmhIJcDeJ6WjZmK7EdJOY5Y8swFsQ+bKxxIHTSmwDL0XrDkfyhCd088s5+V32VEoyNwXZnBpLrIGX2AvFSfDmzk9O3QdHlyCIT7nDey6kSx8c0VEAQZTL3G2BAC/tzS2xH7ijuXPd8QNL3YWyxHShnlPAyx9ZesBAqJc69nyJJzGdCHe0THJs4FoTihPh5U5VKl9MFjtxg4qS9CLwKT56YHJZ6h2OUpKzErNMstI7oiGLeyIT6qWgJCaUIX06Y97tp2aynTscLY6clZiaYk6CN0tkdvFSULLXiBPejpYM/3iv2ryjZP1wJIPMLl4KyuM7wOFoYfC27fNGqpNMOBt486Rc7ptTgx2OBAge7/16dQzNEjSiX2d0a98q+U45YqV7+2pccdReJe2DE+AORwIECpqJnvbStUcl2hdHMkz/2cml7oIzoTgcSeCWyDuKgdPAHY4EyGjgTo43W8Z/7yis3FjeE9BOgDscCRDIbSfAmy9D+nTGkD6dS90NLc6E4nAkQcYG7iS4IzmcAHc4EsAJbkcxcALc4UgAZwN3FAMnwB2OBAiSAJQ6Y4ujZeMEuMORAG2rPf+AuoamEvfE0ZIJFeBE9CQRrSWij7ltXYloAhEt8v/tkmw3HY7mRbtWFQCAugaXzcGRHCYa+F8AnCZsuwXARMbYIAAT/d8Oh8Mn0MB3OA3ckSChApwx9i6ADcLm0QDG+n+PBXBWvN1yOJo3bas9DXxHvRPgjuSIagPvyRhb5f+9GkBPVUEiupqIphPR9JqamojNORzNizZVngC/+tgBJe6JoyVT8EpMxhgjIuVUO2NsDIAxADBy5Eg3Je/YJUilCEvvHlXqbjhaOFE18DVE1AsA/H/Xxtclh8PhcJgQVYCPB3CZ//dlAF6OpzsOh8PhMMXEjfAfAP4HYB8iWkFEVwG4G8DJRLQIwEn+b4fD4XAUkVAbOGPsIsWuE2Pui8PhcDgscCsxHQ6Ho5niBLjD4XA0U5wAdzgcjmaKE+AOh8PRTCHGire2hohqASzgNnUCsFlRPMo+2fbuANZZHhOlnaCthiK0w+8Lzi/pdiC0lWQ7POL5JdWO6nom1Q5PMcdosK8K5ucZRx9Mx2lzfh7juqay7fswxjrklWSMFe0/ANOF32M0Za33ybYHbdocE6WdoK1itMPvi+Oamh7Dt5VkO7oxk2A70utZjLFTzDEa7LM5zzj6YDpOm/PzGNc11Y0R8b9Sm1D+HfM+d0zLO0ZHqfvmjimPPuxKx+RQbBPKdMbYyKI1WOQ23fk1/zZ3hXMsRZvuHJOpu9ga+Jgit1fsNt35Nf82d4VzLEWb7hwTqLuoGrjD4XA44qPUNnCHw+FwRMQJcIfD4WimJCLAiWhrEvUq2moiolncf/01Zd8mokiTDETEiOhp7nclEdUQ0StR6rNs+yy//X0TbKNk5+e3V7QxY9NuIWOGqyPx+ydp81YimkdEc/zn4rAitNmHiF72k51/RkQPEFG1pvwPiKhtxLYYEd3L/f4xEd0WpS7D9gI5M4+IZhPRjURUcgW45B2IgR2MsWHcf0sTamcbgAOJqI3/+2QAK20qIKKoGZAuAjDZ/9emvQqL4gWfn0NJpPsXFSI6AsCZAEYwxobAC/m8POE2CcBLAP7FvGTngwG0B3Cn5rAfAIgkwAHsBHAOEXWPeLwtgZw5AN6zcTqAXxapbSWJCXAiak9EE4loJhHNJaLR/vb+RDSfiB7z32b/4YRGXG0fTETvENEMInozyB7kc6n/Jv2YiA61rPo1AEGerIsA/INr81Ai+h8RfUREU4hoH3/75UQ0noj+C2BihHNpD+BoAFcBuNDfdhwRvUtErxLRAiL6c6ANENFWIrqXiGYDOKII5/cuEQ3jyk0moqG258md1yvc74eI6HL/76VEdDs3nmLTZnXtxlC36v6pzvMMIvrUH7sPRvwC6gVgHWNsJwAwxtYxxr5UPRf+V8YDBTwXAHACgDrG2FN+m00AfgjgSiJqR0S/9+ueQ0TXE9H3AewBYBIRTYrQXiM8z4wfijt8GfNfv62JRNSPiDoR0TLuOWlHRMuJqMq2YcbYWgBXA/geeVQQ0e+IaJrf5ne4vtzsj9fZRBR73oQkNfA6AGczxkYAOB7Avf5bGgAGAXjYf5ttAvD1AtppQ1nzyT/9G/JHAOcyxg4G8CRytYC2jLFhAK7199nwLIALiag1gCEApnL7PgVwDGNsOIBfALiL2zfC789XLNsDgNEA3mCMLQSwnogO9rcfCuB6APsD2BvAOf72dgCmMsaGMsYmW7YV5fyeAHA5ABDRYACtGWOzLds1ZZ0/nv4E4McJtRE3qvuXh3/dHwVwuj92e0Rs8z8A+hLRQiJ6hIi+kvBzAQAHAJjBb2CMbQHwBYBvAegPYJj/RfAMY+xBAF8COJ4xdnyE9gDgYQCXEFEnYfsfAYwN2gLwIGNsM4BZAIJn8EwAbzLGGqI0zBhbAqACwG7wXs6bGWOHADgEwLeJaC8iOh3e/T+MMTYUwD1R2tJRcFJjDQTgLiI6FkAaQG9ks9d/zhib5f89A97NjcoOf+B5jRIdCOBAABP890UFgFVc+X8AAGPsXSLqSESdGWObTBpijM0hz8Z+ETxtlacTgLFENAgAgxcXIWACY2yDzUlxXATgAf/vZ/3frwD40B9EQdakowG8CKAJwLgoDUU8vxcA/JyIfgLgSgB/idK2IS/5/85A9oVV7qjun4x9ASxhjH3u//4HPE3PCsbYVv9FcQw85ek5AHcgoefCgOMAPMIYa/TbiPos5MAY20JEfwXwfQA7uF1HIDs+/oas4HwOwAUAJsH7Gnokjn4AOAXAECI61//dCZ6SehKApxhj2/3+xnLePEkK8EvgaRAHM8YaiGgpgNb+vp1cuSYAcZpQCMA8xpjKfCA6vts6wo8H8Ht4g7Ibt/3XACYxxs72heDb3L5tlm0AAIioK7xP04OIiMF76BiAVyX9Dn7X+Z+vUbE6P8bYdiKaAE/TOB+AUsM0oBG5X4Wthf3BuGlCvGM3rN1IaO7fy0m0x+OPgbcBvE1EcwFch2Sfi08AnMtvIKKOAPoBWGpZlw1/ADATwFMGZcfDUyq7whun/43aKBENgDcO18KTOdczxt4UypwatX5TkjShdAKw1hfexwPYM8G2eBYA6EHeRA6IqIqIDuD2X+BvPxreZ48qUpiKJwHczhibK2zvhOyk3+XWvZZzLoC/Mcb2ZIz1Z4z1BfA5PM3qUP8zLQXvnGzNJSqinN/jAB4EMI0xtrGAtpcB2J+IWhFRZxQvbV9S7aruX0rR3gIAAyjrSXVBlEaJaB//SylgGID5SPa5mAigLRF906+nAsC98L7I3gTwHfIn8X0BCgC1APIj7Fnga7XPwzNjBEyBP98AT5F8zy+7FcA0eF9Er0RVdIioB4A/A3iIeSsh3wTw3cCeTkSDiagdgAkAriDf04Y779iIXQP3b9JOeLanf/tv/+nwbKiJwxir9z9lHvRtY5Xw3tLz/CJ1RPQRPBPAlRHqXwFPWIncA8/E8DN4GnIcXATgt8K2cQC+C28gPgRgILxPwn/G0WCU82OMzSCiLTDTgvIIxgxjbDkRPQ/gY3iC7qMo9ZVRu6r7dyE8oZPTHmNsBxFdC+ANItoG7x5HoT2AP/ovh0YAi+GZYsYgueeCEdHZAB4hop/De0m9BuCn8DTVwQDmEFEDgMfgjd0x8M71ywLs4ID3ovge9/t6AE/5Zr0aAFdw+56DZ/Y7zrKNNkQ0C971aYRnmrnP3/c4PDPwTH+erwbAWYyxN8ib4J9ORPXIXo/YiH0pPXkeCI8xxqLMZDsMIKLjAPyYMXZmibsCACCiPeB9ru/LGEtHOL4kY6YcxyoRtfdt2ARvkm4RY+z+hNt8G954mp5kO474idWEQkTXwJsM+Vmc9TrKF/+TeSqAWyMK75KMmTIeq9/2Nb158MxWj5a2O45yxgWzcjgcjmZKQRo4EfUloklE9Al5i3Ju8Ld3JaIJ5C2pnUBEXfztl5Dn6D6XvMUgQ7m6TiNvUcpiIrqlsNNyOByOlk9BGjh5K7l6McZmElEHeP65Z8HzUtjAGLvbF8ZdGGM3E9GRAOYzxjaS5+R+G2PsMH/GeiG8Jaor4E3eXMQY+6SQk3M4HI6WTEEaOGNsFWNspv93LTxXpd7wfILH+sXGwhPqYIxN4dzMPgDQx//7UACLGWNLGGP18BY8jC6kbw6Hw9HSiW0S0/ddHQ5vQqsnYyxY5bUa2RWYPFcBeN3/uzdyg+2s8Lc5HA6HQ0EsfuDkBewZB+AH/vLWzD7fP5QJ5Y+HJ8CPjqN9h8Ph2BUpWAP3Vx+NgxegJohVsYaykc56wVtuGpQfAs/xfTRjbL2/eSWAvly1feBCmTocDoeWQr1QCF40uvmMsfu4XeMBXOb/fRm82A8gon7wAhJd6kdnC5gGYJC/NLwa3kq18YX0zeFwOFo6hXqhHA0vzsBceBEHAW+p6FR4S4X7wYszcT5jbAMRPQ4vdOwyv2wjY2ykX9cZ8Jb2VgB4kjGmCwTvcDgcuzxuIY/D4XA0U1pCSjWHw+HYJXEC3OFwOJopToA7HA5HM8UJcIfD4WimOAHucDgczRQnwB0Oh6OZ4gS4w+FwNFOcAHc4HI5myv8D9OrtTwHl3UIAAAAASUVORK5CYII=\n", - "text/plain": [ - "
    " - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "# The code to plot the data as a time-series sequence:\n", "\n", - "ammonia.plot(legend=False);" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE6CAYAAACSxCplAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAADhRklEQVR4nOz9eawlx3knCv4izzl336pu3VpYZJFV3CRLFCWLWmxZuyUvckuy/ObBM42GjV6Mbgwa/TAzaHum/Uc3enrgB7yZ10bj4TXs9ky7MYa6HzzaLNmytVHWZkmkJIqkKLJYZLH2ulV3388W88fJyIyM/CIyIpez3Bs/oOqcezIyIjIylm//GOccHh4eHh4eHh4eHh4eHoNFMOgOeHh4eHh4eHh4eHh4eHjmzMPDw8PDw8PDw8PDYyjgmTMPDw8PDw8PDw8PD48hgGfOPDw8PDw8PDw8PDw8hgCeOfPw8PDw8PDw8PDw8BgC1PvZ2IkTJ/gDDzzQzyY9PDw8PDw8PDw8PDyGBk8//fRdzvkSda2vzNkDDzyAp556qp9Nenh4eHh4eHh4eHh4DA0YY6/prnmzRg8PDw8PDw8PDw8PjyGAFXPGGFtgjP05Y+ynjLEXGGM/xxg7zhj7EmPsYvh5rOrOenh4eHh4eHh4eHh4HFbYas7+EMAXOeevA/A4gBcA/B6Ar3DOHwbwlfBvDw8PDw8PDw8PDw8PjxzI9DljjM0DeA+A3wYAznkTQJMx9jEA7wuL/SmAJwH8bhWd9PDw8PDw8PDw8PCoHq1WC9euXcP+/v6guzLymJiYwL333otGo2F9j01AkPMA7gD4/zDGHgfwNIB/AeAU5/xmWOYWgFPUzYyx3wHwOwBw7tw56455eHh4eHh4eHh4ePQX165dw+zsLB544AEwxgbdnZEF5xwrKyu4du0azp8/b32fjVljHcDPAvhfOedvAbADxYSRc84BcE3H/ohz/gTn/ImlJTJipIeHh4eHh4eHh4fHEGB/fx+Li4ueMSsIxhgWFxedNZA2zNk1ANc4598N//5z9Ji124yxM2HjZwAsO7Xs4eHh4eHh4eHh4TF08IxZOcgzjpnMGef8FoCrjLFHw58+COAnAD4H4LfC334LwGedW/fw8PDw8PDw8PDw8PAAYB+t8Z8D+DPG2I8BvBnA/wPAHwD4EGPsIoBfDP/28PDw8PDw8PDw8PAohM985jNgjOGnP/3poLsCAPiP//E/4r/8l/9SeTs2AUHAOf8RgCeISx8stTceHh4eHh4eHh4eHkcen/zkJ/ELv/AL+OQnP4l/82/+zaC7g3/6T/9pX9qx1Zx5eHgMAW5u7+NTL97EQbs76K54eHh4eHh4eFSC7e1tfPOb38Sf/Mmf4L/+1/8KAHjyySfx3ve+Fx/72Mdw4cIF/N7v/R7+7M/+DG9/+9vx2GOP4dKlSwCA3/7t38Y/+2f/DO985ztx4cIFPPnkk/iH//Af4vWvfz1++7d/O2rjk5/8JB577DG88Y1vxO/+bpwNbGZmBv/qX/0rPP7443jnO9+J27dvAwD+9b/+1/if/qf/CQDwx3/8x3jb296Gxx9/HL/xG7+B3d3d0p7dSnPm4eExHHhpdQcAsNlsYak+PuDeeHh4eHh4eBxmPLO8gY39dql1zk/U8fjJeWOZz372s/jlX/5lPPLII1hcXMTTTz/d688zz+CFF17A8ePHceHCBfzjf/yP8b3vfQ9/+Id/iP/wH/4D/v2///cAgLW1NXznO9/B5z73OXz0ox/Ft771Lfyn//Sf8La3vQ0/+tGPcPLkSfzu7/4unn76aRw7dgwf/vCH8ZnPfAYf//jHsbOzg3e+8534d//u3+Ff/st/iT/+4z/G7//+7yf694lPfAL/5J/8EwDA7//+7+NP/uRP8M//+T8vZXy85szDY4TQ5b2MFYGPouTh4eHh4eFxSPHJT34Sv/mbvwkA+M3f/E188pOfBAC87W1vw5kzZzA+Po4HH3wQH/7whwEAjz32GC5fvhzd//f+3t8DYwyPPfYYTp06hcceewxBEOANb3gDLl++jO9///t43/veh6WlJdTrdfz9v//38bd/+7cAgLGxMfzar/0aAOCtb31rol6B5557Du9+97vx2GOP4c/+7M/w/PPPl/bsXnPm4TFC8MyZh4eHh4eHR7+QpeGqAqurq/jqV7+KZ599FowxdDodMMbwkY98BOPjsdVQEATR30EQoN2ONXzy7+o97XYbjUZD236j0YhC4NdqtUS9Ar/927+Nz3zmM3j88cfxn//zf8aTTz5Z6JlleM2Zh8cIIeTNEHjezMPDw8PDw+MQ4s///M/xD/7BP8Brr72Gy5cv4+rVqzh//jy+8Y1vlNbG29/+dnz961/H3bt30el08MlPfhLvfe97re/f2trCmTNn0Gq18Gd/9mel9QvwzJmHx0hBaM7AB9sPDw8PDw8PD48q8MlPfhK//uu/nvjtN37jNyLTxjJw5swZ/MEf/AHe//734/HHH8db3/pWfOxjH7O+/9/+23+Ld7zjHXjXu96F173udaX1CwAY5/2j8p544gn+1FNP9a09D4/Dhi9eWsZuu4MP3H8CCxN6lbyHh4eHh4eHRx688MILeP3rXz/obhwaUOPJGHuac06lKfOaMw+PUYLQnHnFmYeHh4fHMGN1r4ntZrlR/jw8jgI8c+bhMUKImLM+arw9PDw8PDxc8eSVFfzNq3cG3Q0Pj5GDZ848PEYIXc+TeXh4eHiMEHa89mwk4YXA5SDPOHrmzMNjhNCFN2v08PDw8Bgd7LW7g+6ChyMmJiawsrLiGbSC4JxjZWUFExMTTvf5PGceHiMEoTnz+6WHh4eHx2jAH1ijhnvvvRfXrl3DnTveLLUoJiYmcO+99zrd45kzD48RBPeHnYeHh4fHCMCfVqOHRqOB8+fPD7obRxberNHDYwThNWceHh4eHqMAf155eLjBM2celWB9v4Uf3d7w9soeHh4eHh4eHh4elvDMmUcl+PqVFbyyvouWDy9YCfyoenh4eAw/Wt0uPvXiTVzb3Bt0VwYGf155eLjBM2celaDjNWaVwmskPTw8PIYf280OAODF1e0B92Rw8D7SHh5u8MyZR6XwPEQ18MPq4eHhMfwQgrSAsQH3ZIDwB5aHhxM8c+ZRKbzErBr4UfXw8PAYfgjL/oDgzQ46Xey1O/3t0ADgzysPDzd45syjdMgmd35TrgZeI+nh4TGseGl1G1+57PMjAUDXoDn7y5dv468uLfe7S32HP648jipeXd/FpbUd5/t8njOP0tGRdmLPRFQFP7AeHh7DiefubA26C0MDwZwxpJmzI7OLH5kH9fBI4oe3NwAADx6bdrrPa848SkfSlNHvylXAM70eHh4ew49u+EmZNR4VePcGDw83eObMo3x4zVnl8MPq4eHhMfywCQjio+96eHjI8MyZR+nwerNqMAhfvp1mGx2fq87Dw6NkrO41sdVsD7oblcMUEESgfQj32MR5dfgez+OQgHOO799Yw63t/UF3JQHPnI0oOOf4zEs3czkaVg3uNWeVIDGUfRjYLuf461fv4Klb65W35eHhcbTw5JUVfOnVwx80pGOhOWsdRuZM893DY5jAAVzd2se3r68NuisJeOZsRMHRk8j9eHlz0F1JQbYv97bm1aAfoyrohetbwyVR8vDw8BgVdMON1JTmrNXt6i+OKLxg1qNKXNvaw7Ml0L/yPG11qluHXccF4ZmzEcUwC9q8xKwaJDSS/WjPvz0PDw9HZPlPre03j5SPlZXmrHO4x+MovW+P/uB7N9ZxsQTLMZnO6VQ4T11Nlz1zNqIQm51JGgdgMAkuvVljJUhoJPswrv7dHS2s7jVxZ/dg0N3wGHG0E75GyU1kbb+Jr722gp+ubPe7WwOD4LtMxNah1JwlLGg8PKpBUca/X244njk7IhBbOZU7ReD61h7+6tJyJsH17WuruLq5V1rfvOasGiQ1Z35kPcrFk1dW8I2rq2gfQkLRo3+QtUDqLrXf7s2t1f1WH3uUxN3dA1xc7R9z2IkEqemzuh7+VqU51aDghXse/UBRbVe/6FXXc9UzZyOKSHNmKLO61zsA1zIOwls7B/j+zfWSeqZqePwOXRYSm0hfNGf+3R0liL3k9o7Xnnnkh4lYqoXMyCAjwP7t1VU828ck2cLnjBKoBSEFdhitGr2Q1qMfaBZcPEnNmTdr9CiI6D0buDMhqKuaxu50eXLi9dk36qhAHcu9dsfZyTRve55RO/yYbNQAHM6w3h79gymEei2MJ98xmD4eNohnNT3mYbSE8FGbPfqBoibB8tqrUn/tmbMjAhvNmbhW9cb/N6/ewecu3or+ToZ8r7TpowXphDvodPFXl5bxfIUSYPnVVeko6zEciPcLD4982Gm2cSCZ6KlzSQTFkIVKh31viZgz6mL442EcgsPIcHoMDxqBMAku0axxiDRn9Yr64VExIp8zo+asd9EosSthMqpBR5LmDPb1dznHF19ZxmNLc7hvbrJwvw4b5JFcD01VV/eb1bXnJZ9HEv5de+TFX6fylnFQIkTZrLHV5agPQEzc5dwYQbG0doRZo1FzdviQlw7w8LBBPWBodTmaRTVnfaJzXIVQXnM2oog1Z/rDRVzpt6txwqzF4b5mp4v9drdU/7fDBHksNw/aAIDZsUZfWvRHq4eHhytUekScDTKhMigz2ipNwmXEgv10e+KXQ2naSRC9nS7Hj25vYH8QUaQ9DhUaocNm0WA6/TJrdIVnzkYUNudZ7HPW340/b+AK7+Nkhjwku+HhNlmhyFmVKG032/69HAF4KbdHWdDNJNkSaa/VyQxaVQX6FYRDMIFHbeukHvfuXhOvrO/i6Vsbfe+Px+FCXZg1FhTu9CsgiGvNnjkbUQgCyuxzlm2yIU+Y0iSJOQOC9DvJ8uhBL3mturXNZgt/8+odvNjHENQeg8FRIyI9qoM6lcTfslnjN6+t4muv3e274KdfmjOufJJlDtGa63KOZ5c3Sd9D4Se07CPCehREFFwoJ3O2tt/C5y/eitJ7ABXTnY6L3PucjSii90zwX3d2D7B50I40Z6a5K8+XZqeLiXqteN8S9dtPyFSUr+rdAUYK1FD2izkTPm7CnNLDw8MjEym7xt4HxRh1OVDr457f7ZM5Zaw507d3iHgz3N45wMW1HdzZk/yh6Wng4TEwXFrbQbPLcWtnP/qtSiGJ15wdEYhzhTrLvnF1Fc8sbyKACAhiNy2KnlWinaQjsMP9ie9++1ZBR/uqUA0v1b0XSpfKYN49hhORjyrn2Gp6JtyjOHSaM2rXavdZfdSvKJGiGaPm7BCdd8IXaFfaQ8TzHZ6n9Bg04nXFcXvnADe29s03KBBa3KSGt6iJJMdui/an9MzZEUFs1mgICCJ8zoz16P/KwvWtfXzh5dvR34K5M+W5MUEu61MtpUENSb80ZyIi58Qgwqp59BXP3dnCl169gx3PoHkURJo50+9Y/U5M3a/muoTQUsVhMmsMaV40pQGOA5/0vz8ehxucA9+6toq/u7HmdF+j1qNlmhJzVnRPeHF1B198ZRk7zTZW9pr40W3Jt9Kxbm/WOKKwSUItYN4Q8zFSAPCj2xsJqUOHc9SUDjmF0i/Ql6MASgNaqRpecdoHgFofQk97DBbite+1O5ge80eER3647E/90mQFrHd+Vt2e2K9joSVRRvk8DKCes9MVGoXD9KQew4C8M2os1PAeyD5nBfeEtTC10fpBC9+9sZ645lqzP3lHFEIaJ5PKB+0uXl7fSZU1MUhFgnComdmpZJv5A4L4TVxFvzVnMmSnWY+jAa+99igbJtqnX5qzgDF0Oa88IMjLazt49s4WJkNTcOpM4wbGbVTRJZ7zhZVtvLCyjV+49/gAeuThkYYIKNIkAtfkxVS41inTRlea1jNnIXZbHTCGaCMddojNXGbOfnh7HTe201GQqtr41bOUSraZP5R+/n4dRnDOyZ2jSiZWrjtivP17ObxQlKL9imbncXih7k+mGVW1Juva5h5mx+uRL0fV7b2yvgsAUU4vWnPGE5+2+NKry2h2OD7y0KlinawApmGtypf1oNPFeM2b3B8lxKayxdaxnMS66JYw2TAwZ1WYNTLGLgPYAtAB0OacP8EYOw7gvwF4AMBlAP8959zN6HOI8MVXlgEAn3j0zIB7YofI50wiqA6UZHxWtu6a73kQa87y1ZRMXu0JQ4H1/Ra++tpdvGlpLnWtX2aNsfmNfy9HBV5z5uECkkhyMWuseMJ97+Y6AIREPEe3YmMAcR4ypt+n82rOtprDm8TZ9ChVRPtd2Wvi61dW8I57FnB2drL0+j2GE1QAOqf7wzubnfLoziAkyDdLEEK4iBrezzl/M+f8ifDv3wPwFc75wwC+Ev7t0SfE51jMnamJ0jvRxm8wa5S/F6T0O8RB4xZKP/7uCcMYQtr47J3NvrZLzQ3/Wg4vVG9CrznzcIGN2bXpPOinzxlQ/fwWzGbkc0aUOYw+Z6Zx3WyWn2xcmNy/tJp26fDw0IGapoXpzvD+bUJ44lp1ET3wxwD8afj9TwF8vEBdHo4Qh5xMUKmHm/jbKCAs8YCiNmUnnzM5IEgJ/TksECFfycO9T5qzfrTnMVzwzJmHC2wUZ0azxj76nAHVM4Pq+lEZ034n3e4XTI+lWveUAZEbb22/fMbPY3gRmzWWWGfBymJtHKHZdqzaljnjAP6GMfY0Y+x3wt9Occ5vht9vASCNnxljv8MYe4ox9tSdO3fceneEkUUYiS1ONmtUDzfKB0xFqWaNXY7Ng1bCrtxlrsvdP6wHVx6YzVLTVy+ubuO7jmFlVey2OpGvRFYfPA4H1HfstdceLqADXvR+2262cWnNrNnol+ZMHJlVt9dRqjcxqofpvLMOQFbSM/tQVUcTRbXOBa2w6TrDT3Xt96651W4bEOQXOOfXGWMnAXyJMfbTRKOcc8YY2TLn/I8A/BEAPPHEE0O/A3HOwQYcLvz61h6+e2Mdv/jACcyNN8gyZLhajebMdlIU3Su7nOPLl+8mfttutbF50NI+R6L9RF3F+mLCbquDO7sHuH9+qrpGSoStz6DAs3e2CrcpfDDVhrzP2SGG8mq95szDBabp8vUrKzjodPH2exa0Zdp9kgYI7U2/hQ/q+BSJlDzMMAqDDde6nOPS2g4uLExHkfTs2jtMo+dhC+5I36buJ+5b329hutHEiamxnH0ytecGK80Z5/x6+LkM4NMA3g7gNmPsDACEn8v6GqrD51++hW9dWy2tvn5J70x4bWMPAG23KkCF0lcPN5sIe/mlDuk7qbF7aXUnxbDZ1JnVr4N2fofo71xfxdO3NhIhVFU0O118+dU72DwYAlOJnIddFV0YguXhURG85syjCEw+VSLtimlO9evsjcz9+zzBzZqzfvakWpgeJZHLVLl2ZXMPz97Zwour227tHaKx88iBnO+fuu3S+i7+9upK5r0re02su5rRlm3WyBibZozNiu8APgzgOQCfA/BbYbHfAvBZt6bLQbPDcXsnHT6+SH2DhmAaxgyhYaNQ+pKWTz3cIrNGU2M5pXdU2aI+A7ZmHrutDr5waRl3d5u52hFMrIk5W945wGazjRdW3A6KKpB3VMvUfMQhnz2OCrzmzMMFtIN9Mp+YaU71y+csaq/P85tzjq2DduLv6HsJEY6HBaZ3bAr61bE4l8k6nUp7HBZEkU4L3p8HX7+ygq++llY6GE16Hduw0ZydAvBNxtgzAL4H4Auc8y8C+AMAH2KMXQTwi+HffUUVG1OrAodVV4jNyWRdSSV6VCH4TONmKX+3GM+tZhtfv7JCjtN+wbGzzY8mfKEOKKdLCwimV5dY+Qe31nErZPirOvy6nOPm9r5ladNhp7/WKlHQUHQj9Bh+pDRn/m17OIAiTL722gq+cvkuWGjjYdJW9YtZEs30+6Rf3W/hS5fvRIErEmdvzjqHUbttNsPPZkhdH6nfQiTOObYrytfm4Y68rz/vrDHxCGVaqWX6nHHOXwHwOPH7CoAPOrZXKloV7Ey3dg7w09VtvP3MwsB8z4RNvI3ttqmHkfmGrerMAs/f2cLKXjNiXmTsFTA1/JtXlxNmnCYJhCk0sQ1EskqKudtptnE5NCuV2yobP7m7hZdWd/Du+45jaWrcWNZ82OnR6nYxXigga7qdYZTUepQEjST7sELkD3zPfcdxImMNemRDN1u2mm3Uw7PUaNbYp/k26L1su9nGsYlG4nzfaXbw1M11/Ozp+SiapA06nCPgGLifvAyzXxld7tnlTSlZt9t76fdbfHltB8/e2cL77z+BYxPZvvQe1SBvAvfo/pzrfyN3rj639kY6pfqBRvNRBM/f3cL1rX3sVVC3LVrd7EkX+ZyZtGsRc2ZnZmAzdeIcMelr+638Y6b6113d3Me1zT2ybJRcO+eubNKcqUxnVVI5EdHSSrtlKLLd7ODLr94hffBaVWdZHXLstzt9CzIwauhyjtW9pFmwut8MgYV3pVje7a31m9vlmcUfZRi3yvDcMGnHqpxuFCE2qK0hOr+kJ76718SVzT0sO7poXFzdxqdfulXIB7tsWNMb4ff9dgcX13ZwdatnSeL6WuQ6v35lJTMqaF7stjrYPGhhda+n+dypSHt2Z/cAT91c94LQDEQa8ISQo422Jd2Td3R3Wr33PkG4HRkF6Y4NjjZzFmo+qpAZudo9V4HNgzauahgUm/ccJ8G0nBUWxcRYU3Xu5zQzpPDqxi6+d3OdvFaUYYqYM4Np5nSjBqB8gmGn2cbafit6NzZRqUx9WD9oYbPZxrWt2ESyFnLsZZo1Rn0ZofPiLy8tWzn3HkU8f2cLT15ZwYYU8EZ9tcMQHKkfOBpPWT1MwkTTuRHd3+cXMSifyjiKsv6aLV7d2AUA7LSGhzlzNWtcV4Juub4W+T2u7DXxzPKmWwWW+OIry/jy5buRQLyq2fONq6u4srnn96UMiPGR18xfv3qn1ACBFAQzSClG8lo5UbANpT+UOLAInJEXFHN2a2cfP727jfeeW+yLGYHYZO6bm0xds9Ee2Wz0rnbvzJDAs19aisisseDh2iQ0Z2qdZR/gf/1qL9fficleqFabiMG6HgSMlv7WA4ZOh+fWnJnGddQODOeISkcEgiA6aHcBYdF3xMwaPcqFjTmbWXNW3Xyjah4Ucya2ZTqAivneG1v7uLQea4Zi7cHwrFXT+ZEwaww/1/eTGihnzZlj+aIQNFDVmi3OUY3m4ZBBPadW9uzO/LzvzxgcrcQ5MeKaM8Gc5ZvBXc7x1M31RLh0UROVyf4HNzewut8q5FtVFmwCNMRMjKGexPfsiRWbNQ7OTKRrWhwWEM9pCnggrlT1TIJIqdkw+ZoXKAsl5BL1oJjm7LCZs/10ZXsoAv0ME8SsMwlnhong8xh+mGaLjf9zldMtDyNUrD195XGKm3SZLIHq391Ywx0iSvEwyVGsDXXCckIQXsvJ9Ijy/eJjIi1wn9rzoFFUMGE2QcwmmqkiNmaN7W4Xn3rxJq5v0VZxAiPNnMVBMfIty71WB1c29xJ5uMaiYBHppTc91jN1M+Uf6xdsGBST+YQtVveaCS1iFHWLPOz6pDmzSRFgADctLmXBV/VMLvXqSo4FAVkoYs5yas7MpkdDRAUYIPfzJ3e38OOKTF0GjS7nTn4q7S7H926sYTs0gzKGNh+Rd+0xHLDZG2wjB5eNfmvObPK5kX1y5LIo065Bw/bUSScRzneu9/vRI7PGitutUpN8GCDGJ+/ctw1ck243X52iv8IE+YW75jRNo82cVVCnIGypYCPTjZ4VaL/tu6lDL/rJRFx1k5teVt1UVU9eWcE3JL8ds+asT8yZ+JKzuXjoiHGNriU/y0YZJmOyvxq1kedtwdS3UTkuVO3fYQ2O8uLKNr55bRV3du0YtBtbe7i2tY/dcA8zac6GiN4rFZxzfOPqSl8DgXS6fGQEG3lh83RGs8ZKx6e/lh42wbyoEs6EZkHtQRWwfY/qWWtj6UOh3zt7EAqoq2aehuiVDiUiwUTOCWAaXhurqiyMaXxWYqsVc02jzZwVnL3U3eI3Ksz6RL03XP3OcUEdIrJZ44+XN/Gd62knSNeohmnirPeLHDo08jkjOtU3s8aiGkGe+EheUjRmZR16F1e3E/5PLlpNXZksfXHerpsJqHx19hvqexuRbjtDCIp2LQVGa/sG5/uUv2Whrg0tlnebuLPbxMpeviT2rmh2uvjsxVu4uFpNFLlhgc3ekFciXRS0WWN1LapVy3t1XrNGSsAkSg/TWrXtSoreiD4dtYd9PpT6pznzMMJSMNHpcmdhuEmWyw20m/jtgfkpvPnUvHJf7zP2WTT3YbSZs/Azb2wOM3Guv6/fUnhq8kVOibyXd4OSAtswAK7XTKH085rDuW6ucZ6znOpsg/mEetiV8aY553j2zlYio7yFUlO6n/5dnvemZ3HFoEyPyoRK5AwT8VImagZhCYV0jhZOfBN/H85Bcw1XXhQiIuYN66Tzowmb2ZK1t1RFaFO1dnl17anLUbZyEJJ+qmVTUC3ax6U8IeJWs41PvXgzlWLDFbZ9iYhcrv7u1p7DUVoqqtZWHnZNe1FEmrOMcfrLS7fx+Zdvp+83Ba6x0Zxp6PJGwPCzp+cxXqfZK8rfm8JoM2dF5y7JYOS6rVKQmjPl03SfOPRIAk76yWYzEBOLWhCmzcpsg5/ZLNlO3vcfmywSi0th/MrYgKlnL8MfUJbH0t3MV/ugIqqVCdV347Cec8Lt0NYcSi0n/5lizg7pmPXbP0fkNJwdi4MjP/naXbwWhkE/LLA5P0xChO1mG59+6Vamo3weUK3e3TvAp1+6hRUiwEYRLO8c4PZOkhGXE0t3QuEuNVy6IE53dg+wuq/vZxnCp5uh8OD6Vn+ECOpZG/3uXE9/17NstVRpOxXXP+qwZc5aXZ4os9/u4Guv3cVdRQgh63hsUn5kkVyqzkil2Q+55qzY9KX9dAThbyDc+7xqKC4+7kN2ZzgHXl3fxWcv3kqZP3HN92QbMYRKlpq8JibLxgbfFq7l7+4eJO4xMbYxUxb+XcK7blNjRSQa55wbtaQCZ2cn8PrFmerMGk3qQqnO/XZnqHwdZKQ37OHsZ1HUDKktbGC6a1QYcVf0e86KAFJTYe5EAFjdb+HpWxt97ccwwDT2wl3g0loFTCspTOx9Xi2ZGfzmtVU8pbxbOaC0OA+o9aVLoPuNq6v49rW11O8iQFeHc+y2OrimyYtqA6G1s8m9aYIto6gjUp2jNTqVLo4oGFvFDQ/p0To8EFZujpKJ5+9sYW2/lbIikQUoecyvb23vo8N5ZNGkBipUeYtD7nNW8H7iN1nbZFO+HyieuJPjSrhpm5iz9F3pq3EyUZt2Y5jKuzNnvU+buzYPWvjbq6uJaH0myYX6WxmEHCUtpmr96mt38dmXbmX26Y1Ls3j9iVnFrNGuDRvYmDW2ul385aXlyhJ+FoU65If1nIvNGu3Kp6R5stAiRSQV6NgQIz03qn1QkXqlX/mRBoWiPmeCKditIFWNqWv7fUiNI6dMEUwQqTlzPFgFH9Xpcnz58h187+Z67vklzql6wRyuavu62nTuBa6977fJuk7jV3o7ldY++og1Z273UZHYgaQAxUz3xfP2R7c38L0ba1jZa+Lb19dweWMvYspSy0ihWw+55qzg/Qbi3KRVGZQaPdmX5KfxfsSTrd3tRmY2We2Y2i1T2+XO6Nm/B1FC9jOxceiMy7r1jYItc71x0LZ6n9Hi19RjMtu0gdmssQdBYNzokwmMK46Mz1kQS863m208d2fT6b1zw1+HM75l/zVnLlYOowwbYtW0twiayTa4jQtMPdsjIjOXDVkqb6Ix8s7NNucx05erBin3Zk7N2d3dAzx9az21b+h4Pd04OPucVbyeb27vJ3Lb2sQlKAOHVYhTFmLmzG2cdPORJTRn2TRbu8vxyvourm3tY8ciSKDKlGX1up5xfahRxeQ1+jM5aGzKBDlRHHyWOI83km9fXwMAfOLRM+E1SXKu3kfVFX66LghT8SKas7X9FsZqLEpzoEIsN/kAjhcJoW1SifoS3rbJyTsPxDMxzS7jwrhTML7b8Fq/En7mRSpaY4694rk7m7i728T77j9RVrdKh2zW+J3rq9hqdjBZr4Ex4MLCdOb98tRME0mHkzhILcfKHzN5phzOUbV7rkHl1TNVvVciM6hbM1Tak3IEf71PORcp58i1QVNmjc/f3cLl9V185KFTmfd/98Y6DjpdnJ4eT/wegJHn6G67g9lONzVmrsNS9Xr6zvU1TNZjk2RbzUdRHNZ9oig459hrd63Gn7Ra0tzHEpozQ/tUO9KPOvpMpcsOt1mj+Mw5i03Mh8lMrNnp4m9eXU6ERq8SxoAgls+uHopNUrWbvUmKjdSV4TAxObm1cBz42mt38dev3NGWFUXlg9+sHVXbcuoaiaLRD1NliIOXJ773/lrbb+EzL91MSP1sYLLhHpUDIxX4IkcdL63uYLVPazwvmGTW1AxPiGeWN/Gj25ukuZbKz3eJdaH7+7Cg75oz9fOQjmtRs8ZBoUy9mY7BlJVRnPcCfAjzqsQ1qn9Gq5PeNSovqyvEmS4ThS+ubGvNwFQIn8pNxZdHp6n43o11fOly+uzOG725Coi+JDVn4ac3axwIXlzdxhdfWbYS5rhEVg/gpjmTITOBsc+ZeqO43044M9rMWcHZ6+x4Gha/u9fEdrOD5+9uFeuAJeggEfpr6bI8ZZcrTBuTRL16o17q4Jo3wqw5M92XvuiS54xemvHiUBdvFRuizSZiTPysseHX2vKHxe/sNtHl7qHDTb0tqpXrF9Q9+bATxF3OU/PslsV7NwsODuegDc6skbp2eMa4qOasSpjGuUwiqKlxgJF9zjqc4xtXV/HdG2th+2Y1l8kPTVyRhaV5123RCMIiGqnqMxgYfNj2CQ2Iu+asujlFMsslaj6NbR+ivaFMXNu0d6WglAi6UQ2kjcCsOUtfTAZ9o33OXKOSjjZzpnyWWrdBWxUYIhYWb5diRqhyvU8byUDPrDFZiSrd6hXU/6kyRK4mKDbSPyDplEl0KSyvv6aCNF0MP3daHfzFxdu4tLYjlbeo1BHm3DWh5NMhzT3lcJrwOVPKu0oWLawah57ZSWvOhrzDBdHh6VQZNlGsTGaNw6jlKAP9fi418qs8F6lIrira3V5Ap2En1qxC6Q+KOTNc05mHu+B7N9bwuYu3NBYpaiQ4rlyLv1PDo4vgqCuTd4hNgUpsMF7T5HXKGN4U0VrieVUUVN1xDlSvORsEXGglMnG7zvTY0edMho3mLOJXLGmo0WbOIvVgvmlsoyGgfhUvsWxfIh3oicLDa9n3c6kOcRC0OulcK2pV8t+xszFP/G0Lc7TG+LsqZaM3R/v3To5c+GOz05PwvSBpQKsg4m3MGk0Rw9S7qVCtiX6nmGy3ZzKvC47n727h4tp2ZlkZ1zb38KkXb/YtgXva56wvzfYdkbCkm37Lprkv0OEcf3d9DXd201q2QzpkAzBrTO6dcvNti1Bjz93ZxFM313Gn5HxcZcNmVIeR4S8YOR4AcG1rH+0u1zJnSc2Zci3hj5aGzVlrErLYIsq/lvN+3X31IB3AynSf83lFWviUM9GoWjoFmVjrtsP6Nw5a+P7N9aFNW9Nv6NYYBSpvoG4UTQKULMhCJ1GLjpZVzwMdRps5Uz6d7zdqCPQvVSaIygatKbKfYLpKRR1prRP1Lfxb+kENlGIjAZW1YLZ5ztQNnJJOuSwckwY0cqaWTUIq2P9M8+TubhMvrmxnaNeSf8cOp5ryhSWR5r7c2t7H7W1BzMdl1/db+ObVFfJ5X1rtMXPbFlGNykAZPmejAPGu8mokmp0ubmzv4xtXV7V1HzaoR3vVT2ky27JpW0iKXYiSQcDO52wwc6pfzW636P1NZsBUjXYtsZGnO2rDnCXzZWYWJxHlX4toheJMEhA/X00XwEpdH479z/aed8PGQQvr+y38zavLOJCEpqL3HYUWqgqi+qduruPq5h5t7XQE4TLspFmjpoKk5sytfYrmyRJGZM2fEY/WWLiGXO11CxJENm3IMJk1WtVJ+JyRjG2q0jTj5sKYLkw0sLLXC6iQN8+ZaTxshoAM7GKwra9ivzWZLl0MTSrfde9x6/q0Dqchitvwm9HpSvOJA6t7TazsNfHqxi62mx1sHLRwfHIscU89NOjun7Y5+fewMBqtThddDozXy5GLRevRco9QfyqeQ3H00PdUKIrGjBPXTAikiJzDDKtQ+s4WF70Q8WMakzlbmPpWxqgGrLfniITjKlSfs8Q1WXNGdMZdc5bviYRRQxc9gUAnIbTkmeafcqtiPGTUAkZqilN7Uk66TEaHc6Ovmw53dg8Sgqrr27F/U8BYwny88oAg4YP121LrMMEl/6ut5ow6PyjNWdrnTNxv7kfUn4zrQw1dEkP7+/Ndq5I5o/tiP8Ho++1+TbFmPP3dxNioeOT4DFmXCrPfS/pGW7PGv7p0Gz+8tSH1IbvvlaRnsBB4HziYNSIrz5l6v7ME1HANvXkv+yD+6PYGnr2zpSVMgNi0pV8HjEoEDuJY45xjdS9pivaFS7fxhUu3S2xE+Uxcyl7jxkA0+Xs11Oi39iYdut+wWAkI2n3YaTObYXV9hO/fWMfnXy6+Xqre80Wo9R2N5qxR0xN+MuNG9cTG58yUEscVP17exBdevp3w7bEShEqFZEJXmN/rmCV1+J19pEnrGrc6BF5Z2038LQdjEetQCFurWI/UXIwFm8OtOR9GkAJKnYZX4oZk2n6/3cGVjXheUHdTPmcp8bkD7QyMOnPGk59577e9piYfrMassbyNJqrTIFVXr13Z3IsYBYq8denKmZkJvPu+nkbINiCIrp/J8r3PLHeNvXYX21IOG1VyQbZnrjIXbJh4NcJVEsn7qTwaXFvafX0Ypcyco8uT76xpwQj1mzkbBp+zF1a28eSVFaztxwxa2Y9vIsnIppSBMK2hw+rj0G8mRxUKmdYqhVqFAajKRBW9E5qLIs9+Y2sflxSiW0YZ/RbBMHQJrRtSKDiTzxkFK82Z9L2saSLnf7NjvGVGRmLOwq965WexDlPDk3e+iLNa9c3v/RZqsCOfs7iNjYMW6bfrisTeEP7R6PPZeZhAjZhuFHVmt9+6toqnbm1EZuWkdjvxoy5aY/hpOTdH26yR+JbvfuqahdS5CrNG4jfS56xg2xShsNPq4Kcr21iaGsOp6fGEJiQvIyw2NNNtruG8Y/85t85wDoBlSVGdqiTx/ZvrWNlr4pcvnARgF5Ft15AINeVzlhX9SrnBVd5mozlznX9C+te3gCCpv/O/WBuTHgprYY60/RJyEOlgtB6ghDLK36Y9rIzd7crGLmoBw9nZyRJqKweDynPW4RzXNvewKJn82nSlyujAZULsCY8tzYIxhh8vb5ZWd6fLEaihfC3xd2HIehkMdsI6W4jtQbcv1g0MmMzI2Lo1pMuU8RDJP/c7smCTpwsokHtAvSqtz5n6t6swkbKuKcjI1BiLTGp17clX/u76GnZaHXzogSXMjucnqxP5WMMWxNwxpVTwoCHPjb+4eAuvX5y1MmuUp9SW4idP0aQJzZnyCfTmE0VzmzDimjMhwaiibuI35e9K1orl5uzStG1ZIRk4aHfx3J0tXCZUua6PLCaoWXMWf7cZ48is1DXXmuEp4g3Xrc47uwepxXt1cy/BbNkcFLstPQGv3k3ZNJvMWpzNGjOuJ3zOQB/ZL6/tJBJ39lv6pz5zkT0i762iD3l8H+zbMFyzuN8lv14ePHVrA9+9sV64njKR8kfsU3uvru/iezfXlX01u3VB11sEdhwoRPfumZnA2dmJUupUTcnKgo5RKArdcmoYmLN6wgKCY7fVSZyXVrlM5TO0pLGShUpWmjOpTNKssQfrgCCOK5IUaDvVkIboqxyEJ6JlxCfR8J29YtozihaKrU68WWMRWqbV5fjxnU1yMjPo56ca44DqQcLnTMQEkOqrB7FWwPYRRps5Uz6d73eVGvfhcCQ3mio0dNGEi+sWhDMl5YuljG59iaW++jKyVqPGmNaX6srGLr722l3JrNGtL50u10ZGdJWi3t45wEur2/jG1VV86dU7xrI27+9AllJadkIeJ5NZi+vsyTJBzapvp9XBj5c38Z3rscS61nfmbPB1iduqY82ktkgBDiWESP5tWkOHVVCbmt8VP2fMpPf+XpbMn2yaHhnNWfjJWPE5rwo28roQ6O5rSDZ2ZY6qbu9uGAKayGaNnS7HF19Zxg9kX2nHdst6Hlm4ZtUH6XuNNGvUac6KrUcXv6LMusJPQVgnzqvI95MnPgHJQqjg4CfeY/i138G0DgNcg74FLJmEmrzPoAyi3k1CcxbImjO79zjazFnRhRB+2h4k/VgatsxZ8WdXxAGIJxi5iaaLW0FUZdwspUu1gCWj5kgXn7q1gbX9ViotgC0ure/i+btb2CBC0nLH5/vWtVU8d2cru6BlncbQrco1cXAk8pwlCiVvKFNzZnVAhO0122l7/b4xZ6ku5W83r0mkaLJCxZlxw7fR/h/NgCDK3xU/qahd+B2thhFsAbt9vGqfs5+ubOFTL94sXE/cvfImfNFIdTpf3qmGxJyVOK5UNxmyzBql+8PPa1t70W82/UsI5zJL22GP8NemcGt7H6t7zUQ/g8TzOobSd+xnmesidt/ofZHN8GMrIKrdNMOWq33iu+Dr+8mcferFm3juTnlmyWXBdgh46ot0jVqjjGFxQoow7TjU8rthhM9ZnTGzCwKB0WbOooctNmlJXoRiiPqiOku3UdSs0dic9N2Ya0uMtWPDgpEwKeTlKuuMJezVO12OzYNWoryQ9rtqzkyZ5XXPZ824h/bpeRlps+STriBp1qgv7TpXTOVd8odx4qjpl2mG+h6KtJr3vI0Sv0NIVcvfP0SV9ud2smDWGhqWFARlot/BYlRiTi9GoRGbNVbT0Z/cDRPKFyYse/f3NGfFGDTRk+jZcxKm+zrmLIyuKLDX7pRC/FKMPmNmM0pKyJYwb7Poljync79H5bakWaO+zm9fX8OTV1YSv8lneGTWqNWcFQN1v02dnS7H5Y1d5ewNxz/8u2mwJabeUZnB21RNTb+YM8GQvrS605f2XGBLg1N7bVxHGgGAe+cm8f77T2jbURl3qj0gpssCaV3raDUTRpw5Cz/z7kXhffPjDW3dVPkqQTWx1+7gq5fvJvyYCh+kxO2CcKYOQpOE3gQxwawj1AQsYav7zPImvnz5bkKK14kOMAMzSVwzHfCxXbE98yHjqZvr+NzFW2TwB5sxK2qWaLzfcaqY3pUNkSRKUIfXoMwai4zB1c29KLiHUx3iS4mh0DlPCisiYsJSgKOOQ1afDhtrxgmz3Kqf0SzYsm+9arlGYSI5rIChuLZY1BVpzvKaqWlum2zUEmX+6tIyvnF1hS7sAGo9BYwZIzLKTDfpY23Rbhm0iboyksEp3PqgmjUy6InNlLDEcSaSgnSLKl5e28EPbm3gtU1ZS5nskyxMNO0b4vvtnQN86sWbCXrFBSYhrSrYrCJaOBDn6iuaW7AK2D5yRM+Rc4MSoPTm68xYLXUtuk/5zK5T+o7e+9o6aB8RzVlRKUU4TG86OReFfNehqoWggmrltY09rB+0cHF1u/z2pAYF4UxJaGOpgbk+VSLJLGyx5Uv1gCU0mYIolu3fxbtwNckySZ7X91vYabZzz6mrW72Qz5Sk1u5gkw5oy+VrGxCkjKSeAinmiqe1i+aE405dyY00k+3WsCwwfWZ5E1977a5zH+J8fL2/y4hU+fStDXz58t2UFpjW9KeRIjAyNWeOHRxykExsxQ8ZEXyWpqc69MvnbG2/iW9fW80RcKkHxorqzWIUNYfW3SWHthdl8ghgUu0R7yiAWXO231ajImbXmSqTKJ9ZPLMOQNXG2dwfFwoi03vxN7QRb1PWGK6CNMvf0mV6pbalgF6xsKv3KUdIVAN7Jc7s8OvdMK/l7Zxh9eUWuhx4ZX0n6oN8Jm3st/DZi7dwXTJ/dcF2s42XNZoxMR4zDT2jMijYzg1XzVkUxMNQxmSWKJ/GVLRGMIbl3Sa+dPmONeN+KELpFz2zagHD8fGxxG9ynSt7TXz9ygpp/lg6iGdp1Bg6bZ6IHFRYyknUI4hHs3mjGeP1IGHnb5rsVKX1ICCj28l9EpuUMQw4ccn0XN+8tgoAmB1LLwmXUOpNggC3M0vRl9fdnzSHEZ80Abi618Ruq4N757JDmpu6a2PW2ImYEoph7A+BmeIhHZstgxCWpbBfvLSM8wtTheu8Ekp5u10OHnCJ8Kfa5/jejTU0agHecmqerC+Lce+Co9aXkCb9AckgVdymyZHcjojsoWrmjHMADHjuzhbu7DZxZ+8Ap6ftoy6K52TRfwX6gl5nhO9SJ6dgQyeUYawnCGx3ubPghmxHWuvptsyaMyFoGa8FtGDUtS+O5aP7lBuTe6gbg1gLGJamxvDQsWlcWtsxRqwtKvjOq5GeCAXJVFRKqkuq9jbJSCWvmVLjmCDXc2N7H1clrZ58bTUUJNzeOciVpuRb11ax0+rg3PxkSkMmEqlPDyNzZm3WKMpTdaQhTBAZksqEBD0V/Ua1F/9ITXX5pz1jTlu5TwNAu+ueJ4mCHJHl2uZegnkBgKdvrePlNb3drGyGIX+KOgWWd3pSkKqlrvvtDjlxhJTvoEzmLOp3XJOQ0FB177Ta2DhoZT6vOi+z8r/02ouv1ZWAIMJ2nWKsXPOj2ZnkFRvZVs5411SUpuhvzT3JaI0GSREHnryygu/dXI8SjBv7YhgDl5w7eSWaZUBtx7XdMvx7RA377Q522x08f9cugIwN9jtdfPqlWxGzpltf17b28ep6OiWGQKZZY79eWJ9A7+EVtynaIa5ZaSQiYVRZPdK0E/ZQmPmvO2qSRPfyRGscVwjE2Kyx91m2WSMD8NGHT+OR49MlmQT2QJs1ZmnOejNkqlHLJPxc+uKK9N6gP5MoyORXAODd9y3izMwEgN6ZrhsBFz9mCl3wlODcpr8ivYGsuTSJANICPy5d630X8zUvcyY3sZ3KryX3pfdX3jQtsWYw/cTiPQZ90Ua4wZmPt9zvdcMot7d+0MLKXlOj3U7UFtbJlF96sKUt+q4545zjcxdv4cLCFN6skeZa1xV+djjH926uY2lqDO++bzG6/trGHoA9PHRs2ng/tW1QKmtdHWVM4bX9Jr722gp+5sSMtozsnFpWEmoZggGi6ha5ipamxlLXZKibRSSJsOyLatYYMIYO52QgCROxQr0zm0Whk27bvmNqs3OPthW/h6dvbaTyqAlQTqZUUwmfhsyeFCdWqWiatmaxZaHo+ihHc9arY6+kJNTyM93a7pnRCoFNFtOx3Wzjtc291LhkmzUeLu6MDNhTscjAVjClL9ND5Zqz8FNI0jeJqLbG+yNhZ/JErbFsxnKyUSOFj4Kpyatd0Qu2Ykl5GaOaFnWKdnpnmClao3juyXoNGwdphtjZzC83I5u8z5R/FACeXd6MhENAMh0MU3zOAsYSpmNyfeq7dX/eXv0JZtLyPsA+8Enqful7RznzbLUjuj6p/erVnWYG8zJnjSDAHrpodjimlZALVCTvYYHt+zHlre3w9Hkc5yZD4j75fkEDn54eT7cn15XRN9u9rO/MmejXK+u7xZkz5Rl1RGwmpBfDiXmZlfepjCSzB+FClKXcavuqZtCEgNlJGWhJnb58lkSIMeCDD5yIysWas+y+AD2zQtn2vxYwtLqclJy6JtB1CWaRrAuJFWeaD5TmzO6gSB8srS5PHH4mmNT4if7azAmrFiUo078T9UV+JrHZ9QfFGczifRCrNVoLKPb88r3CtyFqK+OBhRlLqo8ZHdo4aGN1YxevW5y17ebQYvOgha8SvoNV8Tz77Q4ub+yWMJcE4Vc1Eyk+863VWNiZRC0UsJkwVQ+wTtRVOAWHnjvrfZSkHNARjYIpMTXz7vuO4+rmPrqcVxqZOQtqO1nMzkXFKklmrtVgCDXJ1rUeMLz+xCza3S5+cnc7xbjnEZaYNGfLOwdodXkqMbooctDpotnpohEwp71AXi/q+etCqyX7FHdAaPTGAoZmlyf6JsYsr3JLCAuofppoiUGi0+XW+0AkLCGKNzs8MmkWCJQVSvEBat06kGaN0m+2mrO+mzWWKaVMRReS/ZJsCHHZRh7JDdSeOctsxgriEKKk7BRzlvV+hfRTt3ZNk8/0vBSBB8SbBEPPLKZnziD7nJkYqd7nO+5ZwIWFqZTmDADaBNNjfC/EbzamMTbrxrRBkJqz7CoT8+ivLi3jJ3e3MhexLJ3k6JkKU0SC3F9XRtGidKpS4ThNaiH7tOMXzV2lOn/ngRhH4YM5Xi+23cpjpzoVZ61j3VzKespvXlvtEVCHIAHqT+5u95X4/f7Ndfzk7rax/laH49Mv3sT1rT2ttF28un69gtx8kDhPWZIYsTGPmlQCSakbRV4zY63PmfJZFWqsR/iZfJaXpsbxs6f1gmrnPJW535/yt6YPL9zdijT3Mg7kvJZKGHHZrJEBeOjYNGbH0lGy86AnO1XHN+7vN6+t4rs31rT3dzjH51++jW9fX3PaC6oQOJJy1PDRStWchfQhxZwNq7XEX7+6jK8owrWsp9c9SUPZk9SAINH9GhrGFMmS6pM8P20ZzIFpzsqAOnDyBk4FZkjdH34mLUPTXIs5QXA5D2SqRbTvYnc/FgTYRxc1RUJg114OyRUYukgHznDRnJ2engBjSZ8z8Y16n64BQfL6nAnndAFTri5Sc2bx7GqRn65s41xG8I6EMIH3tNHPLKcTRybHKf5+c3sfAWM4pajp5dJZUm9O9J3M58TlO6pH0WVZhs9ZZOISMlKNcE3KeGVtB6v7LTxxZsFY183tfbQcfU5bJW626hoYRehyXlVFjOgEWTLW9pvgiE1mfuHe4zhpWI9lg/J1zZvTMn2e9mDyt4rKKMQSVz5zmzVqbit7Jmvbkcz5Hjk+jbX9Fu7sNjVl6TpcdTB554tRgCp9f2GFjhotl5Gf5dzcFJqdbmyyGV5Uc6FF79x13nHC58zyPhm3dw6cgmB0ObDTbOMVwtopL0wCTflS7OOW16xRrzlT196wgEpTJFu7yVD3MhX1IIC8slS61fTs7W4XM40a2FgNK3vuEV5tmbP+a85KPAjVVyU/c8tCrRwdJoSJg/xSTYRaWalnskwnVWSNouDs9YtXL/XJ43geaCQPdj5nscS1V1dcCxXSNr5mqDOnWSOloVN/MRG9tOYs35zPWsSJgCC8l1CTgvzcYlhanS6+c30N3wqjVMqQh84m1UmaObMvWxUGcbB0lEBH4psw96Hm5I8Uvw0dvnN9DU/d2rDuS52x5MFbcEAOgeIscbjrrCTKhI1pk8rAvUSkS6mSWEr6FXHlN7cW4/M0eQqohLP891SDjgX66voulncOojVTtlWjzqwxt7+W4Zo4z964NJcShBFdSvXFWXNWwUxxHRb5Wc7OTuD8wlRKWynPE9mqwLX3HGkNUh6BKOAWyIMD+NurqynzziKgLD7UJPbyb65mjRv7LXzqxZuRP6makiXRzpBq0GSo5ogCWQIm1QdUzL4Uk0ZUcNDpgjHgPfctkim4KC25/JNtSp2+M2dl5tE0bVoieIY8TAftTnIyRrezVFlKSuHaBxeYqtFFiawbpCZi8ukckQ86Xfzg1rpRC+QCMSHVLqkOljaQuyye3YbZlpHXrJEso/xkYvKaOTVnZF+ymLOEMEFPwFDChWVDHha5tI3ZhEmDrdbZr/2+ioA5We199uIt/FjSXIo+RM7ihXqktJdxPQhY4hBwfR4doTgqaHW7KR9k2WxQ1tRUxXjaSEgFcybyQ5JBOHIS6TaQ+3jQ6eJvXl2ONBx51gBFeE8oJosyQfWe+xbx8UdOpwiaF1a28c1rq7HmLC/TpLlPDggiIz8TqGmHJc8z826avBqnJHHsS95nKFGoRppxGph0NVqnCzhP0x1XNvfwA40w6+5uE0/fWo+iIZKmhFbt8kxTZFfQ5Ed6Hoi54WrWeCuMPL4ZPjtt1ijaHX6Ix1eVEFkCrbRZo2I/ZxiDg063F/SIqaGPDP2UvttG9B6A5qw/7YhJ15B051+4tIwvvHw77kv4SQ2v3M9+JNU1+cjoNGcTFj4sOs3Zze0DXN7Yw+X1fEkMVcSaM2XSh5/GjZ8ny56YjCNCUpH/bFAmIaPWZKo5QRAT5n0uoBhnlvgu+5zpCRj5d/FNjOcYwbzLY2e3+SfbNUXEqzoyHt2jHPc7ViCIXFl7GfsK8cRnKcioioEWFGRBvG31vZfJWPYD3762ii+9eifxmzwa8r44SMZzJySSTHmwquydvB6vb+1ju9mJzO7yDIsFTU4I8PQkTizEL1ejpfMxyZ0oXtMQg2Kmb9hP1St5AzPknS+m+1zHn5rOMUOc/BugUik4tqeM3pXNPVze2CXrubS+g9c29nA99JvLeyaVuS67nPdSFZHX4jJyecA9oI16BuWxyhoEdGenWFvqfPvJ3S188+qK9llSmjPl/i7nYdj8NGSBVtZ+99jSbEq7diTMGk1VCR8lkSOMvF8MvcbEQcCsOTN20Rp5pFbjqhM1cY/p0AeS4W+LQLRDHbyAmbhTn++hY9N41729CR0fUG4DXaUZluldFdFWqKC0eIkoWAlVL9cGsaBCIpskS0nNWXY/1W6S64XTZatCv83whKlrXdpvhMClSzx7l3Os7tG+JzbIWg895syd0BTvOx39bBiPbD2EL4BOyy3vi4N8smY3m3GvUpIt16nzybOuiycJ7kePz+C95xZT5ZLMSvipqVOMS94cb1rmTGlfIG9USBMTmBSo6aH2Ja9QJw+zkbW+W12Op26uW+8p1HMy5UtCc2agZbLAoafdyPcZMTu5m+xVU+KCfPbOJr5y+W4krKHQRU9rw+Wz3rEP6tujmcFiQuUqoJt3Os3Zze0DLO82tS+prvAFiTXKepFIv35lRXtGm/YtuSsPH5/B0tR4QigzlNEauzyOXFYGTJuQWJQmh0lVY5PQRBBSCgpFo8LZtEEhS3Mm+m/KrwLQNsd5IEwsdZuyDXEXm0YyzI71YtWIcXE9NEuNCqpUZao7YTVLSH1dHHipZ5bnqEzkmDRnNLNkJ3CQ+6vTMKs1UYSUiRmsAsXNGt3uF2a3B50uPv3iTWw120am9fk7W3jyykru/mUuBxYLClz8ElgkiSzH3GtQEL3XaULkYARZU+XS2g5WCjDSNrBLe1LBS5CqVM+CPBobedq8YWkWi5NjuHBsGuO1INpL1DDrvd/oSSr6kFfr7GwSmKsVMxNIMaMC98zofdBya854T3PgIpzJamNtv4krm3vWAiWT3w3FGKtmZi7P3AsIQs8fcgzCohETkvOllxE0SmBltydM2je8s71WB194+TZ+urJdYG5w5W+qjP7aoKBlzsKXqYsIa6s50+0/ulyPRiGL4ZoL+sqcbR608I2r6QAEeWGcPA4Ti0xCLX3vh1mju105NxL6ol9ZzEBZ/Y81Z/SmvHHQxjeurpCSbJvXaGLOssxSbe/R9yGu7KDdMfZFJiJa3S5euLuVGGMXQplkzqT71cWrZ87i7zamlvLzyoeeru9qXUYtgKFdGZfWdrQBTmzQ73NF1Zhe29wjxiX+XpTYt9GcycIn2/EQc4oy8xgliMNXF7wnKdgwP9szy5v4egFG2gY2a6Z6zZnCnOU4k6gt4p6ZCXzkoVNR8tZEmHXlU/WjLsycKaMmzOdkQSDZoGs7Ot82pjKj8R+/9tApvPPscelaEjHz4Nap61v7+OnKNp67k47cq0NWE+1Iw2tXn5l4ZYlPqrzr69adTZRPmChaVCNtzLPqWpnCMJrqvLG9HykFXNuxeX/dSnecfNApEcR7V5l7Ad1wmswa5Xmp19jp6V1q9udh2PoeSr9MmE3lsieWKEGpKJPMmUnLUJLmzHEhqFJKgUbAMDfeiJ4/S3NWFmpMn1eNgeF26Ii6stdMhYoGcairz+YaSjmreJARIp5Cs9PFFy4tG8PtqtqR1yyTSFOgNWcxEgQm1z+zrV15l/cSXcrFE5tWVtxaU3ucLquDSAnwwPyUVXkVRZkJ6nZTwnkb/y6bvGO2yBY+sFxHa++wST/niPFmUfJ6XSChmrJ2Bg1zHshiEn5bHKRCVTvuuTD7wFBRkaN8nMI8KWCJiLmFozUq9003ajjodCOzsBRTUKL/UcCAhfEGZsZiMishXFMaVwm9vP7WQlDkcl/Wc4sgBtYmWZSQFklCK/H8BXhkzvW+0btE+PWiDL9aj0CNxVYjrnShyjAa2+WShQ6P2zL5Mwqoz0z1s0oz6rzQzTvxyLqAMrpnUOeLTlCg19ily6p9yvotCwNlzkzEjg3y+GkZC2lMXYyh9Euawc77BO919wP3n0A9YPib0Pn9/fefwMxYHU+GyfqyfM7KgrCw1E7M8PkoPyrq0XVSRApUm1mHTcDs/RhEsddCTY4pf1FWrj0mD0YGyIAgFposFfLY8dSXGF+9fBebzXYi3HNCc6apX61qOMwaC95P/Gbar2wCCZgEPpyncwTK19J9MbeVrMp+zlHpLIDRCwgiNDA6zdmw+JwJDCr9hLxP7neyE5sb6+K0FYqAHNH3Xfcex/x4PfpNTPFawACpG+L3sjS3040aVvdbWveKvK1Q3QsYw9vvOZb4LcmP2Fm1uPZJCDJdTOiz2hBnkS1zZiJQY7NGmSBm+OD9J3BpfTe0mOCgSd80TCVJ4jpioKyqt0Y9CNARaVNy1mEzz7lUjoPj0y/dwj0zE3jn2WPmG4n6qdaGYT9MQdMpoYXXKSH00VqTmJIF7tJxqdPYGX3O6K46w9qskTFWY4z9kDH2+fDv84yx7zLGXmaM/TfG2FhWHSryOt8KkAmDHaSMUX6t8G9GXMuqqyzfpjw+ZwwMCxO0ZE5MKVO4/byg1kEtdLCk8k7Iv+g0YKlAIko96hLJeiobzZktuLJQJwxhf5MmhOnrLm+DGiut5sxQT6Ia5cCXL21GoYXjX7MijXGibTowSX+k/8nWknjuziaZR8oWJmbeNeGzuueb7qZHU3/H3Fha5mY77mK/GPWAILFZo43mrPxnc63Tjiir4B1IVRYOkADarFEgPmd7ie/lEPu6pLpxUB1951qdLv7u+ioZ0ES9a3a8kagvtaWVOMTUGWMyE9cJJF3nkqCrDLHQUshqQuxvuqBTKmzOObl7DMD8RAOzYzWr/sjg0Au2KAGnqLqseAECCYGPY9XiTivfU/BoboiAQje29/G5l25FFko6WJk1lqCpv7N7gFfLTM6t+d3kTgOYNW7vPbeIX75wEk+cnscbTszG16RymZozS4LONuS+DBefs38B4AXp7/8RwP/MOX8IwBqAf+TaeNGlUVRzJsrEXHByANtdjr1WZyg1Zxwgd8Ao6bM47CrQnFGHTl2Siqb6JP1G5sDi6UfRRa4SyDJLyjrQ8gyLqxSXKufCK2dFazT5zWT5hxnNqKTvtUR7mvJKVSYzSndpfL4FRt330uoOnruzlcp/Rd5P9DSLQHSBug50Vd/ZPUj5AvX6Qpd/xz0L+MADJ3JL74QEUT2Uikc26y9zJ4RFupwyNUvBRr9g1JxVJOkHMoQCrmcSN+9vcbqVNDqa80qYOJrG5/LGLm5sH+Cl1XQyYHXenZubwJtOzuF1izNhX5Lt5R1iar+gw8nrkXJ/UwRptojGslTNGU/UnQXarFH5JKN2Mqv+yOiZNdLXqPWfTrZeDmRBuMz47bc72LNMbm01vjw+i9b3W9HPbc7xk7tbxlvTFhtE9SWMyzeuruKHtzeKVxRCy5wJYaLmulYZAIbFyTFMNWo4Nz+lpZP1AfMMFgJOpfWwYs4YY/cC+AiA/xT+zQB8AMCfh0X+FMDHXRuvRGJJfNO1GzefPjU4B75xdQV/9cqyub2SnsFZisNpKSWLLwNw26BtQdUZSTDIPsW/6n3HmOGv9IYRZJglZZHKJs1ZWpgabuYQB1RG5aIPRDmXt5GleUvsJ+r4aFriqS9pyAeaTY4elTChk6bTZbOQV7tuev9WIcOJZk1SY1VzlrXs1HVAjcteu4NvXF3F92+umyuTUAt6eZWoiHg2EMyZyhCOWkAQsUcJzZm6TxeRctugzCrjHIH9RZ72jGaNhmu6AFYtR3M6FepdjDE8dGw6CqVdUjwQcg5R52RiXWYF68pgInR3i73FzTrE/OSufmwkHRD+qArFE+Vzkiu6Zy1qneWCumZP+ctLy5l0pOi+TX854jEUCePjdun7db6bVOlB7TdGaDpTz9CcUQJuwF5IoqP1Yv9Zao07SmU0sNWc/XsA/xIxzbMIYJ1zLkTQ1wCcpW5kjP0OY+wpxthT7t0zw+jMaJA6qQOuSnTEfWuhVMI0rqUloXblzWDeAMXGTkkEigYJoW4XEoYxwuQvMdk10RpTVWZqzpQ6LBxdZZiGILXRK3PKllClCG4X9TateZPNYvQMatYrNjFpcu47OU+gLaNvIqRcaaw8ubp67RTrA71v6G90JR7V8tT6F9LWrWYrfVEDRu5m9phu9Ewi1e4U3eb6fdCLbUgwzab1UYW5YFkMX6cb966KMTTX6dZiz29Sf50KCCKgM2vsRHuuRfukm4PSB7VPRC1lwRgUwwJxfkS6TzqGROwtTsxZxnVXzRlJtCrPnojaKSxvRH8cXoOOFgI0Zo0VbUZlBF+zGV+5hKCnxgK9xnG/3cGnX7qFV9Z3CJ+z9B1UXs5BQ9cVMcd1AUFs3WgS16TZlOWzZvvGK9GcMcZ+DcAy5/zpHPWDc/5HnPMnOOdPpK9l37/X6uC5O5u0Uzxswnun7xMLIPI5M5hbZKGsg91VA8eh2wBFfb1PaoPWhR21BUWki+SJZ2cntH0C9JIMdfDVFtQ1pvYhRUxyuWy6OdPBlfK3Ueq0fVOk5sxh6J2iNaba0Wi5LByC99tdLE2N4ZHj03jjUmyLrY2IpFRSppYlbx6+skyeZRg1pqpEMqMR03wVEIypi/abPDSY/Zyd0kQiLfpO+50nTXRXHM5q96s2aywj6t9+u4PPXryF1zZ6EV8r0fCVKEgxEcmAee8TZ7IudacxIJRolSjiOmR5x5i6jzRrtCQKgexkwLpjPA4Iom9LRbbPWTdRdxZstixTGdv1I+avPlBT/zYeWRDuvl/27rUZX7lqGyGfOEeeu7OVuQ+LJNdhS5l96R/ovgjme1Jzbml9zmyDzWSQqyYFCVXeBTbRGt8F4KOMsV8FMAFgDsAfAlhgjNVD7dm9AK67Nm7z6n9wewO3dw5wenocJ6aSIdh7tsZMiUbXOyJUglpGt8uBWnwtS6Vu6mdpPmeu5XU3KNGvqLOuZ9KRJHoDZv8slDbuZ0/P485uE3Ohw3WyS3F5UnNGmGjqDipdH7hCGchPR4XNN5mUBJqIilkHRiMM363rM8Iuzo7VrfyeqI0l6XOW6FwC1pozzbWAMbxxaS7xu224WtqskSaSs5Bbc5brLnMFRkLWwrTT3Fz6BvHs1HrVwaSdsEEjYDg3N4mFiQZ+vBznSSrKGPBM0r1cxORFUhAnYGvWmNvnUfmb3lGo++JS6h5RSUAQY18cy/MMnzMktSMyuhFDQVdgJHZNRH7Gvm8TftwGVO9MflcUdH7WZs1Z+lo7g2GhYX7brcj3z5I5o35TfkzmlkqWcZ17uvOOEnBWtYrqBQQ+4k6t8DqBeC8VjxdH9qRojl7ZdpenrsvNXVzdxrN3zD5rg4JuVMQZOVkPMNWoYVfx7cunOYuhczeSI8+a7lfLuyBTc8Y5/79yzu/lnD8A4DcBfJVz/vcBfA3AfxcW+y0An3Vt3CoXWViEXmSciCoW9Tssk4YrN21mzspZ6rbEnCzVICdB+HnhWC8/1Hg9LVGg1O8u5hbUATo33sCDx6bJ8nJpMiAI0hM6yxcglYdJrVNqhzqkxgzci67trHdUV8JjkT5jDHj3fcfx8xZhb+U5H0tq4s6ZA4KY5zIlHZPfK3X3uE6srUD3jql+ZiGv8KNobkLSRMpY3r59CvJzvrK2g7X9ZqQ1LCWoj213GPDEmYVEOgUgX2QzeZz7bSITtR2dB8nrBrlGsh6HNvdanfi9KzfavkO5n2owg1HwjTOH0le/xIh8zjTjlDvPmdqHjL/zjge1X9A+Z/ZrOSuUfhRxUnOfCz1oq+kvZtao/i2dN5FZo547W91r4sbWPtkvHdtLRWutai+qSec/qRSwaNhKc0bUHyWlln7fbbXxytpOYm6aQumrjFmft2wzNJ0R+UUn6zW8//4TeMup+cR1O2ZXgSzk19xuppTKEfi4RGtU8bsA/k+MsZfR80H7E9cKbMZN0IP6KH8ZRDp6xM5fXbod/dZRGDfV3tmmn4F+D8mFLJ8qgb12F0/fWkdHI6UUvz1yfAafePQMacJoq4rVwdW2Wi6tdXhlxj9TSB98vXpbnS6+c30Ve1LQB6q7M0S48bi8qpWze8vqWNOaM4aJeg2nZ9LmnyqyzRqlPirlsqSm1BPJijHqdsqfMAs2ZpTG+51bzL4vd52GG9VrroeCfID+aHkTX3ttBXttYdZoX4/YD9Wkmva8We8+9U0X15z1F6roIUWiJaK90r3bPGhZP3e7y/FXryzjh7c2Eu0K2KY0STBnFrnzCsNhTttUZWO2RxU5PdMTBiwQlheAff6nrN+ymLOsiZpgwOXbDDSCsT3Dtawk1MJKY5IQwPY6ZWgsZ1HbYFg0yZr8ldScGfrz5JUV/N2NtcRvsftG7/Pk1Bh5PYlqdqNEQBBKo2lgvMS6sTVr1FlqyLd/69oafrS8mXANSAUEkf7un12DO3SjIui4qUYN47UACxNJuq6o5iyrkLXmzKZOBU7UFuf8Sc75r4XfX+Gcv51z/hDn/H/HOTcnWMgJQYSnoptxHplf0X2Ny/1oeTMidADg6uYePv3izdRi0b0wk6pYbKBbB21cWkuH8rWFuonoCOEf3t6IfBAoqBugiYFL3mcPV0m+LEXTmRm45oEgzRoBXNncw83tA7xwN85nRUnxpjU2yoCeGM4iEBrKjUVJq4TmIfxMmjXKBGbyXp15kKowS9yW2KjT9+vMGk1QiWR3Ij/fQcp5WqseX8vXqovWz9Y3I6qbKL550A7rsq/HxazR5Huqrhl17re7HH9x8RZubicl2TLkO/odSl/VOqTM2zLuv7m9jy9fvourW/q9VoZIpXArzDOkPq6tQIuDg3OOVqebMukt06xx86CFp2+uG/co1/ayXrFpTp6bm8RHHz6F2XFaaNbTFmgILYdOqX1wida43Wzjr15ZxkUqZD9RnjRrNBGFyrWsgCACkw07c3MTbMva5jmjkB57lr4W/WTXjig1Va/hfecW8bOnFxLXKY1/VTtRVnofKjiJClvNpK6YvGaFcEemudI0TC9nWrvb1dJUwwBdV95+zwLec9+ilDMx+QymUPp6ZO/VJkETucZzcGdFNGeFYfPyxYRRJTbiT9XSSrUqoZp4aXUHHMDafpMcM/Ucpd5vpDkLr337+iqeWd7MLe1UNxEdcyYf2NQEy5QMGn61hWt4frk0ufkQP5nMPxjST2Ai/t0DgqS1sTvNduamnjZrJJh6h6GjQ/HHFcj9zPLJk3ol/U9dCdshbp+wNGtM1MmTn3nvd74PJtPOfNyZi29SGcxZO0cY8RSNYwAV/CO6X6ngxvY+rksmRTutNlpdjucMPgpyt/t9zjuZNRKdE74Ld3abVu2pebpMPm4mdDnwwso2/uLl29hR/CfKJJZ+cGsDr23uYW3P7vlswJG9b2uvMYZ6EBiJJlutDdBjpG5t75NiVdPfpr3hlTCprmyV8fLqDjb2k9FUpxo1NAIW5VJLttZrjxYA0gKR3l6m7ZZec+YAW+FJ3pQGibaI39R9a22/jc9dvJWZ9iR6Xww4PjmmdXPpB1RLFnVMTcFJxK2uofRT16QLwsdTfmfqeHAA37m+hs9dvJ3S7ucdukrSrmjqHKsFOCFpS9Vlog2l7yAkMZWxJefyUNw2AUEqgw2RpNOcxRGJAgDxAjY5PApM1gPstbvYOGiTuTYCsASzRE024Yzb5RzXJenqbrOD+Yn8RKyAFXNmpRXLZuAAt4XozJxpil9c3caLq9vaw4Vp+hWwdJ2ff/k23n5mgZSUqXOkVwfDm0/NodPlKVvrKLEh6xFL1zb38eLqduZzqwduFnOVhawk1onDQCmq0/6ZhBaJdqTvdcbQ5jwRVt8WcSCIkNBwNvfLhy7XR36zqTOLec26ltesUR4fW8l5dt3x/zKmGjVsHCSDTugOnZvbB7i5fYBPPHomcd02mXnffc6iT574FJDXEfUMwr/ywCYnHuTzSDBnSdhrznqWHQDSzJlVDXYQ/WkahIm272x9v4WvvnYXNcYwp9F8AXYBKnTC0i4X+6G+Drm737jaMwt+MPS91tXvcpIJhl0+r358ZzNVbrwW4JcvnCTrEENAppxR/hbj3+XpwGcydOeny3yxLVsoIIixfFITcXF1G+0ux+2dA9w/P6W/MebNep8plwT5OwdjLFvDi3xrLWt+ty2kC3ZJqDk411nGxPeLLUfWdqq1cw7c3u1p+9Pdz7fjuAombWBbo077nCpnqsOmHV2DmvtdLcOAQWvOLMoIiaNK7MShd2lu3xQQRGyM7a4aVCPcIFLSF4o5632+tLqD795Yjw5S9UC1hbrp6Qjhg4TmLI3U4WPFwLnB5K9FIZk3Iv790voumh2OrWbbqU8Bo6f6j5c3yY2XDIDCgAsL02QQEzHnxH2r+z3pctbGmWUKJtq1hcxozo7VwQC8XpLGJjRnzpL6jGeRvgtCNWDAG0/M4k1KFEdjK0kFBjh6xJx1rrgcVH1WeOW8Zo0uEkHXA4qMcBn2wkUXT0WR6vkopGGSuGcFLoiuGx9Tltj2lztTw5CrzcvjTfVM7L9qMm4dIs2ZYM6USlWtugmi7y3VrLHEIRRnYNNFHaXB9dC0tcPpIFUCLhJpGWJMM9efdFmsv02N8EH3t7mJ/IyJes2GOTvodPGtaz3/aRPhrxPkuqw5UTTrFRXRnBm1qorKXsx8W99pXdwA+Vy0FUy6RbmMkWUia7KqUvd/0/HNoReKddELBPLpF29iO6RF5SVuDpRl/tsWuYJwZMCaOSu5XNb9JA1e1G8oxGA1Z4YR/9a1Vey1OlHerHQ+h/Aw1CSlikoTjSQJJ/l+mahLS7BFaY44vPWBlIuowzl2Wtkh0inYas6y1N6pUMHWHbAt2JMM/tzZY9g8aOP5u9mhV5NdihsSP3e53naXmiM95ix9x36nS24+FKMiRtfE4AqNm+1eYxNEwWWNyq+6ETD8eqi1iNozas7MjEmWdak8j8ZrAXZaHXAAjyzOYH3fPily+oDi+Oprd/HA/GTKP8Dmfpc2syJWmitJlzKaNSp/u2vO0vXEAQHs64oPDUkgovTuwYUpLE6OYZV4j7qAIHKfZOGIqWeDNWtMfqpkkTgDGMzv1TbPXmzWSF93cdMVxFR6ry9vFAXzaUpVYduabHpmY9boGlCqFqYooY6+rWabfIb5iQbu7DaxpszxLM2ZcT5HnyHjrzWZ0j+f0FSS/rvKba+s70SmcNSQvfnUHDgv19SQSjsjI2dmE2tENIG0Pk1QmUqd9jH6zoCsmV1jbia0Aup509N4xjSjiXaT9+iA9c5v3b7Pod+zOOe4vpU055XfpykJdVm7i41pZhGY0j7Zaqjyml+r99tqiFV6zCZ11dBqzm7vHGBT0qikzBrDP3XJiE1SEnmy2miW5DrEAlSd6UWAiV1LMxgVaZ+z7Cki9/MhTRh7Ga9bnMF771ssbNYYMODMzAQeJWzqKaTZ3/TvtPklPQYBI4sn6pfHxhTSmFqkog5BRFibcqibMzGqJqHceC3Am0/O4WSYz6+bMU9NSah1mrPU+tBtctLtQnMmiKCZMXsfBx0zuGzpy5OLOQtv0rvdZddKlTCa8CmX3H3OBMEX/9bVjJ0J5NpW7p8Zq+PeuclcWg6hSYqYM0uGte/MWcq8Pfm3YJ4bQZwTU2YyRHlb5kwQJLFZY7I9J3PmsC6VSOZhHy+Hvk9FIIIXmfMI2r01WbtonlO9qybmjJp3whcmRVhyji+9egcvrGyneivO40xCMYdE28YsToc66+2lxyfHUtfU+2QfJeoMOz4xhgePTWvbs3l7zU4Xn3rxJq6FprTqq0lpomw3Iwu6iroWMWdh77OUWCZzZeo6kP3+8mrOUsLZhLDfLLBLKgCYsQ86SwhRjzrnkwFB0nXF39P7TR5UYtaojI8Wlq8uz9lH3W87VSYVHwsb16ABBwSxIJLCIupBJSZAeqNPEjlUE53Ei1bvzAoW0fts1IIEgyY2k7zRj9V+CgJ9xhBVUJ6kbzo5F/mDJMpIz3JqehyLU2PQkHDWfZXrnB2r4/65yYzyugvk18z7dGaNAH140AFBNBUgfhdibtmOjE0gGRMYgAvHpvHw8enU/TbBX2TY+gVyzR/y3XNjyfDWLiZasc9PEtYbeI59XqxF3Rhc2dzDVy/fda7XzIjQ+1ORunNpzljy06Yseb9mdgkGJmby7fo2+GiNyevR+RFqMF5d38VfXlpOBXewReRzJvYMpT0Xck+cdekIxcA3rq7iB7c3cidnF7DSnFm+sqTmTF8u1pzp9w9q3tU0QrI8NGDaskQR7rqYAmrb0N9zYmoMv3Dv8YR5uq4vMkyRH7X5WS0eZS80fbsYRppWLXbUdq3znFn+Fl8TwtLe33GuNvPKSQtj1fcpl7Xre5Azr6Te3y27XVUQa2YQ08mk5ZZU5qyTYM4MAsbMXtqhkoAgEkyvx/bNmadVdi1inZB0GXG7GnzLhj4bqFmjDcRrVg+qyKwxY0FQk1iuixoiE+kpmqsHvXxVrWY77I9oNd/EVCf0RD3AJx49g2dub2BbIym1mYiM+E7NC5dey4vjQ+eXLPogaXh0DAdFKGrb1x9jlO18EDC8577jmBmr4y8vLafbVusIP3X+IyoePjaNsVqQW2saQZEeZhY3LHCtWaMivKCu9foQ3//6EzOYHqvhHovcbOk6aegO+Rtb+4kAO3lWUzQHNGMgtHbCRI+sw/I3HVzNGrvEfpWVhNaElNBJXncWh5vuAFR9sIwMK7crVwVipixkcMO/37Q0h1Mz4/hJGARIaGVuhH5TO+0O5tFwHvO25jyK4EDvRWceIcneauYzm0+30avbFBCkzTm+9Ooy3nxqHktT49pytpozAWezxnBMRUCOuTAXWrrvnPhmBi3apcGV9ai1Osho8+S0ZiwNN1JDVmOOBwYB1cJiqlFL+M0HLCnMLuRzFn7a+GKLMpliwOi8Z4k24nqkopb7aU7eLDNSpO1eyWDObckz6koxZwmzxnRd2ms5X3UVe32CNimBOTPBpg7XtEJTjSSrVQuYGqMuhaE1axQQi1Q34VK5GTSf1L0AEm86Noey4GoDlnhBlFmSLW5u76cCiZjM7uJC2XXbSrAopkYHV7V/IjiBrozlb7329eMSmxLG12uM4cTUuJQLw7zAxbuMNWfml3phYQqPLs7kXkwR06xIDxNlHHedSZ3GlRAiRASshoAPGMMD81OJMX/HPceMWl2BZruLL796BxsHSY2Eztzo726s4aoUsj2PxiUW3JjLmUIbk8yrSeqoXHKVHlKa/vi92NcVvyP9w5tytGSho+xzRmK2An8GW6RMdMK/p8dqmB2rR8xUFLUw1CA1DNpy0/tPRWtUiuYZa6OPSsEBFfe3DM41++0utpod/Hg5HZFQRlLqr39S8Tzm/Hrp38QZ/+3ra/jy5bvgnOPm9n4qYApFiGfBZV9N0xZ0I1naHm1fDNeoM1cMo1ZQSZr0cVxe343mqzpOapCgtB9V/ok3GzLVVJCd2AdcaEnDv201Z+JTZZCIPSjrCVyjUQukU/AIgVu6LyrUNaTWpeZQMz2DKhiU86ulTYPpPmT114Qq9npbs0bbV5cneqIM4epBtUcF2lLz6o6AWWN2GWHzr06c7GiNdm3Id3c1dSba1ZhTFpFyf+f6Wpo5I/qnwmp6ycqpiOFLFxP9tpo0rswZ2RKt1UveSLeTZY9tU95YR/gZ+5xpiwKwZKQNCJT3UnTjAOgcVoBeIySSugtk9eDsrJ3P4Y3tfWw229ZR76i+uSKOnGfe3tqOpmFmRiQJZ+aMqEf0Lo/PmclvNi7cKxSw1E/auawSGrZjUmYCZRukzBrDT7HW4n08ad4X7X9Ed037QFs1a1QqyLOibRnfPBB328zTrDKZ+3gIQSSazhjqilr+J3e38J3ra7ixfeDUT5v2zNqNJFHhImgsCmrMonNDcw/1LDe29/GD2xt4YaWnOVb9otVclmqzRaxpFwxpFhpC0C2WX9j5rLEU60CnREyaNRI/EjDRBmYGOvn37Z2DpNmwRuB3bXMPTcWaS+2DTG/2zmt9P9Rk17KlmHpbFQI0SvBbJsyaTbvVZ+P/aMJ4ZNaYBhXNvBEwXFiYwrGJnoDCxnR26POcicmtlhRzPrVpceOfRog5bGTOojJBQkIRhW52lphnHHxGxVn2C7Y9OAUC1Y4ho04byISeRmnp1A6V50wg3ofihigNiqnpiFGN/Efs3pGdOUS6UC1g6HTiMNRUNa5jPpWRmFQ1OVPH0yonkUWZor4xuZizcBKMZ6jObKNnCZiI87TmzNg0UTfVXjYDpMJKqKMQMskcShmSaqVPxrWRQ5NRFnRCOvF0981N4u5eE3PjdSzvxkTUK+u7eP7uFi4spAMsdTlHTRmfb15dwdnZyWguiXWTetycgpuqYKtFACwi1xHMPYW2RrCZrIreH2XcDJmyTtegOdN3I9WiDBthgzq3UjXmfNXyfWrEQDLicA6hoBCSCY1pluZMfR9FQ+m/9fQ8+f7HFGLXmtHOKJYQEFnupyaTNRN5pI7V07c2sDgZu6RQtz17Zwsvh/5+chtqF3RaOQrp4Hn27yxvpMqqkRAcM4bFyQaZbspec1YMpjkySzBnjDG8+dQ8nl3exNp+63BozuJNJFlYF0o/K8ytCnmMdKaSFBoBS5h15dWcZSXJKxqZRt64TZoZkyRARRHNmVba6MBA2QQEkcfVZBICpImFh8PIlyIoiy1tkjc8q8pD0NW4jbkqARWgfc3S89AqoIRFP2yj3WmR46AQh8t4BoNqMmskpZxOujM3xEwET/2WhYQAhiU/TeUj5ky6Zu0PZLHfJQkju2rLQjyOgiBLStjPL0zh1x85HUXREnPhyuYe7uw2QT0ZNZOXd5v44e2N2NwzOn+S5cpmzYoOZ2yGn11TNqEsnTGGJ20r2kqypvB2eR7Wlcm8Gfrdqes3sT5lMzFta9Q6MQhscqzHvFBpEGpdZi1VqruRL1dAlxFSf0EPuPpfPXRsGufmJnF6mvZPvn9+Cmdn0wHExgKVOaP7p0IVKZnOYNs1o5qgyRD1U+NC/abm2VNxc3s/9RsVrVE9zl18zlzMo2XXjzJ8zkrb9mWhPoD3njuBn7/3eKqYrWDbTKtlT/rYrDFdVo3MmGy392kRjH34fc50kvfIrDElUbCvG9CYNVr6nL3l1DzecGI2bC/NFNhAd/C5EFkmUJoz6r7Xn+iZqJn8AQRcN2w7Xs6eOwsIm2wBSjpGMdvyolIPvqWpMXzi0TPRIrM1azQtJnMEUCEBNbVB//7rj5zGo8fTUn6dZIdaHxzp6E820liqhCoRKq45c1tQ6/stbIb+bVlOu6r5R7Jd4jc3Xs4JlJmg9R6WGPIcpKFhLahIzR9jJyVGs89mjapPXOTDIjMSjOnNN4nuynu1mlA2mkvKfWdmxvGOexaMfc1DzJfF7NqcV92MQpRwgMJ9YVTfk1PpMPIq5H1EJyw1+pxJv4vbyZQqmT1J10kJUpJ15mPP5PtUk2xKGp91btDMmaif4ZtXV/ETJU9pI2D4xKNnotQ8rk8yVa/hiTMLVgLuRLuCWg0/bKd3xJzJQuiMwllrZ8Ig1BOPFRCt2CbMzgJj6brSmjM9TAFBsvqkE+q6oIytaW2/mUxtItXqqhwgI52abrConhIwvXFpFh+8/4SZ8Quv2ayPgTJnJoiu68waRSLczCTUme3E98dmjfphEQTf3FgDjVoQJcl2jdZ4fWsPa/stw+Gol9AkS9gjelbixgsL0/jFB07oI0lJcNecxeW1piAZ9yXb1/stUCr5rMWpmgDG5XufWZJjMVtsbNUpqYp4ljggiP346ghMxhim6jVis01K+IHeO1Hnoc3GQHWzoYiEbDVnd3eb2CKkjK5E6Fdfu4unb20AiKVbOtgky1ySCMkq2QubABs6yPPOxm9RlTLLJSnBFJXsPGbS7KSyRVPfdDnHM8sbiQPbWF7RYAlCOiuPkwBF0Ig6lncO8BcXb2N5J/Z5Svu49b49EGoKTEvaNXphsqV8yJpv8v7a4cAPbq3jmdsbmfWanuTk9Dg+8egZTBOMhnq/PCa6vf5A2ezlfVq+ItYCNc4prwiTACYVMIFGbrNG6bu6dVGCJpOwlQHkw4gxYoxhefcAt3cOUmV61w2VG5D32XWhySkN706zjW9fW0W727X2TQPsBfcmwjmIzuj0NZ31j4mZ1707tQsue4QQHIk7zOdc8pocVZCD48rGbqG8ZXmFSF97bQVfvnxH6ksM00hQtBA1dHmVHo+fnMPHHzlNXhuvBZifaJDXor6EnyNg1qh/c4LgEKYLctHNgxZeCcPLa5NQ51Cd2Zg1Pnisx8ScCIk2taRtu9+9sY6vvXY3caDUHIksO7PGdHndbXPjjdz5kWzLu0jQde30NGf0NYqROk0wnDJB+86zx/Cmk3Opa6JIJnNmofkS/onHiMUr5lvmYeuIX37wJN4YanZTUKTM6lq005yly6h24Laas7+9uoIvSZsx0U1nZGnOjNEaw8+3nVnA++8/0fvNJIEsynwUqEd+ShuaimLKBCgiIBEpTDEbtz32izK2t7YPcGltF89kRA6M2ksxSz3Y7l0UQSN+Wg81szckkyTVP1D1cTO9lzzMmes8eWl1G7utWPiRdbvcpy7nuLyxh0sWya/zBkVS70+YNeo0ZymfM43qLLx9jgxIYa+RUOeSljkz1GGEdKNK19B5zvTrmDGzWaPOrMpUZ94Q8zbQBTcRzyDz4c/e2cKtnR5jSa1r3RT8wa11XNvaQ9bsNwrEI7NGignQcGcmENcDxvC6xVlM1IPoDHOJICnGStxiYq7UfWRurI6337OAk1Nj2Gp28NStDTx3127PjeuUhST5d/5mh17ProwVVT5v0BdmuNfmDYlbbRQcQ2/WSJn7yAenLlqjLTngelgyxHlWAELyZtVqjARzJrUbHebGiehGQFsRbhZ1FovWGCMrOIj4SX0dgdQHU+Ln8VovVxwVPUdub6Jei8w4gPTBlaVhCRwW3AkiX5C68dpK5aJrhvZ0iTG58qPKQlltDETDqlmsSXNmlYS+wOaeZaJhNGuMiBiG2bFa+Ju+rsLR8wo62qd/s7jPsq7EvFa6aWvqWXR8bAiNuE/p1mJmKXutATrmrPebIJh2W7LZTfJLTDQmd11qj3BJ6p5qL6sc59hvd/DcnS1889pq4ncT5LMoqy1C/lcY8p6oO4/TuU+BF+5u4eb2fqLPU/Ua3nZmAe+451iqDpf+qlpRfUCQfKMg36UKiAMG/PzZY3hcEiLmaU8MWRaBGZlfhRYYZ2bG7RLnFuTgdE3IdFKk/QPNgepomOXdJr53Y1373u6bncCbT84ZnzM+6+Pf3nn2GD58fknD1JnXkS6J8bGJBn71wVMxc+YwrmpaJ1POTfVKwIB7ZycTych3W275W8sUylH1uDJW1Bi70rBRXRYmi8b7DZpXFYON1mjx5iJzEU3hFHPmGOHMmTlLXUq3/9LKNm7tHOA95xYz25fPF1ebeJsXnNDGWdwoM0Q6OsiVlNBFa7R9RzXGEptzELDouQLlWjJfiL5O4wJXpHj0ppomwEyv49HjMzg9M05qzqJ8NeLTUA/dX8M1ze/qBpoKYJCTuG8o2qqi5mxFNFJjBTRnMqLcO4YyRTVnMdPsXlEyFL7NAZH8knVLUnNGf6rgnOcKbqKDWK82UdwSc1sJ1KE+q46Qo5gz8YuY43uSiaUoz1XuLGqnByraW1GCVocu5/jyq3ewGFp5yOksMjVnLsRLYv45dJCqKrw/qTmj17EaBr7LOV5Y2QbQ8/WT6xT+brr2BMzacfXdJsuy1C9uSDBnis8ZYwynZ3ouFDbaYwZGrjlhHaRlzpQzqMYYPnCh50fzmZduAujtqzqLCFdfsyyIZ6BMVgOJN6OE0No6Nb8/ujiDufEGrm7uae+lBLGLEw2M12uRq40MeU5YB5RxtaBSoO7NLpozKgem6xnOtX+UA+NIEBfpBO6GKvIKwg3X1Lpt3ufQh9KnIPsD6ANDWFZGSv8N0VbUv9XNHcBzipOtCfKzyLSkjf+RzWRI1GnBRERqV7DU4SdQluZMXrmmGnvtSe8cLMoTUWMMbelagjkz1Fr0CAkYS/mlmMalHjAsTtKO8CmzRpJJz7ct6DS7CSaZp4kSu1D66d9sAsrIfcl7kOpQD1iccyrjGcyh9HtgLN7cKcLt8sYu5gw+NAJZhJvqI+UCyhneZo3HZc3jJO8hXc6x2+pk9vOZ5c3I9BwogzkT7WeXpQRAkcbAVnPG08RnVG/4KUuUhS+cql2J13TYPkvPhDz0rM1w3tjex3arg+2NHrEpz/es+12IbKb5ngcRU2Bh1qjOBb0/s/05QFXR6nRxbWs/VYYSaHFegEFNaAuTl8ymdsm/FyfHsLHf0pg1hvXp6lLqrAWxT7OcaqjZoQW4Tkw9gA+dXzKe2er67X0XghamN2s0THAdY2kyWWwEDK0uJy121AiOJsF2qk3iN+rduIyqOi91AUHqBA1DvT5nq44cAvjsKrNpfsBeS+ZaR3QtJ1MXtSsxv1nFB8qcuUB+ybIkQBMPxEFzRi9E2/Kpzd1xNmb7nBVDQBBuKpLaNWmj0R12jp2irKJ6knVzpeJyLWBAR/QVmB6rkeYFgIvmzKbf+kJUPpC8QsNo/A3Mc16Jje6wU7+px5Wd5ixdyMVEi9twZ46QmfUsAtOohYkusfRPEn4QBh+hNKIyKGY+0ZzlvrE0NRaGepfqlr6bGHwVtiYW8h7y/N0tPHtnC28/s2C85xUL/yRb/ODWejSv7DRnhNYrIuiSv+se3aQ5E/XLmtfou6JcUdurBwwHipWQLK22PT5sCKZmqCmbqAepJPBZt7v4uCS28YILWtwtzzkdc6ZLr9P7LtVpIqgs+vuD2xu4TjFnSjlhxZE/WmOyrkTdlgzm33voFGoBw+dfvk2WzcqdGAtwe5/UPBAMmGrRArhrztQolDoqgHq3AcvBOEBvMREJBohHqAcBWt1OKngXoApe6HEB7JURAUGPuUwptR0do9ioBSm/Ter8cNec2QuBrOu0Xs9p0GkPiq9R16uARNczi3PXtlNVwGVdyWUFUfz++0+kB5mny5tAjU/doPNMR/tSiV+36Zhl1pjXcZG8P8kDRJAPv3jymMbAbWLLpTk4nl3exKdfupVgCKgaZb8fgQ8+sISHj00nzBpldBJSOEOfXMy/CDhLY4yMYpIpc902zM+p/EAczhw8dci5JjgXyLAkJGEiuG9tH6QC59jWlUVgmmqMiGv05gqDeU9JHB7E9ay8JjZCpffcdxzvJPxmqGiNJqgHftYtNeKg3jNETaTMaPJaSYhgFCJRq808SIRUV5klpazu2clnUHw5qPKqVkVd01OGHEp5CQYdzGn8zOPoZGppSTjZQPZ1EtCtY/X55PNkT9JqGrtEkw8JpCKEKnNKII7EZmrQuivJui0ZzEYtiPKAynt6s9OLbBjnATUzKLLmTIWYG9Q1F6be2IEQpFmj7HNG3Ja3C5RgQEAI7IVJc5KsErSI/n6A3jeooiktILL36Kx2KIzVWGqfo+gi64TgRTrjAFfNFq1NM9RvvJaPxhNwEWT1VXPmkqtBhXyYRPnIgnS+K1eenTbN0lOYk8rhmuINi2jOiIAgJkmUq+OxjvhvEO0W1Tol241v4By4KAgtaWOgmbPeZ03ZrBiL37spIIirhMUFgaTNEzAdTKb2YmlcWJbUIhomlsNGoxKP4nsqlL4NkS+VOTk1hv121yjhVcFDw0bT5i8i4x10upjMSCrdqzNGZt4ZC8WZLOkyho1XzC5ok1eT5ownPimcmBonmYbkYzLiN/WGxEfmG6PG0UT4F048LkF1Rs9r1hgxS8qz6PZQs+YsDXUOx8ygeB8s8XeyD71Pyh9NB5ticeAE9wqcAhBI38tiL+Xmdftqaj1Kf8pz0OUcsDm/4zlFEbY8vw8hI79KdWffR/3U6nTx+Zdv48zMePS7TosfrfXo7NUzZ3Rwm2IzIPU+wk/KrLE3A5Lrq1eHea/Vtm1grkSKGPF8conYZ9xi77XpB7VHONxv++RjtSBVlmrHZPFBtk/sv0WRPNf15ahL1PvIK0SwOFat6xkqzZkaPS1vhLIo5D2jzBrTmgFXmF6cSiDqNhNbZJk1mmy4XadXbD6TvFPeUEUCRmEGQ0kBnTVnUnE5cWjWWInrSabVLKVKMGeGEcrrUxXdT/yWl5GOfM4M7ZnGyrxhZD9nl3NsNZM5xlxD6T90fBq/eH7J6WASz2RDkHa7HK+u7+K719fMdSp7yptOzpGpFHrt2+jOetA52FOgpgEdxjuGmidLhUloUqeEK4a2nAg/6JizbEYz+ZuxCS22W8l5mSXF3Tho4QuXYpMu0Rfh01fIrNHwjjoScy2HrFcboCW7PbjsqzbjqfMZBrL3Xi1DRJprxSgeSr/3aaMNTvmcEQJcIEPSbtGn9CPToyd+zRN9U+2LOo7O+U5Z7I8lzPhubh9Ee61OfiKiA4r5TKbWiPy90/cXDQiif9fyu+19cqQ11MUQPhfx+sQ7FeuCEkgEEW2iEyYQvxE/JvzZoi9liT1iUEoIWRgpUMDlrBLmzHUo8lqk2TJ66n0mxOb12ZRZf33OUoyUCYokUvpTSI8DRmjOeLq8Q5fCevXlU8yZ+kyOM1lv1ig2ioKzQS6umXXyYXJKIWRrAUNHoZ7dmcIY8pmQ5R8mrlJ+czbSVCOBSly8d3YiEXHJdD9t1mhoz1hXshTVN5M5lIzHT87htBSpzMYn84e3N7Gyp/dj0iE5W3McHmEnbMwmOpzjhxZJcFWC7aFj05gZq+EWkWzVxkxRZopMvZTbpbRkc+MNLCu+Ysn7BXFPXzeZt8jrlylziaxLU6fOHIua10bmzPI3G+w0Fc1ZRvkrG+lIa+0ux0EobFLnte6wpdIsqDneEv0Kf7qxfYCrW/t4cGGqV79oR/r80PklbB608N0b64mrhU3CNH2iiULzGzEF4UjNE0tTchtQ+7veTIzWVgL2FhRxG717bMxvVW1s3KaeobFDPmEiSUSCtiLKMmsU9IagsWjNWaDtU/E5rNJzor/xb4m9kqWFLrnNGgnBgIAah4AS3ogiun3UmiYlnqV81qxn1phqW/kE3M0aufaPArAVtlBzkliP5iUa78fpNARubZvws6fnjdf7ypypjs8u7y258cYbR9G9wNVuWp3Q+oALdsgyazRpzkzmlxTUhTfVqOHE5BhevzgTlZlq1HBhYQo1xnBxbScci14f33BiFiemxtzNKaXySdtxqneQrhMHhLKBqmvH1nGUMr97O+HPo0NWsl4VRkZR8wkAs2M1bDU7eOT4DHSQx3duvI7pRrysU+0SlIXKmPXqNHSYKBMT/PZzQ/Sga2Grti0R6ZxzbTtUTXkYR2pLNh1SB5JfijwPXrc4g6WpMdzaTjOHpvZUmJ7AVXMWmzXGpX7xgRPa1APUUJv9mcqDaiKZRShQZrxPvnYXm6FmOD1v6JFy1ZwJCI3D9TBBtSqJZqwXBKEXCGE9cS2nm5cWJoY/r+aswzlqhjOvLJMumUDWjYspWmPXkmHsSGdMl3NyYNSfdPNAMDR5mTM7AR5xn27QCUG16GOWqZogSo0+Z300a0xqReNrOsa0SNsqc8YQ01qiFwnfdpacs/L9SS0SsadI34WAgAwIUgFMic1lOKfDkWk8104hWzvvOsXIFFUmWk3sxwFSris2dJwJ4jkYgLOzdHoPgYEEBKlpCGsT5IndkTYOnc+ZrQO6/OJOhKHOXRLNpTVn8nc7jQDVF/HVpDlzCVsu1ynuqjHgiTMLmFYiJr351DzOzvZyqsjjO1YLtOHgTZC7mZCAZWi5xFWKaY3yHqU0rLYSFmOXwzL6QrQ0JqdUJbwWE3Bx2TMzE/j1R04b/a2Y5jvVLqU5c+4vWZ5u3wTxqmxs2uWoUrrS8rtXNcBZ5XWQD15T6aYcQVbaVU9OjWNpajxzvmVGUYu0qnYEkdn8IqxLKjs33ohMmlWUY9aYj2VT75Lb3W93cGc3yfRS58GmZLKbXh90u1TiVg5gY7+FtoUdrjALN0X3PT7RwH2zE1ZmjSkNuMV4iilJBVPIujvQnC3UWk0wZ5m9MkMMgTynbc3EuOGaDkILJPYLcd/d3SY+9eJNbBC5q7Laz82cWaxZ+hpdF+XiId5fVjJ3WQCuQheMS1feBTZ3yybEsYVDcYYmjlCZ/L0WsMjnDIbxIzVvGetUplNV33O5zgqsGo1me/IYFtGc5Q0EJbC618TljWTkX1faJK+pLc28pssxwzUVLkM5kFD6gYXnc+oqB354awN395q4JzTbogl6vbSQ7Is0ou++7zg4kn5RAm8+NYezM2lOV+2Dyc6fQsKskTiQjMyZc2g8pnxkMxNUJEdX6Gzws95RHBAkvfGKR0+ZlkjfzYddMZhs8V2RIhgT35njZqQnBgHglfUdXN3cI822ZFiZNVKbl8V9AmKt2kjmZE1Gl3MNw9D7fMOJWTwqaYN1fTI1S12zZTDypMSIzbE1bRgqaCTMGtMHvLYqi30AAO6ZmUiEEgfM23ee43i31UEjYOk9TRkPea68ur6LF1e38bGHT0tMdHy9xljq/pRwTdMfivjqdDm+cu2u+UE0SIuXgPfdfwIA8J3rqwBohoihN56mvJM6UJozoW3Imsq6caG03ElrhWI7a8AYfu7sMRybaOD5MF+orS+ebu2Y+jTVqOFD55fQCFgil9nNUPN5e+dAy4Tp2svrcyZD7bJ7EC5aEBcxZ1maM2HWaDAJs9W8OEEVQohPWagrCRgiTYRJQmnbtOa5aozh/PwUrmzs4YGFKVzd2ic16+IueT9OMCrEkMu/CXN4clxN/YbbnjtVr2GiHpjPb+mS677DtX+43//klRUAwMPHpqPfbF+v0ES6CktEaVLjRpQfqwU46HSdpp3NMhmQ5qz36SJNbXU5Xt3YxVazjVaXhyaNBOHKEx+ZSDoeM9KPDegtuHE1MyQB9SDMgkwkU3PIbNaYb9LZBono9YkiK9ygzVMj940oIoh3itiNzBrVe2RCwdCnoqH0xXuRyxTNOk9JYKw0fIZ21L83Dtq4u9fE+kEy0EKqTsfxyZM0/Wuv3cXXr9x11pzpGIMo8W/GGMTlDeA80d+AUXONroFcMxnjmWmuZ7g2TglpHOZN1qu+b24SH334VOI3s+aM+M1Qf6vTxRdfWcZTt9Yz75Pb7XAe+gnFSIYVT2s71TWqe3ZKYEBp07LAlEE2jTW11+uCBdn0JPIvkr2PovMx33yj12r8W1GhF9CzFpC1uLb0vu6Jsm6fHaunzhPBKHc4T0/ojHngei4LmO5yT9MSb1jyPiXmddaee89Mz3Lm5FTaUkYVkJYJ9VEoE1JZ6BCH1dfX4dp2ijkLGKbH6vjVh05hLrQyokavRz8mXV9cdgxqrdtQX67aysdOzkaCIRWqVQWQx6yR/FoIcj22y0vsp87uP47Ch3i9Z3fMZTz67HPWg46wNkGWZLa7XO90qXxmwTZBnW7YdWZjQLixZLwvOSGiqzYm76SzIcooh+CymbNE34jfxMZMPWbsc5Z804mAIOUK8QDEyafFe5EZ9rw56VLMhOV9VCG1fF4TD9dQ+jYaIjXE/F67i71218psQtWcUVCDeGTB1CyHekimozXqbg8cxwWINb5aAtNQARUsxsak1/5I6WkDmNQ/k1mUmXxP4+pWL4iHGvwDIDTjREWyJlUe+0YQpIQ1ac0Z/fTUHMsyBaOQEryQZQSxS+z/rJdUPRVkxqIrsVmjfFvvUNLN/bedWegF0NH4SFKCkSwhW1HYas60ubscBBWxn3Pv7w5Ps7FZNEbuiIWGfdw0BrNjdcyP13E+DEIDIBHAKKE5Ez5niuHEI8enEz4wJ6fH8YlHz9DdNBCvRaFbj0m3lvg3TpTPzZyFN6rMjvx3llY0AEvSZRlLVv4tMheVWTJJCPxL55fw2uYefrqynWxT2RqyQDFgcXvp34qZNbqDak4+/221s7UgALqd3HkHqWVMVdWoBUCrYznvhDAhu/RAzBqpcKQq0uZqSYmpziY+ui9jQtVCQtE26l6W5iNuViIikXaeVsvIk87Vwdb1EEgT7nrIfn3xDflmuUn7Z4IYGdIXL/ySSkSaIMbK585E9WO1AI8tzeJMKGFU+2lRlXRNTzC6hrS31Rq51Kkvk/5uak9nzWylOZNu1B0Wgt5IO3RnH/hZ6FnIKYIAze2UQ7dpNOsBk/Kcado31EBpzszzTXxh8kcmZCtBnRbp766v0Yy9YaibIaVIpRuwOSN0PFMjYMqhni6je3SqyixTYAop/z6qjIYoBML9t1NMcyZjeadpPDem6jUcmxjDbSK6KaBLzh1/ryKAQcCAjz58Gq+u7+DZO1vacrp5YNUnpUigOV8A2tRORn7NWXrfiP42VDlRr+GDDywpdcVIBAQR2lSl8w8fn6E18ARM/miFkZrnhOoM6Z8YQSO4N50W8ABJbXvWq33s5ByOTTTwaugnlRTWcxx0uolxll+DaIfcpxgwPVbH/HgjdU3sSoKmzQLLaAcopjnjWRxp5v1pyK5GtioJMZ7OqZ+EsIzUnKXLi/XesjgfIgGyRZf6ypyJQReMlcmsUb0iT5B2aNZoui9rTtQCoNPRMWK0fFMHmWhJac4MfQSUSUcyiuVtgKkkiYa6j0/0NoFHjk9HB3XentgxkQYmlNDeuWp28kA+IMXG140WF8PDSgRF07uyGQMxL2izBlM/5e8qY5IPVuNL1G5KQq01IbOgeeWNT3dYxDlElHY1dVLrs8t5T1rO08xnWoJOd8TWkVigFynOXGcWc6eDsLunaosZBrtZkjywKSKd48b2fup3wI7Jonm67DNCJkhk5r8eBGh1s8x3jZcToPxMsuBSvykCrLqubAQL1Dv6uxtrAPQBc2LijO541QFBKARgqAUsty8XFTJchSihCgRNxK7uHdRKyHOmQt5TTk6N4WTOgEe6aI0u7y2yaJFueuLMAhYn0oyDK9R+UHSVfC06M421OPaBMGukrr3v3GIi2BCAhPYSSM6RS+u7uLS+i186vxQFYZOvByp9BkLzTjyaWOcNIu0RBbPgTvQh/xgmXXuy+8M5x6dfuoU3nZzDQ8emQb3tZldOKm95XjE9k2W8L/ykaDZqXxRRjlsW54PLCTJQnzMdsnzRTMyZeHzO7XIZ2DI/Zs1ZfNHV56yVIdmtEqbmxus1fOLRM1iaGrcqb4KVWaOJeCWTUAvJJsevXDiJnzmRDjVf5nCqCdSphWN6TKNWzcBMWM0JQ5mZsTqOTzQwn5EEOd0nt3eWYvyp8g4mZCoSZo2aTTBinNV2NH2iann65jr+4qJIYpw8lE2hu2XUEuOi6ZMEWXOmheX6sGnX1tTS1AlKg7LTSpslCtgwWToCLKvOpE9N/L1RY8n9lajDRdNjI5XWwbQuRP+pfVIc/HnOBmO6g5wmgFljUI1ZY1h3zvt1KSJkiHkQMx7x+aIiDt6jttO7J6+liIxz88ngY/IT/MJ9i8bUKkBSmCSvvUigoUwOF2Uf5Y8+WQ9SUZ/zwEzVUb9z4r5861T32tSz+4nT8/jA/SdwfHIMD8xP0TeJnhBd2ZKT1MuaM+FzRlnCEGtAfBev0jbwRWwqSQhXS16/X758F08TvsQyxBA8u7zZ+5sYs2bHHJuBgiims7LLulGe3xPhHkLtB48cn8FYjWGJ8M9UcW5uEvWA4dycOYw+MKSh9LOWVqfb1Zs1Sp9GxovYYEwwShuki4mNMMM3BlACglQid0zDxtSKvC9n92wknraagdjevfc5Vgsw2aglcnvFZYtK0OLvKnPmmjvDpDlTryRMNMxdTJVRuxAwhvfdfwLvuW/RoibpPsd2bfY/XRm7gCASAa7ZIcTaU9vRHvicp9bo1TBiW6vLE2PZCwiSLKvrNRUQJMvcM/I501RqZO6ouSjVrbtmMm8h+yCVk9+ZGENVipyABaNAMmemDnHRl/gnNb9VMvKunlG1gY1kVFe/eH/jRLoCE3E1Ge476n5jwye6JgqX+6kdlpSAIvlDFaZuLB7EXLBhzlQIAUu3y4mxpkfv588ex3vuO54/aq902+LkWMLny9k0i/UI2mube+RcSWvOsusXjyWb0ZUNrfku8Qxc9gfM2RWK2VGh0hbn5qewYKklpGaKzBjL102xDuj8f8nydct5Hhj2fYUXzAX1mV/b2DOWF3NR9Cc5Jr3PLCEbBZVWtAV1dv7smXkAPWG3ioWJBn7todPaVDQyZsbq+OjDp8l6VPTXrFFhiDiAy+u7uGd2IrGBZh08Hc4xZvA5u7G1HzqJ6+uohfY+rlx41jUbzZlM5GX5RFAQyaDzwpkoA0I38nxLtmhiSor4rAcB3nJqHqemw9x0xH1Fjw75/mMTY1jZaxl9FU0wa87yXSPLO5U21OPIFVImGek66Yt2ofQls0aNGaRrQJCtZhuffukW3nn2WBSdrM4Y2pzjoJN28E0FBNFsVGoE2Kw+MfQS4K7vt8iE4L169PdTxKAISU8xvqrfgq7qD51fwkG7S5ajTPx2jZqzGF3O0enyqI+RQI0Dl9Z2cHZWitZHDPGN7X1M1ILoksyEJHxOGUswbkX3iHwBQXotnJsPJabzaYmpqJXaI0QS7mOTjQTza9MTs+ZM098M6ixLQJE7GIYF8tZspTmLCMPkE5kCoKiXJuo1MjiPLcTzUfPAfVgZlnebWN5t4m1nFlJXU8yZRf2/cuEk2l2On672AlLIAvLyfA1VIYQQ3BAazOg/9a68zHF83/x4HffMTGBmrB6dDWVBt4/QNELy/EgJYjmwMF7H+kEbS5NjWDfk5UvWWNySQAvHbVKc57Qmr3c2ykI2a7PGsL68QgT5vtPTE9oAOVWhv9Eaw4cVB+/afgs3tvdxa+cA7zx7LCqXZafa4fpJdHN7P8pXMt2oodmhCYaxWoC9dtfBrNFAQCf6JkuU6fIqoULVI2N2rI56wLAWLrzFyTGnZNAfuP+Ehuize/bxWoD9Tjf36WizOMzEp5THSfpdjU7lUqcrJuoBfv2R0/jR8iZeXd/NrLvHOI7ji68sA6AZ1LeengcHIgJ4wjGwA1VGN09dx8I1EElA/KZCRyK5as5Iv5fQVwwgAoJonmUvHPcrG3vRAdyoBWi3OwmmRNSptqrrNe0jaRgX1tsrvvqaPoeW6W3UApZyBh+PzDDo8r06BUNN1z47VsestM1o97nwmm1qlO/eWMPN7QP82kOncGt7P+rjdrONG9v7eGZ5MzoIqbPg766vAQDOhyZFicT2pv204H6Qy+cs/Jys1/CglKtHhsmsUfxyeno8IYHO63MW30+DSoTrgqKCOBPyWkK4RDVWfZzIaI2ijDK+xR+9VwHlI1dESEcFKlBNw21qH6/XMI74+RPm206900NXD6lV5+jRJVDHJ3ttCCGcrqQaYKVMtBN7Z/zdJhAd9Zj3zE7iXfdOYm2/hYtrO5ntm4XBdLsucE08LfapSEAi3S5Wbh7NWWxJk2/tVBGN1AV9Zc4aAcObTs7h/vlJXN7YjTaNA4WBytScGTReq3ux5GC8Fmj9IMSGXYrmTIgwQIUtToMniIn4u04t+qHzS9hptfHXr9wB4H4ILEw0Emp41yk3FjJngzqwk2aN9nVRJT98filhv2y+X2Y+WOh3ZLfgVcdgikG9PyQuNw9a2G118Mal2XQfLB7XzgySJvx0S80uCbVU3kJzNl4PsE2sRxuivi29M8qs8Xs316NEyZkmhMrtMvEyVmPYayM13xl6TPTGQSvSPOm6nQhwGn7OGswYGGPYzMo7Z7hWZwwfvrCE/XY8ttRe8sjxaVxYSDMI1itK2ucSpjkhd2bU1Ejfb4Zh2v/2ygo2m+3IH1JmJq5s7KJRC4xnAa05099ASood9pM80RptBjc2a0yvureeWcDmQTu9f1jQP+ZcdPS1yXDe6COcqvUk/y4jAbMOpqGkA9/04BIQRCA5tzTneKoPxc45cbtripwsUOOiagRd1sHJqTFc2dzDgqyBr4g746kvMbrg+PGdzVzN12sM7ba7sKUMpPbOEHq9mcQ0SaUEkzdRDzBer4Ex8xmiqzNxrf+Ks2ifanc5vn9jDa87EdNBMm0t4LrOnM0aWTGNW1noeyj9h45NRweDzoE/6+V2OdduJrsSgWIyZ2iEG3YZAUF0sPULGK8FeNe9x42hbMsMUexqwh85pedszy7Pmb5M3vup32xsfaUK4q+KVMc1d4bJ3GduvIG3nJ7XdCG/xDTrd8ZM5k1uBE3EnBnK9xiGtNmFzWYuSxspGlkwZr0+KJozuZ9gKeZOZtYFYXTQ7ipRuoD1/Ra+cvkuPv7IaVKTFrXBkvcBwKwhIEvAkvsWBep1vOHELE5Oj4Mxhsl6LSKsATq8/rGJBp0TLYeAStWcyZ8UKGZAmOkJjZT8Wp+6tQEAKcfp5FEtzhGZOesR4x8+fxLPhoSbCS6rS9WcPTA/iTMzE/hOqMnLW78Q4tE+Z733qlo+2KyZHIq+eM5bqjBUAWSVBI2p5pokOFNhEoyoiOZy+KVD+JwddLr40e0NnFCsV4oyZ6L/Mt3yppNzeGU9WxuiQu4KmbOvQHCbc/NTOD0zYWX144oUk6xoMmV0cmhTBKrU8AJmYYG8j8hFqDNX/YWaYlORQMUOpoAgOp9TbqC5U3CcWvJcvLq1nylstu2GGGZ5Xf782WPWPqgVT5FMDCTPmRj8WAuRvG7jc2YzcKaXcGFhGje3D7QhhVWYNWf077rH4AoxUWMMCxONSPKdNSELS+gctzJB6OUx6wGK99cq+lUFUiBVcwLIKni3ystwEteWcSwvEBgIGrtQ+unypnHRCR/shBjyd/MNKVMQ6TuVsFPOoTYm+WrVIR8S8fftZhtz4w29z1mQnjmUyWrcJzfhg3iERo3hmMYxfbxOmciqQjC39SzfLb+Pn9zdQrvbTTCHLtDlXgJ6Y62DKK7OjbEgwFgtHV6pyEEv91PU9bOnF1Lmr6n6LfZa0X+ZsXn0+AzOzOgj5doxZ/pSmVEXNb+nNGfK39WaNeqvpZJ0Azg7O4EnTi9Y7b3qvsUJxl9gbb+Ftf1Wyiqn6KMLIVFDkvw9dGw6DC+eH65JhG0wVgtwkCFQygPbeQcoc9iRPuoJ4crvv8AvXTiJH93eiKwEZCT6LT8CIRdRGSnqyVz3XaZ8Jq4xtZQ73DVnyb/3pHlF1WUbOC9OKB+XP+3gP1il/6wNBsKcAb1X340OZeD2TswoZRENXW536JnW6KnpcUcHP31lWhMQXbRG6XuH89SBZoraY+5JNRAE64GlOSCFDz5wAq+u7+KV9V3yuuld2WnO7H5zAbVJ6gQKAr/4wAk6mXhOTtHmrmTV9B2kCYOxXTeCRsxZk0yqrHmbRWyk1o/0J2UmIedQ0WlE5So3DkLmTNM+GUqfMbz19Dz22108fzeZSDfvuDgnplaFYBb1KA2SeDn0c1A1CVRbFORzQIVqBsuJ752EsItLWlx1HmRLpk2ggjdlLWubZc+JPeWe2YkE452qxzCgX3vtLnZbHaMWiwpKkIcWUZditQFB9HXrzkyX/jBIzyM0Z1w/1KqwsqwnLxJUREAeqwLHdkYjjPpaWp2ARAsSe35iPUrPa8OcVa05m6zXsDDeIJkzWRiY0JyZaEyD8HOi4ZZuIypnoAnUunpKBLv68/qcCey3u9prVN/0/eghT6TTPPeVjcExZyw+jO/uNXH32ired24RxyfHrF6tq2Rf4P75yVymF6ZbnDVn8ndJXazLUN+7ZtcXG4iNyda0YWGiAWzkC0ksMD/eMN5veiQrySf1W4mqM1WipJtDc+O0JiNvX1zv0jVD/UxJm+NrFm0R5c3rRCPEcN7M7ful/k09l97MRK4j/mMr1ObouqFquQTun5/CKhGYx0pz5shcizqnG7VIwp8qz/V1k33ImI17iiS9xiTfFsM7E7wxJcyykfqrlgjReCrdff0ikQvRyecsbUaVtU5saqfMb7LYSNOaEYGjTNpalbF4173HMSeZ3rqeaQKD0pxRhGOenkS588K/jdpHlTkreN7cMzOBx5ZmSb9QV8hdKWLCaGzD8Fc5deYza1TPZuqUq5o5A/TzQfZxltcxVVzsbQZ+KjLFtxWyCc2TC8300uo25sbrODubnZ/LdbqlmbOOdE3qG8LgU87MmVt/4r39qDJnSJtU7bY7OA67l2s3cOky985OWpsymmvKvqaN1ij9LkeeFL4w1LPpstTngdiYbM0UH5ifxHSjZpVkrwpYbaQVrCNGfH/zqTlMN2q55lCuPuQwebNFLWBayw7X5RX3s/fZCOIEwPLhSB2Urpv5M8ubOOh08ShBbANUnrNsqSrnHCt7rdRhEH2X/hD7lk0i36Iafqov5h9jfPyR01jfb+HJKytkefmd2CCrn+p+XgsYOp0ksUvBZNZoIo7FNTXPGeU29eHzS6S/qct6oST1me/XogFRq0xUqnM4j1hMlw8QSPpwAsDxiUaU2gAwPJdyXyogSIkEzb2zE8bE5jJIzVlOiTmg+J5pqimb6WGM4eGM5NJ5kCuQjQWo87FwnZo9ihrpxByW7lOFuQFLB0BRA9fMjhXXVqrQkS0JYaDUL2qNC8sBsXfJ4/PW0/NkDlgKiTM42h/1IiD1ygsrvfQJn3g0mzlzhfpuWglhafx9rBagyzmZ05ZCZNbozIj3yrvGFSgbAzVrVJmD+O/sTU+eiL/64EnstDr4uiBCiDJyuzZ437lFNLtdfPvamraurDrTRCjHxdUdnJZ8CWRiYrwWYKZRw2Mn51J1UeG580JIWmw3bcYYTpbAjORhcAHLUPzURlNwoCiifqJOv5+qYPUIjPyaCdO4uvpBRb+FP43VArS6vYOlFjC0uxwMwEceOoXrW/v44e2N6B5XEqfDOZ6/u6VlzlJEmfSn7rlEtMephP0+TSzHobTp/lEBQbR9M/Qp676suwLGjIyiKpXN7EPGdVXWM1Wvodkxaxnla5SsyCQ/igKJaDRncn9157PLekn4nLHkpw42zHn0HkhhB92OlZ+mYXtPa32y6wMon7M0Q14W3n7PscTfRs1ZCe0yyGs7FirohDB58t71C/JoVNXP5N5SDlR/otW9Jl5e3SHfr15zlizHGEstGJmpOTszgdefKJ8p1vlGaS0uiAm+FUbxFVptucTCRCORs9JIX0lDwKTfqHJF4TrbzAK4+HsjYPjwhVP2/SAsEmwgSh9dzRlLbxribyvNmTQVJ+o1WkUL4D33LWKv3cH3b65H7drg+OSYsvj1N2rNtZQHublzgOfubmF5N7ZDlgVzAWP48IWTmW0UnTPC4ThvgI+8MPbbcNE1cmD8W3mLa1DL1FWros9zlv7dJBmyeV7dmgN6G2ncDkM73LLHakHKp6LsWaj2y4ZIF9EeZZOTLMmw3qzRri+Pn5xDI2C4vZP2SzDVafrNVEotH0tSXWuioR6yP3t6AXf3mvjx8mbUmiltgus8aBHMWYfzeO4ZmJ2s37OgkzDrypkgZpxJAJcOWJENVTtmvt/MDNrWUyVBk8fnzLUFgYTsXjOMVZkLlgF5OEzzoGAr5NciUPdnkUj7zafSAlHKzBhICx3l80dAPp/eIeXYLRNa02Ai0i1AD6F4d7OR5ky/R9j3y0BrCYuAAu+zTOZMhmufYosEt/tEO2IeDSqkfqa1BGNsgjH2PcbYM4yx5xlj/yb8/Txj7LuMsZcZY/+NMeZk88aQ3jTEYWvzqlLjpdmcT0yNJTK8uwyzrWRId019DrEhbCg5jdwTTBabLPWgWPTF/DBtChW0VrDSpCS7WF15USaxo9ZkkjZbMcQGyZtsIpWVA802ebEtUkmoDddUJA4KDXHPAVzf2ksF9qDaMDV3YWEK5+an8jMIjkILncmQfYPmyyqx2qgxPBjm+4tCk5f4rlthpAM1WiMVEKR0piGa0+Z6bZqNAoIYTJSog/rO7kFpWhGTEEFGqrU+HiGmoSQJsBxEWfQ4ypyiMMyaM/nhK9Ocab4XqlOzYNqq7RviveTxk3MYlywegpRZY7rOfvicaU3oxacyryht/HvPLeLxk3OkNUBau25HX4lnJ5dM9GMR7sxtvtlPT7c+xYGWGI5rohqbIOaRTZ7EKmBjyn4A4AOc88cBvBnALzPG3gngfwTwP3POHwKwBuAfObVMTCRhZpfH54yeaBRRaD/QtrfFNrxJqM8hiAU16qHrqy+sOQsn3TCwZmXtkUVMWLV1JurPV1vRQ8AmIamJADeBkgi9855jiRDetu0KiKktP7cal0C9r2zawTQGWa+jQ/Nmie+cczx9c0Or8TKZElJzytQnmxQFJgSGvkRmLpZVZwmF1PcolxeXWjletk5yKbSchcwacy5P29tsykUBQRL3mQmvjYMWvnF1NdRKDgbtbtfaJ6wMmNc1LZx1qh/pgCAceuasOo1UccjPXllAEMPeUjb2iZCTQrisphNJac6II7Qf2hC9MBK4tLaDz7x0SymfvmFxcgwPSqkU5CJU4BNDb6JvlGWBwFgUXISGjSCVKmG6z3Z+2r4xER9BzJiAMbz7vkV85EHaKk3XjuDJyk4Kb4tMs0beG9Xt8M9G+I8D+ACA/0P4+58C+NcA/lfbhqmBbkeas+yXlXb6t2vLZU26qpADxpTkrMnn0D1XXpvYvBjUZKP6XQ8Ymh1OLt6zMxO4vr1P3GXZXsGBKsOE4FcfPIUibHDDgrmz7adqek/Nu3tmJ3DPrF0uEOowEQIWeY5N1GrYRidaG+ptLnl4egRUdplkP01X7epRNWeTjQBbTZowNa4uonnT+mfhEycZjd4+Y/MkJnNosR/ZElZ5hEjqHOnmYM4aUmARGbTPmRQQxEDIRH107k26brmuPCtdvAdZ4p8635S/RbjpLUMeOJc+qfXribP4+zevrmI1jAx5fmEKJysOGOVu1pjj7QqfM8hzyr2aQSNh1tgHzVnFvBmZU01oBNV3T5k1qqiamQT05wBHL6iVbXkZcr/TvnWm++RyQniVvqFm0KoBvbnUyNAkUce57L6jomyzxl8KXYP+8uXbaIODsd5z1QLLoC9hO6JbRaKUF4GVzxljrAbgaQAPAfhfAFwCsM45FyfDNQBnNff+DoDfAYBz587FvxNl2w4+Z6n7NYdl2AdjuzYwqowlCbhMQ6jPoXsuVyaiaLTGrMVVGYhma6yXDJKgvfD2exYcqq52A85rFtXTIOXvh+u7cnnmKiw7xBqWNWenpsd76TJ202HkATfJbo2xTIl1+l3JfzsQKoz8CsCsAUpEvbMgerM0fR2eLFMPmRWbKZnUxiShOohnwXmfkj5NIbGzUK8xMqqomDeJPRduWhSxXmqKYE1FwNJhnVU0aj1BU6J+i0GjHNdNGldAzreYrl+OlGqzXijY9FswZkAv2qNNmO0iMHWpbLNGOd/ZCPJmCfTD/LJqioLSnIn1qjJfNmaNfeDNjJGBKYigH7NEVFmBhMApMO8RqYuqZYNRkkv/3Ox0E+ebim9eXSUFRrK5efqaoR8F8O77FnFje99ZGSH2XrGHDrNZIzjnHc75mwHcC+DtAF5n2wDn/I84509wzp9YWlqKfqfeU9vJ5yx7YpapubaZx+rkU59D91yu3SzKxw8qCg3Vaj18GDrZICsUrKDMpxwQO5sK+UshKRWzK6f7pSgWw0TEZyXtm0jBcH5+KmxVWSeWmzND8vl0EjcTQ+RCpyZSFEiVcE77QDx6fAa/cO9xTEsBT9JsYnrMdVG9ANpEz8VU1qQ5u29uEscnGnhksXheJbLthFmjveBNhe5wFYd6wsFejqgofer2EUFnPHzcPAYpM3rSjyXfzhznOZPrN7ffiZizdH2JkPyWc8V2RnFwfO21u3juTlLy34/90dQG9ZzufWKp0O2jypjJz16V+WUZQm9bHLT1Zo3qsrMx92MA3n//CfyyJgBbGdCdxbogqmdnJ/H++0/g3JxeyCFXmX5OV0Gu+7WmIQRsp8uxvHuQynfZu6ZvK481hQ1mx+vaiM4miGefC5lkOWZFP+EUrZFzvs4Y+xqAnwOwwBirh9qzewFcd6mLmkiRz1kus0bLQygnY2LHnCV/32110Ox0I7WoPi+S46IaFKdQEKQaPdScuZi2aSpP/1Qmcz6gMbcza5S+m0tCJjeqeKaFiQY+8eiZxG+NIEj8prZrbXPOkomz212OsRpLO1aro6BonfJAZqA6nJMETyPopZyQJYemsP5xGUO70bW4UOzQnf0sycdNlh+rBXjf/Scy64jvzrdPJRjbHORuln9IwpScp/30TMKoehDgYw+fRsCAF1e2rQVoVI1irapatiyIKS3PsdS0UdeMxqRLLZtX6Gu6bW2/FSW6jtsc7KFEm665gQGSWWMPwxyR0Qxpv9JMRtd5atlcJXDRnNnOedVXrWzo9p22gVPJ6lMy2JQqMNLfV9brMTFZ+wRTJmBM5m7tc9bfPWZhooGPPHQK4wMya7SJ1rjEGFsIv08C+BCAFwB8DcB/Fxb7LQCfdWrZMM7pQBppqNJmUnNd1oatqUttW12MP7y9gb9+ZTn6uyzNWRmT9OfOHsMHH7AnzEoB0W1BaBY9JHTSsbLQ740hardEosfWr6RszCgJPtV2bRnzAMm8XUKYo27uJn/UnzkxCwCYsNhw5fvkdvcJKa58g6lmci+zMJlOmjUG+spS7ZUn3S7FrDHHOs9qVxbm9nwbkjdk8eO1gIVaevs+0MxZ7724Bht4732LeP3iTMJMST3f1L/FfkkRovJ8srWSsCX0BsmrmPbCskzXYg1v2p9xlCAPh474LdP3vOrzsWUICJLyOVPN/cqZGs6Q+1VLvI/8dZr6bbpG+U2p5R+RrAf071Pf+T3duQgzA2ZL+/VL/hPT8xgYYwbYac7OAPjT0O8sAPC/cc4/zxj7CYD/yhj7vwP4IYA/cWmYemSdKQFjBMNmRZjY/WbCsYkGVvdbxk1aTGTqgEhkO9dU4SrML2OSnhmAqpbqtthIq5BQlsnY9CHybm4kze8MhH4/OiNhdqyO45ONzPfgsjnLzyrWlioZNpm1HJ8cw8cePo1n72zilfXdzPaoOg46tIQwFuQYq03BGK2RaN9F+2cylasacXtxw3lWeVa3u8msVLHGLvzNmkExXmPI0joL/9Ca5PNlg/mJBuYViXmm5iwKrmMWQJoYxeQT2UEXXKIfc8vUBLUk8mp6ZYxiMBAgOVa6Z2DoCWn7n1LHHaYeqnP89HQv2vB0o4adVoeeB32erzUpqFERhj+PnxjQO4vVyKry3qFau+jqMvWcMmcUMCeaHs75N2hrAJtojT8G8Bbi91fQ8z/LBSrHkk66WmMs9QKtQulTDTuO98+dPY6rW3sJPxIdstTpOpMe20lwYWEKr6zvDkiHUw3Exlp0gVJjWGb+rGE2Jc3btaof6UPnl8jf1bHsco6xgKGpEAkq8RgwliDCBFOmSiJTewshWXV9dnl+6QjvuEw2g8wSv2VrBORHEOZzNo7+9iav2XAes/AO+T3mMWvMarmrCMBUJtm+33p2Ja05S9daDwvVS9gs1BrUv81mjfFvZq2sSRNG39fU2DX1Y3s0DWtZZo2pgCCGMgKzY3XMjzt5iAwUwpyRsfKEtIM8HtXtfqpRxycePYOnbq5jp7VH3tOXaI0JzVk8c1Ra5/65ychXOwumfpuuzYzVASX1Sx4+z0RSmcwaTdpC62iNVqWK4+TUuHaf6ycGtqNQKnXdAV5jDC3lN5vzr4wNe7we4KFjdg7zpoPwlfUd7Gpywtj26fGTc3hsaW7gHH1eUN2uwqxRSMx2DWp29/qHeMwtu5Yi+AY0j9Sx7HLec+hXmTOFeGRIziHBJOUS3Fg8O9N81wYiib71rpNRt8JCcsQrkyaMYjBEeRuJt8lHwRXOZo0EJ1qJWaP0nSPNJNv2W6KfEhirpVe/yYzelNzdFlkJZk0BQeTfTFY5ASH0jNrT3KMnWqrfS0wtlBPkimmjip6bmwTnHHvtLu7uJaPOvv/+E31JauwCsx9r772XcabVWEh4D+jxA5a9rw3OrDH+LtOi6ra9MNHAAwtTVnXm9Ss7NT2Ol9d2kvtFyYOg5u+VYRKUD5tZ48npcZyctsv1WiUGxpxRm5l4gSnNWcBSoZTTPmfp+uQITlONGnZbnUpt5nWHcqfL8aPb+mShLn4Bg4qCXwbogCCCOSvvxUw3eir83ZY5B5AL+s3HLE6OWe+d1l3TUZ8Afv7eY5hpDGY76HD6GShTMjUwx347O5gMXbcFEoxN/HPWYTJZr+F1izN4YD594Ip75UAvpqAvYn3Ia0f4nLUNkbMEyjyL80YDY5D29lztmiG//4TmTHzmNGsU8oJ7ZydxS5NwnLpfnG1VEuwxc2Zuw3Td6BupuU0Xra0/mrPsdZIs71p//F0VEJ+YHMMDC1P47o219H1uzfQFpj7VGIvyPxXFWC3AXrs7MNM0c47I5Cd5sULI81WmDQuZNRrbS/92z8wE3rg0i5mxOt5+ZgELkvm0sS7N76ae5xWw21tTDONKqw4D83YjmTPlUyDvxivfJ5wdTTkaikK3UWxnJAo9yhDzIMvnbKpuNiuVh352vFe2TGfOfm8L7z23iPecWyy1zpT0X/q+ODHWM33oA1JmjV1aiqtuEer6eub2Bv7y0nIuf0VXn1X5oM0K4c8Yw8+cmMWUwRRaNoOqG+Zp5MgtdcZ2zYi+RN8zS2fV5VpeMJbZ5mJZ7b7tzEKUkkFFJxEQRPI5E5/uTQLo7R8fPr+EN52cI9aOXhwv5qlN0Jm8iM0azeWMPmc5qHOtWWM/iF3DtTJiWzAAK3tNXN7Y1eaEIgU9Q0kzGphyaV0WxZtPzWO8FmCiZpngt2QYg+/k1DKVBXlKymcXFVPBFq4+5YwhOtfvnZtMnPGTJpoqxwCZmCwT42atOXPsz6hjgJozB7NG4gSy0TbJWqYLC9O4f26qFJMTfXt03VRSPhlDZhFRGajhqVmaNX7o/JJx8ctVT9Zr+IV7jyekRHkhpOeDyg1ng9xdk+4r8nw24f41zQLoMTuMAecXprDb6uB2qKVgiqaPIfmsIjqUNnqiuK+EVyfvVnpTsOyGZsfqePs9CzglmU2Yxk8wZ3KJh49NY6/dwYMLbvnJ+mnGmmgpQZjkYKTBcN/cJLqc4w6RyFyuUzWDBez3V8qvTBAzqWt63ixinqs0jTEx5vIlo+YsB/GqJtnOKl8mqDaWpsYwUa+RhGYes72dVgc/uLWBC4qZmY2GZphgWupRKo4S9oMzMxP4yEODyQMF2Jn5lRG1Ow/kZs2BeUrqTcLXNPQrNBQ3he3X9clknmgSvJn2fWu92TAutAoxQJ8zQnOmMWuktGw2B66amLJKxgzQBwTJYs6G2p+pRFBPaWvW2Ht3duPEUB5hFIChCz7kbyhf75KaoXwtf+j8EsYKiq2Fc/pbTs2j0+X47MVbANJqfR0xQSUoVe5M/+Lqcyb9UdQ/8t7ZZJJRU0jr8ShHolS+FuCtpxec2y2sOXMpKxVmKCeUvq59OTAKB+VzaLtvJIUBYOo18lKqzOxYHY+emylFOKSDaQ7Kl0xm8DYpHFRofc76oTkj2pgZq+Mtp+axLJmdirforOmVvuuiQw/3ORDD1M/JeoCt5ug8iwlmptnEuVX/9IHCLGm7UlJ7cj2CbjGWZwyvW5xxTv2RB0bGbUijNQ4aA2POTPNBlQrSgT1sNGf92X7EwtNFpMmK/HLUJAIy4oAg5UVrLJPZFcqbYQ7Ckl9xJo9ZPpBBL7LaJYIbNISpjazNU3xNdQecKYQvoCOkbfopl7dg5nIOYsNAQQsCP0vAY4WCU9hlDajjpTNZt6sr6gB5Xeyu4pBXJeZlLF21CrnOh49NIwgYmqGQoMYYjltGX1MxN1bHpsO7zto2VQGljDznozbi8IB0Z/G7jn8LWL5cUiafsyjyKOliMbxnA4VaUN66qBKKqISEjVgw7/5fFMk0JtVzZylhYobmDIjzfqbq0txoeh9JjX1SgGR7nwlDPl1Lx+AyrBEQL6ndSR6ytFljdn39MkV7dHEGADCnCaeblfNmmE3mygSpOSspWmNmQzlBhTIfNth2LTXEtodHyVBb4pwn/JME0smk6T7u5xB+2Otg9XXkqzMNk+ZMhFh2Idh16OcUTjC2DBCzL4+UlCmfKkQofVGzquWwfW71HSdMJA1z8bGTc3jDidlIUl1kP3/f/Yv4lQsnrct3OMeqEj1QZixMDJjJkkR3nynEfNVQtbG6dqm9xLKF6Jv6mLqhGtZjwdSvOMXFsPa+h6I0nup7mriWs08usPX3LU1zlhBQGB7epi7N77utDm5u75PX5H0nJZwzRWvMJbI7/Bgu5iz8bIURocThQQcEGR7N2dLUOD768CncNzdJXm9lRFUb7i2yPFDvTLyjohanTPO9KES/hlrzbs2dJR+ijHxMeaC2KkdrTORoUkqmA4T0Pk35VbR9cDVrtKnTuRc9mHzORFCR+zV7iwsKh9LPWVaWgOfSnGUQ213FHF4lDGyDQKXrlyOFJq9SQynaL7KX1YMAkxY5NQVeWd/Fk1dWsL7fkjoSfzURr3kYN93763dAkJj2TDMaAUuWyVO/KizU1TWsQjtj4IhidHvfYCPkGOZnsCWu8zzCeSISMLkGctQtQ90GnlnexHeur4FzjoNONxHsTl4yKUGXoQ1rzdkwv+wKMDCzRuqFCO5a5O8RIV9z+5z18V3WgwABaCaslWFjccTmXAKMAW86OaeNxGZdT0n9UbE0NY4rm3tDncJAdC0rdLc6C03mdJVCaVYEBFGhmmQFjCVMnoWPUGZAkPDzdaGGm+hCJqy0IXmllBn3/fojp0s5mIrW4NKFZFlWyOdMqoZEZNYIxawx/LSPmhgzgRwKsWHRFXF+DcISYq/dwQJ6JrByv01bgllzRv+uk4D3RRORID6TOdrSJsi8UK/UBO9CUJTWoI4WFsbrzhrlfkO8vUDY5hlgF0qfEu7n7p41EpozQ3uue/snHj2jqSf+XnQPEndPNWrYbqaFn60ux9+8soxWl0f9SZg1KuXNwUI8KAyMORMSYdk2NdaccdQZiw6C3D5nfQ6DqFtk2ZqzYd0mywX1lAywTvJtW3mZG+9bTs3jkePTGM8I5T9IiPnjmlepEQQYqwWZPpFlQ+ePpEIlENUDRxBnrUyzRpY60KrgtapaxWVJDAszZ05lacIkn+bM3H5k1siT5dvhD7ZrV9wnhABmRjLdGzELB8Gc6aI3GrVjJWrO+kHqJ4hPpVW59bxaA7l+dTz1c3A4z26qV79y4SQatQA/vLXeKzOcXQdjvbVsc5yZiuQ3by0HCZ+zPrRHapZz1iX0CVN1mjlrdrqRu87zd7YwM5bcY9VIy8ZojVnB4Fg+H9JRx8CYswsLU5is13BrZx+XN/YAxK+y3e2iXmOxBi2n5qxfZo0Cuj5l5SMa1k2ybNDPWRbhycjvRVELGObGq4u6VgbExpcV0j6tOQvwiw+cwEHfmTPqN2qNJ3+rBUgECBHPk6f3NjMkSfBl31Fk1r3//hO4tb2PF1a2AQDvuOeYc4qCLBTfZ+wrYMp3DuCvLt3O5VvKiG+yUC8ya4xK9cqJKJ62+Q5F7SKghKmrtFmj0JxZNVcqukrESoGyfc5076//Zo29WUWZ6EUBLwq0pdOcqbUO7dlNaPiEuSxlCjpMiEbaYnDtLBqon6p/9mTfsjV8pbYtas1ZuQiypTOxlgW6L672zqz7ZuOUCib/XRVZZ0ItEpYdLQ5tYD5njDHcMzuRTM4Xjn2ry9EIYrOFvD5n/ZZg6trLmnxHJc8ZhSP86KVBCDGo3IEmNAKGiXoN8/1mPqnDkvhNXU8Bo49U2bxpsm5JiDvuDTbFi2jqj000MC0dhGdnJ0rPk1WUIIk1S/ZlI3COvXY3lyAgDmAQQz4TIssLRXMmAsWMW84JtW6ZGFAZZXoe9j4HozmT/pDNi3KYLgLuc7kvmgFZc5ZiPuIfornh2Cm5DlvN2VA57UtQ+0kGUxnSw/eBMMecjXDdJkQ9AzCmTva+CxMM5UrqC2VGmbdq4cc9pbE6aBLWYAlzakvrmN61DNPV8CUfLdZsCPaWpMkLx06zjetb+6gHQXTYUuZaNu4y/Xap0WrOMrizYZVglQ3yOUvbmOjvRwEiUfGpLGJemYZF85PlBa05SyMVAERTUuwTjxyfxvvOncjdh1QZ+bCzKF/Yzr/iiVu0+liz5KZ3ZMin3YzuJ7Qj8pnQiTRnyQk+FpaZadgZiIgaqQiyY4r2jdSchZ9VM2dU7TIzIY9Dfp+z4dtEawniU6/9qefUnMnjpp7ZurQMwxqkwJSXryjhXjXetDSHjz582lIIZNBISc/5gfuX8HNnj8XXCvbRBvZzo/zexHtQvrpFcLszM3SCcSqOgjEgSM7k1UBMp2RFPT9sGJhZo4DMYXMO/PD2JoBeyE7xKqiDggo/XQ9iU0hgAD5nmoWQpY4d0v29fFTHm6XMqI4SZsbq+PD5pYTmhcKwBASxbTWVTFirme492ZmZCetId65P3o/osFW/jaL1R8xLGKjJui2W7RdoU1dCcybt7Ry9PTaOlti79oalWZyYGsMJx2BD4n6ZWE8xZ5TPWZ/MGoVPjgydADCvz5krg9kPJiURyVVh2BNmjREj5dYnmcFVNWc6Mdawnt2qtlgNpgIMMWPJGOrMViBmUSZgmGrUojgHvTby9y8PxN7AkD6Hq+hKtAZy3r80NY5PPHoGbU28BMpPXaa91f2Dh/fUA0ZeM2GqUcNms439lntU5lHGwDVn6uIaDwlG2fyFYrIobZoaGrz/Zo3071nOjKoK+LDCVmPi4Y6ZsbrFYZuciKb8WpWCNFNOF0ubNdLViTPBZS6ZxkocbAlJvUWd1kEBtX0qdn/VEGPmynwwsEJ+jdG7kjVnymB1JR8xcaUeBDg765CCILxRvHdnzRlP3t9PdBOasxh5mTNX9PuJVeJTbj+v5kw+h9Oas3Q76j3DhAuhaWBEJ1HMa7875QgbPYlp/KN9gJjn/U4jI7Y/im6toivCjLO4tQR9BlPM2a7EPKmPyTnw+Zdv46mb69Fv7W4Xl9Z2EnsXBSF0zspnetgwBMyZLAHlUWStMzOxiRZ1iJCmjkTo7X4iS7Kvv6+K3gwfyMcs6dmTAUE8KKTzPw2P5owOCEKUIW6OpJIOC8lUUgyLPD4UQ/JzZ48lUkAU15xV+z7KkpRbPSdLfs0TEVQlvBN+RYpgoSs5jBd9TIrJVoOKUE30TXNGtJ4wa5R9zgyDoTKcxfrUX6jnvzy3xdxwNYJamIh9b1OaMw13Nqxn90S9ho8+fAqPHO+lD6HmxLD2XcBENonXb15rvYuUL7a6f1QNsTe4+oXnwcxYDVOWptxZ0M0RysRQ3uPVfUesp2tbcQLrZ5Y38czyJjYO2jBhyiHv42HCwJmzhHkK773EGmN4xz3HyDICFKHhGkq8X8g6JIaz1xUgfFD5PZVFkCYDIx2ZEXWCGPfT0+OYadQG5ldCMmfEj2r/dN1VNSZWfTAUFgdLcj9R+oKeGeW771tM3ZcXwz5tRffyPKdOc2aqKWXWKn1X93pKc5YX1LoQwVnmx3tED6V1HqjPmcas0UQLlkr09Hnu1hQGgxHXsoSiKu6R/GvaWs2Z3Z40DKgHQSRokk10S+TJK4Xp7dmYrsYMESHI7/N7E8wJFYG3zDn0qw+exC8+sFRiEmqGJ07P4933HQcQM8yUuaO83tTHVNcTgEymTKAxKhO2ZAz8qeWDkKN3yIzXgsQBZ8tzDStzloVhtf0uG1Q+riqe/GiMpjvEuJ+bm8SHL5wc2LyjmqV6kvY5M79bJ+bMcE0cIzIBngpOQjGTBfcfVVM0dBDSatdIfkwfsdbEyEQh0YkiabPGmPwsOq+pPs2O1fGJR8/gdMikUVrnPBrcXCCqp4gfwKzlnCwxd2O/52wcLl98xhD7nDNzNjuBN5+cA0D5BaXbkX8fVkT+k4TmbNgjk5ui+Il3bNqK2gbmrB8aLBlR5HGKOStxDk3UawgYiyPOllDnufmpSJAj6msSvjrJ9ZZ8JpHrV/7V1oeMAfiZEzN4xz0Ldh0+JBh8QBCZOROaM0nCf2vnICbqGYsWHIUa6y24x5ZmMTM28EezxhHhzYw24GXVrX73iNE7kDpDMN/sOpCO1phxn8NzmaRxHeJQTxFlxCAWNmsccnOjvfAwFXzJwngd64r0U+QfsyV9RIJRhjQhMRYwNDsSYSyNizgjRA6chFmjy0NRfTJQfIIHIjVnIiBJwfazQPVOPheTJJL+WcrMo9dvJiXlc8bS1/K4qCxO0sFjRlTuG40L5Yc47MHvTMxj7yzrGgUhna6eOeuX1cj5+SnMT9Tx8uoOAI3mrIJ2y2bA1fXdIjVncvkkhPBIpvdtfcgYY3jd4qxdRw8RhkBzFn/n4Oh0ebRw3nn2GH7toVNRToVjk+Z8TCIq14mpMW0I0GHEMIYtrhIy8VPao3vuLBOxtH+wA0S1TkViozRnrvXqYEo7YDKHEaA2zrKiNQ4iT5YNhBnKhYVpAMCjizPRtajvEBJtmbE1jKNBAi4YaNJ0TTBn4YvYkaL7FvY5M1TQNhB8QtI/AMVZUnNmMC+SUeY86/eUFe8/ftK4A3k1Z4BeK6wNpe/cQn9BvWMqGumoIdKcGcqINWEbs6AKvOX0PC4sTEsCv/6Q3FE6kIreMeVDbAqlHzNn7m0N+xqrCgNnzuTNUNWcBYxhrBZgPtSCvU4iBig8enwaH7j/BI5NuIVOHjRGVSrnCrFg5Q3K82b9Q3wgDfZQzjJrFIdpOiBIVr32bz5gDO+/fxEPHpvSljFFs6TaKrqORZUD35Q1EJqpe2Ym8IlHzyT22UB5ZwnmzDAuQpJMjacIWBGnIom1JfEc6X1+89oqLq3tJsrlhZk56yb6LaNfSaipseIazZkptcSwCgFsIKwvYlNS6Vr4btSgHjbQreFhXZNZoJmz3ufQmzUaNWdpIZCKjsGUsN80l9gb+hWtUTRTlnZUpwmzhdC05dlzRnibKoSB2/6pPmftLk8RRdOhvX8WGGOJiEujgqOiOaPNDMp5dubZs0wIgsZ1Yy0btOYs/l5jDC1w6zxnpnpNODYxRjols9DIziRdJRnMwpozPaMyDHj3uUVsHrRJX7CA9cwTe++MWxM/E/UatpodkvgVDJCYr5EGjcXEh7x3Xt7YjfpSBCazxlZXLwEXxOQwvL4Hj03h8ZPzxhybQQA8dGwaOy3aMf91izPYabZxVYqwpkO/H7mmMGBy+2LfyMOc6c5iXdLrYXjXJpC+sTkDpvQbgqCfatSw2+okTJ/rxB6kwqTl7vceK2gf2qyx/L6U/o6VLmZGIFf+VvdwHRoBS0WCHPIlVhkGzpylQm52OSYH3qv+YpQlmC6IHHQtpep5cTRG0x2CoBw0c5aFIGBAh4jWiPICgpjuuWd2Alc39zBr8FutIr9RpDkb0gk8P97A/Hgs/JK7yWXJcEc1a0xDEFoToXaM8iVuKPNV1BMwJmnqKGKnGIxBBgwEn2i48pQIxG9c+W7D6NcYw5vCABgUfubELLqc4+rWrcw+uQaJyYt6wNDuxoKbOMdh3L6w3u7m2OfUeRtH4Ax/G9K1qQO1T4l3NdynAPDWMwtodrpY2W3itdZeIvm6OMtM81touYchUBzlxyxQRe+CkpkztY9ZuXvTAUHSPmcUJus1tJpJYdGwCiurxsDZIJUAa3Nu1CSN14JEyNthhbyxZ6FolLdRQWQDXkG0RnnKHNG1nIm6ookYFKjNNklc0S8wa2PP896pW16/OIPHlmYxYYhmV6VQYVQOI7mXgrkaqwVAq5NgcKjHqYVEtshrSU1J4SNJSVJNeY6Kjp+NWSNFZL3r7HFc2dzFZL1iIziiezINZkuP2YwSVUYEYZFRZnARE9519jgure9EeefifsT+RbFWzb3+ZJRoRmrmRgmjrDkTdN7qXhNAj9HsRu+5V8akGe4YfM76jVjjR+wNFXSv/IAgSWQJPlI+Z6GPWtbOOFGvYVNhzkbVpLgoBv7cVD4EE7PykYdO4S2n5yvuVXG47AdHRXMmnrOKpIJHYwSL4exs77CTEycPC6hoa+lw1pm1FGs4RCNgRsZMc1thVOVz9vCxaUxXkciTGITxkDHJ2tPEO1aTO8sYizRnYRhmSVsm6qcIr6KvxnT+COKKSuA8O17HG5bmKmOunzizgPPzU85M1a88eBIfemApXSZnPwcZ/W5xagxvv+dYzGAIc7FagMXJBt559ljk2nDfnLsQV360pIAh1ETm7PegYPK3GnLeLAIZrdWC+TgeRt407TH9Rr80Z5H2uLSXnOxllsmw+kxUtEYKk430uzoq9LGKwWvOlMna7naHQtJRFEyjOxOhpmX0OyHioHDf7ATanTk8sDCFn65sA/Bmjf3E8ckxK9/NQUB+Z+IsVaWiWXOlLM2ZjXSzErNGItJhGXjs5BweM5iv5QXVS8G0ZEVrjJgzg5ZJRGtUzRp7Pmchc1aig724zXT+vO2eBdzc2h9IqpZzc5M4NzeJL146SF2TI++pUfgm67XcJz1LvMfeiVaFttIVQaQdi4m+9547EV3Pu8/JTyH8J23LDyOOET74sfBrNLiz2Nc0fh+R2Z7hGd5yah4PH5+OtPPDANIMu0LNWWkBQZQ+ZlWrMqEtS58zSoh4CNiBXBg8c6aMfJePtpnfPTMTCBhwazt9gAK9RaNKMw4DM2oDxhguHJtWfy2tbuq7x2hAfmNnZiawstdKaVgzzRpL6ovN/lPlFBuV6Ut1czxizsz3Cv6XSoQsBFhqQJDoOpg23YKuXzYQeQBN82yyXiP2sD4jw6wRMM+hd993HHd3m87NNmpBGEJ78BO0fM1AD4zFYlVqDMVcHK8FOBiSsTChHgR4YH4yQUyXTbhXjYg5k36LUikYnqEWsISP7CDxvnOLuLvX1KzL8ufQoE1X1TNUFqJQOD8/hWOTDVLL6TVnAwI18KPMrLzz7DEAwF9cvEWKF2qMoa1c6Jcz9TBiaoikWh4DhLTmHz42jXNzk6lcKlnmsHlWUd6VV4UAIA4LPhr7AdVNKsS1Wo4h1jyO1wL8/Nlj2Gl18MzyZlRHs8MxP97AmZnxKAFpLEFPh+5P1p9v/MaVvGrDCqp7iYAgGnrsPfctYqoRYKpRx9KUPs9fVrvDMD5xRMZq6u7wdLRYAFgJ/Z9OTY/jyubesPNmAICfPb2Q+NvGJHCYEOdOlH4rwHwMwszx+OQYjk+O4bWN3dS1KqaQmLo58rDT9TmWr2s2CV09E/UAD8xP4dZ2OjLsCCyxSjBw5owy6Rtl5kxA9wSkc/wheF5XvOnkHGbGakazprw4eqM5+pDfGWM9ny9hCjHVqOGtp+exNDWOyXoNz97ZxNZBG/sK85aHqbG9RSX45Vn7nvuOl2IgFEWGK6GufsBkrpjw11HvY0ni6vTMBK5t7il19MLx/9zZ46l6Aha3Q/qc5dwA4rxq+e7vF2xkeVSREyX5mg7D/io0rqaIqnkh0kJQtMkblmbxk7vbWJoaw5XNvaEYC1cIrXVVCYrLRtKssYdYc+pW18cePl1Sr/KBOqOqsBSLA4JUFBEkA7pn0r2vOMl7+r6jqjkbOB1AaY0Ow7vQEYoUQXMUJ99Dx6ZxerqaqJtHcDhHFoIgpl5ZtDlxRJL+hYkG3n3fIu1rVE0XAQAnJsdwz8w4FkMnc3l9n5gaz6WJUNHNMP0YNlDdNIW4j+4DSwllEs7+GUmEWYZZY14IibqqsR02UM+ciNYIVLIJDtOsXJho4D33Hccbl2ZLr1uML3VWL02N473nFkdmjVIoO5Jf1YgCgki/Rc/gWFctYAN1m6FarkI4X3US6izonkn4OapMozgNqLtGeKkVwsCZM1ryeXjfBh3atv/98PAYBphMpVh0AKdPGHKLyLGOZALsF+49jo8/QktWawHDO88ex+xYT2Jfxfku/CMeXZwpv/KKMT/e02BQDKa6nzMGPHF6AW9cmiUDFtw7OwkgHRExlq5KAUFKlLQKhvFgyJkz2qyx2sStk/VaVOmwHFcnpsYrYZJElaJuygxulEmU0rUqFUOMdUMK1BSZTw+iQwVACiErmEvl5zlz66SOOetyYPOgla6fJT9ljLIgpAgGbtZYEo01dHCZT4eZGR0Eqk4C61EOlqbGsBXlNNG/M+p4oaIlFn3vcoh2HSgpblkYqwVDG02TgjwG7z23iFaX48pGzzzRRHAw9BihR47HTKgcIfP1izO4sDCVSmcQmzVKSahLTBskiPChZ84Mc7QKgvuDD5zAZL2Gr1y+E7bfCyrS7nJ85/pa6e0NGmJvEQwvlTahyn2gaghh8GQV6TUqgGzOLHDPzAS2jrfx8PHREmSRbi2VmDX2PgcV9EUXR2Gr2caXL9/F40r0YFOqilFjwMvC4JmzEqNtDRN0zyAkCg8fm8bFtZ3+degI4TDMn8OOjz58CgFj+JtXQoKPKCO2BoreJDVtOfoh12MlIyH8H44q5DGoBwHqgUZzlrovXZecuFn4HKbakz7F2V+mz9mp6XHUA4YHF6ZwVfKBGzaQmjM1WmOJ7cUR7+I3UIYZ77BCzK3xWg1AG+cXplJlRnn514MAbz+zgMUhzHdJgRKYBYzhjUvlpwepGiY/3TIRmeaWVLVrPVn85ivrycAo+tPi6J61A2fOAOCd9xzD6n4TL632mJXD8DIeOzmHH9zcAEfSdyIIGD728GkEDJ45qwqjP30OPYSmxGjOAP01CkW3DQfezE8xDWLmLP4tHa0xPXpWieklczOTb1teDepEvYaPhgEDLixMYaYxFMdjCkbNWaXthp/Sb69bnMHJQ8aoifGdatSiszpVJirbv36ViXvnJgfdBWuIIZbn9qiOe1lCxSyM1wK8bnEG9w3oPWcxnLHFTA8mZvKoBjMfitPnntkJtLqxKclheBf3zk7i3tlJfOHl2+hI8X7nxuojncdtFOBHd3RgYnbGagEePT6D++bSgWPK0rjL99gc+KLIUYywagOhZVkw5BeiRo5M/J26Lz7ATT5nZbyaN5+aL15JRaCODw5gbb+FV9aEgLO69uW6f+ZE+QE5Bo1YK6s3OfPLv3+Qx/rBhSlcWt8d2TOethAp/2kYY6WuTdceuvqJUYKfuO1RfdvFMBTMGeBOJI0K1EdZIBzgPTyOKkwhdBljeIMmGltZW0SyXXvuzMtXaNw7N4mFiQZmpBDn6uFaVLuTjNZIXT/coM0aOb55dSVKP1EFQXPYx1WAGbSyUZkjMxqDRxQYivdS8Dx2cm50ratGtNuukIVmDNl7vkkTfVTP2uFhzgw+CqMM8VgLEw2s77dwdqaa8PEeMUZ13z6KKPNVFT2w7cwaQ8LtqJ4YFphRck/ZjtRbTs0bo4sxiSGrGQjow7/+WfS/GC2Oak0a060fXggdrsnCJdb4H/bRGDxis0YOxkZ7xEe1965nazJheHayeFP6ipFlxAtiaJgzGYfpZYhnOTk1hg/cfyJxrRGwSNLpUSYOz/w57DCZMzjVU8J93qyxIlgOFRV4gaqmZ9ZYQoMjCjkYSltiZmXGtooRiOo8InPfGHH0aAzBUECEze8cAlrpqEwb2UydMZaZVM80LkdVDjo0zFkiatrgulE6TM/yKw+eInM4eRTDYZo/hx1y7ioXqKumDGLJSnMWaW/8LLOFOlJFd7yAMYzVAtQDRgYSOeyHuaxBFIPJodA/FXJnh3x4I/g1PhyYDgPz7LQ6A+5JcYgpNVELsD/kKTtU2Jgn3js7gYXxBhYnY/cdm/1YMOD9CpgyChge5kz+fojehpiYlDawNyEP0cMOGAHr5fXwIzo6YMqnLbrdOCpgkXeeFArZ13LYGYBqkY89i0xK0ZPM/tpDpzQO5Icb0TiwmFziXIlmV2G7hx1iHE3accEIHyZaZVgxO9YTwBwGMbaYN1ON2sgxZzYYrwd4ZDGZey6wYOtEgnFyPz+ii2yImDNGfh99xASFR7WoMdYz7TlM0+eQI6+plEgUPFGrYbfdyb1n5BUKeal6Dz939hhmx8zHSGqkclJZcdoFvb+ZfP2wQjxevcaASJnQP9L1cI9uTED7NT4coJKAjyoEQzY9VsfqfmvAvXGDhXVibp+xRk1ozvyaExiaWe+cDHZEIPtJeFQLIen0Qz06CHK+M5F6Y1wkL8790t1uFIeT9znr4czMRCoAiAr1wM3LRtjupYf9zYjnm5QSdafMfCuM1njYp75wNTBpxw+DFmdUwBjD2dkJ/MyJmezCQ457ZsZxbm4Sj2miEA8zrMz+id/szBr1mrOjikzmjDF2H2Psa4yxnzDGnmeM/Yvw9+OMsS8xxi6Gn8eKdIRpvh8WHC5t4HDC548bXTibNYbU0US92KbuKhTqWhBuHhVB+FplvO36IX85gtmdkDQKKYl2pUNwuMdXwEYAczRGYvB4xz3H8LrF0WNoVNSDAE+cWcBEPe0rO/ywWA9E7AgbDXSkOcvTrUMKG81ZG8D/mXP+MwDeCeD/yBj7GQC/B+ArnPOHAXwl/Ds3EqH0D6Fo7hA+0tBBHKZZqneP4UFsqpbv/olaLby/+AKzEaB4kyd3lDVS1pqzQ/5uxNOZCLxKfM6OSEAQv8Y9PNKoVHOWMzDYYUYmc8Y5v8k5/0H4fQvACwDOAvgYgD8Ni/0pgI8X6cjh15x5VA2hOet47mxkIMIj11k+C2vhj5Bbc6b5roMIV+4PEXuIdSmGLK8PSTIQxtFFFPGtLmnO+ulzdsiHX4xkYJim8Xgf8sHw8BCw4s5Y6qsQllGRdeOykegtZ+cOH5xOScbYAwDeAuC7AE5xzm+Gl24BOKW553cYY08xxp66c+eOoW76+2HBYZfmDgPGQ6LPs2ajg3bInAmzBleUuqws6vJSdXcIM0MxZtOGQ9oGR33kBZMqm3Gr8qhKNGcV1Dmc6A2myaxRaOznx4cmpprHCGKU5o+r5kyOrgsAp6fHLWrorb3xQxQEJi+sR4AxNgPg/wfgf+Ccb8rXOOccGpqYc/5HnPMnOOdPLC0t2bV1CI+Bw/dEw4e3nl7AG07M4vhEI7uwx1BAJGFvmMTUBH7+3mN4/ORc7lD8AglzaovyIvixX8/2EM7eQqMt8ha5oqgJ7GGB4Mk4Bz7+yGk8SCXvrmSMjoZfiI0AZmGigfeeW8QbRjCwg8dw4NceOoX3nTsx6G44w7T+KUsUsf8HjOHjj5zGm07Oae9vhEzZG/26smPOGGMN9BizP+Ocfyr8+TZj7Ex4/QyA5SIdSYTSP4S7/2F8pmHDeD3Ao4szXks5QmiHURddNWenpyfw4LHpaF0VjQDY+57dB2HW6DVn9mgoTgdzOaXFOgfz+fF6Zjj/wwTx9By9sWCM9SdaY1Tl4Z77kVljxhpfnBzz+4BHbozVgpEKYiamumnOy5fOh0IjEVE5YL17VaZDPh8aQYBPPHoG988TAqcjBptojQzAnwB4gXP+/5IufQ7Ab4XffwvAZ4t0hIrychiw3WoD8GpaDw8KwqxxzFFzJlAmEWpDZ3HuozW6Qpg1npwaw+Mn53CB0vRY4sLCFE5NJc1jPvjAEt5//yKAw3V26CBSF8iRSvvpZntU+JGcltYeHocSsTl1dhmgp/362MOnI9pXCM1l4fk77lnARx4iPaKOPGzEje8C8A8APMsY+1H42/8NwB8A+N8YY/8IwGsA/vsiHUlIsA/R7s/C7OinpycG3RUPj6GDoCkbeYNEFNwq3AOCiHYPzx5VNQRzxgE8eGw6dz2MMbz51Dx5rcYYzs1N4v75ydz1jwouLExheqymMKlJ7qxKn7PDPvNtNWceHkcRjSBAs9Mhr6l0fI3F+39s+ZAs49cZjUzmjHP+Tej34w+W1RFX349RwfvvX0S7y0dKfe3h0W+opm+2KLyqpApsDomIcCva7hFC5HPWrU69wxjDE2cWKqt/mMAYSwj7GCPMev1xkxteO+7hoYcpjyR1hIrAOnGk48NJ65eNoTHUT3LTg+tH2Zgb98EpPDyykDdxcFGzRvlumy5QB4yHGeLddn2Ki8rQl2iNRyQgSzyUh/xBPTwcINa9a/AuwZwJ4Zx8t19hegyNADjw3LSHx5FFXmanuFmjHIjIJiBI79NL1e1Rj/IPDrgjhxRUQJCKWpL+P7wQPpFj3unMwyMFU/Au6gxV888m02b5NabDkGrO/Avz8DgKeP/9J7DdbA+uA45bDffRGp1RZ8nD2aNcUDOxSp+zw86ePXp8Bo8e91F/PTxkiNVg0pxRK0bwckJzZmvW+CsPnjzkO40ZQ8ScHZWt38PDQ+DYRAPHCuSlKzMgiA1OTo9jdb+FyXqxRMpHCYGQnFboc3aUQTJnFTIWh51n8UyZh0cawsqE0pwFrGdVQjJniuVEwqzRsNSO+hk7PMyZ9Fq9yZCHh4cN+p2w/vWLMzg/P4XJxtE+OFwwXgswN1bHz/jEoiONyOdssN3w8PAYBMKFXyc0ZyIqOSXYmGr02IzZML+lF37YYXiYs8T78i/Pw8MjG/3WnDHGPGPmiIAx/OL5pUF349CCWgP+BPXw8KgCtKYeRMjYHo5NNPC+c4tYCC1kEi5MfqfSYoiYM9kxf4Ad8fDwGBkU3Sr8XuMx6ugXgXNU8px5eHjoQa1/nhEo6/jkmHS/p/VtMETRGuPv/n15eHjYoDjB6Hcbj8OHKokeb5bk4XF0QS1/Eexpdixb3+NpfTsMDXOWiODiN38PDw8LiL0ir6mh32k8Rh39Oy79avHwOLIItWMmTf3ceDZz5ul7OwwNcyZjKDvl4eExdBCJjafz+oH5c8JjxEFP4fIntg8I4uFxdCFcyhiAnz97DO+69zgAYGkqNlmkgoWokPcPz6jpMTQ+ZzL8+/Lw8LDBTqsDAJi2MKeg4Lcaj1EHJcmudF77RePhcWTBGHB6ZgIA8MEHTmCmUcdms22dKsWbNdphOJkz/8o8PDwsMBNqzE5K0jsPjyMFKlpjBUeoDwji4XGUkWa+5sd7ERhdcpUyH/zPCsPJnPkX5uHhYYH75iaxODWG6UZezZnfbDxGG/2ewX7NeHgcXRQ1RUwkoS7WlUONoXTv8i/Mw8PDBoyx3IxZ7/4SO+PhMSSoYlozrzrz8DiykH3OiiChOfObiRZDyZx5eHh4eHh4ZKNfAgbPm3l4eBRd/4lcaH4z0WIomTMfwcXDw6Mf8DuNx6iDDAhSyRnKpP89PDyOJApuAIkk1AW7cpgxlMyZh4eHR1/gTwcPDyuw1BcPD4+jgjBrDYKCgp9a4JkzG3jmzMPD48jCm2p5jDooWqmS+RzlOfOrxcPjqKETcmf1osyZHErfW8lp4ZkzDw+PIw9/RniMKvo1db0gw8Pj6KIbMmdBUGwH8AyZHTxz5uHhcWQhTDQuLEwPuCceHvlAkTqe/vHw8CgTIsd0rcTNxe9TegxlnjMPDw+PfiBgDB99+HTC1MLDY6TQJwon0pz5teLhcWRR1KxRht9K9PDMmYeHx5FGvaCZhofHIEFqzjzZ4+HhUQGKmjXK8PuUHt6s0cPDw8PDY0TRN58zJkLpe4LKw+OoolTNmd9KtPDMmYeHh4eHx6iCitZYIdHjCSoPj6OLWolcg99K9Bgqs8ZfurCE/XZ30N3w8PDw8PAYCdBmjR4eHh7lo8yAIH6j0mOomLPpRh3TjUH3wsPDw8PDYzTQbzNDT095eBxd1LzPWV/gzRo9PDw8PDxGFQR9I8Jel4nx0J5J5Dvy8PA4eig1lH5pNR0+eObMw8PDw8NjRCETOI+fnAMATDXKP9qPT/bMWtb2W6XX7eHhMRooM4m091/VY6jMGj08PDw8PDzsIdM398xM4MLCVKkElMCJyXEAwOyYJxs8PDzy477ZCVzd2veaMwP8Luvh4eHh4TGqkCgcxsqVbMsYrwf4pfNLmKjXKqnfw8PjaOCtZxbw2MluZXvVYYBnzjw8PDw8PEYUslN91Q72015r5uHhURABY17IkwHvc+bh4eHh4TGikNkxL4j28PDwGH14MZiHh4eHh8eIgjH6u4eHh0dZ+MD9J9CuIgysBwnPnHl4eHh4eBwCBN7F3sPDowIsTPgkxP2EN2v08PDw8PAYUSR8zjxv5uHh4THy8MyZh4eHh4fHiIJpvnt4eHh4jCY8c+bh4eHh4TGqSPicefbMw8PDY9ThmTMPDw8PD48RhWfHPDw8PA4XPHPm4eHh4eExovDaMg8PD4/DBc+ceXh4eHh4jCjGa/4Y9/Dw8DhM8Lu6h4eHh4fHiMIzZx4eHh6HC35X9/Dw8PDwGFHUAm/W6OHh4XGYkMmcMcb+34yxZcbYc9JvxxljX2KMXQw/j1XbTQ8PDw8PDw8PDw8Pj8MNG83Zfwbwy8pvvwfgK5zzhwF8Jfzbw8PDw8PDw8PDw8PDIycymTPO+d8CWFV+/hiAPw2//ymAj5fbLQ8PDw8PDw8PDw8Pj6OFes77TnHOb4bfbwE4pSvIGPsdAL8DAOfOncvZnIeHh4eHhweF999/Arut9qC74eHh4eFRAgoHBOGccwDccP2POOdPcM6fWFpaKtqch4eHh4eHh4RjEw2cnZ0cdDc8PDw8PEpAXubsNmPsDACEn8vldcnDw8PDw8PDw8PDw+PoIS9z9jkAvxV+/y0Any2nOx4eHh4eHh4eHh4eHkcTNqH0PwngOwAeZYxdY4z9IwB/AOBDjLGLAH4x/NvDw8PDw8PDw8PDw8MjJzIDgnDO//eaSx8suS8eHh4eHh4eHh4eHh5HFoUDgnh4eHh4eHh4eHh4eHgUh2fOPDw8PDw8PDw8PDw8hgCeOfPw8PDw8PDw8PDw8BgCeObMw8PDw8PDw8PDw8NjCOCZMw8PDw8PDw8PDw8PjyGAZ848PDw8PDw8PDw8PDyGAIxz3r/GGNsC8KJl8XkAGwWbLFpHv+8/AeDugPswLPfLYzGqz1B1H6j50s/2+12Hzf2mMRmVZ6jyfpc5U1UfBn0/VYfruAz6Gfo9l4fxbBqGPsj351lbh20MVNiOyTA/Q5X3ezqHvj/vOTVqY/Ao53yWvMI579s/AE85lP2jEtorVEe/76fGZ9Seoaz75bEY1Weoug/9XE/DOgYuYzIqz1Dx/dZzZoifofT36Doug36Gfs/lYTybhqEP8v151tZhGwPimtWYDPMzVHm/p3Po+/OeU6M2BqbnHGazxr8YgjoGff8w9GHQ9w9DH/wz+DEYlj6U8QxFMehn8O/Rj8Gw9GHQ9w9DH/wz+DEYlj4M+v6y6ui7WeNTnPMn+tbgiMGPTww/FtnwY5SGHxMz/PjQ8ONihh+fbPgxSsOPiRl+fGgclXExPWe/NWd/1Of2Rg1+fGL4sciGH6M0/JiY4ceHhh8XM/z4ZMOPURp+TMzw40PjqIyL9jn7qjnz8PDw8PDw8PDw8PDwoDHMPmceHh4eHh4eHh4eHh5HBp458/Dw8PDw8PDw8PDwGAJUwpwxxrarqHfUwRjrMMZ+JP17wFD2ScbYoXWIZIxxxtj/V/q7zhi7wxj7/CD7NWxgjH08HKvXDbovg4afM/bwe7AZWeNz2PdfCn6vMYMx9q8YY88zxn4cnt/vGHSfhgGMsXsZY59ljF1kjF1ijP0hY2zMUP5/YIxN9bOPg0K4nv6f0t//F8bYvx5gl4YCEi38PGPs/9/evQfrNd1hHP8+QhsSglZNkLi0CYNGSMXoRCUtbakZtwzJGBVUlYoy1dFR2pqWURUlSN3T1JigFZWiIhNJMWk1EiKChCEalzbucUlC4tc/1jrOdjhpnHPevd/zvs9nJnP2u9Y+O7+zZ79r7XXZa8+X9GNJHiwq8Mko14qIGFz4t6TqgCr0DrCrpA3z5/2BFz7NASSt3+VR1Z/RwAP55zqT1KM24VSq09eMmbWrQ2VNM5C0N3AQsEdEDAL2A5ZWG1X1JAmYAvwlIgYAA4HewHlr+bXTgKZonAGrgMMkfb7qQOpMy73wLqR6/ADgFxXHVFdq1jiT1FvSDEnzJC2QdHBO307SE5Kuya3mewo3W01H0hBJf5c0V9I0SX0L2Ufn3oXHJA2tLMjauQv4Tt4eDUxuyZA0VNI/JD0sabakHXP6GElTJd0LzCg/5PJI6g0MA44HRuW04ZLuk3SnpEWSrmzpcZL0tqRxkuYDe1cXeU115Jq5T9Lgwn4PSNqtzKCrkK+VOwqfL5c0Jm8vkXRuoXxuutGStZ2fZrOWsqa96+dASU/memt8E4xe9wVeiYhVABHxSkS82F79nUdeL23w+hvg68DKiJgIEBFrgNOB4yT1knRR/vsflTRW0qnAVsBMSTMrjLssq0kr8p3eNiPfC9+bz80MSf0l9ZH0XKFO7yVpqaQNyg68LBGxDPg+cIqSHpJ+K2lOPjcntuwr6cxcX82XdEF1UddeLUfOVgKHRsQewAhgXO5lARgAXJFbzW8Ah9cwjnqyoVqnNN6Wv3CXASMjYghwPR/tcdooIgYDJ+e8RnMTMEpST2AQ8GAh70lgn4jYHfg5cH4hbw/SOdu3tEircTBwd0QsBl6VNCSnDwXGAjsDXwQOy+m9gAcjYreIeKD0aMvRkWvmOmAMgKSBQM+ImF9axPXrlVw+/x44o+pgrFLtlTUfk797VwEH5Hpri5JirNI9QD9JiyVNkLSv628AdgHmFhMiYjnwb+B7wHbA4DzaeGNEjAdeBEZExIiSY63KFcBRkvq0Sb8MmNRyboDxEfEm8AjQcm9zEDAtIt4vK9gqRMQzQA/gC6QOojcjYk9gT+AESdtLOoBUTu0VEbsBF1YWcAlqOS1MwPmSvgZ8AGwNbJnzno2IR/L2XNIXuBmsyIU1AJJ2BXYFpud2aw/gpcL+kwEi4j5Jm0jaNCLeKC/c2oqIR5WeuxtNGhEp6gNMkjQACKDYczQ9Il4rJ8pKjQYuzds35c93AP/KhRmSJpN6vP8MrAFurSDO0nTwmvkTcI6knwDHAX8oJ9q6NyX/nEtrA9+aU3tlzSfZCXgmIp7NnyeTer4bVkS8nRus+5A6m28Gfk0T19/rYDgwISJWAzRJnf0xEbFc0h+BU4EVhay9aS13b6C1sXEzcCQwkzSKPaGkUOvFN4FBkkbmz31IAzr7ARMj4l1o/Ouplo2zo0g9akMi4n1JS4CeOW9VYb81QLNOaxSwMCLam4LW9iV0jfhSuqnARaSC/HOF9F8BMyPi0HwzPquQ905ZwVVF0uakKSNflhSkij+AO2n/uliZp5U0uk91zUTEu5Kmk3rdjgDaHRVoMKv56OyInm3yW8rhNdS2LqhX/+/8NIW1lDW34/PzoVy2zgJmSVoA/BDX348DI4sJkjYB+gNLqgioTl0CzAMmrsO+U0kDG5uT6qp7axhXXZC0A6keWka6Lx4bEdPa7POtKmKrSi2nNfYBluWG2Qhg2xr+X93VImALpYeNkbSBpF0K+Ufm9GGkYd43K4ix1q4Hzo2IBW3S+9C62MOYUiOqDyOBGyJi24jYLiL6Ac+Sem6H5mH+9UjXSKNOYWxPR66Za4HxwJyIeL224dWN54CdJX1W0qbANyqOp974/CTtlTXr8cnnZxGwg1pXGz6y7IDLJmnHPCLfYjDwBK6/ZwAbSfoufLgQ1TjS7IRpwInKC3flxgbAW8DG5YdanTzKcwtpyl6L2eTnO0mDGffnfd8G5pBGsu9o9A5XSVsAVwKXR0SQrpuTWp6zkzRQUi9gOnCs8kqfheupIXV5b2n+Iq4izaH9a+5heoj0PIgVRMR7eeh2fJ6PvD6ph2Vh3mWlpIdJ07OOqybK2oqI50k3zW1dSJqidjZptKjZjAZ+0ybtVuAkUsF9OfAl0tSH28oNrVoduWYiYq6k5axbz2W31lIGR8RSSbcAj5Futh+uNrL64PPzMe2VNaNIN5QfOT8RsULSycDdkt4hlUeNrjdwWW6krgaeJk3lvJrmrr9D0qHABEnnkBr0dwFnkUZCBgKPSnofuIZUb11NunZebKLnziA1Wk8pfB4LTMzT7V8Gji3k3Uyajj+8tOjKtaGkR0jfjdWkaZ0X57xrSY86zcvrVLwMHBIRdyst7PWQpPdovc4aklJDtQsPmFZBuyYiGnV1IrPKSBoOnBERB1UcSrciaSvSlKSdIuKDisOpKZfBa+fz03mSeufnsERa8OCpiPhd1XHVC0mzSOX0Q1XHYmbdT5dOa5T0A9JDsGd35XHNzDoqT7l5EPhZEzTMXAavhc9Plzkh93wvJE0nvqracMzMGkeXj5yZmZmZmZnZp1fLBUHMzMzMzMxsHXWqcSapn6SZkh6XtFDSj3L65pKmS3oq/9wspx+l9MbvBZJm57n/Lcf6tqRFkp6W9NPO/VlmZmZmZmbdS6emNUrqC/SNiHmSNia9zPQQ0jLWr0XEBbmhtVlEnCnpq8ATEfG60tu+fxkRe+XlVxcD+wPPk1Z/Gh0Rj3fmjzMzMzMzM+suOjVyFhEvRcS8vP0W6b0fW5Ne9jop7zaJ1GAjImYX3jH0T2CbvD0UeDoinomI94Cb8jHMzMzMzMyaQpc9c5ZfSLk7aVW0LSPipZz1H2DLT/iV44G/5e2tgaWFvOdzmpmZmZmZWVPokpdQS+pNemnlaRGxPL36JMkvKYw2+48gNc6GdcX/b2ZmZmZm1t11euRM0gakhtmNETElJ/83P4/W8lzassL+g0hvAD84Il7NyS8A/QqH3SanmZmZmZmZNYXOrtYo4DrSIh8XF7KmAsfk7WOA2/P+/YEpwNERsbiw/xxggKTtJX0GGJWPYWZmZmZm1hQ6u1rjMOB+YAHwQU4+i/Tc2S1Af+A54IiIeE3StcDhOQ1gdUR8JR/rQOASoAdwfUSc1+HAzMzMzMzMuplONc7MzMzMzMysa3TZao1mZmZmZmbWcW6cmZmZmZmZ1QE3zszMzMzMzOqAG2dmZmZmZmZ1wI0zMzMzMzOzOuDGmZmZmZmZWR1w48zMzMzMzKwO/A/UMDFc3DiK4QAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
    " - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "# Make the plot look a bit nicer:\n", - "ammonia.plot(figsize=(15,5), color='lightblue', legend=False);" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE6CAYAAACSxCplAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOxdZ4DURBt+snudoxy9d0UUBBVEbIiCXVHAiiIooKgoFkBExfaJClhBUEFsiKCCIk2UIiCiglKl94Prve1ty/djd5JJMpkk2+7APD9uL8m0TKa9XRBFETZs2LBhw4YNGzZs2LBho2rhqOoG2LBhw4YNGzZs2LBhw4YNmzizYcOGDRs2bNiwYcOGjWoBmzizYcOGDRs2bNiwYcOGjWoAmzizYcOGDRs2bNiwYcOGjWoAmzizYcOGDRs2bNiwYcOGjWqAuFhWVr9+fbF169axrNKGDRs2bNiwYcOGDRs2qg22bNmSK4piA9azmBJnrVu3xubNm2NZpQ0bNmzYsGHDhg0bNmxUGwiCcFTvma3WaMOGDRs2bNiwYcOGDRvVAKaIM0EQ6giC8K0gCHsEQdgtCEJPQRDqCoLwsyAI+4O/adFurA0bNmzYsGHDhg0bNmycrjArOXsXwApRFM8C0AXAbgDPAFgliuIZAFYFr23YsGHDhg0bNmzYsGHDRggwtDkTBKE2gMsBDAEAURTdANyCIPQDcEUw2WcA1gIYF41G2rBhw4YNGzZs2LBhI/rweDxIT0+Hy+Wq6qac8khKSkLz5s0RHx9vOo8ZhyBtAOQAmCMIQhcAWwA8DqCRKIoZwTSZABqxMguCMALACABo2bKl6YbZsGHDhg0bNmzYsGEjtkhPT0fNmjXRunVrCIJQ1c05ZSGKIvLy8pCeno42bdqYzmdGrTEOwPkAZoiieB6AMqhUGEVRFAGIOg37SBTFbqIodmvQgOkx0oYNGzZs2LBhw4YNG9UALpcL9erVswmzMCEIAurVq2dZAmmGOEsHkC6K4h/B628RINayBEFoEqy8CYBsSzXbsGHDhg0bNmzYsGGj2sEmzCKDUPrRkDgTRTETwHFBEDoEb10F4F8AiwHcF7x3H4AfLNduw4YNGzZs2LBhw4YNGzYAmPfWOArAXEEQtgPoCuA1AK8D6CsIwn4AfYLXNmzYsGHDhg0bNmzYsBEWvv/+ewiCgD179lR1UwAAM2fOxOeffx71esw4BIEoilsBdGM8uiqirbFhw4YNGzZs2LBhw8Z/HvPmzcOll16KefPm4aWXXqrq5uChhx6KST1mJWc2bNioBsgodWHh3gxUev1V3RQbNmzYsGHDho2ooLS0FBs2bMDs2bPx9ddfAwDWrl2LXr16oV+/fmjbti2eeeYZzJ07FxdeeCE6d+6MgwcPAgCGDBmCkSNH4qKLLkLbtm2xdu1a3H///ejYsSOGDBki1TFv3jx07twZnTp1wrhxcjSw1NRUTJgwAV26dMFFF12ErKwsAMCLL76IKVOmAAA+/vhjdO/eHV26dMGAAQNQXl4esXc3JTmzYcNG9cC+/DIAQLHbgwZxiVXcGhs2bNiwYcPG6Yxt2UUocnkjWmbtpDh0aVibm+aHH37AtddeizPPPBP16tXDli1bAu3Ztg27d+9G3bp10bZtWwwbNgx//vkn3n33Xbz//vt45513AAAFBQX4/fffsXjxYtx888347bffMGvWLHTv3h1bt25Fw4YNMW7cOGzZsgVpaWm4+uqr8f333+OWW25BWVkZLrroIvzvf//D2LFj8fHHH+O5555TtK9///4YPnw4AOC5557D7NmzMWrUqIj0jy05s2HjFIJfDESscNhelGzYsGHDhg0bpynmzZuHO++8EwBw5513Yt68eQCA7t27o0mTJkhMTES7du1w9dVXAwA6d+6MI0eOSPlvuukmCIKAzp07o1GjRujcuTMcDgfOOeccHDlyBH/99ReuuOIKNGjQAHFxcRg0aBDWrVsHAEhISMCNN94IALjgggsU5RLs3LkTl112GTp37oy5c+di165dEXt3W3Jmw8YpBJs4s2HDhg0bNmzECkYSrmggPz8fq1evxo4dOyAIAnw+HwRBwA033IDERFlryOFwSNcOhwNeryzho++r83i9XsTHx+vWHx8fL7nAdzqdinIJhgwZgu+//x5dunTBp59+irVr14b1zjRsyZkNG6cQgrQZHDZtZsOGDRs2bNg4DfHtt9/i3nvvxdGjR3HkyBEcP34cbdq0wfr16yNWx4UXXohff/0Vubm58Pl8mDdvHnr16mU6f0lJCZo0aQKPx4O5c+dGrF2ATZzZsHFKgUjOIFZtO2zYsGHDhg0bNqKBefPm4dZbb1XcGzBggKTaGAk0adIEr7/+Onr37o0uXbrgggsuQL9+/Uznf+WVV9CjRw9ccsklOOussyLWLgAQRDF2p7xu3bqJmzdvjll9NmycblhxMBvlXh+ubFUfdZL0RfI2bNiwYcOGDRuhYPfu3ejYsWNVN+O0Aas/BUHYIooiK0yZLTmzYeNUApGc2YIzGzZs2LBRnZFf4UapO7Je/mzY+C/AJs5s2DiFIBFnMZR427Bhw4YNG1ax9lgeVh7Oqepm2LBxysEmzmzYOIXgt2kyGzZs2LBxCqHMlp6dkrCZwJFBKP1oE2c2bJxC8MNWa7Rhw4YNG6cOKrz+qm6CDYtISkpCXl6eTaCFCVEUkZeXh6SkJEv57DhnNmycQiCSM3u9tGHDhg0bpwbsDetUQ/PmzZGeno6cHFstNVwkJSWhefPmlvLYxJkNG6cgRHuzs2HDhg0bpwDs3erUQ3x8PNq0aVPVzfjPwlZrtGHjFIQtObNhw4YNG6cC7P3Khg1rsIkzG1FBocuDrVlFtr6yDRs2bNiwYcOGDRsmYRNnNqKCX4/l4VBhOTy2e8GowO5VGzZs2Kj+8Pj9WLg3A+nFFVXdlCqDvV/ZsGENNnFmIyrw2RKzqMKWSNqwYcNG9Uep2wcA2JtfWsUtqTrYNtI2bFiDTZzZiCpsGiI6sLvVhg0bNqo/CCPNIQhV3JIqhL1h2bBhCTZxZiOqsDlm0YHdqzZs2LBR/UE0+x0M2qzS50eF1xfbBlUB7P3Khg1rsIkzGxEHrXJnL8rRgS2RtGHDRnXFvvxSrDpix0cCAD9HcrbsQBaWH8yOdZNiDnu7svFfxeHCchwsKLOcz45zZiPi8FErsU1ERAt2x9qwYaN6YmdOSVU3odqAEGcCtMTZf2YV/8+8qA0bSvyTVQQAaJdWw1I+W3JmI+JQqjLaq3I0YBO9NmzYsFH94Q/+stQa/yuwzRts2LAGmzizEXnYkrOow+5WGzZs2Kj+MOMQxPa+a8OGDRo2cWYj4rDlZtFBVdjylbm98Nmx6mzYsBFh5Fe4UeL2VnUzog6eQxAC72m4xir2q9Pv9WycJhBFEX+dLEBmqauqm6KATZydohBFEd/vywjJ0DDaEG3JWVSg6MoYdKxfFPHT4RxsziyMel02bNj4b2HtsTz8fPj0dxriMyE585yOxJnO/zZsVCeIAI6XuLDxREFVN0UBmzg7RSEiwJHbnl1c1U3RgNYvt3XNo4NY9Co5L5woqV4cJRs2bNg4VeAPLqS8MGcev1//4SkKmzFrI5pIL6nAjgicf+lx6vFFbx76LU4Imzg7RVGdGW02xyw6UEgkY1Gf/fVs2LBhEUb2UwUu93/KxsqU5Mx3evfHf+l724gN/jxZiP0R0Byjzzm+KI5Tq6rLNnF2ioIsdjxuHICqCXBpqzVGBQqJZAz61f52/y3kV7iRU15Z1c2wcYrDq7A1Ui4iBS431hzNw5680lg3q8pA6C7eYeu0lJwpNGhs2IgOwiX8Y2WGYxNn/xGQpZwVO4XgREkFlh/MNjxwbUzPx/Hiioi1zZacRQdKyZndszYii7XH8rD+eD68p+FB0UbsQEuB1KuUyxsYW/kuTwxbpERueSX258eOOPRJjFTtXh0XvBdNdaqqgs3csxELhCvtitV51eq+ahNnpygkyRknTX5FYAMsMNgIM8sq8VdGYYRappbw2Ct0pKBYRGIiObO/3X8JZC3JKrOlZzZCB++w5AwSI1XpAXbd8XzsiGGQbGJzxmKoOYInsNNRq9Fm0tqIBdxhTh6l5MxWa7QRJqTvzKHOCKMu2mdsn19UDrwY20b9V6Duywqvz7KRaaj12YTa6Y/keCeA09Ott43YgedC3Rn0J+/jqD6ebiDvynvN01ETwvbabCMWCFclmJ570ZRf28TZfwRmJGfkWbQX/pWHc7B4f6Z0rXT5HtWq/1ugdrhKnx/LD2ZjVxQ5wPSni6ahrI3qAXm9sGEjNJS5vaikVPTUY4k4xaCZSqf72iIRZ6yHwZunYxecjgSnjeqDeAdRCY6gWmM1kpzFRakdNqIMyeaMKzkLPORy7CIwGNVOR5TqDObL94siVhzKRucGtdCiVnLY7TrdQPdkYVBVNd/ljl59NufzPwn7W9sIFT9p4paJYLEQabVGj19EXBWwif2iyPWgGLF6iFojV3J2+iHUc4ANG2YQ5xDg8Ytwhys5i9E5xyoTypacnaKQJWf6mwt5EmtTY4Vai4V8bp8fLq8/ovZvpxPoviyu9AIAaibEx6RGe2u1YcOGVajPI2RvoA8qVaVGG02VcBoyY19bH7lzWqp2Mg69Pr+IrVlFcFWFF2kbpxXigwab4TrTiZVao1XYxNkpCjP7mWxzFtuFP1THFbaNEx90l5QHN7fkKLKc1RylUrfX/i7/AdhcbhuRgt5IojWRKjw+Q6dV0UCsnHAQIvC/tnSyXje3wo1DheXYklkU8/bYOL0QR9Qaw2TuxMohiNWSbeLsFAU5QPFtzoxVNugBEzFOYogOQWIdZPnUgz7nNdq1Fbs9WHk4B3tj6ILaRtXgv3aItBE9qIcSuabVGjek52PN0dyYM35iJTkTVb/MNKfRnPOLInZkFzNtD4mdULbtEdZGmJCcC4VInBW4PFiyP1MK7wFE+dxpcZLbNmenKKTvzKC/csorUVzplSRnvLFLjxe3z4+kOGf4bVOUb35Aarx8Rd8c4JQCqytjRZwRGzeiTmnDhg0bhtDoNQZ+WISRXwScMVzz/TFSp5QlZ/r1nUa0GbLKKrG/oAw5FZQ9NHsY2LBRZThYUAa3X0RmmUu6F00miS05+4+A7CusvWz98Xxsyy6GA8QhiLlhEe5eRepRGgJbyK/4316+1WB7+4qiGJ4quyLIXYoE8W6jekKyURVFlLhtItxG+NCTnLFWLW+MxUex8hJJquFKzk6j/Y7YApVTawh5v9PnLW1UNeR5JSKrrBInS1z8DCoQKa5SwhuuiqSIcg/bntImzv4jkNUaOQ5BiM0Ztxz9KyOcKHFh6YEs6ZoQd7w4NzzQae1QS1qwuiRWkjPikTOpKtyq2YgpduaU4OfDOSizCTQbYUJLnOmvWLEOTB2r6vwMpqUap5NaY/DMCzfVwbLjk9i3x8bpDVEEfkvPx6aTBZbyxTsDZxk3RZyFuybszS/DikPZKHN7kVfhxtYsyrbSYtm2WuMpCjNBqAn4C2JohBQAbM0qUnAdfKIIp6pBllzph9GW/wJYEtCoiuFVRvsA4IyB62kbVQvy2Su8PtRIsLcIG6HDyvoUK0mWQwjsn9Guj6zXMtOSkUb1ezqA9Z4+P5EonE5vaqM6INQRlRCU8FbSNmdhrgkFwdBGhZUe/HGyUPHMasn2znuKgnDj6KNypdePA4VlmrQ8AikcJxzqyOysYJuhOwSxF3E1Yi05o0Ebzdr4b8CWXtuINHhnn1hJzhyCAL8oRt0hyIGCMuzIKUFyUBWctaeJHMLtVIWf8Z6780qxO68UlzavWwUtsmFDC+JQxM1wXBMqUoJznaXaaPVMaxNnQZR7fBAESAtpdQdZzGni7J+sQpws1XpBitbCr95LWcE2Q3elH3q7TkeIoshcOaJJxNJlS4S3/V1OX6iEorHyZmfj9IV6feKNqGhLstKLK1AzMU6y5Yh2fYcKywFAiunFlpyJil+z+PlwNtw+ETe0bxReI6MAXrdGy5a10udHotNWuf8vQVaVDW8e00Gsw10SkuM5xFk01BoFQTgCoASAD4BXFMVugiDUBTAfQGsARwDcLoqiNaXPaoQVh7IBAP07NKnilpiDZHNGHagqVcH4TOm66/wfCmTJWWglKYNX2wdDgkKXB6uP5uLcBrU0z2Kl1iir39jf5b8CW3JmwwqYhyQrao1RHnB/ZhQCQPAQL8IfZWUAsh8Kgv46HarkrMRdfYM4814lGt5+8yrc+PVYHno0rYNmNZMjXr6N6gmWAzpL+YM53b7InTsdwQN5cQSYEFZYDb1FUewqimK34PUzAFaJongGgFXBaxsxgryPydSZOlC6T1r4OWqN9P9hnvR9jI3Gmit9+X/7YCiDcBt35BTHtF7W2LA/y+kLtTWhLTmzYQVm1K55+0Esbc6A6I9vQmxKNmeMNKejzRmvX4vdkQ82TlTu9+VrTTps2NADa5iGfe4M5i9lME+sFh2OHLgfgM+C/38G4JYwyrJhEWSTow9U6s2NXHMZhBHcoFiLsiWbM9ohSATac7qAuHxlbu4xkpzFoj4b1Qs2cWbDCswIzrhqjTG0OQOiTwyq54+aMI110O1Ygfdaau2eSIDExitwRZ7ws1F9Ias1RrDMMAuTpXEMybbFos0SZyKAlYIgbBEEYUTwXiNRFDOC/2cCYCo/C4IwQhCEzYIgbM7JybHWuv8wjA5GZImj1RrVmxvLBkyNiKo1+kUUV3oUeuVWxjrd/NN14woFfLVU7dP9+aX4w6JbWTXKPT7JVsKoDTZOD6i/sS29tmEFbIcXgXulbi8OFvAlG7GSnJEtM9r1+VTF8wjV02m/M+2ALELvbLuq+m8iXKlzmFrY7DKDv+q5H3hmrXSzDkEuFUXxhCAIDQH8LAjCHkWloigKgsCsWRTFjwB8BADdunWr9iuQKIoQqthd+ImSCvxxshB9WtdHrcR4Zhqmu1odyZnZQRHuWukXRfxyJFdxr9TjRXGlR/c9FPUrygqvLTyUe3zIKa9Eq9op0askgjBrM0iwI6ck7DqJDaa6Itvm7DSG6tPakjMbVsAbLr8ey0Olz48Lm9bRTeONETeASG9izXxQ9084npKrM7jMYM4zvyjiYEEZ2tapIXnSM1ff6dR7NsxCtHi+1eRn5Ct0eVAj3o36KQkhtolXnzWYkpyJongi+JsNYBGACwFkCYLQBACCv9n6JUQPSw5k4rf0/IiVFyvuHQ9HiyoAsPVWCViu9NWbmxkPe6FzHbQ5WX23L79MQ7CZKdOoXZXe0A2ifz+Rjy2ZRQoXqmq4fX78cjgHxZXVQFUixM0uGk2oBtPDRpRgS85shAOeTRUJu8IbU7HaeyV1/xgPcL7kLJYtiS54r6KIZap6dqy4AjtySrA3v9RafadR39kIASF+f1a2g4XlWHc8zzBvXoUbhVbVaCOt1igIQg1BEGqS/wFcDWAngMUA7gsmuw/AD9aqjgzcPhFZZVr38eGUV9UgREMCxzWs5EqfkvKpNzdJrZFXWYjcO1bacG0GzKp5lHt8WHowG7nl7pDqIUQsjzjLLqtEsduL3XnWNopoINRejaTkQ3b5bOO/AltyZsMK2Ab2ynhivDEVK5szqb4Yj29RFFFS6VVcS/9HwMNxdQHvG/OcfvlM7MvMMi2ltnG6QPJ0Gmb+UPDrsTysPqoVOnBVei3WYUZy1gjABkEQtgH4E8BSURRXAHgdQF9BEPYD6BO8jimisTB5omCwahVkceJpV7ICPapB6EzuYkn/b6I/S9xe/Hosj9lPrjD7zmx8NGILVckyujQBQvTqBVb+O7MQmUGCP1qbn18UkVHqMpmat9npP/NEkNEQ7kJoo/pDIzmzv7YNC2AdTNYczcOqI7kQgjoePGlVrIglUk2sd/p8lwc/H8mRHFco9t4Qy6yO0m2+Gr4xQWr1lWLNRBJFEaVRitdmwzpC/fyhjhoejRBJLTVDmzNRFA8B6MK4nwfgKov1RRSeKKxMmWWV2JNfigub1Kky2zOiE29Gd5vXQkl9w6zozAR25ZQgr8ItES80KsJQNVx5OFuhxsnjQPBcE5sBCVbJIu7K3F4cCaqV0nVFGv/mlmBffhkua1EXDVISuWn5m50+PH4/EsNyyKqtpzpyam1ECDqc7NMVJH7g5S3qor7BHLRhDL3RUuL2Ii64l3LVGmM03qp6LSt1e5GWFK/Y38vcPmzOKMT5jWtL3iTNwCeKcIiocjt5Gny7Mna6HdnFVLBua98l1l/xQEEZduSUoHer+khLMraltxEdhBrAXcof4vwvCjlWn7X6TumQ6pU6ko9wsCu3BCdKXKiIQtlm4fEbDzrJ5ownXZOIM3NqBmaGjhwjRvvM5Qm9z9T2dceLXUgvrmCmlYJrh7gq8yRnaqIzWlw54tHSlHSLk6TU7cMvh3OYNnieaEdZreZweX0xczJwqsEvisivUKoFq9ebaqDhHVVklwfmekZp5NTi/8vgLpXBfYMnHYvmcGMdxKpqaZD2L+qNcyvcOFZcgWyLJhr780uxaF9mWDbYkYbp80bwf5fXh/0FZTheEtAksfpZ6DJ/PZZn6BU0VJR7fCiu9CC/IiD5LIuS9CynvBKbMwptRqgBJAm4gsnhhdfkuSfU3i3zBL57EsPsiMtIt1jhqU2cBSUf0eAZWdV7jgaKK704rkOgmPnOchBMk6PCRDLS16wyXSGqGbJwuKgcf2YUMp+FSzBJxBlHNbNGvBNA5A8MZW4vClwe6duY8UrFa0NhpQfFbi/SS2QVSWeQYo+kWqPUllNov1h2MNuUce9/EbtySrD2WB6KKIc36k9bHZwjxQL/jbeMPnjMRN6+IeWP8YeoKptK2Yuy/jOzOFxUDgAo81Qf4syqWmOhyumW1c9Cf8e8Cje2ZRdbK8AkVhzKxi9HciWGeLRGz/rj+ThWXGGvSwYg/UPPmZ8O50TUQSALhBhkCUZC1XJiwawr/WqJShOOM0IFizjLLHNhT24perWsFxM1ArLItKiVrHlmRnpkZqG3qvcucAJ4xkpKIak1hrm5uhmSM3WZkd7AfzociPVXPzngqtWMx2C9FjgENvc3ziHA5xNDlpzx+vVU2zAse1T6j4AciCq9foBo9P3H1BptRBZm1Nn4krPojTdWyVVFnJFlme1AhZ/3ZIkLBwtlyZAsPag+c5W3fyjUGoO/hS6lBMqy5Mxi+nBBzkDRlmyJIqIjeTjNoN6n8irM7fmhfj+uc7QIjolTXHJGiLPQRrBfFLE5o1DhLp2UxIpk/3dGEfJdnrBsqyIFMw4aZCKGU47if+OBJas1Vp2aiJ83OUyAvCfP4QF5Eq13IocUpxkiX+cD0kwJOkWcIzzJ2emmzrYnr7RaOPqpTiCjjsecqU4HPhvVH7zRYsb+OZrDLRRCKLz69AuXQ9xo0xgxVDedLEAOw0txdeKjmFbUCaYjjHBniEQPSR8rOkaSAseoPhtshMuY4KsgGh+aWUnMqDV6/X4s3JuBEyVsrTiCU5o4k51ihDYtKzw+HCuuUMThSpCcRWinXo2EgKobL/5YrGCGQOGpT5hFfoVbIUWUvG4xN7sYSc7MhAjgQORNLtWEj9Y7WSlXL2WCw8FMJBFnIUrO+KpH1egUwAHdzn9zS7A9SqouVQ2/KFqyU/H6Rfx5sgClQTUormvzU+Rb26geMLM2mPUcHGnEWnJmJp4bs00WqSyWaldVw+yuow0iHNq+HutXl9Qao1xvNCXJpwNI/4Q69s06rtHWG1qZpL1EBXl3Lj9M06lNnEWhTHKwZTkbqREf0AKNtX43a9OTbvEOV37lomdUNquotcfysJ6y2+FLzmJEnJF/QqxO7jpGv0rPlL+RRiRUxmh7NdZCHmoNvLadKtuFWvp3ujpH2ZtXig3p+cgpN0egnSypQHqJC+XBNYwnOatG572IQhRFrD+eF1NHID6/eMowNkKFmbfjqjVGtX9iq+lhxpkXK4Xlg2aY0oNowOx3VO+1ZjR9WIj1yu4IMqijTTxVo09aLSExJkIcALzuNaNVZYQEHZsVWWuFX9KpTZyFOXpZuck9lpv1pLhAd8U6xgVrE6HVGrdnF+P3E1ojSKteDbWHs8Ad2nWoZHPGaFTM1BrDlQiKih/lI5XELFKb3v78UoX9kxWppl4aI3lxqE3nH6BCKzPWUH+3U6TZlkEYReUmGUYFLo7xvcbeMqymVVtkl7uRU+5GXkVoQeytwu3z44f9mdifHx0vctUFZtaGUDnS4YKt1hi9GtVF02t1qGqNLAYTSV2d5qrZpmjOG9KvRelhjDel2EnObHBhkjHh84uWmeE8Xq7IObuRe61rp6Bro9qqfIFf2WaR34ZTmzgL/obqm4N/ONfPF2suPGvwSUaJYiDuBosLbIYAsPqM50o/VHU4q4urHOcsRHE2R31CvdlF4kuLoogdOSWKiPImhJpUfvZ9etzz3sUqqkr1KJJQH3Kq0+ElknBymCUsaGO0iIz/yPXp2WlW3ZWHC+IR86TpoPOnJsyMFqO1JVoHbVapfjF69amnI63lQDj9rJp5TrXYNi6RYyKWuL1YuDdDE2LDKsy2RTrkiur71uqzsJVGFNGWVp7ukvZwIUnODPpp2cEsLDmQpc3Pc1xjRnKmcy6Pdwg4v3FtJMaxySuWvTcLpzZxFu7YZRIYIWWLKpiSM9UvLx/Z9JgHOOqWmcWADCzWhOAtVnwdfMNqmfWE+v1llUXG5FIRfpFYgFnvHgl7QJofy25maKVXlUe1SEJtu3G67nPE7NCsOpQ6HX2pIc5O0z6LtX0OiWlYM0F2jrz2aC6OBt2gny4ws3/wmAilbi8W7cs0NJQPBaxacysqsWhfJvIYDjbCQXZZJbLKlIQ4HVjaF2TusrpLz4lTTnkl8l367YwE8ykjyDw4URIbJoJ6r5XuWy4ntvOZ1lqKaj1RLv9Uh1nizOMXFWlcXh/WHM1FrooJQct4zIT8MDpyqWVG6jP7aS45C2/4su10yMGfc3CP8axhUfFyG4wbI4rA4cJy/LA/U6P+JOr8r6xDBhHJsgYvj8gyo4NvFlbT55ZXKvLwCFuZKAteR+Bbe1l9xQg0LooiV0pK0KxmEjrWS42eWiNPXEiV6fL6qpWtAw3tgl092xkunJzQFmbAy3WqEOJWEesxSxxIpQRjJwJAvsuDLZlFMW1HdQCv74m5wMGCKBCtTGZi4Pd4hInBDen52Kz6trRDabIfsOaXXgDd9cfzsTG9QHOfOOjyiSLKPT6k68RFNQMitTMTe5MHs4Si3iHVsrdGS6nDh+SMLcoVV9OttfqAaLlZ5EzsyilBgcuj0SKhGSihqF9nlrrgE0VJo0ntqFBNW5zmNmdh5mfco6VNZtLHAuEH7hRxLLho84gzbS7tUzmYqJl6ZfDSWyfOAr9mchVXerDueL7CWx+Pc6G+F4mDHItbzCp19dFc/LAv07BNnRrURMf6NVVqjebqMAMzao0evx/LDmZHLeBnuFB3+em6z8lqjebSa7h5NNNCc0gKo2HVGNqxEd0XJaFXYhUfqaoQrs0ZIQrKoxCqhtc0VwxC49AhUwgRxJScWdxYCR3l84v45UgO/swoDHl8kX0qLswYrur69UrTMy+w2vpYq6zrSfwiXk9USz/1IUvOrOVjeWIHlAwU/rlPHrdbs4rw58kC5FW4sfFEAY4UVUhEmWYaqc6tp7nkLMz8nMM5T6pSVWJ0ZVuUv9z8kAeb1++X1GyM6uHVG0lpl3VCz/x3ICloOxMzBp1yWmttY8EscV1U6TX1PaXJr1MOT23TDPhqjQGQA8bJGKnAWMV/xubMIXPOS91e7MwptvTdRc7V6enfMvaSMytaDqcyzBxWeWsLOTOZdW5jBbyWVTA8M0caNFeed8YIdWx6RVEm+kIqgYq9GaLkLLe8ElsyCzXrhh6tp9cPlm3OojyfM0pditi2ZvwSRAKnKxMnUpCJM2v9pDceBYXkzPjM5vWLOFRYjvQSF8pMOAlUE2VGrY4zeF6tEY3By7VnsiCxiSSYA8WCzZIoygvJxhMFAID+HZoEn1Gcc3U+VlnBX6sTgpc8HMlZgcuDBKcghTlQg0w3egOWJwlD2qQ+1Efga/OMvEMBeSdBZ5WxQrizwP22wWexCvgZKjTeGkNYK3bmFCO33I0rWtWPVLMiDlqt8fcT+Shx+5Ac54QgAG3r1DDMTw9N7SHp9DwcaKZj1F9Tuaecnr1q7r2qKq4er+iKCBKDenOGFfYkMoy/wC8di1QUEdICzVJr3JVbgiOF5bihfSPD/H+cLESlz4/GNRIV9x0QmPtoudeHmj6/ps+sdku059PvJwqQHCerJJuVfISL03WdCBeiKKLC6zfV/0ytJZ18gkJyxqmfVQ91U+98pj6Xnd5qjeQ3xFHMIz54amJunx8rD2crXKNHE1yHICbfXb0pupmiXeNFkiykVgkOHpETshROBNYczcVPh3J005Kk9MbPl46q67LUNCbC9X6oScPYeEXF/4GrApcH3+/LUHD9zICnw32qbBgaxxchlLEvvwz5MZrjoUKg1JrcwR1iW3YxtmYVM9W11PS8nzEv9K5PF8Rccqb+PU37NVy1xqpCJOVmegQmLYwSxYCDD6JepXjGah9X6yTwjBWX1SrInk4fCvfmleqqgalBbCqLVbY8epKKP08W4ucj2r07VO/N0QBpi1JyFvy11RqrBHvzS7HiULYpZo4Vz+oOWJOc0aCJQNnmTJ2R5DfHnDm1ibMwR69lw9Ng8twKN0rdPuzKLQmvASbBdhKh/0ybVtTo5RLVRuWhXp1Rn+tgNW4EX3LGy6d9aCXOGXtqypNDPXmjsSCaWUS4gZ91dPh1dfmDyXPK3fCL1l2H81obrlQuVlCvyaf7gdgvippxlmniu/MZB6dnp1WdWiPr2enTx+FKzqIJXj9H8hDk1jGAoW3OfKKI9cfz8cfJgmD9fDEXzw6NPKGZpaHO23A9CBNvpGqbQQfHhs3FkIBYl5xFb0wxieUISj65dZ9Ga0MkkV5s3pSCJUTQ61UHtRDwJWfah0qnb2ybM6teSU9t4kz1G9GyOdIqB8djYfj1sogRVrrArxnOQECtUVmImrsVSKh/qSaIrKqgmOH+AUqjTEaTgun1n6nBVF0M/pZ5fPhxfxYOFpRR6U0UahH82DVBzqeFMPcsg1OFzZkqvVXOogmtxmpP7GglZ9W8wWHCJ2pDZZjxYsVTa6yOUo5IINbvpfb8So9FlidXNbz+gEOn6n5YM+VKv6qIM84zPfVwK/jzZAEW78/U0UhRe4ITVc/k/1ndo+fBUS9NqF3Mc1RiBolOnbhOBt2rObRGcL8KF6yy5RiotuSsKmDlrMQM3K6nemzR5oyGGcmZRK+YPEOd2sSZJB4MbRibkRCw7pKPGGlbIj2wB4oYfGacX6TKIBuBx6eNtaIuir6WjY1FxbVZ8L01yv+ruWzsxdH8d2f2XPCm2xfg8O2mJKDROMSbUWvkeQxT52a5alW0W0NkW3sn/rwQsSu3BPsLSg3T0kgvrsDCvRkxC+CutTmLSbUxh8Qs8Wu/Mm/sE/hEEZtOFCCnXCtlO027rArUGpVrJ12914SrsZ05xdicUYicCMfjijTM9Gp1JPjD9BwPAEgvccHrF3WJM6XkTPVMYY+mhZm9lsdkMQsp/lqI+fXyxTm0Dqx4+SzvV0wNn8gMNFYpvjCJWNN1B8svqvTgr4zCahu2JtbQm2MssOIG6vUij4FiBJrpRErRO8uq9wM9nNrEmerXcn6uhED/o9IHokiDLSkyP8D0CiVlaKVOrP+C19QNtaMUMxxQWgpmNs6ZegFncaesTByeBFQypqZVQqKw/vHGSW65G3vzSg2ka8pr2eBUJ33YnEh+WzJLXcgqJYd5OW2hy4MNx/OY77svP0DMlZrwahQJRMLm7FQA+VahSiTcPj9Olrqw/ni+btmnG9Rbe7Tfkqe2ZaZuwim2ciipCpizOauaMRWraks97PWNJsDUEm2nYiHXNtQMcaaMl2mYnAkp/pp0VgifSALk93PqObBSzw+L7Te2nreGokoPCl0erDycjUqKaUpa71OdhaIFUvzmjEIcL65gazv9B2Gl25lqjToFKCVn1upnnXmMmBFG4+cU99YYdgkh1ecP80Bkpg4aPLVGU2UybM6YhK2mUC3hZoUwrZMUj7yKgEOFUOOc8frDTBcwHbtwdOujsd7yVJf2B1UqL2le13R5uganQYSvw8+Hz0+NJxHIr3Ajr8KNw0XlKHX7UFTpQd3kBEWeuKBCd+ykzcrr6kJoeHx++EUgMS4yfDFpPppcI9S3wo+heOoh5qFQVBIzkfGMBwflkbM6w5QrfcsaFwEX8Qk6KnNmwWtbJHrVIQTWHBJwXA21zZniGS05YzTGuuQstDciSg1+BBgCPgXTUjRU/6RrJf1Bw+kQmJJizZoU4rmMhk8UubZuesgpr1Qwqk6UyvZNDkFQqI9H3SFI8MViral1OsFK/FezkjPW/sGSnGltzkh+fjuk9hg8r9bQC2JoPn9oz6JJnLHbYn6AsfObu6shzUTt/zzCRo0z66Yyy1KDb/eizWhWrXH5wSz8k1lEtcG47VEJz2CC4V1pQa0RRnHO1Pktc0A5zxAY97QN4tasIuzIKdE9mACyakusNhj1IbAqtjVRFJFfoVRFW3owC0sPZkWwEtWv4pHxHOc6ogm9VdUasZbeaF33cyYrA+TsXt3PZma61eor/HWyEEsOhD9for3mE1frZTqSs3in/sGPJtxYLTFjc8YLiWMV27OLsfRAlsK2xxQjlEpEH3SJ+r0esaTufss20kztGmtlEBwqKFdc085YyDwkzNZozEfWWJQZm9Vbcl4dwWRQ6kl4KWqIPtu7vD4cK5LHBSs3y+ZMwz63cHYGTnXiTFT+hprf7DN18MHoqDVGbqGRyuRw1dXPjhVXSIQC63hrpSlNUpNwWYuARMisQxC9dirTB36NzDUqvH6UUjFs1JwLZn38IkOCGSJe7eFKCWV+VhwNUTe19fnB5TKLIvyi8pu5TRBCsSbOqoPN2e68Uqw9locCl0ygRfr1eUcyZlWqjuDNodPVxiHWRI6aKcSbqyw4o+iAKpKIRuuI5CKcdz9Z4sJB1aGbRiTaTZxh6AW0jqdcwfFszlgwJTmj/o/UMKHjv5kjvGlChiLOgv/qCz/DazCre0IdL2SvVtvmB+4FJdiSzZlcR1Glh2m3axWKtSF4ER/jvfN0AqvH9HpRT+32t/R8bM4sktTKmdJtxU09b43BX5Nj89RWa2T8F1p+1jMTXOdoqDUy7jFtzsKsm3VQKPP4sCevFA1SEtCoRqJCEhIqIUwWNF42q+68Zfs5a40RRQCCERfVUpFM/JVRiLwKN65t2xCAOY9s5ZxAqBqbMyPvV6oMVvltZiRnVscf4f7FzCGI5jr0D2tGpYeFgmCMNFcEYhDpgas9wGLKqK55a1gkVrdjReVwOgQ0q5kcgdIig6qKc+YTRaQXV6AepfJrpinR9A4cSZA1oXODmhAEAduziyNWts8vwqF25WsSm4Iu62kIMMesMwuyPOiti3EcAowmZMyaNWjTROIllJcuH83YFLUJVKBbwPpUujZn6murzESWdk2YhIxTECSVWr366CebThSgzOND39YNUDMx9GO1Ih5rsAYydnghFWywQY+NH/dnomO9mqbUGukhVaKyk2edSRWSM9UvEBhPrDM3D6e45IxwMKJRNuOe6joqc8Xk4mylarNpCWeg0uvHzpwSHGGIcq2+MhmgfMmZ/L+ZPpbUSq3GWuO8hbzgWiszp7xSM3mPF1coiC0zG0W5R/8Ar87N0mnmqbVYVms0eK6wOQN7yz5QUKYI3Blr7p/6ncNZI0LNStoQiu2D+To4z0zktxJfLxRszizCHycLwy4nktDYI8aovsOF5fgzo1C1rhrXTs71Jhw7VilI85qmJqFZzaSIlKlWJYsU9AiFcKE3neI5xFmcQgNCRLnHp9gvTcUypffQCPUVzVQyJTmj0ijVGgMw7RDE4oxkMrQtlaAFaSvthEc6y5BfRsU5FeFJz1hnIVnrxFZrDOcs4/GL2J5TzBzMAvTHp9rHAasFCpsz4hOAKi/OIUsFzL7CqU2cqX4t57fKNY7B5shcaKIhoZMGnFw2OTizuHwyl9FaW2Sur34aWqrhFARdW6pjReVYczSXUmu01hafX9T1jGiVi5pVVol9+aVYfzwfPx/O4aY18/0qaS6lyUbQ/cRTa7E6eoxUUI3KK/P4sD27GL+fkDnWzpgTZ1VfFskWPdKMqovJwGExIZTXvDl0ujJqNeM7yu8pE+mB62xK/clM1aeM5Cz4Kwjhj3k1YyNUEwK9fPGUjl0ke1Vv7Y7nODSh1Rp9fhErDmXjb9pW2mK9kXofmrlmqg3U/06mWqOe5Cy8+WjFrsiwrOAvOVgr9ivJ9lNU/AKUhlCYna/4jsF/Y+1M63SAVadvDkEZhJqZjyMMYn0bheTMQUvOzH3HU5s4C3ciBH/NbiSxmBpmibPw313FDoA8wJiLqDa5KZCiuIsl9cjpEJRec6iHmzOLUODyaMICmMXBwnLsyi1BEcMlrWjx/X5Lz8fOnBLjhCbL5LpuVT0jG4cizpkikTJDJCVnpjaIYH1ur1ZfP2bEmaZJodcbqkokqTKKgjPugm9G+v/fdAiiuo7ym5LSid1RftCDLWBuHY+2zdmevBIs3JsRdjly8yI34MP1VKdny5sSTxFnEexXVjMFGKk1UvmDv+klFdI9M+1TMOcMU5tDBcNem4XMUhfyK9yKdjoU72vRlb7FdkZyXsjmG4F/aDV8WQuIVa+WYAupfsb/hK6PJXG2cG8GduZETi05UjDbBaLmH+oZa44KAuolUR6mLXY1/W0Ehs1ZnCDwTRAYOLWJM+llwxu0TFqERRDFRHSmrSNctUZuddT/3FhbpK8tVkwICZ5Ani4yThAU+uo+v4jiSo8iPeH2W5Wc8SLL672facI9qJ8eKiHN53yyC1CqNeqntjpWeOmtxA8TGVtNrFQz1N8hnFpD3W+lwO8gXNXIrx+kSPP7tjKh0RyqLiEIIolYO4tRH+b02ShsyGqN0Wnov7nBgPJhHywD+QOSs/AINNIS6d1DPJi69IizoHdFggqvLyKHXxahLwh8NUoWk02h3maiWfSYDvk7qrIp1Rr1y9x4ogBrj+Up7tF7uKTWqCs5Cw+s/GbK9PlFHCkqV+29wf4PXrs5usSsbxRJ521qSU2siDNCkO7LL4tJfVZg9gzOWmvlMrRwAGheKxm9W9XXrUdNuLPqA+RzmYOa13pnNR5OceIs+BvqWhTMVzsxXrdsVvpoglVFhdeH1UdyFXZMYW+kjOzk4MzaCHkceh7IADPtocYhKHR1t2UX45cjuQounk/awDjEJOMZb4OX9YrNEx80NmcUYvH+TKbzBzN9Fq5aIje/xaHC+1ZmDkkkBWvzqiq1xnD64HhxheTcw1IZ5J8IukIXRSWzQjpMmGTgqPvBqE2nG2kmMtRyo/2OfMaW+dqjzdcI+5AcLEBA+NJiUpYkOQtVTU0nW3K8U5Fm+cFsrD+ex05sAaz55BAErkdGmuhm2libqDcSZxP1zFA6p7DWBrVaowD9w6aGWWJxJDIZ6SaKOFBQhr8zi3C0mJZSKttEMxN56wb5P6usEgv3ZijOK1bAY9KqGZvR8BYOyLH6wo0tGA2YfWXpPMccGywGSmC8piY4Nc+kfKpf4zKp/xH4XiWV3v+I5CxcLkWwm85tWEty+a6HaE0ENVi1HC2qQGGlB/vzSyNfH1UhOTizOLQy14BfnpojKZjQxaYfxTkEhSSTHIpp/XfyLayqZPE4z4UuD8rc3pDH1PGSgMtnFqfW3MZGbdAmp69ZhyCRCOpJoCGuRK10kR9w3FJTQoaWyLZWMc0w3ZZdjDVHcy23QY7HF7iOhKfKLZlF+OVIrkYKzJb0a6E5YBhKziw2sJqDScRG+SWlA59J1VM9xMrmrMDlxsb0/BAcLgUgCOHKzWSEqw6tl4t2bU/ShMKA0dTH+EYO8CVnLq/aK6JxmZo0ivSGyQ3LANTSODP55UQOSfWeXEPX461GG8MqI83kPW2aQKpSyqGXzOwK/NIeEtWOvRR7dvDf3GBcy6wQ3erTNfhF4FBhmdQGek8qcnnww/5MnKDUX62g1O3FAR3JGOmP1Hh9QqWqYHZsWJWcSU48OGl4aon0bszy1ghBQHa5Gz8fyTFNuJ8WrvTD3bOcDgF1ExMU9+gy8yrc+PVYHlP9MeJgvEu8U4DPKyo8B4XN5WSUQw6PfPVGPhLjHAo9f95gZxUa53AwvdvRbSKLFNcNOOMR7702pOcDAGomaKeEFVfqbsYB3Jxain56vfxKdRjyyz4A5le4Ue7xoXktY5fmvOaaUWv0SUQJi2CMzQFTQ0NarDYSB2GaC7viYDba1EkJu8xjQS6v3y9CdIjUwZ9Vv4g/TxYg3unAeY1qM8szItz9EOGMiUuT2IBJIEW5Tp4hublDZADRJs5EEYAA7MwpQU65GzkVlWhcw7zXRfKegvQnjLYg0Bhiu+QLkbGhx5QRhAAj0OsXLTNumPVQc11bF19yRhgtiU4HmzFqtS0W00v5VBmVa6g1AtHpENAgJQHt02rgYEEZ12NtuIzvUCXSSUFGMssrJatJaumtkpBSPuOFxuGBLudkqQvHKake/Sw/yEjIKqsMKUzJb+n5KPP40LJ2skZCRgKp16iOxJlptUaSnlWGFkQFUYBSmKA4T0n3WPXJN1lDnb5V4fWhtKgQWzesZbadoEqIM69fhJPDSTEL2iNLenEFGtZIVAy0LZmFqJ0Yj/ZpNXTyB35pSpdFtGSXBbggelzXcN+DwOX1MQdOvMMBF/wKbnnYxJmofVPCoWGVXebxQhCMuXjqnjCK/xKoT34Wp3II4hQCxBiLsLIaH82cSl54PesJ0d81y0uTdK2TR+mtkcMpEiHZBDRISUBiHH/R5fWBlZg7oXI0IwF1PVbrjYR9DynB5fWh3OvDrlxzDmTMwOXzY/mhbCn4rd78Sg9KdAlxpk5lqNYYqw8WI7DX8CjXSephPDMlkZCYUZFqkU49QYKodmI8csrdKHR5rBFnwd9QvDUmOh3K/S1YGLFdirRaowDg5jMaY2dOMfZHwLZGJqC1zxwGNmeEOEiJd6KY4azKcjxPS6n181mVnNHCfAeAy1rUAwAcLCiHgyNNtWLHzIIfIhyCdTs9Et6AllzyWABahp9IPQv8T84roRJndBWlmvhadFsCV6GGaZElg34NcUa+oyMm0ghrsEzHm1zv9bqRrq+w0gOXz68j3VaUFiwzKPX3ePDBmy9h5fffwuFwoDCX792bIObEmSiKWLw/E23rpKCrDjfXdFnBX58o4s+MQjRISZAWBCCgDghU6BNnwV/WssESWeuVEYkhXOByY83RPJxdP1U3DW2cGqkg1DQIAcQqm8QqapCSoHlGQ3YpK2LFihXYtmMnXA1bodMN15hqi1qt0SEI8Iki05EE77DC+mZmDtx63G2z35ilumbd25b8HbZkFmniqBGwjExZVSlsGgxbEv5hleVN06xabKQQ7vyIjOQsUEZFhIJQ0++UWRogusiB1ojoKHV7cbS4QtMvxmqNpxd1xnTYE2WWgVnGlH6aAKIuOQv+ksMai1Dg5peYncodlRxYeUiOdzKZj4SoCVW6os/YkjnlkehVFlM3UH5gD+N5ayTvnRznRFGlVrXS7GevKCvDgmlTMGnXVox56kncfvvt5jJK9Sgr4sUfBYAd2cWSJB9QhoOhGdaCEOgDWnWMLk/9bS2rNYqB8hXEpMl8gHnHJ5r81P8+1Z5XoeOIxmyb1O0KlK0lBkMlzuIdDlTAD7dPRA2VywWWJ+/qArPfhxe31idq92M5NhkU+ej85AzcuEaitj66LNWzz958Gcu+mG2q3TRiTpyRwXuosDx84kzV73qHWENQH0ZkjEujuE+RCDJbGZyIhwvLNc9I/W6Ot0E11JwkPbBFtPrpjThCggB0S4vHA4MH45eflkv353c+F8t/XIxWrVpx89dMiFPo/jsdAjx+kck5tRpA14ozC2VZUMw43nhgSc7MbRTajcXjFxWbHw88Mb6ivWbGhKkaKaiGv09qC/1OZLGLDcInMMNvA5mtZM6oDyVWQecltg1SXQYvTNRYNG00aFBRpRf5ReU4q15Ns82stiiu9GA1w3YwWjSPy+vDkaLyCIwlcvCLNhFJfkObqzKzUwlnkMHGQ0qcA4WMssIOwaFPnQV+IiQc0Ds0EqKEV81lLerieLELflEM2TOzu9KFl+6/A/u3/Q0AuOOOO/DXX3/hjTfegMNhzrWAuh4jYmd/gVLiSBPXamcITkrXNc4hoGP9mvD6/fg3t1RDuIfCLFHTvvTnyC6rhMcvagKjkySVPj/cPj/iHYKltYCeL+r918pZTdkmuQFEopfgEOD2i4q2kT4LVbhFmAWsdvLOElUJn180vQ5IzBJGcrdPlFSaCRyqGcqiA9Rl64Ee+9npx7Hiq0+Z6Zq3PxPpB/bplhNzhyCR5FJqvAvRdklmDuK0jjyUC6h54sywGlMgmxCLy84izowWEcL91Ju7vMHHe1/1Ac/n9WL1wvlY8dUcuMrLsXndWlzT6zIFYQYAu3dsx5133gk/xyarR9M6aFsnRSM5AwAvg+jhfhfGPTOqMWYWZ94CwZScGRepGEfLD2bj39wSwwMNzZ0UIUIUReYhgW6vVULRRGpNocRwmimFjNGKH27sKrXxdygg/UhsMBPjwltu6b5TGxUbzWO9sWT0lhvS8wMHqNMgAOq/uaVRDUuixl8Zhfg3t5RbvscnYtHeDJwoqdDltpNPF6tPEDIdRPZTQXlAMaMelaxWtVaN11DVjHVtzlS/0YJTCBz8eKYPDVIScX5jfUa1Gen2Z2+8JBFmBFOmTMH48eNNt5WnTk+3YXduiSS5p1FJx7VUuRGn1RoFAO3TaqBmgtZLdigI8E7V/Su3d0N6Pv44WaCb3yeKWHIgCxtPFFhaC6LBcGTyUYOvFlHJWfB8yCLOqqu2xE+Hs7FKxVwzenu9N4lXrUlqhyBSfp0zDM+TJV3GvPfehD8oUW7Wtj363DYIZ53bFQ+9PBnvLlnLbXuVSc4iAXXH0Qs4yzGDJn/wl1pG5LtU2fwAwZF5IV4ppH4revcJQTs1p4pDYK4+c/W4ysvx5qP3Y9vGdQCAj1+eoEnT/cIL8deffwIANm3ahE8++QTDhg1jlte4RhIEQWlzRv5jfU+rDkFCtTkjthgEvFhdTMmZie5UJ9mTV4qWBs47FMwEMSCN3patDRyp7Cf5/4xSFxyCgEYqMT2d2ojrLTLazoznJNI5oo9wp2UkbM4kFZcgIUVsR2kcKihDvsuDbk3qcMvKKHXBY9Hm1BPBxVY9B05F6MW8itZhhCWpVKPA5YYIWWXm0uZ10ZAzHyMNlq1rqDEttftpADx7KymN6rAkqn5DVmvUyRbpkaxbD6XOd2bdGihweZBT7tZJyy7D6CSz6KNpWPHVZ8xnb775Jvr3748ePXoYlMJnnNNPduexvUbTaeh3aVkrBW6fX1bZDD5Ux0IrLsjHtGefQG7GCWQ/8ThGjBhh2GYgMIY1kjOT+WhklVVacoLhF4EytxeHGNpOoYLH0GQJDMzMLRbiOZIz9dyrLmCFKaK13Wio1zI14hwO0DNLzTzhvbvX70dqvBNCghN5FfoeXn/77TesW/yddD1i4uvo1ONipCXFm/IMG3vJWQQ3QvWnotdvjwmxsrSZMFQc6I/KO6hFKvSMkeqkGka9SCh7/cmrz/UxY3jurnThhXv7S4SZGsnJyfjyyy/x+++b0P/Bx6T748aNQ26ukvtBBy8FlNwglktb+Zl++0JVa2RJ6NR3eIdetuQstDFvJMJXOAQRAwE1WaDfm3SLx+fH7ycK8FvQSyUNuuvMhDrREmfm00YLVbGx+PxKySX5j6j7sMbkVpXdhh5+P1GAzZlFptsSJwjKjTfMDjkNBGeKzV1PSyKSMKPapCbg9jHCpUTzsKS0KxJV96zVKO+nyj1HfXCmr1Pi2b5ADxeWI7usUpozkdZq1FNrDPV8wstF9rNODWppGGGMJmnawmtTXuZJfP3+ZOm65zU34mRRKa699lrp3vPPP89pnTlY7Rb6XZrVTEKbOikaaSU9ThKcAt4Z8yg2r/kZR/b8iwcffBCzZ5uz0xGhlSCFwhAFrDnyEAGsO56vUe8MByyND3UQe/qeVbXGIpcHC/dmSPak6pAsinqqqQSNhlodkcCIwaS2ASXHHA2Rxiig0udHUX4u5r32HMbdfAVGXHEBPn39JXjclVIZbrcbDz/8sJSn9w390KnHxQDMh9SJOXEWyTiavEWLOM+gu7rS61MORim7oEnL4lJYbYMV8IrR8xIZx+GakMGnZ4hc6fPj78xCrhSIhyWffoyDu7Zr7qfWqoXHHnsM27dvx6BBgyAIwMCHHkOzlq0AAPn5+Xj88ce5/UY3mby7GWKbRqhqjcw0qls8Is8douSM2RYj4kzBTNA/wLCYC9mcOCx0ajNqEzwJtrrMWK330XCYY1TfD/szsZ2SXJI2SMbiYbVIVZ/Bc4dDUGwCVt9H76B4qsDj92tskGm1QVpSEy3C04x9BCHOSHxIphMOE4f0UEG3sdLnx8rD2ZKEI5Q5wDp4J6lUFukD1eUt6uGWMxtrDkW780qxIT1flpyFSjTp5KMdgtAInQjUqUdQ7mf81VT5VA5Jop9jyeez4PMGxkz7zl3x+OT34XTG4b333pNszX7++Wfs26dv20LAq8fy+mHkTxzKfvnjp6Ua1+JPPvkk0tPTDesSRS2Rfay4An/rMLNyy93YklkoeUNkqhKagCiKhqrIVsE+fmjHARkbVtUaM4Oex4uD785WayT1Vn+Q11cLIYwYWlq1RpX+HKcPSitcePLuAfjwww9xYN8+5GVm4MdPP8TM58cCADLTj+Occ87B9u2B83FCUhIeee4lKb9Zj95VIDmLTT1k0MVTsvOlB7Ox9ECW3JbgL2t40+2MRVBdno2MnuQsyYQNi57kLKO0EkeKKnCkUMm19/l8qCgrQ2lRIX5bvhhLPvsYh3fvVKTJyzyJ7z58T7q+/ZEnsWTfSXz8699YtnUf3n33XbRv3x5AoG8Tk1MwYdKbUvqvvvoKL70kD1byeqSl9ZNlj5Asz39mEMmDjLokXsmKAzFDvc8KWISzoPiftjnTP8DQ98l/pD8TGMQ73XfmFn9lvTyPeNH2jMduUQj5LRZADrm09FK2FRIVvxGBQVEC2IwCI5Cvrf7ukSQsY4GN6fn4+bDSZTHdG/S6WJWEZ1nwkMSLgxXN1tHz8USJC6Vun6R2F0q3mDiTa9LwglbLTPzISrT0bExCDhSvU5EAlZo+Zz1VPzFyzFBeWoJfFsyVrgeOfBzxCYkQAZxxxhm48cYbpWcffvghp/H8egDr/c8azoKKCU6u3ZUufPjaRE364uJiDBo0yFTdagnKseIKHCkqZ+Y9WFiGo0UVOBG0mwt1T4rkvPSLIooqPcwy2ZKzoPDBouRMvQeFopVVFdDbO8ncUo+3f3NLsOF4nu67aCRnqvx+UURehVt79hNFfPTq8zi0519NmWt/+Ab39TgbA3t2xYEDB6T7zzz3Aho1ay5dm3VqckqrNfKKIjZK8RxPRdKk1FFxIOBLzrhNNI1QuFa8eFUkD2/TB5TubzetXIZhl3bBPRecgft6nI23nngIcyZNxNO3Xo25b02CKIo4eeQQJj08BK7ygCi/xRkdMHDkaMTHOVG3UWMkqIJ5k83o8quvwz333CPdf/nll/HPP/8w3699Wg20EkuRcfQwtUEpU5WVFKMoP0/3vaKphsX7VuFIK9RgSfEUXrAEoCAnG+t+XIgThw9qnFj4vF6UFBYgOyMDM54fgxcGD8TC775VtI3VRqXkzLid6mYy54vIThstxFoNj6i6xlHrDWG4+Bnv7hdF5FewbU/MwOhAESDOrB80yffWej+rjlu2PogtgJ6Um14Xq/LN3H5jwj2anGy6TD2bPNNliUqGUYe6qejVsp4mnZJYCf7qlEn6JdQYb7rEmap+glC9QvKIQCVDTR/qthgxdVYvnI/y0kDsxKZt2uGCK/oG2xJI/9BDD0lp58yZg4oKffVpo/nt8YvYnFFoek1hvaeg+odMwV+++QrZJ08AAGrVrYfxMz6D0xk426xbtw5Lly7l1iVC/+zG/J4SscMt1hCRXBJ35BRj1ZFciVnDgh8B6bYoivJeb7EN6q/HJgbDYypHA3rjTk9yllFaiexyt+5HilPRBYo5KgQ8kf56LE+zRy/+ZCZWfv25dD366bG46OobpOvSokJF+hdeeAEvPvuMgiljVgsgpg5B/KLsuSwS4B1QyKTkGUyqJTYC5RCEFWCQhXC9wpmpgwUjyRlpPy++CiDrHO/9ZzPeevIhSUVCjYUfvY/Vi+ajOC9X8rjocDgw/IVJcMbFSSqWeouyKIqYM2cOTpw4gTVr1kAURTzzzDP46aef5HSCAFEU8eabb+LZZ5+F3+9HzTppaNG+Azqddx4u63836jdthrlvTcLyuXMgiiLuf/ZlXDdoKKN/oscE4JWt0JoVAQjKsWTGrTQBa2OhDz8//bAIzzz+KMpLiuFwOjHiuVfR96774HFX4pdvvsJ3M99DQU6WIv99d2+E0+/DZTfeqluvwuZMLe5npFXfYx2keMRgNBC+WqO1/ETtttLnx6K9GejTpgGXaN2VUxKWrYLhwUKQ22TFLkEIWlgHDtD0Gmi9jVUJ0nqP3w+nQ8vEop0RGA2VgwVlqJMUj3rJ/BiP4cBc2JMofASqSLX9idXa1IfkcxoEwi+0TauBokovvH4RPlHUuFkH9CVKpA2hSp2tZgu1h3lEIIsYJWiaqm+Dxjt/+3w+Reykm+4bIakximJActC7T1+0bt0aR44cQUFBAebPn48hQ4ZYaj9BgcuNY8UVaF7TXFBy1vdUE+KCAHjclfh+1nQpzYCHHke33n0xcuRITJs2DQAwYcIEXH/99bohAURRP5wR81AfTCoRISF+9Eg4jSLIKw8wk1wc4rfC48PSA1noWC81ZHf32jiXrDT6z6oKusRZ8GM6HALAIC3MSs701h9azTznZDoWTJ8qXQ8aNAgTXnwJK/edgNfjxuY1P0vPnE4nvvjiC9x11106LTBGTCVnxZUerD+udUAQKriDx8LAYgahpv6PhVqj5U1EFLmEJ2mXkTcfvxhQK5j27BMKwkwQBJxx7nloe3Zn6V5hTrZEmAmCgAee/x/O6X5RoJ7gYNdblIsqvfg9owjTpn8gLbIrV67Erl27ICIQRf3ll19Gw4YN8cwzz0j1lBQW4N/Nm7Dg4xkYdd1luKtLWyz57GP4vF74fT7MemUC7utxDj766COm5zE9WNEGoA/qlV4fl7tKHyI8fj9255YoxoiVgzKTOCPcxl9+wWP3D0Z5ScDGye/zYeZL4/HI1RdjyEXnYNYrEzSEGcHDDz+M48eO6dZLvy+96em1Xd1KrhRA94kSBwvKdB2cmEGs9xW1xDS9uILRL/L/eWFIzQJ1GEvOaOaT2f4gGwJLzeNUAtl89Zz30OPaqC+3ZRfj12P6UvpIwMycib7kTEWchbAnsZaIpqlJuKF9Iyl4q8LNuupXbUcdNnGm6rVEEmJG0NmvQpXQ6dm2CSptB+rdb2zfCBc1q0s9U0ImHrRl//3rL8g6fhQAkFq7Dnr1GyA9O1Hiwp68UvybV4oHH3xQuj916lTddhp1r1eS8PLTEXAlhJS935pF3yAvMwMAULteffS97W4AwPhnJyAlJQUAsH37dsyfP59bn97exLIJI0nDlUhz46xaLUxFMPLKPFnqkoQCVusx8/38UV1xQgPLcQkgf3e1DRmBXnfy1BrpOUqIQp/Xi3eefgSu8sCZpG2HjpgzZw6cTieSUlLwzAefYtL8JRj48GiMfOYFHD58WEGYWdQ+DbQphDzVBjwBuxnON0nBUq1QEmecCROhQ4tVCZyaS0kQ7xBQLzlBen8jyRkALPtiNk4ePggASEqpgekrN2LetsN4fcFSvL5gKfrcNkiRPq1BI7zy5UJce9d90j2noB9XTYCArLJK5JS7Ub9lG9xyyy3Ss7feegui34/Zrz6HiRMnajw5mkFpUQEefPBBfPTRR9I9o0UolPggbp8fSw9mK5w+qKGWjuzOK9UEDDYLtuQMcLlcCk9ANDKPHZEWEBopNWtJ/xcXF+P1F7UevPyiGPQ4KN9TLFp6fWZGj11kp9XDtuxiXYNuMwiXmGBl55Vpxr7LTNwxszBmPgghba3kG4fi/aw6gTCL9BwJKW3OYtIkLrhuzMPk8JtFpcZVtbUK/eDbwLC8IkvxOIl6ktqlfog2x3J+5TVxlU7UwtTNjaT9kUMA6iTGo3aiHM9LEf9NVbl6fdWzt/a4K/HNB+9I131uH4TE5BT5eZBR5BeBESNGoEaNGgCAnTt3YtmyZTrt5783cWJgdt1i7a/SoTf44/N6sOij96Xn/e4fKb1Hw0aNMHr0aOnZCy+8AI+H7X5cFPX383KG+/VwCX51OQRKaby1stUEI7dekdLQEQN1ma1P/c6sfNFUow4VeuOOfPZEHbfSeu+gHi8Cg2EEyMTZgulvYc/ffwXyOp0Y+/pbiI+PV0j+z+xyPu56bCzuGzUaLVq0YLbTCqqUOIvGAUp6ZqoA1bWOqgvXlX4VSc4gBpp7Zav6uLpNA+l271b10atlPak8I5szv9+Pn+bJOrSDnhyPxi1bIz4hoMLjjIvDQy+/ibHTZuP6e+7HtXcPwWvzFqPjBcq4KUTDkmkQTt3ziiIef/xx6fqTTz5Br3PaY+X8LxR5br7lFkxfuRHPfvgF7n16AhKTlTG/rux/B9p16qK4N2HCBBQUFAAw3mysSLBISUeDkhxe/CKjWHs8g3A1mA5BBAFvvPEG9u/fDyBATE9ZtBJde16mSXvr8Efx+V978PXWA/j8z914de4i6dmShd9i++/rFelXH8nFD/szVTZncnuLcnOw4qtPsWPTb4p86p6uHmqNYeZn3OOtV2YcCfAYPrzNlfXMaN1RDjPzsjNWOAvg1HMIQiQwepKz6mJzRlBV4SfoddLlMw5szi1LZGuhEMjSKuCS5nVxfbuG0j29/Yrcj5TklhBneuYVodbCap5DEHBh0zScXb+mdI9+O15fAfpqjYs+no6DO7cBCOzP1909RPGcSHScgoC6desq4oW9+uqr7AM5tyXyXmSWOOOdA8ijt6dMRvaJ4wCAOnXr4rWxT6B1bUJkinj66adRp04dAMCBAwcwZ84cZl0itEQ2AVMdjvRrhCcWbccUatFmxrlIpRMhYtG+TClOotXyWbVVh/VQA51GESm8nhBC31urEil0fDvqYaXPj2P79mAhxUS4c9QYnNv9QmY5evdCgWmbM0EQnAA2AzghiuKNgiC0AfA1gHoAtgC4VxRFSyICr19EgjP0V2EGDBbFoO2S+fxq1Qp12XwiMEKSsxBszgQIqJMUr7hPFkCyJPHc7QPAtt9+lRbImnXS0CeoVqAsU0CPPtehR5/rAAQIG/VhwhlcmFhxJ+g7Pr+Iyy67DNdeey1WrFgBAMinpGVnnnkm3n77bVxxVV+sOJKLxi1b44JeV6H3DTdj3oz3UV5agituuQ0XXH4l/KKIwtwcjL/zRuScSEdeXh5ef/11vPHGGyYlZ+b6nHwaIlpPcjp0dcMVcYMYxVsZ7Sy1ibLiIkyeLMe1uXfMc2jTsRNe+/Rr/LLsRxzatR3ZJ47j8psGoPuVVyvydrygB66/8SYsW/IjAOC9sY/h1S++Bc5oDEB2r8vy1rjzj42Y/NgwyeD1lmEP49bhjyK1dh2t+h6z82PD/VfWpsTOnGIkOB04s25qSGX6RP0F02rAZ/Xw4R0w2L2pX1+thDjNIcpsv5P14lR3CCKrNZqRnEX+3ayWae5QFoVvQBUZtoMEsNUaCeR9Vhv4Xi+oruxUh8MY8fmxevdhlB/ahYrSUlx66aVo2bJlsE1K1EyMB0pc+t7uItjFLGkOT03cjFrj1g1rsfBD+aB49+hxqN+kmSIf0bggtMKTTz6J6dOnw+12Y9OmTfj1119xxRVXKPIYDT+yvrHXdi2M9rlZs2bhfy+9KF3fN3IUmtVPQ3kwzp8oAmlpaRg3bhzGjx8PIOBE7N5770WyilErQtRlerIYnJLkLMLzyUnZPVldUkjrTdmeQpTGBnEodLLUhcX7MtGjWRo3lp4ptcYISOpzyitR6vahTZ0U48QmoNcUnjkNwJe49WpZD8lxTuSWV6JZTXlM0SVVen34ZNIL8AcZV2d3uwi3DH9E16GQHowYMSxYkZw9DmA3df0GgLdFUWwPoADAA1YrD3dqhCs5I2lkjo6yA71+ERUeX7WUnIkAcwUk70AWdCPJGS2xuuKW25GQaGzwy9p04iiuqKZN1D1fkHieP38+zj//fEW6Hj16YOvWrbj++usRp/JE2ahFKzz08pt48q0ZOP/yK+EUBAiCgLQGDXHfGFlFb8aMGSgqKjI8HFkN3ghY5+Ky0lkRb7O8Na5c8CXKygKOJDp0PBt9bw94wHTGx+GS627GvU8/h6fe/hA9rrpakxcApr43DfXr1wcAFORkYextN0jxOAjoWp0CkJ+VicmPDVd4Ivp+1gd47PrLcWzfHlPeGkOVnIXsQpuRb19+GXbmlGjiXzHzM1pqdEC0ArPEU055pcYWKNAWdvoeTevgytb1Q+beEQ6imuMcvmez2BJ3hFmkF1NGQZzFpEV8cCVnUeL0A/x3t25zxl/fHNI+q4VPZ7/y+ghxpl/ujM/not+FndG/Xz8MGjQIbdu2xf3334/S0lLNuGtZKwnnNqyFs+qlBtuiktTpV8MFa71gu5PXh8b8TSU5O7Z/LyaNHCIFu21zdifcNPQhqCH1ZbDA5s2bY+jQodJzlgTKWHImKso2AlutMYDK8jJMmDBBut+h6wW4b+SjwTSCoj2jRo1Co0aNAAAnTpzABx98oG27qL+fs+a/Nth6ZEAzwmnCz+X1ocJkcGtT/SvKe1GhS1b19Ioi/s0t4WbVamwwio9Av6w/no9/skI3S1BDlzgjzESd53p2gQIC5j8p8U60rJ2ie05evXQxdvy+IVCH04nhL7wW9CTK0RAwec8IpogzQRCaA7gBwKzgtQDgSgDfBpN8BuAWq5VHhWPJ+E+vXrl67a4hisD643lYfiibX18V2ZxBZHMp1brLPIcguRknFB5m+t4+SDctDVaZEgeD2Sb5LpkstWrVwu+//465c+di8MhHMWTcRKxatUriimkYmqrucVCTqcfVN6Bjx44AgJKSEixYsMBQDYu1eeScTMerI+7BoPPb4+UH7kJm0OBaWsxBNiiDwoNgrQuk1oLsLKz+7mv8tnwxykrYNmzqd650VeDbj2TPVsNGPiK5HFYPH5YEEwAaNWmCefPmISnYz2UlxbjnnnvgpZzB0Bua1+3Gu2NHobSoQFNWUV4uXn9kKFwupY0bO2g6aaa1cR6qa2ve9zflMpxRLY9rrJacGRHh6k2D1S8VXh/WH8/HXxmF/MIoOB2BuEosj3hmQIgzNUF4qjkEIWsUkZyp12mFWmOMiR7rZYkRL9NcvdbBVWvkPNNzYOUxUKc7duwYxj48ApWUm3ifz4c5c+bgtttukxhZUhsEAe3TakgqaBHyB8IcQ6x9UhkKxUCtUUVEzH9/CryegHJSau06eHLKB/L6T4GsLfQeN2zYMOn/7777DqWlpar289+ctmMzA+Y5IHjzhy8+QXZ24FxVt2FjTPjoSyQEzSjUGWvUqIHnn5eZrxMnTsTWrVs1ZevZnIW6f4SCOJ01ZdnBbMNzJGm+mfaKkMcpCRgv18vOr2e7yUpdVesNFzqNiTOQnLEY3IA5JsmxfXswdexj0v1r7hyMlmeepUjDdoBnkSujA7OSs3cAjIV85qkHoFAURXKiSwfQjJEPgiCMEARhsyAIm603jw+uMaOK60RDfbhmqzUCBUGuBK9fIxaEOgTJGW8BJAs7iyNABvRnb74siWvPufBiNGvb3lTdLCYDUflLYBhmKiRn1IsmJCTg7rvvxlMv/g+33v+QZLgcyKQsQ304pLVhHQ4Hhg8fLl3PmzfPsuSspCAfLw69A/+sWw1XeTm2/fYrxtx6NZZ89jFEv5KYN3tQpQ/cHrcbla4KVFZUYOXXX+DRay/F9AlP4q0nHsKjV1+MdT8u1ORX1/PPujUoLgh4O23VqhXuvOdeqi7++9Ho06cP5i35SbLj27FjBz799FPpOR377sM3XsXOPwI2ZoIg4NmZn2Pgw6OlBSjr+FH8uUoOhwDwuX9WD8KhxOoK1BNeG9jrhn5Gqw4+1OlZ859wW0vcbEN4FgTmamYeNeIDipvq5oS7zMV6oyfLECGaefMjGuqCkSL4fH65ddHoQ36Z1moMmBToP2c5BCHQU2v0SWuuNk95eTnuuOMOVLoCwYRr1amDHj1kW+gVK1Zg0nPjlW1Qt0n7FvovYBFcpxgmIMdHFJGXlYE/V62Qnk348Au0aHcGMx9ZW+j6L7jgApx99tkAgLKyMnz33XeKPJGWnDEPrRDg9Xjw/acfS/due+RJ1KhVW7ZHJO2hqhk+fDjat28vtf3xxx9XemaG/mrHVGuM0mJkxvmaEcz0L52CnKcSHILmGYHL68OifZk4VFjGsDnT5mDF5axq6DWFjHE9hyC6kjPeOgUBHrcb7z/zuMT0qduoCe4Y9TSVRvlrhKhIzgRBuBFAtiiKW0IoH6IofiSKYjdRFLtpnxnnr/D4sDOnmG0UDzPuvbX5yASQbM446hZGiNTGblUCJ0JvASTlBX5ZG0S8Q8C2jeuwcfmP0r3bH3nSdN0sjiAJntiMEQeFTq3HyVB3vroGjY2bqg2333GH1B9r167FyRMnqLTa6uh+2bjiRzx89cXIPHpYkaa8tARzJk3EjOmBeCs8gp8FvxiQdn0++RUMvvAsDDqvPW47/0x8+OI4KYg3ABQX5OPdMY/i1RH3YPqzT+CNR+/HgulvIScnR1Heb8t/kP4fPHgwkhJl3XJ1m3TjBgVfovN556P/iFHS/RdffBGVrsBC5PL60SAlAc6c4/h69odSmqFPjMMFV/TBXY+NVYyXX39QEpaRlLLoudA1QqRUnmlwJaZqjqRBJRrih5GeEKZG4TBoMDcNwfyYVRhGB1FckIeF38zH6tWr4fOFFqcy1nHSSH/6VIwVgmirNUbC65/L68MP+zNxtCgwL6Mi4YsgI4V3SAb4ByKyJ+uF7lSvKW63GzfeeCM2bdok3Xvn06+wadMmjBkzRrq38KsvkHMy3ajpEkLtY1Y+plqjwaGQBh0MeOGH7ykYqWd2vUD37CM7BKHrFXDfffdJ15999plh+2lIEkyzNmc6bftr1U/Izw6EeGncuDF633o7Mx09fxISEvDdd98hLi7AOFq3bh1++eWXYLtlQrS0qBALpk3FlNEPYsnns+D1eCzbAocDmhFufQ8M5DXTv3TRZph8ZB/ZmVNiuA6TINfBmgzbEjuw20KI72TGvgVwbM4MTvvz3n0Dh/7dAQCIi0/A8x/PRc06aVR+5a+i7MgIzkxJzi4BcLMgCEcQcAByJYB3AdQRBIHYxzcHcIKdXR9mPv3fWUXYl1/GjAsU0DVWvrZaJMv6Nn7Vhi2VYEjoMcqK0Pi1Wozu3Fd5v2J9YL/Hg1kvPytdX35Tf5x70cWm62ZJ485vXBtdGtZCrcR4zTNFdHRGh7Hi4+htVHptaNy4CXr37i2V9+G096RnTA5m8F76wf14+6mHpXhhAHBR3+vQqEUr6fqNSa8F7BcMvhIda+P3n5bi+RGD8eAV3fDD7Blwu1wQRRFeyh1w7Xr1Uae+7Gnzn3WrsXrhfPz5ywrMf38Khl7XGyePHAIAuMrLsWXtL1La22+/Xbk5q5pmxMQTAdx43wip/hMnTuDLKf+D3x+Qufq9Xkx7aYKk7nhO954Y/oR86Lm830C53RvWoChfjgPFVmtkH5KNELLkLKRc/AK4B1kYb5L86rQZyLvH6QRfZYEnnTCDeIeAlrWScW7DQOiFvf9sxqPXXIqHh96Hq666Cu3bt8cbb7wBV1BaYRZRcWbBrU9Zr7p+s2qNIds8qq7Nfg66nWrbyKrqQ9PpRQObMyilIzT8EkHBLkC9/j/55JNYs2aNdH31Hffi/OAe9uabb+LiiwP/e71efD9LtlNSM62seM/lgdVXPLsrFtTJyTtnnzyBnxfMle73u/8h3fIBmQGqfn7PPfdIMUbXrFmDo0ePGryBDI9k+2eSOGPdE4DlX30qXQ8bPlzyCi1QaVitOffcc3H//fdL13fddZeCMC8pLMC4267H/GlT8fuKHzHntRfw+sNDkJ+vjasbrVkUFwbDh+TUZV4rIKch+4zs2VObn5ylvH5R85yubn9+KZYeyEJhpbFNdqyh1ytkj0yOczAZi6FIznb9+TsWfzJTur7nqWcldUY5P1GnZJTNrM/6OmO464uiOF4UxeaiKLYGcCeA1aIoDgKwBgA5od0H4AedIiT4/T6Ul8oGi6ZikQWTsHRxRYgMr2JSu4NptLBKTfOJs8hMdbOHOZqrwRwEwd+2aQEvOYlx2gH7yRsvS4f+lNSaGDz2BUvqFqwNtFZiPNql1WCkVg5WVt+zOK5GtgBaohwK1cY5M6Zj37a/mWkBWQ1gwfSpEkcyrUEjjJ48Dc998AneXrwK9ZsGNHXzcnMxc+ZMw29EDtH7tm7BlMeH47eVy1FSWKBJ17ZdOzz74suY/tNGTFvxGzpfdCmzvJyMk3hl2N0oyMnG7yt+lETsZ599Njp16sQNpKu3cctMCxFJKSkY+KAsPVv25Sd46MrueHPUA7j9kvMl7qTD4cD9z72CJGrxa9yiFTqcFxCG+30+rFkkBwnV+8asdhohVOZHuLEJmZ5guenN188C/Z6HCspQ4HJLUkMjpz6mYLY5AtCtSR3UTXDgu5nv4eUH7kJZcZH0+MiRI3jmmWdw8803S4HidaukVY9iLjmTTivM+jl8DWU5Fuqs8Pjk767KaPYb0u1UOzM4FWzj+K701f/IkGzOdPqJnh8bN27E9Omy7e2Ix5/E8ImTFOlpO6WVX38u7QWk9Ly8PLz66qv44uMP4aPsbUPtD9Z6wbY5s67W+N0nchvPOr87zu91VfB5IIGelom6qqZNm+Lqq2VHUV98ITsDMyvpD0et8eCePdj150YAgNPpxLBhwzXppfHDqObRp8eiZq0A0ygvLw9XXnklNm8JKHRNe+1lZB47okj/z/o1GH3nLZJGiPQuUVqLnLQrfZZQwETFpiRnjPKloNTU/XKPF4cKyhRjk+dKf0dOie6zKodOY0h80eQ4J3q3qo/zGtVWPDdH7Mo4evQopox5VNo/ul56BW4YPEyTTmD8x3oaDsKJczYOwJOCIBxAwAZttlGGI3v+xfDLz8PxA/sAmJskRM2BeeATtQSVOpWIwGFn+cEs6Z5PRbip9Z1Z9ajh0F9DQgLPpopGhdePLZmF8OlwKcm9M+umon+HJprI6b8t+wELKZ3vOx8bg7QGDS1x2q3qVivUGvUWHwO1RjW0G5+IO+64A3369AEQiN82fcKT8LgrmVKk1IQ4HNq1XaHa+cwHc3DZTf3hdDiQmJyCAQ8+Lj0bM2YMJj72EPb8/Rf++GU5vn5vMr6b+R6O7d8LIOBc5eienfB6PPjktReUddVOw8hXJuPTTbswd/3fOLB/P/438Xkkp6YiOTUVEz76AiNfmYybhjyIBya8ggcmvIKEpIB6aHb6MTx2/eWY9uwTUnmDBw8GoLabUcIoyDZJ3/e2u9GlSxfpfl5mBv74eTmyM05K96656z607nC2xp7wygF3Sv9/N+NdHNmzC0DAIP/QvztQWlSoIYQsc+MtpjeTL+QyuRIW5bXVTYHeQLdmF2PN0TxUeIlao/lyyHqoDqppnjYL5HtkxDB89c7rCvVb2ib0559/xowZM0y3K9Ybvaj61ZCRJlzpF1d6TB/kvH4Ryw9l459g4HR1NqOQJnJb5P/NxM4LGxbGtJmizKjtsZI0Tg2oaNdhaF4AwN5tf+PFF1/EpZdeiksuuUS6f9NNN+HpF16Cw+FQvMo111yDq64KEjF+P6Y/+wQqK8ohADh+/Di6deuG559/Hs89/QReGX43ivJy5ZfgQEGAUzCt1sgpW0tkicjMzMTSr2Ui6tbhj0rnFaKyl8xgwAYapb1FqzZ+/vnnXCY2C2adYbHec/Z0WZulX79+aNmiuSY9+WVVs9+fggmz5knehisqKjB69GisXjgfC7/8VErXvP2Z0v8Hd+/Csi/UR9PorEYKhyCMOnjOPsi8MavWqKepQWf/Lb0AW7OLFaYBGocg1HVkSIroQK9XUhMCynsp8U4kOh2ok6QMdmNFcub1etGvXz/knAwoAdaoVRsP/2+qJG1WFqBfTqTINdNxzgBAFMW1ANYG/z8E4EKL+eEqL8fHLz+Llz//1jgD5EO4xruZGBieuhICUU63NVvpDe94cQVW5+dqJD16G4u+qFiON1FS6UV2eaWu9MgI6sU9wemQDmc0/skqQlZZpW45amKVfie/34+5b78uXffoex2uHTQ0mM88rHLyaS4aWwJqzVCa1QZRBASHgOemvIsNF3eHq7wc6Qf2Ydr4JzBu6jSo+RAJ8OOD556SNqduvfuifeeugbKDRfe+9TZ8O+Nt5GVmAACWfTsfy76dryjnq3deBw9j3puFC67oI6lv1EqI03AV4xMS0ec2pafMBs1a4M1H74ff71eoXKakpkqetxSSMzWn3mBekCGdkJyCDRs24I033sCbk6fAXSmrqzVs2BCjR49G+5sD7vrVRreX3Xgr5r83BfnZmSgvLcFTt/RFu3PORWFeDvIyM5CYnIySyZPxyCOPcNWM+QhtIxVFkRmPz2wbWEmsSP3M2mZIZTOSFwfVS6xodlpRa4x3CEybjL179+Lrr76SruvUb4CZn36Bm6+8HGPHjsW0aQEbzKfGjEGrjp1w45W9mOXTJcfalb46gK+6fqPuySh14fcTBTi/cW2DlAGQUAqZwbVZ/bpxVAwkHkSIAfVnv6hR6Y2kWmNxpQf788vQlrNfWa3P6BPzxmTLWsloVjNJcsJVWVEOZ1w84uLj8dPXn+OjF5/R5ElOTsb7778Pr46EatasWTj7nE6oKC9D+sH9uLf7WXiuZUscOnRIkXbH7xvwzB03Ytz0T3B5i8t021jq9mLl4RycU78mOtRTxkpkvTpbnV63eIZaIzB27FiUBz0rNm9/piQ1o5Ec72AG1Wa1qV+/fqhduzaKioqwf/9+/P7777j44otNf2mzcc7U2LdvHxZ9Latmjh49WrEPylJVcoddzxnnnodVq1bhggsugNfrxcbffsPG336Tnt/c7xYMfn06Fn8yE59PfgUAsPTz2biZCjkQrZXI53ajtKgwEPuTUYnX72c6TFOUYXKd1EumcEIWZO7QZy4tYyFwhvWLIpwOQZH2VHAIcmHTOiiu9CJJYlAoJxHPlb4aCxYswLZt2wAEtIUe+d9bqNeoCTe/nvouI4NlhCM5CxmHg4Z2Zj4+OYSrOTbkUm1ArNYqYVWxL78MIoACl5vZZ2rag/V9JclZ8NnGE/nYll0cMrdT7UpfbxLTGzZrgGnUA6n/d2zagKyge/gatWrj0UnvMF3xGsGKgwJ1G5iLD+MWT/1DgPY9SRHNWrTC3aPljXzD0u/xwv13adQLv54zC4d3ByQ9CYlJuG/cROkZ2VTjExJx71MTECqGjn0OF119vUSYAeZtgbpfeTWemvw+klLkw1NcfALGvz0T9erVU7QTMLbJk6HllKampuKVV17BO9+vxFUD70KPvtfhpWkf4ciRIxg/fjycQUPsJNVkS0xKxjMffIqUmrWkewd3bZeI2cqKCjz66KOYO3duRA3tTeUDT7UzNOrMim1SJIgzr4EbcRY0ZxwOWDr6AoCPP5Yl6x0vuBAf/LIJLbt2R75XwJQpU3DOOecACHzf2266Hnv37mWWTzc75pIzK2qNjMaVBz1l5pRrbZ1ZUMfp4tm48eAXgd15pfjxQBbKVLGRInlY+juzCEeLK1DAsOUOFQHJGX/d1n0mCIhzOLBz23a89tBg3H1ee9zbrQNGXtWDSZjVq1cP8+bNQ6tWrZjllbq9SKrfGE+/+Ip0z+f1aggzguz0Y5j82HCUlZcxnwPAocJAyJAKihA6kF+GIpfSm2pKvBPxDkGKpaZ4z2AvsKXhypuHDuzH3LkyQfPAhFeYXHxdyRkDycnJuP122QnHhx8GHD6ZZZ5Y9UpL8MYbb0hq0Odd2guXXaYkgtXrVoHLi8X7M5lhT84991wpMDWNTp064aPZsyEIAm4YPAx1GjQMlJWThfVLvw+p3WaRfSIdt1zeA0N7dsKKeZ8FVQ+VfcVzTkLe26orfc0z6gGx8aS/mfrziQB+P1GAxfuzNNL9UJebqIRd0SkzwelA/RTqfKV6rutKnzH/5s2bJ/3f/8HH0KPvdbrNsepEMBTJWZUQZ+WlJXj8hl74eeUKw7R6kjPZI5HyFXgGjwTJwUNmUaWXGQ9IHSOKNdjIwc8vijhRIus0l7tD82bGkpyxoCDOOGqN1B3pv3WLZa96vfoNREpqTbl+0y0NgTjTSb4/vxRLDmQi38U+IOjV4hC0ZS45kIX04gr4IeK6e+5Hr5sHSM/+2bgekx8bLjnjcFe68OG7b0nPb3/0STRt3Va6lgIbCsBlN/XHrG8X46qBd6HjBRcirUEjOBwOXNCrD7pcfLnuOw8cORr9hz3CeCfzfXfFzQPw4Zq/cP+zL+P2R57E2z+uxiV9r1H0A4FWcsYuk8e0aN7uDDz86lSMfX82rr11oBRzjiza8YyDQbtO5+L5WV8htXYd3fcYPXo0KspLg+20SLRYSi3DL5rx5GqtXl4+9bNQ1Rrp/qFdaYcDLTkeAIs4c7srFWEVbh0xColJycgorcQfJwuQmJiIzz//XFJxdAXdmRsZ3sfc5kz6FRW/BPT6wSLWE4N7RKWZmHig9yNCnClhVhVcRECzA4CWODNVgjmQ9rg5zESz36zQ5cHCvRnILWczOwl4qtaVlZUYMGAArrz4QsnxkbvShewTxxXpJk2ahF27duHkyZPo16+fsr3U/+uP52HjiQL0HzwUg8c8j7h4pbpku3btsHr1anz85TzpWebRw3jz1VegB0Kw08TQ9pxirDqaq0iX6HTgpjMao25yAtQgXcAMOaO6nvH2VImg6XrJ5Ti3J1uqp0ec6X2+IUOGSP9//vnnWLRokXnJWQgOQVwuF779VtaUGkS5JJfTKyUR+/NL4fWLulpCL774Ivr27StdN2rSFMuWLUOdOnUAAHHx8egz8G7p+ZzXXsCBAwcAmJDw8h9rIIoi3h3zCI4dPgS/349P/vc8/lq9UpPOa0In1FwQalFfckY9IEsOLe3UyM1ESH2snZ6hrThWGZNmYLZElvSZmU51XVpaipUr5W/Wu/8d/Hr0KmSUHbhnnTyzpNYYSaQf3I+XJ76A/jfdyE1HOI7qw47sepdN7fN0qYnKoNcvqg6xwQVCUGZkHY4cQkD14rVJ07F353Zc2f8OnH/5lSjz+FA7ia03z4N60WMdhAGla3Ez0lMydipdFfjj52XS/V43D0SoIHq+ZkEPTPo1DxaWw+0T4fV7DcX9NBwCe6hvzy5Gu7QacDgceOyN95DWsJHkqWvXnxsxZ9JEDH/hNayY+ymyMzMBAE2aNNEYfJIxF+cQ4PaJOPPCi/FwJzkShN/vlziY2zauw/ofF6JNx0645dZbsXX3PjRu2Qr1Gjdljj0rdK0fIlJr18ENg4ehZkIcSt1edKS4sQrJmWVOPX+5o3Mnxjng9fjgEIBO9WvCIQjYniOrWp7Z5XxM++k37Nv2N7auX4OklBq4auBdmDjkNuSePIHc3Fx8OWMabnhwNEQEDnO1EuMM7eKA0AgT2r0y6z1DVWu0whG0ukEx1S+DrbAii2d5kQrYKGjBOtQt/3Ex8vICnjfrN22GrpdeoUlz/vnnY/GKn3DNlb3h9Xiwbds2XHPNNdi4cSPiFYdgmmMbW+rMr1r/NQb0BlI9sv6qg3HrQZKcqbzlEljxuEna7lGrNUawC8l66zZrRMTBidKAKrRPZDupIuBN98mTJ2PhQm2sR4LU2nWwbt06nHduZ/1CqFch86/E7UO/B0bi8pv649DunbitR2fUr1cPTZs2hcPhwFmlLgyfOAkzngsQDHM+molXJz6PtLQ0fgUccPsg+GtEnGWlH8MPC2RO/p2cUDd6e6fenOvZsyf69euHH374AQAwdOhQrNm4CXDWNrRPDUVytmLFChQXB/aLxi1b4+wLumvSqJ3FkJGvt0c4HA78+OOPeOe997F+5148OfpxtGjRQsG87vfASKxdtAC5mSdRWlSIx0ePxtIlSwy/okMQLL3nX6t/wp6//5KufV4vpjw+HD2b18XNN90k3edpVanXfz2VfIBIztgP/Qg4AvnpUI6Ugp7ifEdZ/GuzsMqYNAPTxFmI6dasWQO3OyAkaN2hIxpT3rp5+dlqjSypicmGUagy4gwAtv3zj+6z39LzUeHxSXGztPEcgpuhxl2j4oc5wpQHJ4WCCwDtoY5OTp54K114btCtUiyEP35ehuc+novO/W7QfScezErOjMTeGlfBwd+/165CRVlQd71NW7TrdK6qAaabikSnAz2bpaG40otduSWG6ZVNkisit/2ivu4u29BaYHIiXD6/7MFKEHDv088huUYq5r37JgBgxVefYv/2f3Bw5zYpz7hx45CQqIzNRkoOSGV9mjbQqiVdLr5ckqA1rpmEc2rWk9+U0XYrc5T+1PEOAbd2UOo/8yVnOip9ovJX8YxuJ5U/0elAmccHEcCZ9VJR6NIGRa5ZJw0X9LoKF1A2EQMfGo2ZLwTc7895ZzJ2bN+Gdueci7/P744br+6DC5qwDkD6bTILksfIYyW/EGtEXfiSM205ZCxbIQrlTYNiiKha165OCuolJyBf9R39fj+mvS1LlK8acJdG7dkvinAIAi68sAcGj3lecn6zefNmTJ48Gc8+K4foqFq1RuWv+lhE9gAB/O9qNs6erNbIfm7FTJccprRrfeR6kRCfvFAVZmujVc/MqDWqGaputxszZ8quqzv3vBR3jnoa9Zs0w6F/d6BmaiqantERHTp21JRZ4vYy36F2Ujxyyt2SDVtaw0a4oGEjdDmzsdLWCYFxvvzLT3Bkz7+oqKjAZ599htGjR2vKlOdokPDXVZnS7wMiqWQFzSXluitdeH/cY3IYkwsvRucLL9IwCro2qgVRtE4wCYKAOXPm4LzzzsPRo0dRVFSE++6+E+M/W4iU5BRueaFENvn666+l/y+5vp+pMeKn5qceEhMTMfqJJ3HGwSy0Cob+oNOnpNbEM+99jDF33AhRFLFs6VL8+++/QGpDbnudgnnHJwCwYu6nmntejwcDBwzAypUrITTpEDgzcs5u9BrtEAL7t966L0J/zRJFESdKXIq5S39PXhDqSK0uZlQzwwGPcDUroVKPwRUrZC2+7pdfaTq/GQEJoD2P8d5BSmPYiiijspItts4qq0SxW1Y71Kg1Bi/VL60+5LDenx6sZlQD6TLIgW/uu5MlwgwIuBOf8dzTyC0qYtRoDK3NmfEgo9vZ3sARyfqli6T/+/YboBmcVqaTQwCapCZpjKL1oCV/tfdZQ1pvojkEZnJF+eT1Bjz0OK68sZ/0nCbMunTpgoceeghqkDLIIcK0KoeqT9XflG4XC4lOB7o2rIWGKYmaeln5lK70ldCTnGnmh94iR2UnKl7kEJSaYM7G4coBd+KinhcH6xHx16qf8PV7k/HikNsx+oH7kJubayhRCYk4C2bSN7szLpWVgmerpi7Sus0ZOfDJ92S1RvPlsF5ZnT81IQ7NayVr0q79/hts3xpgmCUlJeGqgXdpyiIHRAHADYOH4Z7H5Nh3L730UuDwQ+ql22D+FSICrXq78poQz/EOQUpJExkkvVnizKtRa1TWZ0WthRxM1YdkMdjGI0Hbp3AQH9xf+HEEzX01mmjgS85kjQQaM2bMwIkTAQ9p9Rs0wIQPv8RZ51+I+k2a4cKrrkX3S3uhdt162oOlKOLnwznYnVeqaW2NoMqu4UFRCLTrmruGSLdmzpzJXZdCVYvLysrCnJkzMPmx4Xh++L1YsGABnnjiCXTs2BHNmzdH5yb1MLzXBbirS1vs3vIngAAjcNATzzCZbXWTEtAurYZufbxmpqWl4ZtvvkFC0B56x7ZtmP3qc5o1U122aUZRMGNpaSkWL14s3b70+n7s5IKyPrJ3GilX8NSVAaDDeefjwj6y7dD8+fMNv58ZjQ6CzGNHsG3jumDdAl6du0iKkerxeDBy5EiIwVA9PIadUgAgcNugpwlBylGPeaVDEG1Z8v/a9SYUREWtUdU/ujD56dTJfvrpJ+n/br16m85vdqgkq+z1zZgGVTlxlhlUL9MD+SjqjYoMAK0uv/KQw5oPPsWHVufkT06HAORlnsSiz2ZpnuWcTMe0Sf/TzcuDup3kgJ6qE/kcUA7ScxvWQv8OWs8ygiCgrLgIW9auku716TdAk87KVKSJkJoJcWhVK9kgvd4D5r+G+fTUGgHt5iEIAia+PQ2tzzpbcb9e/Qb47rvvkJiYqCmDFEHGltmeMeNIhgcBQNu0Gjijbg1NfjPOX2iYtQsUdS7o3LUSlGq6ZlW0nE4nFnz3HTp16qR5tmH5j2jQoAHOO+88bN261WQDzYFs7Hp9cKy4AquP5DKf8cCXnLHXp3DKDklyJih/zaQFAlKzb6bLUrOnnn6a6amKEDCkRXc8/Di6dw+oKbndbtx///3w+Rie42Ku1hisV6pf+VzaP4ISjMOF5Vh2MFvj3MEsJJszsmao6rMiMSd7ndZDMbD+eD7+zioKOTg7gSnJmclPppSc6aeTJWfy+lFYWIiXX35Zuh791BiFAyVA7lP1PAjlDKjVLAlcX3bjrUiuEWA27t27F9u3bzcsS696Vh9s3LgRHTt2xLNPP4lNK5di7U/Lcccdd+Cdd97Bnj17cOLECXg8HuRnZSjyDXrqWXQ4rxvX86NufFaD/unevTsmTZ4qXa/6dh7WLlJ6I1bXazrOWfD3+++/R0UwPueZHTtqgvnK6YOSiGBGOVYbf+aombHqmSaKwGU33CJdB4gz/js4TMckFLHwo/el6159rkbHC3rgpc++kcbSnj17MHn0CBzduxuZJ08y10ZAy4jlE4jaYNLyEy1x5lMQZxymA6dGK4iKQxAKvM9jdp2lu/fgwYM4ePAgACAlJQXnXNDDMD/RbGOeyxiNUNt3nxLEWUZGBvc5+czqjUpSa1RLgKRkQSKNMeToslhdxOsUQQA+n/wq3EGJ3xnnnodRr78rPZ83ayYWLVqkl10X6gGdFOdA/w5N0KiGlniQ2mKiXAHApp+XwesJ6NOef/75aNX+DE06q5Izgr5tGuCCJnUM2kBJePQIDpYEU7d+feKMlE8/r5Gaih8WL8aNN92Exi1bo1WHs/HFt4vQrl07dhnBXz37ETXOSKuBc+rXDCkKvAIq7qFhck59umqNKuYF61mgDXL+jvVTcX7j2miamqTNZID6DRrgt99+w6gXXsWN943AhX2uVTzftm0b+vbti127Ap4zT5a48NfJAqpN1iEabOzZ5W4UVnosb1RW2mJVrdHPWK/UBIYVqJlOinnH6JYta3+RnC+kpaVh3NixzHLVqlUOZxzmzJkj2Zr98ccf0vqn5MpafoWwIBNlQQI3eH1ug1ro26aBTJwFO+Nk0G6qTEV8moVXZz+SYGFpkPY8Bie7xO3VpA8Fkgodxw7GK4r4+XA2csr1Q7cA5iVnBDRD9f3335ecybRt2xbDHhqpSU/6tNzjQ3GlTDxr2y4y/uODtCS5Rg2Fm/off/xRk1ZUzUddrQPVdX5+PgYMGICCggJmej10v+oa9Ls/0B+sA6lTsLhhMDD8wQdx+U39pesPXnwW+7f/I12TevMyT+KXb7/CsvlzNZ6PeaCDhfcbGHCywFp3tY4cAmkMD6jSfh8k7lSP/SJwfq8rkZSSAiBAeB/4dye3SLMqyN988DZWfSvbBd43fAQAoEHT5rh1+KPS/U0/L8eT/a5Cz7PPwFlnnYVjx45pX0PFGOUpTqnXczU0xJlCrVFblu6zENfsaKz1irNJBIgzGuvWrZP+v/zyy5kMezVYask8pMQrLcjMeO+tcuLs5MmT3OdkkuoNOE28K51fVl4Aii8tq0Ppd9yOPzZiA+WW9Z6nJqBXv4E4P2g4L4qBYMgbN27ULUONjFKXxjOXbNgf5kgURfy8QHbHe/fdd3NVn8wUaUXsDygnky630eS9QP36/SKrEsrPnYKAc89ohx8XL8b0lRvx1g+/oOsFF+i2lxzoZMkZf7VpWycFHeqlhjyZJBG5inuoSGNx1UnWk7hKBwzqICNJaNj1OQQBrWunKPq8R9M0rlSXwO3148+8Slw7eBiGjn8RY9+fjREvvq7wjpmbm4s+ffogIyMDCzduwYpVa1BZUa5omxXIjBt+Op5rYybxakHVySr3kCXpl7+LFcmZPJp001AHGa/Hg6/eeQOvPzxEen733XcjNZWtskzWTvqges455+Cpp56S0rz66qvw+XxRsWcwC42KTvC6RoITNRPiJGJK8loYlCDFc6TlvO+v8dYYhuSMgGujEmaHkvwejnGNy+tHiduH7ao4oWoouf76b0reh/RxSUkJ3nnnHen5xIkTkZSkPRiRPX7jiQL8ciSgCp1R6tI4TFE4eTHZP3Rzu/eWvf8tWbJEk1Z7tmBXou6DKVOmSBpC9erVw1NPPYVLLrkETqcTF154IT755BPs3r0bfx9Ox9PvfIRBT47HqDfewxNTP5DKYu255Oijy6hktE8URRwpLKcY1AIefOlNNG8XYNi6KsrxwuABWL9kEQ7s2Ibpz4/B8F4XYMQV3TDjuafx3rNP4vEbeuHYfnb4DBrbtm3Dpk2bAAAJCQl44IEHAnUwnOyQvZOsTZYlZ+RXUD8XkZicgu5Xyl6O1yz5nlumGanGrr82Yf77U6TrntfciCuvlhmPN943DB3PPluT78CBA+jfv79kT0ignkPq7+1UnVN5w1vNGPRSTAytajC7DYDxuUcP0Vjrzao1mj0n0WXQxFmvXr1M5SemHqz6WI62apyKkjMj4ozo/KsHjrG3RuWvHujcfp0ypTq9Xnz48nPS9ZU334pOPS6GIAh44s33pAOnx+PBVVddhaefflphg6GH308UaIkzRvt4bdfD9wu/xf5tfwMILJCDBg1iDii1tIgHy8QZsyblfWaJep6aDPSxzaTnlhH8lW3OdJMCMElIc+CQ8gfLC4cVGgTLTTqgLxEiQd0JjFrQrKY5m8OTpS4Uu72yrZIg4Jo7B+P9FRuwadMmiQjIzMxEmzZtMOraS/HC4AEYfOHZWDHvM2QZqD2zIHvO4y9vXouqYbxhoH5mmThjlENaF4rNGc9uFgisu4u/+RoT7xuI72bKkv/k5GQ8/fTTumNZfTAl16NHj5ZCL2zbtg2zZ89W2ZzFljzTqDUGf8lck9Xilep90vrHaC5vHfCq1Ro1NmfWwR9v4fUnyW1mnBqlMVzHgyCHRNLHX3zxhUJqpsc4VO9J/+aW4PcTBThZqpTohaJORZfc9bLekgOcP//8E1lZWYq0oupQYYbR6HK5FM5Opk+fjilTpmDDhg3wer34448/MHToUJx11lmoVbsOel57I/qPGIUr+g1EYpJsLsDal6V9Q6cdrO44WerC31lF2J0XcOTlh4iklBQ88dYMpNZOAwC4XS688/QjGHfbdfhp/pcaVcuivFw8cVNvvPXkSORmnNCpHZg1Szb9GDBgAM5s2Uw3bTyRRJDpF2y80bwh80BPiEj64JLrb5burV3yPZfRwjsbCAicA2e9Isc/7dzzUjz25nsKQUFicgq+XLwMDz/6KLr17iPFXAOALVu2YPLkycH2iUgvroBbpc2lbgN9JjWWnCn3NVpTTJ0tGgw0FuM3kuALncyttHT3qiVnZo5xiZJaoxYsb+bxDgFt66QgLejJ3YzqbLUnzsimqf7E5FylWbRE7iUXZAzrEWdLv5iNo/t2AwCSU2pgxPgXpWe16zfA87PmSQuqy+XC1KlT0blzZ0ybNk23TqPByxec8T9wRkYGnhgli9fvGTIUjRs35uYxM2isHjQEFddHvh9aPaw4ZwTyOiRXxJKg8KqWCFXJfsTcNzKnDqFNROrhEeRW+zzFIDCpkcqZGQLcDDHKs2np0aMHFi5cKJVDOwfyetz4+KXx6NWlo8Kg3AzIZpRoIDoz6z2LgHc410rOuFUzymbVxz8EskDeuCAnG0f27ELmsSNY/+NCFGTLB82d2/5Bp06d8OwjDypcQDdvdwa+XvQDWrdurVu+OkQJuW7UqBGeeUYOFvzEE09g819/UfksvEQEoMekI/3TImgnWysxsJGScXqosBzrj+cx+5z1jTYcz8PhwnJpLJF5o0kZrspzhMFiBujB0HMd9Wq81/RKBHEgER309YknnkBcXBxzT1Nrx2QEiTKfnyM5M2gy1WLpv5p10tDtop6B/KKIpUuXKlJqJGc6ldB9sGDBAkmdsU2bNrjtttv0W0LlUy9dLDUoRwhMQcIkIxJT8g6tO5yNSV8vRss2bZn54uLj0bz9mYp7vy37AeNuux5/rf5Jkz43Jxuff/65dD18+HAIgoALGtdGj6Z1NOkTVIdd04S2QTLyuOulV6B27doAgIzjx3Bgx1bdPDyVNQEi3hnzCI4Fz4GJyckYNekdJCQmacbuEW8Cbh8zERNmfo7Z67fiqedflJ49++yzGDlyJP46lo0/MwoV+6RD0Hp9Ve/HPOaM1nme+dlgwg9dlUDBOBYE1EuOR2OGyY95yVkA6enpUmD6pKQkdOvWTT8TBd4YqckgzgRBQNdGtVE/GPvwtJCcyYuIcoDpudI3cnOrBt1HeqqSAHB4907MfWuSdP3w02PRpmULqj1Aw+Yt8MLb0yQOMhAwtB81ahRmzJjBrN8oSF44nmnee+89FAY3hgZNm2PiK6/qlsnjBKgRjuRMl9togYAy4xCE7leeSgigJcbPCHq+JE5ZzJ5NzLgIZkG9ILKLsdbnSXHsqc22NdOOQ1MOJUy0w8jbXd++fTF79mzFnKHh8Xgwbtw4KRirGZDDZKIBgcpTa2R9dL60IkxJhkREiJp7RqC/Q0VFOR599FHc2uNcPHVLXzxy9cV4Z8yjGH1Tb2xY+j02rvgRg26+XmH/4nA4cPfoZ/D2j2vQu3dvkw1W/AAAxowZg7ZtA4e78vJy3HfPIFSUkuDj5oqNFOR+JMSkksPepk4Kbj2zseRFi4yFY8UVyCl3g/U9WSMwu9yNf7KKZHVPaf9Rpov0mSfc7pS9g4YvOaPfjrdfeSlpZXp6OjZs2AAgMP5uv/32QP5gdnpNjlMtRsVBuzv1/FXMT1pNjNdy1cO+110v/a9mClmdj6IoYtIk+czwwAMPKMKw8KA+g7AYxkbMQB6DgTSDTtO0TTv89OuGQFzNOmmoWScNV94yEI/87y3M3rAN7y5Zize/XYEWZ3SQ8hTm5uD1h4dKBFr7tBrwZ6fjtmv7SrHN2rVrJ6mLtaqdgmY1tWt9gkNNnOm/A+sdjfbg+IRE3NTvFun6t2X6DD+1ChqNrRvWYuNy2R6x/4OPoV7jpgDY36O4UlZfHPbo44rD/8yZM3Frr574/aelKCksgLsyYPf69/pf8dIjwzBl9IP45duvUFFWhjgHUFFayvTqqwbPW6Ma6nKSqD0zEjZnEVv2aaY+gF4t6+Pi5nU1ycwytsk4Wb9+vXSvZ8+eSEhIMKW5JKs1atOqPTMq6w38miGCY06c9eo3EBM++lK6Nis5U0NSa9RwFJS/RqBz+3XKzD6Rjkkj75OcarQ9uzOGPTIK5zWqjXPq1wzWF8h75U23Ij09Hd999x3OO+88qYwnn3ySaQiqt/GZ8brG+75erxefffaZdD302ZdQJ8g5YuXrWD+gXhZvRtxq8aRhjpYzT505GDrZBKzg4yxim55U6o2vQUoC+ndoIk0ys2qNvMnE9wBKOKC8Otj3bz2zMTrU1YZR0OPssOaHCK33JzPcWFYKNUfIjFe5oUOH4sSJE9i4cSM++W07Rk+Zji6X9JKe79mzB7NnzzYsBwgEuCZOA4yMdtXqHzRYn5y3WYV9WIZ23Jpew6guH3z33Zg+fTq8HqXXwdKiQrz91MOYOvpBlBTLNkQXXNEHr325EAMeegwOh0NXa0DdJlF9AwGVyGXLlkkc6sOHDmH2/55TvF+soHbeINmw0ISEIOirbzKaS6/V6oCy0lhS5WuSmsiUFNAIhXCLFLFrRsLrN0hEt5+3bBBpZcOUBMyfL3sFvOqqq9CwoTL2FL2O6BnPc23OqPskO4tbrb5z9XVynNLly5ejsLBQUyaLkaIsM1Dqjh07sGfPHgBAzZo18cgjjzDTq/MF2qpcu1jceKN9g02ckfIFbDiej39VcUob1q+HJZ99jL8OHMOnm3Zh3NTpuHLAnUitXQcA0K7TuXjrh1UYPWU6atZJk/JNHf0QFn08DQd3bMPwm6/G/v37g20T8O677xoSpSS0g6TWyE2tfUd17DoWBlJSy/VLF6GshG1LmaTD1BNFEV+9N1m67ta7r8LxhxHTOi4+HitXrsSAAbK37JNHD2PK48Mx5KJzcG+3Dnjgsq54bugdWLPkB/y+4kfMeO5pPNynB4ZdfRnu6XYmHr3mEuz6axPf5syC5Ez9RI+pawWRWJoKXG5laBOqVKvCAaan0+Av097MRPEsj9WdGtTEVa3q85n0wWfV0iFIYnIK6jZsJF3rEWek6XpqjSQQrmEQagPQC6Ks1hjolvLSEiz57GOMu+065GUG9K6TUlLwxNQPUD+1BuKdDilItszpEVG3bl30798fGzZswLnnBoI9u1wuTJw4UarrREkFClwezuYYPPCHSJz99NNPkifMOvUboNsVfeV3ZWRsW6cG+rSuj4Yc75AE1iVncnqzHq7U+ZT164uFWSo4vMkJaFUA5fSBXyPOMZlERrrqAJurQt5Fdghivn/1DpiCICAlzslYbJUcfiDwTdTj0MzCwGpmvIolZDqIb2INdDq/O2rXq4/LbrwVL8yeh9sefkJ6TpxMGGH10VxsySwCIHO39GAmWGaDFNmtdzTJCzUxYQVk3B3YsRXLly01SB1A69at8f2vv+PZmZ+jU/eLpPtqxlSgfP12qomuDh06KLQE1ixagC+mvBp27Bu/KGJbdpFiw+amV0mwyEHaKI4TAetAQ8rILqvEj/uzkF0mq+FqbdwC/7UOSgp4U9qIIGYjQpJanef0+uoTgb8zC7Etq8iwXN6bNKyRiP4dmiAl3ok5c+ZI9++44w5NfrpP9Nb6StViT6/T9BOyrrL6WV10m/Zn4PzzzwcQCA1BM4XMxoEiZX777bfSvRtuuAF16tTRyUHaKUO9dLEYTYLqV/OMoyotCAKyyyuRVcb2xClwCnc4HLjsxlsxZdFK1G8SkBp53JX4cupr6N/ncomgTU5OxoIFC3DDDTdoC1FBzzU5S8Jb5vZiY3o+vH6/ads0ALjiSpkJUJiTjXeefkRyPEVD7+C8Ze0v2L99a6C9iUl48MU3JBtFQF/7h16DSHy5jz76CDVr1lSk9Xo8KMzJ1pRRXJCPYwf2AQjEVXv5/jvxxy/Ldd+TMI5Ic/j7nPJZSnwcSgoL8M0Hb2Pxl3OwLys/rLU7VCbSmqN5+OVIDrOVvG/NOguxPidJprY3Myq/S8NauOVMtmlQotOB2knxzGdSW4K/1VKtMTEpGWkN5ZcjwSfVIAcOorpAf+TiSg8OBQNx6gahDkF0Rqs1FhfkYcyAazFn0kQU5+cBAOLiEzD9i68xuHcP1A8e2tRdTNebkpKi8Eb1+eefY+fOgBvXP04WYs3RXMWGQr+LKecQnEf05ter30A44+Kk9HrZaiXGW46PZAZ0eiscdL16ApIz9jMWIcXSTaYJqYuapeHchrU0z0gSQ+LMhOSLeFBKY0zeaNicAcC17RqiU/2a7IcqLrP64GFOcqZNE6/iKJmNx7TueB5+phZjALh1xKOoUzegunDs2DFFoEgzMJKccb01Bn+7N6mD3q3qB+7xOJBhUm6hOP8gIG+54qtPpXtX3nAzPvhlE6YsWolZ6/7BjfeNQMNmATXs627qh7///htnnaONP8c6wCo8hanUxlnNveuuu3DPPfdI19/P+gDvvzWFkdI8MksrcbCgHNsMPAdK7dQQSwGYXbtYBxpyqzAomSXu9wPPlP2htnHjze1QiDOr42RffinKPbKKlVF2uk1+UcSRogocNBH82sy68ddff0mhM1JSUhR2WKxA1Xr9o5ZeKtZpxmmO2BeqWqy4EgEMGzZMup40aZKknqceS7rEGYCysjJ88MEH0r3+/fvrpGY3RX2uYcc5U+4bymd8tUY9tSpemerPUL9JM7z0+Xdo0/EcTdrk5GT8+uuvGDhwILsiTdnsesk70HT4jpwSZJYFCEvWvNYbgjvyyvDC67Lk6+9fV2HSw0PgcbtVbWHn/3bGO9L/1919H+o2Uh7SmcxZJmEgYPjw4Th27BiuupVtg3hZrytw96inkFxDqxXj9bjx5qMPYP77U5jq/qSvSHN4xBU9ZUoK8jH+gXsw/LKu+Pq9yXj/hXG49cYb8M9JazFBFar5YTCR3D72fLaqTcZK7xAE5OTkSA774uPj0aNHD90y6PL1mPBmVnHZP0F1JM5SklGzThoSgzYmhYWFyM3V//gsdR9649Tz1miWs6i3Wf7wyUxkHj0s3UtITMKTb8/AJb16o1aifMBW97G61t69e+PaawMuVv1+P0aPHq1wo6ogzqh3kTZz7kBkPzxw4IBCX/7K/ncqy9Qv0pS+bXjeGmUYOQcht9SLpYNqAy/wc6IzECuO5T2Hri8pzon2afIiqN64jCQsDgsTrn4Kw1W0Kh+zL0Kj0TWHJSbHXBQ19jSmFgZGxWq1WJ7kzMjeJTEpGf3vkg/5tNczMzBS0eCqNUqHGAE1E5zBe/plhe09LwzqThAEFORkK+wo7hk5Co2at0Sbjp2Q1rARho5/ER/8sglfbtmPD7+ch7S0NK4uPg3FuFY1U6/Z06ZNQzsqnuLU119jqnWbhZmDhtwm7deQiSXjuQboEWeBe4ToL/fQajfKf+RDo3LVZa0RZoO60zA7WkRRhMvrw86cEmxIz1fc54Hei4zqEnT+1wMtjbr99ttRq1YtTRp6TdT1nqyJfQrszi1BRqlL0eaUOCe6N6mDHk3TuG0neOCBBySnOHl5eZg6NRCoWS0V1XcIImD27NnIywswdVu3bo1bb72VnVinLWrpjUMALm6Whi4NtX1lRdOCdJnRAVNSvwpqYDRJTWRy+xu3aIU3vlmO+8a+gFppAUZakyZN8M0330jB6a1A71Xoc5Ik/QObAtU7w2SXu9Hk4r4YOOxh6d6O3zfgw4ljIYoiWtRMQteGtZjveWDHVin+W3xCIm4bIauoXtQsDVe3aaBD1OnPozp16mDc1Ol4Z8laPD/rK4x8dQoGPjwa7367BOvWrsHc96bgy3VbMHbabLw68xO8+OkCNG7VRsq/YPpbGNmnBxZ/MlNlq6wcn7yYm+TJiq8+xSPXXIJVy5fCQ6nE/7t5E157lh3z0qhM1juHCrocMxpKynvsPY3YvAKBgOwpwVh4PJhRWeTml7SjDJNWjeTM4XCgaRs5APDu3bt100vqIjoDTEOcWfRwxuqj0qICrJj7qXR9/T33Y9pPG9Cjz3WMTtXWvy+vFOuO5Un3Xn/9denDrVq1CjfccAN8QQKN3l/M6MQrnjEeVlZW4vbbb5cm2EUX9ZRimAi8jKr6eMxcq4NGz1uj2W+k4SI6BOmeeqIq44Xol8md4CouHqudigMJh9tI0KFuKnq1rMeUnEnxasgvpxwWQiHc1AuoxoGBiUawksSrpFVharNh4L1DpP+XLFmCAwcOmM6bEIbkjIYUe4eTJlzJmUw0Wy9IgIjP33xZMijv1q0bzu56vjadICC5Rg1qHSD3+eUrJWfsXzVq1aqFdZv+QN2gloSrogLPP/+84bvogcxXM17cFGNb5ahD/a56BzkWcUbukDFeQalYkvSimjqT6gmAta4aSc6K8nLxztOP4P5LzsVrDw7Grj9/18RJYsEvivj5cA52Be2K6PhShpIzKww4E1ILgrKyMoWXRhL7Sp1fKTljz2O/6i38oojdeaX4/USBYh4JQsDejbUeaJirooiEhAS8/PLL0r2pU6ciOzubcqUvpVaWFfz1uN2YMkWWFI8ZMwZxcSypnaot1P9qmzNBENA4NQnt0rSSFHZZAnNNItpBusSZag9yCgKuadsAPZvVlfKq+9EZF4eb738IszZswz8HjyA9Pd2UKqMZkHdgqaw6KNpMYUtqUOYDz7yAOx6V4zKuWbQA65csQod6qWibVoPZN8up8+Al192M+pRpTr2keKQmsD2NClR79ZauFu3PRNdLr0CfgXfjrsfGolO3HtKz2nXrokef63DVjbeg80WX4oXZ89DyjLOk57knT+CzN1/GxMEDMe/dN3F4907N2mwkOVv59Rf4+OVnUVZcxEyz6ItPsXXrVt0yNGXqXkQG3O/LeMgO4M5WaQTCYITz2qUq25QQxER5EQVxNd+ineyW1UwsMBq0PYC+YwiThTGyf/PZHLjKywAALc7ogKHPvix55FEnZ0nOduaWILdCFpV36dIF48ePl65XrlyJaeNHo9JVoXgXes0zY3/EejJz5kz880+Aw5OQkIB33nuXaqsxESGJXTmpIiU5o2cur0R1fQ4Ikst/NeGmIM44pVolgIzapHePIM4hoF5yAvOZRq2RSaSHtizoSXYVRLKoZX6Yc6WvvWfGoYy6LTy0atce1113XSC9KCpUhVgwY6tCwHelH4AgyIs7i0F0pKgc+RVuzX01jHpFbSNlFh53JSY/9QjW/bhQuvfKK68YMB+UbTLaKOh1yS+KKPf4DNu5LbsYm3JdeOIt2f7sq6++Cll6Rr6BGXqaxQCSJAZmJWeilhRXOYBUSM6ILZxauiLP6WD9wX+yT6Rjy9pf4Cov5zLCMo4exjO334D1SxahKC8XW379BS8MHoALz+uK7du362dEQO2y1OPD0aKKwDtx4h2pYcZgnUDQ+Z+Fb7/9FiUlAWKxQ4cOuOSSS5hlORXEGbtU9VjQt2c2vw+QIu6++26cc05AXa+srAzjJr6kSaPH0Fr5w3c4fvw4AKBBgwYYOnSobv3MAqC1OePanque1UtOUBAFNOR5oFOWqkynQ7ZpVocaUrfJ6XSiccNGpj1SAkDfNg1wVev6VP3KQtXzN/A/YbQIltQaCTx+Ebc98iR633q7dG/OpInIOHkSbrdbs3Ye2rUd65fI6+u1g4Yo3l0OFA7FrxmwkrJ6j6Rr1LwlXv3qe1x7932K57v++h3fzngHYwdci7WLFyqe6TkEiRME/LVuDWa9Ksdsq1mrNl5//XVsPJqNC67oI93/3//+Z+Z1AgiBAW9cpPGZH9CXkrHu6RJnFs5TZp9J9ZJzPYzXyipQawyIDptTxNnq1asN89EfmeYE6PgDCckhCBBQPVzw+afS9S0PPKxYbDRqMep26lT8yiuv4KmnZG7Nuh8X4pnbb8ShQwele2ybM/OoqKjA66+/Ll2/+uqr6E65btUrS1Ev2AsvDYu0mcrmLPgrisq+YhRKHjsVB26gRoJTdyE0Lzkz0279RCyd/ZDs+kH1P8+GgJOf/4y92an/Ux9FzUnOtImsqGiZJUQee+wx6f+vvvqKKzUw4+WNgCuFkR4J2lsU/s4swtpj7LhYNIyIXbN9QTsoAYAF099WbMb3DRmCa6+9NqIqFnTbd+WWYMWhbEPHHMQm+OxuPXBO90DsKK/Xi7feesuwXWr8nVkoxbYyJzljSL2kA53yvt6r8yRnpHxa8ir9rxKuqOtL378Hbz/1MB65uidee2gwHrnmYmz9/TdmW8qKizD5seHIPnFc05b9+/aia9euuOOOO5Cens58B3dQUsZS7zXqRjMG61JZ1P9GhD6t0nj//fdrxim5osecHnGmF14n8D9VJm8v02mv0+nEa6+9Jl1/OvMDvD3xWbjKy3XPGA5BgN/vx2fT3pXu0cHZjUC3hMWQNJPvpvaNcFmLuroD2yh2oszAZTM/AVmqynpmhagHAl4oa9NmIpoUgZayvq1DCE0d3OMXIQgCHnjuf6jbqAkAoDg/D2e1bY3k5GTcO6AfDu4MMD6yT6Rj8uMjJE2nLj0uxhnnnqeU1KkYL3pzx6xWhINxHqM7pkbNWhj+wiTMWr8VZ5x7niKv3+/HjBfGIo8KHK7H0Nq4/Ae8OHyQ9G5tzu6E9dt3Y9y4cYiPj8ddj8vqjN999x3++OMPU+2PSmBr0/NZC9aQLCkulqSBDocDF198sal28Ee3iT2XOuoZ7rumWhRBEMnZBVdcJd377rvvJP1sPdAfh9gJ9m5VX3voEbXpeVD3z/aN63Ds6BEAQGrtOrj4upsUz7XevtSHX3bFDocDb775JkaMGCHdO7ZvN/rfcB3KSwOcRNaktqJf++GHHyIzMxMA0LRpU4waNUqZX0kDSKA3P3nw6NcbXpwzETuyi7FoX6aCIGCVSNv9EFzVugHOSKuhq9ZIc4m4RIupw6s+rErOzKhYkiRWaTz+e6puMDZnEaLWIYiZhYZxz0CTkAnegTuztBJxZ3SVgqdnZWXh559/NlWW0QGTt0TI6jKBsSKAv6YoNg/Gc6O4JmaYSpe3qIuLKLsZV3m5wglI9yuvxgc68RRpqDd8oy9N9yPZ6Cs4xJlajebWEbK76dmzZ0sOFsyAOKM4UFAmXRvnkf9Xa6Kp31Xv3VmqQLwYQz6/cl6xHILs/GMjRt1yNTYs/R7+oOfRwpxsPDVoAJZ+Pkuxfqz+7ms83Lcnju4NGqwnJKJXv4FofdbZivYsWLAAPXr0YDrW4ofx4/ejJSclJg9O+/btk+IKOZ1ODB48WJNGYBxw9eax+v3o/aSCkmpy34R9fAAA3HTTTejZs6d0vfTzWXjtwXtRkJunSQsEDlN/rFyGw/v3Agi4z3/44YdhFvz9hpdPfhjvdEhxQOk13e0LeDaU44Cyv780XoP/sIgtMjZYz6wQ9dwGBMFUa6RtzhjZzDYhuUYNDHlmouKe3+/Hmp9XYvydN2L9kkV4+8mRyE4PSPsTkpIwfvK7mjrUDG0r2lyspCwpIKvEtAYNMWn+Erz8+Xe487ExEqHpKi/D97P4GiZbfl2FyU89Iq1DdRs2xvgPPkWtYBgUAGjTsRO6X3l1sO0iBg8ejPJyY6dACoSr78+AVckWK/2fmzZKzlS6du0qhX/RK0N+FtoZj8AKI6sKXOkHiLPWZ52DczoH3Mz7fD7Ji6Ee6M1Eikfm0Ma7skqzqzt05Xw5BtsVt9yGhMQkxfNkVYBCrc66fl0OhwMzZ87Ehx9+iPiEgGOIo0eO4LlBt2LuW5Pw3SczJc9BpFgeJ4oeKKWlpQqp2fjx45GUpGy73uGfVkVTL87M97C4/qpd6e8nBy1qd2UTZ4Ffp2qxEgT5u/McgoSqO2wGDosbE68+2ZV+MC1TisgZWNzFRF1O8Fd1gNW40jfRQXTZDVMSUCshjsvhVYO8E+/AXVjpQbFXxB133SXdmzhxosJoWVmmjHCkVWrJhyDwv4GR2oVxW0TFLwv1UxIV5fzxy3KUB2P1NG7ZGmOnfYKE4LrCrU614Rt9MVbbeQd/tROYrpdegfZnBgLXlpaW4vHHH4fbbawKCihVB43qJWCpNUrEklpSo9NRfMmZFuoxLBODgfIryssxfcKTGs9wQGD/++S1F/DBc09h+dw5+GH2DMx4/mmUFhVKaYY8MxGPvfEepn7/C6Z+/zP6XH2N9OzkyZO45557NKEmZMcJDBhJzkJUT+blev/996X/b7zxRonhwgJdvWlJBHVJj0Er+4CSQy9g7ty5aEd5I9z11+8YevPVKCoqUszVitJSzH79RUx94kHp3siRIw3d5+s1RsNEsLiZ0bc8Pj+WHMjCppMF0pjQU3WT5rq09+oTZ2znNuHtrJrvEfxlqTXSI0AZ58x8Gy657mY8MOEV1GvcBImJsrMun9eLd55+BPu2bZHuPfzqVLRu107TTtlmPLiPh02fagvQK1IQBJxzYU/c9vATeOilN6T7y7/8BGu//4aZpygvF9PGj5YIs+btz8RrXy9GvcZNNfXc/+wrSEkNxMDdt2+fwvu4HkLxK2BYJvW/1fBSrO+xYZ0cfJpWaTSCiW3VdDnVSnKWVrceGjVvJV2f2VHmApJgjWYgubwXWGqNfLE9DwXZWdi8ZqV03ff2ezRpklUxsfQWEz0IgoARI0bg0UlvS/eO7v0XCz96H9Nefh4TBw9ASWGBbBht4sDv9/sxdOhQZGVlAQCaNWumcAcspxcUvwT0gkoCMBLjcbb6nrXVh05OBw416ivyXOnFks+lUhBnnOkSqk2VlJ9xzywhrZePVx+vr/gLhvF7+kURJW6lqqBVV/rt69ZAnzYNLG1M5J1YsenUuPe+oZJ68V9//YUvvviCXabq0HFuw1rMUAqB+s3IzgLQM7BngTUM2G68ZajjZKmhZpqIoogfP/1Qen7VgLvgcMiksZVNxOhbs4kzDqGqlsIKAh58bLR0/emnn+KKK65AZSU7xhKNUo9yXBpJzooqPVh6MEvTFmLTF5ZaI+cb+SjimnZZDyFAkI6653aJA59cIxVPv/sxZq7+E2d0kR23rPzmK8x6ZQI+n/yKwkX2k2/NwLV3D5GuW591Dr754UcsXbpUmhNr167F3LlzFW1SO8xQvIvukwB0CSJG/yuIM518hw4dwscffyxdjxw5kplOrSJG31NDY3PGYOACBpx23ScBtGnTBh8tXa1wIHHs0EFMnz5duq4oK8OLQ2/H9598KPVP3bp1MW7cOIPS9dui7kfL8U4F2R6LqNxmlFZKa62eE13iiZSMZ2ZoDcneW5vfqlqjGvrfmv62gV8RWgl1KLj+3gfw0dotyC8pw+7du9GhY0dNmrtHjsJlN94qzQsWQ8IhnU30mAmMe4ybCns26R/jNzy/11U458KLg+WKmPH80zh55JCqPhEfvjhOCg9Vt2FjvDhnARo0ba6ohvw2bN4Cw8bKjpzeeustuFwu8CDq/B8OlGuMtbystWzZ0iXS/2rijLeHhsvwl9XrjU9mMSXOmrdqiVYd5IHfLshNBYC9e/eqUqs4kdQlUSFxCAzJmahNzwOde+X8LyT9247dekheDmloiDM1cWiy4ktvuAX3jZuoub936xZ8OfU1qWVksSsrLsK2jeuw669N8AalBps2bsDdd9+Nxo0bKwJeTpo0SSM1U7RV1WbaTqiR6iDLWmytLoR0enpPMLIPI0+VOtjBdpngpnIPqIyHzWsmIZWSjPLys6UjnPq4ZSlTsdqWopLY6qFLw1q4pm0D3TaxuP//ZBXjr4xCZZtM1KU4TISyPTJUVvRwxllnYeDI0dL1W2+9xZxr6gNb+7QaaJvGdpFrRk2RJop4raTrZY0NOvwGOz853LOfq9Vb/vh5OQ7/G9A2SEhMkozbBdVYYpalU6ae6iVrXHOJM8a92wbdK4UUAYDff/8dDz74IDNOD40yt0oaxE0NHAs6v6Dh9YuoDDKb1ONab7NlhVlQx3hTtCt462RpJVYcykFmMAZaQV4ebrjhBmzeKLttnvr22xg9dBAaNG2OF+cswHk9L2W2IblGKt5d+isuub4f8/n111+PsWNluxANccYhJo32KbNOOIKFSf+ycnm9XgwaNEgixnv06IGrr76aWT5rfddXE2NLK9XtNHOYk5z+MHrL4XDg9kefwi3DZffpEydOxDdffw0A+OyNl3Bgx1bpWf2GDfHdd9+hbjBGo3mExkxkHiLB1iIyUmsk+z05Y7ElZw7dNoWt1qh6G4m5wpCciaL8vViqgJZrFoCzzjoLC39cio6Ux8QL+1yLkWOeVaRlMW/IGNJbR02fSRnvYuaVBEHAU+98iObtA/4cvB4PZr4wFh63Gz6fDzs2bcC7Yx7FHz/LAawf/t9bSGvQUC5D9QsA19w+CC1btgQQCC2xaNEibjtE3YswYJbZwhqTqrUs/eB+yQlhcnIyYy0izAe9mWW+bh7Ob1yb+9zYv2sEIUtuAt+szRky8aMlzpRQLrzywhHuWkA+nNvtxsoFskrjdRSnkkaCaubpO1wwxs1DH8T1l16EzxZ8i79W/YSckwHD7l++mYurstORk52Neg0aocIRh3/WrZYOMvUaN0H9xk2xd+sWTZk9e/bEoEGDmPWpJ15KvBP1kxPQsV6qlCYl3om2dVLgFATsLygLDtDAW51TvybqpyRYHoR0eqXuOKt1oJ4zNggVZ1W94Jk1HGWp313IiIOjB6NgvWpwCUWdXwComeBEiduHM+umQg90/9ZKjEONeHlaa+qVqDO5o/IY3gbNfGLGZ7E0NiSVFRO6aqVuH24a+iB++GQGKisqsGvXLuzcuROdO3dmlqloZwiEo7ocAXyCpJKywaLHwVn1UtEgJQGZpXwpkV7JoiiitLAANSmdeHelK8jACeC2ocOQFnTtzOP6SZA2fDlVn9b1dUMPsD4p355JC4fDgR9//BHjx4+X3Ix/9tln6Nq1K0aPHq1bllpF0oiQZ6nxrj2ai+KgZFg7Ptk9ZVVyRkAkDidKXdj5x0Y8+sxjyMg4KT0f9tQzeGjYA8F2FCIpJQVTv1iA1597Bn+sXApXRTkaNm+Jxi1a4Y5RTzMZhHQbHn74YUmdfdWqVcjNzUX9+gHvdzyCP1TJmU8U4eTseaxsc+fOxaZNmwLlOp147733dNcJWTOCJs7YbeR5a/QbEIwEPmqP8QdO+xqQW3eOGoO/167Csf174PV6MWyI1mbu7tHP4MVnx+GMBnU4tbJhjoHHyKe35jIY1YTo0lNrJCCxsbg2ZzFUa1RKReVn1o7P5upu0aIFXvliIbLSj0H0+9GkZWvUSE4G3LIzGIVtu6Acs/TYVUqR+FJnhxB4N6ZDEJOoXbceRk16F8/cfj1EUcSuPzdi/J03wlVWjoyjSinawMH347zLrlDcY8a5jIvHsGHD8MILLwAAZs2ahbsoMwPtS7HYAuZhJJ23OsTU4/TPVSuk/6+77jrUUAX6lqT3DgAq02oz5zgeyHsIAJrV5DsKirnNGSB3Vqs2baV7R44c4eahB7aPWjj0bM7MesYhbXnllVdQmJMNAGjStCl69L2emV5rs6Bqp0j/b9yGHpddjgcmvIIZq/5Ah07yQXPdr79i9+7d2LBuLbas/UXBYc7LzNAQZqmpqRgyZAjmz5+v68qWxSnv1qQOaqiCNHdtVBvNagYkb3T/Jjgduu7geaAnk4IDZiDlIk9ZwbmluEcaCatZDgu3ycE0+olYm5aZ2Gm8xsgqBXLaJqlJuPXMxhqJrSK7zv+selmSM8vtZaZn188D+VRGBwUA8Pj9SEmtiW69ZS7X10HOtVyeXI5aAsyu37heeuPlpXbTHmSp6dcwJRENUhINxxvLi9qhf3dgTP+rMaRnJwy+qBPeeOMN/Prrr5g08j5po01JrYkhjzzOaDfnnSgmGUlbKzFeUmlWI1y1RnIvLi4Ob7zxBu677z7p/ksvvSS5VmeWxanX5fUhp1xJ9LL2g2JKZVc7P9j1sgK3igCKXB54Tejh7tm5A68OH6QgzAaPeR4PPDFGGlN1k+LRomYSEhMT8eCLr+Pbzbvx1T8H8c6Pa/DMB5+iTcdO1Hup2hJsX4sWLSRPYz6fT8HVJkOS5UzB6A1YNrUAe64qiDPVs5KSEkV8uwkTJuDCCy/UrVdS56fqN6smJnKe6YFIgch6QfLllruxcG8GilyybWt8QgLGvPcxWlDnFho9+l6P/g+OQkqS8drDgpk5y37GLotl4kG+n1Ewd5oBroaeMy699FZgJjetQixrOIRO0KjzOYXAut+4RSs0adUGcU4H4glTntN/LJVcI3EZfU5V257TZVrp1vadu+C6QUOl68P/7tQQZk3btMOTE19WZ6X2cblCvyhi6FDZrGD16tU4ePCgJi+BEUFqBfkVbhwpUjohsXo2UZ/VNq+WTZduueUW3Xys8c2qWuA8U8OKf5QqIc7Iwt+8ZSvp3pEjRxSbuuYdROCfzCL8fDhHmhgCWJwWfW4hsy2CgPz8fLz55pvSvUdHjUJcvFINqWujWrihXSN1dk39PD1/FsgcFwQB4ydNgZMTrLJ5+zORWjtN2a6uXfHNN9/g6NGjmDNnDlq0aMGpTVD9GBMTLE+OVqHnXt3oG8kOQbQLL2Hyq8tQeIDkbnbhgaeLbxU8Xr4AweJiJHCugEOFZVh3LA+lbn4QW1NqjazFy0Q+AtkhiHFaIsm49IZ+0r2vv/5asWaQcs6pXxOXNJdVivTaxKuW9cysynIoITFkdezAPwd3bscrw+7G4d27AATUmp955hn07t0b2zfKxsyDnhyPhg0ptRTGBq+GoPrH6DDTNFWrIs2jT3i95HA48NFHH6F9+/YAgMLCQsyaNQvlHp/CHlUuTFkaPVYOF5bjt/R8xXfROJJg2L8prnXayTp8+fwiVh3NxfYcvrfJirIyTB39IDzuAOHYoEEDTJ+7AP0eGKmo8YpW9dG9aRrFqdWfTzxHO7ffLsdrWrBggfQ/S3ImMWcMhrJebSwpt9qJBo2PPvpIivlVv359PPHEE9x6HYKAns3S0Kp2suKeGejNT976mRLvRN82DXBuw1qK+xlBtdSsskrFeG7aph1mLf4JHTp0UKQ/9+LLMPLlNyEIgqVwInpQN9m6Ey42I04izowkZ0StkcmEJL+sw2uYO6uaCUF+GVJRkXquqDbEJjCJKwTWkTa1U5DkdKB1nYCKPEuyTnLFU99fQagwupy+x5K8qctmtptxb8j4l9B/xCjN/fN7XYU7Hx6N6d8uQY3UmvplUYX6IaJ58+ZSvFFAGRJDDVH3whzoLGuP5eHvzCJDb8gskHFKn9UKc3Owb9vfgecOB66/XiuEIalZjAZW3UTjxNIpzUTimKo1EhAmRM1atVG7dm0UFRWhvLwcOTk5ioMGDY9fxOEgBe3xJwRVGhlvKCp+DOEQBHz11VzJe9i5556LJ598CssO5yrSxTscSGTEi9FUr9oIjb4BbdtwQY+L8Nq8xVj17Ty0q5uKnj174viJk/jr0HGc070nzrusNyrKSrHj9w3IOHoIXZrWx0MjhmvEsnqQKHwTw4gsgCx7L6vQjVNDt435KbXcO/UCquGempzE4brSj2Mcgnnu0s0QiiwOjCkJH6ce9XVRJZ8ok/NZ6x+zQdPp77XmaC5S4p3o1KCWXhYJnuA8Oe+y3tKacejQIWzevBndu3cHwLY/YF0TcNcIUVS8n0NgjTV2Ccw5Y9Cfki2I349Zr0zA8rlzuOkB4JzuPdH3jnslI34FLIwbo0/dolYymqQmYvF+2dEGX3LGuEf9n5CQgDFjxuDBBwOe7d566y006zsALdJS0bNZXd186np9ogi/qFxnlW7FtdJO9RzVe3cWw4AlTWPh45fHS4b4NWrUwPr16+Gt1xR780q5fc1y/uR0CPD6xUA+BpEFAAMHDpRUQ1evXo2MjAw0adJEHlO09VGws4w42rpEK7MP5Ht0PlEU8dFHH0nXr776qinvhU1UzACz5329NzLKXjMhDu4gY4CUQQhlnyhqBnRa3Xr4448/8MX8b5CflIaWZ3ZArbR60vP4CDHpaFgP0yIvWCwGlhFx1jQ1CYcKy9EwRaspo2aQRhLqV2GpEjNtzjhlWK1bQ5w5BNRIiMP17RtJ6uus3gt4kVaavlihTZwOAfCp9n/Gf5p8gqBZm5xOJwY9OR7N2p2BZV8ECKl+D4zEJdfdjB5N66BZzWRsz9YymdRaFYA8ZoYNG4alS5cCAObMmYOXXnoJ8fEMW2qddSoc0OWYnV5xggC3KCqI5S2//iLNh0suuQT16tXT5NMj0gPPtPfiHQIqfYCZkWelP2JscxYAfbBu3bo1tm3bBgDYvHkzk5IFlJxMr1/UN7pU/RrBIQS8hxE89NBDiGdIr/S6XU9tDJA3Qh7oQKZxDgHtO3dF+85d0b9DIGaFO+gGlyAltSZ69A1wMPqd0diStEbNxedteiyD4EgTZ4q2Me6R9YbFiJRtzpRfWuEQJLJMPACBw51PlDmKNMFu1WhbeqY+MJrMx0qkTh+qiodVV/pmJEQOQVAcCiq8flR4/aYcghBOZXxCIm7qdwu+/PwzAAHpmUScESm0cdMV6ZnPoN4ktd4a9bI7LPYLIEt8X37hOQVhllwjFeOmz0Hm4f34e/n3yMzMRFJaA1x83U24+s574XQ6mc5izKj0qpkCPMQFPUGSd+apRfGP7wEMHjwYzz//PLKzs5Geno4Ny37Azbfdqc2nlowzCveLIjO0RrzDoWHWaCVn7LdnjUkjVTAAWLNoAX79QXbO9NZ776NDhw74N7dEaoMa8mGXQZwJArwg78c+9TRr1gyXXXYZ1q9fD7/fjylTpmDq1KmUWiOdLbAp6Y397k3qIDXBqWsjyZKY6jHZ1q1bh3379gEIxPy65x6t92MzMCs5043dZYFRIds5B659opaMFQHUrl0bd907GL8e08ZnDdljIWcd5/VBIJBzHNrUkR0fCQL7LCTZnKmE1GfWraGwgWlYI1E6g2iayTm8hgu9+ag0a5HviYz0IRNnwYxqiQl9bSQVdUBQEANGhAp9T1IXpUkyigl8TZsGOFpcgT15pco61VxPClf0G4gr+g1U3GMRYHJ92ntkXt1www1o3LgxMjMzkZmZiWXLlqFfv37cdwqFOGNNY1pSaVY663Q4AL9PQStsXiPHSL355pu5+VnTmFVzvNMBeHwmxx1hJhinrlKbMxHA2WfL7vRfeukl3UCffsXkFHV14qV8Bgc+0oZDe/7Fli0B+63ExETceeed7I/C6Us1t5DVZuikoQedVQNbq5uA9uCuD9quT84Q2rLHCwfAA+kZluSM3NMEIlUcxiJPnZHiE5wOdG5QE5e3kDkvoTsE0T8wWnVpb1ZqZKVM/TTa/3n16Q1XUzZn1KlwIKXGNX/+fMkek5w31IcGMxu+EQIacipGgE52Uv/efzbj2aefxmuvvYb0I4d1y45zCMjPycErr7yC99+aKt3vcvHlePPb5eh80SW48Z778ccff+Do0aOYNP9H3DRkBBKTAocpluSMP96ol4L5MUKn05MibTpRgP35pdoHquRJSUl47LHHpOsfZn2AmglaIpP3hUgT9GgmtQSDZy9gpl6WB0cah3Ztx4znn5aue996O+4adK+iHt6BiGnfoxNmQ92+p5+W650xYwaysrKYxEp2mRtZZfrOaVLinEhLStAdE+zg3PL/9FyjpWb33HOPaQ0PNRwCcPMZjdG5gVYNi4beODC1D6iSOHT2F8BYNTR0yZnA/B/gz9GkOCeuat0AbevI/as8k8j/k7VWPTbOqJuKtCS+R1kCnj1a2NCMc4boDNpbAuOMYL1qLYMHUErbjT5t54a1FESyklkvahwc0Z+B1MNcpwSgRkIcajO8/pISzX4PwaAegC05i4+Px9ChQ6X7dGgMGqIRRWoAVhZa5d0s0UL6k8zlitJSbN2wVnquR5zJtocMwp/RZ2S+ewz2B4BiIJv4VDElztQqA6IoYuzYsVLwvz///BO//vqrIi0BvUgGJGd6By7lrx7IeWbJgnnSvVtuuQVpaWk6B2LOwZt6pJGccdoIqAYdo95Icqc0QRI5ZdcNLtRn1mUv+FZgjojkEKEM6Z1VyU4ooDdINTEoCALOqJuKVMqZCu9bmekDMi7Yag28dtL/qwmT0GCqfxml82xjdFXIjNc0xcJ32RW9JY90J06cwPfffw9AJp54kkgarPnpF0V4/H6Iopb41HLQ2RP85JHDWDBtKl4YPBAzp7+PCRMm4NoLu+KLKa9KdkhAYLP4+r3JGHn1JejT+QzJGxYAdL/yakz4eC6attEGPVWDx8BhPxIUZZplYig3bNYhXcTJUhfSS7RxcFg9NXLkSOnAfmz/Hmxa8wsjn7GEjibuaclOnMNhrL5nYYKw7EwIvp81HWMGXCuFYmnWtj2GPf+apfJ5HmDV80r9XjfddBPOO+88AEBFRQXeeecd5jfadLIgYKen0wb5cMZuuFmHIEVFRYrwLiNGjNCp0RgOCIhzhG7LpfawzAJJoWYI8hhHemPLGWI7ea2k95aGKQnoZECoAmy1az1vjVb2CUmjhcrUrUkdXNOmATuDBajbwVJrpJ+xtSXC2/jV5z+FQzLq2RUt62ncobepk4I6FJFLj5GDheVYeiALZZS9N/3coT6fQcvU4Um2zDIF+Iw70gZ2qgceeED6f9myZTh8WMt0VJr2GFNnoihi4d4MHCgok3Kp4ab2f7OSM5KOzOXfViyGOxijrVOnTjjzzDPZ+YK/7DBS2nvE5sxjQrPCCq1aRZIz+f+uXbsq1B1WrVplaHjPI87I64ui9mCScfQwvvngbaz7cSFyMzLgrnRh2bfzpec0V0ANvuRMfsgyvubBoxDXmsgQQfCqS4xzon+HJmiQkmgqPQ+m1Bo5SdhBqAmxJOK6tg1xdn2tq/lIdmeSyt6QNXF4r8mVqnGICVNjgpMmNSEOdZPiUdsgCLK2Tda+mYbwZ6W3oEKmhkLC7IxTzFXiml0inNX16LSJVeuWjEL8KNlWKTdlnutugpXzv8Sg3hdh/rSp8HrcVFoR38/6AHee2wYP9u6GJ26+CiP79MA3H7ytCRTarlMXjJ7yAZxOSpJkcn7I7SXZeM+sQs7BkqCUeXyaewSsTbpu3boYPny4dP3B669qAlPzVU/JWk9pK1D/xzsF5frKKMOKdJ11UPd6PHhv3GP4Ysr/pHsJiUl46u0PkZSiVDPTA2k/a52UjM0NmikIgiLo8euvv47B11yB5+65FW+OegB7/9nMrFNbDr8eIyk3yb9u3TrJjrtr167o2rUrv2AOHCGP1wD0QkTQIONAJjzk/UUN2XmPup5AnlA1RWi0rK10s02/waUt6nFDqwBKZhI99ySGhmr+WhH2sezRk+McGq/PoYB/qmPdFxn5QhDXQH/sq/fubo1r48pW9VE3OQGta7NjaEotYTSlhA5ST0vOiJScpQnDmAPkf/IpzYYxkFUlGcxVgyLatWsnxQUTRREzZ87kpv/lSC62ZBZy05Au2BG0gWP1mVshxOC3kYAkczgEeNxuLPzwfekZ7TFYLyM9vpOCawhrPTizbioSnAIaMOwz1WhZKxlxDgEta/Hd6ANVrdYYfM+ePXtKzw4fPmw4tXx+v0at8bfli/HFlFcl18UiAHdFBdIP7se7Y0dhwFlN8eg1l+Dr9ybj3TGPYujl5+OuLm1RkPf/9s47Xo+i6uO/85R7n9t77r3pPaGGQOg1EJASqtLkpQgKKuUVG1hAsSDwWmiKCIIoSlNEepGOAtIRRFoIJJBCSE9uklvm/WN39pndnd1nd5996j3fzye5+2yZnZ2dnZkz58w5huOPUaNGYc6cOZ739J1tUA7aGkKPjkzdrZrK+Gkd4sTP5tj3uojZCzLjGVQzkLV3N/7WJBOoSydtsb2y5+Y7g5bddgpnepW39/38NGfOIzYTDf8sus5xZiFBhL3GddrML4MQNgh1kAYzL7NGZTAxBIGvf/3rSJlrQ59++mnD2yvkoME7nyqGK2b7vReYWp9+6YRBybtTwHDm+qP33sW1P/w2BgftQsqECRNsv5ct+ggfvPUG1qxcYe1LJpMYP348jvrscfjO1X+wDeyNZ/AuYN1g0OqYNJc5Z2GjmDWq70yW4Wo/D6Aer/jss89GbcZwAPHW6/+2zcz6XGY7qGrLnPGt7B4gvQXVIDhnRj94+02cfcjetjVmAHDmxZdh3LTNbOnL91erCVfgN7iqM9sdZ3uj+2QOP/xwywsmALz9+r/xxvPP4tmH7sN3/+dw3PHbX2Wv1z0gAvQNrgkK+w6ZT2kBA8C3Xw0CZQsxEkGEMydyAnloSGjKWl96u4xqxx5j2qN77VUu66irsa35CmtBQ2QMaBeu7tPWFbfmLHf68rHCmtGFwdN8V/MMQl0PGDErOmHHiXNsMbbFrh3zQ1dTVMFYPe7npVEf/89+fipgPbcmO/z6Bp/rTz89G4z9mmuuwZIlS2zHnc/8/qo+3/zIuijzYy8T42+uSTYd6ljxoVtvxJIF7wMAGlva8PnPf977Ose9AWDbXkND2qiZgGjNpDF3co9nKBqVxpoUDpnSo03HSXHNGh0zLgLA/JXrbS7133vvvZxufgeF3SHIS08+ip+f/UXcce2vsN/OO+LBp57B8089huN33AL/e9CeeOLOv+TM29lnn22fqXbgK5wp20E0Z+ogbyCC5myLzibsOTbcYFsl9KDM+hutBcw3MKVu8JlKJDCzuwW7j2k38+Ym365Dvb4tY8yK+MV48cNfcxbtmPb8UGf7pBNSKtSZZLjT1B8M5ko/O8geGgJGjBiBfffd19p3yy23hHYIsmbTAP761mJ8tDZrhifr2sZB9wJfl0MQx467fvcby6ytZ+x4nHjO9zBv4Ud45513cN5FP0VjS6srD/WNTTjmi2fh9mdfwUtvvIXvX3YVWjo6XecF1SxL0mZHrRN8nesWvJLed0KXTahXz9OZ+K331ZxlGRLCEprGjh2Ls8/Pxtv54x//iCf+8U/9hSYfrd2A5X2brEOqQGZbc0pkE9yithEvPfkYfvqV03Dcfnvh1+d/E++/+Qaee+RBnHPkAfjovWy8n81n7YTfPf0adtn/YCV94w5jW+owY0QzNtNo+J2mdCpyjUpbnf2d6T6ZmpoaPPjggxg1apTr2NDgIP7wfz/CY3fcZlzv8c05Z+rdefWfoJB1URXO9txzT31iIYnatgXSnFkDQ/sT+TlAcR7KpJLorI8W4wxQzKm0yxvCp7Z0/Sb8a9FKrUbbJZwFSP+AiSPwqQldWc2ZxqIlf5yTEKZ2XFPjhfWf86qownH2upbaFDbraMT2va2uMAv54uVYSD9GsE+W6CZiW02rmK6AMWj9PvEg7/Gggw7CxIlGrL8VK1bglFNOsfeFIRWXsmvXa/KMfeokW2CzRjO9lZ8swy1X/NTa/+nTzgzkNVZ9Hz0NGRwxrVfrfKtQFNdbo/mwUsJcsaHfGBg1Zgcj8+bNy2mnOiiyBT9//nz86AvHWcdWLP8En9p9Z69LAQBjpkzDxx8uwIb1hmv+r33ta/jqV78aKO/aY7a8qTPK+vOdAxVdOipNNSmkEoQVZkDMjrqaUMGg9x7XiU/6NmmOBKvktckENgwORe4dg8yw+Q8+s52reprTO1WYNMOSSSVw+NQevLx0Nd5buT5n2jO7W9DdUIv75xmBzXUC6nY9LRAANg4YDU8mpGMH3Tle9TRsWYR1RJLQ7HPiNUQKqzmT5x9zzDG47777AAA33XQTvvgV4xt2OQTxeJY+s9w/WNVnxfJKJxMYGBi03omVd3K7ZVd/D/T345kH77F+f+mHP8WWO+6Crq4uJBIJnHjqFzFu1zl45Z9PoHfseNTW1aF/0yaMnjQVve0tyKSSeOT9ZfDC720kE4Qk2T1h1lpmGPrzjTSlQK1PvakmhSalmfFs58xjQePAPfvRCixauxFzJ3dj8doNOObkU/HYY49b5XfmN8/FK/94wkzbneYzHxoaxwmmSZEtsL1fexqhPbjz+qtxw8UXWL/fePVlPHTrjbZzamozOPwLp+OI085yxceUt6xLJTGpTe8Qw8+sUe7paai1zUB79ZETJkzA448/jquuugpL+4HGEb34+21/wttmbJ8//OzH2Hn/uRAe/YcuEG4YUgnCmjVr8OKLxv2ICLvttlvE1OxEtYRIh1gD5lzjpPXWaJk1RjcN1GMkoFsjl88knc5RgTNeXZDUa1NJ1CL7/Go2CyOaZdHVdiFgjEvgLJ/c7VCKDPfzXmfuMz7/9XNeDNjazux2EEd0uscc2VSHXUfXYcWGfrxtrdvyxn8yWH9flWQyiauvvtqaHL3nnntw1113WQ42wgaelm22NUGiXC6/3CiaMwHDMuaCc76BtatWAgC6x4zD/sed5HtdVnMW4wAyAkUVztIJwtYjmjGupQ7zV623Go2W7h4kk0kMDg5i8eLFWL8+hxp0SCBBwFtvveUKBqmjtbMLTW3tGDtlGg4+6TRM2XomWtMJvPTqq5je3YaDdp6VMw1fzRkR5JfidlvsRtgGE9ltL7XovhO6sK5/AA/M+xhA+E6gNZO2qeHDVrkaUzjLp8POB7tZY/C0dGfuN6HLZr/sf70qfJC57siu/fVCFRwBvYA6zhxcrt7Yj/X9g9pF3kEeN5gZpH7g59WMBgtCrZwfQHNWm0pgrWYWN8igfkB5Z9IL6mGHHYZMJoMNGzbglVdewfUPPoWxU6fn9BjpFFjUwUtNktA3AFd9JxhC9KqN/ZbmSc32U/fcgdUrlgMAunp6sfn2O1nXAYag09Y1wuXWGDDe3+oc8ef8qkGKCPtN7MKGgWzZ6tqSqe0NNo9uQdJ2ZBSyxthMc0zpzE8Dqh5aZLppf+KDT7B60wBaalM47uxz8a+H78fQ4CBe/eeTuPmu+7Dn7Nk5wx0ATs2Z9wXamWKPyjI4OIi/Xfsr3HTZxd4ZgNG3fO+6WzB26vTgN3WQNWt0f3Xb9bZi9cYBd/vhUy6TJk3CT3/6Uzwy/2Os3DiAXQ84FGcdsDuWL12MlR8vxSN/uRnHnaJ30FFn1htvD6eO344dqUQCT//jacuD6owZMwLNUgfBryh137UkjEMQib1uefTjrjzk18/Jy8MIk0HQlYtTIximXx1RX4MPVvehVdXAF0g68zNrHIKwAsKHvX0qSRgYCKniiQlX22nirTdThCblLCnkZVIJ1KaSIAoYw9SRpu1YwIKcM2cOvvSlL+Gqq64CAJx33nmYO3cuEolE6BV/ss0eGBJ47qMVmN6ZHQepY2tJmO/spssuwZ1/uc36fcp3f4Sa2ozPFdlvoSDeSENQ9DVnk9saLNMhy0VnKm0zxVj44Ye+aQwJASLCJZdcYtufSCSQqbcPPr5w/oX47VOv4NK7HsVXf/5rTNl6JgCgrjaNCZttiSnTPDpVB1HeU5CJ5CEhUJtMYO9xnWjysUONz2xA/dCDESUCukqwOGfe50S9XrevsSaF9qBaR3Vm0DGrE6C/t+G3DqG5No2ZPS2WKZo9C9FnTHPtj2KC6JWmJZz5nO81+RCkMVdnG6Us1dzcbHOH+/hdfzHz4NCcmX+XfrgQD992E56863asX7vGOq4K63JgtHFgyFZARMDKjf14eP6ybBBU89jg4CD+8uvLrHOPOvFkJBJ2Rw5NPg5ZEgSsH/A2CVTTUdmiswmzx3WCiFBnukCX6Nzrt2XS+phoAauYn+ZM/atDJ4DLNWoDQwIjJ0zCnCOyIRK+dtYZeOzdj1xp2rMqJ8TsZo01ScLcyd3BJjaU/G3sW4+NfevxzIP34tvHHIw//uInlpAxacsZ+OK3v48Ro8da1yYSCVz6y6u8BTNXfvXISTz9mrMkuhtqvdfi+CD717qGBhz6+S9b+/96zZXYtFHvTt9qpwKqMJwTkEkiPPfcc9ZvdT15vviVpd9Ayq9fdWLVZXNjULPmbOPgEF5eskrjVCO/PlrWY9UMc+sRzWjUhJjIhZoVbcy+gFpuHWNb6jF3cndeE75euIRkhyZTZTCCNkWS74RxLvySH/BYc6brc517dFWs3ppQCYafQxCvNae69vt73/se6s210a+++ir++te/micHzIiJWhcXrNmAN5U4bmHHLSr333azrV+ec+RnceZnP4O9Ai4JKnAVyUlRNWcSsoQzqYUARo8ejQ8++AAAsHDhQmD0Zp7XDwpDc/boo49a+7bdcx9884prkUrX4KFbbsRjf7sNM7ebhX2P0ge+nNjagEVrN6K7IZiNuL/mTL/fq44Kx2AiSYTWTNqa+c5VIfOeoQvZlMmBnp8raT/yzW8g71d5zAIFSVJuZ1Xw4RKPY5G45zkhz5ckFE2g+1i4+2YXGXtfqBMYgKCTGOp29sfxxx+PW2+9FQBw343XYZtd98ROR8y1jr/00ku48KKL8cJrr+ODt/5rrQlrbu/AD/9wO0ZPmmKLoVajrNVKgbBw4UJcf/31uPvhx7Bg/nyMnToNq044Dicd91nrO37w5t9bHhfrm5px3BdOwyJrEtMoD53JqiTI92GPgWS0LekkecYmqk3lFvTDmp+oV6vv4z/L1mBgaMjSuoRFds7Hnvk1PHHPndiwfh0+mj8PD91yI3pP+7LndbIaOOtGTSKBmqTbvZJXu7ps0Yf49fnfxEtPPqo5A5iw2Rb4ztV/wNiRPdjrmJPw6tNPYt3qVfjKZw5C7+ixuOfdJdrrjHvmfrcy/6qAMa29Eb2N3p5ygwln2bP2PfKzuP3qy7Hqk2X4ZPEi3Pfnm7D7p4/zvDagbOb6nUqQFTcUAGbNym2VEhR/jbh7hn1UUwazeloDtb3OdktoBH/Jig39WLGh37WWK9/BnJwkSiszf5PbGjDZwxw2KEG84YalJpnAxhwTSlEIWu8Ah4AZcnxkTMLFn3/JpyaOwMtLVllWAiq2fKuPoJkXcQpSuicL2+6S46/tGDnP8qa7uxtnnXUWLrroIgDAZZddhk9/+tMRNGf2331KvdKlFcRx3gdvv4lfXvAt6/e2e+6DL5z/E/Q0+mvNVCIHk4+JknhrBIxXLxuNIQF09oy0jn24cKHvtUMCWPLhh5g3zxgQ1dbV4ZtX/BbpmloQEfY75nhceNOd+PoPf4JkSi9/djfU4ohpvdqgft459jqiP+bprVHZHhTC1en4ee3xz0lhkANWZwDFMOwzvhMTW73dzvq1p8E0Z8H2hUHXSKoTCjrmjO/UxnuJ6l45yFX2pPVXaE0YfO8bbkAj66xfgxJXvVUHG5/61KfQ1WWU98a+Pnz/pKPwg+98C0IInHHGGdh2223x51tvwXv/ec0SzABg9fJP8MMvfBbLlyy2xVBRNaLLFn2EWbNm4fzzz8e/Hn8Ei96fh2cfug8nH/8/OOKII7BgwQL87qILcN2Pz7OuOfjEL6BNMePK2vATtutpwRadGtPViOXg9460gak9tC+BJ2s8TntnxTrMX9WHj9fr1rXa76VDvs/O3tE47uxzrf333ngd1jg8QArN9qBtsksoWlxHhjUfwfPPPouvHbafp2B2yMlfxEW33ouWjk4MDAmka2qw3Z77YK9DjsD48eMDuLj3Pw6ojrKy+0Y2ZWwaflc6PgX66PvLcM87S2yDntq6ehx2SlbQvfPG38WyZsrZxSUThOefz7rt32677cIn6oHvelaPPjPMAIugPI/UnAnvonZOVsbVvsXhdEAtqzy67Rw3Id1mbGkCygSSLoyFTXPm7ov8KLTmrC6VtJt9KqiTgTbNmd8Y02fyM5MOFm7DmZZ2Qtt5jonXvPyZZ55peU1+8skn8dJLL0VecybZoKz31k0s5HrOtatW4idfOhF964z1d5OnTsXXfnG1az2wFzL9Uq85K51wRtkXvqxvE0RzVtW48EO3cObsSF5++ilre/rM7ZGucZuq6Yp2XEudr5Dgl9+wxzw1Z+q2Ipx5Rag3jgXLSxBkwxTUtEGaL0RxSSxpqU37Xu/3SIFmPnX7YlSdOWeUvMxommvT2ngvUfMS9iqv2+h2+zU+0TVnPud7HAzfmGe30+k0rrzySlvaV19xGfbcc0/88pe/dF3b0d1jbS/76EOcd8KnsXD+e0pestx42cUuN8GSO+64A5tNnoi7fne1ZfrWO24iDj3lSy4tl2RcS702FkogzVlI4Vqm2aAM9FznC++0tXnIURv7HDPpNtNfn1csZWMhBOYcdRzqGw0BdsmC9/Huf17LmS+nJUIi26Da2KzD7inx3nvvxf77zMbaVSts+9u7ezHnyM/iwpvuxInfPN/q1Ac0ZlS5vpMgRSuTVeuB//Sc/zezYkM/Ng4OuQY2e3/6GKRrDG3cvDdex6/P/yY2bTQ8le46uh2fmjgie7eQfZp170+WYcGCBQCATCaDzTffPMcVwfF1UhDy+/DCip1n/vbTOjnNGvPtb0Y2ZrBVVxO27MzfO6CalXxMGH3v4fMrnjSjmTU6+2ZdzgotnAHe9UFd46x+x7rTZdvmI09ZpvhBJ9mk5inMmOmt5Wvx4Rq3L4iRI0fiyCOPtH7/7Gc/C2QJo+IWzgaVY0rerDz6p3fbry7F0oWGFV6mvh7X/eFPrtA0fmTb9uEqnMFuUtXRk43psXBBVjh7743X8LldtsKX5+yEj+bPw8YNRgV56u8PWOdsscMunndxMrqpDtt0t0TIb/hjnt4alf2q50np6EBXKbyi1EdBNkxBzRTHt9Rht9HtGN0UXCUcJ4Ea0gJ8R6TZ3qa7GVPaGgKbw+adhwgmb0Hxjb0WJCGb8GrvPtIJfZ50yYZtzF9Zutpml37UUUfhkr/cjy133NXa9+STT1rbs/eZg9MuuAQ/u+Mh3PiPl/Hda/5oadQXv/8evn3sIXjmmWfwk5/9AkfusSO+eugcXPODb+Ph22+10jj8hJPxratuwF6HZddFqWy182744R/+gtq6elvZBdNA5n5m7Sk5rjtsag+27231PF/od3vnIceJzk5WrV9+r1gOHoeEQE1tBtvtlY2L9c8H7vG6zLqfM86ZbtnUfhO6bN4SN23ahJNPPhkDpjY1U9+A8679E258/i1c8/gL+NIPf4ppM+0mebqZ+pzvN0DhylTVQaXz04zSUQ85Sr2xpRUHHn+y9fvvt/0RPzjlWGxYvx7tmbTNPMrzuRzv2Pntvmp6aQQMZyDpgLPVOkY3ZTzNdp1oNWch+0n1dEuB5qM5i1voISJMaW+M3ZxqQOOtMQ5yteuR0vRoo3Qlra5DVjPgLD9dcTqd7zRFWNeXC6/XaFtzpjyC7huXDrRkXCy1fLbracGOI1ut374To+q2QxmgO8955I1P1uLZj1Zq01Y9nd98883472v/9s6IBqdzmn7bmjz7koN0grQxbSUrVqzAgzf/3vr9xQsuwdYztg6Vn+wEfMjLYqakZo1qJe0dN8Hafu5fz2LNyhW474/X44LPHY3Vyz/B0g8X4Mz9d8NxMyfj4jNOxsN3/806/8tHH6aN+xV2tlllr7Ed2GV0m29audJ02ecLgbc+WWuP2aQMJmqTCTSmk9i2xy08Jn1nVcMhZ1qCNtpEhBENtXkLhVEEXCCgK35dQ5NnQelMJTKpJLYa0Zy/Vi5wHsKdFEo489Wc5VfmqpY067odOGhyN2Y6JkfCDnEGhcDry9bY9k3cfCuc+6vfYdw0+0z9vvvui7/ceRf2O/p/MH76FkgmEpi5+2x87RdXW16bVn2yDDvvvDO+/fWv4oN338b7b/4H9/8pa/Z1wAEH4BsX/h9mzd4XZ150KS7//c0YOdIww+7o6cXpF/4C37vuFrSN6Abg0IA4ikhXb4JpznLpUtwkiHwFReesbM485DjunOupVwb7fu84q6Uw/u6030HWsX8+cLenebjsP5wOQXTOaZwDpfvvv9/Sija1tuGiW+/BNrvthbpGdxwyiToYz5oZeZ5u5iF36VrvQTvZob9PoHWamub92P89B7semHWi88bzz+J3F30/cFvpXnPmsGh5KSuc5WvSuMPINswelw2z46s5i0GgIbjd5At4a8+84lWVA2ppFCqfFLHf8cO5nmh53ya8s3ydPpC2p+bMfp6u7VQnfEc1ZrDjyDbXOfnitTbK623o8rnG9OLbbDqUUs9ozaQxqqkue71PXnTvSjs+jvAiZ82aZbnVHxwcxPlfPRODg8HX8/lpp21WMgnCwVN6fCfGr7vuOssaYML0LbDb3MPDB3A3/5Zac1YShyCAUQnUj2uzWTta7vRfevFFnHvUQVj8wXzXdUII/Ovv91u/jzzySOyy4w5a9+gEYI8xHegbGMRzi1Za9w1Ce12N4+P30zJ4fISOSrdo3Ua8tmwNlq7PLhIVsFeG/RTTEq975Ftn5ILjqA4+ouKbb5+DYT0HZvfF93GV6jMNq1XxjnPm3u83MxTkefVlbqBqzpJEGDC7pJpkwrWmIq5aWNfQgB//8Q4MvfMy+latQE1NDY455hgMJLLNnMzWjvsegO9dfzN+8qXPuczaVFpaWnDllVdiqbJvr08dgC9/9jN4Z8FH+HdfwvLMKPGbUVZ/zxjRjHSCsGSd3nOe13V++/zOcp5vac4CNii5hTP7m9y2pxXL+jbh1aWrrbv5hU2QR7bZbS/U1tVhY18fPpz3Dl579p/YaqddXef3a4SzQSGydc9H2Pn977Ozq/se9T8YM3lqjqez4zXD7HWeH7Ln8puAczusyM2ApqzTNTU4+2dXYfz0LfDHn/8EAPDQrTfiqz3tOOP009HT04PbbrsNz7z8KtDWjf2OOQHJpLdWwXkH1RlInOvNAP/2PNc67aB3kNjm7j0Ku1DmgnGgFoeuHsR0F+1mPjhl7KXrN2Hp+k3Ypttt6qkzMwbck45q/yNR+6cdR8UvmAHefbfaBtrXnLmR767J0pzlP0nvH7PXnNgKmfjll1+OGTNmYNOmTXjtpRfxwJ9+h/2P+5yrb9QR1GFNrjxt2LDB5sH9oONOAhGF1oDJ+8h6VCqX+jlLjogyRPQvInqFiF4nogvM/ROI6FkieoeIbiGi4FGRYWrOlJfS0NSMGbO2t37rBDMnI0aMwK9+9Sujsnk0zp31NVaAWbkvcB4Dtj1ex5xVTjYIqxwxjcIHmMyvsqQS+XlfjI5fo1CAu+WZqH0mO7+0ohLn7I0zJX+zxiDaHO99aliAXDHQggYvDkJdYyMOPvQwnHrqqTjppJOQyWQcGpTsr+nb7oCf3HwnttrZCJKbSqdx6MmnYfbhR6Emk0Fnz0jcd999mDhxoq08BIDF6zdhWapB2/n4ac5UJrbWY2xLffT1iCEnLbxMhoLf0P+wc7CaThImmet7LdfkAd51pr4eex6aXcdw5/W/1p7Xb07IOb016hyCqO9kxYoVuOuuu6zfe2piz+XEqtP+hRLk1VoOQRLe9UbXUX+8fmMkrQgR4fAvnIFdDjjY2nfF5Zdj2rRpaGlpwec//3lce+XluPaH38FRW4zBBScfjU8Wf2Tk1ZV5+89CeWoEcllXhLxAdzrp42pVouZMffiCac48tvNK0+ODGXDaviHblswY0YxaRUufcJk1utMsxpozr747azLrXLNo/wsAe47twIwRzVprALd2Pdj4KpVwp+XMQ9g3On36dHznO9+xfv/2x+fhyM1H43snHolPlizyvTZ49fTP05///GcsXWpMo3b09GLvw40+JEGE9oDm0SqyHgWJk1gIgpg1bgSwtxBiBoBtAOxPRDsBuBjAL4QQkwGsAHBKqDtrKtKxnz8t8OWpVArXX389OjsNswd9RdMNCoMXdNDLsja8dpxtuhwsOL0ehn31eWvOzEpXDqJZXG1kPiasnmna0o+WWr6dQJCApH4DcD90M0I7jWyzufAOel+JrNrqczv9wDivi3vs4FcGztcxcsIkfP/6W3HZvY/j1488hxO++T2c8ZNL8aeX3sXvn3zBitOkXiaEwAuLVnlqvPxMCXV1yq+KBAlR4EfCJy+yfQqadK5JIed7VM+Xh/oDvuyDTzrVeuYXH38YH7z9puscubA+rFnjbbfdhk2bDM+S2243C6MnTQmUJ5WgbyPIeZZDENt1/gOvVRv78eSC5aZWMjxEhC9ecAmmzNg257mv/vNJ/OjU47Gxb71t/8DQkM2d/KoCOgMx8ux9LA7NGcHtEMTPrLFwGqn8UZ+9YA5BfNqWuNmgsYySk8vOdYkuzZmmCy2GNsR7MhJ4d8U63PHWYsf57gs66mpsa2XVU4I4PtEd1VkWSGos5yJ6/CZSzznnHGy2mT0E1mvP/gNfPWQfvPrqq57XBa2fud6Yag3x6RNOQdJ0fpQgwu5jOnDQJL1Vmtd9pEwWd1D4oOS8qzCQq+/T5j8BYG8Afzb33wDgsDA31hX03gcdii233NK1f69Dj8Stry/AX/77ES6753Gc8I3zcMvfn8CBBx7om57uWJhvMqwK2dlBOO3xvTxsRbWJjUqpKpsu33IQr/voR4WISaG9X54FFYcJwYGTunHIlO7IeUgHEO6C5tM1G68poJFNGew8qj1Q3nSdiVzHqNaxjGkWJRth52Vh4vAEeQ/Oc4JMzoyeOAVtXaq3OkJSeQan5qwu7RO3LEzm4P/96+LbBAn4bV3vo8WT7VHQgVWUSSRnHRkKKJyNHD8RO8zZ3/p9l0Z7pl9zpjgE8RjI3Hjjjdb2Z4/zjvXlR5yTQfI9qDP+zs/eeT/pbtoZaiBMnhqaW/CjG/+Kr1/6G8yePdvaP3bsWGy7w46WZ0cA+OCtN3DG/rvj7f/+19r31ILleGLBJwCACa31SC161zo2Y8YMy8V2XIQ3a4zwRuSaM9gF/krDZtZYBM1Zoe3+dTHVpEbQ+e51Zo1OCi1MAt79gIDh1Mr5VoKMytR8u9fW+V2nnif7D/cFSR+tGuBfl2pra3HjjTeivdMeSmjtqpWYO3euLcSGShxmjatXr8Zjjz1m/T7vzNOs8EVExnPVBo0HZ95HZisfL+X5EOiuRJQkopcBLAXwEIB3AawUQsieYSGAUR7XnkpEzxPR8x9//HF2v+bcIRAuv/xyy8PTyPETcdt/FuLMiy+z7N5HT5qCQ0/5EqZtvoXjRpp7Z/Pge98g+KqMPWbAnXXOqw6GFSLydUaRLpUbGs1tkySD/rqP7TCyFYdP7XEf0CZd2AY4qnlhKkEuz1BhCPuuwjxzISw7ZOOtas7kAt5lHnGwwszsBpnxdL8r9XeIgQppNwH4a4BUk05nVnS5D6LpU8+xzFICvD+7NsaOpTnLnUzg+9nOV/76ucT24pDPfdHafuKu27HUEWJF1hu17RDw16K8//77lifPZDKJI4862tjO8XAuYUlzju5bDdJWy7Kxu9L3nxXPxlt0p+9c7+lHKp3GzvvPxd8ffhgff/wx3nrrLbz77ru446FHceMLb+HEb55vnbt8ySKccvSn0d/fb/ze0G8da8+k8f4b2bAHca83A/zrX9xmjWq8swqUzWwUw/yy0CMKneZMfv/OOh7ErLEIspm3WaNHfyedfjRpQvFIbBNOCf82ItdB36bB45jOt4PK+q7xuPaRZ/HjP92Br/z0l5bTrQULFmC//fbD8uXLXdfEUT0feOABq12aOXMmRo8ejd3HdGCLzqbQygjZ9so+vpzNGiGEGBRCbANgNIAdAEwPegMhxG+EELOEELNksFhAXzEGhgRmz56Nvz/xFI4+42v41lU3eC4odNnbas8JmsvcBKnHbs0ZfH8HSVtHvnJ8qbzQ6O6aMh9GH2yQ8nJWEOdTlkicDSTY2WfFgp3ntSdfOszAuaOUsAsytteElnrzro7vJGDjTLA/n9eMm59AFMbCxxaiQElECP0aiGntjdhtdLtvbDGd8Ozl1QvQa8nCmMr6ac7GNNehPZPG1I4GFAK7WaN0CBL8+unbbo9p2xiD/IH+fpx//BH474vPWcdlp25bYK96VFT+ynK44447rONz5szByF5Dqz2l3b8MnG2m3gNctJY5G+dMTd///oOWcOZOz+aSP2BdIQCdnZ2YMmWKpfFKpdM4+HOn4bNfyQYGX/D+fFx8wy147ePVruufeeYZ63dBhDOfY7rnDN+6kct1e6UKZuqzF8r8Mo5J76BsHPA2a3R+dkHM/QjA7HGd2N/DAVscePXFXuLNqKY6zB7XibHNdR5n2J/F/ZxhJ3LDH9vk4+F7cEhg6fqNEDUZTN92B+w+93Cc88vrrLA1K1aswJVXXum6Lqg1hR933323tX3wwcZa2qbaFKZ1eHvf9UI+e7MpJI/M04IrKqF6EyHESgCPAtgZQCsRSRF/NIAPw6Slq0jSJGqrbbbBUWd8DSMnTPK83j2TGbATiiiYBBPO7PvX9w/aZhq8ZkzyicdSSWjV6KbmLIxpm0fi7l1xCuclKvNgZo3Ktv+ZntfFRWsmjSOm9aKrPmsSlU4kcMS0Xkw0beed9w1sc072QarsnF0Lq52loNE6hUUVoAaF0HvCS7hDTri+7ZD1NJvd7EnZBd25n8X+uPbza5IJ7DWu0zdujP3qaO2UTbANOdw94ZvnWVYTH3+0ED845RgsfPdt2zmDNuHMvU5PrTNqJ3744YcjlUjg0Ck92KyjMdRgRXeu/FbDVjGZPbWOuaqN85vxMOlynht10tcSbInw6S+ehcM+/2Xr2D233Yy3lq+z52dw0BZbcI899oh244joTdfCQYBi1mhQzh4Z/VHaK4/Bb6yWEwXuH8NozoLW+bZM2uU5OE68JsEHfLRPbZm073gw4dO3hJuYjYaf4myDxvR0m932wufPu9D6/aMf/Qj/+te/7GkGXnOmf4rBwUHce++91u+5c+cGSi8XrZk0DprcjbEtwQNYx0kQb41dRNRqbtcB2BfAGzCENOnm6kQAfwt1Z5/a4nak4cY526zVXMfVYHuk5by382N8ackqPDAv64Q7Ls1ZHOZ6O49qwz7jO3OfGCeabMuBZr6TJ16zY3FRDBt17X1jlKCCmNgVgkZHgE/nfYMK5gnY43bJyRxn4+5ngrZ5ZxMAIBPAjly9Tr3vBs0srnqBX8ratiyAybTdrDHhnZjrfvHNbsdi1hjyO5++7Q743pXXoL7JcKW9sa8PN/78Qts56mSugPtblfVh9erVePzxx639shNPJsjU0vs8S4BvR5rPhHU2sOeYDmzWYQ8+7OzfnL9le6kbiKr1KaiVRK6B3uzDj7a2n3/0IaxZucJ2/Lmn/4nVqw1t2qhRozBpkvfEalSCDlqzF4S/R1bD617PWEmoxeE1+I1z7Xmh+8d+H4cgrjVnTnO/eKpGaNR8JW3vI3qaYSaQVHTrppznT1WsB7zfp3fm+zz6xb2POBrbmpr0/v5+HHXUUVi5cqV1POjYz+vzf+aZZ7Bs2TIAQE9PT95a++x43og9XCqC3LkXwKNE9CqA5wA8JIS4G8A5AL5KRO8A6ADw23xv7GVKoBe8ct8jjgG79ATk10jLiqzrIGzRzj2SiDrTmg+9jRm01IZ3L5oPumzLhrQQM5RxCjZF8LwbGbv5nc9AvxiZUWiqSWFcS13O9xCmcVafVX5bzplhP7OW9roaHDqlByObcpsqeGkkN3oE2MxO5ORM2oavt0bN/cNo//xM5QpN9n7ZG0f5ymcfdAi+f/2t1u8XHn0Ib7zwrPV7yB6VKquxM/fJdvnBBx+0rUsYNcq+TNp/4JN7wCfXnIUNiNySSWMzc9LAK30vbXOuCUg/QTFMLkdPmoLJW20DABjo34R/3Gufi73u17+0tg8++OBY216JX4q6Io+q6VWpRGcggL2svJ6BYEzSbt/bWoQc5Yffa3DW8R5zjbM0L9fWgyK0hbbvUKmg+Qj8UdaJAfp1bOo3esS0XmzZpcSS80jLL+d9Gs0ZYJhHX3/jn9DS0gLAWPd7xRVXWMfznQBRrSHmzp0bKLZaEArRhoUhiLfGV4UQM4UQWwshthRC/MDcP08IsYMQYrIQ4kghRO5Iqgq6DsxrdlXXwbjWAGjuoS3akOW986h2bD2i2baOxItc6nQvk56glWBiq1yzUz3Id5vvB6orwzjjZ5WzKWnUrBX6kfad0IXtelrd93XceEgI1ARYM5Igsg3CpFDmnIl0tS2amdWwz67WLy9nINlzcg+IybYvt0ZAfQRpPhdkoX9wk9fchC4z8wqCOvEW5ZskTNpya2y1kxGPbmhoCN897nBc/f1zMe/1V7F+XdbETgipqRN4+L67ccmZn8dPv/plfOUrX8GRR2Zjp8l1Cc77eObAWaU050rvYKkYGgtnCs7f/maN2X3+WtkwOQD2OixbfvfeeB0GTEH3P88/iwfuzsaNO/300/0SjoxffuMya3Q5BAmQZlNNCqMDTPaUC6qTod7GDMb4rHEKSim7R2dzX59O4Yhpvdb6Zx1F8dZo05x5C2fjmuuwbXdLoDT98u13rFEnnPneR4/fkEpn1igZM34CLr30Uuv3Nddcg0FzkjOwt0aP/WrMyjhMGkfU12J8S/7fRL6UTGenU6l7deDahjfAtxVHg12bSmByW0MgAcqvI5y3ch1WKN6touRpxohmHDqlp+QSfVR02S6EWaMUpNd7mZ9FSr+Myzxg1lwDvhLVI2dZDgmhX9DvGhDb90khydm4B5q4CfDs5LHt6YjE2jKOa71umSepHh39NGFOLZB6fhAX2X5rFMIS2qxRI4lGmS+R6Zz6vZ+gVXHT/ODNv8c3Pr0/9tl8Is455xwMDWV1aGeddRbOPOGzePahe/HYXbfjsssus6V5wgkneOfXQU3S/fX7mdGH1ZzpyBVg1s8hiLrPzyrHP4SDm90OOgz1DcYC+w/nvYMz998Nrz79JC79enY92mc+8xltOJw48CvVeJxckadX0bHNdRjTlNEO+GeP68QOI9tiuH98+K9jlZMm+ZdZUvONF5ME5W7XSmfWmN22C2f281ozaYxvDbauKeq6Mukx2dZexFwIzvi9KkIIHHvssVZc4gULFuC+++4DkJ9Z4/z58/H6668DMFz5z5kzJ1ymNYxoqMW2mknlYlMy4Uw3IJGaDpfmTHOue82Z5hzlOrnws5Am5F6d8uCQwMtLVrsWUUvCrAuIo+MvFXqHIFI4i+/FSAcH6/v9YwCFodhyTEddDTp9Zv5UAmfN5yF2Gd2G/SZ0eR4vJIPCS/Pt/Mbdjjk2DAzmrDv6tANgE2yyu3N1JnWpJKZ3NGLX0e54cfJa1dGLn9OXpGYgJdecDfh4zpLE2RdH9QYmNVlANLNGmc7ICZNwwQ1/RnN7h+14/6ZNuOSSS3D11VdDCOCW667RegWTHHfccdo1Uc6nk69ldFNu01z1etm35RuA3o+scOZ/D7/jvmsjNZc1tbbh+DP+1/q99MMFuOBzR+OTxYsAAO3t7fj5z3/um5988HsHUSdwvc53ThB31tVg+5FtqE3lXrtTDvjlyWpTYsi4XMtUqrV5QSYYtGcU4aWp9TU2s0bf+7n3jWzMYL8JXehuqMUOva2YM17xmB7hPn45z9Uv1tbW4nOf+5z1+8ILL4QQIoQ1hTtXqiOQ2bNno6GhMJ6HS0G8USLD3FgnnDn+SuLQnE1tb8DLS1bbZqzjxquhWJsjUOhwRtaDXGvO6lNJrPdRm6tF31SbxNL18S7mLHYHvOfYjtwnhcQ1+69sd2RqCvpt2O7ryMjQkNAO/BNkN1l0fl+vLFmFvoEhzB4XvqzCrllVO9pcLvyJyHI84kVLbbbpTfmUu7WQW8lM0G9G5sXaznl2rrTCni8Fy9zmYrnuu31vK+avWg9MmoL/+8v9+Pttf8I7r72C/77wL/StWwsAOPfcczH35Pdx6y+zAsKMXffEjB12wuLXX8KyZcswZ84cXHDBBYHuW5tMYPcxHahPJ7HkvY9tx/zWsch6GsTpTFSyZo3+5/muOSP1zQTj6C+ehRVr+2xlLPn973+PMWPGhEovDL6asxiKmgB80rfJqGdOp2SUPcd1XTlKZ0FMpWO4yzbdLXhx8SpkkoXzeuiHr/OdiFqmuFCrpNp3BfGp4EXYNeVEWZPG0Q7z1Tq/oMwRCshPyJKC2+mnn45LL70U/f39ePrpp/GPf/wDmUnBNO26LKnC2UEHHRQmu2VPCYWzEGaNOs1ZgBqtrgGb2NqAcc31BdU8eTUUa3IIZxWsDAuFrniSAc0a953Q5fvxq0nXpZLYbXQ7WjP5OzxJkJG3UsWGC0LkrCnX5fN8Qdz9e9wWgCHsEAETWuuxvn8QS9YZy1edg0eC/VmldyhP74nyuhhendpaeZs15r5RU00KO4xstcxMAP/yk8KZesaUtgb0DQxiUmu4WcJimrHa7mQbmISXzgiEMc11GBICH6/fhM7eUTjmrG8AADb2rccZ++2C5R8vxerVq/GnSy+2rtt86xn41lW/Q3tjPfadkDuekW5dmRzYuI55y2aW8DxCecdx4yeYC58JDRW/z9br0IAgHH3m1zF9ux1w4WnHW+vOvvHd8ws+ONLlqau+BplUUjvQjGK2t65/EC8uXmWt75aENQEtNX6fejaIff45723M4KDJpVtvF0Q2i8NrdxTU2/o75okpN7a1psa4xS/lNp/xkVee/Nbx+028yXZ/3LhxOPHEE3HttdcCAK6++mqcdckV3heqeXJkqa+vD4888oj1+8ADDwyUTqVQwjVnGs2Zh1mjTssWZDzoXMdSaJNAL4cguYSzsl7PFCO6pwxq1phMUOAgrwRjYKRzHxsWaUZX3m8oWu7smqFod953Qhf2CzDw9UMK5jO7W7CTsnbD+fa8BhO6AKWOK917wq45U37kuz5ydFOdbc2tn0trqf1VP490MoHtelpDazrz1pyFOVc5mRDdlb6alu7+tXX1+PrFv7ACJ0saGhrwi2uuR7qmNnD76hcfz2Vi63N9U00Ke43twNYjmjVnxYNfHVQP+TmpChLCwYmM2zljlz1w6d2P4cRzvofzr7sZXz33W37ZjQVdlhprUti+t9U2+CWf833TV7Zd4Xx86mA54pfPupR7wqdS8Rea/SS3wj99wiEseWYlpvup6TiX/WjPJ8L0jkZskcPKIw7U7+m0006ztm+++WYsXrggUpqPPfYY+vr6AADTp0/HxIkT88pjuVEy4czv23DOCuodewTRnBWn+ZEfnlf8ik1+kftQrmYRxSHrECQ+b41xCruqqVq5El1x5h7QhKWpJqVdh+F7X41zA92Ayjm54tXBebnwte4XcJ/rHJ/Bea7zw5D2GUFL7W+uCZ5A5FmFw3wDzvLyMlkPlpaVAe3xHffeDy+++CJOPfVUjBg1BjNmbY97770XE6dM9bssWh40WZnS1oBpHY3W7yQR2utqImmjm3VOZHzI1WzqHO1IovSPquazd9wEHPK50zBjlz2KNMHorQGxtRsRs+K35szyPKpdYlG+fYOOpKU5K3FGchAke0F6nqjtf77Yw5gUXjrTTSbmSnrzziZb2+W83olfc2PX2HtfN2vWLOy+++4AgIGBAfzpmqty5NLMk+O3atJYbVozoITCmQ75cgdMKUe+DL1ZY+70imWKJit3c62+Y/VyvS0pZ5O5ONFqzmLy1pjzRhHRuTIvN4JmzVXEQTuPmHHeSQhhW58kcQeT1udxQ4TJj6C6FL80oqXpxk9zJr3DrY5BOCtmFbYJtgTI2hclvAU5/joZGhLYaqutcNWvf42rHn4WN9//MPbYY4+c1/nl2cir9zG1Lm41ohlbdDZZ8dbyac/3GteBAyYG10QPCoHlfZts+1TBwk8A87Mk8boujIv5uHFqY73uq2tLAt7B2nI+pldRlWu34JevbIiLcs29Qb5jvOzEquZYxDyFIeh639g0Z7YJCp+HD5KWx/71/YNYtHaD9piwLUFwTM45Go5zzjnH2v7bH3/vCmqfCyEE7rnnHus3C2cFRr6+ftMLmew89A5Bykdz1lVfi0OmdHvGC+nP4VWtvJvI+NC9M/mO8rU4JY/tfJH5KpEzqmAEls7sDxFHPKYoOO+qemu0xWhynOmsI/K3X3wVzzyENWsMkmboXBj4rTmTXmbHxRGLKM/3HeZqZ9nlpTnLMdgecpjDOwcGQc0/3ekrgw1H2emKUt4/n7YslUigLkBMTcm8levx2AefYKUapiXgmrMogpvX+ytGU6LVDFh1Q2k3Io5L1dOdk4VeaZXrpJ2v44j8xu1FI8gkRzk/Q9DBdZRHmNDidr2v/QYipK3ibAZeWboaT3+4AkIIbBwcsjm7Uz8Z10SXI90DDzzQCrnRt34d7v/T73LmRa3Tb775Jt577z0AQGNjo6WJqyZKJpzpBrtSupbxe2TnEXnNWRE/3FQi4VmY/V72jibl3MAUGiJg6xHNmD2uM790YsqPk656Y1F/rgDjpURmLZfrbmct9DOnKyiO20qHIE7cZo2OAbKZUE6HIObf6Yr5RtgnD6QNiTpLmeO6w6f2YLve1khp2+6T7/UhErCfS3mtOVOS0SLfvpy5dWpVgntNtAuBwnXEPyuy/yqFJYRq2qvm269J8Nec6fd7aT6LoomwDT69hWVy1YDwOAO8W2uPHUmWcbegpbU2FUPpFBaZryDfUTBX+rrJ/QgZC4lNc+Zzv7CTZkdM68XMnhZNOtntfNsgeXW9x0RR/5DAg/OW4kHFi63NrNFxvnsNJ+Gb3/ym9fvuG65F3zp9qCkdqknjvvvui5qaYGGHKomSCWfypav9Q1ZzJpAisjqCyGvOiuwG0esjy605K9dmMl50T0kAJrc1oKU2T8+KauccY3HO7G7BnPGdqPVzO1tiZP0JG1cpnUjE4jQlLF7rkZw4B4jODkdqTPpzmjUSjpjWa3NvXwhZq1BfcVwmp3kLZ6HO1Q9MomnO/O8/NOTQnJknDpg7gn678jpZz/wFSXduZC0shXDm5b3RVzsWo+asGEN92+DTcVf17lG1Bmr6zvL0roPl2XfrcnXAxBHYY2yndp1eOZH9DgOc65sO5TynkNjWnBXhfuo98nVgI/UJ9R5t56bBIWu5zusfr8H7q9bb8+KoXDovvccccwzGjx8PAFi7agXuvE6/9kw3UaSaNFabC31JyYSzia312GlkG8Yq5jry9Q0MDSGVJKuzi7rmrFhmjRKvPOWKR1SujWTc6J8zroEnabfzJZkgNOcrOBYY2fDlcmnv1pwlMGd8J/YZn5/WMix6IV33jdv3OeVI+Ty5QzEHy4PfOYFMbCLkQzJ7XCc2UzR7O45sw26aINb5kH87EzwBcmwLAPe9uwQvL1mVx11VzUn2uGXWaJ1lHJRePIPGO8zO2MOWnvZcTVFkNWeBbhcrQ4qmx+6tMbwA5ned19rg4ps12jVZ6v0thxd53MtLc+ZMtWz7bo2Gry6dRCpBWlPQciIrPOanOXMlaNtV+Ge35y23hi/We8tUIyYuNfFeJtaqk7s3l6/FC4tX2bTqfut3Jel02rb27NZf/hwXfvEEfPDWf23nJa3JMiOR1atX48knn7SOH3DAAQGeqPIoobdGwsimjD04n/kC+4cE0gmyOt2oa86KPYPpdb9czi6GS5wzHcP40WNDmgEHDTUgSScImVQyf61lWHSdpWaf83tKkL5LVT191gX0HBlWGxXk9Hw09W2ZNBqUjnBUUyb2OFn5DkhCzWg7zxECfQND2JhDy6lNy2FuCNj7BNm+OjVn0lFMWG+izsEA4J740NdD429pNGfKD9W8KILpIhC+LhdFM6BqzlzCR3aHVTdCZkpNI6jmrKwW7Ss486l1plKmne94M8ZckMn1IC7qCUCNs7IXfTLB57yY8qIzo4yatFzH7ak501iD2cypA1rHnHzyydhs5nbW7xce+zu+89lDbQKabMNkGg8//DD6zfiKM2fOxMiRI32epHIpedtiN3kRWLdpAB+u2YBUImF1tjpzrSDLZYq9pMZTc5ZDOivXGay40T5nbA2Tfns4IE0Tu3MN5h3VsCakMBcXes2ZG5cDEI8zZTsxtb0Be40NpgUMpDlTO7sA5+dt51/giptv8lnNUji9IyGadtO6XqMdUfuEQUtzZq/gNeY5jelg7ullijoPsk7zX63mzPxbaOFMl7oqTKjlEH3NWfk1orZYZj7an1REzZlabs4+26mpc+4vN/zi8uU7cC80W3c145ApPQEngXw0Uspz7j2uCzuPasseyzOPQQheN+LPTbYNipa2dG7X26gPMK7zo+DrEMTDeqympgYXXX8T9jz0M9a+9WvX4Gdnn4YN6w1TSTlOkWaU1e6lUVJy4UyVsIUAXlqyGoDhslO+Tl1HoXM/7RTiir7mzONDyOU+ukzb9/gpnGzmMqMaTjTWpLDfhC6bWZyOcnEIEvSu7kX/Xppp48l6GzOBPd2FffJieIct9NvIN31LeAlr4km51wUGScumOVPadgGjjRUOzdUWXU3YcWQrOuvDLRa31pwpX4xLONOtOSuSWaOu+L0mAKOuOQsrYBZDSLF5cnUI7DazRkuQCpcnVcB1as68Bkrl2nc7tcU6ZyplK1gSGeaXAc4N5BguQahPJ22CRrEfXbYNQScm88X6BiJe31VfiyOm9aKxJrdZo2RgSJ0UcmvONg0OaePZNrW24ayLL8cP/nA7ausMoXDhu2/j64fvh0+WLLL8U2zoH4QQourjm0lKL5w5ak+tOWBUzV90QpZOm+Z0DV58s0b9/hzOGgNFc68GitUwDUcaa1IBOlt7RfSLr1VQtGbK7tPcZo365GSfEKYu+ZWV7NhsM/UB0szXt0qZjpUsZJmFFT4IFMmc0Xlf9SU42/ohoa45M89JJDCqKUQIAvNC+d5Da86E/fpiMmTTnGWJKpyFpdhP7Bx8qvePqjlT+2G35sx9H+c15cRE0zTQGifphNdiZyokQZwH+ZW/1Q5o6nmxw8jI5k83bi1EVqQZZ/7WEvo+WCecre8fdJ0nEQK4+50leH7RSmvfwNAQ3l2xzmq7tth+J5x07gXW8UXvz8Nl3zjTMvffMDiERx99FIsWLQIAtLe3Y8cdd4z8bOVOGQhn6gyosDxr9TZmTbR0nYjW1DGH6+1Ck2tm3/u6QuSm/NA+ZkzPbncIwuhwx38qH82Z3iGI5hzNxdasZIgPye9MWSxq+egEkp1HtaFL0crkrzkr7PuIa6Y80HOSfVPXmQdNIvs3m2jSMbEwJIRloZDvY+qEbKdTEd0tiqY509zdZtYYMM5ZnJ5ai92SOPt/tW7LuhHWM2hrJrv21qU585DOyrXvzqSSOGRKN6a2G9YUujpRrnmX+A2b5Ov3/9aMg7q12M72o9DItiHsuvAoNNYkUR/QlDsXXnWkX6OpV9t4Z7sjv6eFa7IBrF9ZuhqvLF2NVRuzsdL2Peo4HPfVb1m/X//XP7F4/rvW74svvtjaPvbYY5FMlq8X7XwpuXBmM08RxktMEmHHkW3acyS6gUZYV+LFIlcnUZ65LgDmg6rvKa4Bqd0x0rAp0VDIcu9pqEVjOlmydSVa4Uyz05k/r+w6NSaB8uBzsuxY7O2JIy8wzCh3H9Phui4q5V5tZfaiPKeX5swvJXdcuyzOtl6nOYuK7ruQzllaao1Bj07rXNI1Zx5mjX5jQa8YRpEoct1NOgQM0hzLNSnqZKRi9jbgqTkL1iaVA6lEwppoUk10SxA9JRJ+by+I6WpWINJM5Bf5vUnhROdROc46dOCkEZgzvivGINSEWT0t2H2M4TlYflIDGocg6vfmfEzn9wTAJpRJiAhHnHomdpizv7XvVz+9CADw4hOP4MEHHzTSTyRwxhlnhHuYCqPkn6naEQoYnUxtMmHr4ILKXOUqnOWiXG2/40YXj6sQTz48SjM8stzHNtdhv4kjSlbvdLfV5UQXaNYvx6GEM59jshtRB+Au5yQ6YTLP9sepKSo75Gx1WE9+5O2x1k+QsVyia05xmzVmh5/51mtdnppqUjhiWi96TCFNp3WOosGNhCZ53eAH8Ndy1sUYu7HYdTbrLl/+zSLbudDCWVMG24xoBuAWDHT3UfeXK7qYfcHi+JUeXWwsiXzHfk3RgI9wVgwNlorleVwnnMVYhzKpJBJEWY+zMaQ5tqXemsiR6W3SrNWxf2/2Z5KxftW9GxQzSCcH/s8p1vadf74NT/7h17jiG6db+04++WRMnz492ANUKCUXzpyu9AeFsCqw7AitQX2OTi9JxuNs1dVk88xT7gwT2czXBjyutJ3bTBbZIZW+vgXLgNtbY47rQjxX2mf6eFDTqbsGZZpCzNussczNjfrMzlTKJa21btMZy9woYJoyLd0j1zgH4MpJso9QtSSWWWPAe3vmyWfEJ2UgreZMOiTJ8/650OVuQDVrtJ3r/Sy54iKGy1NxK61rzRm5j0VZ5thRp3ceU6Hzvla56NYh5grxU2r8hMdsX+b9YgaH/DRnxXmhE1rqsU13s5UXreasAPeNWwB3ft/9Ws2Zer4dOXmkjvc3+HygW+20K/Y4+Ajr96U//gFWr1oFAGhubsYFF1wQNOsVS8mFM3UCUkBgcEhYH85Oo9owd3K3FVOhrc4/HpP0ytVZX+PpArQcKUe3xYVEHfzE9ugsneUkO9tf2gLS3V3niU2nOQubrhd+YQf8zGEkuoYzLm+NpYiTFQRphjKxtQEAME3xDmrlHXJGWxVsfcrRZwZcCtBa0zUpnJkvYp3i3TfvNWc+CQz4DPjkTH8JFGd2zZmPeZFKnPWs2FVWvv/sk2YzEFVzBnhrhT1d6Ye+Q3HRvWOdN9JKw9Kc+Zwjv4mgPgsKwcyeFkxsbVAm/Ioz5LbCgRToHevWEPu50s8KZ8HvcdK530dji13JUl9fjwcffLBqY5uplFw4UxtDp+YsQYSaZAItNcYM7fQcrsKntTdg73GdaMuEc51caip1Vi4s8oNVGyiWzYpHtkMqbaecy6xRdqZuhyC50g3+5hNEmD2uA5Pa6j3P8fNmqbtXvt+xTLLkjbIHUjM1sjGDI6b12trZhOOd2YQzn3KRM8m68pQOK7KhSLLakmwdMf4+tXA53l2x3nZeVPyFsyFbvlWKFYRaV1bCQ3PmF1qiXCcBgiCtL7KmpMox8904nXoEwesbLtdvMhd64cz4W/Zmjb6aM/ckkJNBH1PCYo+5ZNtQLG+N8jZxaUe9NGFBkZq2MG1OS0cn/vf/rsDosWMBAN3d3bj99tur2kOjSjwuXfLAueZsYEi4BkUNpr1/LojI5nGpUhgumjO9mUE8z04snuVEDmjCNqxxo9ecZbeTROiHCBznzC9dP9oyNfpFySAAwnd2VStg5q058xZUyoHdx3Zg9cYB7VqwBBkhQ4x3JgIPfjKpJNZsGtQOfqUAJOurpUGj7OBDbTvnr1pv5SUf/Mwa+4e8Z8DlYLIcXt+ktnrMGNHiG2MzkQAmtzVgXb/7GwCMydB1mwawQPGw5kWxHznpEMDU+8t2I4pw5tUXewW9Lod37Yd2bWxEhynFRg7o69NJrO8fNFtlg5SmDXLip+Uudhvrb9YYf15if8eOLOb0QO747WzDvUgnyOYJcts99saXXvsv2pICqVQKNTWVpXjJh5ILZy6Xm0MCdSXPVXGp5BnMMFgLdAPOqkdleJRmeOSAstTCWS4SCQIGNd4aEZ9DEL9rRjZlsGB1H5pqvBuiQsQ3sjRnZVqBW2rTaKnNTn6p2RTqzPCg06zRjRxoZUzt2ICms0876qtMJ0GkaOp0g5388HUy4DPgkzcueEgEzT7h2A4i6CeJsLXpAEPH5p1NGBICC9YszpmnsE5iopJKEAaGshM32RiH2ftL6+2hCO2cs95mPXCa+8r02/RC107Jd1XevQCwXW8rNg0O4ZP1m/B+fx+I1HYm95ozqeUuB0dxunXMkkLkLhGzcObMY67YvW6HIO41ZzrqUkn0b7JPFhER6utDxKusEkouBjkHYANC+GqSapMJm8vbckVt2HORr5e3SsGyAS+At0a1ylRaB1osUg5NRKnQdaj2wZX+BeZq2KO8d90lm3U0YquuJmR8vNkVclKhXDVnTtRcSuGqJpkA+gdtAo7ucZLmIFvGtdRVSblG2spULgAAJfpJREFU0hlTh+Af5yjf8gti1qgbZO06qh0frF6PulSBjeA02VPHYEHHY0FKSXdOksillYrTuYgfu45qx7sr11lx57L5yK4vymrVwqdv9xJNWs1cJVHJmjM5zlvetwmAIWgOWe/ZOMdPMzzos+as2GQ1fpq2oQDZi98hiJ1cEx+uNWfmGrVcLWMmlcRqh3BWqSbF+VLy59bFQ/ATVg6a3I2ZPS0FzlX+hGkPhovmTD5nrPF1TIZHCebHqCajs1MDJ5cLOm9rbnfWOVPJ78Ym6QT5CmYel+VNodacTWlrQEMBvjldIdSagkmuNk2+Y2dwZ5UaS3NmumFWtGUyfd3AK99X49f/yMGVLoBzU20KW3Q1F0y4ntXbigkt9aGFqgMmjcC+47vc50TMZym933XU12CHkW1ZAUOaiyUT6KhLY6dRbdbShjHN4Sdx1UezTzCYmsiI+S4Vfuutylw2s9B6aw0gfLSbnjf92phiUyzNmaU9ju0l23OZy2TY+Uw6b4066tLudzVcxsdOSq85c1TWgaGhspjpyBfy0J0lyD1LXOyAiKViTFMGA4PNGN9aj/9+shYAmzUWk/a6mkBrN0uB+s5kX+qcFc1VV+LSnAWZ3SyIWaPG02EcbDWiGVv5mK9FRZdLKbTk8tZoCWc+WibprdFp1misOTOFsxgX2MvL/Pqf7Ue2YtGaDWj0MXktFGOb6zC2uQ73v7vRdUz1vOf0wleXSkbu6cn2Ho0erRDayrAkLO1YdtC359hO63jUdk59Crl+Muj55UibZg1+dvKrMqSz7FrT7PuwzPZ8nmFmdwumtDdY2vlyQGuGXUDNWWwOQRx5zJWsUwjtD7jmTDeJWAXiQCRKL5w5Sn5IVLaZ38jGDBIELF7r7kAB46NxzmZUgzAaBCLCxLYG597Y0tZtM5WB+sZ6GzP4pK/fpWHNadYYU16CtD+FrGKVUn112ay1hDP/a6X8qwuELCewnA5BrOMgz3ALXvkKgiGUD/rWs7pUUtOGFZkcZo2Afx3afUw7lq3fFPq26WTCdKFd+goav2bAgCg7raorQ1kXa5MJbCyTsvAjlUhgfEudbTAd98C90FjCmbLPCqXg8wzJBNnWyJaSvcZ2YFnfJo/vMv46VGrTVWcfqk6i6JjQUo+2urRWy8masxKhK/hKFlZ2MoNf3/X2Yu30QpIIA44DxVpMXY7Ul9GsFlNClG9+SlsDxjbXuWKp5DKHjfIVRf3yCjEBkHULXhntgS6bOhfXzvMIWc1jbTKBXUa1YV3/IF5ZutpKY9OgQEttGr2NtZje0WRLR9Wc6f1yRCu/WkdctXJFlz2bQxCP8dgeYzpQn06gPp1CV713nL9c9y2H8sl6ZCxM2oPC7S0WAD4x1z91N9Tig9V95S6bAQC27Wm1/Q5iElhOZGMnKvvyED5KYebYXleD9roavL9qvetYIaqQrLoR4rDr0wt5fsqjkfBKJ5NKYHxLPRavdXuGrYBPrCCUXDjTmfRVsnAm8XoC7eL4KnjesGw9ohmNNUlfs6aoDL/SrHzUd0ZkrPmSphD16SS262lBV30t6lJJ/Pvj1VizcQAbHMJbFKEm6CXOAb9aa/cY0x6LgZDlGS6GtIqBn7mibb2O8zqyD656GjNYuLrPkYbhjn/nUe2udBKUvY92zVnEBiAbVy3a9cUiyFye7pTOmNaalkP7KjWufh5VoyLDQujGJlt0NeE/y9aiq74GH6zuK4uyCIvUWhcqQHHc2M0aDbKa03BpHTqlJ6ZcRUPXRxXCUizrEKRAHkFy4PVMXu8rG+Tdfd1w1ZyVfByg0xpVw7vwGijqBjTDsfJNbmtAT0NhvG4Ow+KsWOSAWPfKrMZJwJrpb82ksfuYDv1ao8JkEQDQWVeDkY216DAXmavfd2d9bSRNhJOhHKYf5YYum34u7q3rQK5JGdti/xxBhCmHWWNU5Iy6U2Nbbuie2eatEShII1hOtbI1k8YeY9qxZVdT7GnL8tX11V31tdhzbEfFfKM64vbkV2gshyDKPusZQqaVTFBJl83o7lyIyflCB6HOhdczyXWOTqFR9ga6qyr4U8uLkgtn+pnP6n0bete2xc8Hw5QDfqZSZHXA7h5G20RE+I7UAdhuo9tx2FT9zGoyQdhpVDuaaowZ+0L073J9xLSOxvgTLzAttYYGQydgOttzImBWTyu27GrSOiwY3WTEtHF6RMzOrioOQWKcaZUC48YyF870Zo3ucANxUpdKWomWS3fVWV9bECFJJinT1pnBVfIQJXatSoGRZZ1WHDVZ5tOlyFAeaCchC1CX4o9zFi6TXsLZkABWb+x3p0/2vyqVPBGSDyU3a4xpjFV2hKlP1SyMloJCB4Fl4qGrvgZrrJgm3u9M173ovCXm+95VF+1e6GZx46ImmShbb5o61DLYc2wH+ocEPlhlmCf6DTgIhiA0tT0rhKoeMjfraMTE1npXOIOsWaMShDrGsEFyEF72wplPHS3EgHuf8Z2oSyXx8PyPzfsbTkUGhgSe/nBF7PcrNbJtkQKvLmxCIduBQiMng+sKEV6jAKjmzJKRjRmsaR/AlPbKmsjSLmspiFmj8bdUTl+8/Cis2TSAv89fhhkO78F+oSoqTQCPi9ILZzF62yonvJ5BzihMaWvA2yvWFS9Dw4hqqD/VziFTupEgwoPzzAGf5hzZNOjGm1pNW4R8qOkEmiPRrH8YrqhlkEokkEp4aM5c17nTUgM3yzWHrvspf2XfH+eas+6GWqQShEmt9VigrIErN7SaM6e3xhjvl/V4l30DcZjxliuybtUmkwAGMKG13nVOJX/+qUQCO/S2oqMM413q0E2YJYiwZVf84UEKjd863TixTHNjSjpsOrnkzXkr7Y5RvHuL4dvXllw4A4CdRrZh+YZNeGu5IaxUw8vYakQzXly0CgL2tROJBOHQKT1IEFg4KxSVX32qHqkp8TVngPcxHfk2GyFkM65iHmSFs+w+t7dGd+kFCkyvmJv5rW2LqkHNpJI4xHQYMLG1Ho3psugeXfhqzgp6X/Ovsm96RyNGVJmgJsu3Pp20+mrXOda5xctXnIxurit1FgIji1it25Va7nFNKuaiNpnA9I5GjCnRe84lcGYtZgz8hMnh6sy8LHqfkU0Z9A9lTUmq4V2MbqrD6KY63PPOEgwq/n6ba1IVHcetEuDSrRz8hJ2aZALT2hsxptntOCYujbt6TZAOX54yHD2sBkFqWVp94gvpSk4b+Nt1XbYD91tzFser2aa7Jf9ECoSu+xAAVmzox7wVcoKzcPdX0968M36HHKUmq5X1Njnjz794qGU9qbUe765cX7F9vN5CJP6nIaJYv82wOQy7Tkw38ZO9d6W+7fwoC+EMCD9IqhScj9KqWQDPMMMVPxe6RIQtPLyxxdVE2O8bXDrj+RU9o5vr0JpJo1Fxce7sXPPV7ti9NeqOVzd6s0aBpxZ8YoWfKMSAptrLVUI+WlnrnGFTGqXHcgwljBA8W41orlzrqgrNdljUSTNC7jbfTxM9XPva8hHOfNYoVDLysVozaazc0I9RjYVxH89kqdR2ezgS56vKt8MOZtZoDtyGa48RgEZH7KmgJTWzu8XXuxgpAlnSZwBd/d8/Wf/L0hIorEmj++7Vi9Th+lm4ZDX+1V4apSdr1ihAVNklXqm5D9u32gOG5w4W7xe+omIF8TwpG+FMpZpehnyWEfU12Htcp+1YOkHWTCcTJ9VTf6odP3OGUOnEcB2bNRaIgEWlc7ygS8Ywa4zhhhWK6gxlQBFmVcG2ECVgpTlM6r6vx9HhUQRlgXSbP1gFY6XhUm1UM3UiyhlUz69chus8aNkIZzavaaXLRuz4PcsBk7q1MZyY/Kim+lPtqLGrwuD8auIYLAXSnFnaG65lQXGWVL4tXoIINckEUgnSOhKp9s5c1SDKwhRwjH8KKJ1VefFa8DdeHjSYjnnW9Q+WOCf5I6tUJpnAhjIP2eEkiHni6KYMWmvT6KjLLt8J0h5LAbxYDlMqgfIRztTtKnobsmLqtIFGhayihy0xCTLienCJVg7k+BuUoaGsV8B83rl9Uih4KtUuABSWaOKZZVIKY2Z27uRujwXk1Y1VDpQdLgnh8GZXwPtWO7Ic/bTjUhCuprFKudJUY0zAVMM0tqw39elkxQlnQahNJTC1wx57LhFArJMBxrXt+TD9yMpIOCPtduWTHVAwhSVJZJj2VFP1qXKimkrJQMGZZBLrBwYjtxlRJ4V4Vt1g51FtaKrx70ZcJRVxlJUNu+C93kw9Xq3Ix0slCbCUCcUbulZ36WYH0PyNlwe6IOCVihTIGmpSWL6hv8S5CUcA68TIa8bSSak5429OUja1PnQw2ApBXSfBFBY508lFXTkkIr4zGXqjVgYvjvzSw10oOydec2bQ25hxOQBx4uxwo4oRQdvSan8z8vnqlEDdLjPfAnprrPaqL5ca+GnHq0GLUykQEUY1ZbB5Z2Puk8uckY21GNtch608vBCXM4HM/jX7gpk1emvOhis5hTMiGkNEjxLRf4jodSL6X3N/OxE9RERvm3/b8skIeWxXC9WlDSxPOH5c5RLarNEcHWVS+TXqYSeFhgIM3JgCIdda5XjbqSp/OVLYzSgaBdeMdkGLoLrLVxJkAmZ4lETp2XFkG6Z3VJ5A4ySVSGBWbysyKfda2fInwPeg8R0RRANtac6iZKtKCaI5GwDwNSHE5gB2AnA6EW0O4FwADwshpgB42PwdGZsr/SqcmqvCRyo7ZGeaS/XOlA9ZU7Vo12eSSfP6/D+wIBMobPIUnrhKKrDmrMrfjXw6vwFeQdacDROHIPyNM4ybgmrOIjoGq2ZyCmdCiEVCiBfN7TUA3gAwCsChAG4wT7sBwGH5ZKT6NWdMoZGas0GWzioG6R45RdEsrOV6hMiaM49tL6S7cu5EgiO/S1lkUdeQ2B1hDF8sj28pRXNWzDVnVV78siQTPtU0W95VXhgMIwkknZFrU06W6TzrZs+1pt4iZq76CNVLEtF4ADMBPAugWwixyDy0GEC3xzWnEtHzRPT8xx9/7JO2frtaqPbZ3HKg1hz0sWhWOQyYwpk0awhLrJ9VgLR4Vj080sxQllmDTycdhOFe8lJIVc24nfNRBdGcFSDN8sQoTD+zRqmxb6ktG59qTAVSSfUnrOZM9a4LAD0NtQFSML692ipyAhOVwCVARI0A/gLgK0KI1eoxIYSAx5hYCPEbIcQsIcSsrq6uYPeqwm6g+p6o/NiupxVbdDahPZPOfTJTFsgg7Gm/aWoNu4xuw4wRzZFd8Uts5tQBzpfOj/l7Do5c7C012jJuUVjyNYGtFqRMJgRw2NQeTNIF7y5IGQ2PdSFBJmBaM2nsObYDW1SgYwemPJg7uRt7je0sdTZC4/f96yxRZPufIMJhU3uw9Yhmz+vTplC2JX9XwYQzIkrDEMz+KIS43dy9hIh6zeO9AJbmkxGbK/0qbP2r8ZnKjdpUAtM6GllLWUEMmF4Xw2rOehoymNTWYH1X+XoANLZz50GaNbLmLDhpx6KD5oizxV4LzFtqUznd+VcT8ukFjLIgouJ4a7SSrO66b5k15vjGO+pquB1gIlOTTFSUEzNZ1f3qvHpogjlpJD0qJ8i41il0qP1DOpHAEdN6Ma5FM+E0zAjirZEA/BbAG0KInyuH7gRworl9IoC/5ZMRnZeXamBt/wAAVtMyjA5p1lgTUnMmiXMQGmScJQR7awyLNGscUV+DGSOaMVGn6QnIxNZ6dNfbzWP2Gd+F2eM6AFRX3+GFDF2geiot5jLb4SKPRLS0ZpiqJGtOnfscwNB+HTqlxxr7yklzdfJ8x5GtOGiydkXUsCfIdOOuAI4H8G8ietnc920AFwG4lYhOAfA+gKPyyYhtBruKWn8yo6P3NGRKnRWGKTvkmDId1UlEnk1FeIcg8r7V00YVGimcCQCT2hoip0NE2Ka7RXssSYSxzXUY11IXOf1KYWJrPRpqkg4h1S6dFXLNWbXX/KCaM4YZjqQTCWwaHNQec47jk5Rt/7OWD/Zz+DvTk1M4E0I8Be/2eJ+4MhJ27UelMHtcBwaGREWprxmm2DhN34KS91elJBCkk7AGbvnedxhhrTkbKpx6h4gwq7e1YOmXE0Rkm+wj0pj1cncTGdaOM4w3fnEkdV2odKyT9XRcnWP9uCkbQ327NF26fMRNcy07p2CYXEQNHJyvWaN6dZAs6DoYxh/5boc4xEXBKIq3xmHikCVblFX+oAwTAvndh3XeJYUzOTmnXs1fmDdlMwGcYGmaYYYtUYWd/M0aVUdEQRyCGH95Vj04KSv+YIkzUqXoHIIU6E7K/9WLXBNZw4vOGMaFn/MuXR/qjD9rD5vF35gXZao54xfGMMOB2eM6sXbTQOkyELKpEeytMTQpsnfOTLzoamIh15xVu3g2rb0R09rZ6y/DqMivwU9zpvtipCwnNWdBzRoPmDSiylsaf8pIOBsuTT/DMJK2TBptecSli9MhSBBGNNRi+YZ+1KXyC6Q8nEjImdMCrjkbzmiFswIKFtUus7BQxjBupJWJTnOWIMOqRCucOSwnbGaNPp/acO9jy0c4U14rmwwxDBOEYges36yjERNa6lGXHt4dRxhqkwk016SwOQcWrWisNWelzQbDMKXA/PBTGs2Z9Equm9ioTxtiRpMZ35InP4JRPsKZ7X3xy2MYJjfF1pwREQtmIUkQYc6ErlJno2rRfQPcgzIMUwj0mnpoXMYatGXS2GtsB1pNCxnbEiZuqTwpI+FMXZhfwowwDFMx5NtUcFvDVDrFGuAMlzhnDMN4o/v+RQ5HWe11Ncr1PNYPQhl5a8xu8/tiGCYI+Q8YubVhqo9CDnrYLIlhhi+6z186e2qqya3v4bF+MMpGOLN5cOHGn2GYAMi2IqqpIbc0TKVTvO6SvxaGGbaY2jE/TX1zbW7hjMf3wSgb4UylLDPFMEzZIQMbN0RdB8b9BFPh6Ktw/BWbHYIwzPBFLikjALuMasOuo9sBAF31WZNFnbMQJ2r7wYKaN2Wz5kyF3xfDMEFY1z8IAGgIYE6hg5saptLRzWQXtF7zR8MwwxYioKcxAwDYZ3wnGtMprN40EDhUCps1BqM8hTN+ZQzDBKDR1JiNUGbvGGZYofPWWIAulB2CMMxwxi18tdQaHhjDxColdv4XiPIUzviFMQwTgDHNdeior0FDOqrmjBsbprIpdg3mb4Zhhi/5miLaglDnl5WqpiyXd/ELYxgmCEQUWTAzro8xMwxTJhSiWhOrzhhm2KKuOcsHm+aMGxNPylI4YxiGYRgmN8WaYGDZjGGYfL9/Wyw0bkw8KUvhjD24MAxTDLilYSodrUOQgvShpPzPMMywJM8GwBaEOs+sVDNlKZwxDMMUBe4dGCYQ5NpgGGa4YEatQSLPiZ9kgoWzILBwxjDMsIVNtZhKRzdWKkh9tuKc8dfCMMONQVM6S+UrnKmu9NlKzhMWzhiGGfZwH8FUKsWqujyRwTDDlyFTOEsk8msBWCALBgtnDMMMW6SJxsTWhhLnhGGioRvq8PiHYZg4kTGmkzE2LtxOeVOWcc4YhmGKQYIIh0zpsZlaMExFUaQRjqU542+FYYYt+Zo1qnBT4g0LZwzDDGtSeZppMEwp0WrOeNjDMEwByNesUYXbKW/YrJFhGIZhKpSirTkj6UqfB1QMM1yJVXPGTYknLJwxDMMwTKWi89ZYwEEPD6gYZviSjFFq4KbEm7Iya/zUxC5sGBgqdTYYhmEYpiLQmzUyDMPET5wOQbih8qashLOGdAoN6VLngmEYhmEqg2KbGfJ4imGGL0lec1YU2KyRYRiGYSoVzfhGur2Ok1rTnknGO2IYZvgRqyv92FKqPlg4YxiGYZgKRR3gzBjRDACoT8fftbfXGWYtKzb0x542wzCVQZxBpHn9qjdlZdbIMAzDMExw1PHNyMYMJrbWxzqAknTW1QIAmmp42MAwTHTGNGWwYM0G1pz5wK0swzAMw1QqygiHKN6ZbZXaVAKfmtCFTCpZkPQZhhkebNfbiq1GDBWsraoGWDhjGIZhmApFXVRf6AX2Daw1YxgmTxJEPMmTA15zxjAMwzAViiqO8UQ0wzBM5cPTYAzDMAxToRDptxmGYeJi73GdGCiEG1hGCwtnDMMwDFMFJHiJPcMwBaA1w0GIiwmbNTIMwzBMhWJbc8ayGcMwTMXDwhnDMAzDVCjksc0wDMNUJiycMQzDMEylYltzxuIZwzBMpcPCGcMwDMNUKCyOMQzDVBcsnDEMwzBMhcLaMoZhmOqChTOGYRiGqVBqk9yNMwzDVBPcqjMMwzBMhcLCGcMwTHXBrTrDMAzDVCjJBJs1MgzDVBM5hTMiuo6IlhLRa8q+diJ6iIjeNv+2FTabDMMwDMMwDMMw1U0QzdnvAOzv2HcugIeFEFMAPGz+ZhiGYRiGYRiGYSKSUzgTQjwBYLlj96EAbjC3bwBwWLzZYhiGYRiGYRiGGV6kIl7XLYRYZG4vBtDtdSIRnQrgVAAYO3ZsxNsxDMMwDKNj9rhOrO8fKHU2GIZhmBjI2yGIEEIAED7HfyOEmCWEmNXV1ZXv7RiGYRiGUWjLpDGqqa7U2WAYhmFiIKpwtoSIegHA/Ls0viwxDMMwDMMwDMMMP6IKZ3cCONHcPhHA3+LJDsMwDMMwDMMwzPAkiCv9mwA8DWAaES0kolMAXARgXyJ6G8Ac8zfDMAzDMAzDMAwTkZwOQYQQx3oc2ifmvDAMwzAMwzAMwwxb8nYIwjAMwzAMwzAMw+QPC2cMwzAMwzAMwzBlAAtnDMMwDMMwDMMwZQALZwzDMAzDMAzDMGUAC2cMwzAMwzAMwzBlAAtnDMMwDMMwDMMwZQAJIYp3M6I1AN4MeHoLgFV53jLfNIp9fSeAZSXOQ7lcr5ZFpT5DofOgqy/FvH+x0whyvV+ZVMozFPL6MHWmUHko9fW6NMKWS6mfodh1uRz7pnLIg3p9lG+r2srASdAyKednKOT1PM7RXx+1n6q0MpgmhGjSHhFCFO0fgOdDnPubGO6XVxrFvl5XPpX2DHFdr5ZFpT5DofNQzO+pXMsgTJlUyjMU+PrAdaaMnyH29xi2XEr9DMWuy+XYN5VDHtTro3xb1VYGmmOByqScn6GQ1/M4R3991H6q0srA7znL2azxrjJIo9TXl0MeSn19OeSBn4HLoFzyEMcz5Eupn4HfI5dBueSh1NeXQx74GbgMyiUPpb4+rjSKbtb4vBBiVtFuWGFw+WThssgNl5EbLhN/uHz0cLn4w+WTGy4jN1wm/nD56Bku5eL3nMXWnP2myPerNLh8snBZ5IbLyA2XiT9cPnq4XPzh8skNl5EbLhN/uHz0DJdy8XzOomrOGIZhGIZhGIZhGD3lvOaMYRiGYRiGYRhm2MDCGcMwDMMwDMMwTBlQEOGMiNYWIt1Kh4gGiehl5d94n3MfI6KqXRBJRIKIblR+p4joYyK6u5T5KjeI6DCzrKaXOi+lhutMcLgN9idX+VR7+6uD2xp/iOg7RPQ6Eb1q9t87ljpP5QARjSaivxHR20T0LhFdRkQ1Pud/hYjqi5nHUmF+Tz9Tfn+diL5fwiyVBcpY+HUieoWIvkZErCxS4MIoLn1CiG2Uf/NLnaESsg7AlkRUZ/7eF8CHYRIgolTsuSo/jgXwlPk3MESULEx2SkredYZhGE8itTXDASLaGcBcANsKIbYGMAfAgtLmqvQQEQG4HcAdQogpAKYCaATwY5/LvgJgWAhnADYCOIKIOkudkTJDjoW3gNGPHwDgeyXOU1lRMOGMiBqJ6GEiepGI/k1Eh5r7xxPRG0R0jSk1P6gMtoYdRLQdET1ORC8Q0QNE1KscPt6cXXiNiHYoWSYLx70ADjK3jwVwkzxARDsQ0dNE9BIR/ZOIppn7TyKiO4noEQAPFz/LxYOIGgHsBuAUAMeY+/YioieI6B4iepOIfi1nnIhoLRH9jIheAbBz6XJeUKLUmSeIaBvlvKeIaEYxM10KzLpyt/L7SiI6ydyeT0QXKO3zsNOW+JXPcMOnrfGqPwcS0X/NfuvyYaC97gWwTAixEQCEEMuEEB959d+m5vWyKu+/AWBvABuEENcDgBBiEMDZAE4mogYi+qn5/K8S0ZlEdBaAkQAeJaJHS5jvYjEAwyPf2c4D5lj4EbNsHiaisUTUQkTvK316AxEtIKJ0sTNeLIQQSwGcCuAMMkgS0f8R0XNm2ZwmzyWic8z+6hUiuqh0uS48hdScbQBwuBBiWwCzAfzMnGUBgCkAfmlKzSsBfLqA+Sgn6ihr0vhX84O7AsBnhBDbAbgO9hmneiHENgC+bB6rNm4GcAwRZQBsDeBZ5dh/AewuhJgJ4HwAFyrHtoVRZnsWLael4VAA9wsh3gLwCRFtZ+7fAcCZADYHMAnAEeb+BgDPCiFmCCGeKnpui0OUOvNbACcBABFNBZARQrxStByXL8vM9vkqAF8vdWaYkuLV1rgwv72rARxg9ltdRcpjKXkQwBgieouIfkVEe3L/DQDYAsAL6g4hxGoAHwD4PIDxALYxtY1/FEJcDuAjALOFELOLnNdS8UsAxxFRi2P/FQBukGUD4HIhxCoALwOQY5u5AB4QQvQXK7OlQAgxD0ASwAgYE0SrhBDbA9gewBeIaAIRHQCjndpRCDEDwCUly3ARKKRZGAG4kIj2ADAEYBSAbvPYe0KIl83tF2B8wMOBPrOxBgAQ0ZYAtgTwkCm3JgEsUs6/CQCEEE8QUTMRtQohVhYvu4VFCPEqGevujoWhEVFpAXADEU0BIACoM0cPCSGWFyeXJeVYAJeZ2zebv+8G8C+zMQMR3QRjxvvPAAYB/KUE+SwaEevMbQDOI6JvADgZwO+Kk9uy53bz7wvICvjM8MSrrdExHcA8IcR75u+bYMx8Vy1CiLWmwLo7jMnmWwD8CMO4/w7AXgB+JYQYAIBh0me7EEKsJqLfAzgLQJ9yaGdk290/ICts3ALgaACPwtBi/6pIWS0X9gOwNRF9xvzdAkOhMwfA9UKI9UD116dCCmfHwZhR204I0U9E8wFkzGMblfMGAQxXs0YC8LoQwssEzRmErhqD0t0J4KcwGvIOZf8PATwqhDjcHIw/phxbV6zMlQoiaodhMrIVEQkYHb8AcA+868UG06yk2glVZ4QQ64noIRizbkcB8NQKVBkDsFtHZBzHZTs8iML2BeVKrvIZFvi0NX8Dl4+F2bY+BuAxIvo3gNPB/fd/AHxG3UFEzQDGAphfigyVKZcCeBHA9QHOvROGYqMdRl/1SAHzVRYQ0UQY/dBSGOPiM4UQDzjO+VQp8lYqCmnW2AJgqSmYzQYwroD3qlTeBNBFxmJjEFGaiLZQjh9t7t8Nhpp3VQnyWGiuA3CBEOLfjv0tyDp7OKmoOSoPPgPgD0KIcUKI8UKIMQDegzFzu4Op5k/AqCPVasLoRZQ6cy2AywE8J4RYUdjslQ3vA9iciGqJqBXAPiXOT7nB5WPg1dYkoC+fNwFMpKy34aOLneFiQ0TTTI28ZBsAb4D774cB1BPRCYDliOpnMKwTHgBwGpmOu0xhAwDWAGgqflZLh6nluRWGyZ7knzDXd8JQZjxpnrsWwHMwNNl3V/uEKxF1Afg1gCuFEAJGvfmSXGdHRFOJqAHAQwA+R6anT6U+VSWxz5aaH+JGGDa0d5kzTM/DWA/CKAghNpmq28tNe+QUjBmW181TNhDRSzDMs04uTS4LixBiIYxBs5NLYJiofReGtmi4cSyAix37/gLgSzAa7isBTIZh+vDX4mattESpM0KIF4hoNYLNXFY0sg0WQiwgolsBvAZjsP1SaXNWHnD5uPBqa46BMaC0lY8Qoo+IvgzgfiJaB6M9qnYaAVxhCqkDAN6BYcr5Gwzv/lsQ0eEAfkVE58EQ6O8F8G0YmpCpAF4lon4A18Dot34Do+58NIzWnQGG0HqG8vtMANeb5vYfA/iccuwWGOb4exUtd8WljohehvFtDMAw6/y5eexaGEudXjT9VHwM4DAhxP1kOPZ6nog2IVvPqhIyBNUYEzS8oF0jhKhW70QMUzKIaC8AXxdCzC1xVioKIhoJwyRpuhBiqMTZKSjcBvvD5ZM/RNRorsMiGA4P3hZC/KLU+SoXiOgxGO3086XOC8MwlUesZo1E9EUYi2C/G2e6DMMwUTFNbp4F8J1hIJhxG+wDl09sfMGc+X4dhjnx1aXNDsMwTPUQu+aMYRiGYRiGYRiGCU8hHYIwDMMwDMMwDMMwAclLOCOiMUT0KBH9h4heJ6L/Nfe3E9FDRPS2+bfN3H8cGRG//01E/zRt/2Va+xPRm0T0DhGdm99jMQzDMAzDMAzDVBZ5mTUSUS+AXiHEi0TUBCOY6WEw3FgvF0JcZApabUKIc4hoFwBvCCFWkBHt+/tCiB1N96tvAdgXwEIY3p+OFUL8J5+HYxiGYRiGYRiGqRTy0pwJIRYJIV40t9fAiPsxCkaw1xvM026AIbBBCPFPJcbQMwBGm9s7AHhHCDFPCLEJwM1mGgzDMAzDMAzDMMOC2NacmQEpZ8LwitYthFhkHloMoFtzySkA7jO3RwFYoBxbaO5jGIZhGIZhGIYZFsQShJqIGmEErfyKEGK1EfrEwAxSKBznz4YhnO0Wx/0ZhmEYhmEYhmEqnbw1Z0SUhiGY/VEIcbu5e4m5Hk2uS1uqnL81jAjghwohPjF3fwhgjJLsaHMfwzAMwzAMwzDMsCBfb40E4LcwnHz8XDl0J4ATze0TAfzNPH8sgNsBHC+EeEs5/zkAU4hoAhHVADjGTINhGIZhGIZhGGZYkK+3xt0APAng3wCGzN3fhrHu7FYAYwG8D+AoIcRyIroWwKfNfQAwIISYZaZ1IIBLASQBXCeE+HHkjDEMwzAMwzAMw1QYeQlnDMMwDMMwDMMwTDzE5q2RYRiGYRiGYRiGiQ4LZwzDMAzDMAzDMGUAC2cMwzAMwzAMwzBlAAtnDMMwDMMwDMMwZQALZwzDMAzDMAzDMGUAC2cMwzAMwzAMwzBlAAtnDMMwDMMwDMMwZcD/A6GmqvXWXRRTAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
    " - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "ammonia.plot(figsize=(15,5), color='lightblue')\n", - "ammonia['Ammonia'].rolling('15D').mean().plot(color='black', linewidth=3);\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "* Try different rolling window sizes: `'12H'` (12 hours), `'2D'` (2 days), `'30D'`, etc.\n" + "print(datetimes)\n", + "# What is this \"datetimes\" variable we have just created?" ] }, { @@ -518,91 +430,56 @@ "execution_count": null, "metadata": {}, "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] + "source": [ + "ammonia.set_index(datetimes, inplace=True)\n", + "\n", + "# Why \"inplace\" ?" + ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "# The code to plot the data as a time-series sequence:\n", + "ammonia.plot(legend=False);\n", + "\n", + "# As you learned earlier, look up the help for the plotting function, and \n", + "# see how you can make the plot wider?" + ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "# Make the plot look a bit nicer:\n", + "ammonia.plot(figsize=(15,5), color='lightblue', legend=False);" + ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "# Add a rolling average on top of the raw data, to help see the signal through the noise.\n", + "# Use a 5-day rolling average\n", + "\n", + "ammonia.plot(figsize=(15,5), color='lightblue')\n", + "ammonia['Ammonia'].rolling('5D').mean().plot(color='black', linewidth=3);\n", + "\n", + "# Later on this code will make more sense; for now, hopefully it is useful in your daily work." + ] }, { - "cell_type": "code", - "execution_count": null, + "cell_type": "markdown", "metadata": {}, - "outputs": [], - "source": [] + "source": [ + "* Try different rolling window sizes: `'12H'` (12 hours), `'2D'` (2 days), `'30D'`, etc.\n" + ] }, { "cell_type": "code", @@ -869,6 +746,246 @@ "outputs": [], "source": [] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Scatter plots\n", + "\n", + "\n", + "Scatter plots are widely used and easy to understand. ***When should you use a scatter plot?*** When your goal is to draw the reader's attention between the relationship of 2 (or more) variables.\n", + "\n", + "* Data tables also show relationships between two or more variables, but the trends are sometimes harder to see.\n", + "* A time-series plot shows the relationship between time and another variable. So also two variables, but one of which is time. \n", + "\n", + "In a scatter plot we use 2 sets of axes, at 90 degrees to each other. We place a marker at the intersection of the values shown on the horizontal (x) axis and vertical (y) axis. \n", + "\n", + "\n", + "* Most often **variable 1 and 2** (also called the dimensions) will be continuous variables. Or at least [***ordinal variables***](https://en.wikipedia.org/wiki/Ordinal_data). You will seldom use categorical data on the $x$ and $y$ axes.\n", + "\n", + "* You can add a **3rd dimension**: the marker's size indicates the value of a 3rd variable. It makes sense to use a numeric variable here, not a categorical variable.\n", + "\n", + "* You can add a **4th dimension**: the marker's colour indicates the value of a 4th variable: usually this will be a categorical variable. E.g. red = category 1, blue = category 2, green = category 3. Continuous numeric transitions are hard to map onto colour. However it is possible to use transitions, e.g. values from low to high are shown on a sliding gray scale\n", + "\n", + "* You can add a **5th dimension**: the marker's shape can indicate the discrete values of a 5th categorical variable. E.g. circles = category 1, squares = category 2, triangles = category 3, etc.\n", + "\n", + "In summary:\n", + "\n", + "* marker's size = numeric variable\n", + "* marker's colour = categorical, maybe numeric, especially with a gray-scale\n", + "* marker's shape = can only be categorical\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's use the Booreactor yields data set. There is information about it here:\n", + "\n", + "http://openmv.net/info/bioreactor-yields\n", + "\n", + "\n", + "Read the data, and use the `.describe` function to check it:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Standard imports required to show plots and tables \n", + "import pandas as pd\n", + "\n", + "yields = pd.read_csv('http://openmv.net/file/bioreactor-yields.csv')\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Are all 5 columns shown in the summary? Modify the `.describe` function call to show information on all 5 columns." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now plot the data as a scatter plot, using this code as a guide. We want to see if there is a relationship between temperature and yield." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "ax = yields.plot.scatter(x = 'temperature', y = 'yield', \n", + " figsize = (10, 8),\n", + " \n", + " # These remaining inputs are optional, but\n", + " # specified below so you can explicitly see them\n", + " \n", + " # Size of the dots: change this to get a feeling \n", + " # for the range of values you should use\n", + " s = 50, \n", + " \n", + " # Specify the colour\n", + " c = 'darkgreen',\n", + " \n", + " # The shape of the marker\n", + " # See https://matplotlib.org/3.1.1/api/markers_api.html\n", + " marker = 'D'\n", + " )\n", + "ax.set_xlabel('Temperature [°C]')\n", + "ax.set_ylabel('Yield [%]');\n", + "ax.set_title('Yield [%] as a function of temperature [°C]');" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The objective of this data file was to check if there is a relationship between `Temperature` and `Yield`. Visually that is confirmed.\n", + "\n", + "Let us also quantify it with the correlation value we introduced above. Calculate the correlation with this code:\n", + "\n", + "```python\n", + "\n", + "display(yields.corr())\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "display(yields.corr())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The correlation value is $r=-0.746$, essentially negative 75%.\n", + "\n", + "* The correlation value is ***symmetrical***: the correlation between temperature and yield is the same as between yield and temperature.\n", + "* Interesting tip: the $R^2$ value from a regression model is that same value squared: in other words, $R^2 = (-0.746356)^2 = 0.5570$, or roughly 55.7%.\n", + "\n", + "> Think of the implication of that: you can calculate the $R^2$ value - *the* value often used to judge how good a linear regression is - without calculating the linear regression model!! Further, it shows that for linear regression it does not matter which variable is on your $x$-axis, or your $y$-axis: the $R^2$ value is the same.\n", + "\n", + "> If you understand these 2 points, you will understand why $R^2$ is not a great number at all to judge a linear regression model." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Adding more dimensions to your scatter plots\n", + "\n", + "We saw that we can alter the size (`s = ...`), colour (`c = ...`) and shape (`marker = ...`) of the marker to indicate a 3rd, 4th or 5th dimension.\n", + "\n", + "In the plots above you saw you to specify `s`, `c` and `marker` if the all the values are the same. Below you see how to do that if they are different. You specify a vector for `s` and `c`, the same length as the data.\n", + "\n", + "The vector for the size, `s`, is often a function of the variable being plotted. Remember that a doubling of the circle's area is related to the square root of the radius.\n", + "\n", + "The colour, `c` is often a categorical variable. In the example below we use red for \"Yes\" (baffles are present) and black for \"No\". \n", + "\n", + "We consider changing the markers' shape in the next piece of code." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "baffles = yields['baffles'].values\n", + "print(baffles)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "So we see the \"baffles\" column is actually text: \"Yes\" or \"No\". \n", + "\n", + "We learned about dictionaries last time also. Let's create a dictionary to `map` (match) the \"Yes\" and \"No\" to a particular colour:\n", + "\n", + "```python\n", + "colours = {\n", + " \"Yes\": \"red\",\n", + " \"No\": \"black\",\n", + "}\n", + "```\n", + "\n", + "To do this, we will use Panda's `map` function:\n", + "```python\n", + "yields[\"baffle_colour\"] = yields[\"baffles\"].map(colours)\n", + "display(yields)\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "ax = yields.plot.scatter(x = 'temperature', y = 'yield', \n", + " figsize = (10, 8),\n", + " \n", + " # These remaining inputs are optional, but\n", + " # specified below so you can explicitly see them\n", + " \n", + " # Size of the dots: change this to get a feeling \n", + " # for the range of values you should use\n", + " s = 50, \n", + " \n", + " # Specify which column should be used for the colour\n", + " c = \"baffle_colour\",\n", + " \n", + " # The shape of the marker\n", + " # See https://matplotlib.org/3.1.1/api/markers_api.html\n", + " marker = 'D',\n", + " \n", + " )\n", + "ax.set_xlabel('Temperature [°C]')\n", + "ax.set_ylabel('Yield [%]');\n", + "\n", + "ax.set_title('Yield [%] as a function of temperature [°C]; colours indicate a baffle');" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, { "cell_type": "code", "execution_count": null, @@ -942,48 +1059,6 @@ "* scatter plots (plot one column against another column)." ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Time-series (sequence plots)\n", - "\n", - " \n", - "Each link is: https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.plot.bar.html\n", - " \n", - "```\n", - "\t\t\"area\" is for area plots.\t.area()\n", - "\t\t\"bar\" is for vertical bar charts.\t.bar()\n", - "\t\t\"barh\" is for horizontal bar charts.\t.barh()\n", - "\t\t\"box\" is for box plots.\t.box()\n", - "\t\t\"hexbin\" is for hexbin plots.\t.hexbin()\n", - "\t\t\"hist\" is for histograms.\t.hist()\n", - "\t\t\"kde\" is for kernel density estimate charts.\t.kde()\n", - "\t\t\"density\" is an alias for \"kde\".\t.density()\n", - "\t\t\"line\" is for line graphs.\t.line()\n", - "\t\t\"pie\" is for pie charts.\t.pie()\n", - "\t\t\"scatter\" is for scatter plots.\t.scatter()\n", - "```\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "If you have a single column of data, you may see interesting trends in the sequence of numbers when plotting it. These trends are not always visible when just looking at the numbers, and they definitely cannot be seen in a box plot.\n", - "\n", - "An effect way of plotting these columns is horizontally, as a series plot, or a trace. We also call them time-series plots, if there is a second column of information indicating the corresponding time of each data point." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, { "cell_type": "code", "execution_count": null, @@ -1324,7 +1399,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.1" + "version": "3.7.9" }, "toc": { "base_numbering": "1", @@ -1339,7 +1414,7 @@ "height": "calc(100% - 180px)", "left": "10px", "top": "150px", - "width": "348.99456787109375px" + "width": "348.984px" }, "toc_section_display": true, "toc_window_display": true From 8a496d077b1ca0985c2abcf3f575963187064b0e Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Tue, 27 Oct 2020 16:38:04 +0100 Subject: [PATCH 099/134] Updated module 13, with tweaks to other modules. --- Module-10-interactive.ipynb | 1074 ++--------------------------------- Module-13-interactive.ipynb | 368 +++--------- Module-14-interactive.ipynb | 304 ++++++++++ TODO-module.ipynb | 180 +----- 4 files changed, 436 insertions(+), 1490 deletions(-) create mode 100644 Module-14-interactive.ipynb diff --git a/Module-10-interactive.ipynb b/Module-10-interactive.ipynb index cd704c4..79e96f1 100644 --- a/Module-10-interactive.ipynb +++ b/Module-10-interactive.ipynb @@ -7,7 +7,7 @@ }, "source": [ "

    Table of Contents

    \n", - "" + "" ] }, { @@ -28,170 +28,9 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" - ], - "text/plain": [ - "" - ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# Run this cell once, at the start, to load the notebook's style sheet.\n", "from IPython.core.display import HTML\n", @@ -313,235 +152,11 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "metadata": { "hide_input": false }, - "outputs": [ - { - "data": { - "text/html": [ - "
    \n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    ParticleSizeMixerDiameterMixerRotationBlendingTimeBlendingEfficiency
    10862004561.8
    1842006062.9
    3882006063.2
    5562254569.2
    12862007570.7
    4561754570.9
    15542256071.9
    13541756072.4
    17562006074.5
    16582256074.9
    8562006075.1
    14581756076.4
    7562254579.8
    6561757580.1
    9262004581.8
    0242006084.5
    2282006090.7
    11262007592.2
    \n", - "
    " - ], - "text/plain": [ - " ParticleSize MixerDiameter MixerRotation BlendingTime \\\n", - "10 8 6 200 45 \n", - "1 8 4 200 60 \n", - "3 8 8 200 60 \n", - "5 5 6 225 45 \n", - "12 8 6 200 75 \n", - "4 5 6 175 45 \n", - "15 5 4 225 60 \n", - "13 5 4 175 60 \n", - "17 5 6 200 60 \n", - "16 5 8 225 60 \n", - "8 5 6 200 60 \n", - "14 5 8 175 60 \n", - "7 5 6 225 45 \n", - "6 5 6 175 75 \n", - "9 2 6 200 45 \n", - "0 2 4 200 60 \n", - "2 2 8 200 60 \n", - "11 2 6 200 75 \n", - "\n", - " BlendingEfficiency \n", - "10 61.8 \n", - "1 62.9 \n", - "3 63.2 \n", - "5 69.2 \n", - "12 70.7 \n", - "4 70.9 \n", - "15 71.9 \n", - "13 72.4 \n", - "17 74.5 \n", - "16 74.9 \n", - "8 75.1 \n", - "14 76.4 \n", - "7 79.8 \n", - "6 80.1 \n", - "9 81.8 \n", - "0 84.5 \n", - "2 90.7 \n", - "11 92.2 " - ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "import pandas as pd\n", "blender = pd.read_csv('http://openmv.net/file/blender-efficiency.csv')\n", @@ -572,99 +187,9 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
    \n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Visits
    DayOfWeek
    Saturday9.84
    Sunday11.36
    Friday13.38
    Thursday15.28
    Monday16.31
    Tuesday16.61
    Wednesday17.23
    \n", - "
    " - ], - "text/plain": [ - " Visits\n", - "DayOfWeek \n", - "Saturday 9.84\n", - "Sunday 11.36\n", - "Friday 13.38\n", - "Thursday 15.28\n", - "Monday 16.31\n", - "Tuesday 16.61\n", - "Wednesday 17.23" - ] - }, - "execution_count": 25, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAyAAAAEBCAYAAACAH8HSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XWYXOX1wPHvvTPru7ElRkIIBDi4Q3CCa4FfC8UKBdJSPAUKRVIokApOixSCFCkubXGCxN2dE+JuG1md2ZH7++NOyhIiK7N7d2fP53n2ycyV9z3vZnd2zrzmeJ6HMcYYY4wxxjQFN+gAjDHGGGOMMa2HJSDGGGOMMcaYJmMJiDHGGGOMMabJWAJijDHGGGOMaTKWgBhjjDHGGGOajCUgxhhjjDHGmCZjCYgxxhhjjDGmyVgCYowxxhhjjGkyloAYY4wxxhhjmowlIMYYY4wxxpgmYwmIMcYYY4wxpsmEgw7AGGNMxskBDgNWAImAYzHGGNN4QkBXYDwQre1NloAYY4xJt8OA4UEHYYwxpskcC4yo7cWWgBhjjEm3FQDr11eQTHpBx5I2xcWFlJSUBx1G2mRaeyDz2pRp7YHMa1OmtQfq1ibXdWjfvgBSr/u1ZQmIMcaYdEsAJJNeRiUggLWnBci0NmVaeyDz2pRp7YF6talOw21tEroxxhhjjDGmyVgCYowxxhhjjGkyloAYY4wxxhhjmowlIMYYY4wxxpgmYwmIMcYYY4wxpsk4npd5M/eNMcYEqiewIOggjDHGbF0kGqestOpHxzt2LGLNmrJaleG6DsXFhQC7AAtrW7ctw2uMMaZR9B0wiNXrf/zHzRhjTPA+evRcapdmpJ8NwTLGGGOMMcY0GUtATLMgIgtFZIWIhGocu1JEPBG5IY31DBGRs9NVnjHGGGOMqRtLQExzsgI4rcbzXwITA4rFmC0SkQEi8o8az89OJcr71Dj2sYj0rUOZfURkQrpj3UpdL6czqTfGGGPqyuaAmObkZeAK4FMR2QXIB2YAiEgh8CRwWOra11T1wdS5IcB44EhgR+AdVb0jdW5v4J9AFjALyN1UmYjcClyE/3sQAa5V1SkicjvQQ1VvSF3XGZgG7KKqlY3UdtNyDMH/WdzkeGAs0AeYmerFOwa4qckjM8YYY1oAS0BMczIYuE5E2uMnIq8Ch6bO/QG/x24/oAgYLSLTVPWz1PkewHGpc/NE5EVV/Q54Dfi7qr4iIkcAI2vU96qqPgogIicDzwJHAM8Ds0XkDlUtB64G3rDkw6SMBHYRkc6qugo/Abkfv8fuaeAgoFRV54vImcDd+IlvNXCzqo4BvycFPwFeBozbVLiI9AGewE9qjgQ84CJVnZ06/0vgOvzX7434ibOKyFHAU/i/J1nAAFV9U0S64f8u7YC/MlW4Rl2XAP2A7NSh36nq1yLyc+ByVT07dV0O/uomh6vqkrR8F40xxrRaNgTLNCce8A7+m7ILgTdrnDsZeF5VPVUtTZ07ucb5d1U1qaobgdlALxFpA+yLn4SQeuM3vcY9h4jIMBGZATwGHJi6bj3wIXCZiISBXwP/wBhAVavwe9z6iEgRUAB8RurnB78nZLCI9MJPnM9Q1UOAX+H/fCMiPwHOSd1zIrDnZtXsAzyrqvun7umfuu9Y4OfAcakyHwZeSt3ze+BxVT0Q/+d+U3L+d2CYqh4A3IKfMG3yBXCEqh6E/3v3Sur4B8B+qZ5IUnWOseTDGGMyS8eORT/62trxLX2lluCtM+sBMc3Ny/if/A5V1RIR2XTcwU9Qaqr5PFLjcYLvf7a3uNGNiGQD7+G/kZskIjvifxK9yd+BN4DVwGxVnVP3ppgMNhg/0SgFRqhqQkS+S80D6QO8jz+fqRcwrMbPcTg1pO8E4O1UDxsi8iKpJCNFVXVy6vEY4Cepxz8BDgDGpsp0gPY1YrpTRHYGvlTVsanjJ5AaDpbqlfm6Rj29gE29JDGgi4h0UdWVIvIccA1+YnP9ZvEZY4zJAFva76Oe+4DUifWAmGZFVefjD1l5YLNTXwK/EhEn9anzRcBX2ymrFH8OySUAInI4/hAu8IfEhIFNn+het9m9M4AS/KEwT9e3PSZjDcFPNI4HhqaODcPvzTgGPxlwgM9V9cAaXzumhm052yl/awm1A7xUo7wDVLUHgKo+gZ+grAGeTA3x2p43gWdUdR/gYCDO9/OkBgKXiMjRQDvg6y0XYYwxxtSNJSCm2VHVgao6dbPDD+C/+ZoOjMafhP55LYq7HLhRRCbhD6Uak6qjFLgHGC8iw4CKLdz7ApAEPqlXQ0wmG4W/2/fP8JMR8BOQG4ENqroQGAScvtnqWJsWUfga+LmIFKQmrV9Zy3o/Ai4Xke6p8kIickjq8R6qOk9VnwP+BhyeuuebTeWnhlSdVKO8dny/Y3lfIGfTCVVdi5/kv4WfpGyxN9EYY4ypKxuCZZoFVe25leNX1Hh6xVau6bO156o6C+i9lfseAh6qcegvm11yAvCUqia2GLRptVQ1IiJjgW6qujx1eDzQDXg3dc13IvIL4EURycOf6D0SGK+qH4vIkcAUYDl+j0m3WtQ7TETuBj5MJS7ZqfomAjeJyAn4k92j+MkQ+JPMXxWRCwDF703c5LfAf0RkGX5PTslmVb4AXMD3c0OMMcaYBnM8zz7UMqam1HyQwcBK/AnEtvqVaZVEpD/QVVWvr+OtPYEFfQcMYvX6qvQHZowxpsE+evTcdM4B2QV/tcRasR4Q4+AvYbsPsLeXiHf0EvE2XjJRhJcsxPMK8Vf5ycdx8nHcPMdxc3DdHLxkzEskSvCSK3FDy9ysnEVOKLwCWLXZ13r8oUwtQuoTbdnuhcZkMBGZiT8n5LTtXWuMMcbUhSUgrYcDdMdPNPZJRCoOw0se6Gbn9UxWRxKxkqWx6Mr5eYmyddnJWDVeLIoXryYZi/qPY9Uk45se++eccA6hgrYdQgVtdw8VtCNU0M4LF3WIhtoUV4cLO3ihgjaOm1uY44Szw151ZLXnJSeG8gqH4g8XmYS/h4ExphlKTUw3xhhj0s6GYGWuQuCEZLTqHC8ZP9rNyt0lGa/2YiXLqqMr5uVWr16UU71mMbG1S0lGtjT/Oo1CYbI6dCWnSy9yuu0eze2+ZyS7uFu+l4itxWOom5v/Bf7484VsZdlcY0yL0pPvJ7cbY4xphiLROGWlPx4m2xRDsCwByRwOcICXTJ6WjFZc4Gbl7hddOT9SoWOLosvmONVrl5CsKg86xu85Llk7dCevx17k7XpQeW6PvUOO61Z5ycSwUG7h2/gbAdrcC2Napp7AgpKScpLJzPkbU5c/yi1BprUHMq9NmdYeyLw2ZVp7oJXPAUmt2HIX/hvrXGCSql6yjet7Aqeq6sA01X8FcLaqnp+O8hqJCxwVjVdfmPSSF2a54Y5Vs0ZFK2aNyKlaNBMvFskOOsCt8pLE1iwmtmYxpRO/KAQIt++al7fzPucV7nf8STk77vYS8fhHbm7+8/gTwm0lKmOMMcaYDNAsExAR6Qo8AxysqktExMHf/XdbegJX42+eVdf6wqoar3OgwekeS8T7xpPx60uj5bnDFo7NG7t0cvi6wy9Ltt+4Kqdy7sSg46uX+PoVlK1fQdmUr4pCBe0o3OeYC4oOPvWMcFFxAsd5xc3K+Sew+f4gxhhjjDGmBWmWCQjQBYiRWpM+tQHWFAAReR1/haIcYC5wlaqux9+tehcRmQLMVdXzRcQDilS1PHXv/56nHt8OnAUMF5EHgCfxdzdeBny7KRgR2Q8/ISrA740ZqKpPpJZrnQjsoqqR1LUfAm+p6htp/p5kAWeXV1f2y3JDR4xYPMEbNHdY7oL1i/93wfBF45zz9zwiwdC3Qmmuu8klKjawcdzHzsZxHxdl7dCdov2Ov67ogJN+TSi82s3Kec4Jhf8FLA06TmOMMcYYUzfNNQGZCowDFovIEGAE/s7XJUC/1A69iMgA4PfAHcD1wCOqemgd6nE3bVonIjfij1/bF//N/jC+H8u2EDhZVaMiUgiME5EvVHW2iAwFLgReEZGdgUOBdA7bKo7Gq28Frl9WutL57LvBRWOWTCKaqP7RhROWTXMu2u+ckD8yq8WsertdsbVLWTf49ax1g9/Iyt1pr55FB5xwT8FeR93rJRNTQrkFd+BPYDfGGGOMMS1As0xAVDUJnCci+wLHA+cBt6V6Ii4XkUvxdwAuAOY0oKqau/ueALyiqjEgJiL/Ao5JncsH/iEiB+C/s98Rf0jYbODvwOOpsq4FXlLVH2cHddc1Eo/e6eL8avSSic5/Zw/KXVa2cps3rKpYS1m0wivcv49TPu2bNITQ3HhElswismRW3trPBlKwzzFHdDjh0k+dcPa0UG7BLcDooCM0xhhjjDHb5gYdwLao6gxVfVpVT8HfM+JG/Df5p6vqfkB//CFRW5Mg1UYR2dJ1NZeFcrZRzp/xd8U+SFUPwO+dyU3FOAoIicjRwC+B52rTtm3oURWLPB+NV88fumDM1f0+/WPeM+Ne3W7yscmoJRO9ggNPzJzuj63wEjHKpw1m8ZO/yV/39au9E5WlXyUiFUOAQ4KOzRhjjDHGbF2zTEBEpJuIHFnjeXegI37vw0agRERygKtq3FYKtN2sqHnAYanHW11BK+Vr4DIRCYtI3mbXtwOWqGo81Stz7Gb3Pgm8BYxW1SXbbeCWdayKRV6OxKP65bzhl9/wcf/cFye9lVNStb5OhYxbOsV1Ou20rWQqsyQTlE35yln091/nrx/65rGJqvJhiUjFF8B+QYdmjDHGGGN+rFkOwcKP677UnIoq/ESpP/Ai/hyNb/EnIE8ADk/dMw1QEZkBfJtaPvdm4DkRWQF8vJ06BwL7AzNTZQ/FnxMCMAB4TUR+gZ/UDNvs3rfwJ8E/U4+2ZsWTiRsTycT9QxeOCb8946Ociur6b3/x3boFOG7Iyem+F9Gls+tdTouTiFM64TO3bMrX+W0OOe3kdsdcMNaBr9zcgtupsaCAMcYYY4wJlm1EmAYicgzwLLBfasWu2jq1KhZ5fuGGJcUDJ7xRsKy0dsOstuemI65MHFiZcFd/8Ejr6QnZjJOVS9vDzky0O+qnMfA+cHPyrwc2BB2XMa1ET2wjwmYv09oDmdemTGsPZF6bMq090Mo3ImwpRORF4BTg8jokHz0rq6sGRhPVRz8/4Y38CcunpTWm0UsmhQ486MIE0OKX460vLxZhw6gPQhsnfh4qPvGynxXue9xpbnbuxcCXQcdmjDHGGNOaWQLSQKratw6XO4lk4pp4Mv7wR/plzofffhmOJdO//+G0Vd+Sk1sYcouKSZaVpL38lsSLVrL2s+dyKr4dndPpvJv/44Sy3nBz8n4LVAQdmzHGGGNMa9QsJ6FnqJ0qY1Ujl5aufPiOQX8teH/WZ42SfABE41G+K1mQaNf7nEYpvyWqWjCNJf+4Ib9y3qRLk9VVChwRdEzGGGOMMa2RJSBNIOklfx6NV8/68NsvD/v9oD8X1HZJ3YYYsXh8KLzHoYlGr6gFSUYqWP3vx/LWfPhUt2Sk4ptkdeRB/P1kjDHGGGNME7EEpHHlV8aq3lpftfGf937zaOEHsz4LJ72m2aJj4vLpZLcpDhG299ebq9AxLHn2przIUr0hGa2cgS3Za4wxxhjTZGwVrMbToyoWGTRl5cwez4x9NS+aSMfm6HXzxBn3JrPHfOqWjv+kyetuKYoOONErPrVvBNe93w1nPwjYL4QxDdcTWBB0EMYY01pEonHKSqvSUpatgtVyHRuJRz98f9anhR9++2Vg3+ORiydw5n7HJUrHf9JqV8PanrKp3zhVC6fndb7gzv5Z7Tod5ubkXQpEgo7LmEzQd8AgVq9Pzx9EY4wxW/fRo+fSkhYDtiFYaRZPxq+rjFV98ejI59oFmXwAjFs21XWLu9n/8XbEN65h+ct3FFQtmnFGMlo5Etgh6JiMMcYYYzKVvTlNn6yqWOTldZUbHv79oL/kTV0Z/C7kizYsJe4lnLzdDgk6lGbPi1ez6t0H80onDdo3WR2ZCuwRdEzGGGOMMZnIhmClR25lrOrjeesWHfnIiOfyq+LNZwTPuKVTEr0POd2tmjux1e6KXnse6755LTu2flWX4lOvmuGGs84Avg46KpOZRGQskIO/EtsewIzUqcmqemUj1jsCGKCqnzdWHcYYY8y2WALScIWVsapBM1bpgY+PfiEvkWxeK9+OWTopdMThVyQBS0BqKafb7l4kUh1yspwP83LCPwPsjZpJO1XtDSAiPYEJqnpgsBEZY4wxTcMSkIZpVxWLDBm/bKo8M+7V3Oa4otjM1d+RlZXrhou7ES9ZFnQ4zV674y5M5O5xhPurB4c5nTrk599/9ZEf5GaHr3Jd562gYzOtg4j8CjhZVS/a/LmIOMCdwHlAFrAY+LWqrhaRnwL3A3H81/ZrVXW4iOwLvASEgJn4vS6b6roduCBVVhXwG1WdJiJ3AZ1U9bep63YEJgE9VbX5dPEaY4xpkSwBqb9OVbHIiGELx/Z4adLbOV4zXb01nowzY7Umdjvi3NDaT54JOpxmrejAk702h5/j/vbJUc76sijry6Lc/uTwvD9fd8yLeTnhNllhd2DQMZpW75dAd+AIVU2KyI3Aw6njDwC/UtXRIhIG8lL3vA48pKqvi8gxwLAa5b2kqg8BiMjpwDPAMcBAYLqI3KWqlcBvgNcs+TDGmOarY8eiZlnWllgCUj+dIrHI+M+/G9L1zen/zQo6mO0ZtWRiaI+9zkrgfwJqtiB/t0PocMpVzr0vTWDRiu8Xslu0sozf/W1Y/mO/Pe6JkJu11nWdDwIM05hzgAOBSSIC/mt4SercN8DjIvIe8JmqzhSRDsDuwBsAqjpCRGbVKK+3iNwBtMffA2eX1HVrReQz4FIReRnoCxzX2I0zxhhTf7Xdu2N76rkPSJ3YKlh1V1gViwz+fO7QFpF8AExePoOcgnYhNzs/6FCapZwdd6fT/93Ck+/PZOp3a390fkVJBXc/OyovGku8Bhzf9BGaVibOD1+bc2s8doA/quqBqa99VfV4AFW9Ebg6df8HInJV6npU9UddtCKSB7wN3Kiq+wJnbVbX34HrgJ8CU1V1froaaIwxpnWzBKRusitjVZ+NWzpl1zem/adFJB8AZdUVLCtdmWxz+FlBh9LsZHXYkS4X38Ob3yzg6wlLtnrd/GUbGfDS2PxIdfxj4ICmi9C0QvOAA0QkW0RygJ/VOPchcL2ItAMQkVwR2T/1WFR1mqo+gd/jcaiqlgBzRGTTfJIjgb1TZeXh94pu+sG/rmYQqjoFKAceAZ5uhHYaY4xppSwBqT23KhZ5Y87a+Qf/Y/xrudu/vHkZvmick7P3Uc1ria6AhQrb0fWyB7yvp6zy3vpyznavnzZ3LX97a3JBpDr+DdCz0QM0rZKqDgeG4y/L+yH+xPFN5/4JvAsME5FpwATgyNTph0VkhohMAfoAD6WO/wK4VUQm4s8VGZ8qax3+pPWJIjIUKN1COC8AMWwlOGOMMWnkNMeVm5qjSDz65LLSlVfe882jBbFELOhw6qxrUWceOuVOlj10SdChNAtOdh7drnrIm73WTfYfOLZOc2N+csyuicvO3GtFXk74YGBNI4VoTOBS8z+mqurjdby1J7Cg74BBrF5flfa4jDHG/NBHj54b9ByQXYCFta3DekBqIZaI3boxUnrlgCF/b5HJB8CKslVUxCq9gn2ODTqU4Llhul7UP7kqmlvn5APgoxHzQ5+MXNCpMhIbDNR95pUxzZyI7CQic4CdgWeDjscYY0xmsVWwtu/E6kTsgfsGP5FXEasMOpYGGb1kktfnoFOomDm8FW9K6NDp/25ORAp35KY/D673qmCvfDIru31RTq8j9+v63/zcrFOAZBqDNCZQqroEf3d2Y4wxJu0sAdm2HtF49INHRg7MW1u5LuhYGmzs0inuCUf/plXvit7hlCsToZ32c3795yFuvIEpw5PvTMndtVvb3t07Fd2SFXYfSU+ExmSOF/ufGnQIxhjTKkSi8aBDqBNLQLYuO15ZORIv2aY0mp4xdUGbUzIfNxR2s3fcnerl3wUdTpNr2/ucZMH+J7rXPjrCKY80/Bc1kfT40z/HFTz5uxPuzwq7g4GJDY/SmMxRUlJOMpk58wzrMi66Jci09kDmtSnT2gOZ16ZMa09TsTkgW5Goqnqi7FvtsPqTz70H+9zGqb1a/vYPSS/J5JUzE+0OPzvoUJpcwd7HeO2Ou9C947lxzqp16RtKt2pdJU++Mzm3Khr/EGjcbUONMcYYYzKAJSBbdl4iGv3lnEefyF/8+puuPvgIV+x9Drcd9ZsWP85/1OKJIXbeu1Utx5vbcz86nnWt85fXpzJn8Ya0lz98ynJn9PTlHSojsRfTXrgxxhhjTIaxBOTHuiai0ddm/+mv+fHycgA2TJrMlH63sA/FPHv6/Yn2uW0DDrH+pq6cRU5eUcgt7BB0KE0iu3NPupz/e174ZA5jZ6xstHqeeX9abnll7Myk513WaJUYY4wxxmQAS0A2E6+ofGHFx59ml8/54RyJ6Oo1TLn5Njc2fjpPnXqPd1i3lrkZdiQeZd66RYl2vTN/GFa4bUe6XvpH/jtqqffRiAWNWle0OsEDL40tqI4l/gHs3qiVGWOMMca0YJaA/NC5iarKPkveeid7Sye9WIy5Tz4dWvDcC9xy6BX0PfjCFjm7cuTiCaGsPQ7L6GFYbl4RXS8b4I2dszH50sezmmTVr4UrSnn541l5lZHYh0BWU9RpjDHGGNPSWALyvbaJSOSlOY/9LT9ZXb3NC9cMHupMu/0u+nTYj0dPuiuRG85tohDTY8LyaWS12SGEm5mLoDnhbLpe+sfkgvVe8i+vTmzSn/FPRi5w5y/buFMsnrypKes1xhhjjGkpLAFJSVRVPbZ25Oj80pmzanV95aJFTL7ht07h4rXOwNPvT+5W3LNxA0yjksr1rKvakGxz0MlBh5J+jkvnn9+Z2OC28259clS9NxpsiKffm1qQTHr3AZ2CqN8YY4wxpjmzBMR3dDKeuGjBi/+sU1dGorKSWfcNcFe+9x8eOKYf5+15WmPFl3YjF09w8vbv0+JX9dpcx7OvTySKd3Wue2R4IMkHwNLV5QwauyhcGYnZ5oTGGGOMMZuxBASyE1VVb8x75h/5iYqKehWw7IP/uLPu/xMX9DqZe4+7KeG2gG/r+GVTHWeHbhm1I3r74y9OZu92uHPdo8Pd6oZuc95Ar38+O8fzOB84KNBAjDHGGGOameb/TrmReYnE1eXz5heXjBrToHJKZ85i8g396FGZ7Qw8c0Cyc2HHNEXYOBasX0ISz8nb9cCgQ0mLooNO9YoOO8u55akx7obybc/haQoVkTj//HhmbmpvkDoleiKyUES+FZEpqa/Ht3LdFBHJ20YZ+9YjdGOMMcaYRtXaE5D8ZCz+wIIX/1mQjsJi6zcw/bY73fIho7zHT7rTO3bnw9NRbKPw8Bi/dGqi6JDTW+RKXjXl734oHU6+wrn3pUnO4lVlQYfzP1+OXeSsK43sAfy8Hrefr6oHpr5urnlCRMIAqXNV6YjVGGOMMaapZOYySLWUjMdv2jh9elbF/PTtEeElEix44aVQ6cxZXNvvBg7svLf35LiXm+VQpzFLJ4UOP/SyJHX8hL45yekmdDrvZp54bybT5q4NOpwfSHrw5DtTCv746yOfyssJfwRU1rcsEXkZKMPfY6QjcIiIeECRqpaLyLHAM0AVMIYa/6ci8ghwPJANrAWuUtVFIvIMMF9VH0lddxDwFrCnqrb4xNQYY4wxzVNr7gFp6yUSdy985bW09H5srmT0GKbechuH5u3MU6femyjMzm+MahpkxiolKyffDbfvHHQo9ZJV3I0uF/Xn9a8WMHjikqDD2aJZC9YxZc6a/GgscWcdb32vxhCsTasbHAn8TFUPqXmhiOTgJw43qurhwAigR41L/qqqh6nqAcCbwIOp408C14jIpmTlBuAZSz6MMcYY05habQKSiFbftm7c+FDVkqWNVkdk+Qqm3HSL486azz9Ou9/br5M0Wl31EUvG+XbNd4l2vc8LOpQ6CxW2p+tl9/PV5NXeO1/PCTqcbXrxwxn5eNwMtKnDbTWHYH2ROvaeqm5ppQQBKlV1CICqvgNsrHH+DBEZIyIzgN8BB6aumw3MB04XkfbAOcDLdYjRGGOMMabOWusQrGLwbl702htbnMCbTsloFH3o0VCXM0737rriGj6cP4Q3p/+3sauttRGLJ4R2ldMTQGDL1taVk5NP18se8KYvqfKeem9qs0+iV62rZMLsVc7h+3S5NivsPrj9O7aqfCvHtzqETkR2Bh4HDlPVBSJyFPBGjUv+DlwH7A18oKobt1CMMfVSXFwYdAhp17FjUdAhpFWmtQcyr02Z1h7IvDY1ZXsi0ThlpS1/+merTEASkUj/tcNHutFVq5qszpWffe6Uz53LWX+4i/132CPxh6GPh+LJeJPVvzWTls/g14dcHCI7F6ojQYezfaEwXS/6Q3JlJMe75/ng9vqoq7e+1PxD9up0Rxbu34B0f6O/BfJE5DhVHSYi5wNtU+faANXAShFxgWs2u/dT4DHgYODMNMdlWrm+Awaxen3L/0NpjDHNxUePnkvzWW6n/pr9p8eNoMBx3auXvPNunTYdTIfy7+Yy+fp+7LAm4jx/xoDkTm13bOoQfqQ0WsaKslXJtoecEXQoteDQ6f9uTVQVdKHf4y0n+QBYuKKUOYvXh5Oed3m6y1bVKHAx8LSIjAMOBRanzk0H3gVmAt8ACza7Nwm8AixQ1anpjs0YY4wxZnOO57W6+aZ9N0yd9sTMe+4LbmyA69Lj4guTXc852315xn8YNG9oYKEAnLfXad65XQ5Mrnr+1mb9pr74tF8lsvc8zrniL0PcykjwvUd1tV+vHeh/1eFL8nOzdgaazS+eiHwJDFTVd4OOxWSMnsAC6wExxpj0+ujRc1mzpnH7QDp2LKp1Ha7rbBpuuwuwsLZ1tLoekHhFxe3L//tRsAOTk0kWv/6mqw8+whV7n8NtR/0m0G27xy+b6oTad2nWyUfbI85L5u/bx73hiZEtMvkAmD5vLaUV1e2Bk4KOBUBEDhWRefgT1t8POp7WLrV55AoRCdU4dqWIeCJyQxonQK41AAAgAElEQVTrGSIiZ6erPGOMMaauWlsCcliyOtZt/eQpQccBwIZJk5nS7xb2oZhnT78/0T637fZvagTLSldSFY96BXsdFUj921O4z7Feu2MvcG//x1inpX+a+t433xWUV8XuCDoOAFWdoKq9VPX81FAsE7wVwGk1nv8SmBhQLMYYY0yjqPUkdBG5ALgLf8WdXGCSql6SjiBEpCcwQVV3SEd5WxOvrLxl+Ucf55JsPu+1oqvXMOXm29xe11ydeOrUe7wnJr7qjF/W9EPxxyyZlDz2oFOcitmjmlVSmtdzf3Y481rnz69NYe7Slr9A05BJS52+5+x7NH5XZfp2wDR1JiK3qOpjmx1zgBdV9aqAwnoZuAL4VER2AfKBGanYCvH3bjksde1rqvpg6twQYDz+XjE7Au+o6h2pc3sD/wSygFn4r9+kzt0KXIT/tyACXKuqU0TkdqCHqt6Quq4zMA3YRVXrvaGmMcYYA7XsARGRrvi7LJ+jqgcCewEPNWZgjaCDGw6ft+rLr5vdUCMvFmPuk0+HFjz3ArccegV9D76wyecHjF06OeR03aWpq92m7M670PmC23nuo28ZO2tl0OGkRbQ6wVfjFruxeOJXQcdi+KWI9N30JJV8/AvoHlxIDAb2T+3LcgXwao1zf8B/zd4POAq4XERqrh7RAzgOOAj4lYjsnjr+Gv4GkwcDT/F9AgPwamqTyoNS5T+bOv48cH4q6QG4GnjDkg9jjDHpUNsekC5ADCgBSO2UPGXznouazzc9Bp7DX94zH+irqiNS114P3Iw/5GDIpopEJAx8AhQDecA44DeqWp3aSO1KVR2fuvYWYE9VvXp7DfASiSvWjZ+QjJeW1rLJTW/N4KFOxfyF9Ln3bvY5uVfiriGPhSLxplkaV9fOIxzOdrO77Er1yvlNUue2hNt2ouulf+TfI5Z4n45auNV9LlqioZOXZp946E6XZYVDdwcdSyt3OjBERMrw58C8CRQAPwkwJg94B79X4kLgaPxVzQBOBvqlXn9LReTN1LHPUuffTQ2l2ygis4FeIrIK2Bc/CUFVx4jI9Br1HSIidwEdgCSwR+q69SLyIXCZiDwP/DpVlzHGmIA1xb4jjV1HbROQqfiJwOJUV/8IUn/QtqMYGK2qd4vIpcCDwNEisj9wN3CQqq4SkWdq3JMALlHVktQnkq8AV+F/MvcU/qZpV6bOXQucX5sGJKqqrln52Rf5tbk2SJWLFjH5ht86ctstzsDT70/eP/oZd27JwkavN+ElmbpyVmKvw88Orfnw741e37a4+W3oevkAb7Su917+ZHazGhKWDnMWryeZ9IqBPfH38DABUNUVInIq/gcgNwJrgXNVNehVDl4GxgJDU6+Dm447/Hj1tJrPa35akeD71/ct9qiKSDbwHnCcqk4SkR2BZTUu+Tv+ppWrgdmqOqfuTTHGGJNuzXQVrDqp1Zs7VU2q6nlAH/whAmfhjwfusJ1by1X149TjMUCv1OM+wCequmknwIGbxfQ7EZmSquNE4MDUuVeB00SkA/5EzVW13LtgV1y3+8aZs2pxafASlZXMum+Au/K9//DAMf04b8/Ttn9TGoxcPDHk9Nw30SSVbYWTlUPXS+9Lzi9JJh98bVLGJR8AngfDpywLxRPJC4KOpbURkatqfuGvSPYBsBvwOf6wpqDmfwCgqvPxP6B5YLNTX+IPrXJEpAi/l+Sr7ZRVij+H5BIAETkcfwgX+HNBwsCS1PPrNrt3Bn6v9xPA0/VtjzHGGLO5Or3BU9UZqvq0qp6Cv3TnvpuVsfnmftEaj2t+IretITWXAMcAx6rqfvhzT3JT9VfifyJ3JXA9tfyj6CUS55eMGuM0p8nntbHsg/+4s+7/Exf0Opl7j7sp4TbyomVTVs4kJ79NyM1v06j1bJXj0vmCO5IbaOP97qlRzW6uTjoNm7IsJ1Kd+GXQcbRCl23h62D8nqiLUs9/EVh0Kao6cAsfrjyA/9o5HRiNPwn981oUdzlwo4hMwh9KNSZVRylwDzBeRIYBFVu49wX8oVmf1KshxhhjzBbUagiWiHTDXxFldOp5d6AjMBvIEpHdVHUuqU/ZamEwcLuIdFLV1UDfGufaAWtVtUxE2qbKnFDj/NPAMCAE/Kw2lSWqqq5YO3xEk+98ng6lM2cx+YZ+7PWHu5yBZw5I3j3scXdV+ZpGqasqFmHhhqWJHQ7/SWj9kNcbpY5t6fiTGxKJDrs41/15SEYnHwCzF5Tg+KsV9QLmBR1Pa6GqJwQdw9aoas+tHL+ixtMrtnJNn609V9VZQO+t3PcQP1xQ5C+bXXIC8JSqBtozaowxJrPU9iP1MHCfiGhqaNSnQP/UZPB+wJepuSG1+iOlqtOAPwMjRWQ4Pxx3/CpQJCIzgXeB4ZvduwD/08qXVLW6FtV1drKydt04fUZtQmuWYus3MP22O93yIaO8x0+80zt258Mbra4Ri8a72Xv2bvI3G+37XJLM7nWYc91jI9zqeMvqqaqPpAcjpy13EslkreYwmcYhIsUicpmI3JZ6vmPqA5ZWLfV9UGB3bPiVMcaYNHM8r8lXfG0QEWmDn4AcrqpLa3HLlevGT/j77AF/CXb38zQpPvIIdut3A6NXTvOeHPdy2leH6lhQzOOn38PShy+DZNPMxS06+DSv/YmXcdPfRjlLVpU3SZ3NwQG7d+SOyw/9tjA/e6+gY2mNROR4/NWvJgBHq2pR6tjvVDXIlbAyQU9gQd8Bg2jpm4caY0xz8tGj5zbXSei7AAtrW0etNyJsDkTkGqA/8Ggtkw/i5eUXrh05OiOSD4CS0WOoWLSIQ+/tz1On3pu4Y8jDofLq9C3Nv6aihA2RUq9o/z5O2ZRtzm9Ni/w9DqfDSb90+j8/ntaUfADMmLeWUMjtib9/w+KAw2mNngAuVNWvRWR96thYoPG6GFuZF/ufGnQIxhiTUSLRoBdqTI8WlYCo6rN8v1FWbYTcnJzjNkya3FghBSKyfAVTbrrF2b3fDfzjtPu9h8Y+70xfrWkrf9SSid4pB5zolU35qlFnved0Fzqd24/H3p3OjPkljVlVs5RIekybuybee5+uffjhhnOmafRU1a9Tjzd1BVfTwl4Xm7OSknKSyZbVy74tdflUsCXItPZA5rUp09oDmdemTGtPU8nIZU5r2CtWWhaPbdwYdBxpl4xG0YceDS199Q3uOvIaLt7v3LSVPW7pFNfp2L1RN//L2qE7XS7qz2tfzmPopGXbvyFDTZ9bUlgVjR8XdByt1CwR2XyN65PxV5kyxhhjTCPJ9ASkd9m332Z0G1d+9rkzo/+9nNXtSP5ywm2JsNvwD2/nrVsEjuvk9tgnDRH+WKioA11/cT+DJq703vtmbqPU0VLMWbyeeCJ5bNBxtFK3Aq+LyCtAnog8h78J4G2BRmWMMcZkuIx+cx6vrDx+44xZBUHH0djKv5vL5Ov7scOaiPPCGQOSO7XdsUHleXiMXzY1UXTYWWkfO+Hm5NP1Fw940xZXJp95f3qj9rK0BPOWbiAvO7wLP95DxzQyVR0DHADMBF4CFuAvbjE+0MCMMcaYDJfRCQhJ79jyOXOCjqJJxMvKmNH/Xrfk0y95sM9tnNrr+AaVN2bppJCzk6R1PVwnlEWXS+5JrqjMSt77wrjM/tmrpep4klXrK6uAg4KOpTVS1WXAI8AAVf1rbRe3MMYYY0z9ZfKbwEI3J6dbxcJFQcfRdJJJFr/+pqsPPsIVe5/D7Uf9pt4JxPRV35KTWxAKt+2YpuAcOv301kRlbmf6/W1Exm80WBcz55dkYysvNTkRaScibwARYG7q2DkiMiDYyIwxxpjMlskJyCFVy5dXevHMWK6sLjZMmsyUfrewN8U8d/oDifa5betcRnUihq6dl2h7xDlpian49F8lnB33cq59dLibyPx9Butk1oJ1uWWV1ScGHUcr9CywEdgZf/UrgNHAhYFFZIwxxrQCGZuAeJ7Xu3TGzLyg4whKdPUaptx8m1s9fhpPnXqPd1i3A+pcxojFE0Kh3Q5ucAbX9sj/S+btc5x7w+Mj3cpI60sIt2fO4vWEXKd30HG0QicBN6nqClLL8KrqGqBToFEZY4wxGS5jE5BERUXv8nnzsoOOI0heLMbcJ58OLXjuBW459Ar6HnxhnSaVT1w+neyi4jDhnHrHULjv8V67Y853b39mnLNmQ6Te5WSyZavLCIXc9sAOQcfSymxks++5iPQAVgQTjjHGGNM6pCUBEZGLRWSv1GMRkWEi8o2I7JmO8uvDSyZ7RVevCar6ZmXN4KHOtNvvok+H/Xjs5LsSueHaLbi0MVLK6vK1yTaHbL5VQu3k7XIAO5zxG+dPr01h3rLM24slXZIerF5XWQX0CjqWVuYF4H0ROQFwReRI4BXqttmpMcYYY+ooXT0gA4B1qcePAOOAYcAzaSq/ztysrO6RVauDqr7ZqVy0iMk3/NYpWLTWGXj6/cndinvW6r4Ri8c7efsem6hrfdlddqXz+bfz7IffMn7Wqrre3uqs3VDlAN2CjqOVeRB4B3gayMJfive/wN+CDMoYY4zJdA3ftc7XUVVXiUgucAxwPhAD1qap/LrKcrOz21WXlARUffOUqKxk1n0D3G4/PS/5wIX9eFs/5z/ffrHNe8Yvm+qcK6fUKVENt+tM10vu5YPhi/ls9MIGRNx6rFpXmY0lIE1KVT3gidSXMcYYY5pIunpA1ojIbsAZwHhVjeJvrBbURnPd4hUVES9R5w/uW4VlH/zHnXX/n7ig18nce9xNCXcbPwZLNi6nOhkjf4/DalW2m9+GHS97wBsxa733yqez0xVyxlu9vjI3Fk/sHHQcrYGIzBaRZ0XkEhHpHnQ8xhhjTGuTrgTkAWAi8CLwcOrYScDUNJVfVz2ja0tsuaVtKJ05i8k39KNHZbYz8MwByc6FW9/vY+zSKcmiQ07f7gR2JyuXrpfel/xuTcJ75I1JrX6X87oo2RghUp3YLeg4WolN+3zcDSwSkXki8k8RuVJEbB6OMcYY08jSkoCo6stAV6C7qn6ZOjyW4NbT3zmyYoVtdrcdsfUbmH7bnW75kFHe4yfe6R2785b3whu7dHKIrrtuOwFxQ3T5+Z3JdV4b7/ZnRmfs6mqNpWRjBM+jR9BxtAaq+rqqXqOq+wCdgVuB9cB1wGwRWRJogMYYY0yGS8scEBGZrKoH1TymqqtFZAJwaDrqqAsvmexZtXxFflPX2xJ5iQQLXngpVDpzFtf2u4EDO+/tPTnu5R/0Xsxa8x3hrFw3q2MPYmsWb7Gcjj+5MRFrv7Nz/Z+HWOJXDyUbqwiFnK5Bx9HaqOpaEZkHdE997QyUBhtV5iguLgw6hLTr2LEo6BDSKtPaA5nXpkxrD2Rem7bUnkg0TllpVQDRtAzpmoT+o6EjIuIAu6ap/DpJVseK42Vl9il8HZSMHkPFokUcem9/njr13sQdQx4OlVdXApBIJpi+anZCep8TWvPxUz+6t/0Jv0hk7XqI0/evQ91Y3LY5r4+SjRFyskId8OdN1Wm/FlM3InIocHzq63BgPjAS+Bdwjaqu28btpg76DhjE6vX2B9gY0/p89Oi5lAUdRDPWoARERF5NPcyu8XiTnsDMhpRfX14iUZSMxYKoukWLLF/BlJtucXbvdwP/OO1+76GxzzvTVysAIxdPDO25zzkJ4Ac9HG0OOT1ZdMjp7g2Pj3JKK6qDCDsjVEXjJJOeQ4i2wIag48lw44DZ+Mvw/lxVbYdMY4wxpgk1tJdgXuqr5uN5wFzgdeDcBpZfP14yPxm1N8P1kYxG0YceDS199Q3uOvIaLt7P/y+csmImOQVtQ27u90Mq8qU37U+8zO3/wkRn2ZryoELOGJHqRDXQJug4WoHLgOHA7/HnfLwmIldv2kzVGGOMMY2rQT0gqnofgIiMUdVtbyjRhLykV5CstgSkIVZ+9rlTPncuZ/3hLvbfYY/EH4Y+Hlq8cXmiw+FnhdYPe5vcnfai0zk38cjbM5g53/ZbSYdk0vPwN8QzjUhVX8f/gAQR2QF/76LjgF+JyE7AGFX9v3TWKSJjgRwgG9gDmJE61RYoUdUmmysnIh5QpKr2qYExxphA1LsHRESOq/E0JiInbukrDTHWg5efjFkC0lDl381l8vX92GFNxHnhjAHJ79YuCGXvdWQia4ed6HzhXbw6aB7DpywLOsyMkUgmPdI3L8vUgqquxe+1nQ8sxP/+n9kI9fRW1QNTZW9Q1QNTz69MR/kiYos/GGOMaTEa8mbnGWDf1OMXt3KNRzAT0fNsCFZ6xMvKmNH/XrfHxRcmTznnbBJhN9T1F/fxxfiV3vuD59peH2mUsB6QJlFjEvpxwNFAPv68kOHA88CoJg4pLCLPAUfiv2ZepKqzReQK4GxVPT8V9/+epx5fBKwB9gb6isi5wMVAJFXOCaq6QUR+CvwZWAd8WrNiEXkdEPzembnAVaq6XkQ+BV5S1fdS1/0Uf4L+qY34fTDGGNNK1DsBUdV9azzeJT3hpE2eTULfinCYnOJisju0J7t9e7LatSWrTRvCbYrIKiwkVFBAKL/Ac/Lykk5OnudkZeNkhR03FHLihHBjHm5OIaf3LnRO720bd6dZGyAv6CBagcH4ScZw4FFgrKpGA4xnH+BKVf2NiNwN9AcurcV9xwAHqOo8EWkP/A7opKpVIlIEVIlIJ/yk6ihVVRG5fbMy+qV6gRCRAfjzYu4A/p56/F7quutTx4wxxpgGa5ThHiJyAhBX1eGNUf52OU6Ol2kJSDhMdvt25HQoJqt9O7LatiG7XTvCRUWECwsJFxbi5ufj5uUlaiYOTthPHtyQ64TCLo7jEI8niFUniEXjXjQaT0aq4pRVxbyqymqnqjzmRNbE3EikLBSNrCcaiRONxIhG4px67l5e1x0LnHhp3Fv65jTH1opNrx6XHVTuZoWCfCOc8UTkbaCdqiZE5EpVHRZ0TICq6uTU4zHAT2p53whV3bQISCmgwL9E5HPgY1UtE5EjgEmqqqnrBuKv/rXJ5SJyKf7clAJgTur4F8DjqYn5HtAL+LgebTPGmFarJe930tixp2sjwqHAXao6UkR+D9wCxEXkaVX9czrqqBPPi7jZ2U1e7Ra5Ltnt2pFd3IGsdu3JbteWrHZtCRcVkVVUSKiwkFB+Pk5efsLNyfOc7GyccJbj9zq4jhsKOaGQixtyiMeTNRMHLxKJeRVVca+qMuZUVlY7kZKYG41UhCKRDanEIfUVjRGtihONxolVJ2pG57DZsrpb061HW3bsXuS889R9XHjdH8nt2oaK+bZdQpolgcR2rzINcRr+9xngb8A/A4xlk5rLACf4/nU5zg/n6eVudt//JpGnEqoj8IeUnQhMFJHT8X/Ht0hEjgWuxe8dWSMilwBXp8rzRORp/N3hAZ5TVfvZNMaYOlizpmXuBNKxY1GtY3ddp16bzqarB2Rf/E/uAH4N9MH/4zgSf+xxU6twc3IaXEi4XTtyOnQgu327VK9DW7LaFBEuLCJcuGmoUr7n5uZ5ZGd7blbWD3oc3LBLKOSSiCeJxRJUR+NedTThRSMxr7IqRqQqRmVFzImsj7nRSGUoEiklGolTHY0TqYoRjcb/1wNRXZ2ouT2dwzbeWDSGCy4/MDF52GfO+jUr3MmjPncOOPEUr2LBOse2zEsfx8XBf9NpGs9wYLSIzAFyt7B/EQCqennThrVF84D9RSQH/7f/fLayR0xqyFWhqg4FhorIkfivy18BL4rI7qr6HfCrGre1AzYCJak6rtqs2FeAWfjzQ/ZJX7OMMca0dulKQFzAE5FegKOqswFS45KDUJ7fYye8RIKsdu38eQ5FRWS1aUOooIBwQT5OfkHSycn1nOwcz83OcpxwluNsGqoUcgmFXRIJj3h1gurquFcdjXvRSNyLVMWoqop5VZUxp2pldSgajTiRqnKi0RjVkTiRSPwHw5aqo3G8ABOHdDjhDMFxqt0JQz5xAMZ++W8O6H2KV7RXR6ds1pqgw8sYblYojG1C2NguwH8jvzP+m/p52748OKo6WkS+wl+ydwH+5oldt3J5W+B9EcnDfz2eBHygqhERuRr4SETWAe/UuOcz4BfAt8BSYAL+zvCb6i9LDefKU1X7RTfGGJM26UpARgBP4f9x/DdAKhlZm6by68TLyinsdvElRKpiqcQh5kUica+0KkZlRbVTtSYWikaq3UhVBdFoPJU4xDYbthTHS/4vc2iRiUM65Bdm0/vYHnzy6hNOMvH9h/Ojv37fPfqkn3vlutbxEtYNkg5OVigHWB90HJkstev5vwBEJGvTXkZNWP9CYIcaz4cAh27j+TVbKedl4OUaz5cCvbdy7QfABzUOPVHj8YVbi1VEwvhDun65tWuMMcaY+khXAnIFcCv+kpAPp47tiT/Gusk5ofCkIV/o0aOHzG+1iUO6XNz3kMSib6ewbP63P5grMn301xze59xkm/27uBsnr7DvcQM5WSHwvDg4tn500xkiIn/CTwjWAl+p6uCAY2oWROQc4Eng36o6Puh4jDHGZJa0JCCqWgLctdmxT9JRdn1kZYdWFBTmJKjlBGuzZXvt34WOnfJDr776+hbPD/34tdApP7ua0hmr8WI2P7UhQrlhvIRX4dhPbKMTkWz8oUinAWOBFfh7YdwqIoOA81W1VSeCqvoh8GHQcRhjjMlM9U5ARORuVf1T6vH9W7tOVe+pbx0NUFJYlBPF32DM1IPjwtnn750c8clbTqSibIs9HHOnj+fo0y5MtD9sR2fdqCXulq4xtePmhvGS3sag42gl7sMfLrp7augSACKyE/6+F/cBdwYUW0Z5sb/tW2iMaZ0iUVtTZlsa0gPSXUQcVfWAndIVUJqsLSjKsf/5Bjjv4gO98g1rmDVx+DaHV3397xdD5/zyVjZMXkGyyr7l9RXKC4Pn2brGTeNi4IyayQeAqi4Rkavwdwu3BCQNSkrKSSYzZ45YXZambAkyrT2QeW3KtPZA5rUp09rTVBqyE/q1IrJCRF4DHlPV6WmMq6HWFBblZM5fvSbWsWsRe+7byXn36fucmkt4bcnSebPZULIqUXzkTqz5ZoENIKqnrHa54DjfBR1HK9ERf9O+LZlNjUnixhhjjEm/hg6buQbYBRgnIpNE5CYRaQ5/vOe03yF/8027TC1ddMWBieljvk6uW728Vtd/8fazoTb7dQmFixq+90prld0+L+7mhJpTEp/JllFjpanNHAbU7gffGGOMMfXSoAREVf+rqhfgj6d+Dvg5sFREPhSRn4lIVjqCrIdVDk51URvLQerq6BN7kZODO+6r/9T6Z6Nk5RJWLVuYLD52Z5uJXk/ZxfmVjuM02z0pMszzwGsickjNgyJyKPAqMDCQqIwxxphWIi0Th1V1g6o+p6rHAHvhb2j1OP7qMoGIxRLfdt6xKKjqW6Sc3DDHnrSL9/X7LznxWN0WAfrirWfcwt2LQ1kd8hopusyW1T4PmvGmeJlEVR8GBgFjRWSBiIwSkQXAGPyleB/edgnGGGOMaYi0rlwkIjn4Qxh6A52BwIaUZGWFxnbq2sbmgdTBRVcdkly2QJOLdFqd7y3fuI7F82Ymd+izi/WC1EO4KCcXS0CajKreiL9X0V+BT1L/7qWq1wcamDHGGNMKpGUfEBE5BrgcfwjWauA14DpVXZSO8usjKzs0cced2lUAhUHF0JL02rMjO3Yvcv/12Mv1LuOrdwe6V/7+CXK6FBJdWZ6+4DJcqDAbPK8asFWwmtbewIuqasu3GWOMMU2oQQmIiPwRuAzoALwLnKWqI9MQVzpM79q9TTLoIFqK8y7aNzl60AdORemGeu9qHqmsYO6McV6PE/f1lr4xzfYFqaXczoV48eQ0smwRsSb2APCiiLwNvKqq44IOyBhjjGkNGvom8QjgbqCrql7djJIPgFlt2uXlu26930+3Gmedv58XrdrI9NFfNfibNfjfrzjZxXlOXo+26QitVcjtWpRws0ODg46jtVHVA4CTgSrgAxFREekvIj2DjcwYY4zJbA1dBet0VX1LVSPpCiiNqmLVidXFnWwE1ra0L85n/0O6OF++PdD1trPnR23E49VMH/+N0/GkXtb7VEt5O7WtcELu2KDjaI1Udaqq3oa/mer1wAXAPBEZJiKXioj15BljjDFpltF/XJNJb1rnrrYS1rZc1PfghE4elVizPH3TdUZ89g5ufsgp3KM4bWVmspyOBTn4K8eZAIhIL+Ae4B9Aburx88ANwHsBhmaMMcZkpLRMQm+ucvOyRnXp1vbkGZOXZ3Q76+vQo3amqCgc+uCzd9JbcDLJ+KEfOoedcI5X/l2Jg61FtlXhtjkAlQS4ZHVrJSLX489h2w14B7hMVcfUOP8+/qIaxhhjjEmjjO4BcV1nxO57d6oMOo7mKJztctKZu3mD//0KsWj6R9BNGvopSSfutdm3s6Uf25C/Uzu8pNec5k61JmcAjwI7qup1NZMPAFWtBH4aSGTGGGNMBsv0noER7Tvkh4va5FJW2hynqQTn55cfnFyzfCHzZkxotFn6Iz5/y+1z1uWUzV6DF7cpIVtSsFuH8lBu+IOg42iNVPXsWlwzqCliMcYYY1qTTE9AYvF4ctDue3c6b9KYxUHH0mz02KU9O/dq777xxKONWs/siSM44uTzE20P6upsGL8so3vb6sWB/B7twvi7cpsAiMg5wPHADsD/knFVvTywoIwxxpgMl+kJCLl5WW/ue9COJ04as7hN0LE0Fz+77IDEhMEfO2Xr1zZ6UvDNf/8ZOvOiGyidtpJk1DZJrym3SxGe560ClgUdS2skIvcC1wBv4a9+9RxwCfB2kHFlkuLizFuFsGPHzFrYJNPaA5nXpkxrD6SnTZFonLLSqjREY4KQ8QkI8EX3ndvnZmWHiFXbG+BTfrIXyUSVO3nYZ02yQcqib6dSXlqSaH94d6dk+CLrBakhf5f2Ccd1/ht0HK3YVcApqjpDRK5U1ZtF5E2gf9CBZYq+AwaxemUwFsAAACAASURBVL29QTDGpN9Hj55LWdBBmHprDW8IN8aqE5N7Sceg4whcYZscDj2yO1+987yTTDZdMjbo3YH/3959x1dV348ff5177soirLDCCAi8GbJBUUCGVdG6F+pXrUqtVWu1/dql/vrt8Ntv63i4qlWrVq3WPYrWgeIAFRAVFBTeKkMQZMvMzr2/P85JjWlCbkJy783N+/l45MHJme9Pbj7hvM9nHLf96B4BNzuUtGu2BrkDO+0NhNznUx1HG9ZeVZf5y+UiEvLfhj45lUEZY4wxma4tJCBEs0MPDRnevc3PhnXWzDFVqz55v+qrLz5L6nU3rVvFtk1fVnWa2NuaoHzB/Aih/GgAeCPVsbRhK0VkqL+8DLhYRM4Bvk5hTMYYY0zGaxMJiOM4zw0Y0jXgJKXTUXoaNqaQDp2j7rzn/+Gm4vovP36Xmze4i+u/96LNyxtUUEWcx4GKVMfShl0DVL8t85fAj4HrgZ+mLKIGiMgaEVkhIkv8r5vq2W+JiGTt4xwHtmykxhhjTP3awhgQgC/i8fiGnkUd+q1b3fYebgZch+knSnzurIcpLd6bkjRsx5av2PDFp7HOk/vGN85akZIkKJ3kD+tWHAi7f0t1HG3cGmCSiEwAtgMnqOrHqQ0pIafW6Dr2LSISVNVKVR2Z7KCMMcaYRLWVBIRgyH108LDuP1u3+us2NxDh5LNHxXdu2xjXxe+ktMVr9mN3Bc77+Y2EC3Io37I3laGkVLhzNm52qAx4J9WxtEUi4gD3At8DvgQ2AIVADxH5O3CBqraaF2iKyP3AbmAAUACMEZE4kKeqe0RkEnAHUAIsoMZ0wyJyA96YlzCwFa/sX4jIHcAqVb3B328U3mxhg1rTz8YYY0x6ahNdsACCwcADow7uVRUMtpkiA9CtMJ8Bgzo7rz7x15QXvHjPTlatWBwvmNq3TY8FyRvSpQKHBwF7O2Nq/ACYAoxX1T6qeoiq9gYOASYBF6UyuAQ8WaML1lH+ukOAU1R1TM0dRSSClzhcpqoHAW8BvWvs8kdVHaeqI4BHgD/5628DfugnawA/Au6w5MMYY0xzaDMtIMCn8TgLho3pOXnxwrVtZjTI6eeNqPrw7dnOji0bU56AALz65L3OhVff5kYL21G6fleqw0m+gEP+8K4VgZB1v0qhc4Afq+qimitVdZGIXAH8CrgzJZEl5ltdsETkTOBJVa2rWVGAYlV9A0BVHxeRu2tsP1pELgVyqfH/gaouF5FVwHQRWQAcTxqPjTHGtE3p8o6UdImjObV0mdpSAkI0K3TtpO/0H7t44drMeztWHQ47YgBBtyqw6LV/pk3CVVleyvLFb8X7TxsbX/f3JWmRFCVT7sBOgPMx3qxLJjWGAG/Ws+1N4O9JjKW57Klnfb11X0T6ADcB41R1tYgcCvyjxi63Apfg/byeVtWdzRWsMcY0hy1bUv8mkIKCvLSIozk1pkyBgNOkl862tRvA16JZoc1t4Z0g0ewgh07tE5/z5D1OVWVlqsP5lrmz/u4E88NOTr8OqQ4l6Toe3Gu3Gw3+IdVxtHGuqtb5l9Vfn0l/F1cAWSJyGICInArk+9vaAeXARhEJ4L0VvqYX8FpQfoo3hsQYY4xpFm2qBQSIR7NC1048vP+tK3VLRreCnDlzbNW6zz5m3eefpN2MU7FYjMXvvOSMmHZEfO/q9x3aSK/ySLdcQvnRUuC5VMfSxoVEZCr1tw5kzN9FVS3zu2jdISIlwGvAWn/bUhF5AvjYX/cmcFiNY2Mi8gBwtKp+mPzojTHGZKqM+Y+2ER7p0av9zZ275rJ1U329Flo3ObArXbvnug/d8GCqQ6nXwleeYcTBR8TzBhU4u5dvSXU4SdFhXGGx4zo3AG16EH4a2Azc18D2tKSqRXWsO6+OdU6N5XnAsBqbf1lj2+XA5TW2/U+tU00BbmlSsMYYY0w92mICUuo43HrolAOunPXYh9FUB9PsAnDcaUNi77z4uFO8Z1fajP2oy/w5TwUmHH56fLdudYhldjNIMDdMzgGdHMcN3JPqWNq6um7izbeJyFjgMWAx8FSKwzHGGJNhMqmvc8KCIffPQ0f1ICsn814Jcvzpw+PFu7ez7N030jr5AFg6fw4VVWWx/BHdMjv7ADoe2ruUePwuvBfeGZPWVPU9VT1AVU9VVZsu2hhjTLNqiy0gAJtiVbFnxh1adNrcVz7LmJ9B5665DB3RzXnyL9c6xFvHPf2bzz/kHnHyhexatol4RWbe5wTbRcgbXBALhNz/TXUsxiTTvdccmeoQjDEZqrQsvSbYMY2TMTffjRWJhv5v/OR+Jy6YuzpYniG/xDPOH1X1yaI32bZxXdoNPK/P50vfZcJRp1d1GFvobJ+/LiNb5DpN6FOCN6Xp1lTHYkwybdu2h1gGda/MtOk2M608kHllyrTyQGaWyTReRt7wJWip4/DcYUcMKE91IM1h/GF9yc4KuAtmP9Vqko9qc5651+0wrmcgkJV5+XCofZTcgZ1igZB7XapjMcYYY4xJB205ASESDf1k3ISiqvwOWakOZb+Ew0EmH3VAfM7T91FRXpbqcBrty5XL2bF9U1XH8b0ybnaoTpOKinGcG4GvUx2LMcYYY0w6aNMJCLDBcbjhqBOHFqc6kP0x4/zRVZvWfh5bs3xJqkNpstmP3eXmD+/mBvPCqQ6l2US755HTr0NZIBi4IdWxGGOMMcaki7aegBAMuX/sN6BzSa++rfOt3H0HdKZnUb772tN/a3Vdr2raunEtm9eviXWaWJQZrSAOdDlqwF4nGPgxYJ1djTHGGGN8+0xARGShiCwRkU9EpNJfXiIiq0XkvWQF6ccSF5GWeHt5cTgS/NEJZ4zcGwik/cy1/+Gksw6MvfvqM7E9O1v/7K4vP/qXQO7ATm6oY+vuEgeQP7xbLJgX/txxnIfr20dErhWRv9T4/lj/93xojXXPi8jMRK8rIlOSVTdF5H4R+VEyrmWMMcaYzLHPBERVD1bVkcAxwA5VHel/f35zXFxE0uWp/WM5ueHF4yf3a1VP36efODReWb7XWfL2KxnRkrV75zbWrvwk1nlK31b1OdTmZofoPLmozI0EzwX2NQXQG3hvmq42GVhYvc6vHxOB11skUGOMMcaYFNifaYeCInIXcAjeTdYZqrpcRM4DjlXVUwFqfu8vnwFsAYYAM0XkBOBMoNQ/z1RV3SEiJwN/wHtx2ws1LywiDwMCRIDPgQtU9WsReQG4T1Wf9Pc7GfihqjY0GX08Eg2dd9iRA5Z+vGRD1s6vS/bjx5Ic+R2yGHVwD+fZe64jHsuc92e8+sRdgfN/cTORbrmUbdyT6nCapGBavxJw7gE+amDXt4G+ItJVVTfhJSC/A74H3A6MAnap6ioROQa4GogC5cBPVHUBeC0pePVqPfBu9clFZApwM15S86166m//HnAJ3t+BncDFqqoicijwZ7wHFCHgWlV9REQKgQeBzsBqavz9EJGzgMuB6kE8V6rqHBE5HThXVY/194sAa4CDVHVdgj9SY4wxxmSQ/XlyPhS4U1WHA48D1yR43ETgN6o6BvgCuBIY5besHAbsEZEuwF+BE1T1ULwbrpouV9WxqjoM+Bj4hb/+VuDSGvtdincjl4iVjuP86bjTh7eKAelnzhxd9emHC6s2rVuV6lCaVWnxXj5ftiheMK1fq8yqcgZ0Iqdfxx2BsHtVQ/uqagmwCJgiInlADvAiMNLfZQrwuogcAPw/4Gi/3nwfr84hIscBx/vHTAMG1bpMnfVURCYBpwOH+ee8HrjPP+YXwE1+nTzQjwm8+jVXVUcAP8VLmKq9DIxX1VF4ydAD/vqngWEi0tf//nRggSUfxhhjTNu1PwmIqupif3kBcECCx72lqiv95V2AAg+JyIVArqpWAuOBD1RV/f3urnWOc0XkfRFZCpzFNzdsLwPdRGSwiAzyY3o+0QKFQu7/FfbusHnkuF5p/easUQf1ol37sPv2C4+mSxe2ZvX6M/c74U5ZTlbv/FSH0ihuToiu0weUBMLuKUCizTev4yUaE/HqRhXwmT8OZApeN62j8H6X54rIEuBhvBbIrsBU4DFV3eMfe2+t89dXT48DRgAL/XP+EehVI6Zficg1eC0VO/z1U4F7/JOuAubUuM4BwMsi8jHwGF497ObX57uAH/r7NeahgDHGGGMy0P4kIKU1lqv4pjtGZa3zRmsd9+8bM/+GaTzek9WewPsiMhyodzS4/+T2YmC63wJyTfU1VDWOd3NzCd6Nzl3+NRJVHokGj51+8tCSrt3zGnFY8gSDAY44bmD8zWcfpLw0/buKNUVlZTlLF73uFBx+QKtqBen2XSl2As4twPxGHPYGXqIxGXjTXzcXrzWjevyHA7xUPQbL/+rhd9tqaOaE+uqpg9ddsfp8I1S1N4Cq3oyXoGwBbvO7eDXkEeAOVR0KjMb7O1Bd9+8GzhKRCUB7vp24GGOMMaaNaYnByyuB4SISEZEwcGp9O/rdTgpU9U1V/R9gGV6Xj/nAKBEZ4O/6/RqHtcfrr77N709+Qa3TPgCcCMzAf1rbSB+Hgu6FZ37/oOJINP3ezH3KuaNi2zevi3/20bsN79yKvfXiYwSyXSd3YKdUh5KQ/JHdY9GuuV8EQu6vG3noO0ARcApeMgJeAnIZ3sQPa4DZwPRas2ON8xfnAKeLSI4/aD3RCSKew2tJ7OmfzxWRMf7yQFVdqap3AbcAB/nHvFZ9fr9L1eE1ztceb1wIwEy88VkAqOpW4FXgUbwkJa1bGI0xxhjTspo9AVHV+Xg3G8vwuj8t38fu+cCzIvKRiCwDNgJPq+pm4AfAcyLyDt7T1Gov4iU5K/zlD2pdfzfwEjBbVbc0pQxOwPlHJCv0yMlnj06r8SCFfdrTb0DHwJwn782IWa/2KRbjvbnPOZ2n9Is3+Iw/xcKdsuk8uag0EAmeBFQ05lhVLcUbJI6qbvBXLwIK8RMSVf0MOBu4V0Q+FJHlwEX+tufx6tkSvARhMQlQ1bl4g9pniciHePX1BH/zj0XkYxFZjJcIXe2vvxyY6u//J+CVGqe8Aq8uv4WXUG2rdcl7gA58MzbEGGOMMW2UE49n1sNIEQnizT70PVVdtB+nipSVVrw/95XPBs1/Y1VajLW44prJVcvff9VZNGdW5icgvguvvj224+31zq6lm9IyDQlEXPqcN7rYzQlf4gQcu7muhz+epLuqXtrgziYTFAGrt23bQyyWOf/HFBTksWVL5rxXNNPKA5lXpkwrD2RemTKtPNC4MgUCDp065QL0xZvlMrHjmhRZmhKR4/FaR2bvZ/IBUBaJhr47+aiBe3v369gM0e2faccIDuWB9994IaM+s4a89fKjgc6HFTlOMA2L7UD3EwYXByLBBy35qJ8/MP004PepjsUYY4wxqZdxLSAtYHpJcfnTd1z3Ztbe3WUpCSA3L8yPfjWZfz1wE+tXa8MHZJgLfnFz1d4Ptzs7Fq1Pqyyk02FF5e1HdFsciAQn0ciuV8ZkuCK+GRNkjGlFSssq2b2r5Sa5ybQWg0wrDySnBST9Rlmnn5eCQfemGeePvfxvf34nJ56C7gRnXDC2as2KJaxfrWnRFSzZXp91vzt9xqXs+nAjsfL0eEl6rnSOtx/ZfWcg7B6HJR/G1GnmtbPZ3Ape7GqM+cZzN55AZt1Om3SUVk+U01Uo7P66oGvu4qNPGpr0JpAhI7vTuUuWO3fWQ20y+QBYvXwJe3Ztr+pwcM+0mJY32iOPrkcNKA6E3aPwpqo1xhhjjDEJsgQkMVWRaOi4YaN7rj7y+CG138reYgIB+O7Jg2Pznn8kXlqc6HvtMtMrT/7VbT+6R8DNDqU0jnDnbApPGVocCLsnk+CMU8YYY4wx5hvWBStxOyLR4IRRB/deUFUV6zPnXyvCLX3BE88aGd+9YzPLP3grLWeASqaNaz9n++b1VR0n9GbLKytT0hoUzI/Qc8awYifsno/3bg5jWoSInAZchffCyCjwgaqe1UznLgLeU9XOzXE+Y4wxprGsBaRxtkeiwUPHTij6cup0adF+/1265yFDuzivPv7XADZRAAAvPXan225IFzeYH2l452bmZofodebw4kDY/bnjOI8nPQDTZohId+AO4HhVHQkMBq5LbVTGGGNM87EWkMbbGokEDzn4sL7vVlXFesx95bMW6RM047xRVUvnz3G2b95gSaJvx5av+GrtZ7HOhxXFNz6XvAH5bnaInmcO3xuIBG903MDtybquabO64U1ssA3Af3P8ktotFzW/r14G7gKOAbKBmar6lr/vpcBPgK/wX3Dprw8C/wI6AVnAu8BFqlruvxz2/OopzUXkp8AgVf1BSxbeGGNM5rOb26bZHI4EDzl06gGbJkzrX9nw7o0zYdoBhCPxwLtznrXPp5aXH70zkNOvoxvunJ2U6wXzwvQ6e2RxMDd8cyDk/iYpFzVt3Yd4icBaEXlSRK4QkU4JHNcJmK+qo4Df4b2tHhEZjvc2+wmqOsnfr1oVcJaqjgUOBFzgAn/bn4FL/HM4wMWAJeDGGGP2m7WANN1X4Uhw/KTv9H83VhXrMv/NVc3ys4xGg0w6vG/8pUfucCorkjbevdUo3rOT1bok3n3qAbH1Tyxr0VaQUPsoPc8cXhyIBH8TCAaub8lrGVNNVWPAiSJyIDAZOBH4GXBcA4fuUdXn/eUFwI3+8hTgX6q6yf/+buB0fzkAXCkiR+MlHx2AYn/bg8CvRaQjcBCwSVU/3J+yGWNah4KCvFZ9/mTLtPJAy5fJEpD9sz4cCY6ffNTARbF4vPPCuav3+4Z4xswxsfWrV8TXfrq0zU6725BXnrjHufDq29xoYTtK1+9qkWuEO2fTc8aw4kDY/W/HDdzZIhcxZh9UdRmwDLhdRD7Ba6Go2SoarXVIzWnCq/jm7/u+JrE4C5gITFLV3SJyFTDQv36xiPwDOB8vibHWD2PaiJZ8sV6mvbgv08oDTX4RYaNYF5/9ty4cCY6fOl02HHva8NKA2/QJqwYM7kL3wrzAG888YMnHPlSWl7Jiydvxgmn9WuS9INHCdvQ8c3hJIBL8gSUfJtlEpFBEDqnxfU+gAFgOhESkv78p0VmxXgeOEZEu/vcza2xrD2z1k4/8Os55O3AFMAZ4qnElMcYYY+pmCUjzWBOOBIcNHdn9rQsum7A3J69pszQdP2NobMHsp+J7d+9o5vAyz5v/fNAJ5oed7H4dmvW87YZ1jRWeOnSPGwme5ASch5v15MYkJgj8VkRURJYALwDX+IPBLwdeEZE38Fo5GqSqHwF/AN4WkXnA+hqbHwTyRORj4AlgXq1jVwMrgPtU1fqEGmOMaRZO3KZ4bU6BivKq31VUVP3kkXvezV6/NvFE4tjThsWL+gbjj9zy/wL2mSRm/JGnMHzU4fEv7nl//9+T4kDB1H5l7Q7sujUQdg8HdP8jNKZ1E5F2eAnIQar6ZSMOLQJWz7x2Npu/LmmR2IwxLeO5G0+wLliNkGnlgSZ3weoLrEn0GtYC0rxiobB7TXZO+KxzLh6/d+RBvRLqItSxczbDRndzXnn8r5Z8NMKC2U9B2InnDS7Yr/MEIi6Fpw8rbje0y/uBsDsMSz6MQUR+CHwC3NjI5MMYY4zZJxuE3jL+GQ4Hx04/cejswt7tu7z4zLJIrKr+xOKMC0ZXrfjgbbZs+MLGfjTSgjlPBQ6ddlp8t251iDU+eYt0y6XHiYOLA+HgQ4GweynQ7NMqG9MaqeqdgI2BMsYY0+wsAWk5K8KR4LADRxU+1b1n/vhH7nk3Z++e/+xCPfbQPuTkBt13XnoiBSG2fh+98yrjJh8fyx/eLbBzyVeJd8VyoMNBPSs7ju9VEgi552MDbI1pdvdec2SqQzDGNFJpmT2HMy3PEpCWtTMSDR5Z0DXv9xf/fMoV/3xkSfZnyzf/e2MwHODwY/rHX3vqXqeirDSFYbZub/7rIfeIky5k18ebiFc03OstmBum2/GD9oY7Za8IhNyTgHUtH6Uxbc+2bXuINaFlMl1lWl/vTCsPZF6ZMq08xlSzMSAtLxYKu1dn54SPO+Wc0RtPOWd0SVZOCIDTvzcmtmXDmvjKj99PcYit2+cfvUtx8a6q9mMKG8w+cgd1pvf5o0siBTnXu5HgwVjyYYwxxhiTVJaAJM9r4Uiw/4DBXe697FfTSiYfNTDep1/7wJwn77XPoBnMefoet+NBPQOBaN2NeqH8KD3PGLa36xH9V7qR4NRAyP0tCU5jaowxxhhjmo/d/CbX3nAkeFk0KzT1kMl9Nxfv3lnpBq0XXHP4cuVydmzfXNXxkF7fTioCDh3H96rsfd6o4ki3vN8HIsHBwMLURGmMMcYYYywBSY2F4UioV25+x1/OuOy3eyccM6M8FI6mOqZWb/bjd7r5w7u5wdwwAFm98ymaOWZv+3GFcwMhd0ggGPgTUJHaKI0xxhhj2jZ7/J46FW4weKNL8OGh4ybfMnjMxGPnPvdw1qdLFuz/S/XaqK1frWXzhjVVXY7s7zghtyTaNXeXP7Xus0DmjIQ1xhhjjGnFrAUk9TaGo1kzotm535l8wrl67s+u2zN4zCQCruWGjdWhSw8qKsrKo4V55VmF7X4VCLtFwDNY8mGMMcYYkzbsLjd9zI9Es4ZEolnTJn53xm8mfHfGmCXzXg4vW/iaW1q8N9WxpbUOBd0Zf+Qpxb0HHlgVCLh/cIPBPwN7Uh2XMcYYY4z5T5aApJc4MCeSlTMHGDbqsKOvHjPluyfo4nf4YO6L0V3bt6Q6vrTSvc8ARk48sriPDK9yHOdPbjB0C5Z4GGOMMcakNUtA0tfSSDTrDKCHjJrwk0GjJ1y87vNPeO/153I2rVuV6thSJq99JwaNnlB14MFTS4PhyLZQKHx7wHXvBHalOjZjjDHGGNMwS0DS34ZQOPwz4Ld9Bg6bWdhv0FU7t23KXjzvpdwvVnxEWWlxquNrcaFwhH5DxzBs/LTdnbv3CsRisUfCkejdwHvY+A5jjDHGmFbFEpDWY0/AdW8Ju+7tBT36nHTYcWdfGjolPH7LV+vKPvtwYd7q5YudjOqi5Tj0KBrI0IMmlxwwdEygsrJifjQr53bgOaAs1eEZY4wxxpimsQSk9akEnohm5zwBZHfr1e87HQu6nz7+yJOPK9m72/l86aLoqo8/CG1at5J4vHU1DkSi2XTr05/CfoMqB406tMwNhbaEwpHbAwH3oWAovDHV8RljjDHGmP1nCUjrVgzMCkezZgGBUDgybvih3zlp6LjJMxzH6bZ6xZLYyqXvZW9Y8ymlxek3NrtdxwK69xlAYb9BpT0PGFyRk9c+XFFeujQUib7susGngcVYFytjjDHGmIxiCUjmiAELg8HQwmAw9EugaOCI8cf1GTjs7FA4MryysjK+Y+vG8i3r10S2blwX3b5pA9s3b6B07+6kBBdwXTp37033PgPo1X/I7u59BgQDrltWVVkxP5qd+zLwFvChG8ytTEpAxhhjjDEmJZzW1k3HNIkDFAJDgCFlpcVj47HYyFA40q+qqsrZsWVj2ZYNX0S2frU2uuvrrZSXllBeVuL9W1pCeXkp8ViszhO7wSDZufnktOtATl4+2e3ak5PXPpbXoVNJXn7Hypx2HZysnLxQMByJVJSVrnMCzuvhSNYc4G1gDdbCYUwmKgJWpzoIY1qj0rJKdu8qAaCgII8tW5LzoDBZMq1MmVYeaFyZAgGHTp1yAfri3dclxFpA2oY48KX/NTsSza5e77jBUPcuPYuGdOlZNLS8tGR0VVXlAMdx2jmOk+cE3JxAwM12g8EoQDwej8fjsZi/EAcIuK5bWVGxI1ZVuSUej29w3eAXoUh0teM4XwE1v7ZEsrKtdcOYNmTmtbPZ/HVJqsMwplV57sYTyKzbWWP+kyUgbVsc2OB/vRqOZtW3nwO4juO4EHCB6i+AneGIa60YxhhjjDEmIZaAmETE8WbfshYMY4wxxhizXywBMcaYJBKR04Cr8FoWo8AHqnrWPvYvAo5U1bub6frnAceq6qnNcT5jjDGmsQKpDsAYY9oKEekO3AEcr6ojgcHAdQ0cVgT8oInXs4dMxhhj0o7955REIrIQiABhYCCwzN+0WFXPb8HrvgVcq6ovtdQ1jDEJ6QZUANsAVDUOLAEQkYcBwfsb8Tlwgap+DdwO9BWRJcDnqnqqiMSBPFXd4x/77+/95Z8D3wXmicjvgduAKcB6YEV1MCIyDC8hysFrjblbVW8WkR7A+0BfVS31950FPKqq/2ixn44xxpg2wRKQJFLVg+HfXSre85+AGmPajg+Bd4G1IvIG3vtv/q6q24DLVXUrgIhcC/wC+CVwKXCDqo5txHUCqjrFP9dleNMjHgiEgLl8M1XiGuA7qlomIrnAuyLysqouF5E3gRnAAyLSBxgLWLctY4wx+80SkDQgIt/Huwk4o/b3IuIAvwJOxLt5WAtcqKqbReRk4Hd4g8ODwMWqOk9EDgTuw5up6mO8J6rV1/o5cJp/rhLgIlX9SESuArqo6hX+fj2AD4Ci6iegxpj9o6ox4ES/jk7Gq9c/81sizhWR/8JrIc0BPt2PSz1QY3kq8ICqVgAVIvIQMNHflg38RURG4L3MtAcwAlgO3Arc5J/rYuA+VS3fj5iMMQkqKMirczlTZFqZMq080PJlsgQk/X0P6AmMV9WY/zTzen/974Hvq+p8v6939Ty6DwPXqerDIjIR74lntftU9ToAEZmO1/1iInA3sFRErlLVYuAivCezlnwY08xUdRleF8zbReQT4DLgbOBQVd0iImex73EfVfhj+EQkWsf2PTWWnX2c5w/ARuA8Va0Ukdl4XbFQ1XdExBWRCXh/bw5KrHTGmP1V/RK4tv6Su9Yg08oDTX4RYaPYIPT0dzwwHfjA7wN+Ed6gVIDXgJtE5EpAVHW3iHQEBgD/AFDVt4BPapzvYBGZJyLL8BKZkf5+W4EXgf8SkRAwE/hLSxfOmLZERApF5JAa3/cECvBaH3YCWwfRqAAAB9ZJREFU20QkAlxQ47BdQH6tU60ExvnL9c6g5ZsDnCMiQRHJqrV/e2Cdn3wcCEyqdextwKPAfFVd12ABjTHGmARYC0h6qOTbyWDNJ5oO8BtVfbD2Qap6mYgMB6YBT4vIn4B/+tv+4+WA/s3HY8BEVV0iIr2BVTV2uRX4G94Nz4equqr2OYwx+yUI/NYfU1GCV++vAe7FG6OxAvgSeI9vWhw+AtR/aLDCnz73J8BdIvIV8HwD17wbGI7XHfNL4E28MSEA1wJ/F5Gz8ZKaubWOfRRvEPwdTSqtMcYYUwdLQNLDSmCEiITxEo5TgE3+tlnApSIyS1V3+N0tBvrjNkRVPwI+EpF8YKyq3icin4rIGar6qP+0dYh/riy8cSHVTzIvqRmEn5TsAW7Aa2kxxjQjVf0COLKezTPqOaYSOLbWuheAF2qs+lONbU6tfcuppzuXqi7GS3zqMw5voPqcfexjjDHGNIp1wUoDqjoPmIfXJ3wW3pPK6m1/A54A5orIR3hPRqu7cFwvIsv8rllT+OZ9AmcD/y0i7+P13V7kn2s73qD19/0ZbnbVEc49eNOE2pS9xrRhInIvXlfOH9XVomqMMcY0lROP2/8r5hsicj9e96ubUh2LMabVKgJWz7x2Npu/Lkl1LMa0Ks/deIINQm9FMq080ORB6H35Zor3BlkXLAOAiPTC62axHm/KTWOMMcYYY5qdJSAGAH+Gm4GpjsMYkznuvaa+4S7GmPqUllWmOgRjWpwlIMYYY1rEtm17iMUyp5tvpnW1yLTyQGaWyZhMZIPQjTHGGGOMMUljCYgxxhhjjDEmaSwBMcYYY4wxxiSNJSDGGGOMMcaYpLFB6MYYY5qbC9788Jkm08qUaeWBzCtTppUHMq9MmVYeSLxMNfZzG3N+exGhMcaY5jYRmJfqIIwxxiTNJOCtRHe2BMQYY0xziwDjgK+AqhTHYowxpuW4QHdgEVCW6EGWgBhjjDHGGGOSxgahG2OMMcYYY5LGEhBjjDHGGGNM0lgCYowxxhhjjEkaS0CMMcYYY4wxSWMJiDHGGGOMMSZpLAExxhhjjDHGJI0lIMYYY4wxxpikCaY6AGOMMa2TiAwEHgA6AduAc1X1s1r7uMCtwHQgDvxRVe9JdqyJEJFOwN+BA/BeqPU5cJGqbqm13/3Ad4Ct/qonVPV/kxhqwkRkDVDqfwH8QlVfrrVPNvA3YAxQCVypqs8nMcyEiUgR8GyNVe2BdqrasdZ+vwEuATb4q95W1UuTEWNDROQG4BSgCBimqsv89Q3WJ3+/tKtTdZUp0frkH38/aVan9vE5raGBOuXvl1b1qp7PqIgE6pN//G9oxjplCYgxxpimuhO4XVUfEpGzgbuAabX2+S+gPzAA78ZqsYi8qqprkhppYuLAdar6BoCIXA/8EZhZx75/VNU/JzG2/XFq9c1TPa4EdqtqfxEZAMwTkf6quidJ8SXM/70ZWf29iNxM/fcyD6rqlcmIq5GeBW4B5tVan0h9gvSsU3WVqTH1CdKvTtX3OUHDdQrSr179R3kaWZ+gGeuUdcEyxhjTaCLSBRgNPOKvegQYLSIFtXadAfxVVWP+k89ngdOSF2niVHV79c2SbwHQJ0XhJNMMvJtf/Cfu7wFHpzSiBIhIGO9m/L5Ux9IYqvqWqq6rua4R9QnSsE7VVabWXp/qKlMjpVW9aqg8ya5PloAYY4xpil7AelWtAvD/3eCvr6k38EWN79fWsU/aEZEAcDEwq55dfioiS0XkWREZnMTQmuJhEflIRO4QkfZ1bG+VnxFwPN7v4Af1bD/DL/dsETkkmYE1QaL1CVrh55VAfYLMqlPQ+j6nhuoTNGOdsgTEGGOM+U+3AXuAurqEXA30V9VhwNPAS36//HQ0SVVHAOMAh7rL01pdQP1Pa+8E+qrqcOB64J/+mASTGvuqT2B1Kh3sqz5BM9cpS0CMMcY0xTqgsPomwf+3h7++prV8u9tF7zr2SSv+YM0BwAxVjdXerqrrq9er6oNALtAzuVEmprrLhaqWAXcAE+rYrTV+Rj2AycDDdW1X1Y2qWuEvv4JXngOTF2GjJVqfoJV9Xg3VJ8jIOgWt6HNqqD5B89cpS0CMMcY0mqpuBpYAZ/qrzgQW1zHDzRPAhSIS8Puznwg8lbxIG0dE/hdv1poT/RuMuvYprLF8FFAFrE9OhIkTkRwRyfeXHeAMvM+stieAi/z9BuA92X0pWXE20XnAv1R1W10ba31GI/Fm/tGkRNYEjahP0IrqVCL1yd8v0+oUtK56dR77qE/Q/HXKZsEyxhjTVD8EHhCRXwNfA+cCiMgLwK9V9T28aTgPBqqnE/2dqq5KRbANEZGhwFXAp8A7IgKwWlVPEpElwDGqugGvzF2BGLALOF5VK1MV9z50BZ7yn6a7wCd402hSqzzXA/eLyOd4N34/UNXdKYo5UecBP665otbv3R9EZAxeecqBc1R1Y9KjrIOI3AqcDHQDXhWRbao6lHrqk39MWtepusoEnE499ck/Jq3rVD1lOo566pR/TNrWq3383kEd9ck/psXqlBOPx5t6rDHGGGOMMcY0inXBMsYYY4wxxiSNJSDGGGOMMcaYpLEExBhjjDHGGJM0loAYY4wxxhhjksYSEGOMMcYYY0zSWAJijDHGGGOMSRpLQIwxxhhjjDFJYwmIMcYYY4wxJmn+P951VSKqWbZFAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
    " - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "from matplotlib import pyplot\n", "%matplotlib inline\n", @@ -730,102 +255,9 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
    \n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    FlavourSweetFruityOff-flavourMealinessHardness
    06.486.664.562.202.913.47
    15.756.093.812.324.033.77
    23.944.122.443.625.775.39
    36.606.124.441.933.314.46
    45.685.983.802.123.854.14
    \n", - "
    " - ], - "text/plain": [ - " Flavour Sweet Fruity Off-flavour Mealiness Hardness\n", - "0 6.48 6.66 4.56 2.20 2.91 3.47\n", - "1 5.75 6.09 3.81 2.32 4.03 3.77\n", - "2 3.94 4.12 2.44 3.62 5.77 5.39\n", - "3 6.60 6.12 4.44 1.93 3.31 4.46\n", - "4 5.68 5.98 3.80 2.12 3.85 4.14" - ] - }, - "execution_count": 26, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# Load the data\n", "import pandas as pd\n", @@ -836,20 +268,9 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0MAAAE7CAYAAAAfLlpqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xl8U1X+//F3ulCUWnAplXUGcVpEhcIIlYFhH0SsdEGUGQUUhEE2RVGgOLIp6w9RQFQYlUVRB2URKOIXq6LI5siq7CKbUpYCbVm6nt8fPJppSKEngZaWvJ488ng0N++cnNzk3uTDuffEYYwxAgAAAAAf43e1OwAAAAAAVwPFEAAAAACfRDEEAAAAwCdRDAEAAADwSRRDAAAAAHwSxRAAAAAAn0QxBAAAAMAnUQwBAAAA8EkUQwAAAAB8EsUQAAAAAJ9EMQQAAADAJ1EMAQAAAPBJAVe7A6XN2X8/a53N/uFn6+yiz26xznYYW806m/XND9bZg1+Xsc7+sV9V66wkKSPTOjpnSpZ19u/3H7HO+lcLtc5OfMc6qmc7ptuHJZkz9uti4tKbrLODRtq/L7I3/GSd/ew/5a2zcQPs30Mn5v9qnZWkJQcqW2e7zG1tnc364EPr7Mjl9q/HiG4e/F9Tbq59VtJj79q/597+U6p19pOd9u+hTvUPWGevi29knc34fK11VpIOri1nnb2tbyXrbO7vx6yzjhuut8/efKN1NnvjTuusJO1ItF8XdzzmsO/Hryessy+urWidnfBiFevsuWU/Wmc/XufZ59OjHU5ZZ/1C7V+/edPst+uHn7Hfd2bvPGidvS/R/vNUkpImtbDO5v68zTqb/s1v1tmQns3t+7DV/nvWincCrbOS1Ob/1bDOZv+w2To761P7z1RJ6nvgfY/yV0PWsV+8ul/gLbdd4Z54h2IIAAAAgHdyc652Dy4LxRAAAAAA7xjPjm4oaSiGAAAAAHjHw0O9SxqKIQAAAABeMYwMAQAAAPBJjAwBAAAA8EmMDAEAAADwScwmBwAAAMAnlfKRIQ9+FRAAAAAArh2MDAEAAADwThFPoHDw4EH16dPHeT0tLU3p6elat26dS27KlCmaO3euKlasKEmqX7++hg0bVmj7FEMAAAAAvFLUU2tXrVpVixYtcl5/5ZVXlJNT8HlKsbGxGjRokEftUwwBAAAA8I6XI0OpqalKTU11Wx4SEqKQkJAC75OZmanFixfrnXfe8eoxC0IxBAAAAMA7Xo4MzZo1S1OnTnVb3rdvX/Xr16/A+yQlJSksLEx33nlngbcvXbpU3333nUJDQ9WvXz/Vq1ev0H5QDAEAAADwjpdTa3ft2lVxcXFuyy82KiRJn376qTp06FDgbZ06dVKvXr0UGBioVatWqXfv3kpMTNSNN954yX5QDAEAAADwjpcjQ5c6HK4gycnJWr9+vcaPH1/g7aGhoc6/GzdurEqVKmnXrl1q2LDhJdtlam0AAAAA3snN9e7ioQULFqhZs2YXHelJTk52/r1t2zYdOnRINWrUKLRdRoYAAAAAeKeYfnR1wYIFGjp0qMuyHj16qH///rr77rv16quv6qeffpKfn58CAwM1fvx4l9Gii6EYAgAAAOCdIv6doTzLly93WzZjxgzn3+PGjfOq3WIthlq2bKkyZcooKChIkhQVFaXU1FTdddddeuyxx4qzKwAAAAAukzHeTaBQUhT7yNDkyZMVHh7uvD548ODi7oKb7OxsBQQwSAYAAAB4pJgOkysqJWoChdWrV+uRRx5RbGysHnzwQS1dulSS9MMPPyg2NtYlGx8fr3Xr1kmSpk+frujoaEVHR2vIkCE6ffq0pPOF1vvvv++8T/7rgwcP1qhRo9S9e3c9/PDDxfH0AAAAgGtLMU2gUFSKfTikf//+zsPkBg4c6HJb7dq1NXfuXPn7++vYsWOKj49XkyZNdM899+jMmTPavn27atWqpZ07dyo1NVUNGjTQN998o88++0wfffSRypUrp0GDBmnatGl6/vnnC+3Lhg0b9P777+v6668vkucKAAAAXNNK+cjQVT9MLm/0R5JSUlKUkJCgffv2yd/fX6dOndLevXsVGRmpmJgYLViwQEOGDNH8+fMVFxcnh8Oh1atXq127dgoODpYkPfzwwxo9erRVX9q2bUshBAAAAHjLyx9dLSlK1GFyw4cPV8OGDbV48WItWrRIt956qzIyMiRJcXFxWrp0qTIyMrRkyRLnYXPGGDkcjgLb8/f3V26+Ybi8tvJQCAEAAACXweR6dykhSlQxlJaWpipVqsjhcGjVqlXat2+f87bKlSurZs2aevnll3X77berSpUqkqS//OUvSkxMVHp6uowx+uSTT/SXv/xFklS9enVt2bJFknTkyBGtXbu2+J8UAAAAcK3inKEr57nnntOIESM0Y8YMRUREKCIiwuX2+Ph4vfDCCxo/frxzWbNmzbRjxw516tRJknTXXXfpqaeeknT+kLn+/furffv2+uMf/6g6deoU35MBAAAAUKIVazGUlJTktmzs2LHOvxs3bqwvvvjiovePiYlRTEyM2/KePXuqZ8+ebstvvPFGzZkzp8C28j8uAAAAAC+UoEPevFGiRoYAAAAAlCIl6JA3b1AMAQAAAPAOxRAAAAAAX2RM6Z5am2IIAAAAgHcYGQIAAADgk5hAAQAAAIBPYmQIAAAAgE9iZAgAAACAT2JkCAAAAIBPYmQIAAAAgE9iZAgAAACAT6IYAgAAAOCTOEwOAAAAgE9iZAgAAACAT2JkCAAAAIBPKuUjQ35XuwMAAAAAcDUwMuSpcjdYR/0q32ydDfagqs7df8C+DxVDrLPZOZnWWZN+2jorScqwbzvIlLHOBtx1m3XWnEqzzp505FhnHSHB1llJOrfloHX2rKOCfcO33God9Qv73TpbU/brzXH7XdbZm14IV9rUZdb5YA/+4yn36/+zzmb8cs6+YQ/43fZH66w5csTD1tOtk4E3OayztTLtt9PME/btXmedlHLPePY/jLm59v1w1G1gnTW/fmbfh9Rj1tnAymHWWeUa+6yksEqp1lm/MPt9Z+724/Z9MB58rbihvHXUZNuvi4frH9B/19jvD89usV9vNwy63zorfW+dzNl32Dqbst5+XeR4evhSUFnrqCf7uOzlyfZ98OD7kONm+8/Iu27Zb98HSQr9i3XUv6r98yuXWzSfOVcVh8kBgOc8KYQAwJYnhRCAK6CUHyZHMQQAAADAOxRDAAAAAHyS8eyQ3pKGYggAAACAdxgZAgAAAOCTKIYAAAAA+CRmkwMAAADgkxgZAgAAAOCTmEABAAAAgE9iZAgAAACAT6IYAgAAAOCTmEABAAAAgC8yuZwzBAAAAMAXcZgcAAAAAJ/EYXIAAAAAfFIpP0zO72p3AAAAAACuBkaGAAAAAHiHc4YAAAAA+CSKIQAAAAA+yZTuc4ZKTDG0bNkyvf322zLGKCMjQ3feeacmTpxYZI938OBBrVq1So888kiRPQYAAABwTWNk6PIdOXJEI0aM0IIFC1SpUiUZY7R9+/YifcxDhw7p448/phgCAAAAvMVscpfv2LFjCggIUIUKFSRJDodDd9xxhz766CONGDFCkrR582ZFRERo8+bNkqThw4fr448/liRt2rRJnTt3Vnx8vOLj4/X111872/7mm2/UqVMnxcfH65FHHtHGjRslSSNHjtSePXsUExOj/v37F+OzBQAAAK4RJte7SwlRIkaGatWqpTp16qh58+aKiopS/fr1FRMTo0aNGmnmzJmSpNWrV6tevXpas2aN6tSpo9WrV6tbt25KTU3VsGHDNH36dFWsWFFHjhzRQw89pCVLlujkyZOaNm2a3nnnHQUHB2vXrl3q0aOHvv76a7300ksaN26c5s+ff3WfPAAAAFBalfKRoRJRDPn5+WnatGnauXOn1q9frxUrVuidd97R4sWLlZGRocOHD2v16tV69tln9eabb+rBBx9UVlaWqlevrm+++UYHDx5Ujx49nO05HA7t27dPmzdv1v79+/Xoo486b8vOztaxY8euxtMEAAAArimGc4aunPDwcIWHh+vRRx9Vu3bttG7dOt177736+uuvdfz4cTVs2FAjR47U119/raioKEmSMUYRERH64IMP3NrbvHmz/vrXv2r8+PFut+3Zs6fInw8AAABwTSvlI0Ml4pyh5ORkbdiwwXn98OHDSklJUdWqVXXvvfdq+vTpqlevniSpfv36mjFjhho1aiRJqlevnvbt26c1a9Y4779582YZY9S4cWN9++232rVrl8ttkhQcHKz09PTieHoAAADAtYlzhi5fdna2pkyZokOHDqls2bLKzc3VM888o9q1a+vmm2/WCy+84Cx+7r33Xn388ce69957JUnly5fXtGnTNGHCBI0ePVpZWVmqVq2a3nrrLf3xj3/UhAkTNHToUJ07d05ZWVmqX7++6tSpo4iICNWoUUPR0dG67bbbNHny5Ku5CgAAAIDSp5SPDJWIYqhKlSp69913C7wtLCxMO3bscF5v166d2rVr55KpU6eO5syZU+D9mzRpoiZNmrgtDwgI0Ntvv30ZvQYAAAB8XDGcM5SRkaHRo0dr9erVCgoKUmRkpEaNGuWSycnJ0csvv6xvv/1WDodDPXv2VMeOHQttu0QUQwAAAABKoWIYGZowYYKCgoK0fPlyORyOAidDW7x4sfbv368vvvhCJ0+eVGxsrBo1aqSqVatesm2KIQAAAADe8fL8n9TUVKWmprotDwkJUUhIiPP66dOntXDhQn3zzTdyOBySpFtuucXtfomJierYsaP8/Px00003qXXr1vr888/15JNPXrIfFEMAAAAAvOPlyNCsWbM0depUt+V9+/ZVv379nNcPHDigChUqaOrUqVq7dq3KlSunp59+Wvfcc4/L/X7//XdVrlzZeb1SpUo6fPhwof2gGAIAAADgFW9/Z6hr166Ki4tzW55/VEg6P9HagQMHVLt2bQ0aNEibNm1Sr1699H//938KDg726rHzoxgCAAAAUKwuPBzuYipXrqyAgABFR0dLkurWrasbb7xRe/fu1d133+3MVapUSb/99pvq1KkjyX2k6GJKxO8MAQAAACiFco13F0s33XSToqKitGrVKknS3r17dfz4cf3hD39wybVt21bz5s1Tbm6uUlJStGLFCt13332Fts/IEAAAAADvFMNsciNGjFBCQoLGjRungIAAjR8/XiEhIerRo4f69++vu+++WzExMdq0aZPatGkjSerTp4+qVatWaNsUQwAAAAC84+Vscp6oVq1agb8pOmPGDOff/v7+GjFihMdtUwwBAAAA8E4xjAwVJYohAAAAAF4xFEMAAAAAfBLFEAAAAACf5OXvDJUUFEMAAAAAvMPIEAAAAACfRDEEAAAAwBcZQzEEAAAAwBcxMgQAAADAJ5XyYshhSvvYVjFbXyXOOrvRUc46+7HjqHV2RNYN1tmfA8paZ78LOGudHRxon5WkjEz7urtPdrp1trNfZets+Rz7t/rgjC3W2bFBd1tnJSnD4bDOjsvaaZ1deNPN1tkfUu2z0xy/WWeHZVe0zn52nWe7njUZ9v1Y8id/6+z8vVWts5Mzdlhnpzhus84e8/fs/6W6nfjOOvtixSbW2YVZB6yzsYHVrLMx/qess19lVbDOStJXfqnW2Qk3ZFhn/+9UqHXW34O3clSA/br4KTPEvmFJH3nQ9mNZ5a2zRwPs91ljT2+yzi6/2f49NNOD/n6Vab+vkKTH/e370fK6FOtsl/TT1tmXcypZZ1dcZ/96vPrbSuusJO2uXds6u/Gw/Tay1v6riHqHJltnv/rNfr194HfcvhOSZoRlWmfXHbrVOvu632GP+vHtoS89yl8Np55o7dX9yr+34gr3xDuMDAEAAADwTikfGaIYAgAAAOCd0v0zQxRDAAAAALxjGBkCAAAA4JNKeTHkd7U7AAAAAABXAyNDAAAAALzDOUMAAAAAfBHnDAEAAADwTYwMAQAAAPBFjAwBAAAA8E2MDAEAAADwRYZiCAAAAIBPohgCAAAA4IsYGQIAAADgmyiGAAAAAPgiRoYAAAAA+CSKIQAAAAA+iWIIAAAAgG8yjqvdg8vid7U7cKGWLVuqbdu2iomJUUxMjEaPHu3R/ZOTk9W5c2fn9SlTpigzM/NKdxMAAADweSbXu0tJUSJHhiZPnqzw8PACb8vOzlZAwMW7HRYWpjlz5jivT506Vd26dVOZMmWueD8BAAAAX2ZyGRkqcoMHD9aoUaPUvXt3Pfzwwzp48KCioqKct+e/nv/vESNGSJI6deqkmJgYJScnq0mTJsrIyHDet1evXlq8eHExPhsAAADg2sDIUBHo37+/goKCJEkDBw6UJG3YsEHvv/++rr/+eh08eNCqnWHDhmnu3Ln66KOPVK5cOUlSgwYNlJiYqLi4OB06dEhbt27V5MmTi+aJAAAAACixSmQxdOFhckuXLlXbtm11/fXXX3bbnTt31pgxYxQXF6cPP/xQHTp04BA6AAAAwAumlE+gUCKLoYLkL4QCAgJkjHFez3/YW2Hq16+vnJwc/fe//9XChQs1b968K9pPAAAAwFeUpEPevFEqzhm60C233KKsrCzt27dPkrRkyZKLZsuVK6f09HSXZZ07d9azzz6ryMhIVapUqUj7CgAAAFyrTK7Dq0tJUSqLoYCAAA0dOlRPPPGEOnfuLH9//4tmu3Xrpi5duigmJkapqamSpAceeECpqan6xz/+UVxdBgAAAK45xnh3KSlK3GFySUlJbsvGjh3rtuyhhx7SQw895Lzet29fSVLVqlW1du1al+V5t+XZvHmzqlSpokaNGl2pbgMAAAA+pySN8nijxBVDRS0hIUHff/+9xo0bJ4ejdL94AAAAwNVEMVTKjB49+mp3AQAAALgmlKRD3rzhc8UQAAAAgCuDkSEAAAAAPonfGQIAAADgk0r77wxRDAEAAADwSi4jQwAAAAB8EYfJAQAAAPBJTKAAAAAAwCcxtTYAAAAAn8TIEAAAAACfVNonUPC72h0AAAAAgKuBkSEAAAAAXmE2OQAAAAA+iQkUAAAAAPik0n7OEMUQAAAAAK+U9sPkmEABAAAAgFeM8e7ijalTpyoiIkI7d+50u23w4MFq2rSpYmJiFBMTozfffNOqTUaGPNTbHLfOllWqdTber5J19omc7dbZcgqyztYLsO9DzMkj1llJOpeTYZ3tfUNd6+w3SrfO/pSVbJ1dFPxH62yf7N+ts5KUY3Kts+8FVLXOxqQcsM7eEHDaOvu0qW6dHRNov44b6hbrrCT9v9xbrbN/3vKzdbbm9f7W2Rl+f7DOjitj/95Mzk6zzkrSsSFNrLMD382yzg7JtX+/Tcmx3wd8knHGOhsamG2dlaS7HBWss91P2vcjJXuPdfZcjv06Ds4pa539Q6B19Hzer5x1drzDfn9xu99N1tmkWytbZ/9x0n4/VKfM9dbZl3PsP8skaaK//ef6orP27b5g7LenQY5frbPVc2+0zqZOfdg6K0n3jdhsnb0uMMU6e7Oxf9//bZ/9d6dg/0zrbIcA+/23JMUc3Gudvd7f/nvA8zn2n2WlRXEdJvfTTz9p48aNqlz54vuZnj176rHHHvOoXUaGAAAAAHjFGIdXF09kZmZq5MiRGjZsmByOK1t8MTIEAAAAwCvejgylpqYqNdV9JDAkJEQhISEuy15//XW1b99e1apVu2Sb7733nj7++GNVq1ZNzz33nGrWrFloPyiGAAAAAHjF25m1Z82apalTp7ot79u3r/r16+e8vmHDBm3ZskUDBw68ZHsDBgxQaGio/Pz8tHDhQj355JNasWKF/P0vfTg8xRAAAAAAr3g7MtS1a1fFxcW5Lb9wVGj9+vX65Zdf1KpVK0nS4cOH1b17d40ZM0ZNmvzvHNqwsDDn37GxsRozZowOHz6sKlWqXLIfFEMAAAAAvOLt1NoFHQ5XkJ49e6pnz57O6y1bttRbb72l8PBwl1xycrKzIPr222/l5+fnUiBdDMUQAAAAAK/Yz5F75cXExGj69OkKCwvToEGDdPz4cTkcDgUHB+vNN99UQEDhpQ7FEAAAAACvGBXvj64mJSU5/160aJHz75kzZ3rVHsUQAAAAAK/kejuDQglBMQQAAADAK7nFPDJ0pVEMAQAAAPBKcR8md6X5Xe0OAAAAAMDVwMgQAAAAAK9czdnkrgSKIQAAAABeKe2HyVEMAQAAAPAKI0MAAAAAfBLFEAAAAACfxGFyAAAAAHxSbumuhSiGAAAAAHiHH10FAAAA4JPM1e7AZbIqhjIzM/Xqq69qxYoVCggIUNmyZdW3b1+1bt1akjRkyBBt3rxZf/rTn/Taa6+5Xb9Q/tubNm2qr7/+WpMnT76yzwwAAABAkfKJCRSGDx+uM2fOaOnSpQoKCtLOnTv15JNPqnz58qpRo4aWL1+uH374QX5+fjp27JjL9QtdePv8+fOv+JPyRk5Ojvz9/a92NwAAAIBSI9dRug+Tc69WLnDo0CEtW7ZMw4cPV1BQkCQpPDxcvXr10tSpU9WlSxedO3dOcXFxeuONN1yuz5w506Wt9PT0S95+9OhRde7cWfHx8XrggQc0fvx4SdLZs2cVFRWllJQUZ3bs2LGaOnWqJGnlypWKjY3Vgw8+qK5du2rfvn2SpPnz56t///7O++S/Pn/+fHXv3l3PP/+84uPjtXPnTg9XHQAAAODbjJeXkqLQkaGdO3eqevXqqlChgsvyyMhIvf766/r000/VoUMHLVq0SJIUExPjcj2/4OBgTZ8+3eX2/CNDISEheuutt1SuXDllZWWpe/fuWrlypZo2bapWrVppyZIl6tKli7Kzs7VkyRJ99NFHOn78uF544QW9//77uv322zVv3jwNHDhQ8+bNK/TJ//jjj1q0aJGqV69eaBYAAACAq9J+mFyhI0PGFF/tlpOTo/Hjx6t9+/aKj4/Xrl27tH37dklSfHy8FixYIOn8SFDNmjVVtWpVbdq0SbVq1dLtt98uSerQoYO2bdum9PT0Qh+vfv36FEIAAACAl3Id3l1KikJHhsLDw7V//36dPHnSZXRo48aNioiIKPQB+vTpo4MHD0qSPvjgg0tm33vvPaWmpmrevHkKCgrSv/71L2VkZEiS7rnnHp0+fVo7duzQggULFBcXJ+l8sea4yLGK/v7+ys39X72a11aecuXKFdp/AAAAAAUr7VNrFzoyVLVqVbVt21bDhw93FhM7d+7UW2+9pb59+xb6AG+88YYWLVqkRYsWKTg4+JLZtLQ0hYaGKigoSMnJyfryyy9dbo+JidF7772n9evX67777pMk1atXT9u2bdOePXskSQsWLFDt2rUVHBys6tWra8eOHcrMzFRmZqaWL19eaH8BAAAA2LnmzxmSzs8mN3HiRLVr106BgYEKCgrS0KFD1bBhQ+eoz5XQuXNnPf3004qNjdWtt96qRo0audweFxenVq1aKT4+Xtddd50k6aabbtL48eM1cOBAZWdn66abbtKECRMknS+UGjVqpOjoaFWtWlU1a9bU0aNHr1h/AQAAAF9Wkg5584ZVMRQUFKSEhAQlJCS43Va1alWtXbv2otcLy8fHxys+Pl6SVKVKFX3yyScXvW/lypW1bds2t+VNmzZV06ZNC7zPyJEjC1ye/3EBAAAA+B6rYggAAAAALlTaZ5OjGAIAAADglZJ0/o83KIYAAAAAeMUnzhkCAAAAgAtxmBwAAAAAn0QxBAAAAMAnGQ6TAwAAAOCLGBkCAAAA4JMohgAAAAD4JKbWBgAAAOCTmFobAAAAgE/iMDkAAAAAPoliCAAAAIBP4pwhAAAAAD6Jc4YAAAAA+CQOkwMAAADgkzhMzsfcVSbUOtsuo6x1tm3McevsscRw6+ztWX7W2fgWh62z3ZMqW2clqbLjOuts/z5lrLNfTrRvN8j8wTob3vd66+w/XwuxzkrSLTnZ1tm7/2nfbqPZ1a2zf8m2X2/xT9u/HvOmBFlnt+em6d8Radb5ch3rW2frvXzGOvv37Buts38eaL9N15oaaJ192GHfB0ny+1NN6+yA69ZaZ6v96y7rbNjQTOvsB2Xtn19vP/vXTpJu/dPv1tn7t9h/ZD/rb7+O/6Rz1tnpQfZ96H7Ofv8tSfU62a+7Rf+x31/UDzhhna3c1f6zIWPSDuvsqKr2n5GSFNLGvh+H3r7ZOpsUYL+O7+9mv42s+8D+9eiYZf9+c5SvYJ2VJH+H/fFOtfzLW2eflP166xto/5k6UfbZ2+46YJ2VpK8327f9XKb9umj8jP1nQ2mRW8rLIc/2tABwhXhSCAGALU8KIQBgZAgAAACAVzhnCAAAAIBPKt0HyVEMAQAAAPASI0MAAAAAfBK/MwQAAADAJ5X22eQohgAAAAB4pXSXQhRDAAAAALzEOUMAAAAAfBKHyQEAAADwSaW7FKIYAgAAAOAlDpMDAAAA4JM4TA4AAACATyrdpRDFEAAAAAAvcZgcAAAAAJ9kSvnYEMUQAAAAAK8wMgQAAADAJxXHBAq9e/fWwYMH5efnp+uvv17/+te/dMcdd7hkcnJy9PLLL+vbb7+Vw+FQz5491bFjx0LbphgCAAAAUGKNGzdON9xwgyRpxYoVSkhI0IIFC1wyixcv1v79+/XFF1/o5MmTio2NVaNGjVS1atVLtk0xBAAAAMAr3o4LpaamKjU11W15SEiIQkJCXJblFUKSlJ6eLofD4Xa/xMREdezYUX5+frrpppvUunVrff7553ryyScv2Q8/bzrfsmVLNWnSRDk5Oc5ln376qSIiIvT+++9706Sz3Z07d0qShg4dqh9++MHrtgAAAAAUrVwZry6zZs1Sq1at3C6zZs0q8HGGDh2q5s2ba9KkSRo3bpzb7b///rsqV67svF6pUiUdPny40P57PTIUGhqq7777Ts2aNZMkLVy4UHfeeae3zbl55ZVXrlhbAAAAAK48bydQ6Nq1q+Li4tyWXzgqlCevNli4cKHGjx+vGTNmePnIrrwuhuLi4jR//nw1a9ZMBw4c0NmzZxUeHi5JyszM1KRJk7R+/XplZWUpPDxcw4cPV7ly5bR48WLNnj1bWVlZkqRBgwapUaNGbu137txZ3bp1U4sWLTR48GCVKVNGv/76qw4fPqyFL4K/AAAfAUlEQVTIyEiNGzdODodD6enpGjNmjHbs2KGMjAxFRUVpyJAh8vf319SpU7VkyRIFBQXJ4XBo9uzZCgwM1KBBg7R7924FBASoRo0aev31171dDQAAAIDP8nZq7YIOh7MRGxurl156SSdOnNCNN97oXF6pUiX99ttvqlOnjiT3kaKL8boYioqK0ty5c3Xq1CktWLBAsbGx2rp1qyTp3//+t2644QZ98sknkqQJEyZo+vTpGjBggJo0aaLo6Gg5HA798ssvevzxx7Vy5cpCH2/Xrl2aOXOmHA6H4uLi9P3336tx48YaM2aMGjRooFdeeUW5ubkaOHCgPv30U91333165513tHr1apUtW1bp6ekqW7asvvrqK6WmpioxMVGSdOrUKW9XAQAAAODTinpq7dOnTys1NVWVKlWSJCUlJal8+fKqUKGCS65t27aaN2+e2rRpo5MnT2rFihX64IMPCm3f62LI4XDo/vvv19KlS5WYmKgPP/zQWQwlJSUpPT1dy5cvl3R+pKhWrVqSpAMHDui5555TcnKyAgICdOzYMR09elShoaGXfLzWrVsrKChIklS7dm3t379fjRs3VlJSkjZv3qz33ntPknTu3DmFhYUpODhYNWrU0PPPP6+//vWvat68uYKDg1WrVi398ssvGjFihBo2bKjmzZt7uwoAAAAAn1bUP7p69uxZPf300zp79qz8/PxUvnx5vfXWW3I4HOrRo4f69++vu+++WzExMdq0aZPatGkjSerTp4+qVatWaPuXNZtcfHy8OnbsqIYNG7oMUxljNGzYsAIPf3v22Wc1ePBgtW7dWrm5uapbt64yMjIKfay8QkiS/P39nZM3GGM0bdq0Ap/sf/7zH/34449as2aN4uPj9e9//1u1atVSYmKi1qxZo5UrV2rSpElavHixS/sAAAAAClfUI0O33HKL/vOf/xR4W/7zhvz9/TVixAiP2/dqNrk81apV04ABA9S7d2+X5S1bttTMmTN17tw5SeenwNuzZ48kKS0tzTnf9yeffKLMzMzL6YJatmyp6dOnO4ujlJQUHThwQOnp6UpJSVHDhg3Vv39/hYeHa9euXTp8+LD8/f3VunVrDRkyRCkpKTp58uRl9QEAAADwRbnGeHUpKS77d4YeeeQRt2U9e/bU1KlT9dBDD8nhcMjhcKhv376qWbOmhgwZot69eyssLEwNGzZ0O97PUwkJCZowYYJiYmLkcDgUGBiohIQEBQYGql+/fjp37pyMMapdu7batGmjNWvWaOLEiZKk3Nxc9ezZU2FhYZfVBwAAAMAXlZyyxjteFUNJSUkFLh87dqzz7wEDBmjAgAFumdjYWMXGxrrkCmp3zpw5BbZ74fXg4OCLDonNmzfPbVmzZs2c04EDAAAA8F5uKS+HLntkCAAAAIBvKuoJFIoaxRAAAAAArxT1BApFjWIIAAAAgFc4TA4AAACAT+IwOQAAAAA+icPkAAAAAPgkU4J+M8gbl/WjqwAAAABQWjEyBAAAAMArTKAAAAAAwCdxzhAAAAAAn8RscgAAAAB8EofJAQAAAPBJpX02OYohAAAAAF7hnCEAAAAAPolzhgAAAAD4JM4ZAgAAAOCTOGcIAAAAgE9iZMjH3G7KWmdT/B3W2cwDZ6yzD2Rcb509aoKss37XBVpnazrKWWcl6Q85/tbZ7N2HrLPH/UOts7dmZ1tn/ds9ap29a/Jk66wk3VTJ/rX2v+9x6+wfZiVaZ1tWOGqdVXC4dfQ2v2DrbG52mn0fJDmC7N/L4X43WGf/HJxinfVr0dM6mzxltnW2YnYZ66wkBbT8h3V2x4Cd1tmqp05ZZ/90p/176NbdVa2zf2ibY52VJEe5m+z7sS3LOms864a1O8x11tmt9rtkSVLVL+1fv2QPPv1v+WO6ddYR1cE6WyfIvr8Z6fb7C0ew/WekJFXNTrXO3hJov606QstbZ4ON/Tq+LdJ+nxXQqrN1VpJu9PvBOlvBg6+QNR+1/+4U8YF99tA5+43krkf+Yp2VpApbt1lnj/vbf8fxu/Nuj/pRGnDOEAAAAACflMthcgAAAAB8UekuhSiGAAAAAHiJc4YAAAAA+CSKIQAAAAA+qbRPre13tTsAAAAAAFcDI0MAAAAAvMJhcgAAAAB8Er8zBAAAAMAnlfZzhiiGAAAAAHiFw+QAAAAA+CRGhgAAAAD4JEaGAAAAAPgkJlAAAAAA4JNyOUwOAAAAgC9iZAgAAACAT2JkCAAAAIBPYmQIAAAAgE8q7SNDfpdz55YtW2rnzp0uy+Lj47V27drL6tTatWsVHx9/WW0AAAAAKFrGy38lxVUfGcrOzlZAwFXvBgAAAAAPlfaRoSKrQhYvXqzZs2crKytLkjRo0CA1atRI0vkRpQ4dOmjNmjWqVq2aRo8erUmTJikxMVFhYWG6++67ne2sXbtWo0ePVt26dbVhwwY5HA5NmjRJNWvWlCQtWLBAc+fOVU5OjoKDgzV8+HDddttt+vHHHzVq1Cjl5uYqOztbTz31lKKjo/Xxxx9r5syZKlOmjHJzc/Xaa6852wIAAABgrySN8njjsouh/v37KygoyHn9119/lSQ1adJE0dHRcjgc+uWXX/T4449r5cqVztzRo0c1Z84cSVJSUpKSkpK0cOFClS1bVn369HF5jN27d2vMmDEaOXKk3nzzTU2bNk0TJ07UDz/8oGXLlumDDz5QmTJl9M033yghIUEfffSRZsyYoa5duyo2NlbGGKWlpUmSxo8fryVLlqhSpUrKzMxUTk7O5a4CAAAAwCcZk3u1u3BZLrsYmjx5ssLDw53X8871OXDggJ577jklJycrICBAx44d09GjRxUaGipJio2Ndd5n7dq1ateuncqVKydJeuihhzRt2jTn7TVq1FDt2rUlSZGRkfrqq68knS+itm/fro4dO0qSjDFKTU2VJEVFRWn69On67bff1LhxY9WtW1eSdO+992rIkCFq1aqVmjdvrmrVql3uKgAAAABQChXZYXLPPvusBg8erNatWys3N1d169ZVRkaG8/brr7/e+bcp5FjDMmXKOP/28/NTdna2834dOnTQ008/7Xafxx9/XC1bttT333+vUaNGqXHjxhowYICmTp2qLVu2aM2aNerSpYuGDx+uZs2aXe7TBQAAAHxObik/TO6yZpO7lLS0NFWtWlWS9MknnygzM/Oi2UaNGmnZsmU6c+aMcnJy9Omnn1o9RsuWLbVo0SIdPnxYkpSTk6OtW7dKkvbu3avq1aurU6dO6tKli7Zs2aLs7GwdOHBAderUUc+ePdW4cWNt27btMp8pAAAA4JuMMV5dSooiGxkaMmSIevfurbCwMDVs2FAVKlS4aLZFixbauHGjYmNjVbFiRUVFRSk5ObnQx2jQoIGeeeYZPfXUU8rJyVFWVpbatm2ru+66S3PmzNHatWsVGBioMmXK6MUXX1Rubq4GDx6stLQ0ORwOVapUSc8999yVfNoAAACAzyjtI0OXVQwlJSW5LZs/f77z7/znBQ0YMOCS9xswYIBLpl+/fpLOn/uTv80Lr7dv317t27d3a++ll14qsM9z584tcDkAAAAAz5SkUR5v8AM/AAAAALzC7wwBAAAA8Ek+/ztDAAAAAHwTh8kBAAAA8Ek+PYECAAAAAN/FyBAAAAAAn1QcEyiMGzdOy5cv16FDh7R48WKFh4e7ZaZMmaK5c+eqYsWKkqT69etr2LBhhbZNMQQAAADAK8UxMtSqVSt16dJFjz766CVzsbGxGjRokEdtUwwBAAAA8EpxnDN0zz33FFnbFEMAAAAAvOLtyFBqaqpSU1PdloeEhCgkJMSrNpcuXarvvvtOoaGh6tevn+rVq1fofSiGAAAAAHjF23OGZs2apalTp7ot79u3r/r16+dxe506dVKvXr0UGBioVatWqXfv3kpMTNSNN954yftRDAEAAADwirc/utq1a1fFxcW5Lfd2VCg0NNT5d+PGjVWpUiXt2rVLDRs2vOT9KIYAAAAAeMXbkaHLORyuIMnJyQoLC5Mkbdu2TYcOHVKNGjUKvR/FEAAAAACvFMdsci+//LK++OILHTt2TE888YQqVKigpUuXqkePHurfv7/uvvtuvfrqq/rpp5/k5+enwMBAjR8/3mW06GIohgAAAACUWC+++KJefPFFt+UzZsxw/j1u3Div2qYYAgAAAOAVb88ZKikohgAAAAB4pTgOkytKFEMAAAAAvFLaiyGHKe3PAAAAAAC84He1OwAAAAAAVwPFEAAAAACfRDEEAAAAwCdRDAEAAADwSRRDAAAAAHwSxRAAAAAAn0QxBAAAAMAnUQwBAAAA8EkUQwAAAAB8EsUQAAAAAJ9EMeSjvv/++6vdBQAAAOCqohjy0okTJ7Rt2zZt27ZNJ06cuGJtDh06VN26ddMHH3zgclu/fv0Kvf+pU6cKXL579263y5AhQ7Rnzx7t3r3bJbtq1Srn32lpaXr++efVunVr9evXT8eOHbvk458+fVo//fST0tPTC+2rp86ePautW7cqNTX1opmTJ09q27Zt2rVrl86dO3fF+4CSJTU19ZLvh5Jqz549Rdb2yZMni6Rdm31camqqTp8+bdXWld53Xq6L7TsLUhT/kVRU+06b/abk2b6ztG53UtFte0W13UlXdtvLy/L6uSpNrx+KiIFH9u3bZ7p06WLuuece065dO9OuXTtzzz33mC5dupi9e/deVtv9+vUz48aNM8uXLzePP/646dOnj8nKyjLGGBMTE+OS3bZtm4mLizMdOnQwu3fvNj169DB16tQxTZs2NT///LNLNiIiwrRo0cLlUrt2bdOiRQvTsmVLl2xsbKzz7xEjRphhw4aZHTt2mFdffdU8/fTTLtl//etf5vjx48YYY3744QfTqFEj065dO3Pvvfeab7/91iXbsGFDM2rUKLe+XcwXX3xh6tWrZ+677z6zceNG07x5c3P//febhg0bmi+//NIle/DgQdO9e3cTERFhatWqZRo2bGjq1KljxowZYzIyMgpsPyUlxfz888/m559/NikpKVZ9KmonT560zq5ateqKP356errZunWrSUtLu+JtnzlzxmzZssWcOnXqopkTJ06Yn3/+2ezcudOcPXu2wMzx48fNkCFDTGRkpImMjDR169Y1kZGRZsiQIc73oo3u3bu7XM/IyDDTpk0zL774ovnqq69cbhs5cqTL9UOHDpm+ffua/v37myNHjpjhw4ebevXqmU6dOpkDBw64Pe8LLy1atDBnz541Z86cccnu3LnT+XdmZqZ57bXXTJcuXcyYMWPcssYY88Ybbzif865du0zr1q1N3bp1TbNmzcyWLVtcsnFxcea9996zWkfr16837dq1M926dTP79+830dHRpm7duqZx48bmxx9/dMmeOnXKvPTSS6ZevXqmVq1aplatWqZZs2Zm9uzZbu1eqX1ndHS027KUlBSTkJBgnnjiCfP++++73Na3b1+X657sO3ft2uV2adq0qdm9e7fZtWuXS/a7775z/p2ammoGDhxoWrVqZfr27WuOHj3qki2qfacn+01j7PedV2q7M6b0b3uebHfGlIxtj9fvf4pqv2lM0b1+KHoUQx565JFHzKJFi0xOTo5zWU5Ojlm4cKF5+OGHPWrrwg/19u3bO//Ozc01w4cPN926dTPnzp1zK4YeffRRs2LFCrNgwQLTvHlzs2jRImOMMV9++aXp2rWrS3bKlCnmySefNAcPHnQua9GiRYF9yv847du3N5mZmRft74MPPuj8u3PnzmbTpk3GGGN++eUXExcX55Jt0aKFeeWVV8y9995rYmNjzZw5cy755b99+/Zm+/btZt26daZhw4bmv//9rzHGmN27d7uti8cee8wsWrTInDx50syePdu8/vrr5tixYyYhIcEMHz7cJcsXsv8pjcVst27dzLRp01wK2OPHj5s33njDdOvWzSVb0Idp3qVp06Yu2SFDhphnnnnGvPvuu+aBBx4wL7/8svO2/P9BYIwxTz75pJk1a5Z54403THR0tHnrrbfM0aNHzezZs81TTz3lks17ThEREW6XWrVquWTzP87EiRPNU089ZZKSksygQYPMiy++6LaO878He/bsab744gtjjDHr1q0zjzzyiEu2SZMmpnfv3qZu3bqmT58+5quvvnLZh+XXoUMH8+WXX5oFCxaYZs2amcTERGOMMatXrzYdO3Z0yfbq1ctMmzbN/PTTT2bs2LHm7bffNps2bTJPPvmkef31112ynuw7C3rP510aN27s1mdP/iPJk31nUf1HUlHtOz3Zbxpjv+/0ZLsz5tre9jzZ7owpGdser9//FNV+05iie/1Q9CiGPHTfffd5dJsnH+pt27Z1u//YsWNNly5d3G7Lv/E3b97c5baCPvR++ukn88gjj5i5c+caY4zbB3me+++/3/kl+8J28hdrxhjTpk0b59/x8fEut11YLOT1NzMz0yxbtsz06NHDREZGmmeeecblC3xBz+HCwu3CfuX/YmHM+R2SMee/aP3tb39zuY0vZAWvt9JSzF5q+8v/fjSm4A/TvOsXfpjmf7+ePXvWPPXUU2bIkCEmNzf3ktvBhe+DC9+LgwcPNgkJCS6jbTb/EREbG2vS09ONMcZkZWWZBx544JLP98LX68I+510/duyYeeedd8wDDzxgGjdubCZMmGD27Nlz0fsWtu1duJ3nbUPnzp1zez082XdGRESYli1bur3vW7RoYe688063+3vyH0me7DuL6j+Simrf6clrZ4z9vtOT7c6Ya3vb82S7y7+spG57vH4Ft5P/us1rd+H9r+Trh6LHOUMeqlChgpYsWSJjjHOZMUafffaZQkJC3PLR0dH65z//qZ49e7pdLjxOtVq1alq/fr3LskGDBikyMlK//vqry/L8j9+4cWOX23Jzc936Ubt2bc2ePVuHDh1S165dlZWVVeDzO3funLN/qampSk5OliSlp6fLz8/17dKoUSONHTtWZ8+eVVRUlBITEyWdP++oQoUKBbYfGBiotm3bavr06Vq+fLkiIiI0atQot5zD4dCePXu0YcMGnTlzRhs3bpQk7d27Vzk5OS7ZgIAA7d+/X5K0detWlSlTRpLk5+engIAAl+zJkyfVvn17l+fi5+enmJgYt/MGPHntJGnfvn164YUX1KZNG7377rsKDQ3VP//5T2VkZLhlT58+rVatWik2NlaS1L59e0lSy5Yt3dru27evatasqTlz5igpKUlJSUkKCwtTUlKSvvzyS5ds/vfFf//7Xw0dOlTh4eEaMGCA2/HW+ft1+vRp1alTR5JUo0YNt/dH+fLllZCQoJUrV+qf//ynVq5cqebNm2vAgAEu55nlcTgcioiIUIMGDVSuXDnVr19fklSzZk237KlTp9S+fXuVL19enTt31sqVK3XzzTdr1KhRbm0HBQVpw4YNbm38+OOPztc9T2hoqFatWqXt27c7L9u2bdP27dtVsWJFl2z+91TZsmU1ZcoUnT17Vs8//7zb9uRwOJx/165d+6K3SdKYMWPUunVrPf744/rmm28KzOQxxujcuXM6e/as/P39Va5cOUnn398Xvo8l6a677tKcOXMkSXfccYd+/PFHSefPEQwMDCywXzfffLO6deumJUuWaOrUqTp16pQ6derkti5SUlK0f/9+nTx5Uvv27ZMkpaSkKDMz063dvPfroUOHnOsqKCjIrc+e7DurVKmiuXPnOt/v+S8333yz27rI3y+Hw6Fhw4YpPDxcPXv2dNv+PNl39u3bVwMGDNBzzz2nDz/80GVdFtSHvPMwHQ6Hy2tQXPtOT/abkv2+05PtTrq2tz1Ptrv8j3k1tz1ev/8pqv1m3rooitcPRY817qGxY8dq2LBhGjlypMLCwiRJycnJqlWrlsaOHeuWz/tQz8vm16xZM5fr48ePL3BjHzBggB588EG3dtPT0xUcHKyXX37Zufzw4cO67rrrCux7mTJlNHDgQG3cuFHr1q0rMJOUlFTgcn9/f02ePNllWUJCgsaPH6+mTZuqQoUKevfdd/XCCy8oKipKo0ePdsnm/wKSp2LFiurVq5d69erldlv//v3197//XX5+fpo0aZJef/11HT16VIcPH9bw4cPdsg8//LBCQ0N19OhRTZo0SZJ07Ngx55fwPHlfyB544AHnujbGaPHixRf9Qmbz2kkFfyEbN27cFflC9vPPP+u5555TTEyM/v73vxf6hcwYY/2F7Omnn3Z+IWvXrp3VF7K2bdvqyJEjmj9/vkaNGqXPP//cJZf3pSw1NdX5pSwyMvKSxWz16tULLWZHjBihF154QUFBQapSpYqk8x8kGRkZGjdunEs2KipKu3btUlRUlNvzyCv88txyyy3avn27atWqJen8+33ixIkaNGiQdu3a5ZItW7asc9ubPn26c/nJkyfl7+/v9lgtWrRQZGSkRo0apWXLlhX4pVSSduzYoXr16jlfu+TkZIWFhSkjI6PA/+B46aWXNHjwYM2cOVNhYWHq0qWLKlWqpOuuu85q+4uMjFRkZKRefPFFl+Vdu3bV3/72NzkcDo0YMUKDBg1S+fLl9fPPP6t79+5u2fbt26t27draunWrEhISJJ3f9ipXruySvXDfaYxRcnKy7rjjDrd9Z5s2bXTo0KECt72//e1vbsvy/iOpQYMGzmWDBg3SpEmT9Pbbb7tkPd135v1H0uTJkwv9j6QePXo4r+e9fgX9R1JR7TsL2m8eOXJEycnJbvvNvLzNvvNS29348ePd2i2J215iYuIV2fYu3O46d+6sypUrF7jdSSVj2+P1+x9PXj9PXjup6F4/FIPiHIa6lhw/ftxs3brVbN269ZIn140dO9Z5iNCFRo0adcX7dfr0aXPs2LEr3m5hj7lt2zazdevWi05GkP8wE29kZ2ebLVu2uJ33kufUqVNm8+bNhZ78v3fvXtOlSxfToEEDEx0dbaKjo02DBg1M586d3Ya9PX3tevToYdatW+e2/NVXXzUREREuy3r37l1gX3///feLnnuWkZFhJkyYYLp06WL++te/FpjJO3Qu75Ciw4cPG2OMSUtLczt+OyMjw4waNcrcc889pnXr1iYiIsLceeedzpM/8yvo8I9LSUpKMg0aNDBRUVHm+++/N48//rh54IEHzJ///Gfz2WefuWS/+uorExUVZaKjo515Y4w5evSoGTp0aIHtb9682SxfvtwsX77cbN682eTm5nrUvwvt3bvXHDp0yG15bm6u+frrr92WFeT48eNmx44dl3ycxMREt0P/CnPq1CmzYcOGi97+66+/mhUrVpjly5cXeAK3Mcbt5N3CnDhxwrktp6Wlmc8//9xs3bq1wOzu3bvNsmXLrM+5s913XuhSh2WeOHHCbXKOvPyF59VdrG2bfeeGDRvMW2+9ZdHb/7V79uxZt+0pT/5958XWRUH7TtvJVrKzs82mTZsuut80xn3feam28293M2bM8Gi7u9ikL3v37nV7jqtWrbLe9latWmVSUlKstr2CDje9VH9TU1Mvuu3l3+7+/e9/X7Sdgra9S02Ac+G2l5iYaL3tFTaxTv7Xb8uWLZe93zSm4NfPGM/2nTav37Jly8yIESM86pvt63ex9evpftOYot13ouhQDMEnefuF7FJOnDhx0S8SNl/IjDn/5aiw/mzYsMG8/fbbHvXtzJkzbrP15H/M0lLMpqSkmKFDh5onnnjCzJkzx+W2CyepyJ8tbEILTya/yJ+16YMn7dr298J8Yf04fvx4kfTDk6wnk4ZcKrtt2za3deFJ/kplL9bnhx56yLrd/Nm6det6vC4upw+erIsLz5ncuXPnRSdxKSh/qUlfiit7qT4XVbslZV1cbGKdfv36FbhP9mQiHk/a9rbdtLQ0M3DgQNOyZUvrbHH3t6B+PP/881ekzyh6DmMKGAcEfNCDDz6oxYsXX/FsUbZd2rKX23b//v1VtWpVRUZG6sMPP1S5cuX02muvKSAgQLGxsVq4cOEVz8bFxWnBggUlqg9Xqx+Xk33sscf0xBNPKC0tTa+//roGDBig9u3bKykpSbNnz9bMmTO9yhZl29dy1pN8rVq13A7dyTsUyeFwuJ276Em+OLNHjhxRxYoVi60PJWVd5N9/jBw5Urm5ufrHP/6hpUuXat++fXrttddc2vEkX9KyI0aMkDGm2PtQ1G2jiF3lYgwoVhebHW7nzp1us9t4OpucJ/mSnC3J68KTWcOu5WxJ6UdRzeLm6WyZRdX2tZz1JO/JrHqe5q/lbEnphyczHXqaJ1s8baNoMYECfEp0dLSqVKlS4ImRF87i5km2KNsubdmibNuTSSqu5WxJ6UdRTRriSbYo276Ws57kPZnExdP8tZwtKf3wZGIdT/Nki6dtFC2KIfgUT2aI83Q2uaJqu7Rli7LtS80aln92oms9W1L64UnWk1ncPJ3xrajavpaznuZtZ9XzJn8tZ0tCP/J+MiOv+L3UTIee5skWT9soYkU36ASUPJ7MEOfpbHJF1XZpyxZl255MUnEtZ0tKP67UpCG2M2B6OltmUbV9LWdt8p5O4uJJ/lrOlqR+GHN+Yp2LzXR4uXmyxdM2rgwmUAAAAADgkxiLAwAAAOCTKIYAAAAA+CSKIQAAAAA+iWIIAAAAgE+iGAIAAADgk/4/CQQR68y+BwUAAAAASUVORK5CYII=\n", - "text/plain": [ - "
    " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "# Now visualize the table trends:\n", "import seaborn as sns\n", @@ -873,20 +294,9 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0MAAAE7CAYAAAAfLlpqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xl8U1X+//F30hWKBRSorCPiUERl8ScgA8oiowwibXFjRgEFYVwARVE2ZwBRWXwoLoiK4waKOi7AAFX8Iq6IqCOyKLvIpuyUUijdcn5/8G2+DelyTiDQmtezjzwezc0nJ+eee3JvPjn3nniMMUYAAAAAEGG8p7sCAAAAAHA6kAwBAAAAiEgkQwAAAAAiEskQAAAAgIhEMgQAAAAgIpEMAQAAAIhIJEMAAAAAIhLJEAAAAICIRDIEAAAAICKRDAEAAACISCRDAAAAACISyRAAAACAiBR9uitQ0Rx5YoB1rKdeffuCc3OsQ30//2Id662TZF+HhDOsQ832bfblSjK5+dax3ss625f7/VL72IxM+zo0/IN9ubt3W8dKkqdWLfvgvFz7euTYx/q2/mofuz/LOjb6vLrWsQWbf7OOlSTPGZWsY30Zh+3LTYizjvUmxFvHFuzMsI49+ov9tpOkhMvq2Ad77b/z8u13eI+cmWgfe04D69iClT9Zx0qS79BR61hPpVjr2LXv2B8ez7v0gHVsdJJ9P85cbn9ckKRKtQqsY73x9v3CmxhjHfufBfb7t8MOX8deFmffxnVaH7EvWNL2ZQnWsTX/cMg69r2N9p8BXL6ZjvfZx8YYh4IlZTlU5Ox8+4psi7EveG1UnnVsDWP/Ps3yODScpERjX+flxn7fubPA/pgqSUt3fOIUfzrk7f05pOfF1Dj3JNckNCRDAAAAAELjs/8ipjwiGQIAAAAQGuM26lbekAwBAAAACI2PZAgAAABABDKMDAEAAACISIwMAQAAAIhIjAwBAAAAiEjMJgcAAAAgIlXwkSGX3/kCAAAAgN8NRoYAAAAAhCbMEyhs375dd911l//+oUOHlJWVpW+++SYg7plnntGsWbNUq1YtSdLFF1+sMWPGlFk+yRAAAACAkIR7au169epp7ty5/vuPPPKICgqKv04pNTVVw4cPdyqfZAgAAABAaEIcGcrMzFRmZmbQ8sTERCUmJhb7nNzcXM2bN08vvfRSSK9ZHJIhAAAAAKEJcWTotdde09SpU4OWDxo0SIMHDy72OYsXL1ZSUpIuuOCCYh9fsGCBvvzyS9WsWVODBw9Wy5Yty6wHyRAAAACA0IQ4tXbfvn2VlpYWtLykUSFJeu+993TttdcW+1ivXr10++23KyYmRkuWLNGdd96p9PR0Va9evdR6kAwBAAAACE2II0OlnQ5XnF27dunbb7/V5MmTi328Zs2a/v/btWun2rVra8OGDWrdunWp5TK1NgAAAIDQ+Hyh3RzNnj1bHTp0KHGkZ9euXf7/16xZox07dqhhw4ZllsvIEAAAAIDQnKIfXZ09e7ZGjx4dsGzAgAEaMmSILrroIj3xxBP68ccf5fV6FRMTo8mTJweMFpWEZAgAAABAaML8O0OFFi5cGLTsxRdf9P8/adKkkMo9pclQ586dFRsbq7i4OElSmzZtlJmZqQsvvFA333zzqawKAAAAgBNkTGgTKJQXp3xk6Omnn1bjxo3990eMGHGqqxAkPz9f0dEMkgEAAABOTtFpcuFSriZQWLp0qW688Ualpqbqmmuu0YIFCyRJ3333nVJTUwNie/bsqW+++UaSNH36dHXv3l3du3fXyJEjdfjwYUnHEq3XX3/d/5yi90eMGKHx48erf//+uuGGG07F6gEAAAC/L6doAoVwOeXDIUOGDPGfJjds2LCAx5o2bapZs2YpKipKe/fuVc+ePdW+fXtdcsklOnLkiNauXasmTZpo/fr1yszMVKtWrfTZZ5/pP//5j9566y0lJCRo+PDhmjZtmu6///4y67J8+XK9/vrrqly5cljWFQAAAPhdq+AjQ6f9NLnC0R9J2r9/v0aNGqUtW7YoKipKBw8e1ObNm9WiRQulpKRo9uzZGjlypN5//32lpaXJ4/Fo6dKl6tatm6pUqSJJuuGGG/Too49a1aVr164kQgAAAECoQvzR1fKiXJ0mN3bsWLVu3Vrz5s3T3LlzdfbZZysnJ0eSlJaWpgULFignJ0fz58/3nzZnjJHH4ym2vKioKPmKDMMVllWIRAgAAAA4AcYX2q2cKFfJ0KFDh1S3bl15PB4tWbJEW7Zs8T9Wp04dNWrUSA8//LDOO+881a1bV5L0pz/9Senp6crKypIxRu+++67+9Kc/SZIaNGigVatWSZJ2796tZcuWnfqVAgAAAH6vuGbo5Lnvvvs0btw4vfjii0pOTlZycnLA4z179tQDDzygyZMn+5d16NBB69atU69evSRJF154oe644w5Jx06ZGzJkiHr06KFzzjlHzZo1O3UrAwAAAKBcO6XJ0OLFi4OWTZw40f9/u3bt9NFHH5X4/JSUFKWkpAQtHzhwoAYOHBi0vHr16po5c2axZRV9XQAAAAAhKEenvIWiXI0MAQAAAKhAytEpb6EgGQIAAAAQGpIhAAAAAJHImIo9tTbJEAAAAIDQMDIEAAAAICIxgQIAAACAiMTIEAAAAICIxMgQAAAAgIjEyBAAAACAiMTIEAAAAICIxMgQAAAAgIhEMgQAAAAgInGaHAAAAICIxMgQAAAAgIjEyBAAAACAiFTBR4a8p7sCAAAAAHA6MDLkyNO8lX1wVoZ9bNUzrUOdMtiYWPvY/HzrUM95jV1qIU9ConWs79P/sS/Y67EPPfcc+3LPSrIOLfh2pX25kqJr1bIPTjjDOtSjQ9ax3qSzrGN9e+3LNVmH7etQM1GKiXGox0Hr2OgLz7WOVZ59v3fqbw7flMVk7rOvgyRPYhXrWJN1xDo2e1WmdWz8ebnWsS7t5rJukpSzwn4/W7nz2daxSbW3W8eafGMdm7PJfnvEVLYOlSTlHrBv59jq9v0zY539+lVx6Pf5HvujWX6BfezWpVVUr7l9X/b57Nst/2iUdWyTXPv3SIHs67Aj2n6/2Uj2/U2SNvnsO92FNez3W/sP1LSOTfLafzTN8oRvRCLDU2AfbP8WUUEFP6WsWBV8nUiGAJweDokQANhySYQAnAQV/DQ5kiEAAAAAoSEZAgAAABCRjMN5guUQyRAAAACA0DAyBAAAACAikQwBAAAAiEjMJgcAAAAgIjEyBAAAACAiMYECAAAAgIjEyBAAAACAiEQyBAAAACAiMYECAAAAgEhkfFwzBAAAACAScZocAAAAgIjEaXIAAAAAIlIFP03Oe7orAAAAAACnAyNDAAAAAELDNUMAAAAAIhLJEAAAAICIZCr2NUPlJhn64IMP9MILL8gYo5ycHF1wwQV6/PHHw/Z627dv15IlS3TjjTeG7TUAAACA3zVGhk7c7t27NW7cOM2ePVu1a9eWMUZr164N62vu2LFDb7/9NskQAAAAECpmkztxe/fuVXR0tKpVqyZJ8ng8Ov/88/XWW29p3LhxkqSVK1cqOTlZK1eulCSNHTtWb7/9tiRpxYoV6t27t3r27KmePXvq008/9Zf92WefqVevXurZs6duvPFG/fDDD5Kkhx56SJs2bVJKSoqGDBlyCtcWAAAA+J0wvtBu5US5GBlq0qSJmjVrpo4dO6pNmza6+OKLlZKSorZt2+rVV1+VJC1dulQtW7bU119/rWbNmmnp0qXq16+fMjMzNWbMGE2fPl21atXS7t27dd1112n+/PnKyMjQtGnT9NJLL6lKlSrasGGDBgwYoE8//VT//Oc/NWnSJL3//vund+UBAACAiqqCjwyVi2TI6/Vq2rRpWr9+vb799lstWrRIL730kubNm6ecnBzt3LlTS5cu1b333qvnnntO11xzjfLy8tSgQQN99tln2r59uwYMGOAvz+PxaMuWLVq5cqW2bt2qm266yf9Yfn6+9u7dezpWEwAAAPhdMVwzdPI0btxYjRs31k033aRu3brpm2++0aWXXqpPP/1U+/btU+vWrfXQQw/p008/VZs2bSRJxhglJyfrjTfeCCpv5cqVuuyyyzR58uSgxzZt2hT29QEAAAB+1yr4yFC5uGZo165dWr58uf/+zp07tX//ftWrV0+XXnqppk+frpYtW0qSLr74Yr344otq27atJKlly5basmWLvv76a//zV65cKWOM2rVrpy+++EIbNmwIeEySqlSpoqysrFOxegAAAMDvE9cMnbj8/Hw988wz2rFjh+Lj4+Xz+XTPPfeoadOmOuuss/TAAw/4k59LL71Ub7/9ti699FJJUtWqVTVt2jQ99thjevTRR5WXl6f69evr+eef1znnnKPHHntMo0eP1tGjR5WXl6eLL75YzZo1U3Jysho2bKju3bvr3HPP1dNPP306mwAAAACoeCr4yFC5SIbq1q2rl19+udjHkpKStG7dOv/9bt26qVu3bgExzZo108yZM4t9fvv27dW+ffug5dHR0XrhhRdOoNYAAABAhDsF1wzl5OTo0Ucf1dKlSxUXF6cWLVpo/PjxATEFBQV6+OGH9cUXX8jj8WjgwIG6/vrryyy7XCRDAAAAACqgUzAy9NhjjykuLk4LFy6Ux+MpdjK0efPmaevWrfroo4+UkZGh1NRUtW3bVvXq1Su1bJIhAAAAAKEJ8fqfzMxMZWZmBi1PTExUYmKi//7hw4c1Z84cffbZZ/J4PJKkGjVqBD0vPT1d119/vbxer84880x16dJFH374oW677bZS60EyBAAAACA0IY4Mvfbaa5o6dWrQ8kGDBmnw4MH++9u2bVO1atU0depULVu2TAkJCbr77rt1ySWXBDzvt99+U506dfz3a9eurZ07d5ZZD5IhAAAAACEJ9XeG+vbtq7S0tKDlRUeFpGMTrW3btk1NmzbV8OHDtWLFCt1+++36n//5H1WpUiWk1y6KZAgAAADAKXX86XAlqVOnjqKjo9W9e3dJUvPmzVW9enVt3rxZF110kT+udu3a+vXXX9WsWTNJwSNFJSkXvzMEAAAAoALymdBuls4880y1adNGS5YskSRt3rxZ+/bt0x/+8IeAuK5du+qdd96Rz+fT/v37tWjRIl111VVlls/IEAAAAIDQnILZ5MaNG6dRo0Zp0qRJio6O1uTJk5WYmKgBAwZoyJAhuuiii5SSkqIVK1boyiuvlCTdddddql+/fpllkwwBAAAACE2Is8m5qF+/frG/Kfriiy/6/4+KitK4ceOcyyYZAgAAABCaUzAyFE4kQwAAAABCYkiGAAAAAEQkkiEAAAAAESnE3xkqL0iGAAAAAISGkSEAAAAAEYlkCAAAAEAkMoZkCAAAAEAkYmQIAAAAQESq4MmQx1T0sa1TbNOFV1nHRkXbz67hdYhdt62GdWy9xEPWsVWq5VjHrtla0zpWkhpUzbSOrXb2EevYA79Vto5dd6iadez51Q5Yx245UNU6VpLqJGRZx2bnxFjHxsXkW8euy0m0js33WIfq/Bj7/vZtgX0dJKnAoR4uauTb7wKPeO0rkeNQ391Rbrvhc/Ocwq0diLKvdIxDlZvmH7WO3eqNsy9YbnWuWmBf7r+jM6xjm3jPsI49Py/KOva7GLcNXdvYf79Z3Wffbr9E2Tfc9wX7rWOzffbrd15MdevYSwoqWcdK0ide++NTsqeKdeyi3O3WsR6FZwcX47Hvb5KU47BNzoq2b4sjvlzr2C3Zu61jE6Ltt7WR2342u8D+M9HuIwetY/MK7I/VkpSfu8Mp/nQ4eGuXkJ5X9ZVFJ7kmoWFkCAAAAEBoKvjIEMkQAAAAgNBU7J8ZIhkCAAAAEBrDyBAAAACAiFTBkyHv6a4AAAAAAJwOjAwBAAAACA3XDAEAAACIRFwzBAAAACAyMTIEAAAAIBIxMgQAAAAgMjEyBAAAACASGZIhAAAAABGJZAgAAABAJGJkCAAAAEBkIhkCAAAAEIkYGQIAAAAQkUiGAAAAAEQkkiEAAAAAkcl4TncNToj3dFfgeJ07d1bXrl2VkpKilJQUPfroo07P37Vrl3r37u2//8wzzyg3N/dkVxMAAACIeMYX2q28KJcjQ08//bQaN25c7GP5+fmKji652klJSZo5c6b//tSpU9WvXz/Fxsae9HoCAAAAkcz4GBkKuxEjRmj8+PHq37+/brjhBm3fvl1t2rTxP170ftH/x40bJ0nq1auXUlJStGvXLrVv3145OTn+595+++2aN2/eKVwbAAAA4PeBkaEwGDJkiOLi4iRJw4YNkyQtX75cr7/+uipXrqzt27dblTNmzBjNmjVLb731lhISEiRJrVq1Unp6utLS0rRjxw6tXr1aTz/9dHhWBAAAAEC5VS6ToeNPk1uwYIG6du2qypUrn3DZvXv31oQJE5SWlqY333xT1157LafQAQAAACEwFXwChXKZDBWnaCIUHR0tY4z/ftHT3spy8cUXq6CgQP/97381Z84cvfPOOye1ngAAAECkKE+nvIWiQlwzdLwaNWooLy9PW7ZskSTNnz+/xNiEhARlZWUFLOvdu7fuvfdetWjRQrVr1w5rXQEAAIDfK+PzhHQrLypkMhQdHa3Ro0fr1ltvVe/evRUVFVVibL9+/dSnTx+lpKQoMzNTknT11VcrMzNTf/vb305VlQEAAIDfHWNCu5UX5e40ucWLFwctmzhxYtCy6667Ttddd53//qBBgyRJ9erV07JlywKWFz5WaOXKlapbt67atm17sqoNAAAARJzyNMoTinKXDIXbqFGj9NVXX2nSpEnyeCr2xgMAAABOJ5KhCubRRx893VUAAAAAfhfK0ylvoYi4ZAgAAADAycHIEAAAAICIxO8MAQAAAIhIFf13hkiGAAAAAITEx8gQAAAAgEjEaXIAAAAAIhITKAAAAACISEytDQAAACAiMTIEAAAAICJV9AkUvKe7AgAAAABwOjAyBAAAACAkzCYHAAAAICIxgQIAAACAiFTRrxkiGQIAAAAQkop+mhwTKAAAAAAIiTGh3UIxdepUJScna/369UGPjRgxQpdffrlSUlKUkpKi5557zqpMRoYc9c8osI4tcNjSWQVHrWPrxmVZx+4+fNg6NvPgEevY2rFueXRstn1XW71qj3VsQnQl69hz4n3WsVv377OOreTNtI6VJNk3s6K9UdaxBTn26xflOWgdWy+6qnXsfw/9Yh37h0q1rGMl6WC+fcNdEJdkHbvVYfvl+PKsYwuM/fa4NLqudawkzdFO61iXOteOqmYduznH/n3qomZUolN8lMPvW2TLvi3aemtbx+5zKPd585t1bAfZ10GSFhXsto49OyrBOvaIL9869mpPTevYHIdPIOtlf4ycp732BUu60GPf738x9vuhkb561rFVHPYXmQ7HhaNy+8a+ni/HOnapN8469vw8+/W78Gz7jrE3w74f5/ncPrecUSnXOvaPd59hHes52+3YVxGcqtPkfvzxR/3www+qU6dOiTEDBw7UzTff7FQuI0MAAAAAQmKMJ6Sbi9zcXD300EMaM2aMPJ6Tm3wxMgQAAAAgJKGODGVmZiozM/jsjMTERCUmBp4l8NRTT6lHjx6qX79+qWW+8sorevvtt1W/fn3dd999atSoUZn1IBkCAAAAEJJQZ9Z+7bXXNHXq1KDlgwYN0uDBg/33ly9frlWrVmnYsGGlljd06FDVrFlTXq9Xc+bM0W233aZFixYpKqr0U0tJhgAAAACEJNSRob59+yotLS1o+fGjQt9++61+/vlnXXHFFZKknTt3qn///powYYLat2/vj0tK+r/rhVNTUzVhwgTt3LlTdeuWfl0uyRAAAACAkIQ6tXZxp8MVZ+DAgRo4cKD/fufOnfX888+rcePGAXG7du3yJ0RffPGFvF5vQIJUEpIhAAAAACGxnyvw5EtJSdH06dOVlJSk4cOHa9++ffJ4PKpSpYqee+45RUeXneqQDAEAAAAIiXGcwv1ELV682P//3Llz/f+/+uqrIZVHMgQAAAAgJL5QZ1AoJ0iGAAAAAITEd4pHhk42kiEAAAAAITnVp8mdbN7TXQEAAAAAOB0YGQIAAAAQktM5m9zJQDIEAAAAICQV/TQ5kiEAAAAAIWFkCAAAAEBEIhkCAAAAEJE4TQ4AAABARPJV7FyIZAgAAABAaPjRVQAAAAARyZzuCpwgq2QoNzdXTzzxhBYtWqTo6GjFx8dr0KBB6tKliyRp5MiRWrlypf74xz/qySefDLp/vKKPX3755fr000/19NNPn9w1AwAAABBWETGBwtixY3XkyBEtWLBAcXFxWr9+vW677TZVrVpVDRs21MKFC/Xdd9/J6/Vq7969AfePd/zj77///klfqVAUFBQoKirqdFcDAAAAqDB8nop9mlxwtnKcHTt26IMPPtDYsWMVFxcnSWrcuLFuv/12TZ06VX369NHRo0eVlpamZ599NuD+q6++GlBWVlZWqY/v2bNHvXv3Vs+ePXX11Vdr8uTJkqTs7Gy1adNG+/fv98dOnDhRU6dOlSR9/vnnSk1N1TXXXKO+fftqy5YtkqT3339fQ4YM8T+n6P33339f/fv31/3336+ePXtq/fr1jk0HAAAARDYT4q28KHNkaP369WrQoIGqVasWsLxFixZ66qmn9N577+naa6/V3LlzJUkpKSkB94uqUqWKpk+fHvB40ZGhxMREPf/880pISFBeXp769++vzz//XJdffrmuuOIKzZ8/X3369FF+fr7mz5+vt956S/v27dMDDzyg119/Xeedd57eeecdDRs2TO+8806ZK//9999r7ty5atCgQZmxAAAAAAJV9NPkyhwZMubU5W4FBQWaPHmyevTooZ49e2rDhg1au3atJKlnz56aPXu2pGMjQY0aNVK9evW0YsUKNWnSROedd54k6dprr9WaNWuUlZVV5utdfPHFJEIAAABAiHye0G7lRZkjQ40bN9bWrVuVkZERMDr0ww8/KDk5ucwXuOuuu7R9+3ZJ0htvvFFq7CuvvKLMzEy98847iouL0z/+8Q/l5ORIki655BIdPnxY69at0+zZs5WWlibpWLLmKeFcxaioKPl8/5evFpZVKCEhocz6AwAAACheRZ9au8yRoXr16qlr164aO3asP5lYv369nn/+eQ0aNKjMF3j22Wc1d+5czZ07V1WqVCk19tChQ6pZs6bi4uK0a9cuffzxxwGPp6Sk6JVXXtG3336rq666SpLUsmVLrVmzRps2bZIkzZ49W02bNlWVKlXUoEEDrVu3Trm5ucrNzdXChQvLrC8AAAAAO7/7a4akY7PJPf744+rWrZtiYmIUFxen0aNHq3Xr1v5Rn5Ohd+/euvvuu5Wamqqzzz5bbdu2DXg8LS1NV1xxhXr27KlKlSpJks4880xNnjxZw4YNU35+vs4880w99thjko4lSm3btlX37t1Vr149NWrUSHv27Dlp9QUAAAAiWXk65S0UHnMqLwr6HehYr4t1bIFD02YVHLWOrRtbreyg/7U7v+xrpwpl5h+xjq3tUAdJivXY/77v6qyt1rEJ0ZWsY8+Jr2EduzVnn3VsJW+sdayraK/9dO8Fxv4SxihPmYPCfvWiq1rH/jfrF+vYP1SqZR0rSQcL7PvnBXFJ1rFb8zOtY3N8edaxLtvj0vi61rGS9F3uTutYlzrXjrF/X28+Gp4vlmrGJjrFRzmcnpFt7NuibWxt69gjKrCOXZ271zq2g0MdJOmbfPuyz46yP038iMm3ju0o+z6U4/ABar3H/hi5vcD+uCdJF0bZ1/k3Y1+P63MqW8dWcdhfZDocF446TnlcryCn7KD/tTQ+zjr2/Bz79bvwTPvj794M+36c57M/7knSGXG51rF/7H+GdaznbLdjX+WBU5ziT4cZdW8O6Xl9drx+kmsSGvtPqAAAAABQREWfTY5kCAAAAEBIKvopZiRDAAAAAEJS0a8ZIhkCAAAAEBJOkwMAAAAQkUiGAAAAAEQkw2lyAAAAACIRI0MAAAAAIhLJEAAAAICIxNTaAAAAACISU2sDAAAAiEicJgcAAAAgIpEMAQAAAIhIXDMEAAAAICJxzRAAAACAiMRpcgAAAAAiEqfJRZjDvlzr2ARvrHVsrZhE69gmXvvYbb4DYalDojfOOlaSEj32bdHyjHOsY+M9UdaxdTyVrGPrVk6wjq0p+3WTpCwVWMdmO8S6fDPz51z7tmiQm2Md+25iU4daSJfl2O+CDkfZj8OflWPfbnEm3jq2erR9W6yWfR9qV2mvdawkfZ3XwDr2bJNvHbvDZ789GkfZr196vP17JDnPax0rSVEOR+EjDkX3Sj1oHZv1XZZ17PINZ1vHtvrjr9axkrR+VU3r2Opx2daxh4/ab78mKfusY6Ma1raOzftpp3WsJG37zP59ffYff7OO/XWd/XHyj4/UsY717bCvg3LsP4d4qp1hX64kVbXvQxfN/d46Nr79OdaxHq99u9U+bN+PPYlVrGMlScb+qOqpV9++XK/bPq4i8FXwdOj3t0UAVAguiRAA2HJJhACATyMAAAAAQsI1QwAAAAAiUsU+SY5kCAAAAECIGBkCAAAAEJH4nSEAAAAAEamizyZHMgQAAAAgJBU7FSIZAgAAABAirhkCAAAAEJE4TQ4AAABARKrYqRDJEAAAAIAQcZocAAAAgIjEaXIAAAAAIlLFToVIhgAAAACEiNPkAAAAAEQkU8HHhkiGAAAAAISEkSEAAAAAEelUTKBw5513avv27fJ6vapcubL+8Y9/6Pzzzw+IKSgo0MMPP6wvvvhCHo9HAwcO1PXXX19m2SRDAAAAAMqtSZMm6YwzzpAkLVq0SKNGjdLs2bMDYubNm6etW7fqo48+UkZGhlJTU9W2bVvVq1ev1LJJhgAAAACEJNRxoczMTGVmZgYtT0xMVGJiYsCywkRIkrKysuTxeIKel56eruuvv15er1dnnnmmunTpog8//FC33XZbqfXwhlL5zp07q3379iooKPAve++995ScnKzXX389lCL95a5fv16SNHr0aH333XchlwUAAAAgvHwyId1ee+01XXHFFUG31157rdjXGT16tDp27KgpU6Zo0qRJQY//9ttvqlOnjv9+7dq1tXPnzjLrH/IgVjwwAAAgAElEQVTIUM2aNfXll1+qQ4cOkqQ5c+boggsuCLW4II888shJKwsAAADAyRfqBAp9+/ZVWlpa0PLjR4UKFeYGc+bM0eTJk/Xiiy+G+MqBQk6G0tLS9P7776tDhw7atm2bsrOz1bhxY0lSbm6upkyZom+//VZ5eXlq3Lixxo4dq4SEBM2bN08zZsxQXl6eJGn48OFq27ZtUPm9e/dWv3791KlTJ40YMUKxsbH65ZdftHPnTrVo0UKTJk2Sx+NRVlaWJkyYoHXr1iknJ0dt2rTRyJEjFRUVpalTp2r+/PmKi4uTx+PRjBkzFBMTo+HDh2vjxo2Kjo5Ww4YN9dRTT4XaDAAAAEDECnVq7eJOh7ORmpqqf/7znzpw4ICqV6/uX167dm39+uuvatasmaTgkaKShJwMtWnTRrNmzdLBgwc1e/ZspaamavXq1ZKkf/3rXzrjjDP07rvvSpIee+wxTZ8+XUOHDlX79u3VvXt3eTwe/fzzz7rlllv0+eefl/l6GzZs0KuvviqPx6O0tDR99dVXateunSZMmKBWrVrpkUcekc/n07Bhw/Tee+/pqquu0ksvvaSlS5cqPj5eWVlZio+P1yeffKLMzEylp6dLkg4ePBhqEwAAAAARLdxTax8+fFiZmZmqXbu2JGnx4sWqWrWqqlWrFhDXtWtXvfPOO7ryyiuVkZGhRYsW6Y033iiz/JCTIY/Ho7/85S9asGCB0tPT9eabb/qTocWLFysrK0sLFy6UdGykqEmTJpKkbdu26b777tOuXbsUHR2tvXv3as+ePapZs2apr9elSxfFxcVJkpo2baqtW7eqXbt2Wrx4sVauXKlXXnlFknT06FElJSWpSpUqatiwoe6//35ddtll6tixo6pUqaImTZro559/1rhx49S6dWt17Ngx1CYAAAAAIlq4f3Q1Oztbd999t7Kzs+X1elW1alU9//zz8ng8GjBggIYMGaKLLrpIKSkpWrFiha688kpJ0l133aX69euXWf4JzSbXs2dPXX/99WrdunXAMJUxRmPGjCn29Ld7771XI0aMUJcuXeTz+dS8eXPl5OSU+VqFiZAkRUVF+SdvMMZo2rRpxa7sv//9b33//ff6+uuv1bNnT/3rX/9SkyZNlJ6erq+//lqff/65pkyZonnz5gWUDwAAAKBs4R4ZqlGjhv79738X+1jR64aioqI0btw45/JDmk2uUP369TV06FDdeeedAcs7d+6sV199VUePHpV0bAq8TZs2SZIOHTrkn+/73XffVW5u7olUQZ07d9b06dP9ydH+/fu1bds2ZWVlaf/+/WrdurWGDBmixo0ba8OGDdq5c6eioqLUpUsXjRw5Uvv371dGRsYJ1QEAAACIRD5jQrqVFyf8O0M33nhj0LKBAwdq6tSpuu666+TxeOTxeDRo0CA1atRII0eO1J133qmkpCS1bt066Hw/V6NGjdJjjz2mlJQUeTwexcTEaNSoUYqJidHgwYN19OhRGWPUtGlTXXnllfr666/1+OOPS5J8Pp8GDhyopKSkE6oDAAAAEInKT1oTGo8x5Sg1qwBa1bncOjbBG2sdG+eJsY69KMo+gfyfo1usY6tGVbKOre4QK0mJHvu2OGDKPm2yULwnyjq2jse+zoeUbx1bU/brJklZKig76H9lO8S6DFP/Ode+LRr47LfHu/H2g82X5bh9F3PYG/wDayU5q8C+3eIcdoHVo+3bYrUSrGPbJe61jpWkrzNrWMeenW/fl3dE22+TxgVHrWPT4+3fI8l5bicsRDkcwY44FN3rOvvJdbK+y7KOXb7B/su3Vs1+s46VpPWrSr/2tqjqCdnWsYeP2m+/Jin2/SKqYW3r2LyftlrHbvss3jpWks7+4yHr2F/X2c989cd/JFvH+nY4bOsc+zNqPNXOKDuoqKpVrUOz535vHRvf/hzrWI/X/o1qDtv3Y09iFevYY4XbH1U99cq+LsXPYf0kqdKNY5ziT4e//SF4emwbs7bMPsk1Cc0JjwwBAAAAiEzhnkAh3EiGAAAAAIQk3BMohBvJEAAAAICQ+BgZAgAAABCJOE0OAAAAQETiNDkAAAAAEamiT0x9Qj+6CgAAAAAVFSNDAAAAAELCBAoAAAAAIhLXDAEAAACISMwmBwAAACAicZocAAAAgIhU0WeTIxkCAAAAEBKuGQIAAAAQkbhmCAAAAEBE4pohAAAAABGJa4YAAAAARKSKPjLkMRU9nTvFrmnQ3To2Wh7r2FhPlH2svNaxLuId6lBF9rGu7FtNinGIjnNoN6/DuyI8W+MYl1aOcmiLGIf1qxSmPUSUY7mxDvEufSjOYRdYyWcf61IHr+OBJCZMu+0oh3pU9hRYx3o89uXGR+dbx0pS5Up51rExseGps9e1M1uqVD3XKd4Tpp1RVLxDsEMdYurYF+yJCt+e1pPgUI9Y+++QPWdVC6U6ZfM6tEVcrFPRnsoJDsEOe7lqZ9nHJp5pX4WYOPty4x3WTZIn/gzrWG+NevYFR8U41SOmxrlO8adDx3pdQnrep9sXneSahIaRIQAAAAAh8VXwcRWSIQAAAAAhqdipEMkQAAAAgBBV9GuGSIYAAAAAhIRkCAAAAEBEquhzsYVzIiwAAAAAKLcYGQIAAAAQEk6TAwAAABCRDMkQAAAAgEhU0a8ZIhkCAAAAEBJOkwMAAAAQkRgZAgAAABCRGBkCAAAAEJGYQAEAAABARPJxmhwAAACASMTIEAAAAICIxMgQAAAAgIjEyBAAAACAiFTRR4a8J/Lkzp07a/369QHLevbsqWXLlp1QpZYtW6aePXueUBkAAAAAwsuE+FdenPaRofz8fEVHn/ZqAAAAAHBU0UeGwpaFzJs3TzNmzFBeXp4kafjw4Wrbtq2kYyNK1157rb7++mvVr19fjz76qKZMmaL09HQlJSXpoosu8pezbNkyPfroo2revLmWL18uj8ejKVOmqFGjRpKk2bNna9asWSooKFCVKlU0duxYnXvuufr+++81fvx4+Xw+5efn64477lD37t319ttv69VXX1VsbKx8Pp+efPJJf1kAAAAA7JWnUZ5QnHAyNGTIEMXFxfnv//LLL5Kk9u3bq3v37vJ4PPr55591yy236PPPP/fH7dmzRzNnzpQkLV68WIsXL9acOXMUHx+vu+66K+A1Nm7cqAkTJuihhx7Sc889p2nTpunxxx/Xd999pw8++EBvvPGGYmNj9dlnn2nUqFF666239OKLL6pv375KTU2VMUaHDh2SJE2ePFnz589X7dq1lZubq4KCghNtAgAAACAiGeM73VU4ISecDD399NNq3Lix/37htT7btm3Tfffdp127dik6Olp79+7Vnj17VLNmTUlSamqq/znLli1Tt27dlJCQIEm67rrrNG3aNP/jDRs2VNOmTSVJLVq00CeffCLpWBK1du1aXX/99ZIkY4wyMzMlSW3atNH06dP166+/ql27dmrevLkk6dJLL9XIkSN1xRVXqGPHjqpfv/6JNgEAAACACihsp8nde++9GjFihLp06SKfz6fmzZsrJyfH/3jlypX9/5syzjWMjY31/+/1epWfn+9/3rXXXqu777476Dm33HKLOnfurK+++krjx49Xu3btNHToUE2dOlWrVq3S119/rT59+mjs2LHq0KHDia4uAAAAEHF8Ffw0uROaTa40hw4dUr169SRJ7777rnJzc0uMbdu2rT744AMdOXJEBQUFeu+996xeo3Pnzpo7d6527twpSSooKNDq1aslSZs3b1aDBg3Uq1cv9enTR6tWrVJ+fr62bdumZs2aaeDAgWrXrp3WrFlzgmsKAAAARCZjTEi38iJsI0MjR47UnXfeqaSkJLVu3VrVqlUrMbZTp0764YcflJqaqlq1aqlNmzbatWtXma/RqlUr3XPPPbrjjjtUUFCgvLw8de3aVRdeeKFmzpypZcuWKSYmRrGxsXrwwQfl8/k0YsQIHTp0SB6PR7Vr19Z99913MlcbAAAAiBgVfWTIY8pTalYBXNOgu3VstDzWsbGeKPvYMA3oxTvUoYrsY13Zt5oU4xAd59BuXod3RdiGVyWnVo5yaIsYh/WrFKY9RJRjubEO8S59KM5hF1jJZx/rUgev44EkJky77SiHelT22E8+4/HYlxsfnW8dK0mVK+VZx8bEhqfOXtfObKlS9ZLPqCiOJ0w7o6h4h2CHOsTUsS/YExW+Pa0nwaEesfbfIXvOKvlL4BPidWiLuNiyY4rwVE5wCHbYy1U7yz428Uz7KsTElR1UKN5h3SR54s+wjvXWqGdfcFSMUz1iapzrFH861K1+QUjP23Hgx5Nck9DwAz8AAAAAQsLvDAEAAACISBH/O0MAAAAAIlNFv+KGZAgAAABASCr6BAokQwAAAABCwsgQAAAAgIh0KiZQmDRpkhYuXKgdO3Zo3rx5aty4cVDMM888o1mzZqlWrVqSpIsvvlhjxowps2ySIQAAAAAhORUjQ1dccYX69Omjm266qdS41NRUDR8+3KlskiEAAAAAITkV1wxdcsklYSubZAgAAABASEIdGcrMzFRmZmbQ8sTERCUmJoZU5oIFC/Tll1+qZs2aGjx4sFq2bFnmc0iGAAAAAIQk1GuGXnvtNU2dOjVo+aBBgzR48GDn8nr16qXbb79dMTExWrJkie68806lp6erevXqpT6PZAgAAABASEL90dW+ffsqLS0taHmoo0I1a9b0/9+uXTvVrl1bGzZsUOvWrUt9HskQAAAAgJCEOjJ0IqfDFWfXrl1KSkqSJK1Zs0Y7duxQw4YNy3weyRAAAACAkJyK2eQefvhhffTRR9q7d69uvfVWVatWTQsWLNCAAQM0ZMgQXXTRRXriiSf0448/yuv1KiYmRpMnTw4YLSqJx1T0X0o6xa5p0N06Nloe69hYT5R9rLzWsS7iHepQRfaxruxbTYpxiI5zaDevw7siPFvjGJdWjnJoixiH9asUpj1ElGO5sQ7xLn0ozmEXWMlnH+tSB6/jKQYxYdptRznUo7KnwDrW47EvNz463zpWkipXyrOOjYkNT529rp3ZUqXquU7xnjDtjKLiHYId6hBTx75gT1T49rSeBId6xNp/h+w5q1oo1Smb16Et4mKdivZUTnAIdtjLVTvLPjbxTPsqxMTZlxvvsG6SPPFnWMd6a9SzLzgqxqkeMTXOdYo/HeLjG4T0vKNHt57kmoSGkSEAAAAAIQn1mqHygmQIAAAAQEgq+klmJEMAAAAAQlLRkyGuGQIAAAAQkcJ57TcAAAAAlFskQwAAAAAiEskQAAAAgIhEMgQAAAAgIpEMAQAAAIhIJEMAAAAAIhLJEAAAAICIRDIEAAAAICKRDAEAAACISCRDAAAAACISyRAAnEJfffXV6a4CAAD4XyRDJ8HBgwdPdxUkSZs2bapQ5WZkZISl3MOHD+vHH39UVlZWWMq3deDAgTIfX7NmjdasWVNmbCjxkl1bZGRkaM2aNdqwYYOOHj1qVW55UlZyEer62bZxaTZu3Bh0GzlypDZt2qSNGzeecPkVXXnZd9rKzs7W6tWrlZmZebqrUqbMzEwdPnzYOtZ2nWzKPXDggEaPHq1+/frpjTfeCHhs8ODBpT63tDZesmSJ//9Dhw7p/vvvV5cuXTR48GDt3bvXqv7lgcu+JVzHX1sufaOQzbHdpX9WZLZtURH2Kb9rBk7WrFlj0tLSzLXXXms2btxoBgwYYJo1a2Yuv/xy89NPPzmV1b9//4D7aWlp5pVXXjH79u0r87lHjhwJunXq1MlkZ2ebI0eOBMTm5OSYadOmmQcffNB88sknAY899NBDIZdbUr1WrVplDh48GLD82Wef9a/Xhg0bTJcuXUzz5s1Nhw4dzKpVq8ost6jj2+0f//iHv+zvvvvOtG3b1nTr1s1ceuml5osvvgiIdWkLF99++63p1q2b6devn9m6davp3r27ad68uWnXrp35/vvvA2K3bNli+vTpYy655BLTrVs3061bN3PJJZeYPn36mM2bNweV7RLv0hbbt283/fv3N8nJyaZJkyamdevWplmzZmbChAkmJycnILZ169Zm/PjxVn3cJdbVhg0bgm6XX3652bhxo9mwYUNArMv6uWy/9evX+//Pzc01Tz75pOnTp4+ZMGFC0HskOTnZdOrUKeDWtGlT06lTJ9O5c+eAWJf3v2s9Cu3fv9/89NNP5qeffjL79+8/4XK//PJL//+ZmZlm2LBh5oorrjCDBg0ye/bsCYg9mfvOok70PZ2VlWVWr15tDh06FPTYRx99ZFq2bGmuuuoq88MPP5iOHTuav/zlL6Z169bm448/DojdsWOHGTRokBkyZIjZvXu3GTt2rGnZsqXp1auX2bZtW5n1yMjIKDPmwIED5qeffjLr16832dnZQY8fPHjQ/POf/zQtW7Y0TZo0MU2aNDEdOnQwM2bMCIrdt2+fGTlypGnRooVp0aKFad68uWnRooUZOXJkUB90KdcYYwYPHmwmTZpkFi5caG655RZz1113mby8PGOMMSkpKQGxLm2cmprq/3/cuHFmzJgxZt26deaJJ54wd999d5ntV6h79+5By/bv329GjRplbr31VvP6668HPDZo0KCA+y7b2mXf4nL8dd1fuHDpGy7Hdtd+VJLjPwOUZMmSJUHLTvR9WhqXtnBpY4QfyZCjm266ySxatMjMnj3bdOzY0cydO9cYY8zHH39s+vbtGxRf3M6t8Hb55ZcHxLZv397ceeedpnnz5uauu+4yn3zyiSkoKCi2HoUf8JKTk4NuTZo0CYgdOXKkueeee8zLL79srr76avPwww/7Hyt6cHEt1xj7A1nRg8/AgQPNRx99ZIwx5ptvvjE33njjCbXbNddc4/+/d+/eZsWKFcYYY37++WeTlpYWclu4fNC79tprzccff2xmz55tOnToYNLT040xxixdutRcf/31AbE33nijmTt3bsC2LSgoMHPmzDE33HBDUFu4xLu0xc0332zmzp1rMjIyzIwZM8xTTz1l9u7da0aNGmXGjh0bENupUyfzyCOPmEsvvdSkpqaamTNnlvjhzSW2LMd/aHFJLlzWz2X7Fe0njz/+uLnjjjvM4sWLzfDhw82DDz4YEPvMM8+Y2267zWzfvj2gfYrj8v53rYdLQu1SrsuHU9d9p+2HU5f3tDFuXxj06NHDrF271nzzzTemdevW5r///a8xxpiNGzcGfai/7bbbzGuvvWaeffZZ0717d/P888+bPXv2mBkzZpg77rgjINY1MbRN7G+//XYzbdo08+OPP5qJEyeaF154waxYscLcdttt5qmnngoos1+/fmbatGkBSfG+ffvMs88+a/r16xcQ61JuYbsV8vl8ZuzYsaZfv37m6NGjQe3m0sZF7/fo0cPk5ub67x+/ryjui5PCW7t27YLq7JLAuWxrl32Ly/HXdX/h8iWVS99wOba79COXzwDG2H9R5rLtynJ8n3NpC5c2RviRDDkqenDt2LFjwGPH7zCNKX7nVnj/+J1b4fP37t1rXnrpJXP11Vebdu3amccee8xs2rQpIHbEiBFm1KhRAd9mlvQhq+gbNDs729xxxx1m5MiRxufzBdXZpVxj7A9kV155pf//4z+Un2i7FS27Z8+eJa778ffLaguXD3pFn3t8ex1f7lVXXRW0vqU95hLv0hZFEydjjh20jTmWaP35z38OeKywLXJzc80HH3xgBgwYYFq0aGHuueeegKTRNdYYtw8tLsmFy/q5bL+i91NTU01WVpYxxpi8vDxz9dVXB9Xjxx9/NDfeeKOZNWuWMcYEJW3Hl2vz/neth0tC7VKuy4dT132n7YdTl/e0MW5fGLj0i6IJwPH99vi+6JoY2ib2x7d54bY9evRowL7BmNL3K8fHupRrjDFdu3YNWjZx4kTTp0+foMdc2vgvf/mL/8Ntae1vzLFjSOfOnYO+POnUqZO54IILgurnmsAVKmtbu6yfy/HXdX/h8iWVS99wOba79COXzwCF8TZflLlsO2Pcjk8ubeHSxgg/rhlyZIzx/9+uXbuAx3w+X1B8zZo1tWTJEq1du9Z/W7NmjdauXatatWoFxHo8HknSWWedpX79+mn+/PmaOnWqDh48qF69egXETpgwQV26dNEtt9yizz77LOD5xysoKPD/Hx8fr2eeeUbZ2dm6//77g+rsUm7hY8nJyWrVqpUSEhJ08cUXS5IaNWoUEHfhhRdq5syZkqTzzz9f33//vaRj11TExMScULu1bdtWEydOVHZ2ttq0aaP09HRJx84vr1atWshtUXRb//e//9Xo0aPVuHFjDR06NOg87oKCAu3fv19bt25VRkaGtmzZIknav3+/cnNzA2KrVaum+fPnB5RvjNF//vMfJSYmBrWFS7xLW0RHR2vr1q2SpNWrVys2NlaS5PV6FR0dHVQPSYqJiVHXrl01ffp0LVy4UMnJyRo/fvwJxXbv3l1///vfNXDgwKDb8edbDxo0SEOHDtV9992nN998U1LJ/dNl/Vy2nzFGR48eVXZ2tqKiopSQkOB/veLarWnTppoxY4Z27Nihvn37Ki8vr9j6urz/XeuRkZGhHj16yOv9v12+1+tVSkpK0HU7LuXm5ub6r3/yeDwB7+Wir1VYbiGbfeeWLVv0wAMP6Morr9TLL7+smjVr6u9//7tycnIC4lze05ICnn/48GE1a9ZMktSwYcOgbePxeLRp0yYtX75cR44c0Q8//CBJ2rx5c8DrFsYWatq0aYmPFb7uFVdcodTUVElSjx49JEmdO3cu9hqDgwcPqkePHqpatap69+6tzz//XGeddZbGjx8fcB2Nx+PxP3/Hjh3+9Y+LiwvadnFxcVq+fHnQa33//ff+90oo5UpS/fr19e233wYsGz58uFq0aKFffvklqGzbNj569Kh/35CZmaldu3ZJkrKysoL6W926dTVr1iwtXrw46HbWWWcF1bno+9zj8WjMmDFq3LixBg4cGNTnXLa1y77F5fjrur+oWrWqRo0apc8//1x///vf9fnnn6tjx44aOnRoQB+S3PqGy7HdpR+5fAaQjh0bGjVqpJkzZ/q3c1JSkhYvXqyPP/44qN2ksred5HZ8cmkLlzZG+BX/iQclqlu3rrKyslSlShU9/PDD/uU7d+5UpUqVguLbtGmjDRs2qE2bNkGPFR6ECxX9sFCoRYsWatGihR588MGgxzp16qQWLVpo/Pjx+uCDD4IOHIVq1KihtWvXqkmTJpKkqKgoPf744xo+fLg2bNhQarnp6eklliv934EsMzPTfyBr0aJF0IHsn//8p0aMGKFXX31VSUlJ6t27t+rUqaNKlSrp0UcfDSrXpd1GjRqlyZMn6/LLL1e1atX08ssv64EHHlCbNm2CynZpi8IPesaYMj/o9e3bV3/+85/l8Xg0btw4DR8+XFWrVtVPP/2k/v37B8ROnDhRY8aM0UMPPaSkpCQZY7Rr1y6df/75mjhxYtD6Hh8vSbt27VKTJk2C4l3aYsiQIbrhhhtUs2ZN7dmzR1OmTJEk7d2715/UFiqub9aqVUu33367br/99pBjpf/70FK4bkV16NAhaFlhcvH000+Xmly4rJ/L9lu3bp1atmzp7xe7du1SUlKScnJyiv3wLUmxsbEaNmyYfvjhB33zzTfFxri+/13qUZhQX3311f4DvjFG8+bNC0qoXco9evSoBgwY4L9fGFvSh1OXfWdxH04nTZoU9OHUdf9W+IXB3Xff7f/CoFu3bsV+YTBkyBD99a9/ldfr1ZQpU/TUU09p9+7d2rVrl8aOHRsQGx8f71+/6dOn+5dnZGQoKioqINY1MSxM7Bs0aFBqYt+3b1/16NFDTZs21erVqzVq1ChJx/p8nTp1AsocN26cHnjgAcXFxalu3bqSjn1AzcnJ0eTJkwNiXcqVpMmTJxf7wXLo0KG65pprApYV18Z79uzRzp07g9p48eLFQWVKx7b5008/HbDsyiuv1I4dO4rdr/z5z38OWlaYwLVq1cq/bPjw4ZoyZYpeeOGFgFiXbe2yb5Hsj7+u+4tChV9Sde3aVbt379b777+v8ePH68MPP/THlNY3Jk2aFFCey7HdpR+5fAaQjiVDP/30k+677z6lpKTor3/9a7F90GXbSW7Hp+Pbok+fPqpdu3axbeHy/sMpcCqHoX6vMjIyzOHDh83evXtPqJzjL6Z0kZ6eHnQdRKHNmzcHnFZkzLELC30+n/n0009LLfeDDz4w48aNK/HxxYsXm1atWpk2bdqYr776ytxyyy3m6quvNv/v//0/85///Cco/pdffjGLFi0yCxcuNP/6178s1sze4cOHzZo1a8zq1atLvDi8uLYwxhTbFoXD64VD7jt37jTGGHPo0KFir0U4cOCA/3UPHTpk0tPTzerVq0us7759+8zq1avN6tWrrS6YdIkv2halxR48eNCsXLnSf1pGSadNFNdmLrGlmThxov/0yuONHz++1OcuX77cPP/88yU+fvz6leb47ffhhx+Wuv2Ol5mZaZYvX24df7wTef8XdfDgwaB6bN682fTp08e0atXKdO/e3XTv3t20atXK9O7du9hTao63ZMkS6/XLyMgw2dnZZuvWrVb1LWnfOWDAAPPNN98ELX/iiSdMcnKy//7mzZvNjh07guJK2r/l5OSY8ePHm0suucR06dLFJCcnmwsuuMB/gXtp8vPzzYoVK4KuGSx8veMtWbLE7N+/36xbty5g+Z133llsn/ztt9+KvW7wk08+MW3atDHdu3f372uNMWbPnj1m9OjRAbEbN240H3zwQbGTsRRn5cqVZuHChWbhwoXmxRdfLHY9iiu3uIvTT4b8/HyzatWqYtv4RJV27eKBAweCJv4pjD9+cpaS2qi4bV1Ydij7lvT09GJPvTWm+P1FadukuFNGy1K0b6xcubLE9TYm8Nhe2rq59s+ibPpcTk6Oeeyxx0yfPn3MZZddFvR4Seuwb9++YrddKMenom1R1gRRRdt41apVpeq/MAcAAAQ3SURBVLYxwodkyFFpF76uWbMmKN7lInyXWJeZb1xm4Cpah0OHDplhw4aZzp07F1uH4pR0IDv+9devX19iHQrXb/To0Vbr56KkNh48eLD1wffIkSNBs864tHG4ZtUqWvZ1113nL7t58+bFlu3Sl8NZ51DW72TX4/h+f//995fY74t7j5T0PnWxb98+6/e0MaG9R2wS6lD6ctH+Vtr+0MWBAwdK/PBatB4u+8KibL48cVk/l3YrrU4lbRebxN6lT7jsk0/Gup1qrsdql3jXY3V52CYuX1IVrfPMmTNLrbPLMdVl33mifW758uXmhRdeKHbdCvcXZa2bq3C1G8LPY0wxY60o0c0336xbb71Vhw4d0lNPPaWhQ4eqR48eWrx4sWbMmKFXX301ID4tLU2zZ8+WJD300EPy+Xz629/+pgULFmjLli168sknQ4odMmSI6tWrpxYtWujNN99UQkKCnnzySUVHRys1NVVz5szxxzZp0iRoCLrwdBaPxxNwPq1LHcpyzTXXaN68ec51cF0/Fydr/Yqum+v6ufYhFy5lhys2nMJVj1Dfp+PGjZMxJuT3SFGufb60+KJ1LEt57cu2dT5Z7XB8uZLb+rnu42zr4BIfruPCyVq3U8m1b7rEn8pj9e7du1WrVq2wbpPj+5xLncP1GSdc63cyP1ucqnbDKXCak7EKx3VGJJfZllxiXWa+cZmBy6UOxtjPtOJSB9f1cxGuqVld1s+1D7lwKTtcseEUrnqE633qwrXPu8SX1I/Xr19fbvuy7fvPtd1c2sJl/VzazXXa53C0hUt9Xfff5YFr33SJLw/Hatdt4tLnXOocrn1nuNbvZO0vTmW7IfyYQMGRcbzw1eUifNfYQqVdXCzZX1joWgfp2EwrdevWLfZizqIzrbjUwXX9XLisn+26SW7r59qHXLiUHa7YcApXPcL1PnWtQyGbPu8SXxH7sm2dXdvNpS1c1s+l3Vzq4BIfruOC6/67PHDtmy7x5eFY7bpNXPqcS53Dte8M1/qFc38RrnZD+JEMOXKdEalwKtDCN1Jpsy25xJY2803RGVIK2c7A5VKHwvawnWnFtg6hrJ8tl/UL1yxnrn3IhUvZ4YoNp3DVI1zvUxeufd4lvqL2ZZs6u7abS1u4rp9Lu7lsj3C1hcs+2SW2PHDddi7x5eFY7Rrr0udc6hzOfWc41i+c+4twtRtOgfANOkUW19nkjhw5Yj3bUnGxthcXF6ekCwtd62BM6DOBlVWHE1m/UBS3fic6y5lrG5+MGQlPRtnhig2ncNXjRN+nLlz7vEt8RezLtnV2bbcTaYtCNutXWru51iFcbWFb3xOJLW9c+6ZL/Ok8VpcV69LnTsbx92TvO0/W+oVzf3Gq2w0nDxMoAAAAAIhIjMUBAAAAiEgkQwAAAAAiEskQAAAAgIhEMgQAAAAgIpEMAQAAAIhI/x9Jumra6xkObQAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
    " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "judges.sort_values(by='Hardness', inplace=True)\n", "sns.heatmap(judges.T);" @@ -909,121 +319,9 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
    \n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    FlavourSweetFruityOff-flavourMealinessHardness
    Flavour1.0000.9510.975-0.952-0.933-0.924
    Sweet0.9511.0000.949-0.901-0.914-0.945
    Fruity0.9750.9491.000-0.903-0.969-0.944
    Off-flavour-0.952-0.901-0.9031.0000.8360.854
    Mealiness-0.933-0.914-0.9690.8361.0000.927
    Hardness-0.924-0.945-0.9440.8540.9271.000
    \n", - "
    " - ], - "text/plain": [ - " Flavour Sweet Fruity Off-flavour Mealiness Hardness\n", - "Flavour 1.000 0.951 0.975 -0.952 -0.933 -0.924\n", - "Sweet 0.951 1.000 0.949 -0.901 -0.914 -0.945\n", - "Fruity 0.975 0.949 1.000 -0.903 -0.969 -0.944\n", - "Off-flavour -0.952 -0.901 -0.903 1.000 0.836 0.854\n", - "Mealiness -0.933 -0.914 -0.969 0.836 1.000 0.927\n", - "Hardness -0.924 -0.945 -0.944 0.854 0.927 1.000" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbcAAAFoCAYAAADU/7URAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3X1cjff/B/DX6aSsEl9bWsQQhZl7qmVDsqKoTobxI2PZWBjZKjZSW+5mG2tpYZhmbksrtzMTIw2zrxhyFyIVjUo61en8/vDr/Bzd3+i6zuX1fDzO43Gu61xd5321Pbz6fK7P9fnI1Gq1GkRERBKiJ3QBRERE9Y3hRkREksNwIyIiyWG4ERGR5DDciIhIchhuREQkOQw3IiKSHIYbERFJDsONiIgkh+FGRESSw3AjIiLJYbgREZHk6AtdgC7KysoVuoQaMTNrwpobgC7WDOhm3bpaMzUcttyIiEhyGG5ERCQ5DDciIpIchhsREUkOw42IiCSH4UZERJLDcCMiIslhuBERkeQw3IiISHIYbkREJDkMNyIikhyGGxERSQ7DjYiIJIfhRkREksNwIyIiyWG4ERGR5DDciIhIchhuREQkOfoN+WWOjo4wMDCAoaEhAMDW1hY5OTno2rUr/ud//qchSyEiIglr0HADgJUrV8La2lqzHRAQ0NAllFFcXAx9/Qb/VRAR0TMiqm7JxMREjB49Gh4eHhg+fDh27doFADh58iQ8PDy0jlUoFPjzzz8BAJGRkXBzc4ObmxsCAwPx8OFDAI+DMyoqSvMzT24HBAQgJCQEkydPxqhRoxri8oiIqIE0eHNlxowZmm7JOXPmaH3WpUsXbNq0CXK5HHfv3oVCoUD//v3Rp08f5Ofn48KFC+jUqRNSUlKQk5ODvn37IiEhAb/88gs2b94MY2Nj+Pv7Izw8HB9//HGVtZw+fRpRUVEwMjJ6JtdKRETCELxbsrR1BgDZ2dmYO3curl+/DrlcjgcPHuDatWvo0aMH3N3dERMTg8DAQERHR8PT0xMymQyJiYkYNmwYTExMAACjRo1CaGhotWpxcXFhsBERSZCouiWDgoLQr18/xMXFITY2Fi+//DKUSiUAwNPTE7t27YJSqUR8fLymm1KtVkMmk5V7PrlcjpKSEs126blKMdiIiKRJVOGWm5uLVq1aQSaT4ejRo7h+/brms5YtW8LKygqff/45OnTogFatWgEAXn/9dezevRt5eXlQq9XYvn07Xn/9dQBAmzZtkJycDADIzMxEUlJSw18UERE1OFENEfTz88PChQuxevVq2NjYwMbGRutzhUKBTz75BEuXLtXsGzBgAC5evIgxY8YAALp27YqpU6cCeNxFOWPGDIwYMQJt27ZFt27dGu5iiIhIMDK1Wq0Wughdk5WVK3QJNWJm1oQ1NwBdrBnQzbp1tWZqOKLqliQiIqoPDDciIpIchhsREUkOw42IiCSH4UZERJLDcCMiIslhuBERkeQw3IiISHIYbkREJDkMNyIikhyGGxERSQ7DjYiIJIfhRkREksNwIyIiyWG4ERGR5DDciIhIcrhYKRERSY6+0AXoostO7kKXUCMdDsTq5KrFrLlh6GLdulozNRx2SxIRkeQw3IiISHIYbkREJDkMNyIikhyGGxERSQ7DjYiIJIfhRkREksNwIyIiyWG4ERGR5DDciIhIchhuREQkOQw3IiKSHIYbERFJDsONiIgkh+FGRESSw3AjIiLJYbgREZHkMNyIiEhy9IUuoNSePXvw/fffQ61WQ6lU4tVXX8Xy5cuf2felpaXh6NGjGD169DP7DiIiEoYowi0zMxMLFy5ETEwMLCwsoFarceHChWf6nbdu3cKWLVsYbkREEiSKbsm7d+9CX18fzZo1AwDIZDJ07twZmzdvxsKFCwEAZ86cgY2NDc6cOQMACAoKwpYtWwAA//3vfzF+/HgoFAooFAocOnRIc+6EhASMGTMGCoUCo0ePxt9//w0ACA4OxpUrV+Du7o4ZM2Y04NUSEdGzJoqWW6dOndCtWzcMHDgQtra26NWrF9zd3WFvb4/169cDABITE9GzZ08cP34c3bp1Q2JiIiZNmoScnBwsWLAAkZGRaNGiBTIzMzFy5EjEx8fj/v37CA8Px9q1a2FiYoJLly7Bx8cHhw4dwvz587FkyRJER0cLe/FERCJzqb9zufs7/rGvgSupPVGEm56eHsLDw5GSkoITJ07gwIEDWLt2LeLi4qBUKnHnzh0kJiZi9uzZWLVqFYYPH46ioiK0adMGCQkJSEtLg4+Pj+Z8MpkM169fx5kzZ3Djxg2MGzdO81lxcTHu3r0rxGUSEekGmSg69epEFOFWytraGtbW1hg3bhyGDRuGP//8E3Z2djh06BDu3buHfv36ITg4GIcOHYKtrS0AQK1Ww8bGBj/99FOZ8505cwZvvPEGli5dWuazK1euPPPrISLSRTK57oebKK4gIyMDp0+f1mzfuXMH2dnZsLS0hJ2dHSIjI9GzZ08AQK9evbB69WrY29sDAHr27Inr16/j+PHjmp8/c+YM1Go1HBwccOTIEVy6dEnrMwAwMTFBXl5eQ1weEZFu0ZOX/9Ihomi5FRcX49tvv8WtW7fQuHFjlJSU4KOPPkKXLl3w4osv4pNPPtGEmZ2dHbZs2QI7OzsAQNOmTREeHo5ly5YhNDQURUVFaN26NSIiItC2bVssW7YM8+bNQ0FBAYqKitCrVy9069YNNjY2aNeuHdzc3NC+fXusXLlSyF8BEZFoSKHlJlOr1Wqhi9A1l53chS6hRjociEVWVq7QZdSImVkT1txAdLFuXa1ZV1xx8Sp3v9XeHQ1cSe2JouVGREQiIpMJXUGdMdyIiEiLTF/3o0H3r4CIiOqVTE/377kx3IiISJtct0ZGlofhRkREWqQwWpLhRkRE2uqp5Xbt2jUEBATg/v37aNasGZYsWYK2bdtqHXPv3j0EBgYiPT0dRUVFsLOzw6effgr9Ot730/14JiKieiWTy8t91dSCBQswduxY7Nu3D2PHjsX8+fPLHBMREQErKyvExcUhLi4O586dw/79++t8DQw3IiLSJpeX+8rJyUFaWlqZV05OTplT3Lt3D//88w/c3NwAAG5ubvjnn3+QnZ2tdZxMJsPDhw9RUlKCwsJCFBUVwdzcvM6XwG5JIiLSIqvgObcNGzYgLCyszH5fX19Mnz5da196ejrMzc0h/78Wn1wuR4sWLZCeno7mzZtrjps2bRqmT5+O/v3749GjRxg3bhx69+5d52tguBERkbYKuiC9vb3h6elZZr+pqWmtv2rv3r2wsbHBhg0b8PDhQ/j4+GDv3r1wcXGp9TkBhhsRET2lotGSpqam1Q4yCwsLZGRkQKVSQS6XQ6VSITMzExYWFlrHRUVFITQ0FHp6emjSpAkcHR2RlJRU53DjPTciItJWwT23mnjxxRfRuXNnxMfHAwDi4+PRuXNnrS5JALC0tMThw4cBAIWFhUhMTETHjh3rfAkMNyIi0lJfoyWDgoIQFRUFZ2dnREVFYeHChQAAHx8fJCcnAwDmzp2LU6dOYfjw4fDw8EDbtm0xatSoOl8DuyWJiEhbPT3nZmVlhW3btpXZv3r1as37Nm3aYN26dfXyfU9iuBERkRbOLUlERNLDuSWfTx0OxApdQo3p0kKJpVhzw9HFunWxZl0h02e4PZcuD3QVuoQa6XBoF1cPbwC6uDo0oJt162rNOoOLlRIRkdTUZmSk2DDciIhIGweUEBGR1LDlRkRE0sPFSomISGpkct2PBt2/AiIiqlcVTZysSxhuRESkjffciIhIathyIyIi6ZEx3IiISGrYciMiIqnhaEkiIpIc3nMjIiLp4WhJIiKSGi5WSkRE0iOBlpvuxzMREdUrmb683FdNXbt2DaNHj4azszNGjx6N1NTUCo+9evUqunfvjiVLltSh8v/HcCMiIm0yWfmvGlqwYAHGjh2Lffv2YezYsZg/f365x6lUKixYsABOTk51rVyD3ZJERKSloiVvcnJykJOTU2a/qakpTE1Ntfbdu3cP//zzD9atWwcAcHNzQ0hICLKzs9G8eXOtYyMjIzFw4EDk5+cjPz+/Xq5BdC03R0dHuLi4wN3dHe7u7ggNDa3Rz2dkZGD8+PGa7W+//RaFhYX1XSYRkXTpyct9bdiwAYMHDy7z2rBhQ5lTpKenw9zcHPL/C0q5XI4WLVogPT1d67gLFy7gjz/+wMSJE+v1EkTZclu5ciWsra3L/ay4uBj6+hWXbW5ujo0bN2q2w8LCMGnSJBgYGNR7nUREUlTRc27e3t7w9PQss//pVlt1FRUV4bPPPsOiRYs0IVhfRBluTwsICICxsTFSU1Px77//YuXKlfDy8kJSUhIAIC0tTbP95PuFCxcCAMaMGQM9PT1ERkbCy8sLv/32GwwNDQEAH3zwAVxdXTF8+HDBro+ISFQqGDxSXvdjRSwsLJCRkQGVSgW5XA6VSoXMzExYWFhojsnKysKNGzcwZcoUAI+7PdVqNfLy8hASElK3S6jTTz8jM2bM0ITPnDlzAACnT59GVFQUjIyMkJaWVq3zLFiwAJs2bcLmzZthbGwMAOjbty92794NT09P3Lp1C2fPnsXKlSufzYUQEekgmV7dW1EvvvgiOnfujPj4eLi7uyM+Ph6dO3fWut/WsmVLTSMFeHwbKT8/H/7+/nX+ftHdcwMed0vGxsYiNjYWb7zxBgDAxcUFRkZGdT73+PHjsWnTJgDAzz//DC8vL3ZZEhE9Sa5X/quGgoKCEBUVBWdnZ0RFRWl603x8fJCcnFzfVWsRZcutPE8Gm76+PtRqtWZbqVRW+zy9evWCSqXCqVOnsHPnTmzbtq1e6yQi0nUVjZasKSsrq3L/jV29enW5x0+fPr1evhcQacutKi+99BKKiopw/fp1AEB8fHyFxxobGyMvL09r3/jx4zF79mz06NFDq/+XiIjweIaS8l46RCfDTV9fH/PmzcO7776L8ePHVzrKZtKkSZgwYQLc3d01z2e4uroiJycHY8eObaiSiYh0hkwmK/elS2TqJ/v3nhMnT55EUFAQ4uLiavUf7PJA12dQ1bPT4dAuXHZyF7qMGulwIBZZWblCl1EjZmZNdK5mQDfr1tWadUVewtFy95sMcGjgSmpPZ+651Ze5c+fi2LFjWLJkic79JUJE1BDq656bkJ67cKvpjCdERM8dLlZKRERSw5YbERFJDxcrJSIiqZFVMn+vrtD9KyAiovrFe25ERCQ19TG3pNAYbkREpE1P9x+TYrgREZEWttyIiEh6KljPTZcw3IiISAufcyMiIunhc25ERCQ1bLkREZH08Dk3IiKSGim03HQ/nomIqF49amxY7qumrl27htGjR8PZ2RmjR49GampqmWNUKhUWLlwIJycnDBkyBNu2bauHK2C4ERHRM7JgwQKMHTsW+/btw9ixYzF//vwyx8TFxeHGjRvYv38/tmzZgm+//RZpaWl1/u7nciVuIiKqWG5u+aucq9Vq5OTklNlvamoKU1NTrX337t2Ds7MzkpKSIJfLoVKpYGtri/3796N58+aa46ZMmQKFQgEXFxcAQHBwMFq2bIn33nuvTtfAe261MDg4XOgSauS3+dPgujhS6DJqZFfAFJ2sOSur/H8UxMzMrInO1a2rNeu6DRs2ICwsrMx+X19fTJ8+XWtfeno6zM3NIf+/+3dyuRwtWrRAenq6Vrilp6ejZcuWmm0LCwvcuXOnzrUy3IiIqFq8vb3h6elZZv/TrTYxYLgREZGWInmjcvc3N2pc7SCzsLBARkYGVCqVplsyMzMTFhYWZY67ffs2unXrBqBsS662OKCEiIi0qErU5b5q4sUXX0Tnzp0RHx8PAIiPj0fnzp21uiQBwMXFBdu2bUNJSQmys7Nx4MABODs71/kaGG5ERKSlpKSk3FdNBQUFISoqCs7OzoiKisLChQsBAD4+PkhOTgYAuLu7w9LSEm+99RZGjRqFDz/8EK1bt67zNbBbkoiItNS0lVYRKyurcp9bW716tea9XC7XhF59YrgREZEWKTwhxnAjIiItKnXNuyDFhuFGRERailUMNyIikpiSerrnJiSGGxERaWG3JBERSU59jZYUEsONiIi01OaZNrFhuBERkZZihhsREUkNn3MjIiLJ4T03IiKSHBW7JYmISGr4nBsREUnOc9NyKywsxFdffYUDBw5AX18fjRs3hq+vL5ycnAAAgYGBOHPmDDp27IhvvvmmzPbTnvz8zTffxKFDh7By5cr6vTIiIqqV52a0ZFBQEPLz87Fr1y4YGhoiJSUF7733Hpo2bYp27dph3759OHnyJPT09HD37l2t7ac9/Xl0dHS9X1RtlK4WS0T0vJPCc25VLlZ669Yt7NmzB0FBQTA0NAQAWFtb44MPPkBYWBgmTJiAgoICeHp64rvvvtPaXr9+vda58vLyKv08KysL48ePh0KhgKurK5YuXQoAePToEWxtbZGdna05dvHixQgLCwMAHD58GB4eHhg+fDi8vb1x/fp1AEB0dDRmzJih+Zknt6OjozF58mR8/PHHUCgUSElJqeGvjohImupjJW6hVdlyS0lJQZs2bdCsWTOt/T169MCKFSuwY8cOeHl5ITY2FsDjVVWf3H6SiYkJIiMjtT5/suVmamqKiIgIGBsbo6ioCJMnT8bhw4fx5ptvYvDgwYiPj8eECRNQXFyM+Ph4bN68Gffu3cMnn3yCqKgodOjQAdu2bcOcOXPKXSDvaX/99RdiY2PRpk2bKo8lInpeSGFuySpbbg35MJ9KpcLSpUsxYsQIKBQKXLp0CRcuXAAAKBQKxMTEAHjcUrOysoKlpSX++9//olOnTujQoQMAwMvLC+fPn0deXl6V39erVy8GGxHRU9RqdbkvXVJly83a2ho3btzA/fv3tVpvf//9N2xsbKr8gg8//BBpaWkAgJ9++qnSY9etW4ecnBxs27YNhoaG+Oyzz6BUKgEAffr0wcOHD3Hx4kXExMTA09MTwOP/CDKZrNzzyeVyrb7j0nOVMjY2rrJ+IqLnTbFKt4KsPFW23CwtLeHi4oKgoCBNOKSkpCAiIgK+vr5VfsF3332H2NhYxMbGwsTEpNJjc3NzYWZmBkNDQ2RkZOC3337T+tzd3R3r1q3DiRMn4OzsDADo2bMnzp8/jytXrgAAYmJi0KVLF5iYmKBNmza4ePEiCgsLUVhYiH379lVZLxHR866kpKTcV3169OgRPvroIwwZMgQuLi74/fffKz1eqVRi2LBhUCgU1Tp/tUdLLl++HMOGDUOjRo1gaGiIefPmoV+/fppWWX0YP348Zs6cCQ8PD7z88suwt7fX+tzT0xODBw+GQqHACy+8AABo3rw5li5dijlz5qC4uBjNmzfHsmXLADwOPnt7e7i5ucHS0hJWVlbIysqqt3qJiKSoIe65rV27FsbGxvj111+RmpqKcePGYf/+/RX2qH399dfo0aOH5lZVVWRqXetIFYHBweFCl1Ajv82fBtfFkUKXUSO7AqboZM1ZWblCl1FjZmZNdK5uXa1ZV2xLOlPufufObZGTk1Nmv6mpKUxNTWv0Ha6urli8eDFee+01AMD7778PDw8PDB06tMyxJ0+exJo1a/Duu+9iyZIl1XqEjDOUEBGRloq6IDds2KB5BOtJvr6+mD59eo2+4/bt22jVqpVm28LCAnfu3ClzXH5+PkJDQ7Fq1SqkpqZW+/wMNyIi0lLRDCXe3t6awXxPKq/V5unpidu3b5d7nmPHjlW7lqVLl2Ls2LEwNzdnuBERUe1V9MB2TbofSx/dqkjLli1x69YtNG/eHACQnp4OW1vbMsedOnUKhw8fRnh4OJRKJR48eIDhw4cjLi6u0vMz3IiISEtDTL/l4uKCLVu24LXXXkNqaiqSk5OxfPnyMsc9GWJJSUnVvudW5aMARET0fClRq8t91afJkycjJycHQ4YMwfvvv4/g4GDN42IrVqzAzz//XKfzs+VGRERaGmI9NyMjowpXg5k5c2a5+21tbas92T7DjYiItDw367kREdHz47lZz42IiJ4fDdEt+awx3IiISAu7JYmISHIYbkREJDkqCUw5zHAjIiItUphPn+FGRERaVCp2SxIRkcSwW5KIiCRHCgNKuFgpERFp+WzrnnL3h4wqu5CoWLHlVgtDPl8ldAk18uunUzFskW6tar07cAoGBpVdFFHMDgX54vrY94Quo8Ze2bRGJ1e11sWadQUf4iYiIsnh9FtERCQ5DbGe27PGcCMiIi0VrcStSxhuRESkRQrjDBluRESkRQqPAjDciIhICweUEBGR5DTEowCPHj1CYGAgzp07B7lcDn9/fwwaNKicWkoQGhqKxMRE6OnpoUWLFggNDYW5uXml59d7VoUTEZFuUpWUlPuqT2vXroWxsTF+/fVXRERE4NNPP8XDhw/LHHfw4EGcOXMGsbGxiIuLQ4cOHbBqVdXPGrPlRkREWioaLZmTk4OcnJwy+01NTWFqalqj79izZw8WL14MAGjbti26du2Kw4cPY+jQsrOgFBYWQqlUQk9PDw8fPoSlpWWV52e4ERGRFpW6/Fbahg0bEBZWduYgX19fTJ8+vUbfcfv2bbRq1UqzbWFhgTt37pQ5ztHREX/++Sf69++Pxo0bo3379pg/f36V52e4ERGRloqWvPH29oanp2eZ/eW12jw9PXH79u1yz3Ps2LFq13Lu3DlcuXIFhw8fhpGREUJDQ7F48eIqA47hRkREWip6zq0m3Y8xMTGVft6yZUvcunULzZs3BwCkp6fD1ta23PPY2dmhSZPHc3OOGDECc+fOrfL7OaCEiIi0qErU5b7qk4uLC7Zs2QIASE1NRXJyMt54440yx1laWuL48eMoKioCACQkJKBjx45Vnp8tNyIi0lLRPbf6NHnyZAQEBGDIkCHQ09NDcHAwTExMAAArVqxAixYt8M4772DcuHG4dOkSRowYAX19fVhYWCAkJKTK8zPciIhIS0PMLWlkZISVK1eW+9nMmTM17w0NDbFo0aIan5/hRkREWrgqABERSQ6n3yIiIsmRwkrctRot6ejoiP79+0OlUmn27dixAzY2NoiKiqp1MY6OjkhJSQEAzJs3DydPnqz1uYiIqHYaYvqtZ63WLTczMzP88ccfGDBgAABg586dePXVV+utsC+++KLezkVERNWna0FWnlqHm6enJ6KjozFgwADcvHkTjx49grW1NYDH84B9/fXXOHHiBIqKimBtbY2goCAYGxsjLi4OP/74o+aZBX9/f9jb25c5//jx4zFp0iQMGjQIAQEBMDAwQGpqKu7cuYMePXpgyZIlkMlkyMvLw6JFi3Dx4kUolUrY2toiMDAQcrkcYWFhiI+Ph6GhIWQyGX788Uc0atQI/v7+uHz5MvT19dGuXTusWLGitr8GIiLJkcBapbUPN1tbW2zatAkPHjxATEwMPDw8cPbsWQDAmjVr0KRJE2zfvh0AsGzZMkRGRmLWrFno378/3NzcIJPJcPXqVUycOBGHDx+u8vsuXbqE9evXQyaTwdPTE8eOHYODgwMWLVqEvn374osvvkBJSQnmzJmDHTt2wNnZGWvXrkViYiIaN26MvLw8NG7cGL///jtycnKwe/duAMCDBw9q+ysgIpKk3+ZPE7qEOqt1uMlkMgwdOhS7du3C7t278fPPP2vC7eDBg8jLy8O+ffsAPG7JderUCQBw8+ZN+Pn5ISMjA/r6+rh79y6ysrJgZmZW6fc5OTnB0NAQANClSxfcuHEDDg4OmuUQ1q1bBwAoKCiAubk5TExM0K5dO3z88cd44403MHDgQJiYmKBTp064evUqFi5ciH79+mHgwIG1/RUQEZFI1Wm0pEKhwNtvv41+/frhP//5j2a/Wq3GggULyu1unD17NgICAuDk5ISSkhJ0794dSqWyyu8qDTYAkMvlmsEsarUa4eHhaN26dZmf2bp1K/766y8cP34cCoUCa9asQadOnbB7924cP34chw8fxtdff424uDit8xMRkW6r09ySrVu3xqxZszBtmnYT1tHREevXr0dBQQEAIC8vD1euXAEA5Obmatbi2b59OwoLC+tSAhwdHREZGakJu+zsbNy8eRN5eXnIzs5Gv379MGPGDFhbW+PSpUu4c+cO5HI5nJycEBgYiOzsbNy/f79ONRARkbjU+Tm30aNHl9k3ZcoUhIWFYeTIkZDJZJDJZPD19YWVlRUCAwMxbdo0mJubo1+/fmjWrFmdvn/u3LlYtmwZ3N3dIZPJ0KhRI8ydOxeNGjXC9OnTUVBQALVajS5duuCtt97C8ePHsXz5cgCPn8KfMmVKlcuVExGRbpGpK1rbgCo05POqlzgXk18/nYphiyKFLqNGdgdOwcCgsosiitmhIF9cH/ue0GXU2Cub1iArK1foMmrEzKyJTtZMDYdL3hARkeQw3IiISHIYbkREJDkMNyIikhyGGxERSQ7DjYiIJIfhRkREksNwIyIiyWG4ERGR5DDciIhIchhuREQkOQw3IiKSHIYbERFJDsONiIgkh+FGRESSw3AjIiLJ4WKlREQkOfpCF6CLnL+IELqEGtk37wM4hYQLXUaNHPhsmk7WnPq2t9Bl1FjbbRtwxcVL6DJqxGrvDq7ETZVityQREUkOw42IiCSH4UZERJLDcCMiIslhuBERkeQw3IiISHIYbkREJDkMNyIikhyGGxERSQ7DjYiIJIfhRkREksNwIyIiyWG4ERGR5DDciIhIchhuREQkOQw3IiKSHIYbERFJDsONiIgkp07h5ujoiJSUFK19CoUCSUlJdSoqKSkJCoWiTucgIqLnl+Att+LiYqFLICIiidF/VieOi4vDjz/+iKKiIgCAv78/7O3tATxu8Xl5eeH48eNo3bo1QkND8fXXX2P37t0wNzfHa6+9pjlPUlISQkND0b17d5w+fRoymQxff/01rKysAAAxMTHYtGkTVCoVTExMEBQUhPbt2+Ovv/5CSEgISkpKUFxcjKlTp8LNzQ1btmzB+vXrYWBggJKSEnzzzTeacxERkTTUOdxmzJgBQ0NDzXZqaioAoH///nBzc4NMJsPVq1cxceJEHD58WHNcVlYWNm7cCAA4ePAgDh48iJ07d6Jx48b48MMPtb7j8uXLWLSkCv6tAAAWbElEQVRoEYKDg7Fq1SqEh4dj+fLlOHnyJPbs2YOffvoJBgYGSEhIwNy5c7F582asXr0a3t7e8PDwgFqtRm5uLgBg6dKliI+Ph4WFBQoLC6FSqer6KyAiIpGpc7itXLkS1tbWmu3Se2U3b96En58fMjIyoK+vj7t37yIrKwtmZmYAAA8PD83PJCUlYdiwYTA2NgYAjBw5EuHh4ZrP27Vrhy5dugAAevTogd9//x3A41C8cOEC3n77bQCAWq1GTk4OAMDW1haRkZG4ffs2HBwc0L17dwCAnZ0dAgMDMXjwYAwcOBCtW7eu66+AiIhE5pl1S86ePRsBAQFwcnJCSUkJunfvDqVSqfncyMhI816tVld6LgMDA817PT09zX06tVoNLy8vzJw5s8zPTJw4EY6Ojjh27BhCQkLg4OCAWbNmISwsDMnJyTh+/DgmTJiAoKAgDBgwoK6XS0REIvLMBpTk5ubC0tISALB9+3YUFhZWeKy9vT327NmD/Px8qFQq7Nixo1rf4ejoiNjYWNy5cwcAoFKpcPbsWQDAtWvX0KZNG4wZMwYTJkxAcnIyiouLcfPmTXTr1g1TpkyBg4MDzp8/X8crJSIisXlmLbfAwEBMmzYN5ubm6NevH5o1a1bhsYMGDcLff/8NDw8PtGjRAra2tsjIyKjyO/r27YuPPvoIU6dOhUqlQlFREVxcXNC1a1ds3LgRSUlJaNSoEQwMDPDpp5+ipKQEAQEByM3NhUwmg4WFBfz8/OrzsomISARk6qr6BKkM5y8ihC6hRvbN+wBOIeFVHygiBz6bppM1p77tLXQZNdZ22wZccfESuowasdq7A1lZuUKXUSNmZk2ELuG5IvhzbkRERPWN4UZERJLDcCMiIslhuBERkeQw3IiISHIYbkREJDkMNyIikhyGGxERSQ7DjYiIJIfhRkREksNwIyIiyWG4ERGR5DDciIhIchhuREQkOQw3IiKSHIYbERFJDhcrJSIiyWHLjYiIJIfhRkREksNwIyIiyWG4ERGR5DDciIhIchhuREQkOQw3IiKSHIYbERFJDsONiIgkh+FGRESSw3AjIiLJYbgREZHkMNyIRKikpAQXLlwQugwincVwoxqbOXNmtfaJya5du1BcXCx0GdWmp6eHefPmCV1GnRUWFiIrK0voMug5xHATkEqlgpeXl9Bl1NiNGzfK7Lt69aoAlVRffHw8HB0dsWLFCmRkZAhdTrVYWVkhLS1N6DJqbNasWcjNzUVBQQGGDx8OV1dXrF27VuiyKnXt2jUolUoAwJEjRxAZGYkHDx4IXBXVhb7QBTzP5HI5/vOf/0CpVMLQ0FDocqq0detWbNmyBampqRg5cqRmf25uLtq1aydgZVVbtWoVbt26hc2bN8PLywu9evXC2LFjYWdnJ3RpFcrOzsaIESPQu3dvGBkZafavWLFCwKqqdu3aNTRp0gR79+6Fra0tAgMDMWrUKEyePFno0ir00UcfYfv27bh58yYWLFgABwcH+Pv7IyIiQujSqJYYbgJr27Ytxo0bB2dnZ61/wMaNGydgVeVzcHDAK6+8gpCQEHzyySea/SYmJrCxsRGwsupp1aoV/Pz8MGjQIMyePRtHjhyBpaUlFixYgD59+ghdXhmurq5wdXUVuowaK+3+PXHiBAYMGIAXXngBenri7iTS09NDo0aNkJCQgHfeeQc+Pj5wd3cXuiyqA4abwB4+fIiOHTuKvlsPeBwOrVq1Qnx8PIDHLYvmzZsLXFX1FBYWYvfu3fj555+hUqnw0UcfYdiwYThz5gw++eQTHDx4UOgSy/D09BS6hFqxsrLCpEmTcPXqVfj5+aGgoEDokqqkVCqRkZGBgwcPYtasWQAAtVotcFVUFww3gS1atEjoEmrszJkzmDlzJkpKSpCQkIDk5GRs3boVISEhQpdWIUdHR9ja2iIgIAA9e/bU7O/Tpw/s7e0FrKxiM2bMgEwmK7Nf7N2SS5YswR9//AEbGxsYGRkhIyMDfn5+QpdVKW9vb7i6usLe3h6vvfYabt68iSZNmghdFtWBTM0/TwT1008/lbtfjN2SpcaMGYPPP/8cc+bMwc6dOwE87kLbtWuXwJVVLDMzEy1atNDal5eXBxMTE4EqqlpMTIzmvVKpxL59+2BlZYVPP/1UwKqqlpeXByMjI+jp6SElJQWXLl3CkCFDYGBgIHRp1VZSUoLi4mKdqpm0ibsj/Dlw9uxZzevUqVMIDw/H0aNHhS6rUkVFRejQoYPWvkaNGglUTfW8//77ZfaNHz9egEqqz9PTU/MaM2YMvv/+e1y7dk3osqo0YcIEFBQUICsrC5MnT0Z0dDTmz58vdFmV2r17N/Ly8gAA33zzDXx8fHDp0iWBq6K6YLekwJ7ulszMzERoaKhA1VSPgYEBHj58qOkyu3z5smhHexYXF6OoqAglJSUoKCjQ3EfJzc3Fo0ePBK6uZmQymU48GqBWq2FkZIRdu3Zh1KhRmD59OoYPHy50WZVatWqV5h7s0aNHMWHCBISEhGDz5s1Cl0a1xHATmRYtWiA1NVXoMir1wQcfYPLkycjMzERAQACOHDmCZcuWCV1WuSIiIhAWFgaZTIYePXpo9puYmODdd98VsLKqPXnPTa1W4+LFi6K9P/gkpVKJwsJCHDlyBBMmTAAA0Y+W1Nd//E/h0aNH8fbbb2P48OH44YcfBK6K6oLhJrAn77mp1WokJyfD1NRUwIqqNmDAALRv3x5HjhyBWq3G1KlT8corrwhdVrl8fX3h6+uL4OBg0XeNPW3QoEGa93K5HJMmTdIKaLEaNmwY7Ozs0L59e/Tq1QtZWVmibdmXkslk+OWXX7Br1y6sWrUKwOPud9JdHFAisMDAQM17uVyONm3aYNSoUWjWrJmAVVUtLy8P169fx6uvvip0KZKXn58PAFrPQYpdTk4OTExMoKenh4cPHyIvLw/m5uZCl1Wh06dPY/Xq1bC1tYW3tzdSU1OxceNGfPbZZ0KXRrXEcKMaS0hIwPz58yGXy3Hw4EEkJyfju+++E+VsDt7e3tiwYQPs7Oy0htWr1WrIZDIkJiYKWF3lbt68CT8/P80Eyl26dMGyZcvQunVrgSurnFqtxvbt25GamoqPP/4YaWlpyMzMRK9evYQujZ4jDDeBPXr0COHh4Th27BhkMhkcHBzwwQcf4IUXXhC6tAp5eXkhIiICPj4+mkcBhg0bht27dwtcWVmljwDcunWr3M9btWrVwBVV37vvvgtXV1fN/KPR0dGIj4/HunXrBK6scqGhobh37x7OnTuHvXv34t9//4WPjw+2b98udGkVSk1NRWBgoOZB7nPnzuHgwYOYPn260KVRLYn7Lu9zICQkBJmZmZg7dy4CAwORmZmJ4OBgocuqkpmZmda2WJ8HKn22rXR2ladfYpadnY2RI0dCJpNBJpPBy8sL2dnZQpdVpaSkJHz55Zdo3LgxAGjmTxWzoKAgTJ06VfPgdufOnbF3716Bq6K64IASgSUnJyMuLk6z3atXL4wYMULAiqpmbGyMu3fvarr5kpKSRD+bw9PdkqXE3C2pp6eHq1evon379gAeT0gsl8sFrqpqhoaGWr/rkpISAaupntzcXLz55pv46quvAPz/XJOkuxhuIpCfn68ZLKALz17NmTMHPj4+SEtLw/jx45GamqoZYSZWO3bs0LxXKpWIi4vTDP8Wq1mzZmHcuHHo3LkzZDIZzp8/j6VLlwpdVpWsra3xyy+/QK1WIy0tDZGRkejdu7fQZVVKLpejqKhIE8oZGRmif3yBKsd7bgKLjIxEXFwcXF1dIZPJsGvXLowYMQLvvfee0KVVKjc3F3/99RcAoGfPnqJ/fKE8EyZMwI8//ih0GZXKzs7Gf//7X6jVavTo0UMnJqrOy8vD4sWLNZNROzo6IjAwEMbGxgJXVrGdO3diz549uHjxIry8vLBz507MmjULbm5uQpdGtcRwE4GEhAQcP34carUar7/+Ot58802hS6rUtm3bYG9vD0tLS6FLqbWbN29i4sSJ+O2334QupULfffcdFAoFLCwshC7luXDy5En8/vvvUKvVcHR0FOUySFR94u6XeQ6cPHkSAwYMwIABA4Qupdr++ecfrF27FkVFRbCzs4O9vT3s7Ozw0ksvCV1ahZ6851Y6Ke68efMErqpyeXl5GDVqFDp06ABPT084OzuL/mHoUomJibhx44ZmbTdA3JOBA49XiGCgSQdbbgJTKBTIy8vTTJD78ssvC11Std25cweHDh1CZGQk0tPTcf78eaFLqtCTjwLo6+vjpZde0onBGSqVCgkJCdi5cydOnjwJJycn0Y+mDQgIwNmzZ9GlSxet37GYl3e6evUqVq1ahZs3b2oFspgfX6DKMdxEICUlBTExMYiPj0fHjh2hUChE3dd/9uxZJCYmIjExEVlZWejZsyfs7e0xdOhQoUsrl0qlwqhRo7QGleialJQU/PDDD4iLi8O5c+eELqdSzs7OiI+P16nRhh4eHnBxcUH37t21Arlfv34CVkV1wW5JEbC2toa/vz9mzZqFzz//HB9//LGow23kyJHo2bMn/Pz8dKIbRy6Xa5610pVuPQC4f/8+4uPjER0djYcPH8LDwwMHDhwQuqwq6VLvQ6mSkhJ88MEHQpdB9YjhJgJPttw6dOiAJUuWCF1SpbZu3Yrjx4/ju+++w71799CrVy+8/vrreOutt4QurUJt27bFuHHj4OzsrDVHo5jvA7m4uMDJyQlz587ViT8iSrVt2xYTJ06Ek5OT1sP9Yv5d9+jRAxcuXECnTp2ELoXqCcNNYJ6ensjPz4e7uzu2bt2qEyPjunXrhm7dusHd3R2HDh3C999/jy1btoj6ntvDhw/RsWNHXL16VehSqu3QoUOaWT50SWFhIdq0aYOUlBShS6m2M2fOIDo6Gu3atdNq3fOem+7iPTeBnTx5Uqf+KgeA4OBgHD9+HAUFBbCzs9O8Sqe6EpPFixcjICAAwOO1uhwcHASuqGb++OMPnD9/Xmv6Kl9fXwErkqY///yz3P2856a72HITWJ8+fZCbm4tr165p/QPWt29fAauqnI2NDSZOnIimTZvixIkTsLS0FGWwAY+nBiv15Zdf6lS4ffnll0hOTsbly5cxePBg/Pbbb6JerPTUqVPo3bs3EhISyv1czI+7MMSkh+EmsN27d2PJkiXIyclBixYtcOPGDXTq1AkxMTFCl1bGnDlz8N5772H06NG4f/8+RowYARMTE/z777+YNWsW3n77baFLLOPJjgld66RISEhATEwMFAoFgoOD8eGHH2LhwoVCl1WhmJgY9O7dG2vWrCnzmUwmE2W4eXl5lTvnaCl2S+ouhpvAIiIiEB0djcmTJ2Pnzp04evQo9u/fL3RZ5frnn380N9xjY2NhZWWFH374AXfu3MH7778vynArLCzElStXoFartd6X6tChg4DVVc7AwAD6+vqQyWQoKiqCubk57ty5I3RZFfr8888BABs3bhS4kurz9/cH8Pj+5tWrVzFy5EgAj5cX6tKli5ClUR0x3ASmr6+PF198ESqVCgDg4OCAb7/9VuCqyvfkjfZTp07ByckJwOOh35X99SukgoIC+Pj4aLaffC+TyUQ9/ZaxsTEePXqEnj17IiAgAGZmZqJ+8Pzy5cuVfi7GPyRKuyO//fZb/Pjjj5r/jwcNGoSJEyfy/qYOY7gJzMDAAGq1Gq+88go2btyIVq1a4d9//xW6rAplZGSgadOm+PPPPzFjxgzNfrGu11U6ea8u+uqrryCXy+Hv749169YhNzcXK1asELqsCk2ZMqXCz8T+h0RGRgaUSqVmdGphYSEyMzMFrorqguEmsJkzZyIvLw9z5sxBUFAQcnNzsWDBAqHLKteUKVPg4eGBRo0aoXfv3pq/xP/++2+0bNlS4Oqk58m5OqdNmyZgJdWjy39IDB06FKNHj8awYcMAAHv27BHtjDtUPXwUgGokKysLd+/eRadOnbTWvlKpVAy4ejJjxoxKu3nF3Hp70r1797Ra9GL//+P3339HUlIS1Go17O3tMXDgQKFLojpguAnkp59+qvRzMc/mQM9WVSNlPT09G6iS2klMTERAQADu3bsHPT09FBUVoVmzZqJd9VylUmHBggWaATEkDeyWFMjZs2eFLoFE6siRI/jqq6+wYcMGeHt7C11OjS1btgzr16/HrFmzEBMTg23btuH27dtCl1UhuVyOGzduCF0G1TOGm0CaNm2q0zNn0LNz6dIlAI9Xh9bFcAOAdu3aobi4GDKZDKNGjRJ9T4SdnR2Cg4Ph4eGhNfeoGEd4UvUw3ASiyzNn0LPVtWtX9O7dG0qlUmtGErVaDZlMJtruvVL6+o//WTE3N8fBgwfRqlUrUT+fB/z/w9qHDh3S7BP7CE+qHMNNILo8cwY9W4sWLYKfnx+8vb0RGRkpdDk1NmHCBDx48AAzZ86En58fcnNzERgYKHRZldLlkZ5UPoabQHR55gx69l566SVs3boVxsbGAID8/Hyt7jIxK12LsFu3bvj1118FrqZmdG2EJ1WMoyUF4ujoWOFn7A6hp3l6eopyvtHyPHr0CBEREUhLS8Py5ctx5coVXLt2TTOjjRjp2ghPqhpbbgJhNwjVhC79DRoUFAQzMzNcuHABwOPp2fz8/EQdbro2wpOqpid0AURUNUtLS6FLqLaUlBTMmTMHjRo1AvB4jsySkhKBq6ra0yM8T5w4IXRJVAcMNyKRmT17NgBgw4YNmn1hYWFClVNjpaFWSqlUir7l+fQIz4sXL4p+hCdVjuFGJDJPPuemi/r06YOIiAgUFhYiKSkJM2fOrPQesxg8OcJz0aJF8Pb2xsyZM4Uui+qAA0qIRCYwMBD79++HUqlEkyZNNPt15Tm3oqIirFmzRnNf2dHREVOmTBHlcj3ldT2W/pMok8nQt2/fhi6J6gnDjUiE7t69W+Fzbq1atRKgoqrp4nypXl5emvdXr15F+/btNdsymYwrceswjpYkEpnZs2fjq6++gqurq2iDrDwhISHo2rUrOnbsKHQp1bZjxw7New8PD61t0m0MNyKRKb3n9uuvv+rEOm6lvvjiC+zcuROXL1+Gh4cH3Nzc0LRpU6HLqjaxriZPtcNwIxKZp+eWLL3XJvZ7bl5eXvDy8kJaWhpiYmLwzjvvwNraGlOnToWNjY3Q5dFzhuFGJDJPzi25evVq0Q+jf5qlpSUmTpyIl156CStXroSDg4Now+3y5cua90qlktPgSQgHlBCJ0MmTJxEWFoaLFy8CAGxsbODr64s+ffoIXFnF1Go1jhw5gujoaKSkpGDo0KHw8PBA69athS6tQpwGT7oYbkQic+DAAYSEhGDq1Kno3r07AOD06dP4/vvv8dlnn4l2Gqs33ngDZmZmUCgUsLW1LXMPi60gakgMNyKRUSgUWLJkSZlRhykpKfD39xftBMpPtoJK7xE+uc1WEDUk3nMjEpmCgoJyh9NbW1trLcciNpwMnMSE028RiUxRURGKiorK7C8sLERhYaEAFRHpHoYbkcgMHjwY/v7+yM3N1ezLyclBQEAABg8eLGBlRLqD99yIRKawsBBBQUHYu3cvXnnlFQDA9evX4eLigqCgIBgYGAhcIZH4MdyIROr27dtISUmBWq2GtbW1Tk3FRSQ0hhsREUkO77kREZHkMNyIiEhyGG5ERCQ5DDciIpKc/wVtwx8EtPug6wAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
    " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "from IPython.display import display\n", "import numpy as np\n", @@ -1104,20 +402,9 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3AAAAFUCAYAAABlSN7eAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsvXm4ZHV57/tdY8173rt3T0xNNzQNiNAiBDRODEZEknOjXnJyTIzxyfEkmng098lwQU28JpiTozlqTKJRE0hQkwioSIsSlKmBpmlouhu66Yne3XvqPdWuaY2/+8eq36phrRp3Ve1au97P8/hIr71q1a+q1vB7f+/3/b4CY4yBIAiCIAiCIAiC6HrE1R4AQRAEQRAEQRAEUR8UwBEEQRAEQRAEQQQECuAIgiAIgiAIgiACAgVwBEEQBEEQBEEQAYECOIIgCIIgCIIgiIBAARxBEARBEARBEERAoACOIAiCIAiCIAgiIFAARxAEQRAEQRAEERAogCMIgiAIgiAIgggIFMARBEEQBEEQBEEEBLmend72trdBVVWEQiEAwCc+8Qm86U1vwr59+3DHHXdA0zRs3LgRn//85zE8PNzWARMEQRAEQRAEQfQqAmOM1drpbW97G7761a9i27Zt7jbGGG688UZ87nOfw86dO/GVr3wFp06dwuc+97m2DpggCIIgCIIgCKJXaVpCuX//foRCIezcuRMA8P73vx8PPfRQywZGEARBEARBEARBlFKXhBJwZJOMMVx11VX4+Mc/jsnJSWzYsMH9+9DQEGzbxuLiIgYGBtoyWIIgCIIgCIIgiF6mrgDunnvuwfr166HrOj772c/iM5/5DG644YaWDGBuLgXbrqniJALE6GgCs7PLqz0Moo3Qb9wb0O+8NqHftTeg33ltQr/r2kMUBQwPxxt7TT07rV+/HgCgqipuv/127N27F+vXr8eZM2fcfebn5yEIAmXfCIIgCIIgCIIg2kTNAC6TyWB52Yn0GWN48MEHsX37dlx66aXI5XLYs2cPAODee+/FO9/5zvaOliAIgiAIgiAIooepKaGcm5vD7/3e78GyLNi2jS1btuDOO++EKIq46667cOedd5a0ESAIgiAIgiAIordhjGFhYRa6ngPQ6+VSAlQ1jMHBUQiCsOKj1QzgNm/ejPvuu8/3b1deeSW+//3vr3gQBEEQBEEQBEGsHVKpJQiCgHXrNkEQmja+XxMwZmNx8SxSqSUkEisvN+vtb5MgCIIgCIIgiJaTzaaQSAz0fPAGAIIgIpEYRDabasnx6BslCIIgCIIgCKKl2LYFSaq7Y9maR5Jk2LbVkmNRAEcQBEEQBEEQRMtpRb3XWqGV3wUFcARBEARBEARBrFk+/vHfw333/XvJNsYYfvVXb8U3vvEP+Pa376n6+q997av46U9/DADYu3cPnnlmd9vGWg+U1yQIgiAIwpeXTy4gEVWwcbSxJrMEQRDdxLvedSu+/e17cNtt/8Xd9vzzz0GSJPzmb/52zdd/6EO/U/K6bDaLq6++pi1jrQcK4AiCIAiC8OVbu15BLCzjT//bztUeCkEQRNO8+c1vwV//9V/g+PFjOP/8CwAAP/zhA/ilX3o3vv71v0M2m8Xv/u7vY//+F/C///ddsG0G0zTxgQ98EDfccDM++9lP4eKLt+OKK67C/ff/B2zbxp49z+Dtb78Rt9xyKz71qT/FwsIcAGDnzqvx0Y/+z7Z+HgrgCIIgCILwRTcsTM9nML2QwbrB6GoPhyCIgPLE/kk8/uJkW459/eXrcd1l66vuoygKbrjhZvzoR9/HRz7yMWQyaTz22M/wO7/zu3jgge+5+91zz7fw3vfejptvfhcYY0ilSl0jt2y5EO95z6+4AR8AfPvb92B8fBxf/OJXAADJZLLFn9AL1cARBEEQBOGLYdoAgN0Hpld5JARBECvjXe96D3btehCmaeKnP30Yl1/+OoyOjpXsc+WVO3H33d/EN7/5NRw8eACJRKLmcXfsuAzPPvs0vvzlL+KJJx5DNNr+xS7KwBEEQRAE4Yth8QBuCrdedx45yhEE0RTXXVY7S9Zutm7dhuHhETz99FN48MEH8N733u7Z573vvR3XXfdmPPvs0/jCF+7CG95wDT784Y9UPe6ll16Ob3zjHjz77NPYtetB3H33N/G3f/v1dn0MABTAEQRBEARRAdO0MRBXMb2QxfHJZVywoW+1h0QQBNE073rXrfjHf/x7TE9P4vrrf9Hz99deO4lzzjkXGzduQjQaxY9+9APPPrFYDGfPzrr/PnPmNMbG1uEd77gJr3vd6/G+9/0ybNuGKLZP6EgBHEEQBEEQHmzGYNkMV29fh0f2nsbuA1MUwBEEEWhuuOGd+PKX/wbvec+vQFEUz9//7d/uxd69z0FRZCiKij/4g0969nnzm9+KP/mTT+I3fuN2vP3tN2JoaAj33ns3JEkGYzY++ck/amvwBgACY4y19R1qMDeXgm2v6hCIFjM6msDs7PJqD4NoI/Qb9wb0O69N6v1ddcPC7/yvn+H/essWnJhM4pVTi/hf/+M6yBKVzwcBun7XJkH6XaemTmJ8/NzVHkZX4fediKKA4eHGWrXQXZggCIIgCA9mvv5NlkRcu2McyxkDB08srPKoCIIgCArgCIIgCILwYFiOOkaRBFy2ZRixsIzdB6dWeVQEQRAEBXAEQRAEQXgwTAsAIMsiZEnEGy4ew97Ds8jp5iqPjCAIorehAI4gCIIgCA+mm4FzpgrX7BiHbth4/vDZ1RwWQRABYpWtNrqKVn4XFMARBEEQBOHBNAs1cABw4aZ+xMIyjkwsruawCIIICLKsIp1OUhAHJ3hLp5OQZbUlx6M2AgRBEARBeOBNvBXZCeBEQUAiqiKdIwklQRC1GRwcxcLCLFIpWvQBnIB2cHC0NcdqyVEIgiAIglhTGDwDJxfEOtGwjIxGARxBELWRJBkjI+tXexhrEpJQEgRBEAThgbcRUKSyAC5nrNaQCIIgCFAARxAEQRCED0ZZDRwAxMIKSSgJgiBWGQrgCIIgCILwYJbVwAFANCQjQwEcQRDEqkIBHEEQBEEQHriJiSwJ7jZHQmmSqxxBEMQqQgEcQRAEQRAeuIRSKZNQ2owhp1urNSyCIIiehwI4giAIgiA8uI28y1woASBLTpQEQRCrBgVwBEEQBEF4MP3aCIScAI6MTAiCIFYPCuAIgiAIoohTMykcPDG/2sNYdQo1cMUSSieAo1YCBEEQqwcFcARBEARRxA+ePIF//vHh1R7GqmP61MBFwwoAkBMlQRDEKkIBHEEQBEEUoRkWclTjBcOyIYkCRLHUhRIgCSVBEMRqQgEcQRAEQRShGxY0g1wWDdMukU8ChQCOJJQEQRCrBwVwBEEQBFGEYdrQdKvne52Zll3iQAkAkZAMAUCGMpQEQRCrBgVwBEEQBFGEbtpgKPRB61VMyy5p4g0AoiAgEpJJQkkQBLGKUABHEERHuf/x4/jr7+xb7WEQREX0vHwy1+MySj8JJeDIKElCSRAEsXrIqz0AgiB6i0MnFzA1n1ntYRBERfR85k3XLSC6yoNZRQyLeSSUAA/gKANHEASxWlAGjiCIjjKzkCGDCKKr4dLJXs/AmaZd0kKAEwsrSFMNHEEQxKpBARxBEB1D0y0spnToBhlEEN2LbjqBW68vNBiWDdkvAxeSkaUMHEEQxKpBARxBEB1jesGRTjLmGCQQRLfBGINhFEkoe5hKGbhoWEaaauAIgiBWDQrgCILoGDMLWfe/NYMCOKL7MC0GnhvueQllhQxcLKxQDdwKSWUN/PyFM6s9DIIgAgoFcARBdAyegQMcOSVBdBtcPgmQhNKokIGLhGXopt3zbRZWwrOHpvHNH72M+WRutYdCEEQAoQCOIIiOMV2UgSueKBNEt6AXZYZ7fZGhUg1cLOwYWFMz7+bhCoRsj59jBEE0BwVwBEF0jFIJJU1ciO7DKMnA9XaGybRsKGWNvAGnBg4A9YJbAW6vQQqCCYJoAgrgCILoGNMLGQz3hQBQdoPoTnSzOAPX25Prio28QwoAUB3cCtDyCwU5ug8SBNEEFMARBNERNN3CUkrH5rGE8+8ez24Q3UlxXVevn6NmhUbeXEKZpgCuabjTaa7HFwkIgmgOCuAIgugI3MBk01gcQEFCRBDdRPF52etZYsOqkIEjCeWK0SkDRxDECqAAjiCIjsDr387JB3BUA0d0I6UZuN4+R03T9s3ARcN5CSXVbzWN7mbgevscIwiiORoK4L70pS/hoosuwuHDhwEA+/btw6233oqbbroJH/zgBzE3N9eWQRIEEXx4Bm4zZeCILqZYNtnLfeBsxmDZzLeNAEkoVw6vtSQJJUEQzVB3AHfgwAHs27cPGzZsAAAwxvDJT34Sd9xxB3bt2oWdO3fir/7qr9o2UIIggs30QhZ9MRV9MRUA1RcR3Ql3oQypUk8vMpj5AMOvjYAsiVAVkSSUK8B1oaQMHEEQTVBXAKfrOj7zmc/gzjvvhCA4lsL79+9HKBTCzp07AQDvf//78dBDD7VvpARBBJqZ+QzWDUYQUiQAJE8juhOeGUlElJ6ugTOsfADnk4EDgGhIJhfKFVBoI9C75xhBEM1TVwD3xS9+Ebfeeis2b97sbpucnHSzcQAwNDQE27axuLjY+lESBBF4phezGBuMQBQFKLLY09kNonvhNXCJqNLTEkqegfOrgQOAWFjxBHCMMTy67zQWU1rbxxd0SEJJEMRKkGvt8Pzzz2P//v34xCc+0ZYBDA/H23JcYnUZHU2s9hCINtPIb5zVTCyldFywaRCjowmEVQmiLNF5EgB67TdSQ85jcag/gun5zJr9/LU+F5OcTPnQQMR33/5ECIbNSv42s5DBPz30CpRbFdz2i1taO+A1hsWc/7cFoa3n2Fo9f3sd+l2JmgHcs88+i2PHjuHtb387AGBqagq/9Vu/hV//9V/HmTNn3P3m5+chCAIGBgYaGsDcXAq2zRocNtHNjI4mMDu7vNrDINpIo7/xa9POvvGQhNnZZSiyiMVkls6TLqcXr+WFRcctNSSLSGeNNfn56/ldp+bSAIBsRvfdVxEFLCznSv526MQ8AGB+Ib0mv7dWks3XDybLvsNW0ovXby9Av+vaQxSFhhNaNSWUH/7wh/H444/jkUcewSOPPILx8XF8/etfx4c+9CHkcjns2bMHAHDvvffine98Z3MjJwhiTcNbCIwNRAAAIUUiExOiK9FMC7IkIKLKPS3zNfMpooo1cD4Syun8da6bdG3XoiCh7N1zjCCI5qmZgauEKIq46667cOedd0LTNGzcuBGf//znWzk2giDWCLyFwNigE8CpSm87/BHdi2HYUGQJqir29OTatKrXwEXDsqeNwEz+Ou9l85d64fe/LH1XBEE0QcMB3COPPOL+95VXXonvf//7LR0QQRBrj+n5LPpjKiL5+qIQmZgQXYpu2lBlEWFFgmUzmJZdMQu1ljGqtBEAnF5wOc2EzRjEvDv19DzPwNG1XQuDTEwIglgBvfdUIgii48wsZNzsGwCoqkRtBIiuxDAtKLLY8+0ueBsBv0begCOhZHAMijg8066TPLoqpmXDytf+UxsBgiCagQI4giDazvRCFusGo+6/qQaO6FZ004aqSAip+QCuRyVutdoIRPPZdC6jtG0GITmJt4YP4JzlfbCXZzsz0ADCA1xZcmS6jJGRG0EQjdF0DRxBEEQ95HQTS2m9JAMXUqSenRgT3Y1h2pSBQ5GEskIGLhZ2pg/ZfAC38OoL+ET8AUgCA9JA+l8fhtA/DnnzZVAuvBbS2AWdGXgAMPIS0/6YgrmkBiO/aEAQBFEvlIEjCKKtcAfKdUOlGTiqkyG6Ed2wEJLFQgauRwM4bmIiS4Lv36NhnoFz7PDZ899zgrci2NIUjJceRua+P4P+4o/aONpgoeWD476YCoCcKAmCaBwK4AiCaCvcWnxdcQ2cIvbsxJjobnTThqJIhQxcj06ujZoulAoAIJMzYWcWEVo6WeVoDNpz94MZuVYPM5BwA6dElAdwZGRCEERjdKWE0rRs3PfY8ZLi6JAq4T3Xn+8+VAmCCAbcWnx0oFRCqRt2iYNdO2CM4eE9E/iFS8cRjyhte5+1yNR8BvtPLuCycwdXeygdRTds9McoA+fWwNWQUGY0E9ZrL9c+oJGDvXAa0tiWlo0xqBiUgQssyxkdT740hRt2boYotu/ZRRC16MoM3PHJJB7cfRK7D05jzyszePrgNB56+jUcmVhc7aERBNEgi8s6oiHZbSEAwF2IMdpsZDK7lMO9Pz2CvYfJUKFRfr7vDL547/Owe8xgwetC2ZtmOwZv5F2lDxzgSCjN116o65j2wpnWDC7g8AxcPwVwgWPfkbP49iOv4tiZ5GoPhehxujKAW1jWAAB/9GtX4osffRPu/M03lGwnCCI45AwTkVBp5lztkEGEnp8Y0QSpcXKGBZv1ns250weuIKHsVXmbWaONQEiRIAoCcpkczImXPH+Xxrd5tlkLp1s7yICi8wwcSSgDB//tDlNCgVhlujKAW0zpAICBRMj5/7hasp0giOCQ0y2E1FK1tqo4t552N/PmD1uNJkgNw3+bTN6kolcwTBuKUpBQ9mpPs1qNvAVBQDQsI7p0DDBLF1czTIVy0Zs8r7EXJ1s/0ADCry2SUAYPvrBx+BQFcMTq0qUBnAZZElyNvSJLiIVlLKYoA0cQQUPTLU/taqcs2vlEqVdlcCuB/zYZrbeCX8eFkjJwpmVDEoWqNaqxsIzh5Vc82w/qG4GhTZ7tJKF04IsCFMAFDx7AvTqx1HPycqK76NoAbiAeglD04BhIhLBIEkqCCBw5w0JYrRTAtTew4q0KetVJcCXwAI43au4FGGOOC6UsQpVFCAhm8G/ZKx+zYdoVs2+caEjChtxRz/aXjE2wous829nyWTCTnuP8vtQXdYyVcj22SBJkeGY6o5k4PZte5dEQvUx3BnDLmiuf5AzEQyShJIgAounVArh2Z+DsjrzPWoTXD/aShJKvrquKCEEQoKrBazj/6L7T+MRXnlzxuA3Lrlj/xtmoJpFgyyXbGES8bGyALsgQEiNlr2CwF6dWNK61AL8vJfIZuGzAzrFehrfXAEhGSawu3RnApXQMxEsDuMF4iCSUBBFANN1y64k4nbJo5yvdOQrgGoZnnjI9lIHjNZOK7JyfYUUKXPB/ZjaNpZSO519dmfOqadoVm3hztsLb+y2dOBdZFoJuWBAHNnj+bpORiXtfiqgSVFnsWZluEDFNhrAqYTARogCOWFW6MoBbSGmucQlnIKFiKaXDtklzTBBBIqebCJfVwKlyh0xM8kFIu99nLcInmb0koeTnCz8/QwEM4NL5jOnuA9MrOo5p2RWbeHM268e87z9yCQDnuxQH/QI4qoPTDRsCAFkSEVYlqoELEIZlQ5ZEbNs8gMMTi2BUB0esEl0XwGU1E5puYTDulVDajGE5QzJKgggSOcMnA9cpCWU+o0ITpMYpmJj0joTSyAetPHAJBVBCmco6AfdLx+aRXMHz0jCdiWol7NwyhnRvNk0b2+H8v2FB8svAkRMldNOCkpfphlWZ7k8BwszXyG7b1I+llI7ZxexqD4noUbougOMyyXIJJf831cERRHCwbQbdsBEubyPQIYv2ggslTZAaRXNr4HowA5dfYAhqBm4w4Sx4PntopunjmBarWgNnvfYiygWWQt86CH2OeYluWBUycCSh1A2n1yAAJwNHJiaBwczXhm7dPAAAOHxqaZVHRPQqXRjAlfaA4/AAboHq4AgiMPDJ76q1ESAXyqbp5Ro4tTgDF7QALmtg66Z+bBqN46kDzRuGGDUklOZrL3i2yee8zu35qJs2xIH1nn3s5AyY1TvnlB+6aSGU74VJEspgwd1ZN4zEEAvL1NCbWDW6MIDjGbiyGji3mTcFcAQRFPjEpNyFUulwDVzQJuGrjW0z15Gxl2rguIQyyDVwqayBWETBtZeuw7EzSUwvZJo6TjUJJbNtmKcPeLbL517hZi91w4IQikGIDpS/GPbSyurzgo5u2AWjnBBJKIMEd2cVBQFbNw3gCBmZEKtEFwdwpRm4/rgKAaBecAQRINwMXFkAJwoCVEXsWA0cmZg0RvHv0ks1cK4LZbGEMkCTa5sxZHIm4mEFb9y+DgKaNzMxrcp94OyzxwGttAcWk0OQxrdBVfjijPNd+sooF3tbRmmYtvs9ORm43lkkCTrOdeGIh7dtHsD0QhZLlFggVoGuC+AWljWEVAmRUGnNjCSK6IuplIEjiADBJ7/lLpQAz250pgaOVrgbozjg7SkJZbkLZcAklFnNBAMQiygY6gvjonMG8NSBqaac8kyzch84c+IlzzZ5w8UQJNmt7dLy2Uz/VgK97USpGZabqSQTk2BhFF0XWzf3AwCOTFAdHNF5ui6A8+sBx6Fm3gQRLPjKcrmEEuhMdoNnVKwiSSBRGx60KLLYkxJKLvENBywDl8o62dJY2FkAvXbHOGYWsjg+uVztZb4YVTJw1imfAG7TpQDg1nbxRvDUSsCLblruIgHVwAWL4sz0uesSUBWR+sERq0IXBnAaBsvq3zgDcZUklATRAkzL7kj/moKEUvb8LaRIHaiBKxw/SJmU1YZnRkf6I72VgXNNTJwFB1URoZt2YPqPpvMtBOIRBQBw1UVjkCWxKTMTJ9PgbeTN9AysmaOe7TyA45klLf9d+mbgFns7gDPKXCg1w4K9hvuJMcZg2WtjAc0wC+6ssiRiy4Z+MjIhVoXuC+CWNY8DJWcgESIJJUGsEE238Af/53HseWW27e/FV5bLa+AAZ3LMZVbtwjALk4YgZVJWGx74DvWHYVp2z9QQ8s/J65P4eRuU4J838Y7lA7hoWMbrtgxj7+HGr/VKjbzN04cAVjoZz8r9EPrHATiTWkkU3O/SvwZuCswOxnfaDrSSGjhncWst3592H5jGx7/0RMn9OKjwRt6crZv6cWomFZh7BLF26KoAjjFWU0KZzBgkhSKIFTC7mEU6Z2Jqvjl3ukbI1aiB09stoaQMXFPw72qkPwIAyPRInyqjLAMXLnJUDALlEkoAGB+OIpnWG864V3KhtHzq36LnXw5BKGTrVEV06wmFcAJCKF76AtsEW27/AlK3ohtW4RwLOf+/lmWUp2ZSWM4YWF5BY/lugTfy5gz1hcEYkMr0jtkT0R10VQCXzpkwLbtiADeYz8wtUR0cQTTNXDIHAB1pHuuamIT8MnDtNzHRDBtifmJJAVz98O9quD8MoHdaCRRcKJ1Ho9qhfoWtIp0P4LiEEnAkes3UgJoW8wRwjDFfA5PQuZeX/FuVJbcHoyAIvlk4q4fr4MpdKAHHgGatspR25mzLayDIMcsycLGwc63xxROC6BRdFcDx+rbyHnAc6gVHECuHB3CdmDDkKjTy5tvaPTE2TAvxyNqXKLWa8gAuk+uNyYluWpAlwQ36+eQ6KNkRHmhHizJw3NE5qzX2GfwklCw5482cCQLkjZeUbCpvEUJOlKWUZODyEsqgnGPNkMxn3tZCkGOUubPy50u6R+6RRPfQXQFcPjAbrFQDl8/MUQBHEM0zt5QP4DowYdB0Z0LsJ8VyDCLa70KZiDoLP0HJonQDXP42PJCXUPZIBs4oarAMFBYe9DZniltFKmsgEpIhiYXrLaLyAK7+39C2GSybedoImBP7PfuKY1sghGIl21RFKvnO/OvgejOAY4xBL8rARdxFgrV7jSXdDFzw1VPlCxu83rRXVApE99BVAdxChSbenEIAF/ybQC9gmDbue+xYYOpHeoWOZuB00zf7BnSojYBhIRFV8mOh87BeCjVwPAPXG5MT3bRde3egYGKSM4Lx+dM5w80IcLh8OdtAgGDk5ZblbQSsiQOefeWNOzzbyh1mV6uVwMET800ZuLQTt85S6aEMHA/gAp6BY4zl22sU6j1JQkmsFl0VwPHArJKEMh5VIIkCZeACwtHTS3jgiRPUI6XL6HQNnF8POKBDjbxNG3HKwDWM7koonQxcr8iDdNNyMyNAIQOn6cHIwKWzpjuh5BQycPWf/7xerjhzzmwT5plDnn3lzZd5tqmyWBrAVWglwFh7v9f7Hz+O+x8/3tb3aBS3zlIurYFbqxk4mzG39i3oRh+WzcBY6XXhSigpgCM6TJcFcBpiYblEwlKMKAjop15wgYGvKK4F6+C1xHzSuX46IaHMGZa7wlxOSJFgWu3rsWUzBsO00ZfPwAVFBtcNaIYFQYDb0qVnXCiL+nMBxW0EgvH5U1nDlXRxeA1cIws2RlmQAQDW9FHAyJXuqEYgjp7veb2qSG4fOAAQYoOAEi7dydTBso03GG+E6YVs1ylA9LK64KDVWTZKOmu4Pe6CnoHjCxvF14UiS1AVsWcWuYjuobsCuCo94DiD8ZArtSS6Gy470imA6xpMy3YXQDohodR0y7cHHNB+hz8jH7DxGri1usLdDjTdhqpIkCURIVXqKQll8eTMzcAFJPh3JJSlAVwzEkrT5Bm4glTMOuWtf5M37oAg+jvMFgdOgiBAjA959mPp+brH1ChZzUQyrXfd86fQLD6fgQutbQkll08CQCrgNXCm5QSi5TXdsbBCEkqi43RXAJfSMFih/o2zLmrhuuSPkP73O5DbfS+Ylu7Q6IhG0SgD13UsLGtgcAxEOjFhyOlWlRo45/bTrhVybpASDcsQhOBMwrsB3Sz8brGw3DOry4ZpldbAuRLKYEyu01mjpAcc0JyEktfAFZuYmCf3evaTNl3q+/pQmYQSAISYN4CzU+0L4GYWsgC6r4cfHw9XGqmyCEFYuwtMPIATBSHwQY6bmS4L4OIRBens2vz9iO6lywK4yk28OW/NPIRLcRj23GswXnwImfv/HPbSdIdGSDSCG8BR4/WugTtQbhyJI6uZDTf3bZRclRq4dmfguGQypEgdMUxZS2iG5QbY0ZDcWxk4xetCGYT6SdtmyOR8auBCjddYlUsorYUzvqYjfvVvAKCq3vpW0SeAa2cGbnohA6D7FCB8PPz6EgQBYVVGrsE2D0FhKZ91WzcUCXwfOMNHQgn01iIX0T10TQBn2wxLKR0DCX8DEwBgtoWxXGlBsr04ifR9n4F55uV2D5FoELcGLgCTn16BG5hsHI011dy3UTTDrGpi4uzGSoSLAAAgAElEQVTTnjHwDJwqOzLAIEzCuwWtKHMaDSu9E8AZpS6UoihAlcVABP8ZzQQDPBJKWRIhiUKDJialUjHz+B7PPuLYBRDjw76vDxU18uYIPhLKTmTgDNN2a7C6gUIGrnCehVVpDUsoncBmw0gs+DVwptfcB3BaCQQ9u0gEj64J4JYzOmzGqmbgBFFCLjzq/YOWRvbBz0N/+WdtHCHRKLyJM2Xgugc3gBtx+jY12ty3UZwauAomJmpnMnAqz8BRAFc3ulEUwIXknulxpJuWZ3VdDci5wzMAsbI2AoIgIBKSG6uBK2sj4BfAKee/oeLrVUWEbtglGX4hNujZrxMZOKC7ZPzF9yWOE8CtzWssmdYhiQLWDUaRyhhtV320E6NCABePKD1zjyS6h64J4AotBKpLKBcv+7+RY4r3D7YF7effgHni+XYMj2gCqoHrPuaTOfTFVPTljT0amdQ1Q86wEK5QA8czHe2ugVMVkSSUDaIZtjvBjIVlZLXeWF02TLtkYg04k+sgBHA8A1AuoQQcGWVTLpSSCDs5A3vuNc8+8vk7K76ef4fF936/bB1LL9Q9pkaZzmfggO6qgyvcl4oDOHkNZ+D0/DNHgc1YoB1t/VwoAeeaS2eDHZwSwaNrArhaTbw50c0X4QvJm6GHvKt5ABxjE7qIugL+QOq2GoReZm4ph+G+cMGZro0PU9tm0A27ogtl2zNwrtubRBLKBinJwIV7Z3VZN0pNTIDONJxvBdxEobyNAOAYmTRlYiKLMI75yCeHz4XY56OGyeMuzpS0EvCTUM7VPaZGmVnIQhIdF81uaiHiZuDKJJTtXkxbLZIZHYmogni+nUuQe8G5AVyROyvgZL0tm63ZIJzoTromgOPW5oM12wiomLQGsW/rhyGt2+r5O0tOw5491pYxEo3BJSGUgeseziY1DPeFmnKmaxStrN9ROe02iOCr7m4GjgK4utGMQkPraNjJDlj22r+ODbO0DxwQPAlleQ0c4FjVNyLRK6718ZNPyhdUzr4BRQZFRRNa0VdCudiWZt68hcCGvFS8vB5vNfHPwK3dGrilfAaOt3MJch2cUSYt5sTzWW8yMiE6SfcEcCkNAoC+mI88sohISIYqizibkxG55Q8hjl3g2cc48lSbRkk0Ap/0UADXHTDGMJ/MYbg/3FRz30bhExKe7SuHB3DtWh0vrHRLCAdkEt4taCUZuPYH+90AY8zTBw7IT64DcO4UJJSlNXDM1DAsZxqSrvFMg6ov+i6IKlXkk0DRtV0UOAlqBFAjpTsyCyybrHtc9cINTDaNxp1xtOAewxjDD548gZmi2rpm8M/Atd+F8vEXJ3H0zFJb38OP5YyO/qjqLiwsB7gXnF+De6CQ9W5HK4EnX5rE4VOLLT8uEXy6KoDri6mQxOpDEgQBA/EQFlM6BEmBevFbPPuYR58Gs9emHCFIFGrgun/y0wssZwwYpo2hYgllG2U7PGCqWAPX5h5bxS6UakBkcN1CeQ0csPZXl92gRfFKKPUAnDvpfAAXLQrg9P27kPrG7+D9S1/DbfoDYGZ9k2c+UVUnX/D8TRzcCHFgfdXXq26Px/JWAj51cG1wouQGJpvH8gFcC55Bp8+m8R8/P4anDqysbVFxbS4nHGq/icl3H30Vjzx3uq3vUQ5jzK2BS0TWgoSyUiNv55pLteEe+d1Hj2LXM94aVILoogCudg84zkBcdSWX8gU7AalsxTG3DGviYMvHSDRGjjJwXQV3oBzpC3dGQpmf9FasgeOTvDYF+MVub0ExougWSl0onYnXWm8lwNtZKGUSylBAMnDpnIloSHYXQY1jz0J76l+BfE34FmEC2p7/qOtYPJiVJrymYNXMSziVejwKca+M0m6DE+W0m4HjEsqVP4OO5LMgS/l6/WYxTBuSKJQsVndCQqkZVscXYbKaCdNia0ZCaVZp5A0UFlFaSSZnus9ugiimewK4ZQ0D8co94IoZSIRc0xNBjUI+5wrPPsarT7Z0fETjkAtld8GbeA/1FUko27jqy49dKQMnSyIEoZ0mJoV+S0ExougGTMuGZbNCI+/86vJaD+DcrJMnAycGIvhP5wy3hYCdmkPusW969jEOPQqm15YAGhZDQshCmD3q+Vut+jfA6QMHeBdnfJt5tyEDN7OQwUC8EDS0woXy8IQjP+SO2c3i1JeWO506JhjtelbazDGUakeAUY2ltPNd9cVUqIoIRRYDnYGr2MibB3AtvkcapgXDtDGfXNmiAbE26Z4ALqXVNDDhOBJKzXWblLde69nHPLEXzKBVi9WEXCi7i/n8Kt5wfxiKLEKWGmvu2yg5NwPn3wdOEIR8YNWe88MwChNyVRGhmzZsmxxqa6GXmc/0ioSyWHJbTEiRAxH8p7IGYmEFzLaR+89/ALS0dycjB6OOfqmGaeFy9TUApdeL0L8O4uCmmq/nQXD5te3rRNmmDNzYYNSdaK+0Bo4x5tYhLawwA1feLB4AInmVQrsW1Pi9MNXhRZhkUQAnCALiEQXL2eDXwHkllHl5aIsDZL5olsoagbgHEZ2lKwI407KRzBgNSChD0A3bnXzKmy8HQrGyg+owT+xt9VCJBuATeGrk3R2cTeYQUiR3Qh5WG2vu2yhuDVwFCSWAtrpDaqYFWXKkSuF8EBmETMpqw6WEqlpoIwD0QAauyPSmmJDqZOBa2Z5mOaNjaj7j/m++BRKpdNZEPKJAf/FBWJMvV9xP3/8wmFX9tzQthtepJz3blfN3QhAEn1eU4mdiAgBivEMZuPkM1g1GCrV4K5Rpzy3lsLCsQZYEt3yjWQzT8mR5+f2pXTJKft/rdAYumc+29eczoYmoguUAZ+DcBvdlARxXebT6+y3O6J3tARmlbvSG23Gr8F8a7zAL+RviQL0ZuIRzM1hMaYiGZQiSAuWCN8A49GjJfsaRJ6Fs/YWWjpWoD9Oy3ZsdSSi7g/mkhuH+sDsBa7S5b6O4LpQ1Arh21sDxeia33s6wXPko4Y/b/kEudaEMcgPeetArOMyFFAmM+Tf5boasZuKTX3nSo0x4/9suxI1Xn9P0cdM5AxfHF6E/+72q+7H0PNIv7wbGXldxH0FL4ULZa9Yhn/+Gusaiug6zZTVwHcjAZTUTyYyBdUPRonGs7Bl0eMLJvl12wTD2HTkLy7ZrGq5VwsnAeZvFA+0L4PjvkM4ZsBmDWEcQ3gqKM3AAkIgoLc9SdZJKLpSA0wuu1SqF4nvufDKHjSOxKnsHn898aw+uvngMt15//moPJRB0RQbu9FlH6rFhuL6TczCfqVsskjLIF3pllNbpA7AznbfNJUof3BTAdQdzSzkM9RUWSRpt7tsouRomJoAjtWqXNKR4pZuPIQhmFKtNoX+e852psghJFNa8hNKoKKFsbb/CxZQG3bTx9qs24cPvvgQffvcluPSCIXz30aM4ObXc9HG1bBbXL/0QYLXHufT0A1UzisPJlyEJZfLJxAjEkXPrGkslF0o/ExOWXqjrmPXCWwiMDUSKGoqv7Lc7fGoJkZCMHecPgQFIppu/FjS/DFyovRJKfu4y1t7WMeUspXUIQsHkIx5VA10DV8jAeQPgWFhpeRuBTNE9l9ewr2XOLmZxaja12sMIDHUFcB/5yEdw66234rbbbsPtt9+OQ4cOAQCOHz+O973vfbjpppvwvve9DydOnGhqEKfzP9jG0foCuAGfAE4a3wohXmZRzBjMo083NSZiZRSvJFIbge5gLpnDSF/Y/XejzX0bRcsfu1Ijb/63VhgM+KEbtptFCrW5ZcFaws3Aqc7jQRAExMLympdQui6UiteF0vl7a84dLiG74sIRXLNjHNfsGMeH370DiaiCv3vgQNVzlDEb5sRL0F/cBetsQeJo2wzX4EXETW8wJG261LNNmzwKa+pwxfcZSx3ybJPPu6ou+SRQkKHWZWKSXgBroWyKtxBYNxR1x2GsMAN3ZGIRWzf1Yyjh3D8XV1AHZ/hm4NotoSx8/k7WwS1ndCQiCkTROW8SQa+Bs2zIkuB7HcQjSsvbCBRLKNe6E6Wd78O5kmur16grgPvLv/xLPPDAA7jvvvvwwQ9+EH/8x38MALjzzjtx++23Y9euXbj99ttxxx13NDWIUzMpjBQ1F64FD+AWirTogiBC8cnCGYcfa2ntAlEfxfI5ysCtPppuIZU1MFQUwEVUqa2yuJxhQZZET71AMaoilUwuWolmWFDKMnBUA1cbrczEBHDq4NZ6AFczA9eiyTWXkPGsBP/v377lEkzPZ3DvI0cqvlZ/9t+RffCvoO3+V2S+92no+bKB9NwU3hHZ79lfHDkPkZt+H0a/V5ppvPiQ73swLY2x7AnPduWC+uSTAPKTXHiubUEJA2q07A1tsGzrlDLTRRk4URQgSyK0FSwiJjM6Jucy2Lqpv1C+sYI6ON0s3Jc47ZZQFt/3OlkHx3vAceJRBVnNcjNZQcMwbV/5JOCYPbX6u+X3XFUR13wAx+eJi8vBDfA7TV0BXCKRcP87lUpBEATMzc3h4MGDuOWWWwAAt9xyCw4ePIj5+cb17BOzaWwajde9f0iVEAnJHjtfPzdKe+4U7NnjDY+JWBn8gRGPKBTAdQFzRQ6UnEhIRq7NfeCq1b8BXhMTxhissydgzZ0CYys7bwyzsNLdahncWoY7B5YGcHKJnGctorttBMqyI4qIjdIcrNkTLVkM5AFcIqqUbN9+3hBufuM5+Nm+M3julVnP66z5U9D3/bCwgdnQHvsWjOPPwXz6XqhC2bktSAi/5bchSDKsi9/hOZ558nmkv/NHyD35LzAnDrifzTy5DyLKAq/oAMSxC+r+jIIgQK2QXfc1MmlhHdzMvNNCgC/aqLK4ogzckVNOcLlt84Cv+qdRipUBHDeAa9OCmt4lARxv6xDUOjjTYhUXJGMRpeVtBPg9d9NoHPNrXELJn82LKQ02JV3qou5q/j/5kz/BE088AcYYvva1r2FychLr1q2DJDk3HkmSMDY2hsnJSQwNeW/QlTAtG1NzGVy5bbShgQ/EVc9NVBrcCHFsC+yZ0t41xsuPQip6+Lx0bA4zi1m87cradshrjecPz8JmDFddNNbW9+EriYmo6hYyBxnLtnHfY8dxw87NJQ+koOC2ECiTULbVhVK3qsonAWdlkU8umGUiu+sLsCZeAgDI574e4bf/dwhyc9+304w6n4FzsyjtXUw4dHIB0/MZvOX1G9v6Pu2kvAYOcAK41axdMUwL//HzY7jp6nPqdisuZmYhg6cPTuOWXzivogzQ7QNXtMLOmI3xl76FP+x/CXj8h8ge34HIOz8OQWzezGQ549wPizNwnF9+8wU4eHIB33jwEJ45VDARiUcU3Gb7ZcwYcj/9CmTbGygpl90Aacg5D9Xzd2LhyXsxKJX2gLMXJ2EvTsJ46ceQNu5A5B0fgXl8j+dY8vlXQRAaK5mvJI8WYkPA/ETpOFLzkMa2NHT8SkwvZrFusJDlc1qINL9wc2RiEbIk4rzxPkiik1lcSSsBvYoLZbYDGbhWy/yqsZTWceFgv/vvRP6cX27AdbybME27cgAXVpDOGmCM1S01rkU6Z0JVRKwbjLhtLIphjOFHT7+G11040hGDk9OzKew/No+b39i82VIl+L3CshlSWQN90eDNszpN3QHcZz/7WQDAfffdh7vuugsf+9jHWjKAnOVoX3dcOILR0UTtF+QZG4oinTM9rwlffTNmf/Dlkm3m0WcwfMtvQwxFMXk2jb+9/yXIkoj33bS9JZ8hSPzo7ufAANx8fWselpUIR5yLb3ggghNTSYyMxFt2U1sNXp1YxA+fOoktmwdxwxvrK+TvJrRX5wAAW88fxmh+cjM8EEFOtxq67oqp9TpbEBCLKlX360+EYZxOYnQ0gYXH/w2pfPAGOBkCcf/9GLnxg02NzxYEJKIqRkcTMPLnnhquPp6V8uf/9BxmF7P41Rsvbtt7tBs17JwrG8b7ADi/81B/BHNJra3fXTUefe4Udj1zCol4GB941yWNv/7FSXzvseN4z1u3Yrg/4ruPGnIml+Pr+tCfn1ymDjyGyEzhnLROH0Do1G7077y5iU+RPwYEhFUJGzcM+P79j3/janzh3ucxOV8ItsSF14DE8/4H9AnepNgANt74axBDzrWe6I/gAW07bos+V3lcpw/AfORLsCa9zbtHXv9mRBr87SMhGYIkes6Z2ZF1WD5Vum8UaQy06Nw6u5jD1TvG3feNhBQIotT0uXtsahkXnTuIDeudQGQwEUbOYE0fz7QY+hLhktcP5iWFktL8OCsxOppA6HghwylIrX+PSixnDYyPxN3327TkBL6SKq/avWQliLKIcMh/7OtG4rBshnhfxG29slJY/hm2abwPTx+awdBQDFI+gBwdTWAhmcO/PXoUEEVcsX28Je9ZjR8+/Rr+/T9fxftv3l5RStosuaK1VVEJ5vnRaRr2077ttttwxx13YHx8HNPT07AsC5IkwbIszMzMYP369Q0d75XjZwEAfSEJs7P1O3BFVRkT0ynPa9jo5YASAYxsYZuRw+Tun0C86BfxF/fszTvvWZicWqpan7MWmZ7PQJbEhr7rRhkdTWA6f/yQJIAxYHIq2fILvpMcP+WYA0yf9Z5zQeDkmUWIggBbN9zxM8uGYdo4M7nU8G8zOpqo+T0kUxpkUai6H7NsZDUTMxNTSD11v/cYz/4QxshFTq/HBslkDfRHFczOLiOdXzE/O59u2+93ejaFY2eWIACYnk66hftBY27ecQVOJbMY7o9gdnYZEoDltL5q5/6u3ScAAI/seQ03v2FTwzboc3lji2OvzcPOB6blLCw6+ywvZaHnjRay+x7z7rf3J9DPva6h9y9mZi6NWFip+F0qAD75/itKtp38158ADXz1ytXvxVzSAn8RYwxPaRfhHQMnENfnKr4ud8prXiKEE1gOb0aqwd9eFgUkU5rnc2qSd2K2PD0JowXnVlYzsZjS0BeR3feVRGA57R1HPeR0E8cmlvBL157jvr4/pmBqBc+BnG7BMi3P62VJxNxCpqXXGL9Pny1aDJie7cwzLKeb0HQLigD3/Szdyf5NTC5hw0C42su7knRahwj4f3+Ws5BycmIBIxUWiRplbjGLsCIhooiwbYYjx+cw3B92f9eXjjvX8sxcZ37Ts/n76MSZRV8FwUqYmkm6/33stQXEleDOF5tBFAUMD9dfSgbUUQOXTqcxOTnp/vuRRx5Bf38/hoeHsX37dvzgBz8AAPzgBz/A9u3bG5JPAsDkXAaKLJZIHuphIKH6amUFJQTFpxbOePlneOCJEzh2Jokd5zlWxkFuKNkMmmFhOWMgmdbbbuzC7dq55j3odXC8aL3VGvdOMbeUw2BCLeldxE2D2mZdXU8NnOrIrPT9Pwb0jO8+uUe/1lQ7EN2wvDVwbXSh3H3QkbwxINCW+1oFCWUmZ66KIdRSWsfB4wtYPxzFfFLDER8pUS14redCFfMJtw9cfuLALANmUUaYY88eh7041fAYOMsZw1P/Vg1r+lUMLVd2jCxHGt/maasjCAKkUBiPrftvUK+6Dep4/QoM+byrIDTR88yRR3vv++2sgeMtBNYNFibQlWrx6uHo6SRsxrBtUyFbOhAPrbAGzl9aHlalukxMGGPQD/wUqX/5n0j988eg7Xuw5nXJr2lJFDomoSzvAQc4bQSA4M69HBfKyjVwAFraSiCTMxANy27pQ7mRycSMs9jWqe+Tz3/aUatZfK8gJ8r6qHlXzmaz+NjHPoZ3v/vdeM973oNvfvOb+OpXvwpBEPCpT30Kd999N2666Sbcfffd+PSnP93wAKbm0tgwEmt4tXogHnK1suUoF/+iZ5t99gReeOY5XHfZON7yeqf2bS3UZjUCr4OybNb2QIRPlOP5iYoRUNcpDr+hZIMawCW1kvo3oFA43666i1xdNXASQiznBHAVYNkkcj/7esPBg27ahT5wbTYxsRnD7gNTbn+goBbpA45zoJR37+PEwgpsxtrmkleNZw5Nw2YMH7rlEoQUCU8d8DaYrgVfpCg3vipGNyzIkuBm96wzLwOm/0TCePWphsfASWV1975YD9oeb2NuIT4MoX+dd2dBROi6X/eVq4dVGUlLQeiq27Dpt+5C7Nf/BqHrPwAI1a9R+YKddY+1GFWWfK8332beqdYEcG4LgeIaOFlsOoB75dQiBAHYsrFQx+UEcM3NHSzbhmUzX8WDE8BVf74wy0Du0a9Be+KfwVJzYNkl6M98B9bpA1Vfxz//QDzUMRMT3iuvOICLhZ1Fw6DeH6u5UPKMVCsD5EzORCysVAzgTs04Lbg69X1m85+tHc+B4muUArj6qCmhHBkZwXe+8x3fv23ZsgXf/e53VzSAM/NZbG7AgZLjNvNe1jzFjtLIuRBHz/e4T74tcQxXv+OXcXrWWbVIZnorgCu++JczelMp8KxmIqRINQNuN4DLv4cRcPc/fkNJa8F88Mwt5bB1c3/JNjcD1ybnM80wa2fgZBFvCx8okTz7YZ16EcaBn0C99Ia63784AyeKAlS5fU3Dj5xaxFxSw3WXjeOJ/VNYzhhYP1z7dd2IblgeJ8ZofuKVyZl1t3tpFbsPTOGcdXGcv74PV24bxbMvz+DXbtgKpczJL5U1Kt7T+ISjmv27bpb25zJf21dxX+PIk1Cvuq2put7ljIHxofoMB8zJV3wn5y9Gr8U1b3szMvf/OVi2ID1SLrsR0vBm32NFQhKyRde6GOmDeslbIcgqco/+g/8AQjFIG5qr5wypku8iaaVecK2AtxAYLcvANbtYe+TUIs4ZS5Sc8wNxFamsAcO0POdgLXiWobwPHFDbFdjOJpH78f+BNe1tM2EefQayT78/jmY4xinxaGWnxEzORDgkNSxPrgSfXxXPz2RJRCwsu0Y+naLeeUstzHwfOD94cNrKADmdM7FxtJCBmy/PwOV7KHc8A9eG56hWEsD11ty8WVZdZJrK6Ng01ngAN5Dgdr7+P7Sy/S2ebVfIxxAWTfTFnId8r2Xg5opsaJv57JZt4//56lN4fP9kzX1zhgVVFt3MR/AzcM73FcReWDZjWFjW3Ca0nAjPwLUpgMvpFkJq9cl+VMjhzeGX6zqe9vS3Yefq1/nrhl3i9qYq/hmBVrD74DRCioQ3Xb4BQHAlQoDzIA2V1R9E8xPYTktDp+YzOD65jGt3OAX61+5Yh6xm4sWjpXVcj+ydwEe/+BhmFirIcN0MXOUAzijqz8UYg/naCxX3ZcuzHrfjelnO1i+h1Pc+4NmWkgfxjy8PYNqIIfqeP4V83pVYlEfwOLsSoavfW/FY4ZDsO/FStl0H9epf9X2NfO7rIYjNBeyqLLqy1GKE+KBnG8ssgPmYsTTK7ELWaSFQtABRaRy1YIzh+GQSF24qXfgqtBJo/BlaaFXRWAbOWjiNzH2f8Q3eAMAqc/UsR8s3D49X6FVmmBb+8G+fxM/2nan1EerGT0IJ5BtedzADpxvOZ/v5iyv/bKZlQ67UB86VULYwA6cZiIVlhFQJ8YhSMoczLRuTc/l65Q59nxk3gGufhDKkSCvqs9hLrHoABwCbRxu3Px2I5xtqVnggK1veCCilE1bR0mC8utu9ofRcAJcsfFdLTXz2XL4Z9Nk6+pE4k3fJlRuslRq4IAZwOc2CzZgnOxEOtdm6uo4auI3TjyEklH2nkuxIu8qxTJgn9tb13qZlw2asxBK+3hqTRjFMG88emsGV20Ywku+zl8oG996i+dTo8NXldgX7ldh9YAqCAFy93ZELbj9vEH0xFbuLZJQTsync+9NXAVSucXMzcNUklKbtni/2wmmw5bNVx2YcaVxGaZgWNN2qS/1gZ5O+2bfoG24DE0Q8dWAKYt8YIjd+FN+N/1fsCV9btVYtosoVfz/1db8EZYe3V5xy8ZtrjrMSlWrPBDkEhMqe+YyBNVHnWs5iWvPY0ytyczVwmmFBN20M9ZUebzDRfC84t0WHTwYurPoH2EzPIvvQF6qej/bCBJhd+RnLW7rEKgRPC8saMpqJIxON15dWgs+vyhcr4lGlZIHLzi1D3/9jaM/8G6z5MnvSFnD6bBrpnImpOf/FnUYwTBtKlTYCAJBq0RzBthmymuWqH4b7wiVzuOn5DEyLYWwwgnTWgG23vz45o7UxA5dv9TE2GFlRm45eoisCuI1NZOD6Y9VvooIShrLlGs9248BPEFIkqIrYVBATZOaWcu7ErJnglcvPjDp66mi6I5/jAVwzK6DdhCuhDKA5BW8GyifhnHZKKG2bQTdthKvUwNmZJQxNeSfByva3Qr3krZC3Xe/5G1uqr/7JlSoVvX+lvlQrZf+xOWQ0E9fsGHcn5kHOwOmG7QnguC12J018GGPYfWAa288ddCfNkijijdvX4YWjZ5HOOTK2v3vgAC6UTuOt4QMe2TyHTziqmZgYRkFCWU0+yTGPPQNmN/Z98POingycNenNTAuJUfTteBMuOW8Iuw9Mu3Wh6azhTiArEQlJFRdrBEFA6NrboV55KyApyDEFL/a/FfL4tprjrEQ185B2GZmUN44GgJDSXAaOBzrl32t7M3De78s4/ATYsrexewmmDrY8U+V9nQXVSs2m+WeZyNdUtYKljI5YWPaYfiQiqnsdMFNH9kd/De2pf4G+7wfI3P9ZWHOtDeL4Z2rFPdmw/OsXAUDJK45alYHjwRK/9w71hUrKYE7l5ZMXnzMIhvb392OMuQvY7egfy5/ZY4MRqoGrk1UP4BJRtamGfYosIh5RqqZa/WSU9vwErNMH0BdVe64Gbj6Zw+axOAShufo//vD3cxYrxzGwkN0V7SBn4EzLRjJ/8w9iBo4/sMt707RTQsmliqEqGTjz+B6I5RNgSYV6xbsAAPL6izyvsWtNZPLwxr3FGbiQKrnuqK3kqQNT6IsquOS8QceURZECW6QP8HoZ/xq4Ti5gHDuTxMxi1pVPcq7ZsQ6mxbDn5Rl89z+P4pLl3fjv8YdxW/Q5bHrub2AcftxzrHoklHqRQYF1smrfJg4AACAASURBVLJ8ksNyy27T+Xrh50U8UvuZZ53xBnDyOZdDEEVcc8k6nF3K4dXTTtYqnTVrZvWcGqvK17ogigjt/BUkfusf8GfZ/4rjg94F0EZQZRFahft+u4xM/AK4Zl0ouZtg+ffqlm80IfOqnoHzl1Aarz5Z17GrBT5cFh0LK0jnDI97N78uJucyMFtU7uD3WwBOBo4rFIyXf1a66GLkoD397Za8P2ditnUyw2qNvAEgFvGXqDZD+cLrcH8Yc8mcu2gzMZOGJArYmpf4ptq8aJjTLfe8aaeJydhgBMm0DqtKRplwWPUAbv1wY+0DiqnlBiWNngdp3VbPdn3/LvTH1B6UUOYwMhBGItrcZ9fcAK6ODJzhyOfkNRDALeXPsWhIdlfFgkRhJa80A9dOCSW/wVcL4OyzJzzblEveCjHqWHYLiRHva2rI2jiFle7SDFyra+AyOQMvvHoWV29f57ZoSJRJhIKG7lcDxyWUHVzAeOrAFBRZxJXbRku2nzeewPhQFA88cQKP7z2Gd8ZeLPm7tvvbnsxYNm8O4ZhP+N+L9Hzdrp1bhjXzqufvZ6Uxz7ZGZZTL2QYycKcPerZJG7YDAK7cNgpVFl0paTpXRwZOleteOTcsrLhHakiRoOuWr3usv5HJygI4mzEsZwz0lwUNiuzfzqAW6QrKBSerJKxMQumbgfNKKO2ladgzxzz7Sj6ZUbtKHZyuO4ZO8YgCxryLdjwYtWzWEqkh4ARw5b8FACTyMk7bsnzdh62Jl2rW9DVCwehj5fM9w6rsQgkA8XBlkxiOdfYkrKkjYKz6Oek+t0MFCaWmW+7xJ2ZTWD8cddUJ7V40LF68bodqRzMsiIKAkb4wGCu4mBKVWf0Ark43Lj8GE6GaWln5sps826xT+3FOKNlTAZxtO0YWw31hJ/vYxMWh5R/+9chR3Bo4iQdwwXWh5A/qDaMxGKYduM9SSUKpyiJEQWhLBo6vJFeTUFpzr3m2yRsvcf9b9AngatUlcQoTpTIJZYuD1T2vzMK0GK69tJAlikcULAe8Bq48AxcJyRDQOQmladl45tAMXr91xON6KQgCrt2xDgvLGt40dBYSK/1NncxYoXaM5dsf9OWDpqW0/zPDaTshwXrtRaA8QyH04xn5au84TzzfUI9CPomsFcDZ6QXYS+W95gTI6x1HyEhIxuu3jeKZQ9MwTMuxG49UNxsJhyTohu1Z2X7+8CyeOlD6XtXs0utFVUQwwDejI/hIKFeagcvkTFg28yh6VEWCzVjDmSVXQlmWgRMEAQPx2nMPPwyfhSVOWJWgFWU5AP92FeLQZshbf8GzvVoApxm2I6Gs4JRYvBDOpXmNsJTW8S8PHy7J0FfKwCWiKkyLIXt0T0VpqLF/V8Nj8IMx1lKr/doZOKWilJFZBrI/+Qoy/3EnMg98Fpn7/hysQpsSoFg5UwjggIIT5cRsCpvG4kWy/fY+c4p/2/Zk4BzTsYEV1Jj2GqsewI2PNN+xfiCu1vyRtbFLMWslPNuvMPf1VAC3mNJg2QzDfWH0x5TmTEyMBjJwuoWwIrkPqiBn4Pg5tnHEWWwImoyy/EHAEQQBkZBU1bq6WXimK1zBhZLZJuz5057t4si5hfHFhgCh9BbFcstgRm0THb7irrRZQnliMolYWMZ544V7TCKqtl3O0k40w/JkTkVBQCQkd+zcP3B8HqmsgWsuGff9+/WXb8CO8wZx0/oKE8CizJhhOoY240OO2qOSasOxhRd93Scn1C04ZGyEECqr17Z0ZO7/s7ozBvy8qCV3tM4c8mwThzdDCBfe/5pL1iGdM/H0wRkweAONciL5a7F88vXg0ydx/+MFGZttM9iMVTRrqBd+79f8mnm3IQO3VMH1kMuoG83C8fum3281EA81JaHU3DYC3u+2L6aCAVjOfw7GmG+GV9l6LaShTZ7t1QxA+KKM65RYdh0vpjQM9YUgS0JTdXCHTszjJ89N4J8eesXNuCYzum95jNta6KXKvT+NI0/BzqzcUGUprSOVNaDKopv9XgmmVdnEBHAWSf0klIzZyP3nP8A89oy7zZ49BuPgf1Y8Fr/X8sz6cN4ga24ph1RGx3xSw+bROBK8OXonM3DtCOBMx2hnIN68RLnXWPUAbiUZuIF4qKZWNpk18bPcds/2czIHwHLJjjj3dAPzefei4f4w+pqUj/KLtt4MXLgkAxfkAM75rjbkA7hOGjm0An7jjYa8E5FIqH5ZVSNoNSSU9uIkUCZzEyJ9ECIFy25BlCDEvc3U6qmD41nSUHEAp4gtl1AupnQMJsIl/cA6bZPdajQfExPAWQDIdKgP4lMHphCPKLj0Au9EH3DUFx//L9uhTHtlhgBgntgLpjs9wfh9a3zYuX4rTQx000ZYBsxT+z1/m+/bhsWsBXmLNwvHls8ic/+fV207wEllDQjwGmOU41f/xuWTnB3nDyEeUfCT55yJe7zGMcMh/5rX+aSGs4s5N0PFW75UskuvF34O+TpR+mXgVhjA8cCnryy7WVhEbOzaT2f9lQuAUwfXjIkJH4NfBm5dvncd72Vnzx4HS5abNgmQt1wD0SeAY8mZiotbzuRYLDSbLrs/cXXO+uFYUxk4frxnX57BE/unYJgWsppVIQOn4FxpFtLZKm04bBPGwUcaHkc5PBjduqkfmm6tSD3DGINhVm4jADj3/vIAjjEG7al7S4I3jt+9hsOVM+UZuLlkDicmnd6PpRm4NgdwWnEA1w4TE6dX4UpcXnuNVQ/gxgZXkIFLhGpqZZNpHU9rW2DLpe8jMgvXh15p+6pFt3A26TwUhvryAVxG961NqIZbA1ePC6VR2kYgyC6UiykNkii4D9igZeAymgFBKEzgiglXsRZfCXzSXKmNgH3WK58Uh8/xNEZuVkap+bpQyi1v5L2Q0twHDmct1MD5mSxEw3JHFi+ymol9R87iDdvHqsqVzFMvAlaF79nS3ZYTfLLBM3CVpG+GaWPcOuNtKq9EoA9twXJGh3zZOwHF55ll5JDd9QXohx6t+tmWMwZiEaVmQ2HTJwMnlwVwsiTi6u1jeG3amaTWklDyDFy2KONuWjYWlzXYjLk9pvhi24ozcFXu/WLMpxfcCiWUbuPoChm4SoYqlUhlDaiK6Nusux71jx9uba5PEDDmBnBODZpxxGteIm24GGJ8CIIShtDnrcmsJKN02whUlFA697FNo3Gczpt+NAK/L2zbPIB7Hj6MIxOOrLiSiclbwv4LL8UYBx6pKjGsB25gcvG5zvm2kvuyZTMwAEqFRt4AXJfP4rmV8eJDFbON1szRiu0fMmXKmURUgSKLpQHcaByKLCKsSh7VB9OzyP74b7D8rf+BzAP/34rrCrmEsl3teBwJpYS+qApBABaomXdNVj2AW0mhdK1ecIBjZatDgXHBmzx/uz70CpaTrbPN7WbcDFxfCH0xFYZpN3wR5hp1oVwjfeAWljUMxFV31bxTWYhWkcmZiIZkiIL3wRMJtedm7JqYVKiB86t/k4bP8WzzC+DqMTLhK62lEkonA9fowkU1FlOaex/iJKKK00OqTU3D2wljLL/44r0vx8JKRxYv9h6ehW7auLaCfJJjHttT9e+8foifiyP9YUhiZfMJ3bCw3vCpy9x8KRIxp7A+I/cjcvPve6WUAMAYtMf/uaobYD1NvO3lWW9tkCBC8nFlLXborCmh5KZFRQs2C8sa+NXAMz9mizJwroTS5/7i50LJMotgueafx+USSuPEXqT//U5c9MIX8Eb11Yavx3TOqCh1HYyHkNOthhe/NJ/aXM5w/vycWciC2SbMo0979pEvLDiD+ssoKwRw+cmxn4SSMYbFlI6BeAibx+JYWNYaVhCkswYiIRkffvclkCUBf/99J0Dzk1D22UlcoXqvs3KYloJxuD4HzkqcmklhMBHCeF7ptRJlRD3XRSyswLKZe88xXn2ququmkYO96C0lAJzfSBIF9xkqCAKG+sKYW8q50n3+7HFUH4WAhzGG7MNfchaxtDSsqcPI/ezrK3r28Xv/UF+4bX3gVFmCKArojzW3QNJrrHoAtxIG67Dz5dm50GXvAITSm2Zc1GAebbwZaxCZW8ohFpYRVmX3ptpoKwGtzho407JhWk4PMDeAa5E18WrgTNJDRVbqK5/E2jar+jBxjAlaZUdseurfOJFQezJwhRq4Chk4nwBO9AnghMSoZ5udrC2h5IsMoTITE8Zat5hg2TaSad3TOLiSTCkImJYNxvwD7065sO4+OI2R/jC2bOyruA8z9ZqSRev0AdiZRXeyEQnJ+dol//uebtoY0bwTYGnjDjcoSGZ0yOsvQvSX74A4sMFnYBb0Fx6sOKZURq+j/s0rnxRHzoOgejN/F2zow9iAs71eCWWx/Iln3YBC5sfMXx9ylUxDPbgSSh/FhiCrvt+fNVNFVleDZFqHKAiIRRTYS1PIPfxl2HMnEcpM4/b4k2DThxs6XjprVpS68mu+0Vpyo0IGzl6chP7o3+MP+nfhvJP3Q9/7fbDccumLJRn6hivcf4pDmz3Ht33q4GzbMXApzsAV35tyugXNsDAQD2HTmBPoNFoHl8oZiIVlDPWF8YGbL3ZLNPwycJETP4colAYSQqQf8pY3evbV9++q6dZYjYnZFDaOxtxFk5Vk4OrJTPMseDprOPeen3+z5nGtKa/jLeBIFiMhuUSVMtwXwlxSw4kzyXxLKOdviaha8tnMY8/COn2g5Hj27HEwjzFS/WRyJgQAg3G1PRJKveB+7DjMUwBXi0AHcIWGmpV/6OWMDkkUEBsahXyh9wYRPbmyFZ6gMJfMuUWw7mSkwYePVmcNHLeYDasyJFGAIATdhdKZpLsZuBYEcA/vOYVPfOUJnD7rlavYNsNff/sF/MU9e1f8PoATcJb3gOOE1crNfVdCNQklY8w3AyeO1JeBY6k6JJQ+tSYh11ShNZ83mTbAWKEvFIf3+AqijNJPesqJReS2B6WLKQ0HT8zjmh3jHjltMebES0AteRVjMI8+A3NpGrdE9mLspX/C1ZETvs8Lxhhs08CAdsbzN2n9NtcOnd8zxb4xRG/7U0ibLvWO7egzsNMLvkNyMnDVe8D5yycv9t1XEAT8wqXjkESh5nH9JJTFjYFn5p0MHF9sa4ULJVBZsSGt2+LZZk37T2brIZnWkYgpEAXBMf8ocycNHft5Q8fjQYkfPPNRrTG8H3zxs/i7NV97AenvfRrmq7uxWZjCttyL0Pfe73ntmdAW/Ok3X3TPX786OD8JpduTU5EgiSIioVKjDX68gbiKTaNOZrnROrjiPoQ7Lx7Dm1+3HgKc5tPFMD0LduQxz+uVHW93+3+W7L80BfOot3asHkzLxpmzaWweLaoTW4E7sGk5QWfVGrhwIcNpHH689j0K8G1ZAjg1cOXn33BfGHNLWZycSrq/FZCX7ed/U2bkoO2+1/+9fJ679ZLJOQFlJKy0KQNnu8+dagttRIFAB3D1aGWX0joSUeemrvq0FIikT8OaPdHGUXYHc8mcWwTrZuAaDOD4qkutDByfIIRUCYIgQJHFQEsoF5dLM3CtyIzNLGahGzb+/oEDnuD2h0+dwCunFjExm27JSldGqzwRqdXct1l4ywm/QICl5wGtNHA1BRlin1cy55uBq8fExM+FsoqkqxmKJz7F8NXeIGbgtCrS18FEGMm03tZr+ZmD02AMuHbHuqr7mce98kkL3jHrz38fG5+6CzdEXkJ4ch9uNn6Mc5ef9+xnmDY2y3OQWJmxTjgBsX+976KXoEYRufGjEMJlLsfMgvHSw77jTmUqy/KA/OKGn4FJUXuNcn7p2nPx/35gZ8UsO8eVUBZn4PIB3PrhKKYX87VXLauBq2xiAgDiugs921YawPXnn23W5Cuev4dmD4KZ9T/z0tnKv1WzVue6YUOVRQiCAMYY9Bd3IbvrC0AdzrrP6hcgmTHw9R8egs0YpGFvBs6aO+WRyeluAOf8nrGwXGIJzxVMA/8/e28ebsdVX4muXeMZ77nz1XCvZtkaLM+DZIbYBmNjMARCEgg0wS8hQ5Nu0t3pDLwkpAmkk7yXl6TzpZMAIWGIQwizMeABLINtybMsW5atWbpX0p2HM9a83x91dp2q2rvOcAfLVrO+z99nnXvmU7Vr/35r/dbK6ShkNeTSascMXMWwIxLeD7zlUvzhh67j1AnO6Wf5zypr0HbcArlvnfA4Nx79IrzyTEfvBwDGZ6twPYrhwdzyMHBuOwwcW/stOAIHUVLgr3HuhJh1rgoar31dKRSrNgzLxfBgo4DLpdVgBs569p5ER1eR8qVdVEwbmZSygjNwjfianvxPGLh28Jou4NrRyoazSOT+9ZAGNnH3sVsMnl8MmA0XcItk4IIYgVYMHMsAq7MvmiK/Zgs403ZRNR105zUosgRNlZZFQlmu+tbGo5NlfHVvI6j12NkFfOuRUxjo9n8rEUPXKdgMnAidhPt2AsN2ociScMbVnT7N3TavDIBI/H2FM3DF6ZZafibbCgdSM0fM5WLg2MZHZGICrHwuz0rACphL/rdg3fS5UuvN5mKx78UJbFiVx+q+ZHdi6jr+RjCGw938nDM1SpBiTMwb6eOBQyWD5XjYrExyj5dXXQJCSOKaSRQN6o5buMdZh/dyjoCU+rLpZjNwtDjBb74kGfLQ1sTHKLKEdUN8VE4cbD0Ox4bMFg10ZX3mhTFwAdOw5BgBZh4iPt/kQUEBN3Uy0dShFYpV/1pPXUcoxZRcC85YsutfHBXDSZwrbEf9I4Ll+JtU6jowf/zPMPf/K5c5KISWwWOz/RjoTuHQyVk8+OQoSH4QkGOsq1Xljp/43F02raJcC81BskZUXgchBCODucD8o12Ua9EmoSJLWL+KPyZFjRd1641BPIZ2+e38k5sVGA99puPjggV4jwzkkE2pIMCS4l2CxkazGbj68eJMn4E3x8+2pd/0a9xtdGEcXlwuC6aciTFwdRUV4BuYeAsTMA98Fzvtg9CNKXjz47AOfj/x/S2VgWsUcCvhQukFrtHdOQ3lmv2a3Te+UnhNF3BA6zyWeJikuv2nuPvYx/e3lS31WkXVsFEzXfTWC7h8EGi7OAkly1VKApupYl381zIDt1BudCeB5TNyKFUtrBvK401XD+OBp0bx/IkZ1EwHn/72IfR26fjIu3YB6HwWQYSmEsp6uG+nIbetwGIkRBB1AaclnmkDAJIpAHKs+LRrHIMXh2l7IIhuQtnxuFxZcPOxY4PhlcrlWQmE5VZx9Ac21ivTGT03XcHp8RJ272xuXuKefRGw4k6RKZzt240xl4+diCNLTFQPRDc5tuNhsxK3bPcLOMCf/1NkggVBUa7ufBN/jFpV2C9HpWI10w+azjdh4BwR+za4GUTVBffuDClNBkHUxGRmwUBfl46h3jSmF/woAZEB0GLQiBEQry1Sz2ogPtdnG/DmFueWx6713vSpRHfSVsY3DJRSVGp24gxcWlega3LHMi/L9gPSzX13w37p4fYfN3IdDIfgzhs34qqt/fjqw8cxOlWB1LuWu298Ds6MzQPn0mqUgasrmJiSYHggh7PT5Y4ilpqxlQzUNoS2+eHRFnl4F5QN13D3cc+/BOtg8mypCGOTFcgSwaq+DCSJ1AvXJZiYBLOhzSSU/jqQOfc09zdpaAvk/g2QevjZT0/AwokklGwPRwiwmk6g8u8fg/XEV3DZ1PfxO7lvoPK1PwC85OubyP25XVQNfyY0pSkwrOU1AwMazQ0gNGP6ExauKS6OAq4ZA1dtyCoAQN18A6CmoneyDdgCx6eLBdP1QfX+evdGkf08mGKH3agwbd6sIKuZUQZOlV+7BRybcWCSmeUycmCd+J+9eTPWDmTxj/cexufuPYyZooEP37kDw4M56JqMscnlYeASJZQJ4b5LhdlhATcJ8cabEAkkJ2DhWszB2Y4LVZUic1Ts/VjL9FnnyhYI4Z3WMroCQpbW7b1QaCah7A0Fya4E9r84DkKAG7bz9uhhiLr4yroroKd0PGlubOu13EP3g4aaAJZtY6PCS3Pl1X4BR4g/YyZSLUjpLqhbb+Rut56/P8IasII+14SBc8/y9upywvxbpyCEIBXLfZwp+vlfg92ZIEpg+Ri45ow3IRLkweWZg6OUYqFioyurwTmfbFbinDkAmhQ9EYJhuXA92rQoie89qFWFM/p80wBqy3GxSi0lZpy5g5fiUWMrLK07uE3qW49TQz7LOzKYw4feug25tIp/+PYhoLu1EyXHwMXCpudLJtK6jFT9WjA8mIVle5iajzVJEuBRGmzum8E5w8d+kFQ+aJIA9WP0jXeBZLrjD4f15DfgTp7gbk/C2FQZq/uywXHsx7ssZQaudQGXTasg8NAzwxsssTVCyDwLjvmqKZBQ1tfg1X1Z0IPf5ou1Fsc2rS0sOiC9YvgSyrTmm4G140beCfwYgToDF0iUX3sqllcSr/kCrqdJoCallGPgiJqCGrLiZbiYZZQsQoB1bwAsKsw7vMlvNgcXNjEBAFVdXAF3eryE7zx2quPHLSca3cl6AZdSlmUGrlTvWGqqjF+9cyeqhoOnj0zhzhs3YOtwNyRCMDywuFDVMCzbheN6ifMxgTPdMs/BmfUYCRFEMo7zNJk5Ecsom8/B+bMm0ddvbCiX58IzXzJRyGpcppckEWRTqpCBe/zFCTxxmGd6Xi2Id+vD6M03gmSXG5RS7D80gR0belHIJbNN1DZgiwq4jdcipSt4xtzAuQ2LQOxaRGrkzJxFRoqth2oq4ozqr5nic18VzFfT0hSc0w0jIjZ/w0xuuPt7DlyBgUk8wHspSOtyIKGklPrS+kIKQ72NDLLlMjHRAxOTxrXCtFz8y/1HAiZEbjEHd36mgrsfONLW3LXjeujKaHDH+fm3AFZNWCTHwRiqpMYX4LvxMfmhO34U5S9+FLXv/QUqX/ovqD30GXiCXDvL9nAFEReo6s43Iff238LXjBvx0PrfQPa9f47Me/4YmXd/HKdnXUiEYE1/BvmMhl9++w6Mz1Tx3EyKex5vJlrAcTNwMSaKuSwzBEYmbao/qoYDitYxFqLGy0t0A/7m64fwv756EPfuOwUAIKkcUjf/CoCYiRF1UfvhP7Q9xzg6WQ5cNQFmtb/0GIFm54UiS9ienoLuxCSRRIay6ToACcd8TPJL60VxfPShN6+DANi8Ki1cK9rBYufgqqb/flgjdDlHLyilkfzRxUqU/0/Da76Aa6aVrZkOHJdyVrbq9pu4+3pTJ4WzORcD2IYrrJ/uyqidu1DabTJwrIsfZuAWIdF7/MUJfP1HJ5rKNVcabAHpqctLsil1yTNwlFLfzKDeiR8ezOH/ets2vPGK1bjzdRuC+40M5DA2WV6SVKEShIGKL66ZwNhgeRk4w3aREhmYmBUuiNsDwWkz2TJeEhiZtArztmw3Mv8GhGaA7PZ/P0o9/z0LfoP4xieMfEZFWdDt/c5jp/DgU0sLVF1JWE1yqlRFQiGrrUgBVzEcTC8Y2LmBzwcLw375x4BVjd4oa1BGLkdaU1CkGdi73hH58+nMThx0+dln64UHgtkTMnWU+7s8uBlEanwPhSZNL7lnLeSRy/n3e/C+4P8ZI5s0A+eOvSiwjleFLNViEZ55LVVtWI6H3q4Uhnr8kPOJuVogFVuqiYkiSyCIduoPn5nDD54Zw0unfZdOcQHX2Mw+c2QKDz49hq881JyVC0K8M3JLBk9USMRRqc+INStK2PgG9VzUHvqHEPtB4Rx9FJV/+12YT34tMp5h2Q52gGcItSvuQOp1/wGKoqK/O43J+RqkrkHIvSMgRMLYZBlDvekgVHzHhl5ct30QT4zz74+XUEavx7n6GAC7rjKXZYY1/VkQ0pghawVW7OaaBMknxX4876zHbMnAifNF3PPYqWCdVdbugHbFW/nnKU7AOfFkW+9prmRiZCBq9LEUWXu75j7X6ye52+SRXZDqZkdC857J46AhNs20fQY43kBQZAlvunYYb9lgAm7r69gc5ecQFzsHF5ZQAsur2rEdDxSNudnA5fUnBVxTXAQFXLJWNgj2jEmc5P4NkPrXc/e3X3zIt7m1akvKHnm1YaZoQJEldIU2Doth4EzLCbKBmhlBGIIZuMWEGrPAbHuZqfpOMF82oSlS4OCW1pUlz8DVTLc+C9M4LnfvWIUPvXU75JCRx/BgDlXT6diqOgwm90zqJKcE4b4Alnz8G5YjZOBEF4+q2ovpMk0sVMkiwrwtxws2OwytZnLicM6+iMoXP4ry5z+C2nf+lLOGb1rACbq9HqWYnK/CfBUHwZuxbn0cfYXUikgo2VoUd/QMg3oerOfv525Xt+wGUXWk62xyeeMtyLz7fyB10y8j+/N/hke77sBesgeQ4rOUBuznvgcAkKf5GRQmn2TIZ9Sm2ZkiAwZ34mggaWMW5kkzcPYxPtJGWXcFiNI8HqATpHQ5WJ9ZId7flUI+oyKlyZicrQXNtqUGeRNCoKlyJAeOzfSy9UYe3IQ400KLE/BqRQANBcQPnzmLA8eSz3l2/PTRuZbzsfapZ0C95mt4OShKmhRwdfWPfeIpcUPJtWA9ew8qX/kY3Hk/nqLHOo8CLcbuSKBedmvwr6GedBCqzjA2VcbIYDQ8ftOaAo5V+EB5b/58RCYaSCiVhokJReM38NexxjGmqzKGejJtG5kExW4TCaUw9kPP4kN3/TT+6K7rccfu9bBsL7Jmate+G1L/Bu653HG+2RIHO87CTo3xrLRO0TgvkuNNqGNhh3SKu13duif4f6l7FaBlondwrEgEBNtjpAXX7V948yUYcVqTDfLm3dhb4+XXi5mDsx0XtuMFJiYAltXIhBnjhec0FZn8hIFrgdd+AddEK9ssTFLddhN3m/3SXpT/+dfr/30E5jPfXvZBzQsBNqgengfqymrCgfxmMCw3MGjoZAZOUxbHwFXrUp8kF7NXAvNlK3DnAvxCqLrEDXiZbeSazMIADSlLu51QEZjcs5kLJdBYjL3yDKr3/CnKn/0wA90J7QAAIABJREFUKt/8BLz584t6XdNyhTI8kXyjll0D03YTO3oiBq5VlIBvSRxd3vTgwtP6eHLnzqH2/b8KGBH3/MuwnvpG5D7zZYtzoGTIxTYLXq2I4t7P4w9yX8GvuZ8XFiKvBlhNTEwA38Z6dgUYODabIlqrGZzTz4AKfncmX2TNCMNyIfevh3rJ6yEVhmCYDmytIFReWIcehFddgDYnKOBWRQs41vRKuibIa7ZDElm71+VRDQaO/4zUNuCc4nMfldDGbzngM3D+b8wK8d6uFAghGOrJYGKuumxB3oDfUQ83TNhaxq4RRMtA6hEYcdRZuPmSiYHuFIYHcvjcvYcTTQ2CBkC1DRWNWYF7ronMEghmxJpJKLtzOhzXhflcsusf4Mem1L73l6COha22QCK7djukbE/w78GeNCbnasFxVjN9djqc+wUAIwNZVGkKjh5TL1AP3lwjz9CKyaLDYd6UUr+Ai61jw4O5tg20WNHVjK0UsWbK+itB6k0V5pA9GzJIIrIC7eo7ucd583xWYxys+IxnpZWr9qL3dGw2tBkD55w5AB28FFtZ3whgJ0RqmYHICrikorh6kmcz/71yPV7e+F5o174LqZt/Bea1H8SowysaFsPAVQMljyJ0s10q4soPQkhLg8Kf4GIo4OodcBHVykw6hAXclt1wpSadTbsG66mvw3r6m8vzRi8gZkMh3gxdGQ2m5XZkqW7absBmNmMxeAZucTEC7CK/GPZuucAy4BgyKQU10+3IoSuOxixMqwLO1++3O4sgQisJJWMtWHaf+eiX4J5/CaAuvMkTqD3wt4ti43wXSn7zI7p4eAV/A5fUbROGebfBwMVn4NoN8qauDeOHfwe40Quxferp4OJvO363OIkxYsGq1LFgHrgXlS//NuSje1GQasiRGsx9dwsDmy80mgV5A/Ug2aIZyK+8WhH20cdQe+jTKP/rf0f5y7/tN77aCLANY6FJs40hLEdkkEd2Qa478WUS2GTmiKpd9XZAjp0HjoXafX8FxYyxIpLMSRcLGQ2uRxMl1IQQKCNXcLezJkipZkNVJGFEg3PqGSA+26NnoQhkmUtBSleC72c2Jq0f6vULh8YMXOtZwlbQFDmyfrO1LGwEJdzM1sON58sm+gtp/Oo7d8K03SADLQ7GjKYXTvFvQhAI30pGWWmjKOnOab7xzQwvmYuDlqZgHfgOLvV4eae6JVqkD/VkYNpucE6cZcVIjIFbW/93SeNNf8IyyriEkn2mSs1BuWbDcSmnJBgZyGJyvtYWy1JpwVZS14Fz5gB3u7rx2uD/mcHadIzdlwXFvTt3tmURNjpZRi6tRtbnfFqFRym3PrQL5s7ajJkWZb8pG68FUaLfb6vZT/adimbXvfIs7KlR7vaD9gac0S+BfvU7oW69ETNlG2fdHu5+dGGiY9f1SriA05dfQtkw2ml8t75J0E9MTJrhIijg/BNUVKk3Y+CIlkZt9VUtn9965luwXnxoie9y5eC4XsvB3OmiETEwARrfSalNGaXjenBcGrBGzVixmuWzH8zcQVlkjECjgLtwEsq5mLyEFUJLcaJkOnxRJz6MTEpFX5fecSZPGDWjhYRSa4T7Utvk5hS8uTE4p/mLbyuYttiFUsTAyXU5c1K3jXSJGLjmWXC+JXF0eVNkCbJEuCDveOFoPvFVeDP8BRJmBbToZ4XF4yXiyKVVrLNOovKV34P1xL8Lg3rtQz9IfP+LxXzZXJJqoFmMAOBv9h3XQ+nkC6h865OofPGjMB76NJyjj4GWpkCLk7Ce+joq//a7sI880nbx32ytBnwWy53gpVParoZsMWm43rBcpHQFUqZbmNnmTfEbcGlgIyddDNbMJsoFoUV4nQ1hId5EUFDYR3n5pLrxOpB4wblEpDU5WFeniwZ0VQ7WhsEeP0qAnR/qMjBwuiYHx5TtuJioZ83VQt37ZptZJlNe25/Fe2/ZghdOzgpnSIsVCwQU0pSgQLqUjw5yTj3dNFes3IIBAfxz/+YUb4hC0l28XBeA9cy3kUE8xFqFEipkADQMZWb9WU9mZMUaegxdGQ2FrIYJKmBZQjLDuIkJK7Qqhh1skHti6xhjrs62ce1pxVYmxX7Ia3cG/2QZk3F2n+QH+IgOs8LPisYwNlXG8EA2cq7llhjm3YqBo0YZzuhB7vZ4gQ60dqJk+wuRcsY9e4i7TepbB6TykbnrmQUDBtUwj/h8OY3INdtBmBFcEQklY4lDTaPuXPOM55/gIijgmmllixXf5jsxd2fbm2HR1l1G89EvwBbIW14NeOCpUfzBZx9P3LTZjoeFshVkODGwzUi7MkrWbQkklC0YuLCBhbbIAo4tGtYFklAG8pLQxY1dpJbiRMmkVM3sxBmGB9qXsojAOnkiLT3QYOAM04U7cxoQbLjt53nmoxVELpTUdSLSnuA9rPat35MGlomeA2IdTLgWaC0+S9KAyIUS8AsTtqGkjoWze7+K5//5U5h64J/gnDkA+9TTTT+vO3Ui8l7j0iPAP24uLe7Dh/M/AC3PJD6Xc+ZAxMp+qTg9XsJ/+9tH8eKpudZ3ToBVD2CPO2sy9HbpGJCKID/8X/AmjgEQrzu0Mgdj72dR/fr/aMscqli1IBGS2MW3BOyb1DsCee2O4N9sTjUu7TEspyHnvvJtsEjrmTIlJp8EkBjmHXlPwgLOD/QtVS2hbNqrzgs3ZcstnwT874hJKGeLJvoKqWCTO9TjRwmcn/ELh6XGCAD+2s/mW85NVwP2LCxDFxZwUyfhuk5dwu5/7zddtRZXbO7D1x4+HrAhDMWKhZGsCVqNHfuSDO3ad8GJbXVorShsCDBUajZ0VW7qONgvlbBL5RtS+p73IfPTf9CWG6qy/iqQWBbeYMhQBvDnudK6HMgMwxgezOHlGu/g64y9EOwJTNuNZGKGJZSiLEvquVg3/zh+Lf8AMj/6S1S//Sf+f9/5M9+UJcauswZyktOxc1Ign1x3ZaRB4jsyS5xBEpFkSIXV3ONF1xEG1/PqBVyUsWTur4s1MmF7mCQGzhl7gbP1J5luoYuscPazNBXMflabNF6FWXrDl/my/dBnY8VwSR/i7t+pjJKdr74L5UoycOECrnlE2E9wERRwgVZWKKG0kE+riZuR3Or1+OfyG1HKjvjZcGoKEA2MUwrjB3/X1vDsK43peQMLFSvS0QxjrtSYcwij0MZmJAzWlWWPa1ZU1WIGFosN8mad4jhj8kqhZrqwbC8qoaxvEpfGwDU3MwhjeDCH8dnqonP0Au16wgycrjbCfb2EjB33/MtwBSxFElzPg+V4nAulN3dWeIHr7vclkklyCUJIghNl8hyc5XhCqZquycHxZO7/MrqOfAdXameQOvkwat//Kxj3/03zz1b/juLxEsF7cm0Yez+L9ecfbPo8/pM5Qkv8xeLR58+DUuDsEmYmTYF7Zxh9XSnckT4A4rW3CfJmTqN6z/+EV11oer9ixS9uJAE75ZWmhJtA7fLbIh32dIhNDiMcKi+lu3Bw1U/Do83ZpbiBCRBqejUr4LpXg9uYlWdAbdPPfhSc887xJ4BYA47k+iCv2tr0PS4Gqfrx73p+5htjPgAETpRnp/3jZ6kmJoC/IWMMEJt/01Qpcr0ihVWAHmWX4FionDsJ12vI+wghuHHXatiOh3PTUSfShYqFbSleVi0NbISUKeA04WcT7ZcfSXzflZqNbBNXRQDInNqL+NaCZHuhbLrOn8Hcdav4gSGI2Jm+Lh2yRDDJCrh6MSJibkcGcnh8tocrFml5BnRhHABgWh42puZg7rsb5lPfQLYel1Gp2YHqgalMqFVF7b6/gnbgq9iunkeudAru+BH/v3OHYT17D4yHPhN5rUrd7j5swBW8D8+Fc+pZ7nZlYzSsmxBSl2fzSgX/nIqi2RzcmYkyLNvDluFC5HbWPFlsPmcrF0pn7AXuNmnDNSCC74VoaUi9ggy/OguXNPpAPQ+OoNkjD1/mxySEPtt00UA2paCWFTSVOjQyqYhm4JZxX8b2k2HlR09eR810l5Xpu9jwmi/ggGStbDwDLo5sWsVhZx32DX8I+bv+Hvm7/h65u/4BytbX8Xd2bdQe+JuOZztWGmyzkuSONlMfChbNwAHtF3CGzRi4uoSyyRxRzXCgq42Lnyo3urCdIJBQXqAQ8KA7mQ9LKP3PtZQogXLVhiKTxKDrMIYHctBpDbNPfg/WCw+2NO+Io2r6xXRSNz0c7tssJFXEgCTBtPzfK/75RLINqW8dUpqCtC43HVju1IkynCkTBmPgqG3APvxw4uOTwApZ9l7DJiZerYjad/4cztFH234+59j+jt+D8HlcD4/X8+Vmiotfo0w7Ob8PAHq9aVytn+rsSW0DzvHHm96lWA9hFsF64UG+wMl0Q9kczfPUVAmEgGtmxecxraHL8JXqDU3eDYE8xBdP7TBwRNHFx+r8eZSqNnIC2bR9jJ+bUbfsASHLf3lusJQOZopGRJkx2OMzQeemq5AlIiymO4WmSsFc5ehkGaoiYWQgF5lDIoQIoxJqY77RSE8ko8wv9OLGTsWqhU0Kn6/ImNTjKl+QOyceB41HUtRRMRzkmsgnqVH2Iy1i0C57c2DMoV/9TmEgdQA9C3lkF3ezLEkY6E5jYq4KSqlfwA3ybpOAH7pdcRU4vRu4v7GCIlU5h/+Y/i7sFx6A9cy3IN33P5EhBiqGE1zjCjkdXnES1W9+Eq6A4Yk878mnImHQFSO52HXPHgI1Yw0lRYOyjp/t7OsSO9wKTW7qrLYIR0b997Z1OPrds+bJYsO8mwV5U0rhCgq4fbP8WsAgnP0c9yMmkszHvJnTvMuqokFetTWYu2aYXfBHZ4wsXwC7M51FZoUllPoKSijjM3AAsPCTObhEXCQFnFgr26qAkwhBPhvNQyOEIPVTd0Eevoy7P60V/W7pqwhMLpS0qWALYl9XlCnoyqpNHxeHGZdQNimqDMsJAqKBxQV5O64XFG4XysSkkQEXllDWZ+CWUMCVmszCxDHco+CjXfch8/y/w3zsS6j82+/C2PevbUvvKoadyL4xpHV/LqYZy+aceAJeEzlgGPGheQavwgfbSoVVAFrLJYRh3q0KOBEDVy/g3InjAO38uPKmT4F6/sZHkUkgcaFWDbV7/jRRliWt2YG7q6/nbnfPvSQM/O0UL56aQ6lqg2BpQdum7SXOvwGA9Pw9/I1aBupltyL15o9A2XC18HGtGNyFhLWaei4c0XzYzjeBxGZjCCFIa0oklN6jlJvH7M7p2GdeAnMbnzMFAFLvMEicEYIv85IIaRolACQwBnNnURIwcN78eeEM3krIJ4FGATdbNFCu2ZHGXj6jIq3758dysG+AP9PCuutjU2Ws7c8im1Y5BYNIRunV3TvDMuWhngxUReKMnYoVC2s83jGXOYmO6lthInZ8ORbshAZK2bCbGphYL+3lTGdsokIJzdsRLQ39hp9LfA510/XcMcww2JPGxGwNM0UDNdON5JmFwWSCszm+GGAF3Pb5h6GSxlpHi5P4QH4/ylULc2XLvxZNHUX1G59oy+ER8NcthnLNTpwVtEWmHiOXc6YegK8SEjJwPSIGLtkd+cjoPAa6U5xDMBtZWGyYd6OAE6gE5s6ChopaAHAh499flPDCSfF1U9QkYt9r1XCQ1mVOPSaST8qrt4HIqh9dE56BKxro60rBzgsK4NmxSO5cK1RDpioSIdA1eXkZOKGEsu5v8RMZZSIukgJOF2ZlJW0Kwihk+Dw0IilI3/ob4gySRYYgrhRYJzOpEJstGiAAevJRBk5VZKR1BcVKe4sZ67awwq+5C2U0xFmVJTiu15G5QvgCf6FMTOYFc06Z5ZiBq9ktDUwY+s49glVySH7mubCfvw/lL/82rOfvB20R5umHb7Yo4DQFtFZqKkkE9WC98EBb75kdK9wMXIWfzZJy/gB+K8epTiWUtsCFkr0n03KDTmczED3HS7tcB97sWDAbyYpw47EvJW5+1MvfCuN1v4HHjY1YkOIdeQrn+NJZuP0vjiObUrBtfc+SCji/8BUXcO70KbiCWWD92nchdeP7oW66Dum3/Gekbvowdx+vxRxcsWJFciqD1zz/sjDcWtt+s/B50rockVCyxlOYgWMbu4nhN0PdxhtciNgBoN7wy6gtm16iOThn7hxqpsPNvYrYN6lvvdB9bznACrgzE/53GpbWE0KC+aulhngzaGpDsjw26UsB07oSmCsxiAo4dc4vbMMmUpJEsLY/yzFwbrWIghtvhJBAhiqpKRwil3KvYR/eK7wuVWp24rpJKYV9eC93+6O1LXj0SFQqrGzZA3k1/7oAoGy9UXg74Beqk/PVoFCNz3MxrO7LQiIEJyGIrzh3GPbseaw2+QbBTuUMVs09jfmSiddlTqJ275/zTFkTuCEH3UrNEc6uUtsUR2MIZKOArxIqVW2uYSt1ixg48VpLKcXRsQVcMswzn2ymcbEmJrbj+eH0gsarOyaYS1u9FQP93fjH7xwWNn1Es3He9GlQs1KXpQrWQ9GsbJ1syGVUlGuNgPaZoom+rhSkXC8qXmy/4drw6hLbdlAxHGiqFLCPKU1ekRw4LdQ4YvuupeTgXuy4OAq4vA7Dcjl72GLV4kK84+jKatzJ9eOD57D/5XloV/Ad2mbDsxcCbLOSNJcxXTTQldOEw9hdWQ1uaTIih0hCnIFrxoqJZuCA5qwd9xyh3/JC5cCxhaM7KyrgljYD1ypCAPDDtJ2XfyT+o1mBue9u1L73F02LuKrhJEYIMKR1Bfla6+PaPvwwaNxNTADWmUup0Q2QqIAjWVbANXecIl3tM3AepckzcIyBExVwoflXksojdetvwO3dyN3NnTzhmyvUmVn72H44R3jZpEMlHBl+J1K7fx4TCwYAgulevjgQdak7gWE5eObIFK7dNoihnvSSgrYt24WewL6YsRw8wP/94kWQsk5spZ9kXU0p9ddqQbNNZPeurLsCJCXe0KZ0JWJiEhyLuqCzW7Ggv/6DUC99Q/A3qWcNtMvFzBzgr3+tml6i4sue8eXDYQaOUgr7GC8tVbfu5m5bLqTr6/Lp875ZQtwYY6guo2xm3tEJdNWXzy9ULBSrNoYHc8joCs/ADW4CYpJR3ZpHr1RCIRtzSIxllJmWixHKMzJS79qASdVUCU9TQajxzBl406e42/0ZOPG66U4c42NMCMFY7/W4+4GjkfOPEAL9xg9wn43kB4RFK8NgTxqW7eHQSb8oXTvAM8KA/zut7svgcDEvnCOc+u7fQUowGrp64Ye4dv77uIP+kJtNBgALKn6o3wp9989zfwtHoFQS2Ern9DN8eLeWSWyQMJVQvAElFYa4749W54UqlPMzVZRrNraO8AUcqZsksRn0TmG7HtSEEG9njC+s1JFd+JV37ETFcPDF7/O5g1KuF6QQNxihcM6/jJrpcKYw1KrBHeddVuURv4DLpzV4lKJqOKgaDmqmg75CCildwVmXdyoVOUInwW8EN37jlKYsr4mJJTYxAZLNzV7teOjZszhwrHnc0VJxURRwq3r9rmG4K2dYDizbC0w3kuCHszYuyLbj4ss/OIr7nxqF1C0Y/mxTYvBKoZWEcq5kojfPu1dRz8P75PvwrpnPovKl34TxyBeav069YMvoChSZNJ1L410o/f/vJMy79qpg4CykdSVSjOqqDFkiS5qBK1XtliHeAOCOHWrqYgj4nVDndLJDKhswb4aULqPHaiOw267BTiooQ2CLcTsSSlIPsGUSyiSWVsqJCjgxA8caBSImSddk2JblSyhjyLzr48i851PIvPP3kfm5P4GyZhtGXf513cmTmCv58RJeaRrGI5/n34Si4zPVt+B4yp9xYYYEZCO/OfdmR+GGcps6xbNHp2HZHvbsXIW+Qgrlmt1RvmMYpu1CE8zAuRPH4J7hw2O1q97O2e2TVM63/46AJqoXDMuF7XhcAUepB+fk09z947brYfhB1Y1zk3WJwxLKQq7R2SWSjIVd78P/V3kn7sm9B5mf+ePE4hAAClm1qYkJkGS64J9fYebdmx0FLcbntgg327ecYBlOpxIKOMbALUeIN9AwMWHX5pGBrM/AmU7kXCdqCtLABu7xuzLTXDE5PJBDsWoHv8NC1cImdZJ7bDiIXVNknLW7IQlm7eJsGqV+1l9Sk80RsKby2p14263XwrTdYAYr+FvfCPQ972s8PwhSb7yrqYSeRQk8c2QK/YVUwJyKMDyYw5mpKpSQLT+DcZovLBgUONjl8TEIgG+i873Ce/G0swXqpW/ksvRocTKQ1CexlaLGlLopORpDFOYN+IHeUpcg604gozwy5n/3lwgKOAB1meHiYwREzDR1LLjn+QJNGb4MI4M5vPGK1Th4YkZ4bVNW8yyce+6wXxSHvlNKKeyX9nKyf5LtDVw6wxJRVgT3dulIaTLGRIHeHRiZVM3oPiK13BLKwMSk8f2mNBkpTX7NMnDf3XcKP3i6s7iGTnFRFHDMbSi8cLbKFWLoyvgMHDu5njs2g5rpYr5s1js/sYWrMpc4+Hwh0MrEZL5sclpwALBf/AE2uidD//4hnNO8WxRDeFMeD2fl3pO5dAYuzHAtdjO6VMzHMuCA+pyNoIPcCcpVG/l0awml/VJ7JhuirhxDzUyWAjGkNQUDLi+nIKk8/54E0qE4WLEfNzERSihZAZfX4bg0cT5BEmTB0fKMMMspcAsTsAi6KqHXmeBCusueDlJYDbl3LeShLZDqn/0cBBuHqRP+eZVVYTz0aT7jCEDqdR/ApD4SdHsn5qpQFQl9w+twyuGLQlEAbLvYd2gcfV06tgwXAklcPE+pXSTNwInYN+T6/c2dACzbLwxv6pTwvmztiqsl3IljoLWYe6WkCBk+hpQuR5o/zNAkLKHUVRkZXcF82YTjevj0PYcwTfpw+9vfDCI1NxbyG36dSyil8hRkuJGiQMQuyqsvCc6JlQBj4M6MFyEREjFoAsIM3NJDvAGf+bJsD6MTfgG3djCHtC7D9SjXBFTW7OAev03n16WRmJFJqWJhs8DAJFLAqZIvDxZIZu1j+yPKAqPu0ima66KuA1tgyKNu2YOBbv+7EykJtMtuRfHm38UXy6/Dyd2/B2Ut/1nDYI6g82ULIwkGJgzDA1nMFA24Q82fs11IQ1uQ+ek/hJVfg4rhgOhZ8TjJucPwPJ/xiRe7Xq0oNPVoJhtlBZx4Dk4c6B3H0dF5dGXU4DiOI2700QlsRzwb6o4fAdzoc5J0F6Q+X9Y60J2G7XjCPYO8hmeF3XOHI8oZd/woqt/6Y5j7/427rzJyWdAICLtssu+wr5BCSlsOBs6OMILhPMnlgGl7ICRqEBM4ky5BUXIhUarai74Ot4uLooDrymhY3ZfB0bHGxZ6xaq1mjbqyGmzHC7oJ+w6N1x9vwZMUkDY7PxcKtRYM3HyJL0IACJkU+6VkdoV9P7oqQ1Wl5jECZtT1jW2kO3GTjDJwF7KA44vfbEpZ9Ayc4/oLeasMOK86L7RflkQb4yascKUdCaUmYTXlO9j6je8XvNb5ljLKxtxRYxNIXVuQ20YClzZmFJMYJaBleImQ5/K5TwgH14pdKNcKzA5OOIOBW17kdlNw4Zs7B2oZ2FV7XCjFVDZdD+WS1yOf1oJ5i4nZGga700hrCp4yN3GPsY/tbzv0OoyFioVDJ2exe+cqSPULHrB4IxPTcrnvzZ04Jpy9qF1yW6IJg4hNcQVSNaCxdsXVEs4JQYEzvJPLzQojoysRF0rGwKVjzYTuvD9z+a1HTuLk+RJ+8fZtXNSKCExy32yel2gZzn2QgGJQLkbOe6E8tAm7uBxgTM756Qp68hpn/T603AycIsOjFKcnSihkNXRltGA9im8ARZvZ9TjHfddr6wUNk1GWFopYK/PrQHj2TFNlf4Zp8w1+XFAYjhkpypoFU7ujz/MugLIGZcPVSOu+xXqS5MvIrMZT1mZIOT63LY7eepQAkDz/xsAKvInUhpbP2wrKlj3IvO23IWUKyKXU4LuQV/O/jXPuMKqmAwo+8Nw5/jiXKdoqGqM7r4MQJDhRivIV+evekdEFbB3pTmQ3cxltSQycyIFSaCyydmfgIssa6CKXZeEc3OwYYJaQ0WQYj92N6rc/lRjxEzbbY03hUtUKmdelkNJknHX5ppA3fbptX4LKCkso2ex1/HfrK4iNbV7tMG0XluNhZsHoyPuhU1wUBRzgW8YeHVuA5/lfFuvqtpZQNtwYyzUbB4/PIJdWQalfBMoiGeWrZA7OdrzAGUnEwNmOi4rhcEWIOzsKb4aXbDmjB0EN8SBz2JjCdxYTbzYd139PS2bgXg0SypIlZC8zKXXREkp2QWwlobSPPMLJJSwlj9Qb7uLum3Q8up7fmEgKWGXokSrIktgiKatQNl0L0sWHgLZqYJiCAiru0AX4XUpWAHQHBdzSnSiDUFARA6fJWEf493/cGRK+9rkywZQbZyIprtOPY90Ez5CSbC9Sb/hFf94iowaM4uR8DYM9aeiajGet9aDxYOHK7KJyJp84PAFKgd07fTfPoIBbZNfSFJiYWAe/z91vys1jvJDMhMmCjr1o1ggQqyUopcICR910XeJrAv7GIiqh5Bk4wJ+DOzI6j+/uO403XrEa127jG3UixBt+SRAxBkPyQtBQdOfOCc9bZcM13G3LCfY9eJSXTwLAYF26t1wmJmwNOH52IbDCT9fnEbkCbtVWIMaAZmklyDNj6MpoKOS0oIDzJo9DIrGYifxAhMlkgeJU0aAKWCD7xYdA6ywKW9tFEkqR6YyyoRHG3cyMyWqyLsXBogQAJEYIMLAC70xJERY6YWjXvIv7joO/XfczSN38K4EkOptWYDkeLNuFslYg9Tt7GJWqhQKpYOfJL6D8xf+M2v1/A3f6tFg+uWV302gMRZbQndM7yIKLruOzRQMzRUNoYMLgz8AtsoBzPKGqwxXMvymhwqq7SXNSyhSEv9lqZww7zGdhv3B/4vshuT4o664M/s2O11LNZ34UmaCVeHgTAAAgAElEQVQrqyGlyZhwC/BIbKbOLLfNwvmumHEJ5fKamIhmr/u6Upyk9rUA1iSwHG/Rrqft4KIp4C4ZKaBmOoGsom0JZSic9amXJuF6FLdc7V9858um8OQSUfcXAuETSMTAzSWEDSfKtTwX9glxTIIf8CtDIiSQxSTdD0DUhbJ+YjodMXD+8yhyc7ZvpUApTWTgMill0SYm7OLRzMSEUk+YUXYsfZl/PHKy3lkhK8a+w1YF3KBAPin1rweRFMjCzmfz45/ZuIcZOE9oYNLYYAXGEk307qI5OFrkmcOGhFLAwCkSNsj8Y07Yg9xrU+qHHZ8DL998V+YpEMSOZ0KQuuVXA+MENm/hUYrJuRqGejJIaTLKNC20/XbPiudRmmH/oXGsG8xhbb//mt15DRIhi+5aWk40yNuen4Bzip9Du692OWbLyRcmYQE3fx7UFse9ANG12ps6CRqfmSQylPVXNX3/aV2OmZjwxyLgr4nlmo3B3gze9yY+IywJQX5mqygBwXmzSp4PWB1RcSoNbg5cWVcK4e+ht8AXcPm0irSuJOZGdgpmJDS9YARW+GyWJi4pI4ouzIMLG2YwjAzkMFq/1quz/DxrWD7pv4/6HLbjCZ1HvZnTqHzlY7CPPxFYsceNOahVFY4ZqKHIh2ZmTFaT2VwRmAxwOMHAhKEnryOjKxidqkBey8cfMZBsL7Sr3g79+p+N3E4lFak3fwT6VXdGGBD2+SuG43+f8bDwyixq02P49fyDyM8f9WOWTj2N6tf/CN4UzxgpW5Llkwx9hZRQdtZOFhwboUmafwP8xmnNdILGdyewXY87L7zKHLw5fs5JHm7MI7aywxexcNukM9g6n5wnmt58FTLv+Fhk/pix+6WqhZmigd58ChIhSGkKPEgo5Xj1jnPmQOJrhFGNjWIs+wxcgvtxb5e/TpvL+FqvBMJGOSvJIF48BVy968JklGxT0IrpCAda7z80jtV9GVyxxd8ozpfMBCOTV4eEknUwc2lV6IzGNqThOQdKvcTsGyA5WNi0GgG/apMZOLZ5EjFwnRRiTKJYyGoXREJZrtlwPYqCQH66FAkl68zE86DCcM8e5izyKYD95lYQRQPJtyfrrSSEgcbRKzAwkQd898V2Op9xGAITEyrIOgt3yAvtMHCcYxeEVsisuaALXCh73Rlkpejmm8o6xtxerkNaMx0Ylgu5n5c8KoTfAGhXvA1KSLaVy/iOZ7NFA47rYbA3DUWWoMgE5zOCDKBJfiPaDOOzVZw8XwrYN8Dv3PfkNcwsdN619CiFFZuBW3jiXmGI9nPOxqYXJt/IJFZwU7GRyULFAkF0rRbOh63dLsxnCyOtKTBtN1BiGAI5L+C7/MkSwa++Y0fT4PI4Cm2EeQPi82atWgo2gEJ2cYXlk4Bvw88+r4iBI4RgZDCHfIvGZ7sIb8qGB/3fjnXy41ECgHgzG84cC55rIIdz0xW4nodc6RT/PKtjBVxIBSL3r4c0wLvL0tIUjB/8bww9+qf4za7vYmD/X6HyrU/C+PHn4c6c8Q114rNOqXxExtad1xObUIbAaa8ZhgdzyKaUQNaaBEJI4MypjCQXcOqlbwCRZGiX347Rze/BYWsNnjI3wr39Y0JmmwWZV2q2bzIzyH9nuac/j9VKbE5V4Hop9Y1A7m0djdHflcK0SELZvQpArHFZnok0hI6MLSClyU1nBtl1dzGsiO14HDMtmvOT+kYghSTUYdMkEUTH/HX6CWgu77Ug9Q4jfcdvYfV7f5+T4uqqDE2VAhMTlvHI1r6pLH/NcU7zxlRxeB5FzYwqeZbdhTKhgGOf4bUmowzLdBdzLW4XF00B11fwgxtZF2ahaiGbat1JZBfkk+eLODK2gD07V0XkXO1qry8EGMMy2JOGabtclyLIMQuxSO75I3xnOwR3/Ai8Iu/uZ9iNbDdmDS2CyMAicKHskIFLaTJSuiycTVppsNklUQxFJsUH0bb9vLXWs5ki85JxfSPOVPzfUVxU8cckYwmTQlYZugyeUZMH/aKl3eHxyOvWTWzC8zXNIgQAv8jPpdWANRaBhX6H4c0LCjgneaPUY/AFhDS4CR4kbnaFbSTy61ozNKRrCNo174zclk+rqJkuzk37MzNsI6arMiYV/jd0J453NAe3/9A4CIAbdkQL276EQNxWsIPC1//eqFlB6bkfcPdTd74ZXflMy9doV0ZZrPo25Ox4oZTCXuR8GHNZZMxbkoTytuvX4VMfvgEbVnW1fM4wutot4ATnDctz9IqTQunSSs+/MbB5wD4BAwcA//GnL8MHbxNnl3WKcBbjcAsGDkgq4A5zcyTDg1k4LsX4VBE9pkCKmsDABTLGy25NfM96bQoblWkoc6fgTRyDffghVL/2cZiPf4V/nU3Xg0iNY6uZmy7bwPcIVB0ivH3PBnz8ruu4MGcRRgZyGJsqQ1p1CSCYS6UgULc1DIfs9bvx9+U340vVN6BrDc/MAA0GjhU7iuC30cvt7YXUNtg3wM8lnCuZQQOGgSg63xBCtJl4dHQeW9YWmn5f7Lq7mDk4x+UllI7IqGV4V+TfYdMkEZTV2xAvToX323Q9Mu/+RESeGQdTfcwsGOitxzKoigRZIjiX4tltb+oEvGq8AI+CnaeZyAycP1PqCkzEFgPL9oTS4qXOdF8ohLMGf8LAtQFCCC4Z6caRsXk/V6iNEG/A75ITAA8f8Bei3TuGUMhqIMSXIIo2y7Q0DRrPN7kAYJsUJrVYiMl65gUSSpEFchwinb9hNhg4Zg0tgsjAYrE5cGldael4uVJgFy2R2UhG9yWUixlOZfKcJBMT37yEl6xN9F2DhbIFz6MJssbkAq6ZhJJ6LjIV/rHyQL2AExWLLRoYVUF0gVBCmYsOVnfnkrvXAEC6BQXcAu8+xxg40bxCocJvnNU125DSZO61mfY+s2YTvBYX2NSN7+fssdlm4cQ537yFnacpTcYM7eHNFOxa280hSin2HRrHtvU93Jxmb4IMqRWC2UEmN3vpYVAr9jyKBm37Tehtwx1MZLjjCpwo42u1N3OGl8YSAmXD1S0/AytOWHPLsBwQAi4TUFflwDK/E7RdwAnOmz4yD+q5sAXmLFLfeqHT6kqAMWAiBg7wP2M7OZXtgLHgEiFY3Rdj4EQF3NBmIHYeUaPEyeVYMTh78mXIiFmrp7tAYs0eLWakpWzZDfXy2zk5ejIoHyiPqHwS8Iszx6XCGemZBQNpXWkpaWfQNRn9hWTDnjCGB7MwLBezFQp5FV98z3dtiTA2rDjryvJGNsF96u+TKTlExXV7IFC2tBeN0VdIwfWoMKpD3Ez3j4tyzcbZ6Yow/82dGYX59DdhH3kUedU/VkotJNAisCBvBko94fybLCiwevLJs5EklQscKxNBJOjX/QxIwm/FkMv4Et6FshWc34QQ31wHXUJFmSgeJgymNopIKING2fLszSybN88CXsMFXH3/SMjiHaHbwUVTwAHAJcMFLJQtTM7XUKxYLQ1MAF9ylMv4jMrW4QL6u9OQJIJC1j8RiJoC4VyjqLDz/0qDbVKG6jl48U3FfNmEqkjBiUcdK3HGLQzn2D6uODFtF/1KBfaRR7HOOwM7sYCrm52EZ+DkxRVwGV3x2b4LUMCxBV4kdcymFLgeXVS8QasZOOvJr3GhqiTdBXvVLniUolS1ElgxfuMfSCibbBi8uXOQvFg3Us8G7qtJDQxPMMsUft24g5uI9ZUysQIu3zzMW8jAFcc51iqJgaOUIls8xT2HvPqS+gU2+tqBFXNPHkaaf20GZf1VwnBa9hsfP7sAVZHQXS+0dE1BzaHCeR93IjkSIowT54qYmjewZyf/vvoSutitELATqgTqObBeeJC7j3rJG0BSufpw+WIYuNPcbcWKha5W8slVl0JKt2bLguKAMXB1R9xmmVudgP2mLbPg0l1cDIcMD7Q4JXaf3PTKsG9Ag41MKuCWE+wcXN2XCRoqjQKOXz+JrAoDrhkL54w+D/vlH2NIq0GWCKxzfP6WvOoS7vdm87DsGCdEQmr3e5H5mU8IN9ztgHQNcrly3U0cB2eKRhBWvdxgBe3oVFnI5E4PRQtNtj43YwNzoRk4AP7vIrUoPgXnmbzu8rajMYIwb6GMMnmc5SjLf6tHSjE440dR/fofwXr6mzD2fgarHvkT7NGPoFTtfFPtuF7EndWbGQU1Y6ZvsiZ02mw2Gwm0Lo7VS14vHCGII59WcXqiDIro+c1m1mRBBIvTqoAz+UYwa9AbgnN4MbAcsYSyO+e7sb7WogTKNQsSIRjqyazoe7+oCjjWfTkyOt82Awc0uqrhWRImhQCad34uJGoBA5dQwNUjBNjFzBk9yGVW2ZQ/abz58/BmohutPuMM3md+Gcbez+DWha/hFlecUdaQUIZiBNTFuVCmUwo0VYbZweOWC82kjmwhW4yRSalqJ5oEuBPHYL/8Y+529dI3oLurkQu0nBJKVzBsLg9sDI4ZoqWFDQx7JpkpqgqiC8QMXNSwIXzOiUBSeUCLsSauw83XMQYuLsmgpWkoVjxXTIY8uEnoHjdTNKDIEvJZDfIQPwcHAJBV6Ht+QfgnNtN1/FwRg91pSPXvNLiYDi2+gNt3aByqIuGaS3nWpq/L72I3+y5FCLuHOieeFBTdBNqut/ivUdAxV7KaSmhEUQLe/FlOvRBeqymlsE88yT2uXXlhSo9uLAzL5ebflgJF9qW+xTYkWKLrhjP2vNDg4ZWYf2PI6MkzcMsN1sgLOymmNBmE+MYIIog2s86pZ1C7989R+95fwHj4H2F96+O4pmcB6fmT/ONX8ZJnxgTGzbfk3hFk7vgtpN/6XyH1Drf/weBnv8ULxWaGFX4BtzLf+VqWjTdZhrrtDQ2zH0LwkLEd5kA0I44VZyKTLoa4hJIomrC4ZiCpPLLv/XOf2ayzqFJhFVKv/8W2P0czxqWZodbR0QUoMsGmNdEmj/nYv0TcnCWzhPdm92P9038N5/SzoG7713DbpRFVhyhCRl59iTCovNW1TSRPbbxpGdrVd7b1HsPOx2GJNJtZU9ZfyT3GGXshcGAVgRXw8SBvAMvmRGnZHqeSAPyZ3Z68vuJ5asuNUtVGLq2gv3tlYxDa4/JfI1jTn0U2peDo6AKKVUs4vyRCV0bDuFTFdSEr6e6cHszASN1r/PyXEF4NRibM7W+obv0sYuAi8kmB++RhbMIqtYpBO1qQ2kf3BR10r1bEW+37oKOxAF1NDsMrTkKK5eSJDCwCBq4D56eq6aCQ1ZrKNVcSTCMvYspYcVI1HPR2NkKDcs0WsnrU82A8+kX+AVoG6q7b0F2vf+bKJtatE7BixSlQx4q4Uok6Z3GI8mWemMzg4FcP4oO3X4runA6pezXc8kzkPvb0GDDEzySw141vVJqFeDN053QsVHyZqGiOgRACqbCK2wB7C+ORiIEkBk50wZX6N4AoOrpzWiRHEkAwRyARgvzIJbBO8a5g2pVvS5S+5errj2G5GAwFy+qqDNNyhZshr40CznE9PHF4Eldu6Y9YOzMEg99zRRRqY5B6h0Hick0B2KyprkjC6ABlw1VBF7ivKwWPUsyXrMRZKimVB8n1gYaPHUrhzYxGPvtCtVHAeVMnOdt4gEDZ2J69flqLMXCWs6wFHNBemDfgs9fu+ShDZD33Pf5+PWuFTZmVQkpXkM9oHZm3LBZsUxZ2UiSE+Hl9hnhdV9ZsR/zbdeNOlFYN75IehGSb3PhQ3MDEfx91Bi7BSEsZuRzy8C7Q0hT+7d5nUKxa+OW374A7cRzms9/ms99AoG7Zwz1PdxPDitmigS0xhmi5kNIUDHanMTpVAZEUpG/7KLzSNCouwTf//jl8JLYWsmtCtyAmh0FTJCiyFETfAH5x7Z7nTWUAQL/h5yDlB5Da/V7o170HtDQNUhjqiP3uTSjgfvzcOWTKGuK/rFtvXB4Zm8eG1V0R52F36lRidEmmNoHafX8NqCkoa7ZDHtkFZcPVEfOROBzHjZiYxM9tIJo9GEZ3XvdHICgNGnkMjz5/HrVyBjcQwhlGAYB66Rsh5duTV7MsOEDEwDmQh3b4earh49kx4Z57CcpIdHaPQdQIZg365ZJQmrYbmZcNox25fjuYmq/h7geONN2HDvVk8IG38Ax+pyhXbeQyGvq6Ujg9zkuvlwsXFQMnEYKtw9148fQsaqbbNgP3+stX411v3BTZrHfnWzFwF97IpFY/eQa76wxcTNc9V7aCCwo1K0Kq/KS+HYcl/oLnHNsPavvD2MbDn0MOUUckiYhd85rNwHVSiLEZOF1JjixYSZSqNlKaLJyjysRmAwCfOXDnz8GdPh385y2Mc1LUctUSzr/ZL+0Vysv0694NKd0VsdknWjpiAFJ/B5wjY8WwIUskMXeI2obwmDjj9OPAsWkcqxc0IsmmNc1bJzNUYxJK6nniHLhYAdeT0/z8xSbzCUInypicOYmBc8fFcitAbD4wG+qYq4ILM8kPQLvijsT3Gi7UmcwZCDFwAgmltzCemMXIcOjkLMo1G7t3iiU1vV0pbFImMPDA76P6rU+i/MWPCq3Y42AMXM44LzwW1ctvD/6/XXcwkYwyPAfHzJeY3F00fyuvvrRtCVYqNl/lM3DL26fsyqjtFXCC80YkJX6lzEsYdu9YhXffnMykLCcGutPYs3NVpDkK+DLKJCMoaXAjbLSewct4ZaRIjDlQU5B613H3bVyDkq8lhBBIXYM46QygmBmBPLQF2uW3IffzfwZ1122R/DTt6jvrzohRJDFwNdNBxXDQv4Ks51BvBlPzDYWNlO+HofgyXl2LroWyJOH2G9bhhu3J+YeEEGTTSuQ6JwpbB/wIDOWS1zUeKyuQuld1vBFO6wqyKSWyrtiOiy//8Bjuf5lniWhxEtS1MTFbDWIqgse9tLf1C9oGnNPPwnzkC6j863+HfTx5xMR2KRSlYbQkZOAE7C/gX19cj0bMLRgeeGoUdz88BiMnYIBlBdpV7bFvQHS2vjck12XXHCLJwkKtWZxAVTCK0WDglnMGTrxP8U25lu45cfj0HJ47PoOq4cCyPe6/ybkaHnr27LJ8plLNRi6toq8rhVLVXjES4qJi4AA/A+TAMT/ct90CTjRH0pPTUK7Zvu2wUHv9KijgTAeyRJDWZWRTipCBu3yTL39zTh8AvFjuTroLpexmnJiew09JcmT2itYWUL3nT6CsvwpuwsntzYwCsS5kwMAxJzvHarhQdsLA1YMjCbCoWbOlolyzEufUWHHCNiDu9GnU7vtr4eaMFFYhc/tvBvNbparNmU5Qowzzya9xj5X6RqBuvxmAfywTINJUcGOv582dg9zX2LxUDQfZVPL8j/XsPYLCiuCOO38Ke//pULAJFjUwrOlRJPXvKzEJJa0tAHF3RT0LokS/h3D3OknaI9o0xQvXBgMX6pZOnoB97HHuscrqRgHnuNRnSOvM2XTRwK6NfcHrTvRejaHZZwAAjqQjf/OHI4xnHNl0Y3mNMHCaDNN2QPQspO413FriTh6HIphVYNh3aBzZlIJdm+LSVh+9GeBDuR9B9urrgWPCeOBvkf35PwVJJVtss/MsO8sXutLARshDjdmOdofLpf71QMyUxw11xUssAy6jgXounOOC32grz3QkoWFiEi7glp+BO3W+dVe1XVbtlS7grrl0AAMDeUxNrVxnmEGRJXz4zh3c7WldEZqYAACRFIxiFTZhtOPXk4e2CI0eWjFwYVQMG2tDxQBJ5ZDa8z5oV7wV7vhRSIVVkBNMJ1TFvxaL5NhAg2FaCXTnNJyZjP6mQXSBgN34uTaK+FxaRbnW+J3kwc2++ZLdOO8pgNTr/0PTkO5OEGdcDh6fQc10MGvoIIWeqJqDUjhz51E1nEgMCbWNpnFJQrg2jB99DsrwTmFciRMyMaELE6C1YvQOshLE78QRbsCGvRkopZiY84vu/XO9uEmJHvPq9ps7yobMh8xpwmxkSlMCh2dl3ZVcXJRz5jnQGz8g3CuIzNCaSSip50ScWduB6XiJ8Rp9BR1zL5pwPS/RcKcdMF+D33n/1ULDlEcOnsfnvnsYpZotVLZ0+lpr+rOR6yQzcVpOXFQMHABsHWlIFNot4ERgG8iFpCiBhYmO9NMrAaNutU8I4WQ9NdOBablBBpwof0nZfAMK+TTGywTKCG/C4E2fhvX0NxNf35nhWRi2CVSrU6h87eMof+5XYH/rD3G1djLR+CQOSmlgYqKpFybIu1SzEzMEAxtswwH1PNQe/N+J0Qx0Ydwv7uqmH6WazTFw5hNfFUh0AP11HwSpd33ZLFajgBMEm8YKAdEsWuO+58UyufVXIlPwC4OggBM0MOwEBs71PBhWNDOmHfkkEDIAaGpkIpj/ixdwtgdZIsFi7y1MoPb9vwTizrGEBEVJ47X9c8h2PN/JKyQPJHs+iE+XbsGXK7tx+qr/xFmVxyFLDQOhcJZTqi6hBNDxHFzNdHDg6DSu3z6UGJEiH/0RClJ01pWaZZhPfb3p+2VdQn2aL+Di8z6B1KmFtEUWzcGFCjjmnNuV1eCePcRviiSlo/mwuEFGbaUklG242InO0TiULXsSi4GLGZkmDBwAHLGTTYOaIYkB0dtg4BgqNRs5gexcynRD3XRdy99LZIjEZniS5MbLgZ68jmIlOpcqMhXrBNmUGpFQElmBfvU7Ivd5IXujkGlfLOIGSfsP+U7DpZotvBbVXvghKGik4WoffzxSZALw2dkmM3z+Aw3YL/1I/KdQjIAjUnMMbEps6CVd24oVC6bl4uar1uKHte0wSOP4kAqrOmLfgMbcdXyEgUkoAfgMHOHnw5N8HSqGTxSEj6GUwIjIPvIIyl/4Tyj/06/D2Pevbbt0U0oTg7zZZ/EoxUKTiKF2UK7Z0FQp8Vxg391iIiZEr5VPq8H5PrsMDKIIF10Bt34oH3Te23GhTEJ4Q0f0LEhcG009oYX5K4ma5QQblq5MtIBjCwVzmYoHQwO+WUVPXodhuaC73gaQzhZ5b5bvkBqWnwFmPfqFwAiFzp3FL+Z+jKtPfBbO+NGWz+vni1CkdRm6KsOyvUVZ9i8FpaqdmNXGiqKK4fjuaMXmx4E3fx5mfUELMzwA4M6OCnPflK03Qom5WfWEjDbasfevGrZw/o1SCuOxf+HcLiEr0Pe8DyldBkGDYZQFr2XPjQsbGGxBD7+uJ2ImOQkoQvmLHUooY+dh+GLgVRdQ/e7/K7QAV7a+LmCkemJB4nOl+oYrdCFcv6oLR7EO+8xLkBlsz/CAzcENhRi4cAiqaEPRrIB75sgULMdLlE9Sqwbrue8K/2YffgiuQBrJYNoudFiQZwXGNjGnPl2VkUurLYfLJZET5dw5UMf/jdma1ZXVYAtmdJX1V7YM7468L80/do2YC+VyopDVYFhuS1kMyXQDarINvLLhGqTe8KFlfW+vFTRj4GzHwwtV8cwPdx2OIWkGSW2TgaPUjwDILiFGQWRYwRodK2kc053TfQl6pbEBFc2kd4JsKiqhBAD18rcifft/gXbFHfgX8xacHLhp0e9ZhHCOZcWw8dzxaWj1UQrazTdFyJG9uCV1KHJdtQ/z11R1y25k3vF/4we5d+Blspk3xKrDeuEB0JhaiVIaYeA6kU8C/PWFgbFvV27txztuvgx/Mvs23G9ehQdxI9J3/m5bzrthsCI27naa0pTA2InoWaFTZpKMsmo6yMSUPHEGzjn7Ioy9n/Wvs64N+/n72oqsAgDHpaAUTSWUAIQB752gVBX7DzCwxvpiIibC8Or7vFxGDWSsK2VkctEVcIosYfMan4VLYlDaQXfshGvX+e+VRM10gs1JV1bDQqhzwGyM2ecQhXNL+YEG06ivRupNv8pl8DRFdY6b1zEtF92axw+dAygY51D79qdQ+8HfBYxU0ucCUGfgOg8BXw6Uq3aihLLBwNmwjz3W1vPZL+1F7diTsB0vsohYT30TvgglBDUN/Yaf456jO6cFv6uQgYsVcL6Ukd+8OqeegSsIINWuuANS1yAkQpDS5aCAI6kcSPxC4rnwBIVrEF2gd87AdWVVECK24A4eJyjgaGk64qJlOX4oKLUN1L7/l8LmhdQ7gtSNDffIsMQFQKC5D18Iw2tLs+H/MPIZNRIhAPibKcvx/Ew/UQE3dRI0XlzXsf/QOPoLKWxZKzZDsA49KCxWAQCUwnj0i4lh4ZbtYas6ARL7O8n2inPNCilMtyrg0l18sU69IMg6KOBUT5h/2Il8EkBw7IZz4Jgz5XKBmWO1moMjhEDqFbNw2pVvR+rWj4CoK2Mr/2pHswJuoWxi1O1DJRdluuQ125F9zycjgdQRSMkSNq1NBs6wXLgeberc2wpiR1sTskRQyC2+qdzO6wLRIsGMjTR0imy64WrIQAiBsu4KqNf9LJ6sDEek4suBvkIKNdNF1bDx9MtTcFyKG3f5648xshui0Ot3Zp7B4Lw/z+1OnxY7vW6/CYQQzHZvx93mzch98G+QvuO3uOejlVk4saxG16OgANR6jIB7XuxAmQSmBosfFxNzvrfAUE8aN121Fhs3r8e9lV04nL6mqaFKElgRG2d6U7o/A8ca4UI3ytMH4FGK6fmoeqNq2Fyuazo0A0ddB6bAgM0+wpt+iRCMPCSYmDRYrKUVQeWajVw6+fzLx1xXFws/I9g3lOnJ6yBk6cVnEi66Ag4Admzoga7KS2Pg6gvt3KvYyMQ3+vAPep6Bq4d453VQSuEJNrGkayA0dG1B3XQ9Mnf+Hki6facsdzYqpTNsF+u0hYR7+3COPw7zsS8l/p0VDn6QdzSA9ZVCuZZcwEn1uUOzWoNzkt90ksIqQBYUTo9+HgVSDZ7XnT4l3LTq17xTuHiHjXVErJi3MBHpHFZNh9uIUMeEue9u/j3n+qBd+bbg3/ENVjsFIyB2rBIVcCIGTpYkdGWb5+UQNcWZn/gGLo3gZz9TRoJ14F6hCxnJ9SH91v8KEurAFmKbn6BjHrsQ7tjQA02V0N3m2jJQSGF4IBdxHmObKbq/PfcAACAASURBVNN2/cIo3gm2DXizvET12NkFvHh6Drt3is0BqFUVymLD8CaOwTkqbjpUDRvbVP43VYYvE75efyGFydkad3scIhkliwpga1Z25hDgxAoiLSOUdrdCSlNCLpQrMwMHNOSfzaDGA4wlBambPgz9+vcs28zQaxEZXUmMYfGvuQQzV/0S1G03QV6zHfqe9yF9x38DSeWg73k/F9QN1ONPEiRsTJXTioFjcsGlFCXdec13HAzlMM4UG462KwU2LhFugDVm0hd3rOXSqjCUHPCvLxTNY2oWg4ZBkol9L4xjVW8Gl230rxdlbQDa9T8rftyhL8M88F2hAkHqXx/IPPOsKCUSlOHLoGy4iru/dfD7EdUPayCrigyvMsc3BUNyfBEUWUJXRuXcSSfn/DzDvkIKhBDcdcc2FHJa2w3COLpzGhRZwprYvFVKk+FR2giyX8cXcN7EMbxw4DB+5x/2YWyy0ZiPz7SzzyNLBIblwn7hfqEruzv+cqC0aAbWZBDFCABAb56ft6bUg3Xw+6je+//4ck2r9XWoVLWakjqs+BUZzXQCxuDlMipkSVrRGISL8gpy2/Xr8Me/dH1kiLNT5NIqFJk0ZzwuNANnuQ0JZVZFzXRg1y9QbCNayGp+Rz6uB5c1kHSB02bLg5uQedfHIfWtj9zdoRKMrKCIjckoTcvFWkU8DxaGfeLJRFlk2P4+GD5/BY1MLNuFabtNT/aMrqKw8BL3vbqyjuzPfEKYDUasCj6QewT5+ubAfOob/H2yvVB33CJ8ze6cjmLVhuN6YlaMupFCpmo4XOfMOnhf1Na9Dn3PL0RMReIbLHGIanIB11pCKe4uirrXcQgDvUNzcH6mjCzM1IOeReaO3+IYQFXx873YoDdbcHvy0QLutuvX4ZO/dEOiXj+O9996KT76s9EiJOzgRYgEeZDPmIs7vNZMB5/+9iH0daVw+/W8yx4AWM/fL5yljMN8/Cuggvudna5gh85fiOURcdDxpjVdmJyvtQy1ltfwJhb2kUdAHQvFij8w7p3gzUvUTdcLM5VaIa0rMEwnkGIvuwtltj0GDvBNCB6Tb8C01A95ZBcy7/gY1JBb3/+pSKf8Ilt0DWDnf1dfP1Jv/BAyb/8daLtuC4wRiKojfcuvRVwhAUC59PWJrydL/oazFQNXrisIcktk4DxKI3OSK5kBF35dIM7A+etxu+tVHNmUAtvxhNdfVuwmNToXCyY7Ozo2j5dH57Fn51BwLS5VLWhXvBXqZbdyjyPUg/XEV4RGSOq2m4L/z2VUOC4Nituwuy6DN30qIpN06gZsikzEcTS960C0ZLk0IJbWTszV0F9IBfPa+YyGP7rrenzwNrEUuBUyKRWf+vANuHFX9BoZt/0nhVVCUkI5+QgoBR471LieMjO0MAgh/nWsOgfzmW+L34zrCKMW4mBFZdIxqmu+XD88b2099Q2Y+78M9+wh2M/f5yttmmSSAvVstiZ7upQmQ5YISrWlz9oBDUavb5liEERoWcDNzc3h/2fvzaMkueoz0e/Gnmtl7d219L6pu9XdklpIrQWtSAhtgIwQjPDY7M94OOOH7Wc/M7yxPcwZOMyz3/jhwR6PeR4bgwHbILG1ABlhJLQgIbS2ulu9VXXtS1blHuv7I/JGRsS9kZlVlZWtauo7R+e0MrMyorIi497f7/ctH/rQh3D77bfj7rvvxm/+5m9ibs7dkD3//PO45557cPvtt+P9738/ZmfZjeGFgCQK6MnU/zI1AiEkGObdhOao3ShXagL92qbCvXjm8xVoioiYKvEpZOle73cEgjd9IdnlbjT23waipWCmNuC/525FcQOnaxOewOkWNpAmrgOjzLWWB2oUyljVxARorxNlvk6IN0VCkzBceJl5fC6zD0RSIF9yUy1M1Ydd8gQGTnwN5vhrsDgW/spld0ULoavTUirm5U/FXCGy4zhVExMfldFxuEWNOLQf0pbLA4+xE7jmrv8Cx3KYT6HkO2t1JlVuhlLgZ7k6OF8BZ1rIiJzriwiIv/W3It0B/RTVmcUyOpIKEyOx1HtLXJOYPEr6naXXNK9zG9bB/d0jr2FusYIP372Pr2ss56G/cJR53MywxZ5TWkT58b9jNs+5qXF0k5CJCBEgcQowANg15BbhJ0b432MKecfVLDW7UoB55lksFHVsTJhcSu9S6ZMUMUVESbc8fUbLJ3BNUigBgAgivlu8FI8NfgDxOz7BLdZ/GRFXJTgO34acfgfDbr1+iL1bEHvbb0PoHATRUlAOvg3yruvrHrOZTNFC1XFxJRo4nt5pdmH1C7h0XIFAiNeEAtzPVxRIpOFRI4TDvP2gxW6rKZQ0auF7T7k066v2bahNR0oGCCFQj7wH0rYrm3tDSQ1MwmlWWq76O4n9OyFwqLeGj81gWlXqoSQsmT5JkeGY20zNFQMRM4DbdF9JUdybiTFujWHNGiEE8u4bmJ/tm/s5RFh46pVJb4IcpaXXFBF7Zn/IDgd8MDn39TDodzKKQgkEowTs/CyTp2lNHOd6CfhRj1UFuJ9JMi6v2MSETvA8Omt69cK8G36rCSH44Ac/iKNHj+Lhhx/G8PAwPve5z8FxHPzO7/wOPvWpT+Ho0aM4fPgwPve5z63KSV4o+KcB3M3ywnjDqn81EZzAVTcV1a5f1mfFztO/kWowZEyVoCoisrngZoTIKrRr3ovkr/4Zxo/8Lk6aGwCOgNgKTeDKuoU+Z6ap8w+7B3q/V1W/4ubA0Qlc+z7nXJ0Qb4ou1cCgcYZ5/GzM3ewSQqDe8H6u6D52/hmUvv1Z5nGS6oG8O0LfgWZ1me4EpaxbsJ2glsPOjnGpHxrHPtgt4GqbnaYplBWWQmnnmzMxAapFVB0KJcB3onRCE7iNhD2m0DnI1Zx5x/YtsHOr2DFXQ4sp34myNoF78uUJ/PTlSdx97ZbIIGD9xaOAEaSRmI6A0Use5G50zJM/he5zpTRMG915NtdR3bg9Mnpg84YUFEnA8QYFHNGS3HMwXn0MiwUdV8inmJgJkuzmCu2bgVadwNHioPUUSvfabqaAM0wLiwV91Tfvaw2U+s/TwWXzFUgiYbr+YUgDlyDxrk8j+at/BvWq+7nxAX4oktCQil/wipIVTOAoq6W6ppqWjWy+sqoRAoBL7e8I3T8rddz9mkHSZ9gVhkc3bTGFMpVQIIkEMwtl7BjsQF8m5q3FdHNNiADtxg9Fmtb4Ie+4KjAdS8bD70WgXHo783Pm2ee9jFHKbJJFYckGJhRhdonjOJjMltC3wmFDM/AmcL41Xd51LRCy+1ftEg4o5zCfq+C1c27jlUehBICdyhQ2l+rni1qjbJM7DLq3C2cV+tHdUSuC9OceYiKxAKDyzNcjM1QN03XHrteUB9zifqUUynxoMt3doWE+VwlQqluFhgVcJpPBVVdd5f3/oUOHMDY2hhdffBGqquLwYdfi+YEHHsD3vldff7HW4N9MEi0FooY2MpbJnW61C+WKyRZw1U1FNq97Ext7cYr5WSFdc/nijfYDx6GOeZ2s8549NxowRTB0HRmTLeBGCY+Cxy/gij4jDCU0rWgH6Ai9HoXyEpyCiOBmYNGJ47Rdoy4IWgrajR/kvwHHpEK97B4QjnaOojNEd62ny+RRGc2z7MRP7N/JzVaLhydwPAolp4ERPq7jOHCKnAlckh/MnEmpXv5iFIRMfSdKw7TQz5kCCz186qF3bN/3YDU75hrVwNEogb7tYIT0i5OwS4uYzpbwt4+8hh1DHbjrms3ht3JfGzFZfbKyA1N6HOrVDwCcqa7+84ehv/IoAGB8toDdMmsjHdsWnUcniQK2DaRxfLR+AQe4BgJhWOPH0F14HW8y2fBcN7ZgeVOD2gSu2ghqMYVSllxmg9/tLwq0a7zam/e1Brpu8aIEsnm3+bjUEOhGaCaSxtt8NSge6yHcaMvmKnCc1Y0QqB1bCWrgKuay9W9ArZAtcCZwdFrZagqlQIj3fTlSdduNaxIEEqS3EUlB7LaPY0StHw1As1QpPLt433tJ264ESYZzNR3oLz0CwA3xBgAVFa4+ubkCTkGuoHt0TBohEJ7ArQaokZM/t81trLERLbekT0NTRPz0lUkv0incTLHzs3ir86OGx7XnR2FzGDh+VBqYmAAurXZ2sQxrYRLGaz+JeKMCKs98nftUmNYYhVScNe1ZKvwaOMC991u201BqsBws6Ztt2za+/OUv4+abb8b4+DgGBmqbuq6uLti2jWy28WK+VuDf0BFCuBtmaz74ZXYcB3/3yGs4M7HIvLaVMC0buml7bkAd8XABV/E2/HwKZZ/3786k4pm18OCJTDt6gDDP29Th+CZ8KWMWIoKLJNFSGJc4xd9SJnBtzILLNzGB22EcYx47Lu3GfCG4IZGG9kO58r6GxyTpPki7rqn7mrDNPl+X6W7Ciz4nTwpeILvIETMDrkbFv7kisTQQtnPnNDAKZQOiQDzzGaeSB8JxA5Iaaa/uuaIW6jlRcjRwPhG1btjo5UyB/SHnUcdeqOYozS5WVnECF9IjKDHu39IaexVf/I7b4fzwXXsjQ0zt7BhLFxVEPKofxOxCGUKyG+o1/4b7s5Wf/C2M089iZGIBOyX2+xjfxtKA/dg1nMHIVD7SUdA7nb4dyCs9zOO/4nwXisMubNKO5dEnAXcCV6qYNQpli10oAbdh9syxSXzmS895//3sGNsoo13jnjZs3tcSaIOHP4HTvftAK6HIIowGTI6aicnyi5J0QgYBPCo4vQbaMYUNN2Mr+somcHTjHo4SAPwUytYWcID7WYkCweE97j5FIATJmMTQ24iawPe0u/Al+X4oV97nFlK+xo9y6C7GmZRu4v2TFiKIUPbfypyHceIJOJYBs9pQTObPIewaTTr6IcQbG79lUioc1PZoNELAHzGzWvDrrv2Q97A0ymF7FDdsl/Dsa1PIlwxYthNoBFuTJ1H85z9Ep8Oa1dmEbXzw6PF+ePmjda7TnrSGim6h+Mw3ACd6L2i8+his6dPM415R1eBaTcZkj1q7XOSKwby57iYzU5eDJbWZ/viP/xjxeBwPPvggvv/977fkBLq7+fScNwIGN6RRenYUyXQMMVXC9MAW5ELjc60wjq7elPf/84tlPPrceUiyhCsvbRzkulzQC7KnO4He3hTSGbeLYxGCnp4ksnkdA30p9PamMFaeQ/iSzAwOI1E97/7uJI6dnUOv7/fwQ1bdzfDAQAbl/i0ojwTH5klzBoletwvWY7PForZxG0ozvQifhFya4R6TiAIEAgwPZmBWb8ZaTI08v1bDEdyN2NZNXdyRuzE/gR6dnVZMdx1AfsFgz/O292Kxrx9T3/4CBPA3ED03vhupfv5UiqK724EoEFQsB729KZixnQjHszsLk+jpjmOi2vkf2JBGb28KVjGHHCdfrO+ya6H0sJ9rT2ccpYqJnp6k1wk3eodRGQ0Wrkl73vvbA4BDBKTiCvr6XIOVysQMwnYZcke393wYmwddyimRpMi/t9MVw2lBDEwxnXIOXUkCMZaEaTvc67Br+x7E6lxDwxvTcBygaLoNks2DHatyzZVoN1dTau+/dS9yoWYQOfczHDt3Ce6/dRcu2dkXfhsPC2dPoxh6TBveAxU9yFdM9xi9d2HOyiH7eLhD6aDy6BfQk96PmBDeHMWhDuyAVmcqfOX+jXjo8TOYzuu4Yij6+v32T07h2PwWvCMRLKwlwn4fEvuuQ//uPZHv1QhdmZibaVfVumzsS7f873jXddvw1Mu1psHpsUU8/vIE7rg+SIfVT7lU3h1butHb3XyeXTvQrvspDwPVzbPi/w5UkSsZ2Lyh9X+zuCbDEUjd97WJgJgqYuOG5p2YecikVJRNG729Kbx41m2u7Nzajd7e1d3vbOhN4uT5Re93LOsWEjF52Z8lkavGMZLIvIdDBBACbBrqhCi0dlp695u3Y3q+iG2ba1OxjpQG3XaY8ygZFrSuzRi6zdW52eUC9JlRiPEU5C626Z6oGlPZJHgt2NfeibPPPRR0NDTKSBbPIZl2m3/dFXb6ltyyr6nPl65tqH6Wvzjt3hv2bO9Fb8/S7w1L+ZvSNUfRgteC03MlRp/YCGMuaF51S+YsjlY24IUz7rXb35NEb28K+Zf/FdPf+nwgtodCHdiJZ2bTOFAJOmuL08fQe93bIs9NHXELwf7qfpWHrcOd6BMWgNNPNvhNHVhP/T36f+0/Bxgc56vF8vBA/TW9rzuBV8/Or+jeYzquqzV9jx3Vz95A6++5TRdwn/nMZ3D27Fl84QtfgCAI2LhxI8bGahqYubk51xQjs7TsitnZ/KpwQ1sBpXpPOnlmFhu64jCS7BQpd/YYrOla7tLZCfffL5yYxvR0RB5TC0CzOizd8o6jKSLGpnI4MzIP07KhCATT0zlUZtnOes5JoVj9uZgsYHahjKmpRS5tZWbO3R4WciUgtRFAsICbP3MCxe59AMCdfFjpQSzMsQtiaXqU+xnNzBehKRJmZvIo5N2uxfRsflU/Tz/Gp/MgBCjmyyhzJkGV537IPCZ0DqIS34iZs1P88xx8E46mp3HD4sOII9iJETIbUeq7DOUmfr+OpIKxqRymp3NwHNGdivkcBR1Tx9TpMxibqBZdZQPT0zkYJ55gdUapXmTtNAjnuI7lOvidH1/wOkl2sh9AsICbP/s6ip21zfbsfBGaInqfgTnKLni2lon8WxLLLcpOj8yjO1FHcJzqDejeAGD61OsQ+7bBqpSQBEuhzIk9yNf5jKWqqcfPXnLva4qAVbnmStVrasp3TZsbDgB4JPC64uvPIU62QhNJ3fMoHWcnq3bvLnTMKRibrh3D2Xsn5JlJhm7pWAYG5n/OvIe48RIQUap77O6EDIEQPPPSODZ186lA56fz+J8Pv4yMvBt3O89xizYKkuwGOfyelX3ulo1S2cTElPsepWKl5X/Ha/f24dq9taL6r7/zKl44OcMc5+z5LAgAxzDbdv9qBr29qQt6PpUqfW18ahHTPcHrZiZbwp5N0feI5UIAkC/odd93eq6AuFr/mm8G6biCiZkCpqdzODNapZC14RrQRIJcUcfY+AJkSUBZNyGS+vePeqDShYlpdv2dnnU/q7lZvu5oJdgzmMaewXTgmDFFxMx8iTmP7GIZ/ZlY8HF1ALAA8NY2x4EsCd466oc4fBDm68EiYfaFJzA95Gq2yRSrfzMyW5v6fIUqdfL0SBZdcRknz81DFAiItfTrYqnfX2/NmWH/jsLONwNP/UPgMfXsk+hK3oeHf+zqom3dwOh3/xf0577JP4CkQrj6fXjmyz/FgdDwvPj6LzA1tRBJiZ+Zc/cvhVwZ0xGcQAkObo+9ADCutQThiWhl7ATGf/LdQF7k6LjLiDP1+p+1CDeEe2JyIZLx0gjTc8XAPYRU2WOnR7O4JELDDrga1qUOtJo6wz/5kz/BSy+9hM9//vNQFLeruX//fpTLZfzsZ27g4Ve+8hXccccdSzr4Gx3hcF+Ba/d9KuDmRqmIE3PFpkTuy0WJ6jt89KB0ws2C80K8Uyocy4TDsXEX0jU6UyapwLTsyLyXss+KWOgaZp63Z10jE9OysVHgHKt7E0pKmF8OOIvTgdwyCr97Yi2Atb0ulMmYzM3scWyTqzeSdhxBJqWhUDYjz/V1cwP+OX5/UE8mylCv/7WGAnyKMK1X5GjTrJmzjBbN5DheSpsPRepMqEaloQ4uZGQSdqzi8d/ZHLcaqAFAPUovUN+JssueZaJeSbIbJEwBjTj2yfPuzX71TUxq14k4sJfJXyS2hcuUs56+lQfHsWGOsUJyceCSgPAbqBrrXP9vITaZrSYO7Wv4Gk2RsHlDMtKJ0jAt/MVDLyOmiPj3D16DFwy+jq96gtBu+nDDv1MjxFQJDmpU41abmPAw3JvEYtFgdA6zC2VkUuqyXQAvVlBqdym05pSq5jOdq0WhbCIHrhWUwE6fIdLsYgXpuLwiKmOz8Cjo1WNXDGtFGjhFEiCJAl8DVzZabmBSD1H6pFwDd8EwCCFMbi4FN+D63C9gmhZUGFAWRpjnmzFSAcBENk3OFQMRAquJKAolAEi7rmUiOVBexH0DY5jKFiHDxPDxr0QWbyTRifg9v4+c2o+XC13QneB7OZU87JmzkefmUSjr3Ke7nTlcrrDUSOXKd3K9GSrPfTOwL29eA+eutVTfuRzkS3rgODFVQkKTVsWJsuGVc+LECXzhC1/A1NQUHnjgAdx777342Mc+BkEQ8NnPfhZ/+Id/iNtuuw3PPPMMPvGJT7T8BC8kwl84ITPg6nf80ItwFmsGCn7++YkmxP3LBd1Yaz6NEy3g6OY3k1TczK9Q14LEOgKZX+HfM4yybkGVRQiEQOxmCzga5l2qmBgU+QUclBjyTojr7dhwFtmJXclnzlLLgWunC6Ue6VZkHH+cqymUd1xds4+OKNzzJQN2sg/xd/5HaDd8AMrhdyB+7x9AanIBAFgnK552ynj1R54RTEKT4NgmzJEXmdfxwjwp6AYrkAXHM00JZcEVK6HoAl7zIB5dwCVjMkSBNHai5AaZuwUczwVV7KlTOFRBNz+nxlxKx2qZDnhB3n5BuSBACoc+A7hCOV23gLPnRtnsN0mB2LsN3WkNC3k9YAhDBAmxWz/GbUaFIQ1d2vA1ALBzKINT4zmu8czXfvQ6RqcLeP+dl2BjdwJTPdHW38qhu5b0XYgCvXfQRlarc+B4GOp1i05/AC7QnvyvtYgoExNaAK+KBk4SGq4jhbLZkqLEb4Dmhni35xqoGV25n+NKNXCEas94MQIlo+URAvWQisnIF4Nra8WwoBt2XcMxHuheKQxpaH9AQwcATm4GJDeOy9XTICH9FYlnPEfvhucfd5vC9LqYmi+1xcAE4DcNKYRYGtKWK5jH988cxW+kvo+Pp48iPsmyPADgnNmN2L3/AWLPFoxO52FBxEmD1ajXixPwcuCk6HJEPnYUYZYuiaWh7L8N6rUPMq938rOBfVquqIOgceSFP29wueDlza1WFlzDAm7nzp147bXXcPToUXzzm9/EN7/5TXz+858HAFx++eV4+OGH8cgjj+CLX/wienpYkfpaRtg0gggCxN4tzOusqVPev7O5CgjcYODXGthrU0zOhRUsjeFlpfk2J+m4gsWiUZvAJVXYnGKDpIM3HF4WnB8Vw/JuALyCwVmcgmOUoWdnkBBCF76oQOjYAFkSMeOwuieekYm/gKOb3XabmPA6eo5luha2IYjDl0JI9SCTCk5sw8gVDaRispsTt/t6qJffC7Fny5LOrTOpBt5f2sy6BFrnXwbJngeBW+BbEycAPXSNyVrdziF3Asct4MYDna7wBog7gUvyIwQAV6yeSapMrAXzOo6RSXbsHF4+Mxc5BW6EdEIGIa64XFNEJgS9VZBEAZJIUA5NamVO7tl2eQodTrQhknWeM33bsAtElLzCYT4XXDiIrCJ+5+9C3nsLs1nxXpPuDzjV1sPu4QxMy8bp8eB5vnhqFj/42ShuuWIIB7a7a8O2Q1dgymJ1AELfNihX3NvU8RqBdpvnqr93OyZwg30u9WWEV8CtG5gwkCU3WNsfVQLAt3bVt/teDhRZaOhmnG/RBC6TVJErGjAt240kadM1QNdy2sQt62Zdc4hmkIjJ/BiBcms+q2aRjMvIl0zY/slKKHOrWXQk3L1SGERLcuNLtKmXcY16gnlc2nJ5026pAqnFPDiOg8n5EvraYGACuEH2SpVSywPPJRgAdssT2CTxc32nO/bivy3eDlN1mSO0eXXM4LCC6hVw1e9kOHOVwtFLME8/yzyuHLoTRFYhDeyB0MeJ4pk54/07V3KZQY2mnck6uYfNIlcyvKxBiq60hrkLMYH7ZYamiFBlMRhyzQl89LveZPMVpBIKtm1M48QI69ITxunxRfz+Xz655GldSadh1xwKpW8Cx40QCHWMPNpaROFR0S1vE0SUGKfj5MCePw/D94XxjtU9BFK9eUxZzRVwxYrpbZ4lkYAQoNLGCVy+ZHBH7cZrP3YnmiGoV7wDQP1C2LYdFJZI9eAhk1JQrJi1EOhNB0HSLJ1wYOaniKmu9TKXPjm0v25kQZxTwJFEJzuBDgWyF8tmoPDhh3jXN2vpzWg4PpKt62zIo1DOjZ7Ff/3K8xiSllfAiYLgTbu601rLbcz9UGXRc3elELo3c2mqifHnIt8nij4J1CaI05zOH5E1aNe9D/Ff+U+YS7OFvHLpW+r/Aj7sHK4GevvuYYsFHf/z269isDeB+2+qLa4HdvTgMTM0+ZVjiN38URChNQWzfwLnFsurv8yl4wo6kgpGp2sFnO04mFusoCvd+mnSWgchpJo1GfyOz/vo/62GS6GMXkdsx8FCwaU7rhR+Vks7QryZ4+ZoAbeyCRzg5rxFxQgk20mhjCmwHSfACqGxAktdV9MJOVLiwmOmdI49wS1keC6O9ZCpNmAXCjoqhoX+zvZM4AB3P8ubwAGAOLAHOY1tikZBufxenN7+AAxI3nuOTNMCjmXHWBMng+YwPuiGDUUWItdb88xzgBX6W6mJQDxE2GkUAOzpM96/3alY4yLfC4xfZhacYVqo6BY7getYnTDv9QKuDgghgXBfABB5OrhAAefmr+0czuDcVK6hvfbkvDsZOTW2tNgBGsioBSZwLkd8drGMZEyGLIncEG9/hAAAZKqbVj81L3As3fKyqwBA7GI5x9bcKKyZsCdizbpdlgRMmkufwBFCoMhiWzVwLoUy+AV0TB36zx9mXituOuhdE+GJrR+FsgEH9bPlmkG4SCREgHLpbczrBvMvoU9zz8M6y9IfeFx/P2IaS3EiROBmxlELf6e6uDaiUEaFeFO8/fptmMuV8fffZwXjFLwJ3IBawP/xwAFsVtjGSaMIAQr6+a52x1xTJKaAI4RA4kzhnNNPBqac3uO2BWv8NeZxqVrAUXvq6Xn+wgkAYucAfph6O/5afxukbVdC6N4E5U2/AnnvzU3/LsmYjIGehMc4cBwHf/2dxtq4sAAAIABJREFUV1Esm/jIPfsg+/J9ZEmEsP0Ivlm+Clm5H8fMQcTv/SRzT1oJKCthPl9py/SNYrg3GSjgFvI6LNtBzzqFkot4KKoEcNdDAqCno/WTCVmqnwM3Nl1AqWJh60a+Q+5SQCeIo1MF6KbdtgIuoUmQxBpNr1KVP6wEyZjsRQb4kS+1VwPnBXD7isnaBG5p55GKu4HNNue+KnJYLbLO7s+E3q1NUfP9cKm1OqbaGCFAoXEaJhSECHi8+504bTUo4kQJ2s0fhXr4HdBU9zOnU73RqQJURcSk3QFTC5kZOhasMTZ6CaiGzdfJgDNOPME8Jm+/CsSXbcplxvl0d3nOno4H2ggoLWZRefprKP3or7hN0ijkq9q58ACgO62hVLECzYdWYL2Aa4DOpBKYTIm9bAFnz5zxzDiyuQo6kyp2DXfAcYDXz9efwuWqYbBh7UQj8CZwHdVCbGSq4C0g/Ay44ARNkUUkNKkpCiUACBwdnD07AjLPCnzp5EMWBUyYLHWKF+ZdqphIyxb0l76PytNfwzZ5tm0FnO04yJdMpoNiHHuMO01SD7/T+7e7eApcCiXt6ITfd6nwCjjfMeRd1zEZbSJsHJFfhb0wwSmSSUMji3iERoWrPavq4Mq6BdtxGlMoG0zgdg1ncNeRLXj8pQk8/eok9zUkngHk4KZIsHRsl6dA7NBmQ01wQlr5oDrG1dasRHVDZY4Ozs6Ow55lReD2zFnACBVnsgahuqnIpFS3cTJfn6I9Mp2H0bMTsVs/hsR9fwT10F1LDtHeNdSB188vwLYdPPrcebzw+izuv2k7hji26Uf2b8Sjxd34L9m34evCnRC7Whu3QnPf5nN6Wwu4ob4kxmYKsKrh9pQysx7izQdvAjc1X0JXWoukU60EqizW1cDRQHo6UV4J6H369aqetl3XAKEU9CpNr6KbUJWVfZYJTWImcLbtoFgx266BA4L6JJrZtfQJnFJd69nCVOjYCNJEQ2mp0zcA3kCAymb62qSBA+pP4ABgvKTh6/I7oL3l33FZPSSWRvzu3/fWKDo8KFcsmJaN8dkCdgx2ACAodLLB5sbr/AgAvY7Rjl3Mwhp7hXlcDuWEChwpijVzxmt8RrGqwkjGZKjQsfOVv4T+/LdhHv8JSt/6DMpPfgWO3ZgFRq/NcLFIG8KtnsKtF3ANEA7GJMluN9TYD8t0zQTgTkYyKRXbBzpASG1RiMJi9Q8+Oh1Oy6qPUsUCIcHwQ0r/Gp3OewsIbwLHE91mQtoqP8q6GSzgeE6UcyNQcmPM494EThYw3QSF0nEclCs6rp7+OipPfAn689/Gh5RvIZ0/wz23VqNUcTn2SR+H2TEr3OmbtOWKQAfOXTwVbiHsuSAtkasfhueM6pvyEVmF4qMTUByyX0b5x19kHhf6tkEIX8Mh0MZAeIMldPAKOHcCF3a+dPQSYIRuWIIEojW2yr3nui3YPpjG33zvNcwssBMkQgiXRqn/7J+Zx8TuTU3TIenn273KtDdVERkNHODSm8UN7OJXefIfUHn666g8848wTj4Jx7Zgcjqa4sbdIFVHMYEQ9GVimJyLnsDZtoOxmQK30FoKdg5nUKpYePKVCfzDoydxYHs3brmCndTT13alVZQqVl2DluWCTuBMy26LgQnFUG8CpuVgovp5ewHO6xo4LuIqfwLX37U6UwlZEmDZDkyLvxE7PpJFJqmgtwV/L0plpA3cdga5U6Mr07JhO6g73WgGPA0c/bu1UwNH105/mHduBRo4AFwaJSGkrsEXAEDWIG+/aknHBNwGYaFsYnS6AFEgq77O+KEpUt0Cbj5fQSatQt56BRLv+jTUI+8F6egHiABpy+WIv+P/gujTmtFGWVk3MTFbhGU72Fm1yc+m2TXMPP0s7DJr4V8x7Uiar3nyKcaEz050Q+jfEXhMyGwExNA1UCnAybmGZrmi0dQETpYE3J16EQk9aIRmvPA9lB75b5E0UIqohgKl0a8XcG0GvRnSSp4QwtfBTZ2CadlYLBrIJFXEVAmb+lM43kAHR123zvs6t82gXDERU6TAxpRuhgzTRiapwnEcvgaO011yO0MroFBOn4Gqh6YthHjTOlkUMGOngNBG2ilm4fg2+WXdwmH5dXSVahMHkdjYXojWAbUSOQ4lw3jlUTilMIWCQDn8dubnO0OUW+Z9V7jgdUY4hsr7b2WsgDWU+RS7BvRJAJ7rKFPAcSdwbhFOF3U6vbO59MnOpqY7oiDgw3fvg+M4+KuHX+FmRfKm4dYkKzRvRv9GQTdeq0154mngKHhulNbYq9Cf/xb0nz+M8qNfQOlbn4F5lv1OUPokRV9nDFPZ6EVncr4Iw7Qx3LeyAm7XkDu1+OJ3jiGuSXj/2y6JLJoFQnDVXrf4Tq+wocGDn5WgqW2cwFWLYMqmoK5j6y6UfMRUiYkRmJovrZouiBYyPB2c4zg4MbqAXcOZlmhfqZvu6XF3w9rOIp5OeahuvBUUSsO0AwYwtCHZTg0c3RTn/BTKkg5CEKDtNwN634nUwTVYI+XtV4MoS2800Mb68ZEsejKxtkQIULgTuGgKXzZf8RgoRJSgXHobku/+DJLv/0vEbvs4hBCLhTbKyrrl6d/oOjAZ2w6ihRhXtgnz+OPMcXUjWqdpnGTpk7l+1jiGCCKEHnadp1M4Nxqq8VpjzZ3HtRI78QMA69zzKD70adg51uXaOzdvAhc8FqXRt9qJcr2Aa4BMUoFh2oFOIVcHN3XauxnQLv7u4QxOjS3WFU7TnzEtu26nPIySbgY2KgAC3exMSnHtxcMUK1ECibNhglGTI8ClUPo72STdDxOhL5zJ/qzQscGLK5AlARZEOHGWymYv1GhypWIZt8dYy/uMwU4SVwN5TqHFzX3bdiVEziQyk1QxzymElyu2DiOmSlAkgflbCfEMd+PPg7T58oavcU0GRIazzS/g6ATO/ey8CVyOFX03MjDxozcTw/tu243jowt45BmWnivvuwUOk/jGoln9G9BODVw0nUXe9iY2lycEa+I47MmTzONiqIDr74xjar7E1XoAtcn/Sidw3R0autMqLNvBB+68pOFk7cg+V2vRsQoTOP+9KtbGCdzG7gREgXg6uNnFMuKq5Ol51xFEeAKXLxkolM1Vc+ajNC0eHX9moYz5XAU7h1ZOnwSom67i6ntkAYklFhgrQaYq+6ANonr5Ws2AnnshUDhVY2ra7EIJBCmU1DGal9laD+k6EzjAdfKFHH0dRrk2NgJ1qj43lWur/g2ov+ZYto3Fgs6N74gyO/Nny41O5SGJBFsHXGZP0QDk3dczP2O8+iNGz60bFlQOZdqaH+Pmx43E9nLPh6dHtGfOoFSxYNlOw72X4zioPP63EAh/rQTc2J7iQ5+GU+ZLnvIRUplUQoEkkvUJXLsRdnUCohxvTtUctKpfgp1Drr32mYlog5LFgu5tYvwC+EYoV6xABhwQ7GZHRQgIqV7uBCSTVLGQ17kbvYoe1MARQcC0yNLXmGP5Ns60+2mn2Omfn0ZpnvgJukX2c0jZC01xkFcKr9CqfgEdowJ7fpx5HW/6BrCUW4qp+RIkkayYMlbTOLALj3LpWxv+vLz3lqY1RzyNiktbDE1RC3NwjLJHs6EaOGuGDd5sNjOH4sj+DRjqTeLVs6yWTuwawkxH47DppUzgLt3WjTcfHMCWDaxes5Wo1w0lWhLiMCukbwg1wehT+7pinpU5DyNTeQiEYKBn5VOPu6/digdu2YlLtzXWGw71JnHnkc3eJK6VEATiTR3aqYGTJQEbuuOBCdy6/i0a4fsL1Wqu1gSOmunonIbq8aoBz64W6N8ovGbQKjvahtGZVFHWLU+eoawgyBuo3c/9NEq6V2mXDT7gThIVWQjo1lxq3NLX1EYFHBElSMP7uc8JPZu5phnNgF4TjtPezw6oT6FcLBhwnKW5v9YKOBMj03ls7E64fyNJQKliQd7zZuZn7IUJWBNBc7KKwadQmid/yjw2jl589ecFbk4bL5LJmj7j7ekaUSjNU0/DGucbrfjhFOZRiQg1z5cMELCTacGnTW0l1gu4BuA5C3KNTObHsJBdCPzMzmF30nW8Th7cYlHH7k0ZCIQwGUL1UNJNprusKaIXhtgZlQEXsYHOJFXYjoNc6IbmOI5LoQxthF6MXQW7wfTDv3GmonQzEV3AOaYO5dj3uO8lwoZTZDfxrUaN6uje4O358wBCQeipXogcu3fA7bBVdIspfEan8xjoTrTE0jwTMtahELuHIQ7yCxqS6oV2629wQy+jEFclJqeJSApIis17tBcmGA2cNfk6e45NBEiH0ZVWIxfaVzuug+3UuQ4FCUInOzWMQmdKxa/dsSfgnLgaUBWpbiaVcehXULSXtjGRNu5hmjN0MzwV4UQ5OpVHf1esJb/vmw8O4LYr2al0FO67YTt2b2p+IrsUUHZCOws4IOhEObtYaav2aa0hproTAUqPnqoyUFZLA6fUmcCdGM0irkoY7E0wzy0X/gKunaDHpQVxK3LggKD744mRLNJxue1TpFRMDli855YZzZPQJIgCwUKdwOYoHdxyzEso/BOudkYIAPWbhv7oqebfr0ahPD9d01HHqpN1oWMDwwgB3CmcH7rJUigdx4HBKeA69l+PQsnAF79zjJnkRRmZ5AuNCzjHKKPy5FeYx0k8A0jsZ2KefNIzLvQjV3SzEYVw6jiiw+NXgvUCrgF4GWlES3JcihyY1dwJqlNKxxVs7I7jxChfB+c4DhYLOrrSGjZ2x3F+CUYmpYrF6DsIIV43KpNS+RECdQo4gLXANy0Hlu0wi8B0Yju+hrcyToB++EfaUrWAM+Ls8amGyjj2GMRydLHL0/O1Gh63v/plt+ZY6h5PA0gRlQU3OpXH0Ap1Rt4xInR2AKAeeSCY1abEoV79biTu/8+Qt71pSZ3gGMdkAIimUfoplI5jw5riFHAh8XEzSMVlr5scxoSVxosOG+LpnWvXYMvyxVoJrY4GDgAWSRqfXrgX47veBeXwO93/Lr+XcRv1g7dY0g3WZFQBN51fsf7tjQhKW2yniQngOlHOLlZQLLtxLusZcNGIV7vU1FF5cr4IQlYnQgCAt0nkT+AWsHOoY8lUvHrw9LRtLuLpJpwWxCvNgaMFkp9CeXxkATtbpBdc0rnEldAETl+WrpwQ0nBDLW46wGj2ISmMA+JSkNAkr5l9ISiUumFz9eTZEHus2fcDXKbBfK7irSP+fQOv2DVPPxOgIOpVmrEf1uRJz4DEAyHoPfRm/MqNO/D8yRn86OfnA08LnQOAGLoWKgWU5t19Yz0NnP7cQ1yXce3Nv474PX8AhGikTjkHa5TVytVrKKTjChYLyw8I52G9gGuAWkZacMPMm8KJc2chCiTAf905lMGJ0QXul6ZUMWFaDtJxBUN9ySVN4MqcCRxQowZkkiocbgZcRAFX5WbPh35POiUId7IVScSrxhDi936SO5EBwhRK91KraPzpjev0+C3u+9Rex7eUbyVyRR2KLHgFqz3Li0aInjJQEbCfcpsr6sjm9RXrjCj8NtFhiF3D0N/ye/h28RDObX0Hkg98FsqBO0DCN7YmENckbm4JL4PNzo6jUDZB4N7A7eyEq8H0Q1Ih1Cl+o0AXWt7vmy8a+Jl8FRBhjLIU/Vs7oSoidJO/mAIutSfvxIDt10K9/B73v8PvQOLtn+IW0AC/gPOiBObYKIFSxcTMQrll1+UbCbRwa/cEbqg6wTk+uoBSxVx3oKwDz+m2eo+Zmi+he5UiBIDaGhSewC0WdEzMFVtKnwRqhVS7abS0cGzZBI5q4KoNurnFMmYXy55hRTsRnsDlS825C/KQrmbBRUHQUlAO3BF4TD1837LMSyioUzXQ3ggBIDgxC4PubzuXQKEUBAJFFnCi6rQ61Ofe++JajRotbb0CRA2tL5YZyHbTDTtwjTpGBZUnv8wcTxzcByGewa2Hh7B/axe+8uhJnJ+p7TGIIEZEXJ0BED2Bs6ZOQX/hKPM4GT4IadNBiD2budNYnsFKvqhHRkWlE0pkI3q5WC/gGiAqI03sY3VwsfwoOpJKoIu3a7gDpYrJ1bdRB8qOhIKh3gRmF8tNB/0VK6yJCX0vAiCdkPkUyogCrjNickRH7mEhtCILMEwbYtcQ4m//FMT+nYHnpS1XBKzq6aJcVvkFnOv0WN+x02nHBK4YzAuxORO4ekWIp5n0TTI9o4i+1tBzMkkVumEz9EaKktqLR8oHUBo+0pRlfxR4Gjgg2omyWA1gFwjhG2z0bfMs7peCjrgCy3YYK2vA7XhZiR43C4+Dpejf2glaWETRKGlnOKyZFDr6Eb/3kwxVVhzc63YgQxAIcZ0oORO48951efEVcB6Fso0ulEDNDOaF110Dn3UHymiEsyYn54urqguKmsCdaGH+mx90mtHuIPcahdL9zreaQrkaesFmkYzLnv6J5rgtN1s1nVC8PVgUlMPvhHbjh3AidgDfcG6BfOltyzqWH5mk2vYIASBo+x/GfN5181yqK7CmSBiZdPe2fgol3TcQUYa0m12bjWM1MxPdrAV5O7aF0g//HPbUKeZn6ORTIAQfuPMSaIqIv/jmyzDM2hrK08FJWXcPx5uMOXoJpUe/ADjBddhwBJQP3Fd7j53s1NU881zAQR1w9yNRE+F0QkGuqEc2bZeD9QKuCXRUDT784E3gMpUxZgS9o9qlOj3OGpn4N2meBXWTRiblisWlB23oiqOvKw5REPgRAhwTEXoOBGCy4CjNK3wsRRa9TqYQS0O47RP4p8KVmE3tQuaad0C76cOB19MCriQl2TG3XkLlWb4o1I92UChzPrtZx3FgVfP9/OC5T1J0cCa21NRguFUTuBR/KkxRC3lfGX1saQWcS6H09G9TvAIumupYD/UE5/migWRcgXL5PVznxjdqAaf6HLx4oBsL3oJK1ARid/zvUK99H8RNByFfejtit34sks7Ul4lxw7zPTroW5626Lt9IiCkXhkLZmVKR0CT84qRL/1kv4KJB70+lignHcTA5t3oRAoB/Ahcs4I6PLECRhJYbF23sdht2Az2t09U1g5gqQVVEb+oeFZLcLFRZhCwJXgPt+OgCNEW8INTrVKxGoSyWTThOfWpcPaTjckNNEhElyLuuxROJt+C4tKsllNGN3XEM9SXbGiEABF0jw8jmK+hIKFztVqP3dHNzZW/vE943KBwapT0/5jV5dcOGIguuC+S//g2sc79gXk/iGUhbD3v/35FU8W/fugej03k8d7xGteQVcFr+PCSRcNkY5Se+xB0M/KC8H3mx1qCQhg+w8gVTh3kmGOWTr5M315FQ4DjghscvF+sFXBNIxmTmQxd6NjO0rZSTw9vt7wVcFXvSGgRCMMPJf6Dj+3RCwXBfEglShv2Lh1B65M+gv/QDOA7fddG2HVQMi7tBf/v1W/EH77sCjm3ByXNs3CPojpIoIJVQGA0c/bKHu3iKJEA37VrSve7gscolGNn7a+i66UEQOVjIUpMEwwI3gJkJfOagLQWc7wvoFLMsDVCUQdLRznkxVYKmiAEq6uh0Hqm43LLQ4qhpKQWdzK10+hBTJZR0k3Em5RZwCxMolnSfgQmngFuG/g2oX8DRjpeQ6oG895bAcyTZDbF/eUXjaoPmKkaJyheLOiRR4E7ZAZcuouy7BfG3/ha0I+8BqaON6++KYzpbYjp/J0az6EypF6VOS7tAJiaEEAz1Jj3N9LoLZTTovaJYMVEomyhWzFXVBdUmcMEN7PGRLLYNpFtiMOXHtoE0Pvcb12DzKjva8pCpBkYDK9fAAS6NkmrgToxksWOwY8mb/VYgGZdR1i0Ypu3L3Fr+BC5X5FPzwzAtu2XXx3tu2YVPvLtxFmurQZtZJc6ak81XlqR/q72ne20N9yW94jYeih8SMhshbtzN/Kw5+iJMy4ZlO+5A4NlvwHjtx+xBRAnaLf8bs6fcvcktsPxTVIHjDpoujyMVl5ni23j9aZjHf8K83kgP4/ulSwP0WiLKkLddyb7WZ7TSKG+ukfPpcrBewDWBhCZ5/G8KIikQOJOYzfpJFL72Byg/8fdwTB2CQNCZUrk23l6XXSNInPohPpX5ZwyOPQrzzLOoPPF30J/9Bvd86KYvxtmcKLKIZEyGk58DQgUg0VJ1+du8LLhylAZODoai5iLyLyjoBM4wba6GKgyem6K9ON3UzXYlyJdqHGau/q1rCKRB5yyTVAOTzNHpPIZ6ky0TfNMbLc+JEvBfHyubPsRVCY4DxmyDxNIQtFDBYBkQy/NIaDKcSgH2/BjzfsIyiynvxlcMG+zYKFVM7++lXnU/5L03g8QzEPp3IHbbx9+QBiZAbQIXRaHMFXSkE+yisxz0d8ZgWg7mcrV7kOM4OD6SbVlw8RsNsQukgQNqlFRRIOhYgqvbLxv8Ezg6LeprywSu9p0rVUycm8q1LP8tjAtVwHf6rruVUigBl0aZLxnIlwycnym0nG7aLFI+Oidtqi/HxARw1xXTcrhGXWEYpt0ybaaqiCvOg10OYvUmcLnlFnDud9ivo46rMsPckbazGbXW9Gnvu9hbPguda81PoN30EUicAjCmSiAkONFyjUyCa75ql7BRC+6V7Pwsyv/6RfZwkgLjyPthQfQy3bynOOY11uhLsIuu9KdUMWHZTmRDIV19vJ7z6VKxXsA1gWRM5upvpOFL+T9gWzBeegSlH3wejmOju0PjJrAvFnQcks9A/NanoD/9NWgkeMEYLz/KLVjohKUeRW4p+jeKcOEB+CmUwUWA3syonqB2M+VvWGSx+QJu1umAdvNHWKqlUYJTztX92ZUi73MR4jlQCp2NTTjcQrjK07cdnJ8utJRuQjeF0RO41lAoaYc8fDMmhEDuZrPk4pUZxFUJFoe/Tjo2QNCW14mO6lyFF3AiStCu+1UkH/xTJO79JDfY840COoGLcqJcKOpL1iNEgW6K/U6U0wtlZPM6dg11tOQYbzRoF8iFEqgZmXSl1Za6Gl5sqBVwVi0DbpUiBAC+Bu718wtwnAuj51pN+DfjrSjgkpq7B6J6wQt130j5wry9yJ9l3ieXMhExLNvbw6xVeCYmHO18Nq8vKQOu9p7utTXki9+Iqa5Bl2nVvmc8Jow1dcpb/wZmn+a+v3rNv+FOvgBXC5fQ5MBwhQgShC5WNrFZnvP+7Zg6Sj/4c0BndeHaNQ8i2e/u8cJZc+KGnSDJUMap48B8/Sn39dTBvI4GDlifwLUdCQ6FEgCUg3dA3LAr8uesc7+Aeepn6E6rmF1kN9t9E/+KX0/9mEt1BACnkufyc5vROPE20VH6Nwpe0CD9goVNTOiiQDsoee9myr94qU2sYdoQMtEFXJHE8Q35bldXx0Q1rK6RiWG6xiB0QeAZmIjdjQu4Tp/N/1S2BN20W5ovpCkSYqrIDfMGfBTKFU4fYiGTAT94BVzSmENckyLok8unMiZjMgRCmAncShfwCwlaYEQHq+oto9xSWprfyOTEyOoYN7xRcKFy4IDaBG5d/1YffhOTqfnSqkYIAPwJ3PHRLARCsH0wHfVjaxK0gJMloSVUx0TM3SifGFmAJBJsG7gwn1eSM4Fb7jRrKRtq02wdhfJCIcrExDBt5EtGYGrb9HvSAs7XoPZP1imEzkFADL1/pQBjYRKAg1TuDPPeyqE7oey/te7x/dReCl7I+pDo7rEd20L5h/8dNifiSNp6GNLu6z0jtlzofQkRuBESlEZZbw9sl3NITT6HG9RXkDj9I+gvHoX+4iMwz78SKZVqBm9MftEbDAlNgmHa1byK2oaAqAnE7vo9mCceR+HJr0OssC6K+rPfQHf/r2M+V4Fl255w1bEM7Fl4vOGxrelTjGas3EDj5Dg2l0vcyMK9M6VisWgE+N70y65xNHBArZtJuxWRFEo6gbPqTOBkDQ+Jd8OQ3S6HkO6rBmnXYC9OeVqqp16ZxHS2hLuu2VL392oW4YmOPcsamPBos2H4bf49A5MWC75501KKsu7a+YeL7qXCs/nmFHBKN+t4mLHnAE3mF3B9y9O/AW6nLcURnOfpNXcB6CgrhSpH01kAd1Oxqb812plMSoUSihI4PpJFQpPabrDQLlxICuVgTwIE6wVcI0iiAEUSUCqbmM9XVjVCAPCxRqomJo7j4JUz89jUn7wgk9rVBJ2mtOr6T2gS8iUDx0ez2LIx7Wna241ktVmXKxoN9xyN0FF9r0ZOlIBL11/Na7MdiIoRWPBCvJc+gaM0Rv864te20uYqEUSIvVtgTRwP/Lw9fRr9wgIkM+w1oEC54h0Nj5+MyUwBJ3CYN5v0k7AXJqG/8F2YZ3/OPE8SXdDe/OsghIAASMYk7tBG2nkE+vPBuCt7+jTs7ARyRff3DjeU7ewEit/+DJzCPN6ZADAGVHwKE2nH1VXTv6V/p9b2FdkmUBtdHo2SCALk3dfj+OW/jaMlllJpZ8ewwzgO23GQzdVuFNb4a1CcxjcOa+o081ipgcbJGjvGmVQRyNuvqnssmk/i3yhTDVy4GKA3cNrNzJUMCIR4XdUwJF/3U+gcDIZNAwAREXvLb+Kc0eV1cNiwdATCyZ94aQJHnz5X93daCvwdPccyYWfHmdc0k2OWSaowLdf2fnQ6797gulu7UU7FFaZDREFD3ldK34qr7nXPi7bgTeB6yAJiqsCd/i7XwITCzYIL/r4eZWGZC/iFRL0YAdtxkCsanqvXSiEQgt5QlMDx0QXsHMpctBS/A9u7cesVQ6tqSx8FTZHw9jdvw/UH2SbHOoKgob+Tc8VVDzYmhECRBE+3/dgvxnBqbBHX7G+syV5roGt5K+iTQNXIrWjg7ETuguS/UdDpRr5kIFc0ApmtS8WSKJSmDUlc2/fKmgtlcD2nTJ7lUCiP7NuAd755W+BvwJvAAYDQy0ZvkdnT2CazrCqxbxuI2LipkojJyIf2JzwnyrQxg8JXfw/Gqz9i30SQoN3y0YARWCoiI1DsHITQzRaI+svfR67ENpQdy0Dph5/nhoRTmCe8SD60AAAgAElEQVSfhPHiI5HP18N6AdcEklowB4WH+ZKD75QOAf0spXJo/F8gwMasz8jE5FilQmYXMGua3QzTL4YWUSzxLlJxaF9kiDeFZ47ho1FWdAsErJMVtSb2a+CSHKcfCoEQSKIAw7JBlBiUQ3f6Tk6BdtOHIA3tR8mXb8c7X3uxFua9WNBRKJsts2X1u1rZ2XEmG4TEM4Fsuyh4WXC5Ckam8tjQFW+JE5gfiYiQbcC9PlrRUa43geMVcP3iAnowDxghbrmsuUX7CpCOy0yndC1TKOvFCBTLrhi6VRo4AOjvjHs6o4V8BZNzRewcvjj1b4BrHvHet+xqu1U3xd3XbLnodFWrAa+Amy+tqoEJhSKLqJgWxmcL+MoPTmDf1i7cfEXjptxaA13L1RZNFhMxGZbtwLId7LqA942EJoHAXavzdTK3mkEyJoMQ1hyLB/Mi0MApkgBC2DUnu4IJ3K7hDO48siXwGG3il8KFVR8bvSXOn8V2iVPAbYyWJvnBo1AKXYOAzGE/cA3wCLSbPgwpJIVyGxb860LmZMIZrz4GI+sOF/wUysrTX+ea4YVRefrrDNusGaztK7JN8CZwdQqFbL4CWRIRu/KdzHNyaQZXKqe8As5xHJhnn2depxy8g3nMnjkLxw5+EegXkOdCaZcWYZ55lj0HThZHGPQL7J8UlnULisJOc5SQBi5XbHwzlX3dT/XyexC/95PQbvwQEu/6T5B3uC5FxbLpdXB4Gjh/lAC98dKNqePYK3Kp9CZwcWXJAd5+0O7nfL7iOVC2GnFVQrESMYHTzRUbmNBjABEFXOcGgASvv7RQRk+Bn//WyLmzEdwJHN/EJKGtPfqT6pmYsJ/tQkSI90rQ3xnzogROjLpU7wvZSV/HOgCXbjWdLaG0yhECFIrsUjb/4qGXocgiPnDnJRflFNqjULYoyJ7eYwmAHYMXroATBQFxTUKuOoFbbgYcAAgCQSrOMjt4MCxnzVMoCSHQFIkp4KibdaZFjrlR2nmRM4GTF0exQ5pgHq/nLeEH1Wb6QQSJu5fmQT3yHsjb38Q8nozLkQwnedd1bIFom+gfewySWJsIm6MvwXjxaFPnAdtE5YkvNfdaH9b2Fdkm0JtX+ELxI5vX0ZlUIQ3s4Vrg3x57AfNZVw9lZ8fghF0iCYGy92aUSWgRswzYc8HKnE5eeJt08/jjgM3avktbLos8dwpvcuSfwBkWo38DWD1Bvqg3zGPxF3CAS6uTd13rFWq27aCsW17hIHDy1ig11HEcb0M/NV+C/uJRFP7Xx5H/m99A5bmHllXI5XwiVCsiQqAZ0EJ4YraI6Ww54NDUKsQ1vjMqAJQrJre4X/oxok1MiChxJ6RdU88xj7Uiiy2dULAYyuzJFw3EVWlNisslUYAkCh5F2Y/FVSjg+miUwGIZx0eyUCThguRTrWMdfsRUydMJ93Wt/gROlkQ8c2wK5ybz+PW37VnW1GEtIFO9d7RK20dpYUN9ScS1C0tZT8UV5IsG8qXGe45GSMfZxiAPxkVgYgK4NEqWQlmBJJKWacnjEQUcSfWCqMFmtmCb6BSLCL5QaFpykdRklCpWwPESAJTL7oF24wdhqdGMKfnAHVAuvY37XBSFEgCIloSy/y3M40OLz2M4XgIhBHZpEeV/+R/Ma2wIeMraC3FoP/vcMgz61v4V2Qb4nY+i4OZoVHnnh1nxZbeYR3LsGQCAeZalT4r9O0G0JPJxlmoW1hTRL6CUPYPitz9bzZ37EuxiFvqxHzE/L+++vqk8rFRchiiQQAFX1i2uGUY4FDXns9+PghIq4MKgvxe9AZBUNxOW7pQW4RhlFKuZGwBgn3kOlZ9+GU4lD+gl6D/7J+jP/GOjX5dBrqiDwC3YuQ6UTRiYALUC7uUzrnXtUIsNTAD3HCu6BctmP8+Szg95XypkSYQkksicHF6gt1KcZB5biYEJRTqhwDDtQPcw14IF/ELCXUzbU8D10yiBbAnHR1cnuHgd61gqYqrk3cfbMYFTJQGW7eCmywZx2c76koK1DEUWkdCklmngEtWi7Y0wtU/GZU8Dt1L9czohN02hlNb4BA7grzk0xLtVeaAxL34oNEggBAKHRhmG0LMZhEeB5ICy45hikRDIu67DycO/g++WDsAJOWBKO45Avepdke+brE72bJs/CFAOvBUIZSoLsHGr8gs4egnlH/0VnBJranii52b8Q+5KaG/5eFOGeI2w9q/INqCeiQlFNl/xJlhi/w6IwweY1+zKPg7HqMA6x9InxU2HAABO9xbmOTukgytVLKQVG5Uf/Dms86/Anj8P46Xvo/Dl34azwG6gm6FPAq5OradDwwuvz3odjYrOn8CpoQmcezOtv+EMT+DCKIbyy4ggsbkbcDsVdJMrw8T28e8xr9Gf/xb0l35Q93zCyJcMxDUJoiDAnuM4UHY394WTJQHJmIxj51zh6vAqUCjpTZKngytVzEh95JKPo0rMjZiCV8Dx0JIJXJwVnLdiAb+QUGWRmwPnFXAt/N36q9ONsxM5jEzl1/VZ63hDIF6l+BEC9GZWv4DrSKoY7Eng/ptX3lR6o2OgJ4HeFhXFPR0aCAH2b+tqyfutBKmY7ObANdE0bgQeNT8Mx3FgmmtfAweAS6HM5vWWTqKpuR5PesGjUTKvaZI+CfjYcRHDlVyF4HulQ7Dv/iMoB98GcdNBqEfeC+3GD4GQ6L9nKibDcfjsI8B1oFcufSvz+F7nNRS+8ruwRl5gnhMH92Fu6HpYtoOiSaDd/FE263iJWPtXZBugSC7dKeoicRwH8/lgkr16mNXCJZw8Kk9+GdbkCeY5abNbwJFu9gIPO1GWdBMHtfNwCnOhF3K+MIP7uFqyKNx/0w6MTOXxTz92i8aybnKtiGXfBM62HRTKTWjgxAYFHIcaGqWDozfd2+MvIWEvct+v8sSXYJx6pu45+ZErGkjFFdjlHJxiNvgkEZsuWACXT64bNjRFRHdH6+3EE3UKuLJutYRCCdACrvkJHPuagYC703JBHRn93VJXxL72DEwoNCWigCvqbkhpC+MROpIKFEnAEy9NXJTBxetYm6BOt91prS0T4Y/euw//5/uuaNlk6o2Mf/+ug/jQ21ln7OWgJxPDf/3YtTi4o6cl77cSpOIy5nMVVHRrxQZWlEJZT3Jh2Q4c4CKawLEUylbp3wBXW6gqIndvwjMyYV7TpIEJUGPHFUr8PQqlQSa7+6BedT/ib/0tKJfe1lCT7w+Mj4Jy6W1AaG8jwIFTzjGvJWoS2o0fRLpaIywWdIhdg1CvfqDueTTC2r8i2wBCSGQuBOBOxHTDDhRwYu8WSFuuYF5rvPojxg2HpHq9zbDQxxZwdvY8HKPmYFmumFzhJw/NTt8oLtvVixsPDeB7T53DK2fmUDEsrpOV4pvAFcoGHKexnbssCzBM/jQHqHVs4pq/gGNpLs7iFBYKOnqERdysvVTniA7K//IXMMdfq3teFNRJkzt9y2wAWUK3hF4LQ33JllET/KA6BF6HyHXybM0ELq5Gu102U8BJO+pHVzQLnuVzrqiv6QmcpohcDdxCQUcqIbfUXEEgBH2dMYzNFCAKBNsHLl4HynWsHVCn23bQJ93jSS27N77REVNbR6EEludSuBpIxhSPDbUSF0rAbQzqIWp+GLTpfDFM4GKq5OUIU8znKi3/28YjGr+8KIEwljSBo/KmCH+KXMlAbBk6+aRXwEXLpogSa94s5Yb3Q0h0Mkwiee/NHvtuOVj7V2Sb4Lrd8Deyng1rKtjFUK+6H2hCeyZtPuRt8rV0BjNWiHLnOLBmznr/W9ItbCFjaASipSBtubzh68J49y07sbE7jv/xrVeQzesRGjgaI2AxAdhRaDSBo1S94ASONTKxF6ewmK/gnfFnIKJBir1lovzIn8GpFOq/DjUnTZ7t61L5yl4Btwr0SaCmEwwb69iOawTTqgDXuhO4ns0g8ehJjrTrOi7NYDkIF3CO46zYRvpCQ42YwOUKuhcy20pQHdym/tSKQ97XsY5WgN7r22Fgso6LA37d84pNTDjMjjConGStu1AC7ASuVDFR1q1lZcDVQ2QBF0uDpKK1p0JmAILWvLlWQwplUV/WHoEyexpFVCn7bgWpd76iBPW6X4Vc3YeHrzdCCGI3fwTStjcti0659q/INiGhsYnvFLSA6wx1MYSO/qYqdMlXgcdVCedMlqZg+4xMpPI8Mg4rkAxD3nNDU2GIYaiyiA/fvQ/5ooH5XIWrgRMFAaJAoBt203lcsiR6uXE8UFt8fxg4P8x7CurUS9insLkZvC+TU8nDOP6TuucG1EwxuBEC3UvLCqI3xOFVcKAEoimUtCBo5QQuqoAjogzthveDVLPx8o4GaccRaDd9GIkH/x/EbvwgiNyahYEu1NRiv6xbMC1nTWbAUagyS2cB3Jt7Kw1MKGio9YXMcVrHOvyg96n+Nujf1nFxwK97a4UGDqgf5k2bzms9yBtgTUzoehreu64UNN+Rh3o6uKVM3wA/hZK/N8+XjGUV+c1QKAGAyFow09gHacfVSNz/X6Dsvdl7jF5v/kxbosQQu/U3EH/Xp5d8nusFXJNIxuTIMW29IETlsru4RhweZA3ixt3e/8ZUCWcttoDzB3r36+eY54XMRkiba1EB4sbdUC6/J/q4DbB5Qwr33eCaT0R16xVZhG5aNZ5xMy6U1lIncGwBZ82cxc4JNl+DJLoQf9enuU5H5vlX6p6b4zjIV3NlrOkzzPPNOlBSdFY55avhQAn4KJShAq5UYXWEK0G9GzEASMMHkHjv/40vdf07/Lnwa4jd/BHIO6+BEG9tkSAKrjHMYvVaoxktrbI+vhCo50K5GgUcNTJ5IzjJrWMdQI0uvz6BW0ez8G/IGxmnNQLPHCubr+BPvvoLjM+6rB06gbsYXHupiQnV/E3NlwC0LgOOIq7VKeA4MiHvuSXo3wBAUyUQAuQj2HHunm7pe4RmnOc97LkVP9e3eP8rbtiF+Ns/hdjNH4WQCu7lkzFXGsFrGNQzVYnCLwcZvAXgJb5TZPPuH6OD8yUgkgr1yHtQ/v7/y/1ZaWh/YEomiQLGHHbE7I8SGLRGmdJb3HQI2tXvhlPOwynnIWQ2NPydGuG2Nw2jUDZwcDtfuKzIAnTDRr7k/v5LzYELg36+jTRwqBTAm2upR94DIZaGds2DKH7jjwLPWeOvwbEtEIFfjI7NFmHZDobiesQEblPkefNwaGcvxueK2LoxOodkJYhHZBOWqgVBqyiU9W7EFESUsKgTxFa5mPI7huVp02BNa+AkVEIaOMdxsFAwVqWAO7SjBzdfPoi9Wy+8k9w61gEAu4czuPnyQezZtN5UWEdz8LMuWkah9G2o//WFcbx4ahbZfAWf/NXDMCy32LlYKJSW7cC0bDgO8NV/OYmOhILNG1q7T4mpEibmitznhN5oI5OlTuAEQuqy43IlA8P9S2+iK7IIVRbrauAozkzm8f/l34zOO96DfTv6ICQ6655vKi43nOw1i7V/RbYJ9TRw87kKYqoYGZopbbmCG+4N1Nwn/ZiT+mAjOK538rOwiwtwHAdbwOrfpMFLALghg60o3gD3Yrvvhu3YMcSfpiiSENDANep0SA0KuFyJDWYmsuZR9OphQtkEaeth97x7NjMZHTDKsH06wjBOjLiukzsFznSza7jul5KHzpSK9966a9W6dq4zKmnLBK6iW5F5KBTFsonEKpsDpOOyt9DSG+BazoHjaeBoKGl6Faih6YSCB2/b/UvhwLeOtYG4JuPB23a3LHB6HRc/6D6DZrauBHT9oMwOx3Hw5MsTyCQVjEzl8Y+PvQ7zIjIxoY3dkm7hq/9yEmMzBXzgrksCTfNWoJ52XuzZ4uaGhEASXczEqhkkqpltYTiO4zmLLwfJmNxUAXdi1N07bt21ral9otuIbmKy1wTW/hXZJiQ0CYZpMx1zoBaEGAVCCLRrH4QV+rgdEG5enKzFkJU4Orjp07AWp5ARQoYcRFxy56IVUGQRRlUDp8qiF+4d+fpGBVyEqyDPyMQPHTKOOtd5RjBEECFu2M28zhx7NfI9jo9mkU4oiE2zVEtekX2hQQhBXJOZ6ViZFnAt2hDRQrDE0Wr5USibHq1ztRCYwDVpnPNGhia7mlB/cUzFzR2rMIFbxzrWsY61DlrA0czWlUASq9T86rpybjKP8dki7rluK26+fBCPPDOC50/OuK+9KCZw7nr+1CuTePS587jtymHs31pH4rNMxFQRpYrJjWcgsgqhk/UUWCp9kiIZwY6rGG4zdLl7BBoY3wjHRxYw0JNomqqZTigBDdxKsPavyDahnliyUQEHuBq1p9VrA4+Ndl8NgTNdiqkSJglbtFjTp1A59zL73n1bm06ubyUUSUClqoFr5uJtRKGMEpzyjExqT4p4pu8+HMtqgZuFNHAJ81KrTgF3YiSLSwbjsMY4Bdymg9HHv4CIqxIzFfYolGqrXCirHbs6IfaAG2fQ6i5eGOmEgoUincDRqe/aLXSottSvg/NCvNcLuHWsYx3rYKApIiRRaJmBVcrH7PjpyxMQBYLDu/tw/007MNiTwEOPuzm8F9ME7quPnsRwX9LzOWg14qoE03Ii93tiH3tcXtO9GSRiMlcD16w3QxSaoTratoOT57PYFcFS44FmD7YCa/+KbBMS1ekCj0aZzTWXZH++9xp8yXgLzF234G/y12Nm29u4r4upEs5zdHDmuV/AHGULOF6x0g4okjuBa9bpR65SLqNCM10bf/amXC+IXLvxAxAG9qJYMQN/G3GQU8BNHIfDCTufXShjdrGCyzvmACtYoBMtVZezfSGR0CQUwxo4mqXXMhfK6Lw5Ctt2UKqYK6azNEJHQkFFt1AxLORKOkSBeAXmWgQt4PxTfXpjX8vU0HWsYx3rWC2Qqo6oVfrnjmpj0LYdPPXKJA5s70YyJkORRXz4nn3elO+imMBV10tRIPjIPftWTddH9x9RNEp5/y2ATyZEYmnIO48s61hRGjiPpbPMQj8VazyBG5nKo1SxsHO4eQ1vR0LBYrF+eHyzWPtXZJuQiHClsR3HncClGl8k3R0ans5txPT2u/GcvhXpJN86OaZKOGeyY2175iyEkWeZx8ULVcB5LpTNBSrLkgjHAawIPVW+xJ/kCR18CuX4prdC3nkN+qr5VpM+0azQNQSihsSrph5w86Q4TjnM5mnmOXHTQZAV0jRWC3FNZjRwlELZKk1JnE7g6hRwRS+AfZUplNUbca6gu+5ScXlVQtLbBc2bwNU+W0qtWKdQrmMd61gHHxu64tjQ2RrnUkrNf/XsPBYKOo7sq3kIDPclcf9N273XrXV0pVym1gO37MRAz+pEHAE16UWkE2XXMGL3/AGet3bg9fhBxO/9D8tmkSViElcDt7DCZmhHUkU2r3supDzQveNSnJ3TCQVGg/D4ZvHG3Jm+ARFFoVzI67BsB93pxhcffc2ZiRwAIJXgX1hxVcLZSgeEzMbGJyZIEPt3NH7dKkCRqAslf3IWBqUg8MbqNcEp+5lImw5CJ8H3f6y8B/rOWwEA/V1uITw5XyvgCBEgDuxh3otHozwxkkVMFaBNc6abb1D6JFB1iIyiULYqyFurfyP2P9eqqV8UvAyVor7mQ7wBQJPdzys8gSNY2+6a61jHOtaxmvj4fQfwvttbo/unlLafvjyBmCrh4I5g8/zWw8P4049fh76LIKtwoCeBP/34dbjxssFVPU6jAg4A5rVBfHHhGsztfRffbbxJ/P/t3Xl0VGWaP/Dvvbf2qlQqCUlMSFACJAZRQNlE2yXKogYCiqK4/TzqHKeP7eh0uw02Im0zQ9ujx9b29NiNcrpdxiOCCMhg0wzY2to2ragjjUFETELInspSe9X9/VG5N1Vkq0pq5/v5S2q7b+pWle9zn/d9HotBqxb/Cnv9LhcAIDeCuflgyoqs8PkDON43Xx/MkbpO5Fn1yMuO/BjWvnl/LJZRMoCLkHmIsu3tfR+SaAK4Y41dAIDsIVK7Jr0GDrcf+otvBzB8hkEqnARBk5wrQzptcElkdxRLKIHBA7hgY+bAoBNXQWfEXwpuwPFAAcScYjRPWoqtjtmw9i1bHZdthCD09zRRDB7AHR5w29d1nZhb6IXs6Ay/Q5SgKZk24t+VLCbDwCtPTrcPep0EUYxNZkoJyk4NFEMpyzjjvYQytOTzWKpLpQp1CWXoHri+bPZYN+cTEWUqvU6CVhObi5RWsw4ujx9//7oFsyryB33deFQFTpZE/C3KfvjhVu7U1kWfvRqMsjru1DlKa5cLkigM2t4rEsqySCXLdipZllFbb49q+STQ//7HopAJZwkRGmoJZVs0AVx2eAA3VEreqA9Wp0Nh+ZBd3hVS8dQRjxsvOq2EXqcPbo8/oo2iumECuJFaEfSYz8QLjmtgvn49vs+ZAxmC+v5pNSLyrAY0DQjgBtkH13QEss+DQHcL3J9tR/eX+9DZ3oGZpoYBj5WKzoZwajuCFGLu69EWupba5fHBGKPsGxBShXKYH2Jl72G8i5hkhwZwQyy3TSehJZ0V8WriTUREAym/t26vP2z5JI1e/7xh6GWCtXWdMBs0KM4f21JOs3Hw5Eqb3YVcqx7iKLdZZJt1KMw14UidfdD7mzuc6Or1RB2ADtZ7cLTYfCVCeq0ErUYcUMREDeAiSKHmZOkhIHjiDbqhy+6HTpots5bB1/AVAi0D92cBg2eZEkWrEdUUeVQZuEHWFI+04VRpGh5sdBxcZhZ6zMIcY9geOAAQbcUQjFbIzq7+G/0+uD98Bd7aDwE5+OPy02wdDPaBgVoqtg8IZdJrIcvB7GXoD2asesABkQVwTldi9sCpPXt6PeiJcN9lKlP6sZ2agcukq71ERKlMmVDnZOlRzobyMTFSERMAwexViW3UAZbCohQYdIYfq73LHVFiZTjlJdn4tLYFAVkeME4lgxh1Bk4J4GLQzJsZuCiYB+k30WZ3wajXRDRp1kgibFnBZX/DXWU3hew7EkQNjFX3AJpBqlxKukHLsSZKaEPgSMq5KwGcZ5Beempj5iGyKjqthIAswx+Q0eXwwmwMX2ZWkGNCU4czLBslCMKgWTjv1++rwRsAmEUPJPfAqyypvP8N6P+chF55cnp8MW2Kq5FE6DTisFfSehO0hFKrkWDUa9DZ40Gvy5f+e+BOqUIZCMho73KzgAkRUYIov7fzphaOOZigIOMIWy/svR40tTswpTTy8vtDGW513JgDuFIbel0+nGjtHXBfbV0nLEYtivOiK6aTZdJCAPfAJZx5kLKi0Ub5udaRA7hTsx5idiEMF90y4HGaknMgSMlLoupCStBGkoFTWzEMUppV7dkxxOsowaLH60dXr2fAJLcwxwin2zfg/Iy2QqeYUzxs+4JUoARMoT+SLrc/5qX1jQYNHO6hy+m2dbkhCImp0mU169Qf03TfA2c4pQ/czo+Po6PbjemTxyVzWEREp43SAgsWzi7FlbNKkz2UjGHQSRCEoYuYHInR/jegP4ALvZDt8wfQ2e0edQEThZJdU8Yb+voHv2nFtLLcqCthS6IIs1GLLsfITcJHwgAuChaDdsASyla7C3nWkXvAKZRgb6gCJkBI+jnkWJryi6E9d1H/g7RG6GaviPi48RC62TeSAE7JPnb2DLzyoARwQ1Wz1GmDH1W3N4Auh2fA8Qpy+1oJnLIPbrQ98jQTUnv5JDB4gRGnxwdjDDNwynEcw2TgmjscyLMaoElAo9NskxYNagCX3hk4ZQm1y+PD0QY7tv35GOZUFmBOZWpfOCAiyhQaScSNV0xBTlbk8zganiAIMOo0Qy6hrK3vhE4j4swzssZ8LIuyEink4n1HtxsyItvaNJz8bANsFh1q68NXaH15tA29Lh/mTR3dnslsc2yaeTOAi4LZqB20CmU0HxIlgIskAxc6aRYEAYYLb8Iu2014G1fCsuqXkHLjWwp2JHpt/8cnkoIStr5qQJ097gH39Ti9wzZm1mvCM3Cnvn+FOcE9bM0d4fvgBGsBBHPuiGM7lZTi+9+A/j1noRcVnG6f2qwzVoz6oX+IgWDQXJgbm548I7GadSMWvEkXGkmERhLR2ePBi9u/Qk6WHrctqkjr3nZERETDzRuO1NlRVmyNyUVfo14DURDQEzI3j6Y6/HAEQUB5qQ21dZ1h23M++uokskxanDMxZ1Sva2UAl3hmgyZsiZ7T7YPD7YvqQ6IEe8PugVMDuIEp1u98+WgwVULQx68JY6SUDIKA/uWRwzHoNDDqJXQMGsB5hm3M3J+BGzyAy7cFWwk0tYdn4ARBgCt3YJ+8gAzsE+fjqa5qCEXhWTppwgxIhVNG/HuSTV1C6Q79TPpjnoEb7odYlmU0dzhQkJOYap2h5z3dAzgguNTk/YMn0Gp34e4lU+NeCIaIiCjeButTCwTnzd83d6M8yuIfQxEEIdhSKaSISas98uKCI5lSYkNHtxttfa/pcPlw8Js2zK0sHHW7n1gFcKxCGQWzUYteZ7BsuyAIUVWgVORGkoEzDF2CtdvhTVi2YyRKURKzURtx3zGbRY/O7oEBXLdj+MbMSrDY6/TC5fEP2AOnkZRWAo4Bz/1EPhcXyZ9AHaLWgHfFK/HHxlxMKLTAXH0d/I2H4W84BMGSB+3kC9MiC2I6ZQ+cLMtwuX0xrUIJBC8oKD9ep+p2euF0+1GYk7gMnCLd98ABwQCux+nF0ovOitn/0IiIiJJpqAu/RxvskOXoqzcO59TVcUoGLjcGy2LLQ/rBjbMZ8fevm+HzBzBvDC0nrCYd7DGoQskALgoWoxY+fwAeXwB6raROaqPZKFkyzgxJFIatXKNkUAb78Hc7vZicInt/lKAqmr1INot+8D1wI/T1UgqmtPS954OVWi/Jt+DQdx2w97iR3dfkOxCQ8cejArryb0TNGfUQtHrozl2EhbIVf3n5E0ybmAdBEKAprhz1frlkMeg1ENC/hNLt9UMGYh7ADZeBa+7LeBYyAzcquVl62LL0WHLRWRmiDocAACAASURBVMkeChERUUyY9Bo1kApVW98JURAwqdgas2NZjOGr49q6XLCatEO26orG+HwzTHoNauvsmD+tCB99dRKFOUZMLBr9/j2rWQu3xw+31x9WzT1aDOCiYA7ZLKnXSqNaZzvOZsSz91087FIpURRg0EkD0s8BWUaPI3UaGOv7gqpoxmOz6HCkfmDJ/h6HF6UFlqGP1Vexr9UeDBgGy2Bed9kkrNv0N2zc+Q/cf8N0iIKAfxzvgL3Xg8kLzofx7MXqY/MAbLjnwph8wZNF7Fs6oBS7UTK2sd4DZxomgFMynolaQqkU/zHoJDUDnM4euGEGRFEY9VIMIiKiVGPUS4NWoaz9vhNnnmGJabsjs0ELe0hioK3LHZPlk0BwnjW5JBtH6jvR3uXC1993YunFE8e0Siu0mXe+bfRzpxFnDRs2bEBVVRUqKipQW1ur3n7s2DGsXLkSixYtwsqVK/Hdd9+NehDpQtnnpUT6rV0uSKKAbEt0S7ki2ecyWNbD6fYhIMsp0/9Kq2bgIv/7gxk4d9iGUCDYB264xsy6viImrZ19GbhBArjx48y4sWoy/u9YO/YcqAcAfPzVSRj1GkyfnDfg8SaDNiGVE+PJqNegt28PnMsT/LzEfg+cBI8vAN8gDdibOpwQBIzpRygaWX3nPd0rUCr0GRKIEhERKUx67YA5rNcXwLeN3ZgSg/YBocyG8CWUbXbXmFsIhCovtaGxzYE9f6+HDGDeOYVjej1lBdlY98GNOHO44oor8Oqrr2L8+PCKh48//jhWrVqF3bt3Y9WqVVizZs2YBpIOLMbwqn/tXW7kWvVxaf44WNajRym1nyJ7f3SjysDp4fPLYZUT/YEAHCM0ZlaKmLR0BjNwQzU7vmzmeMyYPA6b932Dow12HKhtwayK/LCWB5nEbNCqmVolAxfrPnDKBYfBrqYlsoUA0B+4R9I4noiIiBLPaJDgdPvDLtYfa+yCzx+I+X5vs1GjBnCyLAerw8cygOsLOP/4tzpMKraOec9/aAZuLEacdc2aNQtFRUVht7W1teHQoUOorq4GAFRXV+PQoUNob28f02BSndowsC8D12aP7YcklFGvGTBhHqnZdaKNag+c0gsupJBJr9MHGcMHpsqxlD1wQz1WEAT8v6vPhtmgxS/fOAi3xz+mzaapLrTSk7MvAxfLpQlAf0A42DLKRLYQAPqXUGZKBo6IiCjTGPUaBGQZbm9/Mb4j9cGG2FNKsmN6LItRC6fbD58/gG6nFx5fIKZz87OKsqDViPAH5JjMJ5UERNcYC5mM6rJ5Y2MjCgsLIUnBiZ0kSSgoKEBjY+OYBpPqlD1wSr+JthhH+aFMhkECOGfwZKfKHrjRZOBy+oqLhLYS6I6gr5fSB66r1wOTXjPssjOrSYe7qqfC7fEjJ0uPigmZW93PZOi/8uTq+7zEo4gJgAF7MpUWAokqYAIElxzqtVLKfAeIiIgo3GDzhq/rOlGUZ4r5KjJle5PD5euvTRGjPXBAsMp5WZEVoiBgdmXBmF9P+fvtY8zAJb2ISV7e0IUrUo3V1pdpEEXk5JrR2eNGaVE28vPH3k3+VDarAS12V9hrC98GM5xnleQgPwVaCYwbZ8FNCyuwYM6ZyD9lEj/UexLoC/r9ENTHNHUFg7mSIuvQzwv0p+FzrIYR3/PL8rPgDsiwmnUoLIhdtaNUk2cz4dsTXcjPz4LmWAcAYHxRdkw/H5V9W986nb6w911n1MPp9qOsNCcu34Gh3FkzDROLh/6sUGzxfc5MPK+nB57nzJTq5/WMvvEZzHrk52eh2+HB4eMdqL64LOZjLyoIvp7OqIO3bz456czcmB7n1mumoqGlB5POHFhPYTTOyDOhqdM1pjGOKoArKipCU1MT/H4/JEmC3+9Hc3PzgKWWkWhr6wmbnKc6rUZEc2svar9thSwDBo2AlpbumB9HBNDj8IS99onm4H97nB60tAzsEZcMC84fD/h8YePMz88a8j3x+4LRQF2jXX1M3YlgVUq/xzfse6nTiPD4AjDrpYje8/MnBb9o8Tg/qUKUZfQ4vWhp6UZzWw8AwNHjQos/dp8PvSAjy6TFp4dOYmZZLoDgOf7HNy0AALNWTOh7PGty5p/XVDHcd5nSF8/r6YHnOTOlw3n19RVXO9HYBZMkYN9nDfD5ZUyfmBvzsQd8wSxf3YlOHDvRBQCQAoGYHqfYZkCxzRCz15xUZMXn37SiubkLgiBAFIWoE1qjWkKZl5eHyspK7NixAwCwY8cOVFZWIjc3dzQvl1bMBg16XN64pGlDGfUSnG5f2AbQHocXOo2oltRPR1qNCItRG9YLTqnqOVJaXdkHN1wT9NONyaCB1xeA1+dX96gZYvz5EAQBU0psqO1bv65QWgikSmN5IiIiSj51CWXfvOSjr06iKM+ECYWxX3WnLKHsdfrQ1uWGTiuqW55S1ZRSG3qcXjS2OUb9GiMGcE8++SQuueQSnDx5EnfccQeuueYaAMDatWvxyiuvYNGiRXjllVfwxBNPjHoQ6cRi1KLX6UWrPfoecNEw6TXw+WV4ff2l27udw5faTxc2iw6dUe6BA/orUTKA66f2JnT54HL7odOKcakIWV6SjZZOFzpCis80dTggCMC4OF3EICIiovRjMigBnBetnU4cqbfjwnPOGFP/tKGoBQZdXrU2RTyOE0tKJc5TL4xHY8QQ9bHHHsNjjz024PZJkybhzTffHPWB05XZEAzglAxcbl9VxVgz9V29cLp9auapO4WaeI+F0gtO0e3wRNSYWekFxwCun9HQv1HY6fHFvAecYkrfj82R+k7MqQz2QGnucGJcduJaCBAREVHqM6pzWD8+PtQEAJg3dWz904ZiCenR3NblitvKuFgqzDHCatLiSF0nLpsxfuQnDIIzryiZjVr0unxo63LBatKqwVWsnZp+BoIfzlTpATcWtiz9gCWUkQSmzMANFFp9yen2wRDjCpSKCYUW6HUSauv6rxY1tTvH3A+FiIiIMosxJAnx0VcnMaUkG+Ns8alYbdRLEAUhmIGLY3uvWBIEAVNKbaits4/6NRjARUnZA9fW5Y5rlD9oAOfwDtvsOl3YLHrYezxq8Zoehzeivl5KsJydAUFsrJjUJZReuDx+GOO0P1ISRUwutqo/NrIso6nDgYIEthAgIiKi1KfTiJBEAYe/70BjmyOu/XgFQYDJoEFHlxs9Tm9aBHBAsEF4W5dLXdEXLQZwUVL2wLXZXciN44dEmZiHNk/udnoyYglljkWHgCyrTQy7HZFlFvUsYjKAKSTQd7p9Me8BF2pKqQ0NLT1wuLyw93jg8viZgSMiIqIwgiDAqNfg/75thyQKmH322PunDcdi1OL75mAl7rQJ4JR9cHWj2wfHAC5KZqMWPr+Mlk5nXD8koeuHAcDnD8Dp9keUqUp1tr5m3so+uJ4IA1OlcTgDuH7hSyj9Ma9AGaq8xAYZwJF6O060Bn8omYEjIiKiUykXmM8ty4t78sFs1OBEay+A+FWHj7XSAgsMOgm19aNbRpnadTZTkFL1zx+Q4xrAhRYxAfpL7VsyYPmgra/wS2e3BzhDycCN/OVmBm6g8CWU8c3AlRVbIYkCaus7IfQVlGELASIiIjqVMh+5cFr8lk8qzAYt/H3bcnKt8SkuGGuiKGDy+GwcYQYuMUKvIiRkD5wrGMB1O/p6pWXAEsrQDJzb64fHF4i4iIleJ6mBHAEaSYROK6pFTOJVhRII7kE8qygLR+rsONHaC1EQ2EKAiIiIBjAZNDDoJEyflBf3YylzSEEAcuJUHT4eppTa0NDaq871o8EMXJSUJWtAfNfZ6nUSBKG/iElP336xTFhCaTVrIQjBAK7HEVkTbwC4dMZ4lBVnx3t4acds0MLh8sHl8cOgj29wW15iw3t/q0NuthF52Xq2ECAiIqIBFs2ZENYKK56UuXlOlh6SmD7zkvKS4Jz22MkulI63RfXc9PkrU4Q5QRk4URBg1GnUJZSRNrtOB5IowmrWoaPbjW5nX2Aawd81sciKS6YXx3t4acdk0KCzxw1/QI7rEkogeLXIH5Dx6ddNLGBCREREgzpvUh7mxqn326nMxuDcJ10KmCjKiq3QSAK+O9Ed9XMZwEVJCaD0WkndDxcvRn1IAOfInD1wgNLM26Nm4CwZkFlMFpNeg7a+MrTxaiOgmFKSDQGAzy8zgCMiIqKkU+bm6VLARKHVSDiryIpvG7uifi4DuCgpQVuuVQ9BEOJ6LJNBo66LVYuYGDNj1WuORY/OHndGZRaTxWzQ9gdwcc7AmQ1ajM+3AGAFSiIiIko+ZQllumXgAKCi1KZW9o4GA7go6bQStBoxIVF+eAbOA7NBk1Zre4djs+iCAVwUe+BocCaDBh5vAABgiHMABwDlpcE124W5DOCIiIgoudJ1CSUATCmxqRU0o5EZ0UCCFeeZcWZhVtyPYwoJ4Hqc3ozKUtksenQ7vOjscUMQ+svhU/RMIUFbvJdQAsD0yeOg1YgoLYj/d4CIiIhoOIU5JkiigAkJmJvH2pSSbJgM0c/vOWsehdW3XQAxzssnAcCol9QqlMFeaZmTpVJ6wdW39MBi1Cbk/cxUocFvvJdQAsGmnK/97Cp0251xPxYRERHRcPJtRvz6gUsSUvEy1ox6DR677YKon8cM3ChoJBGiGP+Aw6TXhhUxybQMHADUNfdkVGCaDKGtLRKxhBIADHHsN0dEREQUjXQM3hSjacnEAC6FGQ0SnG4/ZFlGj9OTET3gFDZLMGiz93gyKjBNhrAMXAKWUBIRERFR8jCAS2FGvQYBWYbL4w/ugcukAK5vCSUQWQ84GlpoAMfMGBEREVFmYwCXwpT9TB3dbvj8MrKMmbPU0GLUQupbhppJmcVkUJZQaiQRWg2/0kRERESZjLO9FKZUF2zuCBaLyKRARxQEdRllJmUWk0H5nBj1XD5JRERElOkYwKUwNYDrDAZwmbZXTClkYsmgzGIyKEsojVw+SURERJTxGMClMKOagXMAyLxMlRLAZVJmMRmUJZQGZuCIiIiIMh4DuBRmHLCEMrMyVUohExYxGRudVoQkCmENvYmIiIgoMzGAS2HK0jhlCWWmBTrKHrhMC0wTTRAEmAwaVqAkIiIiOg0wgEthSgauze6CJAowZFiPrzMLs6DXSsjLNiR7KGmvOM+MM/JMyR4GEREREcUZL9mnMJ0muDTOH5Bhs+ggCEKyhxRT08ry8Nz9PxhVB3oK9+BNM4HM+ngQERER0SA4c05hgiCoWbhMrdTI4C02RFGAmGEBPhERERENxNlzilMKU7BSIxERERERMYBLcUYGcERERERE1IcBXIoz9vX2yrQm3kREREREFD0GcCmufw8cAzgiIiIiotMdA7gUp/SCY680IiIiIiJiAJfiuAeOiIiIiIgUDOBSnFqFkksoiYiIiIhOewzgUpwSwFm4hJKIiIiI6LTHAC7FFY8zw6iXkGfVJ3soRERERESUZJpkD4CGN60sD8/ffwkEQUj2UIiIiIiIKMmYgUsDDN6IiIiIiAhgAEdERERERJQ2GMARERERERGlCQZwREREREREaYIBHBERERERUZpgAEdERERERJQmGMARERERERGlCQZwREREREREaYIBHBERERERUZpgAEdERERERJQmNMkegCgKyR4CxQHPa+bjOT498DxnJp7X0wPPc2biec0sozmfgizLchzGQkRERERERDHGJZRERERERERpggEcERERERFRmmAAR0RERERElCYYwBEREREREaUJBnBERERERERpggEcERERERFRmmAAR0RERERElCYYwBEREREREaWJuAdwVVVVqK2tjfdhKAkiObc8/+nJbrfj3HPPxc9//vNkD4XiaNeuXVi2bBlqamqwePFi/PjHP072kCgGPB4P/uM//gNXXnklFi9ejGXLlmHPnj3DPqe+vh5vvPFGgkZIY1FVVYXq6moEAoGw2/j/2vRWVVWFxYsXY+nSpViwYAH++Z//GZ9++mmyh0UpSpPsARBR6tm+fTtmzJiBnTt34sEHH4ROp0v2kCjGmpub8cQTT2Dr1q0oKiqCLMs4fPhwsodFMbB27Vo4HA7s3LkTer0etbW1uOuuu5CdnY3Zs2cP+pyGhga88cYbWLlyZYJHS6PhcDiwbds2LF++PNlDoRj61a9+hfLycgDAe++9h3/6p3/Cxo0bMX369CSPjFJNwpZQnnp1KPTfVVVVePbZZ7Fy5UpUVVXhlVdeSdSwKAaGO7eUnt566y388Ic/RHl5Ofbu3QsAeOSRR8K+m6H/bmpqwu23345rrrkG99xzD+655x5+j1Nca2srNBoNbDYbAEAQBFRWVgIAPv/8c9x666249tprce2112Lfvn0AglmauXPnYsOGDVixYgWWLFmCAwcOJOtPoEE0NDRg165dWLt2LfR6PQCgvLwc99xzD55//nkAwH/9139hyZIlWLp0KW688UYEAgGsW7cOR48eRU1NDe67775k/gkUgXvvvRfPPfccPB5P2O3Hjx/H7bffjiVLlmD58uV4//33AQC//vWvsX79evVxHR0dmDt3LhwOR0LHTZFbuHAhbrzxRmzcuBEej0f93a2pqcGDDz6I3t5eAEB3dzceffRR9Tu9bt26JI+cEiFlMnAulwtvvPEG6uvr1R8es9mc7GERnXYOHz4Mu92OefPmoaWlBW+99RYWL1487HOefPJJzJ07Fz/84Q/R0NCAJUuW4OKLL07QiGk0zj77bJx33nm47LLLMHfuXJx//vmoqamBJEl4/PHH8eKLL6KgoADNzc1YsWIFduzYAQDo7OxERUUFHn74YXzyySf413/9V+zZs4dZ2hRRW1uLCRMmqIG5YsaMGXj22WexdetW7N27F6+//josFgs6OjogiiLWrFmDDRs2YMuWLUkaOUVj2rRpmDZtGl5//XXcfvvt6u0/+clPcMMNN+D666/HN998g5tvvhm7du3C8uXLccMNN+Chhx6CRqPBjh07UFVVBZPJlMS/gkYyffp07N27F7/73e+QlZWFzZs3AwCeeuopvPjii3jggQewfv16mEwmbNu2DaIoor29PcmjpkRImSImV199NQCgpKQEVqsVJ0+eTPKIiE5PmzdvRk1NDQRBwMKFC/H555+jqalp2Of89a9/xXXXXQcAGD9+PC688MJEDJXGQBRFvPDCC/jDH/6AuXPnYv/+/Vi6dCn279+P+vp63H333aipqcHdd98NQRBw/PhxAIBWq8XSpUsBAHPmzIHBYMC3336bzD+FQsiyPOz9//u//4ubbroJFosFAJCTk5OIYVEc3H///fjtb3+rZmJkWcY//vEP9bd48uTJqKysxMGDB1FcXIxJkyZh//79AICtW7eqj6PUpXyf9+7di3feeQc1NTWoqanB3r178f333wMIfqfvvPNOiGJwSp+bm5u08VLiJCwDJ0lS2IZbt9sddr+y1EN5rN/vT9TQaIxGOreUPjweD7Zv3w69Xo9t27YBALxeL7Zu3crznKHKy8tRXl6Om2++GVdffTVkWUZFRQVeffXVAY+tr68fcJssyxAEIRFDpQiUl5fj+++/R2dnZ1gW7uDBg6ioqEjiyCjWysrKcOmll+Lll18GMHTwrnw/ly9fjrfffhulpaXo7u7GrFmzEjZWGp0vv/wSU6ZMQX19PR5//HFeHCVVwjJwEyZMwJdffgkA+Oijj9Da2pqoQ1Oc8dxmjj179qCsrAzvv/8+9u7di7179+Kll17Cli1bws5zc3Mz/vrXv6rPmzNnDrZu3QoAaGxsxMcff5yU8VPkmpqa8Nlnn6n/PnnyJNrb2zF58mQcP3487Bx+8cUX6uTQ6/Vi+/btAIADBw7A7XZj4sSJiR08DamkpASLFy/G2rVr1YsstbW1+M1vfoN7770Xl19+OV5//XX09PQACO6FAgCLxaLeRunjRz/6EV577TX09vZCFEVUVlaqv8VHjx7F4cOH1QIYixYtwt/+9je89NJLLH6SBvbs2YPXX38dd9xxB6qqqrBp0ya4XC4AQE9PD44ePQoAuPzyy7Fx40b1N5pLKE8Pcc/A+Xw+6PV6/Mu//AseeeQRvPnmmzj//PNRXFwc70NTnPHcZp4tW7ZgyZIlYbfNnDkTgUAAM2fOxAcffIClS5firLPOwnnnnac+ZvXq1XjooYfw7rvvoqysDOeff766RItSk8/nw3PPPYeGhgYYDAYEAgHcf//9mDp1Kl544QU89dRTWL9+PbxeL0pLS/Gb3/wGAGCz2XD8+HFcf/31cLlcePrpp7n/LcWsXbsW//mf/4mrr74aWq0Wer0eq1evxpw5cyDLMpqamrBy5UpIkgSz2YxXX30VFRUVmDhxIqqrq1FWVoZf/epXyf4zKAJnnHEGampq8NJLLwEAfvnLX2LNmjXYtGkTNBoNfvGLX6hL6oxGI6644gps2bIFf/rTn5I5bBrCfffdB51OB6fTiUmTJuHFF1/EjBkzcM455+D555/HihUrIAgCBEHAvffei0mTJuHRRx/F+vXrUV1dDUmSMGfOHDz22GPJ/lMozgR5pAXzY9Dc3IyrrroKH374IQwGQ7wOQ0nAc0uhXC4XNBoNNBqNWvRi06ZNKCsrS/bQKIbq6+tx3XXXhWVfiYiIKLHiloH7/e9/j9deew0PP/wwJ/gZhueWTvXdd9/h4YcfhizL8Pl8uPfeexm8EREREcVBXDNwREREREREFDsp00aAiIiIiIiIhhezAG7Dhg2oqqpCRUUFamtr1dv37duH5cuXY8mSJbjllltQV1en3nfs2DGsXLkSixYtwsqVK/Hdd99FdB8REREREdHpKGYB3BVXXIFXX30V48ePV2+z2+14+OGH8fTTT2P79u24/vrrsXbtWvX+xx9/HKtWrcLu3buxatUqrFmzJqL7iIiIiIiITkcxC+BmzZqFoqKisNuOHz+OcePGqT2CLr30UnzwwQdob29HW1sbDh06hOrqagBAdXU1Dh06NOJ9REREREREp6u47oGbOHEiWltb8cUXXwCA2vy1sbERjY2NKCwshCRJAABJklBQUDDifURERERERKeruDbyzsrKwjPPPIN///d/h9vtxiWXXAKr1QqNRgOv1xvPQxMREREREWWcuAZwADB//nzMnz8fANDa2oqNGzeitLQUTqcTTU1N8Pv9kCQJfr8fzc3NKCoqgizLQ95HRERERER0uop7G4GWlhYAQCAQwNNPP40bb7wRJpMJeXl5qKysxI4dOwAAO3bsQGVlJXJzc4e9j4iIiIiI6HQVs0beTz75JN577z20trYiJycHNpsNO3fuxOrVq/Hpp5/C6/Xioosuwr/9279Br9cDAI4ePYpHHnkEXV1dsFqt2LBhA8rKyka8j4iIiIiI6HQUswCOiIiIiIiI4ivuSyiJiIiIiIgoNhjAERERERERpQkGcERERERERGmCARwREREREVGaYABHRERERESUJhjAERHRaauiogLHjx9P9jCIiIgixgCOiIhSQlVVFaZNm4b29vaw22tqalBRUYH6+voxvf6tt96KN998M+LHb9myBZWVlZg5cyZmzpyJqqoqPProozh27NiYxkFERDQWDOCIiChljB8/Hjt37lT//fXXX8PlciVtPDNmzMBnn32GAwcOYNOmTdDr9bj22mtRW1ubtDEREdHpjQEcERGljJqaGrz99tvqv99++20sW7ZM/Xd3dzceeughzJs3D5dffjleeOEFBAIBAMGM2U033YQNGzZg9uzZqKqqwv79+wEAzzzzDA4cOIB169Zh5syZWLdunfqaf/nLX7Bw4ULMnj0bTzzxBGRZHjAuSZIwYcIErF27FnPmzMHzzz+v3nfffffhoosuwgUXXICbb74ZR44cAQB88cUXmD9/Pnw+n/rY3bt3o6amJkbvFhERnY4YwBERUcqYMWMGenp6cPToUfj9frz77rtYunSpev/PfvYzdHd3Y8+ePfjDH/6Abdu24a233lLv/+KLLzBx4kR8/PHHuOuuu7B69WrIsowHHngAs2bNwpo1a/DZZ59hzZo16nP27duHzZs3Y9u2bdi1axf+/Oc/DzvGBQsW4MCBA+q/L7nkEuzevRsfffQRpk6dip/85CcAgPPOOw82mw0ffvih+th33nmHARwREY0JAzgiIkopShbuww8/RFlZGQoLCwEAgUAA7777Ln784x/DYrGgpKQEd9xxB9555x31ucXFxbjhhhsgSRKWL1+OlpYWtLa2Dnu8u+++G1arFcXFxZg7dy4OHz487OMLCgpgt9vVf69YsQIWiwU6nQ4/+tGPcPjwYXR3dwMAli1bpo6vs7MTH3zwAaqrq0f1vhAREQGAJtkDICIiClVTU4NbbrkF9fX1Ydmqjo4OeL1eFBcXq7cVFxejqalJ/fe4cePU/zYajQAAh8Mx7PHy8/PDntPb2zvs45uampCdnQ0A8Pv9eOaZZ/A///M/aG9vhyiK6lizsrJQU1ODq666Cr29vdi1axdmzZqFgoKCkd4CIiKiITEDR0REKWX8+PEoKSnB/v37sXDhQvX2nJwcaLVanDhxQr2tsbFRzdAlyp49ezBr1iwAwPbt2/GnP/0JL7/8Mv7+979j7969AKDuoyssLMTMmTPxxz/+Edu2bQtbDkpERDQazMAREVHK+fnPfw673Q6TyaQWARFFEYsXL8YzzzyDDRs2wG634+WXX8add94Z0WuOGzcOdXV1oxqP3+/HiRMnsGnTJnzyySf47//+bwBAb28vdDodcnJy4HQ68fTTTw94bk1NDX7729+ioaEBCxYsGNXxiYiIFMzAERFRypkwYQLOPffcAbf/9Kc/hdFoxJVXXolVq1ahuroa1113XUSvedttt2H37t2YPXs2nnzyyYiec/DgQcycORMXXHABbrvtNvT09GDz5s2oqKgAENzjVlxcjB/84Ae45pprMGPGjAGvsWDBAjV4M5lMER2XiIhoX8rwWwAAAJpJREFUKII8WL1kIiIiipkrr7wS69atw/z585M9FCIiSnPMwBEREcXR7t27IQgC5s2bl+yhEBFRBuAeOCIioji59dZb8c033+AXv/iFWqGSiIhoLLiEkoiIiIiIKE3wciAREREREVGaYABHRERERESUJhjAERERERERpQkGcERERERERGmCARwREREREVGaYABHRERERESUJv4/LjFcZc/wJisAAAAASUVORK5CYII=\n", - "text/plain": [ - "
    " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "import pandas as pd\n", "website = pd.read_csv('http://openmv.net/file/website-traffic.csv')\n", @@ -1156,20 +443,9 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3AAAAFDCAYAAAB7m+z9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsnXeYJEd5/7+zOd3mvb29pFPOQggFosFgggwIGzDGsg02YBthgwALJMMPgSSQrGQQCCGCyTIgkREoBzhJp9PlfHu6u023eWd2cu7u3x8z1fNWd3VPz0zP7OxsfZ5nn+2Z6VBdXV1Vb73Jo2maBolEIpFIJBKJRCKRVD11S10AiUQikUgkEolEIpE4QwpwEolEIpFIJBKJRLJMkAKcRCKRSCQSiUQikSwTpAAnkUgkEolEIpFIJMsEKcBJJBKJRCKRSCQSyTJBCnASiUQikUgkEolEskyQApxEIpFIJBKJRCKRLBOkACeRSCQSiUQikUgkywQpwEkkEolEIpFIJBLJMkEKcBKJRCKRSCQSiUSyTJACnEQikUgkEolEIpEsE6QAJ5FIJBKJRCKRSCTLBCnASSQSiUQikUgkEskyoWGpC7C4GIGqaktdjKqkr68DXm94qYtRFci6sEfWjxhZL/bI+hEj68UeWT/2yPoRI+vFHlk/YlZCvdTVedDT017QMY4EuEQigZtvvhlbtmxBc3MzLrzwQtx0000YGRnBddddB7/fj+7ubtx6663YtGlTQQVQVU0KcDbIuskh68IeWT9iZL3YI+tHjKwXe2T92CPrR4ysF3tk/YiR9WLGkQB3++23o7m5GY888gg8Hg8WFhYAAJ///Odx5ZVX4h3veAd+85vf4Prrr8cPf/jDshZYIpFIJBKJRCKRSFYqeX3gIpEIfv3rX+Pqq6+Gx+MBAPT398Pr9eLgwYN429veBgB429vehoMHD8Ln85W3xBKJRCKRSCQSiUSyQsmrgZuYmEB3dzfuvvtubN26Fe3t7bj66qvR0tKCwcFB1NfXAwDq6+uxevVqTE9Po7e3t+wFl0gkEolEIpFIJJKVRl4BLp1OY2JiAueccw6uvfZa7NmzBx/+8Idx1113uVKAvr4OV85TqwwMrFrqIlQNsi7skfUjRtaLPbJ+xMh6sUfWjz2yfsTIerFH1o8YWS9m8gpwa9euRUNDg24q+ZKXvAQ9PT1oaWnB7OwsFEVBfX09FEXB3NwchoaGCiqA1xuWzokWDAyswvx8aKmLURXIurBH1o8YWS/2yPoRI+vFHlk/9sj6ESPrxR5ZP2JWQr3U1XkKVmjl9YHr7e3FZZddhmeffRYAMDIyAq/Xi02bNuHss8/Ggw8+CAB48MEHcfbZZ0vzSYlEIpFIJBKJRCIpE46iUN5www34zGc+g1tvvRUNDQ247bbb0NnZiS984Qu47rrrcM8996CzsxO33nprucsrkUgkEolEIpFIJCsWRwLchg0b8KMf/cj0/amnnooHHnjA9UJJJBKJRCKRSCQSicRMXhNKiURSvSRVFd5keqmLIZFIJBKJRCKpEI40cBKJpDrZG4whpmo4U5OBgCQSiUQikUhWAlIDJ5EsY2LZCK5SfJNIJBKJRCJZGUgBTiKpAaQCTiKRSCQSiWRlIAU4iaQGkPKbRCKRSCQSycpACnASSU0gRTiJRCKRSCSSlYAU4CSSGkCaUEokEolEIpGsDKQAJ5HUAFJ+k0gkEolEIlkZSAFOIqkBpAZOIpFIJNXMn8a9mIwnl7oYEklNIAU4iaQG0KQOTiKRSCRVzEIsiePRJDS54iiRlIwU4CSSGkAOhxKJRCJZDqSkACeRlIwU4CSSWkCOhxKJRCKpUqjWTcpvEknpSAFOIqkB5HgokUgkkuWAHK8kktKRApxEUgNInwKJRCKRVCtyhJJI3EUKcJKKoGgakqq61MWoWeTgKJFIJJJqRbPYlkgkxSEFOElF2BOMYas/utTFqFnkgCiRSCTVj6ZpmE2koEqrCYlEUgJSgJNUhIgitW9uw5lNyrmARCKRVD3zyTSORBKYjKeWuigVRQ5XEom7SAFOIlmmUJFY5oGTSCSS6iepZvrqlRZKf2XdrURSfqQAJyk7MsBGeVDliqZEIpEsK9jC20qefMk5gURSOiu5D5FUCEX21WWBat3keCiRSKqVmKIinFaWuhhVARNePILfTsSSmEnUpmmltBKRSICEqiKtuvMuSAFOUnaSUrooO7KGJRJJtbI9EMWuYGypi1EVsL7a4zGLcCOxJF6MJCpboCVAjleSlcoL/ii2B9wJ6CcFOEnZkeYS5YELyyzrWCKRSKoeZkIp0sDVMnKEkkgyuOX/KgU4SUWRgoZ7yKqUSCSS5QXrt+tWmAQno1BKJO4iBThJ2ZGddfmRdSyRSCTVjwrmA7fCJDiJZJkQSivLQtkgBbgaYiGZhlKFjU6z2JaUBm9CWf7rqZqGw+E44jKnn0QicZkti2GMx5JLXYyyo/vALWkpKo+cB0iWAwlVxe5gDMPLwBdVCnA1Qiit4FA4jmPR6m50suMuD5WI8BVIK5hPpleEk71EInEH1eHqUloDxlaCAJetDjsBzmmdLSc0yw8SSekkVRVJtfTFZRY1fT6ZLvlc5UYKcDVCOtvhJ6owZn/1lag2qHS9NmSjpqVrcHIhkUjKQ1p2Fxya4b+IWq+zGr89yRKw1R/FVr870R2XC1KAqxGqek5NnZeruZzLjEqbULLOwq0IShKJpPaxM+uPKyp2B6JIupQXaTnAtGt2d1yNrhClshx8iiSS5dROpQBXYwhSy+jEFBXHIom8DTSYVlw14ZC272WCPKNK1Cu7hltJKCXVzb5gDAdCMneXpDTsNPaT8RRCioq5JUxerWhaRa0KnPTatW7lUNt3J1nOVKptujHHlgJcjeDEMXo4HMdUIoWwTRCKuKJiTzDmqp+T7KzLQ6XzwLErKGW/kqQa8KcV+FKKK34FkpWLnTBSnx2wlrKFPb8YwZbFSMWu58yEsvZGTc3mk0RSLVRqXuXGOrgU4FYQTgYORiDt5jSdrjnKjrscyFqVlItYFfrVSpYPdnOguqzJyFKaDFZaeGQTN9tbrvFXrsZvT7KELJcAQIoLb4EU4GoEJxo4/TebdsP2KcVMbi6Rgo9E8JEmlOWB1qWiangxEkeijNqSZdIvSlxGLrpISsGu9bAJyEpaI3DyPtViddTiPUmqj1IDAFUq4bwbfZ4U4FYQzD/OycJfKfq34UgCB8Jx+ws4QNM0zCVSy2ZFpdLQWhkNRDGTSGMyVj5fEvkUJBKJUzRNw6FQDP6U9WhSx0woV1Afz251pSngZBoBSSUoVZtfToUDNcl0w+qgoeQzSKoCJ02BadcqvaJe7IpGMK1iOJJAIK1g0PVS1QCkMgOJjMazuX6lpYeVlBs515IUgwZgIaXAbjlQN6Gkx2kaPHbRuJY5zEZixb1XgnmApmlIaRqa6qQuQeIOpfqPmqJ7u9gVuS0cyremVsg2WruBz5NtiUu58lfI+dmdzCeqP6HiUkDrMpENTNNYxomPNKVbocjHLikCJ82GTUCoBq7WgyQ5qZdafOVE9+RNKdjqjyJgo6WVSAqh9ABAFYruLU0oJYxC2kKlrVWKvZyMelg45Xy09NwpVcOhcBwpmVKg5pFPWFJuqD/IeCyJQ1Ym+DWE8b2i5lW19s6lVU2ofWA+27PJpUsjIaktivWBS6sa/CnF0E7dfROlBk5ii0j/omgaFE2zzRHHKMfAUWyjrbVBzG1EnUul6mwilsRCMo3ZJczfJKkM8j2UFEMhC4VUAzcZT2EhWXmri0ol8GXXMV6v0mlhKoU3mcYWfwQhQWTrpuykJCg1cBKXKPbdORyJY18oxi1Ku+4D5/L5pA9cjWAXhXLLYgQagN7Gem7fpaCQl0ua7NkjrJ0yVhl9dInsh6a62vVVkUgkxVNIV1QN03eX3V0ssYoTXKujXTAruC2mzJGp2f9UDQmskqVH1TR4YO9SZCSedUNJUgHO5WbJx4OQaQQkDjAKd+UKNJ9UVeFKWtHNVPbpBVOpKmPJnRtqONiAJEMgpeBoJLHUxZAsMwrx9aqGKJSVyge30qJQskW+pDS3l1QADcCzixHsCsYKOo7NZdIumjIH0wpGown9vG6neZIauBqBtTkneeDstGCcHX6B0cB2BKJi++MiXwjZ3dsjeoyV8oGTg/HKYTJrJntqW1NNRweUuI3zPkKUE6nS0SjVCqngjNon/fsa7VJZYK2EwDStRm9ZUgVElMKEpYY6D6Dw2uBS2+f+YAwKgA2tTdjhjyLpsp+rFOBqBL0xkAFI0zR+VTHbkZZrpdHKeVT6wFWS8tWaSICTz2jloAKoX+pCSJYNhWjgRDmRKt3eNLdjhhuIKipCacXSdMrtAAfVgq5lJd8tJNNIKCoapQm+xGWKfXeYBs5NH7iGOg8UVUNcUTnhzS2kAFcjqNmmRrvD49EkpkiQiZwGrjJlKnUFtZYGsXIgVHZW6NqVMjeSVA+qBsg0gxKnOBpnsvuI+pNytzejJUq5+7QdgSiAnFBqrB8q2BU6RnuTaTTVebCqofqWWES3spBMYwHA6e3NlvtIJJWE9TWcdVGJk+XmOg8Sqoa4wGLJjXm4IwHu9a9/PZqamtDcnHnZrrnmGrzmNa/B7t27cf311yORSGDdunW4/fbb0dfXV3qpqoAXI3F0NdRjdXPjUhfFEaLGMGWIEJjzgbMxoTRslzJ+suP56FqFHS8xk1RVzCfTaK5w8tOlFBglS49asTAPklrFuKhn138omobGMrU3VdPw7GIEG1ubuO8qQTkSeR/Mpl14TW+Hi2d1B7tqTRRo5uaEuKJiOpHCSa1NeqJ4ycqh2NdY18C5aObYUleHIFQEBBFY3cCxBu6rX/0qzjjjDP2zpmn41Kc+hVtuuQUXX3wx7rnnHtxxxx245ZZbylLQSjOTSGMmkV4+Alz2vzMfuDIXJosKc5ScgkwoDf54kgwTsRSmEin0N5lf33JWk3wGKxvp9igphFKbSzk1Yuzc47FkRa5HsZoe8ountfOy2d2J7qfk4u1OxjPjY2t9HdYsk/mbpHpIumlCmRUKRSk03GjyRS/h79u3D83Nzbj44osBAO9973vx8MMPu1AkSTHkGoO1CMcWo+wGKjft8NmKphvnrJ3hrHSas34DxlxJj91/H+665QZ4vd6KlUUKdSuHaogUKFk+ONHY27WosrY3wakrvUBhF8Sklt40O2E0VgZf6pasLZxvCXIJSpaeUueYdH7sVhdUrqBvjjVw11xzDTRNw8te9jJ88pOfxPT0NNauXav/3tvbC1VV4ff70d3dXZbCSqxxooHT962UqYjGrsdd3fHxxZpe1joiv++9Wzbj3us/BQBo0RTcdNN/67/FFBUeAC31pZlcShPKlY30e5QUgl3foGlsWm+9lygypVuITm3nWlAJVmJfWo65CBseZaTklUmx2utyRPVmx4vaYsWiUN53330YGhpCMpnEl770Jdx444144xvf6MLlgb6+6rPZBgD4wgCAgYFVS1qMgYFViKYUTIZiON3Gvn1uPgTEkmhpbcyVOXsPjJaWJiCRRktbk+V91ceSQDZ/Rl9fBxodTvoVVTNdr7u3HTum/Zyde1dXGwayjsv5CPujQDb/lAptyZ9FtRBcjADRJPfd/37x/+nb3/zmPbj33q/rn385PA0AeOeZQ0Vfc+dMAFFBD7eqsxUDna1Fn7cSyHZjj2X9GN7nzq5W9Lc5e3drAdlu7MlXP02JFJAN3MHo61+FhjoPNk94MR9N4oLVnaa+jLGqq9XxWFEoibQK+CPcd52drRjoaHHtGqb6MbxPzc2N3D6hZFqvr7b2ZgwU4s9WJfMVEYu+sOUz9tTXAaoCeNwre8CXGR8bG+ursj7ysRzLXAny1kv2HWhrb9bbWyF1OaWqgCFuRFd3KwZKGPMms+cULX52drZgYFVpcydHAtzQUGbi19TUhCuvvBJXXXUV3ve+92Fqakrfx+fzwePxFKx983rDUF1cKZlPptFeX4e2ErUN+vnmQ66cpxgGBlZhfj6E7f4IYqqGtpSCJovAFZFsssBYLGlZ5lg8md3Xeh+aiHthIZzJjeGApCBB4YI3DF+cfyGeO+HD2pZGnOzgpQiRYzWtfM9iOBzHXDJt6wCuaRqCaRVdjUsf5SsU5wdDRVFw4tiL3Heiuiql/kYNEzFGMBjDfKJ6TVXYOyQRU0j9+PxRaBHxRKzWkO3GHif1Exb4fSwshFDv8WA+O8EKZ4NviFj0R1FnMfEvFdF4tRiIoT6WEuxdOE7qJxZPcftEyUJnOJzAfBEqyGpss+EY/wx9szPY+acn8NLX/Dma164DIB7fF5JpHArHcUlXW0HWI6Hs9VJppSrrww7Z74gppF5C4YS+XUhdRgXv/uYJH3ob63FukYJWNGbdfwWCcTTFc3OnujpPwQqtvG9FNBpFKJSpBE3T8Ic//AFnn302zjvvPMTjcWzfvh0A8NOf/hSXX355QRd3G03TcDgcx+6geLJZyHmqiZia30BSM/wX7sNCNtvsVKy/mmisSQnqUQVwIu5skOTDKluXJqVqOBZJFO0zMZe1lbe7xlQihb2hWFXa1e/bstn0XSQSEewpkRSPtEiSFEKpJtei3HDlpNI+nmYfuNp8wehdqaqKm/7l7/GNz30Kn7jiDXjm4Qctj5vLakPCBUaqLMSdRFJ7FP8ei4/zpfJHkNyyGMaYjbAmvlzp73teDZzX68VHP/pRKIoCVVVx6qmn4vOf/zzq6upw22234fOf/zyXRmApYYmkS7Wd5zocTauiULTWYbydtIVc+GL3BgpFyyQpFOV7i5f4ILjnYLNfIK1gKpHCYHMDOkrIg6NoQIOgeiNpBZF0pgRxwcptpTE+65997U7TPmNjozjnnHPLX5ayX0FSLVR6Qi2pPWbiKXQTKwa7JlXOnlbsA1dZQmkFRyJxnN7WDI/HU7uJvMlDHt61DeNHDgEAIsEAbvv4v+GbT21H3+Aa6+MLvV4xhZTUDMUuNBbbblKqhrSWiWh7EklLYnXO4wf34flH/4D3vedvMXDeeUVeNUNeAW7Dhg349a9/Lfztoosuwu9+97uSCuAmTOMjmoQXAq30uKrBAw2tLplkloJtxC7mEm43IGr59+GvZy0wMobDcXhTCi4U+EElShB2fMk0YkQAdHRfRV8tQ1LT0GC435iiYmfWJ9CNa1gxn0zjeCSBS7rbClowCC56cWTPDtP3o6MjJgGu2MTqtitacrRcMdT6o05rGmYTKayVocddQdRtjMSSQMz8vYhKR6Gs9PpEXNUQT6RxcmszGg3dsppdGC018FQ1QKt125OPcr+pqorjB/eh1yDAxYjWrVDNZKU1maG0gplECqdlBXHJ0lJsMKJiW01YyWjomkXuRoaTRsMh3PiB9yLkX8TuJx/Glme2FXnVDMu/dyCksqJ3Y4kvEX3/dwai2G7h/1NxHLQw+7DM2f+2xxfWjFmCQtHqfClRoA6E45gmDqUpRbUc0Evtrll7EZXXl+JNJstlRnY0EkdS0xxpj+kuocVF4T6joyOm74oVp52mnZDUDqJJUDmjAlYDxyIJHI8m4S9T0tWVhpPm4mS8Kgdi887yXdBOqBAtQE7EU9gWiBYsxEYVFTMJd/z43ILewdjwIdPvk8ePcp9jiortgSi8DkzX8l0vkFKQLrNAtz8Uw0wirVuAuU1azQjzEmcU3W8UeRyzzhLF3TCe8ulfP4CQPzNnO3ZkGLGYw9UsC2pLgGMaOIeBN6wQmTJUg316IYOdqONnKxNOBwUne3myGivRS5M0XMe/MI9vfv5a/PjOm6EohXXOT4wtYFdQ3NjF6Qqc05htLymBxjCU5r8rVytg91Boy40EA8LvjwsEuGIHMqc+k9WMpmk4HkkgIifnQnzJNPaHYo4mmrUKGz+kr587lCrAVfoxlPO5202/WY8ker0KXTTZFYjixUiiKuYrDFqSE8eOmH4/cZwPwBUw9NHFmlCmVA17QzEM2wTKKYUj4TiORxP6HKhcCwDbA1FsqxYlwjKAvmuHwnHHY36xT4/NqxocKI62P/UY93lubrbIq2aoKQEu6ZYGTvAoRQE5kqpa9gkh7Yh3BaN4zhCKWN/P8F80GDkZoAptxHU2ycFT5IKqquLmD78Pj/7sR/jVt+/Gb3/7K+syWAw+UYtVqPwZhezRNXCC67JvWItye2A8FI7jaCRO/BPzQ/eJhILCfUQauHSRMxT7iXv1TBTsSGkaJhMp7AuVZzBf7hwIx7FIVrxFT7XW14Cl8ZPb5O8b7PqWcvYsYg1c+bDzH1UEGjgnxwHmOUgh40ilYLcQDYewMD1l+n169Dj3OVLioinbn9WKcRHWLWaTaUzGU7m5QVmuIp57SqyhfcpCMo3hSMJm7xzGWn74Jz/AF//l73F45wtFHW/8Lp1Kmc41OysFOJ1UAZKwFVFFbEGbEkx+dwdjnH9UOeAagJbrlOz2E30GCu/cnfQbrKbFGr8cxw/sw7H9e/TPu3bttL6uw/Lp1ymxf6vP3oST1U63h4KFZBrTJYThpxq4dSefqm9PTZ4w7VusiUctmFCy5ulBdWjTqw39PbbZp9Y1cBJ3MbaW4V3bcdVfvBxf/Nd/QDqVEu5TKSq9QCEao1LJJOYmT5QkwL3gjwrnINWkRWZFmZuc0L+jvmLe2Rluf2OgsEK7HeP+5TSNBQB2K7J7rA6M73Exj2V6bATfufEz2LX5KXz5Pz+CdNp6jubUSm/8yCEkDCaTs7Mz0DQN84lUUfOSmhLg2ASjWPEtmFKwIxDFpCDMvUg7k8j2ksVqNpzgXNjiBwFRp+VoAlbgrbC6Fgk/tEGOHTnI/XbcYPdOKXQgtbvnYs7Df8m3qXL30YWen2rg1mw4Sd8Oh835T4qNIlgLAg9rU0lNwzOLEWGOqpUKt4LPzJEF+9W6Bk7iLsZu4+uf/STmToxj15+exFO/uh9AHvPsSof1L+P1jGc+fnAfPvLGV+CqN1yKb93zVYu98i8qWv2sVNHSGhuXA94F/btTzr1A316cm3W17nMTatdOaUul5gYSa2j7cSMK5fanHtPPuTA9hSeffEx8EOj80/6csycmTL/Pzk5jPpnG4UgCM0Us5NeUAGdXkU5gnZ5IgBNp4Fgw5Fg1hJZn/+18WAz72p1HtJ+iadjmjyBATK3YSppIb0lrxei8fOyYtQBXaMfrVu2L6k43oSzDKpv4WeW/AGdCGchp4PqH1unb4ZBZgCu2nuxEneUi2xmLGaxRAc6bTGO7P+J4QjQWyKzgO1kEqaZVfbcJpJSaD9Ky1NBgFTv++DgA+4hxZTWhtOnry3I9sh3wLuDad18O3+w0AOAnP/yu5fXtFt3s/VWLKWV5YEWhAtyajSehrWMVACCVTCDk91neT6ELszmXiuz/MteFFOCqC6OiwvHiANmP9U+MF17Ymv/wPOdcmBIJcLO6D51ISZSP2hLgyvAGsZQEIjtkFuI3VsYIQY41cGQ7klYQFcxGCk0jYCSiqIirGo5HczbFdho4OoiMHznM/TY2NmoZyKTQMLBG7WOhOBFoc520O40srWpIFV3g3IGRUE6AGxhaq2+HwyGoRlOUIi9XK0FMuM9LVI5yczSSQEzVHA8GE0HeJ9D+sNqstcVUGntDMVPwhHKhahrGYsmyWm5UA/TuogaLgHg0ktmniqqgrFEvyY0+9/DvuL55cmIcs7OzwrqwW5NP2BS4msydWVGoANfV28+lDvDNzlj2LoXeCdvfzpqgHNSCpcpyhdZ8sbNxdo5oOISD257nfjt8+KD5AHacxv+3Kld4xuz/OTs7A5QQBKe2BDjDfzdgOblE/kMs74NdR1oyBS4eaAB2BmPYFzLbxRdqQWncnWkc6Qti5wNHG+TU6DHut3Q6DZ/PJy5DsRq4YlXnDjp6to8bonpCVbHFH8Fo1Oxc6+QWOGE9mDOh7OzuQUtbm/45mp0k6cdJE0qdGrglIXpQIYf35zeEHLfT0tdolRVlulIKs4k0xmNJnIgnK3rdSkPby4ljfKTBiaOZaITG99I7O42H7vseZibGaiqICT33zPio6fcXXtjC7ZNKJvD7H34Hjz/8e8tz2kUVdmMpQsnmRSy1/2dH+73z+ndd/QPoWT2of/YSAa7U52Acz8vdb+WskCTVgEkDZ/h9NpGCX5Cigu13aMcLUAw+b4cPm9NfGI+zamdt9XW4rLsNC1PmuASzszMlBc+qMQGuxFfVrlcXdGKVUJ27eW49XHGRx7OOipp1ONHAJeIxeGemTb/Pz88JryPqCDVNszaxcGmlzfbxG65VCvFsZc0mS584Ug1ce2cXWttX6Z9DAjPKYrA1oXTlCuXHKNAsl3IXCltwcroCn1QstLSi1cQarbRkhU3gI9k6p8G2/Kl0VWlN3IDezbxh8uKfn8Pi/Jzpnm+56v34zk2fxef+/q8RCAYxEUtWrF4SqooTsaTrC1aaxs9MpsdGTPs8/jif4Pq7X7oe3735elz9oX/E3r27xee1uaYbdTYSTeBIJFFyXkRWksACEeB6+zGwdr3+mdaJKQhJsQuzhv/lIhehuswXklhSiAbuSCTBKTg0TYMvmdbPMSN4P8fHxxCPW0WwZhZgIiVGpn001dVhVBD3YXZ2tiT3nJoS4BhumtI56QSq4b0trLPSEFVUTOZZAbY6F50Ms8YnMntk38yOjwnPYyXAGQfQY/v34l9fdzGuffflwuAchZpcWpVTqAI3aN7ceNa2fh8FakmpD1xHZydaOzr0z0YBrtiy18LE0ljny/+OxLAOveik7TbmyLVaZ+aodeWFmdw3ZdWlcUXFvlAcLzoMd71sIBW7KMh3NHr4ANdOAz4vRg7uBwD45mbwrXu/htFYErNl0JCKnrEvpWAklnTdlPaZxQj2kwmjSAP35JOP62Xyzkzh0Z/9SP9ty5ZnTftv9oVxzKa9uGEUFGOrsi6pxAI+r/5Vd38/TjrjbP3z+JFDlmNfsUHNKkUugm+t9pDLi0IXa0eiSS6NDo2WSvGR9is6v1X79QAIh8MYO37M9Nvs7HRJiqCaEuBKnWeKJy1OZtTle3Gdnzk78XIoAOwORHE8al5t5D5Z/MZr4JhWzqpE4hXifRN8AAAgAElEQVRHwLkG7ivXfAS+2WkcO7AX3/ve/5qvU8A4k1BV7AhEESeaB7tnbPzFDWHG6Sm8yTT8KfvJC41C2dHZpTuGA0DIkCPOzYUN42+qpuHFSLzi2gyn1Li7kQ4zoSw64miRvy1nKn1fxqBXuoaixgLr0Hr1zc2Yfj+6b7fBT5o3U/r5PV/BHR//N0Ty9IFukUzEoWka4mXoLJgLhqZpmBNGo5vR++vnHn6Q+83KkiJk43uvABgOx7HdH7HcJx9MIKkrOa9uBk4D1zeAjWecpX8eGz5kuQhdqEa00ib/ugaloleVUHgNnN0Cufm3aYMbweyEWOHg9YoFOFqGqKLqf8/6wnpfcuDAfv3a6045Tbdm83q9SCeTpntwSm0JcOy/myFpHQgH5X1xBZotFyJoFWVOmb2uUx84xvS4lQA3L/zeeKopkujzT396yrR/IdqxuUQaUUXFVMIcaVQsyLmvuXEq4hwMx/MmnqY+cB2dXbYauGKxi87H2qI3mcZMIo3j0er06zH7wNXmcFsHZkKZeSdF0XPtsHP8r80aq/x9GYVr1ofa+TQtR+jdiDRwe5/bzPW5Y4ZAVwCw5eHf4cnHHnK/bIaq3vr4Q/inl5+La999OYKR4oUe83X4CwUXfUglM5qzto5VWHfKafpvE2OjAIBtTzzCHWNM9utkEVHVNMwl04iVIIyyfr+uSPktpWqIk7y6nA9cXz9OOvMc/fPE0WGklYygbhyHl4sGrsZe3+UFqXuTBo58Fs1ljOsTNNx/S1u7vu0lQXhE549nlQO7g1FMx1NQkRHoPAD27cuZQZ92/oXo6h/QPy9kFzZWvABXKqIKrEanfrvrOsn/Qvc4EU9hjATT0Cz2s7quR1/xt77e9GhOgOvq69e3rTVwuZP5F3ghr7W11bR/IZNxZraUJG+5nZDupA4KxW4AdnJ+ug/1gTNr4AwmlEUW3okW2mr1tFrI59jshEha0f2XqpV6ooE7GI7jeX8EiqY51shpNk+yVoXepe7Hc5YNS1SQCuATCHBH9uxAOBTWP48NiyO9vThsFuxKxVjV377hM0jEYjh2YC9+9uPvu3YdY/CzRaKJ7B1cg0GSu3NiPBOZ+eh+3udtzlB3TtpJ0gUtoijBeCStICgIACFiTzCKbYEoNGT6jgDRYHT19qOrtw/d2YlsIhbDWFaANVJot1PO1yilatjsC2OB+K/rVihlvC5Qu/2vGzidt4oWyaj8ltGQ5zRwp1/wUn07nwkle9cVzTxn2rdvr759yjnno2dgtf55gSWyX/FpBAz/3Tyn3Uk1ZJzQy/GC2QmVov3sOvex4UN4+P++jyCJ/jgWS2Kc5r0r8B5yPjfWx1Gb/7MuukTftvaBEx8LABMTZvMTKmS/4I9gWpDHj8ECByRUakLJ/+fKYlO2YnFyCttVViZwahoiQRLEZNUqLoiJ0V8wrWl5TTLFZTF/97vvfwvvu/RsvOvPL8MxQ4S5asQNP6edwRh2BqKulKdcMHMnBdBt+rf7o9i66EyrUAspIwplqVNM1Gy9ku3F+ZwQwsyH0qkU9rzwnP69MdUMY8rCpMktNE3jyrf5sYddO7dxwuidNQhw6zfqn0+MjWHy+FEkYnwEabMAl7/FuLHQpLvAkcvtDMawRxDhWgTT/qVUDdFQEOlUxjqjpa1Nj5ZM/eD+/M8ugz+ZNvXV1aSBY+bPJ2I5SxONjMflpFb7iVIJpRWMxJz5D4veHQ8R4YKLPsSjmTG+tb0Da08+Vf/NSoATYYwTsXfvHv3zyeecj56BXATWhew8eMVr4Ept4HbH203up+Ip7AvF4XW4MlVqoYT9hC79i+8iEgzg//3DX+PbN34Gt3zyI6bfRatthWifrCZ+6VSK820466U5Ac44MOnnMpSbIlql0wUwTUNC1XBUEJ7fuK/QtMyBBOeGo7KTSbIo76Bxn0Qspoe7bWlpQXNLK1rbcyp/ow/caCyJfaHC/dSMe89PncD3//sLiAQDmBg5jq9+9cslhcKtBCvFwVxfUCHtJ6lpUOAsX2Uhixk1S4UmYrVen7QaqfbltVe8W9/evWUzAEBRFEwcHda//9htX9O3Z8ogwNEVcqN559ixF12bjBsFOB8V4FYPcRq4YyPHcfzgPtM5jAudTgS4Yn1gKaX6e7O+KKKonCVNV1/OfOykM3MCnJJO4/e79gjmHYWVo5yvr12QqFp/n6uV3cGYbaAj2n6YlowKPtREeO7EuL49uGEjOnt69c8LCxYmlILvaPtQFAUvvpjr2zaddQ6ngZsTRGh3Sm0JcDYR1ByeoKjD2MMqR0JvceMQmDdl/1v5URzZsxPR7IR+xzNPY9RgrlJs2XNpBMTX/dNvf4HgYkbj1zMwaNDAWfjAkW2jABcOh5BI8AJaIQk7deGHmlBm/6c1DSPRBHcv5dDAOREmnJjAUPPJnp4eeAA0c3ngxNqigq1rDDf91K/u5z7v3Lm9wBNWnpWWRkCkiXfyjtvtUasWPIUsVJXjgjVarTmrkHQa4cAigIz27aV/9uf6PjMTmQnT/NQJXfPU3T+A08+/kOxTXg3cxLEj3OfFhXkcOmSduNcJ89EEgilFIMDlJmu9g2uwZmNOgBsZG+WEWP1cJgEu//XdMMfN+ckXd7K2+rrs8XwEyq7enBvFa//qb7hj9mYFekqh41U53ydRxEC2XQ4TSs1mLiKxJrTow9bHH0LM4M/K3sd64vhGF59pAJPV63kBziqIiXCOTp7bwvQkktlAJd0Dq9G+qpPTwM1bKDKcUFMCXKkUrIEzfOnGqpcT7C5j1XGPHNrPfd759BPcZ1HkLSfCi13nlUom8MPbb9I/v/5d70U3bbhWPnDkQpGA3/T74iKfAJwNMI46ekEgFnaYN6XgRDyFcWoe4eCUhcJuT6S1stUQGvahAUy6u7sBAK3E6dZKgCtYfjN8Ht7FC2xHjgxjkZXF4TuQUFQsupAHzykrJZF3vgWVfGiahlBaMdVPIhbFgZ3bkE5XNul1Jai0AJezGDBuOGMqnsJmX3gZ+MRkyhfyL+rfdHR1o2f1Gv2zPzuxn5/M5Ykb3HASBtatR119PQBgYXrKsi8rrWTIXttslr9lyzMlnX/zhA97QjFTP07z4fWtGcLg+pwAN3tiHJMCc/RYLMbdf6U0cAxq4VIIjUS1QSNQdvfnBLhNZ56Df7zms/rnAy88Z3r/CjehLN974RHk2SzyNXaESFBUNI2Loi3h0TQNt1z1ftz2Hx/Ep975ZoSIEkDRBTjxsTSFwOp1G9FNNGWzs+ZIutkLmr8i25PEamxo4yYA4JLYMwGumOZTUwJceV+k/CctywqMw+vYlS7gXcD2J/lEoaPDB/jjRdpLByvFtFOhpJIJ/OrbX9cH79a2drzjAx/mOu+FhXmoAnM+Ow0cAPh8vADHxkgnmi27Pdg77SemsOWY3LE7FvUhiqYhrWq6CWWDsKPJ/BYJ5oTb7u7ujAauNaeBi0TEk7xSBDhN07D3uT/xv2sadrz4omnftJbJNyhidzCG/WH7CJtu4kYQk+WEUwthI6G0it3BGMbIIoaiKLjub9+Oj73nbbj6arP59XJnqbWzhV5vLOvvYQyQUW2w4gWJ9qWztw9dfX36Z382shsVbAbWrkdjUzPWZM0LNU0rq5+tV2DCNDJyXLBn4Rif0ewEMdFafxJWEx+4+ckJjL9o1sAB/KKlkyUUV5tG9mR2Zv35CPhy5mcscAkb2i589ev030YO7hcsHBd23XLM/xRNQzCtCOdJ7LtymOlzC83Z0+8PxbCtyn2xlxLvzBSGd+8AAEyPHcfvf/Rd/TeRBo4/NtcXDKxdh16y2DQzMyU8RqyBy21PEwFucMMmAOBMKHUBrojmU5MCXKWON60UVUwD53xSPjp8EB96zYV6g2aMHDIIcKLrOClL9r9xEnTXpz+Gn33tDv3zuZe+Au2dXWhqbtEjJSqKgsXFRRih5xIJcGYNHH+cnT+WWJPKd8rljjRo1072BGPY4o8QLZ35bqw0cB7wYW+j0ajt/TqF7n3/3XcKhW4/eSaapkHTNBwIxbDDYqBJskGvQu+MSQNXoyKcvqBS5P2xhRgaZW38yCHdj/WBB35qMmFe7hjbQrmbpGb4XyisT6h2v05Wj9R8rrOnlzOhY8LdwvSk/l3/2nUAgPWnnaF/N+xyJEr6jBcEE7PxcXfMNo0mlHOTvI9NS1ubLtAo6bRuwuXxeLAmu1oP8AEUnGjX3GwZ7FylRLakPnDd2efPtCDrTz0DDY1NADKCfNAwvi9lEJOEquJAKIZ9wRj2BGNk3DJfryyKA8E5g2k1W4bqfv+XCqMfKZ37iuaItBa9xMS5b3AIvYND+ufpaee+arRvnjH41QHgTCjnspo9qYHL1oBbzTqdSuHn996Fr133cWx/zmybzQb+nNmSSxfmruHsOys2/+6Xwgn39OhxpFPW0RrFZbG+Mr3Crs1PY8vDv+N+H9q4SbeJp07MCwtmPzja+J1p4HhhwEqA8ybTnO8bw07LVo4IdU7y1jm5Dk3i3dPTA3iAFpJmIRoVRx4s+B7IAbueeVq4CzWTOhiO47nFiD7QiATGSue+qtZE3lPxJObLYEparAZOP55s0zyMALBv3x7UEkungbNezbeDWaYtl/lbcJHXwLV3dqG+oQEAEA2HkEzETRo4IDOxZ7AgAIvJtG2U4WLwTpsFuLExdwQ4auqWSib0FX6Px6PfZzfJCcUYWLse/UPrcmX0FijAudg4/GkFk/FkaRo4L9XAZQQ4lrOyobERJ5Gk3iPDfEL3pUwjcDgchy+l6EnTmUksnQuVuiBjh8pdh79CLacdcYqonR8/wAtwY0cOmfbhz5Hb9hENXP+aIV5TNj8ndCHIp4ELETegzt6M9QGfRoD5wBX+QGtLgBNsFXd8hm/dcB1+8pVb8fSv78cn/vFvMDU1KTyOsaQmlMZwxTNTuP/uO/HQfd8Tn1fTONMWUSfkSANnnPxoGr71hWtN+20840ycv6oF7fV16Mj6awGA32/2caPnLEgDl/0v9C3TMnmxqGmYE8rSKTtYaFBhHiiMUP9AXQNHolBGIhHH7ccOboWKdHBnv+xSfTtINKm+lCL0MaTk8pUVWJgiqbSWRcRiKo19wRj3rh6LJnHYRVNS3R+0yONFcXRPHOWDPOzatUOw1/LFuT2Du9cr9ips0C5DzGNXYfcXIv11Z08f6urq0NmTM6MM+ryYJosETLBhq9UAcOJERsDbH47bRhl2QkrVuIUjKw2cG0JQjCyeemem9XMOrBlCY1NG68QmdZR1p56OVSSAAq+By39dN1vwZDyF49Fk4YIU2T9ITCiZBpZG/1tz0iZ9mwrzQOmWUaUQSfM9aVqkgctul2P+J9L0sbGzUouf1YzIjNyogfPOTMOfXWDOV2NUAzcwlHlHWe5iVVUxNzeLo5E4Nvty+SvzzbHCZKG9o7MLANDdnxPgfN55KEpxNjM1JcCJVjSLOBxAZtWQRttTVRUHDphD/NLDyqLSFplL5rlMwOfFp//mL/Gzu+805ZSh+L2CKJDk3DFFxWZfGP5UGnFFNSS/Ftf15PGjnCMokFEXv/wNb0FTXR3WtzTqjRgAAgGBCSXZDgfyC3C6DxwrjECCK1XbVcy+jGBaQSidm245aSciTaFehuxPVAPHgphQHzgrE8pio3op6TT8JF/S6S+5SN82mr2IjqcwG/Sl0sAtxdB3KBSHP61UZOKddqBpBsyviqhtGlcwCzElMZJStaoy/dE08xJJpUtX6KJZnSCQQjXCSkdNvTu6Mv0U9YO75q/fhEM7XtA/n3L2eQCA/jVr9e8mJ/lJfSk8749gOJIRApOJOJdrlAWpiETCrvjB0deQLpj2kRV4alLKWH/K6VwEPCrAOXnu5WgZpQRG8ZMQ7D1ZjWMd8UOi2sa5aeNCeWHXFbqYuJYWIvOfzlH0xVZyjSPhOA6GYiVfVxN8qAeLNFzd738lEC1wjxzcb/qOpZ+iey8k01BI/59KJnVT37q6OvT1Z8wcuZD/c7OYNqQsED0G+o6GyUJ7e3bu29TUhO7swo2qqgh6F6QAV2pzpse/8PjDUBV+qmUMI2p8cJUy08rn+/DkL34CvyDC4+vf9V6cdOY5+meam0e0KryYTfq8kExjWyCqD3oU4wt0YNsWffuSN7wZP9h6EF9/9FmsyjZWD3KNGAACAgGNdnrhoFlDZ8zHkdPAafo1zOW0xi3hzoo9wRh2B3OCtJOVOjsBjmH2gfNwPnCRSFh4AwXn1cnu71+Y081xu/sHODtuakJpOl4zD6D1nsoOQqVO0t2YANisL7iGLmwLQ8bmvwdjs0unUthniMjn9Yrz4TjheX8Ee4LOEgFXAlGNVGpe5EsqeNYX5oRtJ5dm7adazYIZrHg96dzzZv7PNP8Z7Tv6h9bqEdqYLxzgrgBHGT9yWM+lueakk3HRn71B/+3ZZ81uE4VC+3rqC9hDhDaRBm79qadhVXeP/pm6DTh57OVow07GJK4MZDtAFou7+wbgAd8PUgFu3mDS6oYGzq3qEPWruflHjtlkGl5ielksomiXUgOXQ6RA8M2Zo0UaFx1jiopD4TiORBL6/Ibmg+wdGERjY8bMe1V3biFFZDEmgjehzM1x2dzXA6CfRKJcnJ8tqpHWpADnRrs25roCBAKc4fdiAwfY4XSCQb/aY4gSCGQGzo988U5sII7hAZEGjsBMNeosIvaIOPBCToA795JXoKOrO6MVyp7L4/Ggo4sKcAITSrIdFphQzmbV3AlVRSSt6IKbbYLsIqU0kYmoiLSaiR652RfGRB4zTUcaOJuOX1/ZFuSBaymDBo5BzSf7Boe4FWI7AS6sqHhmMQIv8fXKDULFlaVQShXg3DCPMfZPZQkDL1ghNl7fDuPi0LH9exANh7jvShHggEx7qBbKOdnLhz+dMTUOpAvTyTLTs2rXwLGGHg7l2k/bqowAt4ksJFLOu+zV+nb/mtykfmpqkvPlLvbdMYb1p/4yp557Ps699BX6ZzfyW9JyUl/AXqKBFAtwvAnlvGCx1Q7Od8qldlK4AJfb30994Pr6BQJcTts6n8dVJf91y4dIaMr154L9S1xlEWnn621yfa40jHX+s7vvEO43nV0UMCoqIqTv9c7mFg761wzp815mNQBAN8XkyiC4Hn3/6ByWWp9RLbxvblZq4Ep9c9nh4YAfh3duM/1OzRhEVGpF1G7SoWmaKU8XALziLW+Dx+PhHKapCaUoAIydQCoSljVNw6HtW/XP517yctP+GQ1cHh84si0yoWSrKS/4o9gZjJls0O0iN1LmEpl8SkmbAc7pI93ij2CLPxM0ZJTmkSsyjH8uiao11D9QN6Fso2kExD5whWufMv+9JA9Kz+pBboWYmVCKzh3MdpKcAFdhMxBTMJoCr+vGu20cPMrpM+u0uMa1GeN9jh0xR/8rVYCrJkoN9uIGIeJn4+TaLPhDuUxxI4qqW1+UAruXEDH1bs1q4E46yyzAveHdf4d/+M/P6J9b2trQ0ZXpY1KpFJeHqdh3J24I6EXN/defcjrWnnyq/jmfz7sT6PMMchq4nNAmMqFcZzChHJ/LWdQ46bpEE/9SsRsn7UjEY4hFMj5D9Q0N6Oju5vzfgJzfIwDs2PwUfn7vXfpnN4KYFFsHRqsJ0YJjrs8tbqx3cn1Kpd0PgMxcKSkIhrfU0BqYmRjDcw/lgue95FWvzf2W9XNl4z5rfwrI/IYsUK8eWqsLR1SAE0VNp89984O/wi+/+TUubyMV4KgGro/TwM1JAa7QyYvVGXwWmdGNExfjdcqxIiqW7q0J+X1IxnNBETIO4714579+FAB0h0yAT64puiJb4bGb5NCfhndt09XXbas6cdJZ55qO8wBoX9WZK4NAA8dIJZOIx8xh6I3qcFYfdlEoRZ3rbKLwSUqhT1gUucvJOewEDH31yGhC6TGmEYgIr1ZoO6ULG4zO3j7OEZc6/+Y7D1B5M5DSB1L3ysnOVE7hteiFA8Nxk8ePmvYxWiIsZyqdToI+F5bjMUJM9Z00CU+ZNXA7A1HsD5UeWEdDpi8Okn6KmVCedt5LuH1PPvtcfOSLd3L+JgAwtOlkffvIkVyOtGLfHWMC5EXiatA7uAZ9gzTvU/G+ngx6Neon3Ec0cMYolN19/VjV3cOZbgUWq8GE0tkEfrMvjBcj8VwaCdJfdPf1o87jgcewzLrx9LM4Ldz9d9+JWEQcRTkf5bh3fbyy8S0W1U6pIg+3QG4sS4XGzriiYjiSwHC4+tLH0Bo4tH2r3r+ed9mr8PI3vVX/zThnpGMw26bBjAbWDOGsjhZ01Nfl1cAxhndtx1eu+Xfc9+Vb8J0vfQ5Axr9NJMDBYxTgxDJHPmpSgCv1+KCFpi3fynOlpgKqpulaDeO16SrChtPPxDee2Iq7H3lWzylD/ZaoRkVUdjZI2g2W9JfffPdeffvSN7wF9fX1pv08HqC9K48PXPY/1TA1NjXr2zMkmhdFz/EhCmIiuAVnib+Le6r+VDq7aiXo8AtZQbXZl5pQ6lEoSRoB1zRw7HzEH7Gjswur12/QP8+dGM+r1eIFuMqagRgvU+hl+ahjWolmSey9KuEUtmcufcWZMXncnEC5lgQ44eJUhRcVCtXuskG7+tbDzXgAhKgJZVaA6yMBSgCgqaUVIjZwueBywXSK1YgbtZaLxF+mZ2CQy/s0JUgvUCh8JEYqwOUWUk8593zuGBbEhWrguDybjsYt8bZTRO9AIeaAM4m0fl3qqpELYAJupbW+oQEf+MxN+mclncbuZ57GzR9+H67/8PsRFLhSWJad3PH+rc/hw6+/FO+44i0IG0zBjTCLHDvByO430U8JReVyahYKl64ge4FKj53R7KJHpS0TnEDbKc0ledoFF3KLMSYTyuwGrUOjBq61vg5ntDdzLj92FmM7/viE/t0TP/8JFudmEY9GdNPvtrZ2NDQ2Asg0/QGSJHxRELPCCTUpwJXa0NoiuRVDap+ezweuHIiuMRpLYk8wxkU2ZDsa/ZT6h9ZxQUOoqcICF65XM12PCW6ilV5jXaeSCewlvnd//S//DgCoN+zngQcdeUwo2c40gEnf0Fq0tncAAJLJhHASaSeQCQWZQgSpAtkXimM4kig6+andUSINXE9PxtSoqaVVj6SWSCSQFphCFRuFkuYz6ejqQUdXtz4hS8RilgsfovcylzuxQpNlw2UKFuDI9jOLEc5MtuCyZP+7ce+LqTSOCoILOfWBMwVi4n7TMHLIHNErFArWTDJvNxY4ir2eyGzdyeS80lEo06qmT+IKQV8QpRq4rA8cALzlyn/St9/+T/8mPMfG03P5wQ4fzglwRb87hsPoxKlnYDU6e/v0HHUBvx8xmyjOzi6Xu2CAhNKnAlwfERoBYGM2Jxr1gQsWGsTEYrsUil0woEm8e/szAUzqYLaUueyNl+Pi1/2F/vmOq/8FO55+HM8/8Qi+973vFHzdRCyKz7//3ZifOoEXtm7BE088Zrv/VDa/oDF1AJAbM20FOMF3I7EkDoXjJt9Lp4iOEo2daVXDaDRR9OKTpllHB2apMFrrRbZNSwstMRXgBobWoddGmy56PzgBjiww5TOhZCeYN0RfP7TzBc4FqIukzwKAFpIPeXF+tijNcW0JcKWGbM0engrmOssNJJko08ClVA3jsWRlVmoFl2BCQUwx+05wmeTX8AMDAAysywlwcySyl1gDl/kvTOBp+OrInl2IZ+1+12zchPWnng4AaK3nm5g5CqX1ikYkwDt/0hdyUpC7R9fACe7FqXmDpmmYPPYitsz5MBlPmu6z0CfOOnxaC6JzqKoKRWBKZXc9ow+cB5kgMTSVQESQzNuJ5pEjWxj6PNq7uuDxeLB6XU4L98ff/sL2eNpDubXY4hSTBq7gKuAPOFFCMmFNA3zJdEmJcRn7Q3FMJ3JlMa4wGq8bSiu2plD0uImjR/TJV0dXD7rIYlY+f+DlQrHBXopFNHEo9Hp6HrgKvTyHwnHsCEQLN73WMtYQVPPBfOAA4D3/8Z94/Tv/Fu/68NW47I2XC89BfdLGx8f17WL9/4x3QE2XelavQV1dHWfGWaoZJa0ymjB8aIjXQDIBtqm5BW/KCrbdPbwJpZ66x+YxKIqiR9XMFaKIcou+K3Lhjwqug4MZCyCPRWC0117xTuH3d9zx386vm73w0f17ue/nLFxjGE1ZxyiRrx/7xonZomhe6NT81PLCyAQ92uwL6/M+KhOOxBKYiKcwX6S270A4jmcXxSar8WxH01xXfeICrWka/KZ/aB2nTWcmlKI+l237ZqkAlz3W49H9cAFgkZhQGlNpjb/I+4uPHNzPWS11knmvBx60E9PpRRnEJIdVRUTSiiMzAC8JU7/+NCrAZSYtL0YyCaFjhnOVYzy1O6doAmjUwBmh3y3Oz+Lp3/ycvx45JdsUmgHq+2e2ZkkunTNIfrAWg7eyBzkzGgAIh8Owwmg7zAlwUwIBjlzDqrzc/oL6+/5/34CPvfW1uPrdf4lhf4i7z+cf/QP++OCvuGho7LdCMK6yJ2JR3PjB9+LKC0/Rn4etBk7ToKoqoiQ4QBdR89Nk3tSZlqFowK5AFHuC5t/E5c1AfeBWZVelhjadon/3g1tvwPNPPW55vBuTgmIxJfIu8G1101wtkFZwIBzHSDSjxSt2XZO2X1XTMBlP6quyVve3OxjDdn/uuZsEW/LNYZKb67zLXsn5zxpTeSxX6LsbWvRhx9OPZ31Hy3U9si363cE5dB84NwrkgEh2whgpUAunwewD1076/q7ePvz7zV/GlR+/FnWGySH7RIWpeSJsFat9pEelkgk9em5dXR0u2bAWHfV16FudGyNLFeBojVEfm3Xr13P7/d3HP42P3343bv7JbzC4PpPAvLO9DU3NLXpZI9lAIFZ3vjg/h2v/5nJc+dLTsPWxh/Tvi6kp4XgpMOdzcg6qgTtz4zqigTP3fC99zet1MzNKc3OL43GWtd1FEG4AACAASURBVDs6PgL5Q8DrApxA2HKy2MLKJ3pL4i5o4JiGMCQwaSw1mvNiynpJxI2FxnJBi0Y1cP1r16GzpxcNjU0AgGAwkHEpsbkVOncezKYw8cCogTPnu9UAxKNRTBw9wn0/cmg/ZyVF52hAZsGIXntZCnCallH9Fmtqxp0r+58loA6kqEZDw85gDPtD1iYRuhaL+Lqt3XSKPrgEgwGkUinLVRg323lSVbFnNiDUljDnd6qWZxMvusrXKxDgGhobOc3c1679GGbGR23LLuqQjkcTOBZJ5FYviC9BLzm/MQWBxwO0EgFDZJeua+Bo+NWuLm5gFfkn6EFMBKt7os7fuIKtaRoe/MG3AACjhw9i62MP6WXZ/tSjuP1jH8Ltn/wI7r//J7bn4cpk/ZPOz+/9KvZteQbpVApfu/ZjmBo9bjkBj6QzsUFjkbB+T+3tHWhoaNDvm6YSCAscwROqirCiIigwFRGhC3BBc0LKd3zwKm7fPz3yYN7zVAOFlsXNCLNsIsxWZYu1TKF95mQ8hePRpD4Q2ynNVWTeFdFiFv2KavM3nn4mOntqTwPHbldJp3Hte96Kmz/8Pnzuo2JzPjevV/wOOSplQrmqITv+FZjuAMj4ioqiUOajOTuZ7unnk+gyitc+5g6kK/ar1wxhqK0FrfV16BH4zpR6tUgoqAsUTc0t6DekDmhuacVr3v5OnHxOzh+uqb4Oq3rMueCsbv3e6z+FkYP7kU4lcdtHP4hjBg1UMeXmvstT5+G0gqBAEKBzkvVZwdUYhZLRuqoTl77hLabvg8EAlwvPDibAsciXDLuAaQDQmJ3n2Zk72tWB3r8K9jEGz3EKPRXr79n8T+QfV0jKJxF2ee6qafxm0Fqledz6Vq+Bx+NBLwkUMiOw2mKkUyldG+/xeLgcbR3E9JHGbNgZjOFQOBPs6cieHSbNd0aAE5tQepBRptRl40Qszs8ikSg8cNSSC3AhRcVEPIWjEXeiXtH/s8S0iD1oJ4kVqQDX1dePDi6hptdyMudmA5+IpXDMHxVGSmywCSM7T+2ASSJUysV//ibu8yM/+YFtWUSd1lwyjSlSvz5DEkRKR32dPgkA+EGcOrgb4TPYd3MaOGNUISBPHjjBd0bhOGAIUrPjj0/oe3z/1hv17z/xif/g9rPzx7DrEIFMp/NbEvwFAD76llcjGoma9g2nFewMxuBLKaYIlEBOk9PSRnPBmQW4Qic/Ig0cMys4/YKX4sM33q5/f3DXjrznoduVGhRMvl4FXrhgs1Mb2EDMBtu6InVwXDtKiYMaUeiE/0Aorqe9sDrOv5DzD+rO+gcxaiGVgKJp8GfrbWr0OGYnxgAAzzzxCHbt2uX69TRNy+u7VUgrq1TamkZdM1GopQGQiMZ0i4WmlhahdkUEM9fq7OvXF1C9Xi/SyYzWulgfOHrU3ImcSeb6bGJxD5B3nCkGKsQMDK01aRwpjWQSTgOZsHdOtBgZi0Sw/Snex+v2j30os79LNpSq/c/YFYxhD1kgZ/0N1Txu2LABHkMUSna/TAP2sVvvEi7CLgijZouLXueBKX8l08CpFkGo2BOxa+e2Grjsf9FY4YYGjtU/Gy/oLeR+Kw1hlM1q1sBlayidSunPu66uDu1ZrZnxXba6k8DCnH6fXf0DaGrKaO484HO30SiU0WyAGg3AkT07Tef0L8zjxLFcELCuTl4D19DYyMekmC48bcmSC3DsNXZDTWs8A53SsFUVu9VuXQO3kFtd7uzt4zrRhYUFS62KmyGpW7IFDQlWPdlVUpr5Oy/pLPuHcgIcve0PfvYmXPHPuVXmZx/6re2E2m7yyjomaj/cS1TDHg/w0q42XNjZppejraND/10cGSpzznjQ2gdOtDLKyunUhNIoyEwcHeY+j5GoZ9RBVVEUrlOzjVqVJ9HUjj8+jnTKHBDj0Qfu03f1JtNIqRpnsmtlWw2A94GLmE1Ui12553wSiTnAn13xTt3xf+zoEcQMZrH2g15lBodSr+LmGMY0b2whpthFU1okYz8h6qNoO/VbaFN4AS43YeruG0Bnr3kyuZwZDsf1YDRzBgf03//+965f72g0gW0Be7NlDZloeHbvKPvJzUUFhjBgVZGX0QDEwjSASaf1zgbYOF1fX88tHIQWM+2uWPNRei9zJ0gOuI0n6dt8KoHSI1ECwDwJGEZzTIl4WVcbLu1qgwdwrPX+0+/M/sfzUycQXPS6ZkJpdZ64ogrbDZvTLUzzAhyQEbBYv9dU58Gretqxrjkj3Dc2t+Bz//sTztUCcC7AAZl5Zcwwt2CRLJ9djGB30NoSK6VpGIkmuBgDDEcCnFD4LV2AM37HCXfZDyUq4Ozn4VUmyM0mUlhMZsYxfrG/S18goXPg0dERy/mGn0Rk7xsc4sx7qQ+cMJG3pnELNJR9W5/Rt7uIIog9p8ENG/Xv5orIO7nkAhxTpbuymmhaZTdPshtsWrguBJGwt119/aZO1KqobrZvtspiXLnZtflp/OI730AsEuFV/VomEAbtLGmoZjYg1iETsvcf/vOz+qTbOzONmCDfmqqq2P3M09j6xCN5V2E4DdzgGr1hGWvbg0ykRPaCxeNxpFJ8QAgNmVW5jkSuTO1dvABHk7rqx7FOTFA+B3FY8EeDP+D06HGoqopUMgHNmACWmvMIrsewS/wJAJMjx4TH7Xs+9+IfDMdxKBzn2rPItjqngcuZqE4GzAKy1eTHamWSfWXsJBnNLa2cbyV1WgfIgCNYcKgUpV7PTX8jtsLLnhdtr3FFdWRuoxqihjm5v0IXyTgBrn+A6wdrQYDzEa0l1cYAwNjYmOvXm3GQd3I2kcJwJIGjkQSOW0SVE71PbiHSzhetLdfATaLb2jtsduahGhiaJy0wn2mTbkRwnT2Re8YbNuY0cNQ3xS0N3NTocX173cZNtvOQxjoPmuszXmJUeGV+p8Y737X5aXzrC9cJz/Xi3t1FlTdf7bLfFU3DtkAURwSRcFlboovKGzduRKPHgyZy/x5krBFolbzklX+G7289yAW3cSLAsffFAyBqWEikPnBhG+EsqWo4EU9hZyBaUJvXtMz1hQu6xS6CCN//zHeq4LtirTl0t5xlZEJ5JJLAZNYKLEQEq1VEUNpw+pn69qFDByzP5TME/2Nt0QOgubUVjVmNXCIeRyJuFv5DxFqFuijt25Kbx3V38VEoAWDNhk36Ng0q6JQlF+AYbkyQjA2Myjfspaq3W6JgK0bEQb+rp89kOmS1Orrn+Wfw3e9+Wxg4olBEVzhx7EXc/G//gO/ddiO+/tlPmiZwAe+Crs3p6OrmfM3YigITmOsbGjj17eTEuOm6X/+vT+CmD12Jmz/yz/jJXbfZlpd20j2r15AXwOgD54HH40HHKhrIRGxGSW3WOzq70E3CrvoEE0g7QSqfpicWDpuiKCYTcSxMTWJmfMwUuGR+PjeY2E0mRJ05/WaaDOx/85FP6NtHdu/gOu+YonLtmeaAMwtwOQ3clJ935AasVtk1PLsYwbGoWRuoIeMjxEwUPB6PaTWddpohwyoVKzd3VUMEp3JjvE6h13XTjCSRrRDRc9gWiObV0gDmVWQnpWOLCU597vx0Iat/gAtrvrBQuA9ctZni0NIYNXA04mElYRPL2WQak/EUJ2QaKUdtCk2+SzBXjFABzkIDJ2qO9Duau9SfDftfilaQQX3g1rGVcA9vQSJaKCyGKbJQt/GU09BQ58HFXW0YbG6wPMYDPpUAC6JmvPWnfvUz7vMr3vw2ffvInh1F1pX9QUZtk9ci+mEsEtH9gJqamjAwMICzO1pwanuz6blT4aPek9G+dpExvyANnAcmDVw+HziGfm+Or5bjYDgu1O4V+64KNXBsPOWCWLH9C7tSWtMwHU/p82K7ROXVjJUAd9IZuTQkhw4dtLwXToAbHOLapsfj4bRnEUPuYg18OpK3/N0/Ca9B52ns/INE8z8/sww1cLmOoPRmYmy8CvnMzA0b7OQ3ZLRONNLMqp5egx26WAO3d8tmfOGf/xbXXfefuOWWGwV7FIboRdzx9OO6ILHl4d9hnES90WA0n+TDFLPzUQGWRbsCgBNjo1yo20Qsiqd/84D++Tf/+w0ELEw44tGovlpf39CAvsE1Qu0CpT2PH5wH/IpZe2c3FwXPZxMFz6kJJWXsyCGoinmyNDlyDFOjZi0ZNWex8ynLt1JMNXCXvP7NumYruOjjnqcG3gyDdiJdbGUne+NUAxfPalY1TcO9138aV/3Fy/Gju79MQlJnFy2yE8X5pDk8vgaNExjbVnVySdoBcH6iJgEOTFgTaIwqNDqUnGKkiOuNx5JFRzRzq0yP3X8fbvrQlfjt976JWDyzSl7vYJVW0zT453kTSrqy+OKLw6LDli1zE7zAtlQCHNO+tmZX2nyCPI7lfGXogpOmafCncgmZC32FNPCT6NYOsQaOtsZzO1pwwSo+qTfVwC1mV7qLNqEk2zTowWDWuiOT5iYnaNr5aBfCpEGAAzIpdvJpTESpO4zPYWrkqL79L9ffjMv+IhcE5NC2rUWVN68GzrCD1fOgY9hQ1vevsc7DzUP0uQKpCqaho/dPF00ty0XOaTTlX/T7hfNMVdOQVFVhv1yQBg6a5YKLm++sqJyq4DsnHIskcDSa0BcVU4ITVNm6GwCzvBDy5+bsHd09epvacDoV4A5AszD1o+20b82Qaf7aSVxGwoaFAFUDfCRC7isvfztnocToMsQqAIDB9USAW44mlLo9fxkaCaeB0yP45KpvPJY0rRyFA4u6kNTe2YWGxkaBBs58rRs/8F59kvib3/yq5LKLXppDO1/gPu/d9jz3eXGaz4PBnS/7nz7wwQ25xrPv6FG84I/q5l3GHCrpVBKjh8UqaOb8DwAD6zagvqHBcmBi37a3Uz84g8+UltmR08B1dXHPweddsJ6UCy6drxM6bKhbxtTIUU5LxqBCvp1wYGdCqWka5onafO2mU7CGPBMfWf3VoHHtjgpJxiAm1Acung1iMjZ8EI/d/2PMnRjHD75yKx792Y+4MrGJY1cDL5gxwpz/m9kUgK56BQ2hdvUVQ8F5l4sGrlACaQVjsaQwyXbFyuBdwLe+cC12P/M0fnDrDXj/G1+BgM9rq4FLJuJQ0mlEggFdm9/S1o7WtjaccUEuPciuXTsKTua9lPOAmUQKI9FceU15/Y7xIaDHx8eXRGPI/FyZCaHd4lA5Skcn4ifiKewLxW21gHZoAKJEAGrryAhGJrN68kVvUwO6Gvklhm4SiVIX4Fx4NnTVfPWanNat1WZsKoZELIrjB3Lj6UmnnqZv24lvHg+EZst0IUxVVYwQ07BXXX4FTr/wZfrnA9u24Nln/1RwmZ1Wbz6NDw3MsG4dnzpB5F7BYIFzik1dUufxIBrhhe+FhQVhhMmD4Ti2+qPwZxdLStE4F/Ob7Tnt5g/cfsVdwRiwRRx0jS3AVg9GyyZeA9erz3NXr9ugWyR5vV54iakjhUu/tWZtri1mNzqJH1zIIMAlFAVe0pf0Dq7BRmK6yRjILkQNNDfo519DNXDL0YQyp652QQNnXBUS+MDRlZ+xWBIHw3z0yxAJVcs6T2MkKGNZQ/5F7gVyqqq3w1gbo8MHsf3JR7nvjh3cz+2/SBqhSQOXPSG9/w0kx93eLZsBAPGs8Pqrb33NVCZjlEbGzMSovs0EEGaqabRY1QW4VYVp4AZ6e9Ha3oHGpmYAQCIe0xOHm7Dp9ESEFn34xTdz90sFxUM7t+FHd3zJdAwzZ8l3bqEJZfa7eCSCVDIzqWxqaUFrRwd6SPhanyHxKJ1cBRdz1+8jgxzAm1Amsho4Y46SX9x7FzRNEw4G5vIaUjoIVpeoABc2aeCsL7JUAly5j3eSl8fOZ9MNpkaPcaa/s5MncNt/fAB1gjYZj0bxjc9dg797ySn4wKsuwJ5n/6j/1j2wGnUAelYPYs3GTZn943EcOLCvTCV3nxcjCcvk66lkAlNjI9x30WhU6LBeLAXnirQxMXZLg5sPljag6OtpGiIkhUBbRwfWNpujUOY3ocwJcD5mQlloWfQi5Y6kSbxXr2YaOA8nwEUipWvgdvzxCT2k/dBJp2D9ppP13/IFnegeyGkfJ7MTPHrv9/3Pzfr2qu4erOrpxeD6jdz4f/ddd5ZQejEaNMSV/LM2GoFyrUVUbOpvxGCRKQuNfGungUunkpj3mq2IWAAoJswU27ZsF1sKfP8XU2kcCcft33/yoyr4zgnGJ7iUi6yFYBTEwwYTSj3Cc10dp4U7dvgQRCwYTShZgLHsd21EA0cDyAFA0L+opxDo7OpCU3MLd00gsyD3sotehsu623B6W7P+PVWiLBSRc7IKBLjMg3BDA2c8BV03ZBNpuxvWwAspXX1mAc7n85lekl8ahJ26OrEWoxCM97L10T+YOoGjB/kJlHfGgQaO9JI0ncDe5zYjHo0ipWrwzkxh1+anTGXyW9igz47nNHBsRaHO8AIwxBo43k+LlTVIhIbLTlufsUXuy3XoVIgRHW/33eL8HL7xuWvwy299DT+/9y49R09zayvni7bl4d8Jr0FNKO2arp0JJQ32wQYq6u9Bc+sB/IJE0GcW4Ji/Ic0DF8tq4KYNE1TvzDR3Djs0GFMI2GvgzD5w5oGx0oOC8TGUW7vCnrsHgM/CP4QOnr5k2jZHJcVp2RcEkbEO79yGAwbNvaZpuOWq9+PxB/4PQOZZ/88nc/n9uvv69UkWzVM1PHzYUTn06xS0d3mhZZkcOSY0n7aK+pdWxcF+7Cg2dYd4CV6z/q1UyClThmA7xZyK5uI6ua8Xp7Q1obWeH4VFCZ0p3USAYz5wxc4X2GGxcFi3TmhsakZnV86Kgc9TWroGjmrIXv6mv+RydbEtViPUxcMDYO2mU/XPx45lTCXZY584egS//s49+u9nvCSjefN4PPjQ53KC3ZZnN2N0bLSgMuerXl9SwbZAVDe9s4JG5zNp4Iw5Ysk208C1E79JmhDeCirAGdMIAMCkIFQ7a3+lLowkBObyxnI5ZX8ojtlk2lbDqWgajkUSSKta8e+DcVy02aea+m9jsBWjDxxtWtQPbuSIeMyanzYEMTH83tiRa4dhgw8cXQhi+ePoNQHg7LPPRU9PL5rq6rh239axSp9PiaKR52PJBTg2uSlPEBNiauCgEWrgJ8ZsUm0yoSTHpJIJPPTj73HniUTCJXf8xgnCBMknwZjMmvbpfkyks+xfY/SBy0A1cKvXb8D6U08HkGk8I4f2IaVpmBrlJ/sMv4X6eYaYUDKbXibCmobm7BdtDnzgaNLE7qwKu6s3p20yagSVdBq//d43ceO/fxC7d/N5OYz1+d2bP4fHH/g/3Pc/t+DBH3xb//4jX7wTF7zyNabyGOFMKG324wKFZiMH6gIqaWtdWW0vTTxJTXw0jT9XQCDAMeG8mWjg4tl8ckYBDuD9MvK9F1wESkPQFKCIICYOrktJqKptuoZ8sCPDAT+u/8d34ZPveVvJSXrtYGVdSCk4EI4jLEoHQm7nQDhuyuVmhdNa8FqEQN+2+Unu8/ED+7B/67OW5+nuX62bRG/I9hdA4QJcNSDSbE1YDOqiQC2KpmGLP4LjgmA/dhRqYeLknSnHhIqeM2Woq0IDJGiAvjAGAN2dnfB4PDh/VQtOa2tGW1aQEyV1ZmNsvcdoQjlfVFmM0ElXz+pBTqiiUZITiYQpSnI+jGPNAkkhMHTSJs69gPranNXejJd2tnHHDm44SU/2OzExjkgkot/54Z3b9P36h9biqpty+Tgvef2bcN5lrwKQMbP8r1tvEfZBlveQ53dmqWOX9BoAvESzYaWBY9CJLdPA0cVCR5ZNzKpBEMQEAKamMuUR+smXuC5SbjcgIyFFxVQihfF4smgzR9P+eYKuVQvGdmcU4KgKZfW6XKyHhXneqgnIpIVaIIvlvSSGA4POV43tanEuN08byGryjRq4iy++lPvMRdklC1SFsuQC3EKyOPt6EWYBLv8+RqhWRzehtFHjz52Y0M3gKPPzYmHHKcZyGn00ACAcDCBEBshFImDRUMgU4wM/7fyX6ttH9+1BStUwNyl24A9Y2KBTH7hBhxq4dFOL/p0xaqeGzKBDo1Ou6sy8QPRZGAW4//vKf+MHt96AZx/9Pf7rv64xnZMRCQbw3ENmzVrv4BBeefkVGFyfGzQpZxLfAq/XCzW7AhZJWy8/0InbRDyFZxcj+uSeCmGdWSGMPrfFOeoDx5+L+pnpAlz2cxtZLYpmtZuz46Omsk2NHLVf6SfXFiXxthbgDD5wgsFFnxQ6HC1f8Eex20F0RitYGR6458s4sG0LDu/egRtu+FwBxxeGUeOSLxppITidKFC7/nMufrm+ve1PvHbdO2svyHb35zRw64nZ9fCw2BzFimpwhmejDS3LuEVAFpHJFqv7OUGwHzuKnVjlW1gpJ4Um7hZBQ7mzfJVNdXUYamm0XuRDrl+o93g4E0omEJSqgfOTZ9vdN8AF0vB4PGhpz5er1DnzROszuHa9UGD1eICB5ka0EO2kB0BjUxPnF338eK7Ppguqr37bX3Pm9wDw9n/6V317ePcOYeh8p8yMj+KWq96PL/zze7Br81N6/5bvjHTc6CfBaAAqvJrnCixWAY1c6kSAy6eBm84uaonSOLDxtVh3Hqu6CPkXC/YXZjiZHRsXdwvBWGbbRdYq6L8ZRhcFowDXQF4yO/98AAh6F3ImkD29aGpuMUVRb6UCnCG3Ll0MGsi+g0YfuPPOOx9W9CxnAa6c8Hky8qNpFho4QShfhlXuBicRk+ygZR85tB8TZJJBo3KdOHEi16ELyn5ORwte1pVb1TOmUTjt/Jfo28O7tkMFMEsisp18znn6Ng0rTqEaOJbXIjcgGs0ksmZ+REsUzZqyUBJEqGtra0NDVqDiNHDEBHHLI7/nzEl27NjO+f/Q539kzy7hfbzq8isyUbKamrjoQADwire8He+66uP658VFH6YTKUxl/6ygE8WZ7H6s86GLBSINHF29BPhOmrbT/n5mQpk9FxFy2X7zAm3T5PFc9DLRhHE+kcJi1rGbdpDMB45ORGi469CihQauxBl8rIQJJTuSBm/55S8fEO9sdwKHGE1nRbde7HTK6QSD+p+89q/ejYbGjP/RsUMHuAA5kTymSRkNXIa1m07Rv58s0Om6Gsb/tMDPZfzFnAaO+dgC9omTC0Zw88cP7MVH3/JqfOa9b+eeR2Z36xX1ctYjPXepVjEa+El0hyEKJU3k3F5fh7Pac3Wva+DA51Xyzs5AUZSi64AdFyITOZqgnlGKGaWxbDSJ96WnnYoh4gdoHB9FDG7cpG9PTk4KBThqes849dwL9O2gz1vQZI/21dufegz//qZXYvtTj2Hflmdw87/9I17IBkbJF0yG9i2dnXwaCbsgJh4P0F5fx0Xzoy4V+aiDRyjAzWRN5ejYxTaL0WxPj43guzdfjw+86gL86+tehofu+55ed3XQ8OM7b8YHXnk+/v51l2CqiCiDToL1ZBZ3c9vT8RSiDoV1J2NyOTX+xWIsCzc/6e7h8gxSAS6waPZr9hpywAHmtkljNlC/XiBn1g0Aq7PzN3pNIGNCSaHn77VQtjihIAHu7rvvxplnnokjRzLaoN27d+OKK67Am9/8ZnzgAx8wCTeVhDZETdPwwD1fxr3Xf5oIUs5UzFQoYBGQOg2hfOm1rLRVc3NmVW0h0Pfq0Z/mJp1nXXQJl5xwkuQv8pMALGwS39tYr5uqAGZzlXMveYW+vWvzU0glE5gh2hqqdTIG1QAyZovzpAzUKVMEu3wLGSAjEV6AMw781F+us88snGiahu/efL3pWrOzvAYrdx9iZ9FXv/Ud+vbak0/hfnvNW//K5Avpz5q8NYmWVLPYLSLwiwWZc9PcfEf37sb/fulzuOvTH8XiwjwnFPA+cJk6YZMBKkwFfT6kUylOm8eYHDlmKhP9fDiSwP5QHJqmcSG32YoR9V1Z1U0EOIMGTjSUVNqu3mqccmqWWWg5jed18z4da+CI0L7+lNNx1kU5Mw4a0ZYOSC9/01tN5+lZPai3LfoOLAoGw2qHvUPUBI8mWT7nkpym0i5oQjEh9SnpVAp3fvIqTI0ex/DuHbj3+k/jwLbn8aM7v4TpsRGy6OH8nO5go4kv9J41IBHL+XW2tbUJ96v3eHBRVxsGiGDD7r/B40FzS6s+FquKAv/8rK1wqWma9QRWXzyjAlwfksRnFXAvEqWSTnPC+bmbTjJp2TL/rceQbhKkan5+Tp9/+IlFTI9BuwUYF9V8plymdtBH/evvfJ37TVVV3PbZaxAO+PP2RdSE1ijAMaj2k353UVcbTusnFjeBQN57YO+1kk4hGY+bfme55NwwoRwbPoT/ePOr8PsffgcB7wK8M9P4zk2fxSM/+QGe/s3P8eAPvo1ffftuqKoK79ws/ud/bs9/UgNO+nral6VUDUejCRwMxbCQTOcV0OzGf/07F0wnFE3Lm1KpMPhzcRq4nh7dhxLgUxwFBYGpqKXK2mzsiJ7GTH5GvT/gTChtNHCDuYWUD372JtQ3NODVb3gTLr30Mss7qYgG7sCBA9i9ezfWrs34Vmmahk996lO4/vrr8cgjj+Diiy/GHXfcUXRBSoU+zi2PPIiffvV2PHb/j/H1r9/F/W7XGDXwZm1d2Q6wsalZ79DT6TTXKc2dEAtwbppQ0gnGW9/3IQyQACVMA6coCtc4me24cYXPqIHbcPqZuchy0Qh2PP0EThB/uwte8Wf69vzkhKn+Zk+M6+rnnoFBTrMGWPvA0UAbIg0cVVN3dHTo90HDCgeyCwazE2NcIkbGKPHlo8U2rnYDwEWvfh1OPS+njTzpzHP07abmlv9P3nsHSlKV6cNPde6+3TfnO3MnMnkGGIYMMoCwEoVFEX8GRBTFxBpX3VXC6iKoiJgDKgsqCyoogkqSnGYIA8zA5LkTbpib7+2c6vuj6px6z6lT1dU9dxD3e//p6srhhDc87/PisBNOErwqAomJ1KSm211HOQAAIABJREFUxkdxzQcvwrtWzsHvf/I95LKmEiPtR0lh2HO1k9p86eQ07rv1Zjz2p9/jt9+9nisthXyOvx+/38/rwLHOTD3KUxNjGNs/pGz3+3Zu96QF6hC9VM0ddi+VWw7cm8GD53Ttp8aSB4XQRIZQzkSOLz+3x/3oN2vr6hZgHbQPpIlne9bCQwTPPQDMXbycty2akzIhse9WkjeDB5dFv+m9UJhXL8ldUNGWz1SuycbnnsJgnzU+Pf/og7jy/Rfg7p/9ADd8+qP/MOjkTKtYrA4lAMRIfUrA3WhhUWYGxaekXMP9+1wjE3uzBTw/mVbnnZq/QgSuqRl1plGlMuBSqdojcJOjI5wgp6G5BZFIRNjXLf7G5zxinA0P71dG4GjBayaBYJDD3XVdV8LHvMiAAn6/r28nbrn+mopoAOqIrSYCx/4Fg0GuU5TLZc/fQoa5MRkbc3HKSL9Utr2yAVecdRKuvPidnP36T7/8ifI8P7vmy/jev38KN197lbD+nnuqLy8lGz39O7djt0POLgAkzbaWKet4LZnFgAs6CPA2L83E/P3UeArPjNv1vFpFvheZhZJCZBNNlQw4y9G5cPZsnNgct4iWGGcDGQ/kyC6FSLeRaNqZ77sUt67fjBtu/rUrYY8qeu5VPBlw+Xwe11xzDa688kp+I6+88grC4TDWrFkDALjooovw17/+teYbOVChH5TSvv/whzdVdZapMdEzx6SBeLOokTe014o+0ejJAUfgyBNRI7F30RLhOnvN6ycnJ7gy1dTUBH8goDyv/ME1TcMJZ53H/z94568FaN2Ko4/jA2gmlcQD/3sb7vjBDdxrv2+HZezNIgQH/PwO/2mxaTkCB13n7IkAEI8nrIKKTTQCZwzGrz2vruHWR5i36PukkcQLPnoFvnXX/bj65t8Inext/+9irDzmBKw4+nh8+Se3IhyNCR7NMdJO5Ens1m99HRueegzFQgG//s61uO3b/y1Q9jPZTyKXTEGJxGKCkcrk2Qf/goIJZ6QTcUNTM0+4Z7dfL0TgRoVaPFRB3b93N7ImNt9ycNguDR1i0dtmVvSWQihrZKF8wyJwMAxf2Ss7MTLMve+VjretczlOnnjdFE6v7yBfLuPp8SSnvXaTQj7HHQQ+nw9NbR0CGQRV/pLEgKtLNGD5UVZUHgB6Fy3m9xiKRK1SHrmcLX/VXf7xJhyLjFredl0okdFFKN7dIJQH+iQvkTIN/JzmTe3Y9Ar2mOOqiqzjYJJQukn1l9MlA07t3HOLhjBWRmrAjQ72u94LK3+gYkhka+gYuqq7y8aMGZkhCCXtZy0KT7sXhs9GYpzt3z9EDDjLAUjLDVChrM3jDikQKmHXyGUzHCLm8/tx7iUf4fts2fBCxQgR7Vv19RJ7McszkvKNyCYAxpjEZHLSHUbJbkcFnwSAMYVThl3faU7KZTO49mMXY+/2rXj12SfxwB23YXJsFM/cf6/rvcgyPj6OZDKJvnQOAw4lTWShBtY9v/opPnnGifj0uafg+UcfUu4/LeXjV2IJ9cRC6eE+vchMOjGp6LpuZ6Ek2+sJOkjlxBCJdrpt2wExF1NuWztfs8p5HSKxT4YjUfebB9A1d37FfZxEreVL8t3vfhfnnnsuZs+ezdcNDAwID9vc3IxyuYyJiQleWLhaaWtLVN7JQYrlMmBa+OOS8dTWlsDuUgnIFREMBazrjCWF6+4tlUUSE2rAtbRg0DSkpsZGeS4IhQ8uOmw1x7tPT48f0POw+y0WCkIuS3vPbGEyGxkZREtLHNPrrYbZRgZz+Vnr4xFAGjxOOud8/O5HNwKAUD6gtasbdfUNaOuZzXPwfnLVvwMw8qc+ce138I2PXcL3pwacP+gDiiUkEhG0NVmTYamsA+MpwYArlfLCu9qeLyJPJv6mpgYrv4tG4EwFi7JxUdm/fx8/7+RYCjCZ42i0bt7SFZi3dAVCAT/yhAWwpaMLV/3qDgAG7LSsG0xE/kDAKHScSgK6WCcJAAr5PB7+/e3Cfdx3683Y8MQj+Notd6KeeGhobkR7j9W32mf12ghapsbHsHPLRrQtWiHAJ5taW/kz1iciQDqPeEMTfD4fyuUy0tNTAslM97wFyKSSGO7fi3KphMnJIczrXYHB/TqQLSAY8tvajM+nCSUNWJ5ewO9Drmy8g0hdHQLBIIoFA7qSy2aswct8gT6fxs8dzOSBYgnBoN9bPzHvpbU17ilvhEpraxwYSyrLJgzt2YWmo5ejLug+FE6Np4C0mIje2pYQ2Ouo+LN5gLSnaDwMOBT19vt9QFk0ylTvZPt4CkUd2O/BgBslEbbu7m4EgwFByZsgObo0TyVe34CVxxzPvcvLDj0coXAErBCCpmmINzRy2IjfX/A8zmWKJWAi7fh8B1MCEykUyzpiiQja6qNI5YvAZBq5TIYjCELhCFo6rHyr6ekJ231mCrU9w7R5PSYbKhRX/sttv8CHv3otAor+EcqafSfkse9UIeVUDpi2Q88AIBwJCterdO1AJodCzjpXd3ercEw4VwCKJYTDAdu5fKksUCojFg1htJARnJaDu/uU74VJKFcACiXU10fRlhAjXnvLZSBXECJwc+f28HMNjwDIFoT5ye8vVfWeCyWiixAjq62j03aeibEkkMkLYyOTnYUikC8KOe9TU+PQzPGUGnBNrWoYVn1zC3fI5rPTnp/Dn8kDUxmhuHBrVw/e+fHP8LFhsG8XgiEf4FD9RNd1QdldsMDQW9g97DF1nJCpk/kzecAspZJIRNDWGMOAriPe0MCVbJ/PfbxJm/2zlFe34Unzu/v8Pn4e31TGNv5SeeHRh4U8p1994yo8/dd7eBkKwKjvN9C3Q3W4ILncJHZrhkG6arY99xIw34853wVCfiBfRDadxq++cRXf56n7/oQjTjoVgNEvkTPGMJlePxIN2d5Xqaxj63gShzTFgYmUoMBEFftrk2kAOiJS/69KJF27FqHHUn0uk0ryMTwSjSEUjgh6rhCBMwMdVIegEMrFixcI12F2RdSBhXJydAQjZm5jJBLBEUcdjmcHxRy5urow2lrF5w6mc4AJ8152xNGOAZdKUvGoF198Ea+88go+97nPVdr1gGV4uDLbk67rKMHOIlQkSQMyK+Tw8DQyGeNj5vJF23XY/0w2L+SDUM8PjfzQHB8aHVt02Bo8ed+fAAC7d+/z9DxOwu53ZLCfQzCa2joQCkfQRuqpbN++EyMjSRH6SarGy/eQSduVyJ4587jyTWX2QgNy1U4MOCZP3Hs3AsGQsI4acKPm/fuyBeEemJc5ErU8E2NjE8I+uVwBSVJaIBKJcZccJTFhEbjXST7P2vMuxCN3G4bXpk2v8/NOZyzab2rgt5jRpLKLp0ozN2mahkRjE584h/cPw9/cJnghnSC1+3Zux12/+DEu/uJVfB2dHNuIAbfy6OOxdYNYBgEAtrz6qs2Aa2hqwfCwMTGnksa39fl8SDQ28TZBGUwbW9vQPW8BNx6fX78BPZ1zkDbfT17RPzLZHDcoNU3jkRyNPLimaYg3NvGJLjkxjnCn8Y2L5kBVLOn83HkzmpjPl6rqJ0PD0zYYsJu0tSX4+ScVBtzg7j6MjqaQ9ruDEaazdtr4oeFpJZsZYDwXlSkHpRiw3g8V1TsZN/tu2UOCOs1/6+joAnSZjt1SSFLTJAJX34B5S1fgfZ//T7z0+CO44vNfAgDkyDUTjU3cgNu2bQ8iEW8OO1on6UDGxlqE9eHxyQyiuSLPkZKfnUavBwaGbPeZNY/TUd0z0Jys8f1D6Nu8yXX/B+/8Dd73ua8g74/z65R1HbszecOIhLqvHqhMONQsBIAsGctpv3KSfKGENEFX5HLiOyuY18rn7M/BnGlFEwLWM38h37Z3x1blPM6PNc87OZVBUHJWZsxxborM4cFgHT8XGwcphHLfvv1VvWdKcU4jcM2tbbbzpMxxRS/rtm05UykXScv6USrpyKRS3IAIBENChIAKnS937dzj+TmmzPdPUSIds3oRiyfQ1NaB8eEhFAt5bN28FeicrTxHPkudI2FMTeXR1hbm95A1v03B/JYU8ppMZjFcKCGTyQtEJjt27EV3t3PEgvXPyTErItMxew53Yo6ac3epVLb6lUteXblcxj2/skMlN7/0PF++4pvfx5Enn473rllk2w8A5i5Zhl2vG/391Ve3wLfySADq8UPuV5ms8f76d20X9nvkj3fi7Zdejt5FS5DNWG28JOkxqXTedp2hXAFbUjlMJnO2/dOK/dk+max9W7VS6/Hye6H6nBx9A4Ai2R4MhRGJxZBNp1EqFpFOTgv1Bbe9soEvx+PNwnUYkiYWpxBKKyK/63WrxuPy5SuQStn1BOU7LVLnbhyHnbAWIzvtpcIqSUUI5bp167Bjxw6ceuqpOOWUUzA4OIhLL70UfX196O+3lISxsTFDuasx+uZVtqZyeHo8ZYMv8ZC/AtLjFQKhA0gTwyFGmGfqFRDKTCrFQ7KBYBDzllqMjcOKehPVCIdJEM8PY8hpFXLg9kCHiOlvUUDwmKjyDvyBANq67YMwC+2qoJEAuKHE5KhT38aX20KGbyDuoBi7kZgAihw4c1koIzA2hnRymufs+QMBgYhEyIEj56YQSka97J6LYC3ThNgJhUFA8xVluf+O2/hyJpnkuTfBUFiILF70qc8rj99p0rZTA66RtEv6pml7pTmNDc0t6JlnFYfdxrYpcoOYjI+N8f7W3NzC2QyDEnmLE13vTBIxVKo75HaNaQV8YnD3rtoZ7ao4sNpCziopmOfwewBebX3ZcgDMmzcf0ESiA+q9TxFYElMEz7v0Y7jqV3fguKMNOCUlQpLz4LzKP7KMgMU0J8J56bPX1dfbCKtmSuh89epzT/HlXqleEJNioSCW+QAwkCtgT7aAaWJEvqlFl0lMRDiRWyu26sCZ9QcXWnPQ3m1bXKF7budVjQVNZKyciRw4KrSWZ4si18V13jF/aX6bkQOnY3JUhE86oRLaZ1nz+tYq6jay90QNOOY47ibzxyai/MoiMlA22LbLuoimWNYA1DeLJC5e7psq2R2zrbzy6YlxblSqrivLS088gs0vrnfc7g8EcOTJpyMaj9uYBwHgI1dfzx3hAKquPcoMiAGFXnHrt41UIdoV7GUB7B2F1dibKLizuaZLZexI5TwxYf4jhbJes28Q9ol6Z9whxWPDU48JkVO5ViFrG6rSTIBYX/eQQxYr25IXd/Pl//UtnHPxhz3sKUpFA+6yyy7DE088gYcffhgPP/wwOjs7cfPNN+NDH/oQstks1q83Gvftt9+OM844o+obqFaGHAp/c2z7mB3nPTg44J7jY64sl8qC4UDDpmLulTGx02hLa/csgQJ+//4DIzFhnUblXWjtsqCrAwP9KBSLSlZClagbmIbOOXNt67vmGPkgy486ruL93vLsJp4bBQCL68I4vqnOnrypsTIC7iyUlOmnri5hMSwS5TE1NWHzEFKiBpUBVyoWxcnPjEq4dQQ60VA89aTCIFANtEyidVZ7opDE9s4uBMmA4w8E8I077kU4Kio82za9YrtuI1E46bumpQSoAVff0ip4s7dvNaJzbkP0NCF5aCYEKUHp21JP8bWXX8xz7yyKY1VOSnWTQy1MVqq8FyaDigR97+f1fi8HMgmyY1n+lgvpKZeXn3qcL59wwlugAY45cALqQCIaiPl9WF0fxdyoFW2PEyfdeI3ECG+02N6++S6FCFyi3rXmp/I8NQj1+B512ttw+8s7cdwZ56B77nwh2kBzkYGZqct2IFLt1XVUIDFxiaSzR2Wj4qz5lgG3Y9MreOHpJ6piVRRuCuK82jzjZQRIBI4YHK3KHLjKnZk6Xphe4QU+CYilBF595aWK12LCnoGmiDAY61JSlPimr18ppAJQofDJhEOEEFCXHKIGXGOr2oDTdd0xD3mKjGnxhkaBzEXO0XaTbS9bJYdUBZdXn3QqomZ0ZukakWnwE1/5Gk5/13uFMhjVll4pw9CF7jRTXKi8/JQBw1bllqtEfl+pkp2Chv5/fjKNfbmCVTuzivuWrzvTQs9Iv2edOTeFfRrmREPwmw2JGteM8ETXddxy3TV8vd/vR1eXOgcuSiNwJMhDDbgFCxZ66s8qaWprx1nvPwgGnOOBPh+uv/56XH311Tj99NOxbt06fPazn636PA/+7jf8A3v50Kz4p12RM/6rik2PkMFOhxFmp0QAbBpIp6zIXixWBz8p5kwndjZ4CsZDz2zBgBscHKhtgpGEMqSxRkgjNuVyGfsGBwRIiCoCt7ohhsV1Ycfm1a1IpOyaY6xbdoQzBSoArDryGMErDxiDsVN+kAYgXC0LpbkcqavjeOFcJoOBnZbB1NYzG03tnTxCNDY2hnQ6jVSpzJXgidFh/l0aWloRDBmKadgFQifWO3MvCkkjcB/896/i3A9+lP8fHx7iyjLNtexsa8URjWKC/yGrDsctz27CD+63vPWvb3gR+VxWjMCRby1E4Eh7pUZKQ1MLZx0FLBIcJqouSNtgIxkI5QhczzzLMBwdHMDVH7xIIG8RJpoax/RaDmPXUkXgdr6+0VstHJXjp4p7cIvAuV2+pOt4cjyFLcksjz5W0uMH+nbi5actA+4tb1kLAKhrsIwDOgnJMEJZ6gJ+sQ+QNlBNKYE3gx9XLl+RpBG4hkZE6+J8/Ein0zaSFq/PUNZ1bEllOWyUHrd9o2XALVxxKIKhMD77nZ/ge399Aqe/631827MP/U04zlaa4iC8UNdTVnlBuwHnQGKimCeY4sUicImmZiHy86X3vwPf/Oa1Vd0PuyfAeUyb6TICFO1BKcZlUU2VbFVdQyOf86anp5DLZkUCE6mEQICcizIrb3rlZc/3zd6TKk/75PMu5N9seHAAV178TpRK9hwymmpS36CKwLn/ZyJGIK3nfnoihecn1f1zmhiPsXhCcDqlqqgnt4ekH7zn376Inz/2It5yzr8CMFJaPvglywA48ezz+bI/EMBxp5wGAGjptIwCilrzIiVdxy+/caUthQUwovSVjFHaZV9P5fDEeKoCw+0MwmUO7DDPkiTtzIrAaeiNhnBIXURYD1gG3/q/PyBA2T/+8StQVycz5RoSS9TzNp+enuJR3AESJJg/fwFU4hQ0mQmp2oB7+OGHsWiRgfVdvXo17rnnHtx///345S9/yQsKVyO/+9GNgrJRSZhRICtE7O+kgmlpYmKCKJE61k2m8dKUBe3IlMoYLxSRcqG8pexkOzcZrDM0Atc5uxfhaAwN5kBRKBQOqJg3M/3kAoVMaLTrsW07BaW+udkegavz+9AeDipbkwZgqcJI6zKjctF4HB+5+nregGntOAA4+uS3Vnoc2/UqRuBSlIUyLkz21FjcQRiA2rpnmflflkd108AQXphMc3YmSp9ODe6YiwEn0uW7R+CoAde7YBEu/sJXBcWDJbxStlMnyGswFEZn71xuSBfyOWxa94xIYkIjcORYGimkUt/cIhh3LIKiMrKYJCetNthEDNiQpHXMXijmAPTv3I7vfPZj+MGXP41dr288YCOolv3pMSqDe9/2rUg6MJZVPK+7tiv8c6PbVm1jRiVT2ofyRZ6gXqmM8eN/vosfv/bkt2KWCaMKhSPwmU6pQj7Hc17TEokJFRVToApCqes6Rj3UHfpHiayYcAilkPNsTNINChhlplTG68ms50jqaL6IoVwRO8xEe3oUVcbmL1spHDd3iVW+5NkH7sMgcRIWHea8mZCSrvP8ISep9nplXUeWQCij0QolZoisSEQxLxpCgHgOTrvwvcI+3/72da7XV92vDqPkDlXiadqH5SikBpx6fChKRrrquhRp0aHw7muSoaoSn88n5LKNj4y4lhCg8LGO2XM4a+zY6EjVY93wPkKRbkbgOnvn4rwPfZyvH9rTp6wzup9Em7okaJpKVBBKQGThpBG4km7Q5SvPlbH0h2hdQhjXqjHg9m4jLNsLF6GpvQNXfPP7+PHDz+GmvzwmQFSPOf0snH3xZTjshLX4z5/9GrNMBBONwA0MVFfMu6wDrxOW7UAwKCCw7vnVTysYZJaMuOS3HkyZifQBWegpaQmBWa2taAj4ua7K2pFswOm6jt//xGKov+Syj+E///Mqx+v5/X7BucmcnhR+OW/eghkyy7xLzRG4mZR7fvVTAN4mCDae22m6jV+1Aeder+ilqQxenc5imkzmCZL/pgFYsPJw/n/7xg0oFYu2CBwAdBBvy182i4mn1Qi7XVUEDhCrt48ODUo5cNVBKKEBKyTqcEAsi3D6u96Ln/x9Hb7/tydxza2/x/FnGrlmS9ccjXd+4LJKj2MT1zICkCNwCeHGqQL52vpnrPs1Mfo0/2ufaURnzUmWTqhN5B26GXA+MhjQbzCpiD5QCOVs0yND6/YxWOGUlLPo1vEPPd6qxXf3zT8UondN5FvTKEm9wogHjKijKoLi5nmjUYoG8u5lAg8GuaXy5H1/xMN/+F9c9YELMUQcHrpt4eAJezZVBE7XdWx8tbJn2kkZ9Lq/2ySm2qbanRlzlSJwm9ZZfeKCd74LgOHx0zRN6HfZdAqlUolDnTRNE2DjVKjHkPY/1n5GCyVsSmaxz4Ue+81g2nFHhbmQIuMrm6Dp+MFglDvSOQznixgvVGYABSwHnDyqlIpFPqZrmoZGKS/qmNPP4tcvl0rYuP5ZJIsl7MvmLaKugyCvJbNYN5me0W9UyOc5AVcgEEAoJJJeuZURiPp9mBUNCdsOP/Fk236uTlKHOT89PcX1gfr6BgQUDHBeIJQ70jkM5YoYJYpxUdeFy1KGu9kqA878leHogBiVa2ilBtx+gVlYLiEQIhOBz+cTcub37BERF07CnmF/v7pM0ns+8yVhf1VtVaH8Ue8c23ZePoDNr5p9owbx2SvmwJk3TlMwYomEQFpBnTZuMjY0iD3bNvN7pFwAbd2zEJPGSp/Ph0u+dBW+8vPfYNWxJ/Jv29KhjsB5cQaVoAt5lN/7yxM49YJ38/9/ue0XVp1ZhahcMpWuOpYvYlhRP67WsWFmC3jbhTqYZ7W1YlW9nbpfMODGx7D91Q2cKC4YCuOSj3zcdowsQh7duJFLSXUalmsuS615cV7kTWHADfTtNOpcFSt7CNgNOxXKlenXAWCSTNJuitgoUVRpBE6DEfFinpRcJoOB3TuFj9dpFmCmXrax/QM1e6Q5FEBRnBuAQHc9NjQgMOy5GXAq0QChxhkTmdq0pbObK+lXXP893HTfY7j6V3ciKhUnrXg9DYiQhHYGocyUyhjIFqDrQNoGoVQrkLQGHLs3IcIkERE4ReD8qCwBTRPJbCSDYO+OrdxADASD6DSN+lbifWRFH8WcRffI9TnEQN743NOCUtBEPLNCrp4ir4Otp88wPjYqtFF1BM7qPzQC55dGoWVHHquE4gJGO77uk5faYMVvZASOKhQMJgcAu3ermUNn8l5Uk9jQ3t340y9/gqf++mdHUia6mi27TfyFfB6bX7KS7o8+xshftaBhlmKaSSWRJspMLJ7gNQVlESNw1AFg9AGWn5WZAdj4wRQ50izm/xkGXIOQB2f0U+as8JqHxuYnpkuroHt19Y0CTB8w2uXpF72f/9/+2ka8OJXBjnTe1oZmUi1ihqmbsuX1eiVdR382L9Csy/lvgBo2aNuHLNPcXSYvKggmLMIaS7Yks3jeNFCd4JP0nrxAKMdMptkgbxtlPD2ewh6TWbJUKgmRsqWzZ9nOYRlwyktY90ny3NY/8qBQRHrhisOEfWVkRDthrd7rwJKsknwua9WA8/kE1I+maThirYW8GVPUvaVGZq8ix94NQsmXNU2qg+eNWyAlQShjLhE4p3b9l9/8io/LK44+3mawVRL2GWjErJ9AUt2ceuz5M+k0d7AFgkG09czC+Zd9khvT6eQ0fnnjNx3Po9I/3XRSXQc2JrN43aHkTS1yMGYE+gTTE1Q/EfUe9h5lEhNaxuXo085AJ4mSCsfTguBE70xOGvwLDErZ1tGJurq6/39G4Ab7duL6T1yKm266oeK+fg6hlPMBjP97tm2xHTNBPrCqt7KXME6hRKSzsm/YOXsuXzc6OCAk+HbNNjxMjTQyNjhQsZCik/CogYLEBBAhlGP75QicGwuls4SqMMT8gQB65i+EPxBwpFJ3uwdVBG79ZBrb0jlMF0uOOXAAEJcLgsIoB7DGnFBontrkuGjAUSWeUvdrGnBUYwyHKrw3TPwapGLe4rl/8x0L0tM1dz737LaSqCyHUI7LBpzzO+zsnYtO0zgtl0rYRpLR29tIDpyQp6RKzI8j0diMsFkrBQDy+bzAsmYZDla7dVJ4ImbUMmJeOBgK4YY/PYTv3vco3vmxT9uuv/O1jdi9u0+8juNTO0gN3Yk9yu5tFnTtsBPW8uV+D4nl8mWLhULFiZCKPAxMT4zji+88E7dcdzW+9W+X4flHHnS9Hl3n9gp2bHyZFyvvmD0HPd2i0ihG4NKCASPDJwGap2StU0VwvYwA/0h4pXxlNr5SZY49f0OTnciE5XvKdZachBnZPvZmzMOcxnMqlM1428ZX+LItB87TnXgT5oxRsbxOjAxjtyIHx0m2pXLYns5jkuQPRqPO46rX2cPn8+GcD3xEWPf6687MivRJhvJG6QiZxII6pKhEPUAoZUZTxhI7ZNL/T44M8whka2srIor5lcFiAxWYiWiu8+8kQotVx54g/JenY1p2yKuzSgcwQhgTmzu7BKcXIDmRFRBKSvAwu3eu47WsSKymWCc6bKcqRM+445vsF43HbRG4Sn0nnZzGPcRIPunt76hwhF2YXllPmJsnJiaQNfuF3J9VMiblOmqahmAohLe95wN8/e9+9TPkMnb2dSZlE97O/7tcrxpUiVc5KBE4qp8I/dnBcU30oTt/+B385sZv8P+HrDrcU06abATS9t07z3BcK6NtB9Gqe1MYcEy+ed3XHbdNFIpIFUsWhFLazrwZWxS0tpOTE67KT9hnJScyobS3PBROrPSxNQPeAAAgAElEQVTRgX7sJwQQ3WaR8wjxFo2P7OfQvWrFglB6MeCGBINAlQPnJuz53n3Fv/N1b7/0cs/HNwUNL3JdhVpaVIKhMM/HyefzKJAadGUoSEwohFJRqmLt2edxYhTKGDoxJkbJBolXsGOWRS+sQUPY51NCWZji6TfrwDGhikCxUMCGJx/l/8+95KP8vbaqIJRSxLRSH5+zSE03vqSTeEXJ+nqFEd89d77F5kkUl7GxMYvcQReVEsA5AhfSNBzTWIc5hKEwGApj1vxDcNGnPo9v/v6vuPxr3xJKJGyTHCxFXceGqbRr/k2lCGEl0WFMyEwhCQSDWHmMpfR4MeCobH35RXzoxMOw9rjVnj3Cct7aA/97mwCjlYvRy2QbxrL928iycd3TfHkZYUVTRRYyqSTSxIBJKIgG+PFkWZUDp4p6uMkbbsxJ75NH4Mjzx+rr4YMaQhmsMgLHIZRSBG5akXAvy3zCHLjl5Rd4rqKcAzeTwpxwsoHav3M7rjhrLT59zsn4+bf+29O5UmZfzqadCUwAS2F3y/+St7z/C1/Bqf96Ef+/VWVYmudTfap0qSw5pCTyLfO3FhZKFkvliJ4hCynR2almt2PvWwmhJE/fIBGVMDn5/Av5vBcksEMqFPook1Y5iQ41AyWVJoJgkSGU6eS04GhcsmSp7XhbBM6hGdDIF60PqxIrsk4icHUJxMnYlpqcFAYqVbfq37mD1xNu6ejCW869wPW6KmHfz+fzicXYzbnfi2EzQcpRNRG49dnv/zB3whbyOSHfkIoOYFcmj01Jqw7pwchJc5ODYcCJEThrTJUZZVmTqncw7ABg7pLlrtfieXRSBI6my/Q6II+cZKbeyJvKgHOTV6azeGEqwz2athw46EhNT2GAKOhMRBITu6g6Pc2BY9dsJgZc35bXeWg7HI2i1eygVFmdGh1Ftsbewu+JwDqp4kRhBVNjo7acKiexDe4hCyZ5xns+gFMuuAjH/ctZOPeSj8Kr+DTg2KY6rEo4e1nFezDzcRyYKHVAKAAbl6ALMuMlACxcapEB0M7KarWx5x7aQ2CvxCvolo/BvoVfE89N3/mOjS9zyFBrdw9OPv9CC0LRbTfg9pBokFP4nk7qcxbZJ0BAhMtS1s9WxYRLyVTqXSKJgLMBR3PgoBmRCbnmCpP5y1fhre/4fzj6rVZ5ka1btwrnz5V1TBXLHHZUSaotO8Cu1U/YSrvmzkeHGTEHqo/A/e5HN2J6Yhx9u3biq1/9UsX9AVGZLOTzuO+2Xwjb5UKtrp5QxcZMMokn7/sj7vzhd/i6ZUcea2vPcg5ckkagFFTfPE+FrEs02g04Lxac7rD8Rgi/Hmc8Nv6KJCYNBkxaIDEx+rjfwcBxEh6BM4+zDDjikHOI/rT3zOJjRjadxmP3/ME8hxp1MhPCDTjJ6rn121/nTsRf/+i72LRpo+1YWZiRS3NzZAITwGoyAQfF3dhJ3Ojz+XDK2y1lmjqEyrqOjdMZpEyGafq+2FiaKevCeGYvIWDsF6mhDpz8NahR09WlHuNZXqPM6CuLqlSApmn46DUWfG51QxTHNdVBnsUo0mTPHvcInK7rGMwWUNZ1gYFSZcAJZZP2iYbhy089zh0P85atcKRnB9RzL11H83KnPZKwUAilEYETCSiEb6XoRkN7LT1ywbKVNqizFxGczgQ1lJwy2p8XCOU4cRDSMgaBYBBLj7DKOTiVw9FhOC2ouEHwD04ErsYDPcqUSwSOvcfueXb4NZP5y1d6QgFQvVOOwM0x+Q685rvJY16thtibyoBzqwvDhEE97BBKdSItUDkHjs1ZU2NW/lyzUF/L+KWQgdeef5Yvt/XM5kosNawmRoc9T/i2ezJ/0xKWmwk1FPfv3c1hU+FwGHV1dTi8PoplcQUkkrzjoxpjWBKPWDj8UBgf//oN+PL3fm6jJnYTDRoCmsZhICpvori/IW5EJvYInHVOGn1ksnCZBTtKCHlqhnGiw5icKC6fFvhk86ebNzigaUJka6BvJ5+kHrjz13z9iqOOh6Zp3ANHI3DDA/uQnJzArtcN+lqfz4cjjlij7OQRn4bjm+qwIBbCosOOsG1vamoSEvDpOVQTLk3CpnCAsbExm4ODNls5AsdyLNg+UTkZThKauyJH4JgczBJXuq4LuSitnd1oI0Z1f/9ervR5kfV/f4Av/+EPd6qvKf2n49VLT/wd48Nizsi+nTLhkT3axpZl1sqJkWF8+txTcMNnLufjQKKxCceefhZvFKrIQiaVFIrtxt0icKRf0ImMGThVR+A87jdTYmvf5q/oIGuwOWloCRrAyHPyIqw9W2qfsYI6fVQwZyarSIT49puuN86geGlbU1k8PlY7zT0TpwicHBl++GER6qsSdo6cSwkBwGrHbhB81ZY5ZBx79dVXuAMqWSpjrFDizIR0TKEGEoVc2XLgzF+xkLedZAuoDGmmEbiuLjULY1ckiIhPExyp8r0A4nzPZM7ipQKs0QcNfs0OBhMjcO4G3FC+iK3pHPZmCxjutxgTWQkBeu5e4lTcuuEFTIwM8/IG21+1kFCHHvcW1zIJqv/UcRSORnlubjaTQdGFK4F9CxqpM3LgCIRyaqqiI5CmWnTMnu2yp7OIqAVrbGXzqRdnJE0BoUykxn1ZTsghh+9a1u26sveZzpL9e/egkPfmZLXfw8Ed7afdIJTmR5i1YKHSvojEYojFE64wRx6BI+d+/YV12EkY0Ocw57jyRPZ1Icnp7aW2q0reVAacruvIZJwZdQDnMgIliLA0KhMTE66U32wioUpVB6nZooJQ0gGqo6cXURM+SBV8FaGKV2HeVQrrXNHRyuGKFCZIqetbWloNqv2AHy0VJoWZgubSxrc8HsHhDe6RONbGaS04eZKkJCZ1dXFX4yQUjnDGR0AMdbMEVx1ANpXiUbJQOIJDu+3wQ5U32IrAaeiY1cuTktPTU3jt+Wexaf2zePj3t/P9Vxx9HDSo283Y0CBefvpx/n0XLV9lFDlVTXCa0d590LD48DU2golWycim3yEoMb4BIo6/1ghcY2MT5sWMcwc9GuzUgNvKCofLk4pDB82XdYEqulYI5QRhp21oaROM6v59e231hOwnsa4sQ98o/NdJqDL5yjNP2rYP9u3iCdH0coIBp1gHAH++5We2YrpHrD0NUSl3FFDkwE1Z3zaecMmBI+vo8zOGXy8G3BtttLldm/1PS2UEAlIZgRHeN4wjvMIYGWTWRmLiIQcOAN5BckhHBweQy6RtuSs6gMHczFCDs3GPRuDKZRFuCACPPfm458hfNm3N5SoSEzaHV5tD3dbRyQtU53I53HXX78zzSU5dskyv4JYDp4ZQOkR9dNe/kgGnjsDF/D4c2VhnU+hkUTlU15xyuvDfSQlsryIHjr3CTKksRNWYw4ve5bylKxA28/r279uDS084FB8+aTU2Pvc0nrjvj8J+yluTIJ9OrUDTNE9lHYwHsO8TjYsslEkPJCY0PaaTpFpUI/RdUacXcxp56UVUp5WZpakDmsL5qOjQ7YR/VUbg7v75D3D5W4/GJWec5OjMcJODMe4LEErCBu4EoQxHY+jsnWc7z6eu+57na1K985n77xWcWwuqjMCFpc7qFjhwkzeVAQcAQw5RNCbsMeVGqOu64N2k8DjamVWTD2vg44SSuKPDrtxTOlgqLZ1dCGoafAAaCKRtcmy05sbLIkY0AregtUVIjFVJpfw3ZQOTGk+1TYnu3xwKOELq5P0jdc7FvNNJGoFLuBpw8xcvERgzhWRTNljqEIqdt7W2ojtiGTl8ElHlwJm/fs3YfuTa0/i2zS89j2cfuE/Y/z1vPRVHN9bxCTUciVqF10sl/P7H3+X7HnniWuH6StEML6KM1Za9uvI5KHTz5DPOEd6bSEShiMCRlivnjLSHgzixOc4HnUqRc1rge+vWLZhQULE7xTWelYu11tChdBhwZiYNLS2oq2/gxkw2nbYpqqpzAAYNvExDPapw1NgglGTNJpKnxqRYyGPfjm3245UsYuL/V555wrbPguUGpFhWjuQcOMoe1+wSdadfOBSJ8tpSuVyuotNNJW9kCpwqh5L95mgR84ZGBHya4BwbGx0V9vcqlh0kWnBeSEwAIz+X9t/x4f2SMV8LmNhZVBG49PQUJ+Fg8vIrL2PAo9GYz1IDzu7UYwaX38X9rNri04C1572T/1+37jnzfOJ+Tu/HjYWSXbCaQt5OkTgRQukMIXQSOqw2ShDKQDCIiz75eXF/xXGAUS6HzY8jI8Ou/ZU55cqAEkJJzx0MhbDoUBEZUi6V8NX3XyBEsOYuXa4kiWBOg7zZDug8Ij9LLG59j+npaUcnAneU0DIC8bhgQKWnJiv2HRpd6VGUx/Ei9HloDbHpCnMNFUpOR52uGsQI6KvP2p2CgNEnbBE4Vy+bfeOt3zK4Kfbs3I4777zdtv0fKYV8njv7fT6fwF0hyyGrRLbWL3z/Zhx9mpHe4abBsG1dCiZVAPD5/VgwzzkHTjW8haSV/ycglAAwNGSno6XCFSmbV0Fs7JSgYnp62pNneEKIwFkGHFNUWxxylRpb2+DXjEGPhrknR4arzlMolnU8PpZEtqwjn8tyiF4oFBJYrCKxGCIKWEo1JQS8MO94aSBeoK8qcYVQJp1JTNokw2XxSrFjCoOlGWEoQxfaR3OzSBzi9gzsE7J20EsIRYZ27xKYT+cvW4n5vb0I+jRHo5PBJwHg+FPsRdBlpZv9Ll0jFlvv6RHfg0/6nhd+/DMADEXxc1/9mrCNwrdGiXFjkZlY+4pFb9Wwr2Ma69AdDiq3tXb3cIbT0dERPLV7n60Aq9dE51qU1rIuRuAaWww2L1VuoptoMGouykptpdpE7B4AY4yi33/ZmmP4Mi1Kr1IKVes2rX9WIAtgQokwqNAxI5tOCUQFnaanXuXOkfuKTGRSbQTujYzGKa9ltrfpKXsELqEgMalWLIeELtyDVwMOAJrbrDmIokO2vbIBHz31KHzmnWehb/NrNd2fk1BmPHqv9D4mM1nbepVkK0AorQic8zlUm/yahoWrrLqsL254Cc9Ppm118qiTl57HtYyA+RsIhrjRUygUkMvZadV1eUEaww7UgKPSKEEojzrpVLvj1YHExO/3C4Qjg6QMzUShaOgbZp4Une8FA86EUMpzzLI1R8FN2rpnoWuOWrltCPjNe7A79OSIhJAH56LPsfWUz0COwKWmp4RBQXaFrHv4fmx9+UUAxjtdcYT4jF61HRFCSSJwpk7ijgozRIBck3HJrwHLjzyGO9L2bt+Kp//6Z/O8Otb//QHc9bPvY++uHZ4icKmpSfzhp9/DXbf9UiAfktktH33078437SAHMwJH+3K8odGGUqJa2LIjxVrHR536NrKfi5gbVRE8ADjx7PMRN1l2VeeJKsj94n4ZQvl/JAK3X0FHS8XJ21WGLkRYKD7Y6PC6uZ+z0IKJFELJjOWGllZbbTTAYIhiA068oZHj0jOpJDIu9K4qoayVaYFUxRiA6KBd32zHxVcy4LyEeOl/L9jcahsRj8AJEErLYCvk8ygUDLy1z+czKaitG2lobRMU0bMvfI/QUSkdOodQ6qJC4hRqdxP2nJ2kbQ3u7sPe7ZYBd8W3vk8Kk1pnPfZfzrKdL9HYhGVmbpv6nYsTMlX2AaC7W4rASQ9x6gXvxvf+8ji+99cn0DtLjFo6ReCYcEdJqSQYcA0OeVJBn+aYiO/z+YT6cP0KuIfXHLiaDDjoApyZwZzlAuteoCX7FbkGKgNOVdftxcf/jg8cu4Jva+nswoqjj+P7bCeGmOpOVGPfrd8UDfPWrm6c9PZ3YPHhawDYI8tyBI7muXQq8lw024IhlAl2bGyMNz5Xh5WL0nQwxckILpVKnG5c0zTEEvVGDhwZG8ZGR20kAG4yWSihpOu8LclP6aSQqaSp3Yq60EjpH356E0b692HLhhdw3Sc+6Pne3ETVtlQGnK7rGBqs7OwAjHqpTNQQSjMCV6Xy4oOR/8VYjHft2Iax6aSN8dkRQulKYmLur2meo3BOOgmt11lTBI78xhubBBbC49/6NuUxTkLTCignAIPgTnHiF0OKhQLGyP2ztAH5Uy1e7W7AXXXLnY4EIIy1ujlo3y7DamN1YgTOhbMYxUKB6xM+nw+RWJ0iB04t+3Zsw/WfvJT/n798lY2plOo7bi2XTod1lMTEJQI3mMziuQnLme0UgfNBQzgaE2rx3X3zDwEAD//hdlx7+cW47dv/jf+45F0oSv1ClQP3/S9/Gr++4VrceOUX8aOvfI6v37Ntq7DfE0885ill4I0SwYCr4BA74cy3c6ftuZd8xHPgge2lykNt7erGB798DY+oKQ04BSKtLuDHEQ0xtJht//9EDhxQGUJZ4hOj7G0TG3v7LCvxdHp6iisWToqiQXRgeenb2+0ROJ/Ph+Z2O4FGY0ubACdrJmQng/u8TXYqEcsamAYc2d6kgDxVU0LAS5vxEqWrGnJpvisagUsTr0+WGHOJRL1JCGKJz+fD//u3L6K5vRMXfvwzWLLyUNHbRQZchncvAxJTZ4sSsqGSmEnSwSaVDgKp2Pnaq3yiDgSDQq1Aes63X/ox23kPP/FkBPx2h4AP6sFg+VGiB0lm51R15u55C5BobLKF7MUcuDHuDpSVkTTpO/X1DQJpSjXSTiLiqmjXQakVY0pZF/NRmTdbIJfZt9dTfpPMtgZ4Ky6rw4KiMJk1/xCBnOa+236BX157FTY+97SynIMse7dvxZYNzwMwYBzfvfdR/OTv6/Gp625ynJxodDo5MS542VkEjjYVFQslACQaxDw4L2PAGxl1q3RdHeL4mkgksDgRhQZ7dPG5sWlPkM9CWcfL0xlsTmZt8wz3GFcRgaMK+7hpwJXLZbz67FN8/dCePo7SOBBRBZFUBhwADOz1VnaDeu9VdeC8GHAyCoHtH45EeX1NRlJkg1CS//QSIomJsyMv4iUPzkF0XcfY/so5cF5EgzFnfvbGH+PUd7wbn73xJzjzne923Z/+AkBc6K+W0sscDWy8YK9scnQYZVPxb2hp5ZT18hyz/KjjcAiJhlK54Y8Podt0dqoUVE3TcGxjHZYoyNYCUjRRzIGbcuyPOkRm2fqGBvh8PpGFcmrCdgyTJ+69W0BYvOPyK2z5ibQtsS2VHON1AomJcw7cU/vGhdrBNCghGHDmyd/z6S/ydbu3vI5SqYSn/3YvXze0dw9GSC4mYI/AjQzsw3MP/pX/f/K+P3LDaO8O0YCbnJzAs8/aUwDc5KBE4BiihfTlTkXwgn6DaDyOb9/1AL5xx7143+e/Iu7nwZjTNA1nX3wZ/x+JxXD1//zeiPy5HOfk2I75ffy6cmTbq/zDDbiVx5yAI0/9F/6/EoRSVWgUMBV0kvDZ2NqOsDlplMtlHglzUhTH9g8inzOgIY2NjYgTzDWdYFQMiI2trfBrwHyT3KGd0Pb2V2B9chOa/6Yy4OYo6lcsWOBMlwqIg4+TcqaTdV48A7UWKqRRNAqhzAglBOLKa5z1/g/hZ4+9gHd98nPwaeJ2cbCeRLlsZCDJEEqvz7A0HsXyeIR3xNauHh6JpWyZ7T2zBVYwGXbWLdUKOecDlznmeAj3Zv7KCt/SpWJpAU3TsDAWRkIRspcnoXijSGJiGW5ipNqtZpIsbs1AZuKUxWuMozYIpS7V3zKevZNg2vfu2FbRiNQg1kZiMjw8bFtni2jqOvo2bxLWzVq4CMvWHM1hMADw51t+iisvfgce8wBVWf+IxYZ55Cn/wllG5XZH19Hc2fHhYcGYtiCU1hmYb1x25FAnyThJIvf6fd7YHDj7sqzoNTY2oTMchAbAHwxyI07XdUHhd72O+fQTxZKNKbQmCCVxFrIahv27tgsRcQACw+qBSqUIHAD0e6wlJrJQ2iNwbDx1LyNg/FCiWzY+0vc3NT6mKC1kifBcDnUtZakUgZOdXfQa6ekpHoGMxmKuuTlOYkXPDUVt6RFH42Nf+zaOe9s5NoecSuiITx03ExP2/uoDMFUocf2KfvvWllbOkikruoFgEF//zR/xzT/8DYcef5KwrWf+QiyqC+OohpijkR7waUr4mNUmjAWhFlwyaetfVFKKsjd19SKEUjBiyCItWH/Jl67GUae+DTLJMlW2nXQoY521NiFAKCcVe6tl2iFiz95Z97wF3NGTz2XxwqMPYctLzwvnkBmOZUfHcw/9Tfiv6zqef/QhAMDYYD9k+dvf/uL5/o0TVrd7NULn9VZVNF1GjjQ0YtGqwxVQS29yyZeuwrfvfgA33fcYbnt+K0djWagra9+WoB+dYXeHdzV6tkr+4Qbc3KXLsfotp/L/lSJwRQfPtKGkWYNOvKFRwE2np40B2ElRHNi1ky/LRhAN8HcoGIkazAhcTySEFYmIwPq0r0LdFSa6rtsS01WFxel3XrjyUNt51lTApHu6FwCrG2JoDQWU4V9ZqvUesL3DDhBKuYQAPUZ9Pk1oyP5AgE++uq7z9zjlZsC5nD/o09BMGD39gQCa2ux1edqltiHPS5QF8iNXfQPzl6/iHVeIMMrHkxNd+cv/RUtnF05469tw0kmn2O6hKxJUYq7D0s3YInCymP1MzH9zVzhV75BNxAJcsd9bBE4Fx6t2Lnh63xj6MnnBKRAzazz2HmLlMu7e+rqrAcchlIqacV5y4MYkL6g/EMCpF7wb4WgMh524VryWruOJx/4uXFcltHD8EWutMdStLdPv/tr6Z3j0Ztas2ZwoQGkAKiZCJiqFUCV0dJuJOd1rUW1lBE4XSwgI46tur/fodqVcuYy+dI5H3Uq6hfSQm1SGKJdOBhyHahMHA6sTOKxofxReWauojBAnw/XV55/DRLZQsaQChVCqInBL4xEsrgu7kl6xZkcNADbfUIV2enxMyN8DJJQOWUxOVM6BA4BozCuRib11UPhkW2dXzXni7J5s/c+lLpli2hBo7MUInPHrA7BhOoNtaSPXj+pS7S0ttogYFX8ggPnLVgqlWQDDuPNpGsKK+aiSyI6nqI3ExNq3rOsc5qzrIssk+76hcIRHEUvFIrKkbdKvt3vr63x56RFGzrms3whOcKjHR3mdgHzgZQTcpVwuY5Lkp9cTpyv9+jQn/xsf+4DNQKTkWIA9Avfy04/brr35xfUAgAlp3gKA+++vzoA70LG+rOv46479GMkTlmbz17WEANTttfqUH/Esc5csR898oyzBrEhQiCDTPbsjQRxSpyjlpbi/f1oSk3AkKhSE9GrA0VaRL5exJ1sQKaHrGwTcdKoCBILm5cyfLxlwpCcuWGE3mhb1dCNCTGhaOHPAo7fyifEUdqbzQmPPJFU5cNb2xYetsZ1nGamHphJNsaxq5DG/D0vjEW8RuMq7KPenEBUxAmc34NzEiMBJEYIGO4zSrbPTTurkNaFXaFJAaWnepbw/AJx98WV43+f+Ax//+g047V3vA2DlAVCRPZL036pjT8RPH3ke1//s1qqKiwZ8GpbFI+gyiUYSQh24UZsCx1SzaRdlx9N1zWehJC406vPI3Xfi0+eeij/c/GPhuMfHktiZUdSdqTJ0M5DMIVPWhTbFjPvZCxfxdXu2brGRIIjXNb5DesjukZxSeFTlM734xCPC/6/9+m7MWWxEUBnZDJURM6rn9LilYpFPsoBRa4mJEq5k/iYcCtGvJDBkt+OZVMqhVInusFyLDOeLeHYihUkFAYL9unbDUYeO1LQit1Mz9hHek0N5GuZg2J7KYXe2IJAx2CKw5v4TgkfdwYAzX3bPPKs0CvOijyucBeP7h6omy1KxOMsyRvLRV594Ml9+5tGH8NCuYaybcM/vrkRiEvL50O5AfGQJgxhZwiIispEt17Cj3ZktFvJ5Xphc0zR7GQEy9kaF+clZf1DBT0eJHtPWUTt8kt+X9F+mIRd3tm+jBgTNgeORLOkQea70omiq0ktqN1vF42MSiQl1HWxJ5QwSG/MDOKFGhDy46UlMF0tCPyjk8xjsMxz5mqZhlunI91IjrJKhIOoj3lgoJ0dHUMgbBnW8vkEwYqmOcMzp9vx6Kv1yBI4s67qO19Y/C1kYNH9KwUmxc+eOqsoJHOhYX9R1pAslbEvZiYSSNRhwqu9ZawSsIeBX1nA0ru39pP+0ZQRC4bCA9a8EoeSeTbKOJeJSIy2WSIgRuAoG3MAuq5HPJzXFAPHjLpQYD2f1zsVh7S2Cx6hdMOAqR+DY5LkvVxBzEIjioCInmbXgECHf7vQzz0Yw6G1CFJY8DFCuZ6yy7fFBuU4clJnQaEmduY9bvpoGOxZdKJxpGiGFNM2tE/PH6DMsjIVxQpMd8kOFOh2Y0LxLwO65i8RiOO9DH8cpF1zEn6feZOKiz8cUFLfJwT0iqZaWUIBDb6iCOj4+ZuVcSf2LKTuAO9wIULcDzuBKkviZATc1PooffeXz2L3lNdxy/TW4554/mvdg9oesPben1smAspqyibC1q4fDrJOT45ggjITK62oimyWTyUl3SEw6OY3bSP7b+z//FSw6dDX/P3/ZSiE6C9gLSMuyZ9tmHuFo6ewSIKpuE0eDQ47sypUWa6WX9kYVktHRUSuH0uMHOtBJfco0lpIlDwaccDELwUEjcAxqpcFwXlCo6ZRDORi2jvVdmUSD7gMTCVAy7zdaV4dgKKycgNn365ozj597sG8nRgf7Malof05FfJ0kVSrjyfEUhnPuuXPU0XLiGedyyPvo0CCSE+MVYc9iGQH38dRJVBE4tixE4CbGlWUEsqWyoKTT99fS2uaa0xupopQAux4TCmttU6RdeBFr/Lf3SG9GhbVTvJ5GzC0DQsU6DDgTfrkpmme89xLuHLv4C1+teJ+exDw+KpCYTAkOh/GCof/pOuvXdgglAJGJcnISL01l8Hoyy7/b6GA/z/trau9EOBpD1Ke5Ksns+ehcH9Q0zI+FpBxEYsBNeIvA0fzk3tm9WJWI8nuhOunp73qv63lkCCXtD1PjY4LBy8abvtc3ITk5ITgiqOwiiA/H3KwAACAASURBVLXKcmCjPWvHIj7NDvV1IiRyOl+lddY2t3NVs7ddOIS5xn7yJjDgIgIcbUgRsqWiagpMKaWsjbF4veC1SVUYgGkEzgahFCJwIj336iNlilnNFoHLlMqemcwotnuCeFvbTYNBbmgXf8FIxozWxfHpfxcTM1XixbvudzGWlOf0sI9wPfOkFJdOleBshQicfD0frOfy83PbaXuzQm6dZMAJ96dVhLyovI0dPe4QSiqtoQCagn6lJ1X+xgc6B6rOFYnFeO5VNpu1saWyMT7pMBm6nZsKi8BRg5dFEf722/9BsWBF2e655y4A3vPhKgmb5Av5PPdk+vx+DqXRNA0NLRYR0P5hd+eRBrVhpYzAkYHq/tv/h080gWAQR59+pm3/j1z1DV6TBgBGzHfkNPXR0gGHrFotbHMzwJyYD5csWcbbnSonRV5DDcbdu/scmfgEUSPaahLWbbygKFWRP12HMgLH3xOtJTkx7mrAsUL2OZeC8zpEZYPBodzGiHA0Jswll61dgyfuvdu23wN33IZi0VtttpF8EaMmFGlYAUmiMkwIuLp7e9FOxjcVlFgWSkeuglBWIzQPiS0L32h8zBZVLOs61k2mBSWdRjA7FYYV/Rxec+BUIjD31oBcMG7GuXH4oOHYpjqsrre/V9VRlERDjMAZIrtBbBE486QRv2GcHNlgRVStiGgLvv+3J/GNO+7FOZd8xNh2gLMXOzrqwkIpR1qTU3bHDCDmxrN9RknUnBpM7T2zsLo+isMaYq4U77Z0BwDHNNWhJxJyrAPH20YFb5dowM1GQ9B6mzL2hrJRymKLwJHLsogjAMxdsgyHmAizcrmMV555EkMDFuKE1p3bsUM8p5vMBFwekHKZzd9aIJTKaGmtzVRz/luN8+KflsQkZBY5Zo19dHQU+bwCOmWKSlFgDyFAKBMJIeRcCUI5QBqy3YCzloOhMD5x7Y38/zkXvMt2LpoDN7B3N9ZPpsVixJLQZ6GD0fiIvS6d/JlPOOs8/PDBZ/CjB5/BgoWHOF6DiUCB69DC/IpWyD0/Fa/gXahHbIrACipBKOXbNlgqjZW0nAMTZoRk0jSyJ3qEPUUaybLKgLPlwLmcqyXox4pEVPkNVHlxbvdi2+bFO6tpIgmAORBSiBkgKiKVInCqu7JKcFiG0tTYKKYnxnH3z38g7NvXtwuAu1Jey2SQleCT9J03kvsaHnau+aXDgC2q8gWp86Fk5rJSecqszwMA537wcqEMBZNwNIZLvnQ1/79tC8vFUD/xwO5dfJlBMZm45WOEwhGB/ZXJQjJ2KKNC0knpM4jeWPX9ThZKgsFwoCwm7G6qhW7SdU6KHmA4AJlkUklliQm2ijkQBQNOkastGnBGX6qkYMiQfVpDkEn/zu24++4/KM4kykShiNeSWfSZ0OSSQiGiQiNwHd2z0EbmNRUbKyBCMSuRmHgRHuGoEIFT5Smy56NKOoWFdna6R8aiHlkoLdSCdQfU8ZVwKL1SSYRpWJGHFdA0G92+k8TrnXLgWORcfHuUPINCKANmrn+EQP+pkdbY2oZDVh1usetVqZc2B/3oUcBqKZoqlUoqlXm+nebAkTmLlgeZVDjiaJtu656FiN+HgFYpAifqR8I28hsz2bQBA5FRKharisDNYugeRX8A4Fhrj52H9kU6llG9t2vOfBxGiGheeuIRjJrvyefzYRmpQ7tzp3cDbqZE5ditKQKnaJNeoqzKbS7/vTT9f/4IXCQCfyAg1FjwQgpAG39JN2r6ZImCHqmLCxA9CqHUdR17d2xFJplEqVRCqVjE0J4+vn2eVFVdto5PPv9CXPu/f8Z1d/4Fx7/lZGGbpgHNHV2cpXB8dMRWDNHtWejy+H5al66Tn1+Wjlm95mRWuRV48a7TAZkt+TTxVzi+SpwEm4xiAi7fGnQrGXDyM4gROGbA2b1ttH3I5/X0BOS6csI2YIdQzpBTRz2A1Hhyei6qAE2MGhO27CCpJgfO7TaDoRDPWSmXy3j0T78XPPSAEckxru08tVWj9rN9KSQ3Kn33BgJNHqkw7jix8rEIXFnX8dR4CjtILms2ncaOjS8DMCbB8y693FhWnIeOgYVCAXfd9TvH56VkFjS/EKjcNCjEm93XvHnzXXPgZKEEGzt2bnese8bk5ekMhipEfLxKqliycjU9GILC+EogwikCmZUjcHUJce5QkuyYv8zhlSMQykoRuAZT2VB5XmkfpUqTLIcQGO699/7RcT8mLEcvan5gNya/Qj7Hi4drmob2zi6hnVHl0klyAoTSngPnRXjEQWHA0Ry4ybER29PQ51NF4DpqjMD1ZfJ4fMw9IidS2bsjF2oRPn6o5mPzN6ABvZEgDk1EESPRpynS7tk9y/BT2lZp+oYKQsnavyoju9rcnuWJKObXWay87OhYXI7A2b+tbs4cwpxF3r0TEzI7XhhTe2YTZ6fz/VqQRoXzkjyD3+9HLCHm4FUSqv91mffuNEbTeqJMOnvn8mVqqNFoK0We9cydhyWrj+T/n3/kQb7c1NYunI8Wgz/YwvQBlZ5cMQLn8l2E/Wq8Nxv0slZD7J82By5iQABEGKWIu1UmaJN1ZegC4Ue0Lg6/3y8oaxReeftN38QVZ56E965ZhCvOPAl3/fwHnI2tua3dXl9L8W4XHboaC6X6Y4DVWYXBQsG65yRUIRkbphE4BqF0Fi9NQP3BxSNpBM7yIokRrgMRS0myBrRRMuhm0s5QR0CcKObHQmgLBfhzMdZDAbJgGofpJI3ASQach+eie8xZvEzYFosnbPVA3Dql17ojXu6lVlFF4JioIJQHUkYAABpJrutDv/utbfvo6CiSyWnXCFyhrCNVrJz3BFiDfDoljg1UaGRw1CXvTIcuMoJR7/+UWNenP1fgk87e7Vv5+NU5Zx5vl6pPGwpHEAiG+P/vfvcGx/sZ6a/dgFtFCE8AYPacuQiHLaXJy2SSaGzmEPVMOu367mayxl+hrOOFqQz2mvmRns7sYHypCtTzgudx2YBTnFY6PY3AybnaOkTSGBaBcyOj0ACcePb5ymg/AJxyvoX+2OdhjmHmJfu+QgROer7dWzbzdtvWMxvhUFgw/FXlNADxe+QECGVtBhwTOuaz+Ym+l7GhQdszqMaRccWc6iQ0Uk1JG3ZL5EqqNkjbVqKGEgKAuzdfc1gvy5xYGDG/z5GQhb0j2ZiXFWPWVmRKfWMdi7Y5IzAOVKICiYm6ELcOALou1HlraKQGnJWHPaqgx6cGXDsx4NzgbezZVe/Fih4bvyITZWUDLulgRKvuac3Jp+GwE9by/4edsBY9hIxPzoNjsnvLa3x57sJFmLdsJf9P+0pbZ5eQFzzmQOykkoNSMsY8ZyUDTiUqvepAWGKF8zgsOwkbY73T0YnyDzfgYvE4NIjKXSUiE8DuVRXy30zvqTAJm4OWruu4//b/4esH+nbgtzdex/8vP9zO7Oj2IWQIA/tHJzsnuAm/f4dlSg/NvIUH+sFqzYFTeUIPVOiANlpjBK47HETY7+Pr2MBGIZTTJhGHWwSuWumeJxLdxBsaoGma8H5dw/JVbKv2jbuf29pKI3CT49aATMtZUBKTiiyUFdoWddLQiYNKX1+faw7crkweL0xlXPawhE0cFEIZsxlwVtRrTEEQQWVyzIJYdvbOs9ZPTtpKgDChtNRzSA6Bk1Jwyr9aSvmmTa9i2KFIOHUKtUrRYOUERa53FKm7CQAXXvRe8zi2b2XRNE3wyO42YZSqyTqlyP+tdU6XiUJqzYGDrruWFaHOv4xDBA6SZ5juwRViEvKjChnLi1KV/KBe9kRjE75//5NYe96Fwj6BYBArjz2B/x8cqOwR58q6eU/0meSn2/7qBr68cOWh8GtiDdTxCiQ7gBiBq6s7sAicAKE017Z0WgReo0MDyqgnE/asYl65M4TSDyBMooZyjrBKaBMRHV+1GXBMlMgGV+eg/QRCDlkyie2pHHKlMm+ncj+SFeMyVzSdjTSlcTdDGdy2HDiH7qhDhEZT2H8lp/qw4BSz9pV1JtpjmcNYBWXlJQbM34SU1lFp6JpWzL1WnrJ0LU3Dv33rBzj0uLegvWc23vXJzwkstnIeHJO+Ldb8tGDxMtS3tgnEeExaO7oqlx46SOI88opjqgpC6YYK8iq1Bk2quc4/LYSyZ/5C+DS4lhKo1NBLANJJmv9mDJgxIQfOUOL2bNsiTNyyrD3zXNs6N4+0kwfVS74AF/KAvJZQqYSJUUthbDOVX/eojvtlKh3PRDDgNPG3Vk8BFU5ikhCLazKphsRErhfDPkdcIDExI3DkvHIOnKf7JsuBYFCAG5xx0fvNfay9DtT7KEc/qz/SfQuNwAkGHKwmWU0OHD33sngEq+ujwjqqcDHxBwJYfpQF/+jr2+UJFgcYDHNu0TgegSPwp4hkwDUSA64ShJLSybd0diFiogdKpRJSqZTSeGHwSUAsW+BUvPgjV18n5DO8+vJLtn0K+bwAb2uRJtxKEJFlRx6DD195LZasPhJnvu9SXHb5J8XjK4wRbGuHyoBT7O+xXJsnyUrGoBvcFjAU99G8neBDh8zya7QD9mwxIQKXdI/AKa6risAJOXCmMuQ2RjAjPxyJ4u0m9JZJc4fIPDo8vL8ikYkMRRKfSXyKFx57iC8vWHEoNE2zMXOqr2EJrbVVK4SSiYrEpKmtg4//kyPDKBScI2PMgFOlJVBho4lP0xAhxCvptLccdr4/mc8a6muDUGqOf+hfb8gRagBNTU2hP1fAusk0H7NkF4ucW2S9F/v5fdyomPkInNUfRTirq1I/qYZQUqOsf5fdoKF6WnvPbJtuwUSVj6nOG2b7m/dCHJj9O7dX1Gvpc8jGieq1Jhqb8NVf3I4fPfQsFh26Gt3zSAROqgUHGKkF+00GW5/fj7kLjDzo+YpSVK2dXUg01mbAHYwAHGA4mmuKwM3gPdj4GNw2usg/LYTSKMKsSaUEKhtwYgROrxiBYxDLLS+th5P4AwGc9LazFffoLCFphFJF4JzgJkxUntup0RFOaVvf1IxQyIBWqbxcXu6TidtAw4RegxUMZfCgGYVQEhbKNMHlZ1zYIgH3KCL7jTdK3i5dl0hMDiwCBwAf/PJ/Yc3Jp+F9n/sPXHjZJ2z35mpsu5xXnjhU+3qN7oU0DQtiFiyP3hI1XkZJ1Hu8UMIOs6ArdXZUkwMX9ftQF/ALF1xz8mm2Y3oXLcGsBRaBxu7duzyxUOomw5xbNI4prDSiO6upEXOj1vto6bRgNUMuMDRdByZIBK6hpQXxekrCI0JiWJ+mxbapwR9zKW67/Khj+fJuBV3z6NAAh150dHYhGAoJ2ysRG2iahre9+2J8/Td/xKX/8V+cSp07QVyPtvbrIgZcH8mlsIsawliLZCRrsFJb2WrWaJOvq0N0WsgGXJTkT2dSDjlwLg/B7itTKmNbKgcdorLRQDzqDQG/0B5U/b73kMU4lBAMrDr2RCOv1DSqyuVyxdITcokQpwjc4O5dWPfw/fz/6hNPMe6ZjBc0Gu0kMwGhVEbgzOVAMIjGVkMp1nUdo1JBc5p6wRbHht1JTHikSTMMZybpdOW6V/QdClGgWlkoidiNCPV6Y519rQihNMZDHVY7lZ1mcn0ttl2ZQ+/i3K1VMbXObRxPdTkDZq8eU3SI5UEo7L9n3kL4TH1mz9bNQhsvFYsYJQzorUIETnwGHywHHNeHXHKt2C8tHfP6C+ts+8tCx4tGF9IjJ5lFyPh2vvaqbftAnzVmd/bORThiwOgXLF9l27ets1uKwFUBofS8p8PxDs6zTCqJkum0isViiETsRbOVulOVTdLrvChfz8tl2KMFNA1NoerDI/9wAw4wXiiFV+3fXxlCSaWsAxmSFMqSRcUyAoYBR5M5qcQS9bh1/WabMsTuz/nebbFsAGIx76EKxbxlOCgg4o8pvNTNgPLSYLzsw2qTAUCz2ajYgEXfRX3Ah8ZA9Y2OnSIUiSJg1q3L57LI57IARMIZlaHlNomwAZ/CM6fHx1HI53hnD4VC3CB2k0Prozic0DTLV12wYhW+9KNbcN6HPg6/z+hKQg6cy7mrCr0rdm51KB4py6r6KLojxIAj22ju1BCBj2xKZpEr6yiVSphURIG9iEoJXXPy6Zi3dLmw35Enn44Owt7Z17fLE2beS1kOdhqaH1ufSAgGDo2U9+9xr6dFow71TS2IJ2hexrQQDdJ1Iy+HJYmHwhEsNQkpWoLufaazdw5f3q0Yr2iuRo9EnAO452OoRBXFbgj4sTRunxDpuTrIfe5xicApP2eNs3pOglBWaisZW8QO2J8rYChXFCOqUo5JTIBQJm006+xc9FclI4USBnJGkW/qDGH1+DQYffSIBruBI887n/72D3HcGedg+VHH4YKPXmHcN4kiDQzY83qosDfhFHVhsokU9j30+JPQu2gJNAANzZYBNzWqNuDou5gJEhPW2MQcOOvF0Kg+JaYAxOdjy5VITJh/wKdpEoTSzVFkF0qQUyuEshr2O7dtGkTkQSqZtLGkUr9IqVQSmRwbG/l25dhi/h6oseYmMbkOnMu+1HimEbhEUzNOPPt8/v+H//lZXl5mdGgQZbNGY2NbOy81AyjKFmma5URwNaTNX3PfxSQ9Z/OL6yuOXTQCx6NLLteTZf6ylVy/2rt9K6bGRaNryCQNA4Cu3nn8nDQPjklrR6eA2KnGgDtYUkv0Dag9CKFKMbD1NUX6kadzw6g/XK28OQw4wD0C5wJfAYASdGHAZJS5FDbAYFSDpNE2tloEBu/46BUIR6JKL1I1EDa2J1WORwYqJZhbT6OaaJrIfbp9MC+Uwur8GPM6QT+OaIihhRgHYZ8Pq+uj6I2yCKB1fG80hJWKOjQV74HcS5wSaZiDQlrBDkfFDSLGtrWSyMr+/j1C/ptX+GR9wI+4RwOVTWx0Ejtg76P0CwA9kSCWxiNGdKvCcfKy/J8aL0NSXafvfuGTuGjVXD6J+P3+ijS9bpMYO8fXf/snHG/ClFcddyLOv+wT6CCU9H19u1zZ8Zio8qpkYeMGjejKBdyp8di/d4+aMAlmxGaURuBaESUkB+l0ypZrtWfbZv5/3tLlCIUjOLIhhqXxiGsOS+fsuXx5j1lagYqSXprIgUbJNWhYVR91dBIoUQbmmK004CqM39WIDMes1ApUzrfNqRxypZIEEzMNKnP/mATvdiNicWozVNKlspgD5wBHFuDh0rZEYxM++52f4Jr/+R06zL7LIlBAZfZmFrVQ9S/6CLTG4LIjjxGuz2R6YpwXJXc6D2VfPtAInMhCaW0X8jC3bXW8Fx2GYUINz/Z2O4kJezd+GKU9mCRTKQxmHQqfKxhYKZFGUwXyp1rEyq/yJsFQCCGTqKhcLgtF1gGxTaSmJnibbmhoRCAQ4NuVrKnmrxs6qFZhp4xIOXCqPscjcPTdS/3svZ/5Ms+PnxobxUtPGAiJYamEABVbDpxm17VUI4BcYmDhysOtCOC2zZhyITLRdV0y4KQInIcxPhyNYf4yK5q24cnHhO2Pk5qS1BnnFIGL1NVxkq10Ou0KK6ZywBE4slzWdZTNfPPp8coGXLUlA9zEp+hzB9rk2bPVep43hwGnaRILpQSFUByj60CyWMJYvmiQmJBOy6IvMYlJDAAGd1se7c/f9HN88rqb8Ilrb8S5H/wovxcmy+MRLI9HlEpARyiAxXV2i5ntSunJnejHVcIGJhqBa/IYgQvMAOWTCtpVF/DP6CBN33EzebYxUwlMTqkhEKrjmcjJve2zLAz76EC/0NlVsEwv4u4RFQdrebm6c4kLdNeoz1c5+qYpF21CJypamHfv9q147E+/5x5JAGhuaYXfX8GYdSG/YRKORPGZG36M37y0HV/5+W8RCkeEXJ6BgQFPOVOqnCRZ2C7BnKWsxE3SJCZ19Q1cWc9lMxgedoahCQZccyuixEOfSqWEgUqH8R6Z9JgwUU2DWbfQWYTIFqn3xoQyUPb0zLJtV40R1Xrs3YQVrqY5UeNvkEdW/uxUkevP5rElmRW20zetkf1TkxO8fScS9ZyFk+1ti8ApFMairuOlybTSmbBn2xb88tqrsPG5p41zlHVMT5AInKKQ94pERIjEeYFgU7ImWt9LJW4RQ7pux6ZX+PJCsw6dBgOyGG8wFEld15GcGHc0XouFAkc8+P1+T4gHlYR8GqI+DXUBO8QUEImBZGIk+c5oWkJzc7PynjpCQbQE/ZgdDQkQyvFUClvTOWXOrfxeC/k8cmbEzuf3o75GuD6dB+SW4HMaYGGfW3ibJvdBnVqA6BgRyX2MdurGQskOPZgRuGAohGDI6KOlUgmZrD0iqus6ctkcf/eBQMCG4Gnu6MRpF76X/3/hUSPXUy7iTUUerX0AEmZ7ZIacanxgLZa9s2hdHeYvWc7v9eUXndN50slpPj7F6upsbdXrmz6clLl65O47+fJw/148+8B9/H9X71zLkd/eIQQ3AKCtq9vIgyWG0rgLl4QgApT5wMy5dRNpPDVutF0vETjVe6rWwSnXNBQOP8hM4ZXkzWHAQWahrJwDV9B1vDiVwcZkFiWIuOc6M2ojlBEwa74NEoWoe958rH37O3Dy+Rfyj0QHqOZQAM2Eop5KZziIdkXBSXZ4osHy/CQ9TqyAOgLX2G4Zt242Wq0EIy5zgXVfDFoiKUS1iBMEZtSsLSLQACtq6Ljl8bHxIRgKo8WkDdZ1HbsJ21ItBCZehU5iBwqBUUa0PLx0zfGPGIFt6eyyjNz9g7yUhirBu7WtzbbO7bpWlFW9bzgS5bBTgZ54fMxTDpwXanquUAnkNQnbO6FFqR988G+O55qkEMrmFkSizhE4ANhLEsdnzTcNuIp3DbQRg3ZIgsXpuo7H7rnLOu9ssXg84EyQUkkqfTMmyxNRdIYDqCdJ7cyAc/KMVyO6rmNLMoupQuVyEbStTBXLmJAUbCECrAG3/fBGfOrMt+DqSy/i60X4pHGEWEZgShlFnCiUMF0qY0xxnzd+7mP48y0/xXWf+CCPRIkkJvYIXFMwgIjfZynE9kvavlGdUEvTowFX4YPQaATNTwVEx+TkqL32GvsvF/GulaY7oGlY01iHBM0RJOeiRez7NosGnBxpHCHU8V1d9jqegOEEXZaIIuzTEKEQSjPa4Oo4Ml8sJTCpS9Qj4KtVzXKOsnmZs2WpEww4sY4dzSlTMfsFuH5kvyKHV1ZxL15FcF5SUrppex0+AJiSyt6o2h2NKu/ZvgWAvYg3FVnn8msaFsTCWJmIIG4acqqcPJ4bSO5hGcmD3vD8s/IhXKYVJUeqFR+AtW9/J/+/ad0z3IGx7ZUNwr7/cqQF79Q0DfOlKFyrWXIjUUMe3IFG4KjkGduzriM5YXc0eJFaESq0rh8Uy7J4uQprNv8HInCWgmhn1LI3AUonreu6ELVhDIQxicRk77YtvHhwY1u7wKrDxLP3usIbF+qQTU3wjqMSAerBc+AsA67Zaw7cQfSAMRVF9MDVdj3BSCYMeqP7zQicQxIyE7di5LSlUCjato3WgKUyCmdKxDICM/M9DiRk7xZdCYbCIgmAmcQ9qIDtNXioZVRt02C7UK/e6Oioa19hUvRiwLFoC1FWEomE7daOJcRFd9xhr0/HZIJMWA0trYjVUQMubRulhvb08eXueYxZ0lkpYxJvbELYzMFIJZMcPaDrOr75qQ8LyedHH32s7fiwQmH0NNE4sK7JEvX70BsNCZP51PgYymU1+FW9zvn77c8XMZQvYm82b9tmj8CJ2+ToLR0q9mx+DT//9rXYt2Mbdm6ykvqXEdY1tnskVsfhTrlMBjkzV4aKUysdHRrArtc3ATBYXFkepEBKYL471bt2i2jI5BWUrGl83B3pYdX8cr5mPpfFhEmG4vP7saC7G22hgOWYpDDKyQlFtNxYkRXgk9XD7GVxmtu65lqMrXJxcXmIGCHOkJ4etQFHhUIomd7gBu9mWyj0ra6hcUZL7zBxOyMzpGQ0TUwqjUGFtglVZGNJPIxDYmFl2Ys3IgIHiPpcUrp/dh/TtIC6w5zFnGkAsM9ESQglBHpEWLo9B8541sZggH9blWHP3gaFWy4heXAvrXtOeX8AeB8EgBZF7rmGynnwfk1D+6zZvM/mc1mMmXM8JWwBgJOOPU5oU6vfcoqwnTEuy3N1tVKLMec0p4jtVG3kqrAu1To42e4+Pj96DGJUc50au86bxIAzlMl2U5kvlUrYQwgFKuVVlAGkCYkJo6eXi7Fu2fAC/7/4sCM8V2l3Mxhs680NgWCQDzgGS+aUwxGiWBE4C0LZTDrwwfhg3iJwJga+xiRNKkIEjhpwg/0oFgo8X03TNCRILgoTNxZKwYAjUDRa16hSQWoncVW6TU9cGxlU3aKlbiA6OVm22sRYzfM/0dvIyDEGFLA9VaTHyz24Pqf5G45GedJ4PpdFygO2vhoIZYpM9qqyFCecZSW2b96srk+nQ4QWJZqabTTj8i1RLyozlL30NU3T0KaITG948lEB9tLbOweLFi+xHe9WHNpNqvXqB0MhDj8tl8tIKSJA08USClXWEZgyo2h1KmVR0splhVo2DOkZHrrrDuX1zj7bKh3DJ2ufT4AnTimMo5KDo+Gr73+H8H9koB+5TBr5rAHvDIVCPH/SzYBTwdWsPAzjl5ZLqRyBU+W+6UINQ9bWAANutri+DkviEX6jcaGW1bji/RuSm8ESAipZEAujPuATmDFlkgb5aWnx5u5udwNOg8hCyQhZVE1ZXpWSInC1ph24Oe5k3YX+awkFsDQewWKThIjtSx1OMoSSjqdJRW5RyPf/sffdgZIUdf6f7sn55bjv7b6NbGYDLLtkJCmgGFFMp4eYD73Tn4onRvTUM+udd3rKKZwYQcWAAUWiomQWWNgcX9qX57038fdHd1V/q7q6p2fezNtZ1s8/09Ohqrq7uqq+6fPV0RG2exwBVr+qZQwcIFrgJifUAlxaSEGkDpVo6epGyBy7x0eOYnxkWCC3s1vgxBujilk2vqhG8f6dcAAAIABJREFUAp+mwa+JgjQlMnns4QclplRrWxDgWuzeLxqAlfEw+iLOrslMUOkiSg52n/RbeO8HPmT0EXKf5730lfy6V77y1Xx/orF+iEzkVBdeUTGJiflLp9c5W+AqaomF+hDgzN9Fi63Eg7uI+5FK2U4/mHyxKFhtmAuloLEZHxMW8cvWbVC2xasFzlGAI9tCMmmXODjRhZLFwBELXJs3C1zF8FAmS5cQJr23cgHO2qbJYY/2HxEmv1QqBV1hTXBzLaLPkpJj7HzcysdVuQXO+Y5jPh3bGmNoJ261lbJQlntWOSXYBLhumtz0AA7t2YU//ezHwjnBUBivIIO417qc9vFjTFCVyGy8TAx5h4mPwhLgqAUuaWtTS2cXn9CHh4eVmkVZCRNPJKUYOHtuovFRUeADqLVL2WSOtk5LgGNa011PPCac85GPXA9ds/cylQDnZaIpZzLh1lPi/jo2MmwLOH94fBrPpi3rVS6bxfCRQ665/mS6ezfQBXWxWFRY4Kw736Wg0t60aTMuuYTk/iQPimqb5fH7hn/7KM5b04db/+c/hP39B/bhiMQcOnT4oM2q4WatYPevGuvZq2W/1NPDqwWO4u6RKTw+McO/IcES0dnNnwe3+NHQAKUFzoDsQlltdIUDSPp9iMYTnGlvdnoas9NpPPPoQ/j+V/4dRw6IrLKiBc4eOyqDslAyi6KbbwAfbwRvoFRNLVPcMkpiBHVNQ0vQb+s/cYGYR0574u5C6QbWX+lI1BLwCelaKga5hWiMsoqrFeJTHsjKdF3HgiVWTs5H7vkTnibxaItXinnQ5LenShVUKBYR0DThGfg0DVsaYmgPWUrdlq5uhM3vYTo9he396pjr0WFrf4sL+7Nb12Lvv3MRSehtegNQRU2H6U5MiwqFI/jkzT/H93/yC3zhC19VestU4kLpdY4ZnM3yOV41vxcwjzFw5q9b6g6x/LKK91SmE+pDgDMf6EIiwO3caU886IRiEUoXykAwiISZq6mQz+Oph6zcG70k+Flsi7d9XiBqK921owxsQhQtcJYAVwWeEhtUlh4ZXaEAToqHBQtT5WZf60LKojZ2dEjQ4jsJWkoh29xXLBbRGQrAp4kMZXTxXSohtRPcbldXtMtt4na3zql/S7XBrSyGgFQx1Tbe/Ytb8c6Lz+AWUN3nwzf/9BC+dc+j2LbtzNJ1CZqp0i2l5yRLaPZy2SwGCEskdaF0WlSxU0pZ4HRdR1efNfY8S9jsRrI59M9mMT05yV07o9EoAoGAxEKZtmmahDiGMmmg2wiLKptsDxMCpnd8+JOC5YgiqIq5kRjRxGPmr9n+cpQLNA5u/OhRYYKWKfwLhQI++ZbX4epzNuMjH3iPY8muYUYlWiX3BXovR4hL65d+eSd+8pcn8Mtf/l5w8aPny6yLDP0H9uHnN/wX0lNT+O5nPyEsMHYoiAkGDx1w1BarLXDOFg05DiPRUI4FTg0aN0gXds0dXbb20WcyOTpqS6/AHgW1wFXDhVIFDTCJFSwlQv+B/fj4VVfiB1/7PD74qhfhwM5n+HdL2aBLCnCaJljgZtJpU0HgHOOpEuCiHlzPXZpg/AIIO+SN1DUN6xMRrI67P2MNQMpFIUEtcBNj5dGzs2+OzneLoiH0VEGAo/0vTASyCZULZVG0LLrFuq/cdCrf/uJ73s4JQ3qXr0SjxE5qZ6G0djDFdnsogFMbotjaGLOdS10oC0WR/fyxA5Yyi/assVIulB7mEbYeaSfeM0NmrlNqgevs6oIKiYZGnLb1dIG8jIYdeXWhpPc1lMnZUsHImMjl8dTULHZO2d3WGfJek3grHlClMeJKBlZFWSnOEF66oog5yHthkFe3qQ7AGrGwzzL17tplESl4mbSpABcj1PPU/Lz/GYvWWw7OZlBb4LxrtOm5cjJpJ9D7y5suLaOEDa+l1hY4E+7WEs2IhaiCCyUdEFNkMTM2PCwmQHWi2lZUTHctjYXQEw4K5BQU1YiBkxdXbvEq6uu9G98FAc7D+9cc/wAJvw+r4mGe3JsKcA/f/Ufh3JUbT0VjWzsiEnNjOfBK5ELjqUaOiuxWhUIB17/5NXjr+VvwtWvfjWKxKCw4nKwAaguc2q2mi2gpd++2xp7HJ2awY2pWiK1gVrywSxqB2em0xYYWCPCUJm7COci+NupCaVrgqJtP18I+x+vdcjWp3ofNAldGH0s2UQFuWBjMZHbGR+75E09sfvN3v40HH1SzsMkLYjeotLsqjW0um8UgscC0dfegobnF1RWN9kkmjOfzebzncjEhPbVYUDd9hsN7d6OfhAQ0N7e4PmvuQql4u2zByI7EkuXEwJUXv5VsarbNffKc5mT9rrUFjoL2wb/87ldcgBoZ7Mc1l5yNa195GTKzMwKJSSkBToPx3TLrXqFQQC6b8USwROewpiqkEPBpGlbEwkrWawBIBnyeGKgbqLuppCSjfUOVXsMNVgycta8WqxSRVdxOYlKEyQZsQpVDlmHV5tOU+087/2LbPhULJYNP03BGYww94QB0TSsZblOAlQMSAEaHh5BTfEKlXCjVpYtg8wD1kpgYHcHU+JjgzdFjCnhOcxFFpcm8GXZMzeLRceecioClnJ0t2AVbhmyh6MmFshYWOMDyRFOVdFI8jLWJMB+r3bAkGsKaRNhzuioZ9SHAmffZ2ma501Hpnr7A8ZFh3PT5T+H3P/4e16wVikVMkIknTrRezWTQYgiGwzY/Z94Wl/YJ8NAJqAVuzKWz0/vLFQ266VzWCOCPxOJCDIHTC2v1mNhZhYoX5xVeRwc5OYZhskILHIuXoYG97cQCR1GNGLiIZOVQWm5dnpAnC1wVpCZVEc1BP9cSURIAGa/+5w/wbS+WX3qKF3cDen9u9MS7tz+OR++9CwDwh1t+gIfu+oNggXMixGD7JyULnKpNrSQm5tAhe97GKSE4PgloQDgiphGgrZgQcn412ZJlsy2nSbO1026Bo+QyC9h7K6HMYFAxaDHI35PTO0v5fWiSkpDTxcG49N5YsnVW9323/1w4/qtf/cKhJgNF2IUxT26VivOHDh+0KOTbOxEMhUuOXyoL3P2/+QUnlWGghABPP/w3WzlP/OU+LrgCwKZNpyDu16FDndSdu6QpGpgxFzVscSDMMRVa4CgmaToe4m7MY+5KeJWwOmYEAa5GFjhFOov7SYwowzOPPoS//uG3GD7sPQaOgc69M+m0OgauKP7SPKZ9LaUFICewZ+/XNAR0Tcl6XU5ZWsJaF8nfqsDmqkgjoEJvOIBFkSD/RqtF2kVBhSfKaTDlIMClPVrgNp79PFsYTUtnF174hjfbzuVuy+b/ZmmtpWmaq2JVPpYiAtn48JDlKkjOGRmyQmhcXSgdj1hWnaRENnXzlz+LzKwRj9u3cjUWOqyTjLaL9YgslN7SCMg6npkSMdGcmdHl5nJFUXFWTiLvSr3Y6Irv5GQUy2IhpbeLzyS48dYWDY0ez1Wh8iurCPbhh8nk4CTd3/LfX8XPvv1fAIDDe3bjNf9yreEPS2PgiFZSzmcBAN19S2yxVRqMD8hNQ11qH6TraTJpSs1sA3UHKwIDB0RKW8HqpWjgqakoQg4uFipEfTpfXFHUzrYngrZUWAAeHcbRASuFRKvDwKXSVYR9Os5ssjRuGowFSKKh0eYuUrEFjjyg7nAAM4Ui+mezmCkUlZOXPFAsj4Www3QLUGnXASN+KSe5somuiWU1s+T5vUtXKPd/808PCa4k3uq1znITGFRl0m92YlyMz3jo7j8I/x+++484/Zzn8f/lWODi8aTyI6dkOrsOHLAdnyBB88kks8BZizs5qem9v7KElQbF5CK8W6n9umYkTmU42n8EM+k0d6v2+f1oNxVQat2SfW+AawztFTIBju11emfrksTVUKHdlUkkZKIZ6p4HAPtMspyRTA6ZYpHHj7LL0vkC7h6ZwvJYyDomlVkEcNfRSXSE/CJNvtk+ZlnoJ/FQ7Yrk5/y+yLZKgLv9e9+xXTN85DAWnbQas9Np7HnqCb4/GA4jMzODqfEx/Ob73+X7zzrrHHSHg+gOq13MuAVO8R6nzc7eGPBjLJcRmAUnFMQOFG7rJv7MifARTzXYPpUEjet2ERhn0lSAqz6JCUCswMSFkrKLUvzuh//Hvx9N09DZqXYbk8uORGM84fL01JQreyoDFYIrVRZSVOryJUNYyMteDtSF0uPCeGHUsAgemTXSzwgWuBosJqIlSEyAItIeYuAAI7zmo//7Q9z769sweHA/kk3N2HLBCxBPJm3jlk/TDCuJz2cLQagEDc3WmnR0eFDJqEwt9l0Ka7GbkndhJIh8sYigrmEgI45jAwf24oE7rFQ5F7/6Da7umHyfQhisFYmJPA+pvricRxdKtTKzTAscE+DJww7oGjrmoFCpFupCgEsFfDg4mwWIhohK90KMAXFRueUbX8WLr34HEApxjYLf7xcWVoGU/cV29S217fNrGrJF9UK8LAGObHcutKwbKmp2BtkNiLpKdSxcZLO6rY6HkS0WuTBQruS1ISlqROffAmdtB4IhROMJnrjyIEl+3E4ITijKMYG39yy0CXB0Um0M+DyXJ1qYNPRGAhgwJy+3eBUAOKPRyIXE3plqHtjSEIVP03Bg2rC+MmtiOQJZuWhobUM81YhJEvew/vSzbXEAc61XIaeYz93YGyWujeNjogBHyYcA4NDuncIkqxrgR7M5DGWMVCSyBU7FcdlMBKbDUu41ABglQqXhQqlJAtyUIFx893PX8+0YuTf2HJkFRbWo1qAhSZ7/cP8hHCHxb23dvfD73YfurlBAIHphybcpa6APwPr2FGDmMfMaYE7vQ4yBG7aNZfR3QtL679tnLFIeN5Nvz+QLGMzkeBqEGVPJtGNqFs1Bv2ueqSOzOTSa1izjHkWhlC6I2heoXasBUfilgsHo0ABy2SyeedTuIskE0z/+9Ec8efWCJcuwavNpguDGyt+4cbOtDApLgLMfWxQJYiiT4/0nQtzEJhVWCVW5bseEUIRkyqaIESxwoyP2tA7mb1qwWNcubQsgKhGcQC2gbW3tnhOLJ5IpnosxPTmuZL+1+rmxRWPgnKjsvYCNDdUQGjRIrnQ2C5x1Y9S90otlQ5N+qwlaptjX7QJcoQgcGiX9t0QC9VAkinNf/AoAhpCcKzrfw1ysJDKSzdSF0hLgqAv4wIG9/JzeRX2KUpw9OGI+Hc1BPw7PGGsTKsDtftJSMC1YsgzPe+mriJBWuu2JCtIIlDOvyOfLcdT0nEpdKCv9nGqcJaMiHHMXylMaotz9Ld6gdqMSYktmRP/ZP//2V4LGXk7emFAM7qr4N6blUlrgynhz9MyOhYv49uG9uzxloS8Ui0L+qI7eRbY2NQX9CBMLYrn9yuar7aKBcUXFgZfidUniRrnn6e18u71dFCL49R6qZU1rV9DfU7faNYkIVpp0y+WANUEVwG21wdlyqrqFoK7Dp2noiQSxpSGKhMIvuloWOO7Sp2lYfvJG4ZhTfGhZ9ZLyndpBfcRjhCFN1q7KlpuDu54VhBNVbM9jEzM4MptDLptFZtYUmnXdkVCBsqHKybMBYHycLkhT0ADMBKyYFDmNACVAWL1+k608Ri2tGhE0AMFmIsAdOYzDRAHUuahPqTVtDPjQYgoxS2IhLCf9msXI0AXo2mQEixqIdYS5rija5ATZgk7BFrRcgJMUKQcOiF4J+2aymC4UeZA7fTb3MbZEqX6Rhlv8BaxFcL7fcottd4n5oGhbYI0dR/bvxb5nnuKpACiO7N8DAPjtD27k+05/wYvwvJddaTu3t3ehq2WAQqVY6okEsSEV5W2ncZhTU5Ouc4xbDjN2aErwZEm6un9RIgSpGKQli3UtwFqWchDgvvbb+7B+21m2/V7cJ1nZCdL2qfFxBxKTIrIFyzY3RcaKuVjg2MK+UoIDAZpkgRtVW+CKxSIGCBOpl3x5qxMR9EaCc1qTOIIURAW4KYUFbiKXx7RHC5wMH5+nar9KbySkdMOHD1ljsvk7NjzELdjRRNLdg0NRvsxCnHAQwjee/Tzz+3aeozXpWKJMtuhKwMawo9k8/jqWVnqLZTMZnoxe1/WyFCWy0NMR8ujuOG8+at5xzAU4CkpRLMfBMMj5S5786/2C+6T8IhedtNpWhmqBylievIYSenmVHb2W5uTg7p3I5WXOLgOy1nrIXBAYZSwq2XHmOui4meNV8OIe53q9dCGdgPcQDZGTBa6c+20nybwZel18vt2gEoxUFMqeynJlqNQE32rhfmswhrzmn68V/i9cYWdo9USeolJ+uByjE02UCnDjomvW0f4jwv+Bg/vx9KMP8f9uapHpKSmFgKbuPdSFcoDUx97CxLgYA6dp4uJ5YmKCCyyZ2Rmh3ms++BG+zXMyubg8a5qh1PCZVraJ0RHs22Hlp6PsqvReukIBrEyoBdSASsEg/eeuK14UJOavHANXRBETuTxmFUm95bib/v4jmFEIRAXpl2E0l7e5sKksfmIMXBEpv09wYaeCmQzRg2IR3z68Zzd2kzQE9Ht48q9/QRBFHCbEWxde8VosXbsem845Xyh/40a7MO8EWYBTLTR8fj/PoVgsFm2uvBRu+kMufEyoQxG4QqzbenYDBw/Yc+GZlaQnpZjRGsDqg/Y4d8BwVVt1ip2swksKAYYEWU+kJ8aUFvMjszncPzrF8x3S8WsuFjiVALc5FbV50HiBBtGibFe2WPsZ+VIikURDQ2nG5ohPx8JIsCYWCsECR2PgpuzWZk3TMOMxBk4Ge8auSo45oIu423UTD7D9z+6wWeCoAr+9p7fsNBSc6Mi8LOHwDtdtNZil3UqXj8kulF6MEl7cjsXzRUzm7AKcwJXQ0KhMN+UEOnaf2RTHspi7Ap+tGGrBAD9X1IUAx55nKBblrE/T09OYNgcS+kLlZLE7HnlQ8MWXNV6bz71A0NwAwMpNW2xtWBELY1kshJhHNhhHywbZbuns4jF4k2OjuPvuO9UXERQAjFAGSgWVs1zPfPerubp0xHw6kn6dM/k0E8Y9ushra6vcAsfQu0yM8YpGo2hurjywnMGywBVd25T061gcnRudcrnvWmUJc8PCFSvx4W9/H23dPVi56VSc8YIXldvEkm1RWuBI22I0ZyPRruZzOYwN23Pl/OQbX+PbbrE900L8m7NLTaqlFbpJlzw6PMQFCzax04UtY6GMUVKA8XFhEcTQ2Nou0DAzsL6vim/RAPh8PsGN9YkH7ufbnQv7HGLfHG/Pkxa/kqVLShED9/D4NP4ymhasfZnZGZ6egkLlrmpZA+z1zUovW/XuC9JxXbPi7QC1VZ5B8KAgCriBg/tweI/lxnrBFa/l288+/jAO7d6JGdM7JJ5q4OP+Oz71BZ68V/f58PrX/6Nj3TJor9nSEMPSqGXxpe2k9OoqN8rhTA4TuXyJHGZM+BBzmMmIxON8QZjLZgRlBwW1wCUStRHgGFQWuEg0hnA0qhTuvAhwTha4vMtXwghm0jW0wEV8esWMdTHi/jolxRkz/OnnP+Hbvb0Ly/I+oqiFJSsqkJioXCiLQuxlKRdKCuauXIJfo2IsiYXQZoZE9C4/ie/f/+zTyEqKfYGBsr1TOf9zDwxVvLPk9RIMhXmeU5B9TLlheXMolHySp0coEkUwbAg8mUxGKUjPFfIryCgmAurNobJQMqieT6VCT10ISxLqok0a2VIl9KW+wZQNDgAO7HwG+57dwf/LBBX+QAD/8P4P8/+nnHchGhXkGGUHJXoYn3Rdx9aLLuX/P/6x65QaC0GLXBTzsCQaGtW0+Zp6uxLIZvJSYANE3oP2RQVd07A+GUXSnIia29UB5U6uLuUIMYtXrRX2z21Ssv+xGOPUZa5PRh3JCiqpuFoTo1zKuq1n4hu//zM+cdOtCEUqIx1w1+TZj1Lqa5oviS4iR4cGOHsgxa4nHkXenPjctKaiBS7h2E6fz4cmIjAdMd022cROF6SplOFCGSOLO8oASAW4ZFOzOvG8pmFbYwxLonZqcNY+ahV84i/38m0nAc4NKkpj+56iud+DtdX8pVr9saEhUdlG8ovJ7pMM/f39tn3sfao0t/KYQ989d9kUGEqNSW542FIMsdyTynx5BOFoFE3mO8jncvjrH3/Ljy1Zsw4LzYVYIZ/Hn375M36sc6El+CUbm/HJ7/0M3/3r0/jOfY9h27YzXOukoGOKBmeXbMG1bMq+sN0+OYOHS1B38+uJN8v6TmuepD2CWjD3S7HdliVvHixwZqOSivgXJkA3tKgEOA8MlGbZccECN65c4N912y34zw+9F7t3GblrJ6WQjkrRbMZdpRRMpZWAuqmnJ8Zt42o+l8MN//YR/r/HRdGhQi0UyaIFzp3EpAAISiI3hZ0MmchJdkOsBliJqaZmzr49Oz2NPaZiiI1f8vqPtkTufmpFnn3vsnVimMTqLdu4m385FjhAtsKVZqKcSwwcAGQU878owJWX17fcV2sJzfVngqsLAY6hANHcO2gGSbL5eHpqkidcpPjW9R/i26oB83kvuxKvf9+H8aIrXo23fOyzwrG1iQhObSh/wepogZNe8gte80au2X/88cfwzDM77BfRmA0UMTFKUiKkGtQLwDLb6wbLCuCt1CXREKI+3dUNrBy0KBjBVp+8CX0kLyCFN5cC4xyZJr/cScm5dKP8VtOtqZYfUtkWuAo7h2+Ok5abpbgUkxol+pgki79BEo+xYOly/i0NHjqAN521AWPDQ5jKF7j7koxpsqAtpZGlApNsGVK5hNHF3djYGB+nxsiklmxqcpwwfA7unKx/U8s0heBCWSJlBENY19AXCWIRSa4rj1XchdKlHBmNbdYif3RoAPlszlYe4CbAHbbtU8WyMdDX/Lc7f497fv0L20JUtMAVoWkaJogFNZpIYnE0iD6FZVz+dlZttrw1aB7R9gW9WLpmPf9/5y9u5dtUgON1xhMCg6MXUBITt2+auvKWIjJxQhGG4Etdkxa3ql0TqQB3UIpjVJOY1NiFstFugWMCXGqOFjjqAjk1MS4oEDKzM/jie96OL77n7fjdD2/CF657n3HeeHUIXJqCfpzZFK/KPKtBgz8Q4H2lUCgIyi0AgoswAKxff/Kc660mBEWFwgKXLxYFAY65UMqfjlKBJ31g8SqtbYR6SRVLyNjxk5tEZlv6DdKwIgB8npOtbIAxxgcd5oM3XvsxoZyTzzjHdp5XQa5sJsoyJTh53M8o5vZJjxY4FSpVgteVsGSiLtrEHmgRQIJ02CFJup8cU5v9GQMlYFjgFoQDQr4iTdPwwje8Gdd95ku2tAIhXeOsZ27wa0BEWIl56wRdfUuw9jRL6/rUU9uF48ViUWGBsz7gREOjcgD3eVy4eQEry6v/dzLgw6ZUdM5JxbmlocMuwF36sleWvM5L2bqu47Xv+SB0XYeu67jiCjuxgGconvnSaAhbG2Jl+6mXVa3jnyqVaaIWgwF7LCq3Ww1AXySIuE9HNEEtcNYCaPsDf+bbS1avExbHY8NDuO0738SudAYPjatjf2jMrJsFDgC3tgDAM/v24/GJaSUpA4ulo3F74+NjPB6I0uknG+3JkAW4xKapLNM+vx9t3T1ldwNN07AgEuSum3MFE/4CwRDXJhcKBRwl+YvovCvHMTIcOWLf7xQDR/f94ZYf4JNvfi0+c82bcOdPfwSAempY5xcBaMWiQEITjSfQFQp4Gr82SzFsDK3dPViy1lrgHjCtL4BagKsEbmO8YJko4UKpwu4nH8eDf7qDWysLRWNRlM0YhD+JRFKIIaL1UUv14OAAVKgFC+X6ZAQbhfgvo1UqFsq1pntYSpFGyGsOOEC0Wk0RN2kA+Nb11+Gu227h/x+89y4UCgWkibIglao8Bq4WoF4DU2NjyOdy+P5X/h3/98VP4/c/+p5w7tVXv7WssstfHZVXZqlE3oWiaIGLRg2BT57X1AKc+L9lDnl1nUDngZWbTuXbN33ja9i9e5fFBEsV+JJBgo1/bE1Im70hGXU0RixcsRIXvOI1AAzPgm0XXULa5dZmOxIN5Qlwc7fAqVwoSahNmSExZVvgNPG6ua57q4m6EOAoBJpS7kJp+paTgbFn2Qqs23am7fqmpmb0RUPoiSi0qzBuuJKBZmtjHKsIQUA5r3DRSav49vbtFknH0UwOd49MYYqw7GTzecEF49TudvQq7kXQzpbRFhWYj72KInk+oLLA9Sipcw2U+wFeftXb8T/3PIJf/vkxvPCFLy63eRxCv9HYrya4AtYataxprkKom4uBOgbLECo6QgFHC9yj99/Ft9dtPRNL14pa4Sf+fA8Ae2wUQ1pIIZBg1SpBLV6P7N2LkWyeazxFlzDDhdLn93OtcLFY5G49Y8ND/NxUU7OnpO0MUZ9FWaSywHUu7DPITZSCX+n352ax85JAVQWa73KIWC6pQujwnl3Kaw87CHaA88Sfz+fx1Q+8i///6gfeZbjTFu31ForA7Eyau9sGQ2EEgkHHvirvXbB0ue0cfyCAlo4uLFmjtlB0OAhw5Wp+3cZ4UYCjLpSlBbj9z+7A+19xCa6/+jX4n0/8KwDj0Q2THJydnWrrLyDmVh2SBDjuQjlZfRbKpN8nxKizZxBLptDUZhFepZpb8PI3vsVoa7NdgFu8eImH2ozShRg4QmJSLBZx589+ZLuqf/9ebhGORmMIBI59riiAPiuSBmJ8FLf97zfwg699Hj/++peElBdf/vJ/zi12sUoTFZ2TqAulkwVuWkFiIs9rqvGY5WWN+nRsSEbmlDTdCbTeDWeeKxy7/fZf8o9HtMCplR8qRZymuY/v//ivn8B7v/xNfOZHv0YrUVZajNH2enh55FglqQTKgew6r1LkCSkEyrTAVR4DZzyEqrDCVgme7uVtb3sbXvjCF+Lyyy/HlVdeiSefNBjRdu/ejSuuuAIXXXQRrrjiCuzZs6eiRtDHQV0oh00LHNdMEAtcPNWAl1z9TltZLPmz0yPe1hjDxtTcY3zKeYW9y6xJXIgdAAAgAElEQVSg1R07LDecETP/0lHidpQeH+Na0YaGBrSEQ8rFhqCdnWOHsgJ451eCY83uXX6SjWimmzDA2a4ro2yGZGMzWh1IUSrBfH7C5fa7Ss+phTaHKQVKDXpOFriDhNlvxYbNgjUbAEIlkgRTN6FSMRF0YTomxd+mpQWptSCyFjnDI8ak4iUGToUtDVGcnIzwvrt8/UbbOa/5F4MxtBr9zybAOewvdX0TETT/++MWoymVqQ8RAa6rz1pA97sIcE7Y/8xTtn03f+kzSgtcAUXBehpNJFzfhyxkqYTonmUr4A8EsHDFSZx0i6JaFjg5Bk5oJ9kRLiMXHADc/5tfIJc1ckT96qZv87yjNF1Hh+QVQeunQtHggGSBM5/9fKYR0HUd7/78f+K0Cy/BBa94Da7/v5+i0bQKh6NRdC+2WP82bTqlrNxmlIVyanycKwfGjw4rU0o8/fDf+HY1knhXDeYNxYX7GcPtN9sT0y8+aTVe8pKXl19FFb2CVOVEYyVITAClC6Us66hYvf1kDVQpSUwp0Fr7Vq7BMjK+P/zwQ2SdSzywJAEuwhkmnYUuXp90MBAM4rQLX4DuxUtdGaNLtb1cF8pyV5VeiGS85IBzQrnrZT7OmBuB+pHfvK0tPv3pT+NnP/sZbr31VrzxjW/Etdcak/SHP/xhXHnllbj99ttx5ZVX4rrrrquoEfR5CnkmGCOh+UKnJIasxavX2cpqbTUmF6W+39RQVMXUX8aFrV2Wzz1dsIRNyWmGWOCo+6Rbx6zmYpstrnPzLMAxhMIRbCUm/UAwhI5OZzeXSvNxzPW7q4WLiKd6yQfizXzv4RzFKUqyHA+1uZ3LYkZou+U0FBqMhRaLb5udmUY2k0Eum8XooEFyoWkaWjq7cNqFVj8BgAEpBkcGZaEs5UJJtdPMBUzlQikKcNY1TwwY7GHUhTLV1OI6YdAjLA8gG6GWrtsgnPuyt70Lp553kaey5nKOV7CyqAVu9/bH+eRKRxMmJADAqs0WtbvKhbIUdjxsT6b9k//+CkbMxYSYRkB8d9F4wn3RI/2n7kIMjBgpEAxh4YpVtuNVc6Gk7ZIaLVrgLFfHkXH7wlbGMyQFB2DFPh0gZGBdXZJXBKm/gZCADQ2KJDQ8lo7GqNRKkCEPYdXmLXjvl7+Bt3zsM+hc2CeMZe/41BcRjsbg8/nw/vf/a1lVJCQSE6aQorG5FE/97S98u1VBlnaswMcr4tJ5cNezAmU9w0ve+GbPic5rDfoeQ9Eo/w6m05ZVncEeA6d2oVRa4FgYSQ2XQHK1NC7t4Uce4gp9moZCtsBtTEWxrVHt2lzOmnAuZGiJcmPgyoQbWy4DVZI2OeSBdMPKeBjLFARibmB9Yz49rkrB0ztPUPemyUlomobh4WFs374dl15qsCxeeuml2L59uydWGte6BBZKyQJHOnYs2YBYImkL8ix70CzjXZS7gGcPl2r2acwAE5xmyKgx6VGAqyYjznwMXqXwyn96L9ZvOwuxZAqveMc/KzXbDOXkqaomqiHALYuGsCZRfuJwBi8CXKVtU7lQntoQw2aPFmtVvRYVNq3HfqGmaYjGCUva5ASODvRzd6RUSysCwRAisRj++49/5ecd2bcH/3jGejz+Z4ulkbIQlmOBi0mU4YCalMGIgTOvEWJkDAWTbIEr931wX3ufD+/41BcRS6Zw1gtfile+872C0GtDmd+F/LorITEBYBOqmYBAhxO64KXxHwMD5QtwOx97SLn/wfsMd1rqSVAoiu6v0UTSXQGkCT/KcZZagWWX3tbWNke3p3LzIbkL/tYxGht0qMT8WywWbQLckb17kM1kcPNXLIIv2YVSsMBRF0pCeT4wm8X+GSPBLotLj0QiZdG5lwO3fkoXNsvXb8RXfnUXfnb3gzj77HPLKjuRkpgbzb41eFAtwO164lG+3dZWPwIcA019sneH3ZINAGdedIlyfynUQsFJ+7mu6wJhz4zkLizHwDm7UNpbVy4PQCWQv2fqmbVv317smDSYYt1ITHRNk2JjybaLkkfGXJS1ScGFsgYslB4MCaMkTKHUmn9VPGxbw7QE/egIe3eT1aBO63Gs4TlS84Mf/CDuueceFItFfPOb38Thw4fR3m7lOPL5fGhra8Phw4fLN2mSbSrAjUhuTFOCC6UxELX39GKS0K62tLhY4BT1VWph8KTt1gAUxQlvgLicFKVfQIyfaVFQINcCbHFdaVqASkEHn+aOLlz3rZsR0DRki0Xl812biKBQLFZsfZzrdye4NFVYWDmDhgql2By9QlWM6rka9POVV8o01pTEJO7zYTSX5/2NHYkmEvxbTk+MY5QQYlArT3NHFzp6F+GImdtrdGgQN37uerz1+RcadZL6p4UYuKRZn/p+BGFsQiRMkl0o2VGq0WZCXzkCnNs4BQDnvvgVOOfyl1suMx6vc6yPnCSfX+7Xz65fs2Ubtl50Ke67/TYAwNMP/xUbzzpPOHeC5HfsW7mGbw8q0giUAiUModi9Yzu2XHypLbm3KMC5W+DYAj3s92E6Z2c8BoAzLrmcby9ZI3qBnLTSssjp8KZNrgSC1wpZUI2OuC+ohg7utyVxPrxvNx6990+CS+Cpp9oTYDM0thALHJnPnp4yCFBoHqvW1raa0W+7fldSnU3tHehQxJKXKjwWp2OCRWLiZIHbtf0xvl2PFjiacuHx++8WzglHY/jnL3xdEJKONWRBIxJPcKVcenICMWIhzeRyPAk5YOR8VZWhmudqnQdOVW84GkU81YjJsRHkslmMDQ2isa3dlcSkWig1J9nTFVhXiBa4IbhhPJcvOzTHy5g5Jowx9jhXimaTkCbl92HMYUx3gwbj3R3XAtz1118PALj11lvxmc98Btdcc01VGtDcHDde8IihOUmQnA7jE6NobU0gOzEDTM4IEzFbbLX39GLn44/w/StXLkZjYwLB2Swg5b5JxMNobYwhnc0DY2lef9ijz/NszrqutTXhTPpw1BhgfLqOfL6AaCIJfyCIXDaDdHoK0aiOWCyGydE0YE56DHTy6+zsRGtrAo4w63E9xwNi2TwwPo2Cps25rHJwsFAAZrPCPr9PRzaXRywWRGuz2JZlXWQwM/uLU3unx+zPlr3/SpErFIBRo97mphjiNWCqcoT5rtvbnONJ2LOYHE0D6Vlhn4yZXB4YFZkbI+EAkBUHuHL6w3RW/D4AYF8uD2RyaE5FsSudAQAsao7h4f5xBCIBtLYm+LuSLWCUEENmKk01NXMBDjCsPsFgAalUyrg3s3/QoPbOzha0tiagpTPAhD0vVixpF8YAQyNIBcHFi7sxcGQcyGUEjTbzEBgjC+TO9lakUhFgckZ4Lgz5yRnbsXAmK7wHwYXWpyGfLyJsPjsAvG80NsbQWEpBkJ4FJoz6mpvjQr1HdQ1DQxPoaI6j2cNiVx+dQt5c8Ww5/2IuwD0juTjm83lBq9zVtwQ+nw/5fB6joyPIzM4gGPJmlS4WizhIBLgNZ52Hh/50BwDLohCLh9HaEDU0uUcnkcuQRV08iYBPd+zX2YkZYGIG8aAlwL363R/ATV/4FMLRGD7/s98L70POr7Rxg2WRC/p1zOSs5YjmdXyl47rDGO+fyfD5jdLoT46P2Os4alkqnn3Ubr088OwzuK9wG/9/2vkX45WvfKlYxPAkMG18vzRX6+jIUeTDfjREgryesWFrDuvqKjGHzQEz49O2MZ4hGg4AmZywLx4PobXJmzUwVygAI1NoJ7nwpsbHuFZ2H4nDPGnjKXjqwQcAiNaDhQsXzOt86gbfxDRQyGPlplPxs299HYAYl3rhK1+Hqz50PXw+H3x+5+/DDelsjo//ba0JR8G9nLLp2hAwXAqPmqlHJkaOCuEpszPWdx6LxdDebozN4ZkMJnIZfiwU9GNy2voPAI0NUURnc1jVEkdrhRwJpTBy1PqGGFq7urjScujIIUOAI2PlwvZWLOlscHTb801bc5nb3CIj4Ncxk8kL1w0OAZjJwqdryJnjOjtG12rUAjc+Meb4PqcyOdy1e1B5zK0PHOwvADNZx+OAaIE76aTFnvrUuS1xFIrlu0CGMjno+QJC4QAwk0VTMoLWClKP1QJlr0Avv/xyXHfddejo6EB/fz/y+TyfjAcGBlzZq1QYHp5EnsSA0ZiD4cEhDA5OYMwciGnHZoutzedeiHt/9XMABstcNuvD4OCEwOzIMDk5i8FcQUgMeHR4SklxrgIdnIcGJ0prFs2PQNM0NLS08AXp9u07sWhRHyYUnZRaHTo6OjA4WDqmwcs5bmAfay5fmHNZ5WBmWvGRmu9maiqDwYLVltbWhLJtTu2dmLWXzd5/paDvf+ToFKZrkCumFJzulz6fSXLvTuerqHmzsznbvnL6A/2u2HWdug5fNAgfedfh2TyWRUNoKhjnsXclulCOY4S4Gze3WyxzALDxnPMFwgAAuO2223Hhhc8XYkrFXEcBDA5OYDyr1sKp3CEBYGZqijDLRTE6OoOsOfnFiQUurbDAndHTjYkxa2EhP082tvk161gm46wlLJq3NjuTtZU1OjKFXAll1Bi596PDU+hqT/JyGotFnJyMoDA5i8FJ9cJYaAv5HpZv2My3n3n0IRQKBehmepbJ0RF+bqqhAYFgEE0trRg044FHBwfRtqCnZH2A8WxZnHA4GsOV1/w/LsDtM/O0jU1MYzCb53UeJW4+0UQCBZdxzl8soiccwIq2JH63x1gkXP6mt2PZ+g1o6exGO8mBBgC9y1bgtAsvwf2/+QUAYOvpZ/NjmvSNFQrFsr4neq583STRJKcIjfZQ/4BrHXt3PGnbt+ORv2HHI9a39Iq3XGMrY4osPAPBIMLRGGbSxnfx26f3oY1YCkaHrMVVQ0NzzeYU1RjPkFEcm5qcxaBHqmXuHaBbcTJTE+PI5vMANDxLlMannHchF+Ao4vGGeZ1P3VAwx8R1W8+CPxDgJDYMLR1d3JtqfDZXUbtpLs5Bh/WR0zzuFY0trdhn9mE6P3zz4x/Er276Nv8fjcZ4PTlpvM8rxv+JsWlsSkaATL5m7yw9k7Hta+nsxu4nDWbyoUMH0bdyDZ+zdF3HptZmjAw7ExNNkHFAbvd41j6fM+Tz4rsCgDT7xs2+H9Q0foyu1aiX3JHD/Y7Pa8SlfrdnnJ62PyeKYrGIcWL50/VoTb+zzGwWKAKt0DAdCiCSqez7KAVd17hS1fM1pU6YmprC4cMWO9Udd9yBVCqF5uZmrFy5ErfdZmjubrvtNqxcubJs90lA1DDTnC6jsgslWVTFzDiDsy57CV7x9n9G14IefOhDH7W5Ggn1lN0y53Z6O9/abiBuJywOThUTQQeljo4O2/FagLkPLCjHxaRGYFbNWngyVPP9148R3Q5PrnSKfbXIZRfQNXSHg8K34NcMV1JZcSJb4KgmX87ndN6LrxDcKgHg7ruNlANURKckJqo0Akm/NQTGJIY2BkosxBL7qmLgJsfHMDszzd0tfT4fGhoaXV8IK8drXse5xk/T622hiJqGRIUMbG3dPdxVPD05gT//5pf8GLVINpvsgK1EIB8Z9O5GSd0nuxcvRfeSZVxQ7N+3BzPptJUI3DxvUsgBl3Tt55qmYVE0hABRzui6jrWnneFITvLuz/0Hrv38f+A737kZ55xtuY4yVxtWktcxzUsSYXoHKTJnjpQgFRgbcnd5au1agGVr19v2y0+MLuImRkcwTZQmVAlZSzdCt/lYFedYzvDGTg2GQohEjPRBhXwe6ak0ZtJpHNz5jFGPrmPjWc9TllFPLpQM4WhU2Y9buxdwhsNK517q3l8rt9nGVotJesTsZzse/psgvAEQchh6ITGZDwjxauYv9SwZPHxQmHcaGhr42OZcZmVQlcrKYu/fKYE8daEcIWRFMlRKYga3OLdSbqxT42NcARGPJ/j3WTOYxIcBXcOSWKimOX/LRcmZYnp6Gtdccw0uu+wyvOhFL8INN9yAr3/969A0DR/5yEdw44034qKLLsKNN96Ij370o3NuEDXP8hg482VPSiyUgDFQXPHO9+C39z+CN7zhKn5c+Yg19jP3hbiXAYo+XJbsFgAGB42Fqaqf0smvXGtmpdA0DWc2xZX55mpbr30fG1y9BLK6lu2xvqpWcJxjrhObG7MV+xZ8mnOwtWyBo/GgDc1iPGhTewe+fcef8b6vfYvvu+eePwEQSSyoBU7FQrk6EUFvOICkX0eUkDVNTYzzPjiuEEBYGbLQt/8Zi8lvQe8i6Lq1lAx4zJPnTnPPfhULVJfrlOdU8X1rmoYtF7yA///pt7/Ot1XPr5G8zwmXRYCMg5IAFwpHeN61YrGIAzt3cAGeC3CEhTKWSMyZrVOOQ/UHAjj/RS/FxRe/QEkS4ytTKbU+GcHWBndXb0HpSVwojw67C2hjRHO9fP0m2/GtF13iaYFCY3MmR0eFsYMmbS8Vn1IrVGuRXoSltAGAyclxHN67i1vk23sWoXNRn3KhvdAlFc58g/YXOU9hPNWADWeey8eghL8yz5JaCW0UDaQ/sXCTO37yfdt5cULsE5EEkWO1AKe1sv7ZTPKxjQz2Y2KMsreKBCalyiznWNh8JnICc8AQ3JZEgzgprnZrpyRNY8S7QkZWksQGDuzHf37ovfjN9290jYsr5SM1dMQKrZiv8aWOZDYBJV0oW1pa8IMf/EB5bMmSJfjhD39YlYawgO9YMgWf3498LofpqSnMzMwAmqEVVpGY0OtLgS9+NMVOj+gKBXDIxXVDqI+xmEAmMjE0zqo+PDIw/xa4egJb7s45+F/xxZ0o8lvFFrga1qtrGlbEQkgFFBYe811RC1x6fFzwc0812wl9goEAVp+6Dbquo1Ao4PHHH8Po6Aj0mFXO9BQlMRHdE3QYgtPCaAiTE9MIBEMIhsPIzMygkM9jJp1GJBbDxKjlgldKgNvz1OP8/0mrGVmHcXbIZVUpJG2WTqNB5Zr0CxgCRc6jdDCHoa8kXv62d+M3N3/HYDp85EFs/+ufsWrzFiGtAnt+YoLkcVtZTpAFOABYuHwlDu028gXu3fEkiqecAoB4bsgslB5u3O2UoK4jp3DRd4JuvkDVYkl9vlayjfQw9VoZKSXAkeOrTtkiuE4CwNaLLvXURrqImxwbgU/TeJA/ddNctsyeCL1aqHTxWm7ZyWSSp/+ZGh8XUmJ0LVqMQDCE9Wecw115GWp573OBbIF78ZvejkRDIzTNyJNbz3ObYIEz11FPPWR3X6UWuIWRIGI+HYdnsxjPFdTWp3m4afpN69CQRxEpQlQ3PjwsEJg0NpYW4Nwb7nwsajbGR5Vw5LcrLCrzaTWhcATBUBiZ2RlkMhmk02nheTNkpAXutz75ITxwx2/wux/ehMjoEK79gDqlRynl/e7t1hy7YsVK13OrAb9WX8QlFPMfxOMApqXUNM2WZ8KaiC0Bjib+BRTuQIo62D5fifPcsDgaxBkeiTDow5VdKPNFNan0cL+lXbDl4pGwPhHB8lh5uSzqCUohglvgql92NTGXPCp1gVo0v0SZbaEAQgpNtWWBs7SmM5PjGBcEuFblNx5LJHk+yGKxiPvuu1eggqYkJkyAUyly2Gac5HVjliHqAtjSIuacEQS4iXHseWo7/79ytZEvLGt2ZpUAx3PLOFBD07YB7hTYXjTg1XQDlq9vbG0TGCY/9JoXI5uZFchmWkyNacLBXRUwyBW++J6349f/d4OtzgM7LQtnd58hwHUvsRI1H9m7x1L+mM92kgpw8YS3b9flWQZdlEOqd8B6fLCEO1Q5oLUwpScApJnS0wGjggC3VTjmDwSxdN0GT94LsgslBRXgVq1ag1qhlMKonPOdIFvgpsZHcXiPJcB1LzKEoZe9xU7qRq1Axxr03hcutxa9Pr8fF7zsSuu/ptWVi5gMqggfGRzA1MS4kL+QgTFQAkZfaAtZ5E7H6u5UFrhUkyXAjQ4PCjwPtbTAsbFIpVTy8nyoAmfEgfmWulDmczk8cMdv+P8vfuEzePbZZ5TXlVKNUabXdevs7t7VxsJICCsdrJHHGnUkwFnb1CVkeHhIGQMXT0oCnIdep5ex0HGCpmmer6frNeoC1j8wgHtHpnBACmrNZma5+4mmaejpcQ/sTwZ8aA/NjZa+3sCE62rmY2Gua7JJfy6o4znOE9wUHICxSF0cLc+ldq6PhLLbTY2OCO5eqeYWRcyW8bvqFIvy/KGH/ib40KcVaQQYVHEylBCCBUorXSi51ZAs7sZGseepJ/j/FebilcWWtCq+VRU1seyipxI06T7uoudB61FVK7SisLNeKLIX/ubm72L7A/fz/xtNshM5QTLD7HQaH7/qStx12y34xseuxc7HrbxaszPTeOpBK1HyQlP72t5tEYsMHNxvj4GTLHCVWqgZggpB3O189n7cXGjLhdAnJKXnsIsVboxYQ5etE3PYrTvt9JIxNww0P9Xk2KiVL3FyAkOHDgIAgsEgli5d5qm8akN9FxU8/2JRiOsfHzmKI/ssAa63bzEAg4nyVe96H99/2WWXlV/XPOH0F7wQp114CVZuOhWfuvk2pExLz/GglGzusFwOBw7uw96nn1SOe21t7bZ9/P4qFFrmClUdVCAdmwcBrjHgQ0fIjxaTQbubWNrcVHvyHjpXj4yoXeCpmyRlbWX47W9vV15XahrbPc8CXFDXbG649YJ55EF3h5+4G9I4uKGhIbQuMxYnk2OUxKR8C5wubRcczqsW6AKRkjAcMU3/stvT4KGDfDDq6upGMBgEUJoN7niF2gJn7J2rrEXLDusasvmikDB9rpjvqW5NIqy0XqlQcdvIqnBLBekWKq2XXUfJGPbvehbDRyzypFRTC8gQYV5nXNmzdAXft32nmCNsRmGB49dLi2DAsPQxsBgLKsA1mW20LHbWODQxNsrdegDL+hD3+7C1MaZ0w2ACnE8Q4JwtcNzaRveZv14I9jSH7Wrhktddhbt+/hPsNBMa3/i5T/KkzgBw+hln4gCAeFLN+Hnvr2/DwIF9/P9dt92CVHMzmju68OAff4+ZtEFT3rVoMXcFayPMkAMH9pMYODN2msTARROJil0oYz4dUZ+OvmgQAxlnhjUGthBh7VEJfpVCLinZ2IxRkwBreHgI3d0LbNfMTqe5RdofCCDR0IR3fvrL+Or7r0GxWMT5L32V5/qoBW5ybJR/l0x4A4Cenl4EArVTMLrJw3NJVGyUbc5DEMlIxoaGMExi/NoJjf1L3/xPmBkfx9Az2/Hxj3+8jNpqD3rvgWAI7/3yN/h/3XTSrkbvDGqazXWummBu04DhSnfHj7+nPk/R/xmOmQVO4f1AQwNGh4YwTqxZXlwoXe9FcTDq07E4anhtndmkng+95G1LEAvcqIcY5jt/+mPbvp071fk83WovFArY/aTlQrlOUkKdaKgbAY4OuDTZJLPAZWamkcsaFqtAMIRQWGSesWmPFJ2X1rExFcXRbK6m7gKiBc5aGPaTODcKunDp7V1Ys3bVM7gLZYnzVsRCnv2SW0N+TE9n0BGqXnef70mgMVBG212YWF0vK/P8aoPG8jx8n5VkdvGqtQhHo45Kmo7eRXzfzt27ed/JZbNceNB1nbvVsOuoOKyaUJkF0DUGjiiSWBwWYCih2om22KmvGu9V7Js+mwBnSa6qlCdNQT8mpjOe0qFUc7hTKmB0HR/9zo/x5nM3Y2p8TBDeenp60du7EAdGpkQXSmIhe+iuPwjl/fyG/8LPb/gv9C5fyfM/AcDLLn8JFkSCODiTFQS4HY/8Da++6Ex87t/+HadsOwOA7ELpzQKnOsmngQf2S7oEpVcGO84o6atqgZMaSJUfQw5Mk3RxmGxshqZpOOdFL8OCxcuQzcxg/ebTXBbfYn3UhWpidITf6zB5R52d7iEAtQCzXlfLmnRgJotMkiRKHxoQYjobiWJW0zS88X3XYUtjbM50+fMJFqNZje65IRXBtMdUDZUg2diMREMjd9v9wy1qfoYFirQk7taq2s9+qhrofDM+MoxhQtDR0VGaxM6rBY6NV27nJ00G4glFfK/dAldagKO94O5f3Go7vmuXkwDn3H8O79nFlXhNLa1obz/xeCIo6tIuKLBqmTFwlIEyIVnfALvGTW2Bs/ZGfLpgPq4FqHBITeVDQ2oB7hmSZPVEEODc3lEpLVBbKIAml0TatOyQrmNrYxzxCinSS5Vfb2BtcyNNqEX7NRguGqvL9BdXCU8UF1zxWvM8SbAx/3YSAe7Ivj18wUwZKONxe2LZUhMqo1ynxEIt5ndsWQ1blIv3JWvWQ/MgUEV9Os5sEvumzYWSbLN3Svf1hAM4JRX15OYhTOo1Ul5FYjGsPe0M2/5t26x9cUXS9Hw+j0dMJlEZ+3Y8yd2LQqEwrr7qLVzQbe7ohJ9YenbveApXX/0GKwaOphFIJDwp7VRnuC3yVEfYCNYeCiDh17EgUj1rlHwLstJTBRqrRl2glq5dj5Wbtrgu4G0LOIHEZJR/c1SA87IAnQtUze0KBbAhqU6yW2535984jbsaGsTYMBXgxDGrXl3r3ZqlV6jwUyGo62qiqiqCWuGc4MYfcKxekSqFSzAU5rHf+VxOiKH2pABRzAdyHU7HZbD0JRGXeYsdoRb4o0fVMXAM2UxGmSrGyQLnBoEgafXaeWE+rWfUpQBHtYmGBa7IJ3nAHv8GeOug853/QyQxsSaBo0P27PT5fB63f+87/D9d7DxnoQr4Z2b8eW7KcxGyJacU5vp5aJqGNYmIq2DthlRjs3L/8pM3muVL9Zm/Da1tCJm5YKbGxzBkWhqoZSdBUgSwhbWucGmhlvJRMw9d/0FqGe8V2uIPBJSC58az1bmhvMD23shfn+ItaZrGaaFLoZqaZreSuhYttu173vMusBYAggXOUM7teuJRTBIa7WBYrQh40atei7a2NktR4fNh7dYzhXOGhgbVMXBxr2kE3M8qZWPwa9Y5IV3DycmoZxdoL5BbJ8eNq0AFuIQivqac1skkJmy8pikEam2BU70jn/ktVNgCGXcAACAASURBVHNd10gIyEYG+4UkwnStcrzieFsCe2FKVeXgs/qEYgydY5u8wKmOZvKdPP3QX/m2mxuoXGapb5fdu6vFTtOwKRXFuqRzXjV2fdyDCyUb/2hqLBoedfjwIeTz9qTqsu7+wT/dgbddsBVfed812LfDiqXr9SDIP9dRNwIcfWdJwR1kGPmiwf7EkPAgwKkG9/liV4qZiylaWzSRhD9gWPymp6YwO50Wrrn+Ta/mWoqmlla85CUvn5e2HksoLXA1iIGribWpjjU/lgWuPIvBsQJrJiViYAgEApxtUB6s2D1omob2nkV8/65duwCIi0makoMtNlV9RIxJGESxWMTgwf18H7OM02sbFQHzm8+5oOJn7BYDx3I0pcugsRfKmqcX3ykJcCs3bMZll13O/1MlXNpUzj1G3GbPedHLccN9j+N7j+zCSyWGv5e8+vW2+s4nTHoMY+NjRuz0hGyBK91+1XPy6q60MRXFplSMxzPPZZJdHgspyYRsApyg9BxWnjtZSoBzGy+kQwkpDxyDKMDNTx5TFUpZJMopg1rgDu3eyZMIx2JxRShHfcLLd1+vbZdxyeuuwqd/+EubIHfZP7wZALB16+lYs2ad4/XK+5yHm5fzZjK0kjjKbMbiPChHAVJqvPJ6e1GfrmTL5YKiuSGyUDoIcOYabmTQEuCaO7sEtukJRQoZeen3g69+Dv379+KPP/0hfvgfX+D7u4nnzYmKuhHg6FuTGbXyxSLSY9SFsgEyyk2sXUusTUSwIBxAA3El0DQNDS2UMtbS4h3Y9QweuddyHTrv4ksQCh2/6QHmAvaO3PygPeF4mY1qCNkVrxSO9SPzBwLCxAAAi5csQyBoLGDlBSb95jtJ0ty9Js03jSfo7Ozm22xi0RUzHGU5Gzp0AGPDQ5idngYAxBNJwgxmXUxzEwFA77KT0Lagp2Jrl99FwkiYrpbZCokCqvmO3cbc9dvORDBkWNC6+pbgg1/+Bnw+y36YJG7wzDJE3WNWbDwFoUgUwVAYl7z2HxGJGQH3y9ZvxOJlK2z3sm6baIEDjH6QmZlGLmcQjgSCQQRDYSX76FxBS4z5dAR1zcrdNwepuT0UULr6yyVSy/Fju3YpmflKWeDcXK7luVNkobTKpa5S7e01dqFULVprMIhR7xmah7ClRcGMW/3qawLV4v64abumYenak/G6934IycYm6D4f3vXvX8M/vP/D+ME9D+OWW36h/Oa8KmBqBae+2ULmJopyBLiwyrpPKqzWmMfmYDp+PDNg9yijoGNCY2s7ooTAamxszHa+PHLR0CKKbjLnn6ioGxITCtkdJFcsIk1ywCUVMXBeBtL5cqEM6Br6oiGMZEWmslRzK4YOG4vK0cEBtJvB99v/cr9w3ite+8b5aegxhup1sDie5nJIOyqo50RAuS6UboJDLUFrbe3qFqiUF5l5luTzAHFR2d5jxYzu3bMb6yDG49CYCFYO1TSyfdSSd2T/XoFYqLOn13Y+ADRJFrjN516AuUBeSNO/YV3DkmgIjRXGmczXG27u6MKXfnEnBg7ux4oNm9EQEd0hG4nAwUghDu6y8gL1EPr5VHMLPvq/P8Ij996Jsy57ifIeovEE1p9+Nh65506+b+/ePQhFrLkinjAWDp7IXlT7ylwBMhtpLRSH8gJ10crVfHv7Iw+hADHfKeDFhdIoU6UakMcSpzxwNFG4isq9mih3QV6pBY66UFIY8bDHx+wiv1PN3OfXRE+G4wltC3rw1dvvwUx6Cs0dxvje1tFZMhXGsbpL2iqqYGntsgtwHR2dCDu4kFMEdR3LY+r5QBDSzRde6b1zd3BNQwZFQYEzaoYs7Js2SAZ7I0HhGmqBa2xtw/CRwxiCwVY7RuZ6uS7AniOUovsE4IkohbqxwPG4FIh+5UePGi6UE4TKO6WYfGwdU2lSnt9PV65PFV8DAE+S3EaXvO4qrCCT8YmGkK5hW2MM3eG5BfzX6k2vioerymZZCzACGLclvmqy9srqWX1Y9Xb1iX7tvUTLZnOhJM3t7LUEvf17DRdKmoaAWuASfh1LokEsi1pWblYUJcQYGx7CQcIs2UbKEOpeaNUNAFsvvlS6q/Lg5kKpaRq6woGK89LM5xtuW9CDNVu2IRAM2uqNxeNmmhRgJm3Q29NnvWCxmD9syZp1eMnV7zS01Q6kC2/52GeF/3t37xLyADLXnXLp/L08aVWJbI02H8+8b+Vq7qJ/ZN8eDBImSja3lhTg3Cxw0rGYlIi9UDDEVSrAtbaqSYlqiVo863AshnDEHhfU2tpqVxzXqxAkSXABXUNnyI91iUjdEq94QSyZ4sIbUMIN2LYxv3Cqtp2w6DIsW7ZCcabD9aGAq9ujsF3hy2YeHyFz3pFJjIrFIvZOZ7B3OoN0voB8sci9qEaJANfQ0ia4zystcGZd2UwGN/zbR5Tt6Vm2Ar19f4+BqxsBblE0iICmIebTJX9+w4XyyL49fF93j13y9sRCOc8frvxwU8SFkmolDjy7g29vveiS43pALQdOWlJfGcnSvZRezcfZHPRjWaw8lsX5BmNxLtcC59MMRsPOeU4OT1u5YIm4cBcscNLtULeQDiLoHd67B4AowAkWOE1DVzgoWRyNbZ/Ph9Yui4L6qQcf4NvNbWpN/EWv+gdsPOs8AMCp51+MvpVr7DdWBnQYlraQNGA1V4Hd7VgtMG1afk1DM3FN2/n4I8jMGCkHkk3NynhIuSwZbd0L8I8ftPJv7d27RxDgYiaRTcgLCyUluKnwkbEFzHzMO4FgCD3LlvP/O3fvsp1DLduyqzLgvviVXbD8gQB3ay0UCkhPjKNYLAqKSRWRRDWhbq0p3JfpQqcCj5XVNKUVroX033qHygK3NBZGjLDfPheWHV7uoRrW2UpA+yR9H0vXbbCdu3z5ctu+OdUt/ZaLjElKwOYkOQ8kjcj+21gaj09M8//UipZsbPLsQvnbH9yIO37yfWV73vmpL8FXRVKo4xV18wQaA36c1hiDX9dsAZKzuRwOEwGut6/Pdr1s7VLd2HzfrDyHdBD3rL1PW/Ee1NWrrbvnOTGQHmtojn+e+8jDnhzaC/yahkXREJbG5jf+kraSJuUGgMVLLC2bvIikC2P6bR0yx4qj/WoLXKk2UAbFR++7i2+3OLiERWIxXPffN+KG+x7H//vK//CJutLxRtM0nNIQQwcRpE9vjGFlmekZ6glyVywCiBJX+Sf+ci/flq1vtrIUZbJn3U4C2/fs2YU0CZKPxI2FQ/kWOLXFT2yT/WjR5Vgt0NRmEfX0EzIRBsECp0gS7KYeUMXHUUXr6PAgZqamuBAeCocRJ2QFtYDbQpwe499hmeMhXWQ3KoTR5uYWR2bceoNKgJO367Xt5aCe78FZ8dSDJiledPnyk6pa31wVd0yAC5tjZ1wiMcpKrHPjuQLvc1MCiVQSsQS1wDm7UD7xl/uUbXnBlf+AJS4kNScS6kaAY9AgkhkUi0UcPXoUh/bu5uf0LrRTVHtxZZhv7bNc21KSNf5ZMzAzm5nlbie6rqOhpa2uB6Fq4kSxNM43LAtcedcdMxdKUu3mcy/A+m1nQdd1PP/5l+L008/ix+R1Nx28mju7uOvj6NAgpqemHC1wyiaQsvtWr+HbNAau2SWmR9MM8iU6xlST9VavilW6uqiUZVGD4ZKTJIyfTzxgxQHLVlgvYMoKmhNw357dSE9YFriIaYELlKm5Vcl7bnGKDEqynBqCChn9/f1mG6yFVWkXShcLnOIYrW9kYIAnvgeAlmZ1fsRqQrCSupzHnv9cWqO2wNldROvrC/UKZrU8xs1wwPpkBMs8KhVdcxkS1+vWoB8Bj/2nWqB1UIuVpmlYe9rpwrmnnLKlqvW57fMCNr4yshRqZJkYHUG2oGBFNoceaoGLJZOIlbLAmddRI8eSNevxjTsfxLfvewxv/fAnARyv31p1UXfBPOylJBubuMvHwcOHMHDICHrUNA09vb04IPWXcher8wF5Alu6Zj3f3rvjSaQnJzBOYvsa29rh8/tPuI6pgWqrq1emavtEQGcogHS+gAVlJqo/VgIcrTUQDOK6b92MloAPKxMRniBYPg8Qvy+fz4e27h4c2mO4jh3avVNgvyqVVJiWvXTNycpzmh3IDIzraS82MFftmM3tsE6ha6XTfshWqFyhiFSTtQDe/oClbe0uIcAprSzm42/t7oGu6ygUCjhy+JAgVLQ3NEAHECjzcVrMuBYCmoZ8scjfulKAk66vNRoEAc7dAhd3iYFTvUrVPVD21dHBfs4WC9TefRJQz/mqfFeqb7NcyERFgOFCaRuT5lTL/EFUNB3DhnhA0u9D0u/DM1OzJc/1au0+KR5GrljEfSNTc22eZ9DnXJBYYtdtPRN3/vRH/P+qVVXgQVB4KFSKk+IhjOUK3IUyFI4gFIlgdnoauWwGR8fGAF0UsrkFjghw8WSDEAM3Pq62wM2k0ziyzzDa6LqOT9x0C2c1Dvt0ZHIF7ml0IqP+LHDmwELdM5597BEeJN3c2YVw2B5QXI+LHPnhxpIp9JkEJflcDo/cfadgJWhuN6wE9XgvtURN7vYE9qEM6BpOiofLZpUsN+1ALaFyQ5StAPL3RYPZ9zz9BLc+tLa2ccIML1h+8iboPrtDWQtxUbO1V7FvrgsjdnndDdISvFBUywqVbLEoWIGopWhBiQStckJeDdYzCgSDaDHpt4vFIvY8tZ1f197YgNOb4mWPr6zf0TUX097zd6woshppBMoBtRINDPTbjot54Owxhm79rKQFblCywM2LAGe3oDgK95jbLLB8vT1OSRUDV69TtxtrLXvv803yVgu4jblsjPERS5x1Xe3vnT5fbp03/5924SXoML0H3vy2fyrJpOmtPgtznYuCuo7WoF/o4HS+3X/ggO0aS4CzXChjySSiRIAbHlEJcEUc3mulQunoXcSFN8CyAmbmmiz4OYC6WxuwBlEBbsfDVnZ6yjZX71B9M5sIxfij998tMK+1dnc7XvdcBLtPYSKu0kB6IlvgKsWxJrhQ7XNzk3JjxqPuF10Kmma3NqSamnHq8y4Wjje0tmH5ypXO12t2AXiuuXdU1oR6RCWJsbOFIuKKdDCAdxdKulin/YTGQ+564lG+nUhYrjvlQJWbkilH2BrC1YWvolrLB7WIMQGOtTifz0uacPuzZ+OwOo2Ae30jg/0YI8yXKvfCaoOKJK4MmlWoa/WWbbZ9ra32cId6FYIWRoLoCQe4ICfMjw6srscTXPQoHG7kXvPhwUWryPN6TdfEaBSfu/V3+NxPf4f3ffAjVa+R9cu53ia1HLaSuPJ9B/bbzmXMlVMkBVg0kUKMjMMHho/y7YMzGdx1dBKFIjBAymuXSAtZHN7s3wW4OhTgzB6WJCxkTz/8N77d0bvouFnYqNbD1D2rf98ePPuYlaRw8aq1xnU1b1m9wLjTerL8/B31AS8WLXmxRP3y9+14im+XkxCV4fXv+zBWnLwJHQv7cNnrr8ZnfvQrJKJRx/ZpADanYtiUss6plmtSvWr1GcptHrPARRUCVTgaEzS7XurTNHEio4ykO4kAl1QILV6gKwSbiKkF9uImOV/vL0ViCoeHxOS66fExrtGOJVPw+e3RE8w9KqdYGKnuj7ps7nl6u2CBmw8XSsENUFqgCgQ3FQooCZKqo7GtE50k9l7TNCxfbqd6r9dPVTcJqtjiV7DOmL/1Ps64wZMAx8m97OfOiwVOUQUVHMPRKBatWAWtSuyKAQ3oCgWwMRmp2lzExoiOkB/NZF49aIY4UTBhT1AcpVKC4m6SCHe70kYeuQKAfhJ73ialWQib3+WsKu7uBEPdxcCxgZgm8z5ErFR0ctYwV8/22kKlgafahP4D+zBCJtqlaw03jeN4HC0LogWuKOyrVtnVLPO5ipPiYUSOYSCEsmbFzlIWODox7N1BLXClBTjZ+tjWvQCfvPnnwj63GEENhutqQNB6zg3WoqS+e7CulR6JNelPrqimsu9evLSkJZhrk8lCjF4ia2wZOjqcXWDdwGPDyC0uigYR0jWMZPMYzeVd3ZXnaon1CuqSOjpiuEt6zQEHACFz4ahaFqneCXP5AoBH770Lj95rMbbOhwBHobt0wUqXwyviYfx1LA3AeCZvuu56fOLq16CQz+NTn/p3+P1+AFnhmnoXglRjSTVcTI81WByu29hRkCxw9My5J2gpDVXLfIqxs2prIE3DEpP8RaXYqARBXceZTXGMZnOCBe7wQYULZRHIZbOYSRvfkK7rCEdjiBIWykkFiQkgkoe1LegRjjEW4ZR/Pt5afaP+BDizg7V29yiPd/b28c7o1zVPfrAxn24LGp0PqL6VdtIZaW47n9+PJavXOV/4HEa5dPdl4wR7nuUirGuI19lgqHplpVKFUBdKSg5UrgulE1wFuBqw3lbL7aVWYC5JjGgm4dMxkVdrRVUKlZjCAie7T3pR0mnQSBwP0E5cKCl6e9WCXSmwsumd+TQNCyJBDGeNxYl736io2rJBUwOME4EN8CrAlddQnu9QgfnOkcaUCCpLDBdQynwPEZ+OlfEwnpw0UiOsP/1sfOrmnyM9OYE3XvJ8Wz2q//UGlbA2XwqGWkI3Rwo3YT1fFC1wFPMRPsBqSPp1jOeM0UTlfVSLllTf1U4TLHBHDtkFuALsKQR0XRdYKCfJcYpBUl57t2iB06HhlFQUgXpn35kH1J8AZ/52OwSybzlpBc85kfTpGCrklecBhlYlD2BtInJMXrZqTAhFomhoacWo5OKy4uTNiMSNxKj1rnGvFlimEDqI/d0CN/841s/H6+RpS+Qt7Ygn7RYdwJsLZcJfeoorZYGrFep1nsqYC6KIT8dMIY9UwGcT4HQYE7nKRSmmcGlkOeCY4KbDihfxm5Y72YVe16wxU9eADgdBrZdYjMqByoWSwS2uhl9fUa3lI5ZsgKZpKBaLmBgfQy6Xg2aS8cgLKRXKFeAisZjjsbbWeRbg2Aa3rlj3oiKhKbtcE0vXSgy10nuv00+VQ2WJea5Y4FAsLwZu3tNKaRo2JiMI+XTOfllz5TWpu6rlAWghFrh+hQtlEcDEiBXjxoiTaPwtda+kGJPY2eW6w766i/46Jqi7p8AGW6dA9k3LlnJNSkPAXf5cnYigNeg/ZjFWTg+3kyQKZthw1rl8ux5TItQCskvD3zG/qOenrlJilNJ2xxxIMbxY4Br8PkR9uutY4XasFs/yeIn1XRELY3kshCbFeMzuQSUbqFwoF5iJ29nYSQU/lesT+8/K16EJJCYM0WisYmINTmKikADYXDTffUMFn88nCMWjo6Nc6JxJW3TpkVhceX0li7xX/tN7lfuPiQslHGJnzd9KImZKPRJbX6zzuUzpKSD9Ho/gcY4uN1GQWCiPBWJ+n6AIVLWlJnNJDcpuIbHKA4ftAhwAnuMYAFLNRlgUTeQ9aQpwsoccFfwoHwaA47ujVhl1KMAZv8nGJpurR2dnF6LRKLojQSyLhdAachfgUgEfToqH625QVbmebDzrPL5ddy+lRrAWP9b7qdqbmucknccjVMHcxwJe65fPs8XAOZBUdHa654ADjIXNplQUnaGA4zlucU7Hy6RbTTQGfPBrRuxfu8NzY+5Z1E2LCecqF8qFS5Yb55inU8FItoDS50OtcZF4XGBIBIBFi/oqngfcLHA5xRgmYz7nH5rfbWTkKG90cHaG73eznJWLl731Xbj8qrfZ9lcab1gpZIUPfeTs+VcSRlGue2G9fqsMljKC7HPp38cLrLHA+Q1wS37NW+Md86Wst6au6lRoWOAsAW64/wjyebs3HA1lYMzy4ViMp+mZmZ5GJpOx9T16XUIS4Or9G5tP1J2sYAWoa7Z8QEtM7axf09ARCtT9i3SauGUBrqWzCwtXrCp53XMNlksD2VmlWz8xnuDc4Nesb63eoGqR3fIiuVCmFMmJdR0LJBarcutlmO84J8vdqf7eDwCsSURwWoMlDCitH+ZO1UJFtpjquo6Fi/rMsjTzOutC3l+lcjRN44tQNqE97+WvEs5Zvdo5XqsU3BJcszHMrW/MJxLEqnn06FHe5ty0ZYELR50FuI3JiMCkSrEpFcWaRFjYp2katl50qbAvGA4jpbCu1hKyBY79hnQrPrISAaWUV2kpr4B6A2tfscS+ekTcp8OnWe7u9FlbFvjSmA/GSa/wqTxNajKXVPkta0Y4EDOy5LJZjElhQQAEZtpUk+EBoWmaoGwdGxsTWpXNZJCenAAAM2ZOnCfq5+0de9SdAEcHTFmAW7HiJOE/O/VYMuhVgjWnboM/YGmsX/Wu90uUyCcGCrC7NNTSkvF3iPDNQTNdTXgR1gC7ICOfI7NVAUBPT09ZSbxVs+f6RAS9kaCr600t4lZ5Iuiql1w9CHn6FA31S4IVYN0PTc4KAIVCAWFzXFTdM7PGMaGJLtZll8uXv/XdwrXNzZXnJVNZLRjYLpUAl/IQV1lt2CxwJqY9uFAChotX1CG+JOrTeRJdCjntQ1N7Z1USEXsBo8WXhTTm3RHSNb6mqCRtlKrfuqGOZAMlVMqI40WAW5eMYGtDjAs9ggDHFf+ly6mrtEXz1JZqv2NWXmvXAr5v4OA+23miC6U1BlMBbmhoUGjYJCFcSjY02saSenp9xxp1JyvQBi3oEwW45ctFAU7XNKyMh7EuGZmHllUPbQt68K/f+D9c8rqrcM1nv4pzXvQy4fhxJo9WjFpqr0+QRzgnsMVPXU7cihdot7yI/xMNjTZ/+SVLlsy1WiT8OhZG3IXAWvQ3JjDU+6LQDczy5qT17iLxwImGRk42xRbg9Co2TuSlB6NZm/x8fyCADWeey6994Qsvn8M9mIoOly9FZWGULZTzASGVAFkIpScn+XZbKoEFYWdX4XLRLMUWph2ICWqBDckoTklFef8q8H5j/G/w+xDwEB/lhFKK1ePPAmcf89ktHmM9Xkn4NM1RYVQOEUs9eTR4VV7OFXNRYrihnRBDHd67x3Z8fMRyhUw1WanB2nssr5jdu3cJ/XGcKJ4ayDUM9fT+jjXqyR0YgDjRL123QTi2bt162/ktwbq7BU9Ye9rpWHva6cpj9WTiryXagn4MZnJIBiiFfS38B06M51kulsXCSGWyiB9jRifV6/HmQmlHV98SYQIoV4BTwcuEUYsuxkgXql30xmSkJkK7qp1M+KFKKZr66C0f+yyue91LAQCv+ZdreY6fPD3XBBfgpPoMC5y9nn/4wEfgDwRw5qbN2Lz51IruiZapemYdIT+OzOaUfUTXtJoq47Y0RFEE8JfRNN9HBTjDhdJodZpY4HoaUuiNBHFgRsxh5gWq2wn4fAhHozzfk5uLZrXh1zX4odmISlIBH9YmIkj5dRRh9J32CtYK9H4VKbsU59f3XMOYRtOELfZ4scAxqMid+FjgMhCvjIcxnMnVrF2VQN3a2im0q/2OOxf28e3De3fbjo8MWm6VSSKMdS1ajIfuvhMA8Pvf/wbnX3wJP0bn78YmicAE9a8kmU/UnfRDl5IrNm/BG679GB6949fYuvlUbNy4+Zi1q1ZgNNvyvhMBTUE/zmyKWxp1VO/jVA3uf4eIgK6hO1yGe+E8Qn5/RdiFJNV7XbBkOZ568AH+f9OmTRXXOx/XuYEtvqudpyk2jzn/aH42FVafuhX/dtNPMDo2ho1nn8+tJSr4Jescg6ZZfYM+qwWLl+H9/3EDTnGI6fIKVqbKQrEsFsay+TWycQQVbooJBxfK9JQlwMXjCeEa1RzkBCch/f999Vv42BtfCQB48Zve4bG06oG9f2phaDAVgxqABSUs6E6gArjORyIL1FJcRP3PNeyZiK6hzCp3fIhwluLGeh+adEyFlqC/bhT+YV3DjIM5rBZ9aC5EPsryzF8qwB3ZZxfgBg7s5dvU3bJzkaVY/e53b8A73/UeIGYIayOD/fxYc4udzfZEWR97QX30ZgJRU6vh0tddhXe/9e3ocGGHq2esT0YQ1DQ8MJZWHtc1u1m73ieBasOm5fw7TiiUeuUbkhEMZfM2QUZ13ZYLno/f/fAm/v/CCy+cewM94O8ulCUscOSofN7aU7byxUxL0I890xk0B3wYzoqsZsxSHNFFEgOayFtl8Zrr83OzwNUbZAscA3WhjMVi0AEEdQ294SBag37v96Z4ln4NWL/tLFz3rZsxNT6GLRe8oLLGzwF6jYQQlQWOusuOmQmZk34fxnL5uv9WdU3DycmIGHd+nLhQMqiENSagqFJ91CM2pgzr+cHpzLzUNxciHzd0EBfKgQP7hWPFYhFH9u1Vntu7fKVw7v1/vg/d5xlWuCGSkqBDkQKo3r+x+UTdCXAqF4TjWeJOltB2q7R6J5qPL7vbpF+vWjycQCNdlRL/jtrB/Q3F/D7E/D4cNl2+IrrBOhjx6Uj5db6IAoD1p5+NvpWrsfvJJ7B16+no6+vD4OBElVricp3Ub5sCc7dyHQ8kJgIqZOmkh0K6hjOb4tg/nbEJcI0BHzYkI4j57EHtMgulU/nlIKBp/7+9O49vqsr/Bv652ZO2dAfaAgKFVhahdLDV58eohJFNSlkFF4ZHR2eUQdwQEHxRVEARB0dZBpkBfeYloKOAvAABh0HHR2dc0GGER7GKUChLF0pLF7omzx9Jbm/akCZptnvzef+hJbk3Offkbt97vuccNFmtAbv5CYS2LXCOMktTKKOioiAIAnJ96J/nOrXZ9urQ/3WL15/nL4Hq4yO4ePAgbSXWqwQ0tVjRRaOyBXD+/fqAiGlzTyK/FErB/n+IhfZ1G/qZ9IgKwWBD7iYTD0Tatb9/Y8fnJUgm2b5cXuq0zJXLFbhaa3twFBUd7ZRCOfDGm5yWLS8thSNUu3TxvPi6ywBOFkdZcIRfAOfyCapyfzCV5Klei1zOoH4mCAJuiosKr9GhKGhc3hS6muDU/lIXjRoZ0bYRDAfFGNFgseJrewu3Wq3Gsjffxclv/4P/PWpkoIrsMohw+GXCtUf584bcAjhX5XTVj8/d9rh9TxAQjL1CRwAAIABJREFULbn5bO330vq3P/sPa+0353Lqk3yteeCu1koDuJi2q3nBxXHZiU/zlxS9FmWNzUj2c4qc80AZtou1NIAbFGNAk8WKiqb2c2DJhewCuDb/B3yfrD3Fj4P5+EsgwklXKcb+EJuYLP5dWVYGq9UqXrsvSvrE9bzOeR5OQRBw16MLsP3VlwAAZZIpCMrOS1rgUtgC507YNW65fsKnXK6e6kUirUrwa6Du6Q0jhSd35wHpNUgtCO2GPY+OjcMvbhmJ6GjvAynpLtjHqMMNbea9ckjWaZDdxYg4TWs/G39znBP0QRqSvbNc1YEjpcldECQIAlLtKfLi03UvvlcFySh0rh4A+vjryPGc3H4QE5vaWucUSt/ZJy5300wQvB6WrQxqFXLiomDw84BM0k9z7MtaybbrVKqg9ikNBLmlH7pOobT9XyabIPL04WVn+T3F2F5GY1SUOGhRc1MjaiUj0P783THx7779Mtp9hDT4Ky9rbb1zaoFLc56iBOD9nFTY3Rn4MwVGTuR4s0DkD2LrSUhL0V6yToM4resn+oIgON24BeLw7a7X4PpoA7rrwy5RokOZUXr0M+nFJ+LuflsBQF+TDiPiJZOCS/qdZXUxupzGwTlNun1fO+nn+0JrX7HtoCnhzLNBTHxvIdYKArpoVMhNbf0ex++gE0ccVc61TLolzWE2abu/yLUFThqsx9vP09EhSIfsjGDtSf4OcKXljk9uTaOslLSk/XTsv+LfQ7KcR5QHgDjJ9COlkgDusuTvbt1T3H53pAu7vd1l6lQIyhEsjhscfSDHm45ATn0XWLVhTS0AvQxaDJOMFuhpC9y1+CVP3oOPcDWktb8IgoBknUY2KeTSUnbVa5Fi0LociMV1eqxzC7zjgVaTxYoYjRq93IwiKB2u3+Vp1Mfqc6RryikgkfYzKS8vg8Viu8LUObXA+R7ACYKAoV1M6Gpy/j1GxEeJ87Eq6VIm3ScdrReurtVyS3eWirEHPd1kMlCc4yeRPvRO0mlwc3xUu/594S5YpxZfU0w9EZfc2pLmCL6sViu+//oL8fUbhrYP4KQtcBdLbetZLBZUSx48JUqWcZDjMRYoYfdo1zEPkKMDOaCMH0wjtD7Bk4rTqqEXBKQadCivrG2/APlERvdcEU8QBFxn0ju/5mZ5zwI4H8vi42ewY7Vrjsmv3dWPq3cM9rTRBjedNqSpVOIolB5+vid6GLQwqlVItA9I07bfYzjSG4yIjo1DTVUlmpubUX6pHNBFO7XAdS6Fsj0BtmPYMTpj4jVareUuxR7g9PRxSoJwpVep/NZvN5jaHtdKaxn1J8e5K84Pg2sBznUfJxnq//SJ/4fYxCQ0NTSg5GwRAMAYFY1hWdn4vtH5XC5dr6zUNnVATdVl8aFTbGwcdDod0NTg/N38nUVhd6bVCLZRyIrqGnDGMdGoAn6v7FgT6potOF5T7/S6zsXNK3VegKcGpxAQL0IBfcrqXQjnqj9GpHJ1XXW0wDnPO9VmPRefpVc7+my4/Ubxv2Iarh8zOARBEOeNyo41QS+TG4eErt1RU1UJACi+cB4tPdJRX38VgG2bTKbOzYvn+Jy2dCoBObEm8SGs0mgEwef55Mh/lPSwLFhbEqVRB2yguG49e4l/v/nisnbv5/xqLIxGI9DoPJVWQtduUKnVsLS0oKK0BA31V1F16ZL4fpIkxZJcC99HitIRa0JYDH/Rq1SIdfH0o6NpBsg3fEojb65+viiNGrlxJo/6hPn68/vaAqfQe1avuKqCzGgDuuk1YpqWy/VcrKjz4AcUg2chMNMISEWpVW4H7ggn8ZKhvb/4uQj1TlMIRPv93Cj9NL1apdhzr0I3S3akx31WFyMyo+T8ADx4O5W/B4pzkE7m7crQ/7nV5cBGGq0WSZJRJkuLz6LqUrn476SkZMWeS/wlbAM45xspZfyIrrZCbp1u5UkZ+w/ZRn0L1kndk28J1wFYwoVRrUJGlMF5CGkP1nMs70nfYEFyhYjE633bTU7s1l38u6K0xCmA68wAJpHO1QA5DnIZAEQJpMd4jEaNrjLpu+eKXDM4pOVN7Z3udtmBw3OdJ46XvNe913Xi3xfPnMaVy60tcImJSbKrl2ALuxRKB6X/cD0NWsRo1NDJZIhwOVP6vqREnf3N/PKbe/Ahjhs3OQ10ESi+Pmi71no5cSaoPeg7J6C1BdTlKJQK/20E2PZDFWyDFMR3lQRwJRdQH6D+b47vjRRunyUoqL9+uFNSHQvieQuQ60yCqb37XvO967NvRHJqD6djR3re6N6zN77F/wUAXCg6Ba2uNUU5Kan9ACbkLGwDOCmlXH+lNxJ6lQqJbSYd7R+l9yh1iEj5Oncc+N7vybvPcIyxwaO2VUePpDzpAwd4MP+dfUVBaA3cZJLl6FdOrY9WIEHSAne5rKTNJN7+b4FTeoDswEet4cHRx9LVoHBy4zhyDGoValsCMUZkYEgP+bg2gVZi9xSMu+c+6A1GjJwyE8C1+0D3SO8v/n3q++NOn5WSksLragfCNoDztS+KXLjapu4yTgUIZ0rcf5ROLr9ZawtcSIsRVoJVF9IWuGiNCr2MOr+NsiYnjsBNBQEtsCJB0gfuUsnFgKVQRloLnLtA1dq6UFDKEsmM9gc7V2UU8FxLs73l1qgSUCvXJjgADy5diT8/txgAMO3hxzF6xr0AgD5GHdIMWucUesmJo98NWeLrPx07irQ+remY6en9ZHMfECrhG8B5+SRcdhS5UWGKdS07vv5kjuk6fG0V8PbBkWNuKKZQQhxG3t2cbUD7e9zOVp0thVLAdUadrCbd9jeVowVOkkJ5ufQirjrNAeffKQSAyDm9etICFyl1EUpGtXICuPoW2/nKoFYBTfKJ4Nru56Nn/hoWiwWWlhaYp8xoXU5wfy3uff1AcSTK86dOiqPnArYAjtwL2wBOSoknRSVuU7hiXcuQjz+aTqVCs58u7B4FcC6GyY9UKvsUMN7yOd3V8X+FjVjsLcHeFqYVBDTA6hTAtR3EJBABXKRgK3t4MNh/CKMM5mXsiEkyNU4xmkJcGt+pVCqMv/f+dq+7OmQESdu93mhCr/6ZOH3iOwDAlYrWQUz69ElHE485tzo8Ai5fvowHH3wQY8aMQV5eHubOnYuKCttM6UePHsXEiRMxZswY3H///bgkmcOhs5T+uyl9+4g6w9fjw9GHtLNBgacc7T2R0g8oEDodwPnhs+TMsc2OETtjE5OgsqeZXam4hOrKy+Ky0dExfv/eSKlzd6NQUvAIgoCsLkYMjjGEuiid1l2vwY2xJsQodjopF4NKtfl3r/7Xt1tm4MDBHDHXAx0GcIIg4IEHHsDBgwexZ88e9OzZEy+//DKsViueeuopLF26FAcPHsTw4cPx8ssv+61g0pHJlHhzpLwtCl+s68jhmKvLH7+5J+cdR1uf/J8FB4+/p4VxCuAUeK3oiGOTHYO+qDUaxCd3Fd8/f+qk+LdfBzGJsKqOwF0rbCllBG9BEGBQq2S3b3l6DnfZAtfmxUE5Nzv9W6VSYdmy5U7r6xTQ2hoIHdZKXFwccnNzxX9nZWXh/PnzOHbsGPR6PYYPHw4AmDlzJg4cOBCQQsps3/ZIJN5oEHkqWC1onWW151Dy8uK5dqNQ+jzrescjT0bCWbZtCxwAJEoGMjn7U6H4d1xcnN+/NxLqGHB/jIst8cEoCJFMuDoe2vZS/p/xk5CZ9Qskdk/Bnb9/Ai/+7QPcdpvZvr49XZbzJbvkVR84i8WC7du3w2w248KFC0hNTRXfS0hIgMViQWVlpV8uEoofxISChvuP/Gg6OQgJUyjDl7pNVRl87FzkyVptv0uJXAZw3VKAY/8FAJz58YT4elxcfDCLpigcqIgCxbFnqWWyj3lcSjcRXLJOg7LGZhijorDy7T0uV3eM0mnQqFHV0Ox1OZXOqwDu+eefh8lkwr333ou///3vfilAYqLrlI66qjqgtkFcxqSU4aErbCOCxcUakRzdcQ53crL/+izInbd1kW614OTlOiQnx0TEDbYi9hX78ZGcEIWEDkYzdLWewaAFGpuh1arF+vCmXhqrr4rnHU/WE65cBSwtSIw3eVfeMBLs/cbU1IxLkhHXkroYkRzv/eAa1Y3NQFUdusQYkBwnWb+iddRFnUbt8/bJ5XjS1FwFGlvQIzkGWpMOZ69cRVL31oFMpAMD9OqV4rftUqkEoMUKo1Erm7ryiX1/SnJzHxLVZETl2QoMSI2D0d6fSdF10gmsF9euVwlIizYg1hD+00k1tViAytoOl+sSY0ByrMn2D/txpFbbhoruHmtEmkpA8ZV6lF9tdFrPsY80Vl8FauoRq9egxIvrcqTwOIBbtWoVioqKsHHjRqhUKqSkpOD8+fPi+xUVFRAEwevWt0uXamCxtB/6ubqhdUSeiooa1Cog31nqStVVaK66H3UoOTkGZWXVQSpRePOlLlIgICU+CuXlNR0vLHNK21eqq66ipabB4+VvtgcAP9fZ1mlubkFZWbXX9XKlsfUpnyfrtdhHvKyqrPOqvOEiFPtNY6Pzk9TmukaUNXs/cqhjGPHa6gaUNbleX7BYfdo+OR1PLfahyCsqahGnUeO8xYr4pG4ul1Wp9H7ZruTkGPG6XV/fJJu66ozLFbWoddNaPCzGiJrLdaiBvPafYGK9XFsygFiDVhb10yyZrsXdfJA11fUoa2wzPYL9vFFX24BUgw56F1O/OOpAa7Win0mPgUkxKKyodXpPaVQq4ZoNWtdcx5OFXnnlFRw/fhzr16+HTmd7yjx48GDU19fjyJEjAIC3334b48aN87LI16b0kcUioEEo5ARBiIiWNyXSePmzaQQBGkEIer8ci/3Sxf3Mc47R/KLsHdOjfRyBzZEeqWlzUz0o2oB+Jr3TMkrm2ETpbVBit+6uFkVsrD/7wEVA5UpwGgEiG+mh4GnTSlYXIzKi9GIqsuP8If2sNIMWQ2OMrd8jCEgxaJm+fA0dtsD9+OOP2LhxI3r37o2ZM2cCAHr06IH169fjpZdeQkFBARoaGpCWlobVq1cHpJBKvFBEqxWSEkoUAL72gWsVuH5VUo6bZmXlBwSWI6hK1mmQ3Ym0U51KhexYE0xt7qwTdBrUNtue+sYqdnjuVn1MOhTWNojzYgkAklPSXC4biD5wSrw+u8JjnKg9tSCgxUUrGuB8PY3RqBGjUeOCPbvOcdqWLtNVp/H5gV4k6jCA69+/P3744QeX72VnZ2PPHtedDztLqU+0u+psVa7l4zyia/L1iZurp3qBJE7kzcPZY44bYcs1LvreiLrG8NJRGjWGdTFe830liddqkBsnuZQLArr26u1yWf+2wEWWSNteomuRHgtqdzmULq7jqjbXaOm9Po8x73g1iEkwOc/tE7Ji+F2mBwOXEJFvWi8KnVvfU60tcAo6SQWYIzj3vtebdyL1Sa4AIKFbd6g1GrQ0O/c39Oc0AtLviwRKfahM1BkalSD2a2vL1RHjyMBwHE9Oj9h4jHklbB9PSgvGn5SIPBH0eeAc38uTlMccrZXXuOaTP6g1SE7t4fRSamoatFo/jnDHfZ4oIkkPfXfdHVy9I97b2zMwlD7eRSCFbQDHeeCIIo9RJXg9gIkTF3n1PqzutbA9kYYhR2ul5Zp5N9QZjoymbj2vc3o9Kyvb798DKP/hRXYXIzKj9KEuBlFY8nbuurYZGJ7e66fqtTwO2wjbFEppSpLCrw9EZPcLx5wxPur0KJRBSr2MZI4WuBbGbwHVPoAbFqKSyFuURo2oCE3HJeqIuweuLlvg2mRgeHrtTGfw1k7YBnBKf6pHRO11tp9JsE8bWV2MuNTYzP4xXjDY5/Q0cOSXgHDUavcAt8C1/T4iigzS6533KZS2V1vEFEo21vgqbAM4pz5wvDkiIi8EK4XSMTQyeS5Wq8YNMQZ0Yb0Fhn0nTuye4vTy0KFZgfgaIopgblMoXbyVZtDiSnMLuupt4Qdv730XtgEcf1Mi8pZ43pBZS16kidOG7aVH9hz7bmqfdKfX4+MTAvp9RBR5vG2BM6hVGCbpKqHUEeeDIWz73nPmdSLyVudTMIM7jxxRoPQdeAN+Nf0eJHTtjvV//j9+/3weI0SkdnMi0HpwPeYolL4L28eg/CGJyFedGskSfBJI8iXddR9+fjUAW1/NYHwfEUUWd8e/Ud1xGxG7SPkujFvgQl0CIpKbZnvHaMdAGb7ixNwkX+333YDuzbwBI4pYjqNfb79pN0pu3j3JpHNugeO5xBth3ALHH5KIvFPfYptdxuDBkz9XOj0NAVGIBXvf5bFCFMEEASPio2ABcKKmHn1MevxQUy8GdB2uHtjSKVrYBnBsgSMibzXaJ5cx+noCcUwEzvMPKQh3ZyIKBAG2NEg1gEExtlTtYV7M58o+cL4L2wCOPyQReat/lB4XG5oR1ckWuLDNLSfqQLAfPvBaTUS+kp6v+ODUOwzgiEgxojRqpPthfjF2rCYiInKvs1dKdpfyXdg+aOYNFBGFCs8+JFeu9t1AXk95rBBFrs4HcP77rEgTtgEcEVGwWe3/54mRyD1rx4sQEbnF8S58x/sUIiI7+ywEzMUn2Qr6KJQ8VogiVmePf7bA+Y4BHBGRncXersC8fFIS7s1EFAidnTNVzSdAPmMAR0RkJ7bAhbYYRD7jvktEwdLZFEi10yiUPHt5gwEcEZGd4/KhYWI+yZWLm6BA7s08UogiV2db0FQM2nwWttMIEBEFW5xWjZ4GLdIMulAXhcgnwb8d4g0YUaTqbCtQ5yf9iVwM4IiI7ARBQG+TPtTFIJINhm9EkauzySpMm/QdUyiJiIgUwvU8cEEvBhFFAKZAhg4DOCIiIvIJ79+IIhdTIEMnrFMok7RqThZKRETkIZctcAH4Hl6biYgpkKET1gHcgBhjqItAREQkG8G+n+LtGxFR8DGFkoiIiLzCwI2IKHQYwBERESmQzt4cJwQg3IpS224frMylJCIKOgZwRERECiEN1YbFGpFu0kMbgInpu2hswxfUWSx+/2wiInIvrPvAERERkTdagzWdSoVUQ2Ce06YYtKhtsSBVrw3I5xNRZBgcY0BdCx8EeYsBHBERkUIEq2+aWhCQGW0I0rcRkVLFazWI53MgrzGFkoiIiIiISCbYAkdERKQQnJaJiALNpFbBEIC+teQ5BnBEREQKwVsqIgq0X8SaQl2EiMcUSiIiIiIiIplgAEdERKQQbIEjIlI+BnBEREREREQywQCOiIiIiIhIJhjAERERKQRTKImIlI8BHBERkUKoOY8AEZHiMYAjIiJSCB3nZiIiUjwGcERERAqhZQBHRKR4HQZwq1atgtlsRmZmJgoLC8XXT506hRkzZmDMmDGYMWMGTp8+HchyEhERUQe0TKEkIlK8DgO4UaNGYevWrUhLS3N6vaCgAHfffTcOHjyIu+++G0uXLg1YIYmIiKhjKgZwRESK12EAN3z4cKSkpDi9dunSJXz33XeYMGECAGDChAn47rvvUFFREZhSEhERERERETS+rHThwgV069YNarUaAKBWq9G1a1dcuHABCQkJXn1WYmK0L0WIGMnJMaEuQthgXbjH+nGN9eIe68c1OdeL6cpVqITAboOc6ycYWD+usV7cY/24xnppz6cAzp8uXaqBxWINdTHCUnJyDMrKqkNdjLDAunCP9eMa68U91o9rcq+X7BgDBEEI2DbIvX4CjfXjGuvFPdaPa5FQLyqV4HWDlk+jUKakpKCkpAQtLS0AgJaWFpSWlrZLtSQiIqLgEtgPjohI0XwK4BITEzFgwADs3bsXALB3714MGDDA6/RJIiIiIiIi8lyHKZTLly/Hhx9+iPLyctx3332Ii4vDvn37sGzZMixatAgbNmxAly5dsGrVqmCUl4iIiIiIKGJ1GMA988wzeOaZZ9q9np6ejnfffTcghSIiIiIiIqL2fEqhJCIiIiIiouBjAEdERERERCQTDOCIiIiIiIhkggEcERERERGRTDCAIyIiIiIikgkGcERERERERDLR4TQCgaZSCaEuQlhj/bRiXbjH+nGN9eIe68c11ot7rB/3WD+usV7cY/24pvR68WX7BKvVag1AWYiIiIiIiMjPmEJJREREREQkEwzgiIiIiIiIZIIBHBERERERkUwwgCMiIiIiIpIJBnBEREREREQywQCOiIiIiIhIJhjAERERERERyQQDOCIiIiIiIpkIeABnNptRWFgY6K+RHbPZjLFjxyI/Px/5+flYuXKl2+VnzZqFjz76KEilCy6z2YwRI0agpaVFfG3Hjh3IzMzEW2+9FcKShZeqqirccMMNWLFiRaiLEnLcZzzHc7B7ntRPpNUhzzXu7d+/H5MmTUJ+fj7Gjh2LJ598MtRFCguNjY148cUX8atf/Qpjx47FpEmTcOjQIbfrFBcX45133glSCUPHbDZjwoQJsFgsTq9F0nmlLcd98MSJE3H77bfj4YcfxjfffBPqYsmGJtQFiGSvvfYaMjIyQl2MsJCcnIxPP/0Ut956KwDg/fffx6BBg7z6jObmZmg0yt2l9+zZg6ysLOzbtw9PPfUUdDqdx+taLBYIggBBEAJYwuDyxz5DRO115lyjdKWlpXj22Wexa9cupKSkwGq14sSJE6EuVlhYtmwZ6urqsG/fPuj1ehQWFuKBBx5AbGwsbrzxRpfrnDt3Du+88w5mzJgR5NIGX11dHXbv3o3JkyeHuihhQ3of/OGHH+K3v/0tNm/ejKFDh4a4ZOEvaCmUW7ZswdSpUzFp0iTMmDED33//vfheZmYmNm7ciKlTp2LUqFE4ePBgsIoVVmpqarBkyRJMmzYNeXl5WL58uVMLw7/+9S/MmjULt99+O9asWRPCkvrf5MmTsXPnTgDA2bNncfXqVfGg/ve//40ZM2Zg0qRJyMvLw759+8T1Zs2ahTVr1mD27NmYM2dOSMoeLDt27MCcOXOQkZGBw4cPAwDWrl2LRx99FA8++CDuuOMOPPLII6iurhbfmz9/PubMmYP8/HxcuXIllMX3O1/2mW+//RYTJkxw+pyJEydGxFO/tk97pf82m8149dVXMWPGDJjN5ohsxXRXP5HG1blm0aJFTvuF9N8lJSWYPXs27rjjDjz00EN46KGHFLsPlZeXQ6PRIC4uDgAgCAIGDBgAAPjvf/+LWbNmYcqUKZgyZQo+/vhjALZWptzcXKxatUq8vh85ciRUmxAQ586dw/79+7Fs2TLo9XoAQEZGBh566CGsW7cOAPD6668jLy8PEydOxMyZM2GxWPDcc8/h5MmTyM/Px7x580K5CQE3d+5crF27Fo2NjU6vFxUVYfbs2cjLy8PkyZPxySefAADWr1/vlJ11+fJl5Obmoq6uLqjlDpbRo0dj5syZ2Lx5MxobG8XjJT8/H0899RRqa2sBANXV1Xj66afFfem5554LcclDI2jNFZMmTcL9998PwBaIFBQU4G9/+5v4fnR0NHbs2IGvv/4ajz32GMaMGROsooXMvHnzxBPd/PnzceDAAdx4441YsWIFLBYL5s+fjx07duDOO+8EAJw8eRJvvPEGGhoaMHPmTAwbNgwjR44M5Sb4TW5uLrZt24aqqirs2rULkyZNwvHjxwEAAwcOxLZt26BWq1FeXo4pU6ZgxIgRiI2NBQAUFhZi8+bNim59O3HiBKqqqnDTTTehrKwMO3bswNixYwEAX3/9Nd5//30kJSXh6aefxoYNG7Bw4UIAwJEjR7Bz504kJCSEsvgB4cs+M2TIEJhMJnz55ZfIycnBkSNHoFKpkJ2dHeKtCb36+nq88847KC4uFm8koqKiQl0sCjJ355prWb58OXJzczFnzhycO3cOeXl5GDFiRJBKHFzXX389hgwZgttuuw25ubnIzs5Gfn4+1Go1CgoKsGnTJnTt2hWlpaWYNm0a9u7dCwCorKxEZmYmFi5ciC+//BJPPPEEDh06pJjWzcLCQvTq1UsMbB2ysrLw6quvYteuXTh8+DC2b9+O6OhoXL58GSqVCkuXLsWqVavEh3FKNnjwYAwePBjbt2/H7Nmzxdfnz5+PO++8E9OnT8dPP/2Ee+65B/v378fkyZNx5513YsGCBdBoNNi7dy/MZjNMJlMItyKwhg4disOHD+Mvf/kLYmJi8N577wEAVq9ejU2bNuHxxx/HypUrYTKZsHv3bqhUKlRUVIS41KERtDve48eP4/XXX0dVVRUEQcDp06ed3h8/fjwA28FeWlqKhoYGMbhRqrYplAsWLMC3336LN954A4Dthqpbt27i+5MmTYJGo4FGo8H48ePx+eefKyaAEwQB48aNw759+/DBBx9g+/bt4s14RUUFFi9ejKKiIqjValRVVeHUqVPIysoCAOTl5Sk6eAOA9957D/n5+RAEAaNHj8by5ctRUlICALjtttuQlJQEAJg2bRqWL18urnfLLbcoMngDfN9nZs2ahW3btiEnJwdbt27FPffcE+ItCQ+Oc3CPHj3QpUsXXLx4Eenp6SEuFQWbu3PNtXzxxRd45plnAABpaWm4+eabg1HUkFCpVNiwYQMKCwvx1Vdf4dChQ9i8eTMWLFiA4uJiPPjgg+KygiCgqKgI8fHx0Gq1mDhxIgAgJycHBoMBP//8M66//vpQbYpfWa1Wt+9/9NFHuOuuuxAdHQ0AiI+PD0axws5jjz2GX//615g2bRoAW719//33mDp1KgCgX79+GDBgAI4ePQqz2Yz09HT885//xKhRo7Br1y4sXrw4lMUPOMd+dPjwYdTU1IgZeY2NjeKx8tFHH2Hnzp1QqWxJhEq9x+lIUO56LRYLHn30Ubz11lsYNGgQSkpKcMsttzgt4wjW1Go1AFt/JqUHcG1ZrVZs2LABPXv29GhZJfVnAoApU6Zg+vTpyMnJcTq5L1u2DGazGevWrYMgCBgzZgwaGhrE95X8NAqwnbj27NkDvV6P3bt3AwCampqwa9eudsu23S+U3oLiyz4zduxYrFmzBt999x2++OKLDgep4VsKAAAHlklEQVQQUgq1Wu3UgV56DAFwOt+q1Wqn9O1I0FH9RAJ35xrWj7OMjAxkZGTgnnvuwfjx42G1WpGZmYmtW7e2W7a4uLjda0q7hmdkZODMmTOorKx0aoU7evQoMjMzQ1iy8NK3b1/ceuut4oP6awW+jn1j8uTJeP/999GzZ09UV1dj+PDhQStrKBw7dgz9+/dHcXExCgoKFP0wqLOC1geuubkZKSkpAIBt27YF62tlxWw2Y9OmTeKNU0VFBc6ePSu+v3v3bjQ3N6Ourg4HDhxAbm5uqIoaED179sTjjz/eri9bdXU10tLSIAgCPvvsMxQVFYWohKFx6NAh9O3bF5988gkOHz6Mw4cPY8uWLWLKyccffyymEOzatUtx+4U7vuwzWq0WU6dOxcMPP4y8vDwYjcZgFzskevXqhWPHjgGw9REsLy8PcYnCC+vH/blGWj+lpaX44osvxPVycnLEB0oXLlzA559/HpLyB0NJSQn+85//iP++ePEiKioq0K9fPxQVFTlt+7fffiveoDc1NWHPnj0AbKntDQ0N6NOnT3ALH0A9evTA2LFjsWzZMjG4LywsxMaNGzF37lyMHDkS27dvR01NDQBbfy7A1n3G8VqkeOSRR7Bt2zbU1tZCpVJhwIAB4vFz8uRJnDhxQhzEY8yYMfjqq6+wZcsWxQ9+cujQIWzfvh333XcfzGYz3nzzTdTX1wOwjRFx8uRJAMDIkSOxefNm8dhiCmWANDc3w2g0Yt68eZg2bRpSUlLatb6RzeLFi7F69WoxfUWr1WLx4sVii9ygQYNw3333oaSkBGPHjlVM+qSUq5GonnzySTz77LP485//jMzMzIh7mrdz507k5eU5vTZs2DBYLBZ89dVXuPnmm7F48WKcPXsWffr0waJFi0JU0tDwZZ+ZPn061q1bh7vuuitYxQwZRzbDo48+ikWLFuHdd99FdnY2UlNTQ120sMD6aeXuXDNs2DB8+umnmDhxInr37o0hQ4aIyyxZsgQLFizABx98gL59+yI7O1tMlVOa5uZmrF27FufOnYPBYIDFYsFjjz2GgQMHYsOGDVi9ejVWrlyJpqYm9OzZExs3bgQAxMXFoaioCNOnT0d9fT3WrFmjmP5vDsuWLcMf/vAHjB8/HlqtFnq9HkuWLEFOTg6sVitKSkowY8YMqNVqREVFYevWrcjMzESfPn0wYcIE9O3bF6+99lqoNyPgunfvjvz8fGzZsgUA8PLLL2Pp0qV48803odFo8NJLL4lpgUajEaNGjcLOnTvxj3/8I5TFDoh58+ZBp9Ph6tWrSE9Px6ZNm5CVlYVBgwZh3bp1mDZtmjiC9ty5c5Geno6nn34aK1euxIQJE6BWq5GTkyOmcEcSwdpR4nInlJaWYty4cfjss89gMBgC9TVEEWvt2rWoq6sTBy0hz+zevRv79u3Dpk2bQl2UgOI52D3Wj3/U19eL/bMdg3e8+eab6Nu3b6iLFhaKi4sxdepUp1ZLIqLOCFgL3F//+lds27YNCxcu5IWRiMLGb37zG5w5cwZ/+tOfQl2UgOI52D3Wj/+cPn0aCxcuhNVqRXNzM+bOncvgjYgogALaAkdERERERET+E7RBTIiIiIiIiKhz/JZCefnyZSxYsABnzpyBTqfDddddh+eeew4JCQk4evQoli5dioaGBqSlpWH16tVITEzEqVOnsHTpUpSVlUGj0eCGG25AQUGBmM5y+PBhvPTSS2hpacGgQYPwwgsvRMyIcURERERERG35LYWysrISP/zwgziE+apVq1BVVYUVK1Zg9OjReOGFFzB8+HBs2LABZ8+exQsvvIDi4mJcuXIFAwcOhMViwRNPPIH+/fvj97//PWprazF69Ghs3boVvXv3xpIlS5CSkoK5c+f6o7hERERERESy47cUyri4OKf5p7KysnD+/HkcO3YMer1enHxw5syZOHDgAADbvCEDBw60FUSlwpAhQ3D+/HkAwCeffILBgwejd+/e4nr79+/3V3GJiIiIiIhkJyB94CwWC7Zv3w6z2YwLFy44zaeTkJAAi8WCyspKp3Xq6+uxY8cOmM1mAGi3XmpqKi5cuBCI4hIREREREclCQAK4559/HiaTCffee69Hyzc3N+Pxxx/HTTfdhFGjRgWiSERERERERLLn9wBu1apVKCoqwh//+EeoVCqkpKSIaZEAUFFRAUEQEBcXBwBoaWnB/PnzERsb6zSTetv1zp8/j5SUFH8Xl4iIiIiISDb8GsC98sorOH78ONavXw+dTgcAGDx4MOrr63HkyBEAwNtvv41x48YBsKVaLlq0CGq1GitWrIAgCOJn/fKXv8SxY8dw+vTpdusRERERERFFIr+NQvnjjz9iwoQJ6N27tzgNQI8ePbB+/Xp88803KCgocJpGICkpCR9//DF+97vfISMjAyqVLZbMzs5GQUEBAODQoUNYvXo1LBYLBgwYgBdffBEmk8kfxSUiIiIiIpIdvwVwREREREREFFgBGcSEiIiIiIiI/I8BHBERERERkUwwgCMiIiIiIpIJBnBEREREREQywQCOiIiIiIhIJhjAERERERERyQQDOCIiIiIiIplgAEdERERERCQT/x8xHfI4fUL6CgAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
    " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "ammonia = pd.read_csv('http://openmv.net/file/ammonia.csv')\n", "datetimes = pd.date_range('1/1/2020', periods=ammonia.shape[0], freq='6H')\n", @@ -1223,22 +499,11 @@ }, { "cell_type": "code", - "execution_count": 45, + "execution_count": null, "metadata": { "hide_input": true }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5IAAAFOCAYAAAD0EiJvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xl41NXZ//H3zGQm+x6yE0jYFxFZRNlEqBuiRfto1brUiigKKk+fp1Jri9haRa3WCnXFVlof6tofSt1BRUVQQRbZIYQlk32fzExm+/7+CERjFiYhIRA+r+viMnzPd873ziJX7jnn3LfJMAwDERERERERkSCZuzoAERERERERObkokRQREREREZE2USIpIiIiIiIibaJEUkRERERERNpEiaSIiIiIiIi0iRJJERERERERaRMlkiIiIiIiItImSiRFRERERESkTZRIioiIiIiISJsokRQREREREZE2USIpIiIiIiIibaJEUkRERERERNokpKsDOBHY7fauDkFERERERKRLpKent/k1WpEUERERERGRNlEiKSIiIiIiIm2iRFJERERERETaRImkiIiIiIiItMkJWWzn1Vdf5dVXX+XRRx8lKyuLXbt28dxzz+HxeOjRowdz5swhNjYWoNWxY+H1evF4PACYTKZjnk9OXIZhAGCz2bBarV0cjYiIiIjIie+ESyRzc3PZvXs3SUlJQP0v+U8++SS33347AwcO5PXXX+ell17itttua3XsWLjdbgAiIiKURJ4iDMOgrq4Ov99PWFhYV4cjIiIiInJCO6G2tnq9XpYsWcKMGTMaEri9e/dis9kYOHAgAOeddx5ffPHFUceOxZFkQknkqcNkMhEWFobf7+/qUERERERETngn1Irkyy+/zIQJE0hOTm64Vlpa2rA6CRATE4NhGDgcjlbHoqKign7uD/um5Ofna4vjKSoiIqJdfXRERERERE4lJ0wiuWvXLvbu3cvPfvaz4/5su93e6O8ul0urkacol8vV5OdBRERERKQ7a89CygmTSG7btg273c7s2bMBKCsr44EHHuCiiy6itLS04b7q6mpMJhNRUVEkJSW1ONbdXHXVVQ3FYHw+H1deeSUXX3xxpz3voYceYsCAAVx22WWdMv9rr73GlClTiI+P75T5RURERET8AQOLWQtEneGESSSnT5/O9OnTG/5+++23c/fdd5OZmcnKlSvZsWMHAwcO5IMPPuDss88GICcnB4/H0+xYd7RgwQKys7PZt28fM2fOZMyYMY229nY1v9+PxWIJ6t7XXnuNkSNHKpEUERERkU6RX+3hzv/s44HzshiQFN7V4XQ7J0wi2RKz2czs2bN59tln8Xq9DS0+jjbWkQJrVmF8/mGHzwtgGvcjzGMnt+k12dnZREdHNzojumzZMlavXo3f7ycpKYn/+Z//ISEhAYfDwcMPP0xeXh5JSUkkJSURHx/PrFmzmqw6trQKuX79el544QU8Hg9+v59rr72WyZPrY77rrrsYMmQI27dvx2az8dBDDzV67VtvvcVrr72G1WrFMAzmz5/P6tWrKSsrY/78+dhsNu69914yMjJYsmQJmzZtwuv1kpOTw9y5cwkPD+ehhx4iJCSEgoICSkpKGDZsGHfeeSdWq7XZ+bOystr77RARERGRbmJPmQtvwGDNgRolkp3ghE0kFy9e3PDxgAED+NOf/tTsfa2NdVdbtmwhJiaGPn36APDBBx+Qn5/P4sWLMZvNLF++nL/+9a/ce++9LF26lOjoaJYuXUp1dTW33HILEydObNPz+vfvz1/+8hcsFgvl5eXccsstjB49mujoaADy8vJ45JFHml2NfOaZZ3jhhRdITk7G4/EQCAS49tprWbFiRcMKK8A//vEPIiMjeeqppxpe99JLLzFjxgwAtm/fzqJFi7DZbMybN48VK1Zw2WWXNTu/iIiIiEihwwvAeruDG0ckH+VuaasTNpE8kZjHToY2rhp2hvnz5wP1VWV///vfN1SW/fzzz9m1axczZ84E6reYRkZGArBx48aGVdqYmBjGjx/f5udWVlby8MMPc+jQISwWCzU1NRw8eJDBgwcDMGXKlBa3tJ5xxhksXLiQcePGcdZZZ7V4kHfNmjXU1tbyySefAPWtYI4kygDnnnsu4eH17ySdf/75fPrpp1x22WVBzy8iIiIip5aCGg8AB6s8lNR66RGprgwdSYnkSeTICt7HH3/MH//4R5YuXUpCQgIA1157LVOnTm3yGsMwWqxAa7FYGq3geTyeZu97/PHHGTt2LPfffz8mk4nrrruu0b1HErzm3H///ezYsYNvvvmG//7v/2bu3LmMGTOm2TjvuusuRowY0eJcxzK/iIiIiJxaCmq8JIaHUObysd7u4MJ+qs3RkcxdHYC03aRJkxg1ahTLli0DYOzYsSxfvpyamhqgPiHcs2cPAMOHD+e9994DoKamhs8//7xhnvT0dHbu3AnUV8nduHFjs89zOBykpqZiMpn4+uuvyc/PDypOv9+P3W5n0KBBXHPNNYwaNYrdu3cDEBkZicPhaLh37NixvPrqq9TV1QHgdDrZv39/w/jHH3+My+XC7/fzwQcfcMYZZ7Q6v4iIiIic2gocHs5IjyQ5MoQN9tquDqfb0YrkSermm2/mlltu4eqrr+b888+nqqqKu+66C4BAIMCPf/xj+vbtyw033MDChQv5+c9/TmpqKkOHDm3Y9jpt2jTuu+8+brrpJnr27MmgQYOafdbMmTP585//zLJly8jJySEnJyeoGP1+PwsXLsThcGAymUhOTubmm28G4PLLL+fhhx8mNDSUe++9l2uuuYa///3v3HrrrZjN9e9v3HDDDfTq1QuAYcOG8dvf/pbi4mKGDRvGtGnTWp1fRERERE5dTq+fKreftGgbIWYTH++rxus3sFrUCqSjmAzDMLo6iK72wwb0TqeTiIiILoqmY/l8PgKBADabjdraWu644w5uu+02Ro4c2dWhBa2ze1p+X3f63ouIiIicqnLL3cx9J49fTUgnxGzij5/k8/spPRmWGtnVoZ2Q2lNnRCuS3VxNTQ133303gUAAj8fDlClTTqokUkRERETartrt47n1xdw0Mpm4sFPvV/4CR309j7QoG2nRNmwWE+sOOZRIdqBT76fqFBMfH8+zzz7b1WEck3nz5nV1CCIiIiInla/ttazOq6ZPQijTByV2dTjHXUFNfeuP1Ggr4VYzZ6RF8sXBGm4amYy5hUKU0jYqtiMiIiIi0s3sKXcDsPag4yh3dk8FNR5iwyxEWOtb1J3dM5oyp4/dZfVflze2lbFybyX+wCl/yq/dWlyRXLVqVVATWCwWzjnnnA4LSEREREREjs2ewwnTjhIXFS4f8eGn1kbEwhoPaVG2hr+PzowixAxfHKih0uXjxW9KAHhrZwWzx6TRNzGsq0I9abX4E/Xss8+2WMXz+/bs2aNEUkRERETkBOEPGOyrcDMsJYLNRU7WHao55XooFtR4GZb6XQHFKJuFYSmRfH6gmk/3V9MrLpSfDE7g79+UsPDTfBZfko3NYsbh8eP0BEiOsnZh9CeHFhNJm83G/PnzjzrBjTfe2KEBiYiIiIhI+x2q9uDxG0zOiaW41svag45TKpGs8wUoc/lIi7Y1un52VjSL19X3k/yf8ekM6hFBbFgI81cdZMWOCi7oF8ev3ttPldvHM5f2ISrU0hXhnzRaPCO5cOHCoCZ48MEHOywYERERERE5NnsPn4/smxjG2T2j2VxYi8Pj7+Kojp8iR32hnR8mkmdlRmE1m7igbxyDetSvVg5Pi2R0RiSvfFvGQ5/mU1jjodYT4LWtZcc97s5WWOPp0DOhLSaSaWlpQU2QmpraYcFIy6666iquv/56brrpJn72s5/xm9/8hm+//faY5iwtLWXu3LlHva+wsJC33nqr0bV58+aRn59/TM8PxsaNG/nqq686/TkiIiIi3cWecjdhISbSo22cnRWN34C1B2u6Oqzjosrt4/82lwKQEdM4kYwJC2HxJdnMHJ3S6PrPz0imzh9gc6GTm0elMCk7hhU7Kyip9R63uDtbpdvHrLdyWfhpPl5/xySTQZ269fv9fP755+zbtw+3291o7JZbbumQQOToFixYQHZ2NgCrV69m3rx5PPzwwwwePLhd8yUlJfH4448f9b7CwkJWrFjBJZdc0nDtoYceatcz22rjxo24XC5Gjx59XJ4nIiIicrLbU+YmJz4Mi9lE/8QwesWGsmJnBVNyYjG10vqizOnFZDKRcJIW5sktdzN/1UGcXj/XDEsiJz60yT0pUbYm1zJjQ5kxMgW3L8BF/eMZlRHFZ/treGFDMbePSSXK1niLqz9gYDG3/HVc+k0xHr/BlUMTienkHp5Orx+nN0BSROtnOg9W1REwYN0hB498ls//js/Aajm2NihBfWZPPvkkBw4cYPjw4cTGxh7TA09Gq3KrWLm3slPmntInjsk5bf+aTpw4kR07dvDKK69w33334fV6WbJkCZs2bcLr9ZKTk8PcuXOprq5m1qxZvPLKK4SE1H+7f/e73zF27FiGDx/OLbfcwvLlywH4wx/+wMGDB/F6vWRkZPCrX/2K6Oho/vznP1NYWMiMGTPIyMhgwYIFXHXVVTz44INkZ2dz1113MXDgQLZu3UpZWRmTJk1i5syZAOTl5bFw4ULcbjd9+/YlPz+f6667jrPPPrvR53PgwIGG+wKBABdeeCGjR4/mzTffxDAM1q9fz+TJk7nmmmtYu3Yt//znP/F4PFitVm6//XYGDx7Mxo0befLJJ+nfvz979+7FYrFw991307t372bn/+lPf3qM3z0RERGRE8uRQjsX9IsDwGQyMW1gPIvXFbK12MXQlIgmr9ld5mLZ5lK+KaglLdrGXy/JOd5hd4jl28vxBwweuyibXnFNk8jWXDzguzOkPSKtXDY4gVe+LePLQw5GpkdyYb84cuLD+MemEj7eV8UffpTVsD32+8qcXt7YVo5BfQ4x68xUJvSOOerznV5/Q6uSYG0pquXxzwvwBAyWTO9DaEjLnR3t1fWrq5cPTuCNbeW8vKWUa4f3aNPzfiioRHLjxo089dRThIeHH9PDpGMNGjSINWvWAPCvf/2LyMhInnrqKQCeeeYZXnrpJWbMmEHv3r1Zt24d48aNo6qqik2bNvHrX/+aqqqqRvPNmTOn4Y2CJUuWsGzZMmbOnMldd93FU089xTPPPNNiLEVFRTzxxBM4nU5+9rOfMXXqVDIzM/njH//IFVdcwXnnncfOnTu57bbbmn398uXLGTNmDNdffz0ANTU1REdHc+mll+JyuZg1axYA+fn5/OMf/+Dhhx8mMjKSffv2MW/ePF5++WUAcnNzmTNnDsOHD+fdd9/lwQcf5Jlnnml2fhEREZHu5kihnb4J37WzOKd3DEs3lvDmjvJmE8lFawspd/k4LSWCTYVOCmo8Tc4XnujqfAHWHnIwoVd0m5PI5lwzLIkzM6P4NK+aj/OqWXfIgdkEJsBiNvHWjopmE8k1B2owgHkTMnh1axnPfF3EWT2jsFpaTvJ2lrqY9/5+HruoN9nxwbUheW93JU99WUhsmIWaOj9f5TsY36vlhNVe48FmMXHd8B7Yazy8u6eSK4Ymtpp8Hk1QiWRmZiYOh+OUTSQn58S2a9WwsxnGd/ub16xZQ21tLZ988gkAXq+XPn36AHDhhRfy3nvvMW7cOFauXMm4ceMIDw9vkki+9957fPjhh/h8PtxuN5mZmUHHMmnSJMxmM1FRUfTq1Qu73U58fDx5eXlMmTIFgAEDBpCT0/w7XMOGDePpp5/G5/MxfPhwzjjjjGbv++qrr7Db7dx5550N1/x+P+Xl5QBkZGQwfPhwAM4//3wee+wxamtrg55fRERE5GS2r6L+GFrO9xLJ0BAzF/SN4/WtZRQ5PI22d7p9AQ5U1XHF0EQm9Y5l1lu5bDy8Mnky+SrfgdsXYGIQq3/BMJlM9EsMp19iONcN78GaAzXsLHVxYf94PtxTyYqdFZS7fE22AX+6v4bs+FDOzoom3Gpm/qqDfHHQ0WpcmwtrCRiwudAZVCJpGAavbyujf1I4903OZPaKfXyUW3XURDIt2obZZOLi/vGsPejg0/3V/KhPXPBflB8IKpGcM2cOTz/9NKeffnqTra3qIdl1du7cSe/evYH6H6i77rqLESNGNLlv4sSJLF68mKqqKt59911mz57d5J7Nmzfz5ptvsmjRIuLi4vjwww9ZsWJF0LHYbN/9Y2M2m/H7/Q2Jbmt78Y8455xzGDJkCF9//TXLli3jnXfe4Te/+U2T+wzDYPTo0dxzzz1Nxg4cOHDM84uIiIiczPKrPZhNkPaDs4BT+8fxxrYy3t1dyQ1nJDdczy13EzCgb0IYadFWkiOtfFNQy0X9T652IavzqokPD2FIctNVwmNltZg5JzuWc7Lr86AL+8WzfEcFH+6p5MrTkhruK3Z42Vnq4rrDW0aHpUaQEmXl/T2VrSaSu8rqk/+dpa6g4jlQ5aHI4eUngxOJsFqY1DuGf28vp9LlI66F8632ag89Y+t/Jk5LiaBXbCj/CeLcbGuCWsv8+OOP2bFjB2vWrGHlypUNf1atWtWuh8qx++yzz1i+fDlXXnklAGPHjuXVV1+lrq4OAKfTyf79+wEICwtj3LhxPP/88zidToYNG9ZkPofDQWRkJDExMXg8Ht55552GsYiICGpra9scY1RUFL1792blypUA7Nq1i9zc3Gbvzc/PJyEhgQsvvJDrr7+eHTt2NPvs0aNH89VXX7Fv376Ga0fuPTLP5s2bAVi5ciXZ2dlERka2OL+IiIhId5Jf7SElytqkkEpihJXRGVGsyq3C970WELsPJzH9EsMxmUyckRbJliJno3tOdI46P+vttUzoFd1qEZyOkh5jY3hqBO/uqWzUTuOzA9UAjM+KBsBsMnF+nzi2FDnJr/Y0O5dhGOw6nEC2lkh+ne8g7/Bq81eHHACMyogEYFJOLAEDPt1f3exr/QGDQoeH9MOrzCaTiakD4sitqGNHSXDJa3OCWpF8++23WbhwYZu2OkrHmz9/PlarFbfbTe/evXnooYcaKrZec801/P3vf+fWW2/FbK5/f+CGG26gV69eAFx00UXccccd/OIXv2h27jFjxvDBBx9www030KNHD/r379+QbPXp04eePXty4403kpWVxYIFC4KO+de//jUPP/wwr7zyCv3796dPnz5ERkY2ue+jjz7iww8/xGq1YjKZGlZNJ0yYwO9+9ztmzJjRUGznnnvu4ZFHHqGurg6fz8fQoUMZOHAgAH379mXlypUsWrQIi8XCr3/961bnFxEREelO7DUeMlrYlvqjPrGsO+Rgfb6DMT3rk509ZW4SI0KIP7ySNTwtgvf2VLK71MWgNqzulTm9xIWFHJdE7ofWHqrBFzA6bFtrMC7sH89Dq/P58pCDs7OiMQyDT/Oq6ZcYRur3vv5T+sTyf5tLeH9PJTeOSG4yT6nTR6XbT3q0FXuNlzKnl8QfVGAtdXp5cPUhkiKsLJqWzZf5DvokhDXclxUbSp+EMFblVnHJwIQmzyiu9eIL1CfAR0zKjmXpNyW8v7eqTd/n7zMZ3z9o14I777yThQsXEhYW3OHPk43dbm/0d6fTSURExy+Ln4pcLhdhYWGYTCby8vKYO3cuS5cuJTo6usOfdaQoVGtFgY5G33sRERE5WQUMg5++vIsL+8Vx08iUJuP+gMFN/28vfRNCuXdSTwBufXMvveJC+fXE+gUjR52f617fzRVDE7lmWHBVPbcVO/ntygNc0C+emaOaPrezLfw0n12lLp6f3qfd2zTbyh8wuH1FLuEhZh67qDffFNSy4KND3Do6pcm24Ac+OURehZvnpvdtMs/nB6p5+FM7N49K5rmvi5k3IYOzs6Lx+APYDhfoef7rIlbsrMCgvurqv7eVc9WwJK763rba5dvLeWFDMc9P70OPyMaJ6Pp8B/d/fIiHzstqlDQ++lk+W4qc/O3yvmRmZLT5axDU1taLL76Yv/zlL+zatYuioqJGf0Ra8+233zJjxgxuuukmfv/73/PLX/6yU5JIERERkVNdmdOHx280bGH8IYvZxJScWNbbaylzenHU+Smo8dIv4buCmlGhFvolhrHBXksQ600UO7w8tDofXwBW7q2k1uMHoNbjZ1NhLavzqsktdx9llvYLGAZbipwMS408bkkk1H8t/2tIIrkVdXyZ72DpxhJSoqzNFq8Z1COc4lof1XX+JmO7St2EmE1MzoklxGxiZ6kLe7WH61/bw1++KKDc5eO9PZWcmxPLyPTIhtYiZ2ZENZrn9NT6BHFzYdPjaPaa+m2131+RBBiRHkWl209eRV27vgZBbW1dsmQJAOvXr28ydqTtgkhzRo8ezejRo4/Ls4YPH35Mq5EiIiIiJ7MjCUNGTMsVV3/UJ5bXtpbx1o4KhqfVHzfqm9h41+H4XjEsWV/Mf3ZVMG1A062SR3j9Bn9cfQhfwOC/x6bx2JoCVuVWMTknlrnv5FHkqO9dGGUz88ylfYgKbVufxGDkVdRRU+dnWDNtTTrbpOxYXt5SxhNfFFDrCTB3bFqTs6lAQyuW3HJ3w9f8iN1lLnLiQ4mwWsiJD2VnqYuDVXV4AwFW5laxwe7A6zf4yZAEDAO+KdhHfHgI2fGNW5xkxYUSG2phc6GTKT9IZvOrPUTazMT84Ot/xuFYNthrGT+07Z9/UInkqZYsBvPui3RP+t6LiIjIyepIQZfWEsm0aBs/6hPLv7eXs/fwSuH3e04CTBsQz7dFTpasLyYzJrRJ8nPEJ3lV7Kuoa9iO+Z9dFby9q4KdpS5Kar38clw6EVYzf/j4EK9vK2tULbajbClyAnBa6vFPJEPMJq4YmsjidYX0jgtt8YxmzuGWHnt+kEj6AwZ7ytyc17c+8RuQFM5/dlUQMODnZ/TAbDLxwoZixmVFkxlTnzjOOjOVsBBzk9VXs8nEaakRbC5yYhgGAQO2lTgZ3COCgpr6Qjs/fE18eAg58aGstzva9/kHc1N5eTk2m42oqO+WUB0OBx6Ph4SElt+lOFlZLBbcbjehoaHHdYlcuo5hGNTV1WGxdPw7ZSIiIiLHg73aQ6jF1KS34Q/NHJXCvgo3m4ucpEVbm6wUmk0m7hqbxrz3DjB/1UGibWbSY0JZMLkn4db6k3EBw+CNbeVkx4dyVs/6HGFq/3geX1OAvcbLz05PakisJmXH8NaOCqb2j29yfu9YbS6sJT3aRlJEx84brHOzY9la5OTCfnGYW8gbokItpEZZGxJ3jz/AtmIXRQ4vdX6DfodXhPsnhfPWzgrSo21MG5CA1WJiUI9wMmO/e2Pg/L4t930clhLJZ/tryK/28GW+gxe/KeGifnHkV3sY3EJBnRHpUbyxraxdn3tQieQjjzzCrFmzGiWS5eXlPP300/zxj39s14NPZGFhYXi9XpzO+nc4lEx2b0dWIW02G1Zr1/wjJCIiInKs8qs9pMc0XXn6odAQM/MmZPLLd/MY3KP5BCPCauG+KT35cE8leZV1fH6ght1lLoal1q+orTvkIL/awy/HpTc8b1xWNP/YWEJqtI2fDE5smOtnp/fgs/01vLSphLvGph/z51nk8OD2GWTE2Pi22MWk7ONXrfWHrBYTc8cd/XPKSQhrOCv6ypYyXt1an7yZTfVnKAGGpUSQFm3l1jNTGrbI9k8Kb37CZgw7vCq75mAN/297OdGhFt7ZXQk0PR95xIj0SF7b2omJpN1uJysrq9G1rKws8vPz2/XQk4HValVSISIiIiInDXuNp8l5x5YkR1lZPC2b0JCWa28mhIdw5WlJVLl9fH6ghn0VdQxLjcQwDF7fWkZqlJVxWd8VUbRazDwxNZtwq7lRG5AekVYu7B/H2zsr+MWIZGLCgkpBWvTEFwXsKHFxQb843L5Al5yPbKs+CWGsOVBDtdvHytwqhqVGcN3pPYgJtZASVZ/kxYWH8PSlfdr9jNQoKz0iQnh5Syn+ADw+tTdv7ihnVW51iy1hBiaFE2kNqv5qE0G9KiYmhsLCwkbXCgsLVX1TREREROQE4PUHKK71tlixtTkxYSGtJpJHxIaFkBge0rA1M7eijt1lbn48KKFJ38ioUEuzvSQnZ8fiN+CLg8Gfxyt1eqnzBRpd8/oD7Cp1Y7WYeXtX/Wrb0JMkkQR4Y1s55S4fF/WLo39SeKOek8fKZDJxWmokvgCc0zuG7Pgwbh+Txv+MS2dMz6hmX2Mxm5g5un0tW4J6O+Dcc8/lT3/6E1dddRUpKSkUFhby8ssvM3ny5HY9VERERERE2s/p9ePyBhqa0hc4vASM1gvtHIuchDByK+oTySMtJs7qGfyiUnZ8KBkxNlbvr+aCfi2f8zvCUefn9rdyiQ0L4bYzUxuK1ORW1OENGNw1No295W5qPQFij3GF83joc7jK6ls767ecjs7onAW5cVnRrM93cM3p9T0mQ8wmJrRQBOiISdmx7XpWUF/16dOnExISwj/+8Q/KyspISkri3HPPZdq0ae16qIiIiIiItN+fPrOzucjJrDNTmZwTy8Gq+l6AnZdI1lf3rPMF2FLkJCPGdtSiPt9nMpmY2CuGf20ppczpbUiAW/JlvgO3zyDCbzB/1UFuHpXMtAEJ7ChxATA4OYLxvbrubGRbxYSF0CMihBKnj3N6xzTbJqQjjMqI4sWf9D0uNV6C+u6bzWYuvfRSLr300s6OR0REREREWnGouo6v7bXEhFp44osC3txRzv7KOiwm2rS1tS1y4sMIGLC33M22YhfntKPAzfhe0SzbUsqaAzVcMrC+84O92sPL35Yyc1QKkbbvqsd+cbCGpIgQ/npJDvetOsjy7eVM7R/P9hIXKVHWNiWxJ4qchDBKnA6m5LRvBTBYx6tQaIubou12e1ATBHufiIiIiIgcu7d3VhBiNvHnqb35yeAEzCYTlw9O5PGp2Y2SsY50pBfiB3urcPkCnNaOc4mZsaFkx4fy8b5q/AEDp9fPA58c4uN91aw9WNNwn9Pr5xt7LWf3jCY0xMwF/eIorvWxrdjFjhInA9tQyfREckHfOC4ZEE9OQnAFkU50LSaSv/71r4Oa4De/+U2HBSMiIiIiIi2r9fhZmVvNhF7RJEZYuf6MZB67qDfXDe/6Uh3KAAAgAElEQVRBr7jQTntuj8gQom1mVudVAzC0hb6ER3NB3zj2lLu5+/39PPqZHXuNh0irma/ttQ33rM+vxRswOPtwRdizekYTFmLm5W9LqXD7Gdjj5EwkR2ZEMWNU+wrbnIhaXBOuq6tj/vz5R53A5/N1aEAiIiIiItK8VblVuH0Bpg1IOK7PNZlMZCeEsbnQSc9YG3Ht3Fp6Yb84Im0Wnv26iN1lbm4c0YP8ag+f5tXg9RtYLSa+OFhDXJilYeUxLMTM2KwoVuXWJ7En64pkd9PiT8Ctt94a1ARTpkzpsGBERERERKRl7++pZEBSWND9IjtSTnx9Itmeba1HmEwmJvaOYVhqBDtLXJyZGcWXhxy8v6eK7SVO+iSEsd7uYFJ2bKM2Iudmx7Iqt5qwEHOnrrxK8FpMJCdNmnQcw6j38MMPU1JSgslkIiwsjF/84hf07t0bu93O4sWLcTgcREVFMXv2bNLS0gBaHRMRERER6S7yKtwcqPJwSzv7/h2rI70QjyWRPCIuLIQxh9uHDEuNxGo28VW+g0/3V+PxG5zft3GLkKEpEfSICCEzNrTZPpVy/JkMwzC6OogjnE4nERH1P5hfffUVr732GgsXLmTBggWce+65TJw4kdWrV/PRRx81bLttbSxYKhgkIiIiIie6f2ws4Y1tZfzt8r7EdUHvxDpfgHd3VzK1f3yHt6+4b9VBdpW5qPUEuGxQAj8fkdzknoIaDzaL6aitQ6Tt0tPT2/yaFovtdIUjSSTUJ5Umk4mqqir27dvH+PHjARg/fjz79u2jurq61TERERERke7CMAw+21/NsNTILkkiAUJDzPx4UEKn9EAclRFJrSdAerSNq4clNXtPWrRNSeQJ5IRrwPL000+zadMmAO655x7KyspISEjAbK7Pec1mM/Hx8ZSWlgK0OBYTE3xvm/Zk4CIiIiIinW1PiYOo0BDKaj0UOrzcPL5Pt/zd9bKYRD496OJXP+pPdnrn9lmUjhFUIvnmm29y6aWXNrm+YsUKpk2b1qEBHSnys3r1av75z3/y05/+tEPnb462toqIiIjIiSZgGMx4dTduX4DUaBshZhMDo/3d9nfXhT/KAGqxf68ViBwfnba19fXXX2/T9Y4wceJEvv32WxISEigvLycQCAAQCASoqKggKSmJxMTEFsdERERERE5mJbVear0BchLCKHJ4GZMZRZTN0tVhiQBHWZH89ttvgfoE7cjHRxQVFREe3nE9XNxuNw6HoyEJ/Prrr4mKiiI2NpbevXvz2WefMXHiRD777DOys7Mbtq62NiYiIiIicqLbXuzkk7xqrh6WROz3zj8eqPQAMGNkChkxNmydcDZRpL1ardp6++23A1BaWtpolc9kMhEXF8f06dMZNWpUhwRSWVnJI488gtvtxmw2ExUVxXXXXUdOTg75+fksXryY2tpaIiMjmT17dsPya2tjwequ2wNERERE5MRVXefnybUFfHnIAcCPB8bzi5HftfZ4Y2sZL24s4aUr+mklUjpVe7a2BtX+Y9GiRcyePbtdQZ0MlEiKiIiIyPG2aG0Bq3KruGZYD3Ir3Ky3O3huel9iQuuTxie+sLOxwMnfLu/bxZFKd9dpZyS/n0QGAoFGf0REREREpG3yKtyszK1i6oB4/mtoIj89LQm3z+DtnRUN9xyo9JAVa+vCKEVaFlTV1tzcXJYsWcKBAwfweDyNxl5++eVOCUxEREREpDsyDIO/bSgmwmrmp0Prj4/1igvlzMwoVuws58eDEggNMXGouo7z+sR1cbQizQsqkVy8eDEjR45k1qxZhIaGdnZMIiIiIiLd1qZCJxsLndw0Mpno0O/OPv7XkER+dcjBR/uqGJUehdtn0DNWv3vLiSmoRLK0tJSrr74ak0mVokREREREjsWaAzWEh5i5qF98o+sDksLJjg9l5d4qkiOtAPTU1lY5QQV1RnL06NFs2rSps2MREREREen2NhXWMjQlAmsz7Tym5MSyp9zN5weqAbQiKSesoFYkvV4vjz76KAMHDiQurvE+7e5czVVEREREpCMVOTwUOrxMGxDf7PjE3jH8bUMxH+VWEx9mabT1VeREElQimZmZSWZmZmfHIiIiIiLSrW0udAJwempks+OxYSGMzoxi7UGHViPlhBZUInnFFVd0dhwiIiIiIt3e5kIn8WGWVs8+Ts6JrU8k45RIyomrxURy27ZtDB48GIBvv/22xQmGDh3a8VGJiIiIiHQTaw5Us7nQyc9HJLOpqJbTUyNbLWI5Mj2KcVnRjOsZfRyjFGmbFhPJJUuW8Kc//QmAp556qtl7TCYTixYt6pzIRERERES6gXd2V7K50Mm2YhdVbj+np0a0en+I2cSvJmQcp+hE2sdkGIbR1UF0Nbvd3tUhiIiIiEg3ZBgG17++h9gwC/ZqD34Dnp/ehx6H23uInAjS09Pb/JqgzkgC+P1+du7cSXl5OYmJifTv3x+LRVWkRERERERaUun2U13n58qhiWTGhrK33K0kUrqFoBLJ/Px8Fi5ciMfjITExkbKyMqxWK3fffbequYqIiIiItCCvsg6A3vGhnJYSyRlpzVdrFTnZBJVIPv/88/zoRz/ikksuaTgY/Oabb7JkyRLmz5/fqQGKiIiIiJys8ircAPSKC+viSEQ6ljmYm/Ly8pg2bVqj6lIXX3wxeXl5nRWXiIiIiMhJL6+yjsTwEGJCdSRMupegEsmEhAS2bdvW6Nr27duJj4/vlKBERERERLqD/ZV19I5XP0jpfoLa2nr11VezcOFCRo4cSVJSEqWlpWzYsIE5c+Z0dnwiIiIiIiclX8DgYFWdzkVKtxRUIjlq1CgWLlzIF198QUVFBT179uTKK69sV5lYEREREZFTQX61B18AesdpRVK6n6Dbf6Snp3P55ZdTU1NDdHR0o/OSIiIiIiLS2JFCO73jVWhHup+gEsna2lpeeOEF1q5di8/nIyQkhLPOOosbb7yRqKiozo5RREREROSkk1dZR4gZMmJsXR2KSIcLqtjOX//6VzweDwsXLmTp0qUsXLgQr9fLX//6186OT0RERETkpFPp8rHmQA1ZsaGEmLWTT7qfoBLJrVu3MmfOHDIzMwkNDSUzM5Pbb7+9SSVXEREREZFTXaXLx70rD1Dh8jFjZEpXhyPSKYJKJNPT0ykuLm50rbS0VMV2RERERES+xzAMHlydT7HDy+/O7cmQlIiuDkmkUwR1RnLo0KE88MADTJgwoaH9x6effsrEiRNZtWpVw32TJ0/utEBFRERERE5020pc7Ch1cevoFIYqiZRuLKhEcvfu3aSmprJ79252794NQGpqKrt27WLXrl0N9ymRFBEREZHupKbOz2tby9hd5qLC5ee+yZmkRLVcPOfNHeVE28xMzok9jlGKHH9BJZLz58/v7DhERERERE44L35TzMrcKvolhlFc6+X1reXcNia12XsLazysO+jgJ0MSCQ0J6gSZyElLP+EiIiIi0mWq6/wsXlfA7jJXV4fSRKnTy0f7qrigbxwPX9CbKTmxrMytotzla/b+FTsrsJhhav+44xypyPGnRFJEREREusynedW8v6eKX723n2WbS/AHjKBfW+nysafM3eR6nS/A8u3l+NowV3OWby8nYMBlgxOA+v8GDIO3dpQ3udcXMFiVW8XYrBgSI6zH9FyRk4ESSRERERHpMt8UOEiOtDKxVwz/2lLGZ/urg37tsi2l3PPBfty+QKPr6w45eGFDMZsLa9sdV7Xbx3u7K5nYO6bhTGRatI1xWdG8s6sSR52/0f07S1zUegOMzYpu9zNFTiZKJEVERESkS3j9ATYXOhmdEcmdY9OIDrWwsQ3J34HKOur8BhsLaptcB8iv9rQ7tvf3VlHnN/jJkMRG1/9rSCJ1/gAvbmzcGu9ruwOLCU5PVaVWOTUEVWynqKio2etWq5W4uDjMZuWjIiIiIqcSf8DAYjYd0xzbSlzU+Q1GpEdhNpkYmhzBlkInhmFgMh19bntNfaL45SEHZ/X8biXwQFV9InnoGBLJ9fkO+iSEkRUb2uh67/gwpg9K4I1t5ZyVGc3IjCgANthrGZQcQYTV0u5nipxMgkok77jjjhbHzGYzI0eOZMaMGcTF6WCxiIiISHdX5PBw19t5nJsdw00jU9qdUG6w1xJiNjX0WzwtJYIvDtZQ5PCSGt1yiw2AWo+fSrcfswm+znc0Smz3Vx5bIun0+tlZ6uKywYnNjl8zLImv8x08ua6QJy/OxuMPkFdZxw3De7TreSIno6CWEm+55RYmTJjAE088wUsvvcQTTzzBhAkTmDFjBo8++iiBQIAlS5Z0dqwiIiIicgJYnVeN0xvgP7sqeeCTQ7i8gaO/qBnf2GsZkhxO2OFWGacd3ha6pcgJQG65u8lZxCOOrEaOz4qhqq4+8YP6QjtFDi8A+YdXJttqS5ETvwHD05rfpmq1mLlrbDo1dT4e/iyfLw85ABiRHtmu54mcjIJKJF955RVmzpxJamoqISEhpKamcvPNN/P666+TkZHBbbfdxrZt2zo7VhERERE5AXy6v4ZBPcK57cxUNthrebOZKqZHU+r0sr+qrlHy1TPGRlyYhS1FTvZVuPnlu3n8c1NJs6+3H15tnDYwnhBzfYEdgINVHgygX2IYFW4/Do8fp9fPnBW5rM93BBXbxoJawkJMDEwKb/GePglh3D4mjc2FTl7YUExiRAi94kJbvF+kuwlqa6thGJSUlJCRkdFwrbS0lECg/t2nsLAw/P7m3y0KVk1NDYsWLaKwsBCr1UpqaiozZ84kJiaGXbt28dxzz+HxeOjRowdz5swhNjYWoNUxERERETl2FS4f/9lZweVDEiit9bG/so6Zo1K4oF8c7+2pYHNhLT89LanZ1+4pc1Nd52NEelSj65sOF8gZnvpdImky1W9z3VLkxF7jIWDAeruj2TOT+TUeTEBOfCinpUTy5aEafn5Gj4bzkWOzotld5ia/2kOl28eBKg8rdlY0nGlszcYCJ0OTI7BaWl9zmZwTS6HDw8tbyhiZHhnUuU6R7iKoFcmpU6dy//33s2zZMt5//33+9a9/cf/99zN16lQANmzYQP/+/Y8pEJPJxKWXXsoTTzzBo48+SkpKCi+99BKGYfDkk09y00038cQTTzBo0CBeeuklgFbHRERERKRjvLyllFe3lvHnNQV8kleN2QTjDre5OC0lkh2lbuoOt+B4eUspy7eXYxgGRQ4P81cd4LHP7RhG456O20tcRNnMZP1gFe+0lAjKXT52l7kZlhpBca2v2eqr9moPyVFWrBYzY7Oisdd42VPuZn9lHVaziVGHE8b8ak9D0rqxsJZKt6/Vz7XI4cFe42F4WnDbVK8+LYk7zkrl6mE6HymnlqASyR//+MfMmjWLyspKvv76a8rLy5k1axbTp08H4Mwzz+See+45pkCioqIYMmRIw9/79etHaWkpe/fuxWazMXDgQADOO+88vvjiC4BWx0RERETk2NXU+VmVW0VKlJV1hxz8e1sZp6VEEBdev7FtaHIEvoDBzlIXZU4v/9pSygsbinl+fTELP7Xj8ASo8QSaJIM7S10MSArH/INVvNNS6hO44WmRzB6TCsCGgqYtQew1HjIOF+QZ3yuaUIuJ9/dUcrCqjsxYG+nRNkLMcKiqjo2FTtKjrQQMjtqnclNh/fnMM4JMJE0mE1P6xJEQHtRGP5FuI+if+OHDhzN8+PDOjKVBIBDggw8+YOTIkZSWlpKU9N1WiZiYGAzDwOFwtDoWFXX0bQsiIiIi0rr39lRS5ze4Z2IG/95ezsf7qpnQK6ZhfHByOGZTfYGaveVuAgZM6BXNip0VANxwRg9e/KaEHaUuMg+30nB4/Byo8jChd0yT52XE2PjvsWmcnhpJXHgIGTE21ttruXRgAr6AgWFAiBnyq70M6lNfDCfCamF8rxhW59UQFmLi9NRIQswmUqNsbCysJb/awy9GJLMyt4pP9lUzbUBCs5+rP2Dw7u4KUqOsZMS0XjVW5FQXVCLp8/n4+OOPycvLw+12NxqbPXt2hwf1wgsvEBoayoUXXsiXX37Z4fP/UHp6eqc/Q0RERORk4/MHeG/5PkZnxTN2SA4j+vdi9d5SJvfrQcj3zg8OTClkV4WPWo+foWkx/OmKkbzyzSGsFjOXDUvn/23/lP21pobfudbsKwNg/MCepKfHN3nu1d/73Wxiv1pe35hPIDyOua9vIikqlN9fPAS3byeDMns0zHnNWZGszF2P2wdDs5JIT0+nb0oZH++uL9Zz3rDeRESVsWj1XvzhcfSMb1qR9Y1N+ewtr+OBaUPIyEjpuC+kSDcUVCK5aNEi9u/fz8iRIzu9kM3SpUspLCzk7rvvxmw2k5SURGlpacN4dXU1JpOJqKioVsfawm63d1j8IiIiIt3Fqtwqih113DKqR8PvS0NjoLiosNF9AxOs/HtbOQYwc1QKBQUFTEi1AFBQUED/xFA27C9rmOPzHSWYTRBv1GK3u1qNoX+Mgccf4PqlX1LrDXCgwsWilVsBiDJcDXMmYtAz1sbBKg9xpjrsdjtJtvpzm/HhIYR7qhieACbgD//Zwi/HpRMVaqHS5cPjNwizmln0SS5DksMZEuPT74dySmnPwlpQieSmTZtYtGgRkZGd2xtn2bJl7Nu3j3nz5mG1WgHIycnB4/GwY8cOBg4cyAcffMDZZ5991DERERERaZsvDtSwo9TF9cN74PIG+Ps3xfRLDDtqf8ShyRG8sa0ci6l+W+sPDewRwVf5JVTX+YkJtbCj1EXvuFDCrUcv1zE0JQKbxYTbZzD/3J68sL6Yd3ZXAjTafmoymbioXzzPry8iJyGs0fjpqRGYTCZ6RFq5eVQKS9YXMfedPFKirHxb5MQALCYwgJtHpaj6qkgQgkokk5KS8Hq9nRrIwYMH+fe//01aWhr33nsvAMnJyfzv//4vs2fP5tlnn8Xr9Ta0+AAwm80tjomIiIhI26zYWc63xS6q3D5CzCZq6vzcd27PJgVxfmhQcjgWE4zMiCImrOmvl4MO92PcWeJiRHoku0rdTM5pej6yOTaLmf8el05cqIVByRH8fEQPFnx0CJvFRGJE42dN7R/HiPRIkiLqFyR6H64IO+J7hXMuHhBP38QwnviigDKnj5+elkhcWAgHquroFRdKdnxYUHGJnOpMxg9rMTfjrbfeYu3atVx00UXExcU1Ghs6dGinBXe8aOuCiIiInCqKHB6e/rKIib1jODfnuyNL/oDBNa/uIspmodRZ3yJj+qAEbhyRHNS8X+c76BlrIyWqaZGaOl+Aq1/ZxfRBCYzvFcPcd/L477FpnJPdviNTv//oILXeAA+d3+uo9+4sddEvMeyoybDIqazTtra+++67QP3W0+8zmUwsWrSozQ8VERERkePv63wHj62xU+sJUOPxN0okD1bV4fYZ3Dq6B4UODxsLnFw9LKmV2Ro70rexOaEhZnISwvjsQE1DK4+BPcLb/XnMm5iJwVHXQgAYkNT+54hIy4JKJBcvXtzZcYiIiIhIJ6r1+HlwdT49Y2306RnGyr1VVLl9xB7eirqrrL4yf/+kcM7NieXqYR37/OGpkby6tYyc+FBuHZ3S7MplsKwWE/Vlc0Skq6hzqoiIiMgpYHuJC1/A4Bcjkgm3mvlwbxXfFNQy6fD20t1lLiJtZtKjrZ3y/KuGJTFtYDxxzZyhFJGTT4v/J8+dO5fHH38cgFmzZrU4wVNPPdXxUYmIiIhIh9pa7CTEXL/V02oxERNq4Rv7d4nkrlI3/RLDO61iaYjZpCRSpBtp8f/mW265peFjVUIVERERObltLXbSNyGc0JD6lhtnpEXyTUEtAcPA4zc4UFXHmZlt68UtIqeuFhPJgQMHNnxcVVXVbH/GtWvXdk5UIiIiItJh3L4Ae8rcXDY4seHaiPRIPsmrZm+5G4/PIGBA/0QVphGR4By9Cyzw9NNPN3v9mWee6dBgRERERKTj7Shx4TdgSPJ3ieIZaZGYgA/21J+VBOifpB6KIhKcVjeqFxUVARAIBCguLub7LSeLioqw2dpfbUtEREREjo+txU7MpsYtN2LDQhidGcV7eyoBSImyNlRwFRE5mlb/tbjjjjsaPv7hOcm4uDiuuOKKzolKRERERDrM1mInOfFhRFgtja7Pm5DBnnI339hr6RUf2kXRicjJqNVE8uWXXwZg/vz5LFiw4LgEJCIiIiIdx+MPsKvUzdT+cU3GLGYTA5LCGZCks5Ei0jZHPSMZCAQoLy/H6/Uej3hEREREpAPtq6jDGzAY1COiq0MRkW7kqImk2WzGbDbj8XiORzwiIiIi0oF2lboAFdIRkY4V1InqqVOn8uc//5nLLruMhISERo1qU1JSOi04ERERETk2u8vcJISHkBhh7epQRKQbCSqRfOGFFwDYvHlzk7Ej5yhFRERE5MSzu8xNv0StRopIxwoqkVSyKCIiInLycXj82Gs8TM6J6epQRKSbOeoZSRERERE5Oe0pcwPQL1FVWUWkYwW1Iun3+3nvvffYtm0bNTU1jcbUFkRERETkxLS7rL7QTl9tbRWRDhbUiuSLL77Ihx9+yODBg8nNzWXMmDFUVVUxZMiQzo5PRERERNqoyOHBMAx2l7lJj7YRZbN0dUgi0s0EtSK5bt06HnjgAZKSknjllVeYOnUqp59+Os8++2xnxyciIiIibbDuYA1/XJ3PpOwYdpW6OD01sqtDEpFuKKhE0uPxkJiYCIDNZqOuro6MjAzy8vI6MzYRERERaaMv8x2EmE18sq8aA+in/pEi0gmCSiQzMjLYu3cvffv2JScnh1dffZXw8HASEhI6Oz4RERERCZJhGHxTUMuZmVGc3zeON7aWcWZGdFeHJSLdUFCJ5M9//nPM5vrjlDfccAPPP/88LpeLmTNndmpwIiIiIhK8Q9Ueypw+zkiLbPgjItIZgkokk5KSiIuLAyAtLY3f/va3AFRWVnZeZCIiIiLSJhsLagE4PTWiiyMRke4uqKqtd955Z7PX586d26HBiIiIiEj7fVNQS3q0jZQoW1eHIiLdXFCJpGEYTa45nc6G7a4iIiIi0rmq3T5qPf4Wx73+AN8WOTkjTauRItL5Wt3aOmvWLKC+auuRj49wOByMGzeu8yITEREREQB2l7m4b9VBesaG8uB5WZhMpib3bC9xUec3OF3nIkXkOGg1kZwzZw6GYfDggw8yZ86cRmNxcXGkp6d3anAiIiIip7rtJU7u/+gQvoDB9hIXW4tdDE1puuq43l5LiBlOa2ZMRKSjtZpIDh48GIAlS5YQGhp6XAISERERkXq7y1wsWHWI+HALvzu3J/Pe38/rW8uaJJKGYbDuUA2npUQSYbV0UbQicioJ6pDjBx98QF5eHgC7du1i1qxZzJ49m507d3ZmbCIiIiKnrINVdSz46BDRoRb+8KMs0qJtXDIwgQ0FteSWuxvfW+2hoMbLmMyoLopWRE41QSWS//nPf0hOTgZg2bJlTJs2jcsvv5wXX3yxU4MTERERORX5Agb3f3QIiwnun9KTxAgrABf1iyPCauaNbWWN7v/yoAOAM5VIishxElQi6XQ6iYiIwOVykZeXx0UXXcTkyZOx2+2dHZ+IiIjIKefbIifFtV5uHZ1KWvR3rTwibRbOzYll7UEHTu93FVzXHaqhb0JYQ8IpItLZgkokExMT2blzJ59//jmDBg3CbDar/YeIiIhIJ1lzoIawEDMj0ptWYJ3QKxpvwGDd4VXICpePXWVurUaKyHHVarGdI6699loee+wxQkJC+OUvfwnAhg0b6Nu3b6cGJyIiInKqCBgGZpMJf8Bg7cEaRmdEEhrS9E37AUnhJEWE8Nn+as7NieWLgzUAOh8pIsdVUInkiBEjeOaZZxpdO+usszjrrLM6JSgRERGRU0mxw8tdb+9jxqgUkiJCqKrzMzYrutl7zSYT43vFsGJnOYeq6vi/zaX0TwyjV5wq7IvI8dPuvakhISGEhASVh4qIiIhIK3aWuqj1Bli8roBlm0sJtZgYmd7yCuP4XtH4AnDvhwdweQPMOTsNk8l0HCMWkVPdCZUJLl26lHXr1lFSUsKjjz5KVlYWAHa7ncWLF+NwOIiKimL27NmkpaUddUxERETkZHCgqg6zCVKibGwrcTE2K7rZba1H9E0IIzXKSqHDy/XDe5AVq9VIETm+TqhqOWeeeSYLFiygR48eja4/99xzXHDBBTzxxBNccMEFPPvss0GNiYiIiJwM9lfWkR5t43eTMhmQFMa0AfGt3m8ymbh8cCJjs6KZPijhOEUpIvKdEyqRHDhwIElJSY2uVVVVsW/fPsaPHw/A+PHj2bdvH9XV1a2OiYiIiJwsDlTVkRUXSmq0jYcv6M2Q5IijvuaCfnHcPSEDi1lbWkXk+At6a+vmzZv5/PPPqaqqYt68eezduxeXy8XQoUM7Mz7KyspISEhoaDViNpuJj4+ntLQUoMWxmJiYoJ+Rnp7e8YGLiIiIBMHt9VNYs4NLTsvU7yQictIIKpF85513ePvtt5kyZQpr164FwGaz8be//Y0//OEPnRrg8WC327s6BBEREeki/oABcFxX9gpqPLy1o5wbRySzv9KDAcRb6vQ7iYh0ifa8iRVUIvn222/z29/+luTkZJYvXw5ARkbGcfnHLjExkfLycgKBAGazmUAgQEVFBUlJSRjG/2fvvsPbrM6Hj3/Po+EpyXvFduzYTpyEbLIHCUmAMMuG0sEoUGgDpaVQ2h8tlLJampfSpKwCbSmrEEiYISF7TzKdxHG895Yl2bIsPef9Q4mDiWM7wXZsOJ/r8nUlGo+OZEl+7nPuc9/ylNcpiqIoiqJ0xV82lKAJwQPTB/TaY35x1M4n2fWMiA2hyasDkKzadyiK0o90aY9kU1PTScGZ1+vtlfYfNpuNlJQUNmzYAMCGDRtITU3FarV2eJ2iKIqiKEpnfLpkd1kjWZWNvfq4+yr8j7cm305BfTMmTRAfau7VMSiKomzShMcAACAASURBVHwTXYoEhw4dypIlS7jqqqtaL/vss88YPnx4tw7m1VdfZdu2bdTX1/PYY49hsVhYsGABt99+O4sWLWLx4sWEhITw85//vPU+HV2nKIqiKIrSkRKHhyavTpMXGpp9WAMM1Dd5KXe2kBkd1COP6fbq5NQ0YTYIdpS4GBTuJdFmVkVzFEXpV4SUUnZ2o7q6Op5++mkcDge1tbXExMQQHBzMgw8+SFhYWG+Ms0ep/QiKoiiK8t208mg9z20pB+CJOckMjw1m0dYyvjhq55HzkxgVF9Ltj7m7zMUfVhXxg1FR/HePv3jgzFQr901RhXYURTk7emyPZHh4OE8++SQ5OTlUV1cTGRlJenp6a7VURVEURVGUvqCh2ceq3HouGxLRpRW+IzVuDAJ8EgrszQyPDeZQVRO6hGc2lLJgXgrRIaZuHeO+ikY0AZcMCWdVbgOlDg8DbWp/pKIo/UuXI0EhBBkZGUycOJH09HQAdF3vsYEpiqIoiqKcrjf2VPHarip2ljrbXC6l5LPsOiqdLW0uP1LjZlhMMCEmjcL6ZlweH0V2DzNTrLT4JE+vL2mt6tpd9lc0khEZSLDJwMxUf10HVWhHUZT+pksrkrm5ubzyyisUFhbi8XjaXPfOO+/0yMAURVEURVFOR6WzhS+O1gOwocDBhERL63X7Khp5YXsFw2MaeHxOMkIIWnw6+fVuLs+MoMUnKbQ3c6TGjQRmDbIxMi6Y57aUs7eikTHx3ZPi6vbqHKlp4ntDIwCYlxGG0+NjRGxwtxxfURSlt3QpkFy0aBHjxo3jrrvuIiBAzZgpiqIoitL3vHegBhCMSwhma7GTZq9OgNGffLX0YC2agAOVTazNb2Bmqo28uma8OgyODMLl0dlU2MCh6iYEkBEZyPCYIF7bVcmKnPpuCyQPVTXhk3DOscDRGmjktnGx3XJsRVGU3tSl1Nbq6mpuvPFGEhMTiY6ObvOjKIrSXZzNvrM9BEVR+iEpJUdqmliZW8/cNBuXZ0bg9ursKnUBUGRvZkepi2vPiSQjMpDXdlXi8vg4UuMGID0ykOQwMw6PztYiB0k2MyFmAyaDxsxBNrYWO7C7vd0y1pVH7Rg10WMVYRVFUXpLlwLJ8ePHs2fPnp4ei6Io32Fr8+z84L0jrMtvONtDURSlH8mqbOTuj3K5f1kBZoPG1cMjGREbjC3AwPoC//fJh4dqMRsElwwO587xsdjdPn6zvIBVuXbCAg1EBRtJPlbsJreumcFRJ4K8C9LC8OqwJu+bfzftLHGyrqCBa4ZHEGwyfOPjKYqinE2nTG39+9//jhD+amctLS0888wzZGZmntTuQ/VtVBTlm9pX4eK5LWVI4POcemakWM/2kBRF6Sfe3ldNU4vOT8fHMinJQniQ/9RmSrKFVbl2nt1UyvoCB7MH2bAFGrEFGnlgegJv7q0mp9bNxMRQhBAM/EqxmyFfCSSTwwIYEhXE8px65qbbTjsAfG1XJVuLHVw2JIIlB2tItJq5Znhk9zx5RVGUs+iUgWRcXFyb/ycmJvb4YBRF+fbKrXWzq9TFlcPaluTfXebiz+tLiAs1My4hhKWH/FUVY0K7t9y+oijfPg3NPvZVNHLl0AjmDQ5vc92sQTY+O1LPrlIXExJDuWFkVOt1U5KtTEqysL+ikXiLGcAfZAYYsDf72gSSAJcOCeevG0v50Xs5TEgM5a4JcVgCOg8opZSsz2/A4fHx0o4KAJ6am4zJoNqnKYrS/50ykLz22mtb/11fX3/SSuTxy5XvHp8uu9SbS+n/dClpcPsIC+pSXa4O/XdPFTtLXdQ3e/nJuFiavTpv7q1mycFaEq1m/jArCYlk6aE61uTbue6cqM4PqijKd9q2Yge6hMnJlpOuGxIVxBvXZhBi0lozrL5KE4KRcW0L6CSHBZBT4ybRam5z+YwUK9EhRtYXOFiWXYfJILhvSufNuytdLdQ0ebnj3FgSbWYaPTpDY1R1VkVRvh26NCV27733tnv5fffd162DUfq+vDo3N7+fw3q1j+074bPsem5bcpQyh+ek6+qavOiya73VXB4fe8pdhAca+OhQHc9uKuXOpUdZcrCWeRlhLJiXQkyoidhQM8Njglid24Ds4rEVRfnu2lzoICbESHpEYLvXh5oN7QaRp3LVsAhuHRfT7mTp0Ohg7jg3lquHR7Imr4EdJU52lTqZ/3Euu77Ws/K4A5VNAAyPCWJUXEi7Aa+iKEp/1aVAsr0TusbGRjRNpWZ817y1t5qGZh/Pby+nurGl8zso/ZaUks+P1OPVJZ9k17W5bluxg1s/yOlyYZztJU68OjwwfQATE0NZndfAAKuZJ+Ym89MJca3l+QFmpdoodXjIPlZNUVEUpT2NLT52lzcyKclyWsFiR8YmhHJB+skZWF913TmRJNnM/HVjKY+uLqbQ7uHjw3Xt3jarspEQs0ZymGqdpijKt0+H+Wp33XUXAB6Pp/XfxzmdTqZOndpzI1P6nNxaN1uLnZw/yMbGggae21zG2IQQVh1tYGaqlatU8YCT7KtwYXf7mDaw/xWPyal1U2BvxhJgYOVRO98fGUWwyUCxvZkFG8vQJWwrdjIz1dbu/RvcXnQgLNDIliIHEUFGMqODeCBqAKUNnlOeWE1JtvDarkpe3F7BUxckY1Z7iRRFaceOEhdeXTIlqXdX+UwGjfmT4vn9ykIuygjDIGDZkXoczb6T9k1mVTUxLDoIrZsCXUVRlL6kw0By/vz5SCl58sknmT9/fpvrwsLCSEjofH+A8u3x9r5qQswat42LYXBkIC9sr2BPeSPRwUb+vbsKgya4YmjE2R5mnyGlZNHWcuqafExIDO13AdHKo3bMBsEvp8Tz6OpiVuc2MDYhhMfXlmA2CoZEh7C33NXuntmmFp1ff16Aq0Xn4ZmJ7Cx1MSfNhiYEmqDD2fkQs4F7J8fzxLoSXt5Rwc8mxvf0U1UUpR9ak2cnPMjIkLPQj3FIVBBvXjsYgyY4UtPEJ9n1bClyMPcrq5n1bi8lDR7mDGp/sk1RFKW/6zCQHDZsGACvvPIKAQEqLeO7LL/Ovxp548goQs0GLsoII9CoMTAsgIFhAfx1Yymv7qpkS5EDIWBykoXLMtsGlUdqmthZ6uL6cyK7LQ2pLztY1USZw5/+u7e8kXMHhJ7lEXWdx6ezrqCBSUkWxiaEkhEZyFv7qnltVyUGTfD7WYlUu1rYXeYit85NRmQQB6sasQUYSbCaeW1XJRXOFqyBBn67ogCv7n9PdNXEJAvXDI/kvQM1DI8JPuWqp6Io303FDc3sLHVx44ios7bad3wCLT0ikLhQExsKGtoEklmVjQAMU8V1FEX5lupSKUYVRCqbixwIYF6G/4+kEIJZX5ll/eXUBGyBFeTXNeP06PxzZyXBJo3Zaf7bu706f15fSqWrhYyIQMZ9Laiqb/J2S2XQvmRlrp1Ao4YAthY7+lUgua3YicujM/vY7/iqYRE8vb6UGSlWbh4TTWSwiXq3F4A9ZY2Emg38bkUhAJOSLGwsdPC9oRFcmB7G774oxCclw0/zZOr7I6PYXebirb3VTB9oVZWCFeU7xqtLDIJ2Jx4/PlSHURNcNLjj/Yy9QQjBtIFW3s+qwe72Ygv0/y3LqmzCbBCknaIQkKIoSn/Xv3LtlLNmZ6mLjMjA1j+QX2fUBHeOj+PJCwayYF4Ko+KC+ce2cvaUuwB4e281la4WQs0a7x2oaXPfveUubn4/h+3F7Ve964+aWnQ2FDQwbaCFsQkhbCt2drnCaV+wv6KRYJPGyDh/8Dcl2cob12Twq6kJRAb7+zuGBRpJDQ/gy3IXb+6txqAJZqba2FzkIMlm5qZRUSRYzfy/i1N4+oKBpx0IGjTBNcMjKXe2sKXY0e3PUVGUvkmXko8O1XLj/7JPKvQF4Gj2sSrXznkpVsJO8Tept00baEGXsKnwxHfVnnIXQ6KCMBnUJJiiKN9OKpBUOmV3e8mpcZ+0ingqRk3wwPQBxIWa+f3KIn6/spClh2qZm2bjxpFRZFU1tab8SCl5Y081ElhxtO/2Ja1r8p7W7TcVNuD2SuYMsjEpyUK920d2df+pQlrmbCHBYm6TMhbaTvPt0XEhZFU2si6/gcszI7hncjz/uGwQj885USQnLNDY2vD7dE1IDCXeYuKDrFrVDkRRvgN8uuTR1cX8c2clAEsP1uHT2372P8+pp9knuTwz/GwMsV0pYQEkWs2szvNXss6vc1No9zBFtftQFOVbTAWSSqe+LHMhgXEJIZ3e9rhQs4GnLhjITSOjKKhvxhZo5MdjYpibFoYtwNC6KvllmYtD1U3EhprYWeqkwX16AVtv2FLk4Ob3c/joUG2nt9WlZE2endd3V5FgMZMZHcS4hBCMmj+9tb8od3iIt5g6vd3o+BB0CaFmjSuH+ffExlvMp1y5Pl0GTfC9oREcqXGz/9jkg6Io3165dW52l7m4cWQU906Op9LVwpdlrja3WZNnZ3hMECnhfSdlVAjBnDQbh6ubKLY3s77AgSZgqgokFUX5FuvS2V5jYyOffvop+fn5uN1tV1X+7//+r0cGpvSuV3ZWUNLg4fezkk66bmeJC1ug4bT3eVgCDFw3Ioorh0XSousEm/wrWpdnRvD6nir+uLqIuiYv0cFGfj0tgfuXFbC+wMElQ/rOLDP4U28B/rmzkmavpNmns73EidmgERVsZEaKlYmJoRQ1eFi0pZxD1U2kRQTy84lxCCEIMRs4JyaYNXn+4jVDonq/wuDpaPFJKl0tzEjpvGXJsJggYkJMXDUsglDzySuW3WFWqo0391az9GAtI2K7PpmhKEr/U2z3AP4ALC7UTFiggWVH6lv3mFe5Wiiye7h5TPTZHGa7ZqXa+M/uKr44amdjYQOj40K6bVJNURSlL+rSN9yCBQvQdZ0JEyZgNp9ZiprSu7y6xNjFPWlSStbnN1Dn9lHv9rbZc+LTJV+WOTl3QOgZV8YzGQQmw4kg48phERgN8M6+GhpbdH42MY6MyCBSwgJYk2fvc4Fkdo2bzKggLAEGXt9ThQCGxwQhhOBgVRMbCx2khAVQ3OAhyKQxf1Ic5w+ytXm9bhgRxdMbSnng8wLmpNm4e0Jcny0eU+lqQZd0KR3VbNB4+XtpPTqeAKPGhelhvLu/hnKHh7gzTJNVFKXvK27wYBD+7x+jJpibFsbirBqqXC1Eh5jYfWx1ckx835tUCgsycu6AUD4+XEeLLrlxZN8LdhVFUbpTlwLJI0eO8Morr2A0qpm1vsynSz7PqWdVrp0jNW6mJlu4cWQUSbaOq+4W2T3UuX0A7C5ztWm1cKTGjcOjMzah+yqO+tMVI5mZYmN3uYvpA/0rX7MGWXltVxXFDc0kWvtGpeAWn05eXTOXZ4bz/ZFRbC5yMjwmqLXgjE+XrMq18+GhWqYkWbjt3Jh2iz8MjQnm+csG8fa+apYcrCXEpHHruFi8uiSvzk16RGCfaYlS5vCvCHQltbW3XJQRxuIDNXx2pJ5bxsac7eEoitJDiuzNrUEkwAXpYbx3oIZPs+v48ZgYvixzERFkZGAHvWjPpjmDbGwrdmI2CCYl9Z9K3YqiKGeiS3skMzMzKSkp6emxKN/Qx4freHF7BV5dcmF6GDtLXdzzSR5r8uwd3u94ZdVAo2Bnadu9KCuO1mM2CMb2wOxvWJCRmam21pW54wHltj5UvTW/vhmvLsmIDMRk0JiRYm0NIsEfFM9ND+Pvlw7iV9MSOqwgGGTSuGVsDJcMDmPpoTre3FvFLz/L5/5lBa0FGvqC44FkQh9a+YsMNjEpycKKo/U0e/WzPRxFUXpIcYOHRNuJ756YUBNTB1r4NLuOuiYve8pdjI4P6TMTb183bkAoEUFGJiVaWrdzKIqifFt1aYnx7rvv5sknnyQ9PZ2wsLY9m6655poeGZhyeqSULDtST2ZUEE9fOBCAH4zyp1P+fUs5caH+wi/t2VvRSFyoiczoIHaWuvDpEoMmqGvysiavgblptnYrdna3yGATcaEmsqubevyxuup4pdWMyO7b13jruFjy65t5Z18NUcFGEq1m/ru7iqnJFgKMZ7/+VZnDQ7BJw9oLv/PTccmQcDYWOlib38AF6We/d5yiKN2rxScpc3iYnNS2QM2NI6PYVOjgmQ0lOD16n0xrPc6oCRbMSyHA2DcDXUVRlO7UpbPWt956i5qaGux2O2VlZa0/5eXlPT0+pYsOVDZR6vBwYcaJE2xroJEHpw8gKtjIE+uKqXB6TrqfT5fsr2hkZFwwY+NDcDT7yK3zB0+fZvvLrl+eGdFrz2NIVBCHqt19ptXDkZomwgINRAV3X1q3URP8ZkYiP5sYx8JLB/GziXHUNHlZcrDzqrC9oczRQrzF1Odm/IdFB5EaHsDSg7UntQNQFKX/K3N60CUk2dpmQyRaA5iVamN/ZRMCGH2sv21fFR5kVKuRiqJ8J3Tp7HjTpk387W9/Izy8bxVB+a6rdLZwuLqJKckWPs+pJ8SsnVRq3Bpg4OGZiTywvICHVhTy6PlJbfZM5tS6aWzRGRkbwqi4YASws9RFki2Az7LrmJAYSoK191Ich0QFsTa/gSqXl5jQs79H70iNm4zIoG4PqqwBhtZVtWExwUxOsrD4QA1z08OICDq7e5HLnJ7TrtDbG4QQXDM8kr9sKGVToYPpXagqqyhK78ivcxMTauo0gMqvc3O42t1m0vO4YnszQLt75K8fEcnafDspYYFYVSVURVGUPqFLK5KxsbEYDGp2ra95Y08Vz2ws5XdfFLKp0MHMVFu7qZGJtgCemJOMT5c8tKKQ3NoTLVyO748cGReMNdBIemQgnx6u495P8nB4dK4c2nurkUBra4zDfSC91enxUdzgYXBkzwdVPxodTbPPX7jnbPLqkgpnC/GhfWd/5FdNSbaQZDPzzv5qtSqpKH1EbZOXX36Wz8NfFOHuYA9zlauFR1YV8Y9t5TQ0+066/njrj0Tbyd8/saFmfjklgVvHqWJbiqIofUWXAsnp06fz5z//mQ0bNrB///42P8rZIaVkf2UjiVYzhccKwlyQZjvl7VPCA3nqgoEEGARPrivB6fHh9uqsz28gJSygtdfVvIwwwgKNpIQH8NPxsafcV9lTUsIDMBvEWQkkv55Om1NzbH9kL/R9TLCayYgMZFOho8cfqyNVra0/zv5qcHs0IbhhRBRFdk+XX6uv/153lDipbmzpieEpynfSpsIGfBKO1rr5y/qSdid53F6dJ9YWU3+sQnhOzcnf8UUNHqKDjQSeYq/41IFWhsf07bRWRVGU75Iu5Yd8/vnngH+v5FcJIVi4cGH3j0rpVKWrhepGL3ecG8vEpFCK7B5SwjteOYu3mPn1tAE8tKKAf2wtp9mrU9zg4bczEltvMzstjNlpZ6+QiVETZEQGcuhrgeTSg7WEBRo4L/XUwfI39fruKnaUuHjovAGEBxn53/5qjBpk9FKa59RkC//6sooKp4fYs7Qi2Bcrtn7dlGQLyTYzi7NqOk1vLXN4+MWn+fxiSjyTkyzk1rp5bE0xc9Ns/HxSfC+NWFG+3TYWOBhoC+CiwWG8uL2C/+2vbtNDUZeSZzeVkVfXzC+nJrBgYyk5Ne6T2koV25tJ7KRdlaIoitJ3dCmQXLRoUU+PQzlNByr9gdbwmCCigk1EBXdtBSkzOoibRkbz+p4qAO6aEMv4xJN7Xcmcg+jLFkNZEXg8aA/9GRHRO82Vh0QF8eGhWjw+HbNBo67Jy7+/rCQy2MSMFGuPFIHRpT+ttM7t48HlBSRYzByubuK+KQm9UrEW/AHSv76sYmOhg6uGRfbKY35dmcO/UhffhwNJTQjmpIXx6q7KToPuL47acXt1Xt1ZwbiEEN7aVw3AvorG3hquonyrVTe2kFXVxE0jo7h4cDi7y1x8ml3PNcMjMRn8K4tv7a1mc5GDW8fGMCPFyjv7qsmucbc5ji4lxQ0eteKoKIrSj3S514DP5yMrK4sNGzZw8OBBfL6T9zcoJ8gWD7K6AuloQOrd/1odqGzEYtZIPoOmzFcNj+CCdBu3jo3hooxwpJToqz9Bf+9fSIcdmb0f/dk/QH4OJKWCswG55L/d/hxOZUhUEF7dnyYFsDLXjk/6V2Hz65t75DHz6pqpc/u4ZngkAQbBoaom7pkUz4xeLOgSG2omPeLspbf6dMmecheBRg1bYN/eEz3h2ORHRz1HfbpkdZ6duFATlS4vz24qY1uxk3iLiXJnC5XOtumtHp+OV+27VJTTsrHA/3019Vgf4Isywmho9rG5yP/ZXJffwP/21zAnzcblmf6CfemRgRypaWqTdl7lasHjk+3uj1QURVH6pi6tSJaUlPD000/j8XiIjIykpqYGk8nEgw8+SGJiYucH+A7SFz4OWV/6/xMWibjuVsS507ptNW1/RSPDYoLRung8KWXrY2tC8LOJ/rQ+6XKgv/Y32LPN//+1n4GuQ0Q02v2PI2zh/gBz+QfIOZcjktO6ZfwdyTy2J3FzoYMhUUGsyKknNTyA/LpmthQ5SO0khfdM7Cjxn/RclhnOFZnhVLq8pPdCkZ2vm5ps4d+7q6h0tvRq1drGFh9/3VDKjlIX14+I7HOtP74u3mIm2WZma7GTy07RnmZfRSM1jV7un5rA+oIGNhY6sAQYuHdyPL9ZXsi+ChezQ8N4P6uGz7LrqXK1MCgikL9eNLDPP39F6Ss2FDSQGh7AgGPVvUfHhxAbauLzI3WkhAWwcEsZw6KD+On4uNbP1eDIINbkNVDd6CU6xP89V1jvT6tPVqmtiqIo/UaXViT/+c9/MmfOHJ5//nkef/xxXnjhBebOncsrr7zS0+PrFVWu7i28IcuKIOtLxOTzETfcDtYw5Et/QX/uUWSzu/MDdKKmsYVyZwvDPJX4nvsj+juvoC//AH3xv9GXvon0+FftZFMj+r/+hu/3P0Offz365x+cdCx90eOwfxfihtvR/rgIho2GAQNbg0gAcfE1EBLqDyi/MoMs62uRLd1ftCQsyMjsQTaWHqrjhW0VlDtbuGpYJEOjg9jawQrUN7Gz1ElGZCBhgcbW6rVnw5Rj7VvWFTR842NJKcmqbOy0uumhqiZ+9Vk+u8pc/HR8LN8f2TspzN/UhEQLByobcbZT/RFgda6dEJPGxKRQbhkbQ6hZ4/sjoxgSFYQtwMC+ikYqnB5e311FeJCRGSlWjta62Vnq6uVnoij9U0F9M9k1bqYNPJG5oQnBhelh7K9s4rE1RQSaNH49fQAmw4nJmePfrzlfSW89WudG4C+4piiKovQPXQok8/PzufTSS9vM0l9yySXk5+f31Lh61R1Lj/L2sb1T3UGu+QyMRsS1t6DNvgztd8/4A8oDu9H/8QSyxfONjn98f+Swlf+BvMPItZ8h330NuWIp8uO3ke+95h/HWy8hN62GmHhIyUC+9xpy56YT4yw4CkeyEFf/GG32ZYj4JAx3PYTht8+0BpEAIjgUcemNcHAP+rOPIPfvRH/pL+i/vhn9vpvwLfyT/1jd6K4JsQyLDuLznHosAQYmJ4UyMSmUvLpmKpzf7PX7OrvbS3a1m3MTTt4r2tviLGbOiQ1mRU49uux6muXXK5MCHKpu4qEVhbyzv/33tpSSt/dV89CKAlp8kj/OTmLe4P7TK3ZCYii6hB2lJ08uNLb42FTkYNpAK2aDRrzFzL+uSufiweFoQnBObDB7KxpZeqgOAfx6WgL3TI4nOtjI4gM1gH+CaVc7x1YUxe+/e6oINmmtPXGPm51mw6hB9bGMgK/3xk0ND8AgIPsrlVtza93EW8yd9qFUFEVR+o4uBZIRERFkZWW1uezgwYOEh/efk86OnBMbzIeHak/rxP24r+9/lM1u5OZViLFTERZ/hVGhGfyB2s3zIWs3+oLfo7/+D/S3XkIe3IPUdWRlGfqWNV1asTxQ4SJI95DiLEf77V/RFr6D9uybaM8vRsy5Arn6U/TX/+EfxyXXYvj5/6Hd+wdIy0R/dUFr0CfXfgZmM2Lq7E4fU8y6GHHdbZB/BP1vjyL3bEVceCVi8izIPYy+4GFkcd5pv36nYjJoPDRjAGkRgVw1LAKTQWNion+1rrtXJb8scyGBcQNCuvW4Z+rC9DDKnS3sLuvaytiqXDs/WXKUvLq2753jEw6LD9RQ+LW9pVJK/rO7irf2VjN9oJXnLk1lRGzfeP5d5V9BNrS7T3JToQOPT3L+oBNVfo8X/gAYERtMTaOXz4/UcV6qjegQE0ZNcMXQCLKqmvjkcB2/WpbPo6uLqW3ydvvYG5p9HFAFf5R+7FBVE9uKnVw5NALr1wqShQUauW1cLPdMimdk3MnfK2aDRkp4YJsVydxaN2kRajVSURSlP+nSHskbb7yRp59+mnHjxhEVFUV1dTW7du1i/vz5PT2+XjEr1cbe8kaK7Z4uF6+RLR7kFx8iP30XceGVaJfe4L982zpoakTMnHfSfbQps9FbWpAfvomsLIVmN3LVxxAYBO5jM7OzL/OvXnbgYH4lQ+rzMV53CyI6zn9hyLHVtKt+hDy8F7luGaQORlxyPQDCZEa7+yH0x+9HX/gY2i8fQ25di5hwHiK485U4oWmIuVcgp8xG7t2OyByJCPdXFpUXXoX+9G/QF/we7YGnEHED/JfnZEFTE2LEuE6P3x5roJEF81Ja/x9vMTPQFsDmQgeXn2Jf3JnYUeLEFmggrZfafHRmclIotgADy47Un1Qevz27y1xUN3r5vy8KeeT8JDIi/XtMD1U1ERVspNknWbi1nKcuSG7dU/vm3mrez6rlooww7hwf2+W9tn2JJgQTEy2szrOTU+Nuk468KtdOgsXEkKj2f6cj4vyVIb06XDXsxHtpbnoY7+yv4aUdFViOnRzvr2js1qJL24udLNpaRp3bx7MXp/TInl9F6Uk+XfL6nipsgYZT7lG+uJPshozIQNblN6BLidOjU9Xo5WL1WVAURelXDI888sgjnd0oISGByZMn09DQgNPpJDY2lltuYdALDQAAIABJREFUuYXMzMxeGGLnSktLeeqpp/jwww/ZsGEDw4YNw2KxdPn+nkYXn2TXMSgi8JTBhPR6kas+Rn/pL8jPP0B+/j7s2Q7WMNizHTFsNAiB/NdzEB6FuOpH7RbsECnpaBdeiXbhlYg5l0NiCsJkRkydgwgKRm5ejZgwAxHS/vhdTc28tr+BGb4SRl51+UmPIQwGxJARSHst2g/ual0VBRABQYihI5FrliE3LIdmN9qP5iPCuh6UCbMZkZSKCDpRol0EhyJGnIvctBK5Zxtiymyor0F/6jfIHesQ0y9ABHTPCYLLo7My1855KdbWE/1vorHFx8Kt5UwfaGVCYtffMz3JoAkamn2syrWTHhHI7nIXAUYNW2D78z5v76smMtgICJYfqWdumg2zQfDyzkrGJYQyb3AYHx+uwxZgJKP8IEfzy/l/h1o4f5CVuyfG9csg8riMyEDWFzSwJr+BaQMtBJsMVDg9vLqrisuHRnDOKVZZLWYDa/IaGBEbzCVDTrz/jZog1GzAp0v+MCuRFUftBBpFh++NmsYW9pU3Ygs0EnCKRurHrcmz8+cNpcSGmnE2+wg0aoyO718rwcp3V2OLjxe3V/CPreUU2T38aHT0GbfrcHl8rC9wMCYuhOpGL2vyGrhqWCRxfbj1kKIoyrfZ6cROx3UaSOq6zqOPPspFF13EOeecw9ixY087UOtpCxYsYM6cOfz0pz/FZDKxePFiZs6c2eX7600NLDtYjfHwHsav+CdiYHqbPYIy9zD6c3+ELasheRAiNQMRHY927c2I7/0QuXUtcvdW5KaV4GhAu+N+RGRMp48rDEbEgIGI0RMRqYMhbShy9SdQW4U4d1q79zmwbgtrXCFckxlGQnL7DdVFqBVt/PR2g1FhDUcMGIjcvBpSB6NddkMXX6VOnovFikgahPziQ7DXITeuBHsttHhAaP5AuxvEhpr46HAdgUaNUe2kTJ2u1XkNbClycuf42C734uwNcaEmPj5cx9r8BnaWuiisb2Z2WthJt/Pqkld3VXJeipWbRkbz0eE6YkJNBJs1Psiq5ZLB4Zw/yMbhajcrc2qZ8cFfeLF5IG6Dmf+r/JyAkeMQWv/dkxRo8r8PlmXXs7PUxdSBVlbk2DlQ2cg9k+MJMbf/3IQQzEixMm2gFaPWNpBOiwhkZqqNYJOBQ1WNHK11c+lXgk0pJRsKHCw5WMtruyp5Y2816wscuL065w7oeAX5g6xaGpp9LLw0ldw6N7vLG7ksM1xViVX6hY8O1fH+wVomJlq4bkQkswfZzvi9GxNq4qNDdQghaPFJ9pQ3ctu42E4nYxRFUZSecSaxnZDtVen4mrvvvptnn30Ws7nvzRTa7XbuvfdeXn31VTRNQ9d1br31Vp577jms1q6low0YMKCHR6koiqIoiqIoitI3lZSUnPZ9ujT1d8011/Dyyy9TVVWFruttfs62mpoaIiIi0DT/U9E0jfDwcKqru68Kq6IoiqIoiqIoinJCl4rtvPjiiwCsW7fupOveeeed7h3RWbBt1RccajLxmxWF/HbGAAJNGttza7gu1oPFpCGSB32j43t1yQ/ePYLbqxNo1Fh4WWqHaZT6J/9DLvkv2sPPgqcZ/ekHAZDAj6c9wqSMWOZP6burqFLKNulOvuefhANfov32GURCctvbNjXC0YPIwlwIDkFExsLQUQjjqd+aLT7JrR/kMDwmmN/MOPPX4d9fVrLkYC2vXplOeFCXPgpnzcMrC6l0tvDC5YPavLZv7KnivQM1/O/6wZgMGpVbt3DHEStSaIxzF/G7LX9vva0+/QLeHHEdk5MsDI7yF+SR2fuROQehqbE1NRsknDMOSgshKhbD/Y/39tM9Y4erm1iTZ+fmMTHdkiKnS8kP3zvCpCQL8yfF89GhWv65s5JHzk9izFf2Njo9Pn703hGuGBrBj8e0n9Ze4fRwx9JcfjYxrrVdwv/bVMr2Eif/viq9TVVZRelrXt9dxftZNbx2ZTph3fR96dMlt3yQg93t48aRUdwwIqpbjqsoiqL0ji79NVi4cGFPj+OMRUZGUltbi67rramtdXV1REV1/Q+SsNhIC9YxarDkYC3ZNW68umRzhZFfTo1j+GmMx+72UtPoJdikER1iwqAJDlc10eTVuWVsNG/sqebvm8u4dVwsyTYzuoRmn96md5aYdTFy2WL0T/8HlWUQHoX24FMU7zuIsySYzJi+XZzj63tmtBvuQH/sF+jPP4n227+C0QQHdqKvXwH7d8JXVrYlIK7/ib8Q0SmYDIKZqVY+za7D7vaesghNR4obmll2pJ7xA0L7fBAJcH6qjWc3l5FV1dSmuEVBfTMJwQYMn7yD7nETuW45w0fezv6gBIZOHIN28SKorwVvC9rQUfzY2HYCQww+BzH4HADkRVcjl/wX2VCPdut9yFUfI9//N7KkEDGg7QRAXzUkKoghx4Lk7qAJwfCYYPaUuVif38C7+2sYGRvM6Li2BUZCzQZGxIWwucjBj0ZHt7tvrMju73+aZDuxReC8FCtr8vz7YCcl9Z1954ryVbqUrMu3MyoupNuCSPAXFpsx0MpHh+tIUxVbFUVR+p1TToHfeeedrf9+9913iY6ObvfnbLPZbKSkpLBhwwYANmzYQGpqapf3Rx5nNmikRQSSVdXEwDAzj56fhFET/H5lIRVOT5eOIaXktysKue+zfO78MJc/rCpCSsmuMheagLlpYdwyNobd5Y3c80keN/wvm6vfOsyN/ztCVuWJnnIiOBRx3jzYuQmK8tCuvw0RGUN20igAhkR334lybxDhkWh3PgCVZeiP/wr9vpvQFz0BBTmIud9D++VjaM+9jfbn1yApFbllTafHnJMWhleHNXkNAMiKUv9Krs/X7u2llHxyuI4dJU6cHh9Pri3BpAluPze2O59qj5mcbCHQqPHF0Xqkz4dsaQEgv85Ncvlh5EdvIVd9ArYwZp6bBsDwmGBEfBJi6CjEiHMRxo6LCYmQULSbforhrt8gAgIQ0+aC0YRc80mPP7++bHR8CFWNXp7ZWEqzT/LjMTHtBoqTk0Ipc7RQ8LWenccV2v2XJ9lOtBgaFReCLdDA2vyGnhm8onSDzYUOKl1ezuvGNjjHXToknKnJFobH9q+/a4qiKEoHK5JerxeHw4HFYmHr1q3cfffdvTmu03L77bezaNEiFi9eTEhICD//+c/P6DgXpIdhDXDyi8nxhAYYeHxuMncsOcqn2fXcMrbzKqxFdg/FDR4uGRKOWRN8cLCWLUVOvixzMSQqiBCzgYsHh3NuQih7K1zk1jVjMWt8eKiO5Tn1DPvKSpOYe4W/x2T6UBg7hcYWH9tLnISYNRKtfa/oUWfEkBGIG25HfvERYtJMxKgJMGwMwvCVqppBwYiJM5HvvYasKEXEJpzyeAPDAsiIDOSLo/VcNtiKfPkZKMgBixUx4yJ8uuRQVROZ0UEYNMHyHDsv7agAwGwQ+HTJH2cnEx3SeaVWWXgU/cO3/C1M4hMRF1yJMPd842zpboSaKqitJiA+kTlpNj7NruN7q18ksbYAzw/nU+EKYVb1UbRfPIoYPgaA2VISF9/I0G844SAsVsT46cjNq5HzrkVEfLO0M+n1gsvRpiJyfzA3LYwEi5mwQANxFjOBp0iZnZho4YVtFWwucpDSzupKkb2ZiCAjoV+pJGvQBNMGWll+pB6Xx3fKKrP9gTy4B2ITEBFnf4JR+WbKHB62lzgJNmnsr2hkdV4DA6zmHlk1j7OYeWB6392qoSiKopzaKQPJuXPnctddd2GxWGhubuauu+5q93bPP/98jw2uqwYMGMATTzzxjY8zJy2MOV9psRAVbGJSkoUVR+u5cWTUKU8gj9tS5ADg6mERhAUa2V7i5F9fVlLhbOHGkSdOwmNCTcwJPfE4tU1e1uU3cGeLTpDJ/xjCFo72h+fw2cJ5aUcFXxy14/FJ5qTZ+m3fP23WJTDrkg5vI8ZP8weS29chLu24NcmcNBvPb6vgyIpVpBfkgC0cufRNWs6dwXNf1rMuv4FxCSH8eEwMr+6qYGRcMBemh7HyqJ2pAy2cE9t+/zOp69DiQQQEImur0Z97DHwtyKAQ2LYOjCbERVef8evQEdnUiP7i05B3BBqdJ67QNK4ZO5NVQTN53TqGh9zVFPz7VRg3n5Qhqa1BJPjTMUecon/i6RIXX4vctQn9pT+j3f9Eh3tXOyP/s9D/e735XrSJ5yHLi5EHdiNmXIgw9Z3WK19nMogu9XoMDzIyKi6Y5Tl2rhkehcnQ9nNaZPe0SWs97rwUK58crmNLkaPdFi99nfT5kO/9C/nFUggIQlx3q7937Fn4npJlxf4WRBlDEcPHISzdv4L2XfDW3urWVXKDgGuGR3LdOZGqNYeiKIrSxinPCm+44Qbmzp1LVVUVf/rTn5g/f35vjqvPuGxIOBsLHazJs3NRRscrKVuKHQyJCiTyWCGdH4yK5qn1/lK6Yzo4ET0/1cbyHDubixycP8h24oqYeF7dWcmn2fXMHmRjbpqt36W1ni4REQ0Zw5Db1iMvub7Dk9HpA628sqOClVkVpA8fg3b592l+6jcs+HAvW31hTE22sLnIwe6yPAKMGvdMiic6xMTUAUFgOHVAJN99Fbn6U8TYyciyYmhuQvvNXxADkvEteBj5xYfI2ZeBuwn9haegsRHCIxHhURAeAU4HsigXkTnqtPt0yg/fhKzdiOkXQnQsRMYgbOHIPduwrl3GlYNCeCN2OgeunEXZho3ghYFz5pzWY5wOETcA8eP5yJf+glz8L8T1Pzmj48i8bOTmVRBiQf7zr/i2rIas3aDryOx9aHc84L/h4X0QGQMx8QghkLqO0PrPyesVQyN4dHUxGwsbmJl64rMspaTI3txmouq4wZGBxIWaWJvf0O8CSZl3BP2D/8DBPYjzLkJWlCJfX4TctQntRz9HREQja6vBZEJYbG3vKyX59c2UO1to9PgYn2jBGnDmK7LS60V/+S9QlAfrliGNRsSP70GbNPMbPsvvnqO1bsYlhHDXhDhMBkHYGexDVxRFUb79OvzrEBkZSWRkJA8++CDDhg3rrTH1KZnRQQwKD+CTw3VcmB52ysCm0tnC0dpmfjz6RFrXpKRQMiIDqXC2kBZx6kICmdFBxFtMrMq1c/4gGx6fTmG9hw0FDXxyuI7LM8O5bVz/2MvXHcSEGcg3XoCSfEhMPeXtgn3NTG44wvrIEdx24RwC4uJZM/F6tvrCuC3dxOUTB7C12MHCLeXcNi6G6BATsq4G/Yn7ITUD7Y5fI4wm9O0bEAaDP3AsL/GnFCemIg/sgqYmtPkPtxab0eZdg77gYeSmVcjdWyE3G4aNhrpqZF42OBvAHAChFuTHbyMnz0JEde13JwtzkSs/Rpx3EdpNbTMAxOBzkJfdwOVSsGxZCQ+vKQMGEWAQxIX17OSCNn46+tFD/gB6yDmI0ZOQ7kbkkjegxQMhFnA2IGsqEVPnoE2Y0fZ5SYn+v1fAYkN7dBHy7ZeROzciZl4M1jDkkv+iL3wMKkqhqtx/p+NBh7MBccGVaNfc3KPPsbuMiQ8hyWZmycFazkuxtn5fVDd6cXtluyuSQghmpFh570ANNY0trRNRfYncuRH9s8WIqXMQk2ch9+1ArvwIjh6CwCDED3+GNuNCpK4j1y5Dvvca+iPzIXYA5B+BgCC0O+5HjBwP+Iu3PL+tnOU59tbHCDBUMD3FSpWrhexqNz8cHc0lQ8LRpWRJVi2DIgI7XBmWy97z7ym/6zcQHo2++F/IVxaguxxosy/r8dfoTOwqdfLXjaU8e3Fql9Lse0OzV6fU4WHaQEufGZOiKIrSNxkeeeSRRzq7UWzstzuIcTgcp7xOCIFJEyw/aictIpAB1vb3xq3KtbOrzMVPx8dhOTarLoRgXEIIU5MtRHRwciiEwOXRWZlrJ6uqkRe3VfDZkXoOVTdxXoqVuybEnZU0sbMmMsafnubxIEZPbPcmstGF/vc/ElhWwBfx40lLjCLJFsC/K4PQ6qq5d/UziJHjSRwQzZVDI0gND/SvWCz8k78SbmkhsqwIsnYjP3gduXMjxCX5g8iaSrTfPYOYdy1i2hxE6uATDxwVi9y7AzavgvJixA13YLj+J2jnzUO76CrEvKsRl1yHOHe6/1ie5taT545IXUd//kl/ddW7f4swtxNwGE0YTSbGJIQQEWjknNhg5g0Ob1O8pcdkjkTu24ncshoxYQb6q8/C9vX+PZwH90BtFTgdsGMDYtxUROiJlEK5YyOsWIq4/idog4fD2MmIC76HNnoiYvBw0ASsXw5Rsf6KvUNHI0xmxIAUCLXAljX+y/rB3jshBMZje3KHxwQTG+r/PR6ubmJtfgNXDYskpp2T86hgE58criPAqDEy7uRgSeo+5FsvI2urESnppzWmZq/Ooq3lJFrNWM9gZUnfsAL56rP+SYNdm5Cfvw87NoLRiLj8RrRb70NLH9r6/EVqhn8yqLTQ//6feTE47P7PtMuBnnOIFw82srxScEVmOHeOj2Nuuo1mn87afAdmg0ZYoJGVuXYGRwbycXY97x6oYUuRk6nJltbv1zavT+5h5GvPIcZPQ7v0ekR4pH9/b2khfPGhf+9mYsppP/ee9vKOCgrqPUQFm8jsI9kmR2vdLM+xc3lmBIm98d2iKIqi9AkWy+nvg1f5Kl1wXqqN9w7U8u8vqxiXEIpBOzmo21LsJMlmJuFrhXAig01dWmE4f5CN97NqqW/ycvHgMIZEBZESHkiCxfTdCiLxt2MRsy9HLv8AOf0CRFomsrYauXebv6BHwVF/4CIEo25/AFuBgfUFDQyLCWJ/bQtXZ8YisgT6M79DTJ4FSYP81Uf37YCcLMTt90NDHfKdV/ztRuZdgzyShXzlr+DzIS7/PsJ6LI05Oq7t2IRAm3c1+gtP+wOimfPaXm869vuPiEJMnY3c+IU/RTc8ssPnLHdsgNzDiFvuRYSEdnjbZFsAySN69wRPGE1oP/kV+p9+gf7ovdDoPLEKdaxvqKyrQX9kPvqr/w/tgacQRiOyphL5xvOQlIqY5k/BFUJAwIkVeu3SG5CTZvnTeI+/18+7CPAXHNIfuQf938+hPfxsrxQ5+qZmplr5754qPj5c1xoUnmj90f74E6xmJiWF8ml2HVcOi2jTDghAvvsacvUn/pXuqbM7rcD7VbtKXazKtVPpauFPs5O6/H0iqyuQn72HXPc5DBuDdvdDcPQQctcmxIjxMGLcKdOORXQc2Tfej0nTSI8MRM65nObX/sa6A2V8njCJHGsYV5Zt5IcxUWhjLkNoGvdODuKeSf73UlOLzkMrCvjTmmJ8Euam2dhc5OCZjSU8fcHA1p6bsrnZX7F4xRKwhiNuuOPEGExmtDsfRH/6QeTbLyGHjT4pvfZsqmls4csyF+DfX3/F0IizPCK/3Fo3AIM6yKJRFEVRFOjiiuS3XUcrkuAvXhIZbOTT7HqiQkwnpam2+CQvbC9nZqqtw72QHQkxG7h6eASXDIlgTEIoyWEBWAMM37kgslXaEOTmVcjsAyBA/v0x2L0VmpsRaZmIsVPQvncThnPGUulqYUOBA0uAgS/LGrljSjLh4ycic7Lgyy2wY6M/UCvKRZx/qX/lcFAmxCeizbgIbcaFiLGTkHu2g8GI9pNfdXyiHpeISElHzLmi4yIxCcn+9L+WFsSIc095M+nzIV/8M4RFoN10V5/9nQuLFUKtsHMj4qKr0eb5Cw4dH68ICkZEx/pXnipLIS4J/eVnwNmAdt9jHZ7Ei+DQdp+3MJoQCUn+Y1aUwtBRCHMAsqnRXxDJ1PcqGBs0Qb3bx5o8O/Mywggwaiw5WIOrRef6Dhqux4SY+CS7HmuAgczoE4Wg9NWfIJe+6a/gXF6CSElHxCV2eTzvZ9WSV9dMpauF1PDALq0y6as+9n/mivMQMy9Gu/lehDkAER2HGDnev3e2g/dpbZOXB5YVcKCykXmDwxFGI69rg3mdQQRHR3NTkuR7JRsQaz71p4OPGOdfzTx2TJNBMDY+lC3FTs5PtXHn+FgSbQF8eKiOphadsQn+yRb52rPIdcsQ0+ai3f1Qm5VwAKFpiEFDkCs/hrpqxNgpJ41VNrtB03r9c/dZdj27yxuZmWJlR6mLCzPCWoutSSnZVuzEFmjs9QI3y3PqqXC28INR7fdDVRRFUb6d1IpkD5qUGMrQ6CDe3FPF9IHW1j/44C/r79Uh/RvO4PbXaqw9QQQGI667zV/k5fV/wNBRaDfe4Q/ivvY6zRho5dPset7cU02CxUxKWAAiPBnDb/6M9LZAeQkgwRzYZoVRGz/9xOMFh6L9bgF43IjAjlPMhKbBqAmdP4foOMS0C5CrP0G3hvlTXtv5Hcsta6CiBO2uh/p8YRntvIuQQ0dCdHy714tzpyGK8pHL30duX++/z89+22Erl86IYWMQ3/sB8sM3kdn7ITEFsg9ARBTaH//xjSrJ9pRZqVaWHKxlfYGDCYmhbC12ckVmxytOg6OCGBkbzNKDdVwyOBwjEvn+f5DLP4BRE/yraw/eir55NYbRk7o0Dp8u2VniTwkttDfzry8rGZcQelJF2a+SWV8i3/4nnDMW7Qd3n1Hbl1d3VtDk1cmvb6auyUtYoIFNhQ7GJYTw8Ez/Z1hOeAS5+F/Izz8AqUPmSBACRk5AmEzEhJp48fJBrZ+ZiYkWLh0SzkeH6xgRF8wEvQq5bR3i4mvRrvzhKcciBgz0Zx18/Da+IwdAlxAdixiYjiwv9qdmxySg3fsHRGTnbZ66g5SSlbl2hkYHcfXwSNbkN7ClyMG8wf5MiE+z63lpRwXXj4jk+yN7N6U7t7aZQeGBKohUFEVROtWlMzCv18uaNWvIz8/H7Xa3ue5Mezb2N0IIvj8yiodXFrGrzMnU5BMz37l1KhWoJ4hzp/nTWMMjEbMuOWWQNSQ6iOhgI1WNXqYmW9qcAAmjyR94dOXxTCbo5jYU4sY7wONGLn0DHHa4/idtnof0tiA/fhuS02BM14KDs03EdBwUalf+ADnrYuTaz8AWjuhi0NPhMS+5DjlqPPpbL0N9LWLcVOS2tcitaxFTZ3/j43e3lPBAUsMDWJ1np7bJC8C8wZ1XZL16eCR/WFXEB7uKuHrNC5B9ADHzYsR1tyFMJn+f1dWfIF0OREj7M4dSSrDXgcFAtlPD3uxjUpKFOWk2Hl1dzOo8Oxektz8WWVWO/tIz/tX6O37d6aRKe3aXuVhf4GBSUihbipzsKXeRERlEpauFq4ZFnFjBFgKuvhl8Pn8hp7XL/AcYPQntpw/6C2AJgSwpQH99EQA/mnAeWbZM/r65jL9WfkhUcAjiwis7HZO4+Frwef2vizjWJmTNZ/7vlhkXIbesQX/y12j3/B6RnHbaz/l0Ha52U9Lg4apJcf4tERZzayC5r8LFP3f6e95mVTb1+Fi+yqtLCuqbuWRI/+r12huktwWy98OAlH7XC1dRFKWndCmQXLhwIQUFBYwbNw6bre/sMeltQ6KC0AQU1DczNfnE5bm1bgKNGvEWVeGuOwkhEF2o1qkJwfQUK+9n1TJ1YPc3zP4mhNEIt/wCLDbkiqX+NL5b7kUYTf4Kl/9ZCNUVaPf89Fu1AiDCIhBX3NS9x0xMxfBrf79YKSWyvAj56bvIyTMR2pm3jegpM1OtvLariiK7hwlWH9GLX8RXVQ7uJkR8IiSmIoaOhPAo5PIlyC1rOCclg6nR5/PWYZ3BdTojb70PbfKs1mOKybOQXyxFbvgCps+FwOC2ExPZ+9GXvuFfsQW2pV+KIXE6YxNCCDUbiA01saPE2RpISp+vNa1T6j70f/4VdN2/inwGQaSUkld3VhJvMfHLKQn8ZMlRvixz4Wj2ATA2oW3qvxACrrsNMW0uSOlfDX33Nf++2hkX+vcuL3kdAoLAGobxrRf5pW0A94/+Gf+P4Tw2NxlDcMd7isE/SSSu+lHbseo6HEunlefNQ3/uUfTnHkP74yJEcOdbFLy6ZH1+AxMSQwkxn977b3uJE4OAKccmviYnhfLBwVqeWFvM/opGEixmhkQFsb6gAa8uMbazL196vf50b2eDfwIsJaPte+HwPvS3XkL78T2I1IwujavY3kyLLkkN7/t7kXubfPvlE5MdcQPQbvslIqVrr6uiKMq3VZcCyT179rBw4UJCQrqnyXl/FWDUSLCYya9rbnN5bl0zqeEBKjX1LLpmeCSZ0UGkhve9VWGhaXDtrf5WF4v/jaytQkyaxf9n776jq6i2B45/z9z03kgCCRBagIAU6UUUQVEU1GevP6yA6EOfIjYUKwI2QCwgSvGhPkEFLEgRQu8g0lsoKZT0Rtqd8/tjMBhJQhJyU2B/1mItmJk7c4YhIXvOPnsTsxe9dhnqpntRl3Wo7mHWKkopjBvuwPzkHfTGVaguV1b3kM7RK8KXGVtOkVNg0j96Kjr/FISGgacXeu8OWLcc/dfBSkGry1GH9/H4n1s40uUZ3m/3EO+3bUyRxNL6jSA8Aj3nS/ScL8E3wKoUXL8x5s/fWr05ff1Rt9wPbu5sjPEjKvMonroRYKNNiAdrjmZgNzWGNpkzeRbuNkX/QbfCqkVWwadHnjnvrHNJDqfmciQtlyGdQnB1Mmgb6sEfCVmk5dgJ83EprGL7d0opCGto/T48AjMrC/3L/9ArF1kHtGhjrVv29UcfPUTYr3MYvPs7JkTdzXf1fLmnQiOlSNClwhpgDH0e8+0R6O9noO57vMTPadMkf9sG3o33Zn2ajWua+PJEVyvVW8fsQyeeRNls0CiyxCJb+xJPE+HvVlhU6arGviw+mEZceh5tQj35v/Z1OJSSw9JDaRxKziEyqGhQr0/EY378NsQfPbvR1x/V6QrUjXdBXi7mZ+MgIw1z6niMlz8oU3B86Mz/bZJdU5Tetg4dvRB1xbUQGo7+/SfMD17B+M8bqIblq6IshBAXkzIFkkFBQeTn5zt6LLVCQz9XDiafTe81tSYmJZc+jX1K+ZSeryFUAAAgAElEQVRwNE8XG13Ca9Zs5N8ppVDX3Yrp44f+fhb6q4+t7TfeiXHjndU8ulqqXVeoWx/907foy7uXXvjoAuj8fKunacOm5Zo19i/IpmPWYZJMJ1pf3grj1geKVJ3VqcnoXVutNjLdrkbVrY82TTxPxvO8ayBPLTzCz3tT+L/2Z9ftKaUwhjxvrRXNOY3ett6aKQHw8iHlX4/yS52OrE84jS1bccwtl74H1qB/jEXd+TBtQj1ZfDCNg8k5BOxYzeyAzpjK4MSXP/F/O79Dte+K+kcf0PJYdSQD48xMG0C7up6sPJJBakIWN5YxXVLdfC8qoiloDXXDi6yLVg0aowY/R++EWP7cncP/dqfRup5PsS1TyktFNEP1GWDN+Ha5CtWs+N7JeeujeWdjKlsC/WiSEcvSA5obG7rSYPMiqygSWM/D1Q11y/2o3v2LzJjbTc3+pNNc5ZePPhkPQSE08HVl1m1FZ7f+KrKz61R2kUBS79hspR/bDNQDT6CCQtDpqegta9G//4TeuAp8fK3WK//3JHrWZOv7zaPPnvffb0xKDi42RZh3zStiVdXMpQvQq5egGkWit6yBBk1Q9wy2skk6dMcc/yLm+69gPD/OyjAQQohLUJkCyV69ejF+/Hiuv/56/PyKrq1p3bq1QwZWUzX0c2XN0QxO55u4OxskZOSTU2DKG1xRJkb3PuhuV1u9LDPToXHz6h5SraUMA+P2BzEnvo6eOx1116OF+7RpwtZ1mOuWwZ7tGEOfR0W1L/c1dHYW5uS3YN8Oay3mPUPANCEhFho0tmaeAJ2VgV7xm5X65u2L6nkNeukC/pOUhHrkP9jaP3rOuZVfAKp70fWdyjAgNJz6QNMAd3aezD73cyH1zhYvuuYm9N4/0SfiWeDfjpk7UrEnp9G2riduTop6Ps70IgC9dAH2nVtoZbdB1OP8EZeO04Z9mGHh9PDNZz7tMJpkM+i+WyqcYq21ZtWRdNqEeOB7pl9l2zMBnubctNaSKKXOu15Y1Q3nsSCTvQsPM2FtAp8ObFzYEuRCqJvuQW9da7Ww+c8bqH+0/9Fas2TdPrYEX8ngBna6J6cwNDWQGXNX8fIfs1Fdr0Jddyvk5mAu+MYK8tf8jnHbIFTLtgDExidyukDTdOUczDlbwMUF6jZA1a0PQcFWP9WOVxDg7kqolzO7Tp7m5pZnrr9/F+bkt601rI+/iAqyejwrgC5Xoo8cxJw+AY7FoB4bgdHpCsy0FPSPX6EP70dd1hE14K7C6rZ/T20Ga0a5oZ9rsS2uLiV69x/ob6dBnVCraJjWGI+ereatAoMxnn0L842nMf/7CcYzb15USxOEEKKsyhRILlxorQv4+uuvi2xXSvHRRx9V/qhqsIZ+rmjgaFouzYPcz/bcqoEplaJmUkpBSD3rl7gg6rKO1izS0gXolm1RZ6rp6h9noX+dC74B4OyC+eN/MVq2K9cPezo9FfODVyHhGKrzlejVS9G7/rCKJhXkW5WEB4+01vXN+hhOZ1mVR9NSrBkgN3fcho9CRVbsZVtUsDvzdieTW2CW2gJCR7ZmRlYIP25PpnO4Fw9dHkzdv80o6dP3oO056OxM/DIzaJiZwPb1x0j3bUEzD82IG1pjX7SfZc7dGeRtvSg8mJzDnlOny1V05WByLscz87mt1dl0zjqezoT7uHAyK59WwR6lfLr83J0NHu0Ywujfj7EsJr3EAkLlodzcMQY/hznhNcx3nsO4/3F0eqo1u3dlf+x7d/Cj92VEuuZyfc82KNWK21ftZcaRSKZdN5I2nS+jfYgXrk4Gxr9fQW9Ygf5+Jub7o6wZ7cbN2RubA2H9aN63N8q5J8QdQccdRe/9E9YngzbR66MxnhxFVLA7m46mY+7dibIp66VGYLAV5HqdmwWjGjbBeOk9OHWicJZMXX+blVa/bb1VAKugAHX/42i7HfO1f1tB0s33weXdiEvLo02oB9q0w4E96O0b0fFHUV7eVpGZawbWyPXIlUmnJFlti0LDMF581wr08/LOWTOsgkJQt9yH/u+n6I0rL2gmXwghaqsyBZKTJ0929DhqjYZ+VmrakdQzgWRKDk5GyY3GhRCOpW4dhN6/E3Pa+6ib7wNnF/Svc1G9+qHuHYJescgq3rJnO5yZFfqLzs+HXVshoA6qfqOi+7770mrL8uQoVKv26M69MBf/iOrQw/rBfN5/MV8aDFkZ0Li51SqjfiOraur+XeDjW65+j//UKtiD73clsy/pNJeFFD+bl5lrZ+K6BNbHZtI/0o9HOoScM5uk3D1QD1jVtbXWtPluBT/n1cNUNh6LCkEpRaemwaxbd5xj6Xk08HXl6+2JbIzLpL6vS5nTRlcdScemoGv9oinmd14WRGJ2vkP6IbYL9aBpgBtzdybRp7FvpcykqUaRGCPfwfzwVWv27wy9eQ0rPJpwMqAXj3QMLXwpcWO3ZuzMj+O34/DziniCPZ0Z1iWUxv6ubK7TjjrD2xG1azl681r0mqXsa3ozHjYIu7LXOevqtd1u9c+dMQnzo7do7taY3326EDv5fcJOnwJvX6tNSTFBZOH4nZytlOC//mwY1tq+K67FnDEJve539L/uR/+5CRKOgV8g5qfvcLp5O5Lq3kO4ix1z3AtwcA/YnKBuODr2MKxdBk5OqD4DLvjvuCbT/5sGeblWFsNfwWMJhadUr37olYvR332BbtMR5Va5L0uEEKKmK3MDNrvdzt69e0lOTiYwMJDIyEhstov7zWRxQryccXNSHEm1ihIcSsmlvq9rqX3ZhBCOo5ydMYa+gDl9IvrrKdbGlm1Rdw+2Zk969EH/9C3mL99hOxNI6oICK91v5W+QnQW+/lZPyjMFSXTiCfSGaNTVA1CtrJRY1bYTtradCq+rm7bEnPmRtQbuhjsL+1kqpSCy1QXfV4s67iisFhDFBZKHknN4OzqWlJwCHu4QzIDm/uedcVVK0bZ7BxZEx2JTcMWZKsetz8wW/nk8m1AvZ7YfzwJg+taTvHtdRJGA53BKDr8dSGVjbCZRwR70beLLkdRclh5Ko11dT7xdi/6/0CvCcevHlVLc3jqQMSviWHkknasaVU5VcVW3PsbLH1jBVFhD9OH92L+cyPftrqeBLYdODc9ex8VmMKp3ffLsJjtOZDN100le/f0YhrJaVro7GUy6sT91+t6ENu3s//UIkW5OxRZnUzYbquc1mAUF6P9+QsugFGjdhT23/ptw20lU88vOSbct1331GYBetRgdvdDqXxvWEGPUh+jVS4j7+VeoC/V+nQEnDqPuH2YV73H3QGttpZD/8BW6fVdwdUf/sd7q8epXen9UR9E5p9Hro8HZGaN75bQA0tlZ6G3rrZdQdeuf93hl2DDuGYz5znPoZb9Ys79CCHEJKVMgGRcXx9ixY8nLyyMwMJCkpCScnZ0ZOXIk4eGX1iJzQyka+LpyODXXKrSTnEPHsPOXnxdCOI4KCsF45k34YwP6z02oW//vbGDn7IK69ib0d19iLv0J1aE75oyJsGMLqtMVENkKPfsz9IKvUXc+AoD+7QdQBuqam0q+ZrMobG987LB78nKx0dDPlV3FrJMEmLrpBAWmZsw1Dc+p6lmaViHu2BR0CPPC58xaxhAvZ4I8nNhxMpu63s7k2jVXRvgQfTidFYetAK3A1MzadoofdyfjbCjahHqwITaT6MPpADQJcOWeNnUu/MbLqXO4Fw18XfhuRxI9GnhXylpJAOXtC+26WL+vE8pmow7H9sDT7QOLDQJdbAaX1/Piw/4eLNibQp7dJDLQnfGr4vh4/XFe6R1Orqk4mpZH5/MUBjOuuh7dOJL6QaF4/xLPHpdgru3WttTPlOmewiOgRRv0gm+gIN+q0GuzoXr1I86nOezMIYxsjBfGo85U0oUzRZ7uHYL56hOYH4+B5FOQkYZ2dUcNvMsKvKpoNk6bdqvtz6J5Vjq5MtBNWp5dNwxWqvDWNahrbylS4Oq85962zvp7KUeaqmrSAppFoVctQV93a7Evc/TOrejMdIwaWF1aCCEuRJkCyc8//5y+ffsyYMCAwm+S8+fPZ9q0abz66qsOHWBN1NDPlXWxmfy0N4W0XDvt6l7abVGEqAmUUtCuC+rMD/9F9vW6Dr1hJfqbKehvplgFRh54AuOKawEwj8VYFS979AUfX6taY7feqICgc85VlVrWcWdZTDp2UxdJ2zyZmc+uU6e5t21QuYJIAA9nGy9eGU5937PrKJVStA7xYEt8Fv5uNlxsise7hBKbnsvnm0+yNT6L45n57Ek8zfXN/LinbR18XG1k59vZHJdFfV8XIqppnbihFA+0C+bN6Fg+2XCCJ7uGOqTwyYocH7xdMunRtPR/E65ORpF1ove1rcPnm0+ycH8q9X1dMTVEBp7/makGTVBAZKAbB5JyiuzTWvPfPxLJyrczuFP5ZiiNvgMx92yHOqGojj0Lt8fhiU3lUO+FN1BO52YbqaAQqxjRd19C05YYg/6NufxXq+/nD7OgWSuMOx8pEoBWNp2RZvU63bUNLu+G0aMv5mdj0T9/i3roaas375J56B++stYxp6Wi7h1S9vNvWAGBweUugqZ69EVPnwgHd0PTotV+dXYm5ufvWlWWm0ahAqv+ZYsQQjhKmQLJw4cPM2rUqCL/Od9www388MMPDhtYTdbQz5XFB9OYsfUkncI8C9PDhBA1k3Jzt4qQHNprpa5FtSusogmgbrkfvXkN5lv/ARTYC1D9/lV9Az4jKtiDX/enciglh2Z/Cz5WnJkFvLKCaaPFZVFcFuLB8ph0lh5K57IQD9ycDP7dtS4ztp5i58lscgpMnu5et0j6qIezjSscmLpaVp3CvbijdSD/25FEI39XBrSo3HTL3AKTDbEZ9IrwKfcyhhua+7PmaAafbjzBX+8CIoPKHnQ3C3RjS3wS2fn2wr6Tv+5P5budSSisNah+bmVepQKXdbRSVjtfUVh1GCAuPZdQbxeciwki/6KuuRnVsh2ENUQZBrY2ndD7d1mFfFYtxpz9GbYRb5f4+Yoyl/6EXvs7xMZYmQJ/ewmkruqPXjwf3Wcg5vzZsH2j9ULJxx+9/Bd0q3aodqVXAQaruBa7/0D1+1e5X0SoDj3QX09Br/kd9c9AcuFcyMwAmw39y3eo+0vuUSqEELVNmf73CQgIYNeuXUVafezevRt//7JX9LuY/FVwx93ZxrAudaXstxC1gFIKmrSwUtH+uc/LB+PJUehNq8EwoH4EKjSsGkZZVKtgK3j8flcyXcO9aBPqiZ+bjWUxaUTVcSfEq/L6/V0WYqUm5hSYhYFmhL8br15trRXTWtfo73V3twniSGouX2w5SfcG3gR6VF5f0U1xmeQUaK5oWP6g2VCKV3rXZ0NsBn+eyMbNyShsj1IWkYHuaOBQci6tQzzYfjyLqZtO0CTAlYPJuWyIzSxXxVplGKjHRpyzPTY9j3Cf0v89KaXgH0WpVLMoVLMoTP8A9LfT0Af3FPs1VlH6RLyVRdCgsZWq2rmXlaL71/X73YJe/gvmmGdBa9Tdj6F63wD2AvTh/ZjTJ2EMD0Q1albyRQC9eTWYZoWqryo3d9Tl3dEbV6LvfATlar0o0Mmn0EsWoLpeBW7uVmGe/rehAoNLP6EQQtQSttGjR48+30GBgYG89957HD16lAMHDvD7778zZ84cHn74YcLCqv+HrQuVkZFRruO9XW1sic/ikQ7BNC1DipIQouZTAUGo1pejWrVHhTc6/weqgIezjd2nstkUl8XaY5ksPZSGk6GIPpzOba0DK/X7j6ezwdKDaWTnmwzpFIqnS9GZqZocRII1voZ+rvyyL5UwH1eaBlZequ3s7afIyrPzSMeQYtdHno+zTRHh70bncG8ur1e+NfVeLgY/7E6mvo8LLeq488byWDxdbLxzbUNWHskgM9fOlRdYZMhuar7ccpJOYV4VX6pRr6HVSzX5FMaZYEznZMPhA9YsonvF1lDqhXMgZh/GS+9jtO+K8ikaNCtXdyuNNe4wxuMvYXTuhVIKZdhQLdqg10ejl8yHnGxo2hLl5ISOO4o5/gU4nYWKbGVVy535kVUV96Z7Knb/Hl7oFb9BSpI1+7h/l5Xym5qEMfQFVGRr9O8L4HR2YZsiIYSoSby9y59hWabXoh07dmTs2LGsXbuWlJQU6tevzx133EG9epdmHzwPZxsf9q8ZP2gKIS5ur/dpQG6ByeHUXCatS+CLLSdxMqBHg8pNKVVK0bWBNweTcgj2qrzZvKpU39eFYE8nNsVn0q/ZhfeVBMjOt7MpLot+zfwqpb1Iefm4ORHq5cy+pBwOJOcQm57HsC5WoN+lvhe/7kstkvZaEScy8ykwL6yNlXJzR119I3rB15jfz0T/udlKRQVw97B6X0aUPiv4Tzo/H716KbTtXGp1WDXwHtSNdxVJ1QVQIfUwXvsIPXcGetGP6A0rrFTYRT/A6Wz0/Nno1pej9/wJcUcwhjxf3ts+K7IVqmNP9IZoKw0XwDcAdeejqKAQazxXXm+txe7aG1UJlZ2FEKK6lTm/pl69etx6662OHIsQQohiuDoZNA9yZ1y/hkzbfBI/N6dz2mxUhkc6hFT6OauSUoqOYV4sPZhGnt3E5QIquB5KzuGrP04Rm55HvlmxtNbK0izQjd2nTvP7oTScDUWPBtZb427h3izYk8LW+Cx6XMD4YtOtdlZh50ltPR/V50YrYPt1DjSKRN10Lyo0DHPOdMwPXsV49q1z+rWWRm9dC5npGL2uK/26SkEJ7ciUhyfq/sfR3Xpjfvs5+sevIDQc49m3MSe+hvn5+1YV2rad4fJu5brff45BDX4OnZtjzcJ6ekJYRJGZfHXzvejtGzG/+ADj1YmFrVVq+my/EEKUpMRA8rPPPmPw4MEATJo0qcRvdE888YRjRiaEEKIID2cbT3atW93DqNE61vPil32p7DiRXe400r+btuUkMSk5tA315NqmfjQvR4GcyhYZ5M7KIxn8fiidLvW9CtOOW9Rxx8fVxrpjmeUKJDfFZVLP24V6ZwLH2LQ8oBICSU9vjBfGg5NTkXYcRsOmmONfxJzwGsbrH6E8yvZc9IrfrCqqUe0uaFwAqmlLa2x7/oCIZigPL4x7h2JOfgtc3TDuHlwpAZ1ydYPmrYvf5+aB8fB/MMc+j/nBK5CbA6nJGKMnofwDi/2MEELUZCW+rg0OPrsYPDQ0lJCQkGJ/CSGEEDVF6xAPXGyKTXGZFT5HfHoeO05k86+WgYy8IozbWgVW66xRszPrPXMKTHr/bT2kzVB0CfdiQ1wGKacLynSupOx83lgey39+PVz4dxSbnoe/mw0vlwuf5VZhDYoEkWD14TSGvQjpqejvZ5bpPOa65bD3T9RV16OMSuoNahioqPaFgaxq1wV124MYj/ynytpyqCYtUDfdA8diwMfPSrFd/kuVXFsIISpbiTOSt9xyS+Hvr7nmGvz8zl1vkpqa6phRCSGEEBXg6mTQNtSDTfFZPFqOtEG7qTGUlaK4+GAqhoKrm1xYEZvK0tjfDUNZhd7a/6MYzr+iAlkWk8bMbacY3u38s9XrjlnBY4CHE28uj6WOpxMnswpoE1KxYjhlpRo2RfUdgF48D93lKlSzqBKP1UcPomd9BM2iUH1vcui4jH63nP+gyr7mDXeg+9+OUgr75LfRKxaib7gD5VLxNapCCFEdyvSab/jw4cVuf/rppyt1MEIIIcSF6hjmxYnMfNYcPX9F7r2Jp3l3VRz3zdnPsJ9iiEnJYemhNDqFeRHgXo7+jA7k6mTQt4kvt7cKPKfgTz0fFwa2COD3Q2nsTzpduD3frlkek0aBqYscv+5YBuE+Lrx/fQT9m/vTPMide9sGMbiT4zOM1MB7IDAYc/pE9Mn4c/br3FzM1UutdFMPb4whI1FONeMZVLa/XnAYfQdAZgZ6fXQ1j0gIIcqvTIGk1vqcbdnZ2RiVlG4ihBBCVJYrI3xpHuTOu6vjWXE4vcTj7KbmrehYth3Ppmt9LzLz7Dzz62HScuzl6s1YFYZ1qcuAFsVXLr29dSB+bjambjpR+P/1yiPpfLAmgYX7UwqPS88pYMfJbLrV98bNyeCxjiE82zOMO1oHEX4BFVvLSrm5Yzz0NGSmY77+NOaK39AZ6ejsTMx5szFHDEJPnwAurhhPvITyuQR6VUe2hvBG6KULiv1ZC6zqteZv36P37ajiwQkhROlKfdU3dOhQAPLy8gp//5fMzEx69OjhuJEJIYQQFeDubPDa1fV5MzqW91fH4+dmo03ouf0R/zyRTVqOned7hdGtvjensvJ5OzqWXLs+J4W0JvNwtnHnZUF8tvEEMSm5NA5wY3O8lcI6Z0cS1zTxw9XJYENcJqaG7g3K3yussqjIVhivTsD8/D30rMnoWZPBydnqBdm+K0bfgdCs1SVTyVQpheo7ED19Anrh96jrrer4+nicVYwnJxvzm6kQexjt4Ykx6sPCdiJCCFHdlC7pFRiwa9cutNaMGTOGF198scg+Pz+/i6aPZHz8uSk2QggharfcApN//xyDs00xoX+jc9JCJ61LYPWRDGbe1rSwVYipNfl2jatT7cq4ScspYND3B7g1KpC72wTxwNz9BHk4czg1l0Ht63BLVCBvLDvG0bQ8ptzUuNoDNW3aYf9u9OF9kHQK1bMvqkGTah1TddGmHT3tA6vP5Y13oeMOw9Z1Zw/w9rVah8yZbrUuee6dizblVwhRfSoS15X6nSgqyloMP23aNFxdZRG4EEKI2sPVyeChy4N5e0UcC/enckPzs6mS+XbNumMZdKnvVaTfpKEUrk61bzbM182JVsEerD2WQYd6nmTmmQztHMjiA6nM3ZXM/qQctiZkcWNz/2oPIgGUYYPmrVEltMq4lCjDBg8+hc7PQ//0Dbi6oQbeg6ofAXY7RF6G8vbBdPdCTxmH/mYK3DME0Oj/foqOO4Lx1GiUW+UWTDKX/4LeuRVjyPOoEvp0CiEubWV6peXq6srhw4fZvXs3GRkZRfL477zzTocNTgghhLgQncO9aBvqweztp7giwgcfV+sH4j+OZ5GZZ3JFOfov1nTd6nszZdMJ5u1JxlDQLtSTYE9nRi46wq5Tp+nd2JfbWkm/wppIOTlhPDYCvX4FqvXlKN9z14canXpiHt6PXvQD5OWBUug1S0EpzC8nWsWJKuklgd66Dj37M9AavWkVqsuVlXJeIcTFxTZ69OjR5ztoyZIlfPDBByiliI6Oxt3dnZUrV+Lj40PXrl2rYJiOlZFx/sp+Qgghah+lFI0D3Ji/JwUXm+KyEGvt47d/JpKYnc+QTqHnpLzWVoEeTszbk0Jseh4t67jTv7k/gR7O3Bjpz+2tA+lS37vWpexeSpRhQzVojHJzL/mgqHaAQi9dAMdirJnLNh1h6QIwjEpZX6qPHsKc9DrUbwTunnBwN+rK66tlJlsfj8X8+G2w21ENm1b59YW4lHh7l3/9fJlmJOfNm8eLL75Iy5YtefDBBxkxYgRbt25l9erV5b6gEEIIUZUa+rnStq4nSw6mcUfrILLy7Kw9lkGvCB+cbRdHEAkQ6OFMiyB39iSepkM9r8LtXq6SlnixUEqhBt6NGRwKOacxrupvZYkdPoCeNxu9eS2q5zWgTev4q/qXaz2lzsvFnDIePL0xnngZvXMr+ssPYfsmdEg99O5tqJ7XoJxdHHSHZ8ZhmujNa9AzJ0HOaXTMfnSzKFTd+g69rhCifMr03SU9PZ2WLVsC1jcx0zRp3749EydOdOjghBBCiMpwbVNfxq2MZ2tCFrtOZpNn19zUsvh2GrVZj4be7Ek8Tcew2lN1VpSf0bV34e+VUvDQ09DqcvRv31trKM/uRPUZUOw5dH4+mCbqbzUw9PzZcCIO4+nXrfTazr3Q82djzpgImRmgTfSmVRjDXkJ5eBV73guhC/LRc2eiN66AtBSIaIZx7xDMCaMxv/gQ4/lxlbpeU59MAB/fSl9fKsSlokyBZEBAACdPniQ4OJi6deuyadMmvL29cZKqYUIIIWqBzmHe+LrZ+GF3MgeScujZ0Jv6VdA7sar1j/SnWaAbEf5u1T0UUYWUkxOqRx90t96QfArcPTA/G4de8I21zc0Dtm+EZlEoT2903BHM9162gsPQMFREM6hXH71oHuqKa1FR7c6ed8Dd6Nmfoq4ZCCH10LOnYI57AeO2ByGqHepMT3FtmlaxoNBwVKcrKpQKq6N/Qy+ZB+27ojr0QF3eHeXsjLpnKHrKOMy3nwH/IIyuV6E69qzw35c+sBvz529hxxZofhnGM2/WiCJUQtQ2ZVoj6ebmRl5eHnXr1iUgIIAJEyawbNky7r33Xpo0qf3lumWNpBBCXNxshiI910704XTspubZnmH4ul18L0MNpajj6VzdwxDVRCmF8vBCubiiwiKstZTZWegVv6F/+ga9Lhq8fKx0VWWg+txoVYbdsx3+2AD+gRiPv1gkdVU1aIzqfztGq8tRDZuiGjdHr11mnXPt76jQMFRwPStoXfANbFkDCbHQsg3KpeSXNTo/D71lLXrdMmgcCXYT/dlYaNgUY/irGOERhbOPKqwB2GyQmgwJseh1y1Ade6K8yl8sS2ekYb4+HLKzUK07wJ+bIDAE1aBx+f/ChbiIVGSNZKl9JEtSUFBAQUEBbm6V88ZzxYoVzJ8/n9jYWAYNGsR1111XuC83N5ePP/6YQ4cOYbPZuP/+++nQocN595WH9JEUQoiLX3x6HkMXHKJHA2+euyKsuocjhMOZX06wKrvabKjrb0NvXAUn4sDLG2PEGFS9BoA1m8jxWPDwRPmdv7Kvzs9Hb1uP/vlbiD+G6n41evUSVNfeEBqGXvA1+J0JSosJ0PSurZifjYPsLGtD0yhUy7boBV9b44psVfK101IwRz0ODZtg/OcN0BpMO8qpbC9QzGU/o2d/hvHqRKjXAHP8C3A8FuP1T1DeF08VZyHKqyJ9JEuckdRaF07zm6aJ1rrwl1IKm81W5JgLoZSiW6XXbdMAACAASURBVLduZGdnExAQQNOmZytz/fjjj+Tn5/PKK6/Qtm1bxo8fz7XXXouTk1Op+8pDZiSFEOLi5+1qo3mQG9c09cNNqpeKS0GjZuikUxj3DMHo0RfVoy+4uGLccj8qLKLwMKUUyrvsawWVzYYKa4DqdjX6eCxsiLZmEh9/AaNlW1RUe/SGlejlP6Pq1i9SJEfb7ZgfvQHOrhiPjYDLOsDvC2DvnxDVDuPG0tvKKTd3cPeAZT/DiXj0d9PQv/+E6t4H5XL+IkDm11OsQHrg3dZ9N2qOXroA/ecmyM8HTy8roFbyPUJcWiq1auugQYOYMWMGAHfffXeJJ/j222/LfdF/atDAeiNWXFC6Zs0ahg0bBkDdunVp0qQJW7dupVu3bqXuE0IIIf7p8nqVXyBEiJpK+QViG/r82T+7uqFuuKPyzu/qhjH4Odi61mo9ciaVVTVujjHqfcyJb2DOmoxxWYfCdFm9PhqOx2EMfR4V1Q4FmFqj50zHuOX+sl2313VWeu3GlRDZGvbvRM+djnrgiVI/p0/EQ8w+1G2Dzp4rrAHqoafRv85F/28a+n/TwMUFWrbDeHA4ytMbc300es3vGIP+jfKXXqxC/KXEQPK9994r/P1HH31UJYMpTmJiInXq1Cn8c1BQEElJSefdVx4VmcoVQgghhBBA+O3nbqtXj5zBz3DqxaH47v0Dr2tvQhcUkPDLdxhNmhNyw61nJxBuuRt9813lynIzx05Bn87GFliH1C8mkDF3FgE33IpTcF3syYm4tmxz9tjsLJS7B+nLFpCuFKED7sApKPjsyW6+C26+i/y4o+Tu2kb+oX1k/jIXY/wLuHe9koy5swCwfTKG4HFTMTykKrIQUEogGRQUVPj7rKwsIiIiKnyRkSNHkpiYWOy+qVOnYhjVmz4gaySFEEIIISqXDqoHYQ1JmTuLtFYd0Yt+QJ+IQ9/5CgkJCZVzkfh4dO+BsGIxp14cCqbVQ9N4YhSqbSf03j8xP3gF/IMg5zS0aMPJvAIo7mc/5QStOkKrjhgt2lEw+S0y5s5Cde2N6tCd/E/GEDf6Kevc0rlAXGQqMrFWpq+CN954Ax8fH3r27EnPnj0JCQkp10XGjh1b7oH9JSgoiFOnTuHjYy2ATkxMpFWrVufdJ4QQQgghqo9SCtV3IHrGJPSMiejVS6FtZ2hd/sKIpV7H1RXj4f+go3+FRpHoZb9gzv4Uo1EzzOkTwS8QwhrCvp0YV/Uv2zmbRWG89B46Zl9hOxN13+PomR+hZ38K9w+TliHiklemQHLq1Kls27aNVatW8dxzzxEeHk7Pnj3p3r07vr6+Dh1g165dWbx4MU2aNCEhIYGDBw8yfPjw8+4TQgghhBDVS3W5Ej13hhVEtuuC8dhzDgnAVJMWqCYtANDhjTDHPY/5xtOQlozx7NulVoIt8Zx1QlF1Qgv/bFxxLWbSSfTP/4PA4EpdbypEbVTu9h95eXls3LiRRYsWsX//fmbPnn3Bg1i1ahVfffUVWVlZODk54erqyssvv0x4eDg5OTl8/PHHxMTEYBgG9913H506dQIodV95SGqrEEIIIYRjmOuj4ehB1C0PVFlKqDnzI/TKRag+AzDuerTSzqu1Rn/xAXrdcowhz6M6dK+0cwtRnSqS2lquQDIvL4/NmzezatUqtm/fTmRkJKNGjSr3RWsaCSSFEEIIIS4e+nQ2et1yqy2Iq2vlnrsgH3Pcmf6TL3+ACq5bqeevSfTWdeit61D3D0M5l61Xp6idHBZIbtmyhVWrVrF582bCw8Pp3r07PXr0wM/Pr0IDrWkkkBRCCCGEEGWlk05ivv4UBIVgDPo3ePuClw/KyQmdmwvxR9H7d6L3/okKCELdOsjqgXm+85om7NoGTVuW6fjKptNSIOkkNGyK3rgS/cWHoE3UwHswBtxV5eMRVcdhgeTTTz9Njx496NmzJ6Ghoec7vNaRQFIIIYQQQpSH/mMD5kdvFt3o7gk52fDXj9d1QiHxJITUs1JhwxqUfL6MNMxp78POrVC/EcaTr4CvPxzaC6FhKC8ftGlHT3kXrU2Mwc+hDFvl3U9uDuabT8PxuLP3EdkaPL1g+0aMVyeh9+1AL/8FY/BIVIi0z7uYODy19WIlgaQQQgghhCgvHXcUjseiM9IgMw3S06yZyfCGENEMFVAHvWc75tR3IS8X48lRqMjWZz+vNRzcg962Hr1uGWRloq6+ER29ENzcQBmQmgTB9TCeeRO9chH6p28AKn2W0Jz1MXrlb6hb/w9OxIOTM+rWQZCTjTnqcVBAdpZ17W69MR56utKuLaqfwwLJ/Px85syZw+rVq8nIyGDGjBn88ccfJCQkcN1111VosDWJBJJCCCGEEMJRdHKi1c8y6STGkJGoNp3Qpon++jP08l/BZoPI1hi3P4Sq3wh9LAZz1mTw8UO1uAw9bza4uUNqMqp7HzDt6PUrMJ55A9X8sgsf37Z1mJPfRvX7F8Ztg87Zb65chJ79GermeyElCb3sZ4w3Py1S1VbUbg4LJKdOnUpKSgo333wzb7/9NtOnTyc5OZk333yT999/v0KDrUkkkBRCCCGEEI6kM9IwPxwNRw9Cm07g7Ayb16CuvRl1w50oD8+SP3tor/XZwDoYz48HbWK+9R/IycF44+MLWk+pc05jvjwEfP0xXhiPciq+qI4uKLDWgKYkYb74KKpHX4z7Hj//+Y/HQXYmqnHzCo9ROF5FAsky1WDeuHEjEydOxM3NrbD3T0BAAMnJyeW+oBBCCCGEEJca5e2LMeJt9JL56MXzrODqXw9gXH/b+T/buDnGm5+Ai2thFVpj0HDMd55D//I/1L/+r8Lj0r99D2kpGENfKDGIBApbtyj/QFT3PujVS7CfiIeTCahe/VD9bz+nR6hOScIc9zxkpKF6XoO6/UGUh1eFxypqljIFkk5OTpimWWRbeno63t7eDhmUEEIIIYQQFxvl5o668U50nwFWANawSdk/61O0W4Jq0sIK6BbNQ3fvgwoNL/d4dHIietEPqE5XoJq0KPtYrr8NvXMr5JyGOqHoH7+CYzHQdyAYBgSFgIcn5qfvQF4uqnd/dPRC9K5tGE+/jgoNKzqO2Bhr/44t1lj6314tVWtF+ZQptXXmzJkcP36cQYMGMXLkSN5//32mT59OaGgod999d1WM06EktVUIIYQQQtQ2Oj0F8+XHIawhxqPPoALqnN2nNRzai960Gr1vB6pVO1TfgZCdZQWBSSfRB3bDsRgrPTYopGJj0Bq9+Ef0nBmg/zbx5O0LGWlWddmOPdEx+zEnvQ5gBZP1GwFg/vId+odZ4OQMjZrB/l3gG4Dx6LOo5q2Lu+TZa+fnQW4OysvH+rNph1MnpKJsBThsjWRBQQFfffUVS5cuJS8vDxcXF/r06cN9992Hk1OZJjVrNAkkhRBCCCFEbWSuWYqeORkUVvpox57g5Yv53TSrlYiTE9RvDIf3A+pssOfiCh5eqP63YfS+4YLHoROOQdIpsNvRCUfRB/eimjTHuO7Ws8ccj8V8/xXIykD1ug5sBvq3H1Cde6HuGYzy9EYf2I05Y5JVmGjoC+Drh148z1prmZONatQcdftDkJWO+dFbkJWB8doklI8/5tdT0L//hLrzEYy+Ay/4ni4lVdL+46+U1n/mQNdmEkgKIYQQQojaSiedRP/0rdVCpKDA2ujugRpwtxVcunugT8SjVy8G/zqoNh1RgcHVNNZT6B9noTesANO0xnf/40V6YuqMdMwPX7XSZbUJ7h7QuDk4u8Kfm8DD07pPm83qd9m2M0bfgZjjXgAfP0hLQd18X7HrNkXxHBZIxsbGsnv3bjIzM/Hy8qJly5aEh5c/D7umkkBSCCGEEELUdjrnNOzaij4eh+rRF+XrX91DKpFOPAFHDkD7bijDOHd/dhb6mykQEobq3b+wSI+OPYw58yOw2zEefwG9PtpKjfXyBhc3jFcnoP/7GXpDNLRog3H3Y6h6Dar69mqdSg8ktdZ88sknREdHExgYiL+/P8nJyaSkpNCrVy+GDh16UUT5EkgKIYQQQghRe2itUUqhCwowx4yAowcxho9Gtb4cbdrR0b+hf5wFOadRl3dH9bkR1TSqesecEIuOPYzRqWe1jqM4lR5ILl68mHnz5vHUU0/RtGnTwu0HDhxgwoQJDBgwgGuvvbZio61BJJAUQgghhBCidtIpSXD0EKptp6LbM9LQC+eiVy2G7CzU7Q9iXHuL48axbR2ERaDqhBa73z7ueTiwB2PcNJRfoMPGUREVCSTPnUf+mxUrVvDggw8WCSIBmjZtyqBBg1i5cmW5LyiEEEIIIYQQlUX5B54TRMKZ3p23P4Qx7kto3xX9/Uz0wT2Vck196jj2j95EHz1o/Tn+KObHY6xCQcUdH7PfqkirTfT6FZUyhupWaiAZGxtLVFTxU8BRUVHExsY6ZFBCCCGEEEIIURmUqxvGoH+DfxDmlPHo9BTgTOuSvTvQp46f8xmtNTo9Bf1X8aK/70s6ifnuS/DHBsyZk9Gmif75O9Aa9v6JPrDr3M8s/tEqGhTeCL32d8pZ7xSdk43OSC/35xyp1N4dpmni7l58M1B3d3dM0yx2nxBCCCGEEELUFMrDC+Ox5zDHjsQc+QiqfVd03BGIPwqBwRijJ6HcrLhH55zG/PQdq32KUuAfiGrWCho2hfRU9MaVViuS6261Umd//Aq9cSWqd3/0xlWYP3+HbfirhdfWSafQm1ej+t4EQSHo2Z9aFWkbNC7T2HVWJuZr/4aURHBxQbXrirp/WOF4q0upgaTdbmfHjh0l7pdAUgghhBBCCFEbqEbNMF75EL38F/S6aAisgxp4D3rB1+i5M1D3DkFnpGFOfB2OHkT1vwNsBhyPQ+/aBuujrb6cIWEYj42ARpHo/TvRv86xArwb7wS/QPQPs9D7d0HTlnDkAOb3M63rX30juLqiv/0cvW4ZqqyB5OzPIN1qaUJqklVIKP4oxhMvn9PGRR85iDnvvxgPPYXy8qn0v8O/KzWQ9PX15ZNPPilxv4+PYwcnhBBCCCGEEJVF1WuAumcI3DOkcJuZnYleMh8z9zR6yzow7RhDX0C161J4jNYaMtLAy7tIz0vjrkcx3x6BuvJ6lI8/9L4B/dv3mOOeBydnKMi3enre/iAqsI71ocs6otctR994Z2Fbk5LozavRG6JRA+/BuOEOa1u7rpifjcMc/yLGqA9RnmfPoX//Cf7chP52Gurhpyvjr6xEZeojebGTqq1CCCGEEEJcmnRuLubrwyHxOKrjFaj+t6HCGpb98ycTICi4MMDUCbHoXVshORECglDd+6DcPc4ef2C3tcayaUurZYmzsxWo7t6GXrccGrdAdeiOXr0E/dP/IDQM4/lxKKezc4A6Zh/m2Ofhsg4Yj794phVKPuYzD1gHZGdhPDkK1ebcIkTFqfT2H5cKCSSFEEIIIYS4dOmMdCjIR/lXTVsOc300+vP3IKo9KjQMHbMPYvaBqxvk5pw9sG1njLsHn53N/Ps5Fs9D/28a6s5HMPoORP+5CXPi6xhDX8CcPxuyMqyZ1cbNCz+jC/LR0b+hLuuACq5buL0igWSpqa1CCCGEEEIIcbFT3lW7ZM/ociVmeip67nR0zF4IDEHdOwTV4xqIPYzeuhbVog0qql2J51B9B6L3/omeMx3dpCV64ypw94Q2HTGCgjE/eAVzzAho2RbV7WpUeATmrMkQsw+9rxu2oS9c0D3IjCQyIymEEEIIIYSoerqgoEjKark/n5WB+fpTYBiQnYlq2wXjoaesfTmn0dG/opfMh9Rk6wPuHtCgCRzYjTF+emEALamtFSSBpBBCCCGEEKI20gf3YI5/Aez2YtdFatOEIwfQ+3eh2nWGvDzM1/6NuutRjD4DgIoFkkaljF4IIYQQQgghRJVTTVqg7nwE6jeCYlJhlWGgGkViXHszKrgeKjwCGjZFr1l6QdeVQFIIIYQQQgghajGj9w3YXpmAcnIu0/Gq+9Vw9BD6yAF0Xm6FrimprUhqqxBCCCGEEOLSoTPTMUcMgoICAOr/vKnc55CqrUIIIYQQQghxCVFePhiDn0PHHgFbxUJCmZFEZiSFEEIIIYQQly4ptiOEEEIIIYQQwuEkkBRCCCGEEEIIUS4SSAohhBBCCCGEKBcJJIUQQgghhBBClIsEkkIIIYQQQgghykUCSSGEEEIIIYQQ5SKBpBBCCCGEEEKIcqlY98lK9vnnn7Njxw6cnZ1xc3Nj0KBBNGnSBIDU1FQ++ugjTp06hYuLC4899hjNmjU77z4hhBBCCCGEEI6htNa6ugexefNm2rZti5OTE5s3b2b69OlMmjQJgI8//piQkBBuvfVW9uzZw+TJk5k4cSJKqVL3lUd8fLwjbksIIYQQQggharx69eqV+zM1IrW1Q4cOODlZk6ORkZEkJSVhmiYAa9eu5ZprrgGgRYsWuLi4cPDgwfPuE0IIIYQQQgjhGDUitfXvFi5cyOWXX45hGGRkZADg4+NTuD8oKIikpCRCQkJK3Ne0adNyXbMiEbgQQgghhBBCXKqqJJAcOXIkiYmJxe6bOnUqhmFNjK5evZpVq1bx2muvVcWwhBBCCCGEEEJUQJUEkmPHjj3vMRs2bOCbb75h1KhR+Pn5AeDt7Q1Aenp64cxjYmIigYGBpe4TQgghhBBCCOE4NWKN5ObNm5kxYwYvvfQSwcHBRfZ17dqVxYsXA7Bnzx7y8vJo3LjxefcJIYQQQgghhHCMGlG19eGHH8bJyanIesdXXnkFb29vUlNTmTRpUmGLj0cffZTmzZsDlLpPCCGEEEIIIYRj1IhAUgghhBBCCCFE7VEjUluFEEIIIYQQQtQeEkgKIYQQQgghhCiXGtdHUojyiI+PZ/LkyWRmZuLl5cUTTzxB3bp1S9xenCVLljBv3jwA2rVrx4MPPohhGCQnJzNp0iQOHTpE3bp1eeedd6ry1kQpHPncN27cyJw5cygoKEBrTe/evRkwYEBV3p4ohiOf+eHDh/nkk08wTRO73U7z5s156KGHcHZ2rspbFMVw5HP/S15eHiNHjsTV1VW+z9cQjnzuO3fuZMyYMYWfc3Z25u23366yexMlc/TX++HDh/nyyy9JT08H4IEHHqB9+/ZVc3MXKy1ELTZ69GgdHR2ttdY6Ojpajx49utTt/3TixAk9ePBgnZaWpu12u37zzTf18uXLtdZaZ2Vl6Z07d+pNmzbpkSNHVsHdiLJy5HPft2+fTkpK0lpb/waeeOIJvWvXLkffkjgPRz7z3NxcnZ+fr7XW2m636/Hjx+uff/7Z0bckysCRz/0vM2bM0B9//LF8n69BHPncd+zYIc+6hnLkcz99+rQeNmyY3rt3r9Za64KCAp2enu7oW7roXTSprfHx8bz00ksMHz6cl156iYSEhFK3F2fJkiU8+eSTPPnkk0ybNg3TNMu0T1SPtLQ0YmJi6NmzJwA9e/YkJiaG1NTUYrf/9Qbq79atW0enTp3w8fHBMAz69OnDmjVrAPDw8CAqKgo3N7equylxXo5+7s2aNSMgIACw/g2EhYVx6tSpKro7URxHP3MXFxecnKwEHbvdTn5+fpEZK1E9HP3cAXbv3k1CQgK9evWqmpsS51UVz13UPI5+7qtWraJFixZERkYCYLPZCnvSi4q7aP6nnDp1Kv369WPChAn069ePKVOmlLr9n06ePMmcOXN46623mDBhAsePH2flypXn3SeqT1JSEgEBAYU/8BmGgb+/P8nJycVuT0xMBODTTz9l06ZNACQmJlKnTp3CcwYFBZGUlFTFdyLKoyqfe1xcHPv376d169aOvi1Riqp45snJyYwYMYKHH34YNzc3+vbtW1W3J0rg6Oeek5PD9OnTefTRR6vytsR5VMXXe0JCAiNHjuTFF19k+fLlVXRnojSOfu6xsbHYbDbGjBnDiBEj+OSTT8jMzKzKW7woXRSBpKPfYsibrYvLkCFD6NixY3UPQ1Sx8j73lJQUxo0bx8MPP1w4Qylql/I884CAAMaPH8+UKVMoKChg/fr1Dh6dcJSyPvevvvqKfv36ydf3RaKsz71Ro0Z88sknjB07lqeeeoq5c+eyffv2KhihcISyPnfTNNmxYwdDhgxh7NixuLu7M3PmzCoY4cXtoggkHf0WQ2ataqbAwECSk5ML04xN0yQlJYWAgIBitwcFBZ1zjqCgoCJpi4mJiQQGBlbNDYgKqYrnnpaWxhtvvMHAgQPp3r27g+9InE9Vfq27ubnRvXt3yTqpARz93Pfs2cPcuXMZNmwYH374IUePHuXZZ5+tgjsTpXH0c/fw8MDDwwOA4OBgOnXqxN69ex19W+I8HP3cg4KCaNWqFf7+/hiGQc+ePTl48GAV3NnF7aIIJCtKZqZqN19fXyIiIli1ahVg5b83atQIPz+/Yrf7+Picc44uXbqwceNG0tPTMU2TpUuX0q1btyq9D1E+jn7uGRkZvPnmm1x33XX06dOn6m5MlMjRz/zEiRMUFBQAUFBQwMaNG2nQoEEV3Z0oiaOf+7vvvsvkyZOZPHkyTz31FA0aNODdd9+tuhsUxXL0c09JSUFrDUBmZiZ//PEHERERVXNzokSOfu7du3fn4MGDnD59GoBt27bRsGHDKrq7i5fSf3011WJpaWkMHz6cL774AsMwME2Thx56iA8//JCnnnrqnO0TJ0485x/g/PnzOXXqFA8//DBgpbMuW7aMF154odR9onrFxcUxefJksrKy8PT05IknnqBevXolbgdrJrpjx46FLxEWL17M/PnzAWjTpg0PP/xw4b+Xxx9/nPz8fLKzs/H19eXqq6/mjjvuqLb7FRZHPvdZs2axcOHCws8B9O/fn969e1f9jYpCjnzmK1asYN68eYVf9y1btuSBBx7AxcWl2u5XWBz53P9u586dzJo1S9p/1BCOfO4LFy5k0aJF2Gw2TNOkV69e3HTTTdV2r+IsR3+9R0dHM3/+fJRSBAcH89hjj+Hn51c9N3uRuCgCSYDRo0dz9dVX06tXL1asWMGyZct49dVXS9z+TydOnODVV19l3LhxeHl5MWbMGHr06MFVV11V6j4hhBBCCCGEuNRcNIGko99ilOWNphBCCCGEEEJcCi6aQFIIIYQQQgghRNWQKTUhhBBCCCGEEOUigaQQQgghhBBCiHKRQFIIIYQQQgghRLnU+kAyPj6el156ieHDh/PSSy+RkJAAwMyZMxk2bBh33HEHR48eLfUcw4YNO+8xQgghhBBCCCEstT6QnDp1Kv369WPChAn069ePKVOmANC5c2dee+016tSpU80jFEIIIYQQQoiLi1N1D+BCpKWlERMTw6hRowDo2bMnX3zxBenp6bRo0aJC51ywYAFr1qzBbrfj7OzMo48+SkREBAB33HEHd911Fxs3biQjI4P77ruPrl27VtbtCCGEEEIIIUStUKsDyaSkJAICAgr7ORqGgb+/P4mJifj4+FTonFdeeSUDBgwAYPv27UydOpW33nqrcL+Hhwdjxoxhz549fPDBBxJICiGEEEIIIS45tTqQdIRDhw7xww8/kJmZiVKqcM3lX7p37w5AZGQkKSkp5OXl4eLiUh1DFUIIIYQQQohqUasDycDAQJKTkzFNE8MwME2TlJQUgoKCSvzMsmXL+OWXXwAYOHAgV1xxReG+goIC3nvvPV577TUaN25McnIyQ4YMKfL5v4LGv2ZBTdOs7NsSQgghhBBCiBqtVgeSvr6+REREsGrVKnr16sWqVato1KhRqWmtvXv3pnfv3sXuy8vLwzTNwkB00aJFDhm3EEIIIYQQQtRmtTqQ5P/bu59X6No4juOfORpkxlCOySwsxhDFQrHxByh/wGRnoYYYRiQLWzZWQqZkahZMWc3WwizsKMQWJUn51dGIURrNzLNQ0/M8noXp6Ta3ud+v7bm+V+e7/HR9z7kkDQ0NKRwOKx6Py+FwaHx8XJIUjUZ1cHCgp6cnzc/Pq7q6WouLi/+5RyaTUXl5uaqqqtTf36/Z2VmZpqnOzs7vbAUAAAAAfgRbLpfLFfsliimZTGpyclKRSIRvHQEAAADgC378ieT/sb29rZ2dHQ0MDBAiAQAAAOCL/vgTSQAAAABAYYxivwAAAAAA4GcpqdHWl5cXra6u6u7uTna7XQ0NDRoeHpbL5dL5+bkikYjS6bTq6+sVCoVUU1Ojm5sbRSIRJZNJlZWVyefzKRAI5Eddj46OFIvFlMlk1NTUpGAwqIqKiiJ3CgAAAADFU1KjralUSldXV2pvb5ckbW5uKpVKaWRkRBMTExobG1NbW5vi8bju7+8VDAb18PCg19dXeb1eZbNZLS8vq7GxUX6/X29vbwqFQpqbm5PH49Ha2ppM05Tf7y9ypwAAAABQPCU12up0OvMhUpJaWlpkWZYuLi5UXl6utrY2SVJvb6/29/clSW63W16vV5JkGIaam5tlWZYk6eTkRD6fTx6PJ1+3t7f3nS0BAAAAwG+npILk32WzWSUSCXV1dcmyLJmmmX/mcrmUy+WUSqX+UZNOp7W7u6vu7m5J+lRnmqYeHx+/pwEAAAAA+E2VbJCMRqOqqKhQX1/fl9ZnMhktLS2po6MjHyQBAAAAAJ+VZJDc2NjQ3d2dpqamZBiGTNPMj6tK0vPzs2w2m5xOp6SP08uVlRU5HA4NDg7m1/27zrIs1dXVfV8jAAAAAPAbKrkgubW1pcvLS83MzMhut0uSmpqalE6ndXp6KklKJBLq6emR9BEiw+GwDMPQ6OiobDZbfq/Ozk5dXFzo9vb2Ux0AAAAA/KlK6q+t19fXmp6elsfjyV/f4Xa7NTMzo7OzM62vr+v9/T1//Udtba2Oj4+1sLCgxsZGGcZHrm5tbVUgEJAkHR4eKhaLKZvNyuv1KhgMqrKysmg9AgAAAECxlVSQBAAAAAD8eiU32goAAAAA+LUIkgAAAACAghAkAQAAAAAFIUgCAAAAAApCkAQAAAAAFIQgCQAAAAAoCEESELJF3wAAAAxJREFUAAAAAFCQvwDvFObUB2faMAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
    " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "from scipy.stats import norm\n", "from matplotlib import style\n", @@ -1287,85 +552,11 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": { "hide_input": false }, - "outputs": [ - { - "data": { - "text/html": [ - "
    \n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    bacteria
    0.0500.000000
    1.0515.960000
    2.0532.428126
    3.0549.420469
    4.0566.953626
    \n", - "
    " - ], - "text/plain": [ - " bacteria\n", - "0.0 500.000000\n", - "1.0 515.960000\n", - "2.0 532.428126\n", - "3.0 549.420469\n", - "4.0 566.953626" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4MAAAEyCAYAAABAngUDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XeYVeW59/HvM42hDH0oMggICIgFG2BJQjSJxBQ1MbZEsQU15hxPTt6cGFNMMyftJCemmGgs2DUaS4w5hqijJopSVFBUmpQBpA1tenveP/ZCBxxgYAb27Jnv57r2tde+17PWvrfXcobfrLWfFWKMSJIkSZI6lqx0NyBJkiRJ2v8Mg5IkSZLUARkGJUmSJKkDMgxKkiRJUgdkGJQkSZKkDsgwKEmSJEkdkGFQkiRJkjogw6AkSZIkdUCGQUmSJEnqgHLS3UBr69mzZxwxYkS625D2WHl5OV27dk13G9Ie89hVJvK4Vaby2FVzzJ49e32MsXB349pdGOzfvz+zZs1KdxvSHisuLmbSpEnpbkPaYx67ykQet8pUHrtqjhDCsuaM8zJRSZIkSeqADIOSJEmS1AEZBiVJkiSpA2p33xlsSm1tLSUlJVRVVaW7lYyQn59PUVERubm56W5FkiRJ0j7SIcJgSUkJBQUFDB06lBBCuttp02KMbNiwgZKSEoYNG5budiRJkiTtIx3iMtGqqir69OljEGyGEAJ9+vTxLKokSZLUznWIMAgYBPeA/60kSZKk9m+3YTCEMDiE8HQI4Y0QwushhKuSeu8QwvQQwsLkuVdSDyGE60MIi0IIc0MIRzXa15Rk/MIQwpRG9aNDCPOSba4PSRrZ2XtIkiRJklqmOWcG64CvxhjHABOBK0MIhwBXA0/GGEcCTyavAT4OjEweU4EbIBXsgGuBCcB44NpG4e6GZOy27SYn9Z29R8ZZunQphx56aIv3cffdd+/Vtscff3yL3luSJElS+7LbCWRijKuB1cny1hDCG8Ag4DRgUjJsGlAMfD2p3x5jjMCMEELPEMLAZOz0GGMpQAhhOjA5hFAMdI8xvpDUbwdOB/62i/fokLaFwfPOO6/Z29TX15Odnc3zzz+/DzuTJEnSNjFGYoSYLDdEiCS1CA0xEkmeI9BELSavtxvfEFlX0cCyDeXb1RuP37b9e/t5773fGx+TPpN+3+37vf6brPPeBjtb9/59br8vdjZ+N9vFHXYQ96IHdjd++2HvjW+63OS+d7vNLnYWd7Jyb/pqrj2aTTSEMBQ4EngR6J8ERWKMq0MI/ZJhg4AVjTYrSWq7qpc0UWcX77FjX1NJnVmksLCQ4uLi7db36NGDrVu37sEnbX1lZWXU1NRw3nnnMXfuXEaMGMEf/vAHrr/+ev72t79RVVXFhAkT+NWvfkUIgcWLF/OVr3yF9evXk52dzbRp0/ja177GggULOPzwwzn33HO54ooruPbaa3nuueeoqanhi1/8IhdffDHPPfccP/7xj+nfvz/z5s1j5syZDBw4kNWrV1NWVsa5557Lpk2bqK2t5dvf/jaf+MQn3tdvVVXV+/47at8qKyvzv7kykseuMpHH7b7RECN1DVDbAHUNUNcQt1uuj9AQU6/rk3BSv91rqG94r9YQU/VttdQy1McdX6dqMdlHQxIUGmLjR2yitv24bcGtAbbb13vj4s63ZfuAsk89W7w/3kUdQLPDYAihG/Ag8B8xxi27mGSkqRVxL+rNFmO8EbgRYNSoUXHSpEnbrX/jjTcoKCgA4Ht/eZ35q7bsye5365ADunPtp8bucky3bt1YuHAht956KyeccAIXX3wxd9xxB1/96le57rrrADj//PN55pln+NSnPsVll13G1VdfzRlnnEFVVRUNDQ387Gc/4+c//zmPPfYYADfeeCOFhYXMmTOH6upqTjjhBD796U/TpUsXZs+ezWuvvbbd7SEKCgro3Lkzjz76KN27d2f9+vVMnDiRs88++32TxuTn53PkkUe26n8n7VpxcTE7HrtSJvDYVSZq78dtjJGa+gaqahqorK2nsraeipo6qmrrqWxUq6ypo7KmnsraVC21PvVcU99ATV3qUb3t+d3a9utr6hqoqW+gtn7fR6Hc7EBOVhY52YGcrEBOdha5WYHs7EB2CGRlpZ6zs1LLWVmQHVJjG6/PyoKsZNye1t975r31IfWaEAikxoYAWSE1OV8IEGhUS5bDu+NTy9v2kbWT8W+99SZjRo8hK2v7few4HsJ2+wxNvCept0o9J5X3XrPdQlPrt/37ccdtwg4bv399aHL8ju/BbtZv+0z7oocd7c38ijvbZleTNe5szU73tZMtBv5kF4010qwwGELIJRUE74ox/jkprwkhDEzO2A0E1ib1EmBwo82LgFVJfdIO9eKkXtTE+F29R0YaPHgwJ5xwAgBf+MIXuP766xk2bBg//elPqaiooLS0lLFjxzJp0iRWrlzJGWecAaSCWVP+/ve/M3fuXB544AEANm/ezMKFC8nLy2P8+PFN3icwxsg111zDs88+S1ZWFitXrmTNmjUMGDBgH31qSZLUHDFGymvq2VpVS3l1HVur6iirrnv/cnUdZVWp5bJkXXlNqlZWnQS82noa9iKXdc7NJj83i/zcbPJyssjLzko9J8s9OueSl51Fp0a1d9cnrzvlZm0/JieLvOxscrMDudlZZGcFcpLlnKz3gt22kJedlazLDuRmZZGdhL5t23Z0xWWLmXR00e4HSs2w2zCYzOx5M/BGjPEXjVY9CkwBfpw8P9Ko/uUQwr2kJovZnIS5J4AfNZo05mPAN2KMpSGErSGEiaQuP70A+PVu3mOv7e4M3r60418BQgh86UtfYtasWQwePJjvfve7VFVV7fTa4x3FGPn1r3/NKaecsl29uLiYrl27NrnNXXfdxbp165g9eza5ubkMHTrUewpKktSKYoxsqaxjY0UNmypr2VRRw+bKWjZVJI/KGjZX1LKpsjapv7e+rhkJLi8ni4JOOXTLz6FrXuq5f0E+wwtz6Nophy652XTOyyY/N5vOyXIq5GXTJW/719uWt4VAby8ldSzNOTN4AnA+MC+E8EpSu4ZUQLs/hHAJsBz4XLLuceBUYBFQAVwEkIS+HwAzk3Hf3zaZDHAFcBvQmdTEMX9L6jt7j4y0fPlyXnjhBY477jjuueceTjzxRJ5//nn69u1LWVkZDzzwAGeeeSbdu3enqKiIhx9+mNNPP53q6mrq6+spKCjY7ruPp5xyCjfccAMnnXQSubm5LFiwgEGDBu2ig9TZw379+pGbm8vTTz/NsmXL9vXHliQp49XVN1BaUcOGshrWl1WnHltrWF+ePJdVsyFZ3lBevcvLJbt1yqFH51x6dkk9Rg/oTo8uufTsnEuPzrkU5OfSLT+Hgk6pcNetUw4F+annrp1yyMvpMLeJlrSPNWc20X+y88tXT25ifASu3Mm+bgFuaaI+C3jffRdijBuaeo9MNWbMGKZNm8Zll13GyJEjueKKK9i4cSOHHXYYQ4cO5dhjj3137B133MFll13Gd77zHXJzc/nTn/7E4YcfTk5ODkcccQQXXnghV111FUuXLuWoo44ixkhhYSEPP/zwLnv4/Oc/z6c+9SmOOeYYxo0bx+jRo/f1x5YkqU2rqq1nzZYqVm+u4p3NqefU60re2VzFO1uqWLe1usnLLvOys+jbLY8+3TpR2K0TYwZ0p0+3TvTtlkfvrnn07JJLj85574a/Hp1zyc02zElqG0JzL0nMFKNGjYpvvfXWdrU33niDMWPGpKmjzOR/s/2vvU9moPbLY1dtXVVtPSs3VbK8tIKS0gpWbKxk9lvLqMruyqpNlWysqH3fNgX5OQzskU//7vkM7JHPgO75FBZ0SoJep3cDYPf8HC+t1H7lz1w1RwhhdozxmN2N26NbS0iSJLVF5dV1vL2+nMXryliyrpwVpRWs2FjB8tIK1myp3m5sp5wseneKjCrqxLjBPVNhr0fn5DkV/Lp28p9Ikto/f9JJkqSMEGNk1eYqFq8tezf0LVlfxuK15byz5b3J0EKAgd3zGdy7Cx8YWcjgXl04sE9nBvfqwuDeXSjs1olnn32GSZPGp/HTSFL6dZgwGGP0Mo5mam+XDkuSMk9ZdR1vvbOVN9/ZknpevZU33tnC1qq6d8cU5OdwUGE3jh/Rh+GF3Tiob1eG9+vGkD5d6JSTncbuJSkzdIgwmJ+fz4YNG+jTp4+BcDdijGzYsGGn9zaUJKm1bSirZm7JZl4t2cT8VVt4852tLC+teHd9t045jB5QwKePOIDRAwoY2b+A4YXd6Nstz9/rktQCHSIMFhUVUVJSwrp169LdSkbIz8+nqMibmUqSWl9ZdR3zSjYzt2TTuwGwZGMlkLq8c1jfrhxW1IOzjili1IDujB5QQFGvzoY+SdoHOkQYzM3NZdiwYeluQ5KkDiXGyPLSCmYu3cispaXMXraRRevK2PZthMG9O3PE4J5ccNwQDi/qyaGDetDNiVskab/xJ64kSWoV9Q2RN1ZvYebSUmYt3cjMpaWs3ZqaybNH51yOGdKLTx1xAIcX9eDwop707pqX5o4lqWMzDEqSpL0SY2TZhgr+uWg9/1q0nucXb2BzZeqefYN6dub44X04Zmhvxg/rzYjCbmRleamnJLUlhkFJktRsG8treG7Rev61cD3/XLSelZtS3/c7oEc+HzukPyeM6Muxw3ozqGfnNHcqSdodw6AkSdqpGCML1pTx5JtreOqNtcxZvpGGmLrs87iD+nD5pOGcOKIvQ/t0cZIXScowhkFJkrSd6rp6nl+8gafeWMtTb6599+zfYYN68G8njeTDo/tx2KAeZHvZpyRlNMOgJEmiqrae5xau5/F5q/nH/DVsra6jc242J47sy7+dNIIPj+5H/+7eg1aS2hPDoCRJHVRVbT3PLFjH3+at5h9vrKWsuo4enXOZfOgATj1sIMcN70N+bna625Qk7SOGQUmSOpCGhsiMtzfw4OyV/N9rqymvqadnl1w+cdhATj18IMcP70Nudla625Qk7QeGQUmSOoDF68p4aM5KHnp5JSs3VVLQKYdPHn4AnzxiIBMPMgBKUkdkGJQkqZ3aUlXLI6+s4sHZJbyyYhNZAT4wspCvf3w0Hzukv5eASlIHZxiUJKmdmVeymTtnLOPRV1dRWVvPqP4FXHPqaE4fN4h+TgIjSUoYBiVJagcqa+r5y6uruOvFZbxaspnOudmcNu4APj9hCIcO6u49ACVJ72MYlCQpgy3bUM5tzy/lwdklbKmqY0S/bnz3U4dwxlFF9Oicm+72JEltmGFQkqQMNGf5Rm56dgn/9/o75GQFJh86kM9POJAJw3p7FlCS1CyGQUmSMkRDQ2T6G2u46dklzFq2ke75OVzxoeFcePxQvwsoSdpjuw2DIYRbgE8Ca2OMhya1+4BRyZCewKYY47gQwlDgDeCtZN2MGOPlyTZHA7cBnYHHgatijDGE0Bu4DxgKLAXOijFuDKk/a/4KOBWoAC6MMc5p4eeVJCnjVNXW8+CcEv743Nu8vb6col6dufZTh3DWMYPp2sm/60qS9k5zfoPcBvwGuH1bIcZ49rblEML/AJsbjV8cYxzXxH5uAKYCM0iFwcnA34CrgSdjjD8OIVydvP468HFgZPKYkGw/obkfTJKkTFdVW8/dLy7n988sZu3Wag4v6sFvzjuSyWMHkON9ASVJLbTbMBhjfDY54/c+ydm7s4CTdrWPEMJAoHuM8YXk9e3A6aTC4GnApGToNKCYVBg8Dbg9xhiBGSGEniGEgTHG1bv9VJIkZbDKmnruenEZf3h2Ceu2VjPxoN7879njOG54H78PKElqNS29tuQDwJoY48JGtWEhhJeBLcC3YozPAYOAkkZjSpIaQP9tAS/GuDqE0C+pDwJWNLHN+8JgCGEqqbOOFBYWUlxc3MKPJe1/ZWVlHrvKSB67raemPvL0ijr+uqSGLTUwpncWl47PZ1TvampKXuOZkt3vQ83jcatM5bGr1tTSMHgucE+j16uBA2OMG5LvCD4cQhgLNPVnzLibfTd7mxjjjcCNAKNGjYqTJk3aXd9Sm1NcXIzHrjKRx27L1dU38OeXV/K/0xewanMNJ47oy1UfGcmxQ3unu7V2y+NWmcpjV61pr8NgCCEH+Axw9LZajLEaqE6WZ4cQFgMHkzqrV9Ro8yJgVbK8Ztvln8nlpGuTegkweCfbSJKU8WKMPPH6Gn7+97dYtLaMI4p68PPPHcHxI/qmuzVJUgfQkm+ffwR4M8b47kUrIYTCEEJ2snwQqclfliSXgW4NIUxMvmd4AfBIstmjwJRkecoO9QtCykRgs98XlCS1F3OWb+QzNzzP5XfOJsbI779wFA9feYJBUJK03zTn1hL3kJrgpW8IoQS4NsZ4M3AO218iCvBB4PshhDqgHrg8xliarLuC924t8bfkAfBj4P4QwiXAcuBzSf1xUreVWETq1hIX7cXnkySpTVm1qZKf/N+bPPLKKgoLOvGTzx7GZ48qcnZQSdJ+15zZRM/dSf3CJmoPAg/uZPws4NAm6huAk5uoR+DK3fUnSVImqKip4/fPLOHGZxcTI3z5wyO4YtJw7xMoSUobfwNJkrQPxRh5fN47/OCx+byzpYpPHXEAX588iqJeXdLdmiSpgzMMSpK0j7y9vpzvPPIazy1cz9gDuvOb847kGGcIlSS1EYZBSZJaWVVtPb8rXszvixfTKSeL7316LF+YOITsLG8YL0lqOwyDkiS1on8uXM81D81jeWkFp487gGs+MYZ+BfnpbkuSpPcxDEqS1Ao2V9Ry3ePzuX9WCQf17crdl07wNhGSpDbNMChJUgv932vv8O1HXqO0vIYrJg3nqpNHkp+bne62JEnaJcOgJEl7aX1ZNdc+8jp/nbeaQwZ259YLj+XQQT3S3ZYkSc1iGJQkaS888fo7XPPneWytquNrp4xi6gcPItcbx0uSMohhUJKkPbC1qpbv/WU+D8wuYewB3bln6jgO7l+Q7rYkSdpjhkFJkpppxpINfPX+V1m9uZIvf3gE/37ySPJyPBsoScpMhkFJknajpq6Bn//9LW56bglDenfhT5cfz9FDeqW7LUmSWsQwKEnSLizbUM6/3fMyc0s2c96EA/nWJ8bQJc9fn5KkzOdvM0mSduLRV1dxzZ/nkRXg9184ismHDkx3S5IktRrDoCRJO6ioqeN7j87nvlkrOOrAnlx/7pEU9eqS7rYkSWpVhkFJkhpZtHYrl985h8Xryrjyw8P5j48c7C0jJEntkmFQkqTEY3NX8V8PzKVzbjZ3XDyBE0f2TXdLkiTtM4ZBSVKHV1vfwI8ef4Nb/7WUow7sye8+fzQDeuSnuy1JkvYpw6AkqUNbs6WKK++aw6xlG7nw+KFcc+oY7x0oSeoQDIOSpA5r5tJSrrhzDuXVdfzqnHGcNm5QuluSJGm/MQxKkjqke15aznceeY1BPTtz9xcncHD/gnS3JEnSfmUYlCR1KLX1DfzwsflMe2EZHxjZl9+cexQ9uuSmuy1JkvY7w6AkqcPYWF7Dl+6awwtLNnDpicO4+uOjyfG2EZKkDmq3vwFDCLeEENaGEF5rVPtuCGFlCOGV5HFqo3XfCCEsCiG8FUI4pVF9clJbFEK4ulF9WAjhxRDCwhDCfSGEvKTeKXm9KFk/tLU+tCSp41mwZiuf/u0/mb1sIz//3BF865OHGAQlSR1ac34L3gZMbqL+yxjjuOTxOEAI4RDgHGBsss3vQgjZIYRs4LfAx4FDgHOTsQA/SfY1EtgIXJLULwE2xhhHAL9MxkmStMf+uXA9n/3d81TVNnDvZRM58+iidLckSVLa7TYMxhifBUqbub/TgHtjjNUxxreBRcD45LEoxrgkxlgD3AucFkIIwEnAA8n204DTG+1rWrL8AHByMl6SpGa7f9YKLrz1JQb2zOfhK0/gqAN7pbslSZLahJZ8Z/DLIYQLgFnAV2OMG4FBwIxGY0qSGsCKHeoTgD7AphhjXRPjB23bJsZYF0LYnIxfv2MjIYSpwFSAwsJCiouLW/CxpPQoKyvz2FVGaqvHboyRhxbV8ujiWsb2yeLKQxtY+MqLLEx3Y2oT2upxK+2Ox65a096GwRuAHwAxef4f4GKgqTN3kabPQMZdjGc367YvxngjcCPAqFGj4qRJk3bRutQ2FRcX47GrTNQWj93qunqufnAejy5eydnHDOaHZxxKrt8PVCNt8biVmsNjV61pr8JgjHHNtuUQwk3AY8nLEmBwo6FFwKpkuan6eqBnCCEnOTvYePy2fZWEEHKAHjT/clVJUge1uaKWqXfM4sW3S/naKaP40qTh+C0DSZLeb6/+TBpCGNjo5RnAtplGHwXOSWYCHQaMBF4CZgIjk5lD80hNMvNojDECTwNnJttPAR5ptK8pyfKZwFPJeEmSmrSitILP3PAvXl6+iV+dM44rPzzCIChJ0k7s9sxgCOEeYBLQN4RQAlwLTAohjCN12eZS4DKAGOPrIYT7gflAHXBljLE+2c+XgSeAbOCWGOPryVt8Hbg3hPBD4GXg5qR+M3BHCGERqTOC57T400qS2q0339nCBTe/RHVdA3deOoHxw3qnuyVJktq03YbBGOO5TZRvbqK2bfx1wHVN1B8HHm+ivoTUbKM71quAz+2uP0mSZi4t5ZLbZtIlL4cHLj+Okf0L0t2SJEltXktmE5UkKe2eenMNX7prDgf06Mztl4ynqFeXdLckSVJGMAxKkjLWQy+X8P/+NJdDBnbntouOpU+3TuluSZKkjGEYlCRlpJv/+TY/eGw+xw/vw40XHEO3Tv5KkyRpT/ibU5KUUWKM/M/fF/CbpxcxeewA/vecceTnZqe7LUmSMo5hUJKUMRoaItc++jp3zFjGueMH88PTDyM7y1tHSJK0NwyDkqSMUN8QuebP87hv1gou++BBXP3x0d5DUJKkFjAMSpLavLr6Br72wFweenkl/37ySL7ykZEGQUmSWsgwKElq02rrG/iPe1/hr/NW87VTRnHlh0ekuyVJktoFw6Akqc2qrqvny3e/zPT5a/jWJ8Zw6QcOSndLkiS1G4ZBSVKbVFVbz2V3zOaZBev4wWljOf+4oeluSZKkdsUwKElqcypq6rh02ixeWLKBn3z2MM4+9sB0tyRJUrtjGJQktSmVNfVcfNtMXnq7lF+cdQRnHFmU7pYkSWqXDIOSpDajsqaeS6alguAvzx7HaeMGpbslSZLaLcOgJKlNqKqt54u3py4N/cVZRxgEJUnax7LS3YAkSVW19Uy9Yzb/Wryen53ppaGSJO0PhkFJUlpV19VzxZ2zeXbBOn7ymcM582iDoCRJ+4NhUJKUNjV1DVx51xyefmsdPzrjMM46dnC6W5IkqcMwDEqS0qKmroEr757DP95Yyw9OP5TzJnj7CEmS9ifDoCRpv6tviHzlvleYPn8N3/v0WM6fOCTdLUmS1OEYBiVJ+1VDQ+TqB+fy13mruebU0Uw5fmi6W5IkqUMyDEqS9psYI99/bD5/ml3Cv588kqkfHJ7uliRJ6rAMg5Kk/eYX0xdw2/NLufiEYXzlIyPT3Y4kSR3absNgCOGWEMLaEMJrjWo/CyG8GUKYG0J4KITQM6kPDSFUhhBeSR6/b7TN0SGEeSGERSGE60MIIan3DiFMDyEsTJ57JfWQjFuUvM9Rrf/xJUn7y++fWcyvn1rE2ccM5tufHEPya0CSJKVJc84M3gZM3qE2HTg0xng4sAD4RqN1i2OM45LH5Y3qNwBTgZHJY9s+rwaejDGOBJ5MXgN8vNHYqcn2kqQMdOeMZfz4b2/yycMH8qPPHGYQlCSpDdhtGIwxPguU7lD7e4yxLnk5A9jlHYJDCAOB7jHGF2KMEbgdOD1ZfRowLVmetkP99pgyA+iZ7EeSlEEeermEbz/yGieP7scvzx5HdpZBUJKktiCnFfZxMXBfo9fDQggvA1uAb8UYnwMGASWNxpQkNYD+McbVADHG1SGEfkl9ELCiiW1W79hACGEqqbOHFBYWUlxc3NLPJO13ZWVlHrvKSLs6dmevqeO3r1QzulcWZw8u41/PPbt/m5N2wp+5ylQeu2pNLQqDIYRvAnXAXUlpNXBgjHFDCOFo4OEQwligqT8Dx93tvrnbxBhvBG4EGDVqVJw0aVIzupfaluLiYjx2lYl2duw+t3Adf5g+i8OLenLnpRPo1qk1/v4otQ5/5ipTeeyqNe31b+YQwhTgk8DJyaWfxBirgepkeXYIYTFwMKmzeo0vJS0CViXLa0IIA5OzggOBtUm9BBi8k20kSW3Y7GUbmXr7bA4q7MptFx1rEJQkqQ3aq1tLhBAmA18HPh1jrGhULwwhZCfLB5Ga/GVJchno1hDCxGQW0QuAR5LNHgWmJMtTdqhfkMwqOhHYvO1yUklS27VgzVYuvm0m/bt34o5LJtCzS166W5IkSU3Y7Z9qQwj3AJOAviGEEuBaUrOHdgKmJzPCzUhmDv0g8P0QQh1QD1weY9w2+cwVpGYm7Qz8LXkA/Bi4P4RwCbAc+FxSfxw4FVgEVAAXteSDSpL2vZWbKrng5pfIy8nijksmUFjQKd0tSZKkndhtGIwxnttE+eadjH0QeHAn62YBhzZR3wCc3EQ9Alfurj9JUttQWl7DBTe/SHlNHfdfdhyDe3dJd0uSJGkX9uoyUUmSGiuvruOi22ZSsrGSm6ccy5iB3dPdkiRJ2g3DoCSpReoaIlfcNYd5JZv4zXlHMX5Y73S3JEmSmsHp3SRJe62hIfLHedXMWF3BTz97OB89pH+6W5IkSc3kmUFJ0l6JMfL9x+YzY3U9/zV5FGcdO3j3G0mSpDbDMChJ2iu/K17Mbc8v5ZQhOVzxoeHpbkeSJO0hLxOVJO2xe15azs+eeIszjhzEp/ptJLnNkCRJyiCeGZQk7ZHp89fwzYfmMWlUIT8983CyDIKSJGUkw6AkqdnmLN/Iv90zh8MG9eB3nz+K3Gx/jUiSlKn8LS5Japa315dz6bRZ9O+ez80XHkuXPL9pIElSJjMMSpJ2a93Waqbc8hIA0y4aT99undLckSRJainDoCRpl8qr67hk2kzWbq3i5inHMLRv13S3JEmSWoFhUJK0U7X1DVx59xxeW7mZ3553FEce2CvdLUmSpFYufYitAAAgAElEQVTiFz4kSU2KMfLNh+ZR/NY6fnTGYZw8pn+6W5IkSa3IM4OSpCb97z8Wcv+sEv79pBGcN+HAdLcjSZJamWFQkvQ+9760nF89uZDPHV3EVz56cLrbkSRJ+4BhUJK0nafeXMM3H36NDx1cyI8+cxjBm8pLktQuGQYlSe96dcUmrrzrZcYMLPCm8pIktXP+lpckAbB0fTkX3zaTPt3yuOXCY+nayTnGJElqzwyDkiQ2lFVz4a0v0RAj0y4eT7+C/HS3JEmS9jH/7CtJHVxFTR0XT5vF6s1V3P3FiQwv7JbuliRJ0n7gmUFJ6sDq6hv48t0vM69kE78+90iOHuJN5SVJ6ig8MyhJHVSMkW8/8hpPvbmWH5x+KB8bOyDdLUmSpP2oWWcGQwi3hBDWhhBea1TrHUKYHkJYmDz3SuohhHB9CGFRCGFuCOGoRttMScYvDCFMaVQ/OoQwL9nm+pDMY76z95Aktdyvn1rEPS+t4EuThnP+xCHpbkeSJO1nzb1M9DZg8g61q4EnY4wjgSeT1wAfB0Ymj6nADZAKdsC1wARgPHBto3B3QzJ223aTd/MekqQWuH/WCn4xfQGfOXIQXztlVLrbkSRJadCsMBhjfBYo3aF8GjAtWZ4GnN6ofntMmQH0DCEMBE4BpscYS2OMG4HpwORkXfcY4wsxxgjcvsO+mnoPSdJeevqttXzjz/M4cURffvzZw72pvCRJHVRLvjPYP8a4GiDGuDqE0C+pDwJWNBpXktR2VS9por6r99hOCGEqqTOLFBYWUlxc3IKPJaVHWVmZx672uaWb6/nvl6oY1DWLzw+t4Pl/PtvifXrsKhN53CpTeeyqNe2LCWSa+hNz3It6s8UYbwRuBBg1alScNGnSnmwutQnFxcV47GpfWr6hgv93w7/oW9CZB750PP26t869BD12lYk8bpWpPHbVmlpya4k1ySWeJM9rk3oJMLjRuCJg1W7qRU3Ud/UekqQ9UFpew5RbX6K2PjLt4mNbLQhKkqTM1ZIw+CiwbUbQKcAjjeoXJLOKTgQ2J5d6PgF8LITQK5k45mPAE8m6rSGEicksohfssK+m3kOS1EyVNfVcfNtMVm2q5OYpxzCiX0G6W5IkSW1Asy4TDSHcA0wC+oYQSkjNCvpj4P4QwiXAcuBzyfDHgVOBRUAFcBFAjLE0hPADYGYy7vsxxm2T0lxBasbSzsDfkge7eA9JUjPU1Tfwb/e8zKslm7jh80dzzNDe6W5JkiS1Ec0KgzHGc3ey6uQmxkbgyp3s5xbglibqs4BDm6hvaOo9JEm7F2PkO4++zj/eWMP3Pj2WyYd6U3lJkvSellwmKklqw3779CLufnE5l39oOFOOH5rudiRJUhtjGJSkduiB2SX8/O8LOOPIQfyXN5WXJElNMAxKUjvzzIJ1XP3gXE4c0ZeffPZwsrK8qbwkSXo/w6AktSOvrdzMFXfOZmT/Am74wlHk5fhjXpIkNc1/JUhSO7GitIILb51Jry553HbRsRTk56a7JUmS1IY1azZRSVLbVlpew5RbXqK2voF7p06gvzeVlyRJu2EYlKQMV1lTz6XTZlKyqZK7L53gTeUlSVKzeJmoJGWw+obIVfe+zMsrNnH9OeO8qbwkSWo2w6AkZagYI9999HX+Pn8N3/3UWCYfOjDdLUmSpAxiGJSkDPW74sXcMWMZl33oIG8qL0mS9phhUJIy0IOzS/jZE29x+rgD+Popo9PdjiRJykCGQUnKME+9uYb/Sm4q/9Mzj/Cm8pIkaa8YBiUpg8xeVsqX7prD2AO68/vzj/am8pIkaa/5rwhJyhBvvbOVi26dyQE9OnPrhcfSrZN3B5IkSXvPMChJGaBkYwUX3PIinfOymXbxePp065TuliRJUoYzDEpSG7ehrJoLbn6Jypp6br94AoN7d0l3S5IkqR3wGiNJasPKquu46LaZrNxUyV2XTmDUgIJ0tyRJktoJw6AktVE1dQ1cfsdsXl+1hRvPP5pjhvZOd0uSJKkd8TJRSWqDGhoi/3n/K/xz0Xp+8tnDOXlM/3S3JEmS2hnDoCS1MTFGvveX13ls7mq+8fHRnHl0UbpbkiRJ7ZBhUJLamF/+YyHTXljGFz8wjMs+NDzd7UiSpHbKMChJbchNzy7h+icXcvYxg7nm1DHpbkeSJLVjex0GQwijQgivNHpsCSH8RwjhuyGElY3qpzba5hshhEUhhLdCCKc0qk9OaotCCFc3qg8LIbwYQlgYQrgvhJC39x9Vktq2u19cznWPv8EnDh/Ijz5zGCGEdLckSZLasb0OgzHGt2KM42KM44CjgQrgoWT1L7etizE+DhBCOAQ4BxgLTAZ+F0LIDiFkA78FPg4cApybjAX4SbKvkcBG4JK97VeS2rJHXlnJNx+ex0mj+/HLs8aRnWUQlCRJ+1ZrXSZ6MrA4xrhsF2NOA+6NMVbHGN8GFgHjk8eiGOOSGGMNcC9wWkj9Sfwk4IFk+2nA6a3UryS1GdPnr+E/73+VCcN687vPH0VejlfwS5Kkfa+17jN4DnBPo9dfDiFcAMwCvhpj3AgMAmY0GlOS1ABW7FCfAPQBNsUY65oYv50QwlRgKkBhYSHFxcUt+jBSOpSVlXnsdkDzN9Tzi9lVDCnIYspBVcz413PpbmmPeewqE3ncKlN57Ko1tTgMJt/j+zTwjaR0A/ADICbP/wNcDDR1zVOk6bOTcRfj31+M8UbgRoBRo0bFSZMmNf8DSG1EcXExHrsdy5zlG/nNUy8yvLCA+y6bSM8umfm1aI9dZSKPW2Uqj121ptY4M/hxYE6McQ3AtmeAEMJNwGPJyxJgcKPtioBVyXJT9fVAzxBCTnJ2sPF4Scpo81dt4cJbXqJfQSfuuHR8xgZBSZKUuVrjiynn0ugS0RDCwEbrzgBeS5YfBc4JIXQKIQwDRgIvATOBkcnMoXmkLjl9NMYYgaeBM5PtpwCPtEK/kpRWi9eVccEtL9KtUw53XjqBfgX56W5JkiR1QC06MxhC6AJ8FLisUfmnIYRxpC7pXLptXYzx9RDC/cB8oA64MsZYn+zny8ATQDZwS4zx9WRfXwfuDSH8EHgZuLkl/UpSui3fUMEX/vgiAHdeOoGiXl3S3JEkSeqoWhQGY4wVpCZ6aVw7fxfjrwOua6L+OPB4E/UlpGYblaSMt6K0gnNvmkFlbT33fHEiBxV2S3dLkiSpA3P+cknaD1ZuquTcm2ZQVl3HnZdMYMzA7uluSZIkdXCGQUnax1ZvruTcG2ewubKWOy+ZwKGDeqS7JUmSJMOgJO1La7ZUce6NM9hYXsMdl0zgsCKDoCRJahta66bzkqQdrE2C4PqyGm6/ZDzjBvdMd0uSJEnv8sygJO0D67ZWc94fX+SdLVXcdtGxHHVgr3S3JEmStB3DoCS1srVbqzjvphms3FjJrRceyzFDe6e7JUmSpPfxMlFJakXvbE4FwXe2VHHLhccy4aA+u99IkiQpDQyDktRKSjZWcN5NL1JaXsPtF4/3jKAkSWrTDIOS1AqWb0jdUH5rVS13XjrByWIkSVKbZxiUpBZasq6M8256kaq6eu7+4kTvIyhJkjKCYVCSWmDhmq2ce9OLxBi5d+pERg/onu6WJEmSmsUwKEl76Y3VW/jCH18kOytw99SJjOhXkO6WJEmSms1bS0jSXpi9bCPn3DiDvJws7rvsOIOgJEnKOIZBSdpDzyxYxxf++CK9uuRy/2XHMaxv13S3JEmStMe8TFSS9sBfXl3Ff97/CiP7FTDt4vEUFnRKd0uSJEl7xTAoSc10x4xlfOeR1zh2aG/+OOUYuufnprslSZKkvWYYlKTdiDHym6cW8T/TF/CRMf34zXlHkZ+bne62JEmSWsQwKEm70NAQ+cFf53Prv5bymSMH8ZMzDyc3269bS5KkzGcYlKSdqKlr4OsPzuWhl1dy8QnD+NYnxpCVFdLdliRJUqswDEpSEzZX1nLFnbN5fvEG/t/HDubKD48gBIOgJElqPwyDkrSDko0VXHzbTN5eX84vzz6CM44sSndLkiRJrc4wKEmNvLZyMxfdNpOq2nqmXTye44f3TXdLkiRJ+0SLZ0EIISwNIcwLIbwSQpiV1HqHEKaHEBYmz72SegghXB9CWBRCmBtCOKrRfqYk4xeGEKY0qh+d7H9Rsq3XaUnaJ556cw1n/eEF8rKzePCK4w2CkiSpXWutKfE+HGMcF2M8Jnl9NfBkjHEk8GTyGuDjwMjkMRW4AVLhEbgWmACMB67dFiCTMVMbbTe5lXqWpHfdMWMZl06bxUGFXXnoS8dzcP+CdLckSZK0T+2r+dFPA6Yly9OA0xvVb48pM4CeIYSBwCnA9BhjaYxxIzAdmJys6x5jfCHGGIHbG+1LklqsviHy34+/wbcffo1Jo/px39Tj6Nc9P91tSZIk7XOt8Z3BCPw9hBCBP8QYbwT6xxhXA8QYV4cQ+iVjBwErGm1bktR2VS9por6dEMJUUmcPKSwspLi4uBU+lrR/lZWVeezuZ5V1kd+/Ws2r6+o56cAcPn9gGTNf+Ge628o4HrvKRB63ylQeu2pNrREGT4gxrkoC3/QQwpu7GNvU9/3iXtS3L6QC6I0Ao0aNipMmTdpt01JbU1xcjMfu/rN0fTmX3j6Ltzc08IPTD+X8iUPS3VLG8thVJvK4Vaby2FVravFlojHGVcnzWuAhUt/5W5Nc4knyvDYZXgIMbrR5EbBqN/WiJuqStNeeX7Se0377L9aXVXPHJeMNgpIkqUNqURgMIXQNIRRsWwY+BrwGPApsmxF0CvBIsvwocEEyq+hEYHNyOekTwMdCCL2SiWM+BjyRrNsaQpiYzCJ6QaN9SdIeiTFy+wtLOf+Wl+hX0IlHrjzBGUMlSVKH1dLLRPsDDyV3e8gB7o4x/l8IYSZwfwjhEmA58Llk/OPAqcAioAK4CCDGWBpC+AEwMxn3/RhjabJ8BXAb0Bn4W/KQpD1SVVvPNx96jQfnlHDy6H787znjKMjPTXdbkiRJadOiMBhjXAIc0UR9A3ByE/UIXLmTfd0C3NJEfRZwaEv6lNSxrSit4LI7ZjN/9RauOnkkV508kqwsb1kqSZI6ttaYQEaS2qyn31rLf9z7CjFGbrnwGE4a3T/dLUmSJLUJhkFJ7VJDQ+TXTy3if59cwOgB3fn9F45iSJ+u6W5LkiSpzTAMSmp31m2t5j/vf4XnFq7njCMH8aMzDqNzXna625IkSWpTDIOS2pXnF63nqvteYUtlLdedcSjnjT+QZJIrSZIkNWIYlNQu1NU3cP2TC/n104s4qG9X7rhkPKMHdE93W5IkSW2WYVBSxlu9uZKr7n2Fl94u5cyji/j+aWPpkuePN0mSpF3xX0uSMtpjc1dxzZ/nUdcQ+cVZR/CZo4rS3ZIkSVJGMAxKykhbqmq59pHXeejllRwxuCe/POsIDirslu62JEmSMoZhUFLGmbFkA1+9/1Xe2VLFVSeP5MsnjSA3OyvdbUmSJGUUw6CkjFFVW88vpi/gpueWMKR3Fx64/DiOPLBXutuSJEnKSIZBSRlh1tJS/uuBuSxZX8654w/kW58YQ9dO/giTJEnaW/5LSlKbVlFTx8+eeIvbnl/KAT06c+clEzhxZN90tyVJkpTxDIOS2qwXFm/g6w/OZXlpBRccN4SvTx7t2UBJkqRW4r+qJLU5peU1/Pfjb/Cn2SUM6dOFe6dOZOJBfdLdliRJUrtiGJTUZsQY+dOsEn70tzcoq6rj8g8N56qTR9I5LzvdrUmSJLU7hkFJbcLCNVv55kOv8dLSUo4Z0ovrzjiMUQMK0t2WJElSu2UYlJRWW6pq+c1Ti7j1X2/TtVMOP/nsYXzu6MFkZYV0tyZJktSuGQYlpUVDQ+RPs1fwsyfeYkN5DWcdPZj/mjyKPt06pbs1SZKkDsEwKGm/m7W0lO/9ZT7zVm7mmCG9uPXC8RxW1CPdbUmSJHUohkFJ+83S9eX87O9v8de5qxnQPZ9fnTOOTx9xACF4SagkSdL+ZhiUtM+tL6vm+icXcveLy8nNzuLfTx7J5R86iC55/giSJElKF/8lJmmfKa+u44/Pvc2Nzy6mqq6Bc44dzFUfGUm/gvx0tyZJktThZe3thiGEwSGEp0MIb4QQXg8hXJXUvxtCWBlCeCV5nNpom2+EEBaFEN4KIZzSqD45qS0KIVzdqD4shPBiCGFhCOG+EELe3vYraf+prKnnpmeX8KGfPc0v/7GADx5cyN+/8kGuO+Mwg6AkSVIb0ZIzg3XAV2OMc0IIBcDsEML0ZN0vY4w/bzw4hHAIcA4wFjgA+EcI4eBk9W+BjwIlwMwQwqMxxvnAT5J93RtC+D1wCXBDC3qWtA9V1dZz54xl/P6ZJawvq+YDI/vylY8ezFEH9kp3a5IkSdrBXofBGONqYHWyvDWE8AYwaBebnAbcG2OsBt4OISwCxifrFsUYlwCEEO4FTkv2dxJwXjJmGvBdDINSm1NRU8e9L63ghmcWs25rNccP78MNXziKY4f2TndrkiRJ2olW+c5gCGEocCTwInAC8OUQwgXALFJnDzeSCoozGm1WwnvhccUO9QlAH2BTjLGuifE7vv9UYCpAYWEhxcXFLf5M0v5WVlaWccduWU3kH8tr+ceyWspqYVSvLC4Zn8/o3lWUL51L8dJ0d6j9IROPXcnjVpnKY1etqcVhMITQDXgQ+I8Y45YQwg3AD4CYPP8PcDHQ1Nzxkaa/txh3Mf79xRhvBG4EGDVqVJw0adIefgop/YqLi8mUY7dkYwV/fO5t7pu5gsraej4yph+Xf2g4x3gmsEPKpGNX2sbjVpnKY1etqUVhMISQSyoI3hVj/DNAjHFNo/U3AY8lL0uAwY02LwJWJctN1dcDPUMIOcnZwcbjJaXBm+9s4Q/PLOHRV1cRgNPGDeKyDx3Ewf0L0t2aJEmS9tBeh8GQukv0zcAbMcZfNKoPTL5PCHAG8Fqy/ChwdwjhF6QmkBkJvETqDODIEMIwYCWpSWbOizHGEMLTwJnAvcAU4JG97VfS3qmtb2D6/DXc/sJSZiwppUteNhceP5RLThzGAT07p7s9SZIk7aWWnBk8ATgfmBdCeCWpXQOcG0IYR+qSzqXAZQAxxtdDCPcD80nNRHpljLEeIITwZeAJIBu4Jcb4erK/rwP3hhB+CLxMKnxK2g/Wba3m3peWc9eLy3lnSxVFvTrzjY+P5uxjB9Ozi3d5kSRJynQtmU30nzT9vb7Hd7HNdcB1TdQfb2q7ZIbR8TvWJe0bMUbmLN/IHS8s46/zVlNbH/nAyL788PRD+fDofmRnNfW/vCRJkjJRq8wmKimzrd1SxZ9fXsmfZq1g8bpyCjrl8PkJQzj/uCEML+yW7vYkSZK0DxgGpQ6qpq6Bp95cy59mraB4wTrqGyJHD+nFTz57EJ84/AC6dfLHgyRJUnvmv/akDiTGyCsrNvHoq6t45JVVlJbX0K+gE1M/eBBnHl3kWUBJkqQOxDAotXMxRuav3sJjc1fzl1dXUbKxkrzsLE4e04+zjhnMB0b2JSe7qdt9SpIkqT0zDErtUIyRRWvLUgFw7iqWrCsnOytw4oi+XHXySD42dgA9Ouemu01JkiSlkWFQaifqG1IzgU6fv4bp89fw9vpyQoCJw/pw6YkHMfnQAfTu6i0hJEmSlGIYlDJYZU09zy5cx/T5a3jqzbWUlteQmx04bnhfLj5hKB8bO4D+3fPT3aYkSZLaIMOglEFijLy1ZivPLljHcwvX8+LbpdTUNVCQn8NJo/vx0UP686GDCynI9xJQSZIk7ZphUGrjNpRV889F63l2wXqeW7iOtVurATi4fzcumDiED4/ux/hhvcl1EhhJkiTtAcOg1MasL6vmxSWlvPj2BmYs2cCCNWUA9OySy4kj+vLBkYV84OC+DOzROc2dSpIkKZMZBqU0ijFSsrGSOcs38vDr1fxwzjMsWpsKf13ysjlmaG9OGzeIE0b05bBBPcjOCmnuWJIkSe2FYVDaj8qq65hbsomXl6cer6zYyPqyGgDys2HiiM6ceXQRE4b15tBBPbz0U5IkSfuMYVDaR6pq63nrna3MX73l3QC4YM1WGmJq/UGFXfnQwf048sCejBvckzVvzeHkk8ant2lJkiR1GIZBqRVsLK9h/uotzF+1hfmrt/D6qs0sXldOfZL8uufncOSBvThl7IB3w1/PLtvf82/9Qi8BlSRJ0v5jGJT2wJaqWhatLWPRmjIWrt3KwrVlLHhnK6s2V707ZkD3fMYe0J1Txg5g7AHdOWRgDwb37kwIhj1JkiS1HYZBaQf1DZFVmypZXlrB2+vLU+FvbSr8rdlS/e64TjlZDC/sxrHDenPIwO6MPaAHYwYW0KdbpzR2L0mSJDWPYVAdUk1dAyUbK1i2oYKlG8pZtqGCZRvKWVZawYrSCmrr47tju+RlM7JfN04cUcjI/t0YUdiNkf27UdSri7N7SpIkKWMZBtXuxBjZUlnHyk2VrNpUyarNlazcVMnqTVWp15sqeWdL1bsTuQB0zctmSJ+ujB5QwCljBzCkdxeG9OnKkD5dGNgj30s8JUmS1O4YBpVRyqrrWLe1mrVbqlhXVs3aLdXvPq/dWsXqzanAV1FTv912edlZDOyZz8Ae+Uwc3oeinp0Z0qcrQ/umQl+frnkGPkmSJHUohkGlVXVdPZsqaiktr2FjeQ0bK2oprUgtl5bXpILf1qrkufp9IQ8gNztQ2K0ThQWdGFHYjQ+OLOSAnvkc0LNz8sinb9dOZHlJpyRJkvQuw6BarK6+ga1VdWypqmVL5bbn2ka1WrZU1bG5Mgl9Famgt6milrLqup3utyA/h34FqZB3eFFPCgs6vfu6X0H+u697dM416EmSJEl7yDDYATU0RCpq66morqO8pp7y6joqauopr6mjojr1urwmqVVv/1xWXUd59fbBr6mzdY2FAAWdcujeOZc+XfPo3TWP4YXd6NUlj95dc+nVNY/eXfJSz13z6Nkll15d8sjNztpP/0UkSZKkjqfNh8EQwmTgV0A28McY44/T3FKLxBiprY/U1jdQW99ATX0DtfWRmrrkdfK8bUxNfQO1dannqtoGqmrrqaqtp7ruveV3641q1bUNVNXtsD4ZU1PX0Ox+s7MCXfOy6dophy552XTrlEOXvBwO6tuNgvxUwOuen0v3zjnJcy7dk/q29d3ycjxzJ0mSJLUxbToMhhCygd8CHwVKgJkhhEdjjPN3tk1FXeTxeaupa4jUNzRQVx9piDF5Hf9/e/cXItdZxnH8+5zZmd2mBdP0j0o22oohtBdaRWqgXizRi6jVeFEhYrFIIRcqVFCkeiOKXnhjRRQhaLBKsZYqGqQgpe2iN9bW1n8lBGMQG1oaJG1tKKTZ7OPFeXdydrs1m+3Onvnz/cDhzPued3Yflh/LPDPnnFl1fC7L2sXkXH+c/fHCYvM5q//MhcVFXjmXnO03c3VDd2bZeHHZVxa8/r8PzEx1mOlWzHQ7zHQ7TE9V/f3lW3rnjzXWTXc7XDbdYUtvikuX9r0ptkx3uLTMLY17ncobq0iSJEljaKibQeBG4FhmHgeIiHuBfcBrNoMnX04+c88TF/2Lpqqg09jqcUWngqmq6s9V/WOx7DndTsWWXkW3U9GbqsdLW68TZb5q7KNxvKI7tXy8tLbbeO5SQzfdrfc2apIkSZLWa9ibwe3A043xCeC9KxdFxAHgAMC2q9/EN266hCqgE1CVrRNQVUEFdCqWHY/6Z6yxpCzb67RYtrOrHz772oc0pk6fPs38/HzbZUgXzexqFJlbjSqzq4007M3gah3aqzqxzDwIHATYtWtX3vqRPYOuS9pw8/PzzM3NtV2GdNHMrkaRudWoMrvaSMN+u8YTwI7GeBZ4pqVaJEmSJGlsDHsz+BiwMyKujYgesB843HJNkiRJkjTyhvo00cxciIjPAb+l/mqJQ5n5VMtlSZIkSdLIG+pmECAzHwAeaLsOSZIkSRonw36aqCRJkiRpAGwGJUmSJGkC2QxKkiRJ0gSyGZQkSZKkCWQzKEmSJEkTyGZQkiRJkiZQZGbbNWyoiHgJONp2HdI6XAn8p+0ipHUwuxpF5lajyuxqLd6amVddaNHQf8/gOhzNzPe0XYR0sSLicbOrUWR2NYrMrUaV2dVG8jRRSZIkSZpANoOSJEmSNIHGsRk82HYB0jqZXY0qs6tRZG41qsyuNszY3UBGkiRJknRh4/jJoCRJkiTpAmwGJUmSJGkCjVUzGBF7I+JoRByLiDvbrkdqiohDEXEyIv7emNsWEQ9GxD/K/vIyHxHx3ZLlv0bEu9urXJMsInZExCMRcSQinoqIO8q82dVQi4iZiPhjRPylZPdrZf7aiHi0ZPfnEdEr89NlfKwcv6bN+jXZIqITEU9GxG/K2NxqIMamGYyIDvB94IPA9cAnIuL6dquSlvkxsHfF3J3AQ5m5E3iojKHO8c6yHQB+sEk1SistAF/IzOuA3cBny/9Ws6thdwbYk5nvBG4A9kbEbuBbwF0lu88Dt5f1twPPZ+bbgbvKOqktdwBHGmNzq4EYm2YQuBE4lpnHM/MV4F5gX8s1SX2Z+Tvg1IrpfcDd5fHdwMca8z/J2h+ArRHx5s2pVDovM5/NzCfK45eoX5xsx+xqyJUMni7DbtkS2APcX+ZXZncp0/cD74+I2KRypb6ImAU+DPywjANzqwEZp2ZwO/B0Y3yizEnD7I2Z+SzUL7qBq8u8edbQKacfvQt4FLOrEVBOtfszcBJ4EPgn8EJmLpQlzXz2s1uOvwhcsbkVSwB8B/gSsFjGV2BuNSDj1Ayu9i6I35uhUWWeNVQi4jLgF8DnM/O//2/pKnNmV63IzHOZeQMwS30G0XWrLSt7s6vWRcTNwMnM/FNzepWl5lYbYpyawRPAjsZ4FnimpVqktXpu6RS6sj9Z5s2zhkZEdKkbwXsy85dl2uxqZGTmC8A89XWvWyNiqhxq5rOf3XL8Dbz61M7/CW0AAAFUSURBVH5p0G4CPhoR/6K+5GkP9SeF5lYDMU7N4GPAznK3pR6wHzjcck3ShRwGbiuPbwN+3Zj/VLkz427gxaVT8qTNVK49+RFwJDO/3ThkdjXUIuKqiNhaHl8CfID6mtdHgFvKspXZXcr0LcDDmeknLNpUmfnlzJzNzGuoX8s+nJmfxNxqQGKc8hIRH6J+96QDHMrMb7ZcktQXET8D5oArgeeArwK/Au4D3gL8G/h4Zp4qL8C/R3330ZeBT2fm423UrckWEe8Dfg/8jfPXr3yF+rpBs6uhFRHvoL6xRof6ze/7MvPrEfE26k9ctgFPArdm5pmImAF+Sn1d7Clgf2Yeb6d6CSJiDvhiZt5sbjUoY9UMSpIkSZLWZpxOE5UkSZIkrZHNoCRJkiRNIJtBSZIkSZpANoOSJEmSNIFsBiVJkiRpAtkMSpIkSdIEshmUJEmSpAn0PxXaxKWuYLC+AAAAAElFTkSuQmCC\n", - "text/plain": [ - "
    " - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "import numpy as np\n", "import pandas as pd\n", @@ -1440,22 +631,9 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfsAAAHrCAYAAADIXTRJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3X+UXWdd7/HPTDIpJz8oZTIRWoE0A30SK1pruYBOxzUX/NFlEC+XlHSljUNllErD1S5dlsbewsVUrj8QaUvbFZQQGjuXXgU0WnCxjHc6CFelrYJNvsVJA9VbzWSA0ianzdDM/ePs3ZycnB/7zJy997Of/X6tlTWdc/Y58zz7OXt/es55vvvpW1hYEAAACFd/3g0AAADpIuwBAAgcYQ8AQOAIewAAAkfYAwAQOMIeAIDAEfYAAASOsAcAIHCEPQAAgSPsAQAI3PK8G7BE50h6jaQnJD2Xc1sAAEjbMkkvlfT3kp5N+qCih/1rJD2QdyMAAMjY5ZKmk25c9LB/QpK+9a3jOnUq2YI+g4OrNTf3dKqNygL98EcIfZDoh09C6INEP9LQ39+n885bJUX5l1TRw/45STp1aiFx2Mfbh4B++COEPkj0wych9EGiHynq6qtrJugBABA4wh4AgMAR9gAABI6wBwAgcIQ9AACBI+wBAAgcYQ8AQOAIewAAAkfYAwAQOMIeAIDAEfYAAASOsAcAIHCEPdAD0zNT2rRrg6ZnpvJuCgCchbAHlujAoQPatneL5o4f07a9Wwh8AN4h7IElmJ6Z0ubbNqs6X5UkVeerBD4A7xD2wCJNz0xp294tOnHyxBm3E/gAfEPYA4sQB338jr4RgQ/AJ4Q9sAgTk+Mtgz5Wna9qYnI8mwYBQBuEfcCYIZ6e3Vv3qDJQabtNZaCi3Vv3ZNMgAGiDsA9U/DEzM8TTMTI8qn3b72sZ+JWBivZtv08jw6MZtwwAzkbYB6jx+2S+P05HHPgrV6w843aCHoBvCPvAtJo4RuCnY2R4VPt37H/+HT5BD8BHhH1AmCGej7GNY9q3/T4NrlpL0APwEmEfEGaI52dkeFQHdx4m6AF4ibAPCDPEAQDNEPYBCXGGOOWDALB0hH1gWgV+UYOe8kEAWDrCPkCNgV/koKd8EACWjrAPVBz4RZwhTvkgAPQWYR+wIs4Qp3wQAHqPsIdXKB8EgN4j7OEVygcBoPcI+wAVuVwtxPJBAOEqyvmWsA9MCOVqIZUPAghXkc63hH1AQipXC6F8EEC4ina+JewDEWK5WpHLBwGEq4jnW8I+ACGXqxWxfBBAuIp6viXsA0C5GgBko6jnW8I+AGUsV+s0A7YoM2TTxn4onumZKa27YR1j5qminm8J+wCUrVyt0wzYIs2QTRP7oXjiMZt9apYx81RRz7eEfSDKUq7WaQZs0WbIpoX9UDyMWXEU8XxL2Ack9HK1TjNg73zg9sLNkE1DEWcKlx1jVjxFO98S9oEJtVwtyQzYW+6/qXAzZHutqDOFy4wxK64inW/7FhYW8m7DUqyX9Njc3NM6dSpZP4aG1mh29qlUG5WFsvVj064Nmjt+bMl/b3DVWh3ceXjJz1PPp7FIup+a7Qef+rEURevHUsbMd0Ubi1Z86kd/f58GB1dL0oWSjiR+XFoNAnopyQzYTnycIdtrRZ0pXGaMGbJA2KMQksyAfd8VtxZuhmyvFXWmcJkxZsgCYY/C6DQD9rrLry/cDNk0FHGmcNkxZkgbYY9C6TQDtmgzZNPCfigexgxpIuxROJ1mwBZphmya2A/FE4/Z0Johxgw9xWz8gqIf/gihDxL98EkIfZDoRxqYjQ8AAJoi7FFoLPQCwGe+nKMIexQWC70A8JlP5yjCHoXEoiEAfObbOYqwR+H4vGiILx/ZAciPj+cowh6F4vOiIT59ZAcgH76eowh7FMrE5HjLgyhWna9qYnI8mwZFfPvIDkA+fD1HEfYoFB8XDTlw6IB3H9kByIeP5yiJsEfB+LZoyPTMlDbfttm7j+wA5MO3c1Qss7B3zv20c+5B59xXnHP/xzl3YXT7Rc65LzrnHo1+viqrNqGYfFo0ZGJyXCdOnmi7TR4f2QHIj0/nqFgmYe+cO0/SxyVtNbNXS9ot6c7o7rsk3WFmF0m6Q9LdWbQJxebLoiG7t+7RyhUr227DWuRA+fhyjopl9c7+lZL+w8wejX7/S0k/6ZxbJ+lSSfdGt98r6VLn3FBG7UKB+bDQy8jwqPbv2O/dR3YA8ufDOSqWyUI4zrlzJR2W9FNm9vfOuR2SPizpMkl7zezium0fkXS1mT2Y4KnXS3oshSYDXTlw6IA237b5jI/0V65Yqf079mts41iOLQMQqK4WwlmeXjtOM7MnnXNvk/T7zrkXSLpf0rclre7F87PqXXGF0I+hoTX6/sHLdM81n3x+Vn5loKJ7rvmkvn/wssL0L4SxkMLoRwh9kOhHGupWvevucSm0pSkz+7yZjZjZZZJul1RR7f9KLnDOLZOk6Of5kh7Pql1Ar/j0kV23pmemtO6GdYmrBrhSIFAsWc7Gf0n0s1/SrZLuMrOvS3pY0lXRZldJesjMZrNqF9BLI8OjOrjzcOGCftveLZp9ajZRmSBXCgSKJ8s6+990zh2U9DVJJyXdGN3+Tkk7nHOPStoR/Q4gA91e+Y8rBQLFlMl39pJkZu9ocfshSa/Nqh0Aajot1tH4VUS32wPwB1fQA0qo28U6fF3cA0AyhD1QQt0u1uHr4h4AkiHsgRLqdrEOXxf3AJAMYQ8sQbcla738u0spfet2sQ5fF/cAkAxhDyxStyVrvf67Sy1963axDh8X9wCQDGEPLEJeJWi9/rvdLtbh2+IeAJIh7IEudSpBSyvw0/q7cYAPrRlKFNxFvlIgUFaEPdCFvErQ0v67I8OjOvrBo4mDu4hXCgTKjLAHupBXCRqlbwCWgrAHupCkBE2S3j16Q+Z/l9K3xUtjYR8WC4JPCHugC51K0GIf+Pz7e3qSp/QtPWks7MNiQfANYQ90KUngp/HdPaVvvZdGVQWLBcFHhD2wCL4EPkG/eGlUN+RVqQF0QtgDizQyPKob33hz223SDHxK3xYvjeoGFguCzwh7YAk+PPXBjtukMUue0relSaO6gYoJ+IywL6C8rseOs+3eukcrV6xsuw2z5P2TRnUDFRPwGWFfMHldjx3NjQyPav+O/cySL5g0qhuomIDPCPsCYZavn8Y2jrX87v7GN97Myd1TaVQ3UDEBXxH2BcEsX38dOHRAH/j8+5ve1+t6e/RWGtUNVEzAR4R9ATDL11/TM1PafNtmxqbA0qhuoGICvulbWFjIuw1LsV7SY3NzT+vUqWT9GBpao9nZp1JtVK9t2rVBc8ePddxucNVaHdx5OIMW9U4Rx6NeSGNT9LGIhdCPEPog0Y809Pf3aXBwtSRdKOlI4sel1SD0DrN8/cVsfABFQNgXALN8/cVsfABFQNgXBLN8/TW2cYyxAeA1wr5AmOXrL8YGgM8I+4KJQ2VozRBh4hlmYAPw1fK8G4DujQyP6ugHj3ozOxSnxdesBwCf8M4eAIDAEfYBmJ6Z0qZdG7hwCwCgKcK+4OKr680dP8aV2gAATRH2BcbCOACAJAj7gjpw6AAL4wAAEiHsC4jFVwAA3SDsC2hiclwnTp5ou011vqqJyfFsGgQA8BphX0AsvgIA6AZhX0AsvoJQlamMtEx9Rf4I+4Ji8RWEpkxlpGXqK/xA2BcYi68gFGUqIy1TX+EPwr7gWHwFRdcYfrEQQ7BMfYVfCPsAxIuvEPQomlbhFwspBMvUV/iHsAeQm4nJ8ZbhFwuljLRMfYV/CHsAudm9dU/LqpJYKGWkZeor/EPYAyWWd/lX4yTTRr2adJp3P6Xs+go0Q9gDJdVY/nXg0IFc2tEqBHsZ9L6UuaXdV6AVwh4ooWblX5tv2+zNO/xeB71PZW6UzCIPhD1QMq1mhZ84eSLXIOx1GanPZW6UzCJrhD1QIr6Xf/WqjNT3fkqUzCJbhD1QImUp/ypLP4GkCHuUig+zsvNUlvKvsvQTSIqwR2n4NCs7L2Up/ypLP4GkCHuUgo+zsvPSKghXrlgZVABS5gacRtgjeD7Pys5Ls/Kv/Tv2BxeAlLkBNYQ9glaEWdl5aSz/Gts4lneTUkGZGyAtz7sBQJq6mZV9cOfhjFrlj7j8K3Rl6SfQCu/sEbSizcpuVS2QtIqg7NUGMfYDcCbCHkEr0qzsVtUCSasIqDaoOXDoAPsBaEDYI3hFmJXdqlrgzgduT1RFQLVBzfTMlDbftrn0+wFoRNijFHyeld2uWuCW+2/qWEVAtUFNvB9OnDxxxu1l2w9AM4Q9SsPHWdmdqgVaafXOv9V2oQcdVRdAe4Q9SsW3xUeSVAu0Up2v6r337+Qa8OJa+EAnhD2QoyTVAq1UBip67xW7ClVtkJaiVV0AWSPsUUihlFZ1qhZoJZ5zcN3l1xem2iBNRaq6APJA2KNwQisxa1ct8L4rbu1YRVCEaoMsxPth5YqVZ9xetv0ANEPYo1BCLTFrVS3Q+M69VXD5XG2QpZHhUe3fsb/0+wFoRNijMEIvMWtVLZC0isDHaoM8jG0cYz8ADfoWFhbybsNSrJf02Nzc0zp1Klk/hobWaHb2qVQblYWy9SNJiVpe7+LKNha+C6EfIfRBoh9p6O/v0+Dgakm6UNKRxI9Lq0FAL1FaBQCLR9jDC51m11NaVQyhVEl0q6z9RnEQ9shdktn1lFb5L7QqiaTK2m8US2Zh75zb7Jx7yDn3sHPun5xzb4luv8g590Xn3KPRz1dl1SbkL16hLMnsekrM/BVqlUQnZe03iieTsHfO9Un6hKRrzOwSSVdL+rhzrl/SXZLuMLOLJN0h6e4s2oT8Na5QFusm8An6/IVeJdFKWfuNYsryY/xTks6N/vtFkp6QtFbSpZLujW6/V9KlzrmhDNuFHLRaoSyWJPAprcpfWRegKWu/UVyZld45594g6X9JOi5pjaSflnRS0l4zu7huu0ckXW1mDyZ42vWSHut9a5G2dTes0+xTsx23G1ozpKMfPJpBi7AYZR3HsvYbXumq9G55eu04zTm3XNJ7JL3ZzL7gnPtR1YL/ml48P3X2SzM9M6WJyXHt3rons3fJd1/5sUR183df+THvx6vMr6mk43j9yK9o7S8PZfIay2I80n79LqYPeRzHnZT52EhLXZ19d49LoS3NXCLpfDP7giRFP49LekbSBc65ZZIU/Txf0uMZtav08ppJ3Oo65jG+iy+GJFUSN77xZn3g8+8Para6b9UhVASgk6zC/l8lfa9zzkmSc26TpJdI+pqkhyVdFW13laSHzKzz52NYsrxnEo8Mj+r9b35/0/tufOPNBH1BtKuSiIM+xNnqvlSH5H0coxgyCXsz+3dJ10n63865f5Q0KentZvZNSe+UtMM596ikHdHvSJkPM4mnZ6Z082dubnrfBz7/fk5WBdKsSqIx6GMhhVHe1SE+HMcoBq6NX1BL6YcP15n3oQ29wmvqtPh743eP3tA06OulNb55jEevvy9P0ociHEMcG7232GvjE/YFtZR+bNq1QXPHj3XcbnDVWh3ceXhRf6MIbegVXlNny3N8QxiPJH0owjEUwlhIfvWDhXCQmA/XmfehDUgP45s+9jG6QdiXkA8zics+Gz/0hVN8eI2Fjn2MbhD2JeXDTOKR4VHt37E/99nMWStLmZQPr7HQsY+RFGFfYnnPJJaksY1jubchS2Urk/LhNRY69jGSIOxLzofrzPvQhiyUtUyqLOObJ/YxOmE2fkHRD39QJuWXEPoRQh8k+pEGZuMDHpuYHG8b9FLtHf7E5Hg2DQJQKoQ9kAHKpADkibAHMkCZFIou9HLR0BH2QEYok0JRlaVcNGSEPZAhyqRQNGUrFw0VYQ9kjDIpFEVZy0VDRNgDORgZHtXBnYcJenirU7kogV8shD0A4CyUi4aFsIcXks70bdyOGcLdYX/1Vsj7k3LRsBD2yF3Smb6N2935wO3MEO4CM6p7K/T9SbloWAh75OrAoQOJZvo2mxF8y/03MUM4IWZU91ZZ9iflouEg7JGb6Zkpbb5tc8eZvkmuK9/scahhRnVvlW1/Ui4aBsIeuYhPmCdOnmh6f3zijD+q7xT0jY8L7YS7WMyo7q2y7k/KRYuPVe8Kquj92LRrg+aOH+u4XZ/6tKDuX6ODq9bq4M7Di2la13wei6T7eXDVWh370Ky3/ehGmuPRzf5cyuvP59dUN+hH77HqHQol6Uzf916xq+N2zR7HDOEaZlT3FvsTRUXYIxfxx4IrV6xsen/8veB1l1/fdkZwq8fxMWMNM6p7i/2JoiLskZuR4VHt37G/40zfTifYVo9DDTOqe4v9iSIi7JGrsY1jiWb6NpsR/L4rbmWGcELMqO4t9ieKhrBH7pLO9G3cLv6InxnCyTCjurfYnygSZuMXFP3wRwh9kOiHT0Log0Q/0sBsfAAA0BRhDwBA4Ah7AAACR9gDABA4wh4AgMAR9gAABI6wBwAgcIR9nemZKW3ataHny1Om9bxL5Wu7cBpjlK489y9jiywR9pF4neq548d6uh51Ws+7VL62C6cxRunKc/8ytsgaYa/TB151vipJqs5Xe3IApvW8S+Vru3AaY5SuPPcvY4s8lD7sGw+82FIPwLSed6l8bRdOY4zSlef+ZWyRl1KHfasDL7bYAzCt510qX9uF0xijdOW5fxlb5KnUYT8xOd7ywItV56uamBz34nmXytd24TTGKF157l/GFnkqddjv3rrn+fWoW6kMVLR76x4vnnepfG0XTmOM0pXn/mVskadSh328HnWrA7AyUFnUOtWdnnfFshUaWLai6/YuVZJ2sS53vnr1mmxV1pVXuZcvZWbx/j1n+TlN71/sMd/N3+71+QZIotRhL7U+AJd64LV63hXLVqivr0/feebJXL6fa3fC6evry7QtaG6pr8lWZV15lXv5WGa2sLBw1m1ZhG1a5xugk9KHvXT2AdirA6/xeeOgf/a7z0rKb0JO3K4VDZ8uPPvdZ705GZfdYl+Trcq67nzg9lzKvXwrM4vbc/K5k2fcfs7yczIL27TON0A7hH0kPgAHV63t6YEXP+8LX/DCM4I+lufJr9k7+bxPxjit29dku7KuW+6/KfNyL9/KzNrNhm/2Tj9NaZ1vgFYI+zojw6M6uPNwKgfe/HPzZwV9LOuTX3zS86U9aC3pa7JTWVcraY21b2Vmndpz8rmTmb/m0zzfAI0I+wz4VnLjW3uwdEnGtJU0xtq315hv7QGyRthnwLeSG9/ag6VLMqatpDHWvr3GfGsPkDXCPgNZl9x0KnOiBKgzX0rFYksd01bSGmvfXmO+tQfIGmGfkaxKbpKWOVEC1JpvpWK9GNP3XXFr5mPt22vMt/YAWSLsM5R2yU23ZU6UAJ3N11KxpY7pdZdfn8tY+/Ya8609QFYI+4ylVXKz2DInSoBOK0qp2GLHNK+x9u015lt7gCz0ZV1f2mPrJT02N/e0Tp1K1o+hoTWanX0q1UZlob4fScqufH0H48t4LGUfptGHPMbUl7FYqhD6EUIfJPqRhv7+Pg0OrpakCyUdSfy4bv+Qc67fOffSbh+H9FBWtHS+7UPf2gOg2BKHvXPuRc65P5b0jKR/iW77Gefcb6bVOCQTQllRPNv8zgduz2UWvG/7MOv2TM9Mad0N63KfjAgUlW8VPI26eWd/l6QnJb1CUnxh6S9KeluvG4XuFL2sqH62+S3335TLLHjf9mGW7Yn3/+xTs15UHwBF41sFTzPdhP0bJL3bzJ6QtCBJZjYraV0aDUN3ilpWdODQAW8mxfm2D7Noj2/VB0DRFOUY6ibsn5S0tv4G59zLJT3R0xZh0YpWVjQ9M6XNt2325vrpkn/7MM32+FZ9ABRNkY6hbsL+o5L+xDk3JqnfOfd6SR9X7eN9eKIoZUXxQXLi5Im22+UZ+L7swzTa49tCNUDRFO0YSlx655zrk/TfJP2Cat/bf0PS3ZL+wMzyqt9bL0rvCmnTrg2aO34s8faDq9bq4M7DKbZo8Yo4Fkn3v8/7vZUijkejEPoghd2PvI6h1EvvzGzBzD5kZt9nZqvMbFP0e6EL9ZGPbhZu8b2SoIh8qz4AiqZox9Dydnc65/5zkicxs7/uTXNQFvFH01d/4sq2H+Xn/Z15qOL93+pjSPY70F7RjqFO7+z/sOHfZyXdL+me6OdnVfsuH+jayPCo9u/Y7025W9n4Vn0AFE2RjqG2YW9mF8b/JO2WdJuk88zsfEnnSfpwdDuwKGMbxwpzsITIt+oDoGiKcgx1Mxv/VyTdaGYnJCn6+R5JN6TRMJRH/Wzz911xqzez4Msi3v9Da4bY78Ai+FbB00zb7+wbHJf0nyR9oe6210hqXzsFJDAyPPr8jNXrLr8+59aUz8jwqI5+8GgQM6eBPNSfw3zUTdjfLOmzzrk/l/S4pJdJ2izpXWk0DAAA9EY3pXefkPRaSQclvVDSIUmvi24HIP8XwwBQTt28s5eZPSLpkZTaAhRa/RW1tu3d4u13dwDKp6uwd879jKQfU+0a+X3x7Wa2vcPj1kv6dN1NL5L0QjN7sXPuItUuuzsoaU7SdjP7WjftAvLWajEMAh+AD7pZz/4W1S6P2y9pi2rB/JOSvt3psWZ2xMwuif+pFvx/HN19l6Q7zOwiSXdEfwMoDJ9W7gOAZropvbtW0o+b2a9IOhn9fJNq16dPzDm3QtI2SX/knFsn6VJJ90Z33yvpUufcUDfPCeTFx5X7AKBRNwvhPGlm50b/fVTSBWY2X397wud5q6TfMLNLnHM/LGmvmV1cd/8jkq42swcTPN16SY8l/dtAr627YZ1mn5rtuN3QmiEd/eDRDFoEoCS6Wginm+/sZ5xzF5vZP0v6qqTrnHPfkvSt7tqnayX9UZePaYtV74qr6P24+8qPJbq+/91XfmxJ/ZyemdLE5Lh2b92T2hyAoo9FLIR+hNAHiX6koW7Vu+4e18W2v6HaJDpJulHSuyX9jrq4gp5z7nzVJvjti256XNIFzrll0f3LJJ0f3Q54L4vr+8eT/+aOH+MrAQCLkijsnXP9kp6R9CVJMrO/M7NXmtlLzOxPu/h745L+wszmouc5KulhSVdF918l6SEz6/y5KOCJNK/v32qWP4EPoBuJwt7MTkn6jJmdXOLfG9fZH+G/U9IO59yjknZEvwOFksZiGI1BHyPwAXSrm+/sp5xzrzOzLy32j0XldY23HVLtynxAocWB34vv1lsFfYw6fgDd6Cbsvy7pfufcZ1T7Tv35GXFm9t973TCgiHq1GMbE5HjLoI9V56uamBz3evENAH7oZoJeRbWL4SxI+l7VFsKJ/wHood1b97Sc9BerDFS0e+uebBoEoNASvbN3zg2Y2duj/x7Rmf+T8MU0GgaUWfyVQKuP8nsxJwBAeXR8Z++cu05nTqr7K0n3qFY+9ylJba+LD2BxGif9xQh6AN1K8jH+dkm/W/f7s2b2cjN7maQ3SHpHKi0DkMosfwDlkyTsLzSzf6z7vX6J23+UtKG3TQJQLw78wVVrCXoAi5LkO/vVzrlVZnZckszsR+vuWylpVSotA/C8Xs3yB1BOSd7Zf1XST7S476ck/XPvmgMAAHotyTv7D0n6iHNuQdKfmdmp6PK5b5Z0u7q4Nj4AAMhex7A3s0nn3AWqzcBf4Zw7JmmtpGcl/Q8zu7ftEwAAgFwlqrM3s99zzu2W9HrVgn5O0hfN7Mk0GwcAAJYu8eVyzew7kj6XYlsAAEAKurlcLgAAKCDCHgCAwBH2AAAEjrAHACBwhD0AAIEj7AEACBxhDwBA4Ah7AAACR9gDABA4wh4AgMAR9kAC0zNT2rRrg6ZnpvJuCgB0jbAHOpiemdK2vVs0d/yYtu3dQuADKBzCHmgjDvrqfFWSVJ2vEvgACoewB1poDPoYgQ+gaAh7oIlWQR8j8AEUCWEPNDExOd4y6GPV+aomJsezaRAALAFhDzSxe+seVQYqbbepDFS0e+uebBoEdEDFCNoh7IEmRoZHtW/7fS0DvzJQ0b7t92lkeDTjlgFno2IEnRD2QAutAp+gh0+oGEEShD3QRmPgE/TwCRUjSIqwBzqIA39w1VqCHt6gYgTdIOyBBEaGR3Vw52GCHt6gYgTdIOzhNWYY90bjfvR1v/raLh9RMYJuEPbwFjOMe6NxP975wO1e7lfGuztUjKAbhD28xAzj3mi2H2+5/ybv9ivjvThUjCApwh7eYYZxb3SawBWL9+uBQwcyatmZGO+loWIESRD28AozjHsjadDHqvNVbb5tc+b7lfHuDSpG0AlhD68ww7g3kuzHRidOnsh8vzLevUPFCNoh7OEVZhj3RpL92GjlipWZ71fGG8gGYQ+vMMO4Nzrtx0aVgYr279if+X5lvIFsEPbwDjOMeyNp4Mf7dWzjWEYtOxPjDaSPsIeXmGHcG8324/uuuNW7/cp4A+ki7OEtZhj3RuN+vO7y673cr4w3kJ6+hYWFvNuwFOslPTY397ROnUrWj6GhNZqdfSrVRmWBfvgjhD5I9MMnIfRBoh9p6O/v0+Dgakm6UNKRxI9Lq0EAAMAPhD0AAIEj7AEACBxhDwBA4Ah7AAACR9gDABA4wh4AgMAR9gAABI6wBwAgcIQ9AACBI+wBAAgcYQ8AQOAIewAAAkfYAwAQOMIeAIDAEfZAwKZnprRp1wZNz0zl3RQAOSLsgUBNz0xp294tmjt+TNv2biHwgRIj7IEAxUFfna9KkqrzVQIfKDHCHghMY9DHCHygvAh7ICCtgj5G4APlRNgDAZmYHG8Z9LHqfFUTk+PZNAiAFwh7ICC7t+5RZaDSdpvKQEW7t+7JpkEAvEDYAwEZGR7Vvu33tQz8ykBF+7bfp5Hh0YxbBiBPy7P6Q865F0j6fUlvlPSMpC+a2S845y6S9HFJg5LmJG03s69l1S4gNHHgN353T9AD5ZXlO/vfVi3kLzKzV0u6Obr9Lkl3mNlFku6QdHeGbQKC1PgOn6AHyi2TsHfOrZa0XdLNZrYgSWb2H865dZIulXRvtOm9ki51zg1l0S4gZHHgD65aS9ADJde3sLCQ+h9xzv2gpD+N/o1JelrSb0iqStprZhfXbfuIpKvN7MEET71e0mM9bzAAAH67UNK9g8NCAAAO4ElEQVSRpBtn9Z39ckkbJD1kZr/mnHutpD+XtKUXTz4397ROnUr2Py1DQ2s0O/tUL/5srsrSj+mZKU1Mjmv31j3evjMty1g04+P4hDAeQ0Nr9Kkv/YV3+7ZbIYyF5Fc/+vv7NDi4uvvHpdCWZr4u6buKPq43s/8r6Zhq7+wvcM4tk6To5/mSHs+oXfAY13b3G+OTngOHDrBv0VOZhL2ZHZN0QNKPS1I0A3+dpEclPSzpqmjTq1R79z+bRbvgL67t7jfGJz3TM1PafNtm9i16KsvZ+O+UdJNz7iuSJiVdY2bfjm7f4Zx7VNKO6HeUGNd29xvjk5543544eeKM29m3WKpMJuilaL2kx/jOvrga+9Hp2u6Sf2VkoY5FM0UYn6KORxH2bbeKOhaNfOpH3Xf2XU3Q4wp68ArXdvcb45Me9i3SRNjDK1zb3W+MT3rYt0gTYQ+vcG13vzE+6WHfIk2EPbzT6qTHyc4PjE964n27csXKM25n32KpCHt4iWu7+43xSc/I8Kj279jPvkVPEfbwFtd29xvjk56xjWPsW/RUZkvcAosxMjyqgzsP590MtMD4pId9i17inT0AAIEj7AEACBxhDwBA4Ah7AAACR9gDABA4wh4AgMAR9gAABI6wB1I0PTOlTbs2sA45gFwR9kBK4vXJ544f07a9Wwh8ALkh7IEUxEEfr09ena8S+AByQ9gDPdYY9DECH0BeCHugh1oFfYzAB5AHwh7ooYnJ8ZZBH6vOVzUxOZ5NgwBAhD3QU7u37nl+HfJWKgMV7d66J5sGAYAIe6Cn4jXeWwV+ZaDC+uQAMkfYAz3WKvAJegB5IeyBFDQGPkEPIE+EPZCSOPAHV60l6AHkanneDQBCNjI8qoM7D+fdDAAlxzt7AAACR9gDABA4wh4AgMAR9gAABI6wBwAgcIQ9AACBI+wBAAgcYQ8AQOAIewAAAkfYAwAQOMIeAIDAEfYAAASOsAcAIHCEPQAAgSPsAQAIHGEPAEDgCHsAAAJH2AMAEDjCHgCAwBH2AAAEjrAHACBwhD0AAIEj7AEACBxhDwBA4Ah7AAACR9gDABA4wh4AgMAR9gAABI6wBwAgcIQ9AACBI+wBAAgcYQ8AQOAIewAAAkfYAwAQOMIehTQ9M6VNuzZoemYq76YAgPcIexTO9MyUtu3dornjx7Rt7xYCHwA6IOxRKHHQV+erkqTqfJXAB4AOCHsURmPQxwh8AGiPsEchtAr6GIEPAK0R9iiEicnxlkEfq85XNTE5nk2DAKBACHsUwu6te1QZqLTdpjJQ0e6te7JpEAAUCGGPQhgZHtW+7fe1DPzKQEX7tt+nkeHRjFsGAP5bntUfcs4dkfRM9E+Sft3MPuece52kuyVVJB2RdLWZHc2qXSiOOPAbv7sn6AGgvazf2b/VzC6J/n3OOdcn6R5J7zKziyRNSfpAxm1CgTS+wyfoAaCzvD/Gv0zSM2Y2Hf1+l6Qrc2wPCiAO/MFVawl6AEggs4/xI/uid/PTkm6S9HJJX4/vNLNjzrl+59yLzeybGbcNBTIyPKqDOw/n3QwAKIQsw/5yM3vcOXeOpA9Jul3Sp3rxxIODq7vafmhoTS/+bO7ohz9C6INEP3wSQh8k+uGLzMLezB6Pfj7rnPuIpD+T9AeSXhFv45xbK2mh23f1c3NP69SphUTbDg2t0ezsU908vZfohz9C6INEP3wSQh8k+pGG/v6+rt/gShl9Z++cW+WcOzf67z5JWyU9LOnLkirOuZFo03dK+mQWbQIAoCyyemf/PZL+xDm3TNIySY9I+iUzO+Wcu0bS3c65FygqvcuoTQAAlEImYW9mhyX9UIv7/lbSq7NoBwAAZZR36R0AAEgZYQ8AQOAIewAAAkfYAwAQOMIeAIDAEfYAAASOsAcAIHCEPQAAgSPsAQAIHGEPAEDgCHsAAAJH2AMAEDjCHgCAwBH2AAAEjrAHACBwhD0AAIEj7AEACBxhDwBA4Ah7AAACR9gDABA4wh4AgMAR9gAABI6wBwAgcIQ9AACBI+wBAAgcYQ8AQOAIewAAAkfYAwAQOMIeALBk0zNT2rRrg6ZnpvJuCpog7AEASzI9M6Vte7do7vgxbdu7hcD3EGEPAFi0OOir81VJUnW+SuB7iLAHACxKY9DH4sA/cOhATi1DI8IeANC1VkEfq85Xtfm2zbzD9wRhDwDo2sTkeMugj504eUITk+PZNAhtEfYAgK7t3rpHlYFK221Wrlip3Vv3ZNMgtEXYAwC6NjI8qn3b72sZ+JWBivbv2K+R4dGMW4ZmCHsAwKK0CvzKQEX7tt+nsY1jObUMjQh7AMCiNQZ+HPS8o/cLYQ8AWJI48AdXrSXoPbU87wYAAIpvZHhUB3cezrsZaIF39gAABI6wBwAgcIQ9AACBI+wBAAgcYQ8AQOAIewAAAkfYAwAQOMIeAIDAEfYAAASOsAcAIHCEPQAAgSPsAQAIXNEXwlkmSf39fV09qNvtfUU//BFCHyT64ZMQ+iDRj16ra8eybh7Xt7Cw0PvWZGdE0gN5NwIAgIxdLmk66cZFD/tzJL1G0hOSnsu5LQAApG2ZpJdK+ntJzyZ9UNHDHgAAdMAEPQAAAkfYAwAQOMIeAIDAEfYAAASOsAcAIHCEPQAAgSPsAQAIHGEPAEDgin5t/DM4535X0n+VtF7Sq83sq9HtF0n6uKRBSXOStpvZ1zrdl5dm/XDODUr6hKRh1a6a9C+SftHMZqPHLEj6iqRT0dNcY2ZfybrtsTZjcUTSM9E/Sfp1M/tcdN/rJN0tqSLpiKSrzexolu1u1GIs1kv6dN1mL5L0QjN7cfSYI2rRxzy0e+202+e+jUerfkg6T7V2vlTSd1W7stgvmVk1Gqt/kfTVuqd6g5nNZdj0M3QYj5bHsXPuTZJ+R7Xz9pclvd3MTmTd/lib8XiVpI/UbbpO0r+b2aXR43w7V31a0oVRe56WtMPMHi5abnQS2jv7T0salfT1htvvknSHmV0k6Q7VTgxJ7stLs34sSPptM3Nm9gOSZiR9oOFxP2Jml0T/cjt4Iq3GQpLeWtfOOOj7JN0j6V3RWEzp7P7l4ax+mNmRuvZfEm3zxw2PO6uPOWr62mm3zz0dj1bHwElJN5jZRkk/IGmlpF+te9y368crz6CPdDqWzzqOnXOrJe2W9CYze6Wkp3RmH/PQtB9m9rcNx8ff6ezjw6dz1c+Z2Q+a2Q9J+l1JfxTdXrTcaCuosDezaTN7vP4259w6SZdKuje66V5Jlzrnhtrdl1Wbm2nWDzP7ppn9Td1NX5L0ikwb1oVmfejgMknPmFm8sMNdkq7sfcu606kfzrkVkrbp9AnCO21eO+32uXfj0aof0f98PRRtc0q1cPH52FjMsXyFpH+oe/d4l6S3pdC8xJL0IzrH/oRqnwB4ycyerPv1XEmnipgbnQQV9i28TNK/mdlzkhT9/H/R7e3u85Zzrl/SdZL+rOGuv3HOPeyc+y3n3Dk5NC2pfc65f3LOfcQ596LotpfrzHfPxyT1O+denEsLk/sZ1V5DDzbc3qyPuWt47bTb516PR6tjwDlXkXRtw+0vdM79g3Puy865X4s+tfBCi340O47PGA9J35BH56k256Ttkv7KzP6j4XavzlXOuY86574haZekn1OAuVGGsA/Rbap9t3R73W0vN7PLVPvI+fsk3ZxHwxK43Mx+ULXVCvt0Zh+K6Fqd/a7e5z42e+0U0Vn9cM4tlzQp6a/NLA6dJyR9b3RsXKHa/Iufz7it7TT2oyjHcaNWr6u36+zjw7s+mtk7zOzlkm5SbV5EcMoQ9o9LusA5t0ySop/nR7e3u89L0YSxV0l6W/SRpSQp/qjZzL4j6aOSfjSfFrZX185nVZvEE7fzG6r7CNA5t1bSgpl9M/NGJuScO1/Sj0naV397mz7mqslrp90+93Y8mh0D0bG7T9K3JL073tbMno0nFUY/98nf8Wh3HJ8xHqq90/fiPNXqnBRN8ByU9Jf12/t8rjKzT0gak/SvCig3pBKEfXSAPyzpquimqyQ9ZGaz7e7LvqWdOed2SfphST8bBUl8+3nRx5fxu5u3qtYvrzjnVjnnzo3+u0/SVp1u55clVZxzI9Hv75T0yexb2ZVxSX9RP+GrQx9z0+K1026fezkezfoRfYS8R9Jzkn7ezBbqtl/nnBuI/nulal+7eDkeHY7jz0p6jXPuVdHv3o5HnWsl7TWz79Zt79W5yjm32jn3srrf3yTpm5KCyY1YUOvZO+c+LOktkl4i6ZikOTO72Dm3UbUyifNU+z//7WZm0WNa3peXZv1QbXLUVyU9KqkabfqYmf0X59zrVZsNuiBpQNLfSvplM3s667bHWvThTZL+RNKy6N8jkt5tZk9Ej/kR1frxAp0u9Wr8ri9TrV5T0X2Pqtb+z9Ztv0Ft+pgH59zFav3aabnPfRuPVv1Q7d3h/ui+56Lbv2Bm73LOvUXS/4huH4i2e0/8fWse2vTjt9XmOHbOvTnaZpmkhySNm9nxbFt/WofXVUW1r1Beb2YH6x7j1bnKOfc9kj4jaZVqr5FvSvpVM3uwaLnRSVBhDwAAzhb8x/gAAJQdYQ8AQOAIewAAAkfYAwAQOMIeAIDAEfYAWnLO3eSc+2je7QCwNJTeASXmnKuvb16p2lKlcQ36L5rZvrMfBaBoCHsAkiTn3BFJ7zCzz+fcFAA9tjzvBgDwl3PuvZJeaWZXO+fWq3alt2tVuyrdaknvUe3Sun+o2vXa7zGz6+sef62kX1PtCoR/J+kXzKx+9TYAGeA7ewDdeq2ihU8kfUjSTklvlHSxpCudcz8mSc65n1VtFbG3SBqS9IBOrwEOIEOEPYBuvd/MnjGzv5J0XNK9ZnbUzP5NtUD/oWi7X5T0W2Z2MFoM5VZJlzjnXtH8aQGkhY/xAXSrfjGcapPfV0f//QpJf+Cc+726+/skXSCJj/KBDBH2ANLyuKRdzOgH8sfH+ADScpek90RLoco5d65zbkvObQJKibAHkAoz+5Sk/ylp0jn3HdXWPr8i31YB5USdPQAAgeOdPQAAgSPsAQAIHGEPAEDgCHsAAAJH2AMAEDjCHgCAwBH2AAAEjrAHACBw/x/ucdJAePMHXAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
    " - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "# Standard imports required to show plots and tables \n", "from matplotlib import pyplot\n", @@ -1497,9 +675,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "display(grades.corr())" @@ -1531,81 +707,9 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
    \n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    AceticH2SLacticTaste
    Acetic1.0000.6180.6040.550
    H2S0.6181.0000.6440.756
    Lactic0.6040.6441.0000.703
    Taste0.5500.7560.7031.000
    \n", - "
    " - ], - "text/plain": [ - " Acetic H2S Lactic Taste\n", - "Acetic 1.000 0.618 0.604 0.550\n", - "H2S 0.618 1.000 0.644 0.756\n", - "Lactic 0.604 0.644 1.000 0.703\n", - "Taste 0.550 0.756 0.703 1.000" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "cheese = pd.read_csv('http://openmv.net/file/cheddar-cheese.csv')\n", "cheese.set_index('Case', inplace=True)\n", @@ -1629,20 +733,9 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAALECAYAAAAVacYNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XuUFPWd//9XVfVcuAzMgMNNCWbZ1Z+7UeNl4WtQT4KXuBsQEo9HN2azisoqrqKBBEEiaggjBl1vQaPR5azHTTyJGwhKVonkrBFdTHZdV4m3k3gLisA4kYFhLl1Vvz+w256Z7p6+1L2fj3M8B2dquj9V9a53vfvTn8+nDNd1XQEAAACQJJlhNwAAAACIEgpkAAAAIAcFMgAAAJCDAhkAAADIQYEMAAAA5KBABgAAAHJQIAMAAAA5KJABAACAHBTIAAAAQA4KZAAAACAHBTIAAACQgwIZAAAAyJEKuwFBam/fJ8dxw25GQS0tw9XR0RV2MwITxf1tbW0K7b3TaTtyx2OgKJ6zfOLQzkraGGZ8+pk/43C+ylGr+xPV+IzL+aCd3hrYznLjkx7kCEmlrLCbEKha29+hxOF4xKGNUjzaGYc2BiVpx4L9iZa4tJ92eqvadlIgAwAAADkiMcSip6dHq1at0nPPPaeGhgZ99rOf1Xe+851+29x11136t3/7N40bN06SdPzxx2vFihVhNBcAAAAJFokC+Xvf+54aGhr0xBNPyDAM7dmzJ+92c+fO1ZIlSwJuHQAAAGpJ6AXy/v37tX79ev3nf/6nDMOQJB1yyCEhtwoAAAC1KvQxyO+++66am5t199136ytf+Yr+/u//Xr/97W/zbvv4449r9uzZmjdvnl544YWAWwogTJZlyrVMpQ1DrmXKskJPX0BgiH8MREz4y3BdN9R1z15++WWdc845WrNmjWbPnq0XX3xRl112mTZv3qyRI0dmt9u9e7eam5tVV1enrVu3avHixdq0aZNaWlpCbH209PbZqq8rfdZmudsDYXEcV2/v3KuVD27Tro4DGtcyTMvnTdeUCaNkmkbJr/HR/h71pR3VpUyNHtFQ8t8CYfIi/ge+HtdCvHkdE3HkdxyHXiB/+OGHOuWUU/Tyyy9nh1j87d/+rVavXq2jjz664N995Stf0bXXXqtp06aV/F5RXwe5tbVJu3d3VvX3sxdtKHn7jbfOqer9qlXt/vohzHU8JUXueAwU1jlzLVNL127Vro4D2Z+NaxmmtgUzZNjOoO0HttOyTHV09WnVuuezN5NlF05Ty/A62Xn+PgiVHMuorjNbrSjmgmp4vT/lxn8xlVwLpe5PVOMzLvFVTju9jIlyReF4lhLHA9sZu3WQx4wZo+nTp2vr1q2SpDfffFPt7e2aMmVKv+0++OCD7L9feeUV7dixQ5/+9KcDbSuAcNiO2+9GIEm7Og7ILrFgS0vZRJr521Xrnlfa64YCPqg2/nNxLSSDlzERR0HEceiT9CTpxhtv1LJly7R69WqlUindcsstGjVqlC699FJdddVVOvroo3Xbbbdp+/btMk1TdXV1uuWWW9Ta2hp20wEEwDINjWsZNqi3xDINyR76hlDsZhKJJAgUUW385+JaSAYvYyKOgojjSFwPkydP1kMPPTTo5/fff3/236tXrw6ySQAiJCVp2YXTBn2dlpJkl/D3tX4zQbxVG/+5uBaSwcuYiKMg4jgSBTIAFGPbjlqG16ltwQzZjivLNA7eCEocaxf0zcSyTKWlitoKDJQb/46jgxORDFdpV0pZZlmxVeuFVVJUmxOr4TiuXMsMNb8FEccUyABiwbYdGfo4adluWUkwyJtJFCcEIv5s21HKMtXRXV1shVlYwVvV5MRKWZY5aPWMMPJbEHEc+iQ9AAiCbTsybEcp15VhO74lcyZBwS9exVZQ1wKSJy1li2Mp3PzmdxxTIAOAh2p9djn8Q2whbLUUgxTIAOChzOSRXNnJI0AViC2ErZZikAIZADyUmTySuYnkTh4BqkFsIWwpScvnTa+JGEziPgFAaJgEBb8QWwibbTuaMmFUTcQgBTIAeCyM2eWoDcQWwmaaxsHJcVKiY5AhFgAAAEAOCmQAAAAgBwUyAAAAkIMCGQAAAMjBJD0AeVmWqbTUb6YyEEf5YjmJs+5ROWIEA3HPAzCIZZnq6OrLPtY2s9Zlc3PynpaEZCsUyy3D6yiAIIkYQX4MsQAwSFrK3iykg48SXbXueX20vyewNliWKdcylTYMuZYpyyJdoXyFYjnt43s6jkvsxkgYMYLyhHE/oAcZwCC242ZvFhm7Og6oL31wDVa/0aMDrxSKZdtxfbkBWpapt3fu1coHtxG7MRF0jKA8Yd0P+FgLYBDLNLKPEs0Y1zJMdalgUgY9OvBKoVi2TH8+6qWlbHEsEbtxEHSMoDxh3Q8okAEMkpK07MJp2ZtG5hP76BENgbx/sR4doByFYtmvnkFiN36CjhGUJ6xrivMPYBDbdtQyvE5tC2b0m9VtBtSjkunRyU2K2R4du7KkyCz12lQolv06937EbtH3I66rFnSMDIVz2l/Q11QGPcgA8rJtR4btKOW6Mmwn0ATtdY9OZgzb0rVbNb/tKS1du1UdXX1MnqoRQcZyStLyedMD6Y0krr0TZr7LxTkdLKwefnqQgZiphd4Fr3t0Co1ha1swI5BJh0imQtfilAmjAumNJK7D5Ucu5pwOFlYPPwUyECO1tLqDbR9cMSMlSbYru5rXYpY6PFbsWjRN42BvpFR17BZDXIfHr1zMOc3Py/tBqWq3zx6IIVZ3qAyz1OG1KFyLxHV4/Dr/nNPoiESB3NPToxUrVujMM8/U7Nmz9e1vf3vQNrZt68Ybb9Tpp5+uM844Qz/5yU9CaCkQLmbIV4ZZ6vBaFK5F4jo8fp1/zml0ROKYf+9731NDQ4OeeOIJGYahPXv2DNpm48aNeuedd/Tkk0/qT3/6k+bOnauTTjpJhx12WAgtBsIR1mzeuIvaLHXEX9FrMSDEdXj8ysWc0+gIvQd5//79Wr9+vRYuXCjDOJhYDjnkkEHbbdq0Seeee65M09SYMWN0+umn6z/+4z+Cbi4QKnoXKheVWepIhqhci8R1OPw8/5zTaAj9vvruu++qublZd999t7Zt26YRI0Zo4cKFOvHEE/tt9/7772vSpEnZ/584caJ27txZ1nuNHTvSkzb7qbW1KdHvF7X3j5pSjkdzs6s1C09VX9pRXcrU6BENga1PLMXnnMWhnXFoY4bf+TNOxyKj2LUYx/0pJur7M1R8+tF+P3Jx1I9zRi20M/QCOZ1O691339Vf/uVfasmSJXrxxRd12WWXafPmzRo50tuE3N6+T06Ex2q2tjZp9+7Oqv6+XNW8X7Wq3V8/hH3Rl3M8DEnptK327j7/GjRAFM9ZPnFoZyVtDDM+/cyfcThfxQy8FuO+PwOVuj9RjU+/z4dXuTgucRPXdpYbn6EPsZg0aZJSqZRmzZolSTr22GPV0tKiN998s992EydO1HvvvZf9//fff18TJkwItK0AAABIvtAL5DFjxmj69OnaunWrJOnNN99Ue3u7pkyZ0m+7s846Sz/5yU/kOI4+/PBD/fKXv9QXv/jFMJoMAACABAt9iIUk3XjjjVq2bJlWr16tVCqlW265RaNGjdKll16qq666SkcffbTmzJmjF198UWeeeaYk6YorrtDkyZNDbjmAJKuFpxbWIs4rUBjXx0GRKJAnT56shx56aNDP77///uy/LcvSjTfeGGSzANSwWnpqYS3hvAKFcX18IvQhFgAQRUE8Kc2yTLmWqbRhyLVMWRYp2W9ReAJeXGTic1dHF/FZI+JyfQSROyPRgwwAUVPsSVleJE7HcempCYHf5zUp6EmsTXG4PoKKTT4OomRNo4aptbWp5P+aRg0b+kWBiMo8KSuXl09K+2h/Tyx6apLG7/OaFHHpSYS34nB9BBWbUflAgBhobEhp9qINJW+/8dY5iv5KiUB+mSdlDeylSEmyPXj9vrQT+Z6aJPL7vCZFHHoS4b04XB9BxSZxDiByojCL2rYdtQyvU9uCGb60oy5lalzLsH6JPttTY0f3gUZB8iMO/D6vSZHpSSQ+SxeFvFWtOFwfQcUmQywAREpmfNnStVs1v+0pLV27VR1dfaFMELJtR4btKOW6MmzH05vE6BENWnbhtOzXmbk9NfA3Dvw8r0mR6UkkPksTpbxVrahfH0HFJrEOIFIKjS9rWzBDQ42Cy/Tg7Orokiwzcj0fuUzTiHxPTZiqiYNa5lUvZm5PogxDcl3iswjitTRexGdQvdwUyAAipdLxZXGcdW/bjgx9nIhtNzJj/KKAMbDl8/oayMRna2uTdu/uJD6LIF6H5mV8BpE749f3DyDWhlq/stJZ1My6T5Y4zKb3UyXrvHINhCeu8RrkWuxxi08KZACBKWWcXqXjy4r14CB+ankMbKXjWbkGwhPHeA163HTc4jPK5w5AwpQyTq/S8WWZHpyWpkadM/Mv1DS8Tt29adXXmXJ6+XI4bjJxcPOCk5V2XJmmlLJqYwWFSsezsvJEeIJc/cGrceZBj5uOW3xSIAMITKnj9CoZX5aSdMOl/08dnT2648cvZMe4XXfhNDVHeBwyitvb1RurceVeqHQ8axzWsE2yIMbFejqON+Bx03GLz6qPQW9vrwzDUF1dXfZnfX19cl1X9fX11b48gATxswfBth011qV0x4//q1+PyHeZSR5btboyQKXXSRzWsEV1vLwmgu7RjVt8Vj3Q5KKLLtL27dv7/Wz79u26+OKLq31pAAnj9zi9tFP46XSIn7iNWfRKNddJ1NewRXW8vCbCGDcdp/is+ji8/vrrOvbYY/v97JhjjtGrr75a7UsDSBi/exDiNsYNxdXq+YxbTxuC4+U1QZwVV3UPclNTk/bs2dPvZ3v27NGwYcMK/AWAWuZnD0IcZ5KjsFo+n3HqaUNwvL4miLPCqs4zZ555phYtWqTly5dr8uTJeuedd3TzzTfrb/7mb7xoHwCULNMjsmbhqeruSdMjEnP0cAH9cU0Ep+oe5GuuuUZTp07Vueeeq+OPP17nnXeePv3pT+sb3/iGF+0DgLLYtqOWpkZ6RBKCHi6gP66JYFTdg9zQ0KAVK1bo+uuvV0dHh1paWmQYSZ5fDAAAgCSrqED+4x//qMMOO0yS9O677/b73f79+7P/njx5chVNAwAAAIJXUYE8e/ZsvfDCC5KkM844Q4ZhyHX7z540DEOvvPJK9S0EAAAAAlRRgZwpjiUlajm3plHD1NhQ+iHp7kmrc++BoTcMqD0AAACoXtXV18qVK7V8+fJBP//ud7+r6667rqTXmDlzpurr69XQ0CBJWrx4sU455ZR+21x77bV69tln1dLSIkk666yzdPnll1fZ+v4aG1KavWhDydtvvHWOOj1tQfXtAQAAQHWqLpD//d//PW+B/POf/7zkAlmS7rzzTh1xxBFFt5k/f76+9rWvld1GAAAAoFQVF8g//elPJUm2bWf/nfHuu++qubm5upYBAAAAIai4QN6w4eBX/319fdl/Swcn5x1yyCFavXp1Wa+3ePFiua6rE044Qd/4xjc0atSoQdv8y7/8ix555BFNnjxZixYt0tSpUyttPgAAAJBXxQXyQw89JEn653/+Z11zzTVVNeLhhx/WxIkT1dvbq+9+97u66aabtGbNmn7bXHPNNWptbZVpmlq/fr0uueQS/fKXv5RlWSW/z9ixI6tqZz6trU2Rfr2w32+o1w96f6MuDscjDm2Ugmun47j6aH+P+tKO6lKmRo9okGmWthZ8XI6l5E/+zBWnY1HKOY/T/pQi6vszVHxGvf0ZfrWzmjyVTy0cz6rHIF9zzTXq6OjQf/7nf2rPnj265JJL9MEHH8h1XU2YMKGk15g4caIkqb6+Xl/96lfzTr4bP3589t9z585VW1ubdu7cqUMPPbTktra375PjuAV/X8mB3L3bu2l6ra1N/V4viAAsp/1eH5+B+xsFYV/0UTseA0XxnOXjdzsty1Rakgypc3+fVq17Xrs6DmhcyzAtu3CaWobXDfl0q0raGGZ8DpU/qxGXuJIOnvuOruLnPE77U0gmxm3HVWNDSm6fXVJMh6VYfMblfPjVzlJidqi/z8SCZRo6pHm42tv3ed5Or1VbU1X9qOnnn39eZ511ljZu3Kjvf//7kqS3335bN9xwQ0l/39XVpc7Ogzvguq42bdqko446atB2H3zwQfbfv/71r2WaZr+iGYA3LMuUa5lKG4Zcy5RlVZ0mEiVzs1m6dqt+/8e92ZuOJO3qOKBV654/WDwjkdJS3nNuy8heNx2d3bG+bnJjfH7bU1p8x9Pq6OqL9T6VKon5r1DMlpKnBsbC0rVb9fbOvYk4LkOpugd51apVuv3223XSSSfpr//6ryVJxx57rP7v//6vpL9vb2/XlVdeKdu25TiOpk6dqhUrVkiS5syZo/vuu0/jx4/XkiVL1N7eLsMwNHLkSN1zzz1KpVgjGPBStT0NtSD3ZtM0vC5708nY1XFAtuNWn1wRSbbj5j3nfbajb//g2URcN4UKqrYFM1T5l/LRl9T8VyhmS8lT+WJh5YPbEh8LkgcF8o4dO3TSSSdJOjhBT5Lq6upk23ZJfz958mStX78+7+9yJ/+tW7euuoYCGFKt3hjLkXuz6ezq07iWYf1uPuNahskyDcn2ZzgCwmWZRt5z/t6efYm5bqopqOIsqfmvUMyWkqdqNRYkD4ZYTJ06Vb/+9a/7/ezZZ58dck1jAN6r9uvBYsnQz/eNk8zNRpIe3fKGrjrvuOz/Z3qckn7jSIpK4jYladmF0wad8x8/+Xq/7QZeN3G6RnJjPCNbUCVYpfmvFGGe/0IxW0qeqtVYkDzoQb722mv1j//4j/r85z+v7u5uXX/99dqyZYvWrl3rRfsAlMiLrwcr6WlI6teShWRuNqvWPa/X3unQxl//Xisv+5wMGTLNg79P4n4nTaVxa9uOWobXqW3BjOykJcs6OO44V+51E7drJDfGc9ubklTad8PxVE1Pa9HXDfn854vZUvNUvWVo6YXT1JbT9qUXTlO9ZagvycEgD3qQP/vZz+rnP/+5/vzP/1znnHOODjvsMP30pz/VMccc40X7AJSomokYGZX0NHjxvnGSe7O5b+lpmj/3aDWYhizXkWE7kSx4MFg1cWvbB891ynVl2I4M2y163cTtGhkY42sWnhrZYt5L1fS0FhOF8z8wZks9l722qx8/+aoumXO02hbM0CVzjtaPn3xVvTUwhKzqHuTe3l6NGTNGl156afZnfX196u3tVX19fbUvD6BE+b4ebGlqlCvJNoySeg0q6WmoxTFqtu3I0McJ1HYT3auWBAOXqUpJ6vEwbgdeNwOXRYvjNZIb4y1NjbFYJi0fyzLV0dmtdAk5sJqe1mLieP4zbMfVtu0faNv2D/r9/OKzPxP5tler6h7kiy66SNu3b+/3s+3bt+viiy+u9qUBlGHgWLEjP9Wir3/pKC3LWZ6nlKWayu1pqOUxaoi+fMtUdXT1qb7O9DRuc6+blqbGftcN10g4Mud+8R1Pl5wDK+1pLdqOGJ//OLe9WlUXyK+//rqOPfbYfj875phj9Oqrr1b70gDKMPDrwfPPPEJ3/PgFX77Wy51wYsjQDZf+PyaqIZIKfb3t2Pm/Trcsw/MJVH59dY/iwh7akMmTMuJ7/vPF7vJ502PR9mpVvY9NTU3as2ePWltbsz/bs2ePhg0bVuSvAHht4NeDknz5Wi/fhJPrLpymW648Wb19jmdfSwJeKPT1dto5eL3cvOBk9dmO3tuzT/c8+n/q6Oz2fAKVX1/do7gwhzYMzJPT/2p8LCfz5ovduDxJr1pVf0w+88wztWjRIr3++us6cOCAXnvtNX3rW9/SWWed5UX7AJQh9+tBv74ay9cr8911z8u2XU+/lgS8UOw6sG1Hrlx9+wfP6sYfbtNr73T41svox1f3KC7M4QED8+S27R9o+b3PyjQVu/M/MHbNGhheIXlQIF9zzTWaOnWqzj33XB133HE677zzNHXqVF199dVetA9AhQp9rVtvGWWtx5k7nKKjs1uOB2uFxmlNWMTbUNeBn2vfDlQo7rke/BHm0JZicVXofDuOW1IcEC/BqDpOGhoatGLFCl1//fXq6OjQrl27tGHDBp155pl65plnvGgjgArk+2qs3jLU3tlb8nqc+YZTrLzsc1WtFRr2mqCoLUNdB5fMOTqQpyEWivuxTfVlXZMoXebcr1l4qrp70oEObSm0pnLKNNXRNfh8j22q19s792rlg9uKxgH5MziefOz48MMP9a//+q+6+OKL9eUvf1kvv/yyrrvuOi9eGjWkadQwtbY2lfzfqNHDS962aVRtjokf+NVYr+2WNWkl33CKB37+clW9MmFPnEHtKXYdBPU0xEJx32tzPfjJth21NDUGPrSlUO+1aRWOg0xxnPvzgXFA/gxOxTmgr69PW7Zs0c9+9jM988wz+tSnPqUvfelL2rFjh26//XaNHTvWy3aiBjQ2pDR70YaSt99465ySt9946xzFcxVPb5U7aSXf9tu2f6D5Xz664glHcV4TFMmQG4OvvdOhhza9okvmHK3DJzb51stYOO4drocEKjQxs6ev0PkuLQ7In8GpuAd5xowZuv766/XpT39ajzzyiDZt2qQrrriCh4MAEVbupJVC28tVxROOanldTUTDwBh87Z0O/XDDS7JMw7dexsJx7+16zIiOfBMzq40D8mdwKi6QjzzySHV2durFF1/USy+9pI8++sjLdgHwQbmTVgptX81asawJi7AFEYMDJ1LVW0aByYJcD7Wk8KRRafm86f1+fl2eOCB/BqfiY/rQQw9px44dWr9+vR588EGtXLlSJ598srq6upROMxoGiKJy12PNbO/lWrGsCYuw+R2DjuMWnJA38D37em2uhxpSKPYc21VdytTl5xyjxvqUunvTqqsb3AlB/gxOVR86Dj30UF1xxRW64oor9Nvf/lYbNmyQaZo6++yzdc455+hb3/qWV+0E4BHbdmTo44vfdmWXsL1rmfr2D57tN/Zt1brn1bZghir5Yq/cNgBe8zMGP9rfk3ciVduCGQe/ch/wnlwPtSXf+XYtUyvue27Qqhf5cizxEgzPeuVPPPFEnXjiiVq+fLk2b96s9evXe/XSAELGxBCgdH1pJt6hPOTY6PF8demGhgbNmjVLP/zhD71+aQAhYWIIULq6FBPvUB5ybPTw+BUAQ2JiCFC60SMauF5QlpQGT9IjZsLFsQcwpDCfSAXEjWkaTKRCWWzb0ZQJo4iZCKEHGUBJwnoiFRBH+dbABYoxP16Hm5iJBgpkAAAAIAcFMgAAAJAjEmOQZ86cqfr6ejU0NEiSFi9erFNOOaXfNgcOHNDSpUu1fft2WZalJUuW6Atf+EIYzQUAAECCRaJAlqQ777xTRxxxRMHfP/DAAxoxYoQ2b96st956SxdccIGefPJJjRgxIsBWAgAAIOliM8TiF7/4hc4//3xJ0uGHH67PfOYzevrpp0NuFQAAAJImMj3Iixcvluu6OuGEE/SNb3xDo0aN6vf79957T4ceemj2/ydOnKidO3eW9R5jx470pK25WlubIv16Yb/fUK8f5P4GfWwrQRu9E4d2xqGNGX7kz1xxOhalYH+CNVR8Rr39GbTTW9W0MxIF8sMPP6yJEyeqt7dX3/3ud3XTTTdpzZo1nr9Pe/s+OY5b8PeVHMjduzuradKg9899vSACsJz2e318gt7fUvY17Ivey3jyw8BzFlVxaGclbQwzPofKn9WIw/kqR63uT1TjMy7ng3Z6q9oaIxJDLCZOnChJqq+v11e/+lX9z//8z6BtJk2apB07dmT///3339eECRMCayMAAABqQ+gFcldXlzo7D1b4rutq06ZNOuqoowZtd9ZZZ+mRRx6RJL311lt66aWXBq10AQAAAFQr9CEW7e3tuvLKK2XbthzH0dSpU7VixQpJ0pw5c3Tfffdp/Pjxuvjii3XttdfqjDPOkGmauummmzRypL9j4lCd3j47UmOQa41lmUpLPLYUGIBrA2Ei/uIh9AJ58uTJWr9+fd7fbdiwIfvv4cOH68477wyqWfBAfZ2l2Ys2DL3hxzbeOsfH1tQWyzLV0dWnVeue166OAxrXMkzLLpymluF1JGLUNK4NhKlY/CFaQh9iAcB7aSmbgCVpV8cBrVr3vNLhNgsIHdcGwkT8xQcFMpBAtuNmE3DGro4Dsn1ahQCIC64NhIn4iw8KZCCBLNPQuJZh/X42rmWYLNMIqUVANHBtIEzEX3xQIAMJlJK07MJp2UScGecW+qQDIGRcGwgT8RcfnBMggWzbUcvwOrUtmMFMaSAH1wbCRPzFBwUykFC27ShlmZJpHBzfZhpKWSaJGIlSyZJZtu3I0Mc3QNuV7X8zUaMKxSfxF30UyEBCsZwVko4YR5QRn/HGGGQgoVhOCElHjCPKiM94o0AGEorlhJB0xDiijPiMNwpkIKFYTghJR4wjyojPeKNABhKK5YSQdMQ4ooz4jDfOE5BQLCeEpCPGEWXEZ7xRIAMJxnJCSDpiHFFGfMYXQyyAhLIsU65lKm0Yci1TlsXljujIjc+Ozm7iE6EjZyIXPchAArH+JqKM+ETUEJMYiI9HQAKx/iaijPhE1BCTGIgCGUgg1t9ElBGfiBpiEgMxxKIKvX22WlubSt6+p9dWQ71VdJtyXg8oJLP+Zm7Cz66/aZPwES7iE1FDTGIgCuQq1NdZmr1oQ8nbb7x1TtnbA5XIrL85cDxdSmIWNUJHfCJqiEkMRIEMJJDX629alqm0pF0dXZJlspYnqjIwPhsbUnL77LJjKhOXrDGLanmVM4nJ5KBABmKknOTr1fqbzO5GMZUWBLnx2dLUqN27O8t+X+ISXqo0Z2auARlSx35iMimYpAfERKYgWLp2q+a3PaWla7eqo6vP97U6md2NQsKKSYm4RDTkXgO//+NeYjJBIlUg33333TryyCP1+uuvD/rdtddeq1NPPVVz5szRnDlzdM8994TQQiA8YRUEzO5GIWEWqcQloiD3GmgaXkdMJkhkhlhs375d//u//6tJkyYV3Gb+/Pn62te+FmCrgOgoVhD4eSEzuxuFhBWTEnGJaMi9BjpQlJNvAAAgAElEQVS7+ojJBIlED3Jvb69uuukmrVixQoZhhN0cIFIyjz+VpBWXTNeRn2rJ/i6bfH2Umd09rmVY9j0zs7tR2zJFai4vYrKUR/4SlyiFZZnq6Oz27fHRudfAo1ve0FXnHUdMJkQkztsdd9yhs88+W5MnTy663b/8y7/okUce0eTJk7Vo0SJNnTo1oBYC4cg3EWnh+cfpXx9/RR2d3YEsQ5Q7u1uGIbkuM7MhyZ+lsUqdfOf1Si1Ink9iaatvk+Zyr4HX3unQxl//Xisv+5wMGTJNEZMxFnqB/MILL+ill17S4sWLi253zTXXqLW1VaZpav369brkkkv0y1/+UpZV/MEbucaOHVltcxOnlh5MEod9HdjGjs7ubHKXDn59fcePX1DbFSerLmVq9IgGmT73IMdVHM93lBXKn83NrtYsPFV9aaeqmMwci3wxv2rd81qz8FS1jhlR+Q4ELE7nthRR35988RlULHl1DUjRP84ZtdDO0Avk3/zmN/rDH/6g0047TZK0c+dOXXzxxWpra9PJJ5+c3W78+PHZf8+dO1dtbW3auXOnDj300JLfq719n5wig+XjcsK9VM7SSnE/PqXsa9j7OLCNacPIP8bTdmSkbbV39wXZPLW2NpW9HFcY4tDOStoYZnwOlT8NSekKYzL3WBSK+e6etHZ3R/ucZsQh/spR6v5ELT6DjqVqrgEpPnET13aWG5+hj0GeP3++nnnmGW3ZskVbtmzRhAkT9MADD/QrjiXpgw8+yP7717/+tUzT7Fc0A0nk1xhPIKqIeXiFWEI1Qi+Qi5kzZ062MF6yZIlmz56ts88+W/fcc4/uuecepVKhd4ADvmIiEmoNMQ+vEEuoRuTiZMuWLdl/b9iwIfvvdevWhdAaIFxMREKtIebhlUwsrVl4qrp70sQSyhLpHmQAHz/+1HaUcl0ZtkNyR+IR8/CKbTtqaWokllA2CmQAAAAgBwUyAAAAkIMCGQAAAMhBgQwAAADkiNwqFn7iiWOD1dIxicO+0kbvxKGdcWhjht9tjdOxKAX7E6yh2hf19mfQTm9V007Ddd3Cj0YCAAAAagxDLAAAAIAcFMgAAABADgpkAAAAIAcFMgAAAJCDAhkAAADIQYEMAAAA5KBABgAAAHJQIAMAAAA5KJABAACAHBTIAAAAQA4KZAAAACAHBTIAAACQgwIZAAAAyEGBDAAAAOSgQAYAAAByUCADAAAAOSiQAQAAgBwUyAAAAEAOCmQAAAAgBwUyAAAAkIMCGQAAAMhBgQwAAADkoEAGAAAAclAgAwAAADlSYTcgSO3t++Q4btjNKKilZbg6OrrCbkZgori/ra1Nob13Om1H7ngMFMVzlk8c2llJG8OMTz/zZxzOVzlqdX+iGp9xOR+001sD21lufNKDHCGplBV2EwJVa/s7lDgcjzi0UYpHO+PQxqAk7ViwP9ESl/bTTm9V204KZAAAACAHBTIAAACQgwIZAAAAyEGBDAAAAOSgQIanLMuUa5lKG4Zcy5RlEWIAEEeZfL6ro4t8jkgJotaoqWXe4C/LMtXR1adV657Xro4DGtcyTMsunKaW4XWybSfs5tWcplHD1NhQ+iXe02uroX7oWb+ZpXK6e9Lq3Hug4vYBiC7yOaIqqNikQIZn0lI2YCVpV8cBrVr3vNoWzJARbtNqUmNDSrMXbSh5+423zil7+85KGgYg8sjniKqgYjNy35esXr1aM2fO1JFHHqnXX389+/M333xT5513nr74xS/qvPPO01tvvRVeI5GX7bjZgM3Y1XFAdoQfzgIAGIx8jqgKKjYjVyCfdtppevjhh3XooYf2+/mKFSv01a9+VU888YS++tWv6vrrrw+phSjEMg2NaxnW72fjWobJMulvAIA4IZ8jqoKKzcgVyCeeeKImTpzY72ft7e363e9+p1mzZkmSZs2apd/97nf68MMPw2giCkhJWnbhtGzgZsYFMY4HAOKFfI6oCio2YxHr77//vsaPHy/LOjiByLIsjRs3Tu+//77GjBkTcuuQYduOWobXqW3BDNmOK8s0lPr45wCA+MjN5zIMyXXJ54iEoGqNWBTIXhk7dmTYTRhSZoWAWlFr+zuUuB2PKLc3ym3LiEMbM/zOn3E6FqVI2v5E3VDxGZfzQTu9VU07Y1EgT5w4UR988IFs25ZlWbJtW7t27Ro0FGMo7e375ER4gkFra5N2766ddQGiuL9hX/ReHo8g9iVq5y8jirE1UCVtDDM+/cyfcThf5ajV/YlqfMblfNBObw1sZ7nxGbkxyPmMHTtWRx11lB577DFJ0mOPPaajjjqK4RUAAADwXOR6kFeuXKknn3xSe/bs0UUXXaTm5mY9/vjjuuGGG3Tttddq7dq1GjVqlFavXh12UwEAAJBAkSuQly9fruXLlw/6+dSpU/WTn/wkhBYhLizLVFpigiCAxCLPIWyO48q1zMTHYOQKZKASPBYVQNKR5xA2yzL19s69WvngtsTHYCzGIANDKfToyXS4zQIAz5DnELa0lC2OpWTHIAUyEoHHogJIOvIcwlZLMUiBjETgsagAko48h7DVUgxSICMReCwqgKQjzyFsKUnL502viRhM4j6hiKTOgOYx1wCCElYeJc+hUl7FrG07mjJhVE3EIAVyDUn6DGjbdmTo46C2XdkhtwdA8oSdR8lzKJfXMWuahgzbSXwMMsSihjADGgCqQx5F3BCzlaFAriFODc0+BQA/1Mosfssy5Vqm0oahjs5uWRblQlxVG7O5seBappyExXohDLGoEZZlKu24GtcyrN+Fkp19atdGwANANTKz+JOcR8MeRgJvVROz+WJh+bzpGt2YSnws8JGwRqQlPfDzl3XVecfVxOxTAPBDLawkwVfyyVJNzOaLhZUPbquJWEjSNY0ibMfVtu0f6E+dvbpkztFqGl6nzq4+NY2ok51O9qdAAPBKLawkUewreYqG+KkmZms5FpK+f/hY5iuW197p0Kp1z0s6+CmybcGMkFsGAPGS9JUkamEYSa2pNGZrORYYYlEjauFrQQBA9bhfICNfLCyfN70mYqEW9hEK/mvBpD6QBED8kZ+KG3i/aGxIye2zOUY1Ivf6cCWNbarvVzsc0jxc7e37wm6m7yiQa0hQXwsyAxpAVJGfSpN7v2hpatTu3Z1hNwkBKHZ9GK4r2a5M0wi7mYGgQIbnCs2AblswQ7VxWfmjadQwNTZwyRYy8Pi0tjYV3b67J63OvQeKboPkIT8BhXF9fIK7LTxXy7Ne/dTYkNLsRRtK3n7jrXN8bE30VHJ86BOrPeQnoDCuj08wSQ+ey8x6zZWd9QoAISI/AYVxfXyCAhmeYwY0gKgiPwGFcX18ohb3GT6rhYX0AcQT+QkojOvjExTI8EXSF9IHEF/kJ6Awro+DGGIBAAAA5KBABgAAAHJQIAMAAAA5KJABAACAHLGapPerX/1Kd9xxh1zXleM4uvLKK3XmmWeG3SwAAAAkSGwKZNd19a1vfUsPP/ywjjjiCL366qv6u7/7O51++ukyTTrC486yTKWlml9WBgDKQe5MHs5pNMSmQJYk0zTV2Xnw4bCdnZ0aN24cxXECWJapjq6+7PPfMwuTtwyvqzopkGgAJFWluZO8GF1+3g+Txu84jk2BbBiGbr/9di1YsEDDhw/X/v379YMf/CDsZsEDaSmbDKSDz31fte55tS2YoWoebkmiAZBkleRO8mK0+XU/TJog4jg2BXI6ndYPfvADrV27VieccIL++7//W9dcc40ef/xxjRgxoqTXGDt2pM+trF5ra1PYTQhUa2uTdnV0ZZNBxq6OA5JhVHU8Ojq7tWrd1kGJZs3CU9U6prSYCVrczn/c2jtQ2O0P+/3L4Xf+jNOxKEUQ+1NJ7qw0L0b9/AwVn1Fvf5Zh+HI/9FrYbSk1jqtpZ2wK5FdeeUW7du3SCSecIEk64YQTNGzYMP3+97/XMcccU9JrtLfvk+O4fjazKq2tTdq9uzPsZgQmu7+WqXEtw/olhXEtwyTXrep4pAskmu6etHZ353/dsC/6YvsbdtvyiVK8VnJ8wmx/Jdd7mDHgZ/5MWu4LbH8qyJ2V5sVS9ieq8RmX+GptbZJc15f7oZeicDxLieOB7Sw3PmMzgHfChAnauXOn/vCHP0iSfv/732vPnj361Kc+FXLLUK2UpGUXTjuYBKTsVyXVfnqzTCP7mhnjWobJMvmiCkD8VZI7yYvR5tf9MGmCiOPYHPPW1lbdcMMNWrhwoQzj4AFoa2tTc3NzyC1DtWzbUcvwOrUtmOHpYPtMohk4Rikl1eyz5QEkRyW5k7wYbX7dD5MmiDiOTYEsSWeffbbOPvvssJtRs/ycMWrbjgx9HJC260mAk2iA+GPFheLKzZ3kxegb6pxyTQQTx7EqkBGeQjNGm0bUSa4ie4H6UXgDCAYrLpSvlOKJvBhfcb8mvCzu/Y7j2IxBRrgKLT3z+z/u1dK1W9XR1SfLIpwAeKdQ3kmH26zIyhRPS9du1fy2p8jNCRTnayJu8RnNViFybMfNO2O0aXhdrC5QAPFRKO/YEV6NKExxLp5QmjhfE3GLTwpklKTQjNHOrj5J8blAAcQHKy6UJ87FE0oT52sibvFJgYyS5Ft65qrzjtOjW97I/n8cLlAA8cGSV+WJc/GE0sT5mohbfMbhmCICcmeMOo7kytUDP39Zr73TwTJBAHzBigvlYQm35IvzNRG3+KRARskyM0YtHRxsP3/u0br47M/E6gIFEC+suFC6OBdPKF1cr4m4xScFMioS1wsUAJKM3Iwoi1N8MgYZAAAAyEEPMoBIaho1TI0NpCgAQPB8v/ts3bpVb7zxho455hgdf/zxfr8d0A+P5IyvxoaUZi/aUPL2G2+d42NrgHCRyzAQMeEvTwvkb3zjGzrppJN07rnnSpLuu+8+3XnnnTryyCN1++2364YbbtDcuXO9fEugoLg/khMAJHIZBiMm/OfpGOT/+Z//0cyZMyVJjuPowQcf1K233qpHH31Ud9xxhx588EEv3w4oKm5P7QGAfMhlGIiY8J+nBfLevXs1duxYSdLvfvc79fT06PTTT5cknXrqqXrvvfe8fDskmGWZci1TacOQa5kVPas9bk/tAZAMjuNWnb9ykcswUK3FhBc1Qbk8HWLR0tKiP/7xjzrssMO0bds2HXfccbIsS5LU1dWV/TeSxetxUF59dZR5ak9uEsk+tcdOZhIBkiSOYywty9TbO/dq5YPbPPvqm1wWD0HGay3FRFjDSTwtwc8991z94z/+o9ra2nTffffpK1/5SvZ3v/3tb/Vnf/ZnXr4dIiATuEvXbtX8tqe0dO1WdXT1VfXpzquvjuL8SE6g1vmRW4KQlrLFseTNV9/ksugLOl5rKSbCGk7i6bG87LLLNH78eL388su67rrrNGvWrOzvPvzwQ82bN8/Lt0MEFArctgUzVOnT1Yt9dVROwMbtqT0APuFHbgmCV/mr32uSyyIv6HitpZjw45oqheev/eUvf1lf/vKX8/4cyeNH4Hr51VGcntoD4BNh3RSr5ddX3+SyaAsjXmslJsIaTuJ53/97772nzZs368033xz0u8cee8zrt0PIMoGbKxu4Faqlr44A5OdHbglCStLyedPJXzUmrvEaB2HVBJ6+/tNPP62rr75ahx12mN566y195Stf0be//e3s5Lzrr7++37ALxF8mcAcOnk9JFX+araWvjgDk50duCYJtO5oyYRT5q8bENV7jIKyawNMC+fbbb9dtt92mz3/+89qzZ4+++c1vasGCBbrrrrtUX18v103WzEr4F7i18tURgPzi/EHZNA0ZtkP+qiFxjtc4CKMm8HSIxdtvv63Pf/7zkqRDDjlE999/v4YPH6758+frwIEDxf8YsWXbzsGbgevKsB0SAgBPkFsQJ8RrsnhaII8ePVrvv/9+9v9TqZRuu+02TZw4URdddJEch2ABAABAtHlaIJ900kl69NFH+/3MMAy1tbXpiCOOUE9Pj5dvB4XzdBkAgHfI47WF8x0Pno5BvuGGG2Tb+UeG3HTTTbrsssu8fLuaF9bTZeL4dCsAiKJCeXxsU716bZc8mzDF7tthtYf7eX6eFsj/8A//IMMovqTJww8/7OVb1rQwFtIPqygHgCQqlMdXXvY5Lb/3WfJswhS7bweN+3lxnhbI5557bvbfruvqpptu0ooVKzx7/Z6eHq1atUrPPfecGhoa9NnPflbf+c53PHv9uAljYfK4Pt0KAKKoUB7v6OwhzyZQsft20LifF+dpHTXwaXk333yzp0/Q+973vqeGhgY98cQTMgxDe/bs8ey14yiMp8vE9elWABBFhfL4R/t6+21Hnk2GovftgHE/Ly42I8P379+v9evXa+HChdlhHIccckjIrQpXGE+X4WlBAOCdQnn8qd+83W878mwyROlJsdzPi4vNh4R3331Xzc3Nuvvuu7Vt2zaNGDFCCxcu1Iknnljya4wdO9LHFnqjtbWprO2bm12tWXiq+tKO6lKmRo9okOljcDuOq+Xzpmvlg9uyY5aWz5uuQ5qHV/S+5e5v0sXteMStvQOF3f6w378cfufPOB2LUpSzPwPzeNOwel1w1lF68729nuRZL0T9/AwVn1Fqf7H7dpDtrOZ+HqXjWUw17fS0QH7uuef6/X86ndZ//dd/9XuC3kknnVTRa6fTab377rv6y7/8Sy1ZskQvvviiLrvsMm3evFkjR5aWuNvb98kJYZxPqVpbm7R7d2dFf2tISqdttXf3eduoPEY3pgY9Lai9fV/Zr1PN/vol7Iu+2PEIu235+Hn+gtjfMOOvkvgPMwb8zJ9RzAXVqHR/Mnm8o7vPszzrhVL3J6rxGdX4GnjfDqOdlcRZVI/nQAPbWW58elogX3fddf3+v7m5WcuWLcv+v2EYeuqppyp67UmTJimVSmnWrFmSpGOPPVYtLS168803dfTRR1feaJSNx0ADgL/IswgCcVaYpwXyli1bvHy5fsaMGaPp06dr69atOvnkk/Xmm2+qvb1dU6ZM8e09AQAAUHtiMwZZkm688UYtW7ZMq1evViqV0i233KJRo0aF3SwAAAAkSKwK5MmTJ+uhhx4KuxkAAABIsNgs8wYAAAAEIVY9yCgPz1iHn3r77LJmBff02mqot3xskb+aRg1TY0NpKbPUfc0cv+6etDr3Hhhia8QZ+RhxNTB2o7wamJcokBOKZ6zDb/V1lmYv2lDy9htvnVP29lHS2JAquf2V7Gv0F01CpcjHiKt8sbt83nSNbkwlPnYZYpFQhZ6xng63WQBQc8jHiKt8sbvywW01EbsUyAlV7BnrAIDgkI8RV7UcuxTICWJZplzLVNowZJmmpv/V+H6/5xnrADBYbu50LVOW5e2t0TINjWsZ1u9n5OPk8zuuglDLscsY5ITIN05o6YXTJEnbtn+QHfOWknhSDgB8LIjxwSlJyy6cNug9yMfJlZRx5/lid/m86TURuxTICZFvnFDbuufVtuBkXXy2w6xpAMij0PjgtgUz5FUfmW07ahlep7YFM1jFokYEEVdByBe7hzQPV3v7vrCb5jsK5JgYaomgwuOEHKVcl2esA0AexcZYVnODHJizJcmwnYOvST5OvEriynFcuZYZuQ9Rtu3IkLKxa9bA8AqJAjkWSvmqJjNOKPeCzI4TspM/mB4AKuFH7nQcNxFfr6Ny5caVZZl6e+derXxwGzETEfEbMR6gqAywL/RVjWsZn0zKswxdd+G07GD63DFuAJBE1eTozN/KODjG0svc+dH+HpZ1q1GVxlVayhbHUvGYiUptknTUTwVEaYB9vq9qWpoa9afO3n7tu+HS/6ebF5ystMOYYwDJVk2OHvi30/9qvFZe9jkZMmSaqjp39qUdX4ZtINqqiatSh2REqTZJOj52FBClhd3zLbNy/plHDGrfDff/l1y5SrmuDNuJ/cXCp2QAhZSTowfmEtcy+v3ttu0faPm9z8o05UnurEuZNbs0Vlx5cb8ZGJPlxFWpy6lFqTZJOiqOAqK0OHZmmZXcr2omHTIyMu3zQ+ZT8tK1WzW/7SktXbtVHV19FMkAJJWeo/Plkj919qqlqXHIv63U6BENng/bgH+8ut9UUzekJC2fN33ImIlSbZJ0XK8FRGnSW75lVgyVPwGg2CoYUZOUJXIA+KPUHF0ol1x+zjG68Yfbiv5tWe3JybEf7e/R2KZ6lnWLicL3m5OVssySz1s1dYNtO5oyYdSQMROl2iTp6I4rIF+vbZg9ALbtHFwi6OPhE5bcktsXx95YPiUDKKbUHF0ol0w6ZKRn+X1gjl18x9Nq7+xVSkrMkLckKxQjez46UNa9stq6wTSNfvf5fDETtdokyTimBUR9Yfdy2hfH3lg+JQMoptQcWCiX1FmmZ/k9jjkWnygUIx/t69UPN7xU8nkMom6Iem2SJNHtQoyAgb22UQvAUtsXx95YPiUDGEopObBQLrHkepbf45hj8Yl8MXLVecfp0S1vlH0eg6gbol6bJAX1Rg2IY28sn5IBeCGIXBLHHItPfBIjJ2vPRwf00b5ePbTpFb32TgfnsYbRg1wD4toby6dkAF7wO5fENcfiE7btKCVXDXWWfrjhpWxxzHmsXZz3GkBvLAD4Z2CObWxIye2zybExw70SuehBrhH0xgKAf3JzbEtTIzk2prhXIoMCGQAAAMhBgRxjPIoZAOKDnI1iHMclPiKEMcgxlVmYPrP2ZmYyQcvwOr4SAoCIIWejGMsy9fbOvVr54DbiIyL4eBJThRamT4fbLABAHuRsFJOWssWxRHxEQSwL5LvvvltHHnmkXn/99bCbEhoWpgeA+CBnoxjiI3piVyBv375d//u//6tJkyaF3ZRQZRamz5Vd0BwAECnkbBRDfERPrArk3t5e3XTTTVqxYoUMI5pBE9QkjGIL0zMRBECtKCXfRSEn8jCRcFiWqY7O7tDOfamxl5K0fN504iNCYnXs77jjDp199tmaPHlyRX8/duxIT9rhOK4+2t+jvrSjupSp0SMaZJqGHMcdNMh++bzpmjJhVPb3+f4uV2trU8ntaG52tWbhqf1eT1LRNkRNOftbCzgewentsyN1vKPUlny8yp8Zufmwo7NbY8eOLDtHDZVzi20zZlSDevoK5+Jq5Tuf+XJ2FPNyPnGMz+y5X7u1pPthKffochSKvcnjmtR5oHfQ+zQ78YmPqMdDRjXtjE2B/MILL+ill17S4sWLK36N9vZ9cqocz1NsJnK+QfYrH9ymtgUzlJKGnMHc2tqk3bs7y26TISmdttXe3SfXMgu2wYjYTNhK99dPYV/0xY5H2G1Lmvo6S7MXbSh5+423zvGxNcXPfUaYMeBF/szwakWHUvJdoW0uP+cY3fjDbb6sFjBUbsvN2XFQaq6OWnyWcz/0Y5WRQu+/8rLPafm9zw56nzFjRijd3Rf5+IjivTufge0sNz5j8937b37zG/3hD3/QaaedppkzZ2rnzp26+OKL9cwzzwTajmIzkYsNsg9qBjMD/QFEnVf5sJR8V2ibxvpUVe+N6CvnfujHPbrQ+3d09rBaRQzEpgd5/vz5mj9/fvb/Z86cqXvvvVdHHHFEoO0odsFlBtnn/j4zyL7Y33l5Egq3wZQll/UUAYTOq3xYLOfKdotu09nVpyM/1aJzZv6FmobXyZWUskxyZIKUEh8Zftyjc98/E2ujR9Zr5LB6HfmpFr32Tke/90G0xKYHOSqKzTQtOnEuoBmq+dpw1XnH6b71/6eOrj4m7AEInVf5sJSJb/m2WXj+cXp++/v6+789Sj/c8JKWrt2qZWu3kiMTppyJkX7cozPvP/2vxmdjbcndz+jGHz6nv//bo3Tkp1o8eR/4IzY9yANt2bIllPfNBPzAcUopSbbtqGV4ndoWzMj2KGd+nrLMwn/nYfs+acPJ2vPRAX20r1cPbXpFr73ToTff23tw7JWH7wcA5SqaR8t4nWI5t9A2KdNUd19aM46dpDsfeWHQV93kyOTInPs1C09Vd086b3xkeBWT+d5//txjtHTtM/1i7c5HXtAlc47WDze8xGoVEcU5KdNQCdm2HRn6+MDabvbCKiWRe9lG2zC05O7+47P9GNIBAOUamA8bG1Jy++yK8mGhnFt4G1sj6iwd2joykGFvCJdtO2odM0K7uzsLxkdmOz/u0Zn7cb5YO3xiU3YSP0N7oofvkipg244M21HKdWXYTsmBXenfVYJFxwFEWW4+bGlqDLRAsG2HHIlB/LpHF4s1v2sBVI4COaFYlB4ACiNHIijEWjxxfhIqyCEdABA35EgEhViLJwrkBCtlbB4A1CpyJIJCrMUPQywQGsdxS3pGPQBEkWWZ5LAaxvlPNnqQ87AsM/tkPL4K8YdlmYOeUe/1414B+K9W82WxRxMj+Qqd/+amehk2D+VKAj7uDJAJ+qVrt2p+21NayuLxvkhLg55Rz+M2gXip5Xzpx6OJER+Fzv+b7+2tmWsg6TiD6v81SVqGfvTkqyQ9nxV7rCeAePCrSIzDV9fksHiwLFMdnd2ex1Kh899Yn6JmSIiaH2KR72uSq847Tn/q7B30nPSaP1geyn1GfUZ2DVKbGwwQB8WKxErzZbGhC1H62rpoDkMkfBJLWz2PpULnv7Orj5ohIaL3sTxg+XpA7nzkBZ0z8y+y25D0vJeStHzedNaFBGLMj4dtxGXoAmvbRp+fsZTv/F913nF6dMsb1AwJUfPXcqEekNEj6yX1T3osy+Id23Y0ZcIo1oUEYixTJAzs7a0mX/rRK+0H1raNPj9jKXP+b15wsvpsR+/t2aeHNr2ijs5uaoaEiFK+CUWhr0kOGT1M9y09jaTnI/Pjx2yyLiQQT34UiXEafsXattHmdyxl4rzRMvWp8U1adMHx1AwJUvNDLAp/TeZ6/jx2AEga23YOftD1KF8ydAFeCSqWvL4GEA01n3P4mgwAooOcDK9kYmnNwlPV3ZMmllCWmu9Blvj0BwBRQk6GV2zbUUtTI7GEslEgA5BicTMAACAASURBVAAAADkokAEAAIAcFMgAAABADgpkAAAAIEdNrWJhxuDJNnFoo5dqbX+HwvGoXVE/9363L+r7Xy72J1hDtS/q7c+gnd6qpp2G67rRWnkdAAAACBFDLAAAAIAcFMgAAABADgpkAAAAIAcFMgAAAJCDAhkAAADIQYEMAAAA5KBABgAAAHJQIAMAAAA5KJABAACAHBTIAAAAQA4KZAAAACAHBTIAAACQgwIZAAAAyEGBDAAAAOSgQAYAAAByUCADAAAAOSiQAQAAgBwUyAAAAEAOCmQAAAAgBwUyAAAAkIMCGQAAAMhBgQwAAADkoEAGAAAAclAgAwAAADlSYTcgSO3t++Q4btjNKKilZbg6OrrCbkZgori/ra1Nob13Om1H7ngMFMVzlk8c2llJG8OMTz/zZxzOVzlqdX+iGp9xOR+001sD21lufNKDHCGplBV2EwJVa/s7lDgcjzi0UYpHO+PQxqAk7ViwP9ESl/bTTm9V204KZAAAACAHBTIAAACQgwIZAAAAyEGBDAAAAOQIpEDu6OjQpZdeqi9+8YuaPXu2/umf/kkffvjhoO0OHDigq6++WmeccYbOOuss/epXvyrpdwAAAIBXAlnmzTAMXXLJJZo+fbokafXq1VqzZo1WrVrVb7sHHnhAI0aM0ObNm/XWW2/pggsu0JNPPqkRI0YU/R2iw7JMpSXZjivLNJSSZNtO2M0CIonrxT9No4apsaH0W1x3T1qdew/42CIAXgkidwZSIDc3N2eLY0n67Gc/qx/96EeDtvvFL36hm2++WZJ0+OGH6zOf+Yyefvpp/c3f/E3R36E0fgeUZZnq6OrTqnXPa1fHAY1rGaZlF05Ty/A6bvpIFC+uJcdxuV581NiQ0uxFG0refuOtc9TpY3uAuBqY78J+nkRQtUbgY5Adx9GPfvQjzZw5c9Dv3nvvPR166KHZ/584caJ27tw55O8wtExALV27VfPbntLStVvV0dUny/IuBNJSNmAlaVfHAa1a97zSnr0DED6vrqWP9vdwvQCItHz57u2dez2tHcoVVK0R+JP0vvOd72j48OH62te+FvRba+zYkYG/Z7n8ehJRR2e3Vq3bOiig1iw8Va1jvBmmsqujK/v6n/zsgGQYBfcrzCcvRVEcjkcc2ihF/1qq5HoJk9/5Mwr77GUborA/Xor6/gwVn1Fvf0bU2pkv3618cJuntUO5ysmd1RzPQAvk1atX6+2339a9994r0xz86WPSpEnasWOHxowZI0l6//33s0Mziv2uVFF/1HRra5N27/bnS760YeQNqO6etHZ3e/SelqlxLcP6vc+4lmGS6+bdLz/3t1JhJ6eoHY+BonjO8onDtVTXWFfW9SJF91G+1fLjfFVyrLxqQ1yuk1KVuj9Rjc+4nI8otjOQ2qFcJdYaA49nZB81/c///M96+eWX9f3vf1/19fV5tznrrLP0yCOPSJLeeustvfTSSzrllFOG/B2GZpnGwQDKMa5lmCzT8Ow9UpKWXTgt+z6ZcUGBf00B+Mira2n0iAauFwCRFkTtUK6gag3DdV3fu1TfeOMNzZo1S4cffrgaGxslSYcddpi+//3va86cObrvvvs0fvx4dXV16dprr9Urr7wi0zT1zW9+U6effrokFf1dqWq5BzmoQe3lTF6K4qdlepCLi+I5yycO11Jra5M+/HB/WZP9otpDVy2/epDLnaRHD3J+9CAHI4rtzJfvls+brtGNqVAnE5dSa1TbgxxIZ8Vf/MVf6LXXXsv7uw0bPklgw4cP15133pl3u2K/w9Bs21HL8Dq1LZjh67Iotu3I0MeBZbuyPX11IHxeXktcLwCiLF++O6R5uNrb94XeLr9zJ9/m1RBuxoA3uJYA1IqB+c4McXhFkHjUNAAAAJCDAhkAAADIQYGMRLMsU65lKm0Yci0z1MXNES5iAQCSw++czhhkJBaPvkYGsQAAyRFETqcLBYnFo6+RQSwAQHIEkdMpkJFYtuPmfQKQHeG1sOEPYgEAkiOInE6BjMSK4hOAEA5iAQCSI4icToGMxOLR18ggFgAgOYLI6dwfkFhBPT0Q0UcsAEByBJHTKZCRaDzxDBnEAgAkh985nSEWAAAAQA4KZFSEhy4gijJxuauji7gEgIiJU+3AEAuUjYcuIIqISwCIrrjl6OiW7ogsHrqAKCIuASC64paj6UFG2Yot0E1AISzEJYLUNGqYGhsKR1Zra1O//+/uSatz74ECWwPJF7ccHcU2IeIyC3TnBnp2gW67sqfYWJaptMQSXKjYUHFJjMFLjQ0pzV60oeTtN946R50+tgfJkdRc5Uft4CeGWKBsXi/QnRmXtHTtVs1ve0pL125VR1dfpAfvI3qKxSUxBiAOkpyr4vbApsDatXr1aj3xxBPasWOHNm7cqCOOOGLQNt/61rf02muvZf//tdde0/e//32ddtppuuuuu/Rv//ZvGjdunCTp+OOP14oVK4JqPnJ4vUB3oXFJbQtmiAcBo1S5cSnDkFw3G5euZRJjACIvyffDuD2wKbAC+bTTTtPXv/51XXDBBQW3ueWWW7L/fvXVV/UP//APOuWUU7I/mzt3rpYsWeJrO1EaLxfojtu4JERXJi5bW5u0e3dnNi6JMQBxkPRcFacHNgXWZ3/iiSdq4sSJJW//05/+VLNnz1Z9fb2PrUIUZMYl5cqOSyrndWK0viKC5VWMlfx+xCKACgSdqyrhOG5N5LdI7lVvb682btyoc845p9/PH3/8cc2ePVvz5s3TCy+8EFLr4DUvxiUledwWqhfk2DdiEUCloj5O17JMvb1zb03kN8N13UCnDs6cOVP33ntv3jHIGZs2bdL999+vn/3sZ9mf7d69W83Nzaqrq9PWrVu1ePFibdq0SS0tLUE0Gz5zHFcf7e9RX9pRXcrU6BENMsv4xNzR2a3Fdzw9aHbsbVefKsdVxa+L6Kg2Rqr9+1IVisU1C09VS1Oj5++HwspdZSJqr4/aVGquCiqn5aql/BaVDyX9PProo4N6j1tbW7P/njFjhiZOnKg33nhD06ZNK/l129v3yXGit5RIRmbcZK3It7+GpHTaVnt3X1mvlTaMQeO2WpoatedP3WU9tWfg2qVBi/r5DytGy30CU7F2VhpjpcoXi7s6Dqi7J63d3Z+0qZJjGWZ8+pk//YirSo5VOW3w+/WjpNTzE9X4jMu9dWA7i+WqsJ5KV2p+i4KBx7Pc+Ixcn/jOnTv13//935o1a1a/n3/wwQfZf7/yyivasWOHPv3pTwfdPERUvnFb5595RKye2oPC4vQEpjiMIQQQb2HlxFrKb4EVyCtXrtSpp56qnTt36qKLLtKXvvQlSdKll16ql156Kbvdz372M33hC19Qc3Nzv7+/7bbbNGvWLJ199tlavny5brnlln69yqht+cZtTTpkZMHZwIiXYjO7oybqYwgBxF9YOTElafm86TWR3wLbp+XLl2v58uWDfn7//ff3+//LL78879+vXr3al3YhGfKtr2goXk/tQWFxegJT3Nb6BBA/YeVE23Y0ZcKomshvkRtigeiL6hJWtu3IsB2lXFeG7ciSS09eBFUSP3HrlR0Yi0m8eQAIj1c5sZJ8bJpGTeS3qN5fEFFhTQyoBD150VNp/HAuAeATXuTEON3PwxCNrj/ERpwmS0n05EVNNfHDuQSAT1SbE+N2Pw8aBTLKEqfJUoge4gcAooF8XBwFMspSS0u8wHvEDwBEA/m4OArkmAt6wlzcJkshWjLxM/2vxmvZhdO0+p9O1srLPqd6i4QMoDZEZaI79/PiOA4xFsYAeyZLoRq27WhsU73+7sz/j4khAGpOsft20LifF0cPcoyFNcCeyVKoRq/tMjEEQE2K2sQ47ueFUSDHGAPsEUfELYBaRf6LDwrkGGOAPeKIuAVQq8h/8UGBHGMMsEccEbcAahX5Lz44JzHX3FSvVQtmyHGklGnIkssYIhRlWabSUmiTMpgYAqBWFct/juPKtUzyYkRQIMdUKTNhwy6EED1+rXxSbqzZtiNDHycg25Vd8TsDQLzky3+WZertnXu18sFtkVvdZ2B+d2pkvDRDLGJqqJmwmUJo6dqtmt/2lJau3aqOrr7Q1ltENPgxg5pYA4DqpKVscSyFv7pFRr78/vbOvTWR35O/hwk11EzYqC0lg2jwYwY1sQYA1Ynq6hb58vvKB7fVRH6nQI6poWbCRvViQ7j8mEFNrAFAdaK6ukUt5/eSC+T169fr1Vdf7fezV199VevXr/e8URhs4KMp6y2j6EzYqF5sCFc1M6gty1RHZ/egx6MSawBQnZSk5fOm98vN10VgdYtazu8lH/s77rhjUDE8YcIEXX755Zo7d67nDcMnCk2sGttUX3AlgEwhNPBvUlIsJkQxwdAfla4g8UkMbs07KdSPWCMGANSSupSpy885Ro31KXX3plVXF/6X/PlqieXzpgdeS4RxPyi5QN63b59GjhzZ72dNTU3au3ev541Cf4XGeLYtmHHwEZHSoJUA4ryUll8rLeCgSlaQGCoGvY41YgBALUlLWnHfc/2GM4xrGXYwx4bXrLy1xCHNw9Xevi+wNoR1Pyj548nUqVP1xBNP9PvZ5s2bNXXq1JL+fvXq1Zo5c6aOPPJIvf7663m3ueuuu3TSSSdpzpw5mjNnjm688cbs7w4cOKCrr75aZ5xxhs466yz96le/KrXpsVfpGKC4PmOdSV/RM1QMeh1rxACAWhLlsb4D87sZ8PCKsO4HJfcgL168WPPnz9cvfvELTZ48We+8846ee+453XfffSX9/Wmnnaavf/3ruuCCC4puN3fuXC1ZsmTQzx944AGNGDFCmzdv1ltvvaULLrhATz75pEaMGFHqLsRWZgzQwE+WlmlIdmkXT5y+ri6WKMIej1UL8sWKK1Udg+UgBgCEIax7pRf3+aQK635Qcg/yiSeeqMcee0xHH320Dhw4oGOOOUaPPfaYTjjhhJL/fuLEiRU39Be/+IXOP/98SdLhhx+uz3zmM3r66acrfr04qfbRlHFbp7aWJwWErVCsDDUp1PN2EAMAAhbmvTLfJD0eQX1QWPcDw3XdQD+azJw5U/fee6+OOOKIQb+766679JOf/ESjR49Wa2urrrzySh133HGSpOOOO05PPfWUxowZI0m64YYbNGXKFF100UVBNj80juPqo/096ks7qkuZGj2ioeSvOTo6u7X4jqcHfTJds/BUtTQ1+tXkijmOO+iJQsvnTdeUCaMC/2qn1hSLldEjGiqOwXIRA/DC7EUbSt52461zIvf6CFbY98pq7vNJFtb9oOiHk29/+9v6zne+I0n65je/KcPI35BbbrnFk8acf/75uuyyy1RXV6etW7dqwYIF2rRpk1paWjx5/fb2fZF+RGJra5N27+4suo0hKZ221d7dV/Lrpg0j79cT3T1p7e4u/n5+Kra/oxtTgyZ9BTEpoLW1yff3KGao8++3YrGS7u7LnrNyY7AS1cRAKddS2CppY5jx6Wf+9ON8VXKsymmD368fJaWen6jGZ6ntD/te2drapHR3X0X3+SCFkV8ruR8MbGe58Vm0QD7ssMOy/54yZUpZL1yJ1tbW7L9nzJihiRMn6o033tC0adM0adIk7dix4/9v786joyjT/YF/q6qzEAikExIIi6JcUVRENBCVbVguiMM2+uOAjnCUJY44ohxBAjIgiGAQZwYFhgtX5eqZi8oFgwEURnEUUVnGMCKgojLKsCQQOhAIWbqqfn/Ebjud7qSXWru/n3M4h3S6q5+qet63n7z91lveEeRTp04hNzdX95higVXnNimKClUSA871imSlhXih5xw5K+UKc4CIjBRu/2ena3vszozPg0YL5Iceesj7/7Fjx9YrYD3OnDmjWTAlJSVo06YNAODIkSM4ceIErrrqKgDAnXfeiTfffBPdunXDv/71Lxw8eBAvvPCCZu8dy6y4JrIkiQ2+MuEyXk3Te7kbK+YKEZERwun/uBRl7At5/vfQoUPxxRdfNHj817/+Nfbu3dvk6xctWoQdO3bg7NmzePDBB5GWloatW7diypQpmDZtGrp164Y//vGPOHToEERRREJCApYuXeotyidNmoT8/Hz853/+J0RRxMKFCxusy0yB+a5jCAGAKkBRFLgBOCTRlMbsBrzFMeC3rq7h0dhHo+sRa7B9O6+fbRaOIhHFhnD6P737Yq2xnwpfyAVyoGv5Ll68GHResr+5c+di7ty5DR5fu3at9/8FBQVBX5+SkoIXX3wxpPeihmRZgUMS4bpkjb94uYxXZIw4bpzaEDqOIhHFllD7Pzt9hrGfikyTa5f0798fv/rVr1BdXY1f/epX9f716dMHgwcPNiJO0oCVbr7AZbwiw+NmLVZqU0RkHDv1xeynItPkHzrPP/88VFVFXl5evdUqBEFARkYGrr76al0DJO1Y6S9ez5qP/nOQOde1cZwjbC1WalNEZBw79cXspyLT5LHp1asXAODzzz9Hs2bNmng2WZnVVii4sm1LznUNE+cIW4uV2hQRGcdOfTH7qciEfHuYmTNnYv/+/fUe279/P6ZNm6Z5UKSPaO/IpzVRFOrd392KHYsVybLC42YRVmtTRGQcu/TF7KciE/Lx2bdvH5YvX17vsZtvvhmPPPKI5kGRPuz0Fy+RHbBNEZHVsZ+KTMgFcmJiIi5fvlxvabXKyko4HPwbxE64QgGRttimiMjq2E+FL+Tqtk+fPpg3b553/eGLFy9i4cKF6Nu3r57xERFRDEpt2QzJSb98BDV1G9jqGhlJiZLeYemmplYO61a34e5vVbUbFRcuN/1ENDz2TampZTlF8SfkFpKfn4+ZM2eiV69eaNWqFc6fP49+/frVW9mCiIgoFMlJDox4YnPIzy96YVTYz7eSxARJ9/2tCPG5kRx7ongTcoHcqlUrrFmzBqWlpTh9+jSys7MD3nqaiIiIiMjOwp5AnJWVhczMTKiqCkWpm+AtiiEvhkFEREREZGkhF8glJSVYuHAh9u/fjwsXLtT73ZEjRzQPjMLHe62TUZhrRESNYz9pbyEXyPPnz0dycjLWrVuH+++/H3/961/x0ksvoX///nrGRyHivdbJKMw1IqLGsZ+0v5DnRhQXF2Px4sXo2rUrBEHAddddh2effRavvPKKnvFRiALda339jq/hhgC3IECVREgSp8LEOkkSoUqiruc8UK4tXrcXbs3fiYjInvz7SWdqMlwVVahWVH4e20TII8iiKHrXPG7ZsiXOnTuHFi1aoKSkRLfgqHG+X9/A717r117hxIi+nTF71Sf86zVO6DVi4ZtnrooqKH65BtQVybKi8s5MRESo6y89/eS1Vzgx/q6uePHNYk36Zk7dMEbIf8J0794dH330EYC6NZEff/xx/P73v0e3bt10Cy7WaDm65ymGZq/ajbwlH+DEmYve20gCwD0Dr/E2RsD4UT4jRjKpvmAju7VAxOfAP89mLP8YKlAv1/Dzz5IoRL8TFsM8JqJISKLg7SeDfR5H0jf798mzV+2Gq7JW076J/V6dkPd66dKl6NmzJwBgzpw5uO2223D11VejY8eOugUXS7ROav9i6I0d3+KxcT28DbJVi8Sgo3x6M6IBU0NykJHdM67LEZ+DQEX3y+98hTkP9PLmmmc0JNZGj5nHRBQpB+DtJ1NTEjTrm/We4sZ+7xch73HLli2RlpYGAEhOTsbUqVMxffp0bNq0SbfgYonWSe1fDH3zkwuvbT2CxVN7Y83sQWjdqplpo3yco2oO3xELjyxnM1RU1kZ8DgIV3XsOlSC1eQKW/JxrS6b2jsmpO8xjIoqULCtwptT1k5nOwJ/HkfTNwQZCtBr8Yr/3i6j+JBAEAaqq/4hkLNA6qQMVQ66Kqrp7rasqHFBNG+XTuwFTYL4jFkDdOZ82tgc27jwKILJzEKzohgoIsgKHqkKQlZgrjgHmMRFFR5YVCLKCBGjXNwfrk7Ua/GK/94uo6yVBCO2kFBQUYPv27Thx4gSKiorQpUuXBs9ZuXIltm3bBkmS4HA4MH36dPTt2xdA3a2uP/30UzidTgDAnXfeiYcffjja8A3jSWrfxPMmtRx+4nmKIf8LshwAZNT/69Xoifxa7yuFpv45B06cqcDr247gm59cACI7B03lWSxjHhORFkLum0Ogd5/Mfu8XTRbIn332WdDf1dbWhvxGgwYNwoQJE/Db3/426HNuuukmTJw4Ec2aNcPXX3+N+++/H5988gmSk5MBAHl5ebj//vtDfk8r0TqpGyuAPVe4Vv/8eJIoQJYVwwoarfaVV+qGT5YVCACSJBHO1GSkpSZizgO90KpFIpypSUiUBNSGeBI8x795sgNLpvYBBBUJDglqrRwX5yGe/zggihWSJMJVUQW3IDT6OaL3541/3+yqqAIQ/re7eg9+sd/7RZPn5Kmnnmr099nZ2SG9UU5OTpPP8YwWA8C1114LVVVRXl6Otm3bhvQeVqZHUnsanAMAZBUyrLE4uRb7aoX9sDNZVpCRmoh7h1wX0TEMdvyvapeCsrKLBu2Fucz8FoaIovdLP7a70T7QyM8bLfqVQJ/9VoovVjQ5B3nnzp1N/tNDYWEhrrjiinrF8auvvooRI0Zg6tSp+P7773V5Xz155iPpOW/TKhPso91Xq+yHndXIasTHMNjxP3+pWr+ALciINktE+gj1c8Tozxur9ytWj88ollyZae/evVi+fHm9u/RNnz4dmZmZEEURhYWFmDx5Mt5//31IkhTydjMyWugRrqYyM1Ojen2pqzLgBHsIQtTb1kOwmOy2H1rRct+iOYbBXlvrVpBlk+NvhzyxQ4wedug/o2Wn8xGInvFb/dgEys9Q+0Arfd5Y/Th7xEOcliuQi4uLMXPmTKxatQpXX3219/E2bdp4/z969GgsWbIEp0+fRvv27UPedlnZRSgWvhIzMzMVZ85URLcRSQw4wR6qGv22Ndbo/pq0H2Y3ek33LZpjGOS1CQ7RcnkUiCZtSWeRxGhmfmrdf5rd1gIJ53zYOf5IYg9l25bLz1D7QIt8btqh3wLsG2e4+WmplZ+//PJLTJ8+HS+++CJuuOGGer/zvaX1rl27IIpivaKZ6gRa6suON3GIlf0wUzTHMNhrWzVP0i1eIiIthdoH8vOGAjHs/C9atAg7duzA2bNn8eCDDyItLQ1bt27FlClTMG3aNHTr1g0LFixAVVUV5s2b533d0qVLce2112LWrFkoKyuDIAho0aIF/vKXv8DhYPr6i5UJ9rGyH2aK5hgGe60Yg7eTJqLY5OnHlj3WD1XV7qB9ID9vKBDDKsy5c+di7ty5DR5fu3at9/8bN24M+vp169bpEVZM0vMKVyPFyn6YKZpjyONPRHYnywoy05vjTFVFo/0Y+zvyZ6kpFkREREREZuMcBSIiIpurqZUteeEgkV2xQNYY7/5GVsJ8JIoPiQkSRjyxOaTnFr0wSudoyIN9sH2xQG5EuInNu7+RlWiZj562UOqqBCSRnTwRUQC+dYNDFHGp1o2n137OmsCGOAc5CE9xMXvVbuQt+QCzV+2Gq7IWkhT8kPHub2QlWuWjb1uYtOhvIbUFIqJ441835K/6BK6KajhTkwGwJrAbfsIFEUlxIStqwLvxyBa+OQnFLq3ykX/4ERE1LVBfufyNYtwz8Brvc1gT2AcL5CAiKS4kUfAuNO6R5WwGiWvHkgm0ykf+4UdE1LRgfWVqSoL3Z9YE9sECOYhIigvejYesRKt85B9+RERNC9ZXVtW4vf9nTWAfPE9BeIoL/wucHECjC43zbjxkFVrlYyRtgYgo3gTqK596oBdapSZizexBrAlshgVyEJEWF7F8Nx4uV2M/WuSjb1uAIACqaulzL0kiXBVVcAsC85SIDBO0bqiRNa0J+FlsDBbIjYjlYjdcjS0ZBoCNNcZ52kJmZirOnKnQvS1E+gHwS57u5rJKRGQoIwpXLidrHM5BppAEW8lAlYSwl8MjakwkSyx6cMUNIjJDNP1WONjHGYdVDIUk2NW5blllYyVNRfMBwBU3iMgMRhWu7OOMwwIZdX/5qZIItyBAlUSOfgYQ7OpchY1Vd/GWn9F8AHDFDSLy5XtNgp79p1GFK/s448T2J20IjPpaxO6CLhkmimysOorH/IzmA4BLLRKRh6f/nLH8Y937T6MKV/Zxxon7Yxrsa5ElU3uDJd4vgl2dC6hcAkxH8Zif0Swr58nTZY/1Q1W1mxeNEsUxI/tPo5bD5HKyxon7Armxr0Xi/uD4CbaqBxurfuIxP6P9AJBlBZnpzXGmqiLuV58himdG9p9GFq5cYcsYsfs9bYg4nyd6sqxAkBU4VBWCrLA41lC85idzioiiZXT/yX4rtsR9gcz5PGRlzE8iosiw/6RoGJInBQUF2L59O06cOIGioiJ06dKlwXNkWcaiRYuwa9cuCIKAvLw8jBkzpsnfRYvzecjKmJ9ERJHhNQkUDUMK5EGDBmHChAn47W9/G/Q5RUVF+Omnn7Bjxw6Ul5dj9OjRuP3229GhQ4dGf6eFcOfz8DaPZKRI55sxT4ko3oVzTQL7TPJlSIGck5PT5HO2bduGMWPGQBRFpKenY/DgwXjvvfcwefLkRn9nNN7mkeyAeUpEFDr2meTPMlNxTp06hXbt2nl/zs7OxunTp5v8XTgyMlpEHaerogqL1+1usGzMssf6ITO9edTbz8xMjXobdhJv+9sUrY6Hnnlql3NmhzjtEKOHFv2n1dnpfBjN6semqfxsKn69P9tDZfXj7BEPcVqmQDZCWdlFKFHe1cYtCAGXjamqdtd9hROFzMxUnDkT3TbsxIr7a3aj1+p46JWnVjxngdghzkhiNDM/teg/fZnd1gIJ53xYMX49hXJsrJqfobQ1PT/bQ2WHfguwb5zh5qdlCuTs7GycPHkSN910E4D6o8aN/c5onmVjfBuSd9kYmbdXJmtgnpLRUls2Q3KSZT5SwlZTK8dd0Uu/YJ9J/izTm915553YsGEDhgwZSrR3YwAAIABJREFUgvLycrz//vv461//2uTvjGbU3XKIosE8JaMlJzkw4onNIT+/6IVROkYTvsQEydbxU3TYZ5I/QwrkRYsWYceOHTh79iwefPBBpKWlYevWrZgyZQqmTZuGbt26YdSoUfjnP/+JIUOGAAAeeeQRdOzYEQAa/Z3RuOwW2QHzlIgodOwzyZ8hBfLcuXMxd+7cBo+vXbvW+39JkrBgwYKAr2/sd2bgbR7JDpinREShY59JvuL+TnpERERERL5YIBMRERER+WCBTERERETkgwUyEREREZEPFshERERERD5YIBMRERER+WCBTERERETkgwVyAJIkQpVEuAUBqiRCkniYyBqYm0RE1sJ+OTZZ5lbTViFJIlyVtQ1uN+lMSeAddchUzE0iImthvxy7+GeOHzfgTXQAKHVdxuJ1e+E2Nywi5iYRkcWwX45dLJD9yIrqTXSPUtdlyIpqUkREdZibRETWwn45drFA9iOJArKczeo9luVsBkkUTIqIqA5zk4jIWtgvxy4WyH4cAOY80Mub8J75RJysTWZjbhIRWQv75djFc+hHlhU4UxKwZGpvyIoKSRTg+PlxIjMxN4mIrIX9cuxigRyALCsQ8PPBkVXIJsdD5MHcJCKyFvbLsYlTLIiIiIiIfLBAJiIiIiLywQKZiIiIiMhHXM1BFm2w7IodYtRSvO1vU+xwPOwQI2CPOO0Qo4edYiXtWf38NxWf1eP3YJzaiiZOQVVVrmZNRERERPQzTrEgIiIiIvLBApmIiIiIyAcLZCIiIiIiHyyQiYiIiIh8sEAmIiIiIvLBApmIiIiIyAcLZCIiIiIiHyyQiYiIiIh8sEAmIiIiIvLBApmIiIiIyAcLZCIiIiIiHyyQiYiIiIh8sEAmIiIiIvLBApmIiIiIyAcLZCIiIiIiHyyQiYiIiIh8sEAmIiIiIvLBApmIiIiIyAcLZCIiIiIiHyyQiYiIiIh8sEAmIiIiIvLBApmIiIiIyAcLZCIiIiIiHyyQiYiIiIh8OMwOwF91dTUWL16Mzz77DElJSbj55pvxzDPP4NixY8jPz0d5eTnS0tJQUFCATp06hbXtsrKLUBRVn8A14HSmwOWqNDsMw1hxfzMzU017b7dbttzx8GfFcxaIHeKMJEYz81PP/tMO5ysc8bo/Vs1Pu5wPxqkt/zjDzU/LFcjPP/88kpKSsH37dgiCgLNnzwIA5s+fj/vuuw+jRo3C5s2bMW/ePLz22msmR6sth0MyOwRDxdv+NsUOx8MOMQL2iNMOMRol1o4F98da7BI/49RWtHFaaorFpUuXUFhYiMceewyCIAAAWrdujbKyMhw+fBjDhw8HAAwfPhyHDx/GuXPnzAyXiIiIiGKQpUaQjx8/jrS0NKxYsQJ79uxB8+bN8dhjjyE5ORlt2rSBJNX9NSBJErKysnDq1Cmkp6eHvP2MjBZ6ha4ZM7+iMkO87W9T7HA87BAjYI847RCjh979p52ORSi4P8ZqKj+tHr8H49RWNHFaqkB2u904fvw4rr/+esyaNQv//Oc/8bvf/Q7Lly/XZPtWn4OcmZmKM2cqzA7DMFbcX7MbvdWOhz8rnrNA7BBnJDFadY5ntOxwvsIRr/tj1fy0y/lgnNryjzPc/LTUFIt27drB4XB4p1J0794dTqcTycnJKCkpgSzLAABZllFaWors7GwzwyUiIiKiGGSpAjk9PR25ubnYvXs3AODYsWMoKytDp06d0LVrV2zZsgUAsGXLFnTt2jWs6RVERERERKGw1BQLAFiwYAHmzJmDgoICOBwOLF26FC1btsTTTz+N/Px8rFq1Ci1btkRBQYHZoZINSJIINwBZUSGJAhwAZFkxOywyAXOBqA7bgvZSWzZDclLoJVVVtRsVFy7rGBFFy3IFcseOHfH66683eLxz587YsGGDCRFROKzU8UqSCFdlLRav24tS12VkOZthzgO94ExJ4IdBnLFqLlipvVB8CKctePKz1FUJSCLzsxHJSQ6MeGJzyM8vemEUrD+LN75ZaooF2Zun4529ajfylnyA2at2w1VZC0kyJ83cgPdDAABKXZexeN1euE2JhsxkxVxQFNVS7YXiQ6htwbc/n7Tob8xPijvMdNKM1YoQWVG9sXiUui5DtvBKJqQPK+bC+UvVlmovFB9CbQtW68+JjMYCmTRjtSJEEgVkOZvVeyzL2QySKJgSD5nHirlQ61Ys1V4oPoTaFqzWnxMZjQUyaUbLIkSSRKiSCLcgQJXEiL7WcwCY80Avb0yeuXaWm3hPAWmRAx5WzIUEh2i5op20oSiqZrmrtVDbghX/qCQyEmsF0oyn4/W/+MMBQA5jO1pdUCXLCpwpCVgytTcvgrIZrS+qs2IutGqepEl7IWuRJBE/nr6ARa/ssdQFoR6htgWt+nMiu2KBTJrRqggJNvdtydTeCHfsQpYVCPg50WWVHbtNaJkDHlbLBVEULFe0U/TcgLc4BrTJXa2F0hZ8+3MIAqCqzE+KK9b53odigiwrEGQFDlWFICuRjfZx7lvci5cc0KK9kLXEUu568jPLmcL8pLjDApksh3PfiDlAdsXcJYoNLJDJcqx4QRUZizlAduUAMHdiLnOXyObYZslyrHhBFRmLOUB2JcsKrmzbkrlLZHMskMmSrHZBFRmPOUB2JYpC3dxygLlLZFOcYkFERERE5IMFMhERERGRDxbIREREREQ+WCATEREREflggUxERERE5IMFMhERERGRDxbIREREREQ+WCBTRCRJhCqJcAsCVEmEJDGVyHyevCx1VTIvKS6xbybSBm8UQmGTJBGuylosXrcXpa7L3lupOlMSeLcoMg3zkuId2wCRdvinJYXNDXg7YAAodV3G4nV74TY3LIpzzEuKd2wDRNrhCDKFTVZUbwfsUeq6DFlRmVBkGuYlxTu2AfuoqZWRmZna4PFAjwFAVbUbFRcuB/wd6YNthsImiQKynM3qdcRZzmaQRAGQVRMjo3jGvKR4xzZgH4kJEkY8sTnk5xe9MAoVOsZDDXGKBYXNAWDOA72Q5WwGAN55bvxri8zEvKR4xzZApB22GwqbLCtwpiRgydTekBUVkijA8fPjRGbxzUsIAqCqzEuKK+ybibTDEWSKiCwrEGQFDlWFICvsgMkSPHmZ5UxhXlJcYt9MpA0WyEREREREPlggExERERH5YIFMREREROSDBTIRERERkQ8WyEREREREPlggExERERH5YIFMREREROSDBTIRERERkQ8WyBQzJEmEKolwCwJUSYQkMb3JHMxF0gtzi8gYlr3V9IoVK/DSSy+hqKgIXbp0wYEDBzBv3jxUV1ejffv2eP7555GRkWF2mGQRkiTCVVmLxev2otR1GVnOZpjzQC84UxJ4JykyFHOR9MLcIjKOJf/0PHToEA4cOIB27doBAFRVxcyZMzFv3jxs374dOTk5WLZsmclRkpW4Ae+HBgCUui5j8bq9cJsbFsUh5iLphblFZBzLFcg1NTVYuHAh5s+fD0EQAAAHDx5EUlIScnJyAADjxo3De++9Z2aYZDGyono/NDxKXZchK6pJEVG8Yi6SXphbRMaxXIG8fPlyjBw5Eh07dvQ+durUKe9oMgCkp6dDURSUl5ebEaJt+M9VS0iUYnbumiQKyHI2q/dYlrMZJFEwKaL4Em/zIhvbX+YiBaJFGzEyt3zjdVVUxXybJvJnqTnIxcXFOHjwIGbMmKHL9jMyWuiyXS1lZqZqsh1FUfHj6QtY9MoelLouI/eGNhg35Dos8Zm7NndiLq5s2xKiiR/cWu7v3Im53v317F/rtBRT9y9cWh0PPfnH6J9rsZZb/pra33By0Q7n20Pv/tNOxyIUvvujVRsxqp+zaptuTFP5GQv5ZaV9sFIsjYkmTkFVVct8N7NmzRq89tprSExMBACcPn0aGRkZGD9+PN555x1s2bIFAHDu3DkMHDgQBw4cCGv7ZWUXoVj4q6jMzFScOVOhybZUScTsVbu9X8fNeaAX/nvzwXpfz2U5m2HJ1N4QTLq4Q8v9BepGPNyo+xpSEgU4gLAvXDG70Wt5PPQQ6Jz55xoQe7nlK5T9DSUXI4nRzPzUs//U83yZwX9/tGwjWvRzTYk0XqvmpxH5lZmZihFPbA75+UUvjAr7+VZpI3Zpr/5xhpuflvrOJC8vD5988gl27tyJnTt3om3btnj55ZcxefJkVFVVYf/+/QCAN954A8OGDTM5Wmvzn6uWmpIQ83PXZFmBICtwqCoEWeFV3QaJt3mRoewvc5F8adlGjMiteGvTRIFYqkAORhRFLF26FAsWLMCQIUOwb98+PPHEE2aHZWn+c9UqKmsNnRcZb3NS41ksz7kNlMexvL/xwuj+yW45Y7d4ifRg6apl586d6NKlCwDglltuQVFREXbs2IFXX30VrVu3Njk6a3OgblqFp5P7YN+PmO3zs2f9TD0moXvW6py9ajfylnyA2at2w1VZyyI5Rvnnmp65ZaRgeZwoCTG5v/HCjP7Jbm3EbvES6cFSc5D1Fk9zkIGGc9USJQE1sqrr3DUg9PlrVpzHxDnIjQt2zoyYFxkOLXKrsTx2AJrMd+cc5DpG9gVGzJkPtD9WayNN8Y03OckBtVZuMl6r5mdmZiqqqt1ITgq9xK+qdqPiwuWmn+jzHnaeg5zaspmux8cM0c5B5h+EMUyWFQj4+STLKmpl1PtZ1ut9G5m/xoSLTf65plduGamxPBZUNeb2N16Y1T/ZrY34xutMTbb8H+9NSU5yhF2Q2nuPw8Pj0xC/8ybNcf4axQLmcWzieSWiULBAprA1dYEL569RY+xyASfzODbZ5bzapZ0QxSpd+oT9+/dj69atKCsrw4svvojDhw+jsrLSe6tosi/PBS6LfW44MueBXnCmJHjnp8myAmdKApZM7W2b+XZkjFDyxyqYx7HJDufVTu2EKFZp/ifpG2+8gSeffBLp6enYvXs3AECSJPzxj3/U+q3IBG7A22kDdXP3Fq/bC7ff87gOLAUSav5YBfM4Nln9vNqtnRDFIs0L5JdffhmvvvoqHn30UYhi3eY7d+6M77//Xuu3IhNwAXmKBvOHqGlsJ0Tm07xArqioQIcOHQAAglB30YOiKHA4rDbDiyLBC1woGswfoqaxnRCZT/MC+ZZbbsG6devqPbZ+/Xr07NlT67ciE9jlAheyJuYPUdPYTojMp3l7+8Mf/oC8vDy89dZbqKysxMiRIwEAa9eu1fqtKALRLlZvhwtcyLpiMX/sdgMIip7e5zwW2wmR3WheIGdnZ2Pz5s34xz/+gRMnTiA7Oxu33norp1hYgFZXRtttwXuylljKH642EH+MOuex1E6I7EjzKRaPP/44RFFEz549MXr0aOTm5sLhcOCJJ57Q+q0oTLwymkhbbFPxh+ecKD5oXiB//PHHAR/ftWuX1m9FYeKV0UTaYpuKPzznRPFBs3kPq1evBgC43W7v/z2OHz+ONm3aaPVWFCHPldG+nbv3ymiZnTtRuNim4g/POVF80GwE+dtvv8W3334LRVG8///2229x9OhRNG/eHH/+85+1eiuKEK+MJtIW21T84Tknig+atWnPnfJef/11jB8/XqvNkoZ4ZTSRttim4g/POVF80PyP3r59++LcuXNIT0/H5cuX8dprr0EURUyYMAFJSUlavx2FiVdGE2mLbSr+8JwTxT5dVrFwuVwAgOeffx5///vfsWvXLixYsEDrtyIiIiIi0pzmI8j//ve/0blzZwDA9u3b8c477yApKQlDhgzR+q2IiIiIiDSneYGckJCAyspKfPfdd8jKykJGRgZkWUZVVZXWb0VEREREpDnNC+Rhw4Zh4sSJuHTpEu655x4AwJEjR9C+fXut34qIiIiISHOaF8hz587Fhx9+CIfDgf79+wMAZFnGk08+qfVbERERERFpTvMCWRRFDBo0qN5j3bt31/ptiEIiSSLcAJdjigE8lxTPmP9ExtK8QFYUBRs2bMDevXtRXl4OVf3lzkKvvPKK1m8X14zuMO3WQUuSCFdlLRav24tS12Xvgv7OlARLx201vufdVVEFSRINP37hnEtJEuGqqIJbEGyRp9Q4vfodO/Vn7MuoplZGZmZqyM+vqnaj4sLlpp9oQaktmyE5KfTyVK991bxALigowN///nfcc889+Mtf/oKHH34YGzZswF133aX1W8U1oztMO3bQbsAbLwCUui5j8bq9WDK1NwRzQ7MNq5z3UM/lL/Hutk2eUnB65Z9V8jpU7MsoMUHCiCc2h/z8ohdGoULHePSUnOSwxL5qvg7yu+++i//+7/9GXl4eRFFEXl4eVq1aheLiYq3fKq4F6zDdMfJ+WpAV1RuvR6nrMmRFDfIK8meV8x7qubRKvKQNvc6n3fKEfRmR8TQvkCsrK9GxY0cAQHJyMqqqqnDNNdfgq6++0vqt4prRHaYdO2hJFJDlbFbvsSxnM0gix1xCZZXzHuq5tEq8pA29zqfd8oR9GZHxNC+Qr776am8xfP3112P16tV4+eWXkZmZqfVbxTWjO0w7dtAOAHMe6OWN2/M1qubzimKYVc57qOfSKvGSNvQ6n3bLE/ZlRMbTvH3l5+d7L8zLz8/H3LlzUVlZyVtNa8zTYfrPoXMAkGPg/bQgywqcKQlYMrW3LS7EsSKrnPdQz6VV4iVt6HU+7ZYn7MuIjKdZgbxlyxYMHz4ct9xyi/exzp07Y/369Vq9BfkwusO0awctywoE/JzosmrJDz8r8z/vyUkOqLWyKec9lHPpiXfZY/1QVe22TZ5SYHr1O3bsz9iXERlLsykW8+bN02pTFCJZViDIChyqCkFWdO/cjX4/sgbf8+5MTbb8eZdlBc7UZOZpjNCr32F/RkSN0axA9l3vmIiIiIjIrjSbYqEoCj7//PNGC+Xbb79dq7ejGGOnRfvJnphjFIuY10T60KxArqmpwVNPPRW0QBYEAR988IFWb0cxxG6L9pP9MMcoFjGvifSjWYHcrFkzFsA6CjRKACAmRg54lyhjRTriZOdbODPHyGhG9NnMayL9cBlFGwg0SvD0lNtQW6vg2RgYOWhs0X4mqLYiHXGy+y2cmWNkJEVRDemzmddE+rHcRXoulwtTpkzB0KFDMWLECPz+97/HuXPnAAAHDhzAyJEjMXToUEycOBFlZWWavKfVBRolKDlX6e1oPY9Z+VapjbHbov12Fuktdu12a15/zDEy0vlL1Yb02cxrIv1oViAXFxdrsh1BEDB58mRs374dRUVF6NixI5YtWwZVVTFz5kzMmzcP27dvR05ODpYtW6bJe1pdoFGC5ESHrW6V2hjeJco4kd5i12635vXHHCMj1boVQ/ps5jWRfizXjtLS0pCbm+v9+eabb8b69etx8OBBJCUlIScnBwAwbtw4DBo0CEuWLDErVMN4Rgl8O9eqGneDx7wjB7I9ihYPOy7ab1eBcimUvIn0dVbBHCMjJThEQ/ps5jWRfixXIPtSFAXr16/HwIEDcerUKbRr1877u/T0dCiKgvLycqSlpYW0vYyMFnqFqpnMzNQGjymKirkTc7HolT3euWttM5o3eGzuxFy0TkuBaKOv1wLtbzzT+3gEyqVQ8ibS15nJDrllhxg99O4/7XQsmhKLfbbVz48e+Wn1fW6K3vFb6fgEiyWaGC1dID/zzDNISUnB/fffj7/97W9Rb6+s7CIUE78Sbmr1gMzMVJw5UxHwta2SHQ1GCeAQsfTRPnDLKhRFhUMUUV5eaZvRg8b21yxmN3gtj0ewfAuUS2VlF5vcXqtkR4NbOIfyunBi04oVc8tfJDGamZ969p9Gny8j8i9Ynx2o7Vl9LeNQz49V8zPSuMLJSbM/OwLRO3692qxWsfjnbbjbtWyBXFBQgB9//BGrV6+GKIrIzs7GyZMnvb8/d+4cBEEIefTYbNGuVynLCgT8fMJkFfLP2yyvqOEamNRAU/nmn0uhkGUFmenNcaaqIqzXhRsbkZ6Myr9g7SxQP872QGQ9ml2kp6U//elP+Oqrr7By5UokJiYCAG688UZUVVVh//79AIA33ngDw4YNMzPMsOixCoDdVxYg/Vg5N6wcG8U+q+Wf1eIhojqWG0E+evQoVq9ejU6dOmHcuHEAgA4dOmDlypVYunQp5s+fj+rqarRv3x7PP/+8ydGGTo/1KpvaptW/tiPt+Z7zyaO6YePOo/jmJxcA66yPyrVbyUy++XftFU7cM/AapKYkQAXgkETD+0i2ByJrslz7u+aaa/DNN98E/N0tt9yCoqIigyPShh6rADS2TQkCv7aLM4G+qp02tgde33YE3/zkssyqE3ZfEYPszZN/ztRkjL+rK158s9jUPpLtgciaLDnFws4kSYQqiXALAlRJhCTVHWI91qtsbJv82i7+BDrnL75ZjGlje6Dg932w6Hd3IFEy/2p5rt1KWgrW5wbjyb9xQ7p4i2PAvD6S7YHImtgGNdTUxRZar1fZ2DZlQeDXdnEm2Fe1Fy/XYNaKTyzzLQLXbiWtRHKBmyf/UpKD37jDyD6S7cGaamplS65MQcZhraShYKO2S6b2hoDgVzVHw3ebEoS6+aeCAElsuFA9v7aLbcG+qj1/sQZAw3yM6r2inN+uR1ug+NNUnxuMLCuQpGB9pAgJqqEFKtuD9SQmSBjxxOaQn1/0wigdoyEzcIqFhsy8Ha9nJGX2qt3IW/IB1hR+idn82i6uBPqqdtrYHti486j3OVrko3+uzV61G67K2ia/2ibSWjR9brD2sqbwS+YzEbFeaky4o2RmXmzhP5Ky51AJAGDJ1D6QFYVf28WBhl/VilhT+KV3FQsg8nz0tIVSVyUAIaJROyKtJSaImD85F8mJDlRU1mLjzqNwVVSFlOO/tJc+OHv+Ms5frPFe0Hrs5AXmM1GcY4EcRCRz2zwjEv6vcQC6f2UWaCRlz6ESTBqpwKGq/NouTtSfcqPi3iHX4djJC1Hlo39bKPh9H0vM3aT45rlR0l82funN78fG9YAzNSnkHPdcrzFrxSf1Hmc+ExHbfxCRzG0z82ILM0evud6yNWmVj/5t4fzFGt1zjTlFQON54AbwrF8fvfyNYjw3tQ9kOfQ/AbnMGhEFwklWQUQ6t02WFQhy3aitICuGfaibtVQQ56Namxb56N8WNu48imlje+iWa8wpAprOg2B9tFsJL8e5zBoRBcI+IABJEqHCXqMKZo1eR3oVOUXGjJFV/xG2b35yoWjX97rNb2dO2YteOdlUHmg18stl1ogoEA7J+PGMWqwp/FLXUTI9mDF6bebKHfHGrJHVQCNs9w65Dg6ouuQac8o+9MzJpvJAy5Ffs775IyLrsnK9ZwrfUYvyihpMHtUNrVokonWrZnAYvDamHUQziqMoKlRJ5KhNiDy56UxNxuRR3ZCakgBXRRXSUhN1vQrUd4QNggCoqq7ninNC7UPP0f6m8sAKI7+cK08UuziC7Md31OKbn1xYvG4vZq34BLLCUYVAIh3FkSQRP56+wHmmYZAVFc7UZIy/qyv+e/NBzF61G3/Z+CXKK2p0P26eEbYsZ4ruI2ycE2ofeo72h5IHZo78cq48UWzjZ44fjl6FJ9JRHDeARa/s4TzTMEiigHFDuuDFN4tj+rhZYWSQQqNnf2n1PGhs9JyI7I9/6vrh6FX4IhnF4TzT8DkAtGvdIi6OG+eE2oPe/aWV84B9GFFsY93nx+qjFrGCI/Xhk2UFCZLE40aWEc/9ZaN9GBHZHkeQA7DyqEWscACYOzGXI/VhkqDyGw6ylHjtL/ltI1FsY1smU8iygivbtozLkadoxPOIHZGVsC0SxTYWyGQaURTqRp6AumWbzA7IJmRZgQDwuBGZjG2RKHZxigURERERkQ8WyEREREREPlggExERERH5YIEcJyRJhCqJcAsCVEnk3Z4oKOYKUfh8242roorthsjmeJFeHPDcEtVz1yfPckTOlARecU31MFeIwsd2QxR7WCBHQJJEuAHbLO3T2C1Rrbykvd2Os9VEcvx8c+XaK5y4Z+A1qK6V4UYiHBwRIw355qdnxFWv9q13X2LXPpZiV02tjMzMVMtsv7pGRlKipFs8emCBHCY7jhQ0dktUqyaAHY+zlUR6/Dy5cu0VToy/qytefLO43uvT0ni3Poqeke3biPeyYx9LsS0xQcKIJzaH/PyiF0bpvv1Qnx9uLHrhkFCYgo0UuM0Nq1GeW6L6svotUe14nK0k0uPnyZV7Bl7jLY59X3/+UrW+gVNcMLJ9G/FeduxjiahxLJDD1NhIgVXZ8ZaodjzOVhLp8fPkSqsWiQFfX+vm6D1Fz8j2bcR72bGPJaLGsf2GyTNS4NvhekcKZGsWb3a8Jaodj7OVRHr8PLniRmLA1yc4RLjdvF8YRcfI9m3Ee/n3sclJDqi1sqX7WCJqHEeQw2TXkQJZVupu66yqEGTF8h23XY+zVURz/GRZgQNqwNe3ap6kX9AUN4xs30a9l28f60xNtnwfS0SNY70RJjuOxtoRj3N0oj1+wV4vck4lacDIEVf2JUQUCRbIEZBlBQJ+PniyCn7hrA8e5+hEe/x4/ElPvvnlTE3GmTMVhrwXc5mIQsEpFkREREREPlggExERERH5YIFMREREROSDBTLq7rSkSiLcggBVEiHZ/Ja6sbY/8S6a88lcIDvSOm/ZDogoXLa6SO/YsWPIz89HeXk50tLSUFBQgE6dOkW1zVi7pXGs7U+8i+Z8MhfIjrTOW7YDIoqErf6Mnj9/Pu677z5s374d9913H+bNmxf1NmPtlsaxtj/xLprzyVwgO9I6b9kOiCgStimQy8rKcPjwYQwfPhwAMHz4cBw+fBjnzp2LaruxdkvjWNufeBfN+WQukB1pnbdsB0QUCdtMsTh16hTatGkDSZIAAJIkISsrC6dOnUJ6enpI28jIaNHgMVdFVcDbkCYnOeBMTdYm+DBkZqZG9Xqr7U9Tot3fWON/PKI5n3rlgl3OmR3itEOMHoH6Ty15joXWeWtWn2incxsKq++A3TYKAAAS6UlEQVSP3vlJ1hYsP6PJW9sUyFooK7sIxW/UQJJEzHmgV4P5aWqtrOvC9YFkZqZG/Z5W2p+maLG/WjP7Q8D/eERzPvXIBSues0DsEGckMZqZn4H6T634Hgut89aMPtEO+ReOUPfHqvlpdr9O+guUn/55G24e2KZAzs7ORklJCWRZhiRJkGUZpaWlyM7Ojmq7sXYb0ljbn3gXzflkLpAdaZ23bAdEFAnbzEHOyMhA165dsWXLFgDAli1b0LVr15CnVzRGlhUIsgKHqkKQFdt3nLG2P/EumvPJXCA70jpv2Q6IKFy2GUEGgKeffhr5+flYtWoVWrZsiYKCArNDIiIiIqIYY6sCuXPnztiwYYPZYRARERFRDLPNFAsiIiIiIiPYagQ5WqIomB1Ck+wQo5bibX+bYofjYYcYAXvEaYcYPfSO1U7HIhTcH2NZPT7SV7DzH01eCKqqcrV0IiIiIqKfcYoFEREREZEPFshERERERD5YIBMRERER+WCBTERERETkgwUyEREREZEPFshERERERD5YIBMRERER+WCBTERERETkgwUyEREREZGPuLrVtFUNHDgQiYmJSEpKAgDMmDEDffv2NTkq/VRXV2Px4sX47LPPkJSUhJtvvhnPPPOM2WHpzuVy4cknn8RPP/2ExMREXHnllVi4cCHS09PrPS8/Px+ffvopnE4nAODOO+/Eww8/bGisoeTk5cuXMXv2bBw6dAiSJGHWrFkYMGCAIfH9+9//xiOPPOL9uaKiAhcvXsTevXvrPe+ll17C//7v/yIrKwsAcMstt2D+/Pm6xVVQUIDt27fjxIkTKCoqQpcuXQAAx44dQ35+PsrLy5GWloaCggJ06tSpwetlWcaiRYuwa9cuCIKAvLw8jBkzRrd4jRLsuPiy276Hsk9G5180Qu2fzGz34Qq13RmtsWN94MABzJs3D9XV1Wjfvj2ef/55ZGRkmB0yVqxYgZdeesmb61aLM1hdEVUOqGS6AQMGqN98843ZYRjmmWeeUZ999llVURRVVVX1zJkzJkdkDJfLpX7++efen5977jl19uzZDZ43a9Ys9fXXXzcytAZCycmXXnpJnTNnjqqqqnrs2DH1jjvuUC9evGhEeA0sWrRIXbBgQYPHX3zxRfW5554zLI59+/apJ0+ebHD8xo8frxYWFqqqqqqFhYXq+PHjA77+7bffVidOnKjKsqyWlZWpffv2VY8fP25I7HoKdlx82W3fQ9kno/MvGqH2T1Zq900Jtd0ZLdixVhRFHTx4sLpv3z5VVVV15cqVan5+vllhen311VfqpEmT1F/96lfqN998Y8k4g9UV0eQAp1iQoS5duoTCwkI89thjEAQBANC6dWuTozJGWloacnNzvT/ffPPNOHnypIkRRefdd9/FuHHjAACdOnXCjTfeiI8//tjwOGpqalBUVIR77rnH8Pf2l5OTg+zs7HqPlZWV4fDhwxg+fDgAYPjw4Th8+DDOnTvX4PXbtm3DmDFjIIoi0tPTMXjwYLz33nuGxK6nQMfFn932PZR9spNQ+yertPumhNPujBbsWB88eBBJSUnIyckBAIwbN870NlBTU4OFCxdi/vz53s9sq8UZrK6INgdYIFvEjBkzMGLECDz99NO4cOGC2eHo5vjx40hLS8OKFStw9913Y/z48di/f7/ZYRlOURSsX78eAwcODPj7V199FSNGjMDUqVPx/fffGxxdnaZy8uTJk2jfvr335+zsbJw+fdrIEAEAO3fuRJs2bXDDDTcE/P3WrVsxYsQITJw4EcXFxQZHB5w6dQpt2rSBJEkAAEmSkJWVhVOnTgV8brt27bw/m3VMzRCr+252/kWisf7JKu2+KeG0OzP5Hmv/NpCeng5FUVBeXm5afMuXL8fIkSPRsWNH72NWizNYXRFtDrBAtoC//vWveOedd7Bx40aoqoqFCxeaHZJu3G43jh8/juuvvx6bNm3CjBkz8Oijj+LixYtmh2aoZ555BikpKbj//vsb/G769On429/+hqKiIgwZMgSTJ0+GLMuGxmennNy4cWPQ0eNx48bhgw8+QFFRESZNmoSpU6fC5XIZHCHFK7vmX2P9E2nLyse6uLgYBw8exH333Wd2KI0KVldUVlZGtV0WyBbg+ZouMTER9913H7744guTI9JPu3bt4HA4vF95dO/eHU6nE8eOHTM5MuMUFBTgxx9/xJ///GeIYsMm2KZNG+/jo0ePRmVlpeEjNKHkZLt27XDixAnvz6dOnULbtm0NixEASkpKsG/fPowYMSLg7zMzM5GQkAAA6N27N7Kzs3H06FEjQ0R2djZKSkq8f+TIsozS0tKAX89nZ2fX+1rbjGNqlljcdyvkX7ia6p+s0O5DEU67M4v/sfZvA+fOnYMgCEhLSzMlvn379uGHH37AoEGDMHDgQJw+fRqTJk3Cjz/+aKk4g9UVycnJUeUAC2STVVZWoqKiAgCgqiq2bduGrl27mhyVftLT05Gbm4vdu3cDqLvKuKysDFdeeaXJkRnjT3/6E7766iusXLkSiYmJAZ9TUlLi/f+uXbsgiiLatGljVIgh5+Sdd96JN998EwDwr3/9CwcPHjR89ZW3334b/fv396744c/3WB45cgQnTpzAVVddZVR4AICMjAx07doVW7ZsAQBs2bIFXbt2bbA6AFB3TDds2ABFUXDu3Dm8//77GDp0qKHxmiUW990K+ReOUPonK7T7UITT7swQ6FjfeOONqKqq8k47fOONNzBs2DDTYszLy8Mnn3yCnTt3YufOnWjbti1efvllTJ482VJxBqsrOnXqFFUOCKqqqrpFTU06fvw4Hn30UciyDEVR0LlzZ8ydO9e7LFAsOn78OObMmYPy8nI4HA48/vjj6N+/v9lh6e7o0aMYPnw4OnXqhOTkZABAhw4dsHLlSowaNQpr1qxBmzZt8MADD6CsrAyCIKBFixZ48skncfPNNxsWZ2M56RtnZWUl8vPzceTIEYiiiJkzZ2Lw4MGGxQkAQ4cOxVNPPYV+/fp5H5syZQqmTZuGbt26YdasWTh06BBEUURCQgKmTZuma64tWrQIO3bswNmzZ+F0OpGWloatW7fi+++/R35+Pi5cuICWLVuioKAAV199dYN4ZVnGwoULvR39lClTMHbsWN3iNUqw42LnfQ9ln4zOv2iE2j9Zod2HqrF2Z6bGjvUXX3yB+fPn11s+zSoXsg8cOBCrV69Gly5dLBdnsLoimhxggUxERERE5INTLIiIiIiIfLBAJiIiIiLywQKZiIiIiMgHC2QiIiIiIh8skImIiIiIfLBApkb16NEDx48fNzsMIiLbWL16NZ566imzwyCiKLBAtrnx48ejZ8+eqKmp0WRbGzZsqPdYcXFxvXuwE0Vj4MCB+PTTT+s9tmnTJtx7772oqanBnDlzMGDAAPTo0QOjR4/GRx99VO+5q1evxsCBA9GjRw/069cPjz/+uJHhU4wIlIeR2rNnT711uAHgd7/7HZ599llNtk/xp0ePHt5/1113HW666Sbvz++8807E250+fTpWrVqlYaSxzWF2ABS5f//739i/fz9SU1PxwQcfmHonG6Joud1uZGdn4/XXX0e7du3w0Ucf4fHHH0dRURE6dOiAt99+G5s3b8a6detwxRVX4MyZM9i5c6fZYRMRaaq4uNj7/4EDB2LRokW44447TIwoPnEE2cYKCwvRvXt3/OY3v0FhYaH38aqqKjz33HMYMGAAbr31Vtx7772oqqoCABw4cADjxo1DTk4ORo4ciT179gCou+3l/v37sXDhQvTo0QMLFy4EAFx77bX48ccfm9wuUbRSUlLw6KOPokOHDhBFEQMGDECHDh1w6NAhAMDBgwfRp08fXHHFFQCAzMxMS99pjezl/PnzeOihh3DbbbehZ8+eeOihh3D69Gnv78vLyzF79mz06dMHPXv2xNSpU1FZWYkpU6agtLTUO8JXUlKCl156CTNmzPC+dv/+/d5+t3///ti0aZMZu0gx4h//+AfGjBmDW2+9FX369MHixYvhdrsBwHtHyttuuw233norRo4ciR9++AGvvfYaduzYgVWrVqFHjx6YNm0aAODUqVN4+OGHkZubi0GDBmH9+vVm7pqlcATZxjZv3owHHngA3bt3x9ixY3H27Fm0bt0aBQUF+O677/DGG2+gdevW+Oc//wlRFFFSUoKHHnoIS5cuRd++ffHZZ59h2rRpePfddzF9+nR88cUXGDlyJMaMGRPw/YJtl0gPZ8+exb/+9S/8x3/8BwCge/fuePbZZ9GmTRvk5ubi+uuvhyRJJkdJsUJRFNx9993485//DFmWMWfOHCxcuND7lfSTTz6JlJQUbN26FSkpKSguLkZKSgrWrl2LmTNn4uOPPw643ZMnT2LKlCl45plnMHToUFy8eLFe4U0UroSEBPzhD3/ADTfcgBMnTmDSpEm46qqrcO+99+LDDz/EoUOH8P777yMlJQXff/89WrVqhQkTJqC4uBjXXHMNpk6dCqCumM7Ly8OIESOwfPlynDhxAg8++CA6d+6MXr16mbyX5mOBbFP79+/HyZMnMWzYMKSnp6Njx47YsmULJkyYgI0bN+Ktt95CmzZtAAC33HILgLqCul+/fujfvz8AoHfv3rjxxhvx0Ucf4Te/+U2j76coStDtEoXjkUceqVfY1tbW4vrrr6/3nNraWsyYMQO/+c1v0LlzZwDAqFGjIAgCNm3ahBUrViApKQmTJk1CXl6eofFTbHI6nRg6dKj354cffhgTJkwAAJSWluLjjz/Gnj170KpVKwAIuYAoKirCHXfcgeHDh3vfx+l0ahw9xZObbrrJ+/8rrrgCY8aMwb59+3DvvfciISEBFy9exA8//IBu3brhmmuuCbqdf/zjH6iurvb2oVdddRXuvvtubN26lQUyWCDbVmFhIXr37o309HQAwPDhw/H2229jxIgRqK6uDnhh3cmTJ/Hee+/hww8/9D7mdruRm5vb5Pu5XK6g2yUKx8qVK+vNp9u0aVO9i0MVRcGTTz7pHSXxNXLkSIwcORK1tbV4//33MXPmTHTt2hV9+/Y1LH6KTZcvX8aSJUuwa9cunD9/HgBw6dIlyLKM06dPo1WrVt7iOBynTp3yTgsi0sJ3332H5557DocPH0ZVVRVkWfYOWPXr1w8//PAD5s2bh5KSEgwdOhQzZ85E8+bNG2zn5MmTOHHiBHJycryPybLM+c4/Y4FsQ1VVVXj33XehKAp69+4NAKipqcGFCxdw5swZJCUl4fjx47juuuvqvS47OxujRo3CokWLwn5Pp9MZdLtEWlFVFU899RTOnj2LtWvXIiEhIeDzEhISMGzYMKxduxZHjx5lgUxRe+WVV3Ds2DG89dZbyMzMxJEjRzB69Gioqoq2bdvi/PnzuHDhAlq2bFnvdYIgNLrd7OxsfPnll3qGTnFm7ty5yM3NxfLly9G8eXOsWbPGuyqLIAh48MEH8eCDD+LMmTN49NFH8dprr+Hhhx9ukKtt27bF1VdfjaKiIjN2w/I4gdSG3n//fUiShK1bt6KwsBCFhYXYtm0bcnJyUFhYiHvuuQdLlixBSUkJZFlGcXExampqMHLkSHz44YfYtWsXZFlGdXU19uzZ450P17p166BrHouiGHS7RFqZP38+vv/+e6xevRrJycn1frdp0yb8/e9/x8WLF6EoCj766CN899139b5uJApVbW0tqqurvf8uXLiApKQktGzZEuXl5VixYoX3uVlZWejXrx8WLFiA8+fPo7a2Fvv27QMAZGRkoLy8HBUVFQHfZ8SIEfj000+xbds2uN1uuFwuHDlyxJB9pNh06dIltGjRAs2bN8fRo0fx1ltveX934MABHDx4EG63G82aNUNCQoJ3SltGRka9z/hbb70VALBu3TpUV1fD7Xbj66+/9l4YHe9YINvQ22+/jbvvvhvt2rVDZmam999vf/tbFBUV4YknnkCXLl3w//7f/0OvXr2wbNkyKIqC7OxsrFq1Cv/1X/+F22+/Hf3798fLL78MRVEAABMmTMD27dvRs2fPgKPMs2bNCrhdIi2cOHECb775Jo4cOYI+ffo0WPezRYsWWL16NQYMGICcnBwsW7YMTz/9dL2vB4lClZeXh5tuusn778KFC6iursZtt92GsWPHNvhWYunSpXA4HBg2bBjuuOMO/M///A8AoHPnzvj1r3+NwYMHIycnByUlJfVe165dO6xduxavvvoqevXqhdGjR+Prr782bD8p9syZMwf/93//511x6q677vL+7sKFC5g9ezZ69uyJwYMHo3379hg/fjwAYOzYsfjqq6+Qk5OD6dOnIyEhAWvWrEFxcTEGDBiA22+/HU8//TQqKyvN2jVLEVRVVc0OgoiIiIjIKjiCTERERETkgwUyEREREZEPFshERERERD5YIBMRERER+WCBTERERETkgwUyEREREZEPFshERERERD5YIBMRERER+WCBTERERETk4/8Dih9Cpf3jeAIAAAAASUVORK5CYII=\n", - "text/plain": [ - "
    " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "sns.set(rc={'figure.figsize':(15, 5)})\n", "sns.pairplot(cheese);" @@ -1675,20 +768,9 @@ }, { "cell_type": "code", - "execution_count": 36, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmoAAAH1CAYAAABGCtJ0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xl4TGf/BvB7JpNZshGRkKgqWmlQRBKxL7EriRRFUbVUqK2U1qu2V0urVWrXlqqqllLUTmkt3YKfWkpVi9qSCBGRzExmfX5/eE2FLDOZJZPM/bku1yVzznnO98xz5sw9Z5UIIQSIiIiIyO1IS7oAIiIiIsofgxoRERGRm2JQIyIiInJTDGpEREREbopBjYiIiMhNMagRERERuakyF9SWL1+ON99806pxBwwYgA0bNuQ77Nq1awgPD4fRaHRkeXa5desW+vXrh8jISLz77rsunXdkZCSuXr3q0nnm5uZi+PDhiIqKwpgxY1w6b08wadIk1K1bF3FxcZbXCvtMOMvWrVsxePBgu9vR6/WIjIxEnTp1MH/+fKumsWd581s/58+fj9jYWDRr1swp25Dk5GQ8/fTTiIyMxKFDhxzWbmHccVvo7JpefPFFPPPMM+jbt69T2n9YXFwcfv75Z5fMqzgmTZpU4Gdq0aJFqFOnDiIjI6HRaFxSz6ZNm1zWNw8aOnQoNm/ebFcbkyZNQr169dCyZUurp5HZNccS8Nprr0Eul+Odd96xvHbkyBGMHj0a27Ztw/Dhw0uwOudav349AgMDcfz4cUgkEqfNZ8CAAYiPj0evXr0sr/32229Om19Bdu/ejVu3biE5ORky2aOr6qJFi3D58mXMnTvX5bU52rVr19C2bVucOXMm32V1liFDhmDcuHEum19+yxkfH4/4+Hi725bL5fjtt98wadIku9uyxsPrZ2pqKlatWoUffvgBQUFBuHbtmlPmGxIS4rKQ5qk+//xzbNq0yeU/Wkqrzp07l4ntcFFWrFhhdxvvvvsuEhMTMXHiRKunKXV71KZMmYJDhw7hp59+AgDodDpMnToVb7zxBkJCQkq4OudKSUlBzZo1nRrS3ElKSgqeeOIJlwYXZzGZTE5tXwgBs9ns1HlQXg+vn9evX0f58uURFBRUwpU5jiP3WJWGddSd9hpS/hzZR6Wlv0tdUAsMDMSUKVMwdepUaDQaLF68GFWrVsVzzz0H4N5elgkTJljGP3HiBPr06YPo6GjEx8cjOTk533ZNJhPmzJmD2NhYtG3bFgcPHiy0jo8//hjt2rVDZGQkunTpgu+++84y7PLly+jfvz+ioqIQGxuLV199tcB2xowZg2bNmiEqKgr9+vXDX3/9le94kyZNwpYtW7By5UpERkbi559/fmR3dHJycp7dqXFxcVi5ciW6deuGqKgovPrqq9DpdJbh+/btQ0JCAho2bIh27drh0KFDmD9/Po4dO4aZM2ciMjISM2fOBACEh4fj8uXLAIDs7Gy8/vrraNy4Mdq0aYOlS5daNsD3d0nPmTMHMTExiIuLK/S9vHDhAgYMGIDo6Gg8++yz2L9/PwBg4cKFWLp0KXbt2oXIyMhHftkeOnQIH330kWX4/T0y2dnZmDx5Mpo3b44WLVpg/vz5lpC0adMm9OnTB7Nnz0Z0dDTatm2L48ePY9OmTWjVqhWaNGmSZ7f2pEmTMG3aNAwaNAiRkZHo378/rl+/nqf2QYMGoVGjRujYsSN27tyZZ9rp06fj5ZdfRoMGDZCcnIwDBw6ge/fuaNiwIVq1aoVFixZZxu/fvz8AICYmBpGRkfjtt98eWZcfPtwzYMAAzJ8/H3369EH9+vVx9erVQpffVmazGUuXLkWbNm3QpEkTvP7668jOzrYMP3bsmOWz1apVK2zatAkAbF7Ohw9jHD9+HD169EBUVBR69OiB48ePW4YNGDAAH374Ifr06YPIyEgMHjwYt2/fLtby3XflyhX07NkTUVFRGDFiBO7cuWMZVtDn8+H1c926dRg8eDDS09MRGRmZ7169wvrGlm3Gw2xdrwvrn/vr2IYNG9C6dWsMHDjwkfnt2bMHcXFxOH/+PIDCt7H5raMPS01NxahRo9C4cWPExsZatjlFrX8PunHjBoYPH45GjRqhffv2+Prrry3DrNlOfvzxx+jWrRsaNGhg1Zd3VlYWkpKS0LhxY8TExCApKQlpaWl5lruw9XTLli1o06YNYmNjsWzZskLndfDgQXTp0gWRkZFo0aIFVq5cmWc5li9fjtjYWMTFxWHr1q2W6fR6PebMmYPWrVujadOmmDZtGnJzcy3Df/jhByQkJCA6Ohp9+vTBuXPnLMPOnj2LxMREREZGPvK9YY1JkyZhxowZGDp0KCIjI9GnTx/cvHkTs2bNQkxMDDp16oSzZ89axi/s+/TB9btRo0Z51tf75syZg759+1rWj40bN6Jz586IiYnBkCFD8my3w8PDsXbtWnTo0AEdOnR4pC2dTocJEyYgNjYW0dHR6NGjB27dugUg76kS8fHxiIyMtPwLDw+3rPvW5g6riVJq9OjRIikpSTRq1Ehcv37d8vrChQvFa6+9JoQQIi0tTTRq1EgcOHBAmEwm8eOPP4pGjRqJjIwMIYQQ/fv3F19//bUQQogvv/xSdOzYUaSkpIjMzEzRv39/UatWLWEwGPKd/86dO0VaWpowmUxix44don79+uLGjRtCCCHGjRsnli5dKkwmk8jNzRVHjx4tcDk2bNggsrOzhU6nE2+//baIj48vcNw33nhDzJs3r8C/f/31V9GiRQvL323atBE9evQQaWlpIjMzU3Tq1El8+eWXQgghTp48KRo2bCh+/PFHYTKZRFpamvj7778feV/uq1Wrlvjnn3+EEEJMnDhRDB8+XGRnZ4urV6+KDh06WMb/5ptvRO3atcX69euF0WgUa9euFc2aNRNms/mR5dHr9aJdu3Zi2bJlQqfTiZ9//lk0aNBAXLhwQQiRty/zk9/wESNGiKlTpwq1Wi1u3bolevToIb766itLbREREWLjxo3CaDSKefPmiVatWokZM2YInU4nDh8+LBo0aCBycnIs72+DBg3EkSNHhE6nE2+99Zbo06ePEEIItVotWrZsKTZu3CgMBoP4/fffRaNGjcT58+ct0zZs2FAcO3bMsh78+uuv4ty5c8JkMok//vhDNGnSRHz33XdCCCGuXr36yPr28PI9PE7//v1Fq1atxPnz54XBYBB6vb7Q5X/Yw+vP/Tbv9+WGDRtEu3btxJUrV0ROTo4YOXKkmDBhghBCiOvXr4sGDRqIbdu2Cb1eL27fvi3Onj0rhBA2L+c333xjeV8zMzNFdHS02Lx5szAYDGLbtm0iOjpa3L5921Jf27ZtxcWLF4VWqxX9+/cX77//fpHLVZD+/fuL5s2biz///FOo1WoxatSoPO95YZ/Ph/vn4c/fw8taWN9Yu814eB733z9b1mtr+mfixIlCrVYLrVabZzk2btwo2rVrZ9kWWLONfXgdfZDRaBTdunUTs2bNEmq1Os+yF7b+Pfze9uvXT0yfPl3k5uaKs2fPitjYWPHzzz8LIazbTsbHx4uUlBSh1WrzvK/318uH3b59W+zevVtoNBqRnZ0tRo8eLUaMGGEZXth6+tdff+XZrsyePVtERESIn376Kd95NWvWzPKe3LlzR/z++++W5YiIiBCzZ88WOp1OJCcni/r161u2n2+//bZISkoSmZmZIjs7WyQlJYm5c+cKIYT4/fffRePGjcWJEyeE0WgUmzZtEm3atBE6nU7odDrRunVrsWrVKqHX68WuXbtE7dq1C/xM5bcdfuONN0SjRo3E6dOnRW5urhgwYIBo06aN2Lx5s2Ud7d+/v2X8wr5P76/fn3/+uTAYDEKr1Vr6xmQyiTfffFMMHjxYaDQaIYQQ3333nWjXrp34+++/hcFgEEuWLBG9e/e2zKtWrVripZdeEpmZmXn6+76vvvpKJCUlCY1GI4xGozh9+rTIzs629OvD341CCLFu3TrRsWNHkZ2dXeRn4n7fPfw5Lkyp26N237Rp05CcnIxXXnkFYWFh+Y7z7bffomXLlmjVqhWkUimaNWuGunXr5ruHZ9euXRg4cCBCQ0NRvnx5JCUlFTr/zp07o1KlSpBKpejSpQuqVauGU6dOAQBkMhlSUlKQnp4OhUKB6OjoAtvp2bMn/Pz8IJfLMXr0aJw7d67AX43FMWDAAFSqVAnly5dHmzZt8McffwC494ujR48eaNasGaRSKSpVqoSaNWsW2Z7JZMLOnTvx2muvwc/PD4899hgGDRqU55dcWFgYnn/+eXh5eSExMRE3b960/CJ50MmTJ6HRaDBs2DDI5XI0adIEbdq0wY4dO4q1rLdu3cKhQ4cwefJk+Pj4ICgoCC+99FKe9h577DH06NEDXl5e6NKlC1JTUzFy5EjI5XI0b94ccrkcV65csYzfunVrxMTEQC6XY9y4cThx4gRSU1Nx4MABVKlSBT169IBMJkOdOnXQsWNH7NmzxzJt27ZtERUVBalUCoVCgdjYWISHh0MqleLpp5/Gs88+iyNHjhRrWe9LTEzEU089BZlMhqysrCKX3xbbtm3DSy+9hKpVq8LX1xfjx4/Hzp07YTQasW3bNjRt2hRdu3aFt7c3AgMDERERAQB2LeeBAwdQrVo1dO/eHTKZDF27dkWNGjXwww8/WMZ57rnnUL16dSiVSnTq1MmyThdXQkICatWqBR8fH4wdOxa7d++27Oly1OezqHXTlm1GfmxZr63pn9GjR8PHxwdKpdLy2urVq7Fy5UqsWbMG1apVA2DdNvbBddTb2zvPfE6dOoX09HS8/vrr8PHxybPsha1/D0pNTcX//d//YcKECVAoFIiIiECvXr3w7bffWv3+DRgwAKGhoXmWtzCBgYHo2LEjVCoV/Pz8MGLECBw9ejTPOAWtp7t3786zXRk7diyk0oK/imUyGf7++2/k5OSgXLlyqFOnTp7hY8eOhVwuR6NGjdCqVSvs2rULQghs2LABkydPRvny5eHn54ekpCTL+vb111+jd+/eqF+/vmU77e3tjRMnTuDkyZMwGAwYOHAgvL290alTJzzzzDNWv5f3tW/fHnXr1oVCoUD79u2hUCjQvXt3yzr64Oe2sO9T4N55mQMGDIBMJrP0kdFoxPjx45GVlYVly5ZBpVIBANatW4dhw4ahZs2akMlkGD58OP744488e9WGDRuG8uXL59vfMpkMd+7cweXLl+Hl5YW6devCz8+vwOU8duwYPvzwQyxbtgx+fn425Q5rldqTfypWrIjAwEA89dRTBY6TkpKC3bt359nIG41GxMbGPjJueno6QkNDLX8XFP7u27JlC1atWmXpfI1Gg8zMTADAxIkTsWDBAvTs2RPlypXDoEGD0LNnz0faMJlMmD9/Pnbv3o3bt29bPqyZmZnw9/cvdP7WCg4OtvxfpVIhPT0dwL2NW6tWrWxuLzMzEwaDIc/7ExYWhhs3blj+rlixYp55Asj3aqD09HRUrlw5z0bq4bZskZKSAqPRiObNm1teM5vNefr1wfOH7n9IH6xXoVBArVZb/q5cubLl/76+vihXrhzS09Nx/fp1nDp1Ks8XqslkynNS/IPzBe4F07lz5+Kvv/6CwWCAXq9Hp06dirWs+c3DmuW3RXp6OqpUqWL5u0qVKjAajcjIyEBqaioef/zxfKezZznT09Mf+ew9vE48vE7be6XZw597g8GAzMxMBAYGOuzzWVTfWLvNKIgt67U1/fPgen/fypUrMXLkyDzDrNnGFrb+paamIiwsLN/zUAtb/x4er1y5cnm+TMPCwvD7778XON+H2foZ0Wq1eOedd3D48GFkZWUBANRqNUwmE7y8vAAUvJ7e3+7d5+Pjg/Llyxc4r4ULF2LZsmX44IMPEB4ejtdeew2RkZEAgICAAPj4+FjGDQsLQ3p6Om7fvg2tVms5JQjIe45gSkoKtmzZgi+++MIy3GAwID09HRKJBJUqVcpzLnRR34f5eXidfHB9VCqVeT63hX2fAvmvj1euXMG5c+ewYcMGyOVyy+spKSmYPXs25syZk2fZb9y4YVmfCuvvhIQEpKWlYfz48bh79y7i4+Mxbty4R35kAPfW31dffRXvvvsuqlevbpm/tbnDWqU2qFkjNDQUCQkJePvtt4scNzg4GKmpqZa/H/z/w65fv44pU6bgs88+Q2RkJLy8vJCQkJCnrfvzPHbsGAYNGoSYmBjLr9D7tm3bhv3792PVqlV47LHHkJ2djZiYGAghrFo+lUqV55yD/PZaFSQ0NDTPniNrBQYGwtvbGykpKXjyyScB3HuvKlWqZHNbISEhSEtLg9lstnwJpqam4oknnrBq+ocvqqhcuTLkcjl+/fVXh12A8OB5J2q1GllZWQgJCUFoaChiYmKwatUqq9t67bXX0L9/f6xYsQIKhQKzZs2ybIzyu0DEmv59cDpHL39ISEieX6EpKSmQyWQICgpCaGhonl+8D7J1OR+eZ0pKSp7XUlNT0aJFCzuXpmAPf+7v7yG09/P5oKL6xtpthiMU1j/35ddPn376KYYOHYqKFSuiY8eOAKzbxhbW56GhoUhNTYXRaHzkfSls/XvwcxkSEoKsrCzk5ORYwtqD2yRbP0fW+PTTT3Hp0iV8/fXXCA4Oxh9//IHu3btbtW6EhITgwoULlr+1Wm2e8yIfVq9ePSxbtgwGgwFr167Fq6++atk7c/fuXWg0GktYS01NxVNPPYXAwEAolUrs2LEj321zaGgohg8fjhEjRjwy7MiRI7hx4waEEJb3JSUlBVWrVi1y2YqjqO9TIP/+qVGjBvr164eXX34Zq1evRo0aNQD8u2yFXUleWH97e3tj1KhRGDVqFK5du4Zhw4ahevXqee6CANy7Pc/IkSMxcODAPDs9bMkd1iq1hz6tER8fjx9++AGHDx+GyWSCTqdDcnJyng/5fZ07d8aaNWuQlpaGrKwsfPzxxwW2q9VqIZFIUKFCBQDAN998k+cigF27dlnmUa5cOUgkknx3bavVasjlcgQGBkKr1WLevHk2LV9ERAQOHjyIO3fu4ObNm1i9erXV0/bs2RObNm3CL7/8ArPZjBs3blg2HhUrVizwnmleXl7o1KkT5s+fj5ycHFy/fh2rVq0q1u0V6tWrB5VKhRUrVsBgMCA5ORnff/89unTpYtX0QUFBuH79uuVXYkhICJo1a4Z3330XOTk5MJvNuHLlil2HFw8ePIhjx45Br9djwYIFqF+/PkJDQ9G6dWv8888/2LJlCwwGAwwGA06dOpVnA/wwtVqNcuXKQaFQ4NSpU9i+fbtlWIUKFSCVSvO87xERETh69ChSUlKQnZ2Njz76qNBaHb38Xbt2xerVq3H16lWo1WrMnz8fnTt3hkwmQ7du3fDzzz9bDkVlZmZaDmXYupwPatWqFf755x9s27YNRqMRO3fuxN9//43WrVsXaxnunxxf2K0ytm7dir///htarRYLFixAx44d4eXlZffn80FF9Y212wxHKKx/CvPkk09ixYoVmDlzpuWiH1u2sfmpV68egoOD8cEHH0Cj0UCn0+H//u//ABS+/j0oNDQUkZGRmDdvHnQ6Hc6dO4eNGzeiW7duAOzbThZErVZDoVAgICAAd+7cweLFi62etmPHjjhw4IBlu7Jw4cICr4bV6/XYunUrsrOz4e3tDV9fX8seu/sWLVoEvV6PY8eO4cCBA+jUqROkUil69eqF2bNnW/ZA3rhxA4cPHwYA9OrVC+vWrcPJkychhIBGo8GBAweQk5ODBg0aQCaT4fPPP4fRaMTevXtx+vTpYr5TRSvq+7QwXbt2xfjx4zFo0CDLjoc+ffrg448/trSRnZ2NXbt2WV3Pr7/+ij///BMmkwl+fn6QyWSPvOcAMHnyZFSvXh0vv/xyntft/Uzkp0wHtdDQUCxduhQfffQRmjRpglatWmHlypX5fiief/55NG/eHAkJCUhMTMz3apD7nnzySQwePBh9+vRB06ZNcf78eTRs2NAy/PTp0+jVqxciIyMxYsQIvPnmm/n+GunevTvCwsLQokULPPvss2jQoIFNy5eQkICnn34acXFxGDx4sNUBB7i3gXznnXcwe/ZsREVFoX///pY9GS+++CL27NmDmJiYfH8VTJ06FSqVCu3atcMLL7yArl27okePHjbVDty779WyZctw6NAhNG7cGP/973/x3nvvWXWuHADL4ZrY2FgkJiYCAN577z0YDAZ06dIFMTExGDNmDG7evGlzbfd17doVS5YsQWxsLM6cOYP3338fAODn54eVK1di586daNGiBZo3b465c+dCr9cX2Nb06dOxcOFCREZGYsmSJejcubNlmEqlwvDhw9G3b19ER0fjxIkTaNasGbp06YL4+Hg899xzaNOmTZH1OnL5e/Togfj4ePTv3x9t27aFXC7H1KlTAdw7FPLJJ59g1apVaNSoEbp37265aszW5XxQYGAgli9fjlWrViE2NhYrVqzA8uXLLRtxW6WlpaFKlSqF7vFNSEjApEmT0KxZM+j1essNs+39fD6ssL6xdpvhCIX1T1GefvppLF++HFOnTsXBgwdt2sbmx8vLC8uXL8fly5fRpk0btGzZ0vKlWtj697B58+bh+vXraNGiBUaNGoXRo0ejWbNmAOzbThZk4MCB0Ol0aNy4MXr37m3THt+nnnoK06ZNw4QJE9CiRQsEBATke2jvvm+//RZxcXFo2LAh1q1bh/fee88yrGLFiggICECLFi0wYcIEzJgxw7L9nDhxIqpVq4bnn38eDRs2xEsvvYRLly4BAJ555hm89dZbmDlzJmJiYtChQwfLVdtyuRyLFi3C5s2bERMTg507d6J9+/bFeZusUtT3aVESExMte7auXbuG9u3bY+jQoRg/fjwaNmyIrl272nTfwVu3bmHMmDGIiopCly5d0KhRo3x3ROzYsQP79u3Lc+XnsWPH7P5M5EciirMfn8gDTJo0CZUqVXLpDWFdacqUKdixYweCgoKwb9++ki7Hbnq9Hk2bNoXRaMTQoUMxatQoLF26FBUqVECfPn1KujyHOHr0KIYMGQK5XI758+c79ZCwJxs0aBBOnDiBevXqOWQPnDMkJydj4sSJJX7z46VLl+Ljjz+GTCbDoUOH8pwzR4+aPHkydu/ejaCgoDy3ISkMgxpRAcp6UCOi0stdgho5X5k+9ElERERUmnGPGhEREZGb4h41IiIiIjfFoEZERETkpsrEDW8zM9Uwm513BDcoyA8ZGTlOa5/cC/vbs7C/PQf72rO4Y39LpRIEBvraNE2ZCGpms3BqULs/D/Ic7G/Pwv72HOxrz1IW+puHPomIiIjcFIMaERERkZtiUCMiIiJyUwxqRERERG6KQY2IiIjITTGoEREREbkpBjUiIiIiN8WgRkREROSmysQNbx1Nr9dj167tWL36U6SmpsJkMsDX1w9NmjTD0KHDUaNGzZIukYiIiDwAg9oDNBoN5s9/H6tWfQKTyQy1Ou+jJ86f/xNr1qxGvXr1MWXKDDRp0qyEKiUiIiJPwEOf/5ORkYHOndti+fIluHv37iMhDQAMBgN0ulwcPZqM3r2fw5o1n7m+UCIiIvIYDGoA1Go1EhI64e+/z0Ony7VqmtxcLaZMeQMbN653cnVERETkqRjUAPznPxNw+fI/MBgMNk2n1WoxfvwYXLly2UmVERERkSfz+KCWlXUHW7Z8A51OV6zpzWYTVq78yMFVERERETGoYf36LyGRFP9t0Ov1WLPms2IHPSIiIqKCeHxQ++ST5dBqNXa3s3fvbgdUQ0RERPQvjw9qN26k2d2GTqfD1atXHFANERER0b88Pqjp9Xq72zAYDNBo1A6ohoiIiOhfHh/UFAql3W3I5XL4+/s7oBoiIiKif3l8UKtevbrdbcjlcjz1VLgDqiEiIiL6l8cHtVdeGQNfXz+72lAqVWjVqo2DKiIiIiK6x+ODWnx8ol3TK5UqJCWNhJeXl4MqIiIiIrrH44OaUqnEsGEj4OPjU6zpZTIZ+vcf6OCqiIiIiBjUAACvvz4ZjRo1hlKpsmk6lUqFL7/cgKCgICdVRkRERJ6MQQ2Al5cX1qxZj9at46zasyaTecPX1xdr125A48ZNXVAhEREReSIGtf9RKBT47LO1mD9/MerWfQZKpeqR8858fX2hUvlgwICBOHDgFzRv3rKEqiUiIiJPICvpAtyJVCpFYmJPJCb2xNmzZ/D111/i6tUrMJkM8PMrh6ZNm6N79x7FPp+NiIiIyBYMagWoXbsOZsyYBQAIDvbHzZvZJVwREREReRoe+iQiIiJyUwxqRERERG6KQY2IiIjITfEctTIuJeU6Tp48gbt3s6BUKhEWVgVRUTGQSpnRiYiI3B2DWhlkNptx6NABLFmyAL/++jPkcgXMZhMkEimEEPDz88OIEaPxwgv9Ub58YEmXS0RERAWQCCFESRdhr4yMHJjNzluM0nTV5507mejdOxHnz/8JtVpd4HgqlQoSiQQrV36Otm07uLBC91ea+pvsx/72HOxrz+KO/S2VShAU5GfbNE6qhUpAVtYdtG/fGmfO/F5oSAMArVYLjUaDQYMGYPv2rS6qkIiIiGzBoFZGCCHQt29PpKZeh16vt3q63FwtRo58GadPn3JidURERFQcDGplRHLyLzh79oxNIe2+3NxcvPfeLCdURURERPZwWVDT6XSYPn06OnTogG7dumHq1KkAgEuXLqF3797o2LEjevfujX/++cdVJZUpS5YsgFarKda0QggcOPA9bty44eCqiIiIyB4uC2rvv/8+FAoF9uzZg23btmHs2LEAgOnTp+OFF17Anj178MILL2DatGmuKqnMuHnzJn744XvYe13ImjWrHFQREREROYJLgpparcaWLVswduxYSCQSAEDFihWRkZGBs2fPomvXrgCArl274uzZs7h9+7Yryiozzp07C4VCYVcbOp0Oycm/OKgiIiIicgSX3Eft6tWrKF++PBYvXozk5GT4+vpi7NixUCqVqFSpEry8vAAAXl5eCAkJQWpqKipUqOCK0sqEu3fvOqSdrKw7DmmHiIiIHMMlQc1oNOLq1auoXbs23njjDZw8eRLDhw/HggULHNK+rfckKY7gYH+nz6O4QkODIJUC0Yq3AAAgAElEQVRK7G6nXLkAt15OV+L74FnY356Dfe1ZykJ/uySohYWFQSaTWQ5x1q9fH4GBgVAqlbhx4wZMJhO8vLxgMpmQnp6O0NBQm9r39Bve+vkFFetqzwdJpVI89lg1t15OV3H3/ibHYn97Dva1Z3HH/nbbG95WqFABsbGx+OmnnwDcu9IzIyMDTzzxBCIiIrB9+3YAwPbt2xEREcHDnjaqVSscVas+blcbCoUCgwYNdVBFZK/ffz+NUaOSEB7+BB57rCKqVg1GRER1jBs3Cn/+ea6kyyMHu3r1Ct56azoSEjqjTZtmePbZ9nj11Vdw6tSJki6NiEqYyx4hdfXqVUyePBl37tyBTCbDq6++ilatWuHChQuYNGkS7t69i4CAAMyZMwc1atSwqW1P36MGAOvXf4lJk14r8okEBalV62n8+OMRB1dVOpVkfx85kozXX38Vly5dhF6vh8lkyjNcJpNBJpMhPPxpzJ27APXrR5ZInWVJSfb30aPJePfdt3HkyK8QAtDrdZZhXl5ekMsVqFr1cUyY8Aa6d+9RIjWWJaVhW06O4479XZw9anzWpxXcsbMflpubi/r1w5GZmWnztD4+Ppg3bxGee66XEyorfUqqv7dt24JRo5Kg1WqtGl+lUmHlys/Rrl1HJ1dWtpVUf3/11Rd4443XkJtbdH+rVD7o3bsv3n33A0ilvE95cZWGbTk5jjv2t9se+iTnUyqVWLduE1QqH5umU6lU6N69BxITezqpMrLGwYM/YORI60MacO95rUOGvIgjR5KdWBk5w5Yt32DSJOtCGgBotRp8/fVXmDp1kpMrIyJ3w6BWhkRGRmH9+k3w8/Oz3PKkMD4+PujR43l88MFCy/3tyPV0Oh0GDx5g9Zf2g7RaLQYO7AOj0eiEysgZ0tJSMWbMKzaFcgDQaDRYu/Zz7N+/10mVEZE7YlArYxo3borvv/8Jffr0g1Kpgo9P3j1sXl5eUCpVeOaZeli06CN88MFCq0IdOc+2bVtgNpuLPX1urg779vHLu7RYtWoFhChef2s0Gnz44QcOroiI3BnPUbOCOx7ntkZOTjY2blyPn376EbdvZ0Cl8sETT1RHv34vIiKidkmX57Zc3d+tWjXGH3+ctauNmJhY7NjxnYMq8iyu7G+DwYDatWsgKyur2G0oFAocPnwETzxR3YGVeYbSui2n4nHH/i7OOWouuY8alQw/P3+89NJQvPQSb7vhri5f/geXLl20u52TJ0/g5s2bCA4OdkBV5CyHDx+EyVT8vacAYDab8fXX6/D66/9xUFVE5M546JOoBN24cQNyudzuduRyOW7eTHdAReRMaWmpMJtNRY9YCIPBgMuXLzmoIiJydwxqRCVIp8t1SDsSiaRYFyOQa+Xm5tp1PuJ9Go3GAdUQUWnAoEZUggICAuCI00TNZhPKlSvngIrImcqVKweZzP4zToKCghxQDRGVBgxqRCWoZs2nYDA44tYaEjz2mH2PESPni4yMsru/fX390KRJMwdVRETujkGNqAT5+fkhMbGHXbdI8faWo1+/F6FQKBxYGTlDjRo18cwz9exqQyKRoGvXBAdVRETujkGNqIQlJY2Et3fxLyiQSiUYOjTJgRWRM40ePQ6+vr7FmtbbW44XXxzEUE7kQRjUiEpY7dp10Lhx02J9+SqVSrRv34n31CpF2rfviGrVqsPb29vmaX18fDB8+EgnVEVE7opBjcgNfPrpGjz+eDWbbtWhUCjw1FPhWLr0EydWRo4mk8mwceNWhIRUsnpPqkQiga+vL775ZisqVw51coVE5E4Y1IjcgJ+fH3bt2o969RpYdVjM19cXMTGx2Lp1N5RKpQsqJEeqWLEi9u8/jDp16sLX17fQZ+36+fmhYsVg7Nr1PerVa+DCKonIHTCoEbmJgIBy2Lp1N5Ys+QRRUTFQKpWWECaRSCx/N27cFB9/vAobN24t9rlOVPIqVAjCnj0/4KuvvkGHDp2gUCgQEBBg+adUKtGgQSQWLFiKEyf+wNNPR5R0yURUAvisTyu44/PCyHncpb8vXPgLP/ywH5mZmQCAChUqIC6uPapXr1HClZUt7tLfN2/exIULf+Hu3Sz4+Pjisceq8txDB3OXvibXcMf+5rM+icqQmjWfQs2aT5V0GeQiwcHBfFYrET2Chz6JiIiI3BSDGhEREZGbYlAjIiIiclM8Ry0fQgj88stPWLv2c1y7dhVGox7+/uXQtGlz9Os3kA9EJiIiIpdgUHuA0WjE6tWfYvHiD3HnTiY0Gg0evCj2559/wvvvv4MOHTrjtdfeQO3adUqwWiIiIirrGNT+JycnB/369cKJE79Bq9XkO05urhYAsGPHVuzbtwfLl3+Kzp2fdWWZRERE5EF4jhoAvV6P55/vjuPHjxUY0h5kNpuh1WqRlDQY+/fvdUGFRERE5IkY1ADMnDkVZ86chk6ns2m63Fwthgx5ETdupDmpMiIiIvJkHh/U1Go11qz5DFqttljTm81mfPbZpw6uioiIiIhBDZs2bYBEUvy3ITc3FytXLofRaHRgVUREREQMali+fDE0GrVdbRiNRuzf/52DKiIiIiK6x+OD2rVrV+1uQ6fT49KlCw6ohoiIiOhfHh/UbL2AID8Ggx7Z2dkOqIaIiIjoXx4f1ORyhd1teHvL4efn74BqiIiIiP7l8UGtSpUqdrehUChQvXoNB1RDRERE9C+PD2rDh4+Cj4+vXW14eUnRtm17B1VEREREdI/HB7UePZ6HEOZiT69QKDBo0Mvw9vZ2YFVEREREDGrw8/PDCy8MgFKpKtb0Xl5eGDRoqIOrIiIiImJQAwDMmDELERERUChsu7BApVLh449XITQ0zEmVERERkSdjUMO9w5cbN25FgwaRUKmK3rMmkUigUqmwePFH6NChswsqJCIiIk/EoPY//v4B2LRpB/7zn2moXDkUvr6PXmCgUCihUCjQqVMXbN/+Hbp1614ClRIREZGnkAghREkXYa+MjByYzY5bDCEEDh8+iC+++AzXr1+H0aiHn18AmjVrgQEDBiE4ONhh8yL3Exzsj5s3eQNjT8H+9hzsa8/ijv0tlUoQFORn0zQyJ9VSqkkkErRs2RotW7YG4J6dTURERGUfD30SERERuSkGNSIiIiI3xaBGRERE5KYY1IiIiIjcFIMaERERkZtiUCMiIiJyUwxqRERERG6KQY2IiIjITTGoEREREbkpBjUiIiIiN+WyR0jFxcVBLpdDoVAAACZMmIAWLVogPDwctWrVglR6LzO+9957CA8Pd1VZRERERG7Lpc/6XLhwIWrVqvXI6+vWrYOvr68rSyEiIiJyezz0SUREROSmJEII4YoZxcXFwc/PD0IIREVFYfz48QgICEB4eDjq1KkDk8mEli1bYvTo0ZDL5a4oiYiIiMituSyopaamIjQ0FHq9HrNmzYJarcbcuXMtr+fk5GDixImoVasWxo0bZ1PbGRk5MJudtxjBwf64eTPbae2Te2F/exb2t+dgX3sWd+xvqVSCoCA/26ZxUi2PCA0NBQDI5XK88MILOH78eJ7X/fz80KtXL8vrRERERJ7OJUFNo9EgO/teqhVCYOfOnYiIiEBWVhZyc3MBAEajEXv27EFERIQrSiIiIiJyey656jMjIwOjR4+GyWSC2WxGzZo1MX36dFy8eBHTpk2DRCKB0WhEZGQkxo4d64qSiIiIiNyeS4Ja1apVsWXLlkdeDwkJwbZt21xRAhEREVGpw9tzEBEREbkpBjUiIiIiN8WgRkREROSmGNSIiIiI3BSDGhEREZGbYlAjIiIiclMMakRERERuikGNiIiIyE0xqBERERG5KQY1IiIiIjfFoEZERETkphjUiIiIiNwUgxoRERGRm2JQIyIiInJTDGpEREREbopBjYiIiMhNMagRERERuSkGNSIiIiI3xaBGRERE5KYY1IiIiIjcFIMaERERkZtiUCMiIiJyUwxqRERERG6KQY2IiIjITTGoEREREbkpBjUiIiIiN8WgRkREROSmGNSIiIiI3BSDGhEREZGbYlAjIiIiclMMakRERERuSlbSBRARlSVGoxF79uzC6tUrcf36dej1OgQElEOrVm0wePDLeOyxqiVdIhGVIgxqREQOYDAYsHDhPHz00VIYDAao1Tl5hv/55x/45JNliI1tjOnT38Yzz9QvoUqJqDThoU8iIjvl5GQjMbELFi6chzt3Mh8JaQCg1+uh0+lw6NBBdO3aAbt37yyBSomotGFQIyKyg8FgQN++PXDy5AlotVqrptFqtUhKGoQffzzk5OqIqLRjUCMissPSpQtx6tRJ6HQ6m6bTarUYOLCv1eGOiDwTgxoRUTGZTCYsX7642GHLbDbj2283ObgqIipLGNSIiIpp//69yM21bU/ag9RqNRYt+tCBFRFRWcOgRkRUTJ9/virfCwdsce3aFVy8eMFBFRFRWcOgRkRUTNevX7e7DW9vb6SnpzugGiIqixjUiIiKSa/XO6id4h8+JaKyjUGNiKiYypcvb3cbQgiUK1fOAdUQUVnEoEZEVExt2rSFQqG0qw2TyYRatZ52UEVEVNYwqBERFdOLLw4GIIo9vbe3N/r27Q+VSuW4ooioTGFQIyIqppCQELRp0xYSiaRY03t5eeHll4c7uCoiKksY1IiI7PDmmzOgUvnYPJ1KpUJ8fCJq1HjSCVURUVnBoEZEZIfw8KexevWXNh2+VKlUiIqKwfz5i51YGRGVBQxqRER2atWqDb75ZhsCAwPh6+tX4Hje3nIoFAokJDyH9es3w9vb24VVElFpJCvpAoiIyoLo6Eb4/fe/sWvXdixaNB/nzp2DXC6HRHLvmZ5CAP37D8TQoUmoVu2Jki6XiEoJlwW1uLg4yOX3fk0CwIQJE9CiRQucOHEC06ZNg06nQ5UqVfD+++8jKCjIVWURETmMt7c34uMTER+fiJSU67hxIw06nQ4BAeVQo0ZNKJX23cqDiDyPS/eoLVy4ELVq1bL8LYTAxIkT8c477yA6OhpLly7F3Llz8c4777iyLCIihwsLq4KwsColXQYRlXIleo7a6dOnoVAoEB0dDQDo06cPdu/eXZIlEREREbkNl+5RmzBhAoQQiIqKwvjx45GamoqwsDDL8AoVKsBsNuPOnTs2PZolKKjgk3cdJTjY3+nzIPfB/vYs7G/Pwb72LGWhv10W1NauXYvQ0FDo9XrMmjULM2fORPv27R3SdkZGDszm4t8dvCjBwf64eTPbae2Te2F/exb2t+dgX3sWd+xvqVRi884llwW10NBQAIBcLscLL7yAESNG4MUXX0RKSoplnNu3b0MikTjkQcdEVAqZzfA+fBDev/wE6a2bEEolzFWqQpeQCLODzvfSaDTYvv1bnDv3B+7cyURoaAiqVq2Bbt26w9fX1yHzICJyFJcENY1GA5PJBH9/fwghsHPnTkRERKBu3brIzc3FsWPHEB0djXXr1qFz586uKImI3Igk+y6UX3wO1bJFkGTfhUStxv2HMgmFAr6z/wt942bQjhkHQ4tWxZrHP/9cwkcfLcFXX30BiUQCtVptGebr64s33hiPXr364JVXRvNpAUTkNiRCCOcdM/yfq1evYvTo0TCZTDCbzahZsyamTJmCkJAQHD9+HNOnT89ze46KFSva1D4PfZIjsb9dS3rlMsp37wJpxi1ItNoCxxMAoPKBtv+LUL/1LiC1/lqo/fv3YsiQF2EwGGAwGAocTyaTwdvbG8uXf4rOnZ+1YSmoNOBn27O4Y38X59CnS4KaszGokSOxv11HmpqCwLhmkGRmQmI2WzWNUPkgt+fzyJm7ALDiYejff78PL73UD7m5BYfAh6lUKoa1Moifbc/ijv1dnKDGR0gRUckQAuV6J0KSlWV1SAMAiVYDxcavofj6qyLHTUm5jsGD+9sU0gBAq9Vi+PAh+OefSzZNR0TkaAxqRFQivJN/gfTKFUiMRpunlWo18H1/NlDEAYGVKz+GsRjtA4DRaMDHHy8t1rRERI7CoEZEJUK1ZAEkWk2xp5fcyoAs+dcCh+v1eqxevRJ6vb5Y7RsMBnz55RpoCzlvjojI2RjUiMjlJJm3IT/wPSR2nCIr0WqgKmSP1969u2G24ZBqvvOQSLFjx1a72iAisgeDGhG5nPTaNQi53K42JEJA9tefBQ6/dOkicnNz7ZqHWp2DS5cu2tUGEZE9GNSIyOUkarVVV2xa1U4B1OqcYp+f9qCsrDt2t0FEVFwMakTkcsLfv8gLAaxupwD+/gGQybztal8ikSAwsIJdbRAR2YNBjYhczvz445AU8yT/+4SXFwx16xU4vFatWlAqFXbNw9fXF7VqPW1XG0RE9mBQIyKXE/4B0HXuBmHD0wUeIVcgN+mVAgfHxbWHXG5fUJNKpejYkY+1I6KSw6BGRCVCO3I0oFAWe3pT1aow1mtQ4HAvLy8MGzYCSmXx5qFQKPDSS0Mht/OiByIiezCoEVGJMNaPhPGZesW6+lOoVFBPnl7keC++OLjYQcvb2xtDhgwr1rRERI7CoEZEJSbri/Uwh1SC8Lb+pH+zygeaV8ZA36VrkeNWrFgR69dvhkrlY1NdKpUKa9duQGhomE3TERE5GoMaEZUYUT4QmXsPwvRUOMy+voWP6+UFoVRCM/E/0Lw+2ep5REXFYNOmbQgICIBSqSp0XKVSCX9/f6xfvxlNmjSzeh5ERM7CoEZEJUpUrIjMvQeQM38xDHWfgVCpYFaq7gUzbznMfn4QShVye7+AzD0HoB011uZ7sEVFxeDIkZOYOHESgoND4OfnB4VCAalUCoVCAT8/PwQFBWHcuIlITj6Jxo2bOmlpiYhsIxHCATczKmEZGTkwm523GMHB/rh5M9tp7ZN7YX+XLK+zZ+B95FdIsu4AcgXMISHQd+gE4R/gkPbNZjMOHvwBFy78hezsbFSuXBEhIVXQunVbeHl5OWQe5J742fYs7tjfUqkEQUF+Nk3DoGYFd+xsch72t2dhf3sO9rVnccf+Lk5Q46FPIiIiIjfFoEZERETkphjUiIiIiNwUgxoRERGRm2JQIyIiInJTDGpEREREbopBjYiIiMhNMagRERERuSkGNSIiIiI3xaBGRERE5KZkhQ3s16+fVY0oFAp8+umnDimIiIiIiO4pNKidPn0a//3vfwttQAiBWbNmObQoIiIiIioiqEVGRiIxMbHIRrZv3+6wgoiIiIjonkLPUVu9erVVjfCwJxEREZHjFbpHrSAXLlzAX3/9hapVq6JOnTqOromIiIiIUIygtnbtWqxbtw61atXC77//jrZt2+L11193Rm1EREREHq3IoHbmzJk8e812796NzZs3QyaTQa1WIy4ujkGNiIiIyAmKDGrz58/H448/jvHjx8PPzw8hISH49NNPUbduXSQnJ6NatWquqJOIiIjI4xR5w9sVK1YgOjoaAwYMwJYtWzB9+nRkZWVh1apVuHv3LhYuXOiKOomIiIg8jlXnqHXp0gUtW7bEggULsHnzZkydOhVPPvmks2sjIiIi8mhWBbUzZ87g6tWr6N27NwwGA6ZNm4YGDRpgzJgxUCqVzq6RiIiIyCMVeehzzpw5ePXVV7F3716MHDkSR48exdq1a1G1alU8//zz2Lt3ryvqJCIiIvI4RQa1TZs2YfPmzZg3bx42bNiATZs2QSKRoG/fvli1ahX279/vijqJiIiIPE6RQe2JJ57Ajh078M8//2Dbtm2oXr26ZVhQUBDmzJnj1AKJiIiIPFWRQW3BggU4d+4cZs2ahZSUFMyYMcMFZRERERFRkRcTVK5cGdOnT3dFLURERET0gEL3qG3YsMGqRqwdj4iIiIisV2hQe+eddyCEgNlsLvCfyWTC+++/76p6iYiIiDxGoYc+NRoNateuXWgDQggoFAqHFkVERERERQQ1a2+9IZFIHFIMEREREf2r0KBWpUoVV9VBRERERA8p8vYcRERERFQyGNSIiIiI3JTLg9rixYsRHh6O8+fPAwDCw8PRrVs3JCQkICEhAX/++aerSyIiIiJyS0Xe8NaRzpw5gxMnTiAsLCzP6+vWrYOvr68rSyEiIiJyey7bo6bX6zFz5kxMnz6dV4kSERERWcFle9QWLFiA+Ph4VK1a9ZFhAwYMgMlkQsuWLTF69GjI5XKb2g4K8nNUmQUKDvZ3+jzIfbC/PQv723Owrz1LWehvlwS13377DadPn8aECRMeGXbgwAGEhoYiJycHEydOxJIlSzBu3Dib2s/IyIHZLBxV7iOCg/1x82a209on98L+9izsb8/BvvYs7tjfUqnE5p1LhR76LOzRUQ/+K8rRo0dx8eJFtG3bFnFxcUhLS8OQIUPw448/IjQ0FADg5+eHXr164fjx4zYtABEREVFZVegetdq1a1t1Ptkff/xR6PBhw4Zh2LBhlr/j4uKwfPlyVKpUCbm5uVAqlTAajdizZw8iIiKsLJ2IyE2ZzfD+8RC8Ll6ARK+DuXwgDK3awFypcklXRkSljNWPkDpw4AD27NmDpKQkhIWFISUlBZ988gk6dOhQ7JlfvHgR06ZNg0QigdFoRGRkJMaOHVvs9oiISpLkbhaUn62E6qOlkGg1gMkEidkMIZNBYjRC37I1NGNegzG2cUmXSkSlhEQIYdXJXe3bt8c333yDgIAAy2tZWVno0aMH9u3b57QCrcFz1MiR2N+exVH9Lb1yGeUTOkOSkQFprjbfcYREAiiVUI9/Hdqxr9k9T7INP9uexR372+HnqD0oOzsbWm3ejU9ubi6ys93rTSAicjXJzZso36UdpKkpBYY0AJAIAYlWC99570O1dJELKySi0srqqz4TExMxaNAgDBw4EJUrV0ZaWhrWrFmDxMREZ9ZHROT2/CaNh/T2bUisuLgKACRaDXzffQu6Z7vBXO0J5xZHRKWa1UFt4sSJePzxx7Fz506kp6cjODgY/fr1w/PPP+/M+oiI3JokIwOKvbshMRpsm9BkhmrFR1C/9Y5zCiOiMsHqoCaVStG3b1/07dvXmfUQEZUqyi9WQ0gksPV5KxKDHsovVkP95nRAqXRKbURU+hUa1DZu3GhVIz179nRIMUREpY384PeQ5uYWb2IJ4HXpIkwRtR1bFBGVGYUGtW+//bbIBiQSCYMaEXksiT0XVEml9k1PRGVeoUFtzZo1rqqDiKhUEn52PGvYLCD8S/+zCInIeay+PQcAZGZmYsuWLVixYgUA4MaNG0hLS3NKYUREpYGhcVMIhaJY00pMRph41ScRFcLqoHbkyBF06tQJ27Ztw5IlSwAAly9fxowZM5xVGxGR28sdOLhY0wmZDLm9+gA+Pg6uiIjKEquD2uzZs/Hhhx9i5cqVkMnuHTGtX78+Tp065bTiiIjcnblyKPTNW0J4edk2oUwGbdJI5xRFRGWG1UHt+vXraNKkCQBYHtTu7e0Nk8nknMqIiEqJnPfmQ/j7w9oH2Zl9fKB5eQRMT9Vyal1EVPpZHdRq1qyJw4cP53nt559/Rq1a3NAQkWczV30cd77dDVGhAoS3d+Hj+vgg94UB0EyZ4ZriiKhUs/qGt5MmTUJSUhJat26N3NxcTJs2Dd9//z2WLl3qzPqIiEoFU0RtZB78FapF86Fc+zkgkUCiVkMiBIS3HPDygvHpp6EZ9zr0nZ8t6XKJqJSQCCGs3VuPGzduYOvWrUhJSUFoaCji4+NRuXJlZ9ZnlYyMHJjNVi+GzYKD/XHzJu915CnY357FKf2t1UKxazu8Ll0EcnMhAitA364DTLXCHTsfsgk/257FHftbKpUgKMi2W/pYvUcNACpVqoSXX37ZphkQEXkclQq653qVdBVEVAYUGtSmTp2Kt956C8C9h7Lfv4jgYe+9957jKyMiIiLycIUGtccee8zy/2rVqjm9GCIiIiL6V6FBLSkpCbdu3ULFihUxatQoV9VERERERLDi9hzPPvsstmzZ4opaiIiIiOgBRV5MsGjRIkydOhU7d+7EW2+9hUqVKrmiLiIiIiKnunMnE/v3f4eMjFswGIwoX748mjRpiho1nizp0iyKDGqNGjXCtm3bsGjRIiQkJGDUqFGoWbNmnnHuP7GAiIiIyN2dOnUCS5cuwo4d2yCTyWAw6CGE+N8Tl8yoW/cZjB49Dh06dLI8NrOkWH0fNa1Wi/Hjx+PXX39FYGDgvw1IJNi/f7/TCrQG76NGjsT+9izsb8/BvvYs+fW32WzGf/4zAevWrYVery/0MZi+vr544oka2LhxK4KCghxSk9Puo/bLL79g6tSpqFOnDvbt2+ewgomIiIhcQQiBYcMG4bvv9kCr1RY5vlqtxvnzf6JduxbYv/8wKlQomexTZFCbPHkyDh06hClTpqBTp06uqImIiIjIoebOfRf79u2BVquxehqDQY/09HT07p2IvXsPFng/WWcq8qpPvV6P7du3M6QRERFRqaRWq7F48YfQaKwPafcZDHr8/fdfOHz4oBMqK1qRQW3u3LkoX768K2ohIiIicrhvvvkaEkmRkadA94NeSSh+1URERESlwL29aWq72vjll5+QknLdQRVZj0GNiIiIyiydTocrVy7b3Y5crsCJE785oCLbMKgRERFRmXXnzh3I5XK72zGbTbh7N8sBFdmGQY2IiIjKLIVCDrPZbHc7EonEIYHPVgxqREREVGYFBJRz0E3xJQgODnFAO7ZhUCMiIqIySyqVonPnZyGV2hd5ZDIvNG7c1EFVWY9BjYiIiMq0kSPHQKlUFnt6hUKBIUOS4O3t7cCqrMOgRkRERGVaZGQUwsKq2NGCBAMHDnZYPbZgUCMiIqIyTSKR4JNPVsPHx9fmaVUqFWbOnI3KlUOdUFnRGNSIiIiozKtTpy6+/HIDfH2tD2sqlQqjR4/DoEFDnVhZ4RjUiIiIyCM0bdocO3fuR716DaBUqiCTyfIdz8/PD8HBIZg/fzEmTJjk4irzYlAjIiIijxERURv79h3C3r0H0Lv3C/D394dEIoFEIoFCoUCzZi2wYjoit9sAABrVSURBVMVqnD59Hs8916uky4VECOGIm4uUqIyMHAfdIyV/wcH+uHkz22ntk3thf3sW9rfnYF97Flv622w2w2w2F7iHzVGkUgmCgvxsmsa5FRERERG5OalUavd91pzFPasiIiIiIgY1IiIiInfFoEZERETkpniOGhERlQjZyd+g/GQ5ZOf+gESjhvD3hyEqBtqhw2GuUbOkyyNyCwxqRETkUvJdO+D79nR4XbsG6HIhMZstw2S/n4bqi9UwPFMf6ulvw9gotgQrJSp5PPRJREQu4/PebAQMHwzZX+ch0WryhDQAkBgMkOTmQn40GeV7xkOxcX0JVUrkHhjUiIjIJVRLF8JnyUJItFqrxpfkauE/fgzke3c5uTIi98WgRkRETie9eAG+774NiVZj03SSXC38hw0G1GonVUbk3hjUiIjI6VQrlgMmU7GnV275xoHVEJUeLg9qixcvRnh4OM6fPw8AOHHiBOLj49GxY0cMHjwYGRkZri6JiIicSauF8qsvIDEYijW5VKOGauE8oPQ/8ZDIZi4NamfOnMGJEycQFhYGABBCYOLEiZg2bRr27NmD6OhozJ0715UlERGRk3n/8hNg5+N5vFJTIL121UEVEZUeLgtqer0eM2fOxPTp0yGRSAAAp0+fhkKhQHR0NACgT58+2L17t6tKIiIiF5Bm3ALM9u0NE97ekN7mERfyPC67j9qCBQsQHx+PqlWrWl5LTU217F0DgAoVKsBsNuPOnTsoX7681W3b+iT64ggO9nf6PMh9sL89C/vbyQJUgMS+JqQSCQIDfQE7+4p97VnKQn+7JKj99ttvOH36NCZMmOCU9jMycmC289daYYKD/XHzZrbT2if3wv72LOxv5/P29kGARGLXIRyhN+A2FDDb0Vfsa8/ijv0tlUps3rnkkqB29OhRXLx4EW3btgUApKWlYciQIRgwYABSUlIs492+fRsSicSmvWlEROTeDI2bQWLHFZ8AYK5UCeaqjzuoIqLSwyXnqA0bNgw//vgjvv/+e3z//feoXLkyVq5ciaFDhyI3NxfHjh0DAKxbtw6dO3d2RUlEROQqPj7Ifb4vhMy7WJObfXyhGfUqILHz+CnR/7d379FR1ffexz97JtdJJiEESIBDUamXYEVjYlJAygIseWSBoNaGWoEu9FAbtEHhWA4six5JXVApiICoxPbQCy4pcguuJQ+CyzZSSjDHHg88ttyeAyVcErnkMiSZmd/5g0MWqRoSksz8Mnm/1soiO3vv3/5uvpnkk7337N0FhfVZny6XS4sXL9aCBQtUX1+v/v376+c//3k4SwIAdALfDwsU99ZvJX/bb9HhyOjig9/thKoA+4UlqO3cubPp8zvvvFNbt24NRxkAgBAJDLpRtU8/o4SlL7Xp6QQmLl4XVq2REjv/TWOAjXgyAQAgJHyFs1X32A9l4uNbtbyJi1P1oiVqGDe+kysD7EVQAwCEhuOo7tnnVb1spQIDr1PQ45H5h+vOTFSUTFycGm+/Q+fXbVD99x4JU7GAHcJ6jRoAoPupv/87qp/0oKLK/qz4119V1GcH5NT5ZBIT1ZiVLd+MAgVuviXcZQJWIKgBAELPceS/K1fVd+WGuxLAapz6BAAAsBRBDQAAwFIENQAAAEtxjRoAANcoqnyf4levVPS+Mjk1FyS3W8GkZNXfO14Xp/+zgv80INwloosjqAEA0BbGKPbtdfK8vESuE3+Xc/GinGCwabbrzBm5X18lzxuvqjF3qGrn/Kv83xwaxoLRlXHqEwCA1mpokPexafL+5GlFHfybXHV1zULaZU5Dg5z6ekV/+IF65E9S3JrXwlAsIgFH1AAAaI1AQEnTHlbMR3+Q4/O1ahVHknw+JbywQAr4dfGHMzu1REQejqgBANAKCQsXKGb3H1sd0q7k8tUpsejfFL3r/U6oDJGMoAYAwFU4F84rvvh1OXWtf6D8F8a46FPCCz/twKrQHRDUAAC4iti3fifjav+vzKhDB+Xe/18dUBG6C4IaAAAtMUaeVS/L1Y6jaU0aGxX/2sr2j4Nug6AGAEAL3IcPynXuXIeM5fj9it22tUPGQvdAUAMAoAVO1ecyUR13kwSntkYypsPGQ2QjqAEA0AKn/mLHDhgMXvoAWoGgBgBAC0xystSRB8BiYiS3uwMHRCQjqAEA0ILA1wbKaajvuPEGXtdhYyHyEdQAAGiB6ZGihm//nw65PUcwIUF1Mws7oCp0FwQ1AACuoq7gSSkurv0DGaP6iQ+0fxx0GwQ1AACuwp91lwJ9+7XrUjUTE6P67z0ieTwdVhciH0ENAICrcRxdKP61jCfhmlY3UVEK9P8n1c7jEVJoG4IaAACtEBh8qy789m0FPQltOrJmomMU7JOm85velfEmdVp9iEwENQAAWqlx+Aid2/qegunpCiYmtriscbtl4uPVmHmnzu4qVbBvvxBViUjScbdaBgCgGwjcNkSflx9QzK4din9lmaI/LpOJiZUCAclxJJdLTmODLk64X77HZypw25Bwl4wujKAGAEBbud1quCdPDffkyfXf/19R//WpnPPnJLdbJiVFjXflyiT3CHeViAAENQAA2iH4tYFq+NrAcJeBCMU1agAAAJYiqAEAAFiKoAYAAGApghoAAIClCGoAAACWIqgBAABYiqAGAABgKYIaAACApQhqAAAAliKoAQAAWIqgBgAAYCmCGgAAgKUIagAAAJYiqAEAAFiKoAYAAGApghoAAIClCGoAAACWIqgBAABYiqAGAABgKYIaAACApaJCtaGCggIdP35cLpdLHo9Hzz77rDIyMjR69GjFxMQoNjZWkjRnzhyNGDEiVGUBAABYK2RBbdGiRfJ6vZKkHTt2aN68edq4caMkafny5brppptCVQoAAECXELJTn5dDmiTV1NTIcZxQbRoAAKBLcowxJlQbmz9/vkpLS2WM0Zo1a3TjjTdq9OjRSkxMlDFGWVlZevrpp5WUlBSqkgAAAKwV0qB22aZNm7Rt2za98cYbqqioUN++fdXQ0KCioiLV1tbqpZdeatN4VVU1CgY7bzd69/bqzJnqThsfdqHf3Qv97j7odfdiY79dLkepqYltW6eTamnRpEmTtGfPHp09e1Z9+/aVJMXExOjhhx/Wxx9/HI6SAAAArBOSoFZbW6uKioqm6Z07dyo5OVmxsbGqrr6Udo0xevfdd5WRkRGKkgAAAKwXknd9+nw+FRYWyufzyeVyKTk5WatXr1ZVVZWefPJJBQIBBYNBDRo0SAsWLAhFSQAAANYLSVDr1auX3n777S+dt2nTplCUAAAA0OXwZAIAAABLEdQAAAAsRVADAACwFEENAADAUgQ1AAAASxHUAAAALEVQAwAAsBRBDQAAwFIENQAAAEsR1AAAACxFUAMAALAUQQ0AAMBSBDUAAABLEdQAAAAsRVADAACwFEENAADAUgQ1AAAASxHUAAAALEVQAwAAsBRBDQAAwFIENQAAAEsR1AAAACxFUAMAALAUQQ0AAMBSBDUAAABLEdQAAAAsRVADAACwFEENAADAUgQ1AAAASxHUAAAALEVQAwAAsBRBDQAAwFIENQAAAEsR1AAAACxFUAMAALAUQQ0AAMBSBDUAAABLEdQAAAAsRVADAACwFEENAADAUgQ1AAAASxHUAAAALEVQAwAAsBRBDQAAwFJR4S4AAIBOZYxUVydFB6SgI7k4RoGug+9WAEBEcp06Kc+iIqXePFC9bhwgpaWp14De8v5wuqI+KQ93eUCrENQAABEnbu0v1fOuIfKsWCbXuXNy/H6poUFOY6NiN7+jHvfdq6Tpj0j19eEuFWgRQQ0AEFHi/v1NJT47V87Fi3K+JIg5waAcX51idvxfJU2dLAUCYagSaB2CGgAgYriOH7sU0ny+qy7rXPQp5k+7FffbtSGoDLg2IQtqBQUFuu+++zRp0iQ9/PDDOnDggCTpyJEjys/PV15envLz83X06NFQlQQAiDBxxa9LwWCrl3d8dfIsX3rpDQeAhRxjQvPdWV1dLa/XK0nasWOHVq5cqY0bN2rq1Kl68MEHNXHiRG3evFkbNmzQ2rVt++umqqpGwWDn7Ubv3l6dOVPdaePDLvS7e6HfESQQUOpNX5Orum39DHoSdP73m+XPzumkwhAONr62XS5HqamJbVunk2r5gsshTZJqamrkOI6qqqq0f/9+jR8/XpI0fvx47d+/X59//nmoygIARAjn88/lNDRc07ruv/21g6sBOkZI76M2f/58lZaWyhijNWvWqKKiQmlpaXK73ZIkt9utPn36qKKiQj179mz1uG1Np9eid2/v1RdCxKDf3Qv9jhANF6T//X3SFi4TVFKsS+L7IOJEwms7pEGtqKhIkrRp0yYtXrxYhYWFHTIupz7Rkeh390K/I0ggWr0aGuS0cbWgO0rVsV418H0QUWx8bVt96vNKkyZN0p49e5Senq5Tp04p8L9vjQ4EAjp9+rT69u0bjrIAAF1ZfLwahn9Lbf2z3QkE1DBqTKeUBLRXSIJabW2tKioqmqZ37typ5ORkpaamKiMjQyUlJZKkkpISZWRktOm0JwAAl/meKJRJSGj18iYqShfzvyd5PJ1YFXDtQnLq0+fzqbCwUD6fTy6XS8nJyVq9erUcx9Fzzz2nuXPnatWqVUpKStKiRYtCURIAIAI1jhgp/223K7p835fe7PYfmYRE1c2aE4LKgGsTsttzdCauUUNHot/dC/2OPE5NtZIfmKCo/3dAzsUvv/GtcbtlEhN17p1tCtw2JMQVIhRsfG13mWvUAADoLCbRq3Nb31Pt7GcUTO2lYGKiTGysFBNz6fO4eF3M/57O7vqIkAbrhfRdnwAAhERsrHyFs+V7YpaiP/xA7kN/kzfWrRpPshry7pVJ7Pq3bUD3QFADAEQut1uNo8aocdQYeXt7VW/ZqTDgajj1CQAAYCmCGgAAgKUIagAAAJYiqAEAAFiKoAYAAGApghoAAIClCGoAAACWIqgBAABYiqAGAABgKYIaAACApQhqAIAvMkYxWzepx5gR6jUwXamDB8lT9Jycs5+HuzKgWyGoAQC+IGHBPHmffFzR//mJHF+dXJVn5Hl1hVJG3y2nsjLc5QHdBkENANCM+z//ovh/f1OuurpmX3caGuQ6fUoJRc+FpzCgGyKoAQCaiV/7ptTQ8KXznMZGxW14W/L7Q1wV0D0R1AAAzbiO/becQOCrFwgE5Pjqvno+gA5DUAMANBO4JUMmOvor55u4OJmExBBWBHRfBDUAQDO+Hzwmud1fOs/Exsk37VHJxa8PIBR4pQEAmgled71q/u1Fmfh4mSsCmfEkyD/4VtX9y7+GsTqge4kKdwEAAPtc/MGj8mdlK37VK4r6j3KZniny/eAx1U98QIqJCXd5QLdBUAMAfCn/bber+tU14S4D6NY49QkAAGApghoAAIClCGoAAACWIqgBAABYiqAGAABgKYIaAACApQhqAAAAliKoAQAAWIqgBgAAYCmCGgAAgKUIagAAAJYiqAEAAFiKoAYAAGCpqHAX0BFcLicitgF70O/uhX53H/S6e7Gt39dSj2OMMZ1QCwAAANqJU58AAACWIqgBAABYiqAGAABgKYIaAACApQhqAAAAliKoAQAAWIqgBgAAYCmCGgAAgKUIagAAAJYiqAEAAFiKoPYP6uvrtWDBAo0dO1YTJkzQs88+K0k6cuSI8vPzlZeXp/z8fB09ejS8haLdjh8/rokTJzZ9jB49Wjk5OZLodyTatWuXJk2apIkTJ2rChAnavn27JHodqT744APdf//9mjBhgh555BEdO3ZMEv2OBIsWLdLo0aN18803669//WvT11vqbZfuu0EzL7zwgikqKjLBYNAYY8yZM2eMMcZMmTLFbNq0yRhjzKZNm8yUKVPCViM6x8KFC83zzz9vjKHfkSYYDJrs7Gzz2WefGWOMOXDggLnjjjtMIBCg1xHo3LlzJicnxxw+fNgYc6mv06dPN8bw2o4Ee/fuNSdOnDCjRo1qek0b03Jvu3LfCWpXqKmpMVlZWaampqbZ1ysrK01WVpbx+/3GGGP8fr/JysoyVVVV4SgTnaC+vt7k5uaaTz/9lH5HoGAwaHJyckxZWZkxxpg///nPZuzYsfQ6Qn3yySdm3LhxTdNnz541N910E/2OMFcGtZZ629X7HhXuI3o2OXbsmHr06KEVK1Zoz549SkhIUGFhoeLi4pSWlia32y1Jcrvd6tOnjyoqKtSzZ88wV42OsHPnTqWlpenWW2/Vp59+Sr8jjOM4WrZsmQoKCuTxeFRbW6vXXntNFRUV9DoCXX/99aqsrNRf/vIXDRkyRFu3bpUk+h3BWuqtMaZL951r1K7g9/t17NgxDR48WO+8847mzJmjJ598UnV1deEuDZ1sw4YNevDBB8NdBjqJ3+/Xa6+9plWrVmnXrl169dVX9dRTT/HajlBer1dLly7Viy++qAceeEBVVVVKSkqi3+iSOKJ2hX79+ikqKkrjx4+XJN1+++1KSUlRXFycTp06pUAgILfbrUAgoNOnT6tv375hrhgd4dSpU9q7d68WL14sSerbty/9jjAHDhzQ6dOnlZWVJUnKyspSfHy8YmNj6XWEGjZsmIYNGyZJqqysVHFxsfr370+/I1RLP7eNMV267xxRu0LPnj2Vm5ur0tJSSZfeJVJVVaXrrrtOGRkZKikpkSSVlJQoIyOjSxwyxdVt3LhRI0eOVEpKiiQpNTWVfkeY9PR0nTx5UocPH5YkHTp0SJWVlRo4cCC9jlBnzpyRJAWDQf3iF7/Q5MmT1b9/f/odoVr6ud3Vf6Y7xhgT7iJscuzYMc2bN0/nzp1TVFSUZs2apZEjR+rQoUOaO3euLly4oKSkJC1atEg33HBDuMtFB8jLy9P8+fP1rW99q+lr9DvybNmyRW+88YYcx5Ek/fjHP9Y999xDryPU/Pnz9fHHH6uxsVHDhw/XvHnzFBsbS78jwMKFC7V9+3ZVVlYqJSVFPXr00LZt21rsbVfuO0ENAADAUpz6BAAAsBRBDQAAwFIENQAAAEsR1AAAACxFUAMAALAUQQ0ALLFu3ToNHjxYmZmZOnbsWLvGqq6uVmZmpm699VatWrWqgyoEEGoENQDtkpmZ2fRxyy23aMiQIU3TW7ZsCXd57TJ8+HCVlZWFdJs5OTkqLy/XgAEDJEl1dXV6/PHHdffdd6u4uLjZsgcPHtQTTzyh3NxcZWdna+LEiVq7dq2MMfJ6vSovL9fYsWNDWj+AjkVQA9Au5eXlTR/9+vXT6tWrm6bvu+++cJf3lfx+f5fYxoYNG5STk6P3339fpaWlOnnypKRLN/DMz8/X9ddfr5KSEpWVlWnJkiUqKytTQ0NDu7cLwA4ENQCdKhAIaOXKlRozZoxyc3M1e/ZsXbhwQdKlsDF48GCtX79eI0aMUG5urn7/+9+rvLxc48ePV3Z2tl588cWmsdatW6epU6fqpz/9qe68806NGzdOe/fubZp/7tw5PfPMMxo+fLhGjhypFStWKBgMNlv3+eef11133aXXX39dhw4d0pQpU5STk6NvfvOb+slPfqKamhpJl55cUFVVpUcffVSZmZlau3atPvzwQ337299utn9XHnV76aWXNHv2bM2aNUuZmZnatm1bi/vf2v+/YDDY7F9JevnllzVs2DDNnj1bvXv3liR9/etf1/LlyxUbG9vWNgGwFEENQKcqLi5WaWmpfve73+nDDz9UdHR0s/AVCAT02Wef6f3339fPfvYzLVy4UG+++aZ+/etfa8uWLXrnnXf0ySefNC1fVlamm2++WXv27NGMGTM0c+bMpnA1Z84ceb1e7dixQ+vXr9eOHTu0efPmZutmZGToT3/6k6ZPny5JKigo0B//+Edt3bpVR44c0erVqyVJy5cvV2pqqoqLi1VeXq6pU6e2an/fe+893X///dq3b5/y8vKuuv9X853vfEe7d+9uCnr9+/eXJH300UfKy8tr9TgAuiaCGoBO9dZbb2n27NlKS0tTbGysZs6cqXfffVdXPr1u5syZiomJ0ZgxYyRJEydOVEpKivr166fMzEzt37+/adn09HR9//vfV3R0tCZNmqS0tDT94Q9/0N///neVlZVp7ty5io+PV58+fTRlyhRt27atad0BAwbou9/9rtxut+Li4jRo0CANHTpUMTEx6t27t6ZNm9bsCN21yMnJ0ciRI+VyuRQXF9eq/W9JYmKiiouLtXv3bv3oRz+SdCncVldXNx1JAxC5osJdAIDIZYzRyZMnNWPGjKaHoUtSMBjU2bNnJUlut1spKSlN82JjY9WrV6+m6bi4ONXV1TVNp6enN9tG//79dfr0aZ04cUL19fUaOnRos+0MHDjwK9c9deqUioqKVF5ertraWhlj2h1+rtzG1fa/Z8+e17QNt9str9erM2fOtKtWAPYjqAHoNI7jKC0tTa+88oq+8Y1vfGH+5bDWFpcvpr/sxIkT6tOnj9LT0+XxeLR3795moegf67nS4sWL5fF4VFJSouTkZG3btk3Lli37yuU9Ho98Pl/TdGNjo86fP/+V27ja/rfHsGHDtH37do0fP75DxwVgF059AuhUkydP1pIlS1RRUSFJqqqq0s6dO695vJMnT2rdunXy+/3avHmzKioqdPfdd2vAgAG64447tHjxYtXU1CgYDOro0aMt3l6jtrZWHo9HiYmJOnHihH75y182m5+amqrjx483Td9www06f/68du/ercbGRr3yyitNb1YI1f5fVlhYqNLSUi1dulSVlZWSpMOHD2vWrFmqr69v9/gA7EBQA9CpHnvsMQ0dOlTTpk1TZmamJk+e3Oyas7bKzs7WgQMHlJOTo9WrV2vFihXyer2SpCVLlqi6ulr33nuvcnJy9NRTT6mqquorxyosLNS+ffuUnZ2tJ5544gv3HHv88ce1dOlSZWdn6ze/+Y169uyp+fPna86cORo5cqR69erV7LRtKPb/skGDBumtt97SwYMHNW7cOGVnZ+vpp59Wdna2YmJi2j0+ADs4prVXtAJAmK1bt07vvfeefvWrX4W7lE6xfv16FRUVKSoqShs3bmy66e21qK6u1qhRo+T3+1VQUKAZM2Z0YKUAQoVr1ADAEg899JAeeuihDhnL6/WG/KkKADoepz4BAAAsxalPAAAAS3FEDQAAwFIENQAAAEsR1AAAACxFUAMAALAUQQ0AAMBS/wMQNfD2N5G9sgAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
    " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "from matplotlib import pyplot\n", "yields = pd.read_csv('http://openmv.net/file/bioreactor-yields.csv')\n", @@ -1718,20 +800,9 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAokAAAH1CAYAAACa32QGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XucjeX+//H3WjOzxozlMAZjyBZ2NKgMwyQko3JIM2yKREVCBymxsxXKqUgJRbXJrr7t7BQiot1BKjvxlRK1O4hkZhzGDHM+rHX9/vCzvsY9ZtaYNWuGeT0fD4+HWete1/257+u+73nPdR+WzRhjBAAAAJzBXtEFAAAAoPIhJAIAAMCCkAgAAAALQiIAAAAsCIkAAACwICQCAADAwqch8aWXXtJjjz3m1bTDhg3TypUri3zvjz/+UMuWLVVQUODL8srk2LFjuv322xUdHa2nn37ar/OOjo7WwYMH/TrPnJwcjRkzRu3bt9eDDz7o13lXBZMmTVKbNm0UFxfnea24faK8rF27ViNGjChzO3l5eYqOjlbr1q01f/58rz5TluUtavucP3++YmNj1blz53I5hmzbtk2XX365oqOjtWXLljK1NWnSJK/XU2VS0cfmilpvLVu21IEDB/w+3zvuuENXXHGFbrvtNr/MLy4uTlu3bvXLvM5Hcf2/aNEitW7dWtHR0crKyvJLPatWrfJb35xp5MiRWr16dZnamDRpkq688kpde+21xU4XWJpGH3nkETkcDj311FOe177++muNHTtW69at05gxY86v2gvAv/71L4WFhWnnzp2y2WzlNp9hw4YpPj5et9xyi+e1b775ptzmdy4bN27UsWPHtG3bNgUGWjeTRYsW6cCBA5o3b57fa/O1P/74Qz169NCePXuKXNbycvfdd+vhhx/22/yKWs74+HjFx8eXuW2Hw6FvvvlGkyZNKnNb3jh7+0xKStLy5cv16aefKjw8XH/88Ue5zLd+/fplDoiAt15//XWtWrXK7388Xqh69+59UfxOKsnSpUvL3MbTTz+t/v37a+LEicVOV6qRxMcff1xbtmzRl19+KUnKzc3VlClT9Oijj6p+/frnX+0FIDExUc2bNy/XgFiZJCYm6tJLL/VraCovLperXNs3xsjtdpfrPFDY2dvnoUOHVLt2bYWHh1dwZRWrMp198TVf7scX83qCf/hyG6rM22OpQmJYWJgef/xxTZkyRVlZWXrhhRfUuHFj/eUvf5F0anRpwoQJnul37dqlwYMHKyYmRvHx8dq2bVuR7bpcLs2ZM0exsbHq0aOHPvvss2LreOWVV3T99dcrOjpaffr00b///W/PewcOHNDQoUPVvn17xcbG6qGHHjpnOw8++KA6d+6s9u3b6/bbb9fPP/9c5HSTJk3SmjVrtGzZMkVHR2vr1q2WYe9t27YVGraNi4vTsmXLdPPNN6t9+/Z66KGHlJub63n/o48+UkJCgtq1a6frr79eW7Zs0fz587Vjxw5Nnz5d0dHRmj59uqTCpzrS09P117/+VVdffbW6d++uxYsXewLK6aHvOXPmqEOHDoqLiyt2Xf76668aNmyYYmJidNNNN+njjz+WJC1cuFCLFy/WBx98oOjoaMtfsVu2bNHLL7/sef/0SFR6eromT56sLl26qGvXrpo/f77nwL5q1SoNHjxYs2fPVkxMjHr06KGdO3dq1apV6tatmzp16lRo+HzSpEmaOnWqhg8frujoaA0dOlSHDh0qVPvw4cPVsWNH9ezZUxs2bCj02WnTpumee+5R27ZttW3bNm3evFn9+vVTu3bt1K1bNy1atMgz/dChQyVJHTp0UHR0tL755hvLtnz2abZhw4Zp/vz5Gjx4sK666iodPHiw2OUvLbfbrcWLF6t79+7q1KmT/vrXvyo9Pd3z/o4dOzz7Vrdu3bRq1SpJKvVynn26ZOfOnRowYIDat2+vAQMGaOfOnZ73hg0bpueff16DBw9WdHS0RowYoePHj5/X8p32+++/a+DAgWrfvr3uvfdepaWled471/559va5YsUKjRgxQkeOHFF0dHSRo5nF9U1pjhlFefvtt9W7d2/P8WjPnj2Szr1/nauNG264QR07dtSYMWN0+PBhSUWf3j3zNP2Z+1XHjh0L9fdp3333nQYNGqSYmBh16dJF06dPV15enuf9li1b6q233tKNN96oDh066Mknn9TpL+Iq7bE5Li5OS5cu1c0336y2bdtq8uTJOnbsmEaOHKno6GjdddddOnHihGf64o7BRe3HZ8rIyNCwYcM0c+ZMGWOUl5enOXPm6LrrrtM111yjqVOnKicnR9L/HZ9feeUVde7cWX/7298stZe0HWzdurXIdfT777/rjjvuUGxsrGJjY/XII4/o5MmThdbJyy+/rD59+qhDhw7629/+Vuh3waeffqqEhATFxMRo8ODB+vHHH4tdx2c6ceKERo8erauvvlodOnTQ6NGjlZyc7Hm/pH12zZo16t69u2JjY7VkyZJi5/XZZ5+pT58+io6OVteuXbVs2bJC6/all15SbGys4uLitHbtWs/niuuXkpZ/79696t+/v6Kjoy2/Q70xadIkPfHEE57tb/DgwTp69KhmzZqlDh06qFevXtq7d69n+uKyhTf72pw5c3Tbbbd5jtXvvPOOevfurQ4dOujuu+8u9DusZcuWevPNN3XjjTfqxhtvtLSVm5urCRMmKDY2VjExMRowYICOHTsmqfAxID4+XtHR0Z5/LVu29Owr3mawYpnzMHbsWDN69GjTsWNHc+jQIc/rCxcuNI888ogxxpjk5GTTsWNHs3nzZuNyucwXX3xhOnbsaFJSUowxxgwdOtS8/fbbxhhj/vnPf5qePXuaxMREk5qaaoYOHWpatGhh8vPzi5z/hg0bTHJysnG5XGb9+vXmqquuMocPHzbGGPPwww+bxYsXG5fLZXJycsz27dvPuRwrV6406enpJjc318ycOdPEx8efc9pHH33UPPfcc+f8+auvvjJdu3b1/Ny9e3czYMAAk5ycbFJTU02vXr3MP//5T2OMMd9++61p166d+eKLL4zL5TLJycnml19+sayX01q0aGH2799vjDFm4sSJZsyYMSY9Pd0cPHjQ3HjjjZ7p3333XdOqVSvzr3/9yxQUFJg333zTdO7c2bjdbsvy5OXlmeuvv94sWbLE5Obmmq1bt5q2bduaX3/91RhTuC+LUtT79957r5kyZYrJzMw0x44dMwMGDDBvvfWWp7aoqCjzzjvvmIKCAvPcc8+Zbt26mSeeeMLk5uaazz//3LRt29ZkZGR41m/btm3N119/bXJzc82MGTPM4MGDjTHGZGZmmmuvvda88847Jj8/33z//femY8eO5qeffvJ8tl27dmbHjh2e7eCrr74yP/74o3G5XOaHH34wnTp1Mv/+97+NMcYcPHjQsr2dvXxnTzN06FDTrVs389NPP5n8/HyTl5dX7PKf7ezt53Sbp/ty5cqV5vrrrze///67ycjIMPfff7+ZMGGCMcaYQ4cOmbZt25p169aZvLw8c/z4cbN3715jjCn1cr777rue9ZqammpiYmLM6tWrTX5+vlm3bp2JiYkxx48f99TXo0cPs2/fPpOdnW2GDh1qnnnmmRKX61yGDh1qunTpYv773/+azMxM88ADDxRa58Xtn2f3z9n739nLWlzfeHvMOHsexpw6FnXp0sV8++23xu12m/3795s//vijxP3rzPW0detW07FjR/P999+b3NxcM336dDNkyJAil+P0ejtzn4+KijKvv/66yc/PN9nZ2Za6d+/ebb755huTn59vDh48aHr16mWWL1/ueb9FixZm1KhR5sSJE+bQoUMmNjbWfPbZZ8aY0h+bu3fvbm655RZz9OhRk5ycbK6++mrTr18/s2fPHpObm2uGDRtmFi1a5FUfF7Ufn15vx48fNwMGDCi0rc2cOdOMHj3apKammvT0dDN69Ggzb948T99FRUWZuXPnmtzc3CLXU3HbQXHraP/+/eaLL74wubm5JiUlxQwZMsTMnDmz0Dq56aabPOtw0KBBnrq///57c/XVV5tdu3aZgoICs2rVKtO9e3eTm5vr+fyZ++jZjh8/bjZu3GiysrJMenq6GTt2rLn33ns97xe3z/7888+FjrGzZ882UVFR5ssvvyxyXp07d/ask7S0NPP9998XWrezZ882ubm5Ztu2beaqq67ybOvF9Utxy5+bm2uuu+46s3z5cpOXl2c++OAD06pVq3MeX4r6nfToo4+ajh07mt27d5ucnBwzbNgw0717d7N69WrP76GhQ4d6pi8uWxS1r53uG5fLZR577DEzYsQIk5WVZYwx5t///re5/vrrzS+//GLy8/PNiy++aAYNGuSZV4sWLcxdd91lUlNTi9we33rrLTN69GiTlZVlCgoKzO7du016erqnX8/OCcYYs2LFCtOzZ0+Tnp5eYgY73XdnH9POdl43rkydOlXbtm3Tfffdp4YNGxY5zXvvvadrr71W3bp1k91uV+fOndWmTZsi/xL94IMPdOeddyoyMlK1a9fW6NGji51/7969FRERIbvdrj59+qhJkyb67rvvJEmBgYFKTEzUkSNHFBwcrJiYmHO2M3DgQDmdTjkcDo0dO1Y//vhjodGasho2bJgiIiJUu3Ztde/eXT/88IOkU39dDBgwQJ07d5bdbldERISaN29eYnsul0sbNmzQI488IqfTqUsuuUTDhw8v9Fdbw4YNdeuttyogIED9+/fX0aNHPX99nOnbb79VVlaWRo0aJYfDoU6dOql79+5av379eS3rsWPHtGXLFk2ePFmhoaEKDw/XXXfdVai9Sy65RAMGDFBAQID69OmjpKQk3X///XI4HOrSpYscDod+//13z/TXXXedOnToIIfDoYcffli7du1SUlKSNm/erEaNGmnAgAEKDAxU69at1bNnT23atMnz2R49eqh9+/ay2+0KDg5WbGysWrZsKbvdrssvv1w33XSTvv766/Na1tP69++vyy67TIGBgTpx4kSJy18a69at01133aXGjRurevXqGj9+vDZs2KCCggKtW7dO11xzjfr27augoCCFhYUpKipKksq0nJs3b1aTJk3Ur18/BQYGqm/fvmrWrJk+/fRTzzR/+ctf1LRpU1WrVk29evXybNPnKyEhQS1atFBoaKjGjRunjRs3ekb4fLV/lrRtluaYcbZ33nlHI0eO1JVXXimbzaYmTZqoUaNGpdq/1q1bpwEDBqh169ZyOBwaP368du3a5fV1lfXr19ewYcMUGBioatWqWd5v06aN2rZtq8DAQF1yySUaNGiQtm/fXmiae+65RzVr1lTDhg0VGxvrGc0p7bFZOjViXbduXUVERCgmJkZXXnmlWrVqJYfDoRtuuKHQyE1JfXz2fixJR44c0bBhw9SrVy/PNb3GGK1cuVKTJ09W7dq15XQ6NXr06ELr226368EHH5TD4ShyPZW0HZxrHTVp0kSdO3eWw+FQnTp1NHz4cMv6vf322z3r8N577/XU9fbbb2vQoEG66qqrPMfsoKAg7dq1q8T1LJ06u9ezZ0+FhITI6XTq3nvvtcz7XPvsxo0bCx1jx40bJ7v93JEgMDBQv/zyizIyMlSrVi21bt260Pvjxo2Tw+FQx44d1a1bN33wwQcl9ktxy//tt98qPz9fd955p4KCgtSrVy9dccUVXq2XM91www1q06aNgoODdcMNNyg4OFj9+vXz/B468xhWXLaQit7XCgoKNH78eJ04cUJLlixRSEiIJGnFihUaNWqUmjdvrsDAQI0ZM0Y//PBDodHEUaNGqXbt2ufcHtPS0nTgwAEFBASoTZs2cjqd51zOHTt26Pnnn9eSJUvkdDpLlcGKc14XnNWtW1dhYWG67LLLzjlNYmKiNm7cWOgXTEFBgWJjYy3THjlyRJGRkZ6fzxU8T1uzZo2WL1/uWdlZWVlKTU2VJE2cOFELFizQwIEDVatWLQ0fPlwDBw60tOFyuTR//nxt3LhRx48f9+wcqampqlGjRrHz91a9evU8/w8JCdGRI0ckSUlJSerWrVup20tNTVV+fn6h9dOwYUPPqSnpVN+cOU9JRd7pdeTIETVo0KDQQeHstkojMTFRBQUF6tKli+c1t9tdqF/PvF7s9E5xZr3BwcHKzMz0/NygQQPP/6tXr65atWrpyJEjOnTokL777rtCB3GXy1XoBowz5yudCsXz5s3Tzz//rPz8fOXl5alXr17ntaxFzcOb5S+NI0eOqFGjRp6fGzVqpIKCAqWkpCgpKUl/+tOfivxcWZbzyJEjln3v7G3i7G26rHcRnr3f5+fnKzU1VWFhYT7bP0vqG2+PGUU5V1+UZv86cuRIoV+41atXV+3atXX48GFFRESUWMOZ+0lRfvvtNz399NP6/vvvlZ2dLZfLZfkFf3a/nt4PS3tslqz79Jk/V6tWzbPNeHMMLmr/+eyzzxQaGqrBgwd7Xjt+/Liys7M9lz5J1muFw8LCPEGzKCVtB+daRykpKZo5c6Z27NihzMxMGWNUs2bNQm2fvQ5P/y5ITEzUmjVr9D//8z+e9/Pz8z3vlyQ7O1tPPfWUPv/8c89p/MzMTLlcLgUEBBRZ9+n1f3obPS00NFS1a9c+57wWLlyoJUuW6Nlnn1XLli31yCOPKDo6WpJUs2ZNhYaGWpaxpH4pbvltNpsiIiIK3QfgzfZ3trN/75xre5SKzxZS0fva77//rh9//FErV66Uw+HwvJ6YmKjZs2drzpw5hZb98OHDnmN7cb8fEhISlJycrPHjx+vkyZOKj4/Xww8/rKCgIMu0SUlJeuihh/T000+radOmnvl7m8GKU253JURGRiohIUEzZ84scdp69eopKSnJ8/OZ/z/boUOH9Pjjj+sf//iHoqOjFRAQoISEhEJtnZ7njh07NHz4cHXo0EFNmjQp1M66dev08ccfa/ny5brkkkuUnp6uDh06eK4zKUlISEih6yqKGq07l8jIyEIjZt4KCwtTUFCQEhMT9ec//1nSqXXlzS+Ss9WvX1/Jyclyu92eg3NSUpIuvfRSrz5/9g08DRo0kMPh0FdffeWzm13OvLYmMzNTJ06cUP369RUZGakOHTpo+fLlXrf1yCOPaOjQoVq6dKmCg4M1a9Ysz85f1M1I3vTvmZ/z9fLXr1+/0F+ciYmJCgwMVHh4uCIjIwv9dXum0i7n2fNMTEws9FpSUpK6du1axqU5t7P3+9Mjo2XdP89UUt94e8woyrn25dLsX2f3dVZWltLS0hQREeH5xZuTk+MZRTh69Gihz5fUr0888YRatWqlZ599Vk6nU//4xz8KjboXpzTH5tI63z6+5ZZbdPLkSY0aNUpLly5VaGiowsLCVK1aNa1fv/6cx8OS1tP5bgfPPvusbDab1q5dq7CwMH300Uee68lPO3O9JSYmem70jIyM1JgxY3TvvfcWO49zefXVV/Xbb7/p7bffVr169fTDDz+oX79+Xu0n9evX16+//ur5OTs7u9A1wWe78sortWTJEuXn5+vNN9/UQw895BmVOnnypLKysjzba1JSki677LIS+6W45f/66691+PBhGWM8fZeYmKjGjRuXuGzno6RsIRW9DTVr1ky333677rnnHr322mtq1qyZpP9btuKeHlHcNhkUFKQHHnhADzzwgP744w+NGjVKTZs2LfTkE+nUseH+++/XnXfeWWjwqTQZrDjl9jDt+Ph4ffrpp/r888/lcrmUm5urbdu2FfrFf1rv3r31xhtvKDk5WSdOnNArr7xyznazs7Nls9lUp04dSdK7775b6GLnDz74wDOPWrVqyWazFTmEnpmZKYfDobCwMGVnZ+u5554r1fJFRUXps88+U1pamo4eParXXnvN688OHDhQq1at0n/+8x+53W4dPnzYs7PWrVv3nM9EDAgIUK9evTR//nxlZGTo0KFDWr58+Xk9wuTKK69USEiIli5dqvz8fG3btk2ffPKJ+vTp49Xnw8PDdejQIc9fhPXr11fnzp319NNPKyMjQ263W7///nuZTul+9tln2rFjh/Ly8rRgwQJdddVVioyM1HXXXaf9+/drzZo1ys/PV35+vr777rtCB7yzZWZmqlatWgoODtZ3332n999/3/NenTp1ZLfbC633qKgobd++XYmJiUpPT9fLL79cbK2+Xv6+ffvqtdde08GDB5WZman58+erd+/eCgwM1M0336ytW7d6Tj+npqZ6TpmUdjnP1K1bN+3fv1/r1q1TQUGBNmzYoF9++UXXXXfdeS3D6ZsuijttunbtWv3yyy/Kzs7WggUL1LNnTwUEBJR5/zxTSX3j7TGjKAMHDtSrr76q77//XsYYHThwQIcOHSrV/nXzzTdr1apV+uGHH5SXl6fnnntOV155pS655BLVqVNHEREReu+99+RyufTOO++U+pmpmZmZql69uqpXr65ff/1Vb731ltefLc2xubTK0sdTp05V06ZNNXr0aOXk5Mhut+uWW27R7NmzlZKSIkk6fPiwPv/8c6/bPN/tIDMzU6GhoapZs6YOHz5c5ONJ/vnPfyo5OVlpaWmem1ikU4F3xYoV+vbbb2WMUVZWljZv3qyMjAyvas7MzFRwcLBq1qyptLQ0vfDCC14vb8+ePbV582bPMXbhwoXnfEpDXl6e1q5dq/T0dAUFBal69eqekcrTFi1apLy8PO3YsUObN29Wr169SuyX4pb/9CUSr7/+ugoKCvThhx9q9+7dXi9faZWULYrTt29fjR8/XsOHD/f80Th48GC98sornjbS09P1wQcfeF3PV199pf/+979yuVxyOp0KDAy0rHNJmjx5spo2bap77rmn0OulyWDFKbeQGBkZqcWLF+vll19Wp06d1K1bNy1btqzIjfDWW29Vly5dlJCQoP79+xd5p89pf/7znzVixAgNHjxY11xzjX766Se1a9fO8/7u3bt1yy23KDo6Wvfee68ee+yxIv/y6Nevnxo2bKiuXbvqpptuUtu2bUu1fAkJCbr88ssVFxenESNGeB2upFMB7amnntLs2bPVvn17DR061DOCc8cdd2jTpk3q0KFDkX8BTJkyRSEhIbr++us1ZMgQ9e3bVwMGDChV7dKp59otWbJEW7Zs0dVXX60nn3xSc+fO9eraSEmeU5ixsbHq37+/JGnu3LnKz8/33MX34IMPWkY9SqNv37568cUXFRsbqz179uiZZ56RJDmdTi1btkwbNmxQ165d1aVLF82bN6/QHZtnmzZtmhYuXKjo6Gi9+OKL6t27t+e9kJAQjRkzRrfddptiYmK0a9cude7cWX369FF8fLz+8pe/qHv37iXW68vlHzBggOLj4zV06FD16NFDDodDU6ZMkXTqlMvf//53LV++XB07dlS/fv0810eVdjnPFBYWppdeeknLly9XbGysli5dqpdeeslz0Cyt5ORkNWrUqNiR7oSEBE2aNEmdO3dWXl6e52H8Zd0/z1Zc33h7zChK7969NWbMGD3yyCNq166d7r//fp04caJU+1enTp00btw4jR07Vl26dNHBgwcLPTlhxowZWrZsmWJjY/XLL794TvF569FHH9X777+vdu3aacqUKaU6VpXm2FxaZeljm82mGTNmKDIyUvfdd59yc3M1ceJENWnSRLfeeqvatWunu+66S7/99pvXbZ7vdvDAAw9o7969iomJ0ahRo4pcR3379tWIESN0/fXXq3Hjxp6RsyuuuEIzZszQ9OnT1aFDB914442eJxV4484771Rubq6uvvpqDRo0qFSj/pdddpmmTp2qCRMmqGvXrqpZs2axly689957iouLU7t27bRixQrNnTvX817dunVVs2ZNde3aVRMmTNATTzzh2daL65filt/hcGjRokVavXq1OnTooA0bNuiGG27wevlKq6RsUZL+/ft7RvT++OMP3XDDDRo5cqTGjx+vdu3aqW/fvqV6xuqxY8f04IMPqn379urTp486duxY5IDQ+vXr9dFHHxW6w3nHjh2lymDFsZnzOX8DlLNJkyYpIiLCrw+b9qfHH39c69evV3h4uD766KOKLqfM8vLydM0116igoEAjR47UAw88oMWLF6tOnTqFrh27kG3fvl133323HA6H5s+fX66n4XHxiIuL08yZM3XNNdeU+rPDhw/Xrl27dOWVV5bqbJU/bdu2TRMnTqzwh8wvXrxYr7zyigIDA7Vly5ZC10jCavLkydq4caPCw8MLPernbIREVEoXe0gEUDWUJSReCCpLSET5KLfTzQAAALhwMZIIAAAAC0YSAQAAYEFIBAAAgEW5PUzbn1JTM+V2l99Z8/Bwp1JSvHtuFS589HfVQn9XHfR11VIZ+9tutyksrHpFl+G1iyIkut2mXEPi6Xmg6qC/qxb6u+qgr6sW+rtsON0MAAAAC0IiAAAALAiJAAAAsCAkAgAAwIKQCAAAAAtCIgAAACwIiQAAALAgJAIAAMCCkAgAAACLi+IbV8qqWbOGysgo21f3OJ1O7duX6KOKAAAAKhYjiVKZA6Kv2gAAAKgsCIkAAACwICQCAADAgpAIAAAAC0IiAAAALAiJAAAAsCAkAgAAwIKQCAAAAAtCIgAAACwIiQAAALAgJAIAAMCCkAgAAAALQiIAAAAsCIkAAACwICQCAADAgpAIAAAAC0KiJKfTWSnaAAAAqCwCK7qAymDfvsRi369Xr4aOHk33UzUAAAAVj5FEAAAAWBASAQAAYEFIBAAAgAUhEQAAABbcuHKRaNasoTIyMsrUhtPpLPEmHgAAUDUwkniRKGtA9FUbAADg4kBIBAAAgAUhEQAAABaERAAAAFj47caV3NxczZ49W//5z38UHBystm3basaMGfrtt980adIkpaWlqXbt2pozZ44uvfRSf5UFAACAIvgtJD7zzDMKDg7Wpk2bZLPZdOzYMUnStGnTNGTIECUkJOi9997T1KlT9frrr/urLAAAABTBL6ebMzMztWbNGo0bN042m02SVLduXaWkpGjv3r3q27evJKlv377au3evjh8/7o+yAAAAcA5+GUk8ePCgateurRdeeEHbtm1T9erVNW7cOFWrVk0REREKCAiQJAUEBKh+/fpKSkpSnTp1/FEaAAAAiuCXkFhQUKCDBw+qVavmwxwLAAAgAElEQVRWevTRR/Xtt99qzJgxWrBggU/aDw93+qSd4tSrV6Pc51EZVJXlLAnroWqhv6sO+rpqob/Lxi8hsWHDhgoMDPScVr7qqqsUFhamatWq6fDhw3K5XAoICJDL5dKRI0cUGRlZqvZTUjLkdpvyKF3SqY3s6NH0cmu/Mqkqy1mcqtTfoL+rEvq6aqmM/W232/wysOUrfgmJderUUWxsrL788kt16dJFv/32m1JSUnTppZcqKipK77//vhISEvT+++8rKiqKU82oUnzxlYoSX6sIAPAtmzGm/IbgznDw4EFNnjxZaWlpCgwM1EMPPaRu3brp119/1aRJk3Ty5EnVrFlTc+bMUbNmzUrVNiOJUv36NX3SzpEjJ33SzoXM3/3tq76T6L/z4e/+5nvWK86FcCyH71TG/mYk8RwaN26sN954w/J68+bNtXLlSn+VAQAViu9ZB3Ch4BtXAAAAYEFIBAAAgAUhEQAAABaExIuE01n2C2F90QYAALg4+O3GFZQv7nQEAAC+xEgiAAAALAiJAAAAsCAkAgAAwIKQCAAAAAtCIgAAACwIiQAAALAgJAIAAMCCkAgAAAALQiIAAAAsCIkAAACwICQCFcxX35nNd29fGPiedQAXCr67GahgfO921UJ/A7hQMJIIAAAAC0IiAAAALAiJAAAAsOCaREnNmjVURkZGmdpwOp1cawQAAC4ajCRKZQ6IvmoDAACgsiAkAgAAwIKQCAAAAAtCIgAAACwIiQAAALAgJAIAAMCCkAgAAAALQiIAAAAsCIkAAACwICQCAADAgpAIAAAAC0IiAAAALAiJAAAAsCAkAgAAwIKQCAAAAAtCIgAAACwIiQAAALAgJEpyOp2Vog0AAIDKIrCiC6gM9u1LLPb9evVq6OjRdD9VAwAAUPEYSQQAAIAFIREAAAAWhEQAAABYEBIBAABgQUgEAACABSERAAAAFoREAAAAWBASAQAAYEFIBAAAgIXfvnElLi5ODodDwcHBkqQJEyaoa9euatmypVq0aCG7/VRenTt3rlq2bOmvsgAAAFAEv34t38KFC9WiRQvL6ytWrFD16tX9WQoAAACKwelmAAAAWNiMMcYfM4qLi5PT6ZQxRu3bt9f48eNVs2ZNtWzZUq1bt5bL5dK1116rsWPHyuFw+KMkAAAAnIPfQmJSUpIiIyOVl5enWbNmKTMzU/PmzfO8npGRoYkTJ6pFixZ6+OGHS9V2SkqG3O7yW4x69Wro6NH0cmsflQv9XbXQ31UHfV21VMb+ttttCg93VnQZXvPb6ebIyEhJksPh0JAhQ7Rz585CrzudTt1yyy2e1wEAAFBx/BISs7KylJ5+Ks0bY7RhwwZFRUXpxIkTysnJkSQVFBRo06ZNioqK8kdJAAAAKIZf7m5OSUnR2LFj5XK55Ha71bx5c02bNk379u3T1KlTZbPZVFBQoOjoaI0bN84fJQEAAKAYfgmJjRs31po1ayyv169fX+vWrfNHCQAAACgFHoEDAAAAC0IiAAAALAiJAAAAsCAkAgAAwIKQCAAAAAtCIgAAACwIiQAAALAgJAIAAMCCkAgAAAALQiIAAAAsCIkAAACwICQCAADAgpAIAAAAC0IiAAAALAiJAAAAsCAkAgAAwIKQCAAAAAtCIgAAACwIiQAAALAgJAIAAMCCkAgAAAALQiIAAAAsCIkAAACwICQCAADAgpAIAAAAC0IiAAAALAiJAAAAsCAkAgAAwIKQCAAAAAtCIgAAACwIiQAAALAgJAIAAMAisKILAIALWbNmDZWRkVGmNpxOp/btS/RRRQDgG4wkAkAZlDUg+qoNAPA1QiIAAAAsCIkAAACwICQCAADAgpAIAAAAC0IiAAAALAiJAAAAsCAkAgAAwIKQCAAAAAtCIgAAACwIiQAAALAgJAIAAMCCkAgAAAALQiIAAAAsCIkAAACwICQCAADAItBfM4qLi5PD4VBwcLAkacKECeratat27dqlqVOnKjc3V40aNdIzzzyj8PBwf5UFAGXidDqVkZFR5jYAoLLxW0iUpIULF6pFixaen40xmjhxop566inFxMRo8eLFmjdvnp566il/lgUA523fvsSKLgEAykWFnm7evXu3goODFRMTI0kaPHiwNm7cWJElAQAAQH4eSZwwYYKMMWrfvr3Gjx+vpKQkNWzY0PN+nTp15Ha7lZaWptq1a3vdbnh4+Z+qqVevRrnPA5UH/V210N9VB31dtdDfZeO3kPjmm28qMjJSeXl5mjVrlqZPn64bbrjBJ22npGTI7TY+aaso9erV0NGj6eXWPioX+rtqob+rDvq6aqmM/W232/wysOUrfjvdHBkZKUlyOBwaMmSIdu7cqcjISCUm/t/1PMePH5fNZivVKCKAi4s98ZAca1er2hv/UPCKNxX06cdSfn5FlwUAVY5fRhKzsrLkcrlUo0YNGWO0YcMGRUVFqU2bNsrJydGOHTsUExOjFStWqHfv3v4oCUBl4nYr6PPPFPrC8wr6aqtMkENyuSSbTQqwSza7su+6Wzkj7pG7YSOvm23WrKFP7jzm5hQAVZFfQmJKSorGjh0rl8slt9ut5s2ba9q0abLb7Zo7d66mTZtW6BE4AKoOW0a6ag65RYG7v5UtM1M2SbbcXMt0oS+9oNBXFit9znPKvW2oV22XNSD6qg0AuBDZjDHldzGfn3BNInyJ/vajzEyF9YpTwP59RQbDopiQEGU8/oRy7rm3xGnr169Z1golSUeOnPRJO6hY7NtVS2Xsb65JBAAv1bx7mAL2/+Z1QJQkW3a2nDOeUNDmT8qxMgAAIRFAhQj4Ya8cW7+ULTen1J+15WSr+sxp5VAVAOA0QiKAChHy8otSft55fz7wp58U8OMPPqwIAHAmQiIA/8vMVLVV78jmcp1/GwX5Cvn7Et/VBAAohJAIwO8CDuyXCSzbwxVsBQUK+t/tPqoIAHA2QiIAv7OdPCnZbWVvJ71y3bkIABcTQiIA/6seKvngqVUmJKTsjQAAikRIBOB3rshGsuV5/9ibohhJrqbNfFMQAMCCkAjA70zdusqPvbpMg4mmenVljxzjs5oAAIUREgFUiKz7H5Kpfv7fPGBq1FR+124+rAgAcCZCIoAKkd+tu0x4uIy99Ichd2iossaNl87jswAA73CEBVAx7Halvb1GxumUsXl/p7MJCVFe3A3KGTGqHIsDABASAVQYd7PmSnv/3zJ1wmUcjpKnDw1Vbu++Sn/5VakUwRIAUHqERAAVynV5lI5v2aas0ffLXaOm3Gddp2gCAmRCQpR/xZXKWLBY6UuWSkFBFVQtAFQdZfvKAwDwAVOvnrKmPKmsRx9T8IZ1Ctr8iezHjsmEVJP7kj8p59bb5IpqVep2nU6nMjIyylSb03n+N9cAwIWMkAig8nA4lNtvgHL7DfBJc/v2JZY4Tb16NXT0KN/cAgBn43QzAAAALAiJAAAAsCAkAgAAwIKQCAAAAAtCIgAAACwIiQAAALAgJAIAAMCCkAgAAAALQiIAAAAsCIkAAACwICQCAADAotjvbr799tu9aiQ4OFivvvqqTwoCAABAxSs2JO7evVtPPvlksQ0YYzRr1iyfFgUAAICKVWxIjI6OVv/+/Uts5P333/dZQQAAAKh4xV6T+Nprr3nVCKeaAQAALi7FjiSey6+//qqff/5ZjRs3VuvWrX1dEwAAACpYqUPim2++qRUrVqhFixb6/vvv1aNHD/31r38tj9oAAABQQUoMiXv27Ck0Wrhx40atXr1agYGByszMVFxcHCERAADgIlNiSJw/f77+9Kc/afz48XI6napfv75effVVtWnTRtu2bVOTJk38UScAAAD8qMSHaS9dulQxMTEaNmyY1qxZo2nTpunEiRNavny5Tp48qYULF/qjTgAAAPiRV9ck9unTR9dee60WLFig1atXa8qUKfrzn/9c3rUBAACggngVEvfs2aODBw9q0KBBys/P19SpU9W2bVs9+OCDqlatWnnXCAAAAD8r8XTznDlz9NBDD+nDDz/U/fffr+3bt+vNN99U48aNdeutt+rDDz/0R50AAADwoxJD4qpVq7R69Wo999xzWrlypVatWiWbzabbbrtNy5cv18cff+yPOgEAAOBHJYbESy+9VOvXr9f+/fu1bt06NW3a1PNeeHi45syZU64FAgAAwP9KDIkLFizQjz/+qFmzZikxMVFPPPGEH8oCAABARSrxxpUGDRpo2rRp/qgFAAAAlUSxI4krV670qhFvpwMAAMCFodiQ+NRTT8kYI7fbfc5/LpdLzzzzjL/qBQAAgB8Ue7o5KytLrVq1KrYBY4yCg4N9WhQAAAAqVrEh0dvH29hsNp8UAwAAgMqh2JDYqFEjf9UBAACASqTER+AAAACg6vF7SHzhhRfUsmVL/fTTT5Kkli1b6uabb1ZCQoISEhL03//+198lAQAA4CwlPifRl/bs2aNdu3apYcOGhV5fsWKFqlev7s9SAAAAUAy/jSTm5eVp+vTpmjZtGje6AAAAVHJ+G0lcsGCB4uPj1bhxY8t7w4YNk8vl0rXXXquxY8fK4XCUqu3wcKevyjynevVqlPs8UHnQ31UL/V110NdVC/1dNn4Jid988412796tCRMmWN7bvHmzIiMjlZGRoYkTJ+rFF1/Uww8/XKr2U1Iy5HYbX5VrUa9eDR09ml5u7aNyob+rFvq76qCvq5bK2N92u80vA1u+4pfTzdu3b9e+ffvUo0cPxcXFKTk5WXfffbe++OILRUZGSpKcTqduueUW7dy50x8lAQAAoBjFjiS63W6vGrHbi8+ao0aN0qhRozw/x8XF6aWXXlJERIRycnJUrVo1FRQUaNOmTYqKivJqngBQWdlOpCl41TsK+Om/smVnyV2/vvJu6KWCmI4S12QDuEAUGxJbtWrl1U0mP/zww3nNfN++fZo6dapsNpsKCgoUHR2tcePGnVdbAFDR7Af2q/rTMxW8fq2MzS57dpYkydhsCn1liVwRDZQ1/q/KvfU2wiKASs/rr+XbvHmzNm3apNGjR6thw4ZKTEzU3//+d914442lnuknn3zi+f+6detK/XkAqGwCv/lf1RqYIFtmhmxut86MgDZjpKwsBf62TzUeHS/Hls1KX7hECgiosHoBoCRefy3fP/7xD7377ruqWbOmJKlp06Zq06aNBgwYoCFDhpRvlQBQiQX8+rNqDYiXPaPki+RtWVkKfn+tjNOpjDnP+aE6ADg/Xt+4kp6eruzs7EKv5eTkKD29ct05BAD+5pw4XrbMDK+nt2VnqdqKNxWw5/tyrAoAysbrR+D0799fw4cP15133qkGDRooOTlZb7zxhvr371+e9QFApWY/+LuCtn916pRyaeTlKeSlF5WxaEn5FAYAZeR1SJw4caL+9Kc/acOGDTpy5Ijq1aun22+/Xbfeemt51gcAlVq1fyyTShsQJdlcLlV7711lPjVXxskDfwFUPl6HRLvdrttuu0233XZbedYDABeUoP/dLlte3nl91gQFyX7ggFyt2/i4KgAou2JD4jvvvONVIwMHDvRJMQBwobFlZpbhwzbZssrweQAoR8WGxPfee6/EBmw2GyERQJVl/v8TH86Lyy1Ts5bvigEAHyo2JL7xxhv+qgMALkh5N/ZS4P9ulz0rq/QfDgiQq1lz3xcFAD5Qqu9uTk1N1Zo1a7R06VJJ0uHDh5WcnFwuhQHAhSBn8O2yefkVpmcywcHKHj5SCgoqh6oAoOy8Dolff/21evXqpXXr1unFF1+UJB04cEBPPPFEedUGAJWeqVVbuX0TZByO0n3QZlPO8JHlUxQA+IDXIXH27Nl6/vnntWzZMgUGnjpLfdVVV+m7774rt+IA4EKQ8dQzckc0kAn07oERJiRE6U/Nk7tho5InBoAK4nVIPHTokDp16iTp1M0qkhQUFCSXy1U+lQHABcLUqq3UDR/LdWlTuUNDzz1dQIBMSIgyps9W7u13+LFCACg9r0Ni8+bN9fnnnxd6bevWrWrRooXPiwKAC42JiFDqx18oc8bTKri0qUxodbmdNeQOrS53jRoy1aopZ8CtSv3gE+XceXdFlwsAJfL6YdqTJk3S6NGjdd111yknJ0dTp07VJ598osWLF5dnfQBw4QgJUc6wu5Qz9E4FfvuNAvb/JuXmytQOU36na3jcDYALis0Y779P6vDhw1q7dq0SExMVGRmp+Ph4NWjQoDzr80pKSobc7tJ/LZa36tWroaNH08utfVQu9HfVQn9XHfR11VIZ+9tutyk83FnRZXjN65FESYqIiNA999xTXrUAAACgkig2JE6ZMkUzZsyQJE2cONFzw8rZ5s6d6/vKAAAAUGGKDYmXXHKJ5/9NmjQp92IAAABQORQbEkePHq1jx46pbt26euCBB/xVEwAAACpYiY/Auemmm7RmzRp/1AIAAIBKosQbVxYtWqQpU6Zow4YNmjFjhiIiIvxRFwAAgE80a9ZQGRkZZW7H6XRq375EH1R0YSgxJHbs2FHr1q3TokWLlJCQoAceeEDNmzcvNM3pb2IBAACobHwREH3ZzoXCq0fgOBwO3Xffffrll1/07LPPKiwszPOezWbTxx9/XG4FAgAAwP+8Con/+c9/NGXKFLVu3VofffSRwsPDy7suAAAAVKASQ+LkyZO1ZcsWPf744+rVq5c/agIAAEAFKzEk5uXl6f3331ft2rX9UQ8AAAAqgRJD4rx58/xRBwAAACqREp+TCAAAgKqHkAgAAAALQiIAAAAsCIkAAACwICQCAADAgpAIAAAAC0IiAAAALAiJAAAAsCAkAgAAwIKQCAAAAAtCIgAAuKg5nc5K1c6FosTvbgYAALiQ7duXWNElXJAYSQQAAIAFIREAAAAWhEQAAABYcE0iAKDiZGXJnpwkW1aWTI0ackc2lByOiq4KgAiJAIAKELD7O4W+9IKC166RCQyQ7HbZXC4Zm105t9+h7JGj5b60aUWXCVRphEQAgN/YTqSp5h23KWjXTikvTzaXS7bcM96XFLJ8qUJeW6bcvglKX7CYkUWgghASAQB+YTueorCe3WVPSpQtL+/c0+Wfei94wzrZDx3UiXfWERSBCsCNKwCA8udyqdat/WVPLD4gnsmWna2gb3epxoP3lnNxAIpCSAQAlDvHxx8q4NefPaOE3rJlZyt4wzoF7PulnCoDcC5+D4kvvPCCWrZsqZ9++kmStGvXLsXHx6tnz54aMWKEUlJS/F0SAKCchSx6XvbMzPP7cIFLIa8s8W1BAErk15C4Z88e7dq1Sw0bNpQkGWM0ceJETZ06VZs2bVJMTIzmzZvnz5IAAOXMfmC/gr795rw/byvIV7W33pSys31YFYCS+C0k5uXlafr06Zo2bZpsNpskaffu3QoODlZMTIwkafDgwdq4caO/SgIA+EHg7u9kgoLK1IYJsCvg4O8+qgiAN/wWEhcsWKD4+Hg1btzY81pSUpJnVFGS6tSpI7fbrbS0NH+VBQAoZ7aMdMnlLmMjdtlOnvBNQQC84pdH4HzzzTfavXu3JkyYUC7th4c7y6XdM9WrV6Pc54HKg/6uWujvctYgXAoMKFMTdhmFNY6QythX9HXVQn+XjV9C4vbt27Vv3z716NFDkpScnKy7775bw4YNU2Jiome648ePy2azqXbt2qVqPyUlQ2638WnNZ6pXr4aOHk0vt/ZRudDfVQv9Xf4C6zRQrQJXmU5dmbw8pVSrJVOGvqKvq5bK2N92u80vA1u+4pfTzaNGjdIXX3yhTz75RJ988okaNGigZcuWaeTIkcrJydGOHTskSStWrFDv3r39URIAwE8KrrhK7oiI8/68sdmU172HTK3SDSAAKJsK/cYVu92uuXPnatq0acrNzVWjRo30zDPPVGRJAABfs9mUPfZhVZ8y6bweg2NCQpV1/0PlUBiA4tiMMeV3ntZPON0MX6K/qxb6208yMxUec4Vsx1NkK8WvHRMYKNflUUr9+Avp/z8Z43zR11VLZexvTjcDAHC26tWV9u46merV5W1ENIGBctcJV9qK1WUOiABKj5AIAPALV6vWSnv/3zLh4TKhocVO665eXa4mlyrtoy0y9ev7qUIAZ6rQaxIBAFWLq1VrHd/+nYJXrlDooudlSz0uySa5XFJggGwulwqa/VnZDz6s3JviJYejoksGqixCIgDAr4yzhnKG36Ocu0Yq8H+3K2Dfr7JlZcnUqKGCVm3kimpV0SUCECERAFBRbDYVxHRUQUzHiq4EQBG4JhEAAAAWhEQAAABYcLoZAIAyCPj1ZwXu/k62tDQpMFDu2mHK79RZJjy8oksDyoSQCABAaRUUyLFxg0JfmK/AvXtkAoMkV8Gp5zkGBMiWl6fcG3sr+76xKmgXw3MecUEiJAIAUAqBu3aq1m0Dpdwc2TMyJEk25VimC16/VsEff6iCy1rqxFvvytSt6+9SgTLhmkQAALwUtPkT1U7oLXvKMU9APBeb2y1bVpYC936vsO7XyP7HQT9VCfgGIREAAC8EfrdLte4aIlt2dqk+Z8vPl/3YUdXu10e2E2nlVB3ge4REAABKYoxqjrxTyso6r4/bXC7Zk5NUfdaTPi4MKD+ERAAAShD49TbZjhxRWW4/seXlqdq/3pIyM31WF1CeCIkAAJQgdPEC2bLPbxTxTMZuU7XV7/igIqD8ERIBACiGLfW4HJ98JJsxZW7LnpmpkBcX+qAqoPwREgEAKEbAwd9lHMG+a++P333WFlCeCIkAABTDduKEynQx4tny8iSXy4cNAuWDkAgAQDFMcDXfNmi3n/oHVHJspQAAFMPUDZctv8B37TmdfE0fLgiERAAAiuFq2lzu8HCftGUCA5V7cz+ftAWUN0IiAADFsdmU9cA4mdDQsrcVGKjs0feXvR3ADwiJAACUIPeWwZK77I/AKWh5uVwtL/dBRUD5IyQCAFACU6OmskbfJ3cZRhNNSIgyp87wYVVA+SIkAgDghay/TVF+tzi5Q0JK/VkTEqKMJ2Ypv2u3cqgMKB+ERAAAvGG36+TS15R3U7zXI4rGZjsVEGfNVc7wkeVcIOBbhEQAALwVFKT0F19RxoLFym9zhUy1EJmAAMtkplo1meBg5d3YS2mr1ytn6J0VUCxQNoEVXQAAABcUm025CX9RbsJfFLB3j0JeelFB//u1bCdPSgEBMrVqK7dvvLLvGCETEVHR1QLnjZAIAMB5crVqrYyFiyu6DKBccLoZAAAAFoREAAAAWBASAQAAYEFIBAAAgAUhEQAAABaERAAAAFgQEgEAAGBBSAQAAIAFIREAAAAWhEQAAABYEBIBAABgQUgEAACABSERAAAAFoREAAAAWBASAQAAYEFIBAAAgAUhEQAAABaERAAAAFgQEgEAAGBBSAQAAIBFoL9mdN999+mPP/6Q3W5XaGiopkyZoqioKMXFxcnhcCg4OFiSNGHCBHXt2tVfZQEAAKAIfguJc+bMUY0aNSRJH330kSZPnqzVq1dLkhYuXKgWLVr4qxQAAACUwG+nm08HREnKyMiQzWbz16wBAABQSjZjjPHXzB577DF9+eWXMsZo6dKluuyyyxQXFyen0yljjNq3b6/x48erZs2a/ioJAAAARfBrSDxtzZo1Wr9+vf7+978rKSlJkZGRysvL06xZs5SZmal58+aVqr2UlAy53eW3GPXq1dDRo+nl1j4qF/q7aqG/qw76umqpjP1tt9sUHu6s6DK8ViF3N/fr10/btm1TamqqIiMjJUkOh0NDhgzRzp07K6IkAAAAnMEvITEzM1NJSUmenz/55BPVqlVLwcHBSk8/lfKNMdqwYYOioqL8URIAAACK4Ze7m7OzszVu3DhlZ2fLbrerVq1aeumll5SSkqKxY8fK5XLJ7XarefPmmjZtmj9KAgAAQDH8EhLr1q2rt99+u8j31qxZ448SAAAAUAp84woAAAAsCIkAAACwICQCAADAgpAIAAAAC0IiAAAALAiJAAAAsCAkAgAAwIKQCAAAAAtCIgAAACwIiQAAALAgJAIAAMCCkAgAAAALQiIAAAAsCIkAAACwICQCAADAgpAIAAAAC0IiAAAALAiJAAAAsCAkAgAAwIKQCAAAAAtCIgAAACwIiQAAALAgJAIAAMCCkAgAAAALQiIAAAAsCIkAAACwICQCAADAgpAIAAAAC0IiAAAALAiJAAAAsCAkAgAAwIKQCAAAAAtCIgAAACwIiQAAALAgJAIAAMCCkAgAAAALQiIAAAAsCIkAAACwICQCAADAgpAIAAAAC0IiAAAALAiJAAAAsCAkAgAAwIKQCAAAAIvAii4AAIBy5XLJlpYmFWRIriApOLiiKwIuCIwkAgAuSvYD+1V9yt8U/ufGCm97udS8ueo2a6iawwYp6KutkjEVXSJQqTGSCAC46FR7+UU5Zz4pud2y5ed5XrdJcny4UUGfb1H+1Z108tX/kUJDK65QoBJjJBEAcFEJeekFOWfPkC03p1BAPM1mjOxZmQr68gvVGjJQKiiogCqByo+QCAC4aNj3/6bqs6fLlp1V8rS5OQr8ZqeqvfaqHyoDLjx+C4n33Xef4uPj1a9fPw0ZMkQ//PCDJOm3337ToEGD1LNnTw0aNEj79+/3V0kAgItMyNKXJZfb6+nt2VkKfXEB1ycCRfBbSJwzZ47Wrl2rNWvWaMSIEZo8ebIkadq0aRoyZIg2bdqkIUOGaOrUqf4qCQBwMSkoULU3Xy/yFHNxbKnHFfj1tnIqCrhw+S0k1qhRw/P/jIwM2Ww2paSkaO/everbt68kqW/fvtq7d6+OHz/ur7IAABcJW2qqbOdzfaExCtj3i+8Lwv9r7+5jo6r3PI5/ptPSB5hCnwuEIGCCBRepjFMoaC+gNHJBQETY1cINugQBLViihMYHIr0uRAQBsahVF11LgkCB1g1cHrxIRdJiozEQXJ5MkVJooVBKgXbmt38QJvQeKY+dgeH9Shpyzpw553v49kw/+Z2HwV3Op3c3Z2dnq1PSefEAAA6ISURBVLi4WMYYffrpp6qoqFBCQoLsdrskyW63Kz4+XhUVFYqOjr7u9cbEtGmpkr3i4hzXXggBg37fW+h3gLh4Rgqy3fDbgoxRZGiQxO9BwOHYvjU+DYk5OTmSpIKCAs2fP1+ZmZm3Zb3V1Wfl8bTc9SRxcQ6dOFHbYuvHnYV+31vodwBxhyi2sVE3GhM99mDVhrfVRX4PAsqdeGwHBdl8MrB1u/jl7uaRI0dq165dSkxMVGVlpdxutyTJ7Xbr+PHjat++vT/KAgDczcLDdTFtoIztBmOi8ejiXwa1TE3AXcwnIbGurk4VFRXe6a1bt6pt27aKiYlRUlKSCgsLJUmFhYVKSkq6oVPNAABcVj81U+YGHo5tgkN0/j8ypPDwFqwKuDv55HRzfX29MjMzVV9fr6CgILVt21a5ubmy2Wx6++23NWvWLC1btkyRkZGaN2+eL0oCAASghtQBanSmKPjHHxR04XyzyxpJJtKh+lde9U1xwF3GZszd/3AorknE7US/7y30OwDV1anduFGy//Kzgurr/3QRExwiE+lQTcH/yv1Ako8LhC/cicc21yQCAOBPrVurZk2R6rLflrtDB3lat5EnIkIKD5fH4ZAnIkL1f5uoU//8kYAINMOndzcDAOATISE6P+klnf/PyQrZtVP2A/vlCLNfuot54GCuQQSuAyERABC4bDY19E1VQ99UOeIcPOYGuAGcbgYAAIAFIREAAAAWhEQAAABYEBIBAABgQUgEAACABSERAAAAFoREAAAAWBASAQAAYEFIBAAAgAUhEQBwdY2NslVWSmfP+rsSAD5GSAQAWDU0KOK/5irmgfsU88i/KbZ7Z0WOe1r2/f/n78oA+Ajf3QwAaMoYRY4fp1bFO2Q7X++d3WrbFoWk/0U1//in3F3v92OBAHyBkUQAQBMhxd8rZOcPTQKiJNmMke3sWbWe84afKgPgS4REAEATYV9/Kdu5uj99zWaMWv1jo3Txoo+rAuBrhEQAQBO2kydla34J2S6c91E1APyFkAgAaKIhpa9MWNhVX/dER8m0cfiwIgD+QEgEADRx/vm/SUF//ufBRESoftoMydb8WCOAux8hEQDQhImL0+n/zpcnIkKe8PBL84KCZMLDdeGvT6l+0kt+rhCAL/AIHACARUPaQJ0s26Ow/P9R8E8lMrFxOv/vz6vxoWR/lwbARwiJAIA/ZaKiVT/lZX+XAcBPON0MAAAAC0IiAAAALAiJAAAAsCAkAgAAwIKQCAAAAAtCIgAAACwIiQAAALAgJAIAAMCCkAgAAAALQiIAAAAsCIkAAACwICQCAADAgpAIAAAAC0IiAAAALAiJAAAAsAj2dwG3Q1CQLSC2gTsH/b630O97B72+t9xp/b7T6rkWmzHG+LsIAAAA3Fk43QwAAAALQiIAAAAsCIkAAACwICQCAADAgpAIAAAAC0IiAAAALAiJAAAAsCAkAgAAwIKQCAAAAAtCIgAAACwIif/iwoULeuuttzRkyBANHz5cb7zxhiTp0KFDGjt2rNLT0zV27FgdPnzYv4Xilh05ckQjRozw/gwaNEgul0sS/Q5E27Zt08iRIzVixAgNHz5cmzZtkkSvA9V3332nUaNGafjw4Xr++edVXl4uiX4Hgnnz5mnQoEHq3r27fvvtN+/85npL32+SQRPvvPOOycnJMR6PxxhjzIkTJ4wxxmRkZJiCggJjjDEFBQUmIyPDbzWiZcydO9fMmTPHGEO/A43H4zFOp9Ps27fPGGPM3r17Te/evY3b7abXAaimpsa4XC5z8OBBY8ylvk6cONEYw7EdCEpKSszRo0fNwIEDvce0Mc33lr7fHEYSr1BXV6eCggJlZmbKZrNJkmJjY1VdXa09e/Zo2LBhkqRhw4Zpz549OnnypD/LxW108eJFbdiwQaNHj6bfASooKEi1tbWSpNraWsXHx+vUqVP0OgD9/vvvio2NVZcuXSRJaWlp2rFjB8d2gHA6nWrfvn2Tec31lr7fvGB/F3AnKS8vV7t27bR06VLt2rVLrVu3VmZmpsLCwpSQkCC73S5Jstvtio+PV0VFhaKjo/1cNW6HrVu3KiEhQT179tSvv/5KvwOMzWbTokWLNGXKFEVERKiurk7Lly9XRUUFvQ5AXbp0UVVVlX755Rf16tVLGzZskCT6HcCa660xhr7fJEYSr9DY2Kjy8nL16NFDa9as0cyZM/Xyyy/r3Llz/i4NLWz16tUaPXq0v8tAC2lsbNTy5cu1bNkybdu2TR999JFmzJjBsR2gHA6HFi5cqHfffVdPP/20qqurFRkZSb+BG8RI4hU6dOig4OBg75D0Qw89pKioKIWFhamyslJut1t2u11ut1vHjx+3DHfj7lRZWamSkhLNnz9fktS+fXv6HWD27t2r48ePq0+fPpKkPn36KDw8XKGhofQ6QKWmpio1NVWSVFVVpby8PHXs2JF+B6jmPreNMfT9JjGSeIXo6GilpKSouLhY0qW7oaqrq3XfffcpKSlJhYWFkqTCwkIlJSUxTB0g1q5dq7S0NEVFRUmSYmJi6HeASUxM1LFjx3Tw4EFJ0oEDB1RVVaXOnTvT6wB14sQJSZLH49H777+vcePGqWPHjvQ7QDX3uc1n+s2zGWOMv4u4k5SXl2v27NmqqalRcHCwpk+frrS0NB04cECzZs3SmTNnFBkZqXnz5qlr167+Lhe3QXp6urKzs/XYY49559HvwLN+/Xp98skn3pvSXnnlFT3++OP0OkBlZ2frp59+UkNDg/r376/Zs2crNDSUfgeAuXPnatOmTaqqqlJUVJTatWunoqKiZntL328OIREAAAAWnG4GAACABSERAAAAFoREAAAAWBASAQAAYEFIBAAAgAUhEQDuEPn5+erRo4eSk5NVXl5+S+uqra1VcnKyevbsqWXLlt2mCgHcSwiJAG5JcnKy9+eBBx5Qr169vNPr16/3d3m3pH///iotLfXpNl0ul8rKytSpUydJ0rlz5zR58mQNGDBAeXl5TZbdv3+/pk2bppSUFDmdTo0YMUIrVqyQMUYOh0NlZWUaMmSIT+sHEDgIiQBuSVlZmfenQ4cOys3N9U4/9dRT/i7vqhobG++KbaxevVoul0tbtmxRcXGxjh07JunSw4HHjh2rLl26qLCwUKWlpVqwYIFKS0t18eLFW94uABASAbQot9utDz/8UIMHD1ZKSoqysrJ05swZSZeCTo8ePbRq1So9+uijSklJ0TfffKOysjINGzZMTqdT7777rndd+fn5Gj9+vN588009/PDDGjp0qEpKSryv19TU6LXXXlP//v2VlpampUuXyuPxNHnvnDlz9Mgjj+jjjz/WgQMHlJGRIZfLpb59++r111/X2bNnJV36Rpbq6mq98MILSk5O1ooVK7R9+3Y98cQTTfbvytHG9957T1lZWZo+fbqSk5NVVFTU7P5f7/+fx+Np8q8kffDBB0pNTVVWVpbi4uIkSffff78WL16s0NDQG20TAFgQEgG0qLy8PBUXF+vrr7/W9u3bFRIS0iT4ud1u7du3T1u2bNHf//53zZ07V5999pm+/PJLrV+/XmvWrNHPP//sXb60tFTdu3fXrl27NGnSJE2dOtUb7GbOnCmHw6HNmzdr1apV2rx5s9atW9fkvUlJSfrxxx81ceJESdKUKVO0Y8cObdiwQYcOHVJubq4kafHixYqJiVFeXp7Kyso0fvz469rfjRs3atSoUdq9e7fS09Ovuf/X8swzz2jnzp3ekNmxY0dJ0g8//KD09PTrXg8A3ChCIoAWtXLlSmVlZSkhIUGhoaGaOnWqvv32W135jaBTp05Vq1atNHjwYEnSiBEjFBUVpQ4dOig5OVl79uzxLpuYmKjnnntOISEhGjlypBISEvT999/rjz/+UGlpqWbNmqXw8HDFx8crIyNDRUVF3vd26tRJzz77rOx2u8LCwtStWzf169dPrVq1UlxcnCZMmNBkZPJmuFwupaWlKSgoSGFhYde1/81p06aN8vLytHPnTr300kuSLgXr2tpa7wgiALSEYH8XACBwGWN07NgxTZo0STabzTvf4/Ho1KlTkiS73a6oqCjva6GhoYqNjfVOh4WF6dy5c97pxMTEJtvo2LGjjh8/rqNHj+rChQvq169fk+107tz5qu+trKxUTk6OysrKVFdXJ2PMLQevK7dxrf2Pjo6+qW3Y7XY5HA6dOHHilmoFgOYQEgG0GJvNpoSEBC1ZskQPPvig5fXLQfFGXL5x47KjR48qPj5eiYmJioiIUElJSZNA9q/1XGn+/PmKiIhQYWGh2rZtq6KiIi1atOiqy0dERKi+vt473dDQoNOnT191G9fa/1uRmpqqTZs2adiwYbd1vQBwGaebAbSocePGacGCBaqoqJAkVVdXa+vWrTe9vmPHjik/P1+NjY1at26dKioqNGDAAHXq1Em9e/fW/PnzdfbsWXk8Hh0+fLjZR9jU1dUpIiJCbdq00dGjR/X55583eT0mJkZHjhzxTnft2lWnT5/Wzp071dDQoCVLlnhvjPHV/l+WmZmp4uJiLVy4UFVVVZKkgwcPavr06bpw4cItrx8ACIkAWtSLL76ofv36acKECUpOTta4ceOaXGN4o5xOp/bu3SuXy6Xc3FwtXbpUDodDkrRgwQLV1tbqySeflMvl0owZM1RdXX3VdWVmZmr37t1yOp2aNm2a5ZmCkydP1sKFC+V0OvXVV18pOjpa2dnZmjlzptLS0hQbG9vkVLkv9v+ybt26aeXKldq/f7+GDh0qp9OpV199VU6nU61atbrl9QOAzVzv1dMA4Gf5+fnauHGjvvjiC3+X0iJWrVqlnJwcBQcHa+3atd4Hat+M2tpaDRw4UI2NjZoyZYomTZp0GysFcC/gmkQAuEOMGTNGY8aMuS3rcjgcPv+2GACBhdPNAAAAsOB0MwAAACwYSQQAAIAFIREAAAAWhEQAAABYEBIBAABgQUgEAACAxf8DEmEQ9YKCN+UAAAAASUVORK5CYII=\n", - "text/plain": [ - "
    " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "markers = {'No': 's', # square\n", " 'Yes': 'o'} # circle\n", @@ -1789,7 +860,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "collapsed": true, "hide_input": true }, "outputs": [], @@ -1805,9 +875,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [] }, @@ -1830,7 +898,7 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -1843,22 +911,9 @@ }, { "cell_type": "code", - "execution_count": 39, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3AAAAE3CAYAAADrKKMqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xd4XdWd7//3Pl1dsiy54V427r03jOkJBEggIRMI5JJMpuaZTPil3JDkhptJMsydyZRkQgoDAYKpJhCajXGT5Y5xwfZ2k3uTZPVy6v79ceRjyzZYsiXtc3Q+r+fhkfbaS+KDLc7S96y11zJs20ZERERERESSn8vpACIiIiIiItI2KuBERERERERShAo4ERERERGRFKECTkREREREJEWogBMREREREUkRKuBERERERERShAo4ERERERGRFKECTkREREREJEV4LtfBNM1BwGvnNeUDuZZl9TBNcwTwNFAIVAIPWJa1tzOCioiIJBuNkSIi0tUuW8BZlnUQmHD22jTNX5z3db8GfmlZ1rOmaX4JeAK4vhNyioiIJB2NkSIi0tUM27bb3Nk0TR9wDLgZOArsAQoty4qapukm/g7jcMuyyjsjrIiISLLSGCkiIl3hsjNwF7gDOGZZ1gemaU5u+TwK0DJAHQf6A20ZnPzAVOAEEG1nDhERSR1uoA+wEQg6nKUzddQYqfFRRCR9tHuMbG8B9xXgyXZ+zceZCqzuoO8lIiLJby5Q4nSITtRRY6TGRxGR9NPmMbLNBZxpmn2B+cD9LU1HgH6mabrPWx7St6W9LU4AVFU1EIu1fRmnSKorLMymsrLe6RgiXcblMigoyIKW1/3uqIPHSI2PkpY0Pko6upIxsj0zcA8Cb1qWVQlgWdZp0zQ/BO4Dnm35uKUda/ujALGYrQFK0o5+5iVNdeflgA/ScWOkxkdJW/qZlzTW5jGyvQXc31/Q9nXgadM0fwBUAQ+04/uJiIh0Fw+iMVJERLpAu3ah7GCDgLLKynq92yJppagoh/LyOqdjiHQZl8ugsDAbYDBw0Nk0KWEQGh8lDWl8lHR0JWOkqzMDiYiIiIiISMdRASciIiIiIpIiVMCJiIiIiIikCBVwIiIiIiIiKUIFnIiIiIiISIpQASciIiIiIpIiVMCJiIiIiIikCBVwIiIiIiIiKUIFnIiIiIiISIpQASciIiIiIpIiVMCJiIiIiIikCBVwIiIiIiIiKUIFnIiIiIiISIpQASciIiIiIpIiVMCJiIiIiIikCBVwIiIiIiIiKUIFnIiIiIiISIpQASciIiIiIpIiVMCJiIiIiIikCBVwIiIiIiIiKUIFnIiIiIiISIpQASciIiIijquqqqKurtbpGCJJTwWciIiIiDhq+/atPPTQQ/zjP/4te/daTscRSWoq4ERERETEUS+99DzRaJRIJMLixS85HUckqamAExERERFHHT16OPH5wYNlDiYRSX4q4EREREQkadi27XQEkaSmAk5EREREkoZhGE5HEElqKuBEREREJGloBk7kk6mAExEREZEkogJO5JOogBMRERERx2jGTaR9PG3pZJpmAPg34AagGVhrWdbXTNMcATwNFAKVwAOWZe3trLAiIiLJROOjyNWrq6trdR0MBgmHQ3i9PocSiSS3ts7A/TPxgWmEZVljgUdb2n8N/NKyrBHAL4EnOj6iiIhI0tL4KHKVKisrLmo7c6bSgSQiqeGyBZxpmtnAA8CjlmXZAJZlnTJNsxiYBDzf0vV5YJJpmkWdFVZERCRZaHwU6RinTp24qO3kyZMOJBFJDW1ZQjmU+PKPH5qmuQCoB74PNAHHLMuKAliWFTVN8zjQHyhva4DCwux2hxZJdUVFOU5HEJGrp/FRpANUVZ2+qK2mplxjpcjHaEsB5wGGAFssy3rENM3pwBvAPR0RoLKynlhMD69K+igqyqG8vO7yHUW6CZfL6K7FiMZHkQ6we/eei9p27tzNvHkaK6X7u5Ixsi3PwB0CIrQsBbEsaz1QQfwdxn6maboBWj72BY60K4GIiEhq0vgocpVisRj791+8v8++fdrzR+TjXLaAsyyrAlgO3AjQsrNWMbAH+BC4r6XrfcTfhWzz8hAREZFUpfFR5OodOXKIxsZGAAy3Dww3EN/E5PTpU05GE0labTpGAPg68KRpmv8PCAP3W5ZVbZrm14GnTdP8AVBF/GFuSSNr1qyipGSl0zFSRk1NNR6Pm6wsretvqzlz5jN79jynY4h8HI2PIldhy5bNic/tWBTDm4UdqgXgww83c9NNtzkVTSRptamAsyzrAHDdJdp3A9M7OJNIt1VTU4NhoAJOpJvQ+Chy5WzbZvPmDec1RLHD9YnLTZs2qIATuYS2zsCJXNLs2fM0O9IOP//5Y3i9br75ze85HUVERMRR+/fv5dixo60b7RhgADb79u3h6NEjXHNNfyfiiSStth7kLSIiIiLSYZYtW3LJdk/ONYnP33//0n1E0pkKOBERERHpUkePHmHDhrWXvOctGJb4fPXqFZSXX3xOnEg6UwEnIiIiIl3Gtm1eeWURth0/59Cd1afVfXdmMe6MngBEo1EWL36pyzOKJDMVcCIiIiLSZTZsWMvWrVsS1/7ica3uG4aB77y2devWsG3bFkQkTgWciIiIiHSJqqoqnnvuqcS1N38o7kDBRf08mcV4cgckrp966nfU19d1fkCRFKACTkREREQ6XSgU4r/+6/9RXx8/KsDwZOIvnvCx/f29JmO4/QBUV1fxq1/9O5FIpEuyiiQzFXAiIiIi0qlisRj/8z+/oazsQEuLQaDvdAy392O/xuXxE+gzLXG9e/dOnnvuqcSzcyLpSgWciIiIiHSaWCzGH/7we9avL020+XtNxJPV67Jf68nph69obOJ65cr3eeGFZ1XESVpTASciIiIineJs8bZq1fJEmzd/GN6C4W3+Hr7CUXhyByaulyx5m0WLVMRJ+vI4HUBEREREup9gsJnf/OaXbNmyOdHmyRuEv/ckDMNo8/cxjPhyy2Y7SqTuKABLl75NXV0NDz30NbxeX4dnF0lmmoETERERkQ5VVXWGn/70xxcVb4E+0zCM9v/6aRguAv1m4cm5JtG2bl0pjz/+T9TW1nZIZpFUoQJORERERDrMRx9t5//8n//N4cMHE23eHtdecfF21tkizps/NNG2b98efvzj/83evdbVRBZJKSrgREREROSqRaNRXn31Rf71X39GbW1NS6uBv/dUAr0mXFXxdpZhuPD3noK/eGKi7cyZSn7+88d4883XicViV/3vEEl2egZORERERK7KyZMnePLJJ9i3b0+izXAHCPSb2abdJtvDMAx8hSYuXw5Nx9dBLEQsFuOVVxaxc+d2Hnroa/TsWdSh/06RZKIZOBERERG5IrFYjCVL3uKHP/xOq+LNndmLzCE3d3jxdj5PTl+yhtyMK6Nnom3Xro949NFvs2LFMu1SKd2WZuBEREREpN2OHTvK00//rlXhBga+ojH4Ckd2yJLJy3F5s8gceD2h8u2EKncDNsFgM3/4w+/ZuHEdDzzwFXr16tPpOUS6kgo4EREREWmz5uZmXn/9VZYufZtoNJpod/nzCfSdjjtQ0KV5DMOFv3g8npx+NB9fTyxUB5ydjfsOt912O5/61B06bkC6DRVwIiIiInJZtm2zefNGFi16hjNnKs+7Y+DrOQpfz1EYhtuxfO6MnmQOvplg+Q7CZyzAJhIJ8/rrr7Ju3Rq++MUHGDt2QrvOoBNJRirgREREROQTHTx4gEWLnmXPnt2t2t2ZRfh7T8Htz3MoWWuGy0Og1wS8uQNoPrmJWPMZAE6fPsUvfvE4o0eP5fOf/xLXXNPf4aQiV04FnIiIiIhcUlXVGV599UVKS1e32hTEcPvxF0/AkzcoKWe03Bk9yBx0A+HqAwRPb4VYGIifUffDH36H+fOv5847P0dubnIUniLtoQJORERERFqpr6/jrbdeZ9myJYTD4fPuGHgLhuMvGo3h9juWry0Mw4WvYBienGsIlW8nXH0AsLFtmxUrlrF2bQk33ngrt9zyaTIzM52OK9JmKuBEREREBIhvULJkyVu8++6bNDU1tbrnzu5LoHgCLn+uQ+mujMsTINBnKt6C4QRPbyHacAqAYDDIn//8GsuXL+W22+7g+utvwu9P7qJUBFTAiYiIiKS9xsZGli1bwtKlb1FfX9/qnitQEN/lMau3Q+k6hjuQT0b/64jWnyBYvpVYsAaAhoYGXnrped599y1uueVTXHfdDQQCAYfTinw8FXAiIiIiaaq+vo6lS9/hvffepampsdU9ly8XX9FYPDnXJOVzblfCMAw8OX1xZ/cmUnuYYPl27HADALW1Nbz44h95663XufHG21i48CYtrZSkpAJOREREJM1UVJSzdOk7rFq1nGCwudU9w5uFv+folg1KOv8wbicYhgtv3iA8uQMIVx8gVPERdiS+ZLS+vp7Fi1/knXf+zHXXLWThwpvo0aPQ4cQi56iAExEREUkT+/fv5d1332Lz5g2tdpUEMHw5+AtH4ckb2G0Ltwud3ejEmzeYcE0ZocpdiRm5pqZG3n77DZYseYtp02Zy0023MXDgIGcDi6ACTkRERKRbi0QibN68gWXLlrBv356L7rv8efgKR+HJ7Z82hduFDJc7XsjlDyFSc4hg5U7sUB0A0WiUtWtLWLu2hGuvHcXChTcxYcJk3G7nDi2X9KYCTkRERKQbqqysYOXK91m16n1qa2svuu/O6oWvx7W4s3p3m2fcrpZhuPDmD8aTN5BI/XHClRbRpvLE/d27d7J7904KCnowf/71zJu3gPz8AgcTSzpSASciIiLSTcRiMT76aDsrVrzHhx9+cNEySXDhyRsQL9wC+Y5kTAWG4cKbcw3enGuINlUSOmMRqT0CxP88q6rO8NprL/PGG4uZOHEKCxbcgGmOxOVKzxlM6VptKuBM0zwINLf8A/Bty7LeNU1zBvAEkAEcBL5kWdbpjo8pIiKSnDRGSjKoqCinpGQlJSUrOXOm8qL7hicDb/5QvPlDcXkzHEiYutwZhWT0m0WsuIFw1X7C1fuxo0Egvrxy06b1bNq0nqKiYubOvY7Zs+dTUKBZOek87ZmB+5xlWTvOXpimaQDPAg9allVimub3gZ8BX+ngjCIiIslOY6R0uXA4zIcfbmbVquXs3LnjErNt4M7shbdgGJ6cfmn7fFtHcXmz8BePw1c0mkjtUcJVe4k2VSTul5ef5tVXX2Tx4pcYN24C8+YtYOzYCXg8WvAmHetqfqKmAM2WZZW0XP+a+DuMGpxERCTdaYyUTmHbNgcPlrFmzUrWry+loaHhoj6G24cnbxDe/GG4/bkOpOzeDMONN28g3ryBRJurCVfvJ1xzEGJhIP53tHXrFrZu3UJOTi4zZ85m9uz59O8/wNng0m20p4B7ruUdxRLge8AA4NDZm5ZlVZim6TJNs4dlWWfa+k0LC7PbEUEktXm98R2riopyHE4iIh2sw8dIjY9yvqqqKpYvX86yZcs4fPjwJfu4s3rjzR+CJ7sfhks7JHYFdyAfd+/J+IvHE6k7Srj6ANHGcyul6+pqWbLkbZYseZshQ4awcOFC5s+fT15enoOpJdW1tYCba1nWEdM0/cAvgP8CFndEgMrKemKxi6f8RbqjcDiK1+umvLzO6SgiXcblMrp7MdIpY6TGRwmHQ2zZ8gGlpavYsWMbsVjsoj6GJxNv/mC8eYNx+br1/2dJzXB58OYNwps3iFiojnD1AcI1BxOHgwMcOHCAAwcO8OSTTzJu3ERmz57LuHETtcQyzV3JGNmmnxjLso60fAyapvkr4HXg34GBZ/uYptkTsNsz+yYiIpLqNEZKR7Jtm/3791JaupoNG9bS2Nh4cSfDjSe3P968wbgzi3UEQJJx+XLwF4/HVzSWaMMpwjVlROqOgh0vwKPRKFu2bGLLlk1kZ2czffosZs2ax6BBg/V3KW1y2QLONM0swGNZVk3L8pAvAB8Cm4EM0zTntKzx/zrwYqemFRERSSIaI6WjVFZWUFpaQmnpak6dOnHJPu6MovgZZTn9MdzeLk4o7WUYLjzZffBk98GOhgjXHiZcU0as6dwuofX19SxbtoRly5bQr981zJo1l5kz5+hsOflEbZmB6wW8YpqmG3ADO4G/tiwrZprm/cATpmkGaNkiudOSioiIJB+NkXLFgsFmNm/eyJo1q9i9e+cld5E0vFktS/O0RDKVGW4fvoJh+AqGEQvWEq452LLE8twM67FjR3npped5+eVFjB49jtmz5zJx4hR8Pp+DySUZXbaAsyzrADDxY+6VAmM7OpSIiEgq0Bgp7WXbNnv27GbNmlVs3LieYLD54k4uD96cAXjyB+HOKNKyum7G5c9tOY5gLNHGU4RrDsYPCbejQPxnZMeOrezYsZWMjEymTZvB7NnzGDp0uH4WBLi6YwREREREpA0qKsopLV3NmjWrKC+/9Hnu7qxeePMG48m5BsOlX9G6O8Mw8GT1xpPVG7vXZCJ1RwjXHGy1i2VTUyMrV77PypXv07t3H2bPns+sWXN1UHia06uDiIiISCcIBoN88MFGSkpWfuwSSZcvB0/eYLx5g3B5Mx1IKcnAcHvx5g/Bmz+EWKi+ZYllGXb43Dl/J0+e4JVXFvHqqy8wZsw4Zs+ez8SJk/B6tcQy3aiAExEREekgZ3eRLClZycaN62hqarq4k8uLN3cg3vxBuAKFWhYnrbh82fiLxuDrOZpoUzmR6jLCdUcgFgHiP2Pbt29l+/atZGVlMW3aLObMma9dLNOICjgRERGRq1RVdYbS0tWUlKz6+F0ks3q3LJHspyWSclmGYeDJLMaTWYw/NplI7RHCNWWtllg2NDSwfPlSli9fSr9+/Zk9ex4zZ87RQeHdnF49RERERK7A2SWSpaWr2blzx6V3kfTlnNtFUksk5QoZLk/8wPb8wR+7xPLYsSO8+OJzvPzy84wZM57Zs+cyYYKWWHZHKuBERERE2igWi7F3r3X5XSRzB+DNG4IrQ0skpWO1WmLZeDp+UPh5u1jGYjG2bdvCtm1byMzMZNq0mcyaNVe7WHYjKuBERERELuP48WOsXVvC+vWlVFSUX7KPO7MYb/4Q7SIpXSK+i2UvPFm9zu1iWV1GtOncz2djYyMrVixjxYplFBf3YubMOcyYMZtevXo7mFyull5dRERERC6hqqqKDRtKWbt2DYcPH7xkn3NLJAfh8mZ1bUCRFm3ZxfL06VP86U+v8Kc/vcKQIcOYMWM206bNIDdXz8ulGhVwIiIiIi0aGur54INNrF9fyq5dH13yuTZcvvgSSe0iKUno4l0sDxKuO5zYxRLgwIF9HDiwj0WLnmH06LFMnz6LiRMnk5Gh5zRTgQo4ERERSWtNTU18+OFmNmxYy44d24hGoxd3Mlx4svviyRuEJ6sPhsvd9UFF2qH1LpaTiNQfJ1JziEj9cSD+xkQsFkscSeDxeBk/fgLTps1k3LiJ+P1+Z/8D5GOpgBMREZG0EwwG2b59Kxs2lLJ16xbC4fAl+7kzi/HkDcSb0x/Drd38JDUZZzfWyR2AHQkSrjtCpOYg0aaKRJ9IJMzmzRvZvHkjfr+fCRMmM23aDMaMGaedLJOMCjgRERFJC+FwiG3btrJx4zq2bv2AYDB4yX6uQA+8uQPw5A7Q1v/S7RgeP76CYfgKhsWfl6s9QqT2ELFgdaJPMBhk/fpS1q8vJSMjgwkTJjN1aryY83hUPjhNfwMiIiLSbYXDYXbs2MbGjev48MMPaG5uumQ/lz8fT+4AvLn9cflyujiliDNcvmz8PUfi7zmSaLCWSO1hIrWHiYVqE32amppYu7aEtWtLyMzMZOLEKUydOoNRo8aomHOI/tRFRESkW4lEIuze/REbNqxj8+aNNDU1XrKfy5eDp2Wmze3XTnyS3tz+XNwtm5/EgjVEag8Rrj3caifLxsZG1qxZxZo1q8jKymbKlGlMmzYT0xyJy+VyMH16UQEnIiIiKe/sAdvr15eyadMG6uvrLtnP8GafWx7pz9MOkiIXMAwDdyAfdyAfX9E4Ys1VROoOE6490qqYa2ioZ+XK91m58n3y8vKZMmU606fPZMiQYSrmOpkKOBEREUlZJ04cY82a1axdW0JV1ZlL9jG8WecVbfkq2kTayDAM3Bk9cGf0wFc0nljzGcK1h4nUHsGOnJvZrqmpZtmyd1m27F169ixi5sw5zJ49j+LiXg6m775UwImIiEhKqa+vZ+PGtZSUrKKsbP8l+xiejJZn2gbgCvRQ0SZyleLFXCHujELs4glEmyoSz8zZ0XMbAlVUlPPGG4t5443FDB9uMnv2PKZMmU5mpjYE6igq4ERERCTp2bbN/v17ee+9d/jgg01EIpGL+hhuP57c/vFn2jKKVLSJdJL4GXNFeDKLsHtNJNpY3vLM3FGIhRL99u612LvX4rnnnmLq1BnccMPNDBo0xLHc3YUKOBEREUlakUiEjRvX8d5771BWduASPVx4cvrizRuMO7sPhqFnb0S6kmG48GT1wpPVC3+vyUTqjxOuKSNaf4KzB4aHw2FKS1dTWrqaYcNGcNNNtzJx4hTcbrez4VOUCjgRERFJOsFgkPfee5f33nuHmprqi+67Aj3w5g3GmzsAw+N3IKGIXMhwufHm9seb259YpJlIzSHCNWWtzpjbt28P+/btobCwJzfeeAsLFtyI1+t1MHXqUQEnIiIiSSMWi7Fu3RpeeeWFizclMVx4cwfi7TECd6DAmYDSoexYlHBN65nVUNVevHlDMFyanUllLk8AX6GJr9Ak2nSG0BmLSO1hzs7KVVZWsGjRs7z33rvcc899TJkyXcue20gFnIiIiCSFPXt28/zzz3DoUFmrdsMdwNtjON78obg8AYfSSUez7RhNR0uINpxo1R48uZlI3XEy+s/Vkthuwp3Rg4x+M4kVTyBctZdw9f7ExicVFeX893//B8OGjeC+++5n8OChDqdNfirgRERExFG2bfPmm39i8eKXsG070W64A/iKxuDNH4xhaDamuwmdsS4q3s6KNpwgdMbCXziyi1NJZ3J5M/AXj8PXczTh6v0EK3ZANL7pyb59e/jJT37I5z//JW644WbNxn0CFXAX+OMf/8CRI4ecjiHd1OHDhzAM+PnPH3M6inRT/fsP5ItffMDpGCJtFgw28/vfP8GmTevPNRpufD1MfIUjMdx6Nqa7itQdvcz9YyrguinD5cbXYwTevEEEKz4ifGYvECMWi/H883/g8OGDPPDAV/B6fU5HTUoq4C5w5MghrL37cAfynY4i3VAsGn8Hed+RCoeTSHcUbb54oweRZBYMBvnnf/5Jq7Pc3JlFBPrOwOXNcjCZdIVYc9Vl7l/6YHbpPgy3j0CvifgKhtF0bG3i73zNmlVUVlbwzW9+B49H5cqF9CdyCe5APpkDFzodQ0SkXRoPLXM6gkib2bbN00//tlXx5i0Yjr/XRD33lC7s2NXdl27D5cshc+BCmk9uIlITfwZ29+6d/PGPT/PAA//L4XTJR6+QIiIi0uXee+8d1q0rTVz7e00k0HuyijeRNGW43AT6TMPXc0yibcWKZaxevcK5UElKM3AiIpLWTNPsBUwDegKJp+Yty3rSsVDdXGVlBa+88kLi2ps/FF8P08FEIpIMDMPA13M0sVBty5EDsGjRs4wfP4nc3FyH0yUPvc0lIiJpyzTNO4H9wI+BJ4C/a/l4v5O5uruXXvojoVB85zmXPx9/r0kOJxKRZGEYBoE+0zB8OQA0NTWyePGLDqdKLirgREQknf1f4CHLsiYCDS0fvwZsdjZW9/XRR9vZsGFd4trfe5IObBaRVgyXh0DxxMT1qlXL2b9/n4OJkku7CjjTNH9omqZtmuaYlusZpmluNU1zj2maS0zTLO6cmCIiIp1igGVZL13Q9jTQrrMYND62TSgU4plnzq1M9eQOwJOpPxoRuZgnpy/urD7A2U2PfkckEnE4VXJocwFnmuYkYAZwuOXaAJ4F/sayrBHAKuBnnRFSRESkk5xueQYO4KBpmjOBoUCbp4Q0PraNbds8++xTnD59Kt7g8uLvNfGTv0hE0lqg92Qw4i/HR48e5uWXn3c4UXJoUwFnmqYf+CXw14Dd0jwFaLYsq6Tl+tfAvR2eUEREpPP8FpjT8vm/AcuBrcCv2vLFGh/b7s9/fo2SkhWJa3/xeFyeDOcCiUjSc/my8Red25VyyZK3Wbr0HQcTJYe27kL5Y+BZy7LKTDOxS9QA4NDZC8uyKkzTdJmm2cOyrDafvFhYmN3msF3B69U6fBFJXV6vm6KiHKdjpAzLsn5+3ud/ME1zBZBlWdauNn6LtBkfr5Rt27z00kssXnxupaonbxDe/KEOphKRVOHtYRJtqiRSdxSARYueITvbz+23345hGJf56u7psgVcy3KSqcB3OiNAZWU9sZh9+Y5dJByOOh1BROSKhcNRysvrnI7RistlpEwxYlnW4bb2Tbfx8UqEQiGeeuo3rc57c2f1ItBnatr+4iUi7WMYLgJ9Z9B4eDmxpkps2+a3v/0te/bs5y/+4kE8ntQ+Fe1Kxsi2/BfPB64Fzr67eA3wLvAfwMCznUzT7AnY7Xl3UUREpKuZprnLsqyRLZ8f4dzSx1YsyxpwmW+l8fETnDhxnN/+9lccPHgg0ebOLCaj32wMQ6tdRKTtDJeHjGvm0XRkFbHmSgBWrnyf48eP8fDDf0VRUXpthnTZAs6yrJ9x3sPXpmkeBD4N7AS+ZprmnJZ1/l8HdEiDiIgku6+e9/mXrvSbaHy8tFgsxvvvL+Xll59PnPUG8cO6/b0nYxg6wUhE2s/l8ZM58HqaT2wgUhtfpb53r8UPfvAd7rvvfubOvS5tZvaveM7RsqyYaZr3A0+YphkADnIVA6GIiEhXOG9zESzLWtkJ3z9tx8eKinKeeuq37Ny547xWF/5eE/AWDE+bX65EpHMYLjeBvjMI+fMIlW8HbILBZp566rds2bKJBx54mIKCAqdjdrp2F3CWZQ067/NSYGxHBhIREekqpmn6gAeBCUCrhxAsy2rXWXDpPD7ats3Kle/zwgvPEQw2J9pd/nwCfWfgDuQ7mE5EuhPDMPD3HIUnqxdNx9dhh+LPfW/duoVHH32E++57gFmGJ0TTAAAgAElEQVSz5nbrN4xS+6k/ERGRq/M0MB54AzjlcJaUVFlZwZNPPsGuXR+d12rgK7wWX88xGC497yYiHc+dUUjW4JsJnt5GuGoPAI2Njfz+979m48b1PPTQV8nL655vHqmAExGRdHYLMNiyrGqng6SirVu38Lvf/TcNDfWJNpcvl0DfabgzejqYTETSgeHyEOg9CU9OP5pPbMAONwCwbdsWfvjD7/KXf/m3jBw52uGUHU9PEouISDo7DPidDpFqotEor7yyiH//98fPK97is26Zg29W8SYiXcqT1YusIbfgLRieaKutreFf/uWfeOON14jFYg6m63iagRMRkXT2B+BPpmn+OxcsobQs631nIiW3WCzG737336xff+5sN8OTQaDfLDyZRQ4mE5F0Zri8BHpPjs/GHVuLHQ1i2zaLF7/ImTMVPPDA/+o2z8WpgBMRkXT2ty0f/+mCdhsY0sVZkp5t2zz33NOtijd3Vm8CfWfg8gQcTCYiEufJ6k3m4FtoPlZKtKkciJ8Zl52dzWc/+wWH03UMFXAiIpK2LMsa7HSGVLJ06dssX740ce3NH4a/9ySd7SYiScXlzSBj4AKaj69PnBn35puvU1zcm7lzr3M2XAdQASciImnNNE0PMAvoBxwF1lqWFXE2VfIJhUL8+c+vJa49uQNaDubuHkuSxFmBQIBgMIjf76e5ufnyXyByGYbhItB3Ok2xMNH64wC8/vqrzJo1F7c7tXfH1VtmIiKStkzTvBbYBfwR+HvgeWC3aZojHQ2WhNavL6W+Pr5hieHJJNB3uoo36RD5+fk8+uijvPrqqzz66KPk53fPrd+l6xmGi4x+szDc8b2qKisr2LJls8Oprp5m4C5QU1NNtLmaxkPLnI4iItIu0eZqamr0st5OvwJ+A/yLZVk2gGma32ppX+BksGSzffuHic+9BcMxjNR+B1uSQyAQ4JFHHmHcuHEAjBs3jkceeYTHHntMM3HSIQyXB2/+EEKVu4D4a9mUKdMcTnV1NAMnIiLpbALwr2eLtxa/aGmXj+HyZTkdQbqJYDDIqFGjWrWNGjWKYDDoUCLpjgxv93rN0lu1F8jLy6e8NkLmwIVORxERaZfGQ8vIy9PSo3Y6DswHzj8yYG5Lu5wnEMhMfG6HGx1MIt2J3+9n586diRk4gJ07d+pZOOlQdqQp8XkgkOFgko6hGTgREUln3wNeN01zkWmaPzdNcxHweku7nGfQoHMbdoarD2Db9if0Fmmb5uZmHn/8cbZt20YkEmHbtm08/vjjKt6kw9h2jHB1WeL6/NeyVKUZOBERSVuWZb1umuYk4F6gL7AD+IFlWXucTZZ8Zs6czUsvPU8w2EwsVEuk7gje3AFOx5JuoLq6mscee0y7UEqnCFeXYUfiqwZycnJT/vk3UAEnIiJprqVY+79O50h2GRmZzJu3gKVL3wYgeHIz7sxiHeAtHeJs0abiTTpSLNxA8PSWxPWCBTfg9focTNQxVMCJiEjaMk0zj/jxAROB7PPvWZZ1kyOhkthnPnM3mzatp6rqDHY0SPPx9WT0n6uDvEUk6dh2lOZj6yAWP9azuLgXt976aYdTdQy94oqISDp7CbiO+CYmL1zwj1wgMzOLhx76WuI62nCC4OltDiYSEbmYbdsET24m2lQOgGEYPPzwX+H3d48VA5qBExGRdDYDKLQsK+x0kFQxZsw4br31dt5++w0Awmd24/Jl4ysY5nAyEZG48JndhKsPJK7vvvtehg0b4WCijqUZOBERSWclwEinQ6Saz37280ycODlxHTy5qdUubyIiTgmd2UPw9NbE9cyZc7jttjscTNTxNAMnIiLp7EHgLdM01wOnzr9hWdaPHUmUAlwuF1/96t/w858/xqFD8cKt+cQGMMCbl/pbdItIagqd2Uvw1AeJ6xEjruXBBx/GMAwHU3U8zcCJiEg6+wnQH+gFDD/vH60HvIxAIMA//uN3ueaas0cJ2DQfX0+wfIfOiBORLmXbNs2nPiR4anOibejQYXzjG490i10nL6QZOBERSWdfAEZYlnXC6SCpKDs7m29963s8/vhPOHbsCAChih3EwvUEek/BcOnXDBHpXHY0TPOJ9UTqjibaBg8ewj/8w7fJyMhwMFnn0QyciIikswOANjC5Crm5uXz3uz9g5MjRibZIzUEay94l2lTpYDIR6e4iDadpKHunVfE2YcIkHnnk+2RmZjmYrHPprTEREUlnzwCvm6b5n1z8DNz7zkRKPZmZWfzDP3ybZ555ktWrVwAQC9XRePA9fIUj8fUcjeFyOxtSRLoNOxYhWL6N8Jk9rdpvuulW7r33L3C5uvcclQo4ERFJZ3/T8vGfLmi3gSFdnCWleTweHnzwqwwdOpznn3+GYLAZsAlV7iRcexB/0Tg8uQO73WYCItJ1bDtGuLqMUMUO7EhToj0zM5MvfekhZsyY7WC6rqMCTkRE0pZlWdoysQMZhsG8eQsYNWoMTz75BLt37wTADjfSfHwdrsrd+IvH487qrUJORNrMtm0i9ccInd5GLFTb6t7YseN58MGvUVBQ4FC6rqcCTkRERDpUz55FfOtb32PFimW89trL1NfXARALVtN0ZCWuQA98PUw8uf0xjO691ElErpwdixKpPUzojEUsWN3qXl5ePnfffS9z5sxPuzeEVMCJiEjaMk1zPPBvwAQgu6XZAGzLsrrf3tNdyOVycf31NzJz5mzeeedN3n33LUKhIACx5jM0H1+LcfpDvD1G4MsfiuHWH7eIxMUizYSr9hGu2ocdbW51LyMjg1tvvZ0bb7wFvz/gUEJnqYATEZF09jzwCvD3QNNl+soVyMjI5K677mHBght4443FrF69kkgkvvGnHWkidHorofKP8OYNwJs3BFdGYdq9my4i8WWS0cZywjUHiNQeATva6r7P52P+/IV8+tOfIScn16GUyUEFnIiIpLPewA8sy9LJ050sP7+A++//Cp/5zGdZvvw9li9fSm1ty7MsdoRw9QHC1Qdw+XLx5g/GkzcIl6d7nuEkIufEwo2Ea8oIV5dhh+svup+fX8DChTczf/4CsrNzHEiYfFTAiYhIOnsa+CLwnNNB0kVubh6f+cxnue2221m3rpSlS9/m6NEjifuxUC3B01sJnt6GJ7svnryBeLL76lBwkW7EjkWI1B0lXHOIaMNJ4hv/tjZw4GBuuulWpk6dgcej///P16Y/DdM0XwMGAzGgHvg7y7I+NE1zBPHBrxCoBB6wLGtvZ4UVERHpYD8D1pqm+T0uPgfu+rZ8A42RV8br9TF37nXMmTOf/fv3snr1CjZsWNdy/ABAfNe5SP0xcHnx5FyDN3cg7qxibXwikoJsO0a04SThmkNE6o6BHbmoT0ZGJjNmzGLOnOsYNGiwllN/jLaWs1+2LKsGwDTNzwBPApOAXwO/tCzrWdM0vwQ8AbRpwEtm0eZqGg8tczqGdEOxSPwXE5cnPR+6lc4Vba4GejodI9W8DJQBi7nyZ+DSaozsaIZhMGzYCIYNG8F99z3Apk3rKSlZyZ49u891ioWJ1JQRqSnDcAfw5A7AmzcQV6CHfsETSWK2bRNtqiBSe4hI7RHsaPCS/UaOHM3cudcxadJUfD5taHQ5bSrgzg5MLfKAmGmaxcQHqBtb2p8H/ss0zSLLsso7NmbX6d9/oNMRpBs7fPgQhgH9++uXbOkMPfUa1n4TgELLskJX+g3SaYzsbIFAgDlz5jNnznxOnTrB2rVrWLduDadPn5sctaPNhKv2EK7ag+HNxps7AE/eQNz+PAeTyxUxXGDHPvm+pBzbtokFq4nUHiZcewg73HjJfn369GPGjNnMmDGLoqLiLk6Z2tq8oNQ0zd8BNxHfXvkWoD9wzLKsKIBlWVHTNI+3tLd5cCoszL58py70jW/8jdMRpBv77ne/C8BPf/pTh5OISIvVwCjgw6v5Jp0xRibb+NjViopyGDNmBA8//CB79+5l5cqVrFq1iurqc2dB2eF6QpU7CVXuxOXPx5M7EG/eAFzeLAeTS1u5AgXEmio/4X6PLkwjVysWqiNce5hIzaGLDts+q2fPnsybN4/58+czeLCWSF6pNhdwlmU9DGCa5v3A48CjHRGgsrKeWEybf0l6CIejeL1uysvrnI4i0mVcLiOZi5EyYIlpmou5+Bm4H7T1m3TGGKnx8ZyCgj7ceecXuP32e9i9eyfr1q3hgw820tR0btVrLFhNqLyaUPlW3JlFePMG48npj+H2OphcPokn5xpCn1DAeXL6dWEauRJ2NEi49gjhmoPEmiou2ScrK4vJk6cxY8ZsRoy4FpcrPrNaUXHxjpPp6ErGyHZv6WJZ1jOmaf4GOAr0M03T3fLOohvoCxz55O8gIiKSNDKBNwEf8dmxs9xX8s00RnYut9vN6NFjGT16LA888BW2bdvK+vVr2Lp1C+FwONEv2lhOtLEcTm7Gk9MPb95g3Fm9tPlJkvH1MIk2nCbacOKie+6sPvh6mA6kksux7SjR+pOEa8qI1B+/5DJYn8/PpEmTmTZtFmPGjNMukh3ssn+apmlmAwWWZR1pub4dOAOcJr7k5D7g2ZaPW7S2X0REUoVlWQ+df22a5jjgAeJHC1yWxkjneL0+Jk+eyuTJU2lqamTLls2sW1fKRx9tw7ZbZi7tKJHaw0RqD2N4AnjzhuAtGKollknCMFxkXDOHcE0ZwZObEu3+3lPw5g1WwZ1kYqF6wtX74ue1XWIzErfbzdix45k+fRYTJkzC79eGbZ2lLeVwFvCSaZpZQJT4wHS7ZVm2aZpfB542TfMHQBXxQU9ERCRlmKZZRLxg+zIwnvhzcd9o45drjEwCGRmZzJo1l1mz5lJdXcX69aWUlpZw5MihRB870tzyvNwu3Nl98BUMw53VR8/gOMxwufEVDGtVwPkKhjmYSM5n2zEi9ccJV+1rOa/tYoMGDWHWrLlMmzaT3NzcLk6Yni5bwFmWdQqY8TH3dgPTOzqUiIhIZzJN0wvcATwI3AzsI75T5CDgXsuyTrfl+2iMTD75+QXcfPOnuPnmT3H48CHWri1h3bo11NSc3fzEJlp/nKb64xjeLHw9RuDNH6qDwkXOY0fDhKr3ET6zBzty8QkrBQU9mDVrDjNnzqVvXz2r2NX0aiUiIunoFPGDt58CfmhZ1gcApmn+tZOhpGMNGDCQAQMG8tnPfp4PP/yA5cuXsmvXR4n7driB4KkthCp24u1h4isYrk1PJK3Z0SChM3sJndkDsdanqxiGwdix47nuuoWMGzcxsRmJdD0VcCIiko62AXOIz5DtNU2zzLKsKoczSSfxeDxMmTKNKVOmcfLkCVasWMaaNStpaGgAWn5pLd9GqHIXvh4j8PW4VoWcpBU7GiJUuYtQ1V6IRVrdy8nJZe7c65g//3qd15YkVMCJiEjasSzrOtM0BxJ/Lu1bwH+YprmE+DNt+s29G+vduw9f+MKXuPvue1m9egXvvPNnKitbtj+PhQlVfES4+gD+4vF4cgfqGTnp1mw7Rri6jFD5tos2Jiku7sVtt93BzJlz8Hr1sphMVMCJiEhasizrEPAY8JhpmnOIF3MxYKtpmk9alvX/ORpQOpXP52PhwpuYP/961q4t4c03/8Tp0/GjAO1IE83H1+Gu2oe/92TcgQKH04p0vGhTBc0nNxNrbr34oG/ffnz603cydeoM3O4rOlFFOpkKOBERSXuWZZUAJaZp/j1wF9oxMm14PB7mzr2O2bPnsXZtCS+/vCix4Um0qYLGsiX4eo7G13OUtrWXbsG2o4TKdxCq3NWqvbCwJ/fccx9TpkzX821JTgWciIhIC8uymonvRvm801mka7lcLmbPnsekSVN5443FLF36NtFoFLAJVewg0nCSjL4zcPmynY4qcsWiwVqaj69tNevm8Xi57bbbufXW2/H7/Q6mk7ZSASciIiLSIiMjg3vv/SJz517H//zPb9i3bw8AsaYKGsreIdBnOt7c/g6nFGm/cE0ZzSc2gR1NtI0aNYYvf/lhbU6SYjQ/KiIiInKBPn368u1vP8pdd91zbjlZLELzsTUET2/FtmPOBhRpI9uO0nxyM83H1yeKN4/Hwxe+8CW++c3vqHhLQZqBExEREbkEt9vN7bffxejRY/n1r/+TiopyAEKVu4g2nSHQbyYuT8DhlCIfLxZupOlYKbGmikRbnz59+frX/57+/Qc4mEyuhmbgRERERD7BkCHD+MEPfsLYseMTbdHGUzSWvUuk8bSDyUQ+XqT+JI1l77Yq3iZPnsb3v/+YircUpwJORERE5DKys7P5xjce4Y477k6cDWdHmmg6tJxgxU4tqZSkYdsxguXbaTqyInG2m2EY3HPPffz1X3+DjIwMhxPK1dISShEREZE2cLlc3Hnn5xg6dDi//e0vqa+vB2xC5duI1B0l0Gca7kC+0zEljUWbztB8YgOxYHWiLS8vn69//e8wzZEOJpOOpBk4ERERkXYYO3Y8P/rRTxk6dHiiLdZ8hsayJQTLd2DHop/w1SIdz45FCJ7eSuPBpa2Kt5EjR/OjH/1UxVs3oxk4ERERkXbq0aOQb3/7Ud5++8+88carRCIRIEaoYgfh6gP4i8bgyRukw7+lU9l2jHD1fkLlH2FHmxPtPp+Pu+66hxtvvFWHcndDKuBEREREroDH4+H22+9k0qQpPPXUb9i/fx8AdqSR5hMbcFXuxlc8Dk92v8RzcyIdwbZtIrWHCZZvxw7Xt7p37bWj+PKXH6ZXr94OpZPOpgJORERE5Cr063cN3/3uj1ixYhmvv/4KtbW1AMRCtTQfLcHlz8NbMAJv3iAMl9vhtJLK7FiEcHUZoao92KG6VvcKCnpw552fY/bseZp16+ZUwImIiIhcJZfLxfXX38isWXNZsuQt3nnnTZqbmwCIBWsIntxIqHwb3oJheAuG6/w4aZdYuJFw1V5CVfshFmp1Lysri9tuu4OFC2/G5/M5lFC6kgo4ERERkQ4SCAS44467WbDgBt566w1WrFhGMBh/NsmOBglVfESocheenGvw5g3GndVLz8nJJdl2jGj9ScI1B4jUHQPsVvczMjK5/vobufXWT5OZmeVMSHGECjgRERGRDpaTk8vnP/8X3H77naxatZxly5ZQWdlyoLIdI1J7mEjtYQxPJt78wXjzBuPyZTsbWpJCLFhLuKaMcE0ZdqT5ovvFxb244YZbmD17ns50S1Mq4EREREQ6SWZmFrfc8mluvPFWPvhgI0uWvM3+/XsT9+1IY3xWruIj3JnFePIG4s3pj+HWUrh0EosEidQdIVJzkGhTxSX7mOZIbrrpVsaPn6Rn3NKcCjgRERGRTuZ2u5k6dQZTp87g6NHDlJSspLS0hPr6cxtRRBtPE208TfDkZjzZffHkDsST3QfDpV/XuiM7FiFSd4xw7SGi9Se4cIkkxA/hnjVrLnPmzKNPn35dH1KSkl4RRERERLrQNdcM4AtfuJ/Pfe4+tm79gNWrV7J9+4fYdssv8HaMSN1RInVHweWJPy+XO1DPy3UDth2NP9dWezj+92tffOi72+1m3LiJzJ07n7FjJ+B2a+dSaU0FnIiIiIgDPB4PkydPY/LkaVRVVbFhQynr1pVy6FDZuU6xCJGag0RqDmK4/Xhy+uPJG4A7o0hny6UI244RbTxNpPYw4dqjF+0iedbQocOYPn02U6fOIC8vr4tTSipRASciIiLisIKCAm6++VPcfPOnOHHiOOvXl7Ju3RpOnz6V6GNHg4Sr9xGu3ofhycCTOwBv7gBcgR4q5pKMbdvEmioJ1x4iUnsEO3rxZiQAffr0Y8aM2UyfPpPi4l5dnFJSlQo4ERERkSTSp09f7rzzc3zmM5/l4MEDrF9fyoYN66iurkr0sSNNhM9YhM9YGL4cvLkD8eYNxOXLcTC5RIO1RGoOEq49hB1uuGSfwsKeTJs2k+nTZ9G//wAV39JuKuBEREREkpBhGAwePJTBg4dy771/wd69Fhs2rGXjxvWtNj+xQ3WEKnYQqtiBK6MQb+4gPLn9dVh4F4mFm1qWRx4k1lx1yT55eflMnTqdadNmMnTocBVtclVUwImIiIgkOZfLhWmOxDRH8sUvfpldu3awfv1aNm/eSHNzU6JfrKmSYFMlwVMf4MnphzdvCO7s3tr8pIPZdoxI/XHC1Qc+dgfJzMxMpkyZzvTpszDNkdr6XzqMCjgRERGRFOJ2uxkzZjxjxozn/vu/wocffsC6dSVs376VaPTsroZ2YidLw5OBN28w3vwhOiz8KsWCtYSqDxCpOXjJ59o8Hg/jx09ixozZjBs3Aa/X60BK6e5UwImIiIikKJ/Px7RpM5g2bQZ1dbVs2rSetWvXsG/fnkQfO9JEqHInocqduLN64SsYgTu7r5bxtZFtx+LntVXtIdpYfsk+pjmSmTPnMGXKNDIzs7o4oaSbyxZwpmkWAs8AQ4EgsA/4S8uyyk3TnAE8AWQAB4EvWZZ1uvPiioiIJA+NkZJMcnJyWbDgRhYsuJETJ46xevVKSktXUVtbm+gTbThFU8MpDG82vh7D8eYNwXBrluhS7GiIcPV+Qmf2YkcaL7qfn1/AnDnzmTNnvnaQlC7Vlhk4G/hny7JWAJim+TjwM9M0HwaeBR60LKvENM3vAz8DvtJZYUVERJKMxkhJSn369OPee7/I3Xffy9atW1i9ekWrw8LtcD3BU1sIlm/HmzcEX+G1uLyZDqdODrFQPaHK3YRryi46aNvtdjN+/CTmzr2OMWPG6ZBtccRlCzjLss4AK85rWgf8FTAFaLYsq6Sl/dfE32HU4CQiImlBY6Qku/hh4VOZPHkqlZUVvP/+Ulatep+GhpYt7mMRwlV7CFfvixdyPUfi8qbnEsBYqI5gxU4iNQe5cFOS7OwcrrtuIQsW3EhBQYEj+UTOatczcKZpuogPTK8DA4BDZ+9ZllVhmqbLNM0eLQOaiIhI2tAYKcmusLAn99xzH3fccRelpSW89967nDhxLH7TjrUcEr4fb95gfD1Hpc2GJ7FgLcGKj4jUHubCwq1//4HccMPNzJgxC6/X50xAkQu0dxOT/wTqgf8C7uqIAIWF6fHiIALg9caXWhQV6aBVkW6oQ8dIjY/SeXK49967uOeeO9m8eTMvvPACu3fvbrlnE645QLjmIN4ew/EXjsLw+B1N21likWZC5TsIV+/nwsJt3Lhx3HvvvYwbN06bvUjSaXMBZ5rmvwDDgdsty4qZpnkYGHje/Z6A3d53Fisr64nFLj47Q6Q7CoejeL1uysvrLt9ZpJtwuYxuX4x0xhip8VG6wsCBJo888ii7dn3EG28sxrJ2tdyJET5jEa4+gK/nKHwFwzFc3WPzcjsWJlRpETqzG2KRVvdGjx7L7bffxYgR1wJQUVHvRERJI1cyRrbp/0TTNH8CTAY+ZVlWsKV5M5BhmuacljX+XwdebNe/XUREJMVpjJRUZxgGo0aNYdSoMVjWLl5+eRH79++N34yFCZ3eSrhqH4Fek/Dk9HM27FWwbZtI3RGCp7ZgR5pa3bv22lF89rOfZ+jQ4Q6lE2m7thwjMBr4HrAHKDVNE6DMsqy7TNO8H3jCNM0ALVskd2JWERGRpKIxUrob0xzJ9773Iz74YCMvv7yIU6dOAmCHG2g6uhp3dl8CvSal3PNx0WAtwZObiTaeatXer19/7rnnPsaOHa+lkpIy2rIL5UfAJX+iLcsqBcZ2dCgREZFUoDFSuiPDMJg8eRrjx09i5cr3ee21l2loiC8ljNYfp6HhJL6eY/AVXothuBxO+8nsWDR+iHnFLiCWaM/NzePuu+9lzpz5uFzJ/d8gcqHusZhZRERERDqUx+Nh4cKbmD59Jq+88gKrVi2PnyNnxwiVbyNSd4RAn+m4A/lOR72kaFMlzSc2EAvWJNoMw2Dhwpu4887PkZmZnsclSOpTASciIiIiHys7O4cvf/lh5s69jmeeeZJDhw4CEGuuorFsSXyTk56jkmY2zrajhMp3EKrczfm7Sw4dOpz77/8KAwYM/PgvFkkBKuBERERE5LKGDBnG97//GO+++yavvfYKkUgYiBGq2EG04SSBfjMdPwQ8Fqqj6dhaYs3nNnz1+fx87nNf4Prrb9RySekWVMCJiIiISJu43W5uu+0OJk6czJNP/iaxW2W0qYKGA+8Q6DMNb25/R7KFa8poPrEZ7HNHA1x77SgefPCrFBf3ciSTSGfQ2xAiIiIi0i7/f3t3GyNXdd9x/Duz3sUP+BmvsdcEKhsfgx8x5sHxA1ZDIYXY2MGtgPLgEJECDeENSFBVomlVhUipSqtQwasoiRqkuoIqtC8qWjukthwKKRQlhpOkaoCsAS8Lduy1d9czc/tixuO1vaztndm5c3e/H8nynDP33vnLGuvsb8+958yZ08Hjjz/Bli1/cGJWq3SM3s7d9O1/s/ysXIMkSYneD/6b3n2vVMNbS0sLt912J4888qeGN406zsBJkiTpnOXzeTZu3MJlly3m2We/TXf3RwD0d++l1HeQ8R3Xksu3jmgNSbGfo527Kfac2B5g9uw53H//V7n44t8Z0c+W0uIMnCRJkoZtwYKFfP3r32DJkmXVvsLhTo68s5Ok2DfEmbUpFXo58s5/nBTeVq68iiee+CvDm0Y1A5wkSZJqMnHiJB5++FFuuOGmal+p9+NyiCvUP8SVjh3l6Ds7TtoiYNOmL/Lggw8zfvz4un+e1EwMcJIkSarZ8efO7r77y+Ry5f3tS30HOPLuTpLisbp9TlLo48i7Oyj1/xYo38p5330PsnnzVleZ1Jjgt1ySJEl1s2HD59i27b6TQlzvvp/UZWGTJClxtHM3Sf8hoBwa77//IVavXlvztaWsMMBJkiSprtat28C2bfdV24XDnfR/9LOar9v34RsUj+yvtr/ylT9h1aprar6ulCUGOEmSJNXdunUbuPHGm6vt/o/2Ujz68RBnDK3Q8yHHPvlFtb1581auuurammqUssgAJ0mSpBGxdettLFp0ebk567kAAAsWSURBVKWV0PvBqyRJ6Zyvk5SK9H3wWrW9YsWVfOELm+tUpZQtBjhJkiSNiJaWFrZtu4/W1vJ+cKXeTygc/PU5X+fYgV9Rqjz3Nn78BO66614XLNGY5TdfkiRJI6a9fTY333xLtd3f/dY5zcIlSZH+7rer7S1btjJ9+vS61ihliQFOkiRJI+r66z/PhAkTACj1H6JweN9Zn1s4+C5J4SgAU6ZMZcOGz41IjVJWGOAkSZI0oiZOnMiGDddX24UD/3fW5x47eOLY66+/kdbWtrrWJmWNAU6SJEkjbv36DdXXhcP7KBX6znhO6VhPdduAXC7H2rXXjVR5UmYY4CRJkjTiZs+ew/z5CyqthMLh35zxnMJv36u+Xrx4KdOm+eybZICTJElSQwzcdLtwqPOMxw88xg27pTIDnCRJkhriiitWVV8Xez4gKRU+9dhSoY/i0Y+A8u2TK1asHPH6pCwwwEmSJKkh2ttn09Exr9xIShR7PvzUY4s97wMJAPPnX8qUKVMbUKHU/MalXYCybffuH7Nr18tpl5EZ7777DrkcfPObf5l2KZmxdu11rFmzPu0yJEl1smzZFXR2lp9/Kxzex7jJHYMeN3CrgeXLr2hIbVIWOAMnNdDUqVOZMWNG2mVIkpSagWGscHgfSZJAvjKnUPk7SUoUDr9fPW7ZMgOcdJwzcKrJmjXrnR05R7NmTaar61DaZUiSlIr58y9l0qRJ9PT0kBSOUuo7wHkXLKH/47dpm7EIgOKRLigdA2DGjJnMm3dRmiVLTcUZOKmBDhz4hMcee4yDBw+kXYokSaloaWlh6dLl1XbhUCdtMxdx/qWbaZtZDnCn3j6Zy+UaXqfUrAxwUgO9+OIL7N27lx/+8Pm0S5EkKTXLl59YUXJgWBusb+CxkgxwUsMcOPAJu3a9TJIk7Nr1Y2fhJElj1pIly8jnyz+Glno/plTorb5X6j9E0l9+1KCt7Twuu+zyVGqUmpUBTmqQF198gVKpvBxyqVRyFk6SNGZNmnQ+CxYsrLaLA2bcBs6+XX75Ylpb2xpam9TsDHBSg+zZs5tisbxhabFYYM+e3SlXJElSek5ajbLngxOvD594vXTpiobWJGXBGVehDCF8C7gVuARYGmP8WaV/IfBdYCbQDdwdY/zlyJUqZdvq1Wt4+eWdlEpF8vkWVq9ek3ZJkmrkGCkN3+LFS9m+/TkAij0flrcTSEoUj+yvHrNkybK0ypOa1tnMwP0zsB5455T+Z4CnY4wLgaeBZ+tcmzSqbNy4hSQpAZAkCZs2fTHliiTVgWOkNEzz5n2GyZOnAJAU+yj1HaB4tBuSIgDt7bOZNas9zRKlpnTGABdj3BVjfG9gXwihHVgJPFfpeg5YGUKYVf8SpdHj+DLIroYsjQ6OkdLw5fN5Qris2i4e6aJ4tKvaXrTIxUukwQx3I++LgM4YYxEgxlgMIeyr9HcNeeYpZs48f5glSNmyffv3yefzlEol8vk8L730LzzwwANplyWp/uoyRjo+aixYuXI5r732ClAOcEll826AK69cwaxZk9MqTWpaww1wddPdfbi6Mp80mu3c+SMKhfIiJoVCgR07drJ1650pVyWNvHw+ZxgZBsdHjQUXXviZ6uti78cnBbj29nl0dR1KoyypYYYzRg53Fcr3gI4QQgtA5e+5lX5Jg1i9eg0tLeXfmbS0jHMRE2n0coyUzlJHx0WMG1ceG5NjPVDsB2DChIm0t1+YZmlS0xpWgIsx7gfeAG6vdN0OvB5jPKfbJ6WxZOPGLeTz5Yff8vm8i5hIo5RjpHT2Wltb6eiYd1r/xRdfUn1uXNLJzhjgQgh/F0L4DTAP+PcQws8rb90PPBRC+AXwUKUt6VNMmzadtWuvI5fLsXbteqZOnZZ2SZJq5Bgp1W7u3NMD3GChTlLZGZ+BizF+DfjaIP1vA9eMRFHSaLVx4xb273/f2TdplHCMlGo3WICbM6cjhUqkbBjuM3CShmHatOk8+eSTzr5JklTR3n76Xm/t7bNTqETKBgOcJEmSUnPBBacHuFmz3DZR+jQGOEmSJKVmxowZp/VNm3Z6n6QyA5wkSZJSM3nylJPabW1tnHfeeSlVIzU/A5wkSZJSk8+f/ONoLuePp9JQ/B8iSZKkJpKkXYDU1AxwkiRJaiJu4C0NxQAnSZKkppHLGeCkoRjgJEmS1DSSxFsopaEY4CRJktQ0nIGThmaAkyRJUqquvnp19fW11342xUqk5jcu7QIkSZI0tt1yy610d+8nSXLcdNOmtMuRmpoBTpIkSamaM2cuTz31FF1dh9IuRWp63kIpSZIkSRlhgJMkSZKkjDDASZIkSVJGGOAkSZIkKSMMcJIkSZKUEQY4SZIkScoIA5wkSZIkZYQBTpIkSZIywgAnSZIkSRlhgJMkSZKkjDDASZIkSVJGGOAkSZIkKSMMcJIkSZKUEQY4SZIkScoIA5wkSZIkZYQBTpIkSZIywgAnSZIkSRkxrtYLhBAWAt8FZgLdwN0xxl/Wel1JkrLM8VGSNBLqMQP3DPB0jHEh8DTwbB2uKUlS1jk+SpLqrqYZuBBCO7AS+L1K13PAt0MIs2KMXWc4vQUgn8/VUoKUSX7vNZYM+L63pFlHIzk+SsPj915jzXDGyFpvobwI6IwxFgFijMUQwr5K/5kGqDkA06dPqrEEKXtmzjw/7RKkNMwB/jftIhrE8VEaBsdHjWFnPUbW/AxcDV4F1gHvA8UU65AkjawWygPTq2kXkhGOj5I0dpzzGFlrgHsP6AghtFR+u9gCzK30n0kfsKvGz5ckZcNYmXk7zvFRknS2zmmMrGkRkxjjfuAN4PZK1+3A62dxf78kSaOW46MkaaTkkiSp6QIhhEWUl0meDnxCeZnkWIfaJEnKLMdHSdJIqDnASZIkSZIaox77wEmSJEmSGsAAJ0mSJEkZYYCTJEmSpIwwwEmSJElSRhjgpFOEEKaHEHpDCE+lXctgQgirQgj/kHYdkiRJajxXoZROEUL4KnArcDlwUYyxP+WSJEmSJADGpV2A1ITuBR4FHgc2Af8UQvhzYBEwBVgI/BR4Evhr4GLg+RjjowAhhB9V3r8auAT4W6ATeAiYCzwaY9xeOfbzwDeAFqAL+OMY469CCBuAp4BXgNVAAtwWY3yr8t63YoyrQgjjgH8FZgITgP+qXMPQKUmSNAp5C6U0QAhhOTAD2AF8h3KYO+5K4HYgUA5zTwK/DywD7gkhXDrg2HnAdcA1wF8AS2KMnwX+EPibyme1A98H/ijGuAz4ATDw1sjFwDOV9/4R+LNBSi4Cd8QYVwFLKAfBewc5TpIkSaOAAU462ZeB78UYE+B54NoQQkflvX+LMR6MMRaBN4GXYox9McYeIALzB1xne4yxFGPcB3QDL1T6fwp0hBDGUw53/xNj3Ft57zvAihDC5Eo7xhhfr7z+ySnXPy4PPBJCeKNS0+8CK2r6F5AkSVLTMsBJFSGENuAO4N4Qwq+Bt4BW4J7KIb0DDi8O0h54S/Kgx1bCH5Vjc5Rvjfw0Q13/uDuAtcC6GONS4O+B8UNcU5IkSRlmgJNO2Ay8HWOcF2O8JMZ4CXAD8KUR+rw9lGfcFlXa9wCvxxgPncM1pgEfxRgPhRCmUg50kiRJGqUMcNIJX+LkZ9CIMe6h/P9kfb0/LMbYBdwF/CCE8CZwZ+XPufgeMDmE8HNgO/Cf9a1SkiRJzcRtBCRJkiQpI5yBkyRJkqSMMMBJkiRJUkYY4CRJkiQpIwxwkiRJkpQRBjhJkiRJyggDnCRJkiRlhAFOkiRJkjLCACdJkiRJGfH/HiCi3XRyvBsAAAAASUVORK5CYII=\n", - "text/plain": [ - "
    " - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "from matplotlib import pyplot\n", "%matplotlib inline\n", @@ -1894,22 +949,9 @@ }, { "cell_type": "code", - "execution_count": 40, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3AAAAE3CAYAAADrKKMqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XeYW3eV+P/3VddoNL17mmdsy91xbymOk5BCEgIJSdhsQmBZ6sKXXWC/fBdYeBZ2l90fLGSBQAgE0kglTk/sFMe91/GMR+PpvWlG09Sl+/tDmjtzR4Y44Nge57yeJ0+iqyvpI3niqzPnfM5RVFVFCCGEEEIIIcSFz3C+FyCEEEIIIYQQ4sxIACeEEEIIIYQQ04QEcEIIIYQQQggxTUgAJ4QQQgghhBDThARwQgghhBBCCDFNSAAnhBBCCCGEENOEBHBCCCGEEEIIMU1IACeEEEIIIYQQ04Tp3U5wuVzlwPOTDmUAaW63O8vlcs0BHgayAQ9wj9vtPvV+LFQIIYS40Mg1UgghxLn2rgGc2+1uBi4Zv+1yuX466XG/An7hdrsfc7lcfws8AGx8H9YphBBCXHDkGimEEOJcU1RVPeOTXS6XBegArgXagTog2+12R10ul5H4bxhnu93uvvdjsUIIIcSFSq6RQgghzoV3zcBNcTPQ4Xa7D7tcruWJ/44CJC5QnUAJcCYXJyuwEugCou9xHUIIIaYPI1AIHACC53kt76ezdY2U66MQQnxwvOdr5HsN4D4NPPQeH/OnrAR2nKXnEkIIceG7DNh5vhfxPjpb10i5PgohxAfPGV8jzziAc7lcRcAVwN2JQ23ADJfLZZxUHlKUOH4mugAGB8eIxc68jFOI6S47OxWPZ/R8L0OIc8ZgUMjMdEDi7/2L0Vm+Rsr1UXwgyfVRfBD9JdfI95KBuxd4xe12ewDcbnevy+U6CnwCeCzx7yPvobY/ChCLqXKBEh848jMvPqAu5nLAezl710i5PooPLPmZFx9gZ3yNfK8B3FemHPs88LDL5fpXYBC45z08nxBCCHGxuBe5RgohhDgH3lMXyrOsHGjyeEblty3iAyU310lf38j5XoYQ54zBoJCdnQowE2g+v6uZFsqR66P4AJLro/gg+kuukYb3c0FCCCGEEEIIIc4eCeCEEEIIIYQQYpqQAE4IIYQQQgghpgkJ4IQQQgghhBBimpAATgghhBBCCCGmCQnghBBCCCGEEGKakABOCCGEEEIIIaYJCeCEEEIIIYQQYpqQAE4IIYQQQgghpgkJ4IQQQgghhBBimpAATgghhBBCCCGmCQnghBBCCCGEEGKakABOCCGEEEIIIaYJCeCEEEIIIYQQYpqQAE4IIYQQQgghpgkJ4IQQQgghhBBimpAATgghhBBCCCGmCQnghBBCCCGEEGKakABOCCGEEEIIIaYJCeCEEEIIIYQQYpqQAE4IIYQQQgghpgkJ4IQQQgghhBBimpAATgghhBBCCCGmCQnghBBCCCGEEGKakABOCCGEEEIIIaYJCeCEEEIIIYQQYpqQAE4IIYQQQgghpgkJ4IQQQgghhBBimpAATgghhBBCCCGmCQnghBBCCCGEEGKaMJ3JSS6Xywb8BLgaCAB73G73Z10u1xzgYSAb8AD3uN3uU+/XYoUQQogLiVwfhRBCnGtnmoH7b+IXpjlut3sR8J3E8V8Bv3C73XOAXwAPnP0lCiGEEBcsuT4KIYQ4p941gHO5XKnAPcB33G63CuB2u3tcLlcesAx4InHqE8Ayl8uV+34tVgghhLhQyPVRCCHE+XAmJZSVxMs/vutyua4ERoFvA36gw+12RwHcbnfU5XJ1AiVA35kuIDs79T0vWojpLjfXeb6XIIT468n1UYizTK6PQry7MwngTEAFcMTtdn/D5XKtBl4CPn42FuDxjBKLqWfjqYSYFnJznfT1jZzvZQhxzhgMysUajMj1UYizSK6P4oPoL7lGnskeuBYgQqIUxO127wP6if+GcYbL5TICJP5dBLS9pxUIIYQQ05NcH4U4S0b9YY7V9eELhM/3UoS44L1rAOd2u/uBrcA1AInOWnlAHXAU+ETi1E8Q/y3kGZeHCCGEENOVXB+FODsO1vbytV/s4tsP7OZrv9hNVaPnfC9JiAvaGY0RAD4PPORyuX4MhIG73W631+VyfR542OVy/SswSHwzt/gA2bVrOzt3bjvfy5g2hoa8mExGHA6p8T9Tl156BevXX36+lyHEnyLXRyH+Sk+8dYpwJAZAMBzlqbfrWVSRfZ5XJcSF64wCOLfb3QhsOM3xWmD1WV6TEBetoaEhFAUJ4IS4SMj1UYi/TkxVGR4L6Y55R4LnaTVCTA9nmoET4rTWr79csiPvwX/91/cxm4380z/9y/leihBCCHHeGRSFVfPy2VPdrR1bsyD/PK5IiAufBHBCCCGEEOK8ufd6F/lZdtr7fczMT+WalSXne0lCXNAkgBNCCCGEEOdMbcsg9R1DzCnJYE5JBmaTkZvXz5QxAkKcIQnghBBCCCHEOfHq3haefadBu33nxll8aFUpw74Qbe5eMu0mUu3m87hCIS58EsAJIYQQQohz4rW9Lbrbr+5rJSvNxq9fqiESjWExG/jiLYtYXCldKIX4U85kkLcQQgghhBB/NVVNPvDEW6eIRONjBELhGE+9fercL0yIaUQCOCGEEEIIcU5cv6ZUd/va1aVJYwSGRvW3hRB6UkIphBBCCCHOiQ+vLae8MI2GjiFmF2cwryyTjr4xdp+YGCNQOSONujYvc0oyzuNKhbhwSQAnhBBCCCHOmQXlWcwtzeC1va1s2tFIYVYKN6wpo9Pjo7ZlgKrG+D/LXbl86aOLzvdyhbjgSAmlEEIIIYQ4p17Y2cxz2xupbx9ix/Eu3K2DlBY4CYSi2jmH3H00dQ2fx1UKcWGSDJwQQgghhDgrRv1hfvfqSY43eJiR4+CT189lZmFa0nmH3L262w2dwxTkpiad5wtE3re1CjFdSQAnhBBCCCHOiqffrufIqX4AWntHuX9TFf/5ubXsPN7FyZZBygucXL2imNwMO10en/Y4q9mAqsZQlIlOlflZKZQXpPLq3ha6PT6Wzslh6exchsdCPLLZTW3LIOWFTu651kVeZsr5eLtCnBcSwAkhhBBCiLOivmNId9szHOSpt0/x1qEOAA7U9tLWO8ptGypp7xtlYDiI0aAQDMfYfTzeyGRmYRqLKrLYuKyY+5+v5mTLIAA7q7r41A1zOV7v4XBdHwA1zYM88GIN3/nkinP4LoU4v2QPnBBCCCGEOCtmzUjX3c5Os3HI3ac7tv9kL3kZdv7r82v513tXYJjybdQzHOCWyyoIhaNa8DZu+7FOalv1x5q6hgmFowjxQSEBnBBCCCGE+IsMjgSpa/MSjsQHcd++cRZLZ+dgNCiU5qXyhVsWkuaw6B5jtxoxGQ0YDQbK8p1YTEbd/WZj/Oup1WLEaFB09zls5qQ9dTNyHFjM8edo7Bxm0/ZG9lR3E43Fzup7FeJCISWUQgghhBDiPduyv5WntzYQU1UyUi187c6lzMhx8OVbF+vOu+2KSn7+XBWhRJA3Fojwnd/u4wu3LKQ4N5Wb1s/kybdOAaAAN68vB8AfjJCTbqNn0A+A1WzkpvXlpKVY+PVL1TR0DJPltHLjuvj5B2t7+eXzJ0hsoaOqwcNnb17wfn8MQpxzkoETQgghhBDvyVggzLPbGoklOo54R0O8sKPxtOcurMjm//viOjKdE5m4Lo+PRze7AbhyaRGXzMrGbFLIzbCTnW5DVVX+949VWvAGsG5hPpVF6eRm2Ln9ylmYTQoDI0EeeLGa57Y3sOVgmxa8Aeyr6cE7Gjz7b16I80wCOCGEEEIIodPeN0rvoO9P3j/iCxOJ6ksUe71+fvXCCb714F7+8GYdwUn70lJsJgZHQkmvAfDKnhaO1nsIR1R6vX5+samKTs8Ynf1juvPdbRMNUl7c1Uw4MhGuvba3FV30BqCAQVEQ4mIjJZRCCCGEEAKAYDjKfc8co7bVC8DaBQV85sZ5KFMCoYKsFMoKnLR0j2jHxvxh9p+Mz3fr8viIxlTu3Dib7cc66egfozg3VQvaAFLtFt4+3E5dm1f33P5glKHREHarCX9wYg5cptPKo1vcGA0KQ1Mya9GYyhWXFNHUNUw0Fo/kyvKd/PaVk8wuTue61aVEoyoPb67lYG0fuRk27rpmDvPLs87CpybEuSUBnBBCCCGEAGDn8S4teAPYU93NukUFLDhNoPOPH1/Cy3ua6RnwM788k6fertfdf7zew8hYiIOTulCW5TvpH/IzFojQ5/Xz2JY6irL1M9ysZgOPbanTBW9F2SnUtQ1S3TQAgMWkLyJbVJHN+kWFVBSlUdXg4ViDR+tgWdXoYWAkiN1iZG91DxAPMH/5/Al+9KX1WM36JipCXOikhFIIIYQQ4iJU0zzAr144wcOv19I98KfLISfzDAWSjp1o9PDbl2t4+u16BoYn7u/yjBGJxKickcbaBQWkp+q7TeZm2pNGCMQbnlh1xzo9Ppa7cjEaFHIzbLhKM3XrVYBFldm6kslQJMaGS4q4fEkht185iy9+dCHhSIxwJMbllxQlZfX2VncnzagbC0To8ujLNIWYDiQDJ4QQQghxkTnV7uXHTx0l0WOEQ+4+fvi5taTY/vxXv+Vzc9l8oFV7nNlkYPP+Nu3+A7W9/Mdn11DbOshPnz6mbTs7WNvHp66fywMvVuMPRrFbjGxYUkR9+5Bur5zdYiSq6jermY0GBoYCxGIqWU4bwZB+ppsKqFP3twHOFAvXrS7FbjVxqt3Lz5+rYsQXJsVqwmE3Mzw2secu02ll1ox0TrVPBHEOm4nCbMef/TyEuBBJBk4IIYQQ4iKzt6ZHF/SM+sOcaPIwMBwgEIr8ycdVFqXzf25bwuLKbFa4cplbmqm73zMc4GTLINuPdep6hrT3jdLvDeAPxoMvfyjKo1vcXLOiWDtHUWC5K4+PXDoTk3FiT53DbqapewQVcLd5GfHpm51kp9m4cV0ZxbmpuuMv7W7ma7/YRW3LIH944xQjvjAAvmAEULUyS6vZyJ1Xzebm9TNZuyAfk9FAYXYKX7xlYVL5ZDgSS2rOMuoPn3EGU4hzQTJwQgghhBAXmYwpw7MBXt7dQnvfKBazgduuqOTqFSXUtXnZciCeYbtmRTGu0kzKC50U56biGQ5giiWnvpwpZlKsyV8h69r1ZYtjgQgpVhMKE1m0Z7c18O+fWc0PP7eW2tZBirId/NvDB3WP8wwH+eR1LvbV9JCVZuOaFcVUNQzw0ctmYjAoPPhyDb5APAgNhKI8vbWeXq9f9xwjvjA/+YdL6ewfoygnhcGRECoqf3/TAv7+Jth+rJNX97aw72QPN64rJzvNxjNbG3jrcDuKAteuLOWjl1fw2r4WNm1vJBJVKS9w8tXbl5CWkvzZCnEuSQAnhBBCCHGRuXJZMQdqe2nvi+/xKsxO0TpAhsIxnnyrnpK8VH781FEi0XiQdqy+n+99aiUPvFitPQ4g1W5m1B/Wbj/7TgM3rSvjyKl+7fj6hQUUZKdoXSjHdQ34dJm6cCTG0fp+1i8qpKN/jN0nuslyWhkYmegqmZ0W3yP3Dx9bjC8Q5gePHtLKIeeWZuiamwAMjgRZPieXnVVd2rGls3NJc1joHfTznd/uZ8QXxm418tmbFjA8FuL3r9Vq59a2eLn9ylm8vr9VO/bS7mYKs1N49p0GLZPZ3D3Cq3tauPOq2WfwJyDE+0cCOCGEEEKIi0yq3cz3Pr2K+vYh7FYTm7Y30uWZKAOMqSp7q7u14A3irfjfPtKhC94AygqcdPaPMZgIsk62DGI1G/mvz6/ljQNtmEwKVy8vIRKNcdDdp40WmF+eyezidHaf6NY9X066nd+8XMORU/3asYxUK2OBMKgqnR4fD7/u5tW9LSyqyNbtZatt9eIqycA9qUnJ6vn5fPTyCpwOM0cTz5mbYWfEF+KJt+q00kp/MMpjW9wUZOm7XvZ6/Rxr6GequjZv0t67HimlFBcA2QMnhBBCCHERMigKc0oyKMlLZfGsbN19qXYzs4ozkh5TkGln6ujrVLtZC97GNXYN89tXTvL8ziaefaeRbz24l2A4xldvW0x6onyzpnmQnVVdLJg5sY/ObDTQ5/VpgdY4VVW598b5hCcFlH3egG5u3LgUm4nxsXTlBU4+dsVMrGYjMwvS6PL46PL42Ly/lR89eZQ+r76r5sBwkKw0W9LntKhS//kowLqFBdp7GbdsTm7SeoQ41ySAE0IIIYS4CEVjMTbvb+WnzxxjcDjARy+roCQvlUUV2Xzl1kWsnJfHJbNytPMXV2Zz5bJirllZoh1Lc1i4eX15UgORouwUDtdNjAjwDAd581Ab2493MTQpY9bQMUxJnlO7HY7GeOKtehx2s+75bBYjbT3JwVppvhODYSKkzHJaOXKqX1fWeLA2vo7JJZQAbb2jzCnRB6mXzM7h5vUzycu0A/Hg7ZbLZrLClcfd17rIy7RTkJXCp26Yx6ziDL5+5yUsd+VSWZTGXdfMYc2CAnyBiXLSfq+fX71wgu8+tJ/ntjcmNUAR4v0gJZRCCCGEEBehP25r5PV98X1dxxs8LHfl8s27lvHgSzX852OHSU+1cNc1c7htQyUqMCPHQTAcJT/TzuVLCinJS+XSxUVYzUY+/5EF/P71Wlq7R5hfnsUKV65u4DeAdySIzRJNWkfHabJoy+bksre6m1AkhqJAz6Cf1/c0YzQoRBONUzKdVuravMQmNVJZUJ7Jjip9SWZ73xgjvhDqlHpHBfjY5RUU5aRwonGA/Ew7d13rItVm5j/+fg1HTvUxNBZiSWU8iL1y6QyuXDoDgC37W/nG/bswGQ3cuK6c9YsK2Xqkg6/+bAeBYJQls3L43M0LuO+Px+lIlJy29Y4CKh+7vPKM/4yE+EtIACeEEEIIcRHaW60PdA7X9ZHltHK0Pl6+6B0N8eDLNfzPl9aTYotnxH781FHqE7PSjAaF4txUcjPsvLiriTF/mCsumcGtV1SgKLBpRxOexGBvBdhb3YNKfFzAeCyV6bSyel4+VY0DurUoCnztzqXsPtHFtqOd2vFoTOXSRYUU56VSlJPC/zx1TPe4/uEgBgUmN8dUVZWv/WIXkaiqdbwE2Li8mKKc+Jy3lp4RmrtHaO0d5et3LqWq0cPDr9WiAk8YTvG5mxewYm4eEB9c/uTb9drzP/TKSdIdFh7fUkcs8caO1vfz3I4GLXgbd/RUvwRw4n13RgGcy+VqBgKJfwD+r9vt3uxyudYADwB2oBn4W7fb3Xu65xBCCCEuRnKNFBeqjFQr3tGJckan3Uxrz4junFA4RpfHR+WMdJq6hrXgDeLB1FuHO+j3+mlONCbp8viIxVTu+tAc/uXu5bx1qJ2OvlGONXi0x6lqPFNms5joGhhj84E2ls7Owd3qJRiOEo2pbDvaya6qblYmgqbJFAUOunuxNCTv9AmFoxgUhZiqYjIq3LiunM37W7VmLCpQmp/Kp2+YR2m+k16vn1d2t2hBXZfHx6t7mtlf26sdi8ZU/ritQQvgTrYO6l5TBQ7V9WnB27h+bwC71aTrilkgg8HFOfBe9sDd5na7L0n8s9nlcinAY8CX3G73HGA78MP3ZZVCCCHEhU2ukeKcOtHk4f5NVfzu1ZN0ecZOe87tV87Cbo0PqjYZFe64ajbzyrN051jNRvIy7IlzTvO1UFW14G3ceMfGTKeV2zZUsmTSPrpxaQ4Lh+v66Oz30dY7ypFT/XzsigqtPBIgEo0RCIUxT3rdFKuJHce7qG8foqZ5UDfw22410do7SiTxHJGoSnP3sDY8fFw4EqM4NxV36yDulkGmTrLzDAeSHjOWmCvnbh2kd8DPVMvn5GKz6Id+L6rM5pPXubAnZuIVZqdw2wbJvon3319TQrkCCLjd7p2J278i/hvGT/+1ixJCCCGmOblGivdNXZuXnzx9TCtTPHKqnx9+bi0pNv3XusIcB+sXFdLZN8aliwtZs6CASDTGqC/MO0c7iERVguEo3/3dfr519wpK8lJZOjtHa+9vtRi5fk0pp9qHdI1JFEXhew/tpzgvlVuvqGThzCzd3rXxx04NnFqmBIIA/UNBorF444/ivFSynBaON0yUW0aiKrdtqMBmMZHltPK/f6zSPd47EmJ2cTqnJmUOl8zK4bsP7aejPx7YWkwGQpGJ5iKr5xeQ6bSx9UiHduyKS4rYeqSDRze7tWMGRcFiNvDhtWUsrMjmK7ct5uHXahn2hVg4M4srlhShKAqhUJR9J3spyknBao4HeQ2dQ7x9qB1FUbhmRQllBRONXIT4a72XAO7xxG8UdwL/ApQCLeN3ut3ufpfLZXC5XFlut3vgTz3JVNnZqe9+khAXCXPiL/bcXPmLXIiLzFm/Rsr1Ufwpz2xv1M0nG/WHae33cVmiAQfEywL/9aG3ae+NNxCpaRkkLyeV1QsL+dDambx5qF071zsaYldND2sWFpKdYWfNwgJml2Ry1coSstPtfNVs5qdPHmZoNESq3UyfN56hau0dZWAkyF3XzUVRJnaffWh1KesWF/HOkYm9bQBtfWOYTQbCiWDKZjEmGn/EtfeOUpCVXFI55IuwaXsT0ZiaVLK4ckEBO45OBGJlBU7S02xa8AYQisRYMS+fmKqyYVkxVy4vIRqNkZftYOfxTrLTrFy/fib//vsDutc1GuDR712LzRrfH/jinhZ6BuPv/UBtH5UlneRnpfBQYih4dfMApzqG+ee7V/Dffziivc9DdX3c/42N5E2ZPyfEX+pMA7jL3G53m8vlsgI/BX4ObDobC/B4RnXdhYS4mIXDUcxmI319yb+FFOJiZTAoF3sw8r5cI+X6eO7FYipdnjGy023YLBdunzebKbnU8YXt9Ty++SRLKnO45bKZNHUNa8HbuFd2NlKRn0pnz1DS45vavby4vVHb5+VuGWTd/Dye3tvMK3tbUICb1pWz+0QXo5MqDGtbBvn1puO69vm7jnVy2+UVfGhlCW8lAkWTUaG5a1g7Z1FFFvPKsnh660SzEACDEt+rN+IPY1Bg/eJC3tjfqt3vD0aYWejEoCgsnZNLMBCme9KA8pbuETJTrUnvr7LIyeBwEHeTh8J0GzFV5fltDQTDUTp6R/n6/+7AmaKf+Yai8OCmKoxGhcuXFPHq7ibd3S/vbKQkT/93W3PXMM+84daCN4BgKMobe5v50KTxDGcqFlN1YxTeb+29owz7QswpyTh9Sa046/6Sa+QZ/e3kdrvbEv8Oulyu+4EXgfuAsvFzXC5XDqC+l+ybEEIIMd3JNfLi0OUZ4ydPH6N/KIDNYuTe6+eyal4+e050s/1YJyk2EzetL6e8II3+IT9vH+ogGI5y2ZJCygvSgHiDjVF/OGlQdDAUxTpl/9RfY+OyGRys7dWyV3arEXeipf94V8RLFxcmPc47GuIr9+1AQSXVbmbUH59nZjQoGAyKrknH4EiQtw628+y2Bu3YS7ubmVnoxDM8MdQ7zWFhzD+REQPwBSP87tWTHHL3kZ1u48qlRTz1doPunFF/GKORpI6SNc2D2rpiKhiV5OBlZmEaH98wi/qOIfZUdyXdPz7jbZzDZmLTtkatjHLH8S6uuKSIYHhiH1wgFGVJpZN+r18r/VRVlS0H2gDYfrQTi8lIKDwRmFnNRjJS9UGfQVHIzdC/PpB03ruJRGM8tsXN7hPdpNjM3H5lJesWFiadEwhFSZ00Uy+mqgwMB8h0WjEaDKiqyhsH2jjo7iMnw8Ytl1WQl2HnYG0vWw62YVAUblhTyuLKHH736kl2HI9/nrkZNr5513IyncnBsDj/3jWAc7lcDsDkdruHEuUhdwJHgUOA3eVyXZqo8f888PT7ulohhBDiAiLXyIvHM1sb6B+KNxINhKI8utmNwaDw4Ms12jm1rV7+7dMr+fdHDml7wnYc7+Tb96ygs3+MR7fU4Q9GKC9w8uVbFxOORHngxWqaukYozE7hszctOO1eqBd2NvHWoXbMJgMfuXQmly8p0t0fDEfZvL+V5q4R5pZlcvXyYr77qZU0dg4TCEb4n6f1rfaPNfQzs9BJQXaKlp1y2Ew0TcqAAaxfVIDVbGTdwkKOnOrT9r6N8wwlN/MoL3Ay5o/Q6/WTYjVx/epSapoHGBiZCOoKs1PYU90DQO+gn+d3NGGzGAmEJgKmMX+EJ96cyL7lZti47JJinntHn5HrHwroyi4BirIdfP3+XVrjkcljC5wpZrYfmyjdtFtNrHDlsu3YRKA3PBZiYCjAVIsqs7ludRknWwbpGRjTPWYsEGHF3FxtaLgC3HLZTGYWpnG8wcNYIIIC3LiujOWuHN442MZg4jNZUJ7Jsjm5QLxJypsH21EU+NDKUmYVpwOwr6Yn/osCq4kb15XjbvOyPfH6w2MhHnqlFldJJtnp8V8OHKzt5dEtbkZ8YeaUZPDFWxYyNBbi588dp88bICPVwuduXkBrz6g2EqG+Y4jGzmE+c+N8fvn8CS1QbegY4gu3LNCCN4A+b4AtB1q5Y+PspM9JnH9nkoHLB/7ocrmMgBGoAb7odrtjLpfrbuABl8tlI9Ei+X1bqRBCCHHhkWvkRaJn0Ke7PRaIcOCkfuqDPxhh8/42XUOPSFRl+7F4S/zxjE5z9wibdjQyOBygqWui/f6DL9fwg8+s1j3nIXcvL+ycKM17+LVaKgrTKJ5UmvfQKyc5UBtfy9H6frwjQW7fOItZM9IJR6I4bCYtmIF4Ru0Xm05otyuK0phXmsEreydKEQHMRgMnWwZ550gn88szyUm3aUFsSV4qw4lM2GQjvgj3XOciK81GVUM/T7w1EXCVFThZOTePqkYPMPF5BsMxrlo2gx3HuwhFYswsdGqfy7iMVCvXrC5l0zv1uuYn3QM+LXhLd1i4bUMlB2p7de/XYFBY6cojNcVMNBpj66S9d/5ghFAkuRS5YkYaNS2DWpBVOSONisJ0Nu1opL1vlHRHcuZpeCyMAqDA6nn5rFtYwM/+WKWtxWw2sHR2Lj95+rj2vBCfR2cyGujoG+VHTx7Vmr0crffwg8+sonvAzwMvVmvn17QMMK9M3y00pqq09IyQnW4jEIrw0KsntYC4rs3L8zsa6egfo88b//Pzjob43Wu1SeUg5S2+AAAgAElEQVSkvYN+dh7v0n3G0ZjK8UljICbebyjpmLgwvGsA53a7G4Glf+K+3cCis70oIYQQYjqQa+TFY+nsXLo8Wt8ZZhY6Kc5L1QKncQXZyY0oFEXRleMBdPaP0TPgSzoWCkexmCfKKSd3T4R4G5BTHUNaABeORDk4ZXzgnupubt84C4Beb4DsNBu+4CiqCkU5Dl22CqCxc5irls9gqv21vfgSwceJpgEuX1LEsjm5vLS7iYaOYa1E02IyEI2pRGMqB929HHT3cu/1c3l1SkA4OBLk8iVFully44/feqRDK5VU0GfNIJ71/H/379IFFhmpFi2gBBgaC5GfmcLQqD6wiEZVygqcdA/4ku4DsJgNWMwGrfyxojCNLfsnMmQGg8LfXD2bB16q1jpldnl8usA4J91GXVu8TBUV9tb0UFGUpg1Fh/hMvee2N9I95c99V1U3S2fncriuL2mMwpFT/UljIPzBeFA+mcGgsGl7Ay/sbGLl3DxdNhOgrXc06XV7B/3MnpFOvMg7zmRUKC9wsl2ftGVxZQ7VTQNaeawCrF1YkPRZiguD7E4UQgghxAfeLZfN5Ob15cwsdHLpokL+4WOLuXp5MXMSJW4GReH61aVsWDqDBeWZ2uPyMu3cuLaMnHT9vrclldnMK8vUHUu1m/nyfTv4zm/24U4Mi66ckZ60lkPuXl7e3UwwHMVoNOCctMcJIMUW78QYU1Xue+YYrb2jWjC0dHYOaVOacZiMBp7b3qjdNpsMXL+6VAvexjV1DVOUk0JDh77UsjjPgTpliPUbB9p0jUsgvgfwWw/u1YIaBcjPtFNW4NTtc2vsGmHp7InZcUaDwrAvhHdS1qo418HyRNnhZMca+pna0yPTaeWpt+vZdrSTo/X9WCY1eclKs7LtaKcWvGWkWrlhTZnWTRLijULeOtSRNObAbjXy5Y8t4iu3LmbN/PyktUwNmCAemE5lMio88049jVNKWOPrsZA0bwEYGAlQmJ2C3WokJ91GLKbSkZip99z2Rpwp+p+JBTOzWFypn8c3vzyTj15eQVGOI7EOA3dsnM1lSwpZsyBfC6Q3XFLE0tk5fPOu5Vy9vJhV8/L46u1LWDgzO3lh4oJw4bZYEkIIIYQ4R0xGA7dcVsEtl1Xojn/zb5fTPeDDbjGSnihH+6c7LsHd6iUQjrKgPAuzycA/3r6EZ7Y20Ov1s2xOLjesLYtnbxSF2pZBrBYjnkQ2qaN/jF9sOsGPv7SOFa5cblhTxluH21FjKqFIjJrmQWqaB2npHuFLH1vEnVfN5revnNSyN10eH//081189PIKXYYKoKrBk9REpTjPQfOkksVIJMbliwvZU92Nd1LGKhKJ8eKu5qTsmM1iwmAwEJsUsEWiMQpzHLpsW1GOg8bOiSBFBe69fi7bjnUmZRq9oxPB2qKKLI7V60v4PMPBpGYgJqPCa3tbtGDQaFC4ankx70waIwDxbNXdH5qDxWxkT3U3A5OarnhHg7oS2HEOu0nrfql9brlOlszOYevhDtzj2bcERYFls3M40TRAbyIYNBoUTEZFNxMvzWHhWIOHYCJjNvm+BeWZPPtOg64pjKLEA9/qpsHEezaw3JXL5v2T0mjAClcuPYN+egf9LHflcuO6csKRGFaLEXfrIOUFTm7fOJt0h4Xv/90qOvvHSE+1ag1PPnvTAu64chaKopDmiAf82ek2/uaaOUmfjbjwSAAnhBBCCPFnFEyZ36UoCnOnZNcKsx185bbFAERjMfq9AbLTbXzxloUA/OCRg1oAB/EujN0DfkryUrltQyW3bajk//5qt7aHCeBwXR++QIQ1CwqYV57F/zx5hLZEl8lgOMrLu5uwW434g5O6KYajurK+0vxU0qdk5FRgxB/hSx9dxKNb3HR5fEQiMboGfHQN+DAbDYQTwZpCvBRvXllmYm9b/FjPoF/LYuVl2rn9ylmcaBrQBXAA24910tAxpOs2WZKXSmPnREB5tN5DeaFTF2TmZdi05hvjfwbFuQ4Ouvu0Y9GYSlm+E7vVRCg8EZSl2ExUzkhnb3WPbmYcxAOkbUfbdUFqqt3MicYBRvzxPW4q8UYsd2ycxUu7mnV7FO1WIwVZDhZVZHHfH6u0clVXaQblBU5doGU0KFy2qEC39zAaU7lhTSlrFxbyzpEOqpsHdeu7YkkR7xyd2MMXicYY8SXvRVwwM5u7r53IUPZ6/aSnWLjnWlfSuYqiMCM3uU19+mnGLYjpQUoohRBCCCHOkqauYf75l3v4f7/eyzfu362VSs6aUippMRvoHhjTzfqbWvpoMRtp7hoipqqkOyz4gvp9T6P+CHddM0crp6uckZZUFtnaM6p1QBxnNhn4j8cO8dTWer7wkYVcuXSGroovHI1xxZJ4y3qVeCfIqkYPd26cxSeunk3plE6avYN+spxWfIGwroQwLcXMnuoe+rwBYmp8cPcXb1moK0Edl5tuJyvNSorVxJoF+dqw8HH+YOS0HTx3VnUyMimjpihw6aIifvDIQV7f30pT1wjGRM2lokCK1URr75gWvM2akcas4nS6Et06VeLnfPfeleRnpbCnunvKOqL80x1LqGkZ1O01bOocpmdAv+ZoTMU/Za/auFPtXvoGk7t8pk4plwWoLEqjLD8egCnAZUsKtRLUgeEA331oP9/81R7+8ec72VWVPFZBXHwkgBNCCCGEOEse3ezWmmMMjYV4+HU3AB+5dCar5uVpQ5lD4Ri/fL6aX7800X3w1isqsU5qcBIMR/nRU8f4t98fwB+Mt7GfzG418sdtjayel8+PvriOb929ImmwtMNm4qC7l2Wzc1hUkUVGqlULPOrbh/jNKzVJ+6kAlNMMjx7yhSjLd2oBkXauAr95uYb9J3u1wGjZ7ByKpjR8CYSixGKqrqQRwGhUOFDby8BwEF8wQm3LYNK2sGhMpb1vTBcg5mXaOdni1TJ7ZpPCd+9diXc0QCSq6h57x8ZZfOeeFbrulQCDI6GkZjO+YITBkQAHa3uT3qvVbOBATQ+jU7Ji4UgsKcA0GhSGx0LYJs0ATLWbeXVvK4+87uZEs34sZE66jcuXFOpmxs0pSae+Y4iWnnhDGRUYGQujJD6ITdsbtWYzgVCUxxKjLN7Nlv2tfPs3+/jPxw5xsmXwXc8XFxYJ4IQQQgghJvEHI+yt6eZYfb8uQ3YmuqYEAz0DPmKqit1q4vMfWciSSn1jiP0n4wO5X9/Xyu7qbu6+1sXN68t157T2jLLjeBe3XlHJLZfNZNaMNMxGA/5glMGRIG8eamf3iXim6K5r5mgln1azkbFAhKrGAQ6f6sdiMuIL6AOPho5hIpGYLshYXJnNSlde0nvbX9PDDx8/TGPnsC6QWuHKo9Ojf98j/jAl+Wm6Y0aDwiOba9mf6OypKPFGG5VF+uykdzSU1ACmKCeFfTU9WoDosJvImFICGI6ohCNR1NP8keVl2qlq9CR1d6woSmPxlD+TomwHP990gvufP0GXx6e9V4X4SIRHttQlZQhdZZk0dA6RajdjMChkOa1YzUYOuvu0jpHXrirRhpRDvHlKaX4qK+bmcfXyYr551zIe2VKn25eYk27n6JT9gcfq+4nG4kH41J+3YDjKwHDyjLvJ9tX08OTb9XT2j3GqfYj7njnGsE9GBkwnsgdOCCGEECJhcCTIDx45qGXRXCUZfOMTS9lxvJNNO5oIhqJsWFrEx6+chSHxzb66aYBn3qlnaCxEltOqleNBvDHEsVP9LE2UMZ4uIHz8DTd1bfEmHzuPd7F2YXLHw1NtXg7W9hKNxVhcmU39lE6R1YlsTlWjh7mlGXzu5gXc9+wx3XiDw3V9uEozqG2daMiR7rDwwq5m7fbCmZl85bbFHKvvZ15ZJqfavagqlOU7dV0UVRWuWl5MUXYKvmCEQ3V9uvfmD0bYebxT2/tmsxhZMiubfTW9uudwlWQwMBKcaNFPoonHpOyUxWzQ7fOD+CDw3AwbdZN6e9gsRh58+SS9g37dHre5pRk88rpba15iSNw3vzyTj19ZyW9fOak9R6rdzJoFeTy3fWLfm6rGW+rvOTFRThmNqVQUpVGU4yA/w84re1t0rf1Xzcvj9SmNRzynGR5uNhmoKEzDOxpkYCRAdaM+K3f0VD/5mXaaJ3XIzMmwYTQYaOoa1n4GxzntZn781FFU4LpVpVy7qpSqRg+Pb6nDMxxgxdw8puZWQ5EYda1eVsxNDtrFhUkCOCGEEEKIhK1H2nVDmN1tXnYc7+SR191aWd/m/W2U5KWybmEho/4wP3vuuNamfmg0xOzidDr7xxgLROgfCvCz56q4Y+Msrl1VypoFBRxv9OiCi8kBFUB77ygpVhO+RCmc0aBwuK5Pe/2mrhFMRkVXJhgKR7VRAafah+joHyPTadNlc2xWI+FIDIfNhD8UZVZRmlZ+N+5ki5ffvFTD3poeIB7sfPlji6hp8Sa1wfcHIzy6pU67PR40pdrNtPfpZ5t9/uYF+EIRXQAHcKJxgFMdEx0qDQq4SjN1ZX2hcAyrWV80ZjUb2Tdpf1pehh2bxUhr4v2Mr+PvPjyPviE/f3jjlHZuTIWPb6jk+jVl7DnRjXvS5x9vLpM8HmDqKAcAh83Mp2+Yx5G6vqS5bO39Y0nnp6ZYyE636QK5odEQT2+NN2t582A7GalWBid16CzMSWHDJTN4ZLObcCJTes91c3G3DuqGgptNBiqK0nTv5am36ynItPPASzXa+vbV9DC3NHkP4oxcR9IxceGSEkohhBBCiIRgKJZ0rLV3NGlP1vistMbOYS14G5dqNyd9oX/7cDtvH27nNy/XoKrx4dYfubScz928AJNRnxNR1YlMnd1qYu38/KTXn1+epe2Xm12czqhfv+/pVPsQN6wtw26Nn2M0KASCURo6hxkLRFCAe66bS9aU+XWpdrMWvEE82HnrSAcLZ2bqyiYdNhPHG/p1j01LsfDNu5Zx1bLkoeFHGzy8dahdt6csJ92mC94APnHNbFafZuaa2WTQyh+z06zEVJXJ88pLC5y60QQQD8YcNhPdnuSArLl7hKffrqd+yuvHn99O2qR9gRaTgermAV35pUK82+iXf7qd57Y3JD1HJBLT/bkWZKVw4GSPLni7dlWJbgxETFUpyE7RXjs7zcpH1s/k8TfqtH2LwVB8yPe2o526oeDhSIzCrOQh84fr+5N+FmOxGMvm5KIQz25+fEMlhdkSwE0nkoETQgghxAUpGI7qmnqcC5cuLuSdox3aF+acdBsbLpnBO4c7dEFUpjO+/6okL1U32wugrMBJTcsg0UlfnM0mI09vrdfOC0ViNHWNsGxOmOw0m9aS32Iy0OcNaKWP/mCEvtOU3rX3jmrnNHWNUFaQqtuXZTUb2XW8i1Xz8plbmklrzwiv7dO3s99/socU68RXQZNR4aZ15Tz2xkRWDWDMH+b+56u1rGFBVgpfvnUR33/4oO68cCTG7hNdtPbos3oA+2q6dWWQ6xYWUJzj4Ol39MFPY8cwDVOCqhSriZMtE5mlyhnp7D+pz+T1DPgoynEwPCkDlZFq4T8eOwygG2NgMRk4UDvx+MnZTKNBoarRQ8WMdLKc8WzYkbp+OhIZRbPRwKWLC/EFI+xLBLpjgQhWs5FoLEYkqlKc60jKqq6Zn8/zk8YRAEkB5/ia0x1ZnGr3Mrc0k06PTxeAqcT3TVrMyTmY03XpXFKZzaHaPi2bCzCnNJOPXV7BiC+ExWTEajm3/4+dzqg/TIrVpDX5EX+eZOCEEEIIcUHpGfDxb78/wBd+vI1//e0+XZnf5Nbt74eSvFS+88kVXLeqlI9eNpNv3xPv7PjpD88j3THRHfC57Y08+dYpMp1WlszK1vYVzSx0ct2qUm5eV66da1AUrl5enJSp8wwH+NGTR7TgDeBDK0t0+9YgHiBcvaIYo0FBUeIDoAcmlXlGojHSHRYtqDQZFYKJeXDbjnayaUcjxXnJGZaTLYO6AdsF2SlsWDpD18nSoMSDmslr6h7wYTQoXDIrJ+k5tx/r0vZr2a1G0h0WrllRnLSHrX/ITyga02X1FAWO1vfTO2kW3qLKrKSuiicaByieMtfMFwhrQZOiwLyyDF35aEyNZyo/fuUsQlN+hopzU1m7oIDKGelEYyrN3SMcPdXP4bo+TAb9V+VwNMaiimxtePe4YDjK1+9cyn9/YS0LK/RNUYDTznIrzHLoZgym2Ex4hgPsrenBMxxk14luDtb2Jj0u02klw2llcqyzbE4uvkBEy/oZjQofubQci8moHTMosHp+PjeuLQPAmWI5L8GbLxBGTfw2YHAkyL8/epCv3LeDr9+/S5s1KP48ycAJIYQQ4oLy8Ou1WhDQ3jfGb1+u4Su3LebXL9VQ1+alMDuFT394HpVF6ew41smOqi6cdjM3r59JWYGTUX+Y3VVdhCIx1i4oIDtRJtgz6KN30M+c4ow/+8W1ODeV2zfO0h1bv6iQw3V9HDk1UTb4xsE2inJSOFw3cay5a4Rer5/r15QxvzyLlp4RXKUZ5GfGZ4pNDpgqi9LZfqxT9zptvaMU5TjonLSHyjsWZOvhDuaXZ/I318xhaDSUNAA602nj8x9ZSEffGM9ta6CqaaIZRu+gH1QFZ4pZCyRWuHK1GXXj2nvH+MObdbqAeemc3KTAE+Dh193aPjWzycDGpTPYfEDftGN2cQaXLirkWH1/UpbSMxTg+R0TGaminBSuXzeT375YrXuOkbEwGU6rbl9iptNKfpYdz3AAs8nAgpmZ7DkxUfapqpDmSB5SbbMYyU23asO6x6U5LPz9TfP532eP6873joaS9t4pwIGTPYQi+oDUYTPRO+jjqbfrCYaS2/hnp1lx2EzaGIMZuQ5ae0d0++2Wzs7RuomOa+4eZsXcPC2Qq5yRRorVyBNvTuzps5oNbFxWxI+ePKYdi0ZVctLtPPBitfaaMRXsFiOWvyKrHY3FqGsbIsVq0jJ+/V4/bx5qJxiOctniIiqK0hgYDrBpeyOdnjGWzMrhw2vL8AwH+eXzJ2jpHiE3w8ZnbpzP1sMdWjmydzTEb16u4cdfWo/JKDmmP0cCOCGEEEJcUJomddyD+B60P7xRp3Uq7PL4+PWL1Xx8QyW/e61WO8/d6uX7n1nFfz52WNtb9Pq+Vr73qZXsqe7m+R1NqMT3eX39zksozU8uOftzpmaCVBWte6R2DDhwspffvVpLa88I88uztNEBX751Mc9ta+DwqX5C4SiDIwFdt0SAgZEgsViM3AwbJqOBgeGANnOsqnGA1/e1cs+1LuaXZ1KTCOIUYNfxLhw2E7dcVqEFrOMU4JW9LboskKrCzKJ0jjdMZDwKslLYU92je+yxeg93XTNblxkpK3DqmoyEIzGG/aGk9+ILhLn/+RPabbPRQDgaY05JetLnlpNuZ+X8Ah5/vVZXMugdDelKDR02E0ajwiF3HwD+IHhHklvgB0MR0h0WrfMkxPcFVjUO6Lowmk0G5pVl8uuXqpPa7ytKfIh5qt3MqD+cyGQp7EmUTiqJSDA73cbGZcU89OrEz6ICWC1GLCYDly4u4pltDbrP5pPXuvjh40d0r3ekrp8ZOQ5dA5ji3FSuvKSI9t4RhsZClOenUTWlU2UwHONgbV/SZ1DbOpg0927q/1vvZmgshNloIMVmYsQX4oePH9a6rK6Ym8e9183lB48eYjjxOe883sW371nB7149qTWUaeoaIZbIbLYkXr/PG+DBl2qwmPSB2ogvzOBIkNwM+3ta5weN8Xvf+975eu0M4Kt+f+i08zqEuBjt2rUdo9HA2rWXne+lCHHOKIpCSooF4D7A+y6nC7k+0tgxrMtMzClOp3PApyvD8wUiqCq6+WPhaAyVeInd5GNGg4HX9rVqe6BCkRjDvjDpDgsPvFjNy7ubGQuEmVOawfBYiEded/PsOw20940xpyQDk1Fhy4G2+BfiSc1C5pRksLgym2MN+rKvwZEAHf1jqGo8+9U/FGDVvHwsZiNbDrTR0TdGJKrSO+inKNtBIBwfcO2wmegfCjDqj+ALRCjLdybN+YpEY2xcVszq+fk4bCZOJDJtkZiKu81LcW4qMwudHK7r0/Z1XbOimGNTZokNj4VIS7Fo++vSHRa+9LGFVDV4dF/6U1NMHG/waM+V5rBw58ZK9k3Zg5aWYiEQimrZurxMO4FgVLf3Kqaq/PcX11Kcm5qUaUpNMfPEFrdW3mg0KBRlO3T7+hTgW/cs54WdzbrH+oMRcjPsWoBqNCh0eXxa2Wd5gZN0hwXPpAHiZpOBOzfOYtW8fB7d7Ka9b4yhsRBGg4Kqxp9DJR7AhSIxjAa4ekUpp9r1f4XdculM/uHWxRyp76O+XR+U3rFxNp+5cT5tfaNasD0uO91G95T9bflZdm7bUMnR+n4iURVniplPXT+Xnz1XhXc0RCSq0tQ1TJrDomt+AnDz+vKkfYFrF+TT1jemK39dNjuXo/X9vLKnGe9IkMoZ6YQjMR5/o45HN7upbh6gvMCJ1Wzk/udP8PvXatlyoI2YqtLcNcJB90Sg2Nk/pu0ZHDfegGdqkDkWCNPr9ROc9H59wQjLXbm6EQn5WSnctK5cG1T+QfCXXCMlAyeEEEKIC8onr3OhbIa6Ni8zi9K451oXm7Y36rJDM3IdFOem6r5QAmSmWqY+HbGYqivfA/COBLnv2ePaF+gXdzWT7rBw0N2nZZd6Bv2EIlFK85xaq3eI7+26blUpjV3DPLLZjUGJfwmzW01cv7qUZ6Y05hj/Yq+qKrUt+i/y/UN+fvIPlzIWCPOtB/fq7jvZMkDmlPLBQDDKV+7bwezidCqK9IOyAY439nOwthd/4n057GZuWj+TmpZBrREHxLOQNZPWMuwL4bRbuHRxIZt2NGpBTFm+U/dlfHgsRFSNN3cZDyIMSrwb5+RgZIUrl5Mtg7oGLBaTgR89cZTeQb+upNJsMhAMRXVjERQFstNsdEwqJVWBvkF/UmbNZDQwMhYkJ93GvLJMDrn1TTsGhgM4U/Q/F+FIjBVz83hma4OunDIaU7n72jl4hoK8urdl0nHwjiY3kxkcDfLjJ48kdQEFePNgG4+/UUdWWnI5554T3bpxAXarkTs2zuLJt+u1z3HEF6aqcSBp/6CKypySDOravBgNCrkZdn71YjW5mXaiMZVoVEVVVZ7eGv85THdYiMZUls7OoaVnhMbOeMliQ8cwwUiUYCjKtqPxUt7BkSA/H6riiiVFWrlwJBrjhZ1NrJibm/Q+Yqf5LVOG04rdatStOz8rhRKTkT2TRj+UFzi546rZKIrCsYZ+irId3Jm4Lf48CeCEEEIIcUFJT7Xy5VsX64594uo5RKIq1U0DlOancve1LtIdVmqaB6hrH8JoULhhTRlXLS9m94lurQwtPdXCdWtKaegcoqFzYo5ZRVFa0lyzqqYBXWkgQFWDh36v/ou7PxglEIpqWa2YCqgq3/jEUkryUtl1olu3h81qNvLc9kauXDqDkvxUXZfGFJuJr92/C5vFiDPFogvWMlKt3LC2jO1HO+n0+LBbjXgSZX5HTvWftjFGMBTVfXEe84fZc6Ib86Q9RTnpNvIy7brmKaoKm/e38uahdu3Y+kUFOGzmpGzKWwfbteBtvHPlpkn72QDq2ofISrPR1DV5ALVd+1yiMRWr2cBHL69gflkWD75co3t8NKoyIyeF45OyOzaLkV+/XKPbk2e3GrVgbsQf4Xijh6nf/2MqLK7M1gWDqYmB17bT7AeLRmMMjCQHa8FQVBd45mfatcAH4s1qVFXFYFBIc5i1z3dgOBifvReMoqKSn5miyzCbjArf/7vVjPrDuiAboL7di8Vk0DdeUWHDJUV88joXf9zWyOG6+C8xegf9FGansHxBLi/vngg+h8ZCfO9TK8lItfLVn+3UPf8hd19SwNTl8dE05f8NgKIcB4rSp1UGpKWYuW51KS09I1rWOz8rhauXF1OQlcIjm90EQ1HyMu3cdkUlzhQzigI1zQOU5jv5m2vmYDUbuftaF3fjSnq9yevffqyTcCTK+oWF5J9mXMIHjQRwQgghhDin9p/s4ZC7j7xMO9euKiX1NEOSp0q1m/nCLQu126qqcqzew6LKbK5dVUplcTppiSzLt+5ZwWF3H6FIlOWuPFLtZv7Px5eweX8rPYN+ls3OwVWaydYjHbrMXHm+k67+MV1gMyPHQXa6XTcvzGwynLYFfFWjh+MN/Vy+uIi9Nd209oyiqiq9Xj8v725mV1UXn7t5AQ+/XkuXx6fLro2XlqU5zAyPhVGI74d7bEsdaxfk871Pr+Lv/utt3es1d4+wqCJLC7DyMu2U5juTSunq2ry6MjXPUIDLFhfqAjObxZjUAXD3iR6+dfdyth7p0LJCM3L0LfIjUZVOz1hSxiUajWn71CBeHjhVMByjuWuEp99ugCmT7krzU3lt/0RTlLL8VAKhqO7PxpliJjvNSnP3REA8NBri6uXFukDUH4zw2r5W8jPtZKfbaOocZtQfZtQfD4BTbCZ8ibLR/Ew7f3hzIts6riTPwdFJZagmo4KrNEO3npiq8omrZrN2YQH//MvdusePBSJ84xOX4AtEeH1/q+6+SFSlpXeU7v6xpH2EaQ4Ln7xuLs9ua9B+5mpbvdS2ellUkU17n35kQ5fHR89pBpF3e3y09o5itRh1ZYx5mXbsFpPuMekOC8tcuboyWYvJwJVLi5lbksn2452kWE18aGUJDpuZf/z4Ek40DlDTMhBvsmIzsXZBAZfMyqGpc5jGriGON3pYt7CAz9w4P2ltk3X0j/HOkQ4U4MplM8hItfL9hw8wkCh/feNgO9+7d+UHPoiTAE4IIYQQ58z2Y538flLjkZMtg3z7nhXsqe5mT3U3GQ4rH15XRn5mCj2DPrYe7iAWU7nikiJmTGod/9iWOrYe6QDi5XZf+MhClrly2VvdTUPnMK6SDK5YODFQOhZTWVKZQ1mBE3OiccLd17p4Zms9vkCEhRVZXLuqlLllmTzwYjWDI0HyM+387YdcWHa/Ju0AACAASURBVC1GGruG6RnwYTLG906lOay6kk6jQeGP70yU461bWICrNIP/n733jm7kvs9+PzODXgiAINj7cglye9+VdlfV6nKPi9xLnDjt5L0pTvLe5H0dJzc3duzEb5zEShzHLZZlFduymtVWK2mrtnG55HLB3nsFSXRg7h8DDvHD0LGd6yYLzzk8hxwMBr9pxO+Z5/t9nmdySMjCclyzTf/YISKxJI++1K/vwxrednQTV/rnuNC9Tn5Od05xz3X11Je7BUWrwu8QSNj0QpRUKoO/yKYrddUBp0GRUoHlSELPP7OaFX793la+87KooknA/Y916OSt1Gfjvbdt5jPfahPWW1hOIOVYg7TW+QwK1tR8lOu3lQvKZInHJoSGA+xpLmFrQzGPvCiWoabSqsGQYzWaYntjsUDgzCaZhZU4b9hXjSTBc+dGdZI+tRAlWOs19KNV+B285UgjSPD3D4r71lhZxEfvaeU7L/czMr0+9lRa3bDU7+SVCR4+3ofNogDrRKnIaeHvssctNxActIcT//xoO3lVvpgUmfOhGS73zfHG6+sYnFwWHE+v9M+xtd4nqLZlPjvXb6vgXI6pictu5sFjPXqswhpJLC6y8s6bmvT4gv7xMD63lY/c08rW+mJW7khpZEqCtx5txOO04HFaUBSJc13TXOye5cZdlUTjKf7j6S6WsttvrvHyift2sxzVTGzWylmPXRjlkx85oGc7tvXM8lLbmFZ6fKgOu0Xhr79+XieYJzsmeevRBp28gfag42THBG+7YZPh2L+eUDAxKaCAnyMKJiYFvB5RMDH5ifEr/f34ree7BTOJheU4NovC158JMb0QZXh6hYvdM+xrKeVTXz3HteFF+ifCnOqY5EBrKU67mdVYkvsf6xQ0m9mlGBOzER453qebLaiqSkudj5faxvjct9t46fI4L18eZ0u9D4/LSmWJk96xJaYWoswuxoglUty0u4q6MjeT8xFUtB6y7Y1+djX5mZiLoKoqDpuZm3ZX4XNbmQ/HKfc7sqV86yWNo9MrbKry6Bbpa4gn0jxzbpi5cJzaMhdtObEEALftr2Zgcll3+stFeDVBKp0hkcxQW6pll3UOiuWNLruZkZmVdWVRght2VgomJnaLwsBEWO85S2dU7FYT2xv8uikKQHONh6Gccs/VWIrtm7TjsFa+KUlaD1xuT5qiyFSVuIR9sFtNDE+FhTDw7Zv8hlK9Q1vLqCsv4kT7hHD9m00y+1pKhfUtZoXByeVsiLaKxSyTTGWYmIvQPx6muMjK+Kx4HIucWplqJoct2SwK7X1zzCxGhdJG0FS+ybkoU/MRYR9lCbbU+5iYi5BIZZDQlKvpxSgZVSWRyuCymzGbZM2MJtdsJ5VhU2URNotCY2UR6bRmqqPvqyJxaGuZfuwzGZWuoUWKi2yCqQvA+29vZmxWM2CpDjj52Bu3YLMoDE0ua9dJmYttDcVCEDrAfbdu5jfetAWvy4osS3QNLuhjrC9z01BRRCSe4qW2MeaW4rT1zFJd6mJ6IcLnHmyjfyJM5+A8oZEFVqJJ4UHCXDhGU7WHSz0zQtzFaixFTamLqoCLa0ML/MNDl5lciDI6s8qrV6dQTLJArlPpDEVOqxBrAbCtwU9zjZdfFfx3viMLIQsFFFBAAQUUUMB/ieVIgn/53hX+8ivneOHiuqI0vRDh5JUJJubWlYlkKkPHwBxjeaVda3A7RTMJJTt5zMXCcpxnzg4Liks8mdbVmo2IrYrKS22imvXipTHiyTQPHuvVyUp4NcF3Xu4H4MSVCd1GP6OqPH9hlLaeGT7/yGX6xsOMzqzywPM9nLs2zRe/10nHwDxTC1rm1UMv9nLDzkruPFhDc40HeQM1ZnAiLKhfa66Rw1MrPHtuhN7RRe4+VCdYqX/uwcuU+ezC+4ocZo5dHKNvPMxyJMn2Rj+f/MgB9rUEdDVxDZIkCT1i4dUk4Ugyqwhp2NZQTDItHsThyWUePzWo/+11WWms9Bj26UJoRugle8uRRoF8gHZduOwmlGzStN2qEPDYSGdy14mytd6XN3Z4/NQgn3ngkrGPLaPywoVRvG4rwRovRQ6z7q4YT6ZpqHSTygvoDg0vGtSu3tElIQzeZTczMRdhcj5CW8+sUM4roeUQnu6cZGhqBVnSgtRddjOtdT6eOjOsl2Hu2lxCOCLGGUTjKf7q1w9yw84Kw3H0uq0cbC0j4LEbgsXTGUimjBd5sMajh3IDbG0o5qEX+/SeSqtFodht47PfamNwcplIPEXfeFhXY3OxFIlzsXuWeCLN8+dHdMU3lkjzn891M7sY5VvP9+hlsfFkmgee6+b4pXHhwUnfWNjgiAkQT2Q2vCfWtnXu2rSwnUg8tWFZ8uZqDw0V63EfxUVWju6sZGJu1UC2BybCXOyeIZaTw9c5OM/jJwcMmYevdRRKKAsooIACCiiggP8S//PfzuhkaujZZRbCcapLXXzp8auoqjbRff+dQbbWF/O337yol3Tduqea997ezEo0yfnQNDaLwt2HagkNL+oT33uuq9MmiTn9VxIYsswAugYXePrsMC6bmZY6sRRuX7CUHywOC5Nhq1khEksJPT+APqGd3EDlau+bMwRXXwhNG5Si9t45ViJJzl1b7xPK7V9yO8yEcrLOGsrdhgyuSz1z/OPvH+V05ySJ7DHLqCpnr07zift2c7xtnIpiBy/mEdOO/jlOd0zwzed6SKYyWM0yAa+dW/ZWE4mlhDFpY50VHCIvdM8Y3C1tVkU/JwCLK3HcdhMmRSaVZV5uh9nQJ3e2a4qdm/xC311FsYOXL0/of5sVGXNeIHZGVTlzdQqLWUZVtaDrlWhKH0MqreL32NjeUEzX0ILea7a4HMfvthpI49j0Kk67WTB2sZhkqgMuJhciWEwKiytx4fXKEocQCwGwEk3ygTuCzC5FWY2meCknaD2jqrzj5k3cvr+GP/ink8L7LvfOsanSI/RKuh1m/vCfT6KqmqqWS5r7x8J6j2A+zSnz2Q0PQKxmhcs9s9nSTdjVVEJLrY9vvbAe6N03Fubps8OCA6c2bu39a4TXrMg8dVrrwysuslJbKuYhqqpGXPNz8RaW42zawPn0wJZSLoRm9Osk4LXTPbrIy5fHhHvC67Lw1ae7SKZUqkudhu0cbC1jeHKFoSntPmmoKOLQljLqy930jS1hs5jYvqmYLz/RpUd37G0O8PG3bOU/n+3WDWWKHGb+9H17OXdtmu9mH9YAvPvWzdy+v8bwua9FFAhcAQUUUEABBRTwQ3Glf87Qe/RS2zhOm1mfmKnAd1/uZ3hqRSAFL1wcZV9LgC9+r0OfcNeVu/l/f+MQr16bJjS8wMJynH0tAToG5piYiyBJcN3Wcm7cVcn5a9O6c6TXZSGUDfKOJ7QQ7Pff3swzr44wvRjlkeN9VJQ4BBIyuxTjK0910VghOk7WBFyoqmar/tz5dUXRpGhlesdznAUBakvddI8s6j1EoJk/5BOl2oCLPS2llPns3P9Yp/Da6OyK0JsGWlnhi5fGWI2KZGQlmuTLT3YxuxTDblUoclrITRhzOcx887luIro6kqG82MHRHRU8/GKv4JTYUFFkYAgZFWpLXfq5KvXZ2VRZZCiz6xxa0CflALfsreKJk0PCOpFYUsg/87mt2PNUr3AkyaGt5UI5aanPLpC+5UjSQDySyTTvvyPIxz5zXFg+OLlMa51PcAx1OcxUFDvpGpono4IsS8yF43q57tZ6n8HhcXYxRlXAJZRGOm0mHjneSyyRoa7cRT7SaZXHTw4alE+nzYTVLGMxyySSGaoDYiB3Mq3SXO3B67ZSHXDpKjBo98+Weh+VJU7a++aE7D+P00JliZMSj41X2jVSrKqaC6nPbYwnsJiNxXUNFUW865YmTnVMsrgS5+SVdSv/+XCc6oC4n1azQlO1h5ZaH2296yW++1tLaaz0cCEnY3BfMMDDx/pIpbUy0q2NxWxv8AvEEuCOAzVCP+jQ5Ap+j425rHp3w84KWut8vO/2ZibmI/hcVhori/g/j7Tr5/nI9gpUVCF38UL3DC9eHBPcQMORJE+dHuRCt1ie/PCLvQxMhHn7jY2UeF7bQeEFAldAAQUUUEABBfxQOCxGm3WTIhNNiJPtWCLN0gYlUK+0TwhqydDkMhd7ZnjkeK9ennXm6hT/60P7eP78KC+1jXOqY5Le0SX+4F07tZ6ijMrpzknOXl2f8GdUzXFvOqcnaGI2wq/d1MjTZ9bLLzsG5tkXDGC1rE/4z1yd0uIFDtYJStSuJj9b6ovZ31rKuSy58BdZuXF3JbVlLr70xFWWI0nMiowiY3AMTGVUJmZXUTMq1QGX4BDotluoLnUSiaeIxlPIEswsRvnGMyGsecfY7TDrZWnReBrUBE6bidWY9r79LaUcuyiqchNzEX5wdphnz627LzrtJj7xnl2c6pgSyFNZsV2YBE8vRDGbFBxWk06iSn12uvL66850TrOrqUQwWCkvdgiulAvLcerLRUXHrMgcz1ERS7123A4z0zkOjquxFNsa/XTkKHzJdIaPfeY4LrtJuIZKPDZu2FmJw2aie2SR5UiS+XCc+XAcj9PCfW/YzFOnhxjO6Z3qHFxga32x0DNoMcmCsup2iArewMSyQDKqSpwC8ZJliUxG1csac/u9KkpEAgeaqrxRH5v22RZu3l3F8+dHheVOu5k/vm83/54XswBaH97aGEAjkdvqi7nUPaN/dnONl+YaD994JsTsUoyaUiMpBVVX6GwWhQ/f3cKF0LRA3pprvNQEXDzwXLe+bE9zCQ6bWS9lVNFUcpfN6Cqbr2oDbKnzccueauxWBbvVxCe/co6R6RUk4JY91UzORwSSfuLKBPlupaAZ5OQj/6ETaL2eZ69OMTazwqc+enCD4/DaQYHA5eGBB77OyMjQj16xgAL+GxgeHkKS4NOf/qtf9FAK+BVFTU0d73nPB37RwyjgVwibqr1CaDNoVvduu0UIgq7wOwxxAGU+O0UO42Sud3RJsJxPpjKcaJ/g5ZxytenFKE+dGeZ9tzfTPx6molgsuZJlydAnBRrhyZ+85ZsgALxwYQxVRVAMz4dmuDo4z8Uc+/u5cJxTVya5bX8N128t55lzIyTTGToGFoQJvyxpFuhr/WF1ZW4qS5yMz66iyBLzy3Hml+PIWVOR3H2NJ9LsaylFQiNXZztFZ8ZoIk2wxktoZJGMCscujlHstjKfM/ZSn0jKQHNpnJyLMpRTuun32LhhR6UhbHx4akVQwJLJNLIsk86sT7zT6QyXetaPTbHbSlVAjBUAjeCbFZlkOoPVrNBQ4RbWmV6MUlfupo+w8B6rWaalzkcmk6F/fFm/RsKRJAGPjaVIgkQyw9RClH/9fid3HazFaTMJ5ZpLqwnMJhlHHokwKRIVfgezS1HSGRWPy0rf2JKwzi27q3js5KCwbFNFEW872oDPbePbx8R4ATWj8ttv3YbDauKzee6VM4tRQ37bhe4ZncisOYCC9iDg7NUpLnXPYDbJQo9eJqPye59/WVgGmtL2/IV1UlzkNPPH797N577dJijFh7eVc/9jnfp1OrsUE4i6SZHoHlnSyytjiTTtvXN0j4rndGhq2VBS2d43z+ZqsU8ynVEp9YnqliRpRD9XGQaoDDgJRxKUFXt4+sywfp+qaOr9dVvLyIffYxe2Y1Ik3A6TIdy9uMhGVdakKB+jM6vMLEYJeF+7KlyBwOVhZGSIUE8viu1Xx92mgF8eZNLaU9bekdkfsWYBBfzkSMcKBo8F/PSRzmQExz4ga6e+SmudF7Oi0N4/x/DUCsNTK1T4HdSUuliJJFlYjtExOC9MZMt8doK1Xr0cbA1aCLL42ZPzq/zZv57Ryw4byt2MZ8ss48k0L1wYFVQwSYLz16aECSpo4cK5as/aunMbmC+ERhaFSSZA3/gSt1FDWx5BWo4k+dgbt7ASTXKifVywmR+aWuZvP34dA+NL/Ov319WTjIpQIreGZDJNx8A86YyKwypOz2rLXHr56Bo8TgvlfgddgwuoaCV1xUViSZ3FLDMfjgpkcW4pRiaT0QnWGmJJkfQurCTY0xzQQ6JBK4/MJfLzy3ECXjuyJJHJngSX3SyUlsaTaZwb5PxVlzpZjWmqqMUkE0+u58YdaCkllRYn3l63FatFEVSt586PcuveKvLx8LE+JhfEY+yym4VsuPINcsRiibSgaAFcHZrn1WvTWC2K4WGELEu0982xuBw3kBNVRT8mboeZYI2X8zkPBlJpldv31xAaXtR7vhKpDGaTrJM7l91sMOqoCjgp9dpZiSbpySldDa9qf+eSN9BiDfID36sCTlrrfETjaVrqvHzh0SvC6yPTK4Z7Uc2oBlMSRYaA10ZXju7hsJq43DtLdcDJzGIMs0kmnkzzrRd6kGUJf5ENSdIeODz0Qi8q2rnZVGXsrasscSKxrrmZFInOgXlqylyYZBmX3czYzArfOzEIaH2GO5pKWIkkeSHnXOf2/4F273vyzJReaygQuA2g2Lw46m79RQ+jgAIKKOAnQmTohV/0EAr4FcTYzKqg9OSibyzMlvpiYdnEXISb91QLpVayBLfvr2E1mmRiPsIrl8eFHqEih4WZpQhel0WcgKoIPWODU8t88I4gX/1BaO1lQHOqG5tZJRJPMbWgre9xWliNpUinM7T3zenZU2tYc8vMhUmRGRhfMkzilyNJ2vtmqSh2CIHHNotCLJ7iuq3ldA0uCAROliXaemY3VCCdNhNFTgvhrGJQlDUHWfvISFyzW1+b8N57XR1/9fXzwqTa6TDjtpuFgrL5cFxX/bTjLnGl3+i+d21kSSBvt+6txmyS6RwQ151eFMlDft8XaP2Qa0RFAhor3bT3iaWX5cUOgcQrssR3s5lzdx6o4bm8ssEr/XN6yegaFFkyuDWqqsrUQkQg8T63VSBvNovCh+9q4Yt5PYnLkaRADswmmWfOrfdoOawm3A6zbp4ST6RZyqjCZ5lNMidyHkSsGb6UFdsF1XM5ktzQObWqxCmUjIJ2XX7ivt1ML0SZX47x/TxFcG9zgIaKIqGfbA0blWZKsmQglw0VRbzlaCOh4QWOXRw1EJyVaNLwECOVzgjlymtjXVM/y4sdyBKMz0X0+IOWWi/xZFrPLsxkVJKpNJ/66EHN3CXn8/JJpsNmYnx2lW2NxTqxDg0v6oqaSZF5zxs2C2WeybSKx2URFHRAUJFBO39Lq4mCAldAAQUUUEABBfxqosRjM5SCraHIadnQNGFgXFRPMqo22T3VMalP2mQJfv3eVh453sfiSoLz17SJ2PbGYlTgQEsZr14TSwlVFYOTI8Dmaq+gRoDmqphIZXQTjngyTX25G4/LyuXspC+eLWerL3czNLlMKlsaqcgSJR4biytxUmmVrqEFuoYWuPtgLeOzdqYXo8iSpth849luHjs5yEfuaqF7ZFFX/jIZlQdf6EFCK6dcU1lkCT37raHCzcHWMipLnPz9Q5eF8SuyxMJynKHJZfrGltjTHNAVKoDwSgLVeEoIeG06gYsl0py5OimU5UkbnJ/2vlnefuMmoaxvxya/HrGwhlg8hd1qIprdx8bKIvrH18sgVWAlauw96uifozrgpNzvZGo+ohvTADxzbgS3Y53Mgtb39f7bgzx8vJfxuQiZjMq14UVDyWxZsYO2nvUx+txWA1GPJdI4bGZDv2IilcZhM5HOqNr5n1oRyhQtZhlFEa/tRCrDR+9ppW9siWKPje+81C+8vrWhmHfevIn+8TBffrJLeM1mUSj12XUl2GpW+MrT13BYxfGWeGz8/UNtpNIqDptxmn66c1IndbKETvoVWeLps5qz5BoxNWVJD6z3a26t9/HGw/UMTS7z2QfbdKImSxJFTjPhSFJ4YLO1wUfnwIIQMr69sZiJuYigxq7GkgaCf2140aB0LUeTLK0mDAQR4GP3buHVrikkSeJK/yyns6XETpuJ67aV6/sCGqEc3OB/gSLJyHmE1WYxCeZGTpsJr+u1rcAVcuAKKKCAAgp4XSMYDJYFg8E3BoPBDweDwY+s/fyix/XLAofNzPvvCGLPm2iaFJl33bKZuw7WCSYch7aWbRiyu7gSF9SijAr942FDyZfNYqK52stjJ/oNVuo2i8L4rLGfrW9syTBxD3jtOtFYQzSRNkyYQZs0544tnVG5dW81+faNZ7um+ZvfPMT7bm8WJrTh1QS942E+81vX89tv3SaQWhVIptJ84r7d7NjkF943MLFMS52PhZW4kNMG2vFa6+lZWk0wOR/hxl2V+uvD0ysMTCzpWWsAAY9N6OkDjcA05uRolfpshoyxSCzFl5/s0skbwL7mgIEwSbIkHNN02sggzYpEa50PkyJhNctIwNDUCv0Ty5zpnDI4Yqoq3LavWsg3m12Kcf/3O7ltfw1qXllifbmbNx2u5+Nv3io4ZMLGNvcuu5nPP3xZIG9Ws8zEXITVWIpYIk3vWBg1TyJLpjIGAuVxWviPJ7s43jbO8+eNCtjiSpy//Oo5/vPZEHLefi5FEhzaUsaH726hucajK16ReBqrRWFTZRGHt5ezHEno5yESS1Fe7KDIacHtMLM3GGBmcZ00ZVS4aXcVW+p9YvkmcPOuSlJ5x+7dtzbxh+/ejdNm5mzXlPCejKqypzlgKJdObZBHZzUrhgc6kViK0jxFy25VDAY9lSVOvvBou5B9CDAyvcy/P3kVq0Wh3O8QMgNXYymiG5iS7G7yUx1Y74112kzcuq9aiAowKRLvurVJX89pM/HBO1swm4z/B15LKChwBRRQQAEFvG4RDAbfAvwn0ANsBTqBbcAJ4D9+gUP7pcLh7RXsayllJZLEbJYZmlymrtxNkUN7iv23v3GI9r45ij02ttRpk8nukUXOXJ3CpMjcdbCWMp9DsC8HhMnXGiLxlOD0J0nQXO2lb3yJWCJNz6im3pT67IRXE8QSab0/bE1pslkUBiaWDa6C0ViS0TxDE1mSiMXFnLi1cWiK1Poys0nWlAqH8el9Kq1N+Hdu8pPOC8lOpDK01PmEXrQ1PHlmSHe8BC2X697r64USVNAy69x5vWSReJqbdldy/JK23ZmlGCWI+Xkep0XIo5taiNFUJeaVba72CqVoAN2jS9SWriuHdqtiMAAcmloR7PwlCf2zfG4LB1vL+cGrw/r6GVWl2G0l1z7FYpbpGVnkd966nUdf7tfPTzSe4jsv9Rs8B1VVcxKcXohSlKfu2K0K565NIaGFWteUugzK7OFt5cST6bx+tAy7NpdyPqd3L5HM6PEIiiyxY5OfSz3rxyi8mqSyxMHEbAQ1e5yH8hShyhIn8USauXCMjv55OvrnqS11GQxJ4ok0v/nmrZgU2XCPyLLE53/vCIsr8Q1JY3mxg4UNgrotFuMUX5E10rQSTRoebmj7lDAsS6TSgjILWpl0Pnn2ua2MTK/o96DZJBONp4nGNcXRYTOxpc4nHHfQ3C27Rxb1hwqvdmlOp/nYtbmE1ViKtt5ZJODwjgp2NJUQrPPxatc0sXiK/a1l+NxW3nFzE7s3BxibXWFrfTElXjuHt1UwuxTF47S85skbFAhcAQUUUEABr2/8NfDhUCj0cDAYXAiFQruDweCH0chcATmwmhWsHm3is73RL7zmcVk5unNdHTIpEh9741bec1sziixhs5hIZzJc7pvVyIoEN+6s5MZdVQxOrujExue24sxTPVRVmwjnm3hsrvYYJrslHhtFTku21EpjXv4iraxufC5COJIkHEliNSvYrQrh1QQZVaVjcN7QJ/T4yUHseerB5HyEv/nGBT54V1Aoh5MkeP78CNMLUT50VwtHd1Zy/JJo8//K5XEOb6/g7NUpnZQEvDY6NnCO3NHo51ixQzDs2L25BJ/bJrg5WkwyI1MiaZhdinGgtZQr/XNYzArbGooNx8njNAuT8swGtZiT8xGdvAFU+J14XaJJioSW73XHgVraemaE/LyF5QQLy0ZiUVvmZm+wlGMXR+keWSKRzNDeP09oZMmg1oRXE9SWuRjO9lTJkkZSI1k1Zmk1obsPFhdZmQ+vq4+xRJryYoeBwMmyZFDWJGBgbAmzSabS76SixKGphVmkMyqVJU6BwAH4XFZu31/L7FKURDItRDiAllvWN74k9HEOT6+wpzkgGNmU+uwsLsd56sywUKIKcKC1lG88E+J4m+aamtuf6bCamFmI6Mcnd3sXu2eEEkuP08L+1lI6+uf4p+9eMdj6SxI6uVort1RkSe9fkyQo8zlYXInrTqsANaUuMhlVWFZf7kZVVb0XDjSFzmI2EqfKEgfdefe2ORvAvhbDsa2hmN2bA+wNljKzGEWRJYqLtAcVNouJG3L+96yhqdpDU55D5ms9+y0XPxGBCwaD/xv4JLA9FAp1BIPBQ8C/AnZgEHhfKBSa/uFbKKCAAgoooIBfKtSGQqGH85Z9DZgE/ujH3Ujh+3FjOHOs3BVZ5uNv3sa7btEc+9bUkw/d1cIte6pYWk3QUuvlxJVJIeAZoKmqiBfzCJG/yGYwX/C6rIYJ+/xynK0NxYzPrU+Y48k0R7aX80JOllo6oxrs/aOJNLs3lzA0uaz3BfWOLfHAcz38+Qf2caJ9nMdPDRKNp0mlVS52z2C3Knz4rlZqS1186/kekumMFij+9DU+/uat/Pq9W3js5ACZjMob9lXz7KsjRBPr+2Axy/yvL78q2Lwf3lbBO25uondskeNtYyRTGWRZ4h03N3ElzwRDlmBgPJxVP9KcvDKph0uDRlZWoklBUWnvm+fwtnJOdU5mCbOD2TzDiv7xMH/87l10DMzrx1wFPv9wO7VlLo7uME6iS7x2rttaxpnOddL66Ev9NFV7qPI76c5RBuPJNME6H+05SqCvyCqQkz3NAYOC47CZ+PMP7qOjf46vZc1t1rCRenRteEEoQ3TYTMTiKeay53doatng5gngdVoocpiFPLrF1QRfffoagKHEGCA0sqCTzVzsbwkwOrPCfDhGpd/Ju25p4rPfbhNIVX25/epkRAAAIABJREFUm0Nby6kucfDZb6/3R2YyKq11PmrLXGRUeC7HeMVqUbhuS5khiP7WvdXcc10dRQ4LD73YJ3yO02aiqcojRFCoKty8u0q451RVMyXJ37bdajIoj4OTy+xs8gsEzqTINFYUcapDfJiwt7mUk1cmBVVyxyY/v/mmrYSGFzCbFZqq1onYa9l45KeJH7sHLhgM7gEOAcPZvyW0spPfCYVCzcDLwN/+LAZZQAEFFFBAAT8jTAeDwbWwocFgMHgdsAn4sWtsCt+PPxl8bquh9K22zM32Rj9mk8LRHRUc2VGBIkvYrSbue8NmrttWweHt5fr6dWVubt9fw9tvbNT7tOxWE2+7oZG6cjGouLbUTaVfLNVUZAlfkVhqCBjUP9AmzPkunP3jYcyKzN6WgJBnB9AzqrlY+j02wekR4Py1ab77Sj/TC1Fml2J86/letjf69X2Q0BwCcyMQUmmVLQ3F2KwK33imW5/oZjIqoeEFbttXI/SP7Q2WMpMXj9BU6aGuzIXNolBT6hR6o9ZwdWhe7xMbn40Y1DCH1cSZq1O865ZN/NpNjcJrw1MrTM1H8OcQHylLJG/fX8v7bm8W1u8dXRL2cQ0zWfdIWZbY3lhsCIa/NrxAiUc8b9F4ij/+l1N864UeQ8/elf55nbxZzDLXbysXyBvAoS1l5B+OdEYVrtGqEidPnhnSyZsiS9y2r5qxHIU0Gk/TXOPBX2TVydzl3jl6RpcEc499wQBffybE9EKUVFpTrrpHlwyKWFOVh9v31zC9aFQx68rcvOuWzUIIOWilmBuZgwS8drwuK9F4iqVV8ZhG4+kNzVI8G5h8BLx2Q+9adcBJbZkrb5mLtxxp1HMhJQneerSBm3ZXcdPuquy9rfDOm5vY2lDM7719Ow0VbgJeG2+7oZHD2yuQZYnW+mKBvBWwjh9LgQsGg1bgn4H3AC9mF+8DYqFQ6ET27/vRnjIWGr8LKKCAAgp4reBLwBHgUeAf0L7jMsDnfpw3F74ff/owKTIfubuV993WjKJIet/OR+/Zwt2H6oglNDdJSZJ4w74adm8OMDG3yqYqD3ariQ/d2cL93+9kbGaVCr+Dj9zTitdloW98ib6xMBazzDtvbuLQlnJOtE/oOVvlxQ7uPlTHpZ5ZIXvr8PYKVmMpoWfMZlH47X94CbtFwWU3Cw53JR4bGVXdUCmwmBXBuQ80hfBtNzRyrmua6lInTrsF8soqx2ZW8DotQikeaI6c4y/06CTFrMgc2lom5LABIKGrIcPTq5hNsuDKmFumuAarRaHUqzlumhSZSDzFK+0TvNI+wZEcMr2GhZU4f/7B/Tz4Qo9WJqrC1aEF/u5bl7j7UJ1hfS2AWetRlCSNHExkVdJMRqV/PIzDamY559iaTQoBj414Mk0ylcHnturvSSQzyBJUlDhJJNOU+ex0Dq7HIiSSGaQNkt+dNrOhfHZocjkn4sHCkR3lfPvYeudeOqMawuJBu4b+9L17+fjnjgvLFVniI2/ais9tZXxuVVAR0xmV6QVjLqDDZuKfvnOFwcmwwUHzTNckL1wcxZ/3EMJiltlcbcxYDHhtfO7BS3QOLhhcYw9sKeUN+2q4EJrRjUmCNV7uOlhHR/+8ft1XB1zctLsKn9vKN5/rZjWWornGy5uONLASSXL/Y52Mzmg5kB+9p5W6cjd/91vX0zO2SJnPod8PH7gjyH23NiFJEqasy+e2Bj/bGsSy7AL+a/y4JZSfAv4zFAoNBIPBtWW1gB7dFwqFZoPBoBwMBotDodD8RhvZCH6/60ev9HOEeYP63AIKKKCA1wrMZoVAwP2jVywAgFAo9Omc378eDAaPA85QKNT1w98l4HXz/Ti3GGV4apmdmwPIssRyJIEEuDYw9PhZYaNrOxBw09IUEP6+f0sFq9GkECD9+T+4men5CC6HGUe2tPMLf3wzZ7MlXQe3lWOzmPj07x3lOy/2MrsU5cbd1Vy3vYLdW8r5wkNtdA8v4PfYdOUlEk8jkaYq4NSXXR1c4HPfvsz/81vX8+7bgjz8QjfpjMrmGi/vui3Imc5JQfFJq1pZIWj9UbWlbjwuC0tZd05Flvj+yUG+f3IQt8PCcmTdaKK61M3lnnUykExnGJxeZXtTCVeypYg+t9VwjpKpDPccbuD5V4eJJ9NMzq0aSg3NJoXdwVJa64v5zDfOC+8PjS7hdVtZzFEmZ5ZiXO6fx5YXQh6Jp/B67XpGGmjk7ezVKf04WM2KwYJ+NZbi7bc08Z0Xe/Xer4XluO6y6XaYKfM7dQIHWr/XB+9pJRJLcblnFgbFXLstjX7OX5vWS0CdNhOySRFy7IL1Pq7lvC8cSTC1ZMxB3FxbzPD0im66IssSoZElPvfQZWwWE4nk+nkqclpo3VTCs2eHhD69NVSWuvGPrPfK7WgqoWNwgf6chwYlHhsBn4Pe0UUWl7VtT85HKPHamV2M4rKb+c237WDX5gBPnB5keiGKBNy0t5r+yRWdzCaSWoj77mCAYF0xb7lxExazwj9VejnZPk5xkZWju6owmxQ+9z9u5ErvLOmMys7NJSiKTG21jzuPNLIaTeF1ryuuX2wtN9xzANVVRkfanydUVWV2MUaR08yVvjk2VRXhK3rtl2H+SAKXLSfZD/zpz2IAc3MrBsvSXySSSaMTVQEFFFDAawXJZJqZGWM2zi8Ssiz90pGRH4ZQKDT8o9fS8Hr6fvzS41c53akRHbMis7XBx+W+OWRJ4sZdlbz3tmauDS/y0LFeFlbiHNpSxjtu3kQimeGxEwP0j4dprvHyxsP1WM0KY7OrvNw2jiJL3LS7klKfg1gixZmrU0RjKfa3lgqGA4OTYS6EZvB7bFy/tRyLWZt0t/fOMTkfYWeTn4qcMslEMs3wtKYG5PbhScDqcprVHHONLTVaidbyUpS1O+fN168rRjMzyyjA//i1HQB88XsdQumciubimLusa3CeH5zsp7TIyv6WAF6XjTcfacBqUbj3+noePzWIqmpmE6sR0flveHqZP33vHkZnVjh7dUro6VuOJNhUWcTI9Ap2qwlFMl4f/aOLdA6sPydw2kxU+h3COhLQ0TujE5lESsVuUZBllUQygyJL9I0t0Te2xBMnBjCbxF5DsyLz+2/fweOnBrnSP0cklmJ4cpmvPnmVzdXGkreHngvp5M1qVti5yc+rOSphLJHG47QIx9BuNfHosV5AM8qo9Ds527VuLLIcSeLM6zuzW0189psXdEfDXGWtxGPjxKVRfT8UReKdtzTx1aeu6f15Kmj6ex5sikSl36H3UTpsJp49O4TLpnDjrkoWlmO0980zNR9haj6Coki6aiZLEjfsrOCP/vEVgcCukeX6cjcvnh8RynQDRVahFxA0IvKm6+v49AN5Iek+O7/39u3YzAoBr50vffeybq6jAhevTePPKztNpjPcfbCW2jI3S9mwdhNwY1ZZXcxRBCt92nvn51fJx0wswdDkMumMSmM2viGyot1bk/MRzl+bxuuycnBL6Y/l/Ng3vkRn/zxVASe7mwPIkkT3yCIn2idw2Ey8YV81JR47Vwfn+f6JAWKJtF6WOTgZ5us/CDE+t8qOTSV86M4g4UiSLzzaLpB8gFv2VPG+24M/ZBQ/f/x3viN/HAXuRqAFWHu6WA08A/wjoP+HCwaDJYD6kzxdLKCAAgoooICfN4LBYFcoFGrN/j6CwRxdQygUqv0Rm3pdfD9OL0R18gba5K+tVyvxS6sqxy6OEaz18ZWnuohlzTiePTeC12Wlb2yJC92aQtQ7tkQ4kuDe6+v566+fJ55d95X2cf7yIwf4/MPtuuvcE6cH+fMP7KPC76RjYI7PP9SuqyTnr03zR+/ezVee6tLdFR99qY/ff8cOtjX46Rtf4v883M5KNInFJPPhu1s5uKWMZ18d5mTHJEVOC2892khjZRGDk2GeeXWEVDrDLXuqaa3zEYmleP78CFMLUfY0B9gb1NS9SCzF0NQyjZVFQomixSRvmC13uXeOs1fXCcfozAp/8K5dvOVoI/4iGyeuTBDw2IQSQdBIxyvt45T6HHqJWS58bit942ESqQQXu2dx2k2sZsOzXXYzkZi4vdGZVT54ZzFdQwt6EHKF32HI34sm0nzud67nYvcs38yJMNAm56Id//jsKvc/1smH7goK+wgwF45RVeJkbHYVWYJgrZeuoXWXwXgybehVA5CRaKgsIrySwOu20De23t81Mr1i6H0DdPMMSYKKYgcOu1m3/l8b+237avC6LFQHXPzDw+tmIOm0ysXQjOHmN5sk3dkSNAL2g1dHcFgVbt1bRTqtcrxtXDcnGZ5eZcemYmEb6bTK+27bjMNmZlOVh+OXxgTb/VRa5c1H6mmp8+GymfiLL58T3t89uojPbRUy/bwuKyevTBrKPSPxFH/5H+fIqCp789wtQXPq3NlUIgSue5wWzl6d4pvPdbOp0sMbD9djt/5wSqCqKk+cHuLUlQmKnBbefuMmNlUV8Y+PXNFNdDZXe/jDd+3CYlboG1/i09+8pO/zySsT/Ml79/zQ7QOc6ZzkS49f1c/HTburuH5bOZ954JJ+75/tmuJP79vD5x9u17f99WdCeFwWHniuR1cwz1+bxmE1sbgSN5A3gGMXx3jLkYafa/XATxs/ksCFQqG/Jaf5OhgMDgL3AleB3wgGg0eydf4fBx762QyzgAIKKKCAAn5q+FjO7+/7727k9fL9ODgZ/pHrXB2c18nbGrqG5ukYEDnrhdAMAa9dJ2+glco9cXpQJ2+gGSu81DbOu2/dzAvnR/UJnPZZC3QNLnAqxxo/nVH5wdlhtjX4eehYr96TlkhleOD5buKJNA9m1RzQzDX+7w/s5dPfvKQrMm09s/zFB/fxn8916yTgdOckH7m7Fa/bwj9/p4N4UnM13NdSSt+YlksXjac4fmlcUFXsVhOTc6Ji0TEwz9xSjKmFCF/JOhf2jC7hsJp0wiBJ2r6sEVN/nhtihd+hZ67pxy+a4qZdlVzsmcG6gcqhyBIlXjvmHDI4PhcxOC06rCY++2AbzdXGkrfN1R4+cEeQz367TS/tHJ1Z4aFjvYYeQLMi65byGZUNe8VsVoXyYofeayhL0DE4nz12CjfsqhAIHGiqld2q6KYxFf71mAVVhenFKPU2sXwPNDv5gfEwnQNzhtccNpOBKA1PaWRxZ1MJgxNhhrMlkpF4mhNXJtm1SezViifTQpj6OiQePzXISjRJRZ4CCtA7FuaJU0PYrYrgEgpQFXBR4rFx/NI4K9Ekfo+NvvEwfVkSZlIkJEmipdbLlf71e+xC9wwttV5yfSLdDjNnr673xJUXOyjz2Xn6rFZs0DO6xPxyjI+/eZswvtnFKPFUhqoSJ6+0T/DdbDbj1EKUf3j4Mu+7rVlwQO0ZXeLM1Slu2FnJCxdGBcIaGllkYCJMQ8V6yHpGVbk6MM/CcpydTSU88+qIQKZfuTxOOp0R7v2llQTPXRgxZNCd65o29If2jC4a8vZyMTq7SkvtrzCB+2EIhUKZYDD4fuBfg8GgjaxN8k9rYAUUUEABBRTws0COuQihUOiln8H2f6W+H3c3lwjZU/mQJDi4pYyTVyaFiVVDRRETcxHBtMNhNTExayzFslmMxGNqPsI3ng3pSkguFGOmtD6+/IncciTJ5V7Rej4ST/HChVGhLDCdUTl+aUxQcABOtI+zGkvp66bSKv3jSxzeXs4Tp4b07SkyXL+9nEQiTXGRjZ5RMdtKkSXiiRSvdomKVSSe4uN3bMHjsvLUmSFhQj4XjnPbvmpevjxOPJlhPhzD7bAIpKjIYc6xdk8ysxQTSJWqwvdPDhiI30I4zluONnClb46BiTCReIpIPMXEXITKEgfjs+vKxfMXRpGQdPK2hpGZFZqqPPqY7VaTYLYBGiHKDVQ3KRIvtWmEwu+xsqOhhBfb1u3qo/E08URaUJokCS52z7B2ecmSdi3lIpVWKffbBbOZ2jIX93+vQ79WbBZFf9AgS+tB5Kl0huGpFSbnIyytJlhaTTA+F6HMJ/ZKxRPpDb0SenPIpkmRuPNgLQ8eWzeXWY4sCREEZT67Xua6klVP115vrCiiY2Celey62xqKMZtk5nLuo1Ra5S8+uJehyWXhegGNsJUXO5hdilJV4iKeSoth9vEU1/Jy185fm0F9k4okSaiqyleevsaJrBFKS63XcKzjibRwnNewRoQljIS2vW+W3tEl9rWU4nNbuf+xTj043W5V8LmM0Q0uu5GQ15QaSw0bKosIjSwKRLyxsgiLWeHFi2OG9U2KTLDmF9ub9/8XPzGBC4VC9Tm/nwK2/zQHVEABBRRQQAE/LwSDQQvwIWAXIMwMQqHQB36Sbf2qfj+aFUULBM5ZtrXeqxl4SBJ3HayjpdbHR+9p5Vsv9LAcSbA3WMpdh+poqvLwxcc6icZTyJJGruauxoTJeUNFEW86XE/X0KJeEmdWZCGXSpYk/Um8SZH4wdkRdjb5udybk10FTC9EONBSxg9eXW9lDNZ4qS51cylnXUmCmjKjIUqJ1y58FmgmLbmB2qApAYMTYq9pOgMum5lnc5TB3P1MZ1T+4j9epW6Dzz2xVhqXNpLkkekV4ll1Jp7MQCShK1EWk8y2Rr8hW2tfMKCTuoyq8uLFMUo8NoFMlxbbueNALZV+J//yvQ7h/bWlbo5sr+ChFzXnxUQyw5NnhqgscTKeQ8D9RTaBQKTTGYMlvUmRuH1/NavRNOFIQhjr3FKc1bhY8glw9uq0ftxMisSezQGhZy6jYvgcu0XhRPv6tuvKXDhsZoHoxxJp7r2+jkvds4zNrjKe/dkXDFDhdwjuo9F4igq/k8GcjDObRdGJDWiB0yUem1CmZ7Mo1ARcgiEMQEudj0Nby7GaFU60jzO1IObs3XdbM9sb/HzvlX76c+IBOgbm2d5odGj83iv9TMxFDA6VF0IzujlMPJk2xDWEIwkq/U4heNtpN/HIS33saPSTURH28drwIjvyPl+StJDy0x2TunPlmjLdO7bExNwqEgjE+bETgwA8dmKAj71xi07eQCPttaUWpPmIvi83767i9gO1XOie0Xv69jQHuHFXFQvZ0PN0OsOeYICbdlXRUFHE156+pvXANfp5581NWMwKiiTxSvsY8WSuQY+0oSPpawn/bQWugAIKKKCAAn4F8DVgJ/A4MPUj1n1d4kL3tGEy2jm4iL/IRk2pS8+AOriljP2tpaTTGd2wYFujn7//ncM8c26I770yqL8/nVE5sr2CA62lbKkvRpYl/uy9ezh3bZpILMUTpwZJRtcpoyRBmdfOVDY7q613lq31Po7sqNAnm6HhRT77YBt//bEDmE0yz54fIZ5IExpZpMLvoLXOR9fQApKklZFV+BzsbQ7oPXpOm4lL3TPs2OSnLWsgYVIkZhejlPsdQg9RfYWbyhKnUCLqsJq4kJfVrigSh7eX8/JlbYyqqoUcB7w2PY/MpEjCdnJVomCN16BAxpMZbt1bzemOCawWE26HUaUwm429czVlLmwWk16qOjUf5U++eIqP3NNqWNdmUQxKGkBDhZtYIkV4NUF1wIXLbhbIbSKVYXdzgJHpFZ2ApdIqj740AGgB1vmIJ9KYTbJe7lZebGdyfp3cpNLqhk2qizkZcf4iG1aLQjSHlAxPrbC1QexNk4DD2yp47tyosPxi9yy3H6gW15VgKFs+bDHJVJe6hGsA4Na9VVzqFs1GVqIp/B679tAjZ+CbKj1U+B08dXrI8EBAkSXae2a53DPLSsxIaO1WRXgY4LKbBeLsdVko8dhRZIlQjro2OR8RrnHQrqnyYgdz4RixrNK5HEny9Jlhnj4zzA07Kgyfr21fewCgyBK/dtMm4sk06YwYvu1zWfmbb5wXshG3N/qFUstIPMWZTvGBA4DbaeF/f2g/nQOaiYnFJPPlJ67icVrY31LK7s0B3SjlLUcbueNALclURs/ra6ry8Fe/fhBVVXVytrgSZ2I+IpA30Ahjfknnaw0FAldAAQUUUMDrGXcCDaFQaPFHrvk6Rd/oxj1wc+EYc+EY88sxPvnhA1zpn6N7ZJGmKg87m0q0dZZitPXOEl41Tkoj8SQXu2dYjaU4uKUMi1mhOuAiNLKIKc9S3mZRDIpFaGSRzXn9WrNLMcZmNDUkt8/ueNs477utma6hBVQVJuYi/P3DbXz649fzhn3V/P1Dl1mNpfQeow/cEeTZc8NMzkf1HqjWOh/RuGZk0jcWpm8sTLDGy/RiFK9Lm2Q+e25EGI/ExuWht+yporHSw9DkMg883yO8tquphL7xJWYWY4RGFg3h4gGvnRcujGaPYZpnXx3hyI4KTl2ZIKNqhLDIYTEoiVUlLu67dTOf+OJpfVk4kuTVrmneeXMTj53o15W+423jlBcb+7Y6B+Z185PByWV25PWDyZLEmc5JKvwONtd4aeuZYWE5Ibw/t7zTYhKVVglN2XkkG6uwhtVYUugxrCpxMjK9ToLmwjFDaZ0kS9y6t5rukUVdJVKBT33tHHar6Krpdpg5llNqZzXLWC2K7jqZSGU2KArU+sFcDrNwbdaUuvjOy306eVtTq45sL+d//vtZoQzVbjVR5DCztJrgdNYMRsq+Z+3UOe0mXu1afzDQVFUklGyC5mL4m2/aykMv9pKPhooiqgNOBiaXyWRUOgbmuZY1s7lpZyXHL48L6/dPhIWePCm7n2vqbTqjMjARpr1vjtxWtEs9s7T3zRqC7aMJYw9kMpURFGFZkmiscGtqX1MJNrPCn/3bGb0ku3d0yaBCDkxoPYHBGi/N2XLI3rElLoZmKPHaOLK9gm8+1y04suZiej5SIHAFFFBAAQUU8BrFMGBsvihAR7Hnvz48w1MrfOelPp44rUff8eYjDezY5OfTD1zUJ4K5KotJkbiYVS6Ot40ztRDB67Ly1ay5Rz5qy9zMLEaFEkC3w0Isb3IoS9A/FtZLrnLRlmfLnkhmuDowDxIGs4Oe0SVBBQLtab7FJCpTg1PL/P6v7eALj17Ryw3zP2Ot32sNkgQPv9iH1WLi6AZqRyqd0dU50ExAtjUUE44k8BfZcNlNzCyuj00FViJJnTCk0irffXmA9962mSfPrOeOPXFqkIlZMawbILya4M57a/G6rPzb45368sn5CPuzJXHJVIZDW8t4/ryoXMXiGvk+1zWN3aqwGkvp5YQTcxED+UykMmxr8NE9uojXaaGhooiTOSWVKrASS2G3KESzBNxqVrial+dW4rEJJYAArbVexmdXdZUqk1H58pNdvPWGRgYnwpzNkqBoPE00nsZhMxGJpXDaTMQTKcFEpKGiSCc5a5hZiurvWcOV/nlSOdf0rqYSasvdfCeHgKoq7A0G6B0PG3oId2zys2OTny89flU4BvuDAYocVtwOM8fbxB6u3rEwXpdFcBE1KTKfuP8UqiqSPwl45KU+TIrMb7xxi+AuCnAuNG1wtVwb8xoObS0TCCRoZK2+3G14z+QGgeRWkyz0/ymyxMWeWf33fS2lSKDfP7IkccOuSqGfVgUu9czoRO3xkwN895UB/fX3vGEzJR47X3i0XVdrL3bPGK6RXPi9RlfT1xKMGnsBBRRQQAEFvH7wdeCxYDB4XzAYvCX35xc9sF8W3Liz8r983ee2GiaZz54b4dlzI8KkOJnKcNv+Gt58pAE1rz7v+KUxnjg1KCyzWmS9nKtraIHZpZhupiBJmmHCwMSy7gAooZWsffP5btr7RcdBi0mm1GecsAV8tg2VpuqA02CrHvDaDWpCMpnhsVcGiOb0GZlNsl66p4Ku9NSXu6nwO1BVbZzReIpnz40IZYVaJIHx2brFrCmQl3pmDaYVAPGkOK6MqlJcZKOpSsxku9A9a3BEvDq4wP/1TyfoHDS6NKbSGVajSVaiSc51TRvcFpejSSZmVzm6s4IDrWXCa+mMSkOl+Plel5W23lkisRTjc5ENJ9gvXx7XyZsE7G8pNaxjyVM1ZUkjh3/0rl3syqq/ACvRJI8c79uwBPPdtzbxyQ/v5y8+tI9YUiTwiysJQ2yBqqKTN5tFYWtDsU7eQCPO12+vEJTfNfSMLtE9YhT5F1fidPQbj7vZpDA4GeZS76zgHgoaoc293ko8NqYXojrpUlVorvHicVn0/U6lM3z7WK+BqGVUuHXveumoImu9YbkPNM5d05xjc+FzWw33h8Uk8/1sn9tae5nVrNA5uEA4kkSWtHLi3DGkMyqxeEqI5cioKteGjNf46Mwq3z8xwOJyTHfQXMPTZ4c5dnFUOM9XBxeoCWycrWY2SWyqNOYVvpZQIHAFFFBAAQW8nvG7QBnwN8CXc37+/Rc5qF8mmE0Kv/u2bVhMMhJQVmynJqCFZvvcVn79nlaUvEmmZshhtPCWJYjEkoZQX6tZ2VAFGJ4WjUKi8RQ37KoQFIJ0RuXGXZXC5C0aT7FrcwlOuzbJTKQyvHhxnLo81eBfvttBJqNy54FavUROkmBxOc573rAZS7aU06RImBSJg3kkpaXOSzgviDuZyuifm4vbD9ToCkIuinKyqBKpDCeuTAjue1azQsfAnE4MFlcSlBc7BDKVW6YI2vE/0zklKHlreP/tQe65rk5XUDKqytJKglNXJoVyT5Mi0TW4oJcfLq0mKPXZ9c+1WhQm5iIMT6/wUts4AxPGUtvJ+VVMJpkyn53339HMfJ5D6Mj0sn5MZAn2tZYKCpcKBpUVYEudj4+9cQu1pS6kbK/Z8bZx/uWxDsPDgXRGNTgcKrKEv8jO134Q4s/uP2Moc40lUrraK6EZouQ6OcYS6Q2v71NXJoR+s7XPevL0EE/mKNRry0PDi5zunCKXF5f57JzumKRvPMzQ5DIzSzHM2etQliVS6Yxe6grQWGE0xTGbZEOsRziS4KbdVcKyO/bX8JajmlrusJnYXO013IepdIY3Ha7Xey2dNhMzC1Has6WvboeZ3ZtL9OsEtHv3tn3VQplqRlVJJI3kNpFMG/otFVnm8PZynQhKklZ++70TA3zqa+cN21jb53ySx2l0AAAgAElEQVS89WgDOzf5UWTNGElCM7/5/V/b+Zo3MSkQuAIKKKCAAl63CIVCDT/kp/EXPbZfJhy7OEYildGcHuejvPloI5//vSP83W9dT2t9MfdeVy+sf+91ddy6t1ogGTaLwjOvjvDc+VGDSjG1EDXkAhxsLcOUR/RkWcJuNpIj9waBvBaTrAdcg7Z5n8tKIKd0anElwTeeDbGnOaB/vKrCcxdGsZoV7rlOy2NPpVUuds9ysXuG33nrNqqzBPbq4IJgXQ5QWeKgsVzsrZEkLXuuKvs+fX8kidU804qMqpWtBTw2ihxmDm8rF5TMte3lTrQn5yMEa7wUF1kxKVpJ3NmuKQOpMikSn3/4MsuRJGV5yqOK1qvlcVqwWRT2twSI5U24VRX+8iMH+OSH95NKia8NTy1zeHs5sqSRXatZZmo+SiqVYWohyuRclKo8RcTtsOjKVEbViHM+qgMu3ntbs1CO+fUfhFjOBlTnTv6XI0mDMmQ2yZzqWC9j9Xts/O7btvPtYz0MTISzJDGNz22lsbKIXZtLhPJEFajewLq+2GPDkmMW43aYOR+aYTJbQuqym9kbDBis8G0WhbcdbRDOX0aF67eV8yfv2c1Nu6sMiuHNu6v4nbdu4zfeuMVAsMKRpEFFDnhshgzB/S2lnM4pV3XaTNy0u4pvH+ulvW+OSCzFteEFonmuoP4iK//xVBexeIobd1XSWu8TxrccSWK3GO9J6wZxCx6nldY6n/63BOxoKmH35hJhvfHZVU5dmWTX5hJu2lUpnOPFlQTb8sxp7jxYy92H6oTzcWR7BQ2VHn7/HTu557p6kmnt/1ckluLBF8S+09ciCj1wBRRQQAEFvK4RDAZNwPVAFTAKnA6FQsbH/q9TTM5HhB4kFXjqzBB/9O5dJFMZrBaFW/dW01BRRPfIAvUVblpqtQnW//7Qfs6HNEv4XAVCRVNRRmdXCWddFhdW4tSVuagKuGjrneWV9gmsZlnIoHPZNcOHIqdFf1+pz040lhT6gkyKzP5WY++OSZGYWxJJwuRchP+PvfcOj+O+r34/M7O9L3rvxIIk2EmJVG+URTVLltzlWHacN7ETyyn2fWMn17nxfVNvurvjbstWLKtavReKpNgrgCXRewe2YPvuvH8MMNjfDpzXSW4eSeae59GjB7PA7OzsLPd35pzvOQNrlJUPTIYNtrex2SVsZoWxvBTBRCpLW62XSCzF1EKc8dkYP3+1j8s3VdE1uEAomiSnwvNHR3HaTOzb3cCLR0dJZbSS4sJACtBKjFdUlpdOjFHitjKfR24qSxxCdD2A32Pl1sub+PsHTgrb1zf6KfFYOXhuajkEROW1U+NsbxcTIWVZYv+ZCV25OXhuWkjLBC0s5E+//Sbr6rxU+MVjcDssoMKHb1xHU5WH/7dAKQmOLFDisTKyHArjtJsMYTW9oyE2t5bq6o4ia3a+67bXcuLCjH4dqsDDr/dz22VNhnO3UjwvSZq90GZRhMCTZCpLe72X4SlxHjCZyvK5D2zjyUODnLwgzkuqORWzIpPOrs67HeuZ0Yl1damDpbhIfKLxNL95y3q+8K1DwvZcTjW8boASt5XZUMJQYA4wOh1dDq5RsZhkQe1aSmRYjCbxOi1Ulthx2fJ7AbVzcN32umUiOyn83aFzk5wtsOQuRFL8xrsCXBgNoaoqh7pWw3lfPTm+ZqWBz20RjstlNzG9GKPCZ2d6eV7TbJI51TdLqcfGvksbSGVyBIcX+LeXtOCV5io35X47h7undYJ44vwsOwLG5NI9G6u4aksNAxNh2ut9BBr8qKrKn3/sEnqGFyjz2dnQqG2bDyd5rSCoZXRmiZnFuMEa+k5CkcAVUUQRRRRx0SIQCHSgVQjYgRGgHkgEAoHbgsFg91t6cG8TxOLGBMn+8TCf/qfXkSS4YUc977uujdlQnGcOjxCJpdjeXs4nbtlAXYWLugoXY7NLBguZ22EhvCSGU8yFk8iyrNvokukcfreFqhIn3UMLhJZSHOqaorXWw91Xt3L8/Awne2d5cUGbwdvY7Ke6xMlsKM4Pnu7BbTcTia+GJ4zOLOFxmgWFxW41caxHJHqgJWg6raJ6YlIkRmeXDAqJ1aIwMCEWLc8uJrh5d6MQHLGUyBCNp4UF+GwoQVOVm+GpKGaTzI5AuaHXrbHSTYXfTnBkEVWF072zhoX84ETEoNSBRnq3tpXxxhlxn7FkGqfNxFIioykhLaWGoJeqEicbm0sZmY4wNBnRZ6MujIbY0lZKLJEhtJTCbJIJLaV44+wkb5yd5PYrmoXybgCbxST09i3FM1T6HczmEUS7VeHjN3fwx988pNkUcypPHhqi1GvTCfsKUukck3MxgeB7nBY9fEZVNXWqsIA+Gk9zuGvaEATid1v5/S/vJ5nOCkEgJkXiwLlVElPhs9NQ6eJocNUqOTEXo77CpQd1gKZw/fE3DxKNifeCVLTAjvzn8DotTMzHhCAgWdJ+N1DvoyuvhD2by1Ff4SKezCyTU42IJlJZ7FaTIa11MZrihp21PHdYTEgFiKeyuBxm5vKsrU6biePnZ/C5rAarM2jzof3jIb1MXpLgqUPaTNqGJr9G1HrnONytnZ/GKjeVy8RsZjHBzGKC0Zklbr2skRePrRLrgckIDWt0JPpdVko9VuaWw3jKvDa++1Q3mazKdTtqaa/3caZ/jh8+08NcOElncwm/ddsGxmaX+OrDZwznYwWF18U7DUUCV4BQaJFsYpHY0Itv9aEUUUQRRfyHkE0sEgoV/1n/D+JrwLeAvwsGgypAIBD47PL2a9/KA3u74Lkjw2tuX7FyPXN4mKZqN99+oltPjjsWnKG6dIjt7WU8/Go/i9Ek9eUuRpY7yEyKxOJSklKPTVg8bmjyG2K/FyMp5IJ5lb6xMJ++azM/fj4obB+dXqLS7+BkHlHwOMy01Xo5fmFWL2q2WRS8TgtTC3FCSylCS9pz+N1WFqNJsjmVw93TyBLCQj+TVfm3l3qFmHXQLGtdBQvCWDLDXMg4g7YWySrxWAktJVmIpJhf42+aqt2aMrH8FDkVLGaZjkY/w1MRFqMpJudjTM7HhJh+CTjSM83JCzOGtMFoLK0vwlWge2je0F0WjaUo9VjZu7Oebzy2mlAJmnXuSx/fxXw0xZe+d0R47MCZCTqbSzi4THx8LgslbmOaaWdzCRNzMT2Uw2JWePnEuGF+63TfHDVlTqE/rcJnFxIsHVYTpR6rQPSSqSwbGv364h80q+MPnl29bhRZoq3Wy/mRRcFGW1/hoqXGw4WRRb1OAGBmMU5LrTF+vsJnZ2o+RiqTw25ViCUyAtFf3+hjZiHB7PL1rqrgtpu565pWAg0+g1JXXerkf354Oy8cHTEkYu7ZWMVNlzbwx984KGyfnI8ZVCWzSeJP/vVNZhYTwvvrspt54sCAUAXgtJtYimf0XsJC+yfA2GyUza2lVJc6OXhuUlBh+8fDVPjF5x+ajBhmDKPxNEOT4nzryvPnE3KtwiBGbbmLXesr8DmtPPDSalXC04eGqSt38ZPnz+vX8tmBeR5+rZ+p+dgvJW8AR3umuOWy5l/6+NsdxRm4IooooogiLmZsBf5hhbwt45+WtxcBuNaYLytE9+CCEPsN2szX3z9wkrMD84zOLDEyE+WGnXW01njIZFWCw4vMhROULc96+V1Wjq6hhFX47QYlwG5ROH1hFpMsLmPMJtmw2A3H0oL9EDS1ItAgBorkVJVt7WWG2aSOBh+37G4QfjeVzrG5tVSfy3rl5DiWgpmf0ekozxweFgIqVgJJ5LyNsgTnBhb0IJKekUVaazzC/ODh7mnDrF08meW+uzbjtImL7Gg8zX13baKyxK4TiHRWxWpWKPfZMCkSgQaf0BEHmtp5+xXN2K3a65BliYHJCK+cHOc7T3Thc4nXwcxinM98+Q2++dhZQyqkSZF18gaaClQYMiFLEldtqRFskKFoiicODAjnDGA+khDssJ3NJXgKCsxjyQx1BTN2dqvCiWU7pCTBppYSQRUE6Gj0c+vlTQZVtcRtZUtrmSGgR5YlQtGk0AvnsJk4dn5GV0Q3NpUY9ud1WVkqmC+LJtIoisSb56YMNykUReInL5w3fCYkCd44M8Hv/uNrhnk4u1UhXjBT6bKbdRtsTtVuaHx4bzsep0UgbzaLQntBr2I0nmbvzjoqSxyU++xIEpzum+fguSmefnPYUL+RTGUNZM2kSIb5VlmWiCUz5L9kWZaWlTyVEreV5mo3FrPMmf55TvfN8eybI8LNnhV0Dc7r5G0Fg5MRxv+dCgEAu81ITt9JKN6qLYDX62MmnMHReP1bfShFFFFEEf8hxIZexOs1ptwV8e9iHLgaeClv25XL24sAPrS3XSg5LoQE7Oms4nDPlFDiW+azcW5QVNNmFuMMFtx5T6SybGop5eA5TU1ZWu4B87utTObdRV9RkCRJs3599+keHFZxsbgQSeIvUHqcNhNVpQ7hec2KTHWpGCgCmpWtEGaTsqaVzOMwCwvHZDrLzkA5HqeF106N66XTORUaKl3kVJXR6SVW1vBel4W2Wi8bm0r44bNBw/6ddpNegD42u0S5z0asoK7gj772hiFAwmKSiSUzxkLlZIb6CpdWED68KAQ+gLaAP3F+lpsvbUSWJR58ZbXXLp1V2baunOnFONMLMdKZnK5KTs7H8bsspFJZVDSCUeG362rn6nEp3LK7kacPD5PLqeRUlYde7TcQ/2wOdnWUc/z8rFZFUO02qDXTC3E6W0roHV+dFzObZI4FV8lOXblTOAZVhWjcONq6FE/z0rFRoSgc4Pzool4ynm93tJoVuodWbxJsaS0VysgB+sbDBsVzcCKCSZGBvAJxu5nvPKE5tfNJqyJLRGJpDuWRYK/TgtdpYS6c0OsX4skMfreVhYg2AxfKUx8VWeJzH9zGv/z8tHBs4Viaq7fW8ExBFH8qnaPEY1RJL91Qya2XNfHckRHBBh1PZuho8AndjGaTzPmRkFAin8mqBPNmSVesvyt22pXP58rsXy4H85EkV2yuZmBi9X1XQbC8rmBra5khTGh9o59ILGWwDefjuu11v/SxdwKKClwRRRRRRBEXM74APB4IBB4IBAJ/EwgEHgAeX95eBJpS8qcf3YHdoiABHY1ePravg9pyJ3XlLn7rtg201/u4767NNFW58Tot3Lirnpt3NxpUhdoyJ64C5cTrstA3HhK2xVNZGivdgp1PqwuoFRLpYsksV22pxrpMRrI5ldlQQliILiUynLwwS8WytWwliv2hV/uozLN7ScCjr/cL/V8SmtoxOBkWFCSzSTYoX6AlHN6wo14gAqAtSidmRUITWUqzodHPyd5ZA5lqrvbo5G0Fqqrygeva2NDkR0IjvqFl6+SK1U1CqyL49hPdhpTI1lqvsJBOpXO01nhoqHRhVrTY+aGpCA+91m8gX6CRb7Mi865LGoSof9AW1h6nefk4NcujXCCjbWj2gyTOHh08N2lQ9mRZ4nTfnE5+Rqaja4Z+5HeHOawm/C4rsTzSGomlDe9DIpmhoXJVpZNlicHJCCcuzJLJqiiyRHWpg9Yaj0CAVRVu2dPIx/Z1CCQaNJWqMPnSYTWx79IGKvx27FYFSdLsjSvqX22Zk90bK4WZuZyqEY+P3NjOp+/abFBcy7w2PnlHp0FtctrMfOtz1wjpjqB9FqLxNE0FNQMdDT5+9nKvgTiXeq28fHxMf99W6hP+6sfH+f0v76dr0NjN1tHg554b29nZUY5JkXQFMqeqbG0rMxS5e50W1hWofEuJzJpdjIU3IEC7EXLvvg5KPVrJ+Z1XNrOjo4L77trMujovboeZq7fW8O4rmvnQDe1cu72WqhIHl66voKXGjSRpFtq//B+XGvb9TkNRgSuiiCKKKOKiRTAYfDwQCGwH3gfUAGeBLwaDwfP//l9eXGip9vK3n7qMxUiSmjInkiRx6YZKFqNJfeYm0ODni/fuYjGaxO0wo8gyH7i+jZ+/2kcqnSPQ4GPf7kbqK9x858kuMlkVi1nmfde28WbXFNN58yplXhs2q1H1cq/Rr6aqCL1YAD6nlWw2R2iZBCVSWSr9Jt57TauuLGWyKlMLcW66pJ5nDo+goqk/s6EEN11az/NHRsnmVFQVTvbOcdWWaoamIgxNRklncjx7ZAS71aTPb8kSPHt4hFdOjBvSG+OpjJ6guQKP08yPnlu9zOxWE4osUeGzc2FsEYfVVEAWtACVDU0lQioowPZAOSUuK4/uH9C3xZJZNreWEo2lsVkVNjb56R0TiXJ9pZvdGyr56/uPC9vnIgna6316CqfNouhzUSd7Z6kqcQgkr77SZUh1bK3xMDId1efZfv5KH41rhFQsJTL63JPFLLO9vVxQnjJZlQ31Pv01y5JEJpcTrJA+l0UPq1lBeClFa61HSHWcDSX0JEm3w0xHo48j3athJNmcym2XNXGyd5a+cTENcn2Dn3g6g6JIZPOJoQSttR49zVGWJMZmlxibXcLjMPOuSxp49PUBYV8bmkq4rLNKeJ2g2UBfODaKWZENimAileU7T3YZwmsSqQx/9NU3DDcUJEl7r/KvlQ1Nfpw2Ey8cHdW3+d1WGipcqyqiqhHZD1zfxv3Pr8btD0xEhOvabJL56YsXsJg0Un80K/bfxZOZNTvlCjsSpeXzka+WyZLEtdtriScz7D+jVUA0Vrm5dlstDpuZq7bUCPuor3Dx++/dIhDpnKpy4656PnDdOswmmVQ6y/HzM7TWet/R6ZMrKBK4IooooogiLmosk7X/9VYfx9sZLx8f5YGXeklnclSXOrh+Rx0Pv9pPLJmhpszJfXdvRlVVvvLwGcZmlvC6LHzi1g1cs62WockwB89NMT67xPHgDFduqaHMZ+PpQ0PYrWY8Dgvvv66NeDLDmX4trOLefR1YzQqHuqZ1gtRe5+WmSxs4eG5SD6WwWhT27qrjxIVZPbgDoKXGY6gGmAsnBAK1gsI4foB4ImtYfM6Fkobf9TjMXL+jlp6hRZ0cJdNZZhazXL2lhtN9syxEU3qYyQrhqy1zEk8ZLY53XNksLPYtJhm71URoKcVsKMH+0xNrBkssRpKYCgfH0KyiK11nXYMLeBxmXfWRgFdPjDE4ERYsb6CRH5MscUlHBVvXlfGtX3QJ+81kc5R7bcwsv661rIkOq0kII5mY07rq8uF2mIXEzVQ6hyIb1bbWWi/hWIqp+RiBBj89QyKBnVqIs2djlb7YB3A5zDp5s5kV1tV7OZMXmR+JpVEk43P1j4f1ZMcVVPjtPPxaH/3Llj4JzdJnNcv6c0jA9TtqeeHYqt04HEvTOyqSZu25U/zTg6eEUBFFlgSrqCRpJCm9HIoyljfTZTUrpNJZPE6LbmGMxNK47CZiiSx2q8LNexp56JV+4XllSTKQ/8VIkvqCnrtsThWebwWXrK9kc2spj7zWr8+apjI5nj86jMNmEpTZQIOPtjqvYLu8bnsdOwLlnOmf0xW2K7fUsGdjFZlMjuePjmI2ydy6pxG71URztZvacictNR7aar10DS3w5IFBkuks122v4/JN1Zzum+X7T/ewGE0RqPfxyTs6CS+l+JeHTjMbSuCym7lhZx2P7x/Qz/Xlm6r4zVs2GF7fOwlFAldEEUUUUcRFi0Ag4AXuA7YBwiomGAze+JYc1NsM0Xian764armamIvx0xcu6ARnfHaJn7/cSyqT0/vRQtEU332ym5subeCNs5rKEIml+f4zPdRXuvjnB0/rhOvNrin+7N6dXLG5muGpCKPTSzzz5jAf27eeP7t3Jz967jwL4QRtdT5MisyffnQXP3k+yPBUlNYaD06bhU/e0cmPnwtqs1HNJdx5VQuL0aQQ9a7IEiPT4iyVBIYADglNUbJaFKFwvLLETs+wuPhVgfdc1crXHjljOG/b2ss4cE6cwUlnsvzB+7bQOxoS5rVAC6A4W5DAmcrkCDS4BOIRjae5dlsNh7s1cptbtiyCtrBPLpdvO6wm+sbDQn5EJpvjvde28vKxUWaXSfDgZIRSr43IUopUJofDamJ0uTdtcFKzL+YrjaCFduQrbvNhrQphZc7QZTfjdRvnCcfnRFKwta2M109PCNuS6YxQ/9BY6RIU2rP985R6bULCp9WisP/MBBazTJnXTnWJg2PnV9/7RDprUGkBlpJpYVatudrDC8dW1SmzSeb6HXWUeW38OE8tVYFrt1bz8skJYdtggQoJkMpkBcWyo8EndKsB7N5QiSwh1BWoKrz3mlbWN5Xwv34gpnymMzm++bmr+YMvvyFsj8YzfPkzV2CzmliIJHnw5T7h8XgyQ4XfLsyWlXptVJc69GsItITThgq3IZW0fzyMJCFYPwESqRy/fXsHTx8aZjaUYNf6Cm7Z08hiJInFJBOJpWmv99HZUsLTh4ZprvbgcVq4Zmst9RUuvv1EF6d6Z6kqdXDP3gB2q8Kf/ush3S7aWuvhf9y6kX9+8JSuSn7nyW7cDjP/+osu/feCI4v8/NU+ZhfjOrGNxtM8tn9AsF6/cWaSu69pW3Pm9Z2CIoEroogiiijiYsaDgAI8AvzyzOmLGPPhxBpBE6I6NTEXI5ESVZiFSNKgPqgqvHZqXFDLMtkcr5+e4NWT4zr5ONw9TbnPznw4odcKjM8NEVpK0tHg50iPtjifWogzMBnhi/fupNRrY2Iuxqm+OX783Hk+dnMHlSUOjgVnmJyP6XUBbocZu9XE7GKcnApHuqdxWBW8LiuRWJpoPM2PnztPiduqVQhEUqiovHR8DLMik82jRLOLcf7oq2+wta1MeJ2KLPHM4REcVhOhzKrq57SZ+cefndJ/XrHJyRJUlTgEwriyn8L0RoDachd/d10bf/Dl/SRSq++NSZHY1VHF0GSU+ioXp3vFcI1sTmXvzjoe3z8obJ8LJfjyZ64kEk/xJ996U3jsVO8s77u2lR8+G0RVl0NKfHaDZbK2zMnVW2v50bM9RONpXjs5oStIoJGhgQJbYv942GAVHJmKCnbIqhI7b3aL9jxVVbl+ex0XxhZJprJ60E0qnSO8lOKW3Y0CgQPwOs1C/YPXaeFM3yoxtlsUg70vncmxpbVUqC9YgaIYLb5WkyyonKB9NvLtnp41SIPDZsKon2qE5FTfHA6rmWR6dSau1GvjVO88LrsYpFNT5sRmNfGT5y/w+ukJw7kdnIqQy66WgdutJqLxNM8eHsFilpGQ8DotxJJpfvhsEAko9diQJM1+2j20QPfQgiEoqNJv58DZKbwuK++9ro2NTSX87OVenn1zGBXt2t63u5F//UWXngrK8r6PdE/rKmzfWJivPHyaHYEK4XX1jYV54dioYabxcNe0YSZweCpiUNoLAlcBmJ6PvaMJXDHEpIgiiiiiiIsZu4GbgsHgV4LB4Hfy/3urD+ztgroKlxD2Aca0xi1tZWxqKRW2NVW56WwuEbYpskRztbFDK5PN6eRtBf3jYSE6HrTgikL1YmIuxpMHhvQZJNDCMXrHwtx1davhWCOxNJ3NJYKyEEtmuWR9pUAs5yNJtrWVU1/h0hf96WwOt91Me50X0NSJhUiS10+Pc9vlTdSUObGaZbI5lZ7l4nHLMgFzWE3LKYSryOVUbtxZT07VZoxGpqM6YZPQCNfx87P6Plbw4+fO84VvvYlcYAGUJImD56YYmYly4MykIeY9k1X5vX96XQ8cWYHbYeYvf3yMJw8MGZIIK/wOGird+iJYVeFocMYQULFrfQUHz00K5zWTyXH9jjp2dVTwkRvbKeD9pDI5nHmW0F0bKg3dXcGRkBAso50biZO9M1T4HUgFQTnReJpITKwtUGTNOrjyPtosiqGvLJ7KYi2ogpAl+MkLF7j/+fNCII8swQvHRoX3xazIDExGdPKmyBK37mk01BZMr9FNdqRnmhfzkl4tJhmP08Kx4AznBuZZiCb1oBu71YTfbeGrj4gl1dWlDn7r1g28enKcl0+MkcnmyGRVJLSkTIBsVkVFO+93XtmM06boNtdUOqfbFVcssVryY9LwGVqIJLlxVz1ttV52tJczsxjnTP8cZ/rn+KefneJ03yzPLJM30AJcnjgwyMkLYlH8oXOTBEdEVXsunBQ+hysoDLsBaKnzUOoRr40NTSVsaRVvqNgL5mktJpl19e/sxOYigSuiiCKKKOJixn5g/Vt9EG9nyJLEH75/K3s2VtJa6+F917bxhXu2c8n6CurKXdyyp5E7rmzmfde1ce32Wip8dna0l/OpOzu5YnM1t+xpxOMwU13q4JN3dHJZZ5WQmFdd6uDm3Q2GJL9Ag4/SgoV7qcdmWMhJEoa78KB10/3spV49tEJ/PbJkSFEECEWThm3zkYQhkXGt1MFMVqWt1svv3L7RYNVrqHTzqTs6uefGdkNHlizLDE2Jts50JsdVm6sF62Mqk+P67bXC7y1EktSWi1UINWVOQR1NprO865J6drSXAxohTKVzzCwmqK9wocgSLruZSCzNxFyMN85O4nFahAVvJpM12D0BNjaXCNH3Lx4bI5s12hQHJ8Ic6Znmu0/1GNQnp81EKC8a/uT5GYO6YzUrbG4t1W8iuB1m5sIJ5sJJjvZMkypI2/Q6Lfq85srP1++oE66RRCprINOKLNE9NC/87HFa9Hm4nKpS6rFSV+7UiWgqk8Niknn/tW3cdnmTcF1lcyq5nCr0+QFiFYQi017nNZC8913XJhSSA9SWO/nivTv5/D3bOT8iKtudzSX8xW/tprHKLYS2gEbCSgpIDmjJoXMh8ZqfnIsxX9C1ls2phkRRWZaoKXNy2+VNyxUZ4u8fC4rqJ0BoKSmQdQCfy0pTwQ0dz3KKbT6Zri1zsndXPTdd2oAiS0jAzkA5V22u4b67N9PR4MPvtnLt9lruuKKZD96wjr0766krd3J5ZxV//vFL2NRSgt2iUF3i4Asf2WE4vncaihbKIooooogiLmbcCzwVCATeBARpJxgMfuktOaK3Icp9dn7rto3Ctt95d6fws0mR+ciNAcPf3gPPUjEAACAASURBVHV1K3dd3Sps++wHtnJ+ZJFUJsf6Rj8mReb33rOJB168wFwowSUbKtl3aSPN1R6+/uhZEqksdquJD+1tp9xro3togfmwVqZ8654mtq4r45WTY7pKpCgSzxxe7bnKT+7L5VQOdU0Js08SWhl3YXfX0GQEn8siKAJ+j5UC0UePoy8L2Az7SGWyfO3Rs/px5aOz2W9YHEsS2KzG5ZmsGO+5W0yKMPe2llfM47RgNSsGS+HOQDm3ffwSPvkPrwrbB5fTBldCJkZmltbswQtFk8LC/Uz/HHde2SykNzZXe4SfFyJJrt1WSyqTpdLv4MQF8ZjSmRx3XNnMI6/1sxhNIUsSUwtxphbG8Lks/MPvXc4XvnVI+Jv5cJI9Gys5OzCvhcMkM4KFLrSUMigwoAWQrHSnuexm0pkcscQqGdzcWirY/UCLtve5RIKZyuRY3+Rfszj6dP+ccC34XBZBgUtnc3hdxu41s8mYQumymTl+fkZMwFzGyjU0NBkhVlDkLUsSsURa6LIDrRbC7bQIRNHlMDO9KCqEZkXmQoEV2mqW+f7TPQBUlxgTHdc3+jk7MC9UIezeUMW2deV8/+kesjkVu9XEe69to6rUwWIkydmBeSp8dj66r4OGSjd//vFdHOqawmkzc1lnFSZFS6y9eXcj2bzzVl/h4v/60HbDMXzwhnXCz3/wvq2G33kno0jgiiiiiCKKuJjxF0A9MAjk3wpeY2ri4sbThwY50z/PvTd3UOEz9jb9RyBJEoEGsbdqfaOfP//4JcK2TS2l/P3vXs747BK15U5sy6XVf/3be+gbC1HisemR4J+5e7MewR6Np4VFZyqT4+qt1byaFzqRzalcur6Cwz3T+sI2m1OpLXcSWUoRjqV1i1ptmZNkOstsKMF8OMl8WCsMjyczJNNZcjmVR17r5/VT49x+eROP7R8kp6qUeKxM5C3ss1mVxko3JkWibzzMyd45bGZFSPBTVRibjQqk02ZRuGZLDacuzOoLbK0LLiNYTy+Mhij32ZnJW4Q/+HKfQfkDeP7oCM8fHcVhNRWEtTgMquNsOEFztYeBCY2MbVtXtuZsXndBOmS5z0b/hKgITS3E6B5cQEVLh8yHzaLw9KEhrthcjYTELw4M6o8tRlMcC85QW+4UVCafy8Khc1OoaDNjhVUFsizRM7QoJG3aLQon8+YDN7eUCAEiANOLcSGYBTT1z12gInqcFgYmIjz8mhgY4rKbDbNz6xv9HCx4nqoSh0D6fS4L54cXBeLndVroGVrQw2zySbsiS+zdWc/J3lm+/NDp1ZsYsoTPZSUUS/HmshVZliXKvDYisbQQmFPus5PN5gRy6XdbsZhkwaZpMclcsamal06s2j0n5uO01Xr1FNadHRXsWl9BS62Xpw4OshhNcVlnFTs7KgDobCllfCZKU7VHV7L/8P1byWRzgipa4Xdw++XNFGKtFNZfBXOhOA++3MfO9eXsDFT+p/bxdkKRwBVRRBFFFHEx4wNAezAYnPg//uZFjE/87Uvklt1xf/yNQ1y2qZJP3CIqcplsTrM3FcpT/0XYrSZaa73CNpMiGwjg5tYyNi/PvnzjsbOG/TisxoWf0242iFZ+t5XxgoX3QiRJY5VbT7Zb2bZ3Zx3P53VqzYYSeJ1W3n1FE+cG5mmu8fDs4RFhX8l0hqGp1UVxIp1le3MZ5/rnSS4TtnMDC+xZLnruGpwnkcrypR8e5WP7OhicCDM0FaXcZ2e4wH6pAvfdvYmp+RjfeOycruAkUlmqSx2kMzky2RyL0ZQQ/b8SvGExyZR7bYDK5Ly4mB/II2LnBub51J2dHAvO6ESjsdKtR8vnn498cmIxyTp5W3ntDZUuzCaZ4SmtM25yPs4TB4bYtk6cYwIYmgwL4SklHivJ1GqsjKpqM1v5HXouu0koMG+v8xo63o5fmKW61CHURLTX+9i7s57vPdVN/3iYbE5dVgPjukJZ4bez79IGvvboWeE6umpLDcl0ljcL5jUL57UUWaJvPEQ2p2KSJToa/XQ0+vh5Qfx/R6OPN7tWbazJdJYbdtQRiaXwu22U++384Oke4RiyOZVt7WVC51sup7KltYznj4rXZEOly2B7zGRzuB3iZyaVyZHJGW2y126v5RO3bUAC/YZKhc/OvfuM7nSv04LXWWLYXmhp/c+gkASubPvh093sX07DPdwzjc3Sw9f+8Or/8vO9lSgSuCKKKKKIIi5m9APGifkidLx8fITCNduBM1MMjEf47ds3Uul38N2nujkanMbrtPChG9r1u+2P7R/guSMjmBSJ2y5r4oad9QC8eGyUpw5p/VD7Lm3ghp31nB9Z5OFX+wjH0ly+qYqbdzcST2Z4/I1BBicjrG/0c8ueRkyKzLHgNCcuzFJZ4uCGHXXYrSamFmK8cWYS87JKcKpvTleWmqrc7Oyo4JWT43ocvs2icN22Wo72TAupgdvaypiciwlkrcJvN6hYkoQh9ALg+IUZPZL9/GhIS7LMm/Pa0lbGZAGpi8TSOnlbwfRinJmFuL4oT6ayPH1omLY6r54GWEiVzSaZv7n/BDsD5YbEPkWW+YtP7ub5oyP89IULwmNb15Vx8OwkqUyOMwPzmBWJlhoPE3MxNjT6yeRUhlgli6lMjt6xkKASZXLiLBogdMsBtNV5DT1kTpuZ91zdwl/88JiwPRrXEkNX5sPKvDYOd08LwSztdV6OnxdtjolUll0dFUwtxNgZqOAnBa91LpzA47QI9j6v08J9d23myw+f0a2Qr58aZ3t7OZ+/Zwd/+5PjAjmdWUzwd5+6DLNJ5kz/vOEmQDKdNQTPmE2yoHr5XBZBkcvkVLoGF9ZUmFbsrPkYmoroKvMLx0YNXW4SrKm8FobUAJR6rJR5bcI1X13qZF2tRyDMVSUOrR7j7KR+fflcFtScyuunxtnQ6NcJ3NGeaU72ip/R3tEQL58Yw2qWuWFnPTVlTsZmojx5cIhILMXlm6vZvaGKvrEQD73ax0IkyZ6NVdx6eROyJPHS8VEe3z9AOqtyw4467ryqBdCSJ7/9RBejM0ta5cBtG3HaTHz7iW5O9c4a7BSJVJb+8UVaat65QSZFAldEEUUUUcTFjB8BjwcCgS9jnIF76a05pLcXCu/Wr2BiLsb3nuphc2spR3o0dWAxmuJfn+iio9HPhdFFHtu/Wkr9kxcu0FrrJZ3Jcf/z54XtlX47X3vsnE64Hnq1H4/DwrHzeWRoZJFoPE1DhYvvLc/fAHQPznPvvg7+/HtH9EQ9v9vKn310J//y0Gkm5+MMTkb4uwdO8Nu3d/LKiTHO9M+RSGX525+e4H3XrePg2Un6xkMkUlmePTzMtdtqeerQEEuJDCZFwmEzsb29nK7BBd26Vum301Dpxu+26mSgutRhUMUWoymu2FTN8Qva/FImo9JU7WYwr4urs7mEibmYMGtX5XfQX6AULUQSvHJidUGtLh9HfaWb40GN3KQzOV45OS50j4FWHv3Nx89x6foKw3uZyaik8whfOquypbWUjgY/PcNGoihLEn1j4lzU2EyMjU1+zi0TNEWWyKli5UTX4AI1ZU5hXmxgIsy3f9FlmB2UJVkI97BbFGZDIskdn4tRV+ESzlMup+rdchdGQngK5rzqK9zs3ljJv/6iS38+FZWFaFLolstkVR59rZ+NTSUGVVkCvvX4Oc6PhrBaFMN8WXB4QSftkgQNFW7qyp28kVdavhhNGeLuc6qKrWBeT5Elbt7dwPmRRf36bqhwCRbhTDaHokjCOdzTWUVrrVd4/U1VbmKJjNCjV+G3M7OYYD6S1HvfyrxaWNAzh4dRZAmnzcS6eh9Ws8I/P6h1HjptJi7rrCKRyvLtJ7sBePLgEB+5sR1FWZ2RA+gZWuD917XxNz85rh/fkZ5p/uzeXfzNT07o1/25Qe1a+9Gz53UF9dH9AzjtZtpqvUIX3y8ODNJQ6WZHoFwnb6BVDvzw2SBVJQ5O9orkPh9PHBjkvrvfuXNxxRTKIooooogiLmb8LlAN/CXwnbz/vv1WHtTbCffc0P5LHxueijAwKZKMdCbH2EzUkIYH0DsaEuxsKzjUNWXoQDvVN8eZPrHH7GjPtKH4uWd4keeOjOiLW9DsjQfOTQo2wHgyy8kLM/SPrypH4ViaV0+OUeq16n8/vZjg2SMj/NatGwBtId81uMD9z5/nf35oG47lBfbkfJyvP3aWj9zYzof3tnPttlqu216H2yHOSLnsZo4Gp4gltHm1F4+Psqm5VEjTfHT/ALfsaaS+QrMTKrLEG2cnsRSEh3Q0+g2qltWssKujwhDRX1Pm4NbLmvS4/NBSije7pnjsjUE+eMM6bBYFCY2MTC6IM2+gzbM9dWiI/vEwfeNhfC4LsqQFWDRWudYsxs4PwFAUac1us3v2ruOmSxporNJm1RLLPW45VdVnotbVeYknRWF8ZGaJcp9oQQwvpQTytrHJr88NgkZw22q8lC6rTmaTzGJUS0O8akvN6nEvJPj6o2dJFVRZhGNp/vYnxw2zfTVlTs4vE6hkKouERnqcNhPb1pUJiquqwqbWEsP7A1q1RD7MiswrJ8b1n30uK7/z7o30joWF69tqWSPQRpH57ds38r7r2rjvrs2Ayj8/eJrwUgqrWeaeG9up8Nv5xYFBnbztDJSzZTmsJZdTyanaMd1+RTOHu6fJ5jQCHo6l2bauTO9rg5XkV8kw0/fskRFePzUubOseWuCVE2MCQV9KZHjuyIihMuC1UxNCUidolt3eghsGAH1jIdKZrGHWcHAiLFh+18LNlzb8u4+/3VEkcEUUUUQRRVy0CAaDzb/kv5a3+tjeLtjQUobDuvZyYUOTn0BBn5JJkTh4btIwPwNQV6H1TBVCUznEbQ2VLjwFlQEri+R8KLKmkBVCWWMWL5XJCXZJ0Oa0CpWu8NJq8MMKEqksB85OEsuzs6kqnLgwy8Fzk7x8Yoz7nz/PXDiBdbmzS5Elrt5aI5Rtg7YgLVzk946F+NPf2InFJOsL3WQ6S1WJg9oyJ7KkFZwX2uKGp6N876kuw/lLpXN0NhvVo6HJCBubSlBVjeCoaJ17+da6dXVeRmfEou5QNEVnSynJdI6BiQj942EhyGRjk5+ZxVUFK5XO4XFaBBKnyBJ/+9OTjM5EDd2Cqgp3X9dGR4OfWDJDKiMyHpMi6SqXSZHYESgXziGsXSfRWO3mQ8s3IdKZHIOTEf75wdP0jYuEIBJLG65NkyIJ1kmP08Kn79pkqDrIqXDDzjp2ra9cM9xldDrKdAFJtphkjubNnVWW2A1pmZIEOwIVvHFGvGlxYTRMR14VhyRB19ACX3v0LK+fGsdmVThwdpVYJdM5BsbDHO0R59x6hhcN84CxZIbgsPEmS6HiCpoiLBe8XEWWDHUBiizhcxutm1WlxjCk2nKHoXqhttxJ6xr/blSW2Hls/6ChnsLjtJBIGa+F1eOBtnrjHN47CUUCV0QRRRRRRBFF/Lv4yh9cw+fv2cHNuxvZuq4Ur8vC9vZyfvPWDbzrkgau31GHy25GkbXo89dOTfDzV/q4emuNMAv05YfOYDUpXL+jTl/Ym02yVhFwwzpMyzH7FrNMudfOPXsD+oJYkSU6W0q4/YpmYaG7b3cjN+yo11UW0FSvwcmIUNYsyxKRWJq6gu60XR0VtBeQ0BKP1dCxBmsvOLV5mtVFcCyR4eqttdx2WSMdDX7mw0nDot60xiI/lcrSPTRvICE5VWVyPqYrOPFklo4GHxvyFvCJVA5VBbfdrBO5swPz/PX9xzEXhDo4bCZC0aShOL3CZ9cXycPTUT3xcwU+t1W3s+rbnBZuuayRbe3l+N3GrjG/28pnP7CV63fUCfa+swPzRGIi+ZIkePS1fnqGFxibWWJyPqaXV0toc2orM1qZrMrYzJJB4avw29kRKBf2OTIV5USBlS6TzeGyiSTDZlGE97GhwmXoZwsvpdjQWEJVicPwtw+82MsrJ8Y43D0tnHOLWeZk75xOlGwWZc2AFpMiGzoLY4kMvaMhoUQcNPLXUuPhXZfUc/2OOsG+OTEX4+XjoxQilswYCtx9LgutNWJAkMtuZmdAPD4JCDT4DTdPfC4rFT678Hu37mni9svFz+gte7TPaEPenN7m1lLWN/oFVbWhwsXlm6oFstdc7ebKzdW6TRM0Yr1vdwOPvD7AU4eGCC+ltPoNi4LLbmZiLsb4rEaYLWaZpio3e3fVUVfu5Mot1fzjp680nJ93GoozcEUUUUQRRVy0CAQCW4B/BLYCK6sLCVCDwaDll/7hRYh1dV7W1XnXfOzDe9vZ0OTnyw+d0betFBnnK0CJVJaHX+vDalb0YIF0Jsf3n+nhrqta9WCEVDrHd5/q5k8+soOVRodsTuWx/YO01fn47Ae28fNX+pCAtuU5ny/95qW82TXFz17uJRpPc2qZbOzdWceZ/nkm52Oc6de2tdd7AQmfy4JZkdnYXEI8meFk7ywep4V1dT6q/Hba6rz0LlvltrSWsrWtjPMjixxeVucq/HY6m0v0GcAVzCzGhQ4xp82E02bSFaPzI2KsvSTBmYF5zgzMCwmKoKU75se7r2Ct/rAP7W3nu091kc7kW9VSwjxcLJHhgZd6sVkUwZangk4ykqksyVQWl92sW9wUSVsMp/Ksk4oi8+SBIf1nm1khsUwMJQlePTnOseAMN+9pEOxzoJGwlflBCa2aoDCQpKXGy2WdVfhdFr7ysJgsOjkf47odtbx0TIu0l4BoPMPHb1nP+ZFFIrE0qgpHg9MGgq6dl1Vy5rCZqC5xCGrU8HSUDY1+uvLskw2VLh55vZ8Xjq0SpPoKF3arIpRrp7M5bt6tFdgfPDfJUF4QSCKV5c4rWwxkOJ7MUFvu0q830EjrX/74mP761OX/pzI5njqonffLNhoj8TNZlYZKlx5AIgFXb61lV0cF332qm0xWxWpReP/16zArMqMzUc6PLFLht/OeK1voHQvTWutlLpTQzk2pg288dg7QbqS01HjwuazCeWisdPOxm7UOt4m5JXa0VzAbinPVlhp2b6xiLpSgrtxJJpujo9HPB69fxxe/e1hQbQMNfh7fPyjMIoaXUuw/PSHMTWayKmZFFmYbVRX2bKzk5ROifbO+3MWf/MZOwzl6p6NI4IoooogiiriY8VPgIeA+wLhKLuJXRuE8D4Alv2R6GeFYmkw2KWyLLMfl5yObU3n99LhARgCOdE9x4sKsro50Dy3w2Q9sZX1TCU67WSAloNnqpgp6zaLxDIEGHy8f1xb/Tx4a4mM3d1Dpd/Do/gGm5uPsPz3B3de0csvuBn7wTJBTfXOc/voB7ryyhX2XNvLs4WGOX5jhgRcvCETHalbIFCgpS4kMH7u5g+89tRrskFNV2uu9eJ0WjuRZ22LJDOsb/QxOhoknsxzpmcZuVYQkwngqS02B3U6WJE73z7K61NdgVhT+6P1b+NzXD+rbRqaj7GgvZ2x2iblQgoYqlyE1EaCh0knXoGanmw0ncdhMpDOa2mc1K7pCtoJEOst7r2ll/5kJPZI/Gk/zzJvDwjkCbcG9Ev6ioqlyiiIJRdWhaJLvLisvbodZuJbaar3cszfAwHiYgYkIKtA1OM+3Hz9nUM5iiTSBBh/B4UVMikRbrVewRsYTGaxrJDbu3VXP6EyUcCyN2SRz9ZYaQ6ql02ai1GsTCBxoNr7R6aiBuCqyxA+f6cGkiKEtS/E082HtfJgUiau31PDi8dW+NRXY2VFO72hIsI4ePT9DidvKfF6qZjiWYnYxTpnXRku1h6u21nDw7CSHuqawmmWu2VbN7Vc0870nu/UbDQ0VLv7w/Vv5yx8dW+0alOCjN7Xz1UdWyXM2p5G/QgvqyHSUqhIHkViKv/zRMV1JvjAaorrUwbef7GZseVZtfC6GxaQItQ0AZwfmDHOIc+Ek0yHjP82FnzEAt8NiCMP5z/bGvd1RJHBFFFFEEUVczKgCvhgMBovF3f9FtNf72NxaqisLfreVm3c3Mr0Q15UvgMs3VRGKpnjuyGq6ZXO1m0Cjn8N5SpYEdDSWGO6o53KqsEBXgTe7p1jfVGKYTQIo9dowFyhHdqvCayfF/T53eERYBAM8e3iYTS2l+oJZVbVqBL/byiGh4yvL9dtrSWdzpNI5IcxjBYWWQQCbxYTXuXase/dQHmFLZulsLqF3TEvKHJqMMDQZYXt7OSNTEeYjSbI5lYNnpwyzcFk1x6sFrxUgnsqwlEiTzuboGwvjsotLQqtZYS4kno9YIsOdV2oBF06byRDMIUlQV+4SzjVAeCktqFk+l4VcQTdFKp3j6m21vHF6nExWNaRVRmJpGqtcjM0skcmq9I6F+ObjZ4U0T4De8ZCBLCZTq0EXDqvJYA9V0QJignkF2p0tJZy4MKvPTKYzOR55fcBAyCLxtF5NsYLmajcPvLhK9EyKZi2W0KySvXlKX0uNh9oypxDOk8mqhnMIWuVC4XyYhMS7r2jmRO8smWyOZCqrJ1TGklmsZoWx2SU9ATOWzPLiUa12IF8lHp6O8vCrfcK1q6rwxulJQyXFUjyNy2bWCSdonylFkTjZPSvYgLM5lZePj+nkbQVdQ/NCTQRo147VorA/71zUV7i4cnMNR7qm9dsSHqeFmy9t5MJoSH+tlX47N+ysR5IkPf3WvhzI8uuIIoEroogiiijiYsYPgA8B97/VB/JOhyRJfObuzfQML7IUT7OptRSrWeGTd2zkuSMjjM0ssamllCs2V5POaLHnZ/rmqatwcvfVrXhdmmLx+ukJ7FaFu65uZVdHBb0763nh2Aiqqt1Nb6zysP/MpPDcY7NLfOn7R2iq9nDphkq9QNlpM5FIZrjpkgYef2MQ0BSQEo/NsPCXZYmCtTGyLDEfTgjbsjl1zSRNSZZ44+SkvsAvVAJ+/kq/wbY4OBnGYTXp8e2g2fnWKjVur/cJPWKgkcK7rmnV7W2gLbrXN/rpGdIKs+dCSZ44OITTZhIW1jaLIiyeo/EMW9eVcW5gnnQmRzKdNZAVj9PCI6+vVkPIy114K8qYqsI/PngKZ8F8WU2pQ7AiLkZT1JSJM4ZWs8yrJ1YVp+Yqt0DgQCMw+WTiza5pKvx2wWLqdlgIRVeJRUuNR5htC8fShlkzm0VhS2spTx8cIr78/ozPLLEQFglsNJ6mrdYrJCKGoimBLO4MlDNeoCxlsiqfuqMTWZb4ysNnhMdMikxDpdjhBpDO5XDYTMSW3zNZgpHpiKF6wKRIeq3GJesrmJgVn3tsdkmwZYJGWIcmxesfMKjloKm9lX47U3nnuKbUyVIiw9jsEtmcRkzXN/r5+wdOGmYuAUq9duE6Aa1T7j1XtfC9p3oILaVoqnLzvmvbcNhMqKrKuYF56ipcfHhvO5V+B/fdvZn9pydw2s3su7QBh93M//zQdrqG5kmnc3S2lGA2Kbz7imatB3A+RqDBv2bA0a8DfqVXFQgEHgWagRwQBT4dDAZPBgKBdrQvv1JgDviNYDB44ZfvqYgiiiiiiCLeVvhr4GAgEPgCxh64636VHRS/I1chSRLr88I1QFOZbr9cvAtuNsm895o23nuN+PcfeVeAD+9tR5LQZ+c2t5XqXXTReJoHX+nlkvUV+hyaw2bSKwsGJyNsainl3n0Bvv90kKVEhuePjlJZ4uDzH9nOPz94mlgiw5HuaT0wBTS1r77CxbZ1ZTrRA7jpkgZsFkWw29WUOdkVKBdUAoD5cEIgPNmcypWbq3j99CrZTKSybG8vo2twgUQqS3gpzaGuKS7vrGJiLsbgZJhYIsOZfpGoyRKMzy4hyxK5vOdwOyxrJ3DKkqG8eGdHOUvxDAvRJLs3VJFMZw0zZ1aTLBRlz4YStNZ6GJiIUOGz01YrkuecqhWxm0wyP3+lT9++lEjTVO0mmcrid1lZ3+jnodf6hedy2c00VbmZmo9RWepgZFpMvewdD2EuOJ61iO3ujZUcPDvJzGLCQDQAKnw2Q8qox2Fh27oyTvbO6oT3eHBGJ28A85Ek60scjOWRSIfNJJC3yzZWcqAgRn9iPmZ4TyxmmU2tpYSiSUyKLNj/luJpfvrCBcH4alIkDi3v12KW2baunOn5GP3jq6SrzGujpcajfw5ASykNNPiYy7vpUOa10dkizmmaFIlrttXwZteUTuq1kKBS5iNJXdVSZIlzy9ZmRZbY1FJCOqsKfXaXb6rCZTfzbF45ff6NirpyF9fvqMPnsnD/8+dJZXJU+u2856oWKvwO/u53L2MpnhGSJH/zlg0UYktbGVvaxHAVWZbobC41/G5NmdNwg+DXDb8qLf1oMBgMAQQCgXcD3wW2A98AvhoMBn8cCATuAb4J/EpfeG9nZBOLxIZefKsPo4hfQ+Qy2j+qssmY1lVEEf9VZBOLgDHdrIh/Fz8HBoBH+M/PwF1U35H/3ZALZLAT58Xo81Q6x6aWUi7vrEZW4BuPnhMeP9s/p8f4r2BqPsbx4IyuZoCmiuzeUEnX4ALhWIoDZydx2c383p2dnOyb41TvLP/2Ui+dLSV86IZ1HD8/y/RCjKn5GE8cHOKmS+o5eG4KWZbYu7NeCFRYgctuzMGxW0yGOb3R2SXGZpZ0FW4unKC93ksqnWNoKkJO1bryzCZZIHDdQwtsaPSxsbmEc8vqnCyBqhodwX1jYRYiSQINfnZ1VKCqKs8eHtZVuHKfDdca1Q/VJRq5mpyPGY4bYDYUp6rUuFi2Ls84TczF6B0LYTHJQkfbsfMz+rxbIplZsyz8sx/YytceOaurTucG5oTSbKtZ4Uj3NDOLCcyKxMbmEqYWxoT9ZHKqQOwkCdrrvPzg2aD+OycuzBquO9Dm7pw2E/FklqoSO9GEOFt3qm8Oj8MsVFNYTDITBcrh7Zc30z20wNcfPSuQt5oyp0AQAS7pqBCsxKl0jupSB8eCYlDOXDjBhibxZgnAzvZycjmVC6MhKksc/OYt6ynz2rhlTyMHzk7itJmoKnHwFz88jixpCmWFz05oKcV3lucNPQ4zl3VW8UweecsT4wAAIABJREFUKcvmVNwOi9AFB1pZemH5eCKV5VN3duKymWmv9yHLElduqWFLWxn94yE6W0p1Mq7IsqEGoIj/M34lArfyxbQML5ALBAIVaF9Qe5e3/xT4SiAQKA8GgzOF+3inoL6+8a0+hCJ+jTE8PIQkQX19cZFdxH8Hyor/hv3HsRUoDQaDxtX3r4iL6TvyrUCl3xjd//gbA8wsJrCaFTxOi2ANLPHY1uygWyvMQJK0wIcVRONpBiYiHAvO6HNNZ/vnKffZsVkUfUbuwmiIVCbHF+/dxdcePcPPXu7F4zCLYSYWhZO9swbiMjIdxVwQGV/msRksbTkVNrWUMpi3PZ3JsWNdOccuaJdQPJnhx89f4P/52E5GpiOEl9LkVDg3uEBjpYvRmSVyqorLZtZnwI4vE+I7r2oRZrcSyQzb28t5+fiYTiTtFoU3u6f0IJnFaJJSj5W5cFJXjFYUuUKL3NRCTC9nT2Vy+N0Wttf7SaSy5FRVSGGcnI+zta2Uk72r21ZSNvMtg9kctNZ4cDssWC0K6XSW48tzXOmsyqsnxw1W0V0dlSRTuVVlToXxOZE0gVainf+3frdVULcK+wNX3o+N68o43TdHIpWlqcrNQIE196P7Aly9pZbPf+uQoCb63BbWN/oNNtFCMgQwMRvD57LqNQqgqa/nCiy1ZpPM/S9cwG5V+OD1bVy1pZavP3aW031zWEwyd1zZQpnXxtceXQ0l6R8Pc+22Wp28rbzWuQLrMGhKtckkk80j8iuVH8N5SZtWs8LGphK9mB20gJJvPd5FNJ6mxGPl0+/ZrJe5F/Efx69sDA0EAt8GbkR7/24C6oGxYDCYBQgGg9lAIDC+vP1X/nIqLTX6ft9KfOYzv/tWH0IRv8b4/Oc/D8Bf/dVfvcVHUkQRRSzjdWADcPK/spP/ju/It9v341uF99zQTnA0xPHgNLIsUVvm1O12yXSWxWhSj6O3WxV++z2baK7xcqpvTg9ZuHZHHR/ct4ETF+boX07PqyxxsHNDNQcLLHBZMIRSjM/GDMXWQ5MRHj0wqNs3w7E0boeZD7+rg/uf7SGZyuopezvXV3K6d4ZUOsfw8rHbrSbiSS398Nj5GawWRSc8oAWXjK5BNNQ1lKK+ySXCSyLBUBSFr37uOlKZLPf9/SvCY8GRRU4PzAvzZJF4hsVYBq/LqqdD1lS46CuYnyr12fm7z1zNZ//lNSHuHWDPpmqGJyN0tpbySkEXWSSWpqnWx/RCzHB+Ae6+oZ1S3ygvLttle4YWuD9hJE1ms4LHbcVlN9M7Ks4iZnMqW9eV68XXNotCealTCNFRgbG5mMGOenZgtYOvssRBY5WHw12ralM0nubaHXW8nBedryiSTvJMisSmdeUC4QZIZaG83G0IsYnG0oY+QFmSWEpmhboGsyLzZrd4jXqcFkHx9TotVJc76RnU5gzjySz/9lIviewqUU5lcjz4Si837GownNOJNWoqXE4rHcuzlKCFlLz3xg7qa7zc/4w2cyfLEvfs20C5307feJjFqNZ5+Il3d+L22DncNUWZz8bWdeX8+JsH9Zsb8+EkD77ax9/83ju/j+2twq9M4ILB4CcAAoHAR4D/D/i///84gLm5qPABKqKIX2ek01nMZoWZGePwcBFF/LpClqW3MxkZAJ4LBAKPYJyB++KvupP/ju/I4vfjKn7vzk6mF+NYTbIhBCKdydHZXMLrpyeIJ7N85Wcn+dyHtvPJOzr5ysNnCEVTnOmd5UTXBJ+5exP/9OBpBibCRGMpotGE0JFmNsl0Nvk5eHaCUF5Ue1utB4tJFohAQ4WL/gICEYmlmZoTiR6Ay6oYUgXbaj2MTi+xsBy4kUxlKfPaSKWzhGNpxmaijM1EDRUC/WPGABWzpBqUp0gsxSf/5kUkSTI8Vl3igJwx5fBkcFonbwB9oyFDRP3sYpyvPniSTEb8e1VVORGcIpHKMTYTxWk3kR8B8r/Ze+/wOO7zXPue2d6BXSx6b0sSJMHeRJFULy6SbMuyY8dFdhInOUlOEuecL/nS7OSknJP6xef4OE5sySUushTJskR1kSLFXsACAkv03hdlC7bP98cAgx0sHDu2ZNHS774uXr52dmZ2ZnblmQfv+z6PxWTg2y+utC3mzkmZjDIn2kYYnNDfGwcnIqyvLqRjUBURsizROTCriQrrKut/r9vCyasrs4nxZIbHX1lj7FRR2N7sp70/hNEgU1Xs1FWzJkKxvMB3SYI7tlVgMxkYnY7i81h4+fxKu2Y6ozA2mX9vLy2wcr13mpJCm646Z5Alnj89qJ6XpGYKLkRTnM9pn9ze7NcqpsvUl7uYDevF4Hw0SWOFPqMxq0B7j37GUVHAvMYfAOpLnbrfiCSBx2akJ57C67LQWOHhA4cauBKc4Mkj3YB6vL/07g0sxpP8wRcvkEhmMBokPn5XAL/LzC//5Uva97ut2Z+XZTg0ERbPQkv8JPfI/GnQH0EwGPw6cAswDFQEAgEDwNL/lgND/8HmAoFAIBDcSNiBZwAzanVs+V/tT7IzcY988ygusOFxWtjSpG9BL/JYdYYiC7EUT7/ex7df7tJE2PR8nEee7eSlc8P0jakVs2g8zddfCPKJuwOYliohqXSWLz55lYfvWUdJoW3JTEXNI/vIHU3aQ7LRIFHitRNYFRDtc1vzloGaWbba3t/jsGjibRmDLOVZtscTGVobVowa5iJJzEYZW06r3Vee7aS5qgCPU50lKvPZmZpbREHNm4vG03hzIha6R+YZnFBzu5Zx2U2kM/kzbvfsqWH3hhKKPOrsdmghwbnOSS2we5lKv5N4MtecI83ellJa6rwcaC3TCUiA2jKXdg6pdJZnTw3muSAaDRKLyTROm4lAdQHbmvSGFfFkhr0tpdSVudnc4OPuXdV50QaJZEYXQG9YchY92zlJLJ5mIZrMy7MDMBsN2JYEotEgcd9NdfyfJ6/y7KkB2rqnudITyttmIZbSbP6NBokHbq6jscLDn3/tnCbeJAnWVxeQyBH0WUWNMYitqkxmsllWDwcqiurqmYvXbWFTg/7amE0ydWVu3TKLycDEbAyTUcYgS3icZt57Uy1ffrpD+37cdhOfuDvAU6/3MzgRIRROcKZzkrFQlEcOd2rrTc4ucqp9gm+/0q1VjtMZhX8/1sfzZ4Z085IXrk/RUK4/lq1NYpTkp+FHCrhAIOAMBAJVOa/fA4SASdSWkw8vvfVh4KLo7RcIBALBzwvBYPCTuf+Av0d1jLz9x9le3CN/9tyzu4YHDtRTU+Ji57piPnJnc57j4kI0qc18LTMyHaV/XO9GmM4onLw2oZtNisbT9I6FmZ6PoyjqA/PxK+NqZpa0st3ZzkkWkxm25TyIzizEmZ6Pc9v2Si2WIFBVwNZmP/ffXK893HscZhor3ZooWqbIY8vLsvM4LcytMkhJprOUefUVoss9M3zuk7v4m1/by/aAP++6la+qKJ2+NsH7D9VrAd7hWIpL3TM6Mw+DLPHyhWHW1xRSVayvECSSGe7dU0N1iZPaUhcOW35TVyqdIbR0TVbXfUwGfWURVNGxfP6yLCGhOotGFlMEB+d0AnGZW7ZVUF/u5krPDP/2UldeILnFbNBcFQF2bShmPKSvBkViKV01z2UzcbJ9XHOltFmM2K1G3W9qcm5R53Todpi5PrSSI5fOKFSXuLjUM62rairKisNqLvFEvni2mo2sq14xKpGAhnIPXo9Vu05uh5mP3tFMIpmmvtxNgdNMQ7mb7c1+nTNkeZGD5uoCzgWnSKWzZLIKdouRuUhCJ5wXYikGJyOs9sE52zmlm+UEGJqKMBvWt9HORRIk0/nnct/Nddy8uYzqYid37qziw7c3560j+PH5cVooHcBjgUDAgdoaHgLeEwwGlUAg8Bng0UAg8MfALPCxN+9QBQKBQCB44wkEAn7ULLiPA62oc3G/9WNuLu6RP2NkWeI9+2p5z75abVlNiYuBnPa7fRvLcNhMnM/Ryy21hbTUenUW/TaLgfI1HBQji8m8DLSu4fm8PK1rfSFdFQvgyWN9fOa+Fl45P4yCOm/2N9++yB9+bAcVPjtffEp1VXzkcJCW2kLsFqM2F9feH6LMZ9e1F85FEsir/txutxrJKvqH6UxW4avPdnC5dwazUd9aKEtgNeWbY1ztDekeyrMK7G0pJp1WBWomqzA+E+ORw53sXFes21aS4MTVMS3kHNAZtrgdZs4tXf+xmRh2i1GrMFlMBhQlm5eVF09kWEykKPHa2ddSosucA1X85IY/tzb6MBtlXs6ZS0umszRVeih0WdjSWMQjSxlpueeca9kPagVQWjqnujI3DqtJ1y4bjqUYmspvjd3a5KPUayORzOAvtHPkot4Bs3tkHssa191uNeJxmDWDFoMsrQqGV0Xj8jK7xcC+jWXMRRO8lHOu9++v4969NfzjY5doX5p/k4CHbm3kq8/qz1uWJMZXzVSOzcTWzKDze2x5y9bXFHCld0bXWryp3kt5kUN33rvWl7B/UykXr0+TXVKBDeVuNtb51rT8F/xk/EgBFwwGJ4A9P+S9TmD3G31QAoFAIBC8mQQCARPwXuATwF1AN6pTZC3wwWBwlWf3D0HcI28MfuehVp4/M8TU3CI71hWzc10xW5qKsJoMBIfmqC938+HbmtSQ51iSU+0TFLosPHiogeoSF69dGtXs3Cv9Tu7YWc3RtjGd5fu6mgIGxsM6d74Kv0MnYEA1VjlycUQnEPrGwvSNhTl+ZZzcDOn2/lnu21+rCThQH6ofPFTP9470avsILSQo89mZCMXIKhCLp/PyziqKHFxaMqxYrqhUlziZCyeILKa095ZZXalaxu+x4bCadLlhoIrdXBG2vdmvCbRlmio9rKspxGYx8urFEZ3RRiyR5jfev4kXzgwRHJrjap8qOJaz3gqcFoaXrkM8FOOlc8N5Ak+W0YWPD09GmJrLN+AwGw0oClzpncmLBzDIMkUFVqbm4kvnZdQZj/SOLtBSp7fnl4B0OqMzPrFbjLx6cVSLpjCsEe7+8vnhvOgFWUK7blXFTvwFtrw5tzt3VvHC2ZXqWSyRIaMotHXpZ9pOtI+ze0OJJt5AFaZHLo7m/QEinclSW+rWzhvA57Zw185qLnZNazOajRUe7thZxWwkwUvnhlEU2L+5lN0bSqkocvLYq91MzcfZua6Yu3dXoyjqfq4PzVNf7uae3dWYTQb+8OPbOdMxSaHLws2by/KujeCn4+0ZTy4QCAQCwX/MBGrw9iPAnwSDwQsAgUDg197KgxL8ZLjsZj5wqEG3zGkz8al35wcCqwHijbplf/yJnVzpnUECNjWoGVW/en8Lj73aQziW5KZNZdy6tZKKIif//HQ785EkZT47v3B7M5d7Zvjuq93avjY3+NaMLLCYZK0ikcvq2TCAmYVEXluo32Njej5OdqnCtZhQZ7tqS934C6xcH5rLyxRrrPDwygW1OrK8XX2Zm4GJMMl0lqNto5ob5jLff72f2rJ8e/fhqahuRmtkKppXyVqIpXjyWB+SpLaD5mKzGGiq8PC/h6/qljusRv7kk7v4h8cuMZczExheTLFznZ+znaq48TjMeW2GMwsJsoqCxSTrZso6BkLaLNzqwPZYPKWrOu7ZUMyrF0d1+3XZzVpV1yBL+DxWTravCNqGCjetDUU8kRNOnskobG7wMRGKLbVJohPZFqPM+lovbd0rImxoMpJnlvLDWIynVTGaMyNpNMiYjHLe92CzGDnQWs6rOZWxO3ZUsqXJTziWpHNwjpJCGw+/az21ZW4+/6ndnOucxGU3sXt9CZIk8dCtTbz3pjoURcFuVX/P1SUufvdDW/OO7V17a3nXXv2y2lI3taXuvHUFbwxCwAkEAoHgnchlYD9qhawrEAj0BYPB2R+xjeBtiskos61ZPze2tcnP1ib9svU1hfzNr+1jPpKk0GVBkiTKixwkUhkOnxogmc4yPBnmA4caudA1rQmjQpdFC/xu7wtp1ZHWBh+376ji2KUxrWrmsBq5fUcVp9ondIKpocLN5V59FS2ezDAwEebFc0O4V2XfmYwy8VS+OLRZjbrqzGIinVfx6R8L01JbyPWheTLZLFub/VxfVWEaC8W4c2cVL54dQgEKnGYt3gFgPBTDn1PpWkxk+NdnOrBaDLpAdaNB5tHDnboIheXrcDGn4jQfTeJZFfhskCUefS6oiTeTUWZ9TaEuYy6dUbh3TzWFLivpTJbvvNKt28d8NIksSTpxPRGKMTQZweexct9NtXxlVTtiOJbSzb8tk1UU3A4zlcVOrqyqeCbSWezW/Mfu2jI3ZzsnNfMah9XIXbuqaOue1pwbJQkOtJZT6rXz5HG1rVQC3r23hpHpKK6cWAGzSebevTXUl7tpqvIwNBFhQ52XllovAP/tF7aRSmcw5bTZFhfYuHdPfoZobo6b4MZCfDMCgUAgeMcRDAYPBQKBGtS5tM8C/18gEHgBdaYtv3wiECxhkGW8br35SFvXtFbVCYWTHD49yD27q3jiNfVhezac4G+/08Zf/cpe/vgTOznXOUmJ18au9SUYDTJ/+LHtHGkbxSBL3LK1ghKvnd9+qJUnjvYyF0mwb2Mp9+6poa17RnPRXGZZWC3EUtgsBq2itpjI5DklGmRJ50b5H+GwmTAaJFIZOB+coshjJcxK+6LDaqS9L8SmBh8HW8sZmgzz5PF+3T421Hg5OrdS3brUM8PuDcWcuTaJsnQ80/NxLaDaaFBbJv0FNm7dVsG3X9aLLavZQKXfwfBUFKNBpqW2UNcamkpnsa8hOiKLKS52TWsmMrlMzcUxGiSyiqTmxhVYNcfImfk433mlW9c6unzuz57Un6vTZuLq0nxl1/A8Prf+Om+s93JoSwWn2ic0sehzWzjYWk59uZujF0cxmWRu315JocvK7390Oy+fHyYcS7K3pZTmqgKaqwswmWQGxsPcsrUCr9vKH/zzKZ0gf/je9Zpb6p4NpezJL0LrxJvg5xMh4AQCgUDwjiQYDA4Afwb8WSAQ2I8q5rLApUAg8JVgMPjf3tIDFPzcMDKtN7gYnY7SMaD/O0BoIcGJq+M8f2aQsZkYG5ZMVVwOM69fHef1K2PYLEaqip2UeO2Uee1saSoimcqwZ0MpkiTxWw9u5t+P9tIzOs+GWm/e7NRiIsOWxiItnDwcS2E2yrjsZhKpDFlFYWgygsVk0Cp+xYU2NtQWcuTiiK61cC6c0FwYQY1iqCtz0ze2gNNmIrKYIhpPMzIdZS6S4BfvCvDU8X6tlU9CdYBcjdVs5Ffe20JWUbjYNaW1SIJaLfvY3QG6huZ47dIoRoOsm0OsK3NrodbpTDZvzgvUVtVcE5i6MjevXVqJmZAk9diySn7V0CAb89wXo/E0h7aUc/TSKIqiGpDEc0LaAWpKnETjKSI543gzCwkeOFBH9/ACVcVO7t1Tg91q5BP3BDjaNoq/wMaDtzQiSRInroxzsWsKn9vKrnXFlPkcnLgyppmDlBTaaa4q4H8/cUWrSl7pDXHHjsq8a9A7usCu9SV510Xw9kIIOIFAIBC84wkGg8eB44FA4DeBBxCOkW8bgoOzHLs8ht1q5M4dVRQV2Mhks1zpCRFPpmltLNJaxQYnwozNxFhfU4h7Vbvef8TmhiKdmNpU76PQZaFjYKUr12iQeOpYn5b9dq1/lm+93MWmeh/PLQU6x5MZvvJsB9UlTv7Pk+1MLAWMP3tqkD/5xA6i8TSnrk2QSGUYnopSXKifMyv12hmdjumWJdNZWuq8vHZJrYT1j4fxOMzctauKo5dGmZxd5B8eu8z6mgKMBgOJZJrdLaWcWeWKCHBoSxmfevd6/ul7l4ksrlTjBicieF1WPv3uDTxzaoDp+UWSqSwvnx/SGX8AHLs0ytG2UZw2E1ub87PAXjk/wnCO46PbbkKSJXavL2EmHNeZxlzrD+HOaR/0ui0czRFrRoO0VFFbqVoqCnz0zgDragr48tPXdPubjyZpqfPqTE1sFgNH2laqiFsbfbx+VX9tJmYXqS93Mz2/MsPntJmoK/NgkGUCVQXYrUZeuzSquWL2jKrCLpXOarNq0XiEf3r8Cr/0ng08dqRH29d3X+3GbjXoWkoXE2n6xvODsNdq7fxhpNIZpufjlBTaNbOX0EKc9r4QZT4HjUv5eaGFOKevTWA2GdjbUqLNxAneOoSAEwgEAoFgiWAwGEd1o/zWW30sgp+e7uF5/te32rSWtbOdk/z5p3fxj9+7okUCFLos/NHHd3C0bZSnluaLzCaZ336wlUB1IcHBWfrGwgSqC7Rg5FQ6Q8/IAkUFVoo8Nj5xzzrsFiNdI/M0Vrh56NYm0pksPaNqYLbZKPPufbU60wuAvrGFvDkjRYGjbaOaeAP1Yf3Y5TEmQjFdZtfk7CIttYV0DMySVdQcuuac0GpQzT8GJ/QP+vPRJOHFlM4SvmNgjs9+qJVXLozy9eeDyNJq90aJrx4OIgElXr1wtJoNnO2cZM+GEkZnojxzcgBgyXFToanSQ1ZRGJwIk0qr30VkMcVEKEZxoU2b9Wqp99G+as7PZJT5nYe2MDQZoeuMPsYhq8BNG0voGJjDX2DDbjVyNEdsrQ5FX+bw6QG+8WIQ36pWWJvFwNhMFItJJp1RKC9ykMlkWUysfBcn2yfzYisaKz08cHM9gxOXiCymsJgMrK8p5O++06at84t3BTh8akD3eT84OUBtqd4wJpZIc/G63m0S1LnE1dgtRu7ZU80LZ4bIZhV2bShh38bSvPWyWYWLXdPMzC+ypamI4kI7l3tm+PLT7UTjaXxuC7/x/s3E4mn+/rFLWi7inTuruG17JZ9/5KxmtvPS+WH+9JM714xHEPzsEAJOIBAIBALB25IT7eM6c4r5SJLnTg/p8txmw6pd+gtnB7VlyVSW77/ez7rhef49R3R97O4AzZUF/K9vXWQ+mkSS4H0H6nnX3lru2lWFq92EY6k6UeC08Mef2MmrF0aYjybZWOfl9avjOmFWW+qmscKjEx0SULZGNp1BlvKClEEVOMsFrlQ6y/WhObY3+7nYNUVWgXAsiXfVPJbNYiSTyd/XyasTWiVx+bptbSpien6RoUnV4VIBJkKLlBTamJhdRJbUyuG3X+7iByf6qVvDwXJfSylet5W/f+ySbvlcOKkLgm7vncFhNeqcOU1Gmf/3y6cB8kSl227i8GnVfKV/PLzmZy/EklpLpdkkI0uSNnM3PR/H57YSCscpcltZiCW1+TeAmzeXcXpVJVJBwWxaiWCoK3Nx965qvvDEFSKLKWQJ3ntTDU+f0Iu1Z0/2s7rjM5PNUlvq0lVqLSYDrY0+Xrusd8ZcV13A1b6QduwGWWJLo4+J2UUeOFDH9uZiSrx2hqciPHd6kMVEmoNbKtjc4OOLT13VMhG/d7SX332olUef69Su88xCgm+91IXBIOlC7Zfz9XK/j4lQjEvd06JN8y1GCDiBQCAQCARvS1xr2Pnn2sovE0uk8qo10Xgqr2Ly7MkBOspmtQBmRVGDu+vL3fzDY5e1h99jl8f4/MO7+OaLQW3+6pmT/XzwUCOvXx1jeEoVQ+c6JwlUF3D37uqlzC2FUp+d6hInVcVObT7LaJAoLrRRW+bmSs+MNmdWXezU5aIBpDKqwFgWC1lFzaFrqvTQNTyPxWzg9h2VbKzzcuzymDbzZTUb1ow52BHwc+zKmG6ZAvzq/RvpHV3ga88HteWRxRSGVdfXaJB4dGmd3Nk0UHP0JlfluDVUqMe5mEjjL7AyE15pS8wqCv4CK+U+B8WFdk5dG9dtOzAepqXOS3tfCEkCt91M58CKe+amOh/nV80N2iwGvvDwAXrHF/jbb7fp3mvvC1Fd4qRndKUFs7jARlfOHwDmo0levTDC7NJxZpd+E/Kq9PVURqHMa9PWA9i5rpjRmRhOm4noYopCt4X799dx/voUboeJxUQGi8nAtmY///JMpzYP2FTh4fadVXzlmQ6tInvi6gS/96Et/PU3L2iCq61rmk+/Z4Mu0D6dyfLcmUHdcQCMz8Yo8ugrkpmsgrLGb2K1kBb87Fk7xVEgEAgEAoHg55zbtldSkjMntiPg5+5dNbrWObNR5rbtVbQ2+HTbHmwtzzO0yCqKLqsM1Ifc19pGdZWLiVCMc8FJjl1eET6KAueCk1jNK387V4DHj/ZS5rVpphwjU1H+8bHLfPLedZprYjqj8JVnOvE4zNRXrGRrDU5G8Bfo2xmLC206m/5lSr12ABLJDE+/3k/n4Bwfvq2J5WfxeDLD6Ix+fk6WVJv+3hG986XZKPNPj1/mWr/e5RLAYjRysLWcujIXjRUenTCOJzMEqgqoK3NRV+rCsMZT6NTcoha/YDUZSK+qOioKeD1WZhbimFe5KdosRqxmA7VlLu7fX6cJ7WW6R+YoXOXCGY2n+fV/eI1/efpanjBJZxVdRpx/lcAB1ZxmYlZ/3VIZhZs26VsZo4spgkOq8LOYZD52dzNtXdNc6p4msphCAR66tYkTV8c5cXWchWiKVDrLtmY/o9NRnZlL/0SY4OCsrp12dDrKc6cHddUyBbjcnd+OKSGxrrpAt2xrk59bt1bqlm1pLOKuXdW6iIpKv4PWxvzZRcHPFlGBEwgEAoFA8LbE7TDzZ5/eTXBwDrvVqM2w/eHHd3C0bYR4MsNNm8qoKHLwmfs3cuTiCGMzUVobitja7CcUTmjzXADlPgf15W5dBaa8yJEnCkAVORISSm7EsqS29OUST6S52K2f+4ol0hy/NKZzGMwqCscuj9KzSkzNRRLsbSnhYtc0VrOBB26uI5VWdPb6BU4z54OTuu1eODPI+ppCnUgdGA/znn1qXEEmqzA6HSWZXlmhscJD39gCyXSWmYUEMwtTOhMRWZY0l0iv28JdO6vpHtHPrbkdZs4Hp8gqCn3jYcxG1Wkyq6jVt56c9YemonnzZrF4mlcvrARUG2Q1ekCWVDG9XG3qHwtrbpnLmIwGFEXBZjGQzigUOi1aBXA+msTe2evuAAAgAElEQVRslDEa1Zy6zQ0+Iquqm1PzcbYH/LqAbofNqDNpASgptNE9Mo/dYqS8yEGRx8qpnFbMRCrL6HQsL8T9bMcEnYP6vL1L3dO4VmX8pdNZpDWqYB5nvvGOxWzQXUNZkggtxAnHUlQUOZBliZZaL/ffXIfZZMDtNNPWNU2Zz87Nm8swGQ18/tO7OdsxicVkYOe6YkxGUf95qxECTiAQCAQCwdsWo0Gmpc6rW+ZxmHnvTXW6ZRaTgbt2VeuWvf9gA3VlLh59Lkg4luJqX4jrQ3Pcv7+Otu5phqciqshJZXRiQZJUo4ytzUW69jWX3UxjhYfnz6yEZleVOCnz2slt3pOAmtL8ea4itw0JciUhmazCqWsTKMqyi2Unn/vkLm1GDcDnti4JlZWKjUGWWMviY8e6Yh440MBjR7oZnY7q3qvwO/IEWV2pi431PoYnwzoHyNBCgun5RS2Xbvm6ZBRF16qZTGf55D3rKHRZmFxI6AQcQJnPjtkkk0hmWFdTwAtnh3Xvb6zzcnNrOYuJNP/6TIfuvfIiB+MzURZiKRxWozY/tnxNVgdrJ9NZfv+j2/A4LASH5ngxJ9x8+ZqZDBLlPjuTc4s4bSbmIkmii+r5OaxGtjX7Od0xQXIpXLx7ZB7nGq28fo8tb9nyPnKFndthxl9g09puQf1tTIRimIyyVvktcJp55uSArk3VajZoLbwuu4l9G0s5cWWMwaXW3NlIgvv213Hf/pX/FlpqV0K/tWOwm7ltu746J3hrERJaIBAIBAKB4IdgMhp0c2bJdJbZSILp+bjWHjg9H6e21EXTkgOkokDvaJihiTDvO1DHcq2krWuaMx0TfPi2Rk08DE5EONk+roUvgyrQTraPsz3g15aVFNpoqPBwYEt5zrHJFHmsuipaKp3l6RN9uipRz+gCG1eJ2Dt3VnPHjirdTKAswV984wJPvNZLoErfYgewrdmf12Y4H0syObtI9RqCc3J2kVRmRTTeubOKyjVs7l88N8zfffcS33iuUxe2bZAlTl+boGt4nsHJiM5Gf5nwYorHjvTw6oXhvPeaKj18/lO7+cOPbc9zzpxZiFPms+uWFbos+Avs/O132vjS99vpHVtg+XAkSXVzPHVtktGZGEUeG45VwiwaT7O+1quJt2Uy2awu8sFfYOW1S6N4HGZt/zazgXPBKaLxtPZ7sVmMDE1GNGOZDbWFbG0qon88zNW+EKl0ljKvnUNby1UhGU8TT2aQgHfvrdHNG4ZjaktmeFFf9Wvvy2+DFdz4CAEnEAgEAoFA8EMwrjGopSiKrjUP1Nmt1fNxk3NxRqZjukrXbDjJQjSlm1ObiyRZX1OAzbIy09U5OIfdYuQ9+2oANWvsr//tAuU+O7/3oS0c3FJOa4NPN3u3TCqdX1tb3a7XMThLc1UBn3t4FwdaywDVgCORzPCDE/0AvGtvjZYPZpAlJkIxPnZ3AIfViIQqavrHwrx4bojHj/ToWkkNssTE7CLpnGN5/co4O9cV6ypSlX6HLvctk1XY3OBjb0up2uKpu8ZxtudkxzltJnpHF5gIxegdC2MySNrx1pW5UBSFz/6fE/z5184zF9a3rpqMMm1dK9XRiiIHv/n+zZy/PslITuUxq8Dt2yvZ3uTXHct4KJb32zAZZa50TyOv6m5ciCYJVBXwoVsbef+Beqbm4oxMR5mPJlEUeN+BOl1ougLs3VhCMmfGDVSTmNWmL2OhmFbhzN1+9fcNavvk6nD1qmJn3nqCGx8h4AQCgUAgEAh+CIHqAppzqlEOq5F79tTk5XdtbfJTX67PYPO5rXjXmI9bSxTOR5MsJvQP7IMTEV3EAMAzJwcYmY5ytG2Uc8EpzgWndCYToJql5FbKzEaZyVVGG+19IUILi6TSWbyufHOO3tEFYvG0Nt+VySp855VuWhuL+Pvf2M89e2p0lb9YIsOhLeXUl7tx2kxsqvfmCYtoPKXZ7YNa8VsreLp4KdMtvUbUgcVspLHCzaEt5dSW6sVHKqPwmfe28Oef3s3D967n2VOD2j5C4YT2XdgtRhxWE4vJlf2nswo1pa41BbHJKK/ZblpT7MS6JIgk1OrnyWsTZBVVwEqSKnIHJiIcuzzGU6/3EVol8hVUG//VrPUbyWQVPKsC5i0mA43l+mqpBBxoLdOtazTI3NxazqfuXa/N1K2rLuD+m9X2ydBCnLau6bwZTcGNiZiBEwgEAoFA8I5GURS+/3o/xy6P4rCaeP/BejY3FNE3tsCzJwcwGSTu2VONv8DG5nofl3tmqCp2YrMYiSym2FTv4779dcQSaSKLKa71hSgrcvDJe9bhdVs52zmpzV9tb/Zz9+5qXr86pi0zG2Xu2FHF1b4QoZyH+Q21hbx2SS/gMlklb1k4luJAa5k27wSq6cmmei+yLFFT4uJa/yywUr0xGWX+4usXCIUTmNYQCyajgfGQfh4tk1U4dXWcmXCc8BoP+sHBOXqXLPfbumfygrKbKwsIDq2YdGQVSKQyurk+o0HipfMr7ZC5c14eh5kTV9XogO6RBc2UZhlZUkPQjQaJqpL8ls71NYVsbvQhSxL//PQ13XvTc4t87fkgp9rHkSVJm9MzGWUOn1YzAiUJTbTKEry25DK6qd5LIpnheo65TSarcGhrOUdyXCwXExkSSb1IB9jR7Of60BxjSy6gJqPMbdsqMcoyr15cMWy5c2cV5UUO+scuEUuk1RzCg/Xcsq2CsVCU1y6NYbMYeP/BBmpK3Xzw1kaePNaLoqjV1KpiJ9msQk2Ji9BCgo31Ppw2E8cuj/Lo4SBZRcFklPmN921iY70v7zgFNw5CwAkEAoFAIHhH8/qVcZ463geo5htfeOIKf/SxHfzPf7uoWbVf65/lv39kG9988bpuFuuX3rOBPRtKuNQ9w8h0hA8cbKDqwVZkWWJybpFLPdM8/K71JFMZHFYTDUuzbvXlbk3AJdNZBibC/Ob7N/Poc51Mzi6ytcnPffvrsJgNPHmsT/u8O3ZWLYmxFUxGmeQawsDrsnD00hiXumeQUIViMp1FklRL/OXYgFQmi8koY7cYWYgml+INevLa6+xWI995tVv3erkVtKnSo2uFBHXO7LZtFVzomsZpM7FzvV8n4EA1yPiND2ziyMVRXE4LHX0zOhGbTmd5+N71uB0m/vGxy7ptZyNxLffNYjKQSmdoX4o2uNI7o53vMoMTYV5fEoBWs4HcJtgyn50jOWLJaJDYv7lMJ8AUBdbXFJDJwvWc87jSG8ozypFgzcpmkcdKS52Xjv4Qsixxx84qrBYjm+p9VJc48bmt7N2oOqN+5M5mSrw2Ogdn2bOhVAvP/t2HtvBq2wi1pS4ObilHliUObqkgqygYDTLNVQUMT0b4yjMdmpPpN1+8TkO5h7/9TptWAf3ekR4sZgNPHevTBGsqneV7R3qEgLvBEQJOIBAIBALBO5qOAb0gSmcUjrSN6nK2FODE1bE8I41XLgzTPTKvWds/cbSXz9y/EbNR5gtPXNEeoN+9r5b3HagH1Fmms516W/8Xzw6zY52fvjHV7v1scJKbW8vYvb6Ec52TjIdi1JS4uGVrBc2VBfzdd9s0E5V799ZQXeLiVMfKPu1WI+dyHDAVwO0089E7minzOfiHxy7pPj+VztLU4NFtMzQZ4a5dVXQNzePzWOkbW9DN7sUTaT54awMd/XMUOM0k01kWcgxfPA4zr14cIavAbDjBd1/tYV11gWaVL0lq6HlwaI7/8r5NbN1Qxq//z5d1As5klJmLxAkOzmI1G3SzYl6XlZs2lrKvpZSZ+UWeyBG6WQV2byhhcnaRWCJNY4VHV81azqRTFIWGCg/9Y/p4hnRGoao4v4pnMhowrtFP2VjhoXt4jsSSgUlNqYuXzw9hNMhaG6fDauT7r/cDqpD77Ie20DcW5i++fl6rQN60sZSKpbbS1y6N8p2Xu5fy3FRh6rKZ+LvvXiKTVTh+eYzOgVnef7CB//H1c5p5ysmr4xxoLdfFUKQzCq9eHM6b3bzUNZ2XGyjaKG98hIATCAQCgUDwjqam1MXJ9nHttQR5D/wARR6brr0O1Nmio7lVGuC50wNIkqR7gH7u9CD37qkmFk8v5ZZJZHL2I0loD/egmok8eayPWDytWcj3jC7wjReus7nBpwvIHhgPc/euampKnAxMRJAk2LWumONXVs4JIJHIcOLqOIMTkTwzC6/bQiyRb3wxMBamb3yBaDylGYQsYzDI/PtrvZppiskoU+A0MxdJ4rAaWV9byKn2lfyzZCrLlqYi7tldzZd/0KGJicnZRf7txeuUl3ry2jkLXRaeeG1FmC3nvtktRqbmFrVWyOWg8lyGp6L0jy1gMRuo9OfP2tWWuXjo1iY1guAH+pZKgyzx8rkhXQsnQDqTZSgnlw7Uat1Tx/uQgO0BP5V+B08d79fel4B37avVzGFAdS491T7B5d4Z3XzdifZxHry1EZfNxBNHe7X3sorCE6/1Uuq1635X54JTFLqtOufLaDydF2IOUFPixiDr8wUri5047Sbd93TTprK8bQU3FkLACQQCgUAgeEdz67YKBifCnGqfwGYx8L6DDezdWErn4CzHL4+hoBo+3LGjinAsxYvn1Hwwo0Hmzp1qhSoXRYFUWt/SmMlm+afHL9MxMIdBlqgpcdK7VG2TJLWlsn9cLwzCsaQu/wsgODiryzMDuNg1zeFTAwxMRLTPP9I2yq71xZzJqcoZjZLudU2pi4VoktlwgtCC+i93zsvtMNO51Co4MbuI1WxAltTqFqgzbcsti6BW8fZvKqNvbIGxmRjTc/rjXF6nodKTVwkanYnxF189o83QAWxpLKKtW1/xLC9y8NE7m2nrmtZm00B1hWyq9Ggh6+VFDvqWqmrxZIaT7RO6rD6jQWJvSykz83H+/GvndIJneb3lFlNZgpY6L5IkcTknIN1mMVBSaNe+NwU1KsJi0otjBYiuOl9QK7GrRbEEvHh2CLvFSDypF9SrTWGWsa8S4wAtdYXE4mnt+u1YV8z+zWWkMmqLZCKVobmqgHv31GAxyVT5nfSPh1lfU6iLqhDcmAgBJxAIBAKB4B2N0SDz6Xdv4GN3BTAYJAyyWgX65L3rec++WhLprNbW9uHbm9ge8DMeirGxzovXbeXAlnJtfkoC7t5dTSyR5mvPBbXPqC520TGgiqFMVqF3LMwv3N7EMycHmI8meeXCCBazQWdykc5ktYrWMrVl7jynRMPSvN1qNjf6aKn10je2QG2pi0dyjgdgPpLIa5/zua3sWFeMy2biTMcECznCJp7McNeuKo62jZJMZUik8gXF2c5JLYMuFE7gtpt0bZWPH+3lTMek2nKYE9rdUOHh4vUp3b6GpyIYDZKu2qgoCld6Z5ha43wbKz2YjAZsFgPZrJIXRL494OdU+ziJVJZKv5NCl4XDpwfzqlX15W6dUMsqsHdjKc+cHNCtt5jI5LlFZrIKRZ782bdtgSLOdExo9v4GWWI2ksir5smypH2O1WwgnZOjd3BLBYHqAtr7QloVbXuznzt3VXP++rQ2g9hY6WFHoIS9LWWMh2JIEpQUqhXK27ZXctOmUmLxNN4ck5l79tTkHbPgxkUIOIFAIBAIBALAbMqvZBQV2PKWNVfpowU+emczG+u8jExH2VTvpbZUdUcsclu50hui0u/g+vAcA6se1pezwJZJJDO0Nvq41jdLKpNlPKSKFK/LQiicwGE1Mj2/SEO5R9faV1HkwGHVP9LJskRoPsEdO6q4ubWcrKLw5PE+nRgsL3JwfVX1MJNRONsxwcxCQpfrBmpl6sWzQ1oFrntkAZ/botngN1S46RnRz5IBfPKedXz1cKf2emgywj27q8hkFa1KdqlrCofVRDS+Ivaqip3ctKlMM5gxyBLDU1GtKrncTglqtfDwqZWKnHVVVcpklDl9bUKbUesfD/PEa715FTAgz6ofoMznoMBhZiSnIuqwGrVA9mVKCm1EFpMUOi3Mx5JYzQb2bijhC49f1Rw3m6o8lBbaNRdLAJNBZmtzka5CGk9m2L+5FFmSCVQVsKelBEmS+NOHd9HWNYW/wMb2gB+DLPMnn9xBR/8sBlkiUFOoxUis1VpqNRuxmoUE+HlGfHsCgUAgEAgEPwWyJLGt2c+2Zr9u+cZ6n+bm57SbeD1nJs1iMqzpUuhxmEmtyj9rqHDDyAKhcIJoPM3odIz37KtlcDLCpe5pBicjDE5GWF9TyMx8nMm5RbJZdWbqcs8M/89HtvEvz1zTibdSr527d1UzF+nWVapiiZQmcmbDCfwFVhZiKfweK7s3lPD40V7dsZUXObBajIxMRVmIqKJvNrxiQuK0mQiv0T4YjaeZCK1k02UVcDlMyLIaiyBLEl0j82yo9fL5h3cxNBnhK8/q59QKXBZ2rStWP386wplrevGzt6WUjoFZJAm2NhXxygX9TGP/eJi6UpcuxsDnsdI7uiJqDbLE3bur+cozHQxNrrhsehxmFEXRKnUSsC3gZ3YhwSsXVmYib9tWwdW+kGaIowCj0zEMq4RjKpPFZsl/LG+p9bF7Q4luWUWRQ6sIrxynLJwj30GIIG+BQCAQCASCN5mtTX4+cc866svdbKzz8rsPbWH/5jJd5cxuMeY9rAOYjQZCYX3Yc3Bojp4RffWsZ3SeqhK99X/3yDyHTw/oTCoA7ttfy1cPd+rE2+07KjXxtozJaGBzvY+R6SjPnOzPEx6z4aRWlZqaT5DNKnjdK5W70ZkY3zvSg9mof+TMZpW8Ga9MVuFT965X31cUIrEU33zxOolUhh3r/Fprq4ai0NY9zfOnB5mazW+p9DjMzEUSzIYTvHJhJK8ql0hlONI2qom3pkoP1cVORqZXhKXFJGM2yjrxBnBwS5muNVQBbGYjvavcLM92TuW1aEbjKapX5dRZTAbu2lmtq3pW+h1sbSrKOy+BQFTgBAKBQCAQCH4GHGgt50Cr3iDijz6xk9faRlFQONhaTnGhnXv2VPPc6UEURW0jvHdvDWc6J3Wzb2U+OzPzcZ0ZiMVkwGzMbwPNrbwt0zEwp6uUAYTm43jdFp2Nv8Nq1CIP4kn180sKbUTjafZvKuN0h97pcj6a5O9/4yb+5lsXdUJIkdBFCBy/Mq4zFQHwF9i4tirSAeD68JxasfRYGV8yFpGWzmu5hbJvLIzHYdbE0oHWsryohkxWobnKw+TsIq2NRRxt0weiT80t5jlxxhKZNecLc+fylnHaTdgsRp3ZiM9jpa7MxQ9OrMzPbW9WM/5mFhJcCE5R6DLzC7c3U+qz8/lP7eJ8cAqTQWZbwL9mW69AIAScQCAQCAQCwVtEcYGNDxxq0C178FAjt22rJLKYoqrYiSRJfOSOZr71UheJVIaaEhfvvamOpkoP//pMB4qiCpoHDtRTX+bmQteUZoayvdnPzZvLePXCiBZ/IEsSW5uKeO2SXsBML8SZXRJvRllid0uJzp5+mf2byhhemt+rLnYxG14x/Ch0WTDIMqlVAiebUbS5rGUiiyl2BPxa9ty1vhCjq1w3QTWA+V/fvkg4p+K1d2MpJ67qxWNdmYs7d1XTMzJPOqOQzeqPQZYlbt1WyUvnhxmbjuaJLY/TwobaQt2cW3mRg0NbKjh5dUK7fg6rkTt3VdM3FtYyBAucZm7fXklFkYNHnwuSzmRxO8xqsHuJkwKnhY7+WapLnNy5qxqLycCv3b+RTDarqyw6rKY8kS8QrEYIOIFAIBAIBIIbDK/bqnMJPNBazs51xYQXUxQvGavs21hGfbmHruE56ss92lzUX/7yHtq6p/G6LGys9yFLEv/l/Zt44Yxq8nH37mo2NxRx754aDp8aQEGtFA1OrLQJprMKVX4ndqtJV8kyGWSePN7L8pie2SiztamIK70zpDMKs+EEv/+lkxzcUs6zOaYimxt8eY6NEqppSi5zkQQ7An4uXJ8iq6hzblNzizrxBqr4W+1Q2VDh4fCpQa70Ls2lrfIn2b2+mC891a61TErSihGKxWzgg4caaKwsQFHgUvc05T4HD97SQHGhnc9+aAtHL42qrY67qnDbzfzuQ1to7w8Ri6fZ3ODDZjFy06YyWhuLmAjFqC5xYVpqHb11WyW3bqvM+57z2kIFgh8DIeAEAoFAIBAIfg6wWYx5RhelXnue02CB08KhLRW6ZVsai9jSqJ+n+sChBg5tLWchmmJ8Jsq/PNOhe39idpGP3lnFbCTB8cujOG1mSrw2fTh3OkuJ18bFrhUhFY2nicXTNFR4tDm9tq5pPnx7E1f7ZlhMqNXBDUsxDKuZjyY1p8u5cIIXzg7qjEYAKvwOtjQW8a2XukhlsnhdFmpLXTqTFUVR59paG4uoK3XRMTin24eiwLtvqqWxwkNdmVtzlPzgLY188JZG3TGtqylkXU2hbpksS2xawzjEaTPhrPDkLRcI3iiE7BcIBAKBQCB4h1LksVFf7qal3ofZpH8sPHVtnN/8x2OgKPz1Z/bxRx/fQSAnPmEZqym/HrAQS+pMVhTUqlZLrVdb1t4XwmI2UOBcse1vrPDk5beNhxa5c1eVVlFz200c2lLB2c5JzbEzFE7w9Ov6nDZQWxJn5uM88lwnV3qm896vL3fTUufNiwMQCG5khIATCAQCgUAgeIfjcZj57Ie2srnBR1Wx6mS5mMgQjaf592N9XF4SP3tbSmmqXKkubW7wcc/eam0bUNsSd68vzfuMrALnV4V1nwtO6pwWu0fmcdpNunVqSlyMTEVZGkFjIZbiqeN9dA7qDU96xxbYHliJcjAaZCQJXr04wtRcnIGJCHaLEQm1ffLQ1go21nkRCH7e+JF/bggEAj7g60ADkAC6gV8JBoNTgUBgD/AlwAb0Ax8NBoOTP2xfAoFAIBC8nRD3SMHbicYKD//1wVaePzPId17p1r13uWeGo22j9I+H2VBTyP3767BbTZQXOXjqWB9KVqGmxEVtqYuDW8uxmY2Uee2MLWW9GWSJu3ZV0Tu2oBmsgNoWevyK3owkHEuxucFH58AstaUuPnpXgD/+1zO6dS51T1NT4qJ/fCUcvbbUxa1bKxifiRJZTHOgtZxT1/T7jiXS/OnDuyhwmHGvEdgtEPw88ONU4BTgfwaDwUAwGNwM9AB/FQgEJOAbwK8Hg8Fm4DXgr968QxUIBAKB4IZD3CMFNzSRxRRHLo5w7PKoLndtIZpkbCbf8RFUIbeaa/0hLnZNMxtO8PrVcY5fGaOm1MXjR3t49tQAw9NRBibCDE9F8Dgs/Nmj5zTxZjRI/M4HW/F5bNSVruSfGQ0SD9xcl5fP5rAa+a8PtvJ/P3uIBw7Uc/zyGE6bvipX5nPwrr01Wo5eqdfOg7c08I+PX2ZkOsZ8NMnTJ/pxWPXbFTjNVBTZf2zxlkpnCQ7OMjMf15b1jS3wyOFO/u2l60zMxv6DrQWCN4cfWYELBoMh4EjOolPArwI7gHgwGDy+tPz/ov6F8eE39hAFAoFAILgxEfdIwY3MfCTB5x45q+XAPXd6kD/+xE4OnxrgmZMDZLIKDeVufuvBVpw2E9F4ioVokoYKDx++vUldJ5Pl1u2VPP16v27f7f1q++LFLn1LZM/oAscuj+ry1NIZhUs9Mxy5OEJyKcvObTfxB7+4neJCOw8cqOfrzwVRUFsbHzhQD8C5zkm++ORVzXhk2XWyyGPl3r01fOmpdhIptZo3H00wPBXJiz3wui1kswqDkxEKnGY+9a4NGGSZTDZLdDGtCbmpuUUefa6T3tEFmqsK+Pjd61hMpPmbb19kLpJEkuB9B+ppbSziL79xgfTS7N2p9gn+4pf35AlMgeDN5D81sRkIBGTUG9P3gWpAmxYNBoPTgUBADgQC3qUbmkAgEAgE7xjEPVJwo3H8ypguxHtsJsYrF4b5fo4Y6xld4IWzQzitRr53tJd0Jkt1iZPffrCVmzaW8eSxXq72zmC3GHWizGE1cqV3hlKvnam5leqUzWxYsyo1NBnWxBuoc2xDk1GKC+3s31TG5e4ZLnVPY5AlLaz71YsjOtfIdEbh9z68hUB1IYdPDWjiDdR5vel5fTA5QIXfSXWJi7pyNwc2l1NX7uZS9zRfPdzJQjRJXZmLX39gE19++hrdS6Yrl3tmePS5Tqxmg3b9FAWePNbHfCSpiTdQK5wXu6a4ebPIbhP87PjPWu78ExABvgA88EYcgM/n/NErCQRvE0wmtU3E73f9iDUFAsHPIW/oPVLcHwU/LTZbfptgclXuGsDUQpzDpybILHn3D05EePniKNPzi5zKCcu2mg3El+bXxmZi/P13L7F3UxllPgdjM1FkCRaTGU5endDy1UANw/Z6bMCc7nOzsoTX5+Tls4O0dasmKemMwvdf7+fgjmqcq9ocJQku983y+NE+LKvaLkFtbcxlx/oSznZOaoLw9Svj/MWv7uMrz3YSjiWXtgnz1Il+Tbwt0zU8R125vpU0k1VwOS15n1tZ6hH3dcHPlB9bwAUCgb8BmoD3BIPBbCAQGARqct4vApT/7F8WZ2YiZLP5/2ciELwdSaUymEwGpqbCP3plgeBtgixLb3sx8mbcI8X9UfDTsqXey5M2E5FFNQS7yGPl4OZSXj47pC0DKC+0a2Jrmb7Rea71r/65KqyvKaRjYMX98dSVMf76V/dyqWuab77UpS3PZBX2bChmcjZO79gCo9NRZEkiu2QlKUnwxccv890Xr9NclT9zd/bKKIl4Wres1Gvn+VMrUQG5grK4wEbngN6VsqbYwbmOlcy6dCbL4690aeJtmd7heWpKXAxM5BqiuNne7Oda38o1qC52ctvWcs60jzOyFHWwobaQmiK7uK8LfmJ+knvkjyXgAoHA/wC2A+8KBoPL9enzgC0QCOxf6vH/DPDd/9SnCwQCgUDwc464RwpuVLxuK597eBcn28cxGmT2bSzFaTPx2Q9t4ekT/YSjSfZtKmPfxlKOtI0wG15pQdze7GdyNqZrjywpdOR9hgIEB2bJKPl/bMgqqrX/ymuFrU1FtPeFtHbKmckRD7QAABI4SURBVIU4E7P6SptBlmjrnqZzcKViF6guyMuHiycz/NYHNmM2GbjcM83zZ4Z07y9E9UINVBOTUq+d8dBKm+fGei/7N5Xx5R9cY3AiQkOFm4/fs47iAhsmg8yF61P4C2zcu7cGu9XEnz68k46BWcxGA02VHqTlgDqB4GfEjxMj0AL8AXAdOBEIBAD6gsHgA4FA4BeBLwUCAStLFslv4rEKBAKBQHBDIe6RghudQpeFe/fU6JZVl6hzX7l89kNbePJYH6GFOLvWl3BoawVFBVa+9FQ70Xgat93ER+5oJryYpHNwVstkMxok/vXZTgDsViOxpaqZxWSgyu/kTIc+OcNhNelm4QAWE2mKC21Mzi4iSbBvUynHL4/p1ukbXaCm1EU4ttLq6HNbSaWzPPFaL+FVYs0gS9yyrYLRmRjtS1U0j9PM7durOLilgm+/3MXYTJTWhiLed6Aek9HAn35yF5lsFoO8YtK+f3MZ+zeXrdq3zMY63w+/6ALBm4ykrPEXk58RtUCfaBERvJP467/+M0wmA7/zO3/wVh+KQPAzI6c9pA5VyAj+Y2oR90fBDUIylWFidpEynx2jQRU2vaMLXOyaor0vpMthkyW4fUcVp9rHWYilMBklDLKstTkaZIk/+MXtfO35IAM52zVWuOkeWcjZj4S/0MpEaFFbVlvq4r79dXzp++3EkxlsFgMfvr2ZRw936to/iwtseJxm3rW3ls0NPrKKwrW+ENF4ms0NPmyW/6z9g0Dw5vKT3CPFr1ggEAgEAoFAsCZmk4GqYv18Tn25m/pyN9eHVpmSKDAzH2chps7XpdIKiiHLwS3lpDNZDrZWIEsS8xG1VVOWJW7aWJrX6phVFNZXFzIzHyedUXDZTTx0ayP/d0m8AcQTGSZCsbzZvU31Pj5yZ7P2WpYkNtaLapng7cWPE+QtEAgEAoFAIBDo2LexVPe6rszNwiqDkHRG4ZatFXzqXRtorPTwjReDmjV/NqvQMTDLlqYi3TZ2i5GjbaOklxwzI7EUfWMLzOdEIijARCg/rqCq5O1tmCQQgKjACQQCgUAgEAh+Ag5uqcBiNnAhOEVxoZ27d1dz/PIYXcMrc2pWs4GukXnKixwYDbJm6b/MzHycKz0z2muTUWZbcxHHr6zEFyjA2IzewASgwGmhutjJ0FQEgP2byrhpU2neegLB2w0h4AQCgUAgEAgEPxF7NpSyZ8OKaLpzVxVZReHVC8PMLCSIJzN884Xr9AzP88vvbWFrk5/jV1YMSurK3VzomtZep9JZoqviAwDWVRcyOBFhYEIVayWFNi51TzM1v+KSWeF36gxIBIK3K+JXLhAIBAKBQCB4Q5AliXv31GAx62sEpzsmuNYf0mIFrGYDezaUcMeOqrx9pDNZPDkh3ns2lHA+OKWJN4CbN5frxBvA+aDe8VIgeLsiBJxAIBAIBAKB4A3FajboXpsMMo8c7tCy3OLJDAqwsc6L02bS1pMk6BycYz7H2KShwqOr0gFc7JrUXDGXKS60vcFnIRDcmAgBJxAIBAKBQCB4Q7lvfx1Gw0rA9W3bK5meT+jW6RmZ5wtPXCGyqLpWSpI6x5ZalRPXMRhidVa2xWzkQ7c1YjKqj7JlPjv37a97E85EILjxEDNwAoFAIBAIBII3lE31Pv7qV/bSMTBLpd9JdYmTC9enmJhdyXYrL3JwOcfARFFgNpzI21ddqRuP3cKrF0cANTz83j01bKj1sntDCbPhBBVFDqTVKk8geJsiBJxAIBAIBAKB4A3H67Zy06Yy7fWv3r+Rf3nmGuMzMTbW+7h7Z5VOwIHqQvm+A/U8faKfVDrLpnoft22vxGIysC3gZyIUY1O9D3+B2i7psJpwWE0IBO8khIATCAQCgUAgELzpnLg6zvCkOgM3MhWhqMDGlsYi2rrV+TZJgotd0/SOLvAr791AfbmHAqdF276l1ktLrfctOXaB4EZCzMAJBAKBQCAQCN5UxkMxXjg7pL2emotz+NQgv/6+jfz6A5uoKHKgqLndzEeTfOOF67jsorImEKyFEHACgUAgEAgEgjeVuTVm2yZmY7x8bphUJkMildGvH0kSXczPgxMIBKKFUiAQCAQCgUDwJtNY6aHIY2U6J7utc3COq30hAAqcZt36NSUu3A79MoFAoCIEnEAgEAgEAoHgTcVokPnvv7CNZ08PMBdOEE+m6RiY096fiyS5aXMZXUNzVPmdPHRr41t4tALBjY0QcAKBQCAQCASCNx2fx8ov3hkA4CvPdABzuvd3t5Ty8bsCeQHdAoFAj/gvRCAQCAQCgUDwM+XW7RWYjSuPobIs8XffusjvffEEPSPzb+GRCQQ3PkLACQQCgUAgEAh+arKKwnOnB/mrb5znkcMdWih3Kp2hrWuazoFZlCWrydpSN597eBfvO1CPy24im1WXz0eSfOPF62/ZOQgEPw/8/+3df2xdZ33H8fe91wn56Z910tgJcVLiJ/0BjdIMMAlJVRiUjZQfrRgppS1dJVZtlTaNiiLQNDGhBa3TyrSwIsEqWo1Oy9YAKaCqrCGNS7rSriErSZ+WNHHza40bYjcBQfG9lz/uqWtnaRP72j732O+XFDnnOec+93ujG3318TnnOV5CKUmSpKr94LEe/nP78wA8e6if/UdP8pd/tIIv3fsEvX2VxUsuWdLMn3/sUvK5HPObZ/EHXYvZ8sjzw+Z58Re/OuP8h3pP8dyhfpYuqGfx+XPH98NINcwAJ0mSpKo98UzvsO2Dx07xwI8PDIY3gKf3/4K9B06Qz8G+Iy/TuaiRS4c8zBtgxbLzeDIeo+fFU1y0uInli5vo3n2Uu7+/l+RRcVz73mW8d9WiifhYUs0xwEmSJKlqrY0z6Hnx5OD29Gl5Bkql/3fcjp8e4fFnjg1uX71uKU1z38QLvadYen49A8USm7Y8DcADPz7A9e8PfP+xnsHwBvCd7v0GOE1Z3gMnSZKkqn103QWc1zADgGl1eTa8ZxnrLm2nrpAbPKZxznR2P//SsNf915OH+OT7A3f+xeVcc/lSduw+Omz/g4+/wCunPej7t8XS4P100lTjGThJkiRV7fzmWWz8dBeHek/RXD+DOTOnAfC56y6je/dRZkwvcMXKdv7qXx4f9rpiqcyX7n2C/Ude5i0LG8jlhs9bKOR5z2UL2bJj/+DYFSsXkjv9QGmKMMCpKo8++gjd3dvTLiMzXnihh1wOvvzlv0m7lMxYs2Ydq1evTbsMSdI5yOdzvHn+8AVGliyoZ8mC+sHtK9/+5mFhbFpdnn2HXwbg2YP9nNcwg5f6K/fN5YA/fOdiui45n/bWOTx7sI+lbfX83vJ54/9hpBplgJMmUENDA3V1hbTLkCQpNetXL2FpWwP7jvSzrL2Bv/u3XcP2n/zVb7nt4yvoefEUFy5uGlxxcmVnKys7W9MoWaopBjhVZfXqtZ4dGaHW1rn09p48+4GSJE1SFy9p5uIlzQBc0FbPviMvD+57y8IGLuxo5sKO5rTKk2qai5hIE6iv7wS33347/f19aZciSVJNuPmDF9G5sIG6Qp6LOpq48crlaZck1TQDnDSBtm7dwp49e/jud+9PuxRJkmrC7JnTmN88i/bW2cxvnsWsGV4gJr0RA5w0Qfr6TtDdvZ1yuUx39yOehZMkCfj6A3vYsfsoPf93km3/c5h7HoxplyTVNAOcNEG2bt1CqVR5Zk2pVPIsnCRpyiuVyvzvvuPDxnb9/KXXOVoSGOCkCbNz56MUiwMAFIsD7Nz5aMoVSZKUrnw+x/zmWcPG2lpmvc7RkuAcVqEMIdwBXA10AG+NMT6djHcC3wRagOPA9THG58avVCnburpWs337NkqlIvl8ga6u1WmXJKlK9kipejd+YDn//O2n6f/lKzTXv4nr3hfSLkmqaedyBu7bwFqg57Txu4BNMcZOYBPwtTGuTZpU1q//COVyCYByucxVV3005YokjQF7pFSlhjnTmdc0k0I+x/ymmTTMnp52SVJNO2uAizF2xxgPDh0LIcwDVgL3JUP3AStDCD5dUXoDuVwu+ZlyIZLGhD1Sqt7Xt+7huUP9FEtl9vb0cfcPnkm7JKmmjXad1kXA4RhjESDGWAwhHEnGe0cyUUvLnFGWIGXL5s33ks/nKZVK5PN5HnroAW655Za0y5I09sakR9ofNRUUS+VhD/EG2He4n9bWuSlVJNW+1B+0cfz4qcGV+aTJbNu2HzEwUFnEZGBggIcf3sY111yXclXS+Mvnc4aRUbA/aqpYsqCe/UdfC3FL2+rp7T2ZYkXSxBlNjxztKpQHgfYQQgEg+dmWjEs6g66u1RQKld+ZFAp1LmIiTV72SGkEbv7ghVzQVk8+B2FRIzdeuTztkqSaNqoAF2M8BuwCNiRDG4CnYowjunxSmkrWr/8I+Xzl5rd8Pu8iJtIkZY+URmZBy2w+f/0qvnPHh/jsJ1ZyXuPMtEuSatpZA1wI4R9DCIeAhcAPQwg/S3b9CXBrCOFZ4NZkW9LraGxsYs2adeRyOdasWUtDQ2PaJUmqkj1SkjTRcuVyatfXdwD7vcZfU0lf3wm+8Y2vcvPNf2qA05Qx5Pr+JcCBdKvJhA7sj5qCWlvneu+bppzR9MjR3gMnaRQaG5vYuHGj4U2SJEmjYoCTJEmSpIwwwEmSJElSRhjgJEmSJCkjDHCSJEmSlBEGOEmSJEnKCAOcJEmSJGWEAU6SJEmSMsIAJ0mSJEkZYYCTJEmSpIwwwEmSJElSRhjgJEmSJCkjDHCSJEmSlBEGOEmSJEnKCAOcJEmSJGWEAU6SJEmSMsIAJ0mSJEkZYYCTJEmSpIwwwEmSJElSRhjgJEmSJCkjDHCSJEmSlBEGOEmSJEnKCAOcJEmSJGWEAU6SJEmSMsIAJ0mSJEkZYYCTJEmSpIwwwEmSJElSRhjgJEmSJCkjDHCSJEmSlBEGOEmSJEnKiLpqJwghdALfBFqA48D1Mcbnqp1XkqQssz9KksbDWJyBuwvYFGPsBDYBXxuDOSVJyjr7oyRpzFV1Bi6EMA9YCfx+MnQf8E8hhNYYY+9ZXl4AyOdz1ZQgZZLfe00lQ77vhTTrmEj2R2l0/N5rqhlNj6z2EspFwOEYYxEgxlgMIRxJxs/WoBYANDXNrrIEKXtaWuakXYKUhgXAvrSLmCD2R2kU7I+aws65R1Z9D1wVfgK8GzgKFFOsQ5I0vgpUGtNP0i4kI+yPkjR1jLhHVhvgDgLtIYRC8tvFAtCWjJ/Nb4DuKt9fkpQNU+XM26vsj5KkczWiHlnVIiYxxmPALmBDMrQBeOocru+XJGnSsj9KksZLrlwuVzVBCGE5lWWSm4ATVJZJjmNQmyRJmWV/lCSNh6oDnCRJkiRpYozFc+AkSZIkSRPAACdJkiRJGWGAkyRJkqSMMMBJkiRJUkYY4KTThBCaQgi/DiHcmXYtZxJCWBVC+Ne065AkSdLEcxVK6TQhhD8DrgYuAhbFGF9JuSRJkiQJgLq0C5Bq0E3AbcDngKuA/wgh/DWwHKgHOoEngY3A3wOLgftjjLcBhBB+lOx/O9ABfAU4DNwKtAG3xRg3J8deCfwtUAB6gU/HGH8eQrgcuBP4b6ALKAMfjzHuTfbdEWNcFUKoA74HtAAzgceTOQydkiRJk5CXUEpDhBAuBZqBh4G7qYS5V10GbAAClTC3EfgA8DbghhDCsiHHLgTWAe8AvghcEmN8F/Ax4B+S95oH3At8Isb4NuBbwNBLIy8G7kr2/TvwhTOUXASujTGuAi6hEgRvOsNxkiRJmgQMcNJwfwzcE2MsA/cD7wwhtCf7Howx9scYi8Bu4KEY429ijL8EInDBkHk2xxhLMcYjwHFgSzL+JNAeQphBJdz9NMa4J9l3N7AihDA32Y4xxqeSvz922vyvygOfCSHsSmq6AlhR1b+AJEmSapYBTkqEEKYD1wI3hRAOAHuBacANySG/HnJ48QzbQy9JPuOxSfgjOTZH5dLI1/NG87/qWmAN8O4Y41uBrwIz3mBOSZIkZZgBTnrNh4FnYowLY4wdMcYO4H3Ap8bp/XZSOeO2PNm+AXgqxnhyBHM0Ai/FGE+GEBqoBDpJkiRNUgY46TWfYvg9aMQYd1L5f7J2rN8sxtgLfBL4VghhN3Bd8mck7gHmhhB+BmwGdoxtlZIkSaolPkZAkiRJkjLCM3CSJEmSlBEGOEmSJEnKCAOcJEmSJGWEAU6SJEmSMsIAJ0mSJEkZYYCTJEmSpIwwwEmSJElSRhjgJEmSJCkjfgfMxkXiEuJHhAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
    " - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "from matplotlib import pyplot\n", "%matplotlib inline\n", @@ -1939,22 +981,9 @@ }, { "cell_type": "code", - "execution_count": 41, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5gAAAFICAYAAAA1aVG7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xd4XPd95/v3md7QOwEQJAFy2ClRpERSpLrkFlm24xTXxE68yZYka29217t3n9x47zorO7EtW7Jkq7jIimNbVrG6rC5RFMUmiU0cFpAAiN5mBoPpM+f+geEQIECJlEANAX5ez0MJM+fMme85gzKf+TXDNE1ERERERERE3i9LoQsQERERERGR2UEBU0RERERERKaFAqaIiIiIiIhMCwVMERERERERmRYKmCIiIiIiIjItFDBFRERERERkWihgioiIiIiIyLRQwBQREREREZFpoYApIiIiIiIi00IBU0RERERERKaFAuZkNmBe7v8iIjK76Xe+iIjINNIf1MmagMPAJuB4gWsREZFzqwF4BWgBjhS4lpnACawFuoFMgWsREZFzxwrUAduBxNk8UAFzsrrc/18paBUiIvJBqkMB80ysRX8fRUQuJJuAzWfzAAXMyboBhodHyWbNQtcy7SoqfAwORgpdxrTTec08s/XcdF4zi8ViUFbmhdzvfnlXs/Zv5Gz9HofZe246r5lntp7bbDyv9/P3UQFzsgxANmvOuj+eJ+i8ZpbZel4we89N5zUjqbvnmZnVfyNn4zmdMFvPTec188zWc5ut58V7+PuoSX5ERERERERkWihgioiIiIiIyLRQwBQREREREZFpoYApIiIiIiIi00IBU0RERERERKaFAqaIiIiIiIhMCwVMERERERERmRYKmCIiIiIiIjItFDBFRERERERkWihgioiIiIiIyLRQwBQREREREZFpoYApIiIiIiIi00IBU0RERERERKaFAqaIiIiIiIhMCwVMERERERERmRYKmCIiIiIiIjItFDBFRERERERkWihgioiIiIiIyLRQwBQREREREZFpoYApIiIiIiIi00IBU0RERERERKaFAqaIiIiIiIhMCwVMERERERERmRa2QhcgIu/sl7+8l46OtoI9fygUBKCkpHRaj2u3W0mlMmf1mMbGJj772S9Oax0iIiJnY2QkTGvrEY61tXKso41EMkE2k8HpdLFwQQvNC1pobl6Ew+EodKkiBaGAKXKe6+hoI3DoMFbX9Aa8M5WJjwXM/nC6IM9/ah0iIiIftFAoyBtv7GT7rm309HThrq6AMi+2OcUY9mIMi4V4IsXW7oO8tmcHmZEo1151A5s2XYnL5S50+SIfKAVMkRnA6irF03RtQZ472vYcQMGe/9Q6REREPgjRaJTdu99gy7YtdB3vwNVYjW1+FZWXL8SwWqd+UGM1AKnhEV7av51nn3+aT33ij7n00nUYhvEBVi9SOAqYIiIiIiLA6GiEffv2sG3n6xxtPYK7rhJrUzUVl16BYTtNqJyCvawI++XLSQ2Feeiph9n11g4+/5k/o6io+BxWL3J+UMAUERERkQtWMDjMm2/uYseb2+nu7BwLlQ2VVKy6Aovj/b1VtpcXU/LhS+nafYR/+tY3+MqX/z0LFrRMU+Ui5ycFTBERERG5oCQSCXbu3MbLW15ioL8PV0M1tqYqKte1nFVL5ZkwrBa8Fy8kXl3KHXfdxo0fuYlNm65Sl1mZtRQwRUREROSCMDo6ylO/f5ytr7+Ks6oMW0sdFZuWYFjP/cp9rvoqbNev4YkXnqL12BE++6df1EyzMispYIqIiIjIrJbJZHhl84s8+dRj2BurKPnwZdh8H/zsrrZiL8U3rOHQ9gN8+zvf5K+/8p+orKz6wOsQOZcUMEVERERk1hoeHuKun9xBMB3Hd83F2MuKClqPxW7Dt34ZsYMdfPs73+QTH/8069ddri6zMmsoYIqIiIjIrLR//15+ft9PcPgbKFq65LwJcYZh4PHPxV5VyqPPPc7WbVv4/Gf+jOrqmkKXJvK+KWCKiIiIyKyzZcvLPPzYQ3gvX46zprzQ5UzJXl5M8Q1rGA608+3vfJP5C1r4w5s+TnX1XCyWcz8uVORcUMAUERERkVnlxRef44lnH6f4ukuwFXsLXc47MiwWvEvm4W5poPdYNz+468ckRyJU19Yxt2EuPo8Xu92BxWIFTEzTxOFwUlpaSmlpGQ0Nc7HZ9JZezh/6bhQRERGRWeOZ557i2RefGQuXPk+hyzljFrsNz8JGWNhINpEkNjTCvmA/2Ug3ZLJggmGACVjSWYinyERipCJRlixdzobLLsfvP3+6AcuFSwFTRERERGaFrVtf5ZkXn6Hk+jVYPa5Cl/OeWZwOnHUVOOsq3nXfTDTO0fZeDv7qZ9TX1PGZP/q8ZqaVglLnbhERERGZ8fbv38sDv7uf4qsumtHh8mxZPS68i5so+chl9HmyfOtf/g8vvPhsocuSC5haMEVERERkRuvoaOdnv7ibok0rsZX4Cl1OQRhWC95lC3DOreXpF39P/0A/n/7Un2iyIPnA6TtORERERGasUCjEHXfeinutH0d1WaHLKThbkYfi69fw5uF93HnP7aRSqUKXJBcYBUwRERERmZHS6RQ/uus2rAtqcc+tLXQ55w2L007R1RfTERnk7p/+iEwmU+iS5AKigCkiIiIiM45pmvzrv91L2JrGs3x+ocs57xhWC74Ny+kI9vHLX92LaZqFLkkuEAqYIiIiIjLjPPHkk7x99CDedUu1NMdpGFYLvk0r2X/sIA8/8kChy5ELhAKmiIiIiMwohw4F+O1DD+LbtBKLXXNWvhOL3UbRVRexdedWXnttc6HLkQuAAqaIiIiIzBhDQ4Pc87Mf412/FFuRp9DlzAgWp4OiK1fx4O9+S2vr4UKXI7OcAqaIiIiIzAjJZJIf3XUbDn8jzrrKQpczo9hKfHjXL+XOe+5gaGiw0OXILKaAKSIiIiLnPdM0+fl99xB1W3AvaSp0OTOSq74K++IG7rjzNpLJZKHLkVlKAVNEREREzntPPPUYrd3teC9bokl93gfP4iZibgv/+m8/18yyck4oYIqIiIjIee2NN3bw0uYX8G1aiWG1FrqcGc0wDLyXLSHQdpgXX3qu0OXILKSAKSIiIiLnrUOHAvzy1/dRdOUqrB5XocuZFQybFd+mlTzx9GMcOhQodDkyyyhgioiIiMh5qbOzg7t+cge+y5djLy8udDmziq3Ig2/DMu752Y816Y9MKwVMERERETnv9PX18sM7vo97jR9nXUWhy5mVnHWV2Bc3csedt2rSH5k2CpgiIiIicl7p6urkez/4NvblTbibagtdzqzmWdxEzGPl5/fdo0l/ZFooYIqIiIjIeaO9/Rjfv+07OC5qxt3SUOhyZj3DMPBeuoTW7g4ee+J3hS5HZgEFTBERERE5L+zY8Tq33n4L7rV+3PPqCl3OBcOwWfFdsZJXtr7C9u1bC12OzHC2QhcgIiIiIhe2dDrFbx/8NW/sfZPia1djLysqdEkXHKvbSdGVq/jNA7+ivLyC5uaFhS5JZii1YIqIiIhIwQQCb/PNm7/BnuNHKPnwpQqXBWQvLcK3YRl33n07XV2dhS5HZigFTBERERH5wHV1dfLju3/IT+67G3NpA75NK7A47IUu64LnnFOJa3ULt93xPS1fIu+JusiKiIiIyAcik8lw4MB+nnn+abq6O3EuaqT0Y+sxbNZClybjuOfPwUyk+P5t3+Hvv/p1ioq0BqmcOQVMERERETlnTNOkvb2N17e/xq5d27F4Xdha5lB26UYMqzrTna88i5sYTaa55dZ/4Wt/99/wen2FLklmCAVMEREREZl2Q0NDvLb1FV7fvpVkJo2tqRrfdauxFXsLXZqcIc+KBUQzh7nl1u/w1b/9ezwevXby7hQwRURERGTaHD58kGee/z1HjhzENa8Ox2WLcFeUYBhGoUuTs2QYBp6LWojuOsgPbvsuf/uf/gsej6fQZcl5Tv0SREREROR96+7u4tbbv8dd995Jly9D+Sc24Vu7GEdlqcLlDGYYBp7VixgtsXPLrf/C6OhooUuS85wCpoiIiIi8Z+l0ivsf+BXf/f636CsyKP3YeryL5mKxq6PcbHEiZMbKnNxy6z8TiUQKXZKcxxQwRUREROQ96e3t4Vv/8k3ebA9QduMGvEuaNHHPLGUYBp6LFxKv9PC9H3ybcDhc6JLkPKXfACIiIiJy1vbseYvvfO9mEnPL8G1cgcXpKHRJco4ZhoFnVQvJ2mK+9/1vEQoFC12SnIcUMEVERETkrLz++mvc+8uf4rtqFZ5FczXG8gJiGAbelc2kG8v5zi3fIhgcLnRJcp5RwBQRERGRM/b8C8/wwCP3U3zdJTgqSwtdjhSId/kCmF/Nd7//bYVMmUABU0RERETOyCubX+Lp55+i5IY12Et8hS5HCsyzdJ5CpkyigCkiIiIi7+qNN3bwyBMPU3TNaqxed6HLkfPE+JAZCoUKXY6cBxQwRUREROQdHTx4gF/++j6Kr7oIW5Gn0OXIecazdB5mUyW33PovRCIjhS5HCkwBU0REREROq6+vl3t++mN8G5djLy8udDlynvIuX0C6tojv3/ZdotFoocuRAlLAFBEREZEpxWIx7vjxD3CumI+ztqLQ5ch5zrOqhVipkx/+6BaSyWShy5ECUcAUERERkUmy2Sx3//RHpCp9eBY1FrocmQEMw8B7ySJCtgx33nM7mUym0CVJAShgioiIiMgkjzz6IN3hQbyXLCp0KTKDGIaBd91SukaHufe+n5DNZgtdknzAFDBFREREZII339zJlu2v4d24AsOit4tydgyLhaKNKzjYeYwHHvoNpmkWuiT5AOk3hoiIiIjk9fR08ctf/QLfphVYXY5ClyMzlGGzUnTlSnbu2cWzzz1d6HLkA6SAKe/q1Vdf5tVXXy50GSJyjulnXURisRg/uvM23Bc146goKXQ5MsNZnA6Krr6YZ178PVtf31LocuQDooAp72rz5pfYvPmlQpchIueYftZFLmzZbJZ7fvZj0lVFuFsaCl2OzBJWr4uiqy/mgYd/w44dOwpdjnwAFDBFREREhEcee4iu0IAm9ZFpZy/xUXTlKn74ozs4dChQ6HLkHFPAFBEREbnA7dy5jS3bt2hSHzlnHJWleDcs566f3EF7+7FClyPnkH6DiIiIiFzAjhw5xK/u/yVFm1ZqUh85p5x1FXguXcwPf/QDjh/vKHQ5co4oYIqIiIhcoHp6urjz7tvxbViGvby40OXIBcDVWIPrkoXcevv36Ow8Xuhy5BxQwBQRERG5AAWDw9x2+y04L27GOaey0OXIBcTdVItrdQu33v5dOjvVkjnbKGCKiIiIXGCCwWG+94N/xtJSh2dBfaHLkQuQe14dztUL+cFt36W19XChy5FppIApIiIicgEZHh7iu9//Nua8KjxL5xW6HLmAuZtq8axfwh133sa+fXsKXY5MEwVMERERkQtEb28P373lW5gLqhUu5bzgnFNF0ZUr+dl99/DqlpcLXY5MAwVMERERkQvAwYMH+O4t38KypAHvknmFLkckz1FVRsn1a3jk6Ue5/4Ffkc1mC12SvA8KmCIiIiKzmGmavLL5Re766Y/wXL4Md0tDoUsSmcRW7KXkhrW8cXgvP/zR9xkdHS10SfIeKWCKiIiIzFLxeIzv3nILjz/3JCXXr8FZW1HokkROy+K0U3T1xfTZktz87f9NR0dboUuS90ABU0RERGQWOnbsKP/0rW9waKSfkg+txVbsLXRJIu/KsFjwrl6EZeU8fvDD7/LyKy9gmmahy5KzYCt0ASIiIiIyfVKpFI89/jBbXn8Vzxo/nqbaQpckctbcTbXYy4p44sWn2ff2Xr74uS/h9foKXZacAbVgioiIiMwSra2H+advfYMdR/dT+tF1uBUuZQY7MS6ziyjfvPkfCQTeLnRJcgbUgikiIiIyw8ViMR763f28ufsN3JcsokjBUmYJwzrWZTZRW849997FJRet4ZM3fRqHw1Ho0uQ01IIpIiIiMkOZpsmOHdv439/8X+wfPE7pH6xXq6XMSs45lZR+dB27u47wzZv/kdbWw4UuSU5DLZgiIiIiM1BfXy+//PUv6Bnux7NhGY7qskKXJHJOWZx2ii5fTqy9hzvu/iFrV1/KTTd+CqfTWejSZBwFTBEREZEZJB6P8+RTj7Jl62bcy+ZRctmlGBZ1SpMLh3tuLc6acnbvPMjuf/oHPvPHn2fZshWFLktyFDBFREREZoBsNsu2ba/xu8cewlpTSunH1mN1q+VGLkwWpwPfhuUkuga491c/p2V+C3/0qT+htFQt+YWmgCkiIiJyHjNNk/379/Lg7+4nZmRwX74MR1VpocsSOS8451Ti+FgZ7fuO8s2b/5Frr76Ba6+5AbvdXujSLlgKmCIiIiLnIdM02bdvD48+8TChaATnyvkUNdZgGEahSxM5rxg2K95VLTgXzOGVXdvZvOVlPv6xT7BmzWVY1H38A6eAKSIiInIeiUajbNv2Gi++8jwJM4NjWRMlc5crWIq8C1uRh6IrV5HoHeLhZx/jqWee4MaP3sSqVasVND9ACpgiIiIiBRaPx9i3bw/bd23j8KGDuOqrcKxeQHF1mYKlyFly1pTjuL6MRGc/9z/5IA898gAfuu4jrF27TutnfgAUMEVEREQ+QOl0mr6+Xnp6umg91krg0AEG+/vx1FZiaaig/KbLsTj1Jljk/TAMA1dDNc76KpJ9wzy59XkefvQBLlm9lo0brqS+vkEf3pwjCpgiIiIi08A0TeLxOKFQkJGRMKFQiJGREMPBYYZCwwwNDRIKBolGIriKfdhKfZglHhzLG6iqXIZhtRb6FERmHcMwcNaU46wpxz0aY+/hTt748S247E4uWb2WVSsuprFxrrrQTiMFTBEREZEzkM1mGRkJMzg4kP/XN9jPwNAAoeFhIuEwJuD0ebC6XRguB6bTBi47FrcT66Jq3N4mfB4XhlVvZkU+aFavG9+qFsyVzaQGw2xrP8hrO7eSjsVpaVmEv8XPvHnNNDQ0YLNpFtr3SgFTRERELniZTCbX4hgmHA4RCgUZDg4zMDTA4NAAw8NDREIhrA4HjiIvFq+LrMeBxevCOrcE25JaKjwuLA69tRI53xmGgaOyBEdlCQCZaJzO7kE69m8j+8pzxIIhSsrKqaubQ0NdPVWV1VRX19LUNE/das+AfguKiIjIBe9//b//QFvrUQyrFbvbhcXjBLcDq8eJtdSNtb6JMq8Lw3b6bqzZWJxs7AMsWkSmjaOyBHKB053Jkg6P0h6M0HpgF4zGSQyG+Md//L+UlpYVuNLznwKmiIiIXPBqamoIhkIn78gAkeTYP0bIAtkC1fZ+WSwWstmZWv3p6bxmnpl2btbcP7BQVF2Dw+EsbEEzhAKmiIiIXPD+89/8Lf39I4Uu45yoqiqaleem85p5ZvO5yUkaYS4iIiIiIiLTQgFTREREREREpoUCpoiIiIiIiEwLBUwRERERERGZFgqYIiIiIiIiMi0UMEVERERERGRaKGCKiIiIiIjItFDAFBERERERkWmhgCkiIiIiIiLTQgFTREREREREpoUCpoiIiIiIiEwLBUwRERERERGZFrZCFyAiIiIicrbuvfdeDh9uLWgN4XAIgOLikmk7pt1uJZXKnNVj6usb+NSn/mTaahB5P9SCKSIiIiIzTltbG52dHQWtIRwOEw6HC1pDZ2cHnZ3HC1qDyHhqwRQRERGRGam+vpG/+Zv/UrDnv/XW7wBMaw1VVUX094+cdQ0i5wu1YIqIiIiIiMi0UMAUERERERGRaaGAKSIiIiIiItNCAVNERERERESmhQLmBSQYHObrX/86oVBw0v033/y/J90vIiIiIiJyNs4oYPr9/jK/3x/3+/23nOuC3gu/37/G7/f/a6HrON89+uhD7N+/n0ceeXDS/YcOBSbdLyIiIiIicjbOtAXzc8BrwGf8fr/jHNbzngQCgR2BQOBzha7jfBYMDrN580uYpsnmzS/nWytPd7+IiIiIiMjZOtN1ML8M/FfgfwAfB37r9/v/EVgMFAOLgJ3AzcB3gCbgwUAg8F8B/H7/i7ntlwLzgO8DncDfAHOA/xoIBO7P7fth4P8CVqAf+KtAIHDY7/dfBdwCvA6sB0zgTwOBwNu5bf8SCATW+P1+G/A4UAG4gW25YyTP+urMIo8++hDZrAlANpvlkUce5Atf+PJp7x8vFAoSCoX41rf+vw+87jNlt1tJpTKFLmPa2e1W2tvbyGashS6l4LLpOO3tbef19yHM7O/F9vY2SkpKCl2GiIiIzGDvGjD9fv8qoBx4HqhlLGz+Nrf5EmANEAF2MRYwP5I77lG/339nIBA4lNu3Abgyd4zDwPcCgcAGv99/KfAgcL/f768GfgFcGQgE9vv9/r8A/hW4LHeMZcCXAoHAX/n9/v8H+F+Mta6OlwE+GwgEBv1+vwH8PFfzj87iulBR4Tub3c97W7e+SiaTBiCTSbN166t87Wt/d9r7x7PZrBjG2Bvn89n5Xt97ZRiFruD8MRO+D2Fm1DgVwxj7ea+qKppy++nuFxERETnhTFow/wK4NxAImH6//0HgVr/fX5/b9nQgEAgB+P3+3cBbgUAgAST8fn8AaAZOBMz7A4FAFujy+/2DwEO5+3cC9X6/38VYkHwrEAjsz237KXC73+8/8a4mEAgE3sh9vRW4cYp6LcDf+/3+jzDWCloGRM/gPCcYHIzkW/Zmg3XrLufll18kk0ljtdpYt+5y+vtHTnv/eF5vEV5vEV/72v8sUPXvrqqqaFLds0FVVRF///f/jcMdA4UupeAsNheNjZXn9fchzOzvxROtw1PVP5PP651YLMas+0BRRESkkN5xDGZuvOVngS/7/f5jwNuAHfiz3C7xcbtnprg9PsBOuW8gEDjRl8wGGIx1fT2ddzr+CZ8FNgKbAoHACuB2wPUOx7wg3HjjJ7FYxprCLBYLH//4p97xfhERERERkbP1bpP8fAI4EAgEGgKBwLxAIDAPuAH40jmq5zXgIr/fvzh3+8+ANwKBwNl8bF4KDAQCgRG/31/CWOC84JWWlrFx45UYhsHGjVdQUlL6jveLiIiIiIicrXcLmF9ibAxkXiAQeC33uCumu5hAINAPfAH4Za7L7edz/87GvUCR3+/fB9wPvDK9Vc5cN974SZYuXTqplfLGGz/JwoV+tV6KiIiIiMj78o5jMAOBwEdOc3/zFPf9+Sm3r5rq69zteafcNsZ9/RTw1BTHf5GxCYUm3T7l6xBw3VR1X+hKS8u4+eabJ42jKi0t4+tf/4cCVSUiIiIiIrPFma6DKSIiIiIiIvKOFDBFRERERERkWihgioiIiIiIyLRQwBQRERGR9yRjZumJh0lnM+++8zips9x/vDdCHWwbPvaeHx9Oxdky1EpfYvIiBalshoFkBIDRdIJjo4M81P0WhyJ9tEWHeLj7LVpHz35t6lQ2Q3c8RMbMvue6Xxs6yuO9exlNJybcb5om4XSc1tEBUtkMW4Za2T/S/a7H64oH2RFsJ5lNn1Udb4/0sHX46Fm/5u+kIzbM4dH+aTve2Z6TTK93nORHREREZDZLZTP8umsnX626ls54kHrXmS/XtW3bawBceun6Cfc/0/82HbEgH6paQr37g13+yzRN4tkUbqvjPT2+NzHC68NHWeitZu9IFx2xYa6t9LN56AijmSSfrV9LjbOI7cE2SmwudoY6ODjax3xPBX8xd8Ok42XMLFbDwpHRfoKpKM3eKp7qe5u9I12sK5vPH9QsP6v69oa7eKD7TQAa3mXf4VQUh2HFa3NOuP8n7VsYSI1ixeDjtSu5pHQuT/buY+vw0bGaMZnnLudYbCi/QPub4eP5cLgr1MHXmq8hEOmlJx7GbrHyXH+ADeULGEnHORYdZHVJIzaLlW3Dx3hx8BDRTJK0mWVZUR2fqV/Du3mhP8DB0X6urGhhcVEtR6MDPN63F4CUmWFTeQt7wl0s9tUwlIoSTsf4acdr1LtKOR4PAvCVuZfT5Ck/eT2SUV4dOkKTp5wmdwV3tr1K2syyJ9zF0qJaVhbX47ba37GuY9FB/rVzOwA7gu2sKJ6Dy2JndUkjdov1Xc9rKq2jA/y04zVM4BO1q1hTOvc9HeeEFwYO8txAgPmeCr7UuB6LYbz7g97F6X7WZWoKmCIiInLBOhId4ECkFxhrIfr0nIvz23oTYX7e8Tp2w8qfN66jzOGZ8NjXX98CTHzT2RMP89LgYQB+3/82X5r7wb4hvff46xwa7WdD2Xw+egbhLZyK47LacFjG3hL+tmsX3YkwO4LtZDEB+H3/AULpGDAWtByGlZeHxs7RYYyFivbYMOFUnGK7C4C0meWn7a/RHhvikpK57Ai1A2DByB93d7jzrAOmcUpYSGbTdMWDzMl9MJAxs4RTcY7HhvlN9y4cFht/3bSRUruHp/v2s2+km5HMWAtgBpOHet6i2Obi1eHWCcftSoQAcpXC+Gc1MfnukefJYhLLJoll4YXBg+wKthPKxAHYMtTKf26+hmf6DxDLpvKP3TfSzeHRPuZ7Ktkb7uKpvv0U21ykzAzxbJrrKhfzoaqlPDd4EICn+vezuKgWG9Z82HVb7PykfQuhdJxXh47kg68J+XA5dn5Z0maWfSPdVDt8PNKzm454kK3BYyz21pDOPe5ItJ8j0X6e6X+bf9e0kWpn0Rm9Fj2JMD39YQAGk6N8tGbZhO19iRHaokPsDXfSFhtiQ3kzn6u6dNJxwul4/jq3x4Y4HhtmZXE9C7yVZ1THqfaEuwA4Gh0kkk7kvyffj6l+1uX0FDBFRETkglXvKqHENvYGdLGvZsK2veFuwumxwHAg0sv68vnverwSu5tim4twOk6ju4ydwXZK7R6a3+Ob5XfSEw/TmxxhWVEdNsNCMpvmUK6b4fZgOx+uXvaOrTevDx/j0d49lNhc/Id5V+C1OSmyuehOhHFb7fisTnqTI4TSMeyGFathwTRN9o+e7H7Z6C4jZWboS0T45yPPcFPtShrdZYSSMdpiQwDsj/Tk989istBbRU9ihI3lC6asqy8xgomJacIvjm/DYRkL+CV2N8uK6vh4zQoOj/YT5gid8SC3H3uFz8xR1DPlAAAgAElEQVS5hGXFc/hZx1aORgepdPgwgUQ2TVcizJHoAFuDx6Z8vmg2xUJvNYdG+wCodPhYUzKX7cE2BlOjADS4SjmWOx+f1ZkPqeOdCJcAQ7nH+X01vBk+PmG/33TuIjoudI4/1mO9e/jQwqX523NcJTzWu5eBRCQfwg6O9BHKfV+mzcndVE+E+J3BdvaEOtmeC/fjHRgd+1DFikEmd+R4Ns2Tffv4s8Z1RNIJHunZjd1i5abalfkPIOZ5KvhM/Rqe6tvPcCqaP148myKTzWIYBhbDYDA5yg+PvTyhS/DW4FE+x+SAubK4nuFUlEQ2zc5gO7Fsit3hTv7B/9FJ+56JKypaeKb/bfy+mmkJl3L2FDBFRETkglVkc/HV5msBWF48Z8K2ZUV1bA+2YbNY8Puqz+h4bqudv51/FeF0nDdDx3mo5y0M4N/P25RvZXu/TNOkKx7mx20vkwW2usr4q3kbcVhsFNlcjKTjpMwMg8kIVe/QGnUkF0ZD6Tj9yQhem5M/qb+Eg5E+hpIRRtIJepNj4xR9NidfaLiUHxx9ceIxogN8onYVD/e8BYx1H/1dz25Mxlo3k2aGaCZJpd3LQGoUu2Hhj+asxmN1EM+kuLNtM8OpKH88ZzXzPZUcHu3n5x1bAVheVJdvOX1h4CBrSudSbHPz7MABopnUhC6ynfEgboudo9HBsXNKxZjrLsNh2Ci3eXgp1DnlNbAbVpb4allVXE8oFcNiGBTlPnDYWNHMQDJCLJOiLzGSD5hThcsTXWpPMDA4Gh3kD+su4oryZt4Od/PM0FirZOwdxgcmc4Gx2lHEaCbBvnB3PgCe0Js6OXa00lHEkVw9FgzWljbxei5IH4j0kjzNOEmf1UEkk+Ty8maORgfoyLV8Hhrt55bW51nsrc1/MNDkLufSsnn5xy4rqqPZU8mR0X7i2TTbgm3sCnWwJ9yJgcHnGi7FblgmjTctsbmnrMViGFxduYhQKsbmoSP567B/pJulRXWnvVanc1FJAxeVTOxAncpmxrp15z6kkHNLAVNEREQuaDZj6jkPa13FfH3hDWd9PJfVjstqJ5ULCyaQzr73yV1O9dvuN3grfDIwdcSHaYsO0eQp54ryZp7o20eDq4wyu+cdjgJXViwknI5T4yxmrntsrJ7TYqPE5uLXXTsBmO+uwG21s758PsPJ6KRjOA0rfl81Fxc30J+MMMdZQntsGIAqp4/OeIgSmyvf2pUyszzas4dim4saZ3F+3x3BduZ7KnOtl2N8Vhdeq4OMmWVHqJ2doXY+UbuKaCY1qY6Xh46we6QrfztlZuiMBclgcqx9kDRTX/+UmSGaTtCdjvNE3z7qXSXcWLOCvsQIx+NBYpkUtc5inujbd9rr6LTY2VTRwrHj2/L3ZTD5SfsW/nLu5dgNK88NHcpvM08JjFPxWOz0JSdPQjRei6cq30oM8MnaVbisdg6N9hFKxUi8Q5CNZJJYMNg/0j2hNRVgIDlKt22si7DBWCvqqVxWO8tyH8g83f82MPbaAuwb6eLjtSv5WPUy9o1054N33RTHGS+aSU64HUzFJtw2TZM3w8exG9ZJHwa9mxcGD/Jyruv6X87dwDxPRX7bQDLCPe2vkTWzfKlxPbWu4rM6tkymgCkiIiJyDlxXtRiv1UGZw8vccZOtvF8nxoyeYDMsFOUmsllfvoA1pU1nNOFKvbuUv563adL9I+kEBgYmJg6Ljc82rMU0TR7v3Ttp36sr/RTZXPxhbuxqPJMiZWaxGgbXVy2mKx7GZ3Nw29GX8o/ZkwuCTe5yqh0+hlMxVhXXA2OtcDAWdFNmhi/P3cCjPbs5FhvCZKwVbFN5M53xEEmOTKglmIrlxykC+Za/04XLE+5q30KFw0tnPEhnPMgCTyW/ygXsqZzodHzieVwWO/d37cpvP9FF1QTu79pF1jTz405PZYEJ1dU7x1q5j8VPBscTXa5P8FmdzHEVU2b30pMI56t6M3ScI7HTz3BbZnMznD4Z2rKYDOS68p6qNTqQP8cDkV4a3GX5beFUnK5EiBZPJTaLleurFvNE7z5SZgYDWF40h654iNWlc1lfvoAjo/10xUOsKW2a8rlM0+R4PEi53cPHqpezM9TOXFcZa0/Zf3uwjUd69wCwLjrIH9SuOO25nsqY8PXEbuMHI32M5K7v/kiPAuY0UMAUEREROQecFhtXVS6a1mMGIr00uEoZSo1yack86twllNrdlDu8+X1OFy6jmSSP9uwhZWb5WM2yKVs4B5Oj/KZ7V76VLTDaS2c8yJahVt4Kd+K02Kh1FlPjLMZnc0wYlzqUjJIyM3htDoptLtxWB83eSrYMtebj1fhA1RYbwm2xU+ssotpZNDYGLzdeMJFNsyPUztHoAIO51s9im4sWXxUtvip+lutGC+CxOIhmx1q/TjyP3bByedl8Xg+2EcumqLB7SWbTU4+dTMdYWTyH1ugAZXYP7dGhSfsAlNs8DKWjk6Kiw2KlxO7NTww0PkwG0zFOZcdCKn8Vxkdi6EwEJ+0fTsdxWeyU2Fz4bE6WF83hkd7dmPTT4ColaNhImulJ4bLolLGil5XN49mBQH5yHwCXYcNltU+oc567guOxIdK5uvaNdHNd1WJgbFKlO9peZiSdYHlRHX9av4a1pU3sCnbQER/GgsGOUDu7w51UOXz8p/lX0uytotlbNeU1BXiibx+vDR+l2Obi7+ZffdqxzhPHcx7jiooWiu1Td7s91dUViyiyuSixuSfMrNsdD5HIpqmwe8liskLdZ6eFAqaIiIjIDBBOxfnX49vJYtLirWJTZUt+W19ihAORXpYX1U0Im+NtG27Ltx4eGe3jb+dfPWlm3Hg2NeGNvAUDp8WWnzwokU3TFQtS6yxmNJ0klc3QkRjm3o7X8+MHTyi3e1nkq6bZW4nTYiORndyWGMum6IgH2RZsoyM2THeuRe5E7PJYHYTTcVJmlppx40mHkqOcqDyaTeb3L7K6iGWT1LtKWFe+gBdzs92Gc+NSAZyGjYR5svuo1+rgQ9VL8ftqeGHgEFuCR6e8fg3uUojDUGpiV+FgKsqfVi/hnnGh91QTY+TJVk6XxUY0m8q3GFtzrWteq4PRcV1G49kUG4sXUO7w8ptxraWRdAKP1UEyffJ87IaFlJllJJPAhoX/MO8KYtkU9a4SFngrubttS/61uqpyERsrmglEenmo+y0imQTHYoMT6m50lfHaUCsOi43FvhoiuXU4x0/y84dzLmLb8DGS2Uz+e6w/GSGeSU1aJmZnsJ3twTYWeCq5tspPV3wsmIfTcUYzCZzWqePJZWXzeTN8nM54CI/VkZ946FSJTJq22CCN7rL8cj02i5V1ZRODayyT4q72V0lmM/i9NXyhcfIERPLeKGCKiIiIzAA2iwWbxUIym8E57s21aZrc076F0UySN0Id/N2Cq6d8fL375Bi4lJmlNxGmxO6eMNNsvauUT9auoicRpi8xwpHoAC8MHGSOs5jDuW6TKbL5iWQ8VgejmcSkcGnktgFsHjxC9h3GoFowaHSVsW342MlzAjaWLcBpteUnoDk6Okg6m8FmsfIncy7hUfZM2B/AbrEwkslyLDbEg91vMN9dwdHYYD5cAlTavXQmx0KN3bDwh3UX0zo6wM86tk7qyrqhdD617hK2DR9j90gXXouDy0vm82roZAhNmVneCp0c/3ki4J3OpopmVhQ30BEf5sHcmp7FVifXVS+mxjnWPdNpsU0ImAAZ02QgEZlwn4mJzXJyDPGq4nqORYfykyMZwBvhDl4dasVltbHUV5d/rYpsTi7LTd7j99WwqaKZJ/v2n3J82BXugFxP3D+dcwmfnrOaw5E+Li9vnrBvs7eKX+TGoXosdq6qXDQpXAI83PNWfkmVRDbNx2qW8fzAQeZ7KnBabGRNc8rZjy2GwVeaNnIw0sccVwmu06zZ+fPjW2mPDVPjLOJv5l815T4AWTNLxhx7vVNTzMYr750CpoiIiMgM4LE6+HdzN3I8HmRF0ZlNcvJW6DjXVS3hge43+VTtKr7UuI7n+gNUOYsIjPZxX+d21pY2cVPtyvxjlhXVcUnpXP7voafHjhGeegZWgHKHh4WOKvaNdJMxsyxwV7C0eA7lDg8N7lKOx4Z5I7dMhxWDOmcJnYkgJmDDwlebryGdzfDz468THzcpTb2rhK3DxyaMn0yT5dmBABvLmunITQ5U4yjG4yjKz3ZrN052Dz6Ya3U9lXVcICu2ualxFvHrrp35cGkzLPlupK8Fj/L1yhvYGRzrujuaTU4Il2NMdoRPLgXisthJTdEV94SrKv1YDIMqp49QMsa24DEaPGUsL5qT7958opX0RMuvz+rEArwweChfI8DVlYt4xfIGNsOK22JnXdl81pQ28dpQK0PJKD3JMK/kZmaNZlLsCLVTYfcSTMWIpBMcGu2j2VvF73p2k8ym+Xj1Cp7o2zfhupfZPAynx+rJmiarSurzY2YBDkX6uPf468BYd+FkNsPFpY1cVjaPN0PHKbY56UmMUOsspqqqiOpxr1c4HeOtUCdHRvvpT4zwZN9+Fngq+VLjuklrnmZNk/uOb+PIaD8frV7G+tMsczOUm4xqKBnFNM1JxznBa3PyxYbLOBodmDTeU94fBUwRERGR98k0TTrjQcrsnilbbaZLrat40iQkhmHw5bkbCER6Jy3BsHnoCNexhDdCHVxTuWjCeLhvBJ4AxpYW+Vj1Ml4damVXqIPB1CiXlc5jY3kzrwwdoc5ZzJFc62Wzu5Kh1CjD6Rh+79i6oc/2B6iwe+lPRmiPBzmeCGFgsKq4Pj/5EEC1s4hYNplvI7y0tIn7jm8jkkkwkj4ZyP6wdhUYBg/kWvfG64wHufnI7wFoAPqSI/z3+kvoTYyQyKY5Fh3Mh5fTWV8+n/ausYDqtTp4tHdPfjZbYMIYRRibVXVD+XyKwy76kyP0JN75+COZBBcXN3BwtJ/RTAKXxU48N1NrqW2sxTiUivFo7x4SmbFxoftGuqlzlnBlxcluz06Ljf/ecj3RTBKP1cH/OfhUPgTXOov5o7rVbA0eJW1maXSX8R8XfgiA3eHjxDOpCWtkltk9BFNj40cdFiuZXIAMRPoYzSTZnfsQoS06lA+XS721XFTSQF8ywrMDBwCIZBJkzCz7RrqpchZR7fBxPB7Mv6brSubRlQwTz6R4sm8fW8e1SlswuGzefP563iZeGTzMSCaB31vNfZ3bAfJjbVujA2Ot9Kd0lQ2lYxzOfWiwK9Rx2oD5R3NWszPUzqri+tOGyxOavZXnZI3aC50CpoiIiMj79Pv+A7wydBif1cnfLrgq3z30/Tgxs+WJdRnfSY2zaMIYxRNWFY+tBzjfU0HxKcfZWN7M68GjrC2dx6vDrTyTCxEAe0Y6+Z8LP8ymiha2B9vyAbM1NpAPE8FUlIe63zrtDKkvDx3GgsEKXx2xbJrrqxZzR9sr+e02izU/5nK8B3Jrap46bnGxt2ZCKyeMdRFtjQ6wrmw+w6koje5SIpkEZXYP8XSKPZEuTvV47z4sGFgwaI8P4zAmTorkttiJ5QKhz+rk7vZXAfhi42VUOXzcfuyVSUtqnOqtcCefr19La3SAvmSEg6N9ACwrqmUgGeFn7VsnTQDksdrzgajC7mV9+XwcFlt+rKHX5sgHcdM0+eGxl8bWGc0F+m8cfIJyu4f+5MlutF6rgz+oXs6KknoOjPTyWO8euhNhSmxuvFYH68vmkyGbW7fSpMTuIpYYO/fFRbUsLa7DPtqHwdjsqzXOYm4/+nI+xFsxIFfzPHcFVqs1HwIbT1n39cTEUXaLlWuq/MDJtVhP1Oo0bKwoqZ9yHGaJzc3K4noOj/axvmzqcAkKjecDBUwRERGR96krN07wRGvc+w2Yx6KD/LRjKwbwpcb1E2a+PCGdzdAeG6bOVYzb6uDwaD/HooNcWtqUn11zY8XYOLm/mLsBGJsAxW6xYjEMPFY7Da4yFvtq6IxPnL200uHLt5ytKJrDoUgfR6OD+eA1NjHOkvyYu/HGz5KaxSRupvl8w1p+3LY5v8+6snlEM0lshgWbYeXq8oU8PfD2hLB64iunxcYibzU31a6kIzZMsCd6ItPgtNjoiof43pHnGUyN0ugq5RO1F1Ht9GEYBh9OLaU/GaEjOsSW4aPEsykiue6rJ57r1GUrxq8fOX4W1oFEhIXeaj5Zu4r7u3aRNDMYGNS7Shg1rCTGtRhmMXlp6DAdseH88ywvmsNVlX4e7d2TD5dWDD5cvYwSu4ul41qfv9p8zaTr+unai3mo+y2CmRiduRlrT14rk4yZZSA5cYzmaCaJ1+ZkNJ3gt91v5FtSU2aa/zD/uvx+X2u+loyZxW5YeapvP/3JCA/2vMnbkR4+17A2P663xOaeEGAzmJAbx1hqd1PvKs2H0SsqFtIRG6bU7iaeTVPrnLz8R7O3iptqVxJKxdhU3nLaCX5gbAzmH89Zfdrtcv5QwBQRERF5nz5SvYxnBw7Q6C6bsiXxbHXEhvOzuXbEhqcMmL/q2smBSC+VDi9/0biBX3S8TgaTjtgwX5q7ftL+O4Lt/K7nLSodPj5bv4bH+/YBMJpJ8NdNm0hk07wVOk5fMkJ7bJin+vbzqbqLeLr/bfZHeiYca21pE0ejg/kQaMPIL2vhtNggm86HzBpnMSPpRL61si63zMnvenYDcE2FnwW+SrIDJwLfxJbLRDZNqc2Ny2qn2O4mlk2RyKbxAh6rk12hjpPXLR7k1mMvUuXw0eAq5SM1y2jxVuG1Onhu8GB+P5thocLuJW1m+WTtKnaPdLIj2E6WqdestGLwbH+AvmSEncH2/BhIE5O+RITLiuawM9wx4TFtsYnLnVTYx9baDKfGwqUdK1nD5Jn+t/mLpg2TntM0TYaTUQ6M9pLIptlU0UKzryq/lAuAw7ASzV+1yVwWO+UOL88NHMyHS7th5fqqJQDsCnbw0uAhlhXXcUPVEkbTCYpsLt7Ovd5vR3q47ehL2A0rfzxnNbcfe3nK6+OzOuhPjvBA1xt8rGY5Ld4qKh0+lhTVEk7FsRrGabuOn8n4R9M0aYsN0ZMIc3FJIwacdhZZKTy9MiIiIiLvU62rmM83TN8yB6tLGmmLDWFgsLq0ccp9+nJjAYeSUbKYWA0LGTODY4p1MEfScfaPdGMytnxEJJ2g1O4mmIpR5yrBMAyurFjIsqI6ftD64tjxsJDMpjHNiYGi1lHEquIGtgfb8velMfPBMJJN4rbYSWWzVDq8fKhqCYZhcHn5Ao6MDuTXVDyhxOGmzlXCpvJmjseD3FC5hKF0lN927cpHmVeGj1Bsd5MyMxNaGMkt7ZE5JfT0JyP0JyN4rA7sFuuEWmFsnOWJbp53d2zB763h8rL5bB5unbLDbwaTjJlmT7iTLOaEWXOTZppiu5vrKxdP6GZ8qqVFNdzVvoW0maXK4WOJr5aXhw6TYWzsY/0pXUp/17ObHePC5OHR/vzssACLPFUcjJ7oYmrm/1tic2MzLKwtbeKikgZ8NifH4yfHmH6+fi3NvrFxuM8PBAimY7w8eJgryxfyZN9+3sxNyuS1Oii3e+nIPXZXqCPfelnp8DHXXUaLp4oyh4eMmeXu9i0AvDJ4hH0j3Sz21WDDymN9e7Bi4StNl1PFyQ9fQqkYgUgvC33VU67JCmPLsNzd/iqhVIy0aWJisnX4GAPJCCuK5vDpORfz686dtMeGubF2xaQxyFIYCpgiIiIi5xmvzfmugfWTdRfx2lAry4rnUGJ385Wmy9k8dASXxc5oOoHX5qR1dICqqiK+c+Q5PlS1hKHUKHXOEuZ6yvmP865gIDmaDzbxTAqXxc5Ntas4Fh1ge6iN/ZFu/nLuBvqTkXyLXJO7nB8cfQGHxcYSX22+tWt8MLu8fAFem5PFvpr8uMKPVC8DxkKD3WLlC/WX8ljfXp7o3UuZ3c0NVUt4PXiMw9F+NpY3U+MsmjChzuN9e/liw6UTAmUsk6LZXc7RcWs3jt/elxjhUHTq2WTHC4z2Ehg9/Xa3xU4im+Li4kb2RrrJZDP57sIAb0e6Weyrzd+2wKQ1P/+tcycOw0razFJsc7G+fD7H40GshpGflTWVHQuu8UyKw6fU3RYbotLho8zuYU3J3LExulOc24kQ6rM5aIsNUecs4ZqKRTzd/zYt3irmjmsNX1pUy5bhoyzwVOKwWCcs/VFqd3ND1WLu69yO1TBYUTyHLCatowNcV+XPTxZlmia7Qh1UOrwMJEcJpWOE0jGORgexMPZ9kSbLr7p2ctHcRp7o3Uudq4RHe/aQNDOUDXn4L83XTnndj0UHGUhOfGGGU2O39450cUWiJd+6/trQUQXM84QCpoiIiMj7lDGztI4OUOMsptj+7pPyTIf5ngrmeyryt9NmNr+kSMrM8Km6i+iID3MZ80mbWbKY/OcFJ8f2ua0OGt1jY0X7EyP8uG0ziexYR1drrsvlaCbJQHKUpb7afMDcFxlrCU1k07wd6WGhp4rD0YH8JC4ApXYPF5U0kDVNXh44xN5IN82eSmyGlRcHD+K2OriqYiHDuZlD3wp1MpJO8FjvXgCS2cyk2VrtWEhls9gtNjK5cBfPpjgaG8wv5wHkw2Wl3XvaCYjezakBMZZNUe8swWqx8Ln6NfwoN57UwlhX2Z7E2Oyym8pb8FoduC12Hup9a8Ixg+kYf96wjmA6ht9bjd2w8oWGS3m8dy+P9e7lD2qW85uuXfy3mhv4cdtm1pY0sS14jFBusieAgWQEu2HhQKQnvz7o6ewMtnM0NoTbYudrzdfydwuu5oWBg3zj4BO0eKv4YsNlfLRmOVdVLiKdzdKfjPDh6qUcjQ7QmxihMx7CZrHyP1puwDAMrIaF66sWQxXsDnfym65dbCibT0csyON9e6es4cQ19Fjs+dc6EOll6/Cx/GuTzKbJmFke7H6TvsQIN9WupMFdBoxN2NPgKiWcjrOmZC5vR3pxWqwMpaKsLmmkyuGj0V1GZyzIRSX1U5UgBaCAKSIiIvI+Pdz9Fm+Ej+OzOvnqgmvecbKS8UzTzHdvfb/cVnu+9c5rdRKI9DKam3V0WVEdq0smd7VNm1me6ttPVyw4YYbWDCbVDh/VzmJavFU8NHJyNtbIKTOoxrIpPlV3ES8MBPBY7awrW8BFJQ3sDXdxf/eu/GL2XfGTE9NEM0mcFhtVDh+RdIIVxXPyY05hbEShBWNCQEyR5d+6djDHWULXKZPcbCibz5vh48Qz6XzLYjAVYyA1uVmyzOYmkkmQMk9tYwSnYeOG6sU82bef7CnbOxMhOhMhuuOhfA3ZU9optwfb+JM5q2nxVvHK0OEJz+8wrDzWu4fBVBSHYSVlZriouIFdubGb5Q4vfbluu/3JCM8MHMBtsXMqq2GZMlyeOnb1aO4DgVg2RTKbxm2158dvHh7tJ5yKUerwEM+k+eGxl0hk03y8ZgXXVPp5sPtN5rhKqHUWcyDSy0g6wdqyJmyGhXgmxW+73iCLSU88zKopgt34VuQlvlo+VrM8v5bo9VVLeGHwIL2JEUpsbj7XsIa26FD+w5FXho7wmfo1wNiHIH89bxMAj/Tspjv3un+h4VL8vrFlcv6qaSMZMzstP0MyPRQwRURE5IIWCoW4447v8bnPfZni4pJJ237+87v48z//yqRt4w3mgsRoJkE8mzqjgBlJJ7izbTMj6TifrV/LQl/1lPu1jg7wVriTi0oaJrRYnqrS4eOv5m1iKNft9Xutz5PF5M9Yn3/Dfqq94S62Dh8FxiahGas/zSJvNV9svCy/35UVLXTGgoTTcVLjxh/WOYq5tsrPcDLKUCrKUGrsGgBsGW7Nh8vxXBYbLd5qVhbXc0np3Anb/v/27jxOjrO+9/2neu+enn2f0SwaLSXLsiTLsryvGAyOAUPYSQwkBJKQQM5Nbk5uzk1y7znJK8tJwjkBEkJyCQlmDwFi8MJisGXkXV4kSyrto9n3rfet7h/dXeqeGcm23PZ4xt/366WX3dXd1U919UzNt5/n+T0f7rqSRDZNIps+Z+9jZ6COG5o2sZcTzrZ0LsdcOsH6YCNpO0skk2Q6E1v2+TMl8xgXz99M2hn2TZ9ashZmqROxSUKu5asEJ3JpvjL0BFfX99Hmr8FluJzQmLazTuBM2vkwX5zvCPn3/xfbLy3bX+kw3ABu3r3uMr5aWDeyVLU7QHugjsFz9Gp+9tSDXFPfRzx7dn+fPf0gfaEmGnwhp/d3MDHLO9t3Uu8N0R+b5lh0nK8PPwXke0/f2nYJHsNFjSfAbCZO0O0BO78u52jJkjNZbFwYNPvD3NG2nSqPnzcUlibZVtNBsz/M508/7Ayl3VmzjjpPkLlMnM1VZ38O5tNxTsen2VzVQrMvDOQLNC2es6lw+dqigCkiIiKva/ff/30sy+K++37Ae97zgSX3nTx5fNn7Sr2tdTt7p4/TF2qitrBEyAs5E59mujBs8ODCyDkD5teGniSeS/PM/CCfXH8jjb6qJY+JZJI8Oz/I+lAj22o6iGSS56grWq7ZF3ZC1hX1vdxTqCxbXIMznctiGPn1D3+1+yr+ZeBRJlMRbPJz9D7RdwMAR3Jnq8zWePLHn8ktDWktvjDv69xNyzkq7W6sauahqeM8OzdIm78Gr+F2iswUHZgf4uDCMKVR++GZfNg8EZ9css/FPXtF72rfiRWZ4MDCUNn2xetTLieWO/c6mD6Xm4emjwP5XthiG25r2crJ2DRDiVmimSTZRRVr67xB+s6zfuPFtZ1srmqhyu1nvmTYbMDlpckf5vbWbfzH8NMkc1nmsomy58ZzaX48ZZX1iCZyGQ5FRjEAs6qFaDbFjY2biGfT/NPph0mTo6UQ6iA/tPXYiXGi2RS/2LaTe8afpz8+Q388f35qPIGydjX7w/z2+huXPZZIJuV8UTGSmOeahvyc468NPckjM6fYUNVMjSfA5/sfZj6TwGe4+Z2+m+kI1FHl8dFU0q4XUpwjmrFzXF7Xg8t4MT8Z8nIo7ouIiKKbD20AACAASURBVMjr1tzcHI8//gi2bfP44/uYn597Ufct1hao4d0du5b0yJ1PX6iJnmADdd4gu8/zvGCh8ErWznFfIQAu9vWhp7h3/BD/fGYfyVyG6VR0SWXV5XQG6/hk3018ovd6rqxfz9ZwG17D7SxD8mdH7+NPj97Lp088wI8nLCYK4XJbuJ1P9F7v7GdLdRsf7b6a6xo28NDUMfZNn2RzITAHXF6q3D68hhu34VqyVmOp2XSMH04cZiy1wGhynnWB2iVBOWFnynr2SnX565Zsa/YuH0Z+NH6EAwtDbK5qYVfNOmd76VDdS6o7uLymm0DJkhjLDVsturq+jw927nHafHatTbi4upP3dV5G1s6RxSbo8nJtfR/13hA+w81jM6fPud+bGzdzKjbJnx67j0truvAablwYBF1ewm4/OTvHd0afZTwdxTAMPt59Dbtqu7it5eKyNVnf2baTq+v7aPGFnfDrNlxY0XEGE7P8c/8+9s+ecZaYiWSSeAtxocFXxXQ6RjKX4fnIyJIgPp9JYFa18Mvr9nBV/Xre23HZOY+nL9TIdQ0b2Rpu4+amzQAciowylY4ympzn0MIIOWwihSHeKTvLPePP0xNqeEnhEuC5hWG+M/osd48d4PHZc7/HUjnqwRQREZHXrfvv/z65Qk9bLpcr66k8330Aw8NDxGJRPvWpj7/sdvw133pRj3sceJz/77yP+X2+V3b7A//w/Zfcnq8s2scMcLrk9iOFf+dytOT/S0v1TC+674X88Dz3HQbwl4e9N7dsZT6bYDgxRzKXIWPnODA3vOzzi718s6kYWxva2F8yXLXIiozzK11XYkXHSZAfRprJZflI11U8NnOKJxc9fjoVpdFXhRsXmZL5mRtCzTw6e4qdNV0kCsNUPYabNzRv4eDCCCk7y/OREZ6c7ectzduWtOOBkjU847kUf2LexudP72UwMcvC6Agk0/C/8r2mC5z78/R5zv9ZWAC+ueh2UWnJoofP8fwnC//g/Oeu1GPLbPsG3+cbi7a90Gfuxfga3+drF/jcUGjpyAFZngKmiIiIvCSNjS+tB+G1bP/+J8hm80P1stks+/c/zic+8fEXvA9AI+1WXpXHxz9ed+6hyy/FWzYvDXZFl/Ys7WG+snc9/+P7Pwfgjxa14XPt7zvnvv5+3fvLbv9l6zuWPObFHNMfNd8GwK/920+JJpfv0ZXKMQxobl5+aDec/77XGwVMEREReUmmpiLkche2/MNrza5dl/Pooz8nm83idrvZtWsPExMLL3gfQHt7vnrmb//27wIwnYrx9eEncePiA+t2U+15dZYrKZXJZfnO6HMciYySzGW4pWkL775oFxMTC5yITnB4YZTL6rqZTEX51vB+GnwhPt5zLR7DzUQqQqu/GrfhIpZN8Q+n9zKbjnFzo8lsJk5fqJEdhaVH/vTYvaRyWeq95WsY5mybuXScGm/AKbzy7ZFneHpu4JxtLi4J0u6vYSQ5T1egnktq2nlufpgt4TYurekkZ9v8zakHyp637mcnGIrM8o/P7iWeTdGfmCZWUsQm6PLy4a4ruWvwcRYKhYeKfqHlYu4bP8S6YD1n4tNlg4kNjLIlV5bz6z3X8ej0SY7OjQHwl0/9EBub6VS0bFkRgM1VzRyNnnstzhsbN5HMZegK1HFgYYTfufRmPr73q2wOtXAiPknQ5eWWZpPt1Z38+fEfkrazGMA72nbwvdHnSNT6cdf6Cb39aryFdTZtbHyGm1RJQSaA3mADpwvVZfPv/dlKvZ7C+XpryzYuq+/hwPwQP5mwlq3Ee/a9ys9v9bs8/OGmW51zfs/YQfYVikd9sPNyLqrOrxHa3Fxd9jO02EB8hi+eeQSw+Uj3VXQHG875WID5dIIqj+8VL/Lzmc/8DcA52/5Cx7UauVzGBX+ZqIApIiIir1u33no7jz/+CNlsFpfLxZvf/Asv6r7lPDM/6CzFcWB+mKsb+i64XVk7x+GFURp9VbQHzl29drEjkTGeLQz1vLRmHTc2bQLyy5HcNfg4aTvH8dgEbf4acthMpqJ8Z+RZZtMxhpPzbA238YF1lxNy+/jU+htJ5jJUefxlr2EAIbePVC5Olbu8mqqNzXByjrSddQr53Np0EZtCzcSyKZ6YO8NYSbVRn8vDh9ZdgdflptVfzfHIBOPJBe4ZPwTk10j8yeQRAi4vnkXDTos2hVto89fwv0/9tGx7PJfmm8P7nXBZ7wkxk4nRE2zgqoY+rqhfj8swuGvwcY5ExsqOoVj4yG94nIqvRW5cBAwPz5YUB0pk09zQtImjkXGemjtTFu7McBtz6QRjqYWSfZytXmsD1zVspMYboM1fA4DXcHM0Ns7O6k4ORUf57uhzTCQjTmEcG/jx5JEl82ybfWFnCZfF4dKNQZ03CPH8OWz0VhEpVA0GnMq5ZxKzXEYPfaEmvpnev+T9LlV8dQ8u4tk0z80NUu0NUO/NDyd1FV+zxPPzw/THZ7go3Ep3qKEsHHYF6/n9jbdgQ9nc0aLx5AJhj5+Q28ePJ47ws6ljdPhr+VjvtU5AlpWngCkiIiKvW7W1tezZcxX79u1lz56ry5YiOd99y9lc1czPp0/gwmDDeaqBvhj3jx9m38xJ3IaLT62/kYZC5dhjkXG+ObyfRl8VH+m6aslyKHbJsiBHo+N8of9h/lvzW/IFYdw+0pkEVW4/V9Sv53h0kkQuzaHI2QqwpesrelxuPC63c3smHcNruAl7/Hys+xpOxaaWVL69b/wQj8ycwoPBHe07SOay3D12gGq3n7e2XcI72nZw1+DjRLJJ/Iab3mAD7YEafC4PsWyKfx95uqyATzqXj1DxXJotVa0ciY6VvV40m+Qbw0+xzl+3bLXYRl8VU+koLgze07mLrmC9c1+xmuh7Oy7jy4OPczJ2tgJtFpuPdF3JfCbBt0eeKdtnlhyf63+w7LWGk3N8a3g/btug2u13Qm2V28fB+WHGUwtlAbnWG+TdHbu4f/wQD04dY//cGf7L+pv50uBj/M+udzpB8tmFIed1npw7Q9Dldd6f+Ux5r2yxHYs1eELsquvCY7h4en6QS6o72F3Xw78MnJ3RWPzSIJHL0Bmo5dMnHsCFgctwlRU9KlXsDW3313JxdRt/cfzsrMsPd13Jr3RdRZXHT2vhi4aB+AzNVPO1wrIn+2ZOsiXcSo0nwOnYFG9u2crmcCvBZYIlwCPTJ/nB+POE3F5+q/dGrMKXAsPJOSKZBHWFpUuenO3n7rGDtPmrafaG2V67zik4Ja8OBUwRERF5Xbv11tuZmhpftofy1ltvZ3R0ZNn7ktkMaTtLzrZxGQbrgvX8wcY3YUBZMLsQxbUks3aOREng2j83QDyXZjAxy5HoKDtKqp8CBNzekn2kiMbzy2m4DIOP9VzL6dgUZriFoNvH29su4RvD+3FhcE1DH0OJOa6qX1+2v1g2xZfOPMp0OkYil8aDi4/3XEt7sJYdteWvDWeXN8lg8+8jz9BY6MlayCb56tCT/HrPdfzBpjc5vYZWdJynZwfZXd9NPJMuC5cGBm9t28be6ZNUewK8o20H/3LmEc4sWrYEYDC5dP3HWk+AO7uu4FRskkQ2w4NTx2jyhbmlyeR4dIK2QC113iBel5sWX7gsYEK++m1HuJbeYCPRTJJYLkU0m38/08uEroydIwMks1l8uEmRJZ3Lcio+VXhPck6PaMjt4/7xw85w1WgmRdLOlC3zsTgwF9eqLPIbbrbXdPIg+5a0pajBG+LdHbuYT8f5j9FnSeYyjCUXuL1lG82+MBOpCHvqeripaTNVbj9ZO8fe6ePOuq5mVStWdIyg4WVH7TrSdobTsSkafWHe37mbnG3jd3v4Qn952R8XBn1VTcyn4wwn5ugI1PLIzCl2dZfPZT0ZmySVy4fpn00doyNQxz3jzxNy+3hLy9ay3s0zheVQYtk0k6kIb2jewo8mDrOxqtkJlwBPzQ2QtXMMJeYYSszxfGSUP9r8Fi1P8ipSwBQREZHXtdraWv74j/942TlUtbW1fPKTv7dk+3hyodBbZPPjySO8qfkiALwvM1gCnIlNc1ltN1XufO9PR+Ds0huX1nZhRcbI2jm+Nfw0yWyGPfW9zv2bwi3c0badp2bPlPVGQn6dxZ0lofCSmk4avFV4CsNTl3MiOlnWK5YhxxfO/Jxf7b6KdYXewKnCfE634eLKul5SuSxHo+NAft3L6XTUCUoD8WnWBeuIl8yVnE5H+LNj9xFwebm1+SLGkgs0+qryy7iEGtgczs/fOx2bcsLl4qjgMVzOEM+iuUyChXSCdYH6kh7KMU5EJxhJzmNg8Lt9N1PrDfLYouUr2nw1dAbz7/udXXvwuTwksml+MmlxaGGEWDa1bMgshsIU+dBUOkzVRb73E2AkOe/0DBrke1ofnDpW9tibG7fw46kjS16jKGlneWLuTNm2arefrG0763RG0gn+fWg/U5mY85ieYAP7Zk7S7q/hqrr17Khd5/SEuww3F4XbeHTmNG7DYCqdX1LG7/Fwe9s2UrkM8WyavVPHeXTmFNc1bgQom/va7K2ir6qJ6VSMvzv1UzJ2jq3hNrbX5Ocsl/bk3tCwiQMLw4wm5zHDreydOs5z80OFdtZzSeE5ADc3bSaRS9PsC9MbasRlGGwJty55X/bU9TCRXMDAIJ5LU+sNKFy+yhQwRURERF6ifK9iPjbFMqmK7ffpuQG+PfIMBvCr3VfTG2osu39zuIU7u67gn8/ke62ORSfKAibA7roe7i3MYXwhxRBVaioV5T9Hn6PaE+CWJpOAy+PM0wNI21memx9iPBWhJ9jAI9MnGSyE2f74NNc1bKA72EA0m2QmHXPCZZXLx7aaDgBuaNzI14eeot4bIp7NkMplSeWyVLn9vKtjY8n7MciPJg5T5wmW9Vw6+3T7uSjcxptbtnLX4BOMp8q/JPjSwGOMpc7O+XRhMFFYh9PGpj8+ww5fiN11PTw524/HcJO2s07g+sHYQR6ZOcXWcBs7a9cRdHt5c8tWwm4/3x19lnihINDF4TbWVzUxHJ9j//zSgkZt/hre3rad/XMDPDHbT70nSLXHz6lCgaGJVMRpF8DO2i5ubN7EE3P9zC1ab/J8FrJJNlY1c7xQVChFrixcmlUt7K7r4StDTwD5NSIfmz3Nb/fd6DymPVDL/7XxTZyOT/HlgceBfG99f2yaLw08Ss62naDc5q9hU7iFDn+Ns75psTDPdDrqhP7DkVE+sO5yALZVd/DMwiBew82uui6ubdxAIpumyuN3ikF5DBexTIq/PP5DWv01fLDzcpr91Xyo68oXfA8ure3i0tr8cjCnYlN0lwyLlleHAqaIiIjIS9QdzC/4ns5leVPLRRe8n0gmyWhynt5QIx7DxXQqHwZs8nMee2lc8pzuYAO7arsYS85zQ+PGJfcDtPiqGVhmKOlitm2TyKXL5r3dM3aQE4XhohdVt7GtuoMnCz1lzb4wOdtmIDHLvplThNw+wq7yOXOHFkb5xPrriWZTfGckv3qiC4NPrL/eqay7OdzKH5u38Z+jz/H4bD8+w02rvwYz3MJDU8f58cQRtla3YS2MkSZXNnS0VCKXdoLLx3qu4XMnH2QmezaQlYZLgBw2ucI8Va/hpqUwt/Xtbdv5hZaL+dNj9wH5Ico523Z60w5FRsvmqobcXuo9oUK1WYPnI6OciE3yW7034DZcPDnXjw1cXb+e9kAtc+k4/3rmUS6t7QJgMh11hqEuJ2fbTCej3NG+nX1TJ0jkMsym40uq4S7HY7gwq1qwCr3IRdVuP+/r3M10OlZWPXYstcATM/0E3B6nxzCHzZcHHidlZwm4vNzZdQVHImPO3FDI97wmcmlSuQxvab2YvqpmXBhOL3lfqIl6b5CZdBwb+Pn0Ce5o3slgMv+53FPX43weioWkLq3tot1fi8/l4d7xgyxkkixkJhhMzLI+tPRn4XwCbq9TvVZeXQqYIiIiIheg+MfxctUuX4x0Lsvfn36I+UyC7TWdvKdjF9c09BHLpvC7PM6QwplUjJl0jPWhRgzDwGUYvLN953n3/d6OXfztyQecELHYkYVRYrk0B+aHORYd58r69dzeml8Hsr9kGYtWXzUbW5tp9odp9lXjMgyORsY4MD8M5Kun1rjLl2Np81fz2VMPMp2OUe324zPc1HgD7J0+gc/l4YaGjTwwdZTZdIwT0XyQTdlZPtpzdT6czfaTw+bgwggNnhDTJT1wi7k5O0cv4PZyaX0XD0weLdxnLKmyWiptZ/mP0Wf5xPobgPy82Q+uu5zn5oY4FZvifxy9h55gA2fiM2TtXNm+Ytk08Wxx6HB+eyKXYSYTo9Vf7TxyMD6L23Dz8PRxbOCR2VPOPkpbtjnUxEhywQmQz8wP8sz8IFfW95IuBPrlaqS2esOMunxlwS+aSZLKZdkQamIyFaHWE6DOG+Kqhj68Ljduw6AjUOv0OgN8b+w5AFyGi4ur2zEwCLi9pDJZmv1huoL1hNw+jkXG8brcjCYXSObS3D16kLuNAySzGd6/7nKqPX6emO1nR00nAbeXdn8tM+l84J9MRcv+u1xBIsgXQHpmboAqdwAXRn6YuP/FV1KWlaeAKSIiIrICUrmMUxRnMpkfXhhwe3lr2yXOY2bTcT5z+mekcllubNzELc1bXtS+63whPtx15bK9mMejE9xVGCJZ9PzCiBMw2wO1nIpN0ewL0+TPr4MXcHk5FZti3/SJsqCVw2Z7TSejk2d7CqPZFNPpfCgsBqbJVJTJVD5cHV4YYdwZTllPJJNkZ20XbsOFbdvUeoPMpuN0BmqJZlK0+2vYXNXKg9Nn5yh6CnErZWd4craf9aEmErk0Ne6gEyyL7az3hphJLx9SR5LzPD8/QmewljpviE1VLWRzOZ4uLPVyfFHhn6JGbxWt/mqeLNnmx02Hv47n5oadbeOphWWLEi02mY4t2zv56MxpAq78n+vFGZ8eXHQE6phORxlLR4gX5lsWv+Yozr0tLosyl0nwke6rnfnBP508WhYuS9m2zcnoJN8a3k+dJ8hNTZu5uLo9f8y+Kn5z/fUAfPrEAyRzaQwDooX5l4fmh3lmfogcNsei47yxeYvT6xt2+7m5aTMAV9T1ciY+Tb0nxD/1/5ybmzazoarZacNXB59wCiP1BBv4tZ5rXvD9WyySSZKxc0uWSJFXhwKmiIiIyAqo8vh5Z/tOjkbGubZxw7KPWcgknCqbxZ6fF6uvqol1hTmW948f4qr6PvZOHyeTO9vb1RtsZD4Td4q1APxCyzaenO3HjcEPxg6yoaqJ74zmh7p6DBfY5b2Cg4kZ7mjdzj0Tz5PKZRlLLi2WVFoRdbxkrmFfqIlELsO+6RMcWhjhTU1bOBXLh4updIxYNgUZeEf7Tp6eH3CGyq4PNVAcCHt4YZS7xw6eczmNc4VLALfh4mvD+ZjowUWjr4oPd11JT7CB0eS8U7nV7/KAbZMs9BQGDA/eResuJsnyv0/9lLe1XuIMkS19p1wYrA82cjI+uaRfdXpRG6vcPqdibbu/hmQu6/T4uQ0Xb23dxpeHHj/ncZUdIy4yuSypXL56bXewgWfnhwi6vFR7AoynFgi5fLyxZQvbajr4lzOPsJBNspBNssvuXraH/iPdV2JFxukNNfCjiSPMZxJEMymnx3wiFaHOE3LC/Z76XqfH/61tlzCfjvNXJ34M5Je2KfYiQ75ycVF/fJqD88PO3N2inG3zk0mLSCbJm5q3lK3VOpKY4wv9Pydr5/jAusuXLQQkrywFTBEREZEVUixIci5dwXqnsuobmswX3F/WzpUt7XDv+CE+2noNe6dPcCw6wWgy39N4Q8NGgm4fV9b3OkuqnI5N8dTsGQ5HxsqWRimt+Jqxc2wKtVDvDXI4OkYml6Xa42cgMUvI5SWVy5YtNVJU5w0xW1LwB/LzRB+ePuEUghlNzvPM/BDeQqGdYtBo8VUzFJ8pm4cZ8vicgOl1uc8ZLku5CgV5SttQ+rwMufx8xLl+7mjbwd+d+ikAXYF6fqX7Kr545hGnR3goNcdQaukQz/lMgiORMf5401uYyyT5X6cecO7LYXMivnyP6GLt/hqn93QsFeH/3HALnz75APOZBEk7w+f6H6LOc7Z3zu/yLtlHMdRnyfFvA48xkJxla7iNG5s288n1N1Ll9jnFfmK5FD3BBlK5TD5MFxTPwVhygaORMS6ubudUbIp4Nu18dtaHGpcUlbqyrhe/28Nvr7+BhUySxsJc16KQ20eLL8x4KrKkkNV7Oy/jm0P7GS3Mnz0Vm1oSMA8vjDhVd4cTc9zUtImthZ7WocScM2T4TGy6IgEzmU2TtW1s28ZQRdoXpIApIiIiUkFZO8dTs2eo9gReVpGRZDbDU3Nn6AzUlfUwLpazbZ6Y7WckMcv+uUFa/NX8Wvc1+N0ektmz1V/tQs+jG4OdtV00F4a/Fn1j+CkWMkuHaXYG6thQ1cS3R54B4HhsvCykPTbbv+Q5m0JNHI+d7anrCdZT6wlwOj5Ni6+ajkAtu2q7+OLAI85zwm4fzy3ki+rUegLMFQKlz+XmZyVLeHgNN82+aqYKtw8ujNAXagQbTsanKOUz3M5SIW7DVTZX8VyqXH6enO132h7Lpvju6LNsDjUTz6Xw4GJ0UbXaak+AWCZJFpsn586QyGW4uq4XoxBqz8eNwbs6dvGd4Wec5U2urt/AQHyGZCFoJ3MZLq/t5idTR53nzWcS+Aw3Mc6eWwAvbvqqmrCiY862gcI6ocViRZfXdtMbaiSezRBye9lU1YIbF3994ifEsykavCHCHj+76rrI2jn+4fRDZOwc908cdvaZtrNsq+7g/vGz2wDWBxu5qqEv//67PDT6yuPGlwYepTNQx6/3XsdsOk7LoiVynpztZzQ1T40nQDqX5Wh0jMH4OnwuDz8YO0izv5qdNeucodAjyTm+NvQkv7vhFuq8QS6p6eBEdIJkLsOVi9Z1vRCD8Vmn9/jn0yfPOdpAzlLAFBEREamgB6eOOYVmfrX7KtaHmpz7BuIzHFoYYWdt1znXniz6wfhB9s8N4MLgU303LekFKnpitp+7xw44t0eT8xyLjrOtpoPb2/LzKjsCtXywYzfDyXnqvaEl4RKgzhNiIZOkxu1nZ10XLd4wx6ITHI6M0hWoY2fNOk7GJp15o4sVe8zqPEFua72Ez51+kIydo8Nfy0B8hql0jCvqermt9WJnvmWxtxIgUjI0sjfQwLOR/FzGwcQs9d4QkC869LHuazBcBqUrRNqFxxVdVttN0O1lQ6iRfx3MDyVt8IaceYlQHj5/b8MtjCfm+cbIU9w9foCewNmlLaZKKr7e0rSF6xs38rWhJzgdmyZreAi4vfxW7/V8b/Q5Z87hwYVhTsUmnXC5q6aL4eQcU6nIkvUzN4dbuaSmg3ZfDZ/pfxCAJ+f6afBVMZKcp9VXTdjj5/mSKrYuDG5q2sxDU8eBfJGk25u3MpCY4abGzc6XAefyzPwQ++cGnHmqU6koBxYGnR7LSCaJgUE6lwM3S9YYhXzQH0nOOcNi671B3tR8EVvC5/9S5Xh0guPRCS6ubqcjsLR4zzOFyr3FHut4Ls1js/1kcllOxCY5EZtka7iN31p/A98vVDz2uTz4Cj3xfpeH93Zedt42vBTRkrmxkRdRxVdYtiCViIiIiFygXElvUs4u3/6lgUfZO32Crw4+scwzl9+PvWRgZ7nSReQDLi8ew8XXh59i3/RJZ/7cb/ZeT60vxEXVbbQFapbdz9UNfRjkg96WcCtWdJxnF4Y4GZvkwenjXFbXze9vfCNvbL7IGYbrLflTsjvYwPs6LuNTfTcxkVpwQkmrv5qpwhzD0eS881zDMJw1Cn2u8j6PU4npsttN3ioCLi9jqQV+On3MeXy1J8D6UCN1nqATVG9u3Mw72nfw5pattPpruLpuPc2+MKlcBp/hdvZZXPai0RvChcEPJ46QLMxPHUzM0hWo45r6vrJ2JHMZhuOzXN+4CRtI2hnmMnH+5uRPypYxAZw5lADV7gBhj39JuATIFOd5ejxOT2Qil3HWxZzLJJhNx5zhzQDvaNvOTU2beUvL1kIlXZv7Jw7T6K3CLvTqFbk5+/konq20nS0r1jSYmOXBqRNsqWqlxhMgZWeZSkf59vB+YtkUjZ5QWZsNoDfUwEXhNnbUdLIh1MR72y/jSGSMH08cIWvnOLwwyn+37uEfTu115rIWhd3+cxbguaFxI9UeP1fW9VLnCeI2XGwNt9ETyq+vGXL7aPKFafZX88F1l/Ou9kv5eM+1F1zN+YWY4VYavFXUeoLc2LjpFXmNtUY9mCIiIiIVdGPjJkJuH9UePxuqzvZeGuR7V5K5DH73C/8JdnvrNlr91bT6a2jyLe1xLNpd243HcOE2XNR5g3yh/+dAfqmLtJ3lXc27nMdmclm+NPAYg4kZ3t62vWz+52QqUihMY/Pg5LGyuZw+w+0EgqdmzzhzF3PYeAwXzb4wd7Rtp7nQK1taWOfp+UGafWH8Lg+3NJfPI31/526syBgHF0Y4XBLQ5jMJugJ1TkXUBl+IY7EJp51FiWyGS2u7WBeo41h0glg2xVOz/WypbiPo9vLZUw8uCTcu8oVvRgrFiKbSMf6xf68zJBcgS35pkMlUlPd17OLe8UOE3D76o5PsnT6+5BykcucfevvgzLGy2x4MMoWAd6zQK1ztCfDBwpqe72zfyanYJA9NHSeaSZUNQ/W7POyo7eJkdJLnF0bwuNxkczlsbB6aPk4sm6LNX8Nocp43NJn4XR7uGX8eOFuJdjk58muibqvuYN/MSQD6EzP81fEfYQOdgVqGEvngagPjyQjrgvW8u2MXP508yl1DTzg9fEej48SyKVJ2lqHkLP3RKZ6eH+S3mm/k9tZtbK/pPGcg9Lk8NPnCbKhq5rbWbWTtnFMBd2NVMyG3z3muz+Uh7PG/4Pv/ctUWPvsB99K5rrKUAqaIiIhIBXlcbq5u6Fuy3TAMPtp9DSdiEy+q8EjA5MNCCAAAFwBJREFU7T3v3MvS/RaDYs622VPXQ398muHEHMOJOd615WzAnEhFOF2Yp7h/boBLa7uIZ9PMpmNcUd/Lg1PHyNg5rOg4zd4qdtd20+qvZmt1u/NHdpMvzFQ6StDlIZ7LgG0Tz6Zp9lczGJ/hkZlTHFwYocYTcIY5BtxePt5zLclshvvGDxHPptld201XqJ4dteuWLJvhM9x8tOcaHpg8SjqXD5EBl4+j0TF2VHc6ATdtZ7h37Hk+tO4KotkUNjZz2SSfP72XzkDdknAJ+ZCVI0c6E8dtuNhe3cGzhWGZi9nY3D12kGg2VRZAFysdbtviCzNRCOvnkll0r7fQs2oWPhd13iCX1nbx08mjxHIpDiwMO0OQt1W3c2BhmJ9NHmUiFckvF1LSS2kDv9F7HfFsmmg2xX1jz9Pqr162um9RvSeEYcDp+DSn49NsCjU7gb7Y0qlUjK3hNgwbgh4flxQK7yxkEvxk0irb30TJlwCQn/96YCE/5PmJ2TNcXtez/Pti5/jP0eewyQ/bvai6DVdJr/PiL1oenznNf44dwAB+rfsaugu9nLKyFDBFREREXiUNvhANvuX/uK4El2HwtrbtjCbm+dzpB5eEnBZ/NZurWjgTn2FPXS+JbJrPnvoZc5kE1zT0UesJOvMNJ9JRqtNB7mjfUbaPt7Vdwt1j0OavYTIZ4VBklN113cym4/zTmX1O+JvPJGj2VrEu2OAURtk7fZyHp08A8NTcGd7SspU9db3c2rKVk7FJxpILGMDuuh4S2TQ7ajr54pl97Js55RR1+fboM/RWna08Gs+l+fyZh8vamMNmIDHDpTXrnDUtl5O18zMI39q6jWPRCS6v7WEyFeHJuTN4XC5uaNzMV4deeDjzrtourmncQMjt429P/KTsfS+2+1z8hntJz9hfHf8Ru+u6neAJZ4PeU3MDPDU3UPLos4WE/IbbCZxhj5/vjT7rBMW3NG/FZbj48fhhkpT3+F1e181MJs70bD/13hD98bNDlBs8IZJ2hmg2xaHIKB/vuZau4Nk5qkG3jyZf1bLL6HQGatlV+CKh1Zfv3R5LzvO90ed4Z/vOJY/3GPk1PocSs2WvcS7F0G9DWZVhWVkKmCIiIiJrxKnYFFOpKDtrOvlw15VMLfqj3224uLPrCuf2RDLi/JF+ZGHMCZdF48kFplJR7hk7SL03xG2t29g7dZwjkTGORMa4c90e3rduN9OpmDP3rtREOsp7Oy9zChrVFNZCLLp3/BBWZJw2fzUTyXyvlw3smznJSHKOSCbpFP8phrScnSOSzm+r9QRZuihKnt/w8JaWrRxcGFlSPbba7cMwXMxnEjwzP8iz84O8p+My2oO1/NvQY9hAe6CWA/NDNHhDxDMpbmrewkImzt5CQC5y4eLWlq14XW5OxSbL5l6Wtruo3hNkJhN3biftLDnb5mhkjIDbSzPVzGcS/HTyGFfW9ZYVJnJhOEV1ikJuL7Fsyhl+fXBhBPfI07y7YxedgXoOR8aocvvYUbuOsMfPVQ3r+XPrPqJ2yfIz2Lyt9RIur+vmn/v3Ob2xkO8h31Hdyb6ZUzR4Q0t6ET2Gi3e1X8qXBh4rW94G4OqGDeyo6QRwhv9CvjLrnx+7nxpPgI90X1U2XPaj3VczmYosqS67nC3hVgbjM6wL1jvLlMjKU8AUERERWQPGkgt88cy+wvy4eW5r3caGqubzPqfZH+YNTSanY1NsqmrmvsIyFB7DRcbOkbGzPDh1DCs6DuQrntYVKrq6MKgprMX4vdFnORErX+PRbbiodvv57OmH2FHTybs7drGnvpej0TGORMbPtjsxz8nCcz24sI18z2I6lyVRMsR1S1ULAbePZ+cH+cKZvbSSX19zU30fsWzSqT5adF3jRg5HxpZdmuTGps3UeUPcNfh4Yd4pHJgfYnO4hZDbRzSbIpFNcyAx7DznZ1NHnSqrpToDtc4cwRczF7A0XBY9NnOKHxTmSV7e01t4/wxubNpEsz/MvePPk7ZzS8IlgM/w0BwMs6fJdPbx7PwQNzVt5samTZjhFmo8Aao8fiA/pDVr2E6XaF+okesbNmAYBq3+GjwuF6ns2eOYSkd5dOY0AFvC+bmtiz0xe6YsXNa4/WwKt3JxSUXZhkIVZI/hYrwQmqPZFCejk2XrXHpdbtqXqS67WDKb4V8LodZtuMqKXcnKUsAUERERWQOy9tm+stSLWO+x6Kamzc7/rwvWk7Nt3IaLp+cG2F7TyWQqwv65AQIuD82+MJvDLbQFaqj2+Gn15yvSVhd6Jv0uD29o2kzOhivre/mzY/cD+bUq3114jV9ad0V+fcPIGM/MD3F5XQ8HF4Z5em6Aqxr6MMMtHI9OsKu2m8lUhIemjnFRdRvXNGzgxxNHsMGpxuoyDG5rvRjIB9qn5gYwq1q5oWkj3cEGBuIzzhDVvlATyVyareF2riisj/iJ3hv4/tgBpgtzUP0uD7/Rex3DiTlm0jHuHT/kvDfJbHnvnAuDFl81HtfZYaxmuJU72rZzeGGMrJ3D7/ZwLDJOg6/KqQLrwqDFX81kMoJhGLypeQux7NJ+2IydI5nLsqe+l3g2zY8mj5Td7zXceF0ufB4fLsPFVQ19RLIpHpw6Rqu/mtpC+F8c1o5FJsqC+/WNm5xjcBsuPtp9DcejE2RyWX46dYy0nXWC7fHoOHDxkrZuqmrm6bkB/C4PNzRu4or6Xid0L3dcxfehyRd2qvm+VDlyzpcHi3tOZWUpYIqIiIhcgCuuuHqlm1CmI1DH+zouYyIV4aoLXGC+t+SP/eKyEH1VTfSGGgm5fYQLvWAbF/WMvr1tO2a4lfZAecXbm5s289js6SVFXbwuNxfXdHBxoedqc7iFd7TtwCj0QhXb0eALsTnc4jzvivpeRhJzeF0eZikfqvqO9p38Quu2siVPuoL1fLLvJjJ21gnDpdoCNXy055qybXXekNNL2xtqZCIZIZ5Nk8yleWDyKEGXlyZ/mNtaL+Y/PNaSfe6u62H3ouONZpLcP5EvbnRD4ybWLZpfmMplyGETdOV7By+ubmd9qJEGX74dVzf0MZOJsZBO0uALYZOvVlzl9vFZ1/POft7YvIUr6noJeXx4jOVXI9xY1USjt4pIJsk723cuOZct/mpneOqldV0cjYwznJjldHyam5vM5XbJtpoO+qqaCqF3+WBZtKu2i6lUlLe1bX/BtWDPJ+j28cvr9nAiOnnOokGV8lr7WX+tU8AUERERuQB79ly10k1YonSoYSW90Hw4r8vtVBUtdV3jxhdVCRdwwuX5VHsC/HJhDunn2bvk/sXraQI0FoZmXojOQB2dgTrn9o0lvb0vRZXHzzvbLz3n/T6Xhzc2b3Fuv79zd9n9XpebO9p2LH7asmq8gRe4P8h/2XDzi9pXtSfAZXXdXEb3Cz72xa5DuVxxnwu1sap5SUB+JbwWf9ZfyxQw5QVde+0NK90EEXkV6GddREREXi4FTHlB11xz/Uo3QUReBfpZFxERkZdr+cHZIiIiIiIiIi+RAqaIiIiIiIhUhAKmiIiIiIiIVIQCpoiIiIiIiFSEAqaIiIiIiIhUhAKmiIiIiIiIVIQCpoiIiIiIiFSEAqaIiIiIiIhUhAKmiIiIiIiIVIQCpoiIiIiIiFSEAqaIiIiIiIhUhAKmiIiIiIiIVIQCpoiIiIiIiFSEAqaIiIiIiIhUhAKmiIiIiIiIVIQCpoiIiIiIiFSEZ6UbICIiIiJyIYaGBvjMZ/5mxV5/cHAAoKJt8HrdpNPZF/34oaEBOju7Kvb6Ii+XAqaIiIiIrDo9PT0vKYi9Empqalb09QE6O7vo7Fy30s0QcShgioiIiMiqc+eddzIxsbDSzai45ubqNXlc8vqhOZgiIiIiIiJSEQqYIiIiIiIiUhEKmCIiIiIiIlIRCpgiIiIiIiJSEQqYIiIiIiIiUhEKmCIiIiIiIlIRCpgiIiIiIiJSEQqYIiIiIiIiUhEKmCIiIiIiIlIRCpgiIiIiIiJSEQqYIiIiIiIiUhEKmCIiIiIiIlIRCpgiIiIiIiJSEQqYIiIiIiIiUhEKmCIiIiIiIlIRCpgiIiIiIiJSEQqYIiIiIiIiUhEKmCIiIiIiIlIRCpgiIiIiIiJSEQqYIiIiIiIiUhEKmCIiIiIiIlIRCpgiIiIiIiJSEQqYIiIiIiIiUhEKmCIiIiIiIlIRCpgiIiIiIiJSEQqYIiIiIiIiUhEKmCIiIiIiIlIRCpgiIiIiIiJSEQqYIiIiIiIiUhEKmCIiIiIiIlIRCpgiIiIiIiJSEQqYIiIiIiIiUhGelW6AiLywbGKWWP9PVuy1gRV7/fJ2NK1oG0RERETk/BQwRV7jurp6VvT15+byvyZqa+squl+v1006nX0Jz2ha8fdCRERERM5PAVPkNe4DH7hzpZvwimhurmZiYmGlmyEiIiIiFaQ5mCIiIiIiIlIRCpgiIiIiIiJSEQqYIiIiIiIiUhEKmCIiIiIiIlIRCpgiIiIiIiJSEQqYIiIiIiIiUhEKmCIiIiIiIlIRCpgiIiIiIiJSEQqYIiIiIiIiUhEKmCIiIiIiIlIRCpgiIiIiIiJSEQqYIiIiIiIiUhEKmCIiIiIiIlIRCpgiIiIiIiJSEQqYIiIiIiIiUhEKmCIiIiIiIlIRCpgiIiIiIiJSEQqYIiIiIiIiUhEKmCIiIiIiIlIRCpgiIiIiIiJSEQqYIiIiIiIiUhEKmCIiIiIiIlIRCpgiIiIiIiJSEQqYIiIiIiIiUhGelW7Aa5AbwOUyVrodr5i1emw6rtVnrR6bjmv1KDkm90q2YxVZ09fItXpcsHaPTce1+qzVY1trx/Vyro+GbduVbc3qdy2wd6UbISIir6rrgIdXuhGrgK6RIiKvLy/5+qiAuZQfuBwYAbIr3BYREXlluYF24AkgucJtWQ10jRQReX244OujAqaIiIiIiIhUhIr8iIiIiIiISEUoYIqIiIiIiEhFKGCKiIiIiIhIRShgioiIiIiISEUoYIqIiIiIiEhFKGCKiIiIiIhIRShgioiIiIiISEV4VroBrzWmaW4G/hVoBKaAOy3LOrayrXrpTNP8a+AXgV7gEsuyDha2r+rjM02zEfgysIH8oq/HgY9bljVhmuaVwD8CQeA08EuWZY2vVFtfKtM0vwusB3JABPhty7KeWe3nrMg0zT8B/h8Kn8fVfr4ATNM8DSQK/wD+q2VZ96/2YzNNMwB8GriF/LE9YlnWx1b7Z9E0zV7guyWb6oAay7IaVvuxvRrWynuk6+Pq+50Eukayys7ZWr0+wtq8Rlb6+qgezKU+D3zOsqzNwOfI/xCsRt8Frgf6F21f7cdnA39lWZZpWdZ24ATwF6ZpGsBdwCcKx/YQ8Bcr2M4L8SHLsnZYlnUp8NfAFwvbV/s5wzTNXcCVwJnC7bVwvoreZVnWzsK/+9fIsf0V+YvmZsuyLgH+qLB9VX8WLcs6XXKudpL/PfnVwt2r+theJWvlPdL1cfX9TgJdI1fjOVuL10dYg9fISl8fFTBLmKbZAuwCvlbY9DVgl2mazSvXqgtjWdbDlmUNlG5bC8dnWda0ZVk/K9n0KNAD7AYSlmU9XNj+eeA9r3LzXhbLsuZKbtYCubVwzkzT9JP/hfSb5P8AgjVwvs5jVR+baZph4E7gjyzLsgEsyxpbC5/FUqZp+oAPAl9ca8f2SlhL75Guj6vrd1KRrpGr75wtY9Uf1+vhGlmJ66MCZrkuYMiyrCxA4b/Dhe1rwZo6PtM0XcBvAP8JdFPybbRlWZOAyzTNhhVq3gUxTfOfTdM8A/wZ8CHWxjn778BdlmWdKtm2Js5XwVdM03zONM2/N02zjtV/bBvID4H5E9M0nzRN82emaV7L2vgslnob+ePZz9o7tlfCWn+P1tTxrcXrI+gauQrP2Vq7PsLr4xr5sq+PCpiymn2G/DyMz650QyrFsqyPWpbVDfwh8D9Xuj0vl2maVwGXA3+/0m15hVxnWdYO8sdosDY+ix6gD3jasqzdwH8F/gMIr2irKu9XODvETmStWXPXR9A1cpVZi9dHeH1cI1/29VEBs9wA0Gmaphug8N+Owva1YM0cX6FIwybgvZZl5cjPW+gpub8JsC3Lml6hJr4slmV9GbgJGGR1n7MbgC3AqcKE/3XA/cBG1sD5Kg6zsywrSf4PhGtY/Z/FfiBDYTiMZVmPAZNAnNX9WXSYptlB/rP5lcKmNfO78RW01t+jNXN8a/36CLpGrgZr9PoIa/waWanrowJmiUIVq2eA9xc2vZ/8NxQTK9eqylkrx2ea5p8BlwF3FH5xATwFBAvDFAB+HfjmSrTvQpimGTZNs6vk9luBaWBVnzPLsv7CsqwOy7J6LcvqJf/HwK3kv3letecLwDTNKtM0awv/bwDvI3+uVvVnsTBk6afAG8GprNkCHGUVfxYX+TDwA8uypmDt/G58Ja3192itHN9avD6CrpGssnO2Vq+P8Lq4Rn6YClwfDdu2z3f/645pmlvIl+KtB2bIl+K1VrZVL51pmn8HvBNoI//NypRlWRev9uMzTfNi4CD5H+R4YfMpy7LeYZrm1eQrWwU4W/p6bEUa+hKZptkKfA+oArLkL5y/Z1nW/tV+zkoVvqG93cqXYF+15wvANM0+4NuAu/DvEPBJy7JG1sixfZF8SfI08N8sy7p3rXwWTdM8Sv5c3VeybU0c2ytprbxHuj6uyt9JukauonO2lq+PsLavkZW6PipgioiIiIiISEVoiKyIiIiIiIhUhAKmiIiIiIiIVIQCpoiIiIiIiFSEAqaIiIiIiIhUhAKmiIiIiIiIVIQCpoiIiIjIK8w0zetM01xVy1aIXAgtUyIiIiIiq5Jpmj8DdgBtlmUlV7g5IoJ6MEVERERkFTJNsxe4DrCBt61sa0SkyLPSDRARERERuQB3Ao8CjwEfAr4FYJrml4AYsJ58AH0W+EXgDwqPGwPeb1nW04XHnwY+B/wysAH4OvCHwJeAawv7f7dlWTOFx78N+HOgE3gG+A3Lsg6X7Ouzhbb1APcBH7IsK2Ga5o3AXZZlrSs89g+AXwNagAHgv1mW9Z2KvkMiK0A9mCIiIiKyGt0JfKXw71bTNFtL7nsP8H8DTUASeATYX7j978DfLtrXLwJvBDYDbwXuJR8ym8j/vfxJANM0NwNfA34HaAbuAe42TdO36LXfTD7gbgc+fI72nyAfgGuB/xe4yzTN9pdw/CKvSQqYIiIiIrKqmKZ5Lfkewm9alvUU+bD2gZKHfMeyrKcsy0oA3wESlmX9m2VZWeAbwKWLdvkZy7LGLMsaAvYCj1mW9XRhXud3Sh7/XuAHlmX9yLKsNPDXQBC4umRff2dZ1rBlWdPA3cDO5Y7BsqxvFR6XsyzrG8AxYM+FvicirxUaIisiIiIiq82HgB9aljVZuP3VwrZPF26PlTw2vszt8KL9vdjHdwD9xTssy8qZpjlAfrhs0WjJ/8cKz1nCNM07gf8D6C1sCpPvMRVZ1RQwRURERGTVME0zSH4Yqts0zWKY8wN1pmnueIVffhi4pKQtBtAFDL2UnZim2QP8E/AG4BHLsrKmaT4DGBVsq8iKUMAUERERkdXkDiBLPuilSrZ/k/y8zFfSN4E/ME3zDcBDwKfIz/Hc9xL3U0W++u0EgGmaHwG2VbCdIitGczBFREREZDX5EPAvlmWdsSxrtPiPfPXWD/IKdqBYlmUBvwR8BpgkXxDorZZlpc77xKX7OQT8DfniQ2Pkw/LPK9takZVh2La90m0QERERERGRNUA9mCIiIiIiIlIRCpgiIiIiIiJSEQqYIiIiIiIiUhEKmCIiIiIiIlIRCpgiIiIiIiJSEQqYIiIiIiIiUhEKmCIiIiIiIlIRCpgiIiIiIiJSEQqYIiIiIiIiUhH/P/vzNnOVqWSjAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
    " - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "import pandas as pd\n", "import ptitprince as pt\n", @@ -1990,22 +1019,9 @@ }, { "cell_type": "code", - "execution_count": 42, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwEAAAHaCAYAAABYeUXQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xd0m/l95/v3U9ELCYKkWNQoCZJGbaQZzYynuI0zduxsbG/iNG+KU7zZXCebntyb7NnN5mb37k1yzq43e3avsyk3cTbOdVyScRnXuMxoJM1oJI1GI6hL7AQJgujlKfcPgBQpkRLFIlLC93UODgDiwYMfHoLE7/N7fkVxXRchhBBCCCFE81DXugBCCCGEEEKIe0tCgBBCCCGEEE1GQoAQQgghhBBNRkKAEEIIIYQQTUZCgBBCCCGEEE1GQoAQQgghhBBNRkKAEEIIIYQQTUZCgBBCCCGEEE1GQoAQQgghhBBNRkKAEEIIIYQQTUZf6wI8oDzAo8AwYK9xWYQQQgghxINLAzYAx4HKYp8kIWB1PAp8Z60LIYQQQgghmsbTwHcXu7GEgNUxDDA5WcBx3DUpQCwWZGIivyav/SCS47ny5JiuLDmeK0uO58qS47my5HiurPv9eKqqQktLABr1z8WSELA6bADHcdcsBEy/vlg5cjxXnhzTlSXHc2XJ8VxZcjxXlhzPlfWAHM+76oIuA4OFEEIIIYRoMhIChBBCCCGEaDISAoQQQgghhGgyEgKEEEIIIYRoMhIChBBCCCGEaDISAoQQQgghhGgyEgKEEEIIIYRoMhIChBBCCCGEaDISAoQQQgghhGgyEgKEEEIIIYRoMvpaF0AIIe5n1WqV8fEU4+MppqYyVCplyuUSxXKJYqlEzaph6AamYWKaBh7Dg8fjIRgMEg5HZi6hUBhN09b67QghhGgSEgKEEGIRXNclnZ7gypVLXLx8gYGhAdIT45QKRbzhIHooAD4DV9dwdRXV0FF0HcWj4jo1XDuPm7dxbQcsG7VqQ7mKXapgFcpUy2V8gQAtra3E29rpjHfS1tZGW1uceLydQCCIoihrfRiEEEI8ICQECCHEPFzXZWxslLNnz3Du4jmuXb2C7Th4O1pwW4MYfTH8B3oJ+X0o6vIr567j4JQqlHJFruRKXBw8i3q+gp0vUZnKowAtsRjxtnY2dHQSb2snFmsjFosTjUaX/4aFEEI0FQkBQgjRUK1WuXjxPKfPnOLMG6epWjXMrja09gjBdx1EC/hWrTVeUVW0gA8t4IPOWx93KlWsXJHBXJFroxdRr57FzZep5grUSmUiLVHCkRZirTHaY+3EYjFaWlppaWklGm1B1+XfvRBCiBvkW0EI0dTK5RJnzrzO8RPHuHghibc1grKhBc9TDxGIrp8uOKrHxPSY0HZrq79r21j5Etl8iUwhz/nBcdQLVdximVq+RKVQxBcIEIlGibXG6Ih30B7vaHQ16iAcDq+b9ymEEOLekBAghGg6xWKB118/xbETx7h6+RK+jhhqT4zY+59C9ZhrXby7pmgaRiSIEQnO+7jrONjFCtVCif5CmaupS6hXz+Lky1SncjiWTTTWSk93L5t6NtPT00t3dw+BwPz7E0IIcf+TECCEaAr5fJ7Tp1/j2Ilj9F+7gm9DHK2njdj+p1FNY62Lt6oUVUUP+iDoY76I41RrWNkCVyZzXEq+gnv0W5TTGTxeH5s3b2HXjl1s25ago6MTVZWZpYUQ4kEgIUAI8cCanExz5sxpjr92nMH+6/i6GxX/Q29FNeTf3zTVNDDbopizuhoFXRc7V2QglaH/1Es8/5Uv4FoWm7f0sXfXHvbs2U9LS+salloIIcRyyLegEOKB4TgO/f3Xef3MSV47/RpTmQze7jhaT4y2w29F0WUe/sVSFAU9HEAPB6CvmwBgF8qMjqUZeu1FPv/854hEozy872H27T1AT89GOUsghBD3EQkBQoj7luu6pFJjXLiQ5Oz5s1y6eB7F0NG6Ypj7NhKL70ORiumK0QJefFu6YEsXAcehlsrw8mCS7x57CcV2OPjwIzx66DE2bdosA42FEGKdkxAghLhvFItFhoYG6O+/zsWrF7l08QKO4uLpaEWJRwg+ewg95F/rYjYFRVUxO1oxO1rhINQyeU5d6+fVP38VHZVHDj7KI4ceo7u7RwKBEEKsQxIChBDriuM4ZLNTjI+nmJgYJ5Uao3+on8HBAYqFAr7WKEpLALUlSPDZg2jB1Zu7XyyeEQ1iRLfh7uvDmszx6rXLHPnvR/B5vTz+6Ft45NBh2tria11MIYQQDRIChBCrznVdqtUK+XyeXC5HPp9DUWoMDo4yOZVhcmqSbHaKXC5LIZtF93gwQwGUoA/Xb6K1BPD27SEQCqzI6rxi9SiKgtEaxmgN4z+wjVoqw3cvn+br3/wKsbZ23nL4CQ4cOEQ4HFnrogohRFOTECCEWLZarUYqNcbY2Cjp9ATpTJr0ZJrJqUly2SmKuTwAhs+L7vOgek0Uj4nj0VC8JmrUg7qhA4+3F3/AJwN4HxCKomC2t2C2txA4tIPy8ARfOfkSn3/+s2zo6ubwwcc4cOCgBAIhhFgDEgKEEIvmui6ZzCRXr17h8tVLDAwNkEqNUsjm8IaD6OEArt8DPhMt7EHtaMfr34jf55EpOZucoqp4u+PQHSdg7yQ/NM5XTr7IPzz/WTo2bOCRA4+we/de2ts7pHuXEELcA/KtLIRYkOM4DA0NcO7cWc5fvsD1a1exHRtvvAW3JYDeFcK7cw+BkF9m4RGLpmga3t4O6O0gYO+kMDTB188e50tf+xKmrrN71x72PrSf7dsTeL3etS6uEEI8kCQECCHmyOfzJJNnOf3GKZLn3gRDQ+9sRWuLENwuA3HFyqoHgnbobcd1XaypPGcHxzn7pb+n+JcTtMTa6NvSx7at29m0aQvxeLusRyCEECtAQoAQgkxmkpMnT3D8xDFGhofwbWhD6YgSfJdMuSnuHUVRMKIhjGgIHoKA7VBLZ3lzfII3j1yj+o8ZnGqNWLydzo4NdHd209HRSXt7B62tMUzTXOu3IIQQ9w0JAUI0qXQ6zcmTr3LsxFHGU2N4ezvQt7bR9uQOFE1aWsXaUzQVMx7FjEcB6qsWlypUsgUuZwtcvHwSTpexpgpU8gU0XSMQChEOR4hEokTDEQK+IH6/H7/fj8/nw+v14fV6MU0PHo8Xr9eDYZhydkEI0XQkBAjRRLLZLCdPvsKR40dIjY3h7W3H2NFO7OldUvEX9wXN50HzeaCjdc7PXdfFrVrYpTL5UoWpYoWr+SHctIVas8FyoGrh1mo4NRunZuHULKxaDduy0A0d0+OphwOvl0DAj8fjIxQIEg6FCQZCBINBQqEw0WiUaLRVxisIIe5rEgKEeMAViwVOnz7JkeNHGOi/hq+nA70vTuypnVLxFw8MRVFQPAaqx4Bo6K6e67oubs3GtRrBoGqRqVk41RqDlQzO2BhK1UKp2rjlKnaxTCVXQNVUguEIra2tdHV20dXZRXt7Jx0dnQSDIRk7I4RY1yQECPEAKpVKnD59kmOvvszVK5fxbWhD2xgn9sgzMlWnEDdRFAXF1MHUWewKFTNnHopl0vkSY9khTg1fxs0WKWeyKCh0dnWxdVMfmzdtYePGTbS2xiQYCCHWDakNCPGAmJqa4uzZ13n11KtcuXQR34YYWk+c2IFnUE35UxdiJc0+82C0zD3zEHBdnHKVXDrLqxNXOXH5DSoTU7i2zcaNm9mV2M32bTvo6dmIpsnCeEKItSE1AyHuU67rMjjYz+nXT3Hy9ddIj4/j7YqjdrUS2/c0qmmsdRGFaEqKotTHLjQWR4PGoOZimfFUhn86f4Kvv/hNqrkCvZs28VDiIXbv3kNXV4+cKRBC3DMSAoS4TziOw/DwIBcunOfN82e5cuUSiqFjdLVh7Ooi1vGQLNglxDqm+b34NnXCpk4AnEqVzOgk37p4kq9/5+tgu+zcuZt9D+0jkdhNIBBY4xILIR5kEgKEWIccx2F8PMXgYD/9A9e5cv0qA9evoXlN9PYoajxK5N2H0QK+tS6qEGKJVI+Jd2MHbOwAwMoWuDQ0zsVvfoHS//pLOru6Obj/EPv2HiAeb1/j0gohHjQSAoRYI7Ztk8tlmZgYZ3w8RWo8xUhqhFRqjPGxUXSvB7M1ghv2oW8IEd37OJpfpiQU4kGlhwPo4QDs3ETAsimMTPDNN1/hy1/9IgF/gAP7HubA/oNs3LhZ1jUQQiybhAAhlsi2bSyrRqVSpVqtUK3euC6Xy5RKRUqlIsVikUKpSDafJZudIpvNUsznqZTLGF4PZiiIGvTiBDxoQR/6Q93EnkxIn34hmpiia3h72qGnncDhndQmsrwycJmjf3kcahZ79xzg0MOPsG3bDhlcLIRYEgkB4r7mOA7VapVKpUy5XKZarVAul6lUKtRqVWq1WqNyXm3cr1Kt1ahZVv0xq4plWTcutoVtWY0Kfv3ati1cx6FWm37MwrFsXEDTNDRDR9V1VENH1TUUXUcxNDB0XEPDNVQUw0D1GmgtEVRvO2GfB9VjSB9+IcQdKYqC2RbBbIvAge1Y2QJnr49y5tN/RS1XYNeuPRw68Ai7dj2EaZprXVwhxH1CQoBYNyyrRjabI5fLks/nKBTyFAp5cvkc2VyObD5LsVikXC5SLpWplMtUK5V6Rdw00AwD1axXyBVdA10DTQVNxdUUXFUFTUHR1HrlW1NRPCqKTwVVR1FNFE0B9cbjqqqiqfWfeTW1vriWqt7YhxBC3GN6OEBwz1bYsxW7UObKwCiXXvgslU/+GVv7tvPowcM89NBe/H4ZWCyEWJiEALHqHMchm51icjLN5GSaqakpJjNpJjJpMpkMuewUxUIBq1bD9PvQfR5UrwfFY9Rb0k0d1WugxkzUDTFUswOvaeA3dRRDl8q4EKJpaQEvgcQmSGwiUKkyMpDi8995gb/9u7+mq6eXQ/sPsXfvAWKxtrUuqhBinZEQIJbNdV0KhTzj46n6ANdUiuHUMBMTE2QyaYq5PIbHgxHyo/o9uF4TvAZqwIvW1obh76bVa6KYhsyRLYQQS6R6TPx93dDXTcCyyQ1P8LUzR/nCC88TCoU4sO8gex/ax6ZNW2RgsRBCQoBYPNu2SaXGGB0dYXR0hIGRAUZGhkmPp0BR8ISDqEFffYBrwIe2rQ1foIdgwFfvRiOEEOKeUHQNb2879LYTcFxq4xmODV7gyImjWMUSO3bsZP+eA+za9RChUHitiyuEWAMSAsQtXNdlairD4OAAQ0ODXB+8xuDQIJmJccxAACMSxA15UcN+9D09tEYSqB4ZjCaEEOuRoiqY7S2Y7S3wMNiFMv1DKa69+FU+9em/IdrSwq7Ebnbu2M22bdvxemX9ESGagYQAweRkmsuXL3Kt/xrX+q8yPDSI47p4WyMQ8aNGAugHt9IW2YtqyEdGCCHuZ1rAi397L2zvJeA41CaynBwZ5OQXz1IaS9PW0UFiW4K+rdvYvLmPSCSy1kUWQqwCqdEJ/vsn/it5LJR4GL03TGR/D6rPI/3zhRDiAaeoKmY8ihmPAhCwbaqpDCfGrnPiq2cpj6XxeL1s3ryFbVu209PTS1dXN4FAcI1LLoRYLgkBAsu28R7qw2iVfqFCCNHMFE3D0xnD0xkDIOC62NkC/eMZrp07jvvyP1FOZzA9XjZ0dbGpZxMd7Z20tcWJx9sJhyMPVAOS67rUarWZdWgqlcqs6yqWVaNWq1/qty0cx66vNWM31ppxbBzHwXVv7HOaqiooioqiKKiKgqKq6KpWn/pa01BVtXG58TNN04hGAxSLtcZ9HV3X0TRt1rWBruuzLgamaaJp2gP1+xHLIyFACCGEEPNSFAU9EkSPBKGv/rOg62LnS6QzOUbHr6BeP4ebK1HJ5rFrNSItrUSjLUQjUWLRViKRKL29nTiOjs/nx+/34/P5MYzVmRFuuuI+XVmfrriXy+XGpTRzXSwVKZbq16VykVL5xho01UqFWqWCoqnohoFq6GiGgaJr9YumgV5fUwZVxVUVXFUBVQGlfq00bt/yPhWF6VRQv3LBrd9xXRccF1wXZeY2s267KC64tlN/suOC4+A6Dq4969p2cB0bx3ZwLBvbssB10XQdzdAxDBPDNPF4PJimB4/Xg9fjJeALEPQHGr8nH7FYnERi14r/nsTakxAghBBCiEVTFAU95EcP+fH2dsz8PAg4NQs7V2SyWGailOf86ATqtRrK8Rp2pYZTqWFXqtSqFXDB8Jjomo5uGGi6jtG4VhsV53rluV6Zdh0Xp9GqXr/YWJaNZdWwa/VV3+3GRVFVNMOor+jeWNVdMaZXc68vJuloKoqpoRg6alhHaQuhGi2oho7P0AgYD95aNHMCgmXjWha1mk3VsslZFk6thlsdx0mNoFg2VC1KV4f5oz/8r2tddLEKJAQIIYQQYkWoho7aGl5U91LXtnFqNtj2TMXUsm1q0y3c071mXJd6U3ijVV1VZ1raVUXBo2v1aai1+rWs6L4wRW0cG2Nx27uWTfHK0OoWSqwZCQECgFomP6efohBCCHHPKQqKri16c9d1cWsW1FaxTM3Mdta6BGIVSQgQbOvbzuUrF4HUWhdl3dI0FVv+Ga4oOaYrS47nypLjubLkeK6se3k8+7bvuCevI+49CQGCH/nQh9e6COtePB4ilcqtdTEeKHJMV5Ycz5Ulx3NlyfFcWXI8xUqQTnNCCCGEEEI0GQkBQgghhBBCNBkJAUIIIYQQQjQZCQFCCCGEEEI0GRkYLIRYNZ/5zKcYHByY9zHD0KjV7HtcorWVzU4BEA5HVnzf6+14dnf38MEP/tBaF0MIIcQC5EyAEGLVDA4OMDjYv9bFWDey2SzZbHati7HqBgf7Fwx/Qggh1gc5EyCEWFXd3b187GO/esvPm3GKu49//I8A5j0ey7Wejuf0+xRCCLF+yZkAIYQQQgghmoyEACGEEEIIIZqMhAAhhBBCCCGajIQAIYQQQgghmoyEACGEEEIIIZqMhAAhhBBCCCGajIQAIYQQ61bJrpKuFta6GEII8cCRENDkjh07wrFjR9a6GKJJ/YcLL/C54VNrXYw7ylllXslcJ1MrLWs/juviuu4KlerBl6kV+eNL3+CPL3+DVzLX1ro4QtxCvkPF/UxCQJM7evQljh59aa2L8UCq2BbHM9cYLk+tdVFWVaZWJJkfxXadu35uwa7yytR1ClZlFUq2cv6i/2U+N3KKP73+4pL3cWKqn2ulCQbLGcp2bebn3xhP8smB46Qq62Ohr/VkrJKj5NSP1dVies5jjutyKjvIhcIYRbvK86Nn+O7EpbUopmhi8h0q7meyYrAQq+QzIyd5IzeMoWj8Wt878WoGJ6cGCGgmO0Oda128O7JdhyvFCTo9YYK6Z95tSnaN/3b12xTtGgcjvXxwwwEAqo6FgrKo19kRaMevmUsu52gli1c1iBi+Je/jTsq2BdSD3bXiBJ8cPE5A8/CRjU8Q0r2L2sfZ3DAANddmuDyFoihUHYtvjJ9vbOHyYz2HV6S8RbvKXw8cI29V+OHuQ3R5o3f1/DPZIQbLUzzZunXe333NsfmH0dcp2VX+Wcc+wsbijsHd6gvEeSSykXStyFtj2+Y89lL6Ml9OnQVgZ6CDc4VRADq8IbYH2lfk9ccqOb4xfp6Nvhbe0rp1RfYphBDrhYQA0VTyVoWxSo5N/lY0ZXVPhFWdesXRdh1s1+G76Ut8NXUOgJ/qfZy+QHxVX38+g6UMXxs/xyZfK29r23Hbbf9++CSns4OEdS+/vPUdGKp2yzYVp0ap0ao9WSsCcLU4wV/2H8VQVTyOhaku/G/m3yXee9e/h3S1wKeHX8OrGuwItPP82BkMReNfbX6auCd0V/tarB/rfoRPD58kZ5X5eipJ0a5RtGtcKoxzINKzqH28pWUrpxUNU9V5IzfCy5kr+FUDn2pQcmps8EZWrLwX8mNcL00C8FL6CldLE1Qdm5/ofYzuOwSCVCXHp4ZexQUmawV+uPuRW7Z5IzfMa1P9ALSZl3l3++4VK/tsmqLy/g37532s0vj7AvBqBgAqCiFt5QLJl8be4EIhxZncENsCcdpX6fMlhBBrQUKAaBpVx+K/Xf02WavMw5Fe/nmj1Xq1fKBzP0czV9nkayVs+OZ0l7FdF8d1UZXFtZavlC+nznKlOMGFQoqHQl3EPcEFtx2v5oF6f/iKY80bAqKGnw90HuBKaYJnWvsAuFAYo+ba1Gwb17ZwXfiz60fo8UX5nviuOc/XFJXh8hRfS52j19dyx2ACcCxzbaaCW3Ps+rVrk6rmsVyHoO7Bo+pM1UrLCgUFq8LfD58E4Ln4Lsaq9e46k1aJgGYS0DxsW2SQy1llooafXl8LAOO1+rEtOjV+ZuNb0BWNHt/dtdbfzhZ/jIjuo2hX8WnGzFiGN3LDdwwBhqqhKSqW6+BVDb41cYGRcpb3tO8m3Djb0ukJYzS26Zlnf2W7tuoh+5nYNnRVxa+ZPBLZyL5wNyHdQ6c3PGe7qVqJ17P1SvzNj91J3AxxoZDCrxkLng0TQoj7lYQAseosx0afpwJ5r5Vti6xVBuqtnelqkVQ1x7ZAfFUqLGHDx7tmVXqfad2GR9XxayavTl3nrwaO8tbYdp6N71zx115IjzfKleIEYd1L6A6Vmvd37uM7E5fYHmi/bQXoYLSXg9HeG/cjG7lQSGEqGnndJFXJkymOc7k4zt5Q1y0t3l8eO8ul4jjJwhi7Qp10eG5fUesLtHFk8gqGovH2th34M1cJ617S1SJ/M/gKpqIR1D2ka0Weau1bciv1ial+zhfGANjsa2V7IM7FQopHo5t45qauKTmrzOdHTmOqOt/fuQ+PqjNYyhA1fOSsCv/j2nexXJuAVSGge3hP+0N8YzzJRl8Lm/2xJZXvdsKGj1/reycOLnmrwqVCiopjsy/UfcfnRg0/P7fpKUYrWUxF438NvQrUx358dPPTAHR6w/xK3zupOjYxM0DJrnEuN8Kl4ni9u1NlCgWFVzLXiZtBNvlbV/w9GqrGW2PbZ+7vCNa7AF0pTvC54VPEPUF+uOsQnxw8zlB5Ct+EwW9t/567/ltvMwM827ZzWV3WxINrvY9nEuJ2JASI26o5NpqiLrnF+qupN/nWxEV2Bjv48Ar1d56P7TpcLU7Q7gkt2Ec7bHj5/s599YpcZBP/7eq3KDsWj0Y38f2d+1atbNN0VePJ1j4qjjXTwvzaVP89DQHPte9mb7ibFsM304ViIV3eKD/UfeiuXyNmBvhXm58B4OPKy3g0nSpgKhpH01f43s49c7oIdXmjXCqOE9Q8hBfRv357oJ3f3PYuNEXFo+q0mn5SlTzHJ+uzx1Rdm3Sja9KV4sQtz8/USvzDyGl8msH7O/fPe4YDYJOvFV1RcV2XVDXPW1q28uGew/NWIl+evMq5fL1P+lZ/jHS1yLfTFwlqHt7etoOaWz9jUXEsAnjo8IT4kXm62dxJ0a7ymeGTOK7LBzccuG04UxQFDYWI4eMXt779rl6nyxuhyxvhZKPLD0B5VvcbYM7f2SeuvThzpmSai8vnRuozP32k9wm2BtruqgxL9fLkFSZqBSZqBa6VJmdmY3Jxudt5mV6avAzAkckr7Al3zXlstJLl00OvEdK9/FD3ITy36fY2H9d1KTm1FQsXQ+UML6YvsyPYwf7wncOeWL7Xs4Mzn/vXpvp5ONJ7h2cIsb7I7EBiQa9N9fN757/If73yrTmzmdyNU1ODAJzLjy55H4vx+ZHT/Hn/y/zJlW/P6St8s0ejm/iR7keImr6ZSk2mUWG8VzyqzmPRzfg1gycbXWjupS5vBN89bNVsMfw81dpH1bV5JdvPq5nrcx5/rn0XP7/paT625a23lKtgVfjs8Cm+ljqHM2tqTb9m4lF1ClaFP7nybf5y4ChV98bvvc0IsNHXSq8vykvpy3O6Yh1JX+Z8YYxT2UHeaAzWnc9Gfyu/3vcsm/ytvJYd4K8GjlGwqvNv62uZGQZ9ItPPYDkDQN6ukKkV2RPaQCLQsaiQczsnpwY4lx/lfGGMV246jqthb7ib3cFO4maQH9jw8C2PlxsDw2cHAFPR8GsmXvVGyMzb9661dHdoAwoQ0EwuF1N8qOsQz7Yl+MjGJ9CXcBYAmHf8ztHJqwxXspwvjHEhP3bX5fyrgWP8QWOK3JX43/jZ4VOcyg7y6aETFO35P6diZVUb3RFn356amuK//Jc/JJtd3Kxwd7v9au/n5n2t5H7F+nNPzwQkEomjgAcwgR3AmcZDryWTyZ9awv5+Bvi/gWuNfV4CfjqZTI41Hn8B+Ggymbx6h/18F/j9ZDL55Xke+wjw7WQyefFuy3e/O5MdwgXGqjnGKjk2LuGU/tOxbfzTxHn2hLru2PK8HNP91/N2hbJdu2OrXJsZ5AOd+7lWSs/pUnCvfF/nXr6vc+89f93VNlLO8k8TF9jij/FYy+aZn2/xx3gxXZ++sc28dRxC9wL94f9p4gKvTtUru93eKLtumlWp5NRmppAEhcPRTQxXsryvYw8j5SyfbbREa4o6U56N/lZemryMoWjzDsYdq+Q4kx0kqHs53LJ5Jphoioq2wBmxRLCDPn+ci8UU18uTvL9zP6qicrU4znfSl9jka+VnNz3Jx9XvzH/gFqnX14KhqLiwKl1sZivbNUxV50d7Hl1wm4FyhqHGFLhh3cvh6Gb2hbv4pOdNHNdlV2wbXtVgT6hrwX3crelAt1C3nv3hbizH4rMjp/nWxEW8qrGosSbz+YXNbyVvV2gx/Lc8tiPQzquZ6/g0c9HjOQpWhS+OvYFHNWa6mr06dZ3XsgP8aPcjJIIdSyonQKsZYLiSRVNUvjR6lu/v3LsuumE+yB6O9PIlox4UH4luBOCFF57n8uWLfPnLX+BDH/rRO+7jbrdf7f3cvC9wV2y/Yv25pyEgmUw+BpBIJDYDrySTyZUYmflCMpn84UQioQKfAn4X+Fjj9Z5bgf1/BBgCmi4EvKV1K2PVPBs84QUraXfyWMvmOZXB1fJ9HXv59sRFtgbaFj1V5KHoRg41/nE/SFzX5WR2ABWF/YucuWal/OPo61wrpTmTG5rpow2w2Rfj3fHdbPBG7qpbyHRg0FCIzvN7bTOD/LOOvVwvTfK2tu1zAsY3REfnAAAgAElEQVTsVWYN5UZl6KHQBn5l6zsxVO2W7jRfHD3DS5NXZu6HdS8f6NxPn7+NHl8Lgdt0vzkU7eVKcZw2T5AWw0fFqWE3zl5kakVGV2AdgF5fC7/W9ywuLGmgatWx0BXtjt37vjNxkRdSb9LtjfKzG99yS2WyvzRJUPOgKwqmqmG7Lt/fuW9OJVZVlFsGgi/XQGmSP+9/GV1R+ZmNTy44sD0464zLchofDFWjRb01AADsDHXy29ufQ1PUBbuU3ey76cucytbPju4KdtJfmiRvV7Bdh/P5sWWFgB/c8DC263AuP8pr2X62B+Psk25Bq0pVlJnvG01RmZqa4tixI7iuy7FjL/Hud7+XcHjhWb/udvvV3s/N+zp69CXcxgKHy92vWJ/WzZiARCLxvwPTMfMo8LFkMllMJBK/D2wDIsAm4A3gI8lkcs43ajKZdBKJxLeBZ2ftcwB4NplMnkskEnuAPwe8wGvATuDfzGr9f0cikfgdoBv4ZDKZ/J3GmYYDwJ8kEokc8MvJZPKbq3IA1sjg0AClYpFf+qWPLrjNdeAof3rvCrUMLwF/vdaFEAD8W54HwO/388nB41wujhM1fPzK1ncueozJYy2b6fSE8WvmghW+wy2bOTxP0Nwb7gYUvpu+xFdSb+LVdHaHNgDQYs5fsbtUHJ9z31R1vJox7/7ne73doQ1oisqfXz8yM4NRVPeRsUr8P9e+S8h15rRgD5Qm+czwSVrNAD/UdeiOlcmqYy05ABzPXOMfRk7T7gnxc5ueuu3ZsuluUoPlDBmrNCdcvZi+xJfGzmIoGht9LTPdIGZ3/xkaGqB4h/8ry/X7fGZR2/01z6/L/wnHbrr/tcZlpfzPxt+fWH1+f/1swAsvPI/j1M9UOY5zx9bzu91+tfdz874s24JGQ8Zy9yvWp3URAhKJxPcBPww8AeSp1+P+j8YF4GnqlfFx4C8bP/+tm/bhAd7DwnXATwL/IZlM/m0ikXiMen1xth7gGSAMXE4kEv8zmUz+aSKR+EkW6Cp0J7HYwtMv3gvx+J2nR7zXU1SK5qMoCr956HvmfWwxn9E4S5/m8x3xBO/oSyx6+9+Lf9+SX2u234jP/37//TeSwI33HSfEwxtX7mzU7Y7n98b38L3b9yxqP78b/94FH3t//ADvT9z+JK4i/1dEE1GU+t/eiRPHse16KLZtmxMnjvELv7BwEL7b7W82/fe+3P0sVCZmjcNa7n7vB4v5PnrQrIsQQL31/m+mW/cTicQngP+LGyHgH5LJZKrx2P+kPg5g2nOJROIksAU4Afz9zTtPJBKtwPZkMvm3AMlk8mgikTh702Z/l0wmHSCTSCSSQB9whWWYmMjjOHc7H8XKiMdDpFK3735wsZCiHPGgRTw8/i9+kHe2JfjkwDFUReXDPYfn7X7RrBZzPNcLx3V5JXMNVVE5FOldVoUsUyvyh5e+DtQHWhYaAw5/rPvRW/rnz+eP//N/Yrya5z+9+hVCupc94S52Nro83ItjWnNs/qz/CIOlDN/fuW9J3b/+ZuA4Z/MjMys/365L0Gzj1TwhzUvJqXJ0sr5eRKZUwlBV/uOrL8zMXKQAEd3Hv9z89C0t/H83dILTje4jz7bt5Gvj9cXm9oe7+cGug3O2Xeh4Hpu8yj+Mvj5z36sa/GrfOxY1OPyTA8d5Mz8CwE9vfIIt/jYGSxm+OPYGvb4WnovvYsoq4WsM1J62YUO9G8rHPvarC+57pJyl6lps9C1tbMPnhk/x6tR1Hm/Zgu06HMvUZ4f68Z7H5nRFWyzHdRksZ4iZgfqZp0V+PpP5Uf564BgKCj+18XG2+NuoOha/d/5LQH0Bs9/b+b45z3Fdl1en+nFch0eim+55Y8zRyav8Y+Mz8YHO/fekW+Ts4/ntiYt8JfXmPX39/3jhKzMD1P9t4r13PUh8IR//+B8BkErlOHjwUV5++UVs20bTNA4ePHzbz9Ddbj/b7OO5nP3crkyKoszMrrXc/a5399N3/HxUVVlSw/N6CQEK3DJ720K155u3nR4TEAG+CvwbboSH2+3/ZuVZt23Wz7FZNVv8MYKal5pr89bYNk5nBxlrDLB9Ize0JjPXiOVTFWVR3VcW8krmOrlamYJTYbSSw6vqlB2LNjNIsZTGp5lsmLXo0tHJq1wpTvC22PZbFmPKWmXKTo1LxXE+1HVwJgDcK4aq8dFNTy1rYTarMRDVdh2cu5hkcroLjUfTea59N18eO8tYNYuCwiP+OFeLE3R7o3y45zA+zZh3oOtmXyuns4P4NZN94W7GqjkmqgWeuou/ze3BdlrSfrK1EjYuZafGRLVIj+/OIWBPuItkfpSYGWCDJ4LtOnxy8PjMehuKohCdZ9DsnVwvpvnE9RdxgQ9uOMDBJUyteGKqH7dx/ctb34HjukQMH9uXuBL3F0bPcDRzlYju5ZfuYkrVRLCDX9zydlRFIdaYTchQtJnQPN+Cda9lB2amTwWW9fc6UJqkaNfuKviYs7qdmWswePjxls2U7BqGqi56xe3l2h/p5sX0ZR4KbVixAHCz5557H8eOHcG2bVRV5d3vfu9tt9/wxAGcl18EWNT2K/W6i92XpumAi2VZy96vWJ/WS0X3q8C/TyQSfwIUgJ9mbvfI70skEr+bTCbHgZ8AbumXn0wmpxKJxEeBbycSif88PUNQ47GJRCJxKZFIfCiZTP5dIpF4FFjsCkJZ6uMRHjiaos70s+7whLFdl5fSl1EVhe2Bu29JWy/ezI3wzYnz7Ap28vYlzgrSrM7nx+ZUTqDekgkQ0b38et+7MFVtZrDlZLU406KYs8r87KYn5zzXq+pkUfCqOl3zzMSzElzXpebac9YeuNlyWlo/sGE/xyavsdHfsuAaFIsx1Vi118VlezDOk7G+O1ZGDrdsZlsgjk8z8WkGH7qp9X8xWgw/v9r3TpL5UT4/cppub3ROiLud/Y0pQnVFRVEUqo5FrrE40rVSmvFqft7Znu4kXSvOxKnZA7jvxlOxPo5PXuOJ1q0EdQ/v37B/SfuZNlypz3I0ZZVnznjN9mL6EsPlLO9o20Fro7I/7ebxKoqi8Aub38q10sS8q0qr3Pg8qsuokF4vpfnEtXqYem/7Hp5o3XLLNiPlLGWnNmdRuocjvRiNAeLT42TuJVPVea59ZQeN38l72h/iXW07V3XGpEgkwuHDT/DSS9/h8OG33HEQ7ZHKEPrOHmpvXOORw48vedCtGfQR3r2ViVNJ9j3y6LIG785+D4899hbAXfT7EfefdRECksnkPyYSib3Ay40fHQX+YNYmXwP+IpFIbAXOAr+4wH5eSyQSnwV+vXGZ7cPAnyUSid8EjgOvA4uZ+PZ/AP8pkUj8Ng/gwODZurwRfnt7fUKl+22sQKZW5OjkVTb7Y7yQOst4tcBQeYrHWjbfs5U+S3aNF8bOMlEr8JboFnaF7/2X63LNbhU0FI2aa8+0fmetCmFjbiXYpxkENQ95uzLvwN2A7qFXNfiXfc/iW4UpYmuOzSeuv8hweYr3dexd0kxUr2Su8/zo62z2x/gXjcXABkqTfGnsLN3eCO9pf4h3xhc/rmAh72l/iLP685iKTpc3ykg5yyeuv4iKwkc3P7VgZfrmCufdsl2HqmOTCHbwG9vedVfPvVyor/T8SHQjUcOPqeps9cdmBlBnaqUlhYC94S5GKzkqTm3JZxy/J75rRWcfeqZ1O3879ApwI7BNGypP8aWxeg/SqmPddtrUaWHDy15j/tl5DkR6UAAHlwPhpbeE563KTJjKWeVbHu8vTfKJay/iUJ+96dHoppnHbl78rBms9pSpFcdidHcb2uVWtj5158UAdwc7yRzajjlV5nvfvfTxSGdzI5T396KNpQgfXt7fxJH0Fc5tDxC+3sm73/1eXBdGRoblLMADak1CQGPe/rabfvYHzK34zzaSTCZ/cp79/CnMnbYmmUz++Kzbs/+7XgYeTSaTbiNwfIB6oCCZTD510z6emnX788Dn7/imHhArVfmfqBb4zPBJ/JrBD2w4iEeb/6PmuO7MPPCHIhuX/PqfGT7F5eI4L6YvcyDcw3i1QLc3OmfGkruVtyoYirZg2W/2nYmLvNJ4L1eKE/xr79tRUfi7oRMYqsYPdx1adH/ye8W+abaazf4YP9n7OHmrwrZAnJJdZaiS5UphnKdit1bWvJrBL2x5hlQlP6elcTZdVVclAED9czY9T/3r2aElhYBXp65juQ4XCynS1QJxT4ivjye5VkpzrZTmQKSHLu/SpsidLWx451SYvzGenFnY7lsTF/jn8yzGtVxFu8p/v/odJmtFPtB5gIPRxXe7Kdk1/t+Bo1iuw5XixMxZng9uOMBXUm/SYvjp8y9tFWBNUe9JS/BQeYrBcoa9i1inpOhUZ7p+nc0N8yibZx4Lah48qk7FsWa6/CzXSkzfuyvYyffEd1GwKzwT23bL45laaSbEp6v3dlHEZjRUzjCqV/G9/wmSzhR3igHv69zL29t24Dv4A8v67t3sjxEKhzE/8BR7O249G3Q3Xpy8RNWnwfsOYQb8eDWDX/zFX1vWPsX6tS7OBNwjzwD/IZFITI8P+OlkMilL4K2So5NXuVZKA3A2P7zgcuqvTfXz+ZHTAPW+0kscIOZtdAUxVI33dOxmX7iLwcoUU7XSgtNB3s6Z7BCfGnoVn2by85ufXtQMNbMHUquAhsorU9cZaKweeyY3fNeV1JxV5mIhRZ8/fksr/M0KVoWvpM4R1r28vW3Hbb9UKrbFJ66/SKqS4we6Hm5Mp1k3u/tCUPcQ94TYf5v5xkO6d1ndZJaj3RNiX7ib68X0vCFlMQ5HNzFWybHFH5tpdd/ib+NCIUVE99Fi3LnSN1kr8umh1/CoOj/YdXBRoSfuCUFj0G3cmPv5Gi5P4dOMJfW3n+1KcZx0Y0Xsc/mRuwoBKgqaomK5zpwzRBHDd8ugZKgHMo+qL2n60tVQsCp84tqL1Fybi4UUP9J9+ypZItBOtzdC0a5x4Kb/V2HDy/+25a2kqwW23ib4nM+PcmKqn4ORXnbcNP4lZ5X5q4FjVGyLH+15hA7P4rpk3Y6iKPNW/qc9FNrA22LbKdpVnlni34dYvG5vlC3+GKOV3KK/y1aiYShmBvj1vmexce+4UOadHIps5BvjSXaHNqzqAp9ifVj3ISCZTP7OCu3ni8AXV2Jf4s76Am28PHkFU9Xp8bYsuN3siurNldaLhRR+zVxUX/J/vuFhErkhenwteFWD/2/4NQp2lVNTg/zi1rfddfkvFlK41FtSh8pT7ODOA1oPt2wmYvi4XkyTCHXQYvrZHojzUvoSuqKxZYGW8tv5i/6XGa3kaDMD/Out77jttrNX1+3yRm47e89wZYqRShaAU9nBOSFgtu9MXOTo5FW2B+K8r3MvmqLecvZgLamKsqR+8rM9HOm9JaQ+E9tGzAxguc6ivlSPZ67NhN4zuaE53S4W8va2HRiKhqYoc7rEvJK5xudGTmMoKj+/+Rna5xlYulhnsyMzt7cH2nkzN8J305fYE+qat//4bB5N52c3Psm1Upq9d+g6cmpqgE8Pv4ahavz8pmeWXN6VZLvuzOrC1cYZl9sJ6B5+fvPCZW8x/POuHDzb3w2doOxYXCyk+J0d75nz2Ln86MxZq5NTAzzXvthhaUunKgrPxneu+uuIOlPV+emNb1mT19ZVbUUqdG9v28FbY9vvuy7BYmnWfQgQ95eqY6GgkAh28Jvb3oWmqLdtTTgQ7kFpDJKb3dr88uQVnh89gwJ8dNNT9PgWDhJQr7BMTzPnuu5MP1n3LmZzma2+WnKOsO5lx10Mkk4EO+as+rnZH+O3tj+HirLoVUVnKzYGKBbnGagIkKrkiBg+TFWf6aaw0Oq6s3V7o2wPxBmp5HgsunnB7b6aehMHON7oMtPti/KF0TNs9LXyUxufWLVZNu5GzipzZPIKG70t7FzEtKWLMVye4lODr+Lgkm4r8ExsG0fSVzBUjcPRTbdMu9rnb+Ol9GU0Rb1lysvJxniVm0Ogrqi8rW37zP2LhRSfGz7F9JjRmuswXs3fMQScy4/ytdQ5/l38xjSUeavC8cw1am59vm9NUdkaaOPP+4+QqZW4XkpzKNp728HUAJ3e8C0zPs2nvzSJC1Qdm5HKFI7rLGvA60oIG14+3HOYa6X0bT/jK6nNDDJQzsw7TqLPHyese6k41qKm1xVirUgAaB4SAsSKuV5K8xfXX0ZTVH5m05N0LKIFU1GUeaeIuzGTCjPTES6Woih8pPcJzuVH79iCuZDpVVVXwnJOz364+zCnsgPzttR/afQNXpy8TJsZ4Bc2v5XHW7bQ6QkT0Mx5pyWczVA1fqL38Tu+/rZAO+cL9Ym2JmtFxmsFXOozw0xWiwuu4nsvfX7kNOfyoyjAr/S9846ttYtRtGszfanzVoUj6St8OVUfGOrTDPbd9PvoC8T5jW3vQkO9ZQzJZxvjVV5KX6bFdRYMTkfSV8hY9c/9Vn+MTk94TqBcyNdS52bO6mRrJcKGj8+NnOJcfvRG+fxtxMwAm30xTtYG6PJGMJSVGyT5ZKyPdK1ISPdwfLJ+ViSir/06IzuC7UtaM2Cpfqr3CfrLk/TOc/az1fTz633P4iKVLCHE+iAhoMnVpwBbGRfyKaquDa7N5cL4okLAQp6JbcdyHQKayc7g3beaLbYFc73r9kXp9s0/KPVqqb7Y1Hi1QN6u0KL6Fxycu1T/oucwRzNXGShleCa2jdFKji9Uz7DFH1uxAZLLNd2arSvqip2Z6Au08b6OPUzWirwttp3T2aEbr7dA5XmhWaimxwcYqsbtqn57whu4UBgj7gnyY92HFz0gfXugfSYETPcvvrm71nSQ/uCGAzwd20ar4V/RVX1bDD8/3vsYJbvG/3mhvrj6fNNsPug8mj7vlKDTFEW57WdA3H9W8jtUiHtNQkCTO3z4iRXb18ORXs4XxtAVdckt8NN8msF7O/asUMkeTM/Fd/O18XNsC8RXpPV7Poqi8HjLFmg0bLZ7Qsv+3a6093fuY6u/jW5vZEUHKD/ecqPP/OHoJnyagalod93l6IMbDpAIdNDji/Ip5eaFym94ONLLnlDXzJz8i/Vc+y4ebww4n678v79zP5t9MfJ2hfFqfmZxMVVRlhXO78SnGTzZupVvKkdlxXHRFFbyO1SIe01CgFgxraafn9/89FoXo2lsDbTxc4GV6bJ0PzNVfcmzSi2Woii3dAFaLI+qL3pWnqWMG4H6jD2z+TTjjgN/V8t72h/i4h3G8AghhFh7az+qTwghhBBCCHFPSQgQQgghhBCiyUgIEEIIIYQQoslICBBCCCGEEKLJSAgQQgghhBCiyUgIEEIIIYQQoslICBBCCCGEEKLJyDoBQohVNTjYz8c//ke3/NwwNGo1ew1KtHYGBvoB5j0ey7WejufgYD/d3YtbG0EIIcTakBAghFg13d09a12EdSUcDq91Ee6J7u5e+d0LIcQ6JyFACLFqPvjBH1rwsXg8RCqVu4elebDJ8RRCCHE3ZEyAEEIIIYQQTUZCgBBCCCGEEE1GQoAQQgghhBBNRkKAEEIIIYQQTUZCgBBCCCGEEE1GQoAQQgghhBBNRkKAEEIIIYQQTUZCgBBCCCGEEE1GQoAQQgghhBBNRkKAEEIIIYQQTUZCgBBCCCGEEE1GQoAQQgghhBBNRkKAEEIIIYQQTUZCgBBCCCGEEE1GQoAQQgghhBBNRkKAEEIIIYQQTUZCgBBCCCGEEE1GQoAQQgghhBBNRkKAEEIIIYQQTUZCgBBCCCGEEE1GQoAQQgghhBBNRkKAEEIIIYQQTUZCgBBCCCGEEE1GQoAQQgghhBBNRkKAEEIIIYQQTUZCgBBCCCGEEE1GQoAQQgghhBBNRkKAEEIIIYQQTUZf6wIIIQSA67o4jjNzcd3pa7fxmAu4M/cXoigKiqIACqqqzNxXVQ1N01BVFVVVG9sIIYQQzUlCgBCL5DgO+XyeYjFPoVCgUChQLBYoFPIU8nmq5SKVSplquUy1WqnfrlaxbBvbtnEcB9txcGwbu1GhnY+iKKiKMqeyqqqNSqyqzlRk69ezKraaNutnKqqqoUzvQ1VRlfq1oqjU68j1SrCCMlMhrlewb1S8XdfFna6UOw6OYzcuNyrrtmU1bjfep+1gN27feL+N9z7n4t74eeO11OkKu3KjAq8q02WcfX2j/HO4Lm79Chd35tpx678/pxEmnMZr1Y+nit44dvr0RdcxDAPDMDFNE8MwMTweDNPE4/Hh8fnxeLx4PJ7GxYvX68Xr9eHz+WauNU1bjY+iEEIIsWwSAoSgXkHMZDKk0+Ok0xNMTqaZSo8zlUmTncqQy+fJFop4DZ2AxyCgq/gNlYAGftXFr0FYU/BoKqam4DEUTK+CqanoioqmaGgq9YqnUr9eqB3aodEq7tK4uDjUb9uui+PWK9mOW8N2XWy3Xtm1XXBsF9uqP8d26zHDcacrw43b1CvJ02ZHkVnZAIV6OQFUpd53sF5Jr1+rUH9P+o33pCqgzbrWFBVV0dAU0NS5200fC216n3DPWuenj6/tulgu2I6L5bpYDliN2zW7Rs2pUnNcqrZLLedSdVxqjkvFdsg4KlUXKo5CxXEp2y5ly6Fs2ZRqFuWqhaap+Dwe/F4vfp8fn9+PPxjCHwjiD4YJBkMEAgH8/gDBYJBAoH4xDOOeHIdm4TgO1WqVarVKrVZt3K407tcaIb0RXBuXYNBDLleed3/TAX06gCtKI0zqBrqu1wNl4/aNQFkPlbquo6rSE1cIsfYkBIimUalUGB9PMT4+Rio1RmpkiInUKOnJNJlcnqDHoNXvodVUadEdOk2VhKkRbleJ9AYJGRF0VbqQPAiU6QCCgrlKr+G69dBQslxKlkPRqlC0ShRzKYqTDkXLYdBRKdhQtFzyNYditUa+UkPXVII+P4GAvx4UQmGC4SihcIRgMDTrEiQUCmOaq/Uu1hfbtsnn8+TzufoZuELjTFwhTyGXpZCbolQsUCoVKZXLlMtlSpUKlZqFoamYuoapaZi6iqmqGJqCoShoKmiAqtY/E/UQC/OdrauHaaUe0JkdzsFyGyHSqYfz+m2Hml2/WLaNZTtomoqh65iNgGCaJqZhYJoeTNPE4/Fien14ff6Zs05e7/QZp7lnm3w+H6bpkWAhhLhrEgLEA8WyLCYmxhkbG2VsbITUyBBjI0OMT4xTLFeIBby0+XTaDJder8qBoE6szUeLJyQVfLGiFEXBoyl4NIh6Ft8tyHVdKnY9FORrNvlamnxunHzaJmfBkKOQt6BQc8hVauQrVVRFJRTw4/f5CASDBBuhIRCMEAzWzzQEAsHGdQCfz49pmms6LsJxHEqlIsVi/TJdmc/n8+RzUxRyU+SzU+TzOfKFAvlikUq1ht9jEPQYBAyNgK4Q0CCgukR1hS5DJaCreKMqPl3Fqwfx6WG8mjJzVmutOY0zTjXHpeY4VO16WKzaNapOtX6/4lAp1j8H02edKo2zTqWZM04OJcumXLWo2TY+j4nfVz/j5PcHCAQbZ5vCUUKhMKHQjfAYCoXweLwyLkaIJichQNx3HMdhcjJNKjXG2NgoqdFGRX88RSaXI+rz0u43iJsu3R6VhyM68Y4wEY+2bioCQixEURS8uoJXV2nz3flf9PQZh3pocMjXMuQLaQoZh4LlMuEoFC0o2C7Fmk2halGqWtiug9c08Xk8+Lz1MQ0ejxfDNDFMD6bpqV97vOiG0RibcmOcSn1siXJjLIjjYFlW/X7NolopUSmXqFbKVCoVqpUK5WqFUrlMqVymUrPwGjp+U8enawRnKvUOQQ1aDJWgoRJs1Qh0eAgZPny6et//DauKgqmBqSms1AR9tlM/21SwHIqWRdGapFicoJB1yF9zuWYr5Gzqn4+qRa5cBRTCwQDhUIhwJEq4JUYk2ko02kpLSwvRaAuRSBRdl2qCEA8q+esW61KlUmFycqLRfSfF+NgI46PDjE+MM5nNEvSYxP0mcY9C3IQdPp14n5eYNygt+qKp3DjjoBLzLv55luNSth3KlkvJdihbRSp2garlUqu61Oz6+If6OIjpsSqN7jCA0xjVogIabmO8h4uhKHgUaJkeH6PWx8d4AvX7Pi2AXw/h1ddP6/z9TlMVgqb2/7N33+GRnfdh77+nTh+UARbYRd8Gkksuiyg2iRQlkZIoWRIpW82OHyuJ7diOadlWrlskJ7lxnCfXdhJH9nVsK/JN3CTLoppFSVRjE8uyk7vcne0FvU4vp94/zix2wQWwKINF+32eZ54ZzJw5552DKe/vLb+XuLn4HqeK45GzXLJWhZw1RG7gHLlTPgOuQsbyyVQscmWLaDhEYzJJU1MzTS1tNLe00tTUTHNziqamZmKxuPQoCLFBSRAgrjjf9ykWC2Qy00xPT5PJTDE5Mc7U+AhTkxNMZ7NULYvGaJiWiEGLCSkT+sM6qb4QqfD2WiuaEGK5dFUhrmrEZQ7ylhTWVcK6yrbo/G8Az/fJWx7TVYdMdZTpgSEmTsExG6arLtOlKo7n05hM0NzcTHNqWxAoNKeCv5tTJJMNMl9BiHVKggBRVxdX8INLhsz0JJnJcTJTk0xnM2TzBQxNpTESojGk0WhAs+HTFdZpbtNo7mkibmz8bn8hhNjIVEWhIaTRsMCclorjMV11mapmmJ6YZGrwEK85CtOWx3TZoli1aYjHaG1JkWhooqmlrTbkqJnGxiaampqIRKLSmyDEGpAgQCyJbdtMTU3WUmlOMT01wfTkGJmpSTLZLJl8HlPTZir4DQY06j67TY2GhEZTS5jGUIyQJi1DQgix0YV1le26yvbY3D0KjueTqbpMVQtMF7JMT55gwFV4zYZM1SFTquL50JiM05BooKGpiYbmVhoam2loaKShoYFkMrhI6lwh6kuCAHGJSqXM+PgYo6NBhp2JkUGmJseZnJ6mWK7QFA3RHDZoNpWggh/SaEpoNEoFXwghxEV0VQkysi0wyb3ieGQsl1x4XrIAACAASURBVGy1SLaUI5s5yZijcNyGrO2Rq9rkyhamoZOMx0nGEyQbG0k0NpNsaCKZbCCRSNaChSTRaEyGIAmxCBIEbGHFYpHh4UGGhwcZGjjL6NAA4xMTVKwqLfEI28Ia20yfvWGNVJNOanuShlCTDNMRQghRN2FdpV1XaV9gfoLv+5Qcj5zlkbOK5Mo58rnT5GyfQVchZ/vkLZdcxaLquMSjkSBgSDaQaGgk2ZiiobGp1rMQ9DAkEklZ1VtsaRIEbAGe5zExMc7AwFnOnTnF4NlTjIyOULUsticitEdUdoQVbkjqbGtPkjQllaYQQoj1Q1GUYG0IQ5t36NF5jlcLCGyPvDVJdnqM3KjLgKvyugPZqkuualOoWMQiYRqTSRoam2hsbqGxuXUmRWpTU7OkSRWbmryzN6nDhw/z+KNPMHDmBAPDI8RMnc64SWfY5664wY5rkjSGNJmMJYQQYlPRVYWmsE7TZVLmurXsR1nLJVMdJzMyTPacz5CjkrE8pmtpUuPRCE0NDTQ1t9Dc2kZzqpVUKkVzcwtNTc1bZsVusflIELBJfenv/oaW0hjvSkXo3NFKzJDxkUIIIcR5mqIEGepCGj2JubdxfZ9c1WWqajNdHWD6xGkG0gqvWj5TFYfpUoVoKExTYyPNqRZS29pJtWyjuTlFKhUECdKTINYreWduYte3RNjTuITVg4QQQggxQ1PO9yrMXV3yfJ+c5TFVsZmqnmPy+GlOHVZ40fKZLNtky1US0QjNTU1BT8K2dpqbW2prKaRobGySngSxZiQIEEIIIYRYBvWi3oSdhC553PWDFKnTlSpT5TNMpU9yygmChOmKTaZcJWQYNCaTwTyEVGuQIrWhgYaGxpn0qLFYTIbvirqTIEAIIYQQYhVoikIqrJMK6zBHkOD7PgXbCwKF6iSZ0TEyAx6jrkrO9slVnZmMR4lYlEQsRiweJ5VKYYRjxBMNxOMJotEYsViMSCRKNBolGo1hmqYEDmJBEgQIIYQQQqwBRVFImBoJU6NrnnkJALbnk7NcCrZHwc5QmJ6iaHsUbJ9RT6HsQsnxKdkuZduhZDl4vk/YNAmHTCLhMKFQmHA4TDgSJRSJEApHCYUjtftDmGaYUMjENEOYZnAdCl24bZqmrL+wyUgQIIQQQgixjhnq+R6FxT/H9nwqjkfF9am4HhWnRNUtUi6PUy34WLXHM76K5UPFA8sDyw0eqzoeluthuS6W42I7LrqmYRo6pmFgGAYh07wQJIRCmKEg2DBDEcxwuBZEBAHExbcvXF+4reu69FxcYRIECCGEEEJsMoaqYJgaC3QwLInn+ziej+X6VGvXludjuWUsrxT8nfexsj5V18NyfTK+guUrWJ4SbOv5tUDDu3BxgiDD8zwMXcc0dAxdxzCMmWDDMAx03cAwzeBvM4SuG+iGiW4YaHrwuK7r6LqOpmnouo6qaui6hqZpqGpw/caLqmpYVoJcrlrbRq3dr6Jp+sx2mzFAkSBACCGEEEIsSFUUTE3B1CC+Cvt3fR/b9bFrwYJdCzIcz8L2qtiej+P6WLaPXQgCEtcPFodzPJ8SCo6v4AKuBy4Kju/j+cG16weBjOsFx3L94NrzfDzA9Txcz69t49ce83BcD8/3URUFTVWDIEHV0GvBgqZp6JpGsqGJX/qV/2sVzszqkSBgE6u4PkXbW+tiCCGEEEIsiqoohDWFsLbWJbmYj1cLGpyLgwjPx6n1kPzpa8fXupBLJkHAJtXa1sbfvzAI5Ne6KJuDooDvr3UpNhc5p/Ul57O+5HzWl5zP+pLzWV91OJ8tzc11KsyVo/jyJloNvcCpyckCnrc257e1NcH4uAQA9SLns/7knNaXnM/6kvNZX3I+60vOZ31t9POpqgqpVBygDzi96OetVoGEEEIIIYQQ65MEAUIIIYQQQmwxEgQIIYQQQgixxUgQIIQQQgghxBYj2YGE2OAeeuiLDA4OrHUxlswwNGzbXetiXFG5XBaAZLKh7vveiudzNa3m+ezo6ORDH/roquxbCCEWS3oChNjgBgcHGBw8t9bFEIuQy+XI5XJrXQyxhgYHz23IoF0IsflIT4AQm0BHRxcPPviptS7Gkmz0lGzL8dnP/hHAqvyvtuL5XE2rdT7PvweEEGKtSU+AEEIIIYQQW4wEAUIIIYQQQmwxEgQIIYQQQgixxUgQIIQQQgghxBYjQYAQQgghhBBbjAQBQgghhBBCbDESBAghhBBCCLHFSBCwCR149ikef/zx2Xe6Dubpl1CzI2tTqMuIvPwwie/9GdqULKKzFSmVAvEffo74Y3+FYpXWujhiGRSrDK5dn525DtHnvkL06S+gVOX9IOanZkcJv/5D1PzkrPv1sZOEX30EpZRdo5Ktc55L9MA/En/s8yjFzFqXZsM7cOBpDhx4eq2LsWSyWNhmY1d5/uEvom7v43q9irXnNgCiB/6R8PFn8HWTzP2fxo8k17igF2hTA0ReewSAyEsKhXf+wpUtgGMRPvoj3EQrdte1V/bYW4yan8A3I/ih2Kz7Q8eexhw4CIDd2kf1mruXtmPfB0VZ1KZKOY8fioKqLe0YYl7GwCHij30e34ySu+/X8OLNK9qfefpFwkceA8CPJCnf8N56FFNczK4QPvwYXjyFtfPmK3LI0NGnME+/ROXqt9Xnu9b3ST7yJ6iVPKHjz5D9wG8DoFRLJL73ZyiujTF6jPy9/3rlx9pkjIGDhNNPAuBFGijd8uNrXKKN7dlnnwLglltuX+OSLI0EAZuMlh1BcSwAzLMvzwQBaqW28qVjo9hV/MiVK5NildGmB3FaekG79C3nxZrwIknUci7Y5gqLvvgNwuknAMi+91O4qa4rXoYNwaqgZ4ZwUt1z/h8vxzz2DPFnvoCvm9ipbvip3555zGntxVc1QMFt6Vnafo8/Q+zZL+G09mG37UHLDlO+4X14ydZLto289E0iB7+Lk+om955PgqphDBwi+sLXsNt2Ubr1I4sOJpZCmx5GsSt13+96YQweRvFclEoefeI0Vi0I0CbPoY+dxNp58yWB33z04aNEn/8aPqAAbkPb6hV8C4u+9M2Z771cPIWzrW/1j3ngSyi+j5ofJ1uvBhffr117F+5TuPA5VmTAw1zUahEfBQUfp7lzrYsj1ogEAZuM29yJH46hANWr3zZzf+mWn8CLp3BaevCSrajZEcwzr2J3X4fbuD3oMtVNfLPO0YHvk/j2H6NnR7A69lF4x89dukkoRvb9v4VayuA27ajv8Rej9mPho9StAqhUS4QPfhcv1kT1qrvm3U7LDBN/9H/h6yb5d/wr/GhDXY5fd75P8tv/Pfg/dl5L4e0/O++m2uQ5FKuEs71/1v3G2AkAFMfCHD0+6zGnfQ+ZBz4DKEs+B6ETB1A8F2P0OEZtv4rvU3jbP79kW2PwEAD65FmUSh4/2kj44HfRcmNouTEqV9+NV+dKpzZ+muR3/geK76GUG+bthYu8+A2M4TTlG96L3XFNXcuwEKVawtfNZQV251X734I+cRovksTq2Dez3+Qjn0VxLIyhw4vu4QsdexrVKgJQePOPY/W9ad5t1fwkkdcewUl1Ue1/65LKbJx9FcW1sXpvWpXAb16uEzTUeO6a9UbpoydQi9MA+IqCrxsLP8GxCJ18DrdxO862ncs+rtvciT55Dqe1d9n7mEVRyN/7SxgDB7F6bpy52zej5N71IPrYCay+ZfZyuA7xJ/8aNT9B8faPbbrGIfPk8ygEAZTb0r3GpRFrRYKAzUbVcBu3owL2jqsBiD73EKETz1K++u0zP6iJ7/85WnEa7+iPKL75AeJP/G98I0Luvb+Ol2ipX3k8Fy03BgQV3vn4oShuKFq/4y5B6cYfw0204CVacevUIhJ55VszrWxuQzvO9r0AGOcOEjvwJZxUN4W7PoF56gW0/AQA5sBBqnvfsqLjKuU8oaM/wm3pwe64+tLHq0VCx5/FaenBaduFUi0SfeHreKEo5Rt/bP5Kiedc+D9OD817/KDC+8covk/xlp+YVTErX3sPaimLlh1BLecuea4fbVziqw1U974VLTOC09yJPnEG1aniNrbPuW15/3uIvPwwdsfVM8ezu/ZjjJ/Gae5c8TCWuWiFKZRaK6Xi2LWf3dnU4jSRQ98HqJVvZUGAce4g0Re+irNtF8XbPzZvJdc88Syxp7+AF2sm995fX3Rr/Ru5jdvJve/fvOFeH7za6/a8S580D6vvJsyBg7iJFuyd8wcAANEXvop57jVCJ54l8srDlG9436I+Q8bZV0k89nkAinZlxZ+7uShWGfDxzYu+1+wK+uQ58Fxiz3yR4h0/WffjXo42cZbEI3+Cgk+16zqqV9112e+96PNfIXzsaXxFJfuB356zl20xcu96EC03Pu/nczncph1zNh65qa4VVdyNkaOYZ18BIHz4UYpv/ell72s9sjuvxRg7idO4HTeeWuviiDUiQcBm53mEjjyBgk/4yONUrn9PcH+ti9RXVYyRYyi+j2KV0KYG6hsEaDrFt/wU5pmXqfTfWb/9zsVz0bKjuMltl2/V9D1iT/09+vgpSm/+0IKt9csqSiQRHEZRZ1WswkceRy1lMUuvoU0PYXXtJ3T0KdAN7De0nC9H7NkvYZ57Nfixvv/Tsyq1SqVA/NH/hTF+Cl/VyDzwGcJHniB04lkgaKWbt9VVMyje8ZOYZ16issC5UktZlFr3/PmWRqWURcuO4rTtJn/vL6FmRggdfYr4il9twOq7CavvpuBYxQxacWre1kq7ez929/5Z91X2vYPq7lvxjQioixs6oJQyQeDRvueyrblWz/WUM/egVEt4U6fn3MYLJ3CadqBPD634faAWp4k99XeoVgktP0F539vxGuaudJkDh1B8H60wiTY9FLyeOvFDMfL3/CL66HGqu29b9PPsruuY/th/WdT/4uL3t1otEXn54VkVen34KLHnvoyT6qZ4+8dn9qlcPIHZqdNk5otok+dIPvIn4Hvk7/nFmfejYleCHgBAzY3X/biLodiVmRZgL55a1P9ccZ3ghu/PlH9ZdBO3uWP5z18O10bLjgWBxxJ6XpzmLtxoI2o5Oyso10ePE3n1EewdV1HZ947VKPEVUdn3Dqq7bgl6/5fZI6WU88Se/RK+plO87SNghOtcSrHaJAjY7FSV6u5bCZ04QHXPhQkr+Xt+EfPca1idwbhMLTOCF0kGvQe+V9dxlFbfmxbs0q+X+A8/hzl0GLt9L/l7f2nBbbXMCKGTzwEQPvj9eVteFatUqyQkllSWyrX34Da048UaZ/3oVfvehD56HLepIxjrrJtkPvJ7UKehSP754EdRCR36AVphgvKbPojb0E7y23+Mlp9d8Tg/3tpXVNzEwq171s6bLzuB0O6+jtIN70OtFKhcew+KVaLhm38Q/L3nDkq3fYTEo58Lej/e9zPLeIEe2sRZvOS2YHLvGx+ONeLElt6jsJQWcMUq0fBPf4haLVDZfTul2z+68BNULehlAXjuj+beRtPJ3ffrqOXconsj1MwIiR/8BWg6+Xf+ArQG79Hwa99FrWVYcuMteAu08pWveQdqbjzorVrBMI/5OG27cNp2Lf2JiwzGSjd9EByb8LFgUp77hmAncuj7aNlRtOwolavummkZtnpvomhXUMo51NI05umXsHpvvGT/y6WPnUBxqsHtkeMz59aPNuI2bEOplijd+uG6HW8pnO17Kd72UdTiNOVFVmJLNz+Am2jFbdqBV8dW/Csh8d3/F2P8FFbXdRTu/peLfp4fSZC9/9MoTnXW90P0+a+iTw1gjByl2vem9TuEcxH88MqaYsJHn8Q89yoQfNZXo0dNrC4JAraA0u0fo3T7x2bd5yVaqFzz9pm/8+9+EG1qgMaH/gMoKrl3//K8rYfrlT5+atb1QtxEy0zLq/WGluHz1Nw4yW/916D17tc+d8njxuDraBNnqfa/9dIvU0W9pMUZwNp9a1CRvrjl5aKAyzh3EH38FJWr7lzW8JjibR/B2bYTX9WJP/OF4E7NoHDXJ2Za5j0zQuHun8WPNmLtuoVsYzu+Hpp/LLxdpeGbf4BSKVB46z/D6VxgQp+iUrnu3pk/1fwEaqUQFKM2nIglDA15o+iz/0j42FO4sWayH/gt0M1l72u5FKuMWq29pnwdW3M1fUnDkUJnXkIrTgFgnHsN+oIJ1W6qC45Rm2fyc6DNP97bbe0l9/7fXFm515KqUrr5/qDnz3MpvemDsx62uq5FHz6KF2tEqb0PAVAUqnvfQvzRzwc9ZzyO09yBl9xWl2JZfTdjDh4Gz6O6+9ZZj/mRJH4kuarzn5RqEcWq4CXmDgAvbhBaDD8UpbL/XbU/PCKvfBu1lKF04/vxI0trILmiPA994gyw8O9C5OWH0cdOBkNDL56voOkXGlZqnJYe9KkB3ETrnA0RW4nT0oOvqKCoMrl4g1pXQUB/f/+zQAgwgb3AwdpDL6XT6Utn+V1+fz8L3JNOpz922Y0vPCcMfA3YDnwH+BagptPp7y31+BuNMXBopgXRGDxCda4gwLEInXgWL9EyM+dgvSjd+mFCR5+65Ed3TrpJ7r3/BhwLzLm7MPWpAVSrPOdjan6C+A//EsX30TPDc05Cndc8Xa9KMRPkbPY9tOkhCu/8V4vf53lGmGr/W1HKebxQHLVaCLL5qBrlq+8mcuh7wVDtWNPMU9zUwpPCwq//cGbeQuz5r5JdKAh4Ay/RQvHWD6OPHqdybVCJyL/z5zHPvLLEvpWAXltHQitOoZSy+Mscm7wSXjxFaf+7g7kVTVd4aMNFgqFkP8JXdezOYDIujoUXSZK795dxk60bupVy0XST0ps/NOdD1f478fQwiaf+luQP/pz82/7FTHCuDx+FWms9mo6vh+pWJD8cJ3/PL9Ztf0uh5idJPvyHqFaZwh0fx9q1iO9DgkYNNTdGdc8dCwbXxsChmZTOvhGe99yvC6pK8baPEDr5/LzDUdXMyMzrib70TfLvWjidaOmWn6C653bcRMuCAfZWYHdcQ/b+T+Or2tb4rtmE1lUQkE6nbwXo7+/vBZ5Pp9M3rEEx3gS0p9Pp/bWy/B7BedqUQYB56gUir34Hq+s6qrtvwzz9Eqgqds/1c24ffembhI88ho9C7n2fqttE2npY8rAjVZ03AACwOvdR7b0JtZzjkmq7qgUt+L57+cwai6XpwcWx8Bco12L4kQTZD/42aik70+KoWsUgc55dRps8t3Crs10JJvA1d2Bv78d/9dsogL1taUM7zNqQq+JbfnpmiIfX0E5lf/uygoDimz9E9LmH0KcGaPj2fyf3nk/WrfV2KfSJs2ilDJEjj2HtvnVVW3XV3Bh+KHbJkCW3uYPMh39v1n3xx/4Kc+gwbqyJ7P2fXrUybSSqfSGQV2sLRxmDrwdDqYDK7tupXnXnla3EeC5qbnzZE2wXomWGZxovzJPPLyoI0KYGiP/gL1Hw0fKTC+aM9+IpfFVD8dxg/tUaU/MTGEOHsTqvw59jKKC1+zasN8xJMQZfR6mWsPpuwos24saa0IrTi0uTqijr6ndvra1GMgVx5ayrIGAh/f39vwOcT6XwLPBgOp0u1Srpu4EGoAc4BPyLdDqdX2BfCvDbwP2AAZwFfg5oAf43sL2/v/9l4G+AnwWU/v7+9wB/m06n/2A1Xl89DQ0NUioV+eQnl9KSfAb4pwt/fve3Lv+U5//jUou2cX1zgSwezz8B//BEfY/3/FPwj08tevNodI7x8aEY7kUVx8pVb0OfHsKLNs6ZOWiG59Lw8H9Fy41R3XULxTt+kswDnwkCikWMG4+88i1Chx/Dads9swAYnluXydduay9O2y6MybMo1WKQg36ZFRGlUiD+5F+D71N46z+bN3WneeIA0ecewmnbTeFt/wJUNaj0Dx3GC8XwVnHhvVD6SWIH/hHPjJL9sd+Ys5JzMa0QrJqqlnN1TUGpTZ7DPPsqVt9NuI3b67LPK6W65w7Uch6lWpyZA3Xx0CAv2TJvEJf43p/hhRMUb/9o3Vp9hwbPUSqXefAzVyJIexX+aYk9is8/An/7yCK3/Wvgr5dcqnXr+a8RDAQQYumi0eVlV1tLGyII6O/vfz/wMeB2oEBQOf+3tQvAncANwARBJf7fAgvVYn8G6ARuS6fTXn9//4PAH6TT6Z/p7+//BeD30un0bbVjNwJ6Op1eRK14tlSqXvlPluZKprwW64OiKLS2XqZtvTUBe34XgMuuBvGz/xmAaO3C5fZ9sXs+Avd8hIurTPNVky9b5rm8558FF4LIf/kS8PHfAGDBfpfWd8Jt78TgovP27p+Ed/8kGkHLwWIZRlApX/Trbr0P3nrfoo9j1v5vAHVtY269Bq66cmsX1F17MCJ05ie69j+FYMr/fP+NcO39Uc+R38oiJz0LITYWRVnmb9oa2hBBAHAP8HfnW/f7+/v/EvgvXAgCvp5Op8drj/0v4HKt9R8gCBpe7O/vh+A8TNa70JOTBTxvrqzgq2v79g4MQ+MXfuFXF7W9UikEE5wumqCqjZ8m8YM/xzfC5N/9K4Rf/yHhI4/jheNkP/A79ZsQZVcxRo7itPRedoJZ5MVvzORSL9764WVnIggdeYLYc18GoHTD+6hcG1QGLn790eceInzkcQDy7/h5Gm+4lfHxeTuX6suu0PyFIOZ04ymyD3xmwc0/+9kg40w9yxc68gTmwEHK196z5LSR0ee/QujIE1R334qzbReKawfzNN6Qcaq1NXGhzHaFpi/8Ngo+bqLligxl0SbOkHzkTwEfX1FRnSq+ojD9U380q6yhY08TPfBl7PbdFN7+cytqXbftIL3iYv9XanaU2HMP4Sa3Ubr5gQWz5sw6n28QPvR9oi9+A4DcPb80s27FYjV++d+hlrI4jdvnnEgc/8FfYA6+PtNztN7Envr7mVS4+bf/3IU5FAtobU3g/LefxddD5N77qboN3dnevgM1P85v3dpL8ZYfn3c4W/S5rxA+8hhQ+59t6yP6wtdRnCqlN92/8Hew5xGqrVNS7b9z0dmWlsVzCR1/Fi8Uxe6ZfwTvQu/PldAmz2Gee41q702LzlwUOvY0ilUO0h3PkU46dORxYs89BCzv8zKf8MHvEX3pn/CMMLn3/+asuVlLtVrnc6s6fz4bvvb7aLkxvHCczE/8x0W1qirVIn/6//w7ACYGRpa93spKqKqyrIbnjRIEKHDJGjvz1a7n2naubf59Op3+Pyst2GYwV5owt7WXzEd+f+YDoGVGAFArBZRqLWjw3KCytIKuh8Rjn8cYTtfGMH9mwR8rq+cGQsefwdfNFU1Kdpt2BBkN8PGNEI3/8GlQNXLv+uWZDDnnv5x9RcWLXOEJT3oIu7UXY/w0dnvw46NUi8HExRWs6roU1avupHrV8tZ1KN38AKU33b+094Vu4jbtQJ8exGldxLjcOnBbesj8+L8HfCIvfoPw8Wewu667JFip9twIvofT0jM7APD9Ve928xra5pxgqlRLxH/4l6jlHIW7PnH5RZEuyos/K0f+IuXe9SDG0BGsrjkmhXsexuBhIJg0uh6Vr7sXpZLHizdj77hq0c/LPvC7+LpZtx91pZiZWTTRSW5DLWbmDQJK19+Hr5t4sSac7Xsxjz8zswChF2uifP198x9IVWetGL+awocfI/ri14GgweRKrnYNQTas8hIXBbtcdqRq/514kQZ8M1K3AACC1NF2+168aINMpF33Fp+2O3T8GZRKsXb72Q21fsRGCQK+C/zH/v7+PwWKwL9k9kTd9/f3938mnU5PEAz1+eFl9vd14F/39/d/PZ1OZ2oZgfam0+lX59g2B1yZWsl6c9EHoHTzA0Re/Tb2tj685Db00RMkfvAX+GaY3Ls/uezJQWotxWEwhtkBdf6sFG6qi8xH/tOyjnMxp20X2Q/+Dvg+5ukXLmREGjpMtRYEVK55O07jDvxI4rKTPo2BQxiDh6lc9dZFp1UNpZ8MFlC75u2XtkoqCvl3PRhUEOLNmMeeIfbMF/ESKXL3/frGSEu31MqxopJ7zyfR8hN1XU30cs6fy9LtH6N80/tnr+5aE3/67zHPvoKvmWTf9yliz3wRtZRBLWZwWnqw2/egTw9SvvHHrth4eWPoCEYt5WHo+DOULlMJquy7B/QQXii2qFbwN/ISLbNWf55FVSnf+D5CJw5QufruJe/7SvASLRTe8fNLf94KWmrnEj7yGEo1+L6JpJ8gfPwZpj/yn+bOxmOGKd/4vgtlSbbhKyqK7+Gsp3kZ/kUpf/0r3/O9KhRl3uQYK+W2LJyNTayt/Dt+HvPsK1gdi/+edFp6g6ZlwLk4xewGsCGCgHQ6/Y3+/v7rgGdqdz0L/P5Fm3wP+P/6+/t3Aq8Dv3LRYx/o7+8fuOjvz6XT6X/f39+fAh6vDQdSgc8CcwUBXwa+XJsovCEmBq8Gt2n7rDSYxrnXUJwqilNFHzmGtZi0nHMovOWnCR99Eqtr/xXN+X5+VWTfjOJrRtCV3T37S9/ZcfmVWxWrFKT19Fz0yTMU7vxE0HK40NAmu0r0wJdR8FELU2TnqpSpWhBYKQrmwMFa1o4JtOzIqizqtC7UegPWyrytvefTSHoO5tlXMcZOzjxkjJ+aqYzj+8uqaC6H3bYLN9aEWilidS+isqLps9YFmYtamCT82vdwW7qXnEe+cu09VK69Z0nPWS2RF7+BMXCI8vX3rVpFbrmc1r6ZygKAb4QWvTCjs62P7Pt/E8V1VnfVXcci/uTfoJYyFO/4+GUD28o1b8c3wvhmZFkBpth81MIU0ee/ihdrCtbu2EDzYLxEC5V971zSc5y2XUEgABvu93ldBgHpdPo0b5gHl06nf5/ZFf+LjaTT6U/MsZ/PAZeu8hQ89ofAH85x//e4qJchnU6fIJg/IC5i7boFc+DQir/43ZZuii1rM4bYGDxM9PmvovhesFLrMrK8+KqOb0aCbCO+T8NXfw90g9x9vzb/j6du4jZ3oE8NzDv0xRg8TPzxv8KNpyjdkBU7bAAAIABJREFU+H7UwiRu445gSIq4ooq3fxz36I9wtvXhRpsIv/5DFMfC13TcVDfa1CCqVVxx2kBteojIi1/HbdpB+cb3L9ib4kcbyD7wu0ErbJ0yAEWf+0qQzen409itfRtuZVgApZyfmTcUeeVbs4MA1wkqI3VcDX1e86y6bnfvDz7Dvk/hjnfgbNu18BA/u0L8if+DWilQeMtPzb+gXx0Zg4dnVoENHXmc0m2XXxF73l6i81ynTqUTG0H4tUdm3kP2jv4rPkRsTVyhobr1tjFLLdac27SD7P3/9vIbriXHwjzzMm5z55wtzOGD30OpdWW7jTuWV5nSTXL3/Rr6xBn0sZPBYlaOhTZ+Zv4gQFHIvftXgjz8b9hGHzlG9LmHUFwbxbHQM8Mo+Ite1VWxysEKl1t8EZt68qMNlG9478zf2ff+OtEXvo4fbaB08/0o1RJqafqyi65dTuTlhzGHjsDQEayu/bNXLp2LooBSnwAALpoHY4Q2xpCzOfihaLCi68SZWRUP49xB4o//FV60kdx7fnXunjq7CsYKFwzzPOI//AuM4aOU3vTBucfl1z6bi8nfH37tu5iDrwe3008umL9/udTcOPEn/g++Eabwtk/gtnTjhePB+7qYIfHtP6b05g9dft7JPPTR4yS+/xfwyT9DLUxJXvktwE11wfFn8PXQulhLQsxvwwcB6XRaVsQRYFeCCn9Lz0zFOvbslwidfA5fM8jc/+lLJmJZXddhjJ3ASbaSu3fhVSIX4sVTWPEUTmsf+sgx9OwokYOPYPdcj2/Ok4yz1hvwRpHXvotemzjohWK4ydZFL9BlnDtI/LHP44di5N7763Ufz3ylKOU8iues2/JHjjxBqNbK5WzbidV7I+5lMlsthtPaizlwEC8cx4unFvekOk5OLt18P/aOq3CT2+ZdM2Ex9NETGIOvU91926Iy6mjjp9EKk1g9N6y8V0PVyL37V4KJ9JEkilUmdPwZ9KE0iueiFSaDAOENE5zPZzcq73sn5Zvev/zDl6aDQA4InXxuRZNz1fwkkUM/AMBHWdKE5qUIHX8GfeocAObZV6nuuZ3MA7+LPnqS5A/+JwCRV75N4R0/t6z9m2dfQ3EtIAgIrPgt9Sm4WLeqe9+C09qHF4rJBOh1bsMHAUIAxJ/6O8yzr+IbITIP/Dv8UBSltmomnoPi2pekjKpeczfWrluCcbmLrHwo1SK+qs/ZYujFmoKKa3YUrTCFmh9fcuuw1XkNxshR3OQ2su/91JJaJo3B11F8D6WSR5s4s24r0QvRpodJfvu/gWtTuOufY3fvv3SbibMXJqXf+8uXXUALgrkb+vAxnG07L5uK9nKcWvDmawbucoZnWBUiL3wda+ebcZsu9ARVrr0Hu2MfXjS5qGw02tQAie98FgWf/J2fgNblzcuZoWorH9PtWCS+/z9RXBtjOE3uff9mwc216SGS3/kfKL5HOTMyayLssqnaTBATPfCPhE69gI+CG2vCS7RivzHlrVWZaW03T7+49CDA9zFPHgBFw+q7iWrvjRhDaSrLzK51npYZulDE7utXbby9veMqwkceD7KutQUNDopdwTdDuNFGtFLm0nO2BNXdt2EMHUaDLTtnwBg4hDZ5jmr/W+fMxrcZreX8LrF4EgSITUGxKsENxw5SlxKsJeAmt+G09sxMBH6jpQx7MAYPE3/0c0He8Pt+bc5Wzsp170KtFHFSXcsaI169+m6svpvxjfCSxxhW++9EnzyLF0muKIXqWtKmzqE4tVbD8dNzBgHmmZdQqwWoFoK0lXtuu+x+4z/4C4zx03VZg8DadQvZ5k58I7z0oQ2+j54ZIvL6OOa5Vy8py8VBweWYp19ErU1ajj37D3DjCoOAelBUfN0Mgm798gGsYldmhuQpVnEVy6WQv/eX8RJz9LCYYcpX3x1k67r23iXvOnTs6eD8AwVFoXjnz6y0tOC5xH/0Nyj4eJEkxTs+tvJ9zsNp38P0h38vmC+hGai5MRq++UcoTpXCrR/G2XHV4num5uA2bSf7wd+hlQUm3y9AmzwX9HCG4+Tf8a82XCVazU8Qf/RzKL6Plh2heNcn1rpIQsyQIEBsCsU7Pk4o/SRO266Zll4/2kD5TR+o2zH04WBIgWKV0MdPYc0RBDjbdpJ736dWdJzl/si5Tdsv2/K63lk9N1AdTqNUS8FCPnNt03tT0LprRrA7FhfsqMVMcF3OzTtpcylW0srl147tGwuuU3xZ1d6bgknKvo+XqOv6wMun6eTe/SsYo8cXlbXI2baTwu0fR8tPUNm3cPai5Sjd8hO4zZ04TR1zBwA15Zvvp3zz/cs8ykV9jHVMkemrOgpVvGgjrPC9clkX9ThqmRGUWnCpTw9iLXNRxnoJnTiAVpyG4nQQ9O+8eU3Ls2SqFnzf+K7M1RLrjgQBm9Ctt95BIrHKPxrrjBdrWtFY3sWo7n0L+sRpfDMapDQV9aebFN/60wtu4qa6yPzE/72k3Rbu+gSh489g9d54ZbLDzEdRcJs7KN72NqwVDo3wmjvJ3v8Z9InTWB3XsF4+8V5D28x6G4ux3PTCi+GbkcumRl2pIJ2qgq9qWH1vqs9Oa3MbjOGjWHP0hq0mu3Mflb13oJaywfoSa8zquYHQyQN4ofiKhiWtFS/WRO5dD6JPD1Lt22ABjFi0W2+9Y62LsCwSBGxCt9xyuywpvgq8ZCv59/zqWhdDLIPb2ktpvSziohlLzsM/Hy/ejCXZVtaWolLdW/8KwFKDqbpRNUq3fuTKH3ceTtsupj/6n9c2eF8ht7X38tm+xIZ2yy31+U6/0jbup0oIIYQQm98GDgCEWM/kkyWEEEIIIcQWI0GAEEIIIYQQW4wEAUIIIYQQQmwxEgQIIYQQQgixxUgQIIQQQgghxBYjQYAQQgghhBBbjKwTIMQmMDh4js9+9o/WuhhLYhgatu2udTGuqIGBcwCr8r/aiudzNa3W+RwcPEdHR1fd9yuEEEslQYAQG1xHR+daF0EsUjKZXOsiiDXW0dEln1khxLogQYAQG9yHPvTRtS7Cssiq1vUl57O+5HwKITY7mRMghBBCCCHEFiNBgBBCCCGEEFuMBAFCCCGEEEJsMRIECCGEEEIIscVIECCEEEIIIcQWI0GAEEIIIYQQW4wEAUIIIYQQQmwxEgQIIYQQQgixxUgQIIQQQgghxBYjQYAQQgghhBBbjAQBQgghhBBCbDESBAghhBBCCLHFSBAghBBCCCHEFiNBgBBCCCGEEFuMvtYFEEKIrcrzPIrFAvl8nmq1guM42LaN4zg4jo3v+5imiWGYM9fhcJiGhkZM01zr4gshhNjAJAgQQohVUi6XmZwcZ2IiuIyNjTE+MUEul6VYzFOplDHNEKFQFN0Ioagaau2iqBoAvufgug6e5+C5DrZVpVIuYBgmiWQjjQ2NNDc3s3fvThoaWtm+vYN4PL7Gr1wIIcR6J0GAEEKsgO/75HI5RkaGGB0dZmhoiKHhIcbHRrGsKrFEI+FoEiOUIBRJEm7aTXJ7DDMUxTDCKOrSR2X6vo9jVahWClQrRcbzeQaefJlyYYp8dgLTMGlv38HOXbvYvWsPvb19hMORVXj1QgghNioJAoQQYhF83yefzzE6OsLIyBADAwMMDg0xNjYMQDyZIhRtJBRpIN56Ndv67sAMx1EUpe5lURQFIxTBCEWIN7ReUs5qpUAxN8mRkyO8+PKrZKdGSbVsY/eu3fT3X8WePVcRjUbrXi4hhBAbhwQBQghxkUqlMjN8Z2JijOHhYYZHhpkYHwVFIZ5oJhRrIhxtpKH9WrbvuQvDjKxKZX85FEUhHEkQjiRItfUC4Lkuhdw4g5PDHH34O2Qm/4q2th3s27ePq6/eR3d3L5qmrW3BhRBCXFESBAghFsWyLDKZ6ZnL9PQUpVKJSqVCuVKhUqlQrVbwXC94Qq1SrCigqhqGYWCawQTXkBmisTGO72tEImFCoTDhcIRwOEQodP7vMKFQ8Leu6yuqZLuuS7lcplQqzlznclmy2QzT09NMZzLB65qewrYtYvHaEJ5wglC0gebOG+nsb8IIbcwhNaqmkWxqJ9nUDtyI5zrkpoc5dHyAZw4coFousLf/Gq7ffz1XX72PWEzmFAghxGYnQYAQYpZKpczw8BBDQ4MMDJxjYHCAsbERbKtKJJokHI1jhGLoRhRND6HpBpregBZtIZ40UBQV/w379D0Xz3OxXYeK5eCVHYanpnFdC9+1g0mvjoXr2sHFtnEcC8e2sO0qvu+jaTq6bqAbBoZuoGoqihKMp1cVBUVRgrHyrovrOriui1vLsuM4NqYZxjBDGGYYTTdrryGCEYpihrbT2rObrqsSGKHoumnVXy2qptPY0kVjSxcA1UqB6bGzfOf7j/KFL/4tbW3buX7/DVx77X62b9+x6c+HEEJsRRIECLGF+b7P+PgYJ08e5/jxY5w4eZxcNkOioYVIvIlQtIlk27W0717bIS++5+F5Lp7r4Nay5Pi+D76Pfz7k8IPr85l1VFWtXetouiEV2QWEwnHau6+hvfsaPNchOzXEy4dO8OhjP0RTFfbt28/+/dezZ08/hmGsdXGFEELUgQQBQmwhvu8zMTFOOn2Y118/xMmTx1HUYKhINNlG91V3E0uklpWxZjUpqoqmqmi6gVRBV5eq6TS1dtPU2o3v+5QK0wyPneHoQ18hlx2nt3cX+6+7jquvvpbW1m1rXVwhhBDLJEGAEJtcsViYqfSn04exHYfGlk7ijTvYd9t+wpHEWhdRrFOKohBLNBNLNMOuG3HsCpmJAZ567jUe/tY3CZkhrr56H1dffQ27d+8lFoutdZGFEEIskgQBQmwyruty+vRJXn/9IIdeP8TExBhNqQ7iTTvYfcN7iMSaZGiMWBbdCNOyfTct23cHvQT5SYbHz3H84W+Tmfw8zalWruq/iv7+q9m5czeRyMacSC2EEFuBBAFCbHCe5zE8PMTRo4d5/fXXOX36BNF4I4mmDlJdN9G3vx1VlfSPor4URSGWbCGWbAFuxPNcCpkxTg8Pcujw18hMjdDUnGLXzt3s3r2Hvr5dpFItEoAKIcQ6IUGAEBuM67oMDp7j5MkTHDt+jBPHj6LpJslUB4mmTm6889YNm8pSbFyqqpFs3k6yeTsAnudSzE0wOj3C6UefJPvQlwCfzs5udvbtpKenj+7uHhKJ5NoWXAghtigJAoRYx1zXZWxslOHhQc6ePcvxE8cZHh4gFm8g1tBGLLmNfbd9SMb1i3VHVTUSjW0kGtuAYFK6VSmQz47x+vFhXnj5NbLTo4TDETo7uujp6aWrq4vOzm4aGhqlx0AIIVaZBAFCrDHHsYMFq6anmJqaZGpqipGRYYaGBpmamiAaSxKtrVKbbNtHR//b0Y3QWhdbiCVRFIVQJEEokqClfRcQBAaVUpZCboJDxwZ54eVXyWXGUVWFHds76enpoaurm87OblpaWlHXWdYqIYTYyCQIEGKRXNelUiljWdasi21buK6L4zi4roPjBBfbtrHt89vZWFaVYrEYXEpFyuUS5XIJq1olEksQjiQww3F0M0o42kDH3p3sjjehafIxFZuToihEYo1EYo2wfTdwvsegSCE3wfGBcQ6lT1DITmBZFdrbO+jt6an1GnSzbVu7BAZCCLFMUrsQAnAch8nJCcbHRxkbG2NsbJTp6WkKhQLFYoFSuYhlVTGN8yvk6miagabptQWpNBRVRVHOXwcLVSlK7XFNR1U1dCOJkdxGS0sI3QijG8EKtudXvhViqwt6DOKEInFSbb0z99tWhWJugnNj4xw79SSF7ASVSpHt7R309fXR17eT7u5emXwshBCLJEGA2HJs22Zw8BynT5/kxMmTnD17mlw2QzSWJBJvwAwnCUWSmNEOmhojbDMjGGYE3QhJ5UKINWKYYRpbOmls6Zy5z7GrFLLjnBkdI33iUfKZUTzXpbOrh927ds8EBtFodA1LLoQQ65MEAWLTcxybU6eCvPmHjxxmbGyERLKZWLKVaKKVvmvvJRJrkDSaQmwwuhG6JDCwKkXymVEOHRvk+RdfJjM9SkOykd6+nbXAYBdtbTKMSAghJAgQm9LExDgHD77KoUMHOXX6BPFEM4mmDlq6bqL3um1omrHWRRRCrAIzHCPVvpNU+04AfM+jWJgiMz3C408/zzcf/ia2Vaazq5c9u/fQ17eT3t4+wmFJqyuE2FokCBCbgu/7DAyc45VXXuLlV14kn8/T1NpDMtXJTXfdhmGG17qIQog1oKgq8WQL8WTLzH1WtVTrLRjguRdeIjs9SlNzip19u9i9ew+9vTtpaYmvYamFEGL1SRAgNizXdTlx4hgvv/Iir77yMj4qjdt62b7rdvY2tslkWyHEnMxQlFRbH6m2PuDCwmZj0yOceewp8l/7Cq5r09kpcwuEEJuXBAFiQ6lWKxw58jovvfQihw8fJBJrINnSw+4b7iMab5KJu0KIJXvjwmYwe27Bcy++RHZ6jGSygZ6ePnbt3Elv70527OhE02QukRBiY5IgQKxrnucxODjA4cOHOHToIIODZ2lobqehpZfrbv8woYh02Qsh6m++uQX5zChPPfcq3/3e9ykWMrS17ZiVolQWNRNCbBQSBIh1pVKpMDBwlrNnz3Dy5EmOH0+jGyGSqU4aWvZy8963o+kyqVcIcWXNNbfAcSyK2XEGJsY4fvoJ8pkv49hVdnR0s2vnTnp6+ujp6aWhoXENSy6EEHOTIGCL8jyPQiFPLpclm82Sy2UplYq4rovrunieh+O4eL5HyDQxaxfDMAmFQoRCYcLhCJFIhHA4QjgcJhQKXbZr3Pd9qtUqmcwU09NTTE9PMzU1xdj4GAPnzpLNTpNsbCWSaCGaaGHfbR8iHElcobMihBCLp+smDakOGlIdM/dZ1RKFzBhHz4zxyqE0uelRdF2nq6ubXTt30d3dS3d3D9FobA1LLoQQEgRsep7nMTU1ydDQIAMD5zg3cJahwUGyuWlCZphQJIYZimGYEVQ9FEymVWor3ioKiqLgeS6e50Dt2nMdPNfGcSwcu4pjV7GtKo5jAwqarqPrOrpuoCgKjmMHwYXj4LoOum4QiSUIhROY4RiaESUcTdJ19d30x5skX78QYsMyQ1Ga23pprq127Ps+1XKefHaMV46c5ZnnXiA7PUY8nqC7u5edfX10d/fR2dlFKBRa28ILIbYUCQI2uX/4h7/npZdeINm0jVC0iWiijZ37ryEcXZ3FsYKAwQ0CBc8F30fVdFRVRVF1VFWTybtCiC1DURTC0SThaJLW7bsB8H2PUmGaQmaM515O89gTT5LLTtDc1EJ3Ty+9PT10dfXQ0dGFaZpr/AqEEJuVBAGbXLFUpLv/drZ17L0ix1NVLQgudPnhEkKIuSiKSiyRIpZIzdznuS7F/CSZ3DhPP3+QHzz6GLnsBE2NKTo7u+ju7mbHjk527OgkmUxKY4oQYsUkCBBCCCHWmKppJBq3kWjcNnOf57mU8lMUchO8+NoJnnr2efKZcRRFoa19O+1t7Wzfvp1t29ppa2unuTklmYmEEIsmQYAQQgixDqmqRryhlXhD68x9vu9jV0sU81OM5zMMjB3FKj9HsTBNtVwinkjS2NhMKpWiJdVCKpUimWwgkUgQjydIJBLokmFNCIEEAUIIIcSGoSgKZjiGGY7R1No16zHXdbDKBaqVPLlynolTo9hHTuJYZWyrTLVSolopohsmkUiUcDhCNBIlEo0SrV0itUxvodAbr0OYZmjmdigURtd1GZYkxAYmQYAQQgixCWiaTiTeSCQ+/7oEvu/XsrpVatcWrlMlU7aYyJdwnSy+5+B5Dr5r47r2RRnhbFzHxrEtbNsCfAwjhDmTNjpMJBwhEokSjUWJzQQXMdrbU9i2QjQaC4KNSJRwOCzDl4RYQxIECCGEEFuEoigYZhjDDK94X57n4jo2rmPhOlYQJNhVKo5FIVvFnZzGdUbxXCsIIqwKtl3FtivY1QqO4wS9CuEokUgteIgGt88HEMEaNLN7JS5et8YwTEzTQNcNNE2yzwmxFBIECCGEEGLJVFVDNbVlBxSe5+LatfVmnGrt2rqoVyKD79q19WmCXgnXOd8zEaw74zo2Tu227/lomoau62hasF6NdtFtXdcxdAPdMIIgQtdngogLw5yCYU+maV4UgIRnFsQMhyOYpik9GGJTkCBACCGEEFecqmqooQhGKFKX/fm+h+e5+F6w6v359Wr88+vXeF4w1Ml1cT0H23Pxyg5uwcFzK7UhUM7McKgg0LBmhkAFw6CquK6DYYYImbXeiXD4ouFQ4VqvRmRWQBFcQhiGMROQnL8EqbXV2rUyc33Bxbd9PM/HMFyy2QLg4/s+AJ7nA/4bzkrwXE3TaGhoqMt5FpuHBAFCCCGE2PAURUXTVNBWN/uR73m4ro1TGwbl2latl8Iia9lMlSxcp3RhbkUtoAhuu3iuOzs48T18z8P3ffzzty8cjVk3FQWFYFiXDygooHDRMCiF8zeD2CB4fqVc4ld/9Tfo6eld1XMjNhYJAja5cDjMoRce5fThJ9e6KBubwqUNLGJl5JzWl5zP+pLzWV9yPuvD94PTuMTz6fu+DGESl1DOdyOJuuoFTk1OFmrdc1dea2uC8fE8rutSrVbWpAybSSoVZ3KysNbF2FTknNaXnM/6kvNZX3I+62up51NVVcLh+gy72ozO15k2KlVVSKXiAH3A6cU+T3oCNjlN04hGY2tdjA0vHo9TLkvAXE9yTutLzmd9yfmsLzmf9SXnU9SD9A0JIYQQQgixxUgQIIQQQgghxBYjQYAQQgghhBBbjMwJEGILeOihLzI4OLDWxZjFMDRs213rYsySy2UBSCY3Xj7tep3Pjo5OPvShj9ahREIIIdYz6QkQYgsYHBxgcPDcWhdj3cvlcuRyubUuxpoZHDy37oJFIYQQq0N6AoTYIjo6unjwwU+tdTFmrMeUbJ/97B8BrKvztFj1OJ/nX78QQojNT3oChBBCCCGE2GIkCBBCCCGEEGKLkSBACCGEEEKILUaCACGEEEIIIbYYCQKEEEIIIYTYYiQIEEIIIYQQYouRIEAIIYQQQogtRoKATezAgac5cODpJT/P83x831+FEq2+UsXm2YMjpM9M122fVm0V1tND9VtEyvc31jnOlyy+9tgpvvbYSXJFa62Lsy64rjfz3rjYVK7Cq8cmyBYWPk/Fso3jepe8D8pVh6deGeal9PiK3yOlisMzr41w+NTUivYjVp/n+VQXueKz7XicHclTrjqrXKrNb7m/k0JsBrJY2Cb27LNPAXDLLbcv+jnnRvM8/tIw8YjBe27vJmRq+L7P4FiRSEgn1RhereLWxQuHxzk9HCyY1NIYIdWw8vK+eGScjh2NPPHyMImoueJzMJ2r8t0Dweq9997aRVMitOIyLsSyXYplG11bOOYfz5QZGC2ws6OBhrg567GzI4WZyv8/PXGajtYYd960A1VRVq3cq8n3fZRllv3UUI5yxeHQySmqtsudN+ygZ3tiZr/fOzBA1XI5OZjj/rt3zrmP145P8vLRCXRNwXV99u9tYf/u1MxjJwaDgLOlMUJXW3zespQqDooCkdDcX+Uvpcc5WdtXqjHCtqbIsl7zWssVLYYninS3J+Z9rRtZ1Xb51o/OkC/Z3H5dO7u7Ghbc/rEXBxmeKBGL6Nx/984N+zlcS4WSjaYpy/qdFGKz2HzfpmJFTg/l8TyfXNFiIluhozXG66emefHIOApw31t66lKxXi3RSPCW1lSFkKnVZZ+6HlSeFUDVVv5jOzheoGoFLX5DY4VVDwKeeHmYfMlGAXIFi+QbKvgQtEJ+/8AAtuNxbrTAB+7qm/V4NKSjqQqe7+N6PmdHC+SL9iXBwpXi+z6W4xEylv4/Hpsq8YPnBzENjXff1kUsYiz6uWdH8jz58vCs+wbHizNBAIBae4uo6vzvleHJEgCOG7T0nxjIzgQB58+pqirEa2XLFS1+9P+zd99BkmT5Yd+/meW962rvxtbMrPd7u7e75z3ucAY8GII4iEKAIgIASYAU/1AEKQQiKISIoMiTEApREEiBAAQIgkTgiDPA4fZ2cevN7PgaP9O+q6vL+8p8+iOra7pn2lT31Ez3TP0+ExVdVVOV9TLL5Pu993vvfTCH067zwmPDOB025pZKfP/taXRN41PPjhGPB255nZV9s+kaHqeNbKHGhakco/0+hvp8He/3bjKV4ruvX6daN7g0nedzz0/sdpG6LluoUSg3AJheLG4ZBJQqVg9ApWagTAVd+F3qJVMLBX747iy6rtFomjjskhQhepMEAWKNwxNhUtkKAa+z3WpYqVonHAVUu9z9XGsYzCwW6Y962xWe2/FYIs5AxEvA5+h4e9VaE5fTtmHL8GOJOACffLY7rfYTQ4F26+z40K0Vt266MJVlNlW6ccdGdQUNVna/UmvSNMw1PQcnLi5hmFaFVdNgIOol4N38+CqlME2FbYseiO0yTcV337jOUrbKI4f7OLYvwvX5ApGgu6P359p8kUbTpNE0mU+XOTC6cYXrnbOLXJ0t8NCBKInJCOaq9JxQwIkG9IVdGIaJzaajaRqfemacmVSJ8cEbLfjZQo1G0yTe+k49cijGu02TpmFSqTU5OhlpPzYxESEadGMqxdtnF7FpEPA5WcpWAatX5uBYiFSmglJgKNX+v5s9cihGf8SDz+Mg4HPy569cIVesc+F6lq9/8mD7vWkaJmevZChXm3jde+y0oGh/9rKFGu8nU+3vZLcVSnVePT6Hw67z0184dkdeY8Xq3qh42MPkUIBMocaxfZEtngnPPzLI+etZxgcCXf9+dUsqU+H1k/OEfE4+/OjQbhdnjVSmisL6XDV7IAjIFmrkS3VG+/2bNk6I3rPHfu3FbhuIevnKRw+sue/hQzEr5cBtZ6R/49SEnXj53RkWlyt4XDa+8tEDt/0DpWsao5ukT9zs9ZPzXJzKMRL38bGnRtd9jK1VpoGo97YviFm9AAAgAElEQVTKtiLgdd7S0n6nrLQYgtVLEvSt33KvaxqDMS/X54vUGyazKSv1YoXf6yRfauD3OPjiS5PY9M1PmvWGwbdfu06hXOfDjw4xORTszg4B5VqzXemdmi9QKNW5PJPHZtP4sQ9PkspW6At7NtzXAyNBphYKuBw2huMbt4Y3mlbFGODU5WUSkxEmh4IYhqJpmBwYC/GtV67y5qlFphdLfOxJ6/MT9DvbvS1KKU5dXuZ4cgmgneoxEPVu2qIdj3g4cWGJhVaPwSGvE13XsNu0dnB+aDzMUq6KTdfYP7L+8dU0bc0+rvSOOR069YaJS9fQNY3Tl5Y5cTFNvlRvf973Cl3X+PjTo7zy3izlapNTl5bXTVnrhgtTOdK59QOqbjpxMc2J80uMDfp56fERdF3jhceGO35+X9hDX3hvp3advZohV6yTK9ZZzFQYHNy8d+NuOjIZIVus4bTrZC52p8d4rypVGvzlj65hmIojkxGeOta/20USe4gEAWJLToeNJ47emR+OlbSYemNlgOSdqYDkinVcTh23c+1HfmqhCFgpHaap7rtWkmP7IjSaBtMnHfg8m3/dJ4eCTC0UcTlst6R8vfT4MAvpsnW/sir5zptSceoNg0yhRl/YQzpXbY8huDZX6GoQUKk20TWrZ+rQWIjpRaunwzQUb55eYG6pjNOh8+WP7L+ljADRkPuWQHc9DrvO6ICf6YUi+4ZvlH+l56BpmBQrVgrHXKrEm6fmefqBgTU9SicupDlxMd2+/cGFJUYHfLd8DtczEPNiu7SMpln7+XiirxUIWAGYx2VvBx6d+sjjI0wvFskWa/zp31wiGnTxmQ+NY1+VTrIX08vjYQ/7R4KcurRMwOu4Y70VI3Ef565msN3h9JpLUzkUtILuW79L94Oxfj/X5wt43Q4iwTub8rhdXveN7877r+7BD3wX1RpGuydNBpKLm0kQIHbVC48Oc3E6y2i/f0fd2nNLJc5fyzIxFGByeP2KZvJahrdOL+J06Hzhw5NrcsAfPdzH2SvL7BsJdS0AqNUNpheL9Ec9BLxbt1Y2miYXrmcJ+Z1d72lxOmw8dWyAN76/dWrUxFCAgdgBbLp+S/e43aYz0u+nUK7zF69epd40+cjjw+3yKqX4zuvXyRXrjA34eeHRIUbiPrLFOkcmtk5v2I7r8wVa5zQ0XeOZBwc4dzVDPOJpt9w3miamefuzL330iZF2qs/N7DadDz8yxJunF6g3TM5fz3FsX5TAqh6Ian3tSbdcbTI1X+TQeHjL1x6Ievnqxw6gaXStkuhy2jgwGuLbr10DYDlfo1Rpcmx/FI/bwcJZ156tkD6WiHNgJITHbb9j6RsDMS8/8YmDdzwQOrIvwokLS4wPBvbs8b5d+0aCjPT7sNv0+65x5V4SDbp59qEBMvkaDx6I7XZxxB4jQYDYVZGgi6eODez4+a+fnKdUaTK1WGRsYP1AYiV1pN4wyRXra4KAw+NhDt9UITNNa/DrTisaL79npTi5nTa++rGtU5zePbvIhakcAD/2wiThOzxQeDNbtVCnMlWqrd6bmVSpHQQYrcHkAJlCDZtN3zC9aitNw+TkxTROh41IwIlSrAmO9o0EuT5fxOnQGe33tyvJDrvOcw8Pcu5alqGYF3eXZpHZLDidHA5SrDR4P7lELOS+pYX60cNx7DadyzM5qnXTGk8R6zytrJPB7UvZCh6XnThw7mqGQrnBwwdjmz73oQMx3j2XYiDqIeBzoGlWSlG3BtNvZWqhSKZQIzER3tbg7vUGta+nXG1waTrPQMy77RmRdvK9N01FudbseBzS0cnImnEg96t7IcC5l6Zq3qlDY1s3OojetOVZMpFIXAWqrYsbeBX4h8lksrHJc74BvJZMJs+3bj8KHE4mk39y+0W+5XX+J+Aq4ASuAH8/mUzOt/7/L4FfTiaTl7bYzsvAv04mk9/a4DXa+yL2lrDfRanSJOhzbljZfuhAjGrdIOB1MNi3eQWsWmvy7deuU6o21kz9uB0rKU6N5vZSnG5+1IWpLG+fWWQo5uWlJ0b2xDSAo/0+huM+qrXmmuDJbrMq4NfmCgzGvFRqzR1P5Xjm8jKnLq2d1/75RwbZP2Kl4USDbr780RtTb7787gxTC0U0Db704j7GB/13ddaiBw/EODQWxuHQb3mPXE4rlW5lyk+7Td9wrMJOnL6U5r3kEg67zi//TJS3zywCYJomzzw4uOHzRgf82xo7003ZQo2X350BrIG4zz+y80Gj6WyVd84tEgu5eeJIvJ2K9erxORaXK9h0ja99/MAdrYwqdWOg+uHxMM88uH6jRtMw0VtjMMTekC/WWcpag4SX81Wiwb07893tyOVy/Mf/+O/5xjd+gWBw74zNELuv07P015LJ5KlEImHDCgK+AvzxJo//BrAErFScHwW+AHQ1CGj562Qy+bVEIqEBfwT8C+C/AUgmk5/rwva/wdp9EXvIS48Pk8pWiQZdG87uE/Q7+XiHrdLpXLWd5z21UNhREPDiY8NcnMoxukHPxM2eONpPyO8k5Het6QW4cD2HYSimF0uUyo01aSa7xemwbXgs949YM9a8czbF6cvLfOml/R23qhqmag9IXa8Fv1q7dREl01ScuJhuL8qlaRrvn1/i2lwBr9vOl17at+XaCN2yVQv6i48Nc3k6x74NBvDmi3VePT6Lw67z0uMjHbfIZwo1wAo4wcrnV+rGugGzqRJ/+8EcIZ+Tjz012vU0mqmFIg67zuA2ejd0XWuX83YHIR+/sMTicoXF5Qr7hoPtsSwrFW1NY8frQXSq0TTbvY1zS6V1H3NtrsCrx2fxexx89rmJu9bjIjY3kyq28+WnF4r3bRDw3e9+i8uXL/Kd7/wX/s7f+endLo7YQ7bbVOduXTKJRMIPfBN4qvV/v59MJn8rkUj8PPAk8O8SicRvAv8K+A0gmEgkjgOvJJPJX0kkEp9p/Z8NSAG/mEwmLyYSiY8A/xZ4C3gWaAA/i1W5fxCYAr6STCbX/Nomk0mVSCR+iBVsAO1ejC+0AphjwO8BPuA4cBD4zVWt/y8lEol/DgwDf5JMJv/5Ovvy68lk8q+3eczEHWSzba8CspWBmJeRuI9CuUFih9314YCLJ7cxA4PDrrNvOMgr78/ywYUlXnh0GL/XwaGxENlCjf6oB98W03HuFelWZahSM6jVjY4qnReuZ3nz1ALRkJtPPTvG4fEwXrcdu01jKVvFNBWJiVu7sy9O5zjZGnQ72u/ngQNR3mm1hJerTeoNa5rTmcUi75xdpD/i5dmHBnZcKSyU6qSyVcYG/NuuTA/GvJt+Ti9MZ1nOWxX66wuFjrvvHznch2neSJP53HMTlKpNRvutGYEuTGWp1Q0W6xWWspUdrw2glOL6fBG3y9aeJet8630D+PhToxTKdRaXKzx0MLZpSlvQ5+RTz4yRLdTZP7p+UGQYJm+fWaTRNHnqWH87MGwaJjZda7+HA1EPs6kSXrcd/6rvyAuPDnF5Ns9A1HvHp390Omw8criPqfkCDx1cP+f62nwBpaBQbpDOVTedlUrcPWODgfag+IkuTl6wl+RyOd5663WUUrz11mt85jOfl94A0dZpEPCniUSiChwAvpdMJr+XSCR+C9CBh4AA8HoikTiRTCZ/L5FI/Byr0msSiYQHqzL+tdbtfuD3gZeSyeSZRCLx94E/AJ5pvd4x4OeSyeQvJBKJ/wX4LvBsMpmcbqX4/BTwv68uYCKRcAKfY+Meit8H/k0ymfxPiUTiSeDNm/5/HHixtS+XEonE7663L/eS2dkZyuUSv/qrv7jbRbkn/c2f7c7rfmedT/Bf/MHtb9fr7U6wNJsqcf56lv0jwTXTiII1UHfFUq6CQm05OPrKXAEF7RmFokE3o60xAIOxjStLq/Pv9w0H6I94ePqBfk5dWmY47sNh17k2V+D05TT5UoN8Kcex/RFC/u2PuWg0Tb792nVqDYORft+2Z+XZykjcT/JqFrtd39ZUtAGvkxcfvzG1ZDTkJrrq/L5/JMRMqkTI5+xokb/Z2WnK5fK2fzPe+e6N63+6rWdurdPtvfKfu/zCO/C9Dh6z+liJvcHr9e3awod32ne/+y1M0+opNE1TegPEGttNB3ID/08ikfhHwCeAX00mkwrIJxKJP2rd9+0OtvcM8EEymTzTuv17wO8kEomVGkUymUweb11/D5hIJpPTrdvvYrXir/hEq4dhH/AB66QcJRKJIFYvwh+2Nv5OIpE4cdPD/u9kMmkCuUQicRYr4LnQwb5sKBbbnZzbFZJ6KlbTNG3dVWW3Kx4P8Mix9fPN/96XHtz2tn5mh4syxeMBHntg6Jb7jh660QszPBTiyYc7n3/d0codX+84/dJPP7ajcnYiHg/w0JGdD5BfvZ2bbz/+YOc593c6dUaIvUjT1v/O73WdlPm9997GMKx0SsMweO+9t/ilX5KGwfXci5+B27WtdKBkMllNJBLfwkq50bCm6l6t02H26z13tdWrtRjr3F493cPKmIAAVkPMfw/8txu83nZe87anFkmni12ZpnAn4vEAffEhgmGDf/Srv961mVJW/OF3zmOYCrtN46c+fbir274dJy+mOX5+CZuutXM9P/vceMcL65SrTc5cXgYUyWtZNM3azj/5uSdJpQr84J3p9rz0n3t+oqPW1U5V602++/p18qUGDx+K8cihPs5cWSZ5LcuhsdC2pnfLF+v8+atXUAoOjoV452WrKyGVKtx2Ob/35hQL6TLRoIvPf3hyzf81DZOp+SJXZvPMrFqpOOS/dYG0eDzQlfJs5C9euUK2WEfXNX78pX143PYtB2U2GtbJcr1yTS8WmVsqkRiPdDxLzcrMI3eycl1vGHzvzSl+/ssPcflqettjRwzD5N1zKZpNk4GBYXRd45d/+dfWPKbRNDl9eRmP07Zhmly52iRXrDEQ83Zl8Gux3MAwzXbPzfX5Am+fWWQg6uH5R4Z2fExfPzHPxWlrNq7Pf3hiwzzwO/353KuuzRV45f1ZwFqf4tmHNh5gvpHXPpjj0kx+zSKMe/V4fvObvw1057fxbur0eD7++FO88caPMAwDm83G448/fc/t692wVz+fndJ1bUcNz9uqGSYSCR14CWuQ7Cngv04kEq8BfuAngV9vPTQPrE46u/n268DvJhKJI8lk8hzwc8D7yWSykEgktr0TAK3n/iLwWiKR+DcrMwS1/i+XSCTOYKUR/WEikXgcK42pEzeX/Z6xnK+iFPztB3N84umxrm57MOZlJlXqaj5+Nzx0MMZw3MfFqSznr1sn+pUpLTejlELTNN45u8i1ucLq/2hfNZUiHHAxvVjC6dC7vmCR22nnCx+epFI32lMNHtsX5di+6La3pVDtkLfTKfBSmQpKKfq3SEf52JMjLGWr6wZAdpvOvpEg/VEPx88vcW2+gGGoXQmGn390iPPXsowO+NdMC7tTo/3+dppSJzL5Kn/11jQa8Klnx3aUhtSJ95MpMq3xBK+fnOdTz45v6/mXZ/Mkr2UBqyK/kltfKNdpNk0iQTcOu86jh/s23Y7Xbb/t74RhmBimwumwrcnxBxgfDNySfrbptlYNNl/tiaNxfB474YBry4Ggs6kSLueti+fdjnK1yenLy0SDrvbCc3vJcNzHSNxHudpcdyxOJ6ZbDQAzqRKmUjIj0i769Ke/wFtvvY5hGOi6zmc+8/ndLpLYQ7Y7JsCJVfn/DawBu/8zcLL1mN9PJpPfaV3/34B/nUgkfh34p8D3gV9PJBIfAD9sDQz+WawKuR1rYPDfvd2dSSaTJxKJxJ9g9QT845v+++8B/0cikfg1rJSiD4BcB5tdsy/34sDgm+tfpqk4e3WZ4+eXsNt0Pv/8BP4OFrVa7SNPjFCsNG45Ue8F9YZBrlhnqM8a5Dva7yeVqXDiYpqhPu+aSrVSilfen2Vqocgjh/pwt2bt0DXwex3YdB27XWvdp/FYIs5ovx+/17HjKTANw2QxUyEact8yR7rNpuP33P5AxpDfxceeGiVTqHFoLMS7P9z88dMLRX7Qmrbxxcc2nxrV3sFgbJ/HwfOPDHF0X4TpheKuDLqzFsnprBVTKcXfHp9jYbmMrmkcP7+0ZaV3K9OLpfZ0sTOLpW0FAcu5KsfPLxGPeDYcbLoiuGq7O5l+NORztmfrWRkkuZyv8u3XrmOaas30rKutBM63K5WpcLa12NvpS2lqdYOXHh+5rSlMV3oEh/q8fPyp0TXldDpsPHxo4/d2aqHA3x6f41f+7hN8/20riPvscxPEwt0JBN45s8i1eauhIRpyE9nFdUHW47Bba3w0DZOLUznK1ea2FzF87HAfZ69mODASlABgl4VCIZ5++kO89tqrPP30czIoWKyxZS0mmUxObvLf39jgOd8Cbh5I+9xNj/kO8J2bHkMymXwZa0aeldv/AfgPq27/y43+r3Xff7VB2a8Az7RmEToGvIwV0JBMJj9y0zY+sur6evtyT4gEXNSbJh++aR7uN07Ot+ctr5vWwkwfenh7c3XrutbV+c676e0zi+1pI194bLh9XzpXZTZVYmIw0G4ZrjdMrs8XAbg0neOLL+6jP+Ih5HcS2ShNYJuLD93sh+/NMpMqEfQ5+OKL+zasSF2azvHOmUUG+7y88Njwtk+mw3FfR7OQKKU4dzXTvl2qbrgEyLZFg+6Op90rV5tomjW9pVKKuaUyfq/jrnzOqnWDq3PWDC6GUpy8mG7PUrRTE0MBrsxa37PxwcC2Ks3vnksxny4zkyq11j3YuKJ4dDJCtWa9Zyuz7RimYjZVJBxwrRmYnSnUuDhlrdC9MlNQf9TLF1/Yh2Ga/KdL1v7mivV2700mX4ORta+ZvJbh7TOLDMa8fOzJ0fYaHbWGwfX5AvlinWjIzb4NVvFeYZqK107MkS811vTAzaRKtxUErBz3uaUylZqxrffx4nSepnGj5UQB5VqTbq216nZZgb9N13De4ZmLbsfx5BJnW78L2019PDQe7mhVbHF3fPrTX2B+fk56AcQtemnF4OeB/7G1ngDALySTycxmT7jXOR02nA7bLSfAfLm+5nZf2MP0QpGB2J2fTu9uiIXc5Ip1gj4njtY88bGQm3Suis/jWDNHt8tp48BoiKn5AkcmI+i6xuQWFZfbtbKybqHcwDQVNtv6FcPktSz1phWk3Ml1AuaWysylywCE/U4Su3Dynk+X+f5bU6BpfOqZMaYWipy+vIzdpvHFF/d1JZ3nZhemspy6uMzEUIDHEn2MD/pJYlX6okFXu1foZtVak8VMhYGYd9PVboM+axxEqdLge29MUW8YfPSp0Y5WsI0GXcyny3hcNi5P5wgHN69Qn7+e41PAK+/N8rWPH+TNU/Ncms7jtOv8+Ef2tz/zr74/S65Y58L1HF//5MH2OhY3j3GYGAyQmqhQqxsc239rOtql6TxKWZ+dDy5YvSaapvGDd2ZIZSrtx/k9jg2D5oXlMn/z9nS7p9LnthP0O6nWjFtW8d7Memk/D+yP8n4yRTTk5uV3Z+gLu3nqWH9HQdjB0RALre/D4fEwPo+9PeXqZsrVBn/15jSNpsFHnxzdsNL85NF+BqJegn7nHflcd4va8Ia414RCIX7lV3596weKntMzQUAymfwenc3gdt975oEBjp9fIp2r4vc4OH05TaHcpD/q4dPbzCfeiz708CBHJqzBmystlE8/0M+B0SBBn/OWBaSee3gQHt7+4LfVlvNVzl7JMBz3bdn6+aGHB0lezTI+tPliYgdGgyznqwzGvLddWWg0TcrVBtfnC7fkVQd8Duw2jaahODAW4oMLaSq1Jo8fiXec8mSaikyhRsi/9vgqpXjr9AILyxWeOBLfMK0glalYlUGlSGUr7QXbmoaiWjfuSGXp5MU0pYqVn/3QwRgvPT7CiR95MQyTzzw3seEK1N99Y4p8qU5f2M1nn5vY8nXm0+X2/lyfK3QUBDx+JM7kUJDktQynLlttFQGvY8MB7ivByEqZS5UmAPWmSSpbIRZy43HZcTtt5ACnQ9+0QqzrGk8/cOtsRbW6wRunrOFWK4PvT11aJhJwMTkcpFprth+rwYYBLlgpaCst7kcnIzx4MIrbub1T0qXpHK+fnCcScPGpZ8fbjRgHRkMcGA3x129Nkc5VSeeqHBgNddSaPTbg5yc/dQhgw9V/1zOTKrUD/Kuz+Q1fS9e1HS1CeLc9lujD57ET8Dq7lgolhNhbeiYI6GWzqRKGqRhrda9Hgm5CfmuAa6VmtKcSLZa7lwaym3RNu+WkpWlaxzME7cQbJxdI56pcmckzFPNuOhvTQNTb0VzwiYkIh8fD2867LlebuBz6mgAjV6zRNKzxD1//5KF2ZWlqocCl6TxPP9BPJOCmUG7w7tkUYFUsO1307G8/mOPaXIFI0MXnn59olzlfqrcHaJ+8lN4wCDg0FmIpW0HTNLwuO/GwG7uuEQm5uzooc7X+iIcrlQLRoGtND5jNpm+4kq1SinIrXWqlor2V4biPSNBFvW6wbyRIqdLgzdMLeFx2nn5gYN3X0lqfYdecVbnX2Hx13ZWViEuVJvPpMs88OMDpy8s0myY/eGcGp13nCy9M8tITI8wsFumPejcMcjZzYSrbTp8bH/BzfcG67mwFIS88NsyF61kcdp2Rfv+mqWAHRkPtQfYPHth+AABWZVspWM7XyBVrt3zHh/p8VlqZx0HgDo9fGon7CPoc1Bsmk/fBwlN2m76jSQmEEPcOCQLuc9W6wffftpZY+NBDgxwcswYFDca8nL2awaZrPJboYylb5dCYDBjaKb/XQTpXxe2yYe9iStV2A4BTl9K8n1wi6HPyuecn2pVbm67TbM0V/cp7M7z4+AgOu87fHp+jaSgW0mW+/qlDoFktlaaptrV4zlLWSgHJ5GvtqWPBGiAcCbjIFGqbzqzjdtn56JOjzKZK7c/rE0fjHN3hqs2dWFmhN1uo0zTMW3qI1qNpGh95YoSrswUObLDa7c08LmvWpxVvnV5gpjXN7HCfb9NW4UcTcUJ+FwGvY8MxKjerNwwGY14+9NAgr7ameqw3TYrlBgMx77qDfDvVF/aga4CmcWRfhH0jQRx2vT2+IBZyE+twMHY44OJLL+3b+oGbODIZIVusEwutP/bkgf1RJocCuJy2jt7f2+F1O/jSS/vv6GsIIUQ3SRBwn1s9PWS9cWOqzOG4j6997AC6ruGw6yS2zmoQm3j+4UH2jwSJBt13vLKxmdnW1Hz5Up1ipdGeeSQccJIt1FAKZpfK1gDpoQDhgIulbJVw63HRoJsfe2GSesPYVs/JMw8McOZKhomhwJr9t9t0Pvf8BPWm0VFLb9MwV12/s4nIHpedXLGO22Xb1qDroT5fu9K7E31hN8lr1kw84cDmgZZN19qB+2YeaOXtP/1A/5p0r0cO99E0rLn2+6O33xM2GPPy4x+xKrp7IZ99pN/PVz+2+QDivVBOIYTYiyQIuI8988xzKAWBeJymqW6Z89m1wcBHsX02m76tOeTvlIcP9fHO2UX6Ix7Cq1ryNU1rLZZlve99rXSpTzw9xnKuuiZ9aiez8Yz0+zdM9dF1reNUj/HBAM8+OECtYdzRXgCAlx4fZm6pTDzi3lFqzE7tHwnRF/bgsOs7nmb2ZiuBV2Ji7TEL+px89MnRrrzGCqlUi/vJM888t/WDhLhPSRBwH3v66Q/tdhHEXTYY865JPVnN7bTzE584iE3X2uMFHHadgT224NvdmlrQ6bDt2gDNvTq9rhC9Rs6TopdJECBED3FuMqWlEEIIIXrHvT8pvBBCCCGEEGJbJAgQQgghhBCix0gQIIQQQgghRI+RIEAIIYQQQogeI0GAEEIIIYQQPUaCACGEEEIIIXqMTBEqRI+YmZnim9/87d0uRpvDYaOxahXrvWB6egpgTx2nTnXjeM7MTDEyMtalEgkhhNjLJAgQogeMjHR31dj7VTAY3O0i7KqRkTH5rAghRI+QIECIHvCVr3x9t4twi3g8QCpV2O1i3DfkeAohhNgOGRMghBBCCCFEj5EgQAghhBBCiB4jQYAQQgghhBA9RoIAIYQQQggheowEAUIIIYQQQvQYCQKEEEIIIYToMRIECCGEEEII0WMkCBBCCCGEEKLHSBAghBBCCCFEj5EgQAghhBBCiB4jQYAQQgghhBA9RoIAIYQQQggheowEAUIIIYQQQvQYCQKEEEIIIYToMRIECCGEEEII0WMkCBBCCCGEEKLHSBAghBBCCCFEj5EgQAghhBBCiB4jQYAQQgghhBA9RoIAIYQQQggheowEAUIIIYQQQvQYCQKEEEIIIYToMRIECCGEEEII0WMkCBBCCCGEEKLHSBAghBBCCCFEj5EgQAghhBBCiB5j3+0CCCGE6F2maVIulyiVSlQqZWq1GvV6nXrd+lur1TCMJkoplAJQKOsKmqbjcDhwOp04HA4cDidOpxOXy43P58Pn8+H1+rDZbLu6j0IIsRdJECCEEKLryuUy2WyGXC5745LJkstkKORzlColSuUytXoVt9ONx+nGY3fjtNlx2Ow4dTsO3Y5Ds2PXdFCgaRoAGhqgUEBDGTSVQcM0aJpNGsqgZtSp1KuU61Uq9QpOhwuvx0vAHyAcDhOKRglHIoRCEcLhMJFIlHA4IsGCEKKnSBAg7glKKer1ervFcOVvrVbFMAwMo9n6a10AHA4Hdruj9deOw+HA5XLj9wfw+/34/QEcDscu71nvsN7DGpVKhUqlwvIyzM2lV72HBqZprnoPFTabHbvduthsNmw2O06nA4/H27p48Hi88j7eZUopisUC6XSa5eUl0uklMuk0y0tLZDLLZPNZTNMk5A0SdPkIOLwEbB5CDi+jrkH8ffvxOdx4HC48dhe6ducyU02lqDXrlJtVivUy+XqJ/HSZpSuXuGJYt7OVIsVqiaA/QDQSI9bXx9jkKB5PkHi8n76+OD6fvx2ECCHE/UCCALEnKKXI5bKkUossL6etSsXSEstLaZazafLFAgBel4mY9MYAACAASURBVAevw43H4cZrd+HSHeiahk3T0dFbf60TdVOZGBg0lUnTNGioJjWjQblRpVQrU6pVsNls+Dw+QsEg0Vgf0b4+Yn19RCIxotEYsVgMu10qmFsxDINMZpl0eonl5TTZbJZ8NmO1/Oay5As5ipUSNt2Gx+HC5XDhdbpw6U6cuh1ds2HTNPTW+7dSKTSViYGJoVoX06RhNqg2G1SbNaqNGpV6BU3T8bo9BPwBAoEgwVCYYDhk/Q2GiEQihMMRgsEQui5DoTpRrVZb76dVyV9aXCSdSpFeTpPJZrDbbES8QcKuAGGHj7DTz4RrnPDYA4Rcftx2556oNOuaZgUbDhcxT2jDxzVNg3ytSKZaIJsvkHr7MplGieVqnnQpCyhikT76+uLEBweI9w9Y1+P9BIOhPbGvQgixHRIEiLuuWCwwPT3F3NwM8zOzzM3OsJBawK7b6POFCbn8hO0+hlwBjgYShOMBAk4vTlt3K+NKqVZQUGm3BmYvprl4dopso0i2UiBXyRP0hxgeGiIa72dgcIh4vJ/BwaGeO/E3m02WllKkUgssLMyTmp9nqVUpzBfzBDx+op4gYacfv81N1OljwjlMYPAQgXEvPocHu979dAulFE3TaLX0VijWyxTzZQpLy8w0ZzjXrJCrl8hVClTqFQK+IOFQmGg0RjTeZwV/USvoi0SiOJ3OrpdxL6rX62Qyy61Kfpr00hLpRSsIX86kqTcbRHwhIu4AYYefiNPPqHuMyPgxwocCuO3313Gy6zainhDRDQKFcqNKpponXcmzfHGZs2evsVzNs1zOUWvW6YvEiMXixAf66WsFCH19cSKRqKQZCSH2JG1lgJXoqkngSjpdxDR35/jG4wFSqcKuvPZqlUqF69evcv36Na5fvszU9DUq1QpDwTj9rjBxd5h+X4S4N4LP4dnt4t7CMA0y1QJLlSzpSo50Pc9SNU+qtIxhmgzEBxgcGmZwZJjBwWEGBgaJRKL3bGuzUopSqcjCwjwLC/Mszs+xMDvHYmqBbCFLyBMk5g0Rcwbpc4eIuINE3AFCLv8dqeB3m9XaWyJXK5KrFcnWCuQaZbL1ItmqFfS5nW7CoQiRaJRoXx/RWIxIJEY4bOWP+/2BPVmpW/2dbzQa5PM5q0cmnyWbza5K17Fa8muNGkFPgIgnSMTpJ2T3td/PiDuAz+HpqSD3dlSbdZarOZYreZareTKNIplageVKjkKlRCgQIhaNEYvH6evvJxbrIxaLE4v14fP5euI475Vz0v1Cjmd33evHU9c1YjE/wD7gaqfPkyDgzpikR4OATGaZS5cuculCkksXL5DJLjMUjDPs7WPE18ewP07UE0K/D056pXqFVCVDqpwlVc2SquZIlTNU6lXi0TgDA4MMDA8zODREX5914vd6vbtdbACq1Qqp1GL7sjg3T2pxgVR6EdNU9PujxNxB+pwh+jwh+rxhIu7gPVHRvx2mUpQaZbLVlSChSK5RItcoka+VKNSKlGsVfB4fwUCIcDhMIBjCHwzga4018fmsi9vtxuVy4XK5cTqdOwoclFI0Gg0qlQrV6sqlSqVSoVgsWJd8nmK+QLVaIpvNkSvkqdWrBDx+gi4/AaeXgN1DyOEj7AoQcvsJufz4HJ774nu41zVNg2y1QKZWIFPJk6kXyDZKZKp5lst5TGUSC0eJRvuI9ceJ9cVbQYJ1cblcu70LXXGvV7L2Gjme3XWvH08JAvaWSXokCMhmMySTZzl/9gyXLl2gXqszHh5i3NvPZGiQQX8ftjs46G8vqjXrLFWsgGCpkmWpkSdTLZAuZrHZdKLhGH19fcT6+wmFIwSDQQIB6xIMBvF4vDtuGWw2G5TL5fbA6Ww2QyazTGZ5mWw6TSaTIZvL0Gg2iPkjRN1Boo4AMXeQqCdInyeCz+HuiZbJnTJMg2KjYgUF9RKlRpVyo0rZqFE2a5SbNcqNCrVmg3qz3v5r0204HU5suo6u62iajqZp6JqGrusYpjUgumms/G1imAY23Ybb4cLlcOK2O3HZrIvX7sKnu/A63PgcntbFTcDpw+twSwX/HlFp1qwgoWr9TmTrRasnoVogU8rhdrrag5XjA4PE+/tbqUb9BAKBe+a7eq9XsvYaOZ7dda8fTwkC9pZJ7tMgoFwuc/HieZJnT5M8d5ZSqcj+yAj7/ENMhobo84TvmZPS3aaUotysWif3Sp5MrUChWaHUrFBsVinWyhRrJRrNJi6nE4fdibM997n1VynVnkHHNE1M06o0VqtVytUyhmHgdXnwOF147G6CTi9Bu4+g00vI5W9dfPgdOw80xPatjFuoGw0MZaJac92bSrWv65qGTbdh02zYdGuQu3W7t4JoccNKz9RyxQoSlqt5Ms2iNRahlKNhNumLxOjvH6R/eIiBgSEGBgbo7x/A5XLvdvHXuNcrWXuNHM/uuteP506DABkYLDZlmiYzM9OcOXOSMydOMLswy3h4kH2+Ib468QKDvj5pceyQpmntFtvRQP+Gj1upLDbMJg2jScNsUm/91cCaQUfTrRbl1ow6bpsTj8ONU7dL5X4P0jQNR2v+eyE6pWsaAaePgNPHRGjwlv+vNGssV/KkK1lS5+Z5/+QFlspZ0sUMXo+PwYFBhkdHGRoZZWhomIGBofsmvUgIcfvkjCRuUS6XOXfuNGdOnuDsuTO4bU4OhkZ4IXyMyfGPS0XmDrPrtvs+914Icfs8dhcjgTgjgfia+02lyNUKLJYyLFxb5tT5N/hBJUOqsEwoEGR4eJTRiQlGR8cYGRkjHI5I44EQPUhqcwKAhYV5Tp8+wanjx5menWIiMsyhwAjPH/sxop7gbhdPCCFEh3RNa830FCQRm2jfbyiT5UqO+WKa+VPTvPzuSeYLKZqmycjQCGOTk4yNTzA6Ok483n/PznImhOiMBAE9yjAMLl26wKmTH3D65AnqtRqJyDjPhg6x76mXuj4nvxBCiN1l03TiXmtK5odW3V+sl5krLjF7ZYl3z73MXxSWKNerjAwOMzo5yfjEJGNj4/T3D0pgIMR9RIKAHlIulzhz5jSnPnifc8mzRL0hDgdH+YnJlxj0xaQ7WAghepDf6eVQdJxD0fH2feVG1QoMppY4fuFV/rK4RLFWZnhgmPHJScYmJhkdHWdgYHBPrpshhNiaBAE94vf+/f/K2eQZ9kVHSARH+cSjXyXg9O12sYQQQuxBXoebA5FRDkRG2/dVGjXmSkvMzqQ4celHfLf45+QqBQb6BhgdH2dsYpKRkVGGhkZwu/fW7ERCiFtJENAjTp87xa89+dN4HfLDLIQQYvs8Dhf7wyPsD4+076sZDWuMQXqJS9Pv86Py90kVl/F7fQwNDjM0OsbwyAhHjx7EbvfL7ERC7CESBPQQmXFGCCFEN7lsDiZCg2umMDWVSaZaYKG0zOKlNO+fucxf/cWfs1TI4vN4icf6iQ8O0D84RDweJxKJEYlE8Xpl/RIh7iYJAoQQQgjRNbqmE/OEiHlCHGNf+35TKfK1IkuVHMtLORZmkpyrv0uuViRbKWCaJuFQmEg4QjgSJRAOEgiECAQCBAJB/P4Afr8fj8eLwyGTVwhxuyQIEEIIIcQdp2saYXeAsDsAq8YarKg26+RrRbK1IvlsiWJqmVljlpJRpdSoUqyXKdcrVOtVQMPjcuNxe3C7PbjdbpwOJw6nE6fLhdPlxOl0YXc6sNvt2O12bDYbNpt1Xdf1NRdN07HZdDRNQ9NW/tK+vtrNt5VS6/xVmKZCKbO10ru1MrhSJoZhtv4a7VXgTdPAMMz29dUrwxtNw7rPWLnPwOmwUanU29tUpsJUZrt8GtpKYa1FJe02bDYbdrsDm92GzW7HZrPjah0np/PGX5fLhcfjxePx4PF4cblc0kNzn5IgQAghhBC7zm134rZH6fdFN32cUoqmaVA16lSbNarNOjWjQdNs0mg0adRWVlrP0zANqsrAwMRQChOTpjIwlVUpN7EqzyvXlVJYVXjVrtSvVK5vKQewumq8UlHWaAUQK/+0lWtWL4mmaehYlfP2dW6sAG/dtp5hrQyv42j/n956nklIc6zZ/q3luxGUmMrEUCaGqmCYJoYyqJkGeUzrWClrhfq62aRuNKxj26hRrVdpGk3crYDL5/Xj9/utXplgEH8wgM/nJxAIEgwGCQSsi8wYdW+QIEAIIYQQ9wxN03DY7DhsdgJO724X575ntAKuSqNGuVml3KhSLlQpLedJG4tcN2qUGhWKjQrFWolStYLb5SLgs9K4gqEQoXCYYDjcChZC7aDB6/XJ2hO7SIIAIYQQQgixLptuw6d78Dk8HT3eVIpKo0qhUaZYr1CslCnmi6QuL3Gl2QoW6mWKtTLVRg2f20vAH7R6GAIBAsEQ/mCgNQbE6mnwer14vT68XhkP0k0SBAghhBBCiK7QNQ2f04PP6YEtliNqmgblRpViK2AoV6qU8mXyzQzzRo2SYfU8VJo1qo0q5VoVXdfxrowFWRkX4nHj9njweL043W5rjIjThcu1Ms7BjcPhxOl04nA4bvrrvDsHZg+SIEAIIYQQQtx1dt1G0OUj6Ops8VKlFA2zaQUFzRrVZoOaUafWrFPLNKgulagZGQqmQUNZYx3qRpO62aBhWuMemoZ1n/W3QbPZQNdt2G12HHY7DocDh8PJ13/6Zzl48PAdPgK7S4IAIYQQQgix52mahtPmwGlzEHL5u7JNpRSGsgZIN02DptnkO9feJJ1ekiBA3B90Xed3z3wLXab52hFN09ozRYjukGPaXXI8u0uOZ3fJ8ewuOZ7ddfPxXC7leaIHBixLENAj/uk/+++oVMq7XYx7ViTiI5Mp7XYx7ityTLtLjmd3yfHsLjme3SXHs7vWO57DwyO7VJq7R4KAHhGP9+92Ee5p8XiAVKqw28W4r8gx7S45nt0lx7O75Hh2lxzP7urV43n/93UIIYQQQggh1pAgQAghhBBCiB4jQYAQQgghhBA9RoIAIYQQQggheowMDBZij/izP/tjZmamd7sYd43DYaPRMHa7GLsqn88BEAyGbntbcjy7Y2RklK985eu7XQwhhLjjpCdAiD1iZmaamZmp3S6GuIvy+Tz5fH63iyFaZmameioQF0L0NukJEGIPGRkZ45d/+dd2uxh3Ra9OybbaN7/52wBdec/leN6+lfdDCCF6gfQECCGEEEII0WMkCBBCCCGEEKLHSBAghBBCCCFEj5EgQAghhBBCiB4jQYAQQgghhBA9RoIAIYQQQggheowEAUIIsQNqJo95Po0yzLv3mqbCPLWIeXIRZaq79rr3CrVQxPzRFGpWpkrtZapQwzydQuVru10UIfY0WSegB7z11usAPP30h3a5JELcH1SqhPlXV6wbxTra40N353UvLqPembNu2DW0o/G78rp7kVoqQ9NEG/S37zN/eA3KTdSVLPrPPIimabtYwjvHvJCGYgPtgTia07bbxdlzzO9dhkIddSaF7SeO7XZxxD2ml+pMEgT0gDfffA2AJ0OHUacW0fZH0B8b3OVS9R5VbaLenQOXDe3xITT9/qyg9ITVrfDG3WuR15w22q/WhcqfahhQrEPYvecqzGqhhLqSQdsfQev33bh/Oo/58jVoWj0w2ofH0A9Grf/0OqHcBJ9jz+2P+cECZCrWdz/o2tE22sFn3bDuqBtoz4zc+rhyA2pNtIjndop871r5fkpvmdiBlTqTBAHivqKOz0OlifpgAfVwP5rt9rPBzGQadXwebTKMvs7JqBeoUh10Dc3j2PxxJxdRF5YB0Pq8MBm+G8XrGlU3UCcXwe9ET8Ru3G+YqOt5tIgbLezexRLePdqAH+3FcSg10I723b3XnQyjf0IHU6GNh25rW8owMf/LBcjW0A7H0J4b7U4hu8T8mytQM1CXs1aL93AALe5FXVxuBwCAFcS06J/cD/NFGPCts8Xdo1Jl1Pvz1nUFto9O7mw7l7M3AgBYNxBU+Rrmn5+3ekk+NLrmu9or9E/uR13LrfmOqKYJC0Xo86K5pOqzEZWtQqkBw/49F0iL7pNvQg/RJkKoc2kYDXQlAACrYkuliTq7hHpscNOuaVVrot6cAZuO9swImr3zMpgXl1FvzcKQH/2liT3Tiq5mCph/fRl0Df2zB63K/UZCrdY/XYOA8+4UsIvU+/Oos0vW9aATbShgXX9rFpVMo+w6+pePoPk2D4buF/r+yB3ZrporWBWYg9F1P0/aaLA7L1Q3IGvlTKvFUne2uQlVboBd7zx9xW2HmgGGaX32Ti2if/0BtINR1EwBHDqMBdEeuJESpblsMHF7wdEd4XNY5W2YWwbKaqmM+fYsWsyD9tTwmoqYti+MupwBuw4P9aMdXqeCn6vdCJLSZaD3ggAtfGuDhPk3V2C2CEEXtq8c2aWS7W0qW7UCSFOhPTaI9sjAbhdJ3GESBPQQ/dlR1GODXUkjWKHtD6NOLMJowDrJbUKdXbJassBqjdlGC5U6t2RVWq7lrJa/HXand5taLIECDIVaKm8aBOiHY6iIG5x2tNDdL7+aK6Ku59AORtBimwQrG3G3fi401nyGVKVpXWma0DCAvRUEqOk85luzaAM+tOdG93TrljIV5vevQtNEzRSwffXoHXstzeNAe3IINZVH38bJ3jy3hLqaQ38wvm5AosoN1HtzEHC1t6uuZq18facN/QuH0AJbf/71zxywPrOnU5CugKaBZgVBtp95qPMd7RJ1NWtVzocD2/4caV4H+o8fgVJ9TWrTesz352GhhFoooe2PwKrfFK3fh+2nHtz8xUYCaEf7UKUG2sOdv69quYI6t4Q2GrztXqY9KdcaJFyso0y1ZxqS9pRK80YK1aoeNnH/kiCgx3S7G1R/fAj18EBHrfpa1GPlM2ugRbaXNqIdjKKWZ2HQB/7utKJv1DKp6gZqJo/W70PzOa0ZJuIBzHdm0Z4YWtsydySGSlfQ7Jp1wt5qP+K7k6ZgVS6vWJXL6fyOKpfaw/1W8OJ1rAki9GdGUD6HFdjtwXQg88QC5GuofM1qNd5hGVW2CjatowrsjmmAy2YFVO47//OsP9gPD/Z3/HjVMFBvzABglurY1gsC3p9HXcxY1/u9aEMB1FzRCpZrhlWh7+AYah4H2v4IZr8PrmTRttGDqRoGzBSsz2SHvxfmhTRqoQhO27ozL5knF6HUQF1YRnu4v6N9WLM/PofVI3BzWU2FSqatz9ahKNqg3+rp8Dq23WOoqk3U27PgsaN/ZHs9puar1yFTRV3MoP/kAxv22CjDRL05i6o00J8Z6fj47jb9hXFUMo02GZYAoEVVm9b32aahPTuCNuRHe3IICnW0R6UXoBdIECBuW6dpPdp4CP3HEzuqSOlH+lCJWNdacTdrmTRfvgqzRZTHjv4Tx6yxFAf6UKdSaCNBGLoxG4nmcWD7xL6ulKldNlPBUhkibjRHd3pt1LXsjRaeHVYuNU1bdxyD5nOsOzixW1TDaM360kB/YXzbgx218RBqsQxR944DSHUth/mDq1ba12cObNmau5qZTFtpcMN+9I/t27QComka+ucPoeaLaCOBHZV1p9RUHvONaejzbpxyZ9ch4oZMFS2+QW/SSi+dTQOfdby1Y3FUtmqNm9lGOpOqNFDfuQTlBlrQCR2+9+Yr12EqD247+teOdvQbpZLpG4FKsQ431YG0yTAqXYF+b3u/ukGdW7JSHQHsOvpD/aiJEHjs2/7+q5OLqEtWALbtcUc+B2SqVhBq2+R3diqPOp8GwLRr2F6a3FYZd4s26F8zk1QvUA0D9d68NWbt8cFbgmiVTKOuruqdP9pnNQyIniFBgFiXKtTB2Dh/VTVaLXp93m3l9uN3WgP7QvV2TnmnupnGsbplUs0WYExH87Za6VbSW1r5yKy0ejt0CN75Vi/z5atwPQ8RN/oXD3e832YyjbqcQT/ah3bTyV+9N98OArQXxm95rirWUZczVqrDOilNqlSHanPdNCLVMFAXM2hRD9qdGJA5U4Bpa953dXYJ7bmxbT1df7AfdSgKDtuOWwDVcsW6YiqrMruNIECdT1vHfroApfqWLcia19FRr5JKV8DvtPLgu8A8k7IGBJZysFxZk4bSLlsrSCFXs4KBdegP9aPiXqvHqBUQaCEXts8e3H6hlirttAR1LY820WGlttKw/taa1ne49RulTGWNa3HoVqv76l69wzF4HasSvE6wqD/UjzoSs3oPu5lStuozufL53OnsQbcz7kh/acL6rsW9m/e4RNzW9k0FV3Kow0W0ob1buVaGCQUrhbTXegBUMt0ex0XAiXZk7SQGWsyD0gBNQ4ttHGCrqbz1u5eIyZS095nbDgISicRVoNq6uIFXgX+YTCYbmzznG8BryWTyfOv2o8DhZDL5J7dbnnVe5wvJZPJr23iOE/j/gFHg+8B/BpzJZPJ73SzbXqRMZf2wZ6uYf3nRGhz00gT6vltPvOb3LkOqDP0+bJ/b/OSuZvKgrFxe9e6cNTZAA/2LiW2nBXXLSsskGqg3ZlBvzqJ/9gBa3If+4jjqXBptLIjmsLUHHupfPnIjULiT0q0KZ7ZqvR+btcq1KFOh3pgGBWa+hu2mIEAbDlgtnXEv2jqVA/Plq7BUQZ1sDb5cFditmW3kmRH0o31W6/xfX7HKGPXAXBGla9YxWmf7qmag3py2TjbPjGzvRBL3gscaJNrpoFg1WwCnrR3QqGs5K7h7IL69oLVFO9oHhZpVAdzmgGDtSKw1qD3QcQuy+dYMarGM/tQQ2sCtFSzznVnUqRT4HOhfSnTlxKztC6Pmi1Zr+yYpU5pdh00qDMCOWlxVpoJ5fAGt34e+Mth3yA8jASs94WjnY4j0D49bAeNwYE0KpDqTurHOgsOGtuq3TT8cs1Jxqk3MPzwF//g5VMNY0xqvOWyoXA1l07qWBqMlYlZQYtO5OXjfLmvckcf67LcCAlVpgMu+ZQVYc9g66jnQQm60B+LWpBCAylX3dBBgfu8yLJRgIrTjWZnuVVrA2Z5SeL3ed200iP7lI1ZPwQafZ5WpWKmkAPka2vPba4QRe1u3egK+lkwmTyUSCRtWEPAV4I83efw3gCXgfOv2o8AXgK4GATv0GDCRTCYfAEgkEv8S8AP3bBDQycqiqtzA/NYFqDbhSOxG6shyBdYJAshUrb/Z6qbbNa9kUD+8DmBNqbgyp7rirs7hrGbymO/Now0H0J8YardMmh8soOZLoBQqVUaL+9AiHrQP3Tpd4l0JAAD9uVHMM0to+8Id50BrumZVlhetwOyWbX5oFPVgv9WD05pH/aYttP5o7att+VWzjay0iC9VrBMr3Bhwp5R1WYe6kL4xKDzqWTOjy5b75nOif+0oGKqjyq6ZTKNenwZA/+wBaJio16zbNE20Jzpb2Mu8tIw6sYi2L4z+6CDaixMdl3k1/VAMDm1jEHymgjpjtd6Z789j+8ytQbZKla0rpQbq4jLm2SX4B0/vqHztch6OoQ5E1nzmzPfmUNMF9McG0Ma6M1hUzeRR0wWrVXFVsGG+NWsFk9dyqLEgWtCFZtexfXL/2udP5630sJAb/dP710+ZCbkg7EYValaP5so+rdo3baPgutJYNbtOBVYFNOpaFvMH16y0sM9tMRtYhzRNQzsQva1tqFwNlSqhjYfWpGmZHyxYU5NGPeifP9i1WeG0h/qtc4VNQzt4e2W/k5SpYGXmq4U7PwPWXqNNhNG/4LTG4W0wGcSWvU4r5wTFml4rcX/odjqQu3XJJBIJP/BN4KnW//1+Mpn8rUQi8fPAk8C/SyQSvwn8K+A3gGAikTgOvJJMJn8lkUh8pvV/NiAF/GIymbyYSCQ+Avxb4C3gWaAB/CzwL4AHgSngK8lkctNvfCKR+GfA17COwQzwC0AI+ANguFWW/xf4B4CeSCQ+AfxfyWTyf7jdg3Q3qXSZuWvXKRs1fvVXf7GzJ7276vr7wP+5xePf7LAw729x+27ZaH92qzyreL1etJEgtpHtTwOpf/qAVWEPbZDCNV9A/Wjamsrzxw6hrXqc/tFJa2Gm4XUGX44E0B6Mowr1G1PG9XmsS7aG9sSgtXppzLPhCUWLtrqdac1CUm1ua980m279EmxBzRVQy+X2bTNTRV+dR77FDFZrtvXevFXJPr6AeiDetfEZW/I7rVSOwsYpc/pTw5jvzaEN+K21JwqtlJlSHe028tVXv/eq3LBm/gLMd+awdSEIUA3Dmv3IVKiFIrYvJm68dthtpem57dBqvVfVptVKuXo2qovL0DCtcTOpMgzfeozUlaw1DmNl2608Z+1IzGolt+vrzoAzOztNuVzmn6R/B376dzbfmXc3/+895/t3aLt/9P+3d+fBdZ3lHce/77mSJcvavEjybiW289oJzmInzkLSZAgNLQ1tSFmaEkg7pQt0GDoDDO10GBjazlAahpmGMJRpWSZMaTtlKZOWJJ0pSUgTaAjBiYG8cRLbsbzK8qLNWs/bP96jxdbddHWle+Xz+/xj33Pv1T16de8953nP8zzvPP3c+fBMpXdgkXse+JdK78TCaGiYe4C/GJQrCPh3a+0QsBl4zDn3mLX2b4EI2AE0Ac9Ya19wzn3VWnsfcL9z7mEAa+1SpqXtWGvbgYeAW51zv7DW/gHh5Pz65PUuB+5zzv2htfZB4FHgBudcl7X2v4B7gH/MtbPW2nuBLclzYmvtB4DPOefeY619f7Jv1yaPNUCjc+6jsx2UlSsre4m0ra0J2pow9TUwMFzRfZHiGGPC361U+RaCbmuCmzpz3Ad05pnR+/UsQcnv7yp+v9qa4Kq1MzfP5XfN9TpXznwd3lDCCtkfvL7wY+aoNgksZoxDoVn9tibYPrN7R3tnmXvCf+zm8v48gI+8Mfv2O7eF68GFvLOI9qBtTXD9zNoXANpzB9jV3D5WRBbOnI/Fi0S504HqgW9Za/8MeDPwYeecB3qttd9Mtn2/iJ93PbDHOfeL5PZXgS9aayf+Is4597Pk/z8lpO8k1/t5jnCCn89vEq5G/NRaC2EcLMpW+QAAFPdJREFUzhaxX7PS09NPXKFly9vamuju7sMPj7G6fgXUreBDH/v4eSkt/ng/8TOHw0qvt2wsqmjKnxsNed1FdpjxB86E1npDY6HoEIjusmHWb3gc+ofxJwbDrF1NFAphk9nk8cdeDYu7ANHbLstbuBTvP41/9mhocXbzhtC3/6WT0FA7uaiT7xuBhpqZHRJ6Bomf7grpBzdvyHrJfGI8c/6eo+P4Q71hRdMDZ/F7jmM6W0JucpKv788MEV2/Pufv8cADnwPI+zpz4ftHQr/8hhrM7nULXiTn+4aJv+NCrcnWFXTcdXlZf9f4h69PdkahrSHMEkO46lHKuggkbWTrC+dTQ3h/+eePhYLuHcV12BgdDau/znUc/PAY7euXl/29M/6DA2FtDgjpL7MoiM7F94XPvNnQnDe9K372SFgjADA3byCaZdqJP9SLH4sxnS1Fn9yvWRO6XH3oQx+Z/MxPfg811xG93VZloOC7evFH+0OKVZnWUPEnBkJtGMD65jl3QSv0HSqzMx/j6YfGwt+8fwRz3Vr8T46ENMw3biDaWr1pX+XQ1tbEsfufgiUZHtz7LQCOfflZMm9fHAvLRZEpaeK5rOlAzrkha+3DhPmciSyy6Yo9I8723OmmJ6KPZ7ldqI+cAf7aOfeVIvdn0TJ1NZMtFS/MaY/3dsOZoVD1v20VFOjs4o/2E//3a2AovDruxOt3tpLpbCXedyoUrnY0QnNdSAv4nguBQWty0BqLQ355chCLrllNPHYU09aQNwAAQpHk4Cj+1dOYqzvw+05NpjL4+pqQ5pKjW4bfGxYj8j3nQn5rCa0ZJ1oS+roM0Tu2n38SeGIA//Kp8LgXjlesOM00LiHzpuJe24+Mh4WDmuuYa7EiJB066mvCAlCnhzCbiy+u9cPjYZGlFQWKUXetwQ+H9BGu6oAnDoZ81iWlf83Npg7EP3d0st2e71hWlhPmYs1l/Q/vkz71YzHm8rbzAp7o2jX4yEBr/ew6Io2Mh3zxLAG1aaorqkWw2bYSf3IwpO+UsAqw2dA8o7zlvH2c1lPf7FyTO9CbtshUsYX6hfgTA6GzU5nqjMz65rKsJO3PDhE/dSh0dtq9NqSm9Y8seLva+eaTOqdC3ympc3IwpJQCdA8Q3b0NRsZn3ZZ50ZpoEbwkrNUym9q1xaqsQYC1NgJuJRT87gXeb619mlBY+zvAREpNLyH/nhy3nwH+yVq7zTn3EnAf8Lxzri+ZuZ+r7wEfttZ+xzl32lpbB2xzzu3J8theYP6aoFeQ2dCMP9Qb8o+LWEDJnxiYLOb13QOzKoqLtq6AaTMJfmDqygAZAxtbMI21552Am7bCnYcmH3vp8tAysWNZ6MAy7YAe7zlOtLox90F+fRMcOAP1NcSHzmJ6BjE72mfM+PkjfbCmMftM4ESO+8h4KH6efmxvqQvdbc6NVXUXjen8T47iX+4JtWBvW1LyTDqcX3Qe3bqJKM9K0X5gJCzo09GIWdeEH5kKFs2OdqJ8Rb1jcWhx6IEY6E3y5Pccw9ycIzWknCbaM9ZGWReFqlZ+/5nJBcBgKn8ekhP2W2dXEB3vP4N/8mC4Cnfn1rA2QAlMU2ltRf1YHE7YW+ryztoX21N/sltYZ0tZCmvjnx4NExRLMuHKQhHj472Hrl5orJvXjmr+Fycnr6D5ljrMjetCo4QFaoqwEPzJwanud7+ycfJKcSHxL7vxPz+J2byc6JoS0gsXWPza6fC5bm8ouD7JpI5loRC+bzhcVVq2BCqzvmVltDdgGpZAb31oh3xZmdMrq1C5awKWEE7+P00o2P0C8GLymIecc48k//8ycL+19qPAxwglSx+11u4BnkgKg98L/LO1toZQGHxvifv2Vmtt17TbX3XOfcJauwp4IgkqIuCLQLYg4DvAe5NC4UVXGJxPdNnKsChNTVTUwc1sXYE/PhBm+GbZJnHGz2qqw+xcjT/WT3TN6jmvpBtd0YbftnLq97iyI3Sj6R0OXSHODOFrIxjzMw6i0eYV+HXNxD/vhhdPhEtQTXWT7QN9/wi0hVZzZkd71u4y0c0bploSXpAqZZbWhhmV4fFFs7rm5GynYe4dIboHYTAEfPG+HnjpZAiGbp85uxg/dShpN9pN9M7tYVYmCRYnO+LkMh5PXT+MCCfjo3FoYZqFP9qP7x/BbF5eltSo6JrV+DWNYYa3jItJlcof7Q+Fteub4NkjYWZr97qZ78/aaOqyawntU2c4dDb8HQZGQ3ed9bO4muI9fv+Z0C6zhNl/H3vi/9wXFjOzK7N2+Zp0Xk/93FcmTEdj1jatpfITndVGxsPnYmntZAe3XO9D//yxEDhEJqRTlinl50JmbVNY1yJj4IXwXWhu74SG8nSGqgb+7PBUZ7rT+bvbnfe8nx0P68rsOY6/qqPq1xzwrie8x7r6plo5F2BqM2R+bfMC7F11yrx1KwDmxer+25bTnIMA51xnnrt/L8dzHgYevmDzTRc85hHgkQseg3PucUI+/8TtrwFfm3b7U7nuu+DnfB74fBE/fz+hbehFaTZpBKahlswdlxZ+YJGiKzvgyrkvTe6Hx2HJ+YGMiUzoZf2jLljZEHL2H96XdfbHnx0i/vERiOOp5y+dNi7TO9n0ZS+wNi31mBtyn3CY2gwsVHeZMjDXrgkpIM11c78UvLYRVi8L49g/GgKyo/1we5ZZ3omT0MiErjCt9SG968QA0c78rT3N8qVEt20K6UaXrwpXZM6NZU0l8z2DxI++Gm70DhfdNrSQalmR1B/vn/r9NrVM5vXTVIe5YBbTbGghuv0S/Ng4tNThh8dmnV7k+0bA+/B+ubwNf2ooXGGc5Xj4fafwT3eFK1C3baKYVLT45Z7QyrWzJVy+T07sfIGWkJM99esy83ZSnfV1r11DHIXFmczKhjAz/eirkInCWiXZuntNXDWNfVgAjXkKAja1EL37itDS97ljAPjBsbxpVYuN6WyB7pUwMrt0D9PZGk6sN7VUfQAAyaRdspbPZMArcgGtGJwCfjyG3mHiZ7owu9eWrVf0fPBH+4mfPgSt9US3bSq4r/GPD4cVEdc3EW1vw79yKszsrm8msivxW0Lf8/iVUzlnf/ye43AkKbC6pDWsuDst/3ki7clsWY65uvovA5fKJz3+jQm53CZP2s6sfu4vT8KxkAPN2mVhVirHFZHolo1hJritYfJENJrFmJvOVkzntA250hjGpgI+3zvM+PdfwXQsKxhoLBojU78fNdHkCq+5cqDNhuYw2/zE6/ilNWG2uchAwJ8YIH7kVfCe6PZLMOubydxVYtrm9L/LuC/q5NPvOR5aue7txlzVEWpDDp0luqrwBMP0nvoLxbTUn1cX5A/1hitWozH+SF/WIMDsWhOubLXWz/mqacH9q6+By9tgzIdA/CIrCDWZKO+ETS7Rjevxu9YsmhVzoy0roIrXcJDqoCAgDQZGw2VM1xPSMMpQ6Dlf4pdOhp7nfSNh4asCOfQThZh09RGfGISRcXxXL5n3hDaCE0GEuaQ1pKWMjIdZ4unal8HEQlYHzsDuLC0mCauQXqz8maGpE7m3bC5rwZw/Fjo80T8SijBvWs/EDK8/MUD8PwdgaU143fqasgUf5+3DwMh5BW6moxFzy0boH8F39UL3IP74AH7Lipyzwv7Q2VAA3lpPdEeORaoWWLz/NHT1hRWN25pCd48nD4Z0nJ2rMbEPs51Xd4QuH3lqfybTrc4lV2yKDQJOnZuqFeo5N6cCVbNtVdj3jMFcmv97yo/HYWa2tT58x61rCit872iHHN2Z/IEz+KExzGUri+v4NDoeFgcbHCW6ZcOcamNyMZuXhxWtMwazKfvvbBpqSzpxLXmfMtGMK0bCrAIAf6yf+EeHMauWYt64Af/a6ZAyumUF0bZVhX+AyAJQEJAGEwsk1URFFQBXktnUgn/9bOgQVEwO41UdYQbw0taQYtI9ONld6LzHZaKc+cHRtlWMv342tAFckilPXvQi47t6J9OefFdvWYOA6OrVxKNHwoninpBn7F84AR/YjX/tdHjdobEwCzrHWpNs/Okh4odfDifB01pNRkmHongsDifATUtCAXcO8Sunw4xt92BYMbnCRd5+eBz/5OvgkxPx7R1hIa2kra5Z0zh1FaWIgCXatZoYj1lVuBvXdGbz8tBVZNyHxbjmYCKNrxh+b3doyQqY2zYVrCHwh3uJHz8YboyMY4pJRTzSN3mV0L/Ug3njPAQBzXUlXTnx43EIoE8OEt20PmcAIZURv3jivO57/v+OhMm4nsN4u7IqW81K+igISAGztBZfmyG6e1vVd3mILl2O39gSZsWK+JKMtq2CZFbFj4xD9wCUcLk8etMloc//qqVVMcO70MymVvwrp0Ned5mvFJn2ZWR+Y2tI3eo5Fzb2h8495pJW/P7QmWneOiedHQr1ARAKVS8oRYh2rcFvXg7LavP+7aMtK4iP9oeWtquqoGVejQnpTgOjk4WtpqMRXxOFv+Ms8/HNygYyd8y+KNDUZham+9KMF5723yWZ2Z1UFdusum1ZGOOhMczGubfgLKvTQ6EbFhC7HjIKAqqKWd+MP9wXJqWa60J9zMGzsDpHhzmRClAQkALXXx9qrqs9AJhgSpyJN0sysK60A7WpiSa7AaWRaVpSeh53sa+xc3XoOb9vqj7DdDSSuecN8/q6bGwJM9RDYyFVJNu+FXGFzGxoJvO787yvs2AyEdGdW0Ngk5zwm7YGondeDvg5rR2wGJg3tIfgsS6sA1Lw8euaQ7vTobGiU85MQy3RO7bDeFx9kwOt9dDeACfPYTYr97vaRNtX4S9phdrQtCK6dVOY/FgsHeJSbOKcKQ0u7qOEALB7942V3gWR0H7uurX4XWvAL9xK2iYyC5pPvZDM0toZLThNXZWdrM4TExnMLPt4RyUE+iYyEFXfmJqaiMxbt+K918xylZrejtdEJmuqqlSfNJ0zKQgQkQUVCjJ10iJSDgoARKRU6auAFBERERFJOQUBIiIiIiIpoyBARERERCRlFASIiIiIiKSMggARERERkZRRECAiIiIikjJqESpSRQ4fPsQDD3yu0ruxIGprM4yOjld6Nyqqq+sQQFn+5hrPuTt8+BDr1m2o9G6IiCwIBQEiVWLduotzQSvJrbm5tBWuZX6sW7dBn0MRSQ0FASJV4u67313pXVhQbW1NdHf3VXo3LhoaTxERmQ3VBIiIiIiIpIyCABERERGRlFEQICIiIiKSMgoCRERERERSRkGAiIiIiEjKKAgQEREREUkZBQEiIiIiIimjIEBEREREJGUUBIiIiIiIpIyCABERERGRlFEQICIiIiKSMgoCRERERERSRkGAiIiIiEjKKAgQEREREUkZBQEiIiIiIimjIEBEREREJGUUBIiIiIiIpIyCABERERGRlFEQICIiIiKSMgoCRERERERSRkGAiIiIiEjKKAgQEREREUkZBQEiIiIiIimjIEBEREREJGUUBIiIiIiIpIyCABERERGRlFEQICIiIiKSMjWV3oGLVAYgikxFd6LSr3+x0XiWn8a0vDSe5aXxLC+NZ3lpPMtrMY/ntH3PzOZ5xntf/r2Rm4EfVnonRERERCQ1bgGeKvbBCgLmRx1wHXAUGK/wvoiIiIjIxSsDrAGeBYaLfZKCABERERGRlFFhsIiIiIhIyigIEBERERFJGQUBIiIiIiIpoyBARERERCRlFASIiIiIiKSMggARERERkZRRECAiIiIikjIKAkREREREUqam0jsg5WetvQz4OrAS6AHe55zbV9m9ql7W2pXAQ8Bmwkp7rwB/7JzrttbeAPwDsBQ4ANzrnDuRPC/nfRJYaz8JfArY4Zzbq/EsjbW2Hvg88GZgCHjGOfdH+T7r+h7IzVp7J/BXgCFMhn3KOfdtjWdxrLX3A78NdJJ8tpPtJY1f2sc223jmOy4lz9F3aQ653p/T7j/vuJRsS+V46krAxelLwIPOucuABwlvXsnNA591zlnn3JXAq8BnrLUG+Abwp8lYPgl8BiDffRJYa3cCNwCvJ7c1nqX7LOHk/zLn3A7gE8n2fJ91fQ9kkbzXHgLe65y7GrgX+Lq1NkLjWazvAr8CHLxge6njl/axzTaeWY9LoO/SIuR6f844LiXbUjueCgIuMtbadmAn8M1k0zeBndbatsrtVXVzzp1yzj0+bdOPgE3AtcCQc+6pZPuXgHcl/893X+pZa+sIB/MPEg5moPEsibW2EXgf8AnnnAdwzh3P91nX90BBMdCS/L8VOAqsQuNZFOfcU865Q9O3lfp+1NhmH888xyXQd2le2cYTch6XIMXjqSDg4rMBOOycGwdI/j2SbJcCktnADwDfAzYybSbBOXcSiKy1KwrcJ/Bp4BvOuf3Ttmk8S7OZkCLxSWvtT6y1j1trbyb/Z13fAzkkgdS7gP+w1h4kzBreh8ZzrkodP41tARccl0DfpaXKdlyCFI+nggCR8z0A9ANfqPSOLFbW2huB64AvVnpfLhI1wKXA8865a4GPA98GGiu6V4uUtbYG+Avgt5xzm4C3Af+KxlOql45Lc6TjUnYKAi4+h4B11toMQPLv2mS75JEUE20F3u2ciwk5g5um3b8K8M65UwXuS7tbgW3AfmvtAWA98CiwBY1nKQ4CYyTpEs65HwMngXPk/qzreyC3q4G1zrn/BUj+HSDUXGg8S5dvjEq9L/WyHJdAx6ZSZD0uWWvvIMXjqSDgIpNUrP8MuCfZdA9hBrG7cntV/ay1fwPsAu5yzg0nm58DliapFwB/AvxbEfelmnPuM865tc65TudcJ9AFvAX4OzSes5Zcfv4B8Ksw2UmlHXiZHJ91fQ/k1QWst9ZaAGvtdmA1sA+NZ8nyjVGp9y3c3lenHMcl0LFp1nIdl5xzj5Hi8TTe+8KPkkXFWruN0G5tOXCa0G7NVXavqpe19gpgL+Gk6lyyeb9z7u3W2psInSrqmWoNdjx5Xs77ZEoy63Jn0vZO41kCa+2lwFcILRRHgb90zn0/32dd3wO5WWvfA/w5oUAY4JPOue9qPItjrf174G5C8HQS6HHOXVHq+KV9bLONJ6FuJetxKXmOvktzyPX+vOAxB0iOS8ntVI6nggARERERkZRROpCIiIiISMooCBARERERSRkFASIiIiIiKaMgQEREREQkZRQEiIiIiIikjIIAEREREZGUURAgIiIiIpIy/w+HaiA7QW+U2AAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
    " - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "import pandas as pd\n", "import ptitprince as pt\n", @@ -2117,7 +1133,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.1" + "version": "3.7.9" }, "toc": { "base_numbering": 1, diff --git a/Module-13-interactive.ipynb b/Module-13-interactive.ipynb index 2efffd1..0acbb03 100644 --- a/Module-13-interactive.ipynb +++ b/Module-13-interactive.ipynb @@ -7,7 +7,7 @@ }, "source": [ "

    Table of Contents

    \n", - "" + "" ] }, { @@ -96,6 +96,32 @@ "What has been your approach so far?" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Visualization with Pandas\n", + "\n", + "In this module we want to show how you can quickly create visualizations of your data with Pandas.\n", + "\n", + "But first, you should check if you are using the appropriate visualization tool. This website helps you select: https://www.data-to-viz.com\n", + "\n", + "In this module we will consider:\n", + "\n", + "\n", + "* box plots\n", + "* bar plots (histograms only; general bar plots will come later)\n", + "* time-series (sequence plots), \n", + "* scatter plots (plot one column against another column)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, { "cell_type": "markdown", "metadata": {}, @@ -524,13 +550,27 @@ "execution_count": null, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "import pandas as pd\n", + "data = {'Herring': [27, 13, 52, 54, 5, 19], \n", + " 'Coffee': [90, 94, 96, 97, 30, 73],\n", + " 'Tea': [88, 48, 98, 93, 99, 88]}\n", + "countries = ['Germany', 'Belgium', 'Netherlands', 'Sweden', 'Ireland', 'Switzerland']\n", + "food_consumed = pd.DataFrame(data, index=countries)\n", + "\n", + "print(data)\n", + "print(countries)\n", + "print(type(data))\n", + "print(type(countries))\n", + "print(type(food_consumed))\n", + "food_consumed" + ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "#### Getting an idea about your data first\n", + "#### Getting an idea about your data first: you are now very comfortable with these\n", "\n", "```python\n", "# The first rows:\n", @@ -613,6 +653,7 @@ "# If the data are in the same row order\n", "food_consumed['Yoghurt'] = [30, 20, 53, 2, 3, 48]\n", "print(food_consumed)\n", + "display(food_consumed)\n", "```" ] }, @@ -780,12 +821,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Let's use the Booreactor yields data set. There is information about it here:\n", + "Let's use the Bioreactor yields data set. There is information about it here:\n", "\n", "http://openmv.net/info/bioreactor-yields\n", "\n", "\n", - "Read the data, and use the `.describe` function to check it:" + "Read in the data into a Pandas data frame, and use the `.describe` function to check it:" ] }, { @@ -900,7 +941,7 @@ "\n", "The colour, `c` is often a categorical variable. In the example below we use red for \"Yes\" (baffles are present) and black for \"No\". \n", "\n", - "We consider changing the markers' shape in the next piece of code." + "We consider changing the markers' size in the next piece of code." ] }, { @@ -959,7 +1000,7 @@ " s = 50, \n", " \n", " # Specify which column should be used for the colour\n", - " c = \"baffle_colour\",\n", + " c = yields[\"baffle_colour\"],\n", " \n", " # The shape of the marker\n", " # See https://matplotlib.org/3.1.1/api/markers_api.html\n", @@ -968,23 +1009,34 @@ " )\n", "ax.set_xlabel('Temperature [°C]')\n", "ax.set_ylabel('Yield [%]');\n", - "\n", - "ax.set_title('Yield [%] as a function of temperature [°C]; colours indicate a baffle');" + "ax.set_title('Yield [%] as a function of temperature [°C]; colours (Yes=Red) indicate a baffle');" ] }, { - "cell_type": "code", - "execution_count": null, + "cell_type": "markdown", "metadata": {}, - "outputs": [], - "source": [] + "source": [ + "In the code below we want to make the marker size proportional to the speed of the impeller.\n", + "\n", + "The `s` input in the `.scatter` function is the size of the marker. Values are usually between 10 and 100.\n", + "\n", + "1. What is the min and max of the \"speed\" column? [3300, 4900]\n", + "2. So the low end should be a number around 10, and the high end should be a number around 100.\n", + "3. You can try this: $2 \\times \\sqrt{\\text{speed} - 3200}$\n", + "4. Set the size equal to ``2 * (yields['speed']-3200).pow(0.5)``" + ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "ax = yields.plot.scatter( ... ...)\n", + "ax.set_xlabel('Temperature [°C]')\n", + "ax.set_ylabel('Yield [%]');\n", + "ax.set_title('Yield [%] against temperature [°C]; colours (Yes=Red) indicate baffles; size is related to impeller speed');" + ] }, { "cell_type": "code", @@ -997,66 +1049,24 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# TODO \n", - "\n", - "\n", - "• Sorting: move the sorting content to module 13, from module 12\n", - "• Move the \"basket of skills\" on df's from 12 to 13\n", - "• Merging data sets (data from lab and plant), based on a common identifier\n", - "• .iterrows function\n", - "\t• to print row by row\n", - "\t• find a row with an unusual combination\n", - "• Filtering:\n", - "\tdogs[dogs[\"height_cm\"] > 60]\n", - "dogs[dogs[\"color\"] == \"tan\"]\n", - "\t\n", - "\tcolors = [\"brown\", \"black\", \"tan\"]\n", - "condition = dogs[\"color\"].isin(colors)\n", - "dogs[condition]\n", - "\n", - "• Read a folder in a sub-directory: \n", - "\tdf = pd.read_excel(base_folder / \"2020 Latto Benchmark.xlsx\")\n", - "columns = factors\n", + "## Saving your plots\n", "\n", + "Once you have created your plot you can of course include it in a document. \n", "\n", + "1. Make a screenshot, using `Windows key`-`Shift`-`S`: will create a selector to allow you to copy an area of the screen to the clipboard.\n", + "2. Do it more automated, in a programmatic way:\n", "\n", - "#----------\n", - "\n", - "• Read in a file with time for x-axis\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Exercises\n", - "\n", - "def iqr(column):\n", - " return column.quantile(0.75) - column.quantile(0.25)\n", - " \n", - "Print IQR of the temperature_c column\n", - "print(sales[\"temperature_c\"].agg(iqr))\n", - "\n", - "• Find 30 percentile of a vector.\n", - "• filter out all points which are above the 30% level\n", - "• Find the mean of these points" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Visualization with Pandas\n", - "\n", - "You can quickly create visualizations of your data with Pandas.\n", - "\n", - "But first, you should check if you are making the appropriate one. This website helps you select: https://www.data-to-viz.com\n", + "```python\n", "\n", - "In the module here we will consider:\n", + "ax = ... # code to create the plot and set the labels\n", + "ax.get_figure().savefig(r\"C:\\location\\where\\to\\save\\myfigure.png\", \n", + " \n", + " # figure resolution: higher is better\n", + " dpi = 300)\n", "\n", - "* time-series (sequence plots), \n", - "* bar plots, \n", - "* scatter plots (plot one column against another column)." + "# or, in short, will save to the local directory.\n", + "ax.get_figure().savefig(r\"myfigure.png\", dpi = 300)\n", + "```" ] }, { @@ -1085,18 +1095,11 @@ "outputs": [], "source": [] }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, { "cell_type": "markdown", "metadata": {}, "source": [ - "# Diversion: how is time represented?\n", + "## Diversion: how is time represented in Python?\n", "\n", "Try the following in the space below:\n", "```python\n", @@ -1147,59 +1150,11 @@ ] }, { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "\n", - "delta = later - now\n", - "print(delta)\n", - "print(type(delta))\n", - "print(f\"There were this many seconds between 'now' and 'later': {delta.total_seconds()}\")\n", - "print(later + delta)\n", - "\n", - "sometime_in_the_future = later + delta*1000\n", - "print(sometime_in_the_future)\n", - "print(sometime_in_the_future - now)" - ] - }, - { - "attachments": { - "image.png": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAz4AAABgCAYAAADcp6fCAAAgAElEQVR4Ae2dPYt0yZLfa3auhGTL0yfQd2hZC7K0IPQB5A7IEWXIvx9jjHLXEgPryWwY/8IyzhiXlpyxVnB93QVxREbEPzMiMrLOqe7qfrp6/gPP1HnJjJdfRGZG1jndfdr4HwmQAAmQAAmQAAmQAAmQAAl8cQKnL+4f3SMBEiABEiABEiABEiABEiCB7ZNsfJ638+m0nRb/zs8xUi+XJ22bb8RmH3wGH562y8sHq6Y6EiABEiABEiABEiABEiCBqwQeYuPTNkRPbjfBjc/VmPImCZAACZAACZAACZAACZBAIvDJNj7z05LnM54EzfeSLzwlARIgARIgARIgARIgARIggZLAp9/4bNvLdnnSzQ+e+uQnPtgc4b56ilfPTpt/Iw5t9bW6tJl6uWxP8rrdebvgdboT2gx5eCXPy9023Ed78B721/3G/SYv2Pd02fjWHDjykwRIgARIgARIgARIgAReT+ABNj7b1jc6thHo59h5PJ/1Z378RgHXTudNf0RobDCwAcEnxGx944OnTO2z9cemxl/X4963t/Ebn3W/sUlb2yX2DQWvjzJ7kgAJkAAJkAAJkAAJkMDvnMBDbHw2bGJWG59i04EnJ32DkWRI3PM1v/HxG45+HZso92Smt8MmZ2x8YINunizToLM/SfIbn0J+37j9zjOV7pMACZAACZAACZAACZDAGwh8kY3P2IjoRufaJmR+atM3Jn2DMzYvyhby0HdsUAZ7tEFfnMdX7eZX98bGp2/SmtC+Qap0Da08IgESIAESIAESIAESIAES2CfwEBuf/mrb8omP2yi0Ntg0uFffxtMXbF78p21WlhsfJz/9yu2xWcFGJ298cD6CAVu0Lzc+gwyPSIAESIAESIAESIAESOB9CDzExiduFNzP/PTXzBqcsfE4n/Xv/IxNyXgidAp9EtRrGx/ftLdrmyc8kRn69Tdv4/z4E59gGjZvXb43gMckQAIkQAIkQAIkQAIkQAK3EPj0G5/+tKf/TMxq4+Ouy1OZ9KSlbyTG9S4bT4b6hgabGUPZ+7rrvS3kYaODc7fZ8puXLgvtxhMfbnxuSV22JQESIAESIAESIAESIIHjBD7Zxse/fhaP/dObvmEJO4Wt7Xzs11GfthM2M53F2GDgt7nhs4vp/d0GR/qv+w4988Yn2LN8RW7I7nY0nX2DlG3pDvGABEiABEiABEiABEiABEjgIIEH2PjgycjwaLnxKf7mz+jVjsYmY9r0yG1snKrNxtw3vjZXbHxE+dwvbHCcTeE6Nz4xdDwjARIgARIgARIgARIggTcQ+CQbnzd4wK4kQAIkQAIkQAIkQAIkQAIksEOAG58dQLxNAiRAAiRAAiRAAiRAAiTw+AS48Xn8GNIDEiABEiABEiABEiABEiCBHQLc+OwA4m0SIAESIAESIAESIAESIIHHJ8CNz+PHkB6QAAmQAAmQAAmQAAmQAAnsEODGZwcQb5MACZAACZAACZAACZAACTw+AW58Hj+G9IAESIAESIAESIAESIAESGCHADc+O4B4mwRIgARIgARIgARIgARI4PEJcOPz+DGkByRAAiRAAiRAAiRAAiRAAjsEuPHZAcTbJEACJEACJEACJEACJEACj0+AG5/HjyE9IAESIAESIAESIAESIAES2CHAjc8OIN4mARIgARIgARIgARIgARJ4fALc+Dx+DOkBCZAACZAACZAACZAACZDADgFufHYA8TYJkAAJkAAJkAAJkAAJkMDjE+DG5/FjSA9IgARIgARIgARIgARIgAR2CHDjswOIt0mABEiABEiABEiABEiABB6fADc+jx9DekACJEACJEACJEACJEACJLBDgBufHUC8TQIkQAIkQAIkQAIkQAIk8PgEuPF5/BjSAxIgARIgARIgARIgARIggR0C3PjsAOJtEiABEiABEiABEiABEiCBxyfAjc/jx5AekAAJkAAJkAAJkAAJkAAJ7BDgxmcHEG+TAAmQAAmQAAmQAAmQAAk8PgFufB4/hvSABEiABEiABEiABEiABEhghwA3PjuAeJsESIAESIAESIAESIAESODxCXDj8/gxpAckQAIkQAIkQAIkQAIkQAI7BD7Nxuf5fNpO5+fa3JfL9nR62i4v9e3DV0XOaVupOSznQMOXy/nt9h7Qs20v2+XpCrtt266yPaTjXo2et7OD/3J52k5Pl+2tYb3Zunvl082Kv0iHl8t2fvNg3DaJ/+m8LUZ9S9ztdO3+EZwi47SdTsW/m3Mv5u9d7DviA9uQAAmQAAmQAAnchQA3PnfBmIR8aGH9OBufz7MBS/Hi6Q0ENN+ePmLjc4NVy6bLzZONmxs2P1P+LmUvreENEiABEiABEiCBb0iAG5/3gM+NT0l1KhzLVrz4uQl8lY3P1h453fQkecpfbnw+d6rSOhIgARIgARJIBB5z44OCQz7HKyzuLSp1Uwobd//SCp30qltqk1+3k9dxzhd9nay9LmNKpAhyr8/0b8CvyMt94mteKCifh64mf/pG2r6phm7YNjk/Io2CLeif5OLVo8Gr+1S+Tmd2eL1XCsmg215bjK+6PW9niY1+4tUktSFe8yrFyyvMBwV3NNkZ5Z/2XquU/uft0l7VkziM17X09a3BMNgKvc+ah/AxtNmaLU/b5dJe82py3CueKd9HfMy3zKF4TeyqfaK7jY/EoxuYcs/L37NN9hng1fwCv8HORUgPMc7l7Oj4SFKCjHTPeDX3lEu2ZeR4lb/9Vbfgu4sX1OW4pLGHcfDc8ynFHXL4SQIkQAIkQAIk8CYCr9j4+KIoFwqvtwXFeSkBBSN+GASFhisgtDBx9lixMYrDYfeo47QAHW2s0HFyUSiONvYzM66NfnPsNlTZXvycje9jRSY2Uv1ndfzGbPJhtq8XZN2pmSDaDB+MheujbVzRlnSjOEMI4HPYmF0rMsHA6YwyEZ9hA9j74l+vjTawY/g2M5qIhPio3tF/VQQ7KcYm+N4L+yu2oV+xmRlYwMHlclNtOT+1wwWTjVPtEjfO++yg2/kw6VW+nteubRUbjGG/eXKI5TDkk8X16vjIAsAtsUQzkW++FvyQW2AqYwQnTQZ8cONax5HTZ20Grzk/e5532XMbmMxPEiABEiABEiCB1xO4ceMzig98Wz0K99cb0XpORYUXJ0VJLsbceWubCheR5woSEWdFCOqLsk2So0WJK2TKpx/eWNji7dOCEnrROuo3tqlRaOMLNQiZNlD9Rj8IMuxq8Cv5jI6hTdIt956etidXuIqeZD9ktc98X2XglxtY0e37m12jaATbscmsfMu54G2QY5F7peCdOqQLJS+1P9jaC37Ln8ofcOm5Wsmpc0MLb/MjxSdZ3LTIE7Wr9pVtsm49H3LyfdMc7Kl1S+xc/kw2iwyMvVpPGX8vKMjwN0xe5z7LD/mPOPn8DD6a7JAbs0xpFdosNtqVbG8+j0mABEiABEiABG4mcOPGRwuYvulJr/ncrN11yEWxu2WbGreRqIqZUExowTGKM5MW2tTFGJ68oG8szlWOFkT6uk75G6lEj7M3OJMYpsILetHFF3aVLbD32ga0YhuKulWRVfBC3ddk4pUovaZ+4T7s95/ZjuhPFY9CZmFTZgYm83WzJsTHitOWy9eM946E/nbjKkO/ySryIuTzns/eEN9Wj9vYLP0+Yp9tfCKGXLynsRXisbCt4pU3hb4rjgOXpNfa+PGBbuFTZLSxWvyLjqbX3bLf88ZdN57YmJnWwENjMscjyo7joDsWX3MMTvGEBEiABEiABEjgNQRu3PjYgu2LiFQ8vMaI1udqAZMLp1AQmcZDBUddKFZFEYqVsihRg2Mx1TcweCoRC1zxD9ysbfR5v7CL7QdpuX4lDtX9eeOTCrgmPjD1hV/jqO2bbGElbQsZw8xDT3zAXbv5eJmgYJPer+K33AB0v67EZ7V5gC9iQ+zfX3tCjMOnta36NZkhn9c+r/wcoZ/HZ793bQPQX70rdE9POFOeWjyu2ia6E6/Jb8B1n4FL0mvNVmOiSwky+tXFgfM/5Jk2n8ZRJTv0c/KCRouTBaecY1bMghyekAAJkAAJkAAJ3ELgxo1PE62LuRY61wvdWwwpF38IyEXAbsFRF0mxkFc/YqENhePzql1oJva4Jwa5wA3FEDrlzV5tsy/saltiETWkj6OpYMvftme+6Jr86Prbddu84Zr8YLbf/EGG+8x2oK/+3FAVj6JwDCyrPk7h6jD5lZuJnf5nSXKDqv+Koe9b9cuxqJ66BJ+9wGvHlhfY1Byxr9J9cOPTN1iVSYf8LjqKzZhj9sdHISFtKssW4SJyVHIzvYaHe71DsM+uhlit8jP6EseByTkUr24JD0iABEiABEiABA4QeMXG54DU1zSpigiTMxUGVdtQcORNhQmSfvj5kNWGIRbbk+6Fb6FdLvQqe7GB7JuFWAxBjRRbaCNy8jfnau+117Smgi0X24kddItPvvgzv87np/E6ldn09LR4xQrC8FTPVciBmfGIG9EYCxEVbD0WQ2eCHub4zA3kN+tFW1yjqn+wy7X1sbc2WW6MT+FzyQZP5HI+ON1+I3PEPt++i8mMc56qvdkn/ZIBttVtxG+fX12nHXh2tgHLesL4yP3beZBRNUjXrP25+IPKMU4L2YFzZme6Qhv7GR+McZgjdoAfLvKTBEiABEiABEjgLQQ+z8YH3yyXBQA2K+ZqVcykYgJPd0ahpMVXe1LVa2+REwv2XEjF4rzpr4qZVNjt2mIbM3kd6pZvtE23Y6TFo3vaVGTDVLDljQ82JXg6IG7m33jnfPcMrVj2v3mtMEEuXWebGGoP+xXXTmJmeyCGrrceigwrKrO81mKv6PT9nXCNhS9Wk0+mK7CadGmfnqMmXzehLndzHk5y5h+a37Xvho2P32jv2tbzzbGxuLVfa13+nFyPA+7nDZeCyTnlwoEG8quzlzrmDpJzYZ6wNpMu8QH2WaOcT+bnmIfmMTzPMQdycLKbF0iABEiABEiABPYIfKKNj5qqxZn/QWRXLMGbIwVHa9sLTZV3PvJ3fNymQkU8FX9LR4vT8HMNqVLtfkBeL/TMt/Oz/TA1/Dta2FnhhJ8hueHv+ABf9ysVnShg4dco1kZP9csXe3MhN1qnIxePhisWfGmTIF2LTUAuLFs7J1dsB/Okvp9Ke3BHkelzzm8weq9xkPuPOxbTISswhO1n/I2e1s7ZIXIKnyG/yCHcap85frPsuU2w79DGx/Nytu/YNtv32r/j03+hurg+bUY8kHZczRW5TTqfc9wauDyT4V7JRoz9Tsv1q/IzjgPTJbId32QjT0mABEiABEiABG4n8Ok2Pre7wB4k8CAEqqL4QUz//ZhpG/n0Rcbvx396SgIkQAIkQAJflwA3Pl83tvTssxHgxuezRWS2R2LEJy0zGF4hARIgARIggccnwI3P48eQHjwKAW58PnGkxuurfNjzicNE00iABEiABEjgDQS48XkDPHYlARIgARIgARIgARIgARJ4DALc+DxGnGglCZAACZAACZAACZAACZDAGwhw4/MGeOxKAiRAAiRAAiRAAiRAAiTwGAS48XmMONFKEiABEiABEiABEiABEiCBNxDgxqeE95ft8sc/bU8//aW82y/++WU7pzbPP/66/oOMveN9Dp5//NN2/tnJ+vnX7fTjb+7C+xw2vXfX8/OvzpeD/N/HvW8u9eWnX/Zz7yOs/PPL9vRDyrGP0Cs6ftvOPxwYg8mel59+3S5/Thd3T1XX6Yc/bac/vmzxLwXtdv64Bi0eyb44B7Rx88sr/H+DC7s5omzDPPUGdffrWswxd5yD4jrwWRm8jea7rANvM4m9SYAESGCXADc+JaJiUZzaFW3axuOHj9r4tMU06opF0GTw3S7cf8HLhUHB9m7Wf3ZBzfcPLl5XSHaL2lXHe1zXnNj98sGrEntvZyf5nDYUXuxnOZ43xHkOyOcfYPk3zZF7+nfHOehD14F7MqAsEiABEvj6BLjxKWN8pPAu2nzkgtcKjlCsfVzBzI1PmTR3uvgNiteV5d+0qNVClBufEZzpi408B7TzD3jiOyzatm2ZI79tz/5pdOj0GU+48fmMUaFNJEACJHBvAtz4lESxqflNXnmTV2DaazC9qND7/Xp78iKbnj9tuCYFmxQFv2yXn/WVIdzLr320b3JxTz67nmYcbImv3U3f/oYiSPucfxp6u04rVLq+oMtgJF9OP8Rv0cPGB5u90Me3N1ZZTy+YtODo9shmDj6v+I+gZXaxUEYxk3RkW4a4cRT88bFfMAoyr9lvPFo+Va9yNb2QdTB/kCOdYchVFKdzHkZWaDdyGPnTc6e5nvNnehUu+tdsCv0H4XQUY/T008v8qts13fkeGG7bJvlqvIVR/8KgtlVy6seXMfa7rGhjjp/0++PL9hzGsz6VDXna9Q8E0UY/ftCm6Y5PeDefK9u2NR0aU/Or291kFNeQX/3VwMwj2dH0/fFlu7RXXRvP5odx9zFWX2CrMsP9mlHS08wN4++X7fLTztN0aZ/kFNfG3KW+Kq8U1xvnIERIPoPdeFUzMoANIeaWE+FaiJ+LYc9lMA4WzCfJpup1zqA3zffb1uxHDFrslTP8GApz/sz2RT3gMyTwiARIgATem8AX2PiMPzx4Op3v9PM1YwLHgo2CbxSLfuG0MMkC4yb7Xoy5BdkWIcjVgsj1kUVmb0Foup3MUPQ0W2B/bLPyISyEYl/sp4vVsDEseH1RHffVpyFj9lGLtPFaYCwMhv2uaDaWgz8K2qFn9g8FjWuT+FcDLNvf7bFCRO872yxmfcPS+bs2ndN8DbnQbGls+/mB/Mm2iT+ZVZezjtGa3WxPt8/yDoVQaUuRTzNzi1Mv9JC/bhyYD2vd2JS5WGPTEzYaWZflkWuD+Ppc0+LP2dOcSLmEfiMPkH9+47zQ7zc1Sa7wateEz2Ajm49eBI8NaxvPsvlyPiG+81hHTphdrs80Dsyu4R+YjxzRucLHQOUibjMj88fpVa5OBvR6RlMSRT3tttoybEN+alxV74hx7j84w3YwHH0mI/SC2Auu7VKUDbu6nD4+XX7lMYw5xXGa4lOZI7Y4lpDTxxo4OXuNd/cb81viL350OXMcs33S3tkPnkNP5QCvkQAJkMB9CTz4xudluzydttPJ/bvLn123SbxP6go9Ttx54UQh5BaQafGa5USZR4PbFlKnJxfMxeLWJJe6UkEpbZLfuRAJbaZFsmlK/JKO6X4qDOb7M7fVoqmLLdhowdELDBGTbFPR7v9FXN1dFDFRJmKPAsN0+EUexUNgm+1r/SBjFJVZV4ijsHV9Kh8n/q1R1B1kwt8UW2EbfBo2avESZULM3meMmbU2m+H7vm7Y4lmoPbmwyr7m89IeYYG8gkfRX+3n9RdFZR6HZWzmsdpkg4VqT7kiY87pFnvHufL7ZXty84b4bflY+pzHcZIpdjj7K/+RZ4hBqSfIrcef2OpsRwTGp425Pr5abH7ZnvwvqRFbwSTrybmS5ammnCtDvzuaciXKnn0xXWFsJf2BEXSlNrjsPkve7v5qHo1+xjxHd2kD3rv27dsKufwkARIggfck8OAbH/+0B5ufezz10Uk6Fhq5GCna5AUvLLQujL6dHI/XB1yr9WHrgwVHWrWFyRdlhW2p0B3Cq7Z6VxdofJOMgsE4QL/3ZQiV127Gt8uqo9vsiiXtEgsDbHyu8he9w6auOsjOclurZEvvaAehf76J4tp/i4w2vjiodFScfR+T7YufI/kD9e3TbO9PAhCjUo7XXdk25KFo9aq0oEJuDB49Z7wfvmNxHAqoft/b1y/KwUq3+l/khPRSeZ2Ns0/0u3OR786jdmxyh+/I06rIrGR5fVUf0RfGVYtP9qv548f8b9s52Kz+InZN5/lnf80f57lteBzsCzZZG8u5pz/q67rQNyREPRWP8MWKyZvkVLqHEjkKspuc9OQr3Ld5ALHLGzTME+O+KvOxS+rH6WRrZFDJkGsYryIpziFVn9Ys+jRM6EfGs+X9xBT9Qx5Zz+BDtB+yvc1H7BNb5Qmlz1tI4ycJkAAJfAyBB9/4vO8Tn+uLXlEshsUChWMuWFA4ucnfLU5amLl7RR60RSYsYk1vsWhG+3Xx6oVfekWmtxUfUNSZ7XJt+OEXPC1aZnunBdmx0QXQ98kLa8E2f1Pu5AVEoXDKclvLWFCEvu1E+g9fj99XXcqx0lH55Pv4n9EwrStbgu+mC/GUPEj6Szletz/2Huv1nmvGFjkk1+1ab9OLKeSQf83Ly8ZxshWXc2F6RHfhp+Qq2NjGIBdp+XzKXbFJWcB3jXPkNud1XZh6fdrHsYKt8mljpPkVNjWWp/5ay4kwB/gvKJqdKqvpFtuF1RiDYlPq39wOPoW8s0D1uOjTlfH6KgIZc6hkK3JtzJk8n08iqdINFfiUviqn6cl+dt+lfR6P0U7MExpnKFhvEEeLYn5PT7R9/NFv5h/HhdwPueFyxucBBIZP9Q25O15NRXydrKAD+ZHZqHBv82H7JI5O367twRGekAAJkMCbCTz4xqf575/63ONpT5OZF0XlLJN7n6iLNnlxdguxj1QoJvyNdoxCouvJDZreWJj3Rb43LWxbPvHpnbrfuYAK38hiA4IiKfts4iKrdhGLp9oWdeAebKnsT0WH6I0cpHdgnuW2FpV+6B38p8ILTSw+832vq9JR+aR9UFw1ZkFu8AUGoFixoqTkkPSXcrzuyraZxRzTuc2wUo80132x7Yqe5Q9Jt77evhR7KMmxyH7m+9Yv+5HPxeY0/uoxG22s2lSyvL6qD9zrny3GGG/I31CgeqbjbxF13Y2D+YNr+WeAvE1dLzY+YFGN9cBYeQxbmyS9hryG/vC3knwOB3nOEq9bjr3Pc4He/FGd0I9PyMw5v3df+3lOGjtnx5JTlO1lwBq51mPcrsYxXPVBX/1UHWNzA/9jK8QDG1T1AfxyW5xH+3HV27xvH3q5T8Qx+O3u85AESIAE3oHAF9j4vAOVu2583A+smql+wSit94t8buCKGL3VFsi8AciLemsZF9Ih1i9q/ni0EHvdb/oJ9tvihcJm2LTy+1f5bV2xfdZb2Z+K30WBFBfyLPcaB/irfbAZwdXxubgvHBCHinXlk5fVjlMBYj5mWzz/spC0fr0AlXPYBk+87sQWTUJsK/uxCVsVWSrI2wvR/jPGzO4E3w/qzn6W40j9Hq9hzr5XTEsfjA/iU/mxlBWK5Bwb42ptmu44XvQ+9DZiVRs8vTz/6H4+yPI0/OwLNjg5//KcUfG0OME+ZeD9Ud7hPnxHEphN+odn61gL/8k+CBifGqc2x2AsmTx5FQ/XWvusJ9o531cdIj/bP9Tr0cQpyq5kqN3+j0+rfRjDVW41ZXO/bExx7sdJYD/axryN9qOV1/1a+6IeSOYnCZAACbwfAW58SrZ5UdRGccGKC5O0yIuIFQX+1YLy6UlYSAu5zsa2UPiCR4qb0L81ru1X3XFDUvrk5YlP+q0mihe/4EEmvkFs2leLYNVWXdOFdfhV2x9ttUXfbcjwtGzIqRbs63yH/b54i8Wx+ueLUdWDIgX8x/kqJs7vxjl/83kgf8AUsem62xMBxNEXOgq8fxPfWZmufm7f1LdvkCFb+PeCcjztaW20n/MHekwuZOBy/Fzw63IRa1e4djbQPezpuiafIKfl85CV86oqxjTmPifM5sbZ4lblfSUr6rN8dPYgj9WPpmfYqtxaH29LPgddyB4xHN/4+/6tvfmDnOnj2LWTuSDZMsXXdHY5KhcxqXhoDmc97rzHOumGm/4T81XXj/loxEmbq50538d5vq+9Yuy8YncsNjj701OvSoZcC+PfOPZrc3wmbs4EHFY5GfWbHp9jU0xjDCE72rxnX/anSdE+gzkk85MESIAE3o8ANz4l24OLHhbZXnxjEbFFFgvIj+1vUOCVCL8gNuWuD9q4RRv3sTi0xQZFhJjebOiLI5yp7Ze7vYgwe4Ku1sIWMNjSFkTr423oOm2Rb98qDx9XBYrJnux1xYkswLX9ccFWX3VhB1tXBMtt1Rd4gXe3odaFDUX3KXPqsTfdXV5TbDEtroGhWj8W/uZHvOcK+av549mpLU2OsEIxI/HLeTd0qy1DH3ye/46P+dVzo8lMMc355TYvXU95YHJM9vx3fA7oxjfgTQbiVcRJc2bwyHkl99Hf2apMR66dfzabrK3Kjblfycr6mopZtiluPCdbGiunp2yj/VWua4vcnGS29hVjs6N9CEsva+RMGGPGXPNZ44r7FY+ygA9xw99JS7qdaf3Q8i+MJZMFG7St+urbafxafJue+X7rV8Wu6+4HjqPMAZFBJUOuFfNFn2dFtpMr42TkcFddHGgOjLz1m340z20iq2h/6FPZHOYHtG6fKgfzi3yG/r4tj0mABEjgfQhw4/M+XFWqLcJxEXlPhd9AthQVxxbg+E32N7D10VT+HvLn0WJCe78JgXLD9E0soVISIAESIIFHJsCNz3tG7/dQuN6w8WHxcmOy/R7y50YkbP7VCdhTgfAkQK/5pzNfnQL9IwESIAESeB8C3PgUXMOj+P7Y3r8qwGMyYg4wB5gDzAHmwL1yoFiKeYkESIAE7k6AG5+7I6VAEiABEiABEiABEiABEiCBz0aAG5/PFhHaQwIkQAIkQAIkQAIkQAIkcHcC3PjcHSkFkgAJkAAJkAAJkAAJkAAJfDYC3Ph8tojQHhIgARIgARIgARIgARIggbsT4Mbn7kgpkARIgARIgARIgARIgARI4LMR+HQbn5fL03Y6P9+Z08t2OV+2Fy/1+bydTif593R53i5Pp+3pYi3k3nk7bsXzdjZZp1Pr9yLy1A+912WLDb692qD9vIHtT6dftjNsSrduPX25nLe3i/J+3WDB83m7PaTP29l3ujkmN9iHpi+X7el0UltF39N2eTGfLb7eJHT7Vp/P55yjLq+eLtvfn09uLOm94/Z7vxuHbXtu8p7aOKrywLdHTmu/yCfFNd687aSYfw4AABV7SURBVOxVeTWrGH7N95ZXXjU20zwk+VYxWmp91xsy9/Y8vzVfFqb5GN0wvlpM4py5kP9Rl18bqzaPyJhpf/20rTl5zN7fgVflczOjz3n3t+ndJd5jPB4x8oNieMSUj2mj88DtY7H1w9zmjw9Y3cYaxkzZPK811ZhKba7KG0r8HHjq9o/7q6M25q6urZI3WBcXc1tqc1WeM6TZ3ONjcyxq2/35ppjnmx0HeTkzHurwc218JGhVEr+NqSRzCOTOYL55csvyfGGY7lli9kQ113TAYaJoF1VGbvcqEqLTy36VlG7TbRvTYmAdUC+L99GRf0DeoSYWG1ErOeCY+XuHhL1zoyJHrxc8t8bB57D6MuTneyp7yguxMS4I94vrrf6s4zH8WreJd143Nud5KEr9pmfvkt8pRl7H7vhqfd34+6Zw9Euop5vtST4UY/Y93Lo9n82KHJP3MO5dZH7gePygGL4LplcJ1TF8ax3ScjD0adxCDbY2JhTyUzNbe5wsyffwhUJen/L5JFQuaA026s98XvdqVxuj0W9qJznj1kGbByc+fn45PBabbzZPFnJnNtE6ve9ss9tT/GK3hz/7RBsfTc6QDHfCOxccO4P55sltljcSR/1CDT/bAifz4LwjDxkQ9ygiso2w/dqnsoH/11r6ezIgb+3kBbzquNnqJxE3mfmi7VWy79ypyFFh5haEqPHWOMyxlty1mIz8xjfFjpVTnG26X1xv9ccZlQ6zjel2cfq6sbke+4WKj770LvmdY3Tb+PL59tE4Jn2vmEOnXC/G7KTnDhduz2dTerjYuoORdxXxgePxg2J4VzxvEqZj+Ka6rGSkMTqypLf8XbYrZad5psrj3fFb+Xkwr5rs5bpby4hrgbbJXxxO80cZx2a3rr1RJhpXftk94aRPoSbewqte0yH5kT8/z8ZnlZhyfTwizN8aVMkhCeCTob+GdtrOf6+vM8VHgSk5q8HlkqT1jRPBnFzNBiTT83lsOo4tSjYQut0uAZMd+XFsk/90ufRX757OZ3l9q/sLow5lbbLjfHGv8EGA+t7lBzbpnpscNEYjrt4sYdR9N3YhJir3/Bzla0ziNS9XLM75FBo0f8H6eTs7e9trh/01OLj+6s9o4/Q4OvhqSrz+lAN4VdPHoLkVxwaYOaN3WfhX5XSDg7z3+e3Hm5M+HZZxba2yHXjd0CSIfORey4vzuee3+OzjNGmdLwQ7ni7bpb/CN9qGNk1n15HGhP+mL/vhcqvMd2mPuUHlTrEUGVEnYuCsfRMPfcVpjEX1NebLHAN9ETj7NRbvlOPC78bxFfgMb/PROlbIraft8hznfRcay7+Dbdrb0DL+ELdhjdjR8yTyk1bFuJ74+XySb5JbERhZ7s1zsEPyGvNot2vYG+P+tF0u7VW86Nd1+5wsdVDzMOhC7rp5NY3vIAVjKATI/A9y0Qvykb/Qg9jjuh/DLeRP/VX3NocMdZF1uxfGWxFDWLL8hE+IRYix9lrbM6TmPB82a5vr95GPyb8sxHIOawlqCc8g6/H3miVyf5JrzMsYDh/3np6sZHsJwnLSo3mSbe39FnNNLav3koPW5la5UQJiE6/q+HT5nG7LacvHgvVouvIbOvE5eujRql9u95jnr9j4+IGzE5QbmJQJJpOMn3hsknNJXQ0EkeUml1m2+jCSNQU5T25mx8gvY9AvZHlXHDdZeYGZeySbWgPpGxcmnYRGHPTcT+RYAGK/WV++smAthSd++qnwe8GqoxJz2qLj7LGFYcSjmDxFLvw0/k6GxrwtckOuXhvnKLCHntnHTKGfm43ej37vlgMsgk5QjmE54WX9gYcaIHKWY0OZdbUT88zCznuHK07Cp1BA1O3FRi8z+1XkB2I74tZkJ39qddPVzBqyx8bGcs9xhK6xwCibYM8uz2Lhlz7IT+PtGdpYCoXZYnwN28x+N/9NEKoLUxwiX3DyPus1jMkmVPuMNlFGpbZfm/S3OwXn3kEPcs7Dhs7D5Pp5AQV/T8PDbRCr7GezJV0rxmce1zM/y4GeeyrT2444zNdgG+Lvv7TIcrGWuHWiYLBvXwpGO01xVBnDtqLHfEnYjT55zM4dijyxcTJycWYgtnXWTWqKoVzSnwXuuVLFdTZoXEk8VGS1CRv+guE129FG7TLf/Jg3/7vd5pvPm2kcoE3vBLmjBpvG2+SfMuwiBgnLDeenv4fjZnfZuTUYcR7joK35fg4qageRbb6sZC/iOo8BGIrPJveKT10uxrJuxEdsMWYKGdK3uA7VMozdGHbX++EUH70z4riO1zw+utSHP7hx4zMGAr4RWCfpLWyqpKyuIUlGsCWAKZlzss4BzBOc6urJ2JO1+bCwIyRllrfju/R130SFzQT6JpssySfewY6qaAOz6wMIWvtnkqvXbfCCt7SJk868eOSBVbPKMZviGnQlO5pxNsB7DN21YW5ccMSnxcSg/rr/H23nulSHY8LxdxOT4Ku1y/qLNll2ZBjjkNuKlqBjkffebH9sffu80HI6FBXaONpUbAZas2CHtUmLG/IMsfWmLI+TXG1nfnZbIyfIirwWY7PLsF5J3zQPyX2My2xHk1HkeSrO8rhRzSmf4MS1z2QrdINvpScyqYTXLKuWOeZok/MF1/Wzlh/sMr/CvIC5FPE63AaxKuZZGY9X7jeDw5idc6g1iZyL+Fe2ptiJ/3m8hDaWawiuQVXd8OGIfdYxfXQfKltT29Vpj6EwG+t93T7bWvuXc0zsRA40wSE+0JTGUtkGbYtPaQ+mxf00ntGiM2wXhOMVGQsdnaEITX7Itcgp6ByGyJsOOn5iezQJnwtbtE09Xn3/ZkMeq+O+jYf0FC7nu5yn3F7WcRC+iGvJBH3ks9mUa6DRQPunzVkeF6v4XmXZdLR4XMkLzHPZvqDvSkwWTIZ3j3t048ZnJN4ocNZBP45F5caEr64h2OPbrCrJc7LKuZ/gpslGB3TX7wNuSTqNI5Oh11e27hGwiaQ/AvdJnGxKonSwY/M0+lU8difOJFsot1cBAjO5WrzqZp2FGewZ3xDlAkoXl2FvVx0GoxUWHrqPyRS/JkVj4LvEhW4Vo+uco317C3BvvTiweAcjtanEDbyDryYq52HRJsjApNd1eT5HWKxtXTjXL8fcjMzK/Owu1q+fzOO3dfD+dNXXDwpmIql41U0FqY4+1yE+7ptH367PH92KmFuTHyHnK96x/6yr6mOtwm/06watD3J+Jb6T7U2S8GxjvhjPoumGGE361dRSb+nFIlaBsevoc+E1baT/8DuOvUVcvE5nSi/K+jqANVV9inlVME3s6jHmc6mQ0exJPg0TzZ/JvtEiHrlY9DETW+yemU8y9vocturlfWttKm7teozL1dwSFsV6tozhyrbBIsbR2q+Yu5wUO3Px6tQt7wfZVcwjjzpvIkvV1bggR50h08Y93gP/koM0bfaMMZV7I67Tl78p3rUf0ddJ9iKuS7YQ0PpdyU/tP/sU5LpYQ6x8hviFO3rS+l0ZX4hVNE85jBhUeWG6VnYVpjzapRs3PpY8fQIcG5C3OR4Hl8paBSQmcJXkIakwGEOCZH0pGfwgkOCPCbAXQcZAkyrLew0NlTE2G8mmJlLsgi02mNLgqHi8ZuMjcgIzi0ooqMxmY6GDKbPQ8z74gg/wBZ9jgpj88DFJE90yXyx2PkY5fjgfE8EidkHWos3u5SKm1ifwDr5ag6y/aBNkSLr48enjEOMGBvhUFnGc7bpWNjAZbpGc4prGl8Qq+SrjecpF70+pfLqY5wU0yPLFRsxxpjeyzXE8wtO+zfd+iJ/I+Yp31tMsVl0hRrA1f/ZBB0+vfCbm0AMRmVGXlOIXC6IbYjTpVw1LvWbAbqwC4261zaVWvL2qjY+Nj0nTUcUS8/coGDUfMffpdb2GNlluk10wTeymMSZuO3tT+04lcdi3r/ecDtAX+TM1OHBBY4vxca2D802aFYzkeoyL2OjHo7GN82CKQTHvXrNM75leNz47F5GHHMif6vtsZ9S4vC+ywa9i4nn4Yy9fr4f1MdvsGGrckb9eTjsuZPkmLf+cLH9Lj1MseoNo+7X8X25SFnG97k+bRuIXe90kO1j297FJ467L8G36xXHQZIe4jFv9Z9h6ntk9sScwrvKiN95u/02WzohPfHjjxqd5oqB0clgl+K0eVwldXWty4+Cpkjwn2yrYI2miTN1gmG+rRSK4uLI1NNo9iXYnm64uppjcdCBOg3s1sK5YNDNrjeMEE+2FsMxCz/sA3BnMXUrYYOWiIetovZIeMdf/QoKqD7Qd+NzJA12k3cLVHfayIz9/J+RxNQln/UUbkeEmtSAz8DnCYm2rt3v3OMU72mT56mwWecnXOheLeO8ZUzBrXQK3pBsiQ5s0ByH3xnyCXvFz8kN0YexWvPValOtjV/WJOg+fTX5HvpPtlWCTMb68iTKqLv3apF/vXNW76BNiJW3AuGuLr5S9sk23LeV4nie71pB/Po69RbTLxmwV/zC9JA55jKl0r28Rl+CHb7+yb1wPR2bPm2oEscXm0zw/BGXtJI+T2vbcrsfP5Mm5+5JGLydZIYaTIQcu2JjFU9LAvO5e2zXaLu8HW6uYx/ljP2+Gzn6EOFlCLm2RDjlOXYoeNFkhsdP9Kc64H/0QG6ac2dF9bQ6YZHm989yCu/IZYuDuyHX0rWKTax7X1w5bvCpcGoPqnnFyG3Bs8uUz+7lgMlvyeFdesfF5Dydj4qqG6lqb43wxm4oWM00GsJvA5oGQJrM8oEKy5ramJCTFos2E6nq7aGceqNo3J7r6igF0v41P/dqD2oDJqZwohd2VV91S/DqiwLzwI9yvOBZ8gq5FPoUNQbdmPgiy5ttHrwizPMHkAkd8HTEV2ca1xz/wUO1ZdoyP53OExapN9nSnXbIz2qR9Y2GHn3MYE3ccF9Dv/cG1nc8yhmY/YpLsVYmqaxT02e4Vg2jj5IfYgzhXMrKeZo3KBLMcc7W36ncrmx3bV+ICvyhj1UWul7Ep5gEvJOjCDdXZY2Vywau38l+sHG6DWJkUi9/5PL8WXMbF22t94x+Vthzoa1eMtWotmJr9mBtK3aFNlWsYd+bjIftA03+abBlPFgsY5ptdPXb9zO4cv9g953vtX64d8niMc5NpkJi59czHMBpxw5mLYYiLE+H1yHHKPde0XqtzbeR09r6Rk/DouWeNDvAPHK/aWtnQjdl9etJaBl29q8rtOVLZUOZzFzDNq3on55Vvb7Uo1o10a5zWPkfWMQ7oW+Yjbso6MD94ULlj7ezNlwe1fdLc5+Cy/2Pe+CQbn0VCC3g36dgGpS9qGAj49qTFwPr4Vy5ikkkj+bWbfaBc3fhgQfDJlBM1DbwrubBOzJyAWYed+4HWfR22lYNlNblesRPfjnnWIrt9W2ALmfriJ2T1Qb496IvdzEblzP1GPPKkjbhioM8yURB2tc237PeUT4WeFZMsa9Vu77rJAcPWXHnAt2H34DG4dv/EF89w9iXmgsqI/f3Yyv1z/l1xrOCqrVXG8CPrWPvecgj9JM983ovwKgeu2Gi3MmuMx57nFh/obt20T/v2GTEq2BQMpJ+zW3VBBuKMGBYy87xU+V3k06RnH8s8VtIXAlUMsn99zhhJlubZK4aU42vOnyDhSKzAZ1ojwB1xaPF11/L4EjnuvhhiMXO52u2T/i7W7Ua4ZmO6sxrrzLCjyvE0jpvcxK7na5dtdrpcxDo5muDXfcPHI/Z1b8dB5ibnY30aDddHOX/1HHZV/YqxY3rHOJ4Z7OsxBm7NizGsbEnXMg8JV/tZxpEbGi/vX477bDvWO/XP7juZU3zTeFYrM7ccc8jFXJzbNynZVj3veeVxlGMIDVq/wQRX58+sDzb6vtnOfD5LbVfqfPByY7/WfuRXvOfPslzEJvTNeZLPvcB23O5nyNLntrGG+GVRTYXY7eeMbMMDn3+ajY9O3n7wG9W+cK0fe/eJvk1QLVCSAD5hdbCMYqoePD0Rp/5YtMwGPxGKmVneTkZkn5q8atBbIueFUDYW6GOyYLuwKLK4M7opkTGpmN/4WypOfpcr9rRBZ32cHh340cdxTWXD/k7OMRJ1ISYVb73mTJsKApHt5ApHZ2fXXR1YvyC/anfomtoa4pj79dg3Pm1cZP9cbMwoiYXzJ+ZC7j8Kpm6H6zsXsdnAfJ59gt2pneOvZjs/JIeGr5jYVxPwyCE/1pO+4jTkbPV3fAJ73eirLjc/9TbumvOtzq3BSPJd2qO/cQgJptfi2FAZ1bUex2ouKTiES1N+x3ypY5BjN/8mv8MxmvQjP8GnWRttEvt7HHQeaTkTYgW5Z/21xMrIy4Se03bebZP6oTjwG6YOdWWry1WzrcetjT/zR9NgHeuYJsVbEOdnt2EfX1Z18wRnYpL/js+ufUFan28xbnFXxxvYFVzQ0NkU8xt5ZuzELsizzj0P3PXKfq/L8qnxh74wN8ivljfdmBtFj4thkFefjDFgOVrkS24De7zEbFtuk++HHKnGDr5IDg01PsjJ+e/4xPvSLvS3L4rSteaH+AiO3jG9ufPzPb4D8sF4ljJ32lQ5BButlhl1l9c9jhvvws3RwB/1/FSby35H2pjMxjLGP/nbfRjzojdnHK/Go8qLOkavRz/6PBuf8tvNR8GryfNVk+RRovCudtoiWk5Y76r4Wwm3ifT34/C3Ak29jUAxvqRQemv+FXIn4EfaTJ30ghSbZeG1LgAXoniZBL4GgXJzqOvJW4fz1wD0AF7InHjbBv8BvOomfqKNDxa/R4TNjU/PqK968Ibi6DGRcOPzmHF7UKun8dXmVPft/WvdmuQWgo60KbqVT6BCuzv5EGTyhAQ+P4H2hUD4IrhthhZfEHx+b35/Fk7x+2IIPtfGB48aH+5rAd346OPhT75xs0Uej7LrzzsUHF9moNgGoL/K92Uc23HE+/3Z88GPP7xOMn8+3LSyE6Ejt+WJRH7tIZ9/UzA+z8arI3dbeI9sao60CbCHzaG4C23shAVfReXxr3Ed3Ymh3/T7451uvP3tCfwO5qxPt/H59lGnBSRAAiRAAiRAAiRAAiRAAl+NADc+Xy2i9IcESIAESIAESIAESIAESGAicNJXnf7Ptv31v2zbX//vdjp9v9WvP+VXR77bTqf/tm3//A/b9s9/sT7/6kDfv9lO3/3v7XT663b67r/e0O/77fTdv9lO3//jdvrDvz2gB/b+YTt99z+0zx/+83Y6/cftdGq24/7q819sp9N/2E5/80/b6ft/v51Of3egT5P1L1Vf6/P9f99Op/90UN/KDl7fjxUZkRFzgDnAHPiaOfDvpHA5/eu/3f7n//pJ1+H/90967fQHOfeVzXUGf9vbX2/H74Q9Ux6TwFci8P8B5eXzuJtZ6BYAAAAASUVORK5CYII=" - } - }, + "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ - "https://realpython.com/pandas-dataframe/#working-with-time-series\n", - "• (outfile[\"Start_datetime\"] - outfile[\"Start_datetime_first\"]).apply(lambda x: x.total_seconds() / 60.0 / 60 /24)\n", - "![image.png](attachment:image.png)\n", - "\n", - "temp_c = [ 8.0, 7.1, 6.8, 6.4, 6.0, 5.4, 4.8, 5.0,\n", - "... 9.1, 12.8, 15.3, 19.1, 21.2, 22.1, 22.4, 23.1,\n", - "... 21.0, 17.9, 15.5, 14.4, 11.9, 11.0, 10.2, 9.1]\n", - "Now you have the variable temp_c, which refers to the list of temperature values.\n", - "\n", - "The next step is to create a sequence of dates and times. Pandas provides a very convenient function, date_range(), for this purpose:\n", - "\n", - ">>> dt = pd.date_range(start='2019-10-27 00:00:00.0', periods=24,\n", - "... freq='H')\n", - ">>> dt\n", - "DatetimeIndex(['2019-10-27 00:00:00', '2019-10-27 01:00:00',\n", - " '2019-10-27 02:00:00', '2019-10-27 03:00:00',\n", - " '2019-10-27 04:00:00', '2019-10-27 05:00:00',\n", - " '2019-10-27 06:00:00', '2019-10-27 07:00:00',\n", - " '2019-10-27 08:00:00', '2019-10-27 09:00:00',\n", - " '2019-10-27 10:00:00', '2019-10-27 11:00:00',\n", - " '2019-10-27 12:00:00', '2019-10-27 13:00:00',\n", - " '2019-10-27 14:00:00', '2019-10-27 15:00:00',\n", - " '2019-10-27 16:00:00', '2019-10-27 17:00:00',\n", - " '2019-10-27 18:00:00', '2019-10-27 19:00:00',\n", - " '2019-10-27 20:00:00', '2019-10-27 21:00:00',\n", - " '2019-10-27 22:00:00', '2019-10-27 23:00:00'],\n", - " dtype='datetime64[ns]', freq='H')\n", + "\n", " " ] }, @@ -1212,163 +1167,6 @@ "\n" ] }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Keeping Conda up to date and installing new packages\n", - "\n", - "Newer versions of packages are released frequently. You can update your packages (libraries), with this command::\n", - "```bash\n", - "\n", - " conda update -n base conda\n", - " conda update --all\n", - "```\n", - "\n", - "### Installing a new package in your virtual environment\n", - "\n", - "You will come across people recommending different packages in Python for all sorts of interesting applications. For example, the library `seaborn` is often recommended for visualization. But you might not have it installed yet. \n", - "\n", - "This is how you can install the package called `seaborn` in your virtual environment called ``myenv``:\n", - "```bash\n", - " conda activate myenv <--- change the last word in the command to the name of your actual environment\n", - " pip install seaboard\n", - "```\n", - "\n", - "Or in one line:\n", - "```bash\n", - " conda install -n myenv seaborn\n", - "```\n", - "\n", - "\n", - "### Updating an existing package\n", - "\n", - "Similar to the above, you can update a package to the latest version. Just change ``install`` to ``update`` instead.\n", - "Or in one line:\n", - "```bash\n", - " conda update -n myenv seaborn\n", - "```" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, { "cell_type": "code", "execution_count": null, @@ -1414,7 +1212,7 @@ "height": "calc(100% - 180px)", "left": "10px", "top": "150px", - "width": "348.984px" + "width": "348.969px" }, "toc_section_display": true, "toc_window_display": true diff --git a/Module-14-interactive.ipynb b/Module-14-interactive.ipynb new file mode 100644 index 0000000..b78a455 --- /dev/null +++ b/Module-14-interactive.ipynb @@ -0,0 +1,304 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "toc": true + }, + "source": [ + "

    Table of Contents

    \n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "> All content here is under a Creative Commons Attribution [CC-BY 4.0](https://creativecommons.org/licenses/by/4.0/) and all source code is released under a [BSD-2 clause license](https://en.wikipedia.org/wiki/BSD_licenses).\n", + ">\n", + ">Please reuse, remix, revise, and [reshare this content](https://github.com/kgdunn/python-basic-notebooks) in any way, keeping this notice." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Course overview\n", + "\n", + "This is the third module of several (11, 12, 13, 14, 15 and 16), which refocuses the course material in the [prior 10 modules](https://github.com/kgdunn/python-basic-notebooks) in a slightly different way. It places more emphasis on\n", + "\n", + "* dealing with data: importing, merging, filtering;\n", + "* calculations from the data;\n", + "* visualization of it.\n", + "\n", + "In short: ***how to extract value from your data***.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Module 13 Overview\n", + "\n", + "This is the fourth of 6 modules. In this module we will cover\n", + "\n", + "* More plots with Pandas\n", + "\n", + "**Requirements before starting**\n", + "\n", + "* Have your Python installation working as you had for modules 11 and 12, and also the Pandas library installed." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Diversion: how is time represented?\n", + "\n", + "Try the following in the space below:\n", + "```python\n", + "from datetime import datetime\n", + "now = datetime.now()\n", + "\n", + "# Do some things with `now`:\n", + "print(now)\n", + "print(now.year)\n", + "print(f\"Which weekday is it today? It is day: {now.isoweekday()} in the week\")\n", + "print(now.second)\n", + "print(now.seconds) # use singular\n", + "```\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "After trying the above, try these lines below. Comment out the lines that cause errors.\n", + "\n", + "```python\n", + "later = datetime.now()\n", + "print(later)\n", + "print(type(later))\n", + "print(later - now)\n", + "print(now - later) \n", + "print(now + later)\n", + "\n", + "delta = later - now\n", + "print(delta)\n", + "print(type(delta))\n", + "print(f\"There were this many seconds between 'now' and 'later': {delta.total_seconds()}\")\n", + "print(later + delta)\n", + "\n", + "sometime_in_the_future = later + delta*1000\n", + "print(sometime_in_the_future)\n", + "print(sometime_in_the_future - now)\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "delta = later - now\n", + "print(delta)\n", + "print(type(delta))\n", + "print(f\"There were this many seconds between 'now' and 'later': {delta.total_seconds()}\")\n", + "print(later + delta)\n", + "\n", + "sometime_in_the_future = later + delta*1000\n", + "print(sometime_in_the_future)\n", + "print(sometime_in_the_future - now)" + ] + }, + { + "attachments": { + "image.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAz4AAABgCAYAAADcp6fCAAAgAElEQVR4Ae2dPYt0yZLfa3auhGTL0yfQd2hZC7K0IPQB5A7IEWXIvx9jjHLXEgPryWwY/8IyzhiXlpyxVnB93QVxREbEPzMiMrLOqe7qfrp6/gPP1HnJjJdfRGZG1jndfdr4HwmQAAmQAAmQAAmQAAmQAAl8cQKnL+4f3SMBEiABEiABEiABEiABEiCB7ZNsfJ638+m0nRb/zs8xUi+XJ22bb8RmH3wGH562y8sHq6Y6EiABEiABEiABEiABEiCBqwQeYuPTNkRPbjfBjc/VmPImCZAACZAACZAACZAACZBAIvDJNj7z05LnM54EzfeSLzwlARIgARIgARIgARIgARIggZLAp9/4bNvLdnnSzQ+e+uQnPtgc4b56ilfPTpt/Iw5t9bW6tJl6uWxP8rrdebvgdboT2gx5eCXPy9023Ed78B721/3G/SYv2Pd02fjWHDjykwRIgARIgARIgARIgAReT+ABNj7b1jc6thHo59h5PJ/1Z378RgHXTudNf0RobDCwAcEnxGx944OnTO2z9cemxl/X4963t/Ebn3W/sUlb2yX2DQWvjzJ7kgAJkAAJkAAJkAAJkMDvnMBDbHw2bGJWG59i04EnJ32DkWRI3PM1v/HxG45+HZso92Smt8MmZ2x8YINunizToLM/SfIbn0J+37j9zjOV7pMACZAACZAACZAACZDAGwh8kY3P2IjoRufaJmR+atM3Jn2DMzYvyhby0HdsUAZ7tEFfnMdX7eZX98bGp2/SmtC+Qap0Da08IgESIAESIAESIAESIAES2CfwEBuf/mrb8omP2yi0Ntg0uFffxtMXbF78p21WlhsfJz/9yu2xWcFGJ298cD6CAVu0Lzc+gwyPSIAESIAESIAESIAESOB9CDzExiduFNzP/PTXzBqcsfE4n/Xv/IxNyXgidAp9EtRrGx/ftLdrmyc8kRn69Tdv4/z4E59gGjZvXb43gMckQAIkQAIkQAIkQAIkQAK3EPj0G5/+tKf/TMxq4+Ouy1OZ9KSlbyTG9S4bT4b6hgabGUPZ+7rrvS3kYaODc7fZ8puXLgvtxhMfbnxuSV22JQESIAESIAESIAESIIHjBD7Zxse/fhaP/dObvmEJO4Wt7Xzs11GfthM2M53F2GDgt7nhs4vp/d0GR/qv+w4988Yn2LN8RW7I7nY0nX2DlG3pDvGABEiABEiABEiABEiABEjgIIEH2PjgycjwaLnxKf7mz+jVjsYmY9r0yG1snKrNxtw3vjZXbHxE+dwvbHCcTeE6Nz4xdDwjARIgARIgARIgARIggTcQ+CQbnzd4wK4kQAIkQAIkQAIkQAIkQAIksEOAG58dQLxNAiRAAiRAAiRAAiRAAiTw+AS48Xn8GNIDEiABEiABEiABEiABEiCBHQLc+OwA4m0SIAESIAESIAESIAESIIHHJ8CNz+PHkB6QAAmQAAmQAAmQAAmQAAnsEODGZwcQb5MACZAACZAACZAACZAACTw+AW58Hj+G9IAESIAESIAESIAESIAESGCHADc+O4B4mwRIgARIgARIgARIgARI4PEJcOPz+DGkByRAAiRAAiRAAiRAAiRAAjsEuPHZAcTbJEACJEACJEACJEACJEACj0+AG5/HjyE9IAESIAESIAESIAESIAES2CHAjc8OIN4mARIgARIgARIgARIgARJ4fALc+Dx+DOkBCZAACZAACZAACZAACZDADgFufHYA8TYJkAAJkAAJkAAJkAAJkMDjE+DG5/FjSA9IgARIgARIgARIgARIgAR2CHDjswOIt0mABEiABEiABEiABEiABB6fADc+jx9DekACJEACJEACJEACJEACJLBDgBufHUC8TQIkQAIkQAIkQAIkQAIk8PgEuPF5/BjSAxIgARIgARIgARIgARIggR0C3PjsAOJtEiABEiABEiABEiABEiCBxyfAjc/jx5AekAAJkAAJkAAJkAAJkAAJ7BDgxmcHEG+TAAmQAAmQAAmQAAmQAAk8PgFufB4/hvSABEiABEiABEiABEiABEhghwA3PjuAeJsESIAESIAESIAESIAESODxCXDj8/gxpAckQAIkQAIkQAIkQAIkQAI7BD7Nxuf5fNpO5+fa3JfL9nR62i4v9e3DV0XOaVupOSznQMOXy/nt9h7Qs20v2+XpCrtt266yPaTjXo2et7OD/3J52k5Pl+2tYb3Zunvl082Kv0iHl8t2fvNg3DaJ/+m8LUZ9S9ztdO3+EZwi47SdTsW/m3Mv5u9d7DviA9uQAAmQAAmQAAnchQA3PnfBmIR8aGH9OBufz7MBS/Hi6Q0ENN+ePmLjc4NVy6bLzZONmxs2P1P+LmUvreENEiABEiABEiCBb0iAG5/3gM+NT0l1KhzLVrz4uQl8lY3P1h453fQkecpfbnw+d6rSOhIgARIgARJIBB5z44OCQz7HKyzuLSp1Uwobd//SCp30qltqk1+3k9dxzhd9nay9LmNKpAhyr8/0b8CvyMt94mteKCifh64mf/pG2r6phm7YNjk/Io2CLeif5OLVo8Gr+1S+Tmd2eL1XCsmg215bjK+6PW9niY1+4tUktSFe8yrFyyvMBwV3NNkZ5Z/2XquU/uft0l7VkziM17X09a3BMNgKvc+ah/AxtNmaLU/b5dJe82py3CueKd9HfMy3zKF4TeyqfaK7jY/EoxuYcs/L37NN9hng1fwCv8HORUgPMc7l7Oj4SFKCjHTPeDX3lEu2ZeR4lb/9Vbfgu4sX1OW4pLGHcfDc8ynFHXL4SQIkQAIkQAIk8CYCr9j4+KIoFwqvtwXFeSkBBSN+GASFhisgtDBx9lixMYrDYfeo47QAHW2s0HFyUSiONvYzM66NfnPsNlTZXvycje9jRSY2Uv1ndfzGbPJhtq8XZN2pmSDaDB+MheujbVzRlnSjOEMI4HPYmF0rMsHA6YwyEZ9hA9j74l+vjTawY/g2M5qIhPio3tF/VQQ7KcYm+N4L+yu2oV+xmRlYwMHlclNtOT+1wwWTjVPtEjfO++yg2/kw6VW+nteubRUbjGG/eXKI5TDkk8X16vjIAsAtsUQzkW++FvyQW2AqYwQnTQZ8cONax5HTZ20Grzk/e5532XMbmMxPEiABEiABEiCB1xO4ceMzig98Wz0K99cb0XpORYUXJ0VJLsbceWubCheR5woSEWdFCOqLsk2So0WJK2TKpx/eWNji7dOCEnrROuo3tqlRaOMLNQiZNlD9Rj8IMuxq8Cv5jI6hTdIt956etidXuIqeZD9ktc98X2XglxtY0e37m12jaATbscmsfMu54G2QY5F7peCdOqQLJS+1P9jaC37Ln8ofcOm5Wsmpc0MLb/MjxSdZ3LTIE7Wr9pVtsm49H3LyfdMc7Kl1S+xc/kw2iwyMvVpPGX8vKMjwN0xe5z7LD/mPOPn8DD6a7JAbs0xpFdosNtqVbG8+j0mABEiABEiABG4mcOPGRwuYvulJr/ncrN11yEWxu2WbGreRqIqZUExowTGKM5MW2tTFGJ68oG8szlWOFkT6uk75G6lEj7M3OJMYpsILetHFF3aVLbD32ga0YhuKulWRVfBC3ddk4pUovaZ+4T7s95/ZjuhPFY9CZmFTZgYm83WzJsTHitOWy9eM946E/nbjKkO/ySryIuTzns/eEN9Wj9vYLP0+Yp9tfCKGXLynsRXisbCt4pU3hb4rjgOXpNfa+PGBbuFTZLSxWvyLjqbX3bLf88ZdN57YmJnWwENjMscjyo7joDsWX3MMTvGEBEiABEiABEjgNQRu3PjYgu2LiFQ8vMaI1udqAZMLp1AQmcZDBUddKFZFEYqVsihRg2Mx1TcweCoRC1zxD9ysbfR5v7CL7QdpuX4lDtX9eeOTCrgmPjD1hV/jqO2bbGElbQsZw8xDT3zAXbv5eJmgYJPer+K33AB0v67EZ7V5gC9iQ+zfX3tCjMOnta36NZkhn9c+r/wcoZ/HZ793bQPQX70rdE9POFOeWjyu2ia6E6/Jb8B1n4FL0mvNVmOiSwky+tXFgfM/5Jk2n8ZRJTv0c/KCRouTBaecY1bMghyekAAJkAAJkAAJ3ELgxo1PE62LuRY61wvdWwwpF38IyEXAbsFRF0mxkFc/YqENhePzql1oJva4Jwa5wA3FEDrlzV5tsy/saltiETWkj6OpYMvftme+6Jr86Prbddu84Zr8YLbf/EGG+8x2oK/+3FAVj6JwDCyrPk7h6jD5lZuJnf5nSXKDqv+Koe9b9cuxqJ66BJ+9wGvHlhfY1Byxr9J9cOPTN1iVSYf8LjqKzZhj9sdHISFtKssW4SJyVHIzvYaHe71DsM+uhlit8jP6EseByTkUr24JD0iABEiABEiABA4QeMXG54DU1zSpigiTMxUGVdtQcORNhQmSfvj5kNWGIRbbk+6Fb6FdLvQqe7GB7JuFWAxBjRRbaCNy8jfnau+117Smgi0X24kddItPvvgzv87np/E6ldn09LR4xQrC8FTPVciBmfGIG9EYCxEVbD0WQ2eCHub4zA3kN+tFW1yjqn+wy7X1sbc2WW6MT+FzyQZP5HI+ON1+I3PEPt++i8mMc56qvdkn/ZIBttVtxG+fX12nHXh2tgHLesL4yP3beZBRNUjXrP25+IPKMU4L2YFzZme6Qhv7GR+McZgjdoAfLvKTBEiABEiABEjgLQQ+z8YH3yyXBQA2K+ZqVcykYgJPd0ahpMVXe1LVa2+REwv2XEjF4rzpr4qZVNjt2mIbM3kd6pZvtE23Y6TFo3vaVGTDVLDljQ82JXg6IG7m33jnfPcMrVj2v3mtMEEuXWebGGoP+xXXTmJmeyCGrrceigwrKrO81mKv6PT9nXCNhS9Wk0+mK7CadGmfnqMmXzehLndzHk5y5h+a37Xvho2P32jv2tbzzbGxuLVfa13+nFyPA+7nDZeCyTnlwoEG8quzlzrmDpJzYZ6wNpMu8QH2WaOcT+bnmIfmMTzPMQdycLKbF0iABEiABEiABPYIfKKNj5qqxZn/QWRXLMGbIwVHa9sLTZV3PvJ3fNymQkU8FX9LR4vT8HMNqVLtfkBeL/TMt/Oz/TA1/Dta2FnhhJ8hueHv+ABf9ysVnShg4dco1kZP9csXe3MhN1qnIxePhisWfGmTIF2LTUAuLFs7J1dsB/Okvp9Ke3BHkelzzm8weq9xkPuPOxbTISswhO1n/I2e1s7ZIXIKnyG/yCHcap85frPsuU2w79DGx/Nytu/YNtv32r/j03+hurg+bUY8kHZczRW5TTqfc9wauDyT4V7JRoz9Tsv1q/IzjgPTJbId32QjT0mABEiABEiABG4n8Ok2Pre7wB4k8CAEqqL4QUz//ZhpG/n0Rcbvx396SgIkQAIkQAJflwA3Pl83tvTssxHgxuezRWS2R2LEJy0zGF4hARIgARIggccnwI3P48eQHjwKAW58PnGkxuurfNjzicNE00iABEiABEjgDQS48XkDPHYlARIgARIgARIgARIgARJ4DALc+DxGnGglCZAACZAACZAACZAACZDAGwhw4/MGeOxKAiRAAiRAAiRAAiRAAiTwGAS48XmMONFKEiABEiABEiABEiABEiCBNxDgxqeE95ft8sc/bU8//aW82y/++WU7pzbPP/66/oOMveN9Dp5//NN2/tnJ+vnX7fTjb+7C+xw2vXfX8/OvzpeD/N/HvW8u9eWnX/Zz7yOs/PPL9vRDyrGP0Cs6ftvOPxwYg8mel59+3S5/Thd3T1XX6Yc/bac/vmzxLwXtdv64Bi0eyb44B7Rx88sr/H+DC7s5omzDPPUGdffrWswxd5yD4jrwWRm8jea7rANvM4m9SYAESGCXADc+JaJiUZzaFW3axuOHj9r4tMU06opF0GTw3S7cf8HLhUHB9m7Wf3ZBzfcPLl5XSHaL2lXHe1zXnNj98sGrEntvZyf5nDYUXuxnOZ43xHkOyOcfYPk3zZF7+nfHOehD14F7MqAsEiABEvj6BLjxKWN8pPAu2nzkgtcKjlCsfVzBzI1PmTR3uvgNiteV5d+0qNVClBufEZzpi408B7TzD3jiOyzatm2ZI79tz/5pdOj0GU+48fmMUaFNJEACJHBvAtz4lESxqflNXnmTV2DaazC9qND7/Xp78iKbnj9tuCYFmxQFv2yXn/WVIdzLr320b3JxTz67nmYcbImv3U3f/oYiSPucfxp6u04rVLq+oMtgJF9OP8Rv0cPGB5u90Me3N1ZZTy+YtODo9shmDj6v+I+gZXaxUEYxk3RkW4a4cRT88bFfMAoyr9lvPFo+Va9yNb2QdTB/kCOdYchVFKdzHkZWaDdyGPnTc6e5nvNnehUu+tdsCv0H4XQUY/T008v8qts13fkeGG7bJvlqvIVR/8KgtlVy6seXMfa7rGhjjp/0++PL9hzGsz6VDXna9Q8E0UY/ftCm6Y5PeDefK9u2NR0aU/Or291kFNeQX/3VwMwj2dH0/fFlu7RXXRvP5odx9zFWX2CrMsP9mlHS08wN4++X7fLTztN0aZ/kFNfG3KW+Kq8U1xvnIERIPoPdeFUzMoANIeaWE+FaiJ+LYc9lMA4WzCfJpup1zqA3zffb1uxHDFrslTP8GApz/sz2RT3gMyTwiARIgATem8AX2PiMPzx4Op3v9PM1YwLHgo2CbxSLfuG0MMkC4yb7Xoy5BdkWIcjVgsj1kUVmb0Foup3MUPQ0W2B/bLPyISyEYl/sp4vVsDEseH1RHffVpyFj9lGLtPFaYCwMhv2uaDaWgz8K2qFn9g8FjWuT+FcDLNvf7bFCRO872yxmfcPS+bs2ndN8DbnQbGls+/mB/Mm2iT+ZVZezjtGa3WxPt8/yDoVQaUuRTzNzi1Mv9JC/bhyYD2vd2JS5WGPTEzYaWZflkWuD+Ppc0+LP2dOcSLmEfiMPkH9+47zQ7zc1Sa7wateEz2Ajm49eBI8NaxvPsvlyPiG+81hHTphdrs80Dsyu4R+YjxzRucLHQOUibjMj88fpVa5OBvR6RlMSRT3tttoybEN+alxV74hx7j84w3YwHH0mI/SC2Auu7VKUDbu6nD4+XX7lMYw5xXGa4lOZI7Y4lpDTxxo4OXuNd/cb81viL350OXMcs33S3tkPnkNP5QCvkQAJkMB9CTz4xudluzydttPJ/bvLn123SbxP6go9Ttx54UQh5BaQafGa5USZR4PbFlKnJxfMxeLWJJe6UkEpbZLfuRAJbaZFsmlK/JKO6X4qDOb7M7fVoqmLLdhowdELDBGTbFPR7v9FXN1dFDFRJmKPAsN0+EUexUNgm+1r/SBjFJVZV4ijsHV9Kh8n/q1R1B1kwt8UW2EbfBo2avESZULM3meMmbU2m+H7vm7Y4lmoPbmwyr7m89IeYYG8gkfRX+3n9RdFZR6HZWzmsdpkg4VqT7kiY87pFnvHufL7ZXty84b4bflY+pzHcZIpdjj7K/+RZ4hBqSfIrcef2OpsRwTGp425Pr5abH7ZnvwvqRFbwSTrybmS5ammnCtDvzuaciXKnn0xXWFsJf2BEXSlNrjsPkve7v5qHo1+xjxHd2kD3rv27dsKufwkARIggfck8OAbH/+0B5ufezz10Uk6Fhq5GCna5AUvLLQujL6dHI/XB1yr9WHrgwVHWrWFyRdlhW2p0B3Cq7Z6VxdofJOMgsE4QL/3ZQiV127Gt8uqo9vsiiXtEgsDbHyu8he9w6auOsjOclurZEvvaAehf76J4tp/i4w2vjiodFScfR+T7YufI/kD9e3TbO9PAhCjUo7XXdk25KFo9aq0oEJuDB49Z7wfvmNxHAqoft/b1y/KwUq3+l/khPRSeZ2Ns0/0u3OR786jdmxyh+/I06rIrGR5fVUf0RfGVYtP9qv548f8b9s52Kz+InZN5/lnf80f57lteBzsCzZZG8u5pz/q67rQNyREPRWP8MWKyZvkVLqHEjkKspuc9OQr3Ld5ALHLGzTME+O+KvOxS+rH6WRrZFDJkGsYryIpziFVn9Ys+jRM6EfGs+X9xBT9Qx5Zz+BDtB+yvc1H7BNb5Qmlz1tI4ycJkAAJfAyBB9/4vO8Tn+uLXlEshsUChWMuWFA4ucnfLU5amLl7RR60RSYsYk1vsWhG+3Xx6oVfekWmtxUfUNSZ7XJt+OEXPC1aZnunBdmx0QXQ98kLa8E2f1Pu5AVEoXDKclvLWFCEvu1E+g9fj99XXcqx0lH55Pv4n9EwrStbgu+mC/GUPEj6Szletz/2Huv1nmvGFjkk1+1ab9OLKeSQf83Ly8ZxshWXc2F6RHfhp+Qq2NjGIBdp+XzKXbFJWcB3jXPkNud1XZh6fdrHsYKt8mljpPkVNjWWp/5ay4kwB/gvKJqdKqvpFtuF1RiDYlPq39wOPoW8s0D1uOjTlfH6KgIZc6hkK3JtzJk8n08iqdINFfiUviqn6cl+dt+lfR6P0U7MExpnKFhvEEeLYn5PT7R9/NFv5h/HhdwPueFyxucBBIZP9Q25O15NRXydrKAD+ZHZqHBv82H7JI5O367twRGekAAJkMCbCTz4xqf575/63ONpT5OZF0XlLJN7n6iLNnlxdguxj1QoJvyNdoxCouvJDZreWJj3Rb43LWxbPvHpnbrfuYAK38hiA4IiKfts4iKrdhGLp9oWdeAebKnsT0WH6I0cpHdgnuW2FpV+6B38p8ILTSw+832vq9JR+aR9UFw1ZkFu8AUGoFixoqTkkPSXcrzuyraZxRzTuc2wUo80132x7Yqe5Q9Jt77evhR7KMmxyH7m+9Yv+5HPxeY0/uoxG22s2lSyvL6qD9zrny3GGG/I31CgeqbjbxF13Y2D+YNr+WeAvE1dLzY+YFGN9cBYeQxbmyS9hryG/vC3knwOB3nOEq9bjr3Pc4He/FGd0I9PyMw5v3df+3lOGjtnx5JTlO1lwBq51mPcrsYxXPVBX/1UHWNzA/9jK8QDG1T1AfxyW5xH+3HV27xvH3q5T8Qx+O3u85AESIAE3oHAF9j4vAOVu2583A+smql+wSit94t8buCKGL3VFsi8AciLemsZF9Ih1i9q/ni0EHvdb/oJ9tvihcJm2LTy+1f5bV2xfdZb2Z+K30WBFBfyLPcaB/irfbAZwdXxubgvHBCHinXlk5fVjlMBYj5mWzz/spC0fr0AlXPYBk+87sQWTUJsK/uxCVsVWSrI2wvR/jPGzO4E3w/qzn6W40j9Hq9hzr5XTEsfjA/iU/mxlBWK5Bwb42ptmu44XvQ+9DZiVRs8vTz/6H4+yPI0/OwLNjg5//KcUfG0OME+ZeD9Ud7hPnxHEphN+odn61gL/8k+CBifGqc2x2AsmTx5FQ/XWvusJ9o531cdIj/bP9Tr0cQpyq5kqN3+j0+rfRjDVW41ZXO/bExx7sdJYD/axryN9qOV1/1a+6IeSOYnCZAACbwfAW58SrZ5UdRGccGKC5O0yIuIFQX+1YLy6UlYSAu5zsa2UPiCR4qb0L81ru1X3XFDUvrk5YlP+q0mihe/4EEmvkFs2leLYNVWXdOFdfhV2x9ttUXfbcjwtGzIqRbs63yH/b54i8Wx+ueLUdWDIgX8x/kqJs7vxjl/83kgf8AUsem62xMBxNEXOgq8fxPfWZmufm7f1LdvkCFb+PeCcjztaW20n/MHekwuZOBy/Fzw63IRa1e4djbQPezpuiafIKfl85CV86oqxjTmPifM5sbZ4lblfSUr6rN8dPYgj9WPpmfYqtxaH29LPgddyB4xHN/4+/6tvfmDnOnj2LWTuSDZMsXXdHY5KhcxqXhoDmc97rzHOumGm/4T81XXj/loxEmbq50538d5vq+9Yuy8YncsNjj701OvSoZcC+PfOPZrc3wmbs4EHFY5GfWbHp9jU0xjDCE72rxnX/anSdE+gzkk85MESIAE3o8ANz4l24OLHhbZXnxjEbFFFgvIj+1vUOCVCL8gNuWuD9q4RRv3sTi0xQZFhJjebOiLI5yp7Ze7vYgwe4Ku1sIWMNjSFkTr423oOm2Rb98qDx9XBYrJnux1xYkswLX9ccFWX3VhB1tXBMtt1Rd4gXe3odaFDUX3KXPqsTfdXV5TbDEtroGhWj8W/uZHvOcK+av549mpLU2OsEIxI/HLeTd0qy1DH3ye/46P+dVzo8lMMc355TYvXU95YHJM9vx3fA7oxjfgTQbiVcRJc2bwyHkl99Hf2apMR66dfzabrK3Kjblfycr6mopZtiluPCdbGiunp2yj/VWua4vcnGS29hVjs6N9CEsva+RMGGPGXPNZ44r7FY+ygA9xw99JS7qdaf3Q8i+MJZMFG7St+urbafxafJue+X7rV8Wu6+4HjqPMAZFBJUOuFfNFn2dFtpMr42TkcFddHGgOjLz1m340z20iq2h/6FPZHOYHtG6fKgfzi3yG/r4tj0mABEjgfQhw4/M+XFWqLcJxEXlPhd9AthQVxxbg+E32N7D10VT+HvLn0WJCe78JgXLD9E0soVISIAESIIFHJsCNz3tG7/dQuN6w8WHxcmOy/R7y50YkbP7VCdhTgfAkQK/5pzNfnQL9IwESIAESeB8C3PgUXMOj+P7Y3r8qwGMyYg4wB5gDzAHmwL1yoFiKeYkESIAE7k6AG5+7I6VAEiABEiABEiABEiABEiCBz0aAG5/PFhHaQwIkQAIkQAIkQAIkQAIkcHcC3PjcHSkFkgAJkAAJkAAJkAAJkAAJfDYC3Ph8tojQHhIgARIgARIgARIgARIggbsT4Mbn7kgpkARIgARIgARIgARIgARI4LMR+HQbn5fL03Y6P9+Z08t2OV+2Fy/1+bydTif593R53i5Pp+3pYi3k3nk7bsXzdjZZp1Pr9yLy1A+912WLDb692qD9vIHtT6dftjNsSrduPX25nLe3i/J+3WDB83m7PaTP29l3ujkmN9iHpi+X7el0UltF39N2eTGfLb7eJHT7Vp/P55yjLq+eLtvfn09uLOm94/Z7vxuHbXtu8p7aOKrywLdHTmu/yCfFNd687aSYfw4AABV7SURBVOxVeTWrGH7N95ZXXjU20zwk+VYxWmp91xsy9/Y8vzVfFqb5GN0wvlpM4py5kP9Rl18bqzaPyJhpf/20rTl5zN7fgVflczOjz3n3t+ndJd5jPB4x8oNieMSUj2mj88DtY7H1w9zmjw9Y3cYaxkzZPK811ZhKba7KG0r8HHjq9o/7q6M25q6urZI3WBcXc1tqc1WeM6TZ3ONjcyxq2/35ppjnmx0HeTkzHurwc218JGhVEr+NqSRzCOTOYL55csvyfGGY7lli9kQ113TAYaJoF1VGbvcqEqLTy36VlG7TbRvTYmAdUC+L99GRf0DeoSYWG1ErOeCY+XuHhL1zoyJHrxc8t8bB57D6MuTneyp7yguxMS4I94vrrf6s4zH8WreJd143Nud5KEr9pmfvkt8pRl7H7vhqfd34+6Zw9Euop5vtST4UY/Y93Lo9n82KHJP3MO5dZH7gePygGL4LplcJ1TF8ax3ScjD0adxCDbY2JhTyUzNbe5wsyffwhUJen/L5JFQuaA026s98XvdqVxuj0W9qJznj1kGbByc+fn45PBabbzZPFnJnNtE6ve9ss9tT/GK3hz/7RBsfTc6QDHfCOxccO4P55sltljcSR/1CDT/bAifz4LwjDxkQ9ygiso2w/dqnsoH/11r6ezIgb+3kBbzquNnqJxE3mfmi7VWy79ypyFFh5haEqPHWOMyxlty1mIz8xjfFjpVTnG26X1xv9ccZlQ6zjel2cfq6sbke+4WKj770LvmdY3Tb+PL59tE4Jn2vmEOnXC/G7KTnDhduz2dTerjYuoORdxXxgePxg2J4VzxvEqZj+Ka6rGSkMTqypLf8XbYrZad5psrj3fFb+Xkwr5rs5bpby4hrgbbJXxxO80cZx2a3rr1RJhpXftk94aRPoSbewqte0yH5kT8/z8ZnlZhyfTwizN8aVMkhCeCTob+GdtrOf6+vM8VHgSk5q8HlkqT1jRPBnFzNBiTT83lsOo4tSjYQut0uAZMd+XFsk/90ufRX757OZ3l9q/sLow5lbbLjfHGv8EGA+t7lBzbpnpscNEYjrt4sYdR9N3YhJir3/Bzla0ziNS9XLM75FBo0f8H6eTs7e9trh/01OLj+6s9o4/Q4OvhqSrz+lAN4VdPHoLkVxwaYOaN3WfhX5XSDg7z3+e3Hm5M+HZZxba2yHXjd0CSIfORey4vzuee3+OzjNGmdLwQ7ni7bpb/CN9qGNk1n15HGhP+mL/vhcqvMd2mPuUHlTrEUGVEnYuCsfRMPfcVpjEX1NebLHAN9ETj7NRbvlOPC78bxFfgMb/PROlbIraft8hznfRcay7+Dbdrb0DL+ELdhjdjR8yTyk1bFuJ74+XySb5JbERhZ7s1zsEPyGvNot2vYG+P+tF0u7VW86Nd1+5wsdVDzMOhC7rp5NY3vIAVjKATI/A9y0Qvykb/Qg9jjuh/DLeRP/VX3NocMdZF1uxfGWxFDWLL8hE+IRYix9lrbM6TmPB82a5vr95GPyb8sxHIOawlqCc8g6/H3miVyf5JrzMsYDh/3np6sZHsJwnLSo3mSbe39FnNNLav3koPW5la5UQJiE6/q+HT5nG7LacvHgvVouvIbOvE5eujRql9u95jnr9j4+IGzE5QbmJQJJpOMn3hsknNJXQ0EkeUml1m2+jCSNQU5T25mx8gvY9AvZHlXHDdZeYGZeySbWgPpGxcmnYRGHPTcT+RYAGK/WV++smAthSd++qnwe8GqoxJz2qLj7LGFYcSjmDxFLvw0/k6GxrwtckOuXhvnKLCHntnHTKGfm43ej37vlgMsgk5QjmE54WX9gYcaIHKWY0OZdbUT88zCznuHK07Cp1BA1O3FRi8z+1XkB2I74tZkJ39qddPVzBqyx8bGcs9xhK6xwCibYM8uz2Lhlz7IT+PtGdpYCoXZYnwN28x+N/9NEKoLUxwiX3DyPus1jMkmVPuMNlFGpbZfm/S3OwXn3kEPcs7Dhs7D5Pp5AQV/T8PDbRCr7GezJV0rxmce1zM/y4GeeyrT2444zNdgG+Lvv7TIcrGWuHWiYLBvXwpGO01xVBnDtqLHfEnYjT55zM4dijyxcTJycWYgtnXWTWqKoVzSnwXuuVLFdTZoXEk8VGS1CRv+guE129FG7TLf/Jg3/7vd5pvPm2kcoE3vBLmjBpvG2+SfMuwiBgnLDeenv4fjZnfZuTUYcR7joK35fg4qageRbb6sZC/iOo8BGIrPJveKT10uxrJuxEdsMWYKGdK3uA7VMozdGHbX++EUH70z4riO1zw+utSHP7hx4zMGAr4RWCfpLWyqpKyuIUlGsCWAKZlzss4BzBOc6urJ2JO1+bCwIyRllrfju/R130SFzQT6JpssySfewY6qaAOz6wMIWvtnkqvXbfCCt7SJk868eOSBVbPKMZviGnQlO5pxNsB7DN21YW5ccMSnxcSg/rr/H23nulSHY8LxdxOT4Ku1y/qLNll2ZBjjkNuKlqBjkffebH9sffu80HI6FBXaONpUbAZas2CHtUmLG/IMsfWmLI+TXG1nfnZbIyfIirwWY7PLsF5J3zQPyX2My2xHk1HkeSrO8rhRzSmf4MS1z2QrdINvpScyqYTXLKuWOeZok/MF1/Wzlh/sMr/CvIC5FPE63AaxKuZZGY9X7jeDw5idc6g1iZyL+Fe2ptiJ/3m8hDaWawiuQVXd8OGIfdYxfXQfKltT29Vpj6EwG+t93T7bWvuXc0zsRA40wSE+0JTGUtkGbYtPaQ+mxf00ntGiM2wXhOMVGQsdnaEITX7Itcgp6ByGyJsOOn5iezQJnwtbtE09Xn3/ZkMeq+O+jYf0FC7nu5yn3F7WcRC+iGvJBH3ks9mUa6DRQPunzVkeF6v4XmXZdLR4XMkLzHPZvqDvSkwWTIZ3j3t048ZnJN4ocNZBP45F5caEr64h2OPbrCrJc7LKuZ/gpslGB3TX7wNuSTqNI5Oh11e27hGwiaQ/AvdJnGxKonSwY/M0+lU8difOJFsot1cBAjO5WrzqZp2FGewZ3xDlAkoXl2FvVx0GoxUWHrqPyRS/JkVj4LvEhW4Vo+uco317C3BvvTiweAcjtanEDbyDryYq52HRJsjApNd1eT5HWKxtXTjXL8fcjMzK/Owu1q+fzOO3dfD+dNXXDwpmIql41U0FqY4+1yE+7ptH367PH92KmFuTHyHnK96x/6yr6mOtwm/06watD3J+Jb6T7U2S8GxjvhjPoumGGE361dRSb+nFIlaBsevoc+E1baT/8DuOvUVcvE5nSi/K+jqANVV9inlVME3s6jHmc6mQ0exJPg0TzZ/JvtEiHrlY9DETW+yemU8y9vocturlfWttKm7teozL1dwSFsV6tozhyrbBIsbR2q+Yu5wUO3Px6tQt7wfZVcwjjzpvIkvV1bggR50h08Y93gP/koM0bfaMMZV7I67Tl78p3rUf0ddJ9iKuS7YQ0PpdyU/tP/sU5LpYQ6x8hviFO3rS+l0ZX4hVNE85jBhUeWG6VnYVpjzapRs3PpY8fQIcG5C3OR4Hl8paBSQmcJXkIakwGEOCZH0pGfwgkOCPCbAXQcZAkyrLew0NlTE2G8mmJlLsgi02mNLgqHi8ZuMjcgIzi0ooqMxmY6GDKbPQ8z74gg/wBZ9jgpj88DFJE90yXyx2PkY5fjgfE8EidkHWos3u5SKm1ifwDr5ag6y/aBNkSLr48enjEOMGBvhUFnGc7bpWNjAZbpGc4prGl8Qq+SrjecpF70+pfLqY5wU0yPLFRsxxpjeyzXE8wtO+zfd+iJ/I+Yp31tMsVl0hRrA1f/ZBB0+vfCbm0AMRmVGXlOIXC6IbYjTpVw1LvWbAbqwC4261zaVWvL2qjY+Nj0nTUcUS8/coGDUfMffpdb2GNlluk10wTeymMSZuO3tT+04lcdi3r/ecDtAX+TM1OHBBY4vxca2D802aFYzkeoyL2OjHo7GN82CKQTHvXrNM75leNz47F5GHHMif6vtsZ9S4vC+ywa9i4nn4Yy9fr4f1MdvsGGrckb9eTjsuZPkmLf+cLH9Lj1MseoNo+7X8X25SFnG97k+bRuIXe90kO1j297FJ467L8G36xXHQZIe4jFv9Z9h6ntk9sScwrvKiN95u/02WzohPfHjjxqd5oqB0clgl+K0eVwldXWty4+Cpkjwn2yrYI2miTN1gmG+rRSK4uLI1NNo9iXYnm64uppjcdCBOg3s1sK5YNDNrjeMEE+2FsMxCz/sA3BnMXUrYYOWiIetovZIeMdf/QoKqD7Qd+NzJA12k3cLVHfayIz9/J+RxNQln/UUbkeEmtSAz8DnCYm2rt3v3OMU72mT56mwWecnXOheLeO8ZUzBrXQK3pBsiQ5s0ByH3xnyCXvFz8kN0YexWvPValOtjV/WJOg+fTX5HvpPtlWCTMb68iTKqLv3apF/vXNW76BNiJW3AuGuLr5S9sk23LeV4nie71pB/Po69RbTLxmwV/zC9JA55jKl0r28Rl+CHb7+yb1wPR2bPm2oEscXm0zw/BGXtJI+T2vbcrsfP5Mm5+5JGLydZIYaTIQcu2JjFU9LAvO5e2zXaLu8HW6uYx/ljP2+Gzn6EOFlCLm2RDjlOXYoeNFkhsdP9Kc64H/0QG6ac2dF9bQ6YZHm989yCu/IZYuDuyHX0rWKTax7X1w5bvCpcGoPqnnFyG3Bs8uUz+7lgMlvyeFdesfF5Dydj4qqG6lqb43wxm4oWM00GsJvA5oGQJrM8oEKy5ramJCTFos2E6nq7aGceqNo3J7r6igF0v41P/dqD2oDJqZwohd2VV91S/DqiwLzwI9yvOBZ8gq5FPoUNQbdmPgiy5ttHrwizPMHkAkd8HTEV2ca1xz/wUO1ZdoyP53OExapN9nSnXbIz2qR9Y2GHn3MYE3ccF9Dv/cG1nc8yhmY/YpLsVYmqaxT02e4Vg2jj5IfYgzhXMrKeZo3KBLMcc7W36ncrmx3bV+ICvyhj1UWul7Ep5gEvJOjCDdXZY2Vywau38l+sHG6DWJkUi9/5PL8WXMbF22t94x+Vthzoa1eMtWotmJr9mBtK3aFNlWsYd+bjIftA03+abBlPFgsY5ptdPXb9zO4cv9g953vtX64d8niMc5NpkJi59czHMBpxw5mLYYiLE+H1yHHKPde0XqtzbeR09r6Rk/DouWeNDvAPHK/aWtnQjdl9etJaBl29q8rtOVLZUOZzFzDNq3on55Vvb7Uo1o10a5zWPkfWMQ7oW+Yjbso6MD94ULlj7ezNlwe1fdLc5+Cy/2Pe+CQbn0VCC3g36dgGpS9qGAj49qTFwPr4Vy5ikkkj+bWbfaBc3fhgQfDJlBM1DbwrubBOzJyAWYed+4HWfR22lYNlNblesRPfjnnWIrt9W2ALmfriJ2T1Qb496IvdzEblzP1GPPKkjbhioM8yURB2tc237PeUT4WeFZMsa9Vu77rJAcPWXHnAt2H34DG4dv/EF89w9iXmgsqI/f3Yyv1z/l1xrOCqrVXG8CPrWPvecgj9JM983ovwKgeu2Gi3MmuMx57nFh/obt20T/v2GTEq2BQMpJ+zW3VBBuKMGBYy87xU+V3k06RnH8s8VtIXAlUMsn99zhhJlubZK4aU42vOnyDhSKzAZ1ojwB1xaPF11/L4EjnuvhhiMXO52u2T/i7W7Ua4ZmO6sxrrzLCjyvE0jpvcxK7na5dtdrpcxDo5muDXfcPHI/Z1b8dB5ibnY30aDddHOX/1HHZV/YqxY3rHOJ4Z7OsxBm7NizGsbEnXMg8JV/tZxpEbGi/vX477bDvWO/XP7juZU3zTeFYrM7ccc8jFXJzbNynZVj3veeVxlGMIDVq/wQRX58+sDzb6vtnOfD5LbVfqfPByY7/WfuRXvOfPslzEJvTNeZLPvcB23O5nyNLntrGG+GVRTYXY7eeMbMMDn3+ajY9O3n7wG9W+cK0fe/eJvk1QLVCSAD5hdbCMYqoePD0Rp/5YtMwGPxGKmVneTkZkn5q8atBbIueFUDYW6GOyYLuwKLK4M7opkTGpmN/4WypOfpcr9rRBZ32cHh340cdxTWXD/k7OMRJ1ISYVb73mTJsKApHt5ApHZ2fXXR1YvyC/anfomtoa4pj79dg3Pm1cZP9cbMwoiYXzJ+ZC7j8Kpm6H6zsXsdnAfJ59gt2pneOvZjs/JIeGr5jYVxPwyCE/1pO+4jTkbPV3fAJ73eirLjc/9TbumvOtzq3BSPJd2qO/cQgJptfi2FAZ1bUex2ouKTiES1N+x3ypY5BjN/8mv8MxmvQjP8GnWRttEvt7HHQeaTkTYgW5Z/21xMrIy4Se03bebZP6oTjwG6YOdWWry1WzrcetjT/zR9NgHeuYJsVbEOdnt2EfX1Z18wRnYpL/js+ufUFan28xbnFXxxvYFVzQ0NkU8xt5ZuzELsizzj0P3PXKfq/L8qnxh74wN8ivljfdmBtFj4thkFefjDFgOVrkS24De7zEbFtuk++HHKnGDr5IDg01PsjJ+e/4xPvSLvS3L4rSteaH+AiO3jG9ufPzPb4D8sF4ljJ32lQ5BButlhl1l9c9jhvvws3RwB/1/FSby35H2pjMxjLGP/nbfRjzojdnHK/Go8qLOkavRz/6PBuf8tvNR8GryfNVk+RRovCudtoiWk5Y76r4Wwm3ifT34/C3Ak29jUAxvqRQemv+FXIn4EfaTJ30ghSbZeG1LgAXoniZBL4GgXJzqOvJW4fz1wD0AF7InHjbBv8BvOomfqKNDxa/R4TNjU/PqK968Ibi6DGRcOPzmHF7UKun8dXmVPft/WvdmuQWgo60KbqVT6BCuzv5EGTyhAQ+P4H2hUD4IrhthhZfEHx+b35/Fk7x+2IIPtfGB48aH+5rAd346OPhT75xs0Uej7LrzzsUHF9moNgGoL/K92Uc23HE+/3Z88GPP7xOMn8+3LSyE6Ejt+WJRH7tIZ9/UzA+z8arI3dbeI9sao60CbCHzaG4C23shAVfReXxr3Ed3Ymh3/T7451uvP3tCfwO5qxPt/H59lGnBSRAAiRAAiRAAiRAAiRAAl+NADc+Xy2i9IcESIAESIAESIAESIAESGAicNJXnf7Ptv31v2zbX//vdjp9v9WvP+VXR77bTqf/tm3//A/b9s9/sT7/6kDfv9lO3/3v7XT663b67r/e0O/77fTdv9lO3//jdvrDvz2gB/b+YTt99z+0zx/+83Y6/cftdGq24/7q819sp9N/2E5/80/b6ft/v51Of3egT5P1L1Vf6/P9f99Op/90UN/KDl7fjxUZkRFzgDnAHPiaOfDvpHA5/eu/3f7n//pJ1+H/90967fQHOfeVzXUGf9vbX2/H74Q9Ux6TwFci8P8B5eXzuJtZ6BYAAAAASUVORK5CYII=" + } + }, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "https://realpython.com/pandas-dataframe/#working-with-time-series\n", + "• (outfile[\"Start_datetime\"] - outfile[\"Start_datetime_first\"]).apply(lambda x: x.total_seconds() / 60.0 / 60 /24)\n", + "![image.png](attachment:image.png)\n", + "\n", + "temp_c = [ 8.0, 7.1, 6.8, 6.4, 6.0, 5.4, 4.8, 5.0,\n", + "... 9.1, 12.8, 15.3, 19.1, 21.2, 22.1, 22.4, 23.1,\n", + "... 21.0, 17.9, 15.5, 14.4, 11.9, 11.0, 10.2, 9.1]\n", + "Now you have the variable temp_c, which refers to the list of temperature values.\n", + "\n", + "The next step is to create a sequence of dates and times. Pandas provides a very convenient function, date_range(), for this purpose:\n", + "\n", + ">>> dt = pd.date_range(start='2019-10-27 00:00:00.0', periods=24,\n", + "... freq='H')\n", + ">>> dt\n", + "DatetimeIndex(['2019-10-27 00:00:00', '2019-10-27 01:00:00',\n", + " '2019-10-27 02:00:00', '2019-10-27 03:00:00',\n", + " '2019-10-27 04:00:00', '2019-10-27 05:00:00',\n", + " '2019-10-27 06:00:00', '2019-10-27 07:00:00',\n", + " '2019-10-27 08:00:00', '2019-10-27 09:00:00',\n", + " '2019-10-27 10:00:00', '2019-10-27 11:00:00',\n", + " '2019-10-27 12:00:00', '2019-10-27 13:00:00',\n", + " '2019-10-27 14:00:00', '2019-10-27 15:00:00',\n", + " '2019-10-27 16:00:00', '2019-10-27 17:00:00',\n", + " '2019-10-27 18:00:00', '2019-10-27 19:00:00',\n", + " '2019-10-27 20:00:00', '2019-10-27 21:00:00',\n", + " '2019-10-27 22:00:00', '2019-10-27 23:00:00'],\n", + " dtype='datetime64[ns]', freq='H')\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Keeping Conda up to date and installing new packages\n", + "\n", + "Newer versions of packages are released frequently. You can update your packages (libraries), with this command::\n", + "```bash\n", + "\n", + " conda update -n base conda\n", + " conda update --all\n", + "```\n", + "\n", + "### Installing a new package in your virtual environment\n", + "\n", + "You will come across people recommending different packages in Python for all sorts of interesting applications. For example, the library `seaborn` is often recommended for visualization. But you might not have it installed yet. \n", + "\n", + "This is how you can install the package called `seaborn` in your virtual environment called ``myenv``:\n", + "```bash\n", + " conda activate myenv <--- change the last word in the command to the name of your actual environment\n", + " pip install seaboard\n", + "```\n", + "\n", + "Or in one line:\n", + "```bash\n", + " conda install -n myenv seaborn\n", + "```\n", + "\n", + "\n", + "### Updating an existing package\n", + "\n", + "Similar to the above, you can update a package to the latest version. Just change ``install`` to ``update`` instead.\n", + "Or in one line:\n", + "```bash\n", + " conda update -n myenv seaborn\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# IGNORE this. Execute this cell to load the notebook's style sheet.\n", + "from IPython.core.display import HTML\n", + "css_file = './images/style.css'\n", + "HTML(open(css_file, \"r\").read())" + ] + } + ], + "metadata": { + "hide_input": false, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.9" + }, + "toc": { + "base_numbering": "1", + "nav_menu": {}, + "number_sections": true, + "sideBar": true, + "skip_h1_title": true, + "title_cell": "Table of Contents", + "title_sidebar": "Contents", + "toc_cell": true, + "toc_position": { + "height": "calc(100% - 180px)", + "left": "10px", + "top": "150px", + "width": "348.984px" + }, + "toc_section_display": true, + "toc_window_display": true + }, + "varInspector": { + "cols": { + "lenName": 16, + "lenType": 16, + "lenVar": 40 + }, + "kernels_config": { + "python": { + "delete_cmd_postfix": "", + "delete_cmd_prefix": "del ", + "library": "var_list.py", + "varRefreshCmd": "print(var_dic_list())" + }, + "r": { + "delete_cmd_postfix": ") ", + "delete_cmd_prefix": "rm(", + "library": "var_list.r", + "varRefreshCmd": "cat(var_dic_list()) " + } + }, + "types_to_exclude": [ + "module", + "function", + "builtin_function_or_method", + "instance", + "_Feature" + ], + "window_display": false + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/TODO-module.ipynb b/TODO-module.ipynb index 4654d32..a39b042 100644 --- a/TODO-module.ipynb +++ b/TODO-module.ipynb @@ -28,170 +28,9 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" - ], - "text/plain": [ - "" - ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# Run this cell once, at the start, to load the notebook's style sheet.\n", "from IPython.core.display import HTML\n", @@ -239,20 +78,9 @@ }, { "cell_type": "code", - "execution_count": 130, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEFCAYAAAAPCDf9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3X+cJHdd5/FX9Y/5PbszOzub3ZBfuxG+KOsqCyQBFhJMFHOgeHIP9RA8jlM8L+edP059wKGS0/t94OGPMx4ag4o/iUiQi4lJIGQjsIQE4/Ljm5jdsITsj9nZmd35PdNddX9UV091T/VMz0xXV3XX+/l4JNtd3T317ZqaT1V96vP9fh3P8xARkWzIJd0AERFpHwV9EZEMUdAXEckQBX0RkQxR0BcRyZBC0g1Yz8TETFOlRaOjA0xNzcfdnE1Rm5qXxnapTc1Rm5rXznaNjw87jV7rijP9QiGfdBPWUJual8Z2qU3NUZual5Z2dUXQFxGR5ijoi4hkiIK+iEiGKOiLiGSIgr6ISIYo6IuIZEiq6/Sl+x0/Ocnn/8by3NlLjI/0c+TQPg7uH0u6WSJdS0FfEnP85CR3P3yCYiGH68HZqQXufvgEgAK/SEyU3pHEHH3y9KaWi8j26Uy/zY6fnOTok6eZmF7IfDpjYnqhwfLFNrdEJDsU9NsoSGcEsp7OGB/p5+zU2sA/PtKXQGtEskHpnTZSOqPWkUP7NrVcRLZPZ/ptlNZ0RlIpp2Adj9nzfP3sDOMjfZlOd4m0g4J+G6UxnZF0yung/jFed901TEzMxL4uEVF6p63SmM5QykkkW3Sm3yZBCmVxucRKyaVYyHP1ZUOJpzPSmnIS6XZJpVUV9NsgnELp6ynQ1+MvTzrgQzpTTiLdLsm0qtI7bZDmFEoaU04i3S7JmKAz/TZIcwolOKvwLzMXVUEj0gZJxgQF/TZIewrl4P6xmiB//OQkd3zs+JpcYzf0Ju6G75AGwXacml1mdKhH23GTkowJCvptcOTQvpr8XXh52jTKNT57ZoYv2Ik1y6FzehMnXZ7aLcLbsVjIaTtuQZIxQTn9Nji4f4w333iAy0b7yTkOl4328+YbD6TyD6RRTvFTT3xjU+9PozTfW+kk2o7bl2RM0Jl+m9SnUNKqUa5xdmGF4YGeiPcnf1+iWWm+t9JJtB1bI6mYoDN9qTE+0h+5fKi/2OD96bgv0YxG362TvkMaaDt2NgV9qdEop3jTS1+wqfenkcpTW0PbsbMpvSM1wiWcp87OslwqUyzkeO7cLC8z4zx3brZjSztVntoa4e04PbfMZaOqgmqluCvMFPRljWAHu/vhE/T25AG/0uXs1EJqb0A3q1PuraRdsB3Hx4c1WF4LtaPCTEFfIq1XoRFH0FT9vEh7/u4U9CVSOys0HrfnVD8vQnv+7mIL+saYXuD3gQPAJeA2YAz4AFAC7rfW3h7X+mV72tlj8IFjpyKXx3VVIZJW7fi7i7N658eAWWvtDcBPAr8J3AG8BTgCXG+MORzj+mUb2lmhcWZyLnK56r4la9rxdxdneudbgHsBrLXWGPMK4Ky19hkAY8x9wM3A441+wOjoAIVCvqmVjY8Pb7vBrdbJbXrd+DA7dw7w4LFTnLkwx95dg9x83VUcNnta3qa9Y4OcPj+7Zvnlu4favg0ft+d44NgpzkzOsXdskFsivnMz74lLJ+9T7ZTGNsHG7WrH353jeV7LfliYMeadwPXAj1b+fRR43Fr7isrr7wAOWGvf0+hnTEzMNNW4NFYQqE3N+/qFBe685/ia5e2uFKofU2al5K5pR311RTvbmsbfn9rUvHa2a3x82Gn0WpzpnTvxc/mfBL4H+HtgMPT6MDAd4/qlQxw2e1IxNlEzY8po3BnpdHGmd14BHLXW/rQx5uXAtcCLjTHXAieA1wO6kStAOurnm6mc0Lgz0uniDPpPA79ijPkP+Gf0/wq4CvgwkMev3vlcjOuXlItrTPat1vw3UzmR9rkRRDYSW9C31p4Hbqlb/DxwQ1zrlM4R15js2+nR2MwY5500N4JIFHXOkkTE1fNwOz+3mTFlNH6PdDoFfUlEfW58canEzMIKZybnuONjx7ccSLebc29mTJk03H+I0oqhLDQcRvdT0JdEhHPj84slpmaWAChsM9WT1Zx7Kwbq0nSS2aDx9CUR4Rz4pbnl6uPwZC1bKYPM6ljvrSglVTlqNuhMv8XiqkjpNuHc+JkL8ziOA3hMzy75UzP2F7dUBpnVnHsrSklVjpoNCvotFFdFSrcKcuPv//O/56lTU9XlpZLL1MwSI8O92/q5WdKKtFZWU2NZo/ROC+nyuMViGiKkG7UirZXV1FjW6Ey/hXR5vDVLK2VGhnuZXVihVHYp5HMM9RdZLinoN6sVaa2spsayRkG/hXR5vDV7xwZZXinT31u7O2q7bU4r0lpZTI1ljdI7LaTL46255bqrIpdru4m0ns70W6iZHp2y1mGzh4s3HlBaQaQNFPRbLNyj85PHnuXok6f56KdPqHfjBpRWEGkPBf2YaLJvEUkj5fRjst5k3yIiSdGZfkw02bc00omDmnVimyVaqoP+pfllXNejkM+RzzkU8jkKeafSZT/d9o4NcurMpTXLVYaYbZ04qNl6bX5dSicgl8ZSnd4plz0Wl8vMLqxwcW6ZyUuLnJta4Pz0AlMzS8zML7OwVGKlVCauCd63SmWIEqUTe213YpulsVSf6UfxgJLrUXLLLK34y/JTC1yYWqi5Ggj+zedz5BK4MlAZYmepT1+84TXXcuWu/pavpxW9ttudalFP887huh5ld/0T4I4L+uspux7l0MEgkMs5FPM58nn/3+CgEHeaSGWInSEqffGH/+/LfO+rr2n572+7vbaTSA+pp3myPM/D88D1vGpQd73Kv25omesRhPvL9+1s+PO6Kug34roeS24Z6g4GhZxDoZCjkM9VDwr5XGfcM5DWiWvqxijbnWO3nW0NaF7gePjB2qVUXg3iXiWAV4N8JeC3UiaCfiMl16O0XAbKNctzOcc/IIRSRPmcDghRuqGqo53pi+0OapZEqkUDsW2N63mUy6tn4hdnl5ieXaJUdquBPQmZDvqNuK7HsuuxXHJrljtUDggJpIrSqBMrUaK0O32xnbRfUqkWpSpXeaHUSlSqxXU9yhFn6IW+IovL5egf2kYK+pvgsXrfICpVlM/nKBb8q4KVkovneV19MEgi1RCHTkpfdFJbO43rBukUD9dlTUAvu27lPUm3dHsU9FtktaLIP5Lnp+aZCiqKCjlyOYec4/+Xzzldcf8gqaqOqJQS0DDNtFEKKip9EVf1znY8bs9x9MnTLC6XWCm59BTyXHXZkFItTWh0dl4u+8E8yXRLuynox6haXrrOJV1wryBf7YDm0FPIk8ul/2CQRKohKqX0R/c/hQP0VcbjD6eZgKZSUPXpi/HxYSYmZuL6Gpt2/OQk9zz6LCsll76eAn09/nIFfGqqV8qux6W5ZS7OLXfV2XkrKegnrBzU1dbdP8jnnGqqyP8vfdVFSaQaolJKswt+rq2vbhKW9ToPdVoKqltSaZsRBOzaM3Rq8+ahMsVAoa/IwlIpkTZ3AgX9lCq7HuWIKwQHqlcGxYJfalqspI/aLYmqjqiUUqnsRrwzSDNFn+J1WseiiekF8vm1Heg77Xt4lTJE112tO69PvdTXnEtrKeh3mNoeyasHhaADWk1v5NzWDgabKcNsd1VHVEqpEBEM/ff6aaZu6Fg0PtLPhZmliOXp+B5eXY68VHnsVQK7C5Fn5dJ+CvpdIuiAVt8b2XEg7zh+qWlvkZn5ZfI5/3k+l6s+DqS9DDMqpTTUXyTq0Bakmbqh2uXIoX3c8+izkcu3a/WMu9L7E6DSOcjzwGO1s5DnAZ6fZvE8D6+QZ2J6AVdJ846hoN/lPA9K/l8s80sl5hbX5jqD/gf5nMNDX3iOsuviVMJocPsgLbnjRimlqGXh9nZ6x6KD+8fYuXOATzzyzIbfIyg79Cr579WA7QfrcqVzUCvSKCslVwG/w8QW9I0xReBDwDX4XV5/DCgBd+FnKY4Dt1lroxOyEounn5vmsa+eY2pmidHhXl7+4j288IqRahA4f3GxUulQ+4f8/Pl5Llxa9MtPHYecA06lBDWXCz+O/95Co5RSUimouHol19SNe/DN1+xibKBYPTN3PY+pmaUtp1Aa7QvS3eI80/8nQMFa+ypjzHcC/xkoAu+x1n7KGHMH8CbgozG2QUK+dGKS+459vfp88tJS9Xnwxz463MvkpbW549HhHpZL7ppeyvXCVw3VvgmVfx2HymP/IOFU/u1k66XDvuXqXTUBOkifBKkRYE0qJXhv1Bm4UyxwaX65Je1++rnpDfcF6U5xBv2ngIIxJgfswO/DegPwcOX1e4HvQkG/bf7uyecjlz/21XPVP/SXv3hPTTAIvPzFe5pax2qv5eYv+UtOjqmpef9qAcABh9WDguP4BxOn8iB47NS8j2pKqu6fmoOL41DTCcerRF0/d+1/AQ+P+cUVFpZK1feG89pU3ut5Hg994bna6qHKa3/7+a+ze2e6OneFPfbVcw2XK+h3tziD/ix+auerwG7gjcBrrbXBn9wM0Hj8T2BkpJ+VcnPBY9euwS03NC6bbdOXTkzyd08+z/npBXaP9POqQ5fzkgOtS0ucn16gVHaZnV9hpexSzOcYGigys7BSbev1uwYZGurjM08+z/mLC+ze2c8rW9yOKKOj8f3+PBoVbtZyQv9OzSyR7y1u+JmpWf/GeL2zUwvc/ekTLf9dtmo/vzS/QiG/tt3hfaFVbYp7v95Km5KShnbFGfR/GrjPWvsuY8yVwENAT+j1YWB6vR8wPb1QU5bYyK5dg1y4ED0nbVI226b6y+3T5+e4+6GnmZ1dbNmZV08hz/MTs9XnK6UyU5fKDPYN1bR130gf3//aAzWfjXP7dvLvb8dAcU06bHG5xPxiidPn/c+36nfZyu0U1W6AscGeTa1joza1Y7/ebJuS0s52vWB8qOFrcU6XOAVcrDy+gJ/Pf8IYc1Nl2a3AIzGuv6Osd7kdu6wMOhKDqLTX/GKJwb6151Nt+V02qVG6rtk0XrMS3a8lUpxn+r8G3GmMeQT/DP/dwGPAB40xPcBXgI+s9wP+9rGvUyq7NZ2Ngs5H+aAjUi7H6Nwy83PL1bHv68fCL+SDG4npvWk4FdHxZr3lW7FcKjM82MP8Yomy65LP5RjoKzSdQpO1grPVcBXM0kqJ3uLaP61W/i63K6rdcVTvtGO/ls2JLehba2eBH4h46cZmf8bffO5Uy9rjAPnwASM0Ln70QcU/oIQPHIXqoGjhz+WqwyqHPzs1v8L83FLjz9b1lm1cNdPbsm2we6S/OmBXXOuIQ9pLC194xUhNe/7kgadi/122Qn2749CO/Vo2JzOdszygVPYoldfOlJWUnEP1oACwvOJWO0M5jl+L4nked9371eiDUoMDjn+wWntAO/CCnZw6cwlYrYjBcTh07RilspuqwdwCnVhauN0KqG6ibZE+qQ76v/T2lzO7sEKp7FEu+3NJllyXctmjVHleLrv09he5eGkxtNzvcRh+T+RnK/NTlsqh5W7wfn9ZnIkP1wO35LISOSCgv+bTk/OcnpyPsRXw4b99uvp4zZVMw4OKU5NiqznA5HM17wmGjK5Jy4U+O19ymZtdqq47/LM//5WzkW1Oc2lhu1InnUDbIn1SHfR3DvauSUVEieuueDAiYPXA4YYOIOW6A4YbPsC49PYVuTSzuM5BZfWgU/szgwPW6jrDn99M/ftWNJoZLElO5X9BTT7Aual5fvMv/2HTablmD2gLZY+52cXIz+aauBpqR+qkU7RqW6Q9zdcpUh30k+Y4DnnHIZ8DivlNfTbOA9Gaq5i6A0Ojq5ieviKXLi3WHmya+WzNFdLag1zcQ6+EO02FL72eP59MWV7OcdY5qERfAYUPHOteJeVW51+u/+yi6zE3u7T2YJXCtFyrdWKaL60U9DuM46ymSjYrrgOR60an3dYeUOrSbpXHvb3BVdHaz07NLFWDe3jEx+GBIoV8bs1VUHvSch7LpbUT3yQpfMBodBVTzOdC79k4LdfMAW3Zg7nZxciUXiupB3HrKOhnzEaXyOHXi/kc4LFS9ta9nM7lHHpy+S3vTc108NnMZX04LdcotVYqu5w6O8NXT00xO7/CQF+Bq/cOM7ajn7Lr0lM5EDX6bOQV0Dr3keJOy1WLFFKSlnMcGhxUoqvmqqm1QvR7Tp2tdCoMD8MBnJ4sceL5izVVeSs4dfeImk/LZYGCfoZsNOBa+BJ6abnE2Tl/cK/hwR5cj8QupzebEw6n5XobpOWefm6afzhxAYDengJlF048P1NdV6uvilwvNMHIOsUD66XdenoLzMwuRV7dNCxMCP384EC1UvLfFyfPg5Wyi9+hPt5qud/966809b6tpOVW7xk1U7zQqAzcf+wU88wtrlQ/m1RaTkE/QzYacC18CR0ed39+sVS9od4tl9PtThfkHIdcwaG4jU7wrToQBf0IwhOmeHiMDPbwhldes3FaLnQV09NTZGZ2sYl7RM3dR4pTmtNyG5ZiV1Nn6/cPClJs32oua7zONn4/Sdj5iPllYbV3ZLiXZNl1Ix93S0/KLPcUDb5jkCIJ/je3WGL3yOZGBm3lFVF4ysVSRGXbs2cu8eWTF7g0v8JgX4EDl+9gfHRgTTVcsce/IoquuIuqtlt7T6jdabn6Ge+26x3fd6jhawr6GbJ7pL86CFhY0Dsy3Hsyn8tRrgwZnM/l1ry302W5p2hav/tqkQL0sjYtd/nuQV51cOPpIVt5IArScmsOCptIy60ejPLMzi43KGpYL+1XezDa7lBZCvoZ8qpDl3P3Q0+vWR70jgz3nhzsK3CpktMfCA0e1i09KbPcUzTL332zqmm5wvbHpmzVwajs1hcKrD0wrEdBP0NecmCM2dnFhpUwtb0nYcdgD3gbV+90oiz3FM3yd+8G+ZxDPpenZ+PpHiIp6GfMRpUwG72ec4LpEHPVKRGD5cGYPrnQDFfBDFOVV2tnw6r0st09NkghdHYSTBdYdkOTeVcm8YbVkszqTFmsTuDuv75azx9MEB51RZzlXrNZ/u5Zp6CfQcE8tjlnNQjXz1tbP/H56vtbX2IWPngA5HCISOluSxD8qxONu6vz0oanQvRc/yDTU8hTzOeqFS7Be0U6XVcG/e2O0ZHEGB+tWqcDOLlKnXreqU5Sns85jI/0k3fLNTdmO93xk5McffI0E9MLjI/0c+TQPg7uXzsVX3BAy9HcQWt8tB9KtSPhBdUlwVWIG3peXRYxoXk7xL3Patyb7tF1QX+7Y3QkMcZHo3U6DrzoylEg6IXoV9IEgTw4Cw86eQRn4430FPNdF/DvfvhE9fnZqYXq86jAv11BdclGVyHlULlf9b+yu5qyanG74t5n1/v516dgzlfZnK4L+tvtdNOOTjtBeiVf6VzxxafPk8utZqiDuH38xAWOfOvlLVlnNzr65OmGy+MI+s3y73c0fj18UAhK9/zxi/z00mYPCnHvs+v9/OsPvWDbP1/aq+uC/nY73Wzn8w6r+emBvgJLfYXqWXiwPOfU5q8BpivjhNSbmF5sqs1ZNdGgs1nat9tGB4XgQFAdNmHFr+tuJO6OZlnuyNaNui7ob7fjSfjzDrC4UmZ+cQUH+ItP/iOvPLiXg/t3VYN3UIES3ABd/Tl9lBab62Y3PtLP2akFFpZKlUlj/HmBrxzXpfN6gu22dnlf5Pvr8/9X7BniuXOzG94P2Ipm7zVE8bvZA6GSPM/zGBnpp7y0Uk0XlV2Pr5yaYmZhhfnFFfK5HIN9BXorQ2a0qrNVWjtzydY0neA1xgwaYw4ZYxxjTGqjUaMOJq/45j0U8g49hRx9PXkG+goM9RfZMdDDyFAPu4Z72b2zj5tfdgXFQo5iIcdK2WVmbply2WN4oIcLM0t84jNf4x+/cZGeYr46JkZumwMnHTm0j4WlEtMzS5RKLnhQKrlMzy5z/OTkln9utztyKLp3ZtTyIP9/dmoB14Nnz8zw148+y9fOzOB6q/cDWrG969fVip/tOA49xTz9vf5+u3Ool+cn53jgsef8QeU8KJddLs0ts7JSJufADS/Z25Ihjhv9TakzV2dq6kzfGHMz8Dv4t7BeCRw3xrzFWnt/nI1rJKhQyVVqwgd6Cyz2Fcg5Di970R6G+gt85vhZzl9cZHykj9d82+VNn2UdunY3uZzD0SdP86WTFygUcgz3F+nrXd1Urc4ZH9w/xuhQb81ZfrDOpPPTaRZsF/+M2v9dNzqjrs//zy74V2EzCyst/922615DsJ7+3gLs6KvuP2XP4we+45uq6/LCw0y7tWPQNHP/QJ25ukuz6Z3/AhwB7rXWnjHGvBb4EyDWoN/fm6e3mPfrxIPqlIgKldEdfZRCIxa99IV7eOkLt34WcnD/GAf3j/ErH/p85KxQW8kZb3S5v1wqMx4x2FXa89Pr2U6Ko1nB7ypY10c/fYKjT55es676/H+QI6/Plbdie7frXkN4Pf29BT/44/+thL+74zgUGwwlUDMAWcllpcHBQJ25ukez6Z2ctfZM8MRa++WY2lOjr6fAQF+Bvp5CNZ3SzokQooKwvzw6Z9xIM5f7rVpXWsSR4tjOuuq3bzDzWP0MZK3Y3u36XbZiPYV8jt6ePIN9fspo985+9oz2M7ajlx0DRfp78i2fBUuS1WzQf84Y80bAM8aMGGP+I3AqxnalwmZyxutZ73K/1etKi2a+czvXVb8dh/r9u6TD/bUDmLRie7frdxnXevwrgzwDlQPB+Ih/INg13MuOgR4Gegv0FFo/JaK0R7PpnR8HPgBcCZwAHgTeGVej0mIzOeP1NHO536p1bSRIg3zt7AwrJZdiIcfVlw23fF3tLKfcyva9Zu8wVxzaV6neWd3eAHd87DhTs8uMDvVsabu063fZrvWAnzLqKa4d5Gv37kFy5XJNT+WVSprIjcqNSo0kejo3FfStteeAfx5rS1IqyBlvR7Olha1Y13oet+e4++ET1UqhqkpKJGhDK2y2nLId69po+4Z7+BYLuW318I37d9nu9TTi91KulJjWcSPGiw9KTXU4SKb3P2wQ9I0xJ4keoBAAa+2BlreoCx05tK9muIDw8nZ64JifkQsqVwJBBUsrq0va+Z1bta609vDtVLmcQ0/EEMCNZ8hyIwsnulW7p+wMbHSmfxN+heQv4ad17gJKwA8D+2NrVZdp52X4es5M+hM41FesBM9bmXpp53duZxpOtm+9GbLCM0iVyh6lktuS2aLSKKmezusGfWvt1wCMMYeste8IvfQ+Y8wXYm1Zl0n6Mhxg79ggp85copDP+Z3AKoIKllanXtr5nduZhpP4BENU9BajDwY189dWphTsVEn1dG62escxxnxH8MQYcyv+Gb90kFuuuwpYrVwJBBUsnVop1CrdVkHVTfK5HL1Fvyf9joEeRod72R2qKhqulJcW8k6Tg2cnL6mezs1W7/wo8CFjzD78A8WzwNviapTE47DZw8UbD/jVO47DSqlMTyHPVZcNJZJuSptwmmh6bpnLRuPpUCats1pVtHplsHv3IN5KiZWyy/KKy0qpnMp7BUn1dG62eucJ4JAxZgzwrLUXNvqMMebtwNsrT/uAb8e/R/AB/KuE+621t2++ybIdaUgzRWlH791mBNtnfHyYiYmZtq9fts8JHQgGK5m5UtllpeSyXPIPAqVyOo4CSfR0bnbsnRuAdwFD+KmePHC1tfaaRp+x1t6Ff+MXY8xvAXcCdwBvxr8p/AljzGFr7ePbaL90gaCUNBD3ZCiSPX5ZaY7+Srrc9Sr9CUpu9YBQTuPlQAyazenfCfwV/kHit4DngI8280FjzMuBlwB/CvRaa5+x1nrAfcDNm26xdJ2glLReHL13RcBPC/UW8wz1FxlZ0+u48+4PbEazOf0la+3vG2OuAaaAHwH+ocnPvhu4HdgBXAotnwHWrfMfHR2gENXrI8L4+HCTzWkftak5ZybnIgcDm55bbrq9j9tzPHDsFGcm59g7Nsgt113FYbO9G2Jp3FZqU3Na1SZ/hFK35qog6FewleuCXSmYXrLZoL9ojNkFWOAGa+1DlRTPuowxI8CLrbWfNMbsAMK/iWFger3PT03NN9W4NOZf1abmBaWk9S4b7W+qvfVz5Z46c4k77znOxRsPbDk9lMZtpTY1J+425QDH80LDVAedy7x1+xTs2jXIhQtzsbUr7AXjQw1faza98z7gz4CPA28zxnwJeKyJz70WeADAWnsJWDbGXGuMcYDXA480uX7pYkEpab1mSyXbObibCKwOP9HXszqpzdjOPi4bHWB8pI/RSppooK9AbzFdI5U2e6a/AHyXtdar5OhfBPx9E58z+DdtA/8a+DD+ZCz3W2s/t5nGSncKl5JupUetetJKmlTnQK7rYLZ79yBOqbx2MhvXa2uP42aD/v+w1n4CwFo7BzzRzIestf+z7vlngRs21ULJhO2UkqonrXQCf8jqXOT9q7Jblyaq9DaOY6TSZoP+M8aYO4HP4Z/1A2Ct/YOWt0hkk9IyoJ3IVjW6OnA9rzqjWXVms21eGTQb9CfxB167vm65gr4kLi0D2om0WlSPY6hcGZQ2nuYyyoZB3xjzE8A91tqPGmOOAeP4PWpv3cqXEIlDWnsai8Qhn8uR76kdpXS1vHT90L9u9Y4x5l34PWi/VFnUy+pQCu/aRptFRKSFVqe5XP9cfqOSzR8Bvs9a+1TluVsZbvkO/OAvIiIdZKOgX7bWzoae/yqAtbaE36NWREQ6yEZBP2eMqfaitdbeDWCM2Qm4DT8lIiKptFHQ/zDwB5UhFAAwxgzhD8D2R3E2TEREWm+j6p3/Bvw28Lwx5sv4k6R/C/CH1tr3x9046R5pGS9fJOs2miO3DLzTGHM7cF1l8WPW2q/H3jLpGvUDomm8fJHkNDtz1jdocvx8kXrrDYimoC/SXs32yBXZMg2Ilm1K7aWLgr7ETgOiZZdSe+nT7Hj6IlvWaOAzDYjW/TTXQfroTF9iv/xO44Bo4e/cU8gBDsulcvX7vy7GKQCzlO5Qai99FPQzrl2X32kaEC38nReWSnxjZgmA0eHe6vffuXOAK3f1x7pu6P50h1J76aMfTrG2AAALlklEQVT0TsZl8fI7/N1mF1aqj2dCjx88dir2dTezvNMptZc+OtPPuCxefoe/c6nsRj4+E9ME1lnb3mlM7WWdgn7GZfHyO/ydC/kcpZJbfRzYu2sw9nXXLu/e7Z2m1J4ovZN5Wbz8Dn+3of5i9fFw6PHN110V+7qbWS7SajrTz7gsXn7Xf+fRoR5wHJZX3Or3P2z2MDHR+tHDs7i9JV0U9CWTl99Jfucsbm9JD6V3REQyREFfRCRDFPRFRDJEQV9EJEMU9EVEMkTVO5IpWRrsTCSKgr5kRtYGOxOJovSOZEbWBjsTiaKgL5mRtcHORKLEmt4xxrwL+F6gB/g/wMPAXYAHHAdus9a6DX+ASAtlcbAzkXqxnekbY24CXgW8GrgRuBJ4P/Aea+1rAAd4U1zrF6mnwc5EwPE8L5YfbIz5r/hn9C8BdgA/B3wMuMJa6xlj3gR8l7X2tkY/o1Qqe4VCPpb2yarH7TkeOHaKM5Nz7B0b5JbrruKw2ZN0s2LxuD3Hg8dOcebCHHt3DXLzFr9rlrbZerQdUstp+EKMQf+DwNXAG4H9wD3ADmvtvsrr3wG8w1r71kY/Y2JipqnGjY8PxzIi4nZ0SpvqK1oCb77xQNsqWjplWwWS2mZp207HT05yz6PPslKqzdC2c9+JkrbtFGhnu8bHhxsG/Thv5E4C91lrl621FlgEdoZeHwamY1y/NEEVLZunbebTduhMcQb9o8B3G2McY8zlwCDwYCXXD3Ar8EiM65cmqKJl87TNfNoOnSm2oG+t/WvgCeAY8HHgNuBngduNMZ/Br+j5SFzrl+aMj/Q3WK6Klka0zXzaDp0p1pJNa+3PRyy+Mc51yuYcObQvMj+tipbGtM18Rw7t455Hn41cLumlYRgyTtP3bZ62me/g/jF27hzgE488k+nt0GkU9EXT922BtpnvsNnDlbui0zySThqGQUQkQxT0RUQyROkdSR2NeS8SHwV9SRWNeS8SL6V3JFXUy1MkXgr6kirq5SkSLwV9SRX18hSJl4K+pIrGvBeJl27kSqqot6tIvBT0JXXU21UkPkrviIhkiIK+iEiGKOiLiGSIgr6ISIYo6IuIZIiCvohIhijoi4hkiIK+iEiGKOiLiGSIgr6ISIYo6IuIZIiCvohIhijoi4hkiIK+iEiGKOiLiGSIxtOXNY6fnKxMYrLA+Ei/JjER6SIK+lLj+MlJ7n74RPX52amF6nMFfpHOp/SO1Dj65OlNLReRzhLrmb4x5gngYuXpSeB3gA8AJeB+a+3tca5fNm9ieqHB8sU2t0RE4hBb0DfG9AFYa28KLfsi8GbgBPAJY8xha+3jcbVBNm98pJ+zU2sD//hIXwKtEZFWi/NM/9uAAWPM/ZX1vBfotdY+A2CMuQ+4GVDQT5Ejh/bV5PTDy0Wk88UZ9OeB/wX8LvBC4F5gOvT6DHBgvR8wOjpAoZBvamXj48Nba2WMOrFNrxsfZufOAR48doozF+bYu2uQm6+7isNmT6LtSoLa1By1qXlpaFecQf8p4B+ttR7wlDHmIrAr9PowtQeBNaam5pta0fj4MBMTM1ttZyw6uU1X7urn7d9tapbF+V06eVu1k9rUnDS2CdrbrvUOLnFW77wDeB+AMeZyYACYM8Zca4xxgNcDj8S4fhERqRPnmf7vAXcZY44CHv5BwAU+DOTxq3c+F+P6RUSkTmxB31q7DLwl4qUb4lqniIisT52zREQyREFfRCRDFPRFRDJEQV9EJEMU9EVEMkRBX0QkQxT0RUQyREFfRCRDFPRFRDJEQV9EJEMU9EVEMkQTo4tIxzp+cpKjT55mYnqB8ZF+jhzax+tSMGZ9minoi0hHOn5ysmaWt7NTC9z98Al27hzgyl39CbYs3ZTeEZGOdPTJ05HLHzx2qs0t6SwK+iLSkSamFyKXn7kw1+aWdBYFfRHpSOMj0SmcvbsG29ySzqKgLyId6cihfZHLb77uqja3pLPoRq6IdKSD+8cAKtU7i4yP9HHk0D4Omz2pnBg9LRT0RaRjHdw/Vg3+0hyld0REMkRBX0QkQxT0RUQyREFfRCRDFPRFRDJEQV9EJEMcz/OSboOIiLSJzvRFRDJEQV9EJEMU9EVEMkRBX0QkQxT0RUQyREFfRCRDFPRFRDKko4ZWNsZcD/x3a+1NxphvAu4CPOA4cJu11jXG/DLwBqAE/JS19lgb2/TtwG8AZWAJ+BFr7VljzK8DrwaCQb7fZK292KY2HQY+Djxdefm3rbV/lvB2+lNgb+Wla4DPWmt/yBhzDzAGrAAL1tpbY2xPEbizsv5e4FeBL5PgPtWgTadIcJ9q0KbnSHCfatCmt5D8PpUHPggY/N/XvwQcUhCnwjom6Btjfh54GxBMgPl+4D3W2k8ZY+4A3mSM+RpwI3A9cCVwN/CKNrbpA8BPWmu/aIz5ceAXgJ8BDgOvt9aej6st67TpMPB+a+37Qu85TILbyVr7Q5Xlo8AngZ+uvPWbgJdYa9vRY/CtwKS19m3GmDHgCeCLJLtPRbXpJMnuU1Ft+k8ku0+taZO19qpKO5Lcp74HwFr7amPMTfgxyiHhOFWvk9I7zwDfH3r+MuDhyuN7gVuAI8D91lrPWnsKKBhjxtvYph+y1n6x8rgALBpjcsALgf9rjHnUGPOOGNsT1aaXAW8wxnzaGPN7xphhkt9OgduB37DWnjbGXAaMAB83xhw1xrwxxvYA/AXwi6HnJZLfp6LalPQ+1Wg7JblPRbUpkNg+Za39K+CdladXA2dJfp9ao2OCvrX2bvxLtIATOnrPADuBHUD4EjdY3pY2WWtPAxhjXgX8W+DXgEH8y/O3At8N/BtjzKF2tQk4Bvyctfa1wAngl0l4OwEYY/YAN+Nf+gL0AO8Dvg//APFrlffE1aZZa+1MJWB9BHgPCe9TUW1Kep9qsJ0S3acatCnxfarStpIx5kP4v5+PkII4Va9jgn4EN/R4GJgGLlUe1y9vG2PMDwJ3AG+w1k4A88AHrLXz1toZ4CHg29rYpI9aa78QPAZeSgq2E/DPgD+21pYrz88Ad1hrS9bac/hpBBNnA4wxV+KnAv7QWvvHpGCfimhT4vtURJsS36eithMp2KcArLX/AngRfn6/P/RSKuJUJwf9Jyp5M4BbgUeAR4HXG2NyxpirgFw78ugBY8xb8c/GbrLWnqgsfhFw1BiTr9yAOgI83q42AfcZY66rPL4Z+AIJb6eKW/Avd8PP/xzAGDMEHAS+EtfKK5f+9wO/YK29s7I40X0qqk1J71MNtlOi+1SDNkHy+9TbjDHvqjydxz+JeCxtcapjbuRG+Fngg8aYHvxf5EestWVjzCPAZ/APaLe1qzGVO/e/jl9t8ZfGGICHrbW/bIz5MPBZ/BTHH1hrv9SudgE/AfymMWYZ/8znndbaS0ltpxCDnxoAwFp7rzHm9caYz+L/sbw75j+EdwOjwC8aY4L88L8Hfj3Bfaq+TXn8QPU1ktunorbTzwD/O8F9KqpNt5L8PvWXwO8bYz4NFIGfwt+PUhOnQEMri4hkSiend0REZJMU9EVEMkRBX0QkQxT0RUQyREFfRCRDOrlkU6SljDG/hT+IWQ/+mC1frrz0O4Bnrb0jqbaJtIpKNkXqGGOuAT5lrb0m4aaItJzO9EU2YIx5L4C19r3GmDPAX+GPkHgGf4jffwdcAbzdWvuw8Yf9/m38IX3n8UfJfCKJtovUU05fZHMuA+611r4U6AP+qbX2NcB78XtgAnwI+Hlr7WH8URf/NImGikTRmb7I5gXju3wNOBp6PFoZ4+UV+N3xg/cPGWPGrLWT7W2myFoK+iKbZK1dDj0t1b2cBxattd8eLDDGXAFcaEfbRDai9I5IC1WmLHy6MjomxpjvBD6dbKtEVulMX6T1fhi4w/jTRC4DP9im6fpENqSSTRGRDFF6R0QkQxT0RUQyREFfRCRDFPRFRDJEQV9EJEMU9EVEMkRBX0QkQ/4/8Wz6+ICzDk0AAAAASUVORK5CYII=\n", - "text/plain": [ - "
    " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "# Standard imports required to show plots\n", "%matplotlib inline\n", From 0863907d105a8e614e81d629789f43d3803487c6 Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Sun, 1 Nov 2020 15:28:14 +0100 Subject: [PATCH 100/134] Ouline of ideas for module 14 --- Module-14-interactive.ipynb | 280 +++++++++++++++++++++++++++++++++++- 1 file changed, 276 insertions(+), 4 deletions(-) diff --git a/Module-14-interactive.ipynb b/Module-14-interactive.ipynb index b78a455..1907332 100644 --- a/Module-14-interactive.ipynb +++ b/Module-14-interactive.ipynb @@ -7,7 +7,7 @@ }, "source": [ "

    Table of Contents

    \n", - "" + "" ] }, { @@ -25,7 +25,7 @@ "source": [ "# Course overview\n", "\n", - "This is the third module of several (11, 12, 13, 14, 15 and 16), which refocuses the course material in the [prior 10 modules](https://github.com/kgdunn/python-basic-notebooks) in a slightly different way. It places more emphasis on\n", + "This is the fourth module of several (11, 12, 13, 14, 15 and 16), which refocuses the course material in the [prior 10 modules](https://github.com/kgdunn/python-basic-notebooks) in a slightly different way. It places more emphasis on\n", "\n", "* dealing with data: importing, merging, filtering;\n", "* calculations from the data;\n", @@ -38,17 +38,252 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Module 13 Overview\n", + "# Module 14 Overview\n", "\n", - "This is the fourth of 6 modules. In this module we will cover\n", + "In this module we will cover\n", "\n", "* More plots with Pandas\n", + "* Plotting with the Seaborn library\n", + "* Using the .loc and .iloc functions for a data frame\n", + "* Filtering and grouping data\n", "\n", "**Requirements before starting**\n", "\n", "* Have your Python installation working as you had for modules 11 and 12, and also the Pandas library installed." ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## More plots with Pandas\n", + "\n", + "In the [prior module](https://yint.org/pybasic13) you learned about box plots, histogram plot, time-series (or sequence) plots, and scatter plots. We will revise some of those, and build on that knowledge a bit further.\n", + "\n", + "Let's use t" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Recap: boxplot\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Recap: histogram" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "blender = pd.read_csv('http://openmv.net/file/blender-efficiency.csv')\n", + "blender.hist()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Recap: sequence plot" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "blender[\"BlendingEfficiency\"].plot.line()\n", + "\n", + "flot.plot.line()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "flot.loc[:, [\"Upstream pH\", \"CuSO4 added\"]].plot.line(figsize=(15,10))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "flot = pd.read_csv(\"https://openmv.net/file/flotation-cell.csv\")\n", + "\n", + "display(flot[\"Date and time\"].head())\n", + "\n", + "\n", + "flot[\"Timestamp\"] = pd.to_datetime(flot[\"Date and time\"])\n", + "flot=flot.set_index(\"Timestamp\")\n", + "flot.plot.hist(stacked=True, bins=50)\n", + "flot.describe()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "flot.corr()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "flot.plot.hexbin(x=\"Pulp level\", y=\"CuSO4 added\", gridsize= 20,reduce_C_function=np.min,cmap = 'viridis')\n", + "#ax.set_xlabel(\"Feed rate in kg/hr\");" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from pandas.plotting import scatter_matrix\n", + "scatter_matrix(flot, alpha = 0.2, figsize=(10, 8), diagonal = 'kde');" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df=pd.read_csv(\"https://openmv.net/file/kamyr-digester.csv\")\n", + "df[\"Observation\"].to_list()\n", + "\n", + "#help(pd.to_datetime)\n", + "from datetime import datetime\n", + "\n", + "\n", + "df[\"Timestep\"]=pd.to_datetime(df[\"Observation\"], format=\"%d-%H:%M\")\n", + "df= df.set_index(\"Timestep\")\n", + "scatter_matrix(df, alpha = 0.2, figsize=(20,20), diagonal = 'kde');" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "scatter_matrix?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "cheese = pd.read_csv(\"https://openmv.net/file/cheddar-cheese.csv\")\n", + "cheese=cheese.drop(\"Case\", axis=1)\n", + "scatter_matrix(cheese, alpha = 0.8, figsize=(20,20), diagonal = 'hist', marker='s');" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, { "cell_type": "code", "execution_count": null, @@ -56,6 +291,43 @@ "outputs": [], "source": [] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Learn about filtering and grouping using the Blender Efficiency dataset\n", + "\n", + "* Import data.\n", + "* Table\n", + "* Sort by y-value (last column)\n", + "* What is related to it?\n", + "* Is a boxplot useful?\n", + "* Corr matrix\n", + "* scatter_matrix(blender, alpha = 0.8, figsize=(20,20), diagonal = 'hist', marker='s'); <-- shows the DoE structure\n", + "* Filter results by Particle Size\n", + "* Groupby ParticleSize\n", + "* Calculate the mean efficiency within each particle size category\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "blender = pd.read_csv('http://openmv.net/file/blender-efficiency.csv')\n", + "blender.corr()\n", + "scatter_matrix(blender, alpha = 0.8, figsize=(20,20), diagonal = 'hist', marker='s');\n", + "\n", + "blender.groupby(\"ParticleSize\").std()\n", + "\n", + "#blender.boxplot()\n", + "#blender.sort_values('BlendingEfficiency', inplace=True)\n", + "#blender.hist(figsize=(20,20))\n", + "#flot.loc[:, [\"Air flow rate\"]].boxplot()" + ] + }, { "cell_type": "markdown", "metadata": {}, From 29b0e1e537f89810958f5b06231eb306a2518412 Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Sun, 1 Nov 2020 17:36:08 +0100 Subject: [PATCH 101/134] Updates for module 14 --- Module-14-interactive.ipynb | 1699 +++++++++++++++++++++++++++++++++-- 1 file changed, 1637 insertions(+), 62 deletions(-) diff --git a/Module-14-interactive.ipynb b/Module-14-interactive.ipynb index 1907332..fd04324 100644 --- a/Module-14-interactive.ipynb +++ b/Module-14-interactive.ipynb @@ -7,7 +7,7 @@ }, "source": [ "

    Table of Contents

    \n", - "" + "" ] }, { @@ -42,6 +42,7 @@ "\n", "In this module we will cover\n", "\n", + "* Setting date and time stamps\n", "* More plots with Pandas\n", "* Plotting with the Seaborn library\n", "* Using the .loc and .iloc functions for a data frame\n", @@ -49,26 +50,41 @@ "\n", "**Requirements before starting**\n", "\n", - "* Have your Python installation working as you had for modules 11 and 12, and also the Pandas library installed." + "* Have your Python installation working as you had for modules 11, 12 and 13, including the Pandas library installed." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## More plots with Pandas\n", + "## Date and time processing\n", "\n", "In the [prior module](https://yint.org/pybasic13) you learned about box plots, histogram plot, time-series (or sequence) plots, and scatter plots. We will revise some of those, and build on that knowledge a bit further.\n", "\n", - "Let's use t" + "Start with the data from an actual plant, where we have 5 columns of measurements from a [flotation cell](https://en.wikipedia.org/wiki/Froth_flotation). Read the link if you need a quick overview of what flotation is." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "flot = pd.read_csv(\"https://openmv.net/file/flotation-cell.csv\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### Recap: boxplot\n", - "\n" + "Some things to do with a new data set called `df`:\n", + "\n", + "* `df.head()` and `df.tail()` to check you have the right data\n", + "* `df.describe()` to get some basic statistics\n", + "* `df.info()` to see the data types\n", + "\n", + "In the space below, apply these to the data you just read in:\n" ] }, { @@ -82,7 +98,13 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Recap: histogram" + "Next plot sequence plots of all data columns, using this command\n", + "\n", + "```python\n", + "ax = flot.plot()\n", + "```\n", + "\n", + "Notice that the x-axis is not time-based, even though there is a column in data frame called `\"Date and time\"`. So what went wrong?" ] }, { @@ -90,10 +112,26 @@ "execution_count": null, "metadata": {}, "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, "source": [ - "import pandas as pd\n", - "blender = pd.read_csv('http://openmv.net/file/blender-efficiency.csv')\n", - "blender.hist()" + "When reading in a new data frame you might need to first:\n", + "* force a column to be of the `type` of date and time, so Pandas can use it in the plots\n", + "* set that column to be the index of your data frame.\n", + "\n", + "and then you can proceed with your plotting and data analysis.\n", + "\n", + "To set a column to the right type, you can use the ``pd.to_datetime(...)`` function. Many times Pandas will get it right, but if it doesn't you can give it some help.\n", + "\n", + "So try this first below. If it works, you are lucky, and can continue.\n", + "```python\n", + "flot[\"Timestamp\"] = pd.to_datetime(flot[\"Date and time\"])\n", + "```\n", + "\n", + "Note that we created a new column. Check it with ``flot.info()`` again, to see if it is of the right type. You can of course simply overwrite your previous column." ] }, { @@ -107,7 +145,16 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Recap: sequence plot" + "If the conversion did not work, you could have given it some guidance.\n", + "\n", + "For example:\n", + "```python\n", + "pd.to_datetime(\"20/12/21\", yearfirst=True) # it is supposed to be 21 December 2020\n", + "pd.to_datetime(\"20/12/21\", dayfirst=True) # it is supposed to be 20 December 2021\n", + "pd.to_datetime(\"20/12/21\", format=\"%d/%m\", exact=False)\n", + "```\n", + "\n", + "For the `format` specifier, you can see all the options available from this page: https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior" ] }, { @@ -115,19 +162,19 @@ "execution_count": null, "metadata": {}, "outputs": [], - "source": [ - "blender[\"BlendingEfficiency\"].plot.line()\n", - "\n", - "flot.plot.line()" - ] + "source": [] }, { - "cell_type": "code", - "execution_count": null, + "cell_type": "markdown", "metadata": {}, - "outputs": [], "source": [ - "flot.loc[:, [\"Upstream pH\", \"CuSO4 added\"]].plot.line(figsize=(15,10))" + "Once you have the column correctly as a date and time stamp, you probably want this to be your data frame index.\n", + "``` python\n", + "flot=flot.set_index(\"Timestamp\")\n", + "flot.plot()\n", + "```\n", + "\n", + "Now you will see a short break in the data around 09:00 on 16 December 2004 which was not visible before." ] }, { @@ -138,20 +185,27 @@ "source": [] }, { - "cell_type": "code", - "execution_count": null, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Recap: boxplot\n", + "\n" + ] + }, + { + "cell_type": "markdown", "metadata": {}, - "outputs": [], "source": [ - "flot = pd.read_csv(\"https://openmv.net/file/flotation-cell.csv\")\n", + "A box plot can be shown per column in one simple line for a data frame `df`:\n", "\n", - "display(flot[\"Date and time\"].head())\n", + "```python\n", + "df.plot.box(figsize=(width, height))\n", + "```\n", + "for a given `width` and `height` (specified in inches).\n", "\n", + "Does it make sense to plot box plots for all columns, especially when units and orders of magnitude are so different?\n", "\n", - "flot[\"Timestamp\"] = pd.to_datetime(flot[\"Date and time\"])\n", - "flot=flot.set_index(\"Timestamp\")\n", - "flot.plot.hist(stacked=True, bins=50)\n", - "flot.describe()" + "So now rather plot only the box plot for \"Upstream pH\":\n" ] }, { @@ -161,6 +215,17 @@ "outputs": [], "source": [] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Notice that there are so many outliers beyond the whiskers. What is going on? Look at the time-based plot of that column:\n", + "\n", + "```python\n", + "df[\"name of column\"].plot.line()\n", + "```" + ] + }, { "cell_type": "code", "execution_count": null, @@ -168,6 +233,21 @@ "outputs": [], "source": [] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Recap: histogram\n", + "\n", + "Similar to ``df.plot.line()`` and ``df.plot.box`` to get a line and box plot, you can also use ``df.plot.hist()`` to get a histogram. \n", + "\n", + "But this tries to put all histograms in one plot. Rather, to get one histogram per variable, try:\n", + "```python\n", + "flot.hist()\n", + "```\n", + "and adjust the figure size to show them nicely. Also adjust the number of bins, and colour to be `'lightblue'`." + ] + }, { "cell_type": "code", "execution_count": null, @@ -176,22 +256,37 @@ "source": [] }, { - "cell_type": "code", - "execution_count": null, + "cell_type": "markdown", "metadata": {}, - "outputs": [], "source": [ - "flot.corr()" + "## Recap: line plot, or sequence plot (and learning about for-loops!)" ] }, { - "cell_type": "code", - "execution_count": null, + "cell_type": "markdown", "metadata": {}, - "outputs": [], "source": [ - "flot.plot.hexbin(x=\"Pulp level\", y=\"CuSO4 added\", gridsize= 20,reduce_C_function=np.min,cmap = 'viridis')\n", - "#ax.set_xlabel(\"Feed rate in kg/hr\");" + "If you use this code, you will get all the line plots in the same plot:\n", + "```python\n", + "flot[\"Timestamp\"] = pd.to_datetime(flot[\"Date and time\"])\n", + "flot=flot.set_index(\"Timestamp\")\n", + "flot.plot()\n", + "```\n", + "\n", + "But if you want each plot in its own axis, your can use a loop:\n", + "```python\n", + "for column in flot.columns:\n", + " print(column)\n", + " flot[column].plot()\n", + "```\n", + "\n", + "Pandas can only plot columns of numeric data. If the column is non-numeric, it will create an error. So to ensure the loop only goes through numeric columns, you can filter on that. Change the first lines to \n", + "\n", + "```python\n", + "numeric_columns = flot.select_dtypes(include=[np.number])\n", + "for column in numeric_columns:\n", + " # loop content goes here, indented\n", + "```" ] }, { @@ -202,13 +297,20 @@ "source": [] }, { - "cell_type": "code", - "execution_count": null, + "cell_type": "markdown", "metadata": {}, - "outputs": [], "source": [ - "from pandas.plotting import scatter_matrix\n", - "scatter_matrix(flot, alpha = 0.2, figsize=(10, 8), diagonal = 'kde');" + "Again, this is not quite what we want. We want to create a new figure for each column. So we have to add one more line to our loop to force a new figure to be created. Another line sets the label on the y-axis.\n", + "\n", + "Notice also that you do not need to create the looping variable.\n", + "\n", + "```python\n", + "import matplotlib.pyplot as plt\n", + "for column in flot.select_dtypes(include=[np.number]).columns:\n", + " plt.figure()\n", + " ax = flot[column].plot()\n", + " ax.set_ylabel(column)\n", + "```" ] }, { @@ -218,6 +320,21 @@ "outputs": [], "source": [] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Recap: correlation, and introducing the scatter plot matrix\n", + "\n", + "We saw the correlation matrix can be calculated with this handy one-liner:\n", + "\n", + "```python\n", + "df.corr()\n", + "```\n", + "\n", + "Do this below for the flotation data. Any interesting leads to investigate?" + ] + }, { "cell_type": "code", "execution_count": null, @@ -225,6 +342,21 @@ "outputs": [], "source": [] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The scatter plot matrix is a visual tool to help create a scatter plot of each combination. The plot on the diagonal would not be an interesting scatter plot, so this is often replaced with a histogram or a kernel density estimate (kde) plot.\n", + "\n", + "Use the code below to try creating both types:\n", + "```python\n", + "from pandas.plotting import scatter_matrix\n", + "\n", + "scatter_matrix(dataframe, alpha = 0.2, figsize=(10, 8), diagonal = 'kde');\n", + "scatter_matrix(dataframe, alpha = 0.2, figsize=(10, 8), diagonal = 'hist');\n", + "```\n" + ] + }, { "cell_type": "code", "execution_count": null, @@ -232,6 +364,32 @@ "outputs": [], "source": [] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Try it again, on a different data set\n", + "\n", + "There is another data set, about the taste of Cheddar cheese: https://openmv.net/info/cheddar-cheese\n", + "\n", + "Read the data set in:\n", + "```python\n", + "cheese = pd.read_csv(\"https://openmv.net/file/cheddar-cheese.csv\")\n", + "```\n", + "\n", + "1. Drop the column called \"Case\"\n", + "2. Calculate the correlation matrix of values and display that\n", + "3. Plot a scatter plot matrix of these values:\n", + " \n", + " * with the \"kde\" on the diagonal\n", + " * squares for the markers\n", + " * alpha value of 0.8 for the points. \n", + " \n", + "*Hint*: look at the documentation for `scatter_matrix` to see how to do this. You can look at the documentation inside Jupyter in several ways:\n", + "* ``help(scatter_matrix)``\n", + "* ``scatter_matrix?`` and then hit Ctrl-Enter." + ] + }, { "cell_type": "code", "execution_count": null, @@ -240,30 +398,1451 @@ "source": [] }, { - "cell_type": "code", - "execution_count": null, + "cell_type": "markdown", "metadata": {}, - "outputs": [], "source": [ - "df=pd.read_csv(\"https://openmv.net/file/kamyr-digester.csv\")\n", - "df[\"Observation\"].to_list()\n", + "## Testing your knowledge on another data set\n", "\n", - "#help(pd.to_datetime)\n", - "from datetime import datetime\n", + "Digester case study\n", "\n", + "* Plot time sequence plots of each variable.\n", + "* Correlations between columns?\n", + "* Correlation plot as a heatmap?\n", + "* Top 5 correlations related to \"Y-Kappa\"\n", + "* Select only those columns: scatter plot matrix: 6 x 6 matrix." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    Y-KappaChipRateBF-CMratioBlowFlowChipLevel4T-upperExt-2T-lowerExt-2UCZAAWhiteFlow-4AAWhiteSt-4...SteamFlow-4Lower-HeatT-3Upper-HeatT-3ChipMass-4WeakLiquorFBlackFlow-2WeakWashFSteamHeatF-3T-Top-Chips-4SulphidityL-4
    Y-Kappa1.0000000.088138-0.313867-0.0882390.419576-0.201283-0.288043-0.155005-0.5219550.148483...-0.5155450.0892560.165685-0.375950-0.0712480.2045500.056443-0.5290880.310067-0.011788
    ChipRate0.0881381.000000-0.6269210.398160-0.0832140.1383040.4968850.1407830.4458030.031279...0.328192-0.363541-0.4213710.4467280.072428-0.2538240.2590110.378349-0.262223-0.005074
    BF-CMratio-0.313867-0.6269211.000000-0.117674-0.0058860.047041-0.136344-0.087648-0.071012-0.064239...0.0460860.3179750.278921-0.0950220.1519950.204536-0.3829940.0096010.0846960.017648
    BlowFlow-0.0882390.398160-0.1176741.0000000.0508690.1912420.371012-0.0411640.3103340.070315...0.306856-0.124710-0.1690920.2915340.118642-0.1380900.0059120.237375-0.1462410.019811
    ChipLevel40.419576-0.083214-0.0058860.0508691.000000-0.263875-0.352767-0.320232-0.3543620.376666...-0.2256180.0722740.198583-0.3706020.0797250.017146-0.064666-0.5812720.2848550.126214
    T-upperExt-2-0.2012830.1383040.0470410.191242-0.2638751.0000000.4733090.1824600.256723-0.103011...0.4003960.096245-0.0726600.2734710.1181090.0443520.0024310.421113-0.2752140.133049
    T-lowerExt-2-0.2880430.496885-0.1363440.371012-0.3527670.4733091.000000-0.0285000.699895-0.248721...0.618458-0.364906-0.5109700.656574-0.039253-0.426224-0.0255510.629301-0.588570-0.030541
    UCZAA-0.1550050.140783-0.087648-0.041164-0.3202320.182460-0.0285001.000000-0.092060-0.127118...0.0072250.5210790.3920080.042648-0.0333860.6023070.3824920.3236250.181589-0.229867
    WhiteFlow-4-0.5219550.445803-0.0710120.310334-0.3543620.2567230.699895-0.0920601.000000-0.102395...0.838599-0.560857-0.6535620.8179310.199168-0.515211-0.1855120.688448-0.6261290.017586
    AAWhiteSt-40.1484830.031279-0.0642390.0703150.376666-0.103011-0.248721-0.127118-0.1023951.000000...0.0075460.0683820.140546-0.0696080.2937300.041032-0.148625-0.1351900.0207680.340821
    AA-Wood-4-0.2922410.245237-0.1315170.117137-0.1029060.0429640.381312-0.2935770.660945-0.034475...0.370564-0.780860-0.8013010.2177950.310343-0.670095-0.2352860.240785-0.4814890.155917
    ChipMoisture-4-0.3927500.1058630.0464880.032618-0.0446900.2139340.278736-0.0457270.4807240.148933...0.564169-0.308175-0.3457700.2332620.325128-0.298808-0.1231270.342884-0.3624750.173172
    SteamFlow-4-0.5155450.3281920.0460860.306856-0.2256180.4003960.6184580.0072250.8385990.007546...1.000000-0.215370-0.3085220.7997890.244902-0.261135-0.1268140.692937-0.5159570.127873
    Lower-HeatT-30.089256-0.3635410.317975-0.1247100.0722740.096245-0.3649060.521079-0.5608570.068382...-0.2153701.0000000.930004-0.256300-0.0176980.8896040.212838-0.0526230.454516-0.100820
    Upper-HeatT-30.165685-0.4213710.278921-0.1690920.198583-0.072660-0.5109700.392008-0.6535620.140546...-0.3085220.9300041.000000-0.353610-0.0748540.8143870.213178-0.2113110.551567-0.100668
    ChipMass-4-0.3759500.446728-0.0950220.291534-0.3706020.2734710.6565740.0426480.817931-0.069608...0.799789-0.256300-0.3536101.0000000.049813-0.257680-0.0956620.706702-0.495392-0.076917
    WeakLiquorF-0.0712480.0724280.1519950.1186420.0797250.118109-0.039253-0.0333860.1991680.293730...0.244902-0.017698-0.0748540.0498131.0000000.087032-0.0520710.211312-0.0960890.380117
    BlackFlow-20.204550-0.2538240.204536-0.1380900.0171460.044352-0.4262240.602307-0.5152110.041032...-0.2611350.8896040.814387-0.2576800.0870321.0000000.195979-0.0183340.479508-0.168605
    WeakWashF0.0564430.259011-0.3829940.005912-0.0646660.002431-0.0255510.382492-0.185512-0.148625...-0.1268140.2128380.213178-0.095662-0.0520710.1959791.0000000.0379120.120560-0.122867
    SteamHeatF-3-0.5290880.3783490.0096010.237375-0.5812720.4211130.6293010.3236250.688448-0.135190...0.692937-0.052623-0.2113110.7067020.211312-0.0183340.0379121.000000-0.549819-0.094777
    T-Top-Chips-40.310067-0.2622230.084696-0.1462410.284855-0.275214-0.5885700.181589-0.6261290.020768...-0.5159570.4545160.551567-0.495392-0.0960890.4795080.120560-0.5498191.000000-0.037745
    SulphidityL-4-0.011788-0.0050740.0176480.0198110.1262140.133049-0.030541-0.2298670.0175860.340821...0.127873-0.100820-0.100668-0.0769170.380117-0.168605-0.122867-0.094777-0.0377451.000000
    \n", + "

    22 rows × 22 columns

    \n", + "
    " + ], + "text/plain": [ + " Y-Kappa ChipRate BF-CMratio BlowFlow ChipLevel4 \\\n", + "Y-Kappa 1.000000 0.088138 -0.313867 -0.088239 0.419576 \n", + "ChipRate 0.088138 1.000000 -0.626921 0.398160 -0.083214 \n", + "BF-CMratio -0.313867 -0.626921 1.000000 -0.117674 -0.005886 \n", + "BlowFlow -0.088239 0.398160 -0.117674 1.000000 0.050869 \n", + "ChipLevel4 0.419576 -0.083214 -0.005886 0.050869 1.000000 \n", + "T-upperExt-2 -0.201283 0.138304 0.047041 0.191242 -0.263875 \n", + "T-lowerExt-2 -0.288043 0.496885 -0.136344 0.371012 -0.352767 \n", + "UCZAA -0.155005 0.140783 -0.087648 -0.041164 -0.320232 \n", + "WhiteFlow-4 -0.521955 0.445803 -0.071012 0.310334 -0.354362 \n", + "AAWhiteSt-4 0.148483 0.031279 -0.064239 0.070315 0.376666 \n", + "AA-Wood-4 -0.292241 0.245237 -0.131517 0.117137 -0.102906 \n", + "ChipMoisture-4 -0.392750 0.105863 0.046488 0.032618 -0.044690 \n", + "SteamFlow-4 -0.515545 0.328192 0.046086 0.306856 -0.225618 \n", + "Lower-HeatT-3 0.089256 -0.363541 0.317975 -0.124710 0.072274 \n", + "Upper-HeatT-3 0.165685 -0.421371 0.278921 -0.169092 0.198583 \n", + "ChipMass-4 -0.375950 0.446728 -0.095022 0.291534 -0.370602 \n", + "WeakLiquorF -0.071248 0.072428 0.151995 0.118642 0.079725 \n", + "BlackFlow-2 0.204550 -0.253824 0.204536 -0.138090 0.017146 \n", + "WeakWashF 0.056443 0.259011 -0.382994 0.005912 -0.064666 \n", + "SteamHeatF-3 -0.529088 0.378349 0.009601 0.237375 -0.581272 \n", + "T-Top-Chips-4 0.310067 -0.262223 0.084696 -0.146241 0.284855 \n", + "SulphidityL-4 -0.011788 -0.005074 0.017648 0.019811 0.126214 \n", + "\n", + " T-upperExt-2 T-lowerExt-2 UCZAA WhiteFlow-4 \\\n", + "Y-Kappa -0.201283 -0.288043 -0.155005 -0.521955 \n", + "ChipRate 0.138304 0.496885 0.140783 0.445803 \n", + "BF-CMratio 0.047041 -0.136344 -0.087648 -0.071012 \n", + "BlowFlow 0.191242 0.371012 -0.041164 0.310334 \n", + "ChipLevel4 -0.263875 -0.352767 -0.320232 -0.354362 \n", + "T-upperExt-2 1.000000 0.473309 0.182460 0.256723 \n", + "T-lowerExt-2 0.473309 1.000000 -0.028500 0.699895 \n", + "UCZAA 0.182460 -0.028500 1.000000 -0.092060 \n", + "WhiteFlow-4 0.256723 0.699895 -0.092060 1.000000 \n", + "AAWhiteSt-4 -0.103011 -0.248721 -0.127118 -0.102395 \n", + "AA-Wood-4 0.042964 0.381312 -0.293577 0.660945 \n", + "ChipMoisture-4 0.213934 0.278736 -0.045727 0.480724 \n", + "SteamFlow-4 0.400396 0.618458 0.007225 0.838599 \n", + "Lower-HeatT-3 0.096245 -0.364906 0.521079 -0.560857 \n", + "Upper-HeatT-3 -0.072660 -0.510970 0.392008 -0.653562 \n", + "ChipMass-4 0.273471 0.656574 0.042648 0.817931 \n", + "WeakLiquorF 0.118109 -0.039253 -0.033386 0.199168 \n", + "BlackFlow-2 0.044352 -0.426224 0.602307 -0.515211 \n", + "WeakWashF 0.002431 -0.025551 0.382492 -0.185512 \n", + "SteamHeatF-3 0.421113 0.629301 0.323625 0.688448 \n", + "T-Top-Chips-4 -0.275214 -0.588570 0.181589 -0.626129 \n", + "SulphidityL-4 0.133049 -0.030541 -0.229867 0.017586 \n", + "\n", + " AAWhiteSt-4 ... SteamFlow-4 Lower-HeatT-3 \\\n", + "Y-Kappa 0.148483 ... -0.515545 0.089256 \n", + "ChipRate 0.031279 ... 0.328192 -0.363541 \n", + "BF-CMratio -0.064239 ... 0.046086 0.317975 \n", + "BlowFlow 0.070315 ... 0.306856 -0.124710 \n", + "ChipLevel4 0.376666 ... -0.225618 0.072274 \n", + "T-upperExt-2 -0.103011 ... 0.400396 0.096245 \n", + "T-lowerExt-2 -0.248721 ... 0.618458 -0.364906 \n", + "UCZAA -0.127118 ... 0.007225 0.521079 \n", + "WhiteFlow-4 -0.102395 ... 0.838599 -0.560857 \n", + "AAWhiteSt-4 1.000000 ... 0.007546 0.068382 \n", + "AA-Wood-4 -0.034475 ... 0.370564 -0.780860 \n", + "ChipMoisture-4 0.148933 ... 0.564169 -0.308175 \n", + "SteamFlow-4 0.007546 ... 1.000000 -0.215370 \n", + "Lower-HeatT-3 0.068382 ... -0.215370 1.000000 \n", + "Upper-HeatT-3 0.140546 ... -0.308522 0.930004 \n", + "ChipMass-4 -0.069608 ... 0.799789 -0.256300 \n", + "WeakLiquorF 0.293730 ... 0.244902 -0.017698 \n", + "BlackFlow-2 0.041032 ... -0.261135 0.889604 \n", + "WeakWashF -0.148625 ... -0.126814 0.212838 \n", + "SteamHeatF-3 -0.135190 ... 0.692937 -0.052623 \n", + "T-Top-Chips-4 0.020768 ... -0.515957 0.454516 \n", + "SulphidityL-4 0.340821 ... 0.127873 -0.100820 \n", + "\n", + " Upper-HeatT-3 ChipMass-4 WeakLiquorF BlackFlow-2 \\\n", + "Y-Kappa 0.165685 -0.375950 -0.071248 0.204550 \n", + "ChipRate -0.421371 0.446728 0.072428 -0.253824 \n", + "BF-CMratio 0.278921 -0.095022 0.151995 0.204536 \n", + "BlowFlow -0.169092 0.291534 0.118642 -0.138090 \n", + "ChipLevel4 0.198583 -0.370602 0.079725 0.017146 \n", + "T-upperExt-2 -0.072660 0.273471 0.118109 0.044352 \n", + "T-lowerExt-2 -0.510970 0.656574 -0.039253 -0.426224 \n", + "UCZAA 0.392008 0.042648 -0.033386 0.602307 \n", + "WhiteFlow-4 -0.653562 0.817931 0.199168 -0.515211 \n", + "AAWhiteSt-4 0.140546 -0.069608 0.293730 0.041032 \n", + "AA-Wood-4 -0.801301 0.217795 0.310343 -0.670095 \n", + "ChipMoisture-4 -0.345770 0.233262 0.325128 -0.298808 \n", + "SteamFlow-4 -0.308522 0.799789 0.244902 -0.261135 \n", + "Lower-HeatT-3 0.930004 -0.256300 -0.017698 0.889604 \n", + "Upper-HeatT-3 1.000000 -0.353610 -0.074854 0.814387 \n", + "ChipMass-4 -0.353610 1.000000 0.049813 -0.257680 \n", + "WeakLiquorF -0.074854 0.049813 1.000000 0.087032 \n", + "BlackFlow-2 0.814387 -0.257680 0.087032 1.000000 \n", + "WeakWashF 0.213178 -0.095662 -0.052071 0.195979 \n", + "SteamHeatF-3 -0.211311 0.706702 0.211312 -0.018334 \n", + "T-Top-Chips-4 0.551567 -0.495392 -0.096089 0.479508 \n", + "SulphidityL-4 -0.100668 -0.076917 0.380117 -0.168605 \n", + "\n", + " WeakWashF SteamHeatF-3 T-Top-Chips-4 SulphidityL-4 \n", + "Y-Kappa 0.056443 -0.529088 0.310067 -0.011788 \n", + "ChipRate 0.259011 0.378349 -0.262223 -0.005074 \n", + "BF-CMratio -0.382994 0.009601 0.084696 0.017648 \n", + "BlowFlow 0.005912 0.237375 -0.146241 0.019811 \n", + "ChipLevel4 -0.064666 -0.581272 0.284855 0.126214 \n", + "T-upperExt-2 0.002431 0.421113 -0.275214 0.133049 \n", + "T-lowerExt-2 -0.025551 0.629301 -0.588570 -0.030541 \n", + "UCZAA 0.382492 0.323625 0.181589 -0.229867 \n", + "WhiteFlow-4 -0.185512 0.688448 -0.626129 0.017586 \n", + "AAWhiteSt-4 -0.148625 -0.135190 0.020768 0.340821 \n", + "AA-Wood-4 -0.235286 0.240785 -0.481489 0.155917 \n", + "ChipMoisture-4 -0.123127 0.342884 -0.362475 0.173172 \n", + "SteamFlow-4 -0.126814 0.692937 -0.515957 0.127873 \n", + "Lower-HeatT-3 0.212838 -0.052623 0.454516 -0.100820 \n", + "Upper-HeatT-3 0.213178 -0.211311 0.551567 -0.100668 \n", + "ChipMass-4 -0.095662 0.706702 -0.495392 -0.076917 \n", + "WeakLiquorF -0.052071 0.211312 -0.096089 0.380117 \n", + "BlackFlow-2 0.195979 -0.018334 0.479508 -0.168605 \n", + "WeakWashF 1.000000 0.037912 0.120560 -0.122867 \n", + "SteamHeatF-3 0.037912 1.000000 -0.549819 -0.094777 \n", + "T-Top-Chips-4 0.120560 -0.549819 1.000000 -0.037745 \n", + "SulphidityL-4 -0.122867 -0.094777 -0.037745 1.000000 \n", + "\n", + "[22 rows x 22 columns]" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ "\n", - "df[\"Timestep\"]=pd.to_datetime(df[\"Observation\"], format=\"%d-%H:%M\")\n", - "df= df.set_index(\"Timestep\")\n", - "scatter_matrix(df, alpha = 0.2, figsize=(20,20), diagonal = 'kde');" + "df.corr()" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 13, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    Y-KappaChipRateBF-CMratioBlowFlowChipLevel4T-upperExt-2T-lowerExt-2UCZAAWhiteFlow-4AAWhiteSt-4...SteamFlow-4Lower-HeatT-3Upper-HeatT-3ChipMass-4WeakLiquorFBlackFlow-2WeakWashFSteamHeatF-3T-Top-Chips-4SulphidityL-4
    Y-Kappa1.0000000.054368-0.283837-0.1331940.376689-0.235835-0.402137-0.180508-0.5417080.090728...-0.560212-0.0100600.153966-0.440491-0.1228010.1800610.063848-0.5599870.313794-0.009301
    ChipRate0.0543681.000000-0.7269870.433171-0.0906760.1336230.3688740.1463430.4168520.154471...0.295036-0.326743-0.4176030.3949450.044001-0.2223410.2625280.387489-0.303691-0.031979
    BF-CMratio-0.283837-0.7269871.000000-0.0755490.0186110.021417-0.128031-0.057854-0.156444-0.108701...0.0009060.4011800.362823-0.1282150.1728640.264189-0.368442-0.0641880.1778350.050182
    BlowFlow-0.1331940.433171-0.0755491.0000000.1177620.2412580.3464490.0274650.3745150.196746...0.389719-0.056749-0.1760650.2999150.299576-0.083246-0.1022790.357765-0.297022-0.029065
    ChipLevel40.376689-0.0906760.0186110.1177621.000000-0.254943-0.349394-0.265537-0.3685670.373234...-0.2301180.0984220.245750-0.3917660.0804720.015839-0.048172-0.5764410.2703810.122675
    T-upperExt-2-0.2358350.1336230.0214170.241258-0.2549431.0000000.5284270.1569750.2673880.003819...0.4316970.092262-0.1210620.2465410.146811-0.0200790.0102370.401379-0.3063620.166479
    T-lowerExt-2-0.4021370.368874-0.1280310.346449-0.3493940.5284271.0000000.0428430.658713-0.021324...0.627141-0.224575-0.4590320.591293-0.003997-0.385515-0.0353640.633103-0.643245-0.011912
    UCZAA-0.1805080.146343-0.0578540.027465-0.2655370.1569750.0428431.000000-0.125124-0.085585...0.0087280.5171170.3353780.034875-0.0213000.5970410.3518190.2911740.213228-0.199399
    WhiteFlow-4-0.5417080.416852-0.1564440.374515-0.3685670.2673880.658713-0.1251241.0000000.025595...0.825732-0.469477-0.6328440.7985510.197757-0.497826-0.1906240.690848-0.671579-0.018617
    AAWhiteSt-40.0907280.154471-0.1087010.1967460.3732340.003819-0.021324-0.0855850.0255951.000000...0.1619440.1491580.0776700.0979400.2853740.056113-0.177184-0.013972-0.0668480.382447
    AA-Wood-4-0.3003600.250739-0.2213650.207306-0.1177820.1107720.340804-0.2722650.6633080.016011...0.412636-0.689368-0.7815910.1955200.308278-0.636973-0.2090350.254750-0.4946710.133453
    ChipMoisture-4-0.3857980.134624-0.0085510.195679-0.0115330.2886620.404245-0.0464360.5036140.237269...0.593190-0.234870-0.3739460.2457790.335013-0.295719-0.1430150.346433-0.3752510.181172
    SteamFlow-4-0.5602120.2950360.0009060.389719-0.2301180.4316970.6271410.0087280.8257320.161944...1.000000-0.106660-0.3084890.7805380.268302-0.230772-0.1611500.702690-0.5350100.107834
    Lower-HeatT-3-0.010060-0.3267430.401180-0.0567490.0984220.092262-0.2245750.517117-0.4694770.149158...-0.1066601.0000000.839354-0.1535560.0929750.8310020.1579630.0018660.3911330.050994
    Upper-HeatT-30.153966-0.4176030.362823-0.1760650.245750-0.121062-0.4590320.335378-0.6328440.077670...-0.3084890.8393541.000000-0.308095-0.1125770.7152240.214381-0.2676370.549459-0.041953
    ChipMass-4-0.4404910.394945-0.1282150.299915-0.3917660.2465410.5912930.0348750.7985510.097940...0.780538-0.153556-0.3080951.0000000.033465-0.230222-0.0990270.724645-0.548187-0.115394
    WeakLiquorF-0.1228010.0440010.1728640.2995760.0804720.146811-0.003997-0.0213000.1977570.285374...0.2683020.092975-0.1125770.0334651.0000000.157147-0.0908240.202175-0.0937990.407692
    BlackFlow-20.180061-0.2223410.264189-0.0832460.015839-0.020079-0.3855150.597041-0.4978260.056113...-0.2307720.8310020.715224-0.2302220.1571471.0000000.172867-0.0152240.480036-0.053194
    WeakWashF0.0638480.262528-0.368442-0.102279-0.0481720.010237-0.0353640.351819-0.190624-0.177184...-0.1611500.1579630.214381-0.099027-0.0908240.1728671.0000000.0066310.146389-0.116488
    SteamHeatF-3-0.5599870.387489-0.0641880.357765-0.5764410.4013790.6331030.2911740.690848-0.013972...0.7026900.001866-0.2676370.7246450.202175-0.0152240.0066311.000000-0.565154-0.127690
    T-Top-Chips-40.313794-0.3036910.177835-0.2970220.270381-0.306362-0.6432450.213228-0.671579-0.066848...-0.5350100.3911330.549459-0.548187-0.0937990.4800360.146389-0.5651541.0000000.022329
    SulphidityL-4-0.009301-0.0319790.050182-0.0290650.1226750.166479-0.011912-0.199399-0.0186170.382447...0.1078340.050994-0.041953-0.1153940.407692-0.053194-0.116488-0.1276900.0223291.000000
    \n", + "

    22 rows × 22 columns

    \n", + "
    " + ], + "text/plain": [ + " Y-Kappa ChipRate BF-CMratio BlowFlow ChipLevel4 \\\n", + "Y-Kappa 1.000000 0.054368 -0.283837 -0.133194 0.376689 \n", + "ChipRate 0.054368 1.000000 -0.726987 0.433171 -0.090676 \n", + "BF-CMratio -0.283837 -0.726987 1.000000 -0.075549 0.018611 \n", + "BlowFlow -0.133194 0.433171 -0.075549 1.000000 0.117762 \n", + "ChipLevel4 0.376689 -0.090676 0.018611 0.117762 1.000000 \n", + "T-upperExt-2 -0.235835 0.133623 0.021417 0.241258 -0.254943 \n", + "T-lowerExt-2 -0.402137 0.368874 -0.128031 0.346449 -0.349394 \n", + "UCZAA -0.180508 0.146343 -0.057854 0.027465 -0.265537 \n", + "WhiteFlow-4 -0.541708 0.416852 -0.156444 0.374515 -0.368567 \n", + "AAWhiteSt-4 0.090728 0.154471 -0.108701 0.196746 0.373234 \n", + "AA-Wood-4 -0.300360 0.250739 -0.221365 0.207306 -0.117782 \n", + "ChipMoisture-4 -0.385798 0.134624 -0.008551 0.195679 -0.011533 \n", + "SteamFlow-4 -0.560212 0.295036 0.000906 0.389719 -0.230118 \n", + "Lower-HeatT-3 -0.010060 -0.326743 0.401180 -0.056749 0.098422 \n", + "Upper-HeatT-3 0.153966 -0.417603 0.362823 -0.176065 0.245750 \n", + "ChipMass-4 -0.440491 0.394945 -0.128215 0.299915 -0.391766 \n", + "WeakLiquorF -0.122801 0.044001 0.172864 0.299576 0.080472 \n", + "BlackFlow-2 0.180061 -0.222341 0.264189 -0.083246 0.015839 \n", + "WeakWashF 0.063848 0.262528 -0.368442 -0.102279 -0.048172 \n", + "SteamHeatF-3 -0.559987 0.387489 -0.064188 0.357765 -0.576441 \n", + "T-Top-Chips-4 0.313794 -0.303691 0.177835 -0.297022 0.270381 \n", + "SulphidityL-4 -0.009301 -0.031979 0.050182 -0.029065 0.122675 \n", + "\n", + " T-upperExt-2 T-lowerExt-2 UCZAA WhiteFlow-4 \\\n", + "Y-Kappa -0.235835 -0.402137 -0.180508 -0.541708 \n", + "ChipRate 0.133623 0.368874 0.146343 0.416852 \n", + "BF-CMratio 0.021417 -0.128031 -0.057854 -0.156444 \n", + "BlowFlow 0.241258 0.346449 0.027465 0.374515 \n", + "ChipLevel4 -0.254943 -0.349394 -0.265537 -0.368567 \n", + "T-upperExt-2 1.000000 0.528427 0.156975 0.267388 \n", + "T-lowerExt-2 0.528427 1.000000 0.042843 0.658713 \n", + "UCZAA 0.156975 0.042843 1.000000 -0.125124 \n", + "WhiteFlow-4 0.267388 0.658713 -0.125124 1.000000 \n", + "AAWhiteSt-4 0.003819 -0.021324 -0.085585 0.025595 \n", + "AA-Wood-4 0.110772 0.340804 -0.272265 0.663308 \n", + "ChipMoisture-4 0.288662 0.404245 -0.046436 0.503614 \n", + "SteamFlow-4 0.431697 0.627141 0.008728 0.825732 \n", + "Lower-HeatT-3 0.092262 -0.224575 0.517117 -0.469477 \n", + "Upper-HeatT-3 -0.121062 -0.459032 0.335378 -0.632844 \n", + "ChipMass-4 0.246541 0.591293 0.034875 0.798551 \n", + "WeakLiquorF 0.146811 -0.003997 -0.021300 0.197757 \n", + "BlackFlow-2 -0.020079 -0.385515 0.597041 -0.497826 \n", + "WeakWashF 0.010237 -0.035364 0.351819 -0.190624 \n", + "SteamHeatF-3 0.401379 0.633103 0.291174 0.690848 \n", + "T-Top-Chips-4 -0.306362 -0.643245 0.213228 -0.671579 \n", + "SulphidityL-4 0.166479 -0.011912 -0.199399 -0.018617 \n", + "\n", + " AAWhiteSt-4 ... SteamFlow-4 Lower-HeatT-3 \\\n", + "Y-Kappa 0.090728 ... -0.560212 -0.010060 \n", + "ChipRate 0.154471 ... 0.295036 -0.326743 \n", + "BF-CMratio -0.108701 ... 0.000906 0.401180 \n", + "BlowFlow 0.196746 ... 0.389719 -0.056749 \n", + "ChipLevel4 0.373234 ... -0.230118 0.098422 \n", + "T-upperExt-2 0.003819 ... 0.431697 0.092262 \n", + "T-lowerExt-2 -0.021324 ... 0.627141 -0.224575 \n", + "UCZAA -0.085585 ... 0.008728 0.517117 \n", + "WhiteFlow-4 0.025595 ... 0.825732 -0.469477 \n", + "AAWhiteSt-4 1.000000 ... 0.161944 0.149158 \n", + "AA-Wood-4 0.016011 ... 0.412636 -0.689368 \n", + "ChipMoisture-4 0.237269 ... 0.593190 -0.234870 \n", + "SteamFlow-4 0.161944 ... 1.000000 -0.106660 \n", + "Lower-HeatT-3 0.149158 ... -0.106660 1.000000 \n", + "Upper-HeatT-3 0.077670 ... -0.308489 0.839354 \n", + "ChipMass-4 0.097940 ... 0.780538 -0.153556 \n", + "WeakLiquorF 0.285374 ... 0.268302 0.092975 \n", + "BlackFlow-2 0.056113 ... -0.230772 0.831002 \n", + "WeakWashF -0.177184 ... -0.161150 0.157963 \n", + "SteamHeatF-3 -0.013972 ... 0.702690 0.001866 \n", + "T-Top-Chips-4 -0.066848 ... -0.535010 0.391133 \n", + "SulphidityL-4 0.382447 ... 0.107834 0.050994 \n", + "\n", + " Upper-HeatT-3 ChipMass-4 WeakLiquorF BlackFlow-2 \\\n", + "Y-Kappa 0.153966 -0.440491 -0.122801 0.180061 \n", + "ChipRate -0.417603 0.394945 0.044001 -0.222341 \n", + "BF-CMratio 0.362823 -0.128215 0.172864 0.264189 \n", + "BlowFlow -0.176065 0.299915 0.299576 -0.083246 \n", + "ChipLevel4 0.245750 -0.391766 0.080472 0.015839 \n", + "T-upperExt-2 -0.121062 0.246541 0.146811 -0.020079 \n", + "T-lowerExt-2 -0.459032 0.591293 -0.003997 -0.385515 \n", + "UCZAA 0.335378 0.034875 -0.021300 0.597041 \n", + "WhiteFlow-4 -0.632844 0.798551 0.197757 -0.497826 \n", + "AAWhiteSt-4 0.077670 0.097940 0.285374 0.056113 \n", + "AA-Wood-4 -0.781591 0.195520 0.308278 -0.636973 \n", + "ChipMoisture-4 -0.373946 0.245779 0.335013 -0.295719 \n", + "SteamFlow-4 -0.308489 0.780538 0.268302 -0.230772 \n", + "Lower-HeatT-3 0.839354 -0.153556 0.092975 0.831002 \n", + "Upper-HeatT-3 1.000000 -0.308095 -0.112577 0.715224 \n", + "ChipMass-4 -0.308095 1.000000 0.033465 -0.230222 \n", + "WeakLiquorF -0.112577 0.033465 1.000000 0.157147 \n", + "BlackFlow-2 0.715224 -0.230222 0.157147 1.000000 \n", + "WeakWashF 0.214381 -0.099027 -0.090824 0.172867 \n", + "SteamHeatF-3 -0.267637 0.724645 0.202175 -0.015224 \n", + "T-Top-Chips-4 0.549459 -0.548187 -0.093799 0.480036 \n", + "SulphidityL-4 -0.041953 -0.115394 0.407692 -0.053194 \n", + "\n", + " WeakWashF SteamHeatF-3 T-Top-Chips-4 SulphidityL-4 \n", + "Y-Kappa 0.063848 -0.559987 0.313794 -0.009301 \n", + "ChipRate 0.262528 0.387489 -0.303691 -0.031979 \n", + "BF-CMratio -0.368442 -0.064188 0.177835 0.050182 \n", + "BlowFlow -0.102279 0.357765 -0.297022 -0.029065 \n", + "ChipLevel4 -0.048172 -0.576441 0.270381 0.122675 \n", + "T-upperExt-2 0.010237 0.401379 -0.306362 0.166479 \n", + "T-lowerExt-2 -0.035364 0.633103 -0.643245 -0.011912 \n", + "UCZAA 0.351819 0.291174 0.213228 -0.199399 \n", + "WhiteFlow-4 -0.190624 0.690848 -0.671579 -0.018617 \n", + "AAWhiteSt-4 -0.177184 -0.013972 -0.066848 0.382447 \n", + "AA-Wood-4 -0.209035 0.254750 -0.494671 0.133453 \n", + "ChipMoisture-4 -0.143015 0.346433 -0.375251 0.181172 \n", + "SteamFlow-4 -0.161150 0.702690 -0.535010 0.107834 \n", + "Lower-HeatT-3 0.157963 0.001866 0.391133 0.050994 \n", + "Upper-HeatT-3 0.214381 -0.267637 0.549459 -0.041953 \n", + "ChipMass-4 -0.099027 0.724645 -0.548187 -0.115394 \n", + "WeakLiquorF -0.090824 0.202175 -0.093799 0.407692 \n", + "BlackFlow-2 0.172867 -0.015224 0.480036 -0.053194 \n", + "WeakWashF 1.000000 0.006631 0.146389 -0.116488 \n", + "SteamHeatF-3 0.006631 1.000000 -0.565154 -0.127690 \n", + "T-Top-Chips-4 0.146389 -0.565154 1.000000 0.022329 \n", + "SulphidityL-4 -0.116488 -0.127690 0.022329 1.000000 \n", + "\n", + "[22 rows x 22 columns]" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "scatter_matrix?" + "df.corr('spearman')" ] }, { @@ -271,11 +1850,7 @@ "execution_count": null, "metadata": {}, "outputs": [], - "source": [ - "cheese = pd.read_csv(\"https://openmv.net/file/cheddar-cheese.csv\")\n", - "cheese=cheese.drop(\"Case\", axis=1)\n", - "scatter_matrix(cheese, alpha = 0.8, figsize=(20,20), diagonal = 'hist', marker='s');" - ] + "source": [] }, { "cell_type": "code", @@ -521,7 +2096,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.9" + "version": "3.8.1" }, "toc": { "base_numbering": "1", From 3801a5fcf8cdeb49edf6ae74c25865e186b9399f Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Tue, 3 Nov 2020 12:41:42 +0100 Subject: [PATCH 102/134] Updated order of the module 14 --- Module-14-interactive.ipynb | 1679 ++--------------------------------- 1 file changed, 87 insertions(+), 1592 deletions(-) diff --git a/Module-14-interactive.ipynb b/Module-14-interactive.ipynb index fd04324..5fa3055 100644 --- a/Module-14-interactive.ipynb +++ b/Module-14-interactive.ipynb @@ -7,7 +7,7 @@ }, "source": [ "

    Table of Contents

    \n", - "" + "" ] }, { @@ -66,7 +66,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -184,6 +184,26 @@ "outputs": [], "source": [] }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "__Check your understanding__\n", + "\n", + "From the provided Excel file, read in the data. Convert the date and time column to the desired format:\n", + "\n", + "* assuming the date in the first row is in American format: June 01, 2018\n", + "* assuming the date in the first row is in the usual format: 06 January 2018" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, { "cell_type": "markdown", "metadata": {}, @@ -364,32 +384,6 @@ "outputs": [], "source": [] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Try it again, on a different data set\n", - "\n", - "There is another data set, about the taste of Cheddar cheese: https://openmv.net/info/cheddar-cheese\n", - "\n", - "Read the data set in:\n", - "```python\n", - "cheese = pd.read_csv(\"https://openmv.net/file/cheddar-cheese.csv\")\n", - "```\n", - "\n", - "1. Drop the column called \"Case\"\n", - "2. Calculate the correlation matrix of values and display that\n", - "3. Plot a scatter plot matrix of these values:\n", - " \n", - " * with the \"kde\" on the diagonal\n", - " * squares for the markers\n", - " * alpha value of 0.8 for the points. \n", - " \n", - "*Hint*: look at the documentation for `scatter_matrix` to see how to do this. You can look at the documentation inside Jupyter in several ways:\n", - "* ``help(scatter_matrix)``\n", - "* ``scatter_matrix?`` and then hit Ctrl-Enter." - ] - }, { "cell_type": "code", "execution_count": null, @@ -397,1454 +391,6 @@ "outputs": [], "source": [] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Testing your knowledge on another data set\n", - "\n", - "Digester case study\n", - "\n", - "* Plot time sequence plots of each variable.\n", - "* Correlations between columns?\n", - "* Correlation plot as a heatmap?\n", - "* Top 5 correlations related to \"Y-Kappa\"\n", - "* Select only those columns: scatter plot matrix: 6 x 6 matrix." - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
    \n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Y-KappaChipRateBF-CMratioBlowFlowChipLevel4T-upperExt-2T-lowerExt-2UCZAAWhiteFlow-4AAWhiteSt-4...SteamFlow-4Lower-HeatT-3Upper-HeatT-3ChipMass-4WeakLiquorFBlackFlow-2WeakWashFSteamHeatF-3T-Top-Chips-4SulphidityL-4
    Y-Kappa1.0000000.088138-0.313867-0.0882390.419576-0.201283-0.288043-0.155005-0.5219550.148483...-0.5155450.0892560.165685-0.375950-0.0712480.2045500.056443-0.5290880.310067-0.011788
    ChipRate0.0881381.000000-0.6269210.398160-0.0832140.1383040.4968850.1407830.4458030.031279...0.328192-0.363541-0.4213710.4467280.072428-0.2538240.2590110.378349-0.262223-0.005074
    BF-CMratio-0.313867-0.6269211.000000-0.117674-0.0058860.047041-0.136344-0.087648-0.071012-0.064239...0.0460860.3179750.278921-0.0950220.1519950.204536-0.3829940.0096010.0846960.017648
    BlowFlow-0.0882390.398160-0.1176741.0000000.0508690.1912420.371012-0.0411640.3103340.070315...0.306856-0.124710-0.1690920.2915340.118642-0.1380900.0059120.237375-0.1462410.019811
    ChipLevel40.419576-0.083214-0.0058860.0508691.000000-0.263875-0.352767-0.320232-0.3543620.376666...-0.2256180.0722740.198583-0.3706020.0797250.017146-0.064666-0.5812720.2848550.126214
    T-upperExt-2-0.2012830.1383040.0470410.191242-0.2638751.0000000.4733090.1824600.256723-0.103011...0.4003960.096245-0.0726600.2734710.1181090.0443520.0024310.421113-0.2752140.133049
    T-lowerExt-2-0.2880430.496885-0.1363440.371012-0.3527670.4733091.000000-0.0285000.699895-0.248721...0.618458-0.364906-0.5109700.656574-0.039253-0.426224-0.0255510.629301-0.588570-0.030541
    UCZAA-0.1550050.140783-0.087648-0.041164-0.3202320.182460-0.0285001.000000-0.092060-0.127118...0.0072250.5210790.3920080.042648-0.0333860.6023070.3824920.3236250.181589-0.229867
    WhiteFlow-4-0.5219550.445803-0.0710120.310334-0.3543620.2567230.699895-0.0920601.000000-0.102395...0.838599-0.560857-0.6535620.8179310.199168-0.515211-0.1855120.688448-0.6261290.017586
    AAWhiteSt-40.1484830.031279-0.0642390.0703150.376666-0.103011-0.248721-0.127118-0.1023951.000000...0.0075460.0683820.140546-0.0696080.2937300.041032-0.148625-0.1351900.0207680.340821
    AA-Wood-4-0.2922410.245237-0.1315170.117137-0.1029060.0429640.381312-0.2935770.660945-0.034475...0.370564-0.780860-0.8013010.2177950.310343-0.670095-0.2352860.240785-0.4814890.155917
    ChipMoisture-4-0.3927500.1058630.0464880.032618-0.0446900.2139340.278736-0.0457270.4807240.148933...0.564169-0.308175-0.3457700.2332620.325128-0.298808-0.1231270.342884-0.3624750.173172
    SteamFlow-4-0.5155450.3281920.0460860.306856-0.2256180.4003960.6184580.0072250.8385990.007546...1.000000-0.215370-0.3085220.7997890.244902-0.261135-0.1268140.692937-0.5159570.127873
    Lower-HeatT-30.089256-0.3635410.317975-0.1247100.0722740.096245-0.3649060.521079-0.5608570.068382...-0.2153701.0000000.930004-0.256300-0.0176980.8896040.212838-0.0526230.454516-0.100820
    Upper-HeatT-30.165685-0.4213710.278921-0.1690920.198583-0.072660-0.5109700.392008-0.6535620.140546...-0.3085220.9300041.000000-0.353610-0.0748540.8143870.213178-0.2113110.551567-0.100668
    ChipMass-4-0.3759500.446728-0.0950220.291534-0.3706020.2734710.6565740.0426480.817931-0.069608...0.799789-0.256300-0.3536101.0000000.049813-0.257680-0.0956620.706702-0.495392-0.076917
    WeakLiquorF-0.0712480.0724280.1519950.1186420.0797250.118109-0.039253-0.0333860.1991680.293730...0.244902-0.017698-0.0748540.0498131.0000000.087032-0.0520710.211312-0.0960890.380117
    BlackFlow-20.204550-0.2538240.204536-0.1380900.0171460.044352-0.4262240.602307-0.5152110.041032...-0.2611350.8896040.814387-0.2576800.0870321.0000000.195979-0.0183340.479508-0.168605
    WeakWashF0.0564430.259011-0.3829940.005912-0.0646660.002431-0.0255510.382492-0.185512-0.148625...-0.1268140.2128380.213178-0.095662-0.0520710.1959791.0000000.0379120.120560-0.122867
    SteamHeatF-3-0.5290880.3783490.0096010.237375-0.5812720.4211130.6293010.3236250.688448-0.135190...0.692937-0.052623-0.2113110.7067020.211312-0.0183340.0379121.000000-0.549819-0.094777
    T-Top-Chips-40.310067-0.2622230.084696-0.1462410.284855-0.275214-0.5885700.181589-0.6261290.020768...-0.5159570.4545160.551567-0.495392-0.0960890.4795080.120560-0.5498191.000000-0.037745
    SulphidityL-4-0.011788-0.0050740.0176480.0198110.1262140.133049-0.030541-0.2298670.0175860.340821...0.127873-0.100820-0.100668-0.0769170.380117-0.168605-0.122867-0.094777-0.0377451.000000
    \n", - "

    22 rows × 22 columns

    \n", - "
    " - ], - "text/plain": [ - " Y-Kappa ChipRate BF-CMratio BlowFlow ChipLevel4 \\\n", - "Y-Kappa 1.000000 0.088138 -0.313867 -0.088239 0.419576 \n", - "ChipRate 0.088138 1.000000 -0.626921 0.398160 -0.083214 \n", - "BF-CMratio -0.313867 -0.626921 1.000000 -0.117674 -0.005886 \n", - "BlowFlow -0.088239 0.398160 -0.117674 1.000000 0.050869 \n", - "ChipLevel4 0.419576 -0.083214 -0.005886 0.050869 1.000000 \n", - "T-upperExt-2 -0.201283 0.138304 0.047041 0.191242 -0.263875 \n", - "T-lowerExt-2 -0.288043 0.496885 -0.136344 0.371012 -0.352767 \n", - "UCZAA -0.155005 0.140783 -0.087648 -0.041164 -0.320232 \n", - "WhiteFlow-4 -0.521955 0.445803 -0.071012 0.310334 -0.354362 \n", - "AAWhiteSt-4 0.148483 0.031279 -0.064239 0.070315 0.376666 \n", - "AA-Wood-4 -0.292241 0.245237 -0.131517 0.117137 -0.102906 \n", - "ChipMoisture-4 -0.392750 0.105863 0.046488 0.032618 -0.044690 \n", - "SteamFlow-4 -0.515545 0.328192 0.046086 0.306856 -0.225618 \n", - "Lower-HeatT-3 0.089256 -0.363541 0.317975 -0.124710 0.072274 \n", - "Upper-HeatT-3 0.165685 -0.421371 0.278921 -0.169092 0.198583 \n", - "ChipMass-4 -0.375950 0.446728 -0.095022 0.291534 -0.370602 \n", - "WeakLiquorF -0.071248 0.072428 0.151995 0.118642 0.079725 \n", - "BlackFlow-2 0.204550 -0.253824 0.204536 -0.138090 0.017146 \n", - "WeakWashF 0.056443 0.259011 -0.382994 0.005912 -0.064666 \n", - "SteamHeatF-3 -0.529088 0.378349 0.009601 0.237375 -0.581272 \n", - "T-Top-Chips-4 0.310067 -0.262223 0.084696 -0.146241 0.284855 \n", - "SulphidityL-4 -0.011788 -0.005074 0.017648 0.019811 0.126214 \n", - "\n", - " T-upperExt-2 T-lowerExt-2 UCZAA WhiteFlow-4 \\\n", - "Y-Kappa -0.201283 -0.288043 -0.155005 -0.521955 \n", - "ChipRate 0.138304 0.496885 0.140783 0.445803 \n", - "BF-CMratio 0.047041 -0.136344 -0.087648 -0.071012 \n", - "BlowFlow 0.191242 0.371012 -0.041164 0.310334 \n", - "ChipLevel4 -0.263875 -0.352767 -0.320232 -0.354362 \n", - "T-upperExt-2 1.000000 0.473309 0.182460 0.256723 \n", - "T-lowerExt-2 0.473309 1.000000 -0.028500 0.699895 \n", - "UCZAA 0.182460 -0.028500 1.000000 -0.092060 \n", - "WhiteFlow-4 0.256723 0.699895 -0.092060 1.000000 \n", - "AAWhiteSt-4 -0.103011 -0.248721 -0.127118 -0.102395 \n", - "AA-Wood-4 0.042964 0.381312 -0.293577 0.660945 \n", - "ChipMoisture-4 0.213934 0.278736 -0.045727 0.480724 \n", - "SteamFlow-4 0.400396 0.618458 0.007225 0.838599 \n", - "Lower-HeatT-3 0.096245 -0.364906 0.521079 -0.560857 \n", - "Upper-HeatT-3 -0.072660 -0.510970 0.392008 -0.653562 \n", - "ChipMass-4 0.273471 0.656574 0.042648 0.817931 \n", - "WeakLiquorF 0.118109 -0.039253 -0.033386 0.199168 \n", - "BlackFlow-2 0.044352 -0.426224 0.602307 -0.515211 \n", - "WeakWashF 0.002431 -0.025551 0.382492 -0.185512 \n", - "SteamHeatF-3 0.421113 0.629301 0.323625 0.688448 \n", - "T-Top-Chips-4 -0.275214 -0.588570 0.181589 -0.626129 \n", - "SulphidityL-4 0.133049 -0.030541 -0.229867 0.017586 \n", - "\n", - " AAWhiteSt-4 ... SteamFlow-4 Lower-HeatT-3 \\\n", - "Y-Kappa 0.148483 ... -0.515545 0.089256 \n", - "ChipRate 0.031279 ... 0.328192 -0.363541 \n", - "BF-CMratio -0.064239 ... 0.046086 0.317975 \n", - "BlowFlow 0.070315 ... 0.306856 -0.124710 \n", - "ChipLevel4 0.376666 ... -0.225618 0.072274 \n", - "T-upperExt-2 -0.103011 ... 0.400396 0.096245 \n", - "T-lowerExt-2 -0.248721 ... 0.618458 -0.364906 \n", - "UCZAA -0.127118 ... 0.007225 0.521079 \n", - "WhiteFlow-4 -0.102395 ... 0.838599 -0.560857 \n", - "AAWhiteSt-4 1.000000 ... 0.007546 0.068382 \n", - "AA-Wood-4 -0.034475 ... 0.370564 -0.780860 \n", - "ChipMoisture-4 0.148933 ... 0.564169 -0.308175 \n", - "SteamFlow-4 0.007546 ... 1.000000 -0.215370 \n", - "Lower-HeatT-3 0.068382 ... -0.215370 1.000000 \n", - "Upper-HeatT-3 0.140546 ... -0.308522 0.930004 \n", - "ChipMass-4 -0.069608 ... 0.799789 -0.256300 \n", - "WeakLiquorF 0.293730 ... 0.244902 -0.017698 \n", - "BlackFlow-2 0.041032 ... -0.261135 0.889604 \n", - "WeakWashF -0.148625 ... -0.126814 0.212838 \n", - "SteamHeatF-3 -0.135190 ... 0.692937 -0.052623 \n", - "T-Top-Chips-4 0.020768 ... -0.515957 0.454516 \n", - "SulphidityL-4 0.340821 ... 0.127873 -0.100820 \n", - "\n", - " Upper-HeatT-3 ChipMass-4 WeakLiquorF BlackFlow-2 \\\n", - "Y-Kappa 0.165685 -0.375950 -0.071248 0.204550 \n", - "ChipRate -0.421371 0.446728 0.072428 -0.253824 \n", - "BF-CMratio 0.278921 -0.095022 0.151995 0.204536 \n", - "BlowFlow -0.169092 0.291534 0.118642 -0.138090 \n", - "ChipLevel4 0.198583 -0.370602 0.079725 0.017146 \n", - "T-upperExt-2 -0.072660 0.273471 0.118109 0.044352 \n", - "T-lowerExt-2 -0.510970 0.656574 -0.039253 -0.426224 \n", - "UCZAA 0.392008 0.042648 -0.033386 0.602307 \n", - "WhiteFlow-4 -0.653562 0.817931 0.199168 -0.515211 \n", - "AAWhiteSt-4 0.140546 -0.069608 0.293730 0.041032 \n", - "AA-Wood-4 -0.801301 0.217795 0.310343 -0.670095 \n", - "ChipMoisture-4 -0.345770 0.233262 0.325128 -0.298808 \n", - "SteamFlow-4 -0.308522 0.799789 0.244902 -0.261135 \n", - "Lower-HeatT-3 0.930004 -0.256300 -0.017698 0.889604 \n", - "Upper-HeatT-3 1.000000 -0.353610 -0.074854 0.814387 \n", - "ChipMass-4 -0.353610 1.000000 0.049813 -0.257680 \n", - "WeakLiquorF -0.074854 0.049813 1.000000 0.087032 \n", - "BlackFlow-2 0.814387 -0.257680 0.087032 1.000000 \n", - "WeakWashF 0.213178 -0.095662 -0.052071 0.195979 \n", - "SteamHeatF-3 -0.211311 0.706702 0.211312 -0.018334 \n", - "T-Top-Chips-4 0.551567 -0.495392 -0.096089 0.479508 \n", - "SulphidityL-4 -0.100668 -0.076917 0.380117 -0.168605 \n", - "\n", - " WeakWashF SteamHeatF-3 T-Top-Chips-4 SulphidityL-4 \n", - "Y-Kappa 0.056443 -0.529088 0.310067 -0.011788 \n", - "ChipRate 0.259011 0.378349 -0.262223 -0.005074 \n", - "BF-CMratio -0.382994 0.009601 0.084696 0.017648 \n", - "BlowFlow 0.005912 0.237375 -0.146241 0.019811 \n", - "ChipLevel4 -0.064666 -0.581272 0.284855 0.126214 \n", - "T-upperExt-2 0.002431 0.421113 -0.275214 0.133049 \n", - "T-lowerExt-2 -0.025551 0.629301 -0.588570 -0.030541 \n", - "UCZAA 0.382492 0.323625 0.181589 -0.229867 \n", - "WhiteFlow-4 -0.185512 0.688448 -0.626129 0.017586 \n", - "AAWhiteSt-4 -0.148625 -0.135190 0.020768 0.340821 \n", - "AA-Wood-4 -0.235286 0.240785 -0.481489 0.155917 \n", - "ChipMoisture-4 -0.123127 0.342884 -0.362475 0.173172 \n", - "SteamFlow-4 -0.126814 0.692937 -0.515957 0.127873 \n", - "Lower-HeatT-3 0.212838 -0.052623 0.454516 -0.100820 \n", - "Upper-HeatT-3 0.213178 -0.211311 0.551567 -0.100668 \n", - "ChipMass-4 -0.095662 0.706702 -0.495392 -0.076917 \n", - "WeakLiquorF -0.052071 0.211312 -0.096089 0.380117 \n", - "BlackFlow-2 0.195979 -0.018334 0.479508 -0.168605 \n", - "WeakWashF 1.000000 0.037912 0.120560 -0.122867 \n", - "SteamHeatF-3 0.037912 1.000000 -0.549819 -0.094777 \n", - "T-Top-Chips-4 0.120560 -0.549819 1.000000 -0.037745 \n", - "SulphidityL-4 -0.122867 -0.094777 -0.037745 1.000000 \n", - "\n", - "[22 rows x 22 columns]" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "\n", - "df.corr()" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
    \n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Y-KappaChipRateBF-CMratioBlowFlowChipLevel4T-upperExt-2T-lowerExt-2UCZAAWhiteFlow-4AAWhiteSt-4...SteamFlow-4Lower-HeatT-3Upper-HeatT-3ChipMass-4WeakLiquorFBlackFlow-2WeakWashFSteamHeatF-3T-Top-Chips-4SulphidityL-4
    Y-Kappa1.0000000.054368-0.283837-0.1331940.376689-0.235835-0.402137-0.180508-0.5417080.090728...-0.560212-0.0100600.153966-0.440491-0.1228010.1800610.063848-0.5599870.313794-0.009301
    ChipRate0.0543681.000000-0.7269870.433171-0.0906760.1336230.3688740.1463430.4168520.154471...0.295036-0.326743-0.4176030.3949450.044001-0.2223410.2625280.387489-0.303691-0.031979
    BF-CMratio-0.283837-0.7269871.000000-0.0755490.0186110.021417-0.128031-0.057854-0.156444-0.108701...0.0009060.4011800.362823-0.1282150.1728640.264189-0.368442-0.0641880.1778350.050182
    BlowFlow-0.1331940.433171-0.0755491.0000000.1177620.2412580.3464490.0274650.3745150.196746...0.389719-0.056749-0.1760650.2999150.299576-0.083246-0.1022790.357765-0.297022-0.029065
    ChipLevel40.376689-0.0906760.0186110.1177621.000000-0.254943-0.349394-0.265537-0.3685670.373234...-0.2301180.0984220.245750-0.3917660.0804720.015839-0.048172-0.5764410.2703810.122675
    T-upperExt-2-0.2358350.1336230.0214170.241258-0.2549431.0000000.5284270.1569750.2673880.003819...0.4316970.092262-0.1210620.2465410.146811-0.0200790.0102370.401379-0.3063620.166479
    T-lowerExt-2-0.4021370.368874-0.1280310.346449-0.3493940.5284271.0000000.0428430.658713-0.021324...0.627141-0.224575-0.4590320.591293-0.003997-0.385515-0.0353640.633103-0.643245-0.011912
    UCZAA-0.1805080.146343-0.0578540.027465-0.2655370.1569750.0428431.000000-0.125124-0.085585...0.0087280.5171170.3353780.034875-0.0213000.5970410.3518190.2911740.213228-0.199399
    WhiteFlow-4-0.5417080.416852-0.1564440.374515-0.3685670.2673880.658713-0.1251241.0000000.025595...0.825732-0.469477-0.6328440.7985510.197757-0.497826-0.1906240.690848-0.671579-0.018617
    AAWhiteSt-40.0907280.154471-0.1087010.1967460.3732340.003819-0.021324-0.0855850.0255951.000000...0.1619440.1491580.0776700.0979400.2853740.056113-0.177184-0.013972-0.0668480.382447
    AA-Wood-4-0.3003600.250739-0.2213650.207306-0.1177820.1107720.340804-0.2722650.6633080.016011...0.412636-0.689368-0.7815910.1955200.308278-0.636973-0.2090350.254750-0.4946710.133453
    ChipMoisture-4-0.3857980.134624-0.0085510.195679-0.0115330.2886620.404245-0.0464360.5036140.237269...0.593190-0.234870-0.3739460.2457790.335013-0.295719-0.1430150.346433-0.3752510.181172
    SteamFlow-4-0.5602120.2950360.0009060.389719-0.2301180.4316970.6271410.0087280.8257320.161944...1.000000-0.106660-0.3084890.7805380.268302-0.230772-0.1611500.702690-0.5350100.107834
    Lower-HeatT-3-0.010060-0.3267430.401180-0.0567490.0984220.092262-0.2245750.517117-0.4694770.149158...-0.1066601.0000000.839354-0.1535560.0929750.8310020.1579630.0018660.3911330.050994
    Upper-HeatT-30.153966-0.4176030.362823-0.1760650.245750-0.121062-0.4590320.335378-0.6328440.077670...-0.3084890.8393541.000000-0.308095-0.1125770.7152240.214381-0.2676370.549459-0.041953
    ChipMass-4-0.4404910.394945-0.1282150.299915-0.3917660.2465410.5912930.0348750.7985510.097940...0.780538-0.153556-0.3080951.0000000.033465-0.230222-0.0990270.724645-0.548187-0.115394
    WeakLiquorF-0.1228010.0440010.1728640.2995760.0804720.146811-0.003997-0.0213000.1977570.285374...0.2683020.092975-0.1125770.0334651.0000000.157147-0.0908240.202175-0.0937990.407692
    BlackFlow-20.180061-0.2223410.264189-0.0832460.015839-0.020079-0.3855150.597041-0.4978260.056113...-0.2307720.8310020.715224-0.2302220.1571471.0000000.172867-0.0152240.480036-0.053194
    WeakWashF0.0638480.262528-0.368442-0.102279-0.0481720.010237-0.0353640.351819-0.190624-0.177184...-0.1611500.1579630.214381-0.099027-0.0908240.1728671.0000000.0066310.146389-0.116488
    SteamHeatF-3-0.5599870.387489-0.0641880.357765-0.5764410.4013790.6331030.2911740.690848-0.013972...0.7026900.001866-0.2676370.7246450.202175-0.0152240.0066311.000000-0.565154-0.127690
    T-Top-Chips-40.313794-0.3036910.177835-0.2970220.270381-0.306362-0.6432450.213228-0.671579-0.066848...-0.5350100.3911330.549459-0.548187-0.0937990.4800360.146389-0.5651541.0000000.022329
    SulphidityL-4-0.009301-0.0319790.050182-0.0290650.1226750.166479-0.011912-0.199399-0.0186170.382447...0.1078340.050994-0.041953-0.1153940.407692-0.053194-0.116488-0.1276900.0223291.000000
    \n", - "

    22 rows × 22 columns

    \n", - "
    " - ], - "text/plain": [ - " Y-Kappa ChipRate BF-CMratio BlowFlow ChipLevel4 \\\n", - "Y-Kappa 1.000000 0.054368 -0.283837 -0.133194 0.376689 \n", - "ChipRate 0.054368 1.000000 -0.726987 0.433171 -0.090676 \n", - "BF-CMratio -0.283837 -0.726987 1.000000 -0.075549 0.018611 \n", - "BlowFlow -0.133194 0.433171 -0.075549 1.000000 0.117762 \n", - "ChipLevel4 0.376689 -0.090676 0.018611 0.117762 1.000000 \n", - "T-upperExt-2 -0.235835 0.133623 0.021417 0.241258 -0.254943 \n", - "T-lowerExt-2 -0.402137 0.368874 -0.128031 0.346449 -0.349394 \n", - "UCZAA -0.180508 0.146343 -0.057854 0.027465 -0.265537 \n", - "WhiteFlow-4 -0.541708 0.416852 -0.156444 0.374515 -0.368567 \n", - "AAWhiteSt-4 0.090728 0.154471 -0.108701 0.196746 0.373234 \n", - "AA-Wood-4 -0.300360 0.250739 -0.221365 0.207306 -0.117782 \n", - "ChipMoisture-4 -0.385798 0.134624 -0.008551 0.195679 -0.011533 \n", - "SteamFlow-4 -0.560212 0.295036 0.000906 0.389719 -0.230118 \n", - "Lower-HeatT-3 -0.010060 -0.326743 0.401180 -0.056749 0.098422 \n", - "Upper-HeatT-3 0.153966 -0.417603 0.362823 -0.176065 0.245750 \n", - "ChipMass-4 -0.440491 0.394945 -0.128215 0.299915 -0.391766 \n", - "WeakLiquorF -0.122801 0.044001 0.172864 0.299576 0.080472 \n", - "BlackFlow-2 0.180061 -0.222341 0.264189 -0.083246 0.015839 \n", - "WeakWashF 0.063848 0.262528 -0.368442 -0.102279 -0.048172 \n", - "SteamHeatF-3 -0.559987 0.387489 -0.064188 0.357765 -0.576441 \n", - "T-Top-Chips-4 0.313794 -0.303691 0.177835 -0.297022 0.270381 \n", - "SulphidityL-4 -0.009301 -0.031979 0.050182 -0.029065 0.122675 \n", - "\n", - " T-upperExt-2 T-lowerExt-2 UCZAA WhiteFlow-4 \\\n", - "Y-Kappa -0.235835 -0.402137 -0.180508 -0.541708 \n", - "ChipRate 0.133623 0.368874 0.146343 0.416852 \n", - "BF-CMratio 0.021417 -0.128031 -0.057854 -0.156444 \n", - "BlowFlow 0.241258 0.346449 0.027465 0.374515 \n", - "ChipLevel4 -0.254943 -0.349394 -0.265537 -0.368567 \n", - "T-upperExt-2 1.000000 0.528427 0.156975 0.267388 \n", - "T-lowerExt-2 0.528427 1.000000 0.042843 0.658713 \n", - "UCZAA 0.156975 0.042843 1.000000 -0.125124 \n", - "WhiteFlow-4 0.267388 0.658713 -0.125124 1.000000 \n", - "AAWhiteSt-4 0.003819 -0.021324 -0.085585 0.025595 \n", - "AA-Wood-4 0.110772 0.340804 -0.272265 0.663308 \n", - "ChipMoisture-4 0.288662 0.404245 -0.046436 0.503614 \n", - "SteamFlow-4 0.431697 0.627141 0.008728 0.825732 \n", - "Lower-HeatT-3 0.092262 -0.224575 0.517117 -0.469477 \n", - "Upper-HeatT-3 -0.121062 -0.459032 0.335378 -0.632844 \n", - "ChipMass-4 0.246541 0.591293 0.034875 0.798551 \n", - "WeakLiquorF 0.146811 -0.003997 -0.021300 0.197757 \n", - "BlackFlow-2 -0.020079 -0.385515 0.597041 -0.497826 \n", - "WeakWashF 0.010237 -0.035364 0.351819 -0.190624 \n", - "SteamHeatF-3 0.401379 0.633103 0.291174 0.690848 \n", - "T-Top-Chips-4 -0.306362 -0.643245 0.213228 -0.671579 \n", - "SulphidityL-4 0.166479 -0.011912 -0.199399 -0.018617 \n", - "\n", - " AAWhiteSt-4 ... SteamFlow-4 Lower-HeatT-3 \\\n", - "Y-Kappa 0.090728 ... -0.560212 -0.010060 \n", - "ChipRate 0.154471 ... 0.295036 -0.326743 \n", - "BF-CMratio -0.108701 ... 0.000906 0.401180 \n", - "BlowFlow 0.196746 ... 0.389719 -0.056749 \n", - "ChipLevel4 0.373234 ... -0.230118 0.098422 \n", - "T-upperExt-2 0.003819 ... 0.431697 0.092262 \n", - "T-lowerExt-2 -0.021324 ... 0.627141 -0.224575 \n", - "UCZAA -0.085585 ... 0.008728 0.517117 \n", - "WhiteFlow-4 0.025595 ... 0.825732 -0.469477 \n", - "AAWhiteSt-4 1.000000 ... 0.161944 0.149158 \n", - "AA-Wood-4 0.016011 ... 0.412636 -0.689368 \n", - "ChipMoisture-4 0.237269 ... 0.593190 -0.234870 \n", - "SteamFlow-4 0.161944 ... 1.000000 -0.106660 \n", - "Lower-HeatT-3 0.149158 ... -0.106660 1.000000 \n", - "Upper-HeatT-3 0.077670 ... -0.308489 0.839354 \n", - "ChipMass-4 0.097940 ... 0.780538 -0.153556 \n", - "WeakLiquorF 0.285374 ... 0.268302 0.092975 \n", - "BlackFlow-2 0.056113 ... -0.230772 0.831002 \n", - "WeakWashF -0.177184 ... -0.161150 0.157963 \n", - "SteamHeatF-3 -0.013972 ... 0.702690 0.001866 \n", - "T-Top-Chips-4 -0.066848 ... -0.535010 0.391133 \n", - "SulphidityL-4 0.382447 ... 0.107834 0.050994 \n", - "\n", - " Upper-HeatT-3 ChipMass-4 WeakLiquorF BlackFlow-2 \\\n", - "Y-Kappa 0.153966 -0.440491 -0.122801 0.180061 \n", - "ChipRate -0.417603 0.394945 0.044001 -0.222341 \n", - "BF-CMratio 0.362823 -0.128215 0.172864 0.264189 \n", - "BlowFlow -0.176065 0.299915 0.299576 -0.083246 \n", - "ChipLevel4 0.245750 -0.391766 0.080472 0.015839 \n", - "T-upperExt-2 -0.121062 0.246541 0.146811 -0.020079 \n", - "T-lowerExt-2 -0.459032 0.591293 -0.003997 -0.385515 \n", - "UCZAA 0.335378 0.034875 -0.021300 0.597041 \n", - "WhiteFlow-4 -0.632844 0.798551 0.197757 -0.497826 \n", - "AAWhiteSt-4 0.077670 0.097940 0.285374 0.056113 \n", - "AA-Wood-4 -0.781591 0.195520 0.308278 -0.636973 \n", - "ChipMoisture-4 -0.373946 0.245779 0.335013 -0.295719 \n", - "SteamFlow-4 -0.308489 0.780538 0.268302 -0.230772 \n", - "Lower-HeatT-3 0.839354 -0.153556 0.092975 0.831002 \n", - "Upper-HeatT-3 1.000000 -0.308095 -0.112577 0.715224 \n", - "ChipMass-4 -0.308095 1.000000 0.033465 -0.230222 \n", - "WeakLiquorF -0.112577 0.033465 1.000000 0.157147 \n", - "BlackFlow-2 0.715224 -0.230222 0.157147 1.000000 \n", - "WeakWashF 0.214381 -0.099027 -0.090824 0.172867 \n", - "SteamHeatF-3 -0.267637 0.724645 0.202175 -0.015224 \n", - "T-Top-Chips-4 0.549459 -0.548187 -0.093799 0.480036 \n", - "SulphidityL-4 -0.041953 -0.115394 0.407692 -0.053194 \n", - "\n", - " WeakWashF SteamHeatF-3 T-Top-Chips-4 SulphidityL-4 \n", - "Y-Kappa 0.063848 -0.559987 0.313794 -0.009301 \n", - "ChipRate 0.262528 0.387489 -0.303691 -0.031979 \n", - "BF-CMratio -0.368442 -0.064188 0.177835 0.050182 \n", - "BlowFlow -0.102279 0.357765 -0.297022 -0.029065 \n", - "ChipLevel4 -0.048172 -0.576441 0.270381 0.122675 \n", - "T-upperExt-2 0.010237 0.401379 -0.306362 0.166479 \n", - "T-lowerExt-2 -0.035364 0.633103 -0.643245 -0.011912 \n", - "UCZAA 0.351819 0.291174 0.213228 -0.199399 \n", - "WhiteFlow-4 -0.190624 0.690848 -0.671579 -0.018617 \n", - "AAWhiteSt-4 -0.177184 -0.013972 -0.066848 0.382447 \n", - "AA-Wood-4 -0.209035 0.254750 -0.494671 0.133453 \n", - "ChipMoisture-4 -0.143015 0.346433 -0.375251 0.181172 \n", - "SteamFlow-4 -0.161150 0.702690 -0.535010 0.107834 \n", - "Lower-HeatT-3 0.157963 0.001866 0.391133 0.050994 \n", - "Upper-HeatT-3 0.214381 -0.267637 0.549459 -0.041953 \n", - "ChipMass-4 -0.099027 0.724645 -0.548187 -0.115394 \n", - "WeakLiquorF -0.090824 0.202175 -0.093799 0.407692 \n", - "BlackFlow-2 0.172867 -0.015224 0.480036 -0.053194 \n", - "WeakWashF 1.000000 0.006631 0.146389 -0.116488 \n", - "SteamHeatF-3 0.006631 1.000000 -0.565154 -0.127690 \n", - "T-Top-Chips-4 0.146389 -0.565154 1.000000 0.022329 \n", - "SulphidityL-4 -0.116488 -0.127690 0.022329 1.000000 \n", - "\n", - "[22 rows x 22 columns]" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df.corr('spearman')" - ] - }, { "cell_type": "code", "execution_count": null, @@ -1859,6 +405,27 @@ "outputs": [], "source": [] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Learn about filtering and grouping (Blender Efficiency dataset)\n", + "\n", + "\n", + "Filtering and grouping data is part of the daily work of anyone working with data. The reason is because once you have filtered the data or grouped it, then you want to calculate some statistics or create a visualization on the result. So your workflow becomes:\n", + "\n", + "1. Import all the data\n", + "2. Filter or group\n", + "3. Do calculations and create visualizations on the filtered/grouped data\n", + "\n", + "\n", + "Some examples of filtering and grouping:\n", + "\n", + "* Filter out and keep only the data after 1 January 2018. Throw the rest away.\n", + "* Extract only the rows in the data frame where vessel V145 was used, and ignore the rest.\n", + "* Group the data by vessel (we have vessel V145, V205 and V175). Do the same set of calculations/visualizations for each group.\n" + ] + }, { "cell_type": "code", "execution_count": null, @@ -1870,8 +437,6 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Learn about filtering and grouping using the Blender Efficiency dataset\n", - "\n", "* Import data.\n", "* Table\n", "* Sort by y-value (last column)\n", @@ -1881,7 +446,7 @@ "* scatter_matrix(blender, alpha = 0.8, figsize=(20,20), diagonal = 'hist', marker='s'); <-- shows the DoE structure\n", "* Filter results by Particle Size\n", "* Groupby ParticleSize\n", - "* Calculate the mean efficiency within each particle size category\n" + "* Calculate the mean efficiency within each particle size category" ] }, { @@ -1891,10 +456,10 @@ "outputs": [], "source": [ "import pandas as pd\n", + "from pandas.plotting import scatter_matrix\n", "blender = pd.read_csv('http://openmv.net/file/blender-efficiency.csv')\n", "blender.corr()\n", "scatter_matrix(blender, alpha = 0.8, figsize=(20,20), diagonal = 'hist', marker='s');\n", - "\n", "blender.groupby(\"ParticleSize\").std()\n", "\n", "#blender.boxplot()\n", @@ -1903,117 +468,6 @@ "#flot.loc[:, [\"Air flow rate\"]].boxplot()" ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Diversion: how is time represented?\n", - "\n", - "Try the following in the space below:\n", - "```python\n", - "from datetime import datetime\n", - "now = datetime.now()\n", - "\n", - "# Do some things with `now`:\n", - "print(now)\n", - "print(now.year)\n", - "print(f\"Which weekday is it today? It is day: {now.isoweekday()} in the week\")\n", - "print(now.second)\n", - "print(now.seconds) # use singular\n", - "```\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "After trying the above, try these lines below. Comment out the lines that cause errors.\n", - "\n", - "```python\n", - "later = datetime.now()\n", - "print(later)\n", - "print(type(later))\n", - "print(later - now)\n", - "print(now - later) \n", - "print(now + later)\n", - "\n", - "delta = later - now\n", - "print(delta)\n", - "print(type(delta))\n", - "print(f\"There were this many seconds between 'now' and 'later': {delta.total_seconds()}\")\n", - "print(later + delta)\n", - "\n", - "sometime_in_the_future = later + delta*1000\n", - "print(sometime_in_the_future)\n", - "print(sometime_in_the_future - now)\n", - "```" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "\n", - "delta = later - now\n", - "print(delta)\n", - "print(type(delta))\n", - "print(f\"There were this many seconds between 'now' and 'later': {delta.total_seconds()}\")\n", - "print(later + delta)\n", - "\n", - "sometime_in_the_future = later + delta*1000\n", - "print(sometime_in_the_future)\n", - "print(sometime_in_the_future - now)" - ] - }, - { - "attachments": { - "image.png": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAz4AAABgCAYAAADcp6fCAAAgAElEQVR4Ae2dPYt0yZLfa3auhGTL0yfQd2hZC7K0IPQB5A7IEWXIvx9jjHLXEgPryWwY/8IyzhiXlpyxVnB93QVxREbEPzMiMrLOqe7qfrp6/gPP1HnJjJdfRGZG1jndfdr4HwmQAAmQAAmQAAmQAAmQAAl8cQKnL+4f3SMBEiABEiABEiABEiABEiCB7ZNsfJ638+m0nRb/zs8xUi+XJ22bb8RmH3wGH562y8sHq6Y6EiABEiABEiABEiABEiCBqwQeYuPTNkRPbjfBjc/VmPImCZAACZAACZAACZAACZBAIvDJNj7z05LnM54EzfeSLzwlARIgARIgARIgARIgARIggZLAp9/4bNvLdnnSzQ+e+uQnPtgc4b56ilfPTpt/Iw5t9bW6tJl6uWxP8rrdebvgdboT2gx5eCXPy9023Ed78B721/3G/SYv2Pd02fjWHDjykwRIgARIgARIgARIgAReT+ABNj7b1jc6thHo59h5PJ/1Z378RgHXTudNf0RobDCwAcEnxGx944OnTO2z9cemxl/X4963t/Ebn3W/sUlb2yX2DQWvjzJ7kgAJkAAJkAAJkAAJkMDvnMBDbHw2bGJWG59i04EnJ32DkWRI3PM1v/HxG45+HZso92Smt8MmZ2x8YINunizToLM/SfIbn0J+37j9zjOV7pMACZAACZAACZAACZDAGwh8kY3P2IjoRufaJmR+atM3Jn2DMzYvyhby0HdsUAZ7tEFfnMdX7eZX98bGp2/SmtC+Qap0Da08IgESIAESIAESIAESIAES2CfwEBuf/mrb8omP2yi0Ntg0uFffxtMXbF78p21WlhsfJz/9yu2xWcFGJ298cD6CAVu0Lzc+gwyPSIAESIAESIAESIAESOB9CDzExiduFNzP/PTXzBqcsfE4n/Xv/IxNyXgidAp9EtRrGx/ftLdrmyc8kRn69Tdv4/z4E59gGjZvXb43gMckQAIkQAIkQAIkQAIkQAK3EPj0G5/+tKf/TMxq4+Ouy1OZ9KSlbyTG9S4bT4b6hgabGUPZ+7rrvS3kYaODc7fZ8puXLgvtxhMfbnxuSV22JQESIAESIAESIAESIIHjBD7Zxse/fhaP/dObvmEJO4Wt7Xzs11GfthM2M53F2GDgt7nhs4vp/d0GR/qv+w4988Yn2LN8RW7I7nY0nX2DlG3pDvGABEiABEiABEiABEiABEjgIIEH2PjgycjwaLnxKf7mz+jVjsYmY9r0yG1snKrNxtw3vjZXbHxE+dwvbHCcTeE6Nz4xdDwjARIgARIgARIgARIggTcQ+CQbnzd4wK4kQAIkQAIkQAIkQAIkQAIksEOAG58dQLxNAiRAAiRAAiRAAiRAAiTw+AS48Xn8GNIDEiABEiABEiABEiABEiCBHQLc+OwA4m0SIAESIAESIAESIAESIIHHJ8CNz+PHkB6QAAmQAAmQAAmQAAmQAAnsEODGZwcQb5MACZAACZAACZAACZAACTw+AW58Hj+G9IAESIAESIAESIAESIAESGCHADc+O4B4mwRIgARIgARIgARIgARI4PEJcOPz+DGkByRAAiRAAiRAAiRAAiRAAjsEuPHZAcTbJEACJEACJEACJEACJEACj0+AG5/HjyE9IAESIAESIAESIAESIAES2CHAjc8OIN4mARIgARIgARIgARIgARJ4fALc+Dx+DOkBCZAACZAACZAACZAACZDADgFufHYA8TYJkAAJkAAJkAAJkAAJkMDjE+DG5/FjSA9IgARIgARIgARIgARIgAR2CHDjswOIt0mABEiABEiABEiABEiABB6fADc+jx9DekACJEACJEACJEACJEACJLBDgBufHUC8TQIkQAIkQAIkQAIkQAIk8PgEuPF5/BjSAxIgARIgARIgARIgARIggR0C3PjsAOJtEiABEiABEiABEiABEiCBxyfAjc/jx5AekAAJkAAJkAAJkAAJkAAJ7BDgxmcHEG+TAAmQAAmQAAmQAAmQAAk8PgFufB4/hvSABEiABEiABEiABEiABEhghwA3PjuAeJsESIAESIAESIAESIAESODxCXDj8/gxpAckQAIkQAIkQAIkQAIkQAI7BD7Nxuf5fNpO5+fa3JfL9nR62i4v9e3DV0XOaVupOSznQMOXy/nt9h7Qs20v2+XpCrtt266yPaTjXo2et7OD/3J52k5Pl+2tYb3Zunvl082Kv0iHl8t2fvNg3DaJ/+m8LUZ9S9ztdO3+EZwi47SdTsW/m3Mv5u9d7DviA9uQAAmQAAmQAAnchQA3PnfBmIR8aGH9OBufz7MBS/Hi6Q0ENN+ePmLjc4NVy6bLzZONmxs2P1P+LmUvreENEiABEiABEiCBb0iAG5/3gM+NT0l1KhzLVrz4uQl8lY3P1h453fQkecpfbnw+d6rSOhIgARIgARJIBB5z44OCQz7HKyzuLSp1Uwobd//SCp30qltqk1+3k9dxzhd9nay9LmNKpAhyr8/0b8CvyMt94mteKCifh64mf/pG2r6phm7YNjk/Io2CLeif5OLVo8Gr+1S+Tmd2eL1XCsmg215bjK+6PW9niY1+4tUktSFe8yrFyyvMBwV3NNkZ5Z/2XquU/uft0l7VkziM17X09a3BMNgKvc+ah/AxtNmaLU/b5dJe82py3CueKd9HfMy3zKF4TeyqfaK7jY/EoxuYcs/L37NN9hng1fwCv8HORUgPMc7l7Oj4SFKCjHTPeDX3lEu2ZeR4lb/9Vbfgu4sX1OW4pLGHcfDc8ynFHXL4SQIkQAIkQAIk8CYCr9j4+KIoFwqvtwXFeSkBBSN+GASFhisgtDBx9lixMYrDYfeo47QAHW2s0HFyUSiONvYzM66NfnPsNlTZXvycje9jRSY2Uv1ndfzGbPJhtq8XZN2pmSDaDB+MheujbVzRlnSjOEMI4HPYmF0rMsHA6YwyEZ9hA9j74l+vjTawY/g2M5qIhPio3tF/VQQ7KcYm+N4L+yu2oV+xmRlYwMHlclNtOT+1wwWTjVPtEjfO++yg2/kw6VW+nteubRUbjGG/eXKI5TDkk8X16vjIAsAtsUQzkW++FvyQW2AqYwQnTQZ8cONax5HTZ20Grzk/e5532XMbmMxPEiABEiABEiCB1xO4ceMzig98Wz0K99cb0XpORYUXJ0VJLsbceWubCheR5woSEWdFCOqLsk2So0WJK2TKpx/eWNji7dOCEnrROuo3tqlRaOMLNQiZNlD9Rj8IMuxq8Cv5jI6hTdIt956etidXuIqeZD9ktc98X2XglxtY0e37m12jaATbscmsfMu54G2QY5F7peCdOqQLJS+1P9jaC37Ln8ofcOm5Wsmpc0MLb/MjxSdZ3LTIE7Wr9pVtsm49H3LyfdMc7Kl1S+xc/kw2iwyMvVpPGX8vKMjwN0xe5z7LD/mPOPn8DD6a7JAbs0xpFdosNtqVbG8+j0mABEiABEiABG4mcOPGRwuYvulJr/ncrN11yEWxu2WbGreRqIqZUExowTGKM5MW2tTFGJ68oG8szlWOFkT6uk75G6lEj7M3OJMYpsILetHFF3aVLbD32ga0YhuKulWRVfBC3ddk4pUovaZ+4T7s95/ZjuhPFY9CZmFTZgYm83WzJsTHitOWy9eM946E/nbjKkO/ySryIuTzns/eEN9Wj9vYLP0+Yp9tfCKGXLynsRXisbCt4pU3hb4rjgOXpNfa+PGBbuFTZLSxWvyLjqbX3bLf88ZdN57YmJnWwENjMscjyo7joDsWX3MMTvGEBEiABEiABEjgNQRu3PjYgu2LiFQ8vMaI1udqAZMLp1AQmcZDBUddKFZFEYqVsihRg2Mx1TcweCoRC1zxD9ysbfR5v7CL7QdpuX4lDtX9eeOTCrgmPjD1hV/jqO2bbGElbQsZw8xDT3zAXbv5eJmgYJPer+K33AB0v67EZ7V5gC9iQ+zfX3tCjMOnta36NZkhn9c+r/wcoZ/HZ793bQPQX70rdE9POFOeWjyu2ia6E6/Jb8B1n4FL0mvNVmOiSwky+tXFgfM/5Jk2n8ZRJTv0c/KCRouTBaecY1bMghyekAAJkAAJkAAJ3ELgxo1PE62LuRY61wvdWwwpF38IyEXAbsFRF0mxkFc/YqENhePzql1oJva4Jwa5wA3FEDrlzV5tsy/saltiETWkj6OpYMvftme+6Jr86Prbddu84Zr8YLbf/EGG+8x2oK/+3FAVj6JwDCyrPk7h6jD5lZuJnf5nSXKDqv+Koe9b9cuxqJ66BJ+9wGvHlhfY1Byxr9J9cOPTN1iVSYf8LjqKzZhj9sdHISFtKssW4SJyVHIzvYaHe71DsM+uhlit8jP6EseByTkUr24JD0iABEiABEiABA4QeMXG54DU1zSpigiTMxUGVdtQcORNhQmSfvj5kNWGIRbbk+6Fb6FdLvQqe7GB7JuFWAxBjRRbaCNy8jfnau+117Smgi0X24kddItPvvgzv87np/E6ldn09LR4xQrC8FTPVciBmfGIG9EYCxEVbD0WQ2eCHub4zA3kN+tFW1yjqn+wy7X1sbc2WW6MT+FzyQZP5HI+ON1+I3PEPt++i8mMc56qvdkn/ZIBttVtxG+fX12nHXh2tgHLesL4yP3beZBRNUjXrP25+IPKMU4L2YFzZme6Qhv7GR+McZgjdoAfLvKTBEiABEiABEjgLQQ+z8YH3yyXBQA2K+ZqVcykYgJPd0ahpMVXe1LVa2+REwv2XEjF4rzpr4qZVNjt2mIbM3kd6pZvtE23Y6TFo3vaVGTDVLDljQ82JXg6IG7m33jnfPcMrVj2v3mtMEEuXWebGGoP+xXXTmJmeyCGrrceigwrKrO81mKv6PT9nXCNhS9Wk0+mK7CadGmfnqMmXzehLndzHk5y5h+a37Xvho2P32jv2tbzzbGxuLVfa13+nFyPA+7nDZeCyTnlwoEG8quzlzrmDpJzYZ6wNpMu8QH2WaOcT+bnmIfmMTzPMQdycLKbF0iABEiABEiABPYIfKKNj5qqxZn/QWRXLMGbIwVHa9sLTZV3PvJ3fNymQkU8FX9LR4vT8HMNqVLtfkBeL/TMt/Oz/TA1/Dta2FnhhJ8hueHv+ABf9ysVnShg4dco1kZP9csXe3MhN1qnIxePhisWfGmTIF2LTUAuLFs7J1dsB/Okvp9Ke3BHkelzzm8weq9xkPuPOxbTISswhO1n/I2e1s7ZIXIKnyG/yCHcap85frPsuU2w79DGx/Nytu/YNtv32r/j03+hurg+bUY8kHZczRW5TTqfc9wauDyT4V7JRoz9Tsv1q/IzjgPTJbId32QjT0mABEiABEiABG4n8Ok2Pre7wB4k8CAEqqL4QUz//ZhpG/n0Rcbvx396SgIkQAIkQAJflwA3Pl83tvTssxHgxuezRWS2R2LEJy0zGF4hARIgARIggccnwI3P48eQHjwKAW58PnGkxuurfNjzicNE00iABEiABEjgDQS48XkDPHYlARIgARIgARIgARIgARJ4DALc+DxGnGglCZAACZAACZAACZAACZDAGwhw4/MGeOxKAiRAAiRAAiRAAiRAAiTwGAS48XmMONFKEiABEiABEiABEiABEiCBNxDgxqeE95ft8sc/bU8//aW82y/++WU7pzbPP/66/oOMveN9Dp5//NN2/tnJ+vnX7fTjb+7C+xw2vXfX8/OvzpeD/N/HvW8u9eWnX/Zz7yOs/PPL9vRDyrGP0Cs6ftvOPxwYg8mel59+3S5/Thd3T1XX6Yc/bac/vmzxLwXtdv64Bi0eyb44B7Rx88sr/H+DC7s5omzDPPUGdffrWswxd5yD4jrwWRm8jea7rANvM4m9SYAESGCXADc+JaJiUZzaFW3axuOHj9r4tMU06opF0GTw3S7cf8HLhUHB9m7Wf3ZBzfcPLl5XSHaL2lXHe1zXnNj98sGrEntvZyf5nDYUXuxnOZ43xHkOyOcfYPk3zZF7+nfHOehD14F7MqAsEiABEvj6BLjxKWN8pPAu2nzkgtcKjlCsfVzBzI1PmTR3uvgNiteV5d+0qNVClBufEZzpi408B7TzD3jiOyzatm2ZI79tz/5pdOj0GU+48fmMUaFNJEACJHBvAtz4lESxqflNXnmTV2DaazC9qND7/Xp78iKbnj9tuCYFmxQFv2yXn/WVIdzLr320b3JxTz67nmYcbImv3U3f/oYiSPucfxp6u04rVLq+oMtgJF9OP8Rv0cPGB5u90Me3N1ZZTy+YtODo9shmDj6v+I+gZXaxUEYxk3RkW4a4cRT88bFfMAoyr9lvPFo+Va9yNb2QdTB/kCOdYchVFKdzHkZWaDdyGPnTc6e5nvNnehUu+tdsCv0H4XQUY/T008v8qts13fkeGG7bJvlqvIVR/8KgtlVy6seXMfa7rGhjjp/0++PL9hzGsz6VDXna9Q8E0UY/ftCm6Y5PeDefK9u2NR0aU/Or291kFNeQX/3VwMwj2dH0/fFlu7RXXRvP5odx9zFWX2CrMsP9mlHS08wN4++X7fLTztN0aZ/kFNfG3KW+Kq8U1xvnIERIPoPdeFUzMoANIeaWE+FaiJ+LYc9lMA4WzCfJpup1zqA3zffb1uxHDFrslTP8GApz/sz2RT3gMyTwiARIgATem8AX2PiMPzx4Op3v9PM1YwLHgo2CbxSLfuG0MMkC4yb7Xoy5BdkWIcjVgsj1kUVmb0Foup3MUPQ0W2B/bLPyISyEYl/sp4vVsDEseH1RHffVpyFj9lGLtPFaYCwMhv2uaDaWgz8K2qFn9g8FjWuT+FcDLNvf7bFCRO872yxmfcPS+bs2ndN8DbnQbGls+/mB/Mm2iT+ZVZezjtGa3WxPt8/yDoVQaUuRTzNzi1Mv9JC/bhyYD2vd2JS5WGPTEzYaWZflkWuD+Ppc0+LP2dOcSLmEfiMPkH9+47zQ7zc1Sa7wateEz2Ajm49eBI8NaxvPsvlyPiG+81hHTphdrs80Dsyu4R+YjxzRucLHQOUibjMj88fpVa5OBvR6RlMSRT3tttoybEN+alxV74hx7j84w3YwHH0mI/SC2Auu7VKUDbu6nD4+XX7lMYw5xXGa4lOZI7Y4lpDTxxo4OXuNd/cb81viL350OXMcs33S3tkPnkNP5QCvkQAJkMB9CTz4xudluzydttPJ/bvLn123SbxP6go9Ttx54UQh5BaQafGa5USZR4PbFlKnJxfMxeLWJJe6UkEpbZLfuRAJbaZFsmlK/JKO6X4qDOb7M7fVoqmLLdhowdELDBGTbFPR7v9FXN1dFDFRJmKPAsN0+EUexUNgm+1r/SBjFJVZV4ijsHV9Kh8n/q1R1B1kwt8UW2EbfBo2avESZULM3meMmbU2m+H7vm7Y4lmoPbmwyr7m89IeYYG8gkfRX+3n9RdFZR6HZWzmsdpkg4VqT7kiY87pFnvHufL7ZXty84b4bflY+pzHcZIpdjj7K/+RZ4hBqSfIrcef2OpsRwTGp425Pr5abH7ZnvwvqRFbwSTrybmS5ammnCtDvzuaciXKnn0xXWFsJf2BEXSlNrjsPkve7v5qHo1+xjxHd2kD3rv27dsKufwkARIggfck8OAbH/+0B5ufezz10Uk6Fhq5GCna5AUvLLQujL6dHI/XB1yr9WHrgwVHWrWFyRdlhW2p0B3Cq7Z6VxdofJOMgsE4QL/3ZQiV127Gt8uqo9vsiiXtEgsDbHyu8he9w6auOsjOclurZEvvaAehf76J4tp/i4w2vjiodFScfR+T7YufI/kD9e3TbO9PAhCjUo7XXdk25KFo9aq0oEJuDB49Z7wfvmNxHAqoft/b1y/KwUq3+l/khPRSeZ2Ns0/0u3OR786jdmxyh+/I06rIrGR5fVUf0RfGVYtP9qv548f8b9s52Kz+InZN5/lnf80f57lteBzsCzZZG8u5pz/q67rQNyREPRWP8MWKyZvkVLqHEjkKspuc9OQr3Ld5ALHLGzTME+O+KvOxS+rH6WRrZFDJkGsYryIpziFVn9Ys+jRM6EfGs+X9xBT9Qx5Zz+BDtB+yvc1H7BNb5Qmlz1tI4ycJkAAJfAyBB9/4vO8Tn+uLXlEshsUChWMuWFA4ucnfLU5amLl7RR60RSYsYk1vsWhG+3Xx6oVfekWmtxUfUNSZ7XJt+OEXPC1aZnunBdmx0QXQ98kLa8E2f1Pu5AVEoXDKclvLWFCEvu1E+g9fj99XXcqx0lH55Pv4n9EwrStbgu+mC/GUPEj6Szletz/2Huv1nmvGFjkk1+1ab9OLKeSQf83Ly8ZxshWXc2F6RHfhp+Qq2NjGIBdp+XzKXbFJWcB3jXPkNud1XZh6fdrHsYKt8mljpPkVNjWWp/5ay4kwB/gvKJqdKqvpFtuF1RiDYlPq39wOPoW8s0D1uOjTlfH6KgIZc6hkK3JtzJk8n08iqdINFfiUviqn6cl+dt+lfR6P0U7MExpnKFhvEEeLYn5PT7R9/NFv5h/HhdwPueFyxucBBIZP9Q25O15NRXydrKAD+ZHZqHBv82H7JI5O367twRGekAAJkMCbCTz4xqf575/63ONpT5OZF0XlLJN7n6iLNnlxdguxj1QoJvyNdoxCouvJDZreWJj3Rb43LWxbPvHpnbrfuYAK38hiA4IiKfts4iKrdhGLp9oWdeAebKnsT0WH6I0cpHdgnuW2FpV+6B38p8ILTSw+832vq9JR+aR9UFw1ZkFu8AUGoFixoqTkkPSXcrzuyraZxRzTuc2wUo80132x7Yqe5Q9Jt77evhR7KMmxyH7m+9Yv+5HPxeY0/uoxG22s2lSyvL6qD9zrny3GGG/I31CgeqbjbxF13Y2D+YNr+WeAvE1dLzY+YFGN9cBYeQxbmyS9hryG/vC3knwOB3nOEq9bjr3Pc4He/FGd0I9PyMw5v3df+3lOGjtnx5JTlO1lwBq51mPcrsYxXPVBX/1UHWNzA/9jK8QDG1T1AfxyW5xH+3HV27xvH3q5T8Qx+O3u85AESIAE3oHAF9j4vAOVu2583A+smql+wSit94t8buCKGL3VFsi8AciLemsZF9Ih1i9q/ni0EHvdb/oJ9tvihcJm2LTy+1f5bV2xfdZb2Z+K30WBFBfyLPcaB/irfbAZwdXxubgvHBCHinXlk5fVjlMBYj5mWzz/spC0fr0AlXPYBk+87sQWTUJsK/uxCVsVWSrI2wvR/jPGzO4E3w/qzn6W40j9Hq9hzr5XTEsfjA/iU/mxlBWK5Bwb42ptmu44XvQ+9DZiVRs8vTz/6H4+yPI0/OwLNjg5//KcUfG0OME+ZeD9Ud7hPnxHEphN+odn61gL/8k+CBifGqc2x2AsmTx5FQ/XWvusJ9o531cdIj/bP9Tr0cQpyq5kqN3+j0+rfRjDVW41ZXO/bExx7sdJYD/axryN9qOV1/1a+6IeSOYnCZAACbwfAW58SrZ5UdRGccGKC5O0yIuIFQX+1YLy6UlYSAu5zsa2UPiCR4qb0L81ru1X3XFDUvrk5YlP+q0mihe/4EEmvkFs2leLYNVWXdOFdfhV2x9ttUXfbcjwtGzIqRbs63yH/b54i8Wx+ueLUdWDIgX8x/kqJs7vxjl/83kgf8AUsem62xMBxNEXOgq8fxPfWZmufm7f1LdvkCFb+PeCcjztaW20n/MHekwuZOBy/Fzw63IRa1e4djbQPezpuiafIKfl85CV86oqxjTmPifM5sbZ4lblfSUr6rN8dPYgj9WPpmfYqtxaH29LPgddyB4xHN/4+/6tvfmDnOnj2LWTuSDZMsXXdHY5KhcxqXhoDmc97rzHOumGm/4T81XXj/loxEmbq50538d5vq+9Yuy8YncsNjj701OvSoZcC+PfOPZrc3wmbs4EHFY5GfWbHp9jU0xjDCE72rxnX/anSdE+gzkk85MESIAE3o8ANz4l24OLHhbZXnxjEbFFFgvIj+1vUOCVCL8gNuWuD9q4RRv3sTi0xQZFhJjebOiLI5yp7Ze7vYgwe4Ku1sIWMNjSFkTr423oOm2Rb98qDx9XBYrJnux1xYkswLX9ccFWX3VhB1tXBMtt1Rd4gXe3odaFDUX3KXPqsTfdXV5TbDEtroGhWj8W/uZHvOcK+av549mpLU2OsEIxI/HLeTd0qy1DH3ye/46P+dVzo8lMMc355TYvXU95YHJM9vx3fA7oxjfgTQbiVcRJc2bwyHkl99Hf2apMR66dfzabrK3Kjblfycr6mopZtiluPCdbGiunp2yj/VWua4vcnGS29hVjs6N9CEsva+RMGGPGXPNZ44r7FY+ygA9xw99JS7qdaf3Q8i+MJZMFG7St+urbafxafJue+X7rV8Wu6+4HjqPMAZFBJUOuFfNFn2dFtpMr42TkcFddHGgOjLz1m340z20iq2h/6FPZHOYHtG6fKgfzi3yG/r4tj0mABEjgfQhw4/M+XFWqLcJxEXlPhd9AthQVxxbg+E32N7D10VT+HvLn0WJCe78JgXLD9E0soVISIAESIIFHJsCNz3tG7/dQuN6w8WHxcmOy/R7y50YkbP7VCdhTgfAkQK/5pzNfnQL9IwESIAESeB8C3PgUXMOj+P7Y3r8qwGMyYg4wB5gDzAHmwL1yoFiKeYkESIAE7k6AG5+7I6VAEiABEiABEiABEiABEiCBz0aAG5/PFhHaQwIkQAIkQAIkQAIkQAIkcHcC3PjcHSkFkgAJkAAJkAAJkAAJkAAJfDYC3Ph8tojQHhIgARIgARIgARIgARIggbsT4Mbn7kgpkARIgARIgARIgARIgARI4LMR+HQbn5fL03Y6P9+Z08t2OV+2Fy/1+bydTif593R53i5Pp+3pYi3k3nk7bsXzdjZZp1Pr9yLy1A+912WLDb692qD9vIHtT6dftjNsSrduPX25nLe3i/J+3WDB83m7PaTP29l3ujkmN9iHpi+X7el0UltF39N2eTGfLb7eJHT7Vp/P55yjLq+eLtvfn09uLOm94/Z7vxuHbXtu8p7aOKrywLdHTmu/yCfFNd687aSYfw4AABV7SURBVOxVeTWrGH7N95ZXXjU20zwk+VYxWmp91xsy9/Y8vzVfFqb5GN0wvlpM4py5kP9Rl18bqzaPyJhpf/20rTl5zN7fgVflczOjz3n3t+ndJd5jPB4x8oNieMSUj2mj88DtY7H1w9zmjw9Y3cYaxkzZPK811ZhKba7KG0r8HHjq9o/7q6M25q6urZI3WBcXc1tqc1WeM6TZ3ONjcyxq2/35ppjnmx0HeTkzHurwc218JGhVEr+NqSRzCOTOYL55csvyfGGY7lli9kQ113TAYaJoF1VGbvcqEqLTy36VlG7TbRvTYmAdUC+L99GRf0DeoSYWG1ErOeCY+XuHhL1zoyJHrxc8t8bB57D6MuTneyp7yguxMS4I94vrrf6s4zH8WreJd143Nud5KEr9pmfvkt8pRl7H7vhqfd34+6Zw9Euop5vtST4UY/Y93Lo9n82KHJP3MO5dZH7gePygGL4LplcJ1TF8ax3ScjD0adxCDbY2JhTyUzNbe5wsyffwhUJen/L5JFQuaA026s98XvdqVxuj0W9qJznj1kGbByc+fn45PBabbzZPFnJnNtE6ve9ss9tT/GK3hz/7RBsfTc6QDHfCOxccO4P55sltljcSR/1CDT/bAifz4LwjDxkQ9ygiso2w/dqnsoH/11r6ezIgb+3kBbzquNnqJxE3mfmi7VWy79ypyFFh5haEqPHWOMyxlty1mIz8xjfFjpVTnG26X1xv9ccZlQ6zjel2cfq6sbke+4WKj770LvmdY3Tb+PL59tE4Jn2vmEOnXC/G7KTnDhduz2dTerjYuoORdxXxgePxg2J4VzxvEqZj+Ka6rGSkMTqypLf8XbYrZad5psrj3fFb+Xkwr5rs5bpby4hrgbbJXxxO80cZx2a3rr1RJhpXftk94aRPoSbewqte0yH5kT8/z8ZnlZhyfTwizN8aVMkhCeCTob+GdtrOf6+vM8VHgSk5q8HlkqT1jRPBnFzNBiTT83lsOo4tSjYQut0uAZMd+XFsk/90ufRX757OZ3l9q/sLow5lbbLjfHGv8EGA+t7lBzbpnpscNEYjrt4sYdR9N3YhJir3/Bzla0ziNS9XLM75FBo0f8H6eTs7e9trh/01OLj+6s9o4/Q4OvhqSrz+lAN4VdPHoLkVxwaYOaN3WfhX5XSDg7z3+e3Hm5M+HZZxba2yHXjd0CSIfORey4vzuee3+OzjNGmdLwQ7ni7bpb/CN9qGNk1n15HGhP+mL/vhcqvMd2mPuUHlTrEUGVEnYuCsfRMPfcVpjEX1NebLHAN9ETj7NRbvlOPC78bxFfgMb/PROlbIraft8hznfRcay7+Dbdrb0DL+ELdhjdjR8yTyk1bFuJ74+XySb5JbERhZ7s1zsEPyGvNot2vYG+P+tF0u7VW86Nd1+5wsdVDzMOhC7rp5NY3vIAVjKATI/A9y0Qvykb/Qg9jjuh/DLeRP/VX3NocMdZF1uxfGWxFDWLL8hE+IRYix9lrbM6TmPB82a5vr95GPyb8sxHIOawlqCc8g6/H3miVyf5JrzMsYDh/3np6sZHsJwnLSo3mSbe39FnNNLav3koPW5la5UQJiE6/q+HT5nG7LacvHgvVouvIbOvE5eujRql9u95jnr9j4+IGzE5QbmJQJJpOMn3hsknNJXQ0EkeUml1m2+jCSNQU5T25mx8gvY9AvZHlXHDdZeYGZeySbWgPpGxcmnYRGHPTcT+RYAGK/WV++smAthSd++qnwe8GqoxJz2qLj7LGFYcSjmDxFLvw0/k6GxrwtckOuXhvnKLCHntnHTKGfm43ej37vlgMsgk5QjmE54WX9gYcaIHKWY0OZdbUT88zCznuHK07Cp1BA1O3FRi8z+1XkB2I74tZkJ39qddPVzBqyx8bGcs9xhK6xwCibYM8uz2Lhlz7IT+PtGdpYCoXZYnwN28x+N/9NEKoLUxwiX3DyPus1jMkmVPuMNlFGpbZfm/S3OwXn3kEPcs7Dhs7D5Pp5AQV/T8PDbRCr7GezJV0rxmce1zM/y4GeeyrT2444zNdgG+Lvv7TIcrGWuHWiYLBvXwpGO01xVBnDtqLHfEnYjT55zM4dijyxcTJycWYgtnXWTWqKoVzSnwXuuVLFdTZoXEk8VGS1CRv+guE129FG7TLf/Jg3/7vd5pvPm2kcoE3vBLmjBpvG2+SfMuwiBgnLDeenv4fjZnfZuTUYcR7joK35fg4qageRbb6sZC/iOo8BGIrPJveKT10uxrJuxEdsMWYKGdK3uA7VMozdGHbX++EUH70z4riO1zw+utSHP7hx4zMGAr4RWCfpLWyqpKyuIUlGsCWAKZlzss4BzBOc6urJ2JO1+bCwIyRllrfju/R130SFzQT6JpssySfewY6qaAOz6wMIWvtnkqvXbfCCt7SJk868eOSBVbPKMZviGnQlO5pxNsB7DN21YW5ccMSnxcSg/rr/H23nulSHY8LxdxOT4Ku1y/qLNll2ZBjjkNuKlqBjkffebH9sffu80HI6FBXaONpUbAZas2CHtUmLG/IMsfWmLI+TXG1nfnZbIyfIirwWY7PLsF5J3zQPyX2My2xHk1HkeSrO8rhRzSmf4MS1z2QrdINvpScyqYTXLKuWOeZok/MF1/Wzlh/sMr/CvIC5FPE63AaxKuZZGY9X7jeDw5idc6g1iZyL+Fe2ptiJ/3m8hDaWawiuQVXd8OGIfdYxfXQfKltT29Vpj6EwG+t93T7bWvuXc0zsRA40wSE+0JTGUtkGbYtPaQ+mxf00ntGiM2wXhOMVGQsdnaEITX7Itcgp6ByGyJsOOn5iezQJnwtbtE09Xn3/ZkMeq+O+jYf0FC7nu5yn3F7WcRC+iGvJBH3ks9mUa6DRQPunzVkeF6v4XmXZdLR4XMkLzHPZvqDvSkwWTIZ3j3t048ZnJN4ocNZBP45F5caEr64h2OPbrCrJc7LKuZ/gpslGB3TX7wNuSTqNI5Oh11e27hGwiaQ/AvdJnGxKonSwY/M0+lU8difOJFsot1cBAjO5WrzqZp2FGewZ3xDlAkoXl2FvVx0GoxUWHrqPyRS/JkVj4LvEhW4Vo+uco317C3BvvTiweAcjtanEDbyDryYq52HRJsjApNd1eT5HWKxtXTjXL8fcjMzK/Owu1q+fzOO3dfD+dNXXDwpmIql41U0FqY4+1yE+7ptH367PH92KmFuTHyHnK96x/6yr6mOtwm/06watD3J+Jb6T7U2S8GxjvhjPoumGGE361dRSb+nFIlaBsevoc+E1baT/8DuOvUVcvE5nSi/K+jqANVV9inlVME3s6jHmc6mQ0exJPg0TzZ/JvtEiHrlY9DETW+yemU8y9vocturlfWttKm7teozL1dwSFsV6tozhyrbBIsbR2q+Yu5wUO3Px6tQt7wfZVcwjjzpvIkvV1bggR50h08Y93gP/koM0bfaMMZV7I67Tl78p3rUf0ddJ9iKuS7YQ0PpdyU/tP/sU5LpYQ6x8hviFO3rS+l0ZX4hVNE85jBhUeWG6VnYVpjzapRs3PpY8fQIcG5C3OR4Hl8paBSQmcJXkIakwGEOCZH0pGfwgkOCPCbAXQcZAkyrLew0NlTE2G8mmJlLsgi02mNLgqHi8ZuMjcgIzi0ooqMxmY6GDKbPQ8z74gg/wBZ9jgpj88DFJE90yXyx2PkY5fjgfE8EidkHWos3u5SKm1ifwDr5ag6y/aBNkSLr48enjEOMGBvhUFnGc7bpWNjAZbpGc4prGl8Qq+SrjecpF70+pfLqY5wU0yPLFRsxxpjeyzXE8wtO+zfd+iJ/I+Yp31tMsVl0hRrA1f/ZBB0+vfCbm0AMRmVGXlOIXC6IbYjTpVw1LvWbAbqwC4261zaVWvL2qjY+Nj0nTUcUS8/coGDUfMffpdb2GNlluk10wTeymMSZuO3tT+04lcdi3r/ecDtAX+TM1OHBBY4vxca2D802aFYzkeoyL2OjHo7GN82CKQTHvXrNM75leNz47F5GHHMif6vtsZ9S4vC+ywa9i4nn4Yy9fr4f1MdvsGGrckb9eTjsuZPkmLf+cLH9Lj1MseoNo+7X8X25SFnG97k+bRuIXe90kO1j297FJ467L8G36xXHQZIe4jFv9Z9h6ntk9sScwrvKiN95u/02WzohPfHjjxqd5oqB0clgl+K0eVwldXWty4+Cpkjwn2yrYI2miTN1gmG+rRSK4uLI1NNo9iXYnm64uppjcdCBOg3s1sK5YNDNrjeMEE+2FsMxCz/sA3BnMXUrYYOWiIetovZIeMdf/QoKqD7Qd+NzJA12k3cLVHfayIz9/J+RxNQln/UUbkeEmtSAz8DnCYm2rt3v3OMU72mT56mwWecnXOheLeO8ZUzBrXQK3pBsiQ5s0ByH3xnyCXvFz8kN0YexWvPValOtjV/WJOg+fTX5HvpPtlWCTMb68iTKqLv3apF/vXNW76BNiJW3AuGuLr5S9sk23LeV4nie71pB/Po69RbTLxmwV/zC9JA55jKl0r28Rl+CHb7+yb1wPR2bPm2oEscXm0zw/BGXtJI+T2vbcrsfP5Mm5+5JGLydZIYaTIQcu2JjFU9LAvO5e2zXaLu8HW6uYx/ljP2+Gzn6EOFlCLm2RDjlOXYoeNFkhsdP9Kc64H/0QG6ac2dF9bQ6YZHm989yCu/IZYuDuyHX0rWKTax7X1w5bvCpcGoPqnnFyG3Bs8uUz+7lgMlvyeFdesfF5Dydj4qqG6lqb43wxm4oWM00GsJvA5oGQJrM8oEKy5ramJCTFos2E6nq7aGceqNo3J7r6igF0v41P/dqD2oDJqZwohd2VV91S/DqiwLzwI9yvOBZ8gq5FPoUNQbdmPgiy5ttHrwizPMHkAkd8HTEV2ca1xz/wUO1ZdoyP53OExapN9nSnXbIz2qR9Y2GHn3MYE3ccF9Dv/cG1nc8yhmY/YpLsVYmqaxT02e4Vg2jj5IfYgzhXMrKeZo3KBLMcc7W36ncrmx3bV+ICvyhj1UWul7Ep5gEvJOjCDdXZY2Vywau38l+sHG6DWJkUi9/5PL8WXMbF22t94x+Vthzoa1eMtWotmJr9mBtK3aFNlWsYd+bjIftA03+abBlPFgsY5ptdPXb9zO4cv9g953vtX64d8niMc5NpkJi59czHMBpxw5mLYYiLE+H1yHHKPde0XqtzbeR09r6Rk/DouWeNDvAPHK/aWtnQjdl9etJaBl29q8rtOVLZUOZzFzDNq3on55Vvb7Uo1o10a5zWPkfWMQ7oW+Yjbso6MD94ULlj7ezNlwe1fdLc5+Cy/2Pe+CQbn0VCC3g36dgGpS9qGAj49qTFwPr4Vy5ikkkj+bWbfaBc3fhgQfDJlBM1DbwrubBOzJyAWYed+4HWfR22lYNlNblesRPfjnnWIrt9W2ALmfriJ2T1Qb496IvdzEblzP1GPPKkjbhioM8yURB2tc237PeUT4WeFZMsa9Vu77rJAcPWXHnAt2H34DG4dv/EF89w9iXmgsqI/f3Yyv1z/l1xrOCqrVXG8CPrWPvecgj9JM983ovwKgeu2Gi3MmuMx57nFh/obt20T/v2GTEq2BQMpJ+zW3VBBuKMGBYy87xU+V3k06RnH8s8VtIXAlUMsn99zhhJlubZK4aU42vOnyDhSKzAZ1ojwB1xaPF11/L4EjnuvhhiMXO52u2T/i7W7Ua4ZmO6sxrrzLCjyvE0jpvcxK7na5dtdrpcxDo5muDXfcPHI/Z1b8dB5ibnY30aDddHOX/1HHZV/YqxY3rHOJ4Z7OsxBm7NizGsbEnXMg8JV/tZxpEbGi/vX477bDvWO/XP7juZU3zTeFYrM7ccc8jFXJzbNynZVj3veeVxlGMIDVq/wQRX58+sDzb6vtnOfD5LbVfqfPByY7/WfuRXvOfPslzEJvTNeZLPvcB23O5nyNLntrGG+GVRTYXY7eeMbMMDn3+ajY9O3n7wG9W+cK0fe/eJvk1QLVCSAD5hdbCMYqoePD0Rp/5YtMwGPxGKmVneTkZkn5q8atBbIueFUDYW6GOyYLuwKLK4M7opkTGpmN/4WypOfpcr9rRBZ32cHh340cdxTWXD/k7OMRJ1ISYVb73mTJsKApHt5ApHZ2fXXR1YvyC/anfomtoa4pj79dg3Pm1cZP9cbMwoiYXzJ+ZC7j8Kpm6H6zsXsdnAfJ59gt2pneOvZjs/JIeGr5jYVxPwyCE/1pO+4jTkbPV3fAJ73eirLjc/9TbumvOtzq3BSPJd2qO/cQgJptfi2FAZ1bUex2ouKTiES1N+x3ypY5BjN/8mv8MxmvQjP8GnWRttEvt7HHQeaTkTYgW5Z/21xMrIy4Se03bebZP6oTjwG6YOdWWry1WzrcetjT/zR9NgHeuYJsVbEOdnt2EfX1Z18wRnYpL/js+ufUFan28xbnFXxxvYFVzQ0NkU8xt5ZuzELsizzj0P3PXKfq/L8qnxh74wN8ivljfdmBtFj4thkFefjDFgOVrkS24De7zEbFtuk++HHKnGDr5IDg01PsjJ+e/4xPvSLvS3L4rSteaH+AiO3jG9ufPzPb4D8sF4ljJ32lQ5BButlhl1l9c9jhvvws3RwB/1/FSby35H2pjMxjLGP/nbfRjzojdnHK/Go8qLOkavRz/6PBuf8tvNR8GryfNVk+RRovCudtoiWk5Y76r4Wwm3ifT34/C3Ak29jUAxvqRQemv+FXIn4EfaTJ30ghSbZeG1LgAXoniZBL4GgXJzqOvJW4fz1wD0AF7InHjbBv8BvOomfqKNDxa/R4TNjU/PqK968Ibi6DGRcOPzmHF7UKun8dXmVPft/WvdmuQWgo60KbqVT6BCuzv5EGTyhAQ+P4H2hUD4IrhthhZfEHx+b35/Fk7x+2IIPtfGB48aH+5rAd346OPhT75xs0Uej7LrzzsUHF9moNgGoL/K92Uc23HE+/3Z88GPP7xOMn8+3LSyE6Ejt+WJRH7tIZ9/UzA+z8arI3dbeI9sao60CbCHzaG4C23shAVfReXxr3Ed3Ymh3/T7451uvP3tCfwO5qxPt/H59lGnBSRAAiRAAiRAAiRAAiRAAl+NADc+Xy2i9IcESIAESIAESIAESIAESGAicNJXnf7Ptv31v2zbX//vdjp9v9WvP+VXR77bTqf/tm3//A/b9s9/sT7/6kDfv9lO3/3v7XT663b67r/e0O/77fTdv9lO3//jdvrDvz2gB/b+YTt99z+0zx/+83Y6/cftdGq24/7q819sp9N/2E5/80/b6ft/v51Of3egT5P1L1Vf6/P9f99Op/90UN/KDl7fjxUZkRFzgDnAHPiaOfDvpHA5/eu/3f7n//pJ1+H/90967fQHOfeVzXUGf9vbX2/H74Q9Ux6TwFci8P8B5eXzuJtZ6BYAAAAASUVORK5CYII=" - } - }, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "https://realpython.com/pandas-dataframe/#working-with-time-series\n", - "• (outfile[\"Start_datetime\"] - outfile[\"Start_datetime_first\"]).apply(lambda x: x.total_seconds() / 60.0 / 60 /24)\n", - "![image.png](attachment:image.png)\n", - "\n", - "temp_c = [ 8.0, 7.1, 6.8, 6.4, 6.0, 5.4, 4.8, 5.0,\n", - "... 9.1, 12.8, 15.3, 19.1, 21.2, 22.1, 22.4, 23.1,\n", - "... 21.0, 17.9, 15.5, 14.4, 11.9, 11.0, 10.2, 9.1]\n", - "Now you have the variable temp_c, which refers to the list of temperature values.\n", - "\n", - "The next step is to create a sequence of dates and times. Pandas provides a very convenient function, date_range(), for this purpose:\n", - "\n", - ">>> dt = pd.date_range(start='2019-10-27 00:00:00.0', periods=24,\n", - "... freq='H')\n", - ">>> dt\n", - "DatetimeIndex(['2019-10-27 00:00:00', '2019-10-27 01:00:00',\n", - " '2019-10-27 02:00:00', '2019-10-27 03:00:00',\n", - " '2019-10-27 04:00:00', '2019-10-27 05:00:00',\n", - " '2019-10-27 06:00:00', '2019-10-27 07:00:00',\n", - " '2019-10-27 08:00:00', '2019-10-27 09:00:00',\n", - " '2019-10-27 10:00:00', '2019-10-27 11:00:00',\n", - " '2019-10-27 12:00:00', '2019-10-27 13:00:00',\n", - " '2019-10-27 14:00:00', '2019-10-27 15:00:00',\n", - " '2019-10-27 16:00:00', '2019-10-27 17:00:00',\n", - " '2019-10-27 18:00:00', '2019-10-27 19:00:00',\n", - " '2019-10-27 20:00:00', '2019-10-27 21:00:00',\n", - " '2019-10-27 22:00:00', '2019-10-27 23:00:00'],\n", - " dtype='datetime64[ns]', freq='H')\n", - " " - ] - }, { "cell_type": "code", "execution_count": null, @@ -2066,6 +520,47 @@ "outputs": [], "source": [] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Homework: Testing your knowledge on another data set\n", + "\n", + "Digester case study\n", + "\n", + "* Plot time sequence plots of each variable.\n", + "* Correlations between columns?\n", + "* Correlation plot as a heatmap?\n", + "* Top 5 correlations related to \"Y-Kappa\"\n", + "* Select only those columns: scatter plot matrix: 6 x 6 matrix." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Homework: Try the above steps again on a different data set\n", + "\n", + "There is another data set, about the taste of Cheddar cheese: https://openmv.net/info/cheddar-cheese\n", + "\n", + "Read the data set in:\n", + "```python\n", + "cheese = pd.read_csv(\"https://openmv.net/file/cheddar-cheese.csv\")\n", + "```\n", + "\n", + "1. Drop the column called \"Case\"\n", + "2. Calculate the correlation matrix of values and display that\n", + "3. Plot a scatter plot matrix of these values:\n", + " \n", + " * with the \"kde\" on the diagonal\n", + " * squares for the markers\n", + " * alpha value of 0.8 for the points. \n", + " \n", + "*Hint*: look at the documentation for `scatter_matrix` to see how to do this. You can look at the documentation inside Jupyter in several ways:\n", + "* ``help(scatter_matrix)``\n", + "* ``scatter_matrix?`` and then hit Ctrl-Enter." + ] + }, { "cell_type": "code", "execution_count": null, @@ -2096,7 +591,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.1" + "version": "3.7.9" }, "toc": { "base_numbering": "1", From 260bbf597bd50824699ad3494739bc008185d726 Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Tue, 3 Nov 2020 14:31:38 +0100 Subject: [PATCH 103/134] Added the section on filtering and grouping. --- Module-14-interactive.ipynb | 238 +++++++++++++++++++++++++++++------- 1 file changed, 197 insertions(+), 41 deletions(-) diff --git a/Module-14-interactive.ipynb b/Module-14-interactive.ipynb index 5fa3055..f039962 100644 --- a/Module-14-interactive.ipynb +++ b/Module-14-interactive.ipynb @@ -7,7 +7,7 @@ }, "source": [ "

    Table of Contents

    \n", - "" + "" ] }, { @@ -44,8 +44,6 @@ "\n", "* Setting date and time stamps\n", "* More plots with Pandas\n", - "* Plotting with the Seaborn library\n", - "* Using the .loc and .iloc functions for a data frame\n", "* Filtering and grouping data\n", "\n", "**Requirements before starting**\n", @@ -189,7 +187,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "__Check your understanding__\n", + "## Date and time processing: Check your understanding\n", "\n", "From the provided Excel file, read in the data. Convert the date and time column to the desired format:\n", "\n", @@ -259,13 +257,16 @@ "source": [ "## Recap: histogram\n", "\n", - "Similar to ``df.plot.line()`` and ``df.plot.box`` to get a line and box plot, you can also use ``df.plot.hist()`` to get a histogram. \n", + "Similar to ``df.plot.line()`` and ``df.plot.box()`` to get a line and box plot, you can also use ``df.plot.hist()`` to get a histogram. \n", "\n", "But this tries to put all histograms in one plot. Rather, to get one histogram per variable, try:\n", "```python\n", "flot.hist()\n", "```\n", - "and adjust the figure size to show them nicely. Also adjust the number of bins, and colour to be `'lightblue'`." + "and \n", + "* adjust the figure size to show them full size on your screen\n", + "* adjust the number of bins, \n", + "* set the colour to be `'lightblue'`" ] }, { @@ -293,8 +294,9 @@ "flot.plot()\n", "```\n", "\n", - "But if you want each plot in its own axis, your can use a loop:\n", + "But if you want each plot in its own axis instead, you need to use a loop to create multiple plots:\n", "```python\n", + "print(flot.columns)\n", "for column in flot.columns:\n", " print(column)\n", " flot[column].plot()\n", @@ -305,7 +307,7 @@ "```python\n", "numeric_columns = flot.select_dtypes(include=[np.number])\n", "for column in numeric_columns:\n", - " # loop content goes here, indented\n", + " # add the loop content here, indented appropriately\n", "```" ] }, @@ -320,9 +322,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Again, this is not quite what we want. We want to create a new figure for each column. So we have to add one more line to our loop to force a new figure to be created. Another line sets the label on the y-axis.\n", + "Again, this is not quite what we want. We want to create a new figure for each column. So we have to add one more line to our loop to force a new figure to be created. Another line inside the for-loop will set the label on the y-axis for you.\n", "\n", - "Notice also that you do not need to create the looping variable.\n", + "Notice also that you do not need to create the looping list `numeric_column` separately.\n", "\n", "```python\n", "import matplotlib.pyplot as plt\n", @@ -368,7 +370,7 @@ "source": [ "The scatter plot matrix is a visual tool to help create a scatter plot of each combination. The plot on the diagonal would not be an interesting scatter plot, so this is often replaced with a histogram or a kernel density estimate (kde) plot.\n", "\n", - "Use the code below to try creating both types:\n", + "Use the code below to try creating both types of plots on the diagonal:\n", "```python\n", "from pandas.plotting import scatter_matrix\n", "\n", @@ -384,6 +386,60 @@ "outputs": [], "source": [] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Learn about filtering and grouping (Blender Efficiency dataset)\n", + "\n", + "\n", + "Filtering and grouping data is part of the daily work of anyone working with data. The reason is because once you have filtered the data or grouped it, then you want to calculate some statistics or create a visualization on the result. So your workflow becomes:\n", + "\n", + ">1. Import all your data;\n", + ">2. Filter or group to get a subset of the data;\n", + ">3. Do calculations and create visualizations on the subset of the data.\n", + "\n", + "\n", + "Some typical examples of filtering and grouping:\n", + "\n", + "* Filter out and keep only the data after 1 January 2018. Throw the rest away.\n", + "* Extract only the rows in the data frame where vessel V145 was used, and ignore the rest.\n", + "* Group the data by type of product (we have product name A, B, C and D). Do the same set of calculations/visualizations for each product.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The [\"Blender Efficiency\" data set](https://openmv.net/info/blender-efficiency) is related to a set of designed experiments. There are 4 factors being changed to affect the blending efficiency: \n", + "* `particle size`\n", + "* `mixer diameter`\n", + "* `mixer rotational speed`, and \n", + "* `blending time`.\n", + "\n", + "[Last time](https://yint.org/pybasic13) we mentioned 6 steps in a data workflow:\n", + "\n", + "1. **Define the objective**: understanding which factors can be changed to improve blending efficiency.\n", + "2. **Get your data**: in this example it is given to you at the web site address above.\n", + "3. **Explore** your data: use tables and plots.\n", + "4. **Clean** your data, if needed. In this case the data are pre-cleaned.\n", + "5. **Calculations and models**: later we will see how to build a regression model from these data. For now we will calculate correlations and show the results for groups.\n", + "6. **Communicate your result**: show the correlations." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Step 2 and 3: get your data and explore it\n", + "\n", + "```python\n", + "import pandas as pd\n", + "blender = pd.read_csv('http://openmv.net/file/blender-efficiency.csv')\n", + "\n", + "```" + ] + }, { "cell_type": "code", "execution_count": null, @@ -391,6 +447,17 @@ "outputs": [], "source": [] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Tips to explore your data.\n", + "\n", + "* Sort the table by the outcome value (the `BlendingEfficiency` column). Values from low to high. Visually, in the table, which columns appear to be related to it?\n", + "\n", + "* Is a box plot useful?" + ] + }, { "cell_type": "code", "execution_count": null, @@ -398,6 +465,16 @@ "outputs": [], "source": [] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now move on to calculations and other visualizations inspired by those calculations:\n", + "\n", + "* Create and display the numeric correlation matrix. Why columns are most correlated with the outcome variable?\n", + "* Instead of plotting a scatter plot matrix for each and every interesting correlation, rather plot a scatter plot matrix. What interesting features do you observe?" + ] + }, { "cell_type": "code", "execution_count": null, @@ -409,21 +486,36 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Learn about filtering and grouping (Blender Efficiency dataset)\n", + "Some more models/calculations: the particle size (discrete values at 2, 5 and 8) seem to have an interesting relationship to the outcome variable.\n", "\n", + "Let's look at this a bit more. Start with the scatter plot of just these 2 variables:\n", + "```python\n", + "blender.plot.scatter(x=\"ParticleSize\", y=\"BlendingEfficiency\")\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, we will create a subset of the data set showing just the results when the particle size is \"2\":\n", "\n", - "Filtering and grouping data is part of the daily work of anyone working with data. The reason is because once you have filtered the data or grouped it, then you want to calculate some statistics or create a visualization on the result. So your workflow becomes:\n", + "```python\n", + "blender[\"ParticleSize\"] == 2\n", + "```\n", "\n", - "1. Import all the data\n", - "2. Filter or group\n", - "3. Do calculations and create visualizations on the filtered/grouped data\n", + "will create an 'indicator' variable with `True` values where the condition is met. We only want the rows where the condition is true. \n", "\n", + "In [module 12](https://yint.org/pybasic12#Accessing-entries), in the sub-section on \"Accessing entries\", you saw how you can do this.\n", + "```python\n", + "blender[blender[\"ParticleSize\"] == 2]\n", + "```\n", "\n", - "Some examples of filtering and grouping:\n", + "returns just the 4 rows where this condition is true.\n", "\n", - "* Filter out and keep only the data after 1 January 2018. Throw the rest away.\n", - "* Extract only the rows in the data frame where vessel V145 was used, and ignore the rest.\n", - "* Group the data by vessel (we have vessel V145, V205 and V175). Do the same set of calculations/visualizations for each group.\n" + "* Try it below. \n", + "* Also, add code to return only the rows when `ParticleSize` $\\leq 5$.\n", + "* Change the filter to return rows when `ParticleSize` $> 5$. How many rows are that?" ] }, { @@ -437,16 +529,13 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "* Import data.\n", - "* Table\n", - "* Sort by y-value (last column)\n", - "* What is related to it?\n", - "* Is a boxplot useful?\n", - "* Corr matrix\n", - "* scatter_matrix(blender, alpha = 0.8, figsize=(20,20), diagonal = 'hist', marker='s'); <-- shows the DoE structure\n", - "* Filter results by Particle Size\n", - "* Groupby ParticleSize\n", - "* Calculate the mean efficiency within each particle size category" + "Now you can do interesting things on this subset. The subset is just a regular data frame, so you can plot them or do further calculations with them.\n", + "\n", + "```python\n", + "blender[blender[\"ParticleSize\"] == 2].mean()\n", + "```\n", + "\n", + "will calculate the average of only these rows. " ] }, { @@ -454,18 +543,85 @@ "execution_count": null, "metadata": {}, "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, "source": [ - "import pandas as pd\n", - "from pandas.plotting import scatter_matrix\n", - "blender = pd.read_csv('http://openmv.net/file/blender-efficiency.csv')\n", - "blender.corr()\n", - "scatter_matrix(blender, alpha = 0.8, figsize=(20,20), diagonal = 'hist', marker='s');\n", - "blender.groupby(\"ParticleSize\").std()\n", - "\n", - "#blender.boxplot()\n", - "#blender.sort_values('BlendingEfficiency', inplace=True)\n", - "#blender.hist(figsize=(20,20))\n", - "#flot.loc[:, [\"Air flow rate\"]].boxplot()" + "Next, calculate the average of only the \"BlendingEfficiency\" column when particle size is 2, 5 and 8. In other words, calculate 3 averages.\n", + "\n", + "You probably end up with something like this:\n", + "```python\n", + "print(blender[blender[\"ParticleSize\"] == 2][\"BlendingEfficiency\"].mean())\n", + "print(blender[blender[\"ParticleSize\"] == 5][\"BlendingEfficiency\"].mean())\n", + "print(blender[blender[\"ParticleSize\"] == 8][\"BlendingEfficiency\"].mean())\n", + "```\n", + "\n", + "Can it be done more cleanly? Perhaps you could do it in a loop?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The ``df.groupby()`` function in Panadas is a way to do that in a single line.\n", + "\n", + "```python\n", + "blender.groupby(by=\"ParticleSize\").mean() # simplify it: leave out the \"by=\"\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now go wild. Try it with different types of functions:\n", + "\n", + "* ``blender.groupby(\"ParticleSize\").std()``\n", + "* ``blender.groupby(\"ParticleSize\").max()``\n", + "* ``blender.groupby(\"ParticleSize\").plot()`` # what do you think this does? Guess before testing it!\n", + "* ``blender.groupby(\"ParticleSize\").plot.scatter(x=\"BlendingTime\", y=\"BlendingEfficiency\")``" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Lastly, you can (and often) use `groupby` in a loop:\n", + "\n", + "```python\n", + "for psize, subset in blender.groupby(by=\"ParticleSize\"):\n", + " print(psize)\n", + " display(subset)\n", + " \n", + " # Then add code here to do something with the \"subset\" data frame.\n", + " # For example:\n", + " \n", + " ax = subset.plot.scatter(x=\"BlendingTime\", y=\"BlendingEfficiency\")\n", + " ax.set_title(f\"When particle size = {psize}\")\n", + "```" ] }, { From 47f983636704b2c492967bb9775e110f73be1d7a Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Tue, 3 Nov 2020 15:00:19 +0100 Subject: [PATCH 104/134] Tweaks to module 14. --- Module-14-interactive.ipynb | 51 +++++++++++++++++++++++++------------ 1 file changed, 35 insertions(+), 16 deletions(-) diff --git a/Module-14-interactive.ipynb b/Module-14-interactive.ipynb index f039962..f26a8ed 100644 --- a/Module-14-interactive.ipynb +++ b/Module-14-interactive.ipynb @@ -7,7 +7,7 @@ }, "source": [ "

    Table of Contents

    \n", - "" + "" ] }, { @@ -676,21 +676,6 @@ "outputs": [], "source": [] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Homework: Testing your knowledge on another data set\n", - "\n", - "Digester case study\n", - "\n", - "* Plot time sequence plots of each variable.\n", - "* Correlations between columns?\n", - "* Correlation plot as a heatmap?\n", - "* Top 5 correlations related to \"Y-Kappa\"\n", - "* Select only those columns: scatter plot matrix: 6 x 6 matrix." - ] - }, { "cell_type": "markdown", "metadata": {}, @@ -717,6 +702,40 @@ "* ``scatter_matrix?`` and then hit Ctrl-Enter." ] }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Homework: Testing your knowledge on another data set\n", + "\n", + "The pulp digester is an industrial unit operating in the pulp and paper industry. \n", + "You can find the data on this page: https://openmv.net/info/kamyr-digester\n", + "\n", + "Some things to try when exploring the data:\n", + "\n", + "* Using a set of histograms, one per variable, find 2 variables which have a bimodal distribution. Which 2 have a normal distribution?\n", + "* For the 2 variables with a bimodal distribution: make a time-series (sequence) plot, to visualize what they look like when their data are plotted in sequence order. Do you now see why they have a bimodal histogram?\n", + "* Plot time sequence plots of some of the other variables, including the output variable called `'Y-Kappa'`.\n", + "* Which interesting correlations are there with this variable? Write Python code to find the 3 strongest positively correlated columns, and 3 strongest negatively correlated columns.\n", + "* Create a new data frame with only these 6 columns of strongly correlating variables and add the `Y-Kappa` as the 7th column.\n", + "* Create a scatter plot matrix for only this group of data. Use a `kde` for the diagonal plots.\n", + "* If you needed to increase the Kappa number for this process, which variables would you change and in which direction?\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, { "cell_type": "code", "execution_count": null, From 3333e54922f317b71a1e531cf68e187e4ff35d80 Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Fri, 20 Nov 2020 14:43:45 +0100 Subject: [PATCH 105/134] Fix the name of the Seaborn library: typo. --- Module-14-interactive.ipynb | 5 ++--- 1 file changed, 2 insertions(+), 3 deletions(-) diff --git a/Module-14-interactive.ipynb b/Module-14-interactive.ipynb index f26a8ed..a9c7171 100644 --- a/Module-14-interactive.ipynb +++ b/Module-14-interactive.ipynb @@ -183,7 +183,6 @@ "source": [] }, { - "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ @@ -651,7 +650,7 @@ "This is how you can install the package called `seaborn` in your virtual environment called ``myenv``:\n", "```bash\n", " conda activate myenv <--- change the last word in the command to the name of your actual environment\n", - " pip install seaboard\n", + " pip install seaboarn\n", "```\n", "\n", "Or in one line:\n", @@ -766,7 +765,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.9" + "version": "3.8.1" }, "toc": { "base_numbering": "1", From 2937eae534b14c55a92d205a96f4707ea0041a4d Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Fri, 20 Nov 2020 14:55:12 +0100 Subject: [PATCH 106/134] Typo when fixing the typo fixed now :( --- Module-14-interactive.ipynb | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/Module-14-interactive.ipynb b/Module-14-interactive.ipynb index a9c7171..9560321 100644 --- a/Module-14-interactive.ipynb +++ b/Module-14-interactive.ipynb @@ -650,7 +650,7 @@ "This is how you can install the package called `seaborn` in your virtual environment called ``myenv``:\n", "```bash\n", " conda activate myenv <--- change the last word in the command to the name of your actual environment\n", - " pip install seaboarn\n", + " pip install seaborn\n", "```\n", "\n", "Or in one line:\n", From bee9cafa06a1f03522834869bfe62b4e88b4077f Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Fri, 20 Nov 2020 15:01:10 +0100 Subject: [PATCH 107/134] Rather use conda, and not pip, to install packages. --- Module-14-interactive.ipynb | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/Module-14-interactive.ipynb b/Module-14-interactive.ipynb index 9560321..131005d 100644 --- a/Module-14-interactive.ipynb +++ b/Module-14-interactive.ipynb @@ -650,7 +650,7 @@ "This is how you can install the package called `seaborn` in your virtual environment called ``myenv``:\n", "```bash\n", " conda activate myenv <--- change the last word in the command to the name of your actual environment\n", - " pip install seaborn\n", + " conda install seaborn\n", "```\n", "\n", "Or in one line:\n", From 8dca745625c4d814ffbcd1f0efec3463ceb2e7f4 Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Fri, 20 Nov 2020 15:09:58 +0100 Subject: [PATCH 108/134] Adding the start of module 15. --- Module-15-interactive.ipynb | 205 ++++++++++++++++++++++++++++++++++++ 1 file changed, 205 insertions(+) create mode 100644 Module-15-interactive.ipynb diff --git a/Module-15-interactive.ipynb b/Module-15-interactive.ipynb new file mode 100644 index 0000000..e624fd9 --- /dev/null +++ b/Module-15-interactive.ipynb @@ -0,0 +1,205 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "toc": true + }, + "source": [ + "

    Table of Contents

    \n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "> All content here is under a Creative Commons Attribution [CC-BY 4.0](https://creativecommons.org/licenses/by/4.0/) and all source code is released under a [BSD-2 clause license](https://en.wikipedia.org/wiki/BSD_licenses).\n", + ">\n", + ">Please reuse, remix, revise, and [reshare this content](https://github.com/kgdunn/python-basic-notebooks) in any way, keeping this notice." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Course overview\n", + "\n", + "This is the fifth module of several (11, 12, 13, 14, 15 and 16), which refocuses the course material in the [prior 10 modules](https://github.com/kgdunn/python-basic-notebooks) in a slightly different way. It places more emphasis on\n", + "\n", + "* dealing with data: importing, merging, filtering;\n", + "* calculations from the data;\n", + "* visualization of it.\n", + "\n", + "In short: ***how to extract value from your data***.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Module 15 Overview\n", + "\n", + "In this module we will cover\n", + "\n", + "* Fitting a linear regression model to the data\n", + "* Visualization of the linear regression model\n", + "* Accessing data from your data frame using `.loc` and `.iloc`\n", + "* Summarizing your data using an aggregation function.\n", + "\n", + "**Requirements before starting**\n", + "\n", + "* Have your Python installation working as you had for modules 11 to 14, including the Pandas library installed. \n", + "\n", + "* An extra requirement: install the `scikit-learn` and `seaborn` libraries. See instructions below." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Keeping Conda up to date and installing new packages\n", + "\n", + "\n", + "Newer versions of packages are released frequently. You can update your packages (libraries), with this command::\n", + "```bash\n", + "\n", + " conda update -n base conda\n", + " conda update --all\n", + "```\n", + "\n", + "### Installing a new package in your virtual environment\n", + "\n", + "You will come across people recommending different packages in Python for all sorts of interesting applications. For example, the library `seaborn` is often recommended for visualization. But you might not have it installed yet. \n", + "\n", + "This is how you can install the package called `seaborn` and `scikit-learn` packages in your virtual environment called ``myenv``:\n", + "```bash\n", + " conda activate myenv <--- change the last word in the command to the name of your actual environment\n", + " conda install seaborn scikit-learn\n", + "```\n", + "\n", + "Or in one line:\n", + "```bash\n", + " conda install -n myenv seaborn scikit-learn\n", + "```\n", + "\n", + "\n", + "### Updating an existing package\n", + "\n", + "Similar to the above, you can update a package to the latest version. Just change ``install`` to ``update`` instead.\n", + "Or in one line:\n", + "```bash\n", + " conda update -n myenv seaborn scikit-learn\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Building regression models\n", + "\n", + "In the [prior module](https://yint.org/pybasic14) you learned about setting the date and time when importing data, visualizing your data with box plots, histograms, line or time-series plots, and scatter plots. You applied these to your own data, and learned about the very powerful ``groupby`` function in Pandas.\n", + "\n", + "In this module we will take these skills a step further, but first, we will learn about fitting regression models to a data set." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# IGNORE this. Execute this cell to load the notebook's style sheet.\n", + "from IPython.core.display import HTML\n", + "css_file = './images/style.css'\n", + "HTML(open(css_file, \"r\").read())" + ] + } + ], + "metadata": { + "hide_input": false, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.1" + }, + "toc": { + "base_numbering": "1", + "nav_menu": {}, + "number_sections": true, + "sideBar": true, + "skip_h1_title": true, + "title_cell": "Table of Contents", + "title_sidebar": "Contents", + "toc_cell": true, + "toc_position": { + "height": "calc(100% - 180px)", + "left": "10px", + "top": "150px", + "width": "348.984px" + }, + "toc_section_display": true, + "toc_window_display": true + }, + "varInspector": { + "cols": { + "lenName": 16, + "lenType": 16, + "lenVar": 40 + }, + "kernels_config": { + "python": { + "delete_cmd_postfix": "", + "delete_cmd_prefix": "del ", + "library": "var_list.py", + "varRefreshCmd": "print(var_dic_list())" + }, + "r": { + "delete_cmd_postfix": ") ", + "delete_cmd_prefix": "rm(", + "library": "var_list.r", + "varRefreshCmd": "cat(var_dic_list()) " + } + }, + "types_to_exclude": [ + "module", + "function", + "builtin_function_or_method", + "instance", + "_Feature" + ], + "window_display": false + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} From 674d91e27c64f08bc8489e5572512c73ac349f4b Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Fri, 20 Nov 2020 16:01:27 +0100 Subject: [PATCH 109/134] Updated the 15th module. Adding starting text on linear regression. --- Module-15-interactive.ipynb | 266 +++++++++++++++++++++++++++++++++++- 1 file changed, 263 insertions(+), 3 deletions(-) diff --git a/Module-15-interactive.ipynb b/Module-15-interactive.ipynb index e624fd9..d1fe3fe 100644 --- a/Module-15-interactive.ipynb +++ b/Module-15-interactive.ipynb @@ -101,16 +101,276 @@ "\n", "In the [prior module](https://yint.org/pybasic14) you learned about setting the date and time when importing data, visualizing your data with box plots, histograms, line or time-series plots, and scatter plots. You applied these to your own data, and learned about the very powerful ``groupby`` function in Pandas.\n", "\n", - "In this module we will take these skills a step further, but first, we will learn about fitting regression models to a data set." + "In this module we will take these skills a step further, but first, we will learn about fitting regression models to some data. \n", + "\n", + "Start by importing Pandas, but also the tools to build regression models, from the `scikit-learn` library, which is imported as `sklearn`. You can read more about scikit-learn at their website: https://scikit-learn.org/stable/" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as p\n", + "from sklearn.linear_model import LinearRegression" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We will use a data set that is about the taste of cheddar cheese: https://openmv.net/info/cheddar-cheese\n", + "\n", + "Read the data set in and set the column called \"Case\" to be the index:\n", + "```python\n", + "cheese = pd.read_csv(\"https://openmv.net/file/cheddar-cheese.csv\").set_index(\"Case\")\n", + "```\n", + "\n", + "In the [prior module](https://yint.org/pybasic14) you were asked to \n", + "\n", + "1. calculate the correlation matrix of values and display that. Were you able to do so? \n", + "2. Could you also visualize a scatter plot matrix of these values with the \"kde\" on the diagonal, squares for the markers and an alpha value of 0.8 for the points?\n", + " \n", + "*Hint*: look at the documentation for `scatter_matrix` to see how to do this. You can look at the documentation inside Jupyter in several ways:\n", + "* ``help(scatter_matrix)``\n", + "* ``scatter_matrix?`` and then hit Ctrl-Enter." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    AceticH2SLacticTaste
    Acetic1.0000000.6179560.6043480.549529
    H2S0.6179561.0000000.6438970.755763
    Lactic0.6043480.6438971.0000000.703482
    Taste0.5495290.7557630.7034821.000000
    \n", + "
    " + ], + "text/plain": [ + " Acetic H2S Lactic Taste\n", + "Acetic 1.000000 0.617956 0.604348 0.549529\n", + "H2S 0.617956 1.000000 0.643897 0.755763\n", + "Lactic 0.604348 0.643897 1.000000 0.703482\n", + "Taste 0.549529 0.755763 0.703482 1.000000" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmMAAAHmCAYAAAA/XYmLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABtzUlEQVR4nO3dd3hUVf7H8fc3nRB6EjqE3osQmoIFsK69i72hrou67upa1rWs61p+a2NtWLFh7w0VRUUQCL333ntvSc7vj0zWGBNImZl7Z+bzeh4eMjOZO5/MnLnznXPOPdecc4iIiIiIN+K8DiAiIiISy1SMiYiIiHhIxZiIiIiIh1SMiYiIiHhIxZiIiIiIh1SMiYiIiHgo7MWYmV1iZqPMbLSZNSxy/T1mNi1w/c3hziUiIiLihYRwPlig+DrKOTeglF/5i3Pu23BmEhEREfFSuHvGjgfiAz1jQ80svtjtD5nZt2bWNcy5RERERDxh4VyB38xuBzo55waZ2UPAeOfcB4HbajvnNptZK+Al51y/g20rPT3dZWVlhT60RIWlS5ei9nJwC9fvLPH6lplpYd2G19RW/CcU7SpY24zF9hIN7/NQKu352bZi3kbnXEZJt4V1mBLYBvwQ+Pk7ILvwBufc5sD/C8ysxDub2WBgMECTJk3IyckJaViJHtnZ2Wovh3DK0DElXv/pkL5h3YbX1Fb8JxTtKljbjMX2Eg3v81Aq7fn57IZ+y0q7T7iHKccCnQM/dwWWFN5gZtUD/6dTSpHonBvmnMt2zmVnZJRYXIqIiIhElLAWY865qcAeMxsN9ADeM7OhgZsfMbOfgU+B28KZS0RERMQr4R6mxDn312JXDQlcf024s0Sy2au38/PCjSzdtIsDefnUq57CYU1q0bt5HaokFT8uQkRERPwq7MWYVM6EJZv595dzmLJ8KwC1UhNJjI9j48595DuonpLA+T2bcO1RLahdNcnbsCJhpHks0a/4xOjC11yvceyJtve7irEIkZuXz7+/nMuLY5bQsGYV7jmlPSd1qk9m9RQA9h7IY/ySzbyTs4IXxyzhrQnLueWEtlzUqwmlHRAhUlQwdmKRuiMUfytsV6V9AFdmm1J+eu4OrrTnx24o/T4qxiLAnv15/PGNSXw/bwOX9GnKbSe2JTXpty9dSmI8R7XO4KjWGcxft4N7P53FXR/N5Id563n47C7qJRMREfEpnZvS5w7k5fPHNyYxev4G7j+9I/ed1vF3hVhxretW4/Ure3H3Ke35cf5GTv3vGBas2xGmxCIiIlIeKsZ8zDnHHR/M4Pt5G3jgjE5c1Ltpme9rZlx+RDPevbYPew/kc+YzYxm7cGMI04qIiEhFqBjzsbcnruDdSSu5oX9LLujZpELb6NK4Jh9dfzj1a6Rw2csTGTVnXZBTioiISGVozphPzVu7g398Mot+rdK5cWDrSm2rUa1U3rmmD5e8NIFrX5/E0Au6cULHekFKKuIPmlQc/fQaS6FoawvqGfOhvHzHre9PJy05gcfO60p8XOWPhqyZmsTrV/WiY8MaXP/mZL6csSYISUVERKSyVIz50Ms/L2Haiq3cfUp70tOSg7bd6imJvHZlL7o2rskNb03hh/kbgrZtERERqRgNU/rM2m17+c/X8xnQNpNTuzQI+vbTkhN46bIeXDDsF655LYfXruxFj6zaQX8c+b1oW6RQ/EXty//0Gklp1DPmM//39Tzy8h33nNohZIu11qiSyKtX9qRBjSpc8fJEZq7aFpLHERERkUNTz5iPzFy1jfcnr+Tqfs1pXDs1pI+VnpbMa1f14pxnxnLpSxN499o+NM9IC+ljir/oW7oEi9qSxKJgtnv1jPmEc44HvphDzSqJXH9My7A8ZsOaVXj9ql4AXPLSBNZv3xuWxxUREZFfqRjziV8Wb2bsok0M6d+KGlUSw/a4zTPSeOXynmzZtZ9LX57I9r0HwvbYIiIiomLMN54ctYDMaskM6lWxxV0ro1OjGjx7cXcWrt/B4Fdz2HsgL+wZREREYpXmjPnAhCWbGbd4E3ed3J6UxHhPMvRrlcH/ndOFG9+ayp/fnsp/B3ULyvpm8qtYmj+jOUThF6vPbSS1NT9mKhRJz2M0UjHmA0+OWkB6WjKDKnjKo2A5rWtDNuzYx/2fz+GeT2Zx32mhO6LTa9rxiJSP3jPe0vMf3VSMeWzqiq2MWbiRO05qS5Ukb3rFirqqX3M27NjHcz8uJrNaMkMGtPI6koSIduISLGpLEouC2e7DPmfMzC4xs1FmNtrMGha5voGZfWdmY81sYLhzeeXVsUtJS05gUK+mXkf5n7+d0JYzD2vIf76Zz1sTlnsdR0REJKqFtWcsUHwd5ZwbUMLNtwF/B6YDnwHfhjObFzbu3Mdn09dwQc/GpCX7p5MyLs546OzObNq1nzs+nEGdtGSObV/X61giIiJRKdw9Y8cD8YGesaFmVnRcrjMwzjm3E9hhZtXCnC3s3p64gv15+Vzcxz+9YoUS4+N4+sJudGpYgz+9OZmcpZu9jiQiIhKVwt0dUxdIcs4NMLOHgNOADwK3xTvnXODnbUAtYEeY84VNbl4+b/yyjCNa1qFlpj/rzqqB81ie/ew4rhyew7vX9qF1XX9mFX/RHCIJF7W14NDz6K1wF2PbgB8CP38HZBe5rejiVtWBrcXvbGaDgcEATZp4e+RhZY2au57V2/byj1M6eB3loOqkJfPqFT05K3DapPevO5wGNat4HavStOMRKR+9Z7yl5z+6hXuYciwFw5EAXYElRW6bbmZ9zKwqUN05t734nZ1zw5xz2c657IyMjNCnDaFXxy2lQY0UBrbL9DrKITWuncrwK3qyc28ul7w0ga2793sdSUREJGqEtWfMOTfVzPaY2WhgI/CYmQ11zg0BHgZeBaoAd4czV7gtXL+Dnxdu4pbj25AQHxknQWhXvzrDLsnm0pcmcOXwHF6/spcvluKQ6KK1lIJLz6dEqlhru2GvBJxzf3XOHe2cO9s5tz9QiOGcW+mc6++c6+Oc+zrcucLptXHLSIqP4/wejb2OUi59WtTh8fO7Mnn5FoaMmExuXr7XkURERCKef9ZTiBE79+Xy/uRVnNy5PnXSkr2OU24ndarPfad24K6PZ3HnhzN58KxOUbtKv0S30r55ixQXa700UnEVbSsqxsLsw8kr2bkvl0sOz/I6SoVd3CeL9Tv2MfS7hTSsVYUbtEq/iIhIhakYCyPnHMPHLaNzoxp0bVzT6ziVcvOxrVm1ZQ+PfjOfJrVTOf2whoe+k4iIiPyOirEwGrdoEwvX7+T/zunidZRKMzP+fVYnVm3dw63vTadBzSr0bFbb61hSRhp28Z5eA6kMtZ/oomIsjF4dt4xaqYmc3Lm+11GCIjkhnucu7s6Zz4xl8Gs5fPjHI2iWXtXrWBLB9EESXHo+JVLFWttVMRYmq7fu4evZaxl8ZAtSEqNnSYiaqUm8fFkPznh6LJe/PIEP/ngEtasmeR1LQkjfyMWv1DalPPzUXlSMhcmb45cDcGGvyD5zQEma1qnK85d054Lnx3PNazm8flUvkhOip+CMJH7aufhdac9J9vAwB5Hf8GMb1vsndPz4eldGRXNHxoqjEW5fbh4jJiynf9u6NK6d6nWckOjetDb/OacLE5du4Z5PZnsdR0REJGKoZywMvpixhk279nPp4U29jhJSp3RpwOw123lm9CI6NazBoCjsBRQREQk2FWNh8Oq4ZTTPqMoRLdK9jhJyfz2uDbNWb+fuT2bSpl41ujet5XUkKUEwhgAWrt/5m8uFww2ROrwQbp8O6VviEM0pQ8foOZRD8qKNRNuQop9omDLEZqzcxpTlW7m4d1Pi4qJ/pfr4OOPJ87tSv0YVrnt9Euu27/U6koiIiK9VqGfMzL4BznHObQ1crgW85Zw7PojZosKr45aSmhTPWd0beR0lbGqmJjHsku6c8dRYrn9jMiMG9yYxQk6ILodW+C1YpxMSv1EPjZSHn9pLRYcp0wsLMQDn3BYzywxOpOixZdd+Pp62mnO6N6J6SqLXccKqbb3qPHhWJ258ayqPfTOfW09o63WkmOCnnYtIRagNxxa93gUq2l2Rb2b/m51tZk0BF5xI0ePtnBXsz83nkj5ZXkfxxGldG3JedmOe+WERPy3Y4HUcERERX6poMXYnMMbMXjOz14AfgduDFyvy5eU7Xv9lGb2b16ZNvWpex/HMPad2oGVGGn9+exobduzzOo6IiIjvVGiY0jn3lZl1A3oDBvzZObcxqMki3Pdz17Nyyx7uOKmd11E8VSUpnv8O6sap/x3Dze9MZfjlPWPiQIZYoOGFytNzKJFE7TV0ytUzZmZtA/93A5oAq4FVQJPAdRLwytil1K+RwrHt63odxXNt6lXjnlM78NOCjbw4ZonXcURERHylvD1jNwODgf+UcJsD+lc6URRYsG4HYxZu5Jbj2+gowoDzezTmu7nreeTreRzdJoNWdWN36FZERKSoclUKzrnBgR9PdM4dU/QfcNKh7m9mWWa2zsxGm9nXxW67x8ymBW67uTy5/OaVsUtJSojjgp5agb6QmfHAGZ2omhTPze9M40BevteRREREfKGi3TZjy3hdSb5xzh3tnDuuhNv+Erjt0Qrm8ty23Qf4YPIqTu/agNpVk7yO4ysZ1ZL51xmdmLFqG09/v8jrOCIiIr5Q3jlj9cysO1DFzA4zs26Bf0cDZT0D9jFm9pOZ/bmE2x4ys2/NrGt5cvnJOzkr2HMgj0sPz/I6ii+d1Kk+p3VtwNDvFjBj5Tav44iIiHiuvHPGjgcuAxoBRXuvtgN3lOH+a4DWwD7gYzMb5ZybHrjtSefcPWbWCngJ6FfObJ7Ly3cMH7eUns1q06FBDa/j+Na9p3Zg3KJN3Pr+dD750xGaVyflovPjhZeeb6kstaFDK1cx5pwbDgw3s7Occ++X98Gcc/soKMQws8+AjsD0wG2bA/8vMCt56QMzG0zBAQQ0aeK/+VjfzlnHyi17uDPGl7M4lJqpSdx7ageue2MyL41ZwjVHtfA6kvhc0Z150ROUt8xM8yKOxBAVEv4Q7a9DRU+H9LOZvQg0cM6daGbtgT7OuRcPdiczq+ac2xG4eAQwtMht1Z1z280svbRczrlhwDCA7Oxs3634//yPi2lYs4qWsyiDEzrWY2C7ujz27XxO6lSfxrXLOsodeaJ9JyKxSe264vTcSXEVHR96GRgJNAhcng/cVIb79TOzSWY2FljtnBtvZoUF2SNm9jPwKXBbBXN5ZuLSzeQs28LV/ZqRoGG3QzIz7jutA/Fm/P2jmTjnu9paREQkLCpaNaQ7594B8gGcc7lA3qHu5Jz7wjnX3Tl3uHPu1sB1QwL/X+OcO8I518c590MFc3nm2dGLqJWayLk9GnsdJWI0qFmFvxzXhh/mb+Cz6Wu8jiMiIuKJig5T7jKzOgRODm5mvYGYPTRu3todjJq7npsGtiI1qaJPaWy69PAsPpq6ins/nc3RbTKolpLodSTAH8MIfsgg0cGrtqQ27J1oe+6LzhWNRhWtHG4GPgFaBIYWM4Czg5Yqwjz34yKqJMZzaZ8sr6NEnPg44/7TO3LaUz/z3+8WcrsOfpBDKDppP1I/WCJJac9xaR/2IsXpfXpoFT1R+GQzOwpoQ8GJwuc55w4ENVmEWLllN59MXc3FfZpSS4u8VkjnRjU5p3sjXvp5Cef1aEzzDH8eIbdw/c4SP4C0owk9PceHFm09IX5xqOdP+4XwiPYjpytUjJnZ9cAbzrlZgcu1zOwC59zTQU0XAYaOWkhcnDH4yOZeR4lotxzfli9nrOWfn83m5ct7eh0nqMq6Uy6+Qy/slo/2nZCET/GhnsI2V5HCQcVGxYXiudP+I7JVdAL/1c65rYUXnHNbgKuDkiiCLN24i/cmr2RQzybUr1HF6zgRLaNaMjcMaMX38zbw/dz1XscREREJm4oWY3FWZGVWM4sHYm6M7olRC0iMN/54jBYtDYZLD8+ieUZV7vtsNvtzdSJxERGJDRWdwD8SeMfMnqXgiMprgS+DlioCLFi3g4+mrmJwv+ZkVkvxOk5USEqI466T23P5yxN5/ZdlXNG3mWdZShpGKGleSCjnixQOL5R3W5o7JMUVvvbhnnT/6ZC+JT7mwXKonQZH0f1H0ee76M+lvT6Ft/mJ3/IEW0WLsb9RcFqi6yiYwD8FqB+sUJHgkZHzSE2M16l8guzo1hkc0bIOQ79bwNnZjajuk6Uugq20wk7zOyTYdCopCZZIKdwiUUWPpsw3s1+A5sB5QG2g3OeqjFRjF27k69nruOX4NtTWEZRBZWbcdkI7TvnvGIb9sJi/Ht/G60j/U9beMhEvaAkKb7TMTFMxIpVWrmLMzFoD5wMXAJuAtwGcc8cEP5o/5eU77vtsNg1rVuFKD4fRolmnRjU4pUsDXhizmIv7NKVu9dgYBtZOXUJNa7RFL72eka28E/jnAgOAU5xzfZ1zQynDaZCiyTs5K5i7dgd3nNSOlMR4r+NErVuOa0NevuPxbxd4HUVERCSkyjtMeRYFPWPfm9lXwFsUzBmLCZt27uPhr+bSM6s2J3Wq53WcqNakTioX9mrKa78s48q+zaJ2fksw130S8ZKGQyPPKUPHlHiaoWjd3/pZuYox59yHwIdmVhU4HfgzUNfMngE+dM59HfyI/nH/53PYuS+X+8/oSJGVPSREhvRvyXuTVvJ/I+fx7MXdvY5TIj8WTX7MJLFL7dF7B5tPWFLhpdcs/Co6gX8X8AbwhpnVBs4BbgOithj7Yf4GPpyyihv6t6R13Wpex4kJddKSuapfMx7/dgEzV22jY8MaXkcKGq+WGpDYow9WCRa1pdCp6KKv/+Oc2+yce8451z8Ygfxo575c7vxwBi0yqnJ9/5Zex4kpV/RtRvWUBM0dExGRqFXpYiwW3P3xLFZv3cNDZ3UmOUGT9sOpekoiV/drzrdz1jF95Vav44iIiASdirFD+HjqKt6fvJI/9W9FdlZtr+PEpMuOyKJmaiKPfTPf6ygiIiJBV9EV+GPCis27+fuHM+nWpCY3aHjSM9UCvWOPjJzHlOVbOKxJLa8jBY3mYEi0UFuOPHrN/EM9Y6XYsz+P696YBMAT5x9GQryeKi9dengWtasm8ZjmjomISJQJa4VhZllmts7MRpvZ18Vua2Bm35nZWDMbGM5cxTnnuP2D6cxavZ0nLuhK49qpXsYRIC05gWuObM6P8zeQs3Sz13FERESCxovunm+cc0c7544rdv1twN+B4wL/e+bFMUv4aOpq/nJsa/q3retlFCni4j5NqV01if9+v9DrKCIiIkHjRTF2jJn9ZGZ/LnZ9Z2Ccc24nsMPMPFnM69vZ63jgizmc2LEe1x+jeWJ+kpqUwJV9mzF63gZmrtrmdRwREZGgCHcxtgZoDRwDDDSzzkVui3fOucDP24DfzdI2s8FmlmNmORs2bAh6uEnLtvCnEZPp2LAG/3dOF62y70MX9W5KteQEnhm9yOsoIiIiQRHWYsw5t885t8s5lwt8BnQscnPRE45XB7aWcP9hzrls51x2RkZGULMtXL+TK4dPpF71FF66rAdVk3WgqR/VqJLIxX2a8sXMNSza8PtzqomIiESasFYcZlbNObcjcPEIYGiRm6ebWR9gOlDdObc9XLnWbd/LpS9NICHOePWKXqSnJYfroaUCrujbjJd+XsKzoxfxyDldwvKYpZ22SIeGi5+p3QqoHUSCcA9T9jOzSWY2FljtnBtvZoUF2cPAv4BvgQfCFWjbngNc+tIEtu7ez8uX9aRJHR056Xfpacmc36MJH05Zxaqte7yOIyIiUinhHqb8wjnX3Tl3uHPu1sB1QwL/r3TO9XfO9XHOheWE43v253HV8Iks2rCTZy7qTqdG0XMi6mg3+MjmADz/42KPk4iIiFROzK5keiAvnz+9OZmcZVt49NyuHNk6uHPQJLQa1KzCmd0aMmLCcjbu3Od1HBERkQqLyWIsP9/xt/emM2rueu47rSOndGngdSSpgGuPasH+vHxeGrPE6ygiIiIVFnPFmHOO+z+fwwdTVvGXY1tzce+mXkeSCmqekcYJHerx+i/L2LUv1+s4IiIiFRJz6zc8PXoRL/28hMuPyOJPOvl3xBt8ZHO+nLmWtyeu4Iq+zUL2OJ8O6VviEUmnDB2jI5IkZCp7FJzaZuzRkZORKaZ6xj6euopHRs7jtK4NuOsP7bWoaxQ4rEktemTV4sUxS8jNy/c6joiISLnFTDE2adlmbnlvOj2b1ebhszsTF6dCLFpc3a85q7bu4cuZa72OIiIiUm4xUYwt37Sbq1+dRMOaVXjuou4kJ8R7HUmCaGC7ujRPr8qwHxfz6xm1REREIkPUF2O79uVy5fCJ5DvHS5f1oFbVJK8jSZDFxRlX9WvOjFXb+GXxZq/jiIiIlEtUF2POOW77YAaLNuzk6UHdaJZe1etIEiJndmtInapJPP+TFoEVEZHIEtVHUw4fu5RPp63m1hPacHjLdK/jSAilJMZz6eFZPPrNfBas20GrutWC/hg6GknCTW1OykttJjJFbTE2efkW/vXFHAa2y+TaI1t4HUfC4KLeTXl69EKe/2kxD58dvBOI61BxKQ+1FymN2oaUJiqHKXfsPcANI6ZQr0YK/zmnq46cjBG1qyZxTvfGfDRlNeu37/U6joiISJlEZTF276ezWb11D4+fdxg1UhO9jiNhdFW/ZhzIz+eVsUu9jiIiIlImUVeMfTVzDe9NWsn1x7Ske9NaXseRMGtap6pOkSQiIhElquaMrd+xl9s/mEHnRjW4YUArr+OIR647ugU9smoTpzMsiIhIBIiqYuwfH81i9/48HjuvK4nxUdfpJ2XUuVFNOjeq6XWMg9JEXjkUtRE5FLWR6BE1xdjIWWv5atZa/nZCW1pkpHkdR3yqIjsv7dhiy8L1O0tsJzo5t1RWZdtG8Xa5cP1OAFpm6jMv0kVF99GOvQe4++NZtK1Xjav6NfM6joiIiEiZeVKMmdnNZjam2HX3mNk0MxttZjeXZ3v/N3Ie63bs5cGzOmt4UkRERCJK2IcpzSwZKG1Fzr84574tz/YmL9/Cq78s49I+WXRtXLPS+SQ6FQ49FXbrF1L3voSb5vlEl8oOa4uANz1jVwHDS7ntITP71sy6lnVjefmOnlm1+evxbYISTkRERCScwtozZmaJwFHOuafM7L5iNz/pnLvHzFoBLwH9Srj/YGAwQJMmTQDokVWbt6/pE9rgIkGmb81yKGojciiFPftqK5Ev3MOUFwNvlnSDc25z4P8FVsr6UM65YcAwgOzsbBeijBLFig9LaicmxbXMTFO7EF9Su4xe4R6mbANcZ2ZfAR3MbEjhDWZWPfB/OlG05IaIiIjIwYS16HHO/a3wZzMb45wbamZDnXNDgEfMrCMFBeJt4cwlIiIi4hVzLjJH+9LT011WVpbXMWJK8SMRC0XCEYlLly5F7UXKQm1FijvYvk/tRYo6WFuZNGmSc86VOCIZscOBWVlZ5OTkeB0jpkTyIfnZ2dlqL1ImaitS3MH2fWovUtTB2oqZTS7tfp6tkGpmDcxsspntNbOEwHW3mNkYM3sjcOSliIiISFTzcrn6zcAA4BcAM8sAjnHO9QWmA6d7F01EREQkPDwbpnTO7QX2FlnGoicwOvDzt8Ag4N3wJxOpuPx8x/fz1jNy1lqmr9zG5l37qZIUT7P0qvRuXofTuzakXo0Ur2OKiIiP+GnOWE1ge+DnbUCt4r9Q0qKvEj6RMDfMS2MXbuSuj2eyaMMuqqUkkN20Fl0a1WT3gTzmrd3Og1/O5eGv5nJ614bcfFxrGtVK9TqyiJSB9n1SVhVtK34qxrYCDQM/Vw9c/g0t+ip+lJfv+PcXc3hhzBKy6qTy5AWHcVLHeiQUO2n90o27eGP8MoaPW8bnM9Zwx0ntuKRPU0pb5FhERGKDl3PGipsIHBX4eSCBuWQifrYvN4/rXp/EC2OWcEmfpnx545Gc2qXB7woxgKz0qtz5h/aM/uvR9GlRh7s/mcVVw3PYsfeAB8lFRMQvPOsZCxwt+SXQBRgJ3AH8aGZjgOXA415lE3/zyxIbefmOP789la9nr+PuU9pz+RHNynS/BjWr8PJlPRg+din//HwOZz8zjhcvy9awpcgh+OW9L96LtrbgWc+Yc+6Ac26gc66Wc26Ac268c+4h51xf59wg59x+r7KJlMU/P5vNFzPW8vc/tCtzIVbIzLjsiGYMv7wna7bt4Zxnx7F0464QJRURET/z0zClSMT4ZNpqXhm7lCuOaMZV/ZpXeDt9W6Xz1uA+7MvN59znxrFoQ8mrN4uISPRSMSZSTks37uL296fTvWktbj+pbaW3175BdUZc3Zt857hg2C+s2Lw7CClFRCRSqBgTKYf8fMff3p9OXJwx9ILDSCxhon5FtKlXjTev7s3eA3lc+tIENu3cF5TtioiI//lpaQupgGibxOh37+SsYPySzTx4Zica1KwS1G23rluNly7rwYUvjOeKVyby5tW9qZqst6h4S/sYqSy1oUPTnl4ijldv4M279vPAF3Po3bw25/VoHJLHyM6qzVODunHN65MYMmIKz1+STXyc1iETAX14y6+irS1omFKkjJ4ctYCd+3L552kdQ7pQ68D2dbnn1A58N3c9D301N2SPIyIi/qCesQh2ytAxLFz/+6PvWmameZAmui3ZuIvXf1nG+T2b0KputZA/3sW9mzJ/7Q6G/biYlplpnJsdmp44ETk4DbH5Q7S/DuoZEymDR0bOJSkhjpsGtgrbY/7jlPYc0bIOd344gwlLNoftcUVEJLxUjIkcwpw12/lixlqu6teczGopYXvcxPg4nh7UnUa1Urn29Ula8kJEJEppmDLClTQkGS3dtn7x1PcLSUtO4MpyrrIfDDVSE3nx0mxOf+pnrhqew/t/PJw0HWEpYaT9iVSW2tChqWdM5CAWbdjJ5zPWcHGfptRITfQkQ/OMNJ66sBsLN+zkpremkJfvPMkhIiKhoa/YUm7RPpGyqGdGLyI5IY4r+4a/V6yofq0y+MfJ7bn7k1k8MnIet51Y+ZX/JfrF0ntVokvxtlt4sFq0HqCmYiyCaYcaWuu37+Xjqau4sFdT0tOSvY7DJX2aMm/dDp79YRGt66ZxZrdGXkcSiXraz/pDYREWra+HhilFSvHG+OXk5jsuOzzL6ygAmBn3ntqB3s1rc9v7M5i8fIvXkUREJAhUjImUYH9uPm+MX84xbTLJSq/qdZz/SYyP45kLu1O/ZgqDX53Eqq17vI4kIiKVpGJMpARfzFjDxp37uNQnvWJF1aqaxIuXZrPvQB5XD89h9/5cryOJiEglqBgTKcHLY5fSPKMq/Vqmex2lRC0zq/HkoMOYu3Y7f3lnGvk6wlJEJGJpAr+UW7ROoCw0Y+U2pq3Yyj2ntCfOxyfpPqZNJnec1I77P5/DQyPncvuJ7byOJD4T7e9ViV6x1nZVjIkU807OCpIT4jgjAo5WvLJvM5Zt2s1zPywmvWoyVx/Z3OtIIiJSTirGRIrYeyCPj6au4sSO9ahRxZtFXsvDzLjn1A5s3rWff30xh9pVkziru/+LSBER+ZWKMZEiRs5ay469uZzbo7HXUcosPs549LwubN2zn1vfn07N1EQGtKvrdSwRESkj30zgN7NUM/vczEab2cdm5v0qmxJz3slZQePaVejdrI7XUcolOSGe5y7OpkOD6lz3+mS+n7ve60giIlJGfuoZOwEY75y7z8zuDFz+2ONMEiShPi1LMLa/YvNufl64iZuPbe3rifulSUtO4NUrenLxixMY/FoOz1zYnYHt1UMm0a2i732dKuq39HwET2nP5cH4pmcMWAQU9obVBDZ5F0Vi0buTVmIGZ0fwnKuaqUm8flUv2jeowbWvT+KrmWu8jiQiIofgp2JsAdDLzGYB2cDY4r9gZoPNLMfMcjZs2BD2gBK9nHN8NGUVfVum06BmFa/jVEqNKom8dmVPOjeqwR/fmMxrvyzzOpKIiByEn4qxS4GRzrkOwOfARcV/wTk3zDmX7ZzLzsjICHtAiV5TV2xl+ebdnNqlgddRgqJ6SiKvX9WLY9pkctdHM/n3l3O0MKyIiE/5qRgzYHPg541ADQ+zSIz5eOpqkhLiOL5jPa+jBE1qUgLPXdydC3s14bkfFjNkxBR27dOpk0RE/MZPE/jfBN42s4uBA8B5HueJCZq0CXn5js+mr6F/m0yqp/h/bbHySIiP4/7TO9K0TioPfjmXeet28OxF3WmZmeZ1NEHvP4ksaq+h45tizDm3FTje6xyxbuH6ncDv33SVfbOF+s1ame2PW7SJjTv3cVrX6BiiLM7MGHxkCzo0qMENI6Zw2n/H8O+zOkfNkKzEtqLv/aL7raI/l7R/UAHxW7H4fISquCzt/nZD6ffx0zCliCc+mbaKtOQEjmmb6XWUkDqiZTqf3dCXNvWqccOIKdwwYgpbd+/3OpaISMxTMSYxbV9uHl/OXMvxHeqRkhjvdZyQq1+jCu9c04e/HNuaL2as4fjHf2T0PC0QKyLiJRVjEtNGz9vAjr25nBqlQ5QlSYiPY8iAVnx0/RFUT0nkspcnMmTEFNZv3+t1NBGRmKRiTGLaJ1NXU6dqEke0iKzTHwVDx4Y1+HRIX/48sDUjZ61lwH9+YPjYpeRpCQwRkbDyzQR+8UbxiYYVOY1DpNqzP4/v5q7nzG4NSYiPze8lKYnx3DiwFad1bcBdH8/k7k9m8e6kFdx7ake6N63ldbyoF4uTpiVyqb2Gjoox+Y1YerP9uGADew7kcWLH+l5H8VxWelVevaInn89Yw/2fzeGsZ8ZydvdG/O2EtmRUSz70BkR8IJb2X1J5fmovsdkdIAJ8NXMtNVMT6dW8ttdRfMHMOLlzA0b95SiuO7oFH09dRf//G81LY5aQm5fvdTwRkahVqZ4xM2sKbHXObQtcPgY4HVgG/Nc5p+PmJWzKs2bM/tx8vp2zjuM71CMxRocoS1M1OYG/ndCWc7o34p5PZ3PfZ7N5e+IK7jm1A31icG6deE+LjfqLXo/gq+yn0DtAVQAz6wq8CywHugBPV3LbIiHz86KN7Niby4lRdPqjYGuekcbwy3sw7OLu7NqfywXP/8KQEVNYs22P19FERKJKZeeMVXHOrQ78fBHwknPuP2YWB0yt5LZFQmbkzLWkJSfQt1W611F8zcw4rkM9jmydwTOjF/HMD4sYNWcdQ/q34sq+zUhKUK+iiEhlVbYYsyI/9wduB3DO5ZtZyfcQCfCqqzs3L5+vZ6+jf9tMkhOif6HXYEhJjOfPx7bmrG6N+Ofns3noq7m8m1MwdHlk6wyv44nHNGwlsSiY7b6yxdh3ZvYOsAaoBXwHYGb1Ac0Xi3DRuoOdsHQzm3ft1xBlBTSpk8rzl2Tz/bz13PvJLC55aQLHd6jL3//Qnsa1U72OF1Gi9f0l4aH2E10qO8ZwE/ABsBTo65w7ELi+HnBnJbctEhJfzVxLSmIcR7VRj05FHdMmk5F/PpJbjm/Dj/M3MvDRH3ji2wXsPZDndTQRkYhTqZ4x55wD3irh+imV2a5IRZTlG2F+vuOrmWs5qnUGqUlaZq8ykhPiuf6YlpxxWEP+9cUcHvt2Pu9PXskjZ3emV3MddSnBo94ef9HrEXyV6hkzs8Zm9paZ/WRmd5hZYpHbPqp0OpEgm7JiK+t37NNCr0HUoGYVnhrUjTeu6oUZnP/8Lzz01Vz252ptMhGRsqjsMOVLwGhgCFAf+MHMCr8SN63ktkWC7quZa0iMN/q3y/Q6StQ5omU6X9zQj/OyG/PM6EWc8fTPLFi3w+tYIiK+V9lxmgzn3LOBn4eY2UXAj2Z2KqCzDctBhbur2znHlzPX0rdlOtVTEg99Bym3qskJPHhWZ/q3zeS2D2Zw8tAx3H1KBy7o2RgdYR29NGwlsSiY7b6yxViimaU45/YCOOdeN7O1wEgCi8FK5IrGHezj53UlPk5FQagd16EeXZvU5C/vTOOOD2eQs3Qz95/RUfP0iojG95eEj9pPdKnsnvEFoBfwQ+EVzrlvzewc4OFKbjum6DDl0DMzsrN0HspwyayWwiuX9+S/3y3k8VHzmbV6O09f1I0WGWleRxMf0D4vfPRc+19lj6Z8rJTrpwDHVmbbEn56w0qwxccZNw5sRbemNbnxramcOnQM/zm3CyfoAAophfZDsUWvd4HKnij8yYPd7py7oZzbuwS4FIgHLnTOrapEPBHxiX6tMvj8hr5c9/pkrn19Mn89rjXXH9NS88hERKj8MOWkIj/fC9xd0Q2ZWUPgKOfcgEpmEhEfql+jCm8N7s1t70/n/76ez8L1O3nwrM6kJOqUVCIS2yo7TDm88Gczu6no5Qo4Hog3s1HAbOAm55yW8xaJIimJ8Tx2Xlda1a3GIyPnsXTTboZd0p3MaileRxMR8Uxl1xkrqrJLWdQFkgI9Y7uB0yofSUT8xsy4/piWPHtRN+at3cGZT49lycZdXscSEfGMn44z38avR2V+B2QX/wUzGwwMBmjSpEn4koVBrE1WFDmhY33q16jC5a9M5OxnxvLK5T3p1KiG17EkTErb55U2oVsqTp8v/lfZCfw7+LVHLNXMthfeRMGpK6uXY3NjgasDP3cFlhT/BefcMGAYQHZ2thaVDTK9YSXcujSuybvX9uGSFydw/rBxPHdxNn1bpXsdSzyk/VBs0etdoFLDlM65as656oF/CUV+rlbOQgzn3FRgj5mNBnoA71Umm4hEhhYZaXzwx8NpXDuVy1+ZwBcz1ngdSUQkrII5Z6zSnHN/dc4d7Zw72zm33+s8IhIedaun8PY1fejSqCZDRkzh02mrvY4kIhI2virGRCR21aiSyPAretK9aS1ufGsKH0/VMoMiEhv8NIFfDkKrFEssqJqcwCuX9+CKVyby57enku8cZxzWyOtYUkHab0mwRHtbUs+YiPhKalICL1/Wk97N63DzO9P4REOWIhLlVIyJiO9USYrnxUt70DOrNje/PZXv5673OpKISMhomNKHSuqOXbh+Jy0z0zxII+KNKknxPH9pNhcM+4Xr3pjEa1f2okdWba9jRbRoH+qJZXptI5t6xkTEt6qnFEzqb1CjCle8MpHZq7cf+k4iIhFGxZiI+Fp6WjKvXtmTtOQELnlpAiu37PY6kohIUGmYMswq2pXcMjNN3c0SsxrVSuXVK3py5tNjuWp4Du9e24dqKYlex5IiNEwWeSLpNfNjpmCKumIskhpXoYXrd/4m98L1OwE0R0ykiFZ1q/H0Rd247OWJDBkxhRcuySYhPno794O1Lytp3wLav0SDcL+2kfj5Gimid08mIlGnX6sM/nlaR0bP28A/P5vtdRwRkaCIup6xaFD4rSYWvm3om5aU16BeTViycSfP/7SElplpXNwny+tIvlDae6mooj0meo+FXyj3d3ptI5t6xkQk4tx2Yjv6t83kvs9mM2nZFq/jiIhUinrGIpB6kyTWxccZj53blVP+O4Y/vjGJT4f0JbNaitexYkrx/ZDmupZd0fld8OtzqX147FIxFmYlvdnKMrwgIr9VIzWR5y7uzhlP/8yf3pjCG1f3IjGKJ/T7XSxNr4gWeq38I+qKsUhsXJGYWcQP2tWvzoNnduamt6fy7y/m8o9T2nsdKWiCtV/Q/iV6hfu1VVsKHX2NFJGIdvphDbns8Cxe+nkJI2et9TqOiEi5RV3PmEQWfdOSYLjjpHZMWraFW9+bTqeGNWhQs4rXkcJO7yX/K3yNNDVFilPPmIhEvKSEOJ684DAO5OVz09tTyct3XkcSESkz9YxFIH0DFvm9ZulV+edpHfnLu9P473cLuXFgK68jRTXthypOz50Up2LMJ7RchUjlndW9EWMWbuSJUfM5vGUdemTV9jpSzNO+zd/0+viDhilFJKr88/SONK6dyk1vTWXH3gNexxEROSTfFWNmdrOZaXajiFRIWnICj57blTXb9nD/Z3O8jiMicki+KsbMLBno4nUOEYls3ZvW4pqjWvB2zgq+m7vO6zgiIgfltzljVwHDgfu8eHC/jZ0vXL+zxEwayxc5tJsGtuL7uev52/sz+PqmWtSqmuR1pHIrzz7Jb/uvWOG3/bTaQWTyTTFmZonAUc65p8wsJMVYZRupGrlI5EhOiOfRc7ty2lNj+PvHM3lqULewPK6f9hN+KxRinVdtQ+3A/3xTjAEXA28e7BfMbDAwGKBJkybhyBQ2OmelSPC1b1Cdmwa25pGR8zihw2pO6dLA60gxRx/4/qbXxx/8VIy1Abqa2bVABzMb4pwbWvQXnHPDgGEA2dnZMbWq48L1O//3c9EiTW8kkYO75sjmfDtnHXd9PJPezeuQUS3Z60hhV3T/Ab/uQ7T/iF5FX/O9uXn/u1x4QnfxF99M4HfO/c05d7xz7gRgVvFCTESkIhLi43jk7C7s3p/H3Z/M9DqOiMjv+KYYK8o5p69rIhI0LTPTuHFAK76YsZavZq7xOo6IyG/4aZjSc37rsi+aR/PHRCpn8JHN+WLGGv7+0Sx6N69DzVT/H11Znn2S5p16o2Vmmq8+O0o6GXnxYWrxn5gqxir7hvHTG05EyicxPo6Hz+7Maf/9mX9+Nof/nBuaJQ39tJ8o6YNZvONV2yg6T8xP7VN+5cthShGRUOjQoAbXHtWC9yevZPS89V7HEREBYqxnLJLp24xIcAwZ0JKvZq3lzg9nMvLPR5KWHP27Qe0/Yo9e88gS/Xsh8YyfFr8UKZScEM9DZ3Xm7GfH8tCXc/nn6R29jhQR9H72lp7/6BZVxZgaq4iURfemtbj88Ga89PMSTu5cn17N6/zvNq1WLn5V0kT8U4aOUduMApozJiIx6a/Ht6ZJ7VRu+2AGew/keR1HRGJYxPaMlfTtdeH6nVpdWETKJDUpgQfP7MSgF8bzxKgF/O2EtmF5XPXgRxf1pEowRGwxJiJSWYe3TOeeU9ozoF1dr6OISAxTMSYiMe2yI5p5HUFEYpyKMQkZddOLRA+9n7316ZC+Wrw3ikVVMea301KISOTRfkT8Su0yeoXsaEoz62VmY83sJzN7rNhtDczsu8DtAwPXVTOzT83sZzO7JFS5RERERPzEnHOh2bBZPWCrc26vmb0BPOicmxG47UngLWA68Jlz7mgzuxlYC7wNfA8MdM7tL2376enpLisrKyTZI0VpJ38N1RGl4X68YFq6dCmx3l4iWSjaXmnbTNi9UW1Fykz7lvCIlM+fg+WcNGmSc86V2AkWsmFK59zaIhdzgaIL+XQGbnTOOTPbYWbVgD7A9c65PDObBrQBZpS2/aysLHJyckIRPWKE+xD5SD4kPzs7O+bbSyQLRdsrbZtrht+ktiJlpn1LeETK58/BcprZ5NLuF/JFX82sM5DunJtd5Op492uX3DagFlAT2F7suuLbGmxmOWaWs2HDhhCmFhEREQmPkE7gN7PawH+Bc4vdVLSXrDqwNfCvOrC3yHW/4ZwbBgwDyM7ODs34qohIFNufm8/abXvZm5tHXr6jVmoSddKSSIzXCVlEvBKyYszMEoDXgVuKDVkCTDezPhTMGavunNtuZuOAAWb2DtAVmBeqbCIisSIv3/Hj/A18M2cdvyzaxNJNu8gv4ats0zqptK9fnS6Na9K3ZTrt61cnLs7CH1gkBoWyZ+wcoAfwkJkB3A4Mcs4NAR4GXgWqAHcHfv8F4E1gCDDMObcvhNmkAvw2Ni9SGaW15+zhYQ4SIgfy8hkxYTnP/bCYVVv3UDUpnt7N6/CHzvVpXDuVqkkJmMHW3QdYt30vC9bvYPbq7Xw5s+C7c63URI5pm8kpnRtwRMt0khLUcyZyKBX9nAzlBP4RwIhiV48L3LYS6F/s97cDJ4cqTzRScSSxQm29fCYt28wt701n8YZd9MiqxZ1/aMfAdnXLVFCt37GXnxdu5Mf5G/lm9jo+mLyKGlUSOalTfQb1bEKnRjXC8BeI/Fa07wOiatFXEZFYlp/v+O/3C3n82/k0rFWFFy7JZkC7TAKjE2WSWS2FMw5rxBmHNWJfbh4/zd/IZ9NX8+GUlYyYsJxODWswqFcTTu3SgKrJ+ggRCQa9kyQqRMphz9FOr4N39uXmcet70/l46mpO69qA+0/vSLWUxEptMzkhnoHt6zKwfV227TnAR1NW8eb45dz+wQz+/cUcLumTxWVHZJGelhykv0Ik8lXktFUqxkREIty+3DyuGp7DTws2cusJbbjuqBbl6g0rixpVErn08Cwu6dOUScu28PxPi3lq9EKe/2kx5/VozLVHtaBBzSpBfUyRWKFiTEQkguXm5TPkzSn8tGAjD53VifN6NAnp45kZ2Vm1yc6qzaINOxn2w2JGTFjOWxNXcPnhWVx3dAtqpiaFNINItNHhMSIiEco5x10fz+Tr2eu455T2IS/EimuRkcZDZ3dm9C3HcErnBgz7aTFHPvw9L/y0mNy8/LBmEYlkKsZERCLU6+OXM2LCCq4/pgWXHdHMsxwNa1bhP+d24csb+3FYk1rc//kcTnvqZ6av3OpZJpFIomJMRCQC5SzdzL2fzOKYNhncfGwbr+MA0LZedV65vAdPX9iNDTv2cfpTP/PAF3PYn6teMpGD0ZwxiQo6Ws8f9DqEx/a9B7jxrak0rFWFx88/jHgfrZRvZpzUqT59W6Xz4JdzGfbjYsYu2siT5x9G84w0r+OJhFxp+0G7ofT7qGdMRCTC3PvJbNZs28Pj53WlRpXKLV8RKtVTEnngjE48d3F3Vm7Zw8lDx/D59DVexxLxJfWMyW9onSg5FLURb301cy3vT17JkP4tOaxJLa/jHNLxHerRpVFN/vjGJK5/czLz17XixgGtdN5L8Zyf9mXqGRMRiRA79h7gro9n0qFBdYb0b+V1nDKrVyOFEYN7c3b3RjwxagFDRkxhX26e17FEfEM9YyIiEeKxbxawcec+XrgkO+JO3J2cEM8jZ3emdd00HvhiLtv3HuC5i7uTmqSPIRG9CyQs/NQdLKGn1zv45qzZzvBxS7mgZxO6NK7pdZwKMTMGH9mCWqlJ/O396Vz84gReuqyHb+e9xRK9Z70VWV+tRERikHOOf3w8kxpVErn1eH8sY1EZ52Q35qlB3Zi+ciuXvDSBnftyvY4k4ikVYyIiPjdy1jomLt3CLce3iZpTDZ3YqT5PX9idmau2cdXwiew9oDlkErtCNkxpZg2Az4D2QJpzLrfIbY8DXQMXuzjnapnZZcDtwBpggnPu1lBlk9KpS1oORW0kvHLz8nl45FxaZqZxTvdGXscJqmPb1+XRc7tw09tTue71STx3ceTNhZPI5ad9WSjnjG0GBgAfFr/BOXcTgJkdBvylyE2POOdeCGEmiQKa2yAlidZ28e6klSzesIthF3cnIT76CpXTujZk17487vhwBnd9NJMHz+qEmZa9kIOLtvd7yN7Zzrm9zrkth/i1M4APily+ycx+NLMBocolIhIp9uzP47Fv5tO9aS2ObV/X6zghM6hXE/50TEvezlnB8z8t9jqOSNh5fTTlCcCDgZ8/Al4F6gBfm1m2c+43kwjMbDAwGKBJkyZhjCmVFY5vK9H2TSncgvn86TkPjtd+Wcr6Hfv476BuUd9bdPOxrVm8cSf//nIuTetU5fgO9byOFFPK857Vvjb4POvzNrNWwCrn3G4A59xW51y+c24DMB/43ddA59ww51y2cy47IyMjzIlFRMJn74E8hv24hL4t0+nZrLbXcUIuLs74zzld6dywBje9NZX563Z4HUkkbLycgHAGReaTmVn1wP9VgFbABo9yiYh47q0Jy9m4cx9/6t/S6yhhUyUpnmGXZFM1OYFrX5+kJS8kZoTyaMpE4EugCzDSzO4ALnLODQn8ysnAaUXu8mczO4GCAvFB59yBUGWTkqnrOfLpNYwO+3LzeO7HxfTMqk3v5nW8jhNWdaunMPSCw7jwhV+47f3pDL3gsKgfoo1l2mcVCFkxFiimBha7enyR248s9vv3AveGKo9Ej9LepKW9qSU2RNPO+/1Jq1izbS8Pn93Z6yie6NOiDn89vg0PfzWPHlm1ufTwLK8jic9E0/sdtOiriIiv5Obl88wPC+nSuCZ9W6Z7Hccz1x7ZgoHtMrn/89nMWr3N6zgiIeX10ZQiQRNt35TCTc+fP3w1ay0rNu/hrj+0j+nhubg445Gzu3D84z9y01tT+XRIX1IS472OJWhfEQrqGRMR8QnnHM//tISsOqkMbBe964qVVa2qSfzfOV1YsH4nD3451+s4IiGjnjGf0CRGCZaF63f+7rpTho5RW4oAk5dvYdqKrdx3Wgfi4mK3V6yoI1tncPkRWbz881KOaZvJUa21rFF56fPF/1SMyf/ojRn5Ph3SVwcyRLAXflpCjSqJnB1l56CsrL+d0JafF27kr+9O4+ubjqRW1eg4Wbroc6eQhilFRHxgxebdjJy1lkG9mpCapO/JRaUkxvPYeV3Zsms///xsttdxRIJOxZiIiA+8/PNS4sy4tE+W11F8qUODGlx3dAs+mLKK7+et9zqOSFDp65dPlDTPR/xPczEkGHbsPcDbE5dzSpcG1KuR4nUc3/pT/5Z8OXMtd34wg5F/PpJqKYleR4p42of5g4qxCKE3TOzRax47Pp66ml3787S46SEkJ8Tz0FmdOfvZsTz81Tz+eXpHryNJmET7/lDFmE+0zEzzOoJEiWjZOcWStyYup1396nRpVMPrKL7XvWktLj+8GS/9vISTO9enV4ydLqoitE/wP80ZExHx0IyV25i5ajsX9Gwc04u8lsdfj29N49pVuP2DGezLzfM6jkilqRgTEfHQiInLSUmM47SuDb2OEjFSkxK477SOLN64ixd+WuJ1HJFKK9MwpZk9ADzsnNsauFwL+Itz7u8hzBaVtAaUFBXt8yDk4Hbty+XjKav4Q6cG1KiiyejlcUybTE7sWI8nRy3g1C4NaFw71etIEeeUoWNKPHhM02bCr6xzxk50zt1ReME5t8XMTgJUjAVJLH74RkMhEklZi4uG5z/SfTa9YOL+oF6NvY4Skf5xSnt+mL+Buz+ZxYuXZmuYtwJKKry0DyibYO5Dy1qMxZtZsnNuH4CZVQGSD3YHM2sAfAa0B9Kcc7lFbrsHOAPYAnzinHvUzKoBbwK1geecc6+W94+JZnpzxB695tHvzQkraJWZRrcmtbyOEpHq16jCnwe25l9fzOGb2es4rkM9ryNJiET7/rCsc8ZeB0aZ2ZVmdgXwDTD8EPfZDAwAfinl9r845452zj0auHw1MAI4ErjKzHS+CxGJWrNXb2faiq1c0LOJenQq4bIjsmhTtxr3fjqb3ftzD30HER8qU8+Yc+5hM5tBQXFlwD+dcyMPcZ+9wN6D7GQeMrMtwF+dc1OBPsD1zrk8M5sGtAFmlO3PiC0aXooser2kJG9NXE5SQhxndtPE/cpIjI/j/jM6cs6z43hy1EJuO7Gt15EOSfsEKa7M64w5574EvgzS4z7pnLvHzFoBLwH9gJrA9sDt2wD124tIVNqzP48Pp6zipI71qJmqQYDK6pFVm7O7N+LFMYs5N7sRzTM0AV0iy0GLMTMb45zra2Y7AFf0JsA556pX5EGdc5sD/y8o0nO2FagO7A38v7WEPIOBwQBNmjSpyEN7Lpa++fj5259fsvnhuZDw+3zGGnbszeX8npG5H/OjW09ow1cz1/Kvz+fw4mU9vI4TdKHYZ2n/4x8HLcacc30D/1cL5oOaWXXn3HYzSy+SYRwwwMzeAboC80rIMwwYBpCdne2K3y6RRTsCb+n5985bE5bTPL0qvZrV9jpK1MislsINA1rywBdzGT1vPUe3yfQ6kkS5YO5Dy7rO2GvOuYsPdV2x2xMpGNbsAow0szuAi5xzQ4BHzKwjBQcQ3Ba4ywsUHE05BBhWeOSmHFzRNWKKfnPSB61EK7/0albUgnU7yFm2hTtOaquJ+0F22eHNGDFhBfd9NpsjWqaTGK91zf0g0t+z4VDWOWMdil4wswSg+8Hu4Jw7AAwsdvX4wG3XlPD724GTy5hHRCQijZiwgsR446xujbyOEnWSEuL4+x/aceXwHIaPXcpV/Zp7HUmkTA41Z+x24A6gipkVTq43YD+B4UIJv6LfJrSiv//p258U2nsgjw+mrOS4DvWok3bQpRqlgvq3zeSo1hk8MWoBpx/WkHQfPs/aJ0hxB+3Ddc79OzBf7BHnXPXAv2rOuTrOudvDlFFEJCqMnLWWrbsPMEgT90PGzLjr5Hbs2Z/Hf76e73UckTIp6zDlBDOr4ZzbBmBmNYGjnXMfhSqYRD4/f/vzczaJXiMmLKdJ7VT6NK/jdZSo1jKzGpf0yeLlsUu4sFcTOjas4XWkStM+K7qVdXbj3YWFGEDghOF3hySRiEgUWrxhJ78s3sz5PRsTF6eJ+6F248BW1EpN4r5PZ+OcDr4Xfytrz1hJRVuZF4yV0NG3JYk1kdrm3564goQ44+zumrgfDjWqJPLX49pwx4cz+GrmWk7sVN/rSDErUt+z4VTWnrEcM3vUzFqYWXMzewyYFMpgIiLRYn9uPu9NWsnAdnXJrJbidZyYcW52I1rXTePBr+ayPzff6zgipSprMTaEgiMo3wbepWCV/OtDFUpEJJp8M3sdm3bt5/yejb2OElMS4uO446R2LNu0m1fHLfU6jkipynqi8F38ujiriIiUw4gJy2lYswr9WmV4HSXmHN0mk36t0hn63ULO7t5I5wIVXyrrCvwZwK0ULP76vz5251z/EOWKaVqtODbpdY9OyzftZszCjdx8bGviNXHfE3f+oR0nPfETT45ayD9Oae91nJDQ/iOylXWY8g1gLtAMuBdYCkwMUSYRkajx1sTlxBmcm60hSq+0rVedc7Mb89ovS1m6cZfXcUR+p6xHRNZxzr1oZjc6534AfjCzH0IZTH5r4fqdJX7z0bee0NC3TAmGA3n5vDtpJf3bZlKvhibue+nm41rzybTVPPjlXJ69+KBn84sKhectLr4v0z7Mn8pajB0I/L/GzP4ArAZ0fHaQFH+zFL6JWmameRFHwqCkYm/h+p16zaPMqDnr2bBjHxdoxX3PZVZL4dqjWvDoN/OZsGQzPZvV9jpSxNGX1NApazF2v5nVAP4CDAWqAzeFKpRfqSEWiMXnQd8ywyPa2tZbE5dTr3oKR7XWxH0/uLpfc94cv5x/fT6bD/94RMwsvlu4/4Lfvsf8/L6Ktn3BoZRpzphz7jPn3Dbn3Ezn3DHOue5AixBnExGJWKu27uGH+Rs4N7sRCfFlnZ4roVQlKZ6/Ht+GaSu38en01V7HEfmfyqyifzPweJBySBGFQ1VFvwGU9i1BokfLzLSo/dYXi96euAKAc3to4r6fnHlYQ17+eQkPfzWP4zvUIyUx3utIQVF836HPjMhSmWLsoP27ZtYA+AxoD6Q553KL3HY3cELg4t+dc6PM7DLgdmANMME5d2slskWFom+mot3M0TSvKJK6ovfm5v3mdYCC/GXNGguvpxTIzcvn3ZwVHNkqg0a1Ur2OI0XExRl3ntSOQS+M5+Wfl3Ld0ZUb5CnPwVWRtL+T8KpMMXaoM69uBgYAH5Zw26vOuXvNrCbwCTAqcP0jzrkXKpEpahX9wNYbN/RK+pZZvBATKc0P8zewZtte7j6lg9dRpASHt0xnQNtMnv5+IedkNyI9LdnrSEGnkZXIctBizMx2UHLRZUCVg93XObcX2Gv2+w4059ySwI/7im3/JjO7BLjXOTfqd3eMUqUVV3oDRS8V19FtxIQVpKclM6BdptdRpBS3n9SO4x//kaGjFnDvaR29jhMRtK8KnYMWY865aiF+/HuA5wI/fwS8CtQBvjazbOdcXtFfNrPBwGCAJk3Cf6i4GmKBWHwePh3SV8VxGERD21q7bS/fzV3HtUe1IFET932rZWYa5/dozBvjl3PZEc1oll7V60ghE4nvq0jMXBme7SnM7AwKFpN9E8A5t9U5l++c2wDMB+oWv49zbphzLts5l52RoUPFRcR/3s1ZQb6D8zRx3/duHNiKpIQ4Hhk51+soEuM8KcbMrDNwfeBf4XXVA/9XAVoBG7zIJiJSUXn5jrcmrqBvy3Sa1onenpZokVkthcFHNueLGWuZvHyL13Ekhplzh5qHX8ENmyUCXwLdgcnAHcBFzrkhZjYSaABsArY5504rcoRlHPAf59w7B9t+dna2y8nJCUl2iT7Z2dmovUhZVKatfD93PZe/MpGnL+zGSZ3qBzmZhMKufbkc9chomqWn8s41fShpnvPBaN8iZWVmk5xz2SXdVpmjKQ/KOXcAGFjs6vGB244v4ffvpeAk5CIiEemN8ctJT0vm2Pa/m2UhPlU1OYE/H9uKOz+cybdz1uu1E0+ErBiLRFoDRg5G7UMOZs22PZq4H6HOy27Mi2OW8OCXczimTUZEnzFB+6nIFHXFmBqiRAK10+jz9sSCifvn99BJwSNNQnwct53QlsGvTeKdnJUM6hUZr2FJ+5GF63dqIekIFLnlv4iIT+Tm5fP2xBX0a5VOkzpacT8SHdu+Lj2yavHYt/PZtS/30HcQCSIVYyIilTR6XsGK+xdGSI+K/J6ZcftJ7diwYx8v/LTk0HcQCSIVYyIilfTmhOVkVEtmQDtN/o5k3ZrU4qRO9Xjux0Vs2LHP6zgSQ1SMiYhUwqqtexg9bz3nZTfWxP0ocMvxbdmfm88To+Z7HUViSNRN4K8MTZ6Wg1H7kJK8PWE5Dji/p1bcjwbN0qsyqFcT3hi/nMuPaEaLjMiaDN8yM037qggUdcWYGmH56Kg+b0TD86u2Awfy8nk7ZwVHtc6gUS1N3I8WNwxoxfuTVvLwV3N57uIS1+j0hXC/1/SeD52oK8YkePTGi156bYPjq5lrWbd9Hw+c0dTrKBJE6WnJXHtUC/7zzXwmLdtM96a1vY70O3oPRxdNcBARqaDhY5fSpHYqR7fJ9DqKBNmV/ZqRWS2ZB76YS6hOGyhSKGJ7xhau31niNwN9K5CSqL1IsM1ctY2cZVv4+x/aER9XvvMZiv+lJiVw87Gtue2DGYyctY4TOtYr8fe0b5FgUM+YiEgFDB+7lCqJ8ZyTrYn70ers7o1olZnGw1/N5UBevtdxJIqpGBMRKafNu/bz8bTVnNmtITWqJHodR0IkIT6O205sy+KNu3hr4gqv40gUi9hhSgkOdaVLRcVy23lr4nL25+Zz6eFZXkeREOvfNpNezWrzxLfzOeOwhqQlx+7HZiy/50MtdluVHJLeeNFLr23F5ebl8/q4ZRzeog6t61bzOo6EWOFpkk5/6meG/biYm49t7XUkQO/haBOyYUoza2Bmk81sr5kllHDbd2Y21swGBq6rZmafmtnPZnZJqHKJiFTGN7PXsXrbXvWKxZCujWtycuf6PP/jYtZv3+t1HIlCoewZ2wwMAD4s4bbbgL8D04HPgG+Bq4ERwNvA92b2lnNuf2kbr8gqw1qXJXZVZlVqtRsp5Jxj2E+LaVI7lYE6D2VMueX4NoyctZbHRy3ggTM6/e/68uxbtC+R0oSsZ8w5t9c5t6WUmzsD45xzO4EdZlYN6AN865zLA6YBbUKVTUSkInKWbWHK8q1c1a+ZlrOIMU3rVOWi3k15L2clG3fqJOISXF7NGYt3v66itw2oBdQEthe77jfMbDAwGKBJkyahTykiUsRzPyymVmoi53TXchax6Ib+rRjUswnpacleR5Eo49XSFnlFfq4ObA38q17sut9wzg1zzmU757IzMjJCHFFE5FcL1+/k2znruLhPFlWS4r2OIx6oVTWJVjpoQ0LAq2Jsupn1MbOqQHXn3HZgHDDAzOKBrsA8j7KJiPzOCz8tJjkhjkv76DyUIhJcoTyaMtHMvgW6ACPNrJeZDQ3c/DDwLwom7j8QuO4F4ELgJ+Al55wG5UXEF9bv2MsHk1dxdvdG1NEQlYgEWcjmjDnnDgADi109PnDbSqB/sd/fDpwcqjygI1akYtRu5KUxSzmQn89V/Zp7HUUimPYlUhqdDklE5CA279rPq+OWckrnBjRLr+p1HBGJQirGREQO4oWfFrPnQB5D+rf0OoqIRCkVYyIipdi6ez/Dxy7lpE71dRSdiISMijERkVK8OGYJu/arV0xEQkvFmIhICbbtPsArPy/lxI71aFuv+qHvICJSQV6twB8SOu+XHIraiJTVp9NXs2NfLkP6t/I6igig/Vc0i6piTEQkWC7s1YSujWvSvoF6xUQktDRMKSJSAjOjY8MaXscQkRigYkxERETEQyrGRERERDxkzjmvM1RIenq6y8rK8jqG+MTC9TtLvL5lZhoAS5cuRe0l9A71OkQCtZXYEKy2qvYiZTVp0iTnnCuxEyxiJ/BnZWWRk5PjdYyY4ucjeQ6VLTs7W+0lDPzcRoorLSvDb1JbiQHlaasH+13tW6SszGxyabdpmFJERETEQyrGRERERDwUscOUEvkiaUgrGun5l2BRW/KfnftyyVm6mcUbdpHvHPVqpNCtSS0a1KzidTQpgYoxERGRKLFq6x6e+HY+n0xbzd4D+b+7vVez2gzp34q+rdI9SCelUTEmUUHfwP1Br4NEimhrq8453pywnPs+nQ3AWd0bcXKn+rSpV42E+DhWbN7ND/M38Ob45Vz04nhO7FiPf5/ZiZqpSR4nF1AxJuUQbTsviW2ltefs4WEOIr7n931fbl4+t38wg3cnreTI1hn8+8xONCw2HFmjYQ06NqzBlX2b8eKYJTz+7XymPrGVly/vQdt6OuWX1zSBX0REJEIdyMtnyIgpvDtpJTcMaMUrl/X4XSFWVEpiPNcf05IPrjsC5+CcZ8YxfvGmMCaWkqgYExERiUDOOe78cAZfzlzL3//QjpuPbU1cnJXpvp0a1eD9Px5O3RopXP7KRKYs3xLitHIwGqYUz/i96z/a6fmXYFFb8sazPyzmnZyV3NC/JVf1a17u+zesWYU3r+rF2c+O47KXJ/LetX1oVbdaCJLKoahnTEREJMKMXbSRh0fO5eTO9fnzsa0rvJ3M6im8cVUvEuPjuPrVHLbtPhDElFJWKsZEREQiyJZd+7n57Wk0q1OVh8/ujFnZhiZL07h2Ks9e1I1VW/fwpxGTycuPzHNWRzIVYyIiIhHkzo9msGnXPp44/zBSk4Iz2yg7qzb3ntqRnxZs5MlRC4KyTSk7FWMiIiIR4pvZ6/hixlpuGtiaTo1qBHXbg3o14YzDGjL0uwVMWrY5qNuWg1MxJiIiEgF27cvl7o9n0qZuNQYfWf4J+2Vx32kdaFirCje+NZXtezV/LFxUjImIiESAJ0YtYPW2vTxwZkcS40Pz8V0tJZHHz+vKmm17ufeT2SF5DPk9LW0hv6ET/sqhqI2IX0Vz21y6cRcvjVnCedmN6d60dkgfq3vT2lx7VHOe+n4Rp3ZtwFGtM0L6eKKeMREREd975Ot5JMbH8ZfjKr6MRXkM6d+KFhlVueODGezclxuWx4xlKsZERER8bOqKrXw+fQ1XH9mczOopYXnMlMR4HjqrM6u37eH/Rs4Ly2PGMhVjIiIiPuWc499fzCE9LSlkk/ZLk51Vm0t6N2X4uKU6ujLEVIyJiIj41M8LNzF+yWaG9G9FWnL4p3nfckJb6lVP4c4PZ5Kblx/2x48VKsZERER86snvFlCvegrn92zsyeOnJSfwj5PbM3ftDoaPW+ZJhligoynlN6LhqCMJLbUR8atoa5vjF29iwpLN3H1Ke5IT4j3LcULHehzVOoPHvpnPyZ3rUzdM89ZiiXrGREREfGjodwtJT0vigp5NPM1hZtx7agf25+Xzr8/neJolWqkYExER8ZnJy7cwZuFGru7XnJRE73rFCmWlV+Xao1rwybTVjF240es4UUfFmIiIiM88/f0iaqYmclHvpl5H+Z8/Ht2CxrWrcNfHM9mfq8n8waRiTERExEcWb9jJqLnruKR3U6p6cARlaVIS47nv1I4s2rCLF8cs8TpOVFExJiIi4iMv/7yUxLg4Lurjn16xQse0zeS49nV5ctQCVm3d43WcqKFiTERExCe27t7Pe5NWcmrXBmRW8+dRi/84pT0A934yy+Mk0cM//Z8iZRTNJwOWilO7iH6x8BqPmLCCPQfyuOKIZl5HKVWjWqncMKAVD301l1Fz1jGgXV2vI0U8T3vGzOxmMxsT+PkWMxtjZm+YWaKXuURERMLtQF4+w8cu5YiWdWjfoLrXcQ7qyr7NaJWZxt2fzGLP/jyv40Q8z4oxM0sGugR+zgCOcc71BaYDp3uVS0RExAtfzFjD2u17ubKvf3vFCiUlxPHP0zuycssenh690Os4Ec/LYcqrgOHAfUBPYHTg+m+BQcC73sTyp5K65xeu30nLzLTfXR9NXfaxLBaGZMpKz0VkiobXLZx/w8s/L6V5elWObp0Z9G2HQu/mdTjzsIY898NiTj+sIS0yfv95JGXjSc9YYBjyKOfcd4GragLbAz9vA2qVcr/BZpZjZjkbNmwIfVAREZEwmLlqG1NXbOWi3k2JizOv45TZ7Se1Izkxjrs/noVzzus4EcurYcqLgTeLXN4KFA6QVw9c/h3n3DDnXLZzLjsjIyOkAUVERMLljfHLSEmM46zujbyOUi4Z1ZK59fg2jFm4kc+mr/E6TsTyapiyDdDVzK4FOgDZFAxVPgwMBH7xKJeUgddDD5E0xCHlU1rbKgu1i9/z+r0abJGa+1C27z3Ax1NXc2qXBtSoEnnHrw3q1ZR3clbyz89mc3SbDKqlRN7f4DVPesacc39zzh3vnDsBmOWcuxf4MXBkZVfgIy9yiYiIhNtHU1axe38eF/by3yKvZREfZ/zrjI5s2LmP/3w93+s4EcnzRV8DR1DinHvIOdfXOTfIObff61wiIiKh5pzj9V+W0alhDbo0rul1nArr3Kgml/RuyvBxS8lZutnrOBFHi75GiGjtnpfS6TX/lZ6LyBQNr1uo/4acZVuYv24nD53VKaSPEw63ntCWUXPXc+t70/nixn6kJMZ7HSlieN4zJiIiEqte/2UZ1VISOKVLA6+jVFrV5AQeOqszizfu4rFvNFxZHuoZk/+Jtsm+sUivoUS6WGrDm3bu48sZaxnUqwmpSdHxcXxEy3Qu6NmE539azAkd63FYkxJXqpJiouPVl7CKxp2i+IPaVnDp+fS39yevZH9ePoN6NfE6SlDdcVJbRs8rGK78dEhfDVeWQVCGKc2sipm1Cca2REREop1zjrcnrqB701q0rlvN6zhBVS0lkQfP6syC9Tt5+Kt5XseJCJUuxszsFGAq8FXgclcz+6Sy2xUREYlWk5dvZdGGXZybHVmLvJbVUa0zuOzwLF76eQmj5633Oo7vBaNn7B4KFmzdCuCcmwpkBWG7IiIiUendnBVUSYznD50jf+J+aW47sS1t6lbjr+9OY8OOfV7H8bVgzBnLdc5tM4ucc2lFk1ia7CoCavPhpuc7+Hbvz+XTaav5Q+f6pCVH79TtlMR4nrzgME757xhueW8aL1/WA9UKJQtGK5hpZoOAeDNrBdwAjA3CdiXMtHONfHoNJdLFQhv+YsZadu3P47wejb2OEnJt6lXjzpPacfcns3j+p8UMPrKF15F8KRjDlEMoOL/kPgpO/r0NuDEI2xUREYk67+SsoFl6VbKbxsayD5f0acqJHevx0FfzGLdok9dxfCkYxdgfnHN3Oud6BP79HTg1CNsVERGJKks27mLCks2ck90oZobszIxHzulCVp1U/vTmZNZs2+N1JN8JRjF2exmvExERiWnv5qwgzuCsbtF5FGVp0pITeO7i7uw9kMcf35jM/tx8ryP5SoWLMTM70cyGAg3N7Mki/14BcoOWUEREJArk5uXz/uSVHN0mk7rVU7yOE3YtM6vx8NldmLJ8K//4eCbOOa8j+UZlJvCvBnIoGJKcVOT6HcCfKxNKyi4WJruKFKU2H156voPnpwUbWbd9H/eeGlu9YkX9oXN9Zq1uwdOjF9EiI42rj2zudSRfqHAx5pybBkwzszedcwcAzKwW0Ng5tyVYAUVERKLBOzkrqFM1if5t63odxVN/Pa4NSzft4oEv59CkTirHd6jndSTPBWPO2DdmVt3MagPTgJfN7NEgbFdERCQqbNq5j2/nrOOMwxqSlBCUMxFGrLg449Fzu9K5UU1uemsqM1Zu8zqS54LRImo457YDZwIvO+e6AwODsF0REZGo8NHU1RzIc5yTHf1ri5VFSmI8L1ySTe2qSVw5fCIrNu/2OpKngrHoa4KZ1QfOBe4MwvZEKkQrhVeOnj/xq0hvm8453s1ZQZfGNWlTL7pOCl4ZGdWSefnyHpzz7DgufnE87113OOlpyV7H8kQwirH7gJHAGOfcRDNrDiwIwnZjhpc7mkjfyUWqaHjeo+Fv8Fo4nkO9Tt6bvnIbc9fu4F9ndPQ6iu+0rluNly7L5sIXxnPpSxN4a3BvqqUkeh0r7Co9TOmce9c519k598fA5cXOubMqH01ERCTyvZOzguSEOE7pEr0nBa+M7k1r88xF3Zm3dgeDX53E3gN5XkcKu0oXY2aWYmbXm9nTZvZS4b9ghBMREYlke/bn8cnU1ZzUqT7VY7DHp6yOaZPJ/53ThXGLN3HTW1PJy4+tNciCMYH/NaAecDzwA9CIgrXGREREYtrIWWvZsS+Xc7Jjd22xsjr9sIb84+T2fDVrLX97fzr5MVSQVXjOmJklOOdygZbOuXPM7DTn3HAze5OCOWQiIiIx7Z2cFTSuXYXezep4HSUiXNG3Gdv2HOCJUQtITYrn3lM7xMQ5PCszgX8C0A04ELi81cw6AmuBrErmEik3TUiuHD1/4leR2jZXbN7N2EWbuPnY1sTFRX9BESw3DWzFngN5DPtxMVWS4rnthLZRX5AF42jKYYGV9/8OfAKkAXcFYbsxw8sdTaTu5CJdNDzv0fA3eC0cz6FeJ++8N2klZnBWdw1RloeZcfuJbdm9P5fnflhM1aQEbhjQyutYIVWZYizTzG4O/Hx54P+nAv9XrcR2RUREIlp+vuO9SSvp2zKdhjWreB0n4pgZ953akd3783j0m/mkJsVzVb/oPY9lZYqxeAp6wUrqO4ydWXdSJlrrKLbo9ZZw8WtbG7toE6u27uFvJ7b1NEcki4szHj6rM/sO5HP/53NISYznot5NvY4VEpUpxtY45+4LWpIYUdqOozRe71Dk4Cr7QeDXDxKR8tK+7bfenbSC6ikJHNc+tk8KXlkJ8XE8dl5X9hzI466PZ5KaFM+Z3aJv2LcyS1tE92w6ERGRCti25wBfzVzLaV0bkpIY73WciJeUEMfTF3ajT/M6/PXdaXwxY43XkYKuMsXYgIre0cx6mdlYM/vJzB4LXHeLmY0xszfMTCvjiYhIRPp02mr25eZzrk4KHjQpifE8f0k2hzWpxQ0jpvDd3HVeRwqqChdjzrnNlXjcZUB/51w/Cg4E6Acc45zrC0wHTq/EtkVERDzzbs4K2tarRseG1b2OElWqJifw8uU9aFe/Ote+PpmxCzd6HSlogrECf7k559Y65/YGLuYCnYHRgcvfAr29yCUiIlIZ89buYNrKbZyT3Tjq18byQvWURF69oifN6lTlqldzmLSsMv1C/hGMdcYqzMw6A+nAVqDwzKDbgFql/P5gYDBAkyZNwpBQgiXaJ+vKb+n1lnDxW1t7N2cFCXHG6V11UvBQqVU1ideu6sl5z/3CZS9N5M2re9OpUQ2vY1WKZ8WYmdUG/gucC3QHGgZuqk5BcfY7zrlhwDCA7OzssC+fEYwj30r73fIeiSThFaqjHkPxQaIjNKVQONtCebcZje30QF4+H05ZxcB2damTlux1nKiWWS2FN67qxbnPjeOiF8cz4uretG8QucPCngxTmlkC8Dpwi3NuLTAROCpw80DgFy9yiYiIVNR3c9ezadd+nRQ8TBrUrMKIq3uTmhTPRS+OZ/66HV5HqjCvesbOAXoADwXG1G8HfjSzMcBy4HGPcvlWNH6L9LPiz/fC9TsBaJmZ5kUckUopbL+FCtu39h/B9W7OSjKqJXNU6wyvo8SMxrVTefPq3pz33DgGPT+et6/pTYuMyNtPezWBf4RzLsM5d3Tg3zjn3EPOub7OuUHOuf1e5BIREamI9Tv28v289ZzZrSEJ8Z58tMasZulVefPqXoBj0PO/sGzTLq8jlZunE/j9Rr1PcjB7c/NK7GFQ+5BQ0T4pcnw4eRV5+Y5zumttMS+0zKzG61f14oJhv/yvh6xRrVSvY5WZijEfKvqBX7gzXrh+p4bIopw+eCXU9uYWHLReuI/RcGVwOOd4d9JKujWpqf20h9rWq85rV/Zi0PO/cMHzv/DONX2oXyMyTtKuYqwcQrnDKrptHVnpPy0z0yKmINYHqxQqbAtFv9T5RTS1U+fgpoGtSEvWR6rXOjaswWtX9uKiF8YX9JAN7k1m9RSvYx1S1LUc9S5IJCipnUZKsSfhccrQMSUWT2oj/hMXZ5zcWeuK+UWXxjV55YoeXPziBC54/hdGXO3/gizqirFo1TIzLewFZSwXtiX9jdHUYxnLr61feLEGWDS1YZGD6d60Ni9f1oPLX5nIOc+N442revl6DpkO+RAREZGo06t5HV6/qhdbdu3nnGfHsXiDf4bpi4uqnrHKduurVyD6VaY3Qu0jNixcv7PEduLF61/SvkvtUKTsujWpxVuD+3Dxi+M597lxvHZlL9rV999K/VFVjEWLaNnZ+nkozI+LYHoxFC2xpTLty8/vZ5GDad+gOm9f04eLXhjP+cN+4YVLs+mRVdvrWL+hYUoRERGJai0z03j32j7UqZrEhc+P55Npq72O9BtR1zOmbn2JBGqTcihqIyLB1bh2Ku9fdzjXvDaJG0ZMYcXm3fzx6BYETsvoqagrxiR49GEQvfTaek+vgUj41aqaxGtX9eTW96bzyMh5LNu0i/tO60hKYrynuVSMiYiISMxITojn8fO60rR2Kk9+t5A5a3bwzEXdPF36IqqKMX3TlEPRektyKDqQQiT6mRk3H9eGjg1r8Jd3pnHy0DE8ef5hHNk6w5M8UVWMib/4+QPNz9lE/EjvGYlGx3WoxydDqnHta5O49OUJXHdUC24a2JqkhPAe36ijKUVERCRmNUuvyofXH8653Rvz9OhFnPXMWBaFeYFYFWMiIiIS01KTEnjo7M48e1E3VmzZzR+e/InXf1mGcy4sj69iTERERAQ4oWN9Rt50JD2yavP3j2Zy+SsTWbd9b8gfV3PGIpBWwo4ser0kGqldS7SqWz2F4Zf35PXxy3jgizkc99iP3HdaB07t0iBka5LFVDGmnYdUhNqNlIfai0jki4szLumTRd+W6fzl3Wnc+NZUvp61jn+e3pHaVZOC/ngxVYyJ/8TSB5cfz4cp0SOW3ksi4dI8I413r+nDcz8u5vFv5zN+yWYeOqsTA9rVDerjaM6YiIiISCkS4uO4/piWfHx9X9LTkrhyeA5/e286O/YeCNpjqBgTEREROYT2Darz8Z+O4I9Ht+DdSSs44fGfGLdoU1C2rWJMREREpAySE+K59YS2vHvt4STGGxc8/wv3fTqbvQfyKrVdzRmLQJoDEll0CiaJRtoPSSzr3rQWX9zYjwe/nMtLPy/hh/nrefTcrnRpXLNC24upYkw7D6kItRspD7UXkdiQmpTAfad15Lj29bjlvWmc+cxYrj+mJTcOaEV8XPmWwIipYkz8J5Y+uGLpb5XwU/sS8UbfVul8ddOR3PvJLJ4ctYAZK7fyxAWHUT0lsczb0JwxERERkUqoUSWRR8/ryv2nd+SnBRs5/amfWVyO81tGbM/YwvU7S5yDE03fDrVuUPAEo73o9ZBgCFU7UvsU8d5FvZvSMjON616fxOlP/cwzF3XniJbph7yfr3rGzOwxM/vJzJ7wOouIiIhIefVuXodP/tSXejVSWLJxV5nu45ueMTPrBlR1zvUzs2fMrIdzbqLXuURERETKo3HtVD75U19SEuPL9Pt+6hnrA3wb+PlboLeHWUREREQqrKyFGPirGKsJbA/8vA2o5V0UERERkfDwUzG2Fage+Ll64PJvmNlgM8sxs5z9O393s4iIiEjEMeec1xmA/80Zu8Y5d42ZPQ284pybcJDf3wAsC1vAsksHNnodwkf88nx0AyYHeZt++duKUqayOVimYLcVP/79oRCrf2c3YDmR+7dH8usWadmbOucySrrBNxP4nXOTzWyvmf0ETDtYIRb4/RL/IK+ZWY5zLtvrHH4Rzc+HH/82ZSqbcGby498fCrH8d0by367s/uCbYgzAOXej1xlEREREwslPc8ZEREREYo6KseAb5nUAn4nm58OPf5sylU04M/nx7w+FWP47I/lvV3Yf8M0EfhEREZFYpJ4xEREREQ+pGBMRERHxkK+Opox0ZtYR6AgsisXzappZfefcGjMz4DSgHbAEeM85l+ttuuAzs+udc095+Pi+e77NLBE4AdjknBtrZhcBNYA3nHNbvcgkEmxm1p2CU/bVomCB8l+cczmehpKIpjljlWRmXznnTjCzm4ABwOfAEcAq59xtnoYLMzP7zjnX38yeAPYA3wFdgWzn3LmehqukwPp3hW8WC/zfAZjpnDvSo0y+e77N7ENgIgWnN+sOfEHBooyDnHPHe5QpHjidYh+ewEehKlrNrGrhYznndobiMSR8ir6ewD+BZArOobyNgjPGDATynHM3eJWxLLx4LwRLJGcvC/WMVV5S4P8zgGOcc/nAs2Y2xsNMXskP/N/BOTcw8PPXZva9V4GC6EOgMwVnhhgNYGZfOudO9DCTH5/vms65BwDMbKZz7j+Bny/zMNMrwHRgBL/98HwFuCiYD2Rm/YG7KDjP7naguplVAx5wzn0bzMfykpnd5Jx73My6AEMp+KKSANzmnPvJ23TBU9LrCRwFnF3s9fzQzH70IGJ5vUKY3gsh8AqRm/2QVIxVXnszexVoQcG3pT2B61O8i+SZ4Wb2ArDCzF4HfqCggIn47nvn3KNmlgRcZWbXAm96nQl/Pt+7zOzvFLwX1pjZX4DNwD4PM2U55y4udt2UQG9nsN0HHOec2114RaBX5WsKelKixanA48AjwBXOuYVmlg58TMHIQLQo6fV8EnjdzP7ErwXaAIJ/urVQCOd7IdgiOfshqRirvF6B/+8CcgHMLC1wOaY4514zs1HA8UBdCtrXC865ad4mCw7n3H7gaTMbBlwMePp3+fT5PoeCOWOLgAeASyn4YnKeh5k+NrPPgNH8tnfjkxA81j6gEzC+yHWdgL0heCwv1Q70GtV2zi0EcM5tNLNom/dS0uv5JgX7/UygNQXDZcOcc1PCnq78PgnjeyHYimevARwJfOplqGDRnDERiXqBXpueFMxl20rBvLasYB9oY2b1gdso6KGMA/IoGFp5xDm3KpiP5SUzu7vIxSecc1sDw7GPOOeu9SpXsEXj62lmfSkoMLdSMNw3EWjunBt/sPv5QZH3cQ0K8mc75/7paaggUTEmIlHNzEpbwmekc+7YsIYR8ZCZ/YeCHr08oA4FQ8wbCg8G8jbdwZVyEFV7YJZXB1EFk4YpRSTa7aTgqKuijILejrAwsyecczeG6/G8or/T97Kdc0cBmFln4F0zu8XjTGXlx4OogkaLvvqYmZ1hZs7M2lbw/peZWYMil18ws/bBSygSEeYAZzjn+hf5dwzhnXD9Rhgfy0tR93eaWYcS9sF+OICnIhICByLhnJtOwSoA91CwTI+vOeceBQZTcNDcW2Z2qteZgknDlD5mZu8A9YFRzrl7KnD/0cBftRihxLLAvJ9NgQMwil6fEOz1iUoZEjXgq2gaEo2hv/M/FBwck0uEDeuVxMx6Akudc+uLXBcPnOOce8u7ZOVjZgkUHETVJlrW81Qx5lOBIzLnAccAnzjn2gbeNA9RcPScA553zg0NrAb9KJBGwQKbl1FwePkrwCoKltvoA3xJoDgzsxMoONotHtjonBsQxj9PJCqZ2W4KhkSN385v6eycq+NZsCCLob/zh2LDek8CtwAPRWIxJv6lOWP+dToF3zLnm9lmM+tGweHUzYDDnHO5ZlY7cPqZocBpgW9s5wH/cs5dEVgH5389YwVnzQEzywCeB450zi0xs9rh//NEolLhkOi2olea2Tce5QmVWPk7E8wsyTm33zk33czOAF4nAob1JLKoGPOvCyhYVBHgrcDl5sCzhUMrzrnNRc6H+U2g2IoH1hxi272BH51zSwq3E/T0IrHpZH5d+LmoqJhkXESs/J1/pmA5lPUAzrktgblK53gZSqKPijEfMrM6QH+gY2ARxXgKhgIm8euQwP9+nYJDe/uU5yFK2I5EETPb6ZxLK3L5MgqOpPqTmd0MXEXBPJgNFMyDWRaYB/Q4BW3PUbBQ6bmFRbscmnOuxC9C0XDuvKJi6O+cUMJ1eRR8QY4Jgc+jUYGL9ShYFmND4HLP4nMxS7h/V6CBc+6LkIWMAjqa0p/OBl51zjV1zmU55xoDSyg4+uvawORFAsOL84AMM+sTuC7RzAq70HcA1UrY/jjgKDNrVmQ7EjumUFCYdQbeAx4OXH8e0ICCeT+dKDjSaqsnCUXEF5xzm5xzXZ1zXYFngccKLx+qEAvoCpwUyozRQMWYP11AwZoqRb1PwQflcmC6mU0DBgXeDGcDDwWumwocHrjPKxSctHyqmVUp3JBzbgMFhwh/ELjP2yH8W8RnnHPfFznX3i9Ao8DP9YE1gZPd45xb6Zzb4kVGEfEvM7vazCaa2TQze9/MUgPXn2NmMwPX/xhYRuM+4LzA59B5ZlbVzF4K3H+KmZ3m7V/jDzqaUiQKmVkeMKPIVbUpOCr3T8V+77/AWufc/WbWCBhDQW/YKOD1CDnfnpRD8SHsCm7jDufcA0Uuj3XOHX6w+0jkM7N7KFhE+WXn3KbAdfcD6wJH9s8ATnDOrTKzmoHTZF1GYIpE4PcfAGY75143s5rABAoOStvlwZ/kG+oZE4lOe4oMJXQF/lH8F8zsIiAbeAQKesKANsDtQD4wysy05ImU5I6iF1SIxZyOZvZToPi6kF+PLv0ZeMXMrqZgrnNJjgNuM7OpFJz0OwVoEtq4/qcJ/CIxyMwGAncCRznn9hVeH/j5S+BLM1tHwRIro0rciEQNMzsF+DuQBGwCLnTOrQusdziUgqLdAfcCPYAqgQ/TWc65C4v2tpnZrRQsyJkPfBkti3LKb7wCnO6cmxbo+ToawDl3rZn1Av4ATA1M3i/OgLOcc/PCEzUyqGdMJMaY2WHAc8CpxVbi7lZ4+qzAkZWdgWXepJQwGwP0ds4dRsGRgrcGrr8L2Oac6xQ44OO7QHFV2PN6YdGNmNmJFBTwvZxzXfj14BCJLtWANYF1Lv/XBsyshXNuvHPuHxQsQN6Y3x9INhIYYoG1mAL7o5innjGR2PMIBWdreDewP1zunDsVyASeN7PkwO9NAP7rTUQJs0bA24FTRyVRcPQ2wEDg/MJfKsMBHQMpmE+0O/D7WsMwOt0FjKfgy9oMfi22HjGzVhT0fo0CplFw0FnhsOS/gX9SsITO9EBBtpSCdetimibwi4jEkJIm8AfOY/uoc+4TMzsauMc5d7SZTaZgrbmFB9tG4WUze5SCydkvhPwPEYkiGqYUEZEaFJzHFuDSItd/DfzvCFwzqxX48UBgiKq4r4Eriix1oDUMRcpAxZiISGxJNbOVRf7dDNxDwbD1TxTM9Sl0P1CrcO0o4JjA9cMoGGZ6o+iGnXNfAZ8AOYFhqb+G+G8RiQoaphQRERHxkHrGRERERDykYkxERETEQyrGRERERDykYkxERETEQyrGRERERDykYkxERETEQyrGRERERDykYkxERETEQ/8P4IhzxJbLYfgAAAAASUVORK5CYII=\n", + "text/plain": [ + "
    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Here is the solution code for the above:\n", + "# \n", + "display(cheese.corr())\n", + "from pandas.plotting import scatter_matrix\n", + "scatter_matrix(cheese, alpha = 0.8, figsize=(10, 8), marker=\"s\", diagonal = \"kde\");" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Which column is the most correlated with the outcome variable called \"Taste\"?\n", + "\n", + "Let us build a regression model using that measurement of \"H2S\", the concentration of hydrogen sulfide in the cheese, to predict its taste.\n", + "\n", + "First, we set up an `instance` of the linear regression model:\n", + "```python\n", + "mymodel = LinearRegression()\n", + "type(mymodel)\n", + "```\n", + "\n", + "The `mymodel` is an object. It is an object of a linear regression model, but it is empty at the moment. We will provide it some training data, to build the model, in this way:\n", + "\n", + "```python\n", + "mymodel = LinearRegression()\n", + "mymodel.fit(X, y)\n", + "```\n", + "\n", + "but we have to tell it what is `X` and what is `y`. So we have a small detour..." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We need numeric values for `X` and `y`. We can get those as follows.\n", + "\n", + "```python\n", + "print(cheese[\"H2S\"]) # A Pandas Series (single column from the matrix of Cheese data)\n", + "print(cheese[\"H2S\"].values) # NumPy vector of values, \n", + "print(cheese[\"H2S\"].values.shape) # Notice the vector is just a 1-D array of 30 values\n", + "print(cheese[\"H2S\"].values.reshape(-1, 1)) # Force them into a single column\n", + "print(cheese[\"H2S\"].values.reshape(-1, 1).shape) # Now we have the right shape for scikit-learn\n", + "```\n", + "\n", + "Scikit-learn requires the `X` data (the values used to predict `y`) to be a column vector or a matrix. Notice that a column vector is just a matrix with 1 column. This is because, you will see later, you can have 1 or more columns used to predict `y`. Therefore every input used to predict `y` must be in a column. Each row in the input matrix is one observation.\n", + "\n", + "So this will work to build your regression model:\n", + "\n", + "```python\n", + "\n", + "# A single column in matrix X (capital X indicates one or more input columns)\n", + "X = cheese[\"H2S\"].values.reshape(-1, 1) \n", + "y = cheese[\"Taste\"].values\n", + "mymodel = LinearRegression()\n", + "mymodel.fit(X, y)\n", + "```\n", + "\n", + "If you run this code and see no error messages, the model has been built. But it is not that exciting. " ] }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "metadata": {}, "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "So what can you do with this model? Use \n", + "```python\n", + "dir(mymodel)\n", + "```\n", + "to ask Python what can be done. Note that the ``dir(...)`` function works on any object and is something that you will use regularly.\n", + "\n", + "There are several interesting *methods* that you see there which we will get to use.\n", + "\n", + "* `coef_`\n", + "* `intercept_`\n", + "* `predict`\n", + "* `rank_`\n", + "* `score`\n", + "\n", + "The first two, are as you might guess, the intercept of the model and the coefficient (slope).\n", + "\n", + "```python\n", + "print(f\"The intercept is {mymodel.intercept_} and the slope is = {mymodel.coef_}\")\n", + "```\n", + "\n", + "Now it is not so handy having all those decimal places. Python allows you to truncate them to the desired number:\n", + "\n", + "```python\n", + "print(f\"The intercept is {mymodel.intercept_:.5g} and the slope is = {mymodel.coef_}\")\n", + "```\n", + "\n", + "We have to be a bit more careful with the slope. It is an array (see the square brackets?): so we need to extract the first entry from that vector before displaying it:\n", + "```python\n", + "print(f\"The intercept is {mymodel.intercept_:.5g} and the slope is = {mymodel.coef_[0]:.5g}\")\n", + "```\n", + "\n", + "Try this as well:\n", + "```python\n", + "print(f\"The intercept is {mymodel.intercept_:.5f} and the slope is = {mymodel.coef_[0]:.5f}\")\n", + "```\n", + "There is a subtle difference between the `f` and the `g` format specifiers." + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The intercept is -9.78843 and the slope is = 5.77641\n" + ] + } + ], + "source": [ + "X = cheese[\"H2S\"].values.reshape(-1, 1) \n", + "y = cheese[\"Taste\"].values\n", + "mymodel = LinearRegression()\n", + "mymodel.fit(X, y)\n", + "print(f\"The intercept is {mymodel.intercept_:.5f} and the slope is = {mymodel.coef_[0]:.5f}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, "source": [ - "import pandas as pd" + "mymodel.predict(X)\n", + "\n" ] }, { From f1f8e1582ead83fc03d5c6a7db1101145ab93791 Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Fri, 20 Nov 2020 22:05:47 +0100 Subject: [PATCH 110/134] Changing over to a different case study for the regression --- Module-15-interactive.ipynb | 436 ++++++++++++++++++++++++++++-------- 1 file changed, 343 insertions(+), 93 deletions(-) diff --git a/Module-15-interactive.ipynb b/Module-15-interactive.ipynb index d1fe3fe..a446c7c 100644 --- a/Module-15-interactive.ipynb +++ b/Module-15-interactive.ipynb @@ -45,7 +45,7 @@ "* Fitting a linear regression model to the data\n", "* Visualization of the linear regression model\n", "* Accessing data from your data frame using `.loc` and `.iloc`\n", - "* Summarizing your data using an aggregation function.\n", + "* TODO: Summarizing your data using an aggregation function.\n", "\n", "**Requirements before starting**\n", "\n", @@ -120,11 +120,11 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "We will use a data set that is about the taste of cheddar cheese: https://openmv.net/info/cheddar-cheese\n", + "We will use a data set that is concerns a [distillation column](https://openmv.net/info/distillation-tower), and predicting an important output variable, called the Reid Vapour Pressure (RVP).\n", "\n", "Read the data set in and set the column called \"Case\" to be the index:\n", "```python\n", - "cheese = pd.read_csv(\"https://openmv.net/file/cheddar-cheese.csv\").set_index(\"Case\")\n", + "distill = pd.read_csv(\"https://openmv.net/file/distillation-tower.csv\")\n", "```\n", "\n", "In the [prior module](https://yint.org/pybasic14) you were asked to \n", @@ -139,82 +139,127 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 166, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "distill = pd.read_csv(\"https://openmv.net/file/distillation-tower.csv\")" + ] + }, + { + "cell_type": "code", + "execution_count": 167, + "metadata": {}, + "outputs": [], + "source": [ + "# Here is the solution code for the above:\n", + " \n", + "# display(distill.corr())\n", + "# from pandas.plotting import scatter_matrix\n", + "# scatter_matrix(distill, alpha = 0.2, figsize=(15, 15), diagonal = \"kde\");\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The data set is quite big and takes some time to generate all the scatter plot combinations.\n", + "\n", + "We can use every third row instead.\n", + "```python\n", + "print(distill.shape)\n", + "subset = distill.iloc[0::3, :]\n", + "subset.shape\n", + "```\n", + "\n", + "The `.iloc` function accesses the data by `index` (the `i` in `iloc`) and for a given `loc`ation, so `iloc`= *index location*.\n", + "\n", + "Some examples:\n", + "* `.iloc[0:10, :]` will return the first 10 rows, and all columns\n", + "* `.iloc[20, 2:4]` will return only row 21, and columns 3 and 4 \n", + "* `.iloc[0:10:2, :]` will return only rows with index 0, 2, 4, 6 and 8; and all columns\n", + "* `.iloc[0::2, :]` will return every second row; and all columns\n", + "* `.iloc[:, -1]` will return all rows of the last column\n", + "\n", + "Now that you understand what `.iloc` is doing, you can understand why this code is faster, because it uses half the data set to create the scatter plot matrix:\n", + "\n", + "```python\n", + "scatter_matrix(distill.iloc[0::2,:], alpha = 0.2, figsize=(15, 15), diagonal = \"kde\");\n", + "```\n", + "\n", + "Try some examples of `.iloc` yourself below:" + ] }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 173, "metadata": {}, "outputs": [ { "data": { - "text/html": [ - "
    \n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    AceticH2SLacticTaste
    Acetic1.0000000.6179560.6043480.549529
    H2S0.6179561.0000000.6438970.755763
    Lactic0.6043480.6438971.0000000.703482
    Taste0.5495290.7557630.7034821.000000
    \n", - "
    " - ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKYAAAR3CAYAAADNfGxsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9aZBt25bfhf1W3+x+Z5+n727/2npP71WnelUlC0m2wLYQYBFgQCC6EDKE+WCM8QcwXUBYYSxECAxqCCNMSCAoY4EkJCiqUdWr19S7/T39yZP97vfqm+kPc+2VO/vmZOY5r5T/iBv33nMy955rrjnHHGPMMf5/RQjBFa5whStc4QpXuMIVrnCFK1zhCle4whWucNlQX/cArnCFK1zhCle4whWucIUrXOEKV7jCFa7wdyauElNXuMIVrnCFK1zhCle4whWucIUrXOEKV3gtuEpMXeEKV7jCFa5whStc4QpXuMIVrnCFK1zhteAqMXWFK1zhCle4whWucIUrXOEKV7jCFa5whdeCq8TUFa5whStc4QpXuMIVrnCFK1zhCle4whVeC64SU1e4whWucIUrXOEKV7jCFa5whStc4QpXeC3QX/cAzgOzs7Pi9u3br3sYR+Lp06dcxhhzIVAVBYAozclzAQo4hnbs717WGI9CmgmSLAfAMtTyWXIhUFBQlKPHOf1zp0WQZCBAVRUs/dVytm/CXO6FECCEIMpyELCx+uKNGyPId5hmgqxYuxsvX/84hYAwzRBCoKnqvvXxprzvIMkQAlQF7D17/nWNMckEabmnNdQD9uZJ9/frRJLlJJlA4c3cO5M5DNNs1/6O07zcS7ahcQbTeO4QAgTyrDrJ+54+1y4LWS6IU7lu35T3nQuBoii73uHk3LqsMe4dQ5oLknT/mX0Yznt/T9Z9mh9vZ06KN9UGRcVeFkKwtbbyRo1xek9P25zzPr8F0o85qz04aL1exPueno+zYNr+mLrKi+fPTjVG+f2cah+Epf+gYBln84HfxL2TC0EuKN/76spzlq/fRNcUdFU9U7xw0Xj69Cm3bt0u32EuBFEix69rKob2Zgz64eMnci5VBfMV46aLwtOnT7l569a+sxMgSvLiTNvvM18mHj1+wuK1G+ja/vjiTcJv/dZvbQsh5i7yO35HJKZu377Nd7/73QP/7r/54Sp/7lefstx0+D/+3re5OeNe8ugkvvGNbxw6xvPCw80xQZzhmBr356s82hrjRxmKAu8s1tC1oxf7ZYzxOKwPQrZGEQC3Z11qtkFnHLHaD1EUuD9f5Wd+8lsHjnNzFLIxiFAUeLBQxdJPbmSyXPDJ2hAhwLU07s1VX+k53oS5nEaUZnyxMSbNBcMgoeWa/KP/6198o8YI8GTbYxymdLyImYoF8EaMM4gzfnulz2o/pObofPNWm4ZrlH//JrzvNMv50csBzzo+tqHy9Zst5ut2+feva4wv+wHdcQzAvfkKrrn72Dnp/n6deLw1Zn0Q0vMTbrbdN2JNTuPx1hgvyjA0GaALsbNvnm57jMIURYG3Fmqv3XkMk4yHm2OEgMWGze//+Z8+ci6/2BgRJjkVS+PuK9rl06Dvx7zoBsCbYYNedH36foKhK7w1X0NVlV3n1mWMcaXn0/MSdE3hrYUamqqwOQzZGMoz++aMS8MxjvyM87RDXS/mZS9AUcA1NbwoA+DuXIWKdXb39k2w5wfhi40Rn66NyITgX/sn/p43ZoxJlvP5xog8h7maRZRmDIMUON91meeCzzZGpJmg6RrcaJ/en5/4iQA32y4N1zj39z1t45abNjNV69SfMVnbID/j7/rO0XZyGl6U8mTbQwi40XZouuaJfu+j1QF5LhNhby/WTj1mePP2zsS/GEcJhqZi6Rr/wB/4Dn/6v/jvUVVouuap44XLwNd/4if4s3/lbwDSrmqqwpMtD4DZmslSw3mdwytx/72v8G/++V/i/eUG9+Yv73w+Db7yta/z5/7K/4CmKry9KM+tCT5dH5KkAk1VeG+5/trG+Nb7X+Ff/3P/X5quzs+/s/DaxnEcFEV5dtHf8TsiMXUY/odPN/jj/9n3uTtX4dP1EX/rs03+4h/7yde6+M4D64OQ7XFEu2Ky3NwxTlGa7fr3jZZL14up2vqxSamLwouuzyBIWKjbzNWOP5znaxaqAoamUrOlgxsVtxxC7Pz3QZjcJgghqzQO8ku9KOVZx8fQFO7MVsp50VSF27MVxmFKu3KyQ/xNwkpPBi3zNWtXMmKCNJPBqqYozNctms7lP+PAT3jR83FNjdszFdQDrvIma7fpGMzVTNxXCC7OA4MgYaXnYxsaczWLIMloumYxzqMDsMvCKEx43vWxdJWFmsXAT6g7xpF75TKxWLcZ+DHDIKHrxfsSUyfd3xeFk9ioKM2p2QYCwWJj//66SOS54PG2R5Rm3Gi71O39624yb2kuSjs2gWWoPO/GzNbM156UAhnECiH/e7LfD4MQony281gbpzmPmq5Jlsub9ovAy35Az4uZq1ksHGCz92IyV0kqZAUZyq5z67yQZjlPtj2STHBzxqU6ZYPLdVZUtGqqIudRkWfLcUmps4zlaccjSnNuzVR2jUWOR86JEPJ9Va0cQ1NfKSn1OrA5DNkcRTRdg+utw5Mt11oOL3sBjnX5QXScynWRC8Gd2cqu6oI0E+TF9ozSjOWmg23EOOb5jjMrqqnl9+y3B1Ga8XTbP3CME8wVSSJNUXZdLp0nonTaxu2Mc20Q0BnHzFSPTyy0XINcSL/ttD5pPPX98Z55ynPBk45HmGRcb+1OJN+ZrTAMUpoXNC/njSTLeVrYqlsz7oH7fjL/VcugZmtULANDV2m4BopyeLxw2tjlvDF97sRpzlzN4nrLIclyZk+Q6Dzt+XJWGJpC3TEO9YvCJOPJtoeqKNyedV9LAnAyl1kuSPMcTZVj8KKUMM4IkowPlhuXPq5p6JpCyzUO3Xs7fr7GndnKruTa7zT8eJ3ep0Ca5fxrv/QJ9+er/NIf/xk2hxF//5/5Nf7RP/sb/NU/8btp/RgmHyboeBFCyBuV6cTUjbZL30toVeTCNnX10oOoaWS5oO8ngBzrSYy7qir7EivzNYssFxiaeqTjOzG+lq7uc2An6PkxWS6dai/KaLg7gVrV0g/9vTcZQgh6npznjhcfmJiqWDoLDYsoyVmo268lQO36MUKAF2WEabYvQQFwveXSHcc0HOPCnMbToO/H5Dn4UcadWRfH1MgFZ7oBvSj0/YQ8hyDOma/bvHetXr7nNwHyAFWoWAY9L+FaU7YCTTBfs8iFQFdV6vbl7r80y09ko663HHpecqKKkPOGn2QEsQzAe158YGLqRrvYN66xz44Ng5SWa5JllMmE14mabbBQt4jS49eooijcaLsM/IR29dXO7JO+62lc1D4XQpRVhJ1xfKK9eq3psjWKqO25aDrvc8uLM8Likqfvx7s++1rTYXMYUbX18gxRFIX52sXYGi/OCGI5lp4X73vOuar0DXRVpeUau+zKjxO2x/JsPMg+TsM1db56s1lWI10mhmFSJjkGQbIr6eOYGosNmzDJmK9bGJp6IeePoalcazmMw/TA/TsK00PHOMFFrtcJGo7BfN0qEwoTdIr33BnHxyamFEU5UQLiIDRdgzDNyHKxz4YFSYYf7Zwn0+eZa+oH+mVvKrwo3bFVQXJgYmo6fpjEQ7qq8O5SnY1heGC8cJaz4ryhqwozVRMBzBTx6knj1rOcL2eFoal86Vrj0MuAQZAUyWTBKEyxqpefmDI1laZr4JrarsRYP0jQVJWqpZKJC7qBOiFsQ1aENysH+5c9b+LnZ/hxWhZu/E7Ej48FOiX+54fbPN72+FN/5OvYhsbNGZf/8B/+Bv+bf/9X+Jf/qw/5U//g11/3EM+MmYpVVkxNo24bBwYtrwuaqtB0DQZB8kpVSLqmnqhk29SP/7mWazIMUgxNofIabh0vAoqi0KoY9P2kPMAOwkU7Y8eh7Zp4UYpratiH3Jq8acnBpmsyjlJsQ8M1dapv0P6aoOkaDMMES1epmPobZQMmmK2aZUXA3qBL19QjqwQuEnrhsBxno2q28docAdfQcEyNKM0OdUyP2jftisnGMKThGK89KTXBQcnzw9BwjHNJBp70XV8GFEWhXTXpebJ64iRwTO1SqAgqpoZtqCSZ2NcCNPGlLgsVU8MxVeJUHLj2X6ftOE/MVE22DrGPe9F0zRO3Zp0n6rZBR4/JhThwP15W8N6umIfu35qt09HVQ8d4mTgoGTBTNcuKqYuEoiiHJr4cQ8O1NMLk8PPkxwUVS9+xVYe878Pih6PihTflrJguPDgNznK+nBWmrh55gdNwDLpejKoo1C754nECReHAd910DAZ+gqEprz3uUBXlyLO1VTEYRQmWrv1YJY/Pgt+xT/eXv/eSpmvwe96bL//sg2sN/sQvPuDf+e8/54883Oan78++xhGeHH4sb4EajnRaFhv2a62EOg1utF1uHPH3QsiqKrsIvi4aFUs/cytnEGeESXYi5/Gy0XRNatabUWV0GAxd4XrLKdfxjwNkUNwgz0V5A3sZ6/Q0qNkG7xdlyKMwIRe8dqd8L+br9pHJiDjNGUfpa3Fclho2lTcsIToNP8mYq1pn3ttzNWtX0BilmawWfYMSVZeFg86jQZCgKlxq4jFKMxxDY+EE3I+XNR4vyqgX1VgPFs7GL3Pe0DWV+/MHj2WvX/TjjIW6zULdZhylDPzkjTzHJ7xDskole2WiYD9OiZL8XP0pS9fOzI10VoRFRWv9BPZ0qeFcODeQENJXMXX1wABWVZVX5lB9U6AWVWWOqZ07cfX1lkNtqjL0TcPEJz3s2a81Ha6dMbF1XkizHD/OuDtXea0cXrkQ9P1431nxKvHgZWLio7z/mtsNLwvntuMURfkz5/VZr4o0y/mbn27y+95f3LcZ/vGfvcv1lsO/+ksfS8W614Q8F8fya4A89B5vebzoBiXB6I8jojQ7cL7XBiErvYBHW+MTzcdeTCuXXCSiNOPR1piVXsDqILzw7zsIkm9l/xyNo5QnWx7Puz7b49e/Rg5619PreH34eubvVbA23Fmn0+stzfJSRfJ1YxgmPN32ed7x6Xpx+eeHrZvzRpLlpSrWafFk2+NlL+DptnfOozr+HT3t+Lws3u3rxEH7xpva2xNRiFdBngsebcq5ftY5+1wfZs8vAhf5XT0v5nnH5+m25BM5Dxy33oTYeQfPu/65fOdhOMncXeZ4jkOp5nYMonTnPFl7Tefxq2Kv73Lee/0sOG7+/Tgt533zDOf45Jkn72+l92a+v5OemVkuSr9wpXc5e+e4d7Q+DHnRDXi8JXmkfifgMDu20vNLv+wkduM02BhGh87jZflUR+FlP2ClF/Bwc7zP77qsuOg4THyrx1seomiVS7P80scWpfmZYo+TnkcXie4eH+VV/OwfF5zqilhRlPZhfwX8gVcfzvngt18OGEUpP/Ngf0WUbWj8i3/X2/yJv/gD/tonG/xd7y9e+vjyXPBwa0yU5MeqK0zIDwHS/MdzMU6U9ixD5f5cdRfp9WTTCwGnbfGNUql8kuenUx45C6bH9zoSmkJIByiIc1qV3QSp04bzdSZbAbZGEeuDEENXuD9XLasBpufvdRv6syDLdtZpXjxIEGevPZkxjel3v7OvdtbNRWIcpWVS6e7cfuW94zAZb3rOa2MSSAHcnt1Pnjz93dLWHs7vcpHYGIZsDvfbyGneg/ycOBAmn3PWz5uM1dRVHsxXDxQxOC+s9iVZsG2o3J+vnvu7Sc/Zdk7UuEAqKR3UVjttQ87rnR6EiRqmY6rcmzt87i5rPMdhokKmqQoPFqoYR1SS5fmP93ky7btMlOEuYq+fBhP1Ml1TuD9/8PxPz/VpOVmmn3m+br3R7+/xtocfZccq/4ld/vnFP8dJ9sir+NRvIo46A9JdzyqQoej5YBJvTdvHCR5teQTx8evjIrHL758aXprlfLE5Js0ES037zDxl54HJvE3GGibSZ562e5eCM9iak9jDy8D0mAd+zPNOiqrCvbnquVcJvik4be/CFvCM3bt/Yg3mD/yN14Bf+WIbgJ+6d3Cr3v/yS0v8O//9Z/zpv/WI3/vewqUHImkuSgU5LzqaxNI1da63HOITKjG8iRgXzxglOUmeY6k7m2mpYWNoKrahnnqThUleKsGMo/RCE1O2oXGz7RIkGbMX3LN9EHJBmVyYSGJP0HAMlps2WS5e+xqZrOckFcRZXiamHFPjRtshTPLXMn+viuWmJIx3jJ2yaT9O3yjHr+mapLlU7JrMcZaLC09KAfjRzlz48cHE9kfh9qzLIEjOXS3Sj7OdcUXpgYmpWzMuPV+Sir+ulqDDbGTdPt+9rRYqbqMwoXVGezkZa5zmxFmOrV6cczSxJ2GSk+YCQzvf9zNbNREIFJRz4VvZvd6yAxNT5/EOToLJ3AWxvPXVD5m7yxrPcZiMN8sFYZIdGQj8uJ8nYTzlu8QpDdc4971+Wkz8ijSTSpgHzX/NNrhWKIPNnXKM08+c5uKNfX95Lkpy8PEx/rmuqdyacRlHKTOVi39nJ9kjSw0HXZU+9ZtGO3AWHHUG3Gi5dLyIqnX+yuNLDQdDUzG13S2ReS5KMRIvvnwRggmutRw6Y6l8Od1uGKV5qVzpRelrjQlutnf7VtFUzOYVdu8yYOoqczXrVLbmJPbwMjDto0ySpXnOubRTv6k4bWLqMfCLQojne/9CUZQX5zOkV8evPurw3lL9UNI6XVP5Yz97l//LX/mIv/2ky7fvzlzq+ExdZb5uMQrTE3FF/bgTFC42bNYHIVVL39daqWtnVw6s2zpN15BO0iUQbzZcgwavh/tBUxUWGhbD4GA1mjdFJW6hbpOJQBJs7klOvA7C1vPCQet0Qoz+Jl347nVCdE0t181FolUx8eMMReFMwe1FqQG1CsJ9IQ63o7ahXTjvx3FYqB9uI897b7+qwMBi3WatGOtFO0aLDZuNYUTd1i/EMTxvha6GYzAOUzIhjiTNvQyRh8WGzeYwou4cH7S9CaITczWLOMuPVNWdxo/zeVKb8l2mg6XXeY7P1y2ZFNdVKkckNM5KBr33mV8n58xRUFWFpaZN309OlHy7TGGMk+wRTVV+bDhoT4KFiR074AwwdfXCzm5NVQ4ksFeL+R0EJ1sfFwXjkNipYum0q6ZUyHzNgkd7fatpG3DRpOzTOMuemNhD29COtIcXjWkfJU5zwiRHU5Q3UuTovHBaT+RPAi1gX2IK+LeP+2VFUZaBXwLeA6pCiFRRlAHw/eJH/rdCiK6iKP8g8M8CXeCPCCGGJx1gngt+e6XPH/qJ60f+3B/+xg3+73/9C/6jX35y6YkpmJBdXvrXvhZULZ378+dPtjiREv87BfM1m0N4YN8YOKb2O4ZY8zhoqsKtmcrrHsaxuIx1Y2gqt2ffvLn4cXlHF2UjLwKVSxzr61RDPAs09WhlncvEm6bSexxs4++cs0NV3zzf5aLn/0185sMwW7Vee/X5Qfg7aY9M8Cbasb2CIm8aXjfp+WH4cbIBb+JeM3WVO2+gn33eONUVpBDiTwkhfnjI3/17J/iILvCLwK9P/dmPhBDfKf7pKopiAP8U8LuBvwD8k6cZ4+PtMV6c8aVrR7PX24bGP/itm/yNTzd4cgGEu1e4whWucIUrXOEKV7jCFa5whStc4QpXOBpnqo1XFMVWFOVfUBTlLyuK8pcURfnnFUU5tk5OCBEKIXp7/vhdRVF+WVGUf1ORBB9vIZNVKfDXgW+fZmw/fDEA4Cs3msf+7D/0k7cwVJX/5FeenOYrzh1xmpeKBQDb44gPXw543nm9CjnnjSTLDySYHYUJH60OeLh5Psoafpzy8eqQLzZGl66YluXiXBUTTqpekeWCh5tjPlodMArPR13qpEiy3ev3KEzW9ovXrP50GNJijXa9mA9fDni67Z342S4LWS4K7qiMT9aGfL4xei0KLEKcTPklzXIebo74eHV4LKfeeeGkY5tgpefz4cvBmZSmzoo8Fye2T8PCRkri0NOvx4vad6d5hldBmp2POo4QgqfbHh++HNCbUq48T+THnAF9X9qWJ5doWw7zMd5UO3wQ1gYBH74csDYIyj877T5/XTjJPskLhbePVgfnphB5HA7zyQ5D75zPxfN4f+ftP8L+/XJRCJOMT9eHfLo+PLOC3nFjvQybd944zoZOY9oPOq+zaOL/PeucbJ2f1/l0UgyCw/2B08zdReNlPziRX5We0g6dF/Jc8PiENleIy/F1DsKLbuGfjnbP42Wvu8vCWUkb/jzwPvDvAf9P4F1kddNZ8ABZHdUC/iDQBCate4Piz/dBUZQ/pijKdxVF+e7W1lb55z96OcA9YTvRfM3mD35lmf/iuysM/MsN5id40fX5bH3Es6kkVNeLEYJSGvJ3AnpezKdrIz7bGO0zmn0/Ic/lAeOfA5lg308Kcsj80gJhmHYyRufyec86Hp+tj06UoPTjlCDOyHPoeZe3ljdHIZ+ujfhi82QB82Rt9/03b233/ZhP1kZ8uj5iYxgiBIzClPgNGqcXpXyyNuSTtSHrg1ASMyb5sSSt542J2t9n6yPWj5H79qKsJGDu+ZfjGD/tSLt6ksA7zwU9L0EI6FyS455mOZ9vjvh0bURnfLw0fM+LyXNJqO2fIYC5iH2X5YIvNsd8ujZi+wTPcFYMw4RP10d8uj58ZYnuOMsZhemFvesozYqxjg51dDvFuxiHKdElJFU2hiGfrY94uDkug6zp9fCmBDHHoTOWY+6M5XuTNkiekav94Jjffn1IspzPNuRePyoxEKYZfjQ5wy/eDnXGEZ+ujfh8c3Ti4Kbrx+W5eB5r98m2fH8rvbMnSM/bf1wfyP3yaGt84cmpYZiQpIIkFQzPcKE4iR+eHuEjRumOzete0vn7KojTfMeGniAu6wdx6QeNwvPxg7pehBAwDI73/6bPp7MmF0+Lvr/jDwRT3zmZu0/WTjZ3FwkhBN3CZm+PD193Az8p/e7LvmQI0wzvBDY3n/J19iaHLhp5Luj70j/tTo1xHKWXvu4uC2dlu3xbCPGVqf//m4qiHNjidxyEEF0ARVH+K+BrwF8BJuxLdaB/yO/9GeDPAHzjG98oT48frvT5YLmBdkIJ6z/6M3f4S99b4f/9G8/5p79z7yyP8EpY7QeMw5Q4NUuOloZj8HFvSMMx0Pc8hxCCZx0fL0651nReCwHowE8YRQmzVetY8tuXfZ/P10dkAhZqNmkmCNOc6hSJYdM1GIYJlq6eiAA5TnM+Wh2wWLcPJAttOAZ9P0HXFCqWTpRmbI0iXFM/M3HnNPJcsDEKURWF+ZpVKnl5UVoqThyHNMvZGEWYmnpor/rkkJ04LGGS8fHagDjNuTNb3UXM6Jo6jqkRpRnNyvn04+e5YHMkA86FunWgYtlkjFEiFboMVD5fH7E1DrnZdrk1U9n1e+2KyfogpG4br03l4jB0xxGfrQ8Ik5yFuo2uyX5u8w0aZ8+L+WxtiABmqiZRmnOj5V46cXGaC7ZGMX6UoijiSGLJiqXhxyl+knKjvZ/7IMsFTzseUZKfiJ9nGCYMg4R2xTzQXgghGBfrcrI+wyTjs/UhQZJzs+2yPMXBoKoKTddgECTMnJPQxHE2MkpzklQeW+NCLfB7z3sIAR9cb+zj1JgQ7Vu6hnsGwvHpfacpCo+3xoSJJCAN4pQgyZirnU5aOkqz0pEchxen/jMugiohZPA5IU3eHkdEac58zdpnS9IsZ30Qsj4McU2day2HhmNgaio1W2ccpWc6C5IsZ3MUYenqgc8bxjs3mE+3PUCQC7jRdsufb7smQRxQsXQs/eJty4uux8BPaVVMkkxg6goNx+CT/pCaZaAeokTZ92Ne9gMqps6tGffcFStP48t0vZg4y1BQmK2ZrPYDFCjVsS47MQ/yvO/5MU3XPNL+hklGmkm11N981sXWpez9cnO3rbN1DdfSCOLsXNQRJ+NrOAfztE1sY5IKolQqqXa9mJ4fE8QZpi4V56ZJys+ydtNMsDYImK/Zu/zyPBel8tVJ39/aIKDrxcxWLRbqNqMwwYtS4iyj4RhnFtDIcsFKz2e2apUV50H8akqga4OAF10fQ1N5e7F24NjqtlEGm2fhUZq8Q2kjxa49OjknW65B1dYZhQlRkvEbTzpUTJ0bM+5r4W7q+zHjQi3uoLMxiLPShk4UK190fR5vjVmo29yfr+4Sc2g6Jj0vQVOVc/ODWq5JmEiBj2n/L88FD7fGrPVDbrQd7s5VS3GVyfl0WEzU9WL8WIoXvSrxf9M1GYUpjqnhTH1fkMi5Ewh+9fE2jqHxpWuNY0UVslywMQzRVYX5AwjfzwJFUWhVZCx2ENH55kgmgMdRylLdBlSCJNulMLgXh8VexyHJZMw4V7V2PZ+ta8RZxsBPWGo0D/39OMvZHEZESYapn69gynGY9k+nfZZxmNIZR3T9hJ4Xc3u2wvXW4f7zcfvuTcJZd/H3FUX5thDi1wEURfkW8Cun/RBFUSpAKITIgJ8GfgR8DnygKIoG/B5281EdiSTL+Xh1yD/07VsnHsN7y3V++v4Mf+5Xn/KP/+ydSw2WkywnyQVhmpHmGUm2I0k5cWKHwY6kpjSAQt5+IFjtB5iayst+gK6p3Gy7CCHoBwmuuV8VbRrb44hcCOaqJ9/cIB3+Fz0fIaR864QEN0ozojjjZT/A0FWut1xsQ+PTtZG8dUhzFmsWNdvAmHJOwiQjTHIezNcwdRU/ThkGKU3XOHTzZLkgz2WZaM+P6XkJ19tOqf5QsXTeW95hln+67dH3Y/rBmPeW6mcyvHkuCJIMx9DY9iK2R9KZMDW1VPuqWTqWoaCrx6+hjVFEt7hFcEwNQ1N4tDlGVRSWGjYN12SpYdP14tIYvewHPO8ECAGOobFQt8mL9ePHGctNe9c7F0KUNxWzVfPUgUXHi9kqElOGpjBTtVjrB2yNIloVOT6pJhbgmlKha2MY8qRIMuhqyFLTwdJlwiyIMlRF4f3l+q6xSOcyo10xjzyULhprw4D1QcjDrTHvLEpVzw+u1c89IHsVvOz7bI5jnnc9bjRsWjWLG2330udNVRSiNCts19G3yn6Slap7fpzRdHfkrl1TJq1+9eE2Xpjxu+4eWCBbQgjB8460P16U0aoYdMYxVVMq0TiGVqrm9P24tKMrvYCnHZ88l87IUsNGCMHGKMI1NG60XW4U39H1YtIsZ7ZqoZ7wgmMau21kxv35Gk+3PYIko2EbzNRMXFOj6RpEacZczeJpx2N9IPdaqxtQX5Y2P05z/DglywXvLe1ei0GcMQgS6s7RioZ+nBIlOUsNu0hQBTzveDQrFp+uDUkyeaaESX7suTEpfY/SnLtzVVoVgzDJzoUINkwyXnR9FAWWGw5uEWTMVE2CJENXd5RovChlrR+WY9pLqLraD/hsfUzXj7jVruCaGg1HSlbfnq3IFqIsx4sSNFVlECS7bPlheLbt8fHaEE1V+Lm35qjuCeyqloauKWgKeHFOZyydQV1VcQyNOM1RFHhnUaoRHGVbkkz+vmtpZw4gwyQjzSHKMnIh0FSFOM3RVKWUt+9O7ZM0y4nSnIql0/FkJcL2OKLh6GyNYyxd5UbLRVUVvEgmNFuueehFoBCCrXGEqij7EnmTSo5MSF+m6ZrkueB51yfJcq63XBxTYxjEMsBXNWq2jqaodMYxaZ4zChNsQ6VuO/SLJNFl4XnXJ80EgyDh/WXJadr1Ih5ujVmo2dxsy2Re1ZJKVGuDgL6fYKgquuozV7NRFQVNVUq/bbZqoasKozDFStRXCiBe9HySVN62f3CtQZrlsvVHCO7MVpmvW+V6tDSVMMl42QvoejLhu9RwChVgjSwXbA5DKpbOB3v4W8Mko+8n1GydygGJAS9O+Wh1iFiSCXLb0BBCFMlwmQg6qf3olBUYck3+8EUfx9QKQYaDFT4me306GTAME/woY6ZqYmgq4yjle8963JurcmPGZWMQSl/1iHhgUqVw2DvaHkWsFjbKMTVutNx9+8U2NN5ZPFgFKclytkcRhq4wWz3YZ11q2GyPI+q2wdOOT5xmLNRtGo5RnpNbo4gbbRfX0Phia8TLXsC1pkvVjg+0K1GaYWrqPtvU92OiVJ6LJ73434s4zXnRDcr/vjtX5eHmiDgVzFQN2hWLmq3TcAziLGemIi9kvtgcMfBT0lywULdpVUzSTO5/gcK7S7Vd4+15MXF28rHutVMzxT9elLI1iqja8oz14pTVXkDPT4jTnJmKRbtQJNZVhbpjkOWCYZCwNQrJcsH9+SqZgJc9+dxpJs4sFDM58xuOwQfXGvS8mGGYlHbPKi5eNochQz8l1HO+2BwzU7UYRykvez4qCktNC1PXS79xexyVlaiWrpUx56vAK8692zMuYZoTxBmOqcm25jznecdnexSTZDl1K+VGu0Jtyn6s9HzWBzIBuFCXsV3Hi8vYy9DUE18ueVHKX/94g/eW6vziuwtlLBdnOaamMVfT8OOjq46iLCPKMrJL7pwbRymGpnKz7RClsvVZvjfBOErpezENS6fnJSw1xL717scpT7Y9vtgYs9Swy333JuOsialvAf+woigTdb6bwCeKovwIEEKILx/0SwWx+f8P+Arw3wH/EvCnFUXxgMfA/1UIkSmK8h8Cvwz0gD9y0kF9vjEiSnO+dP1o4vO9+KM/c4d/7M9+l//2R2v8PV+9dqrffRWoikLbNbF1lb6f8Nn6iFsz7q7DUC9ua172A7rjGE0Fx1R5uu3jGBo9vy8PlyRnHMobslGYls7vQTLRPS8unfqDHMbjxqypCmm2c5MUxJnkkFmTPd6LdZuKpbPUcJivWYzClNmayf2FGs86Pp9vjFloWMzXbJ5se6SZoO/H3J+v8mTbI89lG+Pbiwc7GpqqMAoThmHC1ijC1jX6QULF0g88aA1dZXsc40UpL3sBdefwpNdheLztEcQZFUvbZQwn7yfPBU86PnEqaNaP31aTuVMU0FWFR5seH6+N2BqGvLtc562FGstNZ9dNh6mp1BwdL0yZqVrl7c3TbQ9TU5mtWby9WCvXT8eLyzYrTVVOXSEwfVNk6CpJmvGbT7tsjiJsQ+Ubt9u8NV/b5RAamkrdMdhOI5qurFDYHIY82fZKBynN7DI5mGQ5zwoHyo/T12Yw1wYBW6OEpx2fvpfwm8+6PJirUbV7/Pzb8zivUS52gkGQsDWK2RiGbI0i1ocBCzUbQ1VZqju0L1F+V1WksmiaCerO0etdOrnyRnGyNicVOzVb5+HmiL/20QY5goZz9DwrioKuKSSpoONFRbsFQM5i3aVVMbg7V92nmmNqKg3bYBSltKsyQfG95z2edwIqlsZP3Z+laslb5YkDmQlxJinq3TZSZaXr8/3nfeIsw9E17s5XZQA0lUypWQaWoRZS6nLcfT/m8/Uxa8OAGy23dMoneNb1SFLJhzadiN+LJ9ue5DPK4c6sy+ebY7ZGEddbGbdnKmyNIlQVtGLcR2FrHPHh6hAhQFXh3aXTnbVHoePFjMOUFz2frWHMg8Uqs1V5u7y3NV/XlHJNHZSU3RhFDMOEgZ+gzbKvAuVZxy+r9GxDo+7o6KqKqasHBtc7Y4ykvQLeWarvS0ytFu21ii5vdIdBQs3RURQYBgnb45ggkZW1VVvn7lzl0ETgSk9WUytjdtn100AtEiMVU6fh6Hy2Ltu2Gu7Od04+d3KeJKmgVTFoOQafrQ1RFRUhBLahy7bhSoqtawVHljz/D1Na2hpHbBQJV11VdiWOLF3FNlQ+XR/Rdk02hyGWoZVVIB0vQg9U1gcha4OA5aaDoavleJ9ue8Sp5P1IMxiGKQrKuQRVJ4Gh7exxgCjJ+KXfXqPvJVxryyRwzTZK9eCareNFKYMgxdJVPl0boapwf77KIEjYGEQIZMLeMaQterBwdjlVQ5Nn9mR8a4OQj1clzYCpq9ybq2HoKuMw5UnH49ZMBVWVF3uKkmHoSmnbP14d8nBzjK4p/MI787v2yPOuT5TkbI+jfZdOIPdo30t4tDmm45osNCz8KGMUptiGeqpnbFVMesVl3fOuTPT1/Jj3lg+2Q5OW8yCW1aHLTYc4zXm2LVvfwiTj9myFPBc83ZYJ0TtzlWPHNI5SnmxJ0aRbswdXHrWrFs+6vpSaF5xov0zjZS/gk/UhYZzzlRsHP1+rYtKqmPT9mPVhyIuuz0o/4N3FOromk8fboxhdVYmzjM1hRM9LmKtmByZxV/sBnXGMbciqvsm79OO0TChNksZngabKMybL5b553vX40cqQcSirQe7MVXlrobqrcjpMMmqWwTBMcU2dqq3jxykfvRzysh+w3LS5PVMpfUovSlmZnOG52FUdfRgOslNJlvNoc8zzno+laXz5RoPZqkXVlvFGzdExdGXX+SSEbPla7QW87MsL2zDN+eBaA1WFPJe+9FnxtCPjpa4Xs1C3ysSngkKa56z2Q3RN4Z3FGl0/Jkxy5gp/YnsU8XjLY3MU0XJN7s5VeGtBFgRMd+boZ6wQnEaei3K9f7IWMVu1UBR4e6FWXlyDjH/aFZO3l+q74tAwyfjRiwFfbI5xLZW/7xs3qDvm7pjkFOP0ooxff9zli40x15o2mVBwTLXo6Ch8U/3wz9NUhYWajRDQdC6vyjDLJT9cngvWhiHLDYdBELPUcFjpBSSZ4FrLwSou3g7y3zrjmMebY37raY+ZqsHv/2D50sZ/Vpw1MfX7zvJLQogEWQU1ja8f8HN/gTNwVn30UlJTHafItxffeWueu3MV/qNffsLf/ZXlS6uQ0FSF+/NVVvs+uqrwvOvT9WK+cr3JnbkKmqKUAfHkdibL4Wa7QprLvnQvltVThqbimBon4TKdrgLQTvmsqqpwb65KkGRldjtKM7JcBqtZnhOmWVk6/sG1BrdmK1i6Sp7vkHl7UQY1mLTwC2TQqSoKOYK9PnjPiwtDr2HqKjdnXLZHEdtjmXGvmnr5WXux3LAZhylelGLoMkg+LSbzHyY5TddE11R6Xsyzjk/V0lksMtEAoxOUpc/XbBxDw9Dkrag0joJMCHRVPbBn+HrLoe4YOIacgzjNSwN/EO9MnguedTyyXDB7hqRFwzW4q0nD7ZrSqbYNjTTL0UyNJJXjVdndqvfVG81da3cyH0kmg4jp16QqCuuDgFGYcXv28mVk/Tjl6bbPy77PfM1kueEwVzXpBQkzFQsFzrRezhNhkpWJvcW6zY2Wg6kpDIOEuaqFrqkoyuVe4yiKtF1+nO265ToItqFxf75KkuXUbAMhRMlPEqayjFrXFMJUoJ3Aabs3J793tR+QZoLOOMbQFAxNIUwO7qW93nJouDt7ByjbSPw4K7lEJgd7kuU82fLoeQl3ZiunSkzutZGPt8c4pka/H9GumAghbeb0Zy63HKqObBuYJM3HkbTteS5LyffaN1Hsb1WF27PuoQkOBRkYjqKUME3RFJX5ms1y0+G95TrDMCXN8qI957jEIGiqPIe0E1SGngY1W+dlT74/y1DxowwOyVNbulxTcZYfGBS2ikRHq2Kw3HT2JSvGkaziDZIMS1fJcoGucmhb2wSLDYfZqo+pKwe2+E44sJJUMD9nc63lMgxlNdaE7zBIMgxVZRSkfO95j8W6w93Zyr7qvOmz+awmyCzaxuKCXHYQpIRJxvZWRNs1uDVToVE42hOfAuQ5t1i3udGWN/tJJitrdE3BNTSyqcV4FA3P9DPsfT5FUbjecss968cZrYqJrsnAtWYbbI0iGRTUba63HNoVWflrGyrjKGF9EMnK84IHRjA9LtkqOI5SlhoHt/2/Cu7MVhlHqUw8IN/rZP2Ecb6rxQZk+83vujODokhepM5Y8sSEcc70oagUb/ugas2uF7PaD45Mnk5we6aya3yKIpPJQuzs3Wm/Ri/80SjNqVn6Lj94wt2UZpPEmcbjba9sU5wkHA7ynQ1N4caMjWPIMQfxDi9OVBB3n8TnHhQtK46psVCzGQZjrrdckjzn9szBFShSJKRoNy72n6JQBqMTe69rskX0RtshiLNjWwKn/bMoyQm1rFT3vjNbwTY0rjUdFmoWXpxhaAqPi0TWSWmrFOTaUBQ5/7kQfLwqqzXvzFZ2JeRdUya/01xQKSqT781V6XkxmiJ/ztY1rjddbrRcbs645b6fxsRGhcnuNkZVUfbN2VkwiXmCJKNu6zzZ9jB1RdphQ9rhJBNMH0O2ofGl6w3eWaqVcUXfT8iFkIm+JNvnU/pxytogZBzJls/jxrzWD3i85TNTNblV+KFCQCpky72pyarihbrNN27P8M5SusvHnSAXcj04poYXp1RtnVzI+Gx6b50EcZrz4csBi42dFvvJhdfe5xHstMWmmUDTVL7z9nzpcwHUHaO0tVku5y7OZPXNTNXCMrQDn+k4RMU4r7d22rEVRb6HTIhd/nOaizJmabqy6mt6jBOYmkpU2HRD0xhHGXVnf0xyUkzOBQV5odl07dLmPVg4/r0Ymnqin3sVCEF5cTTx5xQoY2Jl6ue8WNI6XGs6zNWsIyvw6raBF8vq1JZrUj/m8vdNwJlmWAjxTFGUFnBj+jOEEN87r4GdBR+tDqiY2qGH1GFQVYV/7Kfv8C//Vx/yG0+6fOvuzAWNUCKIs7L8tuEa3GhXCJIhqqJQs3V6frxvoS03HDZHspTa1FWWGg7b44jlpk3LNYvDVuF6y6HnxVQsvayWGhYk6i3XRFUlv8StWRchOPBwOg6mru46FBuOwXzdQlXA0hUWGk7Z660oyq7AYaYqy14X6tLQLtQsPl6TfFFZLrg7V8GLMmr27qXZK0g3J8Z3rmaRZIKfezCLoavkguLmNN9XJaYoCm8tVOn7CZahYumyNP00B+yNlks/iMtWj6qls9YPSiJQS49JsgzH1Fk8YavgtDGecBn5cUrdMXZVRoB0sjeGsv1yYhhNXWW+bmHqKqoCS00HQ5OHe9+XrQ4zxU3FWSkFpx3giqXzpesNlho2VnGY7b3FH0cpPS+m6RqANICLdXnTULP1gsdGzuEoTIrWLgO7aAW8bMgbRh9dUbAMnZ9/dx4/SlFV0BWFB4v1196PvT4MWOkFGBqgaPzsg1k6XkyUZliayu3ZCq3K+fP7iMLxOyhAynPB1ihCUaBuH3+M2IZWzuPETk165m1d5XHh1H/r9vG219BUGo5a2BuVtxdq2Ia2a3/uRbfgTZkOFt9frvN4a1y0D8i9aOsaDUdnGCbomi7L8sPk1M7atI1cbDioisIHy3UE0rnca3ejIkHnmjvzNFu1irYqjfkp/qc4zRmG8sa2WTFxDY1BkBzqqN2fr/Fk08PU4XrTxTalvXx3UbY/HHUGxGnOxjDEMTVmqxazFYuv3miSZPvb514VddvgG7farA0C4kwwX5wRYSI5AquWvuv9Tq+pvbjZdlnt+8zXLXp+wrU9HaLLTQdVkU78Ql0Gj5Z+vFN+o+XyU/cgFwfzqi3WbT5ZG1K19PIWenL+TTh55usWQZyx0pOXGpNAfdrWhnGGZSjMamaRrDldErBfVE7PVi2cYk0JIRi5Kav9lJqlF5VQO79j6ipLTRsvSpmvSY69xYZdtFpJR1kt/AwduDUjW5PaRTCSFcpz4yil4cg2qJmqha6qKOrBHDqOqTFXs/BjGfQZmspbBT2Apsk9vjGMmLOsXYmlmm3wEzdb/HBlQJplOJaGbai7qkAmLaog/YfzTkzt3cdN1+TrN5tsj2LeWz64Wn3yjlUFnnc9NEXBNWXF3jhKZSv/oo0XZQfa1Qlp/YRD7zTjW6zbfPVGEyHkOgaZsO96MTXLYHVQcMwcwN3y/nIdVVWo2zot18CLUvp+TJBkzNcs5mo2FevgvVOxdL51Z5a1QUAQy1azrhfxvONzo31y7rKJD+hHsoX81ozLMEioH1IpAKBrKq6p0g/SMuFgaCp3Zyv4cVZWkVctg5+8O4OuqQV/T0LfT2hVDuYPa7tmmZxqV0w6XkRa9PjISjCt/P6GI9fB3v2yF0Gc4cUpTcdA11RutF3iLCeMM663XOI0L1peDcmRp+98jqmrfOlag/mqhZ9kzBd7ab5uY5saYfG9G6OIPBeHcikuNGw2hxF1W9/l21m6ykzFIEhyFl6xbXv6bFxqOAgheHepjqZK+7vXBieZrMazdI0JtU/LlT6ypass1C3maztnhRenVEyd+ZpFxZLtd0e1QqdZjqqoLNZtVFWeeUmRsHkwX0NXVCxD22Xvo0TSZ8zXd/NFaar0bYZhwrXmEmGalS3Tlq6diltqkjzqeTut1pNkc9WSVWOjULbyNxwDS9dIclkB7JpakcCf4oermPzMg1m2RyG5gNmatWttn5WfK5+M00+mElMK9+ZlLHez7bA2CJmvy7NIU2UVz/VW/dAzXFUVfuHtOX64MqBq6yxNzf1JkvJ7UbMN3l6ocHu2wldutORYHXnJcdL3IoRMjmeZONTPzHNRxuKnRT6lUDrx51RVKWLiFNdQWRmEvL9cp+Wa+EWcfL11dEVgwzX4fe8v8tHqgKptsHiGLoDLxplWoqIo/yrwjwCP2LnrEcAvnM+wzoYPV4e8u1Q/Ey/IH/r6df7kX/+cf/2//YS/9E//1KkdwdNgpefjRRmfrY+4Py9bOt5eqGPpGmGSH9iS45gat6YSbg3HODCgmBxGE3y+MeKjl0OaruzBnwQTBxnqtCi/nBj0k0JRFJabzolKZqd/ZhQk/LVP1tkax9yZSag6BksN50AjMVOxCBKfShF8WbrGnSJ5l+WCT9aGpcN2UPZYEvGZCCF4uDkmiDMWG/aJuQ0arrHr1n1zFOJFkh+jZhlsj2MMTR4IFUsveul9lpvOiRJgtqFxb/7wNraen5R8T7q2Q743X5N98F6U4RUH1mo/KG+UmsWYWwe0N5zlfS81nCPbm553fLJc8m5MuCgqll70vWcln0QQZzwtyulVRaXlqqVzcVkQQrDeD/ne0x62ofG/+9YNFurSqZiU+h/Hn3QZWBuEfLQ6IE1z/sCXl3iwUONWlvPFhmxju4ie9yjNeLTpkQvJh7DXadn2djgJJlU+m0Xy4CR7qumapRNjFwSdcSaTQFGaszkKjyWYrNm7SX0Pa+EJ4qxsXRaCsk2g7hjUHIMg2eFteNkPGASSy8LUVDTt4MTNafZ31dKpHtOiutYPGYUpfV+2JE8ctpqt40cZwzAt5/VpWQovWKhZpLmg6RxeETkKE8IsZ3MYM1e3+faNmdJxynJRKpod9Czrg5BBIIO0SiGwMKmiuQioqsK1PW0iL/sBfpSVc6OrCi+LS4Hlpn3gWW3qskWoO+XUT6NdMcug9MnWmB++GGDoCrahH5jAmH7ft464nfSTDNvQSXNps6fbpxVF2fXZrYrJSk+25E8nTP045X/8bIsoy7nddlk6wbk6jTSTPC5ZLniyPebuXJXlhoOqKiUJ+9OOh64qVPckP2ar1q752tsSO43p/fdk22MUJDI57Fr0/aTknzyutW464BsECS+6Promqw737vEJojTjRU9WQ2W5YBRlLDU0vCgtzzJTV2k4BqMooX3KxP1pz+8JDmsp24vVfshaP8LUFbbHEa6ll5dutaJV/yDMVExW04CqpZ/6/NY1dZcPCTvvcH0QlpyX9gEcM1Xb4Ju32yRZzueF//S8Kyv9W655LE3Aaj8oW8BMXaXrJVSK9qyTkme0KiZenOIYGrYuuQSPuzQahgl+nGNqahn0RWkm+QaFwDY1qpZOUlxoTt73hF5gHKW8u7S/TVpVlV3tbHXbKNWQD2ttP2wtg7TDj7fH5LlMbN0pKijnahYrvaC8lAySFCVg38UtSPuyuMdWDPyErh/TcmWy69oxtqRuG/tig4nY0LOOz2JD8pgeJXZy0vMbZFxz7xBusAnWByF9PwGS0r/WNZV2VfJP9YOUmaoUdZhQg+RCdjaYulrGDIdBJiMNVEXan7V+WNqvQZCgKAqOoZU+UJhkZQtdLsS+PTVprzwrtscRozBFUxVUld10HrpKWzfJcsFn6yN+9HJAnst3//5y41g1+qPs+WkQxBnrw5CKKfehqrLPBkwSPp+tj0gyKaRkaCqrha/zaMvjG0fY5bpr8rNvzZ15jHkuSj9BVRS+drPNjbZD3TGpH+EvTSCE/P1JO+i0H1Ldk7gFudde9KTYwb25yqlzCNKeqfv8OV1VWB+E/K3PNmm4Jlme84vvLp6Kp6xZMfnpB2efy+n3fRk4a03a3wfcE0K8Mdqjk+TEH/6J62f6fcfU+Ff+4Pv8c//Z9/nTf+sRf/wXH5zzCHdg6iprg5AgSRmGCV0vZq5mnRu/TprlDMMUx1DpF2o24+j4EuIklTxVWZ4fSiR5HhBCJi62vRAFeWvrJ3nZGhHEGbqm7Nr4MjG03+mL05y+H5PlQpY8HvGQsvphoiSmMAhOTro5jSjN2BhEaKpKzdK42Xb5fGNEnu/wnWSFxKdlqOei4DDdT21pRYtcEcRPHNpBkEhC9Km2pNszFQTiwGqKi3jfpq4WyllyHpJCnn0iJ+9FGWmW72q5WCxImV+lRPwsUBSFYZQWxO0qK115iE07uxesFn0i+IVCkqmpjMKUF12flmPstMFewBj9aEcZZxQm+xJTkzUIU/YszhiHslpiL+/PhKTfMbR9t0mGptKqmogcLEOSY24MovIW8FUhW0x28wgMgoRRIdUNsqq0MTWnuqpwreVQt40DLzrOe39P5ktV5XcLIT9/YxgCCkGclQS+kzFqqqyWSzNxZKWPdHQTrhXqjbtIYv24cPo58Fkm45ItfK+np9XUVHyysl2oXyTKQI55b3XpBJMkepLldL1YKiwd0Co6UT1NUlGqvMVpLgPXwhac9H1Pt/ft/a5BkKAqO5Wy8nJp/5kmbbJA5ODFGWGSAscH4ROoBQ9bZxyRZIKel+xSpHVM7cBg+yzIcsl30h3HqIqUBW+5Frt6006BYSBlsZNU4MdZWW2y9zufd3w2hiEbw4CmY5XtWXv5UU6i8nkQznt/78VEeazryZZSx5xqQUQmJ01N3RfcTAe953l+T6/Vaa4VL0pJsrwUDvDjjCQVksvLMZiv2bimVlSrH2yHMiHKSwxNDcvkVJTkB+7Hw3DYfgHKy7DpilMAMVUqPhGjGATJvrNt7/u2dJUwyfcFn4fBNrRDOVEnyIsxOubBVSI757kon2ljEMmWqzRHVRRuz1RpuidXNF7pS8EPL5JVQ4MgwTb2VyUdBT9OSVJRytVfax69H877/J4+g3Rt52zsFhV0aSZKFcmJ7+uYOjfbbsn3eBykMIhRCqRM3sEgkGdDx5ME6DVbLxNGec6J38NJkWZ5eYlm6mopqjDBZJ/ZxoTXTlZIbY9iep5U4DxLYcZpsTYI8CLp71kHjHMy1olCIBRtoIrCxjDE0NSynfeiMO0naKq8FKofcMkYJpkUgNizVgdBUiabTT3a5Ycc1PI/DJNyrwZJRu2Ua0OBfdx2YZLhR2lR1acQxlkprjUh2T/Mnpwnpt/3ZeCsiakPgSaweX5DeTU87Xj4ccb7p+SXmsYf/PISf/3jDf7dv/Y59+ar/IEvLZ3jCHdwoziYNwZS9vK4Q2IQJPhxykzFOtFB/rTjMw4TFGRQqyI5GpaPOVAmAYtzRsndk2JrFLExlNwQt2YcWq7BcksSpm+OwiLpI3t/jzP8j7bGkmxWgYW6te+mIi8cEEWRPxslkgOr4ZgnTkr5saxkaLpSjlhXVQxdEjC7plb2j8fpVK904Sjv5Zk4K2q2wf35aplkGkcpP3wxIM1yWoXSzaTi6FrTwVBl2+fzrk+cyiq8vbdlF/G+78xWylJqkKSpnXGMpSvM1mxqtrzt0jWVay2HJM1RVfhiY4yiwIOF6rk4MyfFB8s1RkGCn6R8vjnkeTfgwXyVay2HXBxe8n6ZeDBXw49S+l7Ko80Rq/2QuqPz9Zuypeq8W1RAVhNVioTvQdLlDdegGRrkQhSVNGnpHOoHOEaPt8ayxcc1y0rHCSQPhsI4TUtiSUNXMM6Jw0hWz+zsz54X88XGmGGY0HB0Gq7JbNVCCMF8zcQ2VDZGES+6AY4Zl5Ufu3DO+3upIfeGpWvomspqP+Dhppyza02HmapZ7oubLadQXtXLhPhh1Z9bQynJPAgSqpbGvbndjo+lqXT9CE1RDuR4W2zIFp297duXiQk/mK1raMWt4iTReNDZGaUZnbFsZ284Bk+2vTIIPih4vD9fI0pzbF3jWktyzMhzJef2bEVW9p3wfU9u6RV2n+vb44gPVwZoqsJXbjaPbC1puia3ZlzGccrtmQoPNyWJ7GEky3uhFjwuNVun68XHjnuiSIWQN+onbUOQlVk+4yhjFMm27LpjkImzt3nOVi0pGa6pB3J55LmseH60OWZ1GFCzdO7MucxVLSxdPfDs6HkTNbFTtESe8/7ei5szLs+7Prah0vVjdE2hYmnUHYMokRWehq7wYL52aGB9nud3u2Ji6Wqxv+Qzr/YCPt8Y0XRNlppSgbdWVD8nWc61puSHabjmkXZIZediYHJBdne2gp9kx1azDHx5Ns8eQBswjRddn1EoW/DfWayXc9ZwDa4JeZYrSA6XPJcJNF1Tds62Pe/7zgnGtz2OyHKpbH2SZMDLopJdUfaLGUx4o7wopenuVPb3/JgokyIVlqFxa9Y9lONm0lo5PVeuqTMOU1xTY3UQ0PPk909Ir0+Cmm0wV7foBzGKIuj5MctN98iEz3me3wt1u+SWtXSNlZ7Po02PNM9YrNu4llFWft5qVxhH8hknPuX9+eqRgXs2JfogVWm1stNgoW7TGcesd+S7W6hbvLfc2O/vnxM0VcEy1JKHaRpJUSWf5bL9/NaMyyCQxPa6KsUyRmF65mT8aSA5Z7NDidKjNOPhpqwAbFcNRF6Mf3PEfN1iFKQ8uMDiB2CXn6BM+I8TybU42a+DIOFZR56v9+eruypPd7h/wTV0DFteEM7XD1Z6nKgHWyeo0jsJel4sBVCihDSTAgh1xyir4lZ6PsNgv827CBz3vs8bZ529fwP4vqIoHwLR5A+FEH/3uYzqDPhoVRKfv3+EOtFxUBSFf/vv/TIrPZ//w3/+A1quyU/eO3++qVGYMgxkkHat6ew6IEZhQj7F/RSnUlaz60cIMeKrN5rHSiJvjyPW+iFCSFnImapF+wRO2USJ41UUyEZhwmo/xDE0brSdA53cUZjS8yO6XsJi3UJRQQhJ/m7pKsMwKVrtrENL8POC+yVKMjRVthLN77k59yIpk6koMlmzOYyKQ8fkrWNUV7ZGEVGaMV+zedbxC+XAhPeWpQF4MF8rbjq1UgXENtSyIsHWtWOTLJvDkK4fM1M5vrw2TDIGYYylaziGYDjV2jdTNcuAK88Fv/Wshx/LcvBJ+XoQ7890n+R9e1HKy36wSyb8MOS5YODHxLnA0lVURS0ltS1D5acfyDEKIXi85fGs68s2hMKIS1Lo/MITU34s35eqyBuv622Hpx2fT9fG3Jmr0PEiGq4sab8sIYS9yKaI6yumTtMxEbnghysDZmsWpu7S8eIj+TVeBZqqHFrBGcQZH68Nebbtsdi0S6LXdhGU710jWS74dGNEkgqWGvm+xFSSSR4j6WApWIbGg/nakWttbRDICsGafWTZfBBn5c3dZJ2nuWBtEJALyY/11kKNLJdqOpvDkLojCdpV5WARAuDY/Z3nghc9nyjNudZ0jmy1yXNBx5NJwElg1Pfjssqg6Rpl28hKz+fz9RGtisn1lkNe+K+HjTPOcvpBggDGUUaQpIxDhSSTbb5+oXgEkrh1GmGSHUhMehjSLOdZ1yfPZWLiLLd4UZrxousDSqlQu5en0DV17s1J4ml3z3cM/ITnXQ9Q6Hox7mKtrI6YSN7HhXLs5DysWDq/687OOR8mkgOy5yWESc637rb3ve+JmijIZ538+YTofPLsshUENgYhPT9hHCWYuspXbzYPXTthmknuL9tEYaeSIoyzEyWmQFZdTbielho7PkZYcKNMK/j0/aRUpNoYSlWn+3NVjCPscGccsdoP2RyFzFQtGo5B0zFLnpiz2nDH1A48m4UQjKIUVZE+UdXSURHYRbvIdkEKPluzeGdhh99pYusB0ny3mthRFSwnOb8nGIay/cc1tWMTcl4keWEcU35+EOes9Hw2hxF+nPH1W82yfTyIM551PKq2fmDV1nHnd5zmPC/UcG623SMTEVGaEaW5FNXIJCnwi75Pz5fVRRO+N1VVuD1bQQjB5xsjXvQCmraBVczfpOJwGpNETJbvVCDGac5vrwzI8pyv3Wge2FoTJlk5/jjNuTVTIYgzwiTbVxkyIeMXYlLtsvN3Zcvu9pinRRD6jdutXWth+n13vZjNUUjDkT5AngvWhyF+lHG9ZWObetnyNcGkanOy3w/apxM7JMe4/x1ULL08J9Isp1co7dkFv5HC/s8dF0rTaSbbyxxT43nH48FCjXbF4vaMFBewdLXcB0JwZGfBXkySZlme8+naiEebPnM1+1BKh+PO7ywXPO9KBcQbLffYeKMzjgiSrLxY7Yxjup48G99btspxvOz5fLI2oukaJYftpEruqLMozfMd0Yc0Y20g205/4lab2apF3Tb4dH1IHmXkQvDecgNTU9keRURJzuwJLrhf9gNGYcJi3T4yflMU2cI88dun4UUpq/0Ay1DLiq2qZeBHKS+HIWGaFyI4+21QmklbkL3C2TyNxYZ9YGU8yITKxjAsOic0gijjRd9n4Eu1+KW6rGS2DKm4WrG0Y32MyZ5sOuaRbaTTcE3p200qtvpFxfL0yh+HiVS9E3Jv3ZnbnZiatlsfrw6ksunakK/dbHJzDz/e5PteFRNOTa+olFofhGS5oGoZ3J2TfKo9Ly7FcUZhRhCnpULwjm9yvN0/KY563xeBsyam/hzwbwE/4uy8yueKj14OMDTllbOwtqHxH/8j3+QP/we/xj/x57/LX/xj3y65cs4LW+OQOM2J05yOF6EqCuMwoV+UGDuGzrVCgUZVpLF82Q3w44w0F3zzVvtI3oaGY0hlEUNyBaiKUkqGHodXSUqBLOWfPNtsYu5rIev7MVujiMebHpnIaU4pRcRpziiQssLXW07B0SHHHaUZPS8pe+tXejIwzQXMVYyyaiROi7YNW8eP0tIJ+HxjxDhKeLg14qfuzR75DH6csj7Y4aTRCyWM6WzxxAGXzxyVz+zFWZGc2l8auhebI1mmvTkKj0xMJVnOZ+tDnnQkx9Y7izV5K6Yr9P14l5OxOQ75vLhVsQzp5I/DtHQs9+J4pyAmSqT6n1dJjzxAXvYDPtsYMQ5T7sy6vL/cYKlu8+nGCMswJFm3LomaHxaVP1Ga8Y1bLVRVVracNPB6FXTGsp3z0/UhWS7n39LkLUeUZJiaQt9PZJWJfbE3EYdhQr76vOdLolkvQQipnBYlMoAI4pwgjqSE8gUphRwEmfj2+cGLPu2eyUJNKt8ctpYmxKujMD2QILc7ltVJaZ7z9mIF9Zi2sTTL2R5Jx3RzFB2amPLjlEebHuvDEKcgRn57scZs1aRVMXjZCxgV6mxpntMZR3yxMaZdMbk3X6Fi6QdyswHH7m8/yRgGhex9Ub1zGF50fX640kcA7y/Vub9QY7np8KzjMwhi+n7MzbZLlOZ8vDrkZU+eBRNFlijNDt3fSw2H5YZNlknn6kcvBnT9mIWGzXtLdQxNLW/Xp+e858X8cKVP1ZItEXuT/gdhGKZSSQ/ZIngUF91hGPhJqaI1CJID+aG6XsyjrTGmptL1Yt5erDGOUj582afvpyhAs2LI5IUi25nlbb8k0gYZABzGtyKJuxWqBddXUlTkTr/vQZCUQfjAT5iva6wPwlIQ4K2FWhk0RmlGluXoqgyyXuiSr+Sw6u5RmBbccQJTV2lVZIvpaSojN0cRSSpI0pTZqjwTkyzjt1cG2KbG3dlqmSDWinNtHCY87XjYhs44yvjm7fahnz8sSvpbrkndlrxyYZJL4vRD1uJZMI5SxqFUEhyFMrCZq5kYKgRJBdeS6ldDP6XnJURJzkzFLNfetJqYvqeCY28FS1JwcxmacqLze4Kt0c75P1c7PAgO4oxP14e86AY0HYO7hY1RFPj1xx2SNGe1Z/HVmy02hiHDMGEYpDzv+CQL+T7uNTj6/O4HcblG+0F8aEuiEIJHmx5+LFvurzVdmq68IQ+SlPm6WSZeslzQGUeoCrzoygqNMM7KC7uFxsHvXtqZnf9/uDXm6bZHdxwTxjk/dX9ml28RpZkM/AufQVOleu9vPu1RtbRdfKmwQ+JenRL92YuqpeMYmiTj3/N30+97q9g72yM5Zx0v4rP1EeuDkE/Xdb7z9vyuqmBNVUiynB+t9FkdhCzWbe7PV/clIK61HDpjqSp4XICna2o53gnR8V6Mo5RP14ZkueBHK338WJ5jrqmxNoj4hXfmpYpzsUaWmjamrkqOrjMkJpqOiaGp1G3twIqeCY47v8dhWrYEdbyI6+bhydyeF/E/fb4NwHAx4b1lKb7zpFCEDKbm5eO1ISvdgO2xxp1ZFyGUQzkip2HpMvHnRdLOPN32Jc+PO+ZrN1v4sWyXjdOcG01Z+PD5xoiPV0cA/MyD2WP99wl/29YoOrawYBJb5EKwPgilOJChFf6E4NHmGGWuim1qeAXlgh+kdEcxqqKwNYr2jWcUpiXlx1nP5r04yPYMg4QfvuhTsaQaYd2RZ/BGP6Lrx9yZdZmvy9brj14O2RpFXGvZvLNUP9L33xyFJKkon+2kPvlkn8VpztMtj3HN5HdlOZqqlc/gmDoqkkZhL6bt1kov4DefdlBQuNl2mKlaF+J3r/R8glgKecVZTteLGEcpd2arjMIEgbRNaS5/RkF2SU2qIPt+ciK7f1q8am7gNDjrrG4LIf4f5zqSV8RHq8NTlacehaZr8hf+6Lf4Q3/6V/nf/8e/wX/xT/3kK/M/CcCPUsZxWsoBp1nOVnFTluQ5WtHD7xh6ebuiFyo13XGMFaWEScrGMKDu6IdWc1xvSQLHiqUfS3Z43qjZOtujSBrTAxy7512fF10P21SpOxaGrvITiy0cQ6Pnx6S5oOEaUn1wysF40ZWbdcJVFBdSoqYuOUYmzsiEWH57HHF3tsLISgvJTXkotByTKMlLDpGJqsv0Qa2rOyWgRqFMNA7TslxYCMHmKCxI8WR7xShMy0P/JEizHEtTCdP8wIMzy6WsqV0QfWa55EvIC+Ujx5RVKoamMgxTsixH01SyDLIslyS8urqPzPa0MHWl5Fo56Nl6nnxns1WTXAjSTHIRZLkMrJZbDqNI9l5vDiNutGUVRJQKojQniCdtlZfXJuSYGg83R3y+PsLUNa63HdJMcGvWZaHuYBuS90zXFF4TrQ6GpvKi6/Hp+ogwznlnqVZyfcxWrXItKgoHts5dJOqOQZDmaIrAmUpsHIZJJUGYZAcKJCRF9WOWCzaGx9MWCuS+jw/ZO0mW0/Pi8hY9z3fW5aQqr+kYRZuixTBMmKmYJFlOlGb4iWxJuvkKJN+KkKqfE+dsL8ZRih+ltComcZaX1UpJPpFSltLldMGPJGeBrih4UUKc5vhJWraNHQVVVfjW3RlalTF9Ly45M4Z+yiiQKjoLdWvXbT3Ao+0xPS9hFKSl0+4V4z3sfUviTsnLcpoWB1EoqhqaStXWZVsZ0pncHkfMVMzyrBuGCS97AeuDgLptMlOVnCPdcUyUSK6Rxaa8RZ8vHFjpfDqyEmoUM/Bl1dJhMvWqqvDBtSYbw3AXL1WYZOiqUgaNE0e2YmlsjyO2RpIPTNo/UZ7hG0N501uxNJYaNpqm0vPisjpvb5A4UzEJ4hRdVWk4Ju3Kyfd3mGRkmSDJJCdZuyLJk+M051lnTJJBnKbE6U5AV7cNbs+6jMKEjeKyxI9SNkchbffgSmupipsX1XyyMrpmcy7EuhNkueDptlcoPkW0XAsh5N6Yr9lkQhBnAk1RMHX5T9M1dvkNtqGVFQh1Ry/twkzF3FfB0vUml2qnG2fF1Oh7CQ13t88yjb4f0w8S0jwvKlZAQbaSxUkuW4kRGLqKY2rcnq2wOQr54YsBXpSyNpCVaadJKJiqikDaoUlV5ASTKk2jCNxzIciFoHCryAXULB1npkqrIqvrwiTj8/VRyXXXdHXConXsWutg0ZrDoAC9Yp/XHJn8ncaLrlTwUxQpcNCumPz2yqCoXJeJggmEkOqLtn505UW7YvHWQq1UKz4Mrqmx0vWYKeyHqcnWqq1xBIrgedfjveUGd+cq0l91DLbHEX4sK28mhPx7MfElTwJ5tukIbKqWsYsbJ4gz1gcBXV9eGq70fUxDo2IZdMYhMxWzPOf2fr9tqPK8mWpnOilmqibvLdcJk+yV9rmkp5S29yDOn8lZ03RNoql1MXme+bpNyzUIErXkB4QJj6Wkhmg4JjPVk/uUE1Lw9UGAF8uLgUlZ2yBIqNsmeS7KxOt0RVNUVBb3vBjX2n9JqKsKrqXhR7LN6yDl8IMQpTlbo4hhmJSxrW3oNF0T19JpugbXWg6r/YAoywmTlNVeQMPRma2au6t5LNmWFibZhV5irvQCBmHCMEz4+i1Zldj1Iuqujq7JCvVWRSpaTmhWkjRnaxgeqXbXcAw2BhGOqZ7pojjJZNGAEaS7qhWbjslbBc3DcQkcQ1exVJ0oy8jFxbV5m5pGQI5tahiZynzdIezKttSWa9IPErpehG2oZLmMVyc+B8gYfFPmTKlZRqmW+7rVxU+Ds67Q31IU5d8A/mt2t/J971xGdQZ8tDrg9763eG6ft9iw+Qt/9Hfxh/+DX+Of/k+/x3/zx3/mlZJefpzyl763QsXUWahb9IMETVGpO7qUhcykbPBi06ZqScMyQcM1+d1vzfLZ+khmQxN5A3rY4Wrp0hm7jEqPYZiw2g9k615xa+XHKUEiJXOjNCsPZD/KeLrtMY4yXFPlJ262mKvZJHmOocoWID/OuD9XZalp7+K2mRjZCenc9ZbD9jiiZhm7jPzk7xVFlhRP+nHDRJJu+0lGxdIwNIXPNmRfeceLd5HB7uWkAXmr/KOVPk+2PQxNYRCkuIbOV2/m3JuvFuSgJ5MJTbOcLzYlN9Zs1WSp6fCs47ExjLg7V8E1NX60ItU2qrbOgwV5O2LrKksN6QQCVEwdP/LJMsG2F7NQt2m6Bu9fr6OgcP0V5dxX+wGdcYypqdyfqzAMEx5uerSrBrfaFR5tjVnrS4dZCCE5cgwFU9e5PSPbW9oV2XcdJjnrw4AbbZeKpfPWYpXFhgyIL7MiaRQmPN0a87c+28SLMgTwpWt1vnqzXSZ5ZqsW40L953W08oVJxmfrQ37l4TabQ1m5985Sle+8PY9taMSZlGwOU9lycdkHTsMxsDTBZxsjnvV8/ldfPZqLT1GUI1tclpoOVVNF07Rjk1xhIrkLhJA30E3H4MOVAUmel2XXv73SR1dVKpZO3dbpGSqaqpY3xp+uD4mSnL6fMF+3y/bbm21ZwZDnguVXuFHsejEvi1bRe3MVVEXh+897ch8tVOl5MR+tDmm5JsNQKgA6pspi3eHO7M4FiK5KgtA4DcnzOoalcXeuxlIzY7Z6fFJqAkvX+OqNJlEqS8Rf9gIMXSXOBBvDCENX9lVEVS2dmaqJqirMVEwebXmlStXkkmZtEPCjlQE1S+drN5s87/poqoKhKrzsBVTtk12MhEnG5xsjrjdtnnUDBl6MADpFVVzDNXhvWVZ3Tez7YsPG1DRuzshy+oZj0KoYmLrCvdnqvueJU5n4mq9ZeLGsktsaR4c6o3tVb9Nc8MXGuOQ+9KKUgZ8ghOC5ovC84xMkKdfbDndmqkV7mEwMhGmGrWsoisFC3ZGk+1nOxlDeIr+zuJt+wDa0M5FZJ1nOD170+MGLPvNVm/mawUqc0fUibs9UaVUsdFVBUZR9ij4TxbBv31XKqueNgWxVOWjvVi2d+3NVkjw/dxsZxBkrPbmWZBuGwkLdIU5l1dSTbY88z1npBWRCcK3pYuoa37ozg1Oodk1jIkE/CJJd7Ux7K1gajkHfT07FoxGlGR1PckTNVKRC5merMoHy3nKNrp8wDlPJ9akoNGyDsZOhqDKh+XBzTJLKKpelhsPSFA/ofM3m1kzCsCCsPs00T2yQpsi2TCEE33/ew9JVbs24fL4xZhiktCsm+pxMtPb8mOstm3bVZL4mk4CjUCajkyzn4eaYrhczihJuz1T54FqTtxflvjpJUmpjGBb+a8J3n/SIc8GNpsPNdmVXZaoQgq4nlcnmahYtVwbZ83VLCoFo6q7qsa1xVLaiqurhFTKaun/dSyEW2dr2+caINBc82x7zcNOj3g+51XZpVSy+eacFClQtDdeUCbmuF+MWVQTVSXWtIrjZdo9VKTwOz7s+QSwD4KW6XfpIQgh+7fE2W6OYF91xEXjC7VmHhmPyC+/MsTY8WB13HKW86Mr1n+ViV5IszwVJfjSNwnHn+EnQ92NedAMUBe7NVtA0he8/66FrCm8v1ul5MR+uDmi5JqNIcou5pgoovFf46HkuSHPBOMzoGzuJqfvzNRquiWtoB5JTnwR1x+Abt1skmWC5WGNBktHzYxxDK9vA3lmssz4MSTNB1dZ52ZPVl10v4u1FWfH8eMuj68XcX6hyb65aVtR68ZgH89Vjk1OTJ5i4x4sNG0NTWOlLZdrFho2uqoWdqPC3PttknCY86wTcmqngmBobgxBFVRA5rPUDXEsvKwufd/2yRfK8uLIMTeFGyyVHlGd/3Ta4N1djtR+gKiqPNsfcaLkoiqBiSbvrxznjyGdrXKzdqsXHawMA3l6sM1Ox2B7FxKlgexyd+rJdVxWqlsZC3cKeqvxRVWWfquJh6Ix8fvPZNu2qyeIhPFPngRtth2Zk4BRK16uDgLcWZKVgw9H54Uqfla6PpsJ7y016fsxCw2R7HFGxdLZGEUGccW+ugqEp0q5lkpfsJJXvbwLOmpj6WvHvb0/9mQB+4dWGczbEac7QT/jg+vm23N2dq/Jv/aEv84//+e/yH/7yY/7Zn79/5s9KM0Ga5rz0AjaGAV7B8+D6sqz+1kyFpYZNlMrSPMm1o+4iuLwzWy177g9zBif8UrqmnMj4vSo645gkFXhRRJrmfLI64EUvYK5msTGUbYpVSycX0HIlL0BJptlweNGV6jpN1+DubIU7sy6Ooe+7zbnVdhkESel02oa2iyNgghttl74f70t4ZLkgFQJbV5mrWsU8K8ibm/3PNZE6lc8Y8auPtvl0bYhAwY+klOtiwym5XU5z+5RksoID5KEXJRnff94nTDI+WRuwVHfIEIRxzl1L8kRlmeB620VR5Jw3HIO6a9B0dPpBypOtMTMVk4ql885inay4yXsV+MXVcZLlpAW/UXcc88OVmJutEQIVP86wDI1FxabvJ8xWbAQCP8lIhiEN22CxZvOiF7A+COmMI2aqFg/mawe+p/NGlMqAYJLw8OOUX3nc4fn2GC/OuD5TBaTRnt4rl9FSOEGeC+KpG40oyfm1R10eb43oeDHLTZkImKvtvjGvXvDePgofr3pkOQRRxqdrQ5quyfef9dE0ha/eaJ6KkDfLBO2qTZoLWpWj5z2Is5IjY8Kh8vmGnKeVvk/LkS2DSSb59QxdpVWxSPOcQSDbXieJ3CzPsfUdPqAbbZearZdy1GfFZN+kuSDJBU+3xny2NqLrx7zs+zSLMeZCViQKobDccKlYGsOiRazpyn5+FVm90PFiqrbB24s1vII76CSYEGhqBSH2rZlKyY3w2fqIOJUVHP6eROzd2SpzVYuavZvDbBgkfLQ6QFUUPl0bFIG+IomTNZUkk1VOc1Wb7jhmtmKW/DN7kWZ5+dlhnPO9F336Xsr2KGKubuEVSbvrbYcvNkaAVFhabspAbdISkeUCQ1f4YLmOekA9/vSZuFC3cI2i2nBfQ8/hyHNZUULh4D/cGvPhyyG2rpAKgVkkQk1Vtt5sjeSN5nxNXrAMC8WwNBe86Hoy0VeIkpwX8qLqZ60f4ocpL3oKN9vSZwjClJ9+e475qo1Anm9xmqMou5WlFhsO7YrF5xujI9U+s4KEPE7zc3d4t8dR2d4/cc7nqmbJ5fS86/F4a0zFktVmbVdecNhTSSkhRMH3taNANn3OT557Ojiv2QbvL9dPlWiTZLryQmwcS16v7z/vMwwSnvc8brWrhGlKnMhqANfc4Yv6Yn3Mo+0xhqZys+1wf76yz27en6vSDxJs42TJnwm8SNqgrFBDfbg55nknwE8SPl4bkmYCU1Olj4lMWjQds6hcVMhySRY/VzURha142vGYr8q5vjNXkdXcJ7wUyXPB5jAizXN+43GPl30fBcibDqam7przYZCWY0uznE/W5flyremwWLf3VQJN7+PT5CMmIgcgfbLtQpTn0eaIMM0ZhjGjIKFVsZipWnzn7bmykud51y+qxXNW+zLRf7PtcEet4J5DRYokaxas9KW/f724jEyyHC9M6Xkx26OQcZRiaBpzscmDBZtRJBN3SwdUZil7Pn+CvCD/lnxJ5rm0eR0Gv2gxynMZ47zsBDzZ9uh4MS+6HlVbJqRyIbkVt8cRy03p52+OInRNkWvQ1Bh4kux94Cc0XINbMy7NotvirMp0rqnz9mKdJJXVoGkmW/xVZIJbURS2RiFhkrFQt1FQ2B5HGEVb+TBMebbt8WhrzKfrI9quvAj5ztvzBEnhF2TS3zvOx7B0jeWmvauqbMLnF6eSXuPzzghFgXeXGtyZrfC8E6CpMj580Q34fH1EkKRYhsYoSBnHYwa+vPDpepI4vTOOzy0xdXu2wjBIqNo7HT16IQ6lKYKPVkcMw5SNoVTnbBbz6scZw0Lky48yfvSyzxfr47KSe6FulxXOB/HYHQdNVWgV58RhldJ7sT0O+ejlgKpl8MG1Bp+sSe7KgZ/ytONx/RUq6o/CNKfmtaZDw9bxE6lovTEKedGVpOdhmvLWYs5C3SZOBX4c83hzzPOezyCQNAK/+O5C0S0g8M4wb68LZ7KgQoifP8vvKYqyDPwS8B5QBW4Afx6Z1FoB/iEhRKYoymfAWvFr/4wQ4uOjPncSCPzEzdZZhnUkfs97C/y+9xf5U3/zIX//N2+cuS1KCEiFYLZusjEIebw9xjV1FgvjZmgqlqbwpOPT9SLaFakwt9SwS9nghmtwE5dcSCfnecdnGCbM163S2Zk4JGkmW6UuOjHVcAzGYUq3aPv4YtMrS2BtXeVZz8fSNO7NS3Wjr99o8j9+vsXaIOBF1+ej1UFJSr7S9UhzKdO+V85a19R9FWLb44j1gWy3mK1ZrPR8xmHKjdZ+cr+XPZ+Hm2NMTWEUZTimSsuRCbIJb9UEQSxvSBqOPOQ+XR/x+caIzzfGGKok5b01W6HlWtw7SLHrGDimxlzN4nnXJ0oloaJjarIPXRE86/pULZ0bbYc7sy7DUPId2brCD1f6bAwjXENloeES5Sk3WxUqllG+7/M6ZJaKxGHHi/lic4yqyGBbVhvEjMKMu/MVbs24aIoMWsM0p+uF/I1PNkpZ29mqiW3oXG+6eFHGTHVHvvUiMfATHm6OidKMr95o4lo6mZCJgi0vwY8ylpoZmVBO5ChcBIQQfLI2pO8nXG873JqpkOUZT7fHbAylY9x20yJ5cDSJ52Xi1ozDd5920Q2V5abNX/3RBr/2pAPIdfBzBQ/HKEzLtts4zYnSnMWGvaucPCjkerM8Rz/GYWg4Bo+2xiWPnGPKdxbEGXEs+Hw4Yq5qsdiwuTdXpeNFvOh6PN32GIYJ11suM1WTh1uetE8dn3tFdcp5rcm5msXWMKIbxIWinUKYZmWVTGecsNy0ma/bzFRNPlwZYOoqj7djHm2OcU3pkE748j641izLtE8TDAJFW0nOMMwYhQkzVam6FiaSyDdIcrZGIY82PSqWVlZDmbq0t1Ga8en6iI4XkmZI5bNM4/H2mK1hwMYw4vZsFddU6QcpgyCl4ej4cUrPj5mQg+/l1dgaSdttG6rkzlobUCkcf8dSmavJKswXPZ/eSsxHK30cS+dL15q0KyZ+KEmt56omgzAlSmQgMbnRDxNZqaupCl4kK3izSJKB3pxxyXNRKi+dBIoCa4OQhqMzV5ftjI6hMQoSFpsWv/Wsh6YqDKOElZ5P1TIwDbVQeZScUs86PuNIciEtNx3Jf3WAEuJZkQuBF6UYqsIgSmlaOs86Yx5vexhajR+9GLDUjFEUeXs8Sf7cbEuFLbeYf1NXuTNbIUgyyW8TyyolXZV/buoyATlpZxlHKfPn9hSyamGl57M2CAliySv1aFMwjjJ6XoSuacQZVHJYrFuy1UzZ3Ub/xcaYj9eGGJrCzz6YpWIZIKBua9iGfqgfd9rqL9maYvBoc0yS5dRtg3Hhgw2DhCfbYzRV5cvX69RsAy9O6XgR26OQR1seiiJIM8mz97IX8LWbLe5M0UaoqnKm6pv5uiVbvoYhateXqlhpxuNNj+WmTcUyaFYkz9UwlKT8hqayOYr4eG3I9ki2mVYLFb65msVSYbdvz1ZOlSQTQlIvVG2dzjjCS1IGfsq2H1J3DT7fkDxJQhGkRYu/FCCQiZ/78zW645iluk0/kPtrFCbcn6uxUKgA6qqCqiqnulDy4522Hk1VyJF27/58hb/64QaKCt991uPGTAUhZFdGkuV8/UYLP0r59ccd/DjhG7fbNB2TH7wYyDbTulUmnCd7xCxEfRQ4kX92s+2y2g9IcxtVUfAK4u2//biLEArb44DVfsjWOOb95RpxWiFMpbDB2iBkYxjwu+605bpH+hlJljNfl4p90xVqaS5KzqhJ/HBRmK1a9P2Y9WFUUiWkeU6UZAyDjJX+kFttl+st2Yr9cHNMv0hY/NUPh5LHrG6hKuBFOV+bleqlDdc4MEY4C6qWDsXHRGlGzTZ4ngU83hyz2vPZHEXEec67i3VarkktkxdGUZrzrJPx+eaYuqOTZXIdu6bO5jCU3KZxxlsLtX3cuwdBUfbzCma54IcrfbZGEX6UMgxTeZGPwmo/YBTF/NyDOdoVkxddnxc9H02Ba22XTOSMw5RPN0a0qyZ+LMWdXvUCexrGAe8gSjJ+9dE2X2yO2BzKy8Gn24LtcchC3eH+XIXlpk3N0fjRiyFpHhGlKSgwKtbjs45PP5Dk8WdtI03yTPIy5QJDkxQA68OQUZjimioqUninZkuO5v/uww3+9pMOFVMjR7BUt/jBC1F2B10GvtgcsdINqFgy8fl022MUpZiaxlvzNZ5sj2WhR93mWUcS7PtRKlt1FciRSpMPt8YIdigT3nScKTGlKMoC8K8Dy0KI368oynvATwoh/l/H/GoX+EXgvyz+vw/8QSFEX1GU/xvwB4D/BtgSQnznpOPx44yWqR0oBX0e+Bd/39v8tU82+Pf/5iP+lT/43pk+w9JVvnlnhiCWZd1zFYtcCPw44/GWR8s1SbKM9YHknqhZMvHkhSmGrvLWgpQNnpCeZ4WiDEDPS8rE1HzNJs0DbEM7kkfjvNCumLSK2/3Vvk/dlm2IX77eRNMUbFMGj5NA1IulwyEE6EoPx9AZhglfbI6KRIFNmuf7ElMHoefJz1nrBzzrSD4e19IZhfIGZTqA2xyGJbeIrsZ0xtAxE37PbGVfQuJZ1yNJpSzu+8sNVEVWBFxvOdyfr3FvzuX2bI2Z6uF8K8dhsWHTD2S1WRDnfOtOm83ZkKfbflExofPeUh0hFHpeUigiyFuOrp/ww67HXMXH0MHVdG7PVI4kWD4LKpbOfN0mKfh5bs1UuDtbZa0f8LLgvLjZkreYH60O0VSVhqOyOZRKT0+3PRSkmsS9hQpLTedciXGPwzCKWen55AKebHu8vVhjcxCRZpILwjI0TF2j6RgnchQuAkma82hrTJZDnEvloRe9gKqlE2V5UXYscE39wnraz4IHC3V+8d0UW1dwLJMwG5JnOZkQqMjER8eL6Yxi1ocBjqnxohswX7PIspy3p/a3rklxgSjJeV602hwGVVVwTR1Ll5wNd2Zcfup+m6cdqfoyV7cwdZX3lxvomlIKJmyMQwaeTGZca7mkeU6WyURP14tfufViGpauUXOkoxzEOXfmXH5aVXnW9QmTjBlXijW8tVjn49UhczUbP07xwrTgKkn54UpfKnCaGl+90T5zZc1czeLh5ogsh41hQMMxGARSOVVV4cF8rRR6CA5Q9lvpSdu6OZTl/+2K5CyIM8FSs8Jiw+FrN1ss1m2SbZ+KZcgkUC6rSaI0Z1BwWU1jVHCDhImsmqpaBnM1k9mqxa2ZCpau8j8/3CbNBb/1rItraHy2OZZ2uO3Q9+Xvb3txqUw4jpLS2dwexbIle75KxdRlS7IuKzzP4tjmgrI1oVFUrt2eqZBmOb/+pMtczWboJ2wPY0aBDBaSXPLvmLpK0zGJ0owb7Qq2KYn4lxr2+SqQCnhnsUGc5cRJTpqBQNB2LV72g6K1XkhFJyFoOSYzVYtP14c4hkxATFqdpjnHBkFCXtgnL0oxdZlsm62ZeFF2rnsHZPLZNXUMVeHxIERRZBBh6RpGQVRctw0arsE7izW2RjEg21QnFVC9QPoGcSrwooz1YcSTLQ9VkRdfkoD31f0iRZGt3z2vaClS4OfemmVzFOGYkmhbIGhXLUQOA39CcZDjxxkdL6Jiaqz2A2xTJ8lzlk/J13QQLF1jtiYrw4WAubrk82xXLcZRykzV5CvXGqiaypMtj4ppUHd0nnd8toYhD7fGzFYsOn5E05EKoL/7rTnuzZ2+Cj9MM77YGHNr1mWmYvC046EK0LoKmqLwxYb8/mEopc+bjommKSw3HPxYElJfazoF1UPK5ijis7URzzsBP3V/hhst90zqtE3XZFxU5+iqwrfvtOn5MZvjkO8/75PmkusqznIeb3n86sNOwT0kq/9brknLMfCijIZD6W9OKjrGUcrTbQ+AdsVgayTX5J3ZypHiRUBRReeia1IZdr5ukWaC7YJEW2TgpzmGCjVL4/58lbszFb73ok+ayhbt334x5N3lGk3XLG2iosD9+SpZEbiqqkxEz9ctRmFaqtldFExd2r4slzyky02bn35gsNoLWOkF3KtXaVdM3l2q86zjoakqbdek58s20LVhwIcvBQ3XZLZiMggqfHD9fO3PNCatmqt9nxe9gGEQE2U5N9sVxmHGnVkDVVHZGkW8tVAjSXNsXaPjJXz9VpPFustCwy4Ux2UXxkz17OON04xHWx4fvxywNgxZqtvcmavycGvESi+UXHl+wi2g6Ri8f61Okgq+dK3O+iDis80hAz9F5FIU5M5s5cLpKp51PX7tYUf6diJHKc77IJa20Itz6i7MVKyylTkXgsW6VK6XPxvRck1ma6fj2ZsgywVBku+qGhxFKV9sjFnp+kRZzmzFpGYbLDUd6o5ecF8K8qKl+b1rDeJcKsFW7ItbcxOEScbTLXmZ9bKf8tnagCedgNmqyU/em6FVNSVHdSSVl+frFtdbNnEmiwcW61LxfKAnzNcs1ILDuuH8Dk1MAX8W+E+A/3Px/58D/zlwZGJKCBEC4WQjCCF6U3+dAhPPuK0oyv8EfAL8ieL3DoUXZ3znRvPCWoLuzVX5e79+nf/015/xR3/2zpkIxVVVoWJqXG/adAqpU0OdyHabzFUtNkchwzBmtmrRrhr4kSxxTjN52zFREgC5cVUFvDhlsbFTUuiYWtnP/OnaqPj/izU+SnHz65qqrADKJeGsLL+UQcjWKCZIcjRN3kh4ccZi06HlmIzjlCTNMDVJ8r3csMtbx4OI+iTJtiSwfN712B5HeHGGEIIszzH1/YTMFdvgdnHbW7U0tkcJLdcgzQUTH3AUJqiKgq4qJIhSxefdpRp1R+fj1SGWLvkNTkpieRTkO4+k1LZrFsGKw6897hClgm1PcnwMgwTTUFmsu7yz1CAXA1RycqHimCrLTefA4CDNcrxIcmqdtRqobut0C4WQhbqNbWhcazkoz3psDGXLxZOOfAeuKTml7s5J4tY4zUgK4unlhsvsIeStgyDBmmqpOi+0XQvHlHwDdtGmZOgqt2YrfLw2Is1ylhsWCw2bgZ8cKShwUdA0lZZr4sUp7SJ4tw2d95Zr/MrDLeJUigHcnJFto4rCG1E1tdx0uDtXxdRlYHZ7xmV7FDJbtXl7qUbdNtgsFMpyAXGSYWkqSSbQ9d1zbKgqwyDGizNOskrn65YUMnBNVFUlTqFiGjRsGdC4psY4Sun3YhlIaxpLdQdXT4iznKWGwziUXDJ3Ziv4cXrg/gkKUYqztHXOVS3WhgEVU6dqGTxYMLg3V+VHLwe87AWYhsoXG6OiDQBarsXtWZdBKGWAh75U0ZmrWtyccQ9MOoeJlHiv24evW9vQaFWkqtPTjk+WS94eBYU8By9KaFcMolSU628amqJQd0x6vizPn6vZ3JmrcK0Zstr35f7OQVVlW9QoTLAMlTDOykTqQbfYczWLNA9xTQ1dVZirmVxruWX1DsCDhapMtizVWe2HVEydmYp0sFoVmWCbr9moCnyxOSbPBJ9vjJkIQku1RYFpqGXb915SYtnylR5rf3RVwdAVXEMq9e1uuVJwTZWXvYBKsfaedcY4us5c1WYUpsxWbFxXxzZU7s01j62aOMm73QtNU9A1hW/cbPNoe0ySCQxVkWMVgvvzVXp+TMeLqVs6KJKYf6LqGqYHl/pbmkrfj5mtmaXoAsiK2mcdr1RnOyv/jB+npfJa+Z2GyiiSLbnvLNapWDo9P6FZBAyaJgOrumMUiakdJbBhmHC7XZH8L5Y8k7bHsSSBRYqeCHG6tq+jYBsaTVdWQ6kK5ELhWsvlWsPh040hoyClO4qYq9ul/ZZnvSTpVxXBSjdAVWW73l5+nDyX5N4nUXObxt6ze6nhULVlC52iwBebHoNQzst8TVbm355xpQoZgrptEGZZmSicq9lH+hFelJILsX9tF1suTKQ9e2+5gWto2KYUQVlsyM81dZVcSGqFW+0K2+OYdtXkzqxUapUk1AamNlFElu13k2qiG233VNUf2h5+GV1TmavZ1GyDWzNVHm+PuDPrFu9kR2ZeVRVuzlRYH0YI4Bu32lRtnY1hKMUXCt/Qj1P6gVybeZ7zdNtHIJNUxyWmYL9yqKYq1GwpjPST92d4MQgxaxYPFhq8f61BxdL5+s0WH60O2BiEbHshP3yR8eXrOxW3aSZY7UtV10l7t6FJAaGF4++CzwXtikwITtqxNVVhvmYTZbkUEZg1eLrtsTkMSXNBxdL48nKL1X5EnGW4psbAT7ldcAkelMSN0owwzqnZJ2vrO+wcmPAXvrNUl4qLDQcvTFmsW3z1Rp1MyAuRIEkRyGTn045Hw9H5yo12+VlzVYv1QuzirJfZYZIRZ4KmIylR5quyWvT2jEurorM2iNALsv5HW2NGYUzTMWm5JvN1m2EoeXHbsyZ35irM7CFIf1UcNoempmEaUiyhZus0HZM4FbQrNpWClF0q7Er1uYqp8f5ynfVhhB9lhGmKZUh+ybp99gvkYZAQpTZa8cxWIaCjKgq6Iiu3G6pCmksxim/eaTEME1QFbrRcVBXuR7VCmfLiLrKTLMePsqJqXYpKVS2N9YFFM5Bx6/35Kvfnq/zaww4osuXdizMMTef95Tq6qpYt7GGS8bIXUHckV+ePA041u4qi6EKIFJgVQvx/FEX5PwEIIVJFUc7cwFi0+P0e4F8t/uhnhBBdRVH+JeCPAUcqAIZJxtcvoI1vGv/c73nAf/n9l/x7f+ML/s0/9OVT/76lqzxYkBVdv/+DJXp+hKYoZLlgFKUYqkoqpFLGUsPm7cU6QZyxOQpxTekMj0J50+0YGn6c8rTjI5BcAbaxW5FkolYRxFlZuniRsHSN+bpN35cJpSCRrVFNV1Z+9YOE6y2Hm22X/8X7C/T9hJttedOFIq+hpGxznYW6zZMtedN0s+3uO8SjJOfh1pgH8zVutStoikrPj7k7W+F62y3VmLJclKSFt2cqNByDmYqFZahsDEMcU3K6PO14aIpStjbcaDsIQemEN11TyrcWN/NRegT5xikwU7UODNqW6o4k1e0ELNRtSQJpWAzCjN/7/gI/dW+GcRTzgxcDHEPj1qxUBkyynGcdn0n7zPOOT5jk2MbO2jstJv3h05AKTAaWrtEZR6Ao2LpalMRq3Jpxud5yibOcT9eGdMYhD+brJe/B5jCk68sqlYla3+Qm7zyTLhVL51t3Z/DjlJmKXBP3Zivcn63xrTsyaXF7psrfftzhqzdatKvmgbxlFwlNVfjqzSbjKC3J/u/OVRgEMd++N0tnHHFrtsrjTQ8h5O3mO4u119J2OI3lplPygxmaQt02+YV3FnFMjZuFs3+z7dK1YhYaFs87Po6hcWeutq99qefHpQz5y4JT4yjsVZqc2LpMCN5dkPxqH68OiVJpP5caDr/vgyWEkKo9cj2YxAXPSpIJPl0fslCzS1WYCf+IELDQsE4tudtw9wcfqipVuFRFKfhJYuI0I0yg4Qq+dWeG95YbBEnG460xq72Ad5bq5Q3r9L5pOEZJAj9Xsw5NlA/8mIcbY1YHIbdmZJBj6TLA1RRY7YfkxWccFCxNgr1v3GoRpZPqJp37C1Lw4WXfl629o4ibMy5zNYs4zVkfhMzVLdmqfoDzOyHbBnmZ8jMP5vb9zFLDoeWafPNOm+8+6dALEkxdo2br1GyD68WRvz2OSm4u29S43nIYR1JFddJ2Zhmyand+T7XU5xtjPl+XFzi/+61ZzEMqVTRV2UdSPsHtWZeFhoWtS2GC//w3n1N3DATwYKFCu2KjFCpUDcegsqc6cxxJPgjbkFUScUE0fdy73QtTU8tK47tFVUSUSAVHQ5NO+PXc4dGWlFq/1ZacYw0npu8nu27yV/tBqVb52ysDOmOp6Hh3tgpTUzQqZN8HQcKNE41yN1Z6Pj0vwdAV3pqvlUHkYt3mwXyNdxZqGLrKO0t1XvaCQv0wkopV47BIkO+oo01aRAG+frNVOufXWg6mrqCpqmwFOudLzElS7nHBWRQleZEk1+l5Cd9/MeDdpZwH89VSvOKdpRq6olJ3DH790TbbXsRXbjT3Ba4vepJTRK7B2onHftDZPRGD+Wh1QD+IGYUpt2ZcWq5Bx4tRFJVv350pVALl83y2PuJL1xtl8n5tEDAIEuam/JdRmPB0e4cPaVpdS9OkWuJMRVapvbdU572lOh++HJR8NMtNmZySvKo7/uQEa4OAtX7IxjDkWsvm9oxL15dJfFWRSpnjU3Dvgay4VxVln92zDY2v32ryzlKNqi05aR7M12SldSb40nV5Cf5zb+9uYN1b1fp40+N/+myLpmPyrXttmgV/4kmTi3nhv1pFK7CmKnzrbhuQ9vP2fJW+F/PeUqPktapYOt+83eaXv9ji07UReQPWhyEP5quoisJK1+fxlvS35ms2QdHyDDKZMwpTqeo1jPDilKW6c6Ik2mlgGxpv7fFHwySjYZs0bLMkfc+h5JVdaDr8Iz91h81hyMPNEbkQ3JmtMleT3EMvugF+knKt6eCaOg83x+Q5u9q7j8LGUNoVRZEXItvjmFEoW8cW6jZZLnB0jTDNuD3rcqMtRU0ebo4ZBAkNx2QcphiaUqr5TlMvtCrmoYpzJ8G06Mu7SzWqpsaTjsdC3ebrN1sYuoqmalRMKSCz0pf7Zaa4KFYUSVdxa6aConAuF+t7sXcOJwnD6y2HD5brbI4svnm7Td3Ri7lRi04QlefdgI9eDqlaOm5tpyIeZNXr3vVyWoRpzjiULaFRKlXNLV3jW3fb/HCljx9lXG85NF3pWxmayv35GnER62VCcG+mxkzFKrqRLu5y+NGWFOVyLa1UwfTihCDJWKiZfHCtyXvX6nL892bwwrRQcNfJheRdzXNYatrMVqUgxyQB/7pUxk+L06b9fgP4OuApijJDcYmgKMq3gcFZBqAoigX8OeCfKJJeCCG6xV//l8A/f8jv/TFk0or2tTv84rvnyXKwH9eaDn/kWzf5C7/+jH/q5+7tU/c4DTRVYbZqFxU+gtmaTZrljOOUiqlzvSUTE7ah7rrRmajlxKmUBo3TnFGUIHLQVKkkNzGECzWbjVFI3TZ2HTwDP6FmG6XDBtLoTUgJXwWTMlUvSsuWrSDJcEyNnp8QJbKtY+jHaJrK867P3bkKQZxzb07Kob69WGNjuNPOM5FP34skFaR5Tt0xqAUJjqkxUzHL28ZJEJekMuH11kKNRnHTAJTz+oPnPTRVZTuIaDg7B8feQ8RQpdRumOQXmi2vWrokN8wyrukOaSbKEuAwyTBUacxXej6uaTBTMWlVpKPdGcVlGXl3HJckoXulmM8DC3VZ7XVzxsWPM7KCrBIUolSqDUpugIy5ukPFNsqqj81CknxzGFG15Tqcljt9VYiiAmASCNYsnUGQsDGUMsRCgRvtCv0gxrUM4kwQJnlJSH9ZmEg2T4L0UZDQ92LCQj3testF0xTma9KhHxcKSZkQZyp1zYXcFw3XwFBVBsW+OWsycBIECCFV5YJ4996wDY3lpsPLfiD3lgOtirEvUdFwDEaRrJoYn8EOLTbsXe14WiHPPAqlrbMMFVNXWKy7fLI+JE4Fa4OIBwtVKqbGw02ZBN8aR3J+c0GcZiX/yHmui9mabOlabNjEmVR2mq1YZJl0fhqOwcBP8KKMay2X5aZT2u/pfWPrajm+JDvYRoJs/d0axVIefhzz3pIqVRAtqSw1CGQgvT0OURV5m60oCoOCrHtScQX7K/VaFYOOr5GkYhdPn6mr3Jw5nwTv5DvfWW6wPgixDHVfYmdCFp9kUt1srrZDxh2lGU+2PYZBQt+XCqOtirylTzPJr5UWFSlelJ3J4VQUmYDIc4FtyMR8EGdUbYMvXZNCAGEi25m8SFZCLTedkvx9eyQD7okiKAiGgUzWJNnZgkJDUzE0OX+VTFYjKYpSBJ+ywmS2Jt9r0zWp2ztnoyT8lZUekyqQzVGIqak82fZ4Z6oNd6Fu0/NjZvaclzLxKkrZ8rygHpj2O4BSPCRJBZmQHEN9X6qdLdTlHqkVvE1enJJk8u9tQ5dtoAqYU9WE6ZS/kOQ5TpFFa1fM0j6IouL6IpL783WbtX5Q2tWarROlsspjfRCgKgqqKoNWTVF4d6lKJgTX2xWutyv7zmqZDJHPlAvBeVmixbpNlOQFybgkjR8UyS/b1Gm4JlEi98Pbi3VGYcr6IGC+ZrNdVKhtjSPahb2ctpF7fTZTUw9MDswVyn+OqZZ2Zy8mZ2SayfUTJjlxKjlW52o2uRCYuuRo3bsG9yKIJc+eoiiMo4RxKNfeTWX/2GaqFpov28AVRUFR4P1rzWPndQKZrA+pWkbRfq7RdEzyPN+lNn0UXvZ8frQ6wDU0vn1vFtjNT3V/rgZ78vkT32e2anNrJidIMiqmrJifrVp0xjGqqjAMZYV4dcqWPtmWFBZrigAh38XLvk+UWtQdSY0hhHwPhqaeK3XEtN87V7V52Q+I06y8yAnilLmaLUm1VQWzSOi2KjKRNaE12R7HLNaV8hL5qLNxGuUeywXjMJF8r0guxAcLNeZqFi/7PqlQcUzpr20NQ1m968ozXVVlgnVzFEvalXPkbspyUZ73mRC8f61JrYhXekWCOckEa33p3wVRhoK0/0EibehiXXbrnHT9nRaTORRC8kpNElMTX+Zay6XuGlxrOny+MaLrJQwDeWnyoudTsaSKe902iupFi2GYsHDKS8GDoACKqhCn8qJ+gpptFAlRmcxY3lOhWLE0vCgrz8e9lARnQZhkBHFWth8Pw6Q8B+XZtFPdqBedVh+tDqVSfcXkXpH0G4UJK90AgSDLQdVkDD45Qyax4GLdZmsc0XT2+95vKk5rWSZP9S8A/zVwT1GUX0Gax7/3jGP4M8C/PyE4VxTFBBQhRAT8NPDooF8SQvyZ4nf5xje+Ib52wRVTAP/Mz9/jL/7mc/7kX/+cP/kPfO34XzgAeS5YG4asDwIebUrVgZ+41WKx4TBTMdkaSYK8R1tj1gYBX7/Z4lrLJU5zNochT7bH3GhXeGexRpDmaKose98ah8XtqjQGB93YP+v4RImUyX5vqU6U5jzeGvOs67N4Tqo6k409jlI2RyEfrvR42Q9ZqNkEScxf/q0tBmHCjbbLvbkq1wry8Y4XoSiCLwqFrc4opOYY+EnKs22fpaa9y2g0XB21IPGVEpkhv/zFFk3XlC2FSc4gSFlqSvLI337ZZxwkheSvwbtLNZ5se3z3aRdVVfjJuzMoilK21HXGESu9gBzBfFXemFxvOeja/jbB84SiKNyccQs1mhGqAl++0WBjEPJ0e8z3n3V42Y9QFYGmaVRtWWb+9mKdIEkld04ueNmXkrxWYYR/8KJHkuW0KxY32+4rP8Nknp53PJI0573lGl6U8WhrxA+edRmGKUmeEmcCQ9XozMXMVc2Cr0o62FGSk2aygmWuavOiKyvrKpbGcsM5sJps4CckeU7F1Hi87THwYxquyf15aaz9OOX7z3us90O+eadNkub8+uNtHm15+GmGpWrcbMs2tKWGRS4k+ed83T63PeAX6kwtV1aE/dYzOff356vMVmXl1m8+7bA1irjRcpitW3y+PuZ7T3v0A0n42q5YvLNY58s3GjLoFVCzdWYq5pn5R6JUlvT2AylX/3hLCjD87gezGGf4zIks7Xzd4t5ctajM3L+u6rbOi47HOMq4e0BC308S/oePN4jynH9y7s6pxzGpoBJCVl3pmmzXjV2drXHM845Hz4/46OWAj9dGCCFVcZ51POZrFjM1CxWFpmMwDBOed3w6Y9k20HRNZitVnm57JFnOjfZ+YYXTwDV1HizU2BiGbAwy3pqvkmSy4ugvf68v2x+FYBTJYHYYJHznnTmiVJSJWz/KeNYJSAtHsOfHsrLW0Jmv71QxRGlOx4tZHXh8sTFmuenw+z9YKtujbUPKJ6/1Qz582afq6LyzUMc0dtQB31+uszGSvFcP5qs4pk6cynYoP5KtS8sFL8R5c3WBdHazXLacdT2F7jjku75UalqsyyqLhbpdtvIs1Gx6/k5SDeBpx+PzDclh+P5SwJdvNHjR83nRDej7MoHy1nyVZ0Vb+K2Zyqlapvp+zG+v9ImSnLmaxd25KrauUbM1XvR8ZisyqPmt531mXJN2tc3mMGRjGNHzY7ZHAVvjhGEQ0xlH3F+okQsYhxmtxbMFN8MwoTOSaoQvegGzNZOfvT+LZWi0qwbdcUIYZ/T9hBddD8eUfILXmk4hStJnpmqx3HC4PevQ8yNmKjJQ6HoxdVsvg4e9nF3DMCnUGqWjPV+3+WRtyOcbo9InidOccZQyV5P8TFVbx4tSHm2NMTXZ3vHeUp2uF/OD531cS6rH9YOEUSSrKOIk4wcv+qwPQ8I05yvXG9yZlRVBuqoe2IIrhODRlifVPREl6XuSSVLbiqm9UvLn/8/enwfZtuVpYdi39jyc+ZycM+9831zz0F1FdzV0I4MMLVogMQqMEG4gkISFQyZCA2DCxkhIRiCQBFLYwhIWyMiAAzO2oBuqxxq73ntVb7jzkOOZz5732mv5j9/eO8/JPDln3nur5S+iou7LezNznb3X+q3f+H0VUyu7k5O8St+dxOCSI02Abz0ZgikS7YoFJ0/6agqDpgC7XoybuX1MuMAH22MMgwQNR0fTNdH3E3x3cwxAnkn1dB7qto6FqolO1cBa3cYk5pBSkFKoyvDxzgTvPh+hOw6x6yVUPFxycHehmo/VKOhUqPtuFKRoOBoaDhH8d70I3VqMGx13LnfjOEzxoOuhYmqlBPo44hgGCZquUb63B3vU6bnesCFBXa074wiWoeDLt9q5WqFadipFaYYHuxNsjSO0XRovT4RExaBxru9tjfHe8xGGQYJ31mqwDSJ3P/jCC7vacDSsNx2kOYl1lAq4plp+pr0xSbkvVKkzdLqTTVcZbi9WkGSUnF2qWfhH72/jox0Pn96o49e/s3rIxkgp8bDrY3MYYq1p42sP+/ilhwPoKmbO2MBP8pHAfVubCYnNYYBvPR0iTDJ8/kYTy3UTv/iwj3/w/ja+fKuNd/JOr51JiMWKjYWKCS9OkWY0fiklcpU/oOGYZcInE9SV+tpSFX0/wc44BkAd7kWieRSm2BqFpeLpWVH4vUJI7EwiCAjc7FSQ8gyPuj4+3B5hEmeYhEleRGfoegl+3VtLCLlAKgR0RUGUctzb5Yh5Tu0hBb63Nc6TDNrMaGSh6jsJUwASo4ijYBlI8qJBmlHX8S896uMbDwcABL7zZIiqo6HpEAXHrYUKTFXBJOHw4gw3O+6l0cqkmcDDPQ/Ph5SA6HkJVuoWxlaKIBVwdBW2ruLejoePtye41/XQdk18Yq0KKYF3nw8RJhzqGo2/vla5fB7mmAv84oMeDFWBqtKkyjefDFAxNXxqownHVBEmHJmQaFUMbA9DfLQ9Rj9IsTMKc+EKGuXVNAYvSsvi3WV1dsVc4Kfe38Znr9fx+37o1szfJVmGgZ/O5ai+2XFLv3bgUwKwUzXOzUmbCYmfu9eFn3Dc7FRwd6mCR3s+JfeFxHcKcSuDihrvPhuhO4nw3a0JtkYhvnSnQ/Fw3ULPj/HNJwPwXNSgbmu41qpgFEbIhMT1vDh40W69l4GzPt0Fxtgfzf/8twD8PVCyKgaN4n3nuG9mjOkA/j6ATwH4h4yxPwXgNwO4zhj7IwD+PICfA/D3GWMegAGAf+2Ma7wyLFYt/N4v38Rf/mf38Yd+9Z1zka0PggRbwxBff9RHzyeZzrqtYbluY29CIy0Pux6+uznCKOToeQl+2xc2SGVmcwyRVyz2JjFEXkXaGUewdQ2OQe2+R5G7JjyjDhyF+Hae9Hx8b2uC7VEE+wyO+En4eGeCrVGER10fXsSx58fUrvnUx4M86BsECRRQIuvOAikA8UzivecjBEmGnTF1e7VcA7aplvO2RVDe9WL0vATdSULEyoMAGmPo+TEedlOMAo6qreHN1SpMTcEvPexjbxKhO0nxxkoNoyjF836IiAvUbR3b4xidillmrp8OAnxvcww/yVC3NLy2XEMqRNkKf5UgB3SE3UlMxOu6gq8/GuDbT4fo5qOdCpOwDR2aCnRcC9ujCGtNB7rKsFg10PdJUjhMMuxNiLg4TDksTcMwSM+tbFHAz8dP3tscgYEh4gK2ruCnP+ziUc+DBpp1NzQGDhrX+ZmP9rDasKEpCpbrJrqTJK8sJkgzqhSMIyJmVdlhdQ8v5njSD+AnnObF0wybowgtxwDnEp/cqKM7ifGLD/rY82J869kAq3ULD7oBtoYhul5K8teQ+HXvLGO95ZYV2cuCEBIP9nzwPPGhMobtUYStMQXBry/X4Bgqvrc5wZN+gJ+/38VK3UbPS7AzifG051M7eFvg0+tNfOFGu2y/vWi1I+UCj3oBlusmkozIkQslxenEVJDwUgn0KERpVo7MCClxo+MeOS5saAp2vRicS3z72RC/6k5n5u//65++h81RBDDgn3y4e+7PtzkMcW/XI84CTcWzfoAn/YA6aUwVfpQhTDge9wIYGsOTXoA3lqv47PUWPrleR8XSaYQpTPG9rQkqloaaRZ1/xchS14vPPe4phETPT+BFHA/2PIwjUrDr+jHefzbG5igAYwoqOX9KkkkojKp29bxy3HA1KD5V/jbHIQyF1Mh6foL1lgUxluW5EUKi68UYeCmyTMKLMry3OcTKlHO+UCXy6z0vwf2uDy6AW20HXT8t1eyGQVqKbXz+egv39zyM80CkUCJTVQU1U8frK9VLS04lXODj3UnJhXVvz8eH22MESYa3Vqv44o023l6tw9D2O4uf9AJ0PQqcPrlezztMNSgAxlGC97fGmMQpdicJhmECCYk7C1X0/RSpCLDetEv1wtO+05/5aI8SDgAWqyautW2MowxeRAmXMMmggKEf0OiQpZHCjp+keH9zDC4y3N/1UDWJAPpp38dKnfaYqpzvXn7aD7A7jvD1RwMwBozCBG8sV7HWdNDNSZjf3RxhkL/315aoY7nt6viH728j4RLDIEXHNfF0EKDt0ojm035Yjn4edRdGaYZMyJng7P3NEbZHdGfzTOL9zRFUhUEC+MQqJQq/+XiIfhDjdqdS3k/vbY7w3a0xFAb88N02JhGNx3ywNUaUCrRdHV0/JZ6+mHiujpO7TzNJSalc8fFay8W9XZ+6CSYJNJVdeJx8GCQ5aa7E1x8N8e2no5x7UyAVEgzAm6tUIPvW4z6utSuYxCkatlF2rj8dBHj32RB9P8Va08YP3bGhgDoZg4Qf+xlPg65HSdBRlCKMM/gJ7UE/4RiGKb71ZICeR5wvDMSb9UsPBtgcRHhrpY67yxW0KyaePxviaT/E9pj4+nRVwd4kgaYmqJg6rrVnQwyeCfzSwz4lcnmGt1brRBqdCTAw9P0Eaw0bVUvDxzsegiTDMEhoBFcyNG0DKgA77+qaxsOuj19+OkDPS3G97WASpbB0DRVLw82Oi64X496eh91RDF1V8GveWMRSzTpUwN3z4lJcwdRpPOlpn5Q2G46Oay0HMc/wzz/u4vkwRNPR8ZXXFssu0eL9v7lSwxvLNSgKw+Oujyd5YfjBnk+f6UAh7PkwxM98uAc/oWLsIEzQ84h8/b3NUfmzi6TvJCI/zjE0bA5DvPd8jH/+cRcqIx/yk+t1POkHYJLhW9oQtxer6HoR4lTgec4zlUmBSchxo+Og7Rp4NghQNXUsVEx6B7secdT0Q2QCYEyi6E/I5H5Gr+fFSLnEiKfn3pNBwnF/l5IwYSKw0RJ4PgjxnWdUsBFCUPEx5WCSAQz4qQ+Am50KdEXBzY6D58MIaUYiJwoDapaOII2wUqcOwc5UDDEMyD/eGkeQQsJLeO5va2hXDEhQEeiffriLJ70Aj/s+kiyDa2hIuwJMUbBYsUq782wQwdYV7OaKwJehjj0IkvysEvH7KEjR8xK0KyZeX6qiUzXR9WI8GwT41tMBtscx9mzqcr3WtvF8ECFKBbbGEZZrFu4sVc/FkXwchJDYHFJjRM3W8LQf4HEvgGtoaDhGOf4W8QyP9nykGVEVgDF8d5OShgoAVVNhagogGVoVA5pCHMuX4U/4uYLhz97rY28cYqFGz2BrGOJJL4SQ+8qU02CMqCp4JspzF/PsRGoUISQiTjyb0357kPC8u4+h68W4s+hic0T7nWcCXT+Bn48wbo1CmJqGB3sT3NvxMIlT3N+dYK1u4cmACgLbowiqAnywM8ZGw8F7z8fQFBVCEtfyZ681Z+KbIOHwIo6GY5yp+PaicdbElAqgAuBgBHIqT11KmYISWNOY94Y/e8Z1vTD8wR+5hb/2C4/xx//Oe/gf/rc/eOag1sydnpqtYxymSHkGBpqPN3UFH+1MUDU1pBmNF1i6gveeD7EzSQBGG75iEmEpcSIx2DpxaQghSyLTg+h5MRIuEaQctxcreNoPcG+XJNQ7VVI7uAz4MXFfeRFVLWxDgRoQaV3VJuJKU1NgqAoGQYr3n48QJhyDIEUmqZ1/axzCynmzLEMtRw+NqUA54RJFHNwPYiRpBtVQsdZw4GgqGItRtTTihpESAz/FMOBQFEljEypVh/eexUi4QM+jf+9IFaOARqo+3PHQdHQUv/ZFkE6PghTPB2E+zsNRtXTqDOMZbF3BJM7AFOQEeA4GQYqHex5VKqTEtZYLXVWxNaYOgRsdF1HRsq8bUJT5hPJnASVPyTCO8/l6Q1MwDClJyLnEJE1xrWmjXbWg54HYKO/CuNFxc0VK6qpzLa0kt63ZGhxDRc3eX2Occ9ZULA1pRn/OBFV3GaNKt6JQC3HTNaAylMFgYGXQ8s46Q6UE2Y2Oi0GQwkvGl8ahkHCBR10fq3UiuN2bUOdT1crJhSVVqTMh4RpU5cqkIKdhGKPhqCQAkBPALtUs2IaCj3cnqNv6hQMRgNTvOlWaoW+5Br466ZbBQOFEbQ5D9LzkEOfLoZ+lsJLHzdSPv+CklBACuZDDnNZ6xpDm3UAX6QTYGkXo+ymElFhpWFMS5QkqhobngxA74xhCEheHYxJ336Oej6qt4e0V4lH59tMh0ixDJpRcRYj4VzIxh9j3DNidUJAzClNkkp5DkgmITMLOSbMVpqBpa1iqWxhHGfp+iu9tjbFYs7Fct9BydUQ8w+YwRNXSYGuUcG5XDBiqOtMloqoU+L++UkPAOZqujvWGg71JjJ4fo+UYWKiacE0dTVenEVHGqCJe8FBIoCsSbI8jMEajHVKS4MjzfggwhiChym0QZ1hrWiWPw2rdPjS6dRZQMF/8mXgSe16MIMnwy08F1hsOca1MdeEFKSWvpSReoZql5+IhsuQY7FRMxKmAkKSgpClEMuzFHIxhhuD7JBRFIikkuJSoWBq6E6qs7oxDNCsmhABudmxMYqXsuk0zge4kQSYE9JzUGAAyKUhNMkjw2lLl3M+vCL5W6hbu7Xkld0smJCYhxyhKUbVU7E5i8Exid0TB271dL+flymBqCrigMQHbUKAoxMMohIQ4Yuy6sB+pEKjZBnbGEQYBEbYG8f7I5dN+WNoP11DLhEzdIs7JMM3woOtDZBkinuWjuBaEZOgHMeKMFB8ncYa2S3xebdcAm3JNt0Yh/Jgq78WdVxS4vJgq1kUnNM8k8a5dsEjhxRxP+xTA1GwNusYgIVC1NXAh4IVE7mtpWs7VlECCoVMlTqfNYUjjGFzA0lWMwqAMzGxDQZqp0DV2YeJ2S6cEUpF4UnK+U4CCl4QLTCLiHLrWdAAG+AmDoal43PehawpW65TE7XoR7i5WYWoqMoN+dlHxP4g0E3jWD/C4H0BhDNciDp5J4luVEruTXFnMJw5Ixkilb6Pp4FHXR5SqWKrbc4sgjAG6qkJRUwjsJ0aTnNLgzZUqvvawB8tgeDYMMAjiuSPHVn52GAMgUdogorxgeLDno+tFeNjz8r8j4vuPdiZ58ZfGgIp7HKCR1xttFx/vTXBzoYLmHJ+jGDOaRIBpKLhbreLjnQmGQYr7O/7Mv+0HMT7apuJJwTvVsDQwKRFygSgRUBkJqyRcYKVu4kHXA8+I5uHWYgWZpLFIkauPTWIOL8rgxxmut4nb9UbHwQdbE0wijs1hiFsLbkngPe1H1nN1Qts4X7BbFPT2JsR3Z2oqIKmbxTbUnIuRqCwatgYwBUkqsDOKIQTDUt2EqlSgKMCzIfGsNhxKpi/VzJwMWpmJISqWht0JjTh5cYq6amAUxng69LFctxAmGR71PDwfEN+ea2lwpYooyTAOOSxDRcVUEU+NsBEXXAJNCcpk/0VQNXU4Jt1RpqbA0lQaEbU0PB0E2PUijPwUm8OQpjk0EvhpOBqqJnUKmjrRQPTVFA92PSxWzcud+mDUXWjr9DzCNMMwTNB0SORqFPrw4hSuoWEcxvhwZ4LtESmo1myNRoo1BbapIU4zGmHnErsBFT4VhksZoUuFgMIOxJH5u1MYO5I2BqDzXKzrNHHgg66HMCffL/wTKSn2FBLQVOD15So0hcaYY3OfvzMTJE7Trpj45adDTMIEXNJ9KqQkpeMJx54fQUoJLxbouGb+OZQyB5BmYqYZVORxmxDU1Xxn8fK75y4LZ40CtqSUf+pKVvJ9goZj4D/88bfwf/ib38F//k/u4Y/82rtn+v6KqeGdtTqutR30cs4ohZE7pSsKVmo2VIXhi7eaeH9zgrqlQUiGukV8Qks1CzVbR8PWUbN1eFEKIYlTom7rM6TA0yhIDuuqkVdQ01wymSo7BWHfZYAcROBGp1kquXEhsdoIsNay8awXoFO1YOfGiPwhCVen6vLrCxRI/fDdBazUrbL6WmSeNVXB60sVRFygXTGwO4mxVKXfc3epgu4khtsPsNa08zG/GJ9cbyBMM+yMAyigC3utaWOpYUEKcsZqto6NpkNkho6Bd1ZrsHQVtzournXcCyd0ToXc31prOrjedrBYs7BYs/DDqYBraPjkeh1BkqFTJULm58MwVx4jR2G1QaMsKzXiMKlaGiomjbUUY2CX1SFUs3V8cqOBhYqJtQZJO5OSmAGV0UW6WLXAIbA9jKGrDBWLZKlVRtwWG00XpsagqqzkAamY2ky3TsKJRP0Hb7dwreXQzLypwdQVLFZNhGmGmm2UfE2/6wdv4B+8t0WjdCD1yjuLVYyjFMs1E5+93qKkLpfY86LLSUxlAvd3PagqcKtTAc8oeNM1BW+v1CGkRCIEGjYR6f+6d5Zxe9HFk14ITQHaVROrDQfDkGMUJvgX31kCUxSkXKI7SbBUtS783vbVdyzUbZK8h2QYh7z8N+EU5wsXEsZRiSmVOO0SLk7kmrB0DV+40UTXS8pRlWl88WYL3342As8kfv1by/iFc36+ToWCb11V8KmNOu50XDwfRdBVBUreRdVxQ8Rc4EbHxdur1DlpqiogGWIuSHWzYUNXGLyYY71pw9BUvLFM41WX0aJft3Xc7DhgYGi6BjZHASxDxUbbRpwILFQtLDdMPNjzkaQUoC5WTbgmccFYmopbnQqyfOSTMeKha7nGzLkxVAVfubuAW236rBtNG3eXiXRYSkqULdYsvLFcxVLVwCTieNgN0K6YcAyV/t9Usd6y8dG2h4ZDAYnlUlLVuNYobVGSkhNk6Wo56lEQop8XVUtHp0qB1Y2OAy+uIIg5epMIUSbRcs1DHCKdiomGHZV3Ts+n0c7bCxVYugLXVLHedPCJ9QYYKGCUkNidxDBysY49jzi8TtM1xRjwzkodCxUTqw0L19ouHveoI8I11bIj+u5SDV+4SbwjdVvHzpi6vJZqFrgghdm6ZWCpbiDh+52M58WtjovFqok3llPcWarCNTToGvHKVSwNtkEqSc/6IdoVKkw5BinefS4nur+7WIEEVa8VAJrGIHNf4yieksJ+WJqac6JQd9+dpSo2Wm7ZCbXWtDHOlR6jVODWAtkSTaWRmygRNCZct3Grw0kAxtDwmesOVuoWmo6JSZRiqW7hE6t1eDFHq7JfBY7SrORC2hlHqEx1d63O6RjIhESYUFLzIsnnaetg6Sp+y2fWcKvjIIjzEftRCAbgndUa3t2cQGUkaPHpjQae9ANkGZEoNx0dbyzXyqLj9ijCesvBncUqhLg411TDMXCj42AcUkF0qUb8JSkXaFUMtBwdv/xsDFtXcK3lIkw4UiExCkh6vFO1sDkM0alYUJkCx1KxXDcxCFKsN1uo2cZcWzmJONbbDoYhke3f7LhYqptouyaCvGOlO6Ex6hsdF5auYqNlo2rp+K1fuFbyss3rHr6Z+2jUEQeoSpGIpD230XLxv3p7Gd96MgBjDApTMA75obGcpmvAyotdhqogyzkULV0FyzsdJlGG1xZrSLIMX7jRQiYoKRmklEyvmNrsXjBU/NYvHr/+1YaNH7jVRpxmWG85yITEMIjxva0J3CkhHgAI4hSKQvLvXS/GzQ7xy/6+X2Xgm09oDHe5buLf+KGbCNMMDVvHw26AhaqJlQYJNcT5SDYXEmsNGzHPiKeLoeThMTXyHVuugSgfVZ6XJGhXzFwl9/z3I2NAu2Kg5hDPbssxsd5yULeHeG2pijjN4MUcVUNDLCQYk2jZBlxLpyKNoSJOBW62KxiFCZbrNlQFaLkmXEM99NwdQ8spTTLsTCJMQg47/6xBkpF6om3grVUNT3oBrrVzLtRMwjJU2IYKx1DxibU6OhULG80YW6N45vNcFLah4pNrDXxyrYGuF+GnvrcLS3PgRTwXxOJYrFnwE+ra2hqEuLFYwfWWi+sdBz/6JvnPj/s+goQ4eS+bZcjWVfzIa4tIhcDDro+6peOz1yj20xUGBaR6d73twlAVdP0UnYqJjZaNxaoBLiSW6hYsVYVjKvjMRhOjiJoVAMwUG86LiqlhvW5jrWkhnWre2Gg6iDnx+N09ZhqGMYY7CxRzuicUi2TZNLJ/HwIUI4SJwGtLNA5dFJuvtVyMI+Jt+9y1JtKMxnJ3JzFWajY2mi6WGzHqtobVhoM0k6hYKsJUwxdvtGCZKjQVMFUNN9ou7u1NADC8tlSZscGz+/HV5po6L8fU/6Lxr35uHT9/v4c/91MfwU84/vCvuXMmojtLJ2O/UKGLvHTG0gyjkCSfXYVahgEyTq6p4XrbmXGazjJSsli1IASgaxS8L1SJs+Bau3Vmxanj4OaKTSkXhwgtHUNDp2LiK3cXwTOJTAgESYY0o+BLYQyDMCZDVdvnlNIOVMd0laHp7gcNDccoVY0sjVTBrk2RxtdtHXVHQ1WoCJMUXky/90ab5oe3hhHaFQMrdVKQaueEnk2HCLtbuaLbi0DdpvcupJyZC35ztYbXlqvYHpEyUcs1sdqwsToM8XwYYhKluN520XQMCEkdQ1Vbx3rDxkc7lL1POAUAF4WqMNxeqMBPOBq2XgbDFUvHb/jkKvp+kld+Faw2bAgpcW/Xo3HDhoXrbTcPjOnnbbTcsrrtx+GhEdksb7OehBwLNQu2QVWZZi41fJBdrlM18Rs/tYphkFKwoir45pM+FEYBgKkpeND1EcREQHgZ4HnFcRRwbDRVvLNWLxUh5yVumq6BL9xsY70V5hVNG9fbLu7veVhr2ri7WMXWKER3kpxa8vgk6Koyo26yVLPQ82bJMFfqFnbHMVxTO7Hap5+Bb60gv5yHt1ab+IEbY0p2TRErnxUbLRcVS4djqLANjXhz8ss/E6TIV7M1tFwDb6/W0XAMjCPqUCROIiXnmSN1r4ajY3sUwzGoo++iwqZLNRO6ShXN6c6m2wtV3F6oouvF2ByGcE3q/Fyu2ej5CYYBte5vtGwYeVWUZxI3Fyr5qG4MgMjj687s+3BNDaauYqFqIeISUUpdKwM/Le8s19TKPVpzDIxDCj6LgK5m6dAUpeR9MDUVaw0buxNywhcqBgZBCl3bHyvkGcl8XxTTnYJVS8ePvbWMR10ad52nlth2Dby2XAXPJBYqJiKeUbBqZdho2ri1WJnL0VbcpU96QUmk6xjaiR1LDcfAG6tVvC6rpb0u9s9GywHP9rs0p7HasNGdxFhr2nAMFXWbkugrdQtfezRAJgSGQQLZcs41wqsoDLW8eFV3KNBq2Dq4IDEQTaVE7PWOCy/muN52y6Tu7YVZ1c+zjFKs1m3sjCPqSMxH7A2VkhvFHaprCt5cqYILib5HHEoVU8Pnb1DnxyhIsTkK4Rpa3jnLZsiWlxs2WhUTe14MR1fRcA00DqyROoSJa/I0BSVVYXiSjysVKp/ngWtquN5xwDPyHxhj+MJNGl2eRClueQnqNo2EgTGMI46316gAdq3l4N4uiRHUHZ262BmNmySZmLJTl9O5fWuhMnNHTY/3L9dsLNcdTCKOdoW6YaJUoOXqSDMaU1mskgBKq2LgWtvBzjiGH+d8LaY+12dyTA3LNQvmDSVXad7fF1WLZNBrlo5+LlRwa8Gd+bzHjZebGiWdd8YRdvPkOCXZ99//JzcaaLoGuhMSumgcUZSaPvfTNkhKCU2lDuwiYbPRcjCOUvgJL7m7GNjcrqjj1m/p6iH/7PWVGjKJUtQHIJvz1modIR9AYURuXFB4tFwDSq7AWfCANvLvu7XgYhJRx979XPXaNlS8lSs3pvl4P6ko7p+nTi5ZX7P1YztXLuKjKLlPOYl4WQABkPMMLSNKMzwbhAjzAnIxWq+rDEKiVHyu2zqGQYobHbJnXiTgxwHeWqnNtaOKQh3Ck4h4q5brVv7sdDQdA6sNGwmnApDCGGxdQZwn0DdazszeWqrb6FSt8kxdVldS8VwXazYWqyYmUQZDp6Jv1eK5Qq0DQ1eg58nKdsWYiRWX6jYGuajEVYg+KArD816IKMmQCoH1poNbCxV4MUffI2XmTsVA1VLhJ/TuPrPRRLwhMMi55aZj6HaF4sF5qpnnQcXS8OU7HSzWLLSm9rCisFMr/mmqgsopnh1jDOtNu4w/CpiaioZDQh7T6sDTXFqaquBBd4I4FbB1FdfaNvpBiq+sL+Bmx8X2KALPqKO4Zumo2jpaziyH1Oeut45c1/QZe5Vx1sTUj13JKr7PwBjDn/1XPgnbUPFX/tkD/N9/9mGZREm4ABfUmnyz4+JHXl/AT3x67cifM+30tSsmqhZd6JvDkIijVYbXl6q5msv5Df9BpaSic+IqMI90FKCs9VFOYiaI3FdT2am6MKbRcg00phT3DsLQlLJtUYIUWeq5QoGuMqw17RknSlHYlcipnhZHGWJVYYcC/I2Wg8WaCUMllS7GiP+j7VL1KhMSikLt6JfZvmvnFaN5mFZAKvDOWh2fWKtTdyBDKRsNFHPcCoAMinK4K8XQGDaaDsz8900H0vMgpUTNmnWivnx7Vr7m9kLlUvmlTE3BjbZTXq5qqbB1NISQWK5ZpcO00XJm1ItW6valdEodhcWqdSiwdwwNNzovoDNwCustBz/+qVUoDFi4QJL8uGeuKgyfXm/gnZyTqEDV1Mi+Tj3jsrLnJWUQfxlgjB3bhVOQuBeYPtsAVWsVhe6D4s/To5FHrVPPPy+N7FASZrU+f++vNey5HBQH7SFjbOb+mP5cry9R0uEqOAyutRxK8CnK3PUzxg4p63xqvVHanJOg5+y3jJ2+O+5gsFYEyACNI06PDkhJ6koH78I3V6rl+u8uVnKFQOVSVHQcQysDKE0F3liuQoL4S2JOY5hrDUp6nvY5HYWDSbg3lg8nmjWFleuZ5yscFG6pWfqhdekqw0rtaNuoKFThTnNemtPA0BjCRM68r/PgKP+nUF8t8OkDgj2WTp2ZWX52ijuyYevo++mZ9uRpcJy9NDRl5j0WghGmppZ7WFFYKfChKAyjIMVRd3iBiqnh9eUqGOYnaSxdxbW2g42WnfuDZ38X037OQZ/H1FTcWayee4ylsHuLVbN8HgC98zfzgpp6iX5WwzbwibXGIdtetXX8UM7VOP2M1DzQTrko7X6BoiAu8gmETMzudV2dr6barpin5ty7CIr1HfV3dxb3k3bFvaepRGFSmIaNloO1Bt1tD7s+kFIS6TiTVjxbRQFuL7gzsVZBZC5ycuqT7rTT+H0XwfW2iyChMeubC+6pbdtVrwug/aMqCm51Kri7WIGhq6iaGtquDlMjriVL1/Cl2/sco5ahHhnvXCZht2No+Jc+vZYrs189t1KRFD6IeeqkB6GrVFCxDBWf2miU9pUIzckmEyff8YnueTjujL1KOFMEIqXsX9VCvt+gqQr+9L/8CfyOL1zD339vC08HIVRGm0rLKxYfbI/xZ/7+B/gbX3t66p9raAqklIg5SUp2WvaVZLhfNagKw7NBkB9IZe7Iz3E4bfB+a4EMexEU7E1iIn83yKBeVRLgKmFqxIv1dBDkFW+33DOqwnBnsYIoFaidgTvlsqGrCoKEk7MA5KM1+wZyvWnnksSHeT4Kp+Q0ycpMUHdWmgmsN+0rq/AdhKWruLlQOfUzDpMMD7pUHT/4LK5qja8qGAAwBgHAuQAn0UlQFDYzmphmAvd2PWRC4lrbmQkoVxo2XEsr5dRfFkxNJbWpPR9CStzsuHBNrXS02xWT1GwU5chE8WqdePZ2JzHu7/m4vVC5UuLLg8/5snHa9/G0H2AYpGg4+qkcQoC6D1xTy4UbLv6Mptcac3qPhWLOdJJiOulyvU1dTFd1Foq7oWEbeNILwBjKruVXEQdtYMIF7u95c5/jwe8zldN/phttF36SnTiqcZWIcq5ChTHcXqTAc7Vho2LpMLWrVQQ+Dowx4pASEg/2PESpwFrTzrvi6d8cd4dP4zSfoecn2Bqezy9ruTTSqTCcWz3rJBTPo8D0fX6rc35uuIO41nIwiWnE7CCOigueD0P0vQQ1WysD2WkouU9YUCJ8P6L47F7MD52XYq9cz5+dY6jHJtuJbJ/27fQzLfjyCp6gq7zTTosbbQff3ZogSgWN1dZeHZs9ff4NTcUoTPG0H0BTqVPnKHGcFwGFASJP8EgpL6Xgc1W41nLK+5/lhfyDZ/pl3QMvCt+fVukVwifW6/jEev3Iv3/U9bE1ivBv/fXT/0xSjqEW9GhqRvVXMqSUOXEggxCXWxmcBnFx7R/qom0/TASSTMA6gyP7KmEcpZCSnPYwzVCdMlympr7U4LqAF/GSSNSL+UwgxBg7chyWlMlOmfBJs5LsdBSml0KaeBowhjON806itHwWk4i/skHhi8Ak4uX+9GN+wr++PAQxKYECxOlzsNPhqM6HF40gJ60G6FkdPAsnceIwajeBpijgGYkOGNr3l3zweVCM5I3CFBun/B7G2JW99+n9Non4ke9NVY62hZe6nmT/3I2PWc+rhiDh++f2EtetHfANXgYm+T2eSQk/zspOgxexH06DmGclf8ooTGc6oy9zncXZPa9f9kL4QKcwiafu8zi9tMSUcg5bMMq5ecYhPzIIN7TLSby/bEyflyA/LwVO++yO2rfFHpxE/NLVm8+NfLwNJU/wy5vsOIiDz3Ec0rtJuUSQZC/Vtha8b3EqkGYShvYKvMsjMO/+P82Z/pUEJo9Qcft+QqfTkTdu3Jj5mgQQp0SCeBlqKxfFo0ePcHCNrxqueo0xF2Ub8UUuxXnrlBKIeAb8L+R9J1zkY3pEMn4eXPUaCwUJgEbdlHMa08taZ5SKnCNCufTqzWWtkQuJlIu87flyL/LpNaaZBM+u5vdcFC/CVl7UFl3lGktbBuLKOa8tO+8aiWvkYrblLHhRd+NFzv+LvL/3bQCp+J52pa+yj0HKiGRvtp8/OfU6L+sOOSsu+1lehX/yIt/398vZOQlH7adXaY0FDtqBx6/AGjMhkRRr0tS5I3LfD3HEWdd4Xpt8EZznOV5GXHBWXOR9Z1KWhWTriP10GXiVzjcpAh+2pUet8WW80+PwjW98Q0opr3QhvyI6pm7cuIGvf/3r5X+nmcB7z0b4cGeClYaFW53KqVv5rwqf//znZ9ZYQEqJf/LBLr71ZIjPXGvgR99YfGnZ0KPWeF5EaYbtUQRTV7Bcs/De8zFGYYo0E/jS7fa5u0TmrfNx18f3tseo2wZqtoZaTvD+sjpRLvtZFoh5hq1hhI92JgADXEPDr7rTOfkb5+Cq1giQVPfzQYCel0BTFLy9XsNy7TB3zWlwGevcGUf4hQc9ABIbTRefvX6QMv1iuIw1Jlzglx70sD0m4u0v3W6fiWvtJHzms5/D3/pH/wydiokHex6eDkLYuoIfvN1+JTrqClzVvhyFKXpeDFNT8N2tCRxdRati4M1zEK5f1RoHfoLHPR+7k5iUYBZd3OycT7DgtGvMhMTmsBBVMODHHAV11Zsr1SsfJb9KO1Qg4QLf2xqj5yWwDIZbnQrCVGA5F1N4mWtMuMDOOIIXpbAMDQnPkHAqGN5acE9tA17EczwvfvFBDx/tkFT5v/97f+OhdUYpkfjbhjrDhVKM2gPAUt2EENQVu1K3rvRuv4xnWZwrKYl890kvQM+L0a6a+PRG45VY40mQUuJRz8dH2x5UBbANDV+82TrTKMmrsi8TLvDNx3086gdYrVt4a7Ve7rVXZY2TKMXeJEbd1uFFHA+6NML9+Rst/NgPf+mlrbHnxQiSDAnPECR0OVyb4tQMkwzb4wiOoeI3/OgPXck6+36Cvh/ndBAMC1UDn944nx931vf9YNfDg66PTApsNB10KuaVdyuddY0xz/Bz93rQFCKvf2ulis1RBCmB1YZ1Zff4Rc7O+89H2BpFpYhAMSG02rAvtbngVTnfCRf4+ftdhKnAWtPCJ9YaGAYJxiHHb/51X5m7xu9tjfFgz0PfT/Hr317CwkvukmOMffOqf8eviMTUNKSkGfjHAx9ezNGbJPj0xqv7Mf/jf/gh/sufvl/+969/exl/7rd9+tJagV8mdscxJhHHJNqX/n46CNCwdTwfhridq0plUl649XoUpVAVBQM/hqHROGCSCdzOVU6ChENKXGqg/zKwNymeaQqAwdFVxDxDzAUMVXklRsL8mKM7SRAlAntegsWqiZSLl/YOhJB42g+wO47AGMNyzX4l22G3hiG6foKdCakvhWl2qc8q4QLDIEXMBSQkuBDwYgnOT08Q/P2M54MQmZD4cHuCiqVhFKW4u0RSvab2crmkALq7ng9pjc8GAVYbNqJUIEpJufSqRq16PqkBbg4jjIIEFUtH3SIC6l8p/IZcCPBMIOIZdFXDxzseGo6BLRleilLpRbA9irA7ifC0H2K9aUNhRArbcIwr5Vx7EZjkMtibwxB+zLF9RIf+1iiCF3EMgxQVQ0UiJCxNRdPRy/FeS1PwuBcCALYRHVI6fNUwCBIM8xEMQ2fgQiAVApkQGIUprFzhq2pqr9xdVGASc3gR+Wh74xh3l6p43POxWLNemVHn02LPi9H3E4yDFApIpOFVw+YwQsIF/DhDy9UR8QwKGHbG4UtbU5hwfLTjkeq1rsI1SXFumk+zUFX2oqsZxRdClvf37pgUFaXYp66oWVdzhor4RAJIhUDPS1AzdWSCRBpets+QcLrTqqaGrWEEU1MwDFPcXHAxDNPS/pi6cmViV2eFH3MwRl2kcS4WVnQFTa/3MtXiXxXEaQY/yQCQgEQmJJ72jz7bQcJhqiwvIqv4zvMRfuwVeY9Xie/vKH0OtnOp2IFHpKd3liqomue7QL2Y43m+ITZa9qUbvp+738V/+dP38Tu+uIE/8eNv4//x84/wZ/7+B/gD//038N/8ns9/38+A2wYR4Kl5C6JdtXCz44JnEqamwI85HuSytQWR5s44wiBIDilUnQTX1LBcY3AMFUk+ilIojoyjFN/bHGNvEuNG28Xba/OlY78f4BgaBj7JkNYsHbauoTtJ0PdJQey1pWq5bxIu8KRP1aXrbeeFEeYVowqmruJ6y0HDMZBJ4P4uvevpShsAPBsE8GKOlZp9KdKwB+EnHNujKJdwNtCuGCe+fz/meD4MYWoKNprOC+EX6HoxwoSDgWG5bs4lPJ1GlGZ42g+gKAzXW86JSYTiI5uagoppkTx6JvFkEOLNlZcXZKSZwONeAEBeaWerY6iYRBwVS0PDNtCpmEgyiZ0uEUC/vkzqp0/6AdKMKqMvskBAY5VEMHyj7WKhakFTGO7tepCSlPGmJd33JjF6foyWYxxbvd0dR+gHCdquOfP9BRxDg64qYEyi6yVQFOWFVIRfFMZRisfdAGkm0bQN2KaKLCeEcQwNQcLxbBDCUBVca72Ysz4NQyPSXVKF4xASMDQVkBIf7XhwDPWld3yfB7uTCM/6IXbGEYI0Q6diounOtzOmpsAD8WtsTyJMQlJ3e32pWiageEYKWzyTcAwV4yjF1jB6ZZ+Pre+PpriGhpsdtxx/Uhhwb9eDEECrYswoYW6PIgzDBAsvSA3tOJiaAkUhUYCGrUNXFGwNI4SJQKdqYKVuo+fF2PNiNGzjpaoZnwRHV2EbGmqOjlHI8QsP+vjMtQauzSEIf1lwDBUJF7B0Im/PMoHtSYzqSxSu2RxG2BmH6PsJ7ixW8bnrzUMFM8fQ4MfZpSnYHoSiMNiGAj/OsNqw0amYqFhaKV4yLXAhhMSTfoAkF8A5DQF+zDM86c36UkHCS5/V0hWsNxzYugpDU6FrDPoLUHc7iN1JhL6foOUaaLsmPt6dQAig4egwdQXVvKC0XLOQZKJMAL2MRoetUUg8WFWr5KIbBSme9AMA1MVlaArWGjaWaiYcU0PXiwFcvmgBFxIfbI9fqo3KhMSjXoAsk7ANFQtVEwojJeCUHy7YeDHHwz0f26MIPMugGhpqrwjX4FXjV1xiKuECDcfA26t1XGvbWLiA3Hp3EiPhAgkX6KTGpR4WKSX+7D/8ECt1C3/ix9+Gpav4ya/cRt3W8cf+p3fxx/6n7+D/+ls/9X2bQAGAhaqJqqVBU1gZNJNCHKniFeSCAAWnUlI1BKBuq7Mkpm62XcT5hc6FLH8HAKR5p0iaSfSDBEFyuZ0oLxItl6ror7NK/nnVctRBSuoMMEDPehgkCPO262GQzg1KrwK6quC1pQp4Ttic5e9jElI1LZ2SuI95hoFP+2DPi64kMcUzifWmg06FLqVrrZMd0Z6XIE4F4lQgqGQvhEy1Zuu4tVABY8CbK/UTnYlBkJREtOOIzxDRzoOpq7jRcVDJK/SrDQuQrCTWflkYhSnChFq4C5LHq8D1toMoFTBUhiDNYOkqNodUrSqqV0G6X/Xt+THWjRcb8N7qkB1TV6rEpSElnuRdItPnBiAnVQhgdxIfn5iaxJCS/v08G1AxNby9VsPthQo+2pnA0tVDv+v7GWnOYeGaGhqOjk6uZFgo0T3tB+VZ9xL+wjtBlusWKpaG15eq2PMijALaf9vjGEau8LtQzV6JbtizIM0kxmGKKBW41amg7Ri4tTDf9q42SNHJUBU8z8+kEMRBUlheTVVwd5HuFUtXcX/PK/2zV/H5uKaG15aqkJBlZ4Wlq+WISkGWXexP+prE3oR8oD0vfgUSUypeW6oiExKMAZOQYyv3N4pgancSg2e07qWa+cr6rE3XwJdut/Foz8O7m2MISSP+r1Jiar1JSRdTU/Aw70zzk+ylFqmFlFiomIjyzqSelxzyn5frFhqOfqXFz1sd8nk1hdQrTU3Bh9ukhJhM3VdewjEp7nAvgdM62Xcb+OkMqX+7Ys4kC6qWjtWGhteWK5CSfNyXQYa+O87v8jElgksbkglstCqoWmRDtfx/B+3Pi0ImJLqThNY8iUrfdPo9McZwd6mCNNufmHkt72K87P3OM4GUk41arJov5d2JvFt4o+XA0BhW6lSMuLNACpkHkeZdZF7M8cZKDRVDx+euXS4FyauKS422GGMVKaV3mT/zrFip21CVCKsNC6auou8naJ5zJKFu66QYpV/+mMf7m2N868kQf/LH35pxqH7bF65hbxLjP/lHH+FWx8W/9WN3L/X3vmgcdBZjLhClAo5BzzepUStnp0IOTc3WMA45GmdMUFBFhX4Xg0SUCiiMElAt18CNtovNUYDFl8g7dVnQFIZBkMIxqKV6uW6BMXrW08nTqqVjL69AvOiKm6YqiDhHmGRlMi3NlZRaU0p5hkoy92GSXVk1oOHo6PsadI1hvXG6joiarWGcj6FYL8gp7FRM+DHH2ik7daqWjp6X5KqFp9jTkvhZjHxs7e5iFX0/OfNZu2xUTA1F8bFyhfuUMbIR4yhFwgVcQyvvC8fQyqBR16gr42VUpxSFIeakwkdS7AxLdVKSWTyQVKrbOgZ+eqLyUM3SMQqP/3dpJmn0ebECP+ZnKgq86mi5BoZBiohnWK5Z0PPzrOZKXzWbno+m0mj0i4aUEnGaQVOoKq+rERTGwADsjIl36VUgPT0LRkEKTQFWmxY0lVSGrnUcaMd8joqpIc0EdJW6I9quecjvooCL/ly3dQRxBttQyu7oVw3TAdYkouC35RpQFYa1po0g4TPJYkVhqFoaJhF/ZZT4AOo6rJgaOlUTjNE9Uoza1G26h2r2qzuSCFCH8ThKca3tYBhxhAnH9VcoKQXs31EAUDU1bA5DrDXsF1ZUPIgoJaW7TtWEaai5cuX8fXnVfrWiMDAGDPK7zNBoksU7cF85unrmO7xqUbfOtAJ03dGxxE1wIbFQNSGlLP1uS385+7xu6xgGxedXsN604Sf0+TMhESYZpC5Lu/OyEpqqwlCxNHgH7FjbNcCFyKcXdEgJTKIEQkrULP3K1lsUA6qW9tLUFXVVmbtfozwmPoiGoyPJLMScii4LVRM9P4GVd8b9SsZlRwHfBXDtkn/mmaAwytYOghR+HEJhDGGS4Vr77JXvpmugbutXspH/5jeewVAV/MRn1g793R/+NXdwf8/Hf/qPP8LNBRe/8ZOrl/77XwZ6XoyvPerDNTTc6LjYaDmHKv3X2y6yXHHjvHg+DDEOeTmeo6sKXl+p4u4SdaNMO08xz7A5jKCrDGuNyx/XvGxkQuJrj/qYRBxLNQtvrdagqwrWm4f3t22oeHO5dugzvwg8GwR47/kITcdAlNrYaDlzW2iJ4Lly4Xd+EH0/oZFQl7ojgrwjZ8+Py0rFcWg4NCp5lc9OSonNEXFKrNQtbI0i4kkLklM5ohVTw1srp3+/Mc+wM4oxClLcXarCNbVDlU8/5tgeR6ia2gsb5bJ0FW+t1CAlrtxp2B5F+NaTAaqWjlsLLlYb9szZ0VUFry9VX8ha5uGjnQke7PpoVwwISV2nR3EtrDcdrNRPPjfX2s6x5yvhAo+6PqQkx/fgXXlwn77Kif2CpyvNJBWnNBUxF+X535lEh2xl3dZRPcM5ugyMp0iOhZDYyTuFb3ScGfvUrpgvXWH2LPBjjvt7HvpegnbFxFLNxJ2F6txnOwpSdP0YTccoK+pP+gGCOANjODEx06mYaDnGqyHjfgKiNMN7z8cYBgnWmjY+ud5AyzXmdrne6FzcB7oMFL7R1ihExaCA7q2V2qEurtWGjaWa9dLXexIe7PkIE0pOvbZcxXLVhPqKJjQBGj9SGMM4TKG9gLGxhAtsDkNKmjZsKArD416AhAvoGsPnrjVf2r0IEN/Oz97rQlcUrDZtvLZURcMx0HBmz5B2jjvcPcKXmvaBHvcCPOkF8BOOL9xovZRuxo2Wg9XGvm1ougaauQ15NgjwcI+4lT9/o4mFl8zRdHOOHVMUNnO/fbA9xqOuj7qt4zPXmlc2cqirCt5arb0wG9XzYgzDFB3XnJkCObhfY56VvtdBMMawVLOwVLOQCYmHXQ/3d31oKsOXb7dhX/K446uEM38yxtgfPeqvALxcFlFQQDoOOdKsIMU7W2ZRSokgycrq+VUYYSEk/u53tvBjby4eMqoAbcg/81s+gaf9AP/7//GXsd50LkXF5WVjaxQhSgXCJCmDH54JxFzMBMjnMR7FzzmOLHbeu+x6STm6UzX1Kxklu0wMggSTiMOPM4zDo8eegoSXLb0vGmlGKlNRKtD1Eqw25ieCCsJD21Av/cIo1JCepyFunoMkN+YZpLzaKqAXc/Q9anfeU+Izf3+aCaSZuNQR461RhDDJEMTZCyX3FJKCt6sme94ahTmheHzkWFGYZtSq/0JEofcRJBw9L0GYZhgECW5g/vqEkAjTDLZ++nOTZgJc4Fzv8+A+fRX5fAqMI16OBne9ZIa75zgUIwYvKum2lZMcB3GGTuWwDzDth3w/4fkwzNWzkrKqe5QPVRD9h0l4KEFz2vygkBJh/P0xmt+dxOA5ebPI5b+nMX3nvApJnr1JDC/iGIUpFLBD3azTPtersN6jUDxXgPynmGfoewlqlobqK5SYmn6eRXKk5yXIhMTW6OrJz3t+XI7AVS3tUGySZrL0114GtnPfxBMZOkcU7graCFtXzxy7KQrRGkQJn3kHBYQkDkbGyE96WWO202dt2mYU6wOIF+xlJ6YAWuu0v3LwnWznMWHMz+7/ngUS9Kwum7tq7u+SEptDGnfe5OGlxJSqwrA3jjHwExgaca39/xNTs/jTAP4sgHnyCy/dytsGkUsaGrXNAexE7hWAnP1UCNzf9TAIUixUDLy2fHYZ8dPg/c0xul6Mf+GtpSP/jamp+Mu/+3P4if/iZ/H7/+rX8Xf+zV91aif7VUXd1rHSsMDAsN50IITEt58OkWYS19pO+fkSLqAq7NTOjhAS9/Y8pFyi6epYa9hwjP1RtwJS0riKlECQZKjbOlxDRR+AogCW8dK374mwdRWLVRMTnZfdYFGaIUho/l9TFWyNQnQnCTSV4c5CBeIFz5hrCkPN0rHSkHB0DasNGzwjJSLXpJGpmGf4eIdInVcapPBzlnd+EmxDRRBncE0VtqHiesdBwsXMGGGBMMkQphnqlgYuyfl6sEdVjGst58qSlaZGDn0mJFxTw0LVxDiaP3KVCYlRSHtaYQxSStzf85EJicWaeSrFFVNTsVQ3j+1EcE0aqzQ0BVGSIUyyucnzs6I4e4aqzO1KebDnIUrFlY+ctlyDeCpUhuWaBS/mSLlAw9HBGMP2KMLeJIaiADfaDhzjxY2nGKqChqNDSolOxUCnYsy89yJJ8bgfwIs4bEPBzQ51Gx7XAj/0E3ywPQEXAp9Yq6N+4H0amoIbHbccuz2I6X36qqvEWTqRNQsBuMY+r8+NjlOOUR3EOEzw7vMxDI3hjeUaqpYOnglI4Mo4UwqSY9tQsFSjrk5N2W/Rf+/5OG/5N3Cz417pWi4DUZphHCZ42gswjjgMTcG1tn3sSKhrqhiHfCbQ3WjaeNwL0DimE6rw1TRFwce7HngmDxGIv2qwdBV3llzsTRIs57a67yewdbqf/JjjYV45v9Z2YOkKdOXl8NgUcHOhldW6jXaFyJYVhcGLOeI0w+4kAs+ApqtjpW6faIdeBoKEl3f5Ys2EBCneRTxDlGavzEiMEHSfJ/ldtNFysFgxsVw3MQrSFzLK6+gagKSkhQCog3MUpuBc4JuP+9BUhmst96UIY7gm+ZJJJnBrwYWUMh/BVkqOooddD2EiULG0XOH0dD5lYVMe94hvsGZruN52kWYC4zBF1dKx0XSwN0kAyJc2ZiuEBM/PWZhk+O7WCGGS4Y3lKtYbDrabMYSUp4p5rxqZkKXCMCVSVNxZrCDhApOInum1lgNNDdFw9CtNeEZphvu7PpZqh0Vd0kyAARcu4ktJqoKGtk9P4p6QPDI1tfS95iHNBBTGEKUZ/Jgj4hkq1q98EvTzRAHfBPC3pZTfOPgXjLHff/ElXQxVS8drS9Q6flpHTgiJj3c9TKIUH2xN4OZcB3eXqhcKSqSU2B5HOMgt/DMf7QIAfvjuwrHf366Y+L/9b76A3/xf/Bz+jf/2a/ibf+jLL4SE+aqw0XKwUDVh5MSBu+OolMq0dRVrDRs7oxDvbo5h6Qp+8Gb7VMYik7IkKozSDJqqHBqFKgJ5L0rR9xMsVC1MohTX2y517DCGScRL0vWXVRU6Ca6p4e21OqSkgJIcGlL3GVmk/FPMK6eZwEc7EwiJUkEHIFL0yRXJ+gLU8Xd7oYKNnFwYAB52KZhWFODN5RoSLsoq5s4owtYwgqrQWJ+hUbJtbxKfOxAuSKQLh+6ozsmEC9zfowTZd8MEdduAoqBcW8Qz1EHfuzuJEKcCSzXrUhxwQyOS+EzOkuPOw5M8GTGKElRNHSRgzKDml1aBgZ/Ai4m35ODPYgwnSvCu1G00HQNxmuFJvyDdlhfiuEgzga897CPNBG52KnNHxeKcAHgeCeRl4lrLwVLNgqkpiFKBh7kqaJLRey2e5eaAqrPtill23B1lzy8LBVlpOnVunvX9ciz5jeUqNFUpnRgv4vhoZwKej60VFdzp8y2lxHeeDfHPPu6i4ehwDA2fvX7Yaa2Y2pF3y7x9+qrC1FS8vlQ9tNaqpeOorf+kH2J3HIMx2v+6quRKiESy7VzBnUt3YVbehdPV976f4FHXBxcScUYBNGMMNzru3Hd01fb8JPBM4Ofud/G8H8JPOG4tVLDedE6s2F9rOTM2GgAGAfEwbY8iVEzt0D1M9/h+Eptn+/d+0alrqMorqSj5xnINNzuiJHgfBmmppBtP3YfPBgGEIMn0OwuVmeRUmGToei9Gpa3pGnBM8o0KPyxISCmKZwKjKEXbNeHFh+3QRe/vy0KU7j/XUZhACIaEC4xDDj/ieHsNr0RnSSYlkvwOpC4Y2udPej6SjIpPV426o2NVWBiHaSlcY2oqXEPivb0RPtj2ACYRJAKdyosnkF6qWajbRLCu5vFDMQJ9a8GFY6il79v1Yvgx3Zu3FyqwdHXm/k4zGlssksT39jyESYZhmKDlmOXPedT1EaUCuhbjjeUaPn+9iWTqfn6R4JnALz7sIUwF3lmtwVAVPBuEEALQVR+dqvVS1seFxNN+MONzJlyUiol+zOGaWulbPexSAtbUE9xdrGCtaV994jW3AQf9y0mU4ntbE0yiFO+s1U9V4D0K2+OoJHy/s+iCMXaqz1X4Xln+HIv4s1Aw5IImSya5IuVaw37lCgCXjfN8un8dwOMj/u7zp/kBjLE/yhj7av7nf5cx9lXG2F9jjOn5134XY+znGGN/lzF25rYlQ1NmklKZIN4JGu85HFUkGSm7SEg4pgrHULFUsy5cKR8EKbqTpByDKPAzH+3hnbXaqYK9u0tV/MXf9Vl8vOvhf/fXv/XSFbROQs+L8aQXzATL07Cm2jlVhaFTMeCaKhbyi/dxP8Ak5NgbJ6V06HGQUqLrxWCQcEzlyLExIcmpkwCCfG3FoywCmGcDchafD4OzfORLByXsgtJROQhdVUrDJLGfRClUH1bqFmq2hk7FLD+jH1PgQsaPPudF4MccT3oBhkEy9+8Vhc1cjsW+lZLWXLV0LFSpe6cIPjIhEXF6N1ujCMMgLVtizwrG6PfPO8PT9iAT5LgKKUsFQ4WRhHfD0dHOK09+zLEzijEMUuyMz7emedDUo4UVul6Mp306S8W7DWLawypT0HR01GytvEzTTJR7+Nng/K3/lq7OzNLMs5lnwU7uQPb9FLve4WfHc8WnmGdYb56962EcpXjSCzCOTt7T0/sim/pcxfNdzs+OZdB7Kc4NcLQ9PwsSLvC0H2B3Mn8PqQfOzbS5L/643rJRtTQs1KwyMPdjOjcHz3eayfK57E1i9PwYMT978u+4ffoqIOZZ+VzPutaKqdFYj6mh6RgIEhqPGEUczwfhmd93+Y5PsBPWEeMmQlIg6hgq6qYOgFGXb3w4+XRZ9vy8GEcpvvVkiM1BiEGQwsqFYk7D6TnPRk/7N9ujEE/7wYxCJCnu7hdeVhp0XlfrNnbGEQZ+ip1xjMkpbMFVIEppH87zXYrPqyisvLPpPpRo2Hp55xR8QnEqkIpZH+DZIMAwSMuC3nkxOaXNNDV1pjhYvB5NVbBYM1GzSVzmoB266P19FmyPyF/ic5REp59r4TONohTDIMEgSDF4QedGShrHezYI5vrwuqpgtdjLDZtGPr0Yw4hjFHCMwstLPKcZ2aeDfgytMYIX0x4ukEkJx9BgagyOoaJiajPqapeFk/xe4ICq5dRjFFKCMYb1Jt2NDZuItYVAGYtM3988k+h5CXp+giQjRVaFsbyAoWEt90MKH6E4hgf92oMoOoS2RvNjzYug68XYHSeYhByP+wHqto6apaMyNXZ53PpOe+bPikL1vFA4BqigW+zzmq2hamklBUDx9eKdHeWnD4MET3oBguTie19VGPw4hXbgvg2SDFsj4iS+t3sx3baDvtpRn+soJPlzLFRpvfxzc0GKgks14qs6K1+2l8dqV6l4fdk4T9nlMYDqwS8yxhYBjE76ZsaYCeBT+Z8XAPwaKeUPMcb+GICfYIz9bQB/EMBXAPwWAH8ANDp4bvT8uHQuLV2daXMsEhs9P4IE8Im1Guq2cSnzw/OymkHC8c0nQ/yBr9w69c/5kdcW8Cd//C38h3/nffxf/t738B/8xrcuvLarAJEn5lLCQuD2wnzKMZ4J7ExiBHEKy1Cx0rCwmhNjrzZs9LwEpq6caoTo2SDEh9sTSsRUrZkZYp4JPB+GYCAFnKW6iXHI8ZkNE6qioD3F7aEwBk0lJY+XGYB5MS+rQACO5HORUpJMs5DYaDkIkwxNlzp7/JiDC4mGo0FVWE6UTvtZYYCusRkp3PPg+TBEnAqMoxQ162iBAC/mGOTKmBVTQ8WiNSVcIEozqArDat3C8xFVuqt5R4CpKfBwPr6xkzBtD8x85Pdh10MmiNvnE+t1NA/sPV1VwBgFEi+irT5KM2zlZ4kLiY2mg3u7HjSVKoV3lyqHFIXUmT18sTXWbR1rTRtcCHTci9lCQ1OgKBJDP8WCWz/099vDCDvjCArYuZy5p33qMJjEKd5ePfzzD0IIqpwqjGGtYZWqoNujCEHCsVK3UbN09PJ9O/05LoqdcVQmEVzjMPl8gYQL7E4imJoCu2rCNWksORP0HBkDFitG2W22eMT5VhUGMEBTAEvX0HB0bA0j3DgH79qrjJ1RjFHOuVcxtZl7oLBBDUefO7qz0SIVTEtT4ZoabF1iZxzNdWRPtZbpd5wLDEzvuaWaeazDWjU16KqClYaFt1ZqeD4MISRKkttpXJY9PyvC3KG/tztBkJCy7kbbxvW2g7uL1XN3di/VLGgKQ5w76QARoReE9bpKo49FQoFnEtdaDrbHEbZHZC8tXX1pY49bowhexDEMSMXuqCBxtWFBSIkgzRAlAiGoM66dkxkXHWMHfRFTU/MOjovdi0/7xO81zjsFjsLuhLjQlmoW9Hxkar1pI80pEbyEw9IUNF19xg5d5f09jVFIIgIxz7AzjnBnsTLjNyo5kTcAhAnH88EQuqJgpU7E56tzBFmuAoMgxfO8aOTHGV5fPhRCoV0xZ+KOxYqJe7seTEvBjXOINx1EzDPsjmOMggQy5090DLW0iYwxGJqCOJ3tYqxZ5AtUbRWbg3AmUXxZOK3fC9DduDOmu3GpZkJXaQQ6SjMM8lGq5bqJzWEETVHKbvl597ehKaXimRdzbFRsjMIUfY/GbG+0XQyDFCpjeNoP0HSNY21b14tLjkNLU+fa7POi4RioOxriVGC1bkNVFXxqvY57ez7ClONp38dC9WhxktOe+bOiuMrMqd9bNbVcVU5gpWah6yUYBglUBhgqQ8YYrh+zp4uCC0D79u7S4fNyFggp4cUZnvRCtCv7nV1NRwcXEkGc4bZ1MZ9ouWZBV+gMnYfLqnyO+T7tVGhyoeHoiFK6U17LqQYAlF2p8/jgpvFsECDl9N5rdu2VF/gCzpeY+gsA/gGA//eBr/8LAH4IwB864ft/P4C/CuBPAfgigJ/Ov/5TAH4nSNnvXSklZ4z9FIC/co41zsBU9w+MqjA82PMgpMR6k1rJB36KYcBRtTVwsa/E4MccO+MIFUs7cQRmHiqmhrtLlbIaDwDfeTZCJiQ+f6N5pp/1u790A/f3fPw3X32IWwsV/M4feKnih3OhKqcLjHcmlBi43/UAIfGdZ0Tw+PpyDetNB03HONQ5MA9SSjwfBHjY9aGr7FAirCDCBwBDY/Dyat5C9fAolpKPkUVp9lLHJXWV7SdA9KOf4ShMsTuOEaYcXsxhqiruLLpYqFplcnArC/HGcg1LUz2HjBHv1EVHpszcgSkSNkfhSY9aUT/cjmDqKtqugTuLVXS9faLNmqUfencrdQtV67BjfhkofmaQcjwdBNAVBV6UIUwldF3k1TQKdDtVs5SxvbtUQZrJF7I/tJxvK0w5tkYJMiHgx1Q91VWquHsxx+6UfbrsPXxZPAUVU8NyzcZG053Latz1Y/zigx4UxnC9ffaOKVOjef7T7pWuH+P+noeel6Bua7i7VC0veYASCzc67iGncp49P/ta6UyfNGpeJDe2c9LblQapEI2jtEzA2EZ6SGHu4Pl+2vexO47hGBrqtg4GhnGU4sGeh+W69ULIQF8ETF0BQuIK1BQFk1z1rmbreNzzsTWKYGsqfvTNxUOOmaqwmRZ+RWHQVYbVuoOYZzlX5RnWMucdd/0Yu+MIu5O4TLRstJy557TnJ+X3+XF2rKT9Zdnzs2JnHOEbjwf4+qM+7i5W0KmZ+LVvLKFyQc4eVWFYzEdqR2GaFwJmz3XLNfC452PPi7FYtZDyLB8zApZrJu4sVl4aafx0Qua4pKam0h590g/wtB+g7ero+ykeKQy/5vVF3FmcX9TbaNloxvqFP5+pKwjiDNYxPsYkSrEziktKAKUY0W854JnA97YmAIBtEeO1A4HjVd7fBUZBis1hgEmUYhhSgexpP0TF1OZSQMRcoGZRlwlNRZjYmcTYHl8t8TJA++LerpdzIjHc6DgnPpuqrWGhYiLJORHPi0LwI+EZEk6K5QVnYWFnng9DeBHHYtWEprJD3Dgt14ClK5iEubrpODrWLp0Vp/V7i88zyO9GQ1Ww1rThmlpJ1g8ANUvDrQM+5fT9berEd1R06xeK0buTqIwZHFMFzwTu7/rY9SKsNWxMIo63Vo8e4pm2/Zc9bmXpKr58u1Nyko7DBP/kg10ECYdtaIjbDtJMHvrc5dpOcebPA+JJmr3LGGNlcvFR18cHWxM4pooPtsdIuUTDNXBr8ej9M11wuQwbEqUCv/Cgi5Zr4rPXG/tf5wK3OxXEPLswb1hxd50Xpj77HE1Nxa2FCtJM4IOtCWIu8c3HfXxyvYFhmBIXo61jGBB371H+pKmpSDnxPn4/JKWA8yWmfkhK+ZMHvyil/GuMsX/vuG/MR/V+REr5lxhjfwpAA8A4/+sRgOYRX7sQ6o6OO1oFjFGlr2g3HgQJWi5xyuiqAltTZ4xJoVDlxxkatnEmQ5MJqrpqKptJan3zyQAA8JmNs3+s/+A3vIlHPR9//O+8h1sLLn7wVvvMP+MqUXAExVyUxLPzYOQHyNYUfLg9gamr+HB7gtsLFWiqcqiL4KhnSeM41N1hagpELhVuako5p1ucw5iLkptlGCZzE426qrx0gllTU3F3qQKeyWOVhop1DoMUo4AIIHWNoeEasA0FYSIOORddL6aqZtW8MOnntZYDL+awT2hXNTQFEz/FwE+hqVQdbjgGHENFD3SBTzsiQcLR9xOScL8iYtK6rePOYqXkbwjTLOdsAmxNha4wPM1H4ZIsRG05r7ipCoYBjYks5Ymgq4KmUiKMWpkzhAmNGqvKfkfA9ihEmIgZ+6SrCsZhis0owmLVfOn7GaDnVrN18Gy+ok+ciJIbbniOkYWbHRdBwk+dZDFVFb1cOSxMMnQqFixNKZPqjnl4jX7MMQguvi8Xa1bpRBx3nxiagphn2PMS6AoDlxJN10DD1kubNv15D56bQm3KizMojAFguN5xcL3lYHscw48zbI+iI53Yq8behALexVOMs0/yZFzLNY58x0v5czXy5/qo5yNO6WxMQo6USzAIBMnpFNwcQ0OYJKjl4xJnwbx3bKgKVeKDGFIw2Dp108xLTB1lG6O04BfSZ5xoTVVemLpYsYaeT7yAbh683V2sXmqS09KPvgfHEUfCJeJUYhimiNMMO5MIrqFBb9kvVclwtWGjlvsjJ/FjBiklCoQgYZCCIHgcpUdWwBljEBIXHie/2Xbhn2Azi6LTJKIRKF1V8JD5WKiaMDUFlk48fQWPVN8nRdGFCpH5X9X9PQpSTGJKPGsKdbzcqZilqIVyhD9CozWU/Ojk/z6Iry6hS+TwEks1C6rCysJAmgmopwkQJUOakXqjf8Z1SikpURNzTCIOhTGEeQKjnQsF2IYKUyMRhqKDvOfHuLM4vzuFVJ7Zkff4RXBavxeguzGISX1VVxVIBlTyZOMwSKEqbCaZMS9+UBigqWwmXgCQi51QolIBUYvsTmIMghSuoaF1Qvd4wzFgauoMgfxFsDOOiLi/ah4a07u/5yNMM/T9FHVB7+c4f+80Z/48SHMOpKPigFGYIuIZgpRDYYCUDOMwOfKcAvsFl+iEWPK0yAQpXk4ijiyTyGljYWkqdI1BVbSXLoRQkPkzxmb8Ak1hMDRGhTZHw4fbE1QtPeedSrFYtY61J9dbzpW896vEeVZ6nEU9yTv63QD+n1P/PQSwlv+5lv/3MP/z9NcOL4KxnwTwkwBw7drh7qGEC3CxL6VeGFLGcglLKctW6deXqrjRdpBJzATzjrGvUHXWlv7dSYReOS60f7C+9WSIm3Oq8aeBpir4z3/HZ/Cb/tLP4t/+H76Fv/dHfvhY1ZuXgenkjhDUqn5Q1nyhSkmju4sunLzS0XSNI9u+Dz5LkRNFGpqCN1aqUBmDY6oYhymCnCfI1tUZInyeSXgxzRBXzVdb0cDUVBy8m4tn6eQcFW5e/Wm5Oj7e8eAlHBVTg64ouNWpIMlm27H9mJejYSIf/7sIWD6PfxDFPH9xgd7suGi7OkxVxaOeDzfncGs4Rkk6P+3AP+2H5az126uX23aa5bK1rkFKSAs1C88HIWq2jk+s1RGkHKamwjE0dP34UHJvGFCXGpBXR66INNWPOcw8ybRct/Cw60NhDJ9YreON5RrAqFWaEuc09lrYpyDhZcfcZbzny8A8Uu9pVGwVFVMHINE4hwKiqszfi9Pve3of1R0db6/U8HwQIskEWO7YNl3zyDU+6QfgGamuXLQNfp7j7cd8hhtxqUbJMl1heNQLaDxNp1Gz15erpfjB9PpSfnh9G00a85VS4lMbDWiqgl6QIOWyvBuPek5XBS/m5djVSb1nUko87gVlh+AbxyjlFs6cH1NXYZySSt/bqzXc3/NRs0/fabLasNFyjZKc/KwoxveK5H3DMfDGchW2rmLPi2FqCmpHEFgfZRufDQKECdlGNyfCf9F40g8w8BNoCsO1lo0VYeFWx8VrS9ULJ+pjnkGIfV9t3j0IkJpf0zXykQmVnrGhol0hlaeXjYPJxjDJoCiHO79eX6oCEiWn6ZN+AEtXTuSwedoPcFH6GuUImzntN1t5VwnRAIwxyLuS9FxZ9fZCpSRajtIMz/NiTparLF8FeCbwJOc/GoccLZf4o252XEzys3bUPrR0lURRsgx1h0a/poVOLhPjvNuswFLNwvW2g3HIsd6yjzy7UkoESQZTIw4v6tIWZ/bziQszJvLpJEXNMnC9QyqzhjbLwaerrFQRM3KV53l78KR7/KKYd96llPCT2RhipW7DzJP+z4chjcTnPmXF0g7Zzen4wdLVstBQcNIBFC+4OQl1ETMojKFiaNBVhhstB3eWKlib6lAu7k3nwJ67rKQdF3LG3zzISbxYtVC1yDf48u0WbFMvqTAKpDl/smtqR575iyLLaOyu2FsH0amaEFLCUCmZvTdJsNKwDsV7B+2/piqoXNIdpyoMlqai4WhQpl6PoSlzxVJeBpJ8emsUzlJSMMZwd7GaqxxSV14qBFbqJharFprurIJtcWasvDhyVe/9KnGexNQuY+yLUspfmv4iY+wLAPZO+N7XAXyaMfYHAbwNIkv/IoD/GMCvBfALAD4C8A5jTJ362iFIKf8K8jG/z3/+8zNXS5Rm+GhngiwPzKaNuqmpeHOFHPviZWrq/OrWasNGMyejPKvTNZ25LjqEpJT41pMBvvLa8Wp8x6Fq6fhLv/Oz+Im/9LP4d/7Gt/FX//UvvlRJ4YOQUpbP9kk/wCTisHTl0IxwxdSQcIEv3WwjzqjqdlRQVDxLxuhZxqnAx7sT3F2souUY+NRGHZqqoO8nCJK4TD4C+8GbrpIaHIC5z6uQs3+ZxknkJNDznsPDno8gr6heaznQ8urJWtPBct1GwjMY2v4FaSmzn0ObapW+aItxJuTcJOK05PV600bFoq6BpmtSYLZCF37xjOc9a11lSHix3tPt65iTQ3Xcv5dS4t6uh4QL1G0iEGy5Buq2DiV/5sWMvJQSN1ouuJwdSZ1upzfOeGEW++ukdW4OQ/S8BJrK8NpSFa6p4a2V/X07PVS0VLMOBc+qsv+eX4VuqQKqwqAq889W0zWw3rIhhISunH3NQshDZ7pQNZqWfi7+LRcSd5equNlxkUkJhbHyWR21Rl1VwLPsQmfnqHOzM46wO46hKMD1tgPX0MAYQ90x8MkNHW+sUDKyOC/z3qumKEhxeH11R8dnrzfLPQ4Adxdng4viOVUtbYZ7KuECmsLmPtvp+/Os0Kb36IGfcdAGsvzdJFyUn/u48/58SGTlmspwa8EtA9VWxZx5BqfBUcHXcXa6QJoH0MXoxN2lKpbqNpquCSkltFxZ6ijMt40KQgioytFdIVeJKOF42vMxjjLULA3/4idWwMXJHQ7zcNAeRmmWKyES/1LTMY7cX6am4o2co6cfJBDDCDfbbq7M9fKrwtP7YxgkeNoPwRhm1pdmAlVLx+dvtMp9WXf0GVs0DwxkSwuy8bPiuLMb8wwf79A7KEQgTE2BVbXww3dJac+cShAoCiv9DIVNnekL8l8dXNP0WVcYjbhnQuJG28FSnRRWGWMndjYmXOBhz4cQJAqxWLVKnxCgZ3PWxHxxnxy0u7qizNzDqsLw+nLtxKROIV6iawyvLVbx9moNQp6Oq2v63er5ehQFuNFx0XYPq/QWYIwmHYq9Ogo93FyYrwB63D1+Ecy7wwHk6yHeqDsLhU+molUx0XQNvLNWP9GnLMQEGMOMfzEdV0w/3+l3+cZKDbcWXBja/r4v7sWj7s3pz3TSPXEcpr9tnr+51rTRcpfBIMEOdIkBlMT9eIeU8QpV7ouu6SgoytF7dK1hoz3lp15vE9F80VwAUPK+UMdeb9pl48ZR++KsUBWG9ZaNpapV7ocCmqqcKxFy2Sjeybx3rSgMbyzXyoaDIplePJs0E2Cgz1LYkEJNmTF2Ze/9qnCe9/HvAvgfGWP/LYBv5F/7PIDfA+C3H/eNUso/VvyZMfZVKeX/kTH2x3KFvicA/jMpZcoY+68B/HMAAxDv1JkQ5AEyzyR2JxHWGg7Wm3bZHs3yS/QkxDzDox6paBwl1XwUOhVqd9YUpcwAPxuE6HoJPnvtYtOJb67U8Cd+/G38e3/rXfzlf/YAf+hX377Qz7ssxDzD/V0fQtLzKhTWSAp5/9IfBSnefT7EOOK43nbyCsXRL2TesxSCyCwfjmkkZKNJMvC2oeaZeRUDP8HzYQjboErZUQauSFpEqSgN+ItGkdRRGMPtRffQJVPK2A9DhEmGTApoTIGuKRSAneCQmxpVP5NMnHk0ZRqPeyRf38rbwadRSF6nmcD7m2PUbR1CypLD5TQqlNfbLryYn1pm+tkgwMBPYRvqkbwcAClmJFzkvFLUAn1rwT0UBGSC9kKaCaw3Z8dCqpaO24suhDxcFT8JT/oBxiE/0okpEKUZMinxtOsjSjPcWqjMnX1/1PUxifih/XpZ7/lFggHYHITYm8SlQ31a7E1ibI8i2IaK2wtuaUdk/r4BlCpeQkj8zEd7GAYp3liu4M3V+qkvwJsd2pfnbSs/6n3R+nIlq2GEIM5QsTQwRjbuZsc9VQX2uPXtTWLsTWI0HB0bLWcmuJBTMuXRlFpfIcV9ULI+zQTu73lEOt12zrXHik6Mg3u0UFdUFerGKJzW2wsu/IR40572SZXMMdW54hpx/ix5JstEMtn2bMYHOC+KNWo5p+G8JELxbx73/Fzdl4KERz2SHt9oOaifo+Ngo+lg4hzfFXJV+NrDHn7+fg9RmuHzN1tYrFowdRXn7dd+3KOiVZE0jlO6O7gQ+O7WGE3HOLS/CkWpxZpZdqvO8w1eJkZBSryFqoLbC25pe6QklT3HAO7tTvDuszFqloYffm0Bar7PT1MUU/KzcR5OsYP+2cE7LMnvbwB40vOhqwr6QYy2a2Kt6RzLOWhoSnmmD3ZthAklHaft82mwNQrRnSSwdPrZjLGSRzFMM1TzLpDTIs1Eqa42yhXaFIVsZ5hm+O7WGLc6lVPvIyEk7uXJicWaOcNTR/dRBVyIslvhNEmdQjE15RL9IMH2KIKlK7jZOX7kOuFklzMhcb3tlL7KvV0PfS/NA/7ju9ie9APc3/VRdzSsNKwXwqUphMSDrocwIYXNg51h+zFEho93PQRJhiAX+rnZOV0ieqFqwtIP24iD8cI8qAqDbWhIM4F72x66XgxdUVC1VcSpgKooM/dmgZP8+dNAZVRcAeZ3WQO0zx7sebi/6wMM+NR6veQ54kKWCnhRKjDwEzwbhDB1BbcXKpcmTFCc/eN+3vTzVRjDzz/oYXcc4+aCg09vNGdsT8SzE/fFWREkGd7fHENdY1cuyHBeGJqCa23nSB9zuhDAWJ5o3/UwDpNS3bDgmAXo7zMh4cd85k56GZ3WZ8WZLY+U8pcYY18E8IcB/N78y+8D+AEp5e4Zfs4P5f//HwH4jw783X8H4L8769oKZFJiEqYI0wyGapaz1p+91kTXi6GdkqQsiLOyMjUO0zMb6oPtcyW/1LXGmX7OPPyOL27gZ+938Z/+ow/x5dttfGrj4j/zovDjfYnQSUTEvDujEBEX2J3EWKpZSDOBf/rBLh7lTrvvZoinquFHYfpZUrID+Gh3gveejXC97aJu66g7s3wggyDJZbbpdxx1+aTZvgT1tDz8i8Qk4pCS9q4fzxI5D4MEzwchYk5f3x1H4EKgXTEh8zWfJuCydPVCLdhSypIYchSkM4kpISS2RyE+2hnTGAqoXBjlij7DIDlVYqrgYjgtCu6FMMmO7Egpfu5CzcBXPx4j4QLffDLAKKQk8bShDtOsDNTH4eHnet6KfEH07p2wv1YbNh7d72JvEqHvpdgdR/jVbyzO7AchZPnzRmF6KNFx0ff8oiEl8KgfYOgnWOyfzQEpiMDDZPaMKwrDcs3EV+/1YBkKKiYR3JOaj4rNUYQ3T6HgV+Cs+3Iax72vYZDg4x0PUcohBCXp/IRGVAqi8tMESsetr+8n+e9Ksd6c7Qro+QkYAENnWG3sBy6TfJ8WypuTiJKqmZAkHpK33J83+TlvjxY2kGcSYZJBUxhxRXGBa3lCzc8llHfHMXSFoZPzqG2PSKVptWFjZxzBzcf0wyQruQUHwdHcPafFOCfkTjmN3NRtBQM/wdYogqbQSMwoSrA1ioljSlWw3rQRcYEwHzMfBem59pJygT14Xggh8d7mCP+vrz+Dyhiarg5LUy+s6ljYwb1JDIUxuIaKTtVA309QkRqkBPbGEXbHEQZBiqqp0Z5QFQz8dGaM+lUaUygI2xMuEKYZOhWj5EiLOMdHOzG+/qiPKMkw8BO8HcRYrp2tEGZox/PTHYWD/tm0PyuExPe2xng+CNGuGBAScHQNA5+jYdN7OUkM47h756B9BugcPB+GcE3qAp+2S2km8GDXQyaBpmOACwldne2Cfz6kIPu0I/WuqWGxZiJOi4JFikyACLMlFQImB+xtJiQe9XwkuQ0qEgRSSjwbBnjWD9FyjVz5ePb3MUY2N+anH8Vbbdi50pYOL7eHYSJOTEQGCQfPJIKE4x9/dxvrTRefWq+D5cwrhZ/U9xP4Mc+TNbPvSkqU48WtC9rJ0yLJpuximM48JyEk9rwIm/0ItxZc7I5jSCmRCup6H4Xpqf2xo2zEae8vP+ZIOAnQpJnAOFJRs1Q87nlYqZvIFqszvudx/vxZcJpu1HFI/JePez56Xozf9OlVmJpa3vtVS8Ny3SrH5+OUOD3P0+k6Dwc5vU5CzDPc25mAC6DvR7B1DTVLRcwz1CydCP+P2RfnQZoJbA5DLFfNGVvyKoEBZ7rfh0GCZ/0AwzBBmAg0HJ060zQFPT/GzQ5xNo+jaOZOelF8lBfBuVaYJ6B+BsDvllL+FinlHz9LUuqqIYScGl1ieNL3sT0K8e7zIXpegp1xjFEuN3wcwjTDnhchzbJLUaj61pMhHIM4rS4Kxhj+9E98Aks1C3/kr3/rxID3RSBKOHbz59V0SFbVMjQIQYHEvR0PX/14D10vAiARcY7lhnkoQ1zwKDztB6UjNQ2FMex5Mb71eIDdSYIn/QB1+7CRbbtmzj+jYRgk+HB7UhrraRiaglZFxzAkdUAx53deNQyNYWccYRylqB4gX/5414MfEwF2zDMafTQ16JqC3UmEvUkMPkfCdxSmeNT1T7XXTwsuBLbGIaoH+FH6QYJHvQAKUzAKUmSQmCQcaw0L22Nqx47mOFcxz/C455eX5lmxXLdgGwqW6vSupaS989HO5FCSUQFJ1O5NIjwfBHjSC7A1irA7ifCo61Pgw4BBEKPrxWieg+/oKKw2bNgGBc5F10kxWjgNxmjfZhK4t+eh5yd4mHdPPer62J3kzgXPsD0OX3igehXYGobYHIToejGSM3QCjII0T5qkaDiH+YOChKpwQZThFx4OkORqoVxQK/7uMQTCUkpsDkM86QWH3tFZMYk5vDjFKDosuvDRzgSTiMOLMzAGxFlWysyPogS74xjD4LDNAoDtUYTHPb+ssh/1ObgQ2B1HqNvaTPAXpRm2hhGEBAx1loi7qCZ3qgY+2pngl58O8e7zEaI0y+/QaK7NuQhajpGrp6bYHkfY84iknWeytNsrNRumzsAzgVHI8WwQlgqGO+MYXEhcb7ulI2vpCiqWhkwIDP0Ej7r+jH0vz9UpyaQbtoGuH6MfJDBy57bnE5fLRzsT7E1iPOkG4FkGBlbK16uMxCe2RiGq1slO/Gne7VUjSDh++sNd/Pe/8JAUQL0I11o2vnCjdeFuisIeMsbw4c4Ev/CwB1tX8eZyDQ3XgJkTaz/tU/BPSSkGRQHalVlfbBKl+Ghngqf9AAnP8KQXYHMYQl4FedAJyITA9jgEIOEapA5XjBp9tOMhiEn+exilMHUF93c83NudHPue/ZjjUZeCzovA1ilg6Xrxoa6m7XGI5wMS+9kaRbB0FVxkuN62oWsKOhUDzwZ0r46jw/6EEBLPBuSzHbQLjDHUbeISvbc7QZAnl7v5uRmHHPEBG7szjqCqCnWBmioyIfG455ek79uj/MyP4vLn7U4ifLg9QfeY57RUs3Ct7WCxZkLXGCydhDkYA3o+/czp9fsJLwvU077jKEwxCojMOeJZqeo2ja1RhAd7Hr7xaIDRETb8IByDOghrloZRmGBzFEBTAeeEQlPV0uHmqmfP+iHefTbENx4PYBsKbIO4KhMu8HwQ4lHPx1c/7pa+xPSzWW5YeHu1/sI6MjMhMQwTDOYULvcmMXZHCTRVwf2uB01liLnAUtXEnhehO4nLosNB7E1iPOr65d44Ccf5oZmQ6HoxdicRGrYOIQGmAI/6ITRVwZ6XYidXzy3QcHTEPKN46JJs+FF3wnrLhpS0Z4dBip/+cA8fbE9KXi039yc6VZNEXPxkri9+UZzky0sp8aQX4DvPRzB1UiWtWMT19uGOR8ktRuNolq7C0Bi2xxHSS/AzCr6u+3v+sSTZrwIGuZ8ymWNnCzwbBHj32QiDIKHEp85IFCDJMA45XEMv/VYqNEj0/RjDS4wFrxIX8S5+L4D/ijHWA43d/XMAX5VSDi5jYReBkRMYO4aOlqsjk/ut1Iaa83ScMAfPM4Gel2ChYiHiGRnOinmqNriBn6Dnx2g4xkym95tPBvjkev3SWunqjo4/99s+jd/+V34ef/L/8z7+k3/1U5fyc8+DTEj0/BSLFQuGtt8a251EePfZGMt14hmyNBWZBG4sVPD5a02szyErHQRJeYDmVcSElNjNiSUdQ83b0g8H6HWHuqiEkHh/k4QeaRSEFGbWGvY+z5iioGEbSDgp/VxGIvIs8KKsbAWPMwl96mTWLQ07GoOuqtS1IGWpqqKAIUoFHvUCABKdill2BTwbBBCCqtN152KEzQC1w2qKgpWaDXHA6TdyMt8uT1CxqVuhbutYqdsofM6n/QCMMTiGitW822p3HOddWBwVSztzwFO3ZxWqgiQr907Xi2eqQjVbh2voeG2phkmU5ntUliSlQoYwdRW2ruXJAg5NJYJNS6f9ct4Z7ZZrlHtqbxKXakAHFSINVUHV0nC95cJQFTiGBltTsTkMSWEsr8TpqgJdUdD1EjQdA8+HYdmd8SrOkQ+DBF3vsE0EaJ/aOjklnVN01RXYmUTQFQW6pWBlTmBQdzToGgPPgJZLjuJKw4auUMfBzjjGQtXEnhdjHKZYqFrlXhpHvHTsVJUdGls9C3bHUWmfDu7vlmuUgWAlT/Yu1y0s16yysr89iuDFFLyt1unc+zHH3oT2LUN8JNlwofYVczETUA78BF6cQkgBhSmHJLorplaOxr7/fIw0kxgGCRSlgoZDd+plc5jZBnHmJVyW1WlTJ36pep4krjs6arYGkXctTSvfMYZDldBhkMLSFTBHxySipMUgSMoR2a1RBC/i+VjZyeToSSbQyZWZhmEK29DQcAyESYSarUNTGWqOjrplIMlIwa4NssHFvi/yYl2Pko7TNhvAzLtVWPzCBQyklHg2CPHh9hgfbI0w9DMwhTq9f+On1s48bjsPhT381uM+nuSy1z0/QcMxcDPvxnraD+AnKR71fOz5Cr50s4PqnET83iRGnArEqUCS7Sutuab2QhP3PBPw4gzLNRumvs/7Z6gqQgg0bANpJqArKr54owUwlncHCjzs+tAUNtc+bg5DRCkpStVt/dz+4yTmaOd7N0wFKlMmk1RdGdKsGFPKsFS38HpOs0AJ3AC7kwhboxBfvt2ZOf/DMC2JpA1NmRlrs3QFnapJ40agO/9GR0PTMRAmYa4ON/uZDFWBa5A/sNqwSz9hZ0SquNO8QcWfd8cxeEY8rncWq1hv2kfaKEtXZ4QUVEVB27UQc1JIbBcqbbp6yAYB+7avXTGJT3OO3xImHPf3fFQtEjyoO9R51vdjtFzzWB9zHHEADKt1B03HPDFRpCoM600Hy3UL45Bjcxji7ZUaolSUYhhZXrB/0g/gRxwxz/CjbyyVHWLLdWtugu0qsTuJ0bDpORzkl7QMKpaUtlOSf3B3uYbH3SD//ggMDFwIrDXtUmWwSI5wIY+leCjXMccP3Z1EGIcpDJVUrherFjpVA5qqYBQmaOV3imOocA/EH5aulqqHe16CpQvSg3jH3AmdiokffXMJP3+/h81hBFtXSUnTSzDwEzhmGwtVExVTg2tqcE1gZxyXe/yyMP0Mq5ZW+t5pJvBsECJKM8QpjdO2XBM32hWMogQx52jkdnraDhiaiuWalXcnX0xVTmFAxdIgJfkxndznjjmJNmgK+c4vm69Z5sryUlLC+43l/X0VpVn+dxJBnEFVGBxTw3rThh9nqNs6FqomnuTiGIVP5xgaajbxFw6DFJ1K9kqMvR+Hc79pKeXvAQDG2CqAfwXAXwKwepGfeVmo2zpeX64iSkmO2tQDSAHcWqzA0gu1G4ZRkMI11bkXvZq35Q/8BJM4RXeigmenU7naGkWk2JBEaLsGGGOQEvju5hg/+ZVbl/pZv3izhX/zR+/iL/zPH+Mrry3gX/rU6qX+/NOCDomKIM7KbppMSDwdhNBUam292XExiTJ86XYLGy0XzSlnfHoMy9JVSBCRo31EoLBct+CaVAV4a+VwhScTsiQVVfKuqUnEwYXM25rpQiG5YQWWtj+7a+kvvtWxYmkYhUR6aR1w0u4sVrHSsGHrKt57PkKUt+Iu1iw864eAlEiyDIaqksqcpRNRtq5iHHJUTlGhPw1MTYGuMaRcHnLEapaOz11vQUqJrZzMWVMYDJ0qxl7EwQXN+YcJtexWLKrkSJkA7OyE4vNg5Y5kOEcW3tJVvLVaw5srVeyMI8RcoOWaJCGbjyY5hoadcYRMSuxM4rylmMaBmo5xKe3PFVND4YPZB1qgGWO4tVDBzY6LQZBiHKZouwZGMSUYNJX28sc7HMMwhamruL/rQUggAFXjX6XRlgLPByESTl1/hU0scL1dwWLNRCYkPn0G/r2qpSFOExodneNQ1G0Dv/bNpVIR5ttPh7kqWgRX17FQo5GVnVGMTEpkIioDWV1hkJBgYEfaoNOvU0eUxrAN5VDi5PZCpQziPtr2wAV1eWmqAtdUsTOOUbe1MujbHke42XFzZSwJngGWcfS5sXQVPS9CmFLAlQlZOoqZEGCMYaN1PPfS3cUKtkYRFmsmmo6BWwsVSIlTjeaeFdaUjWk4lLw4SEpcKIIFyT7PDHWnzI4URGmGZ7lSmKJQQWMYEjH6xzsTfPZaE7auYhSk0FV2KuVdx1BLJa/CBnYqJtou7aWC5yviAg/2PIxCjknMcaPtYo+RMIdrakh5ho+3PdgG2aqqtS/CoKsKrVdcjuT4WTGOKLDdHISYxBlW6hZeX6rgC7dbqFyibUm4yNVdNVi6ciiJREl2QFNU6KqCUZSiausQQiATKBNkdVuHn5PM120dQd59eDDZAVDST0h5JTay8Bnpfe7fExstG81Yh62ruLdHnQFc0GjY5jCCH3OwFPnoaTRjHzNBXZ5RSkTBF+FHqZgadhkFt+6BrmzH1PBr31pCygWGYYrngxAplxgEaSmwEXMKjlcbVv7/FGxLSaMxBdn3vD1raioMjRI8xbNpuQaajj63kLKYd2zqefeEZSgYhcDWOICqOHBMDTcXqHhjaEqerGIY+AkYGLyIOkNarnGqRJ6qICcHnh2fKpToDtogN0/cZ/KwL1QgExJ2zm1UFCY286BzMw3nJqYKv9XUFAQJKbVWrNP5HHrOe9ewDSSZgGvpMwGoqjC0XAOZoJGeUZBiaxTiZmc+99dx1AiXhaqlwYv43PHUuq3jh+52ANA+fNwLYGkqUi4AJuFHWZ64SiFBHTEbuTCQpgJxKk8dgFu6ikwk0FTyQzMhsTmMoDKGiGWIUpEr9dHEhqVrWGmYWKpaANjc31OzdAyDs1PAzIMxdd8Xv2ua7H6hauFHXlvAo5zc39IVPOr50DWGh3t+ycdYxEEHJx4uA0UihDE5I84x8BNMohRZJjEIElQtHe+s1rHnx3BNB4wBry9VEPFZFezpvXFRUSpbV7FcM7HWsFG3989d10swiTiEkCUdzMsEY2zf3h+wW9sj4iBNswxhSjQj12wtj3Wo67OSq7XzbFaUpGIefc5eRZx7dzLG/jUAPwzgEwC6AP4iqGvqpSPJBIKEY2ccQwgBTVGgaQpaU0ovH+1McvI6aisvgvkC5Py68KoGHvfDM6lc0egYJb0Kgx+klBS5KPH5PPzbP3oHX/14D//+33oXn9lovDSJ+JttB1zscwCoCoOuMIxDjsWaituLVXy4PcEwn4cuElMPuz68A8TAmZBgmP/MVYWhZuuoWFT1Okj8XaiL6BrDnQWas73RccEzAT/O8KQfQFHooG8OI8RZhk+tN3B3qVK23RdV66qllZWF86i2nBYt10A1l7o9+CsKuc+hn+BpP0DV1tFWKWArnrUQEjHPqCuCEaFnM6/QJZxRpfaCiR9NVfDaIkmrzgvibIOchsddHxHPUGnmjqPKYBlUhdUMpRx9aecE6tsj4swaRxefJVcVhpW6hYddH7tjen+mpmJ3QkZ9uW7B0lX4SYbtYYTvPBvi9kIFNzoOJEgx7PaCS2NfuoKKqWEc8jzovRyDbhs0srI5DPGoF6BiabjZcRGlxIFk6SQfzoXA3iTGd54Nsd50cL3twFAVpJnEa0suKqYKVVFQd3QM/JQkcV9BbqlJlOKXnw7RD1J8aqM+RVAuy8TIWsOBqp6OALjASt1Gp2LmKm9s7vkUUuacAtRNxwU5SLarUEs+JHpejEGQlkSjBXGpkMDNto36Bfk2lusW2hVj7plhjJIqXS9Cz4/BwLBSp5aaiqlhbHCkOc/h3iTGKFSh5XscYOAig6ke/cwYo07h95+PECQcX7zRKhW0ng9D2LoGJ5faPogwyZBkAtc7Ltaa+xLnbyzXSmW5y8a0jdlXTZrz3ED7J5MSCtjchPG0UljTMcoE4AfbYwQxcck5uoJnwwgbTftUSndFp8XBz88YgwIJ5OIPFVODrauIUvI/eCbhGCpargFLV/HRzgSjMMX9bgTX0PB8SAnHO4uVXE2nCp6dPrC6LMQ8w9cedPEP3tuGAMMn12t4Z62O15aqqNmX20WssP3Av2Zrh2w/YwyLVeoA4YIq7T0vxi8+7CPhAp+/0Sw7GR1DxVLNRMXSKfHP2CEH3Is5Hu5R1w4pWl3u5yl8xjQTMKbsGCXfaLRid0yjZ50Kdcz0vASZUPDB9gSmps50vBYk+gqj5FbVmp/EOS0cQ8ObucLrdMKhsJumpkII6uizDeJ82RwGSDPiibTzLpBHvQCOQQINnYqJe7tEur1UM1G15ncdqgrD3TyRU5xrKSW8mIMxNjd4n04eLlYtaEzBw66Hp8MQtzuV8nv6PnFwAsDNjoMPtj3seTEYk3lniFEm0Y6CwhjeWKbusKOSMaOAxi+Lz3dcAVNK+t26qqDtmmUnUsU8OjGwO4mwM6IChsIYTFXBIEjQ9+JTFUeKhH3DSWBrKpiCsuAKkD3/cGuCIMpgGQocU8PzQYhMSNyeErggRVuiNliqm6fm8DoPOhUTdVuf6/cCtA+DhGNnRN1LmkpJO5WRT5nkamRP+wH8OCvvMikZUsFPHIEsYOo04q+qCqSUeNj1sTkM4RgqCSzopIRmqAoyKTAOUygAFirWoSQvQM9wo+VgqSYuJRFQKLFykYGB7pji3BUiEU8GIYJEoG5T0vTbT0fwY4715v7ev952kGZXw7G0WLXg6hoeD3zc2/VK0nJNVfC4F2AQxLjWcnLqFAN7foznwwCGquDOonuoWNCpmKhZGjRFuXAnk64quNZycLPtQNeU0uYpDPjaoz4iToqjLzsxBVCx8ukgwChMS9GIZ4Ow7DpLMoHlmgnXVHGz4+I7+UhfJiTWGzaNwh8wLwtVE3Vbywuar95ExUFcJG36nwG4D+C/AvBPpZSPLmNBlwEvSvHhtocwydD3Ery2XIWmUMKqYLVPM2Ksv7/nYXccY7Fm4q0DZLiF7GLFUtFyTNTm8BjNw0bLwWItm8l4BjEZlE9fAvH5QWiqgj//2z+D//Wf/+f4d/7Gt/HXf/IHXyjzfsIFHnRJqelGxwVjKAPsWwsuLF3NuwYyDIMEm8MITAFuLVTgGpTJBYjEb6VOaiyjIEXN1hEk2SFHx9RUKAyQUsHDboA3lqszhqsg6E65nCF701QFdUfBGybJpf/iwz52JhEqloZxlM4k9D7cJi6FRj4qtpVzGsxTo7sskAQtOQSrDWum1daLUvx/39tClklkEvjCjSYSvl+ZWG6a4BklBXteApWxkgA4E8SXdhmjN4rC0J3E2BnFpWGcTjR89d4eHnV9GJqCN1er0FQFXJDCSMXScHexig+2JcZhiklM3UD02RWML4HkEKAAhIGVXGWMMYyDFJqqQIICQJ6RU5wJavce+An6QYrngwBVW4Oja7jWdtB0DFQtHZrCLrXNV1EYvJz/oOfFUBglcKRkpXpfQQKdCbJdfsKxlRNdppmEAmpTX286WKyKXPXn1bt0RvnI01KepARIYWsUpuhUDTzr+9jzQtqnR3BGHIViTxdqbdNBiB9zPNgjToZxmFL1XVNhaZTQSzOBTFJSuGZTdXkUUjCYCVLc4ZfEN6fnfCmPuj40leFWZ1917nHPx/ubY+yMI7y+tE+imgoJNT9b19sOhCSRhgd7PlxTpXZtTcU4So90qHpejB0vIh6H7Ql+/n4fP/xaB3cWK/BjUngrEl/TiNJ9+eaDilO0vqvbZ4rCoJzw8x/1AoRJBl1jMyM50yjUguJUoJbza9UsDXpe2NiZRHiw58PSyfY0KwautU4m9T7q82+PI3y846HnJXhzpVqqCTIGfP1RP09AJrjWckobH3EKpvw4Q5RmJSmtrip40Tlmngn83W9v4h9/dxtezLHRdNCpWnhnrXElCW9NVUoVoaNIiA1NwevLVTzLHfWPdimpKCDw9Ud9PHQNDIIUa00bg4Cebacyf/RpmjvosvnRAJT+ZMJJJbg4k2kmSh40W1fxpBfANTXsjKlTU0oaW7rWdGaC3FGQkgqYqlDi/pJk06dRKN81HBoDKc48zwS8iENhelng0VQVN9ouHvV8OIaGQU6kPfCpCyLmAgvH7JPpc/18EODbT4aIeIbXlmq43jlZ4ZNLeq5hmqFT3U8qTr/Lnk8BmqEpmIRZ6dut4mSf7SifWUoSABgGKZqOgbtL1DH6YM+HBCV1Dp6PNJNou0aejN7/XNfbDpLscDcEsO+3homAwgAv4RgGPA/qj+eoSnPqkUmcIkqou+fOYmXmHPhJinc3R4h5hus1G2+uVOHFHI/7ARxTK/3aoku8WNPixSlxj4WuKqWCtqUruNXZX7cfc3ztYQ/393ws1UxYmg3HoFFuNU8s3Oi4+V1OCbUbbVKjszR6981TJKAnEaeimCRqgWeDECt1C4aqoF0hAS3GAEUheoUsi/Du5hCThOMHbrZmkiqFAu/Be/MiSLhAwgW8mJejZ9PCXLqi4FHXA88AnhlYawrcXazATzg2Wg62RxEkJJaqFsI0w0c7AQxNwa3O5aq0qSr5r1GSwdQVdComVMaw3rBhaAoykXMET2IEMUd3kuBmx8FHOx5aroHFqlX6RUGyr2x4a+F8yoYF0owSxQLAo66HSUTTBaZOFC4MmMs//DKQCkExMgMYGNJMYhSSYIprKlAYJa6FpOksKYmn9dZCBY/7AYKUxvwWq2YZmxXF1oOKx68qzr06KWUHwO8DYAH4PzPGfokxdm4lvctCwqnLIObEq1F39DyLPlvJud520XR1KEzB9jjCNx4PSmJFAPksaqH4RD/nqExjJiS2R9EM6aKpqTP/PkgyXG87lxJ4de9ltgABAABJREFUz8NGy8H/6V9+B19/PMBf/Kf3ruR3HAU/5kg5OVjjMMX2KMLAT7E1jKApKlouKYBoCsNKw0LN0bBSt5BlEkJKjCIie3MNmo1+0vMxDBN4MS9VQqbBGGAbGlSFQUiJhGfYzYnDAaBTJfLUmj2fs0hXiV/GzbsFVuvWTFUoSjP0/QQDn9R0/ITjg+0xtoYh7u1MLoWMbx5ivu8QDMNZkrqngwBxSvxJtqHC0jVEaQYuRE7STR0jMc8wChM8HwSIeZaTe2qoXGA++yAKMnU/zmaC2r6fYBSl8JMMmQTqpoFRkFIXWj5m0fNJgn6Yj6k96QdoOBpMXbm00aCmY8A2FKgKcXdNIo5RvjeKKmfLNVC3Naw1LPBMYm8Sw49TJFxidxyVVViRO7lZToY9uMTLq7iE00xgHHL0c6daVWicp+FQV+BCVc+dtxRhkmESpej7MQYBx+6EggNDU6CwvOo6jq6cwF9Kia1ROJfs9iA6FRPLdRPtiolbCzQWUajpDYMUo5BjEPCc6+l8z7ew1dMOfJFU2p3E8JMMXS8h8YnlKnSNKpBRSsGLn3CoCsOTXgAvTvG0H0DXLlcFbVrRbZqYf28SE8lukpEalkFcCFkmkGbkZARJhrZroOeRQ/eg66FiqrB05RAZ9DQGQYqqQWPCmsLQ9SLc3/Xw8c4E11o26i4lXbdGs2TRmZClfPNV2buLoBDF4Jk8RHIdJlmpUGSoCpKMxhi9mEjmG44ByyAut+Wqga1hhHGcliMH5wXPZPn9k4hDgjiDtkcxgiTDLz8b4P7uhFRVMwEuJN5Zq2GxasExFUjQ6M+LhhASH2yN8Le//RzfeT7KOQEZFmoWvnijdaVdmJZOHQ5HJf2FkOj5MSZ50N52TLRcHSmXiJIMH+UCEj0vwSgnwN87QH69M47wtE9dPkt1EwtV80r8sCDhiFMaxR1N3d+FPzTMBUAqlpYnhAWutx1UbA1NR89tPylMCiHBM4GdUYStYQiGq7HnxYhwQfotJZBkGa03SvC9rTEySd3W19sOluoWrrcdjKMUPPd7nw9DCCFK/qrT4EHXx9N+iA+2JhiGMbIpP0JKIpvu+wmJCfQCRGmGhm2gautYrM3Kx3cq9E6X6mapltn3E6zUTRja6VX7jkLXS7A9itGdJBiHKYQgW74zjrA1jPCk7+NZP8DzQVgKVRiagsU6FRdX6vsFz6Izbf74InXmNF0dtxdpxHuhaqDrJQjT423w5jDERzsTfOPRAFvDAB/vTmbiGQBQmIKOa6BpG1iru1ht2JQMk0BvEpeE2KamounqMLTL88lOwjC/G8NEIJoi9/Yijp6fIuIZgkSg6erU2a4y4vurGhiFCQxdQc9PEKUcH26PYWqsTIycBm2XfEYuRCl4MggSqCoV+xSFhH9MTSFutJTG+4Y+7YkC2ZQC72USTVu6gpgLDPwEm6MQmaRi2729CSBpbcv1PLZq2DA1BZZBsVea+7fdSYKuH5d+SJyerPZ4Vqi5qMzzUYgop8AYRymYAhgqFYZWGxbMfDyvYmtI8hG/gZ/OEKePQ1Iq5llBv3J+pJnI+d1SdHPS/2GQom7p2Mj9oDuLxxelJlGKxz1/xrZfBQr6ga4Xw9IZ7u9NyJ/xI6w1HNxacNGqGLjWcsAziheargFVYYg4idPsjuOZdY6jtFQ8flnK82fBRUb5agCuAbgO4AaAOoCX7sE+6QcYRxx128AbyxZuL7gl0VkmKBGiqzSiQ221Kb71ZARbV7E1DNHOZ9IZY1iomhjk5KTHYXcSoTuhC8nUlLn8Ba6p4nf9wLXL/8BT+E2fXsPPfLSHv/A/f4zPX2/l89lXj6qlwTZIOaXlGqVBZoxa5rmgCpGmKlhvOPnFTMoVT/oB9sYJhJTYmUQYRxyTKANjpKB2VDZ/vWmTtLSlYc/bJ0t/bbkCx9Dw2onKhzSq9fpyFa8vVQ/9nqUatRgv1y08G9Ao58d7E7yzVsfWMDqSbPgiMDVK3vgJLwl2C7iGjjeX6/DiFF+61YafcOyMIzDGSu4sgOba+16KcUSB+OeuNy+dpLhTMbE9jlAxtZnMu64puNZ0YesqbnUqaLoG3n02QpYHjgWZs66SId0dx9ibxFio1rDRujwHyNJV3FmsIuYZPt6hCvDdRVqPY2jguXSspWugR8OQSQkLwLW2g4Ef55wv+87j1jAqDT0lBi8erBUEwI+6Sl5hs3CtSa3GukoVMICVIzQMrKzQbo8iJBnZsmKdhUoRQGfvKlvwxyEvbZ6msnIEdx4sXcWXbs/aok7VyIkYTYRpCktTYCgMwTkV8ApbPZ2kKc5vmrf7cyHwxnINlqGWlaan/RCqwtCwDUzCFAoDdiYxqoaWcxFe3tlpOiQrXiiFFrjeceDFGVbrNt5craHpGhj4MbpegphLjEPiLGw49Hme9kMMfY61hnPscweIW+HT11qoOTqyjM7uN54MYKgqNkcRPrXewJhzxJMEtr4/0uea5EAmmcDCOYL4NBNQjhmLOQ+m7+9rLQf9IEHdPlww2hyFCGJSp5kWQ1iq0+dYqFpYqpmwDRXffjqAZAyOocGPL9ZVuly34EUVjKMUy3ULusqQcBrlKEZMdJXOepiS2IWUwI3OfjfMIEgvnZT2JPS8GF/9uIthyOHHHBttG28s1/CVuwtYvKSK/3mxNY7Q9xLwTKDmaGi7Nj7jNHF/18PXH/eRZgIt18CbK7UpcuD9/eDFnGTmQYT6t09BhHxeuIaGiqUh5hlaU3aouCMbto5rLQdBkkFClmI6UhL5+DhK4UW8LE4lUyOB45ijdsGR4nlYqJq5Aq2BiqVjtWEhSDgVSyKOpmvANVQwkE0QUqLvqTBUNSdkTqApCuqOceTYqQR1NU3b0qqpIRXEN6UqVIQp0PMTbA0jxDzLOal0CEnd+POIrBWFlaNyfpwBOR3D9SO4k84KVWHouAYgyYbYBn32ICFumkc9H4aiIkwzrDfJZ61MdSCdFjVLn+kau7tUxVrTxkfbE6jKYbskBI2pG5qCNE/OAkRTUrdNfLzrYaFqlqTRVUvDZ643EKYCdxcqcEwNry1X0fcSKApmRs3Xmy+WDqRdMRCl1D06PbbYdA0s1kw0HB3X2w7Wmw6eDShxZKgKHu4F+XgScKPt4sPtMSipDrxxBvVzK/dZv/10iGFIohudqoGUU9d9JgUsTcPjXoDXlir47I0mHu75NKo5Za/V/x95/x1kWZbndYKfq+XTz7V76MzIyKwUVZVV1V3dXUADjR4WGliDpaGZYYBlbNiBsVnY3dkdG7GzM8zYsruwiGYQi1oYQy3KEE03DV1ddJeuykoZOsK1P/3e1fee/ePc91yEu4dHhEdkNvMzK8sQFf7Ou/eI3/n9vkJVaPpmif4/v/WqKAorDYfNYUSYFHy4NaYXJiAUPtwe84MvtbncltpCcxXpUP3yQoVCSE3Ju7EUi5+aCkwSiRDzzrFhDRDEmWyuGTpJXpQNdQkWaXkmhia15rwS9bZYs/FMnQc9Kdh90JSs7hoMI5mTPasmlqooeLaGb6os1V25t7kmlqHxhSutM/2MB91wVnisrTy7mdRJoZXU5qqjE2cFX7/XZxjuS014pj6rMSzVbXRNYbkuNfmCWLqqwmEZnGnuqSrKc9EXO+94lhH+7IH//SkhxMPzGdLTh9yoZULc8gxemvdplptGnOXc2plQCHEIZn1jqYYQCnGWz1A40zirS8XBf3NSIt72LX7fl64+y9c7U/xXv/FTvLsx5A/8ta/zt37/9/Ha8vNbQNOYQvKnsVjT8Cxt5phkHgDmqarCQlUmP1EqO3GaqrDRkzDetm8yVzER4vTD0Tb2nd0GBwphj4s0y9kYRGUxp+DlhUddEm1DY6luk6SCpbrN7b2Cti/FmZuuhf4c+Nly/MqJBa/VhkPdkw6Dein2ea8bIIBPLVXJSlHjpZpDmheMS2FIhcMJzHlEwzOPhUdXbYNXlipcSl2MUkByaxgxiXOWahaGLeHHDU8Kn6tIet80eUyy4ljK3MHE9uDl9HFh6RrX5n1ZmFCU2YUlzoqZSOSVtiu7YiistqXNfFYm5VLoWP4brXznisKJWjRxlmPpGkIIkrw4M/T4QtNlnGQYqkJaCKzy5z/sSfpHzZHORGkuWKo5rDVdXl6o0A9STF2dXQi0A/PyqMPNeYepq/tit08BsV6qOYeKKhcbHt0wQTwl0uukvVqiI0y+sz5AEQp3uxNemq9gG9JpR9eUGTJoSqcJkgLHlALF5ykA65RoraOxUHXwLalBI8cjeNiPuNcJsAxZNMsLqQtxpe0TpfJCp5S0mNOKQBdbHuM44+qcR1winya3slL7aF83baqtdzAeVyCZXmB9yzj02YNAIiE1VZlpJj1rHDy/V0paQMXWj9UQsXSVoDQKOKil4Zk6l+dkYXpa0PrUcp26YxEkGZdL2vlJ+9DjwtBUbixL/alRnPHB1oggyWl7JtfmfVqeSVYIFms2gyClKEXulQO0QGW2R+Wl4O3zpeZO4pR3twbsjGOKQvDZiw2+/2qrpLe+WGfa42L6CvSSzjZtCCzXLea6FpdaHhdaskDr23pZwD1QFCovrQ+6Ib6pY5vaiQUDIaT709OacKiqMnMUPBgLVRv3gJB3tURhRmlOmEqK8QfdIXFWIHxBw5M5Rt0xmK+UlzlNpSjEubtGzVWsQ6iYlm/RwqLumIRJF1NX2RrExJngcttDLynQuqqwVLUoCnkWT8+g49ZOlOa8vzXictuTxa1C6u+8tlzFtXQuttzD5gblf3VVpSiX91HX0JPiYtOl6ZkYmlLSvZ7t+YBsICVZQVIUhEnB3ihGAdYakpaX5YIoy2d74Hm+ItfcF1mfRlbKkLy3OSQrNYYuNF32xgm5EOWeLvOdg7mKoam8vCBpz1N0/XLNLnU41Rcq/3E0qrZBdenRhr6pq3z+cpMwyVFVhQddSbPrTqRekWOqRInMDS+2XPphgqHu76ln3UeTrEBFzrPVhoOuKSxWbTYHEaoCmqqxOZAUOl2FuapNw5V6gUeblCt157nIfazUHe7sjFFUhUGYsD2IEMhiaZLlWLpK299/htNz1zY0rs57CLEv7H8S/f1ZQwDLdeko3Pat0lRG0J0kjKNcGs4Uko57MF+zTZ84Kw4VZm1DOwPA4GyhqQq+qfPaUpWFqs1K48nnum2oM5ON5xlrTZfdkTS9eVi6beeiIM5ybu9N6AYJ1+Z8NFUhTHNavjnL3dzyjNOUw4L85/ksX0Q8iyvfGwCKolTgOeGMzxhxVrDel+J33XHCzjBkexTz/taIL1xu8sZagygpZvD/UbyvyaGpCp9aqTJJcmz9+A1sEKTomrS5z4pHL8XzFRtL1zA05ZksLc8jfEvnL/+ez/Ob//SX+fG/9FX+7v/2ix+LGPq0ojsVEhzHGYs1G01R6IwTgkQe5BdbDm+t1iRlTxF8tD0myguWazadSXwm1MdK3cEtUSzTBZqVlzVVVWZdrTjNudMJWO8FLFVtLrZ9ydnuh3iWNrsoD4KUzb60Jd4eRSzWbBaqNq8sVkhzcWatsWeJSZyVqB5tZmM6iTO+dqdHxdZZazqsNdxSRNziYS/g1t6YcZTxxWst+mEqCyuKws3dMXFanCvnHeSF+EFXdmLWmm6pi6Ly5Zt7ZLngSttjvmITOzlzFQvP0vm5W3ts9FW+/2qLV5erCORFYrt08rMMlWtz/rGJ7UrDZrMvhdMvNN1jdXWKouA76wOSTHC55dILEuKsAKS45tU5qWmyUndKrQqLuYoUGndLypOqyGQ0zYuZSOJyzcY3JeXwuIt2nMouVts3mSSZdJ87RXR1ZxRxd2+CgoJnacxXLLaDlCiVRZErbY+6W9rP24bUYskKPFObUVYbnixYTC8sVdvg8pxHIcRj9TqeNRxT46UFn6Lg0AF4kkHAKExJ8uLYYkdnGPK1+x2iVPDWM3Sipi5shqaw1nBna397GNEbJ2wNQ0xNOnFebvus9wLe3xqRC8FrSxXaFRvX1HnrQp2HvYBRlPHh9ohr8/65og6TTHYSFWRRUhYnBF+53cFQFV5droCgRIwqrNQdvnxzj/V+wGcuNnhzrUaaCxplR/F+J5jN7YNJci7kdy/K/+6NY16aq/ADV9vsTmKWavLcaqWyiP0kQtuDMOXd9SFbw4ilmiXRQLrKat1hFMv5mRdS4+88ClNhnBNnOZuDkHc3+pi6tJu/1Ha52DpcDFipOzRck81ByM4wLqnE2swcQMwE8SVyU9eUmQDz3jhmsx8dMs442/NIeHdjQNWRujLDMONbD3q4ps69rsKPvLpA27PYHEQkWcFS3UYBqo6E4F/Ane2FU700z9K4Mvf8ED7fvtfhL3/lHv0w5fqCz42VGr/s+vypDo0vOharUudFICmaCrIx8C/e3eFBJ2ChbvPK4tRx6tE9b+pUFpZalVM9y+Piw+0x720Occ9RcH66J+mqwlrTZRCmMyrzw9JBt2JrsxwSJIXv9u4YU5c29L4lpQe6QcJL85VzRSGCbFw96AUzXSSA3XFcUo5jVhvyUjspqYrr/RAV+GU35mlVrNledOIZLmQDY6pp9/N3O3zrXo+aa/LFq20Wj+QkLd8iSnPudySd+qje5sFIsqL8uSqmLhtJiiL1n47bE582dE3BNXTGccb3NobUHIMH3QlpIXhtqUbT03nQl0WMg4XN6fgqthTk3x3HqCUbYxrTe8lx73WjH9IZJzil82qY5NzcGdEZJ2wNIixDIoxcU6fm6AyjjMttl26Qcq0stAOzPS9IchSk3k6UFocMhz4JESZ5KYitsdaURgC6qvLOepdxnCNEwUrDxdBsLpVNly+v7+GaGtfmPN5aqzOKMqq2wXo/pDuWrr3HIe2mMRWdN3WVSy2PMM2pOwYfbA64tTNkoebyfVeaJFmBbWi8vzXi5o7UUf2hkpUihJiJUy/XnXNxbz4avSClH6U86IUYpVaQpsFrSxXudgKyXMiCWokS3x3GNDyTtab7Qu6lO8OI7dKNG0NlbxwRZQWGIs/SQoChSVbTOMpoeAYLVXuG4tmayP1jteGcO308yXM+2B6hqvCjbx9mLgVxJlkqvnUodz2ay15qeQRp/swuzY+LzUFIbyIlZC61PII4x9yB3kSiztJMJ8qkAP/31oekRc4Pv7KAbWjsDCP6Ycqcb71w45TzjGeh8n0K+KtAU/5W2QV+txDinfMa3FmjKARb/RgUgQDivGB3lKAqCt9ZH3B1viK7q6bG7b0xaV4csn4/yRUE9jetXAiJlkAu/KPc6/PUInnWWKzZ/OV///P8lj/zc/yuv/gL/K3f/33PldZzWmwMIr67PqAo5OW04hjSQSCX8N0Pt8ckWU4/TNgZSU2QKMmlOHV0NuFFVVUOJS77bjYKV+c97ncD3nk4ZBgmM1eDj/bGXJyTtIuw5EJPOyBJiSzoThLqwmRvlDBfsV+osPTuSCYOUSoLHK6p8817fT7aka6GX3ppnqWGjW/p1ByDb9yP2RnEbPYiLrYcLrblQRyl+YxCN44zFs5xjP0gnXG/e4F8Rvf2Jry3MWISZ2wNI24sVWn7pqQgdQL6k5RRlKFrKr/y1YXZxj8uec9xWpAWBZZ6YFMtE9veJJ0lceMkO7Ywdb8XcmdXFss2+yECOR9emvclKiUvqLsmbV/ahs+VOk8mUoBzyu92TZUgKbANdeZYc5pjR1F2NAdhOtPdGp/A5Q6SjPc2h3THUiuq5hp8uCNdQxuuLIipqoRuD8OUOd+W9ABNnaFRABquQT9MDyXg52FNfNY4irCZCiweFffuBwk/8+EuQsCnlmtcWzicJH71fo+skM/w1t74qcfTmSRyLQMjR86PvXHM5iDi2w/7bI8irs9XCcui+DjOZ/P3o50JgzCn4RmsNiTdOFRlNzzOnt3R8mD0g4Qg3teSa/sW76wPubk9Zhgn9MOUlxd8qo7OXMWmHyRSh2uSkGQFv+HNZSq2HM8kzhDl+phevqcx1d7pTKTuzmYvIkoKfsnLczP76HudCcNSUP8Vq3rmPS7NC4JUzu+9SSJF+6OUh92Ay3MerqVhqCqVc5iP/SDhfjfgQTegKARFITvGVmk/fzQURWGSZLyzMaTIBZkouLFY43434Nqcz63dMVFasFC1mK/ahwoa08JFmknU41kLUz93s8NH22McU+XNtTqOoWNq0lFKV1U+2h6zWJPCs72JdKVdabgz6+qDe8t035jE+XNzgv3Ogz5/8Sv3eH9zhKUpbDkGv/yG84kqSoF8l1XH4IOtEZulIKxnaWwNYraGMWlRcGcv4K0Lh/OxKM1n4tRX2v5MF2nOPzkP2htHZQHl/HRXuuWeBHC/O2Ec5eyNpxonGXlRsDeRKCHHUNkby7UepRlrLY+aLfUjQcg5mRXnfuEYRRnDMJs1mtq+xbubA4ZhSpgUNDyL5bpL0zX5mY92ZhSmrUF0qHA61dY5eoZrqkRGNzyTtCj4cGvEw15EL8j4/ivHz+8wzdkexTODh5MKU7f3xjN9sctz3szU4aQ98Wmj7hiMI/m+LE1lEMZ8b2M4c4Fs+g0MVTq9dstcaDq+NJPumhVbZ2co6aamJt10g0QadABcmfMeKSBM94IwKRDAtx/2y4KUbJBZutSk2h1JZ9ntYUxeFMxXbAZhhijF9acmT5koqFhSqN639E+c3szeOCZMCkIKGrFBxTa4353wnfU+24OElm/QrtisNVwqjsFHOyPSXHBzd4JtdPjitfZMemW6l0sDmZORz9P/X5JJA5m2b7E9jPjy7S5FAZoaUxRwdd7nQXfCnd0JO6OYtm+yUrd5ebFKmO5TxndH8XMpTI2jjCQryDJBqkhXvpZv8v72GMq5nhVyjxiGKb0gxeoHWMaz66ydJUblXFIUBU1R6AXSRbzumjRKA4CiEAiRlpItCfc6AcslsCAo98nOJDl3xFmSFSio3NsLCZIU35bnXJjk/NQHO6SZ4KUFn0+VjdHjcllVPblOcJ4xXfNBnM+QTzujhHt7E/bGKb/5Myt4psYHm0Pe2xwCMF8Z8JkLDbbL/WV7FJ1J9P+TGs+Sbf8E8EeEEBeFEBeA/7T8s48lKo7OYtWm7Zu8vFBhuW5TdXSWa24pXieFbD1TJ0zymUjhuESmRCeIwO2LrBZE5cJ5FoHUFxUvL1T4S7/n82wPI37n//TzH5vjQJ6L2SZdsQ0UJDXFNJTZQTBJ5H99S8M3NRarFisNd4bukUK8ZwfljSOZmOSFdDWTQn9ZKbytoGkqb67UsfX9i5NlqLNOV8szaVdkp6Fq67iW9sLdzqY8YLMUCRwEKZmQKDDb0PAdKSZftXV5uS3F75q+SXbgUdmGRrsi9R/mfOtcRbF9S1pGK4r8dZoX9KNEQl0VWThRgKqtEyU5VdeQFsamStU2ZmsLJN3BMeVYtWMSVcuQzh5118C1tBl//+jc8EyN6V3SMaf6HTLBmeqGaapC3ZXinrujaLaeD8Ll+6XYblQm2Y8L2R0WrDScUr9Gnc3fokQ1zf6/iuy+KgolCrPAN3Uqtk7dNWYIR9+Uc2+SZDNjhezAWEZlAl4UzA71FxV5XvDB1pB7ncnszwYniHtPkpyigDQrGITxIz/r+y63aDg68xWLX/Ha05dOp/NRU/dhzJqqMIpSiVKp2igIVht22WVXMHUF19rXtZheruYqFq4lTTM8U6Js8nNaO145TlVlP9Epjd6yrKDlG2WzxGAUpzRcA12Ve1TLN0sEoIyWJ22D5dl2/AVsoWqhKyq+rSEU6c50vzshSfMZBbgfpMRPIITadE2uznss1S1emvNxLJUwzXFMjX6QMlexuNByz4V61A9SFEUaZyzXHSqOzpU5jyttj9WGS5TmdMYxSZrPkGFRmuOUhVHXkM9YUxXSQhb7AYZR9sj+MV9qTzXLZsCThKJIwf2LTZe6a/B9V5o4hoZd6i/momAUSTdS29CJ02LWBIH9vWypZuOYKos1+9yLUpv9kG/c7fLOeo+WZ+GXe84nDSl1MIrycj2KJepSUxXaFQPP1rjU9nCPuSz0AomQlILVCfNVm2vzlUMFwCQrZg7AeSF4ab5C0ze41D4/hLmkqsu5Z+oqg1CKoOuKStM3sHSVumNgqioFoCiCOMtwLZ2GI8+s5YYzm5OOqT1ynjxrOKZGnOXslWgekBpQQZLT8HVqjnQiniQ5VcvAsVQ8S3sECblYk2d4yzfQD1DJTV3lctvD0GQuU7F1fFNjvmIyd8KFuVpqPBq6cgih0BnHvL85pDOOidN8luMVQkhKXZrP9sSqo89ok88auqZyqe3x5lqdpbqDb+m0fBNVkQ1Wz9KI0oz73QmTaFoQkkWCvBCzwsgMHaXtN+SmRbTjGlkyL1JZKGmTtq7iGBpVW2e1YXOhJSnxU0SWqu6bMNiGlD5Icrnn5UIipgxNnYl9nyeC/jximvcaujIrKA6jlCIHVRUsVx0arkGaF2wNQlYaDiDwy/d9MA9aLPfRqbbgcXeIohAzdEnLN2efOYpSlspns1CzCNOMfpDgWTprLRddk/vSVHfU0vfXw3lr+EzX+1zF4lLbo+kZ+Hp5nqOgCCl6LZAyGbqmYJcIO9fUOUP6ei5jnObwizWbtaZDw9UxdJU4yynTY2qugWnI/Nu1pcZzL0gwSpH56V3ivMOzdGqOxqvLFTxrf08I04woKSiEOCRiPxULP5jLxmnO+5tD1vvhuY9vGllesFR1ZvNWUSTqN84KfNug6UlAze29CYIC15JGBbYh0aJTV9fj0MO/mOJZZoAnhPjp6W+EEP9KUZTHey0/h7ANbQYdvrkzQlc1XlnwKVBKukvB+1sT7u5OuNsJaPkmay0HIQR39yazQ2HKwRRCsN4PSXPBYsVCVRR0VSHKCoI4+9gFQc8an73Y4C/87s/x43/pF/ixv/Dz/I3/8PteOLJrqW6jqrIT0vBMGq7BIJQibALJc685Onf3JuyOI9YaDp+73JpxoKeINRTZUfStx4+/6ZnlASzpTZ6l89PvbzOMcraHCRdbLp1xwptrdVq+pKEc1EVQVWWmgTPVU5iOZRLnLFSloOQoStkZSSvl8+5ItEpNK7lxx2z2Y5ZrNlbp1pbkkp7zMx/s0vJMri34/MhrC6S5YLmEZheFnMdZIWj7Jve7x1N+njYcU+OleZ+NQURnnJAVBYYqLwufXqujaSqdScxPf7BLlEgHoh++Ps8kyWi41gyNsDOSml8LVYvuJOG9zdEMuTKNNBdomnqIljqdG46pcXXOKw0LbL708hxFIXAtXVIiyqRy9nnDiC/f7HB7b0zTNWj5Fm+u1VmtOxRCoCALFjtD2fk6i1aUvCgoFAXMV+3ZHnFQG+dS28O3dGxD41MrNa7MeVRtnfV+NBNDbpZdjjiVnZyb22MMAy41Zdf/+kKFvEy0pv9WU87XPe4s8b3NIbd2JF3CNqSZwTBKKYQsRB9MzpaqNjVXZ2sQoWvaI1opnq3z+mqDNC9YeIZ1VHMMvMUKatmtG4SyQFJzDFabDve6ATeWqvSDlF4Q8KAnbdvfXK0hkBTeabfV0FQMVZ3R0e51AvJSG+VZn7VnSXOGzX7I7ihmsSpdaq7Oe1xuuSxWXYZRwj/89jpRWvD5yw1+/ZvLPOyF+JY+oxpNaYqqopDmBR9sjw+tG1uXNOC8EGw5MYMwYc63uNuRFLeGZ/D2pcZMO+NhPzyzDoGqKlxq+Vi6RpwWrDVdmq5FL0wYRRn39oJzow63fFNSclPpirTScDE1lWsLFRTgva0hRSGTTMfQ6Uzi0sAEFus2V9seZnkh1jVZ3JvEGYam8O7G8BAqcqrp8qTx9qUGdcdgrmLhWDqT0k1MVVS2BiGOrrJdvuulmkRpqaoyo2tPBWD1knr2PIpEgzDlp97f4V99sM0oylhrOPzYFy7ypZfbKIr6iRVFtXSN5brN/e6ELC9wdI3Xl+t8+kKDumPiHzPu3jjhw60xoyglLwq8EtlyMDb6YenYOsE1NHxb5wevzZ1rE0oIqU1Sd6RTcF66181XbFabDoam8vO393hnY0jdkcWYKZ34QnM/nZ7Oyc445uv3ejNtuGeJaWFORcHUpL14IWRRvkCQFILtQUR3HPPzQULdkZeiL12bkxchReH27pjlujND615qudzandAZD1ltOI907ftBwkLFQV2Wepq745gwzR9hIMxXbX74lfkyP5T77c3tEX//mxvkCOZ9k0+t1JmrWFyd8wmSlKpjlM0J5ZkpsIMwpVOKwh/8DooiGRM7o4ilmvzer6/UyfKCO3tjupMUU5M6YlO9unGccaFVI8vlWeJZ2qyJ0HDNGWKnccyarznG7PsrCgzCDNtQqTgGt7YnQFw6/znUHYObO2N2xzHbw4iv3evy3YcDXl2pljo0Cobm4NsGbd987vp1TxN1V4rtbw1iNvohNcdAReXags9KYvPSQpW9ccI76wOitOAHr7X4DW8tS/q1ps6e1bRZMaVuv7sxxDHlPj/93lO0mqLI5xym0vG4YkvnRyHgjbU6hqrwt7++TpIVXClReYUQWLqGZWj0goRRmOGaKpdbLuY5Ub2yXPDuxoBJkuGaOlfaPm+s1lGAn/lwl+1RwmrTBaWQUia6bGS2PZN+KPVHF6sO88/ZWXEUZfzke9t87lLz0Nk5X7XJBWz0I97fGqEqUtPy17y+hG/pPOwFFKUzu2/peJb+3AAUtq7x6kqVqy0fIfb1iItC0h+TLOf64v7YG67JMMwYRSl74xhdU/hga8SDrixK/fAr86cyKJ4mkrzgpz/YxTFUPn+5hamrbPRDxlHOS/M+d/cm1FyDh92Q9b5E3b59sY5nyYLV7d0xLc9kramfu+HVi45nyURuK4ryf0bS+QB+J3Dn2Yf05CG7z1MBZVkV70cZaw2PopD2i51xIl2bPJO2b2Jq0q53ZxhRCLh0QHR6FGf0JtIhZW8c8fpK/blaJj/P+P6rLf7cj32W//CvfI0f/0u/wF/9D77wQuk+U90hTVHpB7LjWZRdemlBLC/rWwNpg745iNkaRLPC1LSKvd4NmauahMnjy//SlW1/k1FRqNgGnUnM/W7E1TmPhmfODrHTNFCmCzzO8pnjWSGkM9p26ZARxPkswZgk2blY7AohZrDMII1Km2GdV5el+PX9TsB313vc7wdM4pR2xeL1lfqhC/8oymbw4nGUAlLoeRRl5zaf+2F6QLdDoCoKy3WH64sVwjQn2yz41oM+QSwTqjfX6lw4oAkjLbHl99zMQ+Jy/Q7DDBr7n1MUPALHns6NMMkPiY0fvNS9eoz4/yiS1tijKJtZjNccCWtfqe9rV9WeQvz3IAICJC1kpm0XpbO155jaDNVz6RjB3CjLGYUZUZqzOUgYBzlGKWo6X7Fmha+rz1GD5rTIi4K9sSyKZFlBt5xnnvXoxV5VFS40vRmN5ihV8+7eRKIINJW7neCZxjUVyN8oD+6siGj5Fi/NV3AMnZZnEWcFQZLzsCfpvit1hxtL1UPF5X5Z2JqON8v33+F5FAEHoYSzgxTrNnWNCw1Jgbs65/PtB32J5h1I/bvPX25xY6n6yM+Yru/OJKblWQzClNVy3SiK1CG7szchzgpqjskkynh/a4iqKNTcKoWApmvNTAWeJMbxvjOjpsqLZjsxubUjUXTH0eyeJiq2UTYPVB72A+Z8C01RKITcb4SQn7U1iKjYOmFa0PI0JnFBy1fZmySHTECW6w7jOOO7DwelULF0v3kWitRcxZ6hP97fGpJmgp1RhKbKAmfVMdgbJ+yOIkxN2njvjaWuySTOGevZrEMbps/mDnhSjKKU9zYHPCi1jXzH5Jdcn/9EQ/6jVCJ5pB6b3Ce7QUxTsSCD1cbxSbiiKrR8SYuOspytQci1I7oA07MkiDN8U2ccZXy4PTxX0feNflgieSKutD2apdtu1ZF6hromZQhcQ2d7FHOx6XK57Z9oKHFnb8LkAAX5WWJvHDMMMwSCKCtwDJ2KJREP/TChZhvsDSN0XaUzikmygqqj87lLLSbxPgVtexjNdN6irJit+1Hp6ncwkryg6hhUHYM4yxlHGeMoo+YYj+Rhvq3jH7iivLc1ZHcUEecFrqFRCEFe5mKnxSCQKMW2b50575m+tyAJqbuHnT9Fue9cbHlSBkBX2RwGbA/lHaPpW+iqOnM+s3SNvJCNm+n5n+YCU1cwNPXUItowShmGKU3PJC+YNa4mB1gbQZLzoCtdzXxbXu5VYKsfUXPlfvzr3lgCHk+Pmq63imWc+8X7rDFJcvrl2VuUEiordZe5isVizeZrd7t0xzGdccK7ns4bq3VeOtJQ2R3Fs3UyPSfCpDiUJ06ZFVkudXDrjslmEVEp3RGnOp1f/miXO3tj6fTYcnllscqcb83y80GQzpDWvpWfW2EqzQt2xzGTKGetKfXNKpbOw17IOMqY820utz1uLNW4uxeQFQVRCpuDiDQXGKo2o6A9z8gLwSTOuduZPLLeG66Jrijc3B7hOwaLrlnmjjGeqdMo90NDV7nXkXN4vReee6M1zgrSDG7tTciLArXMPydJPts/bGN/r7EN2XT/3saQKC3Y6EekWcHuKMLSVcRzkNVOs6LcD2F3FLHScOkHCeu9EAR84UpLsmci6WI/ilI0RRZKv7cxRAiI0ohXl5+PsP2LjGepUPz7wH8J/F0kEeFfA7/nPAb1LHGxFDxuenXGcS7dixQI04Kmb2HrCqsNl6Zr0J2k1F2TMMkPbcJ26ay1NYyYr1g87IVcnfOeyGnrkxS/9Po8f+p3fIY/+Ne/we/9/3yVv/Tjn39uwmhT2PLBJGOaDEySjHGcglCwDOWQgPVrK1WiNEfTJI93HGf4ltRY2RpELNalcPpBO9GDMY4lLeOkDe2XvjLHT75TMOfbmLrG9YWzC9uCpCRqKuQFM2i5a+qESTLrhD7shTNo+dNGkhWoirxg24bKMEppeSaLNYcozWeHZcWWyU7dNsgK8B39kQPIMlRUVRZ1FmsOg1KPqP6MCUdRCFlc0LVSkyvHUFWuzHlkhcA2pAOREJK25psaeYknnop4TkMKEqtEqexq11WFXnDYalfTFNaaziOJ63Ru+PbJqKYolfphNceYPZ+lmsOFtkThdcYxmqLw0e4E3zK5tTvmteUq1hMmF7qmMlexZuKx06jaOn1LJtHHdURBFj2DOKfq7LubVSyD64s+iiKoBwaGqrLRC6nbJht5hKYptLwXayt/MNq+dMEzVQ3X0hklGUGcU9P2j5Rp8c+zdBaqUrfhOARazTFwDKnPcbH1dNoCB+ekqoClK4zijLprsFKXVAfpbFiUneycNC+wNI3tQfRI0cc19VlXbd636AUpaV480zOfUpenVENRXqxcS6fuShRP1TGI0pyFioVvalRtA11T2R3FjyB1HVObOSOuNR2yUrfvaDRcA1WVa28QJtSc8uyzDSqWzuW2xyBMz7wvRKl0OjI1FQV52ZyeJ66ps1S3ibPiXDu1Es6eM+dbMxTctCBxqe3xweaIlYZDkgkutUzysitqahKNNIkzslzMzpupYHw3SErEx9MXgqJUOiJNL6+mprI7DLky5+PbOpoiKQo116Azks5ZH26PsA1NUo98i6WazdZQdv39cxaqFULQDxI+2h6xVLNm9KA3VqqfeIHU9b6k2qnl88sLWDVdgkSK6qvsu6EejCtzHgiZD0iqlXTsG4YpriWLBfv7gk1nkjAs9QG742fv2k/nxFQI39Ck69nVeY80E4zjlLudAEtXS9qwimc7LNZs2hVzhtw8GotVm71x/EyorjiT57VjaGWDUOHGonT2nVLf1houW/2IharNzjBipe4wiDIUpAmLdHFTyA5INYCk0tccgyjLj92L2p4sgk9Rnt1JgqIwQ6Wf9iwtXWOxbpPlBZ9eq5XnyumIzLwUdpeXtvyR4uRJoatSasIz9UeQRVP35GnBKMuLmWaqoSlcn/epuQZprs0KiA3XIE5zhmHGQs0+kyFEUQjul5f1IMlR1X2kx+srNSq2dD61NLV8jgot3+DqnEdrhohSWG3YM8F9U1dPpSg/7IWl1EmKZ1VemFPf0ZxSIO8RDddhsarNiqJpXrBad/Bs+essl3v40fXiWTr9IEVTFZaqNp1x8kieWHfNsjkkMA2FPOcRbagkK+gF6Uz781LbJSsK5qul4ZWukOaCXpDMZDam/26axz9tKIpCxZLn3FRWYBRJke6LLXl3+tRKlUppenNze8QgSBFlg7hiG48IdU/P7vMsVqmKzC2OmhiANEW625nwylKVYZTSdA02+pF0q/VNLrbdGZLK0uU9wC1zozgrDp2rzxKmrqKp0qgsyQXTGtRcad5gGyqGptCbSLrmtKCnqfJduqYBFZP5qkXNMZ9LHWBa5PZtDb+85xVCSp/oqkbFlrnhp1dqfFcdMQg10qJgZxRhGxphks/Q9AdzzV+M8SyufD3gD53jWM4lPEsnF5Jrfq3mzF6MZ0qb6L1RzEc7Y6JMLoDuJKHi6IcoYqau8spiRWoTZQUPOgH3OhNankW7Yh6iGP1iiV/12iL/99/2Jv/J3/oWf+CvfZ0//7vefmq3pAfdgGGUslg97JaS5gUfbY8ZBCktX1pkT7W95ioWYTfjo90JliZ5sQctgK/O+Vi6yp1d6XYx1XuaQpmDRGqBHXcxHEUpd/ck0qLpmxSFhIYerN4v11x++WuLdMcJZkkHOSmSrGAYpSjIxCZKcwZhhqkrXCp1U6aog4stF9/SKYQgyXMedMMzUSLGccb9TjDTX9BUZSZsPY4zLrZcVIUZP/ygLe0gTLnXCaWriifRM/MHRF23hxFpXrBYtbm+UKEQck4/KZIrKilMAJfaUhC6KAQf7YwZhAmeKfVJFJQZDebggXdrV1IpNE3l5fkqay1npj0RJmVnzta5OueTlAUD4JELuKmph1BQo1KwvumZXF88OdHMcikQOaXqrjVdJlHGO5sDFBQutTwWqxaeZRCmGb0g5sPtMXujmC+9PIf9BJc2o3RDOfjZ3Yl0hDmtI1oUgls7E/JC4Icpl9seUZrxnYcD8hwut/3ZAZNkOZM446t3h6z1HH74+vzsAHvR4VsaD7shkyRjvmpxseVxKxwziiXKyzY07nUDgjhH1xReWaxQOeFSUHdNXlqokOXFrIN2Wqz3Q/pBwlxFUmKmc3Jq9X6x7ZWOfGV3W1WouyZ1V6KzdoYxe+OEpZqDqWmzC9R0Tk73juvlGWDqKrUnpFYd3SP7gRT6HEUZ1xcqUgxUAVHIdeZbOqYuXRZvlS6abd+m7lrYpjZLOAZBKovVpQbSK4v76/uk2BvHLNUcBAKt4fLh9piWb3F1QdIaskLO1UmScbkln90wShkEKQ3PnHX5e5OE7VFEmslE7nLbQ1EhS+W5aqhS0PekS/XTxiBIeH9zxNYg5ErbZW8k9+idYURWyKLchZbL1iDCMRRWm15ZGJfJrXQ5k+iOxVwal5i6gmfqtH3ziVxrR1HKg26IZahcbnms90PudQNsXeWzFxskecHDXsBmX7oLXW5bBKUGTsOTqK/+JJ0ZsCzVpe24pipUngMdtygEP/Gvb/HN+33aFYPFqstv/vQqr69WudD0XtjF82BkuZg1nh4XG72QD7ZHtDyTX/fGcokwk26ZhpCOs70gpWrr3Fiqzi4xlq5xY7nG9cXq7Gy5szdhHGVoqsKNpcpsXwBJnZ+aX6hnfCRTPbOmd9jZ7HvrAzqThOWazdV5n1GUcb8b8MGWLJ42PZN7ncnMMfLavM+nVup0xlI0++DPirOcnaGkq7d9i9WmS7tiHXJ+Oyl2hhG7JR1t6g47pb8bukLV0umMY6qOdOQ8OBcU5J4iXYgNbFPDNnTyomBrKJGJLy9UyIrDzdpp0eZgxGnB+1tDLjY9HHPf/XgSZ9zvTLANnfV+yFrTJUwkncrQFcZRzjBMKQS4lsb1xQotv2wkl6i20wpa0++hqbKAdhoKMckKvrcxYLnmEGU5vSAmSQtuHMgvepOEcSwLA1NETZhIx+AozbnUcnFMnaZvsjuSDlqXSzR0P0joBekTFZ4VRboBppkoWQcKC6VOomcbrDQcPtgasTuKCZKc+arFRj/CKinc7mWdnaF0ld4aRqz3QoIk4621+omoQFNTCZHmIOo5FASOhhBiluMu15yZs/BHOyNGUYpn6lxougghKApQUA6hy+/ujSUSzzGZ922qBxoUB3NKqcUjHXinguaPfFddnaG7i1KLa+psluQFC1VpeNT0TK7M+fQCiTC8uTPmxmJ11uSYIqsFgqIouLUTsDdOZujxKZ3wbicgSDJW68c7Sh8NQ1OoOjrXa5VZwcw2VGxD43Lb59WV6ixfMjWVfpiyO4wJUklLW6has3+X5gXvbw4J0pymK+9mBws+YSIRT7qqcKnUgztrVB2DX3p9XrqextKkpebK9WEbGpdaLt2JzNcutz2+fr9HlBRkRcH1xSr9IOFOSam80HSpOjr3OhMe9EIqls5bF/apE1Eqx6kqMn8/6x126ri4WncOFWsOUvdv7owIkwJTV7m+WKEfJKS5bB42XJ2ff6fD7b0JryxWMLTzXxuGpvKrXls4lM+pSskUUaThi2PobI5ibixVeX9zyL1OSJIL3lipoSiyyT89xzRV4dq8FG6frrspGvJieZ/7pMYTF6YURfmHcDKOTQjx7z3TiJ4xojTn3l7AOEr58nCPq3M+ry5XsQyVzX7Erd0xSS6RJ5M4o+mZZcVXI8vloWtqKvNVmxvLVW7tjjE0hbudANfQz9Wx5UXHb3xrhTgt+N//ne/wv/ub3+RP/vZPH0pG8kLwoBswVzkZ8jwVygXpODMtTHXGMQ96ITvDkEksefVVx5hd1tNcQsXbnkyqWr5JdkDAMy9kR0eiqiQdrmobBGUB4mEvlFbF6aPCcwdFidd7AY4huyW+fRjmv1J3aLrmrBq+PQy5uTOh4RqHKF93OzKB3eiHXGx5UrNEVekHCRVLR9NU9kZJeaGUegIqksKWZALPkp3IjX7IYtU+tjvRmyQzdNUkkfa240TC2reGEQjIKajZJuMDc25rEPGwG3C/G6CrUhD4s5eaM6TOIEx50A1Y74c0PZMvXG5RCMHuKH4ELv+49z0M0xksfxhmzFWkY2GY5mUCpLI71mh5lqTT5AW2KoVUH3QCPtwekmUw51vcWK5y+YDO03o/4GEvpB+kfPpinYtNj17JLz+NWpJkxQzyG6b5I1bxB0MgbWJv70xQSh2mW7tjNnoR/SBGoNDyDKq2yY3FKt980GeuYjFJcnphwpL59M4gG/1ohlB7eaFy4gEqkHD19X7AIEzRSq2m9V7E9jDA0HTmfIMrcz4X5yu8uzGkXTHJc+le8nEVpiZJRpDm6KrC/V6AZ2t8sDXCNlXmy/k0XZePEw2P0ox31geoisJac0SSyUJJ85h5UBT7iIbpRS4tirJQEVMISUmbIvcOrp3NQcit3fFM6+Niw2Whbs8oQuv9kO5EuvhdaXu0yz3ouHd32vo+uEd2yj1yHGd0JzH9QF6Mr+KhoGBoEoHQLi/Gm4OQvVHMOM5xLCly+8ZqHd82ZrbuW4OIOMv53OUmLc9iGCanOjLujhIe9CYYqsqve2OZhaqNbaizn/nB1ohhmNHyTYKySDbt1I/jjBtLVXZHkmJ9vxvQ9Ay2BjnjOCXLpXtMbyLRJpc179yo4nvjmO4kYWsQst4LGYQpQTKSndW8kNp6cxV6k5QLLVdqSKnKbI9Ryg728IjAOMgL3yTJaPpyjQsh6JXInOP0nabveypmHMQ5QZpLnbCS0nGx5WJqWvmupeaerinsjmIcQ2OhZvPyvE/RllD97WHM3iimKGTR6rzpe3kh+GffXed//toD8lxwMXH4kRsLvLHWOFMB+HlFmhfc3ZtwfbFy6neWFJEMx9AQyIuDZWhopZDu/e6kzMcU9jR5+Tza1FBVBbukbUxRu+t9SXtpeSamrs3OxYYnxcU1VXns+Q1yfhaF3IemxZZxnHFrVzYaikJwdd6foRqBWc5ZdQx0TVI3CyFR2LYhDQSSTF6OtocR33nYR1EUFsoCvKoqNF0TtRTSPu383hsnB8YnhfSn+WuaCT7oj6QzaZKXJgsWu6OY3VEkiyilYPtC1abuSGrX7iiWcz/OcU1Z2BpFGUs1WYDvTpJH1lAhBNuDmCDJeGOljq5JQeTvPOzzrQcD2hUT15KX99t7Y4oCtoYhi1WHe50Jq02XB90AU5PUt9WGwyjKZ6Lhp4VaXs6CJD/VITTOpKSAoamlts9I/hvb4M0LDbK8mDn2xlkxu8wGSTZzDlyo2rimVtLIpevvFNEVJDnvbQ3IcilQfZbChKIopX6WHHteCLYGkqIugK1BLF1Vo5TVustq3WGr3IvGUUYvTLizM+bnbnX4zIUau+MUUcCdTsCbq8fnWKsNh5orkTZPi6o57fxO8kLKNCDPxoZnkmSFzO17EY6hkWQCTVUx9X335SQreNALuNedMA5zXEsWOF9brs5yoIe9gM1BRHeS8NZanZWGQ3eS4FnaqSixLJeoKMdQeWdnzM2dMXMVC6Wk+b99qcm7mwMedhU2BxH9MEFTZAHHNvadV0FSxTpjKQNwoSy0SmRsMZO86JROzCfFtPmU5AVhIr/3Us0hK3Pvu50JFcugN0lmjfpCCFqeFMh30xzPNA6ZpKz3Qu53Q9K8KJGhxSHZin6YkOVi5ob+OHr3tGDuHmje7o5iNgYhvYn8/p+92GC14dILUlxDm+VkU2OARlkcnYr+CynTiqIorPcj9kYJe6OES21vtp8Mw5Q0E4BgGKWnNsGmciiFkPesD7fHDIOUL740d+z/f3ofnRoM7Y5i3tkYSLMkWzpga6pCZxw/ByKfDE1VGEwSdE0lTDI+2BrRCWIuNDx2xjGWqmKbGhdbHvMVKY7uGDpRVszW2/R55oUgyiSyOClz0ge9EFOLUVXOjB6F49/384ynySD/x6f9MEVRvgD8CSAHviaE+MOKovxnwG8E7gE/LoRIFUX53wD/EdAFfocQYvhknyT4xv0+wzglTguW6w7tioWqwjiWyefX7na52Pa42PQAQZBk9IKU3kQWR1RV0lXWmi73OhMW6xZN1zyEigDZlZIaNcYjnaJPYvy2z60xijP+63/0Ln/s736XP/6jbxzQ5yrdmQ4cvEfD0FSqjj7TDxiEKeu9kPV+wHzFIsvlpuNZkmayO4rZ6AcESU6cFbyyWNmHLFoSxSa7PhH9MGMYpsxXbLZLQe2p5a+pqcTpYdv2LC/47vqAzUFEzdYxdY1JJIXVPUs/1t3tIHXh9q7sWu4MY5br+1bZU3G8qebKfMXmw+0h/TDlpz/Y5TMX6uxN4rKIkLEkxEwHY7luU5S89c44wdCORyrVXal5VRRgls+/7Zt0xjHGWGEQyQ6DY2qzDut3H/a5uT2hXbUQhWCt6ZAWsug0vZiamso4zmbdplE0tRAWDMLk0Gb0uPdddQw6ZZfQLDsEtiHd/dZ7UgxahfKSqxOnOd+83+M7DwczGoVj6SV1KKFqG7POraVrDMIUVVHoT1J8M57pAsHpxalpnNTR600SdspCnG/Juepb+ow+Yxsq720MEYqk7cZ5jqLAq0tVvvOwj2fpzJ8B9RFnOXf2Jse6njyu2RiWGkeGprJSt/nWgz6WpvLd9QGX2z6+rfHlmyWSytJJcllseWnRJ0zlYbN0RmHpe53JLBk8rxhGKf1JTJgWfN/VNuu9kNudMRrwmbU6cxWbC02XziSmN0n41x/uUvdMrrS9RxxDdkYJQeme2Q3kXF0vhb6PFoXU0lFxbxzjGNLZ0dI15irWLLnaGkZcaXkIRcHQ4J98d4MklZe9OC8YBAmX53y6YYpdXohAwsnHsaSrbPSlIH/VMY69QJ+2vqd75N44xit//lzFYqMXkRdS2L4fSmpBmsuE9Ss3d3lvayjpeBWTum0QpgWjODtQaAFNURhF2QztG6dF6VoHLy34x3bBHEOVzlUa3NodcWNpvwjfK7uCwyilYu+7E05h9XGa8/V7XUDS4lqeySBM2OiHvLMuz8pLLW8mmh4m0pHqWVxhbu6MZJMizukFCd9+0GMcpVi6zkuLPkIoxElO7shxX5mXhcWTmilV22CpbpOXDkxCCEZhjmfqDMOMlbq8JG2W+4+C8sjFYfq+p+eapio86ATEWYGhKwSRLEgURcG/en8XEPzQS3MoyEKZKOfFVH8kzuRZ9v7WiLWm1Lx6VsHmgxGlOX/na/f5K1+5x15p0DFXsfjs5fYL1Zg8LY5ukcMo5X5Jb7sy56MgUQz3OhMWqxZ7Y4k8XKhKDaQHnQBVhbpj4pqH3SqPi9WGy84wIkgkyve76wNW6lLHY6pRM51Djzu/Qer9dMYJdddgEKRYhqS2zvnSBGCuarExiCgKQcWWSP62b3Jnd8zWMOLD7RFZIemlTc9kaxBRc4yZfklnnGCoKr0gpenmrPfCsqhTsFJ3Hnt+Nz1peHJQI2mhapFkOeM4K8/CAstQGYVSc+1bD/qYmtSm+dylJqsNlSSTbpJNz6Ri6wSxPC8RYnauTEWLN45ZQwJ58TV1i6/c6uBaGlv9iK/c6tB0DQJTYxim3NwZk6YFqiqL9dvDiHZJae6OBdsTWeyfr0o6r6WrZ6KiSlHs04u+QogSJS8LAN+420M3FBaqFm9eaNANYr52r4umwBevtYlSeVEzdSm4XQjBYs0+NAcPzu8szwlj+XfdcXxm1sXBsQsBu+Oo1DRK6E1S3l0fzChPmrqPfm1XTFxT5bsbQyxd472NES8vVtEU5UT3VmDGcHiWOO38NjWZK06ReiBz8pZnsjUMUQQM44SVmltSPOHLN/e4uTOaIaqFEDRdk34gdRqnhSlLl/NIU5RZ8SVKCxQFbixVT6Q1PexJEwRJDZQOoMMonaESwyRnUKLd0lyi+P7trT2+fHOXlxervDTvSzc0AdujiDwvcAxpUjQTrkc21RSFYwt2B5/dlHqqlDMoyyWlEyQAQAHudcfsjSN2hjHXFnzmKzZrDYeWL1F8D3oBwzClP0lZbTql253GzihDU3SyXPCN+z0WqtKEoeYY9Cay8HKcmcTR2OhHjA9o2N7Zm5DlomyqyUJdb5KyUpfOlJvDqNTzKvhweyQL25ZEgi/V7Bn1bBSljOOM+YrUy6yWTu55IQtmtqGha5Ia/zhmSi9I2R3JQm2Sy+bl7iQmyws0dd9A5vbumPvdgIpt0K6YM63RrUHEzZ0xlq7w1mqNoii43wlwDI8wyTEes6c8TeyM5H0UIM4yQEEUsqkqBPTygo2ywfprX19iriIRlKamcr8T4FkyF57SdqfFeFOT5iYKlHIwT1Z0Pvq+n3c8TYZyRwhx/yk/7x7ww0KISFGUv64oyg8Bv0wI8YOKovxR4H+lKMrfB/4A8CXgR4HfD/wPZ/0A25CdC0tXSMcFgyiZcVYNTUWgcL8bcHVOkxVsRV5Kbu1MqDh6eZFKS0c3SWN47RgB5Wn0yhc1CNNHxJk/qfEf/OBlxlHGn/jJD/Etnf/iN7yKUupgAI91fDmIUrmzJy/PCgpJJmiXzi5FIRiFCd9+MCTIMuZ9afW9WLflRtAJWWs6VB2DD7fHPOwHLFQsKo7OQs2i5VsziCxIiOc4yXAPXD4msbQHj9OCTpbg2TqDICUTgjdWa4/t+DRck+1hPHNy2f9+7qzjIYAokVS+UZRiaRp39yQtZKFq41vSTekb9/uIAj5zsT6Db8PJFJuKbeCa0jL8YV+K0Y7ijCttj71RQlbk9ALpEHKvM+bdjSHr/YiNXkiB4NMX6lxu+2wNI7JcFqd8S0Ly31qtc3tvgm9Ld7StYdllO1Lmf9z7tg2NhmuS5YIHvZA4kxflumNwqeVxpzMBRSKX4izn292Ij7ZH7IykocBbF0xeX6mxVxbOOmNZbJt2PZO8YBRK4faz8shNXWpZdScJUSr51UcdEXdKodbdUcyFpstcVSYzNcdgqe7w7Qd94rzgTmdCy5WuTi3P5vXVGkv1pTONA2RXMs2O750s16XFt6EqbJfPf6XuzOaktLSXiVPTN2dOkTXX4HLb415nTJoXPOyGOJaGpsli6xurdX7la2dHcmUHOpTnFTvDiG/e63O/pK1mZTJuaSqeqaOX88k2JC9+ox/SnaQ87IVs9SM+faF+CNlwqeVxY6lCmgveWpOw7dP48asNeZEP05zbu2NJc1AVPnexyb98f5uKo7MxjFitO7yzPuTDkmqhq9K18WLbKwvX0pRhEKa0fIvVhoNVIhW6k+RM3aGT1vdC1WYUZUxiWbwEuNBy6AUaD7ohwzAlyxOyQrA7SljvSZh1VtpCX2i5rPeimVPNct1BURReWvBRSt2DpmcSp/LZn4YeWK473O8GuKZ+yMZ9On7f0vHnfC603NkzvzLnM0kyvnmvx0fbY1QFfvjVeVYaDnvjmPvdgG897FO1dWxd43OXm1Qdg63SyGBKWTop8kIcesbdSUJ3EjOOMt7bGmHrGuMo4dau7IIXQrDaMKhZBqsthzCRYu5rTWemu3daHO2sNn2z7Dg/GUWz5VusmRo/e3OPW9tjGp6JEAW3OxOiTJ5HeSGI0wJT17i24JOkOZapHUJsND2LIJGJpFEWrs4r7u9N+HP/5ja/cGuPIJW6EzcWq/zhH7n+iShKGeUefpRGOAjSUgtIXl6yXM6Ry22fOJWFfIBiGGFrCmFWIITA0goKkcizoGqdSFGwDa003pBU1bNcwE+jikydex+UCGZVhesLFVoVE9tUqVgaH20NGYQZl9pSNPm9rSF39wJ0FTb7MZausjmQ53+lRGdOx9/2TQohWG44LFbtGa1+anv/uPPbMWShOU4l6iIpn1chKKkhGRVHwzMN/vVHe/QmCXf3JizXXS76Dk3PwLV0HnZD8kKeWRdbHq6pY2gKVok2G5ZFq5PmsGNIQ4dRKbR+d2/Cz360xyhK6QYJP3qhQZIVvLc5RFEElq6zWLFBVVip26w1JWXnG/f7VBwdQ9MeaRA/axilc2+SFXzjfo9elBKNMobLsuB2a2fCKMxI85w0y9kcRDMEzEsL+y7HhqZyse1KZNSB4nbNMWn68pLtPaX7ZVbIQqQQ0JukfPNhn+1RTC4Em4OIjUFAd5xQCNgbxby2XOWlBZ/eROZYn7/clEyGF4CyPun8VhSFxarNOMoYhhkPusFM9/G15RrfetDHUzR2RhEN1+TD7RHvbQ6ZRDnjJOUzFwxeXa6W30PmlG3fwtRV1poOuRAMAonESvPTC9VHY0qdM3RpMDMtSO+MopI6mrJUd/hoa8R3tgeYukovlCyHK6VOowJEecGrSxXqrsmdzoSma7I5iFBV+fNPc1xVD9A3LUPOJQSztd/wTBQVClHwsBcxSXLCNOfqXM4HWyPmKiYvL1QIEukSeWt3xEc7Bm9dkMZIF1sOmiqL21Opku5YopKeRDR7RjU7svUs1x0sTWUUZzRLnTNL1/AMyV5Z70/YG8lm9+4oJsoKOpOEN1Zr3NwZc2c3oOJovLRQYaXuzJp8U9OHqSzEWe4LB/du39K5NCdRhdNzJ8sLvvWwzwebIxQUCmTeMqU/Wrqk3U6durNCMIxTvrc+5J31Pp+91HyudLj5ik1eQMuT2rMPewHf2hoSpAWeabDeCzE0lb1xzAMrxCjfa9XR2B1JNsEwlIjDqVPp1PjlSYvPJ73v5xVPs0P+feAzAIqi/B0hxI+e9R8KIbYO/DYD3gD+Vfn7nwR+B/Au8F0hRKYoyk8CP/GkA2x6Jgs1B0PXuNB0ccuJlmQFFUvHKiHTu+MY39AIy8tlwzGJqzkVy8DUVLKiwOT0N9HyTbaHstP1i6EoNY0/9MuvMY5T/vy/ucNqw+H3/tAVLEPjYts9FfJ8NOqOpEReantcaEgo8aCkgN3rhmwOQ7KioOGYVMvC0dfu9vBMnQ+3x3z/1RaqCq6pUbEMXlupzZBnjTgjSLIZdP3ogerbOm1f8upX6zZ7kxhVlaJ/j2EPAXB9scJcxUI70iU6qOcUZzlfvdNFU+RhcaFhy2Tf0AjTjOWaza3dCaI8A6NUQuUtQ+PqvHcqhHh6cE7ifOY2+M5wSF6I0lmjICuFXS1dR9cULrUdLrU9XlmqslCxiXMJg64eSHbqnslnDly4rs75DKOU+hFdgbO87+kYhYCNQSjdFScpYSqLMt9+0Ofagk+YFCxUbHJRSA0XQ+XVpRoXmi6epUsYqKXNNCGmMPWjofB4tJRr6mwNIsJECptPuezTqDo6eyOJbqi5kv8+1aSartFpIbntSVHsxar9xCKLFdvANpJj59pU12BnGM26DK6pzaivVceYuTI5hsbnLzdnHaKZgGYudcvmDYOlqlNaPD/RENE12bkbRufX6UhL2m2QZChI/YylhlNCrg0Wq/uFM9eQFx9NlcU5z9bph+mhwtRizeZXf2oJVVFoeNJW/dq8f+J+Woh9SpbUhJJrtxdIAdiHnYi0yKUwd1ag6yp5kvHZCw2EUFiuuyxWLR70QhRlX/BUURSp11aVArvdICkvYY+eAY9b34UQs0LRZj+i6hiz7l2Q5mxtRlQsnSQv0BQFgSgvRjlX5jyW6g5pLn/Owc6grqkzx1KQz2GKAjwJMTRftfmR1xaPvYxXbINr8z4Ccei7aOV+m+ZCotkQM8qSqkix7osth93hvvnDQaHV7DGXgik1T1EkhP5eZ8LdvQDHVOVFRZei+m3fJEhT9FLI19Q1XNPg1SXvkTE/SazUHVbq+/O05ZkoULoVPpq0HXzfW4OIKMkJkhzLyBhE0iGqM465vlBhHBesNDReX6meWJxreiZNzyQoqesnGSM8Tfz0hzt8uD1EVSVV9K0Ldf7jX/YSq42Tac8vMvRSj/BoNDxTonN1lVGUoSnSCEUIEIbKYs3mQTfAM/UZFaQQBYMwwRcGvSAlywWPS1+m+UWU5icWqM5yfk9jSgEpChhEEqWvqyp3OyF3O0HZGJB6Z7oq0eJJmvPKkkeYFKw1HBaqFoMwO2RAMN2LpnGx7RKnxayY+rjzOy0OU3mmDayWb9APUqn7UlgoQsXRVfqKLEjPVyw+faHBSsMlyyXSNMmKWf51sLh5kCUwdatT4NAamupoRaUEwNZACmyPo5wbyy7zVZM7eyG9cr9drJrEWU7NNGZ7+4WWR70sxD9pMfksYRkaTdecOZ1GpTNmWsi9rGJL/UzfMNA1TaJrkfvkUZ2r4wo/Ndfkl16fl42opxy/EPLivD2IuLk7ZhgkREnOXMXkQsMjK+TZHCY5eWGiqiq/6dOrbJc6Uwfz2ucZjzu/D87L7aHUxBpFGUGSkxWCdzeGtDxJCzVLJFjF1lmqSy3LCy2PKMnZLrXXpno/iqKUTWG5z6V5QS9I8C391LvZasOhG0jN1KPi5yB1bqO0YKXhsFSzSHKJeJ7EObkQGKrKRztj8lIyo12apQxCiRwK4mCWW6b56ReTaV4cpvkBdItszKcl/TgrpHlGL8hKCrDGR9sjJnHG1iCi4Ui0XJQW7I4TxklOsxPMHEHnKiZN1+R+LyRK86cyQ1qu2VQPiMlfbnuzvfQ4c5tWRc55x6yUbobSIEtX5Pr5zvqA3UEsaYq2hqGr1GyzNKzIZntsXogZo+Vx4ZcaXwJp0PAb31o5NBcmSY6mSA2zYSgdMw/mWtcXK9wrJVOEEPTHCWGUkZf74eMkKp4m5sv76FSv80LLI52yisYJn73c5ObWiJZvUrU0/u3dHrausTuWxapJkuFNNEBhqKeH1hrw1HvA0ff9vONpsrqDU+LK03yooihvAG2gj6T1AQyQBvF1YHjkz54oZPJeYZLk1A8kHa8uV8nygrqrM4pTLjU94rJDraryMHVMje2hVLk/S1LS9q1zF3t9EaEoCv+HX3OD9X7If/tP3uPqnH9oIzxrNDzzUCFhqW5TiII0U2cC3L6t8/alJqqisN4LMXWVMM14ab7CQtXmC5ebZIWg7ZnYB565b+mndng1VeHtS83S5YUZrbBiG49FfU2fQesx785QpfuMZ+l8ulHn6pzH+1tjJnGOnUM/lEW5uOxGXirRUqrCY+fPhabLMMqo2Tp39qTGkGuqLNQshlFCnBWM45yGb7JUd3j7UgNTV5n3rRkq5aV5X3ZATzl4T9qMzvK+F6tyo5zSnB50QxxTo+bIjtQg1IkSeTlu+ia/6TOrqIpC1dZngtELVZu2bz22cPskCZtjarMOytHCwVLNYc63Zp2Ro/PojZUa728NqLsG15dqfP5y84kEkKdh6uojNsVHYyqgriiHqUY1x8BfqqKWnHqA+cr+319frLL2oI9nSdHGT61UuX5A3PdJ4mm+22mxULG42vb4qO5QdUxeWvBJC3h1qYZvH4bv65rKjaUK1xd81vsRkyR7ZL88ug5VRTkVqaCpSkl/ylmsWdzZm5Dmcv9YrjuESYohZNfoQsvllaWqdJHTVeZ8a/ZOpnSz45CVuqY+gsQ7GI9b346hsVy60zVcgwc9qe9QcwyWazZZJrVxVAVeWqjwhSstAGxdnSEIbyzJS/lpyE9NVc5kanBaQnIaHeatC3XSXNo7F0KUDrU+P/TyPJdaHg9LHZ6KbVJ35YUyy+XeEib52Vzfyv3L0BVMTYqKz1ctBqWWxytLFa7O+eyNY2xDl0iQc9Y6eNxZoCr7bqyOqbHScBBCMF+xuL2nsDVIqLsmv+TlOYl6MaQT5ePCNfWnLq4dF1mWMwgS6o6BZ+n8jrfX+MGX53Ct54+SeNbwLSlgLoTgw60xozjlS9fncHWNu11Jb6na8uJjGSqvLvk86IVSTDnKaZbf+axx2po4y/k9jZW6w84owrfkxfZmInWSWr6JwOPubkCUFVJgWRRcnfNZazgMS/rQcinIm+XFqWL0VduAA1vS487vpmvMLk9xqvPe5oisyGm4PqqiEKeyqWVVVV5ZrvLGWp2qY9D2TLRyHLqm8vLC43MMkGvopDN8+pznfGke9PblJg+6E24sV1moOjimTj+wGEU5Dc9gsVZBUw5T9Y5+//MMeQ7LRuRCzeK1pQq5gJdL8fNXFqszp+G1pott7GuTndVAoGIbnHKkPDam9H1DVRmGsni2WLP5zIUG1xYqtDwLXR2T5QWX27Lp51n6uVKEzxKPO78rls5izSYrClRF4fbOBBTZZFitO4zCFEVRSLOCtabLpZbUcrJ0lbZvzZrUrcfklMZjzvBpPO6sny8NTKaf9dkLTS41PcI0L1HvObd2xwih4BoaS3Xp2Cfz45SVhk3TkzqTzTOJnquP5LQHC72GpvDqUpWlmnxW81XJQvn2wz4oMEoylusOX7za4uv3pYGBzMuk4cd8xZ5prz1tKKXr3zQel1/cKJtpqqqwVHNIC5kXrfcjupMYUSgEqXSmvtRyaXuWRAciMHWllIVIqFhPpn023T8UeOQd+6XMyI2lCss1h4ptHPrZFdsozyPQdZXX1qp0w1TO06Z7ruf2NBTlUaF+Q1N5bbnKct1hEmf8mleX8GydD7aGqAr0gpjPX25SIN3jR5GksS7V7VkRXwjxTO6GR9/3846nebLihF+fKRRFaQJ/D9hDFqZ+h6IovxNZjPqw/LPPKoryc8AIGJ/wc34f8PsALly48MjfX53zibL8UBd3rSktXreHGqOdnLsdqYt0kKonIaGffK2o8whVVfgff+ub3OsE/Mf/328+85mf5QU/f7vDR9tjLrZdFqsOP9BuY2oqTW9qzSr53m3fnCErFmtPLzIN+wmTdN46326aqir84LW5mSjoOxuj0qI6ox9KEeimZ/KplZPpnkejKKTI5944wdJVDNVBVaRWU8UxaJQC7UEskQqfWqmdWKlWFIXnYBABSH2w9V7IOE5LbajSVrWE2FccnZpjkouCi03vEeHZg3HeaMKlmkPdkfbMx/3sk5LFMMnpRykIhWtzFdaaLi8vnA0a/DRRtQ1eXvRReDRZO7GjWJowCCG40PBkIn+pifUCup1nCV1TMQ2dlYaLZags1GzSXHBnL5jpRhwMRVHQtEfdmp4mkqzg2w97dMYJry5V8V0bXVUxNHBtjYZuYuny0iWAN1frJyYy52mZfDBGUcp7m5LCc2OxQtU1MIYRjmlQtXVcS4rkRmlBwzOPRQ4Ch+jVH1e0fYsvvTzHRztjNGUfHVBzDGqrdV5drpHkBaamcGt3TJjkpYaDyu7GgLWGy2rDfaSQtFy3sU1pXT5JMh72Qt5cqbEzjjE1DQVwDIOr88aMFnix5T1ypr+oSPOCf/rOFjXH4AtXWryyWEVVFISAiy2fdsXG0ORaOMnx6nlHlOb8za8+QAjB5y43eWO1xucvtZ/bPH9esTOKSXLp9uZbsnB3seUSpjl1x+RuKfg8jhQMTeOleelMeX3p7FSU84o0L7izN2FzENJwTVqeiaWrZIVgqWYzX7G51HLpjNNyflizC5J7pIh2ng6Jwyjlzu6EXpCwWneouwZNTzZeZfOrgm1oqIrCjaXqqYXe88gxhBDcLkXhh1GGZ+pcbPm0PIumZ9L2rdnafl5n8Wkx1evSVYVXFn36QUqQ5lxt7VNOry8enl9PUgQ9j9BUhQstjwe9sESNyHfX8m3qrhTuf3mhQiHEC0FGPU2M44yPtkd0J5I+1nANDF1B16Q2jqYopZZTQd01ThVofpEMlYOfpSgK7SNFjinl3tRlkcvQFTZ6ocyXNRVFkRIIt3bGLNdtrrT9Z9qXp0XgaSH41eUqbd9icxhJXUNVmjGZujpDf9/enbA3jnl1ucpnLjRe6Do7+F0XDtBwX14w2BubbPYjrs37pZuijqWrTJIMTVHpBglhIt1uG67Jpfaz66CBfKenOmYL6YYXZBlXax69ScpiVbrGP4+i1Glx9H2DLAa+tVZHAG+s1hnHGXGas96X+4NeFtLf2xxyvzthreHy6vLTNbdfdDzN031TUZQhsgjplL+m/L0QQpyYHSiKogN/A3gfqAG3gc8JIeYVRfknQFH+2eeBOeC/B14+7mcJIX6Ckub39ttvP1Igm9rXH4zuJEFTVdJCULF0dE2l+hwsmn8xhWvq/Pnf9TZ/8qc+4l/842f7WbJ4I4WMtwbRTINhGjXH4FJb6ja9CJ77eYVjSk2D26WNu3RbkRpC4slo7ABEmaTu7Y1idE2diXhburyQtX2rFBlOSxrfx5NkDMIpF1xC7KfuMyApWU3fYs63pIDrx7COngY10Q+k08d81cY+YF39PONJ398gSNkexLQ8G0WRBfVPGk1YV2Gx7mBoCqqiMokTHENjGEr67fM6uCdxxmZfCqTf2h3T8vfdzDRFJoXSqS7FfcLu2nnFIEzZGyeltkvItQNr2LcN5ipWSQ/If1Hsg56l88pi5djxTl3PolQ6dQH0wxTXkMLiEzdjZxQ94p55sEstBKVWloKpyefkWjrLDamxUz2AbHvRCeE04qwou+Mx/UA6LaqKQi6kePWNZVmo+jg1nOKsIMoKNE3j+kKV15dPLsp+kmNqOgL7ummVUoNpKvi/M4xwDZ2Wb7FYk4XeF10oAOlIOYkzepOUrBBS/kHTkFuSwlzFBCzafvZCz0kpkC3HZRsauRDYho5tQNUxpXi4pmHoyrmjD08KgSBKc/KiwLUk6nG+YhOm+Uxz8+MOTVXRVZWKLQXpu0HC2inOvx9H1BwD29Ro+yaTOCfNi5nu2GlIpU9CDEJpMDUMM3YGMWqpQQRS06flW9Q9gyDOf1HdzS61PJqeOUMOSUkP+d2EgO2BFCoPSumJKMvPdb4risJCzZbuluzfr+arNmkudZw2+hF5Id0lr81XPpac/bho+1J3VleV2R4uxef39ScnpfOvrqoMgrPpAz5r9AK5p5uaxiTJsU2VpbqDpvHE+mXPI9YartwLDG0mR5NbOjujGCHkORpnBZv9sHR3DFlrub8ocs4nXhlCiGc5xX4r8APALeAy8GuBrymK8rNIdJSCpAd+Fak9NQbCZ/i8Q+Ga0lFnte5Qs3VscyqG+b/sWK47/N9+8xv8i//22X5O1TGoOjqFsLg27x8SAZ/Gi4QDnmfoqiItl1WY9y0sQyPOpHD1k4ZjaFRsHd/WsQ2ZUC/XpVjylO+tKMq5o7+eNFqexSjKiDNJz1qp2yS5wDH3L9ofx2XgWaLpm1QcnTXFZbXhcG3B/8R1EGqOLpFHisVqzeH6YvVcu+nnETeWaiiKStMzqDrSmngUZRi68lwLqRVbp+HpDIKMxZqDZxlcaLrEWT6jYmmqciZXx+cVTc+k5ugMFbmeW76JpklnmXa5X7wovY/ziseN1yrdqSZJxqeWa8R5jqYpaKr62D1CUaQu3GLNpuoaxGn+WJrGiw4psC/h/9PE7qCuxifhXRqaQsuz8G2NT19s4P0iPWsXKjaaKmmdR+fONIdruCaGKvXzzkJlfV7h2zoVR8exVGqOzsoBcd2D3e0XfU7KokrMOFZxDE1q1mUFhWC2B51mWX/eMdX/6QUSVRJlOXku3Zu9T0BBytBVFqqS5q0C97oBWSHOXWT9PGKpZtOdSDdI35Zowl8seXXTNak6OnGW49s6SzWbiZ0h2F8vH2cz9mlDugUfRrNcaLmzs2x7GMn1psj87nmhfo+bB1Nh/2FUNjx9E9v4ZOWTRwtNVdtgtSEpf5amcq8T4Joqvq091Z3raWJ61kx/fW3OZxLnGJryQhraj4ujcw5k7nup7TEpdSsNTUo9TJk99i+SdaUI8cRsvKf/MEUxgL8uhPhtZTHqzwAVIcSfVRTlGvB/BP4C8BuEEH+sRFj9cyHED5/2c9vttrh06dITjydKpUU5B/QjAHIhSEq3I009nS99UkyrlQpyo7137y5Hx5gVgjTb/5ypHsDTfuZUkO1p//3du4+O8XlFXghpe19qvzxJnDTOvBCMY0kXNDSpT/A8rzZT9BTIg+hgfeNFPsuDkRfSnhXkhW+6vDVVoRCya2mWLmYf1xhh/9lNdx+FkjKgSnvcg3P4eYwzLjU/skKgqcyodqddhoWQGhQCeRFXD7zw5zLG8hnlhUBVpaisoauPiK0ejSgtDr3n5znG84g4LRhE+wLxe5sPP5ZxTucESGecLJ/+WkUgyA/My4/rWYaJRCUpihS2nq718hg7cd0c/G5H96pjPyfNQTyqjXYeIYA4levI1FQe3L936rOcnmu6pqAq+9/5OH25477D0fP9aeJZ3vcsz+AwyvOggKplHN5Pjos0F2R5gVpq/p11jEfznKktOvDYPe9oTHOWk8Zwljjrs5w64oKc78ddpo7mWQcfoXT4k//+Scf7Sdkrj86RNBfEaU4hoL+z/sLHOB3PNO9RFWW250SpRO4cPaOe5llOfxZIncapkUVeCJK8QFdlA0Q/Jx2Dx43x4Fw8bi4dzOWNck3N9jhdRTuH5tftO3dZWlkD5Jk0NZhQFQXryNo4LVd53vFxrZ2Dc0ZVlcNneSEO7RF3795l7cJFklzuHYUoKT/siyhrmiyOf1zx4c3b1BdWUBVZtHuR7/BJ4sObt1lYWcM2NMTU9OUcztzzjA9u3qYxv4KqPurQ+0mJW7fv0FpcRVXls5vmNk+auz3v+PrXvy6EEM91YbzoVsWPIal80+gDK+Wvq+Xv++WvD/7ZI3FUY+prX/vaob/vBwlbw4iqbZT6OI/Gvc6EYZjhWtohnY80L7i1OybLBWtN96lgg+v9kO5YWs2uNR1+xZe++MgYJ3E2sxJfbTh8sD1iZxhxfaE6E118knhnfTBzLHgSzaNpvP3224+M8XnE//RvbvPH/+kHJHlBBPzgtTZ//Le8ceJ7OhonjfNBN+DD7RHD0p75rbX6ITRMUQge9ALirGCl7jxzF3NnGLFdus1daXuHPutFPcujEaU5N3fGCAGLNYu9cUJeCKq2zjsbA0Dh+qIUE/64xgj768PUJR8+SArmqxYf7YzoTaSQ8A9ea6MoyonjHAQpm8MQ39JZbTyZftH03cVZjqlLHYCrc/6pRdLOOGajL93l5qsWCwc0tU4aY5YX3OsGFIWYiaaeNR72AnoTKQCpKQoocKXtn0q9GMcZd3blnlJ19EMUqo/zfZ8WH2wO+dvfeEiaF/za1xf5g7/1V38s45zOSctQudBwuL0XUAjBxabLv73TIc6kmcPbl5of27O8uTMiTKT+xnzVmum2bPZDoiyn5ph86eU5YP99j6KUdzeGs33x6tzj9S1u7Y4J4pyKrc8MHc4rhlHKvT1pf113DX7Tj3zpxGcphOCddakWIDUhvNn+dqHpnor6eNAN6Acpddc4VjdyFKVs9CNcU2O14ZyKnHyW9z0dh2OqhzRTepOEh70Qy1BZqtlsDiJpN990j30/H26PSsojvLJUeaQod9IYp3mOY2pcm/e5szvme5tDmq7JZy81ngidMJ1/AC8v+k+FbDjrsxRCcHNnXGqxGcfu8Rv9kM6BPOtgB1kIwe29CUGcH9J2OhrTeeAYGmtN59Qz50XHzihiexCjawovzftsDUL+0Xe3MFSFP/OHf9sLH+P0DJyeSYWQuatlqNzamSCQ4rtt32a1tF5/mmc5Pfvs0uFNURTu7I351oM+oyjjjZU6nqU91nzkrPG4MQoh+GhHSjk0ffOQoyfIhsHtPSmHe3XOJ04L7nflHjedu9N8pWIbj/z7s8RnPvtZ/so/+ClUReHKnMv9bnjieDrjmO+uDxhFKVfnfF5dfvL7wNPGx7V2Ds6ZuYrFw16IUbqr39mdYJsan7vYpOYavP322/zNf/LTfLgtiTpLNQtd1ai5OqMooyiYaRt+XHHt1Tf5j/6f/zOGpvK5S00+faHxiaRqXnrldf7TP/13+fWfWiQTMIoevVN/3HHpldf5sf/ub7DacPjdX7z8iUA4H43rn3qL/+RP/W1cU+NHP7s2kwWYnnGmrvLS/LNpk51HKIryjef9GS+6MHUdeEtRlD8AvAa8jdST+uPArwD+LVIA/VOKomgH/uyReJzG1EY/ZGcY0zNS5irWsZ1VSQEpHul+GJrK9YXKYx2RTouWZxLEGbqmHguvnKJ75isW9VLs2jd17Oa+w9uTUozmq9JiteV9MivCAH/lK3f5b/7xe/zIqwv82Pdf5N2NIX/yp27yv/6Jr/D3/uAPPFM1u+WbrKUuohDSZfDI8wvSvLRuhs5YauLsjWNU9VEnhLPEUbeOT0LYhsYrixVyIbB0jbZvMY4ybnekUxCIxyJuXkSs1B1anompqailI1F3ktCfpLLjInjs/N8dR6SZoJelzFXyEy9JgzAlTPJDekTzVZuqY0hhSmQx93GfV3UM+mGKEOLMFrvDKJtp7/SC5EQIcJTm9IKEmrOvtbHacGn7+axrd5YxeqZWQuWLT2xn6Gh4lsaF8kK4Uv/4qNUH52QuBA1XankUgK1rRElxbh36p40rbb8UhlZRFIVrcx6744SH3RDE8WLpe+MERQFVEbR880xn2pXSafRpUTGnhW9KW+YkL2g9BpavKArzVYtekND2LWxD4/qiFPh9XFFkremyXBcn7s9744QkK0gyacM9TjLUY1xxnjVWGw5zFeuR7nvDM9FUhXGcsjOKZi5p4yQ7VgdivmKxPYyp2PqpSLGDURQCW1cxfJPFspA+SXLWGi6a+uT6d3MVm61BhGc9f7rN1Do9yYsTLxJNz2QSZ6WlvHHsv5+iyI/GJM4YRimDMCXNJNK4nZqfCK2jacxXbKq2PKdGUco4zrncdEmfg1X5WaLlW3iWjq5KpNQ0RxZCUHV0bu2MyQpB1ZZOnk/b/Dt49k3PvM5Yno+eqaNrypkc184r5F578lycOo9Nz2hDU/FtnSwvZvn47d0xgzAlcnPmfOuJiwyqIt3Ypp9x2niqtk6Y5KS5YHMQcmXO/0Rexs8zDs6ZKaqtH6Q86AUoikKeCwx9fx8wVJWiAEURGJp0Wm24JllezPLnjzNqjsFnLzQYRRlhmnNzZyRNNz4B+fvBMDSV1YbNMMm43PJYrNnPJW94lrANjUstl7nqJ29s01AUSdOdIn2nhanluiyQGuW8/l9CvNATWAjxR6e/VhTlZ4UQ/6WiKH+0pPXdB/4fQohUUZQ/D/wboAf8jqf5rFGUsjOKqdoGQZyhaeojwqQSHn6y29mzQOZs4/RuzuYgpDeR9BXf1jFRqXsm3fLwPekCGiaS4wqy0OKZ+izpmq/YL/SwftK4tTvm//qP3+OHX5nnz/zOz6KpCj/00hxfuNLit/3Zr/Cf/713+LM/9tmn/vmuqfNy+cyjNEfkxaEE3tYlbTDNC6qOzt44ZnsYA/KQmlJFnkQM9JNUlJqGrqnoyOLn3jhivReSF1NXF/cQ0ufjjOna6wfJTODQ0jUcSztWn+xoVB2DMIlxTO2RS1+U5tI1C8H9juxcxll+CEE0/fwkK6TmgaWfWviZoqqeJDxLK2mU4pGLkxCSzmrrGvc6AUkmi3My+VQOjVEIWci2dO3UhFZRlEeEpj8JURTiZNclRcExdAoEivLxXLimMX3eH22NZmYZry1XmataNDzzXJwFnyWmYuMA4zjl5s4ITZFzrF2xj9VEsTSFD7dHVG2T7WFM8wyNi9POxmcNtdRBOGssVO1De9ZZizJw8v4cZzm2rjJCUBSCbpDMzmP9GO2GZ4mTnmVeCO51JkRpMaND6ZqCY2jEWU6SFYf2jKdxnd0pDUlA6rNVbIOaY8yQZMdFXgjiA2v14P5Yc4wXKpp7cL5PI8mKmfPYcXnWOM7Q1f1nftwcEEJwtzOhKCTl0zE0bEP92C+jR0OeY7A3jtnohxQFmIbGyseoq3VwLiuKZBjkhUBVFFxLY2+UMIpS1prPpsNy8HOCJGN3HDOKUlYbLq+dwV3q1DPnKeK4uXj076ehqVJTa7p2wkRIMfpAujMaJzQ4wiQ/lV578DNOG4+qqlxoOXywNQYU7neDWW589PMMTfnEaVg+bUznTJhkfHd9gF1qwa7UbXzbOEQvm6taXE48NvoRUZrzzsMBn1qp0vCsF47YOC4UBT53ucU76302+hEq8B7DQy7yn4Qwden+FsYF724OS6OUpzMnep7hmDqGqs5kAaYRZ7Jx/HHv/ZauUndMwjTj5s6YLC+YK/UW/10vKh+Nj239CSF+sPzvf4903zv4d38V+KtP+7ODJGNrEDOMEuYqJnf2JmiqFDc8amkfpTm7o7hEGhjnvkFLx4xH/3x68MhOtvz1St1hsSonYpzldMYJnqlTcw12RzEbg5CiEDOedJaLx0ImgziTB+EnoEr83/yjd7F0lf/uN79+6OB9a63OH/rl1/gf//mHfON+j89caDzT5+yOYrYGEaoKL81XZhd5TVXwLBVdlQl2Z5LM/s0wSulOEtK84MZSlTDNidKc+Yr9iYTPHo0ozelMEnxTI0hzFBQedCc86IZ0xhGfvdTi2rzPtXn/kPbGiwwhBLujeKYtJYRMHr9xv88gTJivmCzXPVbqDk3fJErzRy6he+OYNC9mRdiW9yhibRCk3O8GKIpERU61to7j6Gd5wUc7I4pCCqMvVCzSXLA3jqkeuYTlhSA9pXs/jWEkHZFapUvLjaXj0ZcPuiGDUELPp19TVZRjk+iNQUR3nKCqcLXtoakKO+MEU1MPif8WpQbHJ+0ge39rSJgUtCvmI4WzLC/Y6AUIRerovKjIC8HOSNKnpiiZzjhmZxTxwfaYe7sTFus2F5rODEGbi30NtxcZnXFMkssCRpIVuIbGz97cY2cU0fYsri1UuDLn4Zr6bA6APAtv7o7Z6oX0rYSmZzwVGve4OO75vYgYBCmTJKP9FKiDnVHEIEyZRBmaWjYqMsH9boBjaOiqOtMnEUgNo6eV4ZzuyRV7XzC9O0kIkkyiuFWVnVHMMJQi+b/k5TkUBZK84KNtSVecr0rnU8HJRbaD7/toqAcez/TfH0SSHd2rtochH+1M8E2Nlm+xVLMP7Y8nUZDkmpDFied5yY3SnI+2R+QFXGy5h0wOdoYR6/2QQsgk/+rcybRnRZFNqAJB0zO40vZRFNgdx0/9vs8zxlHK7d2xpGtlOcs1l71JzIWmy8Wmw4Xmx9N8CBJZXKk5Bpau8rAXst4L0DWFvVFCmgvmKyY3lqvSDfAYZNcgSBlGKXkhcE3tkZz8uNgdxRKxqqisNtwz7V+3diUNtOYYs4ZCXmoNZYVAUc5W5C4KwfYoQkFhoWrNPrs3SQjT/ERGRnogt6jYOk3fpOoYzB34GQdjStkxdIWX5ysoipzv030K9nMogURQTn9OnMl7jGvqND2TO3tjikLBNaT76XG5z/ZQOsVNaaLSXl7MkLLHjTErz6BPimFMlhfsjmPMUlO2U1Lxf+F2l4e9gJZv8epylZfnKxhlU1qU+aeuqtxYrOKbOt992OfW7oS9ccxba3UMXRorDMJsVpD/OMIxNW4sVSmE4Cu3OgzChA9XG/ymz6x+LOM5Lmxd40LTpRekjMKMj7bGmIbKcs3m9dX6J8IgKS8E6z15fz44d0dRyq2dMWlR8Mpi9WM1ETA0lYttl2/e7/PuzT1u79i8daHBhYbDIM4O5RH/rscTzZiSXvd7gVXgnwohvnzg7/5zIcR/c87je6LYGkRsDkI6Y1mYCNKMrWE06xDHx1wo7nUmTOKc7wwilmo2a013dtELk5zNQYhtaGfWPzoYQZJxu9R7ORqLVZthkJHk0u7V0GQld3oA3dwZc68TYOkqbd+UCVchhSAXKjZxJtElp12S7nYmfOfBAE2VOk61sts6XaQCcchF5nnGN+/3+OkPdvnPftX1YxOR3/MDl/mLX77Ln/1Xt/iJ3/X2E/3scZyx2ZfvabXhzIouRSGTfFNXCZOcn3xvi5s7Y9oVix+6Nidhu0VOrXQveNANSHOBqoChTZEqHKtP8kmJOJPQ5fvdgDgtuBMmCCH4cGdMZxSR5tCPEuYqNr/0lXlgP2F7UZHlBQIYRxnbQ9n1jLKc7iRhdxQxDCWlYmdkcbHp0/TNWdJk6PIifq8zoeoYbJYaTwBLNefYy1pYvn8hmAmlhmnO/IECzkY/ZBxn1BydOJXr79bOmO44YRglWLrGuxtDXl2ustpwyArBR9tj8kKwVLcfuYinudRDmatYPOgGsoOUZFybr5yIvpyOU2qo6AzClMXa/lzrTRJ2xzFVW2ccZQgh6E0y3kmGBEmOa2h0JgkX2y4vl9o1N3elDkbLN59qz3qSSDKZpD4ONbg3ivi5Wx2iNOeVpcojhak7uyO+cruLEIJXl6on/JTzj6kmxbQjpasKd/cm/Mv3trm9N8EoxU/zMpkJ05P38+cVcZYTpwUb/Yg4y+kHKb0goVvSWHcnCeu9kNWGi61L8dGD6ztJC/7lezt8636Pumfw6dUG39sYopcObs/iaLYzitgr0Timrr6QpCnJ9rVb4qw4hKw8bj5Gac7DXoCuqjRcg+1BzCBM2RvHmLqCZ+j4tsEwyPDqGvMVk/VeyM4wwrN0CiGemtr1sBcSJjm9ScIrixWyQvCgG5AXgkGQloLn0PQMxnHGrb0xF5senXHC/W6AoSrsjSI0TaHpWVxue48k+Uff99FwTZ00D6jYkiIcZzmGKhEZQZzxlZsdNFVeuPNClHlTTuwaOKZOLkRJAefEXGMQptzbm7DeD5mrWFxourMzPs0L1nshqqKw0jh+vz4twkS+P0uX+k9RkvOgJ7V1ojRnrmrhmTqOqfHh9pgPt0doCry+WifJCxweLUxtDSLGcTq72FdsHVVVuLM75rvrA+rOi9eVKQohHah0jfe3hnzl1h73OwHdSYJpqLy+LOlfiiIYJzl3Os9/HxJClLTh/Wd4vxtI+vwkoWrr/MwHO3y0M8TUpbveXMViuW6RZAUPu+Eh6hTI+XC/G9AZx0RpwUrDwdK1Q1px0zWulo0lXVMZleefpik03dPXY5IVPOgF3N0LmK9aBKmUbxiEKQ+6AWGa058k5ELw9sUm7cfsgXuT+NA+1/TMcl+RhuFZLpivWtzrTNAUhSulhl9e7K+dLC9KCh7Mn0BfnuYDaSZI8pzvPBjwldsdLF3lV31qEZAW9lOUv6oos/37QTdgFGZoWkJvkvDR9piWb6JrKkmes+odzrl3hhHvbQ6lK7SpkxUCXWOmyXZUn3Kq9bfeC1lt2ry6VPtYaUXTubk7imdI17yQtMWb2yP2JhFpBtujiM9ebGDo6qH7WJTmfLg94lLbo+4afLA9YqMfcb8bcHt3xFtrTWxDghV6kwS97WEb2sfCkPBtg8WaQy9I+IU7XX7qvR12RzG/75dcfeFjOS7iLCcv5DOdJBlfubNLmknQxHtbI37FjQWW686h++2LjnGc8ZXbHRYrFr/t7VU0Ve4hnUnMV+/2iFN5D//i1blTf870/Hwecz9KpbP1Rj9gEKYMgoSNfsAkybnS9nh5scrbl5qfSJbOeceTZlx/DnCBXwD+X4qi/IwQ4o+Uf/ebgY+lMBWXF9dhmJW0JcEkyfAsnbZv4VkS8m1oKj/70S6+pfPKUpUkL3jQDekGCQoS0TCM0tlmvz2MmMQ5kzin7hpPnKCGSX5i9y3N5Rj3xjH9MKHl2QRJhgI0fYtb22M2BhGWrmDrGnEqcEyVhiNFbx1TYxCkp9qi90rh67yQB9q0MNULEgah3MwdIzlTx+pZ40/85Ec0PZPf/cVLx/69Z+n8ls+u8hd/9g6dcTyzfj9L7I5kkhOVF/L5qkUh5CY4pW/e3RvzjXs9bu5MuNhyub5QIcpyklzw/uaI6ws+rqWhIt249sYhFevjtaI+LXZGET/zwS6aovDGWo0sL3jYlyLbvUnMJJJUtjBNcQ2dKC0kosrSX1hRKssLvnyzw/3uhJcXfFYaDut92QFWga1BjG1o9CYBui5dxvphSpzlTEp3xTSTrnTDMOPgfqyrxx9wQgiiNKMXJLIwIwRpLtBVlX6YosUZ3XHMh1tjUCSioGob6KqKZ8kEPE4LgrggyaXu03SNTbu/QZzDEZBilheESc72IEJVFHIhThwjyAQ9zQsGYcK1OZ/dcYKpaeyV/+0FCe9tDsgL2d1dbdjEmcC3NDRVlXvHRM77cZQxCFM8S5+JIwdJ9jSv7Mxxvzvhp97fwdE1/r23lnDMk4sSYVrMuufHPZP7vYBR6cr3oKRdPs9Is5yfvbnHu+sDVEVhqemw1nSwdJ2tQURvIrVcqo6ObiizYsBp+/l5x3o/4Ku3e6BIZMj2MJo5NG72IzxbY2ccoCD3zl4gtXIq9uH17ZgaO+MYVVHojRPe2xrhmBoN1yRtFsxVLHZG8js3PfPE/S7LCzYHEaqqsFyzSwfNw3odzyuSrGBrEGHoCm3PRFVl02Gqlbc5CLnfkQWfhmdybd7H0FS6k4R3S8OHmmOUlB7wLY3tocDQdCquQZYX+LaGqqjsjhP6QUp3kpIWUuDZMZ6uMGVoCg/HMXkhuNr22ByG/LN3tjANSfO50q7gmjqKApqqEiUF/fJs9i2d+92AlbpNZ5ziW7J4dbQwlRfi1P18ox/SnaT0JimFENzZm2BoKl+82pohjKRLX0G7YhGmBb4tEQLLdRtLl9orkzhjvnr83AiSjKwcR5wVDKN0llN0JwmjSO5Fvq0/sZjw3nj/bG/EBq4ladv9ScJHO0N0rcq9vYC5isEkSeVerkkH061BRJBkh3T90vIyCyBEcogGeGdvwt29AE0Nn2iMzxpZVvAv399hYxDyynxFmuCMY3ZGct1mmUDXRFm8UVBQnvsZ/v7mgK/f6zNXNXl1qTYTntdVlfWxpECmmSHRT0GOY0rkhKmrWIZOL5CFnDQ7vGGqioKqSqe00ThlawirjcP5Zy9I6IxjOiUi6bXlmnRfzAsmQcrP3+5ydb7ChRNMAjqTmCDOcUxZqJ+i/EaR1K/sjWXDxzXlGjuuMLUzigiTnIWqfUgmYErBU8tmkxDyu9zZG/GPvr1Fmhf8ps+scGOpVja0bYIkB0UQTgpURWEQZbT9RwumSzWbndJMR1NV7nQmdCYJilC4tT2ZjWt7GFGxde53J4zjjLZv8qAb0g9S2hWTQZASJDn5MKJdsTE1jc4kpVE26JOsYHsY41s6kzjjSll0EULMXF8n8WFE/STJedgPiNKCzUHMtfniVFrj84x7exN+7naHqq3R8mz6oaTcL9cs7u5NyArBOJJNiiXXYmsQcbHlHT6/hXx3QZLRHUtUayEEQZKT5RZ3OxNemvd50JuAUNgZRjzshXxqpcpnLjZf+He+2PK41HL55+9uk6Q5f+3n7/G5yw0+feHFj+VoCCHRPpqqYJuazFnzgt1RzmY/5F99sI2pSTfYL12f+1jQnmlWECYZ2yM5/6fpqqlpaKoEfGSPIZHc3B7xszf3qDkGv+71JczzdisWAgUFR9dZrKrc60y4051wbzfgfickygouz3mfaLme84onzbg+L4R4A0BRlD8F/GlFUf4u8NvZd9l84VEUgn6Qzg68MM1YbTqIQqHuGlxoeigK/NWv3GVnFHNlzmOuaqOVwqq+rWPrmoQVHzikPEs6NOhl5zzLC9JcnJk7W3dNgiSfWeseHO96L+D9zSGqolBzDUwt5WE34H4/YK3uAgLLUMuCmbycLNbsQyiIx3Wor877jJMMU1cPaY+45r7l5IvgAX/9Xo9//eEuf+zXvPKIztfB+NHPrPIT//o2//DbG/z4D1w+088eRinbw4hRlHGhKbtvsgN8GL68NZBFRlOX73IUy+S/O5FFySApeGm+QpIX9IKEpmeSC3GsZssnId55OOCDrSH3uwHvbg75Zdfn8ExZfJ2vSLcuy3CwNJWH/YiFml2Khsq5MCwLAc8z1vsh720OeW9rwDfudfncpSaX2x5pobJQsVFUSDLB911rEcQ5WrkWDFWOUYrsym7eJM64Ou/R8iXV7iRo9STJediLpAuWobFSd1AUeRExdZWH3ZDuOOLf3ulQtXXWmi5rDQ9DV2i4JoMw5c21OsMomxWZrNK1r+WbxFlx7AWtEILOJOblBZ+2L4vMp8GCN/ohd8tLoqpJbY4gljouD3oBUZrxrQcDhJDf9eqcj23ApbbHZj8sqSeCh90QXZW6aKauslCTYvfPu9j87saQYZAxJONOJ+TVpZO/65xvogD9IMXUlEeoZNfmfWqOQVwUrDyjLslJMYrSGfIizQtu7ox5Z3NEIQTLdYdRqd/15lqNO50JtqHSrlrcWKzNigEn7efPI37u5h7/8r1d4izjV7+2wHLdoxDy8lKUFNhLTZdRichp+gaOqT2yvi1D4/MXG/xcVuBbGhVLA1V2xj1Ll3S8oaQvbQ+jEwtTe2XBBsA1NHxbZximpEXBlbZ36BzZHcVs9AMWqzYLJ4j9P0nsjmPudibc7wZcaDos1+U+v1J3yPKCvVHCMMyI85yKbbA9iBhGGRuDEM/U2R5GtHyThmdScw2iVOq45IV0BfQsnfVeiKbKfCHLBVGas1yzn9iSvlMWFOquAUKilhueyb+5ucfeWNJmigIUIYtKTc9kteFwe2+CELJ4E2cFWS4bK7auUpR/3jhGX+q0/TxIMm5uj3jYC1mq2zzoBgRJzt3OkN445kLLw7M0whi0UtvtyrzLWsM9pEPW9MxTC0pt3yJOpe6Tb+nMHUicnYO5xlMk8mlecGdvQs3VMXsKQZrTcHWi1EBBYXMgKVa5MLnc8kmLgrprMgpTuuOE9X5AzTbIhNT4aboGjqkSJrIAdzBcU2e+ar5wGvT9XsA/+94W4zjlo60hy3UX19B5c7WOa2koKLy04FOxDRarNp1J8lzRiXGW8+7miM444UFnwgebY1YbDq8tV2l4BipSmNmzdC62XSxDxS73hItND9fUWK7Z7Iyk+HmWC7aHkUSoIfPW3WFEXhQoKAyjbFY0AfAtWdhKymZPlOY0XBPPlPvVIMr4YGvIzijm+kJltqY1VYqOe5ZOZ5xQdw2uze+Lfrd9iyjNudh20TQp3L50TH4XpTnbA5kzFCLicttjHKV8uDOmEII3VmskeYFrarimzkJVFkQGYQoK3NkNuLFUk3IcpVxE27cYBLJA6x1pcE81blxT51J7/++uL1TYHERYmspywyYrBGkmqDg6oijYGkh30xtLFVq+Kfd/VeHrd7uM47ykoavlz9YIE1msMzQF25B/vtJwZrmCoigs1yUyp31Eh9DSVeZ8i61hxGLN+tikAuIs52c+2uEb93pM4pzPXWrw+mqDohA0PYsbS1W2hhGNsoHhGQYt3yz39v3zW1MVqo5O0zVBwFLdARSSvKDumLy86KOpku57e2/MV+91STLZSFyqOyea2DzP+F3ff4l/89Ee76wPKQrBH/+nH/Bf/PrXeGX5xaHMjwtdk03dl+Yr9IKEty82EMBmP8S1NG5vj9gYxeS53M9//Acuv3AqqKGpJerWPlRQMlRVGo7EKRdap6OlvvOwL9kdYcbGMORS63xdBw1dPscfeKlFL8i43Pb4/317HdvQ6AYRdztj/sE31/m1ry+haSqKQomi/XcPQfWkhalZdiKEyIDfpyjK/wX4KR7BELzYcEyNKy2PopCH5vYo5mLTxShpTr1AJq97o4SKpeFbGo6hE6byQqyryswRa2cYYekacxVLds1VdWYXO4XtHhWQjjOJUDnINddU5VgaWC9IeH9rhKErOKbOhaaLY2q8uzlEFPDB9pCrcz5ZLpP+UZhi+VIw8ebOGMfUTrWbLQqBqipUHYMfeunRxeaaOtcXpWbKi4BW/umfvknDNfix77t46v/v+mKFa/M+P/nezpkLU3ujGM/UsXWVumPQCxI0BR72IhSFWWLiWjqfWqnysBuw2nQZhTktT7BQMdnsx0RZzkpdOl7c2ZswjrLZZaszjulOkpnm0HGH8iBMidOcpmc+N2pkZxwTplKsMhey67XRj2h4Bu9tDqnYsqv++mqNX/v6Io6pS52UQoCyL+43V3k2Cs9pEaXyoiwpIAWdScS9vZCWZ7Dej9BUlTSXl4QvXGpRsQ0MTSGdaj6UMFnX1LlSaqftU63Ux85XW5fuRVMBX1NXubFURQipf7KtR3QmKYoqkZaTOOXr97u8ulTjUsubres4kxRQRQGt3PinzhjHQWlVRaFqG5hl19jUT0cGxGlBVgiyIqcoBFfaHml5GY13xowjOZ90TSGIU75+r8ultsta0511+QdhiqknKIoy6wTWHZO6Yz73dX255fKVWx0MVWHuMSiIh72Q9zclfWy9Hz5CD1mueXzuUoNxnGE8BwHKohB8836PWzuSnndl3mcYZ4yjjJZv0JnE/MKtLot1m7WGy+/9wcukucAqofvT933Sfn4ekeXFDB1Scwy2hxFbgwAhFNbLzvdmP6YXxHzhcpO6a2EbKnFWoJY6hdN95+D6zgvBL7k+R7V0wdN1lZqjU3NksaEXyIJTkGTHiuNGac7t3fGsOKMoUmBWOl0WGKp6iOIVJBnffThgEKbsjhJcS39m3QYhCr52t0OcCYZBQl7I77hYs9FVBc/SaHgGeaHT8Az2RhHr/ZhxlNJcMHl9tcbFhouuqxSFFL3OCkHNNmh6Jve7AbaucnnOQy8L0LpaeyrI/P3uhIdd6Vo3CiXy7mGvzxcutwjijKwsnjmWTlYUXGpVyAowVRXL0HAMrZQTyLF0+X6nLlMnxXH7+TjO+HBriBCyONn2LVYaNl+52SVOC7ZHMVFeULF1FAHDuCApIn7FjQUsQ2NnGJXocftUfZWiEBiayqW2d6ygfdU2eHmhcmY9n6MxLrU1FODW3pgoKciKYnapbPoG4yiX6PGWwcttOYfvF4L3NkfYuso3HvQYhVKTLIgzrs37s732YLy1VqPmGvjWi7l07wwj9sYxm/2A9X7AMEyZRCktz+TyvM+vfX0ZhETpZELMzsbzFOafhhCCvXFCIYSkrxqapEqNE1IhNRezvGCp7s4KnD/8ygK/4Y1luQeVLmhJXszG6ZfrPs0LdobxrFHYmyRs9GP6QYIQ8MZqjd4kQSDPWM+SRbmdkaT93+8ErDQc3r7U4Fv3ewzCFFWBeVVhbxKTFgWb/X1N0aptcH2xggKHcjHb0LhWUt6nTUhLl7n9wTA0lawoGAQpvi3nwuYgZrMfsd6NaHsGnSCVOqaKQtVpcWXO4+qcX2qUlrT67TH3uhOankXDNXllsfII0nQcZ9zdk2ioS23vUOP2rQsNXlmqkueFzOUEdCcxFdtAVVW+t95BURQWaxYrDZdJnLHZj6k7BkGSU3cMWr5F07O4153QGSe0KyZLNUeOtTh8DhdlobzpmWwNInZ3IhaqdpmjqXz6QoPsyL95EZEXgs44Js4KtkcR4zDlzl6Aa6qMwowgSbnXCdibxPzA1Tafv9zE0BQKJJpn6sJ28Pw2dXVGVZyv2vzIa4uIQp5veSGlML7zoC9lIEoE/1Y/Zs6zuLk9Js0kCvx55vtHQ9M0/t+//dP8F//gHb56t8dmb8L/6e99m//ht77JlfmPrzhlaMosV1/KbN5YqZHkgiBJ+dtffch6nHF7Z4KpK9zv2LzzoE/dt1ipOy+MDmqbKm+tVnlpwT+EoNnoBwzjlP4k5et3e1xsPurmPo26Z/DVu12W6g6L1fMvTOrq/nOM0pxpP+znb+/x3uaQW1tjuuMUQ1e40vapOSaGqp7KmvrFGk9amPqaoii/WgjxT6d/IIT4rxRF2QD+zPkO7exhGxrXSl63pat0x3l5oEuUUyggzXMUBK6hkOYFd/cmXJ2vcLnt8eH2iDiVh+e9zoR7nYDFqsXLC1V6oaQ/tX2LrBTmDZLDmL/eJOFhLzxUCDkt1nshd/YmFELw/Vd8Xl6sYGgqQZLzwdaIzjjELy1xbUPnWw/7DKOcjQOQ1MYJ1ML7nQnfeTig5hp88WqbNC/Ki4XKWsOdFVuyXDCM0hMLLecV724M+Zfv7/BHfuXLZxLB++FX5vlLX77DOM5ORVdNwzZU3tscMY4SHnYD5mo2tq5JRzYhCwBT/RhK/n9WCO53JyxWZednqe4cSv4vNt2ZUw/A5iAiywve3xrJ4kXNOgSnjNL8gPNb8Vwur/0gYb0fcntnglAEeV7w5mqdLM/ZGcV0xykXmjaX5qrsDmMU5CG8WLM5RmbjucXdjtQa6Y5jXENjzrd4Y7XKve6Ed9YHDAKpieSmGt95OODKvM9SzT51DiqAoSuc5QzTNZU3V+tsDSOqjs5GXyIhTE1BoHC17RElGQ97AdvDiNt7ASAQhWCxanGh5VEUgq/e7dIZJVyZ83hpXtAvHRwPCoUeDUNTZ/Six8ViXaKqphaw97sBFVsnDQQLFYuqJWkAG4OopPuWhRTP4vXVOgDvPOzz/uaY/z97/x1t2bqm9WG/mcPKYeddOZ18+t57bt/Q8d6m1Q00LYkgrGRkCTUYD8uGYQ0PWUKyxUBI4g/bMGxkhI2gRQskMAI1DTLQTcd7++ZwUp1TOey49spr5jk///HNtWrtVDvU3rvqNPWMccc9VbXDt+b8wvu97/s8z0LV5nzdRSAmGgrnG+6BVfUgTun5kv6yV+dkP4hJU7HnwWfoGq8slNBUhdYoYqZsT+hemqqwkNO9vCjh/dU+UZoxDDMMXd3loKgocK/t0xlFLJ3C2glzl5OP1gZUXZOFmsNSxWK9auMFUijfNiM6fkTB0kiyDNfUKZ2h4OlKN+DO5pCVnk/J1lmo2CxWbXp+zHsPewz9jIWytGq/uT7kXD2j5j69kwXgccfjW/e7fLQxpOGavH2uQHsUc2/LAwFVV9K2xvStUZgwDKUYt6VrfOt+h/V+iKLAj1xrUrT1ifmGpkrXy3HnSXskKThpLqyia8pT6ayHxQerA7wwpTWKWKzUcvHdJ0YBl2eKXGiIyYVvrRfQ8SKCOKFgqtRdg6/e3cLQVd5YLBMnsmU+EYI7m0M+XB2w2g/43KUa71xsHOviNdajfH+lz9Ywlsm/gsl82aZZNNBUhdmyNGtYHwbcXBtQcUyqrrz0BUlGkGTUQwM/zljt+ggBy3UH+4jC8mkmuNcasdYPedT1mS1ZXJkpMlu2qbxh8hu3WtxreSgCXMOgbMOHawMUFN5f6fPmcmWiY7PeD/ZMTKVpxm/ebtHzZCFkvmIzDBOSNGMUSUHooqnTGklh4sMmU4QQbAxkUnG2LOd/14sp5p1DYSITU8Mw5XGnx1LVwY8TSfOKEmoFKTA9X7Io2xp+JKnOcZrlVCdZYTb13fu0beq8ekYad91RxN//7mMedXz6XoylKWg5tSgTssNm+kw87SN8cyDPt0ddj6ojOwvfXCzJDt72iFGY8PH6CC9OeLDlESaCD9f6aJrsTnfzsT5t7Rh5l1KYa0D5cYqpa/SDZEIhE0JI0f2qg2vq3NsaESZZ3n2lca5eYDGTNPhhmBBlGX0/RlfVbZqi4yRolgked6W8x1LNmfz9w47HKEgQOR1vGpoqC9UFWyPKqYiWoUphbV3FTzK8KJkktL95v0PVMfnyKzPMVxwsQ2q/+nEq42xfFsNXulL3drHqTM7maXrZw7aHqcuO95JtTFw7H3V8GgVT3mXiFIFgseJgG9INTUFhtmTT9xMGQcIwkp2gqZDi8g87HrfWpf6lH8n3o6oKlvrE8XesLTVXsag4xoTuut4PMXWVB1sj2dnmmhNdsLPCas9npSv3VgQ4lsHVmQKDIOZWa8AoiCg40rH0/ZUeS3WXZsHaplt2EMafZ2sY0hqG3NoYIBB893EPL4jJMjjfcJipWHy03ufWxoAb82WWa+6ZOvU6tsl/9DOv87//W9/i3cd9upsef/znv8Vf+bc+w/nG/i7wZ4Xxc3Q0eTezLY0MhThLqJg2d9sev/D1+9QLNv/KO+e4cAR33mdBEGfc2vKouOY2Jk2jaNEdxgzCmJVOwOYgZHafWDZJpXahpe8d5wsh6HjxNgmZnRgEkmY7LnLvh/He/+ZymUEoNRw/2hyxMQopWzo9P+VczWHuBWX0PCuOlJgSQvwb+/z9XwH+yomM6BhQlCeOV5YhK4+Lls58xSITsN4LaRRs3jpX5fbmkDiRQfRsEGPrKq1ByOYwZKnq8P7jPv0gYRjG1FzphtNJYmZLNnNlCy/nnU/DmxJbDpODHbEMXc1bQQUz5SeOHq8vljlXc3l/pUc/SKi4BucazsQpZpzYMXRl28HgR+mkkn13a0TXj7nbGlHKqRoP2j6WIQ/rsVjs3daINBN0vIhX5k8vGPtLv3qbgqnxR75w8VBf/+VXZvnLv3aH3/i4xU/ngo9Pg6IozJctPvZjOn6CqoW8tVzNtbUEj7seH62n9IOYkmVQslU+3hhScUyGYcJ8xWEQJLiWJjU8TA1VVbYl0cq2wfrAn1Re/B2JybGopRDsKXJ9ElDyPP8wlMLhdVda1zeLJr9+a5OBn7IxiFiupWyOUgZhghfJC+ZZtl2PN/3WMKLmyordpWYR/ZbCg45Px49phhlzZYV7WyOCRCaMLzb3b7g0c4elvZJBQghGkbR+H//7Ys1hvmKznoszD4MEgcg7N2zON4p8/orgw9U+Dzs+q12fO60RzUc9GkULP07x44Q4yxiFkgo7TkYnaa5ZteORWobKxaa7b3dIlgm8PNmpqbK76u1zcp5+sDoApOHBbMlGUeBys8A7FxvcbY34aK3P5jDkYcfjWw86zJRsyo6koQoEPT/CMTRGUTIJcoMoPTAxdX/LI0oytoYRr+1oBx8EkiYAUuNqZ0eGY2o4pg5COg6BpFxN6F6mNrmMNgomzaKFrsIPXmjsqkiNQjkHSraBH568W+QglF0q81VZ/S2YOr5tcLlZ4Nb6kPYoxooSTF12S86XHIp2KnWJzsjyWFEkHVS6iToslG3+0Dvn+acfrLHSCVnv+ZQsjYtNeVkbBDGLVYd64ekaE1HeiXWvNWJUTFmqOsSZNA4wdJWKa9LzEwxVwdZVbueUskGQMF+xt9EWHVObnDtjt0k5dmViqAEwV7F5NU+ancTz6/kxZcfEsTV+7HoDQ9eoFcxtnQfT/32u7rLWC1BckzAR3Gt5bObixYsVm7mKxShMJxSclZ50w7q5NmSp5rJcc9kahqz2pJbLTrH+vbDS8xn4CUIozOVUl0+dqwIwU7KJs4zvPOiw1g8oGBqtMMLSJJ2w5ur0/QRDVxhGCe8+7vPrH21ScQx+8FKdH7raPHK7vqJAwdS40HBZqrq4+XlWcU1+/MYsdxtDHncCHFNjoWKx2g2ldIAqn6WTU3+mA+zpOONRx+e7D3t5EC73xzjNWOn5LFddVlP57LaG8rmPKVZjpJnAj6WBw3TVfL0f8r1HXUZhyrl6TNUxKdsGlqGyUHZYHwQ82PJoDeWlYbUXECcZrVFIyY641HApOxUGYULFNTF1OWa3pNMomCy/IEYmH20M+HBlQNuPcA1NJiKE7Hgt2gbnamc7zun5pSqyet/xpX7RYtXBTxLiRCCQXVSqUPjavTaZgHYt4rMX99+HLEN2I47nkqkrLFVtWqOI2ZKFHyXspQRSsLTcFVNSRKUERYiuqVyfL8nibgZxllKydSxj94Wwmyc2QSZZvSjlcddnvSfNI2oFnQt7UHKki/UT05JLzQLepRRFhbJjoCoKrjlCURTao4iKYxBnsssWZBJOOhdK5oVAmei6tgbh5GweC6knaUYvSEhSwVoWULIN2qOQ37q1xb2tEQsVh0wI/EjSHwXw6Qs1giTj6lwx79KW94qZkjUpCASxlKYo2Tpxmu1JQYvSTOpmAn0/plmQ3bhBLDsqb64NePdRn81hwGzZYrZl887F+pk51amKQhCndL2ImmsyV7ZYfGOBD1a63FwbsTGKKWdweUbGNMMoIagXqLiVI/2eLJMafCtdn9ZAuj/3PKlLVi9YfPFKg4KlyULwKMLL98OzRtm1+NO/9w3+2H/7Ddb6IR0v4v/+T27zn/+Bt14I9/UxFEXh+lyJD1f7LFULxGmGo6s87AT0/JTvPOxwvnE4h82TQMU2GEVSV9jJw5KFqsNb5yvcWh+yUHuyNrZJF+SxbMnWGYWpLJLsMea1/hMzmGtzuxtU4jTj/paXa5ul24xb9kLXi2gPY/wwJckyEPLsDTPBbMlivmpP5t/02fw7AcdS9VQUxQb+BPDDgAB+A/hLQojgqd94BjA0SS242/NRFMG5eoHlmkPFMXKOuzJJUtRcMxfITKk7hmwPrthoWsRSzWa2YrHek2KEhqbsq9syU7SIkwxdUyjbBz/SqzMFHENepBd3HBRBksoqVEV2aFUck89erOFFKefqrqRsqMokmOt5MTfXBuiawo35EhfqBW6uD3JNrBTBOLsrKExdElQV0gz2spE9KdxrjfgH31vh3/3Ry4euXnzmQo2ipfObtw6XmLINqRlTdiRlpFYwc10hKVjYGkSESUoUpwyDmLJjs1B2ECgULIMLDZcgTrnf9ri7OaLqGpyru3RybYBaQSaA5soWHS/Gj3cnJi1d4/JMgSDOqJ7wYT3W48mEkHTTgsGonSKAS40CigqPez73Wh5zZYvf9/YC33vUp+cnjKL0WPSJ444xTCTNsGRpmJpCnMJCxeJczaHvRwzDBNvU+d1vzqEoKkL0iRJp3fs0jKl8e/3eB22Pvi+TR9fnnrThqqo0DQCk8GiU5hbhspJzru5Scw2qawOarimNAYTUxTpXc6m7Frauc21eXr7nKzaCAMfQ9rxsq4qyb1Jq2jnLMTWuzspAWLb1y8RblGRoikLHk25HqqKwVHVoFE0qrsb9lkyM2obG/a0RnzpXpV60SDJYrttYhqQPenkF9jAiw+P74F5bwLTL906qA8Bsyeb6XBGVJ+Ky4+etTNFGXVPnymyRKMmouOaetvYFS827G5MT1UsYz0tL1yiYGudrLmGSMfBjmgUTQ1UkpTLNKLsG13IHxV4QUysap06HnNbaKtk6XT/CUOW1o1mU9I+eF/Mb8Ra2ofK7XpulXrARCEahpIAehMWqQ8nWqbkGMyWT2YpFP0jZ6Ae8tVymbBsTionCkwT7WPy3aMkLfbNk7erQHQdutYKJqjyZxzX3ZBMAn7tY57t6j3rBkDTgMGZrFLFQcSYdRyCTHev9AF1V+IFzVdqjiJJjILKMYRDRLNm4pi6NNfLi8vW5Eisdn7tbHgVLn3TJdnKaUd9Pnup8O4alq3iqwutLZaIkYXMQsdqTml39QDrAnW+4iEyQCoULzSI1VwqMl2yDkm3IZIAXMQhiNEUhyYsrRw3cNVWRHVJFkwywdX1yYe/5MYO8G0kIuWdrqsqPXm/ixynzeXX4ykxhG91taxhOZATGNKCyYzDw44nbn64+6YZ0TW1bbLEzzrjbGuFHKa4lf94YAjEpwgBcarp4cZobVCgsag7nc02u91b7ZFlGvW4Tr0kh/ycFSml4M3bzK1j6rrMwTFI2cymA06RDTK/zjUHAek8m1yxDwU00Xl0sYWkqW8MQoSh84UqDpTNITE2Pa+wQ+dZSBUNX2eyHJFlGEAmuL9iYmsXGIKTmmoSh7NzJEHkx9unFBFVRtiWMGkWL8/WC7D6eL3KpWcTPtX+mTW9Wc6qcpsrihpq7R3qh1JOqOAadUcxM0WapKguMUU7BH2NseDD+vGGckWYCL0yx86ToWG9pGhcbLqO8oAFQsg1eXSiTZJI6rakKN+bLPGx7eVEo5WKjwFpPXoHmytY2ymiWCSxdYWsY0yg+iRPG9LKxVEgYZ5MkcpRkCOR4jTwGms1dKGeKFqauoSC76xRFdnIHiRSc7vnJJGZtDSIMTeGdCzWiJNt1gbV0SYXu+dIoB5BSIrmL2no/kN1umSCIpBt4J0/GnRam56ahKbi5lEOcCqq2wVLdRUGwlTvy/ci1JldnS9xcGxDE2bESRmMnxTSDyzNFFioWozCh7cVcbhT4gXNV+kHMWi9EU8Ax1W2ukzu1M08Tl2ZL/Ae/+xX+zD/4AISgPQz4+a/c4V//wYtYh2CanBVeX6pwe3NI2TbIBMxWTL59v4tjKLSGPt980OFczZ04pJ7WM9RVhWEQU5wtTBoMQFJpX1+osFR1qbpPzK7Ge8J0LPv2uSqW3mOuvLe77HQ4tpcO6fR3HIZYoeQd4VdmC6x0qxi6jqEpfO5yXercCljr+Wz1Q5K8KWIv595PIo77Cf46MAD+Yv7nfxX4eeAPncSgngVFU2ppPGqPaA8i7m953JivECbSXrjtRcyVLD5zsUaSCh51PDYHAcMg4e3zVeZLFm8slicV5WbBOpAHa+rqnvoKeyGIEn791hZ+lPDpCzUUhYl1tB+lbPTDiUCvrqo82PK4PFNgqZZ3SAgxuXRuDkJ+7eYGgyChWpCVrYvNAu+cr/Gg7dMPUj53ucJSzaFoaZSnbJCloOPTBZqfFf+vX7uNrqn8Oz98OL0okInFz1yo8dU7W0/9ujjN+HCtx/srfebLDktVB8eSrdd3WyMuNQuMooT1gY+mqpQcg6prUXJ0Pn3epuvHLFUdMiHpX2P3mDBJaecW7BKCthfjhSkLVZtLlb3fs2vqnKT0Q5ik3Nkc5Uk1wccbA5JMulOVLEm5+erdLYqWzk+8MosA5ssOtYLJtTnB5iBkoWqfurXoo45HZxQTxCkbg4C+H0v6nKLQLKncXOuzOQipOCZ/9Ecv41o6yzUXL0oIYxnkHac6vDWU+lrrg4DZokWcZmSCCS8b5IVZAR53yQWjMx7miawkk3SCoqVzea4oxUT7IY86GnMlmy+9MkuaCmzzSYfIQRWOveBFCXdbI+5sDlmsuOxkNimKwrm6I3W5spRhmDIIYr56dwshJOUjFhlzZZuipfGg7bM5kN0cn7/cIIzTSSCrKByJRnqhIdvhd4oAg9TpW6pJi9/mHvbWG4OAe5seYZJhGTqXmkVqBTMP9uVhnmaCQSC7Hs43C9zdHBImGa6lbaPCrnT8J45euZvTsyDLZCIwTDIebo1Y6Qc0CiarPZ9RlHFnc8RC1eGzF+vcmC/nQtcOrdwFaqZo0Shap7p2xtblHS/Ei1IetDzWBwGqotLMBLc3BsQZzJRM/lc/dIGSI7soojTjfN0lTFOuzx7cuh/EWd7VYlDPxYAfd8LJxSbNxLZOxCszRRmMj1RaQ5kkKds6a/2Q1xZkN1RrGHJvc8SDjryUfe5SnXpRXsSCOMU9oS6zYZjwvYddAH7oaoOOF/P+irQ4X+v53FwdcGW2MHFJag3DSYfO+brLYlV2GfzjD9ZJMkGYZDSKFkLIC7WqSl2uL706x6s9H8vQJhfjmmsSxLLr56AE5Vdut/hwtS+LGHWXrWFM309Y6/W4Pl+k5lp0vYgPVgdkmeDt8xWuzJRIsyf0w/HvaBQtPnexTiEXVv7cpaO7LqWZ4Bv32rSGEa8slHhlXq7jrhfxoO2hqyqOqXJ1tsCHawMGuZ7itbkSozBhYxBQc80JXWFrGPJL318lSgRLuQ7bTNHmnYs1toYhtqmTioxmyeTqbAFFUSYuX+NOjp3J/CDvMh///xhzJRuWZeIqTDI+XOtTtk1EJrjb8lAU2e2XZgJdUYkBW5OFoXrBnGh/FC19UgAYX8Klu2uEY+jYpqRWDYOEzijGtbRToSeN939VUag5Bv/0ww0+WOuTJRkbw5AbC2WuzpS4PieFgxtFc88OnpPGKJTjUpCXqNubIwqmxkrPZ65s8/G61Dt9b6WPQPCpCzV++vUFBNKIZxgmaCh0g/hQHYXTKNs6tqFxuVlkaxhRMAMURWG9H/D9xz3myjbn6g4P2iPSVJ7jqRDEScZaL0Qg6K9JrbDFitSpubs5ZBAm6KrKK/OlSczumNpET1VVIIhHLFYcKrbO5jDiXM3ZZigET3SfdE3JO5ci+n7Mo450sCxaOpaukmUZti7PspIj7x1jCpyuKTSL1oQyqqqyy0lRpEP2bCnbtu8qisLVmSJR+oRxESUZ9YKNrqq8c6HOX1IV3rlYI8vkGO9uSsF1P07zpJngN25u8o0HHZbqNtfnztHxYs7XXXSNiWaXbWi8slDelqhdrrkE8UA6ISYpV2aKmPkzfG2hTMHU+fSlKmGYIRRONZE7PhuDOGUQJNzeGJIhDXB0TeH7qz0e96T+1R/54gWEkHRuL0pyZ3NlT73Ew+DNpQq2qWJpGpdmCsxXHLaGET0v4rsPu2wOI0SW4UcZ33rQ4YPVPpcaBSqujH3O1dwjUQifBV96dYH5ssN/97UHfO9xj7/+1Qf86kdb/OV/49NY1tnJEDwNZdvgD35mWWoqqwodPyJJMr5+r8P7K0M+WB/x9nKVH73axMuTxqeRXEkzyXTYHIYyRrF0kjRjpevzuOczU7A4X3cn7tbV/H1OJ6a+db/D5iBiEEgH253nxXzZxtAULE3bU2ZH1yTzQzJZDl4/FceQxSzhUHMtHrZHNIqSfdALUr5+t8VXb28xCBO+eKnJpy/WWajY/1wnpm4IId6e+vOvKIry3ZMY0LNCUZUJJWIUjWh7NucaBYahym/fabM1jGh7soLQ8xPut0c0CjapEDiG1HU6nx+00u1NVhdPwgUlzQQ31wes9QKKls7jjoemKqz3QjaH8vI0FkcM4hQ/jpnJA+XOKOLO5pDHXZ+ZksVbSxW+/aBD24uk9kbNntjdF22DKzNyUbmmTiHfpDYHAe1RRL0gxVKFJcVadVXl/Am3uK/1Av72Nx/xhz977sj2lp+/3OC/+Ecf0hqGNPfR1/hobcBvfLTF457P5iDiXM3F1GUC6v7WiA9X+zimNnFO6PqhFFJ1NGoFi1rB4mHbo+vFFCyN+YqNn2tjeFEy+T3Tbc5dL6aZX2w2hzIAmXZFWO35jML0RJz8en7Mei8gSjKiNKWVU7mGgaQbosjKjqapdLyIn3lrcRIsnKu7pybSvBP3WiOiXL8jiDM+Xh/yqD2i7Jqs9AKiVHbwNIoW9aLJ9Zw26po6by4frdV6Gt28Lb5syy6HmbJMJKSZYKUr9d4qtp7Pj4Cb60OCOKVRNFFRub81YH0QMl+2+fyVJkXX4E7Lk4ngZoGKW+QkumIHQUKWSTqPPiW+ud4PCOOMesHg9qa8uHy4NqQfRPhhylzFYaUrtRUcU+Xt5RrX54rcXB+y1gtoFi0uNAuTpNRh4Mcp/+T9Na7PlTjfKGDq6rYK9RhhkmKo6lO7rqI0yyup6jZq6/QF9N6W1K3QNYWrM4Vt62h6T7izOeLD9T5ZBh+uDQ/9efZDP5CXiIEvhe39KCNDcLFeoOOFrHQCPt4YECUJn73U4FKzSNk1KZ+CqPB+WOnKBOP99ohurlHY9SOaRYtbGwlRAonIKFkGn7lQ48tzpUn31yuH1MFJMsG91pCNPDFsmTqmprHak/pFUZrS9WKqroGiwJ1NSXG+PldCVRTutbw84RxKSvso4vOXG2yNIu62R4yCVFrX5x1F2g4K9LPi/cc9PlofUrJ1qgWDNIXZskXPi2kNQ1RFZRglfOp8DWXKeCQVAoE0AInijI1+wPurAwrWiKqjE6UC25C6R8s1l3rB3NWh0siTkwchywTvPu7yqBPwax9v8uM35tgcSPFzIZRJB1GSipzqrdD3E37rVou2F/L6YoWKY/Dth10Khs5nL9ZYrLksPkPHzOYgkN1NhnQbfGW+zP2tEX0/5vuPenkCqYRtSKOGvpfkcYHBSjcgzQTvPe7TLFo0iiY31/psjSKSVLBYs/P5olBxK9zaGOJHKZoq9QR1TcWPEu62hmQClnM9mo1BQGcUT5Lc5xsu3VGMa0nx6WGYSC3HTMhu20RqVT3ueKSZmBTQZDyjE6cCP0poDaW723LNZbG6/VK4s8v21saAD9cGqIrCl27MYGjjpMETg4uTRt+X+3/Hj/jKrRZfu9+mMwwJE0GSSmH7qmPwysLZ2tB3vIjWIJTucobU1bu16RMnGQ+25DPvDAP8RL6X4FaLbz/ooCkKX7jcmJzjx0WQpNxaH6AosDmIaBYllbHnxTQKFndbI6Ik43FX0sfGerGqChv9kCzvELg2VySJBR+uDYjSjHN1mYxWp/oTOqOIfhCjKSp+nDAKUgxdZbkmndjCHR2RrUHI5iDEMTQ2rYD2KObW5oD2KMLSNWaL0sk7E4KiLemGS1Vn28/Z2Z3X8+I8fg+YK1tcyY0WpqGqCnau+7TWC3j3cY/vPepKrR4z72zTNUZhwno/YGsoaY1jiuAgiPnKvTZ3NodsDAI+d7HBcs2ZFOI+XBtwd2vEbFEaR8zsiMuDOKMXRDzsSH3XubJNexTRHoUEUYppaCwfQrvyWbGan43DMGa953Nnc8T6IGCx5rK5GQKCIOyxUHX4sRszfP5yA02VScQ3lqrP9LtdS+ft5drkzzMlafTxm7db3N4YoalyDy85Gh+uy+RYJgTzZYeSbaDAkSmEz4JXl6r8q59X+Mbf+i6dUcR6P+Df+fmv81f/yGcxjBcjOWUbOj9wribZPetDPlyTMcl6P8A2dAZexMCLeWO5Qs2VHcYnnVwJ4pQHbY9BEBElCa6lM4qkBtxy3i3VGob4kSzk3ZgvbTs/4lzfrefHRGmCpjR2/Q5NVSZxrRBil8kPjCUwtv/dtx90JgW1nRh3JUZJxq3NAR9vjPjuoz5Vx+Qb99rczjVl31vr8cpSeU92wycRx33731YU5fNCiK8CKIryOeA3T25Yx4emKmwNQ3p+wtYwwFRV1no+r8yVqLkmnVFEwZSdByCpHPMVm6ItK24198lE2MgFQKVLn4oXppQd49iV9PV+QJrJCpWC4GKjiBcnrPZ8hrmwYLNgYupSJFIQ45paHojJan6WQZZJocS1vk8mpFj3G4uVSfB2rubSzilB46RJZxTxlduyC2m5ltIsmpOFuNobsdY/WRbmX/n1O2QC/tiPXjny937usgzQvna3ze95c2HPr1Fzl59q7pQ3UzJ51PXZGAREqaDhmsSpYLkmK7ZrPZ/NYUi98GSz7vkxw0AKI1+fL3J1toila7nFtSQU1AomUSID53GScGsUTeyE9fwCH8QprUGEFyWMphJbx8UoSBiECYMg5lzdZqlqEycpW5rC1jBCAfpeglAE5yo2H28M9qWanhZ6fkycZqz3pD1vxdYZRTZhnOLFCYMwJROyyumaGh+vD3l9sXIiPOhm0WIl8VlwHZZrzmSebw4D3nvc52HHY6lqY2garqUyCmOiVIoCX5stEabSlSsTCm8tV/horY9t6PhReiKCzWNUHIO+H+OYJhcaBQxNpTOK+PrdtnS40TSCJGO2LNvG41SwPgwpOgZemFAv5PO47qCpUkOj58UoytEPoDDOGAQp76/0KdoGK12fgqVzcYrnv94PZNemoU4MJfaCCpQdybnfr3qa5r3N466cqmvQz12ntn2dyNBVhUyRtL5nhdzXEtYGvrzQaFKj5Pq87Oi5uzliFKb85q0WV2ZKWLp/KOrjSSFOs7xTIyJLBY6hMVe2cQwVgayG94OUrWHIctVhfRCyMQxZqh4tWREnmewWtXRc02C57uDFKY2C7DAM4gxbl523UmssnmipxWmGQLBUdVm93+K9lQHzJZuZskXVMVmuuAzsmKpjyHGfcAt+14uIMilobRkqmqJgmSq6pnCxUSDMdYXmS/bk99YLJgLB/ZbHw7aPgkLJ1nENjTTNuN8O+cXvrfDGUhVVVTiXSafOZ3n3qqpQcy2++6iHriis9XyqjslcxZIdzI2C7EgUcGdrRJZJuve3H3QZBpJufalRoO8l9ElYHwQULIOHbQ/bULnULB4p3hiLh9uGdCf9wct1skzQGUUMw5SCJR0ZbUOVwvHNIt+436Zk6zzOnWzjNCNK5LN/+FCKRDeKFqaq8JkLtW3vebnmsDWSBjG6Jmk/tzeGtEcR5+ouW8OIxarDrXV5GRkH5WXboDuKWe2G9H15XoZxxv32iPmyTSbAUCWdca0X0BoEvH2uhm3qLFUdipbOo45HKmQhqu1F2Ia27SzYiXGRIEPQDxKWqg5lx5BitqdEea+6Bqs9n/vtEd+432at5+e6fCaaRq4LKDucj9p59CxIckqsH6aUGy6XGgWKpk7HiwkTSXtfqhfoBilelJAkKbdaHjMlC8vQuPYMiak0k9QaXVOJMykkXi9I6pila9iGimtq3N4YUcgZECA7Dq7OFlEVmbgUgrwrN2G2ZHO3NaA1iGgNo0lxMEmle7FA8GBrwDCI+WBtyGzJ5IevNWmWrEnMP8YgiFkfBLimxivzRTpejGNq2KEmXSbnpd5lexShoLBcc7Bz6ujlGfkOd16s4yx3K0TB0DS59z4lb7A1Cvlgtc/X7m7RLJj8evnJhXdsnFQay1c4JlGSkQpBydKxNI2yrVO0DKquFAV/2PYomTqOrqEq8P1HPV5dFNs0pyquwbfudzB0lYdtj3rBZKXrE8ayu/zKTJF7rRGaKosAl5u7k2vPivH7bA9DMjLKjknJjqTuq6njBQndIGK1E6BoMoHX9qIjF78PizCR8UJrGHGvNZJOhxULXdVYqNgULYOyY+auukF+V8vOREJjjFcXKvzMW/P8V792ByHg3ZU+//k//JA//bNvntkYDoOuF6Eg8OKEUr4+RmHCWl8gHnUoOXLO1k6lQKigawpa7nAKsqvWtbS8M9HkYWesqbqbum9oKkVLQ5AxU5LmWKWnvOO7LRljjqVhxhBCcG/LYxQmLFRsTE3lXq7luh/Wej5fvdPmew97RKmU/MhqMmbWNAVVSEfPZtHC0P451pgCPgf8LxVFeZD/+TzwgaIo3weEEOKtExndMTAKE5ZrBeZKNlkmaJYsZosWfpzx5nKZ6/NFZks27z3u0RqFvLlU5eqs1HuY3mQNTZkIAI4PyTQTFLxoYukIsmI6ihIcQztwkx5v6J8+X+NCw0VR5AE0Fr6VdCRB2bZoDaSg8ZjzWs3tZh+YPhVHJ4gzXl+o0PEifvBifVu13zE1lszd7cmuqTMIZDuskmvitAbSorxZPLmNtOfH/MLXHvCzby8eq3PnzaUKrqnx1Ttb+yamrs6VcE0971Ay6XgJUSKougaPuj5xIpgtSzeiKMn49sMujqETTOkhzJYt2qOIRsEkyyCInmS4x5eVIE4nwa7klwdMv+ZxpdXMLYZXusG25NdxYRkao1B2IRVMg9/zVoOP1vq8t9KnN4p4PAikE46qYBjPbsl+HDzp7EspC8GXr83y6mKZr93dYmMQ0fdiHnQ8rs0aFCyDgqntcmQ7Lip5QnIXhOwMCuKUOBVUbI2lqs2V2RL3Wx5zdYtXFkosVG3ub41oFmVwcb5RYHMYE+Z030bROpRwcxCne/LJx7ANSZGZhh+nJEJI8UxDoVEwMTWFN5erfPtBh0uNItdmS/zAcpX3VnrYhsZbS1XiTDBfthHIZ9/z4kO1jY/dfMYX3HElVAgYBsk2w4ZB8OSSGGfZxLlnN6TjWtlRGQYJfSumPZTipOMxna+7bI2eJMj32wtuzFd4Y7FCiuDHrs/y1w78RPtjrAc0CqXj0w+cryAyldmSyaWZIlXXZL3v86DtM192GOV29GcJqbcj6AcRFcfk1QWpRfKo67HRl/vxg7ZHwzVRcrephns0ZzZg4lz3xatNHFO67imMDUJUSraOH6fMlhxaw5DNgYJrahNL8LJtsFyz8aMKAz/D0BUMVYr894OEqmPwvUddvvuwx/mG7NI8qYBcUxUqttRXjJKMnhfhRRmXZwvUCiZffmWW9X7IXHn7c9GVJ45cw0gaiLyxXOFxL0Bpj6gWTII44fJMKdd2evZ3/+M3JJU6TFJcU8UxdbpejKWpk2LBej/gYl1eWqXbrkYQp9Rtk0bRYqUbYOgKVddkcyDNTvxIrtvDuNOOMe4ce32ximOoNIsm97ZGCGSH3HLNIU4FUZKRZQJVlfS5MMkmncPDQCbEH2x5NAomM0WLiqNzru5Kw4Mp2IY20ZgDGWdYhkoipD7W+IKe5vTJ6c6kYSj3Gi+SXcajMJ3o1J2ru1xuulQcg5trA3npny1yoVHAzBNgi1XZDSKTWBpCMNHx2wuvzJekAG9u864oyql3f4Ccy6Pc2WumaLNYdXhtocS91hBD12kWpUbgWcI1NRxDnySjP3+5ypXZjI1egKZJEf7NQZTTfTM2+yG2IbvpniW+CfKz2TJUXpkr8v7agLprYJvbtcZAFhiSlG3vyNI1rs0W2RxKyQvXlHqMkpJuMFuSVONxYkoK+av4UUazaLI5DNA1uU6KtrGLxgfyDBSZYL0XkAmklEbVIcnkOTmOtequiR9vL8zs1+nRKJhcaBYwdI16wTiQNmobGpahUbR0VE3F1seaN+MOL8HV2RIgBdHvtIbMliy+/Mosl5sFrs5Jav1aL6DqGrmzGJQcncddn5JtsDWMtiWmtPyM7nrxRAC/ZOukWTxJ3gkhyDKFMJMdjRXnZOftmFo6jFIcXePzV+vcmC/xuB0wimLO1xx++06HK005fw1dpbAHbeqkYKgySWpqKueb0rH5zaUyBUOn6ljMViwWKhZfud1hFKWkWbaHjP/p4098+To9P+bvfOsRuqbyoO3zWx9v8MVrs89hNHvDtaRO2NtLVbZGEZebRT5eH7DaC2QsGqYHyuYcF2Vb59pciUsNF0uX82WsxTjG+bpLx4u36QRv9IOJ2VSSQtWxyDLlqcUiIaQGKDw548aI8qIkyK7VS80iJVufxN17oePFUtvW0CjYOqamoKiwUC2QCliouPzw1SYV18DU5Z3sky6CftwV/dMnOooTRL1gsli1eHWhSLWgc7lZRFEVbm0MqDgGN+bLmLrKZy7WGYUJRXu3KCbknO9cvLDnR3S8kLJtTroAxnjY2Vt8WQZ92yfvbMnC1jU0FR52fJJUsDWSlfC6K3/GKEzpaBFBkhLGGV6cMm4sLTsGV2ZUXFNntedLalLBwjrEBXqmZBGlctO8mNubVhyDN5er1Asmg/DZu3zG+B++8RAvSo+kLTWNsc7Ub99p7/nvY7eMuYrNrY0hj7shsyWT5boMur90YwYFZSJuaeoql3JdhKuzpUl1f7ZkU3EMHndkZ8X0JSXLpB1yEEth9QuNAg9yR4WirXOh6aLAJEhRVYULdRchdrdxHweaAo87Ppqm8LDts1STeliOoVGoOXzqQo1UCJJU0CzZXJ8r7TnnThOqAlvDiK1hhGtq3Gt7ZJnANQ0KZspnzlXxE2nr3Cia3Jgrn7qLyWzJ5sZ8kaqrS1F1FYIk48vXZ/ioOsDKu1OqBWnHXHNNHnU8Ls8UiRPBSs/HCxNGYYKlq1IbYp9ukLHOw1FRL5hSTyJJ6fsJozhhvlrk6kyBmmMwCGMqjhSUXqg6stMz10R7famMY2okGXhxgpNIOs5+YxRCcGtzSJwISrbOT70+h2vpdL2Ix11/opcxxnzFnlCNnxY8z5etCcUiE4L3V/qsdmWV+YtXG5RsY9uldRRKYdq9uquuzpZ4fUlqPTVLR0/AjNHzYh60PZIsxU9ksWAQpMyWDFBgfRBQtgz+pU8ts9LzqbsGNxYqUmvuDNeOH0sdu/VBhK6pbIwiFss25ALi71ysk2YZrVFM0dS40Cxgm9qRu5KsvILvmhpdX142XFPnlfkSSZpB7na0MQi5UHe5Ois7AbpexFo/YKnmMFdxiDPBIKdkvrlcoevLJOTDLY/H3YAkSyeOVxebhSMlUvZDyTa4NFPgwdaIjTDk5toAx5AaOK8ulLk+V+JS3p2QZYKtUSSp3LZO1TVyjUaFnhdxvl7gf/HOOb77sEuC4NPnq8yXHaJUJmd6XkzZ0Y/d8dUsWfzQlQYfbwzJhOA7D7r4OR326myRMMkQQuBFkiIzW7b5qTfmaA1CKq4x0Ugcd5HUCzKwtQ1VFh+OiLFOWMeLuNfyWB/4zJZsFioOsyWLx10fP8r49oMOcSo7L87VpYW9qkr6oamrVByduy3ZuVV2zANNKkAmvYWQ/z9Xtidn4VtLVR60vW1n7ELFZqXrEWeya7BZlB1vWSZYrtmoqsrb56sUbJ0oSWkUTFxD4+b6gJvrA+IkY6FqU3VlF6m88O9/9hZtgy9caR75eT4L3lvp88Fqn/VeyJvLJaJE8LnLda7PVvhoY8DmMGS2KAtoZ7kHzZZtDK2PbSi0RiHfetim70n3p2bR5LWFMrNFi9V+QMnUEQiuzkntl+PSpYI45dbGkK1RSBhnBHFC2TEIErGnwcAbS9VdmnVZrhUzU5TC3lvDEFVRJro07ZGU6RjmiSop5C+1m0xN5fJMke887GLpKkvVfcyMShZfu9tGCMHX7rX56TcWdumHCiFjBT/KCJJsW3J2jChOedj1MDXplndtrjQROj+o6HWu5vIj15oUTJWCZfClV+b480htRwWZgF2Yt3jUkUyH1iAkTuT8+cnX53FNTeqDCUltvz5XYrnmTjoq4zRlwd3++aW+mcu5mjQdUBSFC40CC5UMXZU6nWEiiyayg+TkE0JdP6bnR2z0A843XB5seZQdA9tU8WKFN5fKXJ4t0hpGlCyDt5bLFCz9VIXH37lYR9cU1vshJUtjpmhzc72PYcgiwP0tn0yktAYBc/m83OlifBb4D37v65yvO/zW7S2CRPB3vvmY99d6/NEfuXbmY9kJIQR1VxYHk0zwxlKFK7NFXlso8eu3NjF0hY1+yPcfdYmTlM9e2k2VexZYhsaN2SKvLZZ3zVsvTIjSjIpj4Faf/Ntqz5/cQS81XKquia6qVFx9Tw2pMRRFYaFq0/WiXVI0lq5RyWP8RkHKj3z5lVmCOOXP7vPzGkWTTAguzbi0h1LvLgOWKy7XZgvUXNlYsd4PuL0+pOKauKbGm0uVM70PniSOtbMIIe4rilIDzk3/DCHEt05qYMeFoaksVl2aZZtYgFDIxZmlOPJqX9o6g6RpPU3ET1EUWsOAr99r44UpV2c1rs1tr+qMeeVxmuUaElI/ZGsYTcTLpn+eZajca4349oOuFBiu2jSKJrZus5JnjjujkMf5gVNygsnF6faG5N1/vN5Hyy+EN+bKPNjyuNAokAmxb6bUNnZXpEDaw1Ycc6Kr9azIMsHPf/U+71yo8cbS8bnWn7/c4M//zzfZGoa7tD5GYcI/u7nBjYWSfMGQV29MKs5uN62Vno+qqFQcE0NTeG+lj67JgEU66u1+Lg87Hnc2Zcv0bCKD7THvveJIkdudWfN60SIVe7uYHRZxmvHBSp+b6wPp1KSppELwuBPwj99bx4tToiTjD35mmc9MWTQ/2PLo+THNkrmnJfBJ48GWx7cedEiFmFi3t4cRH6z1+WhtQJrPxX/x7SX0/H10RhHvPu7jmCqXm/vTxJ4Fqqrw2mKF1xYr3G2NGAYJfpjy0eaITCh4UcrdzQHvrwzZHIZ86cbM5D0WLJ0wzmgNQwQKMyWLZtHkUcfH1KVw4fQ7P4xb116wDW2yNt593EMI+d7X+iFBIpOuQZzy4eqAzWHEj15rTjoNbF0jSQUjLyZLBVtuxEzRYnMYYmjqLu2KTDAR9gcmmlQl22CuLHLXoiefaVo0+GkIU4Ghq6SpYDFPELeGAQsVZ9dz8aKEr93douslXGy4fOpCbdu/b41CHrYDwiTlN2893fTgaZD0hx5BklJ1pPD95iik58fca41ojyJSIfjyK7P8oXfOT77vXmsk6SBla5fj5klCCMFqN+DbDztSb6cgK+4aCr9yc5N7rREZsivuR67PTvaxNBN8tD4gSjKWa86hhDNBVp8Lls57uVZTwdL4kWtSW+dOy8OPZWJVURS+J7r8+I0ZmiV7l77Scs1leUrzaD2nfY/CBD+KSTKp0yCEDPIOc2EJYmn04ZgaAklN11Qlr+zL+egaUpuoF8gksZtT4sjtlsfdCWv9YKLRcGW2QKMo3QxXuz732x6LFYcLDZefenOBe60RrUFMEGXYpsbmIERBoVE09+ye2A9elEwuaBfqLlteLB24NNkthFB40B7xyx9uoKkKGbBQdmS3mi6FtkdBymY/Isuke6IXJXT9mJpr8tozuFOGSUo/iPMuuIg4zbjc1GmWrNzVV3Y5rnT9PPFuc6GhTvbjWxsDPl4f0Qtirs4UWRkFJClsjRRuzJaIsmzXvjHGfvtHwdJYqNrbuhvKjsG3HkgqX9eTifcokd164y1EVRQQ8O7jPg/aPldmirRHkezS9GPqrkHJMliouBi6+kIF4sMg4dc+2uBerutjGQaKkvGNez2iRNAoSkfGRtGk68VsDUe7YsaTRJqJSUFT6p+oNEs2IoMsVXjY9qTwfcGk6yW4loZr6GwlMRfqLl9+ZY47LY+1foBj7i3w+zSEOf3OjzIMVcGLZLKo7GrbNE6TNONernN1vr7dTv5urls4DGOKlsG91ihPTppcnS0iEHzzXocPVwf80FVJ1Rtr8wkhyITg7XPVp+7z5+oO1YLOwE/37WTojCLeXxlgG2oucL577/j6vQ7fedjF0BV+5NoMry6UaQ1DOqOYWsHYtqeOEacZq92ARtHk6lxpQs0ZJ3jDWNLE0kxwv+1TtnR6fkTPlxpaxdzRF2RHSJKKyZ83BwF/7zsrrPYCbEPlx67PUMyFnkFempdq8nNoUzHE+BxSkXTKV/fQOEwzQceLJq6mx8HWMOTXPtpkFCZUXemSHqcZ76/0+XBtgB/JZPsf/ux5ylPaOx+u9UlScWJFkTGm44LPXZYJbT9K+R++8YD3Vvo4hs7lGZcLzQKqolB1pFD+r97c4EeuzTB3AlqzR8W//oXLvLZU42985R7fetjh6/c73N30+bO//7mRmCYGEAoKsyWL8fXo1saQdx/30TUNXVHR1YRv3GuzOQh4ZaF8oiyQUZiwMYzQ14f81OsCLdcXbA9Dfu3jFpoKby1Xt9Gp4ySTReooYalms1y26fqymDhtXLIXmkVrX33kZsnEtbTJHFZV5alasbMleW5uDGTxL0oFyzWHmZLFrY0RrWHIzbU2HS9BUwSfudBAUWUB/Ky0hk8ax1rFiqL8GeDfAm7DpJAmgC+fzLCeDbqmcLc1YrMfMVM2OV9zSTKouDp9L+Gb99toqsKlZpH58tOdy7xI6jrJFl59V+JnuSZdG8bVRnhio93z412Z/EdteaF/3AlwDCk+PA6ILUPyXaMkpePHjMJ0MrkFssU1zQRtL2KmZNPJrVLDJOOj9QFC5IfqIS8urWHIaldeMs4rJzOBf/WjTe5vefwf/oUbz/RzvnBFZsy/eqfN731rO50vSgRr/YDrcyXmKlIvpevJ59Xxol2OHOMuNyGe2IDHibQMrrh7V1jjVFoXd72IDEEQZwRJStkyGAUJX7/b5sZ8aVdi8ziVEiFELsyXoCjwoO2Rioyqa/DKQkm6M7Y9giSjNQgp2jq3N0e8uljGNWW1aCyA2fXiU0tMbQxy/SFd5WHHI0mlhs21mQILVZvWKGTgR3LzVhVag4hHXX/iWDkWLJdVxvTIge1RMVe2yIRAV2VF/WsP2mSZrIREqQyOUXgSICpS9LgXxKSZIMjFDoUgr/Cm21r1a65BmKRkx89Dslh1JnTSYZhwZ2vI/U2PzaGsxtqGFFcdU5bGicBMCDKYJEwFMkjz4pTyVFAp7aidXQH2445Pz49RFLgxXzpyl9/DLY/HbR9DVwkSadWeZBm1wm6NgLFuBMg5sHNPzDJJvYvSFP+I+mx+lHJvS+peRElKx4tzEUqLKMnw44w4EbimxoN2TJLKgOizF+soikKSZk/G5sWnkpjqjGR3mhCCUZTmYtEKFxouzaJNz5fud34kXaVWugH3t0YTCqgfy+5ZkGfKYff3Mdq50+EoTAmTFIEMrBQU/LxjygsTCpbOF640Dvz5i1WHzUHIKEqoxxZtL6LqSlrcYfWaVnvSEa3nxySpoOtJmvT9rRHX50o0ihajKKFoGSSp7PJdqDh0ci2haV2Y6fzIWi9gFKZ0/Uh28+Wajn6cTuZhkmW8tyq1jDqjmPmKTZIefhH7UcrX7rYZ5jpFjxWfNKfhO6bKD19psj4IWO35rPYCKY6bOwQmk7No+549U7K4sznKk3vpMyUnvnW/Q8eLSdOMiit1M4u2PqFEXWy6tAYhhq7QGoaUXF0aauQYhClJJsXFR2FCmscdhlC43RoSJeLICZQHbY9RmG57V3GaEefPfZxo6nox5+vG5ILpRTLJ1hnFjKKEtZ5Ps2DRHgVcbJQoO7IrxtTVyc96nsgywZ2WdNNd7UozlNYgomyZ0t0y16ZMMik1EKcZsyWLj9al6cNeMeNJYGMQcHN1QJjrNdl55X6x6lIrSL3BtZ7O2gCGfoIfyw7+fhYx8FM0RaHrx5NYahAkRz6/x1qgW6OQ1iDM41+bpdp2J6lBkEwMNTpehDMlSzH++yDJKJiCVDzRMQToeQn5R6Trx9s6cB93fb55r0Mm4NMXqrs0vcIk5V7LQyC4MVdirSepwlGS7Sp2dv2Yivt0jUUvSsiEIErEZHzju0HXi1mu7f6er91ts9EPMQ2FH5wqPI73jTFF8YNVj8ddH9tQmS3ZuUZlysWSO+nGujxTYBSmlPMuxTQTJElGnFMBgzjLzS/M/LnH3MudL4+a5JmOJ46CfiAd+HRVam9GaUaUZlzNabt3Nkf4UcLQj0FBCtFvDCZGAV6UTApvPT8+scTUfnHBva0hraEU3+/5EX5iEcYZn7lQ51FXFrN1oXBnc4QXJ4xCaah0mgWvnfjU+RofPO7zjfsdoiTlt++0+YffX+F3v7l4ZmOYxljbDwSKwmTf6/qSsp4KQc1VWetLU6mZosVX7myxXHUxNNkN+axaZpmQ9z0vSrd1/nbz+D5J5fyfxkzJplYwKbs6JUtqxXZGEQM/YaZkHUsLK06zI5/zUZJxtzWSsUTeXVy0dYqWjLcGQZy7jgscS+W7D7vUCiaNgvVUzcUXGcddxf8KcEUI8eze3qeAMMmYKVpkGSxXHa7mLkO6Crc2JPUmyyBMkgOFRS81C/KAycTkgj0N19Rx69sf40zJojUMqbnmtknhRVLPRVMVXEul4hrbEhkFS6dgyQlG7s43Tkx5UYJrymDiBy/V2RrFvL5Ypl6wADEJePw4pXrI57StseeEYrq/861H1FyDn3p9/pl+zptLFQqmxm/dbu1KTFmGdBGcq9iTDb/v9yc6FjuxWHUw9RDXkNbfD9oeqiKpUFqo7HmYLdccXFPj9aUy3VFMz4+ZL9v4UULgJViGzdYoOhHb3LGrXZRIweGSrZNkglcXStyYLxMmKZuDkE9fqHJrY8BsyeFczZ18VkWR3T0dLzrVFuL2KMKPUoJI6p70/YRLVZvPXqpPKF1XZotYhoYXZbwyX8KYCugaRZMwSSd86dOGa+rMlGTg4JpSnNTSNfpBhJEomLrGUsWZ7AFSa0zgWpoUvndNDF3Fj6X2ibuj/V5RlGdOAtYLJsWcWld2dGxNiumHcYqCpBov1Z5Ujeu5dXajaBIlKbqmUrENVnoBpq5S3OOyMBZAnYaYWvDHafDLELJbVJHJr7Jj4BiSRrWza6FkG7y6UGatH0hq9Y6DcqFq8+ZSiUEQ8875PaL1p6DnxwRRSiqkns2V2SJemDBXsRkGKYamIRTBUkVqhGRC2TYGXVNlh41/eu33W6OIKJGJTVNTcUyNBdfkjcUKBUvje4+6cr+zNHRF4fp8adt27OZFkSBJD+UUN40wSWkW5LqbLz8pWsyULPw45SdemeVXPtpEZE+c4w6CbWicq7vomsJqVzoTlRxj2/noRQmWru17vtqGyjCQc0dVpODoMEwoWRorXZ9G0cI1dUnjyH9fxTH2NHiYK0nKmKmrE7v2kmVQL0odOjun72qq7Iwan82WrjFXUakVjCNptnV9mRxrjyIGYcKlGZdBmLBQcThXl+5MHS/i/ZUewyAlTBMu1l1KjtR6ge179s7KqnjGw7jryWSfpauTote0Tk/Jlomfgq1zvuFuc5YFWKzYbA0jXl8sU3WlvpSpa7iGxp2WjJ/8OOVZIbXzyqz2Q+quwTBMmSvLoDvINfGKlk6zaLFYtTF1le4oQlVVlqoFipaKqWucb7j4UXqmBgb7wYtT+nnCUUHq9FxouFyo27y5VOZ8PcGLUz59vrZtT54tW2wOdseMJ4X2SIbq7WHE+bozkThYqMq1c2NeJpYrroWqSKfCimNQMHW2dDnfi5ZGmAiEEHvrOx6ALBOYukrdNSmYOq1RmGtFbn9vBUvH0GW3z87fs1xz6HgxyzWHNC/YpOKJJuhyzeH+1oiCJemp0whz1gTsPX83+uGkaOBaOldnTSmYvMceVnVNvChlqarRLOy9J3/6Qg3HkknfcRfhbMliKy9E7YUgHptPSCFzUZFJ2ywfuKGpnKu73NoYIkTGIIhzd0GdKzOlbWtg3Jk5xlzZ5qfemOfm+gDXVJkr21Qc2YnhGNrkmUittqNp2x0X3VEsi34iRdflem8ULD59vk7FNfJ5W8AxNTqjmAsNd9u4SraBa0VS++wERbP3iwscQ+e1xQqOMcS1dBYrLmVX59JMkWbJIklld07B1mgPYzIhaA3DM01MAfxrX7jA7a0+v3pziws1l0cdn0dtj6XnkKioujKpoyhy3YyLoGXHIMtAU6HhmoSJTJZqmjQ7CeIUP5KSGUctxu2Ea+pcmSnw6mJpW5JroeLQ9qTjrNRsewLbkNTfKMmknnGUEMQZlsHxguYdOOw5P/66im3gRQkXmgUu1F1UVWEhE7imimupvL86oGzpdL0QUCEvKOnaPz+JqXeBKrBxckM5GQgheNAaSVFC1+D1pQrNokWWyWzta4tl4jTl0bjan2e1NVXZc/JrqsJby9UjjWGmZO265ERJxs21AbqqcqlZYK5icXWmJKsFmrqNGqaqyraNLExS7uf6RlVX5VPnt9sKS2tKQZqKbUHuwe2GJooiRQ8PE5AfhGGY8E8+WOcPfmZ5V4XpqDA0lR+8VOcrd3ZTexxD4wcvNSbPSAjBxVxDqrxHwGTkHP8xbsyXuL81ojWQ+kjX50q7xjvuVFntBsxXLOpFEy9KWO36FC2DLBMTvYyxxollqIcWUx2L5vtxSsnS6Iwiur5smXeKUiBzfNGzdI2aaxLEGZ+/1OTSTFFqTU0d0PMVe1JNO0kEecXaNjWSNONx16fiGFxsuKgoXJt70m1TdU1sXefyTIlLTZeyY9CYCtrKtkF5/tnn2cO2hx+nLFTsp7b7BnHK/dzxol40+YlX51jp+Ly6UOLb9ztSYH4qQFUUhdmyzU65yFeO4UA0CGJWezLgO6id9kHbw49kN8EPXWlya1O6RD5ojfCTDD9PjKuqMtFG24kbR7woLFUdHFO23h91rWaZIIwzwiSlZOs4hs7VGYMwyXYl78a4NlfaJQI/RpikaLpC2TUpH2IfSjOBFyb4SYquKjzq+mRC8OpCmWbBotJ0udSUlJ+eHzMKE/pBwuuLVbmWd1wkFqvOkWhch0GSykRLnAos7UkyfK5kcalZ4PpsET2/NMxVbDYHEa/OV3hloYyqsG0/VlVlz6LIYfBgyyPJYLHi8urCEx266b3i97yxwL2tEY2idaRE+0LF4Z2LVdb7Id1RxN3NIa6psTmMyIS8hF6fLe1Jr1qoSE0jM6dfXZ8tYesqH28M0f14Yhpwfa60rYNkaxjSGsoOrfH+r+YFnCwT6GWFjUGIa2l7rpPxux4EMX4sRU1bwyhPaEVc1gr7ChjHuSNO1THp2DGryM7L7z7qMVO0Wao5k/dWd03ePlelPYppj0I0VSWI020J+Z179sVmYeLEeVw8bHs4lsZoEOb7cIG2F3F/y2O+Yk8u+vvtI36U0h5JWl29aO7SzlmqOZIyXnwyxoPiDJBi5p1RRMGSxi2POh7LNZfF/H9SsycgTaUg+8frQxRFcGWmyLW5EhebBaIkY3MY8mBrhKqqkElRfGu2SK36/JJSUZzSyjVIozjlu4+6REnGT70+x9W5Eh+s9DF0lTiFHzhf21Nu4WnUj+MiTjN6foyqKDi6NnFPvDxbZKZo0fNj7rZGkzNqsSoLIKMwkSY5qopraSxWK0RpRqNgPhNV8vbmED9O6YcJVUdnWXeoF41t8329H8gOwqI1Eaifxp5FlqmC5MYgYLnmoqrsMlq51CwQxClCyP/e/qyEdKQdhCxUpG6Za+g0itaec3vs4L1zfGkmu9+TNONcXYoST4+zWbSe6p786fM17mwOmS1b2KaOpqls9MOJmPIYV2YKfLw+IE41ul7MtbnigfvGxiBEVVV+5NpMngCFh+0nnU5XZoqErmw3O2qSZ7FqY5vqoQqO426kVAh0TcpmmDkler5ic7HuTvbRi80C37zXYblW4J2LNmVb33Y27hSwPknsFReMC9ZXZots9EKGYcKlvPOuZBt85kKV25sjbE2hPYroejFXZ4t4UcIwp7nbunYmlOM//TNv8oXLa9zf8vCjhL/5tQdcaLj8wXfOnWlyytJ3GwCBvA/82A2pr/TR2oALjQKLFYcb8yVsQ+MXv78KQrBYlUWqtiebC/a64x0ETVUo5YmwaTimxjsX6nt+j9SnK+TdmdokhpPd/cdLTBmaeuRz3tI1LjTcSbwynVgbnxtXZkv80JUZ7m0N+f+9t8F6L2A046JrKlkmiFLJvljrBfT8mNnS0WK9s8ZxE1N/Dvi2oijvAuH4L4UQP/u0b1IU5Q3gLwMpcAv4t4Eu8O38S36/EKKtKMq/DvxvgDbwrwkh+ocdmBelDIKUsm1SsOSF3ouSSfucQHB306MbRAgUPlwboCk5h1rd7tISJxl3t4ZoqspyzTnQSeNpGIYJ37zX4dpckYWqgxPrfLw+RAh5iY3iTGom7QFlH58HecgKHncDDE3hXM2dbHhj2/eCpXGpWdhzI1IU5USDoX/8/hpBnPEv/sDSify8L15p8is3P2C9H2xL1Jm6ynzFJowljeduy6NZNHlloXxoN4LpZ7rXHh3E6YQqeWtjiG1orOaBc8nRyZAVNlNTGUXJ5GuvzRUPHEOaCW5tDPnOww4qCst1aVu9OQz4tY83cAydesHCNvTJhl60dRYVB0WRic+jWIgfF2u9gO+vdGVyrmSzWHOo2DofrfV591GPWi6a/6VXZCpHU5VJ0FUvWKdSwQ7idNIOvzkIj8RDX6g4lCyd//ar9/jtOx3ON12Wag5XZp500IztmOM043y9cChnvr2wOZACr2GcMVN6ukvGeP4pitSAenWxzP/3m4/5px+uyS4Xx5Bdn1NzdqXr0fViFquHp+5OQ9fUY1ssrw8Cbm0M6YxiCpZOkknK3HcedHEtnXcu1I7Uer3aDaTGVJxydebp1rlBnPLdB12+97jHpaaLqSm0BgFbo5iHWx6fvlBDUxXCRHZQ1AvmRGvM1FXmys6pr52eF/P9x10+XBtwqVlgvmKjq9LG+cGWxkLFxYtTPnVOjtXStUkA7ORdsSeNTMg9J4gzlmrOtrV5kNbiNDb7Ad9+2MXUVT5/ucG5ujxbtoYRX7/XIU4zVEWRZg2ZmDg97TX/xwmggR/z7Yddrs4W8OOUbi9ACEkPreYdJEEsizN3W0NmSzZRIilQ43XbGUU86vhYxm4tuL0gHfl2P+f94vUozfjlDzbyOSTPHgHcXB3gRQmfvlDLkzUGXU+OZaz5lmYZfpTte46PUbT0Z+pS8OOUX/lwg6It51Cawc31Pq1BxChM6HoRn7v8dFHZ6c+vwCSoFUJSoSxd5WLjSQfnw7aX04GMpybgjSmHQiEEnVHMTCnF0jVJMcqyiZbmN+51WB/4ebJA7vGzJYsLDZfzNRddVfj2gw6310fYpsZC1dk36X3aiJKMX7/V4lHbp+zouIbKu496oEgq1U++No+uqbSHZ0su6HoR33vc487GiLmyxdXZIhebBW6t9/mn76+zXHMZhjG6pjFftmkWU9nJWXGIU1lEFULGSc9atAzzROQT1zJBaxix3gtxtjSsqxrNoiWFufvyOrExkNqiG4OAzUFI1d2dJAX5/G9vDqUeVcOFp6wxVVV4fR/d0zBJWev5zFVs0izjn33YIhOCf/lTS9T3iZEVRSFKMul6KeBCwyWI04nr1tYomow5iNOJZulYqH0v1AomnynsfVEeY6Xry2JAkEBOU1YY0R5GPO4FVGzZ1TP9O6af7Z3WCMcI0DUFaxft/3gU4sPGEz0/5r3HPT5Y7bNcczlXdzA1lYdbHt952OFCvYAQ0Mh/VtHSJ2ejbahPTeqdBfR8H0uFIHAyys72c+Rh2+fj9SGPOx6GLu9klq7y7uMe91seQhG8tVzl2mzpTGL43/XaPJv9kL/xtft8836bf/zBOt9/3OM/+X2voWkvjnObqspCyVh77Su3W3y8NpQi/RVJ9b2/5VN2dX782sy+a3I/hIksUvtRQhinWIe4Jw6CmG/c66BrklYb5QnVYZjwwUp/0o19VBznnN8vXpmGZWiUHWkQoigKD9oea72A7z7s8K0HXeYrFm8vVTF0jY1B+DsyMfXXgP8C+D5wFAXgm0KILwIoivJXgXeA7wshfnz8BYqiGMAfB34U+APAHwP+/GF/gW1oNErS3WW+IoVc1/tSVLw9itgcBvRDqedhVdV9g0UhBN971OVB26ds67j5of0sGGtEGZpKGGfomsLjjo9raoyiZF9tAVOXXVayC0xOpnFAOAhjSpaBDwycZBJEjPUrRrlehHEG7Xx/7zsrLFUdPnNEOs5+GOtMfeX2Fv/Sp7YnuzqjiJvrA25vDjFVFU3NLYMPueCXag6uJSlle+nrSMqNtBmOU4EQKSsdn0bBwo9SikX5e4ZhcuTqR5hIAfPOKJLVTFMmUO+1fMIkwYszirZONtUuOrYytXSZCCua+qlXXYZhjB+mdEfSrnQJm4/Wh2yNIrw4ld0OypOK+ThBIgSSAhelx07s7AdTU7ENNXdLfPpGbRsaF5suYZJNKoCtYciDto+mKmx0fSx9u4jvStfnuw97qApoisrVueNV48qOMXHW2lm53YnzuUVz0ZLvtNOPuN8egVDY6AeoqrJtjvphwtfvSq2MUZTw2Ysn62ByEBQkDUQK4EqK5AcrfTYGIeQObwtH6EBKUkHfi8h4QmXYD36UspZb+H5/pUfFNljrBZL6YNt0/ZjZsrXtmZ/L6R+mrjCKEkrW8R3YDoNBGMs1Eqas9aSW4M01mRSKk4xmSWq2+DldolmUotQKMjEQp9mJOHsCXGgU6Pmx7Czr+IA8G46bNL61OeTmmnREcwyFz12eoWQbbPRDBJI+Nqa/KIp0j9roh0/VUshynbSyo2Oqko5n6Sobg1Dauls6fV9SnQ1dZRgmu0SR+7k+xF5acAdhrmxhaAqGru6rmxMlmTROaMlLBygUHR1dlVpzUnNH7nV9X2ozGZrUXztfl++gZJ/uvIuSDMtQ6fsJ1+YcbENDQdDzQ5JUId5ZLt4D03tmzTG4vSnnbZjIJJIfpbme2PY4o+fHnDvCWB1T7otpJvh4Y0CcCOYqFpauoWsKqYA0lW5tfV+eP+1RRBBndEYxaQaGrlB1n4g9Pw+M9d96fkySpdz2Y9pehKEqEzfGhbKNpatYurrtIhMmKWGSncp+NAgSvFDqdpma1NJLkozbGyMsQ2MQJFyeLTDwE+yGOnEzTFI5z8/X83PzBC4vmRC0BhGDMKY7iuUaDmK6XkSaGYzChGZOJx1bp4/P9q2hNAdoDyMWyvaumMeP0ok+3CBIuNCQZ+mR15qAla7UvLF0la4Xk4qMe63RUy/BgyDepv9XcyX9L53qqAdJ7xrrTA1zPb/DwNDUiVbUGMMwYXMYIjKBHyeULIM4TVnvZ3y0JgXZNVWZ6DAB256tAhOd1bmSSckRx+qcPg6GYULPj6T22jDE1BTutUasD0J0FYY7dOhsQ+PSjOx0szQ1lzQ5fYrh0xDEKQVTx6yqkzhoDEWR7zrOMkZeRpJ6zJRkXNLxIgQQRHI/PavPMVO2eHu5zD95bw0h4L2VHv/so02+dGPuuZhFjEKppTv+/PLMke94HKcnqWRq+HHCh6sDLjRd+n6MrisMwuTIiSmRx8pepOXn5MH3krutEWu9AC2PnVxTwzZVQD91d/H94OUarPvNnfmy1OwbRSl1V3bFvr/SZ6MfstL1KRg61+fLlJ3nu4YOwnFH1xJC/IWjfpMQYlpdLAQeAq8qivLrwG8C/wFwHZmsShRF+SfIDqtDQ1MVrs0Wt1VNq67BIIipCJ3VviCKU5pFm2uzxbxFTrboT3dLpTk9a7XvEyYGBevpVYyDYGhShPiNpQr1gsl6PyRMpTCelnfBPO0gTVLJVfajlHN1l1E+QRUUBAJd3b5BzpYs1voBZds4sUvO07A1DPn1j1v83I9ePrHN7rWFMhXH4Ldut3YlpkaRdGoqmJJyV3d3iy4/DdP6XXtBzVuEszyh+U8/WGel66Np8OPnZyfWuc2iNQk6dwae+8E1dWoFg2uzJVIhJO8bWK7Z3N4cUrZ0LjcK26pXuqbSLJq5Tbag7Oi7xDtPGrNlm1Fe/Zst29QLltTzSFIEgoWqzfX57ZWfqmvSHkXc3ZRaJFdmCyd6AKuqwtVZ+V4OU3Eq2QbTtfSFis2NuRJJmjJflfTZUR4oZpng3taIjUFA2dGfiZvdLEpxRFXhwADZ0NRt1N+ZksXFujyIy7mg9LgNHJDUo2EAKKfm4PQ0zJUtfuBclY4XsVBxMHLdpNYgRNdUDrPdrPWCiSaaFPkvEyYZjQN0nsqOIQVtFRkgjunIA18mBq40C9s64CDXiyjItTPWLTnN59YsPqFyz5Qs6gWDy7MF7rVGlCy5T5Xt7YLT051dhq5wY650IpdVU5dz63HHozUMKVg6F5vH/+yyEydjFCdsDmI2+gGzZTt3urLY6Ic0SxZzZekYk2YiD+b2h9SeMFiqOQRxipekLFcd1noBYZzhmCrLNZfWMGKx4nC+5lDYUT1sFC2CWLrF7Ucn3YlBEPO46+MY2q5E104YmoplKPLiqSrouUvnq/MlwlhaTRdt2S310Xqfx92AxaqNoZYn7+C0YWgyiXdjriy1Eb2YJM2o9GWAulA+OFn8sO0xihIWyo68RMXbk1m6pmw742bLVm7ecPjP55jaZI1GcToRLx6F0k3TNjQuNwooyhPX4wzB465PlGQkmSw6Vh0dL5KFtyTNnlkg9zgoWTo3Fkp4UUKzaPL+6oCZokXR1nltQa5hRWFXrBGnGbc2hmQZe1ImnxUzJYvlmksQZTRLJos1eZ4sN6Tl+HxF0pREWY5lYxAyX7G52xrJdTSli3QSUFVJ3SlZBq1hSNU1eNjxsA2NYZ600XLK8vS7rBdMNgdSi2qvuLJo6xRtnSSnGu48Sw8LgZzLcxWbekHnw/UBhqJJK7o9ECUZD9qjiS6orqoTavIr86Vd8UnFMSbGH9UjdqC55nZ7+rmSzeYgwDU1FORZaKgqel4MsA19z9houeZwe3OIQAUEJdvY97meFhoFk/mKQ5gImkVJhxzk2rtZJpgrm7wyv737sWjppKng3pbspr7YdE/Use0o8KNUPkMhtTF3juPyTJHHXR8vSlCVlOW6dGK9Vi5iqCqpyGgUjTNPrn3plXkebPn8w++vYJsa7z3uYxk6X7zcONP33/NiHrR3v8edXUSXZ0pcmXFZ70fYlpYnpVUuNdxjdfqbmtSLOleXBiqPuj4113yq/ImiSKdnXVUoO9K98gcvNugFMZcae3eBnyZ6fsyDfA1caLp7ysYoisIPXZuRDvS6OtHVup87CBu6woW6Q+2EaeMnjeOujm8qivLngL/Pdirftw76RkVRfhb4z4CPgC3gGtAB/ivg9+V/N6bu9YA9228URfk54OcAzp8/v/PfmL5TWrrG1dkSaSbtYq80iySZpAo4po6zRz5DU2UAdqHm0ihah9YO2g9Fy+DLr85N6ICKIhj4CXXXpFmyDmyh3RyGxImgm8TMllMWKg6tYSitch0DVVG2bTB7cfFPE7/07hppJvjZt0/O+UFVFb54pcGvfrQ50UYZY6ZkSee8gslCxcZ4BprlfhjPIzlPZLt5kgoWq7sFBI9KiVyuuSxVHSmmp6tEqTyYm0WpO+Ja2+2Ye35M34/xoxRdVYmSozQqHg9l2+Dt8zVeXazk3RAyCaipCvWCFA+evpDEaUZrGDLwnzirxYmAE56GO9f3UWAZOv/mFy7ysO2x2vfpjGIGgaSkeXGKY+icr7uUbZ0Lz5i8OG6rtqap/KHPnucLVz1Wu9IidjjVDegnCRfqBcIk4/oxO7qeBYoiLxBVz8CPU+I0Y77i8PkrDXRVQVOffkEUQkxEqjcHIZeaBX70+gwKChcaT7+gafmeMO7i2BpFvLpQoZV31yQ7uk7HvyvNBHGSyctwerprxzY0vniliR/JrkIvd9u7UHcn9t/1wpNCxNYwJE7FpFtsLEJ+UlW5NBO0RzHNooWpq88U1L8yX0ZBVhMbRYtHHQ/LkNSxpZrL0pQF+vW5IkkmDgzgSrbBj16fQVMVKuflZakzekJ9ChOpj/Da4v5ab0VL58b80ehcW8OIOBHEidT6e9plwdJVvnRjLu888xBI3aRx0acziljt+fS8GIEscjUK1sQ17CzgmjpffmVuUqAqOzofrQ8oWDpzZfvA1v0wmaJJDwMqrnS9HQQJF5sujqHtijNmS/axLgrjue+YGs2SFJKeL9tTF3uxLdG0NQy52xrR9xPO1R3ON1zao4jWQBoL9INn0+Y6LsYFrIuNAlvDEFVROV9zuTRT4PLM3vOx60ntmSiWCZj4FM5y29B4Y6kiNdrys7tganzhckNqcjZl4fb9lT5pJnjY9kizjH4QY2oa8Qnukbap8eZShdVegB+nXGq6fON+h6WqXD9pJrbplE2/97my/VThaOmu/ewFuqKl8+ZyBUNVKTs6r86XcUyNkrX3XtnzY/xIPqP5yvY1sFd8omvqiWkhVVyDH7o6gx+lvLvSwwtlh+j12SLLNQc/yfZ8Zv0gIUqkG+tMyToVTdKDYBsanzpf49WFMpqqEKeye6VZsCbn0vT5HSUZW6MQb6pj7Cxi3/0wpjUDtEchUZLRKJqTe52hqcyXHebLDl4k96RGrpe2XHUxdfVMKHx74Y/80CV+5EaTX725iaFprHZ8bm8OudgsnEnzAjCJvdJM8KjtMVu29zR0Waq5/MHPnOO9x30Kts7VuTI/eNk8dldfydH5F16bpeQYecetjAvnyvs3hFQdc8LakdqIkgGyVHPOPCkFTPZkL0p4sOVxdXZv2ZiSbfCFKW27n35jkeWay53NkVxjnwCXvuMmpj6V///np/5OAF8+6BuFEH8f+PuKovxF4GeEEH8XQFGU/zH/uX8PGEegZaQG1V4/5y+Td1O98847h4r+NFXhSrPErc0BhiJtufcL1BVF4WJOg2gUnz3gURQmm1cQp2wNY3RNXpIOc0BUHGNCjTI1FUs/HS2S4+IffG+FKzOFXdWOZ8VPvjbHP3x3je8+6vKpKYqgpWsnEpAcFhXbYHMQ0ihYRGn2THpjYyg5jQ/AVjVeW6xgmyNJl5h6t3Ga8bAtxe9VRaHqGiculPo0TB8GSzUXQ1dZ70n9smmK6ErXp+9LUcuqY+CY2gvZMqqqCotVhzutEaoKfT9mvuJMbFhN3X3uNquaKh3/7mzKMQ6DBHJ5jJprEVake+BZOOfshSBOediW1LAkFSxVpeudgnLgBVFRFCqOQc+PJzz9y0cI2sfrxjG1SfI9zcQ26+sxWsOI9Vxbo+zoaOrZdK8Ak7U91gcYhgn3WiM0VZlQOYZhwko3AMC1VIqWFPc8ySqmpj6hcTzrmaGqCq8uVmiWZHenoig82PK4Mb/bQELXVA6zTaoK2y6lSSYoWAZRmlF1jVPTQqg48p3IbteDBzp+n5d2zFU/Sic0yVTIzo2CpXGu7px5ZXy6a/pxx8/dh1PO1RxqB3RqmJoUu/bCdOKUJhNPpzrkXRIJqqps09MD2Tlzc22AooiJu2XZNtgaRvl6er56KdLx0WK+GlMvmizX9i5qTO+bqqpQKxinuh9Nr0k97xqYRtWVz3AQJLRHcW6wc7JrTlKUlYlW0Ho/mNyNyo7OuZp7JjSyp2Es/g3w/kqfomUQJOm+77Fk62wOJFthv+TVaSNMUlQF4kx2uDmWjvOUeKBgSZfUTGynGT4PjC/UhqZydbZEvWDxuONjGyr21F680vUZBAlZ3mlm6dpzdd+sOAZzZelo2xlFhLHcj8bravqsvdgsbEsQnrSsxXFwuVnCUDXefdzDj1NGYcJqNzizzvtGwSTJMjb7IXEmnnoHny1LSpqW75PPskeoisL13MRICFmUqji7zQumMVe28w5EDVvXeH+1LymBYfJcNA3rrilzB6MQ29B41PF2OQnuh0vNIqDkjqPPfx4ehGPtTkKILx3n+xRFsYQQ4w6rPhApiqIJIVLgh5CaVR8BbyiKogG/C/jqcX7XfqjkIp3rPTmMp2WvzzfcXZ06J4Gx/kbVMakVDke1mylZz+yKclrY6Af89t02/96Xr534Zf4nXpFV6v/5vfVtiamzxtW5IrWCmdubn847mNDUdsw5NacDCAE11zy2QOVJYbZk0yxYu+bi5HKpSvHjs6rCHAe6Jp3JkvRJZV5TFa7PlU5lzR8Heu7OKS1fnzzLF2EvmJ6Tmiq7KI6iwXfSe+u5ustSdffP06f+XD+BztdnQdHSeT3v+hnvk9rUXlKyjFMTd73YLJzo854pWRMjAkWRyaWTgq6qRFlG2dZPda+rFcwTobKoKpO1MFe2mSvt1sJ5HtBVFVWR3RELe3T57oR0Idp9/rwIUBSFuYqNF6bomnQnLeyxnp4nDnN+jGM/IaDxlATWWWGx6jBftrm1OZxQUk87vtBUhZmiTaNgcWW2+NyKK/tB1xSKtk7DMPdNJtiGxqu5WdHzmnuaqmBqGnMl7VCFSkt//mPeD/WCKZkf+8SUmqqwVHWeC113J2bzmGwYJmSZ3GencdJn7UnjXN1lpmhxK6ckamegPzzGOE7UVOXAO/hp7e/jPe+g92Pq6mR/FjlTJEkPdqA9LaiqwmLFkcX/TBzITJjGi3ZWHoRjnQiKoswh6XiLQojfrSjKa8AXhBD/7wO+9acVRflT+X9/DKwCX1cUZQTcAf4TIUSqKMp/Dfw6kuL3rx1njE/DbMnG0jQMXTmwoqnmGjRjat9JQFYJigRximtqE9HugybMi7rR/dL3VxECfuathRP/2RXX4AtXGvyjd1f5P/70jee2qJaqjrR6zcXSJYf82ebEKEykM8qOav1eh/OVGTlfzvpi7UeyhXpngLbXXNz5jF5kjC9hozDZJqI+DBMMTcFSn39VQVUVrswW8MJ01xhNTcV8jvuBqUtqWs+PmS8fr+J/3P0sSTP8XIB0WwJ3j59XK5homkwmn+UFKE6lCPfOfX3n/uWYGldmC8SJeGb3q4PwtOc9mfdH6ARdqjqUbLneT/LCcHmmwDBIDqzqh0lKnIpneq/HmYM7n5WlS82kMEkPrMKeJZZrjuwSnBLaPwxe1DjjQt1lEEg9wJOOyY6DNBMTMWbtgH1ojOnY77Q73rNMMNpjfDuh5nS4YZBQPIVOGiHYJlrdLFoYmtREOopJwWlCwCQOP+yzeN7rvGQbXJopkAmxZ1y41zn5vMcM+5+N+8WUp3HGPCsOisn3+ixRIuUHnpc+1jTsXENueh86iTvNYXHYO/he89WP0kkn03Fx1DNOUaTDYtePntkE7Vmw353gMEgysee6exFx3FPhvwH+KvAf5n/+CPhbwFMTU0KIv4ek6k3j03t83c8DP3/MsR0Kh70EtIYhq13Zerwfp/M4sA1JyRsL8h5kt/wi4xe/t8qNudKptTf+7NuL/Pt/+3t87W77QLvr04KiPHGdmxbwuzRTONbFaHMQstY7/LyyDe25iu0dRnBy+hl9EmDqKqb+ZLzr/YCNfoiiwPW53dSk5wFL17YlC9Z60j5bVeUYn1cCUAjB455PnAgywZmKsN/elKKzRVs/FJ33rJO5WSa4vTmUyaZDCK27pn7iOmxHwUY/YP0Y815VT2e9G5p6KD2kj9eHeZeSdWY24tPP6tpccbI2x9TSFwlqfvH/aH1AlvHcdGVOCno+L04rJjsq7m2N8MIUx1QPTamAszvL722NGIUplqFy/YDY7DBr7rgIkpTbGyOWa87kd7xIMhQAYZxyr+VN7OpfZCv1aTwt9jzqOXkWSDPBx+tD0kxMnvXTcFpnzEngKOs4STM+3pD7cKNoTmitzxPT4++MIh51fBRFFobOgoJ+nELcUe8kJ4U4zbjfHpFlT2Q2nhd23gkOg6Ouu+eNI91qFEUZz9amEOK/BzIAIUQCPN3n+xOKsdCeEJy4aG4qxMTq9rQFeU8Ld1sjvnG/w8/+wMmJnu/Ez7y1SMnW+e++9uDUfsdRECbPLsQ4/hlCcKJCoyeJ6c/2PAUnzwpj22chIDmEtfrzwHjeZBmTveN5IMvtpqfHdBYQQkzWy4s6JzMhJs8mSl/8YzGcOuNe1L1oJ8YC8fBk/GeB6Wf1PNffYZGkgvFWdpbr9DRxmjHZUTA+L3Y6F74oGM/VKMkQZyjCvwv5r36RY9zx43lRz5SjIstezHNyLHQPZ7tvP28k2ZN9+EV6H2NMn2sv4vjGOIm713GQTr2/8AXd75+GT9q6O2pa9GvIDqeRoigN8iNHUZTPIx30fsdhtmSRCYGRi22eJAxNZanmMAqTMxPkPWn8za8/QFMV/tBnlk/tdzimxr/8qSX+5tcf8h8OwoO/4ZTRKFrEmUBVOFBQdj/MlW2EkG5PL0Jr715oFMxJcFN7QatWJ4n5yhOxw7MWLT4s5is2qiLFD59nh4amKpyrOwyC5EyF+Mct1f0gfq4iqE+DrqnP5dkcF2OBVstQXxhqzUEoWDpzFYsw3tuB6rTwSXtWjqkxX7EJ4pTZY1JuXzScZkx2FJyrO3S9+NQpuMfFubpLZxRRfs70Ul1TqRfNF3ovNHSVqnu6QvRnCVV9Mc9JU//k33mOA9vQWKja+NGLuQ/PlCySLENX1Reum3EazYJ0RlcUznRev+jv7yB80tbdUSOr8en2p4C/D1xRFOU3gRngD57kwF4U6Jp6qm1v9YL5Qh0cR0EQp/ztbzziJ16ZPXUqxR/54kV+/qv3+fmv3DvV33MYjIUYnwWGpr7w1M2xe90/LzD1F/+dWLr2woyx6prPpc2+4hov7GVwjOf1bI6DT8K83wvTFu1nhU/is/okBKJHwWnHZIfF2G3zRUXR0l8IYXFDe/Z46bShq8onbl0fhBf1nPwk33meBS9yYlZTlRdiTz0Iz/NO8iK/v8Pgk7TujnpqzUyJl/9d4JeQyaoQ6aD3vRMc20u84PiF337A1iji3/7hS6f+u67MFPmL/+qn+OGrTX7h1H/bS7zES7zES7zES7zES7zES7zES7zES5wFjpqY0oAiTzqnxnjxU60vcaLoehH/z392i89frvP5MxIk/5m3Tk/H6iVe4iVe4iVe4iVe4iVe4iVe4iVe4iXOHkdNTK0KIf7TUxnJS3xiIITgP/of36XrxfzHP/P68x7OS7zES7zES7zES7zES7zES7zES7zES3xCcVSv8eenoPgSLwTSTPBnfvEDfvF7q/zJn7zOa4vl5z2kl3iJl3iJl3iJl3iJl3iJl3iJl3iJl/iE4qgdUz9xKqN4iRcCUZLxyx+uUy9YLFZsZkrWxM1FCMF3H/X4c7/0Ab99t82/9cWL/Ikfv/KcR/wSL/ESL/ESL/ESL/ESL/ESL/ESL/ESn2QcKTElhGif1kBeBGSZoDUMMTSV2imr1wsh2BpFADQK5nO18x1jECb82//NNyZ/tnKLybmSzcOOx6OOT9U1+C/+wJv84c+ef44jff7oBzF+lFIvmBja7sbDJBNsDkKaxRfj3e6FTAjWegH1gompH7V58ncGwiSlM4op2i+Gg9FeiJKM9ij6RIyxYGnP7FQVp4JBEL/QjlefhPV9WLSGIULwifosW8OQ7AzH/El830IINochmqLQ+IQ7Cu1Emgm2hiGmrp6K++Un4X1/ks7vzigiTjOaRQtVffGe5yfhfR8HQZzS9WIqjoFjamfyOz8J5/eLjGGYMAyS5z2MpyJOZbx3VnPquBjHCcdFexSRZBnNwou5b50Vzvp9v5i3nOeE9UFAayCTRYaunuolsD2KWO0GAKiK8kLYOFYdg//Pn/giW8OIlZ7Pw7ZMRq31A95cqvC//vEr/Mxbi1Scf74PnCjJeLDlIQT4UcrFZmHX18RJxlovQFV4YS8FYZKxOQjxooTLM8XnPZzngodtHz9KaQ1DXl0oo72Ah8/DjocXvthjfNTxGIUprSG8Ml9C3yNZe1gkacb9LY8b86U9k74vAj4J6/sw6Gw7hz4Zn6XrRazkYwaYKZ3+mD+J73tzGLLeCwHQVfWFtI4/Ltb6Ae1hHqtpKoUTjtU+Ce/7k3J+Z0LwqOMDkArBQuX52L0/DZ+E930c3G2NSFJBexSdmezGJ+H8flGRZoJ7rRHiGZIpZ4GVrk/ff7GTZzvjhKOi58c8zvctBMyW7RMa2ScPZ/2+XyampqBOVUpO++43fbl8Ue6ZmqrwqfO15z2MFx7T70s9oLp20L+/CPgkjPG0MH6XivLiCuiN388nZownNJ9e1M86jU/62tl+5n0yPotyhuf0TnxSnhFsH6vyO+x+qJ3RvP0kvO9PwhjHeNHH+qKP76jQVIUkFc+lmPU760meDRRkDPWiJ6am470XFc8ah06vmd9JXZTHwVm/b0W86CvgEGg2m+LixYsn/nPjNCPNwNAUojQDIV+QZRw9yrt37x57jTGIUzIhqwyWoWFq6nNb7PuN8SQQJRlpJoizDF1VsQ312EHAaY7zpHASY/TjFITcDGxj7xbKKM3I8jl61ODjJMYYJhlZ3itrG9qeczcVgjgRqArHohycxftOM4EfpQgEuqpiHXF+nsUYhQAvSkgzga6pmLqKfoR3fpJjFMi9CwGqqmA9A5UkE4Joan6c1dpJMkGSZuja0Z4jPPuzzASEcQrIAGivdZEJuW8qCsd6vnuNUQi5Z4B81s9y1AiRzwH2/wzHHec04lS+J5BjPolL1lHf/WHfd5oJokSOVdeUPTsGTvIdHGaM03u0qiiI/Pc+r4LYUdZOmgniVKCqYO7xLMfr/Lhx2UmM8SBkQhDG8n1rmoKpqXIOJBkcc22fxBjHMRmAZWhPnQ879+iTGueTfVrBPsH3Nw0ZxwsMbf+9Y3qMk/WSnx3P80oap4I0k/vUowf3dz3HIE5lEkMBZ59z7igYrzdN5djdTs86L1MhiOIj7KHHuDMdZYwHxdincT4ddYwg12gQZyRphqGp+z67k8ZRx7nzecZpRpKO96Hj3wsPGuP80vlj30FOKtZ5Go7yHMd3gSTf16wTnHcH4Zvf/KYQQpzqxPod0TF18eJFvvGNbxz8hfug58WoKpRsg1GYsNL1URQFL0xQFAVLV8iAOBEUbZ1Le1C3DsI777wzGePWMOROa8RM0SLJBGs9n64Xc6FRYLZsMfecWganx3hcZJmg68fYhoprPple6/2Ah22Ph22fCw2XqmtweaZImgketD3SLGO55u57iXyWcW4MAv7cL33IP3p3DcfU+OM/dpl/90cun2oW/DBjjJKMYZhQsvU9D5CP1wcEcYZjqlxsFHjQ9sgEnK+7mLpKmKR8tDYEwDFVrs6WTnyMQgi6Xoyp702XeNTx6Izk+rkxV6Lrx2wNI+oFc0Kxub05xAvlpn5trniod3zUcR4F059pGCZ0vZhBEOOFKVujiItNl1cXykca50mPEaTWQJIH1a1hRJSkDIOUtX7AXNnijeUK5SPoOJzUGIUQrPUDvna3jamrXJ8rceUZqCR3W6OJpsLV2SI/8sXPHTjOIE7xopSyre9JG7y5NiBKMlxL43KzwKOOjx+nLFWdyTx+93EPkSev3liqHGnMh3mWozAhSjKqrrFrr4mSjI/WB1LbqWRStHRWewGOoXGu7gLwsO3R9WIAzjfcI1Oo9xrjRj9gvS/pXfO5wcVBn+Fx18cxNJZrzrbPMf0ZGkWTxarDIIjJMo5EG9s5zp4Xo6hM5vbd1oj3Vno4psYXLje2nSvHxVHf/V7Psh/EiB2ftetFfOX2FooCnzpXZW4P2tJR38FhMT3Gh50Ra72QC3WXMMnoejF+nGLml/Oqa0zm2VnjKPvQrY0BfiQvfdfni1j6kz3ZCxO+97iHgkxwXG4WOVd3TuRcP8oYxzGPY2h7anAEccqtjSFCwFzZYrZs86Dt8cFKnzQTvHOxdiyayGHG2PPl/rHX3rHa82kNIhRFxhQbgwBNVTlfd3ddcqb3ootN90j6QXvuQ4OAB1se/SBmpmhTsLRToSPGacaHqwNAXnqvz+0dI02P8c7mkPdXe2QZfOFKg5nS84nHs0zw3kofAENX+MO/+8f5hX/wK8yV7cn7vLU+YH0QUrQ03j737GyHccwJ8MrC8ah4h5mX49im4uw+G/0o5famXC/zFTk3Hnd8LF2brO/NQchaT9K05ioWs0d8R4dd39tjbI2rs0VETk3145TFqkMYpxPK2OWZwp5x8jheqTjGoRMIB41xrRfQD2JmSxZV1+T+1ojNQcjDts9izeZSs7DtuQyCmDQTJ67Jd5S90o8Sfv3jFnEquNBweGOpOnmXigJXZop77qFJmtEPEgqWtu0MOCze+oFP8zd+8VeAo+9f49//zQcdNvsBRdvgBy/VTyQOmcZR3neUZny8NmRjENIomnz6Qm2b9NDT9v1nhaIo3zrxH7oDJ/ZkFUX5j4UQ/+kBX7MI/CLwGlAEzgF/HVmAfwT8m0KIVFGUm8Bq/m1/Qgjx/kmNcydaw3CisXGx6dIeRQRxhkCgqgpCQNU1qRVMvDClZD/7I/veox5dL2al4/OTr81RsnU2+iGKwgsrbnxYrPR8OqMYRYHrc6VJZnmubGPpslNKCGWyYAZBPLmUtkcRi9WT1R/45Q/X+ff/h+8xDBN+/6eXWOkG/Ge/9CFBnPHv/cS1E/1dR8Wd1pA4EdiGyrU9AqZLzQKjMKVgaXT9mFGe3Ol6EbNlG1NTcUwNP0opn5Lu11o/mASvV2d3J5WWqg4l28A2VHRNZb0fkGUyETm+cFUcAy9McUx1z6r3WWO9H7I5CPMqcIZtaIRJSq1gUikYXN/jc541RmHC3c0RIA+ZimMwilKKtsYFw+VSs3CkpNRJYmMQ8tHagCjOqNjGM++JZVtnGCTYhnqo7oEsE9zZHJFmgu4+F5rLMwW8MKVo63hROrlUbQ7CSeBYcYyJMOxJI4hT7uZaEUGS7tJVMXWVq7NFwiSjbOvcbY0I44wwzmgWUxxTo+wY9PwYXVNwT0h0smQbbA7D/L8Pfm+bg3AyrnrB3BZ07/wMgyDmXssDYCGzaR5Dq6UziiZ6NONkXJoJZooWqnL0rtD98KzvvufHPNiSn3VZOBOzlDCRAs+ZEPvqrB31HRwVcZrx3qMBfpyyNQz5yVfnKDsGuqrwsOORpOLUzouTRtkx8KMQx9S2nR1xmnGnNcLUVDqjiGbJoufH1ELjzEWXH3dlYVFR2FNXxzbkhTZKsyd7thD4cYqqPKnEnzS6XsTDtlxL5+rOrgvpfNnGNXUsXaXjRXkCMKPvx7vMf8q23IsMTT2RzpybqwNaw4gMwfW50qnpTumqQsHSGIXpodd6KgR9P8HW1TyOeT6JKVVVKNk6gyCh4hgkqey82+gHk89iGRqy51IhTNJjXdqnUXEMgjjEtbQjdxEfFl70JLaJytmupKxjalyZKZJkGSXb4MGWRxBnBHFGPZJFnKKlo+bLrGSd3nqfjrHHzzyIs23xxKVmIe9eV/dMqqSZ4PbmkCyDvh/vqUl7VKS5WD/IeLbqmlQcg0GQcHWuwLmau229T5/NSSaOdTafBKIkI8m7ipO8W3OmZGEZKsY+zw/gflvqrGqqwqsLpSMXHzRVQVE49v6layolS2cThfYw4uba4MjF62dBkmaT970xCOX7LRiYhsLlZnF7UsqLedCW73qvff+TgJOMiv4o8NTEFNAGfgL4u/mfu8DvE0J0FUX5s8DvAf4nYFMI8eMnOLZ9MW5xB0mdKNvGRORrqWpTdsxJMFxxT+ZS7ZoaXS/GMiQdZ86ymS1ZBFFKLARCiE8sp3XMDBVCtpZOo+qaVF2TNHvCeXdMDU1VyITsRtv/5wr6+eX1MPCihD/7Dz7gb/z2A16ZL/E3f+7zXJsrIYTgT/333+X/9k8+4ks3Znlz+WidEieJTBamSPeh0+qaOplz44NYCCaXQ0VRuDpb3PY8d8KP0skBfxyMW/2F2Jv3rijKtoCvbMsL33TSpFm0qLnmvmOMkgw/TilZ+pk4X4znparIoLUfJMyXHS42Cy+MsPj02ilYGn6cULZ1Xpkvn6iO03GQZgLX0jB0lYKtPXOCrFG0ZECtcOj3P34+O/eYMYyptWMbGqauEiXZtgv5ubrLYnX/teNFCZk4XrFger2k2d5jtA1tEtiUHYNRmGJNJecqjkFp4env249SUiEOHOP0/vnqEeZQOQ92TV3dMwib/gzj/Qz2fy8HYXovHJ/NZUfHj46e2E7STCZzLX3XOz7o3R+E6bhhesxFS8cxJaV5P0Fux9R4db4MCIaRTEqcZICrqwqmoeDH4Jr6tj36xlxJ0gDiNH+mL7ar0mzJplGwdr2n8foyNJXZsgUoGLqy69IxPlvKtn5qe+ZBZyRsXycghXSvzRYRCOpHuCSO1/FhLlfpjth2J6bnRdHS2RpGqIqCa+3+2RXXoGRv3zeCON2ebDsCCpZGa4gsbFiH6yIRQjAIE0xt771oLyiKMunMP+xaV5AxixelR4qbRqG8N5ykEP/FZmEydlVV8OKEkr19vozj5pNQZZkt2zSKu9fbSeKgeQnk+5J8x8RSiZ0AAQAASURBVCVbp+fLDnc7PxsdU+O1hTJC7B8z9IP40HNlvxh0rxjb1KXUQxjLgowc49PnySQWOMJLEkIWQPaKi7WphGvZkWOouiZl29jzbJ9+ztl+D/2YEEI+65J18B7rWpJxFCUZFxtPEnQH7SHjMWdCTDqdjwJNVViuOhQs7djGPM2ixWo3QFVlgew0VJD2i+d0TcW1NLwwpWwbkxhir3c9Pcf2iz1fdBxpB1UUpb/fPwEHljyEEAEQjB+kEKIz9c8JMC4d1RVF+TXgA+B/l3/fqaBZtECRYpoVx0AIgamr3Nkc8qgTMJeJI7eJHoRPna+xVA2ouMZkkcSp4HZeYW+WzOfmXPKsSbGFij25xOx3IEwfepau8cp8CbHj73ficdefUMYOwncedvmTf+s73Nsa8XM/epk/9ZPXJ2NRFIX/y7/4Or95q8X/+X96j7/9x7/w3C75F5sufT+hegjai22MLzO7D+KnXaxvb8jK1EJ17w6Gg973QsWZcJgPc4k5V3dZqGS7Nv/9xpjl1SRZxde50Hj2atJBmCvb6Krk30v9Dw8vSgmT9MTbc4+Lkm2wVHOkXoCucm9zRJrBIEyeuyvm+PldbhapueZkPh537xiFCXdbcp4uVg/ea1VV4WKzwDBIqBUOfhaaqnB9rkgmds/D/ebldIXxOFUnx5S0g3EHzUEYJ2/VHYHG0xJ1ozDhzuaT5/Y0N6np/fPGXAn9MBspUC/ISuzOce2FimuwmNmkQnY4HQeNgjkJPMddG7Mlm3qe2D7K/LrbGk2o0HvRnJ/l8lUrmKR5kNyY6i4pWDqvLey9T09DVRVWe0+6Uae7i58ViqLwQ1ebbPZDqgVz10WrPQoPpJ68SNjrPZm6yvmGgx9lNIomqqLsmqNpJri1MczpK6dHXVyqOWwNI1xLO/Q7tA2NVxfKB8Y9O/GoI7uztEPsufWCObmQ1g6IMUq2wasLZRT2n7fTfx8l2YSeOFOymK8cvG9Pj/VT52ssVBxM/fBukau9gK3h8dbLUZ7xubpL0TJwDJXKIff96S6FC033RLuZx2PXVAVL0xgEKaMwoWDpT+Jtff94+6jn8mkX56Zjm8OcjbWCSXmPM0hRlH0TFGO69H6d/tM4TAw6/Uw0VeHa7N7xxF7QjhivgHxnYZLyYMuj4hicb+zeuy7PFCc6iWPst3YrjsFiVZ7NzcLJdEuN51WQpNxveRM6/9NgaCqvzJcO/ezGOFd36XoxJft4xeswyXjY8Z9K590P4885W7b54WsGHS/C3oe2/SzIhDyvQJ4p9R1dq1d2vO/9nkPNNSYJvJ0/41lwlg0zR41IusBnhRDrO/9BUZSHxx1ETvH7XcCfyf/qh4UQbUVR/k/AzwF/4bg/ey9kmeC7j7p0RhGvLZWZL8vFNAhi7m95xGmGgoKmygzmw7aHoamHOnz3Q5RkfP9RD11VqLg6jaLJ3ZZH3+/TKJg0itYkAxsnzyfLGSYZ7z7uH6h70RlFDIKEmZK1a3GuD0L6fjzRycoyMVlAWSZY6fkIAYtVZ7IxHWajGYvjTVfld0IIwX/963f4L//RTebKNr/wRz/PF640dn1d2Tb43/7ENf70//guv3lrix++1jzw9x8VQZzy/kqfyzOFXYeiEII7m0MednyWa85kXk0/qyBOWe8H2IY2eZZH3ZDjVEz99+4Hd9D7bo9Cvv+oR8HS+XTu1jg9RiEEq72ANBMsVOzJhnmUikQmxCSrv9cYTxrjw77nR1Qck64X86jj45oa82WbrWGEZagnnow+CtJMcG9rRN+PcU2N9ihirRfimhqNoknfj7EN7cS0aY4KTVVIheC3PmphGSo/dmOWUZiy1gsoWBqXmoUjHWDJ1DxNchH625tDLu/xc5I04/uPe/T9mDeWKli6xtjAY/y1XpSw0Q8p2fokWaMoCtoRls/0mKI95uXT1rcXJbz3uE+YpLx9rio7QqfWDUgK+ShMmC3Zkz30qBeCnc/taYin9s9UiMnBH8QpN9cGtEcRV2YKnN8nKN8ahgyChNmytSt5m2UCRZGX5mGYsFg9ms5PEGfc2RxyoVFAQV50s0zwuOuT7dhbQK7hO5sjtoYhsyWbizmVYifG7y06gfPUixJ+6fsrnK/LS6elq8yWbRRFIUkzVns+qqqwULYPvU+Pz3khTqaymWaCD1b7CCGwDY2CpXF/a0TPk+fxct3B0rVtc2V6Dn1SEMYp333U5aO1AYs1h0vNApausbAjPps+W/Zaw0/D09b3GIMgpjWMGAQxlq5NOhdEfimYPifX+gFxIlio2hOq33EuWOMzMs3EU89vL0q4uTZgFCa8sVhBUbbvQXGasdoNMHSF+XweH2X/STPxJF494NlGacavfbRB1TW51CxQMHU+Wu+z1g9ZrrnbihtPw3iu7tWN/6wYhQm//MEGnzovO+hvrvVxTI23z1UPRY+LpwLTODmdOEbkl/nHXY87rSE35oq8slDZV5O258VSAxDBYtVhuXY2mnJPO7/9KOV7j7pEacanz9dQ87NxuvOjPYro+zEzJWuSND/q2The70IcfDYKOHIMujOe8KOUjUFAwdK3JdvGa65o6bQGAV+53WexanNtdn862r3WiEGQTNbX0/au6XNxv/vVeAxxKuh4EQrKrv0iSTPW+gGa+mQ/eBrao4iVri/3xkPuA2PsfHby/JS/e6Hy5HdPzwtTUyU1fRRialLvdv6As3YcJ2Q5CwmYGJMcBlGScaclCxsXGwU2hwFfv9OhWTL54pWTvzNOb2n7Pcvp971XnDtGo2CiKApCCO5vjfDjFDun/c6WrSN3aG9732eAoyam/jpwAdiVmAJ+4TgDUBTFAv4a8O8KIRIAIUQ7/+e/C/zJfb7v55BJK86fP3/o3yeE4PsrPX7j4xYlWwrvjRNTPT9GCNBVlYIlKxBJ+oRP7FrHp62kmWB9EBBEKZmQukJFy2C9H0rnJVVhsWoTJNmxq83PinG7ZNeL9r30Jmk20QCJ0nRbJTpJM9rDCJDilu1RiB9lk26dthfRGclnedTL/0LVRh+EFJ7S0fJ//ccf8Rd++Ra/+415/vM/8NZTO0v+lXeW+X/88i3+wi9/fCqJqfFlY5xEmIYfp9xrefSDhCDOmC1ZbAwi/CidBJnr/YC+n9D3pTj6cTp5Ko7BXMUiSffu+jvofd/eGNIexbRHMcs1BwG0BhElW+dis0AvFzoHjp241TWVczWXQRifCe+958U86ngyoC/bFG2NiqujKQqD8ImOV9E63jM/CQyDhJWOz3urfQqmRsUxKFo6hqbghTF+LIB4Qht6HvjW3Q5fv99BUxSaJZOaK9/dKEyJU4GpHz6QrLgGc4klq3n5HPDClDDX/5pG33/SyfTBWp9PnatxtzVCVRSuzMoL6krXx48yBkFC2TGOJeBadQ3pHrNPhfFp63tjEEz2yFsbQ5ZrLmu9INfOKBCnYqJrmGT+sYXj93pu+2Gxakt9LVPfdtEaBAmbA5l0utvyaBStXR00cZpNOmySTHB19sl4x0H0WAsFZNLtKF19QgiGQcK7j3uoisJc2ULX1MlZYurqtsvXMEgYBDGbg4gkFXl32u5L14VGga4XUTsBjQWp7yL4YHXAbMmi48Wcq7m8sVym68WTGMExtENXKecrNpqmYB+yG/UwY4zTjK/dbVN1DHRNYbnmst4PyYR0uLrQKEw0sDRFOZJI/YuAjX7Au4/7fOdhG01VGYQxhqpSdU0Kpr7t8xiayrm6wzBMjny2PG19j/Gw7dPzYtYHAVdmirRHEaamcntzRJxmLNdkp2U/SGgN5FzWNeWZdDQXqw6tYUjR0p96fm8Npb5Umgk+XB9wvu6wNYwnZ/fGIJwI5LqmfuQuXMfUJvHq7AEFkjjJ2BpKU4SqY3BzbcB3HnSlI6UiBeEPQ5kbrxfnKd34x0WcCjaHAf/4/QAUBZHJfWepGrJ0iIRO3TUnibOT7FKYhqEpNIoG338c4scZjzqyYH5lj27QLBM87Hg87vroqoJr6izXTmVYe2K/83t9EEzOklvrQy40XR51fPk5ZmRR5HF+dsZptqf26mEwTq6YmnogzV1TFc7VXQbB8WPQlZ6PF6b0/YSybWDqal4AjakXTRoFk5trQ9mZH0ujp73iyyTNJueoqavUCsahx7TX/epx1+f/z96fB1mWpfdh2O/cfXv7yz2z9q7q6mV6ZjALAAIYAAK4iVtIQdmkLIvhcFAMymGH7FCQJukIinJYlhW2KcphhSjRlAiFQzYdFkOSySC4EwA5JDAYzExP93TXXlmV69vf3e+55/iP796b7+WeWZk1A9kfIjBdWZWZ5917lu98328Z+CnqtlZJ1OxPkyP7Rc8/+F5bV89EiI/CFFJSQU4vxnnZZu6+nxzcsQ363SVIRFUY7i54SHgOP+YYBikSLrDcIM3i01DifsyrNVk+y4sg34OEV82j/WmCX33cx6fbEzi6ivWWc+m5eVKoCuU+58nnAGBrFCNK87k8N86oKAwAd7qUp00ijiwXeN4Lsda0kQlx4Zxz9n2/jbjQzUtK+edO+bs/dckx/GUA/9dS4JwxZgBgUsoEwO8A8OSE3/eXi+/FV77ylTPbJ1kuoCkMUZpjHCR0MIcpvnyzWf2btmvATzh0VcHNjlt1iscRB2PH2xXPjOfMKvMoSEmmsKhe7/sJFagsEqBsOcaJoqlvA0anFtzZ0xaFwkjLIePySCdJUxXYhoL9SVJQ7sgKdBJlsG+o0AtbVynnNTXO89lMTT214/MPP9vDX/r7j/GvfGUd//6//IVz/bw//jN38Bf+u0/wrRcD/NjN9qn//qJR2lcfl/hbRXd1mnC4ugIpScgwSDjASH9hEKSIkhyupZ77Yn3cczztsDjrfXc8E6+GMUyNwdAYXg1j7E0SjCMVqw0LPT/FIEjQsA3o54SjHDfGhqO/tQtSzdIxiVIMwgRxxvGV2y0s1WzUbXJGDJIcioJjqU5vC8rqmCr8JMXITzBmQNOpY6VJTjy6qiDKaH1pJzzztzJOJtGbJrANBaaqou0YeB4G6NTMS1GSFutWNW7GqKh6nBC6Z+mwDYVg8YX+0cBPkeVE6XEMgb6fQhaadeo5n8PhZ8YYO9Ud9bT13SzWA89Jg2IUpuj7VBxYaVjwY45+kBy5SF9kfGWc183r8P5Z/jwqeqqIs7xaA4dDndnzZzX+/Jg68o6uQVNRicRamoLNQQjXVFGzzi4MSgCMSeSFOOw4SvHBWgOMAQM/haqw6rKnKQx1W4dn6tC1BDXr+HkCoBLJPSvOs140lRDUbddAJiSEEHg5COAnWZWgMobq+ZT5xmk/V1cZ1q7Q7EMpEN7TiAokHddAkGSIMg5bt6vzmgFY8MwjecaPirYlzwV2pwl0lR05v8ZRBk1h0BQF4yjFzY6LmqWBMbqMHY5S1/Kicdr6LsPUFViGUmgySTi6ijDNsTWiizVpA+bw4wxCCijsfHo3p70HSz9Yx6ed3w2H1kWS5fBMtWgikenHcs3E0E8wCDI0HR36JZBbUspTL4WzoTBGpjeM3t80yWBqCsJirzislyWlxN40ARcSS7WDeUqFouuRuGCMmm5LdROupWJ/ksDQdDTt4+dOnOXYn5YoZhOM4Y0YFeeN1aaDO10Pv/FiBNtQ8awXIOMCrqVjoWbOSFbQ/lKztIpu+bbitPO7LJjnQsCzNIzCrBJ1XmlYiLMcgyCFa6rwrPMVH49bL5p6sbnSsPVji7Pn3RN1VUHKM/hphr5vYKVp40U/QMoFcimwVDPhGirClJo41gkoPE2lAsok4qSLdEZRdHZ8lq5W9ytdVTCJMny2PYFtaJhEGXSNCq6rraPPpXxXjOFc+VvHM5FwYhpoZ4zzrGdYrn8Jib1JjDDNyYl6miCXEos1E56pQVMZDF2p8gnzjL20bhPtTkjag9YuiOQmt3SGlAt0PQMKk9ifxKjZ2rm1ji8aJ+Vzxz1DS1eKwiBDxgVeDUJwITEJOYJinq03HdiGgiQ40CI7j8HQ4Zh9328jLqox9bsA1KSU/69DX/9XAexJKf/OGd+vA/hbAD4C8LcZY38BwL8E4CZj7H8B4D8E8E8A/C3GmA9gCOB/dJExHhd70xi7Y3Lh4kLgm0/60FXqim/MLCjHIHHhMnguYGgKbncd6JpyIqS3rO5qKlV3j0vEs1xAVRlatgFNBbbHCRxNxY22gxsdB5am4PO9KTIusd46cPkpHR2SLEfbNbBYty6FADhPGJqC91brp/4bRWG4t+Ah5gKuQYiyfpCS0GySI0w59v0EKw0b/SBBxiVcU8OvPu5hvWVjvWXP6U+NQnJhMjUFdxa8S/Hbs1zgz/2Nj3Fv0cNf+IMfnHvz+R9+bQN/6e8/wn/8D5/iP/vXr7YwdRqXWVEYvnq7g+bOBJOEY3+aIkg4oowjSDg+35lSUTRIYOg2dgsXltKhr3RVKp9VygWe7BPk9Hb3/JohZ73vOwsemraOF4MQW6MEfkyXHFUBHu35SHMBVWEYxyn0CYOpKQgKQd0Sdl5eDMt5nHKBjZbzQ+vU24YKQ1ORc4HNSQJTVXD3y7XqYNVVBgZ25HAeBilejyJYuoI7Xe9aRdrpQqsg5gL7fgxTV/GlG+1qjJ6pHgtJjjOCLkvQPLhOxJdn6bjZsSHB0HQ0PN738Xg3wGKUYr111G78cPCcxEZdgzQDSjvytmfA0tVjNRUAmrMPV+rYHtNz0VRCugFAbxpDSAbbUPG8F8AyNGyPIxiaWjmelg6Ws+MrbdNP0nI4Lk5b303HwBc3Gnhd0Fx1jZAdtq7hZT9AUFzI9n1CUW2NQmiKgmbhvOjMWCKXcHKeS9zqupd2bZ193i8HIaYxr6zrf/xuF0HRkDkuKS33/ISLKjEJU47vvhrhs90JOJf4fV9Yray0n/YCTCOO33oZYr1t40bbOfUSywBYukbWvMMQnqnh6X6AjqdjfyqQFLSqslhwb8HDe6t13Fv0kOXijTSS9iYxtsYxDFU5lbZlaCpudenvW46OT7Ym+GxnilwArhlho+0g4TkMVcFn22PsThN0PRPvrR5vrlEizRbr5qkF0IuEkHSe3ui4ZLXeNDGNcnRdotwvFxe/0or9ZufANrscT8vVK4TmD6tItTtNKrScravVGHvTGH0/wZP9KaZJViETbEPF7a53ZRpdwOnru4zbHRdhluOD1Qae9ny8HsXgIsckzgiBG2V4uhdgEnOsNCx8tFGHbVCRKM5yyp+ERN3SoSjswmv9tPO7bun4qXsdfFrMUSEEpgmhbD/f98HAAEhMohSfbE9wu0tIzjK/8Kzji9RZLio9ntn5c1pYuopv3F/A014Anku8GoRIhQDPOX6wPYWUwNfvdKr5NomIogJQUfxtFHwsTcUXN5oYRSnatoHtUYzeNMbnu1N86eZRqBHpXSVVUzHL5ZkSGFcVX73dga4yfLw1wafbEzza9fFwpQ5e5H/jMMPmMMT2OIJn6lhv2tUeE2fE2LjO3OC087vpGPiJO2087YWIs5xyxuLs2RwGSDIyVtmbxjA1Bf0gqVCxAJ0Vs3Nuf5pcWkLgrBhHGTYHIQxNwZ2uWxVIg4SQOIpCCHFDZZhEGXpBjJZtYHcSI8o4uBAIM462NLDvJ3AtDTVbwxfWm6eOc73lAOdAt/V90goskdieqeHeoocg4Xg9jPCiH8LQGHbHERqODoVpGEVJxQQikw6Gjkuu86auFEXks4sPJxXyDsfOOMb+NJnLrSZxBllQkXVVQculnO+7r4Z4spfAszSstSz4KUcuJLZGUdWw/Gi9AYAVTaDTx6mrB9qScSbw/a0JNloOapaGIOVwjKOmKLORcMo7eGH203ENrDQttF3SNHxbEaU5nvb8goJpFLRThq5noOUYMDUF/+RJH30/haEx5EJCUxn8OIdSNC7CNEeeSnRrBpYvkW+c931fVVx0d/p3APz+Y77+90C0u1MLU1LKDKQlNRvHnf5fvuC4jvtdSLiAqSkVNLIfJNjsh9jzE0ipoFNTkOcCQkhMY15cWg8O46eFhbd7giV5GSUFMOMSYZIf797HAEhy1mg5Oh7vBdgexUjyHBLUbSlhg5QgUmEqTDmmEcerUYjtUYxxxPFgufZDdQ/TVAVesUlvjSLsTiN86/kIusKgqAyOoSBIOW51XIyiDL1JAsdSSd9ESJiaUh1K4yhDykWlS3UZG+v/+tuv8WoY4a/+sa9eCOLtGBr+2E/ewl/8u4/w2c4UD5avFpp5VggwGKqKMMux0rSQFhbzYYFeEJIEXYdBilGYIRfUSVyuW/CiDMt1i+hGQlaQ1UmcXa2YLaPutJSAY+qoWQY2BwG+vzVBmuVYbpiwTb0SmlUVBaMohWtQYrvetgklyBiSjIop4yi7ksJUwnPoinKhIlEuiMLCc4mdaQLP1vAbL4ZoOAZsXcXWKIaUxOufvTCOijUepQLxBUXSSbPu/NpbXEiyEc9z7E9T1O0Y33k5Qs3UUbM0DAvqkDpJ5vaCIOGVVsI05teafNYsDYaqIofEOMrxZM/HZ7s+diYaPlhtYPkM84bDe2tJKxkG6Zm/O0ypwBKlAmtNFTc7Lj7fneDRbgAhBVYbDhRGXVnSD9OQS4k443ANHbUow1rLRpBweKZWQdhpH78a1EjMJRxdQ8IpGbjZdvFqFOHT7QkiLrDg6TBUFdM4Qz9I0HZMPOsFcAzqDL67XEOY5hgUxX2A0ESXcwiUeLzvI+MSjqkgTGgdDsMMi3ULk5hQKCdd7Mv565oaslxgZxxhdxLj+1tTTEKOtmuAFd9a0idSLiAgoTAGP+FHClO5IL2Lslu6O0lwp+vgdtfD0+LivDUKwQUl/0t1CwnPwX2BjZYN29BgaMcX0srz3DJObiYBlDT/YHuCUZzhZtuBn/ATz49cSDDQHlazdLy/1oCf5IhSjkmU4ruvUjiGhu1RhM+2fUySDKtN0j+yi3VYPmdTU6ucZBRmV1eYEmTcomUKup5B+pjDkC7OgvYzhbFKp9FPOGoW7d17kwRcEj1oveVcq1j4WVEi0xmjTnfPTzAKUvzGiyESLjCOONqOge1xAoDhyZ6PxZoFQzsZ3ZJwceWJdakdE2c5Ui6R5jme90OIXMLUFXimio+3EggpwIUBS1cqjUMuCNm5VLfQsMnQIs3zN17rs5HkB6h2x9Rwq+NhGKYYhCkcTUPKBYKUQ/oZXgwC3F+s49sv6f1bulIUW+efW5gcjHEcZecqTDFGv19XFURpBkPVMApj/ObLERq2gTQX+HCtAbUwWdE1ViE/Up7j6Z6PlaZVraPrCEUhhEXT1TEOUzzeo2awpir44o2jhYSU53i855OAd81CzSQUxdsoTKkKg2dRvvJoz0cuqIG+2rTwvBegP42hqgr8mJowfkp7zaxZxg/TRj7NJWxdhZCEernZcbE5DPDZto8gybDWcii3kCQnYesapjFRanVVwY2OA6XYG0ZhWny2i0sInBXjkHK+JBMYhSl0VYWmAk/3Q6LcJRlajokoy+ksKnSQHu1P4ZmEVLu7UMNCzSz2ftrXuJDnZhicFtuTuHKCTLioWD0TUWrckb7iesuBY2p4NQjhJzl+42UfKlOQ5QJfvtmiZnH7eGrhm8aweD/jKMMoSBFmOfo+IchNXSWJCo3oljyXCNIMYcrxzpILlTGEWY5nvZDuGbqGKBOXosqWun/jiPKt0gH5tObDo90pPtmeIBcSbVdDmOQwNZqDb7o3XyR6foJJyJFLalQPgwxLNQsLdRO3uy64EOQqmXJEGfDhah3j+IByN405pjEV+yWoyPSjYvJ0Ulx0dI6Ucv/wF6WUO4yx67fTukA87QVUJLJ1LNZM7IgYbdfAt18MoSgKHF3DB8s1ONZBB1lV6EKgKCQaVqISzhLO7LgmgiSHprLKuvVwmJqKe0suhCCdir1JjE7NhJ9w7IxjMBCCK+H53OFmqgoGYYL9aYzluo1cyAtZ3153MAZwTkmxbijo+SmW6nUs1qgbH6Y5mq5eURabjkHaDFEG11TR9Qx8sj2BAob9aXzhwpSUEn/lV57hvZU6fvbBwoXH/6//xC38J//oKf6Tf/QE/6f/wRcv/P1vEst1C3tTQkO1XQOP96YYRbzoKACLdRM7kwTvrngIE1FoDNL/DxNedb47LtmHCimvRE9lNhq2jkmUQUiJtaYNP+V4tDchoUTGsFQnMW4pJTba5DIopEQ5O5/uBZXNr2dpSHiOtvfmY9ydEK3Q0BS8s3h+BJOUEhJEl1uoGfAMQtG87Ieo29qB4OQhRFLHM5DwHLaunsuqu4wSTQmQq8Z5tGSoG8Pg6graro66pcNPOF4OQtQsrbKDPbwXzEKXr7u7caNNNtaKwtALEoRpjnGUQFfnRfePi+P21oWaiUGQonOOubFct9DzEzQdA7ah4WbHwcevx/DjBGDUuXZMFTvj5EAQWVKXCSDx76f7BLO3DbpM9PwELce4so7rUp104lxTQ9s1MI0yPOlN8WoYo+0ZMDUVUSqL/ZL2ezHzXqcxx4t+iFwIcCFRs/RLr20pD4SDcwG0CwH9hZpZdV2B4x3aJnGGl8X8vbfoYWtE6LKtcYS1pgVdBbqehaUZytV6i6ixCzXSSzjusrY1IncxxuhzZ3mOfpBhtWkVyCOiQa00TUgASzULf+eTHUAydD0LH6wfj0QCyIFwFJID4bvL9RPPyoTTxS1Ic+iqcuqa0VUG21DgGFqF+P2pex18tjvF410fn+5McLPtYK3l0M/M8uLn0e/u+UmlK3ZnwUXHMzCOMnSvYC8sQ1MV0pRSYwzDDLsTkgpQGUOUCjzrBfjSjRZqUQYuZJXghynHNM1IT6lE6r0FI4qTojRV0RSG/SnRzz7ZnmAcpjA0Krot100s1MgwZppwfLo9wcOVetXQKyPO8gu7x100LF1Ft2Zgf5pgvWnj9SiCwhheDRPULQ1Pe35RWBVQis7/rHj3y2GIRqSDMUKG5AJXco7Pnt3rLQf70wQv+j6yHAg00sJ5PgixUrcgoUAW/wdQ8f+45+ZZGpwCVXXRC+LdBUKYGaqCfT+CratIeQ7P0rA1jhFnonJFu7foIc5y/NMnfcSZwMthiG/cX7g2FJ+uKrjVdWBoCn5rcwQ/4lVBp0QgzIalK5UO2c44QlqgKd5W8AKt7pka1lo2Oq6B16MQH7+eQlcZbndd3OjY8AytogfN5jTJNQm0nyc6noEoy6EpRK+qFWtka0RaUxJE694dx7jRtsEFIHCQU/b9pNICbbk6uJDwTO1KEZPlOMOMQ1MYdsZ0qS/nAQlL0397lorXwwhCAK7BEGcCfT/CWtOmvapBBif70/hc1PbzRJhyTEOOfT/GTcNFz08wDDLYRqnZytG0dIhizOstG1HGkfIcLwNe6cPxQmD8umKhZmJ/moALcsUbR2lBOWRVHqsw2qejgsZ5u+ticxAV5zYxiBRGzdDL5rWKQnIEbc/AZuGemXJxaiMyyQX8OEPMBSAFxnEGyEKT7y0VdXMh0Q8S9MMEkBIrTRvjMEMuaeyf707Bc4muZ2AUpVjwTKTFfpXlAmFKJmWvRxHt3TqxLX5INelzx0ULUxZjTCtFyssoKHrXQ/6+RGQ8x+thWGhXADcKyPEgSPHeagOtUYSuZ+HBSh2OoYEL0gQQsjyWaeOhi3Z2JNk5HLahnom2MTUFH6418Z3NEVRFwY2OW9iJ56gXIuyzHcow5fAL1MNy3UbLMZBygbWWfeUb8JvEWtMuBOt0jKIU95dQJe4KowPfNlS4Blnbqgp10AFKfjyT6JRSApcxCPr+1gSf7U7x7/6h81P4ZqPlGvgjX7uB/+KfPsf/8nfef2vOJcBRbaWWa6LrGchygZqtAoxENR1dx2pDR5jmuNVxqEOjKtWFEozNCRJfZZRWt2UoCpkF9Kcpao6GMJPo1Aw0bXqPIyvDna4LP+VQGCEhpARySLzTvZradS4k+j5B/VMukOYClnK04FNu6rN0EAmg4Rh4uNrErS7HWttBq9CR0AoB9zjLj6AY6paO+vLFDsU4y+fcVcKUHylMxVmOSZShbutzaI2mo+O91RZudTludz3UioI3F6K6ZLiHkrFZ6PJ1B5cSNwv6h6GqeGfRg6aQhkrDPv1Ymd1by8uNhETL1c9l/NAqoOdlWDrRrJ7u+UhygTiTaDoGFjwFNUujglPxmIKEF0VgEojkggonV93prln6HJrA1FUs12zsTlI0LQ1CAjVbQ93S0a0Zhd23i2FIcyEvNkNVUbDSfDO6l6IwbLQcTOKs0OHSKv2N3Ulc/bvjHNrCJJ+Zv4TutQ1yhLzRdmAVXc9RmCLMOJbqdqFdZaBxgj4LMO9AY+oquh59Pr04J6dxhhsdG0GSo+noCBOOtmsWhd4A763WTyxGl442QtCZruL4f7fcIATRjY5zptiowtiRtdVwDDRtoyocSgmsNSzUHB0PsxoW6weOi4cdFFeb9huJYB8XusrwzhJZcff8FB1XR7dWzh2JmqXN7edCEA0pyjgWPQuLngVLV67d8bO80J/WXCs70uU8cQ0VCzUPlqbi63faiDOBhAsMwxQ7oxiepcFP+JFcrbTNBmjvvK5YadhYadjYm8bFPq8hyfJKzFdlDGFKcgx3FlzEmcCdLhDzHJoCUJ2AXSlN/PDZbeoKLF1DlnNIEALy3eUanW02IRZ+4k4HUUZMgwPDAzH3My9r1qCpCuqqgg/WG4gyjo5joGYbeLhSQ1SgqacRr9D0ANFTASrEXHeU+/Vy3cLXbncQ8xx3Fjwcl5Y2LAMtV0fPF1j0LKw07aqpmhWmGedx87tsOKaG+0t1LNcttFwdLcfEP3nSQ5zlsHQdyw0LH23M88Hqloa6rZ2pI3vdYWrq3BwqhfR7hWZXnAm0XdIVWmnaEBK4q7l0b2DU2CoLU66hXVvOTuujjpQLfLYzBUC5Rr2mgQuJ+0skaaIqDHkOBCnHIEjRdgyIPMVK04Rb5G1XTYXigui2nuWhWzMqBG6UispZr0TQqwrpMjmGhvWOi3bNgKaQpnHHM9G8xiZm1zPR9cwDEXZLR93WsdFWoCsKDF2FY2gYBilURiYWjqEBkvQcVYXMIpbq5hsVpQ1VgWOoUABstB0MgxQNRz/1Z640bLy7UoemKOjUHEwSAZWpaLpvD21EJiUKbrZd2IaCuq1jsW7CLpBbLwdUu7B0FQ+W6kj4wX2ipBtauoqv3mpjZxKDSapF/KjoSZ4UF33C/28A/ylj7H8mpQwAoEBK/aXi737owXOB729N8XQ/RMw5vnyjWf1d2zXwtdttDAJyMSmhrIs1E+OIo+HMa49cB6/y4Uq9gN6qWKqb2ByQxfZsYSEX1NEn+hTHRtvGNOYwNKJIJDy/1kPvIqEoDB3PrKga+9MYn+1OwRhDyzGwWDfx7ZdDJJaAkMB7q3U6hPwULYe0FW52HExigucDlDDzgpZwVvyNb7+GrjL8vg9XLv0Z/qc/fRu/9M3n+M9+5Rn+/B94/8jfSymxPabk97KujOeJxZqJjzYaFSQ4zgSArHKIJDH+FK5J45CgJOjwZb5M4s5LHbtI6KqCD9cbiHkOP+LgkmiYqw2roqn2/BQKIw60bWjkTHKoRJ8LCSHlhbtHuZB4tDeFH+cAk7jRPlkXZhaVsVQ3kQvqgn2w1kDbNdCwqJvYD9LqOZbPLOH5G23eJaILkHBMDZrCjoXOPyt0N4ZhhrsLLno+0ZvKMbqmhqUa8e2nMUen4ONvtB1kufihoSeX6xY+WGsgSDjeW62DgYQbO56B+ikFiTJm99bNQYC/88keFAb8/MPFC49FVxV8sNZAmHA874foBwnWWzZUlQTMbUOFEBI9n6yGTY3oA+MoQ+sQpfQie89FYrFGRZW7HQ+8oF5MI46Wo1cOQoMgJQclXYViMizlJoTA3Pq+zPhyIRFzuuwdNvBY8MwK9n8cvbbsbquFUDpRSVPcXTzQMHveC/DtlyMwBfj67TZWzqBxAuQSaBkkfKwpDCtNCypj1f5aniflj3IMDRstG//8WQQGhm9vjvBjx2i/AMBay0bPT+EZR3VyZvcdUyOX3SjLwXNxqf1yoWai5RLSueuZQFGUa3fn14BrqtidSrRs/UKIy8vEzULLg+fkXvR6FGEYHHWX257EGBRGAQ2HCuNtx0DMcwzD9Nog/yWK6TxI13KerBSObB3XRJhybBYJ+WLNACTpEnktFVku5t65Y2gFCu9s97iriLpFzk+TiOPuoodRRcMHIEncV1OVObRRyzHQD8jt9vDzyHJCWV3FHt9xDXxhvYFRlKLrmnjSCxCnApaeYxyRnlOay6pgyoWoUHcnRVpczC8yvtfDCK6pY73t4GbXxUbLwTDMMAhSjKMMj3b9SpPmKzdb2J3GuNk+n35Quc+rRV56mVhp2Pj63Tb8hFeasYdzqrqtwzVJxNqzaI61XWMOoXcVdLmeT9q4h3O89ZaNYZDidqEttDkI0XYNjEOOd5ZdPFg6qj32rB9iGKRgjFgePyxH38NhaioeLNUQJjn2JwmEkBiHGbo1Aw2bigfTOIOQ1KjVFEKUlyyT2Sh1/t7k0n34jDU0cvcMU9rjGSPXy6xAnUpJ2myvhiEYqAlxd8nBg6X6ld8XUk6mGnWLio9cCCzWLLgmUbVKgetnvQCjMEPCc3z1ZhujKEWc5oi5wIerTdSusRh1XI6yVDOhFFTD2XU5ClPsTmIYmoJMSNRMDV3PwErDwg92fDQdKpq/aRHFTzL88vd30XJ1/EtfWodnnl3M3Gg5+BceLiHJBG50HLRdA69HEW5fUYP9tCjnsa4quNF24Kcc3QJpPxvtNEec5Wg7BnanEfamKdquCZ4L3Fg8oGeqBTrx0e4U/SD9oVL1zxMXzTr+HID/LYAXjLEXIJz6BoC/AuB/c8Vju1QEKceLfoCtUYSWo2ES51Uhh4T/CEFVvuBSnM3UFawZ1w/6MjQFXy4c4DaHIYKEw9SUYpulYKCJuT2KUbOou705iPB4zyex1MS6NoTMm4ahqWhYdBgHhXhdLiR2J+RCBaAQxyaNkbqtV+iCMOXYHcfoBwlycTb0XkqJv/XxDr5xf+FMVNtpsdq08Ye+uIb/6tdf4o/95K25LuPHr8f4s3/jY3xncwRNYfiTP3sX/9Yv3r+WajNjDJ6pY63lYHcSQ1Ops1Vu8E/3fDza86EqDL/jbgeyoGzNXqj8hON5j3QEzksdu2hYuooFz4KlZRhFKTZaTpWADYKUCpGZwIfrDbQcA5amzCW3swK8NzrOhQ7vLBfIOFEeXFM9FzXDjzM82p1WopyLNWtOzPJw97Ds7tiGgrsL3qXedVjZqtKBcB7ts++9GmNzGMHRVby7WsNG+2Cfqlv63HMaBmQaoCqElnvbKEop6QKjMlZ1mt9duVyy84PtKb71fABFYbi7eLlD3zM1uAU6CgC6NQNt9+C97k0T/GB7gknM8f5qDS2XXHJmL95l0TPjVy9kqygkyr7ctDCOMkoUWgbWmg5YoZXx688GSLnA+2t1rLVssEJYvrysljpuKRdYapjntmfencR4NQyxNYqx2qSCYvm5FeV0cWFdVXC76xb7NYk6L9YspFzg0S51kcOC8iLF+SkimqrMjf+0Dr6UsmomrbVs5AJ4NQhh6wqWG/YRSpGpqcc6MqVc4PEemURstGlNvixg/VkuLpWo5VLiVsdDxzWRCQHGSAh3dxLDMzW0isvq9jiClMAn21OMI36h93fRsPQDBDd1UDl0lR2h2DKQeLCfcHyl1kLLMfBoz8eTPR8dj9zszjJDuWykXCATAuYxSNfZODxPyggSjv1pgpiTEHGY5vhnz/pYb7nYaDtzDcXLFiguEwkX0BQqPDHGsNiwKhJSP0iLZhOgMmAQkr7mesvGct3CIEjhM16hxa56j2eMYbFuVdSuccxhaeQUxiGgzlx6tscR/vmzAUxVBSTgmfqRM2wQpHg9jKCpNL7zNplyKfD57hSbwxARJ3H+tmug5ej4+PUEAOWOALDUsLB0Afrlvp9Uwum6plyqMEB6TVSIcE1tLqe60XawN42R53SJVhVyZSznWJKJOYRp8w3ufsMgrei/5f2g1GC0DRWjKMMk5rjVcUiHLeRYbJj4ys0OrEN5n5QSUUr7EEBooIcr17O2LxOuqaPtmhCS1vZay8Z6cTbyXOC7r8bo+ykWaga+dKMFhbEjBYvSQMUx1Uuj+rJcFNphEqtNq3qvNUtHlkukucAPtifYGsVoOjq+fqdN502L5surYYiWa2DBs65W6xUHdHABgaWahbZLdwMhJAZ+Ci4EHIOeSZhy9P2UnHJ5XkjNkDawcU2OcgAVpR7v+0gyURl7CCExikj71tZVPN7zIaTEomdic1gifhQS5a5bWCykDcpcLkovpul6XARpjt98MYRjqPg97y/DMc+jjTfPYlpvUaHnup3pSjMe21CwVOgIL9etI8X/SZxhGmdwdDL54YLOwcWaciztMReyOn8O7ic/mnGht11Q+P40Y+zfAXCv+PJjKWV05SO7ZOQCqNsalhsm6pZeVGrphR6gEw5Ez0paWZKdL1G6yhBFQpXkYk60T1Go6xokOWqWVliNS6iFHfSPir7UcVG3NLQ9AxkXWKiZ2JuQQ1+YctxeoEvnOMyqBUI6G2aFEkt4jt40xWrTrt7NSfFk38frUYQ/+XN333jc/9Yv3scvf7KLP/Fffgt/7X/yNZiaiv/w7z3Cf/5PnqHtGvizv/chPt4a4y/9/cdwTQ3/xjfe/HceFy3HKBIiFa6hwrX0qjgxiTmynLoRj/Z9GCq5jT1cOdBRCZMD6lhwDHXsKkIvKG+uqeJmhzbrsjCYclHBrLfHYQUxJttXSjCjNK8EeIOEXyh5tHQVi3UTQcLPLEqtNm3Yhoq9KbAzIV2Cp3s+hKB1f1LnoxSUjFJxrL7EeWK5bmEHMRxDPbUodbvrYhpz1G0Nv/a4T8WR/SlaHrkwnkQRLtdGiYZ524Wpnp9iZ0xJ803lYsXFw2ForOp8evrlE5D3V+rQFVZots1fRhWFxL4B4Hk/RJjSBGQFEggoLsuFsK+f8CunMy3UTNJm8QzYGon2lyilJBNVsjCOM/C+RJIJ7E9ZVRzIclHphPgxx3lZm6rCEGVEyWNgCJKLJ3qH33dcITrp4s/AoGkKbl5DF253klSW4u8seQgS6vzmggor59W6ibK8MgfwE164EqFAjF3uTG05JDJO6CIFqqIULrUkKL43jWGoKgYhGUKUvz9I8uNtX644pjGJpvpJPtdwAQgt90TzsWialWlGqRsXZjna17SlKArDUt28NOq7ZumwTRUtaYBzic1RiJRLGIoC2aT9+206CM1G3dJI9yYnlIuuknmIqjAkWY44o3kc8xx+cTYOimJDie69v1SDoSnXvseXZ9Ri3aycutouSQl8Z3OEvl80COvGsTo05TnJc4k4y89dmKpZOoSUyHOJV4MYz5sB3lttgDGGtZaNUZheupg465alXrJ5mHLSYyOzExJJLnOq3Ulc7Xstx4BjanOonbp98P7flC43uyepCrltvSou8rOF5klMxcwSUXHcxy6f7d40PtON7IcRaoGatQ1CibRd48CJjzGMo7TSXny8N4WUbO4eBxzkREQ/vxzaPeGiol0HSY5OUd8q0fcA0Z9zITEK02q+mYVra8PWCq20o4XcNw0/5pBS4kU/RMoFpjHHO0s1hIVkBED6Wzc7bkUXrlsaVMaw0rCqZsl1sm0yISqTI3L+BXYmMfqFy2q7MOUAKM8pz1/P0rBY16o9qCyiMIYrEelXFYa6pcGzdFxWXu31kLSRZ/fo64jyXJhEHH5MhlJxlh9pnPX9FBmXGPMMEmTOcrPjYrlhHXv+ES2SGqPdt4AefpO47C1AAvhFAD8FQDLGfhXAfyyljE//tusPQlHYWPCIe912zSMH5qy+BYnUJte2YIOEzwldzoZWdGYo5jfRxbqJOCNB9YUadRIMjSzFF8+pNyKExCTOYBvqW6P+McbmutVrTRueSYKx5UFTs3Ts+wkY2BF3A0NVqUhX0K9Oi3/4Genw/+yDi9N/Dsdq08Z/9Ee+hD/+S7+Bn/zf/30AVEz5I1+7gT/1u95Fw9HJ6TET+D/+8uf43R8s42bn6iGdisJO7Nw/WK5V9ui2rlboBDkj7NxyDQRpTjDnE5LzlIsK5XDZOEmXZ6lu4faCgzgTWGvaxWEOzAo11G0d9ZhcBjvu8e9YSolJxGEe0905r95OqaVgagqiVCDN8nMlC0t1i4T4rXk0WpzlSAqB1rOSHrIwP3t+lHpsAPDOoouXgwiuqcBQTx/nQs1EmgsYqoLazBpKeI4ozSsL8rcRJ2xvczGOMhiF3tzh+GijhWGYQVMVPHgDhIZn6RUa9XAs1izcX/bgJxyucSByPzsvbUMlwdM0P3HvOW0/PyvK5PW46HgGbi+4iFKOO11vTvupDEufHd/Ja+Dw+u66BjaaNhoFzegwffE8IWcelJSE4OtNKdnseuZb0+a70SaB9ue9ANOYH6FynBZ1iy6RaS6KfYE663ElVH40znrf6jH7dV6gExxTrfSuSlTpYs1EmssrpZWdtZ+3HRNwUCGWy9C1Qig35mg5RvV8DM1F3dIvVByYxISmOw9KwNSUc+cwJ8VGy8HrYQQJgdsduoRZOiGxr7ujfVowxo6shUpHzyJNQE0lM5BRyJHldIkdl+fkTBy3x9PlPLuShtPJZxRppjWdHIbK8GCpdmz+ODu+w3ncaed33dJxq+tiGKRY8Iy57227xqVct2bHZKgKVPX0uXiR+dp2ac9VGBVzn/dDSMg5Dbkyjnv/l42GTfqDQuLIM/FMDaMCeeuaKkyNtP1K2YeTPsdPv7NQuHEe/7mzXFRutdchBXFalHpEh0NVGD5Ya+DlIMJy3UKWU/Ho8La80iBTlIZ9solJuZ8LSevosKuka6gFNVscm98yxnBvwcOeT8Yqs3dLz9Su1a1tsV64+6kMlnbwe2xdhamTzEuzkFHoeha+fJMKPSUd8jRn+TcJKQlsULPoDr1QmHod1zh2DRUTlRE9tbhDJJlA85Dek6aS9uNVRd3S8eVbrUpsfzZ4LigvNI9S/99mSEnUxtKMp6nphVP08f++YevwY14J3gdpfqYJwKzszo9yXHYV/TUAUwD/UfHnPwLglwD84asY1JuEqal4uFJHkGTgORVznuwT/YEKPHIuCT0sUnuVMY0zPO+FJ/79St0izRP96IWtbul4f7VeLdbDye/2OCJ6g2fCMlQo7GiRZ3MYYhLNuw2+7VAUdoRmZxsqHi7XMIkO0D2qwnBnwcXzfgDHUPGiH0BKiQfLxydFABWm3ln0jqVtXCZ+5v4C/j//85/GX/+NV2AM+AMfrc7BnRlj+At/8H38g8/28H/5+4/xH/zhj67k95436raOr99uY5rwCgXhGvMJREm9Aai71/MTdNwDSqQo6EBl5/6qQ1EYvrjRqtZfzSKhyM7MHFAVVhX1/MJd0NAU3O641RwtdVHOanrlQmJSwIRP2pBrlo4vF5bPQcIRpLyCCUsp8XIQIkhyrDVtEqQ/Rlsu4W/m7pTlAn7M4VknH34bbRdrTQdpLjCJszkU0jjM8HoUwTEIpWbpR+HqJdVLCKBh8ys92A9H1zOgMHqXZ6ETSr0txsjZ7XDi7BgabrQJtq9csst9nnh/lXSoEp6D5xKaqhzRVSobBeWzzHKBG20HrqmduZ+/SWiqgg9W65hEGWyd3vE4yo4g0crxCSHxdN9HUlCByjPs8PrmucA3n/YxDFOsNR2st+xzXTjKpkZZOF3wTKiF1k35vh+uULf6ukU0F2smNJVBV8hOfhgQolZX2YV+92FoPkDuc9vjGOMow82OM/fzLvu+u54JTWHQVQVCykLMl4Rcz3PpFkLieT848m5P+ren7ecd1wADIUmO0xC7VdA0T8ozZvfHuk2uuofzjFlnx1Lz5qw4z354WpTUL8YYxmGGTAjkObm3/crjHu50XDxYrr31y/VpwdiBzuA4zLDRtmEXDlWeqcEqXB/Lc6zc4/t+gk+3p+TIWqBGrhPxoqsKPlxrYMEzsNay4Z5Ae5k9g1Iu8KLvQ0jSOCtdwo5bnoam4Ku32niw5CHhJ7v7zTZWUy7wahjB1BTcmskTjovj5vlslBRE4Pj5amgKbnVdhClHxzWhKmyugDe77xFy9PhGUIluCdMcay37wii+cZRVxX+vQDmtt2xI0Pxfm1m3poY5eY8y96tbOjxTQ90m/VxDU9DWTt6DDtxq1R8puZAbbRcLnomEUyHUT4+iIpuOUa2vl/0QfsKx0rCq+8fsfp5kAs97YaUDNo2zU+fXaiHHYGoMQpKOoXONRajDIYTEs16AF/0QTUeHqqLK73JB6EzPVKHP3JWus0g2GzHP8XIQQlcZJKjxcKd78AyX61TAM3Wl0uCLUo6EC9St69ExPBwKIwOYlYZ1JGd43g8QpaT7eZqJWal3OLtHX2UkPMfmIEKUUZGsbuu46ThV/nA4Zs/ASZzB0JQfKWO0N4nLzogHUsrZW/k/YIx95yoGdBURpTme7tMG5JoqwoJaFKVH4XDXGce5HM2GorBT6SKnJd3lgfVkP6g2oJvdeUpNCfUtOwTKCe5EP4zYnSboTdO5y6pjkEZMb0oQxSjNMY4yLNaOFqYSnuOfPx/gX/vxm1c6rrsLHv7073n3xL9frFv4o1+/gb/2T1/g3/5dD96483vR2BrHFeT/3TMS7/0pOeL1/KQqpEjg0oiP80acHay/pbp56jMaFrQXnucIUl5dwsq1c9ZQX/SDgj9PxdeT1kz5ddfU5rqkCReYRAUMOkhOTGpzcdChK1EQF4nnvQBxJmDq8/Dzw6EoDJZytOtJumt0KUm4OLYrOutAlV2jAxVAz/O8nRcuDt7lcRfol4MQL/p0Uaif0Mm9ishygacFRaPp6Ng4ZV76Ma8g58OQDAfO2s/fNF4MQoRJDk1N8HClfuy+V0aY5RVldhgcdH4Pr+9pzBEkOXgOjKIU561Hv54xDij3mcPv+225uigzLlJP9v3iGdF6f9MYBAcUkTgTcw2iy77vw4Wai1JCT3q3x8VZ+/l51ulp77HcH8dxhpf9EGstG7e6ztyY+Mykys/5zJ71AiSZgKUreOeU/fA84y737NejCJOYg3MJP6F533B+9BL1vUmM3UIH6d4i6UCqCjtRc6xfzNFRmFW08us+w/tBioRLvOhHeHf5qCj74ZjG8/IM5zm/zzLJKBurigI4ulrlCVGWv5F+z6zD30luf6ehX8p5x3OBJ/vUCGo6/MjdIs5ERbEaBOmFC1OzYyvP89km72nrdn9K8h+/tTnCrY4LN0zPhZgpc5vrdLC8TORC4mkvgCikWk5jKySc7g0A5U3lMztuPy/3rmGQVfMrzPIj714t7mpbowh9n+4t7yx5b42JEhQu7Twn1kbTPhDCftrzC93Vt+fKPBfFY+0H5Lp3+BkevufyIg87ad1cR8QZx844we40wVrTgT5TwCnvyWfN+ZP0Dq8qJAiZ3vdT2LqGvp/i4Uodp/3K0jSnLLQfPpt/u8Zld/dvM8Z+XEr5TQBgjH0dwK9d3bAuFgkX2JvEWKyT1fsPdibYGkVYadhgUOEnGRhjuNl9uyr0TUdHJsS5qC6HY28ak45I3aoWOM9F5drVcnUMgwyepVYbw+GkcL1lox+k8EwNCRd4vO9DV6kj8MPgmPcKYcqGo0PMXFancYZhSIW2aczRcnXoKokqn6Rd871XY6Rc4Gu3j6fuXGf8az9+E3/1157jr3/rFf7Nn7t39jdcYURpjpeDABLUmawVhak4y7E1ihCkOZYKiGzbNdD307lkRlUIIlsmTNcRXEjsTmIEKXV2y8IUzwVejyIkmSDBUNdEwyG4qqkpc52T1aaNnp+cScsoCx1l4Ygx0gN4NQyhqwrWWvaJhwnPBRXGBDk5tU7hsjuGhrWWjTjLL0XD4RWC5QDJsjmkcbYcA7e77rHJtpQSPT8t1gs5/JkndEV0VcFG24GfkIPHZWIUptgakRbBRtu+kuLDgmtg4CewdfXYz6gpwDBMALAjoq1XGUJK9IMEozDDSsPCesvG61FUwdCXGlaV7LnmDDy+mBdvsp+fJ8r1keUCq00LDfvApfT1KEKQcDgmGQ/YugrbUBBnYq6Yenh9e5YGz1QxTTI4uoq9aYy15tnvdbaYyHOJlwNCZ220nbfWiT0uZtf7SX//rBeAC9LXiDKBtmOcaI7hFuhcSvTn19Vl33d+QqGmfI+5kDB1BcMgIz3MOrnUWjrZZdu6CktXkHBxJvrjTfZzKWk8vHBim+22+gnHNCbXSsdUMQyTigJx+NnPOjsCwCdbkzP3D55LDMIEfpzDs7RzOTmW0fcTbA5C1CxyFirHvVy3EKU59rSYbMfNHw3XsTL2p6SVlvAcWvGw8mJyTeOsolj1C1fbtaZdON0a2BmTEc5yw6oc/K4zciEQZRy70wSaynB3watyxid7Pnp+ggdLNTSLdeVZGnSNUeHA0qnBeI7z+6QIU45nvQCQQLdmom7r8BOOKCNtLsdQL3U2+QnHvp8gSDlud9w30q8REpVWZsIFXvapGbfWsklTjFOzzSwkOC4abdfA3iRBz0/Qds///eMowyTOkOfkFgecvF/ORpTmSHOSArjddbEzjtF2jR8JFIaQEtOIY3dKYyoR1lku8HoYIUw5mraBhTpROT1LQ5DwuZxudj/XVQWLdbNC8jccHZOY8lBbVzGNM2yPY+SCaNdlcf/1KMLWKCrc+N7e53cMrdJ/M1QFQcKxOQjJzS4XABh4cb6MwwyL9eNpkdcRhqag4xlYaVrYGcewdKWQGsmxNSLHPVNlyCWdFbPrZmcSk9u0Z5xbouOysTeJ0a2ZR1CcCzUDm4MIG42rqw9sj4nx0a0Z5y5mlY6FrqEhTPO5ubszjvHpzgQKIxr7LKpvtqB2XUyYtx2XPd2+DuB/zBh7Wfz5BoBPGWPfAyCllF+4ktGdM0Th+lZecjWFxAq/82qIpm3g7qIHBjaXePoJxyhM0XKMK3dPKIOxk7tg4yjDx69HyHPgyzdb8GYSjZQL7I6po7Yzjqoq+OtRVB3WX7/dxnrLgZQkxgd21DrV0g/ciTYHITIukRWH5VXbmJ4nen4CP+bYHkX44o0mNJXBUBVsj2MIKfF6GKHlGAhSjq/caqHnp3i852O1edR56TdeDAHgRMvw64w7Cx5+/E4b/9Wvv8Sf/Nm7bw05AFACaOsabENFmBCqQ0hUh8D+NMEkIqHibs3EB2t1vBpG+N6rcUVBO+zwdtVhagqswgaeMeL1D8MUGScR3mc9Hy2Xku2FmomNlgNTV/DZzhSMkSC4pasz+msnx0bbwWDGajtIyI3k9ZCKK4pCiXSY5vhoo1kd1lGa43uvRxCStFeOo5gdjjfRvrjZcTAKs2qNDgqb3N40BSQwCBLEmcDNgoICUKHis90pFRcdA6tN+0z0w3E0xItEz6fu/DjKsJRfXqB4NgZhBoAhyo5SFAHav/cm1OG9TlSSqZHWnqHmGAQptsf0/J/1AtQdDWkucavjYHscw0+og+qYGtwZEdbr7Jh1PROvhzFaDjUdXEPD3jRBmNJl4VnPR93WsTOOsVS3sNywqcA5CLGvK7jT9aAUVtLlMw7THLqmYG8SY39Cc6xm6mg4erUujzsD14rCsGtoyISYQfCkP9TC1I1ivddt/dh9dxbp9tnOFF3PQpRGVWGqPC+HYQpDVRBxgY5rIuE5vvdqDENXcGfBLUSEL/e+u54JiaP0uUmcVZp7H78O4MfkWtutm7B0BW2H1pttqBdCEZ22n/f8BL/1cgTP0vBjN1tztLlJxDEMsurfzdJYv7s5QsRzrDZsPFyp43bHxb6fQJmho5Ux6+z4ZN+v9o9Fbp64p97qOtifJlismehN03MXpvyE4/MdHzuTGA1bh20cnBOle91JFKTy3feDBLZO+itRJi5Fzb5M9HxCvTIwdFwDpk4Y9hf9ALsTKty/6IeVFhgDFa6aNrkjPuv5eLznY6P1ZmYT54n1Fp1Xix5pwPgJh6YwvB5F+PaLEQxNQZTm+MJGE35MRhE32y6e9QI87we4s+Ce6/w+KbaLQtw4yrBUN6GpCp73A0wjDiFJH608j4WQ2J3GUBkhM07Lx4ZBCiHozLffsHBpaApudJxKBL4UeLYNFS1Hx6thBNfQ4JoqPFPDrz7aR5ZLfLTeQPuMczzOcvSKAlrTMTAIjmqQnRRbowg1UwdjwDRK8f3tMb603gRAxVEuBBZrR12+hmEKXVHBdIbnPSr8Rll+Lq3M6w690KesmTpcQ0PPT5BwgSwXGPgZXg7CSoPJNlQ0baIwbo2o8HGr687t55rKqkJI30+wPSajmpql4WU/xCBMsDWKoCkKkkyQ3q+iQFeIjlbmuG8jslzg6T41W260HfxgZ4og5QjTHDfaLhyD7gO6wvDdV2N4FuW9b6swpSqkGbU9itGtGahZOl4NQ3Jlz6nILAFYmoKdcYy1ll2tm90JFf/2p8m1FqaEBLbGIQxdweEMc3eSQFMU9ILkSkTBpZQVo6k3Tc+dQ5QyCcMghaEpcAwVL/shPEvDbzwfYGcSI8kETFUpJCZc2IaKrls0ho45m3+7xmUzzN99mW9ijK0C+O8AvAfAk1Jyxti/DeAPAngB4I9JKTPG2L8K4N8EMADwR6WUk7N+tqEdbBp7kwQv+gHAgJQTlLPrmXP6JS/6BCWcxvyHYpu6P02wNynpeD4+2mhWf6cpDKZOG2KJInk9ivDJ9gTjMIWpaRhGGWxTqyyAz4qyaGdoCpxr3lDDlGNrFMPUFKy3DrqmLcfA5zs+bF3FziTG+6sNSElFRSnpQN+Z0AHxZN+HXjgkDsP0aGHq+QB3uu5b23wPxx/+sQ38r/76d/BbmyN86cb1F8fGUYb9aQxdVbDStCAlIAD0CkqAoTGojEFRyE0OkoMxVoisUlIzDNNrTcBLFJCUEst1E1Em0PEMvOiHhcsGh21QAcnSFfT8BKamYhpzLNbMqto/jfm5D/3DBSxDIwekmqXBUBl2RzGe9kK0XB3P9oNqvrwckGPgNOa4u+CeqWX1pkE2s9rcny1NgaFR1+/jrTHqlo6E57i/5IExhr1pgnGYoe+n1ee67mg5OqLCFdK4In0WZebHHOeU9HIYYmscQUrg060zt/oLxyTOsDeJ4Zk6bnYc7E3ImWhvGkNVGVQFsDSi0+z7hKh6NQwLIVF2InXyqoL0U8puu4Usl2g6OnanCQZ+ioTnRMVmVMjfn9LFOs4ETE0p3KMEYn7UbW8aZfjOyxH2JgksXSV0YiFIXK7LScQr578ySst0ABXCJ+Uk1PzDjLMK1o6pVl3kxZoFITGH2hhHGXbGMZ7sB2gVKATP1PBoz0fT1skNNuYwvcu/b3KdO9hnR2GK/Sk9/9KFqDeleeanGRbqJnWNXXNurVxFPNqdVvvccGE+STZ1pRpP+YyklHiyP8XHW2M0bB1W0cw7/JlOiqZN+wcZrpz8YRxDw/1lD71peiEBe5Ux6BqhUXbGHCtN89wFkHGU4fUwwvN+iJajIcxybLRcDILrPRejNMfrUYQozaEVOmOrLRrzp9sTpFxgZxLhdser3gNjRI1RGMM05rjZcehcB1Fyz0LSvWkMghR6IVJsaApcQ8Xnuz6SjGMUJVis2TB1paKQpHmOmqXPneFvsoZcQ0OY5Fhtami7Jn5rc4hxSIX0hSibO0d6flJdBONMIOFkZnBcXnzVeXDZCAoSXrkr2gWaq1xbqsKwNY6wX4zx5SA8szC1OQgRFwXBUZgdKyJ/UrgGFfQUBuxMUpiqihfDECstu3JWlZJQ6UHCsT2OYBsamrZOBXtFAStyjcs6G15VlKjOOMvR9cxKJ4s+B0MmyLmNMWqI7vsJmraBScShF7TXaUwmAydp2Q1DEpgeBClGIQnKD4IUlqYVGoF5VRjUVaKV120Nj/f8I3ec64gg4ZUb7+N9H2kuMI54NYdqlobFuoUf7EwgJBV1Z01WeE76bEJKbLSdaxH4LhscgyDFOMqQcdKHq5mkjcYY0AtobimMVYVrCaA/TZDmAo/3plht2teiORWmOfp+hiSbQAgBzDwDVWEQQl7ZXCctQR2jMLtwM7sUO0+5wJP9KTSFcja7QKExSAzCDJah4eUgxINCO7o8mxOe49Uwglroaf6ouW+eNy41A6SULxhjLQAbsz9DSvmbZ3zrAMC/AOC/BgDG2AKAn5NS/hRj7E8B+EOMsb8B4E8A+BkA/zKAfwPAf3DaD7V0EupTFFZ00CzcW6zh0Z6PhqPh/pKHumXg1TDCwE+w1LCgKQypkNXmVcYkzpBygv+/iVj4WXalizVyC1MYqxLkMtJcoG5qyHTiqD/enSLKBBoWWcivt2zY5zyoojTHNMnQtI05MfXrjP1pgqjo8rddo4JdL9UtPFypIc4ODonNYQQhRHGRMCtXAcdQoasKgiRH9xjntm+9GOIXHi5d+2c5KX7hvSXoKsPf/N72WylM7RU2xREEFusmeC6wM4qwO03QdAyYuoEP1mrgwsM04RiHHIwBVuE0Ngqzay/iDcOssjptuzo8U8XATyvRblUB1poWbnddJFygaSfV5brh6BgVugB1+/IHk66SgOGdBRcpz/FPn/QJUh8r1eWD5wLb4whxRpS3pYaFScTRdo8v/lzWevi08EwN76028P5aAx+/GsNQFYyjDO+uHKzRYZCiHyTwLBUbLRtpTu5bxx3cVzXGjkcU0FJUmAtR/fmskFKiH6RQ2bzhwWLNgqmqUBQci07teiYsTUWYckTZ1VNM9yYxfrA1xSTO8HPvLuLhSr1w8VLQLlyhPEND2zMrbYqWQ4iGun0ydfKqYhimFSKp4+lQGcMwSLE9iSudkftLNTxcriMTEjvjCLmgRLxduPTZhgr7mIvWNOFYqtvwU1r/X9xoVEU2XSUL8sNn4OFQFYb7S7Uz51hY6GCYmordooh+s+28selG2VHd9xNYGtFVTyoUlusfoPmYcDH3/kpNvtIdbaVhIUpy1C0NfsKRS3kpjYasoAU7M9o0O+MYo4gSdacoJN5f8gAGjKMUe9MEUZphtUHuXitNu0IoDoIUDDiRgnjeWKxZ6E2psN2Y+VxSSgQJNQRinmOn6FwbmoIgJhqBAjJkOE/M5hnn3S9WGjaW6/NitEJIDMIUuqrMIT/LuWcbZG5Dl34JnqMqhB2OQZBCShLX3pnE2B4T1V1TGDRNxaJFgtDd2vV2mct8SFeVSgMkFxKDICWjiyhFziXClOPdlXohiA68GkbFelIq5E3CjxfCvcqIsxx9P0XKJbJcQEiJ5/0QgISmqvhwrYGGo+Nux8PzISHxTU1Fw6bLmMIwh+hKOF06b7Tdqmg8DNIjeo+zsdyw0HR06CqdyU2HmsuuqeCD9cZcYW5WZ7MXxNAVFVEao1MUMmajNBUaRxnGUXbuuZrlAi+KZ3Cj7UJXWVU4bLuEOC21I0vq290FD2FKRbJpnMExiN60eIbbdPWZMoGmpWMcp1W+PApTZLlEx9XxehQjTHOsNq25PWujbWORm9AVhp6fYhSmJECtHBSidVUpmsIxolQgSlN0XAPvrzYA0ByI0gO30ovmAlcVYZpXRY+EE905yQT6wUGzeqPt4O6CCyHpYj+NOQxNQdczsDshCvJpxZiuZ2BrRPMlSnPkQuLeolfMYYndaYIwyRGmOTxLha2p8GNC7kVpjqZzfQZaAOWKtqGCi8LASxD11zU1RBlHP6ACqaZQjqvPoMGklBgVzwSgPfE6kEndmkHUNY9cwTNOZ8uNjgMFwOM9H1tJBK6pMFKOQUgU4bWmjaat4el+iCgV2JskuNW9DkS2hJQCTceCcYgFcLvjIkjzOXr0SbnsaVGeXUaRo6y3Lp6TtxzaKzRFgaqo8OMcusbw4UYDeDWGrpjgAlAYKr3B2RgEaaWpXe5vvx3jUjOAMfbvAvhjAJ7gwHBbAvj5075PShkDiGde1tcA/MPiv/8ugD8K4BMA3yvQVH8XwF8+ezyUPA+DFFujCDwXsDQF95dcfGG9heWGhXGYYXccY3scYxRneLhcg2voFQcboE3mReHakHJxaShyKZDXdPQThd3qto7f+f4SYi4qqogfZ/h8z8eooCp8sj3Bna4Lz9KhMHIX+2rLLjrsMfzkdDF3KSWe9kiccRJlb00Yr2bp1LHQGLbHEaKUiilLdSpKBAkhMnbGMb71fIgoJe2A1ZaNBc+EWSSlCzULoqAFxFleXUYSLjANM3z11tvXlyqjYev4qXtd/M3v7eDP/N6H135Ye5aGOEuR5XnluKIrdLl6tDuFrav4TFPwY7dauNF2EXk5FaZ0FUkmIGzSKDrOIvfKxmhqFfJoGGaIMo7XwxgrDQufbJPuyGY/xPurDby7UkfT1hFmOWydbNUdg1A6YZJDZaxKOIOE47uvRvhwrYFcSAhJyV85N2xjXixcVRhURcXAp07MSsPGRxuNaq2MI7pAmaqK5YaJvQKxF2dH19MoTCu3ljszOhuHI0pzfPNJHx+u1WEbGtL8AGXjJ0TZOUyxMzSFRG2jjHSDTBVfK+Z0+TkXPHICSbjAIMiwx0gYe3Yc4yjD5oA0te4uuG/sRFW6fLwc0F6YS3kuOPL+NKlEfVWVzV1OwoyjNyUB2MNugTfaDuqWBlUBFmtX47A5G0IAT3sBIs7xq497+F3vL0FKBkDiyX6A3UkMW1fxcLWOpboFSyc3tXFEl8LSzZHn8lqQCq6pgTFyLdyfpoUTWoQFz8SjXR/rLRu//nyI5bqJ+0t1PFiuF46cKkQh5C4liSMfdjnzTA2mTh3NBc9CNqNBMLsXnyeO2+NSLqAwgpE/3Q8gpMSz/QCGrmDBM9F2jDd+ZlujCK8GEXYmMToeFRlutJ1TBXDL8R4uYPWmCZI8xztLLpbrRIWcRHQJNzUqpJUFsIvYKr8eRpjGHIwleLBcg8oYnvUC7E1jCClwb6Fe6JbReL5+u43vbI4BJtH2TKwUxfEQHAM/xWc7U7imhndXam8Ez7+76GG5YRGiXKX95nkvwKtRCENR4CdECbmz4GFvmuDeogdNZdAUBs/S0DhHk2A+z+AXcvM6PKd2p3GFfrm76MJQFTzZD4i60CEKm2tquNEmDZyTnIiGQYrvbo4QZjkertThxxy6oqJukfulrqlwi4YZrR268AcJv/I17hWUNF1jVfF4qzAXGIckGt4PUkwSjq1RiC/eaGOtaWOpRho4uqpgaxyh6VDRz094VUC/jjBUBbrG8GQ/AmPAOOTFHsEQpCn8SEBTFIxijnsLXpXDJlzANQl5GqYcukp0WyEkolSQdIZr4Nce9+AnGW60Xby3Uj/xvJpdu7c7hI7PcnGEStx2DegqOYbuTGJ85+UYCc+r/PvwHJsmHJsDQnqJwmX3rBiFWUURHoUphmGGR7tT1C0dX9hooOkc1WIqHU0Bcoz7qXe6+Gx3gq1RDCGJLnlS3GyTbtzWOMSL1xG0gi61OYjAhcAgUCuHufJuUEa576Vc4OFKrSryMkZaYTHP8Ww/wHdfjbBSNOvK/eG4sfsJP8gFhHyrhj+mRnMxiHNEGcckJrQcz6loWrd0/Oqjfaw0bXyw1sDNjoMgzWFpCrJcom6TUP4wSI/kiQABEXIhUbc1uIaG9eJ+5ZoanvcC/NbmCA1bR5LlSHKBMCVdx4UaOa/Wbf3aKX1hRsXMuqVjbxqjN0ngJxy74xjPByHudD2MI46v3mqT/lpxnm8OQozCDK6pVnn5dcjW5ELCM0kDa3+aoG5p6BQutHEm8PnuFJ+8HsNP8oIZIQpEZFi5rusaQ8bltWnnGYUr4K3u/H7gJxzPewE0laFmHZxbp+WyJ8XOJK7ovKWpxUVCgtwiV+o2pgnpni7UFEgh8a0XQ3z8egI/ybDecmDq1ADLhZy7C3imVonzX1bf70chLjsL/hUAd6WU6Rv+/iaAkrsxBtA64WtHgjH2xwH8cQC4ceNGZSf7pOfDUBRsjSI0HR1P9n0s1kzYhlpUGCV0xpBLCctQ8LwfQlUY6paGUZidCvk8b5TUqVGYnVo11VQFXtG5eNkP8WtPeoCkzdLUFexNSJPpGw+6eLBYh2TU6fj+1pgeTpRh45ifS905OqhHISXdq823d5i0XYM2GAn8YGcKgJ7FUt0qLNrp+ZZdz4QLRFmOScjxaHsKAboI/8J7S4gzQbBkBXh3mS7kJaf/x269fX2p2fi9H67gH3z2XXzn1RhfnKFiXkesNGx0XBNhSkmVa2roTxO8GhId5+legKWGCfO1itWmU22KvWmC77waQWUMMc+x1nRwo+O8kQ7RSVF2s0uLcS4kVEZ0Ej+mC1cuJVRFQadmYKluwzNJ6+M7myOkXGAUZlhr2ajbWlVIzXKJJ3sBGoUAqhDUFZxE/MjcmA1NU3Cj7UJIOVdkdk2NrOZNFdOE40UvRMczoKmkodFxjSrZKKG1caEzcNLBnnCynVcUibZrIkoF2p6Bhk0UQoDsZo84mwFYrJsFJeDA/UhVGFxTLagREo/2prB1DXVLw9YogmdqVSdnMgP/DbMc9bdgkR5nOV72ySL4ZinEOPP4D+94WyNCj8ScHxFF/nR7gn0/IcHb/vTKx7rSJKHzzUIQvx9kWKmb+LXHffxgx0cuBN5bbVR7lGNo+Hxnis1hSJegAh4PAEv8dJfJy4RnapWj5OM9HykXcAwFmwMf4zDFOEih6wqSLIehqfhoo1ldzj7fmWB7FGMaZ1isWVioG3MNiI22g7/5ndcYhyk+fj3GjQ51luuWjuWGVe3FPBcXLmiOwhSbgwiKAtzpEh227DjHKaF9r0KAmjGinWkqwyBIkHFZObreKBA9kwKBZGrqsdSKKM2hsIImrGmQkoqvwyDDMMyw3rRg6CoGQYo4I0THjY6DG+dEfLFDc19RGF4PQ2yNYrQ9A3cXXFi6guc9H1FGKOCySFXSR/aKRHgUppjEHNOE4/6Si70JXWQXa+al0GflnjUOM3y2O8EPtidgTME4Im2NhAuoKsOXb5AG1UbLARcSmqJgGvNKhP9w8FwgyyWsAr3tx3Rx3GjbV6JNBwBBmlc0lnFI+nTjKEOQcqw2TLTc459JwnP0/LRqWLZcA37MsVS30DqEwN4axxj4KT7eGmHgp1d+0SzzIaLaz49VCIm6paEfxEhyiZW6jYGf4NHuFDVTx0LdgKYwTGNCjgghq73oukJRGN5Z8LA5iODHGYIsQ5SShfmrASG3hZS40XGrHLZfjJmBYWsc42bHwUrTIu0wRnRuz9LQ9xM83ffhxzmkQIXQOc+YXvQDvOyHqFkafse97tx+VRZm6paOmqVBxhLPeiHqtl4VdnMhsTeNEWd59X1ZLub+fFLULA17xdHkGCo+3Z5WKLK1FuUxLweUi93suMcWS3t+gpf9CGBUCDqtMFWep59uT6EwVC5iMadmH2N03quMIeU5nu77kKAmT3l/mXVrK5+BXaC2XhRC7ZqS4ifvdYAifzjtMp3loioGvy0tG01VcH+xhjDjeN4LkUtyLYuzHGmQ41kqEHOJVAgs1y14Xbe6sH/75QA8l0jzopCkMjxYOnCyHgbUdNwaRVAKGYyv3W6jZungucCzno+tcYSnez50jaHjmogY0K2RTutG20bd0t8YEXxajMODBqFnqviVRz3sTmgO3+w6iFJqepbgjLKoXjaqAMpdy7z8TZuWx0XKBZ73QkiQft4AKTSFoe+nGAQJLJ3WRpqLQoZEQs4ox5fvOJfyWmiGAD2DSZzj+1uTuTv+MEjRm1JTcKlmVmfDbP5Q/lcpOO+aKtZbRwvebxplDeP1KMRqw0bfT6EqwKdbU/T9pKJXx5kAz+mu1LDTuTtFzdKrXPK3K40PuHxh6mNQAWnvDX//CMBa8d/14s+j4r9nv3YkpJR/GQWa6itf+YpUisPP0cmFL8w4ghHRmSRKbrCBl/0AL/ohdE1BlAjsTRMMQ0poVxo2dI1hpWGh7RgYhxk2hyFsQ8XtGRX8s2KhZqLnJ2g554O9TosO2ChI8L3XY3Q9E/eXXCx6JuqOjttdD9rMQbdQM4nbLymJnT0k9qYxdscJVIVhuUFiqlxwWDOJYsJzPNnzEWUCD5drcK6hil4u/LZnYBIRxHMUptgekzCjBCUKXY+6/Z6lYXsU4tNdH0HM8WC5hp6fVEmilOTMoYIRfNk1cOeHLMr4O99bxp9Wvoe//f2day9M7U7o8mlpKrqegTBV8aofFqKIErbO0LQ92LoKISQUhWEaZ/i1xz28HkdoWBqW6geaMdcRYcorDQPP1GDpCoZ+gk93xtgaxXBMFWtNB56lVY4mUkp86+UQH78ew1BVmAYl74ddnHWNgeHAzSNI88qNYnZuAMCTvSmSXOJu14XWJiqAripzlI/9aYzNQYhegU5sOBpSLjDwUwQJx3LDwst+iLxw7HMM7Viq1GwwBriGXmmBBAmHN0O7K5+7EBJPiqTx/qKHuwse/ISjUdCJrEJPqjdN8LwfYHMQoWZpuNFxsFQ3MQpJRFlCYmecUIJaFLK8C/DzhZAVYu04ysONtlPB9w/Ho90Jvvl0CENl+D0fqlisE9qRIMjsCCpvFCV4vh9hqX5UnHYQJHg5CKlgYl59wXQacSzVTZg6XbpzIfBL33yBT7cnMDUVN7sOXIOg/5SQBvj1F30oUBCYHPeWDjpp/JrWzjgiXau6paPjWWi5Gv7v3xziac9H1zGw0nJgamql+QMAT/d9/MbzATIuASax0rTmxick8On2GE97AfaCFKuaCltX8LwXYG+S4CfutXF3oYaX/ZBQhI6OlYZVISDK9zSJCdlxmLIQFAgCIYCUS9xd8DAKUzg6IbnWmtaVJJqrDRu2ruKdJa8Q8x5D1xjSTBRonQBP9wIwJpELSjZrtoaapaPrmdgchPh0ewwuZFV47HqEPAEAW1fhpxwtjQR296cJBmEKz9LgGOq5CpGLNQsJD7FYM6vkf6Fw20uyHC8GIR7tTrHnx9CYgpWGjbWWBVVRKiRIGY6poik0CAF8uuPDjzlWGlZlWX7Z2BwG+P7rMb75tI93Fj2stx3kAuhoCmqmVlG9a4VuTpjmCJMce9P4CGIyFxKP9nzwXKJbM7DRcvBtf4iaSaLPdwtr+r6f4NUwgqWruN09/sI+G0s1mjPl5cHUaF/LcolcCDzd97E7ibEzThBnnPSamjYatg5n5jMIAQgIMMmw1rKxVLeOdJfL82oUZtBVBeMwQ8IFlKsW+sIBdYpcaQn9nWYcoyhFNObIcgkFhH75wc4U+9MYTceEqTcqh1XKZa9n/+n7CcZRRg54lo6nvaBy/11wDeRSYqdAanQ9E3VHw1JBSXve8/HtAqVUszQwhQorpZGFrat4uFyHUiAoGrYBXeVYbdqnXp7iLKdz0SZK386Ezuy9aYKUE8pvrXVA653EGSZRBkMjLb7DFK7dAtEgpSzo0xyTKEXfP7vIYukq3lupF+6TDJ2agaZNRbBSk+jj12PsThLcWwzxM/cXAZA7F0B7GBcSmkqN1e4ZFJuM5/iHP9jDN5/2oSrAT97tQmGkb5RkElnOsTnI0LB1mJpaUcEf7U6RcgEJovW0HQO5ODSfpUTCcygKw2LNhMoYHu1TQ6TtGZVhUhluISb+rZcDSBC97ks3m1dWfD4rtscR9qekFbzSsND3E/zSN18UgtkG1lsuHF2tECK5kPjnz/r4ZGsC19TgWSoYI4Ho2dVTOmJKEEI55jmEkPjGg8UKidm0dfxgFKDvcxhagN/34Sq+eKNZIW26NfNcLreXjVnHtd40wZN9H0/2fGgaCWXfWfAAJtGwNDzv+VDA4Gccaw0HCzUTwzCttLmOtguvNlTGUPRRqQmyM0U/TLFUUKVVpuDJ3hR3Fz3s+TEeLNXwtHCKX2va11aUAgABkkDIeE6HQ/G7Ep7jeT+ApatzRfKuZxTMi4Nc9pOtCb69OYSjq/j9X1w90rBZrlvVvDmpwMtzgYSLY11FyzuRMpN3Pd2b4jc3CVhwo2PjZttFxzXwrZdDSAn8ix+ugDGGlnNgBnMdxce3HZetSPx7AL7NGPsYQFJ+UUr5By74c34dwJ8E8H8A8AsAvgngcwAfMMbUma+dGZqq4N6iB72o1D7tBciFRC4kUk5dke1RgjATyIVEmOboeBI9P4EQErmgJLVpG1VyMwyJr/l030eQ8FNhx7OxUDMvlEDaOqG5MiELbSsFvSCFrqr4sF0/oimzWLMqCPirYYRaoZUAAHFxKc6FhBB0oJqaOudAMo05nvcDJJmEEAJfvd0591gvGp5BMNpBkGIYkltaludYrFlwLRUvhzFcQ0OacdRMHabGoDkaOp5RCeH1g6RAuRxQu37sZuutct2Pi4aj48fvtPHL39/Bn/rd717b74mzHHuTBE96PvYmMW53Xay3bIyiDGFGSIAFz4NjHmitAdTBBqNNdqVh4cFSHWDEY76O2BnH2BrF+K3NEVYbFh4s1yAg0Z9yJLlEW1XRss05d7k0F4jTHK3Cfvcn7rZJPHBm0/csDT97f4EoT8MIXEh0PQMM7MjceD2K8N1XBLiUQuL9tQaChOPxng8pqaO458cYhhwvBhEhuJiCpZqFiOd41gvhGAoUsMLpQsGNjnumE1nd1vAz73TRcg30/BSTOMNCkeSvCKKklvvK9jjCx8UYhZT4YI10f8oCgaEpWKqZeD0i6nEviKGrDtxCf+3znUlB02TVZWutddS58qx43g8QJDlsQzmW5nsapWUYkvtZooAg2qAu03Fj4LnA60GMKONIcx0pF4cuqKQhIqWEfgGR1/PE/jTBd1+Nse8nUBlwu8MwjjL0pnQxSTMJT9dQt41CxDZHnAm0HLPofjvouCYgUcy7q9dpE0LiN54P8Wh3ClNX8Ye/so6dSYJMFBo6eY66rWOtZeHmTDF+UtByoyzHR2sNtDxjbt0kPMfLPgnbvrNYw4MlDy3XwHdejcFziSe7ATRFwbdfjopEic7FlIs5yuXLfggp6dx4b/VgTnQ9AykXBaWBjDiWGzYWalalV3QVoSis2i/Ksy7NBFaaNp3lSQ7HUPG0TwLmL4chbF+Bn+S4t+DiSS/AdzfpM3/jwQLeWaqRk52tw9CoieOZsvj5Gm4vuBW15bxJ3stBSG66k6RqFG20bOyMQ2yPYvzK53vwk7y6HN1brMEz9UqkNhckbh/zHKNAwjZI2yzhAmGaI8vP1gI7KxgYBmGGtmsCCtCwiX40jTOYuorn/QD3l2pQFYY7C15FBdkdJ3AMbW4PzHJRFR6ilM7zrkf6J6VpQs9P8PGrMUZRhvWWjWmcnUmPVBSGlAv0/RTDIMOD5Rpud118sjXBp9s+up5R0SVIFFng9SjCF9abMCNeNEQICftgqQ4uRGUJf7gIsjOOESREea/ZKn7h4SK+vzWFbVxPYt/zE3zr+QDTmKPl6HjeDxAmAgkn19K6ZeDBUg1+Sg3VOCOEwXLdQjMhWjEVA9gc4uBNQwiJrVEMCYmn+z6WGzY+3Z4gyXLsjhO0HdK9c0wFXc/DIExRtwzsFU5a45jGa2iUg9NejqqgBqDKSdquga/faSNMOFZPQQxJKfF0n3L4UZji3mING00b3389Rs3S8LQXwrMM7E4T1C0dCzUT+9Ok+L0WvnzTgVpokpVRarJM4gw7kxgpJ4ph/QRE4OEoBc0B4P2VOryCSr1UtxBlvJKcmMQHQug/2CG0+INlcsJ2DQ1d10TtDMT6JOZ4NQyhKkCW0zsCCCGqMgU7kwjvrZKukGfpiDkVDXtTKjAKSWeXolDOA1Ae+awX4FkvwO2uCwngwXINvLgjAajoirOxOYiwPY4wCjnqtgY/5W9NFN1POD7fneKzHR+GyvAvfmG1Qs0LIYmKbuhYadjVnStIObiQaBUUzx+/0wEXEo4xX6jsuAaEkOh4OoQE/CQDY6zapx4s1QvHcxVJnkJTFMS5QC4F/sEP9hCmZFRTt6/P5bpdFIUBwFRttJ/0sG2SniTR3wRyATzeD1AztYpNMQlpj5k1triu0FXStup6BiYxh6Ur2B5H+M7rMTZaNpqujiwn2Y3tcQzGGJJMIMkEeoXkDQOwfooszZuGWjjWtVwDYSbQKF5XkHDEGaG7h2FaufIdl8v2/ARxSuceacfN/w5FYafmh2KmmdNy9SOISVNT0K0ZuNlxIAH0pjH+yeMegjhHw9ZQtwzcW6xjbxqDgVga/813tvBguYYP15q4vfDDd8+8qrhsYeq/APDvA/geyBzsXMEY0wH8LQAfAfjbAP4MgH/MGPtVAC8B/MXCle8/BfArAIYg3alzhamRhoNtaOi6FmxDQdezICTpvbgWoU0ggRstB7e6LqRkmMYpbF3DesuZE15uuQae9X0YhfNRkOQV9eEqQ1cVPFiqIUlzfPPZAOMoRce14Jk6atbxh6apqYgzAU1lmM23FusmhJQQkvRQXJPsvmc3zrpFG5amMOjq9W5agzAl16gsrxAjrkldtaQQd1QUhpplwdQUaJqCjmfgg7VGleAftpJOc4Gv/pBpfGX84sMl/Pn/9hM82ferLvFVh15oPkyiDLqiwI9zNG0Ddxa8wrklw62ui9tdDw2HhFWjLEfL0XG76yLlAu+vkvbRdYZrapjGGRgOUEwrDRt3F11ME6JhPFiuYaluVQgmxiRudcn2dL3pHKvrRnonNH8Pa0Adnhukd0NoEa1YGAkXVTci4TlahZXwStNCw9Kw0rBxa8HFy36IBc+EbarQVEDNyR3zPO49CmOVS8rhwvThw2o2OZoVMIw5JYUpF7AMFS1XR5wZaDkGVhomvrTexL6foOsZ0DUFpqaBC7Lxvgw3PymS0Tg79xZexf0lQsfYulrpVJwUQZKjWzPAhUDT1qv3Usbtrod3Fj0ADLfO0A26aEgQ1chPCF2R5hKuoeLuogemUPHgZscjIdMsB0DUh42Wja5nVonKRfSGLhqKwgrnPepphkmOjSYl2gpjaDsa3l2uY7lhw9LVinqy0rAhBBVuS+Hdw7FQM/HBWgOMMXz1VgsrTRsPlsghyjFJxLXtGJjEpLs2LOH//OCCYmqkq3HYGcrU1GOtxMtO43XFjUOC3N0aFVhWmib8hISboyyHAmr2qGBwdAVco0ZpWTjRVUIu1SwdL/shDE2BZ+po2AbqloZpTKLo54kSySJmCgYLNRNt10KYCkACnsWw6JlYbzvoeuacExwhnC3sTWJMFbr4OboGQxNorNSw1rTOfYE+KR4s1/BqEOKZEaLpUAGn6xGq2jW0ubEDqETjGcORopilk7U6F6ThpyoM9xY9xKmo9qI4y+FZGqYxPxZFeVKU8zsXElwICEF7FQNdVL98owU/4VBVCc4J+aCA9vZyb1mqm9idJKjb5onFRcfQisK8io2WC1VhuNX1oDCGP3Peh3qBiDM6hzIuCv0bHUJmcE0LXU8HUxR8uNbAJOZ4PYqw3rar8202f3sT1NxxQaZBSoHCZVVuuNa0UbcN3FmoIU5zRBk1MWxDq5zo/IRjpW4hzyUcU8X9pdqZDcPTKGyzUa6pclreX64jSHNsjyIkuYBtKBj4GWom0PdJGDtKRbGOj67bxZoFhQG2QaY6YcrR8cwLuUKWwRjNlTIsXcFXbrXweC8oUJkqciEwjajhHcQcHfeg6X0W8NbSVXy43iA5BAVYa9IzUxWGGx0Hi3VCgmqqUuUbJNshEKQcGQdqpl5ZygOEyi2LySmnoqeiMBjF3uMnvELBzUbMCeG3WDNQs3Xc6ry5juV5w9QUpFwW9HZyDVxp2riz4KJha3BMDQ9XaqgVGlphyqErtK9buopbHQcLJ+hjzjqau6aGRzs+ajYVr+IsLzQ7a8V/MzQK+h7tZwp4zhEdMte46mCMzaFV/9CX17H2fIAw4VhvOxgGGfRiz5MgpoIEkHCOJFfBwDCKsmvRlipDUw+QvKVEyK2Oh194SMWcuwseGtYEm/0IRmH45Zk6Mi4I3Sfn843rCFtXcX+xhoW6Ofcsmo5R6OepZ+LJ3lupgxdauMcZcp0VXMhq/ZW592wwNn+fyYXE1293CA1sKAXjhajC1CxM4OgackFOrcD/vzDVk1L+pYt+k5QyA6GgZuOfgYpcs//ulwD80mUGttywwMDw8w8XkOYCfkQoiLWmjQfLNdxfqs1pCGy0bHy6k1VJ0Oyh2rB1fO1Wh6h/Kju3SOxlQlEYPrrRxK0Ft6qsSgA3O8cf4httG62EFvf3tyaVOLOlk11230/xeM/H/aUabGV+3Iam4KfeWcAoTK9dtb/tGAhTDlvX8O5SDXt+giDlCGOiCNimAkNT8eO320hziZ+81z3zUnN3wcXv/2j1Wsd93vjF95fx5//bT/B3PtnF3W9cT2FKVRjeWazB0VW86IdouZQgLNRMfPV2E+stBzyn5MgxNHy+O0WS0QXhC+vNaxnTcbFUt/ATdzrUqWHAO4s17ExifLTRRM3U0CjmWsc1MAhSvB6SuOq9Re9MIePzxnLdwtfutJFxgRvFz2w5OuIsh5ASpq5icxBisW7iJ+91KqvYR7s+4iyHotAhNuuQddWxWLfwE3c7SHmOtZkkfa1po+cncA0Nm4MQTVvHg+UlcsIB8KwXwo85Ip6j5RlYrJuw9Mt3mdZbNgZBeim9iOWGjd/1wTIUxs6EYBsaAwNDzSQ64mFK9LsrdfyBL65iZxJf+TNf8Ey8v9bAYs1EJkjcmDENX73Vwu//aBVxlmMak1HDy0EIIeji97aMIsr46ftdeOYYDVtDy9XxvB/iKzdb6HgGDFUFFxILNRN+wivNsptdB1++eXKB3tQUrLVsCCmwOYjxZD/AatPGT9ztFiKpVEiWxc9abztwTUL7zRZT7yx4J7pB/ijESsPGSoHCT3gOpXA13J0kMFSG1aaNOBdYrVv4aKN5REOIHDLrc18bBESXHUUp7p9jLtzquBhH2Zx2X83S8eUbTSzWDAAMWS6K/a52osZfxzOxN40xTTKYmoL7y7Ur0zzSVAW/+P4yXVxzkjEAgA9W60hycWRMi3ULTqHHtzdJyNm1ZmClQbbz05hDUQ6K66amzq3fpboFKamZcBEnqNWmjb1JAseknycloR92p3ElYrvRqeP2Aj1zx1Dx2c4UCiMXMnJ0M87c1w47v5XP6LpioWbi7qKHvp+AC4GGo+Prt2x0agZej2JwLrAfpLi36GHjhLzvuuJO10PCc2yNIkSZwE/e60JKiZ6fIkpz3Ft00XAMxBkVdOJUYJJkeLYfoOnop+5DlwnGGG533ULjjOalqjB86UYLH6w1yFU7FxjWMgyDFB2Pij6n7VNRmmNnnEBIiYWagXHE0HGNc7nknWe8D1cauLsw78z30Y0GRgEhBhdqZqX9cpbGp2tqWG5YxX0GR7T6LF3FO4eaER2PmhB3Fly0HB2qosztHQ1bxyBIcavjYqluzq2PhZpZSHwEFVuhjDIvWWm0se/TPmBo8bW4ux0OXVXwM+904ZgqdEXBYt3C3jTGl2420XbIDTFKRYWY2xmT/tY7S96FTBgatoGv3G5jEmeVAdbNjo1uzcDvuLeAb7yzgK0xaVHVLB0PlmqIORXJ3xalkcbk4maHms25kHgxCLDZjxBnOUyN4d6yi4ZlYMEzsDmMkOUSzWvQkz1P3FukdzCNM9QtA3cWVPzMA8o99vwESZqjZmpYqFtHGsxXHaau4ut3O/hovTG3xy94pO/Kcwn1DETyza6LpYY1d15cJAxNwWrTQpDk52ouNG0d95druLPowo955b58b9HDct3EOErxzScDhCnH6hnN4d9ucdlM81uMsX8PwH+DeSrfb17JqN4gTE3FjY4DnotCIyGAlMAoyo61fcyEhKEeuL0dDncmaeWn2LVfRTB2QGn5cL0BUzuq/VJSJ5SiA1nSLOKMxlaz9KrjyHMqtqkzhalSf6hR6EhcdzQcHQ3ngLu73nLwbN9HqkrEXGDFseGYKrighVt+3iynDulxiaJjaNe+kZ031po2Plir45e/v4M/8Y271/Z7qFPmVsWWV0N677auwzE0NB0DWS4QxLyCZSdFR+K6EQyz0XQN/PjdLgB6h5M4Iwi1RjxyKQkGWwrYy8JylzFcyQHPGMNKwy6oJiTozBhdTqWU2BrHBUWPLoquaVQC56amziVlYcphXIDOc5Eo0RJ0kaYxuibpWIVZjngsoCpKZcUtBLnQlKKpJUImzi727Mr1D9DF+U0cGs//vkjLomkbJxaxTE3FUs2utDKuKhhjVUeZ5wKfbpOCbZqT0KttqJUw8uYgrBBJp+0/1xEtx8TPPyRdkt40LjR2VFi6Vl0AojSHHx+4cYVJDktTT6TMKYxso7/7aowsz7E94kiyHK6lo1kWiT2zQoOVBYDD5+RF0C4/7Cjn5GLdwmLdQpTm1KBZrME1VTiF2UKYctjGyTbiZS6QcVlRKU6LWRer2Sif72xBcRxm0FVW7S0Jz6ErDEqhz9Z2zcI1klDFVynGXeYNUtK+Yh2jLyclCQabmkod+Bkh3WGQYaVhVzmGEJRnHDdETWGnugafFIaqzDl3Msaw0bIxiTIkPK/0ZspnHqV59d6TC3ber9tR6/Dven+1jkd7PpICpXq7cFHdHsfQVAVBwudyzCwXUN6CkC2hpjTcnSnCxlmO/SmJwQ+DDN3awaWsYQGTvQINlPBj6NlvHo6hHcm1S8ddgPZmx9Cw1rQRpdR4mt2nZucxgOoyrzAGVS3ZFIXkwRXF4Wdwp+sB3YM/H3chLdeSpavFXqCQRmhEqB2GswtZZbRd40Q6vZASD1fmC/Czv69c44MgnStM2bqKmx0XUZpXTmXnEYy/qrBNDT/9zgIA0g9MMgFdIXZMiYYiCiXRJ6WkfZOBXWhOZrlANJN/jCPa6zRVwShMYWiEKs1yia/defuO4EJI8IIib2gKwpTovQs1E896ARRFgcaUas89XLh8m+PMhKjy1mGQQkLCNlToqor7yw6yrTGERSih91fr1y7LwkA6b4dP8lySMRidYWfPlTc9LygfOPr146jZWSHoL6TEx8GEmFAF1NKziB55f5nW88U5Dz/acdkKy5eK//3xma9JAD//ZsO5mpjGGb75pI/9KenPLNbNIxblZdRMFQs1Eh89rYrJc4HPd33kRed6+RorlK+GUdGVUHB/yasWbdkR0DWGewseNFVB2zMQFBuUWxzihzuOZWyPoznL9tJlo+QIX3cIIfGbLwd4PYzRdA3cWTjQ7nm850NRCGUTc3L8AqjqfiCAfrLD4Q8zfvHhMv7i3/v8WJHY64i+n+B5j0T87y958EwS7n60N4UQ5LyiKYCmKPhsZ1rRLK46cTwthJB43vPx2c4Ulqbg63dIx6yc29Q1VKEoCnYnMbJcYql+NY5nkzjDy34IxoC7Cx40heHbmyOMwhR3FzzoGoOmKHALiHvd0o7sAa9HEQZ+Cl1juL9YuxbnlVLDpeyCPNnz8XQ/wELdQN3SkXCBpkPrQ1EY1ls2CdQWhYTSsYUx4M6Ce2bBPEpz/N1Pd3Fv0SPRzLcUjAGP931MIg7LUI5Fx3U8E9ujCPVrLJZrqoKapeK3Xo0hhICpqxV1cHscVW4nqw0LnxVuoncXLm77+yaR8Bxb4xifbk9Qt3Sst2g9lKYWYKWlMsP+NMH+NMF6yz626VLGct3A916NCh2hEO8dSgSFIAHxV4MQbdfAuyv1gr7+o7nfAuc/CyxdgWOqZO1u6whTju1RDD/haDoGvnq7fSztZ61pY3+awLNOLl5dJGxNgWuq1CzICZmgqQyOoWJzGOHZvo87ix6+erNdWGqTUPKstMCbxOHndVKOAQBP9gNEaV7pYDDG0K0ZRXGC5tlyw4LCEljGUaHXlAs87ZGWxq3CJWscZacitEsdxSDJwAt6akkTLd2kgpRjexhDMglR6AU2HB22oWKpYSJOxZWgX64jhJD4bGeCrXEM11BRK3RpysL3RtvB3iTGMMjwZC8gswZNLfZ3iXeWam8VmQEQ4rJh63g5CDBlDKPnRNMnBA9R4UcBOUh+tjPFRtu+Ure2867xMi8u88cyz3naCxAmOZqOjo22g1GYYnccgwuBh6t1pFxCYbjQmXPVe+I0zvC8QOg4hoIwJcr0vQUPnZqOX31M5kvNEyjF5xnPrFHBbOOtPFN0jRD5Xc/EIEjntMFeDUMMgwxSygKFSDIgS40fzjobhSl+sENOhT/fpEZOmQdxQaYdrqnh9SgCz8kQ5Dy6kOXPkJBwzVIXVyJIc9xfrMHUFLwcBBgEKb50o4XVhvVWzsby/dI7nCLjEssNcrbbnSTIpUDd1nF7wcE0zvDJVoRJlOHHbrV/KK5suZB4tDut8vlJnBW6nTnW206l97fgmaTFGmX4e5/uYblh4d3l2rU1AhWFQVcZWof2p1xIfLrtI+X5teiHnhVCSHx7c1hp0pVR3tUtnXT7hn6Cx/s+6XEx0oCsWRpsQwEXck5b9L8PcamsR0r5c1c9kKuMl4MQgzAthNUMLNatquOQ5YQ4YoxhaxShX4ivndXZ44WQOlBqkZwdcZZXjmCzIaWsft7Toot6u3vABS+7EWWHp4TKlyiTjFMnSFOJS192QYSQiNIclq4cW4grOyKEEJHYmybV167C1vusmMYcmwNybcvyHB+uURdkcxACyMndKRcIC5FYgBxALF3Fiz4dCtdNPbxM/M73l/B//ruf4+99uoc/8rUbV/7zhSC1hfKgGUUZ/DiHY5DgcF50cah7LfB6mKDjmdCVAyH8mJNIOhfyWrrE5Zwu53rMc/SmGTRFga6plVtYObd7foKUa7AMclwCSD9kQUrSs9GUSxeDgoSTyPAMGuvVgNxxNgchvvFgEcMgxafbU5i6gncWa0cKs+U4M150qYqxkOONvJJLQpDSeo7SvCoO+AlH2Of4hYdLCFKOF/0ItkE8/cP0lJKXX3YIy7/iuTj2PSdcIEhyfL7rv9XCVJzlMFQVHVfBIEyP/L0QhWNKLs4Umb9oHJ6XHc+EoShIBPB418da04amsAoh0w9SPOuHMAukHSFriE70pvPypJi1Lw6SHHlOKF5bV9EPUrRcszK12B7FiBy9SvAAFEUW/cTxNWwTD5ZrSLmEn/C5MwWgPbfvJxiGGWKeo+2RePEozI7QOmaD54TGvEyCnuV0tp21F/Gc9JkyQVphWS6rosftrnumdgZjDMt1C2GSYximeNEL0Q9SgAGWoSJM+LFzzjbUE5tZJ30e7YRnsTOOsT9NyEVpxcPTfb/4bIREKi9/O6MY/U6ClaZ9Yj4SpfkcsvikEIJ0JgmNQ0nubJ5zUo6RFzkEgDn0ItEl7bkxnPR8wpSTUySASZTBM4maXOp0Hhfb4xh+zPFiEGClbhNlOeXYnSSYxqR9U7d0oAns+YTaCFKORkHTbtoGjNqPrhtRzHNsjynfSjOBh6uNORRM3dKhKwqilOZGlOXIhMQ0zrA7SZBxiY82moVj7YFY9VXE7FyZDcZIzyjmOYZBileDCLkQmEScmr1tG3rdQpRRYWUUpSciB88buZBgoPxgd5KgZmmVQcDsv0m5OJIvl/mjoSnkOFvMtSDlkFJiEnNI0F7ixzneWfLOPdZSjH2acKw17XNRcc6zx83qOw5Ccl1OMoFMCPhxXunp7UyTI9/7rBdgFKZYbznHjqfMVQBU2jazSKdyLWaFhlNJHZyNUZghywVeDkLcXSA5k7eZOxw+Y8YRodiZQuZUHc+s7mPTiOhOdLcqPyO5SJ50Fyu/XuZionB13fcTMqJiDFxIDEISRvdMHX7MkXBCskopi/3z6veelAv85sshup6JxZpV7al+ciA+rzICFdxZ8PCPPt8FALwexbhbPJu3EUKiMuF5OQjw6fYUNUuDY5A2pcIYmbfM5BGLdQuuqeHXHvUwLdblzY6D2jUVpkp9wlGYYblxsB5HYQZbJ2TwNLk65OR5I0g5Xvaj6s+E/lWqu36cCbwehPh4a0K5W055aJzlcE0Ndxe8ufz2vy9xqVsAY2wJwP8OwKqU8vcwxt4D8BNSyr9ypaO7ZCwUgoaTKIOuMbSLG9uTPR8vByRO+HCljmFxSRqFGTbOQGZaOnXlojQ/F7d6GKR4NaOhU4aUEk/2fexNEuRCFnaz5IxTHrSrRbe2ZmlzG95i3UQuJWxdPRYdUbpsnXR4lDzssupaWo+Xicf1ByVAfT+Brlp42Q9xo+NAVegAWm5Y8EwNhqogynKojCDMwyDFdzfHyOVBcfBHKd5drmGjbeOXv79z5YWpkvcvpKRnVXRPJIimqTBCRpkaUZZ6fgzP0iAloGsKNI2oEaaq4LNdQlQtN6wrF1B91qO51/YMLNctTKIMmioLwVS1Eogs53ac8Yqq1nQ0JJys3F8OQkwifqJT3Hmi45qIM1HNH1kYAfT8GIpiIOU5Pt+d4NFeAMdQUbf1I9TQ1YaN3Qk9y7IDG6YcT/eJGnyz67yxE8tK3ca+TxdWRWFYbVj4PJmCMYYoI9Tgq2FEhaZc4MHyPNKl45IrmqKwSsA1ywUeFcjOw+9ZUxlUBVhpWEi5wCAgAezrcpQpQwiJtqthexRDV0xsj6O5570zifHZjk+UxCssmtJeS+iPks7nxxyaCkSZACCRcQHdJDpIb5pgoWZBUxisYs6WhcAX/RDTmFfotquKEjVXt8l8I0o5uJTIhQAXohLqXqyb9GdNga1rSHOBpqMjLVB+p41vsW7iZkw6BXcXjgrXmpqCjmsWc9GAwoDPd33Ypop8SrpInqnN0WRKlELZ3b9IsS7hRK8TAlhtnnyWjqMMm4MQz3tBpZe10rCrBH18TlFXWuMahmFSrTMwopWfhjQ7b5ToSrdAX5dC+2XxmoRJabxCkCHE3jSGY9BZN45SCCHhWRqajg6eC/SDdG7+AQfoBSqmeycWBLNc4PGeXwgGq+j5CTxTxyjMsN6SFbV5f5qgbutz80FVGJYaJiYRP/aMKJt5pyFJPVODY6rIhawaSarCsDuO0fKOf96WrsCPga5rwtQJHfXZjo/XwxCZkBiGKT5ab6BvqISS0ol2PQpTbA4O8qy3Sc27SNi6CoCKqutNGynPkeUq+n4K21DRsAvkV50u2kt1C4wBT/d81CwNikKOjbau4sn+ARXwTSPLBZ7s+8i4xEbbhm2oGATp3Hrveib6fgIpJQyVoWZrqNs6cklo42ZRHBwFGaZRfmHkc6llFaQZ/JhXCBEGhmnMK0o+QGdJObfbnoG1po3FugkpMSd6rhSC3uMow4JnVpTuYZgg5TkmcYaLmFxOY45/+rSPXAgIcTq7AqCCR+kEfBqite0aVbGobjuE0jQ1mBoZNX1nk1zO2ofElrNc4DdfDDFNMozDFD/77tLc38/mKjc6DpYbFoKEz91dluqEzHQKSvtxsVg3sTdJsFAgJXVVwd6EWBZXsXeeFqUOaen2OI4yqAogpIAqD/asrkcyFqMoRc0iMei6o4HnEos168hdrNwjen6C7VFcORfGGSF7WK6g6xkV4srQFGiM5mnCSVdvGnPoqlKtxfMisy4SWS6wOYjwehjh595dRMczEKa0vhTGEKQZspyoqbsTchjdmcToesaF5vabRpLleLQ3xf3FGsI0R9PREGcCy4WkxijM0C72/TijBlHdInfmUZTiRT/EB+v1ivFzLWPkOTYHEXpBgl+sLUNVSMrDTzJISc6GTVufk7q4rpgWKLK2a8A1VDQdDX5Cxc7Hez4cU8VS3aoK871pAktXkHJy7Ys5r4xKZu9dayc0EH87xmVnwn8O4K8C+LPFnz8H8P8A8CNRmKpZOu52PRK6BUOY5WhKie9sDjGJOSYxx/2lGl3kp/MonHGYYd+n4s3hjeYiNK2yil+iGcrIii7p7oTsy4WUMHQFK8rBz3ZNbS7hzgp+uGNopzq/hUWn8zCia3scIUxzrDSsOY65a2rIhcD2KDrilHUV4Sccr4cRTI1crjaHEW53XfgxWVZP4gyf707xeM9HxzOgqqzqQNxsH4gkRxnBsYdheuWIiqsIxhh+8eEy/st/9gL+CR34y0aUHrgZTiKyOd4Zxdgchrjd9aCwAyRVWYj4ZGuMzSFZf5fFndJiF7h6fYDSthegTVfkEp9sT7AzieBZGuqWVl2iyrldtzR868UIhqbMdS43h2HxucWlYfOGplQ0ED/hCBOOr9xs4Z897WPgJ/jHn/cgpETPj7HRdpEd6j4LIcl6GpjrakfpAZIvTvM3LuiQ/hq5G+1NYryzVEMuJJ71fPzqo304hoqtYYSOayDLMaeXAQB70wRpLrDq2dVzKhEQ5XhnwzU1/PzDJbiGiu+9HuNFP4Cta/iZ+10Y10ATSTg5KPX8FA3bRC6BlmNgGvNKrBo4SPhGYYb7V1j04TPoj2mcYW8a48meD0CibmvoehZejSLcX6qh5Rr4aKOJZ30fQczRtA3caDvVcy331qteO5NCM2oac+xNYzza9fFiEMJQyeq8LIpaulqZWzzvEapisWZhw3POHF+WCyQZJUIt16zQX5ZOqLAslwCTuLvgYqVho+dTIWV3HGOxOCP7fjoHtZ8W404ygTQXsJTzz5+Ui2ovCtOTn+c0JtvzV8MINUtDzEVFrcyFPALLPykSLqCr1HXvekZBpSIKfJjmcA0qLgFE4bto97t8FpMog1+gNV8NQ9xfrKNR5BF7E8opSMtHnaOz/sx9QnDuTWO8GIQQEhgHGYZRio/Wm1hrHSCVAHrmh1FvsxFnOXgui58pYaoKfBByKcoIaXs4xyi/T1PIBeqknkD5vg4jScvYL+zqF2rm3N4Zpzn2/RiZPL6gstKwUbd0GJoCXVXwvVdjAMDLYYiksPN+b6VW6SUu1Ijq9oPtKbZGEdqucaYeV8oFRmEKzzqqXXQdkXKBlwMqDrQLTayNloOOSw3Ol/0RMiGpGbfgYX9KwtxrLbvqgL+3WsfrUYS6RcW4XMgrK0oB9M7LQu805pXYed9P8XCljmlEOdr+NMFy04SlanAsFYaqIEw4tkYRuq6JjmfgyR6h/8/LKChjFGbYGcfo+wlUlaFpG9BUhowT9Wx2PeaSml3jKAUXAmuFSclx6D1yxTTwehhhEKboFMXiXFLR109ytM557g3CFEmWI8rEiZ9vFpUz6wQcZjlaIAkGYN7hVZ3RYdubxBXltXTWfne5Xpi2zO9JQcIxjlKEqTiyh/JcYBxmB7lKRjQlCWJa2KDP7BjamU0W2gsspDzHi36IrVEETSGNI32mEDiJM2yNIjj61a2rcl9NuUBvGuOT7Qn6RQHzTrdW5TmaSrpKrqnhB9tjJJnAequJVlHMK1HaUqJCOgEH+6kQqOhR26MI3301Qscz8dFGo9on0pzOm2GQ4tEuyRK8t1qv1uI05ldemFIUclxvOgaiLMdq04YQEgkXMFQGnkvsjhMyfKibaLsmdscJNloOXo9jOKaGl4MIUkpstJ1rLdpnnHSlFmomhCDH0fJ8kRLYmyTguUTPTzCJMjxOfdzoOOjUTAgJeIaOfpBiXDRxNtrOlVKXc0H34HeWPGQ56S5HWQ4pGTY61LTrBynCNMfda2xwZLnAP3s6QJRx3Oi4+Gi9iZ9+ZwExF1WxKUrzSv9VSolHuxNAArkUCLMcQUJr8d2lWnXvmkTZ/+8WphhjmpSSA+hKKf+fjLH/NQBIKTlj7O2p4Z0SZQf6RT9AymXRccmpqxlmSLlA06HNrNx0Z2N7EiHjdKFpWDr8hLrQF52oXY80azRVmdOJMDQFHc/A1ihCo1i8pqZiexTDM7Ujv2e283IWh3+j5WDfT6ArDJMoQ5ByaExBb1pcNCYJbncPxjIq4KnAAU3wTYM4xRwd18TAJ/valAtEhQj3OMpgFV25pbpVdWDzXGC96eB5L4Cf5HBMtSrClc/yzqL3I+s+8DvfX8L/7dee4R9/vo/f++HKG/2sYZAi4bTJ1y0dNSsDFxJd18CjXR+jKMPAT1G3EtQtoqMkBbTd0lWEaY4kk/h0e4LVhg3H1OCZGro1St6vAi1Vdj5qlg7P1LBUNzEqupP9IEWQEA0jSnJYmoaMC0wKkfFGgfQIUo4gBZ73ArxbFExXmzb6PumgXZbDX168FUY/W0qyiKbNn2EUpUWRicEzDwQ0yxhFGXp+gjAlm+DS3rrlUMeqvGi8acRZXrjt0RinCS8SUgYuBHZG5DAjQQn67EEdprzQZOEVmgqg4lP5ng/rrTCgSiTJOhrwRSlce/UH8cs+7cWvxxFutujiaeoKlg49b1VheLYfQNcUpPnFL11hyjGOMjRtY67zq6vUYZrGHIt1C995OcLeJEGSC6y3bDRtgVGYV8XklmtgFJnYGY+xvzlClgvcX6Yb+lrhYNi6hLX4bPBcoFdYmzcdQhf2gxQtx4AQ9Hf70wQKI6egXNDenOUCTcdAxzPwrRcpeA5ITPE77plz4zvOgefj12PsjBPEfIpcUFFjHHEsNch9kNZDIfadEyS/4xHqwdLJWp0xzK3HxbqFl0Vh86Jno2dq6BRd7tM0gUoKxs2OAwmJmqlDZezYy9Th50qfMUPGBZ73A7weRRBCYqFmoeEYFYW95ydILA2TwtbdMbIL749LNQv7foKaSW6jL4YBxmGGNJP44o0mup55oAsXZVAY5tBnQcLxtOfjZT/CapPETvd9upxuj+lrjDGsnICkPu75NmwdYcahcwHX1IrmBcPT/QDvrdSPdIX7foKt0VGdnsOx2qROrlsgoraGESQk2q4JU1OwMyaq/vY4mitM+QmHpqgI4pPTxNlC2XLDwvNeAEen75nGlM9MorwYb0qULUnzdRJnYOx0NPXLQYgozbE3TY59BlcRWS4IBaWrSHNRrSs/5nBNDS3HQMPREPMcg5BypVsdB+MowdOeD0tXCuQUIVy2xzEUxtAtHN00lWGlaWH6hoLdUZpjFKWoWzRX0pyKFzsTen+MERLi051psY8nEAJ4f83CO0s1pFzge69H2BxGMJQAP3G3g4UardfzMArKC7alH1CP67ZOlu1MIuMojADmz1ldVaAwIE4FdCXH1jCCohQmF5555J2OowzjiNb6KEzBcwkpqeilXCC/aDkGFmv0828do15conIUhVA5dUtD2zPAc4GFQrvpN18MkXCBr99pH8k5slxgd5JgexSBMQZTU9FyqVDLGI6MVVEY7i/VMQrTOZHrJMvx/a0JlGK/bjkGHF3FZ7tTcC4qt8MgJcTPefOYmIuKQpTlhLxSZ8bUmxLd9P/L3n8HWZbd+X3g53r3/HvpM8tXdbUHGj3AgAPMDIYYwyG54tDFipJ2JUpLUdJGSCst5aWIlQmtKO2KuxRXIa8QZSgtORTdcDSGAw3MwDaARtvyJn3m8+9df+/ZP859r9JVdWZVlgFjvxETg6rqzLx5373n/M7v9zX9NHnEd3k09ta9mqrQKlnERSPJNTV6fsrWICSIc+quJBT0gwSKmrLuGgzClCDO+e7dHj//imSRzZSsKeuussera7ZgjFmGbLBlmZTOxanAimQAQZhkBHFGnEpG4PYwmobN6KpC3TOmjGyQz/XuSDJzn7RR5Rganz4j0y6bRZPt1q5kgHuWRi+QwzbH1Jgtm+wOI0xDZRRn1DxZ90yab5OAn14ga+vTbMyrBcvW0jWqjhxODIJ0ar1yv+vTHce0R9JiZKMfIIRCxZHXkiQytGAUpdP1sh8kOEZ+iH38JOiMIjYsbcpCL5l6kciXkZly76o4BsrO+FBK72khTnPGUUouZDMJZC+ipKmYmkrJ1vfVmKvdgN1RQpTkdEexTOeLcn76io2mKfvOXQ/DXpbacRjmLwJOepXfBt4CxoqiNJGG5yiK8pNA/5Sv7bEQJJJh0vNlAVhxdWxdY60XUnMMbEPlpfnD48DNfkhnHBOnGZoqi4O1ns/tXR8Q/L6LrSNlJkGcsTuSlPi9hZipH23yC7BUc7nXlrT8yUHxYXtklOyZvMQZtT2DISEE4zilO06mBua9IOZe2+c3PtzkfLPETNlC1xTyHLwDPlIVR6c9VjjT8E7FzDBOM9652yXLBGdbLjMle8oIaI8i6p4sPCxNYXsomwOyYFUYhHIhm8h89rI9HnUvXxS8fbZO3TX4jfc3H6sxleXyEBIleRFpL72jlmrO1GOh7yfUXYN+UYxEacadtk/XTylZGs2SxdX58vRZUlBkN6LAaSQZ9oOEvp9IWYyi0h7FvLJQmaZgxUUDyrN0zjUdVEVlaxDw/XsKqcg503BZyGQ6hqrISYa65wxUsY0nZiJNjH11bZJ2IaeYry1VWOuGGBpc3xzT9GTEtGNqxGnO3fZYXhfww9UeZUunXEisQG7Ae71fJgaUEx+Hk2BCU1egSM5UUZCHwiCRkfc3tkc4BtQ92cAA2XgfRSmmpvDRppykCODSrJgy5w5+zn0/mb6HE1ydL/MxI+ru6RQpeS7YGoYoyM1SUSRDxTY0FiuOnNQaOjVHssT24sP1Ifc6Pn6ccqF1shSvMMn4vZvtIlExOZQ6NF+xUZCmyot1m92RLCyjNOMH97uUbR1FgVcWqpJFYmpEiUBXFZL8QZPsSVNMe37MIEgJkpS4YCjIa5apbWGSsdkPaHgGWe6QC8Gd9pg0z2l6FhVHUt+lxFAjzfYf8B92fdJUOmStGyCQHh0fbPSpu1IydGm2TNky2FEjFBTKtj4t+F1Tw9BU+kGCrj5YSu51xtzd9YuGhJxsnyS1byIlO4g0y9nYE8ZhGxrLdRddVVnt+Dimzt2uz8WZ0qHErY1+OG022YbGei9gHGW0xxF+nLLeC1mu2yzUbM43Pe4WTQpZE2goimQzuJ9gdD8JDDF1dXoA35tk2B3H3Nga4sc5pqZNvSDCJOO91T5bw4jFqs2F2dL08woSmb5lGdKT45XFMmUrIkhT6p45bQiWigHDce7vmaaLpil893aHuJCkJKkoGoyHv8bfwx6I0uxQY2ocSUafZ0pT8jjNubY15If3e8RZzrmmx5euzuKYMiXvoCzj8lwJVRlT9x7+nCRZzvYwou/H6KqKrkoGtSCn6bnUHJM4jaYNjVvbY3ZHkv0iBNxtB5xpPjzBbLovPkWlxt32mNu7Pqam8ukzNTRVQSCYrdg0yxZnmy411+T2zphhELM5CLky53F71+dHq30sQ50GMsiJvvy+fvyAib230XkSCCHYHITTpq3000mmhzCZAAimprBUl3v09iDg460BmqJM16m4YCCCgsjBsWWS7MMm9nGaTw+l24Ow8HiSA5GKo3O26XG25cqhlWOwPQjZGkTEac4oPJyC3SpZKCiF4fWQQSDfk483h5xvefv2aMfQpp/3bMWaSmEvzHj79qEky1nrBSxUbNSi0dkvPPZcU2cYJsxWbHRNmcqP0yxHIJtlez2KpNeftu9+tNsRP7jfYxCmxFnOr3x6aV+jX1cV7KJBkgso21Je7pk6lqFOm/+ygRVi6RpvrlTJi3s2qUV+tNajPYqpOyZXF8vMVS2ub43YHoaF96ZCP5SH1Elq3XHWFLtICK97ZhEWY+8bAlUdg3GU4Zgn97rZHUW0RxGjUK47k7rXs3Quz5WLdMiI2bJJlKTYdZ2Nfih9OXdGnGl6LGT7SQZ73/GHnR8sXdvvX6ZMvKzENLX5xvaIrWFIZxSxO4xZqbskeU7dMwiTlFbZxq0/uH+7Y+mNluWCnUFEzTNkDfKYi87BejOIZWLwBxtjTE1hFKXYhlYwCAWLVVsOXxydXpAU3nFyX7+2NWR7GOEYGl+43HrETz0ZLF2d3vtoDxt6XDSVtgchH24McUyNn3t5lq1BhKmpnGu5vH22Tt9PUFX5Ht2KxwgErqHzg/tdgjhnsWbz6lL1EVfwyRjHKde2hoyjlHGUUi7sM+aqFsMoIc4Eni0HB5OPavKu2YZ2amw4t7Ba6PoJl+f2N7g1VZkqPSbw44yFisWd9ohRlFLVTfw4oWLr9PyEjX5I1TEeKau9uTNivRdi6SpfvNx6YQNt9uKkJ5LJb/TPA38TuKgoyteBGeCPn+aFPS4Wqja3d8d4lkbZNrjQ8jB0WWDLKa0gTARhIk2181wWuDuFuaChq1ycKWHpKt+902GtG+CaGtvD6EhD0vsF1bwfJJSPOYUbxymdsSyi/TjjXMvDeohpZMXRqXsGaSZkd7kwyk2znO/c7XBze4xnalyaLU8lDl0/AaHQ82PmKzYvzZbJjjBsdk2dV4qD3Gk8rDvDiLVegK1p1PyUS7MGZbvCnfZYTqQDWKnbfP3mLn5hSlh3TWYrDyZ1squrHVum8aJA11R+7uocv/nBJsljsD52hiH32v5Uvla2jX0TqfVeMJWiepbOmaZDP4jp+SnDIJk2JXIBry1VqdgGtVNqOkwgaaVDWTBGCQtVF1VRpgt5mGT84F6Pe90xmqJyoVUiSDMMXaXrS2PUrDD9ny3bvLFck7LNE5gMHweTQ1aawbmWR5Tm0+dJV1Q644hMyQnjfHqA6gcJwzAlSjM6owhLV6Tk4xFskJ6fTNeNk1+jLGQFku2iKAq1wu/l8myJ9igGBFGW4xgaqqoQpRntUUSS56x2ArQieVEm5cgG3EFkueB+158ecCaYKds0vcMT5sdFexxPmZmGJg8xZ5uu9IVQFFa7QfF7H2ZMRGnK7igizQWj6PjvTpZLyeggTECkU5+tCYQQ/Gitx1o3JMtzKo7Jp1aqRJngfscnjHPiVEpjsuIGzVZsPn+xyShKTiUhEiBJcz5YH2DpGkGaUrXNaYMgzwUbg5BrmwMpv0DhJ841WOsHGJo8TMh0NoNMCMqWziuLFcZReqz3puvHrDQ8PFNDUeRBpOXZmIYyZSs5pnZoH2h4knWU5jlRmrE2jLEN6TXy2x9usTOMabgmb501ptTzJ8UkjCNMMuIsZ6Xu8MP7PYahZMRdnDGmA4ub25I5OlexWWm40/Vvel+Lz7PmGERJxtmmQ901p95Ml2ZL+/wkJsOqTzIR3R5GrPcCciHvW8U2ChZOyCBI+OH9Pn6Sg6rgWup0QtkPEvziUD8uwg4mqLtm0SQzma9YmEUMephkU2++x8GtnRF5YWL/2lKlMO/Vj9zrJ+wBXVMw9qwJUZrxwdqADzcGmIbK+WYJ19IxNAUhJu+zwC8OTBdnvH1ymQnmqw6zZfvI9Wbi7TIMU9Z6ARs96ZOyOQjp+Ilkv6oCQ5NyG6X4HNJcMFu20DQQebH/PcKD8kxDrkclS39qPiKb/ZCtfohramRC8PKCfK4URZHvepDQHY+41/G5uTOmUTLYGsQgRDFQEDjFnjR5LoRg6pP6JOgHCXd3/en7UbKMfSb67631WesGjKKEfpCyULOpuSbnWx4KksEJstGmKCqfWq5S9wxUlEdO7LNcsN4LpXyx4+NZGu2R9NW7timtHub3DFMansnWIKKzx2dtb6N0vmJj6SpJnpNlst7t+THlwkdtrpJP/3vH1Lg6X542kBarR9sDpJngftsnSjPON72iFpsMgw1u7YywdA1NUafr4o1tKak+05Tm42kmMPT9rJwJ6p6BoSlT/8+D74iiKFycKbHScDG1ByyygwfOzWkDPuHCjFcktMIgkGyie22f61tDZsoWP3mxMQ2BaXoWcZJTL5kEkVyH5O9zvPfA1OVAP8vFkWzKZlHLn/S9CuKUa5tDBIJRlLFYdfZdU8+XTLNekKCg8NpSjSSXvod+McDNhZg2Qz53vsHWIGLuMdI5NVXhJ87VaY9ilupyOCStWDJ643TqUzlTsvh4a8R37nSpOgafOduYfk6Ta+/5MYau0hnHaIpyKrWEosiG8WrXp+lJFcm5lmzYD8OEja7PWg/+6HxlKsevF4EXiqLQ92N645i2EAyCmMpTSHIrW5IpmKQP2NBVx2CuYmNoCre2R1iGylo3oLprYGoKnmWwULXRNXW6XoaJJHyMQsnWftLGVF4Y2JumirJnkDxppLmmzmzZpuzo03dq77vmmkf7Op8UiqLw6lL12F5WizWbKM34zJk6ixWbfpgyU7bp+gnXd4b0ximZkO+zZ+vTxvpedMcJwyBhN81oj+Pnkj54Upz0Ts8oivLPF//7rwO/hjwNRcCXgXdP8doeC2XbYL5q0x5FRKlsxjQ8E62YSExSMII4w9RUbhTmdXGaYeqyITJpWOVCshkUVXvoVMHUVKIkR9cUjtvbqdgGDc8gKEzzHpWeoChSSjSOUm7vSg3/uZbHei/g3ft9BkGKa8qEHEtXWa67DKOUVsmkbBtcmiuh6+pDP+jT6p4KIRkThqYgFMH51gOWiSz2syK1QdI6e0HC5sDnF16dZxxnLNdcxnH6idHnLzJ+4dU5/to7q3z7dufEX9sPpO+YosDb52qUrAcMiGGYsD0IubkzousnXJktU56TBrOaKs2zK7ZBoyQLOBN1Ko07TcRZzvYgLIzKTZbrDq6lTZ+h9V7Aej/gvdUBM2WLc02Xs80Sph6Q5YKWZ1F1jSnl/mDazmlhsWZPU7DKtsGEH7kzjOgFCX6SM1eWRXfJnujgRWEuHGFoGoqq0CyZj0zrNJ7g0Li3kG0V5qwgp8sb/YgwySjZBudapSlbCkExvYsZxxkVR8ezpL/Gw6Q9Ew+ySSrPvn87xcOZuefnTwpXQ1Onm2CUSm+Og6k/QCFXlHIFcbCD9gjc6/h0/RghYL5iHZJ47QwjPtgYSoaLqvLpMzZRJjjXlL5imioP6hda3j6WnrzG05MMr/V8OuOYLBe8ulihVbYwdTkF3xlGfLw54KONIX6Ucnm+jKIovLZYJU5l0tvlufJU2jDZD46LqmPQGccsNTwWq7LYPj/jESU5zT1G1Af3gbgw4sxyQZRmWLpGmEi20FonZJykeIZGzTVOLSnV0lXiVDIXJlKiQZBOp8IlW6PpSQ+L27uSOSgbby4LVRu3YJNZumRaTaTGMxWbziiWjN09v+fe5/+4qTZplrNeSGzPNmUAwlovIIgz3l3rE2aSCfLWmRpvrtSmh8+KLZMUNRXONb19TdS9PjN78aQ+F5M0QtvUaHomqvrw39HSNc42Xa5vj7g+HtMsQizeX+/zw/t9efC3DaKqlDdbusaZhkuW5/TDhMXqA1+kh133UevN5DkTAnJEkWwoDwqTw2W7sCf4/r0+zbLJ5dlywfaO0BWV8y2XQSj9RA82p/di73r0NJDn8iCLApah4pravuet48dsD0KubQ2Luk1DCIW6a3Cm6XJze0Sz9MCb62HPxePCj1M2ByFCwBvLFRqeNW2cjiLJWP9oc0CY5MxVbISwmK9K5lStmMrXnAeyGk2Tw6dj3RshWO8FbA0iqq7OmabHja0hHT/mm7c6/MyV1tQTSNfU6eeYi8MMPrWQGrumTi+IOddyGRSJbCVbL9hcD7B3b3xYvZsJwUY/RCAZWYamFjYUGduDnCDJud+Rvp7yXu5hs0XSb/JR9UyrZPPzr8xzpz3m4mzpyIazqiqf6NU3+TpFYZ/H3OT+3G2P6fgxhi4TXS/MlFhpOIRJPpXhNlxT+m0ZDzc9PwoTf7eH4XHqie1BxM4oQgi4ulBivuJMn/88l0FRt9pjVts+V+crZEJwrumSZoJRlDBftWl41rQxWves6XP0OJgp2/tklmeaLq6lUbZ0BAoXZ0v0xjFJLodNi1VZR37KrqFrKs2Sha6p1F2Dd1f7xFmOZ2mnNuRqeCZ112C9HxIncuhrairv3OuwNggpmTq3doZU3UkgwIM16MJsibWCkbzWC59KY0pRlEPMyVeXqqiqgmvIM8t6N8QxNDb7AYNAstwnLOnJtZq6PHOPChsBaTfxZMlzmqqgsp8yvLeRtlCz95E3zD3v2iel4J4Ux31XyrbB60tV1vshzcLSJskk89nWNQZhQGcsZdZX5sqYmnrIiuDijMfuKMLQVO53fKqO8cKn+J20MaUBJQ6P5k+X8vCEsHSNkmVg69KETcaVSzrnatdHV1WpLd1jJFl1DS7OPEi6EUjPg1cWK4XELCwokfsLnzMN2Qg6WIQ8Cpqq8PmLLcI0o3xMzedkIxRCcG1rwNYgwjVUolTh1cUKZxouUZpTdQzeXK49tnH040IIMDWNCy1pHNcodN13dsfsjCJKts6l2TKr3TE1x6RkGby+VKPimFT+PvFs++nLM9iGym+8v3nir3VNnZWGvBFNbz9NWlcV+n6CZ8pnzy+kH5dbHi/NPbvPOc9hse4SpRnzZfvIBmKc5jRcA0WR5tMrdYeVuvNMn8WJceBBKIrUdTuGlOGULH16UElzwflWibJtMAxjwiSn5piPPByWLGkemp+gmTLBIRp5ARUIkhRNkQzPhmeyUEgHoixnsepSsQx2xxFhkuOZRpH4dDQm7JCTGtKeFFXX4ILmTQ+VB3FUQ2qCsqOzWLMYBTnLJzBwzHLBTMmibBm8sVw99FlFaUYQZdRtk5WmjabKBnAviHljpXbsn/OkyIpkpjgTnGm4mHuu09IVydDTFBJdQUHgWhp1z+Tnrs4+8XszYcXu/T55Lrjr+1zfGjFftShEv/u8i6L0QehCyZJ/X7Z1ciF4ab7EOM747PnGqUaHTwc0isDUNFQV5qoW5UjnbNNlYc+z4VkaSZ5TsiRb0I9l+qehqvQKduZc2Z5K9s40nYLx8WSoOSbLDRtVUaaBIbahEsSZTChzDM41PC7NlkjSnG/ebLNYdzjTcHllsfJM18GLMyXmqnbBuPzkQjTJHtRDfiybfnd3faJM3tsr8yVeXazgR5msoVyDT52pP3atIYQMenh/vc9i1WGmLCVqV+ZK6JpkptzYHjFTsogyeTCZRNsffK7tUzRdflwIJMPFMlTKtvEgldGPp4bFW4OQ7X5I1TW5OFPijeUKreIg3Dj/dCfZpq6xXBjpywP8g/fB0B5IyaqWDD6YKdtcmStzZe7hCZDHwUQ6d2fXZ6XhUC72zSBOCQovyOTA4GSmbBFnMpV071B4sx/SHke0Spb0qvNkk3+mzLGewyDOiNLskIelqausNKSRepbJIIhxnGFqCjd3xijASsOTzdk0p+YYjMKUTIiHNuY3+yGrXZ/5qs1y3eXVpeonrgFZLmSN8hBf29mKrA0NTd13iHZMjQszHi/NldEUFdtU8Yoacq8vbdnSubEzZmMQHtn0HIRJsRc83aTeCRRF4UzDLeTA+02nVVXBjzLUYv/MhSDJJDv37XP1Z7KWTiTyE/m4NPIOSbNcsnxUKafb27iYfE17HEuFyxM2VA7iYc2fe+0AUKh6FpdaHh9uDguv5Yzlusty3eXybGmfyuFZwDV1PnP2Qez9r7xl8P17fe53xrRHMWu9gHMtl+2BlMjXXEkkOT9TouwYuIb+WDX2XuiaSt0xWKm7+77XUfdygrmKPbUzOE0j9pNico2T6xxF6ZSZN2nYbQ/kGfvibEnu3eOYVhEQslBzeGm+jB+n6KrcV1/Q8NopTrqbbwgh/q2nciWnCFOThoGGrrA7DBlFsqlzpuHuK6RNVfqhDIsY1b0LnaYqnG26bA2k+WSWC7rjw14aqvpwT4NHXqOunqgD3PBM/DglSjL8WB7IhkHCm02pld/sS0nRJLb0WetI1eJ+DcN0ulHfaft8+06Xzjhiue5ysVXiTMPji1cEKgoXTjGB60WAY2p84dIMX7/ZPvHXLlTtYgFUD02xNvohvTCZHvpfXaxMPQ2e5efsmBpnGy5hmh2i7g9CaQwZJhmGoXK24eKa+qEkueeFPBdsDyIsQ6UfJbQ8m1w8mEC2ShZRmlO2de61QfWUKbvyUTjJxPE42BiEmJrKzjCiVTKlR0BxqCxbUtZbsuXkqesnlGydUZg+kmVoaOozmZA8rrHicq1E2TKxDcHwBCEMy3VnmtR5sIgXQn7eceGb8upSTYYs5ILdYfxEvg8nxXLdoWNqeJa+rykF0vNJU1WGhd/Rct2bytVO6/oOfp8gyeShKs95524PP04p25K1MQmcKBWTxKhIA9p7f3/fpRZpJk6VzTFBsySjsKM0L55/yVo+2Ox8dbHK7jii5hjsjmI2+5LF5BThD4oCZxoOo8IkujtOTqUxVXUNzjVlM3rS1F6qOYXkyWV7KFOHhmHGt263qTkmO6NoX8Ljs4KqKify65O+WQ/qoa1ByEJN+j0u1KQUb60XkOXg+fG0lnrc3ytKZRx6kgnutse4lkaSCUzNngbGfPpMXTYTkoy2H++Ltn/RvDImNeMoSqfS8fYo4p17PUZhytmWy+yeafbvu9R8qklZB9H0zOmh7GCIgxATGZKCokGjJBkXk4TFJ4FaWBOsNByC5EHtcHWhIpUMhdfeXtiGdmQC9W7Brrm+NaTqmPvM+j/peQiTjJs7kp0XlLN9Xoympk7f0Zorm1ZVR+6ZV+bKLNZsen6CbWjTfe6oJMC9+HBjIH1geiHzFSlV+qRrXO36DIIUVYWr85UjmRoPaxqVbYNfeG2elfXB1PNzL/Jc8MHGkLttn7Ij/er2rg89P+Z+J5j+bk/iqXhcLNRsDF3BOcLKZBBK4/qJT99L82VMXWP4CfXO04KiKIyiBF1VeXmhwg/vd/GjjGGQMAjSQ96ZV+bKdP34mdzH5ZrLz708S5IJLsx4DIKEm9sjNvohSzUHVZVM65cXKvSD5LlapZQdk89fapJck9LSpmtxr+1ztx3gWdLwfaZscabhyvX+ITY3J4GiQM0zqHvGiZhiz6pBexLsbdR/9nyTb9zcpV6k/2qqwteu7zKOMmYrFp+/0ERV5XB6dxThPkZYzfPA43pMvdDIxAM/pWCPeXiYZlTZ/6DNVmxmH/J9yrb06Lm9OyJM8kMLz7OELHq8Yso4ZhylLNWllCBKM7Tik8we4bHwtHGQqZILgalLLwrX0kiFwNXUaYLY34/4d/7Ia9Rcgy/8Dyf7Or2gsh6FMMlRkJOvmmvgGPpz21geVhBMIsyrjjQUl4mT2j6J1/OEQD6Plq7RK+KD4zQnF6Ap8lA2MR60DJlk+ShZyNNCmgs0GTOEQIYWJAVbYK+My48tbu+O0VTlxyZp42GoulIGESYnmy7ahvZQQ38hpPR0tmxP16C6Z0w/12d5qLX0h1+nbIbKSZ6pSf+Wp/1uO4WEox9kuKbGKJLys717x6MmiUsnkBI+Dg6uMSaHn4mq+8BE/37HB+RnPmEGThi8jikNyE/znh48qE+8mwBKtsGd3THDMMXSVTIhWY3PmsH8uNhbD8WFx9F8zabpmUSpbNRPBnVPCktX0TUFz9TxbE3KLDhcwzhFM6r2YyDxP1gDZblkeAFEcc5yw8bQZOLasz4gKIpyKIV6gjjLpRlwkcRpFp9N+Qi/pMdFzTWp7fmzoam8sngy75i6Z9IZxdP6Ps9l4/qoNeIgJp5BcHSd/DC5lamrNHSLxgklYo6p0fNlEEyaC44zn0uL65qoI0565Jop28y8dPTvIWsLRfpzZZIRftTPhmd3jjA09eF7Y5KjqrBQcynbUqJt6OrUfuF5wDV1bEMlSgWLNVcm1hb+nxw4W8p169nIQSQzfm+oV4KpqwhkPTv5PD1LfyHqRRlGVGV7EFGxdTYKj+G9dcijno2TQlcVLrTKT2WY9jzhmBqvL1WlRNoxikGevH9hkk3dtE7zXj4LKCfx9FAUpSGEOLmBzlNGq9US586de96XcQi5eECN31q/z7O+xslLrijH86u4c+fOM7/Gg0hzQVIUcpahcZQU92ldZ1ik4Giq8sR65hfhXn4SXuRrjDNpbIoCW2vP/t05CCFkYxshm4gHfSxelHv5qGf4eV1jkgnSLIdCF/9J5/MX5V4exPNez4+LyTMwucZpsVfsAy9ae+T//3k/GQ5+3s8a+/ds9VC0/UE8rc87zYQMHjnmOvMovKjP5N6abvMF2Bcfhhdt/96Lo57XF/Hz3tvUNHWV+/fuPvVrDJMcIaQx8+MGL7yI9xL2r+frq/dYXD6Dqaun7h90Wjh4H/fWoIauTqXkzxs3b91mcfnMqZybnhYe9UxKA3RRpEg/v+v/cbiPAN/73veEEOKpXuCJWqcvYlMK4Ny5c3z3u9993pdxCBu9YBp//Y/9kd//1K8xzwVhmmHrMsXrxvaIoJA1XJ0vP9QgeYK33377ud/HjX4wTfc623KnVOMwyVCLVKlHXWeYSJP1k0qX0izno80hokhbOmikfFI8zXt5fWvIf/Rb15ir2Py5X3zpsdMiXoTP+yCEEARJxmY/ZBxJ9sOzeHc+CX6ccnN7TJLJiOv906kX414mWc7Hm0OSNMc0VF49MI1+XtcoTeVlCumFGe/Iid1x3+/nBSEEG72QnVGEqigvxDO5F5P3xlBVPt6S69jkGm/vjqeSNimHeP5FT5LJA7ZtaJ/4eU/2NRn9/uyK8e44nqZJvgif9+QztorodpCH1w83Bvs+76cNP073XcPWIGR7IK0EzjTcT2SWn/b7PVk7dkYRnSKN6vyM99DAmuPgRVyDAG5sDxmFGWme82f/+C+8UNeYFsa8jqlNWYNw+s/lJJDhceue7UHIVvG8rjSkDPdpfN6SkS0emxnXHkWs9ySTZKFm80s/+1MnusbH+fnvrfURQtqgXH1MZcOL+O6EScagCBgC+N//8s/yV37tK9S9SWLc898TD+Ltt9/m69/8FiBZ18Mw4c6uZAc3SyaLJ/DjfJp4+fVP8d//7d+h6hpT1cGLhrfffpuvfuNbGJpy6Bz84caANBOoKodq5meJV9/4NP/N3/htap7B5QPnixcJiqK887R/xvPn9D0l7AwjNvshZVt/aulfj0J3HLMzihhH6bHpg5OmTK2I+DwpbrfH+FGGZ2lcmCmxXHdoj+Opee2PAyZUc11VqdgGu6OIa5tDBmHKct0+1BDYi91RxEYv3Oc7sBdZLri1MyJKc1Ya+zX0uqay0pD+EM0XWDLQ82P+1H/xLfwoxU8yNnoh/8k//NaPhUzkOPjWrQ4b/ZBW2eTCTGlq4HkUdkfyHfcsnXPNp+vh4po6ddfg+vYIRZHeG8fxDojTnFu7Mt3sfMs7lcjZh2GSbPKjtT5lobMzjJ7YH+Q0MF+xp02no5pSm4OA79zuIAR88fLMc7jCRyPNcr56fZeeH1N3zaeSePmk+NbtNhu9iPmaxauL1emhEMAzNW7vjqg55gsxZY3SjBvbIxmmUPvktKJbuyOCOD/1vbw7lsartqFxoeUdSsqpuQZJJuW+TxvDMOFu28fUVS60vCP369VuQM+XEo2JIbWmKpwpvB2Pi0mjuFU2T0zvX+sFdEYxhq5wZbaMqirMFH5EqsoztzuY+OIoCpxruqiKXAdP0pTq+bIB+bDn4EVCq2Ty7dubz9S8+DhIs5xrWyPiLCdKUkxdyi/nTymNDGRNv94LaI8iWmWLhmeeKKF0glbJIi+e19pTkk2HSTZNm1yqOzQ888T1SsMzyXKBgBPXpH6c8o0bbYZhymtLFS7PHe+ge67lFR5EL563zuPi5vaQH60NsA2VVxbKmLqOoalkec5373TRNYWfvjxD5Rl4QZ0EuRC8t9ZntRuwVHN4banKQs0mKSwKXhREac776z3+0BuLz/tSHoogzvj19zapuQY/fWVmH0vubNOl6x+vnn+aSHPBu2s9LrS8F7ox9Szw49GtOCbCJKM7jslzwc4wpDOO2ByEkt79jBEkWRFfbB7pb5Hngu1hSD9Ipn83YRX0/IQsy+mOY8ITpGlNTHMnPhu2obFUc577C3cSZLnA1jXqrsEwlAZ+4ygt0lTyKRX3KEx+/zyXVPKD8OOUYZjSDxLaowghBLujiO5YTlmrjsHSAaPfFw1/6Xdu0BnH/E//5Of5F3/xKr/+/iZfv3Fys/UXDXkuuLE15Nr2AJDvwiSKNxOCYZgc+pqeHyMEjML0yM97gmGYTJNUngSOqdEqWeiqSnTgvRSC6dqzF6MoJUkFec6+d/0gwiRjexBOn+HHvkZDo+XJNI4n/V6nBV1TWaw5D41q3y2GCJuDkJ1h9Iyv7mgkacb1rSHbg5BxnBXPn0ImxCMTBp81siJS++PNIUDh2WDs84eaNC3a44h+GD+X69yLOM3Ji1fR/4RnVAgxDSE47WTJXpBIX6o4I0wydkcR7VFEz48LprHCbMV+qp/3OErZLp57IaSvyjBM6I7jqYxngkktcNAP7ODnvReyFoqmvnog6wuAziim7yf48fGbWpM1JUnF1MtCVRXmq/ZzOSxNnh8hIMthofrwdeYggliuuZuDECHkPrHZfz714qMghKDnx2z1Q9Z7IaauYesv1kw5znLiNOP2zog7u2N0VcUxtFNt/Nzv+OyOQ7p+QpqJR9bG/SBh9JAgjWfxvEbpA2/bybq12vXlGhwkh1IIj4KiKDRLFqamPrK+OQpBnDEMU+Is46ONQeGB9ACTs9JBL6mSpbNUc57qAO1ZIUwyrm0OuTExvI9zHFNnvmqjawoCuW74Uco7d7vsjl6M2mOCXMj6Mc8ly+/27piypWPr2hOn1J0mVEWykO7sjtnsByc6sz4rxFnORj9grReQZPuvzzXlM/8kDNvTQC4ENcfkXtsvCBQv3n18VvjxX30KpFk+nVCMopQ0E/SDBC9/YHj4KPhxih9Lk1RNVaZSA0NTUZWTJ8DMlC3STKBpyjRhZi82BuGUdn5ptiTNPV2djX7IYs1hvR/S85Njy/AAVuouHT+msacYGIZyE6wfMPzN9xSVLxJu7AzZGcSUbBVL10kzQY5goWpTd01c8+H3YbZiFYbrD5mYCri9O0RVNEqWzs4oYqtIM3zcdMUgzp6ZTn0UpfyVb9/nl19f4LWlKpfnSvy3v3eH//h3rvOFy62n/vOfFpI043c+3qY9SvCjDNfIeXWpNn1e4yTnzq5/KCmm6VlspCElS39o8l+c5txt+1Kfn+RHJulMpCC5EIyilKpjFBM1se/dr7smQeHncjAiOkwzVrsBwzDd9zPKto5jqqT5o02t73V8oiRndxTzyuJhRs5kkzJUla4fT9OBslyg8OA99iydmbJFlMpUjhcFUSoL5YptHGIyagps9kJQBFn2/DdjIQTfvt3h460hjqHxS68tcKbhsTuKuDr/Yk2yvnZ9m5vbPmGSUrIMXls4TEXvBxHfudXBs3TmKhZ19/k+F2XboFU2idOcuU9gVEjDf4eun9AsneyQ+0kSwIYnzb1dU5OpooOInXGEq+soKpxrucxXnp5cYiLD01VpNK1rklW4PZRNKV1TuDxbkjJMBRZrDttDaRZ7XAb09jCaNnv1gknULJnTFMN7hXH85bnSsQYyizWb7UEkEyYPvMdBnDGOU2qOse/6TrvW2Ptz6q5BkubounpknTXx6TkqPfXW7mgaLmEbGrujBE1RGJ2gUfc0kOWCnVFIpQjfWesFbPZDVrsBi1UbTZEJrc8be6V7cZpzr+MXTT7BKIw51zo9o+EgzvDjjO4ooeIYNDzzoWzgvRK4vZJOIQRdP5Gm7sXeeZpKgskebekaFVu+Z0mWM1OyCJOMcZjR9xNsXTuWnDqIM95b66OrClbxbu6VvD8KddfkTNPh3dUesyWbe21/ypqaDDPyHCphwtnm8VioaZbTHseUbf2Fb1zlec7f+cE6fiJTeWcrFjXX3Ne0vjhToucnXN8KiZKc69tD/sRnlqmd0OT+aUFTFFoluUfFSU4QZ3zj5i6qojJXtR5bannaUFVIkpyNQcj9bsC5lsfV+TJBkk1TOJ+3oiPPBes9HyFk+MRedMcxqqI813AzkESSOJP37If3+3TGEedbJQxdxTW0HxvV02ngxV5dToBc8CB9L8noBQlqEf3aGUdkAmbL1pFa4iTLubUzLrrnGXNVixvbI7p+AkIuahdnSidqPhia+sg42b3fSVHkNfT8FFOT3g17o+onQ41BmLDaCXBMjaZnMAhlLPFEHrM3qQhks22iSU6yB4eAvbG551tHe748L7y72pOShXHMpbkyry9WWWlUMXWVnWHEjZ3xQ7/W0jXONj2GYcKHGwOZtNaU1PzdYcTXbuyyPYg503ALE+AHn4IQgo1+gKYozJSPt5BOJBGmrnJ5tvTUm3y/9u4GwyjlH/195wD5+/4jnz/Ln//1j7m1M5rGd/84IYwT/sJvX+fa1oi6Y/K5C01++srMkQk5B6d7dc88MiUwiDPudsboqrJPqnLUR9rzY95fHxAmqWwiGQY9P6Hpmax2Awxd4dJMCV1Tp5G7j0Ka759sGpr6UPnpzjBiexhSc83pk3jUNQ7DhOvbQ7rjhIqtYxs6iiJ9JzZ6IaqicHHWmzbnXiRGzwTfutWh48fMV2x+8kJz37+FSU4vTMhzeXB4nojTnA83Bvytd9dZ74c0XIPPX2zyqTO153pdB5Hlgr/2zn1+7d0NbEPj9aUaP31l5tBhLcsFX72+y7trPUqWwdmWy6uLtedu+HoSCZlMIz0582IibS/Z+j7vizjNudOW+/1K3eF+z+fDDZ80Exi6gi9SBkGKriroqnpsBs5JsTMI+XBzwNBPeX2lwhcvyzy8a1tDekFMexizMwwZhRlLdYflunNiD4+9H/Pkf7qGjq6q7I4iSpaMj967tq52ffpBwlzFplWy6I5jxnHKTNnCNXXOtQ7XC2mWT2uKUZhOJZfjKOX27hhFkQfBJ2UjR0nGV65tk2Y5Dc+kYpvYhpThK4pCmuVsDyN0TaHlyTouTnMaJfMQq0zu/4KyrXN5royiSAP19BhslqeJb96SdYpjqazUXTb7IUGSMY5SOn5MxX04Q+5ZIclyrhfSvTs7I1Z7gRwEmxpnGh6X5iqnGrWeZDlbw4AgkQOX5brz0IPa5FneHob4ccqFmRIzZYvtYcT2IJqyTVRFMqdOQ+4+keKClMOVLJ3FmkNnHMs93pG1ecWRkfVHoefHrPfC4mttvnevw3urfSxd4zPn6mS54PrWaPouHdVsncBPMuYqNq8v17C0/UEAokgnHEUpG/0AIaSc6VE17wM5e8J81eLtc40X0pcJ5BrxX339Fr97bZdWyeQnLzb52ZdmDyX+VhyDL12dRVEEf+sHG9ztjtkYBPwLX34J7xSf3ceFNOVWuDBTIowz3t/o8+1bHeaqNhdnvBemMWVqKhXXoD2KSfOcMM3wo5TVboCiKFyY8XhzpfZcrzHOcoZRijneX19u9AO+d6cLCnzufIOZ5yiRNDSVpZrDVj/k+s6AzWFAZ5SQCUGzZHKm4b2Qtf3TwIlWFkVRXEVR/kVFUf6coii2oij/qKIof1NRlD+vKMonnooVRTmnKMqWoihfURTlN4q/+3OKonxNUZT/XlEUo/i7f0hRlG8oivK3FUU51ttn6rIR1CqblG2dimNQsnUsXWVnGNMZxWwVkZQHsZdRJRDFggDjMCVKMqIkP3Va3XzFZqFqsVy3sQ1tytACebBeqjm0yiYrDXc6HemMJPV2FKZc2xrRHSfTiedR2HuO3/s7TuihQsjC8UWBEIKSaRDHGWkuJwY5UqM/kRscp2jsjiXV24/kZBVkUw9kZLxra5xtusyULearFmeaLnGaszuM2RpEj5Rc7cU+acUzoNb+3fc2WK47vLXnkPzH31pGUxX+5++uPvWf/zTw0eaQzX6ErioIBG+sVA81pQxdeicd1/egF8QkqSCIc+I052zDZa5iHWkW2Q8kU6Lvp9MpK4ip/ClJBWH6yTR6U1dplU/medEeR+S5fK9X6i6zZfPIg2eY5OwMYgZByr1OQJxJ1tYwSAsJi5gaxb+ImEhRRM5UNrvv31EomTpl2yDOn6+MJogz2uMI29BQkeyewQn8e54VNvs+N7fGWLqKEIKLs+6RB6yeH9PzUwxNBmLUPeuFkyo9LUxkZwelaoMwIUpygjjl+vaQ9W5ImOSUbI2r8xXOFOuF9ZQlE+M4xTU0So6OoapTZlGrZJJm0lumM06I0nz655NC7nE2Z5rOdADlJ/J+1D2TimOwVH/wb1ku6I4T8hzao5ioYIJ2xwkbvaPrp4PYe53DUK5ReX46tcYoSomSnDSDzcLIOEzyqdRpZxTRHsVs9SO6/gM55EFZc5rlXJjxWKjZU8bIuaZHq2yeKtPnpMhzwSiU17o9iAiiFD9KQcBi1aHhGbQ8iyR9vs2zSb0axBkbfSl3TlIpRbnwkLXoSdAPEhShAAqOoT1SCtcqWcyUTUxdxTX1qURr8ionmTw8w4O68EkxYVJLZrb83mGSsVa8O+1xzNmGy3zFYvEhTfndor7vB/KdH4UpdU82Xher9rSe3/szHoZ7bTk01VCYLctD7QR6MTTXVGmiPQzTfYPwh/1+k31jHGXHUqE8L2z0Au61AzxTJ8nhzaX6oabUXry5XCPNc0qmTmeUcGv34cPvZwkxbaBK5n0Q55iayihK8F4gxtrER63q6rQ8iyjJGYUJO8V7NzjmeeppQlEUPFPH0tR9h+GJrDZJBf3g+dZ5QgiqjkHNMTFUFbNQR4yilFyc3lr144CTPt3/DXAfcIC/A3wI/IfAHwb+E+AfOcb3+E0hxD8MoCjKDPAlIcQXFEX5l4A/oijK/wL8WeCngT8G/JPAf3Cci6s6BkIIVrsB24OQMMlwDa2I1lQxtcNm2OM4petHmJpC2TZQVVjvBuRCcKbpkgtBxTZwTtl3SFGgF6R0xzGz5ZSzLY/ZikUQy0mHqassVB2yXHBndzxNIVGKyG9DV0hSceTUIkozdkcxnqmxXLe52wnojmM8S6NsG9Qcg0GQkIunZ/54HPhxyocbQzQFzrdKVF0D21BJhcDUFWqOyfmmh6YqzJVtbsdjGkc0J0ZRyg/vdUlzwRvLVVQVslzS94eh9KeaLVtcmPHIcsErCxUsQ5uazZdsndoBI/QsF2S5eCRleqEqpRVlW3/q06N+kPC1G7v8Yz91ft9ka7Zi86WXZvjr31/lz/3iS8+dCXFc9McRf/mbd+mMY2q2QcnU+KXXF46cAumqcqJCt+oYdMYxmirNge91pZTPs/TpAWyt67M9jGiVTMqOziBImCmZtEomFUfn2taQ9ijmXMt7pAH7BJqinNhIuO6abA8iaq7BxiBkFKZkgmkDrT2KuNfxaXomdc8gSjNKhkbDNWmUTNa6IRv9QBYFL7CPnKIoLNZs7rUDXpo/PL9oejrtsVyvbX32OVyhRGcU8aPVHt+4vsvAj7nYcnljpf5CGMhPEIQJf/lb8r0R5CzWHS61yvzsS3NH/veOqTFXMrm+PaBkGixXbUZRyr2OT919uBwmzXL8JMMz9RduTQmTjCwXn8j0Xam7bAwCwjjjzu6YMw0XAViayvYwZByltMoWnqlxrzOm6urMV2xsU6Nk67RH8aGa4XGQ54JR0YRSFYUkz+n7CT0/RVNVlqoGaS643R6zUpds3mGU0PUj5io251oecxX7sUI5dkcxa90AELyyoGEa0icvSaXNwGLVRlEUgjhjteujqQqOoRIkOXXXQFMUVFU2lnTtwXOQZDk7wwjH0Kh7Jrqmcq7lcWd3hB+ndMYxjWLdGkUpqsJjrVGDIOHWzoiaa3K26VJxDM41PYZRwrmmx+3iELldDB0nW6OiSO+Q+eJ5nytkzUIIbu6MZU1QsfZJSR1TwzGfDxOp78e8vzGgZOlcnvPYGkTUU43v3O0wDFO+cKlF3bNYqTvsjOLn6ocyiiSbsOdH/NaH22iKoOpanG+4XJmvcO4RSoG9SLIcBQ4xnyaMxjDJuDxbwjHlu5hkAgXBfNV5JFtIekg5JJmgPYoJkpQb20OWag49P8bQdVxDJ0xlXXjca02znCQXlC39ELvIM3V6gZTlVm3JkNbUB+9OkgnudnwUBcqOga0evv4okUzv5ZqDa2q8sVzj+/e6zFdtWmXpi1R15Bml6shghiDJptcTpRm6orDeD1nv+ZRtnXGcoWsqiqrs89Sq2DL5a60nFRjWJ0gDXUPDNlTWewHLdfuFM98HiJOMv/Kd+4VkK2ehZvPWmRqvLT86aa3uWfzRt5b4jfe36AUxf/Wd+9zcHfEPvLn0XCVouqaAIpgt2wX73+bWznBay6ZZzu3dMdvDiPMtl8Xa82mo65pK07NolSx2hxEfbPTZ7gecaXnM1yyajsnv3dil6hq8vFB5PvdUCFa7PvWlCtqe9eZsw+X2zphcCOafs/WFpkpPuXMzHoupzc4oKhregq1+QBCnhIkkrTSfEov7RcFJd7crQog/qcgnawP4shBCKIryVeCHx/weXyr++18FrgFfKf7+t4A/BXwA/EgIkSqK8lvAf3aSC9waSBNRTVE403DRVLVgUOk0DmiH77THfLwx5E57zJmmy6dXavTG0p9KVRRemis/NXlWnOVTLfzOSMp5jvLbmBih3u/6lGydl+YrzBWb6TjOjixQ1nvykNtBxjdrikKaC3ZHMWVb+j+8CLKv61sj7rV9BLJIfs2pMoxSWiWbMMl4dalCq/hdd0bycx0cMXVd7wVsDyUT4zt3uyxUHKzCeHMSY71Ud3hjubbv6/pBQi4Eu8OI5ZrD+RkPVZHU1GtbQ9JMsFCzHyrl8Cyd88+oQPx7H22RZIJfem3+0L/9sbeW+a0Pt/nGzd0XMtXsIPwo5b/+vTt863aXkqnx2XN1/uHPn8M5pSmQa+rT2NfdUTQ1Wh5FKZ6lE6c5H2+O6AcJ9ztj3jpT4343wrM0UOBO2+fOboBlyCnL09pI5yo2cxWbPBe8vy5N3/tBMm1MvbvWozeWUpgvX50lF2Bo8l0ehxkfbw5RVfm8vmjNg72Q012Fcy0P/YiCfKMfEmUCFJUPN5/9tFJOqWO+fafD73y0zWY/5KW5Mp+9WOdz51unKkl5EsRJxn//7bt85eMdPMvg1cUyf/qLF6g84vpcU6fkGFyZrRBnOTd2xlQdA9vQ2BqED21M3d4dEyayuX9p9vnvFRP4cTqV3U/Srh6GqmswjBKSVDIgO+OYrWFIlgkcQ2O2bKOpkiX92lIVx9AZRAm2qeHHkhWw2g2euAlwt+MzCtPpQTVJBX6S4ho6F2dKtMomq52AgZ/Qs2JyIQ/ntqHRLFm88gTF/CBM2OgHhEmOpiq8vlw70mZgdxQxDFNWuz6zFZtLMyVcS9oKXJotESY5FfvBfdjoPQhucUwN29BwDA0hFISQMqqGZ2Lpj//8CCF4516X7jjBsyKaJZOybfDqUmXKLu/5CVGa8f17PYQCnqHzymKFhmcWjSZt3zOeZGLKnhoUcsUXAT9aG7Da9bENjc9fbPL5i2V+/b0NOqOEIElpjyPeXKnjWTql57gebQ+lAfs4TPjBvS5bgwjHUPnpK7N89kKTXHCs96UfJNxr+6jqYYln14+5sztmHElfqc+db2DqKmdbLnkumCkfr0G70nBxTY31XkgQ59zvBlOmlek82mpjL4Zhwu3dMXfbPguFafrBr+36MTVHPmd+klHVVdRiIKOpKkER4DOR0B2UtE7SP882PGxDfZC4WTCd+n6CAtOfm+eCG9sj0kwU67nK1iAiy3NAoVWyEeRTef8gSDnoKPAwKwSQg4k4y6deUuNEDsarjkk/SNnohce+f88CaZbzN36wxm+8v4mqKLy+XOFPf/HCPr/dR+FnXprj0myJ//Qrt7i+Neburk/DNfni5Znn1pzKckAo7I4iLsyUeHWxwntrA1xTkwFO45gb20PCRProVR3zudiyGJoylW6vdnz6YYqGwoqAnzzf5Bs3d1nvhdwv9panJY1/FOIsx9Q0tocJQZzgmHINnQyC4zSnFyTPdW0FWK7LNW6tJwM5ojRnsx9N08Avz5YxNPXv+8bUY40DheQY/lrx/yd/Pg65cwO4AnwJ+DLwNjAo/q0P1IHaEX93bEwMMBdqNp6lEyYZ/SApFu39lxincvHNcknlY89Ur2zrh5pSfpzSHkWHkrceB5au4dk6hqZQd619qRtp0bTyoxTHlP4PeWHe/OH6gGtbI0Be61EH0kkkuKqCY6jYhvyY9xaWLwJcU8XS5cJ7t+3z0eaQpYJ1cqbh7pMiTu7PUVK+RsG0MnRpaikQdMYxwR4Jx95p7wRzZZvtYcQwTGTjz5KmjhPpBLw4Usdf+9EmC1WbTx1orgH83MuzVGydX31n7dlf2AmRpBnfvtVm6CcoCHIheH25dmpNqQkm72jNMfAsrQgXkO+2ocmirx8kdMYJ93sBtq6iID1lJkzfTmGG+7QgvR4EqqowW7EwdXXfQcnSNMIkZXcYcWtXemaZmjRBjLMcQ1OmyTsvMvpBwo3tIR9uDEiPuNaSZVCxZLPkuIXkaSHPc65tDrm2NeLm1gjPlJ47mqZwafZ0fVKeBFmW8507HTYGEZqqkOU5ryxUH9mUAilhsnSVQZiQ5BmGxpQF+qivjQoJ1Ism+0vSB2EmB1PrjoJnSZbxZP3Pc/m7Jbls1CiAH0lfIiEEZatYI1R5j1RFeeKDyVROlsiJZ5LlJGlOLgSNQra31g+43/UxdWmEXndNHEOndiC05KSYKVuoqkLZkQ32iTxkUmMEcUqeS5+lJMtRFDA1hQ82BtzcHrPaDbB0jaqz/zom91NR5D0COfEtFTXGaTA4c8GUySEQaIrCRi/g/bU+17aGDPwYx5QsNEtXEbm8BkXhoYwaU1dplqTM60WJXBdCNsZ3RzG7o4g4zciynJZnoqjgWYZk878ANJUwzvloo8+dXZ8gEbiGimdqzBVJbsdt4k7qqjw/LEsrWbpMfFQEhqaQC5iryHS6JMu5sT3el7gnhKz3jkrh8yx9+kzstQI4qh58GPw4I8+ZJgEelZAn9wmBpspk3DwXXN8estoJGYYpdc/CMTVcSzv0bvT9hHGY4lrymZ38u64eft8myMUDL7Q4y/b97qoq38uzzRIzFRvLUAsG6OEz0FHIc8GNnRE3t8es9QJA/k6WLr2qPEs/0f172oiTjO/e6XBjZ4Rr6uQILs+WaHonM91eqnvMVy3J4lMV3l3tc6M4az0PTMTbk+ctF7IxqShy6PLRxoC1XsA4SvGKIcLzhm1qVGwDRYGGJ03/kzRjreczCFLGz8kWQVMVDF2l6Rlo6oO2h64q3Nkd89HWkPVu8Fyu7SCiNKdk6VRsk4qt45oaUZKxM4jYGYYvtDritHDS0+B3FUUpCSFGQog/PflLRVEuAsNP+mIhRARExdf8bWQDaqn45wrQK/6vcuDvDkFRlD8D/BmAhaUVbmyPuDjjsVB1aLomW8OIKM3wbI0sk5tKkuVoeyb2Kw0XVZEUyVbJYqmgQs5V7EMveZzuMUiPM1Ya+6cFgzDBUNVCPpZIiZJjPtLp/9WFCi1PJsntpenf6/j84H6PnWHET15s8PJCGcfU6Izj6fe/uTNmvmof+ZAu1x0qtoFtqpjFxDIXHPqd8lw8dcPu7jhmECa0Stahbv75Vom6axJd22EcpXzrVpvXlqpcmvWmTLe9v1N7FFM54vdtlW1+/hUpZUlzwUebAxRgGGbMlK0iRUQjTjPutn12hhFnGi5LdQfHVNkZxFzfHnG+5UktsqXTKJmESbaveA2TjCiVk+NnOUXx45TfvbbDP/jZM0d+Xpau8YfeXOSvv7PGv/NH0hfKzH4v7nWG/JVvr9IexSzWbL700ixfujr7UHPwg8hzKdNN8pylmnOkke4kcSZOc5brDjXX5MJMaXogAykt+9yFOro68TcyWKhZmLrcVC1DpT2KqHk6a/2AUZzimRq2KT3rPsnAd3sQMggTZspHv58gGwa3dmXRc3GmtI89NcGnz9SxDbVgO6jMVkw8U6dUHCJ3RyGmJv/9g40+Tc+iZOnkQhy7ofIs1oBRlEwnUl3/sMfUQsFWHEcpP3HuRHOIJ8IwTPj6jV0+XB+QC0GrbFIvl/gDb8xzZbZE9Tmn103QGYf8j9+6x61dn5mSyRcut/i5l+a4fIyEwDDJONP0WO36DIKYW7s+/8CbNQQPl3HnueBs06XnJw+dqE++91ovwFBVluvOM0l4rTh6kZ6ZfOLEfhJOUbZ1VuoOigKrPZ+PNwecbXl4lkYuoB+mtErmNB0X5H5TdeQe+rgFfz9I2BmGWLqKa2o4hs0HGwPudcYs1BzCYSQHT5ngfNNDIA1Qq47G2+fqqIryxI3Rim3whUstOuOY6p4m172OT89P+HBzQM0xeG2xwqXZEnMViyQT7AwjojTnYQqfhaotPTsMdZ/c/XxLyuUn90wI8Vh7ZV58j1cWqhjakIqtc3t3zDBM2RyEqAqs9QLeWKpyrlklScvcbkvPtU9KbzzKaxDk3nG/4z/TKPY8l8OZumswKhlSsn99l4pjslSz+JnLLTRN/USz62d1re+v9/jKxztUbINfeG2Omj1Dq2xz9gTsmY1+QM9PiNMMx9QOJQx6ls6rixXJCFakaX+zZJEJwVZfnXosTZpgm4OQ3YIxf3HGoxskCCFYqMoa4eWFMkJIiZ9XNL3Kln7sZ3OS3nlp1qPiGNPh0WrXJ0wymiWTKJHDYyV/YL4+8QGbJDdfmi0xCBPWe4H0d7MNen7M/Y48EK80HM41HwybmyWrsCFRsAvmU5pJ5pcQgvmqRZjkzJQtslyw0Q/xLJMsy7nT9tkdhlyZr5BkOR9vDgtP2YwzTZftYUgY58xVrUOJxulkUM+DpqGmKLy2VOHijEeSiSMTMJ8HtvoBf/n37rI1DLk449E63+Cz52q8eabxWN/vz/7sJV5d3OHbd7sMw4T/z1du8AdeneMXXl885Sv/ZJi6Ss01pqzgim0wUzaxdIWBn9AeRTi6xqU5lzeWa4fq0r6f0AukpPpZDdhemq+gCIrkaJX/5fvrjBOZhLlQs9G0B8ORZ3mG8kydharJKwuVfbYraZ6z0Q/IBc8sjfWTau75qs3WIGKuYjFTtljrjPmLf69HmGYMCub13+840eoihPgnHvL3NxVF+eInfb2iKGUhxKSB9VPAX0TK9/48kkH1TaS87zVFUbQ9f3fUz/zPKGR+r77xaRHEsmkQxDJxbmsQslx3sXUV15aTismLO0mlKFk6Lx0o7reH4TTGehjK1IqyZTBXtaaT2oN1y84wYrMvPQ4uzZZY7QakmZQPVJyH0/CVIhXkIOI0Z3sQybTA7bH0d1Al9VjKC3ziNOd+x6e6tF8/3RnHrHcDyo7OWdejHyQMAhm1vTfi9X5RmB6VVnNayIpGAsgu8JW5/fc6yXL+9rsb/PB+j9myxXLDJUwygiTnQsvdx1ZyTR23cfhxDeKMO+0xmqpwvuVhG5r0fiokfBM5wocbQ3ZH0lekPU7Y6Id8UW9RsnTGZkbFNogK+QRw6J7Eac6NbZk61CyZDy1unwb+t493iNKcX3z1sIxvgj/66SX+h2/d49ff2+SPfWb5mV3bcbHaGfPv/Z2PWOuHzJYsLsyU+OOfWXnkwfcghmE6lY+0x/GRz21QhBWAPBjWXNlgvLUzRiA43/JwTZls95lzDSlziTOCOJ9u3hXbwNSl1KkzjLkwW+JOe0zZMnBMjStz5Yd6j6VZzlbx7G0NHj7dGIbJVGI4DNOptGp7EE1TxBxT482Vunzfk4w4zXFNUXhnaVQcg7VuyLXNEeeaHoMgRUG+K8t15xPv7VovoDOKqbnGoUa7EILtYUSaC+aPaNSfBA3PIsslM2oYZocOBKvdgN2hnOZ+/37vsX/OSfHRxpBv3NzlvdU+FcfgM2fr/NJrM9NY7RcBa70xf+E3r3Fta8xMWXqg/cqnl49MrTwKNdcoGEICFA1Lh9+9toOiyPXyjQNpOXeKw/9sxTr0TBxEexzjRxmQUXWMZxK3HKU5qqJQsU12R9FD36/dUcT37nbxTJ04kz5HWZ4Txjkl26DvJ+R1yShujyLCNGeuHHF+Ru4xqvrk8dHS5zIHcq4ulGmPIvp+QpRk3NoeESTShHml7lJzJWNQUeD9tQHtccTZlkvpCD+bk2Kvt94EuYBxnNAZxViaytdutnljqUbJ1pmrWmwNQsZR9siI6o4fMwpTzhTPySDcX2dIqbSPoalcnPGOFXedZDkfbQ7ojGOWam5xENOIUkF7HNFw5cEsz2HgJ3y0NSTJ82nzfqXhPdIX8lHo+fE09OJpI4hTvnu3ixCCVxerJLlsBt7cGbFS96aNxKpj8fJC+blHhXfHMR9uDPjmrQ6b/ZDNfshPXWry5ZcfXpMchSjN2B3GxFnG9jBiue6yPYoO+TOmuZj+XZzl2KpGszBWBmi4JluDkJ2hrJP1ggXR8WO6RfLWhBWnKMrUE8k1dcIk5Ws3dkkzwWfO1ihZj37PjcI/bS/8OKU7lolZd3Z7GLpCnAjmqzbDKGG2bLNQsxkVa6kQgjttnx+t9ZjxpO/Zq4vVfaqAo4bHtq7ynTsdJiStXpAwKp7RkqXvW6MnktnfvbZDexSzM4xZrjvc74bc2hkxU7Yp2zp+nLLVj6ZfN2nwTxrKZhE2M47ktW8NQj7cGOCYGp85U8e1Xow0Pj+M+Q9/4yOubY1wDJ2zTY9feWvxieS5qqryM1fncC2d//Krt1jtB9z76oha2eCz556tTYamKPs+31EkU9j7fopQJEvwbtvn+vaIhmdxee6BP6sQgvuFt6ofZ7y88GwaUyVL5/WVGh9tDNkayOcuTFKGUUbDsUgzwbdutQmSnDeWq89MkhYkGWEiuLUzJk5zrOKctzOMKNkGfpQ+sWQ/yXK2BuFD2bhCCG7tyqTgR6WBlm3JkA2TjA83hry31mUYJWwNQxQFPtqQcs7TqA1eVDzWJ6Eoig3808AXkBK+ryHNzz8ptuWLiqL820jW1NeEEN9SFOV3FUX5GnAP+AtCiERRlP8c+CrQRTauPuF6mBZ2H6wPWO8GrPcC0jzncxeazFeKDS7NCZOUtV5IlGbMlKT55WTTH0cPFmwhYGcY0hknBK58kM62XII4O2RCujciPsllc2OUpVi6+tAHpzuOidKcVslEUxW2BhHDMGYcZziGxuU5WZzMVex9VPmaazIMEwRimsi1dzO7vTPiXkfG3Lc8i/sduTgFSbavMTQ54Pf8ow/4pwFVkcVBnOZYujQUv9ce48fS7H29G/DRxoBxlHI3SZgtWwjEtFlXOob0cGcUstkPsHWdVsmi4ZnMlCwURcoxKrbBzjCi78dc3xzRGYf0gpQzDY+tYUjDs9BVhapjPpIJk4sHEpKHJQN2xvF0Mz9N/MYHW9Rd45Fsks+crXOm4fKr31994RpTN7YG/Hu/9hEbfR8UFUvX+KXX547dlAqTnNWuz0zZQlMVciEoPUT655kaugprvZDZsmzajqN0OsUcBCmuqTOOUtZ7Pu2R1Oq3SiarXZ+XFyqSbWjIaVVaFL0TmYgQHDlRj4rG5UpdGrMGD/F/m8DUVLp+hGcZU4lhz5fv5ChMSYtK9H7Xpz2OaY8i6o7FzZ0RL8+XWay7KCiF8XCKZahESYZZPMPJMdLtegV7qecnrBwYME7SCkEWSE8SU1t3Ta7My4Z9wzMPrYlRkvLeWh9VhbefEmNqEorhxxkzZYNb22P+t2vbfLjWJxOChmfSLNms1J9vDPtevHOvw3/yOzdoD2PyTDZkvvTS7LGbUiCf9zDO5JTQUDBUlbYfk2cyYOJM08WzZHhDmuXTg3nPf+C/k+eCIJH7krqHCRPGGV0/pln4+Uz+/l7HJ0olq/G02JtB8bMEgvV+gK4pvF55uKntWjegakuPKS/RuNcOyPOcZsmk5hhSHiEEYSJ9WOJUsNYLmKta+wY4J0WYZHTGktmb5YK77THNkkmS5rI5JgRxJgdPjqmT54KKY0yT4bYGIW0/ojNOUBU5FHvc4j0rmh2mrk6n7hu9gJs7I2xDZbnqMJ7NSPKccsGASDOZ/OSaOpqiYutSPnUw3MOPMj7c6BMlUt7kmNqhOmMQJIjCL8tPMirHaK5sDyNWO0HxuUSYGny4OaDhmlye9UBRWGm0+PqNHTp+zGLNkSm8eY6hqlN2NsgB3jjKWKjZU9nquPgMjpKxTmSfzwK3dsb86H6f3VHE/a5PxTbIhGyCRFkmm5KFR9bznJBPwnd+4/1NNnoB2wP57jVcUza7T4g8F2wPA9qjGLUw7D6qnmqVLDayYCqtBrn/Tg7qaSZrAlOTUk7X0rA0GXCUC1HIO+XX9f1k+lw4hefU7jAmyXK+8vHOsfxWo1S+1yVLpsf2/EQahxdWGa6p089jHFOl5pjT32HC+g8TmbKnqyr9MGa2Kp/RumtM64m9UsMsF2wNAr52fYdrW6PpINQrApDSXA7ABkVjeNKMHUUpSZYTZyl118IvBlqzFWmgXfcMmTaeyj3BMtR9B+ZJLVK29Wkz7oONAd1xQnecsFQLT5Q8/DSQZDnfvr3LX/3OKnc7Y7I0x7AVfvpy69Q8495cqXG+VWK16+Nn8Bd+4zp/7DMBv/ja4nMLHijZOv1Akgnaw4DtUUjHj0lzwTt3uyzVXG7vjnBM2aSzdMmm/ySG/2lDVxUcU6Xq6jTLJre2E2xdpgm+c7fNu+sDqpaBAvzs1WcTdpPlgvfWe6zUvH3radUxi3AzlZeecCC52Q+nNfxRsuY4y4tBnqyvPylUZ3JuEQIMVUETKhXLYK3rs9odE2fwhUtNLs48PS/s54XHfcP+W6R07y8Wf/4Hgb8M/IlHfZEQ4teAXzvwd/8+8O8f+Lu/XHy/Y8E2tOmGleVyCrkzjmiWTe61faq23CjkJC7C1nS6Qcx2P+KjzQHLdRdLV8mFXPB1VUVTwI9loW5oKoamYOrGkQXNpDuqF42QkqnjF4X8UfDjdMokSvMcx9D44f0e768P8EyNhZrNl67OFgVzViQIZVi6UiQIQJxmGJrGje0RZxoOuqZiaNKfIssFWSybcIYmG0MH04VmylaRnPP0OumKIo1TgyTDNVQ+2Bjwteu7KAg+2BzymbM1mmWLYZTiRwlrvZDdUcyf+IkVlmrOtKv9KPTGCeu9kJKl89qynBioqmzKqapMG/JMjR+sdrm9OybNBItVB8/S2OoFIBSsPc/PUQiTbMo6A45cUKI0K9KP5LTvtJBkOb/94Ra/8Or8I6emiqLwK59e4v/9966z0Q9OnBD3tHB9s8c//z/9sFiwBW+u1PmXfukKK43jG+IKISPMWyWLl+bLCCEeei/SXE4mwyTn2taQmbJFxTHo+glZnssEvF7A12/ssDkIsXSNYZRyr6OxVLNBKLx9vk6rZGFoKrNlKUG9MCPZh46hHbnR50V0dj9IpnT3h03uR1HKO/d69IMEU9eIUnnwmylbbPYDaq5JkuV87fouN7ZHZEVTVFVHtDyLG5qKbeo0PJMozTnTcJmtWGiKUhj6Q8s7etPbSyOeLdvsjqIjDaRNXUVRZIP+qN8jTDLeXe2hKvCplfojn80wkYy0vDgoH6Qyf7Q5AAGjKDuWb9DjYBxlbPRCDE3h79xq88P7XX601kPXNM61XL5weYYvvzyL/YLEMN/eHvLv/u33We9GKIrgM2fr/NNfuszLi49OGDqIQZjgmAoVW+eluQppnnO73aEzTkCBm8XzdaHl0SrbNDyDQZjuW+Nu7coUM8/Spoe4np/gxxkVWw4EJs/IOM5kMyzJ0BSFi6dknH63Iw9Oq90x55ol0lzsYzT1/ZjNQVR4EgnutMekac5nzjUYRQk/XO2S5tJn0TY1fD9lrRdQc0zmqzaGFlN19Cnz4nFxvyPXns5YNn0brkkQpbxzr8v373XojGJMQ0cvDtCuqXO24U7fiZprULYMxpFsbD8u+weKJtdIXoepq3THEV/5eId7bZ/5ms3b5xr84mvzhEnOvfaYOJfy54knzyhKuLadMohSLrZK5EjT+AkDRUUlFymjKME0FFT2Jx83SyZ+IWMqFU24RxXQeS4wNZWaa9IeycTU69tjlKmZukEmZCPsbLOErmkySt3S+WBjiKYqXJ6Tz1uYSGaOpirc2h6zULURSBaognKkcb4oGCv6UyzyJzKWQRDT8SM+3BzQCyLCOEdRBHNlh7fP1XllocZM2cLQntzj7HHx3mqPb9xss9kL2B5FbA1lnfXSnMeVuSqfWjneEGEivbMNjUGY0vIsuuME19IJkuzIoUfVMag6BsMwYXsY0vQsur704HJNnVEolQCKktIqWQyDlO9uDVisOsyULc4V7HkpffMLI+GMS7Nlaq6U64+ihIarH1JAHIX7nYCeH6Mo8MZSjfYopmRpCCGDE/pBgqUrpJmYegMNw4S7bR+As00Xx5T2FAtVm/NFI1pRlCPNoD/eGvCDez2+fWsX19DYHsj3yjE1Xl6osDUMWO9IBYBjqgRxJgOP/BjXUElSgWtqqMimnfT8MfnR6oD2OKRsGswU9gFxKg/MuRD8aLXHUl3KuEuWXKcWKw4bvRCnCDh4nhBC8OF6j//g737E7jjB0BReX6zyD/3kWd445vN4HJi6xj/9sxdI84zfvbbDrd2Qv/T3boAQ/MpbR1tqPG00PBPbUPFXY96528ePMqI0pWQ5NDyDX39/g61+SC4UvnClxasLFcI0x33Gn5miKFycKckaWNNwTJVv3Wzz3TshiqIwCFLmqw6X50rkuUBRnr6sL80FaSItAHb2MDQHQYIfy3NyP0ioPsLjtD2K+HBjwGzZ4vJc+dA1T/wQFUX62B6EpUuf23GcMnPgnT/Kt7riGNzaGRNlGZ6lc66lSeP7MOXm9pggThmFCX/wDYULMy8Oy/808LhV+EtCiDf3/Pl3FEU5birfU8V81WEQpogNabZ7v4hotXSNr9/c4c5OwELV4nyrhKmpjCMp8+kFMY4hJTTnZzxcQz4AVcf4RANSTd0fFa+qyiO76mpR2I1CaaYeZzltPyRMUjrjSG5sQsoRtvohq72AlYbLei9CVRRURZkWUVuDkCBOMXSVy7NlLs6W2R7GCCHYHEZcmS0RpPmUYTJhWM1VbBxT417b59rmiPpTalBpxb2QGnifjzf7tMdy0mlqKn/49Xl+uDrgdz7e5p37XaqOwTt3u8yUrU9sTAkhaI9jXFNGp17fHOLZ8mfFmcBQlYIeDa6hEyeCKMtxDBVDVwnTnCzPSbP9n+1GX0706p6UOd5pj0lSga4pvLxQOfJa9sZqH7UoPS6+eavNIEwfKeOb4I++tcT/67ev8798f51/6mcvnto1PC7u7Az4M3/5HTYHEaamcKFV4l/+5assn6ApNYFjqnsYiA+/vzKCWv57nOVEaUaY5CgIbu+M+ebtNu1hxMebQzxTxzFlUzJIMnZHMaAwCBJWGi4rB773I9kfijQdLRX+Y6b+8GsMk2w6tYlTaYTcSWMQcpLyvbtdhoH0f9FUhTwXXJwtoykKHT/CMjR2hhEvzZcPsSlmH/HORGnOu2t9Fms2lq7RHkeULP3IKaNr6lyaLZHl4sjf+7u32/yv72+jawqWpvL6EUVhmuUMwhRDU0iyHNvQQZVFgrmnsLN1nVjkhSzi6aTyrXZ9tocB24OId+51+O6dLn6ccaHl8fmLLf7oWy8Oy3Cz5/Mv//V3+XBzhKrIIIj/089cOnFTSkLw8daIQZCSipySZdDwLGxdBj3sjiJWewH32mNsQ07JK7YuPUiSjMWaQ5hkhEnG3faYOMu50CpNC3NN3e8xZOsqfpyy0Q/J8pyl+tFecCfBKEq5tjlkrRfgWfJwO1+1MbUH0/5b22MMTcYtr/V88lzKMhquwffvd9kaxPix9LVpuBY1TzKabFPl0myZYZhg6uoTNYJA7v2Cokntx9zc8YtDuco3b3VIM8GV+TKOoXG24VFzDQahTCizDZWLs2Vemi+jqWAbxzeTPgqaqhAmGRv9gCST69t6L2StF9AsmeiqbHp8sNHnXjvANaUMvmTJEAhFkUOuPIePt4eoKFMmhWvpvLpU4frWCMfUUITCctOhWgzuhBDYuja1Svhgo8+t7fFDmZedccxaN8AxVa4ulHEM6Zmy2g1oj2NykXF7V7JjZss5tqmR5TmaqvPR1hAhBDMle2ps2x5FrPd90hSqrs5qzydJc4SAcy1vykjdi/Y4Is3EQxnRT4IsF7y/1uNuJ8AqfIPSXFCxdXZHMduDEENXcQyd+YpDzTWe+Fl8XAgh+HsfbvN339/k9vaAOJfs9zQXzJZsXluq84c/tXTsZzNMM65vjabSVK1g6kxYhH6UUXUP/65R4QkqBESJ/G97fsK793tkmeDcjMtcxaFk6Xz/Xo/tIuCoWqgnQNbamiobRoamst4N+MFqlzDJWGk4BEkOyv7Pe7KmBLGMZq97JnGasdoNUBXpCakqsDOMqbr6NEHzR2v9qTfT1YUKYZJPm15REbRkFJ6QmRCoj6hj/Cij7yes9SOqts4vvr7A/1fAhxsyF8rWFL59pw2KrHYMXeVue1wkdWs0yxZVxyTKci4WHpvfvdNhteuzM4q4OveAHWjqKnXP4MONAXEm2OzLxL2JUmO2YnFxxmNUJAte2xpiaCpnG+4zb9B8vDng3/nbH/LR1ghdUzjfKvF/+YWXOP8UUsbLrsX/9RdfZq0X8o0bu3THAX/ht67TLFn87NWTSVhPC+Mw5Tu3e7y33kNVZCP+F1+dZxylvHO3y82dETMlm8tzHq8vVp8bu2tSA89VbMqmwUY/IohzNDVnruqR54IsF/z6+xtkOSzXbV5fqj01yXKWCxIhU/jsPeczqeaRa8VeVuRRa+9vvr/Je+sDHEPjn/m5i9QOeJDOVmxcS0dXlUO+bROsNFxWuz4bA0liqLoGt3ZGDI6QkGuKNGb/3r0e6+2Aesmk5kkPOU0VjGNpNfTt211qjkXjE7wVf5zwuE/t9xVF+UkhxDcBFEX5HPD107usx8dKw6UXxFya9fj+vS4qCvfbAWdbLlv9mHGcEqYGry9XQZEHwe44xlS1YoF/0FSasH0OmjM+KWxD48KMx62dEeM4ZRCkIOR0WVMVWp7JziiasgdksSRNDieUec90i4M0ZEVCR5xJN/9zTbfwtgBdU6nocrLzwcaAUSClZudaHoMgYRylbAyCJ54UPwxBnKFrkymkQpIJ/DgrpjRSgjRbtnj7XJ1v3erQKpl0g/jYk5mZkjR+3OyHXNseMlO25UsuJDPt9eUqWa5wYdZjHKdYRfLXhBFTtvWpobxjyMSzzjhGCCm3XKo5RaNDPJLmr2uyMRimp/u8/PV31ijbOl+83PrE//Zs0+Pts3V+9Z1V/uzPXHiu+uPdodzEh1GKpSmUbIP/2//u1cdsSmmPNEhPs3y6obmmzpsrVdZ7ATXP4HuFj8eHG0PpL+ZH2IaGZcgY8TNNF9c00FV5qHxc7zDH0Hh5vvLIQm1ynQ3X5OKsx0xgUndNfrTaQ1FgaxDRHsfcbY9xTQ2QXjoLVYuFmlvI9SSr4XEOLVGScXtHJhrNV2yGYUIYy4CASSGf5YJ+kOCaRzPDJhhHGQJBkkO05yDX82NUVaFiG9zt+PiRfP9/4lyd9X7IfMU+dO1fvNLi3dUeUSE5OG3kxe9UsnRuRCO6o5g0z6l6Bo2SyR98DsamD8Pd9pD/6qt3We+GOLqU8fzJzyzx6mM1pcAy5H6hqypbw4irlyuSUp6kXGiVGEUpnXHMnV2fRMhDXWccU3dNtgcRMyWTlbrLD+93sQpZ9ihKaXgm51ouggfpfmGSMY5SaahraGiKss+373HRHcXomoKpqVxolliu25xryXUkLejxnqXR9WMWDcmEWY2DQtKtkKSCMElZ74Y0PBvLUDjb9JivWMwWMv8nNYfNckHPj5ktWWxkUua4O5IsrJmyRXckjc4nRte//Poi4zjlfMtjrRtwa3cMiCLYQKAq8l6PP0ES/CjMli0GQQKKZAp1RzGWrvDZ83VeXqjS8iz6fjw9TMdZhsKEge5QtjXyXK6/7bGUjOz1fVxpuFN5gqI8eA42+yGbRU1xtulStg3u7o4ZxQn3Og8aQkGcEiSyZpnIilc7Ad2xZCdfmClxZa5EUqQUbQ5CLEPBLBjOpib37ZJVNAfMB8EUoyij7phyKGfp0pIhlk2IcZwemf5ZcaRE6zQTxybm0X6U8b27snniORpLFZeqY8j3rB9Mg3nOz3hcaJWea4BJlOZ0/Ig8y+j4KSVLo+QYLFVs5msOry6d8MBbbA+TMJmX5srYusL9bkDdNen68ZF+bgoKaZZP99SqY7DWk8bfcSbYGkRcna/K++gZXCrq56X6/iHxpI5vjyJ+68NNOuME19Co2CbLNfeQlUWUPpDcdH05oGyWLGbGCY6pEWc5Z5ouXT9GK5q3tqFKRqDC1Deq4ZnTz19BPtvjKJPsvYf0PoWQ9fHV+TJfvb5D3TFxTMlEzITcx7JcYGoKc8XapWqycaiqChdbJcq2VoQESTZWmuXsjCJ6vpT5rdRdluvuvlpnuWBJ9YKYNMu5NCuHD/c7PtuDiK4vbUXudsZUbJMoyRlG6T6PPz9ODykzThPdUcT/+M27rPVlirJpaPwjnz/zVJpSE1iGxj/3+y/zwfqA3I+J05z/4dv3uDJbZrHhffI3OGUYmhx8zNdcVASfWqkzW7Z4bxgRp4IgyUmyHJFL5k6UZgjBM5fzTTBftTnf8lisOuyMIhxD5eqcDPqYMPz8KGerH7JUd6d7yGlfr2tqvDxf5tXFCpU9DaUzTZdM5GiKfG7XutIG5+p8ZV8tC+An8l6muZierw9isi5GacY4yijb+j4ZvPTYi0jyXEoeDVU2hNOj7UHiLCdJBLah0R3L5OCXFyr8A28ucb/rE2eiUH0k1Fzj7xtJ3+Pufp8D/g+Kotwr/nwG+FBRlB8BQgjxxqlc3WOgM47ZHYZ8tDmkF6bYpiYnkTMecxWTG9tDDFUyK15ZrCKEKEzL5LRl70TP0ORk6/auNExbabinUjAIIdgtDNPvdwPpnzBX5UzDoT2OWe0G7Awi/CRhqe7x1tkarqlTdw0ED7SsnqUVG96Ysm1MKegrDbnJVJwH5mjbw4gbW0OyfBIl66JrKjvDgkauPtmUsDuOaY9lAsSEIr89lMbMO8OAt87UpTGzpVF3dEBS8n+0JqedrqHzh95YQACvLlYf2TmfGKRWbAPTUKg6Oj1f4aPNEbujmPMtjzyXBuaWrlJ3Tc40HOquiWVoDIKE9ijGtTTKtsFmP+QH9/vMlE3ONDxaJenNVXFkcsu5lstqJ5CLyig6knoNnMrEfS+GYcKvvbfBH31r+dgL9a+8tcS/9tff4721gWy+Pgd87eNN/t2/+xHjoik1U7L5V3/5Km+cOX3/oI1+wO4w3iczapYsdscRd9s+H28OqToGSZYzCBM0VCq2joqU/LwyX+HsjDf1jprIeT/aHFB3zRN5FjxqU5iEDVQdgzNNl/mKTdnSubkz5t3VPiVLx09Sslw+36ZuMF+2SITg6mKFz6w0iLIcTZUblmdoXN8aoqoKZxvusSZNilLE5qrS22O1E+JZGq8tPbjutW5AP0hQFLg6/3DT3bfPN/DjFF1TeX2pQprlvLsqPVNmyzYXZ71CHy9Y64boxaT5qPXT0iVFeRynvLxw+pTkrh/THkf89odbvHu/j6LkzJZtzrdK/JmfvnAiA/6nBSEE/8VXb/JXv3sfRVVwTelx9gffWOD/+FMXH7vJXLZ0LsyU2B2GrFRd5qsOMyWLtV5IkGScb3mMokSyVXSNfpDw2mKVex0fP04RQpDlOfe6AZqiULJ1SpbGaten7yfT/TIv0jDzHCxDpemZ6JqUED4uOuOYzjhmtetzvxMgiuFAd5zQGXewDI2zDZdW2cQyJNPGNjT8KKNVslis2nTGMZoqsE2N11cq2LrKuVYZTVXYHSXkSEnrQQ+lk+J+Z8z9biATfvKcu+2APBfMVGwaJYvff7XFTNUijDO++NIMYZyTZBqb/UgybBVoD2Nu74xpFh6Jpq4+kXQmKoY/N7dHpLng0kyZWsmUh1dHNnrSPKdkaywrFnNVe8rA9CwdVVXY6IWoqbRHuLE94nzTncqyAFbq8oDuWTpacZC93/HZHkaca3oMw5SyLRkst3Z85qry6+4VRtCDMKXuykFhnOUFu10y2UdFglkviLEMlVbJ4l7Hp+bIqbFnqTimRZ6LKTNkAseQzbSSpTNTsam5Jve6YzxTMgWPWqsrtsErC5VT85kaRSl3dmWSc90zCOKU7WGA4Sv0xjGjMMHQVF5drrFQd8gFfOHyLK71/ORSd3ZHfOPGLh9s9NkYhDRcHVCYK5nM1xw+d6G57z4fB7omvY2ahbx8rRfQ8RN2hxFhIhnst3fHCCFYabgYmvQ1e2+tx1o3YK5qs1CVXrBxmrE9CHEtjfOtErYhm72fWqlPn0NbV/fJRid1/LurfXp+wq2dEVfnK8xXJHOydiBAwdJV4kxKQV9dlAz5hmui68pUotwbx/T8mLVeQJYLLs+X+NRKjSDJWCo8mNrjiHH8oHkjG+URrbL50Drxfkfuv5ah8sVLLdZ7hT1E0cnaHUrfx8tzHmkuG2iG6klW02yJvh8TJNLcea5iy+F3lJHkcgClKgK3eLe1Aw1Yx9BY62ZUHGNqLyDtBuS1Grps6E+at+6elMhJHXaaTd29eP9+h3/jb7xPexyjA3NVmz/+1jJ/8u2zT+Xn7cWVhSr/2h+8yl/8ezdoDwPeX+3zT/y33+Ff+4Mv81OX5576z9+Lmmfx+YvNQoKZEWU5H28NCeOMMElpuNIvSVEFH20M+HhzyHzV4eXFyvQ5lKnRkqBwlDXNaePyfIWfe3mWD9YHnGt6xfUmDKOUOJEec7YlmYTbg1HBanVPNUlQU2UDue4a7F36bUPjymyZux2fmzsjmp6Fqspz8Z3dMbujiIszHlfmK/z8y/O45g5zVfuQFO8gbu1I2xinYGRPr0NR2BlFjMIMW9ckg8vQyPLs0PewDZVPn6kRxAk3tsfc2R3RHsV8uD7kF19d4LWlKv/rB5uEccL373W5sT3kpy7NPLcm5GnicavGXzrVqzhFDIKE9V5Ez4/JU5nW8uZKjapjMlu2ma/YuKbGejfglcUqu6OYUZROvWQmPii2ocqmxSDkh/f78kCnqYc8M/q+1MBXHePY0/5+kPCNG7vsjCKWag7LdZezTZeaa1L3LHZHEb/z8TZ+lPHzr2j8xPkGmgJfv7HLKMqwDJWZksWt3VFRuCo0PItxJNO9bENjvrr/4cxyafDb8xNaZWlArCBZNmeb3hOZGwOs9wPyHNYTaXCc5XJq/P56nxvbI360NuBz5+osVR0643g6Ed4ahNLU3TH57PkmC8dgrKSZnBx9+3YHz9RwTOkNslxzqLoGF2dLKCh4lsZy3WWzH/CVazvoqspbZ6pESc5C1cExpSF7mguiJCfL5fMzW5ZskvudAD/OeXO5SpLLf9/ohTRc81BhOwwTwiSn4ZmnZlb6t364QZjk/PETmJn/odcX+b/9zQ/4a++sPpfG1Ldv7fIv/ur79HzZLPrUcpV/64+8zkLt6RhmDgI5wR9HGVku8OOUu22fWztjHF2j6e75PBSFt8/VMHWVtV7IKEy5tjvCc3SWai73Oz7r/YBRlLJYdUhS8cjG1EnixSdhA4MwIclyrm+NGEWJPESX5UE0y3PaUcJSzeFTK3XeW++T53B312ep5rBSd9noh9zcGaEClcKwfximj2yubA1CBkGCbcgU0lbJpB8kXJjxUBUpKZkwj7M9v8ujfqtmyeJnrs6hAJahs94LuLY1ZBAkUmKFx5mGvKeOqfHh5pB73YC3zzUOJan99kfbfOeO9Ku6fYpSPiEE768P+MaNXb53t8OP1vskaU7VNviF1+f4x7948ZnFKD8K4yjlr373Lv/p794ijCXj8qdfmuFf/eVXHul58EkIk5wb22M5SVMUHEsjTnPSPJ8+j9c2h6SZLPRrjsFri9Wp1OleJ+Cde90pi+58q8RizaEzTvjmTSkxXmm4fPZ8o4hflz9XPZAm9LhY78l38Vu32riGZB45xTDmdz7cwbV0btUc/vCnFlkolrphmEz36us7I+JUoKsq8xWH+YrFz7w0i21oXN8akeWCjzaGdEYJsxWL2bL12A3A+92A79zucK8zpjeOUVSFpmdxdaFCEGd8+06Ps42STHStutzYluHEuRAs1z2SXODoGp4lJVxXmt4TTT/9OOUH93vSQywXnGu6VFyd15Yl22W163N7d8RGP6BimTTLFjMVhZ1hxLWtAaoimwN112SjFxBnOZamkeUy5WlS/Jq6um+NzHJ58HWiFFNXpkOqlYZLw7Om8qBBmBCnObtDySQLk5xzTW9qcn95rsTmIGK1K31Jbu2MGEUZCNkMu9+VB+E4zfBsDVvXWddDLhUeU2VbnxrKu6ZGq+GyVHfo+jFl++GT5dOcOIfFhB0ko2WuYvHBxoCtYYyuhGwNQ+qeRcnS+fIrC5xruc8speoghBCsdgL+o9/8mPY4YRTGqKpKJqSU+O1zTa4slHj7bPPE39vQVJbr0kftXtvn480BuyPZ1FmpO7y/nnGm6WLpGt1xzGzFZmsQ8v37PcZhBijTvWgUZbyyUGEQppxtumwNwmL/M1iuuwzChPfXB0Wt7k0lNYoilRA11+Ttcw0uzZa4MFs6MuggywVdP6Yzlsb0yw2X3XFEb5yQiZwf3u8TJim7o4gokWvjMMymqXgTbA8i1roBQZLx9rm69Mwq5HB7m7t7EabygBolOWdbHlfmpKemoUjZsqmrRGnOta0RhqqSZCmbgxBNlaEyH24MudMes1Bz+MKlFuOC+WXrOrah8vFmzM7GsGjqqVObDVWRNgQTFtUkLGauIpv7b6xUp166i9XDvkATBslpy2CFEHz1+hb/1t/6gM1+hKVrXJ71+Ld/5Y1nmp77868u8sZynX/lV9/l3dU+9zoB/8pfe49//Q9lfPmVhWfKVHn7XJPPnG3w1es73N7xudv2MTS55+VIO5tRmPLfffMuaS54fakmGz2WTi7Eg9TofvhMGlMlS+ePfHqZl+YH/N6tXe63fTaGIQ1HRyhyj2h6hmSDTdmVOUcE2z02/DhjrRfwN9/d4A+8tkC5qKuyXPD91R732wE1V0dVkcO6MGVrELLalXvfYs1hoWbzcy/P4ZlSjvwwCCGmZ4KD1lGZEMxXHPKytMiwDZUrc2WC5HBjSlEUXlmscmGmxLdvd/idj7Z4d7WPpiiFPUHA9+/2uN0Zc7buslhzqTkmny4IAD/O7KnHakwJIe4qilIHVvZ+DyHEO6d1YY+Liq1Td3XaY+kn8dpKDVOThp2XZ0vcL6jAmga3dkasdSW9th/EfGqlzno/mMbNXi5o5IYmD29HeQdtDsIi7S+iWbKO1ZRY6wbc3BmzM4yougbnWrIplecyGajvy8Od7qj0injp99f7/PB+n4ojU0FmSxYlU2McZ2RCsDMKURSBY2pHbrZzRSqHoanTQ2zTM4lTSZU+mDR4XEz8RPw4xdZlLHW3YH11/IjtQYAfyyjOJBO0SpJRNQxSukHMa/NV2kFMLgThMY2Pkyzn/bU+fpRyr51wdb7CpdkSu6OYkq2zUHH2UcN3RzLWWkqYLF5aqHCv7TMIUrJMsFizsQ0NXVOYnZhBxnKhGIUpaS79AFa7Y+re4abUXi8E6V3w5IeyLBf851+9xauLFT59INL9Uai6Br/42jx/7Xur/HNfvkztCQ62J8X1zQH/xt94j0EoZRmuqfHP/v4rT60pBVKusjOKqNgGWmF2LwTSR6nwstgdxlQdk0wIrm0NeWO5imOorHYjtoYBnqEVKT2Cvp+iq1KCelTk616cJF58vmBv1F1pWJ7lAsfQpaFowRby45S5is3NnaGUIjoGd3bHrPfH0ySgMM4ZhRmGBqaeUbL1R07Y0yIBDCQNfOL54lk6W4MQd0/qEUiWYWcs2YSPYpFsDgK+8tEOaSb40tWZafKmbao0yw8mcedacsKa5XIiOwyTQ42pfhDRHkdyHRt8UrDr8fHBxoBw8xYtAAEAAElEQVS/+YNVPtoYcrczIs9ybF0y6/7kT5x5IZpSWZbzV797j//u9+7hR6n00KnY/FNfuvRETSmQBdL2KJSsg7KNrqoEScYwTNgt3hmBPATFWc5CzeZMsXa5UwafYBAkRaKTzkLF5rt3O2wNIjkI0VXWuj6vLFYL9lU6TXZ6XEyYUlkuuLUzku9lFjNXtViuOeyOYnJFEKc57YLerijSx+z2zpg77bH0fazYrPUChlHGa4tVmmVzuh7OV23ao4iqYzCKUjbuSx/HS7OlE7OnwkT6z7RHIWGc4Sc5rqmRpjkfbPTRFHWa1GnoD1jN3XFSvL86ry7Kg58fp8yW7ScqKuV9G3Nze8TNnRGOrvHaUoXzzRLjOGW7eMfqrskokhNr2ayULJB3V/soKJxrudRdkxz577omGSP3O2OyXBwZAjLxFLsw4+079CxUHXaG0TSlbK5ik+U5jqnTLBmUTI1v327T8xMWajZl2yDLk8JnKmQYJCSZYBCkvLaUI4RsVqHIhFMp4U9YKlJR654pk3RhWtvYhrbPC9SPUzb70tD7aUiIG65Jz4/5cGPI7V2IMllLDvwUQU6ag4qCqqqsNA+bsT9LfOdOh199Z5WPt0YApGlOo6Qx41l88VKTN1bqx0qvexSGYSoZOJrKze0hYSp92F6arxAkcqg6YdSamoqta8S6fJcm72SS5mwPIy7MeFQdg/sdySgaBCnU4db2iNu7Po6hTb0UJ3h5vkzfT+j6Ect156Hpmz0/5tu3umiK9Ci9OFvi5vaIcZQyTjJWajpNzyITgponm/qzFWkpMQnAWao7VGyd67GU8wwC2TyrF+tPEB/dmLINjbu70otNURTeXKlxY2tEP0xIcyENr7OMmmMwCmUKdGccs1x3yHLB7iji2taInWHI5843mClbDMKEmZJFXFgJqKr0qqzYBrujiI1eiG2oLFZsbhaNfduQ93umbB16z49amxaqNltKOE1nPS383q02f/7XP5ZMMUWycf/xL55/pk2pCeaqDv/nn7vMP/dXvk+YZPSCmP/nb17D1DR+9uVny5ySZ40cTZOBGT0/kg1ax6DhmVIOrioM/IT1vs/tHZ/dUcy5woQ/iKUk/+bOiMWqc+qf20FoqsK5lseP1rooqhzCdv0YTdNoeSZpCt+90wUEL81VTn0tTLKc7VFInBkke4avUZqhoqCpkGSCCzOyWe0YGp6l4dm6lBTngm/f7nBta8RcxeLnX5l7qJpAURTOtzwGweFayNI15qsP9nnlGEM829C4Ml/ifkd6yAVJyr22T2cUMYpTDFVlreczW7EIk4xv3NylO054ebH8SAuUFxmP1ZhSFOXfBv5R4CYPBusC+LnTuazHR90zMTWp1R+FiTR4HYfsjCLONF3+wKtz+LE0PBv4CRv9AEPTpsyLg5it2FyZy9CLqc9BlGydTiELOy5TZhQmaCos1x0uzpSmU7KuH9PzE5qeyYUZFxSFN89UMXUNXdWktAz4yQtNFqo2X78hH0DP1Kg6BkIo9PzkyA1XU5VDxZeuqU/cRNkaRPhRhqVLX4qqY3CvI5NI+n7K68s1xrfaVB2D8zMew8jmficgzQRLNZfLC2WWExnd7R1zccyFXNjKtk6GnI6eb5V4aV5OfMUBrsfZpssP7/coWfL+lSwdy1CnJuk112R+T8Ga54LLc2XaIylHMDRplj5bsQrzyqOLitPE331vg9u7Y/7Sn3rrxFP8f+ZLF/lbP1znv/zabf6FX3jpKV3hfuwOI/7SV26SZgJLU5mtm/zFP/UZLs0ebRZ/Wqh75j62kPR1yKkpBhXHQGn7VF2T+4U0aaZssTOMaXkmdzUFVdG4veszX3WwDQU/lpPYCzOlT/yMpdyFY6X6tErWPglosyQbVAtVm7ttv4hnV1jt+sxXbASSjVBzdVAU7rXHzFZMqkWqx1zF5tXFSpGe9+hghsmheC9sQ5syCvbC1NVjsSc3euG04XWn7fOplRrnW55M4txzgDE0lU+v1Kh7BsMgLZr4+9+fq/NVmp5JkuenxjacxG3f7/rc6YzxTIOlmsFnzzf4x37qwhM3fU4L37rT4X+7vkMiBBXHZKlm8xf/wU+xWH9y3wyjkLScb3oMo5SKraPANOHSMzX6Qcz17SHLNQfPesAkaZUszrc8HF1DVWVT8bWlKn6SkWTQLBmM42TqiRQmMjnmNKTu670AISAoZDOuodIomby8UKbhSV+oJBPc6/icbboyVbPtMwiSoqEFZVvDNDReX67hmFIa1tpzwJopW7RKJmu9gDu7klWWFv6HVedkjan31vq0RxFuESQwCFOSTFB1dWbLDje2RzI1U2XKLpIF6v71RR4AT4cx0wtihkHCTMlmueHw8nwFQ5PSPJCBIMsNORCTTAyNharN7d0RJdsAIW0NLrQ8uuOYgR8xV7Gn97A9jo5sTBna0evHwWdjcuBdqkes9wK2hjLYRTKyctIirWm54dBwpV/dasfnlcUKNdfENFSWm65kdTkmUZrROJBE+knso82+TDseR1K+dNp7uqoqeJZOnOSs9QJyIX35PEdnvixTgy/OlPjy1dlPHII8TWwPQ373o21WOwFBnHKh5fLaQoVa2cY1dD5/aYbluvPEnpW2qcrER1VhoeawPYhkUJCt88pClYpt0B7LZstM2eKnr8wwjtIpiz5MZB0+V7Xx44z31wf4cULZNpmryM9aVRUsQ0VVwTtQByeFakAeeh/+u2wOImbK5nTN2OrLoUkuBMs1KVPXNXXqUzupt3eG0ZSJ6pjSJqLmyiTJ2bJJ1S0GwYpyaDgzQZRk01rUNWRd3yiZzBTPx0zFYhSmLNcdKraBrqksVG2anqwvlKKpZOk6QZxxZo8aIkpkY9wxVN4+W6fumbK5i2xytIN4OqwZBCkz5eO/Dw+rJ54EfT/mr3zrLqMwxdQ1VioW//offJnPXZw91Z9zErx1tsF//Kfe4t/8mz+SbLgo43/+3n3eXKlTf8bm00s1mUCZC7i9O5qmk1+aK1M2NW7u+LQ82ejpB3KvHscZF1ol+mHMaifEjzK2BiHnWk/fL6tk6YVRuzTQDyLpwyiAnVEgQ00qNiVbP7U6cAJdVahaOst1dxrQAZKtngvBxdkSSzVnOkyRTeE6VWeMZUhJ/fXtIYMgJYhl6nDpEQMst5CMH4XH2ednSzafOlNnpeHyu9d2KNuy1siEXHeWazYrDY9cCD7aHBImOZapcrY4v/644XGryD8JXBRCxKd5MacBRVF4faXKva5Pkgk+f6GBZMcKrm2NC+aOnBwYhsrLC1WiNJsWjItVB0uXvlSTQuXKvDxciyNOoEs16dlx3CQ2aXIpm1yOqXG5oOoqijxAKgrYps7PvTw/fUmEECzUbDxbY74ifSCEEMS5NJYVRYwzKE88rT4pPEsrNg4pfZzE30apNGnujiO+/PI8Tc9ksepgGBp3dkfYpkwvmC3bhZwoP1GXfKbs0PRMPFtnvmpRdQ1u744ZhSn9IMUxtem0rGwb/NSlFsMwnbJLZsoWm3l4pMmzqipcmSvDnqmMZ2qMQg1DVw696JaucbYwnG945pHPyUkQxBn/3q99xJW5Er/02snTP67OV/jl1+f5r79+hz/9U+efuodOnktmQMWWEc/LdZd/8w+/wsXn0K3XNZUzTdlsFUJQdQyiNOP3vzzL7d0x1zZHBEmKYWiAiq0rVBydN5Zr5ELw2lIF8yGJGgdhGxpX5yuP9XnvNR6dq1hsDSJemq/w6lKV37vRph8k1ByDnWGMrskUv6vz8lD20nzl2IcoGd3rkZwyxf5M06VVtsjznDOF995rS1WUIgVpL3Rd5XyrxIcbA8ZRxmrX3zfJeXO5yk+crxMlOYunwDYE2ZDzilSzizMlHEPnyy/P8YfeXHxuaVdHYa0zpu6a1JyE1y9V+BNvL59KUwpkMfaZsw2Z4OhKqbncf6Tfgqmr6JrGlbkyWS72sWZNXVLMzzW9QrqlUrINxoXx+ThKeHm+QpqDoohTNb31LL1gqkqvlMW6y4WWy4WZB55nbyxXuTJXxtLVwhBZmiWbukomMhaqDi/NH4503gtFUViuuzQ9i9WuL8MwHqOxNgxTFBSqjsUffmOerUFEmGSM4pRRmE6btvNV+6H+hKeJMMmwNI3FmouhKVyak032yaE9SnIqxTp9EGW7JhvuijSR1lWVQZRgGbI2Kdv61Pz+NNDzYxQUsjyn7pmUbZ0LrRL3ujJZ0Y9TXFPn6nyFl+bK5EJQsg3mKha6Kg8Mi1WbbuGFc5LJv2vqjKPsyD39tFB1DFRNNmUMReNME0qWwdWFCp8916DqGs+1KTUKE7b6Eaap4tk6n1qp8ZMXm7x1poGiKMxX7VOT+1i6xtX5MvMVi7Ktc68t/dTKRd3Q8WN2hhN27+GhqRwQKpBKo35V0XBN6dk4MR1eqUtJYNUxMA6s85KdLL1sao9IoS5ZOp9eqZEJeHmhwr2Oj6Gq0mrDNbF07UiG3aR+n/zv7UE4fd9LtiGT7D6heVP3TDb7IeWCSfnSfAXP0vHjDEtXuTxXomzpWLrGD1d7GJrK7ijizZUaqqrw1koNBck4O2Qor8D5ZonzzdL03syULdI8xCnCYMbRWAYZOM/PfH+Cm9tDyo5BzbW4OGPyz375Mm8ckf77rPHGSp3/+6+8wf/jN6+xM4yoOSY3dgb8ROmTA4pOC6qqcGGmxDBKsHWNe50xy3XJcH1tqUKaCX7ptTm2h9HUZ9cxNeqFDUnZMjD0iCQ9OnX5aaHh2fyxt1bYGYb84H6XH9zv0/BMKpaGoqroOg9t2j4JXFPn02cbvLZUncrwRlE6lYfWXPOQuqRR7EcycV2GKFzfHLFYt3Ee0nR6WlBVmWreKploCmwMYpolg8uzJYZRSnccc65V4v/H3p9HSbbld33oZ5/5xBwZOWfWPN1bd+rb97Z6VEvdLaEBgRqBHgI98MNgGQxe+MF6fmDAIMCw8Htr2cY2BvHwhAEZZDQiEAjUrW6pu9XD7b7zvTVXVs4Zc8SZz9nvjx0RlVmZWZVZlVOL+q51162KrIzYcc4+e//27/f9fb95Sx8UQRIKlvFtmZSCx09MvQlUgLWDG8rBYark8j1Xp2j0Q86M57m+2mO5o5IQeUtNwlMVlzDLKNkmycBVA9QE2KkSeKfepzNwtHtQd2Y/B51eENP2Y2YH2lJJKnlzsUPRMUgGekfzVQfX1OkEMYWBUOeDm7QQgitTRZZaPnOV3BYnkqPEZNFRQYCmjartedtQiR1URvrd5Q7vrqje91O1HNNFd0C1dh8raTIUhZss2iSZHFV5huLvmqZE5jZjmDiyB/eq5JiPDLiyTNKLlEBfmKQIIYkSpSlgGxpiU7Ws6JhYhqoE7EVz6GH4O5+7zmLL56d/4iOPXTn405+5zL98c4W//4Wb/Off/8wTjedh+OqtOl++uYGmabx8qsTzcyW+9+oU1fzhHsDCJGW9G5K3jIfOoWrexDaUE9xzg3ajei9kueUzXjCxDIPvOFfFMrSRbbupK7OEvQiK6wO3yd2QZZLVbjCwOd+uYZMORFqHjkIA3/f8NBu9kPVuwFLbo+i6XJosMJa3idOMm+tKh+n8RH5PCaqhde9BYixnMVW06YQRmoDbG8rtb7ayc0uKgJFt94MOoEXX4sc+dIbFtse58SdLyvTCBA341bdXWGr5nK7meOVMjSvTRV6crxx4Je5xsdDo8ctvrFLvBlyeLvDdVyb4nmdnRvvQQWGzGQWow93lqQJJJrENjSST6JrLXNXdFhCauoYuBJ0gpuOnZJmk5Cr3K8fU6AYJX7/TIJUZrmkw95D2mP3gbC1HmGSsdQJkpnSYvDjjl99YppIz+cCpMhPF++0H1byldCLLNi+Vy+oAu4+AbFggelyM5U0mihZlx6CcM3l/rce11R7PzhT59DOTaOJgTTEeBSklvVAxqU/VclTzFm8vd8nbOqerLtfWenT8BC+fjBKUwyKOoWtcmd7Kcv3g6QqLTZ+ZQcxykBjL2ywnPpWcvSXGMdoaUZZRK9jMlFXxSmlRKVH0a6s9XEsnzSS/+s4aY3lzpK2xV0yXHSo5lTA4rHWh4yktra6fcHrM5fR4DsvQuDBRfGwH2INAmkm+fHODtxaVfuoHTlWYr+aZrzg8N1c5tMOqpgmqeQsvTihaBu+tdukFirEWRCl+lOJa+o4i2romuDRZJE5V6/G9ho9jauQ27YEPMqgf/P29tLbYhuCNxTa2oTFXdbk4WaDlRax3VR1+GBfEaYYfp6MYvbAp7rUMjTRvE8Q+OUsfxZ2PwoPMamD0zKkYwiFJlSNeztIp2Ab9SB1MQbVgvzBXZq7i0g0SFho+k0WbyZIzStj1wmQkRF90zC0t7c/OHC7DfS9YqPf4l2+u4MUZz0yXuDpT4jPPTjJdPjxJiP3imdkK/9XveYFffXuVVMJv3qjz2kKL7706xbnxoynIupY+2gOfmSyiC4GlC66tdlls+USJ5PnZMpeni9vixKGLeJJlW9pdjwLDZ7Sat5it5AZtkTF36n3ytj4w9jrY9afoGHzf89O8NHdfd9fQBEKojgdzl/V/pR3Q9lUrbM5UshnnJwrHEkeq++0yUVAayCD5568tkmWSuYpLmKaUdYNnZ8sYQnDmCFhwh4XHvft/E3hNCPEmEA5flFL+7gMZ1RMijFNeu9siy6AXZEyXHSxDuXeoYMTi/dUOaQZ5O94mWvgglM6GavVrefG+nLo2Y60b8P5qj4YXMuba5CxlcQ2M9F50IeiHKRu9HnEiKbnGrlWW+YHt63HjYQubY+p4UUI/TFjtxEofx4Bafrtt/F6xG214SG92LG1bUmHISNsP7jY8Gv2IxZbHTNllo6faF26u90bf+cz4fYvTXpA8sfjjrY0+f+/zN/nsB2b5yPn9C40OcWW6yA+9OKtYU584dyiV+ruNPv/0qwt0w5TpisP3PDPFxanikSzaSwPx8mY/JmfrO87B5XZAvRehaXB5qoipa4piO2aw3o3I2ya2qY/mStuLkZKRTft+W3p2wkY/ZGMQ0Jq6ti1pc3O9p5yJLH20DlmGxmzFZa0bkLctkjQb6dfV+/FImLQbJMfmwHFjvce3FlqqVdBsMVdRz2Nj4Mz5IIZtK/5Ac2Mz+mFCP0qpuPb+bMgfwEYvZKnp895qh6/ebmIZOmdrrhK7dHZ24joOrHUC/vFXFri14TFeMHl1rMCnn91ds+CgYejaSOz+URT+jV7IWifkTr3PeEElD4ZaTDfWeyPh6q/cbPDSqQqna7knrniKgSB/20/QNIGlaTT7KnC9uQ4dL+F7n58arbsF2ziWA1WYpAgJnSChEyasdUIMXafei5gpu2SApetHPu8WW4N1TwjCJKPeUyFaP0xpBTGgGHM31nqACs4vTRV23cdnK0pY9TDwYOJ0iPMTebwwJW/rW56LoXD93YZHEKUgMtY68cD5zX5kLPcgDnv9/OrtBu+vdllqBVRyBqdrOZ6dLR+J6PDD8Oa9Fl98v650uSoOnSDl0mRRMfMPmUFxfa3Hm4sdljs+RdugYJu8ca/FhYkimqbuvRL5TrfNSV0T6JpiuV+dPZxr+Fu3mtxc95BCMjeWY67iMl12Kbkm6aAQKqXk7eU2MlOOg8N4dHNMW86Z21lLB4Ab68ol3DE1So5JNWfy9nKHkm2y1g85M5bDi9ORVm59ICgPjNjkJxX3Wn3+yW8tcKvuMTFo3/6uy5Mn0mlssuTyI6+c4jeur3Njrce7Kz0avYgf+/BpztYOhvW8V+i6Rt5SJjRLrYCGF1EZdAvsxmYePkvHhYmiYh69u9ThXtPn+lofL0zJWXXmqns3fNoLhBCM5WzWehGVQVLWMXUuTBSIs2zH9TjNJC1PPUNLbZ83ltpsdEO6Qcx8NXdsc1LTBOWcxW/eWKftxYM8gcm4hNfvtTlTy5OzjSeKpY8bjzvy/w34W8AbwN4Uq48Q6z3loDFs2yq7Brc2euQtA03AtdUu19f7mJrGufFHL9S6JhgrWLS9mPEn6COOU+V+0fYS+mGKbWkYumIRnBsv4A+YOWXXHIkqR3sUBH8Q3SBmbSA2epRU8bVOwJ16n3LO5MxYntcXW8oKWJl9U80rzRzb1A6EDjkUjE8zyWzFPdBAYL0b0uxHeJESDE6zjIWGj21oTBZVYi3edH9KrknTi7Y5MewVUkr+8i+8hW1o/Bc/+OwTj/8/+55L/IvXl/ifPneDv/RDV5/4/Tbjq7c2+Ddvr9ILVRtL3tQ5O54/kqRUox+x0Q3RNLW5PMiOG2L47GSZ2mSG+8hK2+eL19foeAlXZ0sjbZJawaIfJZi69sSLepikrHVC4vT+/Nip3TccjPHB57zeC/nG7Sa3G33lpDcYY9k1aQ82y8OgPO8VHT/GixOiVFLNWZi6YKMfMlXavVpoGTszR9p+zJtLLUxNY6Kw/+/U7Ec0PCXc/NXbTRq9ULkGARcnC4dyOHgcJGnG6wtNfv36BhvdAAYt3M/NlY8kKbXc9vGjdOBIuregytSVTlWaga4LosF8FkJgaII0hYYXMFt1afTDPbu7Dp2v3MFD2ehH6Np97ZU4yUhSlVRxTV25DhkaplTOm/WBePsQQZyy1PJxBkzcw8bQ4EMgWe8GtPoqEWRqgqJtsNoNmSzZR56UkoPrE6cZAlhqeeiaYsZdnipQy9t0/GTEXAyTDCmVm9bjLHnDZ6+W394KsRuiJKPZjx7KdDU0QTeMaXgRM2WHNJP4cUo1Z1GwDTp+PFg75aDF0ESIg21Xfhx4UcJbix1MQ+NczWWp7VPvhliaYvGNF4/Gon03NPsRHT/m7eUOaz0fP8o4XcsxN9A1etx4cz/ohyq2NYQYJHp0ioPn3tAFyy2flh9jGzqnx3IPXb+llNxr+iSZ3CZ2/rgouQY5S6cfxpQG8hTAFjbocjvg1rqHLgSO+aAbX0CcSaaK9mhdHwqjZ1IyV3Ufu8VGSkmcKvOURj9iomjzznJXMSikQA5iHUvXqObNkWYtKCfMthdTsA1afoypC+YqT64ddhCQUvKNOw1+9e01Wl6odDuF4PnZ8olMSg3hmDrPzZX5jesbIFUs80++fJdPXpnko+drR7b+W4aGbepKdzeTND0llv/+ahfLUCzYG2s9oiTj7Hj+0OU99oqCbQyKrmAP2lKXWgEtT+2v/TDh2ZkiJffJxpukGd+612Isp9rfhnPetXRcdp5fSp9VY6UdcGYshxxcV8vQlPHLMc/LnGVgmzqOKchbBu+vdOmGMfNVd8s63vaV2U3FVZp0HT+mVrAOhN1+WHjckW1IKf/2gY7kgOBHqlJwppYjk5JXzlTpBjHTJZeOH/POssrOuqaBbe0saD7ESjug6UWMF2zmKi5zTxjwThVtlls+lbwSWu1HCTpKWNvQBRcf0BbpBsmI6dL2YpbaPgXb2JNg+Uo7IIgzvDBlLGcd6sEnSTNu1z38KGWh2We9E1ErWARRyr1GgGUo15yPXazhR8quPG8bj6Xn8SDafjzKatf74RbXnSdBOLDtFZrA1AUr7YBeGHNxqshYzsY1dUoDB4whTF17IheEX3lrhV9/f53/8oeuHohL0IWJAj/ywXn+jy/f4T/6zvN7PjQ+Cu+tdPjffvPOQA9N53ueneLTVyaxj2ChDuKUxaY/aqW8OFnYdW7PVBz0TrhNR+zNxTaNXgxCBWbDe+gYOo6hEySpoug/wfxcbgWj5PJMxSG3i1vmmVqOlhdvCxRurPVYbPnoQqPiWIwN1gHbUFoQy+2A1U5wIA6Qj4Oyq2y3QXBlusS9gSbMctvf09xdbvu0vJiJos1q2yeMMnwygnj/h8vFlhI5//KNOlGckrMNPna+xitnx554zT4oZJnkSzfr/PLry3SCmMmCzctnqvzg8zOjCt5h4uZ6jzcXlZ6DJsSexU6reQvT0JgqK5HVkmOy1gnI2wZhIvngmSqr3QABpNnOydedsNj0afsxQkCyyc3q7HhuJBpczpm0fIOxvE01Z/LcbIkvXt+gmrPoBslImxEU43goZF12zT2xPrpBzGLLxzXVAXg/BzRvYO+83guJY+VYV3ZMdF1gWzqna4pJ2wuTI61cCiGQKCZSnEnGCzY31z1cUyNO5aCVU+1RcZqx2gmwjftuaAsNj16YMDNglj8KQ32vIPb3nJhKM5VMyNvGrqxppZuh2KHr3QApVSDuRynnJvJs9EPqvZAgzsiZOmfHc1yYOF4HoiyTfOHaOu8ud3FMjXsNl1rB4fIMnBnL8YFTlcdm2x8E6r2QhYbHjY0+XpQylrPRC4KZsotEMlawmNxBxuKg8cxMkcWWT5JlXKwVeH6uzFjOoh8m3K57rHWVS+vZWoGWHxEmKUXH3DGZ3vGTUfy30YsOZL3/6IVxJKqwYeoayUCTdjO6QUKcprSjFMiz0Qup5S06QcLqwBREE4zi0ZYXjYTRG/3oseeBEILTtRxvLbYxdGV2NFdxSaVNEGecHlft1NWcRU0TzA+6W6WU3FzrsdQOaHghz0yVsA0Vwx43ew/gnZUO/+jLdwmTjKKr833PTfGpZyaP1FX6cTFdcvnTn7nMF65t8NXbDRZbPv/nV+8CGR+/eDRC7afHclRyJt0gh6ELvvsZjc+9t0aSSW6ue+ia4P2VHp0goelFzFaVlvKZsdyxM8lP13J8xpxmomBzc6PPZNHmt27VuVv36UcJS+2AH3px5on0ktJMGbS0PCXL48cZ1Zz10DNRkmSstJUpR5RJPnZhnLGCNdDnOn7tpmemS0pCRtdo+TFh0kOiTGOqeUWkKedMlloqwff2oG17tpLDj9NRHHAS8bgR09eFEH8T+AW2tvJ940BG9QTQB32jtYJyfXEtnSTLlCihAC9MkSjxxAuTZUq7sA5UJcZjpR2w0vb5rsuTT/wACyGYKjkYusZ6J6ScM1hph2RRwlLL37JZPSjGtt4LSVJFLZwspWhC0PZjcqZOJ0gwdLGlXStnGwRxhGMenn7CEN0gwY9SWl7I6wstkkzZuuZsk2reJIg1npstUXYtDihvhJQqe10fBDEV92AzwLpQjjqOqdPyImVRnkm8MOHiRIH56v4OMo+CFyX81V98m2emi/zhj545sPf905+5xM+9tsj/+GvX+Wufff6J3+9Ovc+/fmNZVebjjA+fK/ODL8wcWdXN0ASaBlmmWIwPq5Aqp8itiZs4zUjTDKEJcqbOdOX+M+fFKR1fHVZX2j6fuDjx2And4YFL0xhVKnbCgxoPoDbRMFFrlqPrnHmA1bnRC1lp+3T8hKKjU8kd/mHiQcxVXSTgmopd1uzH1HsRXphyfiLe9p02Q0o5am9c74ZUciaZVGvyTtoiuyFJM9a7IWsdf7DuSHRNMF12+fD52hanzeNEkmZ8406Dr99p4scJApituvzul+aUA9ohY9iKLlAHmcvT+0sgFzbRwm+s97i+2iVJ4cPnq3SChFNGjmg4XwcJ4HRwL/Y1TilZaQWs6yFl1+RsTWmohYk6GK73IgqOWpNtQ9+y5uQsZclu6GLPei71XkScSOIkwY/TPe0faSa5ud4jyTIKts69ZkaSgSFUVVrXBA7KHXaiIPc8loOEY+jMVFy0wR721lIHXTNZ74Y8O3P/35kPOA2HSbrpkB9SyVlK0ylMKFi6EhjXtS1ud0Oh+gcd0B4F1Uai7l8/VC5HQ2Heei+kGyZkMlPmD4ag7cWc3rSWPz9b5vV7LfwopVawGT9GAfEh+lFCGGVcW+lSdg0mig5lx6DkFPjI+bEnrvo/KTIp+eZCi26QYOmCcxM5+kFChkQTgtmycyj7eJxmtD3VbtkPVbF1qugovU4vQWYSQ9co5yyczug4QdEx6IcJHT9hvRdydaa0bXyOpQ3iAfbs6rwTkkzyzlKH6bJNNW9zfrwwKiztVCpxTZ2ibeGaGavdkEGemrxljHRrNrdQ5QavA/uWlHgQJcdkuuzSGyTnxwomUaKYVLc3PGxTQxdwaux+8UEIQZRKwjjD0ZVhkVtShbjjRJZJ3lvp8sVr6wRpRpxmnBkr8wMvzBw7I2U/KOcsfsdz03SCmF9/P0DIjG/ebWHpBi+eKh+6jpOmiW1nxufnytzaUIZftqHT7EcsdXwa/YCiYxKbihzxsFjtKKCSJUqGRdfqAERJymLTY7UbMFW06QZPbrgRRClV11SxkFB79FRpu+7rEGu9kI2eYu8VXZPLUwW0QXxxEKSKJ8WwFRHA7gQsNj3G8kq/uenFdPyEC0Ye29B4c7FH108ouWpNPWqTtP3ica/uy4P/f2TTaxL49F5+WQjxZ4AfkVJ+QgjRBl4b/OhHpJQNIcSPA38SaAB/UErZ2evArIFzRZRkoweu6JhcnioiBNxa77HeDVntRdze8DhVze14aJRS2Vbf3vCoFS3We+ETVbuSTPL2UgchwBtMjOfnythGlzjNHrkIV3ImfpSSs3UsXePGel+xwzyVlFECx9qo+jFXUa51lv5wO/mDQN420DRlG69rGlGSkknJWidQ7iqHoIW11lW6J4vNgJmyTdk1D7S1ydA1Lk4WCJMUU1fVMy9KsQyd91Z7bPQiztTyB+ZO9N//u+sstQP+uz/w8oGy206N5fj9HzrFT3/1Lj/xyfNPxLB5faHJT//WAs1AiQE+M1Pk9748f6RU8KFoY5g8HqNJAHnHpOqaGIZGtqlzwTV16l7E9bUeY3mLG+u9bULAe8VM2aHoqIDgce6nqWuM5WziLMUytC3sEE0I3hy0i7yz3OWjF44+MbXeDXlzsU3e1pX2UM0dMGqMR84HMbDLbvsxlZypWkFtHSfTWOkEex7D3YbHtxbavHanQduPeW6uxGTR4ZOXJ0YMs5OAr91u8s++fg8/SpkqWbxytsanLk+Sd44muNG1oVtrjrHCk7mAbXRD3lvpoQmYH1NsQy9SVtQzZQfH1FnrBqy2Q1xL58JEfsf5MFtxcCzlqmZogpmKw2t3G/z6UhcvSnnlbJXnZsujtrzGQNx3pqw+c+aBSudEUTl97UfIeigEbBvang9oN9Z6vHa3xXovZLxgkbN0qgWL+ZrDpanCYN+LGC9YD2VzHhYa/Yi7jT6NfsRHztU4N56nG1QHDJmH74+WrpGzdbwwpexaZJnkxnpPaXVGyuUHVEA8ZFgNher3k4CzTG1k9hAmqWr1l2p/reRM3l/tsdJWmkynag5xopIOqqgneHOxTdExRgcvXVPrx3HDMXTWegHNICZIMoqOzgdOVbF0bdcC6FFhodHnX7+5wuuLbcbzDh88W+ETF8dZ7QT0QpXcO6x9PEnVPFrp+ARRhmUICo5JzlIu05sZthcm8nibBMWvr3Xxowyxi8GIbehcmSqSSvlEh/9+mPAv31xGCPjYhXGuzpYUy9ne2dlqsmTTC3N0gnhkuiNgpBWZZHJLfOJaOlemiyphdQDJaksXLLU84kxiGgUmizbXVnu8v9qlaBvkLWNLYgrgudkimlDzdK7qUnSMI1+fHsTX7tT5udeWqPcjzo65nBnP89mX5r+tklJDWIbGj74yT87UudPo8+5Klzt1nzv1Pr/v1VNHPp5Lk0WSVNIJYlY7AZkAJCSZWg+en6+MWulPAgqOwXecHyNMUq6tdlnuBrS9mPVuuGcm9q4QUHQNiq5iYnd8dQZ/2Jqna6qjwotS5isuG4OY1zVVzHuS5uhkyeGj58fpBBG/cWODjW7E5akiFycLmLqGoWn0woS8bXBhMn+sTrB7wWNFxlLKTz3uBwohbOClTS+9IaX87k0/N4E/DnwS+L3Afwz8f/bzGbaxXQx5uBmcqeV5c6mDJgRelODFKaVdFufZijtw7NOfmHU0FCxuDVhOpq7R9mOenSkp971HHLLHCza1vDV6kIYW9dqmB8t4YIxH9eBYhsaz0yX6YYKhaay0fdWi0wmVGKngwIOeTKoqnxCgCW2kJ3aQGGriXJwsMl50aPYVHXuh4ZM3jV2FnveL62s9/n9fuMnv/eA8Hzo7dgAj34o/9emL/LOv3ePvfO46f/NHXnzs97nXCtB1QckyeGm+zGc/eOpY3Cl20yraCwxdo+iY1Ao2jqHT9uNR0kfXBBcm8rT6ESCe6LsJIR67EqVrgqJrMFawlF27nxCncuSsN16wOF3LkWUcy/UH1YolJfSClKYXcWYsT8mx0AfuRI/C6VpudN2X2z6lnEkQZVvWs0dBAt0wJgNO1XJcmizyySuTJ8Z5b4jVrnKPEsCHzo7xgy/OHvkYzo7ntyQ3HxfzVZf3cia2oaNrjBg2YZKO9pvOoGXFj9It83YzDF3bEhyVXcWaizOJH2UEcbrF3VS1IKo/79besd/9rpq3HhmcPghdV+zWLJP0goTpioOpCV45Mzb6/Mni4TBP9oK2H+NHyiWxNbgPl6eK9MLkkS07QiiDguE8STPJ8BYMzwVCbF1zhBD7vu76oIg2xGYTW0PTRhpEmiaYLLpkUuIOkmHXVrtIqVq4Zsouz81uZ9EcFzRNUHQs5isuIHANY0eH5+PAYstHCkHOMqjkTc6M5SjnLMo560DWhUdBIvHClExCuxdzplbAtbZLHxi6tiUePz2WH8XHu43R0LXHrrAPkWVSsT41dS7w4/ShLemOqfPsjBp7x0/IpBy14+/2PBykdXvbTzB1HS+KidNstP7W8jblnEFtBy3cvG3y6tmxI7nfe8VGV2nzlR2TF+bK/OCLc8feWvYkMA2dH355jjcXWyy3QnRNsN4LH/2LhwBNU0Kblq5zt+1xtpajH8TMVnJcnCqcyFYuRS4wWWx4jOUsyo5JwTWfPJkroeRYOKbGdNnh9NijCRuTRVsldXRByTG5ttYlyxiYk4UnwnhsM8o5Ey9KsDSdsmOh6yohbhkaBdvk1FiO0wOX3pP+jD3Wei6EmAL+BjArpfwBIcRV4KNSyn+wh1//Yyjx9L86+PuzQogvAL8B/HngMipZlQghfhX4qccZ426IM8mF8QKLbY/ZskvBMghi1Rq3efJrmuDqbInxgk3BMZ7Y1UwTKjk1X3GJ0mzkTmUZ2p7fe/ODdLqWo+3FXJjMD7QjxLGKmWma4Pm5MgXb4PxEnoKtE+QzNI2R+OJBYqroYGgacxXVU19yD++7G7q6R6am0fVjxosmBVff8r2COMXQxL4rUFJK/sovvIVj6vy5H3jmoIcOKJbBkDX1Jz91cd8LaqOv+qyfmSnS8SMcU+cHnp85cQmAvWKqZHOvaWIbGjMPiH/OV3KIswIp4dTY8bWCTRZtxnIWqRy6it6fVyXX4qPna3SDmNNjx2MJO1tx2OiFlHMmE4P1S9f23kYF99ezqaLDy6eqREm6p/Y71ZoWU3ZMPn5+jJyp4ZgGHzxbPTFzUkpJsx9h6BofOjdGP1QHh++6cjSaEzvhIA4jc9Uc33N1kiDOODeeZ7GltMKGCfohUznNYkxDECQppi4e+tlpJsmk5JmpEmGSoUm4MlPcphd4GHoj+7kmbV+58XzsYo3lto+OoOAoZsLmw+hxHfqkBNvQqBVMoiRjLGeSDQpr+0keDceva4Jz43n6YULZLRDEGZahHWjByzZUq3IQpYzllRbmy6cr3BkcTCquuSWIHstb3K73R0Y2Q0fT40bbU+Yon7kyTppmuJbB1bmjd4p8EE0vJJMqXmwNROqfmytvOZQe9ny1DI3nZsuUXaVPpwkNL04YLyiR3ocdOvcTHz8JCo7By6crxKlkuuSQppK2F1F+yJozvG7HYa5Ry5ts9AKqeXVor+Vtyq7FZMnG0MRDxa1PQlKq0Q8RCF49W6XpRVi6xqefmT7xB+a9QAjB83MVPnM1ZLHp8+HzY8RJRmNg+HAQjLm9Yrxgs94NOV1zsXSNsmtQyVnHFjfuFReninzswjiNfshnrk4SJRm9IBm1e+8XedvghfkyUyV7z8xKIbbGs+fGCzR6EYYuqJ1Q7bOxgsVEycbyIy4Pkv6TRXvQRZYyU3EPva30IPC4p/n/FfhfgL8w+Pv7wP8JPDQxNWBDfZeU8n8UQgwTU5eAJvB3gd8F1IFh614bqO7yXj8B/ATA6dOn9zTolhex0PDRNMF3XpoYuLsk3G14CKHEojcHOTnL4NSYznpX9Zo+yQaZpBJNg2rOohclhHHGvabPVNHGi1Nqj9DLeRC2oTNZOp4J1glieoOe381BapxI1rsh9V7EqbEcL5+uHBpVWNPEkVYj04H7n2nonC7YOJZOnGZIKVnvhay2VXXk0lRhX5Wxf/HGMl+8vsFf/eHnDvX7/InvvsBPf/Uuf/fzN/jrn31hT78jpeRrtxu8tdSlkjP4yPlxfuw7Dk7/6jggpeT2Rp8okVgGW3qt4zRjoxeSt40Da9F8HGQDMeh+lFCwzS36LfFAV8k1dS48gdD+k6DeC2n7CRNFi8mSQ5xJGoPnXgi4Ml3c1zOgaWJfwvxvLrZ4/V6bnGXwHefG+H2v7m39P0q8ca/FN+62KNgmn7g0zh/88Ml9bpI0Y70XYhv6nub9bOV+Ynu+mhsJ7PpRyvW1LiCYKTusdALuBB4TRfuh9zdKMq6v9XhmukS1YHFnwyOMlVjpw0TMG30ljDxRsA+9JSVKM+7U+yChWjC5OFGk5ccH1ppzEAgTVck9WysghGKzXV/vMZ63CJKMiUEFeD/I28boHhyWuUXJ2SrAXCvYW3SsNsM2dXRN417L5069x2wl/8j5dVjwooSmF+OFCW8tttE0wUunKvzBj5yMZ/3Weo9fe2+NnKXz8YsTfP/zR8/UBMVsbXkx58cLnB7L8/5ql26Q8PZSl6lyvC3uPg5oQvDCfIVaweJu3ePLNxtYhuBDZ8cOxIjmoBEmGdWcTTuICKKMG+t9Lk0VtjiSdoOYTpAwlrOO/fpuxttLbb5ys0HBMfj4hXF+/CNnj3tIBw4hBN97dRpQMefn3ltnseXjmIIfemEO54jux1TJYark4EcpX7vTYL0TkmWCUw+cqrNMstZVZ5iTwPIsOiY/9JJar5r9iC/faNALE87WHGareQSqfX+vSVZdE6p7Zx9o+zF36x6gEvumLpgby5EkGTfrfS5P7S/OPQrYhs7Lp6vc3ujT9hMqQYwfp3SCGC9MMXXVbXLSk1P7SkwJIQwpZQKMSyn/qRDizwMM2E3pHt7iDwH/ePMLUsrG4L1/DqVd9fPAsNRUAlo7vZGU8qcYsKleffXVPVk5Da2u0yzjvZWuqiQObpBylkm3LeBr3WAk1Gsb2mO350Rpxs31PnlLRw765b0w4Vak2t/8OB0JmZ1kJGnG3bo30oTY/LDHWcbdhkezryw141Rywuf/npFJOWrHXOkEbPRC4lTy8unKSP8gHdDB97pY9cKEv/ZLb/PcbIkfP+SD62zF5UdfPcU//eo9/uSnLu7JvfDaWo8v32woK3eRx4/38oifbPTDlHdWuvRD1TceJdlokV5pB6PWJNfUjy2YC5OU91e7rHZC5qoDl43Bz5Zbwcjdx7X2x4Q4KPhxSr0X8vpim1Nj7sBq/v46mmaSwxpWGKd8+UadhabPRMHm+RPASngQLS/i169tsNYJmS47eFFy3EN6KJY3zXvH1B6LeSul5N3lDrfr3kjvadiiFacPt6APk4xb633O1vIEUTp4Px6amPKiZOTkl6Ty0N0p01Ryc71PN4h5ZqZEGKfYhnr+gig9Ec5WSSq5sdZnLB+NEjUdP8aLUnQhSFLJ6drJaj/YL5I0o9lX+pKr7RAvkuQsDTj65MGdukcQp8rUIEoZL1h40cnYIztBzL97d5U7dZ9awaIXHN8aFCeqmKIJKLkmUirGzFIrIEgypkvOsSdOoiSj3osIB/9fbPmA5PJU8cQlptY6AW8vddE0lD6jKbfFnlJK7gzi9H6YnJi2rWY/4vPvr7PcCpguO3TCmFlOhknJYSEZMLwXWz5+mFDL2wdiprUfBHHKcitgpa00PK/OlXC5/8yt90LWu6rl0NK1Y2EB7oY4zfDihJVOwGrH58VYUnSUodBhFpA3xy29IGa5HfD6vTZSSl46VdnXWe8oEcTpKPbqRwk31vost3yCgUGNBM6f8FzDfiPQ3wI+CPSFEDUGhhVCiI+g2E2PwhXgA0KIPw48J4T408D/IKVMgY8Db6DYV88LIXTge4Av73OMu2I8b5Nmkn6YKHc+qTQjyoaJprGjePbm1hBDe/xJqAlBxVV6FtMlh7UB66HeD8kyMJ/gvY8SmhBoQpBKuU2QrmQbTBZtLF1jLL+zve+3K0xd49SYSy9McC3BUkst8F6o7KszKbeIwu4Ff/vfXmO1E/J3fvyVI2lB+hPfdYF/+tUF/u7nbvCTP/xoh75eEDNZsoiTjNM1lzOHfPg7CnhRwoWJPItNn/kxd4se0tARTgjlpndciBLJfDWHFIqGu7mCtWWMx0TJnyw6XFvtUnJV8kEImC476LrA3Wfb0H7RDxNqBZsoVQyQuRPW5w/qUDhTdoiTjOmSzVz1ZAfew+DqQf2g/SBMMqWxM2ipnq+6tH0lAv0oC3pdUy1aSSoZy1uEiQoIqw+hyw/1BaU8WO2Wh31e0TYwhEBKSckxydn6nllmRwFNU+YDBdtksuTQ8mImTIuNXoSU7Mvx8qSi7JpMlRyW2j7TZRtdE4wXjidxYOqCVj+jlrfIclBydM5PnIwWmbYXM1ly6AQJE0V732yBw4CuKT2yuapLL4zREJim9uTCxgeBwRAMTTBdVnuuY2onQlT/QTS9mImiTcuLeGa6SJztHHsauiBO9u+OepjohDFTRRs/TpkqKffD3+4wdY2XTpW52+gzUVDaoEGyNxfYg0LJMSjnVFK4VrC2FVI26xOftH1ivGBzdixHEGUDV7l0kJg63HHWBjEJwFje5OZGn7ytk2WqKLyfs95Ropqz8AcFkoKlOi7KroUIInLWzmYOJw37vbLDmfBngF8ALgghfgOYAH7fo35ZSvn/Hr2REF8EPg98VQjRB24Cf1lKmQoh/j7wBVSL3x/c5xh3haYJZsouaSa5Xe8TpxmTReehE2yy6GAbOqYunijRYhsaU2WH8aJN3jY4N/jMal657Z2EiuteoGmCC5P5HcdsmTrPzZXp+MmxUOsPG0M71mwg0BunklO1HI6pc3Z8fwHpm4tt/sEXb/H7Xz3FK2d27FY9cJway/H7Xpnnn3x1gf/kUxcf+e/PjRfIMvjAfJUrMyePmfI4KOeU1fJM2eVMbatj2HTJIWca2ObxUl3zts5kyWGsYHF6LLdlI5kpO+QtNcbjaiGyDI2XTlUZyys9i3PjhZGDyWGj5Jo8N1fizHieqzOlExkcjBdsLk0VOT9R4PnZMuYJafXaDVMlG9fUn2je24ZGNaf0M2bLLoau7dqO9SBMXe2NBcdA18Se2E9Dq+QoyQ5VX3A0RkMwW3VH39M5RkblbrANnZmKctuq5qxRYq+Sswjjo7lOhw0hBFdnlZblRi9iomgfW3X/bC1PNWcxVjCRwOmx3IlpkRjLW5yfKDBfzfHsTOlY1yDb1DgznhvFi2N5ixfmKyw0vCfqQjhIOIbO6bEcRccgySQfPC2RwFj++NuaHsR4wSLNJFPl4q6FGSEE58cLeFFyIq7vEBMFm4tTRc6OF3hh7uTvjQeFs+MFfuw7TnNro89EwT5yNzxd13hxvkyzHzNe3F5IqRVsTENDF+LExVSaptpsi645aGG1KDjGY7ly7wdCbJWYeGm+TM7SKdoGZ/Z53jtKbI6hpJRUcia2qTFeqGAOhNxPOvZ7ZyeEEH9m8OefBX4ZlawKUeym1/f6RlLKTwz++MEdfvYPgX+4z7HtGcp9a++Z+p2YVPuFZWg8u8PhficHwZOOh415vprbRRXstw+GC+XjIk4z/vOfeZ1qzuLP/+DhCJ7vhv/kuy/yz75+j7/7+RuP/LfVvMWr5w7eJfA4YRv6rrR2IcSJoDAburZrhfukjHEsbx0LU8TQNZ6dKR/55+4HOcvgxSdYH44aBzGnhBCP3SY2TDLtF651dMkhTYgd9++TBH1g2PIg9it+/u2A07U8p2vHezgYJl/3moA9SuRtg+dmT8Y6qYnth6GCbZyo50mI+yLmlia4dEJa33bCXuecci8+GWzOIb7d9saDxETRYaJ4fAX7mUFBdjec5ISFpoljbz8ruRavnPn2Og8JIfZNmjgJ2G9iSgcK3GdODXHy+ime4ilOKP7Or93g7eUOf/f//sFDcZp6GE7XcvzoK/P8H1++w8kIW5/iKZ7iKZ7iKZ7iKZ7iKZ7iKZ7i32fsNzG1LKX8q4/+Z0/xFE+xEz7//jr/7b99n9/z8hzf//zMsYzhz/6OK0yWHP7xrxzLxz/FUzzFUzzFUzzFUzzFUzzFUzzFU4yw3wbfk6WK9hRP8W2E37i+wZ/4P77Olaki/9XvebT4+GFhomjzZ7738rF9/lM8xVM8xVM8xVM8xVM8xVM8xVM8xRD7ZUx95lBG8RRP8dsMSSZ5416b9V7AejfkK7ca/Oxri1ycKPC//9HvOFJHjqd4iqd4iqd4iqd4iqd4iqd4iqd4ipOKfZ2OpZSNwxrISUA3iLlT97AMjfPjeYxDtFUM4pRbG30Azo3nT4Q4aZRkvLnYZrrsMH4CBT1PCqSU3Nro40UpsxV3RxHou3WP3/U/fHH095yl80c+do4/+zsunxjXi6f3G9a7IaudgKJjcOaYxXR3w7fDGDd6ISvtgIJtcKaW2+J2uF/4g7Xx7BO+z2EiiFPeWe6cmLX7cXES96FHIUzUmLNMjfkoBNC/He+3FyXc3vDQNDg/Xjg2F8/DQCeIuVtXrm7nJ5Qr6EHi2+F+f7vs3xJ4f7VLlGScqeVOlEvcEN8O9/txsNTyafQjqnnrSFxz4dtj/z7JuFPv0w2S4x7GQ9HsRyy2/BPnTLsZm+OEx0GUZNza6JNkGefG8/9ekwmO+n7/+3uld0Dbj5ESwjijH6WU3cML5DpBTJLK0Z9PwmaYZhIp1SQ8yYHOcSNMMvphCkCjH+2YmJos2fztP/QKE0WbiaLNZNE5cQeDp/cbml6ElNDxE5I0O9Rk9OOitWmMcZphnuAxdoOEOJVYxhMEpBJ6QUKYZCdiXdwJUkKSSjr+yVi7HxfdILm/D32bfJdekBAn9/fOowiWvh3vd8dPSDNJmkEvTBg7YQ5dT4K2p2K1IM7oR8mBO0p9O9zvb5f9O8skYaxOhy0vPpGJqW+H+/04aPSj0Rw5qsTUt8P+fVKRpBkd/2QnpeB+3OwNzkEnEZvjhMdBP0yIErVutf343+/E1BHfbyHl49+4k4Lx8XF59uzZ4x7GNkgJQaJu5OriAkc9xjiVJGmGpgnsPSRFbt++feRjfBCplERJhgBsQ2engsthjTNMMrJMYugapv5klZ6TcC13w/B7ri4d/Zx8HJyEaylRCWspJZahbavQn4Qxwv17a+oahn4yxphmkigdPNOm/kihwpNyLR/Eca/ne8WDz3eSSeJk7/vAUePp/X4yHPd6nklJ+Ig9ezMO637vd515GE7qnNwc0y3fu3sixwjcX3OEYHnxZI1zp/l6Eu93JhXrA8A2NO7euXPoY4ySjDST6LrAeswC2Em8lrB1PV9auMvsqdPYhoZ2QlldD15HFYOmSMDSt8egx4Wbt24xM3ca09AwTsiYHsTD5uRozmviWMkDN2/dZmbu1I6x+0nC17/+dSmlPNQL9dsiBXj27Fm+9rWvHfcwtqHeC1lqBQD8kc9+5sjHeG21SzCoVD0zU3wk0+LVV1899ut4r+nR7McAnB7LUc5tr64dxjjjNOPd5S4Ajqlxaar4RO93Eq7lTkjSjHcG3/Ow5+RXbzd4e6nD735pluoOrLK94iRcy16YcGtdtTyVXZPTtdyWn5+EMUZJxnsr6t66lsbFya1z+LjGuNDwaHnqmT4znnsku+EkXMudcNzr+V6w0/N9Y703qnRdmiqcuCr20/v9+DjK9Xw3LLd9NroRAPNV95Fr/WHd7/2uMw/DSZ2T7692R+yjkzonAW6u90as8pM2zpW20v0EmKsqKYaTeL/Xu6o9HmCqbPODn/rEoY5RSsmbix0AdE1wdbb0WO9zEq8lbF3Pf+wHv5uf/hefY6qsuhlOIh68jm1ftS8DVPMm89Xcbr96pHjuxZf56V/+HDlb58JE4biHsyMeNiffWmqTZSAEPD9XPuKR3cfwOh7E+fMwIYT4xmF/xr4TU0KI7wPmgX8rpby96fX/UEr5Px/g2J4ILS9itRNSdAxmj4rCugn9MGGx6bPeC/dMod3ohWz0QsZyFpOl/S+Ww37yWsFipuwyWXRYGWjTnMT2n50wXrDxoxRT1yg6Bm0v5tZGn6YXMlfNcW58d42dThCz0FC6E+fGt+tOSCm52/AIk4y5irtF68nUNWoFi26QnNiN6kngRym/eWODKFU6D7o43PnwL15f5k/9k28gJfxvv3mbn/9THz9wCn/bi1npBORt/dA36byl45o6NzZ6xGnGRNHeUwtRkmbcbXikmeTUWO5QkwKWoVHJmby70qVoG0wUY8ru8bdN1AoWQZxiGRqFHejQbS/iy7ca6AI+cqF2DCN8OLJM8rU7zZHO10kJCDfjzcUWt+oe52p5xovWlnYA19S4vtaj6longjGVZpKb6z2iNOP02KOv5b2mSjhMFG2mHmNf3A3dIGapFZCzdOar7jY9lLJr0vZjsiMglXtRwr2mj6VrnB7Loe1QeR7quG3WmjN0bdv9fhTWOgENT7V/7bcFrN4LWX5AS66as+iHCZoQlI54vemHCXfqHoYumC45BLGKHXZaZ3bDcB64ps6pse3z4CRhLGfyb95Z46R1OmSZ5Fa9jx+peRinEk2IHWUOHhfD/b7lR+Qtg5myQ+0xWhireZNeGKv56hxObT5JM25u9InTjDO1PAXbGI2/4Bh7OhNUciadQLWsVtz9Xccoyfja7QYtP+LF+cqe9iwhBFMlm6YXM1747dP2u9z2ee1OC9fWmK+oNUvTBGGS8pWbdXKWwccvjp+4go2U8Ma9Nsttn7mKy4WJAkXHIE4zavmT07rrxylvLLb4/uemjnsouyJMMn7p9SWmSg6vnqluWeOnSg71XkQ1f7yxcpJJvnRjg6uzpROdmDoK7CtKFUL8DeAvAC8A/1YI8Z9u+vGfOsiBPQ6yTI6or8vtgLVuwL2mR5w+pvrZE6DlxwghmCw6TJe3B9NZJqn3QrpBPHptrRMSJ5LVToiU6rtk+4iKh/3k9Z6qXpZzJlemi8eSmHtc2IbGqbEcZ2o5/Djl/bUu672QlpfQDWL64e4BeNuLyTLwowwv2v7v+lFK24/p+DH1XoSUkkY/oj2oss5WXK5MF3dkaX07wwsTvnmvQaMfEUQZYZxxZfrwFr5+mPCXfv5NXpyv8FN/6BVu1/v8d7967bHfT6ICvQex3guIkoxmPx4997uNZ6MXkj7BCVMIQTVvMlt2MXWNzqbndoidxtAJEvphShBnNL1o1/ePkoz1bkgQP1kPdzVvMV1yyNsGrYd83lEiZxlcmipyppbf8cC90PRZafsstQMWm8ExjHA70kyy3PLp+DHdMGG55ZOkkiSTXJw8OVXBLJOstH3euNcmSSTX13vMlN0tz3eYSMqOgRcltP3t8/ao0Y8SgjgjyxgxXHaDlJJmP96yrx0UNnoRUZLR8mL1fA72gjBJSQct3ecnCod6v/0oHZkbhHFGN0joRQlBnG5LPgz396HW3BAP3u/NkFLFGZvXq7XuMM4IRm0Me0Vzk5ZcNBiDY+pcnCweigj5o9D2Y9KBhlEmJZemipwd33mdeRBBrK79cktdh5YfDb7fyUr6gNpbOn7MRi/C0jVc82Q1OwRJihemLDQ93l3pYmiqSHJqD4nnveLWRo/llse9hk+UZDT6u68HcZrtGDOAat8bztfD0pTsh6makxmjffh2o89aN2CjG460ax4GU9e4MFFgvuruu0Wq46vCfDdIeO1ua9vnbT4rbcZkyeHKdPGxEn4nDUmaca/p8c5ShzDJaPUTyjmTi5MF7IEcQ5Iq/a3X7zXp7RDTHSdSKWl4If0w5U7D427T4/SYOyhwHn+BaQhNCHRNsNRS59n9nFmPCkGcstIJuLHWJXwgxh4v2FyZLh47ISGTkvGiza2NPitt/0TuQ0eF/e5uvwt4WUqZCCH+CvCPhRDnpZT/T3iilv4nRpZJrq31iJKMyZJi3Wx0I3KWrh6URyTDw0QdHkuOcSAVs2rOpOPHGJqgsIML20onGAXaFycLuJZOOWfS6EWUXIPVTsh6N8Q2NS5OFPYUaNUKFvXeViHMIE6J0+xECk7uhJvrPda7ERXXJJESP0wJo5S8rVO0jR2v5RCVnEk3SLAMbUehOl3A7XqfOJG4ps5GTx9Rpc9oT0b9P6nww4RffnOZIE5p9GPOjec4dciMj5/5+j0a/Yi//4df5ZUzVT77gTn+0Vfu8ie++8JjBTxBnPLuSpfzE1udMUquiR+FuJa+qx7C0FlDSnUIfFigHKcZXpRStI0dn7eiY2KbEZmU25hIQZzx/kqP8aJiKw6Rt3V0TZBJ+dBn8E69TxBnrHcfTqGXUtIJEmxD27HClzN1crZOEKdP1D550EhSZShRsI1th1chJDfX+wgBHzpbPaYRbsW3Fpq8u9zFtQw+/ewE40WLjV506M/OfvH6Yot3lrqsdgOmii6Xp7cnUfpBxBevb1B0dCZLDpXc8c6LvGXgWjpRkj1yjgohGCtYA4Hngx13yTHoBQmOqdELY1baIU0vwtQ0HEvj3Hj+UK9VlklubvTIMvVca5rA0AX1bkgvTEetEV6UkEmo5S2W2wFl19wzA3qtG7LWUW1L5yfy5G2DkqOYYEh4b6WLrgkuTu7Nta+Wt1lKfAq2sW3NjZIMP04PLIbaDcPPKdoGlZz6LrvFWQ/DzfW+SmolKbahU+9FZBm0j1l8eLjGO6aGbeisdQMW6j5LbY+pkksm5cnTIJEqcXR7wwMhmS27nBo7uIKoH6W0/YSml2DoYBli11hi6NgIKrbevE92gxhD0w7dMCFv67iWRpRIqjmLMElpe6ogqguxJw3TKMm4udEjjDPy9v7GW3ItKjmDd1d8So7JnXp/xMKQUnJjvUcQZ9vilYfhwXl50vH599fY6MaEaULJsSg6BtVNcdtcxWWh4bHcDvCjlDt1n9/14gzOCRG51oWg4lpsdEO8MKPtxXzlZmPEbDt3gtrm/ChlseVxezDPLk0WiNKMKM1OxLkqzSS31/tMFKxtyehemKAJjl3c3NI1ekFML0z50o0GFybznBvPH8l6ddKw3zthSCkTACllSwjxu4CfEkL8M+BYo90ozbYo6EdJhm1oTJVswiQjfMgDkqQZ19dUgDhkRdxteLT9GE1AJWftSPV/GHKWwbMzDzlgPvh3KUlTFXDUCjarHZUwCeOMOMuwNR0/Sllq+7imzmTR3nbQmym7WzaZIE65vtZDSpguO0wU7dH3XWj6ZFJyqpo7UW5xbyx2uNf08KKEy5NFzk0UmB9zGS/aLLcCltu7MyqKjsnVWZMgTrld72MbGnMVdd/6YcwXrm2w1g6ZqzhomkBuugtS7n+BGlKzj6td9FFYb/v8vS/c4m6jz4uzZZ6dK/E9z0wd6qFBSsk//PIdPnCqwitnVJLhj3/3Bf75a4v87GuL/LHvPP8Yb6rujxelW+7NZNGhlre3JTqiJGOx5aMLwWTxfvC6UwEiiFNurPdI0gxdE0gpKDgGUyWbpZaPbdxv87EMjcu7UGyH1Y3+A64VtqHz7EwRKdmW7Gr7MevdkLJrblsPHvw+d+t9elFKwdLwY4kQcHY8x2onRBeCU2M5dE1R1E9in//X7zap9yJmyy4fOF3Z8jOBhqYp97AgOnp262YMkwW//PoyKx2fSt7mYxdrfOzC+I738LggpeQ3r2/w019dwDIEz0yX+eTlceYeSJylmeTrd5u8v9olbxpcmCg+tnbIQWGYCNkr5iruYzlKrXUDmv2Ysbw12vtAXZN7TQ8p4dJknnaQcG21Sz/MSLMM29BZ6QQkWcaFieKBtiNtRjdMeHupgx+lPDNT5NUzYwgB7650CZOU9V5Ax49o9hMmijanxtwn0sAYrjGTJRs/TtnoheQH62mQpKM4YL0b0vZV62TZNbcU7ap5a8dkYppJrq/1SDO5hSkTJRkLTQ9NCE4P1qgnQZJk/Mb1DcIkZabskLMMSq65ZX5sTj4stnx6QcJ0ydmVCV1yTS5MFHhnuY2U4qGs7KPANxdaLLUCiq7OTMlltROQpJIgzvCjhMmixfnx4231kFKy0PDx44SNXsR7Kx36QYJlakwWXM5N5A48qZtJSZplnBrL89xsedc4ph8mSKmYSm8vdbgwUaCcM0eaTUKAa+pkUjJddg6kaBslqmUf4Ewth6krjcfhs6MLqOYsSo5JrWDtOPZemLAyaJOdLNq8vtDitXtNirbJc7NlpITra93Rs/Qwtpcm4OVTVSru9oN4PJhLQZzy7rLSlHpUckpKyVdvN9joRkyVbV6ar5xIB2NQe/gvfmuRX3x9iYmCw4unynzfc9PbDveTJYcfenGWz7+3xq+/v8HNeo96P+SPfvw85gk4EyWZcjX88LkajX7E3Uafr9xqMF6wOTeePzGJqZx1/zyaZpLbGz38KFEdQJnk8lTh2FvTpJRkmTJj2PzsbXQDvn6nNSqKVo+xRdKxdC5Pl/jmQou1jk/Lj6j3wkFLtL2r5vJvR+z36bshhPiu4V+klKmU8o8C7wHPPuqXhRBnhRCrQojPCSH+9eC1/5cQ4otCiH8khDAHr/24EOI3hRC/JITYUxTtmDoTRZucrZMzdRxTIzdgUtxteNzZ8Fjr7JzUSKUkG5yH4lTSixK6gdokVjshLS/Gf8IWmwcxU3KYKtnMVRxcS8cbtJklqWSjGzJVcsjZ6jsNqxOrnQAvTKn3It5a7nC37nFro7/rZ8RpNjqMb6b+t/yYXpDghemJafeB4eIhafYj1nvRiKZ/eiw3oj8/qvUDVGDthSnNfkw/GrgqdUKCOMM2NTJgtuwyUbCZLKqkY5pJbq33ubHWp7fHwHStq1oA6oOWkJOENJP8q7dXuNdUtHc/yXjl9Nih62dcX+txfa3H731lfvTa5akiL52q8M++du+x6Km6Jii5BtUdAt2dDjr1fkgvUG1LfpxyquoyUbSZrWyn6q51Aq6t9bi+pu49qGdloxvhR2q+DefQw2Do6iC0U9vuUNPgQSy3ffwoZaUdcKrqUsubnJ/YrqHW8iNuNzxurff51mKHNFPP9UY3wgtTusHJaNHaDVJKlluqVWmp5W/7eRgnBFFGFGdbWpuPA90w4W7DI84y2n5CnGRsdMNd7+FxYa0T8Pn31/HjlLaXjHQFH0Q3iLmx7uFFKV6c4Fj6E7eLfrtgraP2jNUH9v2mF9HxE1pexHtrPd6412a1E2IacH6iQCVvUs4ZOIZxqDIA690AgSSTkjhV66IQglrBYr0bst4JWWz6o0Jb9BhjmSzaTBQtTo25I0ZR04tGhTuJpJo3KQ5+lmaSlQGDYKUdjIp2d+seizs8u0OopIH6DpvH2fTUGtULkgOJNVpBpOKxKOPammJ9NHrRaE6vd0Nub3jcWO/R9mIag715vXd/DkipnO3OjeeZKtlKc1ETzFVyuJZ+rEWmLLvfYnlro0/Li2j2IzZ6Si/VMXXKOZvWMa/3w3i10Yv41qDosNYLkZnkVNVlpnywzNK2H1PvR3iD+/yweLyWtwesYVVsWu6oeTt8lsM4Y72n4sG1gQj6k6LlR/hRih+loxg1TjOurapnp+7FnBpzmSk7u86v1U4wau3144SNvkoce1FKJW+QZBl+lNEPUzrBw2PUWxt9Fpo+uga1/FazFmtQsO9HCa5lDGKdh+8JvTCh0Y8Jk4xGLyY9wW1GCw2PL92sk0nY6AWcH8/vyjjRNMGzs0XW+wFpBu8sd3lvtXPEI94ZSSrvs1AHXTR+lLLaCZ5IluKgkWaSyZKDoam2qeV2QLMfcaveJ0oyltq77xtHOcYog24Yb2ntWuuFeFFKP0zZOGCpgP0iy+QgZyFGe/RaR7X598KE1e7JkLk4Cuw3MfWjwFcefFFK+ReBU3t8j38jpfxuKeXvEEJMAJ+SUn4CeB347CA59ceBTwL/EPiP9zq46bLDXMUlTDMaXkTLj2l495MGDwZ2UsrRZpK3dSo5k6Kjs9oO8KKEvK2Ttw0s4+Cpq0IoyvHtuse9hodj6tiDvuGya1KwDS5MFJguO6NKjzugJJuGGJU/dwqc00yy0QvRNcF02UEi8Qa6FaBaKTRNjSG/T/r7QSJMVMXmvZUOXpQghKDg6CSZJGcKyjmLyZKNMRBCD5MUawcKdJxmvLnY5pt3m/TDBCEY2X96kQqIy67JVMnhTC3Hd12epJwzBzpkSldisx7BbtoED2LYzpWz9T1Rs48K7620+anP3+Bew6dg69QKFr/3lflDq/xvxr98cwUh4PuubhVC/NFX5nlvtctbS/vf9C1D40wtv+dqe942EILRf/daPhu9kHBT8rDtx9xc7yEEyEzd87KrWkPmyi7dMGalHaAJcPZQPTN1xQLZTzvJkK3gWjornZB6XwXfQwzZXGkm1WEqy8iZGnlbZ67qkkrJcttXr59gqq8QgpmKDUjOTWw/sDimTjdQgfhxhlv9MOH9lTbfuNOg5SXMVV2emy2N1uWTgCyT/Nw3FvinX7tLkkoqrsmzM0U+9czkjokzgaDqmiSJxNQFY65FkipG4cOYIVmm9saTqHMQJdmekmtl1ySVKrjf6N0/gOYsneW2z60Nj2YvwjY06n0VJ5yu5fjAqQrPTBXRtPvP6JNgGGds1t5Y6wSstEP8OKOWt9CB9Z7Slsxbqv3Xj1PiVDJdtpmu2Iw/RjV3oxex1glZaHgkg/Wv6JiIATP46myJ+WpOaaq1fVpehGup+Z639S1FuyS9P/5sEGMM55CpawPhcEmc3k8wD9diTXu8WCOMU25t9NgYBOUF22Sm4lByDK5Ol2h4yjCm7avkTZSqeSElIOToQDoUZVdtTH3eWe7SCWImS84otqvmLS5OFo5kn3wQfpTwrYUWNzd6nKq6FF2D8bzFW0sdbqz3OF3LMV/NKdaZEMfa2hHEKbomaPRDPvfempq3SE6P5fnI+XHO7FBc2Q+Gunl3G/1RLLbQ8PCjlCBKHxmPW4bSZjo3GEfXT7hb9xjLmViGRt7RqQ6YB8V9iJ+ngzVxJ+RMg4antNwKm5K8w+Wz40fca/ps9MNdk93Dwk0mJa5pcHGyMOi8KDJXVslTIVQxLm/ru46n0Y9YavnEacpSW8UV7QcKupMlh6uzJfKWgWmIR3ZNOIaGpUPbjyg6OqZ2cvbEIdI041feXOIXX18iTlNKjsnLZ6q8cmbsob83Xc7xiQvjjOVNwiThl99Y5jeurR/RqHeHJpRAe8kxGMsr90Db1MikpOQYZJlkoe7xrYUmjf7BJFgfd5y2oXN2vMCFiQIdP+K91S45S6OUM6jlbb610OROfXcSxWEjA+q9ACnVmWCIU5UctqFaa2fKx6urNtTqqhVsXjxVxbV0emFML4zpBCHrnYDrq90d9W1/u2G/kcIngSLwM5tfFEL8OLAGLO7hPT4lhPgC8M+B94HPDV7/VeAPAm8Dbwx0rH4V+Kn9DPBe08OPMtJUMl91sQ3FnnItnekHHH3u1D3uNT1urvc5P1ng0mSBjV400iB65XQVBhvBQTNNolRVHhZbPisdn3LO5NJkgUxuZYG0fXVAbvQjio7B+YkcBdtUlXI/3pFFMqyyCqFoxQKBH2UstwPODaoHz0wrItpRi5VuxvW1Hu+v9BjGGFemS4SJ5GwtT9OLeGG+xOyABRDEGYamsdNtWKh7XFvtAUrIcLzoDFoiLVbbasE+PZbjQ2eraJuYD8MHvOMnnKrmSKVEF4Kya7LWVQyPqZKz66Y9WVKuMMd5DR9E14v4e5+/QaMfU82b/J4X57h6qrJv96XHxb96c4VXTle3uUr+0Isz/OQvvsXPf3Px0C1ZS44S/RcoduDwYNULE/K2YkF8826TRj/GtTRenC9yc8Oj6JrYhkbLj1hqBjimxtgOPekHhVNjOSaKKaYmeHtg+d7x41FbypA6b+qC77w4xtfutnBMAyE0dA1urfcxNUElZ544R5nNCOIUW1fJtJ3aJsIkJR4cKJeaR19dk1Il7r9ys8EXrm+w2PS4UCtwdbbEy2er2/aN48QvfmuRn/vmknJFG8/zBz58itNjeexd7n85Z1LNm1yeUjqFXhxzp+GNRHmfm935WbxV7+OFKQXHeKgT6lFjc3v6qTH3oe1Cp8ZyCAHNfsxyK8AyNPwoJYxT1d5XEOi6IJWSS5MFKjnlyuoUbcJUJWRu1/sPbcnfCxYaaj92TI1q3sKPlJB12TV5Ya5CNW/Q6MWstgM0IZBSst4LSaWkVrT48LkxtMc8CHaCmOV2gBelAwv4MgXb4OpMaZC4V3vXajek0VOtAzNlh7M1F9cyMHSN+apLP0q2tEMutnxanooxLk0VsA2dkmMipSBOJEutgCvTqsA2vH773SellHzlVoN6T8U+H71gkLcNXjldIclUsitczEhlxjfuNHFNA8fSmC27OJZO2bUou9aoSAWKET88zHf8+EBdHp8E31xosTjYcz50tsrl6RJfvrHBu8s9egPzhU9cmqBWsJksOccWc2z0wgH7NeH6Wpfljk/eMvn4xRrPz1WQsKcEapJmrHQCDE2xdzbH1/V+xJuLHbpBwlo15JWzVWxTY7bqoANXp4t7+v4XJvKstAM2Buz7JLsv9zFZtBgr2HvSahsmbW9t9Cm7JmN5a5vLXSeIR855SZYBupISKdvEqdxi4tALk237dZwqE4LxooVr6miacrg8M2h/7UfK9XL43AK8v9ob6PSZjBds1rshAmh6MY6pGGNDp7FOkDD5wDI2WXSUXp2mbStqyAEDchj7+ElG0TUpOsrMZantnyh3WiklX7i+wU9/9R6GrnGu5vC7PzDPhT0K3P/eV09xZbrI//m1Bd5d6nJjvUc1b3J1tnL4g98NAgxNI0gypsomHzhd4p3lDmN5izCRND2VAOoGCc1+zEcu1I4lDrRNjauzJTIp+eK1DRr9GFNPOVOr8J0Xx/nG3RaLTR9Bn6JjHkviP8skAvBiZRxiDQ6dui6YqbhkmaQXZhSOcTsQAq7OlBjP29ype+RMnW4Ys9oKePNeB9PQuDhZIJGS0vRv75a+/SamfhIlgP4g/i3ws8C/ecTvLwOXgRD4eaAErA5+1gaqQAXoPPDaNgghfgL4CYDTp0+PXtc1DcgYL9oUbCVu6g3KFtoDWQ0vSpXjmx+z3gk5PZbDNXXiJMG1dAzjwd5stbEdBMvINpRIsWkIqjml+VB0THQxPCil2IaGqSvWT6Mf0Q1iGv2I07XcwDp058m5WTvJGAiqJqncwqo4CckUbSACudLx0TWBa+rU8iYLDY+ZsgPcTyINA+sw2V7BN011nZJMjv59EKdEm1xHJHLbBjVVdHj9XguJEqMf6mJ4UTJKaEnJFhr0gzgJ13GIthfza++t0fVTwkSiaxqvnq+ROyJW3N26x9vLHf7i79ze1VvJWXzX5Ul+4VtL/LkfePbQr9sw4Ky4yoRAwiiJqwlBmGb0woR6L6WSM5koqGBfoiqOw589c4juhcAokJgqqfaMiU0JxDjNCJOUpXbE3IYSrbZ0HVBBiRcl+HHKzAnUN9uMbhBzba2HgB0TpJmEnGURp9mR61ZIKbm50afRD7m+1kNIFcRIAReniycq+P7mQoPX77VJMrU/XJwocGnq4UmTMElxTQMvyXB0gR9JMpngmsZDD2XDw/ujWjyOGsqtTv3Zj1Mqj/j3m4sKSvciIs2Uu2Ipb6IJQb0X0gsTqjlrRybKk7LGvFixitp+jBelaELgRwlFV+nNJFnG7bqHqQvmqi6JhImCTT9MKTvmYyelQLXyXVvtUsoZZFJ9FyEU88KLUhxTsbOMIbvYjyk4Bm8sdSjaJhNFm+mys6tI/eZLo2kCx9QI4mzE7obH3yPTTLU5gprHApVMXWz6SJT2mGvr9ENJmkIzjilkBmZN2+KwtPnzLUNjvKgSkA8WT44LQ+fEpbZPyTFAqP3LNHSCJMXUNfKOOZqbxxlz+JFi8YZxwlo3QhMamYSpksv0HkW0QbEDm31VGHRNfYt2iqGJESMykZJMwnw1hwQ6Xsx7az3Ojxe2PKtelGBo2pbnXQhBOWdSH7hZ2oY20oAUQuzZQKDeU221G90IIcSO7GRDF6PzhaFpI2aeH6VMlWwqOaV1K1AxyWYMHTiHY88Nhc4lo/1w+JhpowTr/SSbH6UstwN6QUKUpggEOctgvGiNEmFjeZP+oDC3GTsxz4bi6H6UMVWyB6xCDUPTFDvG1HfU6zwupJnk7aU2X75ZRxPK8OdMLc/zc5U9v4epa7x0qsq/fWeVhYaPFILPv79O2bW26TYeFTI57PpIB38XzFUd2n5Cwda5ttrldr2PayrSxXHeE10T6CgDCtc26IeJek3TSNKU5ZaPqWt0g/hYElMArmlgGdvn7nJbaTkKwY5SHEcJIQTdMMa1FFs5TjMcS2elG1AftHPvVkz87YT9nlhzUsptHEcp5YoQ4pFlVSlliEpKIYT4JVQCam7w4xLQGvxXeuC1nd7rpxiwqV58+YOy5UVUchanx3J0g5h+qITYUlsSJ0rsL0ozHO3+QjxXdWn7EQXTJO/ozJQU08aPU5wHFuxk0C8+rGo8TCxQUdkT5VzzEIrs1ZnSqB1sbFPl917T58Zaj/V+yMfO17gyXUSiEg+mIegHCSttn4nizmyeuYqLa0XkLAPXMrg0WSBO5bHQv8NE9e+WHGPbofPceJ6ibfCtexDGkt+63eD5mfImkdT7K8hsxWGjF21zQwOYr7jkTdUyYBka11a7o17/WsHGMXUqOVU5XekEdIKY+bJLNW9RdA0afcVcGyamhswsKTlRbTwPw1LL42e+vkCcZFweVBR/+AOzR5aUAviVt1YA+L7npnf8+WdfnuVX31nlKzfrfOzi+L7fX0rJakdR4afLzq6BZb0XEiQZk0VVET3/gEikrgk+fG6ML92oK2q/ZVIrmJi6znjBIohTcpaGJGOtG6BpqnVir6L4zX5EN0gYL1q7/k6WSda6IUKow+Nkydl2UHrlzBiv3W0yWbQxdJ2Sa+AO5nLbjxnL2Sy1fXphzFLLo+xax9qauxu6QUIYp3T8ZMcWrLO1PBcmc4Sx5BOXavytIxpXnGZ8a6HFjbUemZSYBkyUbF45U+XcRH5XofujhpSSX317la/cqmNoghfmSrw0X+V37PKcbYYXplycLLDWDWh5EXebfX7guWk0TXvoXJmvujS9hweRcZqx0g4w9e2sh8NC2TW5J5Sg9dnxhx8Y+mFClGTUChaVnEpCLTR83l/tMVtxyNsGYawMFWbKql142IYzX3Vp9iPy9vZ9a6/womTgDGyQGpIpy+b91S4rnYCKa+FYOqau4UcJs1V1sHBMnZyl8/LpCkkqn5jRU3RMPnZxnHpPOd0O79G9pmI8LbV9qjmTZ2dKnJvID5JUGo1+BFK5n+0UrM9WXGxTwzX1LYfbCxMFgiTdkph6XBi6xvOzJW5u9BnLWSy1fda7ES1fuS2HccoL8xWlQ1nN8+5KRzmnPkJ2QZnEbH9dSslyOxglw44KSSaZKDrK6CbNeHupw72Gj61ro3lwadDWddxYanl85Vadas7ipbkK6VxGNWdxeR8FnHpPOU5HiRJ3fjCGreYtXpwvc2O9z2RRMdLH8iqBqyHIMpVsGcazm0XNL00VCBOlwVh2TXKWweWpIpmUOKZO3o5IMkltH4dj29AxdI3xgkU1Z45i/7VuQBBlTJVtJgo2LS/G1FVydgszb9AyemGiQJxmdIKEomOMDuq3N5Ro+qkx1eEx/F4TRVs5dWpiZNyUZZLlToCUksmSjRelTBZt2n5MD3X4Hi+a1LsxeUunNGAMvr/aJUkltYLFbMVVbZGxKso9uG5HqdKyUmNXTCvb0Hl+rsxcVX332jGKRG+GH6X867eXeH+lj2vpPDtd4tx4jt/9gblH//ID0DTBf/SdF/i/XlvgTt0niFP+0Vfu8iMfnOPi5NHHApauUXAMaoX7BdWxvI1j6CRpxnInoOwanBrL8exMadv5LkpU8XU4144Cw1gjSjKKtsnn3lsjjFUB5NSYe2yC+UXHYK7q8vxcacu1MHWN5ZZPKiXdYza9GMI2dPxIsR1fPVNloeFxfb2L0BSb+qDdiU8i9rvTOUKIkTPfEANdqEeWS4QQRSlld/DXjwP/Pap9778Gvgf4Mqq973khhL7ptYciTZVDSM4ykEjWuyHL7YBqzkLXVHIhZ+nbaI5l1+Qj52v0R+wkjSBOyQbuS70wYbUTULSV88tQcC6It/aIB3HKQsPD1DVOj+W4U+/jRxmmIUYtcztB08SO9vXdMObdlS5RkvGNu02emS5RsHWmSzZRqsRJ9b6gF6ZceSAg2Dzmgm2QpBlenFJ4IKhp+6rvvJo3D8SVZCdIKbmxpiyZW7a+LUFgG0qY/lsLLUqOQSWnLNmTLGOi5CI2ydQVnZ3HGSWqL1+Jl7pommCq7KBrSqsnbxkUHYOlgc5Qvae0KO5u9PnEpXGkFARRiq1rREmGZWgj97UozUYHFSkl95o+fpwyW3H3bU19mFhue/zVX3yLXpBSK1h879VpPnl5YqSrcVT4V2+tcHWmtOOcBvjMM1PkLZ2f/+bSYyWmOkHC+kCsVNfEjiKiXpSw1FJ6JFkmOTWW23LgmCm76Jqg7Fp856UJllo+mlCVHqW9IkbPcJJKbm14hIliWOQsnbJrPtShUzl+qXa0MEl3dSOp96PRdzEGfeXDg2xx4H5Vdk0+fnGcuw0PKSUFR1m9m7rGRNFmrePT8DQWGgFhIslb4WD+6qMg92HoBjHNfkw5Z+6Y8A1ildx/0mRX0TGIEuU4utoJuTq79edDUwc/TkdB+lHg3ZUOX7y2zrfutbFNwYfP1vjExXHOTeRPzPMdJyl/79dv8KUbdaquxUzV4fe8fOqh+8pmlFyTfpQSJhmaJtCAt5a7hHHG1dkis5Wtz2prIAxeK1iPbOFb74YjoV938GwcNqKBoUfeNljvhrvuXZ0g5ss36jimPir6DAW6NSEJIqVTVXVNbq73kUguT9/fn0xde2JGzVLLHx3wnp0pqj3Xj2kOkj431ntcmSowVrAZy1lKZ9LQWGz5hEnKdNE9EMH9kmNucyQO4pR2EPPecpe5istqN+TyZJH5MRdDaLS8iIYXbWnf2wxdE6SD5LquCSxdG8UZwwTKMHGpxJb3fi03eiHNfkQ1b5G3TVzTwI8zWn5EyTFZ6yqphq6fECR1np8t048SpsvOE7msNb2Y+hEJ4EopuV3vk2YqCRqlKeu9iDuNPqe9GFNX7THjBZvn58rHnpTyooRraz1+7b11Fho+d+p9Pny+yqtnJjB0sWcNVhWvqf255UVMlZwdE4GpVOzafpgSJim2oVNxFdMNoJIzaXmREkQPE0AgJdR70egezldV8XFz4quSs0bXPkkl5ycKj2SglXMmF40CQtxnOPtROmLVr3R8xUbMoOAY1PsR4wWbWsGiFyZMDNh7y22ft5c6lFyDsmtxeaq45SwRp5JK7v51FEIwXrBZaPRHGnlNL6Ix+H5TZXu0RucHZxTb0Hhrqc29hs9iy+fTz0yw0PC4vdFnvGATxOp63lhX7dDDeHYzbENnrGDRDxMmSzb9MGGp5ZOz9GNjD+0EKSX/y2/c4ovX1rEMjQ+drfH9L01xcar02KzCct7ixz9yli9eW+cXvrXEcivg2mqXv/bDV5muHG1Lu66JbXtw2VXMt+7ABGul49P1Y57bIdN+c6OnZGks7cgSa9W8xaefmeT1xTYdP+aNhTZ+ktD1EwqOjsZALy5OOVfLH5n7YTjQpVztRKRZhjYgqCy3VDtxGCXYB5A064UJhiZ2bams90L6Ycpkyd7138xXXSXPYWis90Ju1Xv0w5Tltk+aSt641+EDpysnWr7jSbHf3e6fA39fCPGnpJR9gAFT6m8PfvYofKcQ4q+hWFNflFJ+RQjx60KILwJ3gf9WShkLIf4+8AWgiUpcPRKaph7k91e73Kl7bHSVkOjlqeKWVpc4Sbnb9ImTjMmSTTVnjQ4hYXJfv2KqpHq2m35M11ZJk+mygxcl24KsjYHDRxArptRQ2/Bhzglqg8hGwXwnUM47fpSQM4yBEJ9EF4p+rGsCTWicqanNRSAGvexbcWO9x0LdwzI0PnlpnDsN5cpWdAzOblrkFhreiOZ7dfawElOMgo7h/70woelFTBUdFts+v/T6Eo1+TM7UeGHewNQVDTlnGnt68DZ6AcvtAFNXyYVq3mK8YJOk6iBccg0a/YiVdsDNtR6LbZ+OHzNTcbhb9yjaBsZYbkDFvv++wwTVEH58321loxvueHD1I3W4fpCqfZh4616Dv/3vrnOv6SOA+YpzLEmptU7A1+80+TPfe3nXf+NaOt/3/DS//OYyP/nDz+15YY2SjGY/wrX0+0y2XTY0XRNkUuKFqhoIWw8c1uDAmWUZ/TAhiFJWuwEd38Y2FbvK0jVylqGe6UErxVrXR6Co8bXCdiZUnGYst30mCzaWoQ1crx4i0KprI7rzcHNebPoEcUbbjym5ptKWCGLCJKXejegFKVHa45np0uDnapxNL8QxNHphgpXouBa0vJip0sOv772mT5JKOkFM+QHdLy9K1IFdKmbpk9Cvxws25yZyA008c9RONEQniHl9sY0GLM4eXmKqPnBgmSharHVDvnJjg9+6VacXZJwZd0kzODueOzFJqfWuz9/9tWu8tdijHcXYps6Lc5U9J6WAgV252i/SFJIUbqx1VbsJkkrOwjGUpkmaqQIPQJCkj2SMpVk2MAkxtjyP692QMEmZKu3OatwvkjQbtOEo0W3LUPpvu2GpqUwB6r2ULM24Xe9j6KoNZ6rkEMSKreHHKYYuaPYTvnm3xXecqz1SCPhhSDNJL0jI2aplYLUTKKYSQ+ZgRphkvLXUpuSYdIOEmUpulMBe6wQs1H1WOgHLxZCXTpWfqHDUCWJMTRtV07sDzSlkRtU1mCzZSCCKU6Ikoz0Q/a/kTAqOQWEXcWgvTHhrsYMfJ/SDGMvUiRO5Jc5Y7QSjPTNn6Xv6HuvdkK/fbhIkKfNVl/mqy1JLaXBOFh1sQ/DKmQpfu9ViuR3gWjo31nuYuvp+YZIxnLWNfkQ/VNpYw70mSrIRe+ZB2MZ9pvRh4/ZGn197d51OGPHMdAlTCHShxr/RCzkzlkfXVQHlINhnT4K2F/Erb62w0PBYa/t0g4iya7HcDMhf3t9aqTSQlCxFkmSkBRU/P1j8MAbBmKaBPtgrhqLmQ9xrekipJBwKtio8b75WyaiQnOJFKeXBnrrU8vnm3TZpJrlT9zjzEKmGIWxDoxsonSfL0OhHCevdAMfU1V5v6jS9iMImdspsxR21AftRykZXzcc4lRRs9SzU8hbhQHJiM4trqHv4jdstvnK7MZC2YKQlmElJy1NtyVNFB01T8e8wGRzGGVJKNvoR3UBpBUZpykTRHphaqM8ZnlHuNT16YTJqga3lrZHW5ev3WqNY4OMHkLB/UmSZ5E6jzy99c5Ffv7aBF6UUHYOrM0UuT5eemLlrGzofOTfOv3l7lX4Y0/Fj/ua/fIc/9NFzvDhffaL94YnGZWqDvVbH0GGl1WehFdDsx1RyK3z25TlWOgElxyRvG6N7e4jGsjvCMVWRKohTNF2w3orImzppKnlzqcl7Kz0MTbGCP3y+diRjipKM91e7dPwYwdnR65ahMVOx8WOTC5OF3d9gD1jrBKx2wi26iw+OYZiUj7Nsy1q2GUIIio5Jo6+S7KudkH6U4EcpmpDca3g0+yGmofGBUxXGiyejJf0gsd8I/C8Cfx24I4S4g9pnTgH/APhLj/plKeUvA7/8wGt/C7Z2b0gp/yHKkW9PsAaiYLom2OhGdP2E2/U+pqExU3aYSG1SKbm53qfVj9A1jboXstD0yFkGZ2o5Ko5JL0oGFVXV17vRC2n0Y+JchqGJQfVwewWx5Jq0vFjpJFk6Z2o5ml60rUo5xGYB18mSjWvpfP12k/dWOtiGsiv+nmenCJKMsmNwu+ERxCmGbnJttUcYZ2iaxEBnpR0wXrBGAu1RogLMcLAZDx1AHnQkdEwNP8oOtVVN0wRnx/N0AyXSvtDw+NV3VlU1umhzfjyPJgRxkrI2cEFr+wmffXmOiaK9J6ZGox9xZ6OPa2kj9phyCFLBRpJmmLrgmwvNgUC6pGAb2LrBcicYad5cnNxdJFFK5a5iGYIokTsmfeI0G1WhHuZ2dZD48o01fvIX3qYTpuQMjYtTRf7D7zx/5EkpgH/9tpKK262Nb4jPfmCOf/6NRT733hrf//zMnt57yEK6Ml3k0lSBNJO7VpAtXaPpRWx0Q2xTGxggbGrNNHRaXsRv3apzrxGg6wI/TFl1A8quRZhkvDhfoZKzsA2dgqPjmgZ5W6cfptjmzo5ASSrZ6EYYmsaFiTxBkpHfpXU2TjPeW+2w3AmYLtlYg3lnG0qw1DI0ZJbx5dtN3l1WFPwMSc7UcUwVcLw4X6GcM4lTyVzVVQkf1PMgJXtKrtiG6v/fKckXDdohhn/e6Tss1D2EJjhbyz00GFTir0qEuuxuZyTcrffp+DFJmpLukGw/CARxylJLtUB8c6HJtxaavHa3RS9MmC5anK3l+djF2qGxR/eLejfkL//cm7yx1CaVcKGW53c+P80PvLC3Z2b0Pj3V9lSwDZ6dLaILwVdvN2j2Y85N5JkoODimxoXJAoYmRknVza3s692QphdRy1vUButlJ4hpeQmaBhNFa3TQ74cJK20VfCmB8oOpsN8esJDXugFjOYsozbbosQVxykpbHRQNXXBzo0+aSs4MnOJuNfoEUcb5yQLmQMPm7oZHztEHe74KqJMsw9q3WfF93Kn36YcppiEQUiVq/DjltYUWt9a7LLUD/DglSTPq/Yj5JNtyMLZNnShTB1VTFzs+e3vF5kD54mSBXpDwuffWuNvwGMtZfPRijd/5wgz9KKHtRfSjjPGihWMowd22HxHGKXEiOTXmkmRydOiWqMN2nEqa/YhK3kYTYkucodZJJZC+1wRllKr1zx+0/L630mWtqyyzXz5dwY9UMnWm4uDFMWkmKVgG19Z7OKbOhUmVFAuTlMUBczWI0wFzltEefXost0XXSF1vVYwyDoCl9igst30WGz2ubXgstQI0oVq/HEPFj6+cqXBmvIBjaEfSIrsTVtoeX73d4Ma6x0Kjz2onRGaS2bLLmVqO+cd4tpt+RNE2WGn7I1HxnRJD81WXkmuOtEMNXa059V5EyTFoejFLrYCcZVByDPwo5fZGn1pBtbOrAqVFlim9pCxTXQLnxvMj8fB+mGCbYlsHxE5YaHp0fFVIujJVYKUdjPbYybHcIOYzsQwx2veHrroCwZlaDtMQVFyLkqtztqbmqaaJHXUMb2/0+eZCiy/d2EAT952iC7bBpanCgFUYE8aReu4SJZ7e9CIcQ+N6p8fpsRwaSv+q4lpU8ybvrXTphkqEfaroMFN2CJN0pPf12t0Gk0UXTYNnpksDnSDFRlP34oizHDtgrevzN/7FW1xb64FUnRIfv1jjk5cnDuxZyTsG/8FHzvDf/GrEzfUuX7nR4PaGx3/xQ8/y4XMTB/IZ+8Vk0cE1dNI04xdeX6YZJLS8eJDkzPjce2sstVVR6HuvTnG2lqcT7GyQdZgQQnBxosB8NUcYp8gs492VrpIiMAQrrZDZijtKth4Fkiyj0Y+wBu2z1UHskGUZy61gsPc/vCLhR8rds5wzd9TTG7p+S6li3gdDcH2T3vNuhfXNsAcJ8CRNKZg6ccHGMgzWez7fXAzp+qoV//ufmzn2ZPFBY1+JqUEL358TQvwkcHHw8nUp5dFbKW2Crt2nEs9UXHphTJKqIHGtE/Cxi+MULJ2v3W5wfb3HVNFhouhQsA3FdopS6l5I3jKZKKoe7Fpe0XALtkkpZzyUUl9ylEaDtsnl5mEaVEMb2SBOeX+1i0Cy0Q2U3fGgbehjF2sIIbi+rr7DRNGm7cUjHYpeGGPpghtrPVbaOo6lKzHcySLrnYhUZqx1Q06N5ej48ahPechWODdeGNGCv3m3SfGQkhmFQUthOggQ3l3u0PEVTT+MJ/i+5yb55kKb1xaafGuhRc42uDxV4JNXJvf0/hvdCF0XCATLrYCmGZNJSThguvTDFFNXelX9SFWs5yo5ojSlFyTU8vaW+QOKWVHvR1RzFhNF5ZDQDRJylsbF2Z0dYTZXWR/GlDso/MzX7vD//ZX36QQJZddgvlrgJ3/4+WNboH7lrRXOjee5PPXwqsPHLtQYL1j83GtLe05MAaMASX+EELAXpQOGoUa9H5KkSkCy6BjcWu9zu95jqenz9koHSxc4pknVNaj3Q2arGUkmOVvLcWEiTzjQwBhieIB9WPBjGRqGrlF4yEGs5cWqJUGqg9gwCVQrmCy3PW6sB3zl5gZvL3eIkwykZKaao+PF5G1joLnhcWW6RDVnYen3XXWmBtWTndarOM14b6XDdNkdPBNQdA1O7RAYl12TsJQN9E+2J+PfXmrzS99awtR1fvTVec7tUP2RUmn7SSkJkoxKziJJ1Xfe/LwFSYYEwvR+RemgsdTyubHeJYgzvnqrzm/dqtP1E85M5Hjx1Bg/8cnzFN2T0bvfC2L+ws+9zheubaAJwWTB5vd/6DQ/9Bi6GRJ4b6VDO4g5r+VwLIOpkoNjqtbVjYHo8rXVHhNFk3LOouQaA7ZRSK1gs9pRmhE313tcmS5xeixHkqo1zjEMNHF/riuNxoTlVsBkyWam7DyxrkQQp1xb7bLSUSzoYdvtcB1ebvu8v9LF1LXBdxowBpBcnCzwuffXubXhIWVGhmQsr1hiYZJS0U0+fmGc1a465D5py9QwuO2HCV0/4sa6h5+kFG2Nf/fOBmGi2u8tQ+f0WI65qqs0YFY6uJbBfNXlhZkyb692cCz9iZiKcabEU1c7ASBpeTF36h63NnrkZ8v4UUrRNVluB7yz0qPkqENvkknylkHXT+iFyv23uxSTSajmTearyiTm8nSBW+t9NF0jTjMmivaWtWK8YJG3lbj6ajvkxnqP2V0OI0Mml6VrXJrKk2SS+WqOz7+3RpgoI5MbA9bGVCkdsN8Uo+tO0yMbJKiG7f+9IOFeUwnK67rG7Q2POE0xDMFU0cWPU8psjXnWe6FitD32Fd8dUkpub/S5O5B86AYJYSoRSFbbPuu9CMvQeGaywEunqsxWjpe5+fU7DX72G4vcXOsSpBkyk4RpxtlanpdPVfjE5Qku7bE9KIhT3lnucG48j62r+WDqGo6p7tZODBQxaK8faiNNlWzqAwbctxZaaEIOtFQNqjmLt5Y6vLvSVa2P86UR8ycbFBVB7d8tL+Laao9EplTyxuAQuT3Zoty9lbFIYSDmfLveAwSnx1wyKVlqKxfFK9Mlio7OG/dC6v0elqFzblwlBVQeZ2BmpOuqsGU+XHsWYKMXsdFTToAFx+BDZ2tI4OZ6Dwk4huBrtxvEqeTVsxU0oXGn0aftqVj/1FiOs+N5olR1jSSZYozc3vBY7QZcmiwgUTpuupTkbJ0baz0aXkQmxZakwbPTRTp+TJhm6EJwp97H1FXR/6iTpovNPn/l59/ki9cbmIZguuTwH3z0DN/7/MyBj+XZuQp/4Xc+y5//mW9R70e8v9rjL/3zN/lvfuyDPHfIztK7Ic4kr91r8tZimwzJdNnl4xfG0IXO595XjsLVvM2ZMZdPPTN9bJqjwxj4ynQJL0z50o063TDFEJJSzsKLEuIs5QvX1slSyWzV5cJE4UBa13dCmqn24DjLRg7QoFy7S4O4rxfE+K6FbWx3qQT4d++s8Y2FJmXH5I9+4jz5B9jE02VnpHO809qta4KLkwUWW6pjy4sScpbB8qCL50HkBwn8txa73G0FjOUNHFOQMTAq8RLeXuxg6jo/+Pw05SNOQB4mHnfWSuB7gU8ActCK9z9JKQ/nVLEPnBvP40Uxp6o+byx1KDsmd+sep8dyvLvSY6MbYGka331lkiST9MOUpqdYBlGS4ZrGqIJxppajH6Z7Cg7309Octw1mKw43N/rEaUa9p1zA5qrKtnK67AzaITKSVNILU6p5SUHXKDjqQFfJG7T6CRnKiS5OpGojy1mcHc+RZipILjnGqF1woeFR70WjjUtRnBNubXiH7kagCRV8doKYxVaAbRr4ScLVShE/VpHDb16vU8mZLDT9EYvkYZBSUs6Z+HHKSifgraUO4wWLuhchM/DjhOfnysQpjOVspooOeVunUjCZLbtYmhLeHC/YWyylVzoBWaZaESaKNv1IMaD8ONv1PluGxulaDi9MR0nAw8Ib95r8gy/eIUqVbsxE0eavfvbqsSWl6r2QL92o80e/89wjgwND1/ihF2f5x1+5S3tgmf4oWOZ9RuSjMBRZXBu4LL52t0mUZFxf79LylOuUoUEUZ1Rdl9mKzURRaXxoKKHfOFPJ2wfbPR72+bapcWEyv6eDbcE2lLDpQM/qxlqPfpQMNAMClls+li5US59jMj7Q+zE0VUGZKNmjw/6DY3zYxu7HKW8vdan3lbaHN3AoSsoZ+iZTiDBJMbWH68IsNHy8KEOIjKV2MEpMtbxokAg0WWj4tP0Y19K4OlPiTsPjVHW79tWHzo3x5RsN4iyjcAiMpSyTrHWUo8lyu8dSyx+w33QcQyXWTkpSqtkP+Z+/eJO3FjuYgyTsd12p8f37ZEoNYemaKmYYOk0/4SPTRfxIJRsuTeQJUoneEdzY6PHuSsZHL46z0VVGIv1Qtb8UHUNVp1EH/mFLZpJmZPJ+C0oQp/TDhErOIpNK368fppRzT5aYWu+ExKkkjDMuTeWp5EzOjav1IEmzkVtWw4so58xBe6t6diSKHRXEKXfrHpauk7cMztXyzFdzyhzD0jlTezL9kDSTtP2Y8bwyJAjjjJWOotu7ls7qQONu6D77qSuTIODyVJE7DY/3V7romlobelFK2VHX1IvSxz5cTBVt1XbuGKy0Q1ZaKkF1fqLAmfEc4wWbthex1g1Hbf1+lFIsmUyVbCSSKMkwdAjjDF3T6PgJVNU6c2W6hECMKsVzFSVu2wti7jY9sgzOjufJGTpvL7fxo2xLAC6lVAwpXVPxTpyx3PLJ2wbjBWVccWGyQMuLKbkuLT/GNQxcS2em7OCYOv1AscKTTB06hpXojV5EwTZoBzHTOZOFfoAfJcSZxNFV28+DGLaBHcZZu+XH/Mb1OmvdQGn1VFzytsGlyaIyZPETTF2jOmih2s0F8SgwTAT3wpjlbohr6ORtjVreYbxgc3W2wrM7qcfvAikVo7jjKxHwsyKPlLDU8akVLNa721v5QCWMhgnwfpSSs3QWWz5+lAx08ySffmaSsmtiGRoTBRvT0LboqeoD1n4vSOiHCb/y1gpdX7XknR63mSza25KlQXyfQbTWCSgMHLCHiWsvSpktO6x1Q3KmjhcrXZmh/lVvwJgvuyZtTzEGjYHMiB+nINR327znPohzE3l+5a1l8qZB3jKYH3NHmm5ZJjE0gWtruCimhqkPGaoupiEYy9nomsZYXnVTNL2ExaYySik5Snd12NEhhODCRIF+kFDJmfSDhDM1ZUC02PJZaQX0o5SposON9f6IVVzY9B5HAS9K+Kdfvcfby52BtIng+5+bOpSk1BBnxgv8se8+z5//v94kSiUNL+IffPEGf+V3Pz9KaBwlpMzo+gl5SydD8h1nK1yZLnNjvYs30CHSNUEvSDmkHM++cKqa43a9R94xiFKJrsG5Wg5N10lSyZv3Wvhxxs2NnnLHPqS2NNvUOFV1uThZoJK7Xzw5XcvT9hOGx83raz1yts6FicKWWBZgoeUTRBlREtIOom2JKVPXRrmD4d72YKwrJXR9tT6krYDTVZfX7rZ2ZEYrA6+ITpgMChgRUZLxwmyFj52rca/lY+gatqEpOY6niSn+d6CLEi8H+AOo1rsfPYhBPQm8SAmtrXZ9/EjRGCWS+arLRNHkxlqX1U6AlPDifEUlZ8KEhaZPJiVnNjn9DAW3O4ESLa3lrQPL6AohCOOUew2Pgm3ywlyF8aJFL0y51/RoeTFRklJ0TE6NqVadmYpLzjLohQlelHC6apCzNN5b7ZK3jBFb5XQtT70XUt7kwtPsR7x2twmoKtJ81cXUNO7UPepewGzlyRaEThDT6CmW0ZAi3/Zjbq73iNOMqzNlcqaGaxjMlGxMDXp+wrsrHeJEaT58+uoklq7zzFTxoRWlTErWuqqXuuyaxGmGHye8t9KhUbQGjiFqc9aEoJIz+dSzU5wdz5NmEi9MqPsx43mNmZLDQtPnW/dajBcsTo/lKQ36e0uDYGmu4nK3oQLtoSjrTthJZPag8dO/dYd/+KXb9IIISxOcquT4O3/wZeZqT9Yf/ST42dcWSTLJj7w8v6d//9mX5/hff/M2v/LmCv+3D5165L/XB7oOO2G9G47mwqmBm+MLc2Wumzp3Gx631vvkbJ1+nOLFMUGkBD2nKg6OLvjg6TLlnI1AoA1amQq2MXrPvepgaUI8NCm10g6o90PG8srR8/nZMlGS8d5ql9+4vkE5b9H2Ikxd0BlY6k4VbYQm+MCpCpemiwPdNA2BspPf6IUYmqCyxw1pVDlOJVGsWk8Ltr7lkLbSDlgftEFefEgF64X5MotNH0MXXJ0ukmaSNxfbbHRDxos2FyYLeLHagJdbAefG83z8Qm1H9sypap6rsyWW2942M4eDQD9KaPoR37jV4Kt36iSppJo3mSq5/OGPnuH0MT47m/Gb76/zdz5/jW4QY+pQLVi8eqbMn/0dzz4262i8YDFZcmh7MdNFm1NjecaLDlGSEaeq1azjR9xc72Foan27MJGn5ak9z9IV/bznKyvyspuQs3RWOyFBnDJdUvomm1tmNKEOZaYuyNt7e352wlAofLHlsdYJSVJlq94NEhaafYq2STVnDuzVlSPveNHi3eUuOVO16AshcUzlbvTsbAHXVK1SJdek5SsG4kG41d5rejR6Ees9dXC8Ve/jRwklx2R2vMAnL02Qs3W8IOHTV6eoFWya/Zh6PwIpyaSk3o14e6nNxCAhrGu7r3t7gRAC19K4uR7SCxPOTeSwLcGFiSITRZumF9P0YsquQZikVPPmqAg3WXIYyyszkrytc7fu8f5al/lqbmQSAjA/5o5E6A1dY7UTKOZFPxqxtQu2gaEJ7jU9JkvqULDc9nl7saNaMos282Mu/TAlSjMqQ0bRQIez4BgjraXFVoAXqiTOMGlacpW2zrmJ/Gi9EqjklGvq5C2TqZJkvScZy9tUXAttB+btWN4iZ+mPLZz8III45daGYnlVcyYdP2atG+IaGmGSkckMXYNXz1QZy1tI4KMXJ47NTh1UMe6txRZLTaVjUrR0pJCM5R3OT+T5wOkKz83tXeMO1Dy0DG0kMdDoR2RI/DBlQ6o4a60TIFH7mjZwn1pq+Sy2PIq2ycXJAo6pgYRGL6Saszg/nsc2lWPeq2errNdyOKbGVGlrt0LBNshbOr91u89qR7lyXpkqUnVVfP/g/mnpGkGS0uhFPDPYGydLNveaqv1QJaPUueHmWg+J5MpUSTkCxtko0SWlEk4fasnVChaNfkT5IXHFWidgrRtSckw+cWmCej8ikyjmNIzapC9O5BFS0I8SbEMbuPraxEmGOzD8UcUhb6RfO1Fw0IQyjRkvWNuSAAXH4O6Sx1jeGrXeNvsRhi5Gnz9etAnjDCG26nyqddo/NOfvlhfyX/7sW7y10kJmkqpr8onL4/ynn7ly6KytTz8zwx/5eJ+f/updvCDm67cb/Gc//Rp//YefY3bsaGOHas7mubmy0jZLU6JUcq+lpBAymTFbdnFNnZyt0/Ai3lvpjp6f4b2p90K6QbJnuZQngaYJrk6X+dC5Md5Z7nBlqkC9GwOSu3UPL0rwIyWVE8QZ7yx3AEUwOUhxb9vQmCxafMfZMaxN71uwDT56ocZaN+DdpS4l18SPUta7IQsNj41eyIWJPBcmi3z0XI0kVW7fj3KlvLnRH+ncbpYz0AWsdnx6YarYyVIi2FnX0DI0npsts9IJEGSstgPqvZi3l9v8rg/M8ml3ki/dbGBqcHO9T9OLeWa6dGwaaAeJx52VV6SUL236+68JIb51EAN6UrS8iIWmT6OfkEkl4vrRC+NMlhymSy61vE3OMljtBDw3VyZOM+JM8uyMuqFSStpejG1qOKZOx4/50g1l031lpritHzyIU+r9aFCF2FtSohck/Ma1DVY6PuMFm4mSzdyYy0xZVUXiJOXLN+u0/ZjvfW6Kl05VMHWNt5c6tPohQgjlStRTjjgCZSPaCxNsUx+1z235zEElu+kp1y8hBBI4U8tzeiy3q/vOXnGvoTbtXphQzqlqWtuLeW+lw/urPb52u8kH5svMVx3eXo5UACklqx31HSaLDh85P0bJNXEfwToJk4x7DZ97zTqOpWNpGiJTB/S8Y/DsTIk4k4NkhQp4v3angcwkL50qs9QOqeRtpRsUq4pr10/Imwb1Xshc1eVOo89Sy0cIVXFb6QTEiWSx5e9osRvEKWGcUXKNQ9so/6+v3ea//pfvkUlJ0Tb5sQ/P8ROfOEfOPT7rXiklP/P1e7w0X95zUuGl+TJnajl+7puLe0pMPQyNfkSWqfa42YpqXbm10efGmtIcGWpCaVKJP3/i0jiGrrHU8un4CQvNkPGiy1wlx3o/YKMbcWO9R9mx2DAirs7uHoRLKVnvhXsSy90Y/Lt6L2Ky6HBrQx3e4kSx/gRQcgzWOiHnJ/JcnSnx1lKHNIO1bsTFKfWstr1YMR+76hnSNZVQe1hCtBPEg1ZUnYuTBabLDp0gZq7iYuoacSYZaAePqr1hnCkGwi5V3TO1PD/66rxyOMxZrHUCbm30R5bZaSaZrbjcrfcRAt5b67LY8nn59Hbx0C/f2OCL1zcQQuCF2ynNT4J7jT6/eb3ON+82+dLtBn4YU7RNPn1lkv/HJ85tc6U7DkRJxleur/MXfv5N2n5M0TF55XSZP/mZS1yafHwx1yhR2g6XpwqsdEKqeRspVRJ1KHLe6All9z5VxDF1npkucnGywNvLHVIp+fqdJmGS0vBizozlmBpYlH9zoUmjHzFddvjo+XFsQxs9B7ap5tmTYthO8407zYETpcNYwcYQGv/6zVXFUpwo8l1XJkjSDEPXaPsxtqEzWbJZ6QTcrXs4hsZ4TiXoPnJ+jLG8PWgLk7y93FGsiQGD5XGx2gn4rRsNljqKlh/EKWN5myuTShOv6cd8+pmpkYj3eyvKnNiPMs6Nq7Zhu6WRt80R5d/QxWOLx4dJynvLXd5bUw6MMxWHnGXw3VcmGcurpPZKO2ClE1CwdKoFi9lyjiDJuLfWG7TDZxiaxrW1iDDOQKoEZDeIR1pjSqPz/nXrhWqdafmK0TDUNzlTy1Ow7x/I672IdhCz2PQJE5WcujSZR9dU3HCqlmO5HfD+SpcozegGEUGcqZaMTLG/m16MHyVMlCwEGn6cMVRQmCgqxzJdE0yUbJ6dLdENYta74chYYicc5GGoGyQjxo8mVBLv+nqXthex0vVZbgZU8hauafHDH5hjpuIwU97d8fWw0eyH/P3PX2exHdDshyRJhmXozFZdPniqwoXJAh+7OLHvxJ1qd1OxwUYv5F7LY6UVcLfR58JEgRsbfaajDFPX0IRigK92Qr54bYOWF3NlujDSUPXilDO1PL0gZrqiEuw3Oz1qBZsztfxIv9UYOF4PxyqEwNQERdvkA/MVLk0WuTxd3DFml6jnx4sTGr1o8HnJSKT8GwtNZVISxOr/Ayb2c7MlMnmfWX1ro0+9FxEkCa+cHqPkGnR8dS6J02zHZ7s5kOto+zEvzJd5f6Wr3AAHMXHl/8/en0dJtl3nfeDv3DluzJFzZlXWXG8G8ICHGQQHUDJla6QGS5QlS7RNqT231nK7tSy3W/Igy3K3bZlqS+Ty1FRLLbUlSmK3RnACCRIE8YAH4OGNNWVV5ZwxR9z53tN/nBtRmVWZWZlZOT36fVhYryqzIuLEveees8/e3/6+vBDbHIaYukaaSVrDGFNXCfdvP+xwb8vjQt3htcuNsfmAoWkUHI2NfsDrSy2uTDxqlx2hsI05GsQpjqkzXbbZGkS8ulhjsqSY2kGcjtsxH41bdZ2MWNjHiffWuvy5v/cm724oDd7LEy7/9pdu8H03pk/tWfnTP3Cdz1+b5C/9k7d4b33A60stfuL/+Tr/1R/6KC/O105lDKASPT/8wgyfvzbBGw+73N4YcGfTwzE1NBRzd77uoEnJ//yrdwnijJfnK2Mt42SbXEKcZnu6Rh8npioOP/65K7y91uc7Dzp850GH5XaQF141ygWDmaoyDUo8tV72gvhY1+IwzrjX9PkHb6zwhRtTuNv2+vfX+9zeHOIYGmGScmmiTJxmbPRCVrs+EpitFnjlQpXZqk2lYIxNCHaDzM2X4FE8PUKcSSZLDtVCNjZreHG+MmZbboeuCV673OD6dIlvLrX5+Xc2eXetixAary+1uDFd5o0HXZaafW5MlSm7qg3xuUOY45xXHDUS+5YQ4jNSyq8BCCE+DXz1+IZ1dFiGjmMKHrY8ojTj5mwZDbUxLdZdrkyX8kqVYL3rs9TyGAQpc1WbF/LspGoNYCwy6EW7TzJQAVIQK9ewF+cqB2JULbUGfG+ly2Y/5KMXdT5/Y5LpsoOUkuZQOQEGcYKhayy3Aq5NJdzbGvJrt5tUHAND11TyJc1IUsEwTFnr+QihrN13e6CnyraqKk4WuVBX0VvNNen4EboQR24Di9OMzX5IlChdH8fUGYYJyx2frX7Adx72aHkhUZIxV3WoFa1xm8jmIOT6dIlukBCnGYMwZWYfba4RoiTju8vdsZaIcl60EYagXjBplHZqXdxrDljvKmeDiaLN1ZkSq11/fF9rrkmY2JRsnXrRUu0qXkyUSO63PBbqBUxNsNIPqLpPJp6iJBuL2U+UrCfsd48Df+s3lvgrP/8+QZwgNNVy9qe+eI2CfbZizb9+u8k7a33+4o++cuDXCCH40Vcv8N/+/Hu8t95/qvvXfqgXTTZ6qsKoa4LmICZJJTVXMTZswx3rhYVpylsrPZ7LqwpemPLGgw5F22CjH+JHSiAxyTI0BJNPSdZ2vHhsGf00NIqqWtooWvhxih+pjUnKlKtTJaIkZaXtM1m2ubXRp2IbFG2TzUHA2ys96kVzrE3VHEQIDRqu9VRhyzRTlSklXqrxygWVNLZ0jTDOcC19R+VztuqMhV33cxVsDUJ+7XaTJJN8381JhmFKmkmEkNRL1rhF8/p0mTcedNjsRxhC2d8uPPZ83FpX7XVpJnl7pX+g63kQvLfe5+feeMj7GwPeX+uPXRAbZZsf/cRFFuqna/+8G6SU/P++s8xP/8odNvshugYFU/DjX7jKzZln07EYaao8aHnjBFw/Z9s2hyG1gsWmHynHUT/mlUaBxVzIvlaweH9daY4Mo4Q0lRiGYLps873VHrc3B0qoX9dY7nhcny6PW2bqxWdbk4ahaheUqMNd24vRc+brTFm1uXeDGDc1uLXR54s3VbJZtWz63NkaIFCsn82c2fXcbIX5eoELjSIyFyVvDSME6jlebvtcnlRFmsOyoqNEtaBtDgJaw4itgRIgHoYxb6700XWNW5t9rk6WWJxwmS4743b9SkHpJH3sYo1Grms5UbSeiXmQZZLbG0O+87DNUku1xd+YLvHcbIVMStZ7AWmmTEGklPTDBMMQbPQDNvvwG3ebiLytebGh7unIXaztRax0AoQQuzJ7ZisOUsLHq4Ud8gCNohKsHyXQG0WLqbJFEGdKpFrCtx50aA4jZisOdddivac+p+NF9LwEiTqEL9Zd/CTlnbyl50HbZ7rssNEL+KEXZnBMtY+nub7QqNV0xIDfft+2BiFFy3hCCP04UCkYrPfg7uaQh+0hYZyQ5O6tSZLip5KCrRMkCQuNAjPl09fsGeGdtR5/7/X7fPV2EwnEicydGXVenq/yyoUaz89VnolN1gtiVjsBcZJxe2OAH6e8vtTm6lSJiq307Ubah0magVBtlWkmx8WMfhDjRSpOnK04fG+lh5QQJj7VgjkuSpVsg5q7kw11Y7rMRi9kcxAyU3X21PDyo5jfuN0EBEGUcXmyyLtrfbb6EV6csFArULIMPMekYOiUHWP8LDQHKh5Q8adksx9i6oK1XpC3Ksmxc+duzHtDF9zaGDKTP0evLNS4tdlnsx+SpBkdPyZKU4qWQZRkBFHG1iBgturgx6pd7+3VHms9n5cXqtRck64fK6Zi3q7b9RLuC5+r06WxtlvB1Km7ShxdF2LcfaGYWDvPBrudLyaKNkHs4x4zY+o7D1v8Zz/3Nu9u9kkzkEj+pVcW+OLNmWP9nIPglYs1/vAnF/lP/79vkaSS+x2PP/ezb/LnfueLfPxS49TGoZiwBh0vRgiRi2SnDKJE7SeWwWo/ZKsf0vIiJMogpx8kXKg7Y4OTMFFr0aht+iThWAY3Zsp8b7mLH0v8OONhe4hhmphGgSjOeON+mzBRz9txd574ccpyx6fvx/hxOk5MKa2mGD9KEcDLF6rUi8o0wTYFhqERRClJlvHd5QHvb/SZKTt87vrknmuhEIK5mkPHi5l8TNbFNjTqRXO8zwsh9pUREEIRLq5Mlbi0OWAQKLbZUtNjqx+y0fPpBynfftDl5YsVmoOQ15datIcRN2fKLD6jRMFZ4aiJqU8Df1wIcT//+yLwthDiu4CUUn7kWEZ3BEwULQxNY75WwItTdCHo+An9sM+LCxVsU/W2Fmyd1a6q8lu6sqF/YZ5xhUtKyDKo5w4wSZZxaReR4NHkVBWdg40xjCUIJSq8UHPGQo2jg66pazSKDlGasjihWu68KB27BX7ycpX5WmF86Kg4JhNFGykFrWG0a2LEMXWuPiZQrCrkz5ZdHTFPhBAs1BxqrsWDtkcYZ2wNYm7OlPjNuxG2oXGx7lItmCw1lcvgZNnm+fkKwzBVmiQHrFhLqSzuy7ZJlKpDwI2ZCq9eNGj70RO6RRNFm36ohCK9JKVkG2hC5A56ilK5/dpESZa3WkRMl22MnJlScnR0TWXVtx/atwtsjubPceLbSy3+3jcfkmWqSnV1usRP/tirZ56UAvjJX7zFdNnm9716OGHmP/bZS/z1r9zmJ3/hFn/lj7x65M+fLj96fkA5ZLa8iOmKw1RJ0e8dU+edtb5ywSw7+HFKpWCiaUMKQuPO5pCPXKyoVgFU6+ZCvbCvxhKoIPKgmK8Vxs9llimx0TDOeHG+yEpHiUsPQxVY1lwb3dAxkJhCo2Rr3N0cUrQeJZ1rBZMr+Qa+3yYuUAyZ9DFaV9U1dz2MlWzjQGyX+60hdzaHALy32ueF+QqXJ5Tj0WLj0WY4YuEIAZamkaYZWSZ3HP4vTbgUDI0olcemi5BmkodNj7tbHm+v9TCEEkq9PFnkT33/FV6YPxvx0sfx3Ycd/vGba7lDlEbNtfjzv/tlPrr47IGurgk6fkyjaNP2IqbKlrIQ70cULB0hlFbJ++sDpss21dyJElSC/dpUCddSGiol2+SjF2qkmdJIaLgWS01vrDsUJdmuTN2j4F5zSJYp1oLMJLWCiWloXJ8uM11xWKgr19tRMsmPUx62FVNppA9YtHQMTahEG2Aa2lj7b8SCvdhwubUx4EFLVZz7QUI/TA6ke7cd76338mSNchOr589V0VZJp4cdjzldMXdH16daMHd8ztMC1MMgkxI/TvDijKJtMFN2eGFOMeLeXlUH+QypEu9C7XflXNdpue0BgjSDqmNSL5qsdwUb/Ui1QOdtUhv9YNfEVHGP9WOiZI9ZVvBoPVzt+Cw1PYZhrFiaiaSXJ8IqjsmFWgHH0LiPR3MYcmXSpVGy0ASUHXU4r7jqmrqWQbZtnZss7V9YWOn4KtFPxHPW/vIBR4Ft6EyULG6tD3jQ9gnidGyMMlsrImXKtekKP/j8NLOV4y9mHRRemPDzb63z1uoAL0qYraikz1TFpu7afPG5Ka5P7e1afFCM3A4lSjdyECV567zJ4qRLo2gjUIfFuVqBj16s4YXJ2MY9TFQMrGuKkfv+xoD28JGuHKi27SSTdIP4ifspNMFC3WWh7uJaezPb77eUS1eYZBRtnYdtHz9JMTXBfMVhPmcaX51WraNTJRshBM1ByHpPJab0/OdvyT66puFaOrWCRceLMTRBydl9ncwyOd4/LV3DsZShw0RJtXrWCiZ+rCkGjBGT5rIcE0WLumsTxKrlOoy13I2yyIiT3g+Ui2UmM+aqNvPVAveaQyX4n5tFjFqUekHC1CEYK3vFE8+CME75ma/dZ70fIBDUCwZ/7HOX+Fe/cOVYP+cw+J0fu0AviPkffukO/TBhcxDyM79+j+dmyxRPMR6XEuarDvWCha5Jbm0MuLOpUbAM5ThasHhrpY9t6FyfLNIcxDimQddPFBnAj3jY9tnqK9b+4i7OmMeNkm3wA89Nsdb1xtpsvSAmzeBhN6AfpsxUlI7dcbKlADTAFFBxLcrb5AWyTI737YmSNd4zNE3w/FyFkq0K3Jau8e0HHTpezGYv4tVLtdwNcXdMluxd95+j7POj13z++hSXGkV+7XYTXdOw8qS4zJRx0mKjyCBKeHdtkGvZCebyteqDhqNGkT9yrKM4Rhi6xkcv1rjf9omSlM9dnRgLi93aGCpL9kTRZTVNcHmiSJxm40PobNVB15TwccFS///YxdoT1NURLk0U6QfxvhvddqSZJMuU1kHFNrg58ygxpOcH3VrB4re/XBpnsrPcGesjF6tMlixuzlSQUhKnkqJtkkqp7Klh3Md/WtiemCsXzHFbUc9XlXPH1PjSi9NMlWwWJ1wcS2e1E7BsG5QcJXY3XVaBxsHbCQVzlQK1gsGLVoWZikpOPGx7tIexon/PlMeB1FytwGevThBncixwWi2YeGFKwdKeEFq3DI3PXJ0gTlXvsxACQ9comAZCqIP+djimzoW6cvp51pbIx+FHKW+t99F1wWTZ4tpUnf/8975C+RwI3f3iOxv82u0mf+5feuHQG0mjaPHHPnuJn/rKHf7dL904ltYf2JlsTdKRForB7/zIHLe3hjxo+gzDmIrlEKdgGQJdg49dqBOlGTemS5Qc80CHlLJjcmWqOGYTHBSapsRGR6gWVE/7i/NVPr5Y5+v32qrKWbZoDmLCVBAkihlYzhNS1YK5L514x2dNF/Gj46XYz1QcKgUDcmZZzbW4OSvGbkrbUXMtXr1Y4+3VPl0/QeLt2Jw/dW2Cj99qEKWS+WNiMem5OKyhC2bLDmXH5OOXa/zRT16i+hR9gNPEe+sDnPxw9uJ8mT/w8Yt87sbBHEmfBsvQeHWxTmsQUbA0rk6WiFKlD+KaRp6gT3Jb8Z0MGMfUuTJVZKaimLaupSzY+0HMVNnGixIuTxURGugaxyq0amgaUZbhxyl6riV0bVo5zo724C/cmFL6RXn7axhn+JES7Y9Jma053JwuoevanoGZrilmwFTJYqUboGviSBX/rUFInEmmywW+cGOC9V5ImilnWD/OqBRMrk6WmKnax5Z82g9JJklSSclWbYOXJ12KtrkjSV11TOZrBW4+pudYcQwyqZII13JdkjdSpVsj8uvjRSm1YxL+HUYJRVslmBolC8fSuTpZZKWr2NCpVM5TEyWbjhdRztsopss2Qmg4psZivcD6IKRkm/vq/D2OR21exzt/t6PimMTpo8LbfM2hYBm8MF/hpbkKjZLN9V0cTU8LQZxye1MlpIqWKl6+dqnB565NYOg6U2WL6bJzLNqqrmVwbbpI0VFyE3e3lE5co6R0F4dhMm4xvjzp8tELtR2v13JDEtvQGUYxmhBUCiZz1cKYmbBQK2AIMRYr345C3tofJdm+yWdTF3xssU4/iPj4YoP1XkjRNPD1hIprKkbfbmynbbplRu4KfH26RJQoXZqCpfPC3P6F4KprEnRDirY6dL6yUMXN2VHKsbKEpeuUHOVY2A0Sur6S8LAMjU9camDkzoePH5wtQ+PmTJmrU0UauV5upWAyDFMcU2PCtekHCQLlYnzWeG+9DxLKtsF02eHHv+8Kv+Pl+bMeFj/2mSvMVQv89V+6Qy9SbN731wd8bLF+amPQ8vW5FyRYumC1F3KpUaTuWnz66gRhIvkXXpqhOQipFCyKtjq7lHJX55JtogmltawfosD6rLjQKPKHP32Zh22fWxt9vrnUpu5aVGx93OJ6EmdY1zZ49VJDOeKaam4Hccq9poehCSZK9g4tKFDsXzd30HRMjdmqQ5IpJul+3QQnAT0vslVdkzhTRex60eZjF+usdgNSmbHYKOJaOittZbRi7JGz+CDgSKuPlHJJCFEHLm5/DynlN49rYM+Ci40iP/qxeQZROtZzWO8HOIYSRqwWzFxfRWAZOl6UjCnepq49wThyTJ2uH9PzAyZL9g6avX4I8WGANFOiszeny1RdVZF80PKoFpSTkArE7B0VNC3XnLg6VWJ7z/zVqSKr3YDZihKmHP38NLGQ2+k6pj5+COpFSzFShOqVv7s1ZLXj8+5an2vTRS5PFig5BhN50HNY2IbGxxarzFbUQjEKMuKcrZRlkEq5Y3I/N1tmECZjVtZkyabuqsrrXtds9H28XGBSoKrRXpRScR7dh9F3ruWaWZLjYU29cb/N+xuK6fPbX5zBNnT+0CcuYh5zNeEoCOKU/+Qffo9rU0X++GcvH+k9fuL7rvIzv77Ef/Pl9/irP/bxQ702zSRtL8K19D0PI4aucXOmNNZ9eK1oc20qYmsQ0hpELNQLCODVxTqubWClGev9kMSPDjwvD8IQ6XgRArFnRXG26jBVtsfP9m93LdZ6AR0/VkGxo3O1UWKiZOfuP0q0eKaiHeh5tw392DfSuZrLq4tVmsOY+arDcsdnECR7unvqmoauiV3tuRtFmz/5uSus9nwWjknz6Y2lFssdn5szJV6er3KhUeAHnps59krcURHGKb9ya4uVrs+L81U+tljn93x0ntoxJ80WagVmyttcHDXlOKMYTjp3toZcmigyW7HHotsjjBhQ7WE0FjgvOyZXp4oqwZGplurVbsClieKh9sH9cHWqyDBMqPg6li6IExvX0vnWgxaNoj0W+BwxcCqOaleZqthM58Wc8gGDWyEEjZJii+23F+yHWsHmQr1AxdF5ab6KH7d5Z63P9VwrzjR1HEN7ZsbJQZHkDrMLNYdqweTKRJGVjk/ZMbg86fL+ej8X35ZPPA8lx+RTVxo7tHJemq+w0gmYrShTg8cZj8+CimPiRyFV1+TKhAu5CcVGXzFPirbBfLWApqnEwiBUuk1bg4iaq8TP7zSHVArWmKl2UCzUCpQdFbuc1L0J4lQlpzLJZNHi6pRLlMC16SLPzZTPrHUPYGlrwBsPOsQpfPbaBLNVh4t1lRCqFa0dc+C44FoGVydLTLgW81WHWxsD0ixjEKq9bqS9FO/CPDd15c6rmGcOKx3FbGrkLTEAc9UCUyV71/upEtHlp87fmYrN7c3BOP67OlVkaxDi2joCQZQ+6aAFKql0WVP7V9kZHSDTQx1kp8sOk0V7PD5DFztimIW8ayPLpOqscC36UTRmby82XASC6YpNlGa8u9ZnqmzTKFpYujYWdx4d/h+Pg1/ME2dnOS+TNOOX393kfmvIKxeqXGoU+YHnpnhp4XywnAF+8IVZZisFfuHdDSoFgzcettnoh3z/jUnsQyTHnwXbW5MXGy5SSmqOhR+l3N3y8OKU6zPlnPmsxjSaV5bx6Fk6LEP4WXGh7nKh7uYi4haG0EllSnMQUS0Y+FFyLMzr7ag4Jr/n1QU+drE2/lmcZioxp2m7rgdCiLHj+3TZ5uZ0CaTk1cX6mSR8Rt0RUyWLjZ7Stf7V25tIqdo5U6mSZp+60iBKMq5Mng9Tn6PgSHdfCPGfAn8CuA3jU7gEfuh4hvVsyDLJd1Z6eFHKYkMxdyxDI04zCpbGVEmJ/3a8mEbJekLzZLf3e9BSOi1+nB5ZE6cXxLy13ON+a0jNtZjNHeGSVLLa9SmYBroQRLH6vK4fM1tV1EYhBI8ntq9Olbg0UTz24OEwGPXAPo7RmGquha55rHR90rbP/ZaHJhSzq2AebfEpWDrXp5+8B/M1pdtRtJ7UxzF07YlxPu26bfZDVjo+W7kLzNYgZK5a4GHLU/oHqOTgKLjveEpc9TjwveUOP/WVO1iG4OZMhd/10Xnma4Uzvdfb8f/4pdvcb3n8zX/900dugZgo2fz456/wk794i3/zB7q8dIj2quW2T9dXVszPzZZ33Si6XszDjkfB1LkyWUTkYrx11+KdtIeuaRQtfcw8Wu+rhBWoQ9BBzQz2Q3MQjsUmF4X7RBCw2vVpDiImS/Y4qePaBlenStzeHFCwNKJEMlm2sAxlq77VV2M0dbGjPeY0sdLx+Mp7zbG2z6jFZ7Mf7hro6JrgYt2lF8RPUJyjJEMKlaBaqB+9pWUYJiw1Pda7Pv/8rXUsQ2ehZvPbX5pluuKcm6SUHyX8L792lzcf9pgqO3xsscqXXpg5lvm2Gx4/pI2YwADXp0v7HkC3BiErbZ+VTkCtqJJS02WHm7Ml3l3tgVAukv/0e2t89GKNyxPP7qZj6hoFS+dhO8GLMsqOwUYv4p31HmmWsdQc8ttenB1/TtU1KTsVxBETS3D0A7iUEi+O2RoErHXAtVusdnyKtkGYZirhdcprdnMQ8u5aH8vUmCzbbA0jvDCl48XMVG00oVgjD3IdTttQLCVtW9Fre6xxZbLEYuNRnHGc32e64jBRsp+4/pcmXBWfFa0dLf411+Lt1S53NofEqcQ2RM6E1/gdr8w9UfXeD9ohi4pHwXcedvjucpd7zSGfvtrg2nSZl+aLzFTOTk8KlO7V3/3msooxKzaWAR9ZqHF1qjRO6p4UkWKjF/Abd5u0hiGOYWAZOu3hFhcbRfw4YaFe3jPJ6Jj6o3b2PZLJT0syPm3+fu1Ok6++3xx3Tnzu2iSLDZeNvmJCjvavx2N0YMcafpDi50HG9/jzuNQc0vMTCrlj4mTJ4a3lHpqQtLyE+ZqDBDbytsL1XjBO3l3PzRi2P2/b/3yWcxJUu+Hf+NoS31vuMVOx+eiFKj/y0tyRNXBPEi8sVJmq2Hz9TotvPmjzjXsd3lvv8a985vKJryuPwzF1LF1nqT1kqeUpt0ZT49qU6gDY6zVnGRNdnihSsHTubQ25venzG3eaXJhwMXWNH35x9lg/y9AVI3wYpYxqn2XHZKZqE6eSmV06XdJMjs9z91tD3l7tsdlXzrt/6JOLZ8ZGckyDxQmDb91v8/ZKnwy4MlFgoVbkrdU+k0WL2ZpzIrqJp4WjXtk/BFyTUv6AlPIH8/+fi6QUKIHO5iAiy5TDXtk2aXsRqZTMV5RI4LcfdmgOQjpe9NT3E+KRnszjbV+HQTdnRCWZpOfHLHd8hlFCkCjGlmVoqs3C0ujk7hyt4f7j2yugDuJU6T8Fx+ty9TR0/Zg7mwO2chHI2xsD3l3tkaUqcWMaarMv2ea4re5ZsdlXDkOmpnGh7u5Ksz4KVrtKt6TrRYRJSpZJ7reGrHR94kSJWG53UzCPSaPi9aUW/+CNZdJMEsTK2n67w8xZ49bGgL/2S7f53R+d53PXJ5/pvf6NL16l4hj83//Zewd+TRCn9Px4zEzbq5Ou5SnHvmGYEsSPqpx9P+Jrt7doeyGGLsbaM6NnWwieedMZuXsGcbrjZ4+jOVBuNs3hzoSmFyW8fq/F/ZZyFRuxWbYnAY9rvh0Fm/2Q1jBisxcgkNiGRpAkeXvf7qjm1rmPCzt3vIj31/usdf2xi9Bh4EWJshZv+7y31uM7DzvEWUacZkyWHRaPIVlyXFjrevzDN5a5v+URpxlBkvLcHu5Qx42OF7HS8Xcw1kSu2bIXpFQMHD9OkRn0fHV/bENnsmLjRwnr3RCBcpsd/f4g8CIlBg25q2ny6FkZBAlZpqqaWwP1nAa5xswwTJ/YF1MpWesFtJ+yXx4Xgjjl/fU+d7eGdD1luJBKiR+lSNQaowlx6kmpLJN0vBjLEGgIVjo+S80hnWGEtq2VYyQqnWWqXdyL92/13WuODEP17HnRk8Ywe2HU5rjfe6tWLD3XIJEkaTb+DEPT6PkxzX7Ina1BrhMiGB5iDCeFKMm4vdnnQUs930tNj9WuapkJc82vsywwjfbOb95v0RwE9P2QTKrCgqZp9HYx+DluPGh7JCkkiYoXbVPppWhCUC1YmJrG7c0htzb6O/bPxzFy6hs5TI70u54VQZyp/SxO85hcfc5Mri+la4L2MOTbDzqsdYMn1iIvSsZx92iMUko2+gHrvYDsGcYppaTnq3vUD2LmawUGQcL7GwMGYYofpURJhoBxO96jjoJMnUEymRfEjqeIelx42PL42W8+ZKXjESUpXpRwc7Z8LpNSI0yWHW7MlAnilChJWe+F/L3XH3J78/hMXA4CU9coOYYiN2jquYrTjDeXeyy3PbJMstrxubc1YHgKz/hBoGmCuWqBsmPm8blgoxtyrzkkSjJWOt5T14CDIk4l97c83l/v7YjDp8uOav/dg2FZsJQ5RTWXp9nqhzSHEYNdXPROG0GktI4Lhiquv7/eV6QJBO3hozjMj1QuYBAqLdDRGnCecVS+3JtADdg4vqEcD6IkY7nj45o6GZKXFioIlMtQECe88bDLcsfH1FWl97m5vdlPqn0vpl5UQrB+nFJ6BprmRMniQcsjTBIyqavDdT4/rk+VqLmP6NNelNEL4rHrVhArHZqibewqOvo4HrZ9/EgF8C88o5vK0yDzFrYgTrjf9Fnu+NRdi8tTBd5eGTCMUibKFp+53sDQNDKpNsuniZMeBF0vZq2rGClC8FTB6oMiSTO6fszWICJOJSudgDhNWWy42KZOJjNK1k4B25FwdLZXpuQA+Pm31/gHbywjpaDiGHxkscqPfuxwwuInCSkl/9HPfhfH1PiPf+eLz/x+1YLJn/r+a/zlf/oury+1+cSl/fv041Q5ICaZMhC4Mlnck7FVd02GuX35due5Nx52udv0SDPJaxcb47a9qbLNIExIs+wJHbHDYrnj55uD0k6zDH3XKtp2t77teH+9z3trA/w4QZ8Q43ldLZgs1B22+tGJCO0fFJahc2OmRJxkfPRCja38cN7zE3YhMz6B0draKFqsdQOWmh6ZZIf21kFxb8ujNQz52p0mm70QXRe8slDh6mSJT119tsTpceJ7Kx1+9vVlNgYhrqlzc6bIl16c5YW5k29R2OgFfOdhl6prkKQHFzudLFlKuN5QrZiNokXXjymYOj0/4eOLNZbbPkjBajc48P1b7SrhVUPPhYzXBwih7n/B0qkUTB62faI0Y7biULQNFhsLfP1uE0vX2BqEO1ru17rBOKk50od8GsIkZaMXUrD0Q+9FW4OQIM7o5fO448UULB1dCBquRcVWhiRelBxK9+hZoWkiF4nWyKRqc3/Q8hDAbM3BtQxemCsjJQyihActTwW3eeK2PYwYhAlT5YMJ0C7l62jXj5+qnzPCyMX2+dm945JBmLDSCZBS0h7GxKn6TtMVm8uTRZaaQwZWSpIaZFJwaaLAtXPQuvD6vTbfXengGDqXGi6OqTFZtpgoWnz0Yo2bB1kcTwi9IObelmJU9IMIXdco2QaLdRdNgKYpce2TxmLD5fbGgG4Y85GFKjdny0wWbfphwnov4O3VHr0w5kLNzZ0rVZJyt2LRyOkPlGPb3AFcnZ+GL1yfwI/SXGDf3LX1rzmMGEQJm/2QCzWlj1W0Dbwo4faGMgUZtejDTgdfITiShIV6rdIafW+tPx6Ta+tcnizghRlzNcXSmiqrLovt7KhbG33WuyG9MFYMSCGwTf3Y26aOgpX2kL/+ldt0hjGGLnh5ocIPPD/N86ewNz4rbsyW+bFPLfKL722wtOXx7Ycd3t8c8K9+9tKpjX+x4VIwNWquklB5cb7CWys9vCjhG/favLSQ8uZyDy9OuD5VYq5awDa1I8/D44RqKVSGFxuDENcy+PrdJve2PPw44cpUiS89P/1MbL44zbizNaTsGLw0r/buymMGJI9DJYFVcVvXNV67VEfX1LN7xsRCAF6YrxBLiWMIXNPkvbxFvzkMWWy4BHGKY+rcb3n4cco7az0MTeVCRlq15xVHXZH+IvAtIcSbwDjtLqX83ccyqmdAmsm8xapEzVXin+1hhK4JolTiRQmDIEbXND5xub7nRial5N7WkM1+QNHW+czVyWe2sHQtVS2zDI2HHZ9EZnih6nO9szXkE5fsMWX38YPDcscf0/FLtoGhqQqhrWt0gwRL13ZQ90YOKJpQougniZ6vNuhhmPC1u1ukqUSfLhGnDpahqmAvzJV5/oCB60ExDBPaXkTbU058x5l8y6QSoa8VLL632mWl4+cClDovzFe4NlXaNSFyVJtvKSXfWGry67eb9IIE1zT4/I0pfu8h3e5OGv+f1x/yG3db/MUffeXYhN7/5Ocv8z9/9S5/+Z++w9/6Nz6z7wY0ckDUNfGE/ffjqLnWE8mgNJO08qRO0dKZqj76DmptSGjmGlSfuNw48px6lDRS7SJ7HfK2u/WNv2Mm2egFBEmKaxksTOz8fTtvGb23NeRz1yf3dPg5ScxVHdILNUxdo+iYvLM+YLMf0R7GzOcH4L0g5aPW6GGUYOgqCbud1XYQSCnpeBHNQchv3mux3gvQhWC2UuBTVyaPfb05KqSUvLfW5xff3mCjFxJlyhL5j356cdwCeZLIMqk0wMKEIEmZP4SOlxBih8PMUnPIvS3lmnd9pkicKHHq0f0+qFPl6F4nqWRUvEvzcVYLBq5l8NJ8BcfUidOMoqXT9RNqrhqLlrMQRmvFDiHrAxIJ17oBPV/ZRRct40Brd5ZJVro+fpgihHKn8+OMasHilQsVLF0niFOG0fEkuI+Ckm1yc8YgTFJMXbX/1lyL5Y7PjVzXSAilWbG9fTpOMx62lfh0lGZcmyqRpBlBklEwNFqecjrbHsyPEovGIdfJLGN8aI6SjCjNxgfkrhfTDxUjdnMQkmYZXpxxueEqgfuKEvX/7nKXYahxoV7g0oR7pgxSUPHIas/nnZU+RVvH0sGxTV6Yq/K5axNnzvwIopR31/ps9APCOGWx7hKnkgyBrmm8OFc5kVauJJMMQhWjRmnGVNnhylQRU9cZhCmGJnBt9fxt9lWiuBuoNv2OF+UMQI3nZp9M6m2fd8ZBH/w9xviw7TFZsmmUHF670sALU+JEdThYj83vTIKt6xgFjbV+QJxJLjYKOxJYSfZoP9u+Lj7LOIFcKF6xozKpXEvTDCaLSo5gcxBSdgymK854XRwleNtejBcldDwlH3DY5/YksNz2+PJb66x3Q5JM8vxcmT/22SvH1vlwGnhxocaFiSJ/49eX+OZSGz9K+YV31vP2yfKJMyQtQxs7To6QSXjQ8rFNtSe1h4oxvdEL+P6b0xiahmsdj5Pus8AxdV67PMHliRK/ensLgLVewJ2tAe1BhGsbdLz4meaDAAqWRsnRWW576JrSja7M773mrfdClpo+Qqhz3bXpMpapY+jiwA7yJ4maa/HFG1MA3NkcIIRgvlbIC/IptzYGXJ8uoWmwtDWk7SmDEEPTjnxOPS0c9er+r8BfAr4LHO40AQgh/gzwo1LKLwghusC38l/9qJSyJYT4o8C/BbSAH5NS9g763gVLZ6FeINjmkFYvWui6YFG63N7o0w9ivCglSeWO4PZx3N0acL/pUy+aXJt6NkppJpWl5+h8ernh8vxshd9caiGlao3Ybyy2oeGFKbqmWi/utzxlbx3E48P5Fb04XmQuNlz6garinnQ7gWkIQPL+Rp84yYgzSZioQGS6bOeuSsdbKdwaqIP5g5bPVNk6UtV7P1iGxsVGgWGUcn1KuZoJoOoapGnGWtc/Vt2af/bmGr/8/iZ+lHBlwuXmdIXf9ZG5Y3nv40JzEPJf/KO3+eTlOv/yaxef/oIDwrUM/q0fvM6f/7m3+OqtJl+4sTfLxTb08X2ZOsL9TjPJfN1hoeug6+KxZK7G5iDgzYc9KgWDybLN1SM6Js3XCmzmzJjDzpFMSupFi8sTquqx8FjyPE0zvnW/DUK1x3366sSRxvgs0DVBx4up5OLBjaLNMExpFK1dhWu3QwiBZWiEsdK3cU2dIEkBcahWvgctnzcfdnhrrcdqx+fmbAkQ/OBzM9zc5RBzVnh3rcff+voD+kFM0dF5ZbLC7/zIwqkkpYBxYHWhXsAxNeb3EKg/CNZ7Ad9+0IWcnXqhXhi3W1UKKlE8CBPWugFlx9iTwTpXdVgjwLVVoFdzTZaaQ9582KHtx3zkQpXnZytj4d/WMKLrK3F9x1JslO175VzVUdqCpnZgoWH17xI07eAJtaWmxzeX2nSDmKuTLq6lYeoWlULGYt1FCuj7Ca6tc2O6fOotpF6U0PFVsvYTlxrMVhy8MMFL0qcyrTUhMHRBkkosXUNKya3NAXEiCZIUJ7+u16aL40TklUklVH+Yw42hCxYb7lj38/2NPlkGk2WLimNya2OgtOpcQzE/ELSG6oBScxUDrOwYvDxfZaXjo50T9yFdU4mUzX7AMDb4UnWaSxOK0XvWSal+EPO1O1t8/U6TsmPysYtVPrZYY6ntoyEoOQdzlT4K4iTj1nqfrh/n+7ZFlGS4lo5jakzlrA1li+7SCxKen1XPzvsbA6Iky4WKn4yPR05/cSqfScTZj1J+7tsruJbO569PMVux2RIRRdvYtQA5W3XwwlQVufO5F6UZ066Tu3dlO9goIwffTMpnLnADVAsGK20foUkuNYqUHIN31/q8udyjZOsYmtgx54QQXJsq4icpFxsFpisqwX/WLe7vr/X4u99cZq3nM19XRkp/+JMXP1BJqREqjskf/uRFJeYfJNzb8vnbX7/PF25O8UPPz5z6eF65UMUxdaIkQ9cEQZqoJHGQsLTlcX2mhHmKjnxPw2TZ5lOXGoRJylrX55ff3aQ5COl68bEwlMLcpbtoq9bBUZvuXsik6nYYhgnTZVu1SHoxxfz5Ok8YdY4kqeS99R6bg4grE0WSTGLrGn6U0vZiNE3b1YHwvOGoiaktKeVfOcoLhRA28NFtP/qulPIHtv3eBP408EXg9wN/CvjLh/mM3QKw0Wbw0nyVWxtDpBQsd3yuThV3ZV1kktwWO1W/f8Z5GKdKf2I9UG0QuqbRC2I+vlinNVQOM/s9JAs15SbomMoKNkxUPjDOlLvO48yow7oFPgtcS4k1N4dKL2e14zNdKfD2ap9rUyVMQz/2isHo+4NKKJyEva1i3MBE0WK6XGCz7yMRvL8xHFuHHjVxsR1+lPL2unLfM3Ql4vrJyxNnLkT5OP7SP3mHQZDwX/y+V4492fljn17kp79yh7/8z97l89f3/+6j+3IUWIZy4HAtk6Kts9YNmSk742TJQq3Aei/AMYwn3OMO+zlPM1XYC4auNDdsU6fsWKz3Q6YrhXGAPF22mSxbGJpy4jgLvLXSY7MfstkPma06PDdbpuaaGJo40AHh6mQRP04pWgYrXZ/5WoEwlofqfQ+TlK1hSHsYM1m2mak4/PaX5k61deogeH+9r9bpDD52scbvefXCqR4IhBBcz1vRi9azHUCnSkqM2jE1Ypmy3PGRUs33UWFgrevjRxl+lFJ3rV0Pdo6pczmnkgtUYul7K11WuyGDULGYwiQbC/9OFK3x3Jip2E98ByH2dr3cC7NVh5JjYOnagRMbcZbRDxWz8r11VZE0Dfji5QYVx0RKxQ7Z7lJ7mtjohWz0QqRUScT5WoGXL1THQuL7Qc/df4M4pWQbpJkkTtQ1T9IM8sTU9kjD3MVU5Gkwt7G7RzpXoDSYcFRyx49TnETj+nSBMElZqBdoFC1ubQzwI8Ucf2GujGsrbaKzPmCDikNMTTBVscfX6MoxxAfHgbdWeqx2Q9W+5xjM1lwWJ0pcqBcZnkK7aZRmbPZDJIqp+IlLdaquyfOzlR36Lo+zoC82Csqta5/4+DjGnuT6S90gYak1pOaa4/VpN1Qck+dmy0gp6YcJmZRM5o6qezHJj5OZ0hxGSqvWi6kWYiXUbuiUbYOys7txy0y1QNW1yKQ8N3vkuxt9BmGCLjSuTRX5fa9ePBMG+HGhUbL5iS9e4zfuNPn7314hTCTvrvXOJDFlbzt3vbs24FKjRN/vcqFeYLZqc2OmdOxuzc+K+dz8ZmsQUrA0ZqoOps6xrO8LVWU+tFArkB7gGZjOn2NDF0yXHX7zXlO5xfZhpuocS9vwcUEIwYW6y1rPp+enhFFGP1DdVf0gZ5tpkov1Ipcm3HOxX+6Ho64Arwsh/iLwD9nZyvfNA7z2X0cxrv5C/vcXhBC/AnwV+LPATVSyKhFCfBn4qSOOcVdkUububREFc28bdV0TvDRfVYfggnUkdsZ2CBRVfvvmZOoaRds4EC1QCLFjs7lQVxv2xUaBNJOYhnam9MKibfCxizVqBZNrU0VcS2crF2A7iaz8dNkmyyR116SWO62dFBxTZ3HCpWjr3NoYYOjKnvM4BLKDOMPQBDemimioSvKnrpwfXZwRvnW/zd/5xkP+1BevcuOIrpT7wTZ0/r0fvsF/+He/yz9/a53f/tLxunJsR6NoMVm2yLKMkq3vCHivTZWQUq0TN85QD6RaMJkq24R5ZXn7M1R1LT57bZKOF3Nz5mwOPrWCyUonwNAFrq2P9YcOWkkydI1y/vzMVByen60QxBlXp57e9z56buaqDi/MVwkSZX/92qWJcxNwg0o4W4bGlakyy50ATQh+6IWZMwkKtl/vZ8HlyRLfdxOiOOXmTIm7zbzFeVvyqWgb+LmFeZJme2rAjZBJJbK+UCvQGkakmeTyRHEH20rTxNi18jhxmMNiEKdcmXBpDVS7jK6pQ/5MxRkXvh7fp08bI/aXzBjHA09red4Oc1uSztAFF+oF+kHClUmXML/Px9kG4Jg6s1WHIE6ZrtjYhs6N2RL3mx5116JaMLGMR7GXbSjhc10TaEKcm+c9zSRxKvnc9UnafkTFMbl0DjQ8oiRDotiM02UbAXx8sc6rizVAPVcnPV9NQ+PlhSoCQXMYUrJVe+5EyXmqg55rGbiNk7/HBUvn8qRLlGY0tum67rdWj54D9wzibkvXlC4Y6qwyUbIpOSaVvDi0l3bQeTmQBnE6ToQ/aHogBD/y8twHOik1gm3qfO76JEttn84w4sVcZ2oUD5ym8YFlaGN2otqnDKoFkytT5y8ptR0L9QIfu1hnsx/y2auTCMETccZh4NoG16aKzNWcAz+vhq7t6MKpFiweEqBrUDwn+87jKOT6mromxvvPTNnh5mzCILCZq53/pBQcPTH1av7fz2z7mQT2debL2VDfL6X8q0KIUWLqBtAG/hrwu4AmMGrd6wK7qiELIX4C+AmAxcXFAw26F8QsbXmUbIPLE8Ux62UkCnZporgj2TDSqInTTImSP8N6kkqJRAXcwyhltRMwCBNqrkmcykM/cAdNaJ0EpJS7jlnXBEGSsTWIuDTh8n3XJ4gySfkExmnq2qnSEbNMsjWIMHWNF+fK1IvW+Hv1g5iHbR/b0Lg8UTwwm+jrd5ssdwLmqw4//OIsnwriY21HPC6kmeT/8g++x0zF5t/50o0T+5zf//EL/LVfvsN/++X3+W0vzpwIY0zpEsUMw4SJosXliZ2Hh0zCzZnyqbtpbYeUkmEQM8gFVS/Wd7YtxankYt3l0sTZjHEYJmTAhbrD1ckSJdtkoxew3lPuaTemS089cGyHqWuHYh4uNYe8s6Zcb1673OC5GSXmfJ7scR80h3z7YQdN0/jctQZ/6JMXsQ39XGgT7IY4zdAP4CInhODmtsT0takiXm4KEqcZ97aGpFIyV7VZ74Xc3hwyU7X3FVkN45TbWwNuzpSZKtts9EKcA+o9pVKeCjMpTpVAu6ELPnqxjhclPGx7SpD7mLT2nhVBnNH1Ep6bKaEJjWE+xvlqQenkHCGorxetcVvNSaXAH2eYLDaKzFYKY9mC7ZgoKq0sLYM3l7sYumKmntWzHyYpwyDh1++0MHPR5h//wlWiJKNRPNt50fEifundTQwNPnm5wfc/N5UfXE53DTLyVsvXLtcZhgl3toZ0vIil5hA/Srk8WTzzVkzH1PmXPjKPQOnb/NqtLVzb4BOL9XPZVmbpGo6lYxtK422l43N5oriDrSylJEqzc5eA2Oj6fO1uC00TfO7aBP/ypxaxDI2SfX7272eFoWv8oU9coB8m1F2L37zbYrnjM1Ox+czV0+uGUOfNhOtTRb673KXtRRQsY1eyQJwqTcTz4P49X3P5F1+ZU1qSwNfvtmgNI15eqHIpP/cdJsY0NMFHLtYONYZBmHBvSxkZXJ4scn2qhKFBx0vYGoSUbONMzwm7oVqw+My1Onc2PTShjFCGYcogyBBoOGesw3hQHGmHklL+4BE/748Bf/Ox92oBCCH+Pirh9Q+AkWptBejsMYafImdTvfbaawfq//AjZTupaUqzIEgydA3iRBIj6QfJE3T3rhdzv+Wha4Jr08UjL/JxmrHeC5go2iSZyvy2hxH9ICbNVHB2EhXh44aUktubA/woY7Js7aAz+nHKveaQ9jDGNnVuzpaPpZ/+PCDJJFGSYeoagzDl7paypP/05Qn6oXIkS1Jlu32QKvz3Vrr8s+9tULR1Min55JWJsdbCecPf/s0HfHe5y3/3hz92okKJhq7x7/zQdf7M3/k2/+ytdf6FE2BNhUnG91Z6eGFCwTTw4pRKvsE1ByErnQDTUK1Ph9n4jhNRkvHu+oCtfoSpKXODUv4cbQ1CVs94jK1hRHsY8fZqj/V+yMcX60TJIzHrOJWcVCycZpKvvLfJnU2P+ZrD5YniuRE5H8GPEv7pW+usdnzmagW2+jHXz4jZdhC0hhHLbf9ISUVD18bPzzsrfe5tDZkoWZi6GIuaB9H+LbFRmvGg6XOp4aqWdCEIY+VKu1eifuzOmcpxm9dJIs0yHrSHhHHGIF/vHUNH06EfJKd+2N9rjPdbQxpFm0bRQiDY6kf0fBVjzNWcc1n42A17JdGCJENm8PaGaiX+6IUatqmdSWLqftOj7UW8vdql46nYsePFylzgjC9zEKf8kzdXeX9jwFTJ4fJkyMsLtTMZix8r0fXFCRdDEwgEXpSy1gvwooxG0WLijOdlEGfc2/KYrti0hsrpWUrVcn7eElNdL+bd9f7YOMA2DSWGHqc7Ch93toZ4YUrNNc+NpowXJvzjN9dZag25UC+w1g14cZsBw28l2KaSY4jTjLVuwL3mkO8ud7ANZd5wGskpXRNUHFMJn3dV8VBK5YS3/SzbC2LuN72xM+55YNWMWsTXewHtYcRmP+Srt7ZozlRwbX3s4HtS8KOUkVLGMEhYag751pK6fzdmygc+6502sky19YaxcpZ/0PJY7fqEsZIZuDJVPDb3+pPCkU41QogZIcT/KIT4x/nfXxRC/GsHeOlzwP9BCPFPgJeEEP+eEGI0sz4P3AbeA17Of/7DwNeOMsbdMFFU1HBT15CoiZekEk1TAt67TbJBlADqQHRY16jHYWo6aSapucqC27F0ZXsPDMKDi/6eJZJM4ucHjUGQ7Phd1TFxDA1LF2gwFkv9rQDL0Jip2pQcA12ow0gQZTzseNQKVi4wrI1tt/eDFyWsdgIaJZMwybjUcM9FlWI3tIcR/9U/fYdPX2nwuz86f+Kf97s/Os+VySL/3ZffR56AflLPj1VLgxCUC0p4e4RBqOZznMgdGmanjSDOqLkmliEwzZ2aTaNnLk5UNfQsUHNNmsOIMM0IopSOF431eqbK9okGCx0vwtA0HFPpazVK5+vQACqQGplOaBpMVc53MmA0p5JUEhxx3gdxShCnpDKj40fMVQtMle3cHWr/7y9QLVpRqlqOdE2JcO+nGxgm2dj58vF96KSgCy03TFEsvwzlKld5BtHl44ahaehCULbVM1gwdUbLxGldp5NErWBi5NOiYBls5pXrs0A/VCY6cabaunRdiXefB2z2QzSh2h0zKVk8y8RE3qo7DJWW1VTZxtKVI1gQJyfuGn0QjGKNfpBQtnWMvE3XPocMg/V+QNk2CeOMSxNu3l6r7UgmZJnEC1Uhfhidn+d+vR/imBq6Lkgzzk3C7CRh6hoLdYcwTmkUbTb7SkPvNFG0DQRSyZCYGpXH9tZhmCgJi+wRgeO8YKJo5YUWlAu9H48dnU8SjaJFzTWpuSZF22BrECqnUD8mTtMDnfXOAmXHwNAV883UNET+v5EsSP8DEAccdUf/X4D/GfiP8r+/B/xt4H/c70VSyv9w9GchxK8Cvwz8phBiCNwB/hMpZSqE+GngV1Atfj92xDE+AUPXWJxwd1Rbp8r2vuKdE0WLIE6xdO2ZWtIsXWkpVF1zh/32WjdgEMbnPoM5gqlrTFds+kH8hNOMZWi8vFDDj1Imy9a5ozk+K6bLDpRVYmmtFyq9sqpqI6i6B6/62IbOdMUmTkss1Au8snB+K0Z/8R+/TT9I+Au/5+VTqfCcNGuqaBvM1wrM1wpce4xxNF12iFMfx9Rwz9BO1bE0ZioFpsoOFxvujoPXdMUmySQFSz8zfZWyY/LJXOw5yTIWagUcU+fKKWiqFG2DxUmXetHilQvVfVvEzgp11+ZCzWWiaPPJy/Vncos6DUyVbaI0wzE1ikec91Yuqnx5osRM1VbaMAecn6ahMVm2KZg6lqHx4vzTGXBFS6fmqsT+0xJfxwFD15ivFZipqnEWbYOFWuFcGVRYhs58rUDB0pirFZjPrcOXOz5+lJ7KdTppaJrglYUaUkLXT1hsFM6slXK+WkAQcH2ySLlgcrHuUjwn7Uhlx+BC3aXqWnz0QpVK4ewS+LomKNo6E3lr42zVwTY0HuYszfI5WB8NXVCwVIyuC8HIWPa0DIQOg5JtEMYZjVKJ69O7M3FHmnxdP2KqdH72yEbRYqbqUHUtPnmlfqZ6fKeJj19qYBs6Sy2PmYpz6u2VlqHxscUGgyDZ1WhromjjRymGpp27eMXQNT59dYKJkk0QpQih1rfaCY9T18SOxOmFegEvTHlu1ubF+cq5JRM4ps4LeRdBmkkVMzeK6JqaBx+EzqxDnWyEEIaUMgEmpZR/RwjxZwFyofJDpVmllF/I//jxXX73M8DPHOb9DgNT13hupkwm5VPbFhxTUQafFY6p8fxc+YleejVJzv9E2Y6ZirNrIm1kSXsUzawPElzL4Ieenz6yvomuCV6er/LCXOXMtRX2w1fe2+TvfOMh/+YPXOO52dMTAv/dH53nv/+FW0pr6oXjdTMp2sZ40X58YylY+p6B3mnCNnSen919fXIt41yMcbbq0Ciqlq3TPJw7ps5nr04iD7B2nxWqrsnnr08oxsI5DV624zjmvaapNsAkO/ya6Jhqvh/mWgkhTrXabmiC5+fKB9LhOiuYuuC52fITz+RR3UHPKxxT51NXJohTZRxyVsnBkf5WlskDxZKniZpr8akrjXOxBlnGkxqC9aKVs8/PfnygzgTb18C9YoTzgPlagcmS/VRToamyvadD4FmhWjD5wvXJczEvTxsvLVS5OXt2e8jlCXfPs9luz+h5wujMflqakrvh2lSZyxPqGp3HdWE36HlcdpbX7Sg47Ei/nv93KISYQAmeI4T4DEqo/AMDTROnHkh8kCbGUSGE+C2dlBpBywU9z+r1J41eEPNn/953uTZV5N89QcHz3WDoGv/+D9/g7dUef/ebD4/9/XcT1T1vOIv16bCwDO1MDoX6B+DaGLr2v7vAW4ijrWkCPhDXyvwA3NOzeibPAqZ+Pr7reV2rz/sadJ6fp/MeI3yQn/PzPi9PEmc55z/oZ7PzcGY67+vCbjgP1+2wOGwvyOiO/BngHwLXhBBfBaaAP3CcA/sQH+JDnA2yTPJn/va3We8F/J0//dkzEUL8XR+Z51fe3+JC/be+BsGH+BAf4kN8iA/xIT7Eh/gQH+JD/O8Zh01MTQkh/kz+558F/hEqWRWihMq/c4xj+xAf4kOcMrJM8n/9ue/x5bfX+U9+14t8fLF+JuPQNMF//Qc/eiaf/SE+xIf4EB/iQ3yID/EhPsSH+BAf4vRw2MSUDpTgCSOND2kNH+JDfECRZpLmMOTO5pCf/IVb/OqtLX7ii1f5E5+7fNZD+xAf4kN8iA/xIT7Eh/gQH+JDfIgP8Vsch01MrUop/8KJjOQcIEoyVrs+pq4xV3VOtIc7zSQrHR9QYobnoW81ySR3t4ZMl22KZ2TB/EHBRj9gGKbMVOxd3aeiJONByzs393Y3dLyIT/7nX6Y5CMlyF5qybfCf/d6X+aOfXvzAahgcBoMwYbMfUnEMJkrnSyh0hGGYsNEPKTvG2M3zvGE0xpJtPLPgaphkbPSDc+m4N8IH4fk+CM7jPvQ0ZJlkueMjJczXnFPR9/kg3u8kzVjpBGiacpD7raTrEiYpa90Ay9CYqx6/uPsH4X5/kOK1lY5PnGbMVQvnUufmg3C/j4KuF9PyIhquRdU9Hbe1D8L+fZ7RHIT0guSsh7Ev/ChlvRecqXv10zCKE44KKdXrswzmas4HTqfpOHHa9/uoGlO/JbHRD+j5akEoOQaVE7QybQ0jOl4MKJeZ8+CeEScZgyAhzTKuT5+eC9sHDWGSst4NAcik3NW1Mc0kHS/GNrVzu0GbusYPPTfNdEW5t8xUHD5/fZLSOQ9yjxOrHZ8gVvO+WjDPpYjtyrYx1s7pGFe7AX6Ujq/jsxw+skyy3g2pFsxTt1U+KD4Iz/dB0PYe7UMflO/S8eMdY97NIfa48UG8381hRNdX18m1DBpF64xHdHzY6IWPYjXbOHbb+Q/C/f6gxGuplDQHEQC6FpxL3cgPwv0+Ch52PLJMFY6qbvVUPvODsH+fV4yKCecdq12fYZjSP8cJtO1xwlHQ9WPaQ/V60xAnUgD5oOC07/dhT6BfOpFRnBO4lkF7GCME2Cdc1SlYOiNCSuGcZJ1HDJnCLgygD/EIhqZhGoI4kXtnkAUIAYUzEA4/KIq2wV/6Ax8562GcKRxTJ4gzbFM7t5XSgqXGaBnne4x+lGIZGsYxjNE0BKZ2/hJwY3wAnu+DoGBu24c+IN/FMTWEACk5PWOGD+D9Hl2bD9q4D4KCpdPxYjSNkzn8fgDu9wclXtMQ4+d1N3b5ucAH4H4fBQVTZximp37GOPf79zmFrglsUyOMs7Meyr5wLYNhmGLo5zMehZ1xwtFerz9at8xzum6dEk77fgt51Lt2jjA5OSkvX758Jp8dxBmja7jf4n/v3j1GY5QSgjgFlMjzSSfBDortYzxOhElGlveKOdsOQkfFaJxpJokStYDrusA6R0ySk7iWfqTmjBACx3z273oSY4ySjDS/17apoR1DO+BJzkvL0I6FBnpSY3xWSCDI5836yoMTG2OSSuJUPYvmMyanjvNaJpkkztcIU9eObWM97vt93GskfPDW810/K87I8v3VsfQzo2wf9Fpun2+GrmGeYuD++Bi3xyZnee0ex17X8iT2jqPipNfz7bGLoR/Nzvu4x3hS13+3eO2o3/mk8Pi1fBRrnWLy+ym4d+8e8xcWz80zsheOfW88gT3gWcd4GvPjqGPMpBwntnRNnHjr7GHGeVZrwFGu5WnvRwcZY5xmJKka01kVql9//XUppTzRG3eqaUAhxKeB/wZIgW9IKf+PQoj/APg9wBLwJ6SUsRDijwL/FtACfkxK2dvvfS9fvsw3vvGNEx797lju+LQGEa6t79rSNcJrr702HqOUklsbA4I4Y6psM1s9H9Th7WM8Tqz3AjZ6IY6pcW2q9MxaF6NxRknGrY0BaSZZbLin1kN/EJzEtby1McCPUholi4Xas9NKT2KMW4OQ1U6AaQhuTJePZeE87nGmmeSP/0+/wVdvNfn0lQY/8699+pk375N6dp4VUkpubw7xo5Q/+Xu/dGJjHIYJd7eGAFybKj1ThfY4r6UfpdzeHABwZbJ4bFosx32/N3oB670Q29S4fgxrJJzcnDzuse43ztWuz1Y/omCpveOsdO8Oei2DWM03KeHShHvsLWb74fExrnR8moOIgqVzbap4bjQD97qW7WHEw7aPoQuuT5fONHFx0ut5mKTc3hiSScnFhku1cPh5ctxjbA0jlvPrf2O6dGwt46Nx7vjO9fMdr93ZHDAMU2quycXG+Wg9fO211/jnv/xr5+YZ2QvHPS9PYg941jHe3hzghSn1onliralHHWOSZtzaHBAnkvmac+LaqYcZZ5ik3NpQ++NR172j4CjXsjkIWcnPMtenjm893AsHGWMviLnf9BBCxdlnkTQXQnzzpD/jUFG6UCvCH0QV4v834IdQSaV3gL8mpXwa/3AJ+CEpZSCE+H8JIb4P+EEp5ReEEP8h8HuFEH8f+NPAF4HfD/wp4C8fZpyniYVagamSfajKqBBqU4lTeS6FII8bMxWHumth6uJYg2PL0Hhutkwm5bncoI8b16aK537OTJZsqgUTXYhzK7b7//7N+3z1VpN/8ZVZ/tF31/gbX1vix79w5ayHdSIQQoznzUmiaBs8P1tGCHGu2g0Lls7zs0p/5Txqc40wXXGoncAaeRIYjdXQTv4Zn6sWmCjaH4jrAqp6/vxsBSnlmc+3+VqBydIH59rVixYlxzjXe8dxwTb0cxe7NIoW5RO8/ufxO++FK5PnM9b639MzMsJ53AOuntP5ASrOuTldJj2Hz5ltqP3xg7AGTJRsKufsLFNxzHMZZx83Dls+/qvANGChElI28HPAvwg8B/x7+71YSrm27a8J8BHgl/K/fxn4MeAt4LtSykQI8WXgpw45xlPHbouTH6Xcb3noAhYnik/8XgiBZRzvxFrvBbSGERNFi+lcEDZJM3Tt7Bf0wyzgaSYRMF4MRtfS0AWXH7uWuiYYkXuHYcKDtodt6FxquIdeTKSUpNnZHyj2wrPMmSyTLLU8wiRloVY40Uz7s2w4W4OQzX5IzTWZKtnHvvhKKflff+0eryxU+as/9nH+yE9/jZ/+lTv8q5+7/FtioU/TjLtbQxIpuVB3KdnGiaw1u2G/5yZJM7Q9Nvj9nu+THtdBsdEPaA4iqo7JzAkxXJ8lyB2Nr+5azFRskmxnIvK494FnFbe/1xwSpRkXD1Btbg0j2l7EZMk+dZOQLJMcNqWr1pHjf95aw4j1XkDZMXZU6aWUT9zvEY774NTxIla7ASXb2MEkeXzPPioOu3eM4yxNcHlCjWevdea8YXvschjc2xriRScjQnvUvVtKyVLTI8jji7Jjjtec7Tjqd96OBy2PQZgwW3GoH1HQ/2nz9Vn3zDRf45JUcrFROLK21qiVaPt1PMg9itOMpeaQTMJiwz1UvBen2blLGjzLOrY9vlisPzoXdP2Y1a5/pPPCacRUUsL7630AFidcbEMf70dPi1U1TXA8IhVPRxCn3N0ccGWfjqHtOI414LBIM8nbqz2KlsHFRuGJOGivOX+az0GcZry53GGq7Oxr6HJez6fHicOult8npXxFCGECa8CclDISQvxN4FsHfRMhxEeASaCDausD6AJ1oAb0HvvZuUaSZqz1AixdGyeEWl5EP4h52PHZHITP9P4b/YAwzpit7m9ZudkPkRI2+iHTFYe1bsBmPzx3VP7tiJKM9V4wdibs+jEP8kDz2lQJy9BoeRFRkhEl0A/2dlloDSPiRBInCcMoOVQbxfaWp73aK7cGIX6UMlNxzlWlRErJei8klZLZirPrpjWMEgZBgkTyxoMOtcLpOzRt9kOCeP/rt9kPSVLJ++sDNnrhsduTfvthl/fWB/yXP/oKQgj+lc9c4t/+m9/iq7e2+OLNqWP9rNNGlmX88vub3NsacnmySMHUz4XDYseLeNDyMQ31TD++hrU8lXgYBAnOGTxXwzChNYyouuaeTqybffXsv7ve5/oBA7DjgJSSjX5IkklmyvaeQclWPyLNJBv9gGGU4IXp+Heb/ZC1bjBupe4HCb0gZqJknYkY8SBKGObjaw2jff+tlJLNvto/N/vhsSemskyy1gsQAmYrzo49cntb3nGj68WHvgdbA7U2tocxMxUVSEspubM13HG/T3I8ozF0vJjpSopt6PSDmKWmhyYEV6eKp9ZesNkPWWoO0YTSKlnpBPSCGF07v21O++Egz/rDtse37ndwrLP7bhu9gCjNmK044zH68SPHpuYgIoiz8ZqzFw4SDzyOKMnGTltbg/BIialBmHBva3hs7TDtYcQgTJgq2+P3GgSP1uDWMDrSOru9Df3q1MELNlGS8c5aj44XU3ctOl7MbPVg3/He1pB+kJyrFsb9EMQpm/2Qkm3sORdG54d+8Ojf+nHKb95tUXUNYkPuel6IU3U2sYyzcWpMpSTItaK6Xky9KMbSJRfrLrapsdkPKdpn67gaJhlvPOhiGIKL9Z3zdBRbVQrmqbXt7YYgSVlu+zSKFtMVe8cz/6Dl0fFiKgWDSydQGD0ovCjl/fUhzWG0IzG1X4zyWxWH3d0SACllDPymlDLK/57wKMG0L4QQDeAngX8NlZiq5L+q5H/f7We7vc9PCCG+IYT4xubm5iG/xvFiox/SHsas90J6eeKkWjAJkxQdgfMMrjHDMGG9G9LxYta6+9uI1vKe/dECPUri+FG6Z0X1rLHWDcbfzY9S+kGMlEpMeSQwWC2YCKGcPvbTiKnk/842tUO7qyTZo8/bLfnlRymrneBA9+G00fVjNvshrUE0PsQ9DtcysE2NLJMY4mwO/6N7vd7b+/rVXTV3NaEq38Exu5P8/NvraAJ+5OVZAH7bizNUHIN/8MbKsX7OWWBzENEexISxSlSeRfJxN4wOLHEi8eMnt4lqwWS9p57/ka34aeJBWwUm95see5mB1F2LIE4pWcaJJCr2Qs9P2Ojlz/Y+BY7R2l+2jSeSFKM9KYgzgjgdf9/ltn9yA98Hrqkr0wHBU3VmhBDb9rXjD2y3hiHNQcRWP6L9mLX0MEzIsqO7+uyFLJPje/DwEPdgdB1KjjFOuqSZfOakVLptPE+bE7V8fS7a+thsZBAmSKneZ7SHnjS8SO0naSZpexGmIUiy7FHssMs6c95xkGfdi1JcSyeIzsa1qxeoOLc9jNnYFms4hk7BUs90zTXHMdRe+/fo/h02njJ1QdFWsd1oLh4Wg0DN1yxT1/NZEKcZD9v+E8+ya29b4454IB89V1KqPx8U671gnDwOk5RK4WBJMSnleK8+LVv4Z8X2az8yX3kcFcdACBXj27qm1nOp5Af8KN3zvLDWDdS5rhsyPMT1Py7oebuWpkHZMfGilCSVSAn9MGal44/X7DA5u/VOuePu7iQ4uj8PWnvHVqcBKdWc9qP0CbOxUXx01nN+xCd4nOm2X4zyWxWHTeOvCSFKUsqBlPJHRj8UQswCTz1RCCEM4G8A/4GUck0I8ZvAvwn8V8APA18D3gNeFkLo2372BKSUP0Xe5vfaa6+dadZlVO0RAixdo+vHtIYRN6ZLDKrpoVsBtsPQH1ntjh6o0fvXXXPH5nyh7rJQk+OM6nTZYb2vqP9nVT1sDSO6fsxkydqVwbT92umaYLJkE8Qppq5RdtT0LNkGL81XnpoprhZMKk/5d1GSsdr1MXSN+eqj7LOpa0yWLfpBsmt1xNDVBpFlx98e8aywDI1+ENMPkj2DEF0T3Jwpj9lVvX2YZycBQxdEacpWP2I/FvJs1WGmYjPIE1nHbXP8C+9s8IlL9fFzYxs6P/T8NL/47gZpJj+Q7XxhkrLWDYhTSb1oYZsaH7lQPTfispMlm+YwZBimJMmTwUvJNnhhtkyYyFO3tQbwwoTNfsRM1d5z7ZivFZgqWTxo+8+0nh8Wo8PNVl8xIuuutWuFf75WYC5fz9a6wY7nu2jp3G96TFVsCpaOoQvi5Oz0MQxdaQNKKQ9U/bvYcLlQP9i/fRqag5BeoNgNJdvA1h9dy8d1IqsFk64fH/v9FkKth81+hPQls1VnT6bedkyXHaZKO+eooWtMle1nWs+1fDyjOSGlZLUbEKcZc9XCjnkyWbKZKFo7xtAoWgzDFF0TVI65Kr7XWAxNPReuZXBpwmW2WsCPUpY7HqauUToDJuCzoBfErHR9+kFM2TGx9yhmzuSxSfkMmLBZJnPjg4DJkr1jXmia4Pr0o2da1wRptvf+Pbp/Uh4unhJCcHWqtOfakWWS5Y5KEM1VnV1ZZ/WiySBM0DXxzCwOXQgMXZCkcseB19xjjet6MS0vouFaT92fRwk+yaOC3UFgGxqmrnF1qsj16SLOLlb3a92AIE6ZrTrj/UQIwUzVpuPFTJ6wYPZxwdIFS32V2Lw5U4JdplvZMXlpvkKaSe63PCRqvk5XbC7WC1h7PGtemLDS8akXzWNz8z0MhIAX5yvjOWRnGpWCQZxmTJZstgbheN01tCfneXsY0fEVC/Yg+8tR4do616ZLu7afWYaGH6V0fWVssVArnEmbterAKTJT3ck4itOMOMkYhAk3Z8qnPq7tcEydF+fLzFZ3GluNYpQ4zVjrqiTkXPXZza/OMw61u0kpf8cev+oBv/MAb/EHgU8CfymfHH8W+IoQ4leB+8B/m7vy/TTwK0AbpTt1rjFZsimYOromcExdabykkmHIgRIq+8E2dG7MKKH0UVvOctsnzSTDMHmiarT9s6queaaH0zST4wpslGQ8N/vkWGarjqq+Gto4QLk+/eQCcdBr+LR/tzkI6fkqM16yjR2ByVy1wFx199eZusb16RJRkp2q09JBUDB1bFPD0M2nVoqFEMxWnVN3grQNnbJjkGSSTCoG2l5BqxCCsmMe+3Ve7wV8b6XH/+lHntvx8x9+cYa//8YK37rf5rXLjWP9zNPARu/RnH5loUrR0c+kRWsvFCwd29DRhcZKN6D+2MEW4Np0mWGUUDzlcatkpEbVNccMkL1gGjpXT7GND9S1m6s6eFGCLgQbvZDFid1bLEbX9PHnuxckTJZsZAaZhOtTJfw4PfVr/TgOsy8eR1IqzSQrHXWIidOMmzNlqq7JNaOIQDyxHhm6diL3WwjBtckiHS+mYBost30qcwdb63a7Ds+6nguhXIe8nBHYD5Mxc1HXgidcpx4fg23oXJ8+medir7FYhvZEXFSw9F1jhw8Cltu+Sm6YGlcmXUp77H1nGdO1vQg/yqi5JjXX3DV5MZobT9u/R/fvqPHUXutB24vGrX628UhaYzuOc75qedtoEKe7ts0/Ps4HbQ8pFWOs6u4RbOYwj7j+TFccXNvA1MWuCU4vSsbMeiGCHe1L02XnTNrWjopKwaRoG9iGRnMYMb+HW7XIE4ij62kb2r4u6mkmiVJJrWji5vHLWWE0hzRN7LhXC7UC1YJKYj9eUJVSJWilVO2OB91fjgJL1/ZM6lxquNyVQ0Ax+FxLP3GXwN3gGDpXp0tPPKOb/VDFfwXrTO8xjJLZlSd+PopRlts+QZyx1Y8oO+a5kOk4KRzWle9fAMpSyv/tsV/9PmAD+Of7vV5K+beAv/XYj38d+EuP/bufAX7mMGM7TiRphqErFso7a30aRYtrU6WxzsjjParAjhazgqnTTxMcUz9SQO1FST75VN+0behsn4MFS2cQJLse7EfU9qJljH//uKh3mklFrQQu1AsnxqbShKJ4BnG2p1ZQECd0hhFxJinaBrom6ORCtwelareHioVTtA0MXSNJM1a7AYYuxj25qprqE+V0XyF4gtL5NKj7cLaL127Icrp3ZxiTZSoJqAnIpGS5EyBQ9/msRfM0IRiGCX0/ZrZq45gamVSbwyBMmKnYJ5r0+6V3NwD4oeend/z8izenMHXBP397/QOVmOoOQ37l1hZCCBZqBUwjT7CcM0YfqLaojhezUH9SeDJJM95e7RGnGa9cqJ3amKSUdL2IVEpkBj0/ph/EY3bShfrhRGNPCkKo4LLrxYwe4STN6AcJzWFI3bX2DfaCKOX9jT6mrrFQc3AsnSjJOGInzAcCSZrR8WNKtjG+h1re5r3RCzBCjaCR4pg6mhA8bHlYhsbFhnuiGg4dLyJMMsI4U66GQuzZdt7xIrYGEUVbP/YK6ehwWnFM6kULQ9eo5JPLNh6xWfZLcHuRao2ou9aOKvgofgK1Fy13fDShGN2HZaRuH0uaSZaaQ+pFxQCIU8lax8c2NcqOiUCcG5boYVEwNR4O1MHj1sYQyxAs1Nxz832yvE2zF0R4oWJsjOLKQZiwNQipudahmDbPGk9FSUYviHEMjbYXYxlabvaRtxflMedugtGrXZ9hmDJXdfaVhzgITF07UAztRQlRkqJrGsWcxZRlktVc2mC2bCN5JG48Yo0f5fnffmgd5swfU9fGOrWK0XZwhrKUkodtnyBOuXhIMfWTRJQzXvp+jGOqIo7S/A2J0uzARj/b16nZikOaSaVZm2YUDP3csOlbw4jWUOlKxYnETxKmSg4N40mCgmNq+FF2aFmT48JGP2C55ePHybg4dlbzJpWSNx92uNBwdxRaCqZOywuJE8mlifPJQtroBTzMW+2jEXP4A6afeFgcdkX+88Dv2uXnPw/8LE9JTJ1HPC6et9zxaQ0iSo7BcttjtRPw5sMufpSQpGpzS6XkyuTeImmXJlz8OD2yttQoM9r1Y8qOSrZs9AOiJGOm4lAvmGSZZCHfrPwoRdPURv+g5dEPEoSAF+YqCODW5oAwzpirOUyWbNpeNO6nbQ+jXatKR0UQp0ipkmejA/NqNxjrY2yHlJKvvLfJ/ZaPaxm8PF/BT1Qf9YOWz2evTey6kKVSstJRQnatYcTDtsfWQLkRXp4skkk5rpq5pkHVNdnoB2P9i4WaQ7lgPlVIPkxSpsunJ3TuRylCsO/iPQwTun5MzTXHh4bltk+cZbT9iEbR5CvvbaBr6sBTsAw0IWh78bEIB6eZ0u9wTX1PSm6UZGwN1OY5YqQNwgQ/yuh6MdWCybcfdtA0QcU2iRNJyTFY74Unmpj61VtNpss2zz1W3ak4Jp++MsGX31rnz/6OF07s848TfT/mv/5n77I5CLkyWebyhMvNmfK5FPztBTGWrlEtmJScJ7ecO1tDfvabD+n7Ca1XDq8xNQwTbEN7auLVj1LaXkQ1r7JuDkLWuyECSLKUasHiy2+v0xxETJYsbF3n4h7spMNi9NwUrb2LFe1hRJCkTJbs8X0chgnL7QAvVMnm1jDiK+9uUnR02sOImUqBIA72T0zFKQ9bPsMowdAEc1UHP87yls/aoedMlGQkWXYirLzte9mzYKnl4YUpwyjmYt1luqIOZI6hWu3nqw7LHZ9rUyUetDy+t6L8VhxTf+p+6EWqDehpY/QilYwdzbfWMOKtlS73mh4XGwVqBYsLDWdXLbiHbY/vPuyiCcF8rUCjeLwV3VGM0fMTZYmdr+UjYetrU8oOfRAmas12TbwowdAUszlKMu5sDnP2RzoWSr6zOWAYpkyULOZrhbGpAUDHjp6Yp10vZhglO1rDwiQlzaTSRTR0npstk2aS25sDskztJS/NV1nr+Ly30ac5iJmr2RiaxkzV4cZU6UyLMNuv0+N4fA0aQdcES02PzX5ArWAxXy+QSeiH5rGKL4dJSpaxb0JibDggGLeOLud6Nu1hxFTZoefHfHe5y0Y/JIwzFhsufhQ80eYJqkC2PVkJaj1c6wUYmmC6vHcL9ePYHv88bPuEcUZzGDJRVPOqOGUoyQIktqHvMDC4PFmkZBsEsZIUAFjrBVybKo2ZJbvFXiPxYU0IZipHG6uhadzZHKJrSs9o5D7bHEa0BhFSSlbafr7+2MxUnLHu4ij5ux+CWIk726a24+AdJinvrvdY2vKpOAZZ3g5eLujUHIvyAVsZO37Mt+63yaRa/19a2J/tdRjEaUaUZPsmCLNMsjkIx3If8Eh/V+krCfpBzD9/ax1dE0hU2+tmPzyQiHtrqNap5Y7Pm8tdkixjpuSw1lWSKSsdf/w+rWFEmKRMlfY2I4GDxfOHQZRkfOt+G8vQxoWNN1e6TJVtPn998glm60TRpkXE3DY27TBMsIyDJVKPitYwoufHbA0CHrYDbm8M0HV4YaaCs/joWgRxOhZG3439c5B5cVA0ByH/2+sPuDZd4ie+7xp6/v0dU6dkmWg2tL2YyjnQZfWjlK1BSNkxKNkGq92ApabHO2t9XEunYOk79pbRdSw7xp7np/32pPOIw95xV0r5hNJ4rhd1dnL2z4Dljo8XpnS8mKJt0PNVQmMQJGz2A752dwuACzUbwzDyrO/+N1cI8UxBu2Pq+FGKaahe/UGYsNYJ8OMUL0wIE0nHj7i7NWS+VlDWtwKuT5d26GFIqeioI1G6fp61LlqqqgTgHhMdMIhTbm30ubM5pFG0eXmhQs21eNjx1ebaTJ9oa4zSjCBW7kJemKBpgqKp8357qBKD+cHhcajqhse37rcZhgkSCOOMumvR8+Nx8CvEI/2CgqXT8xNMQ+lg7LehjIQ5QVXeLjZcJTKbtxqdRI/0ctvn9aU2hgavXqoxW3mSWQJwZ2sAUtD1Y16YU7TPTEosXcM2dLphTHMQYRk6qSMxDfXzkWDosyDLVCKxF8TMVW1eXWzsusE9bHsMAuXG4c6Wx+5RoCj+fpQyDFPVty8Z98efJDU1yyS/ljvv7XZdv/TCNH/+595iqTk8U2eOgyCKE37qK7d5e61PnEqqBYupin0uk1KgqN4jhqKbB2nbn6fVtsd3HnZJJDTutQ78vq1hxHcedkhTpdOzUC9Qccw9n8+7zQFpqto9XpqvjkWtDU2j5JhEaaaSQ3HGRi88Nl2J9jDia3ebmJrGhUaByxNPOpcFsbK01oTILcZVkDlazwuWRhArcfgkk/ixSjgDTw3chCZIUYyHzUGIbWj0gpSirbPWDQ6l+zAIYn7l/S3STPLqYo2F+vE5N7WGEQ9aHmu9gNmKw9Wp4pET1eqgmbDaCSiYBmkGtaJJaxiTZtDyY6arBQZhQpwLyuoaTzUJWev6fHOpQ4bkC9cnn2D1SqmSOY6ps9T0SFJJcxjyykINP1JaZlGS0exHTJUcKs6TB3lQe3XB1HMmiMDcRUPkWWAbKsawDG2s+dcPlJDuiFWcpJJbmwOGYcKN6RJppvbUGzOl/Luy479KXkAVf3pBzDwFXEsfxxqPz9MoyVhqDVntKHbzJ680sHSNWxsqkTBfc5jIk7SmrpgpYZaNE3SWqdELYjKZ0R7GKvDWNTYL4ZlpcHzjXovbWwMu1Fw+ebnxxEHgXnNAnMjxGjTCMFSivLquIVFaX36cIIfq9wVTf+aiTceL+OqtLUDwqSt1psoOWaYcyVzLGCcnNwch6z3V6mVoGo2iNb7HBTvXKxWw2gnwopRBEDNVVqzN3eZyGGe8t97HMnTiNGOhXmAQJDxsediGjmPoB2aG3WsOyTKlszr6qNGjIYTSidt+zUcGBqBi+pJtYOmPkqsjrS4/TvnyW+ss1Au8NF/d8R4j8WFQ8eTIAW1U6NwrybfU9MYdDNenVfJLE0ruY7Te2uajLoY0v8g9P2am4oyNLCxDeypD4t7WkLdX+zQHITdnSrxyoUY9v2+a0NA0tZf4UcLWIKBgmiDFgRNTmZSAQEqZ//l40B5G/NrtJoYmuDLlcnmitOvheXOgnGVHDpzVgjkeh2sZRIlyRvfCFEMT4+t60JiyaOts9CRdPwIpCOIEW9dxbR1D18af5UUJy20fmSdbLzaejBVHLu23Ngb0/JhXLlS5MvnsraMjs4etfsR02aLrq7OPLsQT4vhhkvKg5QGw2g24PFlkvRfw1kqPQRjz/FyFxYZ77B0gUZKN5VsGQYqpCzIpKZkmwWPi9PdbHkGU0hyEvLxQ3bF2pJnk2w863GsOmK0U+Pz1yWdiMvtRyvsbQ9rDmD/xmZQkTnEtA0MXOJaWa8SdDxbgcsfDj5T76POzJYq2jq6BzNQ+sN1gRErJ/eaQMFEMvxfnKk/Ecpv9kFsbA5a7Hi/MVHjxGeWFTgOHPQk6Qggjd+EbQwhhAueTB/cUWLqGR0oQJax1fSaKVt4CoPPmcoamCda7Ib9+t8Wnr0xQc81jDXq+87DDctvn+nSJGzmTo+aaqkKjacSpxNAEW4OQrp8QJGluARtRMA3Wej4TRRsNQZhkXKgXaA0jrJyuOwgTMqmEGUeMmYKl8/ys+qyjVBZXOj79IGG24owrqe+vD/juwy7yMTe1QZiwtOUhhETkn315QrGaTE3j5YUq672A+ZrDXNVV1bpBhGPqe27GAuj6CUlOr7UNjemyzUTJYrriUC2YOKY2rmq3hhHr3ZA4TZkoOTzNoHA3Yc67WwP8KMO1dS7UCzxoKdrvYsMdX8M4zbi3NTyQWK4fpTxs5+0jdZe1nk+UpNzvBVi6TrYgMDRBcxAxUbKYqThs9AOWtryxkF+aSaSULNTVAeDKRJEwybhveeNK0WzFYRglR0paREnG/ZaHyL9nGKd0/ZitQZi3mlrMVhxWuwEl2+Bio4AXpdzdGjIMUxYbBUT+PmXH5EK9wEzFJpNK62VroFpJnpsu0w3jE6Ucv7vepzmM+Pz1yV1//0PPq8TUz7+9wY9/4cqJjeNZ8aA55Cd/8Ra3NnpYus5k0eaPfPIC0+XTX35fX2qx3gt5ca7C5X0YpLomCJOUthczV1PVu9s5i7PkGFRci6mqQxgle2pEbMd6T7k59YIYP04JooxhNCBMMtWPP1VitevTHsZMli2my+rZubc1REPj0mSBJM2YKFpoQj1nlYJJL4hJZcZ6J6ReUiySvaroT8Nq16fnqzVyoxcQxhlbYcQgiElSyZWJIhsDZZd+oa6Em+9uDTE0Qc2tAWo9cU2di40CM1UbUxMstTwGQQpIbsyU0IRGJrN9Ww0W6w5lW0dIi4mizfWZMkvNIRXHpONFrHUD+mHMtakSi09pZWt50XhtX+8pwX0/TsdJwWdBEKcEcYoXpnhRSnsYjxPZ91tq3bs8odZbKRWrNkzSfP3bGco0XJOl5pA0k6qVJ0/eG7rgYr1AvWihAXc3h2Qy48ZMEcvQx3tke6haPB9ngCx3fJaaHoYuWO8FTySm7jXVARFgoergRRlNL8Q2dObKFpMlk6myzWzV5tJEcc97NlNx0HP9GsfSaXnRrmyUp0FKyVsrPe63PK5OFnkuL2ZMlS02ctHgMMketTR2lNaRY+pUCgZ9X7Gv13th3r7FWNfp0qRLECltHSnVPNCEShCMRbodk+dmywiejDU0oYpTXpRSdozxXjc69wa5UUKWSe5sDRRzpGhRMDS+dnsLTYMozvDChEuNIqahWvpOq81ha6ASFvWiyXTZYRjGvPGggxemJInkoxdrWIZywr3XHNILYrUGCTE+qEZJhqmr/XwQJlxsuFyZdIkSSZxlDII0T7gc/js1ByFbA8X4mK44bA1CokRZkm30Q2xT5zfuNMkyuDLpcn26zJ2tARu9kEwq8X8NddCerzk4psalSRdNqJhLoJIvN2bLLNQKGLrYdR2K04x3VvvM1x2KlklrENH2IlY6AcMwJiNjsVE8UBugoWlEmWKLXGy4vLXSwzUNXFtjpvxki8vIwEB9H4PNfoipC25Ml0gyuYOld7/loetQdgyiRFJ2DC423B0GCaN/3w9i7m2pg//ihLuriLqhizzRq2L2S5MuA38nc73imONE76iTYcSOK9oGjWKm4vs91omNfsBWP2JrGJKkGX6SEqWKRRal6nBbd02mSnXCOOMb91qsD0Jema8yUTo4O6ResHh+tsRGL9hV5PowWO74DMOE2aoyZ4qSjA0vJEoy4lRybarEcke57C02XCxd4+6WSmDPVh0MTRCnGUVLxZxx6uCaOg/aHhu9ED9J+diFKukh8mdCCCZLFh9frPHe+oCFusN8rUDdVS3DjaKVS2QI/DhhpRMwEVjMVApjUXVdE1xqFLi9NWStE3B7c0CjaLPaCbg8UeRh28ePVfvoUZLMlqFRtg0MTfDxS3WiJGOiZI33xThV47vXHNL345yppI3PemGs5kM3iHjjfocwzrgxUxozCx+2PXRNY7Fx+JbrEXRNjNtEpyoWV+0SN2ZKbPZCLuTvG6fq+ZVSstT0CNOUMEmpF20u53tikmUsNT1W2iGtQcxzs2Wmys4TZ5KDroumoVF3TS42CtxuDpFSJS+vThbpejFelLK4D7MuyzK+fq9Fx4v5yEKN+frJxduWruOToWnQGsZMFC1++MVZrk9X6HghV6fU/ez7Mb/8/gab/ZCbM2UaRZvdwoMgVqYg76z2WW55FG1j33j9POCwiam/B/y0EOLfllLVcnKm1F/Jf/eBwijr3RyGPGh5POwEzFVtPnNtEilVQihLYaJoYhmqBeNZ7WW3I0xS7uRC6b9+u4llaCzUVBXXMXSkVBWfetGiUbTYGoZ0PcGLc5Uxq6rkGOOAW9miqgd/qTnENjRVLRGCmmvtqB4cleoep9m4erTRD6i6qhVLE4KpssUgVAeFyXzTq9gGMxWbjh/jxQkP2z5fv9PMhYRVheTyRHG88T5oeVQLir0wucfGaRs602Wb277Sg7k0WeLyZHFHVWJ0UAnilPVeQCYl91s+aQZelO0rfrmbMOfoMDZa3EdZ6+42htbtjQH3msMDbfhbgzC3b88YFBMuTxTV9YwtJkoWYZzSjlRb5GY/ZLps873lrhLZdEymSjbvrPVoDpTGzNWp0rgiXXIMwjijWjB4d32QsweyQwtpdrxo/D07XkyjaLHYcOn5EQt1lySVbPZVFafrx0wnNvdbngoEM8lM2WalE7DeV20jN2fK46Cm5loMgoRyQbW4tIcx7WHMVb14LNTdx6EqxfD56xO7/v7SRJHr0yV+4Z3zm5jqehH/5T9+hztbAwxd41LD4U9+/iqvXKyd+li8MOF+U1XG3l/v77vReWHK/ZYK0N9e7TNZsonyQ2eYpDimRsnSKZo633djkv9+n89VzlCqmh/ldPowUc+JqSuKu5SqqphkGd+41+bShJqr81WVOJ0s2byz1qfvx1Rck4VaAV0TlGyDG9NlXpyrqnnbUwe7F+efFKTcD3GajVtF1vsBjZLNdDlCE5LpsoOUilEyanG6vTFgcxBiCEW/r7kmrWHE3a0BHS/m+kyJxbpKGBVtk54f5c+I4NbGAIAkU2Koj6M9DPnq7Rb9IGWhZjNfLyAQzFUKNEoWzUHIWldpvKnEgHKrSzPJnU2V7FuccMdJp9lKgamySqLPVQts5XtBcxA9c2JqqqzmRSolJVsfH/baXjSeL/1A7Yd3toZ892FXOesZOosTO9cML1Zt2NWCSZi3xZOzipNM7fvfXe6i50YL16ZKY+ZD14950PYI4pQ4cZnbdl2VdqOGEGLMnBih68e8vtRmqx8p1z/HQNdTHKuQizJHlAsWM2WLMMlY7QQs1Au7HgIKpq4kAaKUB61HNvSHdcvy45Sl1pAwltxtDjENNfbtwsi9QOmzKFdCSZCkxFnGpUaRvq8YZbNVRzFzcx0fUJX6IElZ76nDvrJrF2NZhBH2OjwYusZLsxW0/M+1gknFUYm7OM2YLtsMw4Sl5pC7W0PiVNIahqSZajV72PYRwMUJF9tUAryOqZ/I/rEb1nsBWabMJ1QyQbXJrnYC5qrO+DoNooRhzsq3dI1hlLDR8/n5t4O8xczl6mSJ5+cquKbO/W1yDBcaBQqmfqTk+HpPXav1XshU2WahVmC57ZNJuNxw2Ryo/T3NVKFvGCa8m7Nw56oOCzWH1V5A0pZMlS38OCPO5NjN+IW5CtNlxWhbHpsKyCdaigAmyirhKIQqvAZJSqNosNQa8LDlo2vageb21akiw1Axn3RNjOfWSt7uXLCUqPUogWvoKlnZC2KWO75y2ZTw/FxlRzystN40hFQF3ixTMc9MRRU7JmOLlU7AWjfg6qQqAI4QJTuZICNcnnDZ6odMWhYdL1ZOnMOYQZRyfao0jnlH93a7+U6aSe5uDVnrBUjZ41NXdo9btvoRaSapOgYzFyqUtgw6nioeDsIUXQgkkudnK3zt9hZrvRCJxLG0HS1eIwzChI1eQMkxdrSPaprANnWKjsn9lkfNtY7UFhQmKa3R+aEXqna7UkgqM2aq9pgN5+XMy41eSGsYsdYLqLkGE0ULP055f2NAZxhxaaLIxYbST705U6ZWNKnYynWxmQu867rYd28aF5SlSkp+4cYkcZIxmX//jV7Ar99pYhsas5UCkyUbL1Ts5TcetJnJEyYA3SAhSSU1V53Zqq5KngX5uQFgaxAdKTFVc02EpnT0tgYRFxsun746wSCIeW9twO3NAf0gYaJkUXctCpZOzbXG6+FM1Wa+5pC2Mia2FRls45GxAWT0/HjH+n0YjIopLS9koxfm5yOLxcsqPlzvBbyz2sOLUixDMIwTSpZBx0+wDYNBmIwF3S82CrSHEZNla8wO334mUW7vB9sPXVMfX48syxBC6WyudHyWOz6pzHjQ9vb83l0/YbWj5tOtzf6JJqYuNgrUQpOeH7ORz+ELdYdLEy4vzJURQpCkGV9+a53X77cRQs3bTyw2di1czVQcagVTaWwaBs1h+FsuMfXngP8MWBJCLKHIKxeB/xH4j495bMeGQZgQJRl113zMKlLSHEZs5BTH52bLWIagNYwoWhrzdZdPX1ULSdVVIqG7aSUdFZaumD63Nwa4eauZZahEQz9QOhaqepPhWDr1gkXBNpBS6Vj1/Jhq4ckN4s7mkOYgIs0yLjQKJKmkUTyecRuawLV1vDAdW0NXCgZTZZt60WSmbGNuo0TOVB0SKakUDOUoMAjxopQsSEhlRrMfUyua3JgpU7ZVm5ypK5p1P0gobKuEZ5lE0wRCqMD96mQRUH3/o8TRdnT9mPtNb6wJUnKUe0eUKPpozbV2HAo6XoQQYrwwjgL3NJPUXHNs06oJwaYIx+MAlQDzopQokbSHT7furjiqkmfoSguq4pj8yEtztIYRXpQyVVZ2sO2h2iTCJBuPqewYIAQ9P2a5rXQIwiTjYxdrGLrGajdnaAwEbS/EMfPXHBIlx2Cjr77nKBD8+KU6z8+WaQ4jSrbSLFjtBrnz2kg8V0cTUC6Y3N4c8qClKO0CcAyNqmvhRSmr3YDVrnLp8+JE9XqfEMX0V29tcXWquC/b8UsvTPM//erdsWX3eULPC/mZX7tLz4+QEiqOwU98/zWe38tG8jg+M1AJxt1MCAqWTsnR2cpbB/aDbWq0vYgwzpitZAihqt09XyU7f+X9TSaKFgiBF+0e5I+g5c/xIEi4MlliLj8k9YKYrhePHf9qrsmDlkfB1Mmy3OhAwGRZBWRJqg7qjcCi7yd84lKN9zcUw2aqrCpPg1A9x3tZk++FHWtkftCeLFnbdFU0JksWwyghiDMyKak4JptxxmRZFRDu5y1t7aG6BwVDaR9FacZqNwRCSo5Ox1fP4V6j8yLVltjxVGLs45caKkmDau2Yrjis9nzsTFC0DZz8GfbysYHSARoF9pah8YUbqnAjJePvUD+GfdHUNS5PFrk8WdxxzasFlagzdDEOsr380NUPEsrOzkO7zNm4mqaC+WGYIvJ/e2lC/ds3l7u4lk5rENHIE4E1qXR/hICNfkjfT0gzuYMhMFt1+MQl1aL1uO5Lx4u4UCswDFIaRZOZqmKMPmz7pEE8tqbuBUnOXElxrCf1g1rDiDfut0mk5JVt7V5HWRltQ7kgrbQVq3UQJEpqwNZwTKGelYKFFyWqHb5oUzBTtwFYbAABAABJREFUCoZqN/rIxRrDMCaIsx375Vo3YLMfstz2mM2ZYUGSUHWsQ42zYBt8/FJjfL9lzu4uOaplbNQO2R7GuXuvTpJmY3akY2nYukaSOy5OlhSzwdDFeA33w4REymNf0xXj8NGzUbQNPnmlQRClOyy/3dw1t1IYtcEJ4kxye7PPRMmiYKrYTwAV18TYFpOMWs2auWajY+rjOOip4ysYtIcxlYIqWBYsg+9/7pHxR5xJZqsFwiTl+kxJtRDqOlmmYrtUSnp+jGup9ahgPkpIWrpQ+lJJRjFP6A7CJE9u7oRlaEwUbS5PFscae4au4YcplydUi6i5x/cJExXbFE2dbpBgamLHfjRVtun40bh1y48ykkyOx5Gk2ViWoTUMaHsJUkLJ0ZmtFMbv5Zg6r12eYKZqIxCsdYN8Dqr3CeMMS9eULEWc0shlI9JMsSqBsVzBaN2yDJ25msN6L2ShVhjruoZxRpRmONr+ycauH/G95S6SR/Pg8c+oF022+hGNos10xSZDEMUpiZQMAnXvJkqPioGNkpqrz83s3s6z2lFFxGGoWF6jxF8/iGkNIpZaylVwruocqY3b0jUKlhLlrhRUAvsLNyaJUrVPFSxVkOh4ar00dMXAKRiqpe5Co8BGL2SjF9Achnn7o+TKVInmMGKzF7ElorwNWmmWHiSmlFLS9mOCJBnfJ8cyQEreW+/zsDXEMgzc3PlzrRtgGxqWrqNpqp1U11QCzNDUXnNzdpZCboCVZXJsBHWYWHz7sz4Mk1x7Tx8botzbGrLa9Vlu+wzCNGcHqwLGxYaLberj5I1t6Hz66gSvLtZY74XY5qMiQ8lWjFVNqNjlsMjyNpSOr0wIqo7FZi8aj7s5iPCihCTL2OiHrPcCZio2NceiYCkpBcvQxmsJwCcuNZjPi4ajItDjZ5KDQgIX6wVSCSVHzetKwWQQxHT9mDDO0Ob3fn3FMSjaKt6dKe/uQCil3GHCcBRIqSQXoiQb76NhkvKNe20cS+fyhMvFRpGWF5FJiR8lGLqKIUatwI/DMjR+4LlpbFMjTeHiMcovnBQOdfXyFr7/sxDizwPX8x/fklL6+7zsTOFHKXc3VaN+mFd5RzA0gRclrHZVhavnq+D3n765SsXRQWhcbBT57LVJLuQZ0uPozQzilPV+wCBImK86PDdT5HsrA779sM2VyRIvzulj+80kzXh/o69aSiydqZJNpWByZ1MxrTpePG4BHKHiGPSDhJJtkqUAAj9+OtMrSSW3Ngb7uqMJIbg2VdohZimE2NOuuuyYPD9rjr+LqWvc3hiQIdEkdPyIbz1os9r1uTldpuQYJGk2bh8wdY16UVX2VzoBBUt9ZqNoEaUZVyZdiraxa+ZciSIq9tR8TYnf3tsa0M51RgZhMtYT2hqErOZVv0uT7o4Ky6iNz8ndfwAarsWD9pA3l3tMlC0qjsEwSrhYLzBXKxAlqgqzlxte1TUpOZW89UGMr+NEyWZUG7tQd1moyXxjU59fdQ1emCtjGRpb/ZCVjk/HDzF1nQdtn0sNd1y9ub0xwI9TkkxyfRe21NPut2sZvJi3fmwPhF3b2KFN1tjWYlIrmLi2xmxFud34UZJXTiJsXWep5fGyYxLk83Gzrw7fXpzxyUv1A7vEHAZRkvH1uy1+/8cv7PvvvvT8DH/9l+/wq+9v8TtemTv2cRwV76z0+L99+V26XoRA8OrFOn/8c4snmpTqBzFLeatCnMonhPN7vmL8OIbGTMVmECas9wLKtvGEeHQmJa9erDMMk3ErX7VgjhkxE0WL9V6EpoGhScIkywOX3deUK5PFJ8R0K46545lVbaw2Sy2POFVtGUIIpvLE1HcfdljvBTxs+3xkocpKrt8Aan2uFgy+fqeFY6rD8eMVpv2e773WSEMXO9gE16fL42DmfmvIbFWZUyiNQp3uMOa9tR5eUGCybNMoWuPnJkxSNjZUcO6Y+p7W16qlOT80GhpvPOzQcBUrqmDqeFFKGEsEgtmKNR6vaxm4ts4wUO3jrWG0gyEkhMh1DcuHTtwdBNvfz9BVorFsq+A1zSRJlmGbgpemK9SLNkma5fpZ+tgBcitnkxqaSo5ur4YW8wJP0TZY7gX01gZcnnR5Ya5CxTGZLNoUDJ2SrQ7o2+/3i/M71+0R6kVVUHp+rsxivTA+hD83W2at6/PGgw7DMOXalJpLXpTix2qs16ZK46TPUlPtKwCNgsWNmbISLT5EFbvrx6q6HKfMVhxevVAjSFK+eb+DlBIn0KkVLa5OuYRJOm5LqjkmYptcQZxm3N0aWdw/EjkfzcOqq6rZYZLhmiaJlONY6TAYXcuNfjhmRF6fLuFaihn+wlwFx9RwbYOZss2FRoGlrSGuZXJzusgbD3t0/Zg4TTHz1qsrky4P2j7vrPZplEyen63s24Y0YmIZunjq/g1qjZmr7lyHdhMpH7E5Rsncu80hby13SRN42PKZKxd4d31InEheWajwkYt12naEa6nD+EhQXtNgsmiz0VcH+Kft3xfqLrOVbM/x11yLT16ujw/Oq92AWtGkaBWYLtu8v9Hn3pbHQq3A1akirWFMnKWs5Db076z1cC2DxYaKebp+TJhkNAfhDpF7x9SpOAYbvYD5bS5pVdfksuZSMPVdNXjiNOPWhhK8j7OMzlAlRl6ar/CJSw10TcWds1WHXhCz3g0oOztNbXRNjBMCk2UbXdOJ0pTVTkicKE25yZKNAFxbp+GqNdAxNXpBooxeLINGSRXTHFOJlwdJOtZTa3sqEfL6/TZSSl671MC1VUF5GKYULYMwNy5a6yqjn6cx4HRNmR7YZo8gTFnrhcRpxi++u0HDtXlhvqzag6sFZso2a92A37zbwshZw1GaMVWyxwXT1lAxbAxdJSj3Wktc2yCIVaLP2JYQubflESYZuqZYs/tp8e23f4/2xkw+ckkUQuQMmUd743Oz5bHr4zBUDuRXJou4loGpRzQH4SM5gDzmGK1JSZqx1PNZ7oQ0SgmvPEWo3dQ1msOI+02Psm0oBmbe3tYcqPXo3fU+czWX52QJx9S5MlXk1sYAyxDMVgtcqIttCUnriWKeljOJtn/vvbDRD+j5CWGS8b2VHjNVm4pjstIJ0IUqGJZtg9fvtfiNey2qjoltalQLBpqmcX2qxCsXKlh7aCZZj11rUOe0kVnWQZLeo3Oza+mEsRqnrsFIRurGTInLk+oskknJ1+602Mo7P5bbKiZTxXRViDI08cR+qmviCfblXmeS3ZBmMmeIqlb+lY6ak/NVRyUdUe3kL8xWxl1F25FlkuWOT5JJFmpKhqQ1DFjtBuOW+O1Y6wVjpvyNmdKhWa5SwturPW5vDJmu2DSKKkZ+fanH7Q0Px9ToeMp8wrUMLjRcPismqTgGF+ruvlIohq7xhetTB5p/u2H7/T4NHJXzLIHfBnwBkEKIXwX+ByllcGwjOyZ0/Ij31/vEacbLF6roQlUwh7k2Aqgs5UxuG7vaCej6Ma6t88lLDRol60CuDofB7Y0Bb6506flxLvpWGPdNf2+5S5pmfPb6JKaukUpJlqm+U7OgkWQZq91gnKF+fH/oB6oaXi0Yqre3rxgWB9ErjNMMP1Ktb0+rLm63g94chLg5hd7Un1xgpJRsDSI0AS8vVFXA2PLZ7Afc2Ryw1BzSzRkPH71Yx4vTsVbASHRwVOX3c0bFRMl+wuEny+S4LcExdSaKqjVECEGUpPzjN1cRqN7iom2SSaUF0xrudAKTj5E2okTmAXqfLJPM1ws0h1H+nQSaplgFZcekaOnMVpXdbD9IaHnRno46T1sgvChRLDpd8O3lLisdn0s5LdjUNYQmmK7Y3GsOuTKRKq2vjQFBnFIpGBQdnSiVWAZ4cUb9sfc/yP1+2uI/urdppizQv3pri7JjEBflWNBzquzQHChabxCnrHR9moOILFNV7I6nqPlhtj9b5qh440EHL0r31Jca4eOLNaoFky+/vXFuElPfuNfkz//Dt2gNAsoFi49drPHv/7YbzJywuO/2dUXusni8udLl63dbZFIxSoq2wVZfuU3tRvP340RVifPEwva5X3FMrky66JpGlMhxu17NNfcUpHxaK/IwVJXPqZLNO6s9vnW/zWzZxp8scW26pFibmSSKU4ZRyr3mkNmKQ8E0mK6ow9+InTOqoG7HQZ7v/cYopWLrJmnGIFD6hnGqCimvXa5j6hqTZRt7S2drGNP3E1a6Pj0vIZWKxeZF6hDu2iopXtlF52QYJYSJWhsu1F26w5iCYWxLDIfjA9bWIKbqqjVV6dgpx7qOF7Mc+bnLp7ofSZKx3lesmaJtcHVbYuVZMRi5WRUMvDBjveeTZHBrfcBHLirRekPTmKu643u0mjN4VGIBJktO/h4mwzhD0zTF0HMttFyTI0wybq33eedenySVLDYePVM3Z0tjt15T1/a930mqdC90IWgUVevg91Z7+GmKhmqlH7lJeZHH7c0hpbzFXdc0WsOIvt+hXjS5PFGk7pq4lj4+VB9UGHr7eN5f7/Ow5TMIYy5PlHAtg66v3L/eWeuzWHdxc3Hl7U/3dNVmuuzwoOWx2vVpbAvWt4sez1SUdkpKxsVGGS1PVhSsp7tj7odRcjhOM1rDkJmKQ6NoqRa4MGFrEPLd5Q6vL3WoOAbPz1lsDCJ0XT07kyWLOBeXiZKMvv//Z++/g2xb0/Qu8Pctv7Y36fN4c33VLd9Vra6W2ojuFpIQaASBpFBIwSAINDBAYGcGZmBA+JgJjGDEiGBgxEQwMGpJPS0BrVZRbaurusy9Vdcdb/Nk5vZm+bW++eNbe+dOe9LsPOfcZp6Ojjrn3DTfXusz7/e+z/s8au2Oc9b8LMZhwrNBQNEyWKk6U72eyTiet77h+ftQEKsWvoqrEsG3t0ZsDgNMQ6NU0Bl4ksd9j9YwYhDEU32X2ULb5KlLORsHpcc6v48aX5ZJWuOQOMm4sz3iYdtjreZytVnE0jWe9VWiN0ozRqHStbtQK/D+4z7tkWoJK9pq/ylYO623e2NS1eqv3kNrFLJWdfnd+51cIxSuXqxPz4tBEKMJMW0nnoQEUZJye2vEJ5tDHrTHrNVsLtR3kll7CxMTTBIhUZphGxrPBgGdcUScx3S3t4Z5d4HEC1M6XkTRMvjN2y3iJGO9UeDzl+pUHJNLTaWdo2mCONn5kKrzwmezH9L1IpJU8pOvLfKwM+bO1ohmyVaOtLbBjaWD2RYHYb3qslyxaI8ilsuWcur2FLPxUrOAAO63vOkevz2MKLuqK8BC3Sdubw8xdWWc8c569dDfP3HzXq06NJaKPOsHfLAxYK3qTk1AirZB2S1Rtk2WKoe3UD3v/BZC8DxfkU5+NmZS6ZMlmXp/FcfANDQcUyVtt4chb62q4nGSM+8aZZvWSDGJdaHhxSmVI9ZBkqr28bKjdCVrBYuuF/Gsp7QXe76aL2XbQNOFai9ujdkaBGwPAxoFE01TmrZHueMe53MnacZmP5w+R1B3i8ldNZMq8feo6/Hrt7Z53A2ouSZfulzn+nKZ9ZqTjz9GiOTAgr2Ucuq46sfptB33JOf3s74SmvfCdNcdrWSb+e9guid1RuFU9yrNlOt62dFxTZ1ng4A4zXh9pUKUa9jWCuaRSZ3jGrX0vGi6X6rEYJmiY2DP/OzJZ/aiGCl3x9R9P+ZRR7X0awJ+83abO9tjKs6IL16p79tzZ/e90xgEZFKSZJIUiZfrKQ6CiDDN6PkRwSCl6pp8626LraHS5/3p1xYRmio+bg3DI5/dcebfYZh93y8Cp01M/VfAEKZyIP8w8F8Df2IegzoL9lon+lGKQDCMYt571OXu9pjWSAk/hklG2TJYrystirdWqwh62IaqrhZs41hivMdBJiUfPxswDlO+/6jLk86YrVHE1ijkK1caFEydvhfT9eLcPShiqWwTpxJLF/hJiim03BECPnexSpTKfYKTnXGErmlUXQtD07jcKDCOUurHaOWbUF5P4ig4Efn9oB/QKFrUiiaOoSjPjZKNa+psDnyGgdrA7rVGfPdBF4C1mkulYNLIBU/jZEcPanmxOO3TBhAIHnbGu5gbk0QUqE2k6ynr3VGoqiRXF0vTjPuv3dpiexCSZJLPXayptgBd8P2HPcquSd01Wakqwdm9F4ELdZe/+YMnPOh4vP+kz1evNrEMJcBbcg0WyrZyc5QzzkO5COzznuXk3W0PVeJGMTokQZzwwdMhSSYZ+EmusZHysO3RHce8e6FKlkme9nxqromhK0HSUaAqmk/78PZqlaIV4ZjalG5+mved5a6PfpxOs+b1gkl/HCu3lGHIKEjY7AdsjwMMXedZX+nQuKbOZt9X7oCmyBNRsRIPbY95c6XCjSWl53V5zgngCX791jaagK9dO1inYQJD1/gDry/yjY+3jhSTflH4K9+8xX/6d+8S5zTwqmvyj/zE1XNPSoFiNK3XXZJMVV73ojMKubM1xDI1RkFMZxxN9aPeXCvvSkwpwVmNrYGqeMeZYj1NYBuCB+0xQZzx49cbgKIfP8+JLM0kWl5oGAYJV5suiVSCyN9/rPbxjZ5KWDwdeHz8TPA5P8aLEjYHIVEq81YajZprMQiUoYLXTiiYOqs19blvLB3Qj3+M9T1hSEiYVu6aJStnFQQ86gS0RgFRotaxEGqfqxdNbiyWGHghaZZRzlmIA1+x0jaHAe9erPHmapn7rTFlxzzUTnzgJdQKNm+vVVkoWJQKJuMowQtT3n/SVe5MSKXxM3NGTBL2aSYJopSOF6JrTBNQv367xY+e9hmFCTcWS5iGxpWmasEbBgkPOx4V1+DSAa5Fk2czCpPpxWUcqnbr9jji/cc9mkWL//FHPTKpxOmLtk6awQdP1Z8ftH2qrpnrd6QMg5iNvnKAXau5CCF5a7VMkkk6fXX5rroW4zCh68WkObPHNnWuLhQI44z1emEa1BUsg8uzulUHvO/tQUDXi9gehbz/eIAQkjeWK9xtjel4EXe2Rry9XiVJZV6J3pkTQZKyMQhYKNqkWUYQJ4zCmKWyEkX/6TeXiJJsHxv6efCihB886PJrt7eRUl1O77fHPOl7LFds7myN6Y0jQLJYsadtJS1T4IVp7gqpLuxBotqiri0U2RqoC9D0cQjVUiul5Gnf50qzwCg8XpxxFFYqyinuuw+7bPV9vhUn2KbBSsXhbktpnj3tKa3I1ihksaIYkDJDCco3CgyjBCRkQLNkkkqlFemaGg/aYzKpzvSJi5cXptQK5u79/pjn9wST8yJJM+7mJgaXGgU+3BiQZhn+VkbB1Phkc8z2MKRgaTzoeAgEQkp6fkyjZIHYudBIqUTfH3V8CpbOmysVMtTaLFrGsc7vyeV2sgeNw4T1uoutC777qMcwSBiFCT96MkAX8KDjkWRKcFu15ksQkmGg2FCt4YB77RFFS+l8Vl0lNl92TNbrKs49KNaI04xxlORi9wkPOz4fbfQpOzrjMOUnby4wilJawwiJJIwS2mOlT7Nac7m+VORR28uFkSW3N8esVJQRghcledu2wYX6fodRTRPTtjml46QMgraHAUai2HESyeOeh2tpPOl6/OpHW4RJxhcv1/j8pTqjMOFXP9hkFCV85WqDG0tlCmPFWlss22hCtcH1g4gbS0W2hiF+lLFYUWystZoz/T3Hcf+aCOXXXZtGwabsqDZay1BM1e4o4L/6zQ0+2RxRcgzeXq1wdaFEnKYMvZgwTRmFKjH/bBDw1loFKSWPu4oB0iyauSuZRpikU/2j9liZ5ozyC2h7rBwFJ7HAwhFC7LN43vk92QczqVgpoAwrgiRjHCbc3hqTZBmb/YAnPR8hlOZWnGRcWSzQGoUkScZizcnNMASjIKbrh6zFLq8tl3jc9Vmq2JSes4YNXeO1pTKPOh4lx2Cj57E5DLlUL+ZyKiYlR7WzvnuhyvuPe/zW3ZZqEUcok5Oqg6FpXFsoUHFNXMug7ytzlrWqi2vpx4opdU1MWx0lkoedMa8tl3NmYoHHXY9OK6IXJ4SxSlTUiiYZkm/fb/ONIOULl2tUXMVkHQcxy1XFZhz6EWXbZJAXfgZBzGLJIU0ll5oni71LtsE4d4xU81LjzUZF3T16yrXw7fVqLnYuqTomQy/icWdMLAVbQ0mSSp501b1xmBcOXEPjSU91BTzqePhJyrWF0pQpfZKYvDDjPp+kkvcfd/n85Zq6UxsCP0q5szVWTFHXoDUKd5FQxmHCt+8rc4iCrdP1I+53RpRtgyhOYU9iaqXiYObP4iR36Ak0TUkVXF8oUS0ojbdbm0OGfkKUJDQKNk/6Ht971MU2deqOydOex5WFkoplCyYbfY31usvAU3fJasHK75MqsXtaR/nZ9/0icNrE1OtSyndn/v53hRA/mMeAzorHXWW12BlHvLlaUTagQ5+n/YD3HrXZHiUEUYJl6KzVXdbqDtXQwjENVmoOK9UVxlFKwTqd4ORh8MKUb9/vMAoSfvS0x53tMQXbYKVi0x5FLK2WqLpK1O5hy0PehKf9gEcdj61BwKVGkVGc4EXKVliJeY/pejHLZYcvXK6rbL+r2gn6fkTaVf3IN5dKx2q1sE3txBTESUXOjxNkZvDXv/uEZ4OAN9fKLBRsnvR9Ol7EpXqBS40C9zpj7rW93O3K4AuX6jzthdzbHvGoG7A5iri5WCZMsl3Z/jBNp5ecMM4UxTLN2B6GvPdY6YVsD0KkkNSLNl0vZj2vkE7c7VTbi8FSWWlSffhsgGPotIYh1xeL+9qVJng2UJfbu1tD4gzCKOPmUomVmstbq1U0IWgNQwSCpfxnOKbO6yvlQ4Vf4zTjgycDtkchK1WbzWHIOEjwo5R2bk9ctFUlN0oSgkQ563XHIfdaHnfbY0xN42nPZ7WmLljrNZcfPu2zNQop2wYPOmN+4sbioZvJcd73067HR5uq6mbpGtujkDTNcm025QTz2mqZYRDjx8qaeRRF6BK+8fE2zaLJ/fYYQ9MIqpK1XNz/R0/7xIkSpP/a9cYuTY5541c+3OKLl+vHYh78zJvL/PXvP+UHj3t84dJejtmLw1/97Xv8m7/8CRlqk77adPk3/v63ubl8MiHus2CvuPMEfT/m2/e6bI1CSpaBaQg2+iFbwxA914kq5ktJVXJDPtgY0BqG6Fp5HwPhvSd9bm+P8aOUX/r+UxxT7VmHHaKdcch7j3o4ppFXkNqK3u4arFZd7rdGmLrSVWvl2gbtoWJs/mhjwMOuj21o9L2YC3U3D8oEWaxYfrc2R1xqFGgU7WlL9V48b323hwHff9zPbd517rU8RrlGRM+L6eQClJ1xzmhFMvTVGv/2vQ63N0d8sDGkNYq52CiyWFZaWj980ieMM+5ujakXLL58iCjuBKs1hwcdi5Klc6HhghT89t02cZrxW7c7vLVWYXMQ8pkLFVrDiGb+4ibMkdYwoOvFPO4q7ZEsA8fSVNAdJtzdHhOnGW+uVhiHMR8/G3FrSzFLk0zy5Ssp1xb3W4A/7Qd0Rqp904sSvn2/gx+rpNFmL8DQNQZ+RJhI1bLddOl4MZ1RyOsrpbzqqzQLB37CR8/6tIYxq1Ulhm8lGgVLUHOUzs7Tnq/0GtNsWkVtj5RIeZhkuJbO8hEsADsPwMe5js77j/r88o82KFsGXpzQ9xK8OMULFOU9yDI0lA1511MirX0v4u3VGr0wJkkzqo5JwdZZtm2++7CHZWiKye2YJzaqAJUc+dbdNr/2SYt77TFJnFIumKSZpOIYOLrA0JUYd8FWa8fQNT7ZHPKo65MkEj33lU9SCKIsN7gI+XBjgG3qfO36Qi44r1GwdW5vjig6BgUr2pVsPi76fpwzftTa1TQBAqJU8r2HXW5vjyjaBgXLoGwrwVovTDANHYnkfmuMs6Jjm0qDzbUNXNvgzvZIJdo0+MqVBre3x3z0bIQXJaxWXdo5o8LLg20r1+mwDSUC/7z1PYuNvs+HTwdYhoZravzOvS6jMOGLl6vc2vJoDQOKjsG1hZLSWZEZfT/FNFTcECYpAz/Gi9NdRgtdL+b25hgvSpXblS4oW8aUmfS887s9DPnB4y6aptEoWnz0bMAgUIzJgR8zCBJsU2OppNpG+r5iGLz/ZIAXJXztaiMXyxY8JVCaNJYJCFzLZKWqjBS8KGVrGByq3zhlqkmlMfQ/f7TFg47HJ5tDlis2jaLDx5ujXBBZwwsTfvN2iyBWGqk/U7DICvD3vL1CP0wYBTG3toZ0vIiL9QLjUDm+LuWGA4edW7NoFC0sQ/CgrZKDutBYKFrc2hrx4ZMB91sj4kxyI3c/ftwZ8zv3O9P2X8vQee9RH0sXSKmcJUuOTpAYjMKUimOw0fN5/3Gf1YpN34/Z6Cux+71SEQfOqZ4S1h/4MZcWClxsqlad33d9gQftMX/te0/4xe89IU4z6gWbgqXz5asNWsOI37zTVm6ltQKfy1ngV5oFBoFyz94aBhQdnWsLJW4slbB0LddtVJpUZq7jOA6TqXbgcZ7pBM87v7vjiO8+7GJogoWyzf3WmHGYsDUMyDJBECes1QvESYoXpyRZRpRk2AZ889Y2H2zYPOn6BEnCqnS5sVRiexTysDNm5Cc8THxsU+fHn8OQn8XFRoG1msu373dojWLFuA5VR0t7FDIMEtIs43/68BnDIAUJoyClYOuMwpiNnmqbf/9xD6Ep7dm6a1NwdIZ+hGnoylWwYvP6auXQfUUIwbUFxfATCC41ilMGaMU1iFsZXS9S5i1egmPrvLZUJsrUfULXNRxL5+ZyiVubI9rjkIWixcVmkTtbQx61Pa4uFvnK1YWphqRxChrNUu7IbmoalqHxeu78d3trxDBIGQZjFsq2at21NJ72lbmYlBmWqWNpSl5GouR0Hne8vMAYs1B2CKKU377XwdY1vnQ5wrF1WoOQtbrLWzO6i0dh4j4vUZ1EDzsBUdrlz/242mdSKekHquX/zvaQL16p0/OiaUufHymGbppJuuOILM3oj2PGfsxv3WvzC++s7UqU6ZrYJ2NxEgjYJ8nQHUeMghTHMOn5qjV/4MWYhppXQhP0fcUe/ngjy0ksCa1hxOsrZf7Ely7xuOtxa3PEQtk61ETheZh93y8Cp01MfU8I8VUp5W8DCCF+DPiN+Q3r9NA1DcimAcz9todp6PkBokQnJeqQj1PJYsnmrfUyCyWbcZjSKFq7qH7zQphkPOr4+FGCzAQ1x6JSNOjmYteZVBU2TWh5UkxR/DWh+nYzKVmtulNGTsEy2BqoZMujtsr031gqUS2YVAtVbm0OCWLVXpVm8tibz0mTcWu5+8xC2eJHT/rc2h4yClLCNOULl+p5IkPRnZerLh0/xtI0DEdZVi9VbL56rYEmBJ1RyMBXom7GngXQKFhT+mImJZ2RqqwptyVJnEhcW6fmmtiWTqNo0fMiNgfh1Gb1sxfqmIbANDTSDGxdfd3NZXtXUKWq6tHUyfBRx6NeUCKKSyWLIEt52g8Yxxk3lku5fXIugp5klHRlpXzY4aNaLUb85t0WrqEr/SVDnybPBn6ChqqwX6gXiNOEhbKqbLTHqvLWHQW0vZhxlLJYsrjSLOBaBp+7WMePMrq5OPnzEuRHve/HXY/v3OvypOezUnWQMkNKkdv9xvhJhqVpVByT9aqLHyth0IEfMQpVZfRBy6Mzjlmvu1xuFKbaQl++2uAHD/tzTwDvxdOezwcbA/6lX3jjWF//+28uomuCX/1w66Ulpm5vDfi/f/PetIXDNuHf/4fe5cby+WlKnQQDP2YUJVi6qsBUbRNJgJEHG0m2Q/eNctH+pbJDs2BTzFuYZuFYOkilG9QLYoQ4nK7tRynf/GSbh22fZsliveYwCBQDahylxKnE0FXLWb2gHC674wjbEESp5NkwxDVUW9dC2WK1qqjvF+qqCvusry7JRm57fBiOWt/tUcg3b7d43PFZrjhUHD2v0IdIFM1dtSNo3FgqIqUAKQmSjM44xtZ1fvR0wEY/pOQo1utq1cUyNKIrdd5/PKDimseqHjZLNp+9UOVZP6A1ClmvFVis2GgI2l5EexRj6oJhkNIs7bA1Gvlzcy0DP8nQELRGIULCWt1B0xQLwDQ1ao4Sdn//yYCNXqBE81NIpVRGInawrx1+clnNMqVd9P2HXXUG50Wj9bqDH1k8aI8p6wZRqqp+pZqJH2fTIkySSrpexDhUBZvVqqvc8DRVdTZ1LRdOVyzoibg5qCpoxTEPFPffiyBO+WhjiNDgnbUKj7oeMoWNQchC0cAyBGXHwrUMyq6JESk2WNHRGUcpUigtsadDn+uLJZolm1GQULQMqgVrGpDutbs/CcaRcspUhQCBbuus5U5sW4OIKwsl3lqrogmNZkm1b8hcP0sXAi9JlaGHpXOx6RInkuWqzYdPB1OdqZWKw2cu1KYtUn7uHOtF+9tdj4PtoTLqCGOVFFUCuAYLOaPDNRSTHAklW6PvJazVHcJYjXnoJ9xrj7jcKFGcqVJPOikUK0MVgpRukGL/7rx7MxfK3xHah6PX9yyCOOV373e4u60cnVxTsDFQenU/fDpgtVKgMw4xNRVzvHuxSmcYsjWK2R75VGxz+lkKlnLTnUAXSkzZj5XshHMA0+aws7M1CvnWvTZ3t5V2XccLCaKMpzlDoTUKKVsGJVslNOI043HH5+72kF6QIKTg2SDk6SDE0XUWShbXF8vESYapC64sFFmpOlNtsuftRaau2q8GfkSYSkZ5C6mfpLiWip8m7tKmJii7Jn4SMggUEz5MMt5eq/AL76zwsO3xwyd9oliqc6BsIYQqXh5XA2UYxDxoq7FfXyqi6wI/zkgSJaadZJI0lRQtHS9KpiLnfm700M3lH7pezKOOr9pkNI2rC0VuLBYpOaYylyg7pJJpUgrUGfa8xFTR1lVbsiGwdG1H8DrJuNse86OnAzRNkGVQcnXWqqrgFyQpEpVgXq05VFxlLCSEQBMwCFXSRRfqeyemOlcXitxvKdOkOM1OlWSe4KjzuzuO+I3bLe61lI7OOHesvN/28MLJ/qPi9XLNIUkz1qrKybY1itkaBmz2fR73PK4uFLmUM5QquaPn79xrY+ra1IjnRONGua6autL3+srVBmXH5EK9yEp1xPcf9kBKbMtgvVrg9SUdy1RajKauTV12R0FKEEm644RLDZe+bTAOVeHu1tYQieCN1cOT3hOGn54bPU27RoRA0wRRnBFEKdWiyc2lMm+sVdgehlRdiyBJaBQtmkWLj/P21C2p7kA/fDJQmmNxxpeuNPnSlTq2ofTfToODmH/Nos2jjk/FMaZ7QpJKNKGxWLYZhzGrFZcoUxIf1ZxV/aDtYWrq8y0UbX74ZDBdY89GAXIITzo+zwYhzaLN8iGaxnsxIU5IIJUZpiGm+mglWxU7LtRdpd2c77W1/Ht7foyUYnoWlF0ToQGaoDeOp/vyecJLUtUNY+lcarp5fGpyqeFSdy0e9QOCJONiwUSKhCBKedBWRcQHHY8n/TG/fbdDdxyzNTB4Y6VMxT2d4+JxmJ7zwmmf6o8Bf0YI8TD/+yXgQyHE+4CUUn52LqM7BS41Cjzpenz3YY9vfrJF0TaUu0SzqFqLtkZkuZjZaytlfuaNZcg1IE67QI+DiWbHQtmiPQz5ZGtE1TVYqbh5Mg2+cLlOyRnl7n9WbuGsgu2KY1LNneFALZRaweBua0TF1nmSWyffWCph6BqrNZetXHvgMJ2BMFFW1F6YnNptcOJiV3VNkJLfuO3SMULeWqlwY7HArc0hutB4a63MYskiXCjQGoRomqBiWxQsFTy/tRpzZ0uJe19ouPsOxqWKM81Gx1lG1w8pWkrA9o3lClGa0hpF1F2TH7+xiGvp3N1WVupRknFzpUypFyjb5Lpy9lipKtHQvYfYw45yAur7MW+vVVmrKbHHn3x9CdfSGflKSHixbGPk1Uh1wO92lTgMcSqngc4oVBXchZLqDb7UcHnY9XENjc9cqHFjucTjrsfv3O2QSrjYcBj4KYIMP3drfGe9ylpNXfxMXeMnbizQ92PcXDz1tAjijEbJ5OnAx7U0LjfLeGFK2TVyXRWfz6xXePdiHUMX/Nbddq4zpOOaJlIafBInLJQtrjRdPnepNv3Z1xZKLJZsJJzZZv4o/J2PtgD42TeXnvOVCtWC6tf/lQ83+ed+7vVzG9dh2OoH/Cd/57bS77A0dE3jL/6xN7mxXJvr72mPFAuiUbSOXYGaYKFk89pKWQkxVhyW6y5vSMXYKLvm1L0JmCatVRuTCrL2Hoxfu9rkby0+oz0Oublc5n8+4neHSYpjGJQdHUNXugG6EPxoQ3B9qUiWQcU1lfCqlHzjk20KlsGPXVtgexRgmzolW6ea65fY5o5N+ULJVp9tucw4TE7lZAl5cto2cEx10bq5XMEyvKlWziCIWSip5z4KYr73qI8fpby+UqJWjIniDGugLidXmkW+eqM5ZRzdWCqzVlNJg4p7vPENg0Tp7hk6RVvnD7y+xOOOx7tOFT9O8xbckMWyRZxmU52fi40ChiZ43PVwDA0hVLvEJ5tjyo7BV28scL/l5Q6cyqHTsTQuO0WWy4q1uleMeIK1msPWIJxqKVVdi+WqS8VRmjar1QIVV+dbdzs86wdkSJbKNrWCydeuLWCZ+tTVseqaZLme3XLVJk5hGMZcrBeoFywWSgG6Dr1xjK5pXGkWVAtyP0DAofo8s5hcKoVU72W1pqysEZLFos3WKGK5anGhWqTrRblteMbYz7hQL2BoGrULFkXHpOZaU40rO3+uVxYKPOn5bI9CMiRhTr0/SrNk/yDV3P/K1ToFS6dkmQyjGNvUudws5CLWJVxTOaguVZypQ2bZMTA11c5ZsAxuLpVJsgxNCLK8PXOxrHTNHrTHLJRUkvlCXbVFTZh2h6E1DPno2WCf5omSWwhxTY3WKCDNlPPh164vcLFR5Bsfb3Kv5anWsYpNyVYtKAtlC1MTCE1jveJSdgyGYUwpX7OXGgV6XqSc1QyNC3WXgZ/w2nIJxzSm6+mswXaYZDSKNo+7PpYh+Mx6TSXIs4xrC0W2h9GUzeyYKiEepJKlis1i2eJSw0VoGr97vzN141Vscp1qweSdCxXepnLiMzKIU2oFC1P30YTgxkKJJJNUXSW8vVRWBgifu1RjrVZgGMTc2R4jNEGzaFHJ24OjJGMYxgzCmLKts7JUpOzsuFtfWyySpPJINrKhCxoli5WyzThMclfKDD9OKNsWRcui4qrWxLWai5RKx2niROiaRn5JF6xWXCxdmQq0hiGrVYdm2SJOZP6MD3+fQZzyvYddOuOI5YqDZWhTxpehCd69UONBZ0yYJDzuKUHmStGaOkO+e6lGyTF5d71KmCqWVJpluWOxxkrFpuSY0yT8es1le6jcz64vFGnl7NiDWh0neNr1+WRryErFoVk0p8YTYd5Wuz0M0YXGZ9arGLpgqWjztRsLFByDS80CQTxiqeyQyYzriyWuL5am+2/JNnhjuUy/4mBo6p2UZy7WfT+mNQxpjZVz10HJpYnJhKlru9ayaqV+vjiyH6eUXWVioQvBGysVWsMQy1COnJNOl6uLJSqOwf/ww026XsxrS0WqBUuxj9tj1msuzZLF5y7uFA8XyzZ/z9srjIJkug+cBJomeG2lxIW6u6vwc22xyIdPbVarNqZhsF5zuNgoULR1Pnk2IpEmP/fWMn6csVp3+eBJn6Jl4lpKUuVSs8CzQcDmIKDuWkpLKJU8rx5rGRrv7BFuf325zNYgQGjqXvPZC1VWKg79cczlhQJ+lHBtURWy3lgtc689xko1PnexxlZulrRWc/Nuovnfd68uFtUZPBOf+HHKaytlHnc8fvbNJVarLp9sDTE0JQMxDBIcS7BecwlaGWmWKXF/UyNJMz67VuVuy0NovnJdTbPnjGI/HENnuWzzY5cbVGcKUTeXy8oVNUhy9+SdOd0s2by5WiGIlWtpmkk+3hgipeTKYuFYd72D8MFGn85IMZoWj9AvDOKUpZKDX08ZBTFl12S56rBYtrjcKKFr8J37PTRNrUtbl6wuOhgafPhsyErZoWJbLJZtvEixpw8TxH/VcNqZ+fNzHcUcoQl42vP47TutPIts8gufXeXnrq2w0W/SG8ekWUajbOIaSlfoRfRNFiydz16ocmVBCUtKdpzgvCjhxlKJsmPyY9d2B24rVWd6sPR9pc2zULIxdbiyoILMxz2fKE2J0ozWKGIlZzGV9tACg1xcrpKL/N16NuR+22NrGHLzIB2VE2K1VuBP/dhlul7Im6sVfudeh3fWa4zCmOWKzdN+wK1nI7p+xKW6ongiVA/3H3h9mZXqkDSTSrfgiHdiaKp/PU1hueJQL5o87vjoImEYpXyyOSBOJc2SiWvpKkh3DGoFaxrgHSVob+oafS9knAsGv7ZcVv3DuiADSpY+dfFaqtjYhn5oy89BmLSNlJwGpTxxqmuCa4tlxmHKV6+LXYfGpMUgkRkfb4x4e63C7U31rFYqDl+4WGcYxNiGYopomjiRg9NhWKupAObaYol6QbENklQFSH6U8odcc1fwUrVNyo7B5jCk4hi4lkbPUxf8z6yrKvsg2LHXnrd990H4Ox9ucrlZONS17CD8zJtL/MVf/ojHXW+fK8h54mnX4z/4nz7hSd9joWzz+ct1/g9/6E2a5fm0OUZJxrfvd7i2UOT9J31aw5D7bY/linOiC7Br6fzhz65xqV6k7BjUXJv1a0Uu1gu4lr6LgSKEmOp6HAYvSrm2VGLRt59rNFF1Td6+UOHyQoGrzQKOZbBac/nSlQZBklHN52SWSX7nfoeqqy6wqzUXL0pZLjtT2/CVqkPBNKasj4mwt2VoWMbp189iyea1pTJXmkUu5ZbNl5uF3E5d27W2W7qWi7QKNnoBmlAB+/Ywolm0uLFUUqLHXjy9/BUsA04wvKWyxSebI1bzxAQwdUzKMtX2LiT8Vt4CoiFwLMXmfXO1wusrFRbLDk+6PqamUbQy6kVlufwTNxfQc/v37WFIrWCxXHFwLZ0wUbbHB63zWRcm19T5mbeWuFBzyeROlXMUJlxplqg6KhgtOwbXF0s0SrbSmxBKV2+15uY6L4L77TFBnFIwDZolC9vQubRQ4PbWkMddj41+gGUI6gVbnYGbIxXslewjzxzX0nl9pUTFNVmtFlgqu3zlSoNMSn7wuM96o4ipa9NK+NCPubM95H7bJ04lN5cLDHyVILzQcBFCTC/RQaRam7cHEVcWivzu/S4V16RoGfn5dbwwrWgrw5Ov32xSy93Fel7E3bxN9tpikXrR2nU2ZJnE0jUuNQrTZMMsY1gTkoWSw9duNEBKMqk0D4M44/WVMrXCfgcqUMyIOFXsGsvQ+e17bZ52A0q2t+vrlisOzaI1bcnXdcWcXsgLSF+7voBt9FSBrmaxGmTYpkbNMXMhW41nvZCeH7M6U0W38sTbBIeN86yoOIa6jFUcagWTRtHi2mKRnh8TpxKNoTKuMQS9UcjH22OaZZOvXG7SLKkWrOWKQ9kxp62ts+yj056RS2WHLFNn+FLZmZ7dn7tY22UQM4EQgoWSRZjb2Zu6YnBVAlXY9OOUb93rcHWxxGfWqkhUnHacy62pa6znWq2VgsVPvbHI6ytlvvGxhUC5Wa5UnZkkoeDzOVs5STOGQTL9PZqmnFUXy8qJc5KwmiDNJFvDQLXV7Ln03doc8tt323THMSs1m89eqHGxXpiy5KoFk3ecKq8tlqg4JlEqub5YJMlUJ8Zry2Uu1As5C1jja9dVW8wwiA8ssE32pckYLx7jWf1oY8AoSOiOY640Hb73oIsQsF5zpkzP5YrNleYKv/DZVS7Wi7uSMF6YYmqqNe9So7DvHa/ncfdiydn37hxTI0xTKpZFx4tYyF39OuOIzijENDQMTcOLFCPaNnZcqreHYc58PDppoN6bZK3qcKHu4ubaSe8kVaJUnd+T95llElNXYuRPegEl22Ct4vDdhz2qjirqlx11Tk3O/YmL92lhG/quZPUoTEhTyYVmgbstj81hwBcuVkizjAdtdd4ZQuRMWbXnfOlyg74fK/MKQ5lBXKi7qp3SV8Wa07pP26bOxUaR5YpLwVYJbz9KKdkq9t8ahny0McI2DBoFk9eWy5RtkziDf+QnrnFrc8iFhnsuSakJ9sYnpq5xfaHEjUXVOjoKE15bKjMIYu5sDXn/yYArTZdGyeHqQolaweTGkmL3lm0lVr5cVS2bQnCk8P5hsAyNt9crVPfMjYJl8NrKwfIY1xZLqrivCSWlkP+focOXLzdP5UTcGgZ890EP19RJMskfeN3hfntMaxju+1qlp5cxjlL6QYIXZby+UuKttZrqHMokN5ZKSpw/lTiW6pq60izw5loN11QdQV+4VOdys8Ba9ejE/auEU81OKeUDIUQduDj7M6SU353XwE6LO9tjvv+ox93tER0v4uqCymwq8UudcSXNKxwvVtjYMjTemLGYjNOMUZgAkncv1vZtFJ1xpFhQQrGgTF3jUUfR6YM45cZSmdWqgy4EFxoFel6MlBxJYX3Y8QhjpcuhC8GDjqdaEtjvpHJa3FguAery0yzZ3N4agZD0POUAobRKUraGEZebkg+eDHAtndWaw42lkhIRF+r5DIMEL1KZ7NnDYlLlrhVMpFRB2DhU2h6OrvHJ5ghDUxeln31rWVV5c8r5hbo7PbjCOFUOSY7OxfpOYL5QsvjBoy5SCj55NuTzl2r7DruzJiwO6kU2dEG1sP/9lR2TCw2XHzzqESQpv3GnRZJkSlOn5vK47zMKFA365nIJO29/0DT1vYPc8bBZsk4kylewDK4s7P56Q9cw9INbCK4uFrnXHjHwlItYnGZTYXkhxPQdXGy41ArW9B2XbNU6tTkMEAiWK/Zc7Of7Xsxv3m7zZ752+UQ/7+ffXuUv/vJH/PL7G/z5n7x+5nEcB51xyL/9tz/mYXvMMEj44qU6/+TP3pxbUgpUAuhxx6fvxSyUlVsdQvC075+MmYGa/+riuiO+u37KNdEahzxqecRZxkr16HEIIbi45/fomsi1ZWa/DuoFkyBK87mqhF+fDQKiNMU1DYJYCfI+zvfZ15aVaHvPi8ikuqCX7MOttQ+DZWhc3sP4NHTtwItxo6DEfe+3xjzueMSp0vUp2gb1oo1j6tzdHgOwnCrHtDC3Kq84BplU9tKuqR/6DsdxqpzuvJhawWC5sjOnNE1dLn6318OLE957NKDiKHv0y80ik1WjNFk0BEqrZJhfngZ+wpWFIiVdm14YJ9gb5B8GxRRVz2t291M24IolVbSU+5dj6kgpp1bhtYKZ26DnDBhTiSkbupi2g5u6YHsQcWd7pALR5TLjUIk5I1TgHCcq4XHY/qMJsYtZOIkfNARvrapWipKjHPye9pTraMeLWa8pV6tJS6ty2tNzp7KYOM347oMOPS+h5ysGVprBOExZrTknilN0TeyrsBdMnVRmNEsW9QNYTXe2RwQzzxH2M4aXq+odLJYtHnZ8wli1xR2GQaA0ydpjpbvYKFoM/US5Gx3wbYauNMu83GGuU7C41/a4tlhkpWKzWnXQNMHba1Xa44gwzjA0xTxOsgRdg7Jt4D/nUjxBEKd4kXJaGgaq9eW0F7VJ4n0WpqGzWNbxoxTH0hC+Kkz+8IlPdxwhNJUE+dHTPmmmzBXeWa9OWZaTQmQ8TcqoddQahQRxynLFObQNaALL0PYJGk/WyEH7UMk2uFgvKDeofF9/2FFsyHGkNEsHvk69aPKdBx2Wyg5eSUlfeJESYRZwzDNcsZTeWClPDRWOcl+tF1WscGtziK4php+pH+z+uD0Mp/p4trHjFAhqXraHIS0vwjIEaSr33QU0TeDYBr//jSWCOKPiGGwNQ6IkY7mi4sx7rfEuraijkoezY7zXGhPOiDkfhEbBZBQklB2dx92AjhfR82J+604HXQiuLap9MskkD9se99tjrucXaFBMQTNviay4BtvDgM1ByOVmgbJj8rDjqfbp0NulZwYqkRblboOT+O5+e8ytzSEP2j4XGy5rVQfHVO3Qs3Ow7JiMw/TIfQHU9xw0Lw1dY2/0oGmCq4tFHnV9Ho1U8rk1DKm6SnOuZOvc2R4pLa4g5nKzSJJmDIJkytzaHoaqeHZEUjqI06kDq2Pqqp3LVW1d9/KzNwhVm2ijaPLtBz1WKmpvrucyAHvn4uy8A7VPLJadIxkyR2FrEBBnkrqr7j2Gppwrb22NiJOM9ijMHXYTtQZGPq5pEiYZukhoFKwDncznhWEQ0/PiaZwwu29NClWWrtEZRXzrXgeAq80CPV8Z5xgC1utFRjLBNlSsNHtXKdrGmZNpW8MI2/CI4hTrmAma2b39UqOQdzJpp2LaJmnG454yoAjyQtE4jPneg96ur9kchpiakpwZBeqcCqKUQRLzpG/QbHncXC7R91UMU7SNKft7GMTUXIs0E5iGmOpenUX76mXgVG9aCPF/Bv4scIcZN1vgp+czrNPDCxMKlnJFKKeSkm1OtQe6XkzPi0iLFo1zWqDHxdOez/tP+sRxRseLeGetOp08WV71mVC6w1wvq5PrBpU19XkcU59u8ovllCzjyEz85PwVCDIJVdditSa5VC9woT6/C/CE7rted/n9ry3i5dbkry2VuNcakwwktqkhJYyjGImyiLcMjfY4Ikoyns305Mep3O3iZWrTSyQoh4+yY/LmapnFss0PHvfoe6o6LdixoAalexKnGUM/5rfutOn5iv5fzi+CQF6dVwetFyW82BTmDuJUaU9omuCdtSobfR/XNBgEIUiQqINb5COUUmm2TJh4AJebLg87fq4Dkk5FCueFJJ0IKKqWxhtLZXpeQskWdD3lcrZUcWjkmirAtMf7QXusdGAMZY89CSgNXRxoc3tS/O0fbRClGX/0c2sn+r5LzQKfvVDll947/8SUlJI7W0P+P999ymbfBwFXF1z+6Z+9wdqcXQon9wTX1Hj3QpUgTlVf/ymTgAf110/c1RxTZxQmtEeKtXpUYLjR8fGTNBeRPZ1WzQRxqtqP9NweeL1ewNDgR08HxFnKQtHi2cCnUVDives1dRmbOAQpDQtFea8XVVtiwT5eguUkSNIs1yURfHa9SppmdEYRpgEDP6Hk6qzXHFarDmF+WUgzmc+XsRLktHVMTV3quyjh2r37vx+lfOdeh+8/6lF1TdZqzq7EFMA761WCKOXZIKDnx1xoFCg7OtcXdwvYTt530TYxtJAwVnu0H6U4hkacZsSZpGQZp3Z/2YsJs2uYa48leavhpDLvx7vti9drLrVJq0g+hjRVrmJu3h61WnWI0gzL0GjlVvH3WiOVPHRVYH0SsV/X0rnYcOl5EX6UMAhing0CdAHXloo4hs73HnYx9Z3WvMdd5a76oDMmkyoJtFZzublUIkok4yjlcqNw5nn33pM+jzsBUaIuxZcaxWmidRTEtEchrmVMWRCgzomBH7OSM5BmmSfXF0v4cXpkG8NkP8mkxMj//PZ6Rem6lSz+swO+p1awuNwsqGAaQZRmSAm1gs1XrzeRqPnXKCo9s1tbI571PVxLp2gbGJq2T5/Lj5TezuSCMw5zV8tBQNEy2BwErFRdxlHCG4dUzc8C19L5ypUm3VHI9jhive6iCcFC2SLNMjYHIbahKf2nONt3mZ2cj4YuuNwsTM90KY9mfJ8GaSZZrqoLTJJl3N4aTS/stqnx5St1WsOYpZKjErooBu40MeDHFGx9eoYftYb8KKHnRbimMiA6zmX9o40Bt7fGTF6xoSmNvr0XrjTL2Boqdo25R1e1XrD5ydcXedDxqDkWVdciPcTWfTapvjzzOwZ+PI1LO8MQmXEsU5VHXY9f/XALgTqjPrNeO/DrvnC5zvWlEiXb4KNnAz54NiSM06n9vK4pF24/X6+TQrVrKWMAI0/cgXK5/o3bbaSEJz2PN1eqDPyYkm1On02UqEJ1IWc631xWReVJYkrk0aWpCaRUTtplV+myzRYnF8s29b3OlqfEbNz79lqVsmPSHoaKrRXElAoWtq5zbak8fQ6TGP9hx2McKrMAUxMESUbPi1Xx85Bk7tOezzhMaY0Ua8XQNMZhQmVmPa7VXba9CGMoGAYJFdcgySRvrJa52lTPbNJOfhxtupNAGUSosd3dHlFzVXKk7Jiq1dZPSCQUbAM3TFgoWby2VGZzGPHVqw3qBZOSq/a7xdLxXBVPigdtRZoY5eYgk33rzZyMUXGUDM3WSHUIebk27lrNxdA0FsrqXF4qq+TZvMc4ufe1xiFxmh2YmBrm7tI116JaMHfFsrAjW3NaSNTc+tLlOkLAuxdqaiyGmCaEt0chnZHaQ4dhTN9X7NZ3L9TYHgcEUYofJwjB9MzOMlip2GRSYGrq3N1Ltvi04bQpyH8QuC6ljOY5mHngjZUy7XHIStXJafcu67ml9P32iCddVV3+8tXGiYLPecPQBEglsOaYGpsDVXEtWAb3WiM+eTakM45492INWxfcaqvD1jIU7X4vjhPAXmoUGQRqk86kpF40eceoUMwrvfPCRj+Y2s9eXyzm7RUZ/SDhi5fr3G+PQQrKjqrmBnE6FcOdTSJpmlp0ewMMTYhdFaeuF9POF3OSSX7ixiJbQyXyaega9dyZSKIqDp9sjXjY9njY9YgTiZ1TlCdoFm1eX1b92QXL4F7b48bSyV2SzoJJcskyNG4slXjaD7hYL3ArHlEv2MRpxlLFYb1WYKFk0RpFOKaGa+kMg3j6c6RU9OYoFy2dJ7wombI5ri4UCZMMQ9O42HDxwpiyI5DAjYUiV5oFWrlg/URjYdIqnma7D/N5tdb+9e8/5epCkc/sYREcB3/4s4o19aA95nLz7G2uh+HO1oi/+q1HPGyPqRUslqoWf/Irl1hrzP93lh2DL1+ts5Q7vL17oUbPj8502M5iluV5bbHIk66vAqcgoeKYhwYbFVcZGgg0ZHb6Odr3Yh51PTSh9KZsQ6dkG/zwaZ+HbV/pTzkGX76mWjB+/FoTQ9doj9QlyTH1qWOboankvaYpEeJ5YhQm3G+pdXN9scQwjKcusT0vpJTr3l1bLPHaSoX2KCTJlFEHML2kZJnEtNTYhDhYgPhhx5sK2mqaoHiA9oZj6nzhSp2BHyNyTaF6wTpyHTaKFkGeFHJNnQ83BjxoeyxVbJYrzlzXzLO+ckUN0xRdTNo1TGVecoCT6t7KqmvprNddosTirdUKa3WXO9tjsgwu1HUsQ2ccaWwNIuU+eor95/bWSAkSC8UITTOJZalkyZOeT8lWDL0reSEpzZQItyYEl+ouF2ou15dUy/T2SDGNDnOJPQkmc7fjRXhhxuOuT8U1GYUJ7z/pc297TM01+Ymbak14UR6MGzqFA4J3Pa/UH4WSbXB5ocBqLl5sGcqUJEwOZ1qtVB2qrslbq2V6uc16IxdDn30fQghSmXF3e8TTns96vcC7F2pksEsvZxjEU2HuS03VrvWkp/Q0NwchV5oGIl8v875IzmIYJnz/SZ9hmHB1ocRnL1S5VC/S8SJWqw6tUYgmNG5vjfa5tU3Ox0yqtlUhcuOEOY83TJRteibltB07jFPao4h+EPN2vUqz5PCVqwuYukYQp4pl5xrc3laFhFTKXYnBo2KN+22PjzeHWLo2vbg+H3myE+h7EYau0/f3Mym8KKWYs6D2isVfWyyyVLH5sasL+EmChpjuqcdFvWDliduIHz5VkhHvrFe4+Rwph4Ef40WJKsYGhxdfhBDTIs7ba1VsQ+fDjT5lxySTap+REpYqVt6+ptg520OlmTeJF3VNgBAYuiBOJKNAyXi4phKyn+wtT3s+wyChjdon9zLhry4UKdk6b62pYu1Re9JZ9Ewn6I4jHnf9XD+yRJKq1uELzQK3N0c0ysodbLXicn2xxCBQYu4Tjbvp2SglpqETJCpBclTxTa2nFE2IadIxk3JayJmcvVEquWeMFXMxyri6WMQLM/ycQHBra0icSFZrzlwKqxNYujZd+5P9PM3bqqM0IyOjUTAByWrVZr3qMs4dVRt56/bjrg+o82Ye58q+MRoaYayKPUm68w6klCqmyBTLGakc3OsFi7Jr8Mc/v869tkc/SLi9PeJpP+ArVxrHSvaeFFIqhvNhXUWPOj5ppvQUU+nuimVP0mlyGCZswcl81TSBrel8/eYig/zONtnbhVDrWj1LyZsrJf7ORxGGrkxgbENnterwjCBn8lmMw5QPNvp8uDGi7Bo0CvaBHTifBpz2af8QqAFb8xvKfCCFCpRXKw5ZlvH5Kw0WSipAkpnaeCxD27GwfUlYrxcQwLNBAAg0bWdS+nFKmpHTGXX0fGMyNPV1UZrhaCerpHp5y4qpazQKFpom5rLYDsLEAVAI0HUBqMvE036ALlQAs1h2uNQoIHNnlCRTrKmrC0X6foyWU4V1XewKOA+Cqe0EbU5u91x2zCmTSMxsxpNWGV1TQpsCpQmzPQop5AGNrgkuLxQJEuXu6Eep0jR5ge2fE3ZRlGSEiRLnNHXVU/5sENAPYkxdJaI0IabVbVAizoj8EBPKOTHjYIbLWTAO0+lBPs5dqADWawWe9n1aY5XYK+ctl3sPxMtN1YJqGypJe21RZfjnMS83BwG/dbfNP/XTN09VNfh7P7vGX/zlj/il9zb4Cz9148zjOQhRrNzIel5IpWByoe7yj339GqVTumY8D5oQu1pQXUvHtXazZ/pezMbAp2gZJ67KT/ZUKSFOJI6p9lnL0EgyyciLqOZ6arNYqRf43MUayLMFTaM88E+lJIiy6XyUebK7WbYp2TpemKhLb+4qOLt2Fks2AmXNbBsajaI9l4B7Fl6Y7Fo3k6T4Ws0hTlL6XoBjalRcAynlPvr91YUiw0BR3jVNcHlBjfWghIquCVarDqmUvLFS5urCwQn2gmUcuu6yTKo28CTjQt2dXvwmLNv2OCLNFLPVj9K5n62TnzcMYkqWiaGpM/xCfT/TIs0kD9pjkmznkm0bei6qTN4eabBYshkGCet1l4Efq3mqK5bYafbJXs6kSKV65us1FyGYMrd0TaNa2DGjKNoGT/s+1xYKVFyLxZKt3ClhnzbOWfD2eoWKa3IlUALslqGhCfVM/TCdtqqa+VpRlzNVxDnNvO/7MRv9g/ePvWy+1iikNQqpz+iSAazsmYdZJncltTujiCxT2leuqeNY+r5kzewcnPzZMXTCOONSw2W5YvPackkx/M5Rb2UcJuqZZmr+lh2DIMlwTJ3LzSKNkkUhN4sI4t1ubZebBeUIXDSxTZ0bSyXVHj9nbcYg2jE8GEWqBcexdKoFg34Q0x5HfOVKffp7Z5MXl5sF2iPF5Fdi6ypWPeoMH/gxjYKtRKCPqSFxc7lExTVwTR0EbPbDXTHzBLomKFqGSsikGX6QUs41VR1TJ5OSRx0f29itq3YcTObhxUaBjZ7gk01VXOj58XO+Ey7WXd5cq5CmkrcPKZRl+aXYNhUbSQhB2VXC6oJ8XU4TJ+xqiVOyIGquB1E6LTb/+PUm7ZFyfe77MWZuqGDkjpxerITo7fysftj20DTBlWYRXVMF4NO26J8Gk8+RpJIgTlX7uICiabBSddjs+wRRykLZIsskFcfctWYuNgp0xzGGLtCFoJ6bORzFwLlQd5WxVJIRpRkCQbOkYrDJ2ZtlqlhzKx2RpBkrFYeSbU4LQmGSEuesl1GQzDUx5Vr6VJtpIbVAKl22MEkpWgZFy6BSMCg5JpsDn44XYYQpVcdUDo0zSWLjnO4w1xaKjCN1nowCxfBarzvT9ZVmGVGcoWuaMgErqf3ey9vph35Elqk7yyhK5p6YcgzFOmoULfQ9e8akkO+Y2rQddTaWjZKMk8oTbg4CurlO2+xc2DtfgamrJKi7m2PqaKi1ULZN6kUzJxZAZ5zS99X555g6V2Y6icqOmBYz/CjZ9d4/bTjtifxvAd8TQvwQmKp2SSn/6FxGdUJEeY9ts2TT82LSTE61RL6aB+uGrvG5S1UWKxaWoZ9L1vi4SNKMu60xUZJxfbGMaajEzeSQvbJQ4lHHYxypzcXUVRXkQcsjTFNub41Yr7lTIenjaKC0R9FUnHAUJefqhLZSUaLCdt6Lu1p1aI9DNvoxfpxhCMG1q0UKtsFazcGLUpIs41v3Oghgve5OGVdXF4tHBg/tUcjTXoA2yWzn/bbbw3Cqz+WYOk+6Hq1RxLXFonLdcFQ/edeLeNT1SXsBzaK9a0NcqThsj4KpWPyLxFLFJsky3PzCeKmhKw0SVPBSbppcaji897hHnGa8uVIhyeTUbWmp7LA1CHja86bPYd6foV4wp4FEPQ9Kry4W6Y5DtgaCS/UCRVe1ifzqR1us15VYpSYEKxUHx9RplgQfPxvml0ZzbmLjv/i9J0jJidv4JlivuXzhUu1cElNZJvn+oy5/64fP8OOUlYrL5abLz7+zdm5JqeNiexQSJ5JeErNUSU/USrRYtkmlVG5GrkElf/eWrvF3P95iHKZcaRb4/OX6ru9rFi1cS58mpk+LZs7iMTVtl6PeatUhTpVg98BXWgjbw4DvPOjmDnCK4WPmiSpT16bU+aJtzI3BN0E9d+PUhKDmmrnGhmCzH1C0DS4vFKk6Bk+6Ph89G/LZ9SoZKumyWt1JDO1Uz+0D9/NMQtnRubpYpFYwCZKMx13vxBeyjb7PJ5tDKo5JIW+dCuKUu9tjJKoVvFYwubaoxPCPEro/DVaqDlvDACFVYWGhbNM4JFIcBcp+HOBhZ4xrKhOGimMwChPCJGMQ7LRGBHHKUsXBNvWp4PNpcGOhSCs/c9IMHBOuL6p28yvNIj0vou/HfP9hj0bJZBSkVB2LRx2flZoKQt9YKc+Vet/3Yx51PExd4521ClEqpxfeZtHi2mKBj54NESJj5EdYuc36ROR1FMY86qgW++VjalS0ZvaPxXK6j4Exi61BqMSqB+GhP39ylldcg8vNIl6k2vHGUQISLtbL+FHChpfgWjtxXaNoTdsBJwzdiw2XZqTcjl/Ued4sWVxsuCyWlXOvQLA1CFivuyyWTcq2TseLiGLJRk8ldifFMV0IgjhjoxdOE8fnIV5bdgyqrkmcZTRzlvnlRpGn3QA3Z5086Pp4SYapadOW8KWKciUehUpzLpPyWFom76xX+cbHmxi6aveuHMDYDeKUx13VHnRloThN5E1QmrRvzuzNE7ZrrWCwVHa41x4TJ5KCHU3NT9ojJRURJSeLg7cGSqupaOtcWyyxXHG4sVRkFCbcXCqR5XcOUHHj3kRIxbX4iRsL9LyIw1JxT3o+vVwb9LWlEtujiE82hyyWVHul0ouxd7FnJ1gq26RZxsOOx9YwoOqa3Fwu0yjaNHI2kZcXQYIkZaPv48cpSapanF5bKTEMlKkBqOThPAx0TorFsj11Ky3ZBkIIri8W2RqEeHGMpRcp2gZ9P+ZXP9pirepQdlWb3kpFCejXi3BrU52NC2XVsnkUhBCEsZIPAbi+pGKBcZjk8yXlUdfD1ARLZZuybaDpgpWaw1KeSAAVv6rzZP53S10TM/Imko+fDSk5Bo2ChWWqz56UMu5tj4gziW2mrFRslioOFcfk6mJxKnlyHjB0jaqr2vkfdZV0yPYwojOOyaRkFCZK0kWqGKbsqLhK3d0EC2V7emc8yrXytLBNZTi2Wt2tfdcahfz2nTZJJvnC5RrXFovT95nmTNWTdhRIqc40UGfcSZOUJdvgYdtTBA1N7bOfbA7Z6odUXHVHetgZowlFTFBaZ+bUVbLk7Liuflpx2pH/P4B/B3gfxa59qUgzydNeQNlRrmDjKCVKFJXz+496fP5SQ4mvGfqhFeMXCT9OpxoZfT/eJwYYpxlBLNGFxsOuz0pug+taOpGfTXvGpRQM/GSXtelhqLgmfV9VEg6i6M8TQohdCZ560aLimtzZGvOg5VF2DCVQaBtKkA/40ZM+mwO18aZIKrb6/omG0WGYBCOq7UY9gyTbyXZnUuJHCb9zrwuoA/frry1OD93NYaDE6OIEfc9jqRbMc6GUHgcFy+DG0g49XNMEfpwR5lWdS40CWSammg7vPemzll8IC7ZByTaI82qklBy7MnkSGLq2L5GgC0HXi4kzVRVeqzh89GxElGR8uDHgarOIkV+AmiU7p/uq751QgM+KLJP8N7/zkK9caZzIjW8v/vBn1/jXf+kDPtkcnsh18XnY6Pt881aLJ10PDcGVy0V+7jNr5+IadVJUXRM/SqdilSfBhCkyi6JtMA7jaT9819vf/f2jJ306I7WOP9gYnHLkqpK/932rFocQU9dZKNlYhs7Dtk+cKGq5Y+gg1Xpby8ceZzt7zrzm5CxMXZu6400QJ8p9xYtTFoo2CyWL95+oZ/G9h71p1drUVZJA6U3lYzxkbYdJytYgYhQqrbdRkLI1UE5CJwm2WiMl/rs1DKatN6MwmbIs/DjdVbmbNyxDmzKfhODI5GXBVg5oSSoZBAlhnPH9R2OKtkGYZKQZVJKdsCfO3+9Z21m3RhEX6gWe9HwMTSNJd1orJ7owm/2QZ4OAUWhTcQ0EAstULoyT9znPrtGJHk6UZPhJtusSrmmChbLDpSjjfmtMmAy5UE+5sVjC0AUlx2BzEFIvqOdTzM+U56Hqmnhhmr+vo/ePakE50R317FUxRumuZZlUrLw4wzbUvvKo6/Ow67NYcuj7ipE0Sb7tTZAKIc7Vjeog2IY+Pcc3+j6toWqrfdoLGPgxpiFwTYNhEOGaBg/aHvX8HJhthzuP83sCTRP7YtCNfkC1YDIMlQanEKrtvFG0aA2VXlYmVavQ8/ahvWgULV5bVqyhnhdP991ZPOl6fPB0kDMxs13GA3AwI2tiDqTYnDstRbPyEJM42NS1E8XBE1bUOExzt0mNz1yoTf97axRO5STM3AhiL4ZBwvYwgmHElYXCviTB5Pll2Y48RSYlXpRwNRc9PyyBW8xj6fcfD3ja96gXVMKkslaZXsQnz+z21igv3vusVFShw9Q1Kq5JZxwp1tlLutQ6OTNwFsMgYRAkaEKj5urYpuBRR7mdfuANuLaozKFcU+lkZRknjiln58jkTHicSxF89Kw/Za0tV2waJYthoAx+bEOjkD+r83RwnpwPaZZxP9dz8uKE5Yoz/b2dccTWMGQYJNxcKXJtYUcj8kUlKWbj+c1hQMFUromWqaFr4IdyaoK1XHGUg66lHBbnrZs3Cy9SSdgfPh3yhcsNSvnaGwTx9H33vHhqwgLsi2WPCyFUYXbgJ9ROeX+MZ+6wozDhSdenUrAIEiVn0PNikkyyPQynTqErVUVImCfj+mXhtLO1JaX8D+c6kjPC0EVOPTX4/TebPOqMaQ3VRJOH1iheDoqWQdlRgfKEMjoLAeiaqrzOBierNQdDF7imzjBI6PvxlJr/PFRdk/JqBSF4KYJomlA2t6NQVan2vpPFis3jrodjGiyXbUq26p9/3mV9oWwTpap1YBIITxwzLF2jYCk7eFMXxKnE2qNx0SzZSEn+XF/tDHOWSWxD5+pCkZtLJYI4VS5JScqFukuWkbulqPe7XLbRhOpRf1EHk0QiEKzXCtQLJgtlm81BSGsUsVh2drlnwcQ23sWL0rnRn3/9dosHbY9/9g++dqaf8/d9bo1/6299yH/zrYf8n/7o23MZG4Cl61QdJQjeLNn83NvL08vIy8Zi2aZZtOYqPqmc0Eq0RuGBIsM7VuDMfQ3O7jOZVMFGsKb0Np4NlJNJyTZ2XaIXivY0SXDawOKkyHL9iMsNxegs2Tr32x5BrNzZJq3Kk3EWc7ZplGbP1UlZKNn5ZSo+VcKxaBtcahYoWPo0UV91TVX9l8cT/z0rlspKj+d5upCmrvH6chkp4V57zDhIsAzF3A1i5Vy6VLZxTR2JcmCdBybzrOqqNqLaHiFg21QJM5HvxxfqBWquSZRmtMcRFWd+gvETNEtKD8cyNEoHXOSn2iWo9nqZF3cuN5XzYrVg0PeS6ZiPg4WSPZUKeB7Way6rB7BLZrFYstkahtTyinDVVS3PYZKioRzwsmxHGPq8WlXmgdWqy3LZYWuoHLQsQ5vuThMtm9WqQxBnCKGY40pMWDtXhvtBkEiKlsEby2WKueOhkRtlOFZ+hhvK7Xq1phipx70QTaQVul50aOeCber5fOTY5hyOqZwQbVNDiJ15PMuuPG0cvFiyeTYIqLjmgRpfs8wt+xAdNSl3n0V7sVZzaI8iipaBaQi2hiGLJYf1mnMssyYNte+0xzqVnJFy0Ge0TQ0vTLlQV9prhRltqbde4h3hMEyeVc1VBgm2qeFFKa1hxFLZmbaPTt7BRFMwiNNjd8ZMvk7XdhgyE8mXtZpLd6z0ud5crWDpGndzjchzzBfvgmPqXKi7qjVYg41eiGNqu+6PErVnDIOE5bIz1yLHcTEbzzexaI8iyq4xlU0wdWXSNXlXK1WHi/XCuQiyz2Ly4w1d7DrLLtULtIZKw/P64vyKa5ebxX0t6CfBhbpLK2+RLtmK0aoJwTv1Cm+tVZQbYxhPn2MmX60cx1lx2lvA7woh/i3gb7C7le+7R32TEGIN+CXgLaAkpUyEEH3ge/mX/ANSyo4Q4k8BfwHoAH9SSnlkGd02tV2tSrZl8qe/eoWNgU/dtc9NS+m00DRxZIW5VrD46vUmXpRyacYtz9S1aXWpVjBpRBbOIYfPYb/3ZUEIwWcu1Fgs2xi6YLG0O4hZKjv87FsreFFC8QSuThXHpLKyO2gzdG1XtdS1dH78+gJ9P9pX1VjLRVftGRenVxVrNRfb0LBNHdcycC2Dn7i5gBDq4BqHCYYupu1Xe5/Di4BqOywQpor5oWmCL16pk2ZymiScjHeCWsGiNsdiyX/1Ww9oFi1+/p2VM/2cZsnmF95Z5b//7mP+xZ9/40jHy5NgsWLz9767Sm/cZL1eeGnVycMw731CCLGv4j2Lt9er00TBWVr5DoLSjBK7As6rC0W8OOXdizWSTGnOzb4DTRPHbl2aFxZK1lQMe8Lm/Kk3lqYOaGGimLKzc/B51s+qrdemUVRttl6k2gdP2g50baGEF6e7GAaqvXy+Dp9HYbFsH/uSIXKh6KvNIuOcbaASNKpVzzbU/jlPXGkqbcSbbunA51t1Td5Zr3JzqYRpaNOYxNH0U1dmn4eCZRzpwjrRLlmtqqTIZH0o5rn6s1dK9rVMPQ8n2T+e97UHWZxfbBRYLNt4UUKcqnGnuavvvPXg5g0tbwfSNJXsc/IEzOy6nl2n59V68zxM5nPVNafzOU6zXOtEI0qzabHrNAWllaqzS9tvL9ZrLtYNlRg47rq/lu/rk31qdh7P4jTnWz0XkT4MFcfk5nJp37ucxWJZtREZ2sHtQRMtvAluLB398/aiWjB592KNt9cqOKZG0T547lxt7jynvc/iZd4RDsPsepm0fX7xcoMkyyhYxoHn2kmNrfQ9WpMAlxsFxlFCwaqQZNku1/NJjDsRXX8RmMzBlarD1YV02uo4wWLJ5nMXa0RJxmrNfWnJxdl4vuqau+4kkz1EdbKkNOZcBD0MVdfkp99YZL3u7nLkM3SNr1xtnsvvPMvnso3dccHXby7mc1HJONxcKhEmKnad3LV+L+G00dnn8//96sy/SeCnn/N9HeBngL8282/vSyn/wOQvQggT+MeBnwT+OPCPAf/eUT9Uy516ZqFEX92523y/KDyv+iTEjjtOlGQ5U+bVDsp0TewSUlSi3tqulofzCsQaJYvGQey0/DlmmRJbPA8Nh3lBaQwo+uskGz8btLwqCY5qwSRJdeIsw9b0XWtwXsmdw/DxsyG/8uEm/9RP35jL2v/TX73M3/jBU/7GD57wD3350ql/jpRyqp0ghPg9Q7mdFy40Cioxcw5JsdmLTZopTY3J3qlrOq/Cspno/qgElHKymXVAO82+pIndCbaTFmiCOJ1WOl8lvYLZcR0FbeY8Oe8LvmPudrSKkgxN7Haq2vs1rwKeN6bZOTPPOGPvfnhSvIrP8riYML90IQ5MpL0KhdTJs93ttLejgzpv3b29mJyRE83A4+Bl7FNZppzRjjMf955Fz8Np5vfehMzs+CZ41fbz50Elc51dMbplaFioeXFe62X2/NBnzKbCJKXkGFS1l5M0NnSN8sy6nN1Lj6Px9iKx904y2UOy3In7RRUSNCG4sVw+MVv8VYG2525s7Hp2ShxdSPnK5wCOi1OtaCnlT53y+wIg2BOIvCmE+DXgN4B/GXgNlaxKhBC/Avzlk/6eKMn4ZHPAOEy5tlhk8VNyAcwyiRenuCcQ5xwGMQ9yZ7vri6Vzv/jPC61RyEYvUNnf5dKhC0pKyThKsQ1tLosuSjLiNNu1YUopub09IoxVa+VBmgevCiZisJahcXOpdKKL/EFspfNAlGTc2hrmduzuiUQ000z1oB9UzTsO/qNfvUXR0vlzv+/qib/3IHz5Sp231yr8pW/c4Y9/4cKpDtIgTrnfGhOnkpJjzJ0V9GnHIIi5vTkik5K3j2BWnRVpJqeWzksV+0SsqDBJp6y/88LjrhK/nTBZToLnrZtRmGDpx2e+nGWfOU886ninfkYHYRQmcztbJuj7MQ/bO6YTx91v9zJezwun2WMHgfpMMJ84437bYxQklB3jXPXJjouTro+zoDuOeNz10TQ1P076voN4xw33vPC469Edxzh5N8JJkocHxVinwdOerxzlTLUHAYyjFOcVYcZlmeTW1mjK6jqKAQY7seyLGn+aSX70tIeUgkbROlcNn/NGlu3E6Atl60SdAEfdIU4aEyvNygBDV6yVF/Eeg1jpcx42xrutMV6YTg0iXjQyyYmK+iddN/NAlGb84FGPimvO3WRknhiFyYnu/zD/s/lVwKlWlRBiWQjxV4QQfyv/+1tCiH/klGO4iWJH1YE/AtSASeteP//3g8bw54UQ3xFCfGd7e3vXfwuSlEddnztbI374pL+rt/tVwDhMpm5ms7jfHnNve8zd7dGxf5YXqSBFSkUB/zRACcEGpJkkzVS2/zA86fnc2x5ze2s01ZI4LVTCcsjd7TFbw2D670kmp2L0Bz3DMFGaNC96HnnR/nkyjnZsgWdFmp+Hvh9ze2vErc3R1B51HkjSjL4X7xKpDxLVRz473uPi7vaIe9tjHnS8E4/l2/c7/NJ7G/zZ33dlbo4yQgj+mZ99jQdtj//+u49P/P1elPDe4x4/eNxjGMSMD1j3n1bMa120hiEP2h6POj6bg+D533AMBPH+scVpNrV0Psl7COKUW5sj7myNaY3C53/DMTEI4mnQCTtW2X6UnviZ3mupdXO/Pd733571A+5tj1VS7jlmEhPM7jMdL3olzpYkzdgcqHPDj9IznwcbfXW23NocPddk4yjEaUbfj6cCupNnJaV6l8fB9jDkbj6W2TlxWiT5mA76XEfNlcPghTtxhj+H8U3W30nPh4MQxCmDM5xpp1kfJ8EoTHatn8lnzjKOjH0OwjhMuL014vbW8WPE445rFhOziiDOdglDPw+7YqwT7OXJnjWkxqDGFsYZSSZ53M1jwe2zx4LPwzCIn7t24yyb2sofZx5Pxn9rDrHsYfCjdBrf3doccmfLY6MXTN/npwV7z8bZGP2kMdTsHWJ2fs3GxAfdxw7CZE4mqWKiTXDWPegwDIKYW5tHx+1+lJJJyeYgnM7HF4kwVk7xx30vh62b2bk7/zEqw4m72+NTG0lEidqjzmvtRknGve0xd05w/w/ilO1BONez+VXAadO9/yXwPwATL/ZPgH/6ND9IStmRKgr/ReAdoAdMFHIr+d8P+r6/LKX8kpTyS4uLi7v+W9k26I0jhrmN7UkO1vPGIIi5u60SUH1v9yKcBCmTdo7joFG0pna/r4Kr13FwrzXGj1Pa45BmyTqSVjyxr01SeWZnmji3jwamhxzkTldVm4Kts7KnEpNmkttbIx62PR53/TP9/pNgHCbc2VLzpDPecTJbqTgUbJ2lin2iSmuYpDN/nt/hda815mHH415r55JTtg3qRZOSY5yIuj6hJAMnvpz1vZh/4b97j/Way1/4qRsn+t7n4WfeXOJzF2v8u3/7413v4jjYHoY86QbEqSRI0nPTk3nRiNOMW5tqXTztny2ZVLQNCpauHLXmwFiIkmy6ZjdmxuaYyk5erfPjV+mi2X1jTmtnaxDwoOVxe2snEbFWcynYOms158QVvck+GcT7xzdZ+1l2fJeiyT5jGxobvYA7W+NjB+/nhTvbinXY8yNWa0eLZh8HkzMgzU5/tkip3B0ftj0e5sn0hZJN2TGoFcxju/1N3pGUzCU5cq815mHbOzD5dNRcOQzNkjX9TLUzOhiC0hAq2GfX1wryS9GDlrer2HQSnGZ9HBfdcaQuGzPrZ7FsU3LUGVk+IasoSrK5sKU6M+M66EK5WnWm++RJWCHxKffKu/l8vdfauZStVNUcWa7amLo2fU9xIknPsUjYHoXcz/fmoxLytqHisIKts3IM9u3keSTp+Yx/krS83/JoDQOSTLJQttB0ZZz0acFBZ6NlaCxXDo7Rn4ddz31mn98VEx8z3lyuOBRtnWbJmrKnw2RnD3p2xlhoL2bvKYetp7Waq5K6qTqLzjtpexCkPP56P2jdzM7d9hyLfxPomjJtKDv6qQwysmznnH/UPXnR/Fi/I98TomPe/yfzbpLEPUm88arjRKeiEMKQUibAgpTyvxVC/MsAedvdiVN1QogiEEgpU+D3Ae+jklzvCCF04GeB3z7Jz8wyyb3WCFPXlMBi5WQH63ljNvDpBxFP+z6mLrjSVG5M3XFMtWAe+2Ji6torQYWfIM0k91pj4jTjUuNgYec4zbANneWK/ty2ufWay/YwpJS7jJwFRdtguWITJtm+Nh6l+bPzdyklDzseXS/CC1PKjnku1dS9iJKM++0xfT9CoNo6Zn9v0Ta4vnjyFpZm0SZOJQJ2udScFo86HoPcMrdoG1PLVVAso9NY5wohuNgo0PfiA/XADsOtzSH/zH/7fR53Pf6bf/Src2+3EkLwb//xz/BH/qNf53//197nL/2pLzx3ffa9mCc9Hz9S7lZl1+CdtercmFwvGxP7YuBMbBOAimNQsFWStXqGudkd5/upJsikcofcu2ZPQxuvOCZLFZsoyVg6QaJ1L8ZhwsOOh6lrU3c9KXdswqvu6QOLybqpF/d//0rVQRMhjqkfm+Y92We2BgGbAxUoHvaeZz/X1YXiuZlIxGlGlKaMw2QuCcKVqoOuhWfSKwrilDtbI6SEy021553mTF6uOEipLmDz0MOa7MdhkvGw7TEMY9aqqq36qLlyGOYZZ/g5u+DaQvHMLRXJzD4UnzKpdJr1ceh4UnV+x6nkcrOwa/+ZrJ+Js+5pUCuYBHlb8VkQpxmjIGFrFCCl5DMXqrvexWHC4c9D0TZYrtqE8f4Y63njAXjSCwjzFp+lskNpJtZZrxWmseB5aqnMzqPnzanlisPyzN/3vv/ZWGQ2lj2P8c/eLVKpzoSKY9LIi79Pe/7UCfFV1Ld83PVylrP6++zZCLBUcVg6xc9dr7lsDUKKtr7rDjEbEx/XFdkxda7tib9nY6HOOKI9DilaBpebhTPvb82iNWVmHRa3N4oWazUHP1LsxoNm7CQ2KtnKnGierWy6LmiWLOoncOfdv252Rp3kWmIP8nb4K83ime9+hqZ0qBdK9qk+u4Tpnnte90DL0KYx4HHGOJl3hqaxUDKP1ao7WWNLZedEpIEXjZPe4H4H+AIwFkI0Ue8LIcRXUW13RyIXNv9bwLsoxtX/DvhPhRBj4C7wf5RSpkKI/xz4NaAL/MmTDNCPU7wowzF0wjTl2tKrk7QBqBfMaVUpzh2hklQyDlOqhZ1gYBjEbA4Cirbxwp3VzoJRmEwp0F0vOjAxdalRoOtFh17CJhf6laqrNtLmfHrj4zRjFCYIIXje3SlMMgZ+gi40XAvqRfOFLORhEBPGGbauo+tKG+A4rjc9L2J7GFItmAcGHbom5sbWiZKMXs72cy2NevF4bL0kzXjc9cmk5EK9cOBh87zLeZJmfOdBl+8+7PLeoz7vP+nzpOdTtg3+sz/9Rb58pXH6D3YE3lip8M//3Ov8xV/+iP/gf/yEf+7nXj/0azcHAT962sc1FRPoarNEwdZf6YPgpHBMZcnsxymLp3BlmkVnHE9bhfr+yRhps2iPI9Uek0kWSzYZHDm2IE553PWxDY0L9aNdbObh0tcZR/l+n1Ivmuh5sPQ8IVopVRtLmGRcqLuHur4dtm6UhfPp9tCFkk0qJbrY7yQVxClPej6tUYhj6CSpZBQm51a1u9ws0BqFaAh+8LBHxTHOlMRxzNM/lwlGoXJmGh/wuft+zPYwoOyYz50/pq7NVQPmUrNAz4twLZ2nXVXFb48j6kVr11zZHAQMg5jFsvPiqq0SBr5KLp5V77BkG6xUHeL09EnjyfpIM8n91vhM1tvjMMWP1MWlM45Yq7qHrp+j0PditoYBVdfcJWgshJhLPLhQsrnfGlNz1bkdxNmxknLdcURrFFIrWIeeZ89Lemz0fcZhwnLFma7fy80i3XGUt+hCexTt+zmupc8tFjwKi2WbTEoM/eh39rjrEcSpYrrmCSgV/6r33/XiXYmpeYw/STMedX2klFxsFHYluKoFk+VE7dcLJXuXE62UkvZIna0HPduXjTSTdMcqptQ1Qa1oHutsPM4Z7pgHP/fnxcSDIGZrEFCyzSMLWgXLYLXmECYZoyAmSmAYzGd/02bG6EfqvD3os16oq7Ox7JgHFoYmsdHAT4hyYsC8YM24xU9w0nNl79xtjXbaEgdBfCrnz1kkWUYYZ7RGEXGanTgxrGuqaD6cw1gOgybEgfP0sDiiYBms1RyCYxZMZ9dYexy+0veRkyamJjP+nwX+BnBdCPEbwCLwv3reN0spYxQLahZfOODr/mvgvz7h2ABwTR0EJFKyVi0wClIWzq6ROjeIGaekUZgw8GNMXZsyBibYHIT4UYYfRTSK1qfGXbBo6dimRpxmhyYrirZxqDBmEKd08gN0axDsqpidFd1xxDicJM3iIxembWgUbR0vSrncLJ7Yfva0KDkGpiHIMsHVheKxK7jPBgFxIgn6IQtF+1zFilVV32AUJqzXCsfeqPt+zDBQ1PiuF53osv+46/FXfv0ef/MHT2nl8+Nys8AXLtf5c7/vCv/AFy6c+zv6R79+jbvbY/7jv3ubKM34l37+jX3POUkztgYhtqHTGYcsVSpcWZhvhepVwTyfd5CkaIJdug0nRb1gEsQpxfyy+rxnvj0M8aMUP1JFgco5O7fVCiaDQO33VcfEKB4vOBqGyTQRvD0MX6iIraYdfhFujxWbFFRBqFG0KJ6j8GbZMbm2WOS7D3qUbIOtYXjubnvPH5NBtWCqgsCe/WxrEBDEGX4U0ihaL9Qxp2QblGwDKSUDP2EcJvsq2pO9CtRF4oUlpoQ65+w5CY3PK8DuedH0fDotivbu+Oeo9XMUNocBYZwRxGruzJv1r2uC15bLPOn5uJZ+7HexkWuDPusHp3ruYZLSGqrze3Ows34n8xVUnPCi4q2DoGviuUx+L0qml7ytQciVBTX2om3svP9zWE89P2Y0iaHG0b495zBXNiEEtYL50p/tYZgk0QZBzELZOnbi7DzP8K1BkN/B1Bo8irUziYG7Y50nPZ/CCdbUcTH7WevF3RIojqkf2aUwGxudtzNdfMpzZXbuVhyT9ihC09QZe1ZMWuT9KD1VKx+cjdF+FmwO1FlwUBzRPEGSbHaNzaNr5jxx0je+KIT4Z/M//zXgl1HJqhCVcHpvjmM7FTRN8NZqBUvXiJKM0hwm9XmhZBuHulBVHAM/SnFM7dh2ua8CDF3jteXy87/wEFi6hm1qhPH8313RNhBCbZjPq8QIIfZRdl8EbEPnjZXK879wD0q2QTeJKdinc7M7KU7T1lGwDCa5gpM49jzu+vyBf+8bCAF/8K1l/shn1/ja9eYL11QTQvBv/v2fwTI0/vI37/LB0wH//p94d1c1TdfENJl4daH4Sjs8vipolixuLJWQEhrF018ymyX7RAd12THoeTGGLnBeQOK/7Jinch10TR1DFySpnEuQNi+ULIOuiCjbJjeWSi/E0exCrUAQq+rnSfV5zgOOqfPm6sH7dckxCOII19JOHQyfFUKIQ9vGJnuVH6Uv1D7eNU/fynaeKNoGmsaZNJzOGv9MULINwlgx3s6rNbZetE7cWj7ZM08bm5mahmNqBHF24F52sVHg4ql+8ouFbeiYhiBO5K5nYc7p/R+G4iljKHj1n+1p2GSzZ7g7Z7fpkm3iRyGupWHqx1uDp1lTxx6PY9D3J/HKyc7ak8ZGZ4Exc66cNl5xLZ231k5+DzoMpq5xfbFEyTE+dUXisjM5C84eR7wIxuk8cNJZowMldphTE7wSn3ZrENDxIgqmwcW6izlnG+jzRpZJOl6EbWiUHIOuF1NxjFfGqvs8MQxiwiRDAJpQYo3zpkwWbYNGweRxN2Dgx78nbDUnThELJaUbcNABujUIGIUJK1XnXO3uD4OUkq4Xowl4c7WClHJfBdiLEp71A0q2sa/qNwoT/omvXeEf/cmrL72tVdcE/9offZs3Vyv863/zA37mP/gG/8RP3SCMM77/sMvN5TLXF4vEqXwhF/XfC7B0jSSVSJnNvco4i0mbcaNoqXaBgkXRNtCF2LfHBnHKRj/ANvbT1F8UJmu77Bi8vlwmlXLfeRanGU97PppQlP+Dzgo/Snk2CChY+lxaEieoFkyKtrJenr08T/byRs4YmScyKam5JlZZO5fE9OS9O6Z25r1moWQjJdSOqRkxQd+PaeftUufBbuh7MamUFCwNXajAd/UFWHa/aIzDBC9KqRfMYzGOglhZyp8H0+W46HkRmVTi4wslG1MXBHHGs0GAa57MtGGe8KN0GkMsVw6OM446wyfQNCVPkEnJ4jm1kx1nT5zH76gXFGvlpAmik2AYxGwPQyr5nHQtfRpDDYOEKIlOlQjZHoYMg5ilivNCk9LzQjc3oakXDz/DZ5/dUXeJybxVGrQ7c3Kl6uQMFcE4ZypNYoeXgUbRIs1UTNAaheia0iR6VeLM2fU/iYGFUHOtZBsv9b6laYJxlNAovvpzfRDEtIYhVdekWbJZrbo0i+osmMQRnXGEJvjUGJ6dFCd9SxtSyn/9XEZyRgRxyuYg5EF7jK4JriwUD61kvqrYGATTNjZdgzSDrWFE7VPUyncaBHHK/ZZyOmiNQhZKNlESzj0xJaXkvSd9/Chjcxjwhz6z+tIOmXnhYWeMH2VsDeGt1cq+C1CYpFPx4o1+cCrh9LOiPY7Y6Cmdk0vNg3UbNvoBXphOtdZm5/vrK2X+1T/y1gsb7/MghOAf/solfvx6k3/j//sh37nfwY9T7rU8UglfvFzHMj7d8+pF4m5rxN1t5R5WsM7nUhgmKfdbY6RU+82kHe6wwsX2MGQUJIyAimu+lOB9sra3h4I3V8sHMmdbo5CBr1o7lGva/kDl2SBQnyVQOkhn1b2Yxd4L/+xeHibZ3F0oH3d9hkGCEIpVMu8Wp83ps1LU/bMk8h92PLwwpetFvLlSOfYF+WnPz3UnfeonMEI5DgZBPHUPzKREy3/2MEzOvZX1RSJOM+7l692LEi43n8/QetLzyTII4vm7Qh0HfT/mUUc5/2a51grMzkm1fl/0BW/iSCWluuwfxiQ/6gyfoD0KeZrHApauUz2BYPJx0R5F0z2xZBtzZ7BIKbm7PSbNJEMr5sbS+TGkNvqqjWciQQGqONYdx7tcok/yGeM0m7rHPev75zr+80DPi6afXXK4pMDTXkCUqGdXLxyeUHrWDxhP5u2e89EytENjh5eBzUFIJiUfbgy50izS8yJuniND7yQ4aP3f2R7hhSmaxonOwHnDCxM2egHP+gEr1cIrfe/b2DNvNU3sSj62RuH0PiUQ57KHvmycNKp7Zd+mqWuY+WVw3pTOl4FJQGwZn65WvrPCNtVnLdrzf4dCiGmw5Jj/y3imprazLgqvAkPskDaJydhMQ+yb76/qpnO5WeQ//zNf4j/901+c0ut/L+w9LxqOqe88v1dhjrIzDl0T567JcBim7kSHLRqgYKpzQggOTThN1pahi08Vg/hlwJ15Vmd976dtCSvmZ79r6XNvO5gd02ReaBovpJX1Vcck5noVzsmD3pNavy/3NDxqSk/GeVTM+iKM7CdrWIjzO08me/JZ2j6Pg8kzPSpePekQdCGmcbb7Ehj0Z8Vxn/nsszsqDzFhvJnGweejlOf/no+LyWeyX8H7y+TcOiiGf9nPb5IQ+zTc+ybv2LW0/0V0Sx0EIU8wY4QQDSll5xzHcyosLCzIK1euvJTfHSYZWSZBHH0pvX//PpMxSlTmHakWzHm2r5wEs2OcJ2afkWPqZ040TMaZSUkYK7HkV+3SdR7P0p/znDmPMUZJNrVVnU04nAXnNS/PijSTU+eQzaePXskxzuI8n2OSSeL8WViGdqaK1DzHOTsu05if1s+8n+W890g4v/c9XeNCJTTOusaPGud5PJfT4LjPcnZPmOd8Ow72jvG4scmLxmHPMk6zqW24bWpTNtfLwHmfObtjl+Nr2Mxi3mOM0ox0+vz15zoXHxcHx2un+8znhb3PchJrCSFemcvs/fv3Wb946ZVZI4fhPM/Gee1jZx3jNBafSfLNG6cd44TZBXlh7ZzvlycZZyol0UvYA07zLGfvMvPcDw/DccYYp5IknU+cfVr87u/+rpRSnuukOlG6/FVMSgFcuXKF73znOy/ld9/dHjEOU3RNtVscVuH80pe+NB1jmkk+ejYgy6DiGseimb8IzI5xnnjY9uj7MULAGyvlM7dfTMbpRQl3tlQL0HLFPlTX4GVg3s8yyyQfPRuSZpKirc9FmP083veTnk9nFCEE3FwuzaUF9bzm5VkxCGIe5G1Lf+6P/czcx/hXv/WA/+jv3OYPfWaVf+UPv3lm9sR5PsfueIdef6lZOJN7yTzH2fd2Wpcu1N25tXXM+1nOe4+E83vfjzoePW/++/lBuN8aMwwSNA3eWKm8NAr+cZ/lMIinrYxrNeeFCc7C/jHea40ZBQm6JnhjpfzKVF8Pe5bP+gHbQ9VGd3O5NNeW05PivM+ccZhM25eXq/axXchmMe8xbvR9WkN1dt9Ymt/zPzBeO+VnPi/MPkspVayVpBLX0rmx9GrYen/pS1/il/7Or7M9DOf+juaJec/L2TNgXu1gZxnj7Pwo2Pq5yWOcdoxhknJrU7XeNkvWuWtknmSc89j3ToPTPMunPZ/2aP774WE4zhi3h+G0DffqYvGlSEwIIb573r/j08fjfMVwqVFgECQU7ePT7nVNcH2xhBelL8V+8kXjQt2l5BgULH2umiAFy+DqYpEkzX7PP0dNE1xbLOJFKZVXyJlrL9aqDgVTxzH139O6aKAsba8sFMjOgaZ8e2vIv/KLP2ShZPNf/MY9Pnuhyh/7/Pr8f9GcUC+qXngheKW0aqoFk8taASl5pfeI89ojzwPrNZei/WLGerFRoO/HFM7RnWyeKE/2hIyXrv1waebZvSpJqaOwXLGVC7GuvZIX7nmiaO/ELq+KgO1KxcExdGzzfJ7/bLz2qnzmg6AcmYuMw1cv1lqu2NiGhmX83l8jE1x8xfaxV3l+gHKMvLZYJIwzaq+Y/tCruO8dhtWqg2ue3354GiyWbSxdQ9fFp9K04Lj4vfvJXhAMXTtQfE9KSXscYWragQGqk1/e54kgThkEMRVnvgK3Z8XEieW0OOpZzi7OLFNfZ5vaK3U5nhfOOmcGQUwYZzSL83fLmkAIcSZWSpik9P1Xbw5P0B1HZFLSKFoIISif0zz7y9+8i2vq/PL/9uv8mb/yO/wnf/c2f9/n1l5pq9vTJn6et1eeFfPYC857Xp51j3yR6+asYwUl9Bwlai86CromKFg6g0AxtD4Nye7z2hPiNKPrRZRs41ii7Poc3tNeJGlGx4soWvN3IxNCnPiyct57x3nitBcLL0oYhcmcR3P2s3sYxARxdqRz2TwuU+MwYRwl1AvWuck32MbZC2t9LybO1B43r3P7JO9ob6zyacVZ97HD9oiz3BfmMT+Og+44OlLg/TAULIMXlfdJMsk4TI59HryMhIoEtoYBBcs49u8/6354Ukipxvi8GO7Tds6dBv//xNScMAhiDE1MA8atYchm7rK3Xj8blTKIU8Lk+ayge60xSSrpjCPeWKkQxCnbw/BQt6ZXAVJKBkGCnVeAkjRjcxhiamLamrc1DNnKneWu6oe3PT4bBLRzV8MbS6UTC1/2vIhhkLBYtg/cGCbvoeIYr9xB70UJSSYPPWD9KJ22nbVH4blaHB+G4zy/h22PIFZ2z42CRekVSTBKKXnvUY+ng4CVioOEubtGzv6uv/vxNj/95jILJZs/+/uu8C/8d+/x7ftdvnK1cS6/8zwRpxmbgwDL0A6kbm8NQ572fIIo4821F+8wk2aSUZBQsPVDLzr3Wx5hkvLxxpDrL7i143lrG+BB2yOMM1rDiPWayyCIp/9tcg4UbYNG0SJKMvwopeQYL4WF5EUJD9tqL0qy7LlfP3HA6nkxr52DA9EwiNGE2LcnSimnLkjzxmnewaOOxzhM2RIhb67utDX2vXjX+z7P8ey4IobTNs40k2wOAnRNsFS2X9jZGMQpj7s+XpQgEFyQDuMoPXSf+TTgeWt9HCT89r321PTgZcCPUuIs2zXGWTfOIE5ZqthsDY6OM04TTyUzbovjMOXqwsllMOY9X8MkJYgyyo4xLfiNwmTaQp5mkuVTyExkmWRzqNp2lk8wn6WUPO75bPYDbEMnk4ppcRwMgpi+F9MoWi8lRjwpskwyDBIcSzs0UTS5P0gkxZGBa+nEacZ7T3oIBJoQh94X+n48vZu8aKSZ3HEflJJmyWZrGBCnkuWyja4JBv7Rn/1FIIhTfutOmx+71thXlDlObPUiEMYZd7bGlGydN1Yru8YyChO644hawTy3otJx4McJ7z3qs1i2efdibdd/OyxG+b2KF/ophRA/BvxfgBT4jpTynxFC/PPA3wc8AP6slDIWQvwp4C8AHeBPSikHL3KcJ8Vs3+dkgxPAIEjoevGZnEGCOOX2luoXXqrYRx5wk/NV5BKxj7sefpTR8+JzsdaeB54NgqmuwWvLZVqjkE6eXHIsnYpjvhDB2yTNplbNYZLt0xWIkmz6Hl5E3/ZJMNu3fZiuyWRupFLS6ofnllQ5DGGyM48XyzYr1YPn8WSc28MIDUHfn39l+DS4uz3mh08HdMYRSNUmc174eHPI9jDk6zcXAPh7P7PKv/KLP+SX39/4VCamNgcB3bG6OB9UsRIobbI4kRSdF79H3W+P8cIU0xC8sVI58GuE2NnPJ8nvF4HZtb1ac567bqWUPOp6u1xwNvrKbr7nxRQsjXstjySVlBzjVBe7l4XzOAd6XjTd9y8vFHZdtrtePNU8mieklNzZHs3lHaTZ/vf9osfTGoXTNWEb2gspgk3Ok/YoIpMZCyWH7VE0Fdd2Tf2lXjJOg+Os9Sd9j1GQMAxezrnoR+q5w26NGCHU/0up/vdpb2fPOQiz8cBC2WK1erx4ah5Jz3nO1zST3NlSifOqa3KpqeKCeexVXS+iNVTjNE7gzL05CHnc8dkcBFxsuMc2p5BS8rCt9pJxlBx6Fr5KeNz16fvxsXT0BkGCH6UULEMV8Ecxhi6oH/L+NwcBW4NXQ89LCMEwiNns75xHWV6s0TR4fXk+upSnQZKq5ODmINi35x4ntnoRiNKUZ/2AenH/mfCoo+Khvh/zznr1JYxOIc6f495C2Kx+694Y5fcqzpyYEkJ8IqV87Zhf/gD4aSllIIT4q0KIrwM/JaX8CSHEvwj8MSHELwL/OPCTwB8H/jHg3zvrOM8Ts1XfOMtwpEbZMbhYd9GFOBbt/jCkmZwGnXGuxi+lJEwybEPbdVBfaRYZBgkVV/0+S9fxyTB08dLcO7JMEqXZoZv6xGFESvVZJw4SQjC1617MqwOGrh1Jw1ypOFiGhm1oRyYDwyRFF2LXRq4JgaELklQeaBOeyZ33MBnzq4IklWRSEqfZdI7shWPqXFkoEMQppi44BlFhrpjM4yjJpo4hB+FSo0jfjynaOuMw5QTx2LkhiFOSVFK0DaQ8f1HjX/ukBTBNTBVtg9//2iJ/+4fP+Ff/8FuvhM7CSWAZGlJK4izjoNe5WLZpFFS7gam/+OAvSjLCJEUIHSnlgZefy80ClqHhvuDKZJILmKU5Xf6wxNTlZoGBn1C2de61vV17lKkLwiTFNjUEYuo0kxyyV5w3CpbB5YUCcZIdeimYxbVFda7NQyNs73kUzzynvfv6ebkZTc46KSXjMD50zu3FxUZhWmSasJo0oVpdznImTcYDO3MiSTNSKfdV4i/UXbqe2p8n5+ds9fk8quIHjSXL1LjrBROEMlwIk5TNvrpIvkoOvceBlJJRqC4lmjj8fdqGzlrNPfScP294cUKcZpi6tmuMtqFzZaFIEKc0ChYbA1WoPez8nrw/OFk8pWs7+j71Q1pa4jRDysPXrzXH+SqlnF4k45mgqmgbXGoWSNJsVxvWYbH7QTBnxn+SvShOM0q2gSzbrFScA9ul00zFi7NxuRDKwS2Ms0/N+omzjCTNSDIVo2sHpASXyjaGJmgm1q6iUrNkUXYNFkv2gfeFMEnVuWno0/3xRULXBBcbrtrnihZBnE6Tv5auMUpUcjrLOFDn9CRz7SwwdMF6zT3wjjdZ236UEiUp1ktidhmaRrNksVyx983tyflXtF+uTIClaznpYXfRfnZfGYcJBfPV1yE9K06UMRFCDFHtmrBTFChM/l1KeWRKVEr5bOavCfBZ4Bv5338F+JPAB8D7UspECPErwF8+yRhfBiZVI0NTvcoP2mMGvqIvfu5i7UytAEXbYK3mECYZSzkd90HbY5gLrs+6s+3VILrYcKmFJq75ckQDpZTcbY3wIyXCd/EAlslK1UHXBI6p41rq/x1Tx8j/DdSBeZxEgKaJ5zIKJhVyTVNVkEmwq2mKzuvHKeUDkl+OqbNedwni9Ni06BeFasEk3EzxwpQgPjxgLTuKqlorWMru9gWiYBmYumB7FGGbgiTNDtxcLUNjsWyzULIYhgnOS9aUmbAhJZJ31irYpn7gPJ4nvnlrm5tLpV1V5F/4zAr/4webfP9xjy9cqp/r7583lsoOrWFIlMLTfrCPjSiE4N2LNXp+fOhl47wgpVTVsiCm7JiHBnC2oXOlWWS57JxLa9dhqLomCyWLW1tDEFCwwgP3H9vQWSyrtTLZxyaQUpJkkkJ+8bjULDAMkufqO50nTlL1m5ce44QZFMQ751GzaJFJiYB9c69kG9xYKs39fWua4FKzwA+f9LF0jYcd71jOvKau7Xv3Qoh97/u045nMiQmbJcv2O1kaB4yhUbSwc+vqebMKDhuLa+0+j9Vlw6RgGbtih08LHnX8qe7ahYZ7aIxxsV6gXrRwX8Ln86KEjV7AOExYqTr72Psle4cNu1Z1KDvGoef33vd3Eij9nIOvLl60wzq73CwcyJqrFy0sQ0MT4kzdDKDWw8VGgVG4fz89KJF+v60Yb8dhJlYck+tL6mtOUtxezWPqwwpoSZpxa0sxJFeqzq7nf22hiBenFM9QTH+RWChaPGx7OKbOKEwOZL/N3h/qBbXf26bGzeXSoc9VFQ0SBkHMUkl7aS1Us5/HMZVDZJJJSrZBxTVojSKKln5g4vJuS7GVztv5vWgZvLFWPvDedKlR4FHXwxsnfLI54tpi8UxEjdPCMjRuLJWmd+gJel5ElGaEacrN6stljzuWzucu1fY9x4WijZTQG0dsD0O645gbS6VzK5y9CjjpJ/svgV8Ebkopy1LKMvAw//OxeXpCiM8CC0APmLTp9YE6UDvg314KpFR6TROGRxArgVm5J1DVNcFqdSeYGIfq6/0oxTFPvqllmaTvqSAFoFmyWau504v8OFKZci86OBidZPeFEFQc88Dqx3kJaM4ik+BHWf77Dh6rqWssVxwMXRDEKXGakWbyRBWbLK8+z2IYxPjR7svZIIhVKxaqyrA3iWPqKrF42OW0UVQtfK9aNUlKiWXolByD1mh368k4TBjvec+Tz/miYRsaDddi6KfTNQKKsbJ3XU3m7svafLNM8qA1ZnOgKLQCwWrNPfekVBCn/M69Dl+/ubjr33/6jWUMTfA/fbB5rr//vBAlKjniR+m+tQrqeZePKeo8TySpRCJpFCxGQUKaj3F4iGaPa+kvPEgtOwYVx8SPUnreTsU3zRT9fC/zae/6HgYJWSbpjJU4cdk2lAPXp+zyflLsrXJnUu35UZqyOQyQUqJpguWKg2PphMn+pP6833eWSdI0I8skjqm0QWb3wllIqd5vmByddDrNfr43xqg45rTqHcTZlFE7iTUOG9/kGRdt49D5NAoTvCN+zlEIk52xDHylfzOZ7/WCSdE2yKQky9T/l44Yx6uMcaTYUkJIDE0wCuIDWRqadnhMd95Q+6MqKNmmNmXtTfahWRbXcc7vecRTk2c0CGKCOM3PF8WC8A+JOUGxPKI0O/AsOimqrnkoY2QWUsrpuTIbkx0Uo02+Pk7liXUADV1jreZOkzFSSrwomcZYUZpNmSx716WR7yUH/c6JudKrhIkwuBDQHu/EvoeNdbKfawd0sszuU0kq6Y0TKo6B/grF+4amGM9xoorQddc8cO+XUk7n/2F3r3lh4sS8994Up5l6nlKdUc9bk+eJSbFi72r3opQkVWdM/BJYcbMQHPwck0ydCXGqiqhpJp8bE3zacaKIS0r5Twohvgj8v/KWu/8Y9r3rIyGEaOTf9w8CXwQmHugVVKKql/959t8O+jl/HvjzAJcuXTrJEHZBSsk4SrENZVM8DhPao4iqa/KoO+bW5hhNwJev1GmPI0DQKFmsH6ExtF5zaY1D6oXTuWE86noM/GRX33SY7LQTNYsWm/2Qi439Y9gaBmz2Q1xL5/piESEErVGIH6VTUe9hEE+FKi823HPThNA1wVLFZqPns3iIeOMPHvW4tTmkaBtcbBTI8mDX0DXeWasc+PykVJnuimPixSn3W2NGgWpzWa+7jPPKHsD1JZWhn2hZJZmiObuWfqTVa5SotrhXTWwuTjPGYbJLM6w1imiPQh52PF5bLvPJswGaJtCFYJRfel5kb/JBgpRRktHzY374tM9CyeZ+e0x1rNowBkGMQBzKqnvRiOKE/9s379EehazWHL7+2iI198WIgX77focwyfj6awu7/r3qmnzlaoNf+WCTf/Hn3zj3ccwTfpQSJCndcXSgQ9HWMOCvf/cp4zjmD392/ZCfcnYkacYod48xdY1hEPOg7TEOVdBecy2+97DLxiCg5pq8sVJ5oezIIE4J44yKuyMGHKcZj7o+d7ZHaEKgaZJHHR0pVSBuaOqSeJQouBelfOd+J3e40yjZJoNACdxeXSi+ckYO88CzfsD2MMTQYK1WoOKq9rdaweB7D0cslR0ed30uNgo86/l88GyAQPBjVxsU5rTO9843L0r4ZHPIRi9gsWwTpRmlosFyZf85PgoTfvSkTyah4hq8sVKZq1D9w45iXRu64PXlHW2WMEkxNKgXTaIkw9Z1gjjdd+nOsh322Swzo+/F9P2YZkntl7P6GFcXi/ta8Q+a87Mo2wb1okmcqla3QZDgmBo3l8s86fncb40Z+jELZRtD17jcLNAovlqM5lnsnRMTlB2db3zUoe9H3G95NEqWYmjmRbsXLW48DGKE2LEkb49CnvYC7myPKdo6RVvHNQNVuI0yNE2xMV9fOb45gRclaOJk7LbZ+GejH9Dz4mlroRBwdaFIrWBO3eiklDwbBGRSST2ottdsysKrF00u1J8fc/iRaqM67Vg1IbizPWIUJNimxvW806Hvx1MjiIprIBAsllVr2ZOeT3e8oyH0PIzCZHqPmSDNJB8/G/DJ1oiFos3lZoHFsp0zHDm2KHuYpPzOvTZRInljtXysZzZv7DWYihJlknOvNQapkg+35ZAkVYZKrqnv0kE7CpN9ahQkFB2dNJVEaconWx43l0u0Rju6rH6UEqUvxwTpg40BSSoJkhRDCD58NmCt6vLjNxZ2xadCCJpFi61ByOoB98TzRJxmuTGFx52tMVvDgEGQ8NZahTdXd+ZxmqlEbcEyzr0A3fdj/otfv8vryyX+yOcuTP+94pj8cNxHE4LxIYy7F41JTsLJWci3t4bc2R7xqO0TpSlfvtqgZO/wgF7kc3xROHEEJqX8XSHEzwL/G+B/Bo5tFyGEMID/J/DPSymfCSG+DfwTwL8L/Czw28AnwDtCCH3m3w4ax18mb/P70pe+dOpU52TzN3TBa8tlHnd9oiRjEMQ8bI350dMeYZxRdHQModEs2cQHVFZnUS2YZ7J0nFSesrx/PU4ybm2OiJKM5aqtDuNMuZNkqE3V1DUuNQoMfFUl8KOUOJVkMpsmadJMcmWhuEtXI56TXlKaSTqjkDvbIyquybVFJRY4DhN0TWNrGO4LGMM45e72mF4Q0/WUm5Qfp2wOAgSCeuHgoCFMUu63PaI4ZRDGeGGqMt+ZBLHbjnTy+eJE/a+haVyoF46kcEdJxq2tIVkGyxWbpYozrTSdV4A4DmPee9zHMjTeXKkcejm61xoTxhmupXFjSW3ygyBWzouuRZJKvn2/q+jutkazaGMb+nPn7HHxybMhW8OQKwsu67XCgQfzk54/FWWcXKi8KJn2eUskH24MMDSNpYpFlEqWyw7RS9LNmEUUp/ylb9zhmx+3cEwNx9RYr7lU3RdzYP3arRaWrvFjB4ic/8G3lvnX/uYH3G+NufIpEq1OskzZy89YzM+up082hnzj4y2SLOMkd+8gTnnY8abaS0sV+8j1eb/t4eeuXa+vlBkGCVIyHZNjavzWvTZxLCk7Ohfqh7fUnARhkvLRxpA0k1xouDSL9r4kw2HmCl6oChJV1yKTGc/6IY/aPs2SxShMudIsPldvJohTMil51gv4/qM+NxaLdLyY7VGIY+onMnLIMsn3H/UIk5TPrtcoHpHcPymCOFXOc1HKQslipeKcWkthwuC4s+2pNviKQ6No0RpFpJnSbYjTjCjJ2ByE9D1VKd8ehVx+jpPYe496aJrgcxdqGAcEglGSYeqC++0xfpRNE4e9ccSDtsdmPyBKUq4tlrm8UDxwzj7uenTHMUGSUrSLpNnJmRNHYaKLmWZyWlkM4pRbm0PiVHKpWUBKuNMaEcQpb6+V6XkJlqFxsV4gTLIp41glomyyGSF2P055faW8a27GSQYzyylJM+5sj+h7MY6p8ZkLNXQheNjxiNNsek5PYoAPng4gZ5GAWhvP+urS40Upuq4xChLeXq+eyV7+LNjoeXyyNWK16nBzqbzvfJzMib1JnIGfYhoacabax6uuxdYwZBymcxNfjpOU7z/qIYHPrFdx8wt+mKRY+o4OzUGGABOB6UlhNE0l7z3pM/AS2uOQz1+q5fo3+/XSgjjjcdejaBkEScpCyWYYJNxvjTF1wY2l8rFb6mbjnwnDsetFLJWdqWbVbHGrO54VEFfsyFTKKQtvMpfCJONbd9tcqBdYqzm7PkPfi6cOe9cWi9PzYsLcO2yPmozVMVXMGcQZZcekaOvTC/BkfaSZ5GHHo+ZaRGnKjaXydGxZpkxrjsKjjscHTweMo4TPrFe51CxgG7pyDIwzZKaYWcMgoT0K0TWNhbJ17DnVG0e0R+pusdH355aYitOM9x/3yIBrzSK1gnWg7EhrFE7vMZN34EcpaQa1gkmaSbaHIR8/G2KbGpaucXWhdOz7TZxmZFLypKfOCz9OudxQc981dfp+zELJJohT7mwfbeIz0Yt70FYF8zdXK1TnkPDYHATcz+98BVM5C/a9BMdU58pbazvJiiTN6HgRmiYYBirhMg4Tbm+NiNOMm0slyo45d4mXNJPc3lJ31dYoJMkkGz2fWtHCC9NdLJYH7THjXBj99eUD9srWiIdtj8sLxTO3Iva9mG/d63B/e8jPvb2KzDWMDV1MJTNegesHoAT9e16MaQiuL5RIUpUD2ByELNdsBn6y61k97Kj2YENXRJa9z9GLEh60xvT8mBuLJRZP4RD6onGqqFJKmQH/oRDi/w18/gTf+ieALwP/Tv7w/mXgm0KIXwceAv/X3JXvPwd+DeiidKfODZPDLYwzBn6MZWhESYauCTZHIZv9gDiTdIYhq7UCZddg7ZgOIsfBOFQXhOWyMw0U1msut7dGVFwLQ9cIwoTWMKTrqQTOQsnm2SDA1DQGuS5EIDKGQcJiyeHZIKDkqOypF+6IVdqmOkDrBXMqEHkanZEkzQiTjIKlI4Rqwbu1NeQHj/oIVF90vaicVsIkozuOsEzB9jDANvUpc8fUNZYqNpqQlB2TtbqLBrRHEfWCeWBrBSiKXmesem3VZVaQSUXjt3ONIokK5KuumTOwBKYu8paDoy87SbbTPjAJvie6XhPnlUl7596DvedFBwoRHoRJssYyND5+NuJpL2BzqKqAn1mvUnEVs6HimDj5QbQ5CLB1HUPf2XwWyzZJKimYOlJAlNiMwpSSbbBYssjkfv2U42L2c3phwo+eDuh5Ibc2B/zEzUWuNAv0/IRCTpGWUrI9DKZB2ORCVXZMSk7MpUaROE0pWildLyLLlGg/wNILdgrcCy+I+Su/cZ/v3O9gmQI0+LFrzReWlAL45ifbfOlK/cCWtp99UyWmfuXDTf7XX7/2wsZ0GAb/P+7+O8iyNE3vw37Hu+tv+qzM8l1d3T3TY3rM+sU6gAABSFpAMBJEKkTBBBSBCJChCICCqKAMAYqhUJAESRGBkCBIgEQFiQUIYGGWu1hvZ3pnuqd9+Uqfef3xTn9855y86SpNZVXX8ono6Oqua8495zPv977P+zx+RM+LWGpazxS1rJsapiYz8CO6tqgUP9gVQUnL1kDKyRDzOj0DQznNcoI4ZX3g8dm2CP43BgHzDaGXUc7PURDTtDSRmE0ztscBqiRXLkUdRy8S5xKrHZs9N+J6x2F7HKKrMg1TJcvyCwVv02vkkz2P+zsufpF4uTVf4+ZsragsZnQdnTjN6LkRuiKLe1KgZqrUTBVFMSGHnhszDmLCJOdqx6ZuqqeKdq52bH7j/h6qLFE3FSxDQQ0S2rZOEKVsjwMkoGnpp1bc1gY+j4oKv6WNuTVfx49SOo7+3ImTPTdi4MU87fv4oWjJWenYVUu9KssHCj5RkpFk2bFzZaamszXyUWVQZCHUHKUZqiwz3zAwCt2qjzfHhGlKzVAwNKXSMAoT8f2H1/f7uxPu77ookkTL1o/opW0MfR7ueqgy2Lqwat8eByw0TWqmhibLLDYt2jWNlY51YiLVUBXmGgZulDBXN55L58qPErbHQpusvFdX2jafbY+pTbXtiESvKMxJkpi3m8OAPIfvrY3o1kyCOMN1BAukZWt40b5GUFoIESuyMCARz8EgzfPifh3cg7KitWNrFGLrChuDgKatVY5ze27IFV0cgCdhUsQb0LI0dschpibTc4VGSMfWMFRhjvKy2hyyLMeP00rDM4hT/tn3Nhn7KVutkMWmVWkcjYKYMBZzLc8kWofcoeYbBg92NZbbYi2qGyqyDHEiGOKHharPc32mpqDIEo96Pk/74nBfM1XuzDd4f21Y6TzdmK0xDmI2R0G1b5ctX7N1gzgNuDXnYGoKtq4weCISFYtFW/BszTi2UJXloi3e1BV0RSFJc7bHAY/3/MocaKVjn6naXyZy4jRnrm6yMfSZrxvVOnmY1ayrciUYbagyfpSiyBJXCmZ9OXajJOPBjluZw5QFTls/OJ7CJMMxDmpZXZ9xjmVTx6kw1RgFcdGZcHC+gIi/00wUoA1PIkmp1oS5uk6Siv3hpHUiTIS8yMbQZxwkrA99bF0876tdhyzLKx09Q5V42nPZmUTcnKvRSs8eEzZtndm6zsiPWXzOg225NzqGysNdl0d7PqMgZqMfcHuhxu25OpPi3FIyrPtuRN8TnSylIUj5zHVFQtdk1oeCGRenGYtNk5qp0LLOdsRtWWLd6Tg6A0/EDW1HZ7ktmLblMyvbhkWiVmjkHt6f7u24PO15POq7NAydnDHfd7NbFUIuyrwPYpHULc8HfS/GDVPqpspMbT9GHfoxbhgzcOPiXCTGzs445OGuyygUSeE3l5vcmqtVDDs/EmZDz1N8TzPRbiYX6/1MTUeVIUwz5hr6ATZfkuVMgoQkS8X6ramVLlsQp3zn6ZDHex4fbY35E++sVMm9k85ez0SRNEeWeLDrEqV5pdFsarLQEmvUnvkRfS9i5MdcaduXWiQ6jHK9iRMR5y61LHRNJstFK3eZDM3znId7Lg92XLHPZvuuqNPYm0R8vD3h0Y7LJ1sj/gdfunIpidIXiQvNEEmSTATT6QeBXJKkO8B/nud58Kz35Xn+94G/f+h//zrwNw697u8Cf/ci13Ze2LrC1jCgNwlZG/hc7Vpcm3HQZYnvPFGwDZXeJOKDzTFzDUu4tl0SXS7Lcn7lsz28MMXUxnz/zRkRmIUJIDH0YkZ2mZiQK/2lubqOFyUYqlLoEoieeasQwcsR1YMnPY9hwaBqWmqVGZYk6cwU3uOu+bOdCXGSV61XfpSSZ+JejgPBPisDMk2WiPOM0SRFU7xK0yXLcpbbNu9cbRNnOU6R5NoeBTQsFS9KjwjVldCLANQNE3rDmNmawZdXO8w3TGqGoNdOC0evD3z6XsSTnsdiU7hclLa+x8HWVeabBmGcMdcQ11DqcY3DuKJfl9TxcqPZHAZ8tjM5VgTwMMoKkCTB7fkaDUvQz/Msx9FVxmFCz4uIE7Hpvb4ggsihJ9hxt+edouKQ0HEMbs3VUIr+845j4IUJV1oWj/oecZKzPgzOXeUaBTGPipbP67NOkdhT2BxlzDgGQZzxqOfhR+Igc2ehztYoYGsUEiZZJQq6sxNUugeWrlT0ej9KxaE8y9kYBDzqCdr0y25bAJj4Ef/Hf/oh72+MIMu51nH4U9+4yvffnjn9zZeE7VHAR5vjE1v1Vjo2ry/U+RcffP6JqSTN+KVPd4mTnLWGzw/cmj3xtW6Y8On2mDDOybIBX7/eqXR1JmHCYtNiuW0SxCk/8lqX//cp331vZ0IYZwz9CMdQSNKMHJF8Hodivbu/45JkGZ9tTVjtijVKUyQmQcKNOYf7OxNh8W1rtG0RMLVsnYap0ZuEhGnG+kAUA0pm4lmR5wfXSK1wCR0GEXO6QZbB0I/YHolK/tCP6bsRXpSQqCIx5Ucpa32PMM242rGpmSJ5uzsJhXiuIQ5h93cngvkFx7YsBFHKR5sjDFXh1oLBQtPi9mydubpZta5/tD6m50XcmHF4fbFR7W/bo4AwyVhomlVAWTNVFFkkFSxdHCzyXASLz9uGWzfVwn1VwtDkKvm+Mwkrm+xrshA07rsR334smKE355wjvz3Jctq2gSLLhEmKG4JjiGRPy9boODqfbo3F79BUbl4VQriWrlSHzjwXSb3pZFiair1VkcHQjrLe3ns6ZGMY0DA13rpSJ/AFG+WzrQmmJrPYMou24Gcbklzt2MzUdPJcVER3xhGrXfvczoRxmvErn+0yCVI6jsbbKy2g1GWUGPsJPTei4+jYuigsBLE4oFxpWaz1fbRiP6/iDE3s1Ssdm6EfszUKmAQJwyAGJHRVJFdABNKLJxTydFWwvMuCj6JI2LoouqRZXhU2dichD4p2/a6jszH0edLz2R4HkIvnfKVjcaUt2IOzL6nA8bCo+Fu6ECWOkgxTVRiTkmV5JVDuRymPdj0GfsQkjAWLTpW4tz1mEqYsNk3mGiY/fneOPIeeF9GbRKS5uAeWrhwr4n0aHhWV9LL1sW4qyLI4vLQsnfWBz8M9lywTTPKglfDu4z5hnNG0Na42bSaFLudyy2SubqCr+5qpX7/e4UnPo2YoDIOErVEI0tF1KEoy9tyIGUlHV0TSxFBlbE3m460xjimT5Tm3z9Cudq3rVCYZtq6yMw4FW98TMg2loHcJx1BFEipMiZKMJz2/YqBNi/rHacbOJKRhq2yNA8gltqWQu4sNujWRIO5Noool5RaJcxD6YMclG651HX77YQ/HUHjc81lqWYSJSCCVz3M6Fp+tGfixKCgK9qGPGyaESUbjhHn/aM8jjDPRYWBpuFEiNDu9mHuZ2Cfrpso71zq8tzbg/q5HnKZcTe1j2T6lXpitHzScMDXBXNxWQsZhemEGZ5rllfB6pyYYW7oqFYkqhTjJ6bsRG0NxlEzSDD8S3SGyJIn9oWhvitOcpZZVrYmzdZOdkSgqmZrM+iDADT1uztaeychLs5x7uy5JmnNrXjBUSt1gXZWLtjSf9b7PXMPE0GTCccbTgY+myDQtTYx9YAULPxJrQpLkyBZVjPLplog5Zur6iWvis9Ct6dzbnuCYYg69sdTgxqxDVmgR/vq9XZKyrVWW6HsR9pR7asMSRYg0zTBMTbQEximaIletjJLEqffrWdBVmaWWSd8VjGVZkvna9S62rmDrKqMg5smeJ4qQWcbawMfWZT7YGNN1jIoNpysycpFQNjWFIMlowoGz17WZo63hJ8HWFVqWzuvzdcIkQ5Ik3DBle+Tz/tpIFGIMjddOaEX2woRf/mSHNIPdccRXr7046evlls3OOCTJMh4Wv/XWXI1bs8LkpDQm+K0He/zyp3tkec5bS01+8LWZY2OKuqkSJSk9LwJJrBlf/O9jYgr4fwJj4D8p/vtPIRJJf/wyLuqycVJlVTBQQnYmId95OuC1+RpPenB7vo4qyyw0LWbrntBmUhXy88lpnYqksGz144TdScLjnsdyfvyCtdA06XlRQT9U+OrVDjvjgK5joKliEpfVqk+3JqwPBRV7pW2R5VyagJ9oLSzpz+Jw2bQ0xrbOm0sNGqbKTM2srG4NTWGuZgpaZ5rz8eYYL0pRFYmeG/HUMVjt2NQMEcgGcUbT0gm19MQWFUWS6DiibW0SJKx0bOI0PxK8la0+m0MfW1eJkn3Bx+N0M6Z1BA4HV4tNk74X0XUMwiJjn+f7FbQ4zXi467IzCgnM0yu2wdRnREnGzVmHrqPT80LyXAQrT/te9fowSdkehcQpaIoYO30v5uGeS90IWOnYvDZfr4KFOBUJraEfY6rKM936TrvG8s81w+CHbs/y2rxgezQsYWHrs//Zm8Og+i5Ll1kf+GwOA8aB0PF5s3C2a1k6Q19U75I0rVh9UfLi2iVPwiSI+Tu//pBPtiaEkXC//DM/cI2vX+++1Ov4lc92AfihZyTDfvKNef7mL3xG340OBNYvAs+y3c7yfSvgk5iNJfI8r1qkbUMcahdbJoOC/fmtR33ato4sgW08+zfleV4JNpfiuSUzdODHdKfahd0gpedG1E0NP06wNBWrrhInGW6Y8mjPpWYozNQN3lxq8mjPw49TltsWT3s+fpwQeudnXwhxUnFvgjjl5myNpqWR52LOqrJMw9DYRiSmtkY+QSwC8IWGSAJtjQKeFm3mvUnEV1bbOIUIet8VTLUsExomlqYSnjC/dyZhocUSoSkSK22LJ4Xmz2pHtGSFZes44pnrqswkTKpgG/bbY9q2zo+9Pkec5tiGwqdbk3Pfn5PQMEXi5PUF0cbSeEa1+2HhfDsOEpZbJxdZGqZGEKckGWwMA95abgLwydaYOBOtEFe7gq1RjnOR9IzZnYTEacZXru4HoS1b52vXOoVg/sEEyOYwQFNk/ChhoWHSMHUcPWdvErHnhmS5WhWTynt7OPEFYh/6cEMEy0ut/RalME7hnImpJN1vW5qEKQ93vSoxUKIMZaWCJSLLQC5h6grfvNlh5McYaikaLOKMURCz1vfZGgZ0aoJlkKQZjqGhyPKZWYZzDZOGJZ5R0xLCr9dnbCQkDE3h0Z7L3iTivadD2o5Okok1yS2MCiQEE2YSCgbuctsiSjPSPH/h+0i5z5X7ZN1U+caNLntuxN2F+rEtXnkujDS2JyHvPhnQdgyhH5rlDDyhzVXtu7lYJ3VFzEdTlc/V2lp+TpgIke/5hsWPviYKCE1b50nPY7ZmMPAjFloGXpRV7VpNW8MyVLbHIgb5cGNcJaevz9hoqiwYz7lgumaZiFFGfnwkdtJVmWszDk1Lq/6xdSHz0KnpjPy0KqA+C26YoCnysfquvUmIJsv4UUi3ts/MyLKctYFPlsEoiBj6QsC9ZWvM1c1qzluawlevtqlbGjVDZRLsi4IrsoQiyeiqwtYopGaqtG0NNxQFgfYJhzzHUOk44nlKiFYsP8rwI5EIPhx/qopMvbjuNMsY+zHfejQAKUc5ZTo5hso719p8uj1mdxyRkbMx9GlZ+oGuEEUGSVK42nGOFZ1/UmjPTcswQJEgikWxdHPkM1PTT9SNfRZKRg2I8XljxqFmKCRZztBPKmfuEuMgYVAwg1q2SremszMO2RlFbI4Cem7Infk6M8W1BElKjjCY8GKhMxUl2TMTLWVC048T8HIMTalYWXGS8sH6qIgVNNI8Z7ZusDEM6LtJZaZUQpEl5psGI1/mj3x5CQWJesHyKoX6T9qrT0OS5tQtFVNVKxfWKMn4ZGvM455Hz4vwAsGgujVfo2aodGtGtdZ3HJ2feGOeviuSi5amVImdcoyIM0164cSUG4qkq67K1TWWGp7ie1LubbvsjAM6toYiK8d2mMiyxE/ened7rRF1Q630vcozZ56L/fCsiSlZkljtWgRJTt1SihZQHTdI2B4HJFn2zDgiyfLqOp/FyA2TFEWSLixBAGK97NR0Bm6Ei0iAf7o1IsthpeMgyxIDL+LDjTGPey66qpDmGZp8/He2bJ2furuADBXb9VXHRRNTd/I8f3vqv39BkqTvXMYFXTbCJOXTLdETfNgaVZEkgihl4MWQw844wtFVvvt4QM1SkIAfuT3HjhtypW0z3zBo25dTjYuSjCzP+OKVJg93XSREG5gswWvzNVRZRpEk6obK4z2P3UlE2zKqFr3HPaFVECYZN2YPUhDjohXN1ITmQpjkZ27ZK7P9J0FVZJbbFuMgru5laTd9HEqWzNWuzSSMmQRJxZYZeAlBnPHR5ogvLDe5MVujW9MYBRFumLLWDyqXkDgVPctlctFQRRWxFD09boEa+bEQVjV1bEPh69fNwgFFjInpykWpqyBJHLE03R4F7E4iujXRophmOV6U4scJfpwwDiS0on1hvmFg60q1wJ8UHJeaCJoiVwm1tqMfSDZc6zpVK59oQRGH+eW2ha2rrPU9nuy5Qhw2EcL4iw2T3kRslt/bHJEkOXGW8eOvz537eXcdo2jrkOjY+zbd12b2x1uSZti6qLBpisxC02QSiACjbRs83PV4sDMhycXGZ2oydxcbFRtsy/MIwpRhkPCVq60LVYafByM35P/yLz/h3s4ES5OpGQZ/7J0rLz0pBUJfquvovLF4ssHpT9yd5z/5+c/4+Y+2+emvXjnxdc+LIE4rzaPjmBqyBC1LZXccVddb6jcdrqRKkuiV73sRS0WVdqZmVMGGKguqfrnxZzknVmQlSbRhlLo25by3dbUKTkHM4e1RiKmLzXq1a5MXwUia53y8NebBzhhDVxkFKR3b2G8hmkTM1nV+8eMhtq6yOw4OfDbwzPl9eI2UZanSFGlPJc6uzZS6IypDP0ZXJa51bcyizexp32Ot7+FHDjVT5e0rLYa+cNYr23r7kwjHULk1d7wGg6kqRSIrxNIUHu64NG3RdpfmOTOOzgMJdFVirrYv8K8pUtUCo8gcaGmsTc3Rq13xGy5L00eRpSP6erM10cpmqvvMEVtXqBmCIbxQrOFJKtq6R0FcGH4ktBwdQxV6NPUpPaw0yzFVlUDL2BgGfLgx4sZsjTsLdVq2hiTl2LoQLY6SrHrecw1h3Wwc47ZraDIzNQN9ucW1GYe5ulElduumyvvrQxQJbhdV2TQTh8ec/IDo6v2dCb92b5c8hx9+bYaZuilacs7BBMpz4YIpy3B3sS4YKzWd3XEkXH1S8fs6jnjmn24JDbS2o9OVjKrtTpEkdor3TGuf7U2igv1cJiQSNFkCkiPtjaehHO8APTdire8jy3B7rl459Iq2R6HxWbbtuWHCXMOg7egMXeEweG97girLVZU5iFM+3hxj6aJt47SDTDmGTtu/Aa50LPpuVD07SZK4MVvjxiHyqKUrXJ2xWUxMoiTj0Z7L1kgUa4I4Zbam8zsPexiqYA7dnK2xPQ5wDJHIfNLzKs2R612HnhdVY+9Z+/eVtkXPjWhZ+4YT0y0cS4WTnKmJGMQNYxabBnGas9y2WO/7PNidMF8kD5NCEPrjrTGKJJLnhiojSSY1Q2FrFCBLguk/nWzVFBHHzjg6TjF/m5bGzdk6iizjhWklBj6NPBe6S16UoisS4yBlzwt4a7HJfDHnb8w6hYaOxsCLsXQZdWrfyKFK7GqyjCbLKJLQyuy7cbW3qYpo17rStlEVwTbRlf29rExgSZJglwFVsiFJc1RZsMBBiKxLklS5fQWx0JkTcghppYH0LKiKYNmGaUqS5HxvXRiVr/c9dE2p9s6rXcFatDWF+7suO+MQWRKarramMPAi3lhqkuc5V7sOYZyhazJL7eML4KWWlXA2zAGpigUGbkQQpXRqOm6YMnsCwe1Z+7euCtaoGybM1cV9KvfE6c9b7drEaYatCbfU2brOfMNkvm6yMfJ51HfZ6PvEiUhi1y1RsEnSnChJcIOYp8OAubrOF4pixEkwVIUoTXmw41K3VBYawily6MeM/IiHuy4P9ybUTI2llslszWClY1VtqItNkzARbeJ1U6NuakeSs5oizp9+lFZdGCchy3LCRCTXN4Z+tbc+7ft4YYZESsuy+HRzxK/d20VTFfzKREJjoWFwvevgFFIE03uzqSkstmwWD33nTE3ICZTyJ2dBGe+lWc7mMCDLRWK7XLtn6+L8oCoSj/c8NkcBuiqzMfBwA8EkvrPosNwyC+bcQQdcU1f56tWDWqvTZ5KTEsLTiBLBps/ynH7R2th1DBqFPIcsSSy3LOI0Y+aYDp2yS6lhidb7z7bGzNWPH/ilQYQiS9yaq12os2p3EvLZ1hhLV3F0hZatcX9nwvtrQ2H2FSZ8361Z0kxIOexNQkxN5VrXPiDvchgtR+dHX5+v5t1FUD7vl4GLJqbelSTpm3me/waAJEnfAH718i7r8uCFgmliajJNS2USKpUlqKnKpFnG5sjn5qyDbajsjSM+2RzTtDTuLjXRNYWfuLtwqQ/k8Z7L/V0XP0xY6Tp84UqL7zwZ8HBvghsJTYYvLDcr/aZhUbHUFNEXm2V5Va07zFZIMzHxsjRnvmHgx2ISR2cQAQxiIcB7mutgx9HPfBBRZKnaRBuWhmNo7IxCojRhcxSy1vP4aGNc9ZAvNW3cKK0c88I4AxPW+n5xcBRJlytt0bN/Z6GGaB+Qjzgs1k2N3UmEqkjM1w3eWxsyCRPSNGelY+OGKW7BtIinKwZxxvSatz0OyXPRo13SroNCgN1UFTqOjqZIhGlGy9a5PV8jKBKiV7v2sckWXZVPbX0pA/ZST6fvRZiqxGLTJMlydEWhbqis9wOudmq4QcyuLBGnGaoskWUZYZIjyaJaXjvCKHv28xZaDM++RlURml5pljPwIraHASAOMWVc0rA1PtuesNjMiZKckR/jhQlhkpKlOeOiEvqibW0PY3cc8L/9h+/zyZaLrcm8sVTjf/kjt7h5UsT1ApFlOb/86S4/ePt4Om6JLyw3mW8Y/NyHWy80MVXaboNgGB4OVj7dHvNbD/soErzlNUhz6E0idFXm9lztwG/QFRnHUFAUo3JKmtYiWW6bLBQ6JWmWExaada/N1Y+9Fy1bP9U9xdQUVrs2HUej70U82HaRFbFOdGsGUi50rbZGAVc7NmtDD0cX7bTtQudGtIFlbIzCI4mp0+b3WdbIuqnh6DmmJuNGCXGaszYIqFui4r/Usniw67I+8Hltvs7QF/pSSZZV7dBpwVgYBUmlUTgNWRYJ7/u7E9I851HfoxsnGIrCG4t1HvU9hr7YD6e3CENVuD1fY2sUsjeJGQUJt2ZrByqBkzDB1C7WZnRWeFHC7iQsRF5FkSJIRBBetzTuzIsAsOdGPO15eHGCIkmYmsrGSBQ2DFWm42jUjP3rvNZ1iiquOPSVbQ1RkqEZKq/NN9gYCK1GTZEOPO/DRZgsy/EK/Q+AOEsZ+BEdR2jKKJIYd4sNk6cDnwdbrigwaTJRKvTWWlZE09YL6/O8SAgKjZ9n7cXHIc+FucRWcVCerZu8vtBgUGjC7Y5Dbsw6kEvM1EUir4wnujWdZtFWvjbwqenKfqV/KtZo2xrbowBLV3htts6jnodU/M6LVttBVNdB6GvsuSFLTYuBH3NtRhht6IrQA7F0hQzRhtkwNT7bdsmynOszjmDx5KLF6t620G60dJmWpR9ITJUCwbauUjNUhl7Mk76HLEmnzm8QbLyzOt2Wr9saBczWdVRFYugljIKIIE6KFnihsSUKefuJ5pL5FCc5T3oefpyxN4lO3b/LQ/JJKLVzwiTl4Y7L476LpSncnq+jqzLffToUBjqZSDz33IimbbIx8Nl2RStlw9RpOZpIGjRKhlYK7H+vKst4ccr9XY/ltkXH0SvNzoal8tZys0pMTrPWgzhjVKxNvUnE4z2XjzfHfLwx5s988yp1Sz+Q1JxvZEVCXTrwG6/NOKL92bRZ6wvZjnJfWR/4RUeFSAYkWYala3hhylYQMi4Y+aKdWao0QftuhF/EK4I5lvOth33GYcLbV5p84UqLniuYkm1bJ8tEMbJt66jywWs8Cddnaiw1R+yMxTxww4TffNCnbWt8ebVN3VQFc1VT+WhzxNO+z0LTJMkyGoZKw9LZGJWM9ZgbszVatoYiSUf21XEQV/IZrp6SZBnbY8E+C2ORmK9bQiy7YWlH9OKmcdr+PV2UOgllvOGGCRKiEFwKlAvGscrDNGNr7PPaQo3NQUCYZqSZYN67kWCQeFGGF6XP1HVKM5G00FXRSpgjXO/GQcw4EOYjop3VRlMkshyiWLymFPU5S9HgLEYqpQxAGAs9qt1xhBelzDfMwqhFYeTHfLgx5oONIR9sjGnbKq8v1Lm9WsMyVGbr5rnd5VTl9PPINCrXW0UUbnbGIV6UYOsqWSYSOmWr6DiI+dajPiM/5s3lunA0tPaTfOIMcbZkyVnOJCWmW/LVgsnWtfUDa6KhivOpFydHmEQHirMdm6d9j/s7giRybaZ2hBVVnl/SLBeGEufMGaRZLjpMRiFtO8fQZKQkY33oszcJedLzi9/v4kYJTVvnj7+zgqZItG3jWAbkNM4y707C9PN+GbhoYuobwP9MkqTHxX+vAh9KkvQekOd5/sVLuboLQGgkZBiqoJMP/ZgwTVkbeKSF5si93QmyVAhK6gqzdeH+s9AQOidGpKCqorqy0DQvLSk1CROCSPTx39tx6bkRX4pSJIRAnRsmfOdJAEgstSxmagaaLDQbJmGCJstsDAPWhwG3i2rg4cNPudE2bI2VrsOkoFGedVEEIZZ6VkwHcy1bpWXrmKqCWyxSSpEoedr3kSWxsN7fGdP3Y6ErJQMS1cFisSkE0C1doWaqFdNLkcGPkyoIkSTpwAITxCnbo9I+OOet5QaWrlROFb/9oMd7ayPhTNix0FRhp/ru435VNWwVTILDm27b0flkc8T9HZfPtsZ840aHcVAks3KKg6KMo6sVc4giOPbj9EwHN0GVFv3D5Wb+cHfCwEsY+RHfetQnynJW2hY1U+PGrEOSpUwi4ZQ0DCIWGkbVImJpMl+80uL9tVHVW34Zz/uwJfHIF89/ZxzSG0d8sDFipmEUGi9CvD9KMtGOUFDEnw580lRUG7+40uQ7T4bIsvRS2VKbQ4+/9Pe+zYM9caBqWjZ/5vuvfy5JKYAPN0fsTkJ+8NazNa1kWeLH787zM++uHduOelloWppI4mb5sZvZk57Hp1tjAL600sR2Yx72PDq2xrWujSHvX9eeKw5/22OXxz2fNDuo8SYj9IQmUVyttXHB9Jv+nJMQJiJ4nHb8e7ArhGz7XsT7T0fseSFXmhZpmvOFKzKP+x5JJt4zChJm6gaaAotNG70Ysy1bJc04XuvunPM7iEWirzy0e2HC/V2X7VHAJEz4YEPYPm8M/YqhEISiBSQHojRlfegTJ4K18MXlFpvDgCgRjMmT9D52xmHFtik1Yvwoxc1T7u9McOOUNBMVfXnqsJRlwv0sLdr8vDBldyIS85Ik8eHGiM+2xuyMI67P2HzzZrdKjJWuRKamnBosHUaUZDzqCUH7SRDTd2Mhbl3TGfcTNEW0eEWpcHosCy6TouVjz41wTIVGLtrSVFlic+QTpRk9N+a2JvbNNBOFm9LRdFI4O5ZjaKZmVMK7Jz1vwZwVSYX3no6QpJy3lpt4QcZH/TFbg4Bu3RAHbVUmzXOSNGMQZwRpiqEpdB1d/MZEJEksrclr8w2COCNKct5Yena1/zisDzy+9ajP0I/xo4TVjiO0R1TBAtgYBXhRwtsrbRRZJPG2JAoLdKHd861HfYJYHIgWWyZeeLDSbxd7HUgMgpilgsX4vC6Wc8Xe8dn2mDTPmBSCxIYicW/H40nfo+eGPNrzMDUZbbVNnGbV2BZsDKGb0ixMQ0oWZ8NUGXhRocOoszbwC4ejkNfm64zDmDwvWCPnnN/TmE6uDLyI3UmEpQkB/m8/7rM9DrE0uRB4zrm/4zEMRFuzFx0sNIr2ZyHV0HYMJkGCH5dFtPPt34fXoJ4b8aTvsj0K+d7aEC9OWWwa1E2NxWKtlCUJLxJOyVGSIZGzMfLIM8GsWO0IjZ9W0Y6Z5UeZfVmeFwLfsDMO0BWJ33nYE8YTimiTuzlXO+B+t9gyRDunKhOlGTfnHT7cGDEKY+K+YLy+c61b3YeeGxWx29EDec1Qq4TknQWNLKsVbtwiubc5DKBIZIr24JiffW+DOMt4+0qLlY6NFyU86QnHttfmaziGhqZKhWOqxtYoYM8NGfkxj3sa802T7XFYFdzeWBIH77Ouh3GaicRsy6Zu6hi6XAmJjIIEN4p53Hf59sM+XpRwp9AGXB941X7tRTFukDDRk0oQuUzwTK9tSZrxaM+rEh8rHZuPNsbVmLk+41TOd3cXG0eSf8de/zn278PjMoxT7u1OGPsJAy/itx/16Vga4yDGNlRmbJEkTQt93SBJhb5dLjRtVzs2EjlrA565N5aQ2E8aNUyV612HezsT3DAljFP8OMbSVHYnIbqqsDkM+HBjyOYo4Dfu9/ja1TZtRySBr8/s6zNFSUaUZmduN4MiqVG2+uXgxQmOIVru5hoGmwMfS1OJkjLpImQDshw+2p6gKzLfvK7y0IuRJCqh7rgUnNcVJmHCKIgZ+TFpBivto+3kp6EkdyRpXvWCz9VNZFk8v+k7Pgpi2rZOkqa8+7hPzdAZpjGPei6fbQupnLdXmti6aFGcqYnCY7meHGduchYERUK1RJLmmLpamWEFccqDXY/NcUDb1uh7MfON/QT/JIwrF0NDk/hkY8wnW2O6RbHzcDJtti72rlID+byQJNHmLYzQhJPnw50JlqqQ5NCtaYRJwj94d41JlDBfNwrnaKtoMRZi8zVDrbTqzpIAPwsOPO+XgIsmpv7ApV7FJaK0WjQ0UblXFYmRF7M+8PmlT7ZZ6/tkWY5ZVNBsXeXWfJ0bM22+vNKm7ej03JCubRRCqZfTohAlGd961GNzIBa1z3YmgISpi0E8UxdCp7uTkE+2xnx5pcVeIfq5Mw5ZbJoEhc6QJMGtQvTue+sjrs84FZOnTGpMgoSPN8d0a/qxNOnjoKkyNVM9UXT8OPS8qLCVHrPQsPju0yHbo4BOoR0VJClrA5+uo6OrCve2J3y0MSbJM76y2ub6TI31fsiT3oSNocK/eH+TlY7DV6+1DmTGk0K3xdLFn/0oJUxS1vo+D3dd0lwIYJLlWIaKpkq8tdSs7sfWMODR7gRFkfnq1RZJCr/zqEcQZSBF3F1snFgxqJsqj3ZdHu65fLgxZGscsFC3UFSJGzMOcw2DjzbFRn5jVlQ6ywTXtObNYfTdSIw1x+DJwGPipzRMhe1JxOOeaO9UFZmsSFpBzruPewz8iHvbE7ZGAR+sj7jadWgYGi3H4NGey3trAzRFMB6+eaNLnnPsxnOW5x3EKRtDQdlPs5ynPR/HVMiylI83XbwooWHp+HHK3iQEKWe97zPwQrZGIaYm8d0nAxRFYrltMlMzmIQJD3ZHPO2JLPzXr7fRFOVEgc/LxrsPd/nTf+s3CVMwVJGM+As/cp03l1ov5fuPw7/6eAeAH3ntZBHxEj/5xjx/7zcf8+v39/h9d45v0XxeyLJ04nwIk5SPNgY82hPCt4osCSbI9piwLRiPRpEwy4p2pU+3JmwMfRRFOuAgA7A58vnVz3YF68QRrW/zTeOZbTQ746ASTf6dhz1GQcKNGRvbUHm65zMIYjRFYmccEiQJmwOf+zsT+n5UOQJuFAn+a10HXVHYnUQEcV4lhxYaFktt61hq+1nm91rfI0pzarrCvR0XRRZMsfWBz/YopGXrbBWOeAAfrQ+RFImGqTPf1Hn3SZ/NYcibSw26NR1Jkvlka8jWUDCIvnq1zffd6pKm+YmBpabKtGxx2GzZGrIk8V7hxLU7DvjKaodJGNG0D7YC3t+d4EdCp2Ot77E2CLhbaD91HI1He8IRcWvsk+UZS22L23N11gY+n26P6U0ibEPlx+7MYh4TWHpRwsYwwNFV8ry0Vk/ZmQR8tD7BMmSe9Dw0WUHKwbZk0lxUXxcaJtujAFNXmGvoPN5zee/pgMd9T9y7ho4mSwUrCDZGOY/2PFY6or1ysxBSz3LRErjacZAkWD7U3nKYedG01Op5992Qn/9oR8QXfsTDXQ8vElbsD/c8gjhFlSXeWm6RpDmWLiMhmDP9wqHNUoW+xmLT5NNtodV1revQrRl85VALw1mxPvD459/b5NsPB6TkGKrM1igkyzNmagZrfY/tUUCeG6iyOLQ/3hNs3DjNedL3WGlZbA5FAllTJJZbJvd2JkzCmNfmhXaSVGhN7Y5Ddichby43zhxnTCNJs0JsWQjPixZ9ofHz/tMhT/q+uO81jUmQosrC3bOuq2wOAx7uTrg5W2ccxNycrdO2dTqOxO4k5KPNMbau8P03u+xNQj7cHBMmqWCUF1pP+8+awg5esG7OMr9LeFHC5jDA1oU2zW/c30ORJH7gVodfv9fDj1KiNGOubrI3ifDjlDgR688kFGvY5jCgYUXcnmqDdMOE33nYo+/FLLdMVrsOLUujbop7ddr+nWY5a4WeXN1U+d7aiFEYsdK2GPkJ760Ni6KMShinpGnOx5suaQKpBDdmavhRwJN+xNYkxFAUbE1hcxCx0DRZKlqYxr4ofi6dwOyLCsfRMEmZrZn82r1dNoYev/Owz0zNQJFkgjjBjcTzjdKM//bdHnt+yN2FOj91dx5NU/mR12bYm4TEWcYHG2PiJGe1a7M+DNgaClfW1xbqp7YilXtbw9J4XDiM5uSM/ISnucf9nQnfetTDi1NMVeGHX5tlbxLyT9/bIEpzomSOr1/viGJxIcht6zJDL2HPjfjCioIsSYRJyuYwEIypXCRbs4J9cVpB6dGex9ATLcnXug6zdbEfXp0RSbL3Hg/4z37pM9wgo1vTGQYJf/iLS2R5zi9/ssPAE8niazMObpxwd6mOGyZ8sjkuOjBEu/nVrnNknZMlCVkWumGaIldGB2fFaft3XrAxkzSnbqh8sj1BlcGLUwaeaBdUFaVw1o2QclgfBWyMAnbGos3+s50Jk0C0Ja12HHpuxMYoYHsU8GDP4+5ina9dbxdC6M++17Is8fpivdJf/MXi/t2aqzHfNOjUDD7anLDnBvzqp9uMwpSNQUCSpdi6yv2dCU1Xx9IUPlwfoaoyHVvDNlSiOBdtyJrCyI+Yb1rPTFqoikiuj4MEJEiSfW2j+YZJ3w353ScDPt0eM3RjdE3i+qyDhMx3n/YLllXIm8stvCjh3Uc9Vrs1ZImCiZWw2BQs0J1JyErbFm6H50xMLTYtNkcBTrFmXynipE+2x3y0OeazbZdv3OgIuQVd4XFvwr3tMaam0HNjkECWHGQJeq7Ex5sj4UqsyRiKwo/emeNXPtshjDO+fLXNbN1gdxzStLQzt7S3rEIHLhcF9F/5bJe1vsefeGcFFJH89aKEzUHAkz2XN5YaXOs61Xhxg4SHexOCOGOupoMkYtWeF7LeD44kpkxN4frM8ZIKZ4EsiWeZZnm1hk2ilE+2JiRJxjDLebDjMgxiGpbO9lBIzHQcv4ipxVpUM1Q2hj43Z2u8c63DwI/ZHgW0nYuJ7sPB5/0ycKHEVJ7njyRJagMr05+R5/m3L+vCLopScC2MRW/oOBBJqb4bFf8OCRJRPYxT+NKKyUzdoGFq+HHK6wsn67s8DyZhwm896JFnsD0KGQcplibj+glP+z7duk7bFr3buiKcFESLmWCAJZlYxBcaJpoqQqrvPh3iRwkfb4z50ddnWe3YLDZMLE3hSU9Uu/puXFCcT6/UqLJ07onVsYVDYM1QCZKEf/yddcZBwq05R9DTxwFBlNJ2dN5eaZHlOZYmMwpTTE3mxozDyE/IctGr70YJuiodEeuOEtHnKwFxknFvZ4IiCxr12sAXlbVE9EjrqoyExMAvq5WK0GeYqWHp+9ogYSx612VZ4toUdT7PBa1b6CdIfG99yJ4rWjx1RRKtG2HKbN2ktqIyDtIDbSJweqve+sDnlz/ZIUckjaIkwwtTng5cgigjzUBRJO4u1kllsTDEWYoiKSQJfOdpnzyTkBAuSe2aXlg6ZzzueUhIuIHQMzgpQDjteY+DmG897PGk79MoXJmSNGfziS8qVpl4Fm8sK+iKzHzNxNYF1ViVZR7sTdAkIYLY0XVMTa3aEJ/2RWUvTnOSPGfuBQt5lxi6IX/p//O7+FNdg3/hR6/zE28uvZTvPwm/+PEOby41mDuDW+b33RAuJ//yg60Xlph6FoTjp9AUiBNRPd2bhDwZBHhxWrXFAkyiROjlyRILTQNdVpipH3zWW8MQP0oJ4pTffTrAUOUT++CzLOd3HvX43ccDVjo2jqHy8eaYnhvz8daIGzOi8g5iXtVNjTwXukh1U+dJP2DoxdRMlRnH4ErHZqZm0HY0tkcyQZLihsJVS9I48ZDzrPkdxCnfetTnw40Ryy0LVYbdScza0BPZEEkWjMssR5UkZElmpiZazshFQuvj9RF7boyjy8zUjaKNQObxnkdaE4UOP05PDdJuzDj4kdD102SZjmNQN13ats7ADXmw6+FFwtWpFI8Wv0E8w74rXEDzDHbHIYYyYWukEmcZuioq8OujgEkQ8+nWmPu7LmsDHxnYnUT8zsM+X7jSOhL4bg4DvDDFK0Srf+XTHXRVEgf3KCVIZGxNYRQm5HlOU7JY63mEkWBKqYpCzRCt2tsjwSLOskLfBQldVZgEKY6hIBU6KU1LqxKmJZZbFnVDw9DkZ+6RkgTf2xjxtGir/LXPdnn3Ub+g8+dFGwmMvAQvSPAS0U5d02UeD3wcw+LDjRFvLje41hVtaaYq2pC6jiY0mlSpapu7CPw45V9+b4vvPBniJylBkjFfN+i5ER9tjHljSeLNxQZeVO5XEnnh6BTEouVlpmYQZ3nltrvYtHh/fcRH60OCJC8cYetoiszN2RpDP6ZmqGyPwgtpVzwtWvQlCe4uCrHlMBFtmn6c0puEbI8DnvYUWo5GbxJRM4Ujr67KDLyIvUnISsdhvmlWh+y9iSiY+VGG3VZ4Woxn4ewn5sxyW+hflixnTaHSxzpLqz2IWOHdR30+3XZxDMG8/nhDGLxsjwMUSeb+7kS0/Vkary/Uedhz6U0iTF1BkWXiTGihtWydfKrA7cdpIVwuDu1JmqPpcqVD+az9O4gFO6GUpTBUma1xxO4k4N72hL4rkhOqInO969C5prHWC3nSn7A9CYnilIWmwfooQJMVFEmiUVNFRb8p2JeLLUvosyKu70SfqlzEiQM/AnLeXxNsy6EfoyoyGyOf15M6uqIUnQw5GyMfN0x5f21IyzZYadvcXmjwU2+mrA19NoY+D3Zd4YBpacRpzig4XUC9RJikgk1KzpWWhSqLAvH6QNyf9YJFFSUiqTjy4qolaOBFfLw15smeX7WDholwiJutGxiK0Jq7vzMhSjPGQcyDXbcyIRj68ZmYzlmeF+6ZOQsNA02ReGupwW8/6PEz31lndxwRJELQPM8EG3NzFLA9iVBl0Xqb5Tl35uu0bJ1hESvvTkIapuhuKBOjt+ZqPC5cJvteJPTZooO6fGfFs/bvMEn59uM+H6yNmakLd9Khl/B4b8IwSDEUmThPWWk7GIpMw9RRJBkvEkLz6wOP3bHPzjhkoSE0JhebJh1HJ0oEyzZOhaTHzXOQCgxVQbVlPtkShIG2ozNT17k1W2d7FNJxdB7sxnxvY0SaiWJCnKk0TQXH1JER8fLGwEdSJMiFPt/VrkOQJijIrA998rzHj9yZOzGJCwdbrsTY3mdIepHQwEuznIYtNHbfWm6JeCLNsFRhLjPwQr77dMjIT/hoc8xCw+STLZe1gctsw+RPfm2lMro4i1bTYVj6fhJGsDnFZ4yDhDyDKM+qs3iWg6mpzDdtem5Ew1DFhprl1GyV2/MOAy9hcxjS90NuzNT5J++t8eH6RIh1GwofbYi4s+sY/PjduSM6lMdhurgqEspCy3YUJMwUEgSinVlnEqbYmkrPjapnM/BjwUrLYLycEKUZSQakOe+vD7k1X3tmi+hFcDhp6YYJtqEQpSpZltG0dXJy6oZCx9YxNIW9SYihSgy8lCQVTodelPJ4z2N1xua9J0K8f6Zm8IffXkS7gCnI9PN+GbjQXZUk6X8P/JvAPagYpjnwY5dzWRfHYtPkad/n8Z7Ld5/0kRVYbAmK4cbQYBKmKHLOlbZF1zH46rUuiw37ubURzoKGoRFnGStdu2hdUrGKxUFC4p1rLSxNpuUYNCytaINKUVWLmZrOUsuecgLRyDL4dHsiMqQDv+q/7RTuNVvDsNDIOD7gTjMh2BglKfULTrCmrdG0m7w2X+d3H/cwCm2AIE6Zq2t8b32AIit8uVPj7mIdW1N43HOZr5s0TA1dVVhp2wy8iId7LqYiHB2uHKpeL7ct9iYhDVM4Y0zCWCRJhgHdmk6aZWRZzlzD4GrXYaltMfAiwjgjjEW/cxCLlpArbYvtccidorpW3usSj3seIz+hZqpcn3FI0pyltsWdoE7L1HALwVFVFhuEpQvx4jIpdhpEZT1iHCZkWS6cDG2DJ5HHQt3iYc/F0mVuzdX4xo0uIz/m0+0J4yCmOaOxNQ6pGyprg6AQeXWqSuti0+RLK6LN59qM/VzORFsjkWjou6Ki3bLUSjQXRIL12qzNl1datBxhZfu0LxKofS+io2isDQKSFLqOcLOSJAlNkfjatQ7fWxvhGArz9Ytl8c+Lz7bG/Gf/6lOCOEMphJ3/xNdW+ONfu/ZSvv8kDP2Ybz3u8+d/5MaZXm9qCj/y2iz/3YdbZH/0rTM7YE3DDRPu7UzoOPqZe/ZLCHaDiqkpNG3x/u1RyGrbomnrpPl+YsrSlEJYVkeVZeYaJi3rYCD0zvU2f/+3FeI0Y6n57ETL0I/ZGAakuZj7b680mS1aspYLHY65hkHL0phtGHywPqZbM5hvGqIy1veYaxoM3BhZkrAKB5SmJdadnXHIF1eayJJEt3axZOnuJKTnhgSxcAW8MWsz8BPquooqy/S8iGszNnfm65iayuOehxsKLZMnPR9DkRj6IeMg5krb4vtvdit9uK9ebVVr/lnapqQi8TVbM1nr+3ScnK9f67A2DFjtCsfWhqnwqOfScoRYapaL1vIozbk1W2dt6NF2NJJMHHxkRbSwvLncZKFhkUugKgrjytpcRZGE5l/N0hj4RyuyjqGKlit1P5Eg1ma7cu+Ugd942COMM3Y9cZBf7VgsNi2iNMXSBIPJi0Tl2tSEFbehKUyChJatV6YNsw0hmhonGUstk54b4UcJYaKeqVocJhlBlBFEIV1bR1dlWrbGKEi4Pe/wuOfTcTRmawY1S8GPBPNmFArdFj9JiwqrhKEo3F1qVMYWmiJzpZPRc0PcKMELE4KiMHKewFe0falCL6Rto2sytiaSipauMNewWGyavJVkdGyd5baFJAmdoYycLBXagN2agaEp+FFKy9J4f33IZ9subUcvWL4RjYK1s9qxGXjxqQ6hbiDWm8NtwdlUr8U4iJGQmKsbxIkQah4X7n+2rtC2dfIMHFNFkkTbTpKBG8eCYTCV0+s4OlujgIYpkpHdmtB1WmiaNEy10PKSnrv1cBQIM5WRH4OUM1d3kCWJhq1hqjJJLjTkrrTF9+Q5hSudijWOmG8aaDJ8uDnGjYQgcCkc3bZ1bsw67E0irnadc8WnO+OwaNkRCbySWbUzCXB0oRWkyBJvLjT4/tuzTMKEX0l2GIcxkyCmZqkMJjFyLhU6P3B91sZQVMIkLQSeBbs1STNmn5Egl2UJS1dYaDXYGgn2/zgQ+ktpljNbF2tvDlyfcYgS4R75uOfRtjUcXWHox2RZzu0FkRR1Cw3AtqPRdjQsXeZq13kmWypOMx7suIzDmFrRBiwXrDlNkXF0pYizLWZrBnmWY+syD3ZdvDhldcYmS3O+tNoiLBJCbpihqwp1U8Tqc6ZROX82LY26IcbqXN1gdyK0qJ6V7Bn5MQ93XTo1DVUW4yhMM7xYJJk+2ZqwMRTabmV73deutbk5VwNJtD6qskhMvrlU5+5isypeOIbKQlMUrkG0HJUMCFMT6/04SJiEMV+/3j02dsxz4R6pKkelNHbG4aljdHcSMfRivDhhEsjM1nRiLS+SJBJDP+HOfIOrXYfFpsGHm4Jldm3GZq0XkKTCUVcCNEXh69dFTGlqCq8v1tEUqRCGPv8hWpElbs/XCh0tlZuz4s9vLDb4aGPIPQR7qVE4Ny63bWFKZWu8sdhgZxxRs0ShzDFU6oYgGHRsna2RaPNUFImtYUDL1k5tUdMVmYalVnItkiRxtWvz0eYIU1dRJHhjsclszSCKUxabJj0v5tacw7UZwSL7rWGPNBctqb/7dICuKhiK6Bb68mrt1DbH8+K1+Rp5nmNpSrW2ppnQS1Jkia9dazFXN3mw57LYtEVXiCyTZRlXWhZenCBJOVIuEvBBLPag3iRi5AsdqD03OlNiahqaIiEjc7Vr057a72/M1JCQ2BoH2IZKbWpuZnnG1bZDkme0bZ0rLVvM3TynrssXlvh52vfouRE3Z5+d2BLGH6J4pCswX+giv7Xc4LW5BqYh81v3e8w4OpCRS8L1um6puHGKokiEUc7IFy3LXpzixRnNl+x6fhFcNN33PwZu5nkenfrKl4yaoeJHCb92b5ftsagMfOP6DH/gzQV+4OYMH2+NWR/4OIbGW0tNvnCliW0I6u159TDOA1WWWG5bfGmlBRJsDwNScvwwY+ALZ5dbczVuze1btBpqzq25enVdXpQQZ1nlsnJ7oYYqi8zu2tCvhCBnagZzdSEsN03TndbfyvKc+zsuT/ouW8OQq8+ZDdUUmTeXmnxldcLAi/iRO3M87fustB28KOXOQo2+K3RA2pZKyzGQKCuTFrfma3y0OS6Ea+UjLZTTOgF5Lir1TVPn9nydjqOzMfB50veJCq2ZcRAXzj2CmbXQsLk2U6sCl84zKPqTMMGLE3YmAfMNYSVfNzSud51CcFUESg1TwyksWeum0DM5i02orshoqsRr8zXSHG7P1agbGgttU2h/rLZoWcJlzNZVdtSAbz8aFI5TCV+40uDbj4bUDI3ljsYP3polTHJAaA4JZ6Dzt1UchnD5s6Cgny+37UKHwRZ92rLEYssSld4iaIoToQXWtg3qhsL6KORq1+ZLq206jqjQ1QyVuqnxzZsvz/nuu096/N9+8T7DIKZpaSy1DP7k11b5k9+8/tKu4ST8yqe7pFl+LvbTT9yd52ff3+S9tSFvr7TO9J40y3m067LQNHn3yUBoFMUZf/AL87TO0LJSouPo/IG3Fuk4Bk1bo2Xr/OBrsxiaQtPSDhxSNEXmznyd23M1pKLt4TBsTeVr1zr03Ygbc8/W+LJ0USkih5tzDm8sNllq2bw+38DUFRxDsPdalsZ3nwpRa4mMr1/v8sCeYBsqbhiLNrCaWQUGQSySG1e7z18Bc3SRMMkyuD1f4+Zcjdm6z8CNaNgaTUtFlmS6js7myOf+7kS4v6UZCw0DU5N5f33I9a7N26tt2rZeJTHajsHXr5/vMF03VB72XFY6Nm8tN5AkiTeWhD7HKIj5lU93qekan2yMMRWFOBNsW1WRuLvQ4OqMza2ZgJ4X83Tg0Z9EzDdMVto2i03BNlgohL2vdkVC70rL5lHPO1YHEURbQtPS0BWhbfX6Yp0vXmmQI4RtTV04DflJLoouCiiScJN6a6mJKkv4UYptKMzVDa52hTZYaS+uKXLFTLo247A9Eg5je5MIXZWwdU2IKwcT5hoGXcd4ZpCuKTKKLNbEa4Ug9pW2haYoPNybsNCw6dZ07i7Uxf4+CishU0WGNxaF3qOuylyfdQ6INqdZTpyKlihZknm428MxFCEzMFc7s46cpoiD6R/90iLLbZuWpbExDLi37SJJsNQyubPQ4PXFRpX8yIq2gfnGfqwQxKlo0TY1ojRjqWnx1nJD7KexaJ/vGwo3Z2usdGyutA+aGQCVUHFY6Av++oMdnvbC4lC8j5WOqKKnacZ3ngwwNIWlpknT1vmJN+aYrWv8xr0+hiaz1DIY+aLdp9Sf1FWFpq0SxNmBBOhs3TiQdFpqWc9kKVwUpiaz1DaJC4Hwu4sNFhqGELB1NB7suJBLaIpCnGR860kPR1O5s9Dg5qwjnIEbFrcXmnhRgoRUuGMphbtTnVsXIMXWDMEIvT6TsdwSLV1ekawYeDEZcK1rV45osiTaWpumztWOGN+2rnJvZ0KSCsb+e09HXOs4vLZQJymYfWcR5jdUwbID4bCZ58LhU1EkHE2n64jrMzXxmx1D5fe/tVC4bwm37JYtkmk1Q+WtK03uLjXYHonDZNPSKkONPM/ZcyPUY/SmHvVcfvGTHXZGAQstg2szNRYaFk6RPPrClaZgZdR03EjoK16brREnOaam8sO3Z7nStov5mgq3ZEWiVzjKTou4A9ycrRVJSIWGpTNbN48YfxzGtx73GbgxD/dEW+9Ha2OQcpYaRiXq33Z0fui1Ge4uNfjqapvVrkOciPH37ccJX7jSYqFucHuhfiDOVRVR7NweBVxpW5UzWYk8F0zWuqlWzop5nles1rwYJz1XMNNuzu27V28Mg0rn71moFXtj1Mm42nW4M19jz41YbJloqoypSdRNXbAa85zffNCHXDBxFlo6N+dsfvb9TRZbJjdmHeHQ6wmdQFtX+cKV1qnj8Vno1owDLGQvStBUmdsLDXYnMT0v4otLTRRFJNJBXNtyS7RFXp91eOdqGy8SzrlNW8RDyy0bTZVJ0xxTV051ZQSRKJs2QQARe31hucVby03ByJqxSTPYHIq5JUsSIz/FizJuzDjc33FpFzHaT391hd993Ge5ZXN99vKTUgBNSz/iaO3HGT94a5Y0z7k56+BHKVe7Dn0v5sPNEY97HotNA0WRWG3bdGo6t+bqrBQyJzfnany2PSZHrOOHRcrPAlNTeOd6i7evtFCm7n3b0av1g0Px6bWZGm9ciZCAL6+2cXShR6pIEt+8OXOhfEHfDfmlT3YxVJmhF/NDr80y8mP63tFUSpRkmJrCbMNkdxwCEj9wo8tri40ikSwKbUNfFHRsI+LWrMP6MOCzrTHXZhwWmya35usYmsJiy7yQ9tXngYte5ftAC9i+vEu5HDzYdfm1e7t8sD5kHKastkWV8M5ik71JSMsRoqYNS1QbXpb9YcPS+Mk356sqxJW2zebQZ2sYcGPOqTb4cmKUtsmSJA43mixXDgPjIBFBYctGRlSscnJkST7QCnB4A3zS8xn6haNNnvPJ1pjHPZcsh+X0+YM229D4U1+/SpSKCTUOEuqWhqbK+HFCkonkxfYkIkxhte3w4bqwcl5uWyw1TUZ+XCU64lQ4X9QPibipskTHMVAVCUWS6Dg6e5MQWRJC8b/7ZACIqscP357FixMeFloCq519ob9SNNNUFZypTHnDVPntBz0USeZ7xoivXG3zpdXWgd+aFlbB5fg5jwi1qsjcnqtzfcY5UJU6qXLfdQzmmgafbo3puRG7k5CRF6OoEm1LZxDEDL2kGiuGqhAmaZVsTVKRLa9NCaufBYtNi7YtWjDL97UdneM4+5IkrO6f9FxBJx8HhatUhmJKGJoYv7D/DPKpg4ssS5XA3kXFDk/Cu4/2+I9/7lOeDgJqhso717v8pR+/zcILOKhcBP/ig01atiaS1mfEj70+hyzBv/xg68yJqUmY8O3HA2brgvGxOw5Js4zHPf9ciSmAd6516NZ0DFUwGWRZ4o98afnY18qyVFWmj8PGyGPgx0SpEOJ8FkxN4ftudsnyfQvvhaZZOcCUKHUEOzUdpdDLuL8jtHTGXgSyjITQSnm85yFJcKeoxoeJqMgGSYapKufeI9qOzjvXOijyfqBza+74RHG3Jg7Qm4OAe1sTIRKcgYyEqatIwP1dse4vNE3BbslyonS/1XgcCNH4k9iRmiqjFK+bFGtyOZ8bpkbH0fl0c489LyrYoKoIptsWOSIpM9swibKc1+brpLOiaj0o3GKX2yLBd3uuJgRvi+s4jfpdrplNS+Mn31g4EigrksRcw8DWlcrGumTSfrYttB9atsZKx65aR/rFwUiRhXuSrkh0HY33nwz5ZHtMy9ZY7dgkttBs9eOkcmLtOLpg0R0T+BqqzO9/a6FqS13S1cpyfa5usFEc6KxC32EUJAxDcWBKMuGwJFoQ94supdvad58OeLjnsTMKuT1Xo+9H6J4IJM8DW1f5qTcXqvUUoGHpxGmOqSncmkr6lvf63s7B+whC3yZKhPPbnfm6aMNfbTNX19kYCofa7BlxRulmtDcJhXOspbI5EIyBMD3ovKopMvMNkw/WR/TcmJ434cHOhIalc7VrsdCwuDEbIUsSX1xp0HPjShtKWJEjNLQyKpe001DOH1WW8ArDkYse0gxV4e6iEKwv14mWrXNnURxc+25Clks4psK7j/o83vOYqRt8/60u93Zc7u943F5IuDHjsFHoVJXz4vD+GCbCNfIsYuxtR8cxVL640qp+W7ltXz3m9Y6uMlcX2jbzTRM3SPh0Zwy5kFcY+wk9N0KTJQZ+LNqN6jrzdbOK94AquXYSc0aSJF6br4vYRBasypuzDrauHBhH00mlMqEzLA5vzcKkZnFq/y7fuzMOKwMY5ZChytYg4MGuK5j0aca1bo35hnHAUGeuYTLXMKmbKl7RyrozCYWdfE04GJZx+NUZu1g/j987VUVmYUrTZRIURg7P2GvV4lnJssRa3+fxwGXsxczUxG9uWCp1s4auSeyMhOC7o6tYNfEbvrTS5lHPFc51pkYYp4yCmG6h3bg7CUkzWB8GRxJTiy2TNMtQZGHUAPBwz+OD9RFrfZ+FpsFC08DSxD2d7jo2VJkJnDqPmrbG2ystvrzaqoq4y7pgHx2FKOZvjwLW+h6SLDH2E4QzgVg77m27pFl+YP0KYsE8lCQYh4mQ8nhGEiHPhTO0qSqVULipCff2e9siZg3CBFkSWmTfftqnbQndsJWO0P8q26NOcj6zdZXfd2eOMEmrPeQ8COJUmLXoCh1Hwy/kUR7teURxxjBI2J1ErA99kiyn5aiARLNwIq2bGm8uN/jatU4VN1wmyjOGo6vIEgfWrdm6UcUr4yDmN+/3AVjtmGwNfTaHIW4Y8861Drqq0LI0Vrt2xTwEeGu5xd3FJslUfHEeSBKECTzp+8SFlE8JsVcevR9t2+Bfe2ux+u/b8/Wq9XvuAlpNaZbzcM+j74YYmjjzhnHKL36yc0BUfBImqLJEkgltvqEbMfZF7CZLErouYq2BF6PIIp7YGProikyOKGYst2zBKlaFCdYbS43n6p552bjoCfA/AN6VJOl9ICz/Z57nf+RSruo5MAkSarpG3dAI4hxDUzA0MQjbti6cXBTlwKHhZWF6YGwOfH7nUZ+kaAXLciidGPM8p++FheuK0FtKZaGXNX1oF210YpPYm4QnOmiVcIuDv3CNEfTZubo41J23neckyLKEIQnth9cXGiSZqMwbmsqCo/LR5hhdtYoWRgk/SlAVsRnMN0wmoRDFHfiR6JHPOGKHrBbV8Ong5e5ig6aloqsK3306FPcsy8nISafkqqJUtPyFccq7jwc8GXjUTZUfeW2uYk8YmsJC08SPssL6+Cied/yI959toZBlie+/McPIj2iaIgk3N28AEncX6qTFoiYODKLdqTxs35yt8bgnDhqOoZybSXWehNvVrsP2OMAttF0mQcxM3aBtCf20KBHXGRdiC2XLpG0Ill8pRFoGfJeBR3sTfubddfY8wZS6Pe/wV/7g3ZcmtH4agjjl5z7Y4g+/vXQmtl2JtqPz9esd/ul7G/zbP/XamQKNsmsmTDLRIhrEWKpyoVZAXZW5c4weX5RkyBLVbwni9NRAaG8S4QYJSXZ6YAuc6T7JssSN2RqzdYOmKcS6dVWiZWmQw3zLwFRVFlsmpetzmuW4YcSTns/OWGiX2LrKa/NHrYFPw1mTWYaq8AM3ZwqXqhRFEbomnZoQ+bzSsavnVmpNlMLkLVtU7HfH0YHE2jSSNOOjjRHvPu4XjDaVN5db1d+XB8WdcUjXj/AjoUtUtjGXz0NX5QOJpp1xyOYwKHR80gNs1vNCko5/7rIsVYLaZUAvFfoapQZWqWNRYrll0XMjbGM/oRjEORmi/V2Iy1okaUaY5uS5YFmsDzw2hsLx6Pqsc2xl8aTAru3oVdtBlu1bm7ctnYWmScvS+GhzjCTlmLr4nesDoZOyPvALh6SkENrVmK0bjIKEpaZ5btfNw6//dGvCw10PVZWYqxl0avtuXGGcMgkS1MI5rESQpLhBUrFUpp+7oQk28rN0SUqXrSTPSeOUmqny2nydPTdktmbwt455T90Ural+nOAYKlGSkaQw3zT5PkMlR7SDz9VFUmlrFAgtw1ww9HRFOaIfVs6X6TkRRAkPex5xkgumuqVfaF+cxkmxQN3U+Nq1NjvjkHEY87RukuZ5xc4L4wxZlui7Idp8/Yh4/HQhcbVj8+mWsC6faxiV2c2zcJ6EuixLvLncZKllEaVCQHkYxFU752pHtC21HJ243MeTrLK279R0HF3hSU+IrZ80h0CMjzDOuDlXY65hnEmQ9962y/vrQ3RV5p2rbZq2duwBP8kzRsU9m0ae5zRtnS9eafCk5zNbN2nZ+omabitTrWDTscLeJKzWuIkfn5r0KNFzQ/7VxzvkOXx5tXXieHvnapunfSFm/PHmhIahEiciQSkh1rcsF4VrWZLIc3E/y99r6Uqlk5tlOf/dx9t4UcpSy+RLq63q95bJ3SzLqzHWdUSyRUKq2p28KCHNMqI0Jcuh65jULRVdOeg8ttSyaBRaZqfhPOPyq1fbPOl5gm2qiPPC6wtNkETbWPl7omKuP+l5DLwYUxOtViNfnC/uzNdPjHNKwyxh6CBi6LmphCXAfNNm1Y+ZbZjsTQLajiA2vLXcOMJqehYukhzwo5R7O2Luh2mKoQiDiLqp8aTn40fCZbZTCHQ3TI2llokX5ry90sTRVZbaJqPCLOZF4P6ucNK1DQVNlqsxVTJ+b87WyLKcDzdG5HlOUhT2F5sWqiLGXjmGZhzjAFGgxHnOTIchik8pQzciTg8mpvZfc1Bb+HAs6xjqsTHvWZHlOaos8+WVNnGW8pXVlnBUnFqDdichG4VES5Sk+FHGXMNitmEQximGqhIXbo9eJMgHsiQkfCQkNFWqnvF8Y58FftH79nnhoompvwP8DeA9IDvltS8Vr83X6Xkh93YFK2OxZRcaRDnvrw15sOvSsXXeXm29sEl6FnhxSpyKZNP31kekeV64CMo86fn0JhF9L+KNpSaWJkT5tKIKsHqMKOdZnAqWWkKnqVVoZDStkNvzNRqWdm5L5GdhYxiwNxGHpa9ebTMJhIBtt2bw5dU2H26MqOkiEN0cBQz9qEo8lQHypNAQAHHYnYamHKRplws3QLdu8vXrHR7tuSw2LQxV0GbjVIiIdmyNz3YmPN7z+GhzRF6IFIZxWiWmOrbOnXlBeV9omlWC8GVDtCOKA5ZwZ6nx6faYuabByIvpOBq35us0bY3tcYhZ6KQNh4I1IA6NSRWgxy/A6rOsUluFDoSpqix3TJJEiAH7ccrVrs3tuRo7E1Hx7BatPeWz9iNhy1vi8PO+KDaHPn/nVx+yNgiYLaxV/9KP335lklIAv/DRNm6U8offPr/4+h/90jJ/5b95j/fWhnzxDBR2x1C42rW4NlNDU2S+/+YMPTe6NOfR6YTorbkaO+OQgbcfoJwEWxeHShOQ8uebZ26YoMhCc6Js//1kc8RHWyPcMGWuptOu6ShI/ODtGRxDuNPYRWtVzxVjNE5zoiTDUHPSPL/wRnkSppkFoyDBMTTmmgZeEBMnQuD0xqzDG4sN+l5cJe6zLMcvLOXdKMHW9hNCSZpzOI/xcM/jwa4Q811pW0jS0YCsWzP4xo0uuxPRduboKrP1ZydFOkUipvyzFybc251ALtF2tEsrdMB+EkxVJCFUrMgstUSgfdjhUVflI+y5rqOhqYJp8eXVFvN1kyd9H1MTbdm6KrPnZgy8mJWOJdafc0oPbQ4DnvY99MKRaXscUjMVFpsWT/oeiiwE2N9YEqwlL0qLQ6XQsdjVA15bqHNzRqyTyxLPrX8EMPLFeN4ehnxvY8hSy+LWXJ1JmPBw12XPi5gt9CtBHHLTTLRuHad/Md1SfxKalsbESbB1Ia7tGGrltHdSnLFctGjcnhctHkkqdEANVcGo7Y9DXRU6jo+ilF03pG3r3F0Rmj/T2iFelFQM3WszIknytO+xMxaB/3JLFMFall4dal8EbEMlGQYEccb1rs1Kx+bWrNCLMjSZcRijSSYfb465PuMcuOfThcQ4TauEyGXtj9MQzz2n7egkacbTvs/uOGRvEnFzzmGxZfGFK63CTCInKO53ySjxowRN2V+7nzWH3DBhY+hhqgp3F5/dul1iGEQVs3Fz5LM1ClEViVtztQOJIT9MySXh3Dw9TiVJYqllYWoy37guDnNGIXtxHrRtHS8SCd2NYcDTgc+bSw0c49kxxfYo4GnhkLjUMk9MTFm6WrU9fmlVJU5TPttxWWqLAsXHW2OyTLCbmpaGLO8bdEzHi1C6jok1+mnfw9ZVsly4Q3aKdXNtsJ+UubNQPyJavtyyioOvRacmROhPKh5dVpvQJEyKtmSlYLpkXGlb3N91RVJXkVhtO9xZaOCGKZMoqWLKslARxFk1X5JU6CaexNou538Q73cZuGHCfMNkvmkIHbSaQZZnfLAxomHqhEnGasc+EFNHSVbpr10monT/t0yCBMNRxP6B6Cjx07SKDRRJ4vZ8ndVOjZ1xwGLTQFNlHu+JsXelbZ2qB3ihayzWpCjJiNi/n9Mttvd2JsRJhhslmJpCx9H5iTcX+HRzhFS4WMapcmxS6nkhmNAypq4cWKemURbKHUOhWxTKy1j2vAWi46ApMqsdm0kk4hZdVdBVeHulVbXylfcxL1xjO44w73l9ocbPf7zD9licZWxdZaEhsYlg2bZsYaDihzH3diZFy/zzxw+fFy46AnbzPP+PL/VKLguSEFOzTRlF0nh9ocZqxyGIs8o60i80FD7PxNRKx2YcxjzZ85lrGCSpyNaqighWNkdCNDpNc3LEQNUUuWhxO5vL3jTGQSwCZ0WmaWmVreSLQFnFKCfXJBQCofd3XbxI2DWXGiNl5dsrNpTllkXfi1BkcW3yGQRK/Xg/aPMjITYr2vrEPZIkqaowRklWOTbO103GUYyiwM4krETQVUXm+myNR3uuEGsMYu7M1y+d/vosbAx9dscRsiySrUmWY6gK83WTtaFPnOW0igqXpsgHGGXdml61I+WIg2Oa5cdqvTwPxkHMw92iRbJrV8/9aqfGg50xo0DoFJi6gizLR6q8S02LvYLWKksSnZqws+9cQqLkg/Uhv/bZjmg/UGVem6/xZ3/4xqkB5MvGP/7uBjM1nW9cP789/B98a5F/7x9+j595d/1MiSlNkQ/Y0Nu6eqRtsle4l5ZaOucZ82UrZsmimT5Y+VGCF6U0LO3I2jXXMEVALEHDungAsDcJWa8MAfaDiUmUQi4V4tM55BKWqVIrhKen585MTYhkzzdFm+J8w7p0CvTQi3ncE/Pm+qxDUjAIV9pC2NSPM7qOjq2L9ejw+rfUMhn6cdX+0pKEGP1x7TPCnEFh1jGYretc7R6fMJpvmCeyMNIs58GuaPla7Qo2ozLleDMOYu5tuzwo9MtKhvJloRxXw4LObmrCNv24VsEkzbi/6xKnQsNEuMVm3JgRh726qdFydIZBzKBwn3IL0fZSv6V9Qkv1s7A1Ciq2SD6735ofJOLAbxQOfOVYEi1oAW1bwzYVfmhprmI/H06sPQ/eWGqQM0LXJNq2gR+Jvc8LE/YmIWM/wVT3hVyzPCfPxME95/yFjOn148Zs7cD6MZ1gApHM252EtGyRyCyLa/ONZzNodkYhn26PyXNJMLQ1+UixoUz8AXiFrqEbCtadYyrYhsqXVlok6eXvi9PouREPdl0mYYKjK7QdvWKoXZ+p0fciNFUhz0Uiajoxtdg0ebjr0q0ZOIbGYsssTGUub3zAfutlnou1pW5qKJKovseZSNi2bf1YZsh802B7FAh3SVsnSYU+3bPm0KM9jziFJE/P7EJ5a65OngtGoKUreGFaxczT+0mWQ7NwEBZaaft7TsfR0RSJR3sehipzpWOfmy1cOn1tDX0+2xmTpEIz9EurJ3oSAkJ7Z6lwJD4paZ+W7KXiN5qawvXZGntuDHnp0ideGyViLS6xPvDZm4h48c58HVWRMTSFt6802RwFlbabLMnULQ1DVciynJ4bEiWi1dcNE9YHQoLhxqyDVrQdX1bh6izYHgdsDcNKliIvdLVqhkbXNng68GgUoveqItO05QMSGItNk51xiKbIqLKEkWY0D5kbHcZyy2JnHJJmKmmeI7G/Bk/PtXoRL4RJzELDpG7qFdM6TjM+3RZJw9m6calreKkBOAoSljXhPDpbE2ZOjq6KVk5dRu046COxpv7Wgz0apk7L1qoCP1Bpw102Vrs2Qy+m4+iMw4SNvs/KVPxYspwVRaZbJDiDJKdjyHRqBjvjkKf9gL4nTEvOmzA+Daoiie6ghnlkLAx9Uch3Q3EG9aIU61Ase97E1NO+YO7N1g+yW6e7nEpcm3G4hlhb5+qG0HJDPCtTk+nWhR6zJEnEac760KviuukYaLau8GvbY7aGwoTg2jmYfK8aLpqZ+JYkSf8B8I842Mr37Uu5qnMijDPWBz5LLYuhL6ptXiAoeQt1MZEtXeFq166Cz+45NVUuGz03om0ZXLtdY9cNMTWlCkoWGia/+6iHJEv0vIirMw6rHZv7u4IVdH/HrbSEzoqBF5NlEGQiY31ZrVLHYbFpoikypiYYPGVFYteNWKgZ7LiREEmuG6R5Xrgqybz7WAgdNiyR/QXhxvGsRSGIU4Z+XPWZdxydzVHA7lhkoG/PiwNqnueVLs18w0BXBf1+5IvK11o/YKFh0bT3F62wyF6List+q+XLQJk5zzKxqK90RIuKrspEcYaUSzRNsZE+3vNomCq7biQCrrYQYtwcBqwPAkAc1C/bdTKcqtxGScZMwUyMkpRxYOAXidYZx+DRnlsFP5IksdK2aNoatqHw8eaYPIeWrbHceT7dpzzP+Y37u/z8hzsosmBJzNUNfvory69cUqrvRvzLD7f4U19bOXerGIhN7ve9Pss/+s46f/UPvn6hzziMnisq05MgKXQBzj5muo5BEAvtlmahY7QzFgfPbz/u44UZy22TN5aaB95nairLbRNyoYlwUYRT1aYw2dc9uTNXI8syDE1hHMQMvAQFic1BwOYooFnoDpkFe6ZuqoyDhCQVAc1lY1pnJ0oKR6viYLrctIQVdLEXPOl5lYZRmuesFAd4x1D5dEvsB7P143UtgMKBVASIErA28Lg1e3Jbw3HwoqRiaQ09IcKeZTkbo6BwjBEtNV1n3/nsMjFXNxn6Y8ZBTK2YwyexRtxQtAkBPNidYKoKTVujbop2sJmawdATrXOlJuN8w6wSbRdNUrRsDV0RiZKyfXWmblA3VPSOTd+LsHXhwJhkQlB4qSXYVK1cMBcalnqpxY8oyRj6CddnaryhK+yMw6oo1XF0VFnCjRI0T2Loxcw1FCxNuGMmaUYUn5+Z0/f214/pOXgcyrWm78ZcOeFcPykSaE1LCPi6YcIn22M2hyGSlHP9BOfZdvHaPKd6postk+1RyBvN5qWw0c6CMEmZqRnCwTcX6+nAi1ltW2R5SNt2CpfhhLEfI0sw9IXArqHKKLLMwIvpOMmlH9b2r3GfkREmGd1CoH9n7EMuQS7ixzBJMVSFp31harDYtKgbGlt5SN8VhgNnEZhvWhrrA58sFfPVOkZTchzEbA5FwmulY9O0NN65JooqQZyyNhBmP86hmGalmGs1Q+XBrjjA9b24YuwOvLhiKp4nDvaihJ1xSL3Q5GvaonBhqoKdG6cZT4piw0rHPlJ8ma0bfO16hyzLWWgc/xzX+qJ1U5Lg9QWRXBoHgrkTxCmKLNGyNZJjJDvK9XDgRnzrUV+I8rdsbszVuDFXI4hT1gc+xtQ9Wxv4ZMW+c31GmBSV2qmTIHkhzJrTUK7deS5YyzVDZaVj4UUpQZKQZCaqLNoIH+256KpI8iqSWL/rpnB4LNteO7XTE2tmIfeyNRRH2RuzQtR94EXsjMMqaa8pEpYmisOdmsZKWwjnO4aKH6VV0vAk+Y/nQcvW2R6LNtIkS9kZDwvzJfEsl9sWO6OQxz2XtqWx50YVs2ulo5NkOXmeH2EYXxYapkbD1IjTjN3dEFURci4DL0YtWp0zMiFQv9wgjDOatnBO1RUFVZZpWQotW38hjFBNkVlsmUeS+n034jtPBiSZ2EtyZNq26CCajmXPgzzP6RcGAXuFUcxZoRaF0oe7LuMgQZZFXP3RxoiNoY8qSSw1bbwoqdireS4S5lnBEo0dkdA6i9vwq4qLJqa+XPz7m1P/Lwd+7Pku52LI8py9SUS3sP1WZLHBjoOYj7YmfOVaRzzwtn2CyN7LxSRM2C4EGksdoGmIgERhEiXExSGmaWvM1IxqY+27EUM/oW6qZwoG2o7OuLAOdi5ZXPowhOjj/mS80rbpuxEdX+PdpwPm6yZNW0OSpEpf4HvrQx7uCurkTM2oFoPslDWqdANRZHEg0pSDAvBZnpOkGb/5oEffjXhjqcGN2RpzxWLx/tqQNMsIkpzDbcdX2hZ7k6hiCLxMLDRNZCmsKmcApqqwHvpIisRXrrbpOhq/86iPLEvUDZWmpQtNiGJhnbbinv7zZaFj61WLZLew327ZGvd2QrxIMBZuzDh8sDFiEiYYisxsXRwCSwHVsiJ2Wde4PQ74J9/dZGPoM1Mz+ENfWOSN5eYLC+qfB//1t58SJRl/6hurF/6M/+GXl/nn39vi1+7t8cOvzT73NXUdnfXEp2aoZ3KOmcZhHaKmpdG0NLwwYXcsnIu2xyFvHHrf2I942vfFgTZMLnztc3WjYhCW68ckFMYHtq5xc85h6MWVMPN31wZEhX6HY6gVy2W6qJi9gArjjCMYspIkdI8kSThRbY0C/Djl7mKDbs3g3vaYSZgwV7hzgjjMLzTNA3MlPWHehEnG/R2XhqkS1Q1GXsLQSxgF8bmq4JMgYXPkY+sq12bE/tn3InpFa+5cXQghd2s6Cw3zQpplz4Kli8B1rm7ScyOudu0TWZWOoWDpMnGaiwpoLvHg8YC2rVcHhsYBS2jhTnee4PE4SIBtKPS9uHIXW2palZV5x9F5/+mQ7XHIQkM4UEmSaH9RJOmFrM/b46Byybo2Yx9op1UVoRHnxxkDL+K99SF3Cge+mikOW0GS8cnWGL1oQTjLc+06OkHs4+jqqXozMzWdnUn4TL2qtb5PlGSMA5FEEGM9x1RFe/72JOSjDdEKYusKV9pW5f55mOFTHp5eJmZrohVICNnn7E6EYPWTgWDXJakYf1Ghp7k2GFf3I5hKir+I8VGiaWnMNQziNGOuSNiN/JimrROngCQOPr/7eICpyfiRWC+3x+GBBN9Zr/HmnBB6NzSZXTdk5pgk4fY45P6OYNgnWcb1mf2xW2rWHH1PQM+N6DoGNUOtriefuq6LxsFrfV+4ePoJDVPF1BS+fr3DOEiquLxkXPS96MgBWC2YIg93XT7ddrk55xxJqE6v43Ga8ajnMfQjTE2p2FErx8h4gEi6xnsu310TTI35uoEsycwUmnKlWzOI1ug9N8SPBIOw6xjULbVibKmyRO0FtFOdBeW5wdD2NaxkWTgfGqrCrfkaDVPj8Z7HOBIi0fN1wYIZ+TFtRz8YU55x/54euuVz2BgGJGnORxtjFEW85s5CjTDJccOEgR9XbXuWLswq/Chl7oTE4/MgKxIQSSYSoGkmYoG3V1oVA69hi8TQexsj7s7XadlaNT9fViK+vE6A3XGEY4gEn2jpVnCDlETNibMUf5gVCauct5abSBIH1qDLRNmenKZC36ps5xsGcWWYEiQZb04VTU8zbzkJkiTRqekMvOjCicD9tQuGfsRnOxMWGiZhkrHYMum7gnVfsrlW2kK66GrHoW3HL5QF/DJwodUnz/Pfd9kX8rwwNRlNFi4AX1pt87tPhkyCBK1wXmlcApvgslA6RuQ5x7Y9RElGw1aF7op2kNqtqzKmprA1CirnnLm6cSpbomaovLF0ceG250HNULE0hbWBz2zNLJhK8YFMdElfzrKc1Y6FqSsoknRq1tfUZCaBEMYrHU0WmxaaImOoMrauMvSiKhH4aNc70N8/Vzeq53C4cmfrKnbn89mgDVU5EoSMghhdUVhqWlzt2vS8sGAo5XQKppeqSFUia75hosqipfE4vZDnhSxLR4RL/TglTgQLoWULyniS5sRJjq6ALItkbBkU6qrM1RkbPzreVv68GPsxhibRNHVuztb4oddmX2oL5lmR5zl/77ce85XVViVWehH86J056qbKP3h37VISU6WQ82VCU2WudCzGfnLsZj8MEhGkS/stvReBqshH2iTGgUjkp7lIVMw1THYnEZIkVa3NhipTm5r7ZTAhS7yQNgZZlo4UE8ZBAkgsNC2WWia6IjPwRJIuTjNkWewXZYXU1tVKD+kkfcEyKDdUIZ68q4U4xvEtf8/Cnhux0LCQZapA3NCUag8zdeWFt8WbmlwxR59ViBGW6KJt7/GeV2k3jPwYN0poWjodR2exZVYJ9cuA0LsSrTplG/l0ImfgxSBBWLgXfaE4YAVxyqCwO7/sdUrsA4KBcZzgcN0SRa1JKLTKhn7MlbZokRwHCZMgwS+Eqt3oZH2oaZyn9ad0QHv2b5CJkqy6nw1T48ZsjTyX2JkE1A1hbLDUsgrWrnHpzODnweE1ab5hsTYQGqJDP0aRRBIgTFJUXaZla5UI82rHFg5NinzpujWHcTgxK1rKVBZbos3Tj1KCWLBOJ2FS6YbVDJUrbatyrTsLTE3latcWn3cCI9cxhI6Opkp44dn2hO2RYJRsjYQOSzmOW1Mx5EXjYFNTCOIMTd0Xup8e6zmi0FB+x3GY3ou8MD3y28tCqG0o+HGGF6Y4unam1jBDVeg4wuijFMOunbCmbI8D4fxauJ5OtxjfXfx8zgglNEU+EveOA8F8tDSV1Y6NJIuukTjJUTQJRZGQZap5b2pivwuS9Mzr+2xNtEupilwlr+umSt+N0VUJLxLsGcfQWGppPNz1yHMquQrghRY/y+SkXyTj7u24OLp6gJE6DhJRwKmZhQ6j9bkYfJXxvCwZbBZtZbIk7ZtiFG5zi00LQ5OPTTJfNrIcarpGlAqiQslonC+KauRcakJsuWUdkIg4L660bXpuhGMIc4WaoZJl8PqCzZW2MMJwI+GUutK2q3F4XKvg70Vc6LQqSdI88H8ClvI8/9ckSXoD+L48z//2pV7dGWEW4rrlIuzoKj94u8v9HZebs7UDh45XAboqF7pB2RGNFxDtR3fm64Rpxo2Zg1XOMoAI4pTtOMQxlEtp4XnRUGSJ2aKNomGpRxbxa93CdlUWAnVnxWLTolHQd8v7cLgC3rA05ho6fS9mdebgYjHXMIXugyy9kgmMaQi7YmFhb+sKOQarHZs0g7euNFAKh4byQKTI0qmB/2WjpouANSoCVVWRWGqZuGHKzTmnatWa3jAvs5K93Hb4xjXhOPcDt1/NpBTAL326y/0dl//oj7/9XJ9jagp/9EtL/Fe/85T/zR+6eyYThJcNTRGWtVHBTDqMm7M1tkcBIB1Y7y4DZUuPLEkVU6ZpC0edt680WWnbaFNrB4iK18uqMFbX6WhMwhhJkipNjLuLdcZBwkrHZrZukOf5ges8LQGgKiJBstAQDNXrXefA+nBWNEyN4aFCQs1QKwbOZQiDnoZrXQcvTiutlLNgtWuz0BSus2t9XwifqoJZoymXG7zNNwSb64tXmjiGduQ666YqKv6zNa53bZxivTM1hYXmi7l/MzUDu2CbHZeYMlSF1xfqtG2NUZDQLRKyZXvKUIt50vfQFPlc9/0ysdqxcaODz32xaTFfN9keBwz9hI6jFTo58plcwT5vdAuzAF01KmOSNxabyLKErSnCGa1gfdkvSAf0NJTjed4xhEB8krI5CvCjjC9eadJ29Opwd5FCxo3ZGn6cYp8wrhYaFl+7LoxzzhrDNC2Ngbe/TpXj+DJwpW3RcfQTHWZtXa2SOiclAw7sRcck8rWpToMwEa17WZ5TPyN7qWlpvLZQZ7Vrcb3rUDshpmpaGn1XsCqelyn6MlDOF1WRqZkqeZ6z3DaZBCk35pxCU+ygM2bT1mhy9jVePiZWvtK2matn3Jqz+WB9glqYLtmaQsNSRdvrC2qNOw4lA32+YRb6fRw4P3YdwVoe+mLOvOykVInpeL5t68iSRJQKbcO1gU8YZyy1BHngZcVZtq6wOmOz1DQPJIQtXeUb17snnsU/Lxw2cfmh27MHdLEtXewTCw2h6fkqdoQ8Dy76JP4fwP8d+HeL//4E+P8Cn0tiqhQGKyGswusstWxma8altxZcBnRVRuf4IEqRJW7OPdutZL5hMlMzkKXSOvbFVPcvEzfnalwrLMizLGd3EmKoohooy9KFq4KnBR+SJPEDt2ZJs/zYxVpTZLxICLSXluKvIhxD5caMcC3yCov2L15pFRXWV2OMy7LEtRmHUSAYCh1b5+5io+qDvmxEScbAj6gbGpYuWHc/+ebCC/u+y8Lf/PnPWGya/JELuPEdxr/5/df4f/3GY/7+bz3mf/Vjty/h6i4fmiKfaNjQtDS+dr2LInHpjommplQMGhCOULoic2ehfi7b6hcNwWpyGPgRSZajKvD6YuPQmnW+8awVv7PEeda1JM3oe0JgvTQ2OLx2voyEVAm5MOuIkow9N6Rhamf6fqEpaFauRS9qrZytG1WQnec5PTdClfd1Hmxd5Y3Fxktfq08LtmVZYrFlsXjM3wltrkbFBLnMOCOIU1HlLYSYT4IkHW/SIsuCXbhQdF6ctLe/itAVuUrsNEz1yF51knvYy0TL1sjJqRui6KerMrdM7dLu81nMd+YbJoYaY57RTGGlY7PUejHjoGy3Pgw3FKYeZ4kbD+9Fz4JROBaeJ45RFVHwnoYfpYzDmJalV/vdlbbNYvP3znwxNYXb83W8giHStjVeX3hxMeU0xD2T+crVlmgRRDCIO47+wlmMJ+HwWJxeS+yZRjMAAQAASURBVL/v5swrtRaWc8KUxRp/e642ZUB2cmL6smFoCt+83qVhqUfGzLPO4q8KxBq8v+/emqtVzznPhY5emKSvfA7grDjX05AkqZwNM3me/1cgfCHzPE+Ay1d8uyC8KOHxnsfGIGB7HJ7+hlcIyTmsixVZYs+NWOv7POn5DIte2VcZ5YK5MQrYGAQ83PUq2/GTkBbCfZfx3XmeH3GCSbOc+zsum8OAJ4Wl76uKtYHP5jDgQeE8JZ+D6ZVl+QvRzDkML0p4tLs//6RzsjTOMwce7LpsDgLu706q33be73vZ+NXPdvmthz3+3A/fuJTkyK25Oj90e4a/+xuPXojw5ovG7kSsYY97fuWQ8iIQJZkYL8OAzWFwrvcet25cNh7tuWwNhbZKud6dJ8B81rw57xp6eJ15VQLdxz1xj+7tTM69Jxy3Vl7W3jKNncId8nHPYxTsj+fT1uoXcS0n4axrbHnN5Rx9cklz9GEx1ktX1+fF847Pl3nvt8chG4OAx3seXpSee696Gfv4455XzbPp7zrLfb6stfJpX6xB93fc6vNO+9yXuU7F6f5+sjY4W9x4nvvyvHFMluV8Wrh0lS6wJV6V9fysSNLsQIx+3ntz0vw+61wqv29jKMbkWc4tl4XTrvH+jlhLH+2JZ/x5PNuzrkeSJJHm+bnnzfMiSrIja8mriPOe/4GDOYAXGD+/TJyXMfVbwFcAV5KkLiKBjCRJ3wSGp71ZkqQl4B8DbwC1PM8TSZKGwLvFS/5HeZ73JEn6nwB/EegBfzrP89E5r5NPNkesDwNuz9f4/Y2FV4ZREiap6E8m51rXOVD1fdr36Lui1e04a97/vmBrFPBJ4cR2GpVzexSwNRJ9yjdnned6jkmacW/HJUoyVjrWmbLLeZ7zuOcxCROWmtZLcyopg540E+PkeXUzvCjh/o5bie1fFtuhtPyeqR2vg3Bey/FHey4jP6HtaCfaKgMMvIj314Z8tjNhtmZwtfv5mxqcBXGa8b/7R99jpWPxJ79+cdHzw/hzP3yT/+nf/k3+7q8/4t/6oRuX9rknIc9zHu55eFHClZb9XH3tYZLyaM8ly7kU4dAsy3m45+LHKVfa9nPrH8Vpxmfbk0Lj6Pk/D4Qo++M9rxKMf95g8vGex9CPj503e0WipNRzOM93BXHKx5tjdFXmWtf5XFlm6wOfT7cn2JoqdCGeE+V9MYv7ctFDYGkNPd8wL9yaMPRE25yqSNycrZ3ILjwrnrUul2OlZWsniim/LJx3fziMNBOHnCjJWO3ap7JwjsPzzI/TEMQpD/dcZEm6lPkTxCn3d9znFkP3I3FdiixxfcZ57vFWYjrGutI+e7y0MfTZm0QH7NUPJxK2RgHblxQLPgtelPBoz0Mt2N9nuTdneRyXGcsehzjNeLjrkhQx4+bQ5/6uS11XuXpBIefPA5e9N26PA7aGIZYu5nd53y8rJs6ynAd7LmGccaVjXarBgh+llRv7jZmTnbUHXsQkTLC0o9q0Lxp+nPLh5uhC97CcN4fH7mXrBCbFecoxlAvrqD0pCk1lt9JlI04zPtwYUzPVMwmvl+NuaxQgU7DoXt2c27lw3l28XCH+MvCPgJuSJP0qMAv8sTO8vwf8OPAPpv7fe3me/2j1BZKkAX8e+GHgp4E/B/yfz3ORlqaQIqjoQZwdUOH/vDEOksoOc+THBybyyE+qf+eFzsBp6Dqih1eC3zOiZ7uTkI6jM/Rjrs7Yz1zMyoqzH6Xntq8/jCDJpu59UiWmFFnixqzDJEyOOASFSVY9lz03emmJqXGQVNa5Az/C0oU21nLLwtIjHF09VzA5KQQk81x89mUlpnYnQnB0dxJWByBbV1nt2sRpdqJ71nHI8/zAHOAEC3EQz2IUxDi6iq7KrLSdV5olVeKv/+xHfLo94W//G+9caivUD96e4Yduz/Cf/sJn/PRXrrzwcRrEGZNAPKueFz3X2mOqMp1iHZMvIVgPkrRySOq5UZVI0lWZazMOftF6cVZ4UUqSih1/HMSXkpjquxFpluNHaWVbfrUrWvkahWbGeVCuk0LA+vDfiecUxhlhkp5JS6FcZyaBaHEO44xJmNBRPx+qeF44787XTbw44cZM7bkPduV9CeKMMMkuFAxn2ZQ1tCtcymZrBkqheXLWQ8qoEEaOkxw/Tp87UXDcujz9XdP/PgtmajqyJPbKyxj/17qi3ft5D3FulOBHhRuaG10oMXWR+XFWDLyYOBFOguX8EWY1EppyflMSN0wupeI/8COSNCdJc8ZBcsR4ZLVj0/fE/TzPvjodY42D5Mz70N4kqsZrmZhambqG0jAHRCwYpzm6+mL2+4EXV/fGDZMTC5iaIhInpWTBaZiOZV/E9U+ChKCIGfteyCRMudKyCJKU1c85AX0eHLc3qopcxejniSlh/1zlR9mBM8R0TDwJzxYTLzYtDFXB1OTq9V6cVgL9A/f517RpjMO4ciafhMmxe9SNWYdhEDFnCHfIxWb2cuVIcuGe7p7xHh43b6bH7vR557IgSxKdmoatK1zkmBCnWeVw23OjF5KYKtf1SZCQZfmp62457oQwujCG+b2SAzgN5x29s5Ik/WXgRxHJpf8Q+FngbwE/cdqb8zwP8jzvH/rfdyVJ+mVJkv66JCLN1xDJqgT4OeCb57xGNoYBTUs4htyYvbxq0GWgbqpoqoSqSBiazINdlyc9jzzPmW8YhSaGceagW5IkOi/ASeuiyPOcJz2P+zuTE9uKuo5R6GjVTl3EZ+vCibBT058rKQXg6EK00NDkIxV3W1eZq5sHxsrmMOBp30MpnORehgVnmuU83vPYm4TI8tGDgKoI2/TzBrQtW8fSFWxDOeBSc1FsjwI+254UYqBH703T0oQG2jl2AUmSDsyBk7A5DBj6Mbam0nUM7i42XvkFOU4z/sN/9hF/+1ce8G9831V+/O78pX/Hv/uH7uKGCX/lv3nvhbelGKqw/5UkzpXkOQ6OoRZuLWcXej0OkzDh3s5EjI3i2g4HsTVDZfYMLqbTqBcOVKYmrLUvCsF2mPCk59G0VGRZuI5NO1TO1c0LJSznqnlzlLU4WzcwNOH4dVYR63KdWWwKZx9dlU889IfJ/u96UeNOkiTajkaUZKiSjBslz/2ZMzW9ui9n1bE5jBxww5iNoU+juD+SJNGtGefSe5ipGZiaLJzOLiEx0nH0al3eGgXc25kwCcU9e9ZYOQkX+U0nIUwyhn584bE+DeFMJSPLXHhfu8j8OAmH45+mpR2ZP7IsMVMzLpTga1oajqFg6c8X0zYtjThL2RoHTMKjCUqtmP/nTdI5hUOnocnnEoZuF+MV4LPtCUMvPnINc0Us2K3pL5S52bLFMzO00xOHjiHixnI/yTLx/B/sukfi39nai73+mimKdIosRLrnGwZ1U+PuQgNdldmbhNW9fRWxMxbXp8jSkb0R9mP08yZdZuvGsWeI6Zj4rHNRkYUxyrS+VOkoLtxPJe7tTM4tFXAS2meI201N4dZsHUNVKuOUwyhjo63R5VzXNGRZwjnHPYSj82Z67DYtrWJQPd7zLiURr8gSUZLj6Bdzv9UUmaalFfHuizkHqorQ8ptrnO3cZBfjTpYkrs/WzrQ3l3PsVW/5O28EpAA1jqqw2gCSJNXyPJ+c8zNvA33gvwD+MLAHlK17Q57JmzgKN0zYm0S0LJ25usybS81zXs6LhXDCEVTCtYFfsQ4apka3ZlSuWkma0fMEM+aynEVeBkZBUmWWd8bhse1YpVPSSZiECV6U0HWMyoniMiBJQmC9wemisEGcslPok9mG8lIsTUFQcstFY65hnPnwcFgE/DB0Va5ctJ4XcZqxNRL3xtJl3lo++xzruxE5Iplx3AZxmoX41ijg060xTUtjtWtz4yU9l4sgTjN++0GPn/twm3/+vU3WBj5/8msr/LV//Y0X8n2vLzT4t3/qDn/9Zz/iv/jF+/yFH735Qr4HSoOJy7n3oyApHIjACy+ecNgcBviRqCK9tlA7NZGdZTk9L6qCjpNQCvo/L3YnYcHkSmlY2rn2pqEfVwzE44KWubrJXP34eVMz1COiuGeFpSsn2qvnec6eG7E9DkhTKH/XZa3Xh3GlbTMOEsZ+wgdrI77vZgftOYoVdVN7bgHbvhfhGBqOoaEeOmzGaVYxPk7bbyxdCPxeFpZaFkstizBJ+WRThGSbw4Bbc7UDY8WLkoop/LIKeFmWsz0KadnPFj4/CxRZeu77Nj0/+m70XG1yI38//tmdRCy3rBPnz7NQjp3D+7lgjjz/umvrKm3bQJMVhl5CUE/PlCQMk5ShH59oPiBJEquntNW7YVKxJcqD6XLLYqlp8v7aCD9KWR/6R4pNL8sK3dbVMz2zcRATxBkdR6/azcbB0edf4rKuv4yhDhcDD5td2LpaxVJ5nrM+EEmJ4+7t5400y6tkTprlZ94bz7KHn3SGOC0mLufgaWcwRZaqz7m/M8ELRQwiCh7Pt75pyv41ZlnOzjjE0OQjBf1p843jMB0bXca6Ow1DPbomnXdfOTx2t0cB4+Js7BjKc7tNp3mOoch4UUqcZhfa605b154XqiwduAclTooj5KlxdxZMz7HNYfDC4rTLwHkzHht5nv/7J/2lJEmPgXMJp+R53ive+zPAl4F/CJS7QgMYnPBdfxb4swCrq/tfaagyWbEIz9R11gf+566jcBIcXaEHojpwqAK2NvAZ+QmSFHJnof5Ksb6ehbJ6mWVciFYfJSJTnucQRNmlLga9QiQOBAPqWRlmvcheR0l2od9xUdi6WlUO7XO0ljzuufhRxo4cFu5PL66tTZUlTE0miM9nsTr0Yp4W9z/L83PTYSdhwkbBlkqz/JnJzc8LQy/mFz7e5uc+3OIXP95hHCboqsz33+zy7//RN18IU2oaf/aHbvDB+oi/8c8+QlMk/hc/eP2V0dc7CXGaVSYVQXzx+V4zVPwoRVdlNPn09XJrHLA7jgC4Oee8cLtgR1fpuzGyzLmYGaWZB4h7tdi8XJr7RbE9DtkehYyDWLhsFayyFwlTlflo4GPqMuvD4HPXYrSLSrn488Hx86Tn4YYp21LI3cXG5yJKq8kyhiYTxkf3saww/Sjbu19W8QU48xx9mZjeny4KU9+Pf5zn0El53PPwirHzxmLjhbSpO7rCJEjQVOnM8eWjPY8wztgdRxdKuJVaL3kOXpgeSPhLkoRtKFV7yquMIE4r4f4gTqszxvTzvwzm42EMvKgao3men/nA/qrfW0WWsHQZP8pwjLPPmxe5hz/tC+KAJIW8vlA/E1OrZqi4YRGDXPKZbWMU0JuI33pr7mS9qZOuy49SDO3Fr7vp1L4yCZILJdKtqX31MvSm0kwU0bxYRv09IPkxjcuKI8QcU/Cj9Fxz7PPAuTWmila+Y/8OwaY6z4c5QJDneQr8APAe8AnwliRJCqI98DeOe2+e5/8l8F8CvPPOO1WJS1Vkbs/XSPMMTX61b37L1rF1FVk6n5X3q4ySEZZm+Stlx35eyLLE7bkacfZ8ulbnhaUrvL5QJ4dXNhkpSUKgN0qzC1eELro1KJLESsem7WjPZFa9bPhRyr/z//sO/+131gmTjJmawR/8wiI/fneOH7w988KTHiVkWeI/+uNvE6cZ/4d/8iEfbY75a//6G690daRualzt2kiA+RxByELTpO1oaLL8SuqNtR0dp9BL+b3mivQs1E2NK22LRtG29CJxpWNXFfJXAbauVlXOV+WapiHLErdmT97HJOlsws2XCVNTuD13cbH5VxmGqnBnvk6Wcynxz4usKcw1TJr2q7Ve3phxCJOLxxUvC5K0P3emn9FlP/9nX8P5ntmrfm9vztae6/qkC0eVl4cXOaemP+2868KrHhsdRt3UuLNQR+JyzsaaLLPSsbA05ZUv1L5I3Jx9tdeAEuc9Lf04sI4QIz+u5+KZI6gQNv9Z4G3gnwN/FfjPJUlygfvAv5fneSpJ0t8CfhnR4venz3px4yDGCxMsXeX2XJ0wyV5YP+hl4fDmFcQpqiwxVzfwwpRu7eVR7C8LFzl4JakQqc9zUcnTVPnSmQEdR69a9Iwz3FNZljA+h+TmeRbiPM8J4owrLZtxmFA3j/ZQT8IELxRCpJc1lmRZwjzHvQmTFEtXWOlYZPlRGnqcZvTdCEtXjrTXxGnG9ihgrmGy2rVJ0uyl6H2dBxvDgH/63gZ/7KtX+OmvXuFLV1qfWwCgqzJ/809/hf/rz33Cf/oLn/FLn+zw7/zUnc/lWs6CpqVh6zJJBp3nbDF4VhI5zXLiqWTqfKEpp6vykcShqLCFGIpyqW0P5zmslHPbVBWuzthEyVEzgTzP2Z1EqLJ0os5gkmb0Tphbz4O5uoEqS6iH2ijKtfxFBD+aItwBkzQ/l4bNWZFmOXuTEFNXzixie9KautKx2RwGtO3zJezCJGXgiXapy6gWH97H4jQjy3M0WaZuCD2PlymOLEm8lLXx8Hw/DYYmY2gSNeP55sjzHKTKZ7PasRl4sRC2zXN2R+cbk2fFWYtuWZYTJhlXuzYjPzlWC7Dcw21DPZGVoyoySy2TIM6YO6b1SJKk5143zrImPi80WWahYZKT0zmkO3iZReYo2W/jgX2Wf54LnZ4oyc68p0zf2xcREz4vzvPsS4H96T388FpZrqN189mt1Cftjytti74XV+ySID5bu+uLKmQvNEyyPCeMU7JCHN7U5DMnWl50gX06hr85W2MSJrRsTTC11PMnxC5zXGqKhCJJ59JV/LxweNyuTO0FZRwRJikS0rmT35exvr4MnCsxled5T5KkbwM/k+f5tw7/vSRJ/9YpH/EVhB7V+8B38zz/TUmSbgLvAleBJsK5Lyu/kjMaIMZpxqM9j6d9Hwm4PV97pfVnjsPuJGRjEBRimRJJlrM9Dl+pzeNFIE4zPt0SduzjMKZuaOhp/kKq7x9vjhh4CVujgJ98Y/73fPb8Sc9n6MdYusytueP7k8vWSC9KL0Ur57wYBTGPdj0kSTiIHBckrPV9xkGCJHGkddUNU37zwR7ff3PmuXvNXxSW2xa/9ld//FIP/s8DWZb4yz91h594Y56/9jPv87/+r7/LzOd9USfgad/jg/UJknSx9t+zIEkzPt2ekKTCZGKuYVYixMdhc5o2r56PNn9ZOG1ug9DxK/XeFOV4F7j1gWh/lSSxL15WgFoKYk9jei1fbF2+rfL6QNjK66r8TE2N5/n8UiPm9vzFLcRB6DgMvJggTrllnF109fGeRxBn7E4uvy3bj1Lu7UzIC0ZHecC7qO7Gq4osy/l0e0yc5MzU9TMVuR7uucRJTpp9PsKw089mtWtX4/tJz6vG5Fm08y4beZ7z2c6EMM5oO9qxuqEwvYefLD8xCuJK66hlHy/U/LzYmYRsDcWaKF+Si+Rh3N+d4EeZELevv7gY8nHPw49SdqSw+n8tW2cSJnyyNQbg2oxzrn0zmYoJJ+HFWq0+T7hhwoNdFxC//aQ95knPE/IW42e3w+7LpsBr8/XqsK8qYo85EDs0jRO1HF80ZFliHCQkac6vfLbLYtOqtFZfBRyO4WfrRrV2mZrQyvq8zltenPJwz2NzHPAH3lx4pc995bgt939NORjrnOU89XsdF9kV/ufAoxP+7p1T3vsI+LE8z38ImJMk6QsIB74fLf7pFayqPw/8MPB3gT93nosLkhRZkvCi4x3hXmWUlqNplhOl+/m4V3cKXQ7CJKucF8LCMvRFFVTLQDxJ80txe/i84cX7VrjZMb/neei/l4XSzjvPqSxhD2P62o67zCSFJDv+va8CDFV+ZZJS0/jilRY/8xd/gH/4F3/g876UE1HO+Tzfn5+Xjbiw/wZwz7A3vArz5rS5DQfbOU66zINz68X+mOm1vNzPLhPlvh4lgpV12SjvVdmq8zzwY3GtQZxxnkutrgHp0gPoIE6r1r1p17BXoQ3mMhFnGf9/9v47yrIsO+8Df+f6e5834SMz0pc3XV3t0OhuWBIkCFBDK3KEIUUOzYxEco0WSZGjJbOGlJvhzIhyI3FmRIgSjShBJASApAiQAAmw0aaqu7q7uqrLpM8MH/H89fee+ePc9zIibUSGrZ761qpVmZEv3jvv3HP23mefvb8vSYt1uMdYcDwHJ+YndzybMHlwzEKczHPKcjmx0cFj5vJJPhwgjNV3lPLx73UQ7Jyjo4gjpZQEsZqPsY0+Kmg77NFOBAeYx502RTvFB/RHYbxP1GXro+d//D2fZMt3zsHDXhdn+SR2OAqfth9oQiCRkzjpMNRpDwsPW0tP6wMPG2NBiySVRxI3HC6KdfsIK7rzPHVUNvSkIfYr7yyEcICKlHLjvp9PA30p5Z70KIUQ/y3wH6Na9t4B/gXwF4HngX9NSvl/FEK0gL8mpfzdj3uvVqstl84tkUt1GxAmGT0/IclzSpaBZepIKbF0DU0oKVJd08jynCxXy8AuSFulVI5YohzQKM4whCINc0z9oYYrk8pQqPfRJ8spzSUC1dp248YNzp07t+v3giQjLMh6HVMnTnOSTHFBxFlGP0yxCwlNKZm817iSyI8z0jxHSpXdH5f6JZkai6lrGLogySR58f3Hv5sUhtbU732hh41xP8hyiR9nZLnE0ASmoZGkOUGSKXJc2yBKMwZhipRK0U0XGmGaTeZOSlUybmgC17pXujhuD7ENjVs3b9KeW0QTxUFWKKPomHrhyEXxvQRplk+eWVCUwI77/3OpWgdNXRHEZkWVlmUoYu8wTTGEhmPpGJogSlSZ/VjWdLzeNE1gFM8ol/KRz/tJcxckah4MTZCj+JQ0TZDnklGcEqXqgGroGp6lEyYZcabmSi+8r2fpkzm3DbXec6mes9gxT0/7vINEPV/1eSqzrRWf7ycZfpSS5DmaUM87K1oAcikxNA0hFMeIUdz+CHGvZFcXAqGBhlo7Y5LCq9eus3hmCdvUSDNJmueTfZBksrj9FxPHOIpScqmIiaNiTyGVyIBq75DqgAZUHANrx62tJgRxljGKsonssm1opLkkSXMkEsvQHyBQvHb9OrMLZ3FMbWJDgMk6yaVEE8ruaEIdPNJMPUuBSrpludrkMlcHqzDJyDKJZxuTcvIxp0WewyBKQCq1H88ykFIdNrNcTsrbd+Kg+/u4sNdxSiAq1iMwsaGaJrANjSTL6foJmZTogmK/SmxTm9jHccBiGzoItZ/9WD17IUAXWiGtrp7PeE/tZy4lEMTp5NnpBfmoJkThY9KJbdE0QcM1CZKcOM3Iin2jCWUfDU0wilIkY6EP5afMwrft3DfXb9xgdv4MHT/Cj9WeUap+KlA09Xt7xtAFtqmrfY2qoAmKtnLb0EmyHKP4jH6QIKWc8IEZmiDN5GRvR2lOXNjwx/lMKdXvjucyy5UflajvY+qqoieTEk0Isly9b5BkGLrA0nW8Qi45Tu/Z5mIbkeWSMM2K91Tyyo6pT9aLRF1OhElOmudYhk7ZNhAwsen3r0n1ehUMjoUqojQnSpVvEUL5njDJidIcpMQ0NCxdmwTp432ZZhJzPO+aUPtWU+TJoyhVflTXcIt/l8V30oR46IH7YWsyl5JhmJJJSdk2MDSNMLmnTBSmKgZRz1btA4l6Nsp2qfkZ+1mniFVsQyeXqlVOyaSrtRkXiUlD1yaxhYpHBEbx9+vXb3Dm7BISSLKsWCvKXo19KKjPj5KMKMsn+w7Uvh2rw4Eas6EJReyrq/fQiv2bpDlCiEliNy/WkpKkVz5bE2o9IlXMpgvByt1bT2Ur4zRnFCmV0fFFRT9UippOMbcqDqHwfWLiE8ZJXbOYO10TxRpS38fUBYamTZ7F5sqdfY1x50F+HGtJqSots0zZoTSTk3UfZ+NLQhUzq7lSMZVexHdRova5Z+mTONjUNcyC3F4IeP/Da8wsnCmEAlR8GsbKtoESghirnuVSTlow/VhdMlccE02o6p5x65qhC5DKpo/9syye7Xj9qDU5PhRLXEvtfVnYTPX9lK+4fesmswtnHkpaHRf7O0pz9CJ+0jWh/LNU86UJ1eGg1qGyi3GS4ScZpq5RcQwGYcIoyqg6BuWHXGJFaV7Eq8r2RGnGKM6QUlJ1TDZW7jC/eFbFX5pgEKXI8b7WNQZhQpqpuQMm7VMq1lZ7pBeo1+iaIkN3jHv2MClibFW5bO6yMRKlmKvm0XgsgfS+fOOONTk+52hFbKcJJcqgDt9yMi9CiMkZwdTVvFu6auUbhGmxh5S9HMe7eX4vth+PcWnpHGGqklxplk/mLS34cV1Tn/ja8TqwDW1ih9XZWRQtgAa53PlzJnHf2H7vF1evX6c9u4gulO3MpTpfpYXtFkKtQVPX0AUEqToLVh0D29QZRil5LvEsXdmNLCMv7PrYbx4GPrx2nZn5xcIu55NYwNI10jwnKYoAxm2H92hb1DN1TTWWMM0wNI2qa6CJcXWYEliyDyiq8tY7H6DXptEFPL8PNeTjxPUbN2jNLpBlKv/gFs8oTLLJ2VXFPRoCMbG3INE1ZRM9yyjWrKRsqXWQ5pKwSGCpeRzvo6cb55tvvimllEdaXv00NWD/KfCPgP/5vp//OPCDwP/hSW8ghHgZaEsp3xFCXEZxSf1XwE8BW0C/eGkPaDzp/WYXzvD//Xu/AsCvvbfOr7+3wXdX+mgCPFvnR56dxtINHEvxFmlifIiR3O6MqDkWnq3zyaUGK72QVsni9rbPr3+wweYwxjE1ftdri7y0UH9o2eSdjk9npIKks02Pmmey3g8nLRbnp0r80Oc/yxtvvDH5nZtbI37hrWVWeiGNksmlmTLvLPfRhYalC7673GNzmKBrkufnavTDhF6Q0CzbLNRdtgYB762N8OOUqmtyrlXifLtElsPWKEJKeGa2zOXpyuRAUXYMzrdLu9TpZmvOpEzw9ddf3zXG/SDPJV++uslXrm+z0g2Yr7tMlS3WehE3tkZUXYOllsdbt7u8tzogyxUR21jNaWuU8NJClTdvbDOK1MHjMxfaXJwqAYL3VweUHZ2ZmsO/+a/8Dn763/1ZhmHG5jAqghedF+brVF2DmarLmaZLxTGIUxVwfeXqBh9u+NzYHDJTdSk7Oqamq/lzDM62SkxVbCqOGuc/fXeDd1d61DyTL1ya4vOX2xMVlopjcK5d4sP14SRjfWm6xLXNEXkOjZLJv/TjX9zXXH7rdpdrGyO6QYSU6hA2VXG4OFWmF8T88ndX+ebtLpujmOmyzbm2R9nS+cbtLqCM1TOzFZqeRceP6QYpQZxyvl1ibRCxWHeQwAvzda7MlHlhobbv5x3GKf/w7TWyPOfm9ojpikuYpnzmXAvT0Pjy1U3+xfubfG+tj2saXJouM1O1eG91wKaf4Ooai02Ps00Pw9C4sTEiKg6/jZJVJAwE51olpms2v+3FOYQQXHr+Ff7Sz/4CLy1U6QUpN7d8aq6JaQgGYUKUSM63PV5erPPhxoB/9PYaSKh6OjIXvHW7UzhznemqzXLX53urAxAasxWLV880CZKUIMlwTZ3VfsBqL8I1dX7rC7P87tcXWetHrHZDVvshi02H8+3yrhLyS8+/wr//s7/IYsPBtQyWuwFJJml4JrapcbcTUHVMZmoOVcfgn35vnc4oQQjJVMXm3ZWBUhvMchWkC3jj+hYSjbKj80NXphFCtXe1KxZ3uwHr/QgpJZ8+3+IPf/4cmhBc3xxxezugUTK5PFPZJVd9kP19lPilb6/wT763xh/63DleOVPf8zivbQz53uqAW1sjpioOcZrhmCpZ8IOXW/zGB1v8s/fW2RhGpFlON0jIc4lj6LQrFn6cUbZNXEvjh65Mo+uCt+/2eGdlwCiKKdsm59plfuhKmyhVCc1m2eJLV6b2NZfXNoZ863aPfqBkvgUCy9S4Ml2h48f82vvrvLvSY7kbMldxuTJb4sJ0hV97b52NXoRpCBYbLldmKmQSbmz56JpK5LqmTlgE6S8u1JiuOPz2l+cAeOHlT/BH/q9/m7/7xm36oWrle262StkxcC0TTUhePdMgSnOuzFRYans8O6uUtn7hrWWub47QNGgUIh2WITjb9PjV723gpxm2pnGuXcJPUoRUAfpz8xXudlRrRMU1+PT55gPthX6ccnVdtWK0KxY/9aNf4I033uBuN2C1G3Jr22e26tCqWERJzrXNIUiVFP/n72+w0g0YhAkvn6nx4kKDH3tumg82hvT9FJCcaXqs9UO+t9rn+uaIq+sjKo5Jq2zx6XNNHEPjdtdHSqUyNopSwiRjru7w4nyN5+drVBxzl/LR+Hm/t9rnnWXVQvPK2Rp11+IrV7d4e7nHrS31OYMwxrUM3rixzULDI4gzLk2XeG91SJrntDyLMFX73DJ0PnexSZareZ6qqMThN2/22BxELDQcPn2hxbOzVe50lDqPEDxUnedha/I3r27yD76zSp5Lnp+vcqFd4lffW0cgGMWqrWpjEOHZOudbJTRNqMpUqRR2Myl5f3VIkGQ4hs501eKTSy2qrokA3lnpY5s6L85X+bHnZnh/bQiAaQiena3uioMWGy6NksULL3+Cv/Szv8B02eabtzuTi7NnZivUXIsgzqi6Bu8s9/najW2GYULDM3lhvkar7GDokl/69irfvdtHIqm6Jgs1l+mqzWtnm7QqFlXHxE9SNvrxRCmy6phsjiLyHOquQZRJFUuNIlolm+/c6aJrGo6p8Zf+2O/ct63Mc8nf+M0bfLA2xNI1/uVPnyHKcn7p2ysMwxSnSJx983aHQZAQphLX0lhqlpir2YDg1vYI2zBolWzyPKMXpfTDhLMNl7pn0y5b3NpWvuRv/IU/sK8xXt8Y8tbtHnBPTTJKctoVm14Q8Y2bXe52fQSClV6IROJHGZdnK/T8RPnIKFPzXXfJUW32SZbxymKd5W5ILnN0XfATL8xxYarMmabHpedf4T/42V9Ubb9C8psfbrHSD1nvB8zVXC7NVPi9n1xkpurwzkqf7WHMP/ruCre2AixD40efnaLumvzK9zZY7ga0yxbPzlVxLJ2yadCPEvIcemFMlKhDe8kyeP1cg5mqzXeX+2Q5tMsWdc8izjKurY+IMpVEfGG+xv/+d/0Y/8F/+0s0Syavnm1M2v/6YcJbt7p840aH61sjWmWLpaZHJuE7dzqEqaRdtmiVbTrDhLKjc6Fd4kyzxK++t0Y/SCnbBs/PVfgf3rjDIEqZq9n8ez/9AvP1e2eJJMv53sqA29u+mvc4462b23z9ZhdNg1fP1vmHf+mP8F/83X/ExiBmEMa8dauHa+m8tFCjUTJ581aXr13fpOcnSKDlWeiaRsU1uTxdolm2+Pr1Dne7Pp5l8OrZOp8+12S64nJ9c8S2H7E5iClZOp881+Az51uT9rfVXsBvXt0GUDbpfOuR62w/vvHD9QHfudMnTjO2/RhL13AsjZcXGpRsnZ978w5v3+1xY2tExdYpOybzdZebmz5pniGEYLHuMVd3Odv0+OqNbcJYJacqjoll6rRKJpemyhi6zpeemaJZsnj99df56z//T/hwbci7qz1WugFhnLPpR1Qdk6myTaNk0PUzPlgbEGcqSTpXsxkEOcMoUfuyVeKFhSq/75Nn8OOc91b7dApxDtfUsQyd+brDZy48er4ehQvPvcwf/St/h0GYcKFd4m4n4DevbasYxtRYbLj0wwzTgIGfsjaIyJFcnirz3FyFzVGCHynf0yjZ3On4dEcxZ1slvnhlilfO1Pc9pofh7JWX+L1/+b/HM3X6YcqtzRGOpVOyVUJsfIaeq9ps+TGr3ZC1QUTJ0nEsnU+da6qkaAYlW+e3vTRHu2LxN/7FTfw4Y7Hp8kd/8MKBxATsucvM/aH/BIB/+/c8y+98/eKhfPfDxKXnX+YP/Ud/i2/e7rJYV2Iyr51t8I/eXqUbxvT8hMvTZRACQwjeWRmQ5BlCCuqewYXpCjXXIE7UpdtrS3V+x8vz/Oa1Td5fHeLHGVMVmyszFaqu8Uh6iCehoHM6UjxNYuoHpZR//P4fSin/phDi//ykXxZCNIH/HPh9xe9tFz//+8AngJ8Hxjq0VaD7iPf548AfB5hbODO5RdSLZJQmVEbQswymyjYl28SzdFxbxxDqJsHU1A34ODMpgFbJwjZ0aq7KNnqmhtAFTc/Ge4TEYqtk48fqgF0uSCGfVIc2lm5URKAa1aJyI0kl1bJJyTYYhimurbPYcrm2npFkBpYOli6wTIOmZ2HogpmKxXTVoe6Z+HGO8MefoWEZgpJtEKX3CKONHVVSOyumDgrPMvBMHVvX8EwD1zJoVyUbo5CKa1J3FZmraWjomaTmWqqqRuYs1HVaJYuaZ+EnEYYhdlWSVVwDiZJc1zSouRamSBmGSn69Pp6Lmg1S3cKdaXisDSLqnoFtGViawNB1yrZOs2ThGjrLPXWYdQz1/AVKOlnXiltzoWGZGiVLp+aaBElGu0jk2YZGEGeYhprDcadZkj3p6T8IRXSrEWU6MhOEKQgkmqb6iBueSp7aoapOWmp6UKxvHUCAaWi0yjY5kn6YUveUfLtlqFujtLjJMZ72mQtBu2LR8xMqjokuAKlupqarNmebHm8UlYWGJqg5JufaHne6IWkmkUKNveqaeKbOihFiaEUlSPGss1yiFzfD98OzjB1VVuqmcygEuqZuDNR+VxWLEqjYJmGSF6qXgpKtU3UNLKPExiAmKhINliEYxWpfaQjaJZvOKKXsGIpDQhO0yxZbw4iybTyW48M1dYyiEsXUmVSyqL+rPxu6NqlMcU0DWzfU7VycYeti8rm3qg5+nFN3DVxLVfHpxXtPlc2iEgJaZWWzXEsvgiHxUHLa04hfe2+df+1vKT/3K++s8Sv/xpf2/Lt58d2XuwF112QYigk5oa2rgLBsmwRJgqkbav3n47VgkmSAANtQZL3TVYe7nQBLE2i2iWmoNdX0LFYH6nBtPmVvSKtsEaYZjq7hJxlCqMP4hakS37xlULVNNrQITYepqsOVmTJvXN8m9NQtuqFrVBwLiaRUVPWUbUNVMkmJresYRYXsGEIIXFun7BgM4gRDqAObquQQ1D2TqYpDECc0SxaeeW/NjNePa+mMt6JA0CpZlBydPLxHXmwbGllRUe6YGq2ShZQwVbb3RdbcLlt0/ViRfto6VlHRJhBFIjGl6hl0RhqjWMO1TExNMF11uL0dIJ17rS+OqVOyDFzToGzr2Iag7hjqprm4dbcNMYkVkGpeW2UbUVSIPMxONjwLx1LVIGXLQC+qVO2i0sLStSJpI6iXLFxTVdy5pqrG8qMMy9QxTR1dg3IRvFv6uO1EULENqq6qsGiW7QOpONq6hmOoaq2KoyM0gWMa+HFKxTawDI2yY9BwTWZqNkGcMwwTciGwLQOZSyqO8iMVx2S26uIUcVGc5WjcqywzdY1mWfmHcdJ+Z/WJaeyuTDV0jXbZZnMY0yx4NEu2Pll7Dc/ENTRGRbXgXN3F0DVmKja2rmEbggwVE7i2utSwzaLSsaj00zXlS+YbDqamYRqC1V6EYxpAcYtcjMuzddLs6Ul3JVBz1RpzLFXVbOUaDdckznLOND0GoSK1T9KcHFUtrwvB2WaJIMkZRQkUF21RKggzia1lWIaObaqq+PH32y9KReVtLiUlRyeMx9WJglbJpu6ZbPs6nqmz7cdkmaRR0mm4JtqOSjbVtq726I1NH1s3sQu/E6daEWfdq9g1dMFSu4RtaPSCBEMXmJryUYam0SxiblH4SSEEZUvtD1MXlB2TkmNhFe9p6RoLNZcwywqxF+gFiaoMMvVJtZ9eXHgpvyupOMqW6blgumbTGamxVBxVoeFaOlXXZGcXifKnal22yipenak6bPsxuq6j5xl116RkaUS2PqkalUimqzZBmtMsWzTKlpqPCBxD32VrQa25umeyNVJ2HBGrtaQJDEPgGvou9e6Ka9AuW2RScq7toWnKbriGQWLmxJmk5JioagqBZejUHIuKYyjbVfzfKfhpdA3O1F16o4RmycbQlO3Viv6PqmviWBppljN1iLyBlq5T9wy6vqTmGKh7XrWHpys2MzWbD9fVmtQ05X/mazbbo5hRrKr2EMpfTVVtKraOLCpLxhVVrqVNbPrOfWMVjs3UBJ5pkGQJ9WJNVlxl60bhENMQaEIreA1dbCNVvtzUcE2N6bLDbM3h+qZfVHXd614p2feqAfeLcdxYKfgJbUv5xERk1DyTuZqDriseTM802PJjQPmjVtkmTFXHzlTFUTGPpfyPZ+uHS4BddE6UHYMkzTENNS8qrtJJMkndM1lsusSZZE2EReWtsiOuaTBXNbjTC2l4llprhrIvSaaqBXO5/zPVo1C2D1dU67AgCttnFj7LMw00Ac2ySZCkTJVtpio2rqWz0o1UBVqqKnxdy1AXR2Wbfqi6a+br7qTrQ/lWVfE8/qzTjKfZMY/7Rk9S5TOA/x74c1LKVSFECQillBnweeA7wPvAi0IIHfgx4CsPey8p5V8D/hrAq699Ul6ZqaBrgumKw+tLDa5vDVjeCvjp1xY52yqz1g/VYVpT/FOOoVq0wjhjaxTTLllIoZyUKkmscLbl8eHqiJcWa0zXnEduZtfSuTKzO/s4XVEBpVkYqfuxUHf5yZfn6PgRMxWHJIdzrRJhkrFQ9/jpV+b4+vUur5ypUfEsNgcRG4OAim2y2FS3sO+tDWmVTKarNkJomJpglKR0R8kk8dUq2Q8YxqpjcmGqhOTwyIYlqgKq5hokmUr4zdZssgwl722o5M6LCzVudkY4us5szWWm6jAIUzxbRwI/dGWKqxtD6iWV6DD1ceuTaieYqzs0SxZ/5kcucbenEh5xpspZL02ViTKJXtzyCyE4X3y/P/ips7y72lftK2g8M1MmzHLubAcTQz4IlVMuO2qTv3qmTsOzONcuoWkaszVnV9Z+fAPsGBqGrm4wRnH6VKS8Z1seJVsFQR0/JstUNYFrqbaJf/1HLvHbN2f5YHWAYxt85lwLKeBz51usD0Iuz5QxdYOpik2SS1a6AdNVlTCVuUQv5lECi/WnI0t0TJ2XF+tERUvK1jCiWbaoOKqV7Mefn+WVxRrvLPcYRCmfONtguuLw+YvTvL/ap12xaZcdyq5KBHzxSohlCHRdEMW5SuhogjiVzFSdifEs2TpfvDylArySxWJDBWI1x6AfJkRpTr143ouNEr/z1XkGYcqVmTK9IOEz5xv0QqVA0/ZsPEvj6saQlX7IlakyaKpC7W4npOwYVGyDfpjimhpzdQ/bUM/g9XNNOqOYXMoHVAHLjqoOma87pLlktqr+XyoCv3OtErksbvEMjR99fobOKFYk3AI+d6nB5jACNJolk1bJ5ne9tsj7awPONl1KjomUsNz1yXNYqDtsjWIEgsWmR7W44X1hocaZlkeU5LROmXLh/ZBS8u//0rtcnCrxn//B1/ip/+w3+Nkv39jz759telQcg0tT5Uk5/zBSN9QV1+T1pSaLTY8sydB1jeWOzzDOONN06fopAuhHCVMVm+fnagghuDhd4ouX2whdFNVrJpemK/SDhO1RzGxt/8Sniw2Pkm3wibN1RlHKMMoo2Tp1V+3vP/2jV7i2MWStHxLEGV+80sazFanpW7e6TJctZmseTmHPb28PsQyDpmuwNoxIM0nFNSb7ZgzH1PiZzy7x6mKN9wrbd2m6Qr243X9mpoRjm1iaRlLcwo7xhStTnGm6OKZB1TFY6QXF5YfF73xlYdLW6McZjZJJx1eHvOmKw6icstTKqT9CzdCzDM62PJJst8qgbei8MF9jse4RpZlKEgGLdRc/yai5Ji8t1vju3Z7yaRKena3gmDqfvdhiaxipA3LRsv7CfI2eHyEFdPyYdsnGs1UyS+Y520ECSDShYRcJq0bJQhOqAvVhCYrpqsNnzrfIclUpIYTgE0sNXlioEqcpm4OYZtlhpevzB+xFslxwtuESpTl3ugF+lODaJo6uIQW0XAujSOQHSUa7bGPpqrJbCImh6zim+j5nmt5EoWuviYlXz9apeiZ5Lrk4XWF7FFN1DEByrlXmw/U+gzDj2dkyElWBuj2KKTsm02WH9VFIFGc4RdLbtXT8OKPpWaSZ5MpMBSEE83UXTRMs1N1dVZqNkoVpKN8zJmk1DY0fvNQmzXOen68yjFRSYawoO46z5moOS02XQZQyX/eoFAm+km3wp35U5+27XeZrLhXXYmsUM11VxMS6JiYtfWebHo6pUy3eO05zojnVxm3pQrVWuRXCJOPidIlRmD1124iuCX7oyjSzNZfpis1i00MIwe/71BmlEF0yGUUpv/3FhM1hRD+MGUUZ59tlXlyoMUoy/DjFD1PVwmnpLHcCSo6OY6qLS0MTfHKpQZJJ/vo+xzdVsXltSTUglG1D+TKgXFRDPjtXJYhTun6CJmCl61PzbNoFAfS37/SouSaLLRfPVMn0q5sDhNCYrzn4UcqdTshiU932j1sZy7byjb0gIUoyLs+UWO2GSgXR0GiVHOqFr7owVWK6YnNx2uP2doCta1yZrWAZOnN1i0GQMF11sAylUBinctJ6D+ognuQ5rqmSzI6p8wOX2gxClSw1NDFpVwsT1WorURdan1xqoIl7ynegEkafPtfk4lRpEh8KoVpMX16sE0QJ56bKNDyLqxtDpahddchyyZWZMl0/plGyqLkWNdfg/dUhX7zcnnzfnTjT9DhTxPamLnh1oc5r55pEac7LZ+r8giZ4ebHGMzNlbFPntbMNcuB8q0yW5czWXH7ypVneXe3jGTqzdQc/VK2wF6ZKVF2T5+YqhElKJpWtPt/2GMYZF6ZKJFnOp8636AYxTc/eRUzvWQY//Mw0cZYfqjLkfN3BNtVa7wcJg0D547Jj4pg6P/PZc3zhUpuNfsQgSlhoeFyarvD23R63tn0W6y62pTFdUb7pufkKYaQusrt+gqkLZio2W35C2TZ3EeFfninj2hqfOd8gTDP6QULTs+jHKU3PolWyuLHlM4oSlrs+FcfmU0sNVgch19aGlF2TqapdVJpqXJ4ps1h3WB9EWIbObM2hFyRPPV81z+T3fnIRUxdYpk6W5nzxYpttP1Z+3DMZFRfjUZxxY3OEH2cstT3OtcsMwhTIaXoOuYS1fkCaKbXcdtkiz+WhqKPWHJOf+dwSDU9VoftRgp/kzFYtRnGOrmmUbIOGZ7Hc83nrVhddqMKEuZpLzbOougbdUTK5XAf4PZ9c5HYn4GL7YCIkAAs1B0+HL16u86MvzRctx4fP4XgQVByD/81rC/zUK3NEac6lqTI58EoRN5YsHdc2abgWb9/psdr3yaRktupSsnV0XWex7tIP1SVko4hPLk9XaJYsgjilbJuY96kon0Y8DcfUP0Mllr52388/BfzfpZRffMzv/gFUK+B3ix/9ReC/AEbANeCPSCkzIcTPoFoCO8AflFL2Hjem119/XR5Fi8r1zRHDUElenjmgnPJB22jGJfGOqXFxqnwkcstPO8Yozfhw/Z6azGFLGt+Pk2hJurE5YrCPtfA0Y8zze+o3x6H+8bTzuNpT7R+updbiURv343reaZbz4caQJJUsNNwHkk+Pw3GuybV+yHphC/ajdHLaWvl+7b11/vBf/zr/j9/3Cr/rtUV+8+oWn1xq8AOf/fS+x7nf/XlQPM1c9sOEW1tKTeXS9NGra+0c49WNIX6U0SxbuxIHpwEntS7HKriWofbR45I9ex3jcdvGnTjoPEop+XB9SJjkTFftI5PWPqznPQgTbhb76eLUwQ8vO/E0Y9yp3rVf//E0OIx5HKtmjWkejgIPG+dxfO5+sN+59OOUaxuqHfl8u/TUVTH7wUGfd5jcU31canlHJtbyNOPcjy0+DBylzxn72lbZYv4AvvaoxtgZxdzpBBi64NJ0+cBqrEc1zsO07zvHeNpszxhHuSYPcy6FEG9KKZ8kdHcgPI01/XPA3xVC/CzwZvGz14H/HfAvP+4XpZR/G/jb9/34tYe87r9DKfKdGGRBGgoUmeeTRb8YQ5jkJHmOrR2/fPmj4EfZpI1tGKZHnpg6CQwjNf/98OikpOMsn6jfDMKUp2wBPnIMijkIYkVieJjtoCeJML2n5DQM0yM/WDwtBjtsQVyIJXwU8XPfuEvDM/kdL88D8LmL++dhGOM49udBMSxEH8ZqKsf13LJcTtSEhqfAl50WjOdiTG58GLLLO21jkkks46NjG+Msn6imDsLkyBJTh4VRtFOdKzvc9pSnQJjeU+86zf5jJ8a+RNkmeWyJ1LG9Pu7PPSyM1x4oZbTjSEwdFH58L04fRdmpUhEeHIEtPgns9LWn4dz4MIz3XlqIAB00MXVUOCr7flI27yQxjHbHniftK5+Efa/IolLq06iWvj9c/CeAz0gpv3qYgzsKxGnOXqrEhBDM1hxF2vYU7RuPg5T35D73ipmqrfg7Cj6Z04Sqa1J1VU9wq/zkYEwp72V7eg77RZw+Wlr9ILi3Fo6u2sAx1fy5lrbrUDBWqTktmK6quZiq2BOnNn6mHyXk981rydKpe4rrq105PYeK+23WdGEL2pXTZwv2ijDJ+CfvrvETL84eiNRyjEftz6extUeFVlnxxFVdY1fy/qhs4Ri6Jib+Y/YQkw1HZWt3IsnyiWrUYUPxNWg0SqpF7CAYP8OZ2j3beBjr+mlxv23bC+xCFMAxNaZPOCm1F3/SKJl4BSfVaWhN2Ok/HtXOf9p8+VzNwTLEpC31uDBbxBCzNWfX56ZHuN8PiiyXpMWza3gmZUdxdjW8k4sV9uM7aq454QY7bUnT6R22eGdS6jh8zEGQ57vji6PytXvBXs+27bLiKap75qFRuTwt0iyf7Kn70SxZR2Lf52r3bE8uOVX2eL/Y67lr51xWT4GvfBKealVKKdeBf1cI4QJnpZTvHe6wDg5l0PIJuR+g1MGGEdMV+4EWmCTNFGHgjo06VbGfii8oy1W1lWfrD2Sjd5bLt8sWcztKPZMspxcklG3jgYxmxVE9+0GcESUZYZIr1YNHZLvHmeCxfPNYXegooGuCpdbDSyKTLMePFEnluP3w1rZPP0ipugZnCx6GOM3pBTGVguhOcZjoewrux9913O5omxqLdVdJFhfzE6UZXT8p+EfA1PV9zUm7bO9SYTsq3F/6u7NN8kzT22WgpZR0/KQg/FfEhmXHKGR31ZwMw4Q0l9Rc89ACz5prPuAorm2O8CPFN7PY2N1K5ccpoyil7pr4iZLcdQq56rF8bD9QZOOHdZgL4xRN0x76flJK1gcRt7d9bEOfcIVlueKOGstaj1/bD9PJmA8TeZ4TpkpG/GGtuaMo5da2T5zmeJZetAaBoQnOtUu7bEs/VGv7tN+EjPFr723gxxk/+dL8obzfw/anlJKrG0OCOKddsR5IWvWCmCxXBNRBnE+IdIUQ+JEikKy55qG1TduGeoY7cWvLVzb/IWXlStpbiVZEaf4Av0eS5QRxNpEJfhTiJGMYJszXHUq2IvfdHsVYhvbUt+brg5C1XoSpCy4X/I6HjZ6fcGvbR9cU95dVSGQ/CWMFRs/SH5iXsT+yDFG0Mjy8LDVKlTyzu4eb+7Eqr2er5zsmqx0jyyUdP57wI+0cyyhKFUmuZexaZztvcsOC02+vezvJcj4ct5TVHZr37YtRpBRIG571wHObq7lkFUnXj+kFMTX30QfY+2+b0ywnKmzVQX3NjS2fYZhSc02mKhZJLtEKbh9b14iKfbFzP5307bcQ4rFtxI/y5XkuC+XQjOmqi6lrjCLlc9JC5v6oqhrKjsFqn0I5S6dxX8IiiDNGcUrNMTANpWKcy3vcpFJK0lzuyQ7tRKNkUfd2xyTDKOXGpmqPuzhVfmx85sep4rd7yBpWcungmTphqpR2x58TxBlaQaa/H4RJxtX1IZJ7bXB7aQPq+oqcesxblWY5o4Jj8GGxexAXhPiaiovCJFNiFw9Z12PfMVaJHmMcs2S5UgUe/65exA3j79MLEkxNiQw96hxxP0ZRiqULzEO+ECvZD6qEbQ0jlrshpiEKVb17Y9x5XpAS0jwv/rw7piw5+p4u79Li7DXmAB1/RhBnlCydbhDjWMauRE6Wq7NcnOa71M2nq86RJPbTLFciW7riSUt2CFqt9kM2B/GuFvKxrxufCcZwLZ1L0+VHfcyhjDPJlN1K8xzPMpQ/8WOmqs7ERjxpv1uG9kC8dBholBRXbZzmfG+lzwcbA842HF5bah/6Zx0EQZyR5RLTUEIeW8OQIMlpF9x5cO/c9SQKi4fFnqcZT50uFUL8FPBXAAs4L4R4Ffi/SCl/+pDG9tQYhAm//v4GcSZ5YaGCrRvkUvLB2oAkU0mP8+0Shq427wdrQ65uDJmqKMLtnckBP1aHQ0MoYuYx2/3jMrjXN0cTAsNGydqlKJBkklGccafjc6fj49n3ssE3t3yCOGNrFDGKUqquyecutCYG+c62z7srAzp+zJWZMp5tPEC6DvcMepbnbI1iPNPgymx5Qip3XJBS8q3bXZa7Ic2SyecvtRFCTEopr22M6AcpUZbxlaubSAmzNRtHN+gGCS8t1nhmtvrYAGV7FHO3E6jXFPN8a8vn7btdDE1nseGQSbi77dPxEyxDESXO1R0uTpWJs5yen9AomeQ5DKJk18Y/aQQ7yq+XOwF3OwEVx+BM02O9H/HmrW3iVFJzDYJEETjO1VylWqjDtQ2fDMnLCzUuFIapFySTlpPDQL6jfHlrqAhddQ2WWiUE8ObNDpuDGE1TqpfL3ZBW2aDiKJWbrWHE5lApg332YhPb0InSjI1BNCEP3w8+WBvw9t0+JVvnC5enHlg/64OI6xsjbnVGeKb6rHLf4HurfdJcMlW2eX6+ysYgJkhSLF2p7TRLllIg3FEp9rTohwlfu7Y9Id19bq6269+jNOP65oibWyNGcarUFqXk1pbP+iCiWbL49Pkmm8OYrq/INk1dY7piE2f5qVrDD8M/+M6Ket4Xmkf2GerApDbP3U5AZ5RM9s7mMOQ3PtwCqZTcRnHKKMp4ZkaJXry7PCBM1bN5aaEO3EtoHqZCzCBS+3C9HxImqsR6qSC5/vLVTbIcXpiv0vFjrm+OsHTBYsPDMnSCJGWtpwQInpmtTDjpdu7vLMv5L3/tQ9663aXmWvypH71IyTbZHKgDU6ts0fXvzctesTWMubapDmozVeeBA+1hYDw3WS65vjkiSeWeOMTudAI2huqS4vJ0ZcJZMr4U+nBtwNog4vm5KpdnygRxjmfrk8SmH6e8eaPDxiCiXjJ5dvbxPdXj1gg/yljuBmwNY6quwVKrxDBK+fr1baI0Y77mFgTTGXe7AWv9gKRop6h7Js/OVZmuOJOA3dAFs1WHO51gwt/4sLjjfnseJhlpJhnFKd+41eVM0+PiVAlD14jTnOubIzYGIXc6AUutEp+50Jwc3qSUvLvS461bPXQNfuBS+6GXTl1f8ZQ4psZSs8T6MOTmpk/ZMWgWAhUHwaiY0/fW+rxxI6UXJoRJhmfprPZCWmWb15cavHq2QZ5Lrm0OGUWZItMuP92F4lGjM4q5vjFCCKjuqAK42w34O1+/xe1tnwtTJT5xpoFtKnVZ29AnXDCOqRMmGZvD6NDasMZrBVTc3AsSgiRjvu5Stg0+WB9we9vH1DVemK9xa8vnxtaQdtlmoe4SpBl9P6EfprQqNldmykxXnCf673FSZeeFwahoNwG1B+/323kuWemHKongJwgh1MFWQJTkzNWUMM7t7QCAOMuwdKWmfLblsdoP+Pr1bdJM8sxslXbZYqpi7ymZeWt7xPtrQ1xL2Ym9zP+1jSFfv7GNLgSvnK1zebrC9c0RYZLjmBqXZypEacbNLSWjbemCQajIrC+1y3z7bpdv31WE87/thbkH3n9sH8f2B+Dm1ojVnhLRaJVt0lyp6N3eDtgexcUltUaU5hMlw9maw+VplfgZrwGkUr1V1dnqOdzZ9vn23S5ZDj9wsXXk54nx9wqTnO+tDjB0wZlCSOQbtzqsFEmr2arN+6tDDF1wrlWi7Bh0Rgnrg4hW2eRT51q4lr7LfyeZZLUXMl2xkagYdbkb4tkaMxWHtX7I7e2A2ZpStAviHNfS+KErU0gEt7Z9kkztHV1ToitHaXPSLOed5T7futMFJGGcs+XHLDRcXpitsuXHhcKuotcQSH7tvQ3COOP8dIkX52tP+oinRpZL7nR8pipKzfGD9SFBnDEIU3KZ0xnF/PqHmwgJP/HyLD/8zAymrjEI1MVTlufUXIMzzePlewrTjF//YI2/8/U7hEnGn/jSef7Vz1861jHsxHge22WbrcJXdP2YhbrDr3+4yTt3+yy1PX74mRlePVtHQxXb5Lkky71j4VY9Lhykju/fQ7X0/RqAlPItIcS5gw/p4Oj5CVHBFfO95QHn2mWGUVo4y5h2xZoke/woI4iVgRlG6eR2coyOn5CkkmGakqSSsqMO0o9LTKVFJqEzikmy3YcYy9DwTI21fkjJMriz7VNbGBsN9dq73QDH0InTmG0/nhw4bm37DKOUjUGk5I8fUV3SDZTDuroxIs1zbCNloeGcQGIKtgpnOA54PMtgrubQ8WNsUyNKM375nVVWuiFl22AUZ8yUbQaRqnAKk+yxianxjdQwTImzjO1RTJTkCDS2RzElWydJJf0oZRCqG5QoU73LSZ5ze9tHShXcF6rhhEl+pDcK+0HVMam5KUmeEyUZy92QQZgihDJkUSKRUrLWD0kyVQUyDDOuzKqgJ83HQady8lkuJ9/5sKBpolAgUc+6M4pZ64f0gpQX56sMivXYL/6/1g/Z9gUzlYwzTY/tUcHLkqTEqeJMWim+Z2e0/wTa+iACVI/66CEBbphkrPVD7m4HLDRcRqG6mej6KZlUFUw3tnwcQ2d7lNAsKansux2VOMhzeWAn0CvWdpKpz71fISXLJLe2fZa76lDaKtms9SO6QUI3iPEsgxtbIyxdZxhm2BaULJUU9yyDKM1P7Q1JlGb80++t8ztentvzTe3TwNQ1pqtKbTPLc/pBwgdrAwZhimUIZK6qS1Z7AXGmbv2nKzaOpRMXNqIf3Av6u37Cej861DHO11y2RhG51OgHCe+vDugHCRVHSdePP3f82VkuiXPJUrNEz1fVC1Fyj5vu/v297ce8vz6k6yeM4pTrmyOemalOPn9zGCEQdP2EmWr+QIXh5jBitRdScYxdCYpSUQ3sGPqRlcK3yzZRmjMIUz5cGVC2TISAM0/4PQn0AuWvgzhTlTeeulkPkpRu8W/dQBGC2oa+q1I5SnIGUYIfq6qC+mOqhgDmqi4bw5Cqa/L23R49P6VdVsmZ7WFMmqkEaVDEFpujqLihT8mlpOcnZDkTHzg+MCapqmwbP8soyeC+uONh9rxsG9Q9k7V+MPGh7YpFq3TP/6/0QsIkZ2sYsz2MJ5XbebHmt0cxhi640/Efmpjq+EnBV5Fzt+uzPUpY66u15FkHXw+zNYeuHzMIE25s+kppSBf0NMFqP8I1DW5uj3j1rFLUCuKczWFEkqlDp5IiP10tCxKVaErzHFPX6Ixi7nYDOqOIGxtDokzyweqQK9MVwiTHMMbqgupC1DF17nR8gjin6x/OxdJ4rcSZqjh5+26PzWHM9ijmM+ebhRqyxNBgaxSxHUTFhU1eqCW6bI9iNE0jTLKJHXqc/5ZSxYMAnZG6kFKJZyU17xj6LmW8MbZGaq0mWY4fq4vb7VGMJoT6u2NiaOp9cykZRRmWp+MnafFZMWmmbMO1jQFZXsYytId+1v2IkpyuH7M1zHn9XP2Jr0+ynOVOwFovwjI0tgYxl6eZnAfG/1dKhXnx5xTHMEhSSZRl3OoE9P2UMM652w12vX+cqsqrjh/zUnF+yHM58Vf9MFHxvmSShOr6MUGaMVW2CWLVdaELQZqpqjdDV5fjcZpztxNwrl0iye/FEWqsatybw+jIzxNTFZskk6R5Thjn3NzyWe4EfPpCa5KIH4Ypa0g2hzFpnqNpGkstl16gzgVjNW/X0nf57zTL2RhE6Jqg6hqM4vEaSSiZJlc3hvSClDSXlG2dkm0SxMoXvbs6oOcnLDRcHFPDMnRmqkc7F0mmqm47o4Q4y9kYKPt9dzvA0ATnW2UEkumqU9iWaJLo3R4ebsxyP+I0pzNKSDLJXM0hzVS7cpCkBHHO1Y0RW0MVs37rVpfpsjqLuqaOLgS6rpMdIZXBo1CxDdb7Mf0gReaSn//mCr//U+dOjN9sPI+K51G1iKrzQcKHa0OCJOOdlT5nmyUaJZOZqkPZNhiG6S5F5e8HHOQJpFLK3mkkDpurOczVHII0ZbbikObqhmroqMCzsSO4KzsG9ZJJnNk0Sg+qKNRck84opmQZCFvdwj+pp/xs02N7FNMuW2wO4wf+fbbmslD3SLIMgar6sQ2Ns80SXT/mNb3O+6tDKo6xKyheaLgMwpQrs2UW6x7tR2To2yWb5TRQN1pJipTiRIhMNU3w/FyV99cGzFQdHONe+9ZszaXqmHy4PqRdsVXJoi740pUppZgQpSw2H1+ZBtAq20RpwChOyfKchbqHELDcDah5BrNVhyDOqJcMhmHGfN3BMjTFi+WYOKZGEOc4lqYcdKZk508LNE1wtqWSIOuDkPdWh7iWxnI34NJUifNtjyjNWWi4vLPcwzJUW4hr6lyaLrExiJT06LQ6XAgoysQP1xGM2179OOV2ZwshIElzVvshz81XWe6GvFipEBSHaNfUcC2DumcxVbFY7oTM1d3JYcIoCNW1p3gUF6dKRKmSl3cNna1hRH1Hyb+tazRKFlf0ChXHpOFZWIbg4pTHIEqZqbrM1my2hwlLTRevkGffGqpD4mG0VYwVW4ZRwpmGS8ePqbnmJFGToyq0NAEU0s6WoeS1TV3Qrlicb5dY6YXM1h3KloFj6WwNVXLQfJqJOyZ85do2wyjlt7wwc+SfNVN1mKk6bAwi3rrVxdQFW8OQC1NlzrZcsixnselyc2NElOU0ShaXpkoqQeAnPLOjWsY4ApL/cVl5z0948+Y2hi6K9g2NMw2XTEpeXKiy2osKtTfFE9AsWczVHDaLS5LpIjC+f3+XbINXFmsMgoSFhsP5VpnFhodrxVi6RpzlrPZCyo7xUBGDTpEY6QcpSZZP1v5s1S04LZSs9VHAMVX5+ftrA5rFHDVKT/6sxYaLlJLNoZovz9bphwlZJrnQKhHE6tJjse7SKJl0fdVOZxT2oe6ZnG+VQQ7RNe2J+73mmdQ8kyTLsXQNTbvXLlfz1LOpJgbPzFawDI2GZxEUEu2WLlSMIFRroaFpND2LYajGtFh32RjF5Ll86EHwYfZ83FIWJhlB0letH2nO1jCiZBsstVTscWPTp+IYu6rddE1wZabMWj/ENB7NqdgqW+rSyFTrcRBmTFVs6iXzUFQfx625q/2QUZThWBoLDReZw1Q1xjZ0Xi4qGcdj6Ic6JVsgxMNt9Lhdp/QQqoTjQN21mG84aEJQ80zeXemTS0nFMXn1bJ27nZCFhmoDsg2NdllVvxq6RtVRobqpawTkh9Y6u7P9MM8lUZozDuklsNR0GUYp7ZJqXTM1QWcU0yhZtDybimPw3HxVrXXXmtihx/lvIZT/6vqqOr1fJIpB0PSsR7ZB2cXhS9fEpCK44his9iIMXWCbGvN1F9tUNmscL495T8+1SkXLoka7+NlefXnZNgqOQIM4fXLspAtBq2Kz2HQRwFLbo+cn1F2TnHtniKpzr3r14lSZXpBSKhIhz89W6Axj6iWT+n02dhAmuKaOW3Mna0HTxvMqaFdsqo45+Z6upZGjYtuSbTBfdwgTxd9Udc3JfjB11T7qWGpe7B0XFRemSnSDBAG7KEiOCp5lcGm6TJrlfOtOlyRTlTXXN4Y8M1vm9nbITMVG05g811ZJJeBnqg53twNm6w5VV+2dh/lvS9ewDZ3n56pc2xgVtlAyXXEo2xlV1+CTZxvc6gTUXIOtUYwmIEMSZxkvLtSOhUvQtXTOtUus9ZXi65mGzZu3ekyVLYQUTFdtpivqIifPJWXH5GzTpRskPDdXffIHHATFtJq6wDFVks6PDWaqqvKs6uiM4hRDwPPzVXIJN7ZGvLpYV8nPLKddPv7zqRCCP/mlS3z1xhbDIOWl+TrXNkZcnjl6xeSHj0f939IVl7SU0Iwt2mWL52YrfLA5xNY15usOcaqobqarNs2S9X1VLQUHS0y9LYT4g4AuhLgM/Gngy4czrINB1zU+u0PhaRilCGBtEJLEKckOMj1dE1ycKj+yuqBsG7wwX93FOfOkZJxnGZOsa80zuZ+7r2wbXJ4pEyYZuqZxtxNMJMTH/cnPzFTQ7vPqS60S7bJqI3qcMRwHynkuGUQprrk3rqajwJmmx2LDnczZWE4b1Pd9/VyTumfixxkvzFdxLYNBmGBo2p44oBR3krrRWu6q27OXF+u8OKlCU3jUczvfLqtKLlNXrT9JRuWUKqxMVxxeP9fgbicobtEizrZKkz7zxYZHEKcIISaBxnx9t8HSivUeJEdDVO5ZBp8+3+T2ts+dbdViWbJ1Pn/pXv/283NVwjTHM+9xKy21du+/hSJJ9TQ3AbM1l9maS5qpEnApVfXUOMFXL1kTOfTpik3JVtxWz8zuduDztd1rpuFZD/D8PC08y+C1JdWG8u5qn46vSujH7ZaeqTNVUYH/dMUu5uLB/dAs7T6sNjzrVK9hgF9+ZxXX1PmBi8fX0z9VsfnMhQZfvb7NIMrYGsW8eqYx4fJ4ebGOZ2oTm9soPZgEqDgmF6dLD9jzw0DNM/n0+SbXN0fc6QTYhs5U1Z5Uq5yfMjjTdB+yb3ZXs9y/vz3L4PMX2zwzU6XhmVwqWr93th08jvi4WbJY6YVUHXPXIU7Jeh+PbGiz4IO40C6zUH9yAGbqGhemypxvlxTPXpRyc1O1y8zUbD5/aWqXP2iUFJ/POCkshOC5+SrPzVcnnDp7gamry6UsV3HF9Y0Rl6bLvLxY2zW/zZK1i/sFVCJrp1/fmRB9XKLncfZ8oeGSZOrCpxemRIlKaDw3V+ETZ5u8eqbx0Oferjj81CvzhGlO6RE+uOqYVOfu2UG7uP0+bC7Li1Nl6q5Fq2xNyITjgiB7HGMJobhzzrVLj+Xau7nt40cZmgbPzVYPjTtur3AtnReKlprb2z5hnLM5inhhvsof/oHzRJmczPej9uOZhsfASw9M1v8waJrg1bN1VnsBNVdxLm4MY6bKNq2yRcUxeW6+xuWZymRtPGqcT/LfczV3kvSM0oztkYZEPpaYt+qYXJ4ps9INGEYZaZ5yabrMucIGjsey8xJ2J++gaxl84fIUoM4EmmDP1RGLTY80V5VF9yeJHgZNE1yeLnOm6eGZGr1AUYIAnGm6E645x9R5fv5e3LHTn1+ZrbJQtMTer/qnuJBiJHLX5e3Oed0JzzJol1Tb4vl26ZGJ2YtTJUZxxrOzFdJc7tr/rmXsiuOOC4au8cpiXV1kbwyxdB3TyHeN5UyzRJzmu+bp7H2tYTv9t21qXJgqTV4/jhnHuDxdIUgyygW/15lWieubI7aGEb0g4cp0mUvTlWM9Vy21SsxUHZKiuvH18wM6fsLZhkfds3h/bVBUBWcsNjxeW2oeC++eY+icbXmT5PnOxPK5dgkpJT94ZUpxL0cpX7/ewTE0lnshz8xWTpQbcLrm8Hf/xOf5xs1t+mFKEGdc2xgdfTLvIbCLeazYim/y8g6anj/+Q5f45q1tRlGGH2eFyIbOs7PVE+dWPAoc5PTyp4B/C4iAvwX8r8BfPoxBHTbKtkGUZkyVHabK7Jvhf+dD3+8CeJjjGweToAKU8c3z7tc83ODtR5ZW08SpUKvZOWc7+VlyKXENnefv63/ebwm+LA4CZ5oeszXnoXP0qOema2JCaGgVRJCnGWeaHmXb4E5HlXbfz3ezF7Jey3h8YvOgqDomzxeGPc954GBn6BrlJ9xUCnHwtbvzY3fOk2Mqg/4k3L9mHFM/9Jt2yYQabdd4d9qI/eCon+1BIaXkV95Z54tX2sdetVB1FVnyKMqKtl11S7+X9TjGUZZ5lx2T5+bUJYiUT7dv4ME1YBo6rbL9yCqLx/m0Vtk+9hbw+/G0whPj77Vz74//uPM7P06ZaL/P+2zLw9BVdeX4sx82v/f/7CBy84/a855lTA69H64PJuORkgnJ/6Ownz0Bj5/Dg+BhB+3H3WY/7tJgYmdPgchXLlUSpuaZnG2WlFDLHqbwqGO6nXstTLLJXO3cQ4ftv21D35WIfRwcU1cUFjuk5J/mULbf9Wrq2q6D4l6wc552xyJ7f49H2QV1kbb38ey0Q49b/4auUXNPX/xgFPOfy7Gw1e5/N/UnV7bCPXuuCfFYm2voGpX73i+XqkplqVXimdnqkQh+PAk7Y9CLU/ee/869uvP5HkfCQojHn6mFEBOb7VkGF6ZKpJmc2JSTTqqUbIMvXJnmvdXBQ8/ix4XHzaOuCVzLwDYMZmvargqpk56/o8BTRRNCCB34X6SUP4ZKTp162IbOUtsjjLNTJZU6X3exDQ37CA69pxGzVUUmOC4pPgzUPJMF6ZLlclK6/P2MMaG+RJGJn0aMb+YGhbLSScDUNZZaHv4p2/M7oWtqnoZReqKy08eF79ztsdoP+bPPP3Min7/YUMTiJds4Un6rp4Wha5xrlxhF6aGt2aWWRy9IDqXS76OIqmOy2HBJc3ks9vIofNxBcabpqRZ52zj2SqHTgjNN99TMwULdxTVjXOvkqtmfBMdUN/hRkp14cnon5mrupAXrKNWmDxMNT6lNCziRWOSjOGcPw0n6sjM7YoeTSEo9Do55Os+3D8P5dolekJyKoomdOO1x0oV2mX54+ubtKPBUUZOUMhNC+EKImpSyd9iDOiqULIOtYUw/HLHY8E5FIkjXxAM99VvDiK1RTN0zJ8Tn3y/QNLHrO93e9gmTjLlCBeZpsR9jvNwNGEYpM1XnI7fJ0yzn1rZPLhWX2WnNlvf8hLWBIk0+qX2mSM6jgpPidM4TKGL6fpjgGKf3kHJY+OV31tAE/Miz08f2mVkuC/UXyZmmeyJ8e3vF5jBiexTT8KxDk4g/ikq/h2G1F9IPE6Yr9p4IhfeKUZSy3A1wTH1XW/h+cBSqgTvRDxNWeyEl22Ch7p46v20bOjPVe2sgTnNud3wEKml1WGvttCDJCmET1IFS8fPtnoOThKFrTBdtOVc3hoDy56fpOSgBE7WfD/Mg3gsS1vqK6P9+Tte94GEx83EjTlUcpgn13J50ySGEeKqqz/txY1MJGu33/HIa5uwgkFJypxMQFoqRJ5FcswyNmmtyp+NjaBpnm96JJrjzXHK745Nkaj1UHfPUJlUAVnoBgzBlpuKcyhhsZ5wUJhl3OgG6Jjjb9E48EZlmOSu9AAn/f3GBfZDrvBD4jhDil4HR+IdSyj994FEdMqRUXEvDMOFX3lljtR/wqXNNfvz52V0LLs1y1gYRpi72HFhuDiPW+iE113ysRHKcqkBpruYwijOWuz7fut1FoEoyz7Y8qq4iUF0r1JfWehFT5b3J2R4Gxgo/U5X9S82v9UPWeiG3t30qrsknztapOCajKKUzilntqyTFlZnK5PuMSWgBNgbRvhNTExnxLOds09vT7XSc5pM2i41BuKfE1PYo4s2bHTqjmFbF5rPnm8SpnEjEPmyukkyy0guYqTiPdF6DMGFzqEivmyVFJnt72ydMc863Sjimhp9klCx1Q3N72+fNmx2GYcJSq0TVMQ4UbOzleee5ZLkXkOcwX3cwdI07HZ+un1D3FNGtH2doBb9IL0i4uj7k7bs9GiWLxbo74UU7bmyPYoJYca/0g2RyOH37bo+rawNMUxENT1dsWmVn3yTOcZpzY2t0oNLfsToMKA688Rjevtvj6voAXWhMFcSWjZL1VAf+29tK1eqkIaXkF7+9wqfPNx+bSFbqJPEjkwn9MGFrGFN3zclr7nR8hmFK2TGYqthoQhAkGZam8XZRpaUJwd2uz4vztQNXADxpf/txylpf2bSpij3Z21kuma051D0Lv1AC8iyDrh/z9nKP91YHLDU84np+LJL3StEzQiIfa6vG6Pox760OuLYxZLrq8MpiDdvUcU19so7XB0psYLUXEiYZszXnAfsipaRfqMlEac61zSGzVWdX69xqL+TaxpA7XZ+yZRAkOZvDEi/MV9keJeRSMlt98pgPA3Ga87XrW5xteMzuOExvj2I2BhErvQDX1BmFKbe3R9ztBDwzU+H5+dqxHV7Swh+2Soo4dRQnvH23z0o3YKbm8OqZOrM1lyDOWO0F+JGyjb0gOZRD80ExjFJub/tYhsa5VgldEwzChJVeSJrl+AUXpGUIRnFOydKoutZDY7VekDAqvl/Xj/ftJ/fiv3difaBI2meqNmGibHrDMzENjTTLaXjWruRFkmb8i6tbLHcD5mrKR3Z2KDDvBU/y3w/z3au9gLV+RLNksdhwGcUZhqY4KQdhwjdvdgnSjBfmqnT8sYpudOBE8/ogJIwzgiTjrVsdXMvA1ATvLPc41ypxcbr80Dh3vL/qnnmkh9mdz1sI+MXvLPPByoAvPDPFp861Hnh9x1exRZZL3rrTpe5anGm6R0qanOVKfXmtH3Jza0SzpJ57LhXf2tmGy+1OMElUmLpgYxgRpznNknVsKpVP8t9JlrPSDdF1wXxNPdM7nYB+mFD3LOaqDnGWF4p4SgX9vdUB768NaRek0Ff20cZ4mFjtB7y/OmR9EHK+XeL5+RpTFZtRlKIJgWNqbAwiNoeRqmIq7NgoSlkfRFQc44m2tucne4rXBlE6UWHcHEaT82eeS95d6ROlOTM1m1axTjYGEW/f7RKlOWcaivbkaeOgKM1Y70d7rghOspzNgdozX/5wk9maw2cvtHbZlTTL6fgxhq6R5ZKtYUyjZNL0LJa7IZqmVIz36k/Hsc39dCd7QcePeX+lxy98e5myY/Jv/bbnqJ+gj+wGSpn5+uaIN65v89JijSszlYlPSbOc7VE8UTW90/ELzkvFjbfSCzB1jbma81T5hP0+74PiIJ/yS8V/px5Kkjfh2uaAt5e7xKnk+saQQWEIx1gbRGwXSQul9PJkQ741jMlzJTM6V5OPzKwqOXol9R6nOd+82VGVElGCoWtomsAahEgpyPIcXdOoOMaxVsTEqZIhVipu++O32RxGLPcCrm6OONPwuLox5OJUmRubPt9bVUayZBm0K/ZEttoyNGxTI0pyKs7+l+KwIKsDJiW2T4KpqwRKEGd7dtTfutPju8s9Plwbcmm6jACmChWJJMsnhNU7kRaG2NC0Rx4wl7shcZorOXPXZGsUs9IN2RrFjMIUz9YRCEq2ztmmx9YwJkozBlFKL0wObCT28rx7QTKRfFbSyibr/Yhb2z62qTGMxoo6cH6qRGcU0wsS8lwyilJymKhdHTcqjjGRk/ZsFTD6ccp37vT4cH3Alh9ztulxrlXiykxO2dkfb8AgvCf1/LTQNTU2P8omt11+nPLdu33eW+uzPVIBxzOzVc61lFrcflrQ0uzwpMUPim/d6XF9c8Sf/NKFx74uy9Xt6JiU/n7c7QSkmVpfdc8kKmR21/shUZZztukiEORS7U+hKcc6jDKa5Qrbo/jAiakn7e+VXogfZQzDlKprsDmM6PoJdzoBHT9hpmpPDs5LbY/NYUxnmCh5Zz/h4jERi48PfsBjbdUY64OIu92AjUGMAL5+Qx2CZqr2ZB1XHINRlE7eVxPRRHhgjLFP1jT1jL51q0enFfPsbHVi1zaHER0/Jk4l73eG6JpSXPNMnbhQoTOOqRIgTDLudpREd71kTRIB64OQnp9wY2tExTZplkz1jEcJQZJzfqp8bMFcUviS65tDpsoO76708OOcD9aGIODaxoiqa3J1fUSYpsSpInIunZA89v3ojOJCGTdjFKdUHZONQcQoTHl7uYdlKFLzJJN0gxhb03j5TB3PMh641FLteopvpfwUscVe/PcYUZqx1lNrPZdK5jvNJO+uDPDjlCjNuTBV4uXF+uR3NkdK+l3XBKv9gKmKve+LuSf57/t9t2NqvHW7RxBnhIlShO74CUIokvnOKGFrpOLf1X5Is2QxKvbzQZBLdck6DFM6QUSQ5Gz7AcvdkHbZYrUfqdbGh3z/tX5ImknW++qS9qiSvDuft0Dyz97dYBhnbAwjXjvbfCAuKNsGGyLCj1MsQ5tcsh5lRZ4mBKMoI5dwdWPEWj/Cj1JePdsgz2FjFDMIVaJiaxQxijK+t9rH1nXOtNwJ8f5R40n+e7MgEAcoWwamoZQeb2z5WEZAr5lMuPDm6w5bo5gwzfHjlDDROckmAV1ohGnGMEoJk5ytUYShiQnnq20K7nYC+kHKUqs0uRBd7gaEibLP9R3qy/cjK6qg9pJL8SwdQxdkudx1llnth7y/NqTnxzS2LS5Ol7k0Xea9tQFbw4Tlrno2pqE9dRy03A0ZhumeY0ujiHNvbY9AQhDn3OkEu87f31vt8+H6CMvQKNs6Dc9mvR8hJZP14lnGnrtjun4yiUH2i7Jt8PUbW1zd9LF0wX/z5Rv8G7/lZOgnxuMZxSn9IMG1NTaHMXO1dJL8fXelz9WNEbahkk+6pqn1VvzOOIFZdoynqqrb7/M+KJ7a40gp/9vDHMhRIk7V4dExDZZaJTYHEXM19wFiU2uiyrN3GdmGZ7I+iKg65uMPtUK9ryYEpl5IRic5LU9VQbiWRloI67TKNnM159g5UMYG336KdiIl563aD4WAqbJNUhweHFM5btfSETsMrl4ol2S5fKrvWrJ1bFMjyfI93+gJIbg4VdrXZzqGpqqWdIFnGdiGjq4ph/Ck1qvH/btn6cRpjmNqaEIlUjIp0TWVQAviDM8yJpLRzUIKd7bq8MyOA9zTYi/P2zH1gihaJWstXcMyFDlzyTLwo2yyV5JU3QxvOhFzDZeFmsOV2cqJtRtWxmTSMAloHUOpPdqGTsnUMTWBqQl0TbDfmLfsqKDqfiLO/UAIwYX27vWoxqhhamrdGZqGpSk5eW2fc2noGlXXmASsJ4m//827WLrGT7w498TX6sUzeRg8S6cfqGobIRSXj2tpkxvWNIOcDFNTrZG6Jni2UOHKcnmobV2P2t+uqZI0piEwNY2KY3JXBuhaYQ93qKiNb7RrnolpCK5Mlzk/VXro+x42zB3j30sbac01aZdtur7ixxkrVEVpvmsdJ1k+sZFj6fGdSAvfkOfKthi6SoyNfw7Kp3T9GM8ymKpY6hJCCEqOQbzjwH0cGNsw19J3xQZVx2R7GDNbdZmtKvWyjh/TDxMqtoF9jD58PMaxjVCHlZR6SSWfZmvO5BLBMQzmaxZzteOpONsLap5JL0iwC38LUHVNOqNEXdKhYidkjqEJNE0gpXzoxYdj6jw3W0XCgdow9rK+DE3DNARJKnGLdpDtQr6+H6gDdpTmu9STmp6lErgxvHa2wUJ975UAYzzJf9/vu6Mso2yrS7lxkhfUv8dZXqg5G0RFleNiwyMtYo+DQKA+y7E06ii1P8fQMQQEqXp+uv7w715zTbaGMRXneHjBVMunhmcbjBLF15NmObq2O+FUsg2em6sSJRnXi6rpoxIAGEMIeG2pzq1tnyTLEELFjZoAz9ZpeiadUUxW+MGun2DqGmmeT842x4XH+e+xoqQQSh3P1DUsUyvGrRMl2WTNxUW14SBMeGa2zGzVfeCS4zgxW3N4bq5K1TGouRbNQql5jDDO8WyDXqCU4McXoq6lEyb5JB55FDRBoRT85MyUqWs8O6sI4Xe+py4EtinIUftMSpXwmipbbPRV9aFr6gdqCRvbxUdodD2AcZzb9Ey+cm2bXMoH1GbDRBGPp5mcXPxUd6hRC8G+VLrNA8QGFcfkS1dmePN2D0vXjpwK4ElwTJ3XzzZwTZ3VfkjDs3ZduAQF+X2aSVzTIMlzDF3gmjpJmtNBXUA8zdke9v+8D4qntqRCiOvsFpsAQEr5+OvwY0KS5fhRRtlRfewbg4iFusOzsxWQ0CiZu0r8wiSjVbJwLR0NJptBSknHT8jyHK1QGtnpqKerzp5ubB1D5/JMGYHg5taIl8/U+cIVkzTL6YcpZ5oufpwTpRkz1d1JqSyXJFl+5DwhdkGg9ySp+SBWN5p1VyXjhgVR71xtiteWGuRSZballKRZTqtskRWl+JahHNAwTCnZOoaubqiCON2TotxOGLrGlX0qpYAyksYjAqGH4bm5CpYu+PS5JpahcX6qTD9IiNN8l3HNc9UyKqXENjUuTpceqeokpcQ1NayqxVRZlVdWHZMfuNhicxhhGTphknK3G/Bss0qc5tQ8gx95dmqi2JhmOVmhFPI02MvzVuvRLqSf1ee8MF9jpuoSZzkVS+fdlQHtikXNNRjGGS/O13Cse/snTDJsQzvUBNXOVqDHff/7gwBN0/jJl2Z5ZbHOKIoBQd0zqJds8lxyY2tE2TH21DZgG3tT93uSNPX961HTNH7y5XleXqzT9WN0TTBVtigVNx3Xi5uR+cbe+DmWWseT5HgcRlHK//yNO/z48zNPbJ+1TI1L0+VHBnDTRavedFHJMFYwXKh7bPsxnqkzilJud3yen6uqilQhsA1tcriRUhKl+VOvyyft74anBArGt/w11+T1c022hhFprn7+7kpPHRp1DakJfvBSe9fhK8lUoHbUCpoLdYd+mDxyvvtBglEk5WeqDu2yzRevTCGl5N3VPlGSM12xd61jU9e4MlMmzeVD/dZ83WVjGOGZOiVb5xNnG1i6Rs0zJ21bM1VnwkGz0g3YGoZ4tslczaVVsukH6hCW5/KBQ2uYZFi6dmiH2ZKt88UrbSq2aru0TX3CkVN3DW5sBug6LNQ9zIsam4OIM00PY8ezi9McTXBkF05OsW8uSHX59uJ8FSHgBy61GBbcHp6tM121yXLJzI42yONYa09C1TF5cWF3VUe7bNPwLM61vUkrH0hubvl4lsFczWF7FGMZgnZ5t80ef7csl6R5vi8/+aT9Dep59kOVNLs8XSFO8wn3zUxhm25sjdgcRrRLFh0/oeGZxFlOnOX8yLNTCCEQQqj1yv7W65P8t64JWmULz9SpeSZ5bpBPw4UpyWxVtQ7GWUarpKq1hlHCFy9P7WoPyaQ8UFsFqIqpVkkdpCqOOaniXWp6bPkx7bJajz0/mcSEY8xUHaqOQfmI29DMohq8bBtkueTHn5umHyS8fLaO/Yi4W0qVhH+uiAGOI3FWdUxeXqxzZabC3U5QXFapc4iuaUxXLHRNo+5ZJFlOkinbPFvbP5fX0+JJ/tsyNJplk6Z3rwX1mZkKs1WHYZTSLtu8vzZQYkYliyDNeWHuXkwJau/tp4DgoNh5Bnturspzc1XCOCPOczxTZ7Xg/3l2tsLWKOHSVJlmyZrEFosND8eIyKRUiaRHLBUhBJemy7surh6FtHi+rmVMzh6uqcjtL7TLvLRQU3GPqVOyDZ6ZrbJY8O2Zuqa6L8KEimNOzrn6HlU/52uO4o/dh02Ns5yKY/LbXppDSsmoqNy0DY2un9AsqTU7VbFZapUQ3POVl2fKaEKppneKLognUW+UbYNL0+WnauUD+KHnZpiq2qz2Qj6x1ODm5oAPN4Z87lwb7xi5ifNcEmc5rm3w2tkGmZQESYYuBKu9gExKnp2rqst2W+dcq4QQyi4IIWiVbUq2UTzvFMN7fHL0YXia530QHMTnvL7jzw7we4HmwYZzeLi2MSJOczxb5+JUmTNNj1tbPu+uDPhwrc97awNcS+fVxTqZVIHy2aZHu2xxtxtiGRoXp8oTDqnrmyPmqi6tivVUMu5xmvOr764TZRlX14bc3PaZq7lIJFXHpOKaPDdbYbkX4JkGn7vYpuwog/Ph+pA4VRt2tnZ0bQuCx8stgzLQVzeGSKlIm21DY2sYo2lwZabCKMq4saVIIQWSXpBScUwqjoEfZ/z6h5vIYqNZhsbnLrT5+o0t/DjHj1L6UcrFqRI/8uzMoRLO3dgc8dVrW+RS8tmLbc63H31YX+kFbA5Uf/NczeXrNzrc3g5UclIT/MYHW/SCmIpr8lOvzDFTdbm2MWRzGCsZaMdU7WOPCWrfXu6x3AlplS2qjsX3Vvus9UOenatSc0zeXenzm1e3VECZSbpBwrXNEWebHj/2/Ax3OwE//9YyEslPvDDLSzvaBPaKJz3vux2ft+/28WydlxZqrPVD3l3pM11xeG6uwo2tiL/3jTtoQii+iijjjZvbpLnkx56bZr7u8T987Ta3OiNeXqjzW1+cPbTk6s5WoGd29Fo/DlJKrm6MeOPGFm/e6NANY8qWjqEbfP5Sm1bJZHOoKjF+6Jk2jdLBe8q7fsztbVXmfa7t7al99E7H56tXt/najU26foJraRiGzmuLDeYaLt2iWuTzeusjQ2j6c9+4Qz9M+SM/eO6Jr9WLAORhyPOcr17fJik43paaHl+7sU2WSz51roGpC763OuA3r24WN60qWPvucp+Zqs2XrkxhGzr/4zducWc74JUzdX7LC7P7Tu4+bn8Hcca/+HADTRNESUa9ZPHNm11sU+NT5xqs9SN+8dvL3NryaZRMVvohQazaA67MVPjUuSbvrPT45XfWkBJ+7LkZXlw4HK6itX7IN252sAyN188pd/1r76+z1o+5PF3mBy+3d+3RaxtDvnW7x7YfUnVMzrfLvLxYR9cE37zd4Ze/uzYJgubqLn6U4ZiKa67sGA/cio5hGdrk39JMoglBlGb86ntrdEcJs1WHIM3QhcZ6P+DWdkCc5XzpcptcwmLDZX2g2o5ubavWh36o2ppcQ6fsGJRsg8vT5UOZN4FgEKqLAsUXGRClKc2SjUBybdPHNlSwf21TkYpbusZXrm0T5znPzVa4te1zY9Pn4lSZV8/WD114I5eSaxtDvnOnyzsrfSxDw9A0toYRCw2HubpSWAP4kefu+Vc/Trm2oWhCl1p7s1FHiSDOuN3xsQqODJVgselvjnhva8Ct7RGWrtMJYvJc8fyFieS3vTDLDz07jaGrw8v6IMKzNAah4gKar+/mVNkexSx3AzxL53y7hB9n3NzysQzxRP8NFJ+b0fMTzrY85mouUZLx1etbRKnk1TM1+kHKcifkGzc6TFVtGiUTP1IVkrlUVYG6gF//cJP1QciPPDPNZy+097RmH+e/4zTnN69uKh62mkuU5XzrdpeybfL8XJUvX93ijRvbOKZKCr9zt8e1rREzVZuffmWBt253+bX3Nqi6Bj/67MyBOH3iNFetyn6Mrmms9Xy+fHWb1V7AfMPhC5dmuLntM1NxcC2N8+0yN7dU/B5lGRoaM1UbKSVfu9Gh58e8tFhXB+9DihGjJOPNmx2+en2LO9sjvna9Axq0Kg5nmg/GihuDkK9e38Y2dD611MC1dP75uxvc3PZ5fq7Ca0vNQ79IDpOMX/z2skpsJjmdIGKtp5KyZdtkumoXCRvB83NlXMvE0FR17nGSNz/Ofwdxypc/3ELT4EJbdTp8/UYH21AXv71A8ovfWuZOJ2C6YpOkObe2R6z2Iz59vsUnlxp842aHf/K9dTxL46deXjjy6uKuH/Pzb93l1rbPJ87U+YkX5vjWnS5fubZNq2JxruVxfWPE+iDi/dUBr59rMlOxeetWl7VhyHOzVeZqLje3R2wOYqarNp8423jk55m69siEW5zm/MK3llnth9iGRqtkc2WmzNogVG1WUl0EjROR3SAmzaDi+CSZxDY0loqzz4frQ/Ic2hULXROTduS9xKnji/S9zt/ffeMW6/2Yz5xvMFvz6BWXSr0gxTYEvUDxhk5XHExdo1VKeet2Bwl85nyLkm2w2gtZ6wekucTSdc7iPTE5dVCS/BcW6rywAH0/5k/9rW/y/vqQsm3wj//MD9KsHm3lXp5L/tn76/zGh5ss1B1emK/hmgar/RA/zvBj1VrnmDqvnWng2Crh9LUb24yilFcW60xXHdb7SpSmH6SYusYoSvd9Wb2f530YOEgr39Z9P/pPhBC/Afw7BxvSwSGlym4Dk/+D4iYZBAlv3e7R8WOEBlkqqXkWW8OIpmehFaXPUZJPyuMm/yGRT5l9DdOMO92AjUHEra0hW6OEQZgqaemiAuZukRBplQTLPZ8rTlU5oaIVcRSffDvOToz5FEC1ZERJxvtrQ75xaxtLU7ffpq7jxxlRZpGkOWGcMwgVl0rNM7nb9RlFOWme8/Zyj9mqy9X1EZ+9kB5qgHx9c8i2n5CkOavdkIW6+0jnuV3wLHT9hOmKIqtPM1n0RJuKGyrLaEY21zZ8dE3w7kqfJJWUHP2JGziIMzYHMctdn9udESXL4MamD8D7qwOWWiVW+yHdIEEXgq1RTMdPyHPYKngE3l8f0g0SZC65vjnkhSMg2V3phWyNIj5Yjye3GkGcc3PLp+oq/qaOH2PpOt1RwqYT4RccCGv9CIFK8oVxzo3tkVKeO6RgLdnRCrTXW90kkyx3Ar5zp8u37/RIctVGea5VZrkXYO8oE84PQGi+EzvLvPdSng1wZzvgndWeGmMGpg5nGyVudwOq7r1vmh2Edf0QkOWS//qfX+Xnv7lMxTH4mc8t8dOvzD9QgeTHKf/lr17lE2frvPaYgGwv6PoJPT9hYxixMQwZhvd4VG5uBQihki+dkeILGYYpfpwpLrdIcYbommClExHEOTc2fJVgLx/eIWJ9EDIIU9YGEf1AVZMOwpRBqKrd/CRjbVDwbAioexbr/QhT11gfhERpzntrQ/pBSpzmLHd9Ls2Un3hQ3gtWeorrIkxytoaREizwU2UX++ED3BaK90fZTFEXrPcjVSFrKELSMXfBWCl0uRuwNYp4fq6mLlPK9hOrcJTQh7J34+D+bjeg4Vl4lsG1rRFRrKpM+lFKM88n48xyRfqZ57A6CChbSnBD10XRxiKxDsEuJlnOIFS8WUmWsz5QBMQNTwX1hqaRScmd7QCZq1LyW50Rfqz2/4frQ7p+wjBMWen5LI28Q09MJZlSn/zWnS4rPZXsbJRsTF0wDHNub/oTPsurG8MJWW4QZ5P53A/34lFhcxgRJTlRkjOI0sk8xakixw2TnKtrA8IMVrpKec81De70AoIko6JrrA+igoNJ+S5d0/DjjJ001h0/ViTxUaZ46nx1WArivdnVXEpGUcbdTsCWH7PaC5mu2GwVlxvfXe4hUIeubpBimap137MUd5ZnGUgPrm2NWOmExJniA/vE2eaBD1Trg5BtX3FWbo8Spqs2wzBjGGZYhmC1r2xUnEp6fsxKLyTPYXMYs+3HXN0Y0g8SgiRjpRccmGw6l5LOIMGzdd5eGXBja8hqL6IbJlyaqkyq5ZNM0i+I66M0ox8ogZlRnNELYtYGIX6YsdwNONcuHdoeUodkxRn5znKf5X6Io2u8fafDZy8+SH6+3A1IUkmSpnSCmEEkWO4qXsFbnYBLM4cX64yh+Nck7ywPiNOMbT8mijOSog0zlxIhFMXCMFStfnbRynVasDGI6AWK13AYpkyVbYZhyhC4tjkiSnPWhxH9IMEyNLb9mK6fqrU5iAiSjPfXBgyChGEItzujI09MbQwibndUHHttY8SmH7ExUAJVfT+h48b0gpRBkKJrihfRNXVubBUx/dqANJO8dauLZajqbT9On8qfbwxC7nYC/Djllh/TumBzfWuEhlCcu0lGq2wzCBNGccr2MCZKc0CyPYrRdUGaS56drU4oKOI0n7RXwkPaoA6IG1sj1vsq3vre6pCKaxGnsuDn0tgYJoyidNJ62oos3lnp0fVVbHF728cxdd6600VKScU2manqyEMf6aORSRXjZFLZib/2G9f48z/xwpFWSUZpzvurA8I45+ZWQN2zudAus9INqbomy91g0r53tzfibLPMcnfEahFLdUYJv+WFGdb6keLQGyoKo9NkDx6Fg7TyvbbjrxqqgupkpBLugxCCpZZHL0h2EaUtNBw2RyHPzJb57sqAsq2z0HDRdI2psq1aeGoudztBwXOg45l6ITevVFXq+1TuGkPXVL/nYsMlTlN0TWOmYvPauQZCCGYLNZcskzimxmxVZbwdU5Xej6L0VEhs6prgfLtUEA9bSCR6P8KzVLlokGQ4hlIKqXvmhPflYrukVLIMjXlshlFG3TM52ywRpjk9P+H1c02WuwFnmg/yfx0UZ1sllrsBmdSZqlqPPSy1yzabQ6VcYxkanzhT54Y34lzbY60XYumCbhDTrtgstTyCOCv4HDKWWt4DLQX3w9QFUxWbOx2fac8ikzmNkuLSmK+71FyT6YrNlZkSdc/iS5en+GB9yPdWB1yYKlH3TJ6ZKXN1fUiWZTw3dzTKT7M1h1tbPu2yjW3oNDwVxDc8k6myzSBMeWamQo7kU0stqo5Jz08RQnKhXaLimJxrl7i2MeTZ2cqhZtzn6w6bw5hSwRe1F1iGRrtiU3YsKq6BzCXzDYellsczsxU+c67JrY5PxTYOTI49Rrtkk+eqP36vtmO2blN3TKqORZxltMsmF6Zcnput8PlLbdYGEY6hM3eM5fn3Q0rJX/i5b/M/vnmHz5xv0vFj/szfeYv/6c07/Me/++VdMuB/9Vc+YLUf8p/+gU8cuJ3TtYyiDSVhse6hCQ1TV0TnMzWbKMmpeyYvLNao2Aafv9hitRcVylim4tQRgnNtjxtbPs/OlQ9M7ns/Ko5SC+yHqVJBQSjeOENjvu6y0lOJ8YZrsNgscXGqzPtrfbp+UsiAazw3W2G1G5AhOdcqHVoJ9VzNZa2nkmBTFbWvr8yUWe1HPDNbfuBAfHmmoi5ERBXLEDRK5mS+XlqosdYLQcDLC3VW+iFxKqnaihOk3rQw99gybejKxy53A6YqDq2SSdUzSTLJC/M11vsRNdfk+bka7YpquT/bUhVAJdtQSqvCQUrFb+jZikPjsFrTxvZ1uqjqiJKMjUGEZWg8O1eZ+IBPnWtwY9Mnk3B5usQ3b/WIsoxXFut8sD4kzXKmq86RSD4LodZeq+wQJhkLdZuaa9MsWbQrNhemSrx5o4sEzrfvVX3XPUVyLZF7JpY9SlRdxTWl2kfvrcczTZcgVnGHqQvubAdcmavghwmebfLKYm3CTVVzVfKnXbZwLMWbdD+JeatkESWh4qo0VPtTL0j2zMdzrlXCs0I2BiFZrpIqZdvANhSvz7lWiVGUkeY5rbJJ2TapeRZxmlFzTYRQPDyfOFtjpReyPYq5OF3eF4/Ko+AWraZl22C+5mCZGrqmfr5Qd4mTfCIe8dpSk9maSmgutcq0SxYX2iVWeyFlx+DC9MEO/pahsdBwqToG/TDl2ekKd7d9okSpKc83XC5PVwiSjIZnYeoahi4QQu1hIWC26uCaGu2STVfEtCvWrrVxUDimznzNIUpzXlyoMogyLF3wyaWHN4HM11w2BjGmLpirqs6HdsUiSDIWixjusGEaGiXH4EzDYRhnmLogTjMkyi4vFcreUsJi02O+5jKK032rDR8lKo5Jw1Xx/0zFwTSUbzQ0jfmay9ogZKnp0XBNzjQ9PnGmzleub7M1jFlqeXimznNzFdZ6IY6lPVR46LAxU3O4OFXixqbPldkKUyWLc+0S/SJp/vkLLepuT9FA2CaepdMoWTRLFtujmJmqgx9nBdVAxGzNeWrOr1bJZrpqszWEc1MeVdfgmZkK3SDGMMAzlYL3fN3F0ARxmmOnOTmS7VGCretF+5/OXN0hiFXLvKkrzj79CCpjzrVKzNZsNgcJn1iqM12xCR2lGNgNElzDpRck9GsJJcugVbJplSy2Rx1AUTfc7QUIqS6iFxsu01XnwEqh+0GjZPGlZ9r8r++sUzE1Xppv4CfZkfLKOabG5ekKHT9lrmbzwnwNieRT5+us9WM+db5B308xDY2XF2tsDROmyzabg4g8k9RcEz9Ji2pJ1V5bto0T58vaC8TTVgAJIX51x19T4AbwV6SU7x3CuPaF119/Xb7xxht7eq0s1B5GUQpIdF3jxqY/SbgcFcfCJ19/nX/2G1/BtXS2hiErPdUaca5d2nVYy3N163EShNGvv/46e53HR2FrGHF9c0TZNnbxP40D+7woRXlUIiXLH61seNBxHsbcpmmOpt0j6is5Br0gKbL6GhfaqnXkSWNMs5yb2z5BnNEqW8zVXOI0n6y/PJfkUhYkpY+eK+0A32cv87jaD1jrRZRsnfNtRVRv6mpMeV5UEIpHE12O99tBEmeHsS53YnMQcm1ziK3rvLBQOxTOl8Me4yhKeW+tT56p/vHD4Ng4zDH+L99a5k//7W/yr//wJf7sb32GPJf8za/e5D/8h99DF4J/+3c8z0+/Os9//5Wb/OVfepc/8Omz/Ie/66VDGWec5tzcUrer01WbVhGg6MVzzIp1+bi9I8dcD0+5Lp80xlGUcnt7RJrDmaZHydLRxD3C5jxX932PW3t7sYUHGeN+PktK+VDBiKyw57om8KOU99cHWLrOmaa758qbT37ydX7zq1/DMjSGYcL1TR9DF5xreZgFP9iT7MdB5+pJeP311/n1L38VUxcYukYQp1zdUK0QV2YrmLq2S2ThJMb5+uuv88+//BUMTWOtF9ALUyq2wdmWN9kHh2GPD2OcT1qXj/PVY7/39nKPPIeFhquq3e/7TgeZ6/3snfV+yO2OT8OzON8uFX4RDEObVNirivtH25uneS5PGqNqI1dVcufbJUUYX+ylcXzxuL11WGt15zjH79n3Yz5YH2KbGldmqg/E3Y+bj6OIkV9//XW++rWvI5Cqq2Hbp+aZXJl5NIfk/dx2B/UpexnjG2+8gZSSQZhg6TpBknKno6q9L01VToWQwZPW5TBMuLmtqomWWiUcXUMI5b9Po2/c62emWT7xAUKIonNHCSTd3BoxKNS39yps9bgxPmos95+vxv45yyXvrw2I0oxnZyuU7MNLPu11Lh83f1kuEdwTdBBCkBXdBrqusd4PJ2qCl5+CV/iwYt+bm0PWej7Nisv59qN51J4Gjxrj4855aSEyMz6PaZogiFM+XB/usvtJJg9chTuGEOJNKeXrT37l0+MgrXw/fJgDOS4oskmo7LjReH7+yQTGB/5c7skWT1ddpqsPr3Y4DY7lIGiV7cdWmzzp+x3l4eIw5nZMZuvZ9xxLzTWp3Ufa+sT30bUHuMp2BmeaJlBHnUfjOHgDlNrUvbW68zPVfD5+DOP9dprQrji0Kydfffg4lGyD186eGsq+XchzyX/2Tz7g2dkK/6cfvwKotfAznzvHl65M82f/p2/x53/u2/z5n/s2oDiS/t2fev7QPt8ytMcGJ/oe1+U+9A/2jZJt8Ozcw22CEI9WodqJY+UFecJnPUowYufvebbBq2f236opxD3bV3ZMXlrcv6z5cczVzsDOtQxeXKjv+z2OepzjSuMzrRJnHvLvp9EePwyP89XjOXzpCfN/XPvnfgGcnXt7fJh40pwfxXOpF4rPD8NJxRfj96x6Fp8892j/9rj5OKoYeew3ZmouM3uoRr5/HEftU3Z+TtVVz9Wx9EPhwjxOlB2TF+Y/Or5xr595f7JJCIFlqN85bAGaR43l/jU5fp2uiQeEJY4bj5u/h/2bvmM+9yoydtRYapdZah99ld5OPG7edq658bN3LeMBzuFj4iw/NBykle/PAH8dGAD/b+A14C9IKf/xIY3tY3yMj/ExPsYpw6++t84H60P+k9//6gNO82zL4+/8sc/yD95e4cP1IS8t1PjhZ6Y/8gn3j/ExPsbH+Bgf42N8jI/xMT7G0eEgDZJ/REr5V4UQvxWYBv5VVKLq48TUx/gYH+NjfJ/iv/5n11iou/zky3MP/XdNE/yOl+ePeVQf42N8jI/xMT7Gx/gYH+NjfIyPKg5CrjK+Av/twF+XUn6LJ/VPfAQQxEr+92m5t04bxso0417j04ZBmDAIk2P9zDDJ6PrxpB/7o44ozU71MwbVJ931Y6I0O+mhPIDxejjNe/60zN+bNzt87cY2f/QHzz9S0vijBD9OlTreKUVePPcwOdhzP+1+4CQhpaTnJwTx6bFNgzBhGJ0uFd7H4TDXV89P8E+ZAvFhQ8rD2dcngdNuM/eCUZTSP+a482lwWmzTKDqdz7wXHK2tSDNl13aqu58mfBT9elLMaXpK5/RpcZR79fstL/EkHKRi6k0hxD8GzgN/UQhRAT7SKy1MMq5uDJWyT8VmtnbyPa0HgZSSqxtD0kxSsuNjUbDYDxQ5ZwCoFqCjUDK5H1kuJ6S1dS/lTNM78s88SuS55Or6iCyXVJyEc+2jlc59Wtze9hmESiHi2dnTQdIJykl+uK72/LCUTiTUTxtOy/z9tX9+lZpr8vs/9TAGm48Wgjjj6voIgJmqfSo4DO7HnU5AL0jQNHh2tvpU3Bqn3Q+cNFb7IZuDGCHg8kx5zyqfR4XOKOZOR/nFpbZ36CpJh43DXF/r/ZC1foQQcGm6jGN+xMgx9oi73YDOKEEIeKYgz/8o4KNgM5+EYZRyfUN9h/m6c2gKvEeBtX7ExiA6UV44P065VszXbM15QN3ypLA+CFnrRQBcnC4dupI3wI2tEUGsRImemT0VovMT5Lnkw/UhWS4pOwnnT2nsfz+ub46Iklypzj0Fkflpxc69epi+6/stL7EXHMQb/lHgLwCfklL6gIlq5/vIIi+UQADS/COdYwOUEsxOVYbTkG3dOYZ0R5b/uLLnuZSMH+34FuQ0zMvTQqK+E+yez9OA3c9azXUuleLKcX/+o7Bzz5/UrdNexjl+trmUk+d93Li6MeQfv7PGz3x2idIRyuQeNcbznT3CFp00HrZvpOSpn/v9fuAwxnXasZ+xptk95bTjdPuPGuNuv3j65/wgccb9rx1/dylP1548LExsz47veVL2fC+4//mcVpu5H6TpvU1+2itNkiyfKBQeBx62d3c+55Oer53j2zmWo1qL4/fdeR48LX5wZ+yfncLxPQpjn3bP1p/u8e4VO2O1wzxv7zyjJNlHr8L2aXCQ08XngLeklCMhxL+CIj//q4czrKdHEGdc2xyiCcGFqdK+bj89y2Ch4RKlGVOn+BZlr9A0wVLLYxCmmLrgu8t9LEPjQru0J7nSw8ZaP2S9H1F1DZZaJVolS7XTCWiWHq4ec9gwdY2zLY9RlNIqWwzChJtbPqaucWGqdOpvLsMkm9xeXZgq4Zg6Z1sewzA9tjncC65vjhiGKTM1m+mKw2LDY3sUU3aMY1FUub3t0/UTWmWL+fqjFXZsQ0nbB0lG+5j3fJrlXNscEac5Z1uPr4xYbLiT+TuJvQvw//n1a5i6xh/6gXMn8vmHgZVewOYgpu6ZnGl6zNcdkkyeilvgPJdc2xwSJjmLDZe6Z7HQcNkaxpRs46lt004/8DQ2Yuc6PdM8nsrWp0WS5VzbGJFkOUstj8oeqo2UfLfAMfRDk1R+EsaVQWNfuBPtsqWCWgEN7/TO9Rg71xfA23f7eLbOhXbpoRLXY9y/FwFmqg6aEJi6oPwRTn4/DKu9kI1BRM01ma+7mHqEZ+knXqH3KOyMjS5OqZixbBunymbuF/0w4U43YBSnnGm6x+7z9wsBbI0i2uWjr5IYRSnXN0cYuuBCuzxRSq06JnN1h/SEn/n2KGa5G+BayrZMVxwESi32qKpKl5olOn488Xm3tnx6QcJ01WbmhKsF9Yf49dM0vkdhqeXRCxLqnsmdjk9nlNAsWyw8Jk7/KGC26qBrAtvQ2R7FXNtIaFcs5vag8Pk4jPMSm8OQrWFMkORcnCqfiDLlceEgJ5z/F+ALIV4B/jxwE/gbhzKqA6AfJuS5ysqOA6X9oFlSC+mkDn+HjYqjgqAwyZESoiTHPyFeg44fA9APUrJcIoRQMqAV57EB7GFjHBjahk4/TJFS9Wr70enPRg9CNXdZLukXPf/V4hmflraHJMsZFnuv66sxOqbOfN09traU8eeO19zjUPfUnj/upKSfZETFvuz5j+dvOO75ux/rg5Cfe/Muv+eTix/JA8kY2yO1Hsbro1VWpdGnwckHSUYQq/UwHp9tqOd+0GRQ5QA2ItixTvunkGdkJ/woI06LPbXHsRq6xlzNpXGMif1O8XzHvnAnTsovHgTj9RUUsYUfZUTp48vPOiM1B90dtk/XBLO1091e9bQY+6JekKALwXxdJZ9PK7p+MomNRjt4U06TzdwvesV3KlkGFcc8NZQCj8IgSo8lKQVqXUoJSSoZ3cdv1z4Fz7zjx0h5z7aMbcVRJhddS/nfkm2Q53LiU/YSVx4Hdvr10zi+h6FkG8zXXTzLuBenj07vePeKSRzhmTu+1+HES82ShWsa6JqmzvDf5xyMBzmJpVLVqv1O4K9KKf8qcOINozXXxDY1HFM79dwMx4lmycI0BJ6tUzqCXuy9oF220TVBs2ydmqCm4ZmYhsC1dMrO6b+hrbkmjqlhmxq1U3qbbuoadc9E18SJ3Ui2K2qNneYkStkyKNk6piFOVbXbw/Df/MYNkjznj33hwkkP5UCYqigb1K6cvvn2LJ2KY2DoykaeFpR2rNPjTN48DcqOgfcR2FPtwgeeJl94GGiX1P6quSa28fjwcmyjT+NePAqM459W2Tr1CRGAVvlezPj9Ur02joNLtk75hOLg/WC8Zo5jjzQ8C8vQcAs/dNrQLtkY+t5sy1FAK/buSca1j4O2w5+cxvE9DON47DTH6fuFEOJIzh+NHbbrpM7wx4WDfLuBEOIvAj8DfEEIoaN4pk4Ujqlz5fuIUO2wULINnp2tnugY2mX71BlMzzr5edkPLOOjQRh40qTyczX3wCW0Rw1NEx8JIuquH/Pf/eYNfvKluY8MweajMF1RlSinEUKIUyle8FFZp6Aqbi5+BMbaKtvfl1VBNc/c84XJad6LR4Gpiv2ROoB91GKjveA0xMH7wXGuGdfSTx3B907sx7YcFebr7mOpIU4aC3X3I9USN1N1Tm3L4UFwFOeP8kfMdh0EB0k7/34gAv6IlHIVWAD+b4cyqo/xMT7Gx/gYpwL/zW9cZxRn/Os/cumkh/IxPsbH+Bgf42N8jI/xMT7Gx/g+xFNXTEkpV4UQPwdcLn60Cfy9QxnVAdD1ldSyY+pMlSxMUzsSGdGPOsakcxXHYLbqKJbFI0CYZBiawNA1pJREaY5taAghiNOca5tK7vR8+2Byr3mu+uJNQ+CYu98nTDKub46Q8h5h+EcZYZKhCcgl2IZGP0i53fFxTI3z7dNBipdmOWku0YRACKVScVLPIEqzQqI2Y7qibmhOYyvFWP5YE3BhqnxsRMyPw52Oz1/79Wv85MtzH/nbGiklYTK2PxClOUGccrcb4piKUPWk10WeKxtpaCBRe2dM5n2uXTqylpoozRAIVnoB/SCl5hosNrwTn4/DwNj+Z7nkTMOl5llkuSRO81Oxx8bIcknPT1jthyRZzuWZ8kc6dhmTZ48FV4ZhireH9TsmOfYsnfPtEmmuVIksQ5v4lY+KD4/THInENnTSLCeT6s95Lrm+NSKIMxbqx8tvtl8kWU5ccPpYujYRaDjT8E68gmW/CJOssPkBQogDx52HjZ0+StMEUZpxtxMwOkH+0/uFGqI0QxfiAR7eMMmOlKdz7BstXZDkEksX3NwOGEXpkXBNjYU00jznXKuErglMXSNOcyxDO/E4W0oVU/txxlzBy/ewM9bY/pwGjMWbhIDzbXUOiNMcIZjM7Wka72FCSsmNLZ+uH1N1DS5OPb46MUrVXOW5ZLpiU7KNPfnP7wc89bcUQvwx4I8DTeAiqmLqvwJ+9HCG9nQYEzZeWx/yzTDGNQ0+e6FF+yNUQn0c6PoJwyjlw40BtqEzdQQ97BuDiNVeiK4JLs+UubnlE8QZNddUSnJRSpIq4tdekBwoQHhvbcD7qwMcU+czF5q7SEUHYTqRKO0HyUcmqH0YtkcxdzsBa/2ARsmi7lkYmkBKCOKcMMkonbDxSrKcD9aGDMKEOM1plCwqjnHvGYTH+wyGYUqU5HzjZhcBPDtX4bMX28f2+XtFZ5Rwt+vz/uqQD9YH/MizM1RPUAEtyyV/4ee+g0Dwb/32505sHIeFm1s+gzDFtXSEUCSq/TCh6pgEsSJUPelExbXNET0/YXsUMVtzqbsmcUEi3fXjI0lMjRMIaZYTpUq44OaWmo9L0+WPDAH3ozCMUuI05/a2z9Yw4uJ0eeJ7piqK1PekkeWSD9YHrPZCen5CLmEUp3zqXPPUK8U+CuNYLEpyvnp9i/V+jGc/eX+NSY5HUcb2KGalFwJKmXS5G5LlkpmqzfQpbwEZq5yBUn5c7YfkOZxpKuGVsdhKx49PbWIqSjPeXxtwc9OnXrKYrzkEsbJHHT/+SCWmOqOY99cGfLA+wNZ1zrVL9IP0VCWm7nQCun6CYyqezrudgFvbPmcaJ0eNsFOoYXMYsdIN0TS4NF2eJBDGipOGfnS+4trmkCDO6foxdc/CtbTJWuz68aEnpoZhOvG940vVjh9RsU1cW+fKdOVEL26iNJ8kLDt+Qqtsc3s7oBckBWm7w7UNNe6l9uNVn48L/SCZiH0Mo5Qozbm15SOEautb6ytbv1dF3Y8S4iynM4p548Y2uYThxZRXzjQe+fphcW5d7gZ843aHVsnmk0uN78vWx/txkIjnXwM+D/QBpJQfANOP+wUhxGeEEF8WQvy6EOL/WfzszwkhfkMI8TeFEGbxs/9t8bpfFELs65p+TP6WS4muaSSZpB+ebiWhk0C7bJNkGTXHJEpyolQ++Zf2iaBQcslyWdxUqb+PCkWBimPgWpoi1T2gOs04mA/TbJeCDNwjxLcM7UQP+oeBsRqDH2ckmSSIM5olC0NXpHjuKUi6xWlOlkuiJJ+oQZq6wB6Tth/zM6i6JoYmVOLB1un4iZJjP2Voly2GYYbn6EgpTtRuZbnk3/n5t/mNDzf59376+VPNq7BX+IVdCOJ0cigc33xWHAPHPNkEgLotz4jSbKJuJjTF/XGUZN5BkiEl6JqGZ+nEWU7NMwmT/AHFuI8iqo45OTCVbIN+kEwuRE6Luk2S5SSppGwbBEmGZQgcQ58cjD6KGPslz9Ynvn8vyrdjAvWqa5AV1VJjlcXxevTj06+gO95X6kAbkxePchRnOKZGxTEKMvTTe2kapTlxIkkyZZvyXFIuxn2aBBr2grEKrmOoi4lcSuqnLLE2XtdhkjOMssImG2QnGK+MCb8bJZOw8Et5rsY4xtiOji8fDxt5LgninFxKuoFScEtzSc1VIjut0uHvoZ3nE6u4HBgVcXeSSpL8ZG2zbWiT798u9uL4bBXEGX6kFMfHfz8NqLomlqHOAeMLQaBQIo4n9jI4IeX4o4Rt6DimRpzllB2D7Sco9lUcJXQVpRmWrtT47lfL/H7FQa4KIillPL5NFUIYwJOs0k3gR6SUYZGI+gLww1LKHxRC/JvAvySE+PvAnwS+CPxu4E+wD+6qqmPy/LzJUsvlO3f76BrfF4eqw4KUEiHGMqsWy92Qjh9TOoJKgemqTS4ltqkVsqYO3SChVRywTF3j0vThkC1emSkjgZKt0y5bk+8J6vD5/UKIP1WxSTPJ5Zkypq7RLNlUHJPn5k5PgFWyDdoVdaOV5RLXNJipusyf0O2SqWu8sFDDMgQrvYgLU6VTWQXSKtv8+PNTvL08wDX1IyFvf3elzy99e4Vv3+2xNYwwdY3Fhsu5VokzTZfpirrZ/ztfv823bnf5k1+6yO//1Nn/H3t/GmXZmt71gb89D2c+MUdk5DzduW7VrUGqklSlWUJIAoMA2dCw2oAXtN1r4cWCdvuDe5nVNrTtxhi3sRgWNCzLxqABCRlESUg1q+Zbd74354w5znzOnoe3P7z7nIzIjIyMyIzIjBL919LSVWRG5I599n7f532e/3Dk1/EssNRw6Hgxdccgy3P6Ycrp5smRoyiKwlLdwTE1aq5BydSZrdiYx5xANFWyiJIcIQRLDZez0yW2hlHR0PnuZOvshKmrvLBYY7pkMooz5qo2fpTixZmUsZ8AWLrKXNXCizPOz5QK1oT2zNmvTwLX1HhuQc4VK7bOu+vDyQFqP1QdnZorv08OtaS8Y6nuYOkxQZKdCJbbo9BwzcnBa8yYitOc6bJ5YoMO7kfF0lmo2+Qip+IYLNSd79pncqZsEcQJlqkyX7U51XCfuRzrfizWbVqjmKqtU7J01kTA84vVZ3qGmSqZEzZSlMrGjKEpVHck9y3UHDYG4bGcI0AGcCw1HPpBwotLNXIhh+vHOeTUd5xPwiRjrRdwabaEpmqULO2Zy80UReH01G4m3ULNpl3UOA3XJCgGw1MnhJFpG7sN9qfKJkGcomvyndwoGFPH0Wg8CXh+sQbA9ijm+YV792GvQfk46Gq2avPexgCjuEf/LuBJdpjfVRTlPwMcRVF+BPgLwK/t9w2FSfoYKfAy8DvF//9Z4OeBt4E3hBCpoiifBX7hsBfmxyl3OlI21nBN/Dj7rpZvHRXW+wGtYTyR0sVZjp+klCz9WNK2bEPbVXw1XJO31ga8tdrnpVP1I/03m2WL7yk2z+/c7XGr7XGq6fLqcv1ENiEeF5Yuo3zXeyHDKMHQVBquceJ+x7mKzQfBkBvbHlMlk5mK9cxkUmmW85UbbTpezIunapx6hrT4/fDu+oD3N0fMVi0+tFw/cpp4axTxE//959FUhavzFeaqNnGa852VPr/xxjo7yTFLdYf/9x97hT/06qkjvYZniZpjUDI1vnW3x3ov4OJc5cQ0pcZwLY2NQc5GP6RRMqg5BqZ+vEWlgpzU39gesd4PeXGp9l2RbHdQ5Lng+vaIUZSS5YIsF5yZck+MFGy9H/D1W11cU+OTF6axTY3md3FhPvaOTDMx8UXL83Eq797Pcj9IWO0GhEmKrkpm89lp6euy8/D13dCQGkNTlUk6bZ4Lun7M7ZZPP0h4aan2XdH0VRQFXVUwdY2tQYQQMnH3uLzujhObg5DtYUKSSSbbCetJAZIlMZYwtUYR720MUdXdTaCnidVeQHsYEaQZFUsOl/eq253CD+440SyZeFHKexsjDO3JVRaHQZYLtoYRXS/mwmyZmfLJqyHvdDxev9unYuucuTiNumP9OYnIc8Hb6wPutH2Wmw4LNftEX+9RYdycAnkPvnyjRXsUP/Tv1xyDUw2Xux2fb9zpMl+1uTBT/n3h//kwPMlq91eA/xB4A8lq+g3g7x3kGxVFeRmYBnrAmLPXBxpAnUIeuONre/2MP4f0uOL06d0T/Y4X40XZZOrY9eNjk0F8N6FXaMX7gZQydbxYUlLJGIXHTxEchunkBbzd8o5lI4vSjJVeQJbDRi8kWsh/3zUle0FCL4gJk5ztYcRc1T5xv2OYZrRH8ho7fkLHj1kyn83UbxilbA/lc3en7XN++mQeuu92ArJcsDEI8ZPsyIv/qm3wl3/2RX7yxfkH5CNJJpsh26OIhmtydso9cc3Oo0CQZGwNIrIc1roBF2fKx85IOgy8SEqeB0GKqkDLio7df2bsfRAmOV0/puPF37WsiL0QJBlhkjMMUoIkw9I1BkHKTOVkrJl3Oz5pJhgEKR0/YtH87i7O/fied+QgSChbOq2RbGpsj6I9v6c9ishywVo/ZK5iF76Q+XdF8+YgCFO57iSZYGsQ4U1n1Nzvjt+tFyQEsdzPq7ZO1zser7vjhBCCnp8wCBLCNKPhpoTJs/cU3A/rvWAilxszSZ42ul5MkgnWeyHujE5rFO/yb33aaA0jhmGKosrG3dM613U8uS9GSU57FHO6efLOFeN9pOsl9PzkxPsqe3HK9iAizQTbg5hgJqPy+2S9PyhGUcLW4OFNKZBrV3sU0/MTojSn7pgEJ8BL+DihPI7XiqIoKvAdIcSLj/G9TeBXgJ8DPgK8IIT4G4qifBj4D4C/D/xFIcRfKP7u3xNC/OH9fub09LQ4e/bsYS/l2CGEbJQIYHP1Lk/7GtNckKQ5qqpgHeDwdevWrad+jfcjL1IlFKQn0V5H4+O6zrE3kqGr6E/YjT4J9/JhGP+em2tP/5k8KNJckGQ5qqKwvnLnRFxnlOTkCEztwUSWk/J5R2lO/pBn+FldYyZkAtp+7/ROnJR7uR9O8jXe/37vfJcOsg88bZzUe/ms9++D4lmv5/f2bMnofVQ/+7g+78OuM/vhpD6T45pOUxXWTsi+uBdO4v49xl7P60n8vMfrD8jrvH37+K9xvJbomvLYoQsn8V7C7vV87e4dlpZPH2i9ela4/z4KZA0qU+tU1BNy4Tdu3mLh1DKG9uTnpuPCfs9kkuWkmUDT7nmJPQvcuHmLhaXlIzl/Hie+8Y1vCCHEsd6ox2q5CSFyRVFeVxTltBDizkG/r/Ch+ifAXxZCbCiK8jWkBPBvAD8MfAV4H3hRURRtx9f2xdmzZ/n617/+wNfDRJqGPQvKW54L3t8c0hpJ6dyf+dkf2vMad+L+qM/DIogz+kFCzTFwTI0PNoeTicvVhcojN5rXXnvtkdd43Fjp+nQLU7ix/4sfpQyCBNPQaJbMh15nlgtaowhLVx861clyQZrnD+jDkyzn3fUhALYhtb1PgpNwL+/H9jDEj1K6foqmKgd6Jp82wjhlcxgxDBOEkO/Aftf5tN7xUZRyc9ubJKN96PRuieh+n3ea5eRF3PlxIk5z3tsYMgpTFFXw0bNTuxpoz+qZvNvxJ2zNvdJh8lyw0Q/QNJW5qn2s17naC/jStRbff3nmidJNTtr7HcQpW8OIuqNzpyOn6+P35vr2iJ4fo6kqV+crJ2LSKyfxOVNli49/7KP73ks/ThkEKXXXOPJrj9IMQ917/WiPItZ6u+/lcSIuGg4P872J0oyul1C29QljJc1y3in2rYNe45PUGXGaF4w6bSI5GlsEgEzOexTD7yjfnTwXtLwIXVXxonSyzpyecg/lPxOlGbp6b+Bw0t7vMd7fHNIeRnhxyl/9Uz91oq6x70s2Ut0xuNn2Jqy5o3x3wiQjSjKCJKdZMh9rTx0nyIH0HdyvpnwSdLyYNMuZLluT9eUw9co41Rpgrmbxk5/51KGusTUMCZKcpbqNqj76PgkheHNVilU0VeH5xUPlTk1w0t6dPBes9HyiOCMsnsk//pOf5p/82r8FBEsNh5nKyZMIv/baa/yr3/mi3CdL0i/qTtsHoFEyTowlxeUXX+EX/tlvMl93TqwFwEc+8hr//F//LnXXoObs3p/eWuuT56Ao8OJS7SE/4fjx/Msf4r/7X36DhZrNy/uk9T1rKIryzeP+N56EC7YAvKUoylcBb/xFIcRP7/M9fxT4KPDXi4Lo/wZ8TlGULwB3gL8phEgURfm7wOeBLtJ36tBY7QV0RjG2oT6TyOutYUSQZPSDGPeAdOFx1GfJ0jj/GC/4zZZHVngZPLdQZapssdEPqdj6d03kdLNkMoqkz0TZ1lnvB7y3PmQUpyw3XIx94mg3BiGdQipo6uoDMcBJlvPB5ogsFyzW7V1yJkOT8bzDMD3RKTmPi+1hxBevtQGYrpg03ZP5O37xeptBkKKpcGGmTHkfb4XxgcgyVC4es+baNTSyXEqdDF2lNYqZOQBVOkwyrm2NAHlYOs7IXlNXsQ2VG62Q6bLFej84EcVLo3inTV2lvEc0952Oz7fv9gD4+LnmsV3HO+sDfu5//jLDUDY5/tl/9L1cnD2ZhdRh8aXivanYGlcXqgyCe9JsIQSr3YCKo6Mpzz4EwotSVroBIJkVj8LNlkeeSwn6TuPUJ8XWMGSzH2HoCpdmKw80hKqOQceLOcAlPjG6XsxKN0BTFS7O7i0vXekG+FFGaxTx3EIVTVXQNZVGydj1eT8KN1seXpRRdXTOTB1OTr/aCxiFKa0RXJmvFB6H5mTN3m+9Pg5sjyK2BrLJMFMxMXTJ9DiM1Gznc3Bxpnyi5YOOrvHNu90T0VzeiTDJuNPxSfOct9cG2LqGUKRh/VFhrRewNYhY6/mcarr4cfpYdXLdNegHCZoqTfmPA8NQeqYB5EJ6o+2sVy4d4ExScwyZVFb892HQ9xO+drtLGOe0plxePfPog66iKExXTLpewnTl94/1yZtrfa5veagqLNcdSraBqihsjyL6fsytts+nLk0xXT5ZzaksF9zYHrHWC5kum7x8qo5raSRZ/lT9tR6FOM359t0eP3PIveRpwotTvnm7h22q/NDVuV3760zZojV69nY/UZrzwdaIUZSd6MbU08CTrMr/j8N+gxDiF4FfvO/LXwb++n1/7x8D//jxLw38IlZxHHmt79PQOA6oKuiqyulmifMzB3thR8U1+3G2K1XuoNBUhSwXkwK7WTKf+ct2WLimztX5e5MaL8pQFYUklaa1+9FXd54r9vp7UXov/tyLMqbuq2l+Pxvvhem96NiGaz72NOw4IQopBsjo+hceMb3wiujxKMlJc4F5jI0pVVU4N1NGKyaPB03zCeJsct/9KDvWxhTIZzhK88Lc9WTQgcuWPknn2gtReu8ehenxxATnueCv/vPvYBsaf+uPv8pf+qff5j/7pTf43/78J35feGlFxXsTpUI2I3fUNbqqcq7wVUtywbO2e9/5XB7kGVUVhRzBUfcLxutHksp1536/GUN7cubsQTHe+7NcEKbZno2p8b1SFHbJ1O7/vB+FcST96DGip3cue+P/vD9p6Wli5+NTsQ3mHyPJ1N/5HJxwXyvH0jhVd59Ks/QwUBT5v3GWkwtB2dYnITtHBT+Wz2uSPboW3A9P43ndWR+M/3Mc9R4lOUkmMPX9r3+cyvVYUARRoZYIk4PvqQs151jSgJ8lxsmYeQ5nZ0o0SxaWoTJftRiFsi4eK0tOGoJE1kYKClGan0hGkq6qLDVcjEc8z88S4/oySnIUdi+es1X7RAShaIrCUl2SL/Jc/L42N38UDt2YUhTFBv4j4CLS+PzvCyGO3zn7kJiv2WwNIyq2jkAuTocxOsxyQS7EYzONZiv2xIvmoCZl8zWLzUHEbMV65GEpzwVBkuGa2uTvnpsuMQyTCcX+uxnjw6pM4RHM121myhbOPpPC+aqNrWsFc+TBv1cyNZplkyjJmK0+yHYJkwxF4VAxsFEqqdkn8XCb54JRlGLpKgtVhyvzKWkuuPKUDlsHhR+l5AjKlsGrp+usdANOH6BJOF+z2RyElC39iWRyQSzvy6Pem5pjcGbaReQcOM2t5hiMIvnzn6RJnGY5fpzimvq+ByfbkOk4cZpTP2GJcw/DxdkKgyKQ4bgYXr/7wTavr/T5b/7oK3zm6iz/6Y9e4T//lTf54rU2n7o0fSz/5nEjyXKiJMcyVD5ypsHdjr/neyOTaWX6qv2MI66hSHCaKZEc8Bk9P1NiFKZUD8kaEEI2Gh62Ps9VLXIhUGBfJu5xIk5zdFVhpmKRZDmmrlKx9Invxc6a5XTTpR8kuKb2REXrYt1haxAeiPEJcu2JsxzX1DnVcOnb8hpOQgNnrzorTOQwy9RV8lyQ7CHd34m5qk0mAhxDe4BlfRIghJiY9jdck4uz5Yn30LNEngs5ENJVLF1jqWETxjmpkD5Ye9VYT4KabRImAa8s16g65qFZRMeNNJPNDV2TbP1zMyXCOJ28w3PV4kzyBPXK2LfrUYOximVwZb5CEKWc/33CCj4M0ixnFKVUbIPnF6uYukrNMXalnV6drxQWCwrzVZu+n+Ba2olRl2iqwpXZCq1SRMU2KFvaoc+xTwOmrnB5tsx02SaIsyfyJzsuOKZG3dU5P13COAE10F5wLZ3Fus181XrgbP/vGh5nF/5HQIKU2v0E8Dzwfz3INyqKchb4PeAdIBZC/KiiKH8Z+BngNvCnCynfvw/8RaAD/LwQYvCwnzmGEIKVbsAoSlmsOWiqbC4FUcb2cEiey4Psw4oxmeSXMlOxUBWFa1tS8nUQz4SHYb/0ijDJWO0FmJrKqYYziSNNM4FAUnHX+gFlS9/F5JGTIrjRGhHEOWVbn6Tbmbr6gAxtaxiSZIK5inUiCslHYaXr88ZqnzTLKZk6U2WLi7Plifxja7h3qg9IKvL4sxrfp50v9iBI2eyHKIqUaaiKwkrXR1MVKpbBai9AUeRB6CAF6pia/azkoo/Ce5tDvnm7w522x/nZCt9zfvpIJ5hHga1ByFdutLnV8rAMlZdP1fno2eauZzVKcq5tDTndLO0q6MqWTvkhE6Q8F8UUV2GtF+DHGQs1+4EmcdeL+cK1FnkuuDBbouaYTJXNh37+D2M8xWnOO+sDFmr2rvf+UZG9Y4Zjz49pjSLqrsn0fe+wF6V87VaHnp8UG5dDydIeKjktWTonLW1+GCZ0vJipsvWAzGaj7/Nb72yRC0HjmC78119fp2rr/PQriwD8kY+c4r/7N+/zD79067uyMRWnOW+u9vi9m222RzEfPdvgR56bf2CND+KMr9/q8Hu32lRMjU9cmOYjZ5rPfBpXtnQ44Edt6RpW+fDF5O22zzBM95Ss5bnA1jVKps72MOLttQGuqU0YH1GaM1+1ma85B2ZHHhatUcRbq32CJONj55oTWdJ6L+Abd7qUTJ3nFysIoZALwXzVPnRzO0ozVrqyzliqO6iqgq4ppLngVttjrRdSsjTOTpV2PRPjdSnLBR9sjUgzwXTFZKHmPPQaul7MqKihjlNq1vVkMtdskUa7c73teDGrXbmPX5gpsdKVyWYzFasYct1DaxTR82OmyxYXZspsDUPeWR8w9YxZ5mGSsT2MKFuSdfTuxoBrmyOiLOdU3cbQtUM3aY8aaZZPnouFmsUwTHn9bo/NYcT5mRI/eHXuSN+bzUHAFz5o0/YiPnKmwXKz9NCfP5YVqorCcsPBKp7FNMvZHEYYqnLkDAkvSrnZko4m4/rR1lXutGOyXDBTsciEQIj95a47FQ89X8p70zxnpmKTCcF7G8Pi2S7v+47dbHukmSBDPuew+zyy0pVr42zFolkyD1S7jp/LkqWfaCVGngu+erPNF6+1CZKMP/DSAh85+6BFgKFrvLJcZ7Xr8zc/+wGDIOGTF5t85ur8iUjqjZKc7UJiFiQ5n3t/m2GYYmgqr51tsHQCbBpAMnk7fsyvfnuVKMmZqZh88uIMwyghTnPmqvYzb1SNwoTPvd/iVsvjz3zq3pkhzwVrvQBVUVio28/0DKcpMrTjX7y+hqaqvLRY5fxc5VjWq5OOQzWmFEV5GXheCPGSoigGMAf8JUVRPOCvCSH8A/yYfyOE+A+KnzcDfEYI8SlFUf4K8LOKovwKkpH1/cC/B/x54P/1qB8apXkRp5jx7btd+kFCJiRLoWTqWLr2UEprlGYTPXiaC6bK5kTytVUsxEe9UG0PI/woYySk38lYrgZyk0syQZrJiFtV9aUxp6Kw3g+xDJUgllPBMU11LwzChM2+3JQU5KR0jLCgiJ607vs3b3d5Y6VPN4hYqpd4aam2ywdgLPXaiSTLaY0inKJIHW/ohqZyYaaErqlkueDdjT532gGuJZ+HNBMMwxRVUSbPhhByQziIhHsU3pOLprl4ZlP3+xGnOa1RyNvrfb51u1c03KQXyElpTAkh2B5F3Nge8sZqnw+2hjQcg6ptstx0dzFnciEI4px+kBxoyj+KUm61PFRF4VTDmRRmm4NwcvgbhAlelDIMEtJMsiPf3xxxabZCkGRcnqswilIMTTkQgy7L5fs6bi4dBGu9gPYopmzrBHFGkuUEcchUUSiGSUbHi4nTnDCR8rw7bVlwW4FGydLJhZQ0nDTPkfvxlettRlHGVNnk+y/P7Pqzt1b7rHZ9FBXeXn/kDOLQiNKM33x7gx9/4V7BaRsaf/yjy/yd373O1jBk9gSanz4MHS9mexjyzTtdfu9mB9vQeHdN55WlBouN3TKMUZTw+t0ub6z0KJsaczWXi8UzXneNE8kQOSqMopRMCO50fMqWPmnkhknG9e0ReS7QC2nuai+g7kqvpjHDWloAqE9kkr8fuqOI69sewzChG8T80JU5ZioW6/2QJBV0k5ib2yMsXbIkdU059HPaGsmBm49C1TaouQZeJOUrXS/BMeR+OggTwkQytvpBwihMma6YNFyTNJN1yX61RpLlE9+wONstOfHj9LHXqDTLaY1iTF2lWTLxo5TPf9AiF3B2yuXCbBmrYEkDu/ZxL84mEp1RlAD37l2W5awXxvbr/ZC6a7I1iBCCfYdfTwN3O740zs5zgiTjvfUhVUen66WoipQsHobVfRyIUsnoa49CXr/bxY8zNgYBCiqWrrI5CHfVm4eBEILtYSQ9j8pyL+yMElqjiCjJWe8HPLdQfeja1fVjoiRnrRewMQg5P12SLMFhNPEg1VTJqCtb+pEcRodhSmsYoWsKXmTjmjppLibniK4Xk+TyWdwaRJydfvDax2bnjqlypulyp+3z3tYQS1XRFJU8l8+1EFKO+7D3SfrV+VQtfTL8TrJwUpfEaU7XS+gHCTe2R1yeq3DhAB6dt9s+PT/GNXVKlvbMn8G94Mcpa72ALxQM6ZJp8O27PV5Yqj30fr250ufG9ojWKCJMUpabLudnnn1ISF7oz7YGEWGW8d7GiPc2+jTLFpqqnJjGlBByn7nT9tBUlbV+QNuTDf9yUaOebj5b/yk/ztgahAyDhDjNMItnd6Ub8M27XQA+rjRZOEJPvMMiF4LWKGZ7GJPmgu1hyHZxPjg3XTqR5IfjwmGr0n+IZEsB/NfAFLAFOMDfAf7UAX7GZxRF+TzwS8gEvt8pvv5ZpNH528AbQohUUZTPAr9wkAuzdBXH1Ljb9RC5PIT6cUaYZHzv+WkURdmTWpzlgp4vE4IMTWUUJYRJSpLlJFlOnKp8sDXk8tyjU+0OA9fUeHOtT5IKZisWC3WHZtkkiDNmKzZenBLEGTmC9jAmSDK8KGW6YhElObMViyjNaZYffgiW0ZeCjUFU0Fp1KrYxSRiDw6fXHDVWuj6jKGWh6lBzDd5aG/DOxgCE4OpcdVI8lCyd9b6c7t6P9V7IB1tD/Cjjo+caxKmcTMWpLOwqmsrWIGRrGDEIU1xTo+4ajMKUG9seZVvje85P0fUTVFWh5sjiPUpz6o7x0A17rmazNYhOnLn8Fz7Y5tt3+3S9UCYQGjJa9v6J8bPErbbHb729RT+M2egHuLpGLqBkazTul/cospA8qFGpTPST8eHDMGGlGxBnOa8u1wF52LnT9hECdE3hVNMhSTOcotAVQvDZtzcYRRmnmy4vLFUfWYSNn5H7Ez/2wyCUS+koTBmGMZuDmMUdU5u7HZ8wkQyOM02Hjh9TsnQ0RQVyfu9Gm+1hxOmpEi8uPbxQf9aQkipZZO0lQSlZOnc6HlEm+NGrR2+e8rn3WwzDlD/w8sKur/+hV5f4//zOdX7jO+v86U+eO/J/9ziwNQz5je+s0xrF9LwQx9BIUsFUxdxTFtd0TTp+TM9P8KMM11TZGISTocdJ9Jo7KizUbN7fHKKgsNYLJ82LzUHEajfAizJONx1yIdgYBNzt+FyYLmGaMujA1LUjj4/2i309zQRdP6HrR5iaShDlrPdDlGJyu9LzWeuGGJqCIOZ0s4SlHf6gFCcZ17c8HFPj0pw8HEyVLII4Y6FukxVSrH6YMPBTRmGCF0up+yBIWag5zNXk39+vQTeWF20OQhRPykebJTkkutuRDavzM6UD2xqMsTEIJym9tqEWHnQKQgjW+iGtUUycZXz8/NQkrrzqyP14qiQHjMMwZa6o/YQQE/P3MM2wdW3C4Ky7Bl0veSb1UJLl3G77gGykDoKUW+0RQZKjCIFr6iw2bBbrDoamHliGeVxwTY2OF/Kbb23iRQllx8DUVaq2xmzFov6IeyiEXH80TXmAhdwaxWwWhva6KlnwhiY/c02Fc9Plffe6qm2wPYyI0oyGZvDWWh8vuiepy4XgbsdHU1WaZfNABu09P0ZRlIc+G0meEaU5UQrjGbZtaJN3xzU1vnqzQ5oLXnuIEfn7m0M6o5ipsslizaHrx3hhyjCH55fks12yNDT1wesYn2MAudZpGkGSYagKN7a9XT63hiZ/zlovoGzrhElOtIfH3k4Ecco3bkvW9uW5Ms8tnCw7CJDv0C9/Y5U7XY87bR9T09A1wVLNxtqHWHCq6WIbCgqw1g/4379+l1dON/iZV5aeaSNA1+SZtuHa3Gp72IbK1iii7SWULYMff3Ge2x2fPBcsN91n1kjTNYWGa2DNV7jd8dnox/hRwlu54NXlJqMowY8zmq75zJg/mRB8sD3i7H2D+SjLEAXXIdqD9PA0oakKC1Wb5abDrbZPzTH49t0uuqLS8SK6XkzVNZgpW78vA7p24rAnGQV4WVGUAVACfGRT6v8MlBRF+VkhxH6V7jpwGYiAXwWqwGbxZ32khWcdGNz3tUdfmCLTbFRFSrb6oWRXnGq41F1zT0+Yjhfzxkpvott9aanKxiAizSjSZgxGUUaeQ5oJjvK9L9s60yWL7WHEe5sDpivWrg3SMTWmSiZ+nPH22oC1XohraYxC2dGfrz2cdjhO5nNNjVMNFz/JcA2d1iimYhtEO5hj8qD4bBpTozDhZsvDNTW2RyFVR6fuGsyWLbJccHm+wmtnGriWLtNJhEDb43fOEQyCFEWRCV+2oTGKUpbqDkma0/cTkkz618xUbJ6fr1B1Td7dGHB2ykVRFBxTp1wUSGGScbPlIYQ0H3xY4VK1jWM3sz4sWqOIz3+wzUo3oFkyeWm5RtO1+MjpOqenT4bXwDBMeGOlx1dvdajaOnNVmyvzFZYbLq/dJ+MDcAyN5xYqBy4SGq6JF8kpvV5IWLJcTDbuMRtpaxAxVTb5+PmpgjGQYekq17ZG3Gr5BGlG1dZJM8GjzlOWrvLiUvVQhcxsxWa78JwAsA0d27j3u/uxlOFUHZ1PXZwmSqVvgqrIKdrNVp9BkGDpKpfnygdi+T0LKIrC5bkyK12f5xcfNLQP4oyqIw+R68fAVvj176zRcA0+eXG3ZO/SXIXnFqr86utr3xWNqTjN+fadLl++3qZia1iGzo+9sEDF1vjMlbk9G+iapnK6UaLtxYhc+rj5cVoU7Q9/VlsjWQhNla0TJdvIcsFK1yctZPb7NYynyhYXhJiwhqM0Y70XkaQZbS+i5pgYuopAUHcssjznzHSJC7NlRmFKN4iPpNjv+THbwwjX1On6MUJAL4ipOyYfPzuFgImZs64qTJdtZkoWaSZIczjVsDkz5R7Y124ncqBZpPa1RjGnGpL9PWaOjkNWNgchW0nE5jDCMVRZZyzIIn4vllaeCzp+jGNI5qamKpybLjEIpf/U1jCkWTJ3MZzjND+0xLjrJdzp+EyVTFRFoeaYPLdQwYtSFOBGS5L0310bkAsp0V+o25NrnqvazO2oSJNMTEzva7bOmenS5Bk61XBZrD0b09nWKGKtF+CY0i9roW6z2vXZDmS68w89N8tHzjTJBM9UZhTE0oJCAdqjmDDJGIQZC3WHT16c4ePnGqiq+kjbiO1RNHkvz82Udsm7dVVhFKby+TJVGiWTOBN84vw0uRA8v0+QBshBx0tLNeaqNrdaHo4pmy8V22CqLJ/J8VAoeoiKYifao4i1Xkh7FFF1DS7MlB9oDFmaNmGI2ca932X8HG4NQk41XLJcTKSFOzH2jlIUeYh2LZ35mk2U5pRMjeWmW9hM3KvhNvohwzBhtmozCBJ6fkKSZ6golC2diq1TthLSXOwa6CqKwvmZMlMlk41BhGtqu+qOvdAPEmxDwzEy0uJaTxq+c7fLF65vIwq/0k9fbXBhusxHzjb3rcteWKrx577vAl+71eHL19vcavv0/JRXluqce4Zm44oi12dVUXjlVJ04yXh9pYeuyeb7MEyLoaZ8lp9WUMf9MDSV7788Q5zlbPYD/offuk6UCholg4WaRduL6Yxiul787CRpQoaBaSpkmZh0Ps40S7SHMVmes1h/9oP7F5ZqmLrKej/k/c0hrqnRHsVs9EN6fsInzk+xNYz+/42p+1AD/gigIqV7z43/QFGU14UQr+z3zUKICNmUQlGUX0c2oJaKP64CveJ/q/d97QEoivLngD8HcPr06cnXz0yVGAQJZ6ddNgcRhqY8VNO90Q/pBQm329I01k9y6q5JexRTsXUW6pIRYxsajqnRHkX4xTTxSWmslq5h6SppnmNqxq6XNohlJHTF1qm7JmenXdJcFHIE85EU6dVuQD9IUBS4NFum6ZqESU61uA/Nkll4acD0MzSjGUdPt0cx+rSMb/2+S9OIHM7MuCw3S7hFwbIxkPKGMHnw4Hq64dDzJP0xzfOJMfwwTCYx2gs1G0WR3hfV4gQ/U7bYEhE1x3jAr2Cc4iDE0TM4jgvbw4gPNgYoipz+1BydH746h6FrzJ8QjXIQS/+H9X6EY6okec4nL0xzca7CzD4+aIdp+NiGxsVZuUknWT5hUI2LSU2Va0KU5tiGRmsYsd6Xso65qoVj6JRtjUEvoVkyDjzlP+x0bWdqpqJCz98tVTQ0hbprSFZMlhfyI9m0Llk6dceg40c4pjZ5t08iojRjvR+QCQj3kAOdmykzV3OIs5TFxtE+p2GS8dm3N/npDy3uyWr8mQ8t8l//H+9yp+2fGJnrXojTnDsdjxstn4qjEyU5P/LcFM8v1am5D2d1Alyer3CzPSLOBGmWc6rhYmrqvl4nG/0QIaSP3klqTA2Ce2t6exQ/ci+crdhYRROu4OwRJDlTZYu5imSgmJpKexRjaDJdSFEUWl7MKEwZBKN9EyUPgvHeNQgDdFUlzQRxkuNpKWemSyw3XblGIYcdW4OQIMlJUsFM1eTCbOWxfS6nyxbvbQxwTI2OF7NUd1AKC4DWKJrI+2YrFnkuQBHYui5lfPv8m6u9gJ5f1BhzUk7nmHKfGYbpZK2dKlskhd/jYcMY0ixHIGi6Jk4Rk749jJiv2VRsgzBOGUSS3T6MUoJYMj/2YwabukqjZDAMU2Yq9gN13LPyXtseSr+r1V7G5dkydVcOTL56qy0ZsopCVBjQP0us9nxutXxMXaEXJlQcg4Zr8sPPz3NproJpHPD6dpRV+X01VqNkYpkqU6pJEOekmTRS3x5GNNwH/ZCSLGdzIBmR40aQoijMVW1qjsGNba+QvMP2ULKKLF0alB+EeSaQz2LXTzB1yb6/vzE1W5XPkqErezKPaq4xqcl3fm+eCzaHIUIIZiomZUufsPtcS5ofC5QHLCzG7wLIpte4WWlqGssNF4Gg5hgT311NVbjb8Xf5v9Vck9oBp1nTZYupkknXjylZBmv94NiCSg6LLBdsDEK+cadLzTZoezGfvNDktXPT+w7wd+LSfJWyYzAIE751p4dtaHztdoe6u/86eJxICguH9X5Io1TlVLPEj7+wwJ2Oz/eca9LxYm63PXIhm0Nh8nB553FDUaTlRddPubJQpu+nfPhMg6pr0PNi7nQ8pso2XS9+JvfT1FWmXJMLsyXMHfcozXOSXIbIbAyiA4UuHTdUVZHJ6QtVyrbOu+sD1vsh7VHM9e0R33Phu88T9bA47C73u8BPF//9FUVR5oQQm4qizAOtR32zoigVIcSw+H8/CfwPSPne3wB+GPgKUt73oqIo2o6vPQAhxC9QyPxee+21yc6mqfcMsOuuOTkUlUz9gReiYutMly3CJGO+ZqOrKvM1m7mqPWlUjI2LwyRjrfAkyHLB2el71NixR5VRGJn7sfSGqbn7M2ouzVUmhdDOw+9qzyeIpWdWydSI0hzX0HAtdTIxFkIWensliYkdu76qKlyaq+yKn1QU5alFwvaDhEGQMF229tiwZRrRd1Z6RFlGnAqeW6xydlqane88EFVsg84oxt1DyqeqKh863SAvDOTfWe8TxVJHr6vyAKZrCssVlzTLWe0FE0M5y9Do+dKHozRhrmicnnKJkmxXZ3qtFxAkGYs150R5c+W54Ft3uryzPsA1VUxN5XsvTvHKqQZnTghLSgjB7Y7PV2+2KRk6SZrz3HyVpYbDR842qB5CAncYGJo6aVLtxHRZUuwHYUI1uvcOCeDibJlhGHN2ukQuFG5ue+gaxJnAMbTH9s7YD3vFNDdKJmku8OOM7UFUNEkVQLBUdxjMJ0xXpIfeuxtDpkoWYZFmudRwToy8tOvFvL02JEwyTFXhzPRuv4EzUyV+7Pk5WqOIK7NHKy37t+9u4cUZP/Xy4p5//gdfkY2pf/H6Kv+XH7x0pP/2USDPBau9gDdX+0RJThAnnG1Kv4HXzjUPNDmzdJX5ukwv0zVppN32YrR90nPKlpzInjRGqGtpqCqPNBHeiZ1Mo5Kl8t5mwOmGS9nWcQyNN1f7TJVMXlis7dkYf9LhRNnS6aYJDddkumLx/sYQTZUDJMfQqNg6XpxhF4dLAcwUpsQXZktPlLJbcwxeWqrT8xPK9j0/nZWulAn3g4SyXaXtRXiFXM82NAZ+wtd7Ha7OVSZM4r1w/605O13aZeCsqcqBpFJ7QVOVCcvMylVutjwUFG53PM5Pl0nynMW6Q9M1WekGDMKEkqUz84h34qQcqHeiHyR0RxH9UD4nNcfgI2caVB2d9iim5pjP3NNHCMGtbY+v3e6gKgqvna1zbqpE07V45XT9UD9ruiwTqNMsx1AffOfmqzbtUYxjSunadNmi6ZpsDSM2B+Gu5OoxmwAku9qLMgSCuYp8lp9bqBSeY/fCw+uueWDvuKmSiRCCTAgsXXvgfdwahAwKuejOxmHfTxhGsva1DY1LhW/lRj+kUZJNqI4f0yqaZQt1m/PT5qROt7R7A8X7VyBdVXBMlSCWTLDpsoljxNimlB+v9mRD6lTDIc5y3t8YAdLH8vxMufBTkrYhezHwer4MMhhfu66pfOxck7ormYsnZV47DBO+cK3F9kCGPC01HD56vsmPvbAwGWofBJqqcKrh8u99ZJmma3O9NaQ1jPjlb63wvRemuDJ/ODb8UWD8HIwtLBbrDpau8v1XZuj7Ce9u9Lnd9jhbSFvv/0wGYULfT6TP8iEl1I+LZsnkxaU6uqrw8qka37zdoxel3O54GKpG/IzSRF1T55OXpnllub6LhDAIEt5c6ROlOaahnIjG1HLDpevHEyZp1dL5+1+8SZzm9Lz4xNT1x4lDPa1CiD/zkK9vAD90gB/xfYqi/JdI1tQXhBC/pyjK5xRF+QJwB/ibRSrf30Wm/nWRjat9keZi0i3u+wl3uz6mLg0E1/shwzCl68ko0J2b+3LTZa5q8/xChTSXG9AoSonTnIZrTCQ/ZuFdoKqQ5w9SqaXBaAZkVG2D9UFAkgr6QcILiw9f0BxTm0xjd74spqbRSxPCNGMYyWtXVYXtgfSYudnyWKzb9IOEF5celMZMl0wsXaVsG2S5YBBEMoWOe//Gai8opBrmsTWp8lxq+ceSuMv3UU0Xaza/fKPF9a0R9ZKBIuRn0iwZWCVz1wu4VHeYKVt7GozHaY6qSE22nJYKtgYRigLNkoWqSINT6TOi0B7Fk2julU5AL0xoDWM+tKO4qjkG7Jhs+bFkdoH0Lzs7/WzN/Hbig80h//I7q2wNImaqNp84P8VS3eHS/MnxAdgehPzqN1dZ68vEpNfONJmumLxyqn6oplSeS6Py/aQCfpwSJTKKXlEUolRKM/Mczk2XcEyN6bLFwE/QFIXWKJQJkCWLmbKFqirM1xxaw7gIH1DY7EtpikyB2t80WghBkolHSi76gSymxxPUrWHI1kCyGE5PuSzUHBSkbG97FKEpCrWSznxVpmst1hzCWBr/11yDTrFpuaZOx4sfWXiv96X5et019jysDcKELBNPPOEKk5wgTgmTHC/JJvKhMXRNxdQUZmsWUXa0Ov9f/846UyWTj597MJUH5LrysbNNfuXba/zFz1w8ceaS28OQz769wXubcp5zcabMhZkyLy/XD8Rk6vvSNDhOBF6YYOgqG72QXEimwv2Npzttn0GYMFu1JJvoEc/wWNbxtJgmlq5xda5CnOUTT7iHYRgkRFmOpasy3SqTdYKhqWyPYhbqDu+uD1jpBlLubmpcKnRfpxoOXU/ut0+SZptkOUt1h9mKjaEpdL0YXVXoeAkbgwBdU+j6MVMFc1lBoTWM2Oj7nJupPFFTagxZ5+S79k5TVwtvmYytQcD2KEZBIctVqrbBm2uDIggk45MXZx74mYt1R8aCq8okWMaLUqqOMdm3h6Fko1u6yrnp0oHuoxCCGy2P9ihmumwyUzYYBga6qjIIY/l/g4T3NwYMwpRz02V0VaaVTqUGc8Xa+LjIcvFUWNJpmvP6ag8h4Oy0y/YwpBcmbA8imqWQqq1zeqrE5bkK6Yy0MHjWSZob/ZB+kPDe5gCjsM74vkszBw77GEMIMZHS6ZrK1jB8IDVzvhgOV3aYk3cKSSzIxkyzZMoDpTYeuMrAg3GjR1NlWIBSSOQqtsFyUw6O73Q8brU8Xj5Vf+SQUVEUZio202WrCLmRz/GYmT/2w7q2NeJ8IfNLspw7HSkzjVIZBpDlgg82h+iqyjBMeX6xumt9NXV112c8U7FQFHh3Y0iwfu9APzZUvzBT3nU9Y8XF9e0R6/0Qx1Cpuyampk4G06Yug5PGxv95zgNM4TjNJ75wcSqTv29se5RMjbPTLlGaT9arZ4k8z/m1b6/xzdtdwiznpaUaV5cqvHKqfqim1E7MVW0+/dw02nvw5nqftV7Ies/nT37vuadu4G3pKlfmK5NnZEy6SNKc7WHIta0Ra/2Anh9zYcbd9RwLISY+ql6ccnX+6XhJjs/UhqaQZLmUIw9C2oOEuXLMej9kYxASxBkvLtX2HXocJTRVoe6a3H98jLMcrwgeGodZPS6EEBNW5f3J0+M/v9X28aKUhZr90KGiqcvAlSjNeHdjwPYgQlNg4MdsjULW+wFuoZr4/YrH+s0URbGBvwB8CtnM/wLwPwkhwv2+TwjxG8Bv3Pe1vw789fu+9o+Bf3zQ60nSnGtbI67OV+j6MWkmuLbZZ2MQ0HBMQDaVvDDFU7JJ0wkklc8xdWxDFldjU/AozWgNI1Z6AfNVm1dO1bk0WyFKswceupKp0QFUFWxTxdBUkjTD1NWHHnTiNCfNJTU7ywXXNkcEccp01aJZMnhno88wyIiSLnNVB1H4J2RF+pumKnsa+q33A1rDGMtQmSlbvLc5KjynEi7O3mPPdD3pddHx4mNrTCmKNMZLUjExkV3vB/hxxkLNZnsUsT2MJqbjfpTx7vqAIEk51SgxX7N3Ua33OiT1g4T3NgaYusrV+Sq2oTFfc6jYUp5nGxrbw4ggztgehLRGIW0vYa4qf3bbi+l4MUMj4cWs+tDiecw2SDPx0AVhox/ixelTk81lWc7Xb7X5zbc2eGt9gB9JA8upssVys/TMJ6xj3GmP+KVvrvDNOz16QcJs2aJk6ZxquDQOUeDExXueC2n2uJcRaZhkXN8a4ccZi3WH5abLKEwniZfSK0Gl48VkRSz8jZbHYs2m60mq/WzVJkklxdc1NTTlnumooSv7GiILIbi+7RHE2b6y264Xc21rhKYq0rOiMN4VQl5jmuWEaY6fZGRCcKvl03QN1oehLCabLkGSkQnZYLUNTTYIiiLcPQCjr1OsAV0v4dR9Tn7DMOF24d+SFnHX9+OgaVtlW+dU02VzENLcsfaO8cbdHr/2+joZgj/06tJDfsrh4ccpv/XuJn/kI6f2PRT/9IcW+c9/5U3eWR+eKDPwla7Pr397hW/c6rHlRZLVs1Bleco9sMeArikYukqay0CItY7P9igiTHI+er65a1iQZvmkWdr1kkcmwG0NQ+52fBxD5+Js+Vi9b/Jc4CcZlqZys+0RJTlzNWvXNXqRjNJWFXhnfcD7W0McXadRMihbRtEwzlluuIRJKpNpFfm+jQcPy0054DI09bH8MIQQeHGGY0ifpdZwnCgn5WPfuNUlSjMEYGkqjqHhTLzvwE9SukHCKMpZ7wXMlK3H8pYaw49TdFXF1FXyPOe9jSFxmtMsGTRcnW/d9bjd8rFM6UUm07akz1GaCZx9pFn9ICFJZfJY20ukAXOQTBL5er5cz8JErmPVAzSmNgcR728MCRM5bDI0hVsdj5pjcLZZIslzMiFY64YytdSPqDj6RIpdd83HlruFScabq/0HZP3Hgfe3hnzjVg9NBctQiwZyTCakxULHi/nmnS7TZYsLM6Vn0jBPM8k6T7KMrp/wwdaQ11e6bPcjyrbB1iA69DuS54Lr2yMGQUK3kK7vVU+NpaLbSsSVeRk8pCkKfpxi6RpJnvPtOz0URfrtnJspoavyMDxuTI3DAraGIYNAMprqrkk/8FjpyOelYo/29D28H+P3esxqzHLBta0RUZoRJRlJkfCcZoJLc+VJ/dnzY1RF/v0Ptoas92SAz1KRnlq1DS7MyobH/c+toiis9QLeWh1MpPpBLBNFQQ7ZxvdunLJt6iprXZ87bangeG6+wvXtEZkQVG1d+q5movAverCmHoYJ6/2QfhhTs+VweLUbTBpZ0xXrqakt9sPAj/m1b6/x2Xc32RpGuJbGDz83w6XZyqEbpTuhKApzFYfnl6p8/XaXla7PVj8gy3P+5Pecf+qeUzs/n64Xc7vjc3N7hK4q9L2I1iii4Vjcbvmcn6mw1guwDI2lYqgUJflTZ9gYmsL1bY+Vrk+UCfwoJyPnbtfn4my5aM5khGnOp6/MPpVrGkUJ/8d31llsOPzl2cqkHrQNjemySZSmB2o8jqIUU1P3rHU2BuFk7bk0V36gLo53NL+6fvLIGm4UygH7as/ndsenM4xRNYWtQcSFmRK327JXsVR3nmh4dhLxuC23/y8wRErxAP4EspH0R4/ioh4XAil/2RqEbI8iWl7MbNnkExemUVW40wnYHIYoCpydKlF1dLYHMX6cFsWoMqGhj6cGUSrjaV9YlKZkez2Q42JIU2XD6OxUCS9OcR9yYIvTnPc3hwgBFUdDEQpvrvVZ6wdULBkNmWXyOpJMTOR8pxoOmZDpNpkQe/787WHE7bY07l6sWjv0+7ungFNlk04R6bk9jCYTrKOEoshDd5BklE2dla7PG6t96o5JmGSULQ1VVXBNKad7b2vAt+50OTddYq7qMAyTR3oAXN8acm3Tw7ZUqd+3ZTNgZ7FTdXRWez5fuLYNQk7RGiUTU9dYakgqs2vKVDiQxZMXp5PPtOvFk/jTqqPv2fAJk2wyzdsc7NufPRJsDwL+zu/e4J21AV4ijWCXmzbPL9U43XCe6DBzVEiznF9/fZV//o1VgiRlFMni8KVTNWYrFmenDjeBGke4g9wg9mpMSV+cEC/KiNKMUw3ZpLSMmO1hCAg6XkjPT+kHMa1hyFo/5m7b50JxuK45BkGSUzJ1DF0pNnlZkBiquu/kOsvFJFZ9FD18ArM9iljpSvbYQt2mhjRmvd328KOMDzZH9MOYYZiy3gtoeTHXt+TfLVs6NUfHj1McQ8cxdJbqNq6lo6vSS+dRxYgXpfhFMtWFPYqtfMdysReDYHMQ8tm3NzE0hR97YWHf563mGBiqQtmUkqU0y3dtpO9tDBnFCQh5sDgq/NY7W4RJ/lAZ3xg/+dIC/8W/eItffX31RDSm8lzw1ZstfuF3rrPtReQ51EsmVxeqnJstH+q9URWFqq1TdXRmyjarfZ/OKCEVufQi9BPWBwFBnHFlrkLdNdjoB0SZwvYw2rX+7mxEjqKUN1b7DPyU+ZpNEGfH2ph6Z31AlEr20/jZHIYpsxX5LN8qmlWmrpLlOV+/1aU1irgwU6Fq6dwYjsiynIuzZWaqMnQgTHIsTeWjZxqEhd/ck2KcqGYZUm+YZDm32h5zVYsv32hze9tD0xTmqhavnZnibOEx5cXppOF9Y9uj60eULO0B/53DoDWKWO+FRGnGpbkyK92Ar93osD2KeGW5xmLNIc2KBNs4w9SVYtqt8gOXZxhGKQsPaTzEac5KNyCIU7zIxDZ0NFXdtVY0Cga6oUmu9o3t0SObRmNvnDiNKFk617ZGbPRCVjs+FUvHNqT8UlPBMVWmSxaaIvcG29Dw4wzX1InSbGKF0A9TokQOKvb7jO92/AlT5KghhJTkpplgse7ghSlxmrLeD9FUeH2lT9sLeXGxypkpl2GYIvJ7e95+QQXHgb4f8RtvrLPWC0BR2OiHWLqGqkjWplFI5A6LJJe+ORsDGUIwVTaY3uOANt7nW6MIfUvh9JRLL0iKaPqQIEnZHEaUDGnTUDLlmmQbGhdmSwgh7THSLJ+YrEsWkUbXixmECZVCJjpu9Oy6zkz6lY2H0Ctd2SgzdIUrcxWCOOVOkYh2dtpFV1Vutdqs90PqrvSGnSqbcsiUC7YGIXEilRiWoXFuh8XCw94JL0z43PstNgYhs8U9anvRZK293fZYqEnm4q2WT2sU4UUy+GkQyeHr1jAqgptUFBRGkWzsXZorE6f5hJG5Vkj/vDBF11RcQ2exbtMsmWR5zh1lfD9lqqWhKRO/uqeNW9sj/tq/fJutQcAoypir2Tw/X+XKfJWFI0ieVlWFy3NVXlmu0fYirm+N+OIHbd5YHfIXPnOBz1ydP4Lf4vAYhjLR9fWVHmu9AHM8PDA1VE1aTnT9mH6YkOc556dL+ElG6Sn70qVFDZwXzdDFus3N9pDNfoita3S9hHrJxI/TglUVTCTfx8UKzXJBkKZsFAyz6WKgNQrH+5NB1dn/Pr27NuArN1vM1hx+5Lm5B2rsnTXzXvu2qcmzxe2OR5brjKJ0T2bVGBXbYK3X5is3WmwOQjRFBt4YusLb60O2C687U1NZOAZ7kWeJx31ir9xndP5vFUV5/Sgu6HGgayqnp1wMTaXmyP/+7Xc3WekGvLRYk35FZYvr20OubXvoimTn6Ko0F+75CX6SYqgaZ5ruZEHu+jHrvZClxqMlDTv/XFMfjMDdiTjLJ2ylzUGObaikWY4fpgghaHkxz89XaHtxIS+UB921XoCuqQigYums9QKqtrGLlWFoCp1RjEDh2rbH5fkKwzCl7hqEiSzWqo7OQsEqurE14m43eGwfiEfB0CSDTAjBO6sDfvfdLXp+zKcuzfDKcp2Ls2WEgK1hwEY3RFEVkjxH1zjQNK41ihlFCV6ssFx3GYiE1Z5PVlCUz05J5lDfT/AjyVK7OFvmynwZS1fpeClVR2e56U4+w5tFc8AxpT/RWj8gz2Xzaaay93TNKLroMnnoeDeCJMv5hc/d4Hff22Lbi5lyDT50us4nzk/z4TMNZk/ARAvgqze2+UdfusOdjoemwOWFCh87P81HzjR46VT90F3+SnHATjLB1ENkTLahkqQ5XpyyoNvkxVRwFCa8vyEZSoKx91mMAGxdI0ewPYwwdJUwKbNQSGWny9ah5DS6phZR6w9nnMRpztZAHhjnqhalgt2U5TnXtjx6fkzZ0tkeRiRZTi+IaZYsUKDjR5SGMslwvuawOQipWDrNAzBowiTjd97b4vJchaCQPtuGxlT5wXtZcwyWGjLNcHqPP//6rTZvr8nw1LNTJT52fuqh/64snnQEsvF//5ZddXTaXowKBcP1aPDr31ljtmLx0bN7y/jGaJZMvv/yDL/27TX+yo9dfeaSmVttj3/4xVu8uT4kSjPOTLl89GyDj56b4sOnG4d6b65vj9gcxDRdk/maxVTZ4I3VPj0/xTE0vn6nw0YvRADfutPlI2dkKqauqtILpZCI3mp7hElOs2RyfqZElGTUbIMoybF0ZeKDcRxojSKuFcb/p6ekF5sXpcxWZHrrzZbHej+csKE2+uEkIODcjEvHS2T6bSHbGz/bjZLJVMliuenSHkVYxfvwJAgT2ViNU2nYfH27SxBnvLHa553VPl0/YbpiADY3WyMuzJYZBglvrPVxTZ1Xl+ucmZIJXApPlsAWJhmjMGVjEJLmgjjJ6IVSnhwkOVXH5PlFldstj5JtEKdiEsLSDxI6XszWIKThmpxuurveC0UBTVHoeSmZgDNNaZg+lpd2vJg0z7lS+Gh++XqLjX5E4yEN7J4fs9INUBWo2BpnphosNVxutEYkmVwxhlGKbegYmopj6mz0A253PCxd5Xbb51TdnTRL7nZkszVI0qKhIpsr4wTE5eaDiY6WrhZymKOX8g2ClA82R9zt+JyednlursLX73QIs5zffW+LfpiS5wp9P+PCXIkkEaS5oOoYT30anuWC33x7k2/d7bPeC+R9EjndIKNkqXz6yiyX5yt87Mz+6+pesHSNqbLBrZZkBK90AxZq4QOG9UsNh9VugBenJJlgcxARpfLz7PrJxGDf0FWmyiZfuNZirRdQsnReO9tgviprIMmaVycMvK/darPSlQnXC3WbkqXjR7t9b9Is54NCaTBmPYdFet+YIZhkeZGgl6NrCq6ukuSSiTQsWBGGdk/SYxsamRD0w4RZc9zA3ScVdRjyK99a5Ru3O7imxmunG+RC0BpGtL0YS5fSpJVuQMWWao9u4Qtl6yplS8oWXVPHLKS2WSb40rU2/SDhwqzLckP618VpPrGpCJKMiqZSsfWJVNLSNeZrNnEmPW5Qxt5Hxp7DwePEKEz4b/71u3z7bo8kzTnVsHntTJNPX5nl6hH6QJm6yo++MI+iSB+ia9seG8OYv/3b1zjddLlwxF6YB8FMxWKt7+PHUjYdKLJhu1C3cE2N11e6/PY7m4UPmPTSexYekYamMlORtiuGpvDO2oC+nxKmGZ+7ts1yw6Vka1ycqfC1mx2ubY1YLAaux2WMrqDQGsUYVXWX0ijeESiRZvuv+5+/tsWtVsD1bZ8PL9eZv++cNV+1J9L2vZrNiqIwX7MnrPSNfsjF2TJvrfVpjR4M9VIUWOvLIXqaCXQ9p+kaDPyU9zeG3O3Ic7tjyvPAs65bjxKPW01+S1GUTwghvgKgKMrHgS8e3WUdDoZ2rxEUpRlvrQ1kdznJWRuEvLM+4Acuz+LFGWEsvST6QcLl2TJhmrHUcLjV8qQkxrxH4X95qc7V+aOZpO6ETNcz6AURlqLSGsU0yyZLdQc/kT4Niw2Xy/NV8lzwwdaIOM3JBETFJro1CClbMnXjZntEydR55VSduaqziyLoGPIl8eOUz3/QAgGLDZsXF2v0/LjYG++xPI4LWS5Y64fcbI0I45zPf9BC12TENEJShG19SM01WWq4vHy/tmgPCCELhzTP6YxiVno+Tdek7Um/jK4XkxRTr5prMFOxEAI+fWWWM1Nl3lztEyYZG4Ow8BWThphRcbgYHzJKpjQC3q/hpKkKl2alIetxSuj6fsyvfnuVb9zqMgxT9IJx84NX5/iJlxafigzhIPjCB9v88rfW2B6F5EJQsQ1eXW7w8x8789ibj6oqD3hRjCU443QpP86Yqdh4sZyOfOtOlywXvLsxZBhJI/4zUyXao5C5ik2aUfg22YXkxiLOpHRtr0nuQSAjyncX2sMwKSZF8jBfMmXhl+aCr9/uUbY07hYMhLVewELdZhQlVGyduYqFZerSpyITk9SesqVTPgS1PEykNOOttT4vLtXwIzl53Wk+O2bQlEx9EvywF5plU07q4KHF6eZAemaVLI3L8yW6XjoZIOyCIs1wkzRnpecf+PfZD/0g4d++u83Pf/z0gd6Jn/nQIr/97hZfudnme59R6skoTPjce9u8udqT/hAIbF3j+fkqP/PqqV1T9oPC1BU2BgHtYcSphsP3XJjmTLNEmgsptQI6XjRhG20OQholgzwHL07o+Ra32x7XtkYMgpQPn6lP1sqoLhPQFmrHN+kE6dHSKN7tqmWQZoLZikxmy4vD4FTJJEhSZioWgyBmexTz0bNNXl1u8MvfXOH3rrcZhAlCEZzXyhiaPNCeacoUvqOKsV6s2by3OWCtH7I9DJmvWizUbL6z0isGZyZnplzqrvRNurY1omLrhQQgZqk4LNcdE63whHlczFZs1roBVUcnKlJqp0oWV+YqnJ0usVi35VCvWZqwRhxTI4jlAGtrEEk/P1XldsdjYxAxVTK4NFvBLIJegjiT4SKqtA7wiiZc10uYr9oIIdfDuGBCjg2oB2HC9a1R0SRy8aIUIeBWx2embNH1E+ZrgtdON0gSwXTFoFGSgRXLDZeen1B3pSF414tpuDLRNckEugbjx9HSpT9oLuR6tFZIqcqWznxt9z69UDBAjof5J3hrrc9mP2IUJnSGMV0vwQ/TiZSzWbb52Pkm0yX7maVrgWQg5rkgzTJ6QUzZlCm1ugpnp1wsTeNTe/iOHRSLdRf1nMp3VnrUXNkYGafOje+9oalMly1utT2yXDBXs5ipWPhRRppDexSiqSYfO9ucNKq2BhF1V7DZjyaNqTFrP04zrrc8brd93t8cMVexOVVzaI2iB/b5NBcTxlZUXNdSw2GjF0pWctEYXajZdP2EKMmZLlmcbrrkQkzq72Zhmq4oMqmvNYqJ05w8h0yIfQ9fN1o+64OQ9igiNHVcWzJFNVWV0h0VwjQnyXKmSi6aqhIkMjHcNTTmimAfXVGI0hTX1PjK9Q7rg5A4zahYOpauM1v4ATmmyt2OLz3wNIUrc3UUReFmSw5pNwahDBzIpFedqsoh4NPE9e0hv/yNFd5aH0pLE0PltTMN/uwPXDiWBsxMxebnXjsNCP7H37qOF2es9gL+7udv8Cc+doZXlh99RjlKOKbGq8t13l0fUrV1wiTl+YUq0xWLtW7A77y3zWovpOsnrHR8+bw8o+PAfM2eNJsV4KXlKu9vjEizHEXIRN2v32rTDWI2ejFtL+LV08d3P3MhaLgG5ftq1UuzFbJM+tYKIXhjpU+jtLfn6lTJZmMQ4Zo69h5nPE29V0ds9EO6fvzAOUJXFSxDSixdU5sMzPdClgtmK5a0hhEC29ToewnfuN2mbOuoirQP2hrKc7VryXPMSfNJfRw8bmPq48CfUhTlTvH/nwbeURTlDUAIIV4+kqt7DNxue7yzLv2lokTGY5u6xt2uj2tKP4eyrfPqcg1FUTnluiw33Uma3s6mjqoqmKhc25K+DMtN90jMSJMsp+fLeOP1fsBizWWmbLNUt1nrh7imhiLg/Y0Bhq5xYbpEhiBOc95e6xexswoIhY4fEacCiCfT3++7NE0/SKjtiNZtj2KyPCdKBFGSy83S0FjpBtKfaeHJtNN9P6HtyTjfceNhGCZ8Z6XH9jDilVN1ZqsmDdeiJSL8OOX6tsd81Wa6bGIZKuenS9iGtssLay/I+zBgrmpxcbaCoUrG2Z12QJrm1BwTP8lI8hwvkqbLF2dK1F2TqmVgF0l8NcdgcxiiKZIKHVZz0lwwX7V4c7WPrqn4ccqZKZfWKGJQTJEfZjqsqgqWenwFZRin/LV/+TZvrvQRIme+ZlG1dT56bpoXF2snoiklhOCffe0uv/i1W3hhTtVWmS67PDdf5sOnG4eODAf5eT/svq90A6IiXapiS4+xesnA6GnUbIOVXsBs2WJzEJBlgnIhj2mUTEZhxofO1Pj05VlyAd0gJs8FWSafr0bJOLCfQpLlrBV+dHsd0iXtH4aR9GAxDZW6a5Blgo1BRJ4LRqF8h3RVQVMU6rZJ2494cbHGjz0/j26o+HHGKJQNq/eKdK8zU6UD+QhoMnWchmvgGjppHlLSNHbuY9ujiCQV9NKE2Wr20Cbra6encE0dS9O4PF8hzXLWelImvVh30FSFjidDBt5YGXFmyuV0092z2VcvGWz2A7JcEMVPZkA5xr96c504y/nZA3pW/ejz89Rdg3/0pVvPpDGVZTn/4+9c4yvXWiRZzmzVpGSrLFRdvv/q7GMniV2YqfClax2aFcm4/ZShcaHweQhiySz6xPkm722M8GKZZvXcQo27HR9dU3h9pU/fl+veTMks2MA6dzs+N9sesxWb2YrYtfZsDUPpAVXdO/HpoOj50v9vFCbEqZR4+UnKrY5PmKRcnKkwX7O5MCNTXGuOgRdlkgm0oNMo6by7MaDjS4P/RslgrmpzqiEbIa1hTMkwsE31SPZ1IQTrg5DX7/b5YGuEraksTzmcnynzqYvTdL0IRVH54edmWB/EDIK0YMXoKIpgGGTc6fhcmatyaU42z55kTffjFE1V2R5FKELh8lyZqXJGzTEnDLf1XsAgTJmtWjRc6SkTF/56OYLWKMLQFLaGgkEg00FnylIKf3G2zHzVphfI9UjXVFojnywXjMKU2JXG+AAzZZv2MGauaBjc7fjcbkuT87VewIeW66gqlAuPqzFjzE9yzkzLZvZK12d7ELM5CHlxqUaa51Qsnemyye2Oz2LdnkzDTzddbrU8QMocdE3hvY0higp+nO15qDY0dd9m/GERp7m0VQAWatI8e2sQ8OZqj36QcKvt0Q8Trs5V+IHLs0yV5fvV9uKJ+ffTxltrfa5vDflgS6aolkwd19apOwZNV6HuWpyfefx7lOWCtV4gvXA0pQjFyHi/CHc4M3Wvxt4o2HpZLmi6JrqmslCzudvxqTsWzZJFkksp02zFYhhI+ZprapMwJJB1mW3qxGlO149RFChZGigwVXrQM8k2NCxDZXsYTaRhqqLgJxn9UIYWIORAXBWQ5dDyYj52rkmYZDQKj6ONfkjHi2m4Bmme03RNukjm98P21dYoYmsQAQLX1Kg5cqCqKRq6qjBVNhGArgj+xetrCAEKgsWGy6cuTu8ajOa54O31QaHOiFio22yPAkZpRjdIOLcjpfvCTJlbbQ9FUVnvhVyazTCNwldTU6jYBqoK5xolXEv6bu5k8vX9hNVeIO/rMeDNlS7/z994l81BSMkEDYOXlmv8sY+dPVZWkK6p/OjzC9za9vjtdzdRVYXfu97h2uaQv/QjV/jeS0/HI2kMy9D5sRfnubHt0fdjKpbOME650wkYhimGqlB1DRZqFu+u93lvc8jpZokXl2qT92F7GDEME2ar9r5SsqOAH6egSLuHH7iU8c07Xb74QQtVVbi2PWKl6xc1hIWuKbvWgaMc8Ash6+ySoWHu+LmaqnBhtswHm0PeWBswV5bv+6mGZByv90NsQ2Wh5vATL85xZtqlWTKp7zNcF0JMbF22Brsb34oiJX1eJJvFpi5Tefey/bANjY+dneJUw+H29ogv3ezQ91PafsSZqRLNskEQZ1zbHLLWDZit2nz8/NQj7W++G/C4T+WPH+lVHCHWeiFpJlAVhVNNOTUoWxpVS6MfxNxueyw25KTw8lwFTZWpXTOF7EZ6S/lYhspsxWZzGPLGygBdVbD3iIp9HPT8mOtbI/qhnPqpqjQIHkaSsnen7fOVGy1yAWXLIEozLs+WudbxURQ5/VuqOXhRgm1odL2QqqNPFpmaa1K7zwCw6hgs1hyiNJ/Q3ZNMsFwcePInZK+v9OTB248DGXOfSRbT63f6rPYC7nR8/uArizimxufeb+FHKaaqSu19mrM2iFgoXqxHmRdmxUTrdtunbOuShbIpU0dQ4LnFKiVLZxDISZoXJ9iGTt02MA2F61sjVnsBHzlT59XlGivdkJVugG1KmmeaC6JU0PYivn2nxyfOT9H2YpJU4McBdcd4oPkgPUvkxOo4GFNZlvO/fPUWX73RlrpxS+fTV2dolAxeWqwzirNJ8sqzxDdut/lfv3aH1a6UxV1tVnjtbIOFust0RU4YD5ImthNZLljtBpQt/YGDrrXD4FFRZAF5ea6Cpav0vJgkz9noB9LofhgzV3Hwk4z2KEZTVLp+zLubQ2lA7hjcbHnc2PZYqNlkuThwYyrNBO1RPKEx3w9Ll0wEqzAqf36hSprl3Gj5dPyYOJPGqo6uoaJQMnVubvfIkQ2za60R52bKOIbGej/gZtvDNWRowyhMD8RCK1sG33dpmqpjcKfjo6tq4cV1jxVac+Rm51ravibvmqpQd0wUpK9Xx4/pBVImFKVSLjtdtrjZGuGYcjDQ9mI+eq75QCG50gqKhCN5P44Cv/KtNc5Nl3jl1KONbUFOI3/+Y6f5n373Onfa/gNJRceNr91s81tvb9Dz0yIdzuLDZ6e4MlthseGgP+Z7rakKiw2L99cTybgt2AldL2a6YuHHCX6SU7YNzkyVuDxfkRHFjkFnFOPHMkUxTnOaFTkI8OKMWx2vMEYWTFdMZis2XpSyNZCpO10/YbUb8LFzzcdek1a6AULAte1R0cDNUZAG/3c6Uq49ilI+eq45eX4NPUdVIYlz7nRk8myzZHJpviKHNhemUVWF9zdHCCH45t0uizWHRknuj497rUmW8/7GgLfWBlzfHtEaRnhRQiYyWqOYYZCw3CxLRnbNZarisN4LqbsGZ6dLVG2D221pJN/yoj193w6Drie9czqjGEvTZLR8klFzdJmgFyZ883a38OmyuNkWfPzsFI2SyZ2OhyIk6+jFpRpZLrjV9mgNY04379kaKIpCxTGo7JhC1xwDP8o4P1PidNOZhFsYmsKlHUb7lq5iGRpJJnBNnSQXvLBYmxjwlyxZD72zLoNN2sOQjUFEEMuAjzttn7pjAjLAwi7kSuPPLysOIpKxAmXbIEoy5is2i3VnUmNEafZI38DHRT9IJqzrYZhwqmHz9Vs5KgqrXZ+tQcRyw2GmbFItJFVCKAghkxsflap6lEgLL7R/9cY6W8OIzUHElGsQJnLYMFOy+OSlaS7MlA9kFr4TUZpzY3vEclPGoN/YHvHO+pAoybk4V2JzKFNxDU0+oxVb7kFrvYAwkYqGcYNzexTRLLybSpbG9iCUPkNVmw+fbtDxY1Y6Ade2RlyYKe9KKqs5BuenK8yUpXepUzRe7j+cZ7mg48X4Ucbdrs90xWIUJqx0ZWJp3TYYhCldPyZIMj51cQZLNyhZeuGBJ1BRaI0i1noB729mfGi5RsXRqTg6Z/bZW+QAWYYO/NTLC1iaSpxJCU+WCzqjmKqrc6sTsDmIaQ9jKb3WtAlz+Z31PqamcbZgJ8dpzkzFIkpzciEwdbkejO9NmuVoqsJ81WEUjihZ+kQdcHaqxDBMuLpQ3XfI0PaiIgH8aAZLO9EbRfzNf/MB17ZHIASWbvLjL83zsfPTzDyFd6RkGfzQcwvUSib/+s1NOn6A18n42//2Gpfmqk/lGnZivmrzwcaQd9aHgKBmS2/RhZqF3nT4wedmWaw6/MYbG/T8hFGYstSQybBCCDaKoIj1XrBrTT4OrHaDCQO36ZpULJ1TUy7vbwy5sT3CMjT8JGemYuLH2USt0g8SZitHd46KM0GaZgzClCjOsIyxfYbgzbU+d9sBhgZRlnG24krrmfUBXiwtC6q2gaZKj6iKtX8PQFEUao5BP0geGMRHaS6VLqpK24upuybfe3Fqsk/cj7maLeXcqsYH2x7vb4xYqtvMVy1sU+O99RH9KGWhYjGK5FrZLMm6/FmfBZ8Ej9WYEkLcVhSlASzv/BlCiG8e1YU9LmYrFksNh+1hiKmpXJorcXW+gqJIQz9Tk3GpN7c9lpsumwNpJlh3DZab7iQSF6RUJs0Epi5NyI09FuY4lR4wFct4ZOzsGD0/Ic4y7nY8vv/SDFcWqkyXLe60PW61Pd7bHFA2Ndb7cjLohSlvrA642fJoutLsLBeCVEi6ftXWeW6hum/0Zs0xeGW5vovmJ71dIlRFofyYHiF5kcSjopAXU56OF7PaDYgymRqmqrIJZqgql2YrxGnOW2t9dFVF11TWhxFbw4ima+LtYxg9xniSGGcZ7VFOmuV8eLnGrXZAxdEnk/pmSZqsr3R93tsY0vMTZsomt9sB3UAaS3/y4hQvLFR5bqFaGLLrk7QzVZHU8lxISU1rGFBz9Qde+CDOJot9LsQDcrMnRZ4Lfv076/zOuy2iNENTVa7Mlvnw6TppzsTs+lkvRDdbI/63r67Q9mMyBHOuwccvTHF+ukTBiN8zSfIgGAcL3I/lhotXknKI8bM9CGXzS1PgTtdnGKVkmZSUVB2DuZrNKEy43Qn48o0Ouqph6RoNV0qYypZsIh3kYND14l1Ghw8r3s5Nl/ALQ31gEtV+YabEWs+n56d0vISpioUfZyw3Hdb6AdvDiK/f6lCyDNmQbtjkuZTohmlGxdEf6Wnmx9J4XlGYMEIbrkkQBzimtuszmalYTJXMRz5Lt9oeX7vZIckFn74yQ80xCilAgq1rDKpJQWM2eW9jyO22T8M1GQTJA40px9IQRVNxv0nUQXFje8SXb7T5Sz9y+VC05j/1PWf5hc/d4B988Sb/xU+/8MTXcVBsDkJ+6ZurjKKULM851ZATztmqQ5ILrB3P9mEghGRAgGTVnZ5y8eOU9V7IxiCg5pjYhkpJVQvvwXueIYs1ua+gCL5xq8NU2aLmGDiGRprlpKkgSBOcTEVXZBz5zZZHXBxCXVMOVIYPCSnYD1EqvZFMXU4WN/shXuEP+PxCBVRFshAyMZHagCxm73b84jk38aKsmEzqvLBY4+JsWXo0CkHF0el6MSVLL3yY5MT54mz5sVKM3lkb8NWbHbxIerXM1016nkLHT2n7KbqqcHa6zFL9HmtwpmxN3rO5qo0XZwTxPcbF4yLNpHdPmuXc7XlMlSyW6g7nZ0pc3/YKg3aZhOtFKV0v5syUy2ovoGLrvL85IkpyHFMytoIk4/x0idmKxfmZ0r7rzXTZouk+uH7UXZONfjhhap2bLsufN1UiyQUN1yTP78Vt24bGSten7hhsDyPqromCTCmbq1o4psa1rREoOY6hEaewlodciqTkfhimtIvggKqj48c5tiEHG+Om89YgZHMQYeoql2bLR75/Vmyd1kih7ydEaVZIzQw6uUDTBKfqDlEmU/juFl5BWQ6O6Tz2Pvm4+Mr1Nu9uDFjtBeR5jqHD1iji8lxZ+kJVrMIz6fCD2TwXeFFG14uJEsksvr49wFB1Zqsm56bLlCwNBYVm8ey3RhElUyNOM2bK8nnKckHPj2mPEi7Mljg3XeLNVelzOAxTVFVhpetzs+XjGBrLDXdXTT5T7K266nJxtkwm5AD7/vc9zXKubY4IM8kgBcgBXZVnCMNQ6XelyXTJ1FGQyVhelHKzJZOyzk2XqDk6H2xm1Fz5/D2/WJVJlpngYa9QwzXYHERUHZ2KbfDx89Os9gKGBbPsvc3hhFELoKoCkOb4hqby9dsdrm+NKFsGddfgwkyJoGC+bY8iZioOWwNpkl53zElAgmXIBD+pWlBRC3m/qasHSoCtuyZ+UU8cJfwo5e994QY3Wh55LrANjZ98cYG5mrvnoPI4oGsKZUdnvury48/P8ovfWMGPMla7Pv/z717jP/nhK1SfoteWENArkmT7YcJ0uYaIUhZqDpfmKlyaqRCmGTkCRRHEmWC9F9IexVKKW0jJQHoB7jVoPyqYulo0xxIGYUKS5fT9ZOKtmuSCqm3Q8eQgK8kkM/qoWXCqAooi97MdzhVEaYapqlRtHctQ+di5KUxdEiYGQcKtYkh5daHC711vc7PlU3Uka20/ufXpKXdPooClq7jF+aJePDOuqbPflm/psmE/CFOWmw5BnLM1iDF16Z9nGibVks75qRJplvPO+gBVUTg/U3qmkvAnwWN1IxRF+S+BPw1c555TpAB+8Ggu6/FxZb46MRPfGISUTINRnCFENkknciwd29S4se3JyPTif5ab8qVFBpGgq1Lnfmmugq4qe0a/3+n4BHHGthrx3Hz1QC/4Zj/gjZUBZUtOCseFasnSC2+ZlLVuQLNkFU0WjSyX2u5hmPKZq7O4ls4373R4d2PA5bnyvk2pMe4/3IwL9ifBONYXZEOmYuvc6UjWg6Vp/IGXF/itd7awdJWNQUCS5tLvI0r51IVpTFPlVN2hZGqcmXI5M/3opo6iwFzV4lt3fK63PE43HC7OlvnoOZvNQcT2KJqYuduGRt0xuduVDBFVVTg77ZBsSfZKlkNSbHjjAsU1db7v4gwtL6JWmI9qhaZe5LIZuXND1AvNfZ5z5GypPBd8Z6XPb769QcuTRfT5mTI//eopSrZB3TGYr9lP3YTyfmz2A37pGyvc6sgCYq5i8VMvLbJUd5kq20yVDWYqj+edYRkql+bKezamVFXZxWLsetJEFwBFkGZQtU1mq2aRIiNZFnfaOlEqp+/r/YCXlmqESU6QZCw3S5zZywvpPvT9ZPJvWYUE9WGFmbbjOsNERj4LAc2SQRDLImG56fLcQlVK6xRY6Mipuq3rrHR8Ls+VyQWM4oSma3FuuvTIwizPBTe2ZUrnTjRLJg3X2LPhcZA1LIgzNocRCClZGMfe+3pGmucTW1dFkUwJq2B6db2EipXsSvE7M1ViumwzClJK5pMXmv/wS7cwNZU/8bHTh/q++ZrNz766xC9+9Q5/4TMXHmpef5S4vjXkF796hw+2Rji6RsUx+MOvLlFxLWYrUpZy7gBr4l4I04zrWyNpFm1pzFctTF2mjy43SsWaIbjd8fnQcn1XQ11RZDJtLmC5WWIUplRsA12FN1cH+EmKF6Q0XYu1vpRwKIpskF+er8rEWVuf+OccBjdbHkkq9+RrWyN6QYKhaVRtg4W6w2LdoT0VszWImKtJA/TtYUTXjxFCFu6uqZMLuDpfxY9lnPvtjs+FmfJEuiKmBW1PMjiaJZM0E/hxRs053DN4uz3in33zLsMgRZBzql6i7OhcmdXIhJQkzVUdKra+67PcbSZeXFPhSfMkUJAHe2mcrJPlgnNFCIiCwqmGw9DRCRIpL/LjhDSHri9lcgKBbaicbro8v1jj2taQb93tsVx3DnRI3Wv9GDepx7+bpipUHRPL0GiPpK/NxiCcmDDXXdmQynLBTNVEVxTao4irixUaJRNbV7EMlSSThefYrHmcXmeo8vplmrFMdPOjbJdJ/7AYgsVpTpzl2Ecsw7cNjecWqnywKY1qDQ2iOKMbxDLwQoHn5qucnS6jKgqOoXNupkTdNR6ZXnhUEEJwp+PzzbtdbmyP2ByEk1RkVYVcKFyYKXF5rsJC3X68NVGZ+GXTCxIyIRuRlqGR59In5XTTnbyj4yTRtX4IQkarz1Ydkiyn4Vo0XAvbUNkYhJi6DDMZ19CGqlJ1dTRFeUBWVrENXli8Z5D9sDt8s+UxjBLiRKBPSeZTeyjfDUtX+d4LU5yfKvGVmx0MTWWu8HXx4nSyz/pxxlzV4cJsQpzIIIRxEwjg3ExpTxnVbNVmpmKhKApCyGd/GCWSnawo9IOEPBfMV21eXqxxszOi7sphkhen3Gn5vLnaZ7Zi8X2XptE1lUpRx9Rdg7mKhaYofPx8k5prcKPwlouSnCQXuI8p7dqvnnhceFHCL/7eHb5wrUWe59QcnT/48iLPLdaZq9mcny499vUeBoYmB+qqojBdtvg5IfjVb68RZ4Kv3OzQ/PJN/uT3nNvFHD1OqKrC1fkKgzAhjCXbuWLpfPVWh44XU7MNLEOl6ZrMVSw+fXmGYSQDt7w44+JMWdbAHZ/VboAfp49tFfAonG66cqBlqlzf8lhsuDwXptxue4SJ9DauWAmaojAIUpbqNlcWjt5YXjIjNU43nckzkxd1Qy9ImKlanJ8p72IDp7nAMaRyIM1y7nZ9un4sm34HkBjttQ8+zj6vqgqXZ8s8v1Dl2uaIlhdhm1ICuD2MiOKM2ZLNUt2hZGlsDWPSLGe6Yv671ZgCfg64IISIj/JijgJa4Yq/NYwZhTlpKic0jqHTLFn88PNzUk7kGuRFnHOaiwnrYa4qzUfNImUN4PIR0h3HTY1yUbTvlMvUXbNw9ldZathUbemJsVR3eLOYfE9XLfwkk2aKQ2nyfavlY+gySel0032qD+O9A680dVMUhZmKRZzmBHHGSicoNPU6XpTTDyT9WVGgGyT87NUl/DilbOoTY8lHwY8zfvlbqzimpCmbBVtoexQTJjlhItMMx/fBtTReXqrTCxLmajaXZiucnykTpTlVx9jzfpVsndKOIlYIZdJ0uj9XbLxxxVl+5JrtQZjw7sYAP0oZhilnmy4fPTfFR840mKnYJ4KyOTbo7wcpPS/BMmUyzitn6rx8qo6hqU+ULLTXVPNhSHdsGIs1G4RCludcnq9wY1vK9IIkY7picbrpUCoMA8u2TnsU4xhakShyuOtVFQ48LZRGi+P/hg+fqXOn40/izL90rY0Xp1QsrYjQBdvQOdVw2RpElE2Din3waaGi8EBjSn798Z+b5abL2SkXTVGYLQrp6YqFZWgPePFpqsJyw2FUpBVtDsNdjSkpYQFDV+mHTyYF2ByE/O9fX+GnP7T4WFr7v/iZi/zSN1f4u5+7wf/9Dzz/RNdyEHz5ZpvbbV/KuksWP3J1lhdONTgzJQ1tH4e9sxPNskWUZLy0VGO2Kqn8jZJRrH06dzuSWXNtS0o4xgc8L0pZ64WoyM/uVME+6AcJrVHMWi/EiySzKUqzScHl7WBIqYryWGtTXpCg1vshXS8uhgs6P/XyEo2S9JoZRRnTZYsoyScNzyST7NlRLJNWL89VEELwVpEemd1XTCrFQaNs6ax0fQxNpfIY6/ebqwPyXCZaXZwu4ZjSXLts6Wiqwummy0LdYapkPnKyfhQHO7/wuanYBqoiDZNNXa7BczWLQZByeb4ijeNRWOn5k7qk48WYqoamwtnpEkGc8f7GCFUoDMK08CeR8r+DNKke9butdAP8KGN7GDEq2FvzNZvNQUbZMmh5ITXTYmMQomsqQSxlpaebLte2RjimlGDKUIV7e3TNNTg/XUYgqLvmJGhi5/s0X7VZ70sz9OOqmcIk4/2tIRv9EF2VIS/rgxBLk0yUV880OFV3ma6YlA9Y/xwlRlHKIJDSkr6fIHLpXTpft2m4FmVL41OXZp7I78wpGnRBkgERizWHsmXQ9mRK4jtrQ5nGqjBJyKtYGqebLgr3nhvb0JiuSCZkludFYAC7BkJLDQdDVycDxZ3Ic9n4itKMUw33obVaLgTzVYcky2iUTdZ7Ide2hgSJlAANwpSz0+WiEaFMrAmarjm5/oYrg4kUFCxDHiLlAFcie0gCWNeL2RhIZuGphsvZqTKGpuFFqTS/Pl3Hi2RAkqLAUu6iKoq0+CjSAnVVJnePkwTHUBWFmmtSdaRsCmQjbK0XSF9bBT7YHKIocLr56KHX/Thq0+X3Noa8szGgH6QYus4PXpnhp189xVJdyomfpsmzqas8t1DlwkzGxZkSQSz47HtbjMKMDzZHvLMx5GPnDp9S+bi4NCel6T0/QVMVPvf+FpkQkMFq32e6bDNVtoiTnJVeQNUxKVk6jYLNaurqpCbcqzY8KiiKTI+sOQZnp0qSoeVK9v9aPyDKcqbKNn0/YRileFHC6anSkTPvhJD1eViEiKnAKJZrX8M1qbvGrvVgpiJDS0qWTsnUEUKuM6YeMFs1n7ghethnt14y+dEX5rk4O+RGy6PrpSzWbRBSgXWj7XFxroKqyvs6CBPKtv5UhqvHgce9u28CdWDr6C7l6JAJQc01SdIcw1DIMrjZ9yjbGtMli7maQ83Wi0JFQQhlF+Nkrw3rbseXuteqtevDPjMlF4ey9aDEay8kWYZXSHXmKjaLdZs3V/vUJtKEjMvzFRnvmgtmyvLQd7pZAlFMelS5EVmGihYpJHlOnORkqqRm7sXsOi4s1m0sQy0kQUUjyNS5NFfhnfUBIO9vxw8niR6WrqEj0wHrrvlIT6n7IafiOSo6c1Vp+C4Px7KwsQ11V8PPNaXUMUpzpsvyYHNh9uDNxs1BSJhmDMNYRu/G0usE7km3xv/3vY3hLmnX4yLPBb/xxhp3uwFZ0f12zBqLdZtPnp9+IKr0WeHNlT5fut4iznIqlsaVhQqWpnFlvsaHlhsTLfdRw4vSghGp74qani7LJBwUaJYspgozwzTLGQYpWS7wooSFepmqbVCyNF5ZrmPq0uh+oy9TBF9YrD7ykFBzDZZx9vVnS7Kc1W6AqigsNaQpuGvqnGo4u57H8ef5weYQgSCMMyq2OZHYvnq6TsXSWc0CVruBTNgqm49k6Kmqwvnp8p7mik8C2dBVaXsJOULGF8cZpxrOngbCmqpMEr8q98mGS5bGbFU2Gar2k8mY/tvffI80z/mPf/DiY33/uekSP/OhJf7JV+7w53/gwmMnMz4K7WHEr39nlfe3PMgF52bKPDdX5geuznJl/mgmhqYuAyV2PieKokymo0mWA4Ken1Itpm/j31dTFRQFkjQnSgVbw6gwKJXei1EqJdp32z65ECxUHRYbzpEc8M9Nl2RhZar0/AhdVam7Or/z/hbTZYtXlxsTae9YwjL+fS1dJmYNgnRigHx2usQgeLi3nQzcePzhk6WaaYCmAAEAAElEQVRrlG0NS3f4+IUpvn6ry2o3oOkavHZ2Cl1TCzuBp3OQMjWVYZgwV7Eo2QZnmy7vb40oWzpLdZtBIOWcZ6bkEEvXSvQLie3tjjdh4LqFYbSmyQajoat0RjGKorA9ig7dmNoLY++0IMlwDI3cMajYBpauMgxTZsoy2U/TFBZqDrkQNEsmK92A8zNlen7MB1tDhkHMK/elOu1sfiuKNHHeiZKlPzJo5Unx3saAN1f69PyEpaZDs2xyeb7ClGvxwlKVS3MV6QnylJOUkizn6zc6vLUxwNAULs5KL6GNfkizZHB1rsKZ6TJ1d+/B3WEx9nI6PeWyUJN+R9++2+X1u32EgKWGhWsajCIpKS7bBhdm9Qfe27Hn43o/kIPZIplqjP3qST/JJsORzih+aGPKNTVWeyMUReUVo174oGkMQ5nwON6/mqXdz7+uqZzdwYgcN/LG3pczO9bWmrt3g7o1ikgzQddLmK3IZvGY/a8Ar5yq0/KksXK98LFJMmkLMFVycC2NmqOzVHfoBXHBNpPJYLKBJetnvbhpZUufDN63BuHE66YfJM/MRLkzCvkX316nG8RkecbpKZdp1+InXl7g/BN67z0pTF1jqenyk68ssO1FbA1CcnK+8P42b632+KlXFid+xccJmfSo4xTMyjPNEt9ZHZDnOSKX+3WQpFRtA1VRKVv6rntnGxqnp1zCJGPqCOwTDnK9ZVu+1zXXxNY13ljtst6Pma2YDKKU9VbIRj9iqeHw4TNH2+TTVEmYmKnaE786x9DQNSkR3ks6eHW+ytvrA8Ikw49TwkySLeaeUbNnqmzRLJnM1xzCJGe2YvMLn7vO1jBkpmpxu+3jmhVKpoahqozCtDhzP91hx1HgcRtT/xXwLUVR3gSi8ReFED99JFf1hFio2pRNDbvpMl9zZcqLalEydc5Nu5QsnWtbI8Ikn5ic76dpzYpobaDYMO49mA8zO94LHS/mrSJV7+yUy9mpEi1Pyg/WusGEvt0ZxQ+Y79Ycg3MzJemPUVzrJ85NsTEIqdo6GwNJe3+aWmeQm/HDvHjqRbMtFzmjSGMUpXiRbGYtNFwWa49HHzU0he+9MCMPXIbKdNF8mK3YNFxz0rjbiYOYQ++FsTdEkuX0gpSlusGttjcpOs5N3/PcGIbJJPb4SfH+xoAv3+igKArnphx+7qNnGIYy1ei5Izq4Pin8KOVfvbVG10upuwY/8tws3SDF0FWeX6weW1MKpDzGjzL8KNtVPD8s+l3XVBbqNqoGL5+qsT0KaZQM6V2iSCnA9jBCVWUR6R1Q0vOopmrHk15mIBswE4+nhzyPjZLJqYbD6YZLlstC2jZ1mq6c0kyVTaJUMvMGQcrMAQwiHVM78gnUje0R76wNUVV4d33AUr0kTYwfMgmWjJrSA6wFkH4zf/DlRbpewicuNvnvH/Oafue9Lf7p11f4s9937ol83v7iZy7yK99e5e99/iZ/9SeuPvbPeRiyLOffvLPB+5sejqnyyUtTLNZdlpouV4/w3daUveXnYxiaOjE/FYJdRp22oXFhpszdrpSqv7nap14yOT9d4vJ8mQuzsnkURNLz7mbbY7FxNM3y8bO6PYw40yyhqtAeJVzbGhElgrrr8dJSjVHhJzQOJjF0BT/OWO+FuNY977Qxe+mokecyYto1NZZqLmVbY7bqcHoqIkjyIs5ZDr2eZuPhbjegNYpwDCnfRJEMzWGY0vZjgoIt0fVjFmrOLrPji7Nlgjib1EOmrvKpi9O0RhFzVYvNQcQgSAvj8SfHcsNl4CTomjJJCF5qONLmoCiqh2HC+RmXNJOy7rsdnzQTBFFK24u53fJZ6wZMFeb8JwmbAzmQa48izk+7XJmr8iPPz+MYepHG+GzYztc2R3z+WotBmHBhpsTV+SofWq7z+t0+FdvguYXKAwE6R4GaY+DHChsDb7LmVByT1W7IxVmDsmVwdb4q/T3F3kNikGw3t/AMO6h9glOk7cVpvq/1wXdW+mz2ExRFNsA+fm6K5aZDnsv3YfyuPCpsZqku5bs7bSIe5VtZcw3CfkTJ0h5opIJcTwaBHALVHBmcoKDQHsW4hsaFmQoVx2C+YpNmAGIycNBUyWoNk2zP807FNmSCJ8oDw6OnhTzP+ew7W1Labqq8dmaahmtwaqrEK6fqz+Sa9sKLS3X+T997ViZr+jG3WgHtrZh/89Ymf+yjy2hPuRlQK5l87/km11seUSpwLHkeqljSq2yvOrW2w1PyqV6rY/CRs00uzVfwo5Q7bZ/vrPbZHkW4lsbmIHr0DzkkGq7JZ67M8sKO9HJDU7kyVyEXYs8htEDWRZaucafjc3vbpz2K+OK1FmemS8cScvUoKIrCclPWtl+53sLQFRZqNjNVq2hgK7y4WGOtFzJXO7zy46TgcVeffwT8deANpC/giYJAmXSDZ8oWFVtnrShWFQVutXzeWhvgGBqnms4jD5eaqlB35XTisIliO+FFKZau0A9SvHCEpqqUTI0oy1moO4RJJjdNV6aSjCJ54B8/XPdv0pahTQ5gjZJ1JP4UR4EozUgzwVzFpjWMyATEqSh+N5PpslkYvj3ei12ydF5eru/5Z0f5IvqxZOWkmUyLMDWFmy0PU5cJJuMUmXGhUrENTD1+YsbUO+t9vn23R5xlqCicnS7x0bPNE/P5Amz0A75xqyulk2lG2Xa4ulTDNvRjv84ku+dhZOoPlzuN03XG0pqz06UJw/FrNzv0/ATb1Cfv/3LT5U7bx9QfTOp5HIwiGd87vhV7NYfCJGMYSumRpWtMl6VfxCBI+a13N2kNYxbq2kRWOle1pRQWharzbIpHkE1YL06IUsH3nDcxNIVekDBfe3iTfi/WAsim4fnC82eq9HhT2o1+yF/6p69zdb7Cf/qjVx7rZ4xxcbbMT728yD/+8i3+/Peff+ym9l7YGoR8sDlkexQRpRmuqfHDzy+w1HCeybttGxovnarv+c46psZ8zeb61og0F9gFq3Dc7Op50tA0E3CqabMxCJivHqw5JYRgGKXYRXE3ilI0RZm8I0Ei95DWKC5kaNIzRlUFYZJOJAJjjBkIrqkz9RQYKIMw4U7bR9cUojQFRe5xqgKLdYetYcTlucpTZUqBvK+SFSIPsJoWyqa9kB6aDcek6yVkuaBs6rRGEZauToZdlq49UHDvbFydmXry9X1soTAO7Bh/jlfnjV0/e7yuV2xppJ+JHEtXqbsm37jdZRjGiFygqoKSJVOTTgLGbHdNVRhGKXGSMlu1qZcs6sXE+1nBi2QQxrXWiFwI4izHMaXnqqYo/PDzc8DRy7J2YhimdLwYFIWaY0rD/JJ8/kqWRt+PWe9Lmd/Z6b29mBTl4ayjh0FTlYm8d7/fr2ob2IZCkOY0XUsyU+77O+1RxM2WRy7glVO1XUO4MMnIhUybPKwaYLZiT1QSe0EI6csjhGBrGDJbtXhrdSDfJQXCNGe2bHOq6dL3E/pBMglTyAqpX9Xe2+zaMWVaMBzv5/8wjMKEr99qs97zibIMR6h8+srsM9sbH4UXl+q8sFhjYxDyDz5/kyTP2BwG/M7723zkTOPQn/2TwDU1SpbB6YZLWgRSaWpGzdYxNRkWMopSrH3q5aeNapF258Wp9MqtWoRJihenk+GJonAkjE1Z59QeYDupqoLK3s+WZPmrtEYxy3Wbt8WA7VGEaarFvXy2/k2WIfdqU9NYqDvc7njUbJ0Pn2ny4TP1PYkBaZZPwhCetQXMfnjck01LCPG3jvRKjghJJhPfVjoBZVtHU+9R4IZRyo1tn9ttD9fUJhKER/08Q1NZbrosP+G1zVYt1vuBNL4ERpE05GyWTWYrFrahIQr/mXc2pG+FnBZKCuY41vVhi/SzXLzzXDovJYVfiRBg6grXtjw2BgEzJYtXTzepOQYCwVTJfGSa2LNElgs+/34LP84I05RLMzK159yUO0nBq9jGrgQlU1e5Mv9kE9ubrRG/9fYWrVHMXMnmhVNVPnVpBni2n+9OhHHGv3pzg41+QJoKPnqmwaevzmIb8vM8zutMs5wPNkfyYGVrBaNi739vrTDmVxS4VKQLKYrC1jAkyXMUVeHSbHkiXypbOs8tVCaHiifBWi+gPYrRVIXz0yWMhxQEN1seaSboePeeHUVR2B6GxGmOoaucbjoTerhtaFydr07WgmcF19T50Okmuqpwaa7KWj/ENbSHxt7uhfHaerfj8/VbXQA+cubwTd00y/lP/tdvEcQZf/vnP3wkhcx//IMX+bXX1/gHX7z5xI2uMVa6Pp97b5s7XR9HV3lxqcYPPzfHqT2kj0cNIcSebLUxHvbOVm2DFxZrzBcN0Z1sRC9J+ejZKe52Pe60Ala7IR8/12ThAFLytX5IZxSjqtIX7ua2TLMap77VHYMtQ3ojyaRIiw8v1/nSjQ7rvYhv3eny2tm96f6HWX8etac+DIMgkelIfkKSCraLdLeNQciVuQofP9ecJFs9TUjT1hzbUKRfXtniTsen7kjJsFX4/QghWO/fMxu/NFee1B9ZvvcEeee/8SSIErmGX5mvPLCG7fWzxzVFnsu0xYqtI3KBrmqUHY3nF2s4lsbZqeN/jx6FIE55f3OEqij4sfSFrLkW8zWH5xeqnD3ixN7DoO8n3On4bA5D6o7OqabD5bkyCzWbtW6ApqqkuThQGu2TIIgzBkHCai/g1eUaF2alnDFKc263Pd5ZHzKMUpbqDoMgOXK246Oe39fONVEUhSzP0DV1z3qg68fc7QRkQlC25DM4/t3GwSaLdfux5K77XZ+iKCzWbd7bGKIoCp2RZD22RhEr3YDFusO56RJlW5e19o4m3PXtEUGc7SthfVY1Zp7n/Ou3NnhnfUCa5bywUOPHX5hn4YhYuMcFRZES4z/7/ef4V29tcrs94kvXWmz2Q/7wh5ewn1KIwamGS8M12R5GCKDvx7y5OuC9zRFdP0XTFII4R9fuNWcfZ987DpxuloiSnDjNWR8EjMKU76z0JsEd52dKT6wE8qKU1+8OsIwhP/7CApl4eC00hhBCyngNjVTAJy5MUS8Z2KY+kaA/S1yaq0wYmX0/wQsHfLDtYepSpnk/ezjNcj7YGpFmgqqjH3l6/FHicd+abyiK8l8B/4LdUr5vHuSbFUX5S8AfFkJ8SlGUPvCt4o/+sBCioyjKvw/8RaAD/LwQYnDQC0uynDyXC4bCvRcvzSX1O0xTRmGCrqt8/HyTZvnhXe1bLY9hmNIoGUeSWmDpGnNVG12VBSxIf6hxctKVYrq60xx5fEwbRxs7psr56YNFG0dphqkdv0lglGZc3/JI85xRJH16ZAJakRwwUoomofKARPEokGb5pFl0ZD8zz6WZIFKO9e2oR5oJrs5XOT3lcmaqdOSNgVGY8Nl3NieR51fmyxPa5kmBEIKv3mrz7vqQOMtYrNtcXahhPqXpQZqLHSbGhzdXFkIwCBOGofRQaO5oLKZZzrXtEUkqONVwnogpM46xzwq6/2GfzVGU0vVjGq4x8dUYY+daME4Ze9pYrDsIpJ+NbUhz1vV+QMuLWKjZj/TnutnyGBVra5xmpFmOqiiT+3YY/K3fvsZXb3b4b//oK0fmGXN5rsJPvjTPP/ziLf7DT50/9HT+fnhRyldvdHhvY0iYZlSaLs8v1CYeYseNG8X9rrvGoQsSU1cnzab2KOJ226NqG8xWbLaGIWXLIEqkJD3KDvb5jSXPeb7bfDUpvl8t2A22oRWhEhrXtj3W+z4NR3rU3M98iNMcXT34mtAeRaz1Qkxd5eLs3qmfD8NUSUbPt0Ypm0PZlKo4Bq1CCtP2TC7Nlp+6mTVIhpOll8jyHMvQGIYpSSawTXVSxyiKwv0tYCFEcXjNmatae0qi74coWDeHrTOyYh3f756PGa8rXZlOulC3J89Hs2xyp+MzCAULdViqu8/8kJVmOW+tDXj9bg9LV2mWTGxNpWRJ49/TU+5Tibd/GKJMsvB7XoyhKyxWHdIs51Y7oGJrnJl6Ov49mqqQI4iSnK1hzPJULj1TdZUkE5QsnSBNsQ2VXAjeWutTd82J19L9yIrwoqOq/8qWbNr5UfbQ57Rs6mwMAjRF4VZbRVNVzky5xFk+Wc/u38uOqk6dKlvM1ZKJ0XrJ0ugHMa5hsNYLQIGLM2VK1j2p6JhJebfjo2rKJIjhWQ63xhBC8LVbXb51u4sXp0yVLV5YrFF/Ct5HR4WqY/LcfJXNfshmP+DNtT6zVYsfuDL71BhKY2ZrmuV4hcw9yjIarkGY5PT9mM1hRBin6JqUvl+ceTZ71E4YmsrpqRJdP2EQSlZXL4i52RoxCjOCJOPV0/UnGjjmCNJMrjN3O/7/j73/jrIky8770F94c71Jn5VZvqp9T083xgMzA0MQECAQNNIDnShSJEVSjpR5fFp6EgWtJ1HUkshFSSRBicQjpAdClAQBJEESbgCMg+mZ6Z421V3epc+8/oaPOO+Pc++tdFWVWZWuofrWmjXd2Xlvnog4cc4+e3/7++gECQVb36IJtx29MOH6ag9NVTB0hflajgwZ8xas43VBB7lODZNPiuJjaCp5UxaHb671UBSF04Nz6kYv5H7D407DY6bsPlGcfZR40qj4Y4P//+Smnwngi4/7oKIoFvDKph+9I4T4/Kb/bgB/FvhO4PcDfwb4a3sdmGtKgcWcpVFwdCaLDr0w4fZ6n0wI0hRMQ+odrXZCZh8S0Agh6AaSUhjE6VMnplIhuLbSxdQVNE1qE52r5/jqjQ1KrjFwppKBtqYqnB3L0QuTESOnM9Cp8aOMOMuwNlkbt/0YQ1O2WAwPGRtHcXgdbuD9MOH9gYZWsx/xmfM16gWL+ZpLwdEPTJdiM5r9iA9XuuRMjfl67pFaYfuBpWu8NldmuR0wnjf5YLWLZaj0owQvTFls+4wXrAOjc15f6fH1m+uEcYqmSbeoj81VmKk4x04ZHWK9K5kKV5baFF0dL4DX5irM1dynanHdD2xDY6ps40fpY7XdpsuOFOY3HrSnhAO3yI6f0PFjXp+vjX4/SDLiRBDEKYstn/JT2B9PlWzW1BDHfLTj01DoefO8jVP5jnthKi3Sp4pbWDWdQAqedjsx02XnyKzFN0O6IoXkLZ35mnQ4cgydom0MWpAfPh8etBvJto6xgoWuKURpysQ+BVd/8+YG//2vXuNHX5vh93989qmuaTv+whcu8AvvLPP3v3aLf/d7Lj7x93hRwi+9t8zdRh9NhYpjcG48z5kx90jo/mkm6PryUHKvIffIJxW23ehHeAM3m9dPVzA0B8fQcAf2xadrcj6vtAPytr4jqTrEdNlmtROSs3QMTaGWN+mFMd+626RoGzw3XcQ1HwSOq50Ax9A4Wy9gaFJHYfO7ObRi1zVlzwmhofZblGSDtsq9vUdNL6LlRaRZRhBn0mHX0rg0XsCLUuJU8MFSlzjNeG6qeKStE/0woe3FNL2Qj89XGStYbPQjgijdYggCUovT1FQsQyaXwyTFj2TA2gniHYmpth9jauqWluQ7G96oFXmvCU9NlayPhyVpGv2QG6t9On5MmEo9oJyl45rSVaoTJEyVpZNqmgqEkNpix22N7ccpbS/im3cb6KrKj358hpdmS/SjlMmivcWp9KjR9aVG29WlDtW8haXL577SC5mtOuiKymTJOhSzhzSTe2rHj2WLkSIT0mfGpNPnUBRc6qfIFrTzE3nyls6VJdk50OhFTBXtHUnnMElHbLq5qvvEBYQ4FXzrbmPEgJkp2awNBNJ3m6eapvL6fJWVjmyVjZJMmiMVLMYKFkmWMb5pjR0yqUAaJj3tXKi5JiudDmkmKNgunz5X58OVDn4i5R8a/WhLR4KiKFTzJhu9CEUVvH2vxXjRHjiNHV9iwosSvnptjbfvtTF1lQyd77pY59JU4cB1MQ8TtqFxeUruTT/7jQVQBd++36YXJHzmQv1IBNGH0DWVM/Uc1ZyUnxnmIN661xxoDca8PFsGpBRJ4QS09uUtnRenSyOZl8Wmx69cWaXtRUyV7ade3w1NJYhTpsq50Vm6GySPbOtt+zH1nEU/Sqi4FlkmWO9KHaw5jp+duxkzZQfjXI2OF/ONu1JipWAZjBUs2l7Mt+81STLpNrjZUOGk4olONEKILzzF3/xTSI2q/3zw788pivJl4KvAXwYuIpNViaIovwz8xH7/wNhgcxjCCxOkUZfCRMkcKe0vtgIuTCS7JjOk64HCleUekwOq7NNs2kkqCOKMtW6MbWgkyD7g56aKrHXDHYdgqcH04PGMFy2W28GgGqqRZVKjwwsT1gd0/HPjudFn+uGDRJak5h9eYqroGBT8mK4f0ejHtL2Ikm1yZanH+cEhYa/aI/vBejfk3YU2TS+m4hrUC9aBJaYAJksOkyWH1W5AhrS5z5ka11Z7TBZt4iQ7EJeQIE75+q0N7m54rPUCzo0X+NhcmdxAuPCk4NsLLd5bbLPQknbG33G2yljBOXIBxb2+h5qq7LBLtXSVjV6EF0l9nzuNPqfrMjmdM+UB++pKh4mSzUon3OL4tx/YhrarO91uv7d9w5WCv7INxNJV7m14PD9VGgWQYwWL9xc7aJrCcjs4FqeaK0tdVjohK8h7dKrqkgqBrqqPbdFVFIWJkkXLi6nnLfphItkbQuXqam/PY+iFCf/ez7zF6VqOH/+XX3y6C9oFz08X+d7nJ/h7X7nFv/7ZM0+8tlxZ7PD+cpdmP6Jga7x8qsJkyRk56hw2NFWhkjO435KW5r0weeLElGNovHW3j6VrbPRD1ruSKVV0jB3uTkEcUctZux58LH3r+zFesHhvoc2VpS6qAiiCj29KGhcdg/VexExFtqpsf2eG+510ts32lJgaK1jEaYZtaDh7DHpXuwFv3Wmx0Q/RVIWcKVkJn5ivykO1H/PW3SZlV0dBMgCPMjG12g1Z7gTSUKXtM160mR/YitcLW5Og6sCpaAhL1wYJwmSUlIrTDC+SrkRDF7Tz4/nR/R+6fe7H9dPU1S0tTmGSEiYZBUsniDO+dafFSjcgTsSoCHFmLMeZWo6b6338KEVR4EzdZaktn8NxiPhuR97SuTVg2Zu6RqMf810XTwbj+cpyhzsbfe61AsJUSilMlhzmqnIOlF3j0A7PUZJxbbWLH0kN1UY/pl6wiJOMF2a2ut9uF2Su5kxWOzI+3o0JGUSyQwKk/fuTJqb8KOEbt1toKsQzgjNjuUfu32XXoJaXrrlJlqEpCkVbxvC7xQxelIyYVF6UPnVcJ5kvGZ0gpuQYmD2FJJWH7ST1mK/VdnxmtuwgBCw0fRxTtigGSXqsiakri23euttiuRNg6SrfcbbOfC1/It7n/aJgG0yWHD59oca37rW4s9GX7rWKwg9/bOZIxzJkT3WCDnGScrfpgaKw1g2JM4GhyXftMExBnhQl1xi9v9eWO7S8iCDK+HCpy/e/OPVU3x0lGZqqEsYZtTFzpN/8qMJz2TWlrnTepJY3efteayTMPlG0H1p0Oy6MF2yyTJBlUmpgoe3zxpkq395o0YsSltohZ+o5np8ungim5KPwRLNSUZQJ4P8DTAshfq+iKM8DnxJC/M+P+ZwBfJcQ4n9QFGWYmLoANIG/DfwQsAEMW/faQGXHF+0TlZxJP0qlMGnJ4YXpiMWWTDI4hjai+G1+WEIImv0EQ9XwB4ygp8HQojJn6yhCBnyaqjCet/Z0+B0KxQ1xp+HRCxJafkRpsCEmm8Y4UZIV6aKtHzpVU1MV5msu692Q8byFqsBk2cYebHiH0Y+71g25td6j4UVYmoZpqE8snPw4jBdsxgs2bT+W7Z1hgmVs1QyKUxmc7Ke1bNjDbGgqYZTgRSmnqi6fO1+n4BjHZte7HcNrc3SN9b6sIr5+uszFiRJFRz/xi9xmKIrCS7MlKUqbpsyWHwhrKoqCqSuoispaJ2KiED9xYuppcWG8QKMfsd6NmK04W0TDdUUlE5DGgrVeeCyJqYKtkwmBpasD4U2dFwY6G3vB8J0CmVRoehEI2M9U+pu/co2ldsDP/rlPH5pe3b/9xQv80Psr/IOv3eYvfPHCvj6bZYJUCHphgh8lOKbKFy9PMFV2sHR1pDV4FJiv5TA0FS9KmSg++bpiagqGppEJ2OiG6JpKnIjRGp9mAsfQ8KMMx1R3FbvfDaqiyOKJIljvx6x1I1Y6wUjvxjY0np9+uGPheMEmyXxsQ9vzXMhZ+siVcK/o+DEr3ZBmPxq0+JtSf3JwiC05Bp84W2Oh5R/5Mwb5Xg6fha6qiIHo+ak9um9vdnHMMsH1gSaFFyW4po4QbImFpssOjX70xJbj8UAzUIgH+lGuqeMYGqYumBu4Fw8TYYam4CPni61rzNfcEyHmG6cZKlDJGZQcE9fUuPyUepMHgeGzKli6ZNsPEoDnBq1esxXniXSQ9os4ke5wfpShqIKSbVCwtcfGbBNF+5GaVwVbp+waxGlG/RGyHI+DQDIhFUU+SyF4JJvCGBh27BXlQUEgExwIu1zXFFxTox/LhLA+0LNTFZlgbvsJxW0dCkMmzVTJZqHlD1qSjst9T7Zf+lFK209wTI3PXqhxYaK0pxbik4pqzuTiZJFqzuRfvL9Cb1BgHMb6R50E1FUVTc1wDY2pokMUZ4wVLDRVPRRZlYPCufEC4wWLtpdQLRqy2ykRGNqT62J1ghjblJqVj3IrHiK/LaYtOwb38FGQulMnEbahUXINDF3lxWmZ9K/mTG5veFRzJlGakQmB9hDB95OCJ12VfhL4+8B/PPj3q8DPAI9MTAF/FPj/bf6BEKIBoCjK/4VsEfw5YBiBFoHWbl+kKMqfBv40wNzc3CP/qDFYkEEegi5NFjg/nqdkG/hxyp0NqelzbuxBJTAT0qWiljcBQeUpM/iaCnM1h6JtcGu9z1o3pNGPKDsGcSb2TVMcanQUbckUMnV1S+JqeyLrIJFlUldi85gzAbYp2ycFMF9xOTeRJ07EobiHRWmGY+iMF2Ri73Qtd+gJOMfQmKs6XBjP4UXZyFJ3qFWy357tD5e7bPQipko233lhjPFil4Kjc3GycCztWbthpRNwc7U3Es3tRgmZyDhXLxyYns9Ro2DrzJQcSq6+Y3NOhaCWN0mzpwt0nxZlV7qLzVUczmxrxe3HCeMFCz9Jd7iMHAVkGxNMlmzOjeXID9aZbhDvy757CFVVeGW2TDuI9xQwAFxf7fH3vnqLP/T6LB+be+raxUPx0myJL14e53/6yi3+tc+c2XOFMYwS3rzbxDFk5fJzF8dI0oxXT5VH9+uo8ah7G8Qpuqo8du2yDZ16wSRJMyo5yUz2wpS8rRPED4R/Zyo2rilb5h/HDkgHwuyfPFvH0TXeX+4QxBkdP37koTRJM+kWaGg4psa5Q07QdgIpxDxRMCnYGrmBs+z2g6ZtHP5YdoNAspG+eHmM2w2PKBbcXO9zupYbMcP2g0w80PMrObKabWpbGZHVnPlUB+00e6CnGacZBdvgwmSe2ZrNZMHB2HaQO1VxWdVDEIKrg6TZRMnawYw9Cggh2XltP2KhGZAJwelajh94UQrSPje190T9YaAfxrx9r4Wuqjw3XeRzmjTS0FWV2YrD2BElADRVShPoqkKaCSxdQ9Mku+eD5c6WuHu/UFVlT8zkx8HUpBlF2dXRNYU7G9K056WZ8lN/NwyLtwfHnpuvuliaykTJpOOnNLyIWt6g5RmUhwfQQZxu6Vv1345rfRrCj1K+dbeJZaiUXIPPXaiTCsGnz409tcj1ccPU5VlzvurSi2J6Qcqpisu11a4sdpZMzo8/vMBy0Dhdc+mHKWfqLtdWeqz1A6o5c9cCepikqMr+9VAPA/P1HD/40jQb/ZDpssvV5S5eJI3CTlVcFGV/Wm2GpnJ5skA5Z5IOGGN7gRfJxK9r6pwZyxNnGR0/Yakju5eOW59rO8quyevzZVlQGsjrXJwoSKbcJt3bE5pXG2Ffp19FUXQhRALUhRD/m6Iofxlg0HaX7uErLgGvKoryZ4EXFEX5d4D/XgiRAp8B3kEmuV5UFEUDvgf4zd2+SAjxEwza/F5//fU90ZlaAyeNTAhMXaHpSdcsWR2RC+Zwg9QGG56C1A64tibb0p5U76cXJnzl2jqvzVVGVrJelHJluTuqFu71UAZwquqw0YsouYeXgNoNQgiur/UI44xq/oEgpaZK+97VwQuw2g05N5F/atHgh2GoRXNUQWk6qB5LMWtYbAUkacYbZyr0ByKUcbK3NhIhBO8utPknby9h6irnJnL8wItT5BxjwEA5GUmpxZbPP3l7kbVuyLmxPONFi4/PVaQ71zEcBA4CYZzyq1fW6PgxczWXIMlGwu1r3ZBWP0YIwaXJApVDYuA9DkmS8aUP1lls+ZyqusxEKeVB7L3aDVhphwgEF8bzzJSPvurVDRK6fsz7S22aXsSrp6Q47LDV59JkYV9Bw/Bdntdye2IJCiH4K//4PWxD4z/8/stPfB17xb/1xfP8vv/xa/zU1+/wb37+3GN/348SfuZ37nG34XGq4vKpczUmSzYFyzi2pNSjMNRn0lSFCxP5Rz67oqNzaaIwcu+S6778/Q+We9xa6zNWsOiHslVeCNky9yjmYS9I+PK1Nb7zwhhnx/PEA0HtwiOE4YdMmzST7V6HoY2zGWGc8eWra0RJRtHWURWFSs5EU9WR0Oxxw4sSfuPqGlMlm7xloKkZXT/hg6UOmdj/XqlrKqcqLp2BUcRhaDjZhsZMxcGLktHY5LPc/Xn6g+TntRXZGvv8dImcpTF+DOSkOxsebT/mynKbjifbyC5NFHhxtnzsbGc/Svmn317ig+UuYwWLSs7k3Fh+lCSuH+H4UiFo+/GoQNnyYpabIeu9kImCzWTRPnZ9MGlLr5K3DeIk483bLTIhqDjmkbim7gctL+Lb99sjRm4tZxEngmrFojAnNR7reWvU9lp2jQNJ3h0EvDDh//zGfW6s9zlVdfjU2TovzJZwTf0jn5TaDFVV+I7T9YHWl8Zv32zywXKbfpTw/S9O8dpc5UjMGnRNpeSqNPuyS8iPUla7AZ88u7XVc+jYub1V+zjx8dNVVrsBYZzy3mKH1U6IY2lsjIW4ls7Zsdyez0qOoXF+Io9r6nu+trYfc3fDA+R5+17T4627bUxN5eJEniDJyJ+wxBSAoqgUbBMhoBfGXF8NaXoRa52Qc5pK04tOXBviduw3mvpt4DWgryhKjYFpnKIon0S23T0SQoj/aPjPiqJ8Bfh14HcURekDN4H/VAiRKoryd4EvI1v8fmyfY3woooGjix+ndANByTFwLRXX0tBVZcfCWHIMejmTrBeRZRDE2RMnprIMokRaNJ+fyLPaCbB0jZYXA7LvfD9wTR23evTBcJJJNxWQm8xmGKpCxTVoeTF+vHcx2SeBrh2tgNvm6vFaJxiJNy+2As6P54lTOTfcPbRu+HHKSifE0BXCJCVn6ujqyROku9/0MHSFOBWommzJPAra/2Gi0Y/QVLlwpZnYQmX3oxRNVanmLEqHINS/V7QH4uaaCl6cbGmT8QfrRNE2qeetY2mjHCtYXFnqoKAQJZLZMjyYD1t99hPX7Pdd/hfvrfDla+v8pz/0/KEnJAA+NlfhOy+O8Xe/fJM//un5x65rK92AIMlQFLmuT5WcQ0vQHwSG7k5pJh6riaQoyq6tFkGcjtqS/TilYOujvW3opPYwCAEdP6EdxFRy5sDRVXnksw2TbLQe+/vcO58EcZYRJYKNXsRYwaKWtzB0aazwNO6dB4kkFcSJYKUTMn86R9OLMDV1JPbqhSnsM4GzWffjsLAf1lWUZASJNKRRVeiG0cgg5qgxNEKJU9mWpChSC+0kJAHWeyFhkpEJKeztGCqqurv+0aFjUDa2Ddl21w1SMiFG/zsJUgBCQD0vWZ59kZCKDMfQaHrRiUtMrXRC+mFCEGdMlSwsQyFvGbimhqLolF2TLBOjdbEf7V3/7bCx0g0J0wxVkXFwNW8+khX7UcZQ5wnAsWQbvaFprLTDQz8fbUfB1ulHCY4pDWq2M1G9QUvodoLGccLUpYvs6oCdFGc+Luqg9VMf6MTu7R4qCvs2MNsct/SChEY/wtQV/ChBVZUjb9PfKyquMdJ8dAyd9V5H7lFAztRGRIqTjP2+GcMd5C8CPw+cUxTlq8AY8Af280VCiM8O/vG1Xf7bTwE/tc+xPRb1nEWSCsqZQTeIyQTUc/YjA6963iROMnRNofgU1t66pgwqF86WNjtLD+iFyUdmcTY0lYmSRS9IdhxQxvIWp+t5/Cjl0uRHs83rYTA0SX/vhQmzFZtv3WuRZtINwTUf2HbuBZauMVmyuRQVcS2N1+cr+9KmOirMVBya/YhqzuRjpypH6ixyWCi5BnPVHPVCwquzW6tW40WLdKCbdJwMiIJtMFtxKLsGL82WtgQJE0WbNPNxTO3YmHW2ofHyrLTvzYRgtuJgGzqaKp3TDjOo8aOUH/8n73NposAf/eT8of2d7fh3vvs8v/9vfZ3/9Tfv8m9859lH/m7Fsbgwnqfk6HziTPVEJ6Vg67x/UjFUU5N6StNlh8mSTdk1SQZuXI9j6WiqdOkr2saetVvylk4tbxIm2ZGwUyxdug4O2V/u4FpPEoZjnCrZ1PLmiBWz1Pbxo/QjE2M8CmXX4MJ4niTJUFE4PeZSPqb3a6bsoCkBF9UCaSYo5/bHej9MFG2D82N5bEPl0mSRqWNg1g6hqQoFW76vhqYyXbalDmnRxrW0EyHAbGgqOUtjomijKgptXxaH5k5YUgoka3W8YBMkKZcmi7smxtWB82XLj4+keLNX1PKSuedaOh+fq/yuWJP2gk+cqSEywUYvPhanbV1Tef10hTsDraHtXTa1nEUYZyfGSGIzankZT9mGimvoozEedkGi6pqj5NREwSbOMoIo49yYycWJwpEw3p4EQy05kMXG4Z40U3YYK1gfiXduvzvCmKIof3Hwzz8L/AIyWRUi2+6+fYBjO3DIxVo+pKH43uParixdG1lWPw3yls7nLtR3/L3xos34U3/70UIKF+/8uaapfOJMdeACePIojk+LSs4cBQFfuDT+xNepqQovTBe5PFk40fdppuwyUZDtOid1Ed4vXFPnjTNVFNiRDLQNbbSgHydMXeWN01UE7Kgm24Z2LGLn2zFZsqnnzS1zY78VqSfB3/q16yy0fH763/jkkb47H5+v8pnzNf7Ob9zkj37q0Qmxkmvw+Uvju86xk4iDmPeqqnB+PL9lTdzrgahgG7xxurrve3WUSQBDU/j8pbETvRbahrrrGE86bX8/UBSFuWqOuWqOZGAgc1zPo+yaI3bKbmv1caLkGrxxpsonlNqxr0Gmrm6JoWt5yTg87ue3GbqmbNlXP3OufuKe6RBTJYexAVv6UfdueJ9PEoq2wecujn1k9saDgm1ofP7yxLHO+fPjhZEJynZsf0dPEjRVYa4mXTKP8mypqsqWvfNMPc9cNfeRmruaqnB5ssCF8b1rH58E7HekGpBHEsJzyMSWBrjsmyR+vFD3IPR60PgoTYwnhaIc/X09DjztdX5U7pOuqScicDxIaOr+3BOPA6qqnMigeDOOem7cWu/zt3/9Jj/y6jSfOrfTDvuw8W9/8QLrvZCf+I2bj/3dj8IcO2g8zZr2UbhXH4W18KMwxoPCSbnWk7pW65p6ot+rk/L8dsNJfaZDnOR79zj833FvHOK4n9tJEDZ/UpyEM9NHce6ehPu2X+yXMbUkhPjPD2Ukz/AMz/AMz/AMuyBOM/7i//YWlq7y//qB545lDJ84W+MHX57i16+uHcvff4ZneIZneIZneIZneIZn+N2KJ9WYeoZneIZneIZnOHQIIfh//9x7fOtui//hx17bVXz7qPBf/ehLOIbGJ//nYxvCMzzDMzzDMzzDMzzDMzzD7zrsNzH13Ycyimd4hmd4hmd4hk0Ik5RrKz3++i9f5ZevrPLnPn+OH3x56ljHVLBPljDoMzzDMzzDMzzDMzzDMzzD7wbsKzElhGgc1kBOAuI0Y7kdYOrqoSvXZ5lguRMA0p3kJPStppngXsOjnrdwTqgV5knBRi/Ei1LGCtauLmRxmrHQ8pk6Ic92Nzx73uBFCevdiKIjbZZPIvwoZb0Xkrf0E2NNvx3DMeYsfc/W7w/D9dUer/8Xv8R6LwLA0lX+k3/pef71z5w+gJEeDD4K7/deMNyHBHxkrkUIOeZMyL3zKLRgPorPOx0826ED2kdVk2Y3DGM1S1cPhUH5UXjeH6X9e6UTECUZkyX7ROrcfBSe95OgG8Q0+zHlnLHDie2wECUZjYGb8zPsHy0vouMnxz2MRyKIU9a64YledzbHCU/6+ZVOSJJlTBbtj5xO00HiqJ/38fu0niCsdkNaXgyAY2qHupBv9CM2BgcvU1dPhKVrlGS0vJgwyTg/fvzOXycVYZKy2JJJxTjNdnVJS1JBoxdhauqR2Jk/CZ49b1ho+gRxRtuPKdjGiRQ8XWh5+JF8VgVbP5Eb5EJLWtIPx/g0hw9dVfje5yeYKjlMlx2+eHn8xAW5H4X3ey9oepv2oY/ItTS9mPWuHLOhKkfS2vlRfN7rvZDG4NnaunZik9pPgpVOMIrVXEsnbx1sKPtReN4flf07FYLVTghIUfGZI3TT3Cs+Cs/7SXCv4ZNmgk4Q8+JM6Uj+ZpoJFpo+eUvH1E9erHKSIZPN/nEP47FYagf0gmS0Bp9EbI4TngRtP2atK9ctXVWZLB2fhMRx46if97PE1CZYg0VUUWSQfqh/y3jw/Sdl8R4WVK0TMp6TCl1V0VSFNBNYu7ClNuOkPNvd8Ox5g6VrBHGGoSucwJwUIMfoR8MxnsxBWrqKH6XomoL2lGM8Xc/xX/7oywc0ssPFSX6/94LN4/+oXMvmcVr60VZsPyr3CLbFMx+hce8F5qZrM7TDWxNP8n37qOzfKgqKAkKc/LGe5Of9JDAH+7JtHO11aSfc1fCkQlXA0BXi5AlpPkcES1fpwYl+xk/7Lpu6+pFZtw4bR/28FSFO9guwF9TrdXH69OnjHsYOJJkgTjIAVhbvcdRjDOOMbPB8bVN7rHL97du3j3yM2xGnGUkqx2zq6q4vwmGMUwBBlAKgKsqWxOGT4CTcy92w+TqPY07uFWGSkQ04uCdhnJkQhLF8lzVV2bHpnYTnLYSk3IKsTG/fTI9rjFGSkQ6epWWoj02unYR7uRuOaj0XQrIM9KcMAob3cfO7ZBsaJy23+X/35/00OAnreZwKklTep4ft2ZtxWM87SjPSYexgqE+VID+pc3JzTHdS5yScvP17M3abryfxeW9efwxd5f7dO4c+Rj9OQcik524SFXvBSbyXsPV+Lt6/y/TsHIauPvU+e1jYfh9TIYiGMaimHDp5Yq+4cfMW07Nzu8acJwWPmpNBnCIEoIDzhHP+IPBRuI8A3/jGN4QQ4lAH+LuCMXX69GnefPPN4x7GDnhRws21PkLAn/iR7z7yMS60fBq9CMtQuTCef6zGxOuvv37s97HZj7jf9FEUOD+e33VzPIxxCiG4ttojjDOqefOp6eYn4V7uhs3XeRxzcq9YbgesdUMMXeGP/EtfPPZxxmnGtZUeaSaYLNk76P4n4XlnmXy2UbL7HD6uMW70QhZbAaoKF8YLj61knYR7uRuOYj3/xp0mf+an3qTVi/jR12b4a3/glSeuUg3v4+Z36cJ44cRVOf/v/LyfFidhPW97MXcb3iP37M04rOfd6EcsNH1UVY7jadh0J3VO3m96NPsxlqHyYz/4hRM5Rjh5+/dmtP2Yuxtyvp4by+OY2ol83v0w4dZ6H5As4s9/5pOHPsbrqz38KKXo6MzXck/0HSfxXsLW9fxf/cHP8zO/8GvM19wTa2iy/T6GScr11R5ZBjMV58TIG7z4ysf46X/6a4wVrBPb7vaoOXl7vU83SHAtjXO7yLIcFV585TV++p9+6UDOn4cJRVG+edh/43dFYmo3NPsRy52Agq0zW3GP/O/3w4Q7Gx6qAvP1vf39tW7Iei+k4ppP9IIvtnwa/Yha3mSq5DBTdqi6JpaufmSETys5E8fU0FQFQ1NpeRE31/q0/ZjZisOZ+sM3y24gA2RLVzlTz+84gGWZ4E7DI0xSZivuFl0KRVE4P5YnTLITLej3pPCihK/f2CBOMz4+VyFfOZmb8bsLbW6t95mvuVycKDxSq6jlRSy1A/KWzqnq4b7jhqZyuuZyfa3Hei+kYOt7qigmacbtDY9MCOaq7hNXIfcCVVU4W89xbbVLy4so2PqRCZ4+CrW8Rc7S0VVlV32slhfxW7c2UBWFT52tHcMIH400E7x5u8FaL+TcWG5XTbmDQNuL+bP/yzdwTZ0/9qkp/sHX73B+PM+f+/z5p/pe19LIuhmmZpyIdtU0E9xa7xEmGXN7eG8XWj7NfsRYwTpQU5JOELPY8nEMjbmqu2OPdE2dixMFBIfPKveihHsNH0NTmK/ldk0ervdCltsBRdtgribv2+Z9a69Y6QSjOGG8sL/72ehHLLakfsx8Td6zkmtw0cyjKsqRC1t7UcLtdQ9dUzhTz3FhIv/QdeZheNw8OEmYKNp8sNTB38fzPgpkmeDWRh8vlKLNhq4yVbapHKChyDCmb3sxeVtnqmRTewJt1pJjcHHycOdrkmbcWu8Tp4L5mkvO0vcdr+Qsuf7A/tuSoiTjd243aHsxL82W9hwfna3nCJPsyFv/DhNLLZ9v3m1SsA1en6+gaQq2rlHLmXzl2jqmrvLpc/UTF/cLAe/cb7PY8pituFyYKHBxokCaiUONI/eLMMlYbntcmjy5OndhnPGP315komjzxunKljV+vuYSxMc/5wWCq6sdzon8iU5MHQV+96w+SEpesx+RZYK1XkgvjFnvhsTp0W/iLT8mzQRpJqnDu8GLEqJNAcZaNyRJBWvdkDTNaPajUWvOXtDoRwjBSMwWpIj7R8llJEoy/EFrQpJm3G14NL2IlhfTCWJ64cPdKlpeTJaBH2V40c7f60cJzYHo/OrAETGIU8LkQfvTSducDgL9MOHte02a/Qg/yrjf8k/cdWaZYKnl8e79NkkquLXex9QGWl5Cindux3pPvi9SAPbh70mc7j4f9gs/TlFQSFJB2986HiEYrT2b0QkS/CgljDOa3sOFGLNM0A+TUcvbkyJMM9IMskyO56TANrSHHhbvN32W2wGLrYCFganAcUMIwWLLo+NH9MKE5XZAnAgWWsGh6Rr9T1+5yVo35H/8w6/xV374Bb7v+Qn+h1+9zkYvfKrvXeuEdLyExZZ/IO/B06IfJfhRRpbxWDFNIaQo8fZ97SCw0YuIE0HHTwjijCBOCeKElheN9iBTVw9VxyodvPcbvZAoyeiHKR0/otmPtsQG8GB/b/vxlpjmcfuWH6W7xxmdkJYX0X/EnrodjX6IENANEqJNY7B07Vjc1lqejLPCOKMfJo9cZ7ZjeO/XOiFxImj0I5ZawbHEi49Clgma/YiOH7PQ8ugGKckJ06AJkpRekHCv4XF9pUecyHt7kOzMpbZP0wtZagcj57eHoe0/OlY87PnaD1OCWLawD/f9pXZAL4xpefGOd/th0FSFfpg8Mr7ZDR0/YrUT4sUpV5babJdsGZ6Vtscbw7XkJCdn94o4SVloery/1CFKBBu9iF6UYOmynX25ExDE0kDgnftNervEmMeJVAgaXogXZSy1A5bbMjbyo/RErVFCQCdIub3eZ6MX7uvMelQIkpTVbsDNtS7htvEpysmY81GSoaJyZbHLctvf9zv/uwm/axhTSZpxfbWHENALE6Ik5X4jIG/rexIMXuuGeFHCRNHGNjTWezKhVc+ZGE8QmJYdg7YXY2jKro4xa11Z/dzc3qIo8udn6i4LrYC2H6MocHmysKdgq5Y32ejJSugQS22fJBU7bHqHG9Vxv4zb8cFyh6VWQMHRqbjmKOlg6Qp+lI60AXZD2TXoBDGWruGaO+95EKe8t9TGUFRcU6PlRdxryLbBs2O5XT/zKARxykY/Im/plJzjZ6bshvcWW/zK+6sUbIN2EHNuLM9s5WRl4zd6Ib9yZYW2F9OPEsYKFpeniqOEahRn3Fn3mKu6lNwH97nkmPhRgGtpD+23Tza14NULkkm4GWkmE8GaqqCrCp0gppa3yFs6Qogt70fBNjD1iEyIHc87SFLuN306QbyFAp+zNHRNCuU/ir10p+HRCxIcU+X8eGHLfxNCsNoNUYCCrbM6sG0dL9g73mPX0HBMjTBJT5QLV9uLafkRlZy54z6owLv32wgEr8+Xj2V82/HVa2v8zp0WeUvj9398lrGCxVov3BPD50ngRyk/+dXb/MBLkyP3pP/w+y/xPf/tCv/Lb97l3/meC0/83cudgC99uIqmKtimyuvzx8tKy5k6jqkSJeKxc1RRFKp5k2Z/6762F/TDhJYfU3GNXdf2kmOM3jk/TlhoBqz1QnKGhhenzNUc5qu5Q3PBjJKU37rVQEVeoxTyVlntyqSUrilcGMuz0gvJMrnmrCUhRdvY86F62N62uc2uYOvcWuujKIystC9MPL4FD6Cas1iMfQq2vmPNXe+F9MOE8YK9JVF20LHGRi+kF8p9ouTotAZxVm6XOGuYoKjnzR0JxptrPZk8GOi5bfQiVEWhu49E3WHAj1KWOz4F26Cet1hs+6x2Qu43Pao5k6YX4p6AwlJjUDgdK1g0vYh37rdZ6wSgwlTZPtC1MkxSVjoBt9Y9XFPD1JWHtjKt90KWBgWOM2O5UfwdpxnL7QBdU5gcMC8Pak5u3qPHChY5S8M2VOJUUHFN4jRjox+y1omYrTh7Euxv9CPeW2xj69pobg/PDI9jOhYdk2rO4MPlLjnT5c6Gx+lBt0GaCW6syZaw4rZ45VEI4pTltk/OMk68c2EQJfz0b9+hF2YUbI2SY1J0DSqb4rbZssu9psfShs9Sy+cr1zf4se84xWT56DtsHoYkFSRZStvPWO0GfLDcQQjZyndULouPQyYES20PU1MwdY+ZisPlyQLrPbk+TJedYzcVSNKMd+62mKo4W/bONBMstnxUVWGqaB8ricPUVJY7Pk0vwrqhMld1GC/YGLrKeN5COyGaYkeBfZ3EFUX5C8A/FEKsK4pyHvh7wMvAh8CfEkK885jPnwZ+C7gCREKI71MU5T8A/mXgDvCvCSFiRVH+MPDngQbwY0KIzuPGlgmZuQW5AfXClLylMZa3uNfsg1CYKtu7Vj/lgis3sjTzGS/aLLUCOkHMlaUOpyouZ8d2toY9CjlL5/np4kP/+zCrnGUD0c5MkKTy8KxrKsmmSobY9JmVToBjaJi6StOLqebM0SF5quRsOXh3ggd2mZtteoM4lb3WCM7W8yeKPfPeYoeltk+rH3NhPM+LsyVmyjaaqtINEpbaD2cPFGyDF6ZLhEnKQtPHMtRR68dGL+Qr19bphynTBXlQCQZCgkLIQ8x6N0JVYbrk7GmBWmj5eKGsPOX2mDw8Srx7v8Xf++ot1rsRl6cKfMeZKt/93MSJSkb2w5i/8+s3uLHWo+wYvHGmxndeqDO9S/ttuq3qN1awqOfNHdeTpLLCpKkKFdcYVQWHz3sz1rohHy538OIU19Co5iyCOGOyaHOv6WHqKucG776pq1yaLOz4ji1j3FaBtHSN56aKO5JcIBPo692QkmOM1oMgznb87kY/4l7DY70XYekK9bxNx09QUVjuyOs8O5bD0iU78iRah19ZatP2E2p5k9dPV7f8t46fEGcCIQRLreO1SpZaYl1+/u0l1noBBUvnM+frfPp8fddneFD41Q9W6YYJf+QT86OfnR8v8LkLdf7h79zlz3/h3BOtL1GS8uatDa4sdSi7Jnc3fF6aSY/czW4zNFXZkXx9FGbKzhNR229v9Mky6Pgxz0092IuzTLDY9hECztRdbq33+fLiOtqgtacRS7ZDwdbJmdGh6Wbcb/rcb3h0g4QXZ4p86lwdRVG4utJlvRfQ6Mm2uTDJmC07TJbsfR9GhuuKEAxadDRsQ6OaN1nvhfSChLytb1m3mv2Ith9TL8gE/WonoB+lTBZtqjlz14RAlGSjZECc+qM1yIukTo6Cwrnx3FPPuyhJeft+iyxj0FJo4JgaZ+s5VFWR42j76JrKWN7kXsMbmUJs1g8RQozaHy1d5fKk1F5LUvHUrNWnxZt3Gqx3Iwq2xpl6noWWz0YvHCXMTlVyTJSONzHgRzLGAnjz9gbL7ZDVToBlaJyp5Jivby0iPS26gUwcKwjqeYvz44WHJlKHrOWOH3Nrrc/putQRWu2GklUvBCudEE1RmC4/WTvgdmz0JUMJ5PpWy1tcmCiw0pFaWyXHoGSbFC2Dkmvsuo/4kWR15CydsmPw/mKH9xbamJrG62cqo24KAEvTHnl//SjlVNXF1FTytkGwiX0hhBisByl3G9GoyPUopJngq9fX6fgJk0V7z1IGx4Ekzfh7X7nFV26sU8ubvDZX4fe+OIm9rTgxVrT4oZen+aX3lvnn7y1zv+nR9iP+8g88h20cP2cjTjPGCza1nImqKFxZavPbt5pMlGxafnRiElOOoTFbybHWC8mE7CxI04y7TY8klQnW1+YrxzrGOBUkQtALEzJgOHNXOwEfrnQBsDSV+jEmXE1d5eJEgbfutfhwqctqx+f5qRJ+nFG0Dc6O5w5UyuAkY7+R7r8phFgf/PPfAP47IUQZ+I+Av73H7/glIcTnB0mpMeALQojPAt8GfkRRFAP4s8B3Aj8F/Jm9fKmpq8zVXOoFE9eUeiYCiLOUrp/SDZLRxrEdhqaiDyoYtqENDiDQCxI0RSWIswOn1U0UbUqOwXhRBn+aKi11FRR0TSaR6gWTuZo7yvCudAI6fsJKJ+T6ao9ekIyCg13viTa0uxRsTlj3Bi1DWSZ1mY4TQjxwSBFCUMuZhHFKkmXEmaATRMxU3NHzedi5UAgxoreudkLafsxqJxzRuTt+jKGplB2dSsFkvuZSz5uUXYNq3iTNZHtWsx/T8vd2T4ZuHqqi7ImVd5RI0oy377cI4gxFhYKj8dpc5UQlpbJMcH21R6MfoSgKqYDnpopMbmM1GbrKZMmmsksgttv1rPdk6+dGLyJMMiZKFkVHalJsR5plNPoxfpiO5optqDS9iGTQIuLvgZps6ir1gvlQPbvdxrnQ9GXA3fKZLtkDPTxnx+8aqsp6L8SPUrxQtp5qqoIXJSQDF8t+eHJpv0IIml6MF6W0/J3tF5YhGYyOoWEdc5LcC1OWOwFFRydJBUXbHC06h/nu/PzbC4wVLD6xTWPrD39inqV2wJevrT/kk49GL0zoBgmmrpKmGWN586ncyj5KGO6b29kJTS+S67wX8+FKl5VOOHDcFJyqOlycKDBZsrB07VB1J6RDojIogiijwppM/ChkgD9o949TgfUEB8GxgkXZNagXTIq2PGzpqoKCQjVnMVm2mKk4I0ZGmgnuD9alxZY/KIbJBNZS++Gxhq4qGLqyI9bo+AlZJr+3Fzw9E6kfpvQDGc+tdUMEgl4Qj9oK13ohHT+h0YvohekoXjDUrc9RURRmK86WNfd0LUe9YHJ6j5qgB41s4Bo2vJaVTkg3kK2lpqZScy1qeZNq3jh2AwN5OwXtIJL7rR+TZFBxDabLDhOFg2Vle2GKY6qkGeRM7ZHxVj1vMVYwR9pw95qe1OUZTMwky0Yx515jvcdh8/waFhCCOGV1+Az9mImiRck1Hnq4XGh5NHoP2kn9OKGaNyk4moxdNl2y9hjG1b2mJ2MCRbKsNyf2dU2elTIhcE2Nlfbj26+8KEEg32M/SY6lbXevuNfwWO6EOIZOEKW8cbq2Iyk1hKIofPx0lSQVmLqOF2V8uNw94hHvjuETLrsGqqrQ8mVrbC+MR8WBLDv+RDoKTBRsyo5JPW/SDxM6QTwie0Rpduyth6oKjqnjGNqWpIcfp3T9hK6f4MXHy5RVFLl+5kwdQ5fO8KvdiG4QY+gKLS8+9vt4VNhvWnjz748LIX4WQAjxa4qi7LUE+gVFUb4M/J/AVeDXBj//ZeDHgPeBd4QQiaIovwz8xF4HV3KkuOtQl8iLU4qpgdAFCg/XYWj0I/K2Rsk26YYPxDRfnCnSDRMcQztwG0lDU8iErIDogwrL+fE8YZxRdHQURWGq5CCE4P5gYx1uxpoq2wPjVOxK6Q6TlPVeRM6ULgPXVrusdiI0VaWetyg5Bi1P6lUcZFVrv+iHMW/da0vh0lqO8aJNztJRBptpNWdyebKIbWjMlB0KloG1y0HBjxJ++1YDgUxsjH5HkboRXiiZGmfHJGX58mQBVVVZ7cp2yZJjkHcMIELZh2XoqYpL10mwTfVE6Xh9826DX72yhhclnK67WLrKH//UGYrOyWnt6ocJP/M7d1lu+5QcnbGCxfc8N84rp8o7fldXlX1Rx4eHyWHs2uhHZNkDRiVIplQvTKjlTE5VHZr9iHreYr7mYmoK7yy2WWmHnBnL4e5hPmiD93U/sA2VKMkwdZVOkNALky3vs2Q8ymrrhfECdzc8VJWRk8zVlS73mz6TJXt06DyJUBSFWt5kvRsxt0vibqpskWaCIE6PlfLd7Ed8uNzhN2802OhFvDZf5pXZyqjt47DQCWK+9OEaP/YdczsOnF+8PE7R1vnHby/yhcvj+/5u19Sp5Qw+XBHUSyaXp4r0w5SNvmwLKh+gOPFJw5l6jmY/ohvGo+SvoihYhsZKJ6AXJkyVbCxdJqLztmzdy9lyPVrvhSgczrq+0QvZ6IVUcyZn6i5hIhNC02WbvKXT6Ids9CLGihavzJaYrTyZcUIvSGj78ZZ1pZa3RjbpwxbHMElZagUYmgyIwzjDHujw6JpkEm1uh4ySjLVeiGtoVHKmZGqO5flwuUs3SFls+UyXnVF7vaooFJ+g3X04LlNXmS47OKbGXM0ljDPGCgbXVvsoioK70SdnGxjqgwKWa2qcH88TRJL9NsTt9T69MGGyZI/am0DqcTrm8bS5b/RCvn2/RcE2OF3N0XZi+mHMm3caJGnGx+YrVFyTc/UcvTDFNo83MWBqKv0w5mvX1+mHCTNllzP1HJcni8zX3aeKh5I0Y7EVoCiSLamqCt0wRkGRrMHZ0iP3CVVVmCw5dIOEjp/Q7IRkmXS2K7sGmdAQQiFIUuoHwJYCBoY9MumzOQE8fHdURbKqFGX34uqwFXClHVIvmJh6kVdny7x1v0U9b1LPW+iqwnzdRVN2b1sdYrktzQ0cQyVJJUuksC0+KNoGc9XcFhmDR8HUVBDQj2LmbZtMCLRDWhufFEma8fNvL3BjpUecplwcL/DG2fJjmUW1vMUf//Rpfun9ZRbbHj//1iIr7YDvfWHyWAu5li7NGAq2ThCn3FrvjSRmhj+7ttJlvRdxdiz3xC6KTwtb13h+usi58RwLLZ+vXl+nG8RMl2xO1Vw0Bb56fZ2CrR9bcVxBoRcknK65W1ri6gWL4oAxfNxGQaqicGlSSphsdCOaXkSYpOiqQtuPaHgySTX1hAzyjxL2e5r53xVF+UngPwd+VlGUfxeZYPpu4O4ePr8EXARC4OeAIrAy+G9toAKUgc62n+0ZS+1AVuhSwVTJxjV0xoomJdvA2ZY1X2r7vLfYYaHhMVN1eWG6SGdQQUlSIZ3tDinhEKUZG72IhZbPQsvjOy+M45jajuCz4yds9CKW2wE5S+P8RI6qa6Gr6kPdMxZbAb0goQHSZWawgXSDhHrewtB26tgcB66v9lnthCiKXBTGi7YMxvM27SDijdNVJoryBVzrhqx0wl21nO43fRp9+dw+XO5ScU00DcqOyUYvpo3syX5+eusGNRSTXe+GTJcdLkwMnVoU7m54BEnKTNl5aBCgqsqxJvZ2Q9uL+PtfvUWrnzBdtvjhV+e4PFHCPkHtmkma8Y/evMuvfrBGydb52HyZP/DxWcruwQSJZdccsBHknI8HQrGdIMYxNaIk4+pyl9VuSN7W+NgpOS90TaUfJaxHKSvtkJylUctZh5Z0nKu6eFGKqal8MKjSbfQjxgeJkHcXZHLMNlS+eGmcphehq7JyogwS8IamUs2ZJ66NdDOCOEVTVap5Y1fWx1IrwItSEiG4tdo/8vGJAcX72wstfun9ZZbbIefqLi/OFPn0+fqhtyz84nsrREnGD786veO/mbrK731xin/6zhJBnO57LLahUclbXJosECaCD5d7FGwNVVHxIv+hiamhLX0tbzJ9goKgKMm4uS41407Xco88oBmaSpwJvDDDC6OBrmBMlKS4pkbFNXEtDVtXyVsauia1pXK2zlovxAtTvMjDtZ5ur1zpBKx2QoqO1Lv0Iimyrioqk0Ub19JoewlNL8I2VDIhE92VnMF0yeHcWP6Jg/mGF7G2qYVpuO9vD8KHLOPldkAtbzI/0PPTVIUL43niVGwp7C23ZVGnAaO4RVGUkWZVJ4iZxsE2tJGz2JPgW3daLLUDajmTomOQt3QuTuQlw8FQ6YWSzX51tScTbYbGK6fKuJY+YnVsbh+MkozugLk1LEacBHy43GWjF9EJEk5VXc6N5/nSB6ts9EK8KOVylPDaqQqaplJyj2+t7wQxdzf6RIng2/fb3Fn3sE2VM+M5vuvCOAKxp3bNIE651/DQ1J0ulI1+JIWU+xEb9ZBX5yooKMzVXBT2Xjg8O5ZnqeUPmHyy9TMctPOPFawtSclHIUxS7m70WWqHFG2dmYq7o1C22g1IM8nA7gQJJUe+O6drLqDQDWI6vpx33SDBym+9hiQTFCwDvaJQsGUHRQZMDuLf4Wc3v7dDm/vJko1lqCy1AhRky27JMdAUBVOXbXtNL9rRsjhZsik6+iD5vHVOCSFIMjF6h8I0o+wadAOTtieTxUNn0JMAIQRfvrrKz35zEdtQuThZ4I99cp6JPRYLP366yljR4u9/5RY31nvc3ugzXXZ4cbZ8uAN/BOKB+dNYwWKyZPMdZ6p8uNxlomCz1pV6fottHy/MuLnWpz5wPz5qKMqQ4GCw0pUt6ADTZYdXT5X5+o0NNnrSdGq+ljuWNTdOMwSCtW5AGKejOFQduMomaUY/SjluebGcpUttPiFd+vphSqMf8da9NraucrouY57f7Ympfe1wQoj/GMlw+mngLwI/Dvxz4ALwh/fw+VAI0RdCJMA/Aa4jk1MM/r81+N/2n+2Aoih/WlGUNxVFeXNtbW308+GmNVV2KFg6QZyw3Aq41/R3OGY1+tGgoiipfJkQTBbtgTbRzgOpFyUD9sXTUyctXUNXFTIEOcvY0lKXpNnI3cAyVII4xYskff3d+11urXsIeKiTwKjFTJXiy5WcgW2oJ06wMGdplByDjh9zv+lxbbVLLWfiRylTJWdLC1Vj4Gyy3Q0NJFOu7Bo4poprqAgEzX48CkKAUSvgZtRyFisdnw1PannYA+0uL0pp+/Lz60/piHWUWO+G/OJ7S2SpkIKumspzkycvKfX1GxvcbXgyiEozXpgqHlhSagjb0LB0jaItWXaGroySmrqqECYZvTDhbsPj5pqHPqDi66ps3VUVhbVuNKrAHwaUQeXT0FWqeRNVZYvAc5wIwiTlzobHleU2mqqgqTKI9MIUW9do+xGpONn03n6YcG2ly821/q5rpwAsQ8NQFfJHXLUSQnBjrc/7Sx3eXehgD9ZlU9c4N1Y8Eh2Nn397kdmKw8d2YQsC/NAr0/TChF/7cHXf3x3EKYaq0PFjhMhQEAwNoR4loNwcJPof5SR5HOiHMtGcZbvvBdsxZDsqCsRJRm/AovCTFENXAOnq2fRjHFOlPCg0DFtzDqJNe3gP17ohjb50/Gv2Y6I0lUl0XeNe0+New8PQJMuiXrDJmTrTZfupKsy1nEkvlIwpL0pHQuSbYwxg9N/9JEUBrq70+HC5N9Jr2s4239xaP0wqaKrCeNHCMtQDYRkmaUacycnai2IQsNz2ubba407DI4gyqnkT19RwDRU/ykgy6EfpQ1uNTF2VzHqVA9EWOggME+ON/gMnuSwTklGbZpiaTFYO78VxotGLuLLU4epyBy+S8aljaEwW7H05WErhdOlCuV1OwjY1OoEsvsSDtrv6wBygEyR8sNwduWbCwLmzH+1w4dNUybAq2MZAR+nB894tHnwYWl5MN0ilq1soWyu3Y8gmVBTJhJb7So/rq306QUzRMUbtOduTwm0vxgtT6gXJYJ0enI43s5i2jzdOHyRYW17Eenfg6hklJJmMX8aK5qANTI5voxfuaPtyTX3HuzKUWPhgqTtyr86b+qDgJ9+f/dy/w0aaCb5xp8nXbzbI2fK8dGEsv+ek1BCzZYexvEmSyO6UL324xp2Noy+UDTF8VkP3ST/KmCzZBHFKzlT5cKnLSjsgFYKye/ztvXKMKYahEqcZhibXL0OTxZl+mGx5b48SqqKM4rrN0FWFpbbPtbU+K8esbzrERk92N9mGjmvKAnsQJax0AjZ64aEz+E8C9p1eFUL8JPCTT/LHFEUpCCGGDbyfAf4msn3vvwa+B/hNZHvfi4qiaJt+tts4foJBm9/Lr74m1rohYwWL2YpDPW+x3g0J0xTQSTMIY9m7b6sPJuZYXrqJ2LrKZNlhuiS1BnZzCooSmZUeCmWfeoTjyEYvZL0XUXGNEfthNzw3XcS1NDLBFpr7vabP1RW56Hz6fI2XZ0vYhsZyJyBnSjHSIE6YKju7ihbOVhyKtoFtykPsw3RvjgLDyup4wdpxX0/XJPsrI6Prp3zzdpOXZoqcHcvJqvGm/bKet1jthLsylMaLNkXHGLiqJby/1MaPpAD+UMMrZ+nEacb1lS7LnZBTFYezY3nKrnQyvLPRHz1T29BG7QzHTe/cK75xZ4Off2sJTVU4VXd5yTb5kY/NPJEuyWFhoxfyM799l7tNj5Jt8NJskS9cHueN03tzCcsG+idRmjFbcR6aNFhuB4RJOnLY3F6xV1WFj82VCeIETbWwDU06hwyCRqmz4lF0dG6u91npBuQtg1PVnfpPu0FqwcWMD3TkdsPQDQQeiDtvr4K8OFMkE4JqzkRTNao5k7ylk7d1ekGCbcgD43o3ohc0qeZMTlWero3iMNDyI6kv5UUsdwLOjG0VZ5+vukyXbZJU8Mrs0Ql6+lHCm3eavHO/TZaJUUv1G6ervDhTZrp8+AHARi/kq9fX+dPfefahc+uTZ6vU8yY///Yi3//i1L6+349SJkoOEyWHjh9xfa3Pj746jf4Y/aSxgkWjH1F/hBNeEEsnSlNTma3szTDiaVGwdbpBPGrFehTavtQLHC9aI02OK0sd3l/qcG4sT8kxBqYjMJa3mSk/0HOcrTiUHLmHPmnAL3UOA7JMoKkKEwWLO02fu+se0xWLfphiGzFJmjFXdREIzIED18untrbaPSnKrsknztZY70ZUcg9El+82PHphwo3VHhXX5KXZEi/OFClu6ERpJoWi/RiB2LVFeaok2+4tXd1ysJ0o2gcm0KprKqerObpBTMU1ubHWw49S1roBOVunHya8Nl9hpuxwquLywUoXW1d3tC1tx8OYHmkmuNfwyMTRarYkmcDSVXK2SpxkvHO/jaZB0TJ49VSZTEjZgIOWk9j3ONOMb9xp8KtXVqnmTT5/aYzX56vkHX2LucDjsNT2JXMhySjYOx0zi7bB89NFrq50MXUZw44XpcbSSjscOW8Pk6XLnWBk8nO67rLalb8zV3UxdZUzm5hRpi6NhfYT1+UtHVOXSeu8pY8Smveb3sh1rOQYNPrDtjjpxudHMpHYDWImijaXJ4usdUNurfep5kzGCtbIGRrgVHWreVEtb2Hqcv0Z3qMkzbjX9BFCkLc1/CijlrfIhGRXFGydimuw1ouwdI2JokOcSt0keXZJOVV1uNfwH9oREGfZyCimEySMFxmZqsxWHMIkOzHSAW0v4h/+9j3uND1qOZ0L4wVeminxvc9P7vu7VFXlT3zmLPWCxXuLXVpeyN/6tev8yCszfPJ8/RBG/2jomoKmKtQLcu8ydZWKa+IYOkkiuNvtU3RkK/ilyZ1FtNVOQNOLqefNI0vCz1ddXpkt0fUTio7BL763TJpK/caCo5NxtGvrEK6pMVG0uTSZ39IGHCYpt9f7A1bhyShUSDOkkKmyzZmay7WVHj/59Q5hktH2pX6XLK6crDj/IPFEq4uiKDbw54DPIgveXwH+lhAieMxHP6coyo8jW/m+IoT4LUVRfkNRlK8gWwH/+sCV7+8CXwaayMTVI5FmguW2FKwdWqGudEImCjaayugAt/3FHS/ajBdt0kHgCDKQjxKp89QNE1Y78lBayRkjjZrtccvQBc4YBOgrHVmZWOnIZNnDDhymrnJhF5p7lKTcWusTpxlXFjuoikLe0njtVJnWgF2kKiqrnXBHYqoTxKMxl1yDKMnwooSCvTWjvt4LaXkR1Zz1UNvdp0WaPXARWe2GOxJTiqLw1r0mX7++TiVnUnEtGl5Mkgnmarkt97met3algEZJxv2mpITPVlyqOZML44WR0L1jali6yq31Phs9WbFuehFBnMjFWmEgKKcTJtKtati+IARbXv7Flo8fp0yXnBPlZHh3o8ff/rUb9MKMWt7gh1+Z5vOXxndUB44TXhDzN375Q66u9KjlLE5VHH7/x0/tEDp/FLoDvRSQLW+70Vn7YTKacwohczV3y4FjtiKD1UrO5POXx0dW6poKhUGANlmyudswWe+GLLQ85ms5+pFPJ5Cik49qbUrSbDT3VjrBQxNTG33ZXgNyjtbzFm0/Zq0bjNpaa3mLz16oj8Zu6srooFxyDaaKDm0/5n7DZ7bi0lRiemGHnKkzs80Wdzc0+xEb/ZCya+76bvXDhFQ8fe992TFJsoy8pePF6Q53u+VOiCKGQbf3VH9rP7i60uM3b6zz7v02jqXzHWeqfPZ8nXPjhSOrPv7Cu8ukmeCHX9nZxjeErqn84EtT/PTv3JPV9308j6Ij9wCRCUxNxTVV3l5oEyYZz08XdyQdVjvSjXYsbz/SVRbkO+hHKT6pdJ06grbmJBMUbIOCLbWLHsYCbnsxX7u5jmvolF0dP0pJMtmONlGwiZKMTEAlZ3Jno4nI2HKAPYg2bVlAkge8y1N5Wl5Ez0+IM6kBud6NeGGmSM7SKDoGlq5haAo3BwmY2UcUv/aD8YK9I07IBAOmsk+WwW/e3ODSZJHZqoMYsNH6YbJDNHwIRVHohQlr3YSpklxrtscZw8Slpau7mjo8DIstn41+SC1nUXQNTlXkc9noh1Rc6cIaRBlhHPHm7QYvTJdY74XUcyYzZQfzCRM4LS8asVAOG0IIPljujLSP0gy6fsLtjT5+lGDqGpenisxVczw/VcA45r28HyZcWWpzbaVLJ4xpehHf+9wEnz5fH+gm7e3Zhkkq3Y8VlShJMDTloeLNMwPm0LCFueKaIwH9imvQ6Ec0+uEWt92WF+ENjEBaXrSjMOya8ozw/mKbJBNcniw+VtcwZ+k8P1VEmX5wnV6UjFilVxY7ZIKBmLhOox9Jx+CCHO9wDAstn2/fb1HLmcRpxljBYvOl73Yb8pbOjdX+yFWv5cejezBRtDhTf3B9FddEU2VMvdwKWWz5fP7iGPcbPvcaHvW8RcHWRx0BIM8B2xNTlq5RG4hYjxct2l7MnUYf19Q5P54/MW58WSb4u1++yTfuNrE0jclCmR99bfap1k3H0vmDr88xc32dn/6du6y0A37iyzeZKlvM149W/sTQ1C17cJLKjp47Gx5+mtHyYhZaHVY7PrPVrRqEYuA8CdJE4agSUxMlh+993uK9xQ5r3YAbq316QYwfJ5QdEzLB1ZUuQZxycTz/UFH6g8bQUKI5EBAfno02ehFFR871pz3TCSHo+NJo5mHftdT26YcJE0XJ5NwNw9gfZAHp9kaPOBWstgIMVeV+U+qDPuzzvxvwpLPiHwBdJOMJ4P+BdND7g4/6kBDiF4Bf2Pazvwr81W0/+6nB9+0Zhq7Ih9bo0/MTen5MzlS5MFHccuiKU8l86oUxZcfANnRylkbZNQnilBtrPYSQFePljk+zH1F0DKq5MvN1Fz9KqW1LsKz3ooErVkrRNig6Os1+PBIx3wturfUJk5Spks1k0Wa26tD1E2xToxskqIqCqWeUXZN+lCCQm+D2Q96N1R53NjxMXeELF8e53fBIUkHOiji7iamw3A4QApYS/9ASU5qqjNgdRUeO9X7Dp+FHnK65NHohv/j+Cq1+hBdnXJoojJKEmiI/+zhs9MORI1nHjqnkTMbyFooi27KKtsF6L2SjG/LhcpeVrkwuna8XWGr7GKrCRNEmb+ujdi6QAcjmR+dFUusLZMJhN32Cth/jRcmR9VBHScavf7DCP/rGPda6AUkKz0/l+NyFk5WUurHS5e/8+g1Z8U5SyjmT739xas9JqWzguDhMymRCkH9IL72pq6AIkkSMBGI3HziaXsREUdKh7zY8lts+y+2Q+ZoUiT8/USBv6hiagmtpuKjoqkqzH2GoGhu9iLK7s8qbCZnUHibB/Sh96BhBiommmUDXlFFAsdIJpAtgJEWRFUVhseWz0PRZ74VMDJLolycLjBVtMuQhXddUbFNS2BEa3Uy2HD+OubDUDgai48GOOdsLE26tSRr7bpbaw/YJXVUfe4Cv5S0+e77OWi/kVMXdsSZ6UcJv3dxA0xSemzy84C9KsoGYpMp7iy2+dn2NN+80iWJBNW+O+vuPkhL/j99a5MJ4nsuPue4f+dgM/9+v3+Gfv7PMH3rj1J6/34sSVFWuZ6auEcUpb95ukLMMgjjltXmZOHRMbVRMAclC2PxchyL9m5E3dZpKhKpsNRYJk5Q4ffg7+jQwVIVk0NJUsB7MySwTNLwIS1cp2AbLHam30ujLVtdb6x7aoL0lZ+soCFQEnUFyuB0kvHWvyRtnqntuR3ocXFNjox9RHrB5e0HCei9gqenTCxNKrslKO+CT52ojVvNKJ2CpLTWpml7My6dKB8bajdOMW+t9hBBSa1KV7YXpwDXPj1KW2yFnx3LkButbJWeQZWKnrEGY8M7A9bUbJNiGtiPOWOtKJ1E/Sim5xp6uY7UT8Pa9FmGSEVYyztRztPxIHtKmimRCrke/cXWdpXbAc1MFrq92URTJLuiECfXBejp83/PWgzhsvReSZfL6t1+Ta2p0AtlGcdi4ttrlN66us9YNOTeWY6wgnRgLpkGYCKp5yUbLWfqx6Qf6UUo3jHEMja9cW+fDlQ4LLY9ekDKWN1nphPuu2huqlFpoe/FgzmWsdoMdws2OqdEPU3RNGRVYhIC8rVMc7HlLbX/g+CjXJsvQKDkmnSAZ/S4wYlhWcyaWrrHY8vlwuUeSZtxveJyu53eMczu2X6emKERpihjs+6ahcq/hMVV2mK/JuGaq5EDpwb1s9OR+2ejHo4JAxTVGDL3NrsPSDTPgrXtN3lvojNaHnKmP4lJVUfCjFMfUaPYjBNLR0wtT/DglQ2F90OJYyclWSMfUBjq6AlAo2gZCCO5sSAblUEqgYOujAtzb95rcXJMFo7ylP5apehS4udLhZ75xn2/ebdAPMyoufNelsQNJ5iuKwhtnanzp6iq313r0woT/6heu8K9+Yp7vujRxAKN/MuRtnZavkglB0TQJox5LLZ9mL6Limvzel6a4sd6n7BjMVV2Kjk7HT45cB1cfmHP1Ao2cqdHyIixDdqx8816L9xfbFCyDXhDz6fNjRzKmKJEu5et9m82krXpB6m8mWcarpx4tZ51mMuZ1TG3X2GalE7LWDVEUdk3gDpPyw999VGJJU5URkeJewyeJUzRNxdJVFpo+HS9GAC/OlnaNqT/qeNLI8ZIQ4pVN//4lRVHePogBPQksQ+X8WB5VVWh6UlD81kYPAcyUU8jLSXVzrcf11R6WptIJY+6hoKlQz9uoitRkUlCwdI0gSWh5MS0vIUO66Jn67sFVztRoID9vmyol12WqJB56wJFOez5hklIeZGvfutdiue3hxxnPTxX54uVx4jRDUxTevNPEC1MUxaHlKWiKXJy8MOXGWp9zY7nRxEwzIXvNw4y2H4+qUdurUnlLpxtIx8HdAs+Dwpl6bpRsurLU4VeurGBpCteXLZ6bKWKo4McJ/UbCl66sUCtYfOfFMeZr7p5cfPwo5Z37TeoFmwsTMsCQtpvmKKDJmTpv32vxzbsNXEuj5FioqsxGz5RdNC3lwnh+9LzSTOBFCa4pRSgb/YjVTkAvjMlbxq4Cg1GScXdDbt6bta0OC0mS8tf++Qf80pUVgjChlDN4ba7Kn/zs2RPF5vqld5f4G79yjY2eDGKfmyrwJz99hnP7EN8P44xrKz0uTRa4PFkgG+hn7QYF6US13A4GuhL24HlJW11DU1jvhnztxhr3Gx5enOJFGTfXupyp5+lHKZ88Ux20hqpUcgZTJYeNnsVKJ8TQFelQs2OMKddXe8zVXM6N5YhT8dBKrBcl3FjrsdjyOV13Rzo4eUvHC0MsQ7IP3r7X4tsLLcJY4Mcp7y62mS27xGnGK5pCwTYI4oxpU+V0LTcQhpbJpIfpBw17/0EGny0v3nU+p+mD9SLZpZS71PL59atrKIrC970w+cjkthDy/Y+SbAfbFODaSpd2GJOmGb34YOy7tyNKUt5f7KCpKldX2vzy+8t8sNzD0lVmyi4vzJR4ba5yZBU8kK0gv327wV/63ouPDSxePVXmTD3Hz35rYV+JqWY/AiFdLedrLisdn6YXcWOtjx/lmCzafOtui6mSzcVxSXOPkmxLUWAosmvp0mZcJiGyUSLo1ICFCDL4urbSI06kHsbUAYl03m9KK/XN83eYLPUj+e4lWYauquRtjbfvtVAVuDxVIEkFHy518eMUXStSzclD9e0Nj7xtkGZyz7B0jaeV8WkNxMZLjkGcZiMtpzdvR/zah6vcaQRUXUPqIOkphiaZvkmaoalScy7LxGA80lXrSTFkLKWpYK7mcH2tz5u3Nri51uf8eJ7veX6CH3hpil4Q8617LRaaPpen8qSD1rIgVnjnfofZasz58fwWBqZAVvDjJGO1HVDJyxaTzXHGcH3RVAVb17Y8u92QDGzFXVMniCN0TeXORp+2F5MzNfpRQprJw/Wpij1KOOQtjVtrHgXH4OwgyRDEKd+408TUFFCg4phYhjZiqaKwg0XW9hNylrGTEn+ASFKp/9Psxyy3fN5dbLPc9ojjDKFB1bGYH3N5fb7KqaqLoSnHcuhoeyG/8M4Krb6UYmgGMXfXfUxdYa5sM1/PM1/fWxJAzpUMXVNlgUhAEEv2c5IKpsrlHZ+ZKsn2uPVuyK31HlMlZ8RYv7HaozqQYLB06RoZxBnvLrSp52zOjueYq8qW9jSTSZdhG9v58TyqAgqCIM4oOPqujK3tSc22H7PY8ihYBrNVl5vrfda6IcbAAXDIlAiTVMZ/jtxr7zdlm950SZ4xDFXhTM0dyUYoirJrIfPGao9vL7T4rZsbg0T5A/2b07UcYZLw/qL0iJqvu7S9hNVugBACXYUwSXBNqV9n6Ao5dBxT5cpih7YfU7B1TtdzVHImYZKOCndXljqM5aUJ0eXJgix6GRpCCIxjdMzdjCuLDf79f/QO6/0QW9e4MF7g+16c4OUDFCo3dZU/8enTNLoh7yy0efNuk/eXu/z5zwf8wTfmjuWdrOZMMiFodkP+2btLrHYDmn7CRNFB1eCXr6yy0pZSF198boIXpktbuoGOCoqicG5MvoOZkO/Zt+5tcGOli6ErNP2E6ZLD2fE8WSYeGc8fFOI0o+VL86BuEFMbxNwaCmGcoqlbiQi74f3FFt+826Ket/ie5yd2FLCGBTMhdp63QSblbUNq2G5uNx8aDWxHztK5u9Fnoe3jxxl5S2OiZNIPYr5xp0nHi1loBXz/i5OPlBb6KOJJo/BvKYrySSHEbwIoivIJ4KsHN6z9QVWU0cR2TX1UQXgvbrPQ9PjC5QlcS+WfvbPEQsun4hqcruep5cyBO560jpc92RYzFYeqa9IPJQOq4hqPXIjKrjlKYmwWAn0YpIBiTKMfcWvNQ9fkwWmhFYCicHWlxyunymiqwr2GT8ePmS47pBkMvzZOMyxdZqOvrWQ4ps5sxeHiZIGldkBB1VjvRczVHHphuuPgOF9zpdtfJ+CrN9apHKJtuDYIEBYafW6tS0bbVNmmlDP5l16Z4us3Grx1r8W3FzoUHINqzuLFmcebMQohRRpNXacfJNxc7WHoClEiyAQUbI0kA1tXyRBomsJ6N2Km7NIOYixDJRWCnGlsWRhvb/SluLQhWy2HlTnX1Lk4md+1oj60ARbi0c/+oPA3fuUqP/fWouw3tnVOV1z+4vdeZKx4ctwari21+a9/8Sr3m1LU91TZ5k98+jRvnN2bptRmpJlMLJm6ivoIm+IwyQbMNoW7DY/zg4SjY2pcX5HBXsdLeHehTc7WMFSVybJNECV0g4SNfkTTizlb35pcGi/alFyZrHrU842SbMBOefjv9EMpfpyk0OjHdMNYrluGRi+M+eZd2Rrw9r0WpqYTJDFnx/JoikI7iGn7CSvtgOenS1Rz5ujwomsqlycLCNj1ABgmGR8sdRkvWpLVFUtNivldNFdKrsFkKm2hx3YJnL+90OLdBRkYnxvLUz1T3fVa4zQjSmQCPYwzrq/2mK06W96hOBVYmko/Fax3Dkds+/pqj1vrHlmW8aUP13nrbptulDJbtvn4fJV/9fU5ckesm/Hzby8Ckg31OCiKwo+8OsNf/5WrLLb8PTvlZQKWOz6dIMJQ88zXcrT8hLwVM16yWW4HLLR9vDDh+mqPy5MFOQ+DhKW2z1TJoRcmdPyYtX5IlEoWix+no5aSThCPDBaSVND1E5Y7AS0/HumkPA3WeyG/eXOD5bZUCvj4XJX8wOJZAW6u91jtBsRpxkzZ5cOlLoamkmRSu+lrNzZoBzF+mPLh8mCPcU1UVTpgPT9VYL0fkjeNp07qL3cC4kTQD30W2z43V/uDhBi8c79DlGbkTcnSnSzZzFZdGv2IhaaPqaucH8/z0kyR95e66JpC2XnyObnWDVnrhCx3App+hBcmLLZ81nsRY4WYxVbATMXlvcU2nZFmnXQOVAcGEaoin+lC0yMZMI1kvCMtwq8syfspBJRdY0trZdmVLERNUfhgucPN9f4WAertY11uB+iaMnDHlYmjX76ywv2WT5ymRKkgFRnTJQeB1AIt2jqLrQBdU8lb+mhtvrXeY7UTEiUpBUdnrRuRpBmWqTJVcNAeEs9pw438gJFlgvcW29xvehRsg1QIVE3es4YXs9aR16DVFC5NFCnY+lO/N0+KNBP88pVVvnG3ya01yUaLE3n/Z8o2r8xX+O7LE8zt0Z4+iFM+WO5ypp4b6L5C20/x4wxFjR+afFVQaA/c6FYH7fmNXsR6L+R+w2OulqPkGNTzJr9zuyklNATUi+ao0KogzwfpoDiy1PJ5+36bIEmZrlgoKGwnyCVpxrXVLlnGyJX09kZ/xCDOWTLu9qOMRFNGbcwr3YC2l7DUDhgr2jS96MEaacnEft7WCZJsVwbqZkRpRi+IZSxv63zXhTr/+yDeBfDihHcW2iSpICPDNQxaXowXScdRU9eYGKzdF8cLpEJwbaXDRj9ise3z3GQRbyBEbenShOh+08MLU9paTCVnjEwfLowX2OhHhHFKEKdcW5Hr6zD5d5S43/D4j3/2fW6u91FRKJVN/tin5/ns+fEDTxbNVHL8B99/mf/wH32blU5ANwj573/1OufH87y2R13Uw8DXbm3w7lIXRRHMlBw+f6lOwTL57Vsb3FzzKDoalyYKXJ4sHpsg+jAGnio53HR6LLcjmXxRBJN5G0tXQQi+emOdbiAZhC/Plg9tvJkABOiKsiUJdGujP3J0v9f0OFPPP7R48lu3mtxa63Nd7fOJs9UdzpqTRRtNlcSW3Yq9Q522uxsebT/GNjSKttSxHbYfb4Y2INqsdUKWOgHVnEnLSxC2PGeGacadRp/fud2gljNxj8GR8bDwpFfyCeCPKYpyd/Dvc8AVRVHeAYQQ4uUDGd0T4FTVoe1J7aVraz2iJOXmWo+Jos1KJ6DRl6LknzlfxzU14iyj1Y+5ttpFU1TqeXNEsz03lseP0j0xd/YTRDiGhq4pRGlGKjJ6XkYlZ/D6XIW1vuz5zoCuH6NrD1yBpko2tqnJgp6QFrVJlhEmgjCJKQ/o8s9NFfGjdBB4GxQdmXRa74VsbBJlDxJ5uFhs+Vva2A4S/TDB0FQMTQFFxVCgE0ZUEoNWP+L5qRoChcZA92m8YFHNWXs+IOQtnaYXsdQO8ZKUuYor++cVGRBdmpD3YqpsEyZF6bhYsHBNnaprMp63qOXNLS2RQ8ZTmAxbRgzavhSce1ibh6HJQ4UfpQ/VFTooXFls8eUPpROloaucHcvxb33v5ROVlPLDhH/45j26foSlqTimyh/51Gk+9QTUXU1VmKk4e3rHXFNjsmSz2g2YKMhedz9MubHRY6MXsdb10QbJpbJr8slzVSkmmQrCOKOWl0y73ZJLj2rx0TWFWt7c0ea7GyqDA1ySZVRckzvrffpRRjeIuNf0udvw0BWVJM0o2gqvnKpyaaoEQh7gxooPbIG335NHVZ6iJOPOhmwZLrsmLU+2yEyV7S3XNmRQPsrFs5qzKLkGCsqW+d4LE7RBa9dCy6fRi7ANlbJjsBKHVHLGDt2aL14e5617LZIsOxQthCyTwrCmrnBlsY8fxwjkoX+iaPPDr06TP+R3djuEEPxf31rg9fnKnqtdP/Kxaf67X77Kz35rgT//hfN7+kze1vGjjCxTWO2G/MDLk5i6StuXbRuuoRNlGfcaPiLLOFV1aXpSbHq9GzGWl1bV3SCm5poIIZONm1tKhnMxTjOSTGBbMuFTcgz8OH3qA3aYZCRJNkg8ORj6g/UgzaQdej1vEaXZgMUhuLbao+IaqCj4UYIXSv2eklOh6OhcnJDGF+NFG0NTOfWUTDkhBN0wwdY1Gj2flh/L90uXVdJkULkuWyYvTJX5PS9N4YUpM1WHW+t97jWlAGvJ0Uei0ABenJG3nuz+FWwpZK6pMpZIsoypskPJMZks2wMdmXhQ8FJIM/ksTV2VyeaBo5+ta7T8GAWFxVZAeaDzdHYsL7WmAtkuOl120FSFOMm43/JJs4zZiothSOZTN4iJkq2UtOFaM3Rma/YjkixjLG+jDtrsVzshrmGx1gsGTqQxL86UcE1dtim54MUpRUcfxQ2GplF0dPqhTHDda/ioCnS8hMn87o58E0VrS+vYQWDoehhEKe8tdtjohZiGymzZJWeavDJjsuGFI7fSmYpLrXB0YsW7QbIsVIq2Ti9IsXQFRYX5ao6z4zk+eaa2w8DikRCMTINqeYs4yci3NTKRUbKNHXNiCFNXHzA4LbmehElKKgQfLndRFJg7P0a9YDM7MP3IMrHFtUpVFc6O5fAjmVT5taur+GGCoqgIFMYL9g6dvSQTI+bkMAbUVQUhZHdGlGScG8/T7EcUbJ2CM3C9zlsIGDl7yjVyoHepCG4P2uVmq85Dc59CCPpRyqWJAl+9tk49J3WhpioOmWB0/YaiSPMKQ3YHTJdcBNDoh5iaOpCykAxMVVVo92MWWyGZEJyr55gu21v0t+ZqLp1Aunf6Ucq5QQfKei9kqRWQpIJ63max5Y+Y2t0w2bL398PkUJOpXpTws9+6z8bgGjVV4Q++McPnLhx8UmqIqbLLX/ie8/yln3mLlhcTZRn/8Hfucn6iMDpXHSWKts5EwaY60A9+cabEd5yp8ta9NkGc0A1i6jn5TFTlwfpzXLpgMxWHiYLNRMmi4yUUbJXX5qv0o4QwFVxZ7JJkGc1+zFzVHcUSBz1ex9Q4W8/z3GSesU1M2Xre5Oaa3P/CWBZuh2zCzbEswFjBZK0bkre0XYvjuqZuWUt260SKBkzzOJVFH9dwubX2QENuM9JMMDk487umZB/fXO3zybM1vnB5TJ4TNCl70/CiZ4kp4PsPdBQHCE1VsE0dUwVXlwdMf+DQdWEsT8eP0TXQtQfByWTRYabiEMbplsXGNrQRjfUg2910TaXqmkRxymLbp+oaVPMWZ865dIKE5bY80CWZDFA/Nl9mLG9vWfTTTFByC6z3Qq6t9DA2adXM11w6fkzefqCt0PZjvn5jAwWYrbiMFSwMVaXRjwYsj6ejr8dpRsePKdjGaJyr3UC6qCBFJm1DRSgK4wVZ6bQHffn9MOGN01W+68IYOVPn0h4cXoYU1Y/NlankDK4sdvhwpUfbkxoXaSY1UMIkpWAbfN9zk6z3IxxD49Z6n+VOQAoUHJ1rqz0yIReBWs5irubS7Eej3uy5mjuwOk1GAum7YThfDhNfvrrK//QbN0izlLKr84nJMj/+L79C+ZB0wp4EXT/mr/6z97iy1CNnakyUbP69L57nu56bfKIAwtTVh7aKJQPbZNfSsHQNRVF4/XSVW2s9bq33ubXRxzE0wighiBJMVaPkGkwULYqWycvTZcYKNqkQsoIoJFtovxRoQ1MfyWIZ2jsXbGnP/MqpMpcm8lxd7fHl6xuUHYN+mKBrkCbg2AqvzpVBKHz67BjnJvLEqRi1mZZdc9Tys597qijKQA8rYaEp2x1fmnnw+SFzwTG1LS3C2/HqqQrGoOd92EJ7e73PUjsgb+mcG8+NDpsLTZ8zdZfnp4uUnJ3s01O1HL/v1Slubfic30eL517hxylenHB7rcv7iy36ccqZusPFiRJ/+JOnDkxkej94+36bqys9/osfeXHPn5mv5fjU2Rr/62/e4U9/59k9HaDreYta3sLS5dpk6hofm6sSJSkKCoauoqiCRi8iShQavZDnp0uyDVwIOn4sNUkGdvXWwC7ci1ImS7bUT9LUEXs1SSUDtThmYmrqyFDgSRAlGd0gpt2PyIR0q3lhukg1b5GzNNI0Q9NkYr4XJIOEiUzWz1YcLk7ksU2NoiUTFs9NlTB0lbmKFJtu9GMURdkz++xRuN/0B7byMUmaEicpOdNgomgzVXKZKtmcn8gRRII3zlQRQDdMWGjKhEmawXo3kG1Kg7jE1FXspzjo5S2d2YqNosj3fabsUnJMztZzaKrCcifk5ppHLW9SdHRqeXOkneGYGo7pkGayChyvdlnpyMTyZpyqSAOG3ICttN4LubrcpeXHzJYdGv2I6bKDa+rcWvcYL8p3P04zrq50ieKMSk4mCJdaPi1fgFBY64bU8yYTBYvlQbyQCJPbG5K5lWSC2YqNpqn4UUqcZlsSElXXYKEpDwrnxvJMl2zeW+owbtmjFq/t6/vD2qqeFN0g5va6bO+vuAb9MGatF1HNGVLj1NWJ4pQ3Tte4MJFHZPC5i+N7ZiIdBlrewKG4bHFrQ+XsuMtSK2CyZHNxosCnztX21YYPD7RGKzlzoBEJ0yUHa1DMKVg6iy0fwQPWATDQApOFomFx+PmpEmHc4pXZMo6pURj+fLrIdFm27W+PwWxDGuB89Xqbthfz/lKH5yYLFC2ZXN/e9m4bGrW8IZmFA82li+N5qeuiDA0lpFtlmKQy7rUcXj5Vwo9Tajk5h3KWPpKIaHhSEN02pPnCw9buuw1v1Bb48kyJuw2PMM2I4hRVkYWfLIMXpvO0fJcwEZQcyUx8fb5CnGYoCqNidioEzYHhz/DvX5jIUc/bO+a/qsDtDY+CrY8+P2SpJlmGbahU8zma/WjgFPjgvi22/IHN/eEkiKIk42/+yod8/XoDS1M5XXX5o5+c40dfP/y2uk+cqfPf/IGX+W9+8UNaXsx7i13+2j+/wr//fc9ROuK429Q1vv+lKWZrLnGUEKSCpVYokxymzkTRQCgKtqnhDVrcVUVhruqOzjNBnNIfJBUPu4XONXW+54VJbEvj/fsdzk/m+HC5Sz1v4oUxYZKw0Y9l8SSQLF6Q7akH6YjuGBqfPFflC5fGt5zjJ0sO3/f8BKvdkBtrPSquRS+UGq33Gx6dIOHSIJn1fc9NMlN2qbrmaI9+GIasqCHjcghNkXtbP0yxDNnRo6sKyi6JLtvQeG2+iiIE315o89a9Fr0g5p2FNr/nxQm+8+I437rbHOmDdoP4d40g+hNFjUKIO4qiVIBTm79DCPHNgxrYk2KjF0kB8Kak1VqGxhvzFeZqLo6loSgqjX7CzTWPqZLUdvDjlJypU7ANkjRjqe1j6xqVnEkQJfzO7SYAL82WKG9reQsT2ZZTsPVd6Xu7odkP+drNdVbbIRMli5KrUHaNkdDlQsvjnTsNNryI77k8znythKHJJE7TiwiTDFvXSLKMfpQShAljRRs/TgfsJHVHxa3jx7iWRsdL0Ie6BQqcqsp+94nS0wVkt9Zlq46hh1yelImlMM64sdLlnYU236g1eH6ywJl6jiuLXfphynJbthWkmRTKfeN0dU+C2GGSDfRioNmXiUaBDP5qedmKiVBwTFmZzETG2wstojjjhRl5L09VXCkEGSQkqeDORp9+kOKVZRLzftPjrXshz00VOT8u2yP9KGW1G/HcVGHHZtjyIvw4laKyh7DYR0nKP3n7Pn/1X1wjjGLKjsnve22WP/W5c0fegvQoXF9u8x/9n9/m+qqHa6g8N5nn3/2+y7z8GGHBJ8Xdhkc/lD3iz00VSDLBQtPn2moPXZFsQ01VaPkJQZLy8fkalg5LnZCNfsiXrq7yykyZM2N5CpbOSjfg1r0+KjJBtV2UdTvWe+GeJEmG74epq1ycyLPYDtjoSXFg19AGPemC1W7MZNnmlVMlrix2CZKMr9/cwE9TztbzOIZG2xfc3ujLRJaqcm4890g2Vy9M6A01gqoulZxBnArO1HOyVScTDD8+dOvxo5Ro0C68GwxNoZozRwFsoxfy1v0WHS/mwniBOJGV69vrfRQFbjc88v2IV2bL6NrWd+etOw1+6rfuEaeClx7jBLdfREnGm7c3+JUPVvja1XV6YULBMfme5yf4k589Q71wPEKuP/nVW+QtfU9tfJvxJz97hj/1D97kn727/EgnP5AtWNdXezIButKlmtNHGoRXV7qoijwYtj3ppmZoUvz/dD3HrbUevTDlazc2aPkhC42QF2aK2LpKL0z4+o2NUdLhO85UMQZi/iDbZ87th1HxENxal3P8q9fW0TUoOSapgPVuxJc+WMU2NC5O5HlxpjwyI1hq+fSDFFPTuLrSkxR+TSbTxoo2nzxTZaxgc21FFiOurXRpehGzFfepmK5rvZB3F9osNH2aXshqJ2KqZPFdl+o0+pKpMF5wqOZMJoo2Hy53Aek0eqrqMFOJEULgmFL0+uKEfDef9NDVCWI+XOpwr+ETpnJfSjPBfN0l70jh2Y1eyEpXJpLreWtklrDSCUbOpkKAIKPtyaSKbWhbAmB9W6zR9mWLfNzLBg6K8rnMVCRTa3gmuLnW5+pKl41uRC1v8bmLdc6O5QkTWeCaKNk0vIjfutXA0BS5T2cCXZF6Vcttn36YEiQZJVsyp4I4HSW2h0LQINe36YpLzjJY7QYUnQfOgVLCQT2UPTvcxATSNZWya/Lhco9mP2Cl5fPeUoeyaxJmgs+dH2Ou5h6Zccp2RHHK7Uaff/zWIo2+LE74UUKaKUwULN6Yr3FhKs8nz9b2PSdNXR05Xjb6EXcbHgvNPvebAR+bK9MNE3KmfCaGJllMbT/ml95bpuXHPDdV5JNna2iqIuO0KEZVJKM3zTLuNaRLVS1v4UUJV5Y66KrC6Xpu9FwVRSbhdVUmfJ6fLnF+Ik/JMXckU7JMcHOtz0pHMtlenavgRRl5WzK23rzTJE4z1joha72QXihF0OdqLoamSm1YVeNew5OJZxUuThSwDW2gq5U9tNA9nDNRknFxqsD8Ylu+M4MWpDiRccKHyz06YUqzJ3Uvu0HCubE8t9f7XFvtcqrq8sJ0kRur/UESFhxTZbEV8Uvv9ZgpO7w6V9nilF0aiGYbmjpgP5mUHNkieH6swNyg5X+yaO9Ym4bjfpjD4tNgtePz//w/3uGbdxrYusbpMYe/8IULfPbi0QmRf/L8OD/uWvyXv3CFD5e7/NzbS1xb7vLf/isfY7p6tInk6bLDVMnmSx+usrLusdBqYKkqLT8CVOaqDgrw9796k7YX8/H5GhNFC5BGFjfWemQZdIJkixPtYcHQVD53foyxvM237jZ5936bxVbA+TGXSIBj6Fwazw+MviRzKIwzOMDQLIhTfvXKGjfW+vxnP/TCFpfTpXbAjfU+uqrgRQkXJgpEScZKJ2Sh6RHEKZ+9YKBq0qn3cWLyQohRHN3y4i2JqVTIuDgT0gXc1FWmK85DdYknijaff24SxzJp9mPeW2rjRQlfub7Oa3MV3rwl8wRTJRtD0/iuS2NcnDha98jDwBOdaBVF+XHgXwNu8EDjXgBfPJhhPTl0TUEgWO0EZEJQcU3ylqSeT5UdpsoycWAODkfvLnZoedJ6XuoJBSOBTNvQuD/QZABGNPbNuNfw8KOM9V7I81PFPbGq7jd9bg/EEwu2zlw1x2xFsnJurvW5s+5xr+VhaRp3Nnzm63nans/Xb2yQtwwEGbOVHMudgJyp48cpLS9msemTm9B3rVrU8iazkYtWYeSaU89bA0qhsquOzF4xFLCT/ywPtQstKe7+7mJbtukN2hNylkY1b9DwIpY7EfW8dKNRVBnU7iUxFSUp672A+01PijPqOmfGchQdaSM+PRDOlIJ2Cu8v9vjmnRZhnA2SE1VWOiFhnKAqkp5tGSqOpZEKmXne6EckqXzm87UcmZDXuFv4GsQp9xpSnDJOxGgDPygkacYvvrfC3/r1m/QDWeUvugZ//DOnT1RS6u56j//yn33I9bU+SZqBpfGDr0wfWlIKHgRCmZAtPc2+dOAzdRVNgVMVl14gN4deYNDyQ56fKrHQkq5X693gAS1XkSyK9Z60Kn9cAN7yIpYGFZ69jjPNJFW/0YsQQh6azo7lidKUlbZs413phoiBAHHDi1lc8tA0hTgRlF2De03ptGkODjte+HAWX5oJbq/LNiFTV3luSgqaBnGKpkjnwc0V5rG8xVLHJ2fqj0x23Vzr8e37HQQCVaniRSlJKkiyDGOwgQNcntJ4+36LxWaAgmwn285QefNOg3sNj0zA125s7Ol+7gVtP+bLV9d489YaX7/RoOnH6KosAnzmfO3YklLL7YB/+s4Sf+ST8/t2rvvi5XHO1HP8xG/c4IdennrkHI3TjNVOwN2mx3TJwTENml7E7Y0+9zakG2ujH2JoKpnIuDBR4PzY0EBCtmgttHyCOCXOMoJYsk/vN6R+UseTVddOEDNesDlVke0gB3G4Hu4pK92AfpyQBBl5x0BTIIgzVjoBZcfgxlqfF2fKgHz37zc9rq72yFsatZw1WOczzo7lmau6nBocIqbKNhvdiJylE0QZb99rcaaeY7biPFkySEAUJYN9ycfUNda6AV+91sA01FGLvaYqzFak6+9KJ6DkGJRdk1dmK8xWXIIoY7xoPRXzIEmlEcfN9T73NjwsQ7YxnK67rHRDGj15OE6EwA9TwjiVTqe2jB2+cn1t4J4GZ+t5NnoxqchQkIwoy1BlknyXdvthTPHqbJnZTQ6X02VnEO/IdSHNBAXLYKUtWVhtX8Yv6/2Qkm0wVZJtQ4au0gsSoiQdaYMUbJ0kE7yz0EZBrv0TRamnM2RnVXMmcSoQiFF79fZDxWaWx6XJwoGzPaquiRel3G9Ky/QoSeiGCRu9gDhK8FMwo5RWP2K8aFE9RJ3PR0EIwZt3mrx9r8lv3twgSjO8KCVvaVi6zuuna3zH2SqXp4pPxU7pBjELTX+kp6oguLLU5cJEHtfQYWA8BND2Itb7EVGcsdD0pUBwKp95mkm3yNmKw3uLHdkmGCVcnixyt+Fxa61P3tIZK1hb4vXX5iqkacZqV7KHyo65a7wuhOCte02yTKEXJrw6VxnovYR4UUrBku3oqipZiaoiD5ydIObOgCE3X3dpeVLDFSTLquQYRIlJL0xp+/GWpNAQtZzJtdUuk0UHXVN5YabEnY2+fAcHrAg/kXIRQSTdT5NExj4tL+KdhRbXV/sstn1mys4oLjc06Z7b9hOpqaMonA1iTF26G7qmTsWVjMQolULLIAvXU6VsC7Nmt/dkqmSzqoQHbrzT6kf8lZ97j7fvtYgzgU7Gp86M8ZkL4wf6d/aC56ZLfN/z41xd7pBmgg9Xe/wnP/cOf+0Pvko1f7SxxNANUh0wjbpCwQsziraOa2lcX+2x0JLJ5StLbebr7mh9HBZSswPuBHoU9AEZ4LdubNCLMsJUcHWlh2kYTJUV/CTh9lqfDJgpOwfuFO9F0uWyF8a0/Zh6Qc7TIE5Z70V0/YScpfHybJlqziTNBEmWgiKLPF6YcnW1y0LTx9BUvvf5cZyHtP8rg6T5kKW4GZauMV1x8MJ0tM9fGM/zqHzusAB3ZSlHN5REinsNn4WWz1pHasY1ehGXJossNT2SNKMTxFycKB74fTwqPOmp9g8B54QQh6NU+xSo5y2qOZO8rdOPEhxTJU5TVjsBL82U6IdSjFBR4J17LW4MqI5pJrgwURhV8xVFuuyVHZlMidNsV+HO4UatKo9X9d8M2fKgM1WyRn2pw6pDLW8y6duEScZYwUJTpAh6N0hoBzGXJ4o4pkZpIJyWH7iOxalgrRvuaufqmjqXtlmSyyD56ZIoQ+FWVZHjrrgmq13JLrqz0Wem4nC/HVDLqcwPDi7vL3bo+TFnqjlem6uMFsZqbm8HmiQTvLvYQQNW+xGvz5WZLbtcniyO7Dw3b6Q5S5diowroqjzMb/Rl60o/TLkwkWem4tAfWAqDPDhs9CKmy5J2XbB0Fps+tYLUWdn8rIfPXgjQtINf5O83+vwf37hL109G9/kvfd9Fyu7x6VBsRxAl/OxbC9INMxWYusKPvDzFj7w2d6h/V2riRBRsA1VVcC2p61DPW4wXLVbaIaVBu2aUpORtnaW2z2zV4n6zT5LJOdAOYkSmsNoJcUwV19QGVaaHYz8b+umatD0vOZKZomsKSQqXJwus92Q7bRhnLLZ8HENnrRcxXrBY74WjCmY/TAiTjEYvxrVUajmTnKVtcfjYjkGxdRSMDN8L29B2TaDupSIEECWC5XZAnGVcmIiYKTmMFywmChYXNlVsbEPjuckiKvId6QbJyKFpiImCjR9nJJl0KTsIDMWGv3J1hd++20QR8r0Zz9v8K99xik+crR/I33kS/De/+CEAf+LTZ/b9WVVV+PNfOM+//4/e5p+/u8zvfWnq4b+ryERCwdZpeBGTRQtDla6SeUsHReAYGu8vdijaBpqqjuZ02TW4td5jumTjJymndY2XZkoUbJ33lsKRXXrHl2LEY3lrz3PncbjX8Gh5Mbau0OqHuIZGpezw0nSJ0/U8nSBmuuSw4Un9uiTN2OhHtPoRG/0I15Dtso6hybYbI6Ximlto7vW8TATc2uhzZ72PY0gNh+EBcj9YaQf81s0NVjsBJctAqUhBf8fQyNsGa72QimvQGWgjgWTzbA4aNVXZ4RL3pFAVhSBJ8cIEW1ep5k1O11yKjsn9pjwoC0W+d4oiW68rroltqLy/2KHrJURZxsWJAoamkGYZa92Qsmtg6SpZJoVid6vMlh5y/1xTZ772YJ06XZfMzemyQ8MLidOMRj+i7SUoyPhIVRRqORMVWO0mtD2pHWmb0tlIVxUyIajnZAtnyXkg2KwoymNt7Yf6K/IQIlkuBwlVVbB0lVY/YaUTkGUZihD4USrjNxQujOX4/hcmnzoOexp0g4TrK12+ebdJox9SyVmM5TVqBZupos3nL4+PNIeeBsNnYxsaCgq9KMGPM/woY2rGpuRIhzh5cLSYrzq0/JgXZh4UU0quQddPcE2NlU5IEMuizJAZFUQyid4J4x0tfVGSUbBNCraJbWgPvZ7FdkCWQZrJmP/Wep+7G5LxrABlV0dVVWp5kyDJqOZkMXTIkhj+rVpealyWXbnnu6aOosgj08MSOE0vJmcadIOEsYJcIzp+zPggFqnkDPKpTLz27Zg4lcmJesEcOHynLHekM1uaCU7XZUt9xTUJ4pS8qbEoMup5k3peJsf9KMOPIjIhRu1TnSChNhB33ku718PiiadBmmb8xG9c5/3lLpnIcDT47svj/OnPnz8WVzyAP/TGPNfXe/zTby0RAzfWff7HL13nL//A82iH3Ba3GYoiW/treYsLYzneWehwa72PrqWM5S0qrsG11R5xKqgXLO5ueEyX5Rw9Xc/R8WOaXsT7Sx1mys6uSdKDRsk1+D0vTbDQ9hAik2L6SUqcSifLK0tdxgoWZ+v5Ay8SCCEkW97WtmhGe1FClGacqjhU8w/2ZE1VeHGmjGP0sA0N19JYaPosNH3KrvHIRBLAZMl+6P5Tz1uwiVCuKAqPC3snijafuzDGTNnhm3ebmJpK0dG5t+Fh6yq6JlmRrqXz7kIHL0qJE8Gnz9ePTQD/afCkial3gTKwenBDORgM27QuThRJs4znpktsDFT3gyRltpJjvRdgaBopMpgRQmb8QdJUXUNS7CxdY6yg8alzNbSBU812zFelLpRrantaLJM0w49S6nkTx9I5Vc0NWEsqFdcgiFOqeZOXZ8voqjrSuzENSZmv5U1emilRdg3+xXqPnCnpmQ8TQz5sDDfjTEgRRsfUyFs6HT/BNqXWh2vojJdspisOed9guuxSsE3GyzYfm68QJZL2v9cDwbAft5qzqBYs5qo5xgoW9xo+bT+m5cVcmiyMgpW5qssPvzJNx4+ZGQSABUuXTBNDxRxY4m7uaf7Ema2uG36cypYFIROImwOLoZtSEKfkTJnEPAgIIWj0I75yY504FZRzJi/MlPhL33eJ56dLB/I3DgJBlPCNu02WWgGuoXF6PMfve2WWP/Lp04e+KNqGtkVwMG/JBOzwr270Imx0fs8Lk3yw3GG1E7HaDaWRgKFTzcnEzlzNZaMbMyEszozndgii7oaibTBfdxF7eNxDzZYhLk4USDLZKhckGY1exOWpIs9PF3n7XpumFw7ES41RZea5qTxLbZlgGCtYnN8DZVdVFc6N5UcOPAeFmYrDdEWumXlTp5q3eOVUGUVhhzZAcaAN9N5imyjJuNvwRqxNgLPjeV6cKUor9QML7gSr7YDlTkTRMqm4Bt/7/AQ/+tos9lMKXT8N3r7X4n//xn3+zHedfeJA/vd9bIa/8+s3+Gu/+CHf+/zEQw8OlqHy/HQRP8rIWdronk+mUnS/7BrcWuvjmhq2IfXChrANjXreppaTe898NYdjajT6EQVLtp3X8xa6ptENZML0oPT1hnvKjfU+hqZTcmG+4nB+PE/Oki3zHz9dwY8ydE0ZsIBkS7hrSq258YJs6X5hoC+z2/iG70YtZ3Kv4Uv3zie4hjfvNojSDFVT+NipMm0/oehINzpNVWn0Q86PF6hu05s4LIRJhooUba3kLGYrDo6pD/QlHbpBQr0gA/Bz4zmpwZdkAyvthGrexNJl9djSVW6u9bENeT1jRYs03d31cz9wTR3X1PGilJJtDjTC5AH+VM1hoeWTpIJUCGYqUtg5ySQDvhekzFQc3jgttbrO1V1SoUhNrn08vyGLazhnDgOGptKLEtp+jKYJzo3n5Lwbz3NhPMfLpyr/f/b+PEq2LL/rQz/7zCfmiJyHm3e+NQ9dXT2oW2qJloQE7wkhGWMMBh7PfsIsg1kPsMG8ycbvmWcbTxixGJ6XjWXLGGOEBGawJYTU3ZK61d3V3VXVNdx5yDkz5jjzOfv9sSPiZt6beW9kZuRw5ftdq1ZVZWZE7Dhnn71/+/f7/r5flk64FWgn2n7Mrc0evUiZ1MwUHa7NlnjrfIWFSp7FqsPMCHvhKMjbitm+3PD4wrVJvvOgCVIQxClCqDaagcbM0kSOH311btdz65g6r8yX8aOUMEnZ7IQYmsZ00WayXzSeKjnomvYYExjoS1gwZA/vh5Yf89b5Cp0g4ZMXKqy3ItphzHpLFbyqeYv5yuNr98DlW6DYcvcbHi/OlvDjlLmyo5x3Z4qqQLrP82PpGj4phi5wTYNX58s4pk4YK/mON89VyKS6Fu+vtMhbJt1QaWO6ls6LcwWiVP0tqHhowMrVNcFM2WWm7DJRULpUBcfoG4OoxFmjf1YyT8kRcoAkVSzWe3Uf29BYrOX4o993kf/jm+dOdVyWqfPv/q7X+fzlKX76n90gSDKW2wFfv1vnk+drx67ZNIAQyr3Uj9K+AVTMVici5+jMlVymSg5ffFGy2VVGYAOz0Xx/PmiCvns1+7L3jgOL1Tx/9Psv8869JtfXlC7wXFmRMMI4xrX0sRUnd8LuF9ZmK84wQe5HKcuNAMdUGnaXHpEfWKy6FGwD21St3osVFyklM2V7ZNmecUHTBFdmCsyUlRlCO0iYLFhMFx3u1j1MXePtC1UcQ6cdRPhxRphkT/AvP9s47NX9i8A7Qoj3gHDwQynl7xrLqI6IxZoS2m37Eef7LW9b3RBdE5yr5ig6qs1LSsmnLtRIsmxI+RVCPFb1LTomNzY6+FHWpxA/3JQMfX9h5r3Q9uM+C0KnlrMI04zr611cS1POAEnGYtXdVd3VNcEnl6pcmMhj9Sm5oNhcfhRSyZu8NFtCCg7cGnJUTBRUlStnKjFz9TObkmvy4myRu3WPkhtwa9Oj0XdLNDRlubtQdoeaWAeBqQs+tVQhQ2CbGucnlUiz5GEae6fujxB9ZtiOjrLpkkMlZ2Foeyccd2K9HdAOYlabAZahsVh9mAkfJKiUSD58tN490HfZD1km+XvfeMByyyfNJC/NlwnjjJ/4xBwvzI5Xh+co+M3b2/zmnTrdMOXcRA5NwAtzRX7PW+eORbdjgF6YDFtZH61M7PzcF2aUVbKpa7y2UOEDvT08iMdpRio1FqoucyWXMMroRUr4cCI/ms390wQa4zTrMwqVk9ggUadrYlihX6i4TBVsTF0M3b3WWzqmJvhovYulC16YLVPO2SSZom77fQHLUTbI4xDlL9g6XqgOXBcmXO71HYfm9qkS2aaOaxlIyWPVppfmynz/C1OKUTKGhKuUkv/5mw+4s9XDdTSmy0Veny/ze94+h3VMB9BRx/Xv/oP3mSzY/PERXfX2gq4J/syPvMAf/Zlv8He/8YDf9+n9WYlXppVews5gb8DMidMMTRNcmylim/ouPTXH1Lk4lacXKke71aavXPws5ZRVdAwKts7X7yiWxXTR5uLk0XWlQLFV672IiZxFL/QwdUErTPiFb68wU3L45FKV8xP5ocHH4DCla4JPXagRZxLH0Hc9v0+a/5WcOqQN9OgOCl1Ay4uHbn/v3Gtxd8tjaSLHpy9VqbiqwnocAfdeiNOU7X68YxkamoC7257aK2s5tnsh9+reMNkID6/Pi7MlFspu32lMad85lkaUZpRciytTBfw4O5Ko/U4Y/evtWjoXJvJIVAzz3ZU2ADlTV+5rtRxLtZw6dJs6W92QnK2TppJ/fn2Tom3ymUsHs3B3TH1kR8zDIohTmr2QXqhYL2XXwrVM5qsu33t16jFpiJNCnGb86scbfLTWQdc0Fio5OkFKYcHgtYUyn7s8QfqUBM5hULANzk/k+Xi9w2zZ4bsrHcI0G7Jvo1hJPgxckh99bgdtwitNHz+KMHRBJf9QM2znXvoobEPnyrRK3Dxp3w7jhF+7USdnabw0W8QyNCZyNrauU8ntLxitaYKFHYnnwXoyMDyBp1/PxapLOWfi7mB0XZkqkPSNTqp5e6iL65hK78+PU5p+zExJsc4m+zqrYZLx/kqL6aLDVNFG67fuZxlDF+7pokPFfRgH24bWF4Q/veLNetvn77+zTL0XMlNS0iufvVjjd75+MD3G48QPvzJHJ0j40vUtajmTX/pgnXfuNfndb84zu0fS8jhgGw8T6rNll0reI00lTT/i9paHROmILlRyw7hsMHcVm9joF9xPdg2aKbl8/zULJIi++2cvTNjuRjR9DT8ebxEVlDvxJ5YqvL0jeThoc7V0fc9zsxCCXpSw0lLyBBvdgI1OyOIJFJf2gm3o2AWdq7PKlMYxBd+531bnAMtguenz4kyJTy5V8eKMpVruRNo0jwOHXX3+FvAfAu8C46GHjBF2X4BQ0zS2PaUjIYRadCt5k1rO4s52j0zCVi98qlBrmkn8SH3NXnj4h2azE/LhWptWkFDLm1ybKeBFGaCYMa6pbkejF/cdfhJmSspVaS/79rfO1+gE8Ym4K+yHkmNSmn18kx9sxBcn8yw3erT8GOlLekFG0VH97IVD6iM5ps6b52s4pr6rR3q+4uKaqpVvlIDqaX+z1Q1Zrvts9kJqOQuJYtjd3OwNN4QLk7mH1t5RMpIQ9tMgpeTXb27ySx+tK0Hi6QK/941zLJRdcmdIU2q97fM/f+MBnVDN0++7Msm/+Mlzu2yIjwtr7QAvTPHClErO3PPg2fKVpkXO0jk/kaPkmnz6Qo00k3z5+hbTJZu8Ywz1pExDI28ZZJliV44jKK/3Na9AJWMfNSVYawXUe0prbbrkIITgjcUK6VzGV29vM1d2lFtRP4mraWLHfEtPvHIzwO3NHqvNAF0TLDcDNKGu/3Yv2rP6pmuCi30L3uojh7FUSl5fqNDqC90eFl6UcHe7x0drXb5xp4Fh6Lw0U+JHXp3j4mThxNmkj+Lnv7XCO/ea/Ee/5/Uju6f89pdneONchb/8S9f53Z9YeGLiZb/vbeoal6cU07Psmo8FMQXboBsktIOEu9setYLF+VqOF2eLXJnK8/Fah5VqgGvqfO1OnTiVLNVyR06CzpQcCrbBjY0u1byFKQTdvkbEaiugGyb86Kuzw2dppqThmCph5loGhwkbD5NED+IUwYC16RCmGZuduH9YVm5itdzeOjbHibV2yGYnRNcFMyUb19JJUiUo2/TjYSzzoKEc7mxD48KEYvI8msTWNcH3X5um6UUUHAPL0Mea3F2s5mg7qlK+83MvTuZp92ObAZNvwEj/YLWlRLDDBB140AwxdOWuePWMCb9+50GTjY5KBE4XbS5N5Lk2W2KyH9OdFt5fbvP1203aQcxc2cYwNL740jRzJYeFfrLuuFL4272I21s9trshU0Wbgm1ye7PLpekCYZwN3fWe5ICsGEj6sLNhJ560zo9SpHnQULIZ7VCZdnz/tWnkdIGmr3SeJvsH+ZsbHbxIjffRfR1UkqzQdwQddX3RNPFY54CmCawdc+XW0EhFFQ8sXWOzE9LsRbSDhMtTeSaLFo2eiju2+tdZ7zNE/Sjd9Rk7r9dpxRMD1HshP/Prd7mz7TGZt3l5ocxnL9VOlVW4H37yk+f49MUaX71d573lNu+ttGl5MX/k+y6OrS17VLimzuXJPKvtgPt1H6+vIXphMsdCxX1srRFCPNXY5zjhWjo/8uosn+yGfNxnTt1reEgB37nfHHtrs2sqN+LFHSz1vG1wruYSpRmTe8jIpJkcFr2WGx6NXkwQKd3kN89Xj92BfT8sVFwWKi6/fmOLbhyrdvaixXzZ4UHTp+IqN+DF6ukk0MaBw0bqW1LKvyyl/GUp5a8M/hnryI6AIMlUZT6DOMmYLTt0ghgvSpgu2Gx2Q25s9HjQ8AlGaHHRNaVXkLN15iqHX3DCRFU50kwFiBudiLKrxOouThZwTFWtKNg6TU9tgtu9/WW8LEO19+2VlGoHMTc2umy0RxNnHhfWWgE3Nrp0w4Q0k3y41ma1FWLqgjjNmCpZTBUdiq712AF1VOja7kravW2P232B5+mSMzbLzO1uBELpFiRZhqUrra+NdkC0wz1lgEpOuZg8SfPnaZBS8uu3tvjKjToAWSp5db7E1ZnimUpK3dnu8QvfWiFIFI285Jq8daF6IkkpeMgMtJ7gqFTvRX3B0ISg73oh+ro7H6622GiHmJrSYAHF1MjbOtW8OTZGgGrxVTTqvXQltrohaaYo1zvR8GNubna5s93DEAyt0Gs5Ze1eco1TFTZsBQmxzGj5MfMldUiIs5TqEzSG8rbBTMl57OCw2Qm4s+XRCZKhBuBBUO9F3Njocmfb48Z6jwd1D13XMITg7Ys1XpgtnXpSqhcm/MV//AGvLZT5PW8tHvn9hBD82z/yAiutgJ/96r2RXrPS9Lm52cWLHl5j1e61f/IkZ+vIvvGD02+JU0lcnXyfebzeDpgpOISxclQbFWGSkvXpc3GaKcOEPqJEaaR0/ISo36LnmEr7zTX0XXouquiks9oKWG76I3/+UdDoRVxf73J9o4suNPQ+8zeTkpytHHNLrnEg3clxQErlulh0TTTUHtYJUhCSmZJNNWdhGgJN62srpZJemOI9oUqta4KJgr1nkmDw7DWeEKc8CbomqOatx4J8x9SIEqW5F/bjucFeaxs6G+2QRi+hGURYpqDiWsfK0B0VXpRwc7PLasunFyastwIavYiiZVJwTBZqOaZLzqklpeI0Y7MT8OFai4YfEmcZ030tKdvQ4QTGtd7yyTLQEDi6Rq1gcnEyj0CwWHXJ2wYfrXX4eK2rdMX2gBCCSs7CMZT73a3NLmEyHqbFVNGh7Bo4hui3QSk2US1vMVVURazlhsd3HrS5s9VjoxPu+T7ajrmdZsr5+fZW70hSD4PnG9Tz8NJsiXYQs9Fn9ftx2nfDVK3awK44wTF1XEtXBhh1DzmOSuoYIKXk9maHX3hnBS9MyFKJrsMPXJ08k0mpARZreb5wbQpDF2SZJEhS/sE7y3zUF0g/KZRzJkXXYrqoiAxxmqHrgvt1j+sbygG20V+r64dcq8cNJRLucK5WIGcZFGyTZi9ive3TDRM2Ouos2Q5Gjyn2Q5JJGl7Eh6udXXO+klPtcHutx7omKLkGUZqyUHEx+u6wqZSHilPHjaJrUHUtJgsOVdfk9pbHva0uuqbO2oNCTstTuYCt7t7r1FnEYU9f3xBC/EXgF9jdyvfNsYzqCJBS9nvPFcPo5bkSUZoxV3YJ4pRv3GvQ9GIqOZMklSw+gcq92vJp9GKmivbwn6NgpuRQ70XkLaPf666s7adKznDTG6ATJrT9ZLi5NL2I1Zaydh6Ffr7eCghipWdVy1vHyqhK0ow72x5+lOJHCQ0v5u52j5fmSlxf7xLEKRN5mx96eQbL0Mj6WhHjcPBo+fHwkLLdC0fSBhoVXpSw3PBxbXUQ2uooC/Bq3sbuOy3tTK7pmjiSAKRiSm3xP33jAUhYqDj8wLUZPnfl9ISa98JmJ+C//vJtGn2h+e+7MsGPvDpzbDodj+J+3cOLUmbLNhP5/SvPFdekFyY4fZ2ZAe5s9+iESiR1qeYO2wNMTUMIpbPS6/fuHxadIGalGZCzdK5OK+HYvQ5OlZxJoxc/lqTdaAdsd9W8niw8rMgaukbZNVltBaw0/WNvRdkPZdfkE+eq6Lrg8kyRtVaAqelEIwbdO9fWtp9wv9FDonS0DoqVps9WJ+T9lRZ3655y3bs8wVsXqsyWzkbV6K/9yk3W2yF/9Q+8NbZD6eevTPL5KxP89C/f4Pd+6twT5+vNzS7vLbeUmLQQXJwcbW6XHJOX58ssVF2CONu1R4VJxpuLVTpBTMuPWG9LLk+NdojYaAest0MsQyOVko/WOggBl6cKOKZqmSm5BgVXMRon8hafvljja7frqn3lkYLSRmcHg9I1R6r8t/suYa6pGJUHEdQdJHIUM3ugWyOIkhSkYLGSo+RYR15HDgrRN+JwDI2CZTNRtNnohKSZwVJNMUxe7LeCt/yY+3UP29CG2lr36w9bckdpM1tp+kgJK4k/sk5JEGc8aHhPrIp3wmTojrzWCpRIbiKZLTucq+VYquWp90IyCbW8yaWpPOfHLL58UGSZ5Gu369zc7FLpa5YMpAbOVVw+cb52qlXsbpgM3aBBsFB2iVNJtWDRi5JhYe24cWEiz63NHtu9iMWJMm+eq1JyDMIk6zvLtQjjlLJr4cUJZfYfUyd4OE+2utGuVrrD4q3zVbS+uYOha3s6lylnvQgvTnl5/iFLL80k9+rKGevcDvZo04to++owW+9FzByygCeE4Fwtx82NLkmWsdrymS4q/apukPDSXInztRyOpVN2Tc7VHr52ueHx3dUOQZwwV3axDZ1yznyqHMFJYLUV8Le/fp8HdeUW+4VrU/yO1+bGYqZx3JgqOvybX7zKP3lvjQ/X2rxzv8VyM+D3feYc12ZORnZjsZqjlrNoeCrp9Opima/dquPFGR+tKebx1283sEyNRi9iwzWw9IdM2dPEQtXley5P4Jg6d7e7OJbBzY0Ot7d6bPUiFisuP/jSzJEKD2mWcXurx2TBGjIiq3nziedFKSVxmmHpOomEz16sUc1buOZoHTnHjSvTRQq2iWNpNHox19c7tDK11ry4o/NgpV8k+XC1zUTBouxazJWdE9MVOwwOGzF9ov/vz+74mQS+OMqLhRB/CvhJKeX3CiFawDv9X/2klLIuhPgDwL8B1IHfL6VsjzowL0rpBAmzZZeiY1DJW3SCGCFUe45AiSyGccrnrkzuuxFLKdnqRHSDhJanWm2O6gQhpRLdvjhVYKsTKueMVPLugxZxknFth2veozTLrW5EkkqaXsx06SHFWUrFqjI1bdcinrcNgjjCMbVjF6DuBOqgkGQZ79xv0vYTXpxRIvODNquXZovHQh1NsmzodjbOvvggTjE0jfMTeW5udllu+pj9DPrFKZOl2sEOMk9DlmVc3+jylZtbBHGGbWh87vIk33ttamyfMQ60vIj/7bvrbHdDkkxytVrgJz+5cGIuKUGcDgNR5Vyzf4BXzVt7Lr5JIgmTlIpj7qomenFKt8/aCeIObyxWDr1pb3ZCoiQjSjImCzb2PpvqYjXHYvXxn4ex0pEoOSbTpd3fYasb0g0SNtvKKWtcDMGDYKGqhCCdvnBwy49ZawVsdgOm9mFxDjBYW0F9F10oxkOYKPvrg0DpbSS8+6DFcsujZBtM5GxeWSifmaTU/brHX//VW/z4m/N88nzt6S84AP7Mb3+Bn/irv8Z//eXb/IkfvLrn3wyYRxqCphdzbfZgCWTL0IbPWaOnDo6OobFUyylGr5DDORj3q8QDXav91oVuv+IYJRlZJvvaY+pQV8tZTBZtrkwXyVkGUZJRdk3FcE5UkantJ0MdGlD7XdtPMHSxKwn9JNT7e2onVToto+wfg/3WNjQKts7tLdVeqAm41G8XtTP1/E+X5MhjGSeSVA6ZqzlLp96N6OoJhib41MWH86/smpQXHmq6hUm645Af7kpMZZmk7kVYhrbrIJvvt3seJPkmpWqRmCyk+7Zgt70IKSW9KKXhhYSxEp3thglTRZvvuTzBu8tNvFCZklRy9qk5dQ3QixK6QcLtjd5Q30sZCDi8faFCdUTX4eNCx49Zbnisd0KyTFIrWHhRSjdQrpWvzJeO5RommWIY5CydOJXUCjbnajl0TaPjp3R3tGxudpTTZi9UBgIC+GBVOdvtdYh0LA1NU90RhSPEf2kmWW+rvcsxdSaLthJZjzPiLMN+xLExZynTFV2DrV5Eut5hqZYj6McQoFoWB4mynPWQPZk7YkG27JqUXHMYc1dzFiXXxNI11to+d7Z7LE3kdq1nUkpub3l0g4QgTujaCbmSMRRJP000eiFfub7J/W0fDZguOPzut57cnn7WUHRNfvwTC/S+GrPeDlhr+/zq9U2KjsFc+WQS5jnbILdjHQ6TlHvbHgXHZLnh0/Yj7i37zFcc3jhXJU5SelFyKvHjTuiaaius5Cx+87Ya/3or4LsrLTq+KjR1guTIHQIFW833ra4yTdjqRMz25TP2QjdI+HC1g64LDF1waSpPJpVe6klrOe8Fx9S5MKnO1DIDy9C5OltgruSw2QnphQkXJvLkLJ2P19rEqWStFSq2qsZvvcSUlPK3HfYDhRA28MaOH70rpfyBHb83gX8d+ALwLwB/FPiPR31/x9SxTY0wzoZJp6Jj8sJskTTN+PZyi26Y4kcpH651mCjYe2ZihRB0w5h3l9ss1pyhu8FhEaeqKpxlGZ0gpuQYXJ4p8JXrW4AK1HcG2o+iklMbUc7WsXSNThD3beZTokQdBi7q+eEDM19RzhsDFshxIm8bmIbg9qqHHye0/JCb24K8Y2IaGksTLvNjrhRGicqALzd8qjmDyiFsvp8ES9dwLQ0/Ui0ZnUAJ9FmGxr26RxCnLFZzY+vJ/8fvrfGV61sEaUYtp4TjP/2IM+Bp4+Zml7/79ftstJWTxVTR4cdenzvRA4FyUFR24aVD3O8gTtE0Qc4ykMhdiRDX1Eky1UM+0xcMPWyve9k16YXpY25noyBOM+IspWgbBGmKqeu71oaSY/Clj7cwdMFU0eKlU3BobPQibmz2cC2dmaI91L/KWwbdMHki20K1YZhD5qpyEokRQhyIZt4NE756e5Nv32ux3PSZKzkYus7r58osnRKTbC/8xX/8AboQ/Lnf8eLY3/sTS1V+6KVp/n9fvs0f/vyFPavfql3KRIgctbx1pH3s7naP79xvDosspX7Q6MeK3ZuzdJWg7IQ4ptLH22t9mCk5rLYC8raOoWnkbZ2bG13ubPVIJbyxWOYT56tDF7uNtmIAG7qgGyaPFQYmC8qtxtBGL8RUcibdMMExtZEPaKutgHcfNNnqREyXbFp+TC9O0IRgsmBRzdtsd9XvLk3mT1z7cbMTstLy2eqGfO7iJBcnc3y83iWMM8L0ya1Olq7uQy9Mh8/vdjekHSQkaTZsh74yXRiynS9M5AiT7MBrnGs9XBeVZX3KbNkhzSTvL7dYb4dU8yaTeRuJoTSzhFDzZLNL0TF4Zb7Mne0emhBn4qCQswz8KOH6ZoeibfBGUualuRy2oZ+ayPkA6+2AL13f5DdubjNRtPnsxRoXp/Lc2fLwY2Uxf1z7eNyP1dq+0k0t55QJhqmrVreBo54QSii8EyRcnSmyUHH5YLVNkqpCxsweLTe2ofPibEk5Vx8hCexFKT//zjKWrvG9VyeZLNpsdSPlyrXH2jBVVMm1lhehC0EYq7b2as7C0AVpJndJOriWzouzRSRHd7QcvN+gXcwyNGZLDh+vd/l4vTMsRu/UWxNCMN03lZituLx5rjI0gTpN3N3q8TO/cYdm3zyi4lr88KvTz1RSagDL0PjiSzM0/YTNTsDN9S5/besWv/3VGT5/5eQLzJcmC8SxpBPFbLR9bm/1CJOMrV7IVidgoZYbazH/qCg5Bi/OFQmTjJsbHe7VfbZ7IVdn8uTto80HKVXhYLJkMVOy2e6q2PNJa14riCk5Jt0ooWgbw5jXMZUTqH2G5uhs2SHJpOoKu9ugE8RcnMwz2Y/Ni47Jzc0uBcfAtXInwow9Cg41K4UQM8B/AMxLKX+HEOJl4HuklP/VCC//11Di6X+h//8vCSG+BHwF+HeAa6hkVSKE+EXgbxxkbLomuDpdIJPsWnQH7m/XZoq8/6CNlND2I/w43XOjSDN1EJwsWmRjkHcfOAB0opS8rWyR40Ty1lKVuhdRzT2ZkTVZUO0Mg79ZbvrEiWS7F1LNWUMLzJ04qdYqy9C4Ol1kuxPyoKmjaxoXajlafsKV6QKOMbr446jY6AT9FpKYnKWP/QCgaYIr00Wl89W1mSoonTLb1Li37WMIDUMPniqcPwq8KOH6eockk6Rpxo++OcenL06eqYUP4MO1Nu0gJkwkry2U+Im3Fk9MU2oAdV8ef75HhW0o1w/L0Ck5Bn6cDZM+uiYouxa1vEWSySGr4zBQVXwLTXDggN/UNfw4w9A1phwTP1ZMIstQ72MZShdISqVFdRq4Vx+07qbUvZjL0wV0TVWWRgl2ztVyLFbVdX/Q8JgpOURpRnIAXYbVps+DesBWJyJvm5yfzPOFa9OHbpM4Dvz6zW3+0btr/KkfvjbWNuOd+JM/eI0f+ytf5m995c6+rKnzE3mWavsXPkaFEPQTrjrNIKYTpmhCUHIMXpgpDgs6oFq2ds7bncjbBlemC8P3PFfL8fF6h5af0AkS5ioOG+1w2BpddEw2uyFzJZfzE3sXBA663w1alw5yTTq+srRX7b4JcxWXac3hjXNlLvb3grny/lXY40Y3TAjjjIJl0gpiNE3jtYUy272I6adIEQghuDRVGK6HSZqx0lQale1+kL7Xaw56iHQtnSvT6tDsRykb7YEaRMBUn6kCgISCa9DxE5YmXC5NFri11cWPMrww5cU5i5fnjoflcxhIKYmlZLZsEyfK+WzwPU8bt7e6NDyV/JcSMgQXJgqcnyggkGja8SZQvShhpemTSVhuenzqwgRTfVbkTlyYzJNmcri3V3ImW52Ikmvsy15WDrdHmwNJmqmiiCa4W+9RypnD9WkvOKbOy/Mlgjjl1mYPiUpEqVbZIlLy2HjHGaO2/RjXNGj1BdkVw18o7Rup09tDO/fabJHL04VDxSTHhe88aOJHKUGc8cmFCj/2xsJQWuFZxFItz//58xf56s0tfv7bKxRswbfuN08lMeWYOqahkZMGW52IqzMl3ltu4ZoGlZzBtTNmFDF0T0clLA1NU47bQozlDD5VdMiZBrW8zVzZfeozUHZNagWLad1mpuzwzr3GMObd6oUsnJD74igYtPiuNpV+nx9n1L2InKnTDRLiVDJRsFmq5XhhtnjqJgdPw2FH998A/zXwf+v//8fA/wg8MTHVZ0N9v5Typ4UQg8TUVaAB/DXgx4BtYNC61wL2aHQBIcRPAT8FsLS09Ojv2M+ZueKavH2xwoNGwHTRpmgbdIIYXdt9oNKEEg2UGRQcnakjLpamLnAtjaLj0gliemHCXMVmtpxjofr0h2TwvQbImQatJGa+7AwF0E+zaqgJmCo5vLkoaAWKwuz3K6zH8RDkLFXJmq86nKvmhuLQ44auCaZLij0TJhkP6h7VfELO1sn354uUknaQYBvagYL0OFUBtmtqvDBTJAXOVRw+e3nqTAi5DtDyY+XcVMtzp9xjsQq/8/W5E09KDfCk53uU1yr2pCTJJPOPHCKrOYv5ikuSZZw/ojPIUYLlF2ZKZFlGO1B6EDurwQOb824YjyUxehiUcyZrrYCSa1LNmViGfuBWkMHfuqbOfMXFi5Kh/s3TECUZcZpxoZajF6bMlx2+cG2K2hkKatNM8u/9g/dZqLj81BcuHdvnvLZYHrKm/k+fv7AvNX8ch5FrMyW8SAnsXpjIs9UN8SNl8S6EapNX62JCwTZHZjEYmuDCRI5uELPRUS6oOzUIXUvn5b5uwjgPVQd9r3M1l/lth61uRNE2mC07XJrM73LlOs1D33TRpuyaJJnE0pWAuEoCjxZjwMPx65oYss/PVV1yttF3PhxfwcTUVVIhzSSupZO3DV47V1Yudv2Wr51jUqykCNvUSNIML5R9kfnTu+ZSStp+gm0IXp4pstEOyVs6n7483rbdw2BQXJktuayVQmQGL8zmeftibUfi5HivnWmognCcShq9iOqOar0XJY8VMnbum3Nl94ntNuOCa+ks1FySRJK3TZJEiYw/bf0aJKh2MpoHOm/HibxlKMYHKolXzVnkLEOZVJjakIX2KE6bITWAHymNz4tTBe7We8yW4cffmD9T+/dhUXJNfvDlGVbbIdu9iGvTRaJE6f0Wnf0TrMeBvK2E92fLDq6pkbc0qgWbav7sFO/2wieWqjxoeGx1I16eK6EJJeI9quP6o7BNndmSrfSWtf0lBnai6Ji7YtrFam5oVnSUtuHjRMk1Wag62KbgjXMVDF2xKVsTisSRt41TkRc4KA50dYUQhpQyASallH9HCPHvAPTZTaNYYvxB4Gd3/kBKWe+/999HaVf9PDA4nZSA5l5vJKX8G/TZVG+//fZIZfYoybjf8MhbJl+4WiBvG9R70bAqeHHqYSucEMpadb6sNGcaXnykHtc4lQiUNsv9bdVCtNGOMDTVllTLWwd64M7VXCZj5Upy0uJ13VBpKewcsxCCpVqOlaaHBCSC1xcrSoj1GJg/tbxFztLR9xGVHjeEEDS8CAm8uVimE6YMPnatrVgbQsDVmcJIlfs0k/zyhxs0ehHnJ3P8yKtzfO7KJHnbOPH2j/0gpdI/+3i9Q97W+dzlSf7w5y4gEOTPkEPgQdHsRfSihJmSs6sdMEkzojTj4mSeWv50XZ78OKHpKQ2tnetCkqqWgaVajqJjnArlfaMdECfKNnu27CBRrnMrTR/H1A90CAbFLsvbxsjP8v3tHl++scVk0Wah6vJHLk1i6CezDhwEf/s37/HhWoef/v1vHft9GrKmfu0Of/yLe7Om9kOaSba6IbahPbXlyLV0Pnm+1j8A6ZQckyjNcEydbphwa6OLEIL5ioMXpdzY6DBfcZ/IogvilNVWwLWZEpWcxVorIMkktrn7fj46p5peRNjXcDvuA1cmJR+vtXEtg5fny/TCGD9SrMazctiL04zlhsdbSxVWW8o59uZml7myQ5hkTBzQBGUQA4XJaPpbh4Gha1ybKRCncpjwmi46+7abzpQcml7EVjtgtelRyztU8+bY7cVHwUDvsBvG3N3yiNKMT1+o8a9+bxFTFzjm6e6Ry3WPL93YwjF1Pn9lkh99dRYplZD3SbHpB1DXpkqcKgfa5aaPFwr8KNsVd++Fk0g6mobGF65OUXZN1toB7620kFLyhWtTuCPM/ZNOjJZcnXagUcmbZBnc2upxdabA2xdqREmGa+n0QsU+Hei8nhXc2+7y5evbVHImn7xQ4w9+9qKSPDhDYzwqNE3jX/nsEk0/pmgZvHO/yd3tHiXH4AdfmjmxGH+pplqtkzTjw7UOqVTn0HOPSKtkmWSrp9qlJ85AcrCat/iXPr1EFGfomuDXb20TxhlzZZvZsoumiQMx62xD45Pna5i6GPnax2nG/boHKEZ33jaYKTqA4H7DH+qrniXkbYNXFsrc2/bwo4yWp7p8DE1g6xp5S+ds+HA+GQfdOb8GvAX0hBATKMFzhBCfRbGbnoYXgDeFEP868IoQ4k8Cf0VKmQKfB95Fsa9eFULowA8Bv3HAMe6LhhfhhSlplrHVDcnbxtCNBiB9RHhX1wTdMGWzL9Rr6uLQQnFBnPLuchuJ2sRMXSNOM+5s9dA1DS9KuHQA9oMQo7XMjBtpJrmz1Rv27O5kbLSDmAeNoC8qCy/MFo91QzzJzTZKsqFg84drXbZ6IUkqeet8dVhvlJKRKKdZJvnq7S2+cmOLnKUqKJ+6AOVT1qF4FB+vd/nnH29Q78ZcnspT9yIuTp4OQ2dc6AYJv3m3MbR73dk6ttoKhuK/ZdfktOIkL0r42p06G62QTEouTz80Ddg5xqJzOvciziTbnZB3V1qcq7lIqQ6YQax0aCYK1oHXplGf5TBO+YfvrrLc9Jnq2Jyv5cbK4BgXWl7MX/qnH/HpizV+52uzx/55ry2W+cEXp/mbX7rNH/7c/qypvTBwSATVDve067kzUappAkdTGmjX1zvc2fKYKtoUHZ1OoGpVm52Q8xNPSkxlfPNugx94cQpd0/r/KBHv/eBHKffrPqACyONOTIRxxndXO3SCmGuziv1h6xqGzoEF+48LQZzx/kqH5WbAQkWxTPwo5e62p1zG+uypg+BRJvlxwOhfx1HQ8pW48K2tHmvNgFfmy7xx7uQ19kC5u/pRytfv1AnijMmCxXo34OW50xnPTrSDmH/83ir36j4TBYsXZgpMFU9nXHGSsd4KVWumo0wKWl7E/XrAfMVhvuKcukZYlGS0/YRMqrX74/UOoHR6rs6erZanjXbA1+820PvyA7W8Ok9kGeiGwLX0vti5itM7QbxLb+o00fAi/pd311hpBsyXHS5NF0ZmST9r0DSNWt4mSZV74q2tHn6YYhqCH7g2cyKEgkGrdSvOuLHRZaMdEqWSF+dKlN2H+/hWN2S931I9cH4+bdiGSvystQLafsyDhs/trS6vL/b10YQ4kID3QePEhhfRC1UMs94OWGsFvPughUTy+mKF9ACyEycJwUMduzBNeXe52Xe2zbg8VSCVcHFy/EZk48RB07aDJ+lPAb8AXBZCfAX4b4E/8bQXSyn/rJTyR6SUPwq8D/wK8Jt9jalzwN+VUsbA3wS+BPxh4K8fcIz7Im8rZ4woVVnYgQDjVNFmpmzvaU26c+04SmW0LzFFnEgWKi61gsW5am6YvT0rVddRMCgOPapr5Riasql2DSbOWJXmqBi0YoKyBY8T5STV8WNmyw4TBYuFqjvS4hckKVGstCg0AZem8mfy/nfDmKmCjWUIagXrme79H8CLEqYLNjlLZ6pk7wqIB/fgtOUXojijaCvnnbJr7mIPaDvGeFrjnCna6IYS1JZSIGEo9GoZ2rFWkXphgmsalB2TgmOwdAxOn+PAf/5LH9P0Y/5fP/byiVXT/+QPXaXlx/ytX7tzoNfpY5hTYZJhaBq1gompC+bLLmZfW2qUJJkQak2dyFtMl2xmSjbVJ1iF7xzrSaydErWHCwRSSsqOwWzZZqqotB/PAmS/FiqAuX6MsTSROzPr2jiQs/RhUW+27GCZKn47DWhCEESK7V7Jm+Rs48zskS0vZrJo41o6OctgYczmM4fBgKllGRqa0Jgt2xRd40xYrw+gC8FMyabgGEwUbI5ZeutQaHgxecvAi1Jmy2qt3Cv2fPjcn50Hvx3EVFzV7ZB39DNlUnJcMHSNq9OFPhvJJE3VGeAkUXKN4T+mJnYRMmD3HDlrZ5GCY1Dtt/YvTeSGyaLjTuwV+vkCIdR/e1FC0TEoOAYlxzhTwvE7UevHUNMlm4JloAtlgBYlKY6hoZ+h9WA/HPTKTgkh/lT/v38O+EeoOChEsZu+M+obSSm/t/+fb+3xu58BfuaAY3sqCrbBS3PKweNBQ1GvB20k+2GqaGMZGoauHWkiKsHPAgs1F8fUH9rI2jpelJ6JDPUo0DVF799rzCXX4lMXa3SCZOim9FsFg7aGJJPoQtFB4zTj/GQeU9cO9H1dU+fCpGJ6zFecU2lDGAWXpwqkmeS1xTIvzZXP3IZ1GJRzJldnClyeznNpancVca7s4PZdPU8zqVp0Ta7NFDhfy3FpqrBbc6Okxqjc/k5njIau8ep8mZJjoglVfRlU2fQR+/cPi5Jr8umLNRpeyBuLlTOZ/H5vucXf+rU7/MufXuKVE3RMfH2xwg++2Hfo+9yFkV83W3Jw+gfGw15P21D33+gnpSxTV7p5mXwqdd42NV6YLVByTTRNjCRe75g6FyfzRElG5QkJrHHBMTWuzuTJmcphzTb1MycgmrMMrkwr2+2iYw4TgjlLJ4gzKs9IjPEkOKbO91yaYL7i0vAiposOhVOyO784mafimlQLJkiYqziU3bORpKzlLa5MF1isurw4Wzq1awTq+T5Xc4dtwtdmCsyUbNbaAbbxUKvzNOEYOgtVl7JrkmaSz12eIM1g8QwmTqaKNpmUXJjMPeZOOoAyMsjTDZIzdbaYLji8slDiynSB1xbKOGeQ7XwceHm+TMU1uVtXRi+PJoaOG0II3lqqsdUNmSw+LhszVbSHen+nzV58FAXb4LOXJpivusRp1t/bjD3NOMaJnKXyBaDOva8tlrm50aPoGFw4w50jQjyMoaSUzFcdiq6h7ruun6n1YD8cdAbqQIHH1RLP3uq9DwYOHqO2zSlr86MHG7ah8erC44cUx9TP5OHqSXjSmM+fUQbDOKBaMNXUf32xcqT3uTBZONOLGyjXqk9fnDjtYYwVtqFzbR/quDggNfi4oPcdIfeCpokjad2NC9W89di1OgndBEPXeHn+7FL/00zy53/uXWp5mz/7Iy+e+Of/yR+6yu/6K1/hv/31uyO/ZhzzXggxdNDb+TNjBJcC19QP5V6Wtw3yJ0RQ0YTg1YXKyXzYIWFogtf22JdylsEZ6xI/EnRdO5DswXHB1DWmS86pmYA8CXnbODPzVXskhh7E1OOIq8cF0Tc7ArX/Xps5u3tMLW+NFAPYho5dOFtnC9fSjxQ7P8uYr+aYP8Ui9GzZUS53++AsPY+PwjS0UzH62VkUruZs3r5wNhixo0II8UyeyQ+amFqVUv6Fp//ZczzHczzHczzH/77wV/7ZDb7zoMVf/pc/sWdr+HHj9cUKX3xxmr/xq7c4+3Wx53iO53iO53iO53iO53gOhcNqTD3HczzHczzHczxHH//0/TX+81/6mJ/4xAI/9vrcqY3jz/7oi7y+ePoCzM/xHM/xHM/xHM/xHM/xHKPioImpHzyWUTzHczzHczzHczyDCJOU/+rLt/njP/tNXl+s8P/5iVdPVXD2hdkiP/OvfubUPv85nuM5nuM5nuM5nuM5nuOgOFArn5SyflwDOQuQUtLyY0xdOxFh05YfIwTHLuI2KqSEei8aihg/x/4I4hQvSqn0BXsfRdqfS2dZaO75/VaaQC0/JmedXa23/72NMckkQZye2e8K6rn5U3/nW9zd9ri+3qEdJHzxxWn+89/35pl1a9kP7SBGSs70WvUoOkFMlnFi7ZLPwnq+F1pejKaN5oz4LOG4Y7Vn4X4/S/t3L0yI04yya54pl7gBnoX7fRjEaUYnSCjYJ+d++Czs32cZg7PFWUbWj/fO+j0exDaHxUnHGWcVJ32/n60I+pix2QlZb4cAXJkuPGa/Ok40vYj7dR9gl2PJaSJIUpYbPm0/5sLksyeYdlJI0owbG12kVAHXuT2cW6I44962x2LVPROC2nvh+f2Ge3WPbpCga4IXZ4vHbkF7GNyve3SCBE2Dl2ZLZ3KMDxoebV+N8cXZ0pEOSnGinq8XZ4snIqh+GHSCmF+7sc2FyRz/h9fn+NFX5/jC1ckzeeh6ElpezL26B3Cm16qdaAcxd7fUmBekeyJmAM/Cev4otrshK80AgAuTud9Syan1dshmR8VqV2cKYw+Yn4X7/azs35mEW5s9AMJSNpLr5knjWbjfh8HtrR5hnGEZGi/MHtxg4jB4Fvbvs4osk9za7JFmR8imnACWmz5NTxErzip2xgmHQTdMuNN//VzmMFl4toTPx4mTvt/PE1M7kO5IraZHSbOO8lk7Fp6ztggd93d/1rHzdj3t3j0L1/JZGONxYXD/Mik5q1dhcH+k5OyOMdsxRikZhxzhWf2uoNxHf+PPP/ud7Se5540L2Snunc/KNYLdY82yUxzIMWDXvD3GOfAs3O+zP8azG+s+irN/LQ+GwfU+jev+W+tKngwkKhY968h2xKRnFdkR5/zOZ+ao7/Ws46Tvt5BneWaNiMnJSXnhwoWn/l2aSaJERWimoWEcI/Mgk+qzhBBYhsbdO3e4cOECUZKpCS/AMfSxZiDjVJJkGYamYY5g0/0o7vTHOC6M63rvdy2f9Hf2GGnLYZKphUkoa/NRcNhrGaeSJFXXzDY1tDFOkDDJkFJiGep9DztGKRXdGJSd6jgp4kkmidMMQxOY/WrbWZmXUqprCBL7kWd33GPMpCSM1RgN/WDP86P3+bjGOICkPx8kaNrBn71Rn++n4TjX1iSVxNnDeXmYa3mUe3rQ8cHx3e9x4/btO8wunAPAMjX0R25cnGYkmcTUNIwxXrOD4EnX8qTiisHaqIu919zBGINYPf9CMHYmUZpJoieMYRQcdF5KqdhByMf3m0fXjnFd+XE8O3GakaQqvh7nXh4lGamUrC/fP9AYk0wS9+epZWhjb/8b7DumsfsZ3uta7lwLTf1gz/Xg+5v6+J61R8e4ay8x9QPPK9l/j7324XGM8WnjkygWmNwjVjluHPbZ8Y8QQzwJe60Rd+7cYen8+bGfF8YZg9y5c4fZhSUAbEM78HvtXn90juu4e/PWbc4tnT/yOSCTEPbPFYb+MI4ZB27fUTHGQfet45qTe+H27TvMLp7bFcONiuOMLR/FN77xDSmlPNaLcWqMKSHEjwJ/rv+/LwB/TEr59/u/+3eBnwAawC9IKf/TJ73XhQsX+PrXv/7Uz2z0Ih40VPvccVN2l5s+9W4EqFa9H/rC5/j617/O/bo3pMRdnSlgG+MLHN9bbiElCAGvLhzclentt98e6TqOip1tIvMVh4lDUiH3u5aPYnBtYbytCzc3u3hheqBWqsNey7VWMGxRuDSVH5t+RieIh7TUsmuyNJE79BiDOOX6eheAat5ksfp4K+Nh8cFqe7iZvjKvrvW45+VOiu9s2WGqONq83NkaM12yd7UkjHuMvTAZtj88+llPQjdMuN1/Xck1OD/xsMVj3GMcIM0kH6y2kRIKjsHFA7aVjPp8Pw33tr2hbt+1meJYE6bvr7SGrJPXFsuHupY7781B7uko+O5Ke1jhe63vyLdzjFJKfvqXb/Bz7yzzO1+b4//6Q9fOTEvom299kp/5hX8GwPnJ3C7NRSkl7y23AZWUeHm+dCpjfNL9Pux6clB8vN4ZBp8vzhUfC14HYxz8naELXpob7/W6sdHBj9QYrs0eLn456LMTJmq/kRIqOXNX6/xK02d7x9oxLkmEcayVqy2frY4a2+Xp/Fi055I044PVDgB/5Hf/4IHGuHP/Wqrlxqqb4kUJNzfU2lZ0jF2thXtdy53xyEzJZnrEtTBKMj5aU9/fMTWuzoynPe3RMd7Z6tEJEoTgUC1pO2PfccVIO8f4tPHtvNdTRZvZ8sm1Tx7m2ckyyQdrbbIMXEvnynRhbOPZGV8M5v3bb7/Nz/2vvzr288I4Y5Cd++JBnpEBdq6NxylN88rrn+C//4e/fOSW6p3niomCxXzFHdcQee3Nt/jZf/jLwOit3zvnZM7WuTw1vjm5F1554xP87f/lnx/q/L5z/T3u510I8c1je/M+Ti0xJaX8J8A/ARBCfBX4xUf+5E9LKR/92ZGwMxF13H3kFdek6UUY2m5xzvmKi2PquJY+1qQUqO/U6EUnorkxCso5k3O4ZJIjjancv5ZPEzot50xafoxtaGMVIF6q5Wh6MQXbOPbD3EzJxtQFxphFXXOWgWtpBHF25IDUMXUuTuUJ4pTamLXRanmLzU5IeR9R+XGg5Jgs1XKkUlI9wLUoOAamIciy4zcsyNsGSxM5kjQ70LPjmvrwPp+Ubp2uCS5N5emF6YGu5wD7rZUHxULVxbV0cpY+dqHXWt5iuxtROcKzUzjkPR0FtbzFVjfcd3w/984yf+l//Zgr0wX+y392A8fU+Td+25WxjuGwMDTBfMXB0LTHnishBNW8SdOLz8y+9igOu54cFNWcxXo7oOgYT6yonp/I0fYTis74w7tqziKIA/K2gXVC+jG2oXNhMo8fpY/NgbJr0hjD2nEcmCk6mLqGNcZ4xNA1Sq5BJ0gO/NqJgo0QAk2MX8zXMVRMG8Qp1RH2naJjHmotNHVB0THohsmxxvCLVZeGF5O39UPpJOVtHdvUiNPj2YefNr6iY2IaoRJufgYE3TVNcGmyQDdMjrTH7oWd54ec/fDMdRznhXHGILoQQyZh6RD3cLbkYBlq/TlOvWSEio2PyihyTJ0LkznCJBv7uULXBEJAztJHHudxzsm9YPTHeJh1LWcZnJ/MESfjjy1PA6e+kwshLgHrUsruI7/6D4UQDeDPSCm/Na7POylhw7xt8Mr841lPXRPHVlFdqLgsjDHLPA6MY1Mu7HMtH0XJMQ/FFHsaTF07tnv2KIQQh2aWPQm6JrgyPT7xy4JtUDiGg8BMyTkRcdTDBOa2ofPi7MkxNg4TUI77Po+KnGUcOrjbb608KI5zbZ0ru8yVj762HtchYbbs7FslSzPJf/aLH/PGuQp/7499jn/zf3iH/+IXr/OTby2M5TuNA09a8xarORarJziYQ+AkXHumivZI89s2dKaKx3MQmSjYx7I/PQ377TfjWjuOA5omjkUwdycL9qA4rkOLpokDs1wOsxYKIU5E6N04Ysxn6BrXxsTm2u/9nzQ+y9BONFYZB1xLP5YEyn7nh+M4L4wzBhGCIzFej2v9eRSuqR+YJb8fio7JcTw1hiYOda+Pa07uBVPXjjQfj7tYfpI4C5YJPwn83CM/+8tSyk8Cfwz4L09+SM/xHM/xHM/xHM8+/vlHG9yv+/zrX7iErgn+3O94kUxK/to/v3naQ3uO53iO53iO53iO53iO5wDORmLqx4Bf2PkDKWW9/+/r+71ICPFTQoivCyG+vrm5ecxDfI7neI7neI7nePbwT95bo+gY/NDLMwCcq+X4iU8s8He+/oB2EJ/y6J7jOZ7jOZ7jOZ7jOZ7jOU45MSWEmAUiKeX2Iz8v9f89yT7thlLKvyGlfFtK+fbU1NTInxklGXF68t7JA5eO3+o4ret7EsgyOXSjGxeCOD3zVqRxmv2WmrvHcR/HjWdhjI8iiNMTsaWWUl2bs+4oe1LX40lI0oxf/GCdL744vUuX6A99zwX8OOXvv7N8iqNTkPLs28jD2bifT8OztmYcBmdxP0rP6Hr9/FodDkmaESZne4zPQuy4H8IkHbpP/+8FZ+F+PavX/bTOlVFy9tbPw+BZu++nrTH148DPD/5HCPFfSin/BPAfCyFeRSXO/tx+Lz4o2kHMvW3llHFpajwuKaMiiFM+Xu9wYTJ/LNo8ZwHdMOHOlnIGuDg5Pke5s4Ask1zf6BIl2dgcIwYugq6lnYou0Cjwo5Sbm8oRaWki90wIaT4JUkpubnb74uC7HZ7OCqSU3NjsEsYZtYJ15nTj9sJGJ2C9FWLogqvThUMJxo6K+3Wflh+P3b1nnBg4clmGxtXpwqk54H1nuUXDi/mhl2Z2/fy1xTKvL5b5737jLn/ws+cRJ+kn/giCOOXGRvdUr9PTEKeS6+tdTENwdbqIfgbHGcQZ19e7Y3c0OkvYuR896uB4WsgyyY1+bHDSDmhPwlncu5M04/pGlySVzJRtpotn41rtRJio9SjLjt+9+7A4K/vLYTBwLBRCucUdxcntWcHAGdAxNa5MF05lvx240muauu7jNt86Lgxcb4WAy1PH5y74KH6rnGefxft+qldaSvnXH/n/P9H/9x89wnvixymOoe9arLNM8vFah41OQC1vc2Ojy2zJObAF51HGtdYKsIwniyIGcYquCUxdoxPErLYCcpY+FrvZ44YXJUgJvSjh5kaXC1P5kQJHKSW3t3p4UXrsCUMpJdvdiM1uSME2Rk5MJJnEjxK2ehFelIwl8PciVZHzo4x6N6IXJUwUrJG+fxCnarERShQ3bx2PY6Bipqj/bnoR7X5CYBRRRSklDxq+curJW5Qc81BOJVmfUTGOw2AmoRcm3Nn28OOEH35plskxiFVKqQLacSz6SSYJ44zVls+7y02+59IEF4/ZqvagiJKM9XaAbWpMFx28UM3lJJVEaXbgxNRWJ2S9HYwkIt2LlCOVHynW1GYnJEwyZsvOvm5l6+2A7W5IJXcyh/Ze/3pESUaUpjQ6MZlUTjmjzOO1VkDLjyg6BrMl99DP9tdu1wH47KWJx373Bz6zxJ/9n9/lN+80+PTF2qHef1yIkow4y2j3EoI4ZabvKDRAlknu1T2SLGMib1NyzRNNDmX9RTBOJHGaoWs67SCm5cVU89aexaa1ls96J2Sh4p6ICK2UkihVyQjL0Pb9zCjJyKQcHgg32gFNP2ayYJ8JR584zVhrBdiG9lh85u/Yj7wwfWJ8kWaSKMlwLZ21VkA7iJku2mN3SYuzh1X1bhCz0h/gbMkZ6bnduU9OFGxylj6Ww/rua5XgRcmB1iBQ9+Je3SPLJNMlm5JjHvhQHSYZNze7lByTRi9iuxeSMw21Z5yRepyUqlDoWjqmrpH1yQVenFJFXYf7dQ8JnKvmMDRBkKS4pn4qSYZemHKv3mO97ZNmGS/NlU61uHAQDPZvKdW8rPciYLTnpeXHrLcDLF0wV3FP7JCd9Nckr+86OYrA+WYnJIhTpks2Xqi+cxBnpJkcuu0dFmtNn/VuyLmKS22EvaXei7i1qfzFbEMniLMTuXZSSrwoYbMTEacZ8xV3pASPlJL1dkiSZYjhz9SadpjEVJhkfHelxcXJ0RNbKr5U/+1FKZah7bsvnQS8KGG54eOYOlNFC01oe56nGr2IbpgwWbBxLX34vGWZug7PQmLqLGhMjRV3tj1ubvS4vd3b9fNOkGBoGoamUe8pG9X1dkg3TEjS7Ngp+lmmglsvTIlTRUt8tBVlsxNyfb3Lx+sdoiRjoxMSxhmNXnzmqc8AtZxF2TVp+zFJJrlf90Z6XcOL+c5yi+vrXT5a6xzrGB80fL5xt8HNjS4NL8KPRruulqGhaYIkkQjEY9oscZodmKY7V3GwDMFMyWal5dP0Yh40/JFeW++psd/c6PGd+y1ubj5qajkelF2Tgq1TsHXiJKPpxaw2g5Hmox+nNL2YrW7EN+40+Hi9gxcd3OY6jFOub3TGQoPWNUHeNtjoBKQZvL/aGktLWJCkXF/v0hmDZs/ABfJBwyPL4L2V1plrj11ueNR7EeutkF6YMFNyyNs6k8XREqs70fJjvn6nwfWNLqutp8//+YqLa2lMl2x6Ucp6O6Tpxay1gj3/Psskq02fGxtdvnGnwXp7778bJ+bKDq6lMZE38aOMrU5EvRux1Q2f+tokzdjshNzd9vjm3Sa3tg7/bH/9Tp1Lk/k9A+kfe2OeomPws1+9e+j3Hwc0Ta2BaaaKN9u9iOXm7nnQCRI6QcK9usc37zXGth6MClMX5G2d6ZI9TBrc2eqx3YuGLOydyDLJe8ttbm30+Mbdxom0nZqGhh+lWLrGajOgE8SPfa4fKeb29fUuLS8eHgDCODuR52IUbHTU87zeDh/bZyuuSSVnUnINanlz33UxzSTXNzrc2OjyoOGp5HWcsd5++vN3UNiGTjVvkrM0TENjuxux3Y2oe9FIrx/sk00/4ut36ure+EffRyquSdExyNuqSDtYg7ZHWIMGaHgRvTDho/UO377XGjk+2Yksk/SChA9WW9S9iNubPTY7IY6pnZnW2Dh9GNtYuqDoGBRsncmCSmI2vZhemOKFKU0v4tZWl5sbPe6NGOOOG5Yh+GC1zXo74rsrLZres6MVOFmwyds6RUcn6ReKt7sR272nPy+bnYCGF/Gt+y2+u9IeS7z1NCRpxsfrXb5+t8Fq0x9pnfSjlLVWoNaxVshMycY2NWbLzpHZ5Fkm+eb9Brc2enzrfvOpfx8lGcsNHwl0/Jhq3qTknAwn5UHD57srHd5baeHHKZud0daetp+w2Qlp9GIyKSm5ah0rH3LcYZLy0VqXb91vjrwXV3MmZVf9U8tbrLfV/Vxp+rRGXNvHCZXozFhu+nz7fmvP81SSZjxo+Cou6a9NU0WbgmNQzZsUnxHW12+5xJS3o5q+E66lY5saJddktuQQpym9KCGIEj5c6/DhWvtYkz+moVG0TSxDsNUN+XC106dZP3xIBp8/YEvY/WyoY2pYx9gaMy4YuoahC1p+zP2Gh6E9fcy9MKHpRWj9y7Af42FcUIw0ldgRcCAGz3zFZaHqkrN10lQOA/t6L+LD1Q4fb3RG7uMN4pS7Wz3COCOI0+H3HuU+t7yYNMsQAuJMVRCC+OCJsadhwFJoeDFhmg2vlaYp+9UnIUkzOkGCRBImKXnbQEpVMToM4kQSZwd7rZSSRi96LMjXhNqsW35M3jLGU2mUDys6B0UQp2x1w11zxzYF9OeWoWnoZ6ga2vJi7mx7fLDaIogTDF3gWsoy2DH0Ax+qgjglZ+tICYKnf09DE/SilI12yFYnZHBpbHPvZ0fTBFEqafsJOUsfORl9FIRxSjdM2O7Fu4IH+ynrTZikNLwIQxfD5yaIHy9ijIrfvNPg7QvVPX+Xswz+hbcW+Ufvrh3osDpuGJqg4BgYmkaYpNzZ6nFvuze8T1km8eOEKE0J44ycZRAnkuQED7WaEEzk7WE7lB8pxuqdrR6ZlKSZZKsbDu+1pgkG25+paZzEUI2+VbmhC7Z7ITfWu9za2l2g28mAXWsHtP2EQj/YL52BVi94uAcK8fh+qGmCc7UcC2WX7yy3ePdBi43O4wfFJMtodGM6QUyYZORtlUwsueMPzO9u97hf90klu9rlRo0t/CglTFPCRA6T+uOIRTc6QX9OpuzcrkcdVxCnRHFGnKQkqezHGYcYl1D3reyahHHKRN4GKfna7Trfut84E0XXwR6iabDRVezdTpgM2QUF20DT1N/lbR0/ymj78Z5z7zjRDmI2OyF+lDJXchFCsNmJuFvvPTMaMm0/punFdMN0l37Pfvv3AL0wIU2VPpmlq5joMPHWQRGnan1Xe7HSiXqaaYih71j/dcFGJyKIUhq96MjzXQjQ+28epSn1XvTE+EDXBGmWcW+7RydMyFsnx/LzB2ebfmwcp9lI89QytOEzmbdNDF0l/N9dOWQhWarrZmhipLhBSkknSCjnTJYmcuiawDZ01toBH6x1uFv3Tv55k6hiUyaxDRUvPxrLakKQyow7Wz3u171hF1MtpyRBnhVW5bORPjsAFqs56r2IsmMQp9nDA7+hMV92CBP1YNS9iKmCw2o7ACkUrTRKj63fOcskmqY2uF44SJ5lxKnEMtRkme5XjVdbSkNFCHhproSuiWdiQmWZ5LsrbTQEMoP5ykO6Y5RkmPru7xElGbe3ekipevlLJ6D5M11yuL3VY2lCUUqfRmmP0wyjf/0nCzauqZOkGfcbPlKqbPRAJDNOJGHy9DamKMm4sdHl5maPomOg64IXZor4cUp+B9skTjN0IXbRmwf9+QAzJZtzVZe6F1N2zbG38j1o+Fxf7+JFCecn8ixWc1TzFrahD7/joOL56HW83/DpBgm6EHzqfJW6p+Zz5RCHH00TzJTtA1NQN7shyw0fXRNcnMxTdEyaXsTtLY+ZkkMlZ3JpKn/g8ewFXRNUcqYKug+ALJN8uNZBF4K2H3NpqoAXJXy40qWSs5kra7w8XzpTGhLtIO4zPlXCx+wHSZvdkPWWSnBcmMxRHFH/ZSJvsVTLsVBxuDDx5PvRDRNubHS5vdljqmgrjY2ZAnEqKdgGSZqhPfLMdIIY19SZrzpUXOvYNWA2OgG3t3qsNAIWqy5pZnJ1pkAmHx4893tu7mx5REmGocPnr0zS8hMq7sHbZ0Algbt+zKcu7N+m9wc+s8R/82t3+LvfeMAf/f7LB/6McSBKMm5u9LgyXWC25JBm6jr1ogTX0llp+TR6Maam8cnzVdpBQtk9XFvwYTFoaRICrs4U6EUJ82WXMEmZLFg8aKgEvibg5bkShq7x6YsTrLV8qjnrRNoOlVCrVIFo3kIg8MJ0Vxt02TXpRQn1boQfJdza6nJhIs+5qnusunAHwVRRtbPpmtg3Hru52eXOZg9T1yg6xmNaRUGUEWUpQZRxYUJnruL0W2jG+x39KOW7q22CKCNOMpZquaHu3aBlZK81aYCmF7HSDLB0jXMVlziTZJlaE4+CjXbAR+sd6t2YczUXEI+tQTuRZZJMPrw+Waa0GLMMyq7F0kSebpiO1ML0KFxT56W5Uv+wF/P+Spv3VlqEcUqcSeYrLnPl09VEM3WNi1N5LF3j3QctVpoq4bRQcZnot8S8NFtCotbsnKWz3PQoCIOWF4/Ugn5UZFJyd8tjpamK1nMVh+myRdm10YVGN1Tr4lk+K2x2VMJ8rR0M9btGeV7CJB2eFQatlKJfLDhuuJZiyhYdgyzL6EUZd7c8Lk3t1h3KMkkqJaauYeoaV6eLRGmGbWhsrXbY6kb9AkvGtZniofcvIQSfvlDjQdOjF6YsN3ziNGNmR3uZlKpwY+oauiaYr7hDbbcP1zt8z6Xjv26givmbnZD5SpW1lmL83Kt7XNpDmmLnGjTQDx0kBL/zoDlka04XHOarB1svCrbBCzNFJovWSOSHrW40ZOAPYllL1wiiFEMIemFKkGQUTmjPbHkx7UAVVufKDlEqEQKqj7SlC6GSUGE5wzV1ml5EvRermOAZ0auFY0pMCSEKUsrj6S16Coq2wUY74Ndv1ZkoWFydLjDR78EVmkAXgjCTOIbqJS/YOpkEXYhjF4dUAYFguuSw3grQNcHNzS6mLrgwkcc2dC5M5gmTlJubqgIyWbBPfdMeFRIoOAZ36z1cU0frb5ADke+CY3BxMr/j7x9mrqdKzokIUectnfmKy9OS7lJKfvN2nZV2wIVajjeXFOsgbxvDLDSoyuxU0SZOVe9uboT+5Uyqw8NEwUJmkrmyOhQUdY0oybiz2aXeCzE0jaJjcmW6MDxY7LxmmiYo5yzKY9bMGCDOMqp5kyRLKbvGrkrLvW2PzW5AGGeUXPMxbbCBJosEHMvg3BFEam1DGx48pJTc3fboRQmLldwTA8J6N+LOloepC5b6cytOJZWcSZRmzBSdxxb2w8IytF3zt+XFPGh65C2D8xO5fYPFO9s97mz1KNgGF/tJsiST5GydgmNQdMxdAcdZwFTR5vqG0rAp2gaZlGgIdkxNDlLT6oYJ76+0AKg+JdBMU4kuBNW8ia4pXQrb0LENuLfd4537TQq2wfdemcTuH2oHY5kqOMyU7WMXW01SiWvqFB0Dy1AsFsfU6YUJH6y2SVKJRKIJ8ZiY58PnW1DL29SOEHgP2DtP0o+6OlPk0xdr/OzX7vF/+b5Lp5oATbKMmbJDlGYIIYZJ7MFaG6Yp7y636IUJL8+XD3VIPiwGY5BSteVXXJNOLiFMVCX3ft2jEyaYusb5iRxlV+lOnaSpxWDmOKYKXus9pVH2oOHRDVUirZq3WKzmcE2dD9c6bLRD4jTjraW9WXXHAT9OubvdY6m2/7r4JB2SMEm5W/doBzEl19xTIzCTklrOhpxiYgghjqzrsheSLKOWt9jKQgqugaEJ7mz3iFPJUi1HKiX3tj31rE/nHyuuDIr3AoFp6MyMSeMrziQlx8SPUhxTo5IzHzuQDfYoS9eI0kwd+msPRdLlw6WIqaLD1BGmsopfBNW8Wgs1KeiGKbYudumzLTd9ml7EVPHkhdEH46gVTNbaalw7yRU718aSq3632Y5YzfvDOCRJs+H9Pz+ROxa91DSTIGC66HB+Isd6O1CaU9setqnvihd34jSv7QBJlpGzdfK2jmloTOSt4X58v+7xoOGRZJLJgs2V6cJwzkr5cD6aunbipjWDGGytFdCLVPFtZ4yT9g0Q6t2IjIyFSo7zEzksQ93/qaJNoxdSy9tqDzlia3c1b2EZGrc2FSN259sNDH786KEZg9YvfJqGRu4ExeYLtkHBNkgzyUYnUvdxj78bFOszKTlXy2EbGne2e2hCnY2nCjb36556Jg8UXSqEScZHGx0ans3UCHN/Jytr8F9xljFbsdnshORtnfwJibCrMQwKmRqGrjFT3jv2ub3Vo+0nZFJScAxKjsl2V7H7VJufR8uPmS46Jxo/HRTHxZj6LrB0TO/9RPhxSqMXEyUZzb4IWC1v0Q4SHFNjserS9GO8UCVKFqu5kaqZYaL6y4uOcaiqm2VoTBSUaF7LVwyXMM1oeTH1KKXiWhQcgyjNWKy4rLVCcqZGJ0iYKx/mSpw8dE2wWHXxwpSya3Kv3qOSs2j0BcM3OwHTRYu8rTZx29A5P5HDj9LHRFellMdS+TF0jYuTeXph8kS3lbCv8SUzWG0HvJZJkizrt6Ip8cK8rTNbUj3jgwNIJ4if2rbhmDqLVXc4H0xdox3E9MIEgWrlbHkJUkjq3YipojU8oFZyFll/Y3u0qjrua7ZYdXFNnaszRcquSRCrNqNBu1YvTGn5EV6YYuqCF2ZLw9eeq+ZoetFIrLSDIExUiyDAdi98YmJq8MzpQgwPBJMFCz9OsA2NhYpLO0go2ko4XkpJy48xde3IDhxb3YAsU9o4QZztK7joRSkLFZcgSTnXNzgoOSYzJRuBCmiiNNuVTBnQyE/LkcoxdT5zsaaSSUJV8JTwu8ZMSc3ng4xtrRUQJeqhWX+KxlQ5ZzKbOv3gWj0TG+0ATRPcb/hkmdInWGn5aAjmyg4lx1TMpRN4ZkAFsUKoauFkwSZKVGt2oxeRZqqN2DK0vj5Ol1fmHwrXXpjI0/bjPduqDjrWomPyF37fm8Ok7H74A59Z4k/+7W/xpRtbfP+1qQN913HA0AVzfXbtVjdkobpb1Ha+4hLECb1IqrZvobFc97g8lT8xdoDZX0tcU1cV8G6odGikoUxNTA0rEcyWHba6IW0vYbbiDCv7JwFLV2MUAqI041wthxDwwUqnv7cIqnkLL0owdUHRNpBFcAz9RKu/SPWMhkl24CRxmKTc6ksgLFZyat7sYY5RzVtI1DNznILuRcfk8lSBpVqO6aJDN0hYb6lkn2tp6EKj4yeAZK2lP5aMq+Wt4SFonDHQTNFGE7BUyzFRsPvt4j5FxxwmYLa6AatNnzSTTBQUI3nAutE0waWpPN0geUws/qhrpiosKObq+VoeP1Ii4romqHeVdst2Nzrx5ImUkq2uim8uTuSRQlLep/Wz4iq9lpK9O2HVDRP8SLX4NLx4rIkpTQjO1VyqeZMoTkmkYplM5G0yqTTUBvb2rqUTpxlemFJwDDTBqV7bAaaLDgLBQlXtjQNRcUMXw/a+ME5BKsmFQUzpmDrnJ3PKIOCRYs1xnRX2eu/pot03p9qdUL291WWt5ePFKRqCTpDQ8CLCJBuytCcKFpudENc8vLnBzvHkbYOlWo4ozXbFNU1PudgVbIMtoYpgW92IVxfKdEPV/XAS2DnWQddCL3x8PQFYbwW0+jppKgYXrDUDDF2jlreYq7h8j6kTJilThzASidOMLFV6ilGSYj2l+2KqaKNpgiyTyEztL46hkSSSS5N5Xpg9WbOBsmuSVR/fz1q+Ymm7pk4nSGh5MZ1QyWtcnFTx0bmai9c/Y19fV3yh7V74WzMxJYT4U/v9Cjg1CynX1MnbGvVeQM4yMHXBg4YSltY0uDyZ571ljxubHSaL9vAw+CRIKbm50evTCvU9aYhPw4BO2fSUdeN7y000BLapYZs6Dxoehq4hpWrpmynZqsXHEMe68B4V3TBhtamcAs7VcsyWHLwoxYsS2kHCejtksxPQDRI0TaOw0ub1xQqaEAihAruiYyo3xSjF1AR36h5BnDJfcUcKKgcaTU9LgARxOqwwXJrKP5HSqQmYK9usdyIuTxbohgm/+vEmTS/C1FV7VZrpu5KUA1vTUVDNWwxq1HGacW/bQ0olahmlqvf+5maHgmui3xO8NFeiGyZM5JXA/M5WujhVekkb7ZCyq3qixwHb0Hc5mN2re4Sx0rayDYEXJay2VDKgGUQUbAMvUs500yV7l3OFH6VIFNspk5JLB3DHGCBOVe/0StPrV/73ZhJKKQnijKmCPXSf0jVB0neL6/gJD+o+//zjTS7U8lyayvPKQpnNTjgUx70yfXhb2jtbPdbbIWkmma+6OPtoJwSxagPqBAm1fB5TFwSxSvC0fNWy+csfrXN+osAr8yWuzhRpehH36yp5s1R7MmPsOLHc8PiVjzfIMkEYZeQcXTFJcuaejiVJmpFkcs+AbLro8OXrm2TA5wpPd4fbuaFudILhPZssWKw2fTIkv3mrjmnolBydC1MFBHCu6vZdSRSDYqsbcr/ukbcNLk3mx9bmo2tiF8t1uanaWv04xTIEAsl622elFTCZt9jsBJyr5frMSTG8fnGq3NN0Ibi11SNKMpYmciMn/Uxd8ONvLjz173701VmmizY//c9u8IWrkye+15i6RsU1+XCtg5SqhbjsmkzkLcJEHVzW2wGNnnL2STNwTMFqKzgRh0VQQc3gszbaAQ8aPpudkNmyjaEJsgwcS0cX8O17LaI0pWir1vSSa3Jh8vgPA4Nk6PsrLbIMHtR9Wl7Ine0etbxKlrb9mLt9sfaJgs22F/KgGTFbdvZ0FjyegSpm9dP01uDhWj5YE795r8F2J2LLCzF1gRKnFBT8eBcbGx5P9DwNKunVOzCbYaf7oRCShh/1XXwz1lq9oc5XzjawDZW0CmLVFudaOhMFexj/OH1210ZbrWsl1zjUQdLQtV1r0P26RxBnbHcjrk4XWG0FfHelxe0tD8vQcEyNphdTyz9cWzQhhmMLYiVzsdry2epEVA4puxDGyjXyu2stXEMjlZLb2z1enCtxbaZIJafa7cMk4+52j/mKe+y6owM0+gYaH661WW0FVPMmAhXrgYph7P6Yu0HKVi/ED1OWdtyfvG1gm6rocBjZgqdB3QPVKl6yTb50fRPX0MjZBlemC0P2/IA1EycPzyyVnEnLj0/VeVPXxK5W+rV2QKOnEhKWrpFl2fCMtNm16YYJRcck13eCLuxwn/ajlCBRrWyWoY11DwdVJFltBhQcg5mijd2PIycLal9abnj0+medW31B/7ylU8vb5CxlQJFJlTx4cbaEqWtH2q9afsz9uoe9g50/iP/STGm5Zhl8sNrmXr2HRJK3TBaqLrrWb3kuOZRdc5cT6KhOeQfBna0enSBhpqzYeUrKRbnZxelDfTZDU2tP3Yv4YLVFBvhJwoWJPK0g7mvjqfP2UeatrglWWj6XpvKPJaXivvnZzthUtYlafLTeIU4kjqnxzr0G19e7zFcdFqs5CidUGN7oBCzXfXK2zguzpaHDrKEJpUGra3hhTDtI6UYxrqFTzVnUexETBeVCW+kv1cM14Ji6bMaFo8zG/wD4j4G9bLZOTawgTDK6YUoQS1wLVlvBkG3S9GLeXWnxG7e3MDWdOJE0R1iod1Ivj0rB1DXBew9a/Matbap51fP5ucuTRGnGYE2Nkgyvb1V5r+5zZapAyT2bE2ngFNANE/S++Oq1mSJJmvGdBy1WegH0aer5vmjt7c0eNza7VFyTT16okrMM7mx7SpNIg4GmXNOLnnpv1loBm50QQxfMlhzWOwF5y2Cx+rjQW9uPh9ounSDZt2rRDRPubPWwTYMfeKFMzjL47nKLu9u9PvtFoxcolttOHFZ8XKAOFVKCayox7vMTGvcaPUqOye3NLn6cUrANPlxtM1mweeNcBdvQhn3j7SCm5KhFR+mZjf9wOUj8DZztFio52l5CnGV0/Jhfv7XFVMHpj8ViacLl4mRB6a/0Yrw4wTVUO2A7iA+c+FGOlpL5So5awdqX8TZIRDumxpXpAi0/5qO1DpqmEk5NP6YVxHx3pUUviNF0eGWhvEsUMT3kcz4QfS86JrapcXmfJHa9F7Hc8Idjsg2dW5tdemFKyTVoesqK/vamhxcmZJnk6kxxLGMcB9ZagWL1Acstj8tWsa+dJx87sCRpxvWNLitNf6g3svPetcOYyX4F96Di+DtF4ecrLnGqErW/dnOL+XKOm5s9vDilllcU7CSVzJYdpko237rXpBMkiuUZp5SO6QA0GGPO0jlXdbknfOJMYnUi6l7MRicklUpfyjV1Lk/nqeQsbmx0kRKqeZOwf11aXjx2ppxt6PyJL17h//Hz7/MrH2/yAy9M7/u3G52A//Fr93l/pc10yeZf+ex5rs0cvV1tUKiQUtkdO4bO+8stVtoBad+lUBMa0yWLK9NFNjoB377fJJOSxRGKS+OErgkafoQXpQRxRtHR8eOEgm3QChKur7dpeAnVvMl81aUTJLv0Lo8bApUMffdBA4FG0w+pFWxKrmphfgiVDAljpXN3UhbYrqk/lkR6FOtt5b4VRBm6JnAtlTjpBAl1LyKIEgIEH651KbsWrnX0a9sNEpL0aGuqZehcmMgPY8ZukJK3dKJE6ad8uNaiG6ZM5m0+Xu9QzVm8MFscMpAHSYRGnz3Q9pNhQeUo0Hbs3ZvdkE6Q4MeSWkFZ2S83A65MF9jshuQsAz9O2O7GCKESf1LCbNkZJhGaXsy5p9cQHkOSKX3XzU5EEMWEieSF2RJJmhEmKUGs9niVRE2wjPDEpCwG67Rya04I45RgTh1v7mx3+WClQyIl8yWH5aavmF6Wgb/D3MLUtbGsh/tBuYhL/DjlveUm97Y8KnmT85MFXl80COOUGxtdSo4xnMtx/9/najnOHdvIDodBTCkETBUtojSHoWvc3uwRJinfvNvk/EQOTRNYWo+Sa/DGuQorrYB6N6LeC6nkLMI4G/se3uw7r93a7NLoKfb/1ekC311t912xEzShcbfeJWcZGLpgpuQyW3aYLDqqaJvIpxoFjQpltqTOLu8+aOKYBgtVl6Jj8M27DTbaIdMliySTVHI2nSBGoMTxX5gt8PK8ar0Jk5TtjnJB1IXot6aNLzEVpw+7Gpp91uCdfnJ+tuRwc7PLVjek1HdwtwwlC2EayjyrG6jC/KXJvvaYefSxZRIWKjnVbZJlaJpGNnBu3ewyXXC4PF3Ydd7MMmWeZGgamcxYafp4UcpKM1DnsZNKTLVD7tU9MqkSZvVeRN4yuNHosd4KlTGVrlHNWaQJzE44WLq+J1HjLK4Be+Eod/ybwN+XUn7j0V8IIf61I7zvkeDHKQJVMRiImc9XHLa6EUGSsNoMMDV9GNA+qU80TjO2uyG2qbSfOkH8mCbNdjdko6OYKqNkwy1Do5ozh0KG82UXieTl+RJelBImGdNFtajomnoo98p3ZJmkE6okRJpBztaPpZ/9aSg6Bt0gYaujGCK3t7q8Ml+m0g+44lRRi7d7IQXb4KW5It+811AOG5m6RznLGOqhpJmk5Jr0wscpu49ivR3w5RsbZKngwmQOKdW1aCbxUNdlJ8o5k6YfI+CJemI7NaSG40uUE4gXJbx5rsqFqRwzj9ChKzmLOJUHdo0wdJXAuL3Vw7WUG0UYZ3zyfJUwTpkt2tS9iHeXGwSRpFVOyNs612ZKw+BjwAoq58Yvgj7A+VqO1aY6VA+q3Vdm88RJxnYvJm+pRFmzpzYdP06YKjpD5whT0zB1gaZph9JzKzgGrqWTZBnVJzCFvP7nBXFGJqE3dPdSdPbFist626fsmASJouiCasHSNUHHj+kFT3cvidOMu9vervtt6BrVvEnbT54oYDuY71lGn8WjD8etdCAstrvq+8aZWjfCJGUib5FJZb/thaol+GlMweWmT3sM9uM7cW22yO0tjyhNeWupSpCkfOt+h5JrMld2d+m+xKkkjLP+IUuy2Q13JaYMIfDCBC9Wia1RkfXbd/K2RsmxhpXVXshQ8NvUBLe2umy0A/K2iW2oJELRMSi56gCmaewyHRg3FirKBdYytGHVdapgU7B1HjR9kkRyc71DnEocSydKM948V96lG5GzVWvGcVW7/6VPLfE3vnSLf+8ffJfPXJx4LGmcZZL/4Tfv8f/9Rx/SCRMuT+X5lY83+dmv3uM/+j2v85NvLR7p8zVN6W2ttwPSzKIXJay2A25vdGmHSk9uvuIwXbSZKNisNH2mCvbwmTlJxJmk5loULGPo1BTEGWEcMVdxCRJJK4hZqLqkmdKJPKmkFKh1rN6LKTgm7z1oKZZHJqnmTSb7LNK03wJk6zpJmuzLXlJs3Ei1JKJhGdqhmaT7IUxU3KMBy82AVGY0eioBu9z0mCo41HshcaoEfa/NFGgHCb1QtSRO5m0WDiiGuxdKrkm9Fx3JQVETYOsaOUunnFMaT21fMY+FgCDSaSQxqy2PO1tKEyiTctjeMpjPkwVryJgaBwvkfC1HO0jwo4Ru33znyrRq1euGCaau86DhU+8pAwtDh+miixdmaJpKXvtRymTRYqsTUc2Pvn+nmWJcZVJya7NHwdKwdEG+v0c4ptKAbHpxf8+WhHFKybHIjeFQOgoyKQnihJmSzacuVPlnH24QJxIvVsmy+9tevwCrGAlF28Dvs5unj9lMYyd0IVht+aSppOpadAoJTS/G1gVRnLLZjUgzSSpTLk+phOdJCIQfFjNFWz3HmjaUfZguOuQtnXYQM5mHu/WeEph3TSYKDku13DAZ6Fo6mlD747j38Im8zWoSYBlKzDxKMjph3NeSCtnuRZRzJhcmckip2CiqsKx0UWt5i+1uODbB6VpB7YsSga6pNdiLEixDY6sb4cUJm234xPkKfpSQSp3Zko1rKa1D1aoa8vF6B8c0aHkRU0WHojPe62bqStOuEyRMFmzVLdFfU29tdnnnXhMvSpjMW+Qcg7Jj4Jg6n75QY7mp2o0Xazm6QUzbjxnPcUay3vK5OJUnycDSoBMmNLyYKFYSHl6U7Iqvbm973G94pCn86CuzfGKpynsrLc7X8pRPkChSdAzlbArc3Oiw0goouyazJZuNdkTO1HEtHcfUuDSVHyZyBwVMKZWDfJRmlHPmgU2kTgNHmZF/BNje53dvH+F9j4SKa1JwDCaLykVhpqjEcRcqLhpwZ9Oj5BrMlV2++ML0UCD3UUgpeW+5xZ0tj7yt89b56p6Vm61uRJJKtrvR8GD7JFi6xqXpPK/MleiFKUXXpOkldINkV8Xy8nQBt9+KuNch/m7d49ZWl/VmQN4xOF/LcW22eOLJqcmCTcU10YTk/dU2H611+Xityw+/PMNiLcfbF2p8uNp+2FcsBGmm3FmmCvYw0bdYybHdC6nlrT17kB/Fg4bHL32wzgcrbWoFi6mixaXpAqvNANfSH7OZBhVcjVLNquUs/ChVmhw5i6YXsd2NuDSVp5qr8tpied8e5cP27d7Z6vGd+y0afsRnL9a4Ml0kZ+kkmeSD1TZb3ZC8ZRKnMWmW4ZrG0C3Ei1JmS87YDwyPIpPw7eUW662QkmPwAy9OUckpl4s7W4oF5xo6nqmRSiV8mKaSuYrLRjug6BxNcE/XxNDB5UmYrzhs9pPFA+p1lGT4UcJmN2SzE2IbGm+cq2AZKsE3eP8kzXhvpY2U8OZSmYuT+39e248fs2sF5Qw67NPcB1NFmySVWIZGsV+tmq+4bHVDGr2Ees/HjzM+d7lGmMBC1cXSVZtHwTL46q06SSpZmgj55Pn9S9dJmg21JcaJ2bLL7/3UIgIlbv+d+w16YYofpWz3wl2JKdfSmS07dELljvfoepZJyb2GR5xmfLQ6umfG/YbXd41MKdgas2WXharLXFlt0n6U8g+3V8gyhm6SmqbcNWt5iyDOmCu7am84RtHv5abPO/eabPciXpwt8j2XJshQyeTKWpv3ltvYloaWqISBayqNrmpeOarNlJxjT2xYhsZ/+C+8zu//m1/lz//cu/wn/+Ibw2uy1gr4t/7ut/nS9S0+d3mCf/93v8rlqQKNXsS/8bPf5M/8T99mqmjzfVePpk/VDmK2uxH36j4zJYucpePHGTqChYpD3jHI9dmwBdugHcQnrpNwZ7vLO3eVUP+bS4pN+2s3tugGCQtVl/mKw2LNpegaLNZcXpmvHPu6/CjKrslU0Wau7GAKaPdF2YP+WrVTX+aNpQotf+/rmPX3nlubPaIkZbroMFlUosTjMhCI077obcbQ3fZ+3UcXil1TcHTeW2liGjovzBSYyFucm8iRs3TubPUou9ZYklKgDlRXj8B2yTLJV2/XubPlkWYZX3xpmtcXK0iUvfd2N+SjNbW+nZ/Is+3FpKmStV2sutR7DxniEwV7aNozDhi6RhCn/OrHWzS8iFfmS3zuyiQCuLnZoxfFdIKYIFJ6eNdmCuRsnamijUQVFqZLqth3UH2iKMn4cK1NL0jY6ETMlHP8jlddbm4qpolEoAlB0THY6jO2XphVrmW9MOWjtQ6V3PGagHhRyq/drDNTsnlxtsj5mhIQb/ZUIkJoyob9/ESe6X4L5qcu1jB1jeWmz3Y3YqmWO3an0G6YMFd2mSraNHsRrq1Tcy1KeZNWkPBrN7doBwmfOFfhhZnyibNJD4oHDZ93H7Ro9CIuTOZ563wVp6/B1OiFfOXmNmmqtCGDVFLOGSBUq/xGJ1Ts52PaA6p5xcrvhQkbHVVYF0IwUbBYawfU8hZxkhEmGZ+7PDnUckvSjPeWW7y33KJoK7bzm2Mwl1CFfeVuudoKiBIlbm4bOpNF5QzrlnVAdRVIKbFN5Q6oaYIP19r8ykcbbPf1pl6aK3FxzO2PA+xkzQ8S0wCmpjQlC7bBuZpL00+oezFXZorMll0u9jsMGr2QX/xgnTRVc+T7rk0dKQYKk4y1Tohj6QxqzXlLp+KaeFHKVF/vdydWGh71rkqMRVnGF65N8db5Kq6pH8s12w9LNcUi3GwrSYOqazFRsLk0lUeiRO1zlkHRMViayGEber9LJeJcNcdmN+T95TbtIOb8RI5XF8onWig7DI6SxbgLPLaLCyGmgdYR3vdI0DTBZNHmlT5tcSfhYabkcHW6wLYXUXEt/CTF3idozKSazKAq/uk+ZbRKzmSjrYRQRxF5FkLw4qyyk95ohax3Agq2znpbiZENGBq28WS6e5RkxIkkTDPsVNmUJkcp9R0Bhq5xfqLAB6sd3L6Q6mYnZLGmhOVnyg6rzYCcrSOlWjRnyy5z5YeJvHJOJRSjZLRWHj9KMYSGaegUbJO5vphiLWcd+ZA5qNoM9R46IRN5i7afcHm68FThvMPAj1N6YUIUZzQ8VfVS9GUlQipQbalTxYzzEzmW+qLxkwX7RKzIQSU5/EiNU9egHSRDh4sLk3mSLMM1dJy2zlTR4tpMkZytKsKH0WU7LAa6ZQMMnqXNTsidrR5b3ZC5ssNEweHiRJ6ZHRXPIHlY3XlaW9mgwicPwPLZOaZHdWdqeUsxEP2Y9XZAwdGZyNtcmizsGmOUZMP1KHzKGA1do9BnNY4bmiaGzpt528C1dTSgtEcFbrbsMFt29mwzTfoOUkn6MIAZBXFftyqIFfW7ksvY7ETD5GWcSS5PFrF0jUrO4uW5EkkmmShYpFK19B33QQLUPWoHSZ81FuMn2TA5N9F3H2r7qqLlWjqvLJTRNGWFbRvaiTnlfe7yJH/6h6/xn/xvH7PVDfldb8xzfaPLz371Hmkm+X//7lf5A59ZGu5R1bzF3/xDb/MTf/Ur/Om/821+8U9//5HaDNNM7bNSghBKR2Mg5ouAibyFoauWrqmifSrinUH08HnLMknDi7BNnZKr4oupos1nLk6w1Q25Ol0Y6sYdtxPkThi6xguzRcquwUY75N3lFkXH3HM9myzYuzSSdiKTkihRbm1hkvXZwOwbCx0GaSbJ+sNyTJWIMHXBYjXHZNFitRlQzSmdo7ylM1V0mMhbCCGGrSl7aYScBiRqbW77MbomWG8HnKvmEEIb/v5CX/9xumSTSkkvTHllvkQlp9zJjvPAEEQpnX67YsePlXuopfPCbJG2HxNG6n7bpsYr8xVsUxtfAjJR1vWGptoCP3t5gsWay71tj5JroevKoOTlOVUkGqwxtzZ7JKlkox0yVbCPby3sT+lULT68MFtguemzVMuTZpKyY3G+lmOxulu8frsb0gvVntXwomN30HUtfZi8e22hTJpJ6v148U7fyTtv6sM98aST4gdF2E/sdMMUr89guTipkrNl12KplqNkm7SCiNmSw/mJPGXHIEolF57gdjxO5G2Di31mrKlrvDRXImfprDQUu6dWeFhMd0ydVS+iFyZ0wxRD0w4U04wCKaGas4bnE4Br00UcQzmha0LpNoVJxkzJGT4zG+2QqP8cDnSqTiLBMpB4MTRBWrTZ9mOyVHJxMke93xo8+B6DeGy1HeJHKX6cMZM6pJnkKEuRlIpwYOra8L0MXRtq2+21rtTyNo7Zw7HUuiyEGP77pDDQEF6ouMyXHe5ue9yve0wULCYLDvOVnNJZbYXDv9/qKnmdIM7o5pWMQNx3XR3slae8VT4VR0lM/WXgnwB/75Gf/zDwvcAfe9KLhRAXgK8CHwCRlPK37/jdPPDfAQ7w/5RS/uKog5JS2XAbmqCSNx+h5vUI+oc6iRwKh+0l+qlrgpdmS7imTiVn7usEMFNyRt4wkzRjvaNEO69OF1UrUZzyoOnvcmYaBedqLrqm2kRMXWOyaD/xUJD1NzBTP1wb1dNQcAx+20vTfPn6Fq6p3PYGGCSM4jTj440Ofl9wb2dFcCDWGMYZtYL1VPrrxck8fpyyNOGyNJFjoa/udtDARUrJdi/C1LShkODdbY9OkJCzdS5PFSg5qupxflIJj2eZZL0TIBDKPW0MC9XLcyW8KKHei5ktu+ia4EHDwzGV6ONsxVHMsH77ys1NVWW2DI2r04UTObzmbIO3L1T59v0mM0WXom30W28Uq2OxqrL1L8wpttdWN+T9lRa60E5cqDuIU9qBon8PqKtV1+SDWGl2tLyYczWT4iOuO+drecI4I5WSq09hZzmmzktzR9OTaPmxatHqJ1QHB5MklUp00dAfS55U8havL5ZpejHXZp6e8Ls4mR9Z/yxJlQZIvt+mtB+2r1a8YAABAABJREFUuiHfvtfENjU+eb7GdMnhrXMVNE1Qe0Klf695eq6W4zOXatR7EW+dH72yuFDJoQlBkKSEkdJhKbkqgNzsqGLBuZrLdMlituRgGsrVZbnhU+9FOKbOpan8sbNMz03keD0os9oKWKrlcE2dRt8xdjJv9Y0CbKbyNn6i2sI2Oz16YYpr6SOxBMeFP/7FK1TyFn/pn37El65voWuC3/7yDP/2j764Z6Ekbxv8J//im/z4T3+Zv/RPP+Iv/Pirh/7sgWNTyTXI9dtoByzGIM540PBZmsg9VaS75cXEWTZMYIwTV6YLxKlEE3BhUrUeThUs1loBjqmRtwxe6Yslp5nk4/WuWh/Luy3aoySj6UcUbXPsh8d2oPTpJgoq2bHWDugECUsTBzuEGLqqtpu6hmUI8pZBwTGfuC6Mun6AYki1AzXOTEqmiw6mrjQ04lQ+dKwNY3KmzouzJfRHDlK9MOGrt7fRhcYb58ojsa2PC7omePNcRWlCGRpTBWc4/zbaygAmQyU5posOs2V3aGyz3g7YaCutzGszxWMpNl2YzPPyfJHNbsiFyTxbvRA71JguOpRck8szeRZrDtNFh9vbPcI4w+gnCY8SMxq64Fpf1mG+6jKZt9jqKo3FAQNlsEc/+ryWXJN6N1LOcmO4Jlmm4j3b3O0ca5saV6bzTBZsLF2w3VNmLkOXy/4h/9Hx5W0DTVMH3+MwDwiTlJav2lozKVlrBYSxkpeI0oycZQw7OQxN0PJjOlHCq/OlA8dbUqozka6JE3uOliZyhHHGPbfHbMml5Bi0vHjIhj0/kaeai6nmKjimTt2L+O5aB6RqcToJUwlgaEaQZpLpssVrCxVenClR9yKKjkGcZqw0FauqYBtKO26mQDWvJE3GiVtbPfwo3WWMUMmZBLHNvbrHRifjhZkStrk7iXJpSsnR6ELw+SuTJ5bIH4jIaxpcnS7y+cuTQ/mLVHrUexGdvtP0dJ+cMZG3eHG2RDuMefNc+chjLToG12YLvDz3+Hvtt64sTeaQyGGO4EHD46O1Dq6l85mLE09co/c6fxwUA23WJJXMlFQBKW8bvH6urM6kSabMeyzFmAOVfOtoCS0/xtAFrqmTM/V+l1LCXNk59QLOKDjKSvq9UsqfevSHUsr/Xgjx50d8j/9NSvmv7PHzPwf834HvAP8QGDkxVe9FrDYDNtoBTS+iYBkU+5tqoxf1nQBUwNsLU+7XPV6aK+16jyTNhno9b+QqT/3MUTfM9U5IvRsRJilpX6R3uuQwkUlmDyjwmGSStVaIRPLibGnfqufDzw7Y6qiWnsvTx3MYm8jb/K435skkjz20mib40odbfLTeIUpTXp0vUXJMSv1ET5RmQ/bHTjHJ/WDommrBEUr74mmZ/61uqCrtBXvXhr3RCdnou3pd1PNDZzk1DvVvFeCrhN7AzWtwLU39oXNNmslDVyBsU+fzV6YUU0qodoaNTgAo/ZvpokOSZHz7QZMHDZ84lUwWVTuSqQkuTOZPJDl1cbLAhQlVReyFKXe2ewSJsvedr7qcq+VYbnh85cYWUir3PlPXlTbXUmWs/c3dUGmjPFplXm76vL/copqzKOfMYftmBlRzNgVL55v3mgz4A6/soLYaujasxI+CUQ6+fpQiBMMNIUkzlps+XpQQxkonKU6zYYBpmTqvnyvzzXsN7jaUtsXr58q7DnoHZaCNOjceNHw6QYIQIS/MFvet4N/b9tjqqkDt0lSB+YrLy/NlxAE+awAvSmj0ImxDp3CAdcm1Hjqk7nz+bmx06QQxqy2ft5aqGLrG/XqPei/Gj1O2OyHLTZ+X5ksEsctxx+COqfP2hdrw2Y7TviNOktANY16aK5NlkvdXWtzc6DJbdvHjFE0Dr5EyVbROTNNACMEf/Ox5ft+nznG/7j214AHw2mKZ3/+ZJX72q/f4V7/34qHtqAeOTUpkWTkzgUAIgdNvx58sKBbZ/bpHy49VUm9HwqcbJtyrK9e5QcIcGCYkTV3b0xhjVBi6xmuLD9eH+YrSkcqA1ZZq6VmoupyrKhvvAbuo7cd4oVoHFqs57tU9/ChlUwt5abY0trVbSsm9bU/ZsLcDFqsuc2WXNJMHduIJYuU8lrd1oiQjSDLmnqJHovTsnr5+gCoAhbGKtQbOZ8CwYFXvRWx2Qi5O5IfW1499XsNnpemz1Q3RNMn3Xd1fuP8kMFGw+ZFX53YJlq+3Au43PDY6Aa5poAnBrb6hiUCQdwziPlM86ceFAw2ZcULTBN97VcUYay2f1ZaKLxxTp+SYTORt0v5h6MZmF9tQDPcsGxxqk34rmXMgseRHi6H1XsRqWxmUTBedoQaaH6fkTNVu3Q0T7m0rx8BrM4V9JTd2ot6LlBNVfn9jlLV2wHa/tX2n866pa7y2WAHguyst1loBSMl00ebabOmx94nTjNtbyqn7Qi2vtI7GGH+lmWS54XNzs0vZNXFMpX0WxSmrfcFjYFfSY7bs8tlLgltbqqC5n2h+o6eEr2t5a1fhfrMbDpkXuiZ2sc6PC7ah8+pimVcWSmRSrV8frnXw44ROEPPyfJmyq7TmvnJzC0PTaPvKOEcXar847oN2lklubHRpBzHdMGG9bZDKJq8ulFmqqb3uw1XVKuWaqg31lYUyr/aZz+PEwL0TVFJ+YKoRxCkfrLX45r0WjqGx0Q744Vfmdr12sapc03VNnCjrx9+h8Xpnu0fcP+vlbUMlXr2YBw2PubI7NFlQLsXO2BhdA2b/RicY2bW85Ji8PF9GEyouurvdY7Xl4xo69elw2C2yF25tqrWh5cWHbg+PUznUEO5FKXHL7xcvNIpOzHsrLVpeTN42+B2vzg7XSNV9VBqOGzh0THZaOEp24kkze9TZ9NuEEF8C/p6U8j/b8fPXgT8ppZRCiI4Qoiil7Iw6sDBJ+Xi9S8k1iLOML1xTwUo3jFltBSxWVKBmaDwWOA3cskxDcGWqMFaqo6kLvDjh/eUWv3Fzm+mSzUvzZaZL9oGrLct9u2qAzXxwKm0Ne0EIgb7HzEgz2XeeSVhp+kwXHN5dbvHGYplfvb5Fmsm+O5k2sjtQvRch+3asylnGJ0ozLkzkdwVOWSZZbaogbKXl71tJGgx7oeKy3QuVy0F/U0pSSa+QslBxdzFYzH5QdWOjS5RkzFecI2lDDBJ6qcz6BzM4P5FDCHh/Rbk5+nHGTNEmSRWzoBelI7lLjgtCCAxdYBoqwRLGGYamMV91uV9XSakbGx0m8jYXJvJkUmLpSqBxXEKQK31dB10TvDD7sMLcCxPq3YggTml40a57bRkaM2Wbu9spfpTxoK7scnVNG4mldxi0/Jh72x5CKOZS3jZoeDFtPyFMUrwwfSyIXqi4rDR8ojjjwbbqFXctxdw8qQohPHmBdwzB9Y0uQsBbfsR8xd2zgjQwRAiTjKVabs9g9/Zmj06QAikr/cPSgcfan5Pqv5UGn4Zqw50q2Hz7fmtoUeyaBrqmWuzKYxb+fBIeuloqVstGX9z40lSBtVbAO/ea3NrqsuQp5thaM6TkmKy3wxMV2wS1Lx4k+fknvniV/+nrD/gvfuk6/+nvffPon79jje0ECR+utkkyyecuTxDE2TDYrfeiXYmp/ebsZmfQcpNScs2xsobXOyErjYC6F1K0Db55r8Gb5yq8faHGVNFWSca+yxhA0x6/5tsAos8W/9rtJr0wZqJgs1BxOT+Re8y45WnY7IR4YcpWN8S1lLhwN0j2PfQffsx7/7zeU3qATU9ZYy/tEVwXbJ3bmz02uyEFy+DNxeqwEHmaGMSNLS/mXt1juekjkRRtQRSr9tR37jVYb4e8Ol/mjXNlTEPt58d90NY11V56v+4jxEMmxd1tj9WmShiBMisZxJVRkg7jzbV2sK/b7CgwdUG9G9MNEsq5lErO5Jc+XCeIUq5MK/ewRk+1p/lRquQqRrgmK00fKWEl8fedo6Ocx7NMvVcvSna1i97eUm2FFyZzfbMDlRxqhzH5Me8jLT8eCjIL6CeaJHUvBiR5SzE4Mim5OJnHMZU4/bcetGj7idIfKjiUc4+fX1ZavvqOsX9iMePTMDg3ZJlK4q+3QwqOzuXpAl6Y8rVbDa6vdxTLeTJHkknKOYvNTviYC/C40fLj4TkxyyQ3Nru0+y6aSjPTGibkp4oWep/4cBwQQrBQdWl6ETc3O3y83uXyVJ4klaw2Q+5t95grObQC5UD+6DhOUhtpgKmiTZpJkkyZBX3jTgOhwfdengKhiolhos47qpitUe237Y8LYaJi/vt1nxdm411x6KPP9k7SxuD6SSnZ6ITc2OgxVbCOhR35KFxLH8YPM0Wbbz9o8vFalyhVHUf1bsitLY/Jgs2Dpr9rTT4peZfjwlGu7oYQ4tNSyq/t/KEQ4lPA5givXwWuASHw80KIX5JSfqf/O10+tLpqoaSER0pMTRTUQ3Bzo4uua7smVt42mC07aLrglfkScV/TYrWlFmjb0IeUwjiRhMnRbXp3YrrvUHZzs0s3UA9KztJGcvNTjgoREslU3/q54BgkaUotZ+2p3bITM0WnT8nXTsW9TxOo3mxT6QxkUlGP19vBcIOPkuwx9tp+CJOUKM3wooTZskOcyqGGRsOLdiWmNE2Qs3W8MH1sQZnu9z7rmhg6E5Vz5jChESXZMGs96BUvuyaXp1WQPHAUHGhjdYJkLKKlFddS4rW6RpopJoAfp8pp0tCYrzh86tIE97a9/jhOnp6Zswxmy7ZqOTPVtdvuRXSjBE2oZ/GtCxW2uhFZxhMdMA+Kwb1QwooJeVvdL7tvOTtfcSk65q6WUmDIPDs/maMTJpT6h5hmTzlPGZoYq+hs2B+nlCpplrcHbUoq2Fysuhi6tovNUM2r4OZcw6XpJdiGmp+dIGG7G5Jk8ti0xRarLg0vJmc9WeCx4JpcnipgaAI/2l/nqhclw983vXjPxNRUyeY7D1rKYatw9EB5ruSw2VYC9xvtgDjJsA0NL06ZKtpYhs5MyWahmnusNegkoGuC+YqDLgQ5S6cbJKy0fKIkJW8ZTBZslqqqZc2PsrFaOR8XZkoOf+h7zvNfffk2/+YXrx45gVqwDa5MF8ik5NdvBUzkbR40fKIkQ9cSXEu5iF14JFmRt5UAaPKIg2HBNmj0YjSN4Vo1DmSZHLK5cqbgo40uQggavYiOHzPb14brBPHQQjtnGZRck6YXU7DH06K0E+cncrxzv0kmMzp+Qm3BpjKi9mI7UMWjWt4ibxs0+25Yhi4wdfHUfWah4pKz1PrxNL2khYqDF2X7ukJVcxbvr7TJ2zr1XoRl6OoguKPYUHTN4WHCMDSlEXSGECTpcJ1XGoImUZLy7oOW0h4zNJq+alV7UgV+3MjbplqDNIFAMZSkVKyZbpgwXXT41IUKmqbY6EXbYKMTESXZkQ9lRcfsm9yYxGnGajPAC5W2Y72nkraVnEm733Y0qtta3laJ0yeNb2ccvF8Lba1gMltyMXWBHz90yl1p+FiGRtNT7paWoSmB/mOIpwcxwnzFVbFgxUHKgWSCO9QjS1JV8HVM1aaeswyWmz45SyNvP2Ro79zLC7ZB208e21emCja6EBiadiJsqb2g9fdGTQhcSzE179V7+FGCZQiqeYOLUwVE30TppBIEOVvHtXKIKry33CaIMrww4X7DJ2cZTBVs1dlQOn7N11reouQYfPu+knJ+0PCZLzt9Nq7LizNFrs6Wzkxywum72idpxrfuNTF0QZxlLDc93jpfoehYzFds6r0Y29CH2s7jhKFp1HshsyXnsfNvL0yGZ9CmF+95Pk4zia3rvDBTxDE1dO3Je9uAYXrUAtggfkj6bbumIXAtEwnMl126YULB0en48VNzAM8SjvJU/1vA3xFC/DfAN/o/exv4Q8Dve9qLpZQhKimFEOIfAq+iWvcAdqrFlYDmo68XQvwU8FMAS0tLu35XzVtcmMqz3Y2GgasQgvlKDtc0+q4aBu2Wz2/ebVCyTRZrLpemCkwVbaIkwzH1Yznsn6vmeHOxwnvLLao5k26YcmOj+1RHj4YXK3oxipao2hqUK8SdbY9tL+Ly1P5uOQM3qv0gjzmgE0Lw0lyRkqtTK9gsN31antpQi45OJpWl8X5QbZjh8EF/0FBVn7xtDJkujqmx3YtIswxNiF0Jv0uTeaI0e6yVTAhBLW9xc7PH/brPTMnexdiy+kmgXpgyXXp4/XYuXgMdsqB/8B0HKjmzf8CSQ1e5rp/2g3hB0TXJm0q4VPCwEpJmknt11cpxrpY79urrlekijV70sEIpJQVLp2louJZqs3thpkgm2TW/W17MWvv/z95/B+u6pml92O/N4cth5bVzOLH7dE93T6fpmWECA2gQYIMxkkAF1thjCUm2JVfJdmHLpYBsrLJkJBXGUlFAGVOGQkIwMwKhGQaa6Zmezn3yznvtldeXvzeHx3887/etHPfaZ++Z8lV16pyz0veGJ9zPfV/3dYVUbP1MidmDWKw7bA0jRlHCw23pnHmzYDjenauQ5offtbw8QbMs7cV3xjENV8fUZXA+aek0dPW5RJz3olW2iLOcjUHI+iAkTHKutlxen68gOMzYnFxj2dKZrznkBLLdwVAxNZW1gvmX5eJCz+3g5xykdOuaeqYxPF91uD1XJk5y7pygc1UydRxTJU7FsVXsMJaW3ONITKvyzwPX0rk5W2JnFBHEOYMgoV2xaJVNnnSkRfuNdpml+v6D4POOyfNgqe6iq/KA1A8SVBRQFZoli5ojW5zrrkGSi33jeGMQyha2inXpzJXnxS987SZ/9Tee8F9+/SH//h/+1HP/vcnB8fZMmffXh7xzpUaWw/1Nb9oCKQ/U+8fxUcFg3TVxTR1VudyqsaoqLDccBkFCzdXJhcL9nTHjOGVjGFF1DbxIsk3qrsF8dbc94aR5dtTcPCscU+dz1xo83B5j6xphIlnKcZqfyEZOs5ynHR8hpEvZrZky5cLgIUgyHu94PNj2uDlTOnZfOWn92HtPTzuyFbPuGsf+fKtscb3lstLz6frx9DBwx9iNcyq2wdfuzPJge8zV59RCehFoly2SLEdVZKEpiGW858dZkUS1uDNbPjY2GxcMc6dIbl1WC067bBYtgwp11yDOpGugqam0Sxa2rrExjKc6mwC3Z0oMo4SdkWQkX2m4Fz4IXW+XeLA9BhT8OKPuGOSIaWvapA1mUhy+NXN0K+e+v9mS7bNHOTJPIE0lTl43Zys2by1VGUcJt2bk+WEcpqx0fbw4Y7FuT1sMH2yPedzxD2nIPS9sQ+P1+Ypkmxfrv64pWIbKXNXGMTRWen7h5i3Hjmz5U1msyZbnKM152vXxoox2xZxKBVxtHv2cpN7X6Xv/86xNZ8Fi3UUr9kZpKCAo2zqjWKdqG5QsjeWGeyim7PsxmwUL+SgH9bMgL+LnJMtZbrg4BYNRxrCSHOCaGiVLSsQkqRSWnq/ZU7Hxy0KaCT7aGNEum4fei66p3Gi70yRkP0hQFIWv3pphqWG/tNatnXFEZxzTKBmH5oOuqXzldhv3aZ+1vk+Ww0ov4J1lixvtMo4ZTs87l40ky/HjDC9OyfL9rdIlS8c2VJJMUD+mm0bXVN5eqvJox2e5ebppzsRZ8jicZw4NgoT1foCgkPAQ0nl8rmbTqlis9nzpbIs4UkPrdyIunJgSQnxTUZQfBf4t4F9GsujvA18UQmyd9vsH2vO+CvzFPd/+gaIoX0YmqqpCiOERn/+Xgb8M8PnPf35fVsWPMyxNJS/6lcu2pO4v1Z197Tpbo5i0EEO81pZJEdfUn8sy+DSoqnSTeXOxNhWFC+KMvh+fGDRqewaxru469/X9BCF2GRkXGZSPdrwX4tp1ECvdgKfdgCTLqFiS8aUqCl+61T618rE5CknS3YPr5HkoikzUZUI6E04slzvjeFrVkj+nHKtvlGS7fdtSt2T/e5DWzcdfm6Iol04nVgpL3L1YbjoIRaCrKuMo5XsrA2ar1r7PHofp9F12vMtrnTsOVdvYl8RplS2ut8vYhtTF+t5Kn/mqw82Z/Rvl1kja3XbG8VTk9jywDY2rLZePNkbEeY4XZVPqsvxn/7uW4vpSNHKxbtMsWZia/JmrzRLjKJ0mfrVLDLo0VYrHTubpsGBkHnc4nrQSO6aKY2hcbcjndqMt6dqjUNqN689ZGZmsPa6lcfMY/ZaTYOoqX7jePPXnNFXh9uzJ6+kgSKdsx/ULtvIdxGzFpmTqPNz2AFiuO1RsHaN45087Pn0/2Rew7x2Te9eOFwGzcMUBCHY8yT6s2izXXXIhuLc1IsvlAW6yNOb57vq3OQpfucTUbNXmf/QjS/ytbz3jf/0zdy+NeXi9XZoysL75qIMAxpFs1V0642FdCMGznjykXbbFeN2Vrkxr/YDlpotjadM10Y8ytoq9K05zFs9wYBr4CSs9H0uX7ZQXqXzfnatMtfXeXxuS5eKQ8+9BKIqCoshYYrK+TObAOJSMmkwIydo9Z5yxu67J35usg4Mg4coxv5NmeeGIDGu9gKptYBvaVC9kgr3j41XDZP1PspyPNkfT1khFUbjRLvMj1xonJtN2RhFR0TbWKpuXxnbXNXVf3GDpWrFOS9e8USTfjx9lJGnGk25AEGfTA1WY5Hil9MLMmpmKZJasFnIFnz3wHDaHET0/lgUNNyXNBcZRGhF7cFKMN0EQZzzcGaOgHJtg1TWVd67U931NUxXKtkHFMfCKWDFK8ykbeBiknLLNnRtelLHSkzpbt2bKGEXRDeRBu+6Y1B2TYZBMhdkXag76HjbHxDFwGKQsFNJ4Z3lOx2EYSmkC2epdeiEuknv3xsmZZrnhUndNGq7Jk67PKJRF4Pk9bsVbo4g4zdkZxcyUrQsVIEZROmW2dryIZXNyHfJd7IwjrrRcGiUTU1cKWQDlzPIj50GSyZbfzWF05F76masNPnO1MWVfuqZGnGU86QSoinpmLaXLxOYwJM+lA+BRidrFumSOfutxj+1Cc/nepjyj35wpXaoG7V5MXOm6XkyaCfYuo4amnunMf7VVOrKd/DwQQvBoxztXHPL+2pCNQUjZ0vnx19r7ntFs1ZZmL1kCQrlwDuBVw4V3OUVRdODfBv4M8BSZmPoJ+S3l/yCESE75E19TFOXfQ7Kmvi6E+C1FUf6iEOJfB/6vwF8DHOD/dJ7r8qKUjUFAp6AEV22DYZAcufk3SgbLqYOpqSw3PvlJXN7r6HFKj3rNNbimymvcmwiouwajULZOnadauD2SG3/NeTFW8gchhKQc1xyDMFW51nTpeDE9L2a9L92WTlqUao7BziiePqcrTXcqgqiqCiM/JUkFrqHhxSntsjUNZNJMVo4Eslp0cDM1dZVW2WQUppda9bpM6JrK7dkyVUeKs6/3w4JWntAqy6qqpWuyNVGTNOfjWiReJGQrh0bDMej50nUqK2zVJ8m/K02XqmMQJhGupT1XkmW2Yk2ZdMcd4NIs58H2mIc7HnMVm36QUHcMxmGKZUjrXMe0MDUVTVNeSOvUXNWeJk2Pw8BP+N5KD1VRaGFRtXWSLJ0+o0kwmGT5czMD+n7CIEx40vWw9Jez/k3wxkJlqpdxe+byDpglS+fGTIksE9P2n0bJwIvSqR7Vaj9gHMrWsMmYdEzt1EPQZWKylrUrZqFDJIhTWWvpezGdcUSSCZYbDmVbrteXxei7bPwrX7vJ3/ztFf7qN57wv/nZu5f+9682S+yMY+7Ol7k9W2H+DAeCNMu5vzXmUUfO/0EQvxBNxoWaZDIsNeRcVxWFqmNIwf0zOovFac4PVvsycK1KfYnnbVepOrKNsWLrJybxNFXh1ky5cHzaP74aJYNxJOOM6hn3lTDJeNbzMTV5YIJdIdyT1sNRKNnhbnHfeS4PNFXb4MopzPJXFTLBI63ab8yUiJKMOM3YGAQy6XHMO646Mr6T+9SLPXBMXErjNEcIm61RTNXRycTue8tETmeUkAvB1ebzFb2aRcu6qnAowVVzDJquhZ9IRtBlJUBGYUKS5mwMI7w45Z3l+pnG03LDoTOOyYSYsttsQ6NZNvGidB+b/rIwCGQxa60X4EX7Y3R9jzzF3rk6V7WwjV3JjpmKNWXYXhR9f7dbYXLAj1PJQKk5L3Yu7t3Dx3HK0E+mBcWeH5MLgRelzNVsqrbBdhFTXrSNTUoYyPi5ZOo83vFIc0EuBEKAa8h5eq3lUi3W8xfV9ji5h6pz/Hq72g/wogRTV/mRq3XWB1JDU46dF8tsOwpV2ygkG46+5jiVurSqKlk/li7b4tJMmim9qDXOKdosb7ZL033lZeBJx+eD9SGtsnVqHJJmOSu9gGd9HwQkeY5+4H0u1mw0FXZGksn3qjGGL4rneUN/AagANybMJ0VRqsD/rfjn3zzpl4UQvwz88oGv/evFv58BP3WRi9ou2jeEkEmbiqMfexicuBS8DEE4KOzmC8ePs1CijzqMyErX+YUoN4eSNrna9wv2yIt9Boqi0K6YPO3400OgXvTIh0lO14tPpN8u1Jx9VRBNVfYxBsq2jmtpmLqDY6ooKERFS2a/ECoE2RJ4VHXjRbfuXAZsQ5u6gJQtnftbY+ar9nTMB7HUVZEU8JcjgKcWGk2tskWUZnz3SY9hmFFz9d134MfMVW1alyBw2DjBgWeCQZDQGcf0/QRDk4evmmtI3ZU9zhXntVc+D2Yq1qmH4Wc9Hy+UNrNXmy5XW+4hp8fnSZpluWCl68trKVt8tDHC0jV6XsJy48J/9rnhmDp/8Bg3z+fFwQPfcsMlTDK8aEiQpGiqSpjkhEnO7dnypYzJ82LvWrZQkwHJD54NGIUpVVtnWBQOdsZRwZy7XO3Dy8Tt2TI/++Ycf+0bj/nFn7h56XqG8zWb3//2/LnGSj9ISDKBpig86/u8ZlVeiB6Douy+x2Zpd64v1p2iYHD0O4vTnK1RiF3YOpuaSj+VdT33EqqfMs4525g5rgXhInHGdF8ix9QVOoXGBxxeD6M0Y2sYFeYQcTEnY+7OVagUzOrTilevMsq2jmWobA6kK9StdrkwTBFsDUPKx4iJN0smNcfYt0+9SLimPnUpbRRjWAjZ4vK062MbKnXHmLYg157T0vS4g9R8zaZdvvy12DE1Vvs+4zBjtmLR9eJ9rJvjoKoqn73WOLT2vkhGeqNk8GhnzPogPJQoVhQZxxy8HkVRqO95JxOX0+fB5lCaEDzt+HzmSg1TVzG045Opl43J59Rc2fXy4YZkkFxtOlOHxa1hyO3ZynOPGUNTp/HzXl1AQ1Po+XJ9+vQLcNs7Cqau8sZC5dj7CZOM7jimZBk4psZs1abrJYyjhOsXYMFfBqSb3vF7Td+P8SPZMbNQtwmTjEc7ntRNfoGFdNfU+KOfW36pcVOUZrLIoGsMg4TXi7blgZ9MGcR7MQikQcR8xWYcJ8yWTcI0p3Rgvs9XHearr/759Tx4nrf088Av7HXLK1ru/pfAH3jeC7soKrZOx5MCjpuDaOowchzOMlDHUToVW75spLmsBLxojSeQE+D+1pidcSSf0ziiV7ijLDXOPrCTLGcYJqdec5YLtkZSEwWgVbLwY+me93B7jGtqqKpsxzvLJnfSu0qynIqls1i32RiEvLs24PsrfUDq3CiK/JzLYsN4UTqtIl4UFxlXeS540vH4wcpAZtGzXQ0aQ5cC7opyea4gfpzix+dn1A3DhO887dHxYkxdJcuYvoPJu/6kNglbV/loc0jPl04/kwrpUba5ozAhSl/MXD8Nm6OQ1b5PkmWYxXs86hld9BqDJOOHqwM+XB9RsjSW6jZVW78ws26yDuT5869d5xmz6QU/N0wyNgcB33jQYWsUSq2+hgzaraLKfFlj8qLPxo9Svvukx1rfl+zIJCvG6S6r4FVNSk3wiz9xk76f8P/97ZUX8vcnYyVMsqlZyUkomTIm6PsxDcckTgUrPZ+tUUianV9odRQm5163T3pnT7s+764O+caDHTrjSDJXZku8vlC9lANQlGZTEedPAnmRAO95MWmeo2sKo0i6i/nH7Jnr/ZC+n/Dx5oj1fkDPi7ENlbKl89p8lTtzFRnQh8k0pnhRMdlZkeWCYZicOIa6BeNRUxX8KGUcp2yPIqIkwypE+A8mHQ7iovbuZ7m+s2C1F/Bo2yNJczRVmkgoytkTE3khM3FeXPY6tz0M+bUPtwAFy9QQiCkDf9Jmf1pM+6LX3jjN2RqG+HHKOJKxVyYEw+Dode6k67noPrkXPS9mYxjwaMcjyXOGYcpr85VDLcZpJpPrZ1mP4/Rs54eDCOKM91cHfLQxwixMgRyzmEOXuDdO9hfH1KZ778SsZr0f8K0nHcYXGM9Rmp37vk+6H1NTp0YeVUfn0bbH2iDAT7KpA2uvWH/O8pneJZ1zT7rmkiXPYqoKCKmZ6UUpoyhBU5XpenkS/PhiZ6/nHRsysXT+cTuBqUnd3YqtS/a7pZPlgu887fHu2uDQz5eKjqq6a+AYOl0/4ev3tlnrBxf6/IvOu5eB5zmlC3HEHQohMkVRXtqdt8oWr89X+JUfrvOkG0wdZu7OVUiynIfbHmmec61Vmm6saZbTDxIcQ2McpRiaOmVZ7YwjnnQ8NEXh9YXqpfVvCiHYGkbc3x5TsXQaJZNmyeRxx0NXVZYaNpYunTdkckAuNkcd3pIsn1JOr7dKx7qNrA0C0kJP6e2lKuMoZRimbA0jgigjF/sdCo9Cngvub41JM0HNMU7sY35vbcCjbQ9TV/nanRkURbrWZTlTJ5E35quESYafZPQ6HoMglS2WJ7QWhYl0NrzRKk0D94fb3lRjqO8nhHHOSE2J0kxWEyoWa/2A1X7AzXbpXIvUJNNdsfVC1yvmg/URUZLxzpX6kYydtEjKzZSP1vTYGoVsDiIURbIMThtXG4OQjhfhRQnbw5hHOz6jMObGTIk/8pkl2mXz3AHsae97ECRT179rbffU9qE4zXnc8RgGsmqz1ot42BlSNk3+4DsLU8fFT5rJlQlBs2Tx3uqAH4QprqExX3OkWGXFph/I5JmpqawPQlQF3lysfeItI5qikAvBwx2P7z/tszOK0DWVVsmUTiUKaApsj+ILXWOaCaIkp+fHrPYDNFXF0i/GFuz7Mf/wvQ0E8PlrDa40S3Q8WVE8apwkWU4uxJHjLMtl332cSmH4JJMHquPG24Nt+bNlW+fGCdoyz3p+0cYge/nvbY0Yhyn3t0eEsWzv+uPNK7yxUDn33Dlpfp9njQQ5z571fDRFYWtUVKe7Hiu9gButEj/zxiwck6R8FfG5a02+cL3BX/4nD/kTX7z6Qlgua32fB1uebC/Jc0xNY65mYagqKz2fPBdca7mUbQOBoO7KSrofpZQKMwLX1Ani7ExCsZP3LXW+YhQF7syVT7y3rVHI9ki2hl6pO3ywPsKLM27NlPaxdr0oZRxK4f2abbDcdLnWKj33OpkXjsOPdjxqjknN0QmSnDTPud7a1YcxdZWBL9uzTmOfHpxTR2EYJvR9KcbbcuVe/o8/3mLgp8cmphQVVro+q32fTy3VsSyV661dce0sF4zChJVuQL9oC7cMlbvzlSOZ1pP9terokr1bHNbOmug7bf8Gqc0ZxBm2cbRGSc+LebA1ZmMQUncN0jxnHEitrrcWa9yZLZPlgiTL+a1HHXRV4c5c5cxtuqft3487Hn5UPKczaKhkxbrlxyllW6c7lvvMxLTDixM+6zZ4ba5M6xwaPlGS8d2nfWYqJrdnK+ca117hRjyJfUdhwpOO1F262S6hKkphaqOeuH4LIWRRZmPEOEr5qddneGtxVyjYi1O+96TPjRmXK82ztZMPgoQsFzRcAyHg4Y5HmGQsN5wpaynPxZmub4Ifrg541vUp2TpLNZswEbimxtXW/jE+jlKeFGeFidbTwWf1YFvGYgLB20s1XFOfukcfFTeEScaTIt673pbsxLVBQM02KdtSr/S4eGOtL5PFisKJ+/dkjGW5ZOGdps26M47YHIZS4NtPebjt8aTj8fHGiM9cafAzb84W+mOXvzdaujY1qfnhsz7/9N4OSZJzY6aMENJBOExzZiqnC98nRTt5nkOrbJ4Yc43C5NjE10SjyI+lEZJ0+tQxdY0nOx5hnBMnuSzaBAm/9ahLlgs+tVyTwtnHYKIBCHBrtnQq0znJpBbncWfNg9f8cHvMxjBiueFMzwFpntPxIkZBiqGq/NN7O/T9hIWaPTWlOoiBn/C0uztGT2uj3BlH5EKuse+tDWiXrUMC9ZM1+KgzWGcckeUyjvvOkx73t8csN1y+dqd97nhMURSuNl3GxRl4tR8wU7aKM/HhlIltaCzWHN4vSBaGqlBxpH5y3TVwTf3IuLozjtgYhtPW98k9nmfeHcR53vdl4HkSU+8rivKnhBB/be8XFUX5l4APn++yng9l26BVtvDjjCjL6HsRD7eVwqpXLsyDIhGlqcrUuaLrRUV7j4Kpy2rd9jDiaSdAUWGpsGm9DHS9mLVBwNYwQlSgZOv0g4Q8h64vs8ZVR9rdP5k45URy0wPZMrU1Chn4CYamTsWDe36MYx696JUL+2fX0lAUhbmqzThM0VQF25Q2nTujeOrIcxRyIUgzOYkmuhHHoe8nbI8invUCKUB2d4YbMyVGfsrN9sQtER53fLJcthUu1aVQ9EmtRVEq3YPmqvY0uTjZ83VN4c3FKs+6AXXXwFBVNoch7z4b4MUpV1slvCij5u662J0WKD3e8aWooq7w+ny10DGTIs1Puv6RwXyS5mwOIlTlaDfEyTgUgmMXxQm6Xsx3nvaIk4x+kKCrinQe1BQU4Fk/4NYFlDdPe9+Ta5zcz0mYLPyPi+AsTHJ0VUHkSkGfDy90jZcB29C52nB5tDOm4Vo8KRyhSpbO+iBgHMpx3Czp9HwZECw1nE/UvhskDfpJ12dRkdphwzChXbZYH/h4cY7IoWRq+EVVa6nhnksrxzZUFmq23PiRY17XVC5QjGe1F7AxjEBIUwNFUfAiqaXz+vx++nmUZtOgbLnhHJov4yhlcxjQ9RLiNJu6g702XzkUcIoiyID94/MgslywM4rZGoWs9QNuz5Z50vGl3pStM/BC2hWT99dH/MRrM+e+/5Pmdy7ENNA4bY0chgnfe9qj7yfkAuIsRVc1DFXuQeMoZX0Ynvmw9Krg3/jpO/zJ/+qb/K1vPeNf+tK1S/3bfT/mWS9gZywdWP1Y0jF7fsxCzWa9LxNCH2+NeX2+wq2ZktSyUAyuNlyqjsbTrgzCJ/PgNEze90S3QwiZ6D2KNOJFKeuDgNVegKoo7IxjVjo+26NIJoMNKZY72Xuut0qMo6Rg9BroqnopyfsdL2J9ELI9itEUdZ/myNogmFpkN0om3aIlJheCVtlCCDFtlxz4kqVUtqRWFUhh4OPWHtuQTOg8h1qRDLrScHGNw4HtMEzYGoZkWU6zbKJpitSIrLj7nGbvbY2KBJ4M6ntBjBlrPOn4hVPX/hcxuc7tUUTPk45+UZqzULMR4nTphNP2b9hdf46zN1cUubaNwoRxLLVxUiFbNQWiYMQqvLs6YK0nCyLtsnXmxNRp+/fedfI0vZk8F7y/NuAbDzvUHXN62ImzDFUp9A3bFa613GmL31mRC2nakOY5Fds4cyEkTnMe7XiIQuPqSnPXRGQQxLy7mjGOEqqOQcXST2xfmrBgLF3FNW1aJWtfzJVm0gSpZGtnWmtH4W7RLs1zypY+ZXH0/IS6azKO0qlZw+2Z8pkS4H0/Jhdy3FRsg+WGg6ooh65pUJwV4jzHjzIck33ParnhkGT5tND22PK50nT41uMufpzx+esN5g60/wyDZDqmh0HKTEWjZOqM8pS3FmvM12wqZ2DJnbR/Z/nu3picwuRLspwfrAwI4pQoy1FQEDkoCGxTYxBIjdrmJZlsHAVVVUgKrZ+SqdFLM3KRs9LzedL1cXSNtX7AT9ydPbFImOWCvLjd0+KWyXnvKESpNPoJYinGvlx3CydxjeuFQY5r6ShC8Ksfb/PB2pCb7RJ9Pz7xPvfH+gJO6dBd6weFHubpkO6QAX0/oe9JYXrX0kkyuVd085heEJOkObmQ59TjVqpoTzyVZCfzX/p+zHrhYj1xlY0POCemWc69ooh40FlzECRTF+wwzfh4a8zAT4hTrzCtOH8ydNIFIYSMPSxD4+aMOz2DHETXl3u4QLqFz1WlhrCmSMb4/a0xQkjt5JprIITg3bWBdJEvzAEMTT3XvDsK53nfl4HnSUz9a8DfURTlzwDfBgTwBaRg+R+5hGu7MEqmxusLFWYqFnXXQAh5aDJ1FcfUppWr98dDGiWDyfBWFGX63xNnLtfWqDq6tPbWLi9bqKkKuqoyW7VoFL3TuZBVQRSBa+jTTWaCMM34YGOIEHCj7bI5iKZfN3V5X8fZXYI8+M5UMqxiAW2XLTRFQVWUfb3+J7mSSTcXh1GYnnoovjNb5qP1ITMVkyDJGUQpddskTnOidHdREcVTlxVN2fJ3EoSAIJFCrBPcaJcYhSm1Qv9gpiKr56oq7YirjoEfZ5iaMqVvr3SlM9dpGeTJ9U02i5myHFcK0DxFl+i4ZzlZHE1dPTXrvz4IsA2Vp12fO7NlLF3lU8s17m2O6AcpT7s+8zXnwm2Kx11jq2SS5jIgOEm0G3aFKMdRAqjcmi0zU7aouQZdL2ZnFLHS9S/dvfAsMHWVT1+pYxsaO2MZIK8PQp50ApYbNqCgqZI6m2ZM2+g+adxol3AMjYfb44LGn/Hx5phWWUfXNAxVxbVlMv0ibC7b0PjM1TqWrpILcC0Nx9AuVG2UdsBmwdJ0UdRdl8yDzy5M8mlQ5icZB3POpqbw0cYIP85wrd019qg3MHHAHAYJrRNshTVVHvok09RgYxCyWHMYRylNt0TXkweck4RFz4Kj5o6uqVxpuNPE4knYGoaYmsb2eMxsxeJmo0yzbPL2UpXvPunTD+Lp/H4RVeEXhR+73eZz1xr8F792nz/2+eVLZU2pqnRDapVNmiVpbrIzjqcFJYpWAUNVyHNIc+lSlxaD8MGWDFBnKta5WtgB5us2cZpj6dqx6+3WROcSmXiRrbIyQZ/kgqZrHdp7vnC9RZikxJmYtmE8L7TCfWumYtIsG1xpuJI1nQtsXSMsHMX2xhgCmaR4sD0mTHIW6zY745g4lZpPFVsv5tDx17hrr77LzLjRLtEomZQOVOK3hiFBnBdJC9lWPF+1abjmdB1JspwkFZiaRrui0SqbrPUMRmFCydSPTOK1yyabw4i6a0yd06I044P1EbkQXG+XztSKdlIsdLXl0vPiY2Ouuiv1HncK1pypq9RcA9eQSQzX1HnW83nWCxhHKXXXOPG5nvcarzRcul5MzTVO3c9GxX6T5XIPv9J08OKcOddmoW5TsXXiJOdZL2QcZefaxw1Npebq1I9h/B8HwZ4YsfjPZkkmfAI/Q7dUtkfx9DAfJPmxTnsAX7nVwtAUNE095K6lawoVWz9z0kwc+B/H0KjY0phmEittDgIGRaGr7ydca53+d99arHJvc4yqygRX1TG4PXvYmbPhyvGvqyolSyMrxLknmOyTXS/GMWWie2cU8d6aPD9UbONQYqrqGHS8uGgb3xX5jtLTGV9LDWcaT0yv4YifM3WV5Ybch087P/T8GE2DYSi7WK63HXRV4dasy7ee9BgECdvjF5uYAhgFiRQTB75wvclcTWojrXQDub47zlQ39TjYhsZi3caPsxOF8hV2XcaPgqWrVB2dKMmoFeeGyU/GmcA0ZKvYjpdgqAr1Qp/uRvtkfcCZikUuZKHkLDHRxBn1LGGyVZA8Ngchfiy4tzXmrcUqUZrTdC1Kps72KCLTBUGS8fpC+VjmbrtkkeUCBYXGKWevvcWHNBM82PIOzaM4y6dECz/KpGp2gb0/65o611suD/Mxs1XrwvpqEwOjvR1QbyzUprHJQTRdE8vQuN4qsdx0eHOhyvog5OPNMbqmTOe8F6fUXGlQoqAQpzlplu9jRZ913h2F87zvy8CFo3IhxCrwRUVRfgp4CzmnfkUI8T9c1sVdFLmA1+erha2tbPuSGUp52K67Bu+tDQGZFb0zW6Hvx9xou1Na6KSyN1+xWesFhQjx8Z95XgeE+h5a+aRClmQ57bLFUt2Zuvq0yxaWoTEKY3RNZXsoWQDjMCkCY4W6Y545UDi4ae9dAGxdY6nhnKrsP7HHPg0LdYcfvzvDP3uwg6YqNF2Te1sjTE2bir0pisL1llu4y8l2RmlZffzz1FQFQ1WJknwq1KkqCq3S7jPdexCar8rDRMnS923yE+2rkyyrAa63SgwDGSQIITANjS/fahHE2bHPyjSkXetx3zfO4QRZsQzysrwPP85Ic8Fyw6Vi6Xy4McbUZQvq3oNSnErG0kmV4dPet6oqJwrS70XZkm2On1qqk4kcP8qpODo/++Y8X7+3Pe0fX95j7z7RvvgkWpQ0VeGNRUkhftbzWRuEtMsm11plaq6OrinMlW02hpEMeEaSAry3gvKiXU4URWGh7rBQzP/feLBDxda4OSMFgMuWTrssxe7jLKPrxYyjlKtN98wB/2T+a0V1/qJYrLv8vrcXSDJBu2ySCxjYCa552BGnautUHdkaUj6CIh6lOaauEsQZKnITvT1bPnZc1BzjTO4jt2fLxVoi6fMbgxBLV+n5CZ+/3qQzjpiv2dOe+8m7FWLSfnH8gn/a/K65xpnE9MuWQWDnfPFGg1GYkmSC+apMMve8mK6XUDZ1giSbBhlZ4RL0KieqFEXhf/UzkjX1N7+5wr/8leuX9rertsH1tstVIZ9/z5MMKl1TWKw7zFVt7m2OiNOMJMt51vO40ihRdWSSPMslG8TUz85MOu1970XZks6JjqHRcGUbrmOo3JhxqVgGjZLJu6sDBGK696iKDH6rl/hOW2ULXVVR1d2Wh9uzFck8ilLKlkzqLDUcBkFClKQ0HIMolWYAfpzyg2cDqo5R6GPIqvxZcHDu6pp65HozDjNW+7JA8OZC9cj1VVNl20zHi6g7FrNlu3BXlOzhoxIREwMOkPt7lGYoKIzDsPjc9MTDxVned9nSTz2gLNQdfuxum51RjKkrBHFK14+mh9NBkEhxagW+eKNJ5cDnnbRHnrZ/lyz9zMUqmVgxeGO+StUxsAyVLJPOviVbp+mafLgxml7zcrEXnmUtMnWVL95oHekme9yemmY5mqJwreUS7En2+LHU3Gu4Jn0/Yb5mIZB7WZYL/Dg7NjFl6BpfuX00O9YxNb5wo3lmV6tqwWZKc7n/gUzOqHu0EpNc0PMjLF26UJ8F8zWH+ZrDRxsj4jQ/ll3jmjqvF8ZJIA9y19vyWdUdg51RiKqqfOlmk3EknT0HQSy7QEYRvXGEH6f7WrZsQ5u2WU2gKEfPr4OQc1SO6dP277MY1oDUBmyVLJrFAX57JBmx11ouPV9qzB1kA55l7z4JkpG9q0MqhMBPJPtkpmzxzpUaoyCj58W8NlchEwJVOZuTc6tscVpuUlWVaeLiOMzXbBol2dLlGiozk3WucCz0oowbbUcSFUoGP/na7KnPW1OVc0k6LNWlRtJRY+OoNeEzV+r4UUqOPKsFSUaW5fSDGNfQuDFTIkkFzVPaHM9zJpnECZMuOUU53B1j69KFMRfikElA+YCr8xdvtnhjQa6Pz8NolgYTu+NFUxU09ejx2ihZfPV2myTNUFWZcPILEykhBI2SjGl6fizP2CWTmYpFwzWn3VW7f+ts8+4onPS+XwSeWwlaCPGrwK9ewrVcClb7Ad2iF/JWUT15fb7KMIh51gvpeglpLpitWvS8hCBJ+XhzJB/8AebK047Pe+sDhBBcaZTojBNK1uGNaxylPN7xptnQsx4YJgkpIQTPegEfbw6JU4Gqwk/encUyNPw45Tfu7xClOe9cqaGpsvLXcE0cU7q07WVP9P2Y9YGk3Z+XnaIonMqMOS9y4LNXG6iKgl5QqZ/1AhxT4/7WmDDOeLgzJs0Ft2bKfO9pn7mqRbNsHasfo6kKczWb7bGsRH73aZ+eH3O9VeK1+cMaBo6p0Q9itocRW6OAH7s9g66pU8vqRunkYMQ2NExN5eGOrCJPNAQOTtKeF+PFMiOtHWChPQ+uttyChip1wEqmzsYwpO4YdL2IhztjHu2Mma85fOlGEy+WDkeWoXJ7pnxscuoy37drSkE/qYWVUXdNel5CwzXIBdzfHBGvDljp+Xz+epOqrfNw2wNkNf2yROnPAl1VEEKw0petNp+73qBdstgaS0vkcdGK8/HmiK/ebtMuW9P2IdtQudk+/pleFkqWhhCCnp/w2487/MTdOdplm54fY5sqRq7wcNujM47wopS3l2pEacbDbY9cCG62yy+0HzxK5YHS0JSp7fdxY2kSNOqa1P8pWftb/bZHId981Cmc8aS2zmVsgJO1fxTKROMgSGiVLKI0RlcVRmHKL/1gjWbJ5Ga7QqssE/wPd6Q2y0lMysua3/M1m2bJZLXn87Qb0nANWT0UAlB40hnz3lqf17pVvnyrRc0xp1oBV5rOmQoELws/drvNV2+3+I//4Uf8c59eeK5E6EHsZZk2SiZlW2dYmHt0vYgsE2yNIjnXUVjvR3ztbpuqrdO3NMZRgh9n7IwitkZS6+9G+3i2xXne94Sp/e6zAWv9gK4X89Zije1RRNeLebLjsT7w6XgJP3K1ThDL4hlwZibPWbE3OSqE4Dcfdvh4c8ytdolr7dJ0fD/r+jzY9pitWnzheoO6a7A5DCnbOqYm9Z7Ke0wShBA87fr4ccZi/fRi1lEIC2H/hZpdiOIeXlM3BgHvrQ6xDJWSpdP1YlCYutFGac5sxaIfJCjAtVbpEJtUXptBmuWMwomWlmScbAxCXEufuqv5sZQ2uMz9e6Hm0CpZaAr82sfbxEnOk86uJqYXyefwqx9uUbY0lhslbs2WURVO3CMvc//u+zGaAm8tVRFCOrElmdQlmavK4uzTbkCaZyxUHd5bG7JYk4WcLBfTVpLjcPDapa6gjKeuNPb/7iSeBrg1U2a2Kr+X54LfftQhSnPiLGembBGlUustyXJURTnS2WvgJ4wiyV69jPk9QaNkIoTgccdnox8yCGPSTHBnrsLNmRLdcUzVlodYgTStOet8ma1YbI2iQuMrOLWLICwKF8IQ/J3vrnJvc8ztWZeffG2OKM3ZHIYs1Gy+cL3J/e0xS3WH7VHEtZZ+6O/sjCMq1tkKK0fhsvbvkqXz2lyZ1b5sx3cLuZEgydBVhdV+wP2tEY92xtyZq/D6fIUnHV+62Tr6mVon90IIwYNtqRvXKpu4psa3Hve4tzUkSQVXW67svinYjh0v5krTZalmY17igf04Z1SQ7ZprPTnWHFNjYxAyU7G42nQZhdLxbrHuoGsad+eqIATRc5ofHAX1gCv6BHGa74tPwiTnwdaYxztjHEvDNnTSLKPvJWyOQsZhih9lfGqpBsrFOgFOwiROiLOc7zzt4UUpP/363DR+Xy/c6Y+rN+/di9NcsD4I8ePszAWa58VKz+fRlsfmSH5u2dKYqVgESY5ZJOhNTSXJpGZ1u2xNE6aXWbg87n2/KHxyp8FPCOPC3jMoaMm6JisYqrr7kgSSCaGrCr/+0RBFkX3iex98muW8uzrAjzN6fsx81TnWvarvxwjBNJs50S86K7aGEd9+0uPh9hjTUFmuSwruhDkx0Y/aGcd87mpjqilVc8xDE3lnHJFmgr6fMFfNP3EB54OoOgZpJihZGnGWE8Q5lqbR96TG13trQ2xdY3sUUbY0HnbGREV2GI5PTClI6nXPj4tqb07Xky0HRx3It4dSEC7u5szXHO7OVg5ZVp+EMM2mLQH9QkNgL6I041khHnha7/N5Id2n0uJzchxDJjWf9Xy6XsLWSIral0yDHS9iYtgWJTKAs4/Jxl82ul5MkgnSLCdKJZssinOedGUCJYhzFusOKx2fGzOlXRrqAbbXi0ZcPCvHSNgaB3x/ReVpx6dVlsnqkqky8FNcU7b+tcsWvULbIohzwjQ7VRzyeTF5NhXbYGsc8dGGdKuaL6pFzbLJMJDrTpTIyuo4TKe05GGYvNDE1MNtj483xpL2bxksnFJt26vteHB23N8ek2agKiqd0claCOfFhKkXJpKyHaUZV5sulq7yyz9cx4sy1vsh81UHzVdYrO1WpC7ivHMR6KrCIJTOrJ1xzGvzFYSAZ32f7XHMwE9YqEnRzztz2lQrYBSmr3RiSlEU/s///Nv8/v/0n/Dv/f33+U/++GdeGOOw58W8tzaULBpNYVy0f3SDhKplYBuyda3mGtycKfP+2hA/yljrB9Qd+QzHUXppFcFJUDjZu0dhQpJn9LyUUSDFbZcaLqMow4vT6Xz3o5OZPM+Dd1cH/ObDDl0vAcS0nUm650pZgJ4XE6U5V5oulqGyOYiwi6TQ3ncXJvlUc6JTJPTPi/2uUscYHWx5DMOUeJyz1LSp2TIZMNExBMmANQqZhZPaZ3VN3ScA/KwXECayRbFVMvGilLV++ELaFUxdlQxtUWhDjSMcQ77nRsng8VMpDtywDeqOxTCQ2qF7WzVe1B6Z54LNoXz/HS/matNlcxiyNpCJR4Ecv6qiFm2Xsm1scxTtrkVRcq5ERpjsiaeCeN/vetGe+RCn033s480Rq335zholk2EkjUxGoSzMHIUslw6cQsjPvH3JOpdJJhiHKR0/4oP1EZamYhsazZJJydLQVNlaFZxzvjRKJjXH4P31YcFePJ5BMwoTHu9IvasoTdkZRYRJRtdLCidi+XN9P+G1Qv8xTvMjJSSe9QKCOKPvJ4cKSC8DUSYYhSmqqkx1QR1TY8eL6fkJG4OAuiuNjW7NlKd79iRePg+yXEzbmsdRihem9PxYagwrYJtS+9HQFbaGCbapMQ5TglJ+qYmp4yCE1M1c6ft0xpF0NVdUNgotPCFkLBEXMXjJ1AiT/MyadZeBMM32xSfjKGV7HPFwx6fi6Ly9WEWg0A+k2UeSChxTZbyHFfkiIFnSOl0vKfQRJTtqwpY/i1Hd+6tDVvtSb7pVNk+VYLkMfLwxYqXjszOO0HUVRTExA3n+3BlJmYdJvOBau90K6hm1M19V/K5ITCVZziBIqDkG8zWb7ZFUpM/FrivGxiAkTmU2eUJ9jFOBpsrE0FxBrc4LGmIQZwWzIueN+QqfWqqSU2hGHAjSJn3vuqruqyqehjjN0VRJIxRCbkZJmrNYs2Qg28lplUxmKxarAx9NkcK/tws3l6M2jbprEsQhSZZxb2tE1daZqx7vpnFZmDy3tX7IOEpZrNvUXZOlusNsxcLQVFnVUqU1u5WpqIqkra73Q260S5iawnzFxoulbakXphi6tHHPczF1TrR0ldcXpLBi34+J0pSen/DGYmUaxEz67yf///pChVGYMFe1pF5GkVzwIrn5VOz97UFbo5AoyZmtWli67J13TJmZbhbU7SyXrRiuqRVtc1Lw1dAuviikWc7D7TGZkJpgZUtWrC1Dti6+Nl+h4ZoYmsooTGiWTQwVdF0hSGT1QddURlHMtVaJNBf0vAi3aLW7LGwMAjpjGVBOWhIrtoEXZSzUHa43XQxdpePFLNZsVGQLgBelZHnO0I/xopR2RVamul5MqWgDe95gqOfFhGnGTOEclOeCNN+lZ7dLJpauYpsqlqaR5hmjSFKtVVUmfdplgzDJpwmoVtkkTDI5Di4hCBGFICwKU+enKM0wNanlYOkqM+WC0ecYJFlOkKRSNBcFU1OYrdhsjkIcU8PQpLmDbUjx1Muo9me5QIij1xl9oikFaGcY7+2yPFDOVu3poT0peuBnSzZeGJMLhR+5Wj/3dU4cK2vO0W6ek3F5teVyreliGRpbo5CrTZePN0eUTBVDU7AMhe2xtLi3dBVbV+l58aVWivq+dL9xTKkboBbttlVb52rLpe4Y0xYk2dZtT/ejPBf0PdmCUXUMZipynwiTfF8b86uE27Nl/uzvucP//R99zJdutvgTP3r1hXzOjhdNzUA+tVRjue7Q9SIcQ2Gu5jBTljo5G4PCij1OsDWNqqVj6lLTw9ZU0ix/7vWn60VsDEJMXTKNNFUpNAkVfmljjX6QUDXlumPpKkJIfSXBbmv9JLi/DBH0CZsEJLM1y6T7nlAEGwNpXHCt5fJox8NQFbaHIbahMVuxp200BxOKVqHX+azn40UarqnRKlvnqtKqqnJkLJNmOULA056PF0vNzdmqxd2ZMqNYruuDMCFMM2xdZbHu0BnHdLwIx1SpO8b074VJhl+03B98lhVLp+9LVoupqXT2GJJcFLKt1KdiS+Oavc/NMWTrXZRIzctBIC3Sl+o2630HTVWI45xhGJNmDg3XYBwm6LpKwzXJczFljLjPWXTYHIbsjCNaJYtWWSZRvCijYku3p9fmq+RCHjTzXLBcd/hocyydHeOUKE25PVPhfm9Mxda5MycTfmdtzzdUhb4fgaJw7YDjXLNkMggS+n687/nFqdyPSxZ8+WaTUZSRpIK+H/OtJ11utks0DzCLFOQcSrP9DIKT9raDyAp3S1VRmK/a+5wiJ3O762kYqtQ+1VXJeP70cp25mo2hSo2d91cHjOOUL97Y39DlFcmUoxhxuqYQxBmOIq9z4Ceo6n7GaJTKQmDPS6g6GosNm2GYcGe2zO12ifs7HmGaoapSF3W+arHSC+j58aF5YWoqAZLBp+559pP4/kUlqqST7Yg0lwnzyWHb1lUMXaGElOFoFhIoMxWLnheTZTlhnKIwcUmULmVXmyV6XoxA7NOrOw6jICFKc1plg5Wuj6Lo6KpCWLh/zpQt5quSGXV3tsJM2WJ9EKKpyr54MCxEtnMEd2YPi7+fB0LIYu8klguSlDDNCOOUdlmyhMNEFuKbrsGgaB9XFCmUfXBt3Tvn22Vp8nUZMUMuoFt0r1QsfdqivliXDH8vkueummsUjnsqYZJxZ6YsJQp09cj1bKUrTYrmKhYzJ+h3nQWmprI99pkp1Shb+jT23NsWaJ1yRjb0gvmvKMcmftJir73ocx2Fct1LM8l2rlgGjbJJJnKiNGemLNn9XT8uOpA0lpvu9Ax6FCbuwFVbalm/inHiQfyuSEylmeBpR7pOpLngRrvMe6t9/u73VrnScLg1VyFOc9mjmeXTRapdNqWArpAuLAM/5sG2x1o/kPS4XAapi00bFIX7myPyXB5cl/YwBA72e0sByZSSqeHF2TQruxddL+bxjkcmBLfaJe7Olfloa0TFlHpBK72QMMn41JUa71ytkz4WvL825oerI3729VlKjkHJlAGAF6Xomhyk7bJF3TH49tMecZDw7mqfqmPSLlt8amnXHjdOcwRH27efF1Ga8WDLI0ozojSnZOrsjGPqrokfpzzr+cyUZV/07dkyfT9mWZGuRCtPPYJiod0YhCRpzoPNEa6usjEMudEqY+kyWREm+bSaOVnwpRB8maod0R1LG+lRmMjqla7SKhs0XIvbs9KG+dH2mHdXB4yChLmqzQ9XB9LVoOVyd65SLFgKz7oBgyBhHKa8sVjladcniKW4/KQCsdL1i2qO1DS7PVsuKhQXm1Z5Lnh3dcCjHZ9m2ZhqWKiqwp3ZMn6cMQxlC4qlC8qWzo9cqdH1Unp+yLN+wG897FJzdcI4R+SCMBM863g0y5Lue7VZwjG1aTB0EWwMQn77UQ9NU1gWDgs1GVTPVCxqjmSx9cNEBhGKPJxOrMofbnt8uDHkwbYmXU68iNWeT2ecEGcZV1ouy3WX2Yp01XRMyRDp+/Ehdkia5fT8hJKlTRNIQZxJYeEgYWcUcWeuwnef9vCjlLmazWvzVbZGIbNVS4pohxEfb44ZFsL5FVvn6/d22B7FRElGq2xRtWVv9dWme6wDUy4kW3HvoWiCgZ+Q5nmhnyYHcKfQxRkGiXSqDBPpHqWphdaKFHD+katN+n7Es750rdNUnzszJb630udpxydKZEW5WTKou7IVzYvS56bx7tXmu9Y6bMt7oy1blk19V+Pg0DPJpT4DQvDrH26xPY74iddmKM9UeLTjMQ5TGiWDR50RHU+2QXywMTz3te6MI9b6Afc25fUebL+bqch32PNjun6Egkrd0fn0co1RmFB3LZ71Avwk47cf9bANla4XkaQykfaTr81i6DKxbqjKIcbXWTEME367cEVabjjM7nEVvdEusTkMZYIyyRhFKZ9ZrqNrCu2yTdcLeW99yAcb0HIt1vo+QkgnzFGYsVBz+MyVOs2yiRA81/y+bPzZn7rNt550+XP/zbs0XIPf9/bCpX+Gqak0SxYzZZu3l2pUHINf/uEaUQprvZBrrRJb45Bn3YD72yNQBBoqpqaSCkGeCX7rYZd3lmrM1mxKhVC5yGUh5azYHIb8YEUeQK80bO7MVSlbOmGS8eHGUB4UVBXT1EDAD54N+O6THj96s8VczSYobL5//eMt8hw+f73JYt0pWN9HB5Rhkh37vvt+zAfrIxxDoV2x+drtFoMg4Vk/4B9/KD/jjYUK19tlvnizyT+71+Hr9zvojzr8+N3ZaaJX6veklEx9eh1116A71nBMnX92f4elukvF0alYRpHskGN7ou90VHFs4ky393pXugFRKg/H8zWHTAiuNVy2xxF9P+FZz0NkCpap8lHH49H2mIZrTl3IQGppZYWIe57LgP9q08UrdOySXFraq0iJgY4Xo6mSTX+SgcxJSLOcbz/tMgqkwPFc1d7HWt1NUOoEiaAzjmiWTOquxZuLFX77YYzIBeMw493VAUt1h76f4JgqTzoewyBlaxgximLa5ec7qO2MI/Jcsuiku7E2LfaBZHgt1W0+2hhRtnTeWKyy1HT4aH3I1+93UFX4wcoQgdRtLVs6M1WbjzdG5AiuN6WRR+mYWOjd9QE7Y1nUE2L/uDY0Veq8GjqrvYCypZMLwUcbQzb6Prdnq9Rdi6WGjh+nfH+lz0pH7qVfvtFiYyiLo+2KhYJMgikKLNakSHUQpTzaGRMkOe9cqZ/qvtsZR1OXxwkbam/77c2ZElHq8mBbuksv1JxpPDJfCIxvDgPWRyEDL6Jdkkx9XZMsuom7n2OqjMJUFnOrUvvwh0+6rA9jvnq3RZrL9lmQelKTPbnpmtzPpWC6bejcbFe4NSPNHr71tE+U5uR5hh9lfH+lRxjnlGwNECRJymKzRNU2yHKBY6gkubYvATeJ7zeHIYamcHumxGz1cg+4T3s+762NMDQF19zVbtM1lbuzFfpBPE3ASRdKOb6e9QK6XsRqP2BzGOIYGmGWEyW5ZGKnOW8t1bjWkq2waZGQzHLBwE/IhEw6fvtJjzDOmK9ZjMMcVRF4SUac5NyacZmvutydK+PF0nQpzqTDZ8PdXxDq+wmPOp40lhDw5uLRTL6zIEwzVnsBD7ZHpJlkNQ68kAdbHjfbJUqmTpRIdqGuqby1WCXNcholWUzfHAaMwnQq97I9ihACHu2M2R4ZGLrCrZnyc8eKXpTy936wzmxV6nANA1ks+95Kl95YinHnIme+anN3vsqjnTHdfoSp2SwU6/vBpEqa5awNAtb7IU+7Hj/1+txzsZmDJKPvpTzueNzfHIEimYwLNZtvPNjBjzK+dqfNbM3BMQ7rpAK8uVil7kgH2KPWtb1al7dnz/9ckyznV364zmovwNRVrrVcbrZL3J5x+XB9iF+40n7+WpNbsyWCOJueV9NMFrrrrnGom6MzjhmFKfc2xwyCmNuzlU9MK+qi+F2RmALIRc7jHQ9NVdkchPyd76zytOvz9Tzn08t1HENjoe4gCivWdllOopmKxcYg4nsrfR52xogcHENnHCfoikoOfLA2ZrZsT52lkhPsPgEed6RGSZRlWMc4+Q2DhJWeT89L2OgHLDUdNEVhHOV4kawG+nHOWi/gVrtEz4t4d7VPJgRbw5DPXmsgcsG1domoSNjcmSujKQrfeNjh0daYTiGKlgupHTBTtrjeLuFFKY+KHv6jDp3nhR9J+qamSPNtRZGsoTBJ+c2HnaItyucnX59hGKT88NmAJ10fL0qIYsHaQDrTXG05/ObDLve3R3zrSY8v3GyRZTnlok9/pmyhqfsneyYETzse9zbH04BAIOh6Mat9SXNslkxem6vw24+7/MaDHXRFYaXhMleTjJRRmKIpgu2hFIy82nLZGkm3IE2Fu3llSg2eiLZPPhtkckwU9srPk+iLsxyKAD6IswP6IPBwxyMt9BX8KOVxx6fq6ri6zuNOwOYoRFdg8CzB0nW++bhDGGfs+DFvzFclQwcpPHjQHek8GIXJVEi4ZO13Rdoexaz1A2xD48H2mJVOMBX/nbRK6KpCkubEufz6wx0PIRQqtsbr8zWSZanB0XAtFEUmUVcKe/e9yalnPbnxKgq8XlDUVVVWzjrjmLiwLf7h2oA0E7yxUCHNpLjl+iCgWTZZ74c86ciAcqXrUXcsKpbO066PAP7Z/W3SPEdXVVnBVGW156BAY5TKlrBxmO7rPx+GyTSYzAXT1lFdVVgfhERJxtYoZLXvE6eCumNiFRtaZxxjagmjOGW16zMIMx53PN5fH1B3TJ52fdIsxy+CoGbhWCLZdOlz9cFLho7874l19V7omnrq339aJG4f7Yz4G7/1lCgRrPQC/tzPvzltuR6FKffWRzzY9hEIfvkHa+e+1kZJ6i5VbWPf/JxACCEddIKYH6wO0DVZDW5XTGq2wZOOxyiMma1IzZS+H7M2CDBUlfmaw40ZF1OTbmSTZOVFIAWXJXtLgX2V1s1hyEpXBiTfX+nLoBlByZAHiKfdEFWFMM6I0gFlS+d/eH+Lfihb1260yjimynzo7LOmfhWgqQr/+b/4I/zpv/Lb/Kv/7+/wr/7kbf7sT92+1OBopmwTJvm07QwKd6M859HOmHtbI2YqJqCw1g8ZBglJlhGlGRvDCENVudJ0MTQYhCkPt8cYuoKpabx+QBD4JAyLqv2zro+uwBsLNRTgu0+6fG+lz5OOT80xGamw1ovYGAbUXOmG9c6VOnNVm4fbI/7JvR1GQcpq3+fmTJmrrRK3Z8uHgs58T/LlKNzfHk8Zha/PV5ip2GQiYWec0BmHmLpGtWew1HBx0QjTjPfW+gzDlIc7Hv/Cj17DMjQ+WBtQcQxmKzY32iVW+wHPugGPu2PSPGfgyaRJkGZ87lqDIHF4bb7CMEx4suOjKPIAf1oL9GSf1VWVHMkQTzPBs37Au2sDRC744TO5nidphlVUimuugaaqlC2D9UFIlgtutHbbxeX6Llkiq/2ApZrN1ihmvmbzpOvTKlk86Xos1pwT26ZOQpjmOLrOiAwh9lfgR2FC14sZBikbg5CVnkffT1CQboPfetLl/pZ0Jq070kXvB6sDHF2jF8TyXpCHwI4X03SjC13jBA1XiidP9u5xlO07HMZpzkov4OuFvulqP+D1xSqPOh6rvQCR54yTDIQUJH/c8QiSjFbFwlQVNgchzbLF3DFJn7hwZZamDocPgVNGriKNAb6/0udbj7t0/YRhmDFbkwzIG+0SiiIPdV6U8e2VLu89G0lWqWtwtekSpzlXmyU+2BjKBMsoYL0XkuZSU+jn3po78Vntjekm73S8p91wHKVoijp107SKdW1jEHJ/a0TZ1knSnN962GFzELHjJbQrFq8vVKfW7Vku+N7TPpqqsjEI+ek3Zvl//ZMH/N3vr5NnkkW3tyKyd76rqsLVpjt9n5qqsDUM+WB9QD9IZbusgIpj8OH6gOWay5OeT7Nk0fUSbocZ15oOj3Z81gchrqmxOQyZrcjkalaw7r/xcIetYcRr8xX+uU8vcLV5eTo7aSE4nmQ5jrk/xg+SlPtbYxxD5wcrfYZBSpCmzJRsmcDoh9NEth9lKAr89+9tMghiGq7JMMpQFYUkF9i6iqbKVsYfrvZRUPh4a8hvPuiwMQjRNZkQkOw8DaEoLNccKnbKP72/g6aouJbK9VaZMMl4Y6FC1dmNSUuWRpxI46H8ohWsPRiGCRv9kEzkvL824BsPOghFoTMK+dTVBu+tjWiVDd5bG7BQs1mqu3z+epOSlfPbj3okmWBnHPHOcgPbkK24U8Z6KqbaZM+DIMm4tzlitedRc0yedH3myhYbwwDL0BkFCTmwOYwpmSrfeNgrXEk1bs6UudKUov2zVWsaZ+qaila0J5ZN40RTg7PAi1JWe8GUvOBYMkZe6XT42996RpzmPNga8se+cB3HVI9s+bV0jRszx7sbTtpI0+xiz9WLpN71/a0xti7PT/ebDqDw8caQlW5A1TVoly1+9u05/DDjac/HNaR5k2vqhfuni6oo06JIwzXZGASULB0hJAPz/5+Y+gRg6lI74ElH9pL7cUqYZVJnSuTESY5tyqRBlObScatY2BdqDpvDiGddH5FLl5i5ms1y0yFIsmmCQC3ca/z4dLvFyWaTpvmxialWWYqWWbqKpikYqmQ7JWnOlabDKEwI4ozFmnQxa1ek85WuyZafjUFIxZIVpXbZQgjZ777lRdzfHDMKU3IhuNJwWBuEOLo2rfyGSTbdVIM4e+7EVNUxqARSVP61hQo9b1dseLrxFu4VYZyxOYzwwowoFQyCmDSXAchcxUbXpF2pF2fUbJ0slwdPq3D12etaI4RgYxBSd00cU8cyNASi0ASK6fpawbiBJx2vEK7LsQ1l2hY1DlNqro6ha4SpAOQ7vzVTpufHlC1Jf56rSlpqa09bz8SOuWRpl0Jxtg2NmapFydKYr9n73suzXsDmIGQUpjTLsg1gFKYMwpi2a6KrcL3pIhByIU8zxlGCUgjOm6p0bxSC5+tVAGYLWu3d+fI+KuwwlNW/tUHATEVShbdGEWmeoQh5eLjRdgnSnLpj8P7akEwoqMh2MOmSBWVbZxwdPhyc5bItXSuc/2Rw+3jHIynaHyqWIVt2DI0b7TIbhXX6OEoxVYU8VwCBZaq8vlhhHEhdDwGy3TYHXZX/fRxOusS99tdV22CuZhElGR+sD4kSqaVwpeGQC3mYX264srKdQZTlJGlGJMS0mnizXSbNJRNU6pEI0lwGHidd41kwmdOZEBfu/Z+wy7woIxeSARYXAmhzNYu+n8g2RlVBK6xv0wvosy3VHczb7UPzc4LHHY9nPZ+eL9mGhgZr/QhdrZABtqEyU63Q9WJuzJS4vykoFeuZa2gY6q5Dz/OgWTLx44yFms2VPU6KfT9mpefzpBMwVzGJs4xBIIsTfU2l5uhcadqEqcDRVR5ue7K1N80omRpxJigXwqIySf5cl/lCULUN/tqf+VH+3f/2Pf6zX7vP3/72M37hx2/yRz+3fCl/X7og7q9Of+VWm0c7Hk+6Y7ZHEcMg5fM3GtQcnQ/WRxi6yQ+f9QGBF6d4UULJ0NEUWYFUFQjz7MwPNE5zZioWm8OQt5eqtMuyDfNJ1+fe5pitUcxs1abmGDimhioicmEjRE7ZMRiFKTUnR9PUososW7eSTM6LUZgeSuyctpxXLB3bUNELPacky6UF/UyJiqWx2HCwdWl1X3UM3lqo8NuPOiSpwCtEqNtli1Eo3WAnbOE4zdkYhgz8lIqjYZsqYZzRdKVW0+QAP9FskRo/uy66x2GmYkmXTk3lStMphLB9MiGo2QYjP5lKN4zDlLKt0ygZVGyTiqUhFDBUqREYVHOutVy8SOqXPO540rUrzREo1EsGjqkyo1rk+e7afdH5UzI1rrZc5moWi3taJjaHIVvDiH4QUzJ1qftoaGwMh5Qtgx+uDdgcBggh98CaY9Cq2GwMQpoVg1GUYGgKQSJoVkwMXaVyhAnPebBYd1gsNEx3xrLSvtct9/7WmPfX+qz1A3RN5aPNETXHpOXKYq5rqIRpxijM6AcxQSLX+DjO0G19qp91HO7OVYoWJBP3CO0s6QIlNZp0TWUYJkV8l+BaGlGaURby9758q803H3XJcsH9zTHbY6mxVHF0dFUlVeQLjYq9R0MhFTmZgFGUstoLT7zWmmtwW5cOr5MDXd2V4vkgD34zZQWKz5kkNp71fLZHMhlpGSo122DgJcRpjhfLQ2zTNUkz2SbXGYcMQ3mgzXJBx0vIc8nc2R5F0jm4VhjrHGD1LdYdqo4hE3pC0B1H1F2Trp/gGjr1kkEYZ7imQZhnLDUcKrZBz0941g1Y7fsoResYmGS5oGIZbA4jyc6xtUKnRyVO5JnqMrFQuOM6psZcdTemjNOcB9seK72Ahm0Qpjn9IGHgx4RxTtnWmSmbZAJMTRb7hAIbwwC3aGur2jI+j7PDrFKBbIucHORzITB1jbKlTddv29TYKowrypaBplnT842UFdkVK6/YBl+6JVmps2fUrz0Olq7SKmQnnnQ8DE0r1nENXdcomwaWpjD0k0JrLWNtEODFKRVbIy0yY+NIJvYArjZdTF1lte9jatql6BnqqsJ8zSaMM0pFa7xlqlRdk4Waw73NkYyhc8HXH3SIUsH6wOONhRpJnpNkOSu9CD/OmKlYU3e8Ty3XaJTkOeJ5pSkUQNUUVE1hpmaRZBQGHwECUFSFUSTHdHjBsd0uy73L0tULPVfpym2zOYyYqRhFkUYmOBuFOVPdkbJB672IJ10Pv9DnnatZuEgG6cQw4+aMZAlKF0eDlW6ArirH6jm+SvhdkZjSVKmvcr1dwo9SUCy+equFMwm4bKnbcXu2RC52NYAmv/eppRp9P0EIwWevutyaLeMY2lSF3zG0wuLxbC4oVxqudIlryw3qqMx5xTb4yq02HU/a0lcdg7vzZQZBgqmpPO369H1ZWZET0+L3vj3Hai/k1mwJFWXaPmUUCa6ypTMMZD+vqsLtmTqWofFZ4HqrRLtYKGWLnUxOXYbgnKYq+9gTSSareQoKn1qs0Q8SFmqSrdbzY5l8cnWuNKpYmnTXsA2dW3MV/uSXTf7R+xuYurTvfWuxSli0Bx7uwZeBXNUx+NRylXbZ4tZMGU2V9q2fXqqx1g+l1tE4QlEU3lyocqPtsthwZWJQ07jSkq454ygtBDLLlIpn6VratKf9YELS1NVDFqPPi6VjRKTjLMPUVbw45Ypp054vExX9zAs1qdtTtQ0Z8AiKwEdwb1NuSF+7M0OjZE7br55H2LnmGEduFEkqGQtpLsU631yoMgxTgsLp6GqzJFtoFKlZcqXpkGWC7XGVrWHEm4sV3lqqAzLIH0eylc/QVZYaziGtn+WGQ9eXwf4kMTiOUtmuoSjMVx2STFC1dearNm8v1yibOpujqKhmCIZhymtzVZZqNp1Cc+GdK3XqjsHaIChaKaXekK7KZMBRjBlLV5mrWoeusWob8j7z3QRPmuXc2xqjoTBXdVBR2CpHGCp8+kqDVllqB0VpTtnWGAQJV5slZkoWG6NwqqX0xkKFp70Ax5DXZhvatE2z8Zyi2Afn9EWw1HDojmO+dKtFEKesD0L+0GeXUBSpjzVbVNN/7M4M//T+DmGS8/vfWeSHF/is44wMhmHCh+vServpmryxUCncFXUMTePWbAlNqdMZR3zhepOZssWDrRFrvYBBlLHcdLjWKkNRlRe54KLqyLahcXv2cMUtTnPyXBpwRFnOZ680eFcdkmQZSSa41iqha4qswqkqd+crqMBnl2s87gTM1WzeWa5TdnRqhdnEJyXcfh6ULJ2/8Mfe4Y/8yBL/yX9/j3/v77/PwL9csfu9qBZz+TtPumwPI6quzueu1skEvLVYw48z3l6o8r1nA+I05Z3lBj92p02QZpQdjSQVtMomNef0uTRptarYOl+82ZpqTFVsg7V+yK25CmGWc6Xu0CxbmLqK305pOCYCiJOMVMCtuRJvLpZRFIU4yWQrnQJVRz+yxUxTFW60S8e+7+vtknQbFoIsl3/HNorChyULABuDoGAUpiw3S/yhzyzxzcc9mq7OzZkScSattG1DnbbJLjUc1gYBmgquqVGyDMq2hqaoUkukKF60SuaU0V0/Q0B8cI5UbKkbmmQ5yw2bvp+CBt9+0qNsS93EL99q8tkrDQxdCmF3vYiyLUWSJ+8A5N7aGUsWhaYpU5e2LJcM64WaPY3FLgK5px3WuIuLBH3dMWmXpaj1hxtD2fpo65QtjR+73WalG3BnrkKzbPFwe8zbixUMXeOthRrjMKPqGrwxX+FJ18PWNf7jC13lfjRL5qEYMBOCZz0fXZMOUK2yxfWWvNbZmkXZMQqtT4UoEXhxzNogLOaLjMFcS7aqHtfKd9Tn7oWqKvT8BK9wR319vibZyJ40h5gp29RdYxoTXm26heGPRatkEiQ5X7ndxDZ0WfwtDHNUZcCVpsOP3mzyaNvDNtVjTY324qCRiHFASB+kpMTu96Wjl6EruKbG64sVBn6ErqosNiyWizhPLQ71IOfKxjBkpmzhmDp/6J1Fel5EnMPve3uefwbTPfMo6KoyTUA0SjKBuVB1WGo6tMsW97ZGLNQdSqZOqyyZu0Gcoigqm8OQekmek5bqjmz/E1CxZevuZ6400VWNDzeGXG26JzJHLoKSpXNn7jBLJcsFXpiRZjnjOOXLN5p8d6XP0NXRVJUbrRKWrtIp4kCALMt4slBltRdwa7bEV2+1SXLpZh0WCVRDV3l9oYoCvDZfpuWafG+lT901uDtXAkVFVVRURa6xmwURwDY0Pn+9wQ+eDUhzydJLDxzw5qo2c8+piQSS8fv6QpWuF3O15XKjLdsXwzTj596ew49yLENF1+R5Z9KqNwwSlhsOX77ZouvF0+4GgCiTRIvLNAEoWzq/9605KpbOx5seV1sODcfEizPiLOenXp/hO0/66KpkQvWDFCFyZis2t2fKNMsm+kjGVJO1EmSR+dYljTPH1JgtW9wopEKMggX5ldtt7m2MGAQJP/XGnDzbXLCV2zGPju/OipKl86Wbbd5ZbjAKZCdIJnIMVSVYrPG5a00A3lqooKgqFUujM44QwJdnmriGPP9N2o4npBCQz/J5ru2Txu+KxNQEE00eIQRL9RIly6BVkgKyVduYOid4UUqai+nhuu6a/IFPLRzSUNA1qf1xXpSsw0mUoyCrvPsnwWxFk6KPKNPDpW1ohZi4wZdutnANeY0TAbe9WKjZ2LdaZJl0ezmKyaOpRwdQl4W5qj2tLrXLFosN+fVhmBTJoRqmLg++uqoy8GNMXaVsG1xpuHzmamOf+OtJjRS3ZsqH3hvsJtzaFZtxJN3KvnanTdU2eGOxSpRmbA0jbs6UqNgGpq4eEpz9JO0xT8Nyw2VnFHOzXcLSda63StyaqZDlOUkm2wgnekx7RT2/cnvmSErpi3D4aZZMep6sFDVLUtD7596ax49ln3mWC6qO/Nwk2xUjP04wsFRUhXVVOTKI1TX1UKDmFxT7im1QdnRet6vcmCkxt0d0ezL256qyOuMaGqYxeXa7QWjtyOTO0ZuWqihTJtlBHNTGClPZnqJrUuPmM1cb7IylOOFkPdgbCNcdE0WhoOJKFkW5MGB4c+Hw9bwoV6/zYrIeA1z5ihQCPqp3/1PLdf7Mj91EQeHz15uXeg1eJBmufT/hWtvhervM6wvVqTNau2LJ1tI943HiMPiiBV8naBdCqvNVm2bZxDY0fu7tecZROr2Gqm0ULSu713nc9Vn6i5nfl4Wv3GrzlVtt3l0dMFu1+Bsv8LPyXPCZKw2uNF0aJZOF+v5971PLdb50q0U/SLANjUbJogEs1s63P05a0MaFvtve/fVK08E1Ne7OV6bJmTCRgtwTlkqS5Wh71sA/8PbCmcfeSfGGpWtHFjsmFX7H1NkchgghndWutlxuzVZYajg0S9Z0zbnR3i8ebRsaX7jeJIhTVEUejI40SdBka/zzYG/CuV2Gm+0Sv+e1Wb5+b5uGazFbtbm2JymQZqVj9pOjn9OkwPeiMF+T8ZCly0TPaj/garPEcsPF0lQW6jZVx9g3tw/GnUkm24MURZE28C8Qli6ZFKqicO1Nl08t1cmEQEHuq7dnxL5rneAyBfuFEHh73FHfWKgyV10kzwWaph76jOWGQ901uNpyGAbSHOKo4tnkcAfwzpWGXGNfAMVUURRem69wo12aMpq/dKvNUqOEqamYR0g+WIbGtdbue3/naoP/cL7K5jDkLI90r5tho2Ry64DOzeeuNSU7vChOAtM4+FrbxdY1ao7sDhHi8Dt+e6l2rPvhi4JjalQcnVZi0XRNLEPn595eYBylJIVucM0xyHNBJnbXqM8LaXhzMPadzH9dVfa5d/6eN2y+dndmum7svf8gzgpNTUW24sepNFzwYlz7clhHJ2F6lilZfHq5Pl1ns0yyx6T5jcqjHY8wzlAU2a41V7OZK5hoE5Otduny1zlTV6dr0kzFPnLtvdYqT7W9Vno+fa+CVRRSF2pO4TSfnZh4fR60yxb/yo/fZLmxm5QCqQ/9i7/n9pHr2ScNXVV4a7FWdD4cHrtxmk+vcRQmNEo6jZKFqankuUKjZFJ1JPtPU5+fZfYyoTxve8KrgHa7La5fv/6yL+MQJlR8BGyurfBJX2Oc5WSZQFGUqS3zSXj8+PEnfo0HkeWSao8Ctq4dSU54UdcZJrlcxDUF8zkPo6/CszwOk/t8GWPyrEgKy1tFgY3Vl3+dAnmYpKi2HRRrfFXe9+Td6ppyaGN7WdeY5kLq8p0wp/fiVXmWB/Gy1/Oz4uD8nuj07G1FeZXwqr7vvXiVr/Flr+d792xL1049RL+oZ3nedeYkvKrvO05zslzGdBurT1/Ja4RXb//ei6PG66v4vqf7DZKR/fTJkxd+jVIoXSYyLnpQfxWfJezfv9eePWXxylUsXd3nPvgq4eBzFIVL5nEx6MvCg4ePWFy+emTM+argpDE5GfNqIXvysvA74TkCfPvb3xZCiBd6ga9uWfUcuH79Ot/61rcu9Lt54XQRJCkzZZtW+XRr0bOi60lrcIA//Yd/+sLXeF4Mw4SNQcjWMMQxdNI850euNU4d7J///Oc/sWsE6QzT9SS1flKxlKKqPoamcmu2fGTW96zXGac5T7s+qiKp3gB+klE+wK4CWZH8cH0EcKz43XnwST/LvdgchgwCqd8jLWWzKcMmzXI+KO7zkxyTBxEmmWwXKESHg0SKr04Ozg+3x9OK6Yu+zskaEKVSi6RVsg6NDy/a7d2uOcYhFsAn8b43BiHDMMExNOaq9qHA8bQx/LLG5ErX44O1EcMw4Su32iw2jm5XneBlXKcQgme9gKAQtncMDa9gYk6q8y9rPd+LJMunYvpXGlJTLsl2dceOmt/ffdLl/o5H3Tb42t2ZVy45dZb3vdL1+au/8ZjFusOf+vK1F85iO4hPckweXBsnDrpHCYe/rPV8HKWs9QMcQ4qP74xj0iynXbEKjb/jY6jnfZZJlu/b0yZz93HHw9RVXEPnWtud6mFdBJ/0GrRdaNg0S7LdbxylWLp2aI2/tzmaaqC8zP0bYH0gzUdmKxaOqe1bhz7J/fusyHLBhxtDOqMI19KnepSNkvlS47Xj8GRnzLee9nANnc9ebfDzP/1jL/QahRC8tzYsXN4U3jhg+pDnOR9vjsmFmLrcHYWX9Sz9WApcW7rGlaY0MdD2xJR79+//6R/4Sf7mL/1j5moWsxWbuHD8MzWVZ335M1eb7ktNEBx8jsMw4f7mmCTLWWo4LDfcQ/d8WWfX8+CtT3+Wv/nL/5iSpe1rbw0T2eZo6eq+mOVlMJOOG5N5Lvjv3l0nSnOuNN1LZ+yfB5PnuDd29yIpg9LzpUnXXMW+cKvhZUFRlO+86M/4XZGYeh6MwpS+n/C067E2CHl9vnqszs95UXeMl2LbvT2KiJKiMjAMqDtSLLt9QTepF4XNYUiey39PElNZLhgECYYmdX2eB30/noqv9vyYjheTpLKdbC9lGqRmwELdngZav1OR54KtodT4Wh8GKEMp5Ft3Da40XXRNZbFuMwxfrgZNx4sJ4hzIebwzxo9ldfX2bBnb0ApTAukQ86IxClOGgXTPcyyNW+3yIX2lkqUzU7Ek3bj6yY+PLJd2sDvjCC9KuTFT4u5cZV/gZGhS82wcvVpjuGxJvS4hpEvYaYmpl4Egyej7sjd/eyR1//wowzbUqfbFy1rP96LvJ/jFgW9rGNIPEoSQbamzVfvQ/M5zwdogpDeOUYXySgqjn4aNQcgf+S9+g64XkQv4ztMef/FPfPZcQbgQgn/w3gbvrg75wo0mP36n/VKC+LNg79q4MQjoFpoRV5vuoaD0Za3nkxgjSnKuthzKic6TrjdN6L8oqYA8F9zfGu/b0yZzt2Tq0hmuYVJ5hVtZj8KknXJzKB3Gel6Cpsp2MK1oLZLiuA7bo+hMukgvEmmWszOSujXPisO+EDBblU5un+T+fVY86Xh8vCETK3Oa1HZ6Vdtd8lzwcEe6dkem+ETYMYqisFR36AfJkdIJD7Y9PlgfoamyfesydYouA51xTJjkMnHbFQwKnZ5bM2UcU9u3f2uqQt2VUi9ZLri3NSLPpbu7qsiYqu8nL7TF97ywNHVqKDWRG9gZ7d5zIzKe28jqIjB0lXKh4zpBmGTc3xpPk5wTU5t+EL+wdr2LYG0QFFp2KcsvOS6dPMdJ7N4ZR6z1w6lci21obI3Cl56Y+iTwO2v3PgFCCB7teFPXo7NaejumpHznAlxD3ye+9rxQn0PLqTOOptat0hL37BtT1Tbwo4yyrVMpek6jS7yvy0LVNuj7yb7K5no/KAQvFbLnPEWVbZ2tUYSiyF7izWHE5jDkSSfD0rVDwuXtsvXKJe/OC1VVpKtdKNkegyBhrR/wrCdFaltla/rPy0TF1ul5sexHV1QGQcjOOEYIwdtLNRxTmyaHwsK57ka79ELYHo6poWkKaSGQGWdHz5WThO6jNOeHzwYs1O0XMoakoL/G+iDHtTQplp0JDj6O40TAXyaqjsFMUZU8qloWpzkPd8bS4v05BdcvCqtwLY2SnKqt83DHKyqRUuRWU5XnWs8vC1KMXx4CLUPFH6SsDUI6nnRhMnV13/yeuKFGaU6QphivCP3/PPjzv/IB4yjhV/7NH+cffbDJX/gHH/Ezb8zxhz+7dKbfT7KcP/s3vsM/eG9TfuHX4H/2Yzf4cz//5gu86osjiGRQX3eNfXM5yjKO0ri76Ho+cVE1dZWb7dK5WGjVYo+xDJWyZeAY+lSA/bj18zKQCzE95Exc1iZzF6Qj2kX3trV+QGcc0yx/8tqSVVsWD2uOMY1Bs1xqsozCpDBs0LjZLr20NXIvNFXBtTT8SNq+e1HGIIjZHIZ4Myk32qXnNs+4KPw45dGOh6Yq3GyXp3uOqkhnWEVIw4Cl+stdy09CXjjUGZrCOEzoXaJJhBCCxx2fcZgyX7P3rTGNknmstqqiKBiaUjDjXr3DccWW8a6uKSgKdL2oSOoL3l6q79u/TX1XB3BjEHJvc4xlqFxtONKlTXl1tDonyAXkSO21jWHI1aZL1ZH3bOgKzktiQuuFAUdnHPFge4xrSi29yfFNukRLs62X9UyTTMbnk2LGBKqiULH1ovD8chNmk+e4OQx5uO0RpfKcqqoKZnH+/53gqHcZeLVm3nMgSvMpdbgfJLTKFl6UYurqiXRMU1f51FKNxbpDmGSf6KHOj1N0VT3ysNbzZSXcizKiND/XgXymYtFwDTRVYXsUEWc5c6/YYRVkVXWhlu8LiA1NuqSYuoapqXiFHeZF4Jo6bxZ0ZFVVWG44rA9C5qo2XS+WFqdJNhUm/d2CG+0SaSaf6/ogYL0fUrY0ul780hNSE1RtgzcKV5RMCOmAZ+rEqTg03oXYtUu/SGIqyXLiND92HJm6yhvzVRZqDl6U0rrAwSQvhF/7fnyhxFSeC4Ikwza0Y8Vjb86UmatadD0peHnQKehVhaYq/NidFt1xzMwRAvHjKGUcSoH8QZC8hCuU13hntkyWS8Hp7VGErigyyR+nL6USeRQcU+ON+d01bWMQYqgKrqEV+93+sTth0QkBFUsmXfWXLPJ5HjzcHvPffn+NX/yJW7w2X+HObJlfeXedv/APPuL3f2r+TOv2f/BLH/AP3tvkf/8HXudPffk6/9GvfMh/9fVHvD5f4Y99/soncBfHI8sFYSIP91Mh9DwvilEwWzERSFOGiwrXBnGGqh7e4wZFjBElOX6SUT1HYqpVtqg5MsaYmBosNxzGhdnAi4KuqdPPmayzB+fuWTF59o4hg/+Jc1XPe3FOkcfhasud7tlhkrE9igrrdZXVvnxPoyCh60e0yy+fcaAoCjfbpX3r5SBIKFkaPS9hsX6+mPUsiNOcNM+PbGndi0GQSPZLLt1Jm8WauNxw0RTpYrZwSV0R50GS5STZ6dcPcpy/Pl8hiDNKpnZhC/sj15dMMC4Yln0/PvN8XW44WLqCpWvHGr28TNRdk4ptoCryvh9teziGdFfNCt2so+DHKWVLJ8sFyw13utcflHN4mZgk4c3ifDQpMO2955fJAM5zwVo/JC9MCxbrKnM1izjNmavaaMW1vaxnmuaCIM7IcrEvMTVXtfnctQaC4x3RP2msDwLyHHRVpe4YmIbKbMU69/72Oxm/a+7S0tVpoNQqmTzteny0MeLe5pj0lAqeWriyXGm6aIpCdxxNrRajNJu6jVwmtkcRD7Y8Pt4cHcnSapfNqbK+VTjGhUl25r+vayqKIu+r7hr4ScZeofu02CRfFM763JJM0PPi6bXN1yRr6Wa7xL2tMQ+3PdaKnu+TEKc5gyDhoJi/qu46RDimxuvzFVxLo+4abAyC6Rjx41fPXv0gwiSbJkD2QjqI5Pv+308yojSjVTIxNIWOHxOcY/xcFMkJ4yrJ8n3vJ8lyvDhFUxQWajZektL1YuJ0/3VOxPsvQruPkoz31wY83PZYHxw9joSQ7mbNksmVpotr6gRxRs+Lzzz3NVUp1p6LHco+3hpxf2vMw+3xsT8zCWqvNF3aZYsozeh4EUn6Yt5rXlTsLwM1x+TGTPnIipkQgsc7Hu+vD6YBzGXjuLmT52K6P0wO2D0/JkwzcgR+kmJ/AknrOD37vBHAKEpJ0qzYG3K6fnykwYUQgsWazTiK2fYCNofhi7qFF4K//e1nqIrCn/7qdUCu5//bn3ud1X7A3/3u2qm///7akL/2jcf8yS9d43/+47ewDY0/9/Nv8qPXm/z5X/nwE0uEhgf2X5Dv5n6xx03aoUAydxUFDE0hSDLmKjaLdedCQX3Xi7m/Nebe5vhQ/NAsmeiaZL6U9hyWs1xMD0InYRJjTO6lbOvM1+ypmOwEUnz/7LFGmuVHztUJGsU6rSgyudYv2CTnDdofbstn/6TQP5mpWGgH3LouC0fFQ+mBeR1nOV6UYukqMxVr2k7VLJnkQrDjydaOrU9gDucnxJuTNTPJBF4sx3XF1rnStNkaRXT9+Fzv+yyI0oyPN0c82PLYHkUn/uxE98wx5SE+iDPGUYquqVxpuSzUHdI0/0RjviTLp9d/3Bo8iWEnY7/umrw+X8HQFJwLFhOmY7zjT79m6ir1onDdLkt5gtP2+TwXRElGydQ/8aTUSevRwbVCCMEwTMkFlGydKMsYRgknrZxxKuNQRRGoitxb9+K4fTlKs0sf50chTDLubY65vzVmpmzSLlssFOx9P0qnbucnYVKcfVF4uDNmFCZsjaLpmXWm6EBRFYXRAffLg8/0rHvORZHngnfX+gyDaN940VSFpYbLcsO9lMTeaXvXaeh6UktqtRdQdXSutFxmyhZhnJFkcn04ba7G6fn221cRx6buFUX5O8DfAf4bIcTxp6VXBIqiTAWJgzjjg/UuQZzJQKnYYE8LXNIs59fvbTEKMpYbDtfbJTYGIbomK3In/f44SveJN5+GyaYvhAxIDrKm6q45tZn3opQPN4aYmka7bBb2w8q0wnYS7m2O+GB9RNnReWO+ymLdwY93hZyvt0uXTq/cGUes9+Vzu33AsnYvRmHCr324hRelvLVY49NX6gRJjqZK+nKc5qiKcmpCbqI7keXiSGHqvdekKnIx+nhjRM+PC20phyjJsXRpiXzcASBKJXvteURVL4rVfkB3LA+ft2fL+w4ED7Y9el5Mo2Rws11mtR/Q9xPCNEURcqNdrDkvXHTwpHG1PghY68kx8enlGn6U8qjjk+UCL0pJMvlc22WLONu/8O7V+TkPkkIY+NGOT7tiUj5ClyNOcx5ujwgTwXLToV22GEcp33vaZ3sUsVi3+ZFrDXRVbq6Wrh7J0jB1lTcXL2bj/azn8/HGGF0rBK0LPZEJ8lywMQzZGkaULI3bs2WSTPC9p33W+iGNksGXbrawDQ0/lpbRF2UZThAmGQ+2pUbAtZb73IyhLBfHVvW2RxHfW+kTpTkzL0C/a9KiYxkqd/bMnSTLub81Jk5zGQQ0XJ71Ar6/0mdrFHJ3rkzNtch5scJMk5Yq2NXDmGBrGPKk42MZirRtz2UbRhBn7IxDojTH0nUW6w4cEX6vdAO+8WCbbzzs0HQtSqbJctPFjzMq1mETiFcJWS74r7+7yk/cndmnS/Hjd9q8Pl/hv/z6Q/7Y55ePDSiFEPy7f+89ao7Bv/17X5t+XVMV/o9/8E1+/i9+nb/6G4/5N376zgu9j5WuT9+XLMfbs1IcNslyhmFCmGSoilJYvct575oa6/2A9WHIB+sj3l6qcWe2fKF3tTfOOMhELVn6VOA4yXLGQYqtqzzY9shyMdUtm9h8nxRrPNzx8MKUQZBQd+Vae6NdYhQm00PxwbF9FAa+1Po7KXYQQrAxCPneSp+PNofcaJf5zJX6VDcyy0/exyd/YyJvMHlGc1WbuRdw6J7EHpqqcGdO3tP2KGJjEGIZKrdnynhxyoNtjzTLidOMim1O205qjsH1lkzEKSgXZs+cFXkuuFesixPNqAniNOf99QFelGKokrXrxymuqeNHCddbJVRFObSHH4UwyYizs8VTSSYt1EEUCaWj94nduSY1kMZRyqMiJpkInftRyq99vEWSCj61VOXWc2olxWlOmMr1dO9aNJk3MlYX5PnufR9EngsebEvttEkMuzkMebA95v21IXO18+2LozBB2TvGDxz6J6yRrWHIs80AQ1e4M1uZsopksU6ulVGa8cOVAb/1qEujZPC5aw1em79YrHNepFnOvUJT7mDb4SBIeNrxCJO8KDjrPNj28KKU7XFInOS0SxZVx5At7cekpwxdZb5q86wf8I8+2GK54dKuWFxtutzbHOFFGa2yua81dSKkrqlynXqRsXWU5ggBAkHPTylbBmGSMwpi/ruiPf2txSpvLtaO/P29cfllxHJHIUxyKrZB1TGmIuz3t8Z4UcrGICgMEnReX6jypOMxDNLp+nbSO74sjKOU99eHDMOUL9+eOTQWznKWPg09L+ZZT86lWzPHn3tPQphk1B2pkdgqWwgh+HhzxLurA7pezFtLNRZq9j6R+b2Qc8Lfp9f7OxEnnV6+COTA/0NRlH8E/H+AXxJCfPI853PCj1Oqts72KKQzhl/9KERTVb50s0nzBEZDkGSEsVzIB0HCKIyJswzQZAvEMQNtEnjsFdo7DXNVe6oTsvcAn2Q5ekGPB5kM+WB9yEo3IIhTcuCd5RolSy+0mIxjdU/yXDAKM3IhM+uTjLkfZ9P+Xz9KLyUxleWSdWJo6lScNy0ow36S4Rraod71UZjQHcc87vqsD0Jqjo4fSabPk25IzTGmmjkHD+v77lPsMjuO07eYiB4GSUqSyYVU11RGYYo+CimZGqv9AFVRuDkjN6CdcUTFNqg5hmTerA/RVZV2xWSh9mJon3kuA7CDG50fpcRZxuYoLLRHZLCY5oLuOGa1H7DS89kexQzDhGbJ4GknmL4TXVNYqDknUprPgzjNMTRl3zvx44xcCLpejAK8sVCdHg4645iVnl8ckOT4G4UppqZwb2tMq2LRdAzqrn4u4dqD82UvolQmOVtlkyBOi8NINk0sdb2Y+5sjvv9sQNM1SfOcpit/diKaHyYyGbkTJuyMYhQFXpuvnGvTyXKBEMcf7Pw4Y65q0fFiVFWh5++KjwZxxsOdMe+tDhBC6oddbbqEyW7FN0klTTnJch7vFO4nTWea2L4IgjibBtLj6Pla2SaJF02VG7apqwghiLMcS9cI45SH22NyAfc3Rxf6jL1/7yD8OCUTgtWeT8nSptoifpyRpDnffdonzXPeWKhStXVZbTV1nvUCVFUlTHIMVSU/4R2eFUkmk+1752BQrMddP0JV4LX56vT7m6NoyqaJU4Gla+yMIxquwUebY5quZETOVS107fAc2BqHfPNRjwdbY7JWjqnDg+0xSSpZDi9LB+Ys+MGzPuuDkH/n97++7+uKovALX7vJv/W3vs+vf7zNT742e+Tv//0frPPNR13+wz/yqUOCoW8v1fiJuzP89d98wi/+xK1LPVgcXBu9OMVPUjZHIXMV6ZQ6eQdCCIQCwzDlg/Uhd2YrDIKYJ12f9X7IfN0mSjOSPMdSzx9kzkxbABSq9v44Y7KGyeKGvB5VEfQDqdFTc3Q+d7WJF6eESX7soSHLpVGAAPqhTExNKuJ7Y40gyU6NjYahZLClmWxtPrjOJlnOg+0xD7bGfLQxnLJnao7BXNUmzvJDa81RUBSFKw2XfiCd8JIsR1OU507U5rkgK/bcCSbxUJzlPN7xqLsmo+I+oySfMiI+3hriRxmaonJrFgxdXsvGIGR7FBEmGXNVm3bFvNSK+MSNbDJe44JdkebyWeuqMpUA6Pox33zYw4tSqq7Oj15vMQilUPvqIKRqS0Zv+ZT3HKc5H6wP0VSF2Yp9on4jQJLmbPYDVgcB7yzXma3YR46lUZiyMw5RC32pZA9LZDImB2FCnMhBuT2OLpyYmrAj7heJ3L2xuBCC+5tjPtoaUbEM3lqqMle1GB9jrnNUDDsKE1a6Pjuj6FzaMpvDkB8+GzAKE5brDrM1expPDIKEvhfTrliUrF1duCSVrHtN1abrQRDnzNUsTE1lHKVkhdzAizJaiFMZy+2dg1GaT88RD+MxFVufHrbHUcrGMGLoy/ji1mwJL05RFYWnHZ+KbWBoMW8UBcOjzhBZLpir2DzteIyDhHGS0XQNHoQy6fW461O1DFQVrlOaXueD7aKgZRty/uxZZ2QHw+EY/qIomRoVW+Nxx6c7jpivQZbn/OBZn++t9Gk4xj7h8Qm2R9E0Pp6uwXFGxTYubb2bYLHm8Kzn40UZH2+Oud5yCeKM9UHA/a0xj3Z8Fus2iw2HUTF+BkGCO47o+bJAo6vqoaRzmuVTJvvzIE5znnQ80jRDZf+aN0mUNUoGy42L687tnUvhEXvXWVB3DR5vj4kyQTtMKJkaz3oB768N2RyGmJp6JKPXi1J6fjxNRAsh3/XexNRRseeripOe3JYQ4o8C14C/B/wCsKooyl9RFOX3nvaHFUVZVBTlO4qihIqi6IqiGIqifENRlLGiKLf3/Ny/qCjKbyiK8vcVRakWX/up4md/TVGU5fPeVN012RlH+FHG444vkx1JTnd8ck6tbOncnaswUzH59HKNMMnZGkZEaXZiX3i8ZzAk+dkCBlNXudpy91WjVro+H66P9tFu00weRnKR8+7qgJ2xrKB3insZnbBJSLE/h+Wmw62ZclFVh4ZrUnV0KrZ+rNDheRAmGR9uDPloQ1rCz1YtSpZGq2wyCGTy6VkvOFQpmqnYzFYtXFNjoWbTD1IW6zJh13It6o4pGQI7fsHeOLoKp2sqV5pOsbAcnTCardhYuoIfZwRJStnWuNpyWajbLNVdtkYRQhRBdpzxrBfQ82RgkGY5j3Y8Hu/4bAxCkvTFMChkkDPmo43RIbq+dFvLMFWVjUE0HXOGJmnZpq7g6BpRkjFTlsHETMWiahuULI1bM2VWuj4frA+nSZeLYr1ogTz4ThquKRMEqaT5d/cIdk5aChuuwTCQFVbLUHEtWVm3NJW78xXSHD7eHLPS9Y/66H3YHIZ8uH74OiYoWzrNssls1aJZsvCijPX+7nMdBgmqqqCogCIPEx9tjljvh8xWTRbrsjJRMrV9c/w87W2TufHhxmh6GDmI+ZpNu2KxWHPIc1jtBdN3NIqkXoamqWQip2RqbAxDnnZ9LF1lrmpxY6ZEzTFI9lSpn1eAuOoYVGwdx9SOdOg5D0ZhOtUJmyTTHu1Ih6SVrk+KtBRWFKjaF/usxx3JOnvaOTxu5msOYZKiKirdcTJt36pYOiVLI8kyKrZO34+5M1tmuWlzpenyxkKNumPS9SI+3Bjx4caIgX/x1q9BkPDRxogPN4b71sJmyQQF4kQQp4Kt0e4YbRRzu+buHiLKlo5j6tyeKVG2dW7NlPHjjA/XR4fmjanKpLSKwjBKsTR1Kh79Ilu5LwPfeNgB4Ku324e+9wffWWSuavH//PWHR/6uH6f8+V/+gLcWq/zxLxytI/Wnv3qd7VHEP3x/49KuebI2Skci+ZwXag59P8bWNZ71g+lcAHAtnZpjkGaCjzbG/HB1gKZKfY4rLZurTafYuy5W+TQ0tdBy3LUSf7zj7RsreXE9AsFaP+DD9REb/ZAoyel40ZShc9z6pakKs1ULx9R4Z7kmD+hFgN8smVRseY9nacWeqVg4pmzbLh8Rc8lksnTWtQ05D4ZBKm3ee8G+tea0fa7mGlxrlYjSnA/XR9wrWNcXRZLlfLQ54sP10VSvCpjGQ0IIwiRnYxDimBq2odIoGRi6iq4qVEwTQ1O53pbuuZPi1yRZ5xg6zZLJox2PDzculsA/iJWuXDcf71k3bUNjtmrhRxm6orLWD6fP0tQUFEXgmCrtskmjZPDOch2gaN2x2RnHfLQ53vcMDuJJR8ZTa/3gTC1GwzAhSHLGYcaTrn/sWDQ1WUhQkQznumswW7VoV8zpgW62YrPccKi7BncvwMQGub58uDHi/fUh46hIMu5LggkGYUKSSkb4KEwRgBdnrPaDQ/GKrqlcabjU3d0Y1jY0HEujUT6fy2Sc5oyjlO1RzIMdrxB4NgiTjF//eIvvrvT5YH0IyNjDtaRY9eQQG2d54QoKwyClahtca7ncni1ze6bMG/OX78a3PYqkrMaBOViydGqFwLemKqzukfVolaTciWmooMgW95pjMlMxWay51B2Tqy2pt/rhulyT97ZZeZEsBjzueMxVbOZrDss1h0bZombLeMrWVAxd2RcDrfUDOb6ClJKlHSrsP9iWMjKrZ5AgOQ2TcbY1iiiZOnNVh1wI6q5cK+arFpapcedAcnUYJmwMQjpjmayoOQZVR64fPS/mw/URH22OLiUGCJKM9WGAY2iULGkgluSS/aSpKtebJQxd7hGjQnDfMqR+0mRtyXJBydL2MaNHYVLEXcMjWYbngaKAioKuaTwu3Dkf7UgW2TDYTZQ9D9rlPXvXBcgeccHgH4YZ7bJ8VhPXXctQudpyKFk6V5qHz7hPOtLBcxwmVGydurt/vx2GR8eerypOenoCQAgxAv468NcVRWkC/xPg3wH+4Sl/uwv8NPBfF/+fAn8Y+L9MfkBRFAP4ReDHgf8x8L8A/gLw54DfC7wJ/O+Af+0c9yTpp0nGs55Pyda51S5RsgyWTsmGKorC3fkKd+crCCH4wbOBpBCfQkuerVgIpCbEedq81vqBFGcsmfT9mHubY2YrdhFcyex+yZK6DYNA0vjW+wGGDldbDoMgpXXKoXG2ah/qCddUhWvFgr0+kNWlheegsO9jV4Qpi3WHmzNlojTj+yt9/Dgreo1lQOLHGUsNh6pt8DNvzstWujTnatMlzQWuqbI5inCEioYGCII4P5YRAZLinmaSNWFqKj0/xtTVKdPDMTUWGy5RkVSqFQfvIM4YhQm3Z0v4cY6qSMehUZgQQOEaJx3bZioWSZYdWd0TQrDSDfDidJoAPC/iTNpvg2y/28sDqNgGN9sltkcRW8OQeknnSqMkD/Z5zt25CpauEqU5SZ6joFCyBIaqFAfz3cr1OEqfSzh7IpwZxDlpLjAKpoamKtyYKaMqKh0vQh9Ip5QwyekHCUsNpwgmJFNtvmrjJxmaqrBYk9/7cEN2DZ+UcJ1gEpweHBtCCHp+gqYozFUs/ChlZxxRtnS8IlituyYzFYs4y/nUUg0VuXhHiRRrlEHN7nqxUHPQ1BDH0M5Fjz2JeZRkOX1fbiQVS2djEJDl8utlW+Nas0TDNRmFKbdnymS5DDgfbns0XJOKbXJ3vjy974YrK2G5EKcKJYdJVth560eyIDRVuTQ2TasIhmTbmTygTYwqxkULU9UxcbOcu7MX+8wJI3IUHQ4uypbO7dkK97fGrPUD2mWTmmOwPY6IM8E7V+oEcSbp0Yoin7maogCOqVIydcZhNP37F7Xrle1aMrkZJrvVLENTuTVTAiHH9EZfULJ0dFXBi7Ipo8Ao7KIlM0pMRU9vzpSmB8vhgQPb6wtVFus2q32fxZqLUBTiLGccptMDZZbLhISiyMrnq9Le95sPu9yZLR9ZITR1lV/42k3+/V/6gG8/6fG5a4193/9L//gBa4OQ//RPfPbYCuHX7swwV7X4u99b4+c/vXgp1zxZG8MkL6rmUifyRrtMlEiWUlJogq32Aj69VMXSVfwoJctztkchS3WbH7nSJErlPnkWseTjMAqTqbvvQs3hScfj/fUhcxWbSe1DK9yqOuOIyLXw4pw0y3AtjStNl3GU4scnG8Mc1wYnEy0lvChlpetTOaKdei9sQ9tnQ9/3Y9YHIWVLMnGCOGV94FO2DL54o0nXixlHkkluaiqtkmS86qp67GdN4q65qk3NMabvLE7zU4uQJ2HC7gA5DuqOwdogKNqhS3S9mI2BZNZbmsZQpESFXMFM1cIyNFSlTMnSmava9P2Ybz7qYKoarq1RsXWSPS1hl4HJPjveE3PCLqN/exTR8SKULXkgKNs6X7zVYuAnvD5fIcnk2tFwDBqugRdnU3ewcZgeW9RIc0G7bBbiyKe37miKImMKVbb2H9eqvpf1kOU5O+MYv2D8qYoi56Cu8PnrjefSlPEiGU9pqkrD1rF1bd/8MHUpEeEVe37dMfjO0x5JljNftadrw16UbZ1+EPNo22O+Jsdm1TJR6+qU9XMWzNdsbrTlXLF0jXfXBrKdLRdoiixwJVk+LcLOV+3p8+x5MRvDkCjLqFiyY0Et4robx7QPwW48cdG4curoecQcXGq4jKOMnh+zOQiZrVhYusZK12e2YmE35PnB0FVKpoYXZzTLhjzX1J1pET9M8n3M08l+DFB2ZCF9FEi5BsfQcC2NpaaU+fDjjIGfYOoqm0PZQr/cdAqtu933mOW7CfHxJTDLxsU12oZ0vvRiaS5RsjRuzcrC1O2ZMvN1m3GU8qzny7FYtIFtexF54XQ92QcnzzrNLs7s2QcBeQ6Oo4EC3XHMe6t9rjZLfPV2i61hxLXIxdY1WiWT7VFElgsMXbonCiGNCWYrllwvx7BYd6ZzTAhZkHietjRTU6m5JlVbYxzJIqX8+wLbkHHV88a7slX/9KTt9ijCK/afvfMlzwUKUhtPVeWc+v6zPi3X5Mu3W+yMYr5wvYFr6kRpNi3CXmuVMHWFIBa45tEs+L2x50Em1auIk3bgQ7pSQogu8JeKf06EECIEwj1aOALYPLAZ3AV+KIRIi3bBv6woigsERULstxRF+Y/OejMTDIKEni81ilq6xueutw4FVUGcMQylPe9RLynJBJahEmfZPkq1H6cs1Jx9A0rX1HMr+kdpNl0wH++MsXSdimMQZxnNsqyKVezdVjbbqJPmOZoKtq4X1PXnayfreDF9f1KNu/hArTkGozAlzfN9jmZbwwhb18hy6XiQ5XJSThbbNxcN6Yi2UGV9EOInGd2C2jkMUmbKNjVXtveVbf3EqvGkTcwvXEw+3BihqQpfvd3CKTa5kilFz6NUBtkfb44Ik4yyJSsRew8wVxouIzedOvYs1GxsQ6VZso6k6EaFcCXIFsCLwDY02hUTL8qODPKlG1ECmPS9FMeIeNLxyAUs1Gx0TSUTsgVgFGQMgxRDlzTsZlkypxRFspaeB3M1m61hWFCl9z+Lqm0wV7WK9iSFrWE0FUUsWzqOoTMIZava9igiywRdL6FRMtkYRszXZEB+FvfA2arN5iA8NDZ2xvIAALuJsZmKRWccM181pPV28VyWGw535yrc2xwRJBlbaSQFgU2Nh9tjypYU+zR19UI036pjUAkSskJcfS+eFFpBW0MZ0FRsg41hQMu1GYcZO54cR03X5NZMeaqV5MUpuchpu/ZUu2SpEEc+q0bKWj/Ai+QY2UuPfxEwNYXtcUSU5Dwyxry5WJsm29tli/tbKUsNhzwXNC8oPDwdN8ck5Npli8c7Hs2SydogQFUVVro+lq7hmpJ11A8SnnQ8toYRO+O4YKOVqVhyDMVZ/lzCyK2yOaWsHyxgyGso8e7aAF1TWe0Fkh03CDA06dw6Wdsm1PetUcj1VplREeQcNW9MXeXNhTo9L2YcZ6SpwLBVmXyLEsI0I07z6T5gG9oLEX8+L5Is51uPu/zRzx1PmP4XvniV//zX7vOf/eo9/sqf/tHp1x/tePylf/KQf/6dRb5wvXns72uqwh/89CJ/9RuP6fvxc7W+TrB3bdy7T9xsl/CKfexZ1+fDdVm5/M7TnLcWa1RcgyjLURW5Lj2v7s0EWyM576IkL1xuM6q2Qc+L0VSL7VHETMWaMppsI2B7FLLYcKgXld/LeC7rg4Agzs9UcNiLnXFEmgn6foIQPt9+0sWLM0DhaqtKoxAGb5XkPaiqcuLhYHMYcn9rTN012BruygWkudTfep4k4G58Ifebrh/T8+S8sgyV2YqMIXRVpevHxGnOKCycohqS1SafUzbVR5y0Kv7sm7OUbZlcGBb7yWVgoWbT8SLqrnkoUTNXtciEbOtbH4akmdRDa5ct7s5VqDkm31/p86wXYOoKn7vW5OZMmWe9gCjNaFeOHzcLNRtDU6g5JtYZ9p5hmPLmYo2uF/OZK7V9iakwTnlvfYSlq7y1WMXUVTRF4XHHJ0olS/pK0+XjzRF1R16Ta+oXMlOZoPH/4+6/Ynzb8vw+7LN2Dv8cKpycbu48Mz3dPTNMQ4mmKJOGZZMWbZqCINCG5CfJhkHJhgAbtETpwYb9IICUYFsEbNh+YABhpjFJa1LPcHo63XxPDpXrn/877738sPZ/n6o6VafCqap76R/Q6HPq1qna/733WusXvsEzVbGHyssOK+6vttyqLtiaRPiWwe48wTReOnHnheRFSdXOioKP1yeKuhZnrLYcDB3lbnYKZIupa3zzepte3eYnT8fUbZNP1iclws0gSQu+fqXJWqlFKgS8vVzHMrRqvdm6zp2+f+Kmxfo4YhZlFfrktLHcUJRj13p1DeqacoD8yfMU11SSG4v/rzsGHd/E0DV0TTCJMoI4Z2Mcc7vnMY8zlho2m+MI396fJ7Z9i1mcIYTAKHP/UZgqMwhbXYdlaCRpwtY0IkiUdIpr6hSl9ubB+6NrilY/idJKbuNNou1ZzCIlw1KYks2JqhslkpZrcW+pViEr10YhG+MI39bp1W26dZuw1DDcncUVQGExkLV07VxkXDRNSUysNBwKCZ+sT9U+FeV850aLXEpudJTm7PooLAcUqma8t1SrdOZ2ZnG1XzqmQuoHSVaZgL1JmCWrZqnm0PYskryg5VkMg5Tnw4A4Ky7FlS/O8qo2KWS4TyvK1DUcUzWh53HO4x0FjImaOUWuavRRmNFNMh7vKICHbeiqqdZV+YVvH76Xdn1Vk+maOBUt+MuKI99KKeUfuYTf3wIm5Z/HQLv832TP95y6YpJSTZy7NTXFOwwG+2hH8cI3xhHdmvVKAmbqqtibx0psfGHhC7Axibj9mu7q7kwVNm3PPNLBwtI1XEsjTApWGi7TOKPtmdzu+bwYhkRpwTzOaXtmaSFcIBEYmsaT3QBNU1okS2+w+dnGywn8YY5OJw1NE4cKjtumxmCeME8zklzRjRaHobGnCbQ9javpgqFpzKOMKM2Is5ya7VWaMK8Lx1T30rV0XowDNiZKN2oUplVjauFS+GwQsDmJGIUqcVTc+v1JmXLmKvDKBmS3Zr+2WWIbGq6lEyY5rTdY+K/TrhJC6TEsbFm3JiE7sxgpBUmWE6UKsisESuxRgFMmQKauHSmYd9poOOZrkYEtz8J3YooCklzRImdxxiRMGcxjEAJLE/iOAQjVMEPx4BeN2De5DrlHrNq3deZJBrlCH2aFpG7pPB2GxGnBzizm/dUGLc8iGkfc6fmsNh3+8OkQTWjsCJWUNByrEnU8TbweeVRep1DT0mmkYPNZUWALjUn4UuvKNDQarslgntDyTG52PD7bnDEJVbK2OYmUs2jbOxLxUkjJ9lTpE7mWmsAZunjzidkxMYky1gahojYUBe9fae57zk3XJM/VxFOeUWi8VzrAvC66NaXx8WKktBDCNONK0yPNC373wS5tzyLO1WS0KKeUyKP3t9OGbeivXYOeraD2YaLETtfGETuzGEvXqqm/a+loQjWcFsXZcevGMgUIjZqlEve2b2HoqgjRhVbprgVJxjzO6HjWl46a+vmLMUGS87073SO/x7MM/p1fu8N//o8+459/tsUfe2eJvJD8R3/759i6xv/qz7x37O/5c9+6yn/5W4/4xx9t8uePoPydJo7akwxdo+mp8/DR7ozdWcL2LGYcptzoqDW7VLcretp5RcMxCeIcp6ROLPTrEkfppm2MoyrHgNJdVBc83Q7Ymsb0ag5vnxN1Rxl0HN6syAulTeha+6kxdcfkwdYIwxAEcUqSFwznSdUM2Dss2JpGZLlU9uSHvL/jIGVzHKnBGJLlUsDZLxGVbxpCiH16n7mUFSLAMfWK5l7oas8bztU7oAvBT54O8WydUaBQRhvjCNfUGAZK5xLxEpV8nrpwbd868pmIsgk1nKfUbIOPXsx4PgpZrivzHc/UmMYp0zjlhu8hka/cg6Oi7pil/tjJ9vuGa5AXktWmw5UD+eAnm9MKPVC3DTIpkYUkydUQYDFEXqo7CiEfp6zmJ8+bi0KyOY3QhFqjQgiMEgl40vBtg5pjkEmFVFo0hAfzpBpopnmBreukWcbuPK7y525JLXtdxJmqT3zrpTzHlaZLuJIzDjJmccruPGEcZFxtuXy+NWMWK8dZz9arc7fpmUTjmJpj7MvR5yVqcu9esTccU2MWcajO4UnCs4zKGOKwcCyFtolS5WT5YGvGKEwJk4woVZ+x4RnkeYEQGo6loWvqOo/ak/fmxJuTqBwACcahulemroyXbF1jluRMowyBxNRVA/qoJvZhLJWzxuIa4yzn47UJYarc7Wq2wVzLq0GDbxsM50mprWXwnRsddqYx27OYliv35S+OqaQ9zitsQ6vqYUXLlewGMW3fYH0cKU2urRk1x8A19HJgLlhp1iq3wKKQOKa+Z79UzdvzqlmEAAQIIbnScqt3+OHWlM82ZuXadli94OaUUUorZLmshsEL11BljlFXxkNbL3FBvq3zdDBnNFf7wuY4pOGa7M4TbnZ86o5R5RdHxXney8uIYzMgIYQD/LvAr6Iqqd8C/osSEfWmMQIWGNVG+ffhnq+BEmA/7Lr+CvBXAG7cuLHvv0Vpoeznk5R7fe/QUkfTIC9gdx6jCcFwnlYd8vLnc6dfq+DNC+hhmsmqWXFUbE4UVHFzog6fw4pZIZQ45163m8Xvci2dKC2wTTUFmMUZG+MIS2gITZTiwYIHWzNarnVmkT3l0qNob/c3z994sesrodemZ1YucU925zQcc5+ugGfpjALFIb/R9RSKyTFO1Sm/1fH5YntGnOQkmXLlUZpG6pBOSnvgaaQKvCgtqNkGTcd6BX4cJBlrpRZRUcgTJVpCKHeO14m0n0d0azaeZfDR2pjPN2cM5ynvr9bJStHVJ4OAmx2PpmNxpe0gUO/Lm0yCTxuWofH2cp2dacxPn494vDvnasPBt00KVDPYtww6vk23riyRwzSncw6TeVDJ6cxWVIpOzabjWXy0PmEU5IyChDv9XoVq08pn1a/b9GpqavzF5pQkk4zDiLptYJs24zClm1hv7Ha3iFmcKa03RyGlXEvnyWBONFYT3ndXahXVVF2nSt4+uNJACKW1ECZqemYagpWGwyTMmPnZkU3DOFP6JrM4o1ezqkT2osUQXUvHsTXSwqBuGa+sEcvQuNpeJAsXdy03O57SQxgrMUlNwDeuNtmZKa2xzWlE3Ta51fVBSG51/TPT9s4ad3o1xmHKHzzeZWOiXCwXsPZ5krE5ifjOjTZ116BfdxQq+Dg6d83hZtdhZ6oKoNWmTa/u8PmmEnBVyFyLh9tKBPR+OlN6X6WgdFra2Nds443F308av/tA6Uv98u2jEU8A/86v3ebv/PgF//P/18/43/+Fb/L3f7rO7zzY5a//G18/UXHwtasNVpsO//TTrXNpTL0utqeRckeSgn7NpGbpXGm5DIKEay0PUxdcazvYps79rSm2oXOtffpm+N7o123apTW8EIJ3SpmCFyOloeiUOQYo2t/WJEZDEGcFnZrFi1HI9Y73RtRvgFGQshvERy7vw9AbAKYmkEjSTJJo6ly51fO4269X772UkufDkM1JhG3oaEIcSrcXmjqnlSC0fWJ06VmjZhu8tVxDSjWI/PHTIRuTmKW6zburDT640qgEpYdhgmu5jEM10PRsHUN3uBPVzqwvdh5hGzpvL9e5vzVlFCgB9nGUEKU5gyCl59tYms71rsvyKYak29O4YgzYpn5snnet7bHSONyAaKFFJpHszCN0oZoSbc/CNXXeXqlVQscfr40ZD1N+9GTIr97r4tvH7+8785idqbpWS9fOpMvq2wbvrzb4aG0MiGqQ5Fr6oufInb5f6UuNw5QH20qD0TX1Y8/o9VHENMpUHWPr2IZe1RhpVvBwd840UkOseZIxmCcsNxw0TSF/Fu/YUt2hX9tfs6SlxqqUamCrCYGla1xrv6R9rzZdmq6JdYHnw51+jXmc8eOnQz5en9B0DW53m0SZch98vB3w7mq9RIw1ibPiSAT1wViq2+iaKPOihO2pYiOsNBx8xyBIc+5vTUHCL99p0/bsSxWRtg0dx9C52vTwbYOlhl3VTHa5Vyr3PsnTwZyngxmzSNXBunhzxNFpYrnhUHdMrrbU2bVTAjriNCdMcpquyQerDTRN46O1MVvTmK5n8Qu3OlVz8rwR/JoQXG95r6B/DV1RvgsJdffiayRdE9RshXqvOUblxrm3P68YHTp1x+SDVTUw+b2Hu4zCBNNwCBIltr9Us3hnuYZ+STnZZcZJnsR/DUyB/1P5938TpTn13z+H3/858DUhhA78SeCHUspACOEKIWoojamPD/uHUsq/AfwNgF/8xV+sHmuWF6yNAh7tBGyPE37GlIZr8/ZKncFc8c1rdqmrIktERawgbodtM4sNWteUnWqaF8cumoZrMJynNFzjtUmlEIJCSsUL3kOhuNb26NVeugYo1zFoeCYrLZs4kzwdBOilJee7K/V9E+5ppBBJByev4zBld6Zg246psTGJSseLnKZz/kK4uqZEA+dxTs3W+BePRgzmCU8HATc6nuJAz2JmYcbNjotX2u3apo5RinqfJPK84NHunPWRguaHaU7bN1mq2dWk8kdPhkyjhIZrUrNVon671yDO8lccxwxNqzr3p0WTXGRTahGFLPj9RwPG8xghBJPIxTZ0Or7J7a5fXYNj6qfSPDvPMHWNzzbG/OjxkEJKHEPHtnRsU+etJR9TV4mTaxrUHfPcLGzjLOfB9ryaUg/nCdMo4aO1MWujiHv9mpo0dH3GQaJEpw/oU5ml80XbV4frxjjGMrRzOywXlq4ANzoeSaaQW+vDkN9/NMB3DGaxy42OgdXWSLKcxe4khKAolHZYzTa41fPo11WSYujitZTcvJBKa6il3BkX7jIN1zwXus7BCJKM3Zlac790s8P2LKbrv9qoTzI1RU6zN0MbHheaJtAE3N+e8vn6hOWmw9o4Is8VguGtpVopDKmcHM/DGOIs8dHamJ88GyGkpO5aTL0U3zG4aXlkpTOgewoqSprl1G0Lz1Q25Jap9tnbPZ9plFJ3FJJ1ZxbjWgoafqXpEqWq6fVwe06SFZUF+2XEDx/u8s5y/VhKr23o/Bf/o+/wF//m7/GX/qvfB+Df++N3+Qu/dOO1/24RQgj++LtL/N0fv9jn2PkmkeUFm9MYUxcVonk4T3g2CFgbh/R8m+/c6iALiRBKF3AwT9A1wdtLNT7dmDCLctqeegfflG5h6BphkrMzU+5eTdd8JccAtWcLodCHX7/aZF4mwA+2Z4daTydZQZTl+Ka+LzkuCtX4UvuqGooMgwSkYHKEwOwiMZ/HGV9sTREIrpbaMUmmHMvuLdlca/vYhlYiyjN82+DFKGRjEvJiGHGz4x2J2jDLabVvGay8oQzCSWPxPo2DlMe7ymFNE+refbY+4dP1Cf2Gw2rDRdc0Prja5GrLxTF1tqYR3ZqNEOxDr1xmbE8j1kYhHz6fMAozBIK2q/QZF264Ld9kpemcCmVp7nlG5glRNoumVJoXbE6iKmd+a7lOwzV4shsgpWB9oqh7/bq9byA3mCc83J4zDlMKKXmwNVfDxGN+795my1kRQQvUVZwpnbnFEG5huATsGzBbhsZv399hfRxVbIrXxeK6NE3pcS1CCIFl6tzq+rwYBnR82J0mFIVkYxLxg7s96uWgOMpy6vb+mmUUqH3r8W6gBPETNSALyWkeEFi+6OGnrgkG85jfvr9LnGbEqUG6ooayV1supg6GrmMZGk33dGf3Ah0YZznDIGWllO6QKPTd2iBgPE/5g9mAft3il+9czv6xN1q+SVYoFOZyQzmkbs9iXoxCVpsuhqaQxr5t8OOnY759vcksVrprlxV6SevzLCUPca3t0vZM1schaV6wM014uDtllqR8+3pLuXXvBkzDlLtLtRNJeJwlNCFI0oKszDUXx3zLt/ja1SYAPV+xaVre+dUjB2N3FvNga07DVVTyWq/G7iwhTF9SYC1dwyjNq3Lg840JnZrNPMnZncX0apbSytM0no9Cbna/us7KZ42T7CTvSCm/uefv/0wI8dPj/lEpbP4PgG8C/0gI8R8C/wEKefWWEOI/k1L+XSHE3wR+E4WU+ovlP/9rwD8BIuAvn/jToLSGlEZRwjBMmcWK696rW7wYRmrSM0+40nK52na53fOZRBk7U+W81KlZR3JNdU2gn8Cy+XXTnYOxMY5KKG+KbykXrDQveDoIyHLJrZ5HXki6voVn69WGq2vKPjxMM+5vzXAttQlsTmI+WZ8wDlO+dqXBvT2uI2ujkCyXzOMQTYCQICm43fMvrPt/p18jK20qYchwljBNU/7551sMwxTH1InTgqWGxffv9MgKScc3y+nF8ZvUk915Rc0rpDqg264S1SwQfLw+Js8lv/9ol+1pzN1+jT/37au0PRMhBLVDloBlaPu4z1+VGIeKD/1we0aS53y6OVMOEO6Mjufw1nKNt5ZV83QSppja5XfS80LyaGfGOEh5shuyOQnZnScYuqZEYDsed1dr+LbJMEj2JVHnEWGS82hnhkBg6LA7g81pxPYkIS8k0zhhMI8pCkmc5WQFGFrMza7H09Kl6lbHp+1beJaukkhfCfefV9MxSXOeDQOSXBX7Cp6uGhK6pjGaJczjjMe7c6SUhGmBPU241fPYnMSEiRLgv9nzsHTVMFttymOvURPgmQYCJfD/yfoYTWg8GwYX0ph6NlCOS+Mw5YMrjX0Q6r0xChJ+8mxEmObnRhtaRJjkPN6dl41onx8+HPBiELI+iUlz+Gx9wtevtbEKrRQyVUWkJlQBdNE0x0VEac6jnTmjecLj3Tlbs5idScy9pRq5hLeXarx7pVFppdmGdiw6M8kK/slHG/zew13SQvILN9vcW6ph6hq7M0XX6NZsolTRFBYNqo5vsTWNeHu5ga4JslJtOT3GBOS8QulLDfnzv3gyQ957S3V+4z/4o/zm5zvc7HpVonnS+PV3l/i//d5Tfv/RgF97q3+WS2ajpF12axaFpHIAdk01+RyHCT99NmaWqMZM06vRb9r0azbr44gPgwRDCNYmMUFcsDtLcAytomK/aTwbBsSpWov11QaaJqpG09ooZDCPMTRNOSYZSnvk6SBgEmalCLYqqns1m5ZnkeUFX2xN2ZkmpEXBnZ7P7Z5fDkpSRkHK9ixS6LC6zY2Ox+Y4plM7fJ+52la6nS9GAc8HIUGitM9udT2lIaMJDE1XhjaWwbNByCfrY0xD42bXo+FYXGu7XO+4R+YNz4cqp5pEmRKCvsRmj0Ttz66lk+eSv/Pj5/z8xYggLrjR9fhL37v5yv64VHdISsH8yxar3RhHPN6Z8QdPBqyPlClHLuGDq3X6NYcoVQPabs2sEDSniW5NaXXupdrtjYXofV5Ilur2PvTjxjgqNfFSvFKTSAjB2jjC0XWud1zeL9/xRUgpK+OLjXGIY+l8sj7h080Jby+9Xli85Snq8wK1fFhIKavh0GFF7SBQw7FP16csNRz+3Ddfmi0cxXiwNEW33pxEfH319de4aGauj0N+9nzMStNhpfGyWbg9jVkfx2yXjdGbXUUf7vjK+fr+lnJRlEg+uNKs9DBfjEKeDQOCOCNJTd5drbM5USyTN9GlPU3M44wnuwGmLvjw+ZhREPN4d84HV5r8/PmYt5bqtBsmd/o1hvOErFD0sLMwSaSEjq90pG50PT7fmPLF5oxBmPLJxoSWZ/Jga4ZnG2hCcKPjXVgT42CsNJQuW5IVCKEajD96PFS5bLrDZ1szdmbKRVUAN7s1CikvDeUMqkZebbpMo5SrLUX57dZs2p5FEGf8/qOn/OTZiDwv+Oj5iNtLNVxLxzC0faih8455kvF7j3e53a3xZ/b8ooZj8rWrTTQBn25MyXKpaudT5hAniTQvWBupsy3Kimrw4ln6PlDMtbZL0zNJspwXw4idqcr3DE2w3PEYBym6kfF0GPDPPtviWtvjX//G6pn1Wb+KcZLG1I+FEN+TUv4QQAjxy8BvH/ePpJQpCgW1N/78Id/3t1AIrL1f+w3gN05wber7eUmD25jETMIMXQju9DzmSV4m4gmappwIFmLmaoErmOMCwTAKEq62XKSUFFIVc0rMUYmjnRTSftLN4CV1UP2uvJDMIsWbzsvJY1Raty7r6sVbNJgcU0PXFYQzzgpapSvXwjJ5GKrJyOJw8i1lu+paOnkhlYByzeHeUo3sDWySXxejIGFnFtN0LX7hVpung5BHO7PSGSolSnJcy0BKpYFzf2tKXigB74PigXkhy4JRfV+/ZjMJM0ZBwsY4ZrXpcK/vIzTBzlRpA3mWzs48rpI719IoDhR0aV5U079FOCd0X7vMBHdUiqluT2LmYcaVtotv6ehlcqf0GlSCNA5TRmHKO8s1NE27tGuclyiZrUnEOEqpOSZNzyLNFWUoLdS9TzJVfO2ScE26NFzzXK4xyZSoYZwq7v04zHAMjZqjc8116dUsTF3no7UJUioXi4Vw9sLt6MUoRNNUQtqrnT9k27F0fMvAKQ9IXVOc87pj0vF1NCFpuiaPdwPmcYZVFl+z6KXm1M4sxjbUc73W9k50jbqmaAgNVwm6v7VUI8nkhTVfLEMjKSfESpfj8GvcnkZsTiKyouDDF6NzvYZRmJCVzqqPduY83JlRoDROvnatgVPuhYau3DdNXbAzU03MQZByr1+7FL2lUZCyNlQ6XKNADSm6qxaGppoEabnPFAUVBSbNJcsNG1nqYB2MvJAlhSrBMw22piG2Lni4O+fZbkCB5Ffu9bANHdMQ1EsB05ZnYRuCu33VaLjV9RmH6YkRrG8aP3s+Jkxfry91MBqOyZ/5xuqZft8P7vawDY1/+unWmRtTSutPPZul0mVsEilk5ErTqSbdjq6TZco1dZF/yEISpeoMT3NFdfAtndt9/9yKCkvXiNMCQ1fo66J4qX+0NYmqMyPNJfeWalVetDYKaTgmo0BNdNdGES3PIpfKHW6hjTGP88qhdaEVoglRIYZudHzu9GuvIH9Uop6x0nTp1xViYWeqHHV1TblgLkS/1Z6nMwpCZnHKMExoORZZLunW1CDhYIN9kcfpmtLSi8p7cNkApJpt8NZSnd15zOcbM6ZxyjjI8Cy9sllfPOu8UFIEk0iZ+IDaSxcIzkUedFGR5gU/fT5idxqzNo6QCEwdvnm1ybsrNaRU0hZxmjMr2QaaEKfW1TmqoB+U6MIvNqdcaSlTmsXP3ppEPB8G5AW0vJc5wzhIudJ0SkOTV3UWhRAleh5++W6XrXHM+jhClkLjx8VxqMWtaVyJmL+7WsezDHZnMcMgoePbmLrG1kTpbmYlQvJ1ejYtz6Jbt7je9tQArUzPizJPP+zzCSBOC54PQ4bzBAnVkN0ytNK5VgKCUZDywVXV7CqkrHSvHEtjfRxWjSnPUg2YpmvRLXUc256l3KovK+8NldnHk92ItUmAZ+nc6PjUXRPPNkhydX7rmmB3rkwFJlHG3X7tVAPFJM15sD2jKMC3lTtzliu5E9fUudr2sHTB2iSkvmOy0nAZztMLbUztrS+EEGxPE9KsKLVF1TuZloj7LC/wLYPbfZ9vXW+yMYmqvfU8RM5Pcp1hklfrYMtI6NVeviuebWAbAscQbIU5syTn2SDggytNejXnQkW546xgFCQ8YU52wEhgcX9NXSPL8zNL4xwXArVur7Xd0nBLvV+1PeZDi/XddE0mkTINkQjqrsnXS9kJozQ5+sOnio2yMY74Z59t8Wtv999Ic/qrFCd5W38Z+B8LIZ6Wf78BfCKE+DnKbO8bF3Z1J4woybm/NeNuv0bftygKSa9u4VsG6+OQ1ZZLy1MFWVTyXItSMHYRyw3lotL1bdJcUVyyXOIYgucjpV1g6dq5iODujZWmo/QENMGTgZpq9momD7amRGnB1681WQgzLGzGF4WJpglWai4vhmEpYK6z3NBZbdokueR62993eFzvuCxlNpaukRWytK9X06aTwqlPGy9KJ7HdWcJ3brT5U19b4ZP1MVGa0687vLXsszNNudPzeTYMebg9xzX1Vw7tnVnM+ijCMTWyvCBMFF2iX7dZH4fc6ft0fZtOSd9rewpuvj2NWao5yGXJJEr52tXWPi2jrWnE5jjGMTV1kJ3isN2aRGxOYjxb507PPzdEzVFRcwwe7czo1C2utByCcpp6r19jHCQUSB7vBpjlZ0jzgk83FS3iZvdyJjueqbM+UY5v37reZNLzyaRylnNMVcBsTKJK+0tKycOdGZaus9R4c90Pz9KZRhlFIdE1hXyLMlfpcElFrXi0PUMTsNx0lXhrlJZ0CY0wzRiFiXKuCmZ0/Vfdit40fMugWzN5uD1nd6bz3moDBLyzXGNnnlB3dJ4PI6SULNcdgjSrEHALTTgtFWSmTpQpOstJ0IW2ofHWcq3SJLi7VGcaZReWtNzseEzjDL+kh6V5cej9bLgmUSpJs6K6tvMKJTKcApK1YUDbM3lnucav3OlQcyyEkEzChHdWGqV2n0SiaI7PhwFJphCl56UtdlToGqxPQmxD57u3O4zDlDjN6dUcbB0GoWr47kUYRmnOJ+tTCikPXd+6ptb9PGmyM4uJM/iNT7aouwbbsxjP0lkbhjQ8s6RCKCrXPM5LE4VyoGEbF/7598YPH5b6UqdoTL1JuJa657/1xc6Zf0a3ZrE7S+j4Fkt1B9fUub81Iyskn6xPuLvk063bPNudYxoapqGaNh+vTYjTnKttB1PX6NfV/2vi6ML9LHGjXIuepeyyn+wGDIMYpCArJEGSVbSchRDy7jyhZpsUUtGt0lxSd9R7YBt66RamBn+dmlU1uB1T552VOvcKn6g8ow4b6O3NZTYnEbV+jWttj45nEaY5vq1czHQhiLKMtCgwNI2ObzIOUkxdo+6qQqzjWxzcpqWUPNieEyY5yw2F2polymn3Mij3e8PQNd5ZqfPb92OankGY5vzaW32arnIEXSAXgzhjbRwhBPtcXItyiLHIV1zrYoqnWZzxbHeOIcAyNW53lWnN1ZbLatPlSsupTDeGQcwoyFg6hWHJSaKQknGQMg4zJCF3SmHlwTzhdx7sYpRaQHf7PvM4YzRX7tq5lFxtv6ojs4g7Pb+il274EZ6tk2SSq603L+Z2ZzG/80DtH726xY2OEn6OUqUZ+d07Hb57u82PHo9YaTn73KuPil+63cXQNdJM1QGFlHy8PkETgrtL/iu044UT6ChIiNOCJztzrrZcshL5/41rTT5cGzOLlPN3sDBWKR3LZrFaU3vzgVtdj6W6Xem+vm7AdFHRck1+9mzEOEz41rUWW9METSgNW690qZ1HOVGaV+tkHCZ8sj7B0AX3+rVjG/wPt2dKo6usAYtST0sKqDk6f+TtvqInZ4XSoZolrI1D3l29OGp7nBV8vDZhuaEQg1JK8qLg+SikkJJvXWvxzkqdopAMZi7PxyHIgm9db9OvO/z8+aRy77xICn6Uquu80nL2DfNHoQIl6JrgSsuhZpv8+nsrdH2bF2MFrmi56nx5e8m/sIYQAJKSPSVfARxMo5QoLbhRapD6b6ineFQYuqoxFzpbi6+9XbJcpFSorUJKbvV8Go6p6rykqM7npbrgOzfajKMM39b5rS922J0pQ6TNsZLKuEwk8EXFSbLN/9aFX8U5RJQWpEXB9a5HvbQ59m2DomiRFRLL0Eq7RI2V5v5DoSgkjqVz11c0h0mUkmaSrVnE7jRmME/p1+1KmPC8o+Eo69kwyQmSnGmUAqoIzQpZTYJ6ZVFnm2r6qaxSLeqOgV52pV+MQhzToO4qB5G9sZgaAViaoGNcvIbKQmfGsTQKJO+s1HlnpU6SKZTSw505mhA83p0zT/LKyvSg6+FCmyJKi6p5VLMNXFNnqa7sWW/2vOrzOabOSlNZjiooukPNMV9xLVvYVy/s4J1DqJp5IZkn2StC0Qs3lSDOSXOJZVzshjAJM+Usk+a8vaJoPZMoU5DPkWq4OobBctclzVWhPwxSJMoZ7TIaU8MgpeVayCKlblv88q0ug1LU9vONKaMgw9JTlhsOV1pKWHmrFEcch+mbC9IKwfXSqWkB51YH3svP/sHVJv1yWrEiHXZmCWGS068b5IXOME35bDSh6Vo8G4Tn3oxWDlwOUqr3ZWEvDnClbMi+s2yy3FCOSLoGw3nKNMpKmLnBPMlY21FUP8cwTuyktvdQVjTFs+8BUapQEkc1trTSvGAeZzwp7W3DtvuKmYCtqwZiXhTcPEfHKVAT3/evNHi4PSMr1B74y7d7vLVc48PnYz5an+Db6n4ClfbS092APgqNNCu1bC4yFslKlqt34Ds32gzmCVGW83wQMgkzbCOlV7O53nFJ8gJdiGr/UkOG/evbMjS+e6fLd+90+f9+vs3uNK4QDtMoxbcNJnGmin9N8O0b7VJM9csTWwbVmHp3pf5G7+Zp41fu9fhP/8GnbE2jM00dV5vuPkfVumPS9W3ub81IspwnOyFLvsUsTJFS6UYqPTMl/tz2zMp56iKaJou1CAqltD4K2Zyoffd2z+fach1TF7Q8q6Ir1W2DIM6xTY27PZ9MyurdyHKFeD1qoGDqWolSPvqaLF17mcvsWV+ebeCVf19pOCAl8zjDNQ00AR3fZh4XLDUcOjWV/3yxqQT79zaR01wSlpTA9XHIUsP5Uqn5ozAlySSGpvODu12+c7OtjHXygk/Wx0zDjCDNFZrWVALWV1oOkpdNqkmo1nuYnL8maJzlpQ15hkRwp1ejf8suGzgFO7OETzbUoMs2dOZBzlLDxrW0V3LNN4mub+HaOu+s1PAsA10XSCkrB9ogyak5Jve35zzcmmKZOvf6Nd5deT3dTdNEld+tttzKmOishdy+809SOtktkEkqP/1kfYxrGDzcngGicqS1TrDHdnyLP/J2v8rt80IipXJ7nMev6uFJVEGrXOpUzpVmOV9sKQdySxf0azZRGjCLsn2SJS3P4nt3uvv0NkGdh5c9mDgYQij3yDgryAr4Ux+sEKZ5qUc3YxJlOGZKmOTc6vpMopRppFy600wSpDmN1zSmslw5oGtCmSUtNWxanskXmzN2pgo9faWl8/27XWq2wU+ejbH0nG7NPqOH8MligZ4ZhylLDadyvNyZKcfAB1szhb63Db59s8V3jU717CahMptIM3nhGlMLZ81JlNHdk59ESc44y1grEXyFlHzjapP/9reuAvDhi5EyYMkLRlHG8gVqlFmmxrurpWblnvM1znI+ejHB1DWWGvZrja4WdaBXaiCfJQ5j4iwkghbIRVDNsppt8O5qg+1pzMPtGU925qSF5Grb5VavptzMhcbWJMLQdFzreJOEf1ni2DdBSvlECNEGru/9finlH17khZ0mNKHEam1D6TOFiXLfWqo7tH0LSxPM40w54qD0DPYmvc+GSkvB0AXvLNepWQZ1x2BrqibuuqYmChcphutZOvNYuWUoLSmdMC1o+ybbMwUBXp9EXGt73OvXqmYbqCRwHmfkUlZUnzST6nvKFzVKc9ZGYWmx/GZOPyeNvFBUqattNUGehBnjMKTpmlUhHiYZzwYBG5OwEmH+pVudVyas/bpNVkS4pkKX3eh4ND2TjXFUOrDYh+ocWIZWNezSvKDpzhVCpYyWa1ZOgUehNR7tqKmrY2q8tUeza6nusDGJqDvGxXb7UYfnJEzo+CY7c0mYZPz4acDuLCXOc661XJI8p2YbtD2rcpJMC0mWH+/cdV4xTzIluu6qDfbnaxNejEKyTOLbemnjq+77YnMvpGoQnkdy61vKyndzEjGOFP1xMUFdODPGacFgliAELNUttqYhQmgVGqBftytHxyA9HuZ/lmj7FpMoZWsa4wTqdzumTlFIplGGpinajJRQd3W2ZzG5VM1PU1dUwNUmmLpaJ7mUaOfgaLdwAK3ZxqHOVosIErWfSglXWs6xopVb05hppFAPC3rGIlZbHm+tKPeg87QxXjzvRcNmueHghAoV9LsPdvlia8rmJOJ2r7bPaXVhXf1kECAlF05hk1ISJDkrDYdRkDIJU4pC8qMnI4Iko+Up10ZNU0Kmi+QzL2Ql5Ns+RiPs/dU6P80KTF2UOhpKNy0r9QzTrODeUu1QtMHCxW1BZ79IvZskU/pSf+GCHfIOxg/uKnTW7z7Y5c+VifObxtW2yzhKWBuGfLE5I84yskJReYsCJklKkORcLfUuL+NMznJFIxoGKQjo+RYF6j2yDZ3Wnrx8qaR1GpoqjHVerilFe1B7/AJ5AUoPZv0E+wcoqhpAv26x1HAIkoyskPuaR7qmKP1b05gnuwG1Eh1adwyyUntzMbRaIMoXRbRlaNQcg4/XJnR8i81JdOFOfEd9Tl0o4fe0KGh5BndLuiTAj54O+ejFmDAt+M6NZiUg3DyE3t6v28rV1r6YNagkJOB622UUJPyjj9ZpeRarLYeGY6FrAs/UKSyNhmugaYKrLfdcaV1CCN5dqfN8ELAxjTHHGmku6ZVUT4EyLHm4PVeDMO/kv3s4T3g6mNPxLa61vTOvuYPn382erwZsgkqMuO2ZaEIjLSSTMKsavmGaH/lzi0Ih+11LNSaDOGd7FtPyzFKPS0MTgoazv3RL84L7W4qGZmgaSa4GrZvTuCp2o0wN5m90fK623VfO7DSXfLE5w9SUbf1lUfVeF3mh0HOWrrFct8klPBuGPNieMZwreZama2HqopKDcC2dumPwYhiqPeCYhoeha/TqFpMwY7lhV2dgr2bxeFcZf/zug136dYfrHbdy7/NMnUmYXpizsaErR+29g5Kma3Gz6/HTpyM2pjGeqXO757PaVIP37WnMOFTaa9fbHmGiDC4u0i1c1xRYYlHTLe5flOYkeYBpaKyNQtZGEVvTmD/1/jK+Y3KrV2On1FMdBUm1p1/E8MAzdW52PW52/H2o881JxMZEObAf18Bb1IG2qVWGBUfFzixmFKT0ataJ9Vt1TeDb+r58ztA0JmFGkOR8vD7BtQ0+3ZhWe4wulKbXwqgJ1JqZ7tlD/mWMYxtTQoj/LfBvAQ+gahBL4E9c3GWdLmxTq5AGw7mCDz4bhGzXY95errNUWl4vYu+fp1HK82GIbWgIoVdicbd6PksNm81xRFZIlhrOhfJ0RdlcS3OJlAXvXW3iGAaOpfF5MCuv+yW/3NqzEe5turU8A0MzqB1olmxPY+ZxDqWbxmVMDh/vzklLR53b/RovhgoKGyY5RSEpkKyUzlhNz8QzDa623EMdSPY6tyVZwbNhgG3W6NWU0LmuiyMLyCstl882JoAgSPY3GqKsoF9TG/8kzA61h08y9b4kB7jJTc+8NDv5nz4fMZilxFnGcsNlFisRfxA0HeWO8vZKfd8hthB8vqzYncU82JwRZjlmqWv1fDegKDXDGp7JtZbHasvZN3G48hqthdPGYqo0DlOkfKmJomgdip4bJCpJjNKcF6OQtm/jWwYN11RCqlD9jN4JIPdnCVPXWG44hElBlBZsT2OudzxelLbpaZGXjSahqBum0k9xLa2yQLYMje2pErE+L52ojXFEmCj03d4myMGI04KdaYzQOJbG4ZcuqLapKcrFAV22tm9xt6caUud1kO593pahGtrKWMIgzSVrY6WdI1BJ+MGCdQG7voxYH0cMA+VW2q/Z5AU8K4X4XUtd991+jdWmu29P1zXBnRNeY7/u8CffV5/xN7/YIskKJbLpKkcmXVOo1W8dkkTN4qykQ1K9pxcVP3s+KvWlOhf2Ow6LD640aTgGv3P//BpTD3dmbE9jNiYRvZpNmOp4lsotcikRKIe4K63LaUqBoqcM5gl3+zUMXQ14JFS6IAfPuL3v29415ds6yw1bNVT3NKA2Ji/3j5ZnvraJuTZS4tY7mXLufLClcpiVprNvT7EMjattl2mU0SgpW7f2nGumrpwNgVcatEt1m1nnJYJ2byRZwfYsLocZF7PP785i1kaq8Eny7CUCc0+xHCbKGTgvUrql5udR70PT3e+Edl4xjVK2p3FJhwJdF4zClCApECLlesej7hh4ln5qLamzRN0xud2vsXhkSVZUuiyjIGEW5yzVHWqWwa2ez7XO8TlElOalO7Paz1qedWYUeZrJSqw5zSXdmsEffadfDWBcUyctZEmlzpTYuBCvrJeDsRiS65pqzq2VlKcwyRHiaEpWXijNt6woGAcpTdei6apm1lLDrgxTgiRHExz6vj/cmfHFpqo1XFvpOH3Z8XQQ8GKoNOVankndNNgscxTXUkPqr11pstpy9uUUnmXsGyIfFwrxuv9rK02X794WfLKmKHF5IXkxDLnV9ZkVBVvTkHmcEZ/zQG0RZkn/PRgd32a56ZJJ5dDt2WpIsDYM2Z4pYfqsUOf7pxtTpfs0CrnWvphz2zIOb9Q4ps69pTqrTZd//NEGLV/lW1Fe4KOaRUFZC47mCUkppLback4kTXGaMHTB+6stpXm15z0RCFaaDske1sJRESQZOzPVDOQ175aUkvVyz18fR6c6Ww7mcwsUlVvuuwI1gLm/NaPjW9zoeGRFUVLZ1ed6NgiYRi/3kK9Cg/m0cZJOy58H7kopk4u+mPMI19JLcWu1MNJCIqVCjViGcsxYvPR5XvDTZyPiXFlIvrVU31cwe5bB7UsqTsaBgnnHmUpShBBV0+Na22UWZ0cunMXkEsAydJYbC4qUmlx6lkHNNhgFKbomcC6wizqPM+ZJRsdToqS6pu65b+n4JSQ8l7Kib/XqCkK8NYnIcoltakc2iPbGQizd0HUarvFa8XZdE7R9i+1pzGCeVDbTADXLYICavDhH6Dbc6HoM58mlif+Ow5QkUygnTRPEmRIUzAuwTCo02TsrDXVQ9jzu9o9OZi8iklJMsO6Y1fU8H4ZMogyJpFVX7/A7KwqKauiCb1xr4l6wpfAiFAIxr5rJhaSaHDZdZbs7ChKaJbrqa1carDT2N8wumkpkGwp6mxeyeh8X77Gp6XiWzpPBDFvXmZTQ3mvt/bbt5w2xr9lGNRV6natjnOZMIkUTPYkj0zsrddVEs19FF+Yl+tPUtTNB46M0ZxKmNNyXhbDc87zXx1HVzGs4JmGa895KnUGQcrPn881rzUtbO0Uh2Z0n2KZWDQeSrGBjHKMLwTzJ6AP3lmrUnJidWcw3r7XOxUZ5GqVsTiLCpKDhKYTe3X6NtVGEgCNdlhzz1ff0oqLSl7p9OfpSi9A1wffudPmdh2fXmVrE4hk/3Z0zCRU161rbq3Qg67bSGJqEGa51ecYUYTl1lUCYZvzSNUX9kFJpqkkkPf/o92zvmsrLYd1i7YF6T2ol/c8ytGP3hZptVNP9vef34nfsPQeX6g6aUPTHg01kXRNHNkv9ErkVZ6/+uxejkFmUMUCdqaamsTOPT+0wtzeyvGAQJJUbY77nc8lCrXXH0tiexdVA5lvX2/z02ZBbPZ9bl6BVCfv3TEvXeLIbECQZoyDlZtfHLd/ZzYnS8XxvtXGh4sSHhWMqKmOYKomHaZTyk2cjaqVQ/PWOouNFiTL8sXzttfeukEqyYxplSHgj5GfTM1nObNJCVnn5g+056+OwbAgJOp5F2lZGB8sNm1GQUnfEa3UUF+ugkJJCyipv945ByM3jTOlPzlXurKjaOv36fs2ZBSp7expjGdq+JqdlKDQxgi/F0flg3gsvG6ZCqDxDE4J+w6btm2yOI75xvclS42IkVkCxIuq3Tf7g8S6GrtF0lYuhMlKQhEmy70yUUjKYJ4oWeEH5Y15I2p6Ja2l0POXWvj5S9VSU5niWgW8pcMIix8hyeWiedBnh2wbfvd3ho7UxN7t+lYvtzFTOExdUWliLawXVCJrFGS3XemNGikAcqsu33HCqXsFxTWpB6bZbs4izV6m01fcJgWcrtOObglnyQtXEq3U1RBzNFUJ+FmdEacHdJZ+mtf/MXrgoF1KpRcaZovburdW+6nGSu/Yh0AK2LvZSzifqjsm3b7S52YkpUBvL55tTNsYKDturKVc2HcHOPGY4T8kKyZ0l/9LQLwcjSDKeDlRiIHiZJC2i7VuHbnLzOGMSpbQ9i5WmQ15I+mUB83QQEMQ5WyLmvdUGbd/Ct42Sz3oxiU+aFzzaUfDmIM650fHYLt0iBvOEa22PXk11yB+UCC9D06op4ItRyOY4YhZnvGXUX7uIGq5quE2ilGcDNe0tpDxSH6TpWqyPleX1o505766oJmTTM3nHqr/2vtRs48JdLRYRJFnlEJnmivaUlNbMWSG5169xp+8jgS+2pqWT0fnrTRwXTwcBYaJg5u+tNEratlRudq7FL9xoo+mCSagalUpYvMC9JNmY2z2feI+Ytq4JbnQ9plFGnGa82AkZBQlbk5iaY166rS6oRPCdlXrVmAFFC9gtaYafrk+YhzlP5yFNz3rjZPoksdJ0aPsmpqa9dtIyKpNIIQRJfjQ1YRGOqR9ZPM6TjDRTqLFbZ9DzWiAzB0FS6YxopfD3k90A11TDCiUG7pJLGAcJuVT7zzTKLpSmvTfWJ5FKboC3lmsIAUJIXFOj7toslzoHtqEzi9V9XRtF+LbxRs8+znKe7AY83FYonoXD0jzOudpySkrO4fd+Mbnd+55eVPzw4YB3V+qX9jz2xg/udvnHH2/ybBC8ESrs2TDg4facIFaOTp2aw+2+j6UJPl6fEsQKTbTXiOAy4vkoYDBPKYqC2zfaVWIthHgtiiNKc4ZBQs02uNn1lJZI+Xwe7czJ8pdrb7nh0PKO3z9AmbG0IpNZrBpbVQ5Tt/edg1lRsNp0Tz1FT0rq6lEDvYVDoKYpSsTWNGa7HJidNdZGEeNQ6fu8vVynV7OJ0oJxlHCjqxyDTV3bJyDt2XrldPh8GF4KyvnJrjJ22J0nvLui8p8kU+9r2zfp+xbbk4gPrjSoO+alN6UWsbch/3B7rlxGZwnfut7E0BRieIHmzAv5WqqmZxm8v9pg2kpZaTpvjDLeixwbBQmb44jNsUJK3Oz6VbG9kLF4XqISJRz5Ll9tuaXpwKL55tGv54fuE2leoJUU0QUqr+YY5IW6b1fb7is57SRKebQ9U87Xusad/ktNtttdXyHdBcfScM87wiR/Je9Vrsk6IEtNUq/KTT5cG7PUdBgE6YU2pgAGQULLU6ZYNzsueqlDnEtK2rJeUeV2Zgkb5TuwV9fvvGIcpDwbBOSFLN8Nu9QkVnFvqYZvG9iGan67lnIU7NcdHu3MqzW/V87komNe6lj2as6+5o+ha6y2FFpp8d7XHYWuLwpZUWWnpcPim0QhVTPW7eiV9iyoHPykSLIoVXXWOEhLo56j87E7Zf3xpvn6YmBg6Rrfut5WKN8SYLFwvj0YvmUwi2NudpRb98PtQLEyZjHvrzYu3fjjLHGSavs/AX4shPgQqE5tKeWfvbCresMwdY3lUoh0FCTVg8zygjgt8GzFv9WEgohHqWqifFkhSm2YohQ2TLP82AmJlLJqAk2j7BUo5WGv3kUXFXt/pxBlg00XjIOceTlFXWxMd5f8V/jE66OQZ4MQz9KP5fBOo2wfJfO4aHsmSVpAqauyd3Fe9H05TYg9d3FxiS/GoXKLLIqymBVsT2Me7wQUxX5aw5cRQijHHIFgqeZws+fi2gZxlvNgWzWFl0sY6uVdk3jlUGg4isL6ew93+XR9Sprn3Oz6pebal/MOHGyIKsFbl/tbUz7bmJFkBS3f4FrbvbRpx0nodEIIkkxi6q+6nJw2BIIwVeKjL8bhG/2cvVFIhfJY0PiudzxMQ4e84NFuwPooot+wuSG+vL3/+TAkiHOWmw7X2y7t0lVlaxLxeGdOmOXcaHuvOI6dNSxdZ7Xp0q1btD2DB9sBa6OwnEjrRwr9X+RAYxFJVvAHTwb8D37pxoX+nqPiV+71APidBzv8hc7Zr2FzEjEKVLHwnZstWp4aCn2yPuHJbkDdNWj7lzu1BjWJzouCLC8OpcsfFc+HAWGixM7fX23sKy4W7+XetXdSOq4Qgu1ZTBDnDOZpNSw6j1gr3YAVDfZwFNK1tqu0JU0No3SkfNM4+DM0TSh6pFSNr3eWG+RS7itYs7zgySAgyyX3li6/aBBCsNJwGJbFoyYEa+OIJ7sBjqnT+hKaxIeFqQtarsnGJOTJbkDLs0iLAo1Xz/qjouNbF4KElqWLW5pL6rbSB3uyOy/F6pMTN3ocU98nSr742sEYBynPhkGpr/vyXVppOOi6hm1or6zDNC94uhswnCsXMqVr9/K/L2QQviqxO08Ik6JqwCw3lFj9i1HIk50AXReXQrcXwPYsYhxk2IYSsF+qO0RJrhA/mWRnlpyrM+VRIaXk2TAgzSS+pRBxdcfkTt+nkLLamwfzhM2xKtdb3n7E0aX3JSSljqXSSF0gRTu+0gZDUul5LmQFikKxnuRZIPSHRC4lutD26SGeNjxLO3Gz6bD64ywxDhNeDCNsUw0HLUNTDoeOaj4e/B3zOGOndG8Okpy9PbeD+fFXOU7SmPq/An8d+Dlw4k6AEOIK8PeB94GalDITQvwvgD8HPAH+LSllKoT4HwL/HjAA/qKUciKE+BPAXwMi4C9JKZ+f5kPtDV0TNF3Fv6zZOprQFM8/Ua4UC2HPi+DtnzRcS+dWz+PZIMC3lJVxmBwNFQQqN5Esl4d2Ta93PEaBov9cFlXAKCcw8zivEt+9QnMHOeAHwykF9CzjZItaoJoNNzoeuZSvTbajrOBOv8Y0SllpvjpJ+qrE4l1IsqLSy9CFEkGsGUaVYM/ijNWGcmu82nIuvQt+s+uV0PTSQlhTMPqaY+Bb6jmESY5vmSzXlf7Xl4GCOCxqtkHTM9GFyftXGnRr9pe6/g8LU9doeUoP6YOrDW50/Eqc/asQjqFxo+thaOKNi8nlhs1qyyHN5T7tlZPG7Z7PJMxouPv/7WKNixJWv9hTotL5arl037lMpOxqwymLBpVULFAblqFVTSmAaZzRq9tMo4yrbfeNtbdsQ+dWz6dXtxCISlhZCCVeXXeNSoz6y4qfPh8RpQXfu3O5NL5F3Fuq0a/b/Pb9Xf7CGzTHVhtuhdZcaihkRl5IslxyteVSUHClebFT/sOiV7NYrju4ln4qlO0iv9CEeKWoudX1S+2ns+1NRrVG2XeGeZbBzZ5HmhVnaiTM4oV7XU5eyEMt7vfKJYDSo1Jugmc/S6+01ADBNfWqGKyQWULgWforSLK0kKyUtMjLcM4FuNXzmIRZdabspbIYmmCYZF+Joe3euNn1Kz2ucZQQZ8qZernhlG6NX15+4Zg6Xd+m41s0y7xtsW6EUAYalq6RS3ku1zlLssqhzzEMbnQMJaHwGj2bxfrt1JTm5s2ed2ge/mXEIu+Ns4JOJfys7p9t6LTclxo6s/JMnMfZpbybKw2H58MA3zIopKj2k5ZvMS5dMhfndq+mDAJ0cTE1pXJuVYgiY0+z6SDFfm99s7iPB9f8ZYVeukGm+atDzLpjIqWqYXP5UntU05Qr6CzOzkVCxdCUwP31tndmIELNMbnZ9bF07eSNkDeMjm8RpwW+bRBnRTlAOfrdWuR0Ur6svW92fcbhy1rtX4Y4yRu6I6X8P57hZw+AXwf+NoAQog/8cSnlrwoh/pfAf0cI8XeA/ynwR4B/A/ifAP858L8G/lVUU+uvohpXJ44kKxSfvDxsb/d98kJNMh5sz8iKly5lrqVXYtyHQc9nccbjnTmWoXGn558r3UdKyePdgHmcsdJ0uLtU4/kwxNSU/kiUKmvvBeR4Wmq6LFBGt7o+g3l8qJuZqWsX1sF/vDNnFmcsN5xXfodnGfsOu6WGg23oGLqovr47iyvdgL0F15WWh2PGxzpMLZ7FJFTOQg3HPPa5dH2LKM3p+NaJ3N/irLTyPqQgDJOcRztzhIA7ff9MReM0SnmyGxz6Xh1MTm/1fGalmN2zwRzfMliq2+RFwVLTof0aXZA3iSjNebg9r2y49x4qB9+vpmdyU/MoCkmSZawNU/p1h6Zr4tk619qXX4jtjahE5Czoc1lRUEi40fErJNKzQcDGOKLtm9zu1S69eVkUkijLcU2dGx2PWdQkTAveWqpX78T6WE0Le3WbOz3/SxM2XGo4PBkEzOKcIM7eiOoqhKDjmcSZPJGY97NBwChIK5t629Dp119dg0os1ybOVZN3GqZo2kvnRtd6dTp9XnHUHqlpYh+N43rbY2AnleumsoZXn0vKkH7dPhd9KTicknxvqUZRKAqRcuR6mRwGSUaaSeqOcoi1DW3fPvW6PfIs8cMHuwjBpQufL0IIwQ/udvnt+7tHuhiNQ0WlsA2NO/39e0RRFGxMIpquyb1+jYZrVme3rgmWmzaTMKVfcy5t3RaF5OHOnCjNudJ0uNH1yIqXxXFeKF1L11QDsShVwuVN16yu8WbXZ2sSUTsksT3M/vo0ca3tMXHSQ62u67ZBIBbvpLr3C0r74505hZS8vVTDOaS4Xm44bE+jE+UGixBCnKppsEBltX2zooPoB9Y3qCHhJFQ6QZqmho6zOMXUBY5pUK90sIpzpVBtjCO2p0rC4iAS5uCe6Vo6d/o+kyhFE4KWYyKlolu+KeUtSnM+Whtzu+dXOeAiR0/yAsGrOQ+oPEvXxD736beW67wYhfTrVulka5wLkjjOCj58MWa1ebjDrJQvnSs1TRV+iwLQKRG5N3oeYfLSXfhqy6VmGyVzQKPpnV/t0PUtxkGCZSgHusValVKyOYlxTEVR33tO6ppCGB1c35cZC6ZHkOSv3Ou6Y7KXJ9HylNZUGOcUsmB7GtFyLVYaDtuz6NJQ5Jq20EqN1HsqYXsaYWiKJuxaetUoOGoPKQrJo13l6na1dXaHd6d0lwuSbB9tNc0LtiYRpq6GIU3X5FbP21cvHpUngULaPN6dK0OVXu1cWSSOqZDYqs51SwOsjDgvKv3ju0s+QZzvowwvjF/2xt6a5DS1l21o1GydzhmbXEUhmccZ0yjlRsejfknSLkpeQeCY2j7n6EXsTCOyvKDpqffQMdU+nmRF9U5ahkavZh257r6KcZK7+yMhxH8C/D32U/n+8HX/SEoZAdGeROa7wD8v//wbwF8EPgZ+XqKpfgP4G0IIDwillFPg94QQ/+kpPk9l45rlkqttJY64SMZHQUKUFtWBkhfKZaYoFPd6qe7wbBhg6ho3Ox6aJhgFCVIqF6p5nJ/b4ZJkBfe3pjzeDUqb8IReza6gqYN5wuOdOYYueHu5TpwVFQf7ekcJoT0bBsRpQV5wJAXjNJHmBZ9uTFgpbaKP+p5ppKYEo+Bk8NW9U8n1Ucg//3yb7UnMe1fq/OBur+r2L2DWRZksH7Xp6JqCxd/fmjFPMt5aqvHuSuO1B+1C6DfNVUKkvQbWOI1SHu8ECKGaQgeLuUmUsjYKlTOIqXGr92oxHZfP90bHP3STHwVp9V4FaU7jNcmfqWvUHYMfPtzhJ88mOKbGv/L+8isOLVGal+6SJ0s4jnvekzCtxFunUXZsAdJwTB5tz/hnn20xj3O+daPJr97r77ueLC+Q5Wc6S2S5aiid5uAczhOeD8PS1UY9K13T0CSsjQLSQpLmkvVRyDzOkUhWmmcXLiwKlXCftmB7WNrR1hyD6yW90DYEa6MIiWpY39+aESQ5caYOmIsWoz4qTF1UDeRRmbCvT8JSoP10e9HPno/4p59sAZL/7neuEaX5kTo/RSErmtRgnrxWU2QeZ2xO1JG1NgwZBAkagrdX6pWOS5IVr7gEniRet7737pHDY/ZITRPMoozNScSPng5Yqrl87VqDd1ca+9Z3XsgL0XjSNcG4FK/WhKJU1myjSgClVBo/hqZhGoK3l5TLy2Jgk+YKiXoe0+EfPtrl3ZXGhTmknSR+5W6Pv/uTNT7fnO1zRFo8b4FASqU3sbhXi/iDJ0NeDCPmScb7qw3GUcrNUi9M0wRLdedIDcSLiCjN+XxzyothyGrTZRJl+2jfUkrub02Zx2pIdKXl7suHFpbU0yhlZ5awW7r5nWcxuDAmOSxejEKG8xTTUEijcZAhhNLQeDEIeLAz5/HOnD/9tVXMA+virO51i/PpuPMb1NoGdZZfa5/sM0ZpzqcbEx5sz5hFGXf6Nd6/0jh0rzvuPD/u/FauvYvrO94uXtcEa6WcwkKvUzXaXjqeSSkrNOBJ8wwp4flAaTp+50YHKSWfbSqtNSFUQ+Jmz9sn67Azi1kfRQhBqcWm3rlFHnfeEaVK40jXxKFF2/o4YneWEKU5hq6YCmmh7sO9fp2mZ74y5NBe826/SWR5wSzKyAt13XFWVGvy880pH69NQUhW6gqF/GwY8Is32yw1nDduJJ8kXnd+J3lRuoPDMEiPLZAX2m8/ez4iKxTi9NffW6LpvdybF/SvixgkxqXD9N795J9/tsWzQUheFPzCzQ63esfnO3FWEFSfO3nte7E2Co9ELydZUTUZF5HmBb/7YIefPB3T8kx+7e0et3u1U6EvJ1FKUbxswFjG69/bSZSyPooObZaA+jlqfaj/vloihIMk4yfPhny2MUMr8/EPrjap2caJmkwHaxK7dvS/SfOCJ7sBoMTC/9mn2/wLZ8hf/t4t7BOcYQuKdVFqN+eFGqR49uUhj1xL595SjTjLq2b4Ij5aG/PDh7vEac53b3X4xvU2lqGV4JD9P+e06+5gHPe8zztOUtV8u/z/7+35mgT+xCl/VwuYlH8eA+0jvtbe8zWAU92JYZDyZHfO82HIysDh+3e6lUhhmKoHI6XacAZz1dyo2wrVsTuPiVOlQzWNM5quSce3mEYZpq5RO0cI5ChMCJKMRztzNiYhf/prq8o6eRZjGxpPBwFPdgNMXfG+93Jts0JSlE0NgK1ySvumlJQsl6SZLKdsh29MimJkMomOfrmnUUqaK2rdwQUcpqqoLpBsTSJ2ZjG+bTAKFDS77VmVSN9yw66e3fY0ZrP8nIt7kGRFxUvOy2bT7kzZc9dt85Vm3SzO+HxzwjTMee9KfV+RoKaYGW3PrN6TMM1YH4WvTMYdQ1MIHO2lIN7BKApJmCjnusPslTu+xSzOsAztFfrSOEyRcj8suyhtprOiYBrlbE5CbnZ9ojRnFKRMwpS4FPXTNWVhfLP7eqj2cc+74ZoMAyXkejDJD5OceZLRcs0DKIqCKC2I0oWToJp2b8/i0slPHbh1x2AWZ4c+p4OR5pJJlGIbi8ZMRte3udlVvPoFpfCohGvfuk8LhAbTMGNrGpHkBe+s1BnMkqogd0xdWcKeIrLS6abrmzzcmTOLcwxNcKevpsRxlld0s6MO4Gjx3iU5WaHcXXZnMUmW8+5qk3Ea49s6caau8SgXtcsIY+8+4FtszyLSTDLMUpbqxakaKOvDgH/xeICUkg+uNpFSFVP9ev7KM9U0QadmVY38vZGXTouepabUC4cjKRUSbThPKpvpGyWK4fkwRNcE95YUzfeoveNgvG59mwfuzSKklAwDhZTYmzTm5fXFacE0StmaRLy70qjWtm1orI8j8kKiKUmGQ9GqZ4lRkGIaGllRkBdF9d4/3Q348dMhSw2lYVG3NdJMVvtsmCiHn81JzDzOuLdUx7cVQnmxl/dq9omLhThTVu7/5ne/HH2pRfzgnqIR/vb9nX2NqcXz9m2F/rUNrbpX4yBFIiv9ilmcMghinuxmPBsEmCWNoOVZF2bZfVgs9trdecyzYcCvvdVXf5/FilLkmjzYmhNnBfM4Y7XpVHnGXpe8SvQ1VA5ZbzoEWziiprk8Zj9UCLQgzrjWdrEMHSmh6RkMQoXsSTLJKEzoH9Lwm0QpQZzTrVknGoSESc6D7Rlw/PkNSsB6ZxZXLlN7f292RP6zyD2H84Q4L0r0wEvdk51ZrJBEWcFwnpIXBaauKapTdz9C9rjzu1dXTsRtzzq0kFrsl66l41mG+r2pRErV1N8mwjE10rwgTCWzKGNrGvJ4J6DhmPza2/0TrW8JJHmObVhsTUK+2JqxNlK5XMM1qGOSl05cUarysKe7qukoESzXHfqNiz3rBJAWRUV7Ohh5IdkYR2xNQ1aaLnku+WJ7StNVzIbv3elV92ISpeS5pHXI83/TWAzed6Yxz0chUkpcQ+Nuqcm6MMxAKjmMtfEMS9dYG4U0XJNZWde8KQrudfG689vSVZNnFmf0avvf2cWz33t9CwH5eaycFNfHIWGcMk/V1zWhDAd0TdD2THbnCU33VYTgSSMvJI92ZiSlHlKYFNimxlLNJsoKOp6phtJpVtYfcp/z5sE1tQjHVMPlIMlf2xTIcqXlB6qx8uGLMUt1VQftzmLWRhGGLlhtOkRpQcszmccZG+OYXKr95DAdpYO50cFouRbjMMXQxImofjtTlc8nByjhm5OI7akygGg4FjVHxzWVQ6DKrxf1QUacqeFOvsdVfm+MAqVbu7eu3VuTNI5pvE3CtNpb53HGDx/u0K85RL+UY5+grTCNsqqZGKRZ9fwumzL88dqYLzZnqun4Vq/SZnyyq3S5slzVV8N5wvIRiNvFuhvMY4TQSfPiVHvAUc/7ouLYN1BK+cfP6XeNgKvlnxvl30fln/d+bbjna3CErpUQ4q8AfwXgxo2XyezONOLB1oyfPB9xpenSsM0qsejXbNKSp7lwgVtuOISJSnzisnBWtDP14nqWce4OBrM4AwmbkxhZSHzTJE4L1sdh5TCyM40YBirpcU0lZJgVBUgF4xVCcK3t8mR3Ti4lTwcBN4T3RpPrRdJzXIPrdZt+kGQ83nnprrHccNiZKdvztmdxq+sxmjf58bMhTddiFKQ0HIVokVIyi9Lq5Z/FGUvlz92dx9WBp67BRROq6bDSeOmwMpgnFMVL69m9BXKQqA08Tgs+W5/QLTVdFsg5WTZ/FI0q48H2jLVBxNYk5oOrDRqOgj83XJN3VxuESU7vqOJQKLefo6YWvn34ezUOU56WTgxRmtOvO7y3qkTvfulWl91ZUvKHNZJMTaaitODJ7pwbXY/BLFGUASEYBulrG1PHPW/H1PcVZ4tY3K8kK/hpoJ7rOysNfNvgTr/G1jTis40pS3WHnVmCJtS7Pg5TtHJCujYKqdkm4zA9dpPMStHOlaZy8HgxVOLCYZIjhHp+W1N47wBqbhoptxpDEzRc5XKz0ELRNIlr6fjCIMkKrnVc6o7J2yv1U7s/AaRZwcY4opAFYVKwM42rRtNq0+HpIMDQNHbnonKOA9VUHgQJXd/mWttlGKR0Sj0kXQe7hPBmRUG/ZtNwDLIC+nX7S6PxLaJft5WgvGuQS0mYxHi2fmqNlmmUsTuPEcDaWO0drqUf6Vh2teUeSsG7vzXli80Zpq6VdDDBStOmkEr7YXMSESQZg3nCixJBB+p9jrL8tXvHK3HM+j5sj9yaxmxNYvW+G4I8V3D0a20Xz9LZnkbEqcQzjZLmrdwGgyTDtXSKAjZnykhgdx6fS2Oq7hjl/2rc6dWqd0pNGgUb45h3VxoEScZS/eU+2/Gt0szCIExyfuuLbTzL4Ns3W+xME6SUpHlx4kbMT5+NidKC739J+lKLuNb2uNn1+J0HO/zbv3r75X8on/dqcz99ZBQkPNyeK5p9IQHJeyuNck9WlNtJmPLLTofhPOVK83DJgPMOhQxWQufTMKNXs3k2CFhtOJWD1yRMmURq/73edjB0raJc7E2+F2snTlWjpumdDY1UXVtW8Fv3d7jW8hjMDz9jAJbqFg+3Z3RrFq6l0/Yt3FKe4V7f58O1Cb26iWPojMN03zUlJcJcodtybvX8I+UaFhGUuj3AsesbVHP4IGJzHmc8KfOfLC9ouCafrk8wdY13Vxvqc7g2PV8VuksNm6WGWsejecJ6+WxmSUrNMtmcxCw3bIoYoizfd54fd34fh9D7fHPKNMywTaV3JwTc6Lj4ts7mVA0awjRHAx5tzwDBz59P8CyDUZgyT7Jji0NQ5hP3lmoK4ZMpqtnaKAQkv3CrhW0Y+LbOKEgqh+XNSUSQFmRZwdo4pFNq91xUmIbGvaVatV9NohRdiAqR3PUtdB1udjwKCVGSKfrTzhxL13k+DLjZ9fc9/zQvjmxqnjWCJC+1pQq2JxF112BnFrPUVOvaFIKub9JvOLyzXGMYJoyDjGmsGlqLBsVBtP15x1HntxDi0MZ2UeaUQZwzjlKW6zZ3ejUajslqy+GXbrf52YsxS3WHTzdnmPpiD5aAygE3JhGGpjEKUlabxZlkV2ZxRpio+mNjHNN0LSZhyqwEJzzenbFUV0ZE37zWYrXl0vIsgliBDLanEa5l4NsG76zUq/NSCHEikyJD1/BtnXmck+WqSbwzU83xBeIlzQs+35xiG7pqghZqyLAz13lvtc7bS3WeDwNmcVahKZ8PAyahQpweZjLhWvq+vPS4aLom8zjHtfb/nJ1ZTJZLtiYJDUft30t1l51ZzHsrdVquybWWy4thQNNVTbCmZ5IXkk/XJyR5UeUbi3PqBl61xx1VkxwWCxf6osxFRvMUJBgnbBZ75RAqLyQNVwm1h8nZmRRnjbVRRCFhME8JkpwwLdgcx6WhV05k5zQck61pzDhKKaRCeO1tgCpjA5dZrJptTwfBqZCnRz3vi4pj77AQYhn43wFXpJR/WgjxPvB9KeV/dcrf9S+Afxf4z4A/CfwQ+Bz4mhBCX3xNShkIIVwhRA2lMfXxYT9MSvk3gL8B8Iu/+ItVy1UrBS2LXG3AG5OAKM1ZH4dsTWMldl5SFlquVfLoFdzeNvTSTpELg+otGg/qUDfU9C9ImMcpCFGinwwcw6Bmm0zjlOfDiDs9/5Uko+0ri+FFMsMbOhjYhsYHV15PiXtdFKX2w5PdOUt1h6LM8tZHSutgYxTRf7tHwzO51a8Rxkr3R0rJg+0pkzDj2zda9Oo2QZLvS/o6vsXWJK6ST9vQudOvkReSYZAwjzN826DtW2yMI+qO8Uph2fEsGo7BZhKzPUt4sDXj3lINuQeOJksBvmttj4/XJ0RJwR8+HbA9i2m6BveW6vTrdqXNctS9ck391NacYZLzxeaUnWlCmGRszWK+2Jxh6PD2shLp/tW3+kzCjDDN+Hh9wtPdgJpt0PUtPFNnqWEzCZVjYeuY4uGsz3sxzdQ1wYtRwBMRsjGJ+NNfW8UyNH7xVoe2Z1NIycOdGWmmYKRd36LmGviWQb9usTNT9rAn7dw3bIOGY+KaOnkueTEKyaVkteHu+wxpXpS20jFpLklQkOFFQXl/a8rTQcgkTLjdr/Hucp3aOQlVWrrOctNmVNqrKyRbztoopF9zaOrq90ipEFGPduZ4lsHWNOKDK81q8v1iFLI5ilgfR9zq+by/2sD+EhFSByPNC+5vqWZup2ahCdU8NnSHQsLB3tQsVo3WTqkbsTd8W6fn28yTnCSRFXz5NPFsEPCz52PSsqH0w0e76ELjdt/nbr/G/c0pGqJE/yihWCVKXdCt2dRtg+Q1e8fBOO36DpOcL7amzMIcSxdEec7mOObJYM6/8t4yq02Xb15rE6UFmgaPduZ8+GKMY+jc7nk0XIs0L6g5OlH6UiD2TcMpPwfsP/OansEsNjB01ew3NA3L0BjOEzZLrY3rHVchvKaKIhlnBZMwrZLKcZSy3DiZLfvvlvpS37395ehL7Y0f3O3x93+6Rpa/LG6Oet6705jfezQgzQtWmzb3+nUGQUxWFOhClIga1cRreZen6/Ko1JUKU6UnszWNqTkGmvYSMdV2La40XR7vzpnGGetjRfk72GwwdI0rLfelyco5OCVJqfZA+Zof1nAtlpsOHz0fYxoa75X3f2McMg4Vhf9K06kcnfYirPfeZk0IHu/MmUZZpbdzWLQ8i3mcU0h5pvMb1K0ZBQnDEkX3bBDw46cjPEsVYNfaHg3P4F6JcLnT9zE1jY9ejHk2DHAMnW7NZrXhkhWSu0s+UaqoWs4BZNlZzu+FDEGc5qwN1fnS9kxu9DwsXce3Db5xvVU1CZI85w+fDnmwM+OtpTp3+j7jUKFdTmpUEWdKJ+x2t0acF+gaJXXHYBLmXGmZPNoJiLOcF6OQay2Pjq8c2BZFVK9mc/UCdSr3Pu+dWczDrTnjKOXrVxusNN0KmZ0XBd+73WUcpayPI5K0YHcW82h7zkrzZc4L57JMXom2ZzGPM3Jp03QtZkmGaWjszBKGs4Q/eDqgbpulrplqtCpNGUu5Q6LQ9xcZpz2/pZQ82Z3zaHteMgNSng9CngwC/tjbfXo1m5ZrYuq6kjjZDbBKeYsbHaWjZBkalq6xNY1PpSt3MHxLxzE1krzg3lKNWZzjOxovhhHTMGUaK7T+d653eGu5hmPqzOOM3/xim/VRhGtp+JaJpqla895S7dTXsqhrdF0JWXdLZNlSw67oo3/4ZMg4yLi75NPyLHLgRsej7SvwxecbM4QADbWvFVINagdzlZe+qZN3t2bTPiSX6/oKRXp3SWm39uuOGmRvTRkHCe9faXK96xGkqsG6QGdtTSJ+9nzMPM5I8pymq5gzCv12tnXvmKpRp5akwLfNV1B6oPbEhcnG3v2+KCCIsxLV5fJ0V6HW6056qU7o95Zr/OjJEEsTPNyeEWcqd7UNnZWW0uxSgwJFO605Bo+257y72qgkiUCduYv9aW/Ne5I46nlfVJzkZPm/AP9n4D8q//458P8AXtuYEkKYwD8Avgn8I+A/BP4bIcRvAU+B/0Ppyvc3gd9EIaX+YvnP/xrwT1CufH/5FJ+Hd1cb6JrgyU6AUVIm1kYhm+OYj16MWJ9E9Os2v3ynS7dncbXd3PfvcynZmig63V7kxOZEwROX6vaJNDAWYom6doC2UUgmYcIfPh3RsFVTyrV0RT1sOjila4ukQBNqghsmudKs0V4tTLu+hUAlX66lszuLqTvmmbVI3uTFmyeK997xLUxDQbABJJKtaUSU5fTWbXRNbWAzXYme/s7DXe5vTrFMnZ8+H/Fnv3W14iSDupeWrnGz670ywVwbhYxKaGfXV9ONGx1vn4jeIgxd4/t3e/zm51tM44xxSX9zLZ3bPTXtavsWw3nC7jxmpWEzDlJGga42+80Zbc+qdFX23qvdWcw0TklSdaDA6ZubgyDBNnRqroFnCT7dnJDmki82VFK4NY0J4oz1SUCSKpenQRBjGRo3ex53+yrZPWrwMY8V/HgvxPy0z1vBrXP6DbvU54Hn44C8UM0gy9DYnkbM4pRRkDCPc9VpNzW6dYt3VxrV5HPlEGeqNFfFrbJDVe/7YpppmTp3l2osNWw+25hiaIJCQr9u0fatfWiPMMlLumxOzdKxymfydDDnR48H7M7SUggw56fPx3z7ZgtNCJ6XGnPX296h92YSpcji1Sm1ZSq0waJx2vEsBvOEWZwxj/Oq4FtMCzcnMdvTmGmUMY0yao5eNVc3xiE/fjLkaYmGm0QpP3s+5t3VOo6p83QQIFAN9cOK/sOe83lHEGf81hc7JHnBD+50mMQZg1nC83Li/e5Kvfrd6+OQzzamtFyLMMlfQRP90bf7fLoxIy8KvnmjdeprWVDeVlsOzwcBK02bL7ZmhImilN7qeHy4NmYWZ7iWxkrTZmsaMZwrXcGGo+5Tr2YfiZZbvJd799bT3NvdeUzdVpPBlYbDJ+tjXowCplHK02GgNK8ErI8DarbJ/emMzXGEbep860brWOTRYevmpHHY5/jOjTa3eglbk5hP1selI5EqzpqeyXAWUMiCB9tzLF3DMgXNUjDZtfSSAmgQHKHLOIsz0vIdBfjtBzt8cOXL1ZdaxK/c6/J///2n/OzFmO/ceCkedNh9ivOCuqMziyTTKOPHzwcVYuJay6XbcLF1jXtL9TfWZsoLlVN41vE6McN5wpPBnOEsZnOWULMMDF3tl46lk+WSaZKS5eoZtD2rRBocXgT0yubzwglsQXk+S5i6xvfvdCmkPPSc3hvro5CoRD99/UoTzzYYBqr5OYvBNTR++GgISL5/t7unMSUqY5ulutoPQCGuj2pM6dp+NMdZ9s6abWCbGk3PQEqlJxMkGZvTkDsDj65vs1x30IVgMEv4dGOCLOBHT4fkuaThGHz7Rvu1qPUozZmXroOnPb93pjFpptZxmCmkqm1qJFnBJMwwNVgD0lTJBSR5wThIMTT1Pd+/2zsSuaRQ3mogtve6VBNSME8ylhoO37jW4h9+uMEfPt3l8e6Me0t1bEPlySt1h6WGTdNV8gm//2gXU9cYzBNWm8o0IEpzglLA+zxRVIvnPZwn/MbH6wSZojf/qYbDpxtTZpGik2ma4E6/xothiGsZeLYy01i8W9faqqloG5pCGLrncw5necE//HAd3zL4xvUm66OIaZQxnCfUHLPSgssKyc9ejFhuuOWaldzsKgOoSZS+EdrxIiIsc8rlps0syknyjEfbc+ZxytOez1vLKvfdnkQ8G4Us12weDeZcb3vMk5z3Vl/mlIch1Ba1mKFr+9AusjzPLEOrkHFGKbC/Nx7tzAHJ55sz7vU8nu7OlAOia7DcdHkxCni4M2c4T3hnqUbHN9F1jTRXZ8JZdMZ0TWDpmsqVyh7CQl/tyc6MJ4M5YZyzNQv4o28vUbN1bNMiKwo+Wh/zeHeGbxtcaan7ca3tsjkOK6ffYxHhJ4jFGs+Kl+fBStPZZ+CQ5QU/fzFmfRKxNlY0v6ttD8vQ6TcslmrKjfT5KOThzoyabTAOFFq07ZsIeKOcQJROlE3X4Js3Wnznegt/Tw0ZJArhOAoSWp5VNfqzvOBnz0d8tD6m5Vp8vjljbRRyf2vK2yv1C2lMSckr9fvaKGQWpVxruXz0YszTYcCtTo23l2u4ts7Pn48RAuI0p+Upgy9lEqIxizJme1CtWiktMo3O5nR4mQyNIxtTQghDSpkBPSnl/1MI8VcBSqHyV0msB0JKmaJQUHvj94C/fuD7/hbwtw587TdQAumnDlNXbjl/8r1lpnHKnb5yGHAtjSelWHicFdybx7x3SAW/MY4quphX8oTzQjWrQBWUexdKmOSq6HD2w9u3ZzGbY/Vv7vRfvsRtzyRIcrYmEY+TDM826WsasyRD1zQajsYkSml5FoYmaPkmNds8ktay0GXSNMFnG1OSrMA2E95evlio7mHhmjq2qSGEWRX2eSFpuSaykBiaxjzOuN7xyPKC622XP3wy5P7WjI1xjOforDRdNsfRvqntUfcyLxRabFFwro9CZnHO2jji+3e7hybOhZQ4lsG07IQ7prqvvm1Uh9PaOKQowDENvvNuh5vbcx7vzqg5irJ0cH1Gaa4QAiWn+azOOg3HYDhP6NUsrrZcng5CslKYeWeW8On6mJ8/H2ObOnmhkCVJLtVEXn99kRClyklQSkUJOKoAOS6sUu8C4HrbRKCsc31bJ5eST9Yn3N+asT4O6NUcJqE6+Lv1k01YF00lQxcV1dHQxL5nWXdMvnGtpfTJykn0YaEEXG0MTWMaZ3iWobjSuWRjGlK3DbYmMZah82wQ4lk6YVIQUjD1slcSuAXaEeCqdGl7ColQSPmKPbBRuqP0Csn2LEYIRSVeJKgLpECvZhGlBb5lsDYKeWu5zuZYNXF35zG2obMzjVlpuDzZDViq2xXvXek47G+k7H3OYZpzpeUyDlOmR4hpnjUe784ZBMpNbmcW0605fPhiDFI1rcZhWiIQMtZKEeO8kNX0b2/M0oLv3uqwMY1ORA05GLaxeCct3nqnRs1Wz1NKhZz46fMRT3YVYuJKy2V7qpL3eZwzs7LXojaqz7szJ0oLTCM+FeR9EQ33ZeFys+tjCAXNNnWlV/dga8ZHa2Me7yhKyMYkRBMC29QxT5AQvLw+cabrOxiGrinaxPqEeZSzMY4rvazdWUSSFQgEkzCjWzO53a3hWgZpru5mr2Zj6uJQXcYwyXm0PQfU+VVI+PHTIf/2r9x+5Xu/jFjQCX/n/s6+xtTBiLOcuqNQtM8GAVfbDv+fjzd5PgoRKG1Io9wXNifRGyezTwcBsyhD016lLe+NLFdiwINZwuPtOeM453rbqZoZvmUwCGJ0odGqW6zqmtqfjqCG5oVUTsY1mye789dSQk4Shi4OpcBnecHmNMba4/g6j1PGYUKaF1UOtJj4J2nOi3HI2kg5St7oeLyzopr7gyCp9slJnNKtKQ2Vi3Iq3hvX2h67s6TUz9IIkpxplOLbJuvjkOsdZVn+s7URG+MY39Kr4VqvYWGbR9/TBeWpOKPUh9qTQ7o1izDNWWo4eJZByzWZaRk/fDRQ6JpMlmK7knmSsdp0udryjmwExdlLs4QwzfdRrTVNuUo1PVMNBIKk0vB6FM1xTZ3lhoNnmfTqCtG2MKm506+xM1X3cpFPVgL94cUgF8IkZ3uelrIUCsWT5gVBkgGCtBQf79Ucmq6l0LclrRkUkyFIMh5sqT0uaZwPpS8oEfVxXhDEKaZhsDuPqdk60zDjV9/qshPEzKOcpmOqJmQuudWzqkL3MlzsThuOoZd5uMGtqzXGgcM0yjA0jayQfL455ZP1CQ+35/RqNh9vTOjXHbJ8L/rj6DNS6dO+rB8Wef7GJGJnqvScFuinw0JKSRAXdGoWj3YDNE3wk6cjdqYxH1xpVgAI19D4+rUmy0230q58E3OavJBVvnlNKic/KSWb0xjX1PjoxYRe3ebHT0f8+vvLGEIgkaxFOaauURSShmNSFAphc2epxuZY6ZSeVm7hdZFmCj1/2Hlg6BqGEBi64MUwpJAF97fmdGs2v/6eEmpZH0UlMtzHM3WFKnVNCsmZGiiHha4Jvnm1wfWutw8JvZBvUQ3dgu2ZXcrPJKRZzuY4oigk7yzXWR+r+vLxthoonkZc/iQRZwVrowjLSHhnpa56C7OEMM15UubbG6V+V83WeWu5Tt01SbMc33IwNMGNjke/ZvN8FGLq2itauUoY/csxTDpNvO4Kfx/4DjAXQnQp+7ZCiO+hhMq/spEVEk0XeKUNb802aLgmH1xp8LNnY3JZYArBo90Z767sh2u/5ASDob20evZsnSDOXxGGez5UqIZRkFJffZks7k0c9sJ7CwlZkbM5jckLZel4ra2mSNfaHmlesDNLmEUZ/Yb9Wi745iQqC2ut5PCr37NXjO+yIkrzCq1k6VqVRHyxNS15+BqZVMfHpxsTgiTn3eUarqlXTlm9msmNrv9KMXPYvUyygp8+G/F0MMexNHoNn515zPpYaVXtved7QxeClmfiW4bqyB8yyaqX2ke+rZKhe8s1rrYdHu/M2ZoqNF0YZ9imQrdpZVfeMTVyWXDW4VjdUe/o82HA452AlaaLYwjSQvLffL6t6AhxiiE0bvRc3l5u4Bgaqy2HXu31iY+aWqo/v8n7oZXw5IXTnZSCt5bqFLLgk/UJHz4fMwoVUmrh0Hajq9BCK0332Ann4rkVUh5p2Q4Kun3lEJ0hUJBmJY6t6IJCKOpnnOVsTGLVPKxbhKkkyjOaroGpCxqOWaEcD3Of2At/zUt3uEXD+nX367AJ/XLdUU5numBzooQFHVOnKCSDIGUSKrFF1zSAgkwWlQHD1lT9zsO47nufc1EKcz4rqS7nGUJAnCgTg9WmQ6/ucK3lMI1youylG4uuCWxDZ7XlEKd5aWGd7Gvup5n6zJrQzjTFE0JU1NrHu3O2pkoE0tAE97emfLo5JYhyXEtR9CxDUDcMXEvjds8/0URuIcJ61oKwUa7trJB8sTkjyXJudX2COOPT9SnjMCXPC3bnSkPq/StNvLLRf5KipjiHtX1YOKZO07NwbR0hBA1X5+kgYXeW8GI4xzN1fNvlbr/GIEiJS5rh63QI95+HkiDOSHOFePkqRLdm895qg9++v8v/7E+8dej3LPRwNE2ZYcySjC82Z/QbNoNpTKEJ3urXWG65pJk8F+OUlzD8Y2hCUqE+JmGqaAhFXtHQm66Js6wzCiy2p2pvvNH1jtTNyPKCL7ZmZLksqUr7fs25xsYkqjQ257ESx226Fi0vo+XZbJZn79WWQ5oVjHPJPC5wLQ3X1PBshQoDKs0kKdWfG3XzyPPivONKy2Wl4RBlOfe3ZnR9i+W6zSRK+WJrymcbU252PbYnMcN5jIbFt6+3KJBcabmvpb5KeKO9vFMWt2ujiJpt4Pd0giRnECR8+HzC82HAYG5xreMqPS/b4r3VJv26/VrR333nzoE9yDYUCmUSpWyOY8K0oOEaNFyFqNQ06NRsWp7JzixWOqN5gSY0bnQ8Prji7KGjyH3n20VEt2bhmAIKA9fU+GxjSl5ITF3QqdlYpbbP04EyJ/q1t3o0DqCi9u7D57Ul65pgHufkUpIUElNILE3w6caUJJNc67j88XeW+XR9XA4WTAopWW1dnhPoWULTBG8t14nTnAfbioJ8s+Nj6BqPd+Y8HQQURc72NKbjWXztarNCNt/u+cc2x/fe/4O12GFfPxjXOx5xltP2TSaheu4Pd+aYump63er63Gi7SCTTOCMbhdxb8rEN/dwQ64v8QwjlGvn+aoswLSgKxSiIUjXsUfrISh5DF4KP1ibME2VOslR36Pk2YZpXhgnn6fJ71B282vH4WtSk69vEac7H6xMKFBroo7UJYao0EO/1ayR5QZor46crTfccUToChKaa4nv2qZ1ZjJSSmqPT8e2Kru6YGvNEaSSvNByut13qrsmT3YAkz1/r6n722F+/W4ZyQgalR5wWkiDO0QWMo0zpeGYFw0CZbeSFxNAEd/s1PrhAtsRlxOuypcWn+veBvwfcFUL8NtAH/nsXfWFvEkGcVeiMOCuoO6rofH+1wTxWDZRHuwGDIMM19/NtV5oOnq0resKeRXun55OVnee9YegapAVGyQdexFLdRhPqvy86q+Mg5cHOlO1ZwtWmwzzJeXulzrdutLlTCpE5pk7NNhSa5xhKxmICmmQFaV5wu+e/IgJ6WfFkNyDJVFPt/StqYp/mBWmmkFK+Y9Krq0nSx2sTejWbtXHMD+52udnz0DWN1aZDkhevUFEOu5dRpqyGdU3DMQxWGy6yAB1By7Ne6mEcCE1TjZT4gJDo3rjecVnObaw9z/r5MGRtEjELFTrrp8/H1F2DOz2lXfTWco04K/BNnTN3plAHT5gWjKOUaZTh1S1lzUxa6jII+g2b91aavLNax9S0E23erqVzveNWbllvGmGq9CcGQULbVQK0wzDFtRVyZbkhuN2r8Y1rLRqncIFRTaWUhnt2S1bLeFnMt331LliGxtY05WrLrZqjG5OYm4bSKLjZ9csJVx1NiFcFCGEAAQAASURBVEPvacuzyAqVGPdqylXxrKFpopre1x2TOMtxTZ20RMBFaU6YZDwfBoqnn0uutZ19ZgyHNfkWjnNRltOrqXWja6KaLp5XaGi8tazoFrf6ytVQCB3HgpWGXU1mHVPnTt8nTJR+iBKq3486bXtKQF3XT25Bfug1aYKgRLBOw4zlho2t6xiioF/XudH1abomLc/kreU6Ak6M+LjV9av38qwhhCDOcrKiYG0cYQhBLlXTVBcplq3z/kqT232P79/ukaMozCe5Jze73htf32HxCzc7LNfnjMKUQqoi0xRCoXfinNWmw/W20oRp+3b1Hr8ufNvgWtslzRUKZxZnOJr4SuhLLeJX7nb5r3/45EjK2rx0+ykKtZfMwoy0yPmz37hCy7HICjAMnRttD0M/W8P1YFxruwzniq75ugb/p5tTRqGiya+2XAxN495Sg6stByFESblQor2Lpv1REWdFtXcEScbVlstgnpRT9/MVQrX2DAWVO7GOLgRvLzXIioJHO/MKUSk0gaFr3Oy6ND0DQ9P4pVud6rPUbIO3lmtVY+qyY7EXCQSuZTBPMsZBSpQopOEoVK6ijqnz7mqNX7jZRRNCaaC+5tnqmhJRnkVnP3uirKhQAg3HoF+zSQqJZ+m0PQtT07jTq1V5nGseX2A75stzp3tEA8vUFDKv5Zrc6vsUcjHB1/n6lQazRAlPDwMl4Nt0LYI024eINkpJh3l8ce5YuiZYabikWUHbt8tCUQ2YujVH5QelmLAQYB9yf+qOydW2S5afT74F6l792W9d4f6WEqIPkpymZzEtHeuG84SGa9Ith5S+rVMrn++/DJGVyMzNaYSGwLMEeaHOnLyAb1xrcrXl8q3rLXzHOPHZeFj9ALDSUMMr29BeiyIxdY33Vpulg2aGqQtMXVGlNIE6w3WNWZKzNY251taJM6mam28QuiZYbSmn1L1r6k5PGaZ883qL9XHIUs3m860Zsyhnexpxb9nnds9na6J0rsKkqPRwJVSI+mmcnUoA+6hYmGYcdR50fIvv3lZDpwfbSuDc1BV7JkoL4lSyM0vo1208Sxk3nbfI+MK1seG9pMnNkqwcAJv0ajbLTaeqnVueVTormyS5RAr41rUmaVqofD3P8U+khHTysA2dft2urkHXBG8v1ckKWWlULqiODccgyQsGs4Q4zxWQpe4wS7JSh+yrh4w8TbzuzvaFEP9++ee/Dfy/Uc2qGEXR+9kFX9uZo+NbKikQSixwEb26Q69m0/BM1keKFjNPsgoJsdjkFslPlhdEWYFvqYPnMPjjzY5X0oT2H06aJl6ZdE8ixdXveDZppyBIC+71X4WQCiGOhdsVhcS3DLISrrn4GZcN1c3ygt25Eh/XBKQFFEWBpimnF7XZqGmmlMqZqlM2jq61XQxd43rnZWPwsAV12L2s22ridqfvcbXlVdQATSjYuPWapFkhYo6+v0KIV66jkBJZqKTZ0jU0Q6MoKGmEqpF5ls1gr4D6PFbOH6tNh41xRK9m4ZTaLpahcbunKABt3z6TlsxZudp7kUuLJmivZrM9VVS6lmcRZTlNx6AoLPyOWV2fZWinKmBU0XR+7/DetdXxlMaRY2rsziOmUco0TpXjTvkMDF0jSLIK6XMw9iaZdcfk7pL/xhPRve+jZQiWmw6moTGNlfOROqRf2g/rpc5GnMlD3+OmZ9LkZQJ2b6l2qIXwm4RpqGuWAFLS9Eyutp1SrHN/IryAD49CZd9+kK7n2QbXOi5JJllunDyJzvOCMCtwDK1qMF1tuWyVOoKupXO17VIIuNvzaZRmF651csH9RZz1vVycLfMkxzGUxkXDMdCFoFNTVMfdecJKy2G5rpABrmmg6wJDfHnrZhEqOfaYRFOV3Gsa17sua5MIyn2hX3vpEHlcU2oRe3U3ZnHG92+0vlIQ81+51+O//K1H/MHjIb/6Vm/ff4vSnJplENuKMnGj47ExURpiddfkF2932J0n+JZC3J7XVNo2jn/GRSHJ8gLH1Fiq29BQbnvLDQftwPt0koaNbWg4pmooLNUdLEM7M1X9qEiygqR0MHPKs3RzEjEJM272/FIEO1NN51lMxzdZaTisy5C8MKg76l06iHq4zOR8cUbuzRnbnkVQDkI128Qx1NmiaZKmY6L3NCRqzzpN86xmGycu2g7mtmGSU7cNQFK3DdqeSV6aVdzseWrPbLk0XPPU6/HguXMw9BI9PI2Sin2gCUG/7tCr29Qzk0c7c+qugWvqGJpG13/1PKg75rnTaIDS5Re2ppEyCkBwr1+j4ZmKlmzrSqfIMaoBgG8bRz67826cCQFfu9pknuQYmlD6UoEykHFMwUpTGU0Mg4R6iVb/sp17XxeLNTOLMyxd6Ty1XJO1YUS3rs7qlm8Q5ybX2y6uWSKBtNPl2ofVD/DyfTxpWIZGmmt0fIeGazGPU16MIhqujmFodEyd7WlcnfFFoWiwnlW6wx3jCnpYHNbUXNQntkHFqLnScnmyE1BzDIWMqiuzgDh7qfkmpVQ5U5JhGTrzKGNzEtH1rTOLxQMV2+B1sTgDlxse37im9nvf0pnGczQNrjTVHqhrygGuXTajF++GZWhnun97f3+3bu1DzbrmS9e95YbzCqDjWimsb+qLWkDgWDp+6Xp+3iEEr5ytmiawys9cs03u9GrK4d5XVGzfMZCR5N6Sj2Xo3OkppN7BfR/UvbRPWY99WfG6k0cHarxK3j2Z//OXGIauHco9v9Jy+fX3lng6CHBNjThTekEfrU3QS2GwxYannOLmJJmi2x1mcQrqxTkpQsk2NAxN0KtZhElGp6YKqpUz8M+fDgKmkbL6Pe9E8TSx0FaSUjJLlMXpP/l4k+WGwwdXmuW1qetL84IwzfnunS5Xmg7eG3TEd+cJcSrRSxcCUBoZbU8JYp43jFHXRGmrbHGt7TMKlSaEEr1UtDbL0Ljbr51YkPPZIGAUpHRqFkJKng5CPFvZtv7CzTYvRiGOobNUtzB1DU0ITENULiWXEeMg5dkwwDI0rrVcPlwbY2gaV9suX7va5MnunEJK3l6p82IYUHeU5sJyXRUZF5FAnjXUtFWhCldbLmvDiHdW6/sgyLuzmLVRhBCqoXNcwXARxfRyw6HjW4zDhAebc252PZbqTvVOR2leOeJdaTmvNIIOhqlrNN3zO4wmUcr2NObFKORW12Mcptzo+ry9XEcgjtT8utuv7eP3L2J7GhPEigJ70gP/8c6cLzZnJb3C4lZXOde1fYtfuNlhY6Lc9a62PVqeha5pdBbuaJewdhZaKEmmTCzmsdJN++a1Frd6NUxDZ1ZqXjUnEbqm0XQNvLLo/CrBsC1Do1OzmEUZddcgmRV8/WqTIMnUECjNSbICieTh9pwsL0rqj32ipkyY5vzgbu/Y77vM+O7tDqYu+M0vtvc1poJE2a4rrUr1TG90fXZnCaahESY5d3o12l6CbR4vUn7eIQSV82SYqNyl4aoi9XWC2oeFlJL72zPSTNLyzAsZeqV5wRdbU4oCenWr0j7s+JZycd1zfvzo8VA5QwYpKw2nlEWQZEVGt+Z8aWfN4sxwTY2kKJhHqvn+zmqdG11PacUMArJc5199v87jQUAhVd7Yq9v7hqfnGVGa82Bbib7f7dcYhylPdgJcS6/+row+XD7ZmOKYBk1P6VueRevvdZHmhZJwiHMsQzAIEiZRxq2uxzeuN5QWja5VDqGX3VDJC8lPn42wDK3Scqu7Bm/v0c0pCqWft8jv7pwD2uS0IYTgdk+hd7s1m3g9Y1QOsn3L4H6pvyWOQH1/FSLNCx5sK3qwY2oM5ymaBt+81uJG18c0NCYl4nl3ntAtKVbLDRtL10+9j51n+LbBzZ4ypNqaCBquhWcZ9Os2G+OI5aZT6at9tjFhHKZKDF3TmJcC7wfd1c8jrrRc/rVvrPBiFAIK8bf37J1GKZ9tTNmaKB3PrFDOo1uljMTrqPfnGR3fQhM1tiYxcVZwu1fjSsNhHKdoQlTMBVA53uZENYkbjtLorDtncxSUUoIUbIwjmqVro6lrvLtSVy7Sh6yV1YaDY2jYphqWxFlBmue8GGWle/P5mi8cF21f1Vbz8l4lmeR2z8c1NW50X96TaZTy6foUx9K411emK+vjkJ1pgqbBO8tn04a8zHhdVbUupfzfXNqVXFLUHJMozdkpnWpAceOzXInhLhpThVRJ6ItRqJpJdeuNitAkK9icxKpzLiVRJvE1aLpns2CMMyV2Mg5SPnwxxja0E/GtzztKGS4MXcOWks83x6yPI+4t1YiznDv9Om3v5UZwHtBRUJ8/l5K1YUiQZLy32qD+Bjaxx4XqQsPOLEEXU651PFabahqtGnMQp6rxdtJp5jhUehrDeczD7TmfrE/o1Gyutz3avlUJ2C/EbKVUXf7zgoaf9BoXn+2TjQm/+2AXKRWiYLnh7EvOLEMnSAq0Eg3yVe3MD2Yx2+MYozxs9jYBwiTn2TAgKd2qjnNDu6gYh0rDxjaUAOjea4yzgo2xEv1HyGMbU+d+bYFCcs3jjO3Seh5Ohsg7bH3GWc4giBnO0xOJcmZ5oZxl8pz1cczvPxpwp+/za2/1WG66anJfJq+DeYKuvTQ4uCyac5BkxKnaox8PAj7fnJKXifh7q80qeV0IXIKihFzm2j5NLK53ZxrxdDAnzSUd3yLNJZMoqZAiWS7ZmMTszGKWGy7vrNSPTd6utVz+9W+sXsbHOHH4tsH37nT5jU82+av/2nvV14fzhPtbU3ZmMXmhUERJWnC7r2hjlqF0By97TS5ifazEpdcnSlQ7SHJWW86ZnKHyQpJmam0P5jGTKC3zjJMPX07yOxa6bXFakOUFP346ZG0csdp0+ca1ZtXca3om00jtjaMwIUxUvubZSjj3y4pReY7P4oz1ccRHaxNMXdCvW3RqNromqutLsgKjPMt927jQ9T6J0urePh3M+XhtUhlotL3+PvcxU1euexeRX4SlucOT3TlZDoUs0HWNfs2h49tIuZ9p8GXELM740dMBNUsZ3Nzo+Ji6eIUF8VWI5YZD27P48MWIhzvqniZpzs+fj3g2CrnScoizry6VJ4jzal95tDPj588nFIUy/3lrucFq02W1NEufRhlBiY1oeV+NnLLhmHglOgqpEDVNd7/51ThI+Y1PNgiTgvdW69zs1qqvX0RjChQS/KAmcZzlDOYJ9zenPB2EPN6dc7vn8/6qagYrg4MLuZwjo+VZVT2sCYHvGvQPgCtmUcI//GiDaZjytatNrrRcNKFQgnlpCHWaiNKChzszVpsOWSFZAO6EEByVcu49x6WUCt0+U02hWWmedZ50w5NEy7VouBZ5IUvG0P56uigkv3N/h61pwkrDYbnhkBUFH74Yk+ZKw3Dv5/+qxkk0pv7/KrK8YDCLMYSa0PTrDoN5giYEjT0CpYqTarEzTSor2DdpTC1QGeNQCTs6htKYuXkEEuu4uNZ22Z0lGIYgyyRRWjA/wpr7IuNK08WzFPR6YxLR82NmUUaWq+LZNQ1mccrt3vlOl5bqNtMwxTN1XNMou+kXV3SuNBymUYqlCzYmMUIoCOitnk+3ZleaYP4ppsr9us1gnlB3DbYfxiR5QZQoccu99DlD1yo61mXrh3VrSufBNnQebUcEpfhmkRevQGuvtlx8W70LX4UE4qgISktV1xSs1B1utF/Ce2uldoFn6mcWuj6PmIQZ0yhF19U07Oqea/QtHUMT1GzjQiDFx0W3ZjGPc3zbQNe0Ss/vLAkDqET7/taMlmuSZMfzIg1do1tT1sjbkwiJQm5uTCL6dWffO9nxLXQhEBrnjgJ4XfiWQd0xiLIcz9SYhimmobM1iXhn+aVJhmvp3O77pFlxbg40FxmGruGaBrYuudKy2ZwkOIbO2jjkVtdnYOloJWonL5QJhX5EKrHYP9q+9YpF91ch/uR7y/zHf+8jHpaoE1jQxQRFAfMkIy8K6p7J7Z5HlBYXpntz0kjzghejkCQvcAuNd1bq3DkFindvGLrGtbbLNMpK6nBBmBTM91hQv2ksLMajNGepYTNPciZRplzXopQ0L6rG1I22y8frKa5psF5OrBdael9m9Go263lIy7LZmcWESQaWwRdbU36p1PFanOULVHWY5heO3Gy5FuPS7W9nqhBK0yjlatPhIEv4ds9nFmcXU2hJ1ZDzLKNEzUuajkGY5LR9a1/e/WWGLFR+/s5yDaGpnOsyERGniSe7c4bzFM8xcA0N31VD2a5vIxH7XBG/alFzDHxb6Wlaus48UQ5829OYO/39OcRXNad8XU5eFJJhkJBkkijNCVIlnD6Nskvfqx7tzJlHSi4gzQtarkXTUcjUumsQpcWlsS/2Rr+u0NSGvl/fa2Fu8GQQECYZUabOnWttl61pTNM9G0ppIZfhngHFvMhrLUOj5uiESQ6SVxzvLiO0ktkVJPkr+6aUku1ZxCTKmMcp80Sn6ZpsTWI6ns0gSGi5R1OPv0rxuhPh1y/tKi4pwkRRYCZxTqdmKi5uzT5ys7jadklyNQV+06LB0jVanoFEsjGO8GwlwHvWKYxvG/i2wTzOeLKr3EF8+8tZKItkfCFoe6Vt49smu7OYx7tzXGthB3x+CYipK6cXhXrJL7So2xhHbE9jHFNjteWS5BLfNioeb802zmTRvlRaI2d5wb2lGppQtvLPBgE7s5i7/Vp1GDtfAi0EwLP06rOFScadZVVE50g+Wptwre1W0/i978JXOQTQLpsr95YVrWoRDcfkVs9X75T/5TUKpJQ0yoThrQOUQkPXuLtUuzT784PhWQa/eLNNwzGwDGXW8GB7RhDnLDfsU1tjmyWFY5F4nCRWmw5XWi512+B3H+6iC4Fn6ny0NsG1lHjvYm/9MqD/QlBBzh1DY2eWVALiH69PuNH1quK+Zhvw1QRKvRI126hMFJbqLlH6EvFi6Bp3+0qYdXsaU3eO1vKq6E/WV6fYOBi//t4S//Hf+4jf+GQTUGuy7dv06zamrsRUW77NasPhyW5IISWOqb+RRfibxkrDUfRRVMPv/SvNN/p5bV/RY6elC5ltvGxEn1fs3cN0oYpqXYu41fWpl3bnD7ZnRCUCcfFOLTQqv+xouiYNR9FvTUPwfBRi6UpP7uP1CYautIoW1+pa+qVogZq6qBq+Uk7ozS02xxGWqeOb+5+hZWh0jAs6u8u85mbPYzBXjp6aEBRS0YjCNKf+JT9HS9e43fdxTZ1+3cE2FCri/taMu33/K0WtBrV/DoMUS9P4Y28v0a3ZPNqZV+Lwl601e5rQxEsapGtprI0j4jRH1wQfr03o1+1KnuSrnFMelpPvzGLWSymI1aZDmkveXqpXyPu9zs4XHeMg5UEp+dCvOby90iBKMpqeRb+udCEviEV8bAghXkHYZ3nBg+05aV5g6RpXmh5BkvHt6y26NZtuzT7z/VucK6cFgjzcnjGP1dDkStthFtcwNMH7VxtfGoLysPduQY8dzBLarkXbs3j/SgPb0Gl5JuMw4XbP26fn/FWOIzMMKeXgMi/k/8fenwfZ1eZ5feDnOfs5d783d6V2vXqXqrd2qIVuuhs3phsGpgcM3rCNIyYYzMzEeDwxJiDwRAyLCUN47IFwDIZhsbGNY7CbBkNDm6Yb6O7qrZauqnd/tSuV693vPfvyzB/PuVeZUkpKSZmprKK+EW+8UkrKPPec5zzL7/ddTgP9IOb+IEBKtZk2NME4Sp/Y/TN1bS6nellM45R3HqhJd7luU0hJzXn5xaNiG/P0lFcNKWFrGBIkOWsNl4qlU0hF0Z1E2bH78eiaiok/acwkd/cGAat1l8sLHpvDiEJKRkH63AffopDc6k7ZHcfK46Ht8YVLbd5aaxDEGeMoI81k2Y15dRu2vUnMg0HIKExYa7pcaCuTeV0INocRoO7Ni8hEXhXCJOfjnQn3uiGfXK8/ZgisndKYehqUH8eE23s+b63WMA/x6Tnf9jj/Cq5tBstUBqSN0tOtO43Zm8QMApWu8rwb+aW6c6SCVpIVfP1un56f8Mm1BleXqrRK8/q+n0CWEybKXNPRXs3mfBylvLep/CXeWFGb0optkuYFvWmiEnGi42OdnCZUp/jhmnhlocokTmk4Jjd2p4RJzlrTYb3lcr8fsjuJ513v/ZjNqWHyCmmJz8B6y+Ot1To/+94uSV7w09/Zou6YfPlqh1GYomtqc933k3nE8zhKX1lhKkxz/sl7O8hCcqGtOuLHhZpj8omXLHIdBYau8cZqnTdWH+5p4qyYF6VsU2Ma54RJzrc3RjQ8kysLr65wMDsQbA5CWhWLq0tVfu/n1pWsP8kYheVanubUT7H4Mo5Sbu/5dKfq/VtvqYbaUt3BNnSyUzwgu6Y+L9LXHZMkK/hga1LKYZQP2qv2onQtnd/1qTUGfkKQZPzcB7v4cc7b6w3Ot90zlXK1O4640wvYnURcX67RLM2rzyLr9FFMopSPd6Z0/ZjLnQqXOhV+9M1lDF2w0Q8BtTa8St/cl8G4XNekhB9/e5UkV+N7GCR8vDPFL5NNry5WT7ywMY7UfZzGGa+v1BgGCbdHMVkhudw5ewWKsPSqBGVr8KNvLWFoGo6l8cHWmM1RSKdic6lTee4zl21qz31ODpOMD3cmAOiaSmZ2zABLPxnz85dBkCh5bM1RktLVpku7YlEUkrs9n7u9kHMt97tGBnc2OLSnhPlaLJQMRte0MnrxNMxwlc41TDOWai6uqZ+pFKLjQG8a0/fVxHx/EPK5iy3SQsnSvhtkKk/CUs3m/iBASCXf6/vJ/NmNwucvTEXl4bnvJxj6w/TCim0Q2gZxHmDqWpme8+owChOmcUbfT8sknJyVhlPqrXPCNJ+nIX63YBgkpDnUHINpnJ3JcTmLFW+4FpMkPzSZ6FVjEmbzjpemCZBKCmFqGmGan9jc5scZexPl73O7O+Vix5v7AGiaIM0jPEvHPqYktBfBOEzp+wlxWrA5jFhpOCzWVOx4XKZatl9Vq/KYMWN/RKkqFoDy3HFMfV586k7jx4o1CzV7/qzOMv6DH75KnBX8yf+qIMlUrPUoTA94SNUdg4GtUxTyxIysjwKVmCrJpUrGXPoum5ufBMdUUdlBkuNaOlkOe5OIopDKGyl/dfHYQZzjRzmjMKMAauNYNTYcCBKdKFPd/+op7/VGQcokUnHoFTul6VlcW6pyvx8ARw/sOW6ow6fEMdT8IFApymcFrYrFIJgxuiRBnJ6pohTAIEgxNIGhaZxRpeETMY4yhkGKH+V0J6qJNWNMRqXFwqtggR8X9q9r+xlBd3sBfT9RzeZSgnzS579OVSW3dSoqFOpb94ckWcHWKGISZ69sDngSZvYHSZn6PdszbI8ihmHKKMiwdP2FzlwvgkmcYes6fpxh6BrTJKNeJsBOouxMSeJqtkHVUVLp862HjEnlR6uYqdujiMsLlTP33A/Dqa6WQohLwK8C7wOJlPJfFUKMgG+Wf+X3Sin7Qoh/G/g/An3g35JSjo/j57c8iwttDyQYpbFhp3o6G0lNUxHr15drLNfPrv77ZdDwTJqeiZ9krLe9YzU7f5VoVSyansnNPZ8wyVmuOYSZSmV6kfHjmjp116DhmZi6RsXW57pp19KPjaX3slio2vhxrqi1xsP0QyHEE1MqzzraVYtO1cSzNT651jhTi8sMTc+kU7OwTY23zzXOJC1/oWrPk+9mslrPMrDN54tyfl7UHINO1WYQKBbffqZE3TGpr7z6RbddUVTqUZioJMCSKbHfBPl7DbahigfTWPloOKaOZShD5cMaP2flWT0Lv/vTawD8KV3D0KFmm495chhnZJ1TUerw5lqNT547eXbTaUEIMU+NitKcaZTR9izMcsy9ysJB1TFoeAbVwKDhHgxX8Czjla3lnarFMEgJk4yKpVN1DGxDf8wc+bRhGzq2qdGsmjRLO42z1nhZrjss1ixanslnLrRe9eU8hsWazWrTpVW1uNj25uvLdwPantpLx3lOzTUOFGeU6fl399noSetaw1WBLJoGrYqJewr7zkfnnwsdjw+2J3Qq1plsCGmaODRxr+oY8zms7hqndmav2SbLDRtQgVSapgr+wJkr7mhP2Fs6psZKwybMchaqZ/O5HwZxmprXsjD1Z6SUf3Df135RSvkD+35vAj8H/Ajw+4ALUsq/8LTvu7CwIC9dunQi1/wyyApJWlITdzbvc9rXGKdFadYKjvUkC9qHuHPnzqlf46NI8oI8V9dsGdqhRncncZ0SiMqOvyYE9kt28c7CvTwM+z/nqxiTR0WcKXN1OBvXWUg5T1mbGSHux1l43lKqgxuohepR1tCrusYkK+ZSJ8vU0J9Bgz4L9/IwvOr5/Cg47P3e/y45pn7qKTzPwvfi8/bjjEIqT67Tut+v6j6mpQ8nPHnN3o+Tus4D88wRruNpOKtjMkqLuc/KWZ2D4Oyt3/uR5pIsL/3KDA1DE2fyee+ff0xdY+P+3RO/xhnrVQheuGl3Fu8lHLyfmxv3WFu/gKlrGEdIAn4VePQ+5oWcS90O24O+Kty8dZu19QuH7jnPCp42JsNUmZkjOJWC4ZMwv4/HcP48SXz961+XUsoTvcBXoRX6ESHELwA/KaX8L4A3y9//EvDHgevAd6SUmRDiZ4G/8qxveOnSJb72ta+d6EW/COIs53bXpyjg3/09v+3Ur7E7jdkeRVRt49BK9KP4whe+8Mrv4zTOuNvzMXWNKwuVQ81NT+o673R9pnHGSsN56fSMs3Avn4S7PZ9JlPGH/rf/ypm9xoGf8GAY4lk6f+DHf/iVX2deSG53lQHv+bb3WMfkLDxvKSV3e8ETx/CrusZxlHKvp4yTj5IQdhbu5WF41fP5UfHo+933EzbLd+nyK/TjeRK+l553khX8kf/u6/zcB7sArHQ8/ut/5/MvFI7xvHhV9zFIMmW8rGlcXqg888B0Utc5iVLulvPM5SfsHY6Kszom9yYxOyVT9ff9jh86k9cIZ2/93o8gybjTDdA05ZFnGdqZfN5RquYfUKmJP/DlL574NW4MAoZBykLVfmGfp7N4L+HgfP4HfvyH+Dv/+J9zeaFyJlnz8Ph9zPKCW11lDn6h7b1yX7YZ3v7M5/jb//DnWSt9jc4injYmt0YhvWlCq2K90jTLT33mc/wP//Dnj+X8eZIQQnzjpH/GaRemtlCFpxj4e0KIfwq8BgyAvwz8bqAHzKR7I+DscWmPCNvQT2VD+iQ8LXHwrKJqG6disnoYjlK8+17AxTNofPgoZmlQZwXKaP9sSCyfBCEOp0K/atQd83tCWvSq5/Oj4tH3u12xzuyG8SzjRZ73n//HH/BzH+zyJ37nG1zsVPh//L13+P1/+Zf5O3/ky98VY+dF4Fmvbs3ej9r3yDzzNOz35DnLOGvr93541tkJDHoaHFPnzdXTvc71lsf6d+2J6+nYP5+/inv7sjCOMYzrOGEb2nf1vHtWJKTWd/l9PE6cKl9MShlLKX0pZQb8A+CTUsq+VNzknwI+CQyB2YxRL3//GIQQf1gI8TUhxNf29vZO/Nq/j+/j+/g+vo/v4/v4Pg7Dzb0pf/Ord/g3f/N5/vBvvcrv+MQK//N/8BUqlsEf+uu/ztYofNWX+H18H9/H9/F9fB/fx/dxZnGqhSkhxP5y728BHggh9H2/vwl8BHyy/PqPAr9y2PeSUv4VKeUXpJRfWFxcPMnLfmGMo5QgyU7t52V5wShI5/r57yUc9V6OwnTus/N9HMQs9eQsIy8koyAlPaNj2I8zJtHZvoez53ya/oEvi9OeK58Xs7n1rI7Ls359jyJMjj4XpeVnm/kHnVX8f3/hNrom+L/9q6/Pv7be8vgb//5vYhKl/NH//htzj5DvVhTl/BxnZ2eNPetzx3EjyYq5Ce9ZwmmtO3GWMwrSuYfVWUWY5Ixf4V7hu2GvcloYR+ncP2s/zvp5wY8zpvHZnttU2vDZvYcznLV161FI+J49vz8vnqswJYS4IoT460KIPyOEqAoh/qoQ4h0hxN8pjc2fhR8UQnxdCPFVYBMl1fv10mPqPPA/SSlT4K8CvwD8e8B//Vyf6IxgbxJztxtwc9c/tU3T7a7PvX4w16V/r+Co93JnHHGvF3Bjd3qmF5tXgSjNubE75V4vYHsUverLeSLu9NQYvrk3fdWX8hgmUcqtPZ873YCBn7zqyzkUcfbwOe+M41d9OUfCq5grnxd3egH3+gG39s7m3HrWr28/ojTn5p4ao7vjZ89Ft/bO/ro2ClJ+6psP+InPnHtMPv/map0//699mm/eG/Ln/tH7r+gKjwcPhiH3+mqNPQuFwu707M8dx4mikOrd6Qev+lIOIMmK+bqzdYL7i7yQ3NxV88HG4OwyEMNErcN3uwF7k9Nfh78b9iqnhdn+4sbu9EBx6qyfF3IpubXnc3vPP5OF6Blm7/5ZWA+ehCQr5uvWWS38zK7x1hne55wWntdj6m8CfxtooJhMfwP4U8C/Cvx14Lc97R9LKX8a+OlHvvy5Q/7e3wL+1nNe25lCVhT7fn06L2xSvnBpfnYniBfBUe/ljC0gJWd6knwVKKRk1sg8y6yKWbpTlkuklGfKqDnb916lxdm8h3nx3fGc9+NVzJXPi9m9zM7oc59d13fDM8/2j9EjPO+zfu8B/v63HhCmOf/Oly8e+ue/61OrfO3uJf7GL93hCxfb/K5PrZ7yFR4PZs+iKNSa8uys35PFgTn5e2zfcxgkZ3Nvs39/kZ3gc5BSzpOmz+oaDAev7VXMW/vHyHfDmnCS2H//06LARYl0zvp5YT/xMDnjz7Ao1D18mSTUk8TsVqp165VeyhMxY5r+y/6+wvMXpmpSyv8PgBDij0op//Py639NCPF/Ot5LO11sDkOCJGOl4VK1X94TfqmmEi0MTaN+SukJlzoVhmFKs0wMKwrJxiAkyQvWW+6ZTZ/YjyDJ2BxGOKbGuaaLEOLI93Kl7qioTUOjcsgz3B1HjKOUxapDwzsbiRYnje1RxDROWao7rDUd4qxg6YyZp0ZpzsYgxDY0zrdcBmFK3TFOvSi1O4kYh08eH03PJM0LCgkLlVdzD9X7EeKYOust77E/9yxj/pzPkkludxoz8BM6VfsxI+5XMVc+C30/oTeNaVUsFqo2FzsegyB9LI3xVUJKNb/HWcFi1SbKikOvb/8ccBbub9U2WG06pLm67mfh0kKFUZjSOqU5Oy8kG4OAvJCst7wjxXL/43e3ubpYeap56R//8Tf55r0hf+LvfocvXGqxXH+x1KtXiXMtl+40oWoZmI+k3m2NQvw4Y7nunGhi1P7xvFizkUgMTTtT7+bLYBKl7IwjKrbxmCmvrgkudDwm0dlhh0kp2ZvEJHlByzNZbZ7cuDZ0jfNtj2mc0XlOc/UozXkwDDE1jfWWi3aCh+i6Y7LScMiKYr6+PS92xhGT6MXm7YZrktTLvcoxBSBN44ztUVjuMV69WfTTEGdqT2logrXyHXp0f7H/vDCOUrZG4YnPXc8DQxMs120ksFC1kFLyYBgSpTlrTRfPOu3sssNh6IIL7YPr5P69yVk4e1q6RrtqUbH0A9eZZAUbgwBNCM63vVdaWLMMdY2z8/tpzldnDc87sgshxHUUY8oTQnxBSvk1IcQ14OxXPZ6AKM3pTRXddWccUV2sAmqD2pvGOJb+3AuDrolTd/qv2MaBgswkzuY+Ht1pfOAg2/cTCinpVKwzxUq53w/YHsXUHIOWZ1GxjSPfS0PXnrhgJlnBB1sTLEMjL/iXojAVl/K9Gc5qqtzdrs/2OKbuGDQ885VEthaFZGekKPdb45CqY9DzY2xDnx94hBAsveLD5O44JkwKwqSg5aWEaYEuxIEEpM4ZTOLcHkVIqQ6vjxamdE1gG3rZdX/17axhkPDe1oiabRJnEQtVG88yzsxGcIa+n3Brz6di61i6xoXO44XK2cbLj3OSrOCtM5CeBs93WKraxrE0i56EopB0/Rhb12l4JqMwZRyqg3/fT54Zmz7wE37lVp8/8kNXnvr3LEPj//UHPs3v/Iu/wB//ye/w1/69L5yptfcosA390Pk5znK6k4d7qNnhTkpJz0/QhDiWZMg0L+bSqM2BmkuqtnFmDpPHgTu9gP40me+BHj3U1R3zTBSYZxgESjbmWTqGpj1WsDxuNFzzhYqQ3WlMEOdAjq4LTE2NSeOErvdlGkNpXrA1jBiFKdMo4zMXni8q7yT2Kjd3p4yClLpr0q48Pi7PEm53fXZHMQ1PjZXDzg+z80KU5jzYnszn/c9dPDuxhPufoR9nbI8i/DinKCTXz0jKq6lrj52nJuW1BkmOAK4uVV/Nxe2DqYnHmkyDIMGPlYxzGCSvdO+sCXFgbe35CUGcE6UJSVZwoXO0Jtn3Ap73U/7HwP8C/LfATwB/XAhxA/gq8J8c76UdH6SUTzVKtHQN21S3wjU1+n5CnOVsDkN2xkqffCY1yM/gJLqmjq4JojQnzx/eg2GQ8GAQsjWM6L1i/XmU5vT9ZP5ZetOEvp+wOwmx9KNv2h/9Po9iZxwxTTK2RhHmE75vUZyNg/HLoigkfT9hbxIzDNT/87M3fPHjjO40Ym8S0fNjen6CY7y6zY5nq59dc0xu7k64ueNzrxccapr5KlAUkqqjDuiWobE7jvlwe8L9QXDmTe1nhYXDDlTDIOHW3oT3N8fsTF6t/9k4THl3c8woSOn7Me4Z3HyneUHfT7jf8xkECZvDcD4uHoWpC/YmEff7AQ8GZ9db7lViaxRyc9fnva0xQZLhWTqaBkJAxX728//Z93fIC8mPfeLZ8rwri1X+49/xBj/3wS7/09c3juPyTwXPMpq2dA3H1EjzgryQcx+P7jRhaxjxYBAei0+KoQlcS+3VJnHKvX7AtzdGRPvm6O/WdXwcpQz9hFGg9kB9P8YqiyZnUWo023NtDUNGYcKDYYBrntzB6UWf6yRKGQUpNbtUEkjJ7jhiZxzzYHjyPlVHNWnfv4c1NME4UuNgGKYvFJpwnGMmTHK2RyH3BgGTKJmPy7OGWSOmO43pTtX+17WePodbukaY5uxOYvrTmDtd/0z6EFm6YGcclXODOrfNxvZZwewdtXWNnYm61u40pu8nrzT4I0pzPtyZcHvPPzCHVGwDIWZr/dlpPOaFpGobSCTbo4hRlHBjb0LfT87k2DxuPNeTkFL+U+D1fV/6RSHEAjCQUr7y01uQZIRJTtOz0DXB7iQiSDL8OEdKON/yHqvsSinZGkeYmmBtweM37g8ZRylrDY9OVXX4ZgP3NJEXkmGQ4FnGoRPrvZ46jLar1mMdzCDJ2BnHVCydmqNzc3dCmhfoumC95SH2+UJoQjAMklOhhquOREq7ophQO+OIn3lnm4pt8JnzDa4u1ajYOhVLI8xyPtqdcmWh+syFJS8NQbuTGNvU+MLFNoaukeUFm8MIIZRee73lEiQ5wyDl/c0R621v3mn144zbXR9NCK4uVbBfYYHkKJjGGQM/oeGZBHE+p3w3XJN3N0c8GIYMghRDgGXqmIY4dQ14UUi2x+r+u6bO3iSm7pos1x1GQcqv3u7hxxnjMKXmmNRd/dDN1Cyp72VZbn0/wY8zFmv2vNtXFJKv3uxyu+tzZbHCp9dbSCQfbqkO2qK0jvTuFxJ603g+97wo4ixndxzjWfqB7s3trs+v3upi6Tq/9foCFdvga3cHdCcJUZZzaaHyXD8nSnP2JjEV2ziUyZAXkvv9gFxK1lvuS78PtqGRmNqhXeQ4K/iFj7skuUSc0n53HKUMpglhmmPoiio9DFLe3xqzO4nQBaR5Tneqs1i3T5WhIKVkdxKTFRLP0ulOYqqOkvXkheSXb/YIkpyNQUDLM/EcA+MJxfY0V4ewb9wbslC1eWO1yvn208dKmOR0p4q12vRenuVyVjDwE6aPvP99P+FXbvV4f2vMct3hfMvBtQzansU0zojSgmcpcX7m3W3ONV0+ee5oHew/9JVL/KN3tvhPf/p9fvtby6/sHkspGQQppi6eyDgqCsmt7pQwKVhrOvM5KUpztkYRrqmz0nDYm8QURUGYZpi6xt1+wNXF6nzuTPKcB8OArHj6zZzJuq3ynQTYmSi25UrdQdMEVxerpLmSW357Y4SU8K37Q5YaDhVbZ3cco2uCa0vV52LvJFnBOEqpPaHI+7LYHUckecFK3SHKCrZHIa5lcK7pcr/v8+7mmJptYGgaFzsedcdA0wTbo5Abuz4tz+SttforYdnN1s6FisVeOW9uDgPirAAhWG043O+HfLgzQdPEsTMPhkGixoWhcXWx+sw1duAn6OWceLerjOJXGzZVS+f+MOB+P6BVsbhunRyLfGZUH6UF51ruUxmDsz1sUajmyKWFCks1m4+2J9zem7BUfb454n4/YBikND2T8+3HmbRhkhMkGQ3XfCZjrCgkH++Oud0NKIqCu0XBxU6FC53n23McF2bnCM/S5/PX+ZZHkhf80o0ucabmpqql7CCeVcuUgK5BmGbsTmLGccqDgcuXrnYYhSm9qVp/s1zimPorsUjI8oJb3YAkKzB1QcU2mUQpv3Krx4NByJsrdb54tYMfZ/T9hPoLsgpfBr1pzAfbE6q2wSfW6lxqV0gLxXD9xt0Bhib4weuLDIKEgZ/Qrlg0PYvtcYQulGzxpOa2IMn4pY+7XGh7vLX2cJ2uWDo11yDL5Euf8cNErXG2obPecp/4WQ7bh+zHzd0Jm8OI9bbLG8s1wiTna7f79IOUH7i2wGrT5doZYKCdJF5oBRZCOMAfBX4A9V7/ghDiL0spX1lLNs0Lbu2pZJYoyVmuO8R5QZjkTOKM5ZrDOHr8cDuOMvqljC/NQ4ZBSppLen7M2+fqeJaOY+qnXqjYGASMwwwh4I2V2mOLx4whMQySxwpTW6OIIM4ZhyoiNSug5z+U8jU8E2+qMwhV9XV3Ej9z8n5ZSKkOulKCn2S8sVLnnc0hd7o+BbDWdLm6BCBIcglSUBSqK/qswpSUkkmU0fdTHFNjdxKz1nTp+wmjMCUvCtKiQBOCNFMUadvQMA19viGfRJkyQZQSP87PfGHqfj8gK8dpmqmD7OYo5AeuLrA1igiTgoGf8MZKjZ2Jov8+GISHyn1OCj0/mUtkp1HKKMyQSH749UX2puqaen5C27WQEtIcbu5NHxvvs7SKCzxeWD4Ksrzg5p7Pre6U5ZrytrlSynVHYcrdXsDAT/m4mHJpoUrVMuhULSxD41zLORJlXTEsIyZR9txFohmGQcI37w8RUsnxKrYx/9m3difsjtW9vNcPeGutQcMx0RC0Ks8v7dgchmwOQ4ZhymcvNDnXPDguxmE6L1b3/eSlZMlBktHdJ5W++MiGNogz8lyChEl48gVyKSX3egGTKGNjEOBZBlvDgKZnk+USW9eJMkWX3xzGLFSjUy1MjcOM3TJR8W6spBxZLvFe00lzVaSdJim6UNKqLFeHr0sL3mMFBj/OGEfqPynhxt70qYWpnXHEtzeGVCyDumtSc8wza2h6VGR5wa29KTe7Pss1hyQvuLrv/ZdSYmo6pq6xPY6xDTUuluo2UVrQfMqcM40z/sXHXf7gFy8eeVOtaYI//ROf5Hf9xV/kL/zMh/zZ/93bx/I5nxc743gui7u2dHgDKMmVbBjUvZoVHLZHEdMoYxplVG2DnXFMURa66o5FUUjCJGcYJEgkuhDkBWwOn75F3JvE9KYx3WlCmGYsVO25RNDUVWFbCIFlCNaaLpsl42UYpni2we4kwjPVITKIcxre0QtTt7s+SVbQNY5/vI/CdJ6SqgnFYr/bDYiyAlvX2BiEhElBlCZ84VILx3woIf9oZ0pvqpjPlxYqp97ZjzO1dwDo+zF7E9XI3B4HrNQ9KrZG07PYnag/K+SYr1ztHKtETr2nEKcFUZo/9R7sTeJ58vB+X7pRmPFgGHKr67M1CInSgjdOUA4VZwVR+vDdeVphSu4zj8/LX4yjjPuDkP405n/59tZz/ezZ+WAUppx/5M9mRTApOdJ+5f4g4OPtKWmWM4ozbFPng+0JzYp16pLS/eeIOz2fNJMESYYuBBKYRhlxnmPpGpoQTKKEm3tT3lp9ckF3cxgy8DNkAbKQxFnBMEzpTmO+vTEkzSUCyvNTSsXWT13WH6b5nHGUZKVJdlbwrfsjJlFGXkg+sd5gYxCQZpJRmFI/5SL2xztTdscxeyLmYsfj2nKVaZwxjVO6kxRdU+vGdx4MQQqCZk5WyPn52zG1E2vSzPrdfqz2QbPbMokzxoHac+5N4kN9W4+K7vShzUbTMw9t9tzr+XznwYhO1T6wD5lBSsmHO1PitGAQJEgJd3s+e9OIIFL7mOVnWAt8L+BF367/FpgAf6n8/b+JStH7/cdxUS+Dga8m5GmcE6YpnmXQ8kxsU5szoPbDNrQ5o6ZZsTjf9hj4Ca8tV9F17ZVpTvcXig6rGS3VbQZBQucQE2bP0gniHNvUcC0dCbiWfsCUMkxzbF1nYxBg6NoBFtVxIkxyDF1g6sp7IMmKOQ24Yhpz+dTMyNIsdd89P8G1NJrusycqQ9e43K4wKjXCMx2ua+kIoQ4Plq5jmhpSZliGoJCS+r7OaNNTHQhNEwe+fhYRlrptUEykcRiTZAVFoRFlBRfaLtujmMWaRdMz52yK4qSrj/uQ5sUBCruhCzXmTI1JpA4cSzWbiq2zVHOYxulc7vWkq3zR6x+VBdokVd2b/YbLNcdgqW4zDlNWGi6eqXxm1guXXMojmTPvx8vc4Z1xjCxgbxpTdXSMfQWB822PW10f29TplP4OFzsVoix/bhNYUFLArVGEoWnsjZPHClNuKWeSkpf297F0DV1TjL3DDr911+TqcpUwybi+fHKdICklYZrjGMoA0zY04qzA0AoEJnkhWaharDZtNCG41w/JioKWd3prQFFI0iJHjSSBpWv4cY5lCMZhRrtisdZymIQ6ddckyor5ODls7NVdk4ttj61RSM0xON86/BASpXkpcVFNir6f0K5afJfXpABVtAiSgjQrmEQpizWbLC9I8oKFqsX5dgUhNFYbNp2KyTQusAwNKdV7oj9lc//PPtwlyQp+7JMrz3VNb6zU+UNfucRf/6Xb/Ou/6TyfWm++5Kd8fuyfT580t9qGRtMzCZKchX1MAc/SmUQZhi5wTA3PVnuO11dq1GyTpmeyN1EbdYHAsQSTKMMxnj6X1ByjlDMVBEl+4LosQ0kF07zAs1TR/lPnm4yDlH6gDjcrdad8p8UT5a1PgizfoONcJuNMsfUt/eE+U/lcSsZRhmkIhmHCct0hy9X8OAt9maFTsRiFCZ79ZGbkSaIoVLKZoWkYmoafZIBkserQ8kwuLnistzw2hxFTUqqO/lLr4GHoVFWR2DE1vGc1Kvf99Jpr4ljKv7BmG2wOQ9KsQC8Dck5yT6QO2uW78wzGk6Erltw0ynAtxRxvexY1x2BvEj/3c1+q22oOP2RvII/w3u/HOEoxDI2GZ7FYtzE1HdfUH5PzBUl2ohK/vJDEWY6hCdJc4lkG96cBQqgi3lLdZq3pEqQZyzWbe4OQmmUiJQeKEY+ikJKGZxDnFteWq0RJTsOzyAs1d8VpPpeoCkF5hilOzJvsMFQsg5qj1DOdqoVpCDzboFU1SbMC29KwdPVfmuWYuoYQYj7/nIYfWN016E4FdvmOWoYidby50uCdYkTVNoizHE0I/CSHcl6cwdS1E7tex1QM3PWWd8BE3DY0NE3NcS9bbKzaBsMgLdfEx68/znL6fkqaSbZG0aFejUIIWp5FdxphahrTKJvfS6tqcGmhwoVDGJDfa3jRJ/G6lPLT+37/80KIbx3HBb0ozHJiNzRBmCiZSpDm1NyCH7m+/ERHe8fUeX2lRl4omuZCxSaX8sQNHA/DKEjp+jFN1+RcSzF+PEs/9FqW684TU31WGy4tz8LUNTQBlzryMdO0mmOwOYwUPbs8jB03dicRO6MYTYPXlmpcXawQpDnVcgL49PkmuqZh6mJeNLu8UGEcpby1VscxdaZxxv1BQM02nmrmOEkyFqoOjqXNjXVrjslry1WipGBjGFAUknZF0SevLFZY2KfRcEyd15bPpjn4fvSmMZvDiEJKzrUcmq5KDbvXV8wP29C4vlznYkdt4oQQTKKUcaSKM3d7Puutk02fSLKCj3cnFIVarGapNKYxnh8YPMvg85da6JoqWs58c6I0514/YKFiz9lRpqGx1nQOGHyDKjjujKNnjo2KbWAaqstumYIwfcjKMXSNH31zmd9ybQFNPFxQnrcgbRsaS/XHE+eKQiWp5IXkXMt96rxSdw36Uw1DF+iaKjJWy79/faXOxU7lQHGn4Zk0eLGOpSbAMXTSvDhUuuKYOm+s1JFSvvQGzNA1ri9Xyco59lE0PYuri1WyXB4qOzgu3OkF5cZf48qCmovWmg7bowjPNrjY9pCoz66KVDa2oVN3DcVQLCRrTedE2ZQz2ZSla6y3PcyZ/6FURaaKbfD2uSYSiW3oSCnpThMmUVrKqeSBrqOuCX7kjWXaFYuGZx1KAZ9EKXe6aoOPkCzXHVxT5/Ji5bvOnPswVCz1/l9oe6w0HBaqNh/vTplGGblUspTPXWzNu+69aayMRnUNy9Cemobzj9/ZZqFq8fkXMMz9D3/0Nf7+tzb5T37qHf7uH/0tp5a60/cTBkFCyzVZbthY+uEptqA2yoe9k0t1h7prYmgCQ1fvU5of3GfUHWUkr2sCS1cM6GcNp6Zn8ZnzTXYnpZy5YlO1TSQSS9f4aGdKXkiW6jbLZVrZwwS0w+eXZyFMcjZHIY6h0/L0Y5PATOOMO10fKeHSgse1JTUHVm2DopBMVlKy8n3tVCxWG+58zd6P11dqSvZh6Ziaxr1ecGpNpjjL5+yauqtkh1p54F1ve1T2WU185VpHsdSDhPv9gLXm8aVxVW2VNqtYWfFT1/vFqo1AoGviwLPs+wlV2+C1pZoa847OygkGFD367jxrv1JzTAZ+SrcfYpsxry1V+YNfvMg7m0OqtsXffo6fvVRz0IVgGKbY+kGliKFrXFqo4McZrSMwVDoVm6IAd0XjymKVYaiaiPuf7dYopDtJTrRwequURXq2xlrLpWLqVCydOFMNhoWqTdU25nPS5cUqwyBFALd7PlXbOHBmyvKCjUFIISXnWx5vrtapOeacmSSRrDUz4izn6lIVgfLAvd8PMXTB9eXaibOJs7yY+6Ctt1xWGg6jUKUDW7rGD15dYBCknO+4WIbGpU6FaZLhmfrcnkRKuNDxTkzal2QF93oBVxardKr2vJAyw0LN5itXFwDVsA4SxZS6vlzDLVPydE2QFZKPd6bz+fI4Ay0c0+D6Su2xBqxt6Ly+XHvhtWM/WhVVSNaEOHQtt3QN19LUHtMQjzX9ZkzGix2XK4sVTF2oAlZLzbOWoXF1qXamQweOCy9amPqmEOJLUspfARBCfBH4peO7rBdDzTFpV3PudQM+2h2TpBJNg4Zjcr5deWIhR7F51K81TaCdEHvoWZgdYMMkp12xWK4r2dFHO8ojaqXuMI6yua/D07B/8FolNX1miN3yTC52KhRS8vFOSs9PTuRAGJc05qJQE1LFNrj1YMQgSHlrrcZy3eXzF1t0pw8lBX6s/E2yQnKu6bI9ipQePlbeYYelEgyDhHc3R1hllPCtvSl3ewHn22ozaBs6VafONM641wtwLYOglCcMS6PRzr5CyFlGmCpvgJnB49vnGnNvKVAyzhkFtO6aXOqoCT5Mc/pJSkjBwE6OLUL4MKR5QZ5LdsYRH+9mvLFa57WlKm+fawLqIHyvP2YSpVRtk8sLFRxTZ6lm8+7mGCnhQRrOn4fxBM+Ko4wNUAtCkirvpksLFeKs4PbelH6g0qJWG+4z36dnQRPi0PllFKYMS3PK3vTpCV9ZUfBgFGLqqjO90Q9KOYCKB15rutjmi89NUZrzc+/vcn2lSpIVXFqokBXK/+IwqE3Xy8+FSVawNQrRNfEYGwBgexRyu+ujC3Gi/g1hkiOl5P2tMff7IVeXKlxoVxCoQ0NaHhrv95V/31LNnqe0zZ7hy9K9nwZZyoi3hhHTOAWh5AOfWG1QSMk0zvh4Z8IkSrFNnQulR95izWZnHJVSl+hAYaooJO9sjgjSgkquZA/KN0N109eaLmGaszMK2RpFXF6s8JkLTar22Z8Lj4JpnHG367M7iWlXLJVyFWfEaTEPORkFGW+s1LhYSlqOmmYVpTk//8Euv+cz517ogFJzTP7k73qT/8v/+Bv89792j3/nSxef+3u8CDaHIVKq6/9EmdI4iZSk2TbU4XMQJIxDxS570gFh/x5jJq8DtcG+1w/Ii4LLHQ/XMvjm/QHDIKV4Qj0lTHK2xxFZXiBRLKFzLZdJuWY7psZK3SXLC/amMeMooemZ8yKxoWu8aL14ZxyVaW2KaXJcG/8ozefsq5nX6b1+wLnSI+TN1boyutY1utOYcah8ImcM1SjNud31AeZr5Mye4LQQZwXjMC1NjNUc0/AM/FigCyXzSnNV3J2lZ+6O47lX4otYB0Rpzq09H01Tn3v2jDeHIfd6IQj4wdfMJz4n8YR15P4g4HbXp5DwqfU6V5eOr7AwjTPu9nzMskhr6Bq7EyV3Xa47VGyD7ZGSaz5tvxKWIUtxqu77x7tTPMvgU+tHkxwqTzifMMnwk5yKZRzYS83wrKTT3dL+QdcgTAp0Tb1jimX6+L2dBcRk+ckUTItSYjfwE97fDnltqcZry7U5qaA7TcoijCRIcjpVVehdruvc2J3u2yc+nDP6/kNv3Zls/V4vUAyxMsFtveVSsQ3yQvLx7oT3Nse0PJPluktWFOjayRYJBsHDhFjPSonSfC4/z6U6u759roFnG/SmMd/eGNF0TT5zoUmcFfP5J05zOKHCVF4o6WDFVmz+211fWW+U+xPlmRmR5ZK1psubq2os65rg1t6Ue/1ANZ49a369R/F2fB4kpdXGwE9Zbdho2sN3bxJlc/XRy54Bn9bEFUJwseMRJjm6ppXPR/KdjRE9P1FFu1iN00+s1dE0QZqptXRjGCr/xWHIV64uPNXD6nsBL9oK/yLwVSHEHSHEHeCXgR8SQnxHCPHtJ/0jIcQlIcSOEOKfCSH+1/Jr/3chxC8KIf57IYRZfu3fFkJ8VQjxD4QQzyUCH/gpozhlHKmFIohV2sLuOD5TyXpSKnPzIHnI3pgtFEqCpgadX26iiwI+2B5zpzvl5t70hZLCdsYRSVYoyZBUvg9a2SV+mlzhRbFUt6m7Bos15ZczClJud4PSZHgCKPnJzjjGj9XE0fNj8kJyY2fCxiAgywsKKbFN7YC0aT8GQcpiVclvmq7Ju5tj7nR9vnF3MH/muibwLH2+EZmlLX2wPWFvGrMxDI79858ElmoOaS5JsoJRqFKJotLAeVgeoDfKBKRRoA4b26OQJC0UNVnwTCr8y6JSxndP44ysUN2UvYkypNU1wcYgZHccszlQi9VGP2BzGNL3k3kn+CjysdkzfHRsFIUqis2KnbuTiHc3J+i6YGcUsVx3mMY5vWnC1ihU7MrkZLyNZnJSIXhMxhalKvlzGmdkecHXbg/nmnu7lJuOwpTN4cEklhdFlKox886DMasNl5pjcK51fF3tJ6E7jdkeR3y0M2G3fCb7keQFfqy8AE+SCbDedlVKaVIwDFI+2p4SJhm7k4QgKdgahvNEy91JxDfvDQiTDMdUdG9Q7JuTghCCuqvkJUkZF741CtHKDvDGIKTnq45tUShPnM1hQHcaoYmD89oMozAlTBVT8qPdCRqqQDqT680+U5DmxIUyfx6eoZSfl8UwSPCTjGGQsjkMudMNCOIcv/ToAkmS5wzClJ1xxCQ6+mf/pRtd/CR/bhnffvyeT6/xW651+PP/+AN2xydj0TkKUvz44fw2m//3z7HDIC2LVQUPhgHf3hiqxLXR81/TJFK+aGFSMIoyNE2xpRQOf7+3x+oQ/+HOhHGYMgjSeeiFlOpwLFGF44GvIr53Ro/PJc+DpDzo2mWBwNDFsUqR2p5Fq6JkjZ5lcKervAxv7fmlf6iYh7RsDaOyKP0wJW4YpOyMIrqTeO4XGmc5Qry8Ue9RUXcUW60olEdT3495b3NClCrfxjgtlD/jzoS8kESZukZ4mHL7vFC+oJI0kwdCecZRys4kIk5VYMqzMI0zNssDnZSSPFdN32mcEmXFsaaEDYOEolAFJT9RfkA7I7Wv3RqpZ6qV7HXLEIfuZZOsKNcZxa6+1w/oThN2xkd/D8M0L88GYi57zYvi0CSvNFcNo2FwcF8RZ+rdmkYZ7z4Y48cZN3b98rMcfh1rTbWfWG6cTGNJK5taaq8kudsP2BqGCKFkfXsTdb0f7yrGze09n41BwO74YQq3ZWiY+woSXpnIJqUkjHNu7U642/NJs4Ibu1M1x4yjeZDWvb5iKk6jnFbFPBUfWq/cP0ZpTm8acWN3SpoVpfdYwjRWaxeo8+EwSLnTC+j7CU3XnM8/T/M3e2kIyItCFbGjlO4kYWf0kGwwDjMGvvIs3Zs+PAdM44xbez4DP+VuTzVkT+p61XPLiLOCdF93RErJdx4Mud8PTuUM6JgG51oetTLMZhpl3NzzGQbpfA83K/RtDkPuDwJsU+PBMKDnK++8YZDOC9jfq3jRXfaPvcTP/CdSyj8IIIRYBH5ESvkDQog/BvyEEOKngD8C/Fbg9wH/B+AvHPWbd6oW93oBpqZRc008W8M19bnP0VEgpZLfJFnxQnTkOFNV7brz5K7OzHhUCGU86pg6uqbSIVb3dWyrtoFracqATwiGQUYhU3ZGISvPeW1116Q/Tag5Kq2i6qiENCHAOYFihW0o/6BJrOJuK5ZOxdbx43zeddGE0v9GaVFSQM05Q+xrdwYs1WyW6jYrdYfbPf/Qokq7YhEkGatNl9WGwzfuqQ2NaQi1IJf3yCwlRbsT5a3Tm8YMffWSv7b8/IbVkyhldxI/U0p2nLAMjddXaiUlNptLPaM0VybJRUHTNTF1QZRlfLQbca8X8MZKjYWqzdXnTCp6UVzoePhJxo3dKVVbxyt9E3q+KopWbJ28UN2J2z2fUZBiaBpXFissN+wjMWdmklVLPyi36U7juXm0EOrQE6QZuib47OUWS3WHKC0Yhgl5obE9jqjayrPpUQpuXhYqbFN7IaNPJYmrUZTeIvtxrx/MmRvKd6SgN0l461x9TkP3k0wlTU0iTEOj5T2eolMUkl75PZ5G1579s4WahWvpL2zS/rxwTY37vYAgyamXc85+mJpGmCg2hXOCceN1x+T1lRpdP2bgp2X3VKNAMvIVHV7TBEIoE/5JpFgOP/72Cq8vH/4MjxurDRc/zil6EtfWcctC2DhS3VJT12h4Sm6QFDnvfTymKCRvrNR4ban2mK+Oa+lzOUB/mvArt/u8uVqnO43nmz/X1Lm6WEVKxeJxv0eo4n1fpf/kuaTqGFQsZWp/fxDQ9EyWGy65LABlRr01VIeQiwvekd71f/TONjXH4MtXOi98jUII/sxPvM3v+C//Bf/Pf/Ae/9W/9bkX/l6HYSanB7i6VMErU+Bu93wEau7QNEGrYs09o/pTFVqxO474cinBeB64ZQOokHIuE25XlS/ek3yfXFNnGpUpYZryrDJ05dGzNVLJro6hU/dMzNJ37SjNhJ1xxDRWrJVHmx23ulPSTEmjr69UMTTtWKU5mibm7Mq8kNRdg1GoUv/sffOcXs45/WnCudbDuTHOcqZlQTHNC27uTfHLZs+FZyRrHieuLtZwzZC9aUyQ5PPDvArOUWyzCx2PD7dVccrQNFabzguzshuuyaBkM8/ewyjNiZKcUZDgmE+WnoJKvcqLoiyiqAPw9eUa7ZKFl5VWHeYxys5qtsGH2xNMXXB9uTpn3CSZ8kNLMiVhEiivzSQvcB5h2zwYhkSJmo+qtsFCzebmno+uMWeTzJjF6y33ULmQa6o9dpQWfGq9wZ3uzCg8OCDjnkQpN3anc8mjY+rzs4SpafNrX6yphu9sX/GkpqZjnvx+olWxeGutxjsPxjimPm/0BYky2K5YSu6ZZGov/HPv72IZGp88V+faYhXb1A/cs6pt8PpKjfu9gK/fHbAzjViq2liGYLFuq4Imcv4MK5ZBkha8tlxl7QQloDNkuUq1blVM/Cjj/a0pEkku1Xo/ClPljVQ+t4Wqze5YvR9V2yDJi/me8CT9sHQh2B6HpGVq4SBU7J8ZKcAyBOMoBQnn2w/vm6VrVB2DaZxRtXWq9smlAAsEoyihUsqhZ+hOY7ZGqkF+WimGi7WH55ssF/MzsWVoBGnKYJpyv++z0nSIkmKeRBqkBUGUkWTFmQ/nelm8UGFKSnlXCNECzu//HlLKbxzhn/+IEOIXgJ8EPgL+Wfn1nwX+LeA94DtSykwI8bPAX3mea2t7FpcWPB4MA2qOzlLN5bMXmtScgzHuQZIxDjOa3uPFo0mczU3Ud8fRM2NRpVSHV0NXk8DdnjpwdifJgWjK/cgKdTAO4pyVhjJj7fkJAsHeNOZiufAauqYSBrOCmm0oyvtIdc7DrJjTIp+FNFe0wU7FZK3cLLUr1pxFdBLFilnUtIrAzVhrOlxouQRpwZVFdU8VNdykiWChajEOM2rlZ59EObomMDSVtDejOT6KhmvScBvz33/+YpulmoqOfnRCVklxKT1S0kx1IaQA+wifX8WH57Q9C00T7IyjOTW7VVGeXrON/kmhKCRZUXB1sULbs/DTnN1JyN1uSCYlLdfk9fM1en7C3V7ApOy0TuOMpbpzat5pkyil7hj80PVFAIJEyRKmcUbdNri2WAMh2R5G7I1jlUQjc4QQ5Ub9aPfwsMKsrgn8RCVG1R2D7jThUttjrfkwKnaprkzye9OYNC+YxipBqv3IZnprFDLwU3KpjLGbnvXcZuBP2hQYmmAriEtzXBXZvlSz+fLVDqau0alYSFmhYsVEqZJH9v1knkw1w/Y4mqcfLpQHwEf9uEAVHX70zSVqT1mAo1T581Vs49i6Vq2KPS989/0EKeWB6w/inFGYqbjdwcl2raKsYLWuvNmuLlYpCshzWaaP5aR5AVIJGPXSS6U7PRmp82GYxmrM/vD1pfL3KR9tj9mdJtRsnYptcrnjsTeJuT9QXWJDCEZhhmk87k/jmDoCGPkJU0NJgSxNsFhVkqXtUUTDVTH0V0pPqcPeqd2JYtsun+Ic8qLYHUckeUF3EqNrGnXP5EtXO2S55N2tEZtJyAfbE9YaDm+fa6JriskQl2lH+RHkKGle8LPv7/Cjby6/dLHy8kKF//OPXOM//ycf8a99bpcfeWPppb7ffviRYmUqQ2U1hmdJrqMso+aktCrWXEbbcA3eeTAmzlR4xfMyqWfzx1LNVt+3XAsvd5SEen/heRpnDPyEhqc8ohquWZrOP/S104RQBrVC0PMT6q4x99qzTSWBm63HjyLJinmDYnsUcm2pVib+xZhlx97WVcPkpDf6uiZ4Y6VG3THolO+elLKU5mTkeYFn6/T8lGZZNC7KAkrNMcq/r2wXLF07FVZjlhdsjyMsXeNT6w02h+q9MXRVyHUtHSvR6U9TxQre91mPMm4e3U/NMPM33I9RmHCnF1At2dj7v72UUjExxENGtkTixxlVW6WKFoXk0kKF5brN5ijCMx/fG74ogiRjcxTRqVjomsY4UlHw15aqpHmBU/r9bI8iNoYBa3UXx/Qf+4wzFpWmQZqrItZnzzeJ8wxd18gKxfoA5RF72BqvaYJLnQr9IEGgUq39SJ0xQK2/fpzS99VYEhKWG848nGR7HKEJuLpYmfvuZHmBEIIkK56ZkH2SiFIlgfr8xdbcl3R7GPDRro9laDQrJu2KzeYg5H4/JEiVl1GQ5JhP8Ao09bIxFaUkacE0zmi4FutNlw+2J4zClPc2R6w0HF5bqqKJMm0xy088mW8m7ZpEabm2q6JhzVaJuQtVm+40nq8/FzsVgiTH0gW5lNzpBuSFZBikXD9B/1zFlFR703Mth4WqNT8/J1nB/X5YzgnMGfN1R831ry9XaXkmqw3nRItncVbQm8Z4pgpCmNn1DIIEQ9OQsjhWG4lRmDIukzifVkQ3dI3f9sYSUVrwpwpJGBeEaUGS5fhxRppLXq/XWGs4fLgzYRpldKcR9/sBy6Xs/HtR0vdCb5YQ4k8Dfwi4yUNutgR+2zP+6RZwHYiBvwfUgZ3yz0ZAC2gC40e+dmR0fXWIa1VMwlRnteEihPZYUeq9B2NsU2cYJo8tEI6hEqnu9wPGoUr1WKo5bI1CgiRnteEcmJRmUkFgXnB5FtqexY18Wmryk7kvw3LdpiZ1bu5NqTkGdcfkTlcd1nQNPNNQHklpjnfIgJdSpb3YhnbggLEzjuaTRc1N574Rp2mkdq8f8Asf94iynCjN+cq1BTaGAbf3VAHlzXN1gjhD11Ri1peutgFlvjgMknlV+VlYqFr0/BjnkeQQP84I9kkabvf8+XgJzika6pM65XGWz41MozRnveXhWQZhojoUGsy17GvNk2NPDYJkHp8dZwUf70zYHIaE5XhoeWoinJReZA1XedAs151TS3PIcrUYgZJp7U1ibu5NudP1ubSgFvdOzWYSZaSZ8h7rVJXGf7nxuIH486JTtbmxO6XumGyOQiqmQSRy2hVzPonf6wdESU7Xj6mXXZukjAm+vFDBT/K5tEcXGt1JTJ6rRf615eqxHGQ6VZvtUYRlaOxN1HituSZm+b13JhHdSULfV8xK29C528vp+QlXF6sIAQ8GIT0/xtA0gli9V065+B7my/W0ohSorm0Q5wwDZXB6HAwhKSWepROnBZ2q9dhCOo4SvnV/iCbgw+2T7bre7wd8vDMtx6gy6H1/a1RG2StTUyHU5n4cpqy1PJqn5D0XJoq1o6AOf796u8fmIGSpbuPaBtcWq3MZd901eXO1RppLrixWnjiXh2nBYt2hO02wDME//3hPdcp1wcV2hUGQ8OZqfc7OehTTOJuzbqTk1Ip0L4JxlLJTrsVxVuBZGhVLVwlomiBOC3bGEe89GONHylfscqdajlGDhmceeuB7FL96q88wSF9Kxrcff/iHrvD3vrXJn/ypd/gn/9FvPbZDT1YU88IOPJR7BIma7xqeQcM1HzaQIp1zTYf3tsZ4lsHOOGb9Cc87znKitKBeMrBBvUN+nDMkpeYacw8WTROPHWrv9wOyXMkWPnmuse/PH84PvWnCrT0fx9IwNfCTjMWaNWcTTKOcOCsOTTgyNJUQFafF3ErgXi/gTi+gXTVpexYLNetIBtDHgQfDiKRMZDJ1lfr5YVkgHYUpzYrFB1sT+tOEt87V1L0t2c/tilXaLkiKsih30tiZxPM94zBI+JVbPcU+jgs+fb5Bu2IxCTNWGg6mpvHGaq1UAYhnzplRmnN7z5//+lm+fX0/pVOx2Z1ErDfdA/u6jWHAuxsTTEPwWhm/LhBzX669Scy7m2OW6yqifdbgrLkmgpdL0s0Lya09Hz/OGIYp55runFWkJEvq137JbteECmCZYb+59WrdmRchNwYBYVLwy7e6eKbBuVaEpj0MD3hagWjWqFLNaMXyHQYp394YEiUFuiYYRwlLNRtDE1xZrFJIye09nwfDkGGQcmWxwqfWVbN3VjB4lUUpUP6p00jJ/cM0434vZGsc0qnYBEmGqbUIkpw0U4nbDbeKJgRXF6tPLXqcb3lcX44ZBglSKmngrd6Uj/cmxElBz4/pVG0ulX55nmUQpgWvr5xsWNJszl6qOdiGSpXfGAS4ps6NnSlBKVFfbTp8ar3Jt+8P+dXbfUxdIMTDz3vSZQshYK3h4Fk6VxdrfLQzoeZI8kLyrft9bpcFssW6Q5jkfPv+kPW2y9XFGruTiKKA+4OQTxwhgf1FEWU5H21PGQbZgVTKpmuVgRMcW3NCSsn9vmIq+kn2WH3hURi6RlVXa3SnaiE0ON+ql80HoRREWcG7W2McXYUiJXnBN+9Jrq/UuLpY/Z4zRH/R3c8fAK5KKZ/L9ERKGaOKUggh/gGqAHWu/OM6MCz/qz/ytccghPjDwB8GOH/hAnkh0TWBrZepWhUH0xBUyqSyGfxS17o1Dml5Np6p8WAQzLtYoCbyKwtV4rRAE4Khn1B3zHlBYGccc3nh8FsngYsdTzF/nhJX7Jg6K02HNJMUqM5Z07VYqbtEaY6f5Az8hNfLSneUZQgEFUfnklmh7hiHbhi3x4q6r2twfaU2f9lmB0whOLWOt6apRWESKWbazd0pmZRzRgvA1jDiw+0xaS5ZrJlEaYGhCyq2yXLNmXc5luoODc88QMOcIS8kovx5wJx5FqWq2NT0lOntna7PNEpZqDmsNBz6foyf5ExCNVnt3+zM/BwaripmzCJn4eH/15ou7YqSks0YF6DiyU8KjxYK7nSVWWOa55i6oFrKvgqpqMpfvNzBNvUTlyDthyYEhi7Icoml6+yMIzb6IWGSszsOuLpY58EwxDZ0dCF4c63GhfaTD9bPiywvqNg6UgqEKP1UpEFlX9FRE4LuNGEYJBiakgzompKIRGnBR9uT8lCn06mqw0F6zMaeArXZMzSlra9YJnX34ZyhC8EoTNmbJDRcnZZrgtDIcokfKxnpIEhwDF0V9yoWg7KT/qJXaukaAfncB+BpmJmEPusQPY4ymq6FoWk0DymM+WmGEJIClcB4krAMlVQ6CBLGcco4TObd4qpjlHOnYKXh8KUr6t05rfnS0MU8utgyNHbGIXd7PuMwRdfhsmtSSMkwTOaSyHNN96kSw92xKnxausZrS5VS5pBjGTpmof7Ns56z2uiqee80DsQvgllDRrHxZgU0B880mcaqICGEktwkmaRiGaSFJCt9ZoQQLNSsI0sJ/tE7W7imPmeEvixsQ+fP/sQn+df/yq/wl37uBn/sx944lu9bLRk6hq4YD/1pgmPqBBJW6i69aUJz37wYxBkNx+TaYoWsgKX64fcjy1VTJMuVNHhWWLAMrTRNVkznp8EyNLL86c2mJFeNwKyQBGmOWSjJWy4ld3s+55oerYpJUahwgBkDG9R+4NpiVcmmTJ1JlKJpAlNXjJ5WmYS3H6MwPVaJ16OfN8kKTF1jEudzL7sozbm86IGUWIaSnGwOQ5ZrjopUL5mQrYpFq2IRpfmxemE9CQLFfEbC/ShhHGWESYah6yR5wVrTwTJUiuxCyeJ9HkuDaZSh6dB6QrJsmOTzxC7X1Mv9lsnVpYeFhiwv6E+VHUOYqvXjfNtFSiX9Svc1yYZhOi+YCaEMoTeHR/NuGoUpmuCxIIDZIdezDHShmqKHMSQcU0mV3lqts1iz5yEoB82tszlrY5Z8uDOKVPqlocbs9eUamnichT0OU0ZlWEEhJXGm3sG6Y5JmBYNQBT30/IT1lselToWaq4qzEvhwe0I/SLjXD2i4Jkmu2EYn9S68CGbzhK4JBn7Cra5PmudoAqq2SSEL+pMEx9JZb3tcbHsY+rPlubap88XLHaI0524/YBorn8W6Y3J7MmUUJMSZ8mf99HrrwLWcJGxT47Xlh0WHdsWaJ6pOoowgUZ50kyjl9eUaYZqXexkAyZXy7HXSEjXH1Pn0+eb8rOmYGtNY7SVv7sVoQhBkOQ1bZ2MYsTlUexKVeqwRJqclTZMIlKS2Uf68iq3TcK2559XCU1hTUkrGYYZtak89q6ggENUQeZ55Wgh4c7VOmstSRiqYhOo5D4IEWxdkUlJzDXYmEVmm1vBJlH2/MFXiHRSzafd5/pEQoialnJS//S3AX0LJ9/488KPAr6DkfZ8U6kQ5+9pjkFL+FUqZ3yc+9Vn58e6E60s1Gp7JVaMCUhUsQHVO7XJx35vE9P2E1YZLXhTsTmLu9kPWWjafOtecd41da8aa8llveRiawDSUS37lkc7BUs1WcjhNm8t8FmtPHyj7N015IfnFj7vkRUHFfpjIJYQ6IK00bN7fimm4FhVLac8brqkSbB5hSG2PIu50AwxdFYVmT3ipplhehna4VOOksF+7fm2xgp9kREnOSsMhiNVLl0sJQvLhjopKj7KMr1xdZGMQHkh1OWzymsYZN3YmWIbO1SWV4FKxDHokCKH04XGWk2Q5722OyAoQmuDaUpUvXelQcwyCWBmRzg6g+yOSg6pKRLN0jUsLHmGa06k8nLxmn80Wyg/DT7ITTbyrOWZJEc/5tdt9wjQlLwo822AUqGQjU9eVEWXdeSZD5iSglfdX+baE9MYRWaE8xPxYdaByWXB1oUqzYnKu6R2b/DHNVVEpziTtisGFtkqek/LhsxpHKY6hAQW5lPSmKbauUfM0KpYxN+ruTmM+vd7k7XMNlutKAuOa+rEsosNASS0LKVmu23SqdaI0n3dbo1TJynQNJAXTWDCMUpZqDkIIwrTg1p7PxztTLi14/Pa3lnEtg4qtDORflHW23nLn8uanbeh2RhHvb48xNcFnL7aeWpxyTA3b1DB161AWV5JLpJQkqWS1frLjda3hogHTKGVzGPDR9pRPrze4tFCh6VpMY1VEr9gG1WOMKz4KTF3j2pJKTMwLye44JM1yijJpyI9U/PO1xRqOqXGh7T2Txp0WkoUywnkYKPNRx9QxNMH/5u01FuoOGswlfYd1xW1D59KCx8z75KxBmahOSXO1wb3Q9tgZR3x7Y6IO9qaa281yPLerKtZ5sWbz9rk6pqGYDEctSuWF5Gfe3eFH3lg81rX0i1c6/L7PrfNX/8Utfu9nz/HaMcgvVhvuPFr8bj/gwTAgKySfvdBkGqlgGF0IOhWLrPSq2xpFpZmxScVSkrOskARxTtUx0DVlrHynG5DmkjQv5mmb55rq59nG0+cPgEsdtR94WqDAYlUVpSqWQZjm9CYJui7ZHsWkWYEmlDfIr93usT2K1IG0U6HuGgz8lKqj0seklNQckyuLFc63PBxLe8xLbb8f10ngYttjmmQ4usagTNZaqTvUbWNuajsMUpqu8pATqEP4jKU9G2unsX8Lk4ybe1OiJKdAYpRyuLZnUXNN8kLiJxmuaZAVBZ3nXG8mUVYWh4pDWepbo5DuJME01D75YsdjGo+xpc437g54c1WlLA8DJSNcqTtoGtRdg8q+RFFT12hXLSaRCshpVSw8y8DUxTwQ6Vn3s+8nPBio4taj/nO6pphZt7s+729NeGdzzA+/vsilheqB71G1lNF2UbKHZ3uImbn17NczXGh7mJrGm6s1oqzg9WX1/WYFkaKQdKfxvPDy67f7TKKMlbrNQs1Sfo6uwRsrNd7fGhOnBXEqubZUnRfPrPIa0vIMUrUMVhvKG2y5cfYk22sNh7qj7Ey+dbdPlCYkmcDUlGRzaxSz2lCeuVcXq8/lF6dpAs82ON9y+WA7U/YhYUSQKmkVImfgx9QcjcW6S/WEZXwz7B+bm6OIMM34lds97PK5R1mGxGYcpqy3XeVtZmpcX6piGPqpnfVm4znLVaiAqWmqUCYEtweKMfXBjmoMrbddNA1sXWepbhPnxYmGyoDyMo6ynKIAc9+eSTWeFQP3aZI7gI1ByMe7E1xD5/OX2k8tTl5ZqBCk+XOPExVy45fzo6QoFMNxaxAghEbF0XlzVSmLhmFKnGdoL8X5PJt40dHw54BvCiHeoWRAAUgpf88z/t0PljLAGPhFKeWvCiH+hRDiF4F7wH8ppUyFEH8V+AVggCpcPRNpJkmLAlvTcQyd97ZGbAxDZKEit9tVi7qjJE4IiWlonKu6DIIhozBlY+DTnSR8ar05lypUbYNLHbUgFBJeW6rNNeP7IYR4oWKEijjW8OOM9ZZHz4/p+yktz6LumDQ8kzDJGPgFvWlKGBd0asrAcbZwB6mSbGlCzE3U0yJnGhdsDEKu76ObvopDRZwpzwnPMhgECZauE5Hz7Y0x721NaHkmDdckLwr6vtqsDcoknuxhlM8T8d7miAeDiLqjFlXb0Gl4Jq9bNbaGoTKZn8aMgpQHgxDD0HhNVJBSYps6Dc/CLFl2s/jXolAbwVGQomtqMzEzS36SjEUIceISl9m9rFgG72+P+MlvbDDwEy60Pa4tV9GFTs1RppBHORicBKSUcymNrQv+9q/d48MdJVn9/MUmnYoy01yoWmiahm3ox+rJFZZeVmkuMbXKnE6v4q5jNAEPBhEbg3AuCcmKnM1RxFqZHpVLdcBdrqsI2zlr75jya8Mk5zsPRvSmCeeaysR05vP2YBiiC+Vfdrsb0HANBIIky+mOFavPs0zCVHlTrTYdFqs2eslOOIoM6WkQQjwxHn4/7vZ93n0wppAqAvjyYvWJf9c29Keah0/DlEmkioQ3dk/GYyovJFsjxUDaHkf884/2GIQpKzWbim1yoe1xrulyr+yu6+L0N+WzSGXP0vmZd7b5J+/tEKYZlxeqXFuqUXfMMiBCO7K3gGdqvL81ZnscYeiCpmthm0qaTmnQ+/Pv7yKBSwsen1pvPvY9FGtLFezOWmEqLyR3uj6745gkLzjf8hiGCR9uT3gwCmm7Jv1+QlZIBMqM+vJChYWaxaVOld40Jkzz53q3v3anT3ca82OfXD32z/Mnfucb/Oz7O/zJn3qH//EPf+lY/CNmReNxmGJoOoYGDcei7YnSq0VyY29KxTbUupurRo4QajNuGqookRcqae3qYhVQ8rLNUcjOOOTmnsXV0qPsKPMHMGd0PA0NT+2DpJS8vzXGNASWruOaGcOSyfDt+0N+Y2NInkuankVeKClFmCjZpgqWkJxveU+NAz+pqPsZZslQH49CLF0nzgqGQcL9oU9volKZFmsqoKTl2YTpQ0+fWZP1tHBjb8rX7/T5zuaYSx2P60tVOlUbXYOabbLeVrHnFVutr897dYVUB8EKh7N7w0QV5G/tBkyjjCuLKrRlbxIxCjOqdkCc5ziGgSYE59oO721O+PkP91iu2VzsVObsLSXzfMiMmyU7DspU7Gc1cfbf+5n/XJIpM/q89K4Sgjlb+VZpWbAfcVYwCFJ6U2VJ8UPXbTRNUCkNuOGgkiEr/Vl3JjFNz1SenPuwO3mYelZ3DdK8mFsPZEWFlmchxGxPq3G+7RGlGf1AyebPtVzWmi4XOxVMXTU5vv1gSLtiUXeNQ6WxrxLDIGEaq7POT39ni599fwcpJW+s1rm6VKfmGDRdE8dUBcAX3VLq5Z7UripfMGfRwBDwrY0RH+3k+HHBv/uVi4zDFM86Ph/Oo6AoVKrkOFQsqCzOWGl4tD2Tr97soWsarqVxzvW4NwipOgZpLlmu2Sfq37QfErWHdC2daZxyseMxChLu9FTh1tQF602PhmcxCBI2xyHrLQ/X1NFPUHSY5ZIokfSDlHTfudLQNa4v1+bqiKfhOw9G3NiZ4lk611dqhzZZ93/f+gve83wuNRT0g5ibuwHdIGW94bFQdfBM5YsYjSLuBCpR+hNrdbSSVXvW9mgvghf9BP8N8J8B3wGOnLkqpfxp4Kcf+dp/Vn6v/V/7W8DfOur31TTBcsOeD6wozfnW/RGTMEWWi32UZgyChHt9n+W6w2qpi685JuMwxTJskkzS9+N5gWGx5rAzjg54reja8VWg80KyOQyRUlHmVVS3Mh9Uum9oOAYPhkpf/tHuhN9cabMxCJitldMww9Y1RClHWWu63O35WFVtbmB6kmbchyFKVaysU/o7TKKM7iSZv/xb4wi9lCQ1XJO6Yyp5jZ/imAavXa5yvuMeYCapGNL4AC1VSqnMUU2BFMpzZRpn7I4jao453/BkubrPZtlluNSpkOQF9/oBhiZUYpP9sIvlWjqaUBvnpDTN04TGKEw5f5o3ch+mccbX7/QVpd+z6JWbkrT0m1htuFi6zvm2Q9dX/gKPMvtOGnkheffBiJ1xzGLNpupoTKOcopAkac6ltofnKKNDvZTSyWPeb+uaYnXEWYFj6WyNQsZhWsqXNMI0I80k9/s+O5OIKwseuq4hC5iEGZ6pfLquLqlEx3Ot49+gTeOMmmMSpwWmrqKjb+1NmYQqWj1Kc/KiYHMUcHOv4JPrdUxd+a7tTRIudkxcQ+e1ZZXcd67lnqpUE9TmvmLpaLo4komBH+dsjUMqlvFYAdc2lFmnYrYd/wHMjzPeeTAiLKOVt4cRmhB4luo1rTUtLi9UyaWkkBJDF6yeoE/co8jygg+2J2yNIpZqit7eLQsmAsFSzeZC22O5prrBPf9getfTsDdN2J3GOCVj+NPnG+gIukFKkqmUKyHUHLk/Pn12cOtU7Hlk+zg6ecPlZ6EoVGLubK0zykSzhapNkueca7nc7fpM4xRZwGLdJs0lQZYjC8WWanom51sVolLKk+YF93oBFxcqrDWcZxaDfuo3HuBZOv/KMZqUz9Cp2vyxH3uDP/F3v8M/+PYWv/vTay/9PUdhSm8aK89K12AaZdzp+by1VmehZrNXrpemrmEZgve3xliGzs4k5nzLI0mV2a9rqgMwKBbk+bZKXq05JmFyMtKf7jRmHKa0PJONgUpKXm8pWf/eNCLNCiW/FRpSKzjfcVmq2fPEvrQc01opi35aYWqWUHzcTJHZfmgUJOiaxs4opl1VspyaY7E3SchlQVbAWytVLrQrmIZgueaUnj9KuvOsjv5xYm8csTOOGIcpu+OYawuVueQlyZWX4SfWaviJUiM8ryfaYnmo0zVxqNSoZpuq8FM2iYaBasApVrHB7iTGNAQaGuc7LqNApZZujyI2eiFxVjYen8AYT/MCgaBdeban5ULVmgccDYIE09BIs2JeyByHKZc7Fc61XKSUXCmLUklWcK+vfLTOtzx0oVQXrqUfSOU7bLwFSU4/SMlz6E1SfmNjeODPNY15YW2p1uT6cpUwzVmpO3i2Tj9IqJgzJqhJmOYYuuDj3SnbowgJ8/d2exzhWboy3C84dsuCl8W9vs/7mxM6VQtDF/T8GA1BTsFS1WKpbnOu6VCzTW73fFaOMIc/CY6poWtqv/KFSy1udxWrXd1/wThMeDBUheW9yZjrK1UudSonYkCdFZJbe1M6VaWQWW04ICW7k4SNQUDDs1TaqaXjJ2qe2xnHnGt67E5ixmE2N/4HJW9fa56syXgQKwWMrWu8fa5Jz4/57KUWu37MJM4oCknFVvL6aZKyN07wTIPtUUi7YrPacE6E5SVRRVpDFwcK4dM448EgPBID3TVViqBqDp/cXLzecun7CVXbQBeCG7s+VVtnGMbzkBCJwNB0ojQjTgtu7U5ZqCl7mqan/AhnTe/vRrzo3e1KKf/isV7JS8A2tAMdzzDNMQyBRLBUs1isqaLV0A/nMa6LVZv3tyZUbYOluo2pa0jJARPGhqsSPe72VJrY5YXKsW5aen7M3V6AqSs6cKdqkRcFWV4wClNsQ6fqmLiW8rZarFkMg5SVhkqV2plEvL5amyfXzDYuX7zcYW8a03TNVzIwd8cqLWoaKY+Ie70Q19J4a61OlBZ88XKb290Az9L5xFqDhZrNN+8OeX2lRlbAD19fOOAHBMqLKskK/H2pfEIILrS9eUKFrgm2RyFhov7elcUKpqGRpDnTKKFA8onlOisNl1t70/n32q/jBsVM0oQqWtqmTtuz6AfJc9PVjxMb/UD5h41jri9X+crVBd7dHFGzDD59vsVbaw0WqjajIKXvK++Grp+caudrECRsjyM+2J6wO7b4HW+v8APX2vzTDzPeXKlzvlPhrTVlqPnxzgTH1NmdqE36cb1XnqVztZQRNlyTnXFMXiiPheWaQ9NTBpL1MpbcEBrLVQc0SNKcrVEIwuH1ff5sx42mZzKJVGz4hbbH7a5PnBb0g5iWp8axJlScdbVqkSQFr52rkpR04wfDgIWqzSfPNXht+dVoy68tVtgaKgbioz4tjyLLC379bp9pnLHacFiq2wfu7VLd4WLbIykknerxF4S2RiGbo5C7vYD1lsvnL7VIsoxhmPHD1xd5baWOa+nc2J2gCcWaO030/IS9ScQ7D4asNlx++PVFPnehyc3ulIZj8kOvL/Dp822KQvLupjKl3psktCvPZumGSc5CxWInl/zgtQ6fvdhmaxTi2ilSCqZRRi4lli54a/VhV/5B2TCJ0pDlutrw6JpgFDz9cH8SmB0KTUOlns4SyXp+zGrDVVHKiXrfs6IgKwrlJWQIFqoOaw2P+4MA19Q413I531LS4UKqotbAT9A05V00Cxx5EqI05x98e4sf++TKiRUK/o3fdJ7/5qt3+C/+yUf8+CdXXvog8cHWmKKAmmvwidU6H25PMXWNX7vdZ73lcXWpys44QkpVGLu5p+ajiqMpGa6h0/QMxtFDdsmMIVx3THYmETXHOPaCTpYXbA0jCil5b2vMOEyp2AaebeJa0K7Y5BJaZajFpY7H1ZJZcqHtMY4yHENjZxITZzmd6uPrd5Tm84aVrolnzmUvgtl+aG8a050k6Jrk8kKFL13pcKvrE2YOayhJ7VvnGizVD16DrqlwjLprnNiBqCiUr8nmKGQUpqR5wUJFSYSW6zbXlmustTxu7k5pGUoOR2k18SKYsYWiND+0eTpbr3fGiuW8ULNxLZ1PrNV5MFSsWs8yGIcpO6MY29RYaTh0JxGWoQzPn1YjXajaFFIxaw4zavfjjDDNaXmqGNeqWOyMY9JcpWJf6lTwbMVcaFdUEu7vfHu1TCNW328YJtzpBkyijDgr+NT5BtujCNd6tsSq4Zpc7riMg4RCMk85HAbqLNDyLAxNNSnHUca10ncrTHMlWZZqPA+CdN4I2pvE/NqtHkIoL9LlulMGCKgE49WmQ1R+5rOCIFHBGzd2J9wf6PzAtQX+ldeXud9TjPdPrTf58jXl8/fRzqQcExlZXrzQvDmJM/JCSeiyQvLlqx1u7FrsTiLe35rwxSsdmp7FV2/08JOUumuwULWPzBJ9HqS5OsfEWUjDNTF0jfOdCl8Bvn3foJAF7arFFy62ud1VBce3z9UpAM+yeH97Qp5LLna8OaPeMbXn8oF7XjwYhmgIstKzs+oYFIVkZxRx1/XJCknd1Xm7U8c2NO73A955MKJZMZUfrYi42Dn+ABxT1zjfrrDaOPis9sYRN/empfefYK35ZNXLGyt1gjTnQss70SAA29Dn69D5tlJBGBo4psmFjodrG6RScq7l4KcZIOdKiSDJ0YRqylTtw5M7vxvwoqvc14UQfw74+xyU8n3jWK7qJdCbxtzv+4yDFInk7fUGFzsV4izn5z7YIUpzFqrKqNGzdN7b9BEaXF2sHSrFGoUpO2OVptJwleHscWEcpnSnD9P8ZAHvbyl5jATGYcaDQcDb602uL9eI0nxese35MestF89SL/7GIGQc+ZxrunOTzFcF19IZhSr5Z3cclgbkXul1YhBnOeMoK1OAUlbqDqYu+Ma9Aa8v1/nWxoiFmqqezyYRz9LLuFqNIMn46s0un1yrs1R3Dky0bpmUZ5sanqVMoW/tTTFNA8KMu/2An3lniwKl+18si5L7cbc0yi2QXF2sYhkayy+4ATsO5IXk5t6Uj3cmmJpOmhXc6gV8cr3FRj/ANXR2RiG9aYJraXPz39NmTA2DhO88GDGYxrQ8k/s9n1bV5nMX2hiawI8zPtoeo2kapq4RpQW2qc1jkp+EOC2UGWzd4X4/IM0Lzre9Qzd3+yWVaV7QnSaAxlurNfw458buVHnF5SqBz7V0zrU9Xl+psTuOMHSdaaQYNlcWqkd+j+Ks4NbelPNtr+zyZyzX7UN9a0xd48o+6ZtrqsS69ZZHxdb55r1h6QOkMY4ViypMc64t1ZThuNDIioL3Nkcs1pxX0hnZGEaMoxwhVJzx0zbafqzMemWhDpuPGkKuNz2yQuJHybGa+u5NYkZhyu444s6ez91+AFJydaHCD7+xwq09n56fsBikrDXkgbnjWWPyOCGRfOPukJ1xpH62rthNVxdqCCGpOiZ3e77ynSnfbe+I73bLs/jchTaFlLy+UkPXBHuThPc2RzRdk8uLVZWuFWUESYFX1rpcSyeIlefZzJB3exRxrx9wUVMFiSjNud8P5lIQTRNIKbnT89kcKor+cWwyZ6m3KmlV46PtCZom+OHXFWNp5mM4ClM+2B5zt0wBWmu47I0jOjWb33Jt4bExaurKXLbmGMrcWONAUMph+Nn3d5hEGb/3s+sv/bmeBE0T/F9/+3X+yH/3df7uNx/w+7/w4jzd3lS9A36c45ge/SDhdm9KmOa8vlJjexTOI+wvLTyU9UyijNW6TYE6zNRdi7prsTeJ2RxGLJY+lzOp3YtidxwxjTOWajaDQBVEzrXcuRTdMRVT2dI16o6JoSsGYZwp2WaS50gJddfi4j4/SkPXiNKc3lR1mYtCeQUJ8VDauDOO2B0r5s1rSzWkVMnIx6maS7KCrh/Tm6if7ccpUVYQpjlvrtW5tFCh7yf8/Ie7TMKUX7094LXllLZnlfcjB1SYyEkant/qThn4CTd2fVxT48OdCe2KxZdfW2ChYuPHOdMopWYbPBiGZF6BbRzNAy3N1fq9Uld+YV+722cSZlRtnbprHZrKN1sTLy14XFuqIoRSBHzj7oCuH2PryrKgKBm2WS750pUO55quSuK1HvcIlFKxLWcpjk8qqiVZwe0ygTlMcs63PTRUemycFby2VKPnxzwYBHimQdZU15BLqeaqSczlhQpZXnC7O6VqK8+wmmM+s4AxKVNF647BZy60ubZU4+PdKYam5Ki3u0qK3vZMNocBUSb54qUWQggudirsTWLu9wO2RiHnmi71fYyxQko+e6HFxjBkoaYSAGfyUkNXTHMVRx9jG9qpyb+ehkmY8mu3+3T9hMWaTXcaEyQZnzhXV2w7z+LjnQmWoeEaaswo1tOLrd+2oc0DSLJC8mEZgrNQtXlzVc0rW8OQtMjpT1N+7U6fC+3KiRSmZql8s7U+SDI2+gF3ej7b5bnqd6+qnLBCqgbfUsOh7pgMgwRL93kwDrDKBo1r6SeerOhZOpMoYxqnfLg9wTV17g98tkYRuYTPX2rxmfUWmib4YHusfOR0QauivF2jzGSltGQ5XkimcULDraLvG9ez1FZTF4TJ0zuSW6OIJJXc6Qe8tlw7cf+uOMu50wvwTJ1xqKkGe5AAUjVb0oJPrNbIJARpxmrD41zT4aOdKYMgoe7+y1eY+mz5/y/t+5oEftvLXc7LY3scMQwyxqHqzvemCSyrSqJjKAPUaUnzPt9y6U5jlSRTfu1RmLpgGuXzg/VxwjF11luuMkQ0DdI8YqHqlAt5RJorX4d7vYA312rzierjnan6rKOIK4tV9qbxPDJ+1kUG5kmFp4W8kGhCpUfUHIMbuxOCpGBSRjrb5YTgRxlZaZo6DlOSvGAcZvPDhWPq1ByTvUk8n/DXWy6LNVsl4GWSnVGMZwV85ryiWWe5SmM613TplEl5M1pmp2LTcEx0oTand3sBjqnTWrEUxbqku87Se6RUi8J+Cedp3k8ppeqSlT8rzQvSQnKu6aqEGQEfbU+wDZ1cqg3Pzb2Aix2PJCu4vlyFY4w/fRIevR/jUBUZJ2FGkuVsjQPGgWKlzQpRcaZM/JfqKplm/3N6Egop6U0TDF3MZUW9fWywWUrRo8UZs0wii7IC19R5ZzwmzgpGoTK0n8YpLc+Ym03XXZNBkDIcJCzXlYziqBN7UUj8OGdvGtGbKEbH7iSeF6aklAdCGPZjZjhesQxu93zyAoaB8pqbWVVIKeYssGGQMp6kuKbOMEhfSWdklkA527zPPiNw4POlZULiWtOlU7UOpb1/vDsllzmGpvH+9viFrufRsVgUku2RSlzy4xzPVs95ECS8szniU+tN6o5iIEgJ0yQ7dO44CczmydnPCOKchmfQ89X96k/V4UZK5Q+yN05KebGg7qpQg2cVUGY433ZZymwEai2bxDlCKCPoim0iC0l/muDZBnvTeJ5Kc2WhwihM534Fch8BXiWUyjJRrCAq5doNz8RPcm7vBaoxERe0KtYzfYSeda+kVJT7gZ+SZhnTOKdTUYbG+zGJlGTN1DXaFZOqY9D3U4oCNochF8qUpv2wDZ2LHSXrMzTxzMPYT37jASt1hy9f7bzwZzoKfscnlnn7XIP/9z/9mJ/47LkXZiNJYLluk2QFy3WbW12fhmvRcCWGpjEKE2WMnBTouuCNlTpvrNTISpsBP87x45x6mQi5MQgwNG1ulg8vti6qhKOU7XGEQHAz8uf7m940Ya2c2y91VHjFzjjGLxmXszm14c6KoyG2oUJNZlBFKcUu2RoptrWUaoy8uVpHiIf7uTSTJTshO8DIflHsf7/7foI5S121dW7s+uiaxoNhwJurtVIWolO1DIJESdHONV1602n53giuLHg4lnHse4/Zc1PeNWoNDJN8HsLhWgYrZQFyYxCp5KokY7XhopfKg6Mgy9X6bZbFwp1RXDaGEt5wzEPl/OfbHos1xaaSUiVWpXnB5kgx+wQFb63U2Z3GDPyHbPb9+8RHoZKuy7V5HB8I1jkMhZTzaxuGKVXbxDZUY+VeL6A3TemLlJpr8PpKnTDJ538/SHL6fsrlBWXwf67lzmWlT0ue3RlHhIlKeG5VLKqOyafWm3MJ7TTOiJKCzVQ1hiqWwXDfPBgmeckO8biyUMEz9bnBe3VWyCuvcXsUcmmhSsNVMt6eH8/3VxU7PdEQn8Pw6L4XlOH3Ys1iHCYYAjYGgSrYZpLzbZc4L8gLiNKCiwsei3X7pdbvmR9mVqi5LslUGFPVNtibxNzp+tQdHQOBrsFq3VFFwH2WD0WhziIvu4ewDdU4ma313UlClCoW1TBI8WyDm3s+7YpdMj8F41Ax9gxNECSq2ZRkam97eaEyv7cnZfGiQgoybu+pRtqdnk9RqPd/tWlTKUMAwiRjox+iaxpJLlmtu8qWxNAPzP/HdeZKc4lp6GwNQ5Isnxv/rzZcPnW+IE6LUvZfHFhr99+nmTw8y5TtwWkZywtNsNZ00IGqqXFjd0ohwdA0wrTAT3IajjGXO1cdHdt0DjAHT7sW8LJ4ocKUlPJHjvtCjguOobM7CdmehEjg6nKVX/x4j2/cG9KbRnimmoR3xhHLdYfLCxWG4cFJOEhUKoNlaLQ8i2tLVcIkJy/kYxTRvJBMImWEd9SFWpadlfv9gO1RiJRKipflsuweWlxdrPLVmz1GUYKpV7BKo/S8kPN0wGGQ8iu3ekxCFZe71nQf6wZ6ts6VhZPRQO/HxiCg7yeMwpSma7HcsGm4VlmhL7jT9fm12z3OtV12RjFfvzvA0DQ+c77JxY6H0GC55nC+49L2LLKCA90eIR6mCaZ5Qc+P+Mz5BoMg5t0HY/p+wkrD4a21xmPmbw3P5AdfW2RjGHBrb0p/mlJ3TWpl4akolPlrnCpq7Erd5p2tMTVbsbtsQ3kVvbc1RhOCz19sPXbYSss0ilxK5EtIgbK84MbelCyXGEIwilIcU8kR4zRnGqd89UYPz5pRUz0cS2fJEKqY5hjYpzBhzsz3DV0QJDm6UJsxP07Jipz3t8bc7ZosNyzaVZuluk3F0REo+UzVNp5rYndMjbpt0tMT8kJSc9Qzvt8PGAbqHs06qzMUheROL2AQlIev8nC2M45498GYnbE6rP7W1y00MZME2xSyIMs5UndpGmdqsyfU5rnpWkSllHT/GLnTUyauFVs/wJaSUnJzzy/nl6IszGrYhuC9ByPu9kPaFZO1hkvFMjANjeWa6n4NfZVI9KzrjLN8Xjw6Lry2rIyjc6kW95t7U751f0inavHFyx0cU+fBMKQ/TajYOteWnmyODnB7NyTJc95ebzz3tczGwP5wgo1hwPtbI9JM4toaNVvHNAQf7aikqeW6y/WlKtNEeW/MErpOerMx8BM2BiFaaUzb9xNyKXFMnf4kIYgz/nGxxXrHw7MNlmoO7YpJgTrgNV3rua5xfxJt30/mEc0NV4VOJIXEMjW8Ms58hp2xMtc1DcFaw1WycKEiy11D45dvdrnTDdjzI5arLudKTy7H0PBsjVGojLJfhuVxv6/WFE1IoiRlFCZEqRrL99OA1abDQlXJeN7dGLEzjsgKSc1V5sxXOhVudn2CJGNzGBEkORc63qGFsqPc093SNP9//4OXT3yTJ4TgP/rt1/n3/+av85Pf2OBf/00XnuvfZ7mKxY6TjJ6fsDtWjS4pJdNYSeLeWq3x4c6Ub28oCemskaFCWRSzyI8VI/IbdwdM44y8kCzWbFoVdQ/v9VQR8mnBIIfhdlcZ6t/uTgHBUl2F00yjgsWaOiDcLNfB8y2PlYbDzb0pW+OIJJc8GIRM4pTVhoNnqaZEc99+wdKVDDFKCxquwSBI2RyodFjbVAbuKw2H7VFEZd9apGm8lO9hdxqzNVT+mlcXq8RZznceDJlGGZ853+DT6w0ejCJ605g/+w/fp2rr/L7Pr7PaVKlyeS6xDI2GZxLEORVbf8zW4DgwY9XsjWMuL1XoVExu703o+RF11yTLJfd7Pv1pzFrToZDKKH+5bmNqGnX3+Y8OlqEhZUGSZ/SmKRqSX73dY73lsly354fFGXp+Qn+qGKyvlcE+a02Hu/2AUZDzj97b5lLpC7M3jXFtnbpjPvFdViwgUSZwPfl91zXBzZ0Jt/s+P3htkQsdD8vQ0ITaY20MQgaBahyMo5y9SULdDVms2vN1tl1RlgHTWBWYdAH/6J0tJPCVqx0WnxC2ULEVa9fZx9qdBbhommC1bhPEGZpGWRyLKaRKNXtjpc5S3VYeP4aGn+R89WYPzzJoeiZFIVUQUJgyCBKypSrnWg+Z555lIERc/vp02fb7972rDSUxHIcp45LtaekaN/d8/CTnYtvFMnTOtz1W6s68aemZ+rGwvGbzX90xCZOYhmPhmQYbg4BhnCoLGEdZfEwjxcr85Ztdqrbyz1Tru+DKYuWl9xP7/33dVczeK4vV+VxuGxpdP+LdByP6fsJvutKeM5k3+gGgWKctz2RnHDHwlV9d3TVZrtvHLusTZUO/4hgEsfI8y/KCaRnwBYK//M9ucKcXcKlToV0xWW06xHnBtzaGeKbBV64tAMztVhZr9gtLhmfIC8ntPR8Kyf4RIkSZXo+aE+8GATXH4NJChYEf88s3e+QFfPlqh2tLFcZRytXF6oGz6UlBNc08NAFJJvlge8S7paLqfLuCa2kUFCR5zoc7IVkhaZXN9d404dKCIl3M9uGzz/XdgBcqTAkhloH/FFiTUv64EOIt4MtSyr92rFf3AmhVLFabLld9Rf/WgPsDJf9RjJgCNMEwSFmuO2UKhTmvku6WPj6apg7P0zij6RokWU6UFtztB/OBDCqxyI/V4eaNldqRCkC39nz+52/cZ3esJE9LdZdsW3JpwePT6w2anjL5+/R6kzjLWWspav39QUDVNri2WCXNC27s+oyjlDAtuNCusNKw513MUai6KEF8Mqak+5HmBd/ZGBEkOVlR0HQtxmFWRp/njCOltf+lGz0uLXrULLM0HzYYBCo1Lyk9IF5bqrFYsx/rnOxHxdZ5e71J1Tb49dt9vnV/pNKFsgJD03h7vfFYh1lJDhq8uVInzQviLMcxjTKVSFXMQVXyTU1QLyOHx2HGYk3n/c0x75XFqnNN98DhJs0LPtqZMA4z5WVxBO+XwyClog5/vDdlsWLx8e6UhmuxN414+1yD97fH9IMEpFr0ri4p6YVr6VxoV/Es41To171pzDfuDbA0nUGYoAnVnblQss8mccrQz1isCZYbDToVi+W6kmXOWE7P061xLH1edHpjpXZgbATlRjBKi9KLQbHidicRrqkrNkesDALXmy6rDZe8kLwvR8R5QZgXfLzt0/JsDE3wrQdD0kzyuYtN1p+iNwfVfb/TVX4XrqliXHVNcGWx+lgBe9ZtmV1vkGTc74foQnVyNaEWkAvtCnmhujHfuj8gzgvSouDeIFRmlxWLdzdH9IOUCy2XT55rPLah34+ikNzc9Y891clPcgZBSiFVMubGMGSjH7I7VobJVxarc0bL3Z7Pzjii7iiNfM0x56a+izUVF/zp8w2iNOdc6/mTLUdhSncacbs7xTI0OhWL37g3JM4KutOINaPCNM6pWTq+pVNIVawLMrXhvbTgnUo0dpBkfOPeYN7d7PspwyBhqe4Qlqah3WmKqYf85isdbEPnUseby1afNic+DZMoY2MQcKvr8+kydfYTa00mYcr9gZJ8WIZ2oLDgJ6rgens34ObulE7F5vOXWpi6xgdbYz7YnvDR9oQoVYeij/emfLGq0n9+86UO41Le+TIb85mM/jsbI+50p1iWzpVOhS9ebrM9jqhYBn0/UfKBOEMiWG+5vL5So1H6K15frtGdRuyOVdDCNMrmc7dK4w1wTZ1Lncoz56T/8dfvkxeSf+M5i0Qvih9+fZFPrzf4Sz93g9/7ufUjj9FZo+WDrTHvPBiR5pKFqkWaSy52KnxyrYEQEGUFdcfkN1/qgJBcbHvc7foMw4Tz7YrysvRMbu357E4i/DjnUsdjdZ8MamaI/7zBIEGSz1k3igGoU3cM0rxMT9UUk2lrFPDe1ohL7YoqDpSen4MgYRgkvPNgSM026dSU3Oz6cm3+964tVcu9j0anYuPHquEYxKrJ6FnGgSaBY+q8uVJ/jk/x+H1/58GIUaj2luutojxUq/VxYxDxhcstFmoWP/feLh/vTNB1jXZlj9/1qTUlY2x6LNaUz+CL+uQcBeMo5U7X5+belNs9n+srVfp+ym7Jyqg6Outtj34ZUFJ3DF5frdHyrOe+LtvUubqkDkT3egmrdZc7ez4f7EzRNUEQ17F0jTfXGqzUnfkcF5ZrZpwW8z3sb7rUpuVa3OpOCZKC3WlM1VLM18m+d/swmGUCV17IpzaRb3en/PxHu8SZJEpyPnexRZoVbI1CsrxgrenRrlgIoViHrqkTJDmGrh1gYdUdg/WWi1Wm7ZakJ/YmyRMLU6sNl3bFwtQeZ/3Eac7GIEKUDYLLnQrvbCoW+I3dKZcXqnMLDc+y2BqpdzZKle+eZ+nc3PMRUrJQs6naZunNp+5FtUwIFHDqMr6dScwH2xMcQ1dsmkHEKEyoOyaWIRgEMbujCM82aHoWry1X8Szl8fXmav0AA/m4sFR36FRtJlHK1ijktaUam8OAe72A3XGMELDWcgnTgq3RhIar5ti+nzBNMixDcG3paHLXo6DpWUpBIiWuIfiVOwMmccp3NmJsU8fQBd1JzN1uwP1+QFZIXluu8NY5ZXnyzoMReSG51/fxbIPdScQPl968x4lZsWc2T/hxhmNqZIXkwSDgqzf7RFmOYwh+8PoFWp7Fr90e4Jfvb5Aopk/fT9gahWyNQjrVpZfaozmmxqfONVismdzYmypvQs9ipe6U0siIUZiyWneZlkzaj3am3Nj1EQLaVZM4K4hTydYo4rWl2qnYZ9QckzdW6tzYGbM5jOhOFdv0zbWGOhtOYnp+VAa72Nzs+izVHDxLp+VaCKFYdHGWc3tjSpLlXC4TTs8yXvTq/ibwM8AsMuYj4D88hut5aVRtg6qlqIyerZfMEo+6Y1C3lWHg9lCxEBRbYcoHWxN2xkr2EZUFiryQ7I5jigIGQTafqB9NjZod+GaSg6Ngcxgy9FOSrCBIMzpVcy5/0zWNpmeqRLu8oOlZNF11kLu15/PtjRGTOMW1DLJCSeEarkGnah0wgF+q2eqQdozG0k/CtEyMscoNoGVoc1+S1aZL3baQEnRdqOSM7pTuNMazNDxLJYbsTROmccHuJFYL71Neek0IDKHxG/eHfP3OgFxK5TVR/vksRvfQf6sJ7FIqONucmLrGcsOmYuusNJQu39AVVVdKRdu0DA3H0OEQs8wslxTFw7/7oogztQHzTJ0wzanaBkmes1y3FRVTKPPhSZTS9kx1r3UlPez56altJvp+QtOxiLOcqqnN5VoNzyRKC8KkoB8k2IbgfEsVImbytFw+P4VY8HDT8ejYWG06VGyd1ebDDe3eJCbNJKMwRSCp2wZLVRvH0mlVzNIkWVHai0Jt0rp+zHcejLi9589lHc+6zkfjxfdf16PP4lzTpWIr6S4ouUqSqaJZlhfoGlxZqiIErDRcmp5BXkBRFAgpWKzapUfXhPc2x/ilJ9CzphwJcx+O40SYZnMvlrQoaHmW6vS7xtwUeqXukBcFaSbZHsVsj6IyiVHJx4pC3Yf1pkeQZiRFwVsrz7+RW647+HFO07O40/PnktyZb8D2KCRMc4pCscs6NYuGZ5Ln6p0bR8cr0X4ShkFKzTbnUmGAmmuSpAWTOCXNJVGWs1i3SLKCTtWmkMrA9llz4tOwWLNVIk/DJUzz+cG34ZnUHANDe9zAfqGqDF9vdadsDkO+fq/Pjd0JoKQoygNN4FgCEGhCFWpl+X43vedjdh2GpbpaQ+Isx09zpmGGLgQ1V/kq/urt/lxuu1C15zLHpvcw9EPXBItVh7pr4JbJUzMMfDUG/Tgnyp7OKJTA//Cr9/jB1xa4fEpdRyEE/+GPXmdjEPKT39g48r8rpCTNlO9klBaMgxRT12i6JufbbnmIUSxCgUQiOd9Wfk3vbo65tRfw0Y6S1DqmTqNM8gNJs2KyVHvYeFmqq/X+eTva6y01H35irT5ndBiGNg+hcQ0dKSVfuzOgP015b2vEg6EqfK82HExdYxpnmJpKOAtKGVWSH1x/Z6wTQ9e4tljDs3SW6k8+jGmaeOEDh5+oOHtdCARqrml4JpahY5ma6rLLWVE/IU5zDA10TbI7UUlf3Wk8v7aTXM9Vo8hAExoCwSTIiLKMcZRwvx8QJTlVS6X8erZBp2YxLpudz3tdWunrlZULRsXWeTCMMLSZD2DGOEzpTxN6vtq7BUnGJMoYBPE8nAjUO3Gu7c6LphdbHgs1G8fUjhROcxQJonp2SnJUc5Wx/rcejPhga8KN3Sl9X8nthkHGziQkSDJWDmGeLFQdPMug4ZlcW6zSrpg0PYMLnacb7NuGfugYlBIyKeeyvigrqNo6QggqlkGYZPzG/T7//MM9fvrb2zimxkLNYrFmlcUbQdNVc2XDVXN/7RF1gam/Gm+pKM3xTJ0sU8lpeaH2lI4l2BnHhGnBJMlwTOUh6llqTznwU/JCnpgiRHkyxiWD3mCl4VK1DfxESSp3x4qx69mGaigaOnGa4+g6SXb8+y4lp83xk4Khn7I3UYXjhmMwClXaqmMqT7pCSlquPT8XrjTUu7xQtdEQOIY+b5ieBGbjSDW5VKBPbxLjmhpxkpds3Iw0l9RcA9vUsM2Zl6CmJJkoBtbkJfdopq4xiRNs0yz31WrvOYlUeMLOSHk2BUk295Fuusq83TF1Op49Jy8k5TnttDCJM4JUyTHDpMA2DcI4RwjFKt5PpLnQ8ubjsFOu08t1hyhTCo44k+VafrbxXIwpIYQhpcyABSnl/08I8ccBpJSZEOJ4tSIvCMvQeH21Nk8p2B7H/Mjry3zpcodf/GiPX783IEoLbvd8Bn4679xNItXlWm6oh+mYGkleMAxSFmv2/OWYUdhnON/2ythf40gbmlGQ0HDUYlVzDX70jWXOdyo0XFWMKqRKYPtf39vGMnS+dKWNUUbFq+vSSTNJXqhuzcWOoos+SqNvetahxsvHjSQrmETKRHqhanNpwTuQHJNmkqW6wxcvd8hRB/4oK7iyWCm7lZKPdlI8S2ehaj0x3nc/HFOn7iqzvIZnYhs6n7nQwNTUIv2o/8rM1FSZXjqlX0XOSsOZF9CWag77mxtvrta53fXZGcfslHG659sO59seSzUHP87mRqqupZfSRVXQetFCoG1oVG2dqW1gld8nTHK+cm2BIM749v0hLc/EsxRV9mK7wuYoLOUKp5eU1apYDIJEvQsSpEh5+1yDlYbL9jDg450p6y2XhqsOi52Kzc44pmLrx24qXXfMA13SJCtU1H2YlL5w6v3+bW8sUbENpJQ0PZNL7Rotx2S947HecuZdyGFZ6H1aOscMTc8kLYojFaT3v49SSkZhwr2yq2VqGgjJFy6259TqwTThYqdCpTxILTdsXNNg4Cecb3ukWTHvxj4Nuia40PGOfTFarrm0qxOmcc7ry6pjaZbdsd40plV+3jdWdXRtwr1+gGmow7EoI6xHYUq7YnFrd8JSTTHZpi8gOVys2Xz2YosbOxO2hyGygNeWqkwim3NNl2/eH3Bzz+d80+XtVpO315ust1weDMP5xuc00HBNNoRi6FQdnVzCpQWX/iRBULDRD1huODRcW81LpeHvi9LG07zgw+0JK3WHT603GUcpS3V7/nmFEE+kdmtCsFJ3SXPJRzsTmq5J30+J05z1pou40uZi22MQJjQcC1PT+eqNHjXH4NpS9ZkSgbyQDIJkLqHs+8k8Ot6PM4ZhimNofP5SizTP8dMUTQgudjykFBQodoEfZVQsnc9dbD3xZ+1NY6JUScT2F8tansU0zlRK1jP8+CZhSjKO+NM/8cmn/r3jxouwppRnXsHFtktYptP+0PVFlkrWalFIgiTnG/cGDIOEim2wPYrIcpVAJoTyr5hB09RhcHaw3b/PUevm88ssDtufZHmBJpQMr+aaeLZiDO5NE2xDxzZU0aqQyjcyL3K2R4ot8NpS9cDYjtKcW3s+EsmVheq8SHSSiZKepRqEFdvgQsdDSkkQZ2Vql5Ll1l2T7zwYgoC3zjVZbdi0K0qO1PSsYw3XOQwDXzGcF6o2X7rSoV2xCZOMUZRhGwarDQfbUAeyNC9YqrnYloZrGi+9x6g7SrbzrfsDLEPQn+b8wJU2b51r4JR7xpmctDdVthDTKCNKD64JXplEfFJoVyx+86UWQZzxg9dVwIKtMfftVEFEBf/0gx1kAVeXaocmdD463r54pcPGQLFt3M7ze4YZukq+EKhDqEAF3LQrFu2qxb1+yNduD4iynAvtylxdMSsQtErGTV6oVMiTNsJ+HnQqFsOqRc9PSNKCmmvw2mKNiqMTJAX3ej7LDZvznSqvLVWpuabymbX1E1WDgHqO0Sgu04QdPtie4Kc5EsnFjsun15ukWcH7O2P8JMM2dRquyULtZM5fnqXj2vo8pd02ddZaLqMoZXsUEcTFPGm8U1XG+7ahzmcLVZvVpsO9XkCc5aUNhn6i5IV66Re8OQz//+z9d5BsW5beh/328eekzyxfdf179/k20z0W44eDIcEYEkYQApYgxIBAQhSDpCCSCpoAyGGQVEAMERoRIgiGSIQkSgBIEAIQBAYe0xjMoHveTLvn77u+fPo8/pytP/bJrKyqLO/uIPRFdPS795bZec42a6/1re/DtnS+dLvOk13VMve07fPaQpnVmnIldUyVLMtzyeuLFYzCMfWiMZqUcKdVxtCUbIOfZNQ9E882cG2tKAg7PFys0CxZxT1VcrvpsVh1eLBYxjI1fv1Zh7vN8qlley4DnqUjBJQsg3fXqpQtUxXZHRNNU/vC6wsV7s27PO9ElCwDx9qTZmiWLL7ndoPHOz564Yb6quOsI/wV4HuAkRCiRSGjJ4T4AaB3yWM7N9rDmE+2hozijIWqwzBWFEFNU1RHTcA3Pu8odoync7tRmlBrbUPfR8ddmzr/Zr1Q1fd+OovhrUHI+4/bfP1phyDO+L67TWxTp2TvuSXoQllujpknO8OIN4C7hXCdRCUGdE1VFT7fUVobVyVmdxLWe4ESLjf0SU/1MEpJCgepZ+2AnaESgU6yjO1BxK8/7/LtF8rqdqXu8d5ajZJt8Mbi6emRzbKF/yzFswy+fKvOF27V2RqEPOsEDApb63EVZRgpMXw13miiAzBuJToKwzClFyix9DjN8Wyd5Wyv3RPgzpzSLDlPcH4QQghKtokmYr75oksYK/Hjkt3mOy+HdIOEZsmm6lgsVV2Gccrri5Vrf/dlWwVVLzoRT9u+qvAJ+JXHbV52AlxLp24YLNZs0owJo+GyxhjEGTvDSFV1XWMf22N80XItne2BEkpNM0k/VBfbRztD+n7Cdj/gk90RozTnbqvMm8tVnncCfvB+i1tN71RBoxDiyPee55JukKBr0B4lCJj83FGcIaVgreGx0QvwY8WY6gYqCf5oZ8R2P2JnGPHZ7oi2n7BU8/iR1+eUUYJdYa0x25VwFg4m7y4Dz9o+n22NiDPJo53RpIVTJc2V3bZlKNbMw6UK9+fL7Awi1dIgFUNj3Pqz0Q8mYt8HBa1Pi9W6y4uOz9N2ysteh+WqjWnofPNphyedANfUqbgW9+ZKhaCoPrloXbX+3hhSSpJMEuc533mhnt16x2en0Oa73SorN7m6SybhneXKhcaXZorBuTUIeX3xbEy0sq0uorrmYmjKqbTrxzzrjEgytc7aowjT0AFJexTR9tVFoeMnJyamXnYDur7SSFMU/wCAu3MeT9u+ElDdGtENEnKZ8eOvL+HHCcM4Y73nM1+xCJKcuy3v2OeTF8xnULqL04ypcXv3abA7inmz7vKTby6c6usvC2PW1Fm0pv7ex9t8sNFnux/xQw9azJVtSrYxKRhphTCuSmDBi05AtdBh+sKtGsMwnbw/xRwPebzrs1xzLiWoTQuR7YMXY0PfY+697Aas90LqnmJ8p1KZJDRKJpW+gWfq+LFySt4exmz0w32ufIMwnbDZx4Wzq4auqdadQZiQZpL1XsCTXZ8P1wdomvrc7z/r8O3nPTQhWK07fPlOA9dULfjzVXWuXxV2h8pREcDsCx5tD/HjjPmSxdO2T5LmSqqg4SKlIJOCTpDwdqPK6wvlSzm/58o22/0ITWgYhoaf5qQ5PJgrsTuK+dbzrhLvbrh0RokybLjmCv+vPG7z0eaAXAreGkQMowxN01iq2lQdk2bJZmsQsVBxVIH4QGJk/P7rnrlvb+r48cT5qx8kZzYs0YRgseryZHfEZztD+oEqrL+7WsOONIaREj7fHIQESUbdNfexnySqpXdauuRVQdVR8h7DIOHjjYFyIUwlO37ERxsDHFNn0XNZrjromsZCxWGudHkx5XGY/l3POz6rdZdhkNDxE95/1sOPc5brDo+3fT6XI+YrNnXPpHFFxABT13hjscJc2eazrSGOqbPZD/hbH24RxBk//nAez3LQhcbWIMbSfe7PlwpTA4OqY/LaQplPNod0/QQpOdEI4CJwisJBlikLlZqnWNpPdkf88ue7+HHKSs3l0baSnHhjuaLMWSy1F11G0T0rzHCEUDGGNnG5HGLqGj/8oIXn7J2R4xb1UZTSDxOe7I744GWfzX5EJvvcnitfm/i5qWusFBqeeS7ZHIQsVR0+2BjyohPQHsVYGrRHFeI8Z6Hs4Bw47zzL4O2VKmGiNCNrB/aGVw1njTLGu8C/Afxl4IEQ4mvAPPC/OPUPEeLfAH67lPKHhRA94P3in367lLIthPi9wB8F2sDvkVKe2qopSjM+K4Ssk0y5wXnFBDINjeW6w8tOQC9QSYmm5505aD8vkkzSDVOGQUYu4Vk3IMmU+PG7q9XJOO60SrzsBmia4I1FpXlw0GIeFM34/nwJTQjVvqJdfwXEmFCs1Z+/9aLLZ1sjlqoOzbLamJdqDo6p41oO670QzzSYq9ps9ELeXK4SJIKVM1rem7rGm0tVciknSahhlGHryq40mnJNcE0dy1AtZ3Nlq7AzTY9NSilNMkU33R6EypnRELy9XN2n15NcoHXvIEZRyvvPOny+PcKPUoQQVF2N7UFCmuVUXSUwu1i1udX0Ji2F15mUklLyaHvIL322i6VpdP2YO02PjX40YUPdarq8tlCm7lk0SpcbBI1Fccc29YtVh8ZU21DZMdgaqLF88VadjzYGlGyD+bKthKaLC8MgSilbOhoqUeSYJwt0nwUviot3e6ScJU1dPatW2cYxtMl8fHe1xmahVzBXtlVbSpSxNQgZhDGuoapZozgllUoj5lWAHysHKymZMEbbw5ggybjT8ibi9KCS/brYa5kbi3CPUXNMbjXcgr5/9ouvlErk/qONAf0gYRilNDyTQZghNFGwXAVfWKvxpduNSVX+uhJSoJLj//CzXT7dGtL0lF6Ba+ts9UKE0Ki5Fg/mS9Q9k6prMV+xLzy+8b5wnsBOCMW02+hpRIlkEGbUPIunuwG9IGUYqraKNFcthobQsHWdkqUfu6+OcRTLUKL29jSTDCLV7m6ZGoMwpu3H9P2EesnmB+43eXOpeuLep2mCiqPYzhcJcBcqNv/+z759I842Z2FNKXHzlPYwJk6Vy9vuKOZlN+TOnMdX7zYBlZRbbTh0/YQ7LaWxVnVMlRiaytWFSYYmNO61SlSc0xu8HIckVXv4m0uVI4Pj3WFM3bXoBrHSySic15oldelrlWyV0Owqjb8wztnohTQLfceaa9ILijaXK2RJHcQoSvnG4w4dP6HiKCdNXVNxUtuPCeOcucI17p21Gl9Ya7DeU0nZq7rIjiFRSZOtgdL07AUJPV/9zzU00jTn9aUaX7pVR0qlUyYQzJWtS40x7s+X+HBzSCU1Wa671D2LXT9mEKV892WP5ZqHrsGXbtV4suuzXRgFnUVc/yLoBQlRIsnynO1hxEJFkObQLNksVh16YcJy3eEH7jfpBwkly+C7L/vcmyuRSznRnUzyfF/hquKY7A4VY807Rnz9KGiawLU0EFC2DDb7IbrQ6AcpX1irKxe5PKfmWtxuuofajR5tj0gzxVS9TO2jiyLPJZ9uDfilQqi9PYq5N1dicxjih0qz1tIFbyxXWW0od1+43rh3/LtaJZs3lqo4psYnmyOCVN0RXnYCyo6h9JssnV9+tIuhC95ZOax3exkQQhX2lVGEZHekJBHWe8q1+3bTU/FZccUfM/V2RzHvrVa51SwhFAHvUGL1KmAZOs3i7vXOSh1b10kyJWWRpJKdYazcKtMcIQSfbA5ojxKqrsFX7zYvnJwydMHtpsdSzUayR1gYJ4qDNGduqtOn4Vms9wI2B5GSb3F02qOEOJUTJ/nrSkwB1FyLXpCQ55Jl3UVDtSS7lk5TWmS5hkQUmmyqc+GTzQH358uTmEXd3VTyrxsk+7SyXzWc9RYwXySVAP5H4K+hklUR8E8B3zzpBwghbOCLU3/1LSnlj0/9uwn8EeBHgd8B/K+B/+NpByilOgDWmkrNftwKB/DaQoXNQch82WEQKTbDg7kSu0Vf/1W2vmW5pDOKWK44DAt1/7WGq3RupKrIviZVr/Rqw+V3fGVNaZEcs/nOlZV7TckyTm0fftlYqTmULdUfnGQ5wzDjecdnvRvwm16fY76irEzvFO4ppi4IY5U4erBQPvdFu2wpunmc5pMqeNOzCOKAkr3/eRi6xsPF8kQ8+DTvWUp1oV6qKTvYmguupdEPFPOmWbDWmiVL2aGO4kl/9GkRJhn9Inu9O4z5ZHOAlFIJ13kGlm4wV7GUg52lU7VN3l2rUnPNa7tUT382KeHxzoiXXZ+mZ5FkOW+vVGmVHBxD0WEHtZR7LY/785UrucSNL7SeVTgmmtq+djbPMnh7WSVzNU3sExmteYpSbJkazbJF1Ml4MO/xzsr5BW+PwljXyTF1EHLS9gmH5+NBwW+lGwGtsk2UBtxuuby1XL2Qw9llIs+VY2SW51Qdi7eWK0Wi16HqGCzVnEMXTkNXTnD9MDl0AfMsg++53SBIM26f8vIRxBmDKKFqmzzeHfHJlkpAakJwb065mDqWQaNs4UcZX1yr8sby2R3/LoJ+mBAlOVXH4NefddgaqJZgzza5N19iGGYsV11GUULZMfjR1xcmws2XAdvQeHuleqF1WLJ1TENV7BaqDsMgIUxz4lwoIwMpmK9ahInSamuWTLp+zEYvoOIc7dS2UndwTBVYGZpgue4gUGzn7UFIzTH50Yfz/OPHbUqWwXurNT7dHvEoG1JzTSR7xZCTcHeudGG75JJt8DPvLJ37+y+Cs7CmBlHKcs3h8x2d5brFat2m7Su9vI6/x0a0DZ23ptbDUc/Hs3QqjkGYZsydIuF4FhzVAe3HacEuyajaJgNS5qo2X1yt0ShZRaJfkOY5ZcugZAXomtjHnLUM7dou32mmNBU9yyBKMj7eHJBJKNkllusqwWwUscLzjs9SbvPOUo07ReX+defqxtkexQBUHIPOKGJrqEwoMqkKeHMVm7prsVK3yaS6ADVLqh1xtXE65vBpsd5TxZp782V+3/fbfLw5QNcF9+a8QqNV4tlG0ZolmK86+LEq4nb9hNX61THDMyn5YL2PZ+l8372GYmM7Ol+53WAQZ5hGSpbrKn50LSxd47XFCqMoZWegnIL7YbLPzS4/ULMs2yo2EecU6haoO8xC1WF3ENEoWXy+MySTOWGaslZ3eWOxwvYwpuSYSii7gJRyEpNcozzOkej5CUmuGHofbQ54ujNS+7qEL9+u4ZkmtqkRJCnDMOMrd+pFMuX6CwPTcC2dt1eqvLVc4b21gK8/bitpDcsgTDJaJZNBkGIZGi86AXGaT0xxVMHs8jR/x0Y7AGGa0h0lzJctfuqNBe7MKfb1045P3TX5aGPArz7p4Nk6vcDlFvDaQlnFJ+dw2DwP1qbi3FbJYrXh8mtPuxi6xlrTVRq0mWS+YrE9UhIqGz3J2ytVXFOnG8RUbPNc7FfH1HlvtT7RrYSxM7iS7DmoG+yYOgsVhy/fquPHGQs1l7dXcr72yW6hgXa9i2j6PItTpYV1p+kSphnDKGW15uBZKu+xOQj4YL1Po2SxWHMmd1LVBi+L/34FNoFjcNYZqQNl9phTY5yllPEvAf8t8CeKP78lhPgHwNeAfwd4iEpWpUKIvwn8V2cZoGPqPFgos1JX4o4le2/CzVdsfvPbS/zFrz9nFGbkFWUz6xdZU00Tl97yMkaaS6QUNMo2r0nJk45PnsNizUZIlc2d3nSFECcG3mPL75uEEGJSkbR0jTyXhElGxTHo+jHDKKVkGaz3I1brLrebJf7QjzwgKhyxzgtNE4dEaBsl60h6tNIQOv3PtwzlsBLEGb/57UW2igvT1iDmRS/gC6t1Xl9ULowvuj6dkQr6x73dp8HnO6qCtTOI8eOUpBDQb5Usyo7JfMUqXIZuTgtgvR/SHsbFn1TwlUlJo2SRScly1eH+Qom6a11L0DB+L2PdN9c8LBR6VPBqGyqoeNrxedZW+mSLNfdK1vxq3cUxY1zLmzA2p5M1x83He/Nlnnd9vvZJQNk2WK55rDWOb1m6TmwOQt5/1iVMcqquVIkLV+kRGcfoARxFFx9rRGlFMu4k5LkyrZASXsoQP0zJZGF8YetUXYumZ3F3rnStWgDTCJOMJ0XlfL0nCZIc29CoOjpNz8SzTFYbHss190pZOBf92coVpjIRX98dRhiGSsCnuaQzitkZxtxuumS5alt91vYpO0q8f7Gaz3wHhq7ta/ebK9vsDCO+u97Dj3JGbsaXbtX50q0GUoJlatxtecxXLObLDnOVs+03N8F0ukyMWVN/8m98zG9+e+nIc253GONaOndbZSqOTpRC3TXRDY23l49OgBz1fI7TITsvDF2bsLRmYXcY0/AsGp7S8VMXfoO7LY9cKkbLdj/kg40BAnh7pcrdudKNtSe96Co5AyGUtt5cxWazH1K2NPJc0PBMbrdKNEsW76xeX3K8PYonLbK2IdgqnmvPT7ANnS+s1Zgr27Qq9swz8DLXTJ6rOAfgRSekZOusNpRuWc2zqDoGKw2Xt1dqbPYidkcRn2+PsAxBkql44yoZMmkmSTPJy26IBry3VsfQNJplm7kZv3dswZ7JXLl/F/p4jqkMTpI8Z26GO/NlfIaqY050crqBxeNtn3/w0S7fd7/JF281iNKMB1NMCVDr+N5ciX6QHrqEXzeGUcrTtjobNzW1njNU54OU6k60UHFYqV/t2XgRCKGkGMbJlnGL1UYvRNdDNCEYhRl+kvGy6IwZu8Ie7Hy5DHxxrcFbSzVMXUzOxSdtn76f8LIbkOVKVD5IFCNpfCZfJ+tnGkIIbjVL3GrunS2dUczj3RG5VK7oQijmkpTwtD0iiHO2tahI7p5tXpQsgx98rUXJ3tN20zVxbLdUw7MmutINz+K55oMGW72Ybz3r8X33mzfy/CxDwzLU+f87vucWaS7Z7Id0/YR+kLDeDXnZDfDjTAm2F2HW+M48Syv7VcNZE1PrUso/cfKXzUbBhvoxKeXPCyHGP+d1oAP8aeBngV1g3LrXA86scnhcwsY2dEq2gRkkDAIlHDdOTB3EIFR21YYmWKq5F5qEEzodkq1hRNdP0YTG7YZH1bMOuWOchDDJaI9iqq4SMzR1sU90/CqRZDlBklGxjX0bxChOldjofIk8V330SQZlJzv0PuwLJluyXLI9iMhySdk2qLrGpV/cp7V5Vhoen24N+OazHjuDmOddH00IHhaXtvPAj1OQita9M4x4tDPiXrPEw+XKxB1S126WJRPGGWGSTbTDPtsekueSH3s4hx+rrLsmDlsbXyUuopkkCqZPzTUIkvxQYqvrx2z1IwxdbeLn/VxG0WZ4XuS52sdGcYqhyX0Cn4NQORiFaca9uesVYgQQCIIko+cnha17Tqtk89by+ZhnuVRVoCjN9lV5j0Ka5RM3me1exI4f4Zo6X73TKOjOqhBwU0kpYOLs6Fo6XT/i6c4IocFvejDHbpHElvLVSZgMQuXcNuuMm06otsq2ciRKM9I053nHJ5cwV7JZrDv0gpRy0cZZOoMwbZZLXnYDNopL6VtLFaI0mzAkBYI3D8yvMMlIsvxUc+Y3OoQQ/Me//T1+689/jX/rL36T//L3fWXm3Km7Jt9+2WMQKY0l1zZYqrvMVexDzMzToB8qAWrVfion7QMXgamLfe+s66sW4Lmycl+zDMEoVuyC5Zqzj3X3bHfEIEz5dGtAVIj6qp95/Ws9yyWjON1XPY/ShK1+SN018YrPqBd6JteNPJeFVbtO11emFLvDmLstl7mKg0AcmZS6TCRZTsePAXWBEgL6oU6U5ixVnQmDaPwumyU5sWyvudaZHR/Pi1971kYvitPNkk3NO3pOjSUcdKHxYKG8L549q3bUefBkd8QwTNnqq1ZXx9Txo5RWRQntG7pQ52SSUbaUMZNnGdd2RzgOSarORs/S6QcJH20M0AT8zNuLtP09PbFX5Ww8DTRNqLY4TWO56nGr6fLXv7PB+nqAhmoDTbKcYaSYgVcRLx+Md5Is52UvJE4zhFAO6bpQrJlZGn+jKEXXxI0lqzIpJ6YbpqHRKFnsDkKGQYym743Jj9Xd+SznUC6VS/dZOotKtrEvpu2FKe1RhMwhk5cn4XIRaJrA0sTEqXMUqWSUpeus1JRTuZSS3cLx1LP0V6rIfRTOqzF1Xvx+4P85/RdSyjaAEOIvAV8G/idgPBuqQHfmQIT4w8AfBrh9+2RB0Knfx+2WR8VVLimrdRfPMtDFfrZUlks+XB/wwXq/EBis8tW758+QGprg3dUq/SAly3JMQ2elCOQ7vqpinKWH/mnbJ0qUVkPNUa1dDxZKV37wqH7wIWmmhEfHLIg8l3ywPmCzF5Hkkq/eqROmajPQNViuX25wsdlXWeHnnYDlmsPdudKVO9rcmytjaoLvrPcZBBmPshErDSXIaBvKOfG082OrEOYO4pS7cy4fbQxIkpxnnYB3Vqu4lk7FMW/0cO4Vej1hmrHaUM92GCZIKXjWDni4VMUoKoW/kXB/rqzsf03Bl6bcfTZ6Id983uXjzQGLhbDpdenPHcRqw+XdtSoa8IMP5icHyXov4PHOiF992mGhrDRivv9+61rHtli1+cJalTBJ8WyTbpCwVDu/aO9GP5yI/asLzPH4fFclhV92fYIkp+enlBuKPVf3LLp+fC2OpEchzyXPO0rrQSLJJfhJRpar/XC57hClOQuX3Bp1Xmz2Q7YKnbOxMPxR2OiFfONxF4BbDYeyY+CaBgiVML7d9FhtuNRdA+2MSfWuH+NZOt2RwLMNQBz5rKI049MtxZpbqNpXvve/Cnhnpca/88+8xZ/4K9/l3/6L3+Q/+m3vHnpXjZLFvZbHWt0ljDPmKzYvuiGmnrBuBPva3U5Clkue7vpIqcwOPMtACNUCclmXlzDJeNZWrJ4klcxXbLb6MZ6p0ygdFmjNpKTrq9apkm1wb867EgbCafD5zoggzjB1wVJNxQC/9GiHKMnpyoSybSgXRClpXUOy4iB6Bbs5zXIaJYtukDAME3aHygL9tcXKlSelQF2W/vaHmxM9yI6fUPdMcqm0cA6OoeaZLKZKQ+w0enWXM8ZUMbkcg9W6x1zZ5nbLO5LhtFx3MAZRIaNx/Rf5XKoW+O+908CxtAk74uufd2iVLcJEMZjjNKfsGIe6C24KWS5Z74WTVuxcgh+lSAmdIGG57r5SZ+NZMB6zoQtySaHzl7M9iPjSrQbffN6jZOus98JTG2ZdBGsNl41egGVYyjVewK8+6fJ0V+mzfmGtPvnaaXblddwjZ6FVskgzlcBP0kxpOaWSDzeH/PgbC0RpTi4lj7YV2+7unHfqotQoSvnOiz7rZZPvv9c68/mVZDlZlnO74SmJhOXqjSXwZmGl7rIzjCg7OmXHYLURs1xzaZYsNvsh7z9RztRzFYuv3MlfKY25WTjr7PupC/6+N4AvCSH+CPCOEOJfA/4vUsoM+E3At4CPgXeFEDpKt+ofzfpBUsr/iqLN76tf/eqpy1FJJrkz1QokCr2ggxAoDYQ0l2iFc9BFBM+yXLI5iFis2NxulVhtekXv7xCAODtbBnZWwuKg2OFVIJdysnnE2Z6NrxDqmYVJhq4Lyo7Jgm3gRxmt8uX1VY9haIJcKnqsJvYyxleJXEqaZZuHixUebY/wbF0d/LaxT8z5NBgLtJuGQBOC5ZpNZxQXfc/6ia5W14EwzvDjTD3rHG43Hcq2iWPo6Lp2LYfrVWCuYpPlkrtzpX2B53gO5bm6AN1kG3azZHG76XF3roQ9teckqUQT6n3k8uKVgvNACMHby3U2epGiRk+5X1q6dmamkqmdvmdfSkkvUC3Cnmlg6pIkzZmvOFQK4ceLWgtfFHlxeU6ynLprsFZ3ebLr45o6orBqf5UQF9V/KTnFe9j7d9c2eGulxiBUhZUozUBAo9DAi9OcOMtPfB9jdtlK3SVKcnShqvuGfvSzSrO99RlfogHFq44/9MP36AYJ/8Xf+oRvvejxR3/iNX7qrQU8y0BK5bC3WneJUjlp2QkK9u1Zn5NAna2Z3NtoTjdHTg+tkCyQEvRCNwrUHjOOM6Zxq+GxO4xolSwcy7jyVtjjMH6eozhjXlN7k6lrtMo2pi5YrDo3yuYbs5QQ6pLaD1IWKs6EzXsZTsKnh2rJswyd5ZqOY+rUS0pHaBZuIv5xLR3PUq7cVdugHyRHxvu2oe/TzLlO5Lmk5hi084SVukvNteiHCY+2RmhC/bsuBH4Rn79K++NYiyvLc0zdZLHqUHUtTF0x5l61s/EsMKZi4q1+yFJNFQ6Xag6mLjB0laRVzsNXHzt7lsH33WvR9ZWI+GY/JJc5USImMdsY03MkSSXcQF1PCDFhR4ZxRsMzsQ21V+RSdQ20R3s6icmM8+Hon63+/6ws9bGDuxDQqjikOdQ9g8ULFGKvAqqF2FPsqFHMUs1hrjAJGEYJXT8iTFPAeiU05k7CmSL4MbvpAvg/A38FeBv4OvD3gCdCiAqqhe8tKWUihPg2qr0vAL5ywd85Qc9PFNMozcilpG8aZLmcHIJpplw4TF1jrmzzxVs1aq45ERe7SHVpEKb80qe7vL1S4Y2lKlJKtgYRliFwz5GIuNsqMQgTXjPK9IIEQ7+4PlaWS150AxX0HXEgG7rGrabLINzvaieE4E7T49eeddAzwfYg4r0r0u8BFbjYps5q3UPTYP6KD7RppphjaERpziBIuN3wZiY200zR1hdmuGvFxfc+3R3hmDoNz+Yrtxs0S/a1JqVOet9BktH1Y7YHqlWq7JT4Z7+wwu4o4vYNBWUXRXcU8yuP2iSZElJ9MF9mt3CVWyzaChYqNlXXPLUQ92VjFKZ87ZPdItEseGNJZ7dIWi7VHDQN/ilnAU0TN+bStzkIaXg2YZqxUlMW1p9uDylbBt9zp3GmRPRC1eF77zYZhimLNYcky+n5yUw3LT/OeF5Y5L6+UOELyxX8OKPhWdfaunfc+m77Mdv9mO1RiKXrfOVOA9cySHN5bW0pp4WUqvCS5TkrBXv4OCzVXL56t06USO7Nl9A1Qck2SLNcWaznShdoserwyZb680mMplGU8Xc/2uLHHi5Qtk3SPKdim0eKskqpWpQ0ARXXeOWe6VXj3/jph7y3WuPn/up3+Vf/X+9jGRpfud1gGKX8yudtaq7Jj78xDzCJMTxLZ7F6tmBa0xQLO4gzXFOn7ccTKYTLghJ1LRMm2cTUY6XukGSz2TJJpjR9PuuHhW6n5PvvW5eenDpufY9xu+Wx0Q0YRQlf+2SHumdxq+GyUndplewrT0odd35v9UP8MOPT7YESOU5zvnK3QbNskUvJvWs8N2xD43ZTsZBKts7uMOZZx+dZWxWJLpOBd5ExvjZX5vvuN5BC8Pc/2QXgi7dqN8bIOwpP2z6fbQ2VdIaUlG0lbbDWdGmUTMq2ofRxopSNXoCuKcbIZa7b43Dc+d0PE7qjmOfdgHeWlXPyT765QJbn52o1flUxV7b5vvtNgjjnTstjvRuy2Y/ojGJcq6bcZo+IV/phwiBMZ/7bWeGYOks1tbZedgPFOtLgzgG9z/mKTS6VAcZpxNDjVN2VSxds6z5y3JbOT725yEY/pGQbfLo15HknYKnq4NlKmLxxglaalEruJZfgWgZvr1RZa7injk37YcL7TzvIHL50u07NMdkZRJi6Ti9IXslOkYOFzyTLed728RPl1vneau1c95qrft8Hcd2l5TaKdfU/othQDeCbUsrfIoT4t4B/rmjpew9oolz5fjdncOU7DlGqsp+ZlCSpxDUhmUofbg1UDz6og6rimLyxdLmUt7E95e5IadkAzJWNMx/M0+5yF9V8GCPOcqVdk2THWknWPWtmq4wE5isOUkKYZoe/8ZJxneLv2RRTbBClpJlE0zRedANuzwjykixnq6/cHg9WgdQBoOaXbSjbVE3Trr1t7KT3nUlJ1TEJkxwJRGnOYtW5Nnr9VSBM80mlxY+Ug2QQ53RGMW8tV/cJWt4UoiybsB/9OOV5JyCIMzqjmDeXKmp8Z1beu1wkmaTsGFSEcuR82vbp+ymDIFXtLe7ZkkSLVYfFooE7zSRP2z5vWJVDwVuaSUxNo1WyQajL6030yx+3vtNMYhqCpmcX7XywdkNJzpPQHsW0Rwm6dnqduGnB0jEyKScuVGkuSfN88ucoOblin+UqOXaaJFPXT9gszk7H1G9M9Pom8dNvL/KTby7wy5/v8rc/2OJXHrcnjjvjwlt7pIoKAItV81yJW9vQJ61KZ2kDPAscU98X/xxngBCnudJskmrObPajmU6fF8Vx63uMsm2wUHPohylZDmmuxvb6NSUyjju/k8JlseHZ2KbScwJupKXLNjU8y8CPs0n7VprJCeP9JvS3DkITgttzJYSm4Ud7SYFRfPVx7FmRZIqJmkuIMzlx1Jwr2/vmas01J85wj3dHvLNyPcL7x53fSZZjmzqtko3QFIvuKFOU38jQNMFqfe9zxVmGZxrkrtIly4+g40+3T182ojSnVXIwdDh4IuuaOFMHxMtuwCBMuShT5TjUSxb1ohVteq9oeKfTnZuOEwxNnPkuvzOIaA8VQ2u9FzJf2SuwpdfQoXMZyHJJmkPDU0WBW03vXEWA63jf07jWxJSUMgTCqQD4+4C/W/z33wR+D/BdLuDKdxxaZZskl8wJC10I0lzu62U2CqFWIZiIsF0WHFO5ib1ZLA5z6ucf1FG4KYzfinnOzz5fUQLIwyjhraXzCSG/qjB1jdWGyyhKaXgmQZIRpRnLJ2yQs56lY+qsNtxJQnGufLWOM0fhpPe9WnexdMF8xabknL1d8VXEQsXm7ZUqfpzycLHM9iAGcnRN3Ehb3Cw0SzbvrFYZhAlvLFbZHUUEqOBZe0VEC9caqqe9YisdmOWqS5jkeNblMCo0bTbluuaZvLtaZXcU82C+fOMijrPWzkLF5s2lCr0w5XbTu1ER9pMwffacVqh8FmxD51bTZRRnzJUtbENnqeYQJtmJ+k+WofQXm6fcX4ypcZ73rPonAbom+KEHc/zQgzkAvvhndVYbDrebJQxd2/duX5UY46KoeyZhmvFwsaxaVAqHsqvCSfOr6ihtUNvU8Eyd5Wtsbz/u/F6s2CAl9ZJJ3bNu9OwW7LVrlh2lu1WydTQhKDvGtTF5TgNTU+yuQZiSZDlvLLxabCmAW00PTagi23LNPfZ8MQtr++tO3h91fi9UHNI8pz2KWay4p2Ln/JOA1bpyoAwLwf+jkgMC9dxmtTFfFF+6Veez7SHz5YsbHkzfla8ac2WlN1eyDequeeqOEuMC8QyoLpwx8WGubE00sIRgZpfMqwjH1Hl3tcaztn+h1vLrfN8AQt6AkIoQ4u+iGFO/C6hIKf+0EOI14P8A/FngZ6WU/7YQwgD+hpTyJ4/7eXNzc/Lu3buTPyeZZBQp4TRDV60GZ1Hjvwo8fvyY6TG+CggS5biWpBLX0tjdeHGpY4zTfFINs02NKMmJ0hwhwDX1c1/YZj3LUZQWTBjFRjI0ZW9+U5fCq3rfSZaTZsoNaJyoqHnmuZIqVzXGXEqiJJ9U9gxNwzFPLwx/EJcxTj/OGBWVUNvQqF4y0+4yxqhcW1KSVPXTlx3jUgPKzx59zsrabTRNkKT5hJVVdY1XJuEFVzcvw0S5vCVFtRnUvnSei+1VjTFIMrJMEiQZpq5hFufXeXDaMaa5JEoykkydl2NtIVCU+queGddxNkqpXGPHAb+hK50NTROnig2ucoxxsaeP2ztyKScaILapnXptnjTGXO5pQd4kZo1zEisIcAx9EgCnudxzQNMFWfH+rvpsv4z3PT12TROTz6hryvHponvudaybXErCJCdKMjIpsXTlhnWWc+lViX2nz1dDF1SmztdXZYxRogSex4t0zDb1LJ2Xz5/eyBgl6uxEqvkwnreWqU32qelYf/Plsys7G6VUsb6pa2ga506wnPV9+3FGnKqY1jX1iXvdVYZNZx1jnOaTZ2QZSutzvP+YhroTvQrjHENKpUs6ZvxZhkZezKHLHu+rsr5zKekH6h6ia2oPCoq1ddS68eNMuZRKcC3txl2Iv/GNb0gp5ZVerG86Xd0FVov/HjvwdTmHK9/Xv/71yb9t9ELef9rh060hC1WbH3+4wOI5dCh6QcLzjhKtvdsqXYjV8tWvfnXfGG8SY2rvo60hvSBht2hj+mO/77dc6hg3eiHbgz23p8+2hny0McS1dN5cqnB3Bq38RTeg68fMl+0jM+OznuU3n3f5bGuEoQsanknNtfa5kfTDhOftAMfULvwuT4Oret9bg5DNXsSvP+tiGoKKbfDT7yzNDBTDJOPJ7p6DxUH3mKsaY5RmfLI5ZKsf8nTXp+ZZfGGtyoMZThBSSp61AwZRMnGROIiLjjPPJd952ecfPdohy+HtlQo/+nDh2O8ZhAnP2gG2qXHvFPPlMp7li27A+0/aPNr2Wak7/ORbCzRLR1e6gzjjSXuELgR350onXhbe+eKX+e//6t+lZCu9mGe7AaYh+Om3FvcJrF83xvtRLiV3WyV++Ae//0rm5adbQ4I4Y2sQqoR8Jnl3tcZrU1XxNFNjSTLJ7aZ3ZFLoqtbORxsDOqOYbz7vMl9xuDfn8aXbs/s2N/shO8OIZsma2WY1HuN6T2lyzZVnaz31fGXZ/aIbTIRabUMVDh4uXj0r7TrOxjyX/MrjNuvdkJKlU3ENyrZJo2CUPN31sQyNe3OlmZX+qxzjs7bP7jDicdvnVqGZaGgawyjBtQwantK7O+k9HDXGKM349/7St/kL33hOyTL4l3/iAX/kRx/cCEsXZo/z6a5PL0gQAh4u7rUADcKExzvqDFupO8rRS0KrbOFZOi+6ASXL4E7rci2wL+N994KEp8X5u1Cx+XCjT3uUMF+x+OKt+pEXjOcd9SzmK/axAuXXsW7CJOOjjQEfb/YZRRm3Wh5vLVX3tf1sDVScV/csVmcwxl6V2HdrEPJLn+7yZFfFiV++3eSt5Qp1z3plxvj5zohhmGLogiBO+Yef7mKbOr/lvSX++Z/+0RsZY5LlfLDe50UnIEgyVusuJdvYpw32vOPTGSVoGvwL/9xPXck4P9zoE8Y5v/q0Q8OzaJUtfvTh/KGvy3LJ5zsj4jTndsubab5x8H2HScbj3RGaENxtlQ4lvb/1vMunWyM6fsQbS1Xqnskbi5UrZaLOmpMbvZDd0ewz/+muz3fX+wRxxuuLZe60vMneudZwaVwRy+eotTPexxYqs+U/gjjj/acdNvsRNc/greUqOwMlpXO76c3UKDsvvvQ9X+G//ct/i5pr3qhUR5xk/I0PNklSyVrD5St3Gnx3vY+U8C/+1tnr5h98vMUvfHeTimPyg6/N8cOvzd3AyPcghPjVq/4dZ05MCSF+AqX9dAtIgU+A/1pK+ek5fv8/Bv4V4D9jz4HvQq58wyil48csVh0eLpZplKxjL3fHoTOKyXMlzhqm2Y1YaF4F+mHCei8gznJaZZsffNA6dRvFWbBUc3AtHdvQsA2dN5aqtMo2Mpe0KjZplvO07ZNLyVphw9kuNL52hvGZRMDfWq6yXHWxTYFW6ASMN+Iky3n/SZdRnLJUdQiq2StFHz8LFiqKBny74dIOEpolizjN+XxnhFO004wDdGW3mhf/nTJfuZ7kg23ovLZQ5lbT4+2V6qRl9tMt5UA53d4UZzm9QPVxt4sD97KRS4nQ4M2lCos1h3tzJ9PzO6OELJf4UYafZNfi9GbrGq2yQ6usWmJn6bhNoxvEJKkkQTII0xOfnW1oLFZtGiWLuy0Px9BIUqmChxtMTPXDZFIZ7gfJCV99ftxteYyijAcLJXp+gl6wZT7aGOBZOmsNl1GUTXQAO3587fvE/fkSftXhwXwJv2iD+3xnRJrlh/QBdoYReQ67w/hY/Z9xsLczjGYmpmqeydurVVabLl0/RqAq0Us158ZbJS8DSZbzZNen4VkFPd+g7JhESU7VNXjeCchySRBnjOL0ygw7jsJK3cU2NdaaLrmEnh8TpbLYcwT9QDm4npdx+nN/9QP+P19/zu//gTus90L+s//5Iz7fHvGf/o4v3Fhy6iBW6g6Oqdg4YZrx+c4Iz1KaGK8vqv3aMVWbcJTmVB2DRzsj8nzP4famBbQPouaa3J8vIVF6VFXXYHsYUXWUQPWzto8fZ6zU91os8lzSGY3Pw/ianfMOwzF1Hi5WWGuqVm1TE/hxxsebA1bqLmXbYHeo4uT2MGblFd4zFioOP/Jwjju7rioA+BHrPePEc/Y6cbvpMQxTXEvnWcfnrZUqnVHMzjC6sTENw5RBmBCmGffnSriWrtyCpwqdq3WXin20y+Jl4MF8GT/KuNPy6AYJy1WH5x2fUZSxVHMmbVejOJ24qY2drk9C10+UGx2SQZjQKivn5ie7I7Jc8mC+TNVVbcO2oeNY2o20R+8MI6TcO/OnP/9K3cE2tELr10bXBPfnS+RSXjvLJpvax3ZH0SQxFac5T9sjQHCn5fHOao21RkKrbFGyjck4LzveTjOledkZJazU5I2de1vDiLW6h2tqvL5YRive0XCG2H2a5TzaGdELE37otRYCja/eqV//oG8AZ1pZQoj/BPgDqGRRAjwCPgP+vBDid57i+81CN+qLwF8H7gF/Xwjxi8CXgL8kpUyAPwP8A+BfAP5vZxnjziBS4rO6xkLVuVAyqeFZqu3M0nGMVyvoOQ+klIRJRsnSGQQpIGiWTW63Sld28a655iRgHAs01ksWpq7RD9PJRbDjxwghaJRMZc1ZPluwYOoa81WbqmsVQaA5oRx3/QTL0IjTnLSg4v5GRtUxsS1dVRVck51hRJSoBI8/JdZZdU0MXShmlXO9F2zH1CnbKuhba3j0ClHsIM7oBvHk6yxdo+IYCMGlC9iO0QsS0lTiWSZVxzpVG0K9mIeudb5Wr/NgZxip1i3LONV6rLnmhAJ9mq/XhFBzQlPJWyEEhq5NBCJvChXHwDSEcha9QjMDQ9eoeSaWrtEoWSxUHdq+St52/YQwySnZumqf0riRC4upa3i2TtUzudMqESU5wzAlTPJDl5NmSZ1PJ1VCm2XrRF0E19SpuyZ5rkSlR3H2T4wuUS9IGIYpwzCl4hjMFcn9mqdc4OqeiaYpHcjSDRSfdE0URh6WMg5JlNCra6lWkbJzfimCDzf6/He/9IR/8Tfd5T/8re/yZ/7AV/jf/uRr/PlvPOdP/sJHl/xJzg+jiNcqjsnztk+YZMWazPaJozumPnHvaxbxWcnWb1yq4SiU7L293DKUm1TdswgTtefEaT4RqAfV8lf31NnTfEUSJq6lU7IMlqsOJdtQicAkZ6cY93gfqhfr6VVFnks8y2C17lJzbaJEop3tCnTl0DUlzWAZGk3PomobuJbBTSlgSil51vHxTANb19E0wXLdPcS+F4WkxFUmh01do+oaKjHW8hCaSjSoNRROvq5kGTiTM/x08cQ4llKxsvqeQZgoUkKS0w0S7rRKVF2z2I9v5g4xXmvNkkWYZFOfP5rEN3PlPZfS6WTPdUI/Yh/r+jFBnBPE2cTZbqFqT/bvsn262PesMDRtskfdVFIqStX70jWBrmtohTagbegz495eoAq2tq72gO+50wDEK2EWcdU46wz4Z6WU7wEIIf574O9JKf+YEOIvoBJJf/64by6STv/Ugb/+ZeA/PfB1fw74c2ccG6Au44OCCvus7ZOdwq76KNQ8k5p3PU4W14Fn7YBekOBaOl9Yq9MLEhql69u0slzyydaAJJUsVG3qnjoMpjP6yhXtYr9nvRewM4ixDI3XF8pUHFWtrLpl7s1dfRvfVWPcImkagtcXKlQdk36QYh/QcXJMnbeWb0aEPs1yPtkakmaSxaqyzh5rtFbsvTknija0q4Spazzr+GS5mnenQdUxeXf1etd+L0h42Q2Zq1inSgp4hQXuaRGlOZ9sDqm6BndaJWquSWd087a3tqHz5jWZJcRpzidbA/JcsTSqjsEwTHFMDdvQ0DTBw2t2x5xGEGd8tj1ESmVH79k6RiFgezB4Wa65p3JKW627M1tsxpjel8M0wzH0G58TlwnH0Hje9UlzyVzl8GW/4pjX5lg1Cz0/4WnbRwhYrTsIoZLIa43zOehM4+f/zmeUbYN/7adeB9R++6//9EO2BhE//3c+473VOv/0u0uX8TEuBc87PrujmH6Q8nCxhHXMPtgoWVfWnnLZ2Hce1mzmSjaOqREm+aG1dqvpceuGxjkL4zYtx1StrmO90PG4laPqzTK7ToNHOyOCOJsYEeVSsta8PrH6syKXEscysPRkogd53Xi86xfOjzlvrVRvxNVxGo92RvhRRsVR7buupRPE2b6zUdfEmR2uXUs/FEt5ljE5eyuOsS/ufrhQuZF7xErdnbTRSqm0gYNYrcXtQcRGL0TXBA8XyzdeWJq1j5Udg61C3kWxLSNedkM0DV5fOOzieFkwdHHt8fxBjPX51HxVqZfpc+EgSraBrgmW6w735kqM4pRPNocYuuD1hZt/v1eJsyamciFEU0rZBlYAHUBK2RGvSKmk4hi4lkaW5QSpElUbRYdpckdhXKmrvGJuIRdBL0jo+jHffdnH0DUWKzYP1mqsSnemnsZVYWcY8WhrpLLijsFi1WGt4TAMs2MD0NNgXN1olqwJayhOc5JcUfzHLoEHD5MwyXjRDTA1jbWG+8onrdIs5+PNPkGcs1CxSbKcRskqGGLq4pFkObvDGNe6uQvmi07A59uj4n0YLFSdQ++gM4qJs5y5sn3p83BnGNH1Y1olG0NXtOGz+DzsDiMyKZkv21dWBZZS8rwTEKU5aw2l23Bv/vjL2DR6vqLXt0qnS2SNLYrH62Ot4bFck/ue/SBM2OyHlGzjyuzhZ8GPU/pBeuoK53mx2Q94suNTcQzqnnLUqnvWK7N2Hm0Pedr2mS/bBHFGzTV5c6mClHvrZnxGVV3jVIxgKSXbwwhNiJnuXEmWF20M0CpZ3Gnt11k6OE9ftZapaeS5GmuS56zW1Vg1TXDrGF0JKSU7RQv5XNm6FtZHz0/YHoZUHXNy6ZRSzcG3l6vE6fgdy3OzvntBwl//9ga/5/tv72P/CSH44//8O3yw3ud/9+d/ndcWyvt01q4LnVHM7ija5xrnxxl116LimNybK594HvfDBL84919l98s4y+mMYsWSyjIWKg6vLZTJ5Z572c4wIr/iM+csGMdGzzs+DVexvABeL8btxykbvfCVf/aq5VkSxKrlc70X8OZShdW6i/4KXe7GMWyjZGIbOn6cMQgTkkxSuwb3uijNeN4JMIr9UtMEfpwq+Q0kdddksx9eSbx2GgyjlI83BtiGEh8XQvDaQnking3744jznFOjKGUQ7n3/9Nm7NYjojGKGhTP3YvVmk5pCCBqeRdmWtEoWzzr+3vhK5rXGb8dhmh3lWQZvL+/dAz7eHPC8HVB1TaI0u7J9JMslm/3w1LHyRbE9iOgF6v4xLp7Mmq9JJo90YFTEgr359+nmgO+s92l4Freb7v8/MTWF/xh4XwjxEfAm8C8DCCHmgV+/5LGdC+1RPNEIcUzlTLB0CuHzYZTixyk7g4gsV4fZOyvVVyJAuAi2+xEfbPQJk2ziiDduYbigm+aZ0fFjPFvHT1Lmyyqp8rQdqPaFNOP+vFq0u6MIx9RPrfWRFhoiY+el5ZrDRi+kbO9RbseH7DBMqXt7gdTuKMaPMkBdAi9TcO8q0PEV482Ps30MqelA4WU3mDg/rDVckjyn4Z2uhe0ykGQ5/TDFs9S7HldTpy8ZoyjleSdQX5/m2IVL42UlAzYKkdz1NOSt5Qqtsk2c5scypoIiEBRCsNHbo4Zflc7HIErp+qoPf3sQsVp36RTJtKMwXh8C2OipVoo4VfpDJ8HUNUq2TmsqOXEwwNzsRwXVOqZZsi6Nsh4mGf0goeoeDhilVGKlec5Eb+yq0A9THEvDT7KJ7sH0M1jvhvQCdXlcrDjMVexrS8T4cUqaK+erOMsm7cxCiH3uP493RySpmge3mh5RktMqWUde4p+2fR7vjqg6qo3zYIuiY+osVG1GUcpSzTk0J4YH5ulp5tpNYRCmkzm0M4xYa3h4lsFC1SZM8pnMjvYonqx3XRM0SxadUUwmVcB/FTHARj9ULkpxxGsLZeI0x9DFpE3taScgSnJ2RxHLVQfJuI3j9GP5n7+9Tpzl/PbvWT30b7ah81/+vq/ws3/qF/nDf+7r/KU/+puuXVtrvRcW2l7hJDG1XHPYHkRFG/rs82oUpYzilLJt8LQ494Mku3E2x3HwLINMKm0TKVUCVdP2YrCuH7PeVXNw/G/eKVu6rwo7wwg/yiZnwFLNmbwTme/FXH6cMlexT9yHbgI9P5k8V9PQeNb2MQ2dXpDSKGVUXpHLndIz2othH8yXKdk66/2QiqPjF3eaq8TucBwLQ89JaJSUmH17FOOYGk92ld7NSt3l9RlGNleNzX5YdMQkzE1JfUyfV+M4ouvHzFXsmefdLAyjlFGUsNEL0YTGIEx4fbGy7+xdrNh8sjmgZOt0/ORGElP9ULU3t0o2wyjlZTG3NQHzZZsP1ge4lkYvSG48MdUL9toss1yds2+vVPftD2mm9roky690r4vTnK1+dChWllLSHsVoQlwa+1ZKOYknNrLw0M+dnq+upTNfsfHjw+QZKSW7oxhTUy2sL/shgzAlzyX/pHfznWkmSCn/30KIXwDuA59KKbvF328Dv+fyh3d2lGwDIdSF7U5LCfWdhDjNebwzQkp4sjukZBszXQTOg5vsBx1FKd9Z7/LZ9oiGZ1F1zH1U0OtG2TZolWw8W6fsGKSZ0pbKc0nFUZuFasOLEELwxlLlVJfC8eEhJehCBXT35/dXgPNc8mhbveOX3ZCFqk2rbFG2DDpCbUy2qTbI60rgnAclW8c1DdYaqh0L1GE1CFNaJUsxBIqTNJc5T3ZH6JrGKNoL3KWUV0oNNzSBa2m0yjZzFUsJ2iYZu6NYtVU65j6r7F0/Ris0FB4slCYMgSTLz20ZW7KNiaaMEOLYVqauHzOKUraHMboQ5DJHE2oO6FPjVAeCvLRKhWuqNq00U0LHx7WmjJ9fP0hIM0mS5UgkVqH7MMb43c6aw4YmDq2Lg6g4xqTdoesnSJmwULEvfNn4ZHNALlVi9Y2l/UGtEAJNCHKUlfpVouooHaWyY+CYOjvDiCTLWag4RRVWfd16L0Qg6IfpPor/Ve7ntqH0rRarDst1B1PXiNKM3WFMyTImSXNdCBJUpe1J4boTZ/lkjk+v7zTLed4JeNr20RCsNWavg+NacZwD8/RVhmupanqWy30tw8cF6bmUbA9DLEPnlnALN16VNE8zeWmxwDTKjkG7YOaNxYTHGAfLUaLW4YviTiphJuPtqP38r31rg7stj/eOaGFYqbv8/O/9Hn7ff/3L/Ov//a/xZ/7AV681qVBxDLp+QnlK/9CzDFwrPVJRZ+y4JSX0zL0k9nifTrMcTYhXKjkyxr25Ep1RgmfrpLlkpx/iWbpibE6NV7XjaAgR8cZS5dBefpFz8Swo2wadUULVMXltoTwp5u0MI8LClh4gzWfvQ9c1zuMgph6dlFDzLLb6EevSp+YalCzjlZkr0zFslktedkM8U2O7HzFfvvpWybJj0B7FZHk+uTfVPYu6Z/Gs7fPR5gBd00DCneZh57qrRsU28B2T+YrNXCFOvjUIMXVtsi+O44heoJhmoBIBY6mQ6fN7zFxJMnX/y3PFnF2o7An4+3FKx0+ouyZlx+T1xQp+dD1mOAcRJhmfb4+QUhKnqn1vFKskfbNk4tkGry+Wb2R8B+9NfpxOHEl7QUzN3dO9GkUp3SCh4Zm0ytZEO+xKSSDFjz641ndHqiCQ5urcuAgxIc1ytocRVlEAHp3yPUwTZ6af49YgYqvQf606OjJXjPZZxd1/0nCm2SuE+BmgIqX8Cwf+/vcCW1LKX7jMwZ0HZdvgzSWV6T4t3XS8HoIkxdB0TF3Hsy6+UMJkTy/kJrDeDfjW8z4Aa3WNH3l9DlPXbuwgXmt4LFRyzKJM2A0SXFMnTPJJMmIQpjzeVXob9+dKp1qAuiaUY0fR+nIUhFALf9yHHSaKpeXZFQSqnz6IFZPiNCy7m4BnKVtVWSRIslzuVY3jjNcWyhM7X0vXeLw72jf/pJR8tj2auJZcBYRQ7yPJ5CR4ed7xlcj9KOat5SqupXN/vkSc5oRJNmmlGWPcL39el5e7LW/f7z8KYZLxrB2odp5ByGLVpWSbLFZt8pzJQZVmOZ9uD0lSyWrDvRT3QFPXeGOxQiZnJ5Km8bwTEMQZWwNFR7YMjdWGA1JM5rx6t0PV5nlOXb3FqkPDs/CjlGfF5VyI4xMXJ6Hrx3y+4wPyyJah+/MlRoV2xFXiVtNjsar2oGGUTqrpUqqL+mrhNCWRCPYzla56P9c1pV0xPR9edAJGUcYuMW/a6pJ6d66kdBQ1wZMi+BsPc9b6zjLJRlcxSHdHMfNnZACeZZ7eNCxD442lCvkZxhomOa6p5p1t6CS5ygRFacan24MrccRarbvMl+3JWTiNnWGMrWukmaTh2USFs+qsU/uo/TxMMn75811+9/fdPjaO+YH7Lf79n32bf/9/+g7/+d/8mH/zN79xoc91FkyvxTE2+uHEmdcuDDSOgqFr3Gp6k3N/rNVl6Kpl4lWbq9Pxz9O2Tz9I2YUJO/zOnIfMldvqmPF8EGP9zNMUXC+KuqecsvSpRN8g3GMglW2dmmdhGxqPtkf7vvei5/dloeqY3J3zyHPFyk8zyTBM2R1GvP+0ixBwq3nzTLtZMWyU5rzshcRJTpJePWOq6pg4psYwkvuYsf0woesneKYxEd6+iUaShaoyDlDmLWKyFkDt+1XHnMQRYZKyO9zPvp4+v4Mk44P1PvfnS5N9QgjB7aZHq2xTLeKQp22fJJV0/Zh3VmrcnyudKq68CiSpKjTnUp1TyzUXTYBnGASJ2v9vYnxRkvPh+oDFmj3pLpgW67/T8ijZ5mQvf7yrWG39IOHNpcq1jNc2lFTLQakIgWLiDcIUUxfUvPq5f8dGP5w4Ed6b87Aa+pk+V5Sq5ziO3cdPMEhUN9dSzUET8PZy9ZU72y4bZ70F/HHgZ2f8/d8C/kfgxhNTwCFGQ5rlqgIuYKV2WEfI1LWiOhThWtqkF/aiGEUp+dWfJ4fQHsU83fX5fFvZoFu6zt1WCfsasqzbg4hRlLJQtWc+Q8vQCOKM5x1f2Q/rWsEUUGMrO8bk4n0acsJmL+DjzSF1z+LN5cqRyUhNE9yfK9MPEsZfMl7cpq6RZPkkuB+EyY0mpjZ6IVGqLGBntVIpRoCiLSdpTpqpys+4OqkV7Siwd+FveHsVo8tISg0j1fZadc2ZSRohBJYh2BlG7A4VI8nUNTSxd2SVbIOSrS5XlqFhGtpUglJt8FFyvgU0/v2zoKqRAaKgPwuhmBHGJFlZOqQvF6Z7OjzDML2UxBSod6UdwQ/YGoT4hRXwdOU5SDLu1hwa3n72RJLJSRvzIEzOnUyyDI0k29tDL1r1HoQpq3WXUZyyMGNMwzDlV592sAyNr9w5u/NBz0/o+DGNknXqVtDPtkckWU4uJZrYv3YaJQvP1ukH6b5E2WXs51GaqQuboc/cY8bzYRSlvOwG7A5jPEtH18WEZWjq2mT+3Z3ziNJ84nxzcH1nUjKME+V6qGm87ATcbZ0u4T9rXK8qwiRjsx/imDqLVQd9aqzjPahZsmaynwxdULbVpUvToGqZ3G56bA9D/Eg7cyJy1juOUpUA14SyhDd07cig1dSVW2bN1ViqO+S5cumbxaY8aj//+uMOYZLzo6/Pnzje3/8Dd/jOiz5/6m9/ysPFCj/7xZWzfeAL4OAzMIt1KIRyWN4dRizX3MnXjS/w7VHMMEp42Q243fTQNUG/ODPSTBIk2Y0E72Gi3r1n6zNbwKc/Rz9I6ATxROtu3EpZsnU8K6Fk64c+w6CwFb/oGd4LEjqjmIZnHckSyItzMk5z1hpKaHrsbiUllBzjyH3oouf3aSGlZL0X0hnFheuWdagjYMyWqUoDQ1OMGj/OyCWTpO9VIy8MJjb6IXdaHndbhws00+6TAAsVJZKfZPJSxjkszhRDExM332kmqZQqftCFmMwz2Dv/bzXVHFhruFeytk6Ke0Gtn/Hn8OMMDRXrjcdoGzq2oSOliWMa+9hS+85vqebwMEpZqDj74uTp+6OhKXbyIEj5aGNAq2zNZK2OMb5rappguepcKgkgRxUI4zSn5OhoQs3tNFNMr1wOWKo5R7Zkn2bNn2tcxQE5CFPGHZ6upXNnziNJlYzI+Dn0goQXnQBdU0nA4+L0dtEhMFexL8wAy3LJ+8+6zFcs3lutT/6+VbaL/VZndunn9NhLcHLs+X4U8uLC2w9U7D5fsSfs761BhJQwX7Gxij2iFyg92LJtHNsFNQgTdocxNdf8DWMWcta37RVte/sgpdwQQtx82eEItAvRSWBi/Z7lkrmyva8SVPeU7tHtlkfVMYhT1WrmWfq5LDdrrkk/TCcL9zrgRym/+MkOXT9C1zRaZYuHixVeW7x616s4zSe9tZmUPDiibWh3FE2ENC0dekFKnGaAyXxZaRWYujiRPSGl5NPtIZ/tDLE07Vimk5SSYZSiaapFMErkvp9v6ur7B2Ey8/J8XRiEycQ+WhNH67n0Cwv0LM+JUmXtXvf2BxmiaGucThAaU5/zInjRUQHrIEwnVruzMNZ68uMUy9BYnArWx2MUQuzTPQJVHVvvBnhXQEneHUZ0/YQsV+Ofr9iMwhRNA01oE7OEaRHMkqVT95RA4yxnr8tGmGRs9pQY7s4w4nbTw7N0ojTFNgxGUTbZn8aW5JahMVexGIazE0BnQck2uD9fIpPywtozc2V78txaMw7GT7f6fOu5ql4vnqNt6llnT5uj5p7svNLxY7p+TC9MKFs6izV38rzGc9I2dOYr+4Pjy9jPN3tRwYZIjzXYUO0yKnHW8xPWWu7MsKnimEw3Rh5c39sDpUdWcyxsU6NZtvl0a8h8xaZZuj7duavGZj+kH6STZKKuCTojZWLyonAVa4+imYmppaqj7NBNbXIhqnkmnqXxvBue+X1v9ffecdlRa7PrJ/ix0urq+jErdY+58mwh1rEYv6ZpJwbkR+3n/+CTbUxd8P33myeOVwjBn/it7/D5zoh/88//Oit191wJ4svAQtXBNnXiJGejP9b9ClmbEq93LZ3eTsz2QAmn94KEXIJAuVRZuk75EgqL58F6L2QYKgFlxUCZfcFerbusd0MsXeNJ22ep6tDxY4wi6XxU++hixWFrEF7YAv55xyfP1cX8KOfpQaTWk0Ty3fUurmmyWnd4MF8mzlQr0Xi/PLgPXeX5PYZiO/uTC5prGmS5urzN2tfGcUbJ1ietnxXHZGsQHvray0Y3SPj2iz6DMCHLJEvVk00klmsOt5ou3SDhndXzx++9QOkSDQr7+Wf9kJqnBNZLtpJW6IcJoyilVbaK/9+bf55l8GChRJqrWEBewX1mGKWnintBJayjJGdY6IGu1hycYt+ejikPFg+nz29NE5RsnUaRSD0YJ4/RKlk8Ckb0AqWztdnPj01M7U7dNT1Tv9REQKUwpIkL6YEsl0XHQYJjmkSJ0lE6Kl47zZo/Dwxd4JgaCwf2rPE44jSnPYgoOwZPdkcIAbqmXJGPQprlvBhr0Gb5mV0WD8KPM775vEvdMbjXKlGeekYPFyvsDiMax2i7ngaLVQfH1LF07VytdpPnWMSi0/eiimPS9WOklIRxyiDKeLQzxDV1okTNyaMSYS+6AUmq7r/1Ql/6VcdZTw1HCGFIKffxjIUQJvBqWADMgFPQnoVQPfBj+ieoKuSj7REbfXXYr9bdSdX9eWfEKMoQAt5cqpxZW8bQtWsX5Hz/WZen7RGfbA15e7nKV+40eKNobbxqGJrANARJKicJwFlQiyyhPYr59oselqmxM4r4Z95dxjH1UzsECSEQEvpBSsnWibP9VaUgzvh8R22ENddkt2gR0IRzKBECqtf3plv4bENH0yDPOZau79lKS2VrEDMM0wm77L3VOhs9JeB8VKLuMj6na+rEaY5tahxXFKoVTi67w5hcjsWnVUD0eGeEoasK+MFAsmwbFz6MjsJ4P9gZxlQdkzBRFP/1XsBy3aVk6xMdk2kRzOsUfTZ1DUNXTjAyV6LkUuZs9WM8O+PtWpXnHb/Yn6LJ/rRcc+GSYo7LciW1iwNzLEx9UIy0H6WFppNKuJ4VrqXjR9mxe840yrbBRj9kdxDj2jqepQ79cTJote7ODCgvYz93LI1eoJg5x1XUqo7ar150AwQCP8lwTeUkOG6buTc3W0Nxen37ccbuSCWxq45LmuX0/FQZTiTZRKfuNzpcUzHcNE2tnSe7I4I4Z2cYESQZHT+hbBuESXYoaBQztCXGrUhlx+D+Gd+5+vmJesfFvla2DT4pHC/XcwjinDj1uN06vKcMo5Sn7eDIvfEgZu3nv/jpDl+50zg189s2dP707/8Kv+3/+jX+8H+nxNBvSuS+5ppEZsbmQLEaDq7rnq80FTt+gq4J/NjkWy96xKnkS7dqM5/pdcE1dYZhiqGLY5mmY6bAKMrIc/j6kzYbvYiqZ/DVO80jmZ8173IMWlxTaaAcd4HyLB3TEOwMYnYGMZKQth/zvXcb1CyTxzsjBmG6r4VnjKs8v8d4vDtiFGasd0MqroGhaQWra/ZzT7Kcz7aVNfvduRJplvOsHVzpGMcQQjIqEn1Rkp/KebfrJzztBOiCSbLjrAiTbKL1M25Pr7gGhq6Yb7ahkWb5RA6iZOsz35tnGeS55NOtAWGSF21Rl5d0sXRtEveedKmvOOr83ih0IJM0x7EMXEvnWdvHMjQezJcPFUunz2/b0GbqbYZJNjlf1xoun22PeNYO8OMUXdMO6WMexDhBJgSX3saqaWLf3vbtFz2+/aLH7jBioebw5lKV6jHujeM1f9ltwKauHbvWP90a8MnWEIq9fBRnJzoK65rANjWiJL8UPaUky9nuRyqZOZVYTbOc3VFMnMlLeV8XMW867jmu9wK+9bxHvWTimUofNYxVi+9SzZ0pCTCGa+okaYptaL8hklJw9sTU/wD8GSHE/0ZKOQIomFL/RfFvrySqjsnri+VCY0hOElOaJvAL5sFS1aXi6vuCsemN7TfKCx23Adxrery9XOVWQZe8Dmia4LWimnbcplNzTcrLVT5Y72EbGn6UYQhxLiLlw+UqpqEjBJN2tTEGYTIROwyTPer7TVjdnhaWofFwsUKayWMPENtQVrYVx+DD9QGjOFWtPlJOXKk6fnxlibZbTZe5RLm2HTe/bjU9Gp6JlEonSRfq0O4FCVJCkqqA7TKDnJMw3g/KjhJIH0WKzXWnVaJZtvAsA00IsqL6dhPQNcHrC2UqtkHHT8ikJCoCQl0XLFQc/EgFUEK82vtTkGSTFsOufzgxdavu8c5KDU2DZvns8+Beq0SYZpOg8CSUbIOHi2VeWiGDSK0V1cpbjDFIrozyvFBxqNgmhi6OTTg0Sso0IMtznneUJp4mVHJvvKcNwuTEILPmmjQ9E9dULRhrDZedYawsiF/hOXNWLFQdKs7ecx1/Nk0I1hoejmFg6Ps1w45DL1AxwjBMJyK6p8V80Xow/Y5LtsGbS1UcQ+d5J1CtkUe8/ovujX6c8uHGgH/lxx+c6fuaJYv/5g9+L7/t57/GH/q//2P+4r/yQ9fu1DeGbei8sTT7HNQ0dVG+N1diue6QpDlRstdOcpNYqjlUXaXveFIhc7nuIqVqq9rsqwTJIEivJT65e4o9c6wtN1+2eT/pKl07IRAI0iyfPOuun1yZc+1x0IRqR7s77/H6QgVDE8c+81GUTtrx+8F+0f2rRskyeW+tRpJKlmqnMxMZRAkyhxTFOjkPhNgTVW+VbZaqSqcmTPLJ/pTlck94/ZhxnXSOXwSnjXtBfQ5T1xASXvZChKZc6frFvhklOX6cnotV2A/27gyjSMXUQqjz5eFS+cRkfc0zed0sF0m/q5VOMTRRtPQKlio2d5rusayf06z5q0CY5OT5HqN1oepQdo6/N4x1aqP09AXH4+AYOm+vVCnZOvbU3XQUZ5N2456f3Nh5dxySLGcYpgghGIYpNUetu2bJYrlu0yrZxz7L202PILn+934RnHVn/neB/wh4IoR4gmrKvAX8WeDfu+SxnRtSSl72QpI0Z7mu+pXHWVfbgHvzJbJMUvNMslzi2frEmWkaaw2Prq1aZc4aLIyilMe7IwxN4/781Val81zyshfwohugSXhtrkzZ1VmpeUXv7PXBmArI+mHCTkG3P0ir1TV1uf7y7QZxmvHOau3Iw3oYpTyZepZxmit2S81lrmxPxBAlqoowrobUPJNukCBQ7zJMVXLqVdx8pmHqGgf34p6fsDuKaJasSUCgacpla8xeapQsLFOnVbbo+sm+dgDlZjQkTJRd6kUy+8CkTXAaeS550Q0KIek9a+myY/LOapXlulO0xFmEidpsdU3sa1fZ7Ids9aOJ7sZlYmcY0S+YZBXH5G7Lo+snmLrGRl85c4zt4ZXmQLrvOUVpNrEjPoqtclH4ccpmP6Jk6SxUHdaaHhVX6aL1w5Sen7BYVe/1VtOj6+/fny77PV8GVCu0EuiclXiar9ioM/N8lr1ja/WD2B1GE+bgwSD13lyZubJDmikHorKt2iODJKM1Y4xjodVGydzXVnQeHJw3YZKx3gtxzf26U46p895aneVahGvpNEsWSaaEWCXsY05s9EK2B9Gh8S1UbN5dq7MziGiVLRarDjXXIkgy6sXcUK3uyl77OvbGNMv5fGdElObcOQW75XnRineSKYVr6fhxyvNOgGMorciSbWAbGiVrf6veSWiVbNbTkIpjnEuY1bV0+mHCs7Y/Of/myjampnGr4WEZ2iEh1jGanjVzb9weRGz21ZiOY7p963mPLJd8+Xb9zON+MF/mT//+r/AH/uyv8Ef/H7/Kf/MHv/da2j2lVGdHlsuJptSscxAU43osaG3ogsf9EYYGcxWbO9fMUJ+F6b0oyXJedgO0whl2OsZZqDjYunK8XKjaPN4ZnUpP5cnu6MIJuFl75livKZ6Km8ftJF+525icneP10CiZ9IOUubKtXI93RoRJxq2Gd6kaNgfH+GTXZ1i0nbVKGhXHPNUaLdsGwyglSDJuNdw9YfQrUNpIs5xHO0rH8E6rRNk2eGOpQpjkk313FkZRWqxxk6Wqy/15VYh4cMY7RJzmPNoZkueqJVAIQd01J/Nv+gwa67YNwoRhpNojV+ruoTvPSef4RTFrvY+lLWquua/LoeqavLNWY62QOKh7JqM4YxSnyhVtam6P7w9mwZgyp+4nT3f9yX1B18S+O0OrbFP3LBarNq611/Y3xlHn5mU5pkkJH6z3kVJpxR78uW8sVZBIdocxK3WXmnv4nWz2Q/w4Y6nq4Fr6pWgnH0SQqLj4bms2CeKt5SpZnuNYSus4yeREXH6M6f1/pa40zPQj4rrzQLkK5yyUS/vmddk2Jvf/y9KNPS+SLOdbz3s0y9Y+F3FT12iULKRUGsy3W95E7H5WvDaMUrb6IVXXZK5sz7yrveo402iLFr5/Wwjxx4HXir/+VEp5PXzYU2IQpax3A9JcYuji0EVi+uAfb8qzoGuCqmueS1OkGyTkOcR5PtGsuSo82R2x2Y/Y6IfUXJOlusO7R1hEXzXGgsK2ofOiE5BmklEU0JjR2+paKot90kbeO/Ass1yx3iqOiWNoE9HIZ22/aFHZq5g8nKJGHhe8xGlOmGZU7Cu2LT0GUZqhidlMiudd1R/uxz6aJnAM5fgghGDuQG/3St09JIbnx+mk2tXzk3MnLPJcCXE65mFaqNLuKSjnQtLwrElC4GAPv2vpM2nR7ZFiKnT9hNW6PLGymOeSYZzimoeFYqeR5XLiJpTmKvATYi8R8pqztwekRUvowXbPYThVcT0FW+Xg7x/FKSXr+CT3ek8Jng/DdKIDMX5X41bj8eeO07xwyNkvjL5X1YxficSUEIK7x1wYX3RD0kyS5cq2+awIC6Hj6eeaF3bbAEkW8sbSnt7BeJ0fDESOG+N4XnZGCWvnkN85bt1sFLo0/SABIZkr2ZOkrmPqrE0laC1DzKR7HzW+sdPQ7eZ+jZ7x3JVSTrQc4iygurTn8DiI0sk+M40ky8lyee4A3E+yicbgwRaVMMnQtb09UEo5cbppj2IWKjbDOMUz9ZnsiMn6AR4u2ZNE1FkTno2SdeT3HBzjLAyjlEdbI3RN7Dv/ap5JjePX5FF7Y8dXTLd+kB6y557G+8+6AHzp1vl0on7owRw/99ve5d/6i9/iP/jL3+Hnfuu7l34mHtwP+0E6ec+CgIVCr+MojM+Vl92AXMLduTK3mu4rUXQKk2zC3tkd7jnslW1jMqcGoSqIjBM4Jds4lVlFmuVHOvadBtPx2UEMo3RP7qAXUi9Zk3O14VmHLuZrDQ+KKabiC3VZ6vjxvsSUlOp9n7W4O96Dps/2JJOTpNwwTM/ULhimOeVCj3EQpdRLe/GJlOpsOGsS+qi4cRTtMTG6fqwuwJbBSSSj9V5AEOeMoow3lyt88Vb91GOZfreDMCFJJWme0/ZjHsyVj42lHFMl0ofFs3Ut/ZCW0knn+HmR5ZIkm92y9bKrEqWjKMOzDJI8nzzr8bsco1ywUg9ifH+I8hw/yqh56h33/OTQfcE29H13BoBVa//9Ua1dMfPcnMZx8fxpkElJmu0x/Ga1oL+1XCPNcvwk4+AtNUwytvpKt2uDkHtzpX1706VBqrWo4pvD79C1dL73Xmvf38VpTj9MJu9SCbOr/d/UI1bq7rHz4qyI0hyEYGMQ7hvncff/60ZaZMg7o3hfYgpUEXq6UH9wTo3Zfa6ls94NCBO1ZuquEvO/kvd+hThvGk0CPw38MCCFEL8I/JdSyqtXETwNpApYshySLCOIM1bqLqWiYqIXL/AkhEnGp1vKXvR282xVoIZn0g/UBnZRR4GjkGQ5v/6syz/8dId+mPLeWg3X0o8UzrxqBPGeHevtlqpk9IMU19p/GdsdRnyzqOouVm0eLlWOrWTPepa6prjHv/q0g6Fp3Gl5NEoWw6Itq2QZhR28EuA8uNCnkedyoj1wFUyd06AXqOqNEKpqfXB+epZqO9sdxQzDTLEAbMUCuNXwTkzglCxVGYiSnEbp/MH7ox1lTV51D1ftXUu1VPpxyvZmSMOzMA0lJL1QdU6VJGmVrYmo7Wno7k/bvrJ6NQRvLB6tpaYJcEyNXpCoVkcpFXvkQKSYZDmfbA7JcslSzdm3liqOiW2qy+FZEz6f7wwJYpWYOC6Y9iydUZTSHsV8vCEn7hwHP9ej4ucdnK+eqVOydcLk5itAp4Wta3zzRY9BmJxZLHfMZDINwcOFymTOaJoSkgyTHM/Siwtdwq+/6OJHOfcXSrw1I4g9CvNlm+1hdO5netT7AvXOB2HKi46v3r2nkp65lBN2zUmYK1tHjq89itkdRtQ88xArWAiBa2kEcY5n7j37F92AzkjpJD1cKBOkOY6hI5F8uqUq8asN91zPo1TogSRZvi/50xnFPO8ot8zXFso45pixYdHxY+bKFk/afkFrl9xqlqjYxr59wiv0xkxDYBa9cs87/r4Y4CIYj1HT1Binz608VxfpKFXGBVuDkLq351r6rO0TpRmrde9cbMtWyWKjH1J1zGMvO+8/7XCn5V1o/f+u773N5zs+f/rvfcb9uRL/0o/cP/fPmoVH24rV6Voary1UsE2leROlGS97Cb0gZbXuYBjaJDmqBO5V29g4Fqt7SrjZ0K4uzjoLdoYR613Vevvawt45LsQek+KzrSHfKpjdP/HmwpkuXsrkxJw4EJ4FB+Ozg2fYWN8yiDNedNU76PgxS1Wb5bp7bGuUY+iUHYMgPsymCZOMT7YG+/bn0+DD9QF+nOHZOm8squ8dMw37YTJTJ/Q42IY2cbkyNMFn20O0InEfphkfbw640/JO3QI2DFM+3OhjG/qhfb1k67iWRpLJQwm94+BaBkEcK2fcNOfJ7gjbUG3Yx2H6rtIomdRcE9sQPN8Jmc9tnrb9E5NKfpzxrD2i6ppX3uUxRla4FSapnMmI9SzVDaAJ+ObzLoamEWcZ8xUlDH8aBuz0/aFk7319o2QxCFNscz/DahbyXPKs4yvHPZSz4/h7ps/NMU6K508DXSidJSkVQ+woPNoZ8bIT4CcpX77VYLm464x1StNM4lk6W4OQzV6ErgkeLpYvL0khoOoaEy3Rk5Dlkq99sk0nSHgwX+aLt+rFWa8SxJ6lnzgvzoogzvilz3Z4b602cX591WBoSmfttOd2lks+XO8zLBzPTV3j3rzq5AgTpf+ra4LdYcTLboimwesLlXMxwK8b5z3J/ztgAPyp4s+/G/hzwO+8jEFdFFKqam6UZAyjlH/0aBdNE/zQgxbDUFV1HiyUTqS3hUk2sYr2k/TESuc0PMvgreWrc8LrjmL+yjdf8vUnbSSCu80Sd5oeX7p9M246sP95BXHG7abHziBmox/w0caAB0Ub3t/87iYvugFNz6LqmJOe7jHGrYkAyzX30LOUSExd8P6zDh9tDml5lqJ1l+19X7fVDwmTnDCJaZWsIwPAsX7PzjCiHyasNdxrZ02Nq41SKtbL9EH2shvwZHeIEDAMUtpZQprnRQ+2xsBNZyZNJ/awJYuaa164MiClnGh1+QfsqsMk4+ONQeGsIhlGKhFQdg0WKy5bBZvvIMZOjpahsVRzWKg4Z9KrGAvep5myVD/qtQkhuNcq8Y+ftHnR8fnGkza3mx4/XNip+3HKYtUhzeVkPh605B7rIJwHccG0OijQfxDLNRc/SvlkI+LXnnZolGx+8s0F5is2m/0QzzJolawJK+rge9A0MVPU81VGlGVs90O6YcJH6/0zfe/48yepJMlzbG1v3dxqePzSox12hiGbfeWu9vHGkIWKw3o3PDYxJaVkox+SpJLlusNC1Tm302GeyyPf11Y/5LvrfXKZE2c5m/2I9ijmdstDIOj48ZFMis1+SJTkSnz4iPFJKfnW8y5JJpmLLObLe0nOcfuNH2XMVWyWp4K/saZJnsOTtq9sxDXBcs1mux+RIZV+1TmSH+NL+0H4yd4eOBY93Rqo9/ZwsYKpa3y0MZi082S5CthbZYunu0r09v5cSSXEdQ2t0OAYV2K3BhH3DiQvwiRTjl6Wfqp9ZxSnk+cSJjm2oRMmGduDiN2hcsIdW5nbhmC14bJcdRnF2YQdtj2IThTonn6348tXq2yfeBmXUvL+0y4/9KB17NedBv/7n3mDxzsjfu6vfcCD+TI/8ebChX/mGON9cKsfEcQ5ZUfpvnWDhM2eqvJ/uj3EMnS6fsyD+TKdUYwQQjHDvT0m7jRLIsnUeWLogqWqc2PneJbLiXNdo2SyPYhY7wW4ls6vPeuoBCyCB/MlHp6QIB9FKTvDiIqj1tt5C2cH47Pp8zjNcr7xtM3uMKJsmfiJYkD1w5Sqa7I1iE5M2FiGhqGJmZf8WfvzeN2UZrBXtwYhn++OiJK80EhJ2R0mqhDX9Oj5Cc86Pu1RxL25w0LXs2DqGg8Xy6S5VC6ZkXpXXT8GuRd7HfycWwPF2lmsOpOE8ChK+XhzwLN2wELF3pfwAJVAbJVsvvWiy84w4iu3G6cquqzWXZqehWVovOgo9lQQ5ycyPqMkR0rYHYZ8uNGnZOvca6m90DaUMZCUkse7qvixVHMOMaKGYcpSzUXTLs/45CQkWT5hofvxfiZgmGS87AZ0/Zh6yeRlNyJOM6qeSdk2aY9iZfYyAzvDiFGUslBxjryLlW2Dt1fU30dpxmYnwja1medtP0zoBymDIGVroOKw+bLFKE7xI+WiOR2zHxfPnxZCsC/e3CjabJdqzr7kQhBnvOgEPOuM2BnG/HNfXMExlYFPlktuNZVQ/ZNdxUYf702XlZhyTZ07rdKkIHPUMxyjM4r5zss+mZT0A9UKGac5SZYzV7EKqY/syHlxHsRZzvYgYqsfKvbmKyi3ZOqCd1ZqdP2YxzsjWmXr2D33080BH28O6QXxJH5ZrNoEcUac5dxqqnvsOObMczXPfyMkps47wjeklP8rKeXfKf73h4GHlzmwiyDKlLAfQm3YnZGyaP10czj5mvGkPw5hnNELYnKZvxIU8THyXPL+0za//PkuUZoTpxlrTZe3l6/WBeUkxGlON4gRQtIqqxajKMuIU0mUZPSChCdF1VgTyqnkzpx3KEHY9mM6o6Sw+I4P/R6B4Fnb54OXfXojZcM9y4Z+vKhtU0MXgmGUks8QFDB1Dc9WS8E2tHM7oFwEnqXT8SPCJKN2oP/6ZTegM0rZ6MYITWCbgtW6OpzSPD8yGfO8o9hEz9r+pY5VWasecFYLEzb6IcMoY2eY4FoaJcdgpeYSZ5lajzOw2VcOgtuDiOE5Wl5vNbxJtXJcjVXU78M/qxMkgGC9GxClOUme0/VjNnrKan69F2JogmGkHNpaF2CWHcTtlhrnuKUqTLJ9gvxjJIWo7O4oousrnZlB4VrXD1I2eiFhkpHLnM1BQM27eZbARdEdxQxCZWkdp4efyVHoBWrth0nKYtU+VD3dHIR0fdUi9Hh3hG2olhTP0liq2YcS4tPohyk7g5hekLBV2FifF8NYsWiCJGX5gEXyk7bST9rqx5iFXfBqU+l75FJd3mfZc4+ilK2+0tAa0/VnoRckk/aXOMsnF/UsV38XxBlCCMIk23eJX6m71D2TtYarWogT1T4WpRnrvYAX7YA0P58g71GYL9uUbZ0ozdgeKM2szV5EZ6Tc7ECZLtQ8k7mKjSYESZZPWjKiRLU0OKY+uahOX1gNTQVm0xiv/c1eNHM9HkSzZKmWlzjFMcaMrICun/C8o55JLiVVV7VLeoUxh2No5FISpRmVE0SXT/tuZ2G9F7I1iPjyJRSoNE3wn/+uL/HmUpU/9hd+feZZfF7cbqr90LV1XvR8Pljv48cZ82WbZtmi4hiUHYNuEQvsDCKyYh3Men6jSM3P7UFE10/YGcT0b0AIXSLZHUVYxh6Dy48zDE3jRTdgvRMULraShaqFJsShAshBvOwG9IO0kEY4/5pTzMyEfhhTO+DetTWI2OhG9P2UjX5I07PxbJ3bTQ9dCCqOoUR4jziju0FCe6ha+XeH++espgkWqzbbg4hPt4aTi+Z6L6TrJ7zoBIfWZZzmLFRsKo7BUs1md6iYzpu9kM4oouNH6tIf5xO9lSyXR8Z4YxiFlXvZMRCCSRJG00SRfEj2nQvDKD20BwGTVtqFqo1n6YekE9TnC9joRWz3ozPFYK6l9i/TEESpYn86J1wmq65Bo2TysqeKMN9dH/CyGyKEYhXeanjEhYhynOY83h0dOv8qjoFZJNSuC1ku8eOUUZweYsV0R7FqzY5znu4GtMomZcdgsWKT5Bn6EYFvnOasd9W+/qJ7OpWZ6f12VuyoCUGajxMnJnXP4GUvwI9z1vshHX//3tgqW0gk3SC+0JodYxilbA/UGKfnISjN5LHpVVLoN3b9mDjNJ/8DWKw6xRpOJm2ml4mTniGod+PHKWsND00INCHY6oUTDeFRkSx2TJ2qY9AeReeS0jmIvJhnbT8+tQHKTUBKyfNOoBj0x8xdFYupu5/6OBJQZilh4fo5bnmer9jomjJTOI/r9U3gvLea94UQPyCl/EcAQojvB752ecO6GHQhGISpEiluuehCIITS5hhXdU5qy0uznO1hTMkyFH1TaKzUnTPThy8bWa5aKf7xkw5ZDlkm+e1fWeUn31jEuiTRvfOOa2sQUXetCa0QVDb/Zc+nZCmL2kGY4JoG76y4fOl2jfkZVeppZtMsC88ky3leiGzXPZO3V6qUZyQO5ys2dc/E0ASfbA2JkpyKY8ykNC9WXKJEXonN62nQ9RManppbQZpTnqpmLFRtXnYDFqs2GRJy5RJS90xedEKetn3uzx9mADqmamu5LJFuP84m7i7RgUtczTXxLIM0S3AM1TfeLFncaXp8sjVkGGbsDqND62eWtfpZ4Fr7nTSTLOeTrQF5rp7bdOXGMjTKtsGX7zSIkoxmxeZ20+PRzog0kzimVrRKqgD80+3RmTQejsO0HsIgTHi8owLVO3PevqS3chpSotcL1YCFqsu9lkc3SBiG6qIdpqqKOggyPng5oO4ezQb8jYAwyzB0HSuH15dOz/ba7IcgBY55uOIOSkTaMTXSTPL6Upmen3B3zlM6dZlqJzqqrVJZ66qK50mXghPH2QsnSbODDjOLVZv1bkDds5Tlr4Slimrf/HhzyFY/UqyBAwwbc8pe+7j9yjaUoHqrlE/2vTTL+WRrSJLlxbzXZ67L8bp62fUZBClWWSPLwTENHPP8TlFHwTI05qsOwygjSHJkEURKuacP6FkGd1oGdc+iHyS0yha5ZF8L9xhpYQ8vUfo2XT+lFwwnbYLjzzkohMaPspmfRpjsFak6fsJSTcc2NII4Y7Xh0iqp6nm/aIN61g3ohinNop3H1LUTK5anfbez8P7TLgBfuqR9y7V0/uTv/CL//M//Iv/BX/4Of+p3f/lSfm7FMSlZBo93R3y6OWSx6tApnL7GbfdhkiFzJg539+Y87BlaguN2Xl0TzFXUc1auWNd7jqdZTs9PD7kkzZVtNnohc2W7SFBovLda41bTU+fM1nDCapgFx1StGZahnVmnaRq9MJkU64ZRhju1VuqeiWNq6JpJs2TgJ+pzvLZQwjJ0NCH4aGNAlstD4rywf7+0D+xxtqFRdgw+21KMja1+xN25PVMBXROHkgyLBdvtTqvEfMVmqx/SC2BjEJJJiW2oNiXH1PGK3/d5ITPg2fqJ7PCyvceiUY6ngqpjEsSqWDXeDw1NHNqDQMU7UTWfGErMei9Rqlj4Vdc8thVrFvxY6X0ZmsZCxT6R3SKEMhNarbuEcU4uE6quSbNsHWox/Lsf7WLpOlJKvvfuHrOV2YMrAAEAAElEQVTyTqt0rHbdVWBrEE3i1oO+3PWSqVq+05zFqqsS1xWb+3MlnrQDNvsRQohD0iVGkdRL0pMd/sYY77Oadli/J4gznrZ9NCFYqFjk+djx2mYQ5ugaNA/cJ8eal3XXYmsQnZttvffz9ubhwViv6pj8zLtL/MrjNu1RjB8pA52NXkCSy8me6Jj6xFRivRdeuvPwcc8Q9mLzNJPcXyjRKJvsDGLW+yF3Cvf4aRZfDjRLNkGsklkXEfDWNYFrqn0sTHLMV9ShTgiBbSgJiqNc9MY5gDSXrDZc5ssmW4NESUWULHLiiRkWqPfuWgZZDu1RQrN0eXfCq8J53/T3A39ACPG0+PNt4AMhxLcAKaX8wqWM7pwo2YqpARLDMLg3X8YxtH0Jic4opuPHtEr2zCSVrikdqt1hOjmQRlFG6xT3prFGTM0zL5Vp1QsSfvmzXV50fAwB9+Y87s+X+bGHN5uUgr3nFcTZPhvebhBjmzqerSpueQ5lV+edlRrzFRXcbPQUa2ahYtMoWZRtg9cX1YOedeE2dY3X5sts9kNutTzeWakfOS5T15BSTi5Ro1hlos1Cr+DTLcWiuztX4vXF/TavUsprawUoOwa9IFHB1oGA+nazxEJFtZl9vj0EhGL8ZCoZKKXEszRA0TYdU1U677VKikZ8SXPDNrTJgX9Qz8M2dH7k9TmGkWJopblEIPCTHD/O6Aeq8uHHWVExVYmr+YIGb2gnX9hOg/EcAw5VhaqOwYOFEq9RJs5ynrVHfPN5j1bZ4nbTpmSb9PyEIEnRNMikqjZt9kMc8/K026KpC32U5DAVs2gCXl8sEyQZX75d51k74P1nXRbKNreaLmXbUK2naTbRLekHCTvDCMvQbsS2+ySM2zyHUcrbK9VDF7CSaXB/3iPNJQ8XT9/+XLYNoiSeVJgPouKa/MSbC6S5mq/fedkjz9UFJoxz6iWT1xbKfLQ5YLMX8nCpMmkNcEwlgprlpw9ujxynYxAmMa6lHUp+3G6WmCvb+HHKejdCIifMpnGrSy+IcUyN9X6ALrSJ7tjDxQpJlh8bsJm6qvTujiJWCp2SuEhIDUNlJHF/vnSsZppETC5frbLN3TmPNJOTn3eZcIw9XYxWWbERxu9vGjXX3DfmWa0a488pUGxZzzTo+Qm/9NkuK3WH+/NlSrbORi+j7FinuvR7ltLhkZJJ+85aQ7G49hkwNJjMt1GUUirmkCbGe3fM07aPXlysukGCY+jcarqTluGT3u0s/NqzDpahXaqMwNsrVf7Vn3yd/9MvfMxveXeJf+a95Uv5uXGWF+6opUMOhKDW4DurNR7vjMgKeQZNCB4XbmdrDaXVFSU5EqlaOx2Tim2iF+f7NMausbncc366TKgYSOm1TX+WZmnPlTiIUxoliWsazJUddgYDeoG6RFqGch2+1dxfOFsrtNzGmmvnRckyEEKxmQ62nnmWMdkr/TidtFP6cUbJNonSjM4o4mk7wNDg3bU6i1Vn8rlKRcw26+IMKrk4iR2K+HCl5lB1DGzjsJGBqWv7kl8LVcUQf9wesd4LWa27fPGWMvhJspxnuz5Pdke0ShbPO5FyOK06x2paTa93XduTAZhec46p89pC+dAeJIQ4Uay+4yesNFwanjnR/RmECV0/oe6Zx7bp7A5jnrcDPFsjTk8Xd5i6YKXuKp3Zsmrvno79pFRi6HkuScj5dGvIF9ca+9bJeE087/iMooyl2um0Qc+Lsq20Uy3jcPznmAY/9eYCfpLR9xPFdkEwjDL6QcIoyrAMQZbnPO8EeJbBrabSQnttvkyU5qduSVyoOJRtY1JUf9kNeNkNcE2dqmvwohMUbaoqubNQtak5Jo2ydaTxTsU26QXJpbRFjkXZx/FInkuetH3SrHBf9izeW6vzq4W0S5ZLKo7JMFbth2OUiud9Emv3PDj4DMdI0pxffdqh68dESU7ZMXkwX5oUkrJc8tZy9dBaHc+NsU7tReBaOvcXKizX9u8JaZbz3Zd9hnHKw8XKofbWm8D9+TJhkuFNxZ2TNkQp0YXgWTtQmqFVmzQzsU31HKuOOVPT7rh19irivLPzn77UUVwyBPDZzpD1bshr8yVut0oESU5Y0PyBia19mAQzE1NCqP7/Ww2XnVFMmGQsVE83aZ+2fdJM0gsS3lmpXkpyY6sf8he/8ZynnRF+nPPeSpX5isOPvD73ymQ/H8wrK9BcSp7sjrAMjc4o4dH2iIWqxY89XODXn/VolWzafsxKQzkvbBetMlsD1SIWJhlPdn10TVVxDm76pqGxUHV4c7lCzT18oRhGKc87Prahc6do8brV8OgGMXGW0x7GRGnGi6J/veZayoVkZc/JcCwUWHaMI21QLxPNkmpf0IWYGUxlueSTzQEbvRDb1PnSWo0kzxGoCsXTtrKkVqyQEl0/pmQbPOv4WLrG3VbpTMKjs2DoGg8XKqS5nLm5Sane4eNdH5C8vVxjvmLzwXofQxe87KkxfrY9ZK3hqp7yssXOIGYUp4Xl7cWCIM8yqHmGcsTSVYCVpDlBkhdWtIr1+GRjxIuOstK1TY3FIjtU80x+8EGLzkixMcZJU0go2Zdjt9v0LKI0pzOK2eqHdIMYU9OQSEZRNrEvXu8FrHdDdkcqIKt6ymHDAL7vXmsyx6Mkp1tQdD3LeCVEgKexO4r5tecd+kFKL0z4p99Z2ree5isWAsVYOQvLYaXuMle2i2ri7LntmDp+nPLdlz2etf1JFVNRoFWS4IOXAwC+/aLHcs0lTMYVUg4J/J8HyzWXVunocVq6xkaQ8slWH8fUWao20YtnoQlBLpUW1EYvnAS5rZLFs7avtAQa3pHB78tewN/7aIuX3ZBvv+jzh3/0Pp5t0CpbvOj6tEo2zzvBkWwNUI4wXT+eXI6/sFYnl/JKKuuGrvHGYoXsEn6+Z6nPGSQZd1oe7VHMk90RQaJEoLf7kUqahwm6phiMd1ulY/d6x9R5c6mKlHJymRYF2+IgVmouu6MYSxd8sjlgexBze86j7pp852WPR9sjhpGSGbjV8pgvO7Rii9KM4P60eP9pl/dWa5cefP7LP/6Av/HdDf7dv/Rtvvde81ICeKdIHpQtxdibVcEfhMmkJWFzEOEaGt9d7xMm6vx+a6midMJ6EWvN4538ukEyadO3jfjCgroHoWLGMkm2/3yM0oyNXjhpvxhGKbfWVCtjlGUgJB9uDFhrlBhGPdYaKt4YMzUMXUySdxdByTZ4s3B7nMXAmbAIDY3n7YDtYYgfp3T9hPvzZfpRwiBMGMUpi1UXIVSC+PGuShTebh6WZRhjVuwghDi10DioRGbDVa2005e2sfOhZxk8bY94squSCm8sVnBMg4WqfeJ81YTgzSVlnnLwOZ+HjRynqp3G0rV95/HTtnJX7ocJ70zFm6Bc4l72Asq2oVqhhOSzLdVyd7BVbBaEUNp9B+ffGP0w5Wk7YBSlDKKU77nT4O98uEXZMXhtocRiVSXPVBJyTw/vKhNT8xWbmqu6GmbFp4au4Q8jPtkaMAwzbrU8FqsOn24PMXRB108KuYpAtQZbOmXb4HknIEgy1hrHi/aPEcQZz9oBuqZkMrb6Ec/aAZYhqLlmkQBTzMKwH/F428e1NN7Sq0eSD263POI0V0zoC0JKyXpPaReuNlxkzsRBcWcYsdbwaA9j5so2vSDh9QWPX/hgi1GU4RoazzvKsfxWwyWXxzuUXwSuqfOsHeyL55+2fV52w0mLs2upNu2KMHne6eAYGp9tD7EMVXQbr7eT5sZZoAmBBriGtm/veNEN+NpnOwDkEn74tZtPTOmakij4cMOnbBvcanps9kPl3hwlSCmoODphnLFadwtmZkiWw9P2qBBRF6zU9jQWL/NZXgfOdYORUj4RQjSAW9M/Q0r5q5c1sIvgWdun5yfoQtDxE5brSoRyulXILdx7tgchf/vDgLut0iHR4K1Cr2BuBnX5OFiGRpopkbHLSGiEScY//HSHX360g5/krNRd7i+UudXwaL4CGd4sV4koJbTnsdWP6AcpUsqChuvgWepSv9Zw+XRriGtlE9pw2VHZ3Gqhe/Boe8jzTlBUGtNDbTqGJpgrK4eiIMkPvZv2MFZim6nqXa84prLp9kzlmhOH7AwjNARxKtEEhw6Xz4r2s2amdFY6vtIZGLN8rgKmrvGs7ePHGct1Z9+YXnYDvv2iRz9I+eKtOp5tkEs5Ca6jVLXZjee0ciTLiueQMYzTS2HvaZogCFM+3xlRdva7Hbb9mI83Bny+PWKp6uAVVdlbTY9hmDKKVLBTsXXavmr7HEVpkfhR2lWXEQSZukarbDMMUzqFYGrHT1iqOvQC5ebjmcaEfTQ+CD/a6LNdUMsdU63dvSBauWZcBjRNsFp3J5bOH20MuNXw2OiFLFYdpFRJ9LF7mR6iNLtMg893RrRHMVJK8hxut0w0DQjGY3z1Dp2KrRfi34K0YANt9sPJ3rrZjxjFGQLo+2fThRm/n61+SMdXycTxJWS8L32+MyTOJGGcc7floWmgCY2SrWPp6pAfhBkNz2JrEPKsrYI429CLdrGLr3fLUOtxnBy7M3XRfLQz4lefdPCjjIdLLkmh/bFcV0FkJnOQRdUrThhGOrujaKLH0B7FRyamOqOE3WHMZj8kjFN++fNdfuzhAitFQDMM05nfm+eSp0Xia63h7kvQ6ZpA5+rmmaYJtBN+/s4wYmcY0fCsY5kL09ovZVvns+0Bn20PsQ2NQZzwbFfp9zTLphK3jU7eJ9V7Ozy+YZTy4XqfQZjy+mKZtYZyiv1wo8/WQF0sh6ESbTZ0xZ6L0pyqbdLzU5ar4kItuVLCt170+H0/cOfcP+MomLrGn/ydX+Jn/9Qv8u/8D9/iv/r9X7mU2Gap5sAxCSJTVy1iwyhltKsctNI0Z2eg9sBf/lydHbcaLu1RwrO2z1LNmZnUc6ecn66imCelWjNRqmKS8bra7Kl4aHMQUrEMpITn7YCKrdhi/amEWbNkTZ7rZj/k6a6PqQvmjmD2nxUHE1I7w4jdYUzDM5krK/e2fphMmIadUYJnGYRJxu1miTCWOJFidrumzofrfbaHEa2Sze4wxmsefaXQNIFV7Hkb/YBvP+8RJjlvLlW4M3e4AHkQFVsJyTdKJmuNvfa08busOAY7Q4GUsNlXDqUrNZ3tQXSqROpR7XJZLvl0c8DWMGKt7nJ3rkSaKwMGUHppBy/6pi4mbKPF2t7vVm2/+cwCzPYwIs2UMLtraRNR+M4oOXGtjU0cBIIwzbB0jdvN/W7NhqZia0PXuN3y0IRG24/xY/X1tUISwNK1SfdD1b36IpdlKImPl90Qz9L3mQ8NwoSvP+7wrB0UjHEdQ1fxU5gol+MgVswppTcYs26ISTK7PYpPlZhqF5pMMHZ6TpDklG27iElVK13ZMfHCFEMXfLI5YhQrZktjSpdrvafOlHEHyGUgKNjT7VHMKFJ3AENXzKiqaxbJS3VHuTdfwjFN6q5FyZIM43SSaBy31T7eVJqbp3H0PguiNOdJW7XUjt2rq66JrqnfvVp3Waq5WLrGo50RSZpTtgwe7/jFXSacxBphkvG846uW3qZ3IbH2NFfmMjtDxU7thxkNzyRMMkxNw08y7EtIIF4G/Djl15930YViji9WVf5idxhTtk2SPKdZUsn2NJds9EKCWGnyPdn1JxpxnqlP5t907Hn7gs/yOnCuXUcI8R8CfxD4DKW6RfH/P3k5wzo/0ixH0wRlWyeXOe+sVPnirTq6tr9afX+upDLtnRFRIvkwHrA2Zc0tpZwIj272D2vjHIe7rRKjOJ30vl8UO8OI7673cW0Tw8j4sYctvud240zVpqvEmFYL6iBwLI1eALou+Or9Bs/bAa2SjWNqVF1VwbIMjV6QMFe2uTdXUk4JmmAUpbzshepgEfCePfsZbg8iklSqKkHJmrSwuZZOrbATtgztUAVvrmwX4pc6gyDlVsvlraXqPl0EP1b6ZEGSkWXKmnurHxWMoPDKElNhst+5afqCJITK+uuaQMp8coF5Y6mClKoFzE8yVhrK1WhzELFQthGiEHe/xFbPsUtNexgzX7Yna8Yx9eI9KhHYcUvi3ZZHlKpgbBipA3u9FxKmGc+7wSQIOo61cRZUHbWJq556iSYE82Ub0xCTdTxfsTB0QdOzsE3Vc98NErYHMXEW0PAssly1sZRs/UoosHXXUkFzSQk5L1RtbFPgWQaepbRrbjU93lwqU7JNBlHKMEzZ7Af0wxRbV0Ha64tl7s2XMLSLXWyvClXX4qffXmSzp1pvp/fWrUFEnCl6MgKcI9b7SVAtreoyN76EDEK1L6krlqLAl12Dey11sbCLwsGPvbHAKEqxdI3PtkdFkB/xcLG8ry35omiPYsKivbQfJJOgYRilGLpGnCc4pjbRI2qWLDxLx9AEmZQMgpTnnYA4U0FGyTZIMnmsfknNNflNr88x+tY6Nc+mN0rYGoRYhs5KzUHWZmvxjOJ0EtyfdOG8CWz1I6Vr2I9YqNhHXtyklEWLtBIfb3o2X1itEecSDZX886yYtYYSnD+Pzt0Yu8OIzX5InEpedkIWKqr9yDV1GiVTPU8p6AcpJVvnx9+YZ70bMoozNA2W67O1ak6LMMmI0pwv366f+2cchzeWKvyxn3mDn/trH/AXvvGc3/nVW1fye6ZhGxpzZYswSbENgzTPudVyqbgmQZKSZorh0/ZVK2TXV0mTWW5drqXzxlKFXMoLt4bMwjBK6Qd7a2acmBrHQ03PmojjG7rG7jDmTnE2vrNSZRCl+9g1UZqxPVT27pm8fLFi2FtHm/0Ix1SCublU67/mmcSp0uX0LJ23l6us1FwsQ+n6vewG9EIlSO5ZOne807sFfrwx4HknpB+oYl+9ZO1LHvX8BKHtLxi6lj5xUp2+TNdck4dLZbRCnyXJVOzx+kKFUZTNbG05C3aHigXuF0YRC1UHP84movXdQMVB432mbBsT9tI4rh3j3lyZUZzOdC6se+ZEI+v+XInFqsPzjs/TXf/E1qv1XsgwVML1Y1mHRsmk5u599iiVvDZfoePH3J9XLeSfbQ/xI/U7x0Wto8Z+ldgZ7ol1t8rWJG4Pk0yxZw3FHJ4rXGUfzCs5BqW/lnFvvqSSwknOZ1ujifbgaQudNdekM4oZRim7fkbdMVmu1VmoOZQtgyTP0YTA1DXmKjYfbvQxdZUEDaekGbJcslMUIcYdIJcBx9AZxSm9ICaTqt32zXHsr6lOiYpjYhs6VVuJxL+xVGEQpqzUHXaGsWqztXR2h6qlLkpyRqX0Uu+RUkp2BqrQ2Cqrzz5fsfmptxZACnRdMeO3C4METai9rVFWY5huPe36ycTNuB8eJiicBQJV7NI0wcteiKXrbPYjXlso8aXivHx3tXb8D7kmvOwqx9btgWKpD8KEharNSt3Fj1MMIZQJlqHxZNdXrDxDkOaStbpLkOQTmY8xOv5e7DkI00vXF7tsnDfa/F8CD6SUl2fTckl42la90e+u1Lk/51F2zUnQKqWcLGRROI3UPYtnu4GqyoXJhIEkhKDqGvSD9MRK1TBKebI7wtSVXbWhaxdmp+S5RKIuV3//421lmeqZfHltnp95Z+VU1rPXBa+oYqi+ZoNKofNg6GojX6zsBYmVQlNgrCnRCxI+WO+TZpIvrFZZ74cEUYapwzsrtSMDyJprEiYRJVtZinf9dGKvWnNNqgdaKKWU5JLJ7/XM0qSyNEvfoF5Smf7Fqs0wSlVFpxfS8EzW6t6lVC8PQlWqVEXt4IF6f66kLh5TQsibvZC4aIf7vB0UwqRKUHAYpVi64Mu36pcu9Dd+9p6t76Mpl22D77lTZ6lmU3WU1Wk/TOiOYuqexfOOT5iozH6YZKz3QvKiv7w+b15KBR7U4fbWUgW9cClJs/06QVku+Wx7SJ4rfQq3cCsyNeWK5poquLQMDU0ood6en/DJ5hDXUjbMF60ySSmZr9gsFu3BQZJN1sUYT9oj1WOvayzXJN0gIZNKv0TXFLXc1BWryzaUm9mHG31l+jBXuvIW381+SJpLlo4Qf53G/fky9+b22qTGe2vVNcllTsnS8ZOUiZ/5GVF1lJ7D9LrxLANDFyxUbBbKNq2yjVkkYfxEOUE2Soq1tz2IqNgGmqYulQ3XxDGNS73AVhyD9kiJNE+zlNbqbrEOKry5qOatlHLS/jOMMiQq6JBIXnRC6p7JasM7NikDsFp3WKjaLFVtHm2rdof3n3YJE2U7/X33mrws3Cinf5ZbCKUm2fkcafNcGUlcZgv09Pld91Tyueoah37HWJurXOgabhaX7zstF9PQmKs4rBTuiJ/vjDB1QdU1udPyLpTY9SydiqPmdb1kYuqCPJfcbno0SxY7g4jnHeW00ymYCgtVm/mqzbN2wLO2khc4b9DoF4YUl+HIdxT+0A/f4xc+2OSP/3+/yw/cb+0TVr4KbPYjtgcxYSKBjJpr8mC+jJSSbzzt8GRXVdrfXKrwtGA6HhSN3R5ERKly/DsozH2Z2LdmppgmCxVnEg+NW9mDOKNsK80oKeFlL8Q2NB4NVFvc3ULCwDFUW8ZpXKTPg5pn0i7Wkff/Y+8/gyzb0uwwbO3j3fU3b/ryVc+/dm9meizQMwMzEigMDAEGSEnQD4IhAhAlKCgExEBIQYqCAAIQBFFBCREKgCGSEEgJCBiCA2KAgWnMTPe0f6+fLV+VPq8/3uytH985J+/NvGnrZla9Dq2I7vdemZv7nrPNt79vfWtpSjn+d9dqGAUxVEVGp3IQE1cMhZgOGYfMiA1mqHKuF3WCTt0hvc6mreF7T4cYh+SCN5mQ63kxNvJ1Ymp0tnVy19Xjzt1in77TcbDaMMuzdB46obpK7WF+nMLR5FzrDOj7EVJOjPuPt0ZgYKhbGm53DoxoZp2LjqbM/B5tR0drgjFXMVS8sVzD3U4F8THObpwLSHncstFP4EYJnndjhClpSf3UnXY5BksjI4xOlYrBtk4dDEEyOw6+qqQUQDGlG6YwVGnqzK2ZGm4t2Fipmbi36KBmaUhTjl03ygu1CXZGtNfbmoJHe0PS/6oZuNtxzvzuHV3BG0sVfLA5ws4wRBhnuLdYwdOuD0MlNlmYZGjbGqqGip+7u4CPtsbQVWkqYSJLrOwAmWcLpCQxvL5UxcCLESfkOriFEJvDANeaVsnaEwKomBQfThq7NGyt1H8TnPSKVVmam/5sgYwDsiTBUqnDYGdE7rq2Rjqyuibl+6GCXYRYb1q43bHJ9fBQnE4MSHrP1gvGsoyRjlzVVNGyNIwjYgOamoKvXG+caZ64UYr+JWhHH4auyGhYWl48l/CD5wM86wV4d72K1xarU6YVVUPBIEiwXDNxe8Ehc6Qkm9JKBmgv6boxPcsLFn+vEhfNbnwAoA5gd35DmQ+4EBBCwIsTPNz3oGsHDh33d908QLVQMegi/FO32/i+2ocABQdVUy036Ost+0xVg4Efg3Mg4hxelKFmvRizIkozPNj1sDcO8/YoF4s1E9caJv7ge+tXJsh9VuiKPJW9B2ZT5ZOM42kvACCwXDOgKxJZj/cD7IzI5vZay8R600KaHW3Rm0SnaqDt6JAkhqc5pVoIlNaik88ozTju77lIUoG1hgEBho1+AEOVZrq3qLKEux0HScZh6yo+3CSNJAZgwTHQ9+NLSUxJEsOdTmXmnJMkCSt1C097HrpujDgT+K1HPdLBaVKipLi4XWuZcEPSTroMb9ROlXSaZq2LhYqBQZAgTDL0vRjfeNRDmHA0bLWkmAZxhpttG4pMoobZOYPHk4JNL6I2Q8aA2wvkvqXK0xflME7xcM8DF3RxN1TaBhccA19cr4MLoiRPis32/LhslQzT7FStqZPGOD0fTTTsgwphEWgC1JLc9xJUTQUZp1Y4W1Pw7modAqRjMSny64ZpeYEZhcmlJqaG/oGVvczYmfRaJp/H1N4qBBSZQcTAR1vuhcZzrWUdWTeaImG1buBx18cHmyM0LA1LNR2rDQtPu3SJHYcJALocjsIU9xZtBDElCedhUzyJiqHizeXqkYRNJ9dVeNrz8dHWGHcWHXy8NcKjfR+qAjiaSq2pUYqbbbt00sv4yesmSjk+3nbRqer4wnoTdzrUXv1rn9Cx3fdjag9wqb5kKHK5rymyhHu5mPFxl0GRn7XSoRbXUZjgaZe0cW4vOHPRokpyh700E7jWsrBcM9BxdCgz2F4bgwB+lOVOpyo2B6TNYWnSEUH7KCW3s0JvbLZH4+l41vMx8BNca9pYb1pgAJ50fYyCBAt58tmNyBikYavoe3Re9b2kvPgDQPYCc65uqvjLf/THsDJn7aRJyBLDX/rXv4Bf+r/8S/yJv/ld/K0/9tVLZWkWz6NmqrjZtkr3XS9/v3ShyVA1VdxddMD5dOzhRSm2hyE2BiRe/PZq7dS9SlzwHZy0ZibHtFg18KTrYSdvG3/S9fBgz8XAT7Cet38WSfb1pkWOkZfUZrJaN6cKC8X4P9sd44ONEXRFgqXLWKwauNV2EKccYc4cUlWpZBrKJ6zxIMnw4dYIt9pO+RyuNy38xK0mZOmAxV4gy1uZn3Q9unTVDWRczHRTPgzG2NTZPI9YuWaqeGu1CnNfgqpIiJIMccZRMzUkKSXBBcjYpW4RU2cWxmGCJ11yd7vdsWcWPWaNV5mRNMoyjof7pJe3WjfRsDQw5iJOMuy5MdYb1KodJFmZ9DNUGW8sT8fph5/Xy0LT1lAzVUiHzkYtbzd72vPxvB/AjVM82PHgJSlW62ap5TUOU9xbdNB147xod/6EZKEvdq1pQVEYFEkC58SC3HdjuGGKD7nAvSUnbx+UsJ4nQScx2QEyT3QqOlYbJmRGmkzP+gF0mc6utYaFxYqOZ/0gb4lUphj+U8k+S0XFOBqHzAOMUWtrnFLBvOfFSDOBf/nZPmxdwVLNgC5TwgogSZZibIePEVtXZsZLF0GaUaxS0VWsNq2y+4TGfLbPfjahHX2Z7KrC7EJXJNzfHePJPrVXf7pN8jKdqoHbCw64ENgehZAYsFg52MNnncfOHJ/lVeCiO9KfA/BdxtgHAKLiF4UQ/6O5jOqciHLnLFsn8eh9N8JH22PoCmWZV+okFpdmxaVtmr7YsImGW9jGTuIsm0vD0jAOU6gyO+J2chH4UYbfetzFP/9kDyt1cj6pWyreXq29spOKMXZsDiROea4jJJBmAmGa4bvPBliqmmg7ap7NJneN3SHpRq00DPS8+ET6ZnG4rtTzlom8mnUYQa61FKUZfv1hF36UYb1hASAGwzBM4OhKqVUSxBke7lMSs2FpEEJAk2XULdLzuWwaZHGw9n1qRysCi+1RiMf7JMp8rWlCCCATgKYy7Iwi3N8d47WlKn7iZhM9L8kZTdQ+58dkWT6v3uJiXQzyhE3xTLwoxaM9D3FK7mLZRJTGIPCtJ320HR2/7d4CbrRtCEFCzmnG0fPjmeLdKRe5VoBSXk6L5PJheFFathpWdAWWriDNBPbdCIrMcKvtIEw5OlUDYZzlYvucNIU0CZIkQcJRvYmmrZWWtbNsXLkQ2B2RBe9GP8A4TLFY1WfaBId5cL87jtD3Iry2VEXdVrE7Ik27pqORKLCuAHkFTJElpJmYqhofTjxVDBW6GoMLcamCpQCgKgf2xRcV9yzmkB+l+OHWCGGc4o3lM9ieHgOJUduFIkvl9/dyrYNxSG2Qm4MAAtQitO9GeLjnwdRkXG9ZWKqZ0FWyER8GCXjeBjbvyidArrCMoWxfHQUJHu97SLmAoUqI8wRjxqlV6XvP+qibGn76bgt3Ok7OlNQhhEDXi6FI7EgrLM/XXj8PDvt+jJqp4vVFYqbeattTGmqqMv0eT9rTgzjDBxsDbA1JE2KlbkCRJDRsDaMggRBAkgr4cyjUAHQmJqnAMIixOfDBBSvdWw9rTGmyBB/k/qlIlNRaqOq0VypH1/UoTEq7+IwLdD1igZynKjoMklyom1yYNgcBPtyii/2eG+ELazVwIajFWJFh6zKCJEPT1tCwNWR5UaFla4jSrGzNOE9yWZYYvvZ658x//qJYb1r4S3/oC/h3/l/fxv/2b7+Pv/SHvnBpcclS1ShNEYqkFOcC33vax6/f30enopfst1kXfUVmEBAIYnrWwyA5NjE1CmK8vzGCqV18vh5eM0II9H2KLYt9xI1ScC7woOti6CeQJCBOBWxdRpSl2B1zuFECUyXWz0qdTGLGYXIp8g2yxDAMEqQZR9PWIEkMW0MSEI9Sjq9cb4BzYBwlCOMM728MwRjwO99cIp2TfC869gwXoL8fUqvyR1sjfOdpHwzAa8vVIzqpbUfDOIoxiohN5YXpudroiz1RZmxusVqSCagSSQ585+kAusrwaM9DmDPYG6YGBjp7D7sqF3CjNI/ZaF88Cxs3TjkGfly2lIdJhod7HvpejI1BAF0liQFbJ6amALBU1eEmKW6b8hEJh2J+elEKL6KWnsswsbgIZIkYpj2PHIaLue7FGXpejL6XQJWBpq0j9DiSjOQhvvGoh7qp4rVFB2+uVMsze/LZnZR8m5y3N9o23DBFw1bx6Y6LbzzqYqGi4/aCg+1hiIqu4P3nI9J2spR8/6bPcaMUYUKto5fBNhsFKaJE4HF3BCEEVIkhSDNUTEpubwwCGIqMiqFi3w2hyjIaljoz5r8MAew04/DiFG1Hw9aI2FzDIEGactiGAgkMAz/Gx9tjbA1DrNQNkvbI//7kHlScJ/MaZ8o5PtlxoSik7XiR82pSO/oykWQCXpRCYirWmzZ+uDnC9ijEpztjdKoGooQSzl03wifbLjSFoW6ShnKYZBjnbL3D4/w8iJ4XuGhi6j8H8OcBvA/gcprfzwHOBTb7AQQT8GNO/ZRxBi8U2PeoRYMLwNIkcnbRZKQZLxfsWsNE3Sa758MvL8k4tochtXdZCuJMoKJPtw/YujJXe2Y3SvAPf7AJL8rAOcf/8N0VvLVaQ+UVat87K8IkwzcfdgEwNB0NVVOBP0xR0ekSMAhSfOlaDRu9ADtuhIGfoh9QQqZwgjoNiiwdCTbdKC01d9Rcu2rgx/CjDMMgRs+N8LXXFzEIYgQxpwuUqcJQqa2Lc+B5Pyitfa+3LLy9WrsyevPmgH42Y8DdRYcYHJyXiaC1uok7HRtgwN1OBdvDCFVDw/NegHdXs/J5JBnH432vZPucpep4Vgz8GM96RLkXoEse8st8kGSomlTtygRZ0m8PQ2rvC1I87np4Z61eftbzvo9xmIKxCK8tVY7YzW70A1QNZYIRNLs3XpUlRAkHA8PjfR9J/sxutGwIUQh6quWlfr1pQQhKfpmqXIotLlV0eEkGQ6H2DLKnP75KQsnxCKMgQZD3cg+CZGZiytZkCNABNAwieEkflirD1ql1bODHWK2bWG2YGAYJUZ8NBUGSwVJkbAzomS9XDQRJBokxmLmN8b3Fi3I+zgdLU47YaKcZx844gswYFqvTLWaFG9osBs37GwMQa0mCF1+cMbI7jkoW180FG04uHuuFKSSJDA1eW6xg4Cd4famCQUC6NAwMpqqgYijgXMDWiR7d9+h/dzrOXNlnXTfC5iAEQNoHNYvs7Xt+DM4FdnOxXl0j0eOUC2yNIrhRivu7Ln78ZmviO4eltbskTbvDKTKDrlJrzkfbQ+wOY9zp2HhtqYq7uTtXEGdlK9t5KufjKMEoSJFxYGPgw8/bDSuGipW6AV/NSmOLF0WccgyCGF2XBO7DOEMGuoAO/ORIYmqtYcLWZXzrca9c752KjoX8AhynHGGaoaIrpctegYL5BNC+e1Y2kMSAT3ddLOQC0posIeOCBHmDBFFeQU4yulApMsPdTqUMHif1dZ52qeV5z43yKuerF1D+rreW8Kd+xz385X/8KdYaJv7U73ztUn6OLDEsVg3sjSMy3MiNFD7YJAdLMDYlhF2Ac4GdcQghgLsLDixNRsrFFDvtMD7cGmN3FM31jN9zo3J9rjdNuFGKJOMQINdJXZUQpyTE23I0KJKEUXjQZlw1VARxCjfKpmKBecKN0pJ1vjMK4eikVdPMC0ZVQ4GpSaibGj7oDcDAoEoMbpROxRNP92ef4ZLE6O9bGuKM44ONER7t+XAMBT9zRz+SAKb2RobVmoW+R2tg+Zhk4tBPMAhi6Ap9vqHKU89cmkgIvgjqFrWKE1taRpSLCTu6CgZgtWFBzpmjfT8pdUiL8bUcnc6iKIMssSldQD8mXbJZ+++zPu2tu7lz9aN9D1uDAALEAJcZidAXAu9RwlExgOWaVRoHALTneTEVZ4QgWQAGeoeHTZ9eJnbGYanRVJy7LVvDb4wjdL0YLUuF1ZDx1moF6w0bH26Ry3eUZHjc9XBvqVqe1fd3qWV2z43wxlL12Iv55oCclxmLcG+xgqWaASFI7qFuahCC4XqTWh+9KMFHm2P0/BhhouKrN5sAqMuliLODOLuUFudhQPqQXTeGpck5o9JE1VDhhSlqhgY3poL03piE0HVVwns3mleSfNwYBHlMwKEwhq6fwAuznOmloJ+fqxJjqOgKkpT09p71SEOtuEukXJxoaHIRpJmAKjPsjiJ4UVoWOQC6e4yCBLc7B3trxomNNBnLzls7+jg87XkI4oPz//XlKoIkw/4owsM9F9eaJmxNxnbGEacZxiF1dxRzlnNgGMS407mau8Bl4KJR474Q4q/OdSQvCE2hQNDRGEJTQdPRYKoy7i3mFrAMaDsG/JgjiDPsuwd2wYcDeiAX1844Us4x9GmxPelxWCpZUK+cw6XvrNgfhxgGKX7j4R5kWUbKU6zUDHz5WuNStREuEzujEKOIWowcQ8H1lo2lmoFnuVChlwuGhgmHpSkQPEWTkTB1IVQdJhm4INbMLNHIwygufowBtxZs7I4isuBWGNzdBEFMDjNSrjcVxFShKYRvC/F0Q5VRyfV8qoZ65GALkwz7boSKrl5Ka99hSIy0BAZBCi4EFmsGOhWaw4tVAx9ujWBrCsZRilrOntgbRxTk5sKrcd66Mg/M6ngIU44Fx8DjngsuSGzwreVqKT78zUfklEgC86IUbtwZhWVbWhBnUIyjVQ3HUJAKYt0VAtFhQhfg4jJRzLGMC+yNQ4yCFGl+QWzYGhyD3uedDgVjJPxKGjv+hHtJ143AQHTf15YqZ76sKLKEpq5glAv7A5QcnBTcZYz6/1VZwoNdF0M/RqarpWNK0fK4XDOxXDPLZAUARElWtl4FUVomwW4t2Mc6s10WDl/a9924HJupHrSF7Y1DfPfpoGTRvLM2neC70bbh6FTd/fJ6HX9jjmPUFRntig51h7QgekGML9l1KLKE2ws2dkchZEauQE/2aY+62bYBIdB1IwgAtxdspBnP2Uzz3YdF7h0SpRyLFQOP9j2knCPhHF9YI60gL0zJwtuPEcTG1BreH5M7Xd1UEcbZVNFElSlR+azn4/tPBri/50KAT9HQNwYBkoyYPAsV/cwBbN3U0Knp4BDEJIVEVuiCGF/zTJBuD2kdK4qMtbqCQZASY6wy2yGVMYYw4QhijmduiHdWq+V4Mi7Klv66pZbf+YDWj/Kf58kHRQlHzaAqfc1UkHKBL67XsTeOkAmBnpdgpU4tmzujEJaqwMtZrLauoOWQ7h5Vc/MxXKLz4TzwJ3/+Dp73ffzVf3ofuirjj3/tzqX8nDDJsD0M8azvQWa0jqumijQTeGe1hrXG0Vis78fYH8cYhwn2DQX3Fisnrt0woYSDrrIywTAXTJyR5KhFOmDrDRt1S8fuKIQkUazTrmh42vOxNQwhSdR+0XS0nPlIfy9KMmwNwhdidR2HKM3gRpRstnUFVUuFqchwDGXqkjMKE1i5JuDGIEAnX0PFvM24QJyfywCxUyf/PmO07wkhYBuz30lRVFiqGbi1QFpBccrxvO+jaqhoV6iw9Kzvo+tGGAYpbi3YuLvoTK2beeV0VVnCnVze4UnXx25MbqZJ3rJlKBK6Xl4UaVNSohifEIAfZ3hjuYq1hjm13wyDpEwKXm9bx7I0GaML+7Oej64XYbGi483lKgxNxmrdxNYwhKHKuLPowFCIjWloEsKEQ5GA+7se9scRYk7sNi93H33Vkt6TMWVxNiYZR9PRsDMOwRkxpgqd1ZW6ic+2XYzCBMMggRfRe0kz6qLJuEDLIX0oXZWPxHFxynMdxxRBnJZaTc/7ASDIeOqtlRqqlopq3hauKh4yIdCwdSR5F44QF5bHPBYZF3je91EzVOiqjKZDRj0VQ4EsEWN+exRBVYhNX7c0vL5cga5I+NaTPvo+yTnsjaNLua8WoDVBunMAcgMAmVzwxhF2crdtMhQidtq1loWaqWJnFCGIqVB0mTA0YkAv1vSpOHkUkOujyA0ffuwGFf2mJA5USnrLM/IE88aTroedUQR7QoduqWpgHKRw4xQNR4OTr1tDlWHpMpq2jpS/dH7QXHHRm8y3GWN/DsDfw3Qr33fO+0GMsRsAvgHgIwCxEOJ3Msb+fQC/F8ATAH9UCJGc9BnUO11FmGbYHITkvmQQJZ6BYRwmeNYLsDHwEcQZlmvmlPtekompy7qb6xLQ+OjXMpE7RwGlreg84Ucp/uY3n+H+nos44/jCWg1+nOHf/rmbn9ukFJBfDB0Nz3o+9Dx5qCsybrYdRGmGR/sekizDs76HNBN4e7WKe4tV1C0NmiJhcxCg68a5JbGGPjtxKgBAKRQpBLFSdFXCg90QXS+CLNGGzznRgJdqBuqWCk2Wyo1AV2Tc6VRwrWmXVOCC3u5FKRarBiqGiuf9AEFMWhe2XpmrBedK3YQbJUTbjMnS1FBl3FxwsDOMoCoyskzgGw+7GIUJbrZtfPVWE7IklQfkMCCreMeQEfMMXgR8ujMuhS9fFA2bKqCbgwCjnD4tS+QuB0aaJ7IEPNhz8bjrY6mq48vXG0gyDlWWIEAsm2d9H7oqI8k4JEbaLFVTKW1jBVA66k26YxZzQ1NIE0ySSGz/taUKUk7izh9uDWEoBt5Zq5UVycKsYBgkiBNyc7R1FfWJ5CJj9IMzLs6kF8BAB/RiVYepKaU+WhBneLDn5tpfVlm9dXRyTbnWNPHBxgiaQqKQRcDFc4H2J12fbIp1oqNXJgJ5NjGmIii4SqQZL3UZCq24LGccHW4LGwfEhLQNGW+LaRZIp2LiesuGEKJ0crkIOhXSPVMlCX6UYnsYYMGhNl9a9xxVU0dFV5FmHPsuubGt1k1s566bxd5uqGTooMhkqT0MiEW5mvf/vwiatlYycfs+tRGbqoSFig4BwNFJa+O3HnXR9WK8uVzDj99sYuCTYGnKOTRIGPoJUi6gKhL6QQxFluDHR1mRisTQC6jKqsrEyPh0ZwxbV0rtGlVh5fl2FmiKhLdXaqibWq7HJiHhHJYmo+fFuL/rYrVuzoVpViSrx2EC2Tywi5/VkpVmHD0vxsM9F7vjEFVzei4W6xmghFfh4nZvkZLPKzUThkot4edhpixUiWGpMIaGRdoaqibBUCXsjyM8CF2oMsNriw40WUKU0vvPuMAwSBHmLqeSRPo7QUJuaK/axXESjDH8ud//LqKU4z/5R59AkRj+nd92e+4/p3ALe9oLYCgSJToWbGjLVby7NlveQFMkbI98PNj1cW/Jga0rM/Uk45Sj55HAugAJx7/o+j489iBJ0bI1tGwdo8ADcofQdkVHy9HwwfMhnvdcuLGOoZ9AkRjudhy8lrPwC000Q5XxtOvj053xXC7BYZJhYxBAlUiLz0tSmIEMzqmdTpPJ9akQlS/2w6/ebsELqcCXZcTyXG9aWGtY2FOohedhbv9+OHGcZHQuCwh0HB09N0Ga4chaXqwa1I4yEZd97/kAz7o+ZCZwb7ECDhL6TTJyWBWCmBFthy6RMrv4RbLvxZTwt6aT30WCigFYdKmg+eZKDVFGhjUZF/BiYmREKcdG30eUCry25MyMVybP7Vn3imtNC4P8jOCcdKwMRcFa04ImH+xPK3UTukpi1hIDPtt18Z3HQ7wvD3G9TX9WVST4QQaZMby2WIEA0LiCgup5UOid7Y0jbA1DrDVMKBJD1VCw2rDQtDRIDPjmoy56HjGff/puG103gixJ5fMkd0KZGHwAHux5U88dOND8ilNqna2Zan5mqIgzjlsLNtYaJq63LPzTj0mX8faChU7FAGMMDUuBIkmIU4qBJQY0Ha0sFr8o4pRjYxDgfXeI9aaFG20bv/DGIvZHEf7FZ3t43PVgqZSYvNG20bJJqiPJODSZIckyrDvmpTs1e1GG7z4d4N6ig+W6AUuTYWkUvycZR9+L8aTnIRWAyiS8sVzB9dzMaWtIrNampWHIEpLckOavkagrEtbbFm407anzYhwm2Oj7kCUJqw1j6s8D1BUCJkpme5xyKBK7lLa4IMnwnScDyBLQ6JDoP8vjibdWq/j2kz7CmCPLBD7bGSPJOBEsGEMQc9zfddGwNCgSuxKixGXiorfTL+X//OrErwkAP3/Bz/vHQoh/CwAYYwsAviaE+BnG2J8G8MsA/puT/jJjxHqyNAVRmoFzqk6tNyykmcDWIEDPjzEKUjBGvfqFyv8Png0RpBnWGmZJCS+qltujEKZK1q1Nh2i4XpTSxXuOSDKO7z7t4zcf9DAOI1iait/3zjLeud6YaXv8ecJSzUAQp6XI9Q83hgDLxaUVcgmp5UmeKEnxg+cjrNVtdKq5e1ZuySvyC4Winr4hdCoGuADUnMZdM1X8xoMunvYCbPQ9vHejSe1/+Xs8buPWFKlsxYrSrKQY74wiVAwKmgJQKxUDtWB4cTqX6oTEgDQjh4uNfoBdJUKYZFisGHhziZKwH22N8fXP9mBqMjgX+OJ6AwnnJQ220P4xFLqcJSnpmARJNld2jSKR+OT93XGpjfNTt5pIuMDmIMCvfrQDN0yxXDPx868vQIACRtIUQO6eA9QdDW5eUS7eO5AnfXKNsMnLYvFn4pTYLFp+WMgSgyzJWKjIeE9rUkVz0jrVi/C06+P7z4cwFKpefnG9jpTzMgACUDp7nYVhRlpLEsZROuWaESZZeYkI4myqrUCVJaimhh+/2ZwSKQWAMM3w6baLT3ZGiLMMtqbiC+s1xKkKU5NwvWWX7ItJ/ZKrwu4oxD//dBeWpuBn77SxP47zdyNwpzPdArVQMXCrY2EYaOg4OuKMT73HJz3S6lBlhp53euL5ODDG0HZ0ZFzg6SZVobdHIRq2CltXYCgKbrRs7LkRgiTDbz7olkmLG20HoyApE2PUvkn/znONFIDaLl704soYBTayJMENU/T9BG6cIeUcdzoOFqs69t0Yv/rDHex7MXaGEf7gV9agKZScLhKsZMjAUDNUjMJifEcrj1HKcavtYHMYoKar+DvffY6MC7y9UseXrtfBWAI/StHz46mWstPgRmnZ9qYrEt673sC+G2N3FFILxTgqE60vgqWagX03gizr2BlF6FT0vNWJWo62hyHZaHN6P/tuhAXHyJnN01p0mkKCzU+6Hva9CJaqlIlCWaJW/vM8gwKrdbNsBX+QGxt8sj0CYwxbgwBfulbH9jDEODcl6HsxBKjlmDFiwgA0zzgwkwn2KqIQQ8+4wJ/77z5GJgT+3d8+P+bUwI+JQcQE3liqIMkEwoyjpRZsVAFNORoTeFGKgZdCkUnUXptRNCraYPfdiHRNAEAcaJHOAzvjCKaqwI8peStAccwoSPC8H0CRyeluexjio80x2o4GW1OmXJfliTnJcy2yedTAuh5JGwAZen4EmREbYyF3zXUjmq/XmxY+3BxR66Ei4fXlClZqBnbHUXnuFeOsGCrUPE4KZuxFPS9GLY+duBCIUo69MT3/w+fs4bgsiBN8tjPGMEzgRhneWauTS2PHoXWlKmVcM7lHb+SFs6WqcWbNqa08abw9DNF2tKnLbJEgWqtbUBWGpq1h4MV4sOvieT/AF6/VUTFUuFGKxZqJKM1QNzWMI9orJ+OVpqWVyZSmdXRs+25USjpIEsNawyxNOT7cHFFso0mkfanKiFOOT7bH2B2H2BqFqBoq9GGEn7zdgheleGO5UibeZ6HvxdgehagYyswW2cuGlOvJFdITO8MQXi62/4W1GhYqBraHIX7zQQ8DP8beOMQf+MpaHvMdxEGaLEGRCsc8qjLGKTGRdYm+e5DrTxZO3aaqlHN5tW6SU6+h4DtPe/j1+z2oMoMiAV+53sRezlR+2qOW1IIJedhZ+UVA5wKHkhebgziDU9GxNQrwvB/A1kj39taCje1RiCddn/YFQayl2x0HnYo+10T7caApOX12Mkbuw2HC8WDHhW1IWK6bSHiGj7ZGqBgKMkH6rrauYGsYwlQVbI/CqQL0PJBmAhAM28MIYZzCyGOolAu8tVKFG6e425l2MZQlhijNAMGwNQow8GN843EXNVPFL7y2ONN45UVQ3BMyTkVWQ5UxDGJ8tkMM73sdB1VLxZOenxsjxXhjpYJ3Vup4lruYJlmCN1fmJyv0snCh26kQ4mtzHsfXGGP/EsDfBvApgH+W//qvAvgjOCUxNQknFwG8kVs/Vww1d+nLkHGBNMvg1BV0vRiqzPBw3wNAl/hiIzZUGdeaFtyQaKFulGK5bpZ99/OEEAKfbY/xuOfB0SWMQ4b1lom1tv25T0oVWKga8OIMccqRCY6+l8CPSW8mzjhZuy5W8C8/3YVtqPje8wGW8raH5ZqBnVGIt9eqMFQFhjp7MxiHCbhAydo57OgnIOAnJA7Z8xK8u1Y/F8OJGEtEja7kuilrDRM1i7TJEi5ygXcKJl4UtKnL8CJy1wtiusRkQqBiqni84eFp18+tWFVghVr7JnGgA8RhqnLZ3tiYEQBdFLaugLEIjB2ILUuMXHq8OMGzno+9UYRhkKBpEw11UqRZksi5K0ioDWkQJBj48ZGDSVclqIdaLIq54RjHJ49kiZGDyiFGXJySfts4zLBQ0TEKYtQtDX7MITFqKTyXTkDe+nO41bRmUoDKT2ADUauhABdAoSPO8v+LMw43Iqvzrhuj0dGRceSOkcqlUrRPwvefDbA1iABEuL1gl2ujcJgDiL0yClPYuow3l2vYHAao6OqRS2JFV7DaMJBlHLc7L653IUukuRXEGSq5dbNjULttknGMggRdL8KzXgBVZrjWsPGFdXUquVcxVNzu2OCCNMFkiSFJ+dwSBo6uYJfRPmGqEraHGUxVQcqJTbg/DtEP4zIBQ8WT6flo6wfruxA3L9pAJ9FyNCzXdNxoW9gehPBCEsgctRI4uopnvQBCIL+Enf37FayyNCOdMUWW0HY09H0SW5+HEUiBTlXHzpBaAlSZ9mJVkpBmvLwkPB/4qOgq6qaCOMvwxfUGWrZWnuFZJlCzVDIoGARYcHT0vBidqv7CVWXGWJkAszUFz1wfTAIkkGMlF5Qs6fsxvDjDcs3AUtVExVCxXDfAGLA1CKEq0udOS1KRJfyVP/xFyBLDX/iVT8C5wJ/4+btz+ex9N0Ka742LNQOcA5pCFWJTk441Xuh7CUxdBhhwq03Mh8n9SFeITQGQLbmhSkgygX03xn7ewjEPOLqSM6plhCldMhWJ9CvjXLxZVyVsjehi4UUSbi04U+zdSbyxVIHEMBfNGEdXyIQBQJIBskwFEVtX8GjfxeYgwK4bQWLItbAEbIUExSuGWjJLJllJtq6gXdHys+DoXmLrxD63dRJIH4fpie9xEqaqIOEcjibDizOMwhjXW3XULe3YmCbJeNmSs+dGZ05MVQx6b84M1qIkHViuF+8pyjL0/Qgpp/YlL9cs7XtUBK/bau7cF2GpZpTxiiSxY+N8zkVZDCUmCcPry1VIjNjiccaBDBj4CfZGxZwVsHK9yeWqAV2TcWvBRsMiFm5R3DgOxXrrewkWq/ylCKObmgxJQs7Sk5BmKTRZhswoMbo18LHvBthzEyzXya32cBzUqRowNLnU+ivixMmCWDM3vmEMuLdYQZzxcu81VBnrTStvb82wOyb3s64XQeQuwroil2z6ovXbmgNDuICuyHhntVYaczVtDXtjMkCKUhLhfnu1DsaowLs7CiEALDg6MkHs5bZzeQ6tBUxVxmtLDl5bPBq7daoGgiiDn6aIfQmmlqBhpfATnksQ0Hr046zcDy6jXc5QJbRtkh+IM47iqTRsDV5k4poqlWzvohhdNSlW8KMMFUPFtx/3sD2IsD2I8PZKrSxgzwu6KuG1JQeOrqCdx5nfezpAz0vABbGjACpIBnGGKOWAYEg4SVC4YVreTT/vuNC3YIwtAvg/AlgRQvwSY+xNAD8phPh/XuDjtgDcA7UE/l0AVQA7+e8NATSOGcMfA/DHAODatWvlr19rWghzQeDJFjhLUyCEwPN+iD03wo0FG2nKoSsMKRdYOLSAK4aCTlWHF5HrgR9Rj2fdPFrZeRF8/1kf3306QM+P8ZN3W0hSgeu55fSrjOPam6I0Q5hQIqR4To6u4F7Hwb4b4+OdUUmvlSVyIVJlCT95qwUGYiNZ2oFVu60ruLXglK40s3Q3RmGCJ/vEkFiqkd6BqU23Yrx3vUkCd20bdzoVvL5UObVNgnOBhFO11Ysp2SlASYsiCVNcZnlOt98ZhjCPSZ7NeoYSm7bv9KIUEAJanpTr5ZfNnhfDj6mNcBgkGPopfZ8FBwtVHV9ca0x9RsrJmY1aaeg5XIS9UCabDrWN+VEKXZVgKBKajgpbU6HkLV1F9e7TnTG6XoyqqeJOx8HdRac8dIr3WbynYq40be1I8tdQZdxZOKBgF++lmBvHIc2I3lq4shXfv6gGajLDnhvjesuBrrK8gpvBjxJoyvkSECSiPN3OGaXUgnnSWuZc4OGel7f0UEsmQKzN5ZoBU21gcxSi41DLKWOUhA1iDfWXuEUs1wx8vD1GxjnqporFmolBrmlQ4EmPhFsVmeH1pcqxl4K1po13ohQyo/3gLDi8/yQZz/XGGDRZxmo9XzuOlif9AnxxvY4gyeBFxOZZbRgwNQUL+QWKc4HRxJycFKM9nOi+yBi93I3LytsyV+sGolTA1BQs1nSMggRNW8eDPRdBwrFap9aF9aYNM18fccrhxyT8XyTgivV93PPdGYVQZGIDdao6Go6GmqXhp261S90EckA9CAiTjPT/ioRTASEE3CiFqVJb4ErNoPYSlYJ0RZbw2mKFGAFz07ITkBhD3VJwq23DjRJohaaNACxdBh8JLFUMpFxguW5NtWwUTqEAsJRRe1HdUtH3gDdXqucWWp3ctzknp0BTlcsqbJhkiJIMNxoWlNwxq26p2ByEeLDroZ0nqBVZwnL9IJE7T2OKq4YiS/jLf+iLkBjDX/zvP0XGgX/vF2cnp4RAqS94GkxVweP9IZbrJl5bPDizwzijBFVCukiH47K6rWI9s6ArEl7Lxe2f9rxSfPr1pQoWqwa2h0GpGbo1DMpEwFkxKw5KUo5xlKBqqFhvWlis0poN4wzVXH8MQmBjEECRGH7iVhPXmqSLeKNlTQmHi9xMpGC5yDK1jr3I+NwohSZLcHQFFVNGRVORCmJxFXFwxVARptQSZKgKbncseHEGS1UQpyQvcJwL8qxES/G+HV3B67nxgiJTO3KYpiXzTQhy8yUWdgJdkUpjkrql4UtrDXy8M0LdVFHR1VMTyoUBgxumqJ/CKi6eVZJx6KqE9aY5VayI0ozMFAwVt9p2yfwNkwxxKtCpmhAiQt1S4eTJz9fy70rsnhgMDLp8tuSFJDFUTSq0Fxf4glXdqRpYzWPCJOGI8rFYugw/4nh3rY6VWnG+yNgaBtgbU+LszeXasc+tZqkIhxFsXS5baOcNIfIi3MTnxykvky26ImO5aiLmGTo5AzrKi0LkXAu0HB0rdQvLdQsVfXZMOZngmBUnKrI0FROb+Tnqx6SJW8slPtqOji+u19Hz6P097nq41XZKJuZyVYcsoZTbiNIMSUrmWpPPedb3Pg2MUQG8OIPl3OjmzZUa7nRs3FuqkJOsGyFOM2Sc9PXeXa+h4xhQJ/bEMEkRJRyWrsxMOHIu8gTb+d67rh7sSWmu12XnP2O1bkKXGXp+hCQD7nRs7I4jjIIUnYpWFq+SjOLIlbpZ6kUPA9IUPixlM+tOchpMTcHbqzV0qvpUXFc1VLy5QvPks50xMfcVVhqiLFZ0cAeomiruGwrCLEPb0i6lQ0Fm7MjebqgyuIjBi1ZqSQJjpF+5PQwgSwwp57jRsqYkibwoLZOnBYQgtm42oXf7quKi6bW/AeCvA/gP8v/+FMDfAnDuxJQQgsruABhj/wDACMBq/ttVAINj/t5fA/DXAOC9994rudcZF3jc9XPr5hTrTQv3FitQFQY/5tgZ+UhSgZajw9Ik2LoKQ5WOXNoZY7i14GDgx3ja9fGtfh8rNRMjMy2Fk18EYZLi//Ot5/gvf/MJNEXCG8tV/MEvr2G5bl1aD+s8IITAw30PfpShU9XLoL7vxdgaBdgbRRgECeqmhi+s10p2zJ4Xo+dR0HetYcLIe5CLjVuSGG7mfcc1UwUD9ZkXyZjNQQAvv+QeRrFRAeRiokpUcXl9qVoeAtdbNv7wj11DP0+UqIoMN0zwyc4YVYMSJ8WG3Pdi7I+j0kI2zTjChMONE3xhrZ5XFD1IjOHWAn0HSWJYcHT48YEg9UkY+gme9X0oMiudyrouOQ897wdYb1Jwp8lU2S02yt1xiOe9AHGaYaluoGWr+Mr1Zuky4cfk3DXwSdz/taUqBn6MgU9tSuexm/bjFA/3PDAG3F5wysvnpztjPN73yFLdpBapHkvw2lIFdzoVxCnHg90xtochGha123z1VhMrdbN8xs96PvZder9fvtaAqZHFOmPASs2cmv8FjR04EC+OU9JzmuV6V6CYFY+7LhgDFioa+n6C9zeG8ENqn2rYGq61SGT80Z6Hh3sedkcRfu7ewpRzzmlgwNQFvmgT0RTSpDguGBFAbiMf4f7uGKYqQZElfOdJHz0vQpQILFR1vL5UQbuiY3MQ4LOdCF03xldlqaysXDVutp1Sd+Fx1weTJHzv6QCMAT95q4VKrrcBoPzncUizDN9+3AcANK3Tv8/jfQ/jMC0vlBkX+GyHNIWyTGC9ZeWOL6R/cG+R5uXOKMRnuy5Uiex1b7YdrDcsLOd288/65Mg2DpMymWhpyrlZUrP2yH03wqfbY+yMItxoW7iz4OB5n/rvUs6x1rCgyzK2RgF6XgxFYrjWsLBSN7DWsGHnzN8Hey7GYQIhgC+s1wFQ4slU5WPXQpA7FgHAT91u45feXoKjK6jml52qqaDnRQgSXrrVPtzzEKfESinW9MYgwM4wzA0YEnQqOvycCevHI6zUTdzpOGQkMYfzq+fF6HlRuaf1vARVQ0bGGSqmgrajw9Epwbd6p4VBkJZCpZPIJgR5ioJHw9LAGEqGWZrxXHSaYblqHHv+Fk6kmkLi+Z/tjvHJtgtFZvjtr5Hx9f29MZ7uB2g7Gt5dr+N5P0DfI/bFz95tIeVARZcxClPsjEhjY6Giz7W9+mVAlhj+4r/+BUiM4f/8q58iEwL/q1+8e+SiEyYZ7u+5U8WGWeD5Xj8KU6S5RqUiSaiaCrF/AcRphq5HOmE/ebtVBtzLNRMLjj617xbv3o0SclySqA29qDJ3KgYkxs7MEikcHGumWsaPUZrhn3+6By/McK1p4Ss3Gsi4KB2nWo6G6y0Tj/c9VHQFUZ6Eee9GA4/2PDTzQl3xnD7aGiHJyBimbtGeulQzznSx2BgE6LnxlF5jkXyTJPr8p11ijf786x10KkZ+DrnIMoFrDRM9XcFixYClqbi3WMXu+MBYphAD96IMDVuFIkkzz/AwyfDh1ig3uThIdH+6PcJvPOxhqarjdsfBnU6l3DfHYYKKoWJ7FKJT0SExIEgz1CwVv/PNJQgQM/ssWls32/apidAo5fhwc4SlmoFxmOAHzwYYBAl+8c1FrDUs0nzcpQJS1UxwvWVDV2S4E0nvt5ar+MIay91TPVxrWqXWS5pxPNx3kaQcLUc7swbM9dbB2AVIHFkIYKVmwFAVPNn38WjfR9PW8KXrdQy8BABdSJ/2AtzfdZFkHOsNExuDAGHMUdFV3D3GnKJTMdC29Uu7fxRnWBBzLNZ0dCoGkozjs90xnnR9mKpcFmwAMoBYb1pIMnJmftb3ITMJ15o2Xl+u4HrTLothhTC8F6X44noDSu7CVjGUE1vDgpgYUbZOSeOPN0eoWSpW6yY6VQM/fqOJpYqB9zeHsFQZ28MIuiLjWsuCrsjYHYclY23oJ9gahuj7MdabFu4uOrA0pdQMDROOlbpxpla1KM3wrBfAVCVYupLPPQU1U0GWoWTQyBI9ozChgvEoTNFzE8jswK18exji/Y0hojRDzVCxVDWwWDfK5J0bpXic32lud+xzJy6GfoK+H2MQEFs6TDN8ab1BzEhDxXLdBATtGTujCKYqoWpquLXgYHsYlm7KtxZsaIqED7dGeLDrQlck/PbXOuU7nnUnOQu8MMV3n/Zxo21Pmb9MoogTinj1ed/H+8+H0BUJX1qvY8+l1uVWRZty9ZsnkoxjaxBCkRmaNjl+RmmGtbqJx10PhiJDV2X83N02lmoGtkfkYmlpSpks2xtH2B4e7NGTjn2f7rhwdCXXT3t1yS/nioQYY4oQIgXQFkL814yxPwMAQoiUMXYhWX3GWEUIMc7/86cB/F9B7Xt/AcAvAvjN83xelFJbw3efDjAMYnTdGE1LRbtiwA0TbPQjAAK/fn8f11sW7i1WUXQIhUlGrgsy6VAwRoeMALXbRAkHDhWD4pSXAtlntdtOMo6/8o8/xX/3/ha8vAIjM4ZrLfvc2ep5IskoEFys6scmMFIucl0CcjRo2Rq6XozHXQ8MwMaALklxnjkfhyklCSM6MJu2joalomKQ7gvnVDnseRE2hwEGXoIg4VDkMSRWJCOCYy+5O6MQm4OAmG8ZiSxXDAaNSRBCABMMK0ubfkfvbwyxPYzAWICmrZWHxeaQRM03ByHudBz0ghgjP8WeG6LnRrix4MANU0Qph6PLuNY6qHQXjK445Xi8701VOyYxyi+XSSoQ5A42UUqsDzdM8WDXhaHJuNlySgH/7WGAH24MIUsSRkGKtRZt9tujEGt5dSblAgM/zumfwGLFwPMBteqEaYbXlyZZESe/b7IWRsk4os/nuVhkip1RBEeTcW+pCkWmSuPuKMKDvRF6Xoo0b1VYrFFCxVDl8hmnuX5DktElfjln3ABUJTiupSjJeCkS6kYpOjP+jBul6LoRqoYKQ5GwPyZ67vefD6HJErrjCN960ocsUeBXzeeil9s2Jxkxp4DTD5++F5cXnsPPDjhwfZGl6QM0zsWPNUXCtaaJ7zztw1RkfPtJH6t1Ez0vxm887EJmDDdaFuq5fk2hwZVkAnF2ti3Xz22i54nn/QCbQ3Ku2RwEAAM+2BzCVCkRVzFVXGtaeWIhw3ee9FE1iUFwOJj4OE/YAMDHO+NSGHqWuDXnomzBGQZJmZjKct2PcZBQW6gho2kbgDgQivTjFF6coO8nuN12MA5T9AJK4BauR30/Rt8jRmKrQnov1Opz9P0dt74n98hhkGCxaiBKOfwkgxACT7s+wjSDDGJ2DoMEEnx8sjvGKCDmmKXJEALYGkalo5wQJOC+OQihyhKe9XxoCu0Fo4BYVLPExhmoJcTSSZNssiqXZhwfbY4xChMsVhnClMPJBdYBYBSmeLhHtttcULJIlqjt7NGeh41+gLWWibW6hYzTXvaiTKkgzjAMEmwMyKHmO0/6iBJyyF2sGqibGrpuBDdM8NpiFeMwQ8PWsXTM+Vs1VKzUDWRcoO2Qm9fjrgfODxKXPS8u9x9TPdqyX7zvYq2PwwQ/3Bzi4X7xOSke7bsAgO88HYBxSkL0vQRuRJVqU6P9jzGGh3suRkGKx10P11t08Trusvh5giwx/IU/+C5kCfir/+QzcC7wv/6d947ENVEyrfcC0NruenGu76ZCANgc+HjS8ymRmrseGqqEOBP4dHuEhHN0HAOWrmDfjaeYjYfX5VrDwt44RDBMsT+OsDEMsFa3ECQZ3lgmBmJRaDvt/AboDJ/8JwCEMUcU09rp+VRsiBJeGn4wRntCyjm6XowgJW1GXaUkx8YgLNuhn3R97I9jeEmK5apBzmKKDAbSbjvt/B7m83kUpBBCgDGGKCFmys4ohBtm+blN32HgJ/j20x78hBgfX1hrEEsrF5WOc2dSgPaiKMnwrB+UjlaVvG0RoDVUnPVFm7AXpbjZtiEA7AwDfP2zfQR5zKMqEmk0BrS3399z0bZ1RCm12n+yM4YEBklmWGsaMFUqKJ/VXOG0REuUx/6aIsGNEnx/YwgJAj94PsBaw8IwiPH95wNosoS3V6sYh5SAIG04+uyqqeYtorT3u3FaJqCCJMPAI62ovVF4rhb8yaLcwCf3uSClpPZH2yPEaYqgbuOt1SrGYUqMOIXBi1J850kfYZrBC6toV3RUdbV8hxd9VqfhpPM7zsgtFUDOmqHvlWQCYZyh78UYhymWqgZMTSZznJ6PrYGPPZeE9uOM2kQ3+gE6FaPUY0vzlr0oEXi078FUZUQpp/awvAV8FjaHAfwoQ9eNEcQZ+n5CLrnFXpBxbI0CVA0FozAp2V174xBrTbvUe4vSDE97VDRTcxHyOOWwNOSxPX3vYZCcmJjazd2ki7c0CJKy2H1/d4yBn8KNEwyCBK8vV0mnt4y3YmhqDC9OMdojMkDL0eBGKZKUI4w5/DhAxVBwf2eM1YaFlq2Vxa5MUOxyWmLKi1JsDcOS8VS4T270w5KZ87jr4c3lKnZykxcA+GRnjL1xiIQLdKpkElIcDWnG8XDPhakp5Igs6Ln5cVqu88k7iRulJyamCldDnuvq9v0E3uYIv/ROCls/2C+3BgGe9QJYmoyapZR3j2ddH59sjyBJDEtVA097RLxQGJmVWZdQSNobR6UkzPOej41BCDdMSw0pwTm2BgGSlDT2ivvmKEywPfE+gML8i5P2XC4JEiUcQFpqop0Vh9/3ZeO8T/abAL4MwGOMtZCTEhhjXwW13V0EP8sY+49ArKmvCyG+wRj7F4yxrwN4CuCvnOfDbF0pN7Q4pY1czzOGYNQq9HB/jHquN6JI9Hf6Hi1mL8oQJBFMlVxT2o6OIM6oFcU62mb0tEdOf3tuhDeWqmfa1P/lp9v4+md7iDIOMOBa08S/+dVrL92BJ82Ior0zCo9NTKmyhJajYRymWKjo2ByEeWtZgraj486Cjb5PbSGOruBZL8DmIEAmBKqGgrsdBxVDRd+LywTH7ijC/b0R0owuQovVA9fENCMqcuF0NNlD60Upvvt0kGsIMSzWDGrZhMC1lnWqhlSx2UmMTWlXkQMK8lYfGa8tVvAvPt1DlHD0eYqVhJwmbENBmGSlSKbEgPWmCS4KWjEJCs9y6Wg7OoZBgih3cgJI8C7NBHbHISxNha6QDfFiTceDXRcfb4/wybaLxapBtqeagp1RBD8iO+0bbUqyLNdNEhO3NMgyiUkW7ZXned91S8PQTzAIDw4PXSH9tX03gqFmaJgqMsFxo+FgaxDgwZ6HD54PISCwXDexUjcxDGLIFs2VmqlCkYkmvzsOIEHKdQ/o+TN24IgxC4Yqo12h+afJEsLcVW8Sm4MAUcIxClIs1sjJL+MCNYOqtVGWwVAYel6M7WGAdkVH3dJwZ8EGF6SXcxatnaFPArazsFg1yo08SvkRLY7dcVgeQNda5Aw3CuigrVkaAAFDltHzY2wOQzzt+bB0BddbFtKUw9CkM2nQFa2C87Qy5lxgc+gjSTNEqUDT0kr3yCjJSp0sQ5XhGNTC9KwXoGIkeRVn+gJ+vWVhoULv6M3lCjgXU+LWkyja0baHAWRGYq+aImG1YUJVGD7ZGsPRFeiyBFOVEKUZPtpywQVHGGeomBpaFgViQcIRRBlpMzk61hpm7nokw48zSIzo07MC2pPWd7FHbg4DGBrR0hcrOsLExvOehyQDLJU0Z1SZRF7f7wX4dGeMTAjcXrBh6Qq2BnQO7XsxlnMGwrWmha5LmjVSLuo/ClLIEpvJJgUAS1PRqRpIOT+yVgZBAlkGEs7BBYed74k3WjaGQYKeF+HJvo8ky9CpGuhUdQyDGKngeP/5EA1Tw8hPsHiN2uOyjLQjWrZ2ofNMCIHvPesjE8DQi/G07yOIKQnecgw0c5esBtdoX0sztCunt38evghIjIFDlMWPol3guP2neN8VQ4GuSjkzNoOpSgjjDAnn8MIU33s2RBhlCJIMbUeDpctYkijRcKN9UHiSJUZaQQorrZ9/VCBLDP+n3/8uZInhP/21+8iEwP/md71WfndJYlio6EfW9vYoRDfXA7rdsUmLLmcwqbKEnhcj5QJtWcPWwIefZJDl3DFZwqksPUOVsVK3MApTcE5rEMCRcxE4/fwGaI/vujGqhoLdEblBVwwF95Yc7LsR2o6GIOakVWpQ26apSPhsz0MQZ3i4N4Yqy9gwyD3Si2geHYiJkzueHkm4tUAtMJwDhlbERief34tVHfd3XWKg589+uW6Q81huQR8nGe4ukszCs76P7z8bwjEU2JqMjPNcI5Han3eGEVbqBmlOKXJuW06JKXlCOoOxo8LlcZYhySS8/3wIWWa4vz3G834AVSEXSlOV8awXoGrKiFOBa3kctdYw0bA1JC0Lm31iyTm6Nn9zAEaXOEVm4BnHzjAAA0OaC5M/3Ce2VD8kNuveOEKUkHAzOX9KlHQGyrtFe0JTUldkNGwVGQfsC7ItqPAbIMxZqlFKsWMvyiBJFCuPwwRRInKHYANxxqEpMsIsw9trNQz8ZGpcl4GTzu/iORSXaM4FDFWmszdKsOfGaDsaMsFRtwwESYbPdsZ40gvghQluLjhoOTrGYQZFYtgchGXSaa1hYn8cAmClDmGUxwcnOc4aqgw/ooKKIhMzzdLkMjG1OQiQZcDAT1E1FQx5io+3x9BlCX0/xmuLVTRtFc97aV74oDmx1jhwYc44R8ZpLCfN3TTj2BlG+bOiOMJUZWzkxWVLV9D3EirAhRlkmSHjHI5eRZRmWK7pcAwZn2y76HkxgoQj4wLXWxZ2RyF0RULNonk4DBOocoQ4b5P0ohQSY2fqFNjJDU4KgwMj18G9tWCj70dQmEymUIwh4RzjIIUsAU8iSqCMojR3UfZxvWlipW5go+/DDSnRu1o3ock01rqlIUozDP0EmkLJaMZwajvdIDc8K8ZXM1Us13WY6sEdchiQacGeG6NiKmg61ZK8kAoBN8qgyDQvJAZ4UYIgVrDvRrh2CYkpY2IPdXQFSq5np6sy6qaK7z/roe8l6PkJ2hUdS1VaI1G+J8Qpx80FC30vhipL5bmgK3J+HmUwVXlm0vgkHH7fl43zPtlidf8pAH8PwG3G2L8CsADgD15kAEKIfwjgHx76tT8P4M9f5PMAuuhcb9mwtBDrTbt8OTVDRdWQiYFgUYVMV2QMgxTDgKobPY8yloX4maHKc61kPt538Xe/vYl9L4EiSfi5uy38mf/Bm2cWZbxMFEH6aS0Fk9UeN6KFv1wzcKNto+/FpSuZEAJdN8Q4SrBYMVC3NEiM4Z9+tAs/Jvr3O6u1vIUmxfWWhbdXa1hvWmSVDapWFBvFrCqTrjAEMS1oL0rQ81KsN004Z2Cvvb1SQ6dioGIoUxn0a02LDvRcOPGDjWG5sA1Vhq4yNCwVtq6iZml41vPxvecDCA586VqdtELYbDHsAqYm5yLbMp71A1xvWQjijGyb4xq2Bj76XgJDjbA9CvG875O1s8zQsBV85VoTLUfNaZrTgeC9xQoWKwYkibQiLI0SaIeFGU9735oiwTIUhCnRS3WZ9B4cQ8E7qzXc33WxN44gMYbvPB2A521+CecwNdKSeGO5iu1hCDfKoCrs4CKoyPixGy2Mw7QUG7ybiyeedklbrplIMx99n6pGk5ocAGAoMqKEdCIWHB0/c7eFKOVYrpm5oGiEB7tj+EmGNBPYHoRYrhp4d62GH7/ZOvFnT+GEe1AhTN3zqBUYII2v4jCl75iUQfxP32lh343RcXSoioQwqeOT7TF6nkAQE2ulZav4wloN791snn2MoHk4z8TUzjjE0I+xO47RclQwiarFq3UTdUubCmwMRc6ZAoJa1GQGR1enDsbrLQf/5levAYKVek+zxO4LLDjkyhalAk97PhYqOlSZ4W6ngjjhGIYJdt0Iqirhcd4aG8QZbi/acHQZKw0TLVvD9jCCIh8kBUqxUT+BnAcimizNbsM8ZX03LA1dN0YYc2wOAziagtW6iaal4tMdF7sjqgjujqj1oOvROuJCYKVm4vaCA13xIDMGYyK4r5oavnq7CS/KUM0TrRVDKS/vs3CtSc50EsORwkph7XyjpUwlTmydHK4+2x3j/Y0hJEngRtvGjZaN7VGEJBP4ZHuMKKN9/G7HQZSJcq5zIU60zc5ydlqRFOh5MZKMww0T7OTPRlPoYphxgYatwVQlNGwV6y0LxeK73rLOzFSexK0Fm/Qj80JHzVRxd9HJE1Mz9p/8fRctdx9uDvD9Zx4snaqRz7sBBl4MW5PABel93Viwsd6wkXJ+5DPXGhYqRlKK/c9TNPdVgCQx/Me//A4kxvCf/bMHcHQFf/xr5NanK9LMwHjy7visFxA7SpFwq00agE1bg8wYuABeW6pgdxxDcGIgJJnAR9tjVK2jl+FJyLnZhp8XGym+OP59H7e+ASoutR0dT7oeRm5aiiiTrpQBTWb4F5/uo+8nZJRiJNgI0rwNXiqLb5YqY61hoW6mqJjKlPzAeEKsvZ47uBXz/bTzmzFyqk7yYpcqUVFmuZa7Uo4jrDUMjMIU93dccr5kQNvW8PZqFa8vVyAxCZ/tjsuEmCJPF0SKZ1mYzsxaQ4Yq40bLgRslZG2et3J6cYp128RXbzXxvedDuGEKbcxwq+2gbmpQZAnXW7R3LdUMXGvG0JWjrbrzgCpLuNG2YWsyfn1nTJe8fO8BAFORMfQTSPl5ratkTGNqVKibLEjP0pTsVA381J02Us6xVL2YYQmx7hiETPviw10XXpzBMVQYqpInAUhDJkkFVhsW/sBX1rAxCHCjZZXz9Spw0vldt4hJ6kWUVDU1GZYm4wvrDbz/fIhBQIL8jzIP4zDBZ7tjZBntKSt1E/c6DgZBAjdMoSqsTDoZqoz3bjQxClNYmkyJnVz/8CTCwGrdRCPXk0oyUcqJTJrlNGwNdVvFWoMkH552PYRJhk+2XUBIqJhy7rZIrZqvL1Vh5wxCU5PxuOtDzjWoTpLTIN1ISvJIjJV3HltXwHOtxWsNC8/6Hn7wbISeF6Nt6/jO0z6e9wJIEvDVG03UTBVhkmEQkGZvknFUDOpU6VQ1WJqCJ11iORUx6OGC4UlwdEqkF3vYrbaTF2pkZMIp9y2AEvijFiW9gjjFoz0fpiLDDVM8Sjx6ZraOYZBicxCgaqr4ubsL6FQMyDK5LT7a9+mZSMCby9UzFb0sTSnPlJqp4Y989Rqatla+1yTjeLzvY2sUIMkEFira1Fmw2jBxe8FGlHKYCgnvRxnN2b1xNGX0My80bRqDxOh7d2oGBBel62LN1OBFvOw2+sajHrJMoFnRYKsKFJlhf0TmC7bOcu1Q2i/XGtaF2/cOv+/LxnkjugXG2J/K//3vgBJKDMR2+kUAP5jj2C4MVSbB4cWajqpxcIjJElV1hE8i28tVhq4XwcgzqHVLzbPcKWRGomIaTn4R11sWBn6CiqGcrJcggO886eGbj7p4PoqwVNGwWDXwZ37p9VciKQXQYXJvyTlXf/FKzYSlKTBVGaYmY+AnZNUcxNgc+CSYqVGGtmIQg+rBnkvti7nGw7WmhbWGgYal42bbnnqOJ7GebF3BV240MfQTLFZ1PNr3YOspua5lHIZ08vdQZGlmsouxA9E4AdoUABrrnY6Np10fQcIRpQJvrFSJXprLShXtVYYqH0mYHP059E+eswRGAR2oNVPDOMwQZxwP9zxiSFVNqDLZ395o21hvUqvpa0uVqWC1wKSGgZy74BzGWd735Ix+sOdib0xuli1HgyJJGPgkzBcmGd5erWHf1fD6cgWmKpfOhzfaNvw4g65IU++2+D4FzrPJFwFjQeudxHrTRCumJCJj1D5aQMotYMcRJaUYBO50HCxWjXMzPAr69KxWvsPjBKa10NoOMd5kiZWb/Vrj4B2FeftHmHAYmowbLRvNC1Q6JYkC/SKBPA8wsNJOO4gFpLxCebNto26paEw8b02R8NZKFdebJj7bc2EoRIc/fDFdmEhiHBa7nzmGPNk2DGI87/lIuMBShdqkBn6CKOF40vXh6CrudCTsezHeWKpBVyXcattQ5IMLzuF5dxb9j9PW9+RU2hoEcMMMQUItCroiYRQmkJiEnh/hTrsCVaKknCzRmnYMFW/qMjjHkXYVXZk2djgtMaPIx1dprTyBLDDb6atqqFioatgdx9gYBDBUBasNE3tuiN/z7jIe7pEQ7MYwLH9GmGTY6AeQGTu2ZWGjH2AYJGUL5bOej0dd0rXyoxSdqo4w4WVLx1rNwiCMsVy3oMoybi/Yx475LDj8DIGT95/J9911Iwx92j+E4NjoBXm7eopf/sIS1lukK1LR1dzG/OjnFi5LP8qQJIb/wy+/DTdK8Rf/+0/w1kq11OGahcWKUYraf/vJAKrEcLfjoGnr2M2ZEDvjAAsO7dU/frOJvhvh/a0RgpijYatIM4HTCtmFkDiAKXHgw3/mtPO7wKQhSxin+NaTPgSApq0Su8kX2ByE1Iqnylitm8iEwE/caiNKM7y2WMFyzSwvdgUOn4+Hk8+nnd+Tu+ezro9nfbI8/+J6HTJj0GQJT3sBVmqUqFckCW+uVLHWsHB7Yv+9tzg7xjj8LIv/PjIORonEnhdhcxCg60ZgIGkMBglRJrDesLA7DhHGHLIkYbmmozmhdaTK0rlNCs4DXZGQZRyf7pCWXZILoXsRSRIs1gx86VodiswgSySI3bC0I+Y1J+FFk0JCkAbU/d0x9ochdt0IXkwGOF9Yq5X3lzjNsJLrJr6+VCHdnit01zvt/J781Z0xsSSFEGhYGgxVQm+Pitt7Yw93OhWE9QyaKmPB0Wk/cHRyS5sRUyqH1sxZdfuKua3IR8/btYaJpk0MXSUvVCUZFdrciLRb7++5sDUFUZJiqUp6Xj0/QhSLUioAOH2uMMZKt/JJTCYElvMCIBMSmERmPlR8S9H1qJ15Of+ZfpxiZxhh4MdQJRl1S4XEiElza8FGmPBTTQFmoVM1ULPUMvkoTdwxJEyfbRVDxZsrpJEbpxmijENigARAVYittjceYeinyLiAqUp4uO9i342RcYEfu9FAMWtmmV8dB1OTy9iGROSnkzJBbpJ2e6ECM3evnNxLr9UtPG/6kBhDmAmkGSV8XX7+VrjzYHIPLfYMx1ARpRzrTRNdL8GNtgU/zCgZyQBHl9GydQRRht941IUbZri9QG6088Dh933ZOG9iSgbg4ChX4JVT0bq76GAYJFM2sotVA497HhIO+EmG7XGE14TAWoPaJKqGCl2RsDuKoKvSmSqx6glB/yT8OMUPt0YIkgw3WjYywfH7vrSKxhXYeZ4H5xW9kw4F2DIDnnZddKoGNgYhLE2BzCQ0bK2s8N1brCBKOd5ZraFqkuV9knEs144XnT0OVUMtW6TIWSeEdYxbzEWg5hXCvheXfcr7Xoww4Xm/POkmZFxACFGKjDKcfGnqeTE0hVgZC46OT7bHpOUUJKiZWs5YkEvdC0VmuLlgleMpDriTmBJnwUnvO0wyZBm1STRtDR9tjeFGKVLO4RjE1FrML45V04KpyfjpOwsQgi73RVKRsdmJsRfBasNE141havKRLP5JP49zYiAVDklVi9geqxd0wTwtidF2NIi8ZehwAvokfYyBT1oLNUtFy9aw1jJxp3O2StFhmJp8Zi2Os2CxqsPUZDQdDbpClPeYc+h5JfkwFFlC3daxlus9dE7ZLyfF7mdhZxSCc4GmrcGPJTztUjvlLqPAXck1ATIIXG+bSFLgDUYJwE5VL+fli+wRJ63vNOPouhHABNq2jq0hxzAIEaUZdIUC2WI/bNgKlusGbi1aEJwcd5wJ+vVV4KTk/xvLFWRCwDFCtB0DCeeQJYZ7i5W8RZtYXJwLZBnZaPNYQJYkPM6dUpuntPVFSZZrg2TIMqrONS1iTOyOQ6w1LCzXzfxSyNDIf+9KISgxX8vdEB2DksqWqmKpbiIWQMtW0aoYWG8rkNiPfuLpLGCM2vo+3XHx7/2/v4e//yd+5tg/K0mUyNwYBNAUhnGY4oZho1XR0PNjCEEXTdKTS0vjh/euNdD1YtxZcOZ2zpx2fk+CnOM4mWsEMYZ5+4jEqIU0TGjNLFQMxCkxDFfrJgZBQm2+udj+RcZ+3B6RZhxBkoExuvBvDTOMAjIEGuTtiXHGiQXo0CX2hizB1mUsHSrSvGiMAdCz2BlF5BoWJFhuWEh5QPpYuoLlmoGGpZZsl7qlnTsWfBGkmcA4Jp2h1ZqB3boBgQOnzLqlYTnXM2zk7qXncVebB1RFQt0kqYbHex7p3BgK1hsWFqoGMUwYK7X0gOki61XhpPO7cB8GBJqOjm7u0FawgZqOjppFmp+LVQ0tR6MzO29bb018r6syizj8s2qmhtsdB8txiiQjk5XbsHMdKRkCFDvvjiLITMKeG+InbrSwMfTBOZ9isRz38057Z6Ym4+6Sg1GQol3R0LR0fJv3UMsZo7oqo2kzPNonc5UkAlqOjOd9HzfbB8YuL0I+PM+8KmItQ5XxxnIVccrRtDVsDUP0vAiOYUCVqT22YeskIZLrUu2MIyxUdDzt+bBzHV31GNmCwzgpTnA0BVWTXEbXGtZM2QhLzZlquYREzdKgyQx1a353zLPA1GTcXiAm2t3FCixNwYM9F7c6NkZBgrvLDoJIIOYZwpj0LMGIud3zYuyNIyzXjHMZOh3GVe4j513ZW0KI//BSRjJnHBa6BqjdZKVmIc4EuuMQlq6gYqhTF0ZdkU+0d78owoQOvaat4au32lisGrjR+vzaQ89Cz4vxzcd99PwUshzjrdUaDEVC3VZLG/g0Ize1hZzdAODc/a7HoaCqzhtvLFfRdSN8vD1C101gqTKMvLUvyTgkieHe0tlpsAWjoHCwybjAetPEKEiIVmzrWK6TW4mR04hfBjYGAfZzF54bbQsNSwUgUDXJLjnhApzTHO5ULs/JZRZUeXY7yGnYdyP4icBizYCjy/jdb63gteXqJYyQwBg7saVpFga5AHc7d5X6xTcW8d6N5ivj1MkYw+1OBcMgga0pWGta2BwG6LqkmVboPh3Gcs3E8tmdzmdi6Cf43rMBwoRjsZriS9fq2B6GAEPpfrhcNxCnHI6hTOl6XRV2xxE+3BrDDVOEjQw32w5GYQJdMbBWN8nUIGcRtvLk3qsKQ1Xw3vUmhgExYVs5a69iqHhtScVqw8I4TGBrMp7kCUIu6KK3NQqgyAxxxo/ooa3UDRialLcaceyOQry9WsMwTODodNkCo7aYBedq95ZZ8OMUH22OITHgt99bwGJVR7jkwFBk3OrY+Mp1gOfsS+mKqoqfF5iajP/Hv/UV/Gv/6dfx93+weeqf1xUJTUtHy9ZLB7rrLRIpX6zp+OHGMBfTpQThat3E26o8f92hM2CUi2A/7fro+6QF16nqSFKOd9aq4ILhestGkpEpz0LlwCnQvEAL6lmxM47wvOdjcxBipZGhZWtYb5pY5gZuth2sNS00x9TKfBXtXSwvDMQpR9VQEGcZ3lqr4EbbLtuJr7VenislY0A1l49QJUqeZVzA1g4KbDfbLzdeVySG620bgyBBu6ojTDOsNy3cWHDK+Posbm8vE7vjEA92iQ2zHGfk/OjFUBUJtzs2JDCsN0xEeeLiVdXeo73m4FlHLQtdN4aukvxHYXQwChLcajvY9yI82Q8QJBmut7K5FM/rllayvi1Nwe96cwl7Y9KnatkahAC+uN6AGyUIE44PNoaIM47feNTDL76+ONdi5XkwyXy803HAOennrTWsco8wWja+87wPmTGoEsNnO2Ns9EOs1I2yI+pFIUmsJBLMwjgiofUgJq29t1br2MlJK+1zxvTzQMPWpu6Caw0TpirD1smRb+gn6FSI+Zpyjpstcrn/4PkQXS/G056Hn7278MquqUlcVGPqc4kkF3N8fbGCcc1AzdSuzG5dkRiWKgZeX6ngi+uNK/mZV400p2guVHSs1A28u1o7cqE4ztL8VYamSCSE7xpwjBSaTEwm0kE5/yInUUBqYTFzTZJ3V+uIMhIfftki+AVUiQ5ZSaLAcqVm4O5iBZry4hXUlwVFkiAxhi+sNbBcN/DWMdaxLxMyY5AkhrdWalioavjy9cZLv5gfxvWmDUORc+F6GZp84GR2Umvji0KRGdLs4PMNVcZP3Goh5bNbTV4GFJkhywRY3uZRNVV89VYLQkyz5OqvHM/4eNRMdabYqKMrcHSF9n4J4BxYaxgwVYXo+mz6fRVQZGkiYcvgGCputh2YuR7GVVXDzwsBQJYZOjZZfgdJBusUDZP/P0hf71f+lz+L5ZqJv37Kn207OixNhiId6DAVRaeBH6PtGMg4FXQ0WcJy3bxy9koBVZIgIMAFnS26IuEr1ym+e5kXAFUi5gxjdJ5UDRU/ebs9Na55FQTPitsLDvo+6QzWLQ1JKtC09WPbKa8Sqizh9oIDTSGW5saALvivypkyiZqpYrFiomFpWK4ZuN2xPxeXTYCeczEvFYnBNlR89Tbpen5evsMs6Ip8RBbk3bU64pTOsvu7YygykEV0FkqXEOMzxqbuV4wd6J2lGcf+OIYbkUxNwjlMvBrPW5LYzL3oq7da4JwccLu5e1/GxZXpHBWOdsW8XG9a+Mnb7Vwa5eoLnodxeM7VLBU1qMTSTekumXKBNNeZoRbUowY4ryKYOMclgjHWFEL0LnE8F0K73RY3btxAnHJwIaDkVp0QFEQe11+dcUHW87lY42XGNo8fP8aNGzdm/p4QQJhmgCC6riKRQGScULDvGOqVZARPGuNVIM0p+lFCltC6crRNC7j4OIMkgx+l4KKw9r28De4qnmWckjinxBjAqE1tpiNOvi7UQ0LOVzFGLgSilNbiZFKhmOcFyDKY54Lw0+/l4aNHWF2/DkVitF5BAc5xLmTnQZhwCCGmtJ4ugoePHmNlbR2qLJE+gKADdx5zLEo5OBcv/HnzfN+Te6ehyHiROCvlAl6ugWVpMjaePb30eVnYImc5LdzUlKn9nwuBOBUkgD7HPeg8SDKBNOOlbTQDJXQmaexCoHwPmiJNnRPFGAsx3OL70cVg2on0IkgzWrMA6d1cNNg+z7Ms2iQgMLVmUy6QzGE+HvfeL/K+i3ULRs5vAtS2KMTJ+1fK6b3LknTmloWzjLE4L4p3zwU5zzGQK+FlnofnGeergKseY5jPi8IFdHLuFKLM85iT5xvT0bMxSiiWmBVnHHeGT47zuPV7FkzGO/oJe9dJe+JxOO+znIzZixbjIs7RlGMMMy6A4pnKEsPGs6dYv3a9jIGKnzMZY511H05yYffDMeE8cBVrp1gfRQsgQHvY5Fc52EePOutOjpHOx6PztphvWf4z2BxinfPg8HNMchfOKCVjn0Kj9GWjjDMm1n8mRBkDa7J05H571bj/8BEWltYgywzOBYteRTzGGM21eX+L4jlOzlsu8pgBtN5nOcheNb797W8LIcSlBgvnekOXkZRijFkA/hsANoAhgD8E4H8B4PcCeALgjwohkpM+48aNG/j6b3wDn+24AMhmN+O0sbQr2rF0ve1hWFIfC1vay8J7772Hb33rWzN/bxwmeLzvQ0DAyntJ/8Wne+h5JA77i290St2Ry8RJY7wKPOv5+M2HXWwNQizVdPzErRau53RETT4QObzoOH/rURf/6n4XQgj82M0mfubuwry/QomreJYfb4+QpBQkqjJDnP/7WysHWkRhkpXrQpUZbnec8pC+ijHuuxG2BiQeb2kS/JiCqqWaMdV6cX/XRRBnuU6XheqExfVb734J/9U/+DU4hpzbyRIrb6lmHJkb5wHnAj/cHAGgTf+1c7RjHsZb734Jf/O//WfQFEqKF+yYOx0Haa5DcNHE14ebo7LK+PYLMLzm+b5JxJas3a81rTMJhh+HR/suvv14ACHITOCP/t5fuPR5uTsO8cHGEEM/RdshVtokS+dp18+1MIAbbSt3mxFl291VrJ3H+x7GYYogScFQaGxoU1Wy4j0IIdCp6lMi/sUYH+656HtJLsR9sE7eWK68kFbT5Pl5o21duI36PM8yTjk+3SE9voqhlBowz3p+qUlxa8E+M+MqTLKpy1nxzA9/zkXe94M9F36UgTGUuhr3d2kvrprKkbgkSjPIjOGzXbdM4L+9enZdudPG+NnOmJINELjVtrHvRvjesyGEAG4u2Pjiev1c3++ieNG18/e/v4n//Ncf44vrdfzpX3r9Uti7VxkLxSnHJ9tjAAdnRnEeFgmgwqb7dseGKksQAvipr/74pY0x4wIf5mejrkq4lztTf7JNjnWSBLy1Mn0WFWPOuMCtBbvUM5l8lknGSz1Nx1DO1R738faInPtkCe+s1Y5dF1vDAPtjOptWc+Hq03De9z0ZV9UtFZYmYzOPcxar+rGdAeeNVz7dGSNKKGb6n/3yL+Af//Nfx/M+tUwv1w20HX0qxlqs6SUTVeQJK12Rpp7V5HwzVGmuruPA1aydDzZo3+p6EVq52crtjj3FcCvmKgDcXrCn3PmKMcYpx+N9F1FK++3dRadMuD7cc0vnwLajQZYk3FywL5zYOC+KMRbFn51RiF/7eA99L8ZS3cBvu7dwqYYAZ8VXvvIefuMb38STrk/rXwjwPOlp6TI6Fb3Um2zY6oWd4V4Ed9/6Av7jv/EPoCoMv/zF1Qt1pUzGBnc6ztxbId977z18/Te+gUf7LtJcW11iwNO+jzDmuLvo4I3l6ktPRjLGvnPZP+NV4Kn+bgDfEEL8h4yx/wDAvwHga0KIn2GM/WkAvwxKXJ0IXZFganSAd6oG9t0IXS+BpUsQQsyciJMaQfUXuFi9KCqGinZFw6M9D2km8HDfw72lCj7ZHqNhaa9sW8O80anqWKtbsHXSjSAxcwoydFU61anrNNzpOPjO0wEyIV4ZJ8QXwWqdBMBrplo6IlYMZWquF+ui60a5nS0FjVdFUW9YWhlUr9TN0sWvfchhrm6pCOIMXS8GGFA3NVxr5QcYo+rqcs1EYGZIMo62o7/w3JAkhtUGaXu9aEtv8bMbtgpLU+CGKRo2Wfbe33UhBLWzzGqHOg1rTRM9N36pe9RhLFR0pLnYddV8sbnUsDTEGV1oWvbVfMeWreP2goOBH2OtYR3ZY2umilGYQJUlSAz4ZGect6ldbgFjEkRvD9Gp6tBz7YXDGiJVU0XPi7E9CpFyuogcTngkGSfhUF3Cj11vYhimqBjKCwuIdyo6JEbsn8vQ9psFTZFwrWUhiLOpC2enqoPnicOznpe7oxA7owiqwnC3U4EsMdRMFeMwha5KL0x5X29Y6HlxKZRuanLuNpgduVD0vBgbfbL7dnQFoyBF1VQuFEAfh5W6ib1xhJ4X4dG+D8bo1+KU427n86F3+asf7uBP/s3vYrVu4ltPHkEA+LO/582XPawXgqaQXqKXu1EC5Czb9+g8j1KOjTiAoUoQHPhkb3zpY5KPORsLF+pZe37NVDEOEuy6ESSJ5tZh/SpVlnC9ZcE/tH7PNCbG0HXjUufuOFQMFV03zltuLodhYKgyrrUshAnpd0mMuhyEwLHfqyginCdeqZkqdpOo/B4NW0MmBIRAqSs1GWO1JhxxH+578KOM3INbB8kAVWawdHJDe5GC0svEesNC34+x1iDjJE05alZVM1XsjSMESYoHex40RcLdzsFzH4cJnnR9DPwYuiKjYatT3TVr+f69UjfgRuT2fVVJqQJelOLRvgeACoBvrVTwrBdgqWaU7/9lI0wzfLI9LmN4R1ewWNXhRWT0oCsy2hUNccrPrbc6L8gSgx+lWLPNC5+pRTxmzdlMqECccny248KNEziaioqhoGFr0BSSe1ltvLyW9avGq5DxeADgK/m/10Fj+mf5f/8qgD+CMySmGGO5kBq1vPS9GC1bR5pR9WcWbV6RJazWzSPWnC8D5PxG4sEkmGdjsXJ+l7rPC9KMTzEQAGqn/Mk7rfIdAihtOaOEkiraBZ+HEAKZAH7yVgsCeCmiyC+CgiY7eVk6LPa+VJtl1UzroqIr2B1HEALw4+zSElOHGQiyxKaECo8T52w7Ohqmio+2iSbv5q1dALXBvLFcyVtQDr7jPOaGpcmom+oLrzNdkfDWSrX8nCKA6XvkJgUAQZxdKDGlKxLWGubVO5GdgEJ8vtBRehFwccAEuyzh6Fnz8nrLPpZNW7NUVAx6n8MgAc+PCC9OLyUxxblAnE1Xtw1VLhlBx8HRFby5XAW15LOZNsa6QlbIEmMwNAVVSyursC8Ccqq5+kBz0om1AAlk24hTjiTjZ2LRePllLkmpLdXUyGiiNof9AKCEAzkSHvzacRXuopWVc7p8rjesuZ/9tq7AVGV0PWK5SYzhveuNuazhq0CYZPizf/cDvLFcxd/5d38K/9E/+BB//V89wh/9qRuXYlhzGZgV9wCU6J9kEOuKXJ7nto7yjOpNnCfzxKz9p2lrR5IshirPjDOK72AoUnlO+VFGHt6HcFGTGsZo/WRcnOjMVeyJlz2vD+vurTUsxOlB6/Vh+DGt8fPEK4tV44j5w+Fk3+EYK0wykgPJ97fJWArIzUsWnKk4+1VGmtHzmoz9apZ6alJtqWagU9HxcN9DEJMpS8I5dIk+hxj65LI3i+VWJIyB2XFrwXC9zLjMz8dIP4/jy9eb+OL60fdWsPSvSn9pCoJidktTsFIzy7FNrvHD5icF4pTnHR+XO25FYvjS9QYkxo4lqpwG2vuMSxtroc3qaCreWKpAyd/lrDtDscZfpTvBPPEqfKvPAPwEY+yHAN4DcB/AKP+9IYBzKYUXi8LSFGwNAyRZdmKW8eG+i8923JIee1VwoxQfbY3wcM8lLQEADUvFzjiEH2cYR+nn4tC4CKI0wyc7Y3y67WLgx0d+X5Jo83jS9YhhwwUWq/oLbbpPez62BiHcmNgCCxWqXH+yPcb93fFcLmqXhYwLfLY7xmc7LnZG4bn//uYgwO44QpqL/zdexCP2BOyMQny24+Kz3TEyfr7oOUozPNj3ECQZFJnYYJOYdZAs1QxYunzi3Cjm0Yebo7I1q8Czno/Pdlw83HfPNdbjMGu91kwVdYuqHydVenfHIT7cHGFrOL0PDf0En267+Hh7TNocrwiGQYJPtsf4ZA7jMhQJfS9Gz4tRMeafML3IvBz6CT7eHuNJ10NFp2qqk+8bl4GLnkOjMMEnO/S9TE3CSv1o4mOxaiBIMvS9GAM/xifbtJfsu9G8hv9K4LxzcrGqw9bl3CEW+XMZkz7GHDAOE3y6Q+MpLqWH8azn48PNEWSJWpsatoqKrszt7PfjFB9vj3B/10WacTzYcxEkHOMowUqdCl+fh6QUAPwXv/kEW8MQ/7t/7U0Yqow//rU7YIzhv/jNJy97aGfCZNzT947GPafh0b6HrWEARcbc98l5xMFhkmFzGGIUxtAUqWR/zQM81yH87rM+9t0IvVOe38uY126UluvdO5QMKtrqtkcBLH22dupxOM9esDeO8NmOi093XCxUdLhRgnGYlC3XF/3cl4Uk4/h0x73QedXzYny8PUbGeRknTiaEm7aWs1IFdkYRnnb9M39234vx6baLT3bGiNLLi8salgpLk9D3Y+yOQ/jx0XthENM95tOdMUbhiao3lwJZYogzcho/zzsaTZyPRRL1siAxhp1RCIGLJaWAF7vfnAWqLEGSAC9O8LjnIz3mTrrvHqzxV/ne+iKYS2KKMfYOY+w3GWPPGGN/jTHWmPi9b57y1/+nAP6REOItAP8tiDFV+LdXAQyO+Zl/jDH2LcbYt/b29o78fpRmWK6ZUGWZhAFngHOBINe88Y4JHC8LPTdGmgl4UVb+bE2RsFq3UDXUS1+oLxNhzCcYCLO/Z5RyjIKcPmsqL1yZL5gEVUPFrQXqI+/7MeKUI4h52Tv8KiLJOJK8B/5wwHMahBClFlBBP78sOmgxtiQV594wh0FCoveKjLZjnIli7ugKbi84J86NYh5lXKB76ND087kXxPxSDhqAgr/1poUbbfvESsv+OEbGBfbHMSYNKYq9QQi8UompYn8iO90XG9c4StG0yR7+Mva9i8zLfS9CxgVGQYo4E1hrWLjZto8wHeaBFzmHinNEliSs1M3SPnoSRi6U2rA1bA6Dcq77M9hVn2f4E2vlLPPI0hTcWnCwVDMwDBLEKUeYcIyC+QT3RUX+uPGkGcfAJ1t6N8pws21jrWHN9ULd9xMkqUAQZxgGZBteM1S0HX3mXHlVIYTA3/qtZ/jK9Qa+eotcvFbqJr722gL+/vc3cR4Tn5eFMOFTzMvzwE8yuGEKzmnensakPA/mFQcXa6hqaGg52lzdn7w4RZIJ1E0NssTOHQddBSbXu39ovQdJBs6BpaoJ+RITZsUemHEBW5Ph6CQt8HktQkTpQWx23tig60a5SYvAtaZ1JE5UZAnXWzYMlZK8wyA5c5KpWCec49j75TygyBJajo6GpYFz2s8Po2ghnUcsdhFoigRNprW+d4555kcT477k2FYIYm0xsAsnc17kfnMWyBK5ldoa3f9nsd+Bg7gty6UbfhQxL8bUfwbgfw/gHQCfAvg6Y+x2/nun3TAZgEJUfR/ADQC/Lf/vXwTwm7P+khDirwkh3hNCvLewcFTE2lBkPO156HrRsS4AksSwUifWxXFUw8tCzVKx54bYHPpl0qFuaahbKqqm8sr0D18GqqZSMhAOaw3tjkJ8vD3CMIhh6eSAMQ+Gz2rdhKVP22tyDjzteRgE8ZX3jp8HhkraJLYun8nimYQ5x3iw5yLjotQmuiymVIGlmlEyEM4SlO67ET7eHmFnFKJqqKU48zyrwSz/Oc96HqxDehPLxdqvGy+9dzvNOB53XeBQRaft6KgYCu0Lr1D7acvRynFdpD1xEpYqY2MQYHPgXwpNupiXnerp8zJMMqo8+gm4ELD0y3crkyRWzsXDltOzsDUM8PH2CF03Qt1SwRhgahKMY5JmfT9B14uw54ZYrVtoORocQ5kro+FVQMvWzzwnt4d0zhQXtqqhQpLIYcuZ0/5TVOTrlnokCTT0E9zfc+HFdNG4LP04BuBJz0PPi1A11ZJlunyGc+RVwg83R/hs18Xv+9Lq1K//7reXsTkM8f3nw5c0srOjaijnYl4W5+P2MISpyjA1CSzXX5wnzrv/TGJjQHvRwI/LM1yR53uGA5To6XoRGCM9ubPEQVeNRr7v1Ez1SAskA7Gin/f9S9O9Aogda+tyvserCJIUj7vupSbDLhOOrpTn1VnWTN+L8fH2CJuDoNxzK4ZyYlzRyM9QS5Owk58LpzGPFir6FMP1MmHrCrlLMiBOMny8PZpiwNVzVn7VVM6t2zYvFOdX09am4vqT0HImzscXjCFPg4DA466LKM0uHGOeJ468KGomzUVNkRBn9K43BtMs1k6V5l7L0V7pe+uLYF7fyhFC/Er+73+RMfZtAL/CGPsfA8e2XBf4rwD8rfzPJgD+MIB/mzH2dQBPAfyViwyIQ+Bak6pKXpShZklTOj3jMMHAT9CwNdw+RvfmMmGoEhYcOly3RwGqJonRnqSVIARRTrkQWKp+PvWn3CjF9jBAy9bQsI8+90IHaW8cn8uB7LQe61k96TvjELoiX4pl7rxxWJskTsnKuZ9foBerB8mVvh8jzJ1cRmGK9aaF9eblj7FgIBQodCuSnBlALW0H72B3RBWt3VGETkXHmyvVWR/7QhgEJCDbdnSwCYNXL0ox9BO0Hf2FEysvijTliDOOGy1nSgsvzTh2xyS2+DK0fE6CKkunVu2L9oXTXIjijMNUJSRczI2tMonD83LfjeBFKZq2dkTrpOfFiBKe78WzGUiXgbajl9ohkxbhO6OQ2mJy0VCes+oAqk6+vlQ9dYy7oxCOrkCTJbQdrdQlKFo8Dq/Lzys05fg5mWRkc6/JEnZGIT7cGqFp69gbR2g7OkxNPuIy9iIoNCCO0zB73HWxN45RMRXcW3IuhYkHUCX6ehkHpWjZ2pkueF03gh9nufD+y7eo/tvf2YAmS/g97y5P/frveGMRssTwqx/uXJmr4EXBGJtypAqTLGf0Hj0bgYPzcW8cYbGq405nvu5pk5jcfyYxqe8zGTM7uoI45ejlbOy9cYS7i5VLOcMBoOvGWKnRs3t7tYoo5Ugz2qczLrAzCiExhsWq/tJaUxVZmhIZn8Q4TMvC4FnGF8QZ9t0IVeN0LaVJGKpcnnVRmsFUFdxoOZAkmm89L4IAw2JF/9zo00wmS4uYIszlToq9u8DuOEKSUpfAG8uVM+11LUdHy9GnnBb3xlFZCEwzjp0xERxqJgmk64p8LkfJF4EqHzhGv58n4HfHYfndClb+KEjwpOuhUzWuvIg5eccoXKSLuL6Y70nGsTMKocoMNVODrkjHno/zBhcCpqrkxgGz2/mOc7EscDiOvAw4ulLeez/bGSNJBXpujAVHhyIxxBlHlGblXPxRxbwSU4wxVhNCDAFACPFrjLE/AOD/C+DEK7EQYgDgdx365T+f/+/CqJoqBn4CJXegyLjApztjpBnpFRUJEDdK8cby5RymJ0HLrTQ3yp5+F3cXnROzuT0vLjPlisxemsPBi+CDjSG2BiFkiaqdhxNJtfy9naeCHMQZHuyR89n1tnWmTVkIATdMMQ5TCIhXPjE1CT9O8XDPwzBIoEgMlqZAmRAirl6BK81ZUIhO7o5DdCoGRmEydfmrW2rpKngZwSTPA9aNQYC6qeL2hPPU836AOOUYBgmqK2e3ZJ83hBB41PXQ82LIjOHN1YO9aGccoe9RosbQ5FeKMXUWPO8HGPgJTE068VLFhcAwSJAJgfAS9RoAqvB/63EPMmO40bbw9mp96vcrhkLvIl9XVw3OBe7vuohTjjjLSoq8pSlwcu2hiqFgHKZnDky8OMWzXoDmRFIKIN09znFkXf6oYdIZs2qS412aCQz8GPfmbJUOTDvs3e1UZhZLRvnZUyTLLgs1U4UfZRgGMXhXwNJk3Ok4J+53YZJhM7efz7iYa9vYRZBmHH/v+5v42usLR5KwNUvFu2s1/PqDfQCvvZwBXgDbwxB74whPez5W6yaGQXKkEFecj/N2ZzwrkoxcojIusFQzsDsOwTklWd5cqUKVKb7wrsDdbfJZdL04jyEZ7i466HnxhFyB9Eq2qDIGPOv7YGDHJq8m8azvI0ooPnGMi1nEF3cMP8qQceB7zwbYHYVYb1hgwLnZca8CnnR9DIIE28MAq3VyRbw7sYfXLRW7owjOBVxnNVmCqUkIYj7F4NlzI/TcOC8SElPl7il76GWhbhX3o+k5nmYcX7+/jyjhaDkhfvZu+6XFtMfF9dvDEAM/weYgQMNWsVAxriy5l+X71kmGCE+6PsZhCkuXcfuSE1BnQc1SEQ7JkVOVGR7sefDjFDujEEtVE36clQnLHzXMK/L+8wDewETbnRDiB4yxXwDwZ+f0M86FqqFOOXOMwwQPdl2kXECSyOkqTM7m3nMZKJwxJABulOW90NPj6XkxNgcBTE3GrbY9FeDq8suvYl4EaUYEOlliCNMMmkIVr4d7LqKUY71pYbVunosNVvRYA5SkOu0C3/dibAwCpFzgRtu6FMHly4QfZ/DjFM/6HtJM4M3l2tTcsHUFb+WVy5eZcPGiFBuDABt9H2bejjiJlbp5qcy/hHMwMNxs27A0uUw0RGmGpz0PXpzhZst+qeK/GRcIE47lmglNZlMtxXujCI/2PTQdFXfll39QnheFDkMQ8xMdgCoGtT7sjaOZGgrzwNOuj2GQwItTqLJErKgZ46kcOjeuGml+DmwNA/TcGMsNAy1bnxrrjbZ9LkclU1Vwa8E+crnRFQrC592qWNhwq7KE2wv2XCrzScbxcM9DknHcaNvnorCHE+dDoQ2xXDOxUjeOdQl9ERRaFJv9EOMgxc0F+wjjdblGVW1bv9ykQ9vR0bQ0fJYnO8OEgwtg0tDsWc/HwE+wUKEWKVlikCRqdX8pLk+H8PX7+9h3I/y+L63N/P2fut3C//2fP8Q4TD43zL9CC4gxmpPdvACx1jhgaV72+Xga4pTDj+kM3x2HWMrnsKawfOwMt87g7hYmGT7cHOHWgn3hFpjJZ1GIVBcaK5OJ3cuK58Mkw6N9D0Lggt+DlZfws8ihacUZJTPMerScU0EriDOs1s2ZTrGT7nvP+wHGEgMXxFB+Fdb1RbA5DLA9CDEIYqzUzSPve5aL4VkhSQx3OpUj87mYX5vDEKrE4CcpbrbtY10hLxN0PxLYGAR4//kQnaqOxaqBJBOl+2t2Qde5eeHwvsW5wMN9F5uDEEp+75Ml7Up14oQQABMntrAfaM6+GtqbnYqBtq2XZmD7boTtYYiuG2GhYryU+XdVmNeN/G8DmJW6CwH8yTn9jHNjcnPhnGhyYUKtfNebFvwkg60pGPoJdsakc3PVvevLdRNbw5AEag8F232frIEf58yT6y0LdzoOBMRLqebPA1++XseDPRc146A3+2nPxyfbYzQsDRUjPjdFsW6q8CKqPp+lx3oQJBACaFramS4nXTdC14vRtLWZdPerRkEJzzLAVBTUTeVIBeVlOy0xxtB2NHy8NUbFUMEB3GwfTa5cZtCtK+TE4kbp1Lp2wxSdioEgztB0VDzt+oizDKt1a4oWfhVQZLIkHofJFO0848TiW6kbMDUZAz/BKPSxWDmbMPxlI+MCz3o+Ui6w1jBnBuordRP74wi13Or8OBiqjLajQ5WP10l6EXAuSkdGTWG4t+hgGCQQYOi60ZH1/zJbpDWF2u2edX2YGrXPfGm9ceT5nmeMq3UTXS86skfcbDvo+zF6bozH+x7Wm/MxRhjm+2uc8rKN/kXhR2T3XXz+SYmpUZhgZxjC1hWs1E3UTBWuTSyplboJLgSJA1+SPkOnqiPJOCQJsDQy2aiZKp73Ayh528XNtgMvTmFfwTleaAjtj0lnavIdF+YYO6MQ26MATbsDTZFwt1NBlGavhIbF3/nuBmqmiq+9flRLFAB++nYb/7dfe4BvPurhF95YvOLRXQxLNQPbwxBfXK/DjRJsDUPsjyM4+vRZ/rL2omJe7I5DSGComxqajgZbV47M2dPGKARyI4nk3Amd530fQZxhuW6Wc7FT1ZEJAV2R6Nd02jclxi7t/B6HaVlUHQUJVFk69fybRNPWygvvWWLUa00LbpzCVOWZsVyU8lIEue/HaNjazGcF0PspnlnL0bBQMV6JdX0RmKpETDBNRso5Vmbc1150zRz++y1HR8+LoUkMmiJDk6WXRmgo0PNoz94aBvi5ewswNRnvrtbR8yPcaL5chisw/QzDNEPfS+CGKXRVwo/faCBI+JXqYSmyhOWqeaLObhEnHfdnintgwzpbO/w8IEkMm4OA7reczKFeW6pisapj8XPYMXVWzGt3+qsAfgWUoJrE7wDwMwD+53P6OReGrctYa1pIOcdyzYAiS6jmm8vOOESUcOwlUSnG/XDfQ5xyXG9Zl1qFM1TqVaYWjjHChGO9YaFmqWjbOh4FHjIuwIXA7jh6JSiGLwJLU/DORPsMzwMWRWYYhgnetWe3lBQsp1mBR9FjfVYUQUIlF1Q8LYmzNQwhBFFRJxNTRQbb0RVcb83XTekkyBLD9aaNnVGYV7dn/9yCZZByjhst+9IuYsdhuWagbqkI0wy6cryO1+N9D+OQkkfz3vA7VQOdQ79WMVRYWgxDlZFlwPee96EwEl6flTy7bCxU9CPfW5YYmo4G2WewdAnfeNQFAxAlGd6x6lc+xsMYh0npZNnz4pltAVXjbILtccrhhil2xxHudOY/R6X8WQ79BEs1GwsVHR9sDJFmAtujcGZiOkqpQs45cLNtX2nCcrluoufHuL/rom5q8OIU1RnJ+jjleLhPrTYnre+apSITApuDAH0/xq02sQRliRxqopSXWjezKu/nRdPW4EYpFEmam5C4rcsw88tI45TE7O4oQphwPO2TcPRSzZjS9rls6ArpvOiqjKGfoGXTxaa4mI5DasUQHPhoawRDlXCr7VxqEmJyLXpRisddD7LEcKvtQFWoit2wNPT9GItVg5yWXgFWhRul+Ec/3MYf+PLasVpXX77egK5I+Ff3u5+bxNSkXsnHWwl0RcIwTE4tOnTdCFtD0h28TLhRimGQYLFqwA1TVHJh5eIdFCyIyXj1OEiMQVelmXvYSQjirGxl3xtHSDOO5/2AdJTa9tR6uezYhiQmYgiQTMjh869pa3i454ExOi8OJ6pk6WwtfAUkiR05O7kQ+OHmkOKUlo2qqcCLstLNdvJZHU48FfeMzztutBy4YQZDk6FKMsZRitaMpOAoTPC060NXJNxacE4tuDzpehgFKRZr+hGJlDDJECYcizUDccovpf17FuKU44ONIZZqxtS9Q5JoPQUJ7dldL8Zq3cRqg/531YjycU6yPSdhqjKSjCPlHE1dg22oWK5fbXGVC4F9LzrR8GWWDvEktkfUyrwzCi8lMSUE8PE26XNRlwfp+BVtyrauoGHr0BUJi5XPp8b0WTGvyONnhBCHk1IQQvyXAH5uTj/jTNjMKY6HleyVvK1AlSU82fen7B6LA8DUZMgSg59kiBIS0x5cUmvJYQRJhr1xjA82hvhnn+yQJgYE3l2r4WbbBsP8nU5eBey7US7WnUGTJQyCBOkMK86CPfYiFufjMMGzno/3nw/Q96MzJaUAlAyuw8+/79GYxiFZGV8FeM5U8aIEnYoOTZaxNYjwrOcf+bNelCJOyaJ6cAmi0ifBi1I86QWoWQoapgY3TPHx9uiIHW+S8TLA6/vxzM8KkgwP99xzW4InGcfTro+NQTD1dzWFTAaW6wYkBkhgRIXGxTf6ol0hvIDtbdellj33ELV5wdGx2jBhKFShyzjwkolwJUxNRphmiLOsTD4c97xPw74bYWMYAJfEBBVCgHOBrhdho+9j4MdQZUYJn2MSZ26YIkmJWXOaQ888MQwSPNr30LZJHHRrGGJ4zBnkRTTGQifqJEzun5MWw46uIOMcQZJBV18sHOi6Ee7vuri/S1qOCxV9LgysMMnwvB9QIcHR8XDPy9tqaI4lGWmx8NxWvJrPxzhv1+x5s/eVecKPUzze96bcklSZgQuBIKY1Uj7nPOFTvJMg5pdul11g6Cf4V/f38cn2GPd3x/h0Z4ybLRt3Og6a9qvn8vMrH2wjTDh+/5dXj/0zhirjy9ca+Maj7hWObD7IuIAbpchy9sfOKMSHm6Oy1e8w+j6xEY+zEp8XNFnCnhtiZxTidseBrkj4bMct53eQZAjiPEYOTl5fuirh3mIFhiojiDN8+3Ef/+SjHWwOjsYsU2NQpHJPqhgKBvl377rRqT9z3tAUCXcXK+X32BmF+K3HPXyyM4KlyRiFCcIkw9BPLsXAA6C5sj0K8awbYGdEGmVRSvv24Wf1o4idUYhhkODWgoWeH+Ph3vjY82WYz5Uw4aWkwHFIM45RQH9m1n1PYQzbowCbgwArNSPX4DtfjHMRZFxACLpnTCJKM0RJBsEFum6EvheVbOKXAV6Mc8az2x2H+OHmCLoqQVckjMMEGb+au9JhpBnpd54Fs2LZqqHmUhCXE4RzIcp4rmD4qzJDJjiiJC27vjoVAx9vj2fep35UMDfx8xN+70rLbkUQ2s+zyJPYHoX4wTNyNeAQpeDrUs1Ay9GgSAyMMdiaAkuXEadXRzc0VaL877sRooSjbmsIkwxvrai403GQcfG5cdE4K8Ikw84ogqFK0GQZccbx8eYYYTwtaAiQFXiYBBcW894bE7vp0b6LIKYe+6c9/0zC9+tNC0u1o3pkLUfH9jBExVCurLrc92MMfHLTYkzAi8lpaeAnWK1P98Y7ugJTk5BycSrLYN7YHJDw9dYggqlLsFUFSUqC87pz8A5VWULdUjEO0+PbJPNAPEr5uVoB9t2o3OBtTS6rOXHKSzHkiqHgzqINmTGsvUC16aLtCmnGS6HhNOPlvM9yEeyMC5gaJdUzLnC782owJgd+UmovFBft4573aRAQUCWpbF+cN4ZBgp1RiP1xjCwjZ9MkE9Dl41khFUOFocbgAlfqfvK8T4Lkj/ZCcnZjjHSBZui4VIyD9X2ahXzb1rGR75+TmlL0PWUwxrE5CC7s/JVxgc1BCD9JsTeKcL1lY+gnc3l2O6MQ41wsHEwAgsENU8QZhypJuL/rIs0EqqaC6y0bnaqRt11r6PnxlbRfbw1D+FFWitJrioS+R5ejYZBgpW5AVSQwJrA9inCzraDpaPDjDKYmw7wk++lJ+HGK9zeH6HkxRn4C25CR1gX8JMMbS1UI4JUzAfk7332Oa00LX77WOPHPffVWC3/ln3xKc+4VaHU+K3peDAYGP+bYHgYIYo6GrWEUpDOT9G1Hw+YgvPQE4pOuj75HLWujIEFRK+z7MRYqOkxVhmMoCOLsXCzLUUh7cZRyPNjzcq2U2XuwLDHcnYh9NUXC834AN0qx0Q9gacql2bafBM4FtofUoi4z2vssTSZGhRBYql3WfsPghxkkieHBnouBT8mUlqPhWtOeelY/avDjFLsjSoo+63uQwSDAjr2YN3LWrqZIp7ZLKxMxaGvGXI45nb+aLOPDrRFeW6pCYgy2rlxqbCBLxGqeZHSnGcf9HRcP93xIjAFCQAiGPTc6ct+9KhTjnHVX7nsJ0kzgSddHktLetj8+vl3ussDy/6myhCQ7XVt6ViyrqxJ0WUKSCYRJNve9R5LYkXhuZxRBAoOXpKjodM+j5B4Juh++T/2oYF6n2y5j7MeFEN+c/EXG2I8B2JvTzzgTFio69t0ILftgMe+NI8QZp62M1vIR4dvJiSpL7Mpb5qT8EE4yjqGfQJEkGOqBbaVyKEtbWPc2be3KW7TmBUViUGQGU1XQrrDSPjtOObaHIQRESVk8jWZ5GgqGXN1SEWcRKoYyVVkqLIdliU1ZnBaYtZE1be1K+6QB5JdIIOU81wuRIJhA09GOXFzDlENXZCzZ2pVrkpmajH2XmCltW0OYCBiqdKQtlrRYGBYq+vHPkpGb1nlFmovLHmOYOkRSzksBUlliucNFikyIC2+IjDFoyvnbFeSclh0l00m3Qgen+OwbbQt74whelL0S9u1xyikwAspxHve8T0PT0siFk1ECZd7QFUrGWBq1g1VNBfvjGIosHVtp1BQJNUtFkomZIumXBVMllytZZmjaOnp+jJo1W6NrECQwNQWdin5ioLU7CpFygdeWKjMTD5kQkBhDnF68kikxYkZwIaNpa5AlhoY9n6DdVGWMghSyxNB2dOy5ESq6Cl0ht91i/k2yoBVZwnLdxPIpwXqUZtgbR7A05YX2clMl9ytVYeV8aTkadkYhaawxBiGorakYZ9VQ8ebK7Ge070aIUn7quz0PklTA1mRUDAVNW0XT1vPzVz6xLaDnxfDjFAsV/Ur3nq1hgF9/0MWf/Pm7pzKbv3qrCfGrwG897uEX3/x8tPMBdE5mgkSuG44GCEBV2JQrcZhkpX193dKuxHUu5Ry6KiHLRHlmj8KkvLhLEptqDRO51AQX4sQ2k5qpwjEU8DBBw9Ign/JeGaMYMcmo1bhuqWUyIMnOV6iaFySJYalmoB/EaFqU2JclhvW8XXhyrhZrp1MxXrh4qUgMNxdsCAEIcHhxBgiUbZ3FswKoFbPvkfbUq8aCvAhUmaQgMi5o/ghKyh0ns5JmHBVDQds5G2t3qWZAkiLMOgFNVYauyghTDkvTIATAJMzdNOQwNEXCmysHhfO9cQQ3ooJM1VIQxhmqeQLjKgobx6EYZ5JxbAwC6IpUFoPajoZnfR8VXUEkU/fGy1izmiKhYihYrJ3tPJ2MZYszL8ko6SvE5ew9DMCdTgWjMKEchqMhyTgYozsyzy8tCxUdPS+BxI6f/593zGvH+vcB/NeMsb8B4Nv5r70H4H8C4N+Y0884ExarxpQDjhul2B4SI6Fhq/ixG03EWVYeIpeJycP6LLi14MDWFSgSg2MoJwoBP+n6EIK+33GsnzDJsJ8H8a9iFVGRpTwZ9//j7k9jLEvT/D7sd/bl7kvsuWfW2tXV+0w32TPkDGlYtkhTpmhAkrVQljG2tfiDIUD+YkO25A+yCViyZICSDBGGIAkGRY8oSiZNyiaHpEjO0j29VVVXZVXusUfc/eybPzznnrixZkRmZPXQD9DoyqyKG+eec973fZb/UuCYGl6UcjCN2JuGHO7IoWpo6rVMvJdLTvBKy+IPP7CI0uxYs+ZwFvH0wMePU76y0WS19QfTSrdm6by1UudW12USJhcWVM8O/YqKtGgHPw6k6/4m40bHpVtOfvOiYKVpn5kgzC1kQRKseZN1XjDWTB3H0Ljdu7o+Qts1sQ0NtWwazcM1ddbbNmGa03J0Hu8LpSDNLrZGv6hYtA31laxb5845UZodSy4MTeVm12EWCZJsaxQyC1OGXlKiXs7eG0Z+XP3Mm0wAJJFTyoaPPLPz7nea5exOI0xNPZObHyT5UfETXf976ZgiGPlWScMAub/zZ3lWiIC2TGjn1tpX3c9fJe70aoRpxgNqHHoxXzVbZyIS/Dhlu0Ta5XlxTGNvcX2P/YQXw4ChFzMNUt5ZO/2O3u7VGPnxa00xT77H16m3t9y0adgGhqagayrLC+e7VuoLTsPklc6J7ZGgsYZegmtqx9bMVZ73eluEVU1drYryft06dk3z6+y9pPl60bM9Ky67n7dcg422U+VIaS4NsouaTVGasTkUWYQkK87UqZkPdfRywHBdz/6//NEWRQH/w2+cT+Obx9dutjF1lX/w6PAfqsZU3dL52s02G50IUFhpWKcQLyJqLXRVTXUZBQkN683mc7d7NeqWgWNK/vWyZzrykwrRoqkKLceozu/FsA2NX317CT9OsfSLG6KLMc8TslyQkQ3beOWiLMsL9qYhmvLq7+s7q41SV/Ro/Wx0nKoJBZJ/z9dOlhdXzmGKQtC9QDkshbdXGuRFUebFNrqm0K+fFkF+eij6iNMwPdbceFlMw4RxIE3DP0gDb0NTeXulXkpm1Dn0olIr9PQ1JlnO84Hc9yjNK5DB4n6eZAU745DlhriencxDFz9XURS+e69X1VKWIU2yL1MA3Svr2KEfkxc5D/p1Vts2qiLNul9Es2ceWV7wYugTJXnlbDe/h726Ra9uSf4RpjSdN4syO/8aYalhk+fyHiyueS9KK4OS+Z5yVi67UuaKpnZ6wH491ygyLfvTCENT8eOMe0uipWfrdiWZYekaS/9/LHwO19SYKoridxRF+SXgXwL+bPnXHwG/XBTF3nX8jlcNoecJSso8kdSCFHJbo4Capb9S8XtRLB7Wlwlx4TrdEMnzgieHHnEmQpM1S6hjUXI+JDHLC14MfIIkZ+Qn1KzGH0iIr6IIfBGk6TIOxKHm2cDn3dXGlQQjz4q57oiuqcfu7ckDTVGE6gkCnwyTnDDNuNFx/8BNnAQBop2JzonSjGeH/rFianGyM9/83jA9HpB7fFbikGY5Tw590jzHKXURFOU4jWSxYHydOO/AnsOj09I9K8sKtHLaOHc8aTpGBY++arF4ldBU5cz7tDgdnx+OBQWaouBFKc+HPqamcqcnh9d5CdmbCENTz4SOn3W/dyYhA09ocY6pnVpPeV7wdOChKrwxGsTJafVZTYw8l/cySnN6dbM6N+Z77FX381cJdeFduHHinSiKgueDgGmUlMViea5dsL4NXWF/GjH0I/anIWkudNHFn6lb+rXscee9x9cRF4nPtxzjUslulhc8PfRIsoKbXQfXPKJgq+ppGtuhF1/peb9MIL9piwPwk0Ovcgs8KzRVoaCA4vR7e9Z3usp+frypd/x6z7o/mqKgquJqfPJasrxAVaRhPxdoNXX12hA9v/n7m3zjVvtSos2iM9XmH/xDqDNl6RobbZc0y4/laF6U8mIYsFc6RpuaytZIaHBvWvu0ZukvbUzMopSnh54UoAvNc1NTX3p+q4rC53szNFXhTs99aW4634N1TeFGx31l9FFRFOxPQg6u8L6GScazgY+qSMNufi0nz7qTCHoxppG18ypNjHkespgbLX7vxXx2HCRSx5g6N7sOlq6WkhVXa7otDrzfXT3d0CqKgrz4xVB+dU1l3kO/YZ7Ov+ZmRC1Hr9BV5sJ9Xzy/0yxnfxqhlc30o/sqtLOCglvdWnUu2ob2pRponAxNVTiYhXy8PWGpbvFguVE1RFWlONVs+TIjTnOGXkKYZti6xt5UKK13erUKEDE/o39Rgt15UfD4YEbbNU7dp6eHHnEmzs2LA/yT61s/J+e9rojLff3ZoY+qQr9h8c5qo/qdb0rq4g9iXFsWWRTFnqIovwX8W0VRXKxq+CXE2E8YeBFrbYcHJUXurC7n9jjk8z2vtI/WaNome9MQ2xD6x+5EaF8rzat3KE/S7+YRxIJkatqXQzLN4hQvyshLZ6W3VhpstGxejMLKRXAe0zDh59tTvChFVaHlmJiaWtFufhERJlnZARadkG4p7PtiGPD00OfQi3hruc47q00KCulu1y1ajvnSgiNOc14MfXRV5UbHObbx+XFaOaWsNO1KM+ys4rlXs7jVcymKAlNXmYYpYZKxp4XUl+ov3fgPZhFBnFWORtcd8+mZH6fc7LgYukqeF+yXvzct319NUXi07+HHGfeXa9zu1agtFExqmeSk1yjWvnhvZlHKXklfmTd/DkukUZTmFIUIXB/OIrZGIf2GyVfWmrjWcb0IY6FgvMzvXYyRHxMkGUv1o+lzlhdnwm+9OENTFIZhjKJQTXr3pxGP9z1sXaVXwsHPagS86v3an0mCtHRiGh0mWUlxPV6g5HmOF4vmx/4sIs0Kxn7CoReTFwUPlhuopdPayYTsTUReCrEqCHrqorWhKQrPBj5JWrDStE41Qea6RCpcKxpp8f2Yawaslsi9gRdXun66qrLWsvlkZ8IXex5LDUGbnTw3ztvPr+P6olQEVS1dqwqO+fQ6TDIURaHnytm0OQx4MfD5zt2uuMsunGsn1/e8aPxifwqFNCw/251iGxprLfulxWec5jwdeESJNDq/THfCecypTHVLPzOxPCvGQcL+VJrLyw2bLC/4Yn/G3kS0YQZejGvqLNVNdE0QHovF494k5PGBx6EXX0p7bv4s5+tCVRRWmkdrO8tyfr495WdbY9qugV6iSs6KOM1JMqEbvwzFdt5+PvJjpmHCUsO+9DR9FkmeURQFm8OA212XwYJcQGPhXRl4MT96NiKn4K0F3bvrQhF8vDXh5ztT/o0/9ZVL/8x37/X4d/4/DxkH16Nt9iYiTDI0Veiee9OIvWlEr2biRymf73kVql8t96g4zWnaBr26yUrTZmsUEKX5tRcoc2Ft/YSUwfw8itKch3szoOD9tRamrvLjZyP2phEd16BfN7m/LDSzmqULzYzzz+9nhz7PBz5NW3627ZoX5lirLRvX0jAXdAGHXlzZu/fqFn6cMvKTSv/q5LsYpzlf7M8YejGqKlqy572vc6mMTs3Ei1KiRNCFkyA508X1rDA0lQfLdaI0p2HpbI0C/Di71L4LsDUWgfW2o7Pasqsm9Px8WozDeU4QJCynFnd6Nbw4o27pbI4CgjhjvW3LmeclBElK5wyJh4sG3vM9NEpyNjrOG5WxWHwXkixneyQNuvlAcOCJYVKc5uRFwUbH4dH+jM2hvMO//u4SGRzbs846v+d50krTxjXFRfX3ng5Fj0hRqZfOh6auCFKlLgirrVFAkuWstuyqQfQmm0O2odGrm3RrFoYmFPaDWcQPnw6Is4J7/TpvLdfICrk3TcfA0tUvB01VfuW1lo2ta5XMw/4souUa7E1CfvhsiGtqvLXcELSbZVQOgumXcI1FUZSGaMoxjak5/dCLspcOmyUPCalbxrW4F5+M+avTcnVsQ6/cDHVV4dGBx2c7U5I85zt3urimjh+n9GpWJcYeJvkx+Z9/mOO6x5t/FvjziqIcAn+n/N/fLYpieM2/58KI0oy//vEO26OQtbbNn/7mDWxDY2sUMPBEDNXSVYZ+TJxmsnhNmTD4UcBeCaVTVaBQCOKMhqWTI0Jol3nwc5tH21RZLZtaUZrx5MDjB09lkXZqZqU/8e5q89yC1zU0DE3hi32Pbs3CNnyiNCubMgEN20BTFUZ+zO8/G3I4i9FUoQKttYQGEWc5tvrlFxW7k5C9SYSqysRiEiSEacrdXoOBH7E5DKoi3YtTHEOj3zBxDK2iVcWpCPPqmnKqY33oRWXTLiUvcgqEXrTedpiFKUUhxe7Ptye0HBFEPMvuVVUVvrrRIkgyJkHCb326R5IXfLDepCgKgiRnrWXTq1uVYLWiyNRqfnACBEnKzc7rI+8mQcJvPz4kywu+/6BPnBV8sj1m5KfsTEIeLNX5dGdKkMj723ZMAltno2UTpBlpnpNmxbEEfZ7U3uw4XEdfKs8LfvhsyNYo4CvrTe4vN/h0Z8LzQYCiwK+81edpmYDWLR1FgX7dRlMUwkQarQpy7+cH0zhIOJxJ8Xi7757L4x94gnR0TLGOXkyk56ihNBNkU5YXfLY7JUlzWQeGJhs4cDCLxbXQT2g5JnuTCMdQ2ZtIc3p/FtGri7bKvX6NJwOPMMlOTbfPiyDOeHQwQ1UU7i3VsHRNJqElTUxTjsQt96Yhu+OIgRfTdnWatklBwfYkpGbq7Iwj7vVr7E1D1loO+1MR8Z6F4r5o6pIIPzn0SLL8jQg0zuPz3Sl/6fdfkOYFf+abN3hvYdJ0MpqOwVLZ3Jsn+IvxcHfCD58PUFD46s3L0w7Oi0mQ8HtPDklz+PadDo6h89nOlN1JxGPbo+XobI8jxkHM++tNTE1D16TpaBkKQz/m3dVG+Z6U76WfcOhF9OpGpevwOvFof8YnWxN6dYtv3+nw5MDjk+0pRQHfu98lL0QvR5qNcLNTw9TSSmTf0DWSNKdb0sLm19dxTR4s1ytIPUhxaGoq4yjBD1NyS6MoZG++9xJU3eODGX/jk13GXkynZvGHH/R5f715LLGL0/xKtI+iKNgahyRpzlr77IFPnksimRcFTw48Pt4akxfwS3e73Oi6rL2Ear0zDonTnCAWvcm9aYgXpYz8GFNXuOMIQuVhOZRK0pylBR2YOU1aVZSXTsof7c/4fG/GUsNirW2zMw5FhFhVGJduXfNG9/Y44Fa3xv3l83OISZhiqCpxljOLErq6PON5079hGxUlVlGUU897bxLyNz7ZRSlgrS20vSjNeWelgXvBc6qZGqau8vTQo+kYlZYXSMNeKZGau5OQnXFQicN6ccrdJTGQsHSVsHQefJ0E+Td//wWGpvAnPly/9M98916Pf/u/ecjvPv6DozMlw7EZO+MQW9dwS7R7v27yeN9nZxJy6BpsjSTvtHSRN+jWLVquwThIsHWN1aaNrqnc7Lg8KbzXHiyN/JjffTKgKAq+d6+PF2cMShSRpauM/IQXQx8FpSzCCh7vewDYujTtoVz/WY5r6uxPI4IkY01VWG/ZNOyzdSGzvODTnQkfbU9oWjorTYtJmDD2U3p180zWABy5Z+9PI6ZhwsCLsXSNMAnp1S2eHIjj6sEs5t6SOE3aZXE3d8dMS80s21C50XHPbLTvjnz+w7/zGF1T+dW3+3z9VoeDWYSCcul9bl4Ip1nBetshTI5s3/emEXfP+Jw8L6r8RCjYXik8L2LLUZrxo+dDkqzgvbUm622HhqXjJxkN22DkJ+V1wu2eyyRI2B4FBEmGrqrsTYTG9rPNCaaucKtbO0Xzu9c/amidjFmYMA1EUHwSJG+sMfX4YMZHmxP6DZNv3+6yNQz46eZYRKfTDAX42eYEQ1WxLZXlus3BLEZTxQVVVVSyoqjO6cX64d6SKzWCobLRthn4MV6cyr20DSZBUuWlaZZzMBVphK1hgFbWH/2GyY+ejdFUyPIWt3s1fvhkwO404r315rUi1edo2PW2za1ujSSbO/HF/Pj5iO1RSJLnFHnByI/ZLFFzDVun5RooiKnPm2ikzENB0MLz2mwcJvhRVunk/WxzxCfbEzRVYewlpKXpEEppapRkTKOEKJVG371+/dpppF6c8tMXY54NPP7Yu30MTe6HDLBt6lZG9yWamH/1p1v88NmIG12HP/u9O1jG9V6jrqnkyH4RpwWupfHs0GMapcz8lM92p6gKKIi+3zRM+es/2+VGx2GpaZX7k/bSnO4fhrjWO1sUxT8LoCjKOvBngP8rsH7dv+dloSDTlCDJOJxFJFmOpmrVwXDoRSIgWICmqLy31qAoxN76o00prG1TZblh8cn2hI2WjaGJpfzc+edkpJl0ieeInYNZJC5CCJQXYG8iE7K5zXeWFfhRRpgIkuRrN4+cZ+a2mm3XRFUUujWDL/YhTFKCEoEE8jvn6d+LYYCCUgljrzSF3/vZrth3rzQtlpu2IDamIvQ3nwC8TuR5wYthQJrLJGVOf9FUpUqYDyYRjw9mHPriQtN1jwrVIE6ZBglRzSIvBB3wfomiOXkvT2or1Cyd/UnE1ihgcyiThaWGRcPWabsmkzBFUeRQfXwwq7r0Z4Wpz51ffDo1s+z8C3pqFqXsTAI+3GiDcmTn6ZgaLccgyQQRdOhlRMnlksaiKIjS/FgSvz0OSq2tmC/2POLSie5btzsESVZO76RoUMqNvWFpoICmQrtmcr9f48mBR1yiMHRVwTGP3n+91GW5bJxE8UzChL1JSF7ATzfHTIOUUZBwp18Xi944Q1HgYBqR5jlZLlMRx9BIc3Gc/EbN5L99uM8syjiYRnhxRr9usj0OSNICL8r4YKN5bnEzt1r3T7j1yT1JQRHxYZDkOc0K0nLKtNZy+GhrzO1unaGfsNqyaRUGfizJYJwVZKUeQW8BkTiJEpK0YJKl2EZ8KRTlJEzIc3EBnZYOGrqqEiQpSVZwQzn6jKBcKwMvxrVUPtkZs9p0mAQJjq6x3LBI84KBF/H80GcayiR3Z6LytZvt6ln5UYpWJqKvS4U9L36+N+HZoU+Bwk83Rxc2plxTUEBBktEvC+r9qTSG+nWLNC2Y+RlhlpVTrZfHYhIPMjEe+jG9msXzoc+nO141Gftgo1mtV01VmASpoMp0tZwyadRNndQt8GPZMz7envBdp1c1KjZHAVle4McZ6+3L3dM0y49NA+d6PUUBn+1OeXzg8XwY0G+YUEjRr6kKcZYzLe2rwySjYetkuYi5rrba+HGKF2dsj0PSAtqOsXB9AR9stGg5ItI58GJmYcrToY+pKvSbJiD7ct16+eQ/SnOKXBq4hq6yOQy42RX9uCQT9FWeiyDnasuuisCLdIumUVoVwdoZVLk4zSv30YKCHz0fVVbh7601GXrJSxtTdVtnMItxTI0ky5gEaVmw1bi/VMO1dA5mIU8OPaI0I9jMuNV1+fqtDnVLZ6luszMJ6dbPN7iIU3FrenboVw31KMn40YsRtq7RcnSiUlD+cBZjG0K/frBSY71lV83kk9GrmXyxO2UcpoRxxldvtGm5BtujQOzPo4yOa1T7saGptJyS6lsUbJd6KUkqotp5Ls2uKMn4pbu9U+d9nOZMQ3ETbTlGhVqM0xws2VPV6nwKCWI5o01DwdI0+rUjFOTne1OCOKftGtzsuuS57KOqehodel5kecFf/tEWf/Sd5SsVVF//BepMzc/I7bFQ7TbaDo4pov2DWcIn21NQYKPt8GCpzihIiDLZ7w1NxSwb4o6hsTX2CdKcrmvylfXjZ2BeFHjh5S3C5+YOJ9+zxwcem8OQ3WnI7iTiO3eOcs+8KBiUNFZdU2g6Bq6poiiSO5iaoLVRChxD8uTHBzMOZ4JC3FVCbvdqx5CcizH0Y0ZBwjRIiNOMn+9MURRYazkM/bhqTEVpJvnNAvopyfJKM3auUzUvYjVVXNo0VYwGwiSjKOCLfXHgvdl1qNt6JYw98GOWVOvUvfnbDw94MQpRKdgZ13DNJd5fO/4c0kyGwgWw0baB47qKkwUa4/4sYrVE0h/OIupnOEsXRcHnJRqpWzdp2joaUnPYhoqhquSFGBgM/Ji9qQxGB7rG4SyiZmnc6blydoQpjw+9qsbx44ymreKYGj95MeJgFtJ0zDNRd/rCXnLyPfpoa8KLYcCtnsvdpdcbvqZZTrZwTvhxytYoxNAVPtma8qg8G1dbDqoiRh+6qpCkOUEi73+YZjRdnSTLqZka7601GXiSF36+N2Ot7bBUmmUs1g8tVwYOXpwxC1NmSFM+SHIeH/hYukrT0bm3XOfz/Zk0qUpX3DDNmAYpSZrjZTlQsD0O+MGzEXE21+yT5vxSw64GwyfzlUvdo7yoKLtSj9q8vVznd4JEzqyyoRMnGWnbJskynh7OyAsxHnlnuUGnZuEnGR2ozuaikFrR0oVl8roIm6KQ3DXOxGzpfskwmUUpm6OAnUnI2E8wDZWarTEOZHA+9hMK4NnQ5+mBj6KAoar06wk1S6/YMJoqDcG0ZAK8Sr2aZJI3m5ogVbNJRNs1K+OdWqax2jw/pwjilB8+H7E/lXxqbxpxs3u9bY0ky1HLNf/BRpMgyfhiz5Omti8as4aukmY5iiJn7Rf7U3anIW8tuzxYblX19sl9f/Fe3ui4f+Apgdd6ZxVF+aeBXwG+ChwA/x6CmvrSoigPVUtXibOU5ebRBtqrmwy8mJqp88n2mCyHGx2HApVxEBOkY56PfExdZalucjCNsTSNgZ/QdFNMTSM6w8Vp7Cc8H4p954PlOmbpAHVIqepvCKRyGqZYmoqlq3hRQlZkjMKYlYZDhYdEJqNf7M3Yn0SstW00TeUnL0bESUZRs+jVTdqOySRIcK0jAUnX1OjVLYHd2zqWrlVFOVDBq4d+UokqqqUAJMhG+PjAY7lhXaljPQ6SqvD74dNhdQh89UYLS1PZiRIsQ+V2v8bu4xjXVPjx8yEPlps8WHZxTY2Go7PWsvjp5ph+3eb5MKjEpE/ey8UI44xCgZqpo6owCYTCaOlahSAJk4yHu1OxYLbiMrGW4rhm6bRPcJ87jskz1ccyNDbaFnEGTw59vDDlvx5s87UbLbbHoqHQr5tVARXEaZVIx2nO84HPets5cxMYejE/35lg64Kcu9OviVj9VCDKe9OQME2xdZ26Kc0MQ1WYhAmNQOfBco3NoTRQ399osTcRhMAsTqlZOnf69Uo/zdI1lppmRfOaTwlf9ryjNOPh7qyyQH9rpY6hqeyOQ7woY3scEMYpiirFVJJlZcInwpSKAnlBSaUUWl1Uoo1MXeVGt1bpTa00baIkwzV0xmmCY148ce/XLDaTgLp1fCrrRVmVoLqmxt5ECqkkzcgRcelPd6c83J0x9hK+erOFpsL9fo2f70x5ehhgG5J4N2yjFHRM8eOM54cBu9OQm+dMWs+KliNTb4Wjie/8HVYVmdiYYcrAj8myglmUsNoSschPt6fsjSPu9F25xqUae7OYJ4c+uqIwizO6NXlukyDFMlQe7c94NvBZadmstt6MQOLAi8mzI5emm90aXiSHdd3STwmcK8rxRmhRFFVxsT0O6dQMtsY+CgUvDgTVtzcNKxHZk7E3Cflif1YJ/9/sumyPQ4oCHnqTElVUukrlOU9LPTNLh7qtsdKw+MHTEW3H5CtrDUZBwtNBQN0WUd2dcYQfZWyOfO72ZfrkmhrTMK2e+0XrO8uFcv1i4FO3DdbaNv26xeEsxosyBl7E2I/IioKOrQMKcSYC1q4pdJWapck74+gs1a2SJiBF7FLDplvqDmqqysiXM23x+kAS90+2x/zNz/YZewnL5XvVK+9rWjrabZXNwLO+y9srDYI4pVsTakDTlbMlzwse7k75eHPMeselYWtsjwJ+vjOl5RjcX66fS6eyda3SXnFNjSSThnG/bjENE54e+oRl8eHHGS1X1uFS3cLWVbo1g4+3JkzDhPfXmjTO+D0bbYd+3UQDfvepoIhrlsYv3+tV9JVZmKECP3k6IilyvCitNAVPusBGac4Png643a3Rb1hMgpjfezpEV8WJ8+e7U1xD0EY102AWJQtIhpiVhsXuJOQbN1t8baPF1iTEjzK6dfMUCtg2NJaaNkHisz+LeTrweNds4pgaYZJX4rsnoyhkPRUU9Osme+OQsR9zOBNJA1PXJLlf+NmRF/GjFyNGfoKCQsM2KHJ4MfT41beWsHQdQz9CtLqmRhBndGsW37ndZVA2GbLSjS2I8+q5ARx4QosGKTou02j6Ow/32ZtG/OlLiJ6fvG/XpTP1svN7MT7emrA3CanZOoYqz2Z/GnGz6xAmGUMvwit14Zq2TqEcNV/TLKNXb7DWtkmzgqGf8HuPh7yz1sQ7A9296OJ60fmdlf9u7gp5p3+kl5Nmc1paTJRkGKrCNMx4d7WOUTqY/s2DPR7uTbE0Edp9sNxmqWHjxykHs5ifbo5RUbnTr7Mzkf1jbxpxu6udeTbOqU9rLQdbVxnOIr7Yn2JoGl+/2aZXt0vXTbOULQj5ZHtCx7Wo23qF0NKUo+9/b6ku+kCayjhIyPJcKHx6hq7J2Tv0k0p/LUpz7vZrRGnGZzuz6jnf7deOPW8p3nOSouDbZcNunovMJRW2xgEH0whbV9mbhriGTr9uVrR2GTbKmnRL1z5Dl6I4iDOWmvYxVFKaFxWa2I9SNkpH0SDNybKiOhtu913MsYJfIhdnYcqhJ7nDr7/XZzCLGYcJDVsXKrBj0HAElRalOUMvRldU7nRd7i3JvdibRFXtcF4M/IjdiTBJNEW5UJPwovN7LpT9YujTtM0KzbM7kfuyOYyYhhFQ0LD1Sk8zzXKiJK+Gx88QSuOdrsv+TPaY+0s11lpOpc1maBp5ef8HnK4fHFNj5CeoKjIgLT9npWnRrZv4sbBSXEvjndUaD/c83NLVdxbHFIUiRjO6TtvV2ZtEhEnKw90Z/bpV6l0ZVdPRC2VgeqdXu3AfnA/iVeWI3jU3xnk+DCEXHdz1tk2cFtRtcer+0bNx+e4q3OmK7qgXJaw2rRKRPcHQ5Pw0NNnH2+6rmQgEccbOJKxkQgxdwVjg7RaF6JXtjEMOpjErLYvbvRrvrDT54bMBB9OI1ZYja9bScUyVg5loYYZxjTyXOt6L5ByZBNPS/AG+c6d7KbbCHHVdFKUBzyTENlSmoQxWgjikV9ZeZ8Uc9ZjlBd2ayYN+jaf7HrpqcDANWW051yqAPx/+uCUry9Y1HFPl422fJMtoOTrvrTdZazvc69f5ZHvM9jjE9mO+fqPFNExYaVp8ujORoZprcnepXtZYHkUujeeJnVwZQXfyeb/puG4k078NfAH8eeBvFkXx5Jo//8wI4ozP92bcX6ox8hM+252xPQ7QFBXb0JiW9osNy6BXM/lrH23z7NCn7Zil5ohA/+c28nZNo1+XRGESJISJIJPqtnbmZjuLS4pFCReeCyo6pqj6G6UteZYXdGomb680+Gx3xshP5CCmoN+wKi0ey1D4rc/22JvE3Om7vLParHSEDF2haeqlHffxl+tuv8buJOJ3Hh+yP1MIU0myXUuuY04pXORaGwv/nKQ5szAly3MeLJ/vMLY3CZmEKctNi6ZtyPdUhTq1M4kqvnvN1DENBS9O2R2H1EyDb95qM/AjvCgvRTxTJmFaQq4LNEWahN2aUXG2T97LecyTBBUFTZOJ27trBu2SdjD/+aIQ+OPAi5jFCd++1WUYJMzClCeHHpam0q1b3F8SSpihq9xouxx6EZ/v+9zoOLyz0uBv/nwPP075dHvCziTCMXU+359xu1vD1DR6dSkobUM44CNfGnIn35kwyXi07/GTF2Mals6HNwVtYmoqlqGWQpsKbjnB3ui6bI58Rn5KmomjSBBJkjcLU37wdECUFFVj7qs3BJ5tGzbjIGEWJdzSHd5esY4hOF72vJ8cePz4+QgvyvjGzRZRKgiUuq3zYhgQpVI0hknOjZI6uTeNSDNpSI38hJqpc6df44v9mSBICkm+v3OnQ7duCkpIKcqJvcrdvsNSYr3Uivdk4Vi9w1nO7lSadJ9sjdmZHFmdr7UcTEMliKV5tTcL+Tufxtzs1Th0TSDnYCaJyYOlGkkObVdosrPyHV1vOdzuuedOg0+GbWiniouitI3fmorIv6mpNF2DaZByp1cjzXPCWPacPS/kYBZxb7lOkOSkJZpGHHrqKIoilsjaHHGjcqtbo1s3znTAu47w45RplHK754rTXt3ks90pg1lc0ZNPTqHDsrnXcqVBWrM0vEgoA7/35IBZnJLlsD0NyfOC3bHQOU8ib8Z+wsfbEz7ZmnCre9QgrFk6e5OQj7amLDVM7i7X6LlyLY8PfdIMpmnKWkvl6WFA2zU4nMX87YcHAHRLZNx6y2ZzFKApQguYUzZv91xpCuhHmmXnre/dSchHW2Me73u8u9aoIO21UmdkdxqCouCamtA7NYVH41CSTEvlcBZTt2XdfLYzZW8SoqoqoyDlG7fabLQdDr2ItZZNlKRomsr7a8evbx4fbU7YK918mo6Gn2RYYYqhCRLU1EVgd38WMfAiPrzRPtYQtg2NX77X59t3esc02g5mEY/2PfanMYdejEKbxwceuqYQp3kl7n2W7oapq7yz0qj2orSkQotgr6AcBAkhxd2H6y0mnQTH1Mgp+HxvxubIZxZmvBj6/KMfrp85id6fRgxmMT98NiTLoGZp/Orby4Akra6l4Zg6zZrB2E/w4xS7LFyCWKjGiy6hTw98Bl7MRtupXJwUReFG2+Hbtzs8G/jMwoQoycu9NeH9tRZpVjANUgpgfxbzl3+8RYHC7a6IOGd5QV4UpdC43Kv1tsPQi6nZOmkmQ48bHZd+PcPUzm7ax1nOwVTOw7eWG9iGytODAEMXZPJyKfK7Nw3FnYiC3/z9TXbHosX1YLnOLErIcujYJl6UsXxiirzeFm0ZXVV4OvD5dGdK05HGYdOWIjjLcpbKXGOxWLmsRtt//oMXdFyDP/be1VFP16UzddH6nsfQi3k28Plsd4KuasRZxkp5v+q2zsCLeTbw+PzAw9Qld/z2nS5hIrptTw7ENddPDvkz37zBu2tNnh54PBv4/OTFmD90v0eeS0N6/rwVReHBUp04yy88v3cmIZ/tTnl26HO377Ky0AjZm0boqsq3b3d5PpRrGwcxTwdB5TQ38hNU1DK3LfgHjw5Zbdl0XIMnBzPCRBD4NUsT/c4kY6Vh8fZq49RaDJOMn7wYs9ywKj20rXGAguTnfpzx6zfb1fWN/YTPdqd8tDmhWzf51u0jNFeBFPZ5cVyXZm8SkpUF+0bLIcvlnG2UunR5IcXlLEqhkFwpSnKeHHj4cUqU5vx0c0yWF6y3Xd5bk5wszY6/s0M/YX8a8WLg8fm+h4pYvK+2FH70YsQt3+VeX7T43l6pE6c59TJXOJwKU2MSpnhReqy5Y2gqqy2bcRBXjtCOqRHGGbtlk0dVFL51u8tnO1OeHHocTiN5T70Y29T4e58PypyoYDCLZQA0CXlrqY6mquiagqlrmLrGrZ6Loal8sTdjFiZ8PBF0+J1+jX45CEnzosq327ZB09FLjdiL19VF5/feNORnmxOeHXq8u9qkWzfpIAYcB9NI9PlUlVp5/+qWzhd7sxKRqDLwYnp10dDaHAb8t48OoFBwDLWige6OA4rCYhaltFydTk3Qiyed9Pp1QXrqqsLBLMaLUno1GbystWx+vj3hxSBkGiVYhsadbg3b0DiYSVMqSDL2pzE3Oi5vLTdKJJdoKzmGRrcuw7h50/HTnSleLGyZD2+2zjyz5mchSI44zx1NXaUoCkH/hklZU2aEScY0jGjalpy3ilz7MIjZGmXc7rt8tjcjzwu+2JtRszWSzOFGx0XXjgYOF2n1nhXC7MiqvPit5Ub1MyKQXzAJYn6yOcIoUTrfutXhB0+HfL7vEcRC23trpSH3rtQffnTg06lZNBydmqVxMKNivOyX73tRDNjoOC9F/oyCpEKcJVmBF4kEi6kWJIXkoIqiMC3psu0T9fQ4SNgcBsyilHtLNVquyWrbpuOYHMxEPuM6G1NWCaSY5yAFsNywWaqbguzOCqKkoF+3eLTvMZjJwMsy5OwJEpW//+hQmD4oGKsqQz9i5KUEccbzoWj6nSefcFEsPu8vI66bytdXFOUrwK8C/wdFUd4CPi2K4p+5zt9zVgSxUHpEvC9jGmZAgR+l/PDpiCSXiWuS5jw+8Bh7Ka6lsdqSSUKa50RpgWXIIlpr29zqOrjWhDjN0VWVbu1sZEmvZorAt6oKd7aMxU05SnMeH8z4ynqTuq2T5zmupYKisNywGXgRFLLIbF3F1Er3qqJguWHixw7TMOH5IOD/+9k+v/bO8qniT1EEKVKzdCaBJBSPDgTSu9qyqyKuaRvcW6pVtrNRmmHpR9pZzgXOSkmWV2ir3bG4xdiGxrurTWZhwhf7MyZhwnLdIqdgdxyzOwnKQkxQH/3A4tGBJ1bfPZvPdz0GfszTQw/HVHk+9EsB2IJ31xqVC93JUBSFuq0zC1NudWr0Sm2qcZCUExOV+0s1HFPjbt/h2cCjbut8cTCrDv+nhz62rjEOU250HGxDqwQRZ2FaTvFT7vVdCkXgqc8GPlFWQDkRW25aZIVAriuKSTntcM44fFRFYRTEMj0aBdxfEnTTLEq52XZQgYd7M9LSzWVvEtJxLZZbNmGa02sYtOs6B9OEWSxinE/2vVJQNeThnspX1lvEac4Pnw1RFRF3bLkmi7fxZc/bj2QN7c8CNkcm95blOpuOwXtrDT7dmTL2U1xTZxQm9BI56HsNgaLPLVe3xoJsmgQJaZLjRxk/fjHmdrfGvX6Nv/dFUKFabnYvj0Y6K1xTw9BUhl7Mw/0E19DJ8jm1Upyuglgmakma0XUtxtGYP/7eMj/fDmjauqAB7vbICjksxJ7VIs1zOobx2q5Tc/rns0NfCnJDRVGlUSEccoEdPxl4FLnohIkekclh6STTsDW+d7+HVk4wa5aOXYr250VxISx5Hn6cYmrqld06l8oJfV6Aa+lMQrmfTw58OnWTDzeO0/rGQcJv/vAFsyjlqxst/sg7yzKlLqHfhqrRc02StOBuSZM+OYGbh6LA432PcZiwPQ74/lt9tscBrqGy1BCB4LBsdtY6ot+33rKZRRmzUCXOM1q2wZOBuI+leVYZBnzzlkmvYfGtWx1+67M9fraZ4kdCpRL30MXFc/76hoK9ScShF/H0UOObtzq8GIrO2rtrDaZhyotBgKGqpHlBUk7k2q7BUsMU5JYlmi2GrpLl0lAK4owfPRtxb6nOra7LOBCK0M2Oy940OkUttUrkrh8L7L9u6vRqdpmQwVJpNz70E2ZhwsTSztUX0VTlmIuboalCK4ozVKXgcCpT9ywvaLlSDD7cnZaadu6pJvKiw1JUJsX9utCnbV3FNkXs1Y9lWNRwZAA0mCUsN6Rp4kUZvbp1LmV13jhyDR3FgKWmVYlPf7YzJc5zVppmJdr69Zst2q6IHT8q9XTmE/08hxejAMcTit4okEbWctNmuWlh6CqzUIwpXgx9CmDoCX1QENQ6eRERpwUKKqYugtIK8Pe/OJS9v+Nws+vQLE0/vnuvx9Y4YG8S8WwQcAvlQrOUJMv5Yt+jYWlsdByatoFrRfhxzkrLJs3FMGGub3c4CylyyQe6NZP7SzWWGza/+/iQh/sekyjFNrVTtEnb0ErKcIZbDv6W6zKVzwtp5s8b952aiMvPtQSP9uKzY+wn/PWPd/mnfunWK5lMXJvO1IXrW2JrLCigLC/wohhVNVlv2TKgTDIcQ+XzvRleJNqZSw0Rm27aCnEmaIVpkGLpKp/tiQ6hZUgOqShiYZ+XZhv3l+oLDpIKtnpxvmaoMqg49AR98vWbbUGpLAwN4jzn/nIDrzwH5k2TlYbFja5IMqAUeLE0stOsKBFgKV6cstIUtOrPNsd8tjfjZrknnSy485JWNw5ibvVc/tYXe+QoGJoYBNxoO8ca6oYuNKt+w6JmatVAdW5mA5zS8Wk6BmES0bBkaKtrCk8PPWZRRq9ucrPtsj+NeHooeee9fo2Bl1RU1ywviJKMxwcz6paOHyeoqsqTgce9Y+L+5T03dJZqFrVSyycrCjqO7BPTSIZszwY+QZyz3LRYaYpGkJ/Imlk6B53kx3IN7yw3GPkxcSZ0Nz85KggNXcWLUn6+M+V2z+VO38WPhTpm6RpKAUme85MXE/p1k093J9zqrdJ0DO70c0xNdC0PZ5JjSNO8YEW1GPkxXdfki/0ZYXJ07bapc6fnsjeNCdP8TI3NeT4xf4Znnd95DuMg5tCPeXzg8fVbbTZHQit7b63JyI/FLU8R6uI0Sks6tYWlS2OpaWnslojrmqEz9BLSLOeT7SnvrDZ4e7XJ3/t8n+eDgKKQQv48t9j5EPnF0OfZwKftGvzySoPnQ18ccMOErIAVx2AaJdzoCqVsqWHhxVIfzKKUHBmqh0nOUsPkvXUxo3kx9Om4Jlme83zoY5sqwyA+14xqEREJR1SsPC/4+c6ET3emDP2E2123amyvNm0KVEBjuWnRrZl8tjNjlCY82vdYatj06yaGpgoNuAn3l2slclmuY67VC8J6eBmixjVFFF7XlGOukXkpkD8JUjaHkvebmuTQu9NIqLaKSsNWudF2WG/LPtOv2/x8e4afpHy+N+XDG22mYUqvJvnQj5+POPRCuqXEyiRIGVrxme7KR8/2CLWoa0Jv7LoGqy0Xx9ZL99CA//qnWwRJzh95u8+HN45Tmn/vyYACQWrqqpzjQZKz0roaq2gx0gVdvpMxzzH3JiGf7kyZRin9uoFfCvCrigKlzmivYZHlMlTVVEH/7Y5DWo7JNIppuwY912JrKIY5Xphxf6lRAmKuNrRefN5fRlw3la8J3AJuA3eAFnCa+3bNoSiSDM0PxPfWmjwZeHhhyjiQA6YohNsutCiFmq2x0XS40RU4qx/LZuuW4mHzTujtbk0QLKq8UHtTgcgtbsq2ob1U8M7UFZbqdtnxVbi9VJNGlqWhqhpNWy+FwTMats2DlToH04hv3Grz7lqLe0sN/tane6LbFGVMwph+XfSixkFSJb/dmkwNbnWFojcXgk6y44+hZumMg4SHuzMUBe4t1bAN6dhe1BjQVQXbkA24Zgm/+2AW4Ro6YZJxu+ey2pTJ2tY4JEgy0qKg75p0XIOlps3dJb0UONcpgMOZQHXjNMexNLo1izyXLr4XZRfqldzt10gyoet8sSeNJ1URupGqgGuq9Os2622XXt0UwURdY71li313EDP0YzTlyB605Rrc12t0ayaTUCavaVFQMzTMjkucZdyumSgofPt2B9vQTlla27rGWyv1M6/d1FXeX29yMI1Z7zigwJMD4f/GqUDUXUsjy3PMUkOh5cgkZLUhGjh7k5h+w8Q2asyiTA74YcAwiDFVSVy8SOinQEWvPHaNL3neD5br7M1CsbPuOny6O6Vhicjm+2tNTF1E+Yd+UiHz2pnJL9/pMPCEMumYGjdaDq6hsdKySZKMh/se/Ybc2ziTxrC4TGRnOuddJWqmTsc1SNKcmqWV0OWS7jUKRPPDi7ndc3l26GPo0hh+d6VJmsPuWPQaNFXBD9PqwK1Z+oUowqvGrZ4rNIymoBg+WG+y0XYY+DHbw5BRkLDSsISbr6ssN23u9Ws0LZ28EKrA3C1JGlNS7J8HSz4Z2+OAg2mMrslU7iqcc0vX+NatNntTKWwtXegbKy2LtmsS5zk6R/vjfNoVJFlFGxO6gzznP/b+CnuzkDDJ+e99uMq/e2ICtxhNRxyq5kiGOf0VoF83y4ZXViV+hq7Sdg38JCOMDfYmEYqV881bHfamIZMgZRanrLWl8R+lGVlRVM43k/Bsu/OL1vday6FTMzCNOssNm+1xSJIVDL2Ed1YbfPtOR2i5UVKaAih0axb//a/WS8HblFmYcqMjAsJx6Wj5cG9G3daYhAntxCBJCxxDJ0rzSlNgMVRF4Q896PHJ9oSWo+EnOUmecW+pVeouSqJ/t+/y+09jRn566pw4L1qOwbdutXhy6NGwDKIs4721Fv2GyVLdJkhEOxFgFMQXNlQMTaHjGmyPQzl3FaipOgoK95dq0lAJEpSJUCy7NZM/+bV1Pt8TOmfdPp3GBLEUpCM/4ZfvdRn6gkRwDI0nA4+fbI6xdY26rfGV9TZ+kvL2sqA9Rn5cfc5cN8Q2VL5+o01a5Iz9FF1VubtU4/5Snbpt4MUZdtlUeHdNkr+6ZaBrgoxyTY2bXYvNkSCtNFXl3bUG47LBNYtSHu7PxB2o57DWkqm1a+oYmryDokl0/n3UFCn0D2YRaQ69usVyQ4Tfe+VQTdcUsjwniAXJcaNro6sqv/pgiYZrkOUF/YbNeAFVt9aSs3gWpZXez1yHRVPldzZsnU/n9KgT71DDNng+8BmVe9lF8V/+ZIs4zfkz37px4X93XlyXztRF63sedUsnz+HdtabcT0tndxpSlANGU1dp2jpNR2e97fBheW1zisoff2+JzWFAyzWZ+CmWodF2pRk7L/CzvCgRc9mpe3fR+b3ctNnoOGRFTtsx+eLAO3Z224ZGp2Yw9BJ0TSXNc0ZBzHpbKHV/9O1lDrwIioKfvhgTxEKNv9N1sE0V2zRwLTmz06zch5Kz9yFFgTs9l42Og6aW2kCOTt2q8498ZZW6bR4r1F1T55u3OmyNAvp1i1Y5CJpFaUXLGwUxIEj6OapsvWPz/loDL8mwNZVPd+V9HAcJ620xC5kbs9zoODQcyf8cU8My5JxQUJiFGXXbpGFJrbAYDVuQhXf7LlvjkDDJKvrvs4E0zdqOKaj2WNw1D2cyNFhp2fTqZunwe/S5h6X5zziQpvEsSslzKfYdQ6NuaXywMOy51XX58bMht3o1wjTju2stLFMaxDXTwDHrbI9DZlGGrWu0XYN+XZry767UsQxpak7ClKW6JWLZli46SoqCn6TV3j0NU1ZKfXRVVat3PiuKY8XjzjhkfyqaZNYF5/fcQEhVYbXpsDUKmPeq7y/X+PadLp9sT5iE0sw1SsfU793rcljqR+3PYu4tudRtGTouNzOeDHyyXPS1HEMjy6VhOyv1fLmgz5LlBeMwkbVeiFzGNJSGseZKPWXqKh1Xx4tTilzEyJcadoXutXSN1ZYMfd5eadByTH62OaYo5B5ahsa7qw0mYcrby/Vz90FFUbi/VD+1jqKyFjI0jYYtzeJamTustlzeW2sw9GNudWvMorQURTcYzCJZl1nBr77TZ+gJJTQu12qQZPRL+ZfDmThTX2YwvNqyz0TGx1lOmAjQwzQ0eqpKQUG3ZpRujjVudmulLq7C4UwofR/ebPF85LM59KlbBoez6OgdjFJajsnXb3ZwDY2slDWoXQCgANlH3l5pCCOpZvKHHvT4+kaL9kJTZhjE7E9jsiLnxSA41pgS6rFNkouTeJTldBzRTnxVgfEsLwR0kBX0G+a5WpmTMKmQdgoKmqZw6CWMfBlMj8OYt5cbfL1Emg69hFGQ4JgKXpRzZ6nGctPGtXR6dVPQ6V5EnObHwDOXjfOe95uK66by/d2F//17RVG8uObPPzNsQzumYbLasnmw1GAaJJX4dd3SaDkmP3o24mCScLPnoGkajw5mUE75QNAvi/C8lmtwA0echEZhKe6cX1lUWFNUeg2Tft3io80xu2MRr247Bt+43WG5YfP57pRZlPH53pSmJVPMt8pTQVMVlkqdkju9Gr3SjWlnIhxeRZFGQsM2eG/tKHmNM0EeLZ9B65nreIhQpGwCL9uU5i5Ac7TDXPh1fzYRceusYLVls9F22B4LZaBfIlB6NRNLV/mdJwMmQcpyw+LdtQb3lmr88OlIREM7Dnf7JgNPbJSb5yyikw5F8+8iCZS4hkzCBE1RGPkJcZbTr9mlM4dQoBq2wbtrTYZefErg1jV1XFNnA4c8L/i7n+/jJxl5Dl+92aRpmbRrxrkuR4rChUntWsvhj7zT52AW03IMpqEIMhuaSpCIhsd/94M1vEigsp/vzTiYhvz4xYh+3aZh6eyMBVp9o+NwY6lOnBbkBQRZTqecNNz0Y5I0P2bpvRgXPe+GY/Crby3x9NAvrdBz0lymD0ku6MQ/9GCJaZigKgoHs4gDL+STrSl+lLDWcdkc+qS5JOlfvSGuhzeSnKGfcH9JXHPuLdV4MQjY6DivxHdfDFVV+PCGTIdVReFW162ayJsETALRfhmOfPxE6JD3lkUMue2aJGnGBxstdifC81eUiHdWG9cK2QV5N759p8v+VCDvcz0oI0pRFIU4FX67n6Q0nDp3ekLHyHJozSLu9uuE6ZFWk3qB/fxZMRdaF2pofgwNc6lQFJbrtghdlwXS33l4gFLO7hbDNsTyblIWpnkpJDqPtmvyzVtCcdmfSUP5okbZd+/12B4HLDdtzIU1VrelSTFfd16U8vjA4+HujF7d4NOdKYfH6IYavbrGqmbx+MCn7Zo8O/RF3LXvMglT3l87uxl50fpWFIXvP+jzbBjQLYuquZbF3CTj+28vMSubx08OPYZeTF6IGYauicClpqosNS2+ut5iGiUEccYkTHmwbFI3dZabliR9pbbJWXG7V+ebtzv8/rORTL51jYNZVDml3l+qoSqK0DJ1rUK0zJ3z4lSSs8VmcZrlPDrweLw/o1MzUVH46o0276weOTw5hkbD1su97HRVMBdHtXRpArccg7BMxvfGIZQC8b2aRadmsNF2aFgG769LUT0OSs0exzj1+VujgMNZTJLn3OvXeDEMaNpy9mRFwf4kxAtTUiPn/rKLbah06241JW45BlFTkDDzyaKhybOomTqmrrAzlgSxbhsCkx/4JU35qAmnqYIWeXwgepEHXlyix8DWpRDo1y2iZo5txsSJoG7naxOg4xrEaV4m1xdPOef0fjEdkWZXyzEY+xkt50hEugC2JwGuqbHRdvnmrc6xyTnASsOm5RqslDS2RwczaYSaKg+WGyiKcsoE5kbHYRalZ1KI5+fzWY2LxXfi//G7z3h3tcFXTriFXTZsQ+MbN9v8/UevpzP1svMbpEEQZ9JEelFSPuYIvqJ0A95ou/TrNm+v1qlZUij+lZ9sEcRCu/3W7Q6qIrSg3WlIt2Zxu1sjKwQ9PAtT9JI+f1ZcdH5/505X9DNLWYM0R2jiiaAi65ZO0xFR6ScHQin/Gx/vYhsaH95ocqPt8pd/ssX2MGS5abHedhgECcsNGy9OudV1aZSagkVR0K1bZ+5DtqHxlY0WhqaSpOLY2HYsXFPlo60Jd/t13l6ps6izutK0TyFAO67JLEzJC2nmHEzFvTaIc/ySnu8u6xVab6lhMQ6S6n2s2aIPpKtqiaAV6vta28YxND7YaLMzDvlib4auCCX7e/d7gLy/2+NwARWv8faJXOXk4MoxVZ5se9QsjRsdl6ZjnEIZibuwnOFNRycvCpq2XspWSFOpUzu+x2mqwq2ey49fjAmilJ9uTVgv6cRxJvTEw1nMOyt1mo4M5T7fEwH4Qy/iTk+amXOEascVrafPdqUxvj0K6TfkXi83j9byettmbyK6rCfXhh/L4DPNigvPb1VV+P79Po8OZziGjm2oDL2kRLYU6JrCd+/1CFORLjmYCmV85Md4cYJt6BiaQs00cC1BczYdh1mYMQtlOOCaGrd7NXTNZ+MMtO7JMHWV99eafL47KxFHkg+oqspa0+Rmx+HFKOAnLyYUwCwQVPrn+ox+3eZO3+VuX4YUrqkxi45ckqMkr4ajedngeJlwvKYqp9a1bQjVMy8KXFNjcxTwfODTck3eX2uwOQrZGYdsDkN+6V6XX77XZWccVs6bpib7taL47E5CPt2bEibCGEjSgls9l3dWG6UL8OWGlGftPVY5CDR1laWGxdNDn6at83TgYxsa/ZqJZej87pMB00gMI/7RD9dZbzv8yoM+n+5MMTQ5p+exVDfZn8U4plqdOQpcCuk/b6QoisIv3+lzp3+8bjc1FS8WuZ6lE3mEokgDuchz3l6t8ePnKesdF9vUTzWsLxtzt3Q40mE8K5bqoh/WdAxBu6kKQZTx0fYETVO426+TQ6Xhdafvcqfnst62GfuyFueIxfVSOH6lYbHecc5FD74sXofJctW4birfhwCKojQQiuQvJHRN5ZfvdXl+6LM9DitRv0kglpTtmlFB+w6n4pbjmMWZiIiDWcT2KCzdxYqS8nbx7y9KKPciVNIyVN5eaYj2lSbdWMcQUeuwFAzNCpnCbQ59xn6KpguaoWEbDP0YXVP5YKPFctOsPv+okKBy01mM8/QRQCiIcSoK//UrvHSLaIc5WncWprQdk4at8lbJi35/vclf/ek2cVqwNQxYa9nsTUKmJSLAMcS2fKlh0atJVzcvxLL2ZQi0RYeitmtwoyOaHO2aSZLm3O7V2B4HqJpS6qCEGLrGvX4NRaFy7OrXrZfCGp8PfR7tCz1jo+vwjZsdCpRzm2aXjdWWU1EKo1QQBlGpPzVvNLZdU6amec6nuzOGfkKUFry9Wqco5u9NQZikVYe/35DmqqGJjsTrhGPqvLsmRUKWSzGpqwoPd2fVs5sno0M/5smBCFvmmUzeHUfsjHVdKcUkRRC4Wzer+363X69Epq8jbEM7cy2vt2xGXsJby3U+3szRNJncdmsWh17MLEgZBxmf73nHmjxRkl36ILxKdGunHb96NYvBLObBco1pmKAogoRcaliEqTgSzaKcJwOf+wtQ+SjNSDLt0g20tZZMK+u29koItdWWzXrHEQSlrvF04NOwDHGxjDLsE4dfwzFQVBVNU08JMB/MIqZRShgLyu1lIfSpo33N0FVx7vETDmcxqgrvrDRQFGnA+XHG/o5M4CZhwkpTED0UBZqq4hg6K00bXVWqgvSrN9pXvieL0alZdMpGQlFIggFH1Oq5ILpWTg33xhG7UxE0tcrixIvF9S1IBMXlmIKo6NZMVFXhTr/2UoScpip8ZV2KwqxsCEZlkyDPBakZpjlenLHSsulUjbS4cs7bV6Njg58gyYiSHFVVWaoLSu7OiSbF/PrOi61xyKB8VoamMu9X9BuiX5SWDoi9mjzXGycKjK3Sij1MIpYbx93e/DhjFMQcTGPiVLRJrPKsTFNp+L2zVsfQNN5dbZ1KuBRFOVUUa6rCe2tHzZK6bZSIXJ2hF/N8EHAwC1lp2kzDlLZrkOXwfODxxZ5QTxUkMS3ykvZQSKPnwxstFEVo2H6UlQ3oohS/VS5tYmCWdJjPdiYcegmqIgMcRQFVUZmVuja6Ks2pZ4cBYZrzYKku52aWszuOcE1B6N7p16u9YZ5nXASo69TMcykg66UuV8s5/8z8wdMhP9uc8G/+Yx+8llPUr7zV58/99c/YGgWVw9ubiMU8aHF9NG2DOMsJInHhBEHRDL2Ij7Ym4vylqRi6So64NXfrJoauYGri7tapiSYi55udvjQMTeX90i11bnJwMIv4Yt/j7pKIoc+bOLqmMPATfr49oVuzSLKclaaDrghtXFEKejWLzZFPw5YpfNu93D6klNcCYOgaf/hBn892Z/ze4wGgoGsBe9PwpW6nhqZyb2luZiNoqId74poWJUXluDxv5K6eMABZazoohYKqIuYh5d/n5bu91LAETZJmHHgRTUXh0YHPWyvNSmh8Fkrj+jLFXcsxURQY+ykP96Z863aXPC8I0wynRC0tvuVN2+APv9XnYBrRdAz8OCUuGz0nU/te3eJW1+Xh7ow0LypU7cEsEvSEL5p8dVuvGg2z0l06zeBGx8Yx9cpgCI7WeJoXZ757li4AAGF9HNcOnK9v9xLnd83W+epG++h7OwlGqVmXpMedz58PRNdPzE402o5Cq2VXeoBhklErz0VTVysU0d2l2pWcA9dazjH0ynIpqp/m0vTMC4izgrqpcpBmeHHKLBBNqeWmVQ1UN0cBg1lc0kVdoqygXtJLz3N3vUzMDWRudl3GfsLeLKJft8smkMY0Eq1ey1DYHYcsNWyeD3ypiRyDr6w1cU2d+0t1klSGkQdhJO7oJT3rOoavJ41uwkTq5rqp02+ILIqqZkyilME0IcwyPt4ao6vi/pnmoqN11zao23JWOaZW5VKvGmmZR+1OQu4u1ap9O8nyauATn1hkfpSW1DXRBl1u2lil7u+rsjosXWOlKfdh/QJn4UUN3aIQ6ugkTFGQ7+HHGXZR8PHWlCDOyAoBoFi6NN/nKDiQHOXd1Vcb9Pyi4rqpfB8A/zHQlT8q+8A/VxTFz67z91wUQy/m2dDjyb7HJBR3C0tXudN3+f3nI1QVVBRWGja3Og6PD0XPaNEWfh7704hH+7NSa0BnrSUUvs5LNGaellbujqlVbiLziNOchmXimCFBnOKm4uQzCmJMTcUxVN5dbTAMEhxDI05zHu3PmIUpSS4opYNZzN4klul7Sf+6v1S7cidU11Rudl0e7c8q2PNVY6PtiIuRozONxEb1i/0ZG21xLJjrXm2OAjp7glr4bG9GxzX4eikAqKLI5CvJMDSVT3endF3zWPGZZDkjP6lgiJah8dnujDTLiJKUKJPpSt0SYcduzaycbvZnUenGkOIYakVfFKG5l28wAy/GMhTiVOGr6y2aztnPf28S4sVZpYlwlZhvlB9vjfGijKWGdcxeVkPuY8vW0TWV1YaFF+cMfB9dA12RxmZeSBPrtx8dstayudV7PVvfxZgjGx4fiPObTNyOikXb0IjSDFtXSbWCuqXRsA32p+JW8rw0BQiTjLV2jR88HeKYKm+vNK8VIurHKYezmKZ9tLnnecHzgUyLhrOYIMtIkpyGJTbDh7OIZ0OfOM24qTv0GyZaSYl8XNIs566E1xFJ6RJiauqx93zoRTw99NkeiztdkmXULI1315qkec7WyGcQJKUWkUxUh37M7lgcZd5ablzqXk6jBD/OKChYbpwWqH5ZWLrG1260K/fDFyOfoR9J4/EEinAapWJtHMYoRXHq+qI443cfHeLHGf/M925f6TpAmvk7YxH7dUwN1xBagq6KlluUZKw2hY+f5Tk3ujamqvB7T4ZkRcG7q00MXSXJ5RB/vO8RZRlLdetCp6LLhqII/fnT7Sl704jlplUhRxQFdFXFj+Ua86LgZtchywo2RzOSLGOtZRElJdLB1Ph4a4JlqNztX27P1zWZwJq6yq2Oy893pzzen/HOagNdM9AyQQbNHch2xiFPDjxeDH1udMWuexImNG2B2P/e0yHjQBLepYbFe6tNrCsmavPvn+dUVA5dVXEMjf6KVQ46dD7anqCrauVittqyWW3aJOXPu2UhshjrbdFs7NXN8t4KGlVBaEmmJrbVK01b6OOvMAlcFGr+0fMhh16EqaukWcpemGDrGksNHUWBRknTv7PkcLMrxgkPd+VdyAtK+3gFKLhVOlx+vjerXGWvau08H3AZmsLIj5mEMY8PCno1oYXGacZa06LtGBVN3Y9FO/FgFtGwdQ5mKUkm1JtRIGi9pqNzq3s1pPg85sn0WcOzefyFv/eEpq3zp795NTe+k/EnPlznz/31z/ivfrLFb/zq/df6rFeJKMnZn0UEcVo1OMNEdBV/9mKErausNExqlsaj/Rlf3Wjy9FCojhulvmnXlUbho32PSRhzf6nxWoXtXLsmzXO2xyGaStW0AkF/iWGQmMTcX3KpWTpfv9Xms50pSZbxV3+6RY6c8++V6IrHBx5Jll/JqXa97YoxiqXxbBDgmLK+9yZhlfc83p8xjTLWmqKrOaejUf7+lZaFF6ZEqVGhzO/0XfKi4ItyaHa7L2tt7nK21LDoN8xSp6qoTHUWNSNrls6HN9sceEIbrlu6uFyNQ54e+rimxv0F1MVcn8iPM4qiwDF1bnddVFXoyY6hYetHMhFPDj28SM70e0t1OjWzGnTPr2O+txRFwfNDGYje7BwvYpMsLwXgFZbqJje7Dpau8PnulP/m4x0cS+dOb51+3SobeiJJ4lgaaZ7z8x3R0lppWdXw+k7fZWsUVvIcZw1sx0HC84HkQw+Wj/Ih29AuLSNwMpol1ffxgUe/bmKlC3pjmsIsSmiXQuqdmknTlqbd5/szCgqhJqcZHddgc+jzKM3ZaLuvZP6yPQ5kYGdqhKlIOWxPgko/b6VRY6VhszsLpbkZJhXtFii1cXM2RxGGJrS8lwmJnxdFQYWon+dMu5OQgRdhKAq6KoMcRVG426/xyfaE/b2IIMp5e7VeOsqBpilomso0FDf2vJC64uu3OtRKvdPriiBO+WR7iqnLO3dvSUTq4yzns90p7682eDYK6DgWlqqyM4n42eaYvIBvlcwhkJrLiwVtfR1InSwv+NsP9/hgo8mvvLVU/b1taASJOPKmaX4Mze+aOruTEMcQWYF7SzX8KCuHjK8WRVEwCUWMfBomL/1uAy/mJ89H7E0iUIoKjLJUF81bQ1PAUGXIp4g+dpZr7E5EFuFGx3mtIc8vKq6byvcfAP+roij+JoCiKH+0/Ls/dM2/59zYm0bsjiI+251haCquofPWilDMiqKodFlWWjbPRkF1YJycrCWZoBMsXcOLE+70rGMF5EURlBPpMMlOTRZWWzZjf4ofZaiKys93piw1HTiEr91o0WnZ3F2qszMJ0VUFVQEvEnvLXt1iveXw+d4MKHi4P6VpmXTOoJTNqRKOoV2I9EizvLLkfJWYu+a1XXE8ebg75WAWoasKG6W4nWPErDUtplHKyE8I4kT0nnSxOt+bRgz8hI5j8vTQ426/XhZwR/f76aFPEGfsTeXPIrCq88VByLNhgKEo+InoMAz9hHfXmry31izpDUZliRumOWEiXPUovZyekaoq9Os2t7vnTwbDJKtE4beL4JXu5cEsxtY1RoFAm+fTTC9OQVH4pbtdfvB0yErTYXcas9yw8MKcxCn4aGvKN293iLOMn21OykI2Z7lpv3J3/7zvOQtlSjUOEj5YSG5HfsIH621+kBxiqCpxVpRFpWz2D3c9vnZTp24ZfL7nid6PIiihtWucbL8YBkRJzjhIaNhNad5mOQezRIQTo5jBNEZRFdLSIS9IMu4v1Rh6MStNm+WG2D775drIyqnkdTWm9qYy2QSByM4nbgezmGmYEiQF2+OgpD+IY9cgSLnTr1OfRSw3bHo1C1UVy2IQmmmUntYiOSsmgcB9gzivaLlXDcc8sgZvOSY3uzU6rkGYZtjl38+ilINpRJQWtB1xEDm5J36+N2VrHKIpCg/3rt4g92Ohw7mmTpxlrC/JOz9OxB0ub4kmwfPDgPtLDRq2yeYwYByK6OsXBx5fu9Gu9q3HBx53ejX2ptG1NKZAEkxFUdBVhSTLaZfJzSRMWGs5NGyd54c+qOKgNkem+HHGF3se7TIhf7g/I80Egdu0Ddzuy4/wvBA9j7lj5WZppT0NU95ZbbI/jSqa1/ya9qYRoHA4lYTn731+wIc3W2wNBdUTJTmqKyYdszg9l9J8Xqy1bPbVqDQrUETAU5HGt6KUlDRNYaPt8nzg898+PKBAoOs3u65QRlX1GKV+Fon47lyjZncasT8V44g4yxj7KUlWoKo5Iz+naZs8H/q03FeHpWxPAvw4RVMUmrYhRg+mwcCL+c7dDrqm8nzgs9KycU2D5YbFfqkpI9ojKkGcUrfkfRj5cZU/zDVALrJmPytudl2GXszTw5hJkPL5ns/tnsM/eDzk3VXRBlxakCzouiabo4AkFRH+xgIddujHzELR5UuynAdLx5GoWS5NrZqpX1iATQLZ6+aSAafu4zjgr/1sh3/h+3dfmWowjzv9Gl+72ea/+P1fTGPq831B8ShI4WjpKpqqogA122C5bdOydfYmMbZSiIlJ6ai6Nw357r0uiiJr7/lAhpxBnPHL93qvtE/Po1+zeLzvVQPPvYmwCbRyT+q6FveXaxx6MSgKQSzovcNZzI+ej6QRlOXc6Di8GAbULKNyaTr0Im6Yl2taFkUhLliuiWlo3O3VOJjFWHpWCeQ/3PXYHgf8oCj47r0eQZzRLRFaUDIBGtBrJOxNQtZaNo2ycT7vfYaxCI3PXc7SLC+dQgGUks52en83NJU/8vYy+9OodBdLOfBCng582o7BTzbH/NLdnqBjPGkuH3oxuqLQq881cYS29527XcZ+Qrc0SBr60shYpPGcZ6YyDVPSsmv/+NA/9u/sUkbD1DVcSxBGYz/m4+0JoyAlK4RKPF/jrqnz9nKDnUlIlGbsTUJx8lq4Dll3omm2PQppOcapfGcaJhSFUPb8OKPlvH4+FMQZI1+0j6ZBylfKnDLPxYXsG7c6PDqYEcQ5TXuuqSi6a5vDsBLP3ptF7IxDMVpQlCs3ptJMdIZeDANUFVqly+inO7PynZXvbZua6BOaGm+tNMREpRSDX2vZbI18DE0hLHPQlwmJnxdRmpXurzFvrTQoCjFV8eOUoR9ToLA3jTA1jbYr9LIgSRkFMX6Usd62MXWV9ZZDzdL5dHvCsDQnuM4h62J8sjPl6aFfDbFvdl2S7AjNszkOCEvqbbdu0bClblRL2txKOYQ79CKSUPTZfulu97WbK1Ga4QUpn27PGPpxldelmZx5WV5wGEjeM0dZJnnB+2stvDijU7PONeG6SsRZXq25SZi8tKewNw35aHvM1jAUJG3Xou1I3tIuG9+uqXF/ucEsTDF0QWHOSiH7lmtQN0UbzTX1Kw+5flFx3Y2p2rwpBVAUxd9SFOXCNrqiKP8I8L8u//gO8L8A3gL+FPAU+LNFUZytQHtGtByDpmNIYqsoLDXFFeaLfY+PtiYESVqieESssijO5kNrikCq4zTnTr9+6aYUSJNrUEIoTy4oS9fo1mUhFEpBwzYwNJkWz52ftLKpA5Kc6prYZPZqAlfd6IiQY9s28dMML1JO2YQ/HwSMgwRDV3j7HCFCENRUv2FWherrhK4qbI/CUsxa47ZW41u3O0zClH5dxK6/2JuiaRpelDL2jyydTV2VKVO5iTdPaQ0dn7TWTL2yTB75gjazNIFhn2zEzSHIIPdzfohclorXr1uoKDimeu7CNjQVQ1dI0uKVE+u6qbNDQZIKD3mvtAkOokwS1/Kw1RQFTVGoWzpL84lJKQZpG+JYFSUxlqGeei9eN0xNFe58Ktoaz4cBb6/US169QEo7rgXKUeOvWxd6Zcsx6NVMGo5QafdnESqcq5/xOtcYJXnlGAIyGbnRtasNOisKkihjbxKRZBmOKVoVt3o1NtpHU4blEsViG9oru3Ccd40giJnFBGG9bbM9DtifaZW19uYoYBqmlePgetvhVs89StLLazR19dIaXUsNi51xSM16/cNWrtsRfQmVY41QXZVmzJ2eQ5jkuIZ2qiEcpeLUWACOfvWD88Uw4GAaoaoK37rdqZKOmqWhIMm0rqqi5RYlqIoIAz8bia7KvX6Nuq1XDi61qtl2fZPEuUClOJQpPDrweHulUaFadFWh2zCZBhlhKpqAA1+KnqZrsN62ybKCtabN9kSS78tO7tZaNjvjkGkoWnvzButSwzqlzwhCY/hib7bQLI0EeToRp5edSYiTa6X7bfJKKJqTv3fjjMa0rYteR5Bk9Jsmg1lcumSqbI3EoWd3EtF2TXYnYaWbNUcNbrSl4ffs0Mc1dfp1DV2XM3ZOj3FfcxpbM3VsU8cyklIUXCsn1YIcfnulyWrLJoiPGjKOIRT/laZVIUHmzaq6rVOzpPiyda16F68SdUsnSrKS3i/GK0YpxK2qglKrW8d1a5q2IY5qusbNjsP+TBpRKw2bH78Y4ScyKT5ZaD0uC0bXutgARlxNw3Nd7v7Dv/0YgH/mu1dHTJ4V//g3N/jf/uWP+L0nA7595/Xo7FeJrVHAwIvx45T3VhvVO57lBWtth4NZhGOqmJpKUroz2aYg1w+mcYWAAEHaqSooqjQNLgCbXSpUVShOu+OInUkAiNBzxzXxS3H1mmWAIs2hQ08GILahSe6pqShKQcc1SzqbhqHLGXUVFIGiiED27V6t0iQrELT34SwqNeRi4jJPC+KM5ZZxZg5ramLEE8Si+Tb/LiBU+UWXszk6aq47e9H+Pt+fsrzgcebh6gYqBWEqRfS4tKKPU2nQ1C0x3TF05die0rTFodKLUh7uzoiTHENVuNV9ObpouTQVyAvJ/RejZus0bDnP0myuD6uLsHlpanEyr1JVpRKBfxr7xFnKgxNr1jY00T8z1DN1dHo1iyAWZsNJZPSrhqmLQPbQkwbeLDrK0eJMJC46rolKyihIeWtZDKvSvKBhi7GAbWiYulLRFV/l7NY1tXp2LdtgpWlh6uJwOvZj8gK6dYvH5RCsZgmVMC+OUL9hIoCDaRjTcrJrQfvMl72iKDQdQb02HdEAM1QVXVPwIjmLdaRuvdF1cM0GoyCp2EADP2ZnHNF0NHT1NTjCF4SlH7ntzveE5abF82GAAnRrBj/fFn0rx7DQtQIUjbWWRbNkg4Ag23+6OcbUNJ4PgitrOp+MooBZkmFEKYvGcoYmdd1K06Lnmsdc52rlwLhV6rxdR8zr/1mYsnSBzM48Wo5Bt2Yx8hJWWzbdmknT0Wk6JoNZRIGwh9I0Z7Vlc7vnEsQZsyhAW5DZmJVDsLdXrs/A6U3GdTemHimK8r9B6HwA/zTw+KIfKIrirwF/DUBRlN8GfgD8RlEU31cU5V8D/jHgL172Ahq2WFX/2jvLFfd3b1pai5o6aSbicQpSFPbq5pnUPLWEqk6CBOOKxX2rhMgvRpoX/GxzjG2o+FEm3G4F3l1pEGcFHdeAMwQ3TV2ofUVBdTC3HEELFUVBmORVo2Cx2IszOZyTtCAvClSOHzL700g6xzWz5Fdf6SueGaoiPOr9SciLYUCvJvSQeaHYsA3+xIfr/LWPduVwDxMOZjEFBd+81a4Ex+F0s/BWt8YoiGlYRvXv311rVm567642ZBqrQJHDRseuPiPJcp4P5pBo95Ro68tio+1UQpEfb08EGt2vHWuAaarCW8uNV6aGPB/4JUJP5Va3hlYiJ8ZlF79uiducbWrMwpS7/RprbYcHyw12JwK/1lWF1aYtDolpdkp75XVj5Mc8OfAoFFhpWKiqJNd5XvD00Bdbd9vg23c6bA5D6rbGBxtNPthosj0OGfuCUpprK/VqJq6pUX9NwfOTcavr4sVppeOQZjnPBj5FofDH3lvmg40mSVbwaN+j6eiMAqH8dkudgjjLSeKchm28FkT9olhqWDilQ+h83c7Rg++ttfjWrQ5qofDx7ph+3eLF0Oe99SZvrQi1R0EmLnVT0A1XfadbjkGa5Rx6cdUAvUrMIf22oXK3X6flGLy71jilxWUbGu+sNlltOTwtE7oXQ/+YBtj9lQa//t4SfpTx/nr7SteRZjk/2xyRZqIxclIbSNdUejWb/VlIv2ax1LC4tyTir7f7LgMvIYhFN+2dVXG2ub9cq0S5ryPiNGdzGDCNknI6J4mSoHKlsZIXBS3XZGwmbJSNx/fXm8wCcVuJ05wbHZfVlsOtntDq7EvuMzL8UCu0ytdvtbjZqZ25T+2MQyZhwjdutVFVhYal8/RQqCq2oXGvL06DzwYeYSJaLrZ5/Hw8nEVsj0Pqls7tnnvpPSjPC362NSbNCu4v1/FKTaT7y3U6roGlC40+SDJUFSxNqwqJub12Xgo8m6UEf9M2eHu5zvOhT5rL9N3U1erstI2rN+7nOnuHXsw4EIOND9bb7E0jPrzR4sXQ506vRlEIEmXx7Jqbbry1UkcpiwigFJCWPOH50EdXFdbb9pX375Ef8/nejP1pxHrbwbU0/vCDLlkhmpJ6qTV2EkXbcg0adhOl1LVaRJC/u9osbbLTU/qa83cqOgMJFcQZmyMfQ1O52XHPTYr3JiH/yW8/5U9/Y+NUk/RV48986wb/57/xGX/+t77g//YlNqamYcLQE9TOouGMpopWWJw2SbKcaZSw2rYwFY1bXZe2a4rT1sJQyzY0fvWtJQ5nMa71alqA84jSjMcHnqCgGnbVhB96SdU07dQM/vj7K/zkxQhL18TqXVd5a6XOnX5NNPiKgp/vzsjzAk1VeGfleG56VmSFoI13J2ElRn6vX2OtZVdIu1mUsj8RJ7k4TfnmrQ77s4i6rfPOSuPcoVCU5lXDLkpF2uLkOzR3OZvvd3d6Ls+HAU8P/ZICp5FkOb/3ZECnZnK3V6u+z5yy1qvJADnJC250pBGilLnnveUaTdtAU5Rq/Zx1nSCN55Wm9VJBbpBm5K+/u8yzgV+ZB8yj45r06ibjIOZgGlXUvl97Z4l3S9Hzjc7ZaylKsyonP/ncbnRcejVpUs6/xzwvaTkGK0270pC9jgiTjM92pwz9mJWGRd02qr1kZxxiapr8TzdpWOIU+pWNNu+vtxh6MQMvJkf07RxDq/7/VU10vrLRYr3tkBUFLdtgcxRwt1ejtt5itWVjaNIImoWpaCKVQtbb44DbvVoFeDA7Dn6c8tHWhAdL9Us975Nh6UJZXawlb/dq3OgICimIM3YmYlAijppCX/z1d5fp1SUP6tRMiqLg8YHH/lQkSdquea11wWI8WK6zVLdKl25Zs92axfcf9Kv/xiv1wWxDo2vpIpPTdo7ljStNm999PGCWpwy96LUbU3VL53v3etzoOJXswCxKmYYZ76+1MDWV2/3asXvdds0KZaSpCtMw4dlAhpl3T9R/l42tUYAXpay17TPAF8cjLZ/x1260+e7dLjVLp1e3mIYJrqmzNw34B18MUICGc6QXtzsRTeylhlP2BjL8OCXJ1FNshT+ocd2Nqf8J8L8D/p8IkvlvA//8ZX5QUZR7wC7wIfC3yr/+b4B/iis0pvanEUkmAmr704jdiYijdusm95ZqqAoMfIEz5rlwyhcFPh/tz4hScUQxNIUXpXjlRsc5l+N/mYctgoFziJ0gpZqOTvcSVBFFUU4lhHNb0a1xwNBL+Hxvxv2lI+vgjbbL/jRiHCR8sj1luWlh6xr7s4i2a7A7EQjsziS8NrpKkuWkRcH+LObuksvAi6sEd36PJlFKw9aEulDAT16MZPpvG6w0z1+opq6eKp77dZNtW2e9ZWOULhDTMCuhyjFRIgKYIz+p6IpDL8IrBZHn1rWXCUvXBNqdQ5QL/bHlHt+YznLTuExkecGzgc/eRKhEX73RRFNVVpo2aX6U8NumxvutJuMgYegn7IxDVls2m6OgFFCVKXjLNWhdYCv+qjHwYl6UlI9bXYelmrzDqqqIU18qVNmbXZflps3BLOLRgcday2YcxPx8RwQsG7bOcsO+EgrxKqGqyrHEZOTHPN73xEFJF3rQ++st6rZB2zF5VrqibbQdVJXKwWa5aZ1qdFxnnKTofLoz5bBEWv7S3S4f3mrhWCqWoTHwYj7anNB2DW73XD7dnZKkBXVb5+4lGmfiylTw+d6MfilcuzMR18zdcXRqbcVpzqODGVlecKdXO1UYjH2B9AfxEd3oPGi4Y2pYusrQj0lLeudi3F+qszsOSfIc/xyqz3nx+f6MsKSttk5ov6mKgqooZEXB3Z40ck1NYWscEo1zVhoWn+/NGAcyjerXrSs36C4TkyDm0YFQ8CiEamUZItRqaII4cEyNuz2XJCs4mMU8PvDYaDtMopSfbU2wDbVCfr7KHrM3kUFEw9Z5u9c8NQDZHgdMg7QSzR0XaZXovLvWJEwyTE2ats8GPjujENPQRIj9xOE09OPKJjvJCsxLouCeD32+2BPjh5qlV1NKVRHqzvx7W4bGt251SwqqvEsrLUuE6w31FGJ1EqU8KbUkDVXhVq9WoZNB3uXnw6Mm60UNyf1pSRdRStqsppUGIgobHZs7vRofbrTZn0XVM4bTJiSL9z9Ks5JeKUXP0IvZHAXsTkK+catzpYbE0E/KzxRk3M3ukcHGPM77uPOaCy3XoBMapNOcF0ORQqacRgABAABJREFUP5hf062ey8hL8KKUn74Ys9IUM5HNUSCaNoagPGe19NxE/M//1iPSvOBf/vUHl/6eLwvX1PkXvn+XP/fXP+PvPjzg+2/1X/5D1xB+PBchVvGSjPbCvzuYRrwY+WIY4Ii8AKZSUUvOuj+6prJySfH7i2IWpkyChM1hyNhPuL8sjdPVlsVu6SJolIiRb9/pittq+Y5Gac7eJKLp6FiaKk3eTNxY319vvdQMKE5EXybNi8rsYaVp01g4L+qWTuKazCLJt2/2XO4t1wVxe0EB2HKMSrPvLOdpOMrLDmYRIz8hy+V65nS3u/166awpuc16y8Exj1PODV1jvSPnrG3qOKbGO6uNY/fpoui4BlEq6JrL5pxhkvHR1pgfPx+z3Dg62+bXZRsq/bqNoiocTCMOPdl37y83KgOcs2KlaVMUnIuwXjxfhl7Mbz8+ZOQn2KbGr72zfK1I4pEfiyFIDl3XoO0aVc41R68oCtzuuqBIc2Cew6Ao/Gxrgl7SP99ba17L+T1HhI78mMcHM0Z+yq2e1H9PD326rino0KLg830xM5m/o/26GAfsT8RhWJklOIb6SnRxRTnbvEoaJfKMng98vChDU8VJdRhE+ElOj6P3JErz0t0TDqay18xdA687LF1juXl6PczfKaGQFiW6XvKzFyMfQxdNtvl686KUJBeX4llyDWyeUu/r3nINp8wPFs1uVprWme+1oSkLDdqEPIcwF7OYkzTWSZjw7NDH0sWk4WQeEaUZh6WhzN4kqvb7rVFQ0fcXYxxI3ZoVBeMgxtDU0sxN8vcbnRpvrSQURVE125IsZxKk6KrKJJS81tI1JkFAo6TBXqe0y5uK63blGwL/y1f88T8N/CbQBibl342Bzln/saIovwH8BsCtW7eqv2/YOtMwJUqzSrD1YBZxb6nOWumYkxVis27q6rEJlR+n1QRwkWYG59sc701CdstD+yLUgqaKG0jLMllumny6My0FIM8WGbxMzBc2yHRy6Mc4piShjllCUEtth3mxkGbCzW7YGtMwe2nX9iqRZDkt2+DeUg1NU2i7BmM/IUhT9idx2bzIWW44KEpB09U5mEWCILjC7xEXuowwydgZR6R5wY2uoEYmQcrWOCBOc6E7uobArFWZEJqGyt40Lu9JcqWmXMc1mYap2NVewn3ksqGpCnVL40Ap3RicI3cjE5X7yzWiRPj0LwY+cZbjGDpBnFG3tCNNhSS/dureYhxZ3mq4pcj8PO4v1fGjjEkY87tPhrimVjpLKexOpFmsKpRukm/uGs8OhWks4oa7k5AbbZdvlkKLmqKgqopMj/0Yy7Cr+3mRtTnIQfNo37tQ0PcqESQZYZyxl8ph9M5qs0RZyPqYF/txemQ5m1xkk1XGkwNPmgSpTGC2xyFtVzSLRn5C8wynLC9KSVL5HZMwOdWY6tQMZpEUYK6hEcQykVcUuNuvnTr8VFUSA9l7jn+Woal0aiZ+lF3q+yyGVmrcpVl+SicwKwpajs7zQVAhBLw4q7S9niaC5igK3liiBkKbUkux0oajH5vo3ynpLPvTiJ9sjlFQyoRJYeDFRGkmGmjxq6F7QBrf40AoO4aunCqkpmHCk30fx9QIEjHtOPlOzJ9nEosJxSRMqSvwYKl2qgDq1iy204CGZVzpnmqqIvo3WUbd1sSWPsw4mEXsTELuLKCvVFXBVo++x7xpVxTyXeeNPJAJ2TRKoSj1+k7EKIirJmuYZBdSdufv5xwdmmQ5H2y0qJk6rqWRF0W1J9xyxUHJtS52yzycxeXgJKNbM0SDomwUzKL0Solkt2bix9JUNDTYn8aESf76qE9Fiq8kFZTlalMQyU3boGbqfLwlKdvAjzF1lZGfoKJUTd/zKHy7C2ipq6I+Xxb/01+5x3/+gxf8a3/pJ/zlf/kPv3KedZVo2EZlfuIa8h5Nw6ScWmf0a0Kf1VUp+nfGOW+9xIH4uq5LLTXu6raOqWtVA6BuiYsgwA+fDVEVhQ8XXEl3xiFRImfHSsuC4nwX6PNiTpF+uDujYeuVQ+RidGpCpVEV5Uq0+csMj4qiKGUmMg49GTDCkROdVuq5moaKbag8O/QrdNdqy6Zu6dxbqpEXRdXMuYpGj6Iox1zfzos8L5iW2rD704jDaUyc5kxDKVznSGVTV3l/rYmpefI8DfWI6qlcfG1GaXp0VsyiVLTQyvu/NQ5Is7wyVnlVmtx5UbN0dEUBDVbb9rHrWm3aOLrG9ijgk50pnVLHtihgaxTSdHSRbUhzDPX6z27H1Er9TqmbdiYhQZyVVKm00jRc7zjCeEHeoxsdF12VvDfOrq4ReNlQgaTMA3t1i4ajYRkOh9OYoSfakMtNcRds2BqWJnRr19Cr9/7LDlNX+WxnSp4XrHfEOCvPhdmzP40qvVXH1Gg5JnWroONcx74tNN+TiNT7S3XiUnvuZMwHVvNGU6cm9Z+pq2c+0/mwNkxy/Dg91fQ1NRXHVCutNJC6fd6sOhm1sm4NogxNUTmcyV7w5MDjYBbx/lqL99ebYtJQfp5RStTsTEKWGm75d0fOvukv6LlfNa5lxSiK8le4oLdQFMX/4BIf8yeR5tR3gbktSxMYnfOZ/wEirM63v/3t6nf36hZplvP3Hx1yMIu5v1RnpSlWiaqqVJDKs9BPNVOnZokGSrduUjM1lpuWqOCfM42ZTygngTj/nDdt1VWlEvWTYkM20pEfv1bCtNyw8OKUgRdxWGpwzJstmiqismM/oV+3jkQGLY07/TpjP2ZrHPL53uxSqIuXRcsxiJricLjStHly6DH0fHYmAatNhyjJ2J+J28l7603WWy5RIkiy9fblJx1xkvP53ozlpkXTMSrxZkWR5/vF/oznA5+NjoOpiXbVe6tNivKeTAM5WPpnODFeFDVLP2YZfp3xwUabpYYk++0TsF/X1Hk+8Hm4N8PUZYOdZqJxULc0bnUdWo7o0LwKvPSy0XZN/ui7y5WY52IYmoqqZny8NZUEvCE0vd1xRMvVud2toS6LLtZ5roZvKlquQdPU+Hggxfezgc+dfo3lhk1RFBVVqVe3cE2d1ZZNlGYvTXhnYVo1iK4jejWTL/ZmGLrKw50Z76416N6QPWPgxeyMQxEmLvUvJgv6AedFmuVMS4HarBBE6L3SRvlm12WtlZ/5zjRsHcdUSfOC9hnPq2EbvL9+9J5Ow6RKds4rpk1dPbNRESYZcZqL3kjzanvhza6LbQjtZFH7pigKvtiflWKh0myYhqKPM4tS9iYht/s11tpiuXyn574xYUjb1Pj+W0tnPi+9FMJ9uDcjTnMpanWVgRcRJCn9usW9pRo1U7+UJsFZcfIcOBnPBz57s5CBF/PWcp2bXedcQd6GbWAZCq2aQc+VqfXJmFN1rxqrTRvlpoKhKhWaMs1lwje7JPrqxTCQpogK76w00DXRFntrqY6fZIyDlM92p9zuuVXjSpo5QlU8r4Eyj+VSD8fQlDOn2QMvrvaEj7Ym1EwdQ1cutGvOi4LHB7MyUa7xzdsmzwZC57vq4EhkBGTP+Gx3ChQiopydvc4vG4KyKHgxDBmUCfI8Zzj5ftmGhlo2Yd9tNypdsoF3Otf5P/2/P6Uo4F/59bde+drOC9vQ+L/8k9/gf/Tn/z7/3H/0O/yFf/47bwQRuRi3e9KUnzuIDbyYzaFojgVJxv5UnCX7DXEdNnUF95o1Fs8KU1f51u0Oe13RK118Do6p4aDxcHfK80FAUUDbMbhbNsxqlo4fRQz9CEUpuNVzUBX10jmjFOsOqqIcDX6D5Mzi7lUpWC8LRRFU9083Z/glpfqd1SY3SrqbqWv80r0uKw0ZTC0OdOdF3XVqTJ4XL4aiDTs37ZlECYpS8N6aPItJIMWvaGiKuPo8sqwgKR27XiXGvlCV4MjRsG7pbLQdZpHoh153dtmwDf7Qgz5elLJ84uxXFIVhkPDFgTT6RTNH5ekgQAWaToO7Sy6qIq7r1x2WrvGdO132pzGupbI9DpgEKbe6Ln6c8WLoQyFovJPn3VLD5sOb8u6fh+R73TANjQ9vNBn5Kettm0mY8Gh/jKoobLRtMkXhJ89HrDQdunWTX3l7ib1pKOfcNWhfvWq8vdJgGqayr8QZO5OArmuS5jm6qrLWFvT69+738EoNuteNoijw0xT/xGBqvvedFfOBVZgcsQLeXz//HJ/nltYJwMs85iynLC+qs9jUVQ69iLF/WkZb3E+bZHnB7z0dcOiJWVTd0mXIFqV0auYp5g6K1IxDP2G5YVd1zJye/Q9DXNdV/rnX+WFFUVaBuCiKQ0VRfhf4F4H/I/DHgX9w1c8bBQlFIQV8v25emjKkqgr3FqZXXtkt79XNc4uWXt1kbxLRco1LFzaWLjbv0zClV3u1RRel0mRq2DrLdZuw1Ak42RHdaDvHhGWXm1klvDyNpLBOs6xyV3mdmItOzu/XPEGfI5YcU6y901qOqsjk/qKE/aLI8kJ43raOXTYQQe6LoYn4X8M6EsxcpCm8Ll/5TYWuKlWD7WRkOTRtHT+RafjeNKRm6cyijLdW6tzqfTkHTVGIwOFZjYc0K6Q5WYrf3ymnX6YmgpwfbLwZwcWXhaootGoWK82EvCiOoXIURTmGJsjzgoJCCsqXFHJNR9y3rqs11SxpCUlW4CUpi0v5ZLGf50KlsF9CI9A1VRLcQMTzb3Sd4+Lk53xHXVOP6UC9LFquIW6SnGVccHFESVaK0l9NRyVORYOtWzNPFQ1zdGjd0onSDMtQabmitTTXK9IUhZsd940hpRavM0wyOjXzTGOENCtoO4Ls7dVN1ls2n+3N0FXRA7qOdXPyHJhHURTkBSzVLfK8oOXIVPC8xhTAUt0mTgM6NfNaEZq6JoLlYz+pHMP6dYvtsiF7mec0X9t5fiRIq2sq762Jzt3Ai4kSgbsvNeRda9gG761d7p3VNRXH0Epq/mkK/7yhKyhg+fy5I/B5dP80K0qnQZnuXdcApF8Xg4Omo79yU8orkQEd12Sj7TIO0kofbTFOvl/vrDTKBp783oMSpXxQirwD/GxzzF/64Qt+41fuvbEz+cMbbf78P/0t/sX/5If8yX/37/Jv/KkP+O+8v/LGdDbmxgLzCfz8PmmqStMWFJ+hqbRsgw82WqR5/kpN3FeNuV7KWblq0xFUlamraAsiwBttB0tXStS55NVX0QIzdbVq0gVxSt3WK4TJlxm3ug5f7E1LDSKde0v16rwxNAVdVStaZa9uMjqnkf8mY45cmzdi7vXrPFhuVCi8i4rf5abNLEo59GK6NfPKrmvxwppOSrT4ra5LxzXQNBUFBS8+TTl6nUgzMSNqucaZlMg0y2m7JgMvou0YrLZsppFoTflxxnvXIY57Qay2hAr9fODTskW/6kbbwYtTnh56dFyjQi0thlZqqY6DhDB5Nd3Zy8TNbo2bZW9yEqbSaC21z+I0rxq9SYkI79UsJmFCmGS/EEpXvXSQTPOcrivmJTc6IptDqYM8rxubtk6a5ddCP1MVBV1RqiHtZWJxYOVe4vfXL3Fuzxvk8ygKMZM4ySKorrukG9Ytg69utAkTcfA1dPXcn5mfOVleVGfwatPm0IsrFtkf9LiuxtTjoiievcbP/yngLwMURbGnKMrfVhTl7wLPgH/7qh+20XErl5s7PZfP96ZkOdzuuZd+wfNcBOOKQqYY622bpbp1KsHrl8nzVeN1RD7HfsLPtkZ4YUaUZfzy3R4rLevUJOysWNz8265snIamvjY1bfF+TcOEB8sNbnYdHu2Lhotr6ryzUuP5UMTfXicxibOcT3cn3OvVsQyNGx23KvjM0o3Ei3gpmuQPUmyXWmEAD/T6sYNsbxISJCnduslX2y3CVKzOh36MW+r3fBkRJhnPStviuQ7bPKI0Y28aUlDw/loT21ApFIW6ZZDmOe1rhH9fNTRVYank/jul7svHWxOajl5NTOexN414PvCZhAlfWW+e0mdZDENTr1UIVHjjLn6cstq0+WJfUBS3u+6xxupchHHoxSw3Ld5fvzg5u9FxoSP3YT7Jv+6wdO2VHT+8OGNrGLA3jWmdQSs8L54NfII4Y1+JeG+teazYUkvx6I+3Jiw3bG52XPIcNkcBjqmR5kUl7vum48VQdCAUJeLd1caxM2ToxQz9GENX+WCjhW1oGKXI96yciL2JGJbOYUEslOimrdOw6ygKpxCbizEOEqah6AXNzQWuM4I4q6b2cSaC7y+7B16UiiipLnbdQz+hZmqYusrQiwmSjKWGFJuTUPbY85K6l8U4SNgsdScLilMIHHE7tCuUTJYX3OxcLAA/f9aXQWxdJV4VuTaPIM74nceDUkML3l9vcqtXIjVfMlA7mSd16ybDsmAGScj/9//Vx3Rdk3/pGrWlzopfe3eZv/g//x7/6l/8Mb/xH/+Ab93u8D/71Xv82rvL12qZnh3LgdJKCHiOZl9q2IRpxjiIudl1eLD85il8izHwYrZHYgQ0N6pZvPZZiVrp1UTIe28SslQaqHRci6GXEKX5Kwk5h4noqDmmuMm9qnOxF6WMggRdhYGXnHk+nhc1y+D99RZPDr2y2Xb07NNc5D1Azsn1tnOKGn7V2B4FfLo7ZbVp885q41J75Y2OODc2LKEzDayYPKeiVl9U/KaZ0HyKQobEZyHang98NocBLcfgwUr92Pvfq4lbuKIcMUrmZg31Et1y3U3U7XHIqESLvL1aP6W9J653Bd+73yPLYRwIingapmeaVr2paLsGkzChYQhDQ1UVvnu/y6c7s0pW5GRt+bTUNTycxRciba4rOq64PzqmxkbL4aPtMUMvplMzq3f58YFHlheM/KTSkPwyQwaesu95UcoknIq2nSWDuY5rVgipxXfjrZX6azWn4jTnR89GvL/elEHlJXThrjKwetXQNbUCqZwXilLK4gQJt3q1U0yOMMk49GKati5u9WnOoRfx9kqjyom3RmGFAj25zv4gxnU1pv4L4JsAiqL8paIo/vGr/HBRFP/+iT//W8C/9SoXMnf/WG853Oq6TMK0ch0Z+Qmrrcs/EEUpOaBehKmp1WTzFxlRKon7yBchy5WWJXzTlxSnc4ccU9MEVq0KreorL/m5q8Rcx2V+ALumXrpe5Tw+8Gg7OklWlEXCq0+iigL8KGNzFHBvqc5iTqIoypVoiWEikNy5c9BlEpw3EXOtMHF1Of7v9meRoI4U2ay3xwGqqvBr71xvYn2ZmD/jk/dpHIh1ct0yGAYxs2GCF2d8926P/huCMl8Ue1M51Ho1k17d4lbPrabyn+5MyXKxJ15tHqe4qIpoaqR5wYthcGFj6nUjL39HnGVstF1ajsE3bomk3tNDjzQrmGUpfnJcp0BVlLKhkaAopR7eJYoFs2x+XBSTMGF3LGi8103MLxthkjHwBG31bBBc+ufmr6CiwFmrVkGpBNGHvkyLDmYx0yDhW3c6b5zWU13HsbV9/EoPvQhVEZfF+TM1dYVv3e6+ETdImO95AVEqelurLRvX0o6hhRejKAqeD+Q9bdlHxcCbQJ3M97+i4JSo+nkxp8+lWVbqr+UczCTRm5uXpFnBrZ772kikxUs67/oGXkyWFzwfhKy3bQ68mJUT+8hJp6tXEcd907E1ChiHCVvDgFtdl6GXsNZyLpy4TkMx5XBLCtA8TiKq/l8/3eF3Hg/4N/+xD76UCe4HGy3+yr/yff6z33nGv/9bj/iN//gHdGsmf/LDNf7Mt27ywUbztd9nhcV3V/5OVRU0VaXlmKX4dkzd0tkcBReiEt9ELL6vJ9OcWZTiRxk1Uy/NJEQX6/nQp1+3uNlxX2sIs7iuX+c2Pzn0yHPYn4YsNewzz8eLYq3lkBdFlU+dfa3Xs6/9dHOMF2VMgpQ7Z+gunhV2OWidx3JDTGTmWkeXjbO+QZRm7IxDQY764ni4WM/EWV45juYFaNX5qpx7NlxXyBl+Iqf0E+baQPtTOb8PZxH3l+tfOvq+YRt8Zb3F0wOP33kyoOOatGy9kjkQXcPjz1ep9oAv5xrbrklUosgf7c94dihn3zRIqgFcdU1/AIzZNkcBeQG7k0gQ5a51DM2pLOR3l80FzoskF4OS7Ul46j17EzGvP/p166XN3MtoK97suvTLGj5KxNRkvk89H/iESc7Qi7nRcchy6NWsYzpii/fyy/j+rxvX1Zha/Kb3rukzXymGfswsTNmbRAy8mLdXGhi6uDacJfJ7XszFegdeVMIMryZ2+KZibkm73nZKUTvptj4+8LjZcc6F7B/MInHQIqddM649GZzfL++EOGLbFbqTpavM4ow8h70kombq7EwCLF0aZVdNBlaaFmsthzt995WnbwCHXkwQ57yYBRzOYh6s1H8hUMfVpl1qU5ymyXVck8NZTNs1+Gx3xpMDn7qlM/TjL624Bkma7vbFEvckAqppGxVdo2Zq/PjZiKwo2Oz4b7QxNfYT9qZh6c5zdC92x4KY3J1Ep5qgHdeoDAtOrpelhsVGxyHO8mvVuzicyX7ULRtlALM4raYYB7PoWJLYLilVlq6eQlHULJ27SzWMoThtLNIuXjf2JlFZmMT06uaXMlnp10xsQyVIsiu9K7e6LuMgKUUiT9+DmqVXe3/LMfDjjM93Z6SZ0Ge+rLVzszShqFn6KQpN2zUJ4pCmY/Bi4PFwz2O1YbE/jd6YpolaniGGplKzpUA7OX2ehgm7kxDX1GnYevWeWnrG7b5LlhVvBM110R4D0tDZnwp1fv78WuU00dSF+jgJpIgb+nFVDOvXtEaatsHtvkueF+c2FhxT5ec7Pl6UoCnOmXnD7iQiTnP2EjE/eVP6Zq8Tpq5yo+1gqAq9mskoiHk+8LnZPV+PbW+6sH/UzDOL8Swv+Nf/ykd8Zb3JP/Gdm2/6a1RhaCr/7Pfu8E/+0i1+69N9fvP3N/nPfvc5//e//5S3V+r8xq/e509/Y+OVh1MX5UC7Yym+FBR2JiIm3rCMakj4ZURnwUHz5CBjjjBMspy2Y/J8GPBwb0rPNTE1jan7eqLXln7xuj4r5kOShm1UOk+GphLlOR3XRFHANk6fjxfFYh7ciYzqjBc3YclDr/I9t0YBfpyKy+CJfKHjmvhxQM3WKvmMq8buJCTNiiqfuSh0TRUTmviIir03EaTEcsOm6egVUrRhG6f2RKFaClVvEiRvDK27GBttB9cUzaOT6OWmY3Awkz28aev86PmQcZBSM3Xu9C7X6LvOmA8SXwwCDmYRv/bOEn6cUxRnyxfc6dWYhkklTP2mYn8qDe+OK7IyINqMuqaQF8WxtX5vqcYsPC3M/WXH1ihgc+iXOYZBWLrSdRfO1PWWg2Oc/W5cNTRVIc1zluvWG0fJF0WxUH+E14YyPG/vygvYHAm44sFSDctQiU8gWy9aZ38Q47pWTHHOP3/pIZDTlGmc0KlJwvqqOka2obHedum4Yq95lcbWZSMvobOXbczMoZBRkvP1m232phF7k4hZKEXueUikpm1UoorXSRdYjLmNdFEU5LnYgX5lvcWtrjSPDmYCaa9ZWnkI5gRxTqdmXkmUreUYfO9+n4Z9eV2v86Ju6exNQuHeOga74/DYIXORoP11hqoqx2gOi6ikRVj5YBax7ejYuobxCyhmapbOnMWxeG9sQ6vgykNfCseiEG2sNxHz370zCUsNH2lAza9n7s55FmVnuWmfqzunKAof3mgxi9LXbgws3p/tcUhRUNq9yg10DA1dk8bJyetsucaFKIrbvRqdmol2RQejl0XTFrdHx1TfiNPNWeEnOV/daJHmhdgwXzJ0TT213y3ec1NXj+39q02LtmuQZsVLHRevMxav8+R+v0gFn4UJvZpoltWv0fXzZJj60RnSdPQzz569aZkExQIRN3SFJJX39Kwk/Krn2EWxuMecjJ1JSBjnhElOv2ahlgLh8wl6nObomgg8d2sWay21+p7XFSe//8n9uijgRttlrenQdg02OqeRhw1b53AW41ral3K+vMo5ttF2qns78hP2pxHTMs84L9lu2Dp+lGEb6rnF+M4kxPVi/sKf/c4bNes4LwxN5Y+/v8Iff3+FsZ/wX/10i//0t5/xr/7FH/Of/vZT/p1/4huv/Nnz4dKiYd1yw2a5YbM5MtmfROxPVfp1kVEQF94vr0g82ZCavxe6ph6j9uzPIm603FJ8G9xr0Mi5aF2fdU2747Bscor2nqGJ4LpXOvq9yrvTsHVGfoKhK6caG1dFsC3av+9OoqpQnO8HX7/V5q2Veqmx+mprvGHrDL3LNzcc80jYOssLdstGxc4kpOU2eGulwZ1+7cw9sW7rDEo3N/cNnj+LoarKsTP8vJwyTmWYpKKQ5sUrN/pe91pzRBPIsUSv6Xbv9NqdfwdTP52fvImYU1D3phE1S8OLMpabNu+tNY895ywvsHQNq/6LpXHN103HtQiTnJWmiJ2fpTPYrZnXklM4hgjZN2zjjTowg+RAdVsvG4DXl3cs7l2LNfw8J7MNDS/OzpTUWFxnX1ZN+zpxXXfta4qiTBDklFP+M+Wfi6Io3jzBtgzb0GSCjiJTqWt4MRY3++uMSZjw7NBHKydtl10s8wYQyGGvKKLWf1GB2nINalYDVVHe6IQuyXK+2J9V1ImmbVQH/nrbYalhYWgqAy8WfStdnDauEqKDcj1d6JZj8NXS7jtaEAvM84JHBzOCOK9cIr6MCJOsshu/26+deqarLYcCBUtXK5rSlx1FUfDowMOPMlaa1qkmT90y+Mp6k2jBuem64uRzqds6gzMKvDv9GkmWvxLKUXjfr3dvD2cRW6MQ25Ap5rwxvLgfGZrKOysN8qJ4pST7TSD7lps23ZqYF7wpgeCToVCwPQlRlSP6wKvE/jRiZxzimOJudvL6XVNcVbwoPbNZ8KZjbvWta7Lfn3w3l5t2Ja7df8NorsUz5KxoWNJgsAwV19R5e/n893R+jp33va4zvCjl2WFAv2GeeY6ZuloJby8WOG8qwiTji/0ZAPf6og1Yt6TpZOhi03zW/ZifhfobThDFndIjiDNWW/aVHI4WXYxrVs7BjJc2KZYbNl334v1j4MX8K9+/+wszw1iMlmvwP/7l2/yT37nFb/7+Jv/6X/mIf/Y/+p1X/rw4lfwny4/yn3lstB2WGxZ+JHIMb3JIeJk4eUYtrqeVpo2uqmzoNg+W6mhfUiPg6aHHJEjp1U0atkGYRDimWq0T4zXP5rYrQ9DryIMNVcU2VMLkyP598fnf7rmvnUfc6LisNF8tj9FUaTDN7eQX7+1ZNP3m/4+8/w6TJM3z+7DPGz4ifWbZruqqNtNm7M7uzpq7PYfzMAdLgjAiCYgQCBoIAikJdI8ggaIgUf9AhCgCB/CRAJBHgiAAwh/cmb31ZnZnd2bHtTdls9Jn+IhXf7yR2VXdVdVV1dUG5Pd59tme6q7MyMh43e/3NY7Jy4tVBI9aNTwL3GyPGYUqhW3CkJvA1AUvzZUZhSkLNee5WW68slilbBu4BwS1tEcR670Q19K4MFN+Jte5uwhytunt2fdOrvFxe6Nnid3j5tOrDRr7GPX7ccqN7TGaEFyYfXJ2nATao7hI/nuilzoSzj/B+eMgTOauh9fWqmtSdc3H1gDgwRibqVgsPkWbkifFqRSmpJQvjJPWhC6tDvX6M9fxHwfDMJ2mRwVxdqIqbtk2uFoYKz6uCvosupN+nJGkql04CB5NAJgM1GZJJRHoT7lQdhQYusal+XIRR66uL87yqTdZP3h26SzjKJ1qg/dj7cxVHRolC+MZFg4eRpJJ/EhRb/tB8khhytQVU+WkBZfDsPt7GQQJF2aVway5T0XjeUpvJ9KnMFGpIistb99OjaYJtBdM8/3MWQxCsNr0QIhHUkWPg8k9D+Js3yQXTRNcmiuT5vK5PBvDUEV9J6nEjzNq7t5rWG54zFWcfZ/lZ4395pmDntNJhPlBn+s04VkGqy0PQxcHJt09y/VkGKbk+eTPCa6lU3HMI63Jz+IZVPPlg7n6pNHbR/1M8Pj54+JsmT/505dPdB1PC5om+D2fXuaz55tsDEL+rf/+ZK8TxNk0Veqg/U/N03j5GTQJH4eH16jdzdczdZeZYl19VvsMKR/IcPtBwsuL1SJd7nSv4bTWN01TxZLd64kfpw++/1OSTD3JPHFhpkSSSUxd8O59xRfoB8mB/pHPi0kxSdkGdX0PF6aEUE2P3Xv054FW2abqmgeeWwbTPUhOnOU42tM/Gp9reXvuy37Py+69UZzlz9X8er9x8zAmZ+NMymkwyBO9J2K6b8gkPIsn6Gms7/vNXUetATw8xl7kwpSQ8rkq704FMzMz8ty5c3t+luWSNFNyspNs9LOCjnvSjmaWK7lILhV98t7d2zx8jQ8jTnOSLMcy9BNdc5zme2ikoNJGJr5Uj8OtW7cee43PApNkEE0IMimJkqz4maJf37uz/71Mc0lSJAjZpr7vMSpO82mE5sNf7WQiPOp3Lotr1fYx53uR7qVEmR2OohSk6qJomjjwPj5r5PJBPHJYLJymLrAMHU0I7tze/15mUpKmEk17skUgzSWCx2/K0lw9i5oQ2Ka25zs/7PuePHOWrp3Y+HVSrHzcNeZSFblFEfu9+1l+ns/k7jH9MNJcMizS0mqOyZ0X5LmcjB1DE4yjtNhIqWTDuy/YNcZpVhxAFOMqk3I6vvNcEhQeDq6lP7GR6JNCSkXnl1IxnB53L6M0J39oXTvq+2Ty4PUvl5IklQiNA6UhmZQgeWrfd1qsHwJBnOUIOPAzJlk+3dPsThSbfM6jzudpJomzDEPTjn3ISzJJmuXFWvzgdw8b3w/jNOehyT4LAY6hkcu9Zrm5lMrIWTvY8nW/5+BFWb8Pw/O+xsm9NTSBBKIkm0oYhaAwMtYOXL+Pi8n6m0uJoWkYujjxuv/w83oa93L3Gi0lhGkGxRyna+JE+5Xdr3nr1i2WV1aPtFeREsaxanK65tF9ZaZz5iHj5XF43s/lBGnxHWe52hNpQuBa6lxw585tziytEKZZwQJVDeAn+dynjZu3bjGzsERePEMTmxQpn18BcT98eO0Gs4vL1F3zuZMMDsL1GzdpzC9h6tojKqrJOe6o5+SnhWs3blKfO4NlaM/F5/io+Pa3vy2llE+1tvd0XdmeEc6dO8e3vvWtPT/7aHM4ZU9dXawcawHz45TrW2OAfWmlR8H9XsDdjs96L2Sh6vDHf9/PPXKNuzu+YZLxj9/bUNGwjsFPvjx37C7Ru/f709ST15Zq3GqPGYYpmgZXF6qPnczeeuutR67xWWNrEE518RfnStzvBtzp+NzYHlPzDFYaJf7df+XRewkqnWASL3puxnukWzWKUm5uq++15pqstDwmhdlcwgcbA/JcaXaPkog1oUUKwSNx9S/Cvdz9eYMo4X4/IpeqCHNpvsIf/p0/9dyvMcsl768PkFKZBr+3pr6Drh/z1moDTRP8od+x/3Ve2xpO2VOPi0A9iF2xNQynRoX7PTMThEnGt2932RpE1DyVZrk7tvWg77s7jqfJYI+jz0582Q57jeWGe6ApaZZL3r7T4V4nxLN0Xl6s7tHtP69ncqMfsj1U93i/2N9v3Nzhq9d3APj8hRb/zu/df3w/S/T9hNudMQJBydF5916fUZgSpBmfPdd6IcbOIEy43faRSL53t0fJNkFILs9XyHOm1/jVa23eXRsQxCmfvdDk06vN58omnFw3KGPo3/WzP3bgvZRSTjv9uiaOFbv9/vqAtOgk7xeNPZm/AV6aK08LLZN5Yvd1Po3v+17XpztOAIlr6dO5bHXG23dj+vHmkDBR/2ayp8lzyfvFunXQNT489/3GR9vKVFiDn7o6dyxWx7Wt0ZSBNZlzJ/IVOHwOneA056G1XjD1+bFN5ScG6vs0dcEHG0OkPHhNz3PJnY4/jeu+OFfCs4ynPld2xjF//Zt38Sydf+UzZ0/ECHiee4wwyfh4U0lYGyWTZsni+taYcZzS82N0TQMJi3XnwPX7uPiNj7ZZHwRs9CM+d75Jq2zx0tzxkwL3e16f9F52xjH3izX6bNNFILjTUXNHs2yxVHe5tjXEj9WZ5MpC5bHFor6fTF9jueHym370h/hrf/dXgIPniAl2RhFf/KgNQKtk8mNX5o70OT7YGJCkEtfSTnRv4cXY+673A9rDmFxKdsYRfT8liFOWmi5Nz+b3/Zaf4E//13+HMFFMwaprsFB1KR2STvuscfX1N/kP/uLfJk4kVxcqrLZUyjzAXNXes/98nlh86VV+/3/23/LDLzX5rW8sPe/L2Rfnr77O//bP/4+Ymsa/8SPncHYFZk3WVdMQJ/ajPg2cvfwaf/D/9ktYhsYf+/GLzJ+g7vAsIIR4+2m/x/8sClP7Icsl17fG1DyTVzh5zK08oZf7TNmiPQwpO8a+RoITvxHL0LhQbJhKljJsVr5Rxy/dnqm70+QvKLq9qC6IKsC8mNXs3ZgoeXIp+XhzRHccowmoeQYN1zrU32K2Yhc0VW1fM3XH0PaY+I4jlWaoa4rmOen2Te7b4/Cisw0n17fRD8nynEzmuKb+TNJWjosozVjvB9Oo7aW6Ssg57BZXHJMgVh4UBzEedntSLTXcR017j/gVSqnGZ8lOcU39yEkbrqWjaer3DzP4nxywJgXTE1wiUkocQ6daJPWdVLZz2tg9nnZH2E7Q9CwGYYKGoPIUAiZOgs444vrWGNvUeHNZFSHjzKd1FPfeZ4hBqEypNU1gGYKluvfImHEsnV6RVtsvZHfPExXboO6ZxFn+2GdUCMFi3Smil0933qoU3hy2qZHmOT9YHyF44GmRP4Gs9CiQUjWwgjjj8rw6DBn6wb5D8zWHrUGkzOiL+U4Wr3MQhmHC7Yf8vzxbhxGULePYu5uFmsNGP6RsG9NGwO779JRv2SNolS3CRLG/NI1pYSp/aL+z32Xd2fHpB8m0S24Z2jORuGwNQn7nf/ll1grT4r/3zhr/zR/53DNPGTtNeJaBa2nc7apURkuX1EvWqc01aZbT8WM2+8rguWIbJz6Y57suKn8KGRhSQtVVc1yS5cyULfJcsj2M2BxEnG24R1JE7F4384du5OPua92zmK3a3Noe41oa6/3gSNKdyfr8tEJrnhWkhI4f0Rkl1Fwdx9Swzb1p5As1h/V+iBCSzigmzSWX5l6MohSoBPZWyaIziugGMaIDpqFRsoxHnofnCQHkMmdrGLHWCw6UiT5PaELQGyfMVS3sh+bZyTh7GnPBcWDqGjlS1S7aI5rlR723/peCF+MUcEro+THjOGOmbGEbGudaKta4XSRNtEr7G6Y+DM8yWGkpE7nmCT2qbEPnE2cbtEfRvotI31cHhCjJCZKMimPyuQtNRlHKXMUhSjPao5iyZTySpAKqYzUoUl0mm6lmydpzYD7b8OiMY8rOyRJMngc8SydHpfqN45RW2cYyBD/y0gzdIJlSbveDY+qHpnoZusZi1aEXJtimNj2kTTy+Ko5BGGecbTyaDrEfzjY9un48NaR70WDqGo4hCOIEzzG4UCvzieU6QZJNmQLPG4IHiZFSSOYqNudnSsxUbDrjGNfSSTLJ5iBkrmLvKdjOF0bdh/lt7fak6vnxIwWl2YpNkCj54GFGtK6l4q4nRvgPf99ZLrnfC4q558HrOKbOywvVPWbM+2HC9FPP5F6GQ7NkkWY5vSDGPKTLauga52ZKzFbUfXlRYmEXqg5mIcPaz5yx4ppcmi2TZpLWPnPd80CS5URJRpik1F2ThZrLp1cb9F6Aws5uREmGRHKm7vDJlQY112IUpXvG93zFouFZrLaUb8zzfi6EEJxtHm2Ohb3JhcfB+ZmSSls9gFkwU7Yp2wb9IGZrEJLnkObKzHyxporYaS6f2vc9V7G5aek0PBOzaFBpQhClOTe2B1iGzmrTm+5Zqo75yGfRNcG5mdKB8/mg8OpIUuULWPM0PrXSYKnhYgjBKEyJ0/zQ+zuKUvw4pVmYr7700OFtpmyDUAepZ5kwB2qfNWE4ZLnEEIJhpHx+SnaR4lZc+25IKae+K5oQXF4oEyYZG4OQ+lP8DFJK/v2/8Q5dP+F/+ne+wO2dMX/iv/8u/9WvXedP/syL5bt1GBxT59yMR5jk0zU1jHPiVK3h52Y8TP30QoNGUUrVMbgwW+LCTImXzxxsnJ/nkq1hhKYpM/6HMVs867oQ++6tT4Ld+4pJ4+9s02MYJvSDBNfUKdsmTlOn7plHajw3PJMgTun4Kk3b0ARn6g669vhxlmQ5l2ZLGAJKtknP3+sp0w8SRlFKq2TtKYienykxCFLqL8g6fFJUbINBkCCExLNNPn+xhmvq7IxjpFQFnisLVT5/ocUHG0Nut8f0/ORY6eBPG7ap8bkLLfJcstGPCJKMcZSoxvsh56BnjZmKzWfOtVioWnzzZodPrTaOtb4/C1iGxtmmy7lWaWrJMMG5Vomenzzzteth1D2Tn31lnkGQsN4NuFf1Of+CsPeeNV6cp/sJEac5dzvB9M+tsmLPaKjYWSEESZbvqeaOopTuOKbmPbrhO62H9KANX6tsMY4TFb/sJ5Qsg4pjTmnwt3cCxlFGh5gr1qO03xvbY7Jc0vWTfWUKoAbjSWSIzxN3Oj6jMGVnGOHaBqaestKqkuSSKMmxjcNPCWGSsT2MqDjGI8b3UkrudhUrJ4xzVluekjoK5e8xMd4MkqMZ0Zu6tu/G53ljaxCS5JKeHxMlOb0wAaHR8JR3QNk2nvsCPPmexlFKkkm645gky8lSxYQydW3aEU2znK1BhPFQtDA83qtBpRea+Em653ejNGNrEGHqYmq0uNYL942snaDmmdTYf16I05zOKCZMskeKo0cphs9WbNqjiIb3IB43iDPaI/Ush0lOlEhutcdcnj9YBrB7DnlRoGviEYP83egHMfd6AWkmWSskFs8Du+eOUZSxM46xDY31QcjFuQoa4pmFIByEfpAwCBJKts79bkiU5AxCtX7IouO3e3wPwoTv3x+ia4IolSwckWUwDBN6fkKjZD33uWI3pFSHzjRXn+WwYu/jkgdBpRX1/IQky7FNjaGfUrEN7ncDPEs/le/bj1N2RjFV19yzr7BNnYtzZQZFuMakefTx1pDrW2OEUGlUy49plBw2nzc9i+1BxDhOp+xvIQQLVZf7vYBOIYNzTH3f14jTnFvt8XTN3G9+1DTx1NbBvp8wCNX9eVyRQ9cEQhOESc6djs95vUTZNvYthguhGKVdP57e+zubKk2t58dP5bMA/PpH2/zGx23+9C+8wptn67x5ts4/e3+Lv/Dr1/lXf2j1uc8vj0OS5WwOQixD7X0mX3vfT7jZHrPeCwnTjE+uNB6bEHUYJmtf1TGpeSaDMCFOVZH4sLUEYHsUTaXjtq4/UnwS4mTPa8+PGRapcfvNKw83vaI04/aOj5RQcw2qrkGQZMwckckshFDegJKplH/3Huaw67m1MyZJJUkuMR5iT6dZzt2Ouq6H9yueZRza/H2RMXlmPEtnvR/ixznDojHhGDpCPFi/De3BPZFSsj2OyIr9R1z4gC0UKbnPC8q3LafmmlhGzL1upOxphOBuN+CV51xImcDSNb5waYZf+3CLQZDwT97b4De/vvhCMaeiNGdzEJHlkp98ea+s1TF1FmrPn62qCcHnzrf4pW/cJsvgvft9Vlsl4ixnexhRto0XUu3yNPAv5gy0DzQBmqb8WLYGIVuugaVrzJVtolTt2B9uUtzt+AzDhPfXB7y5Un+mRYaSrQpR28OY9ijCNvU9i4c6cGdIKbmxPWJ7FFGxDWxTo+Za08/ynH1sTx07o4iv3+wwihI+c67JJ1fq1FyTjzaHREk+7XLuxiBMpgeJJM3pBQnvrUW8fKbKSsObHvSFUGaZcZpj6AJNCOqeScU2Gcd7O87r/YAoyVmoOf9CUew7o4ivXGtzrxfgmhrzNRcQnGt5L8yklueSr13f4dr2kDDOOdtyGQYZ52bUNe421d2Nw9hCuxGnOfd7AYYmWKq7VF2DsmNMI50B3r7dZXsYUXNNyo6BpT/4joeFPKrqmkc/KBTj0NSOvpHpB+p96p5JxTGQSOrug+/o3bU+a72AqmOy+tCBMEoz1nvqgLBYc55r/O9R0B6pAsBs2X7koBAnOTe3xwhN0BlFz+kK1eb/XmfMBxsjkiwjk7DgOUd+7p428lzy9u0u17eHaELSKjnEmWS+4rBYc/e9ToEyRm+PIyqWTpRkrPcCun5Cq2wdKIeZHKhGUcrLi8/Pd+FhDIKUrcKDUBfisY0XP0652wkwdJX8uDmMCOOMKM0IkmzakLIMjUtzFRpexM4oPrKR91FwtxMQp2rt8ssWYZIzU7II05xJ4/ba1pC6Z6nkoKLYpgvxxNdg6upwa+qCe92AmvuArWFqk3VRMe/udhRrwNQ1SrbOUsPDeY7pTVku+WhzyMYgoGQb/MRldaC43wtIc8lS3Z0W6KVUjNXNQYhArfMH3Tk/ThlHGa2ytef5MXVB9pQTO//cP/uYs02XP/i51enP/sRPXVJyvq/d5n/3gqUVPozNQVj4ooGQ8J07XTaGES/NltB1NR7nqvsXbnYjyXLWegF6sUbvXr/CJONL17ZVI7nm8vpynVyCa+q0ytZjC16T8aMKjJIVUXqiRnOa5VOf09mKOk88zBr045Q7HR9T1zjXKhUm2g8+kxCqIVg9pHE0jlI2BkomO5mXDU0D8kcK8Kq4pIpVUZqxVPfYGIS4hkaQ5tzYHk+Tr2fK9h4WoCjmlXGspN2epb/QCV1HxYebA967P2AQJDRKJnFarI1199BzUqNkcabmcHsn4Bs321Pbh7fONZ+r31Sc5vT8hHGccn6mzN2Oz9dudLANg9909WieYc8K81WHi7NlvnJ9h482B9zYHvGv//A5Lj9Hz6bdSLKc250RUbr3OU8zdVYAlYr8vJUvrqUzV3W41R5za8fnazfa7IwSPEdnruxQ3iXj/58zjlWYEkJowB8Cfg+wDKTAx8BfkFL+2mlf3HFg6BovzZX5/r0+SHj7Vg/TEFyYKfHqmSqGrtF4iEFjGRrtUUyeSzb76pD6rGI002Jh3hnFBHHG+Zm9E+Bs2SaIM3QN2qOY9jDmbtdnruyQZrDUcMjy02N2vShojyK6o4hhIUeZbMwtXRmbGvto83dGMWmmooZtU9DzVXetN05olbJpJ1hKScXRCWJ1SLm14xPEGdtaxMsLKr5ZF4oy3R6qrqkmokNZNC8KwiSj68f0/Zjr2+NCBqeYKpfnKzRLFkuN57/5UAyFmO1RyJ2dAFMHXYNPrjRwLSUTebhLZZsaF2ZLlGyDTsGsmi3bBzKRdsbRVNqS53JqGCmlVEzKVMn7slyx4z5xtk6ay+n8sN5XTJRxlNHwrCMtVo6hs9L0CrZNyjBMaJasQ+eT9X6gJDaxMtBHCgZBMjUdHUUJea6ic5dqLsM4nSbs3N1l2FtxjBeOJbUbUsqp2exaP3ikMNUNEiSQphnxM9TJZbmkPYowdY1myUJKyc22z8dbQyq2wWLN5cpi+cjS3qeJ7jimH8Rs9gNutX0sXZDlgquLVVoli3MzpX073RP2oa5BkORsDiPSPKTuWmwPowMLU7ahKUPQQzZBeS7Z3nX/ngVMQx2owjhjrvr4onFnHBOnOXGqxnXPT+iOI663x9Rdi7lqzpWFynRcLdYcSraBbRw/se5hRGlWzFcZIMilnK4r97o+ddfi9s6YsqPTHafYhk7fT7iyUKXqmhinwERa64WKOZvmXJ4v7ykAzFUdMikJk4yen9D3U9a6IVGWMVd10IQyjT8/UyJIskf2T08bmlDJYmmm5PaTlLGJ7Lk9iqZd+X6Q0B0nmJqGXrDM9itgZLnkxvZ4WnQ9v8sQ/fxMiTsdH8d6Ohv/79/r8927Pf70L7yy59l6aa7Mb7oyyy99/Q5//CcvPffD0WGQEtqjkIpjcnvH5517fXp+QpblfPZ8i7JtsFA/nMk4CBW7KitSRMv2Xnb7xGIhSiRhmqMJiOIMoaHSFx9T9GqVbQxNEKYpIFjvB0+0T+6MFTPJjzOGYTIdB30/UQyosqXGeSpJ0oxRlBYsF206dvJcTs3RheARNj/AxiDEjzL8KKNeWHSsNBWrf8IWlFLSHsVkMkfXlBeUpeus95XCYjtJ0YXGQtUhLxLcNvoh4yidmv/rmuDiXIkP14fqDDSMqbvWqckunyUma7ila+yMYj7eGhHGGX5s8anVBg3P4uJs+dDG3VLdZRikZDLnGzc6DENlr3J+poxrqaL480hJmxQ2J/6p4ygt1gk5ZQS+SPjk2Tq3d0Z8/15OO435G9+6x//+5688szP1YchzSZYp5tQ4Tinb6vvs+PFUKdOx4ufuyyqE4FyzRHsY4Ucp377dRddUEnTZMp57ovKzwnEZU/81cBv4s8C/BAyA3wD+EyHE61LKP3+UFxFC/HvA7wb+XeDPFT9eBf5fUso/J4T4EFgvfv5vSyl/cJTXnUzk1zZHBElKkmuMopSyY+67STnXKpFlEj9W3dPNfshc9QFDRkq1CXLM09PK74ZnGSw3XEr2oz5S64OQKM3J8hzLEOgahR5cxeRWHfNINNOtQUic5Y/QUgdhUlCMX6wDra0LdsYJmqYSyiZm5ytNj1Gc4u2zKam7JuMoxTE1zrdKWLpOdxxj6to0VltKyXfv9rjfC5ivOI+wh4QQ08NVkqkOVZbLf2EW6zsdv/ArSzk/owyQF+oOWZ7THka8slh97qya7jhmox8SpRlNz6JZNml4yg9usx9xYc7YdxHThKBkGwwLZhyoDfJBbAnPMhDigURlWpgq/t7UBastl/ZIZ7nhTTeJE9kIRVhAkueESarSzh4DIZTUL8vlVPoyjrJHOqu7UbIMemmCZ+pEWf6IcfDVhSq32z6zFQvb0rEtnSjNuNvxCROVjDWOU5L0xXYqFUJFZW8PI1b2KY66poZr6Uip03qGrL7NQfgg0avwJLy147IzjNgZR3i2kqs873EzjlLudQMyKWmVLWYK1kCjZDEIlC+GcQhTz9DVAcYQ6nO2HJMoyQ/1ETk/U8JPMkqHyDo2h+G00GLq4pkURw1Nw9AEnmVM0+EOQ801pyygRklJghxTnzKByrZ65vpBwjhKi0OIoWj/Mn6sXPAw3OsG+FGGBFaaLq6pc6M9Js3kdI/hWjquaRBZSnJTcUx0TRVW8kJW1g8TbENnoeocO45bIlmsuURptqcIA+pQtzOKpxHxtqmM0a1M4Jg6pSK0pXSAHO5hdMcxo+hRaVE/SNAEx34+hBC8tlTj+taImmfimjppLgsLBMV46hY+hI6pF6wIxcA5yr7m4fCSUaSYVOPo8c/VSfDXvnYL19T5PZ9efuTv/qVPn+VXP3ybr17f4UcuzTyV9z8N+HGGZylPzbmKjWvq9EWMHys57OIuFtt+SLKcOzs+4zBVDZeG+0ihqeqYLNYdokQVjYUQaJqg7h6tSQRQ8ywanmruTuawNMvZGIRYukbVNQnijNoRIu4dS0cTgpWmy2LdYa7iECbZNDEvydRcOplndgf0TMbOzhGYwCXLwI+UjYSpaXTGEWu9cA8zsOcnbBSm+bMVC882qNhqvhpHqgmrCUGaSxYLc+/9ej22obNQd9jsR5iGOFIRvjNWaYYLNecRS4XnhY1BOJUjL9RslhsuQZRhmRr9IGW+6jzWaF4IoVJRo5yqY1CyVNCEENAexuyMYq4uVJ65rM82NVZnvOnzq+uCJM8JgowXhMS9B7qu8XOvLPL9e4Pi/Jrxqx9s8eOXZ3GfszzUKMZlydJxd928SaqsEHB+5vk3IEGleJ6fKXN9a0iUZPTGMWebpRe6YXHaOO7T8mkp5R8u/vwlIcTXpJT/JyHEF4HvAo8tTAkhbOATAFLK7wI/Ufz87wB/v/hn21LKnzjqRYWJOqydbXrMVR3KtkrC6/oxi3X3wE2VrgkuL1SUPn5nTD9IyWQ43cCt9dWkJ4SKOdcKn6r9OtNplqMVC+hRYOj7G3OqhBvJnZ0x3XHMQs3hUysNrs5XEJqGEGpzfpSHdBAmbBayByHUhg3URvHOzoMY2uct8UqznDDO2PFj1voRcxWbumfy+lJtumnRNHFg16JRsvYYSp6bKdHwLExDTDv+97oB760N6IyV79Ll+QorTY+7HZ9BmHCvG7DccKdyv8vzZdJc7tk0SakSE140I/ksl4RxxkdbQ1xT5+denWcQZozjlO/c6ZHmOde3R3xypfHcrjHPJXGacnN7SColn15p8tkLLUZhynfv9hhGCev9kHMzyYEHmN3P/EHn8DxXflUSydmi6GQZGhJlJgpqLFycq3Bh9oHJeJ5L7naVfMk2NSqOyeYg5OPNEVcXqzimTpLlhxqt57lEoAppmZSHjtEozQgTxYg82/SQqPG6W8q3WHNZqO4tjGz0w2mHp2TrjOOUmztjTENd8yRV50VbxGQuKVk6+5XQmiWL2YoFUlJznt5cJKUkl3vvzb2eT5apgk/VMfjMah1dEypdpuayNYwe62nyNJHlkiTNub0zJsoy3jhT461zLZJMef/c6oy53w2YKdv7Go4mWc4oyihbBmGSYZs6F2ZK5FJiHdLJNHSN6mPmud33cfef97vPpwVNKKazQDz29beGqvA4U7ZYKKQql+crREnGSssjLxiU6/2QrWGELgQvzZWJ0mzakTY0ceL0L72YB8yikZRLqTqeImel4RBlkguzraIjqu717rF+rxtwp+vTHkaca5Uw9OMzqJbqbuEbo08PB1KqcJFhmHKv45PmkguzJV6aq/DaUo0kzdE0cSwJe5LlUx+cOMunvjWdcTxtJjwu4n4/zJRtWiXlu5fnkihJMYQgTFJ+9YMtLs6WKTsGVxYqXFmokD20Zme5fOQ5vTBbYhSljzDAjlv0Ow76QcLffWeN3/XJ5X3vwU+9PEfFNvjb37n/whamslyiCcX01YTg4lyZP/D5Fb59q8POOOZOJ6B1wDw0gQCQUHYMWiWLlZb3yHPmWjorDY+1guFYtlUYUT84OMjAj1MMbS/L8eJsiSjNp6+/NYzojhPSLOfmzhjPVOzmxxk1Vx2TywtlBA8KOEIwHc8T2a+lqz/vVwhqlVVwi+BRttSkybRQc6h7JpaukUvJt2/3GIUpd7s+P/3yPLD3GTV1ZYItCklz3VPs2M44ZqMfEKX59IxRtY1p4X2CuYpDzTWPdJ4Ik4xv3uriRxlbw4gffqn1XJkwkyTQNMu50R6R55IfuzTD733rLJ1RxA/Wh4zihK1BxFI9PdTkPkqzovEDK60ybyzVWKy7fP9+n9s7Ps2yyVUqj8wlTxuTYKAJXj1T48ONofp+BxF3d3xaFQvX1J9782yCsmvy7/3MZf75Bxt8vO3zzZsdNvohf+CzK1jP0RLF0BXxYLHmoO06PERpRtnRSTNJnL0YqTbLDY9WyWap7nCv5/P++ohhmPCNGzss1hyWiqaVELww3/tp47iFqUQIcVFKeV0I8SkgBpBSRkKIo36rfwT4K8CfmfxACFECFqSU14ofNYti1/vAn5BSHuqIK6XqJMxWsqmZack2WG2VjpQuUbJ1LF0jyyWWoZFmOYauTSc/lWqTc6cTkOWSmYr1SMLF3Y6PVmxsjyoBeLgT2fNj7nUDNvohXT8myySupXGjMDI8bhHJ0lUhK88l+q4HeHe8c7bfKvoM0R6GfO9un4+2htPY51bFYqnmcmHm6PpuIcR04eiO1X0UQtHkHVNHSknNNRiFiaL/jiMuuCUoCn3q+XnQ6TV0jd3rbpZLrm2NiNOcM/UXp2O01gtY6wW8e7/H1jBmseawNYxZaZVoD0NsQ1NsiedYqBhHKde2hvxgbcDWoDCnHIScbbpTKn+Y5CotZZ/DcBBnXNsacXG2xPnZEmmW70uFB/CTrJC4CfpBQt2zDhwzuyd1ZTSs/McsXWN7FHG/F2DqgktzFdpRNPV0emmu/MgGJUgy3t8YcGGmzIXZEn7RjT0IfT8hLKLNB4cYqj688EzmFhWNnnGv8M85U1f38vr2CClVcfZFMa0Ok0x10BJlMP0w+oFiKgTxg8PtaSPPJde3R4TJg/HrmTo1x6Qzjvln728yV3E423Bpluypyaj9HFuTa72A9X7AnR2f7WGEJgRr/ZBzs2UEFN1/nVzKA69TFwJD1xjFKXGScXN7TJxkGLrya3kSg9K5ioOla0U38gEr4fr2mCTLWW64B47Tk6LjK2meEIIzj/GX2hpEhfQonhamtMI4Ns0kzbJFmkk+3BjSC2KWai653OsxZD1BE8LUNUZhymxFpQH3xwlxmrM9jPne3T4Vx+STK/UDD8ZxqryhpFSHYFs//sbe0LU98oQozbi+NWatp9ZHJUVSCagfboxO/ExoQmDogjRTxYsJ0l0Z3Lv3HcfBZA68uTNmFCr2YJqrIn2QplyeqyKlmhsnU2ieS260RwSx8oncfQ8OMniuOibnZrxHmKungb//vTXCJOf3f/bsvn/vmDq/+fUF/sH31vnPftdrL5yv5Y3tkQrjGatmjWVorGyNeH25zmLdZRznxdg5fJ8RZzlRlhHGGbljcG1rvO9+qj1W9gy792Vzlf3vyfYwYqMfIgR7gkGEUMXVyXM33ZcXCZLAtJHzODxchFnvhcRpTsnWCeJUrbu5KkD1gnjfAvJ+cudhmHCrrZrE52Y8PMtQxaec6TgyhDYtdtVck9UZjyBSCZIbg5ALM+UpaxDg+taI9X7IrbbPz782j1Oy+WhzqFJvHxrfRy0u5UWjbdr4eo4H4jBRyakAozBhsx8SJBkfbAz55GqDRsmi6plEaY6Ex57HJmxjQ9OouIqJ3AsSbmyPWeuHZJnLB+sDJIKlhvvMZOsP42zDY7nhoQmlMPjr37xDs2zzufMNXl6sPdXC+nFQ9Sx+4so897q3ubk94vaOT5ZL/o0fvfDcrilOVbhVz0mIkgynmP81IVjrqUTe+eqjqd3PC66l0yrb+HFOsxTz9u0urqnxrVtdaq7JrR1Vb7gwW3rh1orTwHFPLv8H4FeFECFgAr8fQAgxywO204EQQpjAj0sp/0shxJ/Z9Ve/GfjlXf/9I1LKjhDiPwL+KPBf7PNaf7T4OxaXzuLZOrahKSkOyneo4pgkac4wUhrtfkGDXaw7043qJOWo5qpkm1GU8v76kLJjUC5YV62ShVEUroDpgXKCUZRO6fBBnJHmOd0ifvKgw2HPj6dJI56lImTvdwOCOGUUJZi68juSaPhRhqlrSnsP5DInSuW+r98dx9zp+KSZ5NJCmQszJT7eGrE9VAlkrbJiI6W5RCKfunRmEKrkwYdjaQH8KOUffG+dH6z3CeIcSxfUPItPrtT50cuzOEeQ0Q2ChHfu9ugFCct1l6WGOy22TXT9Nc/kTN0ljDOyLMc2da5tDpmv2pQsnfVeSKtsTQ93PT9mZxzT3FXUiNKMuJBMDcP0uRemRlHKe/d7XG+P1SZ8a0yQZniWzsebajFolS0+tdIgyXNWn0N8a16Y1/5gvU+UKgPRtV7AcsOj58f82odb2KbB+ZkSZxous+WDTVODOCNK88cWW9xC0tEeRfs+21vDkGGoJKGGJshRh2nL0Kk4Op5lY+saX7nW5k7X5+JMWfme+TG6pgpXUZo9erCRFH5QyR458EHwLIOuP8DSdSrOo2O448eULR1ZbKL9KKPqmgjE1Afn1z/a5OOtIfNVh944YRSmTM6B4yh9qoWpJMt5504P19J5ebF66KYoTDL644TNYcC52UcPvZ6psTOK8OOM9b7/VK53HKlkNNfS6YxjuuOYDzYGtMcRnWFMWjQfsjyjYpvUHJOri9VTL6wcFe1RxC9/f404yxnHGT0/pmSZLDcdvnFzhyyHuYqaK11LP5BJo2mCpbrNr38YUrJ0RnHCh5upkrOmJc7UXfJcEqYZjqEf+D0mWc797gOzYk0TbA8jJHJPATZMc+I0x4/Twtj/ye9flGbcbI/pjROEyPEs9ZqplOgUjNEkJU5zHNPAtRQ9f3sUkWeSy7tSa3t+zFpPec6EScZQqPHfHsa4ppLsuJbOasujPYr29TQ8DBOvv6pj0g8S+sU6v9zwEMD76302+iH1ksE4Eny0OaThmcSZKi6WbIM8l7x7v0/HjylZBl94qUXZOX5aVpZLNgYBO8OYRkkZ3d9u+wyChChVFgGGrg7vwyghl3LqW3e/69MPEi7OlrH3mcuSNOO7d/tICVcWK9Rck5fmyny4MWAYpopxWFdzOlAEjRz/WZgcQh1DZxQpz8lWxVJMl4bDMMp4f72vGPOFYbFnG0Rppjynin1T3TMJEsUcPGyuynPlY3ba+Jvfvsfl+TKvL9UO/De/8Ikz/A/fusevfbjFz7+2eOrXcBys9wK2hiHNkkWWS757pwfAnZ0xSZqRZhkfbgzo+QnLTUfNQ6a+L7s0l4rR5FkGwzDF0nXGMuWdOz0aJQvbeDRtt+6a+FGGa+nTfVk6mYN0xWLsjFVwUJhkWLqufKlSNVdKlE9rnCkj8FxKzs2UqLkGQkDFNgnTnFZ5/2dyox/ixykLNQfPMqZhI5OkzmGY4hTS0ixXMrxbOz66Jrg0rxqqYZIxjlLqnoUmVKDEziimZOucbSoPtMlZQkrJBxtDHENnrmozX3X43Pkm790fMFe1psWVOzs+EolpKD/KPJcMyjFpbiBRe4V+oHw4y7ZFkOSs98d8vDlkruJM5bmdsUoQnq3YBzYD/Vhdu64pFUHFVmeomcrzO7xLKXl/bcAP1vvTVMF7PcV0HwQJX73exjUNGp7JUs1hruocKc3zM+cayvN3rNhW3XFE1w/Z7AWIXJnEm4Zga1jiJ67MPRdGum3q/ObXFvjldzf4+o0OcZbyweaA9SJE4Ori3rllFKnrbnjmM09abJRsftsnFrmxPSaKY/76N+7w3r0u//ff8zqW9eyfnzSXtMchzdJe6a5j6GwV3m5XFg4nQoyjhPfuD2iVLS7OVQ79t6eBVtlmZxShiRwtz7i+6bM9DMlkzqW5KpmUhYXN/8ILU1LKXxFCrAItKWV718+3gf/jEV7iXwV+aZ+f/y7gP9/1ep3ij38b+JMHXMsvAr8I8NZbb8kJdXyu4qhEtUyxp27vjPEsAz9O+datDtujmNWWx+94cwkpJR9vjbjVHuNZOlfmq+SFE80oVN4tDc8il2pjNV9TmvWHqf2tkkUQZ4XPhsFHW0OSVEmKXttnIzJJCtrohwhNLcL3uj4b/ZDr2yPmKjZvnlVJJBK43fWpuQaacBiGKbd2xizVXXp+zKtn9r7+zjgqFtUMTYMLM+WpYdqgKKhMopKfNvJcqoVUqiLUpfm9g/njrSHbw4idUcTdToCmCVaaHktN98idnA83B2wMQtZ7IWVbp+wYnJspkWZS+YbEyrTyzo7P9+/3aI9igjhlrmrTWLPwLBXjq++SaN3vBeQ5BHFAo2QxDBM64xhDF5j6s7l3hyHPJV/6uM0vv7vO7Y7PUt2i4dpUXRNdwPXtERVHJQ1emq88t4nrTmfM//jtu7x7v49taNQ9m5VmiUxKdoYR/TBlsaY6UIclfwkhaJTMI30OXRM4pjJj7vjKzFDXlMQ2TnM2+xE7o5CvXN/B1LVpUp9j6ryxXGexrpHmEl0XtEoWfpIyCFPiLMfT1eFqv0Ve09SB9qiHr0GYTP/tRCI4kYje7wWkWc7f+vZdDF0jzSTzVYdRlPKZc00aJRPP1klSyWzFJkxT/DhF15TUwDb1p25U/LXrbb74URsplPRxYtieTeSMuxb/9jDkqze2GUXq0PvmcmMPE6zkGMxVHHpBzDDam455GpBSyTQHQYIfZzh1h3/03jrfutWl7BjUHRPPNrjX82mWLaJUslCzp14qzxpJmvE3v3WXX/1gi3Gc8spihTONEkmasVF0wuerKmnoRy8dfNAFVSj90sc7CCGmhd31Xsj2KKJkGSRpxjdvd4mSnJWme+CGa2cUT4sWk4LnxOtEK2K4pZTYuiDNc7ZHiuEVJtkTzz/bw4jv3e2x0Q8pOyavnqmy1FBrhJSKCXe/q9jMCzWHumvwxY93qNg6qzMlFgtmVZ5L1vuK9TiOUl49U2O9H9Dx42mTZlQ0sdoj5dnixz5XF462CU2znDs7Y6JUsjNS6X63Oz4lW+frN3a4vaM68A3PwDWMadLY23d6NDxryvDt+Qm3ii6zU6T1noSyvzkI+XhjRNdPWEoz7nV97ncDbu+MWW66XK5VOdv02BqG3OmM6YwifvLqAn0/5pu3u8hcHfY+f/FRadnNtj9lN1ZcQ3n1CIGUSq40CBPOoKTxT2Lg/sH6gJttH5A0SxZxmmMaGkt1j8BVMqetUcTHmyOiVDFp3zhbpz2K6QUxWS65YJX48rU2VcekVbZYbZX2fa+tYchm//RNha9vj3j7To//6LdcPfR7/KELLVoli7/3vfXnWpiK0ox37vX47t0e3XFE2bYQQlKyTCquodIsXZPtUYxlGGRS8lOF1Gzf10sUS2+l5VH3TAZBzE5RUNoahnsKxxO0yjbNksVOwX6frdj8YG3Ae2sqdW215ZGjUtcsQ5uajSeZnNpXaEKgiQesqPV+QBirQpBl6Ad6VIbJAynvRj/kwmyZD9aH3NgeA/DjV2aZrVh8tDmi7hnUSyZbfVWs2x5F3NnxuThX5oP1AZuDiJKt84nlOsMw5X7PxzI0cgmvnKnSLFlEaUaa5fQKif4gSJivOozjDM82GEUq0TPNJd2i6KYj+d69PqDmENPQ6fgRvXFcHGhjPFsny3PiVFL3LDKZs1hzCeJsKq/NcvkIY1OxXkfTgIDVljJw1zUNTQg2+xF1N3ysBPK0IaXk1s6Yr9/c4Vc/3ELm8NJ8ibmKQz9MuNsL0AS0Sg6OpT1yNjoMtqmz2ipxrxewNYi42xsTJzmOrdELM96+u8U4zvjs+Qatkskby43nxlBa64fc643Z7keUXCWJ/XBjxErrQQCKlA+8TodhwtXnkI53fqbCv/5Dq/yf/957bA5Dtj6M+Pf/5vf487//rWd+LRMJ7WzFQd8l5Xt/vc83b3XIpaRZNnhl1zPz8F72n/5gk+/d6+OaOn/4C+eYecJgkschiDO+fafL+2sjvrc2wE8yyqHJt293OdcqUfOsF84j+rRw7DKqlFIKIUaFgfmPoGonXwL+q8dJ7oArwJtCiD8GvCqE+OPAXwBellK+AyCEsAAhpYyALwDXj3N9sxWbqmvwwfqQKM2mMe79IMGPUjYHISC53R4jNEWX746TaXfx5TNVumPVYdM1wUY/pGQbmIf4Ozimvsfk2NA0ErIDE40munTH1EjzXMmIhEYvSKg5FkGa0x2nICSeZZDnyji058ckuWQQxCxWbfJc+S7sniBVh8PHs/TCJFabdgtnDugOPS0IoQoFaSan0siuHxMk2TQBUdchSFUi2jhRrBhRSBeOgppjYekh9ZJJo2QxV3EwdY2zTY9ysakB1QEehilJmpFkEj/M2eiFOJZOzTP30H1LRWdvYmJ5t5BwCsFzj06fdJA/3hzSHkVEcVYcpB3mqy6upU8ZfDX3UZbas8JGP+SjjSG3dsaM4wwpJXXP5OJsmSTPqZcMoraSzs4+hn3mmBrLx0xGm7DbPtgYoGsaF+dKmJqGbWpsDCKiNFesRV+jVraI0pzOOGap6VJ3TZYbLn3HmCZ/eZbBpfnygQVTu5D4HRVZLotxIbjT8clzNXepDq3Oei9mHGekWUo/iKeb7q1hRLOsfAVWWyU0TRXDTUMrqL3lZ/Kdj6IMP84QKFNUqDAME24XFOOLc6XpvdKEQNc0LMMgynLiLN9zH2fKDmcaLo5p8NLs6Y+vMFFS0CyH1ZZKbLq2OSrMsyUtz+LyXJkoVfHk6oBr4uwjO3zauNvxlV9LNyBMVXKkpmks1lwkkpJlMAgUo3bhCN5HuVQSJc9MqJcMVhsePT+lYitPxK/f6nCvG2DrOq6l7VuYklLJsyRyyiiKdhnuT2QdN9pj/Eg9E6tNdfiPs/yJn8c4VZHOPT/hTN3lbNObylGyXBIlufr/NENK+P7agDjLuNmOuLgr5TPOsqm/kmupFD5D07g0V1Ex7Y4xlf5PCpJH9XGYFDXao5BW2UZDUHNNlhse26OQXqA89PpBQskyuLJYpeerZsdkrZsseZqmZD89P37EY+440Kc+UQm6ppHlmfK8MnQqtsHWMMIyNLaGIZrQMAwlvbMMg3GYEqQZDc+cWhvshmNpOKZGlOZT+YOuqaZNP0iYO6XmzWRdjjP1vNUKk2mBYGWmxEzV5tu3ewyDFNvQKBeNhp6v5s8ozlSRyk9I0pw4VebS85VHjeSPKus6Lv7W2/fQBPzON5cO/XeGrvHzry3wt96+P2UYPQ+YmsY4yri347MzjqiXUi7NVah76nrOzZZYbnjc3fGP1aiL05yaa1J1LUBDaILFmkurtP/vR2k+TXPNckmSqe8vznI6fkyzpGTYr56pYRoCgSTNMiQSgWoilm2DfqDYgK2Szb1Y7QcPS7cydQ3TECSpnFptTMaoJlQjKZeKddTxY950LBbrLnc66rXV/ktOk/wkKmDJs3UMXSuSUtX7T4IOQEm3h2HKXMWZFo8mjKvJfHR7xyeXksW6PT2P+EmGA9OE7yyPqJcsqo7JuGCdCWGx3HAZRuocFCYptqnvywjdPQomQ6JcNHBtUzuSYfxpY2KlcaOtCu1hkqNpquF9ZsVlPnMoWQZRmmMagoXqCeTIhaF/ZxTT8mwsXSNMM65vjZQHUZqxM0r4eGuMbRpcnD26bctpIUpz8jwnl4KKp5oBfpxRdpSHZGcc4xg6zZI1taY4LBjlaePN1SY/fnlm2mi5sTnm1z/Y4sevzj3T61BSYJuLD9lw+FFRcJXsKVjtt5fdHkVESU6aSdKntFbshqmrxl6YZJiGjpZJ4izH1DQV5uIdLQDtX0ScdOX7q8CQB2bnvx/4a8C/fNgvSSn/1OTPQogvSSn/vBDi54Bf2fXPGsA/EkKMgC7wvzrOheW5ZGsQ0RlHWLrO6oyLqess1Gx2BiGbwxAdePtOl9eWamhC8ImVGqMwVZIeXWO15U0ZDBPjzUM+E+M4wzX16QN/ruUxjtRCtB8sXZCkGVGScnG2zHLTYxgpCWBnlNDxY6quwSBM8CwVYW3pOqar0RnFrLbKxJlE11S3+KW5B3Gopq5RcXS2R0qCaBr6vp2NOM0ZRak61J7Cw51kOcNQyYd2a/wvzpanB8CPNod8tDnC1CAHzjZcztRdFjsh4zjlUy2XM40SP3Jp9sibsopjsFBz+NyFJnGqvKNsU8MxdRol5e0hBHy8OWC9r1hVn16to2saQZyx6LkEScq55fr0NVdbHl0/nlLIbVObxslGabZvcSLNcpJM4pjaUzOkC+KM3/h4i81BxPkZjxvbQ0ZBgoYyzvz8hRamroqdtqE/l2q6lMrb46vX2lQck5dmPbrjGF0XlG2Ny4tlzlRdoizn9TOSsnOw3PUkSLOcMFH/U7R15Ytwc3tMw7N4abaMa2pc2x7RH+fUHYNKUXSyDEGUKP+aL7w0O/08g1Adevb73ifGpcfBOEqLCPeMhZrHzkjJj7eHKslkrmIzV7H53r0+H6wPqLuq8/mpFfXcSikJkow3ztZ542wdUIV3S9f2LQKkWU64T3LffmP2qPjc+SbtUYBtGLw0p4pJt7bHdP2ERsnCj7Ipo0XXND5/ock4yvjs+SbmQxulW+0xd3d84jSn6p5+Ua0fJJRtk81BwLWtAWEqkbkky3I+sdzkZ16ex9A1ztQ9la74HDbeoOaoL33cZr7q8uZSlZvtEVLm2LrGpfkSi1UXhNpAH3V857liSa22PH7hE4uUHRND1xmECdvDCDvTlDG9pwqdYaIKjlXHwNCVNP6r19oYmsZKy+PcTAlT1xgECbqmGgqNkkWa5fhFmpllqNQrS9eeKGY7TnOGYcJGP2C+bNPwTF5ZqjJXsUmyfCrNOlN3cC1VmG0UzIAwzlmsOlyeq3C36/PFj7bIcjjXckEILF1nexhypu4oxt98ec+1Ljc8+k6CZ+lHYs1NAgmkhM2+j2ebrDRK1D2LOCtP/c3Kls65GZfrW6OCZQafOdekH6jkPcdURb/VlsebK/UTz41ZLtU6KyWzZZPVpkvZNgpJjjpgmpqumKCWYl/WS6pZZOiKubzeCxjHKR9tjh7xzlyquXRGMaNYsfgMTcmxFmrOlIkipWItm7p2pFQ/UGxyDYGfKFl6q6yCEVplk1GkDgXnWh6bg5Bb7REX5kr88MUmc2Ub0xCcLQ75VdfENZSHXJYrZk2aqwJbexijC/GI7Gyu4kwLGqeFLJf8rbfv8+OXZ48UovALnzjDf/v1O/zz97f4hU+cObXrOArCJGOt57M5iFlpOCw3HGxTYFvqoBvECRXHwigO8J9YqpEeIdnZ0AWtskWrYAdtDULmqhYakivzaj2+1R4jUWE8k/2ooQk0TckrbVPjjeUatqlNky4rtjF91m61fT7Y7DNbdlhteZxtetMQlQuzZaRUQSdm4SGra4L2MGJnHD/SBNU1wWLF4W7Pp+Gq5/bVxSqdcYSha1iaxsYoUIVkqYq5qzWPqwtl/Djj5UWV4HZ5voxkRNUxqLgGVdecJkGe24e1t9v76fv3+tzaGXNnx+fKQplqcR1zZYscaLgW672w8PJzyIEwsXFMDavwohMCKq7JcvH9bA1DvnO7R99PqLomZ+oq6VNKye0dn1GUslhzaJYsVlsefpzRLOb2QZiy0lQFycclup42pJTc2RnxjRs7aJpguWZTtnTGccZM2eGTZxs4pjqs60Vi61Hnm4dxZaHKQs3Fj9Np8Agy54ONPq6lM1+xiNKUb9zYASRXF55t2vVCzeVnXl3ANjWubwwIUjVmdOAr19uQQyrhykKZxZqLQEyL9RNM1viaaz4TRvif/NmX8aOMb9zqYOk6f+6ff8i3brX593/+laf+3hPkUtIeRfxgrc9vuvpAivnaco2fDWLud31eXaxOz3ejKFW1hJGyQFidKfHDF2bQRJuFygMroOPiOPfe0DV+/PIseQZnmyphU1WNc/7h99dxTZ2ri1VeW6pypv5iJAqeFk56IrwipfzErv/+VSHEO8d5ASnljxT//4+Bf7zr55vAp054XVzbHvGd2z22hiGvL1WJU8lyQ02+tbKFrqkJLc1VF+Ns0+PibIlv3upg6hq/8sEWlqGKQVXHJEweNc/cjTsdn0GQYhlqIRKF2WzNO/ig99HmiF//aJuOr9Lgzs+WySXMVWwuXayQZjnXtsdkmSTN4dWlapFKkyMKCliUqcW5PYxZaeZTH4ieH7M1iElzyf1eCEIwLMyVdxu73WyPC08O7RGJ3Ulwqz0mTHIsQ+PKLmq2ZSgj6e1hxO32mLV+wLv3+5Rtg5cXK7y7NmBrFLLccPmpVxf41ErzyBO9Hyb82ofbCCG5tjWgUXKYr9rYxgOGTc016Y1jBkFKs2SyVHPxbIMsh/makocpdsSDA/EgSLnfVZ261RmP860S37/fRxcaN7bHXC0ijCdIs5wPN4fc6fh4psHry0enEB8VozDh77yzxq9/sIUmBIt1RyVMpTmjMOHt2z2aJZsffmnmuaalfO3GDn/3u2vF5tNmtmJxebbC3Z7P9bbP9+72OPOae+Kkq8chzpQJa9U1cEx1+LzT8ckyFTbwmfMNbFPnbN3FD1MGcUYpzfloY0TVU4cf29CmhwghxIEb73GUcrOgSx8HfpwBgpKtDv+5zNkcRHT8CFtXCVo/dLHFfM3mftcgSHIWDI3r7TE6gkFh4H9lFz37oGtUUqfxlEG2G5MxaxriEap3lktu7yhvjuXGo8lJpqHx8mIdUGyxO50xP9gY0B3HvLnSoOqadMcxt3bG9IOEV87UKdk65wqW1258/WabD7aGGELQLqKfTwujSCWPfbjZ5737Q+quwf1eQMkyONv0GAYp318b8PJilbJz/ALdaeGbt3b4pa/dpusnnK07XF2s8dqZGu+t9bnWHvOdOz2W3vCOnRB4Y3uMn2RsjSK+fG2Hz55vIlHyj5WmV8hkLWUarGt8sDEkyyU9W+fCbJn31wZ8sDEkyXJKllorbm6P+Mr1Hbp+wssLFTzbpOaazFZsBmFSpKo+OTt3cjD75q0dkkw9hxdbKjb5vbU+wyBjvmZzYba8x6Om7pmsNEuULB3D0PjWzQ7fud0jSnOqzhzzVZedccQoTklzVVy73wvojRPONpX8TNfEsYxQ56o2t7ZH3O8HfOd2l8445hPLdf43P3aBsmPixxlXFysFK0ewVRyKf/hiC9vUmTMfeL/cao/ZGKiY+FfOVI/dOJJSsQu+e7fL1iBC1wTjOKNZtonTnOWmx3zFZhgpW4CWZ7PSNFktTJSTLKdRUixSrQgV6YxVs2zSMEpyVXDu+yHDMKE7jpmrOizWnKkv49YwYquQVb00V36s18vEeuEH632ans3ZpqtYI7EqZlyYLU/N/DdHEWudkJ1xxNmGxyDM0Aozd9PQOFN3yXKJBOYLKWTPj/nOnR5l22Cp8ejBQtfEgfKuk+Ir19us90P+49/68pH+/WfONZmr2Py9d9aeaWGq7yd8916XX/9gG9vSqDkWl+YqxHnOTNnBNgQ32wndIMEUOp5lYGgaF4/AEjZ19X1MmKs7o4jv3+8Tp5IklywMI8qWOQ2umcxx4zhjqeZiGNq0QPvm2UZhheFjaMrYv+sntEcRfT/F1GLO1J09yb632mOGYcp8TbGMumM1F/aDmNmKw2x573ee55K//d37DIKU99cH/MtvrTCOM+Yqrko6vtuj7pm0ShaupXGuVUIIwcsPScfma+50XpLAl6+18WNlX5DmksO2aZlUTNDuOOZXPtjiZnuspMI91cDZGZskmWQQpHywMWK54fHm2QYSqYzKhWKHT+YOP075zu0ed7s+fpzSKJtF01YQpdlUpn1te4TXM5QlRkutD9e2hlzbGgOSH788+8xTvL93r88//P593lsbsVCxWGmVWG2VWO8pWfKXr+3wY5dnONs8eZDHbtRctZ6NopQvX9vm3ftDhKaxVLaRUvDd2wM2hyE32kN++5vLfHq1eSrve1S8ebbBq4tV/tIXb/Ct2x0+LNbsIM7ZHAS8ulQnl5IolZypOdS0B2NhEgKT56phN0mgf9r4j3/hNf7ZD9b4c//0Y253Am4UISz/4S+8/kzeP0yUP11nHNMeBszX1PmwVbb5wsUZ1vtqHfvmrQ6X5ys0PIu3b3e41w3pBynNkkXVNXn1TF0l7D6kVAI1xu51A2xD42zDe+Tv0yzn2lYhkQ1TVlqHF5MGYcI4yvnkap1xmBAknWkAFwQYQu2RtkcBv+uTZ58bw/Zp4KSf5DtCiM9LKb8GIIT4HPDl07uskyNOVTek68d842aHYajiYVuFYaGuQZYpw/GzTY8zNYeer2LaO35cSBEEW4OILFPu+L3Cq2Y/TCQNE3rvUZptUap03+MwZRAmdMfK1Lxkq25pw7NI0iHdIMGx9Gl3aBAmzFasIhY+5+s3OyRpzl//1h1WmiU+f6FJo1gsk1xStnV2ioPexMhygglt/UlT+bJCnjeKVFzvfnT4MMnQhcA1NeUtNI7YHIT0CpNYzzIpWSZV53B22sPv+869Pu1RRJBkLNRs0ixnGKS8NKsm4nGUst4P1ftrEMTKn6Lh2liGihZeqDl4psbNtkr8eXhjmqQ5mqO8e9rDiGQ/I9hMmd6HcY6GMr89beyMYq5vD7nbGSMRlG2dRsnEtXQ0wLEMhoWE73lBMZNG3GqP2B5FhGnKUt1BChUPXbMtwkRJbk4LW4OQzUFE1VUpnAK1uY0zyRvLVaLEomLH3OsqSe4oTBlHKZ1CRuMnGWkmESJnexgiOHqCYZTmR77f93sBnVFMs2wxW7b5wVqfJJPMV200oaRad7s+tqeMVrf6IXcKM1WEesZMHfphgq6LIydc5ZJ9i1LwYOzvN2YHQcK4YMB0/XhPCimoA6CSV8ipj5ul68xXXWbKSnqwOVQdnkGgotmbBYPx0YuEziAkA4I4OdLnOirud3y+cbPD7Y5PRs4HG0MlPynbOLaOaxj0/ISenxxZPnza6Pkx37rZ4ca2kr1ahuBqwXZpeCaWoZKlgmOy86I0n6YL9fyYhmtyY2dM1TYLn0EL1zJUAaeQWk/uQdeP+datDte2R0ipxmyUSrJc4idKEpYWkhoVHmLuYcs8CSYHpTDJiDP1XJUsjdmKxdYooj2M+fadLrahTLsvzO49HAuxt6h0v/BvrBYBJ59YrvHe+gDH0On5yVQOGCU5rdg6Ubd9oxfwg7WBKk51A9LC+2p7GFF2TM7WXd5fGwBKKj5bURLLh4tfWS4ZhglRkjMuzGtnjhm0keZSjXmpghTKjsEozBAiZhxllGyDOJNcmCkTJjkb/ZAwzah4Fi2h/DIvzJaYr6o9U5BkvHu/x/XtMS8vVvjchRa2oVFxDFxLw9JVqm0zy9kchtOD6+555eGxtXs+XCqYImGS0fMTwjhnqKXc2vFpD9X6Pld2uN4e40cpn15p4Oo6o0jt7WYrGa6l7THvN3XtkefiXjdgvmaTH4Hlc1r4pa/foeaa/PQhHky7oWuC3/L6Ir/0jTsMw2RPgeVpohfE7AxjwjRle5xxXwbUXZOdQLGken7ChbkSSZwhNEGcSjp+xEWOLl+frJeWrkIGTF2wM44LubxiNE3G3tYg5IsfbbPWD/nUSp0vvDQz3Ru2hzFxKonJVMG1ZPHSfBnH1JCwRyEwYQWDSu5WXoYpozBjZ6gkYQ83yYJEWX6Yujb9XddUvnQTJl+S5UgkO+OYr9/scHWhsm8gzkRqszUMVXrf1piBnz7W8+e1xSpJlvLuWo84kwSRkik3PVVc1nUYR+rzR0WisUTyvXs9bu/4nG26vLXaYq03ZhAoNchkzC7VHc61StN5xTZ0qq7BvW5AexhNf57mKmVxECQEcaZCZcYxZ5/hATjLJd+/1+X99RE7o5A4TZmtOui6oFZSgUVJ+uA7Pk3kBePTcwwarqkUFALudkf0gpQkS/nevT6fWK4/c0mVpmnMVGxs0yDPcj7aHDEMEoQQbI8CLs+rIv7DQV2SB5LxUZjSHkU0vQP2ZaeMn37lDP/ge+vc6gREac7/9M46VxZr/O63Vp76e2d5zno/ZK5iPyLjrXkm2yPVKJqrOGz2I+YqDrMVh7h4rKI0ZxAoOXiUKGKL9dA92xnF033EuJQ+MnfvXgGPcu6e7PHjTJLkijlq6XrRWNSIkoyNfsA/fS+mYhtcmq9xYbb0XIkJp4WTzjCfA/41IcSd4r9XgPeFEN9H2VC9cSpXdwJcmS8zihI6o1B11gYRs1XlsbBUdxj4JQxdsNosMYpS3rnXQ0rV8XxlsYJn6mwMQlZb3jRFJEoyrm0N92UOLNVd2qOIqnN0WqTawNvMVkzONEq0PItuoDYhytcqwDE1PFvHs3WV8OMnivmR59N0moZn8dHGkEGgfLI2BxGrrRI/9fI8QaJSlm53fEZh+shG7NyMxyBQUr79qr9HxVrh/ZEXHkIPp5wMQ5V6KHPJpYUKtzt+kdKWKWnVXBnPMnhjqca5I1bv01zy1ett1nshtiVYqpdYbXnomkazbGGbgjTL2RyEBHHGOEpolm0aJZurC2UQSsbXKKnOSJzmjKabl5iLs2XSPCfL5PTgYOoPonKTTGLtSu5xLZ3lhkuc5ni2zswBngknxTBI+HhrQH+cFlIjHc9WpodLBYXTNnSuLDw/o/Mky/loY8jOWOmwXVNT8gpd45OrDbJM+UmttrwnMsN9GF1fFTIGQTo91DWL+y+EwLUUe67qmFQ8A9vQaI8yztRcDDQQObWSTck0GEVqDI6jlH6Y0vDMQ5kf9SLZ6ygFje44nv5/zTWn1xjG6pnxo4wfvtCiHyY0XJPNYTTt+is5i0PdNbnbCyhZOrYuuLPjo2lqDjqooKs8LNxpWuluv5hzrRI9P5nKBHbDs5WEKZdy38NR2TLYHIZoCKI456XZMnGqZJDnC5mCSkWVvLpU5UzNISu6dBV7bzJWxbNwLR0plbzitDCOUr5zp8Odjs8oTJgpmfhhwvlWmeWWx09cnuX9ott4ZfH5jJ1hmPBP39uk78ckecZMyeBMzcUxdF47U+WN5TphknO24bJcP15HOM8lcxWHlaY3lY0t1RwGoTp42YYy809ziSbUM3y26RHEGRsDn5vbAaamivfzFYdWxSaXkrMNDz9IeJ8RFcegO45ZqDmnIgkHxeZNUnU9Z+ouVcfANg1Wmx4dP0bThJqvbUmY7H02B2GCXhxw4zTnTnsMGrw0X6bumry12sAp2GI7I+VTY2jalPV8kmfAj1K+cn2He52APJcstxyyDC60ytztqpTJZtnm4qzyu6q6yvhcwHQemMiLZsoW52ZK6JpPzTuZzNnUNZolE9fWeX2pOpXzSwnbIiTJMuqeSSaVN+FGP2S+qhKAen5MnoNnKWnrOMpIU5VsFiU5a72AURGicm5GrbtBkrHWU2vt7n3GfNVRgQyFlG/33DOZD29sjUhSVRxolSwWaw6aAF0XaEDLs1jrBzRdnW/f6SNRRaWffXUeXRfYpk7dNak4Sr5z2P2qusZ0jdY1VdwfhAmOqT+VsX+rPeaX39vg3/rxi8d6/V/4xCL/v6/c4p/+YJPf/anlU7+uhxEmGXc7fhGgActVh+1xRCYltiZYqNqsNss0yiYgGIQxYZw/Uvh7HKqOwWzFJstzzjY91noBZUtHFxorrRJVxyAsEj2jVAUoIGGtF073XJuDgNs7owd7vcKH5dJcmeXGg9CcyZ7W1DUaJZNBkE4LLnMVC8dQEqfLC5VHmi73uiEvL1ZZ7wf85NV5kkwdagHcgo3nJylaAJ1xgmtKun5SNL/VOlsp9uw744iyo4r/rqU8K1ebSjJ9GIPQMDTmKx6fOdfk2uaI83NlTENjpekhUWvyzijC2R5SsnVKjk6c5qz3Am61xwzCmEtzlanEOM0lrbJN2dGpWDqmru15/9VWaVrc6YxjVlredD6/PF9hFKWYukb9GdpDSCl5+7ZqKkVJimcKFiouZVvnpdkyJUc1Gptli4vHfBaPgqpjqsRhNIyVOkmWszOKma3a5FlOmmbc7yhG7+cvzDxTSZ+uCX7y6hyuqXGvG3BnZ0x7FOFZOnNllwuzZYZBSg/JbGxPv2tdE5ybKdEZxbTHKjQqTLJje7ieFP/573mDP/pXvs0793qUHJ1f+vptSrbOz71+uP/eaaBkG3im2LNPmXg4nZ8p4Vk6ozCb7odfPVPF0FQxt1W2uNUesTUM0TV3X2Z9xVF+doYucPeZ701d2SH4UbanISWl3Lc5PNmbJakKP7gw4zFbthgnKct1l5vtEe+uDYmzjC9+1MYyDOYqNnb5f7mFqZ9/kjctjNN/t5TyR4QQfeA7xV/9billRwjxB4F/B+gAf0BKOTjGi5NmklsdFa24XPd4c7lOxTUAlzBR3hQ1zyTPc+51A2VWnuW8NFfh9WWTV2VtWmS63/X5xs0uirggHqEul+zj6ZmzXLLRC6k4FhXH4MpChcWa2sCNopRbbZ9+ELM+CPFMY+qZkEnJvZ6vTD5NjQszZYZhogokUmIbYrrwCiGmtL7zM6WpceQHGwPCJOPKfAXPMkgyyc32mEwqyueTwC5ibh+u1n75WpuPNkY4psbPvTbH9iBUrABdI5Xw6lKNz6w2MY4hoUkKo+qtQYhnG7xxtsaFmQofbw251wn4/r2+SttzDCxDJ8thY6A2Nwt1h7dWm2S5RNcUjfl+N8CPldfOTNlG0wSaELT9mCjLuTBTwtL1ItFQdaYexkLNPbHu+DD4ccq7a31+5YNttkchSEGeC8hzNYl6Fj99dR7LOJoXytPC9e0RX/x4mx+sjQgSxfpwbJ1hlFFxJW+db3Jxtnzq19gqW2wNImpFWEHNK2Lag4TOKGa+arPS8Pgn72/y7lofU9fUBs3Vud1JsQwVR/35i03udQPWeiFfvdnhfKs0NR49CJom9vhCHIbZikrKaZUtPFMvzCoVK0TXBednPO52fX6wNqDvJyzWHWxdbSAzKRlGKT96eZZW2eF+L+C79wcs1z1cS6dkGYfS6xsl5QMUJhlfvt7m/EyJ5bpHmGSPyFhHUarSzwqprZTsW7TuBTFZBhmKQWPoGm/s8mkDVTCbr9hkUvLx5pAb2z4zZYulhrsnGWuhamOZBkmWn+rmbhQl3Nzx2RxGCCQ7YyjbFm0/ZrZq0Q9Tfu6VeXT9+Y2dH6wNeHetz632GKRGkqkNcdePcU2Dz19scK6Qrx0XuiYwdMHLZ6rc7wZUivmtPYoZhaqY0A8SHFOx9KIkU+yepodj6ORSsXfPz7r0isLvKEy53wsYxBnVInL9tJlmk5frBwk74xiZw2fOl5krjMC3hxGvnKmia4K6Z079Y9qjiLUiValk6+RSJXR5psFsGS7OlnlvfUDVMXlprsJM2eb69oiokOvPlI/O2N2Nb97ustYL6PgRV+fL/KYz81Qck2tbKsnrnbt9zjZdpFRBBastD0PX2B5G9ALld/T++gDH1PnkSoOVpiqkH+QZ9ziESUbXT7B1HccxaZVtri5UyHPJtW3Far7b8afGxhfnSoRJTs0z6IwSNgfKu2ajH+HZOrd2xhi6wJZqvqvuOpxO9hovzZWVnKSQa+VFQX2ukNHdao9Y64XTMInZis1HG0Pudn2EUGnClq6ja3B1scr2MCLJlJSp4Vlc2x4SJCmWofyxbEPnU6sN2sOIQZhixDkV5/DvbrHmMlu2H+ztiqaaEHB1oXLqrIe//KUbmJrGH/rCuWP93ifPNliqu/z9760/9cJUmGR8vDnku3d77IxiRqGk4ghaJRsp1IFpHGUIIWkPVVPl8lyFmnt8loUQSiqpacpoOJfKfHhnHJPnklGk0qoBlhsOr52pcb8XcHWhUoR/5HztRkeFAdlK7j4JXKi5Jistb1/T4uWGBw31Wd+51+XD9SGWrk2Ltg8fIiWS8zNlLs1XWKw7fLQ55Gbhn1i2Verz1VaVrYEKDbBNjZmyNW0eA6w01Xp+t+MTZTmfOtvgs+ea3On608Pu45AkKd+61SXNcn721XkMTexJMNwcBEipAggqtkm1aLJ2/JgcqRhWxXWdny2hC/jytR2+2h5zYaaEJsQeOZGlawzDhJmSvYfFOIpTmp5FJhVTOpeqUfu0pUMbg5Cv39jh5vZIpemaGo6l0RnHlG2T15brXJorHzmg4iR4fanOK4s1dkYR//QHG2wPY2xdA03Dj1JutEeUbxisNEssPaPizgQzFYdfeHOZDzcG/Ddfu42l64zChO1hQJzmfOPWDlkOwzDlCy89SFYt2waGJugHqoj6LInipmnyl//wZ/iz//ADvnxtm1udgP/0H3zA9a0R//ZPXXmq760LQdW18YrzephkfLA+4E7Hp+5avHymytmGN10HSrbJp1YbgCp0D6MUTWj0g4Qkyx9pxNU9pWbSBOyMVeDGTNnac4aoOop558cphmYiBLy7Npg2ah7GTNmekiwW6x6OH+OECQiN5UaJG9s+Q1/tyX7j423V4Dkmw/pFxIlmFinlbSFEAzi7+zWklG8/7neFEDaw25/q+1LKn9j19ybwx4AfA34P8G8C/8+jXlt3HLM5jGBXFdJPMuYqThHDqtKNGp4y9TtTz4jTfMr0EULskeMlmURoitnQ9eN9H8ijQkpJZ6wSwc7UVSpMq2TRCxIqjkGaTRg5OfNl5dUwmTQqto5n6ri6TlBIoTzLYGbB4cJsztWFynTAPQxdE6z1Iq5vjZSuP5W8da7BsPCqubUznhrXHheLNWUe65r6nqJUXqTYTSLi01zyj76/yd2OX8hIbN44U+XcTOlYRSl4INWIkoyzrRK2YRCmGbfaPoMw4V7Xnx68f/TyDJv9iM5Y+W5pPEhDyXNJe6TkDZ5lsNzwqBWmjoNi0vYjRds8U1cRtJPPOWGgPGzu2z8lSZCUku1hRHusUgybnk3Xj3FaOpauMYhTrKHySJh4ojwP9IOEnVHEKFQFU89SMcxlxyBJJf1xTNk2lO/BU7jGmbK9R+piGzqX5iu8e19J5dZ6IbMVm2ubQ+52A0xdcLbpca5VojNKSdKcumsyX3Ho+TGOKRCJRphkp+qlMF919kgGzs+UGIYJt9o+ZOo5/M6dHnc6PtuDiIZn8vJqFdMQrPci6q6JYyj55tYoxNR1wlQFLBz18BomKlwhSYcIBD0/QdPgyvyDQ9lGXzEfJozCg2jBuhBYBoSJkpsdBEPXGAcJacZUBpZke+nlMxWbz6w2yWTOpfknT+XLcsn2MKQ9jpiv2mQ5DMKYkmUyChMVeT2Meedun5JlcPU5JG2GSabMd0cRKy2XjX7AuZZLIgXjJKXfUTHdO6PoxN1gy9B4ebHKrfYYS9cwNMEwSqemwmkuyaVabz7eHGLqOrU4L4r0Jkt1j9WWKn72fSV1vtNRh740k2rNylVylX6KB4PzM6VCPpLihymOqXO/G1AtfKxmKzYXZkt0Cyn45FAyOUSrNKwUpzAuvzBTIs4kG4OQ+72QlWaJhZpLCZ2okDoMw+TEqbVJmrNQdWiWTH761UVMXVCylen2d+/0MA3FyLo0V8a1VYPjw40hcZoXYy1le6g2pmcbLjlKriQEhyaBHoQgzuj7Ca2ShWEoxmQvSIpio1qbRlE2PZCXbZPzM3bx54T2KKTu2YyilDQXGELjkysNyrZxqB+lrgk2ByHtUcR6L2Sl6ZHlkrmqw7Ut5fPTHilG5HzVYWsQFf5AcRHwArc7Pn6ccb8XcK5VIpOSvp8SJoqVOV93+ZGXZhFCMFOycU2dL3+8Q56r4JHHeRfuLj5N9odSPkgfOy20RxF/41v3+N2fWjo2Q1jTBL/1jUX+v1++Sd9PpnuS00a3aO6NI9WoDWPlObpYeCP1xjG0oD0KeefegCTLubJQKRodJx/vs2UbP0pplUxlX5Hk2Ka2R6osEfzo5dk9v5dLxboO4xynYIBM9q3jQnMzDFPSTBbWDXuDam5sj/n6jQ73uyGtkjqITliMu3Gm6vDBxpCzTY84zclzqLkGQZIp6X2xj5mrOns8/3ZGD9i+aa7uZZjkuJbGOE5Zsb3HSvh24/3NkWIQC/ju3d7053GqZL6mrtMsmYzjlLKtmlgX5yrERQq2EIKlmjMtMm0NFDtGCOj4MY6lPveEXVZ2dOYqDoamfCzrnqVM0cOUtb7PuVaZ2+0xjqnOGUfxjTsJwkR5yu2MYuqeRaNkgxDUXEux4uOUzjjmXs/f42f7tKBrQpECwoRRmJBKqVhzUabYNCWbjX4wneueNfN6vurw2pIqnt3t5Kz3I/7JextYhl74GSVIKfc0GR1TZ3VGnZEOSsV8WtB1nT/181f5v/7DnF9+b4M4zfnH723yo1fmef2h5uZpwbMMPnde+bZO9gtJlpPkKvk4ydWYOsiyR9MEdddiaxAzW7IOPOPpmkBKOU0TXe+HewpTk3RJNaektMom1wvfqYNwa2fMzbbPrZ0Rpq6jC3XubFRsLs1XqLgmoyhjua7OFJOz97Nk8J02TlSYEkL8p8AfAq7zQDopgZ88wq//EeCvAH+m+O+XhRC/gfKo+g+By6hiVSqE+GfALx7n2jzbYKFik2eSqIin3fETPtocMldRm62KbbIxCInTnJJlcH7GOdDodLHuEKcVbrTHWIbGnY5/4oPCxAw0SFJmKhYXZyvc6fhESc62Lri6UCHJVeLFZAGpucpo7VYRE+vZBq+drVKyTDb6ITfaI5YaLoauDtMHTYoTiruuPYhgninbKk7W1PFOuMAYuvbIxqvnx9wrigCvLFTYGYXoQsks/CSn7hpcna/xmQvNE8m6VPSvxYXZEkkmmavaRGnObEVFwSMkbhGZahs6i3WHMFUH4ktFHPpk85xmOVrBLJgs1KASejYGIbahUqsSKafX2vPjaWdvpfmgmNUPHnTMnhTr/ZAvfdxGSolraZRsjeWmQ82xQEqiTBlcTky+nwdGUcqXPt6m6yfUPZOma9H0TFplk1bZQSAZBKro9zQ8Pfw4VQfufQrFnqUzCFLWi4131TUp+aqQJ6UyIbRNQc2z+Ox5xdiruRaaCPFsuLxQfsQU9aSYjOWHD5i2oaMJuNf1KdkGtqHG4WzFouoY3O34ZBIaJZM3lmvMVGwkEqv4vBdnSsxWnSMbduua8vVolexp3G2e7z2UlW1DbehN7ZH0vL2fKWdzqDrdXT8+1JS7WlChdU0xTB9mmS1UHWqewdYgPHFxYIIoVbKUd+/18eOMNIO5qsXZhkuS5ZStMmGujDB3FzWeJdIs53v3+lzbHJHLjDDKuLJQRuYCXYe6p7x9HFM7lgH3fljrBbRHEeNIFbrmKw62odLOao7JWj/k+vYI11TSDttU3XwplS/cXNVhFCbc6YxRhv06jbKFa6rExe1RRJjk3N7xWWrsT3E/LhxTebhYhoZlamhCJXvd3B4zU7aYKds4pj6V4IwjZTpq6ILFmo0fJ1QdC8tQwQVVx+R2x1e+VWSYhmJaGQXjansY0R6pGPqLs+VjN57ONlzudlQzxNAE93sh28MeC1WbT6/WWCt8Dv0k41JxkCrZSnrjWvo0Rdcy1HfQ35Xwl+9vD3cgpFQFuCTPiaKcLyy3CmNXJQM/U3cUO8oxaI/jgm3xYF7yTB3HNNgYhFxZqLBc9/DMERuDkLqn9iJREZqy39gp2wbbwwhTF3ui6JsFY3P3Jr3mmjQ8k36o1o8sl9PGz5maQ9OzqHkGH2+M0QScm/V49UwN19LZGATc7fjc3BrTCxJy4Hcc0yz8TGHDULJOP/Tgr371NlGa80d+9MKJfv+3vbHIL37xBv/4vQ1+72fOnuq1gSpSfPt2l1Gk/P9eXazimWPCJOPCTBnb1NA16Ixi6q7y8hlGit17XM+zhzEIU9qjGFPX2BknNEomG72QxbpDs6yktfs1O2xD5/PnW3T8iIZr8eHmkCzPKTvGdK2O05y1vk/FMXnFebQIVHct7nd9Ko5B3bP23Tt8f63PvW7AvV7Ab3vjDDMVi4qjc262hKFp08+f5yq+fbL/apasabFz4qfYLJtoCBaPoUgI4gzL0GiVLRqeydYoYvdIu749KprYqqDUKtvc2vE5P1Pi8pyyoah7FvPVvd9To2RRtic+e3XmKg47o4i1XohjKs8iISJyKffsKS1Do+aaBVPRmvrqpnkOnO7eM88l37nT5ea2Om8JATNlizM1R1kAGILtQUzJ1p+prLBqm7iWQb1k0SqVSHNJmCiZsxDqfPbR5oiVlsfnzreeqedU3bP43LkmG/2AYZAQZzlJluGaGrZlcHG2zPvrQ3IpuTBbmjLdqo75RKm5TwLT1PlTP3OZO21f7S0E/MVfv85vf3OBn3319GV9hiaIsozVXamfFcfkXKuMLtSe57CmRpLltMcRXT/GMsW+0rsJhBBTe46HpeV5USAEpimxdc+cWsnsh1yq+WSjr5QWZVs1U+93VZOw6hj88IUWFddivuLwD763RppLfuTSDLOnaJvyLHFSLubvBS5KKY/l8lywoX5cSvlfCiEmhalLQBf4C8AvADvARLrXBxoHvNYfBf4owMrKA/O0cnHwcWyDqmvhxyktz+SjjSF+lPHaUlWlDvlqYfRs/VA5jm3ovFR0IaRkGvd6Eiiqe8r2MCLLJc2SPX1I81xytxMQpRln6g5rvYwgzlnrB7RKNmGi0lFKts5MWaUMjqKUuYpDlOR8tDlESjjbdPeVHzVKFj9+eY5hlNDwlGTBMXWWGi51T6XUnRb6QYKUcHvHZ3MQMIwyslSSAZ9aaVBxDS7MllX19wQsmjjN+XBrxE9dmaNSLE66UIeM+aqSZAzCFK/Q0pu6xqsPJaZMaKyGrnyPSrax51pqnskgTNgZxXy0OdzDqNtdxNtjYndKXdcgznj3Xo+vXtshkRmvLdawTZ1KbvPSbIU3zlYY+CmGoT3ij/CskOeSO+0x37zZYWeswgE+dbZBxbWouSZvnW9QsnSCOKNeslg45RS+9X5Ae6gMzC/PVx55js7PlPhoc8A4zgjTgLfONVhplvDjFIFG148YBinnZz20ogCj6w+keWXbPBVDyH6QcGdHyVXOz5T2yH4tQ8kAJil9qy2P1RmX+92QOFUU+q1BxHLjQRqbJsT0O/fs4x2oyrbBZy80VZFQwq3Up1ky97zGQs2hUTIxNe3Qz5/mOd1xBFIFRXiWkiArr5C9mx0hFEtttyntbuyMlD9emsEPNo6u2n4YPT/m480RN9pDPt4Ycb8XMFd1uDhXYrleolm2WK67ZLmScxu69sy7hVkuud/z+fqNNh9tDDENnUvzZQwpWG45fOZ8U7FaM9VUedL0yn6QYBvqsL9apCw1S1YR/54pRrCAKJXM10w+e75FkimpdLnw8LjZ9pEoyWXFNad+FKMw4b21gSqsWgbjOGW15e3rSbYfojSbFj+TLFfBA8WmMStS3861SuRSkmaSr91oI1Cd+h9+aWa66euMY+I0J07BMTVaZQddiKncD1SKZM01MXWNuaryyhqEGctFOlvPT0hSWUQ5H21MDcIEU9PoBUpSf78f4tpDNgYRfT9hox/y5tkGhq5zuamaWc1ibV5ueMxWsmmRueIozyeJ8vQxdIFj6CdiJKh49wQh4eOt4Z4CUsky6Ach64MQ19IZBDk32j6X5lVBLkgySpZBqWlg6+r9J82nUZjx0eaQJFN+kvuN5/mqQ90z8SPlvTcprL6yWKVkG3sKrSstj1GkGEEqmEZMD8AvzdUL3zmJZykfTBVRL7i+PeTXP9jCT3LSNCcX4JnG9MB8VFiFX9Bpw49T/upXb/Ezr8zz0hFS6/bD60s1Vpoef/s790+1MDUZZ/e7Ade2huyMYi7NVzA0oXzPhFAMfmlypuax2iyxUHO4vTOm4qix/6RFvM1+yN1OQBCpgmLVMbnT9QnTnJKtszTr4ReJmQ+vJRNZ+u0d5UOnaxoLNXc6F4RpxtnG/l6lyw2Xu90xn15tcnGuzNwB7Iien3Bze8w4TnjtTIXLC4+mLOd5znfv9pBSMF+zWW6ouXV3g6Y7jml66j2O2jy8u+NzrxtQ9Qw+uVzHMXXWesF0rO32o5koD8Zhxp2dMcMgYXMYcbbpsVR3C6mwCk9oFiyPpYbHUsPDLZqwk31wmOSkqZwWwCbvcW7Gox8kXJov45h6wUZWhefd87yUkkHRTDkppJTc2B7xzZs7fLw9omQZXJwp4ZomM2WLz5xv4JoGQbFunHaC5mE4N1PCtjSCMMW2lO3At2912RxE+HHG++tDhlHKZk+x8S7PV5+JofgEuq7xqZUmjmkwjhKGUUY/SDFTFZK1VHenAWAvSnqb59n84r/2Fv/DN+/yqx9tcb095i/+2g38MON3fvp0DdGjTCXaf7g15ucL6T8wZWAfhI2+auzNlG02+hGDIMEx9w/52g3F0s4faUabusZ81aYzTjhTV03Ct841CeKDFUsrTQ9TF1yYLaEJ1dytexY7owihCcq2RbNiYesGb9/pcH17jCze67e+sfgvJHPqpE/ou0Ad2Drm7/2rwC/t/oGUsgMghPifgE8CfweYtDqqQG+/F5JS/iIFm+qtt97a85QYuqKq64XEKShc9PtBzPfu9dkeRbiWRpwpCdzjoGnqoRiFh3vOPA7zVYdb7TGdcczmIEIIeOVMDYE6cE4MFjcH0TRNwY8zluqqqurH2XQQCSGougaDQC0GcWEWGyQZ9QPev+yoGNgJumPFbAI4P3t6saEzZVVI2xqEvHtvwI2dMVfmSlyYK/OJ5TpBIpXR5TFTpnbD1lVCxgQ32sqcNZdgmzqzj9kIzFZs1rMQz9L3eGbshh+rzfW9jooZ3So8yxxLFbo8y9jT2at5JkvSfSIpX8+P+dqNDh+sD0hzZZJXdkw0DYSAIE3ZGanu97l9zPifBdIs51u3u3y4MWQYJpQsRSlHk0rOZ+ts9MMi2cJ+KhuIyUSeZuoQr2t774MQAlPXp8yE+YrL/V5IlsP17pBxmLMzjri8UGZ7GKoiQMXB0LSpWe9pICqecSkVc+rh1w2TvEgKillquGz1I/JcSeo6o5hhnHFhRhmT1otkuwmOKzUUginr715XxU5vDSMaD3WOjyIdEkDZMslR6Z/fu9cjTpUO/4cuzDz293dDIinbhkoMM0/ewbvd8fnmrQ7jOCXM1FxpahqOaVAvGdOUTsvQnokE4GFEacb76wPeudujM46xTZ2Zkqn82EwNx9LZHsZTY9rFUzg0z1VstkfRtBmxG7ah4Zga3XFCLpV8bBSpoIzJgX1zEKJrgjM1l5pnTgs5ALd2fPwkLUI0TGThQXKUwtQkTdMylIfahxtDhFA+UI6pU/csxnHK9a2Immuy2Y/QBcSpikgP4gfdyKqrfOVMXaVyTWSFaf5gXqg45vS60iznw80hea7YiDNlmyDJMHWNyhHH/fYwYqMfkssH5qR+nFGyTBwzIbWVvNzQRZF6CA3P3nNY2T3Oaq45vaaDij5HgZr3NDqjGNfUubY9ZrXpUbENFuoufpztCvpQRcusYEGZukbJMqg4BnH2wN6g7plT365JUqd/yEZ6Ugjdjc2hYqhvPxRuMFOx2exHmLoS2QshKNvGtCAnhGJ4frw1ZK0XMo5TNnohWyOVoHymbhdybmcPQ+t54m986x49P+Hf/LGTsaVAfe7f99mz/Oe//CHv3u/z2tKjxZHjQnmYjun6sbJxyCSNkrWnKRcWoTRawaxveCb3ugGa0Cg7p8MsM3TltXZje1Sw3dOpL0qQZIyjlBvbY0Ax/PbzTKm5qphpGdoej6i5isNWsZ4/3KzqjGP8KEcI5ad00IHt5cUK37vXxzUMvnO3z8XZCvpDDJi7nYDbOwFCqKCQ/VBzTaVIKJIrj4Lr7RHdccL2CC7NlfnkSoOZsj0db0IIzs+UuLY9IklyjEwwjhOiVBm051LNb+M4pTNSRafNgUrktopGvPLkUmN7pmKTFPtgiSr0gfoeJizuucqDz6drYt/93P1eQHesrAFOAikl728M+Mq1HdqjBFtTlhAIxS51TJ1ekBAmkpKtHzko6bRg6BpnGyXudnx6fkKUphi6YsYgcxZqNtFOTjdM+OJHbaJU8tpS7ZlZbASJ8ll7ebGKQK2n764NWO+FXJyNKVs6y023KO6/ODBNnd/7mbOsD0Pu9wJGseRvv7POxbkqr5+tn9r7CNSzWzpgrO6HNMt5+06XKFHF2GbJpDeOsA3tsaxqIcS+++g0U3vuPIftYczZpjFlMR4EXROMowwpM5q7PKsuz1fYHES4ls7NLZ9ekLDWC9B1tQZPWMgvyrp4HJz09PVnge8IId4FpjsNKeVvf8zvXQHeFEL8MeBVIcSfAP7fUsoM+ALwfeAj4DUhhA78NPC1417ccqPEZ883WO+FvLZc5epClZ1xTJio5Js0yyFXkoSjHuw9y3jiSvNkUt8cKv20axlFEo8yOGuPI5JUdRkrjkoYmy3MQ/fbqK62SlM96Vo/JMvksWjWu71ekmN2Gw9DyVam7puDkOvbY67MV5gtW7y8WOfVpTpxliuK+AknSdfSeXOlvucAFBfX/7B/zUGoOibVhcPf/0zdYXsYsdR0kPkD48eyZdIoWfvSYJ9UejOKUrJcmfGmuery/fDFFhXHVAtzmpGmir2X7KKRP0vEWU4Yq43LS3PKmPSVxSqfWK7RHseEaYYfHe/7OC4Way6bg/BQj6XFmkqrc02d+ZpDc8eiR8JMyWGurA60u7uymiYO7Z6cBM2Sor4LAY19itpLdRfP0nltqUbNUyl23iCk6dlFQmCGJsTULFUIcSrmhkn2QMqXSXnshcAyda4uVggL4+j1fgTIE3kNrTY9ftPVOcIk45MrDf4vx34FBcfQsQyBZSrqv20azFdsPnG2RtW1+GBjQFKwkZ4HwjgnyZR8fKVZwk9SXlms8sZSnWGkGgztUYyUE5nEk6NVtg98XjRNcGm+gkRyc9un5ppqbdz9+yWLOM1plEzO1Nw9hRVDE1RsszAYdlXa5BEbNxPvQeXhMmEjq4LzZDzXXYtGwThYqDl4tmIPXF2s7Jlna65J9UwVIQR+nLJZFFEOKrBmUk4lckkmcS2dy4d4J+2HyfejFQ2i87Nl0qK485nVJt3Cv61sm5xrlR5bRM53yfbSx3RjH4dcwpX5Kmt9f1psrxcynkjPpmmb51olhlGKbWjTjbFWpDbtxnzVYbYIBemMY/rB8f24pvPNQ02buYrDTMme7mHSLH9kDo7TnCSV5FLiRxkzFYvNocli1eW1pSqtioVAnGra60mRZjl/+Us3+PRqg7fONZ/otf7g51b5//zqdf7iF2/w53//J5/42vwone4bPFPnwpwKIznX8vBsg7NND4GEwqTcNnSGYTJl9U++wyfFYs1lGKZcnC0hUXL6y3MVekFCo2Ttef4Pes+6p5jZDxeXJmzQ/WAZqsEbp/mhvohnmyWuLlTo+MrsPZXyEcGaBGYqFuMoPZB51SrbRZHv6Gti07OIEsUcM4oqz8N7/5JtULIMAjLiLKNsm3iWkuBXHJNmyWKu4hCnKqxi0ngVQnBxtrwnhXv3PnhSoIb99yqHId21nzgJcqkk2RXHYKFmowmHKwsVLs+XiVLVyN4YRMXz+wzduh/CZO9gGwY/cmmWcbFuf7w5xrUGZJmk5pkEhZfmww3Tp4UzdZf2MGKp4aqivhBsDULKlo5l6lxaKPPS3LNvxh0FpqnzJ3/6ElGa8e79IcsNl45/LDHWY9HwLH7q5VnOzZSPxSDS0IAM09BYLdbSRsk88Rp9knU+y3fJ/3btz5plm89fbBEmGVGa0/UVC+tyEah2pu49U0npaeKklZa/Avw/UIWkI09FUso/NfmzEOJLwK8D3xRCjIEbwJ+WUmZCiL8E/AZK4vcHjntxgzDl8xdbSKk2rXXPolUsVjd3lI6+M45ZbjqPXTSSLCfL5akUALpjVYxZrqtN/NmGy9Yg4FqhTb4yXyGXTKvsRzkka5qKy52r2I9UceM0x9TFgQNxpmyTS9AEp1JJz3PJR5tD7nd9mmWbc02XV85U8SydH700S7mIiXdM/Ym0zfYuCVua5URpznLDZRSlT1wYehglW2m0r22NeGOpimsZ5EXShW1oxzamPQjbg4jr7SFZKvHjlKpj8kd+dIGybU4nl0bJmlbcTV07smTmtDAOVQrJOMwYxylplvGzr86ryR71LK4U17QzigjT/MBN25NgECYEsZLhHDbxupbO+V2HrNeXa4WnQsC3b3dpeRafP9+i/tAzk2Y56ROO+TTL2RnHuJZ+KPthIk2YYLnw6bnRHvLOnR411+DzF1qPMDUf5/XyOJypO7RHMZ558AH+MLQ8kxuFZ81i3SNKcj7YHGIb2p5Y+KNA0wRnag6ZlPvG7B6GPJd8sD7gfi+g4hgs1hzqrsWbKw1sY6//2ErTozOOn4rf2WGI0oz31wbc7wbkUkn0PrXSYKnwO9A0QasYJyVbRQ6f9jwG6l5lUj6yTrw0W6HqWAjxaGHd0LU9z+/OKOJ+L8CzVNdaCLVGVl2Tim1g6IrmPggSXOvgovF81WG9H04PYGXHwI9T7vd8/CjlTMMt/Mgc5RXpGNzuBFQd5VcXpdmeRpEQQhXqjb1jfj9MCml+kp3I08yPUuI0J82zQv6XYmoaV5YqU6nTbCVVHnJHPJRahsbZpss4Ptk1TSClRCIJ04zPnm9iGTo3t0f8YE2Z6C81PK4uVBSzTBPMHHF+nuwzqs5eOZ6UkiSTj2XSLDeUn1PFMUky1XSr7GoIAFOT5jjNVNPB1ImyXPlyxioWvlmy6PoJv/0Ti2iaeGwi6bPGP3p3g7udgP/kt77yxK9Vc03+4OdX+EtfvMEf/8mXjl083Y0wyQpfTZ9USpqexfmZEkbBDj5ICVBxTBZqDkl28rU8l+pwpcIJUjKp2Hhlu04uJWebbsFqVdYbih1sYugCAby31qfuWdPnY4LdoQdSyseuOZPrN3XtkedeSljv+ySpxDZ1fvqVedZ6inm13/p4pu5iGhqWroq17VHMaksx2LvjmCTPmSntZUge5TovzVdoli2q7uFWAnXXZGsY4lkGs2ULhKBiG9zr+oxjNT+dnyntWYsn97bmmuhSoAux5z10bf8G+FFwpu6yPYrwjrl+p5myIdnsR4XnjuBHL81yuQhk2c04skydQZA8c/n9biw1XNqjmJKl7xkz81XVQL7RHvL++pDuOOJbtzt4hs6VxQol++nuOR5m3Xzh4gwvL1T40sdtpa5xTL55s8MoSlhtelx4wYpUuq7zH/z8VX7lg23SXLJUc/jvvnEb19T5nZ988mRSowg9Ok7BNc5yqp6BHgleXaziGBrdcYRj6IcynA7DSdZ5x3ywX5l9qMk4sXqYr9q8c7ePY2hoGtzvhiosybPQNcGwkCDGmbIAqnsHBxu9CDhpYaotpfwvnuSNpZQ/UvzxU/v83V8D/tpJXjdMMu7sKAPquqeKUhMKM4ClC4ahkh+8fafHmfrBcqj31/u8fbvLUsPlk2ebT5SOEqc597oB4zjFMXRmywZdP+HG9lj5OwmVcHcQ9XOysSgXm4h+kLA9VKaIfqzMlV+aK08/y8SDx7U0Ls7uXyXWDqDlngRbw5D31/v88x9ssdGPWGm4nJst8YmzDcqOcaBc7qSIihS+W+3RdMC+cbZ+avrpOFWGvlIqo/RGyeLmjl8YRsYsJy5RknHhhEb4e98r45ffW+edu33CJGWmbHN+tsT2MKbu7Z2IDP3p+GIcBd++0+U3Pt7mften6hgs1DzudgMu7rPIPa3I0jjNuVN8L2GSsdo6OqXbswy0iuAbt7psDWO2hjEvzY/59K6DzZ2dMV+5vkPdU8WDw0y9D8NaL5z6N1xeOHqyljIztXj7TkpnnLDej1hq9Pixy3PTucGPUv7RexsgJW+ebXDxBD4mtqE/stE/Dt7fGLIzStgZJaqYZuos1QvvoejxkudhmEwLMLfaPn/3u/fJpOSnX5478jUMwoRf+WCTr3zcphckzFcdPrXSpOZZWMajpvinwXo9Cd652+Vvfvs+vSCm5VmsNMu0KjYrmvfI4WO35Ow00RnHvHu/h2cZrLZKe5oex1kH7vcCvnGrQ55JfvPrCySZornfavustkqYhsbOKGIQpGgaXF2o7rumKbalem6FUAbiX77W5p27PcI043PnW3zuQms6j2wNQrJccqcb0AtSBmHCK4vV6bo2MfE1DcFL+yRtPYxGyaKU5krWb+pHLgS2RxG/+v4W3SCm4VkMg5QoU6l8FUelj757v8cwyKiXTC7NPf5aJqh7FvUnTBy/3wv4eGuEzKEXJFyZd/hqwTSI0iFLjUefud3o+UrOOTGY3xqGDAKV5DgM1Xd6qWDJgvKRnBx2d0fPPwy1uVZ/n2Zqbb2yUMHUNdZ6AUGSTfc/X7/RYWsQEhfswtmKYo8u1T3W+oFKpQ1VymHHV8lyE2b584SUkl/84g0uzJT4mZfnT+U1/9iPXeS/+/od/rN/8D5/5X/92RO/zvvrA95fG/D23S7LdZeVZon2KCaXkpJl8OZK/cA1+0lZxFGS8dHmgM1+xDBSsuEzdYc0U3KnScqblJKb7TF5DrapcblZ4f31AXmuTNgXq482kqM04/rWWBW4dqUq74fD9k7DMOGvf/Mupq7xufMtzs2UDpV7m7rA0ATtkfK304SYxshP7DGkfHBwDJOM69sqfevcTOnAg61r6Sxbj58EdsYxaSa51VbBAEt1lx+sD/hgbUDZMdCE4MrCg7TdiX/TzighTDIWag6mrvHSXPlU5JmWoZ1oP/GdO13+3vfW2BnGWIZgtVXmXKuEvc+Z7HmadU9w0L5J15RtTJbDej/ifm9Mb5xQtk0+f6HJ7/zUkxdXjgNNE8xUHK6eqRLGKvXuVnvM9ihiueHyW15fZKVVeuIgg9OEruv8zKsLAPz1b9zh772zTt+PuLE94k/+zJUnmt97fsJf/codFusO/8pnzk4tCw7ba3XGMRXbpGKbaELjw60x7VFCe5SwWHdPPC+eZJ1vlKz9zbYLOKbB5y602B6G/P131hiGGaMoZaHucmt7zPfX+uyMIs7UXK4sVBmGyQvLoAM46Yz0bSHEnxVC/JAQ4lOT/53qlZ0QKiZR/XmyiI0LCrOUasETQiXGeJZxoIlZkma8fbvHzkgl+vnJwa75R8HkXbRdg8vSxXSibe7jAbIba4WG+24nIE5z1vsBQZxxqzOeOv3vNv8cFj4SQZw/sTTgcej7CWvdkOtbYwZhSphkZEJOvwjjKeist4cqIWF7FBNEGWGi4j5PC7u/irprsl5IJTvjGKEpScJx05sOfC8EnVGMJKczjuj7KX6UHWqI9zwQJSl+lBIkys8gSlS0/OOMAE8Tu78X7QQLlW1omIWUxbN0giSdBhr4ccr/n73/jrIky/P7sM8NH8+b9JnlXbvpnp7psTuzBm4BCAtHA2KxBEFSBHFAiRB4gEOJIkUJIGgkiiJFQSBWpGAIgCAFkli4JbFL7u5gdjE7fqZ9d/nMSv/8e+Ejrv648V5lVmVWZVal62V9z+nTVVmZ7918EXHN7/c17zzos9kPWen4j/mhPMs4hVDX9zBQXi86SSonBvI7Qxc+2OjzoO3zoBNwvzN65jE+D8ZzlRBqbqu65sSX5Gn+XFJK7rW8yXy22vUYRSlemLJxiM98vRcwDBL6gfIc6gcxXh4bfpZU9VsDJc8bBCltTx0Mel5EcITy6Schyx4eSjb6wURG9yxIM4kXKLP+zdx/SggxkZ1o4qFx7mHCQjQhCJKUKMkIYuXZtNl/eC9Ucs8YS1csGU3sZgKPf6c4kQc2wR77uD3o+Af2O9wcKCZoECmPumpBGXOXHAND01jp+Kx1QzYGAWGcntg1HiPLwMg/F11ou2TAtcKTn8s4zVhuq33Gg65PkmZs9EL8KJ2kzWaZKgaMMf7cB2F86LEKlHSzlftFjb01k1SlnSmfGx0vSinYumJA5nsJTQjaXsT2QPl1jpsAp4l/fLvF2w96/Es/evnIjI/rRYt/9Tdf41c+2uKXPjyspetDCKAXxGgIvCil5Sl/t5W2zyBMWG57zxXs8zQM/IStYUgYqxTX9Z5Ky1XNv4dm3uM1ffzxjQvGtcLeDKIgyiZSl2H0fPNanEh6fswgDzV4EtqjKGfypXiRMu6vOOauPcnO7ckoTMgyNScexT7V0AVZJlFWqwI/Up66XpwyCBOCR84rSuac5l6pPl0vIs0Us/I0sT0KSRJJP29UhUlGzzv9Z/lZ4UUpXpgw8BNaIyVHW+8/+z7yeWFoAiklmqYk7F6U0vNibm4OWesGR3pmOkq4tkbfi0kywb2Wz3o/eK7Xi1Nlo7A9DHl/tUdnFO+ae/ZCraBY5JahvNn0nXv6s7TB3AE991RV49YpmDptL2K967PeC7jbGinT9LP6C+R41vbxWPD+xR1fk8Bver7hPD/snMofJtkkTrResPKFQdHOv3i5QZapTlDRNggT5eOys9Bg5HTfIFaGY0dRWQ6ShKszij3hRyn1gsl02cnNIJ/cCVBjS9G03MTNMugmMQtV5VFj6BqVHcbmsxWHrUFA2TGPrICy79gMgSagWbQ5V3eZr9h85eo0Ly+U0TWdinv0LIVSrrNfqDroGsxU3COVv5i6Ypp5kWJ/FB2DlbZP1494fbHKdMmZbPhBdcQMTRxKwtTz1aFoqmTzk6/N8qs3t7kxW6JRVK99/RQMmh9Flklubw8BeOtig66XsFQPqRfVQfGNpdqJGTyCui6Xp4v583P46y2E4DMX6kqW4hp8arE6maR1TeT+bgbF3HPjWTH2jnIt/Zk6ki/PVyb+Hm9eqO+6r6qORbOkZA9Xpp6fsfcsuDZTxDU0KgWLRtHGj1JcU/2+BzGGNHWNKFHU/VcXq6z1lDny5w/gy9LzYrYGAcMg5sZcOS9mJLw8X6PsKOntaWvrR2HCg46Hbeq8ca6GFyW85JWYqti5d1yB4jMkrj0LRJ7kUnGVp+HzyGtfmiurBLs040KzRMU1mavYpDnLwdQ1pss2rqVkI/fbnkrJfYLEI8yZSz9yZYqCqbHWD5mvOruMSh1T55WFCtdmS/T9eFeIB6i1fOy5Vzjg5zo2BRXi6UXuTEpubQ0xNZWaVy+a6hkwDSxTxzX0SbpcrWBOEulO6hqD8nnxY8Ukci3FAtOE4MtXpibr2JOgiXHXX2LlMhrH1AjijHMNF4HAMnZLyOerDu1RdCiGrGlok2dUCIlpCOJEmRpXHIOrsyXKjpJ4qhTIh/fPYtVlGAwwdECqIpltPH3OOQn8xV+5zVTJ5ve9ebRx53/4Sxf5679+n//L33mXL/3vmgeWmGdZzkCSkpfmK2hC0CxY1Iom12crhPmepewauJZxbIcVTRMsNZXsvufHLJkOLS+iYD40vB9jHDI0ZtjPVpwnJpOWc2lvnGUTu45ngWPqXJgqUi+YvLZQZWsYsD0MWWq4e7Kdx+vLeJ+4k6l1capAkspd9hi1gsUgSMikfKZ9y6OYKtn0PGUN0ixZzJRtMiSvLFSoOOaeTO8rMyWiJGO+ZmPpyhz5oGEPRwnFeh8hNHhjqUpvFHO+6TJVtJECPn2EptcnjVfnK9xvjbg8U6Q7ihBC8PlLDXpexIOuz1TZPlEvvIvNIsMwYbHu8t1Kix8s93FsnZqrii4nuXc/DH73G0usdnw+WBvyqXNVtocRozDhYqOI8Qz76aJtsFh3uTxdpJkn2ZtPCEAAcAztobcrKqjMsXSVAH/CdhAHRaNo8RMvzdDxIs7lVidXp0v8YLlDwdS52CxwcaowYS+fVTzTrCSl/InneVMhxL8G/H5USt9fRRW1VoB/NveY+hBYy7/9j0sp3zvM6xdtg50yZMvQuDxdYqMfTLqwliEIU9X1XO0Ej0nhhBD8xI1pep7yNnjeBzhOM3p+gh+pjnBrGNEaRVybKR2ou7ZUd6m4Jo6pTbTg0+UU29j74aq65ol5qRQsg2uzZUqODkKxmaIso+Jax3ZArBUsCpaxKxL8qOFaD+O6l2ourUFEo6QKAVGasdrzma04dPNocF0Tk9jtp6E1DPnF9zeUea5j8ltemeXydJkky4hTZfZ42lXtIE759t02d1seZcfgM+fr/P7PLhElKVGq/ICOggZ+WDyPJCtOMr57r4MXqi68u+N1bEOZ6l+bLVErPN8zryR5z1YAiNOMH6x02RyETJecx3yXLk8XqRVNbF1/7IB+EmiPIm5vDekHMfVcJ7/RVx3wUajSYZ52fS5PF/HClJKjiiV/4HPnJ3T4J0FKyQ8fdLnXGuEYBp8+X+GPfPkSmZSMdrzeaSJJM75zr829lk/JNvjC5Qa/+9OLmJrGKEowNG0yr5wEhBBcnSmxUHUpO8ZzsTlcy+Cr16YmccQAlqHu89WOzzfvtKkXLOZravMXou6NJ0luoyTlg/U+X7zc5NPnG1S21GF6r8/I1LU9n6uCZRyamq6KXwa2oT11HosSdci3DY0vXWmSSsly2ydOEy4UrUmxZqmu0gtPY26M0pTltk+jaFKwDe5sezimkuu41tPnIl1T94mfe0mNzZLj7PHY6zGeZK6/HwxNTK6trgmuz5R3vcf5RoHz+zQF+mFCJlVx+t0HfcqOydUZ68hSVJ8VH6z3+ZWPtvjTP3njyANJLEPjz/6e1/iZ/+LX+Qu/fIs/+VuvP/VnkjTj+8td3lvtT9iGr5+r8fJCBcHDwsrV2TLDIDlUWtVhYRsaC9UCs2WXfhCx0g4Ik4z314ZcmS3gR6XJ/WAbOnbp4GPRNPFECelB4Vo6v+/NRQTw4Xqfb93pYBoaP2pM79mgqroml/Mk60fvvb2azPoeoQLPCj9KeXuliy404iwlkwFdL+babImlWmHf57VZtPnMhboK8Dml5yVJM753v82HG0PKtsmb52v8vs8uYQjBMErzpNiz633zNLi2wU99elHtbWydOJNYuuB/+mCTrhcjkfzY9WlmKydjx2HoGrWCRRCnJJmgWbY4Vy/w8mKZ6ZJzpj/rP/bj12iPIjqjkDvbHg+6PjcrA37zy3OHbkSUbIN/8auXMDWV3HuQOa/jxfR9xSgrWPEkCGazH+JF6USKftZQdgy2hyF3Wx4Xp4p0vYhXF2voQjUW55/XL+AE8EyzkxBiFvh3gQUp5e8QQrwCfElK+V8c4Gdt4I38r13gp6SUXSHEnwN+J/B3gS0p5Y8/y9iehIKlI4SS7ASxIEqUIaOuiccSgUBR4aYrep4aJJ+rUJCkkoGf0A+iyc2sDFRVItbTDgtCiMcKTac5qexM9gC1sDdLDpv9Lfw4pTOKiVPJcfqrneTG3zF1mmWVmCIQrHUf+giM2aBpJnPD+SePK4hTVruB6qDlMpDxodx6ZnXt0eNB16fnxbSHIY6hYehqjK5lcDouV8+PjhfR9WL6gWIQBEm66z6ydA3nlHX3ozChO4oZBikVN8WL0l2adCk5VQNQL0rYHISEccatrRHNok3B1hkEKkL5INHYpq5RLez43A/4LPf8mFGYsj2MmC0LMqkMXDXErtc7TWwMQkZRSmsU4pgacfrwoHDSgQVjPPp5P4pH5/MnYa9mQ5ik3GmN6PsJSSqZqdgYulBy1KccgtJMSX38KJ34tWi59ORJBU6ZS9iftdC215q6HzKp1m9fE2SZakyM5/1xGhaosZy0uf4YSSaVD5QQOKbaUAdxRiZByINdX+uRIp2mCexjTpY6zHu4ptrDPej6eJGSlEYnLJfcCz/7tdsULJ2f+cKFY3n9r1yb4ne/scBf+OVb/N43F59q8L8xCOl6MR0vwjS0iZz80b2Jronn8k49KLJ8n122TQw9ZHMQYuiCziihPQpZPICv0nFjbAbe8WKGYUIW8EQ7hdMqhq50POJUsu0HlPO943jvWbSNXc/So/P6aXgs7sTWMKQfKEmhqWtkyMnaWHXPxvr9vNi51uq6ajRqQtDzYjIkG72QimOdaHPKj1J6fowXKnbyTNl5rHg5Tng/7Yb4TjSKFoYu+P5yj74f4xg6qx2P883ioce58/c9yJw3rheM/9z2Ilbaat0xNEF4gLPeacCL0snepD0K6flKWlp29EnK8VnHs85Sfxn4S8D/Mf/7R8B/DTy1MAX8r1Gpfn9GStnZ8fUEGK8CDSHE14D3gT8hpXw+gWmOsmNyfbZMmKQTY+uZij2ZOPbaUPaDmPstD0NX3cNnvREtQ+Nis0CtYFFxTDb6KpFouePhhSmz1ZOleD4rxgaVozBltmLvogxXHIM3z9XYGATMVpwTnXiPG5qmTHWV90XCO6s9BFAvKtp0KiWO+XR/HVCbwVGU4Jg6moC3LjzJ1u70kGUSL05xLYNXFyqTJMRPMmxD5+WFMuu9kBtz5V1U9q4XsdLxsXKpyWkxb2xD5/pciZJrMFd2dsmIOyM1Rts8vTFOl22qrsldb8TWQDEk5/OkUUPTjnVMpq6BlJQdg2bRYv6IwhuOEqYmEFJQNHXmqk+WopwFjO/7sRnus1w/XQiqjpkXaQxmKw7zVUHyBLbNGJahcT5PtCrZBn6spPVPkrwkqSqKxmn2VNPjo4Cpa5xvFAiShFvbQ2xDp+ToaEIcS4Lis8AxdM43ChRsnYWqQ2sUUbQNbm8NCWKVXHuWEuyeBa6ls1BzWGkr03XH1Jg/pTCQMVa7Pn/n+6v8s1+6cKz34b/5u17mlz7Y5P/0c+/wV59ihG7qAokq5M2WrCNhFT0rgjjlvbX+xPT7+mwZ29C4uTmcyOdPG2GS8e5qn7mqw+XpEj0/pmDpZ3LutgyNqZJNs2RxZarI5jDac+95d3vEIEiYKltnZu9maII4TSlYOudqLkufAPbG88LUNV5brLI1CEilZBAmExn5SaHqmpxrFKi5Jpemi4+tyeOAMF0TXN7j308TFcfky1ebfO9eB8vQWO74jKKMy9PFYyVnFG1jEoCgC8GHGwO6foQuNGYrzqmxDp+GRtGaFNSnS9ZknfTilI83h8xVnecOtDhuHOqTFUIYUsoEmJJS/jdCiP8DgJQyEUI81UVPCGECPyal/PNCiD+z4+sLwG8B/mz+pa9IKdtCiH8D+KPAcyUA7sS4I3h1pkScZk/tYPd95fMSJxIvTJ+5K++aeu6doN7v8nSJMEnZ7A8n7/NJKEwlmZLMgGIv7CxMCSF443wNP04pnXJn5jigaQJH0+n5MYs1lySTFCwDx3x6RPlOKB8WCyhRtIw9E0jOAiqO8lm6Mq0x9Qm4Nw+CasHklfkqry483j3s5c96GCvj3dNaeFxL58ZchSsz5cfGMDb5DeOMIE5PpWtrGzqfu1BH1wS2oTEIE+bhRDYzrqkzVbZplKxjS7B7XtSLFvWSyVS5nsuvz+bzPUbfV+EgUfLs972ha1yfK3N+qkDZfihD1g/AhHFMjeuz5cnndJCkTT9OJ0yZnh+fQGFKcH1O2QH4ueHydPlsbU4tQ+PaXAnX1POuvfKhG9sX9Pz4E1+YAtURXqi71IoWV6ZLpz4H/MVfuQXAv/iVS8f6PjNlhz/1kzf4t//Ou/zdH6499XvrBY/6hTq2oXNKPRbgIat8EMSUbCM//JaYLtuY+tmQbmV5YEPPj7k6U5r4Q502w2gvnKsXGBaTyXN+aY/7P8vZk6ASyc5KYarimjRLqglfy9Nz/5eAimPy6kKNUaQ8CE+aaaNpgi9faeLFKcU97umxn2mSqnPuWSpMAcxXXeovW6x2fUZhSppJhmFy7HPH+Dr5UYqpKX/bon02/H/3g/6IvPnqTIlBkLCaq3x6fvwbqzAFfBP4DDASQjTJw+aEEF8Eegf4+X8W+Bs7v5BL+/4K8C/lRS+klO38n/974E/u9UJCiD+KKlpx/vz5Q/4aSpp1kJu6WbQn1L3n8XMR4nEZh23o1IsmwzBhuvTJOPibukajZDEI9r65TV07k/TGo0StYNL3TYQQE5POw2K+6pJm6vM6q0W8etFmECaA2GXk+UnHfsWcZskmiDPVfTxltt9+c9NU2SZMMtxDmDwfByxTsTP6Qcz0CUofNU2wVC/Q9aMTfd/DwNQ1luoFNUee0THuRLNk4cfK3+N57vtHZWAHhZKeHe59i5ZB2TEIk4xm6WSKLeU8dWul42MbGoUzcKB+FI/GqbumTtU18eP0xD6n48Z4T1ayjVNn22z0A/6rby3zT3526UQMZX/mixf4W99Z4c/+vafbrl6cKrI9DKk/JfH5uKHlJvqPMiBPu6C4E7omMA0x2dOexYLUGJomHnvO9/qe6bJ95tZJ29BZqLqMouTMH46PEo6pUSuYWIbGfO10znqGrlHZ52xWL1gMgwRNE7tCnc4SHFNnse6y3PaAk5XMO6ZG1TWxYo2FU7p+z4qxb58fpZ+Y5+6wd+B4dfvXgL8DXBFC/CowDfyTB/j5G8CnhRB/DHhVCPG/Bd4C/t9jg3MhhAUIKWUI/Ahwa68XklL+LPCzAG+99dax5dy6ls712eOrjp51d/y9sFhz4RPrMvT8sA2da895TxQs41jvq6OAYhae7TEeJUo7qLtnFWdpjAs1l4VTmAfmqg5zZ1DCtxOfpDmyeIbuqYNCO0Iz4cPgk/ZZCXE05tBnCce9JzsM/rNfuUWaSf74j189kffTNcGf+32v8W/93Ls8eMr3TpXsI0mTfl7Yhvbc+6XjhmVovDRXOe1hHCnO6jr5PGnHn1QIIc707+2Yz3+mOQnYhn4qZ5LfCOvoWb7/HsVhC1PTeaIeKDbTP0AVq0KUFO+HT/phKeW/Pv6zEOLrwLdRJuoXhBB/AvhPgF8Dfl4IMQQ6wM8ccowv8AIv8AIv8AIv8AIv8ALHgrvbI/76N+7z+99cPNFDy+tLNf72H/8yn/tLJ/aWL/ACL/ACL/ACJ4LDFqZ0oMRD5tQYh16VpZRfyf+4V/nzM4d9vRd4gRd4gRd4gRd4gRd4gePGv/P338fQBX/qJ2+c+HufpeSsF3iBF3iBF3iBo8JhC1NrUso/8/Rve4EXeIEXeIEXeIEXeIEX+I2F//Y7K/zi+xv873/HS2cyue0FXuAFXuAFXuCTiMM6lb5o07zAC7zAC7zAC7zAC7zA/+Lw7btt/s2//Q5fuNTgX/rq5dMezgu8wAu8wAu8wG8YHJYx9ZuPZRQv8AIv8AIv8AIv8AIv8AKnjDDOeG+1T9kxqDgmJcdgEMT8re+s8B/+ww9ZqLr8pz/9Jrr2olf7Ai/wAi/wAi9wVDhUYUpK2T6ugZwFBHHKatfP477dY9XxJ2nGSscHYKnuYuwT43mSiFPJzc0hsxX7TEX5nkWs9wKGYcJc1aFkP/4YRUnG3e3Rmbm2e+HF9YZ+ELPZD6k4BjNnVJLxSRjjIIjZ6IeUHeO5pS1hkrHeC85kotAYn4Tn+yDYuQ4t1l3MT8DvkmaSlY5HJtXaeRJj/iRe7yjJeND10YRK//2NVEQJ4pQHXR/rmPZqqz2f3/n//EeTvwsBMs9+/tHr0/yH/9TrzJRPd376JK3fy22PKM1YrLk4pn7aw3kMn8Tn+yBojyLao4hG0aJRtE7kPT8J6/dZxmY/oB8kpz2MJ2IUJqz1Aor22XuWx9i5T3gWZJlkpeOTZBlL9QKW8RtnXjgsTvp6H5Yx9Rsa28OQUZgCKRXXpOoe32Lf9iIG+eTT8WKmy6cf65ukGX6UstEPzvxG5zQRxClbgxCAjX5Aabr02PekmWQQJLS96NQ3sPvhxfVWBcYwVp9Do2idyU3pRi8gyMdYL1pnsniw0Q/wo3yMBeu5FvEsk2wNQupFE9s4mxufT8LzfRB0/XjHOvTJ+F26XkTfV2Nuj6IT8fj5JF7v9ihimF/bnhOf2MH0JLA1CPHCFI+UWsE88vVrruLwf/+Zz9IP1PPR82NcU+eLlxu8eb5+pO/1rPikrN9pJul6MaD22Ev1sxdb/kl8vg+CtZ5PlsFq7J/Y8/9JWL/PKpI0Y6MfnvYwngq130vxo/S0h7Ivdu4TngU9P6bnq3mrNQqZr7pHNbRPHE76er8oTO1AyTbojGJ0TeAec1enaBkIoSags1J11vKuY3EPBtALPISla9imRhhne7KlABCqy1q0zu5n+eJ6q989jCNcSzuzjIKibRDkYzTO8Bj9KMIxNUz9+cdomxqmdvYKcBN8Ap7vg6Bg6YzJJp+U36VgGZMxF6wTWjs/gde7aOtsD9WfT+xzOiGUbIOup/Zqx8HAcS2d3/7a3JG/7lHik7J+a0Kga4I0k/vvl04bn8Dn+yAo2QZ9Pznxz/3Mr99nFLomcC0NP8pOeyhPRMk2GIXpmWYR7dwnPAtcS0fTFFP2rM+xx42Tvt5CymfkuZ0hTE1NyYsXL+76mkR1QXQhnuvmfB4kmSRO1ASzsbrMo2N8FEc95jDOyPLr61j6U53r7969+9QxHjeiNCNN1ZgtQxULkkc+k+cZZyYlUvJYEUICQV4N1oTANp/vATwLn+WjSDOJhEPdkycNKSGVkiSVjOemJ43z0XvjuJBJSRirz03XxGMT9JOudyol7HHPHTWkVGw+AE0T2IcY43EiSjLSnE9tmRr6Hhdr52d0Fp+dTEriVJJlT78nTwPj50YTTO7T8RjDOCPOMoSAgvl8m7XjwGle7yRTn5m2x4dy2PX7eZFmErHPWPbDznXroGMc3ytHNW/GaUbyyJr9JBzX9d41zxxgHDvx6H1wFucggCDOSLMMCWyvrRz7GMP8M32ewuZRfpZHsd7HqSRJ1XNtGqrZc1LX+zDj3zn/mIbGyv17hxrj5DnXxIFTq8aMCCF45oLvWXx2kkztJ8fz1OrKfRaWzqMJgaGLM9mUHH+O6Q4tWpTfD7ousM4Ic/7m7TvML57D0LXH9pxnBXfv3mXp/IU9nz0/TtVCKjh2QsqTcPP2HeYWz50IMeZ58J3vfEdKKY/1Qj9TGVAIMQssoi7nqpRy40hHdUhcvHiRb3/727u+dmd7RGsYYhs6ry5U0E5h4gnilNtbIzIp+SO/5zc/NsYgTjE0MZEPfbwxIIgzDF3w8nzlud9/sx+w0Q8p2DqXp4pP9WF46623HhvjSaMfxNxveRi64GKzyP22RxirQ9VLc2UMXXvmcQZxys3NIVLCVNlivuoSJqlanDTB7e0RXpgyW7Gf28vnLHyWY2SZZL0fsD0MEQgyKdGE4J//vY/fk6eJKMn4YL2PQBAkCY5h4Foa/8zv/Ik9x3mvNaLvJ7vujb2QZpI4zZ6rs56kGbe2RsRpxlLdpVbYTYvf73oPgpi72x4A8zWHqdLekl0pJUGcYRvaM89VUsqH93DVfkyScFr3ZM+LWe54mLrGleniY9epH8R8vDFAILjQLPCTP/4jZ+K+DOIUU9cIk5RbmyOiJMOLE+oFa8/5/LQQxCm3NodkEhxTHchHYTp5vt9e6fLRxhBdg9/2yiwF+2zJfk7rvlxue3S9GCHg+mwZiUTwsOj8tPX7KJBlkijN6HrxRB5+daaEe4hCwO2t4a7r/SjGa9xYAvzBep84kTimxrXZ8nP/DsMw4e72CE0IrswUnyrfOa7r3fNjlttq73BluvRUyXOWScIkY3sYTu6Da7MlbEM/U+v3GEma8dHGgA/Xh7imzr/5z/+uYxujlJJ//3/4gL/4K7cBePlCnf/vP/c5qoXDzx1H9Vne3BzQ9WJcS+elucozFxNGYcKdR+7Xk7jehx1/EKfc2lKUx8tTJb765S8caozvr/WJkgxdE7y6UDmQD9v9lkfPj2mULBZrzyZdOkvPThCnrHV9hmFKnGaYukAIwR/4nT/Of/7f/SJGzricqdhMlewzVaB66623+MWv/RrLbeVzNFO2GIQpSSo51ygcq9XMYXDt1Tf4d/7y3+PVhQo35srH6s38rPjUpz/Df/7f/QKuqfPqYnXXv610PDqjmKprcr55ejLjG699mn/vr/x9agWDH7k6hXVGZbBCiO8e93scqjAlhPg08J8BVeBB/uUlIUQX+ONSymMf8H6QUrLc9hmGCYs1l61BwINOgGmow44QnKgOX0qlWZ+v2lTdx7Xd28OQtW6ArgmuzpSwDG1i0pZJSdeLWO0GlGyDc43HzT2TNMOLU4qWMZlMgzil78dUXDOfbB2aZ2yyfRpGodIEm5rgg/U+G70QSxcYhkbHi5h+gv4/yyStUYRlaHtO2lLC1kAZC2YUKFgG91seQsCV6RJzFQcpoeT8xqBtpplkGMZ8736XBx0fIWCpVuDVxcpjhZXTxCCI2ewHvLs6YK3nc6FZYL7q8sqC2rwFccbHGwMuNIu7mEo7TQ33432mmeTjzQFxIpmp2Hv60YRJSphklG1j30XV0DWuz5ZoDSPFPJNy1/dGiUpxmq861Hd4OewcY/YEdur9tkffT3Atnaszj3uWSSkZhAmOoe9LpxVCHci6XqSYh5k8E89+tWBSdioIwZ6f7/Yg4Bfe3QAh+Sc+s3QKI3wct7aGfP9+F9vQ+JGrU0RJxjBMON9wuNB8/PqcBlThZMjtrREPOiMuT5eYrbq8vlTb1WVNMsmDrodr6qx0fa7Pnv6GtufFRGlG8wC+J+N1rVo4Ws8SRdKTjMKU7WFAaxgzihJsQ6NWsLjYLPDyfJknPLbP+f6Sm1tDwjgjSlMsXf1um4OAziiiaBu7Ckdxmk2+vlNacHm6tOt670RnFLGSz/1XZ0o4pk6Wq0SGYcIH631MXeNis7jvXBElGUGSUrYNkkzSGUUUbGMiDyrZBq/M7/98HyekVGu+oQlqBYvyfIVRlJBmkqf1IW5vj/CjlFEYU7RNWsOQJJXM186Wx1DXi/hgrU8viCnbJgVTwzlmaebf+OZ9/uKv3OYPfv4cry5U+TN/9z3+N//Vd/mr/8LnT+XgGSUZ7z7oEaYZjYJF3TWZrjh7Fh+DOOVey0PX4EKz+Nj3FE/ofu15McMopmgZFC2dO9sjhkFKs2TmbPAnv7dj6syWbdb7Ia3R4XyH0nzO3+qHlGyVLLnz0L3c9vLzye79yvlm4czsG54HUZLx3ftt1vshYZwyV3WwdI3XFusYmoZr6lyaLvDR+pA720PefiCpFUx+7No0xTPk17Y9DNkcBAyChM4oouYaWKZBEKdnpjClWKaS5ZbPx5sDXpqrcHWmdKYKVH6U8vffXmOx6vDyfBlth8x0qV5gvnr697yhCwwNbm0O2RyEfPZCnaszz984+iTisCfwvwz8y1LKX9/5RSHEF4G/BLxxROM6NMIkmxiVbY9Cqq6JF6bomuDjzQGWrj+RCTMME7wooVE4GgPkzUHIZm5it9frjSmzad4xtQyNC80CXS+m4hqsdgPSTNLzY2YS+zG2x+3tEWGcUbB1ruTm23e2RySppO1FvDSnGFfDIJkcAE6DNXZYbPRC1vs+28OQomUyVbIYRQmubbDeC5/IelnvB7SGEbB31zmTGX6UUbIMNLTJNZAS1nuqqwJwebr4G0JTfGd7yFo34Nt328xXXDYHAecaBYK8i3YWsNkPWOsFfPNOC8vQCOKUYZCQVZS0Ah6yiXr+7pCApbpLexRRsPR9u+NxmhEn6tDm7WHcl6QZNzeHZBkUbJ2ybVDbx7y776tkClCFsJ3spzSTpJmkNQp3bfSqrsli3SXJMqb3YUvtHFsQp48VvQBWewHtYYREMl2yKTnGnoX2IE5ZbquUtSjJzozRbJRmu4rmO3F7a8TWIERKtWE+C7i1OeCjjQGWrnFttpQXFSVelJ2JeTRMFPvzW3fajKKEJJX0/ZTpsrrXx8+3FyXc3hiy2Q9ZrLt44el7V3hRwv38OifZ08dze2ukDJT9mOtHwPAZY6Hm0PEipISbm0PKjknPiynaBl7oows41ygc2/VOs4fy4JJtTEID7rU97rY8pISyY2AbOpmUdLwIP8oQIuTl+d2Mi/3mcy9+uMaFsWKNXpoq0vNjhkGMH2fEScooSqjsMZ8kacbHmwOyDBolSxVogwQhwl0sVU0TjMKEUaQYhccZ0LDzfTqjaGIWrGuCMMlY6waTZtN+zDO1pqjPpuSYTJdtRlGCrokJc+20kKQZbS+iYKni37urPZZbPtsjdVjx4hT3GPcnrWHIv//zH/CVq1P8ud/7KTRNIKXk3/q5d/lvv/uAf/KzJ988WG57RIlkGKZYekJrFBMkGZf3CJ7peNFE8jQIkonp96RxqWvPxPw6DIZhwu3tIffaHjXH5FyjQLNoY2pqD3OQM4YXJdzcGmHrGp1RfKj3/+FKh+1+yErH4zPnG4yihybQUZLtMqOvP9Ic2G8uefS+PKtIM8nHGwO+cauFrmkULIOwkGEbOlEqsQz1+40tQzb7IQjJvW2Pqmvy1sXGmTBtTzOJFymmF6iz4AfrAxZrLmkmTyT04yAQgB9n+JFP109IM5it2EgEUXI2zp5BnNIZRYRRSpBkFCz1/EkpaY8iNCEeew5OHBLCVHK/7TNVyvj+/Q4VRzXjjnu+Oms47OxSfLQoBSCl/IYQonhEY3om2IZGwdbxo5SaaxIlGX4hpewYeLmRXJTuvQkeR8VKqQpGF5rqVxmGCatdH9fUDx1JvPM79/q56bJNkklsQ5tM8o6pM1dVE2K9YBLEKQVLn+h200xtTh1Tnyy84/+r9xm/t/rDKHx4AEgzOYlvTdKMe2218T3fOFsxmJv9gLdXukgE12cMCrbB+WZhkq7wpGsw/qdMqgJBNXuY1jPwY7728RZ9P6HiGkyXbZola4fMQUwKU1GSUTz9kMTnRteL+eadFtujiIpj8vJ8hZprHdhv4CQQJhnvrPRY7QYULZ3Zqp0zCB9uDIRQ3YTyI0w2U9f2XJyllHS8GF0IqgWTmYqNF6XM7fG9SSbJslwGtzVkruLSD2IWai4POj62oe/JWHz0MxwvvHsx0fZLw4nyYnrZMVioubSGIbWCtec9Pn7ON/shcZphDXUuNAtsDgJ0TeN84/E4+LPUsfpgrU8/PyS89giVul408+61pFE63c1Blknutz1ubo7ojCJmq05uoqko/6e9wRojzSR3toYstz0ymTFbc7k0XcR+pOjnRykbQ8USLfkRF0+Rqr4XDuJ+8nBdOzp084JUNd8rbA8SpFTFqkGY0PUiSp6BY4XHltJl6BpTZYsHHZ/5WnFS6G6P1Ng0Db57r4NtKPbzmFV1mMd6umQTJ8oeoOKq+dO1dFxLp2/r3G95WIZGYcd940cpwzChVjDJpJwwrKIk2/caJGnGnXwPNQpTLk2pPVSYqEK5JtRe43mbfmkmeftBjyTN8r1dihemzFQchBCTeVJKiLMMl70PmEIIFmouXS+iWbKpuiZJJmkPI2qnfAj4/nKX9V5ArWBydUax4WxTp1G0qBdUYd84RmPpn/3abbwo5d/+qVcm890f+sIF/tZ3Vvh//MJH/O43Fk58z2jqgmbJpmQb1ArqPt5vfau6Ju1RRJJlBHFKlKjG7+YgnBQd7YEa/1zV2bMg+7wQ5J6e+bOja+p+qxct5qt7zydJmtHxYgqWjmPqvL3SU1K+DH7k2tSh3j9KJbZpMF8rUCuaLOyQ5Zm6oOQY9LyYTKpzztMKTVJKvnW3TXsUM1uxeX2pdqbODTuRpBnfvd9haxhh6nBpujFJVHv0XFYvWFybLfGN2y36Qcw7D/q8tlA9E4UpUOvjQs2dnFE7XkjHiyg5Z2N8oO7tK1NFWqMIIVQRe7Xr86CrktyuzJSOxJrmeWBoYqKG2Rkg1BpFfLg+AOC1heqpFoCEEFxqFnjQUez2UZRyr61YlrWCyaWp4plSuhwnDluY+nkhxN8H/iqwnH/tHPCHgf/hKAd2WIxlLFGSstzx2OpHDMMEy9CZqzqESbpvhTlKU7JMsRR2bpS3ByFhnBHGGc2SReEQiR3jroihiz0nfcfUqTjK6d6P0sc6e82STaOoDqk9LyZMUgZBjBcpv6X5qoOXR9yPcWmqOCm8PP75PPxz14/x8iJM14ue20/pqCClZBSpLm6YF+WuTBepuiYdL973s0wzVfUuWgZWTaM9iuiMYjqjmGuzSr6wNQyJM4lj6pxvFJirOhPZYDlnn2S5+XKtYE4YMGd18X0SBn7ER5sD7m17+HHKVNHi1cUyry/ViZKM+hmY3JI0437b40HXY7k7wjI0pis2P/XGInEqKTsPZXWOqR9qYdseRqznzKZzuLmsY7dhuRclDEPVdV+suwyDmGwiCBSsdn38OCWIMxqRRck2qBZMzlMgk/Kx7optaLy2eDAfhzHut0f4UcbmABar7mOm6lGS0fUjyrbJQs1hsx8ihDp0CaGKuMMoRReqwNUoWooRMV0kjNMzcZ1BPdcPugFRkhEl6WOFqaWqw4VmAUMXTJdOdy5qDUN+9eY26/2AmYrNy/MV5qsOmWRSRDxNZJnyEWsNApY7HkKDpWqR3/rKLAXLeGx8VdckiFIcQ8PK16MwSen5MRXncfbaSaBgGVycKhAl2YEizC9NFRkEyTNJF8ZSL1NX8u40k7SGIbc2RwzCmMvTRRCSetGk6lpcmCogpeR+S7EOD24bfDBkmSTOMrIMtgZKpmEbOjc3hgjUun95ukTZMfhoY0AmYXsQUStkLDVcdE3bJd9/6vvlfoKOqT82N1Ucc+I9k2VSeRAKWG776ELQ82OuzpRYrLuMwoSZio0uBF1fHZ73KzLtfJfOKJ4wk3t+TPMJrNH9Pq+2p+T5FcdkGCas9wKkVIeKS1NFUgmzVRvX1NGFYrOamti34NAeRQyDhOmyTWMH42ax5rJQdU61oJ/le5k4lXy4PmCl4+FaBi/Pl5ivFqgWTCU/3MGAOUr4Ucrf/NYyv/3VuV0yUk0T/Mnfep0/8pe+xd/6zgo//YXzz/1ecZpNEvt2YtxYEjBZZ0uOSdHWuTilZP6jKKG2z3xQsJRU7721Pq1hhBclXJ0pT/bAYZLixwmuabA1CA9UmIpTVZTd755/dJ4p2gbX58rUCia2odEs2bRHEXY+D++FB11/4pl5daZEx4somAaOKSZN5SchTFJMTWMUJcyWHUqWToag6pi73lMIwaWpIvdbI3q+8oe7Plt+4l53GCYMg3TCtjpDPa9dWO/5vLvaZa3r45gaF5sFfvTaNEmmmps7lRBzFQfb0FisOwyCmPfXB6z3Ar7+8TZfvNI89Fx11NA1wbmGi5SKzd/zYgZBiqHDwD+e5/9ZYBoab5yvYeoay+0RP1jp8Y3bLQZ+ylKjwPbwdBmooFIiF+s2l6dKu4r6PS+eKJt69ehUC1O2oXG+WeQPTRV550GXvhfzrTsdMil5Y6nG5iB8UZjaC1LKf1UI8TuA34MyPxfACvDnpZT/4BjGd2gsd3w2+xEfrPeoOIoav1h3d0mAdmKt6/PeWp84zfjUQpWiY3CvpaQDk0QSWz90BV0I8cRNd5RkrHbV4TlKM7UQjSKCJGWqZGPqGkIIBkHM7a0hyx2PKMmYr7lUHLXwPTpx2obOdFnHi5S5Y9HWuTBVYK3r40cJQZzimDol25jEYJ6mn1LPi7m1NcTUBVdnyriWTmsUszUIEIBlqM20EKogtT0MJ6lYO7Ha9bnX8vDjhLcu1inYBkGsvICW215eBDRZqrnEqZxsuFY6PlGSMQgSXpl/2FVS8oXhxG9iP8PqMElpDZXnx1nRew/DhL/5rft8uD6k7BjUCiaGpnFpqnSiHmtPQhCnfPtOi7//9jqOoaHpqhh4rn40HQG5w3Gq58cTtp2la8xUHJI04/aW6u4PgoSCqdPL/19yTKIk5QfLffpBzGfO13B2bNietHA984FGwnLHAwR+nE5kuJPClQiYLtmMQuV/Y+oCQ9N4Z7XPatfn9cUqRfvh/FSyzx7V3jIEXpjRLD1uqHqn7fPRxpAwSXnlFDtrq12fX3x/jV/9qAVAebbIhUZhktyz3xpyUkgzyffut/m5768hM0nJNZgtO0ouWnUx9jhYGLpGvWDywUaf9ijiG3daTBUddE3QGkan1sk8zFzkmPozFdBGYcKt3MPJyVnPa72AzijkbsujYKk15fpshe/d79D2Qq7rJWxTp1lK2ewHk2TQo0CaSW5uDhWbO04wNY0P1wfUCiZJ+jD5rOyYbA3CCZPhQtPlQrPwTAel1a7PKEwnRVXb0MkyyeYgRNce3tPr/YD1XsD99og4lSzW3EmzrFG0du1lpko2QZxyd3uEa+nMVhwMXePydJEHHZ80yyZjLzvGpOD1LPL4R+X5mlAFJD9OaRRVwyrLi40/WO7mDIjyZD3u+TGjMKFZsrANnTjNeNDJpc5p+piHx2kVpTqjiA83BlQckwvNAhv9kNWux+2tEZoGry1UqBZMwiSl46km3HHg7/zgAT0/5g9/6cJj//Zj16d5bbHCX/61O/zBz597rs9qbFQ/llzufL7bo2iyN9Zy1vPmIMDSNe61PGquue+e7FFIKdnoq+LvbNliaxhi5wERacqBilKDIOZeSykP9pOHrvcCPtpQRuWfvVCj5JhU8v9g7Bun5HPjQtWj6IwiNgchjaKFrgluzJb5zr0urmVg5sW7jX6AJh5fi8ZBRxLFcNQ1xYoaBurZj7NsYvkxxs7rJ/d16VRwTR3b1LjfCZkumwfycDtp3Noc8te+cYdRkKLpsFgrMl91qezh8Quq2Dq+DhebRZbbHne2R/yP763z7mqPP/Ijl061aT+W8jVzFrllCIZhTJpC14+QUnKvNWKtG7DUdDlXPx3RkkCpM6bLNnXX4of3e7k9jeDT56s0CxbfuNWi4hrceI7QgufBKEz5eF2xj373GwtYmpo/awUTXQhSmZ06S278OD7o+PhRxsYgJIgTQOPW1oAwTkkyybm6e2bOcseFQ69uUsqfB37+GMZyZCjZBgtVF9cyqOcdi/2w0Q8nB9coyxj0A3pezFov4PJ0kWbJOrSM7yBQaXyCJFXpOEGcspJvmMapC2MoI2NoFhVz4+JU4Ykb9bVegBcqr55zDZcokURJCgRcnCoqBkp++D1Nacqd1pB7ufm4axlcnSmxUHMZeDFCg4prTjaYq12fQZDQ2uN1kjRja6A2v2vdgJfmKli6Rj9QzLAgzijUdN48X0fbYXjpmBpRkuVFwIevFyYP469HYbLvJmil4+OFqWJrPSEV7iQxDGJWu4FKIckyPn2+xlTJQROnP7Yx/ChltRfkvm6wUHV4daHC0jOmwDyK6ZLq7Ot54uUgUDKdR2VOoDbBm4lKLZyrOpQck+1hRCahYCq/qeO6rucbxQkjarmj0iedPRbHnh+TpJI72x7TZZvpsk0sFNOy6pjYlnbqi+qT4OfsLcvQKO2RCOfnPgoagvu5P9ZJw49SVrs+7WGMaQoMoTFdUkyp7dHxybkOgzjN6PoxnZE6qFcLBtdmSzSKNi0v2pcRPFVxsE2dMMq4tz3C1vVcMnqSoz953G2NaI8i+n7CpakiQZySZpKKa1EvxlQci9mKYlQ2izaagH6QMG2q5o6uaWz0H/dgeVbEaTaRmqUZ9PwI19KRSJqlhxLe7ZzRlWSSkiX49LnaLrPWw8AxdUa51+a4U7w1fChpGvvtCKGaZVIKFqo2RVsxi/fDek8Z8g4C5U3lWjqOoRPknlkPOj435soTo2k4mr1G2TG5PlsmzjJKts4Ha0PiNOXdB310TSPLIhZqil0XpxnLuWWBH6dcmS6hC4FpCOJEnqk58721Ppv9kHUR8OUrTa5Ml/Aj9fnaxkN22oOOKjS2iI58DFJK/sqv3eOluTKfv9R47N+FEPxzX7rIn/5bP+Qf327x5SuHk5ftxChUa7KUTBqmT4Jt6Cy3fKI05UE3oGAbT/wZIQSXp0osd0YkmUHXi5V/YwbkLKJxQfVp8KJ0EoDgRcmehamOF9PO5+WOF1N65OC4817bax+S5DYjtqlhGRqmrgzux8XYQah8BMfsjkd9soY5+388v+ianu9/1BljrzPQQs3FNpUH09OeBT9OcUxBzbEIY1XsG1uenBXca43o+jF+JJmrWLy2WKFeVA29JxXFx1LZTy3WuL09Ik4U+22tG5xqYSpKM1rDaDJ31QsWl6ZKCAmzFZeeH3Nzc8QgSAiTjHrBPpWGZJSocSappOIaNEoWwyDh8myBL12Z4tfvtNXc1oep8uNp0SeBNJPKBzFKSXfUYE1Do1FW63t8AL/L40SaSdZ7ASsdD8fQaRRt6q6JoetEWcogTLizNUQT8NLci8LUgSCE+Fkp5R89qtc7DKIkoz2KaBQt5ioONzeHvLpYpVG08ON0Qod+NP40yyTNksmDnqBoGtRci/ttj54Xo2uKxm8b2mTDKKUkyeRjxp5ZJtkahpi6diBpAqhN2rWZEj0/pmjpuceKWqh1TbDZDwhi5Z0wW7bxo0QdkjWRdz/3vzELlo4XppiGIJWSjhdSsAymzYcFllGU0PVi6nmx6zRQtHQedD22hyGaUHKrK9NFipZOs2Rxcephh0fXBH6c7LkZWaoXWO+HaJqS5flxStnWsXTBcuQjpaTrq6Sy2bKjClZRwlzFIUw8Vjs+usake1q01eQaxOmuSbTnxUoaV1LFirFWWctZXaeF9jDku/fbxElG2TFpFC00Ibg2W+JCszQp0pwm/CjhW3db9L2E2aqNLmC6bDFdtHlpvsJUyTky2eTWUElwZyvqNa9OF1nvh4zyLv64u7/c8ul5IRuDkL4fT+QgSw2XrYHqrI43NEmasT2McM2jMSIcS2dAdVCvTCvG5ChK6HkqgexcvcByd8Qo0ljuePTDiLJrULB0agWT29sjpJQ0drDMtochmVQG6U+7J4ehSnqpFsw9O8fbw5A0U6/1PIdKKRWjIcvNnB/Fpxar/OL7G/jh413d48bbKz2+v9yhZGtUHIuZik3B0pkuOyzV1XphHqOfy9MQJRm/fmebrhczX1F+QYs1h7Jr8Oa5+qQbbOxzfdJMUnEMyrZBnKgu65WZAq1RzEL18cJDz4vpB7G6p4TqlJ8VX60xwkQdFJ92mI2SjDjJqDg6timQSKquQZxmfPnKFIaukaUZ37rb5n7H48ZsBcdU19q1DPxIScj055zbpVSdb9vQ8nTNmKWqw0ovo+IoCW+aSYSAmmvy0caA9b7yt7s2U3zmohSow2fZNkh3ML/Ga0GcZrRGAYMwztmiOpetImVHSQXvt0dM54y8R1GwdAaBMgtX/owJfT9CCekEjqkRpxkb/QDL0A58GEkzyUpHJYYt1FymSzZJllF1VfErjFN6fsRaL0DXYBiklBy1X0gzqLrGhGGg1mW1pxo/w5omuDpdIkgyisecbPckxLmpPFJwZaZImmU5s0elEV+dKfPVq1OUbRNDFxNfIrX3TDmOKek79zq8t9bn3/19n9p37fipNxb4937+A/7Kr919rsLUVMlmsx+QZuzyNwMlZw2TlNVOQJikgMmFRoEgTrmzPWKt53NlendRJMllgTvnKtfSWaoXJuzoimsSJmp9XOl4tEcqJMh8yr6jUbTwopRMqibmo+EkgyAGMtJMMTPL+Z5hvRcwDGNmKuoZujar1rZH5y2V8guOpaNr2sTjzDV1QLLSCVRIxI5LouuCJM0Ik4xCzlpc6wVMlS2yTObsuxLXZtS9Xsifx51nF10T+z6Xaz2fUZio4p2m8fHGgM1+hJ5bIrhngC6VZpJ3H/T4cL1Po2STZZLFqoumCz69VGeq5CDE/mbuYwhA1zRmqy4/dn2GW1sjdB22hgH/v2/eo+iYfPX69KmwVPw4oZz7SV2ZKfPbUPfV+WaBj9b7fOdemzjN+NLlqX0loseO/OPVdSWf/ur1KXpezMvzFe5sD3nQ8dgeqpAipOTW1oBhkHBtpkzhhM6eVq40eHWhjLuDbWobGuRy8bnK8zHi00yqc4Oh7dvM6oyUxdB0+fFAs/GU0izZGJoaa89PGIUx37zb5uONIW+er+/ZvP6NhkPdFUKIx9so+T8Bv/P5h/NsSDPJg44/kXsBvLPSV54IukBD4EcRzdyDZYx7bU9VdqdKXJoqkkmJQBkYV1yD+Zo72ZSlmZzIAuaqzi4q7cYgYHuguiVjL5uet3cC1U4EScZa7pdwYarA1ZkSYZzR9UP+5/dbjKKEC80CC1WXZslhGMaqi9sLJ6kMe73+fNWl5qoi1ocbA8q2ia7v1qnfy1N/hmFyrHIOP0oZhDE19/GkM5HvGjuDiG/d7XC/4/PlS02S3O9r3EUCdZBPUolmPb7ImIbG5y7WCZOM9ijkhys9WsOQi1NFLjQLjMKErUFEdxTw8caAB12fxVqBc40Ct7eG+JHy6DnXKEw6R48WMYM4nRjJx2nGuUaBc/UCfTfGtfRTK/ykmeTrN7f52ocb3Nn2Oddw+dRSjQvNIl+41KDkKFPX05Yafudeh1/+YJuPNgc4psYbSzWuz5S5NlfmlfkKYZI9lVY/NtiNU8mFZmHPLtgoTNjoPdS0n2sU8GMl1wR1gJ+pOPT9hLutEcMwxgszLjSLTJWsyYLyqUU5kbeEcUZrFE0i2a+ZpSc+18ttj54fM1fdXwbaGkUTicqY2t/xIoJ8rCWnwuYgZLWjimZhkjFTdKi5JvNV1en93MU6t7dGtL0IifKT6Xl5SABPl54ttz2SVKW9POr71PNj1nI5hYDn6hxuDxRrpRdEXJ0uMbf7rRhFyWTPvdEPnvl9DoubmwP+++8t8+H6EMcUnKsX+dylBq8sVHl5rkKcSTIpj8Uc96D4zr02X/+4xUcbA5CSq7MlrkwrM9FPLdbw45T0CWPs+zFFW9HVS5ZBnEnutXxKtpLHVHbMC2kmWe6odeGjjQEzZYeire+ZfAXqWbvX8jB15VlyEoxRL0z4+s1tvCjljaUql55QyNSF8hRJsowwloRxnEvLInp+wlLdZbnjcafl0fdihtVkwiparLk0cpbfsxbmWsOQtV7AwE8oOcbkYBgnkl/6qEXZ1qkU1PMspTJnXe56bA1VWEW1YDJXfX4W6XbuqeRaIVdnykyVbDqjiO1hyDurPUr5gfjydImirYIUvnWnQ5xl+64dMxWHsmNi6gJNiEl4jKlrnGsUKFg6D7r+RL7kmvqBDnYb/YAP1gZ4UcowVAmJwyClPYqpupFK7R0EhHl664VmgbLj8OlzdeJU7mKz6Jrg6kwJP0p3PR+GrlHa416NktzA/SmypqPAne0hH64N879lFCyDRtHko/UegyBlueVzebqIm3t53dwccW22xGLNpew8mS30rPgr//geZcfg9765sO/3OKbOH/jcOX72a7dZ7wUH8j7aCSlVuITyflKR9xuDcJdCAFTC9GY/Yr0f8FtemcEx1efTHVmYhmI+jA+1nVHESsfH0NX1HgYJmZQ0isoX9tpsaVLIbhQt7mwNubUZAkrO+spCdY+RPoSpa1xoFJRvZ8ujVjBZrLlq/xAkeHHO+M2lsXEmiZJswkrc7AcTP78gVhLh8dnAixJub40AOJ97yI0lvbWCRcEO8nk2w9AE8zWblbaS3CapRJDbIDTU+QHgVz7apOclfG+5y3TZpmDq3MzPLrNVxVjpB4pB1izaj+1dwySdnGc2+mEuZfRJ0ozXz1W50Cyeijfho1jtevzdH6zywXqfKMn40pUGF6aKXJoq8ea5mkpwNLSnjlXTVHHYj1IuNgt8f7nDh+sDfu67K9zr+Jyru+ga/ORr+z8Xx4UklYzdS+Isy0MdJLc2R3z7XpvVjk+jZBJn6WPnqyBO6fuqyXmc7FDHUOzaimtwZ3uELjQ0IXh3tc87D7qMgoQ4y7hxtcl6P+TO9ogsU0zELz1HcfswSKUilPhhRpJmk72KLgR3WyPiTLLRDx+Tdh8Ga72H692YibgTUZJNVFFR+ngTVhOCy9PFyX6uPYqIhjHfXe7w9364Ngnp+l2vzz/zGD8pOGy5cgu4x25/S5n/feaoBvUs0DUxMQ/2o5QP1nu0Rg4Xm0Uqron1iOngWs/nnQddyo7Sq48XDU0TuJaSOhQsnc1+QKNoEacPo50Hwe7Y+p0dVV0T3GspWc72MOKVhf2LPmH8kCLc82KaJYtqwWSt5+PHCWGcEadZztISFCyde+0Rm/2Qy1MFPtoY8Olz9ccOoH6kJikt7xZIXSUW7oRtaIzClH4Qs9k/HsqqMuodkmXQ91XKz3futOlHCZ+70KBg6ap6rSmz0qJpMIwS4lSZw7ZH0cRzKMjZQHtZfoRJikAdQtZ6PluDgM1ByFTJIs0kRdvg5uaIlY6HQLI9jIgSiYYycvXDlPPNwhOTbnYy2sYHFU0TuzyRoiQjTNITYaAFccr91oh3HvT5YK3Pg67qqnU8ldo2V3VI5bP5ehwlNno+31/u8O5an+X2kL4fo2sW7VHEtdkylq5j6tquLsZ+GOWyTFAG/nv9bqau0RqFBFE2CQEwDY1hmOSyTHW9HnQ9toYhfpTQLNrUC5Za9PPDo5c/myttj1GU0PFiavlmUnsCgyJJH0Yxt0fRnoWpNJNsDlTRa7psTzYUWm5oXrB1NJHLDPsB26OIc3WXqfw5VylbGlGiOq3r3ZCen2BoAj03Ot6rUDr2XBt3ayxDI0kf39DA7i7j8zJmNF2wPYxIZcbd1oirs6VdHefWMMoL5YKud/QSlUfxzoMuP1juIYQkCFNGYUSaGQSJknrpQhUjSqe4+e56ER+s9fnGrRb3tkd0RiEV12RrEPH6ooFjGmiaeOrz7Vo624OQOJVomoaUkCQZvTTCizTCpEezaDNXdWgNQ1qjkIptToqwQZzRGUW0PdXY2TnfdbxoEhIxClOqheMvTPWDmFEe3LExCPctTEkpd3w+kjjNWOv5rPd8tkcRVcckTRtUXANNKLZCyTF2MVH2kuwcBuN0vdYoxDRgrR+iAXGcMfBjPlrv8/JChaKl48WZsiCoOehagGXo1AvWU9kcB0EQp/n/M/woIZNq0+aaylDXNXSSTH2PJgR+lPDhRp+uF7FUL1B2zD1NwU1d5MnCau+VpCosZHxPjucVIVANN8/bt5McJimbOat1zP4zNI2BH3O35VGyDSquYnamqUQXAttQ3mOmrnFzc0jRNh4rcNjGQ3/QOFXJVqmUXNzjcD0I4l0px0eNJFW+IWa+Tw3jhJWOhxdFaJrGKEwIU5Vq1fZCrukltoYhM2Ub0EhSiWlpx2KAu9kP+Pm31/jnvnzxqSE/f/Bz5/kLv3yL//pby/yJ33LtUO8TpRl9P0EiGQQxVdfcc60aH8ZTKSc2BCXbpJyv6UVbR0pJEGdsDgLutoZ4Ucpm38fUHxZBmyUbTQiCRDEWMykZRaqoWTpEgS+VkjhRgwqTlCBJGYUpGeq+KTsmRctQsjhTsTOURUc2ka8nacaH6wM0IWh7iq01zCWNoPa4M7msaJxOvdLx8MOMqQmbQz1rUSzp+RGNop2zyh5CMSpiVTTWBF6U0PdjDE3w7oMeH+kDtocR02WbqJmxVH/4zEgpCaIUXYc0VQznKFEpnWmaTRIDTxOdUcg/vtXKG4eKXSk0aI9irs0qWaLkyX6gj2I8T/SDmGrOFu4E6iyyOQz53v0egzDlc5fqXGicHKu77JiE+ZzUHcVI1H0Up5lirQlwDIOSbbHcGfHrt9s4psYXL0+x2VcEhq4fc3322QsuT4MQDz/rIM5IMnX2bRRNun6MJgRelLHeU95xy22f+arLxaZSJoyDyR5VIh0lkjRjresj2F28UPOvOleEUbrfjx8I4/OjEOx5RhjXKNJM7qpFjFnqsPu8Nl4/u6MEIUQeQJDw7ftdBBLH0LkxV5mcC34j4bCn1tvAb5ZS3n/0H4QQy3t8/4nANjWuzZZyWrnGRt8nTFLubCtj7dfPzVO0jMkBq+tF3N4aMVW0GUYJ5/KJ2TF1Lk8XiZKMsm3wq7datPIH7KvXpmmULPwoeayIM5NLhgz98Srpk1AvKKnhKFQm2ut9f7Lhem2xSs+PuTFbZqZiE6dyUrDJMpVyVXZM1nsB9YI5qQCPDfxKts6nz9W5PF3EC9OJhEZ5KgkuT5dUFK2A99f7rPaOl6mQZZLv3+/w995ZwzV04iTjp79wgZfnS2hIEim5NFXk2kwRL5K5uenDDdhi3WV7ED7Wve15MffbHkIozwgvUt2ygqkTpYqFI4Tyk6oVDD7eGKIJQdk2sAzBy3NlhkHC5y83n8h6sg2dK9MlgjjdM046STNubg5Js5OJvH/nQY9v323x7oM+YaJSt5aaBV6ZLfOV6zM4pn7qZs3b/YB/9PEW37jTxg8T+mHG9bkyc2Wb3/Ty7CT++WlMiyDOeND1mS3buURE7pvIk2QqRty1HlYwC6aOIQRBnPDeWp9KvhluFi1CS+dLl5tsjxRb6ebmkBuzZbwwYXOgjEYtXWe6pDFbsanuwfwD5Ut2c3PI+UaBqmvSD+J9U/Hao4gsg3pRyS7Hm2hdCKRQsrfb20NcS5t0x2/MldWGdhRxa3ukPEjihO1RyChImCqVMHQ1RtvU92Q5jLu4YZIXLlOJY2lc2sMromQbXJoukh4B226x6nJjvoQXpkyXH5cYLrdGDIKYJJPMHpP/gJSSlY5KWvyVDzZpjyI+3hpyru5wZbrMmxfqVB2DC80iC7Xj3SQ9DV6Y8Gs3t/naR9u0hgF+nHF5usRc1ebGbJXXFqtMH7CRYOmKVv6VnF7/0myZex2PUZTRKBgUrBLbwxDX1HjQ9ak4JpmUTBUtojTl2lSZ+zm7Noj9XYfiesGi7yeYupiY70spWW6r9Xex7h5qPTwIbEMjlWodfFTOsxMrHZ8kUyY2L89X+MH9Lhs9n5ubihHjRylbw4B6qcLvfmOBUZQwU3aPtLOs5HAeNdcCBK6h0RpFhHFCLwgVm1tAkkLNMdDy/cPL82VMXVDb4bH4PFiqu7SGEY6pzNbX+wG2oYIg3rpYx9A0FuoOrmlQcZQfT8UxCWPVFGsPI6quuavhkqQZP1jpMQxjrk6XHttnpJmSGBcsFc/9zoMeW8Nw36bNWld5VkkkN+ZKGLqgUXT47r02K22PsmtyoVmkYOn86PUpwjjDi5T/44Ouuq6gJIZjQ+PxoWOu6lBxTAZB8rCx4cXMVXdf67JjYhkR2REa3o8hpeR7yx02egHzNZe6ayk2WJgSJpBmCWVbybRnqjZvLNbIUDIyU1fSqectlD4Jf+Ob90kyyc988XHT80dxvlngR69P8ze/dZ9/5SeuHI4pKdX6F8QJryyUqTjWnvupN8/VuN/2aJYeNm6KtsFLc2VEbk1wZ1sxljpehK5pDIMQ3zHppMlkTc1ypUOcKP8bL0zY7Ie4lsbrSxXqBWviDfUkmLrGQs2ZyHB6fsxGP6Bg6byxVMPQVeNbzxvboMz647xYOw7Uud/yKLvGhGlWLyg/nvGfx7jb8rjf9vjGnRbNos3FGcWcLDsG24aAVB1uu37E+eZuxtdbF+qs1QKqBRNDE9ze8ukHMVmmfv5+x2OQN88uNNXZZxQmjCLVvBsGKboG12ZKOJaOa6gGva5pDMOU21tDTF07Fu/dpyFOUn75w01+8f1NgrwBf2mqwELN5bMXG1xsFp/LF7TimEyXbb5wuYGO4N21Pq1hyIfrPW5t9dkahPyhL5zf11D9KGHpav83libXiiaDMOb6XJkoyciQGDos1Qp8arHCL7y3wa/faePFKboQnGuo9fEkr9BSw6U9jLBmNSTwo1en+M79DkXbZhDEmJoqsKcywzJ1ltseaz2fRtHiC5eax2ob0A1iCp7OKEqpuLlkPz/ze1HKa0tPZk4+DbMVdT7Zj6U3ZvDeb48U4zdMcE1dha3tseaUbOW7HN6Y5kHPoz2IWay7vP+gR8ePJ0EYP3pj5lRZ/ceBw+4a/2OgDjxWmAL+r0/7YSHEReDXgfeBSEr524QQfxqV8ncP+CNSylgI8YeAfwVoAz8tpew/6XUVxU3daBv9gKpr4YUpqz214b61OeTT5+t0RhEdL1IblCTF0jReW6zuqqwXLIOCpbprY0PBUaTc8B+Vd+3Ezg37xWbxqdHiaz2VCDdXdShYKQ86PluDRGlhizqfWqphG5o6xEr1+mGS4toRFxpFojRFExpOnjAyxv32iNYwojVUnkkV9yGNc7nt0fXiiTyj6pjc2R6y2vUfk/IcBZJMYusaMRkXmi7fv9/FDxMGQfyQKRakOLbBnS2Pkh1QL1i8cb722GvtlzTW8aLcGF3JHGcrNgiRM3DU5zJO9vMjSck2mC47CFQiYSbh4nTpQAdR19p/c5hKOWEZHGfXNU4z3nnQ41dvbtEaRNze9ihYGkuNAj/58ixfuDJ1JhIb1ro+X/94i482Bqy01QFhqmTx6nyVr1yb2hVF/TRIqQ5HUyXrqT9n6YoV0h3FE++lJMtY7ft8vDGg4lhMFRVjyI9SKq7B1ihS/hRCUafjNEPXNM43iug6zJRVrPCTPtcsU4ddtVHc3zQY1OFJsduUv9PYs2JrFHFzY8QoTjANjRszZeJMkmQZwyCZpINKqe6xNJMs1QpkUjJbtSlYxhMXqDjLuNfyWKg5REnKg06AYynpzl4z1VEx/zRNcH22zGY/5NLU48WErp9QsFUaYpg+X9dqP7RHEW8/6JGmGZvDiJsbQ0ZRzKhk8+XLU3z2Qo3zzeKpFqRApTf92sfbvLfW4157SN9XB6G3ztd5/XydV+Yrh9q8beRpVhXH4kuXp/DjlPudgJKlYerK27BiG3z7Xod77RGXm+owMk79Kpg6BUsZaO9MAhvH2pcdYyItBbVWdryInhcTxBmfes7N3hg9P+bO1lAxLWdUkbbyhKKNn2/OEYIHHZ+PNoe8vz6kYKnnuOraZJliO1ydKXFUgoJBELOdF3IGQULR0inYavP7w5UeuhBEqZwUuC9MFakXLD7eGOKFCa6hY+gC1zQIE/lU494nIUxS1nvK4+lCs8AgTBhGKX6kWKHNos2rC1W83GS7kMvGGkWLK7MlHFObMFoe9S/xonRiLH5X81isP5TBh0nKzc0hUqoihmMabA9CHnT8fVkMY2bYuGhfcgxmK4IwzXBMA4GgWTKxDWXX4EUJlq6TSDnZ/+gaO5h+6URWsTUI0YVijiAUI3LMpt0Jy9C4MXd0zIIsU3JwCdi6xsfrQ7aHEUkGjSXVQLAMjdYwZLZmszkMmS07XGgUaZTsQ8vknhVRkvHXvnGfH78xvef8vBd++vPn+WN/7Tv88odb/JZXZp/4vUnup9gsWnT9mEbRou8LWqOYenFvL8SSY+4psdtZcPAitT8vWDpTJVt5u+Q+rEt1l3rRUuySnOn08caQu9tDBkHC5elS7md2sLCNUZhwr62Ye7ausT2IcvN0sa/aQAiBZYjJZ5CkksW6i4TJ52zq2i6p9ChMaA0jCpbGZi9gsxeRZjDw1bpoGzovzVXYHASMghFpkjGKEqp5oaQ9iuj5MVMl1fDyoiT3iXQoWBqpVKzT6aJN2VUhUWOLhDG7s1m0STMwdMH9lvLiSiU0CxajMCFJdSDdFU6kJIrhY8qMo0TPi/nO/Rb/+FaLzX7AIEy4Nlvm85ebfGqpxqvzlSMplM1XXearLku1IvO3W3z95hbfvttF1yS20eUfvmvzYzemmT5mE29dE1zc8TxWHJNXF6pkWcb/+O4Gy1s+UhMYus4gP6tuDQM0BH0/5spUgVvbHoauWDonYTeyM4kS4MN1jWtBygfrfQwty4kDKlhIy8Oqbm2NaBdjLjWLjHd/8xXnSItUUub7WU1ZR4z3DtNlm/mai5TyuZmoQogDvcZ6L8CPlD/cjbkyq70Afx+2lmvpFGyDq9Ml3o36jKIUP07xwpRUCnpBcqznzdPCoXY8Uso//4R/+08P+DK/IKX8GQAhxDTwE1LKrwgh/nXg9woh/jbwx4AfBf4J4F8G/m8HHWPFMdnshxQdnWIgeNAJFTuqbPH1j1p0vZilhsuFZnGitwY16XX9iHrRouKYmLrGG0tV7rU8zjUKhzJmtgztiWyVYZhMNNxx6qEJQSYzyq7Oek/p3h1DY6WjkuiEgOuzZQSC+aoyM9U0oVKGUtURsnSdcw2X6bLN9kAZfXs7HkApJWs9H+RDI3cEVB0T380Ik6PvEm70A7woZRSleFHGjfkS91tlRnFCxwv57r02s2WbIO9e+1FCmmV7Fqb2Q2ukEobutUY0iiYgWaq7KHsqyXtrfWoFk6Klk8mMei7LdCyNJJPcmCvjR+kk3nqMLJMM8or2Qa69begs1By8KD02ppKUkpubAz5c67PS9ljt+Rga1AsmcxWHG/PVM1GU2uwHvLfaZ7ntcXNzSBClFCyNqbLDpanCM6W5uJZ2IHPHMWsxcSUbuRFhz4+pOgZpJkmShH98e3uSfDNm5S3UHD7eGE4OZ4t1lXrSLFkH60bkUs+DFHOKtgpakFL5Y7wd9ShaOmma4VgaAz9jpeVxc3NE0dSpFAx0TWOqqNgBKopXY77qsjkI82Lr0+85Q9OYrzqU8k79MEwIE0GayslKkGbKc+ooKPv9IGZ7EGIZGsttn9YwJEoyvniluev7Pn+pyddvbu06WB4lpJSKVbExYLXr5YxYHdOANMmYq9pcni6dePf3UXhhwjdvt7mzNeKdlS7DKMU1NW7Mlrk0Xeb6bPnQm7Uky3hvvc9ySxWwP3O+wWLd537LY6lW4qX5Cg+6Pn0/oWQpo+VzjQLtYYRrqabHpaki7VGEgEkRteNFE8nqmH0D4BgqBbM1Uka5j86rz4qPNwYst336gSoiLzXcfeeD1a6S7Bm6+uy+fbfFOw+6CODGbJk3zzfoBzH9IEFKdb9XHONIrr9KRI35cL2vmiVCYxjFGBrcb42U50HZVtIRU+ez5+t0vJhmySROVLHaNjUsXRWonpQo/DRsDR4mDpMn05UsjdU0Y5hLB6SUE8+PXi75kKjm2qvzFZJMYmhKetT1YqZKNo2ihWvp1AumiqLfET6TZZLVro8fpdiGzjBP7au4BoWROtSPEae5n55tsFB1KOdSyixTdgRppuQKqiCv8cHagDvbI+YrLrr+sBl5qVkgTDJqrjmRTlu6hmtp+JGSSN7ZHjEKE/w44bXF2pEz+fZC23voI+iaOralowswdBVIs9Ie0ShaLFRdbm4NCeKUJMkoO3VKT2hqHjX+wdtrbA9D/siXLx74Z37zyzPMVmz++q/fe2phKk4y1rqBagbaBpsEbI9CFk2XBx2fyvzh9ixBnPK9+x36fsxCXXkrWYZGwdKwDJ2SrWPqau0ydI1zDZe+H7PcVfPp5iDFMgUtL1JhLAdgn76/1mc5T4ytugYlx1D39hOK41GSTXxJl+ouw1ClfX/mfH1fZuaDrk8YZwgh+OylBiu9gCRJWazvHqOt66wPlMph6KdQzZUUHT/3wx1woVHkXKPAdNmm60eMwpRRqBJK5yoORVvNeVkeU9bxIto5s/LGbAUjT7bWNUGjaHFhqkCaZqx0AsUM27E/WOsFDIOEnh8/9bN8FoRxyrtrPX7tZou1ns8glzHWCyaXmkWuz5SPfP2uFy1eWazw3lqfxarF3bbPRj/ge/c7NIs2b106mG/eUaPrx7z9oMt6L6BsG5Qdg81+wNbA51zVpeKaXJ+r0PaTSfplaxieSsJg1TXRhCoGSalTsk3qDYvWKKQzihBComuquNwLYqL8HGrpTz5DHxaGLtCAC40C06Wd/tAhd7ZGyvoGgWMpCf3zJvGGudS37Bi7mp1ppqw+4lQyDBPiVDJbtidyzb0QpRl+nNENYnpBzCvzVS7PlBj4Sl57Z3OIa2okmQoUOwvp8M+LZ1r9hBAO8MeBr6DsCr4O/AUp5UH0YD8hhPhHwH8HfAT8cv71XwR+GngPeFtKmQghfhH42cOMrZhLtFIJhtAQOkxXbG5tjljv+7RHMVGa8OnzNUqWwftrfYJYRYWXHZNRmPLKgppsFusFFutPZj88Cyxdm2zAFI1XsNpThp7TZYcoSXj7QY/uKKLsmozChNuawI9TDE3ROy9OKY+E5YEyWhYk1IsmV6fLtPNO4fZQdXWEEGzmPiNdL+T1pRpCCBxDp2ibXJ4xJnLGo4RtaGwNQwZBgmsqdtdczeG91QF9P+Y7dzu8PFdWaXqWgWFqrHYDbm4MuDRdemqFX0qp6P+CPHLbYbaiUt42+gGtYZQf/hXt0TQ0ZQJraoQxDIKE7WFIexiTZpJzDXciA/hoY5CbUBvMlm06vmLgPGnCapZsmvv+6/NjpePzw+UuX/tok+1hqLxWBFRci9/66txj/hqngX4Qc3NzwNc+2mClF7De85FA0TF481yNr16bRj/kxOlYSka518Zj7DNh7zApLlo6H28OCOOU9x50ma26bPYVG88yNKIkY+CrTaUXxdxvK0PSWsEiy7uGM2XnwAmboA4eT2KzjMfpmCrls+zobA0zVto+m4MAxzSwDWUkXCkYmIZGxw/RATPSeNDx6HkRpqEKb6s9nyvTJS4d4tBvGRrNksVUyc7nEuV1srPw+qDjq/lEwEtz5X0XuWEQ8+t3WggEX7zcpGAbeJEywzbyTt9q1ydOpDI+9yLl05ekhEm6a2Oua1AtWthRSsc7+o1tEKe8t9qjNQq5vz3CtpVvhq5rTJdsmvt07U8SXpTwvfsdfu3WNqttj2HeQdM0wflGgbcu1p/Jb0hm8PHmgFGQ8j+/v8VcxWEQJFQLFqmEjq867H6sCghXZ0rMVV3lz5cbryp/JhXSEaWSuaoK3QiTFInEsdS8Mzb9bxRNSo6BnrMQnxfKiN9nsx+w2HA43yiwUHMYhAkly0AIdaha74VIJB+s9dkeqpSdV+erbA+jScLgmxfqXJsp8dGGkqP0/Jj7LY9myWLhCYzop6Ezirjf9vCihFGQ0B1FaLpgtqLMkH/9Tpsf3O+qYtTFOlXXoupa3Nn2uDxdYBS6RLHyQ5wq20yX7IknxbPCNXU6xGia2gt0vYgHXZ+ybTBTsXlntUtr6ND1VJGuaOtcnipyt+WpwpKpqUKVlGz0QqI0xY/SibzsrYsN3l3tYxmaKjA4Bmu9gL6v5FUXmsWJDOVco4hjGjiWuoellHy43ifLwDI1XpqrUHFMluoFtgbKpsDQVfHdNjTCVBmCB0nG1jDkxlyJYZgyCmLeXu1TslXxfjz/xllGEKUIYBTErPZ8RkGCY+msddVa8OhnOzbzH7Ncnhc7i4ozVRt7XUMKuLvt4wXqgGJbBu+udrnT8nANnd/00iyvLlRPNAnzL//aXS5NFfnRa9MH/hlT1/gDb53jP/2lm6x0vF0+RftBy8MI5ioOt7aGrHV9Xj9Xe+LP3NwYgIDFWoFBGLPZD2kPQ7aG0cTHpVawuLk5yENsfIqWsge4MlOkYBnUCsobz49Tvj1UchikwMz30k9SNowxLmSauvJSKzs6d7aGbPQDnJxNfWd7SJJKrsyocJSuH02YEHe3R/Q8xRa5uz2azKGPwjY0wjhnNBZsqq5BkuoEcYZEFeiTTDJfdZgp2eiaYtZ8uD5gaxgw9BMMQ5BlygJhexBOUg7vbXvc3h5Sc01eX6ry6qL67McpxXe2R2QSNnohry2qe3e+6uRFZ2fSoCva5mNzk21oDHl6At6zIM1Ug/l/fm+dHzzoqQRTTcM0dJpFi89dbBx6T3lQnG8UuTFXzhk/Aj9MeW+1D7l/65sXaifKso6SjA/W+gx8dY7RdYGB5Ft3O3RGMV6ccXnOwdRgteOz2g1olizOn9LZYK7q8JkLNb59r5UHcRmcr7vEGXy0OaDvq2RXpLqn77VU8dc2j/4zVQn0JlkmIX/0hkFCkkniMGVjEDJVsvEiH8fUudsaTRpzpq6x3PZ4e6XLbNXhzXP1J87Rt7dUOIFrabsM1S1D5+KUsguarTq4ls5M1cHP2Z+PYqMfsN716AxD4iQjzWAUxvzY1XPcaXms9wJut0YqYKxgU3aMQ6lRziqetS3zV4EBMGZJ/UHgvwT+qaf83BpwHQiBnwMqwEb+bz2UTLAG9B/52mMQQvxR4I8CnD9/fvL1QRCz3PZZbnlkUnIpl2ktNl2+t9xhve9TLRiMwmRi2LnaDRhFCVEiJ7G8O9EeRYRJynTJPpJqpGWoDV/fj/loY8hGL0AKZdb6wVofKSWm7tP1Y67Nlqi6JvdaHisdj1cXqiRZitXVmCrZSCT3Wz6mLrg6U0TTVLRw30+wDW1y4FKx4YpmOT5wVwsmV41S7sF0dBTcYZjwoOPjmBr1gmKqhEmGADRNBwSr3YB+kGIagpJtcnm6yDurA3Albz/oMVt19u1GpFJ1ZRtFi8Wai6FpNAomU2WbG7Nlyo6ZyzVC1vNY6bWez3fudpgqWSpRyBa0RyFubhS90vEIkpQgyQjjlK99vIWl67yyUCZOslwK6D93Jf1Z0fUifuWjTb724Rbr/RDHBC9OKbkm81WXl49QgvCsiNOMH650+Pm313l/rY+rq4OsoWtUHZPXl2rPtIEQsG/hYKXj0/ViHFPj6kwJL1KG/lGa4hg67dy42dZ0LkwXEUj8KO/wlywQgjDOVGcJJduTUrEuqq55KBnNkxaquy2VAFq0VYLJ9igiSjKqBYM723lBRsJL8xWyneaIAgq2jh9nDKOQkq1TsAwsQ2OjrzywDtpZMjQxWbTqkMt8tV1z2k6t+5O4S9+73+FXPtzG0AXNksUb5+p0vZgkVZKFYZBQtAy6SUzJ0XmjUuNBV3kUPcp0ud/xuLUxxA8TPvuUg8phMQhivnGrxa3tEV6QEGUSoox+qMIYMiTuMcoPDoIwSfnm7Tb/zbfvs5r7LdRcm81BQN3VKbkmcZZhcrhnJ0wy3l3r44cpaZpRL5psDSMKpsHt3H+xZOusdn10TTBfcyYpcO1RxPYgwjQEizWXMFbm4YNQyUSUKfFDK9Gdpv+aJrjQcLeqnTYAAQAASURBVDF0cSTMlNVcblMtmDRc5VXxtY+Hij3s6KQSbm+OMHRwLZXiFsYZwyjFi2LaXoSG+v3mqy6Grjwpx8mTQZzy8caQMMm40Cg8U1HgndUe24OIoqUjUGlWcZZi6cpw+fbmiO1RiKYJ4lQFouiaIJMSS9e5Nlvm4lSRMMmOTELbLNmYusZK16PnR2wOQrqesjMAqBRMbm+P2OgFDMOEl+YrbOfsYz9KaZYsVm1DSTgF3G/5VF0DP0pxLZ2irWScXS/Ow1aUZEQTIje3LU6K3mNplZP//c72iLvbir3YKFlcnlKsl+ojvlrnGi5TZQtT0xgEW0jgynQJKSW/9MEWcZaxUHVYqBV2yV4+3hjy8eYIUOlsjYKFAKZLygdkr0s8NvP3o6NhbZYdk2uzKiVurRsQJClTRZsP1vsst0a0vJgLDZc4zYiSDC9OQWacZI38W3fbfH+5y//5p1459H3/Bz5/nv/XL93kb35zmT/1kzf2/T7LUHLxsYxzrR+oJO2e2k/t9Fncia99tMX373epFUy+ck0QJsro/J2VHpqA+ZrLdF74tA0dP1IMvNYwouKaj0nqb8xV0DVBz1frFKg5ZbG+uyA99snz4oSFmkvFMXlloUK9aBIlGe1RzL3WiK4f0/MjRmHC5eki91peHjIheHm+goagNQqV3LlW5HZejAO5r4/Z+UaBUaQ8Q++3PRbqBbqjiAdd9Zl9vDFEogrhy22PJPdy6/tqz+3HKoHyQqOAEEpC2fFipJQT8/cklWwOIm6k6p5b7api3nzVZrkdULCNCXO5WbInzdqd1/NRLNTcyX7iKCGl5O2VLn/7uw94b12djaQEmSs/5qvusRWlxpirOJi6QNc04izDkCnvb/TJvreM0CSfPd84sUJyz4v4eHPIKE4xBLy8UOJ22+PWxoBhlGLpAkMI/DgjSZXSoFk02RqGbA4CzjcLR+qjeBBIwMufTdfQaXkxm8OQ9b6PbRq8vlgllZK1Xsh8TTH6j9pgf5y4mklI0wzy158q2VxoFjA0tVfx8rWt60e79rL1osXXP97i/bUBtqFxZbpIrbD3vlvKh893+ggRStcEN+bKhElG0do7AX7n63z9oy2+v9JDCOUDaeoG12YrzNZcVnsBH64P8OKEuYrNYr048YxTe7DCJ5Y99aw7oBtSyjd2/P2XhBA/eNoPSSlVRisghPh7qALUYv7PFaCb/1d55Gt7vdbPkrOp3nrrrcksX7YNdE2Z/GlCMFu2uT5bolG0eWWuwtbAxwtTNKFohp2R8oKarahN3OVHNPZepCZ8UP4zR8VKkVJVQ11TZ6HuoAkY5ubA7TylquyohAkhRG7i6RKmKYZu0BqqxK44k8xWbIq2QZwvtucbBbwo3fVwz1aciVfEzsP2URpqjhPNxpId5YMj0HON83zNoTUKSebLrHcDFho2tqF8nhbrLsMwVYuuFz3xQBMlWe6jFeJaBucaLp+v1gmTbFfHZrqsqL5epDaGF5vKzLlRNEkyqNuqa1qxdWpFi6Jl4EcJ6z1lsj4ME6ZLDkIodpWli4mU5aSxOQgRQtD3laTG1HW+eLlJmsGXrjQOlGp33Oh6MWkq6XsxMoVEg1cWKriWweVmgSszR59m4kUPE6cyqbreILjYLBLEKZenSwxDxQYpWMovx9Q0JXO1DWxNkGiSRtHm+myZetFS8bGJpONFvPqUKOmDjzOZjDdIlO+F8oWQXJxS1F4/Sig6OkGscXW2xCCMqRccqrZBkJuoXpsuMVW2GYUJG30VR23p2qESaMbY6wC8WHNpjyIKtv7ETmCcSiSSnYFAZUfNS7apUXIMagVlJIqEDMlMPgc9ip6n/OFKrnnkQe3DMCGIU0xNY3MUsFhzQGhcsNU8vlgvPNE78CTQGalUlp6fIDMomQavXaywOYwYhmrT4TzDZjLLJHGS8bkLdQxD44uXm+iaxv32SEmychaBF6WPbVbHz1WUp/K1hgGplBQsg36QkGQZWm5CHCUqZGJs+t8s2UdWwI+SDIlkFCWUHBPDFEgEG3ni0EzZxjJ0yo5B24s417AoXayzNQhoFCzW+yHzFZeFisvlmdLEA8LUVWNHE4LbW0PKuTRnECbPZDiuCyWt7/kqvXC6bPMgL5p7ccqri2VMQ1B1TSqupQrQUlJ2zMmhxtS1I+++d0ZRXhA3mK8KhIBy3ggK4lSl8lkGcd48kqjnWB0mVCjLRhoQpRkFS6OZsy3H+4alukujaE0Yq4u50XrB3i2BF0Lsmm+8vPD14caAc02X1a6/q7AEai5f7wfoQrEGf+zaFHEqKdgG/+ijLVxLR8RqE+7kc/tDKGPgJFXMBtvQefN8nZJtYOnanmt4rWDR8+MDScYPCsfU2eyr/dD5RoE72yNmqw7rXZ+ZkmCp5pIJGMUZrqGRotay4zQ634n/5Bc/Zqpk8U9/7tyhf3ax5vITN2b4r7+t0vn2u3d1Texan8q2SZyo9SyIU7YH4eRnx3tWP0q4uTVgFCVoQjFyirbBN25vKyl8weJHr01NQiDG9yFItoYhmrb3+nZpSoU9WLpGxTXzZunueyFMMrp5kXJ7EE6YQo2ipdiXQK1gcmtryDBIeHnOIMlUwUTXxMRsenMQqmRNXTBVsnltqUq1oPaZYZyxlx3Nzufk0lSRn7gxzburfZZqBXXgRXmZ9oMIIQSGrvbdrqWBZGIurWuC6zNlPtwYAmCbOl+80uRCU6V5F22dtV5AnHtwdZOYl+eqLFTdfcNTnobjSKP2opTWSFmT+FFMw7VZaLjYukaUSt48vydv4UhxeabEUq1AxTbJyFjt+LS9GD9O6XoJwyg5MfNpy9AYBinnGy46Sk4ZpxmvLlZZ7vjMVmwWqg6zFYc7rdEkpT6T4+CvmJmylie9n0zRYhAkzJQd/DhlpmSzWHcUa0kIZioqAfFcvUCUKC/VvZKsnxcCKNs6YZKR7Xjc60WLqmsSpSlZpuYC29DwJx6FcrKuZFlecBJMQjT2fC+hzh/7BSAddJ0P4ow4U4SOgmPwpasNTE1wvlGcJNJOlS3WexmmruOFCYYuJmPrB8mhVB9nCc86k3xPCPFFKeU3AIQQXwB+9Wk/JIQoSykH+V9/BMW4+mmUcfpvAb6Bkve9JoTQd3ztwKgXLd66UGdzEDEKY15drExujmGcEkQgM2UgVrAM6kUTU1cL51TRfnyRijPutUcYQtvzIsd5p3icnnUQREnG95c7vJ13fl5bqvHm+TpxmrHS8am5JpYu6PoxV2YKLNWKvLfWY70XqoSxvNCznRtCD+IUTQg6o4hSXsx6lOmha+JAWvpnxdhYvZwfSMcG8+u9gK6vTHI/tVihUbS52/JolE2qrsXL82W8SLGUPrVUZRAmXHmKjC9OMm5vDxnmD37FtagXTO63faRUfkHjLo+hq3SIJJO4psYb52vcmK3Q9iLWugGupXFhqkTJtRgEMbMVB9vQidKUqzMlLk6pA+zt3KPizvZol1nliUFKllsjNoYhVcfkcrPI5y83qbgmX7pyVNa9z4eCpbMxCLjbGhHEGZfKBb56rYljmnz5SvNYYoYXag5beVqjrinzwUGomEmLNTeXpSTYpk6WZWwOQjpeSGsUsdIJeON8ld/28iypVOyrjzYGxKmkWbRwD1AM6HnxgVKcxgWfRtGiaKmN3zi5bKbisNkPEUJi5pGz6/2AzihhpdPj6kyRf+IzS4DycvjG7Rau+TAqXdefXCgde6gdBJahHch091NLyjTZMlRi4ChMeGelhxBwdaY+WXiFgA83Bqx2feoFi9eXao8dui42XXQBGRwp5XyjF/Dug74KmohTXMOkF6Rcm3b51FIVIQRfvTZ94h3ER+GFCe+v9tkc+NiGonZ/+doMt7eGNEs2X7j8bM+3Sjaz0DWVKDVmQ1Vdk482Bkip5DVCKJPteuFhEXauYvODZSV/vL0NSZJNUuR0Dd5fU1Lni83iJGTgaab/h4Uy3g25sz1CEwJDU42jrhfnXjGK8frSfAHH1BRLQVMNn/mqQ5RKNrsBzaKFaWpc3MPbrlG0MHSVPKgYXs92L1yfK7MxCNjoBzxoe5im8kAa+DGdIGa2XOUnX5ujXlCSwec1Wj0INvoBP1zpcmtrxPlmgR+7Ns1CzVXplxWb9X7AYs1lrqqaL4s1d7KfqbqKdZxmkl4QU7J1NKHR8yPcgY4u1J5J5PKsMUz9YPPHUt1la6AhEDiGMsK9uz2iNQq52CzSLNms9Xw+3hjiRyk/WO6wNYyYqzr8ppdmuDpbYmsQkmYZCzXFxtnJHD1XV5v3imvSLFokmXzq+lOyjSNrRIwRJRkdL2RzoOThNddko68Y+nGasdwN+LHrU7y2UGNrGHCxWTpy1sl++M69Nl+/uc2/8TtfemZm409/4Tz/01/5Nr/43ga/41PzT/3+fhBTcQ2+en2Kb91tc3NzSMeLuOKVMHWdC1MFKo7J9jBioVogzSRvLNYmlhqfvdBgpe1TtFX64novoONFTJVspst2bkgtKDvGY3tImTPtwyRjsebuu8c0NcFq12djEPLpc+p+aA1DvnmnlafRFWiWbL5ydYqOH1FyTG7MlZku2/hROpEEG7pgs6/UFjMVVSyIElU02s+bqh/EbPYDSrbJXNXhpbkKpq6CWgxNJej2/Jh60eC793oEUULHj5kuO/zUGwt8/eYWyx2ftV7ApSmVMNvz4zwNV7Hss7yApWuCgqXsS1xLw9AFYSoJU1WcPwtsCz9Kubs94O7WQI3b0vj8xTq6rrNUd09EtlQvWPzTnzufh6ek/ENvg7aXsNwacXujz+uLlRMrTFULFm9dqrM9CDE0wXRZNfs2+krmLKUKjnBNnY1egBenzJZtZsoajqVRsnVubSlG7FTZYr56/E25uYrLmxfqvDRfpuaafONOi54fY5sacWKqs7OlsdbzSVKb+Zpz5HsyQ9dIpVLWWDteW0rJx5sDPtocMl1SihvHVKqEmbJitwZJn9cXq/z4SzMUHYN6QQUoPQlF23jm0JIxbEPj1cUqJcdgvuLy0nyZX7u5zbfvd9n2IhquSs4dBAkLNSU5vD5T5v31gVrDC8b/4gpTXwD+sBBinM53HnhfCPE2IKWUr+/zc18VQvxZFGvq61LKXxdCfE0I8XVU0t9/nKfy/X+AfwR0UIWrA0MIQcW1uNQsIAQ0Cjb3Wh5pltFwLc41C5i6ipz3woStvPMqhJLxxGnG9jDENnQaRQsvTpmrOMSJnERi78S93I9hcwCvHDAVouuFfPtum56XcK7hMptPLrqmc2mqyFrPZ75WYL4GNdfGNDQWagVAedDUigYly6DlBXz7XoeZssV02cGPlUTpJCabnQhilcQkUGa3F6eKVByTDzcGZFJya3PIXNXhg/UBtaJJkipp4eWpEo2iw2q3R5ZJrs+VmTtAGkMmYb3nQwYfbYx4dbHMbMWaJP0FjxjJtYYRCzWXmbLNxWYJTRMTxsD4vdSmRk02RdtgsebuGkeUs1z6WUKWycfG2BlF+LFivB11J2J7EPJLH6zzg/sdLE0lZt2Yq/C/en3hRL0onoQ4zfjecodfen+DLJM4ls5Ss8iXLk+x1CgeG8tsLNscwzI0ruwoHN6YK086HT9c6REkGa2hSkoydVUUuNMaUbAMtgYh7VHMVNmkWjCfyo7s+fHE3PRpGPtcjLHzEF+wDKZLqih+a2uIromJfFjXJHGScisvUjzoKKNqCcxWnYmJ6X7IMsnt7SHZEQd3TJVsXl+qkWUZtqHz0caQ9ZzBNV32uJLr6qMkYxTkSWBaQmsUsmTt/lw1TePSVJFeEOPFByugPQ1pJvlws8+vfrylpEa6SkiqFx1eXqzwEy/PUrKPxvD6edAehfzc91a4tTnA1JWUqVm0WKy7h07gexSmrvGVa9OPzVeGJrjYLJBkkh8ud1nrhtRyhugYmVTPVmsYsdH3KFomn56vcn22zK98vMWtzRHNUh6s8ey//p6QUuashZB3Vnvc3BwwX3VZqBWoF2ymSg43N4e5tEJSdQ2GYUI/iPGiZOKtUi2YNEsWM2Wbc43Cvte64pj52r2/ZPhJ6PmxKpLkkqy7bY9a0eJczVHvX7G5Ml3kykzpxMxy+0HMt+60WOn4CKGYZVKoePgkU2xQP8pU0EMeAhMlGR+uDya+TldnSvT8iJ4X8f3lHkt1l4KljFrX+vsn7B0E4/mwVghYbnt4kWCtF9D1Yrp+zJcvT+FaBqMoYXMQqkhx1yKIUjYXQi5OFfm9by6iaYIkVRKvMWMclERr5/j2O+fEaYahiWObB1qjMG+8ZeqzDBK8MGGh4nB72yNKM1a7Ab//s0uYOzyyjhtSSv6jX/iIZtHiZ7544Zlf58dvzLBQdfgb37z/1MLUKEy4t63WS8cUBEmGH6esdwOaJZvpkk6QS9EKlmosnWu4XNvh0fLSXJn5qkrJvbU15F7bY6ZsszUImS6rJMOZ8uMNZlCJoWO58dYg3LeQnmaZYukkKfdbSn7+zoMegyDBNlQzaKHmcmtryKzhcr5ZyNO8jV3hHVMlix8sd6i5Fpt95V9z9Sms8Y1eQBBn+FFIs6S83K7OlCZ7GOXPqNEaJtyYU0m3QZRODNObJZubGyOW2x7+hRpzlYe+qRv9gM1+QJikGLqy/BBCUM/3wZv9IPe8hY4XH1uIz0ERpxn/4J1VvnOvq4IbbJPz9SLX56rPvTYeFldmSlyaKnJ7e8hHG0N6XowXxXxvuYNlGvyhL144VEDW8+ALl5qkacZ37ndUUbZscW2uzO0tDynA0nU+WO+z1gsYBDFzZYdaweDydIkkT48GxZ6qF6xjaRjvRLVg8hM3phFC8D+9v8EoSsmAZlFZAnQ91fiIkowgzibntaOEEOp+n6+6pFk2OaP5cUp7GJMkUiUJ75AA3NoesjWIYBBxvlGgUbR4Za7MbNXFOIFrrWmCTy3WeHVeeQ7e3hry8dYQP0zxwoTPXqxTcRX72dAE9ZIKJQmilExmbPZDFnLrgk8anrUw9duf5YeklP8A+AePfO0/AP6DR772X6I8q54JfpSwMQgJ4zTv/I2Tt1xsU9GHo1il0WwMfIZBxuVp1U1dzzdHoMxDK45Bx9QpOeKpFVCp2IlPxdYgYhAktL2Iy9OlyQIQxOoA6uf0VaSSvwG5uad68UbBpmApQ8SybRIlKlLefESmdxLY7Ads9EO8KFWpOPnvomk5JTlfp7eGIVtDtThXCwbr/YDVrk/FNUgyJcOS8sk+PTuhIbAsjamSRdUxKdkmZUcQpxkzjyyotYLF7a0OUZpSLZgTxtOT3kvTBD0vZnMQKDaOEKz3lSfCowexIE4nscNJKo+EOTAKE9Z6yoTvfnvE2yt9NocRjqFzoVngx1+eOfWiVJJmLHd8pFTd6B+udFnu+IyilHN1k69emWKhfnxFqadh/Bm6lkp9SrKMIMrQhMb5hssHq0M+3hiSZpLXlmoUbZ1+IKg4Jgs19+kFxiM4kW8PVTpJM0+7sgxB30vIMlioOzzo+NxueYDgU0tVKgVDMRDz4ulBNhUHIHQdGre2hvzDdzdIpeQ33ZihWbJwTR0h2C3bcEzONZUE+VH/mDHG8iBdCPrB3rG5B8H4ObR0jaW6isHu+BFrvQBd11iq2izWXT61eLrplXGasdz2EEKw3BrR8WOWuz66BiXb5NPn63tSwJ8VO+eJJM24uTUkTmRuTK3kXVGaUd9x3ZycmSsETJccagWTi1MlhlFKlie1KUNtlUBnm8pb6Vyj8NyFeZWgltIPle+jaxoM/IQ4Tbm9NZx4RLWHKjVze6hMhlv5sxSlWc581TANjfma+9Q56Hnm0rWuxwdrKjUwSlSSqy6UxDFMMpJMoh+R39ZBkKQZ91ueStnyQoqWyUzZpuoYk2552VHr7kY/xDVVCICpi0mSXcVVEkPL0On6MRVHmcZW8i7tUT0/PT/G1HVGeay9ECpKXCJZrLncmCtTMA1sQ2OlrfzXhoHy+EkymTOvwlx2obwGD/o5bw4CNnohjqmaGcexnlq6xntrPaSUJInFg86I1W7ATMWmWVYS3eny0TMEnoZffH+TX73Z4t/+qVee677UNcE/8/nz/Ee/8BF3t0ePyTF3YrwMbQ8DvnOvwyCIkRIuTKuUOMVuU3u3ZknZU+jaw/TFLJPcbXmEcUaSZRiahszUvL9Uf7jn2+86OoZiBSWpfGLq4Uo3YLnjkaaKBd73EyqOwShMqRdNFmsOjqVTK5j0doR1eFHC7a0RAJenFbOz5toMw0RJ7Q6AsmMSxKFiMO34PTRNEKUZXT8mjLN8fyIAiZ9I0izjQVeZIQdJio2mkrd3wDIEfT/JJdgP5ayT0BjbQAjVXDoOWd5BMF7DbUPD1ATrXeV5F8QpVysunz5X5cp08VT2vsq3p8hnLtS52xqxPQq41/a5OOWzNVDNziBOma+6x34OE0IZ3KeZJIozlj2PMEloFm3F1BtGeeodCBRZQwiBqStP0q4XMQgTPt4Y7kqnP87xAizVHCxNY7biEMQZ3UGErqnE7WEu3b4yc/jU7qdDoiKylKfjGI6h0yyZhKnykN6Z2NcoWLQGEZahUbR0/od311lu+dQKBn/gc+exj7mgN4amKYVU348pmjq3N0dEifLGvjpT4n7by59XwQ9Xuqx01Xmh7JjHEkZwEnimp0dKeU8IUQfO7XwNKeV3j2pgz4OJRtoxJxHEUiojuJq08CJlSppkkqJtMlXSJykARi6LEULdxgAvz5X3Ndg73yjQ9ZSE7qCT5eYgUH4xMyXePF+dSFtGoTqQGprA0gVTJSX/mcoNO5fq6iA6PozOlh2i2GeqZPHaQhUhOPHq6Civvita6W6jxHONAo6pE2eqM1Z1LOaqDmXbZEuEZFKxm6ZLalI8aBKDZWh8+eoUqZSMAhX3O1tRKU2dbsR6L2Cp/vAw0ihazFed3IPo4Aff9X6QV/FDbEP5a4w13br2cFJSchh1jxlPkVU9DXGaTXwX/ChjGKRs9HwSCZemi1yZLvEvfOXyscoynwYpVdTpMEwmHbbWKGSzHzJbcbk8bfD73ljgJ54SI33c2Mw/Qz+KaBQsXl2oYOoaXd/ANXTutz2CWNIeqULPpakir8ynpPJgYQDVgsmSdA8k5dsP63na2Vpuer1UKzCcT2gN1AE7TiXrvYCNQcjrQvD6Yo1X5soEj/ip7QdNE1yeLk6u01FhGCYTA9meH/PKQoXPXVKb3Ufpw0v1Akv1Aisdj5WOz2xFUnWV91sx7zQr8/TomTdIaSa53xrhxxm+UF4+b51v8IPlHsMgoVa0eGWhyo/dmObS1ClIcXN4UfIwURPohzES9RldmylyeabMWxcbR/6+SarmYCkhziOZwzwZplIwmCk7u7qUpq5xY7ZM0dLp+QlCgGkIDF1noVZAShiECYMgIUpTipaJZWh0RtFzx1KP/a0sXWOmYhEmKddmypi6xihM0bWM2arN+YbqFHa9mK4XT34fKeFis0C9aD21IDUMEyxde65udxBlfLQ5RKAkfQv1BIFgqa7GYOrKDPzENolSSX69KONCU6VKXZxSISfjbnmUZjQKFnpulDuKUkq2wflGgWGYTAqjTr6XilPJbNXl2kyJOPe7OwqUbBM/UlLsTy1UaXsRrmUwCJLcZ9PkfFOlfHqLMZap0w8S0lyGutLxMLSHsmHtEE2QQT4nBnFGlGY42vMfNMIkJf7/s/ffUZZtW1of+Fvb7338CR/p3c1rnzf1PFAURjhREjQD1EgtiRK0bNMtCZqWhNQyQ3SrGSokDTUNPXBCaiEBQg1NQYEkqoqqV7z3quqZe9+9mTdtZIY/fnuz+o+1z8mwmeEjbul+Y7xxX0ZmxFmx9zJzzfnN78vl5GKvBPVVksKzdQxNo+EZ3JhWzm0zNZs3F87WuCTOcv6Dv/kut2erx2JLjfG/+fwV/tO/d4//+h894Y/+5jf2/Xfj+bXcV4mHkdC4OVXhizfbvDZXI8kLHqyPEAKuTVV2ncFJrphnwCTpcmXK5eZUBesA57VR7mm5fLm+TpCo/caPU96+3MA01MXetQz1XoVi6a30lQn56iCaaJKOQwE/zqk6BvMNB9NQCY2DYL7hlK6Xu1l8Apiq2BRScn26wuogJCuTxWmhTF3SXBk4uZaxK9nZcCxuzlQI02zilrkVFdvg9fkaQhzPDfSoGMUZq/2IMFHun56lxMZnGw5t1+Irt6f5jW8vnDrD52UwDY1f98YccVbwM/fWWR/Gqv0xzfETNTeX+yFzdedUGdnjAmDFNsgLZd5jaDqWIbjU8tgcKdJDyzP44q32Nrb+fMNB08Af657GOZzRFnRtuso37s6wMojwo5T7awGWLqjZOrqmGOPpFtZhkKhE6nHf+Zh5+Pp8beLm7hg6T7sBEsHnr7eo2NuLLTdnqjQ8E8fUsQx9EkP7cU5WSM6STyhQjn6fuNIiTAuqjtLHuzrlUXOUZp0uIMwkdccilwVv7ejgOqlneRY4UmKqbMf7Z4APeVEIkcCvO5lhHQ9GqafkWiqIdk1dVccGqkVPAI6p4Vo685pNP8ommdL5uqMqdKZyxYjTgoqtM1d3GJVOTls3fMvQDhWIx1lOy7O5M1vDMpQ+zL3VIZdbHmlelEGhwXzDVZWdMsB51gvp+ulE1V/XBJ+91uLNhboSAT0nVsp83eFhMmIUZzzvRepQE4K0UIHvTM3m01ebfLju4ycZcVpwqeUgNCik5ErLU04hpWvgQeCaOm8uKn38Qr6wqN0YxWS5oobO1OxtC3Ch6bIxig/FRNAEdIKYhbpDnOcsdQJsU2nqbIVVtj3EaUGa56wP4wN/xlZkecG9VaW5IKViwT3rqSTbr707S5TmfPXO9LkmpUBpMa0MQgZhStUyJmyPr9+e5v66z935Gl++fXq6V6M4I0gy2p710kRs1VaCxpahLp66pvPJy01ACew/7QY8WPe5OV3l5kyVNCv49uMeuia4NVs90HPeT+Q5LySbfow3DmZfMsZhlFErD0UhBK/P18lnVVo8THL8WIlGvjanLpc/XBnRD1Oma0qw/VVB5LjN4CTxxkKdpU5AkOS8sVBXIs9Jvi/9P8uLktWg1unGKCZOCxW8123uzlVJsoLPXj+amOmD9RFrw5hnvXDSgrQ6jPjU5SZXWx5+kvGZ6+09dYbOChvDmPdWBmS5agtfH8b4Uc7nr7fxo5QbZbvASbcCSyn5cN0nyQpqjqr0x1nOXCmqvt9FTdMEV9oejTDDNrXJuffWYh3X0uiMUt5d7tN0TVKvoGKaVOzjP99LTZdOkKBr4JgVRb/PJbmU9MOkFNl2JmNuVSyqjkGWq/3S0AQN79VJqZV+xPpQCSW/Nlc78nOPc+Xm1w9TZaUuNKIs462FOmGuROKbRxATPiqCLGeqYqGLKqah0XQt7q0NudR0ma4qcwdLt/E8JWRv6ALH0MgLNU+yXOLHOVfaHrom+OqdaaK0wDFV4tkyjhdrZIXSNKvYxq6L+FgH7cmmavny44w3FuoIVCJ0Y6Rczh5u+GTZOEGm3Jdna86hgu7Zms1KoVzITiJYjzPl7jgMM1oVpTukCXWJrLs68w2brJC0PIvLLZe3FhtYpnZm+jRj/Lmfe8SjzYA//89+4UT2mrm6w69/Y5a/8q0l/vCPvfZS9lfDM3n7UoNnPcUwb1YNhIC0KOiHKf0wxU/GYv3b23kcU6ddtQjijBszFWxDQxfiUOwZTRNovPzfz9ZsVgch7YrB1ZZH01OszJW+ahftBsp9c22ozrA3F9X7a3mWMlCIMvJCsTabroWhHW6M+yV97ZItXy8NE550fAxNY20Q8fnrbUZxPjk/KpZym37aCZiqWniWQTdI2PRjHFPfV8fsvNp+lvshz7qKeTRVten4CUUh+drtKRbqNnN1ly/dmr4Ql2pT1/j6azOYusbzbsCduSrvr44QQjBbNVnqJWz6CfN1h2unFG8IIbg1UyVIMjzL4Ofub3B92mO27hCnGWGasdBwlK6TZ5HlBZ0goVK2R6/2Y4ZRxnzDONP7hGPqfOpKi1Gc8eHakAJBy1MdCmujBE0DDRWzPNzwWe6rpO+N6cqxWGg1x+SdKw0utzwedwL8OJ+YdQF0/HRXYkrXBLah0w9SDE3w6StNfulpj3cuN868M0nTROk6ropGDzdGzJbSHrqmTRxtNSHwbIOGa9DeQhLp+glL3ZA4UzH6QsM9s9bTo+CoT/d3A7eklMlJDuYkoKigEUjV0mcZGiuDiI1RTC9ImS4dg6arFr0gpeKYzG05AEUp6imlJCm1iqIs5+GGr6rEUcrt2aOll7O8YLUX8bwf4Jg6c3Wb954rseWVYUTTsajaBhXb5HLL3VaZjMux5IVy5dBLXQRvnwVSFJJRotoKTtN9wbV0LjW9iS3m+jCi66d4lk6WS8WQckykhFGc8jP31nFtlRy8Ou0d6aDZqgWil1XgXEqarkkQK8egnQdvu7QlPijSXLVh1Gxz4g6UFRJTSpa6wWRjmq+rPn3HVPoIy/2jJaUAdfEKUp51Q6Qs+HB9pDL1ccZXbk1zfbpybhTrrQiSnKedkDDO6fh9gkziGIJPXWnx2z916UDit0dFkhU82lDU7g9XfW7PVfdNhszUbJqeuS14Hf93EKo2pOvTFa5NV9A1waNeOHHdmapaxzqwn3VD+mFKISPlrmnqLOyhn3Z9ukKSFbscrAxdsNwL6IUpszV7ok/T8ROe9UOiRGlK5DPyXKqbRaEq2JoQPO0GjL2I0rzY0xzA0JVT3yjKaDgG6+VzjrMcP8lLEWVzYgN9GOSFYr0NQ8V+SfOC//47S2hCBSSfvz51JnT1V+F5L2RjmBClOTVH493lEZoQ3Jyu8NXXZk/M8XUnCqneS5oXdIOCT11pbkvavOyiphygUkb9jKqt2o4cU6flWaz0Y6I0pyMlfpLz1uLJPN9WxZq4Xq12QgxdMIxSur6yZ39zocFKXxUZxr+HqasW/Stt98BtUXGpJ1EUqgX7KHeerp+w2ot41g15ba7KfN3hmw87BHHGd5/1+A1vLZx520meF6z2I3JZ8M5Mgx+ujgjinGfdkM9ea1G1TZK8IC8kry/UJvtjkhUTFmSyxedaCLGvS1xWWs5XrN1i0/shLa27786rZOBeAXLTUyLh9S0i1uNW4PtrI9oVm42RSiw+6wWsDCJ+/DOHc5bbqU94XGS5ZBSnPNwI6IYmrYrF5ihRpinrPnmhHAWvTlXO7SxfH8b8qb9/nx99fZZvvDZzYj/3933xGj/1g1V+6ger/PZPLr703y40HG5MezzZDHmyGZAXykSk5ho8WPdxTI3OaG+t1L0cVKNUMRhO6nmuDiK+t9THNHRank3Ts6i7Bhsj1VJTd0zCNOdyaSQwjitNXRWp/dhnfahc87bGEModTR75UiuEkqUYRKly0zQNCqkchYM05+58lbVBjESZV7y/OkJKFa+9NldVRU8/wzKUVMjW7ovzRpTkPNxUyeYgyfhwPcAylAPZ116b5eYrDJHOGk3P4je+Nc+DjRHffzbgyaZPlBXcna0SpgXDMKN6yq3bquCq5t6NGY/3l4es9EKWugF5Lmm4L9qal0qH2DjLJ2y5qYrN5ZZ3Zg6gY7iWjmvpVG2DmmuyNohZHkR8sDLi2pTLph9jGpoqNg4Srk65JJnLK/TGX/25hkGU5MjyaFNtwoKskHvqJRaF5GknQEoYhCmdIMHUxaG6bk4S4/fd9CyuT1dY6gb8zP0N0kxyddrFtQwMHd6Yq287U/NCsjlKlLlaL1R6ybl8pd7deeKoK+f7QBNYO7mhnByklKwNY2quwVKpgfOsG6FriuLvWDr/8P4mnqUzjLIJ+2YrhFDV4n6Q0qqYPO2E5FIei5m0Oox50g0Ik4LClHR8MaGbmZo2aQezjN2VyUtNpaVQsY0DZTqfdgMGoaqG3p2rnWpwXHcNZmo2cZaz2o9Y7qvL+FzDYWMUsz6MkUiCJCfRJFGmdKBOQpA5SDI+XFN9/ZdaLm9fOpgA/WGwMUppuBYbo5QKqpo7U15yLV2btC8e93OV4L7JLz2NWe1HrA0j2hWbxYbLW4sn/3sdFZeaLt98sMnaIObe2pB2xZxUQre2cp4mNoYJuiZYKefafgHWXknZ9UHET7+3xuYopeGZk8Cy6hi0q8rK+rhVpPGr6ocpeSEx9RzH0PZ8Pnut5yDO+DvvrvKsGzHbsLlaijdrQjBTtekFKZda51f1uL825L3nQ2U24Zhcbnvl77n/eG5MVyZC3I5l0A9S2lWLpW7Aaimcfm368MmZhxsjJIqaPlW1+P5Sn9V+hK5pzNRs3lo8W6HU/dCuWnywOmR1EPHuckSUSSqmwbUp99SSUjB2ZLX57tM+dc9guR8dWFx000/YGMY82gyYrdvEmQpopqo2t2ZyPlgZKi3HE9Yz6AUpYVIghEp+aEIZAkgk3SBltiwIjDFmPwmh2E8HWRfzDQdNKAbBYYPzLC/KdrmMTpii6wI/URqGAsiBTpCSFgX2CbSIHRRSSp71IuKiQCC5v+bT8RMsXaUfzS2t5pax3bbaMjQutVz8ODuw8PHDDeXA6lr6oQPdl82WmZpNN0iIM8naMNqWVLYNjV5QIAvY9COCOKcXZny4PuSNhZN11TsMKraBQBCkGXaikeQ5TzoBDzZGbI4Spnybd5rne5b/ib/9Q6I054/9lv1b7o6Cr96e5mrb4y9/8/ErE1PdIFWXKE0V9AxNsD6KcSwd19S42vYYRClL3YD5uvNSFk+YKF1WKWGh6ZyI1fy99RG9ICMrlHadEIo58cZCHVneATRU8tYxdab2KXhufcOjMjkJcKV9dFdOKSVPNoPJPeHObJW1YVyKq1t0S82rsSV9khWTNV9zDMLUJIhThlHG/bURt2erFyI51a5YDMMUP8pZG0VkucQ2dL52+2yc944CxWJRjsS//KRHnOb8ctqjVbHwTOVOflZIM5X07gYhSf7CnW9tEE9anZ/3VVLCs3SanoVtaOda6HYtnTcX6uR5n+8+C9kYqXuiaejM1mxGUU6YKcmI4z7LLC/YGCV0A/jKnWn8SJ3VDdecrOmdUNI4gjSTaBp8sDJiua9ILu9cbpw503UnHq6PSDJJgSTPJauDqNSp3b5fPt70GSUZwyil5ZkXgtzwKhx1hP8R8EtCiO+jHPYAkFL+9hMZ1THgmDo3Z6tKANDQS+tHjYWGg2VoFMCvPO2xMYqwDeOlF+mtYr03ZzT8ONtTvPegMHWBaWgESUZe6ExVlI13lkvuzFXxLIM031tY1DH1Q11e0vwFw6qQ8pX05eNAUfCVq89SJ8Q2NRquQcMxuFcmja60PG6UVt/dIMEydJwDakq9DGO9FFBsmpMK+ExdOYUNowyBCqautB0cQ1WpRnFG1TYwt2wCDdfk6pS3S3TyoMgLiWloOKZGs2IiNFhouHzttekLk5QCxexybZ2aozNbt5mpOnzicv1MklKWod6LRD0vQxeHZgS+vzak4ycYmsZU2VYBisJv6U0MXRy7kr5YCpNPl+LMQhxMt2qMe2tDOqMEQ4OGY06qx62KxR2hArXjuGIdF1Ga49k6SSa53Ha5OV3hWS985ZrWdrAfQDEXZuo2Gkps9rCIS5vkqaqFAKZrSnC25ph85fb0hUhK5YVEF4KGYxLVFBuz7hZcbVd484Qt6vdCzTEnLedpfvCKgGPoaJpi8KlCiWS5H6oW1DjntfkqQZzxyatNXOv4FsljmIZGmOR0/ZSZmsV0xZoIHk9X7YlZyRhjdrOUbHPGehls43Bn6lasDeNJBdoQkpqtrJnnGy7fuDvDUidkpmaXF6wjfcSRoARuNWxDUwxCo2Ch4eBHGZ+80qTuWtyeVe2bewWoh2UWj5lV4+d/EJjlHv6yhENWSARKy2epE2Dr+mS/u9xy6YcpU1WbXEpsI6JWGqCcNyaivkFMFOfUbZOGY+EaOgsNm8UDCPGfFn7xYYe/8u0l/uA3bu3Jaj0ONE3we75whT/xt9+fJDz2g6kLPNPg7UsNqraBZ+v0glRV8edqWLpGLqHrp2Rl10Dd3ftClRbFRNfpMHPwZbg1VWUYZGhCOW1vxfjdrQyVLEhRSJ73leHGTM1WOlpTHllebFtH6ZaxHWec4/U9TjjN1hzWRzF116DjpwyilDQrWGw63Jqp4Cc5tVLr6NZstWR0qXZDWTJpL0JiahRnTFVtpIyZxkJKwXzd4a1L55doPihen6/z1uKQ571ImVyYOs2KSZSesBXyS+CYOqamEk3TNYtGaVKRFZKn3YDXZqs82vTRhCRMc945xULYYSCE4FJLsaSCKMM0NBqOSZgUaBrcmKpwqXX8PdPQNWXQY2lULGNisjAew14oJNRsg9QouNLy+MGzARujBFvXSdICzpeAz6WWx5NuiF7ev4XQ0IQgTHL6YYplaLQrFmmuYk9VTKwwivMzTZoeBUcNmf48yknve8DZrb4DomobfPZamyjNcctNtygD1gdrI+6vjUqmi8mtmf17gJ91A95bHig2yGLz2BfvcdUvzXKGUV5S6nM8S1Wx31yoH/iQ6PoJ6yMlyh2mOUZpuT6uWl9ueawPY+qOeWZ94483fb79uINpaFwvnelWB6r68eZijatTFYIkoyhUhto9xoEYpTlPNgNWByFSwELdPXF724qtLlrPugG9UNE4my3lerHYdMqk5/YldNTEZceP+en31hhGySSb/9lrLT55uUnjBB26jgMpJd98uMkvP+4pB5Is56u3p3ljoc7l1tkddBXb4J1LDfw4UzoTh0g8pHlBmhYIDQSSz15rTQ4mIZTWyjcfdsil5HPXWkd+9nppBgAvdKgOurbz0s5d0wRFDl+5PbXtd6w5Bv/ocYeen/L25TqXmmcfZFybrhDnBUYZ8L6/Mpy4ZtmmfqhqUt02GIQpUZpxNTz479IPUu6tDVkdhAzCjPmGy/NSePRrr81we7ZKwz3/tdMPU/7n99fojBIcUyPJcj59pcHltsetmeqZuLs4ps5i0yFM99cB2wsNz+SuWePWbIVCwlIn4Ofur5LmBZ+52qLhWszUHGZrzqGCx1GcsdIP8SwDKZXLY5oXSossSJmp2lxpu2gapUW74EqrQpzlXN9DGHks6HoU9tNhMIxSfvFhh2GccanpsDaIuT1XY6kbcqnhYOkad+Zq1F2lRXnWWhQALU+58F1teWSF5NGGz1zDoRMoYfrDPJ+VfsQgSqmUa9QyNG5MvXDFUuYv6b5ae3vB0LY7HC91A8IknyTzH236pHlB3VXuvbau8a3HHRYaSrOlUiYBN0cJV9oen7nWwtS0Q43htBCmGd961GGmZrPcjxjFGbN1m3cu12lXnHOrVqd5wf/lr3+PS02Xf+VHb5/KZ/yuz17hT/7dD/ivf/EJ/9ZvfXPy9SjNebzho2lKaH6xqQoZT3vK3r5VsZitqb3JNXXi7IVRw/pQMRo7frIn06zumMzVbdJC7nJjPgyiNOfvvbfK5ZbLm4s1aq7BME4Jspy9UiO2oTFCtckVw3jicjdTs/eMAZWuX0Eh5bFZXbdmKqwNY0ZRRjdIaFdskizneS/k8aZPxTZY9F2mqjYN90XsP27da3kmq8MY8wQKcMfFMEr5hQ83WeqGqk0qyfjElSazVYdbMxeDzfUq2KbO7/j0JR6sj1gfJnz/eR8/yvjmg01+8LzH529M7dmWepK43HJpVywKqaQdPMvgh8sDHmz4VCwDc1EVvL+35GPoAVfb3kTP77wxVbX5wo0pbs9W+N7SgEGcsdT1CeKc91eGND1rX1bTQZEXBUvdgLtztQPPqbVhxP01Hz/OMHWNr92ZUclnx3ipq+dZ4cZ0RUmVaIJBmPLDlRHDKKXq6ISlEL9taLQrJv/oUZdCShqOyZUTcI0/bRz16W5IKX/yREdywtB3BD8LDdUKF2UFeVGwPIq5PVvdd7JnecGjzYBhlBOlBZeaCa519IWcF5J3nw+UeKvQsA3JQsOmF6qWhbFm1EGxOoxIM5UNn67YpEIq/ZYyE3pYhtVxkReSp90QhLKk/WB1SJTmaBrULWNy+TopEeaNUUwnSNgYpcw3VJLotHrQ+5FyWYrSnLTIyQpBkknqzskl/P7BBxu8+6yvbHFnq9ycrvD2YuPCJKUAnm76/E/vrTOIlIbYp681uT5d4eo5CUof5dInUNUTs7SofdwJaW6pniz1wgkdfqkbnsjzP2xwJWCik1MxdZ51Ixa3JJ96YcrzrnIE+nBtdC6JKVvXSNMC1zORBRNXtI6foB8ygOiFKVleIFCW8AfF6jBiuR/y/vIIiUTXBVMVu3QXqp9LUmAvPFof8ctPugzCjMW2w5dvzDBds868ReGohRU1f9V87AYJ/SBF0wRZoTSdslyWeojqvXf9ZNLOvd8ZtDaIJo6ZWVEQxDmPOz5LHZ8kUwLrnmXwzuVG+fMLnnZCXHM7S3UMy9DOJDn+eNOnH6T4cc4yEboQbIxiLENT7Xt+wnzDOdNE/Vb0w5Sfvb9BVhTcmqnyVsnG04TYZj9/EKR5MTHyWOmPaHkWWZ4zSrJJ4vm4Ok1jVhwoFlq7oiy6VwcRU1WLyy2P1UHEMMpoVwqe90IanknTM6m75rEdFU8SWV7wcD2gF6RsjCKarsliycZteva5tlD82Z99yAerI/7M7//ciRthjDFTs/kNb83z3317iX/9N96dnHtSqne76cckWcHaMGKu7hIlOamm9E8Wm+5kvx63hRZSqnbZOH9pfHxcF1BQrNv3loc82QzQBSA0NDQ2hokqtuzQrVtsutRdkyTLeVaexS9bX+OugpOAoWv0Q9XqOAgz7sxVaVVMwiRnFOVIoOvH7Ge1Zujanlpd54EH6yO+87hLJ0hYaDi8sdCg6VofCabUVliGzusLDfKiz2tzNR5v+vxwpY9jGhi6xsI7p/u8lUbn9nXtmjp1xyDJCn7laY8H6z5BklOxlCP1RUlMgYrlJQ6zdaU9ujGM+MFynzxXd9zXF2rH2reyXOKaBt0wJUzyAxVnJEq7FGDDT7g5paQoJC+XrDgrKAfsMqaTSlLH0jW++7RHlBYT7dwoLdCFIE4LnvVDpmv2meuKHRZHfdPfFkL8R8DfYHsr33dOZFSnhIqtHIn8OKft2ayPEvwtQdZWGLrGVMWi4ysXmOO08IGipueFpB+qXk/X1MkKuD6l2sUOe4mqOSadUcJcycIydQ3PPr/JpmuCxYZDx49YHybM1mzur/kqYLePLvi4H2q2iWsmeJaqBJxmW9Od2SpPOgFpphb4k05ImkmiNOf69PGTMnGa0/VjMinRdaWRMl1zqJ5zNWsnPlhTCYBcFtyYrnGlVTkRTYezhKGrtoCigFxTQptbqzHTVRvbUIKIc6co4v4yaJqg4ZoUEhCqmrtVIL1qq/2oH6bnkpQCNRd6YUYvzLja8lhsKpe0ubp96LVed5RGWT/IDlX1HtvkjpKM6YpJzVIuX66lH4uNedLYDBI0IdB1wWLdpeYa5y7EflS8c6nB836EkHC56bE2jCkKpe81NgXZ9GPyQrmjztWLPRMHVcfAj3NsU1PMQCnp+gmjOCfNJXFeKNMAQ5+0wmmaktg/zyr/fN3hl5/2GCYZQpNcn6qSFwUNz0ITgso5nsGgEmO9IGEU5dQdZXX9xkIdP86oHbLKa2hK9DxMchaaDnGq3qV3gmtr7JiqHCMNKpZOmCozE00T1FyDil3BNjUEgkGUEaUFayLmjYX6hRJE1jWBrkMuCxzLoOaq+Wvox2OHHxdL3YD/9Kfv8WNvzvHr35w71c/6fV+8yt/87jJ/63vL/PhnLqsvCnVpWik1bh5vBrimQcePmW+4e54X46TWtbZ3pPj4KIiSnCzPWR3ETJfnkGOqItZeqNoG2AamriHhTDVnekHCk05AVooYe5ZBq2Jxddql5phcn764wsZb0Q9TwqzA0AQLDYeFpnNmOqWngZm6reI2JE82fZI8pzs6H4+wumvSe54Sp8rx8lqrQj9MWWw6zJ+zs/desA2Nim2Q5ZKGa2JbOkGYkZd6Y8eBSmzD1B4aTPthoe5yYzohyXNmqjb31oaTmPdyM7pQiT3XMqjZJuvDCD/J0YSgKCSOqVrgK7ZOWhQ0XPPCFHJehqPu9p8u//sjW74mgV93vOGcLjzL4O5cjVGUsTaMXxlk3Z2vcWu2eiLZUV0TSCmVplRmoeuqBcnQj0ZBv9R0ma3ZGIdkWp0m7s7XuDlTYWOkKp7TNYu2Z1Nz9ROvFjY8k7fsOu9capy6hsyVtldqR2R8uD5S9tonoI8Fqj1O1wRX2hVqjsm1KY9PXW0d2gb5tCGlpFWxeGOhjm1o/Ngbc6AdXt/pIqDqGHzqcoNenLHY2N6/3qpY/Ma3FxBwrs+/Yht8+kqDTV8xAneKFv+auzNIOLeLWb285FqGhmsZTNdsrrSKI7WlNTyTr9yaRjvEnJdSstBw+eKtNo6pkxWSd640mas7F2btjBOeV1oeb19qoAn42mszZ9pefdKouxb/xKcvIwFNQDdMd/2bpmcRJhFVx2C/GGi25tDyLHQh0IXg9fkaeSGZqtgIIfnCjfauc/G8xUallEzXHH7sjXmWBxGbwxhdE9ycqTFXd5BSnvt7bboG01WH6arkWknZ3+redBgoS/KKcqM9pd9L1wSvzVVLvUD1GZ+51uTxZoBlaNRsxThoeRa5lCx1Q0ZRdmQdx9PGF6638WMlrXBtusKVlnfu+9G/+z++C8Af/+1vnfpnfenmFDenK/xX33wySUy5ps7d+TquqbM2jBjFOYYmuDlT5Wrbe+maOWp8fFhUbYMfudWmH6ZUHZOZmkPF0idGRC/DeSTKp6s2d2erdIIUx1Ri1jM1h7vztVNdryeF8dl4ue3xqcsNhCb4+p1pKvZH4+K8H8bn2hvzNbJCtSqOi9fHbUc7LFoVi5ul6/PaMKZRMfldn71Mw7Mu5PwwdY27czVyKVkfRHxyUZmHfOXWFMfdPiu2wW/9xMKhOpOEEHzySqNkgyuNaSFCDE0cSQv1NGEZGq/P15iuWkRpQZDkk8J6vdRazQt56M6s88KRsgVSyl970gM5CwRJxsMNH9fS+dz1FnN1hzSX3F8foAvB9enKtgUrhEAXqtfU0rUjO2mAonkbusbNmQrL/YjlXkgQZ4wsHT/OaFcOv1mc1+bixxmjOKPlbc8+x1nBd5f6rA5CXpurcWe2TZgWtE6JzXSWlwBTFyx1EwxN553FOlEmcS31+YMonYi+b9XfeBmKQvIz99Z41ou4O1/jS7emCJKclndxLq1SSu6tDvnO4x6tqsXnr7W40vaoOybmBWKkHBajOOP5IObalMflLa1GylY1xjb1YzMkjwMpJWGSsTKImKk528QfL8IYR3FGmkumahbzdRvLGLcWKPHzm9PVQ1/EDjPnx/T/mmPwmWstvnRLaXAdZ38+aTzaGPHzDzapOyZfutnmq3dm8Kzz0Rx6FQ47p7a+25vTVYZxStO1SPOCRxs+uZTcmK6w3A95d3nIlZa3J6N1fH6FSc5SL+TufJWZmk0/TNj0E2rOyy8p/Yn9tX3qCdqskHz/2QDb0Kg5Op6pkVWUIHO7YpWff74BX5wVLHUjPnOtySjOiJKcp52AhmcSJTntinXos0WJLZ/u7yWEEtcfo+Yoh9et0DSBhmCmZrHUC4iSnDDJqTgGl5pHdzk7DqI0L11XC773rA9S8NlrTX79m3PEacFUxTr3BPlPv7vK3313lT/ym18/k/YtIQS/94tX+ff/5nv8cGXA6/N1skKyPoy50va43PL4/vM+a4OYIM3IC7kr7j4PCAF35moIYHMU8/MPNnAMnS/caJ+7DtNeqNg6ObDQdMnygqedgOtl7Dler0GiRM6bnnlsxslJYqnj8zP3N6haBl+5Pc1X7sxgm9q5Fx5OCuO5/I3XZhhEKQ3X5JefdPnhyoCZqsM37s6cWYx/a7ZKP0y5NVvlw7URP/+gw9W2x5uL9W1rTkrJxijB0MS5avWN9/mFpsuXTR1D0zANwc/d36QXJrwxX6PhKZObwzLrDvvMozTnQemkeXOmwkzN5krLIc1hfZRQtc1z39+3QtMEs3WHT15t8GQzRMqy2yIveLIZkGQqWTVbc859v30VjhQlCyHmgP8QWJRS/mYhxJvAl6SUf/aA3/+HgR+XUn5VCNEHfqn8qx+XUnaEEL8P+BeBDvB7pZSDo4xzJ4ZRRlGoKl3HT1Tvpaac3VJkqWOwfVGuDeOJzoKhH91eM8kLHm2O1IFSKOe9bpDSCZQ7WJDk3DiBtrDTRl5IHm74SKkuqLe2uLsMwpQHGyO6foqhaVxpeycuSH5eSPICP84BWBnEDKOMD9cLPn1F/V1eSII4J0jzA82RX3ra5X/5YAPPNNA1waeutC7cpfVxJ+Cn31uj5ydcLSp0gmTSrvNRRZhkfG+pT5hkdP3trbzL/XCid3Jn7vyEN5Os4IcrQ3pBhmNkdIN00l//vBfSC853jF0/YRCkvPdswCB00YSGoQmkhDApiLL81HRMsrzg7/9wlaVOxHTV4tpUhdd3OCedN/w4429/f4X1oWoJuTtX5/bcxW2t2Drvb89WD6U/4FovxMbffT7g0YbPVNXC1MOJK1EvTF7aap3kBQ/WfBbrDrahIaXSQxhE6b6twmGS86QTAJAW8tQv3Vle8LTrM4wybs5UiNICx9BJM8kgTC+ESO94jKPYol2x0TWNtUHMZqn7FmfFmepOngaSTJJnkue9kF8e9HjrUmPCGDlrPNr0idOC7zzpEqfKhW1tGCuXzQvQKRMkGf/O3/gBr81V+ee+euPMPvef+Mxl/sRPvc9f/uYT/r3f8TZpVrDSj5AoJ0iBICsKfrgScLmpEqbn3b4VZwVrAyXbMYgynnXUxe76dOXCJab6Qcp7y0MMTdD1E/Sqah8L03wSQ0qp4vSiUHH5WesZ7odhlPJTP1jleS9ktuawMojOxJX2PDAWm09LveKlbsS9tRGOpfGV2zNnMgbb0Jmt6XT9hAcbPquDGKTk+lSFhvciObE+jNXfAbouzj1JKEoXOVAGHB0/Zm0YszaIeGuxgWcZaOJ0k2iDKJ04/G6MVB7gvZURSPVuD3rXO2voQsM1dZJMxVBPNgOWeyF+khNnkjSTJyJBc5o4atrszwE/BSyWf/4A+NcO8o1CCBv45JYvfU9K+WvK/3WEECbwB4GvA38R+BeOOMZdaLgmtqlRSEmeS8IkJ8sVvc0y9k46bU2IHic3KiUUBcRpQcuzEAKqjj6pblycvOurMWYCajsogRVbR0fpgGhCWY3/aoFtKH0yQ1c0zmGUEacF3SChWb5P19IPpL8RJBnDUFWyoizj2pR3obQyxtgcqUAtyQtcSzt1Z5GzwLiCmBWSiq1T2ZJAeeHOd16jU4jSAtfUEQJ0HZpbWCzjsQlxfuNseibdMEEKSZTkFFLSrloYuqDmGKeqpzJOApi60mxqVy8OS2qMTT8uxTylsvRuXOzk/NZ9/KhzKkpzolTNhX6YMldzqDkGpiF2FXt2QpZaakkhqbtqjzUN8VJNJHFC5/JBIYEsH5/jEs/SsUzF9KmfI7tyK6RUYywKqDlq/2i45kSU+bz3tZNAzTFwLBV0u5bOMEqpndPlQBOCIMkn+1EhJYsXRFQa4E/+3Q941gv59//xd860Qt6qWPyWdxb4q995Rn9Lq69AaW3VHOXE6Rg6UZpfqNhXxeUGEnX5NC7golkdRrimTj/MmG84ZTv9bl1FwQu34YuCTpBQsXRl5a5xodbLacHUNa60XaI0p+GahElBkGRnOgbP0sv2ZwnlHN+KrXPk4swWhaZnKu2pQlJ3TAahenY7758njYZr4phKw7jpmgyjFAHEeU6a5xdKx3Qrao6BoavYxNQ0pIRcqoL3+F5x0XGoE10IYUgpM2BaSvnfCiH+KICUMhNC5Af8Mf888OeBf6/88xtCiJ8Bfg74o8BrqGRVJoT4aeBPH2aML4Nj6rw2VyPNC+6vjchyyUzNfmm1baZmY+oahr7b9eAwsA2da1MV2lVVHRpng8MkJ0iyC9WG8jLomuDWTBU/zna1fXiWwaevtQiTnKnq+dPYTxrjanOaKzvjvFBujw3XpHEIFxHb0JlvOBh6m8ttl+vn5Gr3KlxqesRpwduX6nzqSutCBThHRcU2uD5V4fpUhVsz1W0JwYW6g2vq2IZ2rgwIx9K40q5wqeVxpe1t23cWGy5uWYk7L3p+zTH5zDXVCg2SG1MepqFTXzj9C7pnG7y12OD6VIU3F+svXEkuEBqO0mK7PVPlk1eaeBewqrYV83XlamodY95bukbVMbg2VWGuYVN1zAObN9imcolyyzG8cQAGnGPq3JhR+hmn1Sq+FaaucWO6gq7DdMXGs40LVy21TZ0b05VJEWHs5OnHGVGa0/qIxBgvg6lrfPFGm7Zn0Q2UY9p5sbKvT1Wo2QaeqaPrYt+W1fPAtx93+DM/+5B/6keu8oUb7TP//D/wtZv8tV96xl/4h4+wTI3LLXfCbrg+XaHumjzrhqqYcQESu7ahs9h0aHoWSVYwljCbvoCM/6qtTD9m6w63Zip7xmVCCG7OVBjtEaefJ5quxe25GtemKnzyavPUmNUXDZ+91ma25vB4M6BdPfvWStvU+cy1NqOyMLuzED5dtTA0Vey7aAxBx9T5+mszLDaVA3DNMWh51qnvtbahb2MavrlYR9c0ao7B7dnqhSQTABPDE1AdTnXXLFnFJp51Puziw+Kwu8IvAp8BfCHEFKqQiBDiR4D+q765ZEN9Q0r5nwshxompO0AX+C+B3wZsAuPWvT7QOuQYX4mtImuvqiSJE6ILOqbG6wu1XZ+3tRXio4IxRXUnxmKpY7G4X60wdY3PXWsfaP7sBSX4WuPW7MUWqZxvOKX22UdDMO8gqNgGr8/XlH7cjoNF017N7jgL2IbO6/M1ij3ElDVNnHvbA6iE7FTFPvO54Zg6n7jcvBBC0/uh4Zl86krzUGLu54mTmPeaJrgzWz2S8K5jqvl+2GelXLEO9S1HhqEJXl+onbuQ9ctg6oK787Vda7JiGxeuTfw4EELw2nyNJCvO9WyyDI2Fpstc3dlzrz4vBEnGv/7ffZfFhssf+c1vnMsY3lys8x/8zrf5tXdn+fN7xNDtikXNMS7MetLEC80a11IXu4t6xiw2Xaarrz5794vTzxMN96N1Np4krrQ95hvnZ85yfcrb9252Uvfc08Jh7uynhemqQ+um2iMualJqJ/QyLjvP53YUHDZaGb+NPwz8DeCWEOLngBngnzzA9/9vgb+89QtSyg6AEOKvo9z+/gdgXDKtA709ByLETwA/AXD16tVD/AoKY5G1s8RHaWIcFUIILOOjsWiPg+POn/OYf0fBr8YE40UMNnfiozA/zmtuXASh6VfhozDHThpHFco+bwfMg+KjcH7/atyv98NF+V0v0l4tpeTf/O+/x6MNn7/0z33xXFl9v++L11769xd5PV30M+aizP2j4H+NZ+MY5znnP+p3s4uwz35UElJbcRGe22Fx2FNrphQuB/hrwN9C7d4x8OuB777i++8CnxJC/EHgLSHEvwr8Z1LKHPgK8D2UXtXbQgi9/Jm/sNcPklL+aco2v8997nMX0zv4Y3yMj/ExPsbH+Bgf42N8jFOElJL/8G+9x//4K8/5N37TXb58e/q8h/QxPsbH+Bgf42McCodNTOlAld2lhANZvUgp/83x/xdC/CzwvwD/SAjhAw+Af0dKmQsh/l/Az6Ba/H7vIcf4MT7Gx/gYH+NjfIyP8TE+xq9qSCn53rM+//e/8wH/4IN1/ukvXeMPfePWeQ/rY3yMj/ExPsbHODQOm5hallL+e6/+Z6+GlPKr5f/9zB5/9xdRjnxniqKQbIxiTF079X5bKSWbfgLAVMW6EBo+hZSs9CPaFesjTRU+CwyilDDJSw2m3c8qK6Syi69ejHe7Fz5+3xBnOV0/pepcPDHjMZKsoOMnH4kxVmz92OKZaS6V29YFE+Hcio/C+j4oNkYxUvKR+l02RzHFGY75o/i+pZSsj2J0cTF06U4SeSHZHMVYhnYqYq4fhfc9jDL+qT/zTb671GMQZVQsnX/3t7/F7//StQs35q6fkOYF01X7QrbtfhTe91EQpTm9IKXhmmemZftROL8vMkZxxig6W9e+wyLNVbx30fWRx3HCUdHxE7KiYLpyMfets8JZv++jakz9qsTqMGJjqJJFpqGd6iWw4ycs9yJA2V5eBNHlOCtYH8YEScbNmep5D+fCIskKnmwGSKlcFa9P73bVS7OClX60TVTzouHj9w1POyFhkrMxinljoX4he8ifdgOC+GKPcakb4Mc5GyN4fb52LB2JLC94vBmUQs4XM2H6UVjfB0F32zn00fhdekHC83LMwJm4sn0U3/f6KGa1HwNgaNqFcYw7CawMIjqjMlbTtRMXd/8ovG8pJd0g4bd8YpFPXWnwm99ZoH4BkwGFlCx1QwByKVlouOc8ot34KLzvo+Dhhk+WSzp+wpuLr3Y7PQl8FM7vi4q8kDza8CeukBcVz3shg/BiJ892xgmHRT9MeVbuW0iYrTsnNLKPHs76fR/2NP/RUxnFBYG2pVJy2ne/rZfLi3bP1H4VVYxOA1vf16ue1UfhWX4UxnhaGL9LIS5u1n38fj4yYzyh+XRRf9et+Kivne1n3kfjdxFneE7vxEflGcH2sYpfZfdD/Yzm7UV+33XX5G/+K18772EcChf5ecLFH99hoWuCLJfnUsz61fUkzwYCFUNd9MTU1njvouK4cejWNfOriUV5FJz1+xbyoq+AA2B6elpev359z7/LC0khwdAFovxzkhWAcoc4iovQUfDo0SP2G+NxkeYSTaiFlGQFecldtE39UIH7aY5xKySQlWPOCklRSBDgHtDa9qDjnHyOpjb6tHzvpqFhnPJBfRbPMsslaV5M/nwR33chJWkuyQuJQM3Rw7YNnvQ4s1zNt6KQk7XimPqxNt2THuN43wKpxoty4jlOgHlW6/uwyHJJkqt9yzY0ni89ObVxFlKSF6qqCxxq39mK036WWSGR8sW71zSBfYR1s3jlKlm5/lxLP/V97yg47WcZpTlpeTlzDrlHjnESY8zL/SY7xl74MpzmcxyvG0MTk4tTlObA4efmUcc5HoOAybl3WjHcaT5LKcu4R5axD2CZ2rZk20FwFvt5LlW8LNWReaTY6aKeO1txEcdYSIkf5wgBln5656IEoiSnKO+CnmVcqFhoJ7JyHx2vHUMXh2ZmHXSMhZTE6YsY+yzuDmO8aoxJXpCX8YGpa0he7M9nicO87zDN1YQTisWra+JMikv3HzxkfvGKigEs/UImTQ/6HLNCTu6ymhDoujjTuO7b3/62lFKeaqnrYgqWHBLXr1/nW9/6FqA0Y9YGMY6pU3MM7q2OAGi4JlenPPw448G6D8Bi09lF210dRMRpwXzDIc5ynvVCXFPnats7UtZ0YxRTSMk/9mu/OhnjSeJZL5xQ2m/NVuiHKRvDBCHg2pTH815IXkiuTlUmrYlpXvD9Z32GYcZbl+qTZ/C5z33uVMa4E087Ab0gJS8KHm34xHnBG/N13r7UYKUf8XBzxGzN4c5cbc/vP+g4H2/6DMKsPFxy3lsZMlu3uTtXRdc0ZmvOtp7ZYZTixzmtioltHK+X9rSf5Uo/Yn0YszGKiJKCXpjw+Rttbs++eGZxlvNkM0AIuNquTC5BozhjGKX8th/92qmOMS8k7y0PJuOIs5yFpsvXbs9s69d+2gkYxRkLDWeiF5LmBZsj1dP8o1/70rHGKaVkuR9RSIlA0Cm13RxTI0oL+mHCfMPhcsvDKZMUozhjqRtgGzrX2h6aJugFCXFWMFWxdrWqncT7DpKMjWGCoQs2yzWtCSgkRFlG1TaYq7uTtt8ozXnSCdCE4PqUh6Frkzm8l27YzjEOo5Sun9LwTBru9haQ8TPLC8lCwzlWa15eavdZ+2j3rQ0j/uZ3nxOlBe9cbvCv/Z7ffCrzcjwfpVRtTjNVm00/Vvv7lMdCwyUvJI83fdJccqXt4lnbj8jT3s9BUdCfdkLyQvX1r49ipioW37g7uy0AXxtGbI4S2hWLuS00863r+2/9/Z/l//f9FR6u+1ybcvldn7/60hb1XpAwCDOmqtaJt0fth9PcK6M05+fub/B406diG/z2T17apZPQDWJ+5Umfim3w2WutbXvTSb3vMMm5vzYiKwq6fsJMzWGqarHY3N7WlBeSZ92Q9VGEa+nIQjFjrrT395c5i/38B8/7FIVKjt+dr5HlBe+vDikKaLomYZoTphm3Zmvb4ozHmz7rw5iZmsO1KQ9T1176vlWbvE8/zLg27TFdxiZFIXm3XLsStY+P4gwhYLHhcqXtUkheus8cBqc5J++vjegFCd9/1sezdG7NVnlzoTGZl8v9kF6QMlOzJ7//GHGW0/ETao7Jr/nKj5zq+Z1kBR+sDhmGGYMoZbHpcm3a4+mmOq/fulSnaptsjGLWhzFNz5y06b3q/A6SjH/lv/4l/sG9DX7vF67yb//WN89Vw+WsYt/D4LtPu/yt7y/TDzO+fHOKf/ef/x2ndi6+vzLk/toQTYOGa/H56+0XsVCU8u7ygF6g5sD16cpLz5DTfJb9MOXJZkCUZQzCjH6o9LO+dHMKrxxTUUge7XOGj/fz3/CNr/C3/qefZaZqI4TYFkuN9ykpJT94PuB7z3pMVSwsXWeqajNbt7edt6eFvZ7j+ytD1kcRt6ar6Jrg24+7bPoxl5ou01UH19K23QHOAp/+7Gf5//69n2Wqul1v93kvpB+mzNZspqo2Uqr468P1EUudgE9eadH0rDNpMb315if4l37yr3C17fJbP3Fp214TJjm9MKHhmrvivcMgKduBbVPbd35sjmL8OGe2bk/W1xifKZ/jOHYfx+DP+yFBnNN0TV5fqBOm6j41ijOQUHUM5ur2mbUaCiG+c9qf8asiMbUVK/2Ip5sBYVKw0LJZHyW0PROtXC8V2+D2bJWsKHaJ843ijLWB0mQQQm3YaSZJs4wwzQ89aXvBC/2O08LOtrKFhkvFNrB0jaVOwHvLQ6RUl9v5hoNlaCSZ6gGXEv7Row6fvNKcMEdOE5ujmAfrKjj3LJPlfkRcMrwkEiHg/dUBvSBjc6SSBYcRUFwbRmS5pOmaxFmhMvPAKE7pBxm2rimB+2GKa+lkRcjN6YpKVAhY7kVICX6ScesCay4pXZiAx92Quq0zjFJ0TeP9lSGLzRcHcT9IicpqTz9Uge5Z9bAHSUbPT3my6VNIxVApCkFnlLI2jJgvA9g4U+KcoIKGcWLquD3NUZoziFTQ4sc5K/2ItUGEaQiangoyFhoOQZKTZAVhUrDcj7hR6oV1Rslk7Qdpji4ETzuq3zzNCy63DmRE+koMopQkK2h7FkudgOV+RM9PaFdtmp5Fu2pRc0y1bnJ41g2pOwaGrtENkkk1bxBl1B1jsq730g2TUs2dumuS5gXfftzF0jUGkUnjUgNQ76kbpKR5zuZIvRdT15hvHP3Q26oHYxm79WA0IWh5lpqrpzgvBZAVBT0/BVmUibmELoJhnNHyLOK0wI8VE6TjJ9v2/LPYz4dRSsdPeN4LiLMCS9fIc8kgzHjeDbm2Rc9ufRhTFOq/40Bo5/qerTuESUaYZjzaCHi04fN2+a53YhCmvPt8gKkLHnd8PnG5OUlYbp2nF10EtB+mpLlKIGtCYOsCx9DRheCXnna4M1tjpvZiPn+wMqIbpHSDlKtTLnN1tTed5PtWLa6qSnxzpkrVNshlQZjkOKZGP0yxDbWX31sf8Hhd7TWvzVcpJMzU8l2BLJydJokmBAWS8b3D0DVuz1aJ0oIgSvnB8wEAcSa5MV3Bs3S6QcJSJ6QbpMRpztog4vbsiz0pznL6YUrdMbF09Qw6fsz9NZ8wzUmLgqqt0wuysqigtoeqbTDfcLi/NkIg1OUns+n4ySShf9oaoUfBs17A480AU9NY6YeMogxTVwyMcVJKxSfqd9gYxbsSU2NNxPHveZoQSHphgi40mp6JlJInmz4frIwQQiA0wReut1kfxmS5Gvd83UEI8crz+z/5Ox/w0++t8WvuzvDn/uEj5hsOf/BjJ8FteNYLWeqELPcjLp2iLpeuCW7PVgmSjPeWBwTxC40ogPdXRrz3fMjKIFJ7VppzfapyJtp+W5GVAszL/YAgLajbBnFaMCDjg7URn7rSBGCUZJMzfHOU4LXVPrB1P0+zgtV+jCYE01WbXpC+iKXClKmqzSDM+HB9hC40ekGCYxn4SYquQ8s7e8OgUZxNCmtZPuQLN9p0/RRDaDzeDGhXbJa6AR0/4dZM9cy00pJSqzZKX+jtKnMKtUetj2KmygRg0zMZRhmFFDzY8Lk9A//www0uNx2utCun1jInUDFm1d59n3zc8UkzSddPj5UkWx1E9MMUQrWmCilpui/mSZIVPO9FDKOUpV7AZ662cEydOMsJ4nyi+Tu+f3aDlLVBzPef9dkcJbQ8k6wouD1X4+ZMBT/OWJ3kKy52THZYXKyT+wQQJDkfrI34cG2EocOnrzSZrVksbtnYVRCgAgFZCjP2wpSKqZEXBbqmYZsapqYxijNsQ8M5AoPmLAL4+bqDqWmsDiKWugGXWx66EDzrqYAwynKStGAQJaqdLS+4PuXiWhorvZh+KFkfrvL6/MlnrdcGEffXRszUbG7PVvmFB5t8uDZCCPj6nRkWWw5PNgM822CqojauqmPweCNgumbv27YUpaoSu5XFtjoIee/5ENfSuZfl1GyTqqOTFwWuqVM46nJlagKjpP47ps7aMGZtEJctFgV2eYG5aFgfxnT8BA3J837ErzzpYpo6ccVksemxMUpwTR1D09gYxfTDlIptEKUZUVpwbUolUgTqkpGfwk0mywsedwLyXLI6iHjWC3jej5ipOkx5JnEuMXUVhCdZwbNeiC7A0gUrg4hL5os1etye5gfrPnkhVZWv4fBwY8T3ng6wTMEXb7b5wo0pqo6JY+qsD2OW+xHdQKBrMFd3aLgmgyjFMjRcUyfNi0kLy0npNQRJxuONAFDrsh+mfOdRh9VhzJuLdX7srflJoN/yLB5u+ARJhmMKZusudcdkc5Sga4KKravLwkvGGGU5Dzd82hWLJC9Y6YcUBXzqanPyb5a6IcMoI85yTF1DEwLHPF4ApgvBUs+nF6RM78HE8Uwd1zRI8uRERfhX+tGkYtcqf+eer4KCjUHMpbZHkGTUHQvX1FkfRgRlS0NeKAp/mOSTS+Np7eejOON5L0QT0PFjnndjHm2OmKk5VCwd1zLQNfAsnbyQLHXVnKnZBkvdcPJ1XRN7ru/LLYcfrgyYqtq41u53udIPeW95wCBK0RAMo4zpms3TTkB1oa4KGeU8TbJiF8vnImGlH/KtR11cU+ftyw3m6g6vLdRJc8njTsDD9YB+mPHOpQamrtGuWMxUbZ73IixTTMSjn3QCHqyPQEqmqkdLym6OYjZGCU3PZK7ucGO6QpIVND2TD9f90nRBVWrXhzFhmtNwTDaGCU+7AZ6lkRUecZ4zCFNsQ9sVgJ7mfr4VN2cqjKKMIMl5f2VIzTHKYp2OYWiYhmAYZjzZ9DE0ga4J2p5JxTYYRCnvr47QgeVBOPmZjzcD4rRgY5jgWTrvrwzphQl2mf1yDI1BmLE+VMF3q2JO2hg6o4TZms36ULFyOn7M026ILsSFOsOf9QKedSNsU/C9p302RjF1x+Tty3WSvMAo52DXT9j0E6YqFq6lsdQNudzavc7G+/pp/HpFIXnaDUiygkstl0GYYes6K/2QJMuRQrWMjOKUmmORZYW6uGuCnp9imxqFBF28/PzuBQl/8Rce87s+e5k/8U9+gj/4l77Nf/rT9/idn750JkyUi4y1YcS91RFzdZsoyXm86RNnBcuD4FQ/1zI0pmsWm/cSTF0wil4kPk1D0AuVSc63Hna5OV0FqRjn48Lxabl2df2EtWFMwzXpBgnPugHfftTlUssDqYgGhZTUHIMozXneC9F1FcdtjGLq7otYY6/ze7JPCJWErdkGHT9hFGdMVWxsQ6MoIMoKRmHGo80RWaHOwYWGO2E2noV5lS4EGoJOEHO17WDpGhVbZ2UQqTiRgu8+7QMq9vltn1zk+8/6+EnOmws16u7pjnFrzKlrAomk6yfcmKnyeFN1KVUdY1IYbldNfrg6oOenvO+ZfPpKi7Rk6F9quieabDHLdrd2ZXthrSgK7q+NCJKMu3PHuwOrwlGKEPCsG6AJjX6QTjp/1PNRhSTL0JiqWNyZrXF/daSIFCXGc9LUBMMopecn3F8bkmYFaZ6jaxqvzdWYrauOn7yQ25xpe0HC6kDN/YtoNHEQnHhiSgjRllJ2TvrnHhSzNZuGayCRPO/FIPvcnKnue6kYBz6PNwPqnsHVlsel1gvWSdMzj7xA6o7J9WnvWHaVr4IQoszOQpgUdIOEIFEZ2CwvmKnY2KaGZ+qsDiKGUYZtavzo63N8+0mHp5shK4OYQZie+NjeXR7Q9VNWB4pqKlAVDF0XJEWBZxh84nIDCVwuWxXm6y7xXIFpaPsKUUqpGAR+kk+qos+6Ed0gpR+maEIxcyQFt2ZqmJrG9Wkb19KxDR1TF1xpe1Rsg9WBqqDomphk7He2NV0ErA4Um+vRps/mKOHRZshM3eJyy+Wz11qM4oyGa2JoYlIVilJVZbcNvTykTTRNcHOmQpDkJz7GfpgSxDlBknF/bcRKP2IziJmq2Nyer04O+qpj8rwXTixxLV2j5VmEaYEfZ1Rsg0tNl6pt7MkSOCxMXSPNJaujkIZj8rwXTeaNoWvMNRyGccpKPyYtRsRpwZ25GnW3Pln7uqZzc6ZCnKqL5WkgLSQbQcKorIhneTH5/IWGw3I/JExUBTNKJXfmqry1WN+2P92aqRIk+Z5zOC2ZkmGSo+tg6jq5kFxt73aVdEydG9MemtCOHWzWHJ2enyIQvLc8YGFHYiMtJAtNhwWcE2Nu5qX9Nyi31VbF4vFmQD9MeVQ6FU2nBZ+71ma2bmPpOk86KvhvuCZRmhMkKpE3rqKd1n6+MYyJ04I4y7m3OmK5F7PcD5mrO1xuu9yaqaFrUHctNkbxhInQ8AwqtoEmBMv9kMstb9f6zvICXdf55NUWVUvfVqABdRn9YHXIrzztsTlK+dyNFpfaHi3PnCS6PkpYH8akuSTNVXIVoO1ZNCuWSpoXEqRKitQd9Z5vzlaZa9hYho6pq2Dy+896xKnEszQWjsgWXCuZJGuDmNmaTcU2qOxRxO4GCR+ujVgZRHz2WgvH0Lg1W8U2NBYaLkkmWR3EaJrYxaA5zf18K2xDx/A0nvcUM+qHywNmag5BnHN7tsrnr7f54fKAKM151gsoJEjpcbnl8s7lOv/9d5bYHKZkZYV3J4ZRSpDk+HGGW7O41Kzw5mKdaEvAbuoaG8OIhxs+NcfgxkyFty+p1oYP13zcsnh4c6ZyIWzMO37CBysjekFKxdZ5vBkQJOpMvjtf57W5OhLFvvj+sz5SwrM0pGIbEwZpmhfb2mOutj36YYp3Cr/fKMkme8vmKCl1a9Tc2xjGCB0+e7XFWwsNaq7B+jAhiHMkEs/Wt+1DLzu//9ovPSPJCv53X7mBEII/9o+9yd//4f/Mf/b37/N//cffPvHf66OE7y31GIQvGN6eqeNaOm/ON/ipU/7sIM651HKJ0oJ6GT+otvaCSy2P+brkaS9gM0hYH0a8c/kF8/a0XLvWhjFJVrA2jFjuhTzcCFgeRLQrNlfbHp+51iItSsZ5N5wwpTxLo+laDMo21Lpjbju/LVPj6pRHo2SPbwwTGo5JkudEaUGUFniWwTfuzDBKMpY6Ib/8tMfaIMYyRmhlAdAoSQFnkZgSAuabNu2qyWxdySu8dalO0zNLJlJKN0zJcsmN6Sorg4j7ayohZGiCz11vn8q4HEPnUsuluSXm9OMMgepO6IfphAnvWjrfuDNDlOXYhsbDdZ/1YUI/zFhsuARJwTDMcE39RBlfmiZ4faE+ISWM8bgTECU5cao0PY+DmZpNxVbkgPtro12xrK4Jrk1VeG9liKYJOqOEbFrycFMxtsbPcRy7+2VRdKHhKLkTCfdXAxabPjenK4C+Z0fReM1sDBNmqvaxZDjOC8dKTAkhvgL8GaAA/lng3wduCSFM4HdLKX/++EM8HKaqNl++NU0/SKjYOgt1F/clLXiOpaFratG7ho5j6pOklJRKqPQ44poHbUUbT+KjsDE8W59QB6vlRSWIczzbwCv/PF1VF/+KbVAU6nNuTFUJ44Lpqs3tuZNvXas7Jl1fBWWaJviRm1OEaY5paNRLtkpRqCz6GJomaLjWpPVhP1iGhrOFSuvZOpdbLqauKOadUYKlaxMWVLtiMYxy8kJuayeaLZlZ5gnYab+YLye/ETRck16QcrnlEqU5b12q0/IsPnuliWlozNovLk+upRMmORXLwE8yimK724xj6ieS8NmJim2gaeoCcaXtqn79aZcrbY9rpcbVOIlSsQw2SdA0tQaT/IWYH6h5cBydkJszlUkrX5IV3Jiu8KxXRS81BLYmc2qOQdU2KGSEY2iTJPbOhLRnGXgnGH94lsG1aW/SIrU2iHljoc6jDZ9bs9VttONxZb0XJCVzQj2rnWN82bvVNUWlrtoGrYqJlIoNZW9hRF1uuXSChIplnJjGkG3oNMo2ub1+pmepS42UchIQHxe6ptiXoyibHPTKCtziUstlruYwU7O5NVvFMVXVyTQEaaYuWWleKFOJHUv5MK3FB0XdVfT2uquYNXkBC02b69MV3lio45rGZE561guR/oplMAizXQy5rXNACEHNNogci4ZnYBn6trNGmwiCa8w1bGqOwZdvThGUbBitbDPaOk8vMuYbLqM4x9DFpP0lyQsMTeOdSw38JOfWjGrfzvJist9Utqw1TVPPME4zmhWLqerRfue6a9IZJdQcY9c6vdR06YUJTddifRTR9FT7uZRwe7bGsGRqtzxrQtffr1BzmP28KEW3jxKsbl1TM3UbpGJTmLpgqmIxVbXJ8oJBlOIYBrqmBHkd0+BTV1o8XPeZ2fIsr015k1a+vJD0wpSsyJmtulglW7PumFxpuxiawDQ0VvqRki8QqrIshMDStXLtwlzDPjNttFdBFwLP0ss2TY2v3pnieT/m5rRHw7V2zD/1XMfx24RxtPNnllX/04Br6piGcnGrOyY1xyDLlQ5oo2wjuTNX5XKrgiZgGCk2dtUxVIJKHuz8/qkfrPD6fG2S8L865fHjn77MX/n2U/4PP/bamVzyLypqjskgVBfSxaZiewrga69N8ydP+bOvTXl0gwSkmEgVDKMMS9e53PIQQmIaGnFW8OZifduec1quXXXXYGOYULF0Fpseq4OYz11rMV2z+ez1Fp5lTM6+im3QC1J0TeDZBkGyPaaEF+e3vqUAPf5bIQQV25ycjxVbsZUdSyUAumGCUZIAZmuOYo0mxYnFLK+CECpmdE3QysCk5VmESYGuCaarGp+52iRMC37kVhtD1ybSLadZbBeCXWt2sg8IQcXSJ4UTFUPrWKaGqWt8+mqLimMwW7UQmkaQFOq+eMITSS/jy9qOVj7XNDANDV3TTmTfGecOtt4/tv+9zp2yBX6xoQqxM1WbIMl3PUdNU7HzzZkqftkK33ItZqoOui72zRnUHZP1NJ7kBT6KOO4J/ieB3w1Ugb8J/ONSyp8VQnwG+FPAV47584+EhabL7//yDd5bHqIJdlXot8I2dN5abHB9qqro8FJyf21I3VGtPGFSMFOzj6Wx8ipEac6H6yOk5JXCgnvBNnTeWKipwEAT1BwlZmzpGkGa83QzwI8zrk15JZvCQgjBbN3BNnSExqSF4STx6avNifigY6pq9FzdUYFrKSj/pKOo48MopeaYLDYcXFNXF+Z92iddS+e1ueq2YN+zdEZRxtUpD8vQqViq8jiuMJu6xs0ZDT/Otm0WQuyuQh8FRSG5v67YNnONk+/tvtL2WGioA2imarMZJExXLII054fLw22CjPN1myedAMvQmG/sz6A5aTimzhtlS2iYKhq6pWsYusYHqyNsU+N2yV6su0bZglQwW7OpOyamcXx2ztaxjAMnS9dYbLr8lk8s4pk6czvWsm3oND3V7mvocKnh8HhTtQJebnmnqiWwdd1darlUbJ0v35ymXbW20XOBiRZCmksutRzWRzFhkrPYdA6kf2ebOlfaLlMVm4ZrUnVMdRnZckk1dGUKcJIwdI1fe3eWXpjsudb6YUpnFBOmJ9smdmO6Qla2y4DaW1ueyULTQUqVyL+3OpoYY9yZrdEPEzq+uki2K9a2pPlpoV2xaLgmmlCJwQ9Whngla+LBeoChC27NVLEMDc8ymK3bbI4SZPk7jtvD9oKuCT55pcl7zwe0KpZqH91UzLBbM1VcS1dtrbZJnOXcmathGhqNHXP+NM6H08C4rUITLxLLnqUSsVGq88aiWit+nNOPYlqFJMsLnnZVi9mVlkvNMfnc9TZBnDFbc47MmL7UdJmr7a5Y+nHGww1VyW66Srg+zRVzsV21aHuKGdfxE4QQXJv2kAXHLpwkZetVXkiutLwj/bytayrO8omzEsDt2SpPOsowopASx9InSb3X5+vM151tSSPb0Jmtvdjvv3p7mm6gdKbqjomhKzbC2iDGtTRuzVS5M1dlpmZjaoJ21Wa5H+LHGQsN96Uxw3mg4Smx2tfmajQ9k2e9kEutCotNh36Y8rQUW741W+FKy+XD9RGFlMw3HKqOoVrzz7Dabeoad+dqqh2vfKeX2x5f1Wb4YEUx5YKkoJASXdOoWAZJpqryWk28dB8aw48zvv24yz/71Rvbvv4Hvn6D/8+3nvIXf/4x/+qvv3M6v+AFx+ogou6YTF22S+ZSTiHBMYxJIuI0UbFNbkxXWR/GPOtF3JqpsNh06fgxC40KfpyjCY2r7Rc6fGNcaipt26M43L4MCw13wvqIM6XHlxWShmNOzrGbMxU8y6BdsYjSjGGU4xgq1tE18cr7lKGrvSVMc9UmHCTM1Gw8y6AoJB+uj4jSghvTVS41PQopuT6lWJlb44vThkpSVIjSgqarEmijOMM0BNfaFTp+jK5pzNVNmq6Jaeh89c4UeQ7tIxZXjgrXUmNNMrVfxFlBq2JSsXQ+XB8RJgWzdZs3F+vUXRPb0LjUdOhHGdopdK0UUvK0GyJR+YBxzDvfcPjq7Wkkkukjtuzvhf2KRYau8fq8Yvk2XMVKv9z2CPdgPM9UbSxdna9vLjR4b0UZEIzbU99bVnvyeP6PMd9QRdePalIKjp+YMqWU3wMQQqxLKX8WQEr5HSHEuTY3FhLuzFUPVEk0dI2Gpybqe8sDslwyCMPSylL1eZ5mYsqPFatl/P9ftpGGSa76ZXdshmN9mTHGv7cuBFlpUa3rux0bjhvsvgxCiG0isypzb9FwLQoJaSnqC7A6iKk5qm1SHTBKlHq/pMDWy0KSFUrc3NDp+Am3Z2tKa0vbbiN7WkwhUFX5sXjiMDp5SjMweeeX2x6X2x5xlvPByqj8zHSSmFobxuRFKfxoKXfKs9qktC3VqzcXFdX7w3U1xjgtSPICR9MZxtmkirI6iJiruyfafhGlOZoQE5bWy1ytxv9+fGnqhS9aGjp+cmprX0pJmKogatym87IkaZDk2IaObUCUFBNB8bVBzPXpV2/lhia2rf+zrEzbhjZpNd2JQZiy6atW4rHA/Elh6z5p6hrTNYfpck/6/jOlxzCI1GfrmqAfZoRJTj9XCfyzuuiO16dnGXzqagtQbpUAWa7myXgv3BgmSmuqE/D6Qv2VzMIgydE0gV9qWY0Z66M4m6y5s3DGOSvstdftNCvwkwzP1BnFGZ0gmbQVd0vNkHHrx3Gx16XFj7PJOxhGKVXH4MZUZZvcwKafkOWSlX7E25fqR06ObUWY5mSlvfgwTvc9+4tCXSQcc7em1dbfaefasHRtcgaahthmIKJr4pWtGeOzf+u+NCzXZpios8OzDExdm2hCjoXC14fxNmH1i4KtF6ytc/BZuQ5zKQkTxeROMklSCsKPz/IozXfFMacJIQQ7GwQWm+5ErzHLJVGq2FGbpbvtUjfkxnTlQAznn/9wkzSXfOPOzLav356t8aOvz/IXfv4R/8I3bp5anHZRkeYFa4OYOMsnLZCWrnF7Vu3Lo/h0Ysqd9wk/VomBMMnJCjlZj4MoZbkf4xg6Sba75Uk7RSbf1v1mrNezPoy3nWOeZSClnBi2LHUD7szVDjyPXEtHSuXIO9Zpna7apEUxMRDKCzkRhN85trNAlhcIXjznrp9M4tRemJCVBQdA6bkaymHxrJGVbPNx6/rY0XVjmND2bMJkfE9S+9zWfbt1SozsJC8mbfXRbL5tPz2L4uNWuJa+7a5zaZ9ibJQqgzZdExSFxDZ05urqrjDaEkP48W5jto9yUgrguKtq6/f/0R1/d2583CDJ+GB1yL3VkepvPQTGSaGGZ5aWjtqp2zAq9oKBZ+svXZhjMfEPVkdkebHvv9sKy9AmF5rzdqlxLZ1WxcS1NGZqNob2Qlh569j6Ycq91REfrA73zCTvhKm/+DkV22B9GE++P8kO9pyOC8fUaVctnJdYhZ40bENnumbtmqPjjXbMjvhgdTjRWzkPzNbUOlLPR23IrqloprlUGhZjTaqTQD843PwBmKk5OKYSAG2WLp5CKDr3aeFpJ+TDNX+SuHsV2hUL19KpuwZTFQvTUIfPWR+sR8GDjREfrvkTHaetmKs7tCoGNdc4ctvUUTDfUO98q4ZQ1TYYxRnLvYhHm0ps/rwwU1O6eA3XpLZlf6zahrrIjNQ+tzHaW7dnjDDJedoJedIJmKooHYSqY9A6xaLERYYfZ/hxxnI/pOoYVCxj0jp+mut9jFbFmryDUZztuQeMz8OxqcFJoGYbNFwT19L3TYBLqRgC99dGLHUPlyTWNIFXPr+TijVm6y/2ZdvQiVIlvn5vdYQfZ5M25NpHYA/ciqkte3ndUTblL+ag+l26fsK91RHvrwyJ0vM7v0GxdV1Lm7SCj2OuJM9ZHSjB7o7/aqfAf/Sog6VrfPZ6a9ff/cTXb7LpJ/w3v/jkNH6FCw2jFDp+2glZH8UUhUTTBHPlHWT+FGLK1fI+cW/txX1ivN5mavb2oq7xoi3ovO8RoLR/K7ZOZcudSbXi6WRFwfpQrZ214cFiyl6Q8OG6z+ogmiQHQcXYU5O4/mxdCLciywvural9eayL61r6ljjVKOMFtUYr56SxlxdyMs5xPD9+llXbmIjsn8W9eitMTcM2BQsNZ9v8HUbqrnBvdXRqyd+j4Fkv5H75HMd7wfhsrViKTT+e/6eleXueOO4O828JITwpZSCl/OvjLwohbgF/4Zg/+9BYG0T4SY6li0k2MUoP18Z0pe0xW8+x9LJauLez9onC0LWJTf0YQaKsICu2PmmtCcvgJC/kxNHlVdA1wZ3ZKlmprXTe2Fm5vj1bJc1fjK3rJ3ywOqSQaiOL0vyVTBohxLafM2YaFIXKlG/9vTt+Qi9ImKraJ04X3S/zfZpYaLi75uhszaHpWiz3lSDlRlld2kn5PCvUHHOXNo+pa9ydrxEkysY+yjI+WE3QBLsOrCQreNoJWGy6B6oEjNeJlBxo/oBKDm+dD6/P15GH0GLJCsmD9RFzO9pVDjLOKC0mh8/L4Jj6turSa7O1C7OuXwYp5aTqGO5xwXJNnZvTVeKsOFVm6k7sxVCbqdnEWY6uKWcbUxcT5t9ZY+f7HuPqlFeKbAqyouD+mrq4LjbcPedQWu6BjqnhWDrTZ2zzfdGgYgLF3PVMnYpt8HpZCc8KycMNH9fUT20uqrZy9V7fXxmWY3qxBwyilDRXEgIneRnSNMHVqRfnb5zlLPciLEMlZ4VQ+injtXoUQfWb0xWSvDgxpuFO5lqcFltiu4LbMycX2/SDlE0/PhMm6c617Vr6ZA6Oz5xgcj7k3FsdMlNzznR/3ArX0nex7W/PVun4Cc9Ls5VNf+wGrO/bDv7LT3u8uVjfc3584UabL9xo81/8zx/ye75w9X9VrCklrWFPJC/SosDWFLNiFGdkJ+y4sT6MeX9lgGPquBhkhcTQd8dBY1iGitcKeToaqofF1j10K25MV+iHKYYW4icZ768k6OLlbM2wdBoNyzN0oeEqDb0SF8GFNs0lWS6VS1uQ4Bi6ahWer297JzvX6FkiSDKebAasleL041jv2lSFOFN3atj7znLasAzVrrmzNT8s2Z+g9tmLkHQdRCkfrAwwdY2Ga5FLiYbYdbaepIP1RcNx38LfAWrAzjL4EPjJY/7sQyFK84lIqGMp0evVQUy7evjkw3GDqo1RzMYopuVZR2bPLPcjgjifiPdmuWQQpWz6SgjwSSeg7VkHyjprmsA6Q2pfUUg6QYJj6qwPYh5sjLjccrk7v7tdRAiBZbwY27NeiG3obPoxV9rugZNHW3/ObN0mLyS2qW3baKRUyYOVvgrGP3mlSdXeW+R5FGesDSJqjsnMBbjIZXnB875yspuu2rve++ogohsovYepql3qSzkkWUBeqHey3I+2tVecBjZHMct9pZVwqbU9kTSMUp73IlzzRf9/zTGZq9v8cCXBNXVWBzENz9y2BsdtBC+r9G/FVNUiyQo0TQleb45iklxRsudLi9VXQS8VdkdxxrNuiGNqXG17+7IX0qzAj3OW+9GBW0oWmw4bZbvlpq9smrtBeuBL8XhdB0nGUjfE0tUYX5XgOmsIIXBNnUebPtemdrdUbvox33nSA1Q16KSR5QXrw5hBlE4cH7e+x+V+qNpnag6tisV83eFZV7Vyp7nScTjtgKUzilkZRnimwWLT3XbRllLypBMQpQWXW0rLY6pqk+QFS90AS9fp+ilV29ilS5ZkBR+sDvneUo+pms2Xb02d6u9x0bHcD+n6CUKoS1iSFzxYH+GYisHU9VVb3yjKSh2847/3JCt4UrpbLTZfaDutDiJGsXKrvD79opXvWTckyyV+nJ9qlX5tEE/azquOYu6Mbb6/9ajDzZkqV9veoVqshRAn2v5aFJLHnYA0L7jS8qi7Bu2qRZzmaEJdLIIkZxilzNadY63TpV5AUUCQnGw7cVFIuoHSCxuEKaahsdjYfkHaK2acKcXkV/qqbWN9GE8Yb6eNIMno+klpmKOz0HBJ86LU9ZFcaXsTU5k4U+6BYZoTJdkkZt05D/JC8r1nfX73567s+ZlCCP7wj73G7/nTv8Bf+oXH/PNfu3nqv+dZY20Y0fET2hVrV/JOFd5UMdo2dIpC8ktPegyClKpzMu+8FySs9kPeXR4iUbqTt6bNA7nh6ppAPwef1lGcsdQNMDTBQsPdFq/nhZzogV5pezim0guN0oL15Xjiwtz0rH2Lmst9FTv1Q9VWPV2zJl/fGheMESY5z/shaVZwqdQkPG24ls5sXWnqtSsWS72AhtfY951IKfmVpT6dkTLU8SyDQspjGQq9Csv9iDSXgMA2xYTlF2d5SRZQxkNbE5vL/bBsWVPvtO1ZpxK/RmnOLz/tMV21+dE35iZfr1gG3WCIrgnuOueX1NuK5V5ExTLpBgl3Zl8wF8M03zfOHxdVWp6JRChx/48wk+q4UddPAn8b+Ks7vv5jwFeBP7TfNwohfhPwR8o/3gX+0Jh1JYT448DvBLrA35BS/j9eNRBz4swikYVqkxmEKR+u+UxV7DOtvqwNYvLihU30Uaj4nqUTxDmmIZAF3Fsd8nAjoOoYbIwSTEPn/tpo1yX+ImB5ENEZlTooXZ80h3vJiIWG0iqol6Jve8ExdUKZc2umuotddVDYhs71HQy0JCvw44wwyUhzST+MebDmU3MN7s7XdlWBlntqw/TjnJZnnrvl5pNOwPurQ6XTlMnJe++HKZpQcw6UvtS4OmQbOrdmlKh/mslTsZjeil6Q8O7yQNmU1mwcSwlp+3FGlqtkZZIVJFnBdGpNLn2zdYdcSjaGiXJ52in0WbY4HFRYM8slddfANjTur/nEWc4gzJip2SzL8FCVhs1RPBlzkOT7sqFeCC0fbIzDKJ2IV3+4PiKIc1YHITM159CX4s1RQpwqjbNRkl1IoeokL5itOYRJgZRy256oWkGGCATXXqEFdhQ87YY83BgxCDMlWmoq15eKbaAJJjo1a8OYVsVSYqizVZZ7EZrGpNJ3WtgYxdxbGbEyiJhvOFiGEuuPs5wgVvpQYy2JjVE8mYMLDRfPNHjSCRCCPc+4x5s+DzZ8RklONZWlBfHhjv00LxhFGTXHOPd98DjojBKWugGOoVoKpqoWH675bI5i4kwJ74+FRXVNnNh7f9Lx+f7zAXGaM4ozPn9jCilVfGDp+i6nNc/SGYQZrrW3xtNJwbN0ekGqXAjLGCJKc37wvM8oyhUDtOZwbdo7F6YtwDDOJvpfG6OYK22PS02Xp52A9WHCSj8iLzWxwiTjrUvNI3+WZylnvJM+J8fx0NooouGoc7tatlWO4mwSK+6MGS1D41q5X60OYgxdHMsh+qBI84IH6z7LJRNqvuFQd0z6YcraIJq4n83VVZvpmFGy3A/3P8OB+2sjgiTnk1f2p0v8yM0pvv7aDH/y737Ab3p7/sgx4EXF2kCx19V73p6Y8iyDG1u0Ipe6AZvDmKVeeGIsvqVuSC9IeLCuikRFofSAHm74vDZXu3Ds6zFb8NFGQL1MXtyeVUz7NJMUUsXooDTPxl0L8w2HNC/oBSmOqfGyXMfYDOPqlMe1qQpCCLK82BYXWEYpuu6arAwinmwG9IKUUZzx1mLjTJLFYz2mvTSFxsgLySBUjNuH68pg4ztPu1xtqftQIeUrtf6OivGdda5hc3umNkmc9IJ0oiu12o+oOmrvC5KcjaG6E9xfGzFfd4jS/FTWfJzlPNpQ6+nrr81M7nu9MJ20ggZJhmWcvyOoZ+nKAbla2WbUtDXO7/gJhq5cazVNTIoqz3ohzVJX7JrmXci7wEFw3Gjjq1LKn9j5RSnlfyWE+D+/7BullH8bldRCCPFN4Kd3/JP/o5Ry59f2hWpZq02C6G4Q0w/UBe8g1NMgyeiHKU3XOvYm0/CUTXTDNY8cWC40XFqehakr9peuCaUpI1W7yUo/QtcEH675vD5f25Y9jdKcbpBQd8xzsU6W8oWNZatisTZIqLvqAiUluL6y0Db13RadN6crE+HVg8CPMwaR2lxelnz8cH1ElktqrolrGfTDZPIZco9ikWvpRGmBbWoXQkhOAo6hxGXHgd+91WFZDVKOdnkudzHMtC3r4rSTs1IqkeuxVoZnGWyOYr671FeBuKfmomNqk4vQGFvn+86KiWPoBw6a4uyFw+W4ymjoGuOP2289SCnZGCVIlH3reN3WHZNBqLRMXvb8HFM7sNlCP0gnWktX2u5k/tljw4KXXIoHUYofZ0xV7MnzGF8aTF3Du6DtDw3XZHOk9oGde2I2Ng4QEs8+ncDYMXQGZAgBK/2QzVGKaQi+dGtaaf1E2906p6s2VdvA0HYbTZwGTKM0r5BlYJLmfPNhB0Mr3VPNvW2fG57Ja1YVTewtkFxISdMzGQQpt2a8I2nxPFj3Sco9eSw++1FCmORlu2NBx0+ZqgpmanbpGCrU3mqpZzddVe6mJ/nepYQky3m04SME3F2oqxY112AQZrsqm1fbnjp7TvmSOFW1qeyY41JCw7HojFLirKAfpjxY97k9u/feFmc5HT+hahunwhzwLB3TEGWx4cXPzwtJx0/QhCwLTRlxVvBaXhy51ej6lHruB409DovxmSeEOifHZ6Nn6ZNzaa/9cbbuUC+NI84yMWybGuvDGMfUkNJjpR+xMYoJ05w7c7uLOy87wwF+5WkPgE9ebr70c//D3/k2v/FP/gP+0F/6Dv/VH/jiR/ZytRNpXpBkOXEmudx6eXvYMEpZHUbkUlKxDG7MVF767w/6+X6c8awXTu4m16cufjuQOttemIOMopRvPe5i6zpXplwMXaiC946z7XLLZbpqlzHp/jH8fMNRMbT+ItY3dG0SFxi64N3nA0Zxxp25Kp6lIyXomvp3kpNts3wZbkxX9tyjxnHhIExJMkmBpOpojKKC6cqLRNRpjnS/9V9zlO5vXhQ864UESc6lpsuNmcrkeY/Pur3uYicBgSBKclxTTO6nAPWSJa1r4tyKLzuxdd5uxTjO1wQ87ytWtURyZ642KapsLd6f1rM8Cxz3Tbzsxn6gE1QIcRNYlVLuVAD+j4UQXeD/JKX85YP8LF0T6JqOECqrHmc5V9veRNUeXriGrQ0jun7KdNViqmrzcMOnKJTw9ut7tJyBquwHSf7KdqBLTZf5unPkhMbONjJdUwygdsWi6yc4llEGC8ryfOf8e9IJiFPl8vGJy41TrbruhJSS2ZpTapro1J0Gfpxh6Rrvrw7phynvLveZbzi0PXW5NnUx0bpYbB7cnU1KWb43ue29JVnBcl+14owrKGOqsmcZ3J6pkhcFH274yoErTHe1611ueUxXt2iNnSGklNssm0FdVmq2ctdrehbDKONpN+Deyoi6Z/LrX58jypSTYZTm2y4R43Vx0thplduqWNyerXG17dEuEyc/XB7wtBMQJBlfe22Ga1OeskIPkl1tefsldYTgwJU8KV9syIamcW3aJk4L3lqok0s5+YyNUcz6MGaqotphu0E6EWvUytaz1YGq7ry1WC+Tba/WgDoIsqLY8v8lV9sevSDh1mwFTYjJBSQsxesdU+dq2yOXkiebQamdpdq6nvdCNCF4fa6Groszn6sHgSz3KM9SLSE7YegatiUoChVAHAUvs22+3HKpWDqvL9SoOSZ//71VPlz3qToGd+dq3JiusD6MGUYpgyidXIROK5GbFxJty3yaqlgIlHbUuAXm8abPcj+k46fcnk358s1pVobqUtjc8fNexpj1bJ2rLY+5qsNU1ZwwHUC1Bo3bSl7Wrjyeryetc3LS2Plcx3i06bMxUm1rV9sV+kHMD1cGfPJKgzuzVa61vVKbUjuxQs7WsVyd8kpRXaVZ97wTci8dEWeKGbyz3V8IceoV+GGUsj6Mqbvmtn3YtXS+fKvNVNUkiHOEUPtpsU+U+7Sj2ss39YTX52snmjiRUqIJwd25GlKqy9eD9RHtiqWCdiExDZ26o5WW4zp5Idlv2WZ5wZNOQCFVQWDnujmp575zHs7XHUxdcG3am9h/m7rGe8/V2ejHGV97bZo3FxusD2MebvgsNJxt+89p7EX77ZmmrnF9ulK2lGllEi1hFGckpYmKYpbtXisvG+f3nvWp2QbXp16eZLnc8vhTv/fT/MRf+Da/5Sd/hn/x19zmN709v6tN+aOGp50AXdNwTSZrPi8kz3uqdXSrhmbHT1jtq9bNty83js2YWhtEvL8ypBMkbAwT3rlUo1WxeWOhRidQMgrnzZbaK+51TJ0bMxXm6g41R8lu/HB5wKN1nyDN8WydNxZqPOuF9IKUimVM7niHWc87561yTpVM11QL4N97dxVQY/v6azPUbINhlOFY+q51sPOueZIY/05RqmQjHFNjumqXDK6Ehxs+19oV2lWLr9+ZJSuUO17XTyjk7uTdSWPncxxr+l5queR5wd/4lWXyoiArCm7MVHhtTmkEKqmNnKnK9jgkL+SJEAOEAF0H11R6auPVVHPMiQv8fmfcWWOvebs5Uvp9l1suwyjlV572CZK8PPcC7s5VyQqwDUEnSFUr35ZCzsvi44uI487SNSHEF6SUv7j1i0KIzwPrB/wZPw78tR1f+0kp5R8XQtwB/t/A13Z+kxDiJ4CfALh69eq2v7MNnbcXGwSp0uPx44yHZbXy1oyq/I0ptSuDiKmqPUle6TuCWimVvs2YZg2wQrRLrHwnjrOYlnsh68OYtUE8aSOrOSZxViBRVq4Nz8TQNGqOseuzdE2wORprqqh2rrO4sI4dfcKkYK6hLLfH1tNCUCYlurQ9i66f0vZsdCG2aV3UnINXXoUQkx5zU9e41FT93hujeNL6UrWVdkbDNUnKnnBNE2iaTpZLDE1jdRDteTE7D/HNLC+4X7K7rrRe6JGYusZU1aYXJKR5ga4LDCGwTU0dknE6oTTrmmp5OE2MafsVW9/WGteuWPSChChT9vYNVzncVW2DLJesDqJJi2TTPfkWScfUudxyibKcmaqtfn557xvPqiDJ+PkPNykKyaWWq5K/5foYRRlBkpX04xw/zvfUyzgO2hUlaIgskxJC7NIMKwrJtx532RgmTFct5eRVHlajKCu1s17YBVds40xEe4+CQZSx1AnIcqX7tpOqLQtIM4lpaEdyj3zaUbT6pmfuOe+3rh2lPafjmJq6JOoaUspJUjLJQ+rzp1eh7/qJ0gkwNG7NVDDKxHe7YtEt7dhtQyViPVMnMDMqlsnjjtKKC+L8UExYzzRoV2webYx4uJHypBPx5dtt5uouq4OILJd8MBpSc4x997vrU0pQ9rSsnE8CW5/r7dkqmlAtBIauEr2tio1l6FiGoBOoNfPDlSFfujmNoWt4J8gs7gUJTztqLDenPfw459qUR16oFtY4V5obUioWzVm5uG7Fcj9ic6guv80b2/dh2zTwLLXnJbnaI/erJq8NolIX0ODNhb0LekdBmhcTlvOVlodpCH7wfEDVNgiSnIWysAVwqeUQZwWeuf8cBrUPjc/Irp8y3zj5831jFLPcUxfGWzNVNE2ga2LSttUPUhDQcDUanmKtVByDPJfEWc768EWMuVOO4CQx3jMbrrlNED9IMqK0oOmazNddRpF6Xo6lEhdJLoFiTy3IV+GD1SF35qoHurD/utfn+G9+4kf4Y3/t+/yRv/o9/thf/z4/crPNb3xrnh//zOULIVJ8EMSZ0om1DI1HGz6DKCs1DtXfq4u7cg53TH0Sh0ZpQd01KaTk1nQV8xhJo7H+btdPebjhY1saz/oRdc9Cwr5C9WeJrXHv5Za7LQlZd0w0IUiyAs9SiRbd0PAmzzAt56kSrz4JHaXlfjSJ/+quQdUx1OeXTKUkL3BtfRebbxRnPNrw0YTg5kzl1O4Qq4Oo1EIEz1RkjM2yyJTJgqttlyQvyHKJZyltqaedgOe9aNeaPy1IqZKuUkKcRaUGpkk/SKjZBppQ+qhZrljdO5/lg/URfpwzU7OPbfpQSMWiCbMca0ubcZAoDdm4dG+/iILiRSEnBhNxFpLliu0c9QKqts4oTtE0DbfUWN5Z8H/WC+mMVJfSaZ4pJ4nj7u7/OvDfCiH+HPDt8mufA34/8HsO+DN+Gyo5NYGUslP+995+CRUp5Z8G/jTA5z73uV2pzoZn0iivoh0/mTApRnGGY+rUHEWjHy+Gm9NV/DjbZr2e5ko4dhRnEzFCU9dOXasnLA8S01ALt172jFZtA01Tv4ey/d79+lTLlqJSXmq5hElBVsgz0SZI8mLSSzwIM2ZrinLY9VOEgDtzVW7NVCfiszdLerIfZ6pVxNIOnQCYq9ssdQM8W7mX1BxTiUnDRHdlXE0RQrFhxmi4ikFwkajiYZqTZmo6D6J0W5vH007AMFLtSG8s1HnzUgPL1HEMjSyXRGmGYxpn0u8+Toj4cb6tqjEOzAGuT3tcL1sz06xAE2LiguFa+qm1SL4qMBlGGZ6tMwgyNKFYRg3PpB4a+ElGP8jIC6VPMFW199TLOA6EEK8MBpO8wNBUW2SU5XiWjqFrTFct+mFKVkj8JGNzFOPZ+oH1t84DhSxYHkTIgj0TwFXXYLZuIyVHqor3w3Ty371ldV+sHU1TiRbb0KmXwaYS1tcIE3W5PU0MIjXWJCuIsoJqmRBY7kdsjpKS7Vtlvu7wySst1oYREklRVpNNXTtUZXuqTM5KWfDheoBpCNYGEQJlrf3Byki1hK+PeH2+vuearOxjEHGRsO25lq3s99dGeJau3KQKJfCdZgWPNgOSrGCmejoXsvHemGQFjzshYaKYR6/P1wizgjDJqVjKcfa8kslpVrAyiDANZVPf2lKptg0N29SIU7jVdvYd4yBKSbKCqapJ1TZPlCGw9Rzc9OOJwHmY5NyarU7mtSZUXLTpJ9uYqHvBK8+cQsptcd5JYlDuRVFakOQFzham8uYonlwwrk55XG17BFcVy7nhmQxC1Y5TsY2JNfhpYbxexv8FNV8frPtIqWKyK22PmzMV0rygYuk8LwtNtqHaK41Dnov31kb8hjfnXv0PS3zuepu//a99je8u9fmpH6zwUz9Y4d/+H37An/3Zh/zZf/pz5+pAdlA8WPfJyqSjY+oESc5UxZy0m7qWPklSbY3b6q5BkilL+OMkpUC1Mg/iFNdWzqxImKk66EIjTPML4bK3db0Po2xbHBAm+UQvKc4UU/ztxXpZxNHwk4xCqhj0pBJBnqUTJnnZflnw2lyNLJe8UbIax4WsGzOVbUnSUaSMCnIpCZL81BJTnmXQLzWuwsyamBplpZyHrmk8KJ9ZWih9z3GctHXNnyaEUO9jEKYkuWJr3Z6tEqU5by3UiVKl+wTq3rq1OJvlL7TDBlF67MSUqQtans1i0yUt5CTxIaVkpSzQ1U7IYOCkoWkC19Lo+ilGLspYzODtxQabfoKhaXT8ZF/W+/hMGkbZLn3Xi4pjnc5Syl8UQnwB+BeBf6b88g+AL0op1171/UKIeSCRUm7u+HpdSjkQQkwfd4x5oSw2x4r1Rhk8XZuqbKO3WYa2S/hsqRuyPojphSnXp7xJBvy0NpuikAzjjOmKRdJWWglyS2uLY+q8UbaraZpgYxTTC1JmqvYkgbHUVdR6U1ftSM2y5/csYBs67arFKMq2VH5ynvUCDE3j9kyFK22PhYYzee7vPh8o6rsGC3XnpSKFY8RZwUpfCQVLQBcafpRPLlXNUm9qTJmXUs2DMM3JigKr7DJVY7lYFMeKZZRBScFUVc3Hrp+w6ScMwgRTV3NPSsl0VemkLHUD4qwoKfjembiEzNZs1kqXIF1TYpFL3ZBNP0YXAl3TKAp1kX5trsZKf5wcFDRcgysvcbg7behCECUFUxWTdy6/EGKt2AYVy0Ci5krVMTB1cW4ud3GaYxuCz19rTtawZbyo0g2ClJproIuzEcU9Kkxd52rLLanvu9eabejUXRM/yvHj7NA/f67uTFrStqIoJEvdkFxK4tK6WErV2ne55fKsF/JgfYRnGZPWntPSlxljumorDT1Dp2LpSktkEDOKU3ShTQooQigdJENX+7yUgqanHAUPu181XJN3Ljdxy2RImOY83PBpeSZVR2cQZYRJXmovXNx5tB+iVLESemHC1ZaHa2p8c2XI5ijBNDRen6/Tqrxgnv7YG3MkeXFqyTbP1ri3FlF3VYU4iLNSsFafBNvvXK7T8qyJrtxZIs7U3na55WAZ+rYYA8a6hNVJW00/HLf9GZOEepzlPN4I0IRimh+1Aj+e/zXH2MYcq1oGNccgzQumKjZ+HDBdVczW6+VnjVsVthZDxq3ue8ExdV6fr6mY4ZT29JmaTVYo59lxnDiIUtYGMekWNqiUqq3z7UsN0iznaSfkecm0mm/YzJwyi2Wu7rA5SibrQkrJ007AUlc9ZylfrJesrNgbmmKl35ypKtbKIZ7hxki1DR9Wo04IwSevNPnklSb/xm96nV94sMm/9Jd/id/zp7/JX/1DXz4T5sdRMYpSPlgdYuuChabLxlAVwgr54rlVbYPXymeyteCw0HBfML6PgDDJyaXE0ARL3ZCKZWDpgtfna3T8FNsU1ByD6gXR1RnHvfGWuHccU4apKhTqmkZRXqw/cbnJs65Px1dmRq2KyULDPbG7zmLTpWIZPNr0idICy9B4a7GKaxmTGCWXkkcbIyq2yeWW+uxWxVQMFiFOtW2u5hh0TY1C6qwPEhxD563FxuRO2/VjlvuKrdQq74bzje1r/ixwc7rCD1eGpLlylHtrsUHFVqYJwy0JMuWarO6NjbKTYrpmlQSH44u1SwmWIUryw4s5omsa7ZK52q6cv/v6frgxVWF10EEiSmJCjSDNSxfEF632Ukqe9UKS0szFMRUje30Y0/SOrnl91jj2ypFSrgkh/hfgP5ZSBof89t8B/A/jPwgh/pSU8l8G/m9CiLdROlV/ZL9vPgj6YTqphN9b83nWC3nnUpMrbe+Vm75AsS90TXC57R26mt8PUnRdvJR2HCQZz3shtqGT5QWjOMfQlQaCqet7ilmDmoDjYOx5P6ThqVa1fpgipaTmmNzdpwJ+mhhrOo1h6ALH0LFNnTiXsMXy8kr7BaW5F6jM7/oo4e787uBl67MsCsn6MKZVUe2M802H1X7Eci8EqSrjW1sPFpsOz3oBQgie9yJuz76ga16kpBSo93tthwbD836o9HeEYLZuY+mCp92Qrh8jhGBjmND0lI30y5KmQZJNBJSPu0G1KtY2ZlI3SBlGGaamGB0zNZs4z/nhcpmQ0mAYZszVHVxb3zfZk+UFgyibWCYfF897IX6cMd9wJgm7+2sjkqxgs3TbGwczUxWr1KeSrA9V29fO+TGMUgrJrnV5HKwOIgahsjsf/9xn3ZBemCIlbPgZzXJKtDxzcggNw5RRqQOz9X0GSUacFud+EPWCRFmcly0fQzKGYbZLN8CzdGShgoZN//DVvJmavWe1qB+mkyphwzMmGjQPN1Tr75OOz+YoZapqcWOm8lKmYZoXDKOMqm0cS4ujsuUiAurdh0kBUtCqmtRsk16YcG81JkhzNIFy4XRNXFPfd7962fg6fsLmKKbpWTQ9k5//cJPNkfpau2LjGjqutf/PPg34cUaa7xZz3wtJVpRs2L2NTNaHMYWEpmvRrlo860WEWV467Tl4ptLsSnM5SUAel4XwMmyMEuKsoOdnvD5n0i0Z26uDGLcsmLimceikVF5qKXqv2Of3wngtVmydbilN4FoG8w1ncnHZCiEE41z3Sj8iKZleTddiFGcYmgqQWxU1p3a2DxwU4/kfJjktz5rMXU0T29oOFgqHd58PqDsGq4N4WwV9FGUEaYZnGi/VqOsHKWvDiLprnlr7ZM0xdxWGVvuqfV1KyWxd2X8bujIv8WwDASz1Qjp+wrXS8v5liNKcIDl8y/NWTFftbe9sEGUESU7DtTA0wWLTIc8Lfu7+BmGq9pWWpxIl46LfToRJTpTme54791aVhOyd2eO1yvzIzSn+m5/4Ij/+X/xD/vd/+dv8d3/wy+ciuXAQfP/5gM1RjIZQLUJCaabpO4a733ly1P04SDI+XPPxk4y2ayEEZFmBH6Vs+hmzdZuFhnuh2nr2ins7QTKR+Kg6JnVHGQPcK7Vqi9LZ9NpUBcfQX5qU6gWJEjTfcheTUu2nlqHt2ars2WqeK+FuxYCqOwZNz2KuYTMo75ajKKPjJ8zVHWxDP1Em3yBSMeDWczJMlMFPL0yRhaTpWQgES92AKM1ZaLhkhUr25YXE2NLiddR9+mXIC7lL13YMxfbRWV4LGSZKl262rhJOrYrF5ZZLnBWsDiKKJGelH01+14WGy8L+Bp6HgjI4UUXcrVuTcqXVSPMCTYN7q0Oa3ss1N08LEiZGIjv3hGEpRzSMUt5arHNnrkZd17jUcsmKFwL3ozijW8bQ60Ml6dKuWBdW5mM/nFRK958B/kshxCbwM+X/flZK2X3ZN0kp/587/vwvl//9F05oXOrSg8SPU6IkY3OYE6YF01Ubt7RlDBLVArbzsL3S9qgGCbM1myyXhxIQWxtGrPaVXsDNlzhqrA/jMjBTdsdPOgG6Jvgt7yxg7bHQ80IyilLCtMAyBEkmJ5vtww0fpGoD2q8t46zhmjoSRaV0TI21QUyY5HTTBE1Tz2YYKSpu10/oRykN12B+i0jyzmdZSMkgSikKyUzNZhAmhK5J10+VoH3N3uYipCj/gkcbPt0g4cZ0ZduzOSmBvdNC1TbYGCp70Kqt82gzYH0Q87QbYBvKKavpmsw1HPSygr0z8ROl+YSmH9byPUWojwPV3qoO79m6TZIpu9qOn7DUC/jstTYzdbvUDzD3feaPNgPCJMfQBW8cU7MkznI2R8ryV1Xl1YGn62rdSQoeb4y4NVvDNvUJSyVKlbaAroltF6BBlPK4pB5farknstlneTHRrlsdvDiUHVO5NiV5wXTPZK5mUysTitNVm6KQJGlOWigNlvGz3Pqeo+zk3/MYozjj/ZUBrqnz+nx9z0TjyiAizSRRP8bWlUNnIXevtyQvKIqCbpjyxvzJXTJcS0fTxmKkAsfQ+MHzAbomymqipO5azNXtV7ZCPtpQlVPTEPuaYxwFFdsgTBIsQ+nldUo32fVhxMNNnxtTVW5Mu7SrKoGw37p5vOkTJnuPb7kXkhWSKFVaeq2KyfowwtBNdUlKVeC+NozORG8kTPJJm0Fcf3n7FcCDjRFpJnEtbc+gfxAp7ZSZmj0pzlxquNQdk+vTFT7cULqHSnsxmdjbj7GfaPpRESU5cVoQFjkfrA0B1Tq2PozJZcGlhrfLie8gY3jSCZS+nAZv7LPm9sNqee5+92mPJJfcLAWFX3ZRidKcXpBSSPWOXEtjuR8yCFU7+dW2q9gKx9AeK6RkcxQzV7dfyvr0LH3yOUmWT844ZVqQkeeSqZY1ea4dP2F1oJJQ42LZyiAqWz1jpqs2AjV3TpMFD2qNR2mCZ+sYmmDTj0lyiSwgShNMQ+DHStuwVd2d2NqKopA8WPcnZi4nBb3Ue3FNnWtTLh+sDVnqBDzrRjQ9i4qtCnxuqTW1cx/a6oYbpPmuAuW9tSHAtqT8UXF7tsZ/8rs/xR/4C9/iJ//ePf6N3/T6sX/mcSGl5EknYGMUs9BQMc5SJ+BZL+RK0yWTkqmKYsuehPtXmOQ86QQYuuD61It4VkrJ5iihGyRsjhKiJOfWbIWikDQ8m1FcTO48r7rPnHdc7FkGQsRly7OJlJL7ayMKCd9/1ufOXHUSUzZcY9/xbr0/3JqtTJ7/6kAZ4Izb53fuAWOdqLwo6EcZ333a43LLo+GmXJv28EyDXhDimPqpyLvkhZzEm5dbLq2KhZSSBxsjHqz7TNcsWlWLxaZHkucsdUIqtsHaUO2nui5Ii+JE9VH3QpIV3F8b7Wt+caXl8t5yn6zUW8sKJVPxZDOg5hg0XLOMg3Iqp9XCLFXnyXzdKQvOap6keUHVNshLnVFL1/fVHPbjlHeXh9RsgztztRNfG0la8KzUyRyTM0ZxxlI3wI8yNFSyUUhVZLEMbSLcvjpUZmnjokFeit5/VHEiI5dS/n4AIcQi8E8C/zmweFI//ygYRimPN30Eyu1pumqR5AVJHjHlWXSChDnd5ucfbCILVUm9VQa9RSF52g0mNPLl8nKbFcUu4d79sFXuIN9H7X8UZ5PM6CBKePf5gHtrI661PZ73Q65Pb68udfyERxs+z/uh2iAdg+vTL9xlxhtz3TTPRGfoIOiHWUnNFFi6Emtf6Ucs90P1NUPDj5XOwsogxLF07q2OmG+4JFlB1495tBnQC5Uw8NhWvWobPCvZT5daHlFWsJoqfYa9XIQGUUonSHja86nbBp+93sYxdT5YHTAomTyHFQzvhymrg4iaY5xaAgBgsaFalYSAX3zYpeYYPNgY4Zg6UZZjaoIbM6p3+72VAaBsZR1DVw6NWY6lC553QzRNnCjbZ4xKaReeFZLvLvWZqdosD8KyMq+zGcR8/fYMnm3sEqte6UcTN7SVfsgoVlXXV/VD+3HGWskC2OtCbWpKU2EYZVSEPvl5d2ZrbI4SnnUDfuoHq8h3V/mxN+d4c6GBrgkelxo0msa2OVFsuQwc9GJQFHLCeFtoOruqenpZUfLjDMEL94zpms2tmQrL/YhvPuzwCw86fPHmFF+6NYWpa2yM4gm7KMkLXMYtni9cCbP89FxGPlgZ8MtPeuhCMFW192QgVG2DbpYCklFSMIhS3lyo76oG9UYpDzd9krzgJA2NHVPn7lyNp92AfpDyvaU+tqGSExVHJ0mV9odAtRTP1l/8HmmW8/7qEEPTuDGt3kOU5rtE6o8LZbFs8t7zIe+v9HBMjYqtk+aFMokIYu4aVdqleOnWdZMXqv1m8P/n7s+DbM3Tuz7w8+7b2Zfcb9699qrurq7ullpqIaEFBEKWJQTDAANM2EzETOBxjMOGCTAEwcw4AuMYx8CEBwceOxjCGBNCgAQebCShBUFL1a3u6upa75735n72c979fX/zx+89557Mm5k3897MqtI8FRWVlcs573nf3/L8nue7hAn9SYyf5E/A9KM042Hf58OtISXbQFVkkW1rEKKpKi8ulumoEYYqDUE+icLU/Np8mnk0/Z3siBpWmuXkudQa3BmGJFmOa2pUHB1DV/mdB32p1yMk2nReWyiIMz7YHspCVs2ZUcyft0hxpeWRC3kYv7snc5CXVsqYhorIBfe7E1bqNmkmvx6HCQowjnJuLJRYqztHrnvT+1D4Jpw6JpGk9m+MQ253JmjARs/nR15e5FLDPTLBvrM35uOdMZYujQOutFxKli6bX0U4pk7lOVB2cZoTJYKyo88aA8eFa+os12zGYcowTHhva8ilhjsbS2XbOPBs90YRaSb4cHvIMEhYrTuUbZ3OOJ4hIe7tj9keRuiqMkMcCwHmOSMHV2oOzZJJmgp++cMd0gx0Da40S1iGSs3W+dXCSXl7EHKleTSqKEozdgYhb9/rnuthUwiZ71qG1CrMBHy8PWYQxHT9iIWyxQuLZZpFEfPu/oRRkJDkORXbkIYyilI0Q1Lu7yckac7SnLPgRzujgq55PkiEH31lkZ95c43/+tfu8FNfWD2XgtfzxCCI+Zfv7dCdSHfKL6zX6EwiEKCoCpcbLu9sDOhOIqLk2eiHQki0t6ZKQ4c4zYlTqSETplmx90uzpnEoC8rjMKE3iVmpuWwNQlYbNkkqUFDYGoRH5rzSxEg6Vi9WrU9NHL1k6VxputzaHfPx7hiEdIbtTiQdbXcY8cJiiapjcHtvTJhIhGyzZBHEGQ+LM5ymSgFox1S5kj/+vHGaFVpRonDzVFituVQcnTv7E/woY7Ficb1d5l98dxvX1BiGCZnISXaldm/LM6Vj9gXIZyRZXqy3gjBNeVGtYGjSLCpMUu53ErzlKpNY5sH744g0FyzXbHRVxS4cNQf+xRqXBEnGN+53KVsalxreEw2TIM7YGUT0/Jhm2WTVqzAIEh71fdJMagH/0IstbPNJp9TzijQX7A4DTF26Kk5jqWqz1Q9nGnBoHMtw+vbGgPe2hli6zM/PG32W5jnffNDDUBWWqzYVx2CjO+FhL5zpMHu2jmvpPOj6s4Lqw55PEOd0xjGvLFd4calMlotP3WXzeeJcCkeKovwJpHPe68A+8LeQqKlPLX7nfo+Pdsf0JzEvLZcBhbcu11gtCksVW2d/HM1g9vNJzThOZwKmHaKZZfJZKqQLZQtVkX9zlLj27jDko90xYZxxc6E0O2THaU4/SI4UlhwESXF4FewMQvq+Ssk2aJflZL7a8ugHMTXnswPbUxWlgK4/1n+6seBh6urMaWMcSkF6XVUZh1J8Wr21xziSlCTH0ugXUNkklXBoVVFmz8MuUBs32iX6QYKpPQnNbXgmaSYY+tJmdasvK9O/9uE+doGcC5NMQopPQfME+QyjJCdKYpqedWELQQ6z8SB47Dq5PQzRNYW8SEhGYUqey0LoRzsj/DhlfyTh0FPkWtMzsS5QR0dXVRQUBHC97dH3E/pBSt01mcQZrqXP6FXbw5CBH/Pe1ghDk88ziHNKtoZZuJWdFFPnlHGYUnPMJ+6/fJYOv3Zrn64fY2gql4ok4nq7xGY/oOPHjMKEf/X+LjXHLA5q8u8Pz/eaa5LmUoi6VTrdHBsEyQxaa+rqEyKOiqJwve3xzfs97u1HTOKMz1+qSapr06MXSMeZSZzyqx/uUnUM3lirHtj856/TMTUuNSQ8unmB8N0ozfHjDE1TCI+hlazVXRbKObujkN4kOXaO7IwnvLclC6r3Omdlg58cuqbO6D2KImh4Nu2yjR+n7AwjKrbB7iim6hgMgoSmZ7I1CPl4d8xH20OYuQFJGqB3AQV/U9NAkQlalguutUvomsI7GwPSXNAPEtpxNps3j3qy4Ls9CLi1N0FXpbDllZb3hFD/MEh40PX5zqMhbc9kEknBbSEkmlXXVdolm76fnIub0WnCs3TW6tI16DTJ3dXW8a6AuqZSsnW2h2GBvomx6zaLZYfb+yPSXDAKUt68XD+gbTjwE97dHPCgM6Hrx+yNQvq+h23oTwjanjVqrskbazpxkrE1jDA0hZWqg64qvLc5ou4a3Nv32R+FEgUVpViaRtkx2OrLRkffT2ZCv9PO56WGM4P6nzYXedTzeW9zhGNKGotraNzZG3Op4bLR87na8p547lPhWVVVGEcJmRCzIv1a3aU7kcWd59VzUYsxb2qne61WSdLgpvSeYVFQVHicZwVxxkbPZxjEKIpCkgrSTLA7DLmxUC4Q1gkPOj4fbI8I4pxRmPDaapUHnYCKo1/I4cjSNeI0KcxXJP3mpeUyuqowDJJZ0XFvGM/+ZhyldMcxQgiGUcL+SNIx/SQ7V8TUVINzSnPRFAXX1LjfTbneLnO17c0ab3kuGIfSuW9nFBB4OfujmFdXK/T9mI93R9LYRJM52lQD6qOdMS8sls+VWv4X/+DL/PIHO/zFn/8O/+DPfu+npgUJRS4TJLIoFKXomkrFNvAjqfU0iTNu7Y+JkoxbuyOWqvaZ88U0FwTFXisdHaVURpRl7I/kuMmEfI6upbE7jngwidkdRXz1psZLy2XSLOd2gag+bg2RJkaF8HRhYvRphXS1lGeFJMuLBrLDB1sjbENjFErKdpjIrsXOKGQSyXv8oOtjaLLRU3VMNOWgcYihqxiaQmeScL/bIc1gsWzx+lqVfpBg6RqDQK7DrZJJd6JwqW5jGRp7oxhNkRpFFzXuhAAFQdePpWnHno+pqeyNQ1AVFss2qqLQ92M0ReFSw6VdFEySosF51nPrs12nZLv8xq19FisTSZ83pTviNK+KUomSErlcE+I0J0hSHvVCVEW65l0ksitMMm7tjen7CfPAXENTcUxthq6/uVA+Frk7iaUWZ5zmXMQJSiABNZ1RzM9/6yHfd73FrZ0Jg1CaYnz5agMFCofpZAbAmBp6qcX6PX82/t0a54Vo+i+B28D/C/gVIcS9c3rdZ45hmOJHGanIGfgJi1WHJIfXVqsz5ESaCZarNn6ccXWOby21PCQcrl2yMXRlps1z2lDVJy3g52MSp+wVFJ79oou3VLGo2AYvLVeeoBsAM6rCaysVtocSurc7egw7lBPs4pA7zxJXmu5MM2ialNQ9i0zIAlu7bKGpCsMg5bXVKu9tDaS9fMfHNHQEOVmmcbkpNWAsQzr3rdadA89DUxU0VWPxmG73K8tV4jTjQTfA1DU8W+f27lgmukXBb7q5DcP0VDStimMQJhGOqV2o+LSla6w3XCZxytWWR5zllG2JPJpEGaYuizg112AYJuyPIgxNZbMnC2ddP+a11QrjOKNVti7Manml5rA/jlit2SiKRALFWc69fYkamCYFCxWL3iRhVCA9upMY21BZqNiUHYmqa56i8DN1TjF1dWZqcDg6fsIokEnWzjCcIQRuLpapOjr/5Hce8aDLAVHLy01vptdzOM7aJbELK99pIeC42BqEJJkg6mV8bq1aFKxKLFdswiTjvUdD6p4pUQapPNAbqnqkht2zONudNabuKrqmnrjOmbpKq+hg6pp6ZGcxSgSuockD8AVMo+m4XK7JRK5k6QRJhmfJcWkbKrmQzYS9wlBidxhKsXZDI81zbENqnjUvQKNBVRVuLJRmOlJLVTl/8lVBZ5ygqvIAslCx6IxikjxnZxSyNQiJkoxQyGSl7h6tJeBHGQiYpCkVR2e94bJUtXl9tUK7LN9rrf7JurWcpQjmmvqJ9JerLQ/XUNkeyq7sWl1S5ZqeRZ6DrWsHUEhThEiS5vT8GE1RyfM5ammaw3M+Zl1T+cLlOvXOhJJlUHMloifNpLtibxKT5rA3ilmsWmgFCti15FicFl8643hWmLJ07czI3I2i8DWOpEvqW5cblCwNx5BGD0e5v02FZ3VNKZBcsuGxP4q41i49t0PS/PvcWCgRxNmpc6uyJUXRp0XNw3lW14+Jkhzb0Fmr2dRcgyDOD6w7m/0QIQRJKjWVPFsrDijqTDvrIqJsG3zxSp3+JOFy05sV40q2wasrFYZBwrWFx3now55PkgoedCe0i8NI2dYYhifnlmcNqe/jMiryHtvQ+NLVBnXPwNIPOnKqqqS7dycxaW6xM4xoly0+2hmRC6jYJn4iBannUfu3zujId5poeCb/5x9/mf/k597h5775kJ996zhP1ouPpmdxteXR8ExeX6uxWLH5wnqdb230Wa053NoZkSQCP5KF0OPylZNCUyn0JOVedalY00Zhwh6yMHWpIZkGwzCh7pjc2hnjmQYbXZ+XlioYmsq1tjfToDwqLF2j7hlMouxT0dqZD9fUWa07tMompqZiGZp0J1eUmSi5bajSZCLOCOKUvThksy8LVIaeS/q6a2Cb2oHGTcnSaZUt/CSlN1Hw44T9MXT8GAQzrdQ4zWl4Fs2Syc1FiUZZqckChamrF5ZPq6rCQtVG01TZlBLQ9QM0VaXpSqSWbais1V1GkSxUtIv8xHiGtfVZQ9dUWaBDwY8zbu9OWKhajKOUykqFhic1PJM044Wlx0L/n1+rUXUmeJZ+wBX2QkIBx9DRNZU0y9HmGiGLFYueL7VGTyoWv7hURlWkm3H5Au6poap4hWyLqWp859EAW9dwDU3mOKZOwzOliZumYOkarinzucNn7N/tcV5UvpaiKK8CPwD8XxVFuQl8KIT4k+fx+s8Sb16ugQKeodEsW4VLghQI3xoEaKrCas2ZFarCQtxTFhkkxSEXj8WPz/ust1J1uO/5BFFGlGasNjx+9q1LhY23fqAK78dSmLLumjPuqVlU8z+JQ+hZYmsQECWPYdy6ph55WJo/4NddE12Vm0uYSmeuYZhQtoxZB6DiSGqXViSOZ9X3cUyN77nW4qWleHZAHheCn7ah8dpqhfvdYLbwzEdnEnFv32e5arFSewwFXqxIK22ZzD7/gjAdm7qmslIcTqdRdY0ndEkanommJqwUBwVDU7neLtH0TDa6ATXXpGzruKZ0ZywVtu/Pi+zaHYZMYglznj8wmrp6ZEG17ppUbGO2QS6UbRbKNnf2FHYGEZcaDusNl6ojLcfrjnkqu+yVmjMTzD2ua1W25RgKkozLDZn07xZdtcWKxZ/66lV+616HtKD7gryP5yUW6JgaLyyWEYhjO0KKorDWcNgbxSxVLCloP5baKe2yxR99a50P1oZsD6TT15Rqcng8fJLRLtu8tCS79rYhxSM3+4/X1fmxaxvaiW5Mb6zVubvvIxC8daXxTNcz/0wPFzGOGpe5ENRcg6ptHriP+UQm+NdaHlVXp2Qa3FgsS4pLLp6Z5nXS3IajRZM9yyDNBIsVSQGdzpsPt0cESUbNM1lvuhiaROKVLeMJV8GqY/L6WpWaa1B3TX7whRaKKulq0rFUUiO0U1J8x1HK3ki6qF2EkOpxkeWCzX4AyHl/uCO4WHXwbEMiL4v50y5Le+jDaBxFkUXyZsnii5frWLpeUCh1dE05Ugz8uBiGCZ2xRNwdXjMsQ+PFQu9rimhdrNhYhiqRpH7Cl67WWa7YLFalEYimSqTJ/jg6czPsqFipO+wMpFbd5YaLoat8Yb0mCweGOkvQB74UE54WDKXwrCM1jQqNros44DxN3ymIM7aHIa4p3YUOi6Ifjoqt05sUeoyOQc0z6fkSFZ8XqCBDV0hSuL5Qpmwb1Is9XFcVojR/7m7zSWNiqeKwVHlyLXpxSWqWzM8pS9dIUlkscgrn0MWKxfdea2GbKn/lGa7t8P2cxuH1p+ZKC/phmLJ6qBi6VLVZqkpx9A92RuS51B+zdI1cCD5Xr7JWd3CKdTjNBf1ncOQ7TfzhL67xP769wX/2P33Aj7y8+ImhPkGioZNMasMKofBDLy6gacrsPr6wWEbXJAq84uhkuRwbX77afCaUjapI3U0FDvx92Ta4sVBiHCZs9UMcU2O5auOaGnku8Gydy3PuhbLQf/J7nVay5LxiZxjixxnLc/TPaRyVi9ULbZ3lqsw1ppTEBx2ffhCzVLO50fYwTY2rTemmfjhPLNsGNxdLrDdcHnQm7I0jwlRqMi0Ue8cslEJmQVWxdOXERsl8LrRSdZ4ZUWXpKm+u18mFYKsf8KAbUA50ypZBqyLR/WkmsA0Vx3yyUH14bZ2yckqWfq4Fx4qt80e+tMb+KGYSSwdaS9ewioa5a+n8wM0We8WaOA1zbn88HANfSq/UXeNczrhVW+fN9TqXmy7WoWe3ULGPLPQfztmWKg5ZLmh51oU43VuGyk9/YZV3Hw1IMkHZ1tFUlUmccL3l0So/dumcb1AdPmNHacZWP8TUVZaPyDV/N8R5UfkqwDpwGbgCVJEMpE8l8lwQxjmOoXK55XGtXZqJZT7q+QUlTqFsycP+nb1xAV1/LCqqqgrqBVpnW4bG991o8c7DAYYmndVeXanMBtHuMCTNBQ3PnIkZ+1E2g0avN10pgJzm3N4boyoKl+pntxI/zxhH6QxSrKnRkfz13ZFEhpRM6cBnaiqjoiM7CBJeXakSJBlOsYkcnFRPPo+jhL6Pir1RRJRms0MewJWmx0LFxtZV9sYRpiY7kYcLCN+412MSZWz2fRbK9oF7fJ4L1P44mlFIS6b+ROEhTnPu7o/p+TGtkj2DW1t6wlL18TXXXBNL17i5WMLUzhdqHCYZOwXSTwhJOzocO4OQe50JVUcnTKTNb5hkT3ye6f23NPWZXbKiVFI3qoXTUp4LdkYhCgqLFYkOe+tKXSKWTK3Q6ZDXn+XSUrXqWORCkF7QimXqUhPq/sSn4Zm0StYT4/H11RpBkuEa0p1z6rgZJxk3F6XFebOgsnyalIVpjKOU/UJ7T9Mk+nQ6dqfr6mmj6hq8tFQmzaWm31lj/pnmQnB9bkxmuWBnGMpDn2eyPYrwo5RBAdUPk/zAtUrEgKQOWLqEwk/v9/NID+3Nz21Lf+KQn+eCD7dH9PyI6wvSlvpBQWt0zJT23JvfWCjNxgpw7HiYfvbvudrgS1caR7r67Y2j2b270nqslTEKE7YHIa6ls1pzZuvsVj8gTPKCPmt8YvtNZyKRbMMwYXMQcLXpzRAz05h2ru/tTxiFUqD7paUywzBhUHREpweK6+3T3cOnxWY/IEkFu6OQpYpNzZGd+Y1ugK4qM4Tm/H2+2vZmYraWrh65h7ywWD713nZSrDc8tgeSTrg9jHhlRR4ErLnh97Dn88HWiIqjy8bGXHFEovnK+FHC5iBkGKasH6NLdZbYH0d0JzFNzzwRhbjZD/ALunbVMQ4ctKQDkXSknY7bsm3wynJl5lQaJhmPenItjQoL7RvtEmGa45lPdpjPYzw/6gWkmWASpdSPcKgbhwnfftjH1lW+sN7gQdfHL/LPpmfNEFuXGy5+kuEY2hPFiGeN7WHIOEyPvJ/zcWdnxK/f7rBQlnvOUQ0nrWjgTu/lNA5/3jCRecoLi8/nyHdUqKrCX/up1/iJv/kb/PV/8SH/2U+/fu7vcVRMNWzv7I0J4oyr7RK24bHgPT7gTufOdB43PYu9kaQcP00/87g4bt6pKtzeG/PB1gjHUvnqtTafW6vNUMDtT7CJcNYI4mxmALNN+EThOc1ydkYR++MQ15DagaNprjHX8ASJGGvEJq8sV6Tkx1PmjCygaLy2ViPPBZkQRGl+AAWVFAY1Qkhqo6YqjKOUVsliqfqkbuj+ob3+eQors7NKq8SVVokkzYmynHxOGH27KJ5UHZ0kE5jHoNi3BsHMRbDmGud2dlEUhcWKw2LFmemwTtetafQDuQcP/IQbCyXu7I3oTmJeWakeuf4/6ku5gkmUnkthyjQ0ri14B3LDp8XhnG2nkG4Jk4CXLwiFVnVNvu9mmzwXKIo8E9/vTNgbx4Rp/sTc2BnKZxqlGaaucanusDuMZojrsq1fiP7ZRcd5YRB/Y+7fvyWEeHhOr3uqCJOMja4/K4TsjiNu740ZR9L9Z6FiU7J0xpF0vdsZRbQ8k0GoszsK6QcJtq6dWVT0eWISSVeMIMnYGyVcaXmzjWrgJ7zzcIAfp1xveaTFgikOPa4HXZ97HenE1yxZUiPlU9yAZBGEooMmF6UozQiTnIot7/+jbsDDXiARLE0Xx5B0L0vX2BtJEbqKbeAeQl3MrOfnFoSp24ZnyQ6RqWuMo5TdguY4pRxMorQQOZSUquk4UVWFLBO8tzdkZyCdLPZG0RMLoWVIgXZDU/HjFEPTLkRc/vFCLkWZk+yg9sZmP+Bf39pnHGXcaHuzIpp0nUzZ6PnoqkQMBEnGlaaHapxvEcPQ1KLjLAUjpyjDaYyjlG886HFrZ0yrZLJcc2iVLARyLNzv+ChIFNXuKKRkG6yfUXR+PnaGElmwWzgt7Y8ivr0xIMkyPn+pzqVD9tuGqqIo8I17XeIs50tXG2iKLESIC5z924MQIeR/XVPjQVcKUFdtg69cax6AhCtCulj+9t0uk1iKHioFkuKTWp+eFkLIMadrCghJq+wgaQZn1TB799GAf/Q7j6Rbinr2eWWoj8ekqSkM/ATPkkWY/XFEZxyzNQgwNQWBRCX0JjHtis2Drl+sCdJhbLdAEzSKAtl5FQFdQ6NLQcWAmdj/NHaGIb/28S5RKhiHGV+59hg5lmQ5t3YlVcY21OLAaz6VQhCn+UyraLXmcHtvglborqU5T6Cr5sfWB9sjdodyvc1zKajrWbIDGyb57BkP/ORc9IaOizDJpLh/QYndH0tB4Q+2Rry6UmGt7j5BLZt+ju4k4r1NWahulSz8OJshjjX1SQrsWWMUJkXzStCbJPhRxiBMWK3Z2Lp87WGQoChwZ3eMH2eEaU6S5by8XDnw/nGaP4GqPI+xN4lSkkzmGIdpgGmWc6/j8837PQTSOv3yEWvxJEp5+16fQZAUDlhPIoHOGtP1cGsQHpuz7I5C3nnYZ3cU8cZqZTbG0kIU+NsPJU1qGBq8uvLYV3z+vs17oEy/1DWV0gUWVF1TYxik2IaKH2cIDgrqvrc15NuFfpxr6RjaY+OKMMnY6AVoqqSUJ2nOg45PxdGfQKI+67WNw5QozaQ5xqEzS5LJRucvvb9DEOWMAmlPPg0/Svnte10yIfji5TquqT8VMR4VEgkXJVD+8nKFP/PVK/yd37jLz761xpvr9Qt5n+1ByChMWKjYxGnKOw8HbPZ96o7F7jBEAfYnEdfbpSPn8SROGUcZ4yjD1rXnRjxPr0fmq4IwyehMIvZ3IrrjmB9/fZlRmKEpKruj+OLpUs8YhqagF80tVX1yb9wdRXz30YAPtkZcbrqs1B+vr2EiBcw1VSJdO+MIU9e43HTPPFdUVSFPxcwkyDZUhkF6gEHRncT0/YRbu2OutV2gfqABPwqTOU1LnstII80FH++MaJWsGRJQUxW2OwH9ICZKJapmdyjp3l+/3aHqGqzUnBnlcRyms/3ZMacOwMdLXzxv9IOEnWFA2TZQXJONntTFms8P9kYhv/LBHigKQZLzY68uzX42ldNwinXqvM5ZvUnML76zyVLZ5s//+MtYp3gu8znbtEk5idIL1eidxnTN8EzJjNroBoWZkzbLdx71fH7rbg8/Tml7JmXXxNZVXFOj70sJiN+tAujnReV7A0BRlDKfXG1n7v2h7ye0yxl7hTtBdxLPDnvTSTgMEkqWQWcckwnBdx4OJcpIlegK7wyios8Tg0J8sx9I0bqmZ1GbK7gIxKziOQjTGRz4cvPxZMpy+TuOqbE3imir1qduD2nqsoOWFpQXeaAak+dQ9wxaJWmXm+YCz5JFpKprcLXl4ccpSZbzsBsQpWPiLD9Q3Z5ZzyfR7HsDX4oBT92q5CImSDMIk4iGJ2leuqbMdH4OT9T9iXy9JM9IMsHiEZXwr1xtysRDgfsdSSe5sVA69+JU3TNxTI2HXZ+dYUSncHh5rI0iFywFKdx4vV0izQVNz+RR0bnvhQm9ICJKBPvjiO+/0T5XhI2mSle7rUFAbyI36HkLXl1VSFLZ/U1zMUNtVV2DgZ/MktT3Ngd0i+dXsh4XAs4ah52WUvFYIHQUJk/8vqoqaArc3R+TZOBaGj/80hKaqlyoWHjFliKQFdtAUxX8KJsV9wZBcgBarSjSwfJuZ0KU5PxbtcPPvnWJOM0/M9RdP87IhZgVnW1Tn1nVnrVI8agXzFB497tnFz9XizEZpzkPez5938cxVW4slDE0lVwIJlFGpWrTDyTK66XlClGSkzkSddqdxASxLKJ/vDtiqSILquvN86E0TOd2mufc25fFsHbZmiUZuRCSVpXIuVN1TdZE4egqBJ04JxeC+50JkzhDQ+H7bmonFgimebmlq3T9WGonAe9tjWaU5astT4plKgdNOoKiIDoKk9l8mkQZLy65tEpSxP5B12ccphi6wovnLGwMhWDprrSgX6hY3FwskQnBx9tjwiRjGKT07fiJwtRa3aE3iQmSlFGU8vGORERLE5Tzib1RNHN0Wq25WIbCB1tjDFUhy+UePnXcvNeZ4Jo6XT+hYusYmkrPj2d6kJMonbndXW6en8PTNM/YHUXUHUlXm0dqjKO0sOjW6fkxkLM3jqgfMikYhgm2qdLzZcPkPKzRy7bOMEiPNIaZRm8SS32sUBoVTF2Hpw3G/VHMMEz53qvH038dU2O96RKlGa1P6GC+3nAJE9nFvrMnn+ulhjNbu6e0YE2VjtHrbZe+H1OypTHIdJ7uDELe2xrixxlLVSkbcBKF6DSxWLGJ05zOWHCvM+F6+2AeM4lSklRQc0wUkbBUs1mdQ0s97Pt0CzOP27tjLEMjzx/b2R8VYZrRsnUWLlCv6D/80Rf4xXe2+As/9w4//7//vnPPhZMsZ28k96jdYUiU5ggh0FWFtbpNyTbY7IcoQ7nXH0WFm98XDf351srp9WS54NZut9DVM1mpO+yPY4ZhxvtbI24ulgqNtc+udbyuqdIAKk7Z6AYM/PTA3mjqKkGSYeqy4bpWczB1iXaM0mw2X/qTmP1JRBDnpHnOjTOqtgsh+M6jAfc6PmVb0rqbnsUwSLncdAnTjIWKyW983EHXFcKiETaN6Z6gKHCp7uAVa/2zRlKIum8Nwtnc+mhnxPtbI0qWTqNksFx1KFk6G90Az5J00SDJMDVV5gpRhqErvLRUYbXm0CikLy6K3vWgO+Fex0fkcHOxhBDS4XitYc7olOMgQddU4jTHmttnpvsVyPVyqWIf+PnzRJzl9CYpSeoTJdmpClPTnG2a0zqmyvZA3s8wyZ7bvfc0sT2M2B/FbA9CLjc9NvsBi4XcxyTOpNi5CvuTGD/LsQ2VN9Zqs1rGRTUMLzrOi8r3GvD/ARryf5U94E8JId49j9c/TbiW5LQGiXQvqroGb6xWaZSs2QCquwZ7owjLUKnaBkkqhUjrrnnuNuAnRZikBEmKriizRWe+o1Z1DF5akvz+dsliEmc4BsTp45qfpio0SyZ6oHCtJXWFPgsUH01V2C2smhueQV7QoyQXWuP1tSqOqSKEwtWCOqKqCmXHIM6kKO3UXWc+yrZBtyhATKNdttgahFi67AikmUBTJEWrZOszQXJL17ixUCLJ8ieS/pojnVNeWCyz3nAx5zpdu6OwsIy1WW96bA2C2c+SPMfhIhy6VLYKyGirZJILSLOMPJdUmyBpEKYZN9olKnPui5XC/aLi6vTDGBAYmkaS51jPgEI5KbTCSWizH1D3DJJMFljCRB5avny1yUrNZ7FiH0jQyraExyooVFyDziTBKvSJzhLzz2Wl5tAuW7Pi81LF5npbCsSv1o4uKhi6RsUx6Y4jFJgJ8J9nTDt5rqmxULFZb7okWT7bKF5frXJrd4xbiPk+eY0qFUenk0mhVEdXPzNFKZAIj+lcyopl6Wkb9fwYmU+MrjQ8liqSTvn6ytGaA08LTZWIt3udCZauoanyEFSxdZarNmVLJ8pyri941FwTQ5Pj7s7ehCST+jm6qhIkIQipN+Mn6TNdy3GhKgqPuiF7I4kSSQpIfpBkLJZtvnqteQDVM01GozRjbxyTC7k3jMMM19GYRCebNFiGxuWWS9nSmcTZTHtHFoelUKmiKEdqRa03PMq2pFpVHIOtgXSLO1CwCBKEEKQx3O/4565pMB0vU/dWS9dYrTlsDwIs3abi6EdSVIyCypDkgg+2h8VaaRzQ1HnemK5ZmYDtodwXXl6WxdFGyWShbM/oV2XboJvGXG+XEEiXuHnkb5BkM2RPEGfnUpiaFhVBIpj3xhELVevAs/EsHUNXWKs7LFcsVFXuy5IW8Pg5111TCmO7JpcbLuZzJuTS5VI/Uv9rGnkuKFkSJVdzDaquObsuz9JRFLluNzyDy83jNaeA4l5/MnQGIQRbg5A0O2jXnRSLZJRmXGuVyAt4/pWWdCie5p9CSFTGlIbkmjqTKEOI4zUKzxrSKEYeru7sjaX+XFH0KtsGrhXz5uU6FUdnsWwfEApueRaWMSbL5X31YzkP/CTjOJxSlOTn7sh3OEqWzl//w2/wp//b3+I/+Pu/w//zj795rgdHXVXQVNmQaZctlCgpDCck4rnnx1LLDInUzHNYrh2keU0bpVphDPO812PrKrvjcHZ4r7smX7vRZhJJ18aqrc+al4am0pvEDIKERsk8sSD8aYSuqYzDjEe9gJpnkGTy+vxYUk4/d6nG5YZLs2SxPJfXTaJ0Nl+qjsXDfoBlqDP66FkiLxgzmirXwPVGmajQ+as4BpViDfm+G012BiGerdMoWfhximvqJJksRnfGsdR1fc5G5/Q8N80PhRAzh+AgSbnUqNIuW8W/Jnf3fFIhuFEUm9OCVidpxQl7I4msapsXVyA2dRWRS2SmpkoDMUNTKVv6jCbtGBo/cLOFn0hH+mmRZ/4cECXZjI7/PDpd03AMjaqjc7XtHihKxWlOlotj5+P8GqKp6qyBPr23Fx1+LF2UB4E8K7VK5mwdXak5jMOUPBdUHJ0gyVEV5UQt1O4kZhgkF2qCdR5xXlf2XwP/JyHErwAoivKDxfe+ek6vf2I4pjZD19Qcgzu7Uuk/OfSA9sdyAVus2NRdk2sLJRzj4mgIR0WeS7FZP8qIM+kGqCjK7HAHEjHx8ooUZYfHfNvDB4iVmnMk9//TjFGU0pnTnlmrO/hJNjtAeJZOqbDR3Z/EVOcO25ca8hAlRe8OLuqrNYeFuQIESC2lmitFELcGIcMgAWTSdaXpHUiEjhNZbZYsGp75RNIUJvO6NQHX2iUWyjZCSIesi9rY+0Ei6Y2JLK5NUWdCyK7kK3OUhfmoOgaVQqPscsNlexhSsY0LsWBNspw4fZx4Vx2Dj3ZGRIkU+bzc9Fg+Ylw6plbofyhF4mSgFojB08ZRz2V+/mqqwhuXaidqOFxpuvzgiwt8vDPkSssrNLvOd7PeGkgtj1GYUim0POavs+aZfPFK/dhrXK7a/IHXV/hoZ0jVNrjT8XlxsfyZKD6DFMDVVGV2UHxaCCG4tTsuUF/GAfh7s2xKxyZFYfU5aJ1bAznmx2HKUtUizwW39yaz97y2cFBfwNBUXlwqz8ZK2TZolkxWaw6DYvM+z9gdhcRZjqHJJspS1eZe0dV0TO3YuW3pGi8vVxCFNslSJZAugpWTr0+B2TpVsvSZhuHAT+hMohOLWldaHqvZ48LB4aLo1iAgTnPGUcpC1ZohfL0j9LOeNcIkI4izGfISZFd6Kh79RuFeeVys1hxansnWIMTQ1QOo5OeNaZFLas1Id9SlmhSmPuo6pnuXoihPrE111ySIZXHqPEwXojTj450xeS7JyU3PpGLrmNrBvcDQVF5akuMqLnTtjnKZsg3tXGlYWS5mRg7HxVRw/YuX6xiqWhTwjdl1f/+NNrujsHAW/Owk2MPwcf5T9wwWKhZCyGcwjwBcb3hHIow8Sz+wR2a5YKUqGxvn1TyZjt2tgUT+/Pa9Hmt1h8tNj3bZOlGHpVGy+LFXlmZF181BSJLmJ2oYhWl2IfpSh+MHXmjzV3/yVf7Tf/Jdfua/+k3+/a9do+6ZDIOEboG++8EX2wdon6eNIJHFHk1RcAxtJkjvGppsLNvGTEszTnMGQYKuKU/k5+d1GFQUBVUF19CxDWiUTFolqS36B99YJogzVgrqp6HJNedRP0AI+Vkqy5+twlRWnIs8SydJpXnS7jBkZxihqpIGeuWIAvT8fAGZYw6DhFbp7E0ITVVYb7pUHJ2mZ1L3rCPzyKWqw1LVIc1yPtoZS/f2ssVixeZBZ4Jjakyi7LlRNZau8tJyebYHS5Mcl5It3dnm9+S+n0qhcePx+n2p7tKZRFQcg+1hhB9lRT6qX8i5AKRGs2fqCCELs6b2JDrL1FVeWa0yDBPu7/soisw3mp5JlouiSSPlA0AWlZ5XosYzdf7QGyszIAQ83ien1/q0M8Bi2UIprv+TKuqs1GwMTeGl5TILZdk8mkapaGqHRaOxWZIAl+Poe3kueNSTTbQozWcN0M9inNfd9aZFKQAhxL9SFOXkNtYFRb1wKuqMJayy6jxW9R9F0qLeLVwrPg2h8DDJeNAJiNNsRj9SVeVIyOJ0Qn/SDhnPE3Ihkp0/p9i0D3fSdochvUlC1ZUdnXGUkgtBxZYuOsd1Go4rINqFneZ7mwMGQUrJ0klzwWnX3qMON4amznjvozDh1u6IperFFwJtQ/KI9ZJKmOR8uD2adR2CJMNLc/w4pVxQwo76HCXb4MYFdsSmHT9NtVAUwUfbI/bGkUS6JbK7OwxSTF19ohMxvUZNVbh6BiHCaUyfyzBIGEdJ4UDz5DM56cCqaxLZkeQ5rqE/gc47j3AMyZEHwcOuj66pMyHk017jpbpLEGUoqux6pbnA/IwUpqZzse/LQupJxSk/lpShKeT+cDezZBus1j0UheeiCTmGtM+tutLqem80KrRepOj9ceNy/jkYmnRruwitPsfQ6JFQc6X+3YOuz4OOPzu0goSzG9rRrj+KIgsb609BiBwX0895lMPnUWFoKmGc8eHOENfUudYuzcZvmOSzYn/DNdkfxTMthvOKsKCuZkLQ82NGYcLuMERXVRYq1onzZxqWoZ3o4vasoany0DmODL5xvydpaY5OEKdEaU5lLgGGg3vX4evWVOVIo5Bnjam22DBICrSRRAMe1xVWFGk9fRH36bgwdAVdPX6shAXlO8kEy9UnZQpMXdqkCyHY6PoFQtb5ROgVJ4V0opL5j2vqlCydhz2fjV5G2TIeI+OSjGouJE3yUNNsfo88z3Exjan738NuwNYwgIKSFhbFl1Eo99XjDq/zefPqKfKhLBfcPCOt6lnjT37vFdplm7/6C9/lP/wH33ri53/jf/6Qv/gHXubf+9q1Y18jSiVyR1dV1uoSrREleVGcKp6daxz47KaucqXlHSg+Ohc8FntBQpoJSnMGFfc7E7JcsFZ3DxxQFUVqJgVxfuHX9SyhFtqUVQwcQy2ouhGOoZHnCkmWF/+KJxof8+tpu2zTLj87MrZVsg4UKI7aY4ZhgqpIVLUspAju7U8YRymLVZtxmKFr50OjOvwaDc+cNS/i4ixQsnQ644jNfohnyTOViszR10y5fozDFL+g9RknrLvPG4qinIhgna4vrqnPch4hpHRAZxzNxm6YZlDkFOexpmuazJumiEUodB2L9bg3iTE09cSmWncSy/ttf3LsqsNuqfP3T1OkjE2Y5qzUbF54SqFpqv8aJZ/NNWA+zqswdUdRlP8USecD+BPA3XN67TOFoancWJCaRZausdkPZ4WpKJEdXusId6JPKvxELg4bvZB13aPiSLG6360iZYdj2l3NxfFwQlWVYoeaqjIKE+4V7hKrdeeZO8ZBnOHHWSEGqT/3Yia1lGTRbKMrnQ+2ByE3Fi628+eaOjcXS3THMftjuTBrmkLNNWiVTG7vjUkzgWvFZ3KYOM+QbjOlmYZGlOZoCrLTVLLYGUbsjSIURWpxnedhYfpcPixsqvdHEl13lvfo+/LeBlFGydLPleIzjaWqpBr1JrHU5Ehy+n586oJHlGbc3pNaa+SCq63SZ2qNCOJshgzYHUVcPaYwJekik0LfTcE2tCc6U1VH2jbLwsazj5WVmkPNNUizfKYFN6VEtssXOy5PE83SYx3D7YGkozqmJpGlNXdm5gAXo2H3LPHu5oCNboCqSmTPFEW2XLXZUUJcU97bumuiKsq5jtGFskS9bQ0CemPBva7P5YZLjvjU1r7D4RpSw0iKw+vc3ffJckHFSZ5KMbuoKNsGWS7w4xQ/TrmxUGK5Zj0TiuAiwjJUbswVOY+KS3WXfhDTm8RsdCU95yjU1ihKZ531vdHRTsCfZBzOf7YHIZNIHsBKlk6rbJJmEmHxqB/MRGpfXCx/ojlpZxLhmBorNRvP1ClZkuq60fUZhdJ57KWl80Ho3lwo8xOfWz6Hqz5d/P7XlviRlxf4cGdEEGdUCrF+VVH4iz//Hf4v/+x9rrY8fvjlxSP/vjOOi2eWUXH0gvqtMA6lriLK8TSe0+S/5xHDMCFNZWFzpdBiGgTJzEWsM4meaNhda5UI0+wzeShVFIXr7VJBhYvo+1JbV9cK+hIKt3bHACxWLRaeo/j0PNGbxDwsUCeXWy6LVYvOOELPFII4o+oYXF+QSKGL1iu+sz8mSQWupaHMzlRHeZc/zo3O26X7rHGvM8GPZOHu5kKJKMlRC2Ofw2P3PHLCaZiayvUFD0vX5iiSBu2yRd+PGYUpYeIfi5xKs3ymg7pdIPM/jZjqhumawqW6bMSkuXRifFrMz7HP4howH+e1E/5vgTbwj4CfL77+M+f02mcOU9eouQaZEDN+blbouyxXnQMPJUozBn4ys7k8LnZHIbd2RzPB7WcNz9SpOiZNTx5cB0HCg+6E/XGEEOLE6xhH6ROCzkmWzyh/n3akBUfY1NUnNmU/Svl4Z8RG18c1VMq2TISyuc+b5qfXGpKUyIhJlMz+1tIleua8tHh0TZV0uMKFwTHVE59PlsvOyVTI9lnD0iXSbBQmbHR9ao7szkWJHKtJlh+4b59GaIX+habCg84EtXARMlSFzjjCj1OyXMhE7pxD19QZdcAy1FMtytPIcmkHDBJd2S4/FvrdG4V8d3PARtc/lzkl0TtmYV3OqYVrhZDaOqJw55vv4g2DhHce9rm3P5nNt08jTF2djc+p3UWa5k/Mj3QGzZbIqMtN70h0VZRmRM+gC3E4XFPHswwmsbTZVZB7gGvqpHk+g4pfxLg8TUwpnZ6psTMI6E9iFssWaZ7jR+lsXp9lLbyoCOLsgO7D1MUvz6eiv1JU+qOdEbkQ5144NTSVxbKFrWtsDSIGQUIOtEs2AllgPqs+3XmHqiosVx1Waw6LZZO+H/OgO+Gj7RHhOWuUnSWutKRIfcWRKNYHXX/Omfb4POOofEgIca5rjaooTy3CVF25Vpi6RiYEcSI10vzCtWl6fcMg4VE/YBylnxnNjPn8x7M0cpHLonNBr294Jn6cEacSoZTL3sMnGp6lS+26UYSpq6w3XXRVYRAkcp6J8/OotQ31Ey8k6JrKqytV3rrS4IXFMq1CsuG//F99nhcXy/zlf/LdY3WIciF42PPZHQXYhkaeC6JEHuZqrjFzXTsujsp/zzuyTOBZOp6p86gfsDcKcUwNVYVBGM9qZ/PzeKpZdpFaX88T05zSNXW2+oEsNNdtLEOaReRC5pOfZu6bFgipLBcM/BizQLZ3JxGbfR/Xkqjtiy4yyzX5sYZUu1jrLV1lsx9wa3dEEB/cf+av69PKHadngiTLmcQpNceg7hjsDEN2RyGZyGf5oW0cj9p8lvCj7Im8aqlqszyndZhmB8dWlguyLEdTFUZRzEbP59MkLSRZ/ngOCFkT8KNMapylT3+m2md8DZjGebny9YD/4Dxe6zxiUrjNIKQu0/44YqsfMopi7uxNqDkmJUvyVu91JmwPQhYqNq+vHs09z3Ix62RvD8MnaBBplrMzijBU5VgRdYFM9A1NYaFkoghB14/57uaQpaoUie6MZaJ9qe4eeI+9UcRmP2AUJVRtc+bwMnWBmHYgP81K+NQZz7O02QbumBJiOo5SPtoeESQZtq7S8xNpW950cE2dXOSYuoauKGx0fQmnVKBsHT+B7u6P+e7mCIHgazdaNEoWyzV71o18nhhHKduDAMfUWK25XKo7vPtowC+930VTVX7oxQXaZYs0k6J5QgiGYcokSmdaK0+LNMullbRgZm0PMpHYn0QYqsooko5YH+2MJJ1wb8KkcGn8/KUaG12fkqVTcw12C4eWxYpNmGRnKoScFH6cEiZScHE+2RoECVGSESU5fpKxNYi4tTfk3l5AZxLjxwk32iU645iemrBUselOYqJUipanmSAT4pkPEwsVm5ornaZOO+79OOVbD/r0g5g0zdgcRCxVbb54pY5j6LyzMWAYpqzUbFCkkPp0w4pTebg4K9+9ZOm8VEBsT5OsCCF452GfzX7IKIjZHESsNxw8U6fiGHx7o8/+OKbhGQgEy9XH9BUhBDvDiFwIlir2ha4H+6OQ7VGIZ+jEacpv3e3w/taQy02Pr1xtztA+JUtnpWYTZ/mxh5O9Ucj//O4Owyjhh15ceOp7x2lOlGTkAkr2YyfVNMvpTGJsQ6U3SdgfR7y3OeTmYpnPXaqQZIKeH7FYcQqqU8pixcKPM7qTmKorE7sozU9ce04TU60RgRRgn75WbxKT5DkIGEbS+e4X3tmi7ppYuoqlq9SL7v5G16fqGjOdpaWKTZrnz3x9k0iKiSZFp71Vso5FZYWJROxJipfLpYbLIEzpTGL6vkSxuJbK3jDG1DWiJOPl5Qo9P8Y2tKcKeE+flWNq5EJqHzim1G4ZFVSJnWHIu48G9H1JwddUhTjNWK053C06r1PHodNGmGQHTDDyXLAzClFQZm43x0UQH6RoTAoKumdqbHRk4UdT4DsPB2iqQj9M+IGbbeI0Z7FiY+qqLMCmOSKXe0az9PxOa/Phx6nUQVQVLrdcgjjjNz7ex9KlE1zJ0tjoSc3KKy1vtv4O/ISeL91/KARn15tu4folteGeB9H8rNEsGby3OWJnGPD1uz0ansEbazX8OGNnGDAsaA1RmqEXjn2fdIEqSjL6vjTcmd8jp42q7UFIjhSy/fWP94jSnKWKXTgU51xpeggkJdGPUkqOwVJFaviNwgRDe7ZCR5hkBEmGoUlNFCFEobMq0ZuGJu3a39scUXMNHvVC/s3tfdJMcGOhRNWRiILD7707DElywWLZmr3+p02hPG1YusZf/kOv8Mf/ztf5uW8+5I9/5fITvzMOU97Z6LMzioiznCvNEvf2J4RpRt01qR5a26aIi6Pu1XnH1iAgzwWOoSIQbA18wlSwPQj4wZcWZmvprZ0x1xdK1ByTVtk8Uu7g04qwyBsVlQPIk0mUMo5SskwwiVME8Bu39gkTgaXL7p5EuFtsdH3qnsz/9kYRZVtq0I2jFM98PkZMmGTEmaQ77QyluVLF0dkdRmgqDKOEgZ/wsCdIMrAMhTDOQJH/3RnKIuH8Z4vTXO4fqoJlqM98fcNQ5t1hoee6O4xolEwcQ+NR1ydMcjYHAQiF+x2fmwslqo5J1TUYhwmjKGESZQRxfsD58DwjTnPCNKNs6QRJxs4gJExzmoUO2rc3BuR5zjhM2RtF6JpKs2SSFtqDKgqvrlYPIM6yXDym251ChuBwDPyE/+G3H3BzocSPvLJ04LWrjpRWyHJxwDm0N4n5tY/3GIUJb11uYGoqaZbzoDNhre5e2FzPc8EoSnEMjVGYFHmG/Nm4OGO+slxhHGeoqsI4TvmFdzap2jovLVd463IDP3mM0k2znDjLzzXPuOh4ritVFOUX4PjGihDiJ5/n9Z81NjoT3t8aoakSFTF1RPl4Z8LeKGJ/FLE5CLhUdwqRYulOsl5owDzqBVi6iqbCIJAbjmNqBHFG6QgHrd1RRLegtdiHFqRpRIksMHQnMY96Pu9vDQmTjCstl82+FFZTi6R4ECSYmsLeJEJVJO3jG/d77I1CXlgss1Qt0BMFeipK5MCzz9l97TQhhKAzifmdBz1yIWGYDdei4ui8vlplZxixPw6ZFPbym4MQgeyaPuj6hHHOw25Az5dikdOEbQo9PQ6aPyqcR4Ik5dsPB9xYKJ0axi+EmDmVHBW3d8d8+2EfBfj+Gy3STPD2vS7feNBnrW6zVLG539HJheCFxTJJlvHuoyGjKGWpYlF1Tk7ep6KJd/bHlEydtYbDjQUpwvz2/S6b/ZCGa7DZCzB0DTvNGfgJH2+P6Acxr65Uud/xWarafLg9KtyLZCV8HKYzRNCV1vNZjz/qB3y8PWIUplxuubywWMY2NB72fN6+18M1pTPYJExwyhbdsewo3NkdU/dMolrO/c4EVVH4YHOAoqi0yxZ+lM2u8XkOO8chNHqTmN1RRMXRqdgGuqIwCGWh4t6+z4fbQ3aGIbqmsD+KSDLBa6tVLENlZzdkq+8TpzXGYcpLS9JNaGsQMAxSekjKzlk2paOSkCDO2Oj5sphdtjB0lTQX7I9i3t0c8qDj88HWANfU2R+HqKoir1HXmMQpD3sTBkHCOEy5WTyXnp/MLK11TbmwLvXuMOSX3t/hVz7co2Ib/JEvrfLB9oSBn3InH/PyUuVAwaPhmWx0A27tjlmtOzPdlb6f0C5bbA8C3r7fRcCxluPz9+3W7oi7+xPaJZulms3VlsejfsB7mwMQinQznMT4seyQBXHKN+71QZEb9d4oJEhSdoYhS1UHU1MQQqEzidBV+XWzZD6znlxnHHGvM+FhL2Ct5rJad2Zirv/mTgdNVSiZGuMoJZ06+YxgZ+hzbbFExdG5vTtmcxAwDlOuND0sQ0PkgkGYkOdS7PY0+i7T+O7mgI+2x9QdA9vS8AqNh5vHiFpPkWVJJpPMD7eHpKlAqBIZFyQpH+/67A0jXl2tEiQZb9/r8rAX0CxZfO5S7cR5/agv55OiwCTK+O17XdbqDuPIojOKCZKM3VHEKEzZG4Xc70wKbSmbcZQyDOThoOoaJxodzMe8/stSVdIt3nnYZxynrFQlnf64a04zWaDRVEVasCcZ9wsKetcPubPvszXwaTg637zfxTZ1HFPj7p40YpkKrN7alVTsziSmXZIH+/MSFo+znNu7E+51xjzqBUziRHbGhYplagwDWQiddoX7vkQgBXHG/iQizXJ++YNdSpbBKytl1pvurMAKUuj9ky5MdScJPT/i490xmqriR7LL3vUjfuX9PYI0xdF1biyW2R6EvLxcYa3u0CxZM2TFRVJqwiTjN2/vzyzu22WZb643XcZhyt39CZM4JYoz0jTHtVSGQc7Dri8P1I5Bu2TxnY0Bt/fGhEnOa6tVtELcemfwbNTjzjjio+0xO6OQ9YbL9cKVeIqaUxXk3BqG5AK++UDhYc9nqx+yWLV52JP0yZ1hSLtsEaVSwysrmh/T91BQUBRpDX9RgsrnHV+93uT11Sr/za/f5Y99af2JBs7H20P+5fs7AGQi46e/sMat3RHjKOONtSr7kwgxhp4fFa6hKpauEaX5hUo9BHHGb93tEsQZoyjF0lU2OhN0TUVVVBregI93hmwPIzRVovtfW6vS9yWqM05z7u5LDaqrLe9ToYr3JjG398Y87AVcqrusN13aZWtWBDB1FR2JhHRMjUGa40cZW0Oflmfz6lpFrsOKyruPBtItzzbo+wmWHhIVpjzPKuwcpY/3iDTP0VWVcRjQD2JMQ8XVddI0Z7MfsDOQ+UPZ0VCQGm0fbA8BWSD/8tUGK4X2163dMXujiCjNWKu73FwsnVmDamsQsDeMuL03xtRVbu+NWa7Y+FFGydYYRSmZEAz7CQtlm94k5n7Hp+amLGUWv323hx9nhGlKyTbY6E74nust6q5xrk66t3alIHzNNfDjjHt7Y+52fC7VbS63PDrjiP1xRNnS0TSVRlEA7E2iosmV0yxbNFyTu/sTNFVqjN3eHaMo8D3XmscCQI4LP0n5cHtEdxLxynKFQZhScw1Wqg4PCo3CS3X3wFqwN4q4vz8BFD7aHjGKYn71g33Kjo5laLx1pXEha97DXsAgSMhEjoJCz4/Y6Erad9nWudLyGIayAPugM2ESJUyiXO7TWyMcQ0MACgorNZudYcQkTgjjnIWKzbW294kavj1LPG8J7W+cy1WcY+yPIm7tjvj63Q6OobFYsXl9rcbWIKDq6HywNWB3EOI5OkM/RVUFVVfap07F5OJUHhaCWELkOuNYWkFn+ZEDcXpAVhSOFZZLspyPtocESc7b97vsjyMcXSNO4a0rFV5ZqbA9jNgfx6RZzr98f5udQcSVtstqzSXPBVXHLOyn5WNbKFts5yHuGQ/K5xmbg5B7+/KQ7BganUks7dY1hd1RyKN+QBBlxb1TeXmpzHc2h+QIVBS+tdHjYS9kEMbUHRNNBSEUciFQVJdLx7zvi4sl4ixnbxBSsvTikHuyC0aa5dzdH/PB1ojFqs3lpnekvtA4TOhPEiZxyrc2+tRcOTbCJGWrH7I3DBiEGVXboGobmIbCJMpQUag55lM3xSSTUMxxlNIrUAMVO6QziemOE4SA97ZGgOwcffVqnW8/GhKlGXkueNCZoMCsop6LnP4kpeTotEomjqHP3ud5YkrlkV0NhYZnEKWCnYF0d9nsBQRJSibgim3gmTrDAkk1ChIedH0WKzai+GcQZERphm2q1GwTXVNPRcVJc0EQZ9iGysNeQJLJ7v1xm8LuKCJOc7690WcSZgRpxotLZVQgE/JQ3ZlEMvnIcl5aqpDnguWaQ5zlTMJ05sKTC9CUx3NcVY8+6GS5oO/H1FyT3VHIMEhZqFjHctH3xxFRknO7N+GbDzJKljEzC4iSHD9K5AE8lF3vz18SBHHO1bZLnGWFYLYUA51a184X6s5CbzxrJLng3r48WE0KKHGrJBOdNNfZGYbUvMeOkEGSMQge68B4pkZvIv+/O4mJkozdUUiaCoyn5EdhIpPynaEs2tdcnfudCR/tjBmFKY/6AY6hsVQ28UyVS3WH7WHIKEzpTiLqrsnnL9cYFY6JcTrBMjRWqw6aIotSwHNRxIIkI4hTdgYRtq5RsjX8WHYH85xCV08mXO2SiaZK7TjT0LizNyEX0l3WjzImcVoUzFQmcYqhqpi6eirY9jSmjkcgDUBsSz6Xk6h3XoF0u70ni+cfbI/QFIWKa7DecNgbRQz9hM5YNiXqjsFHe1LzYhSlrBTU4ziTaKHD67I6lwinWT6zQ/bjlN1hRJTmhEmGpqgIIX9/kqRsdCb88gc7jMOUhmfRKJ0+qZa098dfT6IUXVUJ45w4k2jm4yLNc7YGAbausVq3uVuM/4UCOfvuwz7dglrYcHXGkSBOUu7sj1goO7TL1oy2pQDTCznPeZpmOY/6Pt95OCw0zBLqJQvX1LjSdnlzvUbZNtjoBVJIfhTy9r0unqWxXHVZrFiULIPSnLW3a0r0c5hkz41EfpZIMnk4rDtmUSATfLA95IPtIbtFwV5FZRDKhoFExMn94v2tIUGS8vpqjcopHBmzwrXoLDTfKJUOtaMwoR/EaEqZIJHjea3uYGoat/tjPEunXjJRAU2VOeYoyoiynHceDkiyHFWF/UJgN0wyNgcBaSqoe+aZ7cmDJCPJM7rjeKb/OAyk5ljVMdkfS2RjlgtaZYtv3usRZwIFwXLVJstzPtwekwvB9bZHs2ThRyntksXDnk/ZNqjYOhRC72km+IwwKZ8aiqLwp796hf/oH36bbzzo8aUrDeDx83/nUZ9U5MRJjldQw01do6HL5vTeMOJhz+df3+pg6tIx6/XV+rkaPxwVmRDc35/wnUd9dFVlGCSUbYOrrRKKKgqUdTbLOa60PGxDm6FAxgVCF2Tz+9MoTAVJRphm7I8idEWhUdJnDAUF2B1EDKIYS9Noly2aJZPfvtcjSQWbg4A4y/nCepVHfR8FBYGgN44pOfrsc07lTZ6l2PLYFU7mv4MgpO8nuLbGfi/icsPl3c0hu8MCBZmkvLpaYRgk9CYTbu2OZ1Ic9/YnBElGzTGYRCkb3QmGLuVkkkJa5iwxDlI2+5LyZusa+6OIYZCwPYp4Y6WGAoRxxhurVYn2S3M6k4hxnGJqCn6c0fNjJmGCZ2j0Q8FHOyPWG+65mTpNnUR7k5jOOKLuGexPYsI05WE/pOfHbA2imRBWo2TimBqurbEzCOmOZXMhy3LefTRgECQ0PZM7e/KMWfOMZzIrynLBo76PqSp0JjGaKlH1ZUufsVz2x481Ckdhwv5Enscrjs5yzeK99wd0/Zh+mLA/Ci+MUhpPc08hawqjIOVeZ0J3HFP35FlUVeB+x8czpdHXat2kN0lQFMHb93rYhnRyDpLssc5rLt2Vx2H61Abwpx3Pu5XcFUI8OJcrOad40PPZn8TEaU67bDOOEqqOIelhuTy0SlvXnCTP+Oq1JhXbpGzrhRCawiiUwuk11yysR82Zc83hCGL54Jsl6ZZwfGFEIUNSly7VHYI4pVWy+PK1Om9ermPpGrYh4Xu3dkfsDqW9bXcS83tfXKBi6/SChPW5A/lhxf5PI9JM0rwanqQklGydvh+zUrMQQqHqmIxDn1bJIhcCx9IL63OZILTLNn6S4ScJNdek5hi4pk6Q5jP3hKPCMXW+fKXBB9tDNnshZVt/apLf9WM+3B5xd99nECbUHPPIwtSLSxXGccpmP6BVsijbBjcXyySZwDY1MhQsTSXOJBy25hoFUkU6NT0NpuuYmoQj93TUwhZ6axAWDhQKVdfC0GAqgVB2HjtNbvZDVmseV9seLc/CT1JZLc8ymp6LpWs0SgaaolJ/BsjrfKzUbAZBzCTOKNs69zo+VdskF/JnjqEyiTNURWGhYuEaOjfaJUZhQsUxWG951ByJaHjYC1GQmklNT6IDG575VItWgCTNZXeoas+EbvfH8bGIkYqjsz+StEFVVcgywTiUFsK/79UlRlFCmuekueALl+o4lk6jZLJYIIwGflIIwzqzItRy1ZlZsU4TCiEEuyNJnYvTnI2uLJrNaL8niCRWHINBkBBnAiEUgjRDKII6Jl+6XAMEcSbwo5RXV6tYulpQK2w0VeVh1ydIM9YKBBJINNCNhZKkF82dEgZB8oQ23fPEYtnicsvjzv6EUgGhX6467I8TskzS7Pwom61Tlq7N3ECqjiwkNEomvUlM0zN51PVn1NinoQ1rrkGSCRYqFpahFvbQqRT9VARXmi4iV2iWLMpFofbrd7rsjwYSVWpoGKrGKytl/DglzQRNz6JZls9/GMrD2/OgzRbKNvf2fRarVuHsKQ+vqgpLVYuBr2DrCpqqsVSxKNkGnqXz3c0BjqqxWJaoy4epT8kyUBUFz5Z6Iooi78FZigSaqkjR8BxaZZObCyXCNKf0FGh3s2ShqZIS0PBM6q5JzTO42vJIspxbuyNUTcU2NTqThLpjEaQpoijSPur7tEs2ChHrzYNo1tWag2fpOIZ0pq3aOp6pUXVMHvUDiXQu6GN39lRURSHJc2xD5V7HJ05z6q5JyTr9Gle2DRarlhw/ZYtJLAt/FafElaaHdwQa+nDkhY21qoCpSev4m4tlWuUuqqpiaAI/ylmsmXiWjorC/iSi7hqyAFp38OOUawuepKKeI7x+eqAydIW1hs3DrqBd0Hh+5OUl6p41c5TKcuiMIkZRQf1rKLy+VsU2VUZhxivLkh6pKBfjDHdUTCURTE2dje922UJB4eZCmXGUcnt/xINOQNWW1thZDi8slbF0jaWqpPO3yxZ7o5AHXR8h4JYx5s3Lh72Bn4y+H88K6KeNiq1zveXRD2KWyhb9MCZOBa5lg5ACybYh5QtUFNYaDmXbZBKl7I4iVAXqjoGhq4yjtGh0qeyMQlxDo5PEtMrmmemJC2Wbzjii5hmUHYPtQUDVsdAUWawP03yGzhICekFMGGVomsr3XG8yDlPevtfD1CRa4VE/oF2yeG9rSLtskQt4eaXCbvG8TnJl/SzG739tib/0j9/lH//Oo1lhqjuJi4KNzlrNJc1yfuCFNm+u1zF1le4kljmVgId9n/1JhGtqaIp8zuULvgeaomAaChXb5GHPJ80FTp6z2pBi4KqqYugqV5ouVUeyDebPIyVLxzJUsvxJZ7tPKtpli81+QLNs4doaozBDIYcCpawpUtpCU6WLcdk2eG0151/f2sfQVFbrDo6h41kyx1CBetmcmapEaU71ORBArqmzXJOsDV17LBMxiVI8S0fXFS41HGmkFae8tlJlsWIX6KAcgcDWJbI3iOU1RkmOpim0yhZpLmiUjGeiVSmqgq4rXG97bBcUvjDJud4qkYmcm4tlwjTDsw28OKPmKnTHEStVlyQXLNekluXVlhwXw1A6Fh/WVXqeMHWVparFziik5hjsjyPWGs7j3L9ssTuK0RSFK02P1bqLZ2vs9CPaZZsXFg3aFZl3KEpBTUewWncQijRdWaqdPTfTVJWlioOhqzRcg2GUUfdMXEvH0KX7+nzzYhxJlOtq3abumqzUXVolm1bFQgOutcsXRo1bq8vGX8U2cEyNOM3Yn7gkqUR1+XHGnT2fnh+xULZZrNj86MuLpLng1z/eI4wzgjTH1BVWaw6dcYRraESZpI4fxfr6rMXzXuE/Bt4EUBTl54QQP3PaP1QU5QrwdeB9IBZC/Njcz1aAvwfYwF8WQvzL076ua2rcXKwQpzlrDZfXVmuzny1WbdYb8gELIWhXLL50pXlggNUK9JSqKuyPJbz9pM7Cw57k9SqFJs3xnxdsXafm6CxVWyxWbeqOyULZnh3gpp26qd1pz495calMu2yzeIgjPgwT9kcRVce4EGvz08ZKIRx3teXRDxI+2BpSdQzSDIIkpmrLgl1U6HosVmzW6ups4RkGsnB4o13CNmSBYGot3zyhqhulGR/vSKh60zOpOMZTNXVcU0JHK4485B13uGuVLb7nWotxlBAWh+mXlsoYuip55orC+kKJdtliseBof9+NNnkuTq3rs1CxeW2lNrOHf9jzubvv88Kix/debzEJU97fHspDaMVG11QGfsLVtkuUCtplm0t1F4GkwnR96bLjmjqrtfM5SLimLCJauoYQcpP45oMutqHxk59bwdQ1PtgakuY5N9slBJLv/9XrLdJc0C6ZLFZkccfQtJlou6ooXG6enWZoGSqqCnkO3glzcrnqsFCWc/13HvRYqztca0s6lGdqvLZSw9SkePcrKxVeX63hFknlpbqLpgTomiI7wnNx+Hr7fsJuQWuYhoIUyQ/i/MRkveoYlJcrrFRtPtodS02YpoemKnimxjDK0BSF7iTm5eUKX77SwCler+4a+LF0dzos9H94rcpyUYi5H3spZw5dU/ne603GUYKlq7y0XOFBN8AxVfq+LAbOb/JTJ8VcPEabrdacWWHxctOjVZLFymsLJzuZKYossjRckyzP6fkJH++McEydr1xpFd0mMSuST6KUsqNzueWyktmsN0us1h1aJZuvXG1KW3BNpV2Sc2zejvlZw9RVrrY9qo6BoSvkueC373YoWQY/8cYypq7y8e6IKBG8vFxmFMli2FeuNhgEKYsVm6WqQ8XWCRKZ7BqaSp7L+/Ys3a71psf6nEuceUoI+nQ/vLlYYhJlVG2dt+/1GEcpn79Uo1kKqDom6w1XOgwqykwTMcly2iV7Jpo+H6qqzO6zoam8sFRGABudAIQUTH55qUzXT7jcdHFNjReXKmwNAu7s+jimyuWWx/oZiybzBceqo1J1jtaVPBxaIXKuFnvW9iBEVWUCW3Vs/sDry3x3c0i7LJsrUSbojiNyUWiKFOP+PMbXSddYdUwpGG9qvLZSxtQNPEubrRPTdaBs62iqQ5RLjawvXKpRdUzeutw88Jp7o4hRmLBQsS9Mu2l7EM4QqkEskeoPCq3Jqy2PhbLUWwpiicDLc4jLFtfbHq+v1siE3FPm50XVkQjUXIgn1vHjwi0Kv2cJRVG4tlAiLcSIwyTlu5tD4jSXFLqaNNtZiCXaqFW2qNgJO8OIty7XZLPL0FioSHe83YKKLRAoyLXupLzyuDB1lZuLZTRVIg6FyLm3P2YUpbTLJldaHrqmsN50qdg6K3WbD7aGND2L/VHM1ZbLm5drUlaharM5kDpsmRBYuoZnSROHs9CJP0vhWTo/+soi/+w7W/yVP/QqabFG9/yEL6zVECg0PYOGJ7Ua31irkeUCTVUYBLKAFSZSxPmLV5qfiEuXY0rHvySlWE/kKJnuZZ1JTBBnWIZ6QHtyGqZ+tLPlJxmGpnK9LWmfigIa8G/udnEMlT/0+RV0VeXu/oQkywvmgcLmwOf7bzTp+SlXWx6tkilNEXJBydYIYilOXXPNczHgmDZLVUUiAT1TFm90TcUxVCq2SZZDwzXQdVks0xRF6gAJuNYuYekq/+LdbT7cGfLqcpW1hjtDO688o95X3TUIYhtVldcoUOj5MesNl4YnnQulcU7OKErw44xWxS4K47FEnromWS4lSAxNJbgAJGyrZHG54RImObYh5TQarmxs7Y4i3rhUw1ZVyp7Bcs2W5zdLp+rpOIZEao/ChIc9n+4k4Y21CpYutVqvtb1nos85hkarbLJSdVhteKzPndNeXCxLVPbc9xqeSZLLNVhVVQxV5ftvNgmSlIWKzY2Fi5tHtqEdaAYt1100VWW9IfeSrh+zO4x5faVGvWRypenOzi9vrFX51Y/20FWVki0LtGt1lySTqPlWyfrM0/jg+QtT89v4tWf4+/9FCPEnjvj+XwD+EvAO8IvAqQtTV5qepGtcqqFrB1FOdc/kB19c4HqrxCBMsHTtAER6ysE3io7dVl/y8dM8PPYQrWsqJLK6flJSo6sKl+oupq5yueliG9JKfhiks4LGctXB1FTWGy5Vt0WUZhjq0faem/2AJBVMIinIeB5Cx2kuuN+Z0C5bp64GG5rKSs0pDsAB7ZLNRs8vRM0FNxdL1FzJAddU6TA2T4Wq2AZrdZeBnxClGc2ShQIk+dG0yWnsjSS/f+inuIZ+qslWsnR+4GZ7Rrl6WuHgcFfp5qIUkzQKkWLH1AiTx/TB+WeQZDkPez7LVedI6hfApYZDMzYxNIkCkHD7THZnbJ23ik4eSJTEcs0hzcSMZwzMrMpfWCqhKsqZ4OSned6uqXNzsSQ7zzsjbENDV1UedH1eXKrw6iHDgLWGw/5IJh0vLJYxdXXmcKepstgj4EyLo67JOVOyDF5cLJOLk2lI0/equgY/+NKTYtrfd6M1E5qOU8HuKKSSygPj3jiaQXvLlnGi0KI+R/0xdHW2yTY8a4bOOSlUVaFRsvieIwrL33OtWejcyW7Oo35Ao3AWGgbpjAq3P45OhGGrCrPXOM/QVZUvXm7IBLlAvzm6xsKizc2l8hNjXlEUjmNK2abK999sAQqtsk2c5uyPo2PRdJebsmu00fPpTxIURWG5apEJMZsX05AFUpt2yabuSbvkaWGgWaAhNVU5sw7N0+b3as2hXtgzf2ujJ9EzioSRX2q4vLz8eN5YhqSISAFlk5eWKmgFZXuqKzAVrz5v57s8F2wNQ4QQx36WqZuTa8o9K4gzJlFGo2Tyv3lxERR50Jt2qX/nfg8rlCgKuZedfGizDHlg8mPpvBYkOmkm0FTpvjkIEq61Ta63S1xpeVxfkPSKin1+2hinCdtQKds6eyOZ4E3FWPcnMZ9fr/P59TrjKOXu3gQHuV/EaS4p6p9AMmgbGlXH4PPrdeI0x9ZVtodSQ09WpBSqjsFqXe7XrZLJV69z7FqVzmkSbfWDY/XInieCOJvp4sVphqlr0uTFkZQNWfiT48cxNb7vRovXV6vkhXh8mOZHCvg6ps5XbzTx4+zUhUDH1HipKJCeZv+exrTwLs01BpQsYyaSb+rqE2tSzTWxdG1GLZ23KDd0dfZsojTH1NRjx/jT9u/5vXscJoWYt+BhL6DqmgcOpC8sVqg6JrtDqWll6CovzpkKOKakXL2wWELAhdPWPon4iTeW+aff3uS37naZRClbg4iSrXF1oUSrahPGUrB5GtNxUHVM3rra4MZieSa6/UnFqys16q4FQjAIYnKUokgBa3WXD7dHBHHO1iDkxkKJYZjQm8h895NCST1t/657kr6lKgrvPhpQKvbG7jhhveny8vJBM4vVmltIIyi8uFhGVRVsI0IAzUJD+Fn28KfFctWh7pqyiRmlRIk8n6iKzP2SVFAq9maAV1ce7+mTKJ0144dhUujemUVB7uTr7E7iIxHuzZJFydbRVWmiMQpTXl6uPLF2x2lO149puNAqmbimxv2upD7uDkMuNVz2xzGvrFR4Oo706AgTKfJ+1LqjKArX21JqRVVk8axk6XgFM+H2rnQtn1/3WmWb1lzTKFAzdFW6og+DjC+sl3Gts7n0TXObPBfYhsrXbrYp2wZJlqPN6TErypNnd0vXeL1AkwoEnqURpQZfvdFCUxQpjs8nQ4VdrTk0PTkOe37Mo75sBl5teqwdaswtVR1eKXLLqetos2QV6FzlVJI3R8VJz/si4nnfRRzz9WnjhxRF+XXgHwkh/u9z338D+D8KIYSiKCNFUcpCiNFpXtA2tGNv+t4oIs1z2hWLqNA88uZu9O4omlGFHFPFNiR8dxjk1BzjSMG1yw2XUZTimicvOLqmYhkyWS/bOktVCReN0ox3Hw14Yak865xNQ0FhaxjimdoTyAjP1OmnCY6pEqYZmno01fAskaQ5wyAlyfITK8JTF5J5VydVkYl7lGYslOW1tgqXkrW6Q6XoYB63eWSFIHkuJDrAeoqQu2fKDWGlbrNSdU5d9fcsWcTaH0sO9lnQB62SzTiUnd2HXX9G07l+xL1KM0FvIoufR11bkuXsDENMTcJ+l6oWgyDGs7QjD5+KonBjoYQfS7eLPJc0MlXlSDriaeJpzzvPBdtDSTFcLNssVG1u7U0QiGM7hEsVG8+StEpTV4uDpuzKPGul3tCUWfJ3Hja86kwEO0IBRqHGKAywdZW+H7M3CqX17hFIj/ko2wbXC0qOXhRdoUBHPqcRgSzimtzZ90nzHMtQCXryGvfGIT0/wjI01oyTn/38uDnPqLoGj/o+fpzPbGsXqzaKIrtTZwnPMihZkg7rR6mktvbDWUHmcAxDKX6tKrKoMS2WHlUAqRTPaBQkpEI+s/kx9KyFnqfN7/k1slmyedgPEQLq7tFb7nSNtA1ZjByGCaMwpTlHD78IEeeuH0tth0k8S3RPCsfUqHsGmgavLFUpHXHYWak7DLaSAjn39BRDVRR0TcWzFDxLY2+UU7ZsXEuj4UpHoal+YZrnmJpGnifc2R+zP454bbV64V1AiYbJ0ZSMjd4ES1dZqbukmThQ+ChZ+mxNkLbi6YVbh8/HSk0KV9dcE0dXGUUZYZLy/vZoJlA9f72KAkksHRIbrnkAcakVDlJRIlHjkyh9otn3vGFoSrGPCkk9MiUVfatwGz4KGeuaGr+z0cOPMhqehWcd7QI5L3Vw1Hw6Kh7bqZ88v4GZRmTVlQLMZdugXjLYHgWULGumBXpUOKbG9XaJNJeH16P2yacdHp62f08KKYiqK+l8zZLFsEBou0fc18WKjWNqmJo6e8ZTujpITdPPus34WeJrN9vYhsr/8t42eS7Y6E24uVCiVbJYLSgzU5SgEIK9kSyGLBSFwE/D5Wr+GXUnER/tjCXVu3DfykWOqqi4psYgSPjGvS4lW+roVI9xHT/veNr+3Z3ETKLHZgH3OxJt1PCOzikv1V1GrpQ5SfKc/WFMydRn+72pX9yYnM7BqmMwURW2h5Kidr1dOjA+DodToPPjNCvyIon47IxjKUNwzBo61Tk7LqZ/l+XyvHQUEt7UVW4syMJQxZZSGiVLlwiqYi3zrCeR9dvDEL0w43naPJemYSnD4GgXclVVZjnwYkUKsQ+CgHbZ4sbC43XvuPAsnaqjM4lDaq5B2Za6h/NnkqWKfeJ19oNkZkqWC8m0qNinAzGAXKOrroGuKoxCad7V9xMWK/aJjI2LCNuQjYwozam5JjcXykcyuYyi8TqOUupzNQPHkBpeArjePpmVcFQ87Xmfdzzvyvo5RVGkDQE4xdcU/y+EECdluVvAC0AE/BNFUX5JCPFO8TNNiNmUGwB14FSFqeNiGCaz7l+rbPLaEYu0PSdibukaK1WHO/tj/CgHZXyk456qKqfqROiFq9Y0yrYu9TL2JULrUT/gevugo8ejvnRl6iInyfxitlaXxZhRmHB7d/JMzi2HYzrHT0o800xq6YCk000TIolasBmGCWXb5FLDmRXTFOXke+TH6WwxznJxKk2LuieF0u/uS3cvywhPrQszdVgDeV9Pe89Kls5rq1W2+gH3Oz5ZJFisnFyPPa64IV0opkVQjStNjywrOjHHCCMamkrVUWd/P+00W5r2TBaqT3venUlMp1jYTU1loWzz0lKZSZQRHiO+rCjKbI6EScbD4rmmhVPRZyH6fkIuZCchFfJzmLo6EyTvTmIcQ2MYJE8dGxeVnOa5YBxltEsWPT9GQcHQFXZHUSFimbBQUhmGKXXv5KLs/Lg5ryhZslMshJxPjqnhGJKvf5I23FHR8Ey+9UDaGL99rwfIeaAfYSQhxGNqolnobqmKgnmoyTAftq5xZzxBCHlYO086w1Hz+/Aaeb1dYhxJN73OJKFkP1kMn18js1zwoCM/YxCnFw4bnxalBn4y09I4KVRF6pwoxwypLJe6XSAP76dFFPT9GF3VuNYuS52UYv+oOsaB/du1VMIkoztOMFWN7UH4iekg7QxD/Ehqh3z+knUkjd41ZePgva3hhYy5k6LmmrN9d+AnGFrI9iClZGVsD0IuNw8mpUII7hdjbRymB4w7FEXhRtH5HoUpd/Ym5+7Apmtq4WwrUVthksmCkCYLaEcV9XZHEUGc050k2ObRjZz5yOfmkx+lZ0J+ndSceNDxyXLBIEh4bbVaaGZaRInMw9SnrIPyYKE98z75tP37QdcnzeT1vbpSkQ6zMHPbPCoO57fdSTyjq2tzzZf/fwjH1PjazTb/+naHJJO6S+tNl1JxD+b3zJ6fzNwI1eI5f1pRsQ3p5DpOaHpWobUmuL03kY6yZZPlqs13N4dEaY4/jHhp+ZO93uP27zjNZ7l+nOVcaXpcacn8Zhims3s/H/NnrNt7Y/woo6fEuFb5E6Ul3Z/Od19KQJyUUw1DWcBolExutEvSzKBg4GT5k8juaaiF0U58TH4NB9fs4/aWeYCGoihca5fYGUrB7kzkLB9Cme7NOctbuvoEEOLJ11cZh6drlh29vj2FTaAoNEs2TiG5Mt0H9ifRgTPJSTI2lq6iFOYMcZrTL2QBTtvgs3SNUuGoC0Ki9sr2AXOQTzK2B+EMONM+4XMfHlt7o0iu4+OQqy2P7WHItfbZ3EPP8rzPI57rVCWEeObsRAgRIYtSKIryi8BrSOoewHx7vwL0D/+9oih/FvizAOvr6099P33uhh61YII8qLqmjqbKg04/iXENHT+Sbjvn6aBTtg1eWCyjKoo8WB3x2tNrVlWeOOwpijI7VICcfFH6dPrQSWEZGtfa3pHdtGnI7rbscJrawd9L5r4XJqd3jZrqTQlxNoqXqqqz5C86w/tNFxVFebaJ5pga6w1X6kgck0TahsbNxeMLhQecHDUVP05m34uSnKfsCwfH8wluUifF0573AZe3gpKXFnSiKUz0pFCVx8/1Wa/xImL+Wi7XXSxDw9LVGSJDohul/fOnFdOxmWaC1ZrUHLJ0lf2x1LdQoDjIfTrXOA9nN3W1oK6ZWPrR1OOnha5JKH6aCyxD5eZC6ci5qSiSIhOnOaaukhf6MmkmSPODEO3Hf/P4Xuo/FR2tAAEAAElEQVTntLGeNL8Pr5FCSPSrqpxuXVSYv96LTYBKls4LSyV2h5EUhn/K+htnOZqqosGx82M6vxTl+L32qJi+nqooj0/dRcy73VZsk3bJQlXB1LRPhFY0fd4f7ozQ1CLhPeH3L2LMnTWqrsGLS2V0VUEr9E0Oh1KM1SQVR67R0873tAkiixrn68AmaThyHsVzzonHjS9Tl1opbqG587Qi2YFnccr84mn79/Q6gjg7MP6SVMw0GeMsPxUi81n3yaft35aukmYZpi7pgHGaz+bjafeN+ft1nOP07+b4a//Oa9Rcg1f/jsJK1T3WvfEAbf8zkMscHjNRIufNNJee7pNSA1bh2jGFkIuIk/bvKeUuywWWrs5cN+H4+T4fcgxmKApPLfyedxiavO7TPP8ozVEUBVPTCh05ZaaPetKaIGlw3on3Yn7NPsv5JUry4rwpJWzmjxjz55HTrFnLVYeKbVzY+pbmeTFGtANFdGvuzPm09/YKM6DT/v7hcEy5B+S5vO7OJH7q87vImM+rzrIUh4k0qLJ17VQyKEfFWZ73eYQijsICfhJvPEfPUxTl7wF/Uwjx9eL//x/A30cWqv6ZEOIHT3qtVqslrly5QpYLolTaBU9Fyy39SfrY9CMfta4lWS4fXrEhZ+J8Est79+5x5cqVY3+eSTLr7FqFkJNTVaQzRJhkUEzspx0eCjkJFKQOwVS0Udpuy/cIk6ml6mO46tOu8bQxvf8oEq0wvc/TZE1BTo4sF0yiFIGE5xuaPGhOr/e4jees15kJQZzkCORnz3Nx4N7qqiIX++d8zrmQAva6qpzbvZxGnMqFWibZ6uOimoBxlJDlFBD9JwVcs4IiqRd/N43zvsZciFmBUNMUFBTkOibHb5hK3rhrHj0np8/k8M/u3r3H2vrlMyWEeSFGK+HOYia8PdVtmn/fJJeCuqoqE59nyXfu3rvH2qX1J+7x02K6ZoFCluezcT9/IBJCjuGpPa2hHT83TorDzztKc/JcFEXuqdOgXDNUpbBOhkLn5Mxvd+rIcmm3rgAl22Djwf0Lmzty3ZHrIMAkTmcFccfUZqKJAol8Om5dOM+5k+Vi1iGVyYcyS0KiRIpB68X1HXUtyTHXee/ePZbX1kmzXDZW9INFnKOS2qDYZ1T1oF6dXEMu5lB23utQmovZXgly7kSJnGOmLoXIp3NKUyRCNUwyFEVSCbNiTszfz+e5xvnxZxua1DBK5UHS0A/O5SwXhEkmm0y6OhM1PU2c5hpzIWYH2KPGuBAQpnIMGJr61INEXuQUT+QZKoi8QOYcygOm1zldazT18SFTCDknp5R+W9dmz2l+DYrTfLZOWcbjefs8MZ97PLh/fmtQmkmRbIFsKOmavEfDYs1zTf3EhP+4vfG85818hElGLpjlatNnrKAQJHLNtI2DaLVP4zoPx3Rc5EJg69rsXmdCPlel+GxhkhfyEzLvvH//k7vGZ43z3nPyIi/Ki7xi2ujJc4E5N1+nkiMUVPin5QLneZ3z65FW5OnTRn2c5kziFE2Vh+7Dc2g2HtUnUdzz13jcuM2FwI8z0kw2Kz1TRyDI8ilNWzyxtp1nHHUf59coRVEYh3KttHQpaRCn+RM523xebh7Kf8/zOk/K4aeRFme+PBfSEU9TZnm6giyEX0SOcfvOXRqLqxi6emEmHtPz7fSMneUUZ8vHvzPNr6bgl/mY3sdcQJbL5zXVhp2+xvTeqoo0opg2MacxyyUV2Zi4iOLtN77xDSGEuNAK1afpG/g1RVH+GhI19RtCiK8rivI3hRB/DvjrwN8FHOCvPO2Frly5wm/+29/iw+0RH26PuL07YncYkoicpYrFj7yyzGurVVxTJ0wybu2OEQLWGy4lW+deZ8IkSrF1jaCoLpZtnZ4fszeKaHomX5wToj5tRGnGnb0JuRD8qZ/8Yd5+++0jf28QJDzo+IDUiGiWLO7sjZlEEpVyuelyv+PzqB+gAF9Yr7FQsWcHjs2B1CpaqzvsjSNu707oTiIWSha39sZYunQk0FSpofPKSoV7+xNGoUww2mWLhmfwJ/7Q8dd4lnjQ8We2yw3PlNQoU+VRd8I/f3eHPM/5yvUWrqHxrY0BFJ/p97+2xC+/v8N3N4csVm1++s21I4twb7311hPXmedSIDpKpYjw7khyk4NY3iNb0/ju1oBJlLJacwnTnOWajWtoVBwDQ5PJVy5gqWojEOwMIjxL42rLeyrnOslyPtweIYQUKv93f+wHzuVeTuPW7oitQci9jo+tq3THIfuTGA0IUpnEv7FW5UdfWaIfxPT9hIZn0pvEfLA14nJLWghfa5dmz/7P/NT5PO9pdMYRd/cnPOwFjKOEkqXzzsMBuio7tLmA6+0Sf+D1JSqOyYNCp6tkavzOgx6eZVBzTV5cktbgm31JEfvJH/4af+8Xfnk2N54WQgi+82hAGOfsjkKqjs6//GAXP8p4baXCF680iuq/wsNewEY3oDeJSfKcF5dKfPV6G4FgexAWNuQ2WS64szcmSnMuNdwnqKmvvvEF/t4v/AqupT1ByT0q8mKDvtfxud+Z4FjS4fBh18fUVH7stSWWqg6epbM3jNjoThgGCfvjmCttj++52qTmSi0WVVVYKaDZ9zo+4zA9ICw5jZff+Dx/9f/9T7m5UGal7vBvbu+jq9LoYUozvrs/YRymjMIEx9DQNZVWYTn/rDEIYn7z430macbvudmiXT74Wr/47Yf8/a9vEGU5/+uvXOL/9md/+pznzpjOJGKrHzKJUjrjkEc9qWGjKLBYcbi5WOJy0yuKgyp7o5A0FZQdiTrxLP3U6/lZY3cY8qgfcGdvwiROcQ2Vj3cm2IbCIEhJMsHlpsfve22R5arDg+5kts58uD3CjzOWKjaXmx5V1zgwv//W//j/5R/81gbffNDjxYUSf+wrl2iVJcpzXpj8QWfC+1sjen48GzdvrFVZqNj4ccpH22M0VaFRMs/dieuo9fxZYxQm3NuXe+l03P76R7v85u0OYZJxqeHy+moVy5Colp1hyO4opDuWIvNvrFUxdY3dYYiuSe2ThYr1XM/7w+0RDzoT7u373Fz2UITC+1tDbEM6Da23HL69McApUDr/7NubfHdzRNXW+YnPL9Muy3XvOF2/067nfpzOhGcXKtK6fErfuNr2KFnSxfLf3u0w9FNW6zZvrtfRVNkt7hdjo+aa9PyYf3O7g64qXGm6vL81mh3UrrY89seRNAgxdPpBgsgFcS4pJP+7n/kx3n77bT7cHhGnOaoq9UI2+yGPej6bgwBVUXlpuUzV0XnQCVAUeHGpPEOuv32/RxRnmIbKctVmEKToGlQc6f50reWdmW7x3uZQusaqnOv83uj6dCcxv/DtR+wMA1brLms1m4+2fRKR88X1Ol+51mAcZTQ9E02V+9JqzaFVtrjfmcykB6ZGMmVb5w///t9zruvkNKI046PtMfc6Yz7YGqEqCnGaMQgTlqoONceg6phYusLVdgnP0vGjlL1RSNUxZ5TG/bF0Cv6jP/6DF3KdR8U37vd499GAcSRdTq+3S2wOAvJcHgq/fnefdzf6dIOUdsnkleUK339zgX/vp3/kxGv81Y/2+O+/fh9VUfipL6zyY68sfuJ6W+exTm50fTrjmN1xwHLFpevH1ByDja5PnGW8+3CApeu8fqnC73t1mUGQ8Ksf7nJnb0IQp9Q9g9W6y0tLFV5cKh95D85zPffjlFu7Yzb7AfujmLKt8e2H/VnhO0wEl5suX7nW5MZCiY2ej6VrmJrCOw8HVG2DimvwynKFJM9n+/cf/fEf5O/+01/mWttjexCyO4x41Pd5eVl+pqnL3698sMs7DwckWYqpqeQCXl+pEmU5rbLFas3l+kLpQoodh+9jmuX8w7c32BtFvL5a5YWlCn//6w8YhglLNYulis1vftxBVRV+32uLrBYaiBVbZ1CsH4tV69SSJ6eN1z//Jv/dP/kl0gJNDXKt3h+HdMYJKzWbnh8jBGz2Av7Fe9tQmD6EiTSxqTkmP/3mGnXPfIJufh6xdP0VPv/n/itansl/8Uc+R8mReLE8F/yrD3foTBI+v17j5nPIJmx0payMELLZbBv6zNgF5Bnxg60RnXGEQPDWlQZl2+Df3OnQm0T8+T/5E/y3//iX8OMU19QZhQlCwEbP55v3e+QiZ6Fs88pqFdfQ6EwiLF3jclMiPcfh4yIqcEBO5zxDUZRvnvuLHopPrTAlhPjnwD8/9L0/V/z3IfB7z/J6agFva5VNdkcaD3o5nbGE3r37aEC7bHO1JQtT067crb0RS1WHUZByrzPBKTpAUtRb5ePdiEmUkYuIIM6OFBs7KcZheio3rHnU2tQkUBZkMlRVQhIXyiZbA2ml/fHumCTP6Y4TBmFMxTbwUai5BmGc0w9i4lRyzqfww5KlEaYSWXN7d0LJ1tkbR1QsnZ1hhHIuPUcZS4UIsmWojAuHMz/O+MaDPnf3J8RZTtOzuLpQQlFEIQpskmY5390asjOM6AcJ/UlCu3I6bvwoTOn7iZz82yM8U+ftu30Wq1JM9FZ/zN39CXlR0X9hqULVNkhzWbhSgFTk2LpO349nNI1JlJGeAr47DzycIlvOM1ZrLpv9kMWSxZ3OhI92x8Rxzs44pF2yuFR3Wa0XdK+RPGx8tD1ibxTxaBCQ5jlfudYkLfRCLiLqrsmmEVIqDvEfbI/YGYTSPUZI7nPFlmKyW0MpPj+Jct7fGrA9iEizgC9fq6MqUm9GaoI8pgwap4CRZrng1u6Y+50JddeSYrJqgR7Mcm7vjVmo2rRKJn0/wTN1oixlEiVMEll4WK252IZWHAZSyoWT4JT+MPCTJzXTiuFxGrpDEGfc3hvPkBSLFVvCnVFIc4jSlI93xuiqysc7YxxTxdA1OhNZuLi3P6FVslipOQwKzrlraHiWPptv/bkCwzSSVBCnssCmqnK9GIbpAVe/aWfRNrQZJe95dbS2ByF3O1Lv5O17fX789YOFjZ1hyN4kJsvETJvpPGO15tD1Y+quyb39MR9sj9jo+rQ8i9W6tGlfrTlESc44ShkECd1JRBjnLFQtXlmRUomnXc/PGs2SRWcSUbY1/Fg++51RRBhlDOKYlYqLZ0nNw36QEMRyHL77aMDDXkDfTzA1lesLpSfmd8Ux+XhXFg3udgPZsStiGCYMwwTH1Njsh/ixpP0Mw4T1hsvOMKLhmTzsBdzrTChZ+qeqrXKamO8eaoXgbN9PGEcp9zs+aZZjaApV12KhbBEm0lggTDPqmoFragzDlI93x1i6KkX1n9PNaq3u8M5Gn36Q8K0HfZaqDnGaMwxDLjcdNjo+YZwTxjmiQClqqkI/THjQDXjUi7jcdLna8p4w6zjLej6/LeVCYKjzlEv59dS4AgQPez66quKYUgBdU1U2+yE112R3GBIlORFSGFVTYaMbYJsqCpJu0nBNBmGCbai8tznENXWyufkzfVSaqswaWYMgmdE31hvObFzmueD23pimZ/HN7R4C2B2HXKq7vLc5lO7GIufV1RquoTOJsyc0YKZC3tM193BX/zFV53ybwYsVm91hSH+SkGQK9zty7UnynEmc8LDv42xorDel/sfuUDrDPuz7/L5Xlg5ID0zdui5qD4dCX7Vmc2dfFqUe9XwmUcowTBn4Ma+tVlmtuZi6RDu8s9EnzQWdccTVlsdi1WYcJU/s3xcVWS7YGYZsD0K2Bz5RklN1DOI0nyH4BILvPOrz0faYnXGEH2W4hsYwShlHJ9/Ln/vGQ/6jf/jtQmwZ/qd3t/mJN5b5Gz/7ueeSzvg0QjYOZXFKESpXWu7MwfjObkTXTyhZUt8SpPt33TUZhj2iJGd3FNHzU0xNY7nmXLjTn2vqND2LnWFEs2Ty7sM+m92QQZggRM4LS1VMQ+Fa26M7iUlSwcAP6fmxbHyqKl9Yr6EoB/dvIeS4GQYJKIL3t4cMw4Q4zVite4UrNyxWLHRV4c5eIMXDPRtNGfK59TqmplFzjQtD4ByOnp/w4c6ooPANuLFYomRr+ElCmgo+2Bry8d4IU9f4rbtd/mDZRkEidlplU+qqPkWP9FkiL0TYJ1FGxVFRVQjjlN+625sVVi7VXYIk5VsP+4zjFAQoCO7sS62sYXC8w+p5RJIJen5MlgvGcTorTD3o+by3OSIXYOnD5ypMuaZG30/QNVXqb4rHexzIM/1y1WZ3LAX0d4YhCNgutMemyMVJUZgSSKT3Rzsj+n7MMJRGKg+7AZMowY9z6iWDRsmi50u9OVVVpDnNKbWvP6vxicwoRVFWgF8EXgFKQohUUZT/GPh3gPvAnxZCJHO/Xwb+e6AB/G0hxN992nvomnQiWKu5XG64OMYO724OURWVhbI1WzyqjsHYS9keBrQ8i+44YkpbrboG7bLFWt3B0jWutVI2ugF1z3wmjZyKY9CdxDytTlFzzRlVolXY067WJKfTNiX0crHqsDqJub07xkVnoxtIsV8hqWlTd6qFikp3YtP3EzTNxDaltsRra1V6Eykw7FmSTnCtVUJVpMuVa53fBmvq6kyM1jYS4izA0nRuLJT5aHtMnOXUPNnNXqk6oAhuLJYwdI2bi2WSVNDwjDMVAqf3CVSuNj16fsyNBZc4lXSJaw2P3iRBUeD7rjd5Y70uDyp5jh9n3Fwq0ytEgJslCwXYHkpnkdMkqqaust50Cc5gT32WcEyNz63V2BwE0rlPU/j2hjzkrNVc3lyv8sXLEtVXcXSGQUq7YtGZxCxVLFZrDmt1B0WRC9dFuCuoqrTzdQw552q2jh+nRGnOUs3icqPEH3h9BbU47PUmMbYpIdINT2CoKpebstPd9CzCRH5Wy1C51vaeKsoMEqYfpzmrNZlwvbJSQQjB7f0JH2yPuNp08UyNvWEs70OY8j1Xm+yNI97fHHGpIYsmU9FbVS0oLapSWMbm1I9wj7F1qTt2khPTNMbRY/pYw9OpOgY110CIvEBsSuefUZjiGhpRkrPWcFipWnx3c4hraoUr5eMDy5RWUXONwn3qyQTE0BQMTWG9Ka8ziDOqdZPa3Aa2Wnco2TpuQRt7Vk76fCxVHcxCQ+qouXFzqcpSZZ80E6zVzl/E2jE1Xl+pcr8z4cXlCvc6E1pli7Kl8XtfWuBL15qULYM7+2OSTKVq6yRZRrOksVA4i8Lp1/OzhqYqvLBYwdSl+2rNM8ju99nJQ25WyzQ8kx95ZRFDVynbOnsjBYEU6+37Ka6ls9pwZvNjfn5fbjh8bq3Ke8XY/uGXlhhGUqNjexAghMLAT6h5BoMgoeLqLJRs/DjDKdbUOM1ZqdnkuUzUP8vhmjpX2x5pJg+nuYBLdYePdg0QLo6pEWeChcJG+8WlEj0/ZrkiXRGvtj32RjGjKKU/iVFVTtRcPE14ls7NxRL7E4kgudJwUQSYhkbdNVmo2OyNY2xDo1W2+LFXlnDNfdJc7iXjUKK40yMGnq6pp17PS5bOWt0hyXJaJZnE2qaGoaoHDtiXmy69SUyUSieylZozK+JM17eFss1OKSIXgtdWqmz2A7JcFuHSXGDoUl/lZtWmP0lYrtrEaX7AQfZKy2MUppQsnTDNSLKQ6wslQFC2DZarDq4pUVy2ocrCVi4karagkq3XXcJ0WLynPCS6lnbkYXEQJAeEvA+72V5tebP86DzD1FVeXqnw5uUG7z7qs1p3+Px6nYWKxZ39CRXLxE/k82t45gFx31zASlUK7lq6ih9LEfvT7DPPE82SxQ++sECW7VBzdLpBzLsFkn217vJ7XmzPzHnqrsHuKC7chR2uL3iEcc6jfnDu9/Ko2B9LQeQHXZ+qo3OpobJad7hSIAmutDzGYcq1lsfeKCTJMlxTY7XmstpwWDyh2L41CPhL//hdvudag//uz3wZXVX42792h//8X3zIIEj4b/7Ulz41zZmzxjCUaI5+kLBYNinbOtfbJVRVuh4rFO5fec6XrzTQVKVwdYPf++ICH+2M2Z9EIBSqjn5m991njdW6Qy5kEcnUFEZxSrifsVBxudR0+Nk3L+HZcq0fBIlE8MUyjy+ZOusNV5ryzO3fqiIdR6uuQVUYrFSd2Roz3ffKts7XbrYZBglJlvGwF+JaCm9eqXGtWaLqmrN88ZMI19S4VHfo+9IQZaFi89XrLbaGAZqqcmd3TN0xMQ2VlxbLOIZWnCntM4MqzhJT3bBXVysoKNimSpLm6KpCUiC2NFWhM4opWwY32iUqts6ry1U0VeVBz+flpTKvrlTO1fF1PkxdutVdqrvU3Mfz3dZVap5J349ZrT/fs2yWLEq2jq6qpHnOJMqeWKebJVPuWUlOyTJwLZ1W2WTgJ7P7+MZaDUNVGYbyjLRed9FUKevw8nKVnGkzKaXlWVRtvUD0S8DHwjO6tH+W4rl2N0VRflII8U9P8atd4IeBny/+rg38kBDi+xVF+fPATwH/cO73/32kxtQ/AH5FUZT/QQgRP+1NLF1qSlUcnReHVWxD59WVMi8t1+bE3RTW6rKAEBY2yDcWSqzXXfwko+lZs9+9vlBmueZgaOozddEMTT21A8xhipJadDHmY73hUlBPqTkGQZpxo1yi7hrsDCVVZblm8/n1eqEfpdAZRySZoF22WKlJwW5DU4iznCwTdP2YxYqcMOcdnXHEh9sjWiWLq20P25CaFSVLp1WyeGmpMhNqnMYPv7jAC4sl6o5J6ZjkK05ztgbBAXpRmOTYhjyYv75Wffw5iwWyM4mpl008U+eFpfLsIJ/FgqZnUrL0J5LZw93pp0XFNo6lWzxvDPyErh/TLoqsl5seP/ryAt/eGKDrGm9ers9+93LTmz3/pmdKqk/1sbXqWt2VPpfnHHnRuTQ1DbcsnQLfulrnG/dlR/Vyw8Mp7nHJ0nl1pSLFHlslNvshVdeYFS6qrjEb/1M75NOEa8ouVphkhfCnnLc/8+Yl7uyNedgPuNzwiLOcMMlpeBZXWiWutEq8tFRhFKY0CkvxsmUc0HQ7yclCUTi1M6IsHiUIZNI1ff0vXmlwtV3iva2BREmWbHq+LKZebXmFIG+ZTuEaWHNNqo4xcxEFTnQn8yydH3t1aSZePw5Tyo5+QKz8uOLR80TVMfhjX7lM349pHFEwe32lwg+/tECSC7589eyU6eOiO5FC8a2SSdk2WK3L5FNXFCZF4vq1m+3Z799YKCOEIMkE4zAlTLMDXaezrOdniTCRh03P1GktWrRKFl+6UudRN2RrGNL0zNl12IbGy8vyGoSQaAxFkRbP05if355l8B///pfZ7PtcaXpYpk67QMD1/ZgglsXQJJLFz5eXKqiqQpRmhU6FPMD3/JimZ37m7eL9OGVvJCnYiqKgKfDGpTpXWpLSk2WCnKm+j8LlpseLSxWCOJvpPlxq6NiGRpZL6PyziPlTvEdnLKkyr6xU8Wzp1ne9XaJZsmb5x0rNYaEsmwi7w5jlmsMfeesShqYSJBKpoinKrGl1OM6ynh/e047ar5arDqOFFD9OiVNZ4Fur2yS5YBJl3N2f0CqZfO1mazYemmWLy22PSSTXT12VZhm6ptIuZVxqOHTG8YE1cmptLb9WGBVOxa2ShWvK51dzTb7vRguQa9OjfoCpa3jWY4q1LCZG2IbKpcbxNJD5HO5IsxlNpeqeX5EhzwUbPZ/tYchyxeFn3lzlp95cwTUlovjzl2r861v7TOKMy02XV5YrxZ5tsTnwD+Si8/P/Ihpf09jsB8SFzEHVNfmpL6yxOQgIk4wvXJoQpjmX6g6mrnK15c3Q/pv9AFAkwkRTsfRncwp+lpg+y0axTq7WnQNo4WluV3VkM+bzl2p879UmqAqeebLD1t/+1TskWc5//ocfo6P+Dz90g3bJ4j/5uXf4Cz/3Dv/FH/ncZ35dhMcuZm+sVjF0VTami7WtXbaou03udSZYuspK0SBab7qF0UiVt6422R2FlC2dumcdQByGScbuMDr3AsgolPIFFVunbOt4lsarKxW+uTEABNdaJbyZi6JBpcgpw7jEzijEK84acHD/nqdYAXz5WoPuJKJdsma55vSZfvlqE13TiJKM11bK6JqGZ+uoisK9jk+zZF5Y3j8fnqXz7765Rs+PuVRzMXWNNy7VeF1IGYbVmsNLy2WGQcpbV+oslG3e3RzwrY0er6/Wjj1PPW+YujpDlU/D0jW+cq3JqEBfa6pCw9UxNlXiNON7r7dwLY23rjYIkgxdUdgZRby3NWSpYnOp7j7zvntUVGydH3pxgett70ATZrFi82OvLAL8/8j772DdsvS8D/vtHL78nRxuDp1npmcaGGKQB4QYiqBESUZRtixTLok2KUMuW3ZZtkplsVR2iZJsUrFklstBpqUSTYJBpEiKFAMIkgBmMANMd890vPnkc768c1j+Y+29z3fSvSfevgM9VV3dfe8J69t7hXe97/M+z6UkdMo4XFO1Y5Ns8kyThaS2K5lNP35nlkwI/q1Dz7FhS+3B3/+lJUZBiqYIZps2z3oB66NS1qdD3TpInphEMgZq2PoPrYvqqWeqoij/9OE/Av4TRVF0ACHEL5/0vUKIEAinNu8fBf5e8d9/G/gfcjAx9WPAvyKEyBRF+W3gNeD90451GCR8tj0hjDM2hhGvLx39mluzNfwkqyzGW65JC5n0kJuvZOxclR38eSBFz+Smem3KDW7gxxUV3tAVllrOfsBYt5hEKXtedCDQsXSNLT+k78nvc67gc76/NqTvSZvd5bbNUtthvmkXOiqyVciLUrw4petKa2jT0LjWqbE2CBhHKaudo/aeWS6KfvN9Gu0nm2OCWF62XVNnbRBgFW5hiqIw37SPbDy3Zmt4cXqizfyrhGcDnzyHh7sT5uryc9yYdfm5NxfJhTiQuEmznJ4foyrSgtfU1Et1lDwJfV9qWwVJShDndGsmqmLwc28sHvucR6G8+MRZRlYIOF4U5UW6pKs7xTwTwA82R6QZeNGQ3/vWIl4i6fwlGrZRWdsPCtrvVVwCDE3l9lydoZ/weM+n5UimpqIoPNidsDtO2B0nLDUdbs3V0NV9MXRT16qE7DhMiuTa6cdYrv+NoWyR8eNMMjOvuPoZJBlBkhOn+ZHgVdNU7i3IpGBySXSkPBf7ttRpzmuLBs/6AWkmmG/a3JqrHbvucwF7nrTXrVv6S2nV2BqFjMO0aCXIsXTJzPvazS7jMJEi0FPjiLOcoZ8wChIUVWGl7Tz3cmXpKkGS83DPry6/ALdm60yihO8+HtD3E/bGMQtNqU02HVTNNaxXvoWvxMYwxI/kOdByDCxdrv92zaRdrJPdccTjz338KMPSZVt32eLY1eXXXMbnXR8EJKnUkntruXmgTeD2XB0vlq0ln23Ldt3eRJ7FaZ6z0nHY9SKaBXPoZaLvxyiKTFCV5yeAgWCtPwHKNXUwSdu0DQxVZRgktB2z2mtsQ+NZ3yeIJTv5OIyCtNK7MjT1wHlWzu0gzqQ+zijCMVWpBVkIzt46haZU6dJ0+Ly8KvT8mIc7Hn0/IUpyGrZeJQbL9fUT9+aqeGjgJ+RCnjl35hqFpt0EQ5NxzGVe1I7DuEikAmijiGtdFy9Oqxjx3kKDTs2s9k0vSqt/cnjhPnRV6NTMQqC9fuBs2RlHDAPZ5lyzNPYmEVEqz5e1UcibS63n/twgzvhz337KH/zK8pGCzy/+yDU2hiF/6m9/wtdudvgfff3G5X+wS4ZtyCJ8mgvqBavos+0JbpEc75WFijjHMfelAMp1nOaSydh1zSNzcWMYMgnT6h5yWdgYypbhUm9HVRQiXfDzby4QJBn1Q2d4lOaMwqSQYBGnju1tQ5UaSIOQlmMUc0p+xvmmzU/cm0UvEuOj4nMmeY6paURpRnPx6hNT6wPZTrjcdjCLeGA6Tr2/0GCl4+AW2qDrg6DSFDS0Ee+dQyf5PNgYBnhRxlLLZq5hESaZ1DKrWXz9tnEknnFNnaGf8GjPY3cc44UZrnm5sgGqonBnvn7kLM1yUZ1J0/pMV4UozdgcStbu+iDgdsFYVA9J6YxDeW9u2DpNRxJPwiSjFyS8sdhkpetQN/Vjz4SNQUCY5EzClLZjfCF78kVxltP5zwF/A9imUlShBvwC0sToxMTUMWgDo+K/hxyt973o75+LMJHOHOW/j3MI0DWV5jEv7PGeR5jk7KjRgSD+VcD2KCIXFAFeWiXNbEOr7DgP02ujNOPRrhTLjZL8wAFrF8GRUij4Xzaajk7fS4p2wjKTrFTVhTTLeViMzYsybhWWtj0vrrRyhnZy7MVbWoUXzom5YLfQhEGR7Qd+lOFHGW3XPLEHfHosrzocQ8OL9hkciiI//3EX5/VByDBI2BqFdGsmhiYpy1f9WR1TqyziixbuygXv8O/245Qnez5RmjEOU2brFluj8LmspNNiz4sK44CsugyoCtStUjjWQDth/YNMbJdaR7m4nEvqcdgYyYtrEEvRW1VVaDkmzwjRVQX3GBZfiTDJKpHnUtT5LLB0lQlyDVy2psphCCHYKPro14fBkUq6pavseTFpJnVKLgOqKp0GwySvWrFK+3TX1E5cC+uDgM93JvS9hBszLnVLP5Xg/kXgFHpmuqpiWmphLy3H3DhmnI/3pJjy9ijk1mydnXH03Pf/yeaEJ3tyPrfdffFyrZhv7ZpB30+wDe1KzoGXCdfU8KMMQ1cqG/LDyIRAIAPSMM3peXGVxFQ4O1P2JDiGRpLKNrTDcUS5J360OSJJBZMoxdAU8lye50/2fMIkZ3ccV4K8LwNZLk0/QJ7J07/3uDU1DSEED3Yn5DmMgoS7U4k4S9cI4hxDP/5zlEYEx8UwJXRNOsLJZ2WwNQwZFQYufpRxc/bForlX2dJyGJauFgmoBFM//qwu58HQT3hWzEEBzNYtdidxdY41bePKGUgyiSst7cv3a2j776Vm6Udit3GYMgoSltsOu5NIsve+ABxONOa5NC+ZRCm7k5CbM3VURbo4Co5nCh7G3/loGz/O+Ge/unrs3//SN+/ym0/6/In/+vt87UaH1xebx37dq4TpObg1ktq5QZzRcU0cY99d7vAaLOM1kCLOhy/40/HEZcIppAxkW5rUyLR09cQulgc7HpNItuzemKmxPQ5PJaa9N5F3joe7HnMNi/nIOrB/lXGYbZTni4qlSBe8l9HSWCblQb63W7M6o3A/Ts2EYL5hH5jXdUtHL1zvXtY9J0yySuO2jOcf7/nEqdR8fmPp+DViGWoVe9iGWklpXBbSXBDEOd4hPbmeH1d6fX0/ufICnK6q1TuxnjNvtkZhkSTOaFg6qiJj06YjSRfPY+7bhlZpZ172enxZOEti6seAfwf4FvCfCSGEoig/I4T4F8/xewfASvHfzeL/D/99EwhP+HsURfmjwB8FuH79+oG/a7sGX73WYhJlvLXcPNPLKTfm48TAs1za/r6MKnqYyFaK6YxozdIZh2mh37C/cG1D4/5CQ1rkHhrb80TNW67BXb1eadRcNt691uF6R7r9vKgPP8n2HQVcS0ORhdljA2Db0HhtoXEgE7zSdgiSjNmapOJuj8MiMPzhvmiVuDVbk5uNLoV6NVU5QhVNs5xsSoW9fHalne5VwzV17i80EEhb6STLj61Mh0lWCf3pUwHGZVGNa5YuxT2V/YuIoij8xN1ZBkFC55QBfpTuj/MqUDN1BmmCa+0Ljd9faDBXl8zGF1X1FWXfiv6sWC6ES6/CPvgwFEXB0hXGUUrbPUqXtnSNG12XuNAFuizcmasTpbLFF+DmjGTJHhdI5rkgznJEsYcqimyhfBmM2fmmTdMxCmthheAQk69EmGTVWpEJ32LdvGCe1Ip1NS14PY0vrbS50ZWt1lfBnH2ZWGo5FVvnpHldM/XCxVLh9lydJM2vZCzXu261Zx9G+S7LPUC2Z8u2mZql8+nWuPraq0pKHRdjaKqCY2oE8fFaS4fX1Mk4OObVjkOnZmKfcB7bhsZriw2y/GgMU0JXFe7NN9AVBdvUcS2dUXGpeIXqhxUatsG7N9pESYZjvjgGAnnBjAr2Xt3U6SF1zmzz6uMYU5ftTdPvwC6cIrNcVHthmGTV27X0/fnzskSgj0OUZmiKUsWEqqrgWhqTKMUx5LgWWg7Xui4CaDkvTj7/tffXma1bfP32zLF/r6oKf+oXv8w/8ad+hf/dn/8ev/zHf/yVvQged3epWRqTMMXUpQ6to8p3DRzbhvQ8TMcTl4nVoi3T0lUEknldO+ZOEKd5tQeYmlolwE/LjKxZOrvjCEXd1xc9bn9caUtXSlNX0RTllHvhxWHq8jMlqajWWZTITgOtMM45jKZj8LOvzRGngu4VSLUcB0OTcylOc+q2XjnUSZy8NmxD493rHV5bSLEM7dLvo6Vr/WLrYOKpZurkIiTLxUvRw9NUhbvz9eqcPwk1SyeI4yIm07gzV2MUSv20F51117ous3VpZPMqEWvOglOfJEKIbymK8vPALwF/p9CGOu+t7VvAHwf+XeB3A7926O//MfBziqL8OeArwMfHjOfPAH8G4L333jswDtvQeHuljYAzswGud2sMA2nHO/1Ss1zw6bZ0RFhoXq3A2NogoDeRk/LufL0ax1zDolVcYA5T+E46EExd5eZs7URR7qusICqKwuxzMtC6JkWtn/V8/Cjnk60Jd+frNG1p0a7AsTRERTn45+Vi96KMjmvISi8KWU7hsnMVn+7lQlGU6l0dd1lOspxPtyaF45CFY9rcnqthaGolqvcyMD0Pj5uTz/q+ZNEZKtdnHJJM0LYN8hO+/jw4af4YunqqiogMsBSGQU6/0PW6ijaKa12X+WZ2pM3yNIyNUmvk8+0JmqqcyzX0ZbSzgLw0xFmOgnLi5eX+YoNx0X51WVBV5cAzUdWTf/+DXU9WpwpB2NcWGzSs5+uPXCamA7HjxrgzjtgchmiqwvUZhyDOq+T8i9bN3fk6kzBhXLQglG2jJaSTy8sJXF8GnrcO8lywNggwNI2ZetEKPrUlXOZzmN6zp7FVOK8Zuky0zDetSs+rjFduzOzHIVeB6X14OsYAuDMnNfiOu5weXlPTUBSFO3P1Y9exopy89kpIFsTJf/9oz5ftCTWLGzMuhqbiGBp+nJ262PCyYZ/yktVyDZYyi892PHpegqGHzDdsXrcaqMrLO7+PewfT82BzGLIzjmRcOeMSJHmlFflFiYDvTSLWB2EVB5bjuD1bY7XjEMQZuYCOa5z6opbngn/42R7/xJsLz332M3WL/+MffIt/9b/8Lv/Pf/iQf+knb1/KZ7pM5FN3l7mGVTmfzTds2o554D5xUkLKNXVuzMrEefcEC/qriCcO76EnmRo82fNRFGl0EWeC1wutxNPOyZZj8MZykzvz9ULiQLrjmrrKvfn6EYJAiZfFwNRUhfvzDdJcYOpqEQ9ExGnGzZnaifqD9ZfcEaKpCveKdlFTV/l8Z0KaCVRF4dbC85lrsrPjauIQy1C5NVc7MnfLjg4hpDbTyyhEnkazeqnlyG4XVcYFzwYBhibbTa8/R0exxMtkBl8FzvQWhBA58B8oivL/A/70ab9PURQD+OvAl4G/CfwfgF9RFOVXgSflz1IU5T8SQvwS8H9HuvL9EvBnhBBn7u8474XCPOHymmQ5SVraOV6tBa5f0A3DRLIhph0Bz3P4Hyfs/apAumDoRGlClsvsuqmfXWzeNfVqU/HiqPr+MMl+6Cx9z4NoijkTpfmZW7teFsp+7jDJXyg8ehFctD1NK5wDk0yQ5DmWejVz6CIuJGohDgyykviqHkZhkiOEdAT0k+zYvuzTXuCuAkLIdkqAMD1dS9DLhh/LMyHLJRvxrJRz19LRVPXYM+W/T0jyvLKRL/Vm4HITUi9C2U6QpCczsE+KQy4L0/vw4fkgGY7nW4tXuY69Ki7aZw7WLP2lJdivGq6lV5o4fpRB4+Ln2GXDK/ahOJXs9rlXQAqhnMvT8SPsz+PzzOXvb4wYBgk/dud4ttQ0fuFLS/zl767x7/+3H/P731liuf1yNeFehPjA3eVgK9NZ7hOvquxFeXYLcTHphTJhULN0PtuW7WhxKuVgzFeACaeqSjWOMh5wDL1g0Xzx4ytRjrOMqwxNtq99kfcwVVGOFQKXLHmZUCv33FcF5b6VF22Ilq7JbqnfIV1Az8NZxM9toCGE2BFCrAO/WPz5PDAqBM6PhRAiQTKjpvHrwJ889HW/VPx7BPyB047tZcA2NOYaFn6cXrll9mLLZnsshU9/GIXLzoq5hlVl2C8jgTZbt6rLx2UyMF5l1EyNmbpJlOavtFDx0g/J3F5q2WyNwsKm+9VM+MzUTcJEtnW2X+F53rR1OjWZ5DupsvdFQlEUlts2gyB5ZV1MFpo2WR5gG9q5LuI/LOvuqmHpGgtNaQiy8AXZKi+2bOnC+JLE9Y/DD+N8WO047HnSHfJ3IlxTWocHhYvuq4jFpjwXv8i5exiXHT8C/NqDPYBTJaYUReFP/JNv8c3/y9/n3/0bH/Gn//C7lzKGy4JtaMw3LbwofWXn1UUwHQddVry/2HLYLuK/VzERUMYDjnm+eOBlQMZVDn0/ZvYYN+ZXAdN77hcVD7wIqrofn77Kd7vLxFlm9H+IFD8/LHL+88BPAH/ssgb1quJlberT7mD/fYBtaJXw+WWgbF/87xPKQ+BVxw/L3K5Z+qUIsV8lDO2HY54rivKFieKeFjN168pFzi8C29AuNB9/WNbdy8B802b+C/z9rvnF7y0/jPOh7ZoVQ/R3Kl62A+NZ8Sqei5cdPwJ861GP61331O9jtePyL/3ELf7Tv/c5f+THb/GVa+1LHc9F8apeui8DVxEH1S2d+is2z6dx0XjgZaFbM6/E2foy8arvufDqx6eXjbOkgn9CCHHEeU8I8f8FfuryhnR5COKMJDu9sKkQlyN0PPBjPtueXMhhKk5zwuT4lsG+9+Kff1mf5aLYHod8tj2pbGSTTH6uyxzfaX5WkkmHg9KC+WnPv1Jh66vC4TldfvbdSSSfs3+5dr3nQfmOS5RjLO2J1wfBlf7+MMmmBBfPhsNzKYgzPt+ZsHbJYy7n43lweIxhIsf4tOe/Muv+MMo9cfeEPStOsxP3u4siTDLiQwLX08/p8B71ReHwvC3HKITURfp8Z3LmOePHKcPi2W+PTyQ1/45Gngu8KEEIcWXvOs8Ffpw+90w5vDb3ij174MeXOpazohz79Hx72vN5sDM51Zq8yj3neWPJsvyFz/xVRbknlc/uRfvjy8b0fC7HmOWCx3seD3e9M8XVFx3DaeeXEOLSxvjB2ogvrbbO9D1//GfvMlu3+Lf/6ve/sHM4esE5Wo7rvOfJF4XDZ3j5OfJ8f384b8x3Eg6fFdPv9CLx21VBCHHgOe2+IudLUjh4Pt7zyIr9JC327pcJL0qOnBU/TPfBMs5/1t+P868ybv4icRbG1POaWF85ruOH60N+9ZMdZuomv/CVFcIkr1zfmvbRntynPZ+BnzBTNyvmSZhk7HkxdVM/k1Xv+kCq/JeC48f1/6ZZzvowJM9zOq6JZWgMg4SdcSQtr+MMIeBa1zlSJVwfBuS5HN/hLGqYZHy0OcYLUpquwb2F+kulXIeJtJ9tOQYCKuvpzWGIbah8ujVhexSiKLDcdlloWniFeKlr6mS5wItTaqbOJExZH/pESU6nZnK96x55lo92PX6wMcIxNd672T2Wyh2neSX+uD4IiPOcxaaNa2j0g5i6pbP4CmXN/TglTqVD2fTn3R6FbI0iNFVhrmHytB9g6SqLTYvffjbE0TWSLKflGnhRiloIR06ilJ1xyChIpQjgbO3C7WlpljMOU1zroIZDlGZ8ti0tw+caJgM/IUxzZusmW6OIURDTqVl0XOmc5cUprqGhqYoUdByFKEhWw4uqfD0vZn0QVI5WiqIwChMe70ohzFuzNXRNkcKYwI3ZWqXZMQwSVIWKNRAmGQ92PABuz9VIspxRmDIJ5bvwo4y2Y5yZNl0eymkmuDVbwzG1aj7muWRhthyD7VHIJE5ZaTk0nP0xlWtJLXr2H+x6+FHGUtumbunseTHDICHLBD4ZbffVYUJkuWBSzJGNYUiayT1x5tCeuNbz+NP/3aeowB/9mTtn/j1JljMJU+q2fkSTZegnPOnJ+XBnro6lq2xPpJC4oSrYpspaP6TjmmwOQ1qOwSSSFzI5N3VqlsbDXY84y7kxU7tQu4gQgmEg7eOnhTanBVxXOw7jMGXgx9jF2ni859GpWeyoEcttGz/JqJs6mRDsTiKGfkKaC2br++K2YZLzwbMRv/l4j+1xzHzT4g+8s0TN1gmSvHJ//J2A8rlauoZjatXZ3bB13n864Gk/YK5uMt+U+/xa32ccGvS9mJqlc6PrsufFKMrZ9bsAHu15eFGGa2ncnq3xrB9QszS6RQtDEGd8vj1hEMbc7NZYall8uj0hzXLW+j5vrbTYGkkn2Vuz9UsTu06znId7HjVTo2YauJbGzjii58XVXCmF/+u2zq3ZGqMwZVAUOHYn0Ylsx74X82B3wiRMWW47z7WwPg+8KKXnRfT9BAXlwFj8OOVXP90lTHLuzNeYrVsocETYfxp5LipX4zQXqMAolOfk7kTGXTdnahcyushzOQ8d82StrZ4X86zn82wQ0HVNlto2kzBlZxyxNoCfujeHoijkuWBSnI+6ptL3YsZRwiRML6wpU+6ZtRNalR7teYyClI1hQLducneuzsYoZOgnNG2Dnhez0LTlBT2RluYghf2f9Hxqps61GfdCukSf70wIk5ymo3Ot4/L+2oC9ScyNGZe5pk2a5QRJjqEqjMMUvyja6Zp0Ket78blMivpezNog4F/4sRtn+r66pfO/+vl7/Bt/8QP+/ic7/MxrL5eX6ccpD3Y8KZA84zKJUh7tekyihHvzdQQw8BMMVWFUuPHpqsKNmVeDdX1S3NvzYtb6QRXT7U1iel5E3dbJhdzLOzULexKz2LSZxCmOoZELwd4kJili1ek4EWR8VcZmTUen7Zo4hkaYSlfcrWHEOEzYGAastl1GYYJlqKy2XR73vCp+O3xeHI4tL4IwyXi05zHwE5bbNgsNmyiT+qwKsDOJQAgmUcrTnk+YClbaNnfn62wMZCFqfRDSds0XrvmLjPG3nvTp1EzmG/aBuF7XVDaGAQ92J7iGTpTmjIOEp32fG90ai237RMZSlGb4UUbTMS58Hva9mH/9z3+PN5eb/LGfvVf9+d4kxosyIKNm6WiKQs3SvpD29jQT/PbTAVkuuD7jMlMzGUdyLhuayqdbYx7tesw35Z1hFCZ861EfW9P42s02c43j97ryrnbZ7/0qcZYIe1tRlB8VQvzG9B8qivIjwM7lDuvi+PXP93jSC3jSC7g33yAHHu/5LDZtrs24rBxqeyoDsb4fV4mptUGAH2X0lRjXapxaiLJu6QyDhJqlnRhArA9Cvvu0T28iXb9uztbIculesDmUvc2ldXj7mJ8/CtJjL8lrg4Anez5bo1C6kABvLjevxFXsMNIs5/MdmZQYhynXZ9wD1tNRmtObxDzc9UERNGyDvh9TM3XGYcLri00e7k4IYqkPlRXVEOkqpx5xChJC8IPNER+uDxkGKWGc8/Xb3SNCtnGWk+dyo0sKsTsvTPl0e8zGMELX4Cfvzb0SbQJlgkQICBv5gfbRoMiMj4KEjaHPKMhkYi9KiZOckS91U/pezLO+ZPjcmnV5tOezN5FB7Y1ujVGQMte4WGLqSc/Hi2Rf/xtLjWqex6l81gAfb47p+/IwLys5Az/F0DRMXeXRnkyyWIZKtyYTA5/veMw1TDRVPUViKkIIOdfKuRFOCWF6UcrnOx7fetijZmn8aJLxzmr7wPO5PuPScgzGYVqJxw+8mF0vRgjwE5mc0DXlWNv3F2EcpkSJfCCDIMYxHZJs/xn5ccruJOIffLKDoijcmHH5+TcXSHPBZ9uTyi3kWtclzmSCDOR+NQwS/ChjFCa4pkwQviq6HwCPi8u6oUtHroGf4B6zJ/7V723w0eYEgL/14daZf8/DXY8oybEMaXc+jXLNCCHX1s444sHOhGGYSNc9VWESSYHO63W3cnjaGAZ0ayaWrrHUsgnLd+jHF0pMbY5CdscxiiLd8sr3VVa90kzw0caYUZigKooMvnPBOMwQRKy2bT7f8So7Zl1VGPgJn21PuNZ12POias8QQibXPt4aszmM+GRLOlPN1W3mmzZJmv9QtIKeBhvDkL2JfK73FuoySE9y9sYRT3oBO+OIvUlIy5XvdHcS87QXIBCstF3WhgFDX1Zw9XO4FJbzLIgzPlgf8tmWh6LAz742R8s1GYUJPT9mbxKDUOgX//1w1+PufJ2PNsa0HIMgzvHi9NKEht9fG/Jo12fXi3hzqUG3ZpGkOYqiVHMlnBo7gFMkQ7NcnDjXwyTjWT/gO48HgGASSdOAyxLrDmJ5DiaZfB5txzwwllGQ4icZIpfFqXI/1TX1xNaRJz2fYZCw1g9YadvsejHzDZudccRcw8KLMnkpvYAz09ogYOAnKAq8tnh8zBgU+9CjXY9hTbovp7mg70uXxFGQ0nKNKtlp6irXuy7P+gHDICFMLq6H8mjXI0xyTF3ltcWjCcUgyRiHSZEcctkbR8wVz8o2VFxTIy/OqDQTtF0D29B4vOezPgiZb1rUvfjc81jazOfVWH6wMeIffdZDINjzYu7M1VkbBHRrBjuTGENVaFgGjqmhKqBrCu459+kP10cAvL1yNsYUwP/ga9f4T/7OZ/wH/92n/PT9uZcqSi1NRuR/B3HKzijkWw977Hoxn2yO6bgWdVvHNtSicKmy/IoUZE8T9woBn25P2BqGJHnObN0iywSjQO7bt2ZqPO37jAKZfNZVhSDOedb3WWrZB+JEkHF0mgnWBj4DX6fvyfNDVVQ6NQNNha1RRNPR+XR7DEih/UmUYqgqqqIcYauU8QPAzVn3wsmpUZgw8BM2BiFxkrPWD6hbssDQtA22R1FRRE14uOsTpTmmpnK9K6hZGl6UVc6uL1rz54UQ8KjnM4kygkS6THtFXH9/ocHATxj5KRM1xTFUnvYDnuwFgHIi4SPPBZ9vS4ZVPUgu3Ko7DBIe9QKeDQL+uR+5Rrsu51fN1NkjRlUleSLLxbFx5MtAmuf0vIiBn1aF+jSTxiT35+t8f33M1ihk14v56o0OD3YmiByCPGMcpsydMORHez5BnKFrCm8sNV/uhzonzrJz/2+BP6coyv8L+M3iz94D/gXgD1/yuC6M5Y7D2iCgZuk4lsYoSBFCVvGT9CjFd65hySpiYz+oMVQVyFAVBfUMB8z1GVe6gzwnSFMUyHM5nlwIhIC2a1QJHUVRyDJxrBjv9eKSetzPN1SVjmuwPZZZchR4WQRFAdXBmBX/MW09LYSg4ejMN0zSXGAZGq4iA2BdlZ+lDEbSLEdVFZqOQZRmNB39yOdVFIWZmokQUvxbUTiWvl23dOYaFkGi0XB0kjTn+kyNT7fkYZPlnOn9XiUk1bX470N0cBmMhpi6dLiI0gBFUei6JrYuK0Q3ZmTlv0SaCzRVJgbiTAa5TefiYollEqecu+Xja9gGsw2TKMnIcgNQ8OKUxabFOMyoWzqrXQdNVap3Fac5miLfZ9PR0VWVmVOIZHdrFutJQMPenxszdYsozVEU6SITpRmKIp9DXqyEdIqyW9J3W47BwI8RQLtmMAgTaa9ct1jtuAcslc+Chq1jGSpZLmg78jPVivkYpRlzDYvPtyfkxeLJhXwOudgPMvPiPyxdo+1KRs9s3SwCsoyOa3JrtoZZWN++Kiifc5oJVjsO803r2D1rpWPjGgoZMpg78+/J9ltNDmO2LiuFqqrQdo2CRWPIip6pYeoabdfk+oxL2zXZGMqEpaooJJnANqBuaTimSpyKCyevy7EKsb9XAszUTOI0J8tzhoFcT6MwKZwhc1xTZ75p0a1ZbI4kCzVOc8wi6Gy7Brp60HnG0FWWWzY3Z+pEiUBVBLahI4op8jvJma989+Vz1TUVkhxDV3ltoYYXS1bPStuhUzP4bBvGakrPj6hZGjVTrxJT2jmey2rHpe/FdFyTz3bG1ViiYo9rOQauqTHRVWqmRg6stG3CRJqpyKS3gqkrlTPbZaDcO9J0f41065LJOlOwuVY7DgM/qZJx5cUlKwSlj4OmKiiKPHfjXF6CLtNBrhy3oancnKmx0LQPjKXtGlzruEzChGsdt3JKft6clkUpmfAQKNWc6dQMVFUm5OwLMonLcUuHsOMjr7m6xSNTY7ljoxSXs6ZtoCryMl1+hriYO0mWoygCRQHX1FCUi7tqlrHFcXsmyPksclhuOeiqQsMxKi2newt1XFMnzfJqP4vSnHohiG4bKoZ29uTuNBRFYaXtMAxkF8PDXU8WfMMY15TuaZqikOY5uirdaXMhWGzZLLVsBOd3NPxgfQjAW8tnv8SZusof+9m7/Jt/6QN+9bNdfvLe3LnGcB60HaNofZQGQFFhAFQztSp5mAsZfyy2bPIc2q+I/k8ZR8LRuHeuSEDpmsLAj2k5BrteRNsxiNOcmqWz0LRoFfcekOds+f7brommKgfiRICmY9DzY2y9EBBXQAgFFEgywb35emGipJLlOVvjiE4Ra7ddgywXzB8ywpoee37+TtL9MdoGtiGZbTVLx0/2XTGNYg8wNJW2a9B2DRQU6rZG09FpOvqBRFwZj5205s8LRQFH13BNDV1Vqn2rbFVuOQY3Z1x0TWWlbbM2CFnu2NQs7US2lGB//7yM8RqaiqEqdGsGxtQe33INXrcaqIrCJ8V98LDsw8uCrqpVR5eqKAfi51yI4nnZNB3ZGXC9K9nNhvZ8Ddfp5yiEeKUcHE/CqSMgIcRvKIryo8C/AvyR4o8/BL4uhNi+grFdCN98bZ4bMzVqxWIZ+QnXOjY1xzhWJHqxZR8RN1/tOFi6yp4X8bTnc73rnvpy+qJWqdWOU2hfpNimRssxCnqenGhly9ZxCRNFUQiTnM1BSN3WD7TzrXYcWo7BV663mUSSvvqyLquGpnJ9xsWL0iro9eKMJz2PmqlzvevyzkqLhaaNoUk77KRggZi6Qs+TVFwvSqtDdbll03bNA89dCJlQUFWFH701w1zDoj+JWWjbxybyJkVLQC4Ery02qwPr7ZUWdUtSeGuWzrO+ZGctNu0vbPHWLJ3VjnPEXS9KM6IkqwLAtquy2LKxdBVNlQeqbcqNbbZukRX6DEM/Yb5hoTYVvmy3Lo2ieq3r0vflJb98N2mWE6VZxaS6OVtjEskEACjM1BUE+7bD1zouW6OQKM1JMsHNWfdMVabjhBU1VeFad3+T/vJqC7s4NN8qqgUzNYOdcYhjyABjdxLhR7IKvVNUvG50XeJUULcvtn4M7fjqy/Rec32mhqLI4P5OIWhp6Rptx2AcJyw2JathexRhFnaxe17MaluuddtUX0nnwGsdlz0vom7pPNz16Puy0n04ufNPvLlEmAjyXPCzry2c+ffcnHUZBkmV+JuGoigstmz8OOPT7QmmprLQsrg7X0fTZLtHt2ZQs+Scm6tbheW0WbT5gKap3J2/nAraUkvufZau4pjyncVpTpJJrQDb0LjedfDijDt6HUNTMXWVJM/3103XZRQk5EKQZTkLTfl5yp9XQlcV7i82yITg1pzLXM3i+kyNpqPT9xLajsGgaFvp1s0fChHQkzBbN1ELGn4ZhHpRwkzd4ivXu6zOSEbyfMNGUxWuz7gM/YT7i3X8OCMXcGPWlSy1czAtyvMb4K2lJkLIpHTd0vl4c0SU5Ly51OS1RcmKLiuiSy2nKBYcbFfYLvbFwwmZs+Kt5RaOofHOahPb0Gg6BoYqL/ajMMHbSbnedY+sSclSluPZnUQMvISVjo1TJM0MTeXufF0WhhB03PMLs5aXrOkzt2bprHQku3S2brExDOh5Md2ayUrbwTY0vnajU339uGAYmrrK056PoalH4rlrXZfdSUS3bqKgcHtOzomGrV/aubjcdjD1CNfQj7S4I+BpP0BV4CvXWgyCGq4hY79hkLDScWjYesXYutZx6Xkxpq6wPZKf3S1ixYvGJze6NQZBfMDFLMsFT3qytWmp7fD2aotOzWAQJNyerRGnkk1Qsjx1TeVaV7Ydz9bNih39jbuzl+KO1qmZVXJLJk9jWk6TN5aaPO0HXJ+xMTQNQ4uYqZncm29cSmfAB2tDVtpHJTROi198b5X/9O9+xn/8dz57qYkpVd2/oK4PAsZByu//0iIDP2GubpIJuZZrpkHL1XEM/dJcDC8K1zw+7k2zHIRAIPDjjPmGTdPJeG2pgRCgKvJzl2fjakeu8bLAO9swub9YPzY+sg2N1xeb3J9vsDuJGIVSg8gpikCGrvH6UpMglpq412dc/FgSDkahZLUgqCRiAOk+J+SYziL/chJsQ+Mr1zrcm2+wOQyoZbLboOyWuVmcWTVL53q3RpBkzNUthIAHu5LNeHO2hm3INuXDa/4yYBsa33xjnp4X48epTKKZKi1X7lPXOm5RJM5xTJ2feW2Ovi/ZlFujkDTPWWk7qKpSvSdNld0Dkyi9FPH02brFH/jSEl9abVGbul/kec7Hm2OZ1G7axFn+hXXO6JrCT96b42nPx4tSZhsWQSwZb4Yuz/DtccTri/Ie03RkcSYtyC0lSrJLec+9XtzVmvbFz42XhTPtSkKIbUVR/j7wJ4UQ/hWN6VJgGhpvLDV50vP4q9/bJBdy8t80dEbh6WzB1SL7+6QXkGQZhq4eaQE8CXku2JnI5NJxv0tRFG4coid+vjORrYN+RNuROiyjYL+SGcQZ6wOfvp+wMQyJU9mC8u71Dte6Ln4stSHahV7TF6E107SNA/Tt7zzu8b1nI+qWzj/17jJt1zyQGDQ0lSRP+M6DIU4RdM01LIaBrHw07EKrahRWz3ISJfy339/kvRtdZhsWt2br3JqVB8T2OMLUD9L5t0chn297pLlACIV3ClFL19RZajn0/JjPdyZVy5Wtaxeq9l0Uh3/3kz3ZgrDnSabEKEj42s0Opqbtt+zN1dBVlSd7ftGe4vDxVkyQ50zilLeWW/S9mKjQe7poIG4bB6sdXpTycNdjdxIhhNTyuDVb442lJh9tjhECmo7OjZkafS+m50vbb6Og/W6NouIzKKwPApqOcSlBU6dm8bvuHFx/76+PeLAtW20GQULfkzas2+MQS9fo+RFbo5Bbs/UjwcXOWH6+52mZnBUtx6C10j7wZxuDgG8/7qMogoEfkwuFuqkzCmQ7HMD2SLag3Jw5WC3pezFhKgOUL9IK3jE1Vk2XnXHEP/xsjyjNGHgJP/3a3IFxDUKprTeJUn794d6Zf49r6se235RikUJQ6UwM/JivXu9g6iqfbcv2wXGYYhkR8w2Lhm2w0nYYhQk7Y8k83B5HdF2TflGtvYg9s37owrw5DKs2szDNSbKcH7nZpeUYPNqVR+xSkXCfXjfdmllpoimKQgN5GTk8voGfsDYIsXWd6zM1VrsuG4OAjzbHhGlGnMiguusZzNRenuZUz4uJD11CToIXpQyDhI5rHkm+AVVrrqYqzDctnvV9Pt2eMA4Tel7CIIh5fbF54Dwsz6kfrI94vOdjGyq/687MpbTCjqNM7iNewtPeHn0/RldVoiznK9faVcBYJtDDJOPxnodtaCy3HbwoZWu0L4Jdfl2UZuxNpG7Wac9229B4c3m/JSnJZCC+50UkqZCt375saZuG1DvyCaKMxz0fU1NZG5j82J1Z9rwI19RpOQZLF3CCFULwnccD1gYBqx2bd693Duyp3am4Z2sY8aTns2ZImYJuzWK5bWOo6oE4a71opQOqeGL6WVy1O6ihqUcSvOuDQGqZxAlRkjMMEqK0UbVVPOv7MvaLM75+s1vtZTVLp2bpfLY9JohlbDK/1GASpYzDiwkHO6aGY+6PM05zPlgb8njPp1szeNYPZAtzmqMpCtvjqNIi2p1EDAMZQ5dOiT0v5tGuR5TmNC390i+/kzCjaZt8vDnik60xQSxbhfw4491rHcl6v6QC7GfbE16/QKuTpWv8iz9+k//zf/MR318f8eY5mFcXwSRK+Y1HPYaFZu7vf3sJVVXYGARsDUPWBwNWOi4/dX/2xJ+xPQoZRymLTftC591ZcDjuLWNKL0pJ8pyBl9B2TX7X7S4Pi7Y0Q1d4fbHJxjAgiDOWWg4LTZuPNyX7JUdjvqGyNQrRVeVAET/NcnYnMaauEqV5tcZWOibDIGEcBsw3LPwko1e0id+Zq/G9Z0PZkeKYbBSx6s1ZqT2pqsq5dM1OwvY4BCHXq1+MT1FytkYh2+OIjmtULafTd561vs/f+3iHKM35xu0Z3r3RObLmLwtJluPHUqpjEkrm6u25/XmjKPDJlpT1WGxavLXSYrXj8mBnwgdrQ+q2LlsmbYNOzaj26Mt0jp1ECdvjiMf9gK/d3GcNPdzz+O7TAX6U8t7NDl+70b2U33celHppUmtSY3eyn4R6sDPh460xTVuyHkEWY8ZhyjCQWrt35uvMN6yqvXq149CpmUfuaj8MOE8U+keA31IU5R8rivLvKoryC4qidF70TV8UNoYhUZoxClKCwrXhLOr7mqoUGXOl0q85DbbHEdujiI1ByCg8nQNQqbRvGxoo8neXl1CQyZm+n/C0F5CkGbtjualOIhmkPNqVWkKP916dnOEgSCp3lfSY557lgo1BiBel7I4lq8mcoqlbhsrOoWeZ5RDEOZujg05pmyN5yVvrBwccH5qOgUBg6AqH7+mljlivaH9TFF45gbhxJOePgrxo6qoUQhWHsuR9Xwphj4KUnh9X1QdL1/DjlGf9oBIYv2x4BYXcMTS2R1L7KU4F4ZRTSvn6y2e+NgiwDPmsFQUMTeFJT87hR7velTnbjAtNgp1xyCRMGEdSt6PtGrKFKkgxNDnvptH3YjaHUoB+d3K1Tiflmh4GKXvjmDiVWlJS4FthEqWFhkJ24JISxFL7ZXccszF8NVzY/DithCwFR1uLN4ch68NQJlH6lzfmIM7IZcEVTZW6Prqm0vNi0oJnn+UyyPOjjM2p52VqatWeaukqj3uenJd73qWND2TABJAWunwK8t1Ob5XleTW9boxTji9IMrworbQxQK5VP5YMraBoDUBQtQZcNbwoZe0Me9GjPfnZnvSOP9fKz5Xl0pUoF1I7IklzybxVVKntdAzGUUKQZAzCRFbnLwHleLZHIZoq9S10DQxVOba9a2sU4kVZIcSaHnm3JZ72gup8P297Q9kyUzN1BLI97HABIM1yNochG4OQ7UnEoBDWz4R0PNsdxzzt+Rd2ZovSnK1xQJYLtkYRSXb8Z7J0FUOXD0RRFPpeUomFH46zyuelKJxLE/AqUM4HFbn3lPqHJeI0pzdJCOP82D27PMfLZ/C40Iy8TASJlKwwNIWdSYSuSlb+uHAkq1r3i3jt8H4phHyHAz+hfwXOwJahSm3NUcjjPZ+PNsf0/RS90B69DHkCkJ/zwa7Hnfn6hX7OL753DdtQ+X//o0eXMq6zIBdSrmToJ4yChN2ioGkZKl6UFwzdvIp5DyNKZaHQj7IvNIYoY0pTU+l5CUkm0BQpdD/dihrE8i7kRRmbRQKqbHW1dJXtccj2SDLhx1N3sen7QnnGlvvu1jCq5nj5d6XeJ0CawZ4XYRvakfV8WUhzwdYwYmskRdjLsRm6LOaOg5RxkB4bi0ZpTpjkZLlgGF5trJpmhRZwMT4Zy+/vvaNAEiaCOKPnJ1XLpnyWyoH9wouuxmEuyWSx/PPtyYFzRldVxqEsGEyCl+sSeBhxmtHzEiloz8Guq/VBQBjn7Iyjaj46ptSCHASJXCNF/FC2V0+uYE6+LJx5NxdC/AsAiqIsA/8s8J8Ay+f5WVeFnhcTJBnzDYtrHZfduQgBvHutg6Erkm55Siw0bV5falSU8tNimpavn1DJyXJpX62rsq3tWtel7yU0bEm9VDhYBXItDSNQqVkaMzWH2/N1XEOv+px1rdRr+mLpejtjKcg337D48mobVVGYrZl0j6FIaqqCY8oqo6LAzZkaNUvn3oJclLahHRAY1IsWg7arH6nyljpVUsBw/xnM1i1+5rU5vCg7UpVxTSkQuFi4wCkKVdV84Md4ccZs3XxprVJCCLn5CGQLnqqw3JKixm+3W4zChHGQ0qlZ1XzUVIWWI534yo/tmjqzNVntcQyt0Kko9FfUiwfsQ18mdGbrFrah0XVN/EJo8VrHYWcSU7d1aqZ0QvGirKrolM+8Zsp3WDNLcXGtem9Sw+T4edz3YvyCsnyeJOJbK00+2Ryx1Ja/u10zudaR7SxZLrUY+p5kHk5jWnvmRe19cZqzM4lwjfOx71Y7ksYcFu9P11TmGxadmommKHhRyuPCGGC6oqko7L/nV0RDqO2YfOVam3GY8M5Km8PaHzM1k6WmzSiMeWf1/NXlKM3YncTUTKkbVYrap3nOSseh7RoMPMlAbdgGqx2HOM0Kp0RxQCzXNjTuLdTJcoFr6gz8mARxobVTMjrLNmaQ58vWKOTN5SajIKnOmZZjsNy2yYSozqvpdWPqskU0yaTGxihMSBBH5mW3cDPNRF6xW250awXzj8o1dqV9/vbl4z7X81DqE8m96MW/U1OlQ5mmKvhxSs+TzLWymjrXsCrNxbolW6gcQ+O1hTo7E5nwOLyWS9ycqSGQiRrnHNpOQgi2i2dZ7tfzDdlKfa3rYmgqqx2nEKzVjz1HXFOameiabEUr23/Ld1uifFaqojzXIvkwDp9j12dcgjjjnZUWhqYeYZpoqoJtqDRsgzDNeO9mB11TWG47hLG88Bw+Y8+CJMsrrZiVtsvawK808o6Dqiq8s9JiuWUTJDn9wv68ZuoHil2aotCsW1XA/kW1N5fxz0JTto0utmy2RyELTYultl21JJa41nHYGoWAcqzmT1X51tVK7/SwDs95MH1GtV2DmbpJ3ZYss+1xhIIUy01zUY1XLeK1IM6LFn2Jhm1wfcZBiKPMl7NgHEpTD9m2uD/3F5o2CjKR/2DX4+3lJq6l85VrbVbazgHdmItgfRAQpzl35i4mttx2Tf7Qu6v88nee8a//vtdfKgO/aRu8d7PDx5tj5pt2dWYZmsrNWZearTJXt09ktRmqbB+X+k0vbw2NQplIK2PKjmviRRkKsmXtSU8WMmuWzk2zxsBPpPZskbhOUkHN1FBVhbvzdaI0p2Zq1UUfDt/L9u8LCy2b2YZsfzI0BctQiZIc19JZaMg409Y16rZemBRorHacqohUro8yBjlv3DeN6d3VNaVkS5oJqZtsaKRFe3/tGBbxatvhreUGQZzz+lLzSGx02VAU6aTdcs1KfqCEZagstiz6XsKd+f19fr5h77e827IbYK4QJc9zea6qyvOdVk8Ly1BxTJV783Wmj7uVtsPXrrdJUrg288WyispT/Ua3xvUZF3eKvb3cdsiFLCKV88rSNV5fbEjt1IJJ3XIMxq4U+T8uFivX2EzNOpZ9/qrgzJGYoij/PPCTwDvALvAfA//gksd1bgRxxlrR3pQXwWG3aBk67jLpx5IW3XaNYwMZ6TrWPLNo2FyxmemqcqLLy/ZYOjSBXDhN28DUpbOBFLk8+PvmGzZNW1I31UIsehq3ZmuVbfoXhXGYHKik3Zipcb3rHhnrwI+Js5zZmsXt2Tpxlh9oo5j+7/mGjaVr1bNs2Do/89r8kZ+50LSktWYhDj4NU9cIplxLStyarRGlOZauHvh5UZrxtCfnUZzmF3aFOC0GflK1caiq/OydmomuSXbMtY6LNrOftJmmDdcsndcWZe99ufmX1XBN1bgzJ8UcL1pdTLOcp32/cDrLuTtfRy8uYD0vxjY1ltpONcbDlNzpZ16Ou8TNGbeyNj0OUZpV7YvndRXruCZfvz1LlMqKWLdIVIBc76sdl5X20fXetA1uzdXIhXih29D6IGAcpvTgudbhJ8ExNd693iHPBVtj2cY6nYhtOAZvLTePjNE25HuO0uzS2ymmIYRgdxKjqcoLNQBarsE7qy00RTm2tdDQVd690UEFVtrnb7VZ6wd4UUYPGciZutS8S4vqcMeVCcjymZUH/FzDPrL/wMGK1c2ZmrScvsDeuj2OKqZDefEv//HjtEgw69iG/B0zhwohh9eNqe8HgOX4Dq8b29B4Z7V1YE/wk4w7c3W6tYu39J70uZ4H29C4PVcjScWp9qLbs3W8KKVh65Uj4cBPqvlfzvlyTupFMgCgW7eee3bPN22pu3RCfPAi9LyY7WK/1lSFuYZFzdK5O1+OJ0JVlCPvchpzDasyfSjHMP1uS5TaYq6lnbptKU7z6hyLCje3MJFFgpMSQYqicGeuzrWue+RczHP5zuzCue88kBX2AHdR58vX2nxptfXC2EpRFGaL/W+pJRO25fos46xy7p/WVa/cFxxTu7SWkdFU/KMosNRyDsgbDPwYS1cPmRRofP3WzLF7kPw5B3XP7szXKnfWi2D6jBJIofv5poWla8zWT74MHhevmbrKm0utC507Qgge7/kFAyU74hw237T5XbdneH2xQcORrceX7Tb92Y5s7749dzHGFMAf+cZN/svfeMJf+M4z/qWfvH3hn3caZLlgbxLRrVn8xD27ilXKZ+uaOvfmm9xfqJ/4flVVkcLfJ8zHq0CeCylDIeQd7t6CdLS8NVtj6CdEacZby80D59Via39s9+ZlIr8cr0ww7SdALE2TTo0Hkp0n3xfuzh38/NMumPcXGmRZzl6RXJ9O9GwMwmpNuZZ2oeS41Gl1D+iyltvAUsuRovDFPtjzYrJcMFuXhSbT0PjZ1xeqs+/BzuRIbHRZMHWVO3PyDnBcPGEbGm8ttw7s2SCfv3TQlNIr0/HtrhdVHQvPc1o9LRxD52dfmz9SfNI1lR+9NXMgrjoJV3FeTMM0iiKWrR8p3t6arbHclprX5Rq3dI2WKzWzl1r7hcVpjd1pHLfGXlWcJ8r+08DnwH8G/F0hxKPLHNB5kGSCUZhUG/AoTLB1rWIMlJtLngvWBgFJJivouqLw7Ud9QAY70y+q78UkWc5M3Xoue+N5eNEBPV19HwcpHz4b8nDXo1s3uT9fx7UMujWTOMtJC1G25x0UhqZ+odpIID/TYcbG4Wc3idIqWM5zKQRtqxpPehO++2TAfMPmaze6BzZP1yw2XyGO/Mw8FwwDWcU4SXDw0+0xj3akBsLPv7lAqzhM0lxUNvbTyQZNUVBVOb6TqvpxKjequn15IpLTLBejmB9xmlcBW5Bk3Jip4cdpZf96f7GBY8ieZFNTaTkGPS/GNTX8OCPNZQJQ9phfPNCYrtpOu5ysD0KGgaQc319ooKtSP2NrFLLYtllpOex6MQryAjcKk6rNahKm1WXpeXP4wHs5gRE08KWW1sxzLt5Vf7ul890o4b0b3QP6Iyet99O+Z2OqpeS4C5wQUoNOQamCicNY6/t8f2OMoggmYcb9xTpvLO4no04a42W95+fh8Z7PP/p8F8fQ+Obr89V6OgnPC9B0ReHZng8qvL50/sNSHuYZqnrwma8NAkZBWs1LQ5Pzcn0oBfAXGhZzU0FRKeCfZBmqolaabBfdW/f3w4NUdyFEZZU9DhPuzjfwopSnPZ8wzbjRrZEJKWg5V7fw44wky2k5Bn0/qdb3SeMzNJUoyfhwbUgmcraGkkF8b77BrbkaPS+m50ntqvN8xunPdVpGmWvqcMpfJZM0ZvW74lT+u5z/2+OQvpfQ8yIyAS3bQNMU0lTwtO/RdAzmGvaJa/cily9j6ow67Di558VsDveTVkkm+GBtgG2ofPV6F01V2POkK5SiQijy58YMmnp2pzNN3d8vozTjr31vA01VWGpbvL4otUnSTO6VozCthHVVVcFWjz4XtXBAuyim1+jzYish5Pk8LfirayrDScQwTyp24WGMwoTtUYSmgGPqxybiDu8LpSD9RZimxnT8c2gteFNxTyZEpfshhOCjzRGjIOGNxSZR4SI6W7cYFq105WeUbLPkAFvp3GOtnofgSc9HU9Rq/xn4CU8KEfnbc7UDa2QcpgRJhqFJ7bemo1cV+IucO4oiW7CSVDAOYz7dHrPQtKu4rDeJ+Fs/2CLNBXdm68zePr/g/kn4vNAdvHMJianXFht8ebXFn//Ny0tMbY9DNEWhbuus9WVL93LLrpyYozTncc+jP4n5xt0ZZgoGyvSz1bUX32dOWv9XhTJOSjNxIGYL4qxq4U5yUTk1llqqt2dr+LE025mpW1LnqDDcGQVy32i75rH3AkXZFyifRCmTUH5fmguaRQFqYxjgGhpb44hxmHKt6zDfsNmeRBWpwNCm96aC1arKWPUiyIU40GkAECYpv/rZHkGU8mN3Z5it2wz9pCJjAAeYMuV7Pik2uiwMg6RooVSlJlgmTZr2vBhTU9kcSamGN5eb1V62O4mrIrymHBSLnz5LL0NiQAjB5zseq137CNO3LG69CJ9sjfmtJwNcS+f3vb2IdclJWwX5zvt+zFxRGNgaBvzW0yHzTZPFllPFfL2iEHhXl6Y3p8lPKApTe8Cr0eZ+Es7TyjerKMpbwE8B/ydFUe4BHwsh/seXPrpTIs1ynuz5vLbYYHMUyqyiEMwfqlJK8Vt50O9OYnRFXmKznANJCS9KK1ZGmotjXfwuA3MNC8tQiZOcR4UIW8+LmUQpCrDcdtmbRJXeSJzlR9rXXjU4pqxeT7tIHcb0Eir3SCEEf+ejHR7ueCDkZeHd6/vSZetFEHkc1ocBfW8/IXJcNWAYpKwNQrJc8IPNMe/d6KBrKmt9WTVUJge/Vy9ch8Ikrw6pw3ja9/GjrBCpa1zKYm/YBrfnZHtJfUo8sES5qW6PIh7seCSZQCCrD30vqf4uznL8OC1c+1SEOFj1uQhKqnTpGFFiepyKItfbk57UkhlHKUGcVwLzfpQyCtPKPbBhG3hx+sKA8EXvJYj3mW5Jlh8rdjsKEr63NqzEQGcbNroyoOkYL2RCnRbLLbtoK1KPVD9AXlq3pi6thytCcZrzvbUh28OIT7dHzDVsoiRjselcikvJRfH59qQKzHYm0QsTU8/Dg12Px30PFHi4e34Np9WOQ9OR9srTwdd0IKIoMgh9uOvzrO/jxxmvLzYRSJZNmSTqezGDQFrRA6dqUXsR5hs2tqFhqOqRQGi/PUeOdXMU8rQXMImks2ataAML47y6rO6aUSXYiuC5oqvvrw152gt41veJ0gxTk9XcW3M11gcBQsB6GpwrMTX9ua46IXpzRrKCS+3FNMsLHY6Q7XGIY+hYuiTF/+MHu+yMI8Ik48fvznFnvnZqNs1p0Txmvy4xfc4JAd9fH/H+s1HRtqwz17AY+AmTSDrxWrpWtW1dFrRirw6TnI83R1LUOEwIkxqqIs+FuqWzOQqrVoJ7C/UrZUqYutzDT3NB2hrtV87LcY3ChPWBZCXlgiPueyB16/wo5dGez82ikHOYBTPdEKkoUuvrotpNz4t/jjvHAXp+zMebMiGy5+1yvStZwEGUMSjWejkvnvUDJmHKBe+8wP4ZZWoKD3dL3TL5g58NfB7seJX2Y1m0DROZKJBs44Akk604X1ptXYro8525Omv9gGcbPk97IXvtfbOK7z7t8+nWmDDJadk6ozC9dFbw5zseHde4tDP2n/3aKv/mX/6QD9eHvDVlQnAelJpDIN+J1MrJSDNR6ckkWcb3ng1JM4FlaPz8mwvVpfXOXB0/yr7QjoqTULI0nxtTFv/eHIY83J2Q5VJSokyU65rK5jAkTnOGQUyrcOk1dfW5+36WCx7temS5YHMYstx2GFgyQRUlOdvjkCBOSTJZBO+65pGYosRK26FhyxjkoveBKJWaQtN7168/6PF3f7CNoalkAv6pd1dQpn7NSfvCSbHRZSBOc7ZHEVEi28dKUxaBQEFh6Cc8HXjYutQ1/Mad2SNjVQ49qrYri4EKXIr4fpBI/bFhEPPjd+awzpF0/Xx7IvW8vJg9L2L5Auz+45DlojrXynjuv/tom91xzK89iPm9by9St3U6U7H2Wc6Bco29qnvANM7TytcErgM3gJtACzizCqaiKL8X+NeL/30N+GNCiL9U/N2/BfwhoA/8FSHE//VUPxOZcbR0rdBaOdTmYqoIpIaPY2h0alLjwI9TbszuT7LpTec0i9iPU570fHRVUk/PsvA1RWEQxARJSruwAV5s2dUhnyNY64fEmez3viTX8ivDzjgiSrPnJkFqls7NWZc0E6gq/GBjhG1o1EyNXAgcQ+Owikb5To5biHl5NxMcKy4L8NpCnc1BAAo4xn57wsEL7MHvsXR5eQvijN2JFJ43NJWVjqTna1NjugyHtjTL2RpHGIecPcqqZRBn1SFcs3Q0VUEgNcWe9gJ2xxGLLbuqMKiKUglNX0YgW6LnSZG9ucZBKv1K28EtqqaGpmKbohJstXSN7WFIz09YaFpVC4+i7Ithn1azpHwvx2FaY+mkn+dFCQMvpmUbhYW8ha6qz/39ozDhWS/ANTVuzBxtTT06DuX57IfpPeaYn+VFKQMvxjJUFpo23ZpsEXre1iKZdR65gBsz7pVeLq91HTaGIbomkzZZLtgchUfm7mmgKRAlOUGaMwjOdzHsFwn9uYZ1ZG4sH5qXIEVRVVXOpUmY8Nm2tAxeatlkuaS/l3vJZcRx02u72Tx8YZXW9ZNo/6LVKNa3qkoXrN4kZrXrHtBKmt7qXjQftSn2cCZEwQaTP6Bm6bIF/BQBoNwLpYPOdIXzshK6J6FsaVVQWGhaB/Zvx5StXPNNC9fQuTVbo2Eb8mIg9vf44wTDpSOej6rItvOztjiUmlfNY9b6NNu65RjUba0S5e77MaMwQVMVyQItIvPL0A46jCjNJXtAU5lv2RiayrWuizq1926PQvw4o+OaJ56hl4Wz6D8FScbWKMQ2tGpcWrE2N4chozCmZh1trahZOn6cyXV+Amt1peNQs/b3hcvS5MuFYFgUQKfXhWvKuCfJBJ2pteMaUmMxSjImkbwkL7ZsxNTXXNZeFKUZ26MI19SYmWKbnbT/mPrBC7YQkm0axBkoAgXJEDvrvM1zweOeT5hkVTwF++wTXVMhyQmilPWBT6dm4Rg6y22Xnhex3HZwruB8+3xncilsqRK/8OVl/u2/+gP+wm+uXTgxNY26rdP3ElQV6rZWJaYMTSFJc9JUsDeRQvvl0WBoKi331WRK7E2iQhfYPhBT2oYsnsRpXq2ZmiW1SHUDojTl4W6MY+rcmqtVe/z0bHxRXKlwND7OhTTSeLTrE6YpXcckyTJqllbIKliVHtV00qtsuy1dxOcvQR+pHL8QAtNQ0FWFHIGqCL6/PqJmaVzvOgg4kc2qKIoUgh9FNGz9cnWmio+nqgfvX0LAIIjZLBwTbf2gW+ds3UIvzsfD8cMkSul78YnakGdFmktXZlM3j5jvnPg9h+5jN2drDPwUx1Rp2lej01WiXAOOKbXERmHCxjDkjlVjqSULgaZ+tMAJsiC/NQpla/YhIsurvAdM4zxps1+d+uc/FkI8O88vFkL8DeBvACiK8uvA3z70Jf+aEOLwnx0Lo6jA6UXAtTuO6fkRH2+NuN6tVRlXS9fo1kzSTBAkGXOaxb3FOppyUEDYMeVmmKT5qRZGz4tJUkFCxiRMT2wnOw5P+z5JKnBNg599vY6qqnRdk0wIvEjqjgyDlCzLj91gpwPrm7O1Y9kZLwtelFb6CkIc7HU9rPOhKAqbo6C65KSZ4JuvzfPGYhNLV1k51Ce70nYq0b/DWG7bmLr6XC2fuYbNH/jSMl4sdWLKQLX8ub1JxCdbE5Za9oGKtRCCtYFP34951gu5NVujN4lp2gbXui4DP66SRBfFTnEBBbAMjaatV8/MNXVcU5e03UFA3dL5qfuzRElOWiQFhJA28tdnXPYmMa4lBfSzXFxaZTFK9zXc0lwc0N5SCzp1lgs+35mQZDlvLDa5N9+QQqvjCE1Tadg617sue4VDUd2SLYfnGePuRLoytVyDlbZT6ddEiVy7h+ddnObsThLuLzQQwB9cXWHPi+TF8TkX872J7OEv2xjOyrwoq/EzdZOFppxjaiEC3TjGFetZP5CstCTn9729yLCgmT8voJBMCJmlLVtbrwr3F5t0a5Lx2bANNobBgbl7lnf52mKTf/T5Hl315MDqeYjTvGK4xmnGnUPZ+5LmLwpXMS/KuDff4N58naSoljqmxt4kZqllc2tW6jXdna9haie3B58F2+P9tW2b2pFAzDY0xmHKp1sT2oVuwDccnc1hyO4kLtoL5J5Ttwp9vrqFH6eFYP/zn9uXV9q0Cy2lT7fGpJmgWVSUb864lXh4iel95lp3Xy9ubeATFKytmnU5LNHTYM+L2R3HDIKYhzsTrs/WWCl07O7M1VntOESJqM4BgJ+4O8t6P8DQFZqOeawuxDBIiFO5ZkZhciaDE5BOebJCn9BYaqKqSnUma6pkeJXP6KvXOyw2bZJUyg0IZNLo7ZUmfpwhhDQCuGyUuhKGpvLN1+awTY002xfKj9OcTAgGfoxtaMfubdOf6cbMxeOMw/vhSciFbD1Slf0LWs3SWWrZTKKEpm3S8+Ij73al7TBbN3ltoY4/VdCZRrkvlCi1LC/aOlLGdMNA6qDBfuK4YUuTko+3xlKMeqaGY2r83OvzrA+lRp4fSYfYa5395EvJ4FntuAzt5NxJmVIDZ1CwMMszwja0A3pidUtnuWXjmCrXp2KxOJWsiCjNma2Z6LpKzdTOzOT3Y9k6BbKoML0fztZN3lltst4PedLz+GzbY7GV8bXrbZbaDnVLo1uzrqQl6cHOhG++Pn9pP6/tmvzcG/P85d9a43//+18/9br5a9/b4L/69lN+8b1V/sCXlgEpKXGt66Cq8iI/38hlYltVcEydURCzN0lYaTv4ccqd+Rqf7Ujr+Pmmdea97WUhTLKKKZLl4ogmbd3SwYKnPZ9xmLLUsvmZ1+dI0pytUSS7JVTZ/nVrtsYwSLgzJ/UYjRMu79NQVXmGeFHKjRmXMMnp1AzW+gHduomtWyy2HOqWjgJ8tDnGNjRudN0jGmeleVGluaifP36wdY3ltl3tXYqi8KWVjlwrQiaNwyTnwc6Ejmux3Dm4Bg/Hvs/6MkE08BPqZfL3EmDpsljfdgxUVZGmMkV7+Hee9KUObFEsXWg5CCEqNvhy+6AIfznmpz2fNJN76NsrF0/o2rpGy9G4P3d6NvDhmO3tlRaLLVnkvAwW12GoisKNWZd8Kp77+TcW+E23z1evt9F1jdmaTHQebO88mAPYLByuQd4bL0tm5mXiPK18XwJQFKXBUefvM0NRlNvAlhBicuiv/qSiKH3gfyOE+K3n/Qxd3e8RtXQNXYPvPh4wiVJ+5GbKj9yaAWQm8bPtCVujkJWWDV2XpmMwiVIe7ExoOka1edctnWGe8Kwv2xue93LbrsmgYNO4p3SxKG1LDU0lSSV9dakthXqjNOPXPt+j50sXA12BQZjS8yKazj7NuOfFPNiZVM5RoyB5rsjqVaG0CvbjlFzkqMq+cGuYZDza84iTnE7NZLUjmRZP9nwsXSWIMjb6Ie2aznLL4q2VFs/6AU97AUvtfX0B9Zh2Jy+SltF1Wz+Wzn8Yqiot4x/uTpipWSwViYy6pVfJlt1JVCWmtkchW6OIzZHPKEjp+TEtR2e+Kf/+cGB7URiayjCI8eOMXOTkhWPF7dl6dQD+YGPI4z2ftmNwp0jGth2DIMno+3HBmFJP9TzOA01RKqvhYaDQm0gxwGkdiq1RyPfXh2SZYODFUmDYNlAVwTCIsQ21uliXeJ4jlkDOsVzAk55PmuVc60pGUJkw6k1iFgsXJJnEg91xxAfrQ1xT570bHdQiiFMVIZNRtomhKRiaysBPcEyNUSCd8Baa9gH2RMeVFwrb0LBPqPZnhXPY+iBgFCYsNPaTnKUL2s44qi5iLcfgWd/nw7URpq7w1nIL25DVQE2VX+uYGpah4eaCUZFs0gstlJqlH1gTdVtW3oV4GQyWnO2J1Lu4Padhamp1uW06+gsTU8NAuoN0aybrg4CNYUiYZHx5tX3msWiqQphmbA0CcqDnJby10jxwwf5kc8z2KKyqio96HrauVjbp0k1KMlZrln7pgYehqWR5zp4Xk4ucIJYmBLenAqWPNkf0vQRTU6iZGqMwJUpzTF2hP4pxDA0/Tg8kzk8rwjkOpbV6t2Zye67OKEhZaFokWc76IEBTpftnGcfuepG0mg4S6r5cF3Vbx9Q0AuSFyI8yPt0ZyHUiFIJCVHulbRcMlIsHvkGc4cUpu5OQ3UnIx5tjslzw6faYr1zvVOwo29ApH4UXpWyPI2qWxr3FkynGUZoxCqS7aMd9/hl/HIZBQiby6mf9zQ83ZbLE0ambJooi1/D1rst8066e841Zlyc9eabcnHGrosNVYBxKp0ddVbFNjdmGTZ4LMk3wcM/jg7UhjlG6vanUGzpPez5zDaual2mW8+HaiEEgtS8uI844bj88DD9O2R1H0hTANSqtxyST7TVr/YBtLeKt5daRS5gQgr4Xk2YCRZGX2sWi0nwS0ixndxIhLsAY2x7LhJtjyMvL9iji0Z5HyzW4PVvH1FV6XszmQLLgG5bOOErpTWKudR2SYryuqfHx1piWY1RaVHB82/dZsG+AkBKlGWku2BmF7PlS6+xGYT7y6dZYujlG8iwsC05BIu3pXVNjueOcSwT4Nx/1+NajHkLAl6+3DyS+oGB3aBqbw4CtUcQ2kTQnMnVuzV7dJcuL5Ge7MXO5Rjf/9FdX+esfbPIPPt3hm68vvPDrv/2ox//iv/wOhqryq5/ucHu2zptFgtOP5SW0WzO40a2hF4nw3XHEx5sjnvUD6pYmE/GWjh9J/aW9idQQ3BpFZEJUsdKrAE1VyETO7jim7ytsDEI6NaMS1AbJqPr1hz0MTUGInJploCgyobrnyWKOpoA5pXPmnmGLso2jRW0ZF8Z0HAMVGU+Gac6jXY8gyTA1hZWi1T/PBQ92ZauXisIoTGi5etUxcB4oykEDFC9Ki2KRwWrb4cONER9vjvDjjIZl8OHaiGg+Z7ll86QfFBIAWsUENjWVAMl0XBsEOOdIKB8H9VCipFPEdJ/veLQckyDOqFsa25OYZ4OAG12XT7bGAIXDukmS5TzY8RgGMdc60s02SmXyenMYHmBJnwdRYQLimHrV8dF0jBPj1CyXWk89P2KmZmGoKsMgYX3gM1e3ryQxBUfj9rptMFMz+dajHjVL53rXIc+lfEucZGxPIkZBWuiRpQz8mCDOyYVgtmFVZ2bZ0aApyoWf5cvAeVr53gb+P0BX/q+yA/xPhBAfnHMM/zTwFw/92X8ohPi3Cv2q/wfSBfBUeNrz+WxrzLOBT8MyqswhwMMdj74nRTENVWVtENB0dDYGAWGS40UZbUe2AMisbuEQEqe8vniyjXnd0s+U1R0WwpIgK3tzDQXX0Oh7Mc/6AU/2PB73ZM+/rinSiU1T2B7FGJqsYmuqsp9M8SJuO8YX1jc6CtJKB6LtmpXLWZkI/HxnQt3UC8qmLinGyIx0nMmN8lk/IEoE793s7OuAjaPnXrA3hgFBLCmarYIN8DwM/JjHuz4fboyYb1q8d6PD3fkGhibFJCdheqCy2i/GMQkzgiTHUFXGUcreJKHtppd+mWgUbgxRkvDbz4a0HYObMzXCVDJ0gjij58dsjyMGoXS/S4WAHIQC17s1vCgjz8Wlu9WU0DVpu5qOcz7bDqlbOte7NWk4UBzsAz9maxzhhylewQT4cH1Et2YU9F2ZCFponi6JG8YZn+/IZGJZZd3zYlbaDh3XYGsU0XSOstYe7Mr13vcSrnddFltFMKYojIOMJJUsuRLJnl8xjuAg46/tms9lpQRJxg82RlzvOlW1bGcqydmpmfQmR6nJe5OYzWGIospE1d35BqoqadcDPyUoKmJZMayNQYBaJAXKyld52bB0jTeWTt6nLhOfbk/4eEM+O8tQuTlTZ+AnpFnOKJC6SCdVCg/vrY92J+x5MSowjpJjv+d50FRJbxcKrPd9slz+2VdvdAAYeDHvrw/ZGgZEac6P3OyiKDKp6scpt2br3Jh1rzSZN9ewGAYxQZLx3ScDKVrbdphvysuyF6VkmeBJz2OmZvH9jRF+kjHyUzo1g8WmvJzuTWLc7tn2nTwXlYtmkGTcnzL52Bjua/fVrX2Kf9sxCOKsYpKFidxn7y/UadcMHEPjW496bA0jvDjlZsdlx4sLO/cJS03nwnpJYSLX/cYgLDRVpHPOp1sTVE1htmjbfG3x4HvbGIYEsWQvt52T3ec2hyFhktOw5D57Fobh9jhkaxiRC8Fiy+LRrtTk2RlHLLZMFlpS48/UNIZBwpu5OPCcL/vyexzKOENBoeMaLLUdwiTjwY7Hnier+s96AaauMtuwuDNnsz2OSHNBnOVVS9PuJCYnZxzJds/LiDParkHfS547P9YHAY6hIcRB5pkXpWwNo4JlluFFUoR7en/em8T85uM+oyClZmncmq2jqdGJjkUgE40Xcbsrx1XuybMNk99+OmDoS1bjYlO2khiawqAQC14b+Kz1w8rAZ65hoSoK2+MIXVXZHctk4GWxG5Za0pUxyXKe7AWkeU4Y52yNQ27P1Xg2CEhTgZ+kvL82Yr5h8eH6iNWuW5w58tyF0yfFp9H3Yv7mh5usDwLarslXb3SOOHN6UcpvPu6zPgzpTSJuztav1GG2xNO+jMkPJ8ouip++P0fHNfjl76ydKjH1b/+1H7DUtPnzf+wb/J4//Sv8mV/5nD/9h9+tmOi745hRIIWjm7ZOKgTrfanlmeY5qqpzZ67Ockcy+kdBSseVd6HK6UxVLk1z9KIwNJWaqTMxUj7aHNOwdYLEZqnt0Czm/ZM9n71JVBVqolSAgOW2Ve2lXpJVX38ZiArjkSDJ+I1HfYQAIXI2RxGqIoukywVrN0wz1vsh25OIvhfx2mLzRPbpebE3iYkSqdP6rUGfh7sT/EQmpZ72A9quzsCX+8okTNkYBuRCkOaC1xcbXOs6tCODvbFMZoyC9EoYNUmWVzHwKIxp2qZcy0WHxDiQhi1hklOKjfhRRm8SszkKGYUpX73WkR2CRfHCeoEp0ouQ5jlRKvhsy+PxzghdN6RxwzHO1iAJCnkumVZzdWns8O1HPXYnMQ93fX5vffGlOFbGac6jno+uafS8pGrPHYcpm6OQtmMgEGyPIpJckGY5d+capLl0Sy/HuDPN/jLUy23lvAKcZxX/GeB/LYS4IYS4DvxrxZ+dF78A/JXpPxBC9Ip/f3rSNymK8kcVRfm2oijf3tnZqf586CckmcAuhESnLWdr1r6VaNM1yIVACKoMuzUlDKcoShXQHnbbuSjSfP/yK5AtGrqmMi4u3Yqq0HA0JlGCrWm4pWZPMT7J+pDjtXSNd5bbvLHUvJA16UVg6EpVaS/tz4Hq+XZc2dc72zCxDI1c5HhRykLD5OZMDU1TEUi6ZJTmOKZ83i8KRspFZ+rqqRwwGrZBmGboilL0le+/61uzNd5eaVZ6OU97PnEqg9SlIgFi6Vo1J9Jj9EouCk1RaNiGrIq6ZsXe2KftC0RetJrO1LAMDT9KsQyt0t1o2PqVJaVK1C0DW9ekmKKuYugH9ZSiNMfWNa51HWZqJmEqtT5sXSfJctm+dsbLTRDn6JpSOMrsf/980+btleaxF725hoWmgmUo9LyItUGAEEIGDJZWPF+N0jypYevVPD6zna6Q7athmlf7zPQzWWk7vL3SPCLGPt+0pBOhY+DHGQ93vcLhRKVmS/aUY2hYhhyPY2rVfqRryhdW9dQ1tXpWliY/b7tYI+XYTsL03mrpGvN1m5qpYZtalYA5K+qWzmLTwdS1Yl+ccnXR1SLplWEbGo2CYVm2shi6ciV6JYfRrcmkbM3ScUzJfCuTYaauoqhQNzXmmpK9U16SdVVFU2UF9TgtoxehdGMBjlgiu8a+1tt0oDVTt3hrucmduXp1Phq6ZBdK9qPCKEjY8yJcQ6Nd03FMyZQtSETVeXZelOeHrsmK31zDZqFpc3uuRtOSbc3H6SGVjmWmrp7oqCqfhfw6VX3+fD0OpZaJqkiG5mzdomZp2KZKx7FoWAZtx5TObEKpxnT4OV8lyjhDUxVsU2qj+HEmC16KimVIzc00z3EL1lS5d03HPLYh9+67c3W+tNq+lDhjtePy9kqzSnIcB9uQe3SZCC1Rt3RypOBzmuWgHN2vBYI4lfqLpf7Ri4T5y5b88xaTy7NJVRRmaiYKcn2XrNzyAtitWdybr1OzZPtu+aj1QvSrdKqVY9IutV1WUZQDWnu6Kv+/bstk2kLDQlGks2XbMQrhaK3ai8pnc95EUZRKVmWYSgkC11SPXAzTXGAZKm3H5Fq3xv3F+rn2vbPiyZ5MTD0veXkemLrKL3x5mb/1/S1G4fMLL99fH/HbTwf8yz91m+W2wz/5lWX++gebeJEUvHcM6eAZpzkjP2FjFDIJUrp1E61wcpxr2JWW3Y0ZGdfOH2KAHz4HvmjUbWnu0Sj+bekq9amkjlrceeYaJl3XQuQUdzcZsxm6LO5fJso5Zxtqpe3WsA3mm4W2qrLvbugYcu83NMnutHT10gtdTUevzAhURUHTZCvfStthuW0Sp4I4y2g4RlUAbbtmdVaVWk41e//MvwzHu8PQ1f1z5KBWsAAESZajKSo3ZxyWi3i4butSP0uDliNF0meKOQ3niMcPwdBUTENhrmniWFMx1wmbfRk3uOZ+IaaKWQ31WL3Kq4Be3AU1har4HqV5kSQVlTP7vYUGd2brzNSsqqVvOs4o17tyzFn5KuI8qdKaEOLvlv8jhPh7iqKcq/ynKMoiEAsh9g79eVMIMVIUZfakMQoh/gxFQuy9996rZoltasRZztdudLi/2DhAg17puPy0qRElGQKFhq2TCcFqx2Wmlh3osQe4PSuz5bVLZsZ0a1JDCiEr02UL0GzDJEoz3lhsEqQubyxkWIbGYsvh1myNNJeX6nKx3pmrE6XZS7lUPQ+uqXN3vk6WiwMUR0vXuN51mW2YzNSsakHMNiySTKBpGt26wTc7c2yPIhRFXtRdU6+eyTTSLD8QpK12XLq1FEvXDiRj0iyvRGen4Zga37gzy40ZaYN861Ayo/z6PS8qWFsKS22bmZpZ2cf7cY5lXP6hA/uOc/MNkyjNaTrGgarkIEhY6cj209tzNeabNnuTiFEohfNLsd2S6nlVSYvVjkPTli0ItqEdaMkL4gxNUbg3X8fSVV5fbBKmmdSXUhWudZpoqoqqKie+p8NQFIVuXbLwXl/UpbD51Gc76ftvzdaYrZtsj2R1vTeJqZs6N7qSKqwIwWrXJctFtbY6NZMkE2euIqmqgmtptB2T+YZ97Pw9bpxLLYeff9MiiDMe9zwmYUoQZ9xfqKOq+1ptQlAkbTWEELRd48Be8LIhn6G8cJV77ExdrvGynfJ5mN5bdVXhx+/OIIRybgfU23N1/Djl9aUG4zA9wEyrWTq/+435yhgjznJuzdRYbjmYmlJofcnneNo5eR50aybWcpPVrvyM00yIKM1pWgZvLLVoODr3FxrMN212xhHzDYu5hlXN+yTLz6TxoygKd+fqx55lLdfgvllHVZQjPzPNBYamHLvP9ry4Yj/enqtxe67O/UXJEhr4sn1stnGxqpxr6qx0HGbqBpahUTN17szXedrzebrjM9O0jhWDXm5L50pDU5+bpF9s2UV74vHOmc/DfMNGQcHQZDGhbunM1E1ykfOkJ10Og1iK5S40HVquScMxjn3OV4XpOKN0MG05slLsmBr3FmrMuFYhcK1wb0HOgzDJDux/bdesWowvM6h90Rpb7bh0XJmkn36PeqHNpKsysXZr9qjb4lzD5u3VJl6Ucr0r2yVflBC0DY03lhock+s8FSxd495CvTo/hBBcn3G53nWZmxJBNnWVpbaNH8tE+XzDYrZu07R11obSOfha1ykS0qc/J0+L6bnbcU28OOUds1WdJXXL4MHOhN91ewYvynhrucUoTBmFCe9029iGeu550K1Z/MitLt2a1BY7rnLfcgzeWGqy3Cra87UX6wRdBp4WHQjXOpfvwv2H3l3hP//Hj/kb72/yiz9y7cSv+3Pffoqpq/yhd1cA+H1vL/Fnf+0Jv/5wD1WR7f73FyQ7+YM1KZewOudQs3W+dr1bJQ6n12o5b2qWzr2FOrkQV9Y6fF4sFRpO12dcciGYqx801nEMlTeXWqDAOytNmRhV5B1IU5TKgOgy1koZP8837Oqi37QNJlHCzZkaH6wNWWjYB7RBFUXhaze67IwjFASupV/KvXH6rG+7Jk3bqFrE67Ys5rmGxs44RldzWsVZVLek62tpzDH9POYbNq6pV06wl400F9yeqxearAnb44j7Cw1qZputcYgXyeLITN2qzhlNVfjq9Y5MCgt5dpUFTFVRLrz+XVPjG7dmmGvY3JqtE2f5c9fAcbHs1250WGgG1K5IY+o4qKrC12/P8OZSUxbPFAVTU3nS87F0jWsdWTxYbNpMopTrM+6xRYNOzcQyLudZvgyc5+k+UBTl30S28wH888DDc/7+fxL4y+X/KIryHwkhfgn494qWQZV9575TYaWgqwdxRpKJSntACME//GyXh3s+X15t8aXVNk97PuvDEbqq8M5K+0gQq2sqjSsIIjeGAd9fHyEQdFwTu3ASkgeHZHj1vJjPgglrA5+Wq9Ot1dgtqKwzxaI9zQXwZeGkyd5yDVocFLfbHoV8vj1htetyvevQ8xN2JpFcYFnhvHPoXawPAvYmcZWJj9Ocvi+1HKIkwdJVHvc8PlwfUbd07s43uDNXO3JAdWoyyN4YBmyNwwOJyxKOoVUHvFNUbWXWXKdzxR0YsgVgn2JdtuGkuUABHu1OUFWFLHdZ6wckhchgx5Vi2nEq2yfzIii+igSaoii0XJPWVFC5PQ4Z+onsJR+HDIOU23M1en6EF2WVHpJRHISbw7DSUDruPU3DNtSqsq4oL65op5lsO3ILt6Y0E/hxIKuIhkqaC773dMBnOxPuzdf5mdfmcQw57lKH56ywdPWAm8+LEkZCSP2e0oXI1FVqnmTJOAW74dOtCR9tjZlvWnzj9gzLbUnNj1Opz3XVzLjnQdfUytZ8GofbO/JctumOwoQsFziGykLLoeUY1d7qWhrDQCY0nvWCc41HU5Xqd0+P4ePNEX0/Zq5hUbd1xkFGnEodlzjLSfP9r98ahWyPTjcnz4vD+lU9T7rWpJnAS1JGfoplqOx5MdvjkI5rVi6HiiLFeb0oY6ZunimJ97yz7Ljg9PGex1pfMgy7dYu2a7DU2h93LgRPer50finGZ+oqpm7imBrrA0ndL/fP8yBMMnpeTJRk5CJiz5Pi5GmWEeY5u+PoRObGaYOv87YxaKpS6fgN/JidcUTDNtgc+Hy+6zHfsDF0hZqpMwjiSgtx2iziqiCEXHPjIGYUyUR3tyYd2G7O1g6Moe8nbI0iFCBM8opVJdnB++/tZQez0oky4knPY28itTavdWUVuFUUbGbrkkV7UkvZvSkThJ2xZMzONaznnomnOV+eB8n22P9Z88ec5QMvoeHoZCLnSS/ixoxLkKQ87fvcmTvIDtqbRKwPpMPS3fn6pRQipueuEIJBMQdWOw7bo1Dqzxg6liEvvg/3PPKiHciLMz7ZmmDoUjD6NEnW0i12pe1g6ipvLbdQFQUvTPHjlK2RFH2PsxwF2cauawp+nLM5ji7VJe95eNrzcU3tQhpeJ+Er19rcmq3xy999dmJiKkwyfvk7z/g9by1WCbuv3ehg6Sq/8skuIIurDrK48v7akN2J1D39yQUp2O7HKc96gZRNOEY/6FW+lE53W4D8LOuFzEqUpIwjWfB4uOvRrUkNvCwXGAWbvIwpXUvj9uz5zu9SfiTLBdc6Li3XqMyDbEPl2SBgexxjaPKC/8HaENuQxbmadTqt29MiTnM+2hjTqRkV076M+aI0Y3MU0rQN6sX+8XDHY7njcHuuhlroLp8UI1yVIPbTns/AlzqLN2ZqlQTGp1tjtschdVPnWd+nZurULY3vPunTdk2udRx07aiL3GXdb6M0Z30Y0ikKVpahVZISPS8mzjI6jslqd9/N+vC5omuqFHJ/ydibSJ3CLBdYmoJfMKReW2zw/fURj/Y82q7BrRfsk69KruA0OM9I/6fAnwB+GWkU+SvAv3ieXy6E+L8d+v9fKv79PzvPzwO5cd+ccfl4a8yw6LddbjsM/YTvPRuSZoLvPO7z5lKTvhfzaNdj4CcIAe/d7J73154acSpF3n6wMSZOc1a7Dm8utfCi9MCFpVszqdsahm4z9FN+y+uzPYqYqZso8IWInF8G9ryYx3sBiioDtTQXbI9D3l8bYesqfpTx1kqLSSTFecvFVFKgvYJS/rTv40fSSnq2bkkByEnEzihmYMgLTJK5B4LrEpsjmbWXmmLmEYp/wzZo2gZhkn3hApGjMGEUpKS5FByPspy6rvO4Jzf3Jz2f+YbF9RmX1Y7LOExYH8jLfcsxrlwEGwor96HULijdNErtiqe9oNIMW+06vFFotX26PSaMJauiZGZcFp70fLxC9PONpQadmlklewxN5ePNkdSDGUXoqsL9hYCmY7A9kp8hSjPCJKdp61e2zrbHUfX77s7Xq/bMKM2xDdnW+9HmmO1RxMCLuTNTxzH0yn0uSOQ6kIwl+5UVM5zEKbuTiIe7Hn0/5tZcDZSDrZ9DL2at75Pk8PnuYQ+M82PPi/j++phcCD7f9pitW1Ub6NNCHBSo9KXK1rRokDPfsF5K+8jGMOBJzyeMc2qWykxdXkg+XBsyDFIMXVbG5hqWvNj2pA5aLsSZElNZLqp9YbntvHBf2xlHbI0itsYh9xbqpJlgtm5VF9HNUUia56RxzjhIDgS6O+Oo0oJr2CcLjL4Iu5OoYhLuTSKGfspMzWSxY6MpoKjyInFY+PokCCHYGIYkWc5Sy7k09s/mKCRJBZ/v9Hm465GkgjwX3F1oECQ5zwY+q223EHKVF62Fpv3C1rLzYhLJJO8nWxP6XkyY5ry9TCHyf/BZ3S5crExd5cmex+4kJslybszUDsggvGxsDkPSTPCPPu/RdqRZwe97ewkFhfuLdRZbdqErKQt0QgjWhyFplrPcdg4kTLJcVG7BG1lIc/Hq1/VxGIVS4+dpL6DlGOiaFKINEik2DgoDP+FnC1e4KM34aHMkHfDqFlF6djfYF6GcKwBPeh6fbE5IMkHTzfjRG116fsR3Hg+BoiBVrOUklWYc41Am0o8r8JXICn01x4yZb0hNPSHg2cDnUc/nesEOi1PZ5t+tSbdR15SFmsNM+avCs77PtY57JWepoij8U19Z4U/97U9YGwTHtrD+zQ83GYUpf3gqcWUbGl+70eFbj3oHvtaPpNmNpsJ3nw547+YMm8OA99cGZLmCZaj8zGtzP1SX0cPYGUfsTmI2BlJLR0VBQWFzGLE2kHG/ZUhWvqYqrA8DtkcRDVuy4s/ang1SXH5rGFbs9JZrVG6AD3cn1C2DLM9xDINBEPGsnxdC8iq3LjnZU7aLjYIUOjJxuTkMyYXgt54MeNYP6NaNfVdwBXbHMeuDgNVLbkc9LUZhQs+PWB/KIoBr6mwMAz5YGwGgqZIJ2/Ni1gbSPW6xldOw9St1jUyynJ4fywSPEKgojKOUrVHIR5tjoiTj7nwd19LPzdq/LJTmLeUz2R5HrPVD9iYRhiYdhk3d491rHfw4RVMV3l8bVWZevxNw5t1eCNEXQvyrQoivCiHeFUL8L4UQ/asY3HmR5YL1fsjjPY8glhc4x9KqoH+pEEFebEn6m61LgdfSNvoqYWiFro0i3QjajiFbgI6hNM8UrRJJljEJZCKl7yWVbfLAj/lgbcjDXe9CTjIvE1ku3XK2RzGuJSmRpcuZbBeQQekkTCsLWYCFho1lqMw35eYlhEyCPO15BHGKqavULY2Wq0vHvZZ94sWjNqWZctzXlGKqUZpXyYMvCo4p2Vtrg4CdcYipqZiaVrX2gGQqlLJlSZ6T5YI4zSvtpKuGWvSUl4G3F2eYmoprSTZQLgS2qSKEZFoMgwRdUYlS2fZ32a0t5YFeatQAVXXto80RAz+h7epYpqTAlgmLEluj/fl3Vb3k0z+31ECRVS5J032469F0pBbWctuhbusHkne9iRQ13ZvETKKLaflcJZyi3VBBJkrz7Gi1Lkgy4lQyYJRLfNwq0PMiNoYBNUu6b7YK3ZTpZ5kVLM2mbTAJ08o562XA0lXWBwF9L8YxZLuR3MvkM7INrdJRijOpLZBk+ZntcHtezMBPGPjJqT6bdPdUWG7ZqFBpYiVZzidbYzYHAXkuNaq0QxeAsoVBVSXb8bxwi+rqwEsk29FUcQyVubpFzdaZq9sH2jBfBGlcIdfN9jh88TecEmkmRYml2Ln8vJ2aWbF7r3VcLEOl5ersjONKuPSqYBsauiaZJ7ah0a0Z1C2DhdZRNx5Nk0KopRbIKEhknOHLcy8vBJc/XB8yDM5uTHBelAYvc3WLnh8jcsmEVZR93RLH3NdfGgVptSeWAs8lVIVKt7J2Stfkq4CmKqwNAjaHAbqqVLqVdUuvzsDpQtrOOMJQNYJYtvNchWRDOVcyIZ1t9yYRYZLiFrpTNdMo2qRkEWS2buGYKi1HutSOw5Td8QvOoOL7yySJEFLofRjIhNxaP6xa4V1TR1WltbxlqMw1Lk/4/UV42gsuXV9qGmV73l/67tqxf/9ffesp17oOP3Z75sCfv3u9zUeb4wN/NlO3WG470vxhvsHGMJD7yjDi0Z7stEizH447wUmoWzq7Y3l+p1mOa8s56RZ7g0xIU919sjwnzXKpYXTOgrKKPGezXJAXz6+Mz2xDOv7VLF26r+cKm8OA7Ul4Zs3U08DQpQ5gycLaGoWMQ7m/ybNVasU1bNm6tzeRzNwsv/p77Eno1kzGQYpjaGwUxQBVodLR67jSpKpTkzpcm8OAp30flctPBk8jywWDSUycSoFw2O+GsQodvVzwhRmITWNjGEjx+oEsos3UpWHGbMOkZsn9se2aGIUgfC5kLuCTrTFhcn7zjlcJp34LiqL813ByPCyE+IOXMqJLQJTKlxmnOfUiELF0jX/mq6uMQ+neoigK802bb742z1phT/o8odTLgqIofOVah+WWQ5ILllonV68XmrIqKAQ82J2gFRW20p1gr3A5mBS24j8M2VJdVXh9sUma56x2JG3ynZUWN2dqDAJpaftsEJCkohKMBRnoT7syzNQMmo5Ot97C1FTuzNdpWDpRmlWiqSdhvmnTLFz8jnv2ZW9xlsuEyhcJS9dY6TgVC8nUVO4vNrANjTjNuTnrkmSiSrq6pl44hUDbeXnOC7dmJdunZulMwoTXFxvM1C1yIV1uvFg6OumFXkTDkaKCl+2AA1KTqe/HNGzjQLvbKEiKeaXzzTcW6DgmpiH1ZYQQmMV8KC/w1pTo5WVjobBrnhbFBRkUjYIUVVH4kRszrHzFwTJkUkBRFG7N1UjSnCzP2RjKAOVVFjM0NJV3VlqsdhziNKflGLiHElMzDZt7i03u5IL7l8jSUBWVN5ebJGnOrdkac00bXZXCoYpCkTBTqn1lpm5yZ16yg66KzXIYTcfgS6ttwjjl5myNpZZdFR5WRyF6IWgL8lkutGxmMsFc42zVRdvYF6s/zWdb7bjSxrkQ8zc0qb84DhOiJGep7bDQtFlq28wdqnR2aiauJQ0ZLnKp1DWFpZbDcltqgdUsjYZj0HEtkixnFCRnCiSlhqQsalwmk8A2VK53XVQFOtelwcZKp4ZryJab8lxOsxwvmsj5dYVntaGpvLbQ4NZsjZ4Xy/bw51Sj78zJvRukG18Q59yZk+swSLJK+LrvxS/FHQ1kYiLJpJnHp9sjGpZsHT+p4GQZ0+/24LNVFIXbha7IFxkjBYl0+ZpvWMzUpQB6qUV4rSOlGqad0pziInxz1uX2FbUWl3NlEMSs9UPeWG5iqCpfvtZCUaTz5Y/fnSFMcpZadqGDKefG7iRiGKTyDHrOOrcNjfsLjQOaR/cX6qwPAm7N1Vhu27yz0iqYVKKSqVg8vdH1peBp3+cbd2de/IXnxPUZl/dudPiL313jj//MnQPv8/Gexz/6fI9/7efvH2nR/+r1DjdmXEZTf1azdP7YT99lEqV0aiabQ9kFcGPGJSjkPo4zhvhhQsc1WWk7dOsmRqFBJJAaRkIIBkFCrYgpQWon2bo04TjvWrFNGW/nObSLuGC149DzYm7MSHOVMob4zpM+X3baOLpG+wr2Rcnm34+HHENjFKQ0bIMbXZcok8xux9TZm0R8aVUuGPMLMsECSSC4u1AnSffPuPmGzddvzRBnOasdp+iQUHm4O0HQpmbqRNnVJlRcU+drN7vM1q3qDDA0lXevtbnWdaTm1ZQO8hcJ25DFiNK8Zanl8I27GkkmmWVqkUwD+PrNLi1njB+nKCgH3NF/mHGW6Ozfv7JRXDKajkGnZsrLec0kz+UmZmlKRV2+MeOiqiq35uosFrR+taCEj8K0qja+CHkumMQprnE695Q0y9kZR4SFaPkoiGk60n3Ai1LiNKft7ovVlWO4v9CQiZKpMXVdkyAOqFn6F+6ykecCP8lwjYNC5NJ2U1Q09IZt0K3LQ7MMcsM0Q1VlZTnJc+7NN4gLKu1JaDomiy2bcZiyVND6Qbp0nAbPe7e6qnBjxpGOaKZMdu0VLQ6uKbWSDie0wiSTAsa2fmHhxd1JhKGpuJbGJJQtnnVbY3ecUrdkQsrS1UqjbPp5N22D+4uy1/gqXRqHfkKYZpUwvKLCYtPmSc+XorRCXnK0wgVoui3KMWWgmgtxJZuobWjHthY0HYOdSVRdBtaGPpauFpceo2It1i1JoX2ea0eJIM4QZ+avyKTIcXbNpiaZf4MgqRgjNUunYUk3lbqlQ3HHrBcOji9inCVZXrX+XSb6fowKtFyTnXHIg50J17s1lg5RoVVVeW5L5ELD4ms3OkRJdqGKdZLJdtfSuTBKMzquiR/L+enFKVah6ZXmgq5rHtizdU3l3rwUL76qxFTPi0kz2ZozjlIQsrWwZqrEacruOGKuaaMqMlFmavtzUFOVc4+vYRvcWzjbvlC3dIQpz8O8cAqzC7ZZ30u4OVujbhkFA/GgwOqLfsf0uwKpUacpB+eJo2soSo4XZ9g1E02V7nAgg8qzttlausZri0fP0dPipJbBjmuyNYpwDJVrXZftScRnm2PuLNRxTZ04LYLMlzC/QJ5F2+MIXZEslFwIvDChVrR1jwu9t3K/U6YEUb+02j7wfJzCwTSIswvZdZ8WkyhFL/RRTF3ukX4sNUOFkC2SWS5Zt66pVUzYSShFzs0T4jZVVbDVlxuwZ7lgaxgQJFKyoWkb9MwY2zS53nXZLoSAb8/VJSNWVzCmaM4zdatq07kMVrEQgt1JjKLAbN2qdA51TaXlmDzt+QRxyuJsnTyHJM+KNuLjdXNmC/HiF41PYb94EiYZaeGweWPG5eHOhG7NxDXLYuIX05Ke5gI/zrjWudoWqD/01RX+jb/4AR+uj3h7ZT/z9l/8xhM0VTlWf+rn3ljg595Y4Gv/hdSbQQFDVfELcwUvSpmpm7QcgxszDs/6YeVgvDeJirbRL/7C/SKUDLxOzSBOJWtptmEx8GUBvlcUGy1dJc5kC930fny96xIkWdWBcR6Uidp0ag+0dBlPRmmGoaokec7Ai7E0tTAQsIoYWN7pynPtsmU05ps2DdtAVyFHMkeDOMPSBQ3bYK5hkwu5r2+PQ8IkqxwOpzty0iwnSvOpNXd5UFXlyP1NUWTxrxSl3x2HxFnGakcWH9JM3gXjNOdZX8bki88hbJwHjqHxzmqLa92DrbqqqhzRtZrGxxsjJnHC64tNHENn14toWPqp75nnQWnGZuqyyyTOpJNpnOb0Pdm+i12YH2lS2/aTrTFbo4CapTJb+2L1Zy8DZ3m6D4UQT65sJJeI0ulkECSEcc5WEDEMEt5fG/DR+ghdV7g547LcrvHu9RagEKWytW5zFLI7lof3vYV6FWBPb5rTQfeTov/Y0BVeW2icuNDHYcJf/e01bEPjk60xn21PsHSVax2XazMuX7/dZXsUF5bz2ZGLtaGpHI63DrOIvgjkRZC4MQzw44yPN8eoCrx3s8Ncw2ZjEPLZzphh0Y7xpdU2TUdHIEVWS/0XgSBMMhxDP5Wwr6ZKt6jPtifSkUJ7flX4LHjS8xkFaSFWq/NbTwZ8sDbg480xSy2Xn74/i1Ck0Pg7K9Jl7tuPexiqSsPRn7vRgQwQn/R8Hux4RKkMTMvKyNZYzr8kzfhgbUguBF+53mGpbfMbD/foeQkrbYdrXRdL17ANKYp6lkvhaTHwpQbb457PUsvm7ZUWrqkTJhlPetJa+Tce7LE2CLk1W+Prt7tsjQKe9UJ+62mfr17voGkKpqYdcYu4aGXCi2Q7TM08veCkVWz0/+CTXT7fHSNymRT46vUOX7rW5uZMrUoKnmZdTSIpOPk8JFnOWj9AVRRWOi8+bBVFIRPwrUd7fLQxknofjsFP3J7l9kKD+wv16nJRmiA8D0LIVpwkvbzqaZ4LfuXTbf7Cd56hKQr/8k/e5u99vMv7a0Pajs6/+nP3Khvg00BRFN5Yap7qa9Ms59uP+qwNA1baNl+93q3m0vogYBSkhGnKJ1sT4iQrEqDw9z8eoWsqcw2T5Zas2oF09ZlOEuiaykWXjx+nvP9syPogYKXt8rUbbTRNZRwmrBUaYQ92xny4MaZmafzYrS4P9iI+LfRdfur+rNS8ClNqlsbtKVHLi4zvPPvC077PD9bHDIOYtiuDX1tX2RpHPO3LPaDtmry+KM++zUJbYrXj8mhPWhmXIrLTKN8VyGTdf/O9Db5yrY2uqQRxih9nbI9DnvUCdiYhz/oBpqbxlestfvzOHLNnZIyVOO4cPQ3iNOevvr9Byzb4ibszqKpK34vJhWDgx3y+M8E1NTQF/spvb9LzYt5eafDezS6qIl3YZgsXxquqF/hxxl/5rTXCWCam1odBxaSdqZn8zP0FZpsWj3ble0uOYd4dfj6qqrw08entccjWULrz3p2vV60zt+dq/PbTAb/1ZEgu+hi6QhDLdtbFusX31gekGXz9dpcfvXV1jJfjkOWCz7fHfLA2ZLZh8dZyq0qYbo1Cvv24z+YwxNQV3rvR5bXFJmkueLzr8be+v0Uu4EdudbgzX2drGB0ROT9v4caPUx7seHy2PWauYfPu9TZ+nFVaW2mW872nA9YHAfcWmyy1LJ70fJ7sBawPQro1k+W2y3zTOraAUuIs4wvijE+3xzzrBXz78S6//WSIoamsD0KajkGaC2Zq5rGyFleNUsbjKlv5AP7AO8v8if/6+/zZX3vMv/PPfAmQybo//+1n/O435p/7rIMk5a99b4OtUYgXJ8w3bTQUXFPj5lyNr9+cYTdIcUyN5ZbNg12PNBP0/YS78y9nDb8IQXFHeLg7YaFp897NDqaukeeikCSBT7bGfLIlTYx+6t4ce5OYx3s+/+CzlK/f6uCYOnlOJbBdQlEuxwzquD263JtycpJU8K1HfSxdZbXrsNCw+Zvf32AUJLyx1KBpy/X/2uI+S/DxnscPNkaoisJriw2ud8+nZeaYGp/vTPDClL3CGbduyzuTpoLI4HvPBvxgY0SaC5aaNtdnapi6ykcbI36wMUJXVV5bbFArCrCHi0oXhaYqB2Kqnhez1g/QVAVLV/hv3t8kzwXv3mjx1Rsz2JrKR5sjfvNJnzCRCcev3aQSfPfjlI83xjzYm3CjW+ONpeaZXfFMXT2zhvRvPNjlP//Hj8mB3/PmAlGS8Xc+2mG+YfHHv3mXxefo6l0UjikLLp9sj0lSwVzT5Fkv4AebY8Z+zP3FBl+51uaDtVGRhFYZhxkfbUxwTL2K9TquwUcbYz7fnbDcdvjSSuuHIkl9lrf7l4CvAiiK8heEEP/MlYzoEiCEqPSJ1pKgonb3/Zg4E/SDhL6XMPAzen7EGwVnWFrYi+JnUOn2TG+akyipqMwgW29A6kwIwYmOLlkuBY8HfsLDnQkboxBVUUgygalrfLo5oVm0Xl2Vrs1VYH0Y0PcSHu562LoitXFsg28/6vO731wAIElzxmGCl+SwNsA1dZZajry0FIFAlgvpSGboeKfUzCk1V4BL1Qcr9RK8KCVKpa7Xs37I5kgmLX6wOcI15UWrVuhk7Y5jvCil4xq8qMU7SDJGQcrHm/KgSjMhbW8LijDA4z2fjzYnsj0BhUnUYGccM/QTZmsmwyBmviGfoZxDl58h351EPOp5PNkNiNOc+YbNzVm90pwYhynffTogSnIGfsxC0+JZP6gSRl4sLeZNTVb1LrMNZHMU4keyzaTtGqcKkJNMsD2K2BoFPN71CdOM+YbFYsvhjWVRJQVBHmQvOvxOM+d6ntSUATlXTsPy2BwG7I1jHvcCwoKpcL0TcK1ozdmseveVFzoI5YJL15rYGof8vY92+MH6BEtX+OsfbFbPIslgbxKfKTF1FpT6POv9gJGfMFOzKifTcu2s9QO+vzYEFPp+zErHZWccYZsaXdeULQBFAOvH6aWzV8p39LQnk/VzTYtbs7XqspnmOe+vjXm066Eq8pwpLxCOoUmGV/FZ/IIp8kWJ2+8WmkifbU9YaNnkuSILCwI2hxE9P2KmZmEbKoamsTkMi8SpTB4ADIL4SGKqfFdl+9UokLp+Az/m/WdDBkHCzjjEMXQe7vhShyyLWBrZrPWDcyemzos4y0lTwd4kpu8naKrCs35ALgQfrg/5eGOMqkIQp/S9iCDJ2RxGREmOY6pMwvRKxV1BJsHTXPCDrRHbw4jdScSznkarJi8e398Y8ruc/cTNq6ZLWe4hQlAljoEiTsrZnUQkWU6eC1QVRmHK+88GbI9DXMNgrmnxtRtXb2AzjUmY8un2hGf9kEGQMNewqz1eVRTGgTR/GAUpqqoSJJJJ8HjPK9yrDIaFrlf5DKRGzsX2pL1JzNO+TDT5UcZszWRuKunxYMfjg/URe5OYVMAwsNkaRdI5y9YZhgnLyFho4UIj2Uec5URJzpOeTHZvjKSY77OBz3ce97k73yBMgi8mMZWViamrFT5uuQb/3I9c48/++hP+5z99h5uzNf7srz1mz4v5I9+49dzvzXMpiP+scGMehxnDIKHrmmwMQ2mwUMyjPT06oLX5qqDnx6wN/epsnG1Y3F9ooChyvcR5zvtPB6wPQ6mrZsr2tY1hgKVrpJl0kWzaxkvV1izXpx/lZFlOnGT0POlmmmQ5P1iXZlZRkvONu7NF67v83iwXfLA2lC63wFzdqoTBzwoh5D0pF3JtSpfanM2hdBSWQu1SR9I2NeIi9huHCd99MmQcJIR5xnLLqRwP/SQ7Voz/slDe57JcsDORRmNenPFgx6fj2oRJysdbE36wMS7YSAclVkZByoPdCWv9kCDJmWtYZ05MnQc7k4hcyBh6exzyjz/vsT6Qmli//mCP3/P20pW2zcVpXhWUJ2FGkGQkScbOJKY+CFkfbDDw5bNdbJoYutTzHQUJcSrvMUGSsVZI42yPIry5jJbzOysxNR0Z377sgVwmlILC7kcZdUtnqW2zN4n5+TcW+PbjPk97E8ahXJCNQ5vDYiGMbunqFBVRbprZMReE1Y7D3iSmeUjP5jBUFSxD496iyeYooOsazDctZuo2q13ZRy3povmVB7CXiTIJM9+0aFg614YhXiwv/AM/IUwyvnKtzZO6z9BLUFVJf1WQWhAtR4qyZrlgsWnjxRkLzdN9/qZtsNC0iIte68vCcsthz4ulUJ+qcn3GZc+LqJkaNVtnpmHyaMenbhl0HBNVU5hrWuje6dwS7YLp1HQMENBydNb6AZMoZbFpsdpxUBTJqvLilBuzLi1H5958g3GY8KXVNt2awTjKaNj6lfVFtxxJsW/YOraukuU5H64Pabsmt+dq7E1ibsy4rPdDllo2dVvntcUmtq5xbcbh9qzU0Ehzcelzum5Jxx4pZH26z2/qKnfma/zmE4Omo9HG4LWlJq8v1bnedSvnR9i/OD8PHVfSj58X+P3/2fvvIEu6NL0P+530mdfXLd/eff3ZMTszO7MGa8HFgrAE6MQgQTIkQgQZFAQqGNQfUgQlBsUAZQhxKTEEMUSRIAKiiGAIkAhQy+VyCbPcwe74mc+2N+Wrrk1vjv44ebNvua6q7qrq+lbzRHR0d5l78+bJc8573vd5n8crxevheNo+AHcWGnz/WZ8Z1yAxDW7OedxZrHGt6+1KMunHuEalX7L7s70uBIKllg0UmLrBjRmPD660+fUP17jccXln6ezcvGq2QbdmsdoPWWg6pHlRsTSvznjUbAMhJI+2A8I44858g7qjRMVnaxYLLYe5hs2On6IJzuQQ1HRNWp6BNVCJwzjN+XBlSM1WejFxmtP3VeLA0NXPtF2LpqtcICduaFtjtQa9ScfFa7MeO35csZ5arskXr7T4ZG2EbQo+Wy/w46xkb76wWVai7YoNcFDy9FJb2WtPxPFvzHt0PJOVfsggVGMz41l06zbzdZtNXxkS3JqrvRGWsNKfUwL+tqHx0eqQjVHCcsuhXbYBu6bGu0sNNKGco/7AnS6XZjyiNH8pE+K0MNFMXG65hHGGxKoc6uYbDssdl5ZnIVGCvrO1ixVnTO7RtPj/5P9futJmGKXKsWgYK51Cx2RzpJEVBbautCrP48AyDc/Wq3bHmm0w45k82BwTZwWX2g4/eauDZQqe7oTYhnqGpISrMzWSLMcxDX7mZhfd0MgLSc3WT+Ww03RNapaOV4o1Z0XB6iDEMASX2i4bw5i2axJnBZc7DvNNB1PXqFk6by81adgmCE71uW25Jlc6Dt9+IunUbNJSM/Nnbs3SmWqjfxNIsgINzryVD+Bf/sXb/PVvPeMv/D+/y7/2K3f5S7/xGX/gziw/devlbD/H0pVmYl4wCJVb81LLxtSV9t5MzcJPQqSEmm3Sci1GUUbbezMulAeh6Ri0y3a8ZqkP+NHqENvQuNH1GMcZd5eajOO8Er9faLgYmmKcX+nWsHTBIFQOreeFhaZNISUztfKcJyRPd0KudWulGLVJmOTcXqhzqe3ScEy2xjE7fsKMp1iAgyClQKp45BVps0IIltoO/SDly1faCE3QrVlsjWN0ocxzLEPFEgsNh/mWQ5jkDELlch6lOcsNl7mmjROruLk4YyLEXEOd0WxD452lRuUueGtWsd0EAlMXzDdsltsOP3G1Q9Mx+HhtiKEJFpsOddvEs1I8Uz83ncOfujnL5ighLQr+6AeLPNgKeNYPqZnH66h4XbiWMmwL05ylllNJOziWzlLLYRCkDCMlB/HupXbpPA6bg5j1UVyaI2jK+bU8k7+p9fWkOMlVykP+fSFxsxRjtkudmMWWw2LL4fpsne8/6/Pp+ghL1/jldxcYx8odbNITPGkje94PGYYpDcfgUtshK+S+SeFZBt7M0bexbpv89M0Z+mHKH/viMoNAUXHvLjboBykLTRvHPP5wbI1jNkeqf/y87S3TvCBKXyT9LEPjqukxTjK+cn2GJMvRhGBrnCgNAl3jl99eoB+kxKW2lm3qlS7WUa1vByFIMp7uhBi64Hq3dqr9yHtbJN9ebHBlxqUfpGyPY3pBylsLDWqOzpWuR1FIbEPDNlpIQB5BpNE0wZ2FBh3PJM4kTdfgmw+3ebIdsNx2+ZV3F2l7LWZqFlGqROKjLGeu4TBTs6pE1GlVMg/DXMPmp67PMlhKabkm9zZG/Oj5CCEkf/QLy1yZ8fgTX1pmfagOrqahUbdN3r/UOvPNY2IMYOnaifqpr3Vr/JEPlnh3uclaP+Jr19q8taSEVx1TYxim9IKElUF45HM1WVdehoZjVhXB4ybQFpoOf+j9Je4uNLi/6fOFyy2+fK2zq614bRixNoywphLoh6HlmfsYK6+DhabNT1ybIcmVCOnPvT3HXMPlrcXjtePthR9nPO0FWLq2i5p/ECxD46dudbm70KAXJqz2Q7b8hJZj0XTN6rlQAtk5y22XfqicTKeTo60zNAZoOiY/fWuWuwtNDF3waMvnw5Uhtqnzx764zGzD4aduz3FtVmkQGZoqenztxsyu5+08mQPjOMPUxb52v27N5ufemifJcpJcUrN0nvZCPNvgZ27NlkLygoZj8O5yi6szHkGaEyYZTcfkxuzB46lpL9h+bc/kV99b4uPVEVGaMo6zUhC5TcdT+m/9IEETSth1sm/EWU6ay3MJtixD4499cZm8kPydT7cYRAmWJhgnGT9ze5bb82qO3+jWuLvUJsuV0P95JhU9S+dX3lngNz/dYK6uWGx3F1XbQ5ypSrN+hN7bXjzrKamChaZzJDvzVTBpaw+SnEsdt9QdKXi6E2DqLxyp6o7JL729wLcf97g2o9qSrsw45BKCOKNVM1lonG8clBdKfuBn78zxfpkUe7Lt882HO2WiUufOfJNrM3W2xhFJVnCtW2MYZoRpzttLl3btCafZbtVyTX7m1iw3Zuu4ps7GOOLJdsDGMEJen+HWXJ1/+AtLhFNJ00GY0natU2eQSgl+nHJ/w2d1GHJ7vsGVGY+8kHzjxiyaplrqC8kb00pN84LlmnUuic35psP/9h/7Iv/KX/sO/9R/+E3mGjb/9p/64MjfMzTBz9ye46vXZ/jW4x6WJri/OaZuG/zkjRlansVOoBiuUkpsQ6ew9ZcK0583Go7J127McH2ujq0LVoch33rUxzY0/vAHS8w1HX72jsn1WY+mY9L2THb8lHeWm7tiyrmzq30dCM8ydrU0L7VchlFKEKvCy83ZOsMorQydAH79w+2yeFvjp2/NcmO2hmNozLxmkXa2bu8r9F7ueMzWbaK0QZCoM1bbM/lwdYht6KwPIq53ldGAY+oVESJMc2bLdu8gUaY7p80Cckx91737hbvzFIVkcyKb4Zlqb7oF802l9/ysF3B/Y8zGMOLLVzv8wt05hpHS2JWoltCTrFO5lHy0OsSz9GO3Uc7Ubf65n3nBYvxjHyzRdnSWOm7Van7WmD7bexZ8/WaX9y61GEXqTLbaj7BNweWOirM2RzHPcuXmZ+iielaudj2ebAd8sjbk7cUG2nlZtr8iTrIKf1EIMUQxp9zy35T/l1LKVzuVnBHEIRPM1BUtfKJlFGdFFXCNopTH24FKtHRc1gcRn6wN6YcpX702wweXX70/M80LxnGBlIKOZ1G3TYpC8vc/22ahqZyYrhwjwTXB1jgmyyVPewHbfoxt6NyYrb2WSGaSFfzw+YDFlnMow6UoJPc2lLNQ2zO5MuOx2HKU1sKmsql93g/5iasdhmFCwzHolC6Ip5ll3vETRVPcCNgcxby73Dx1scEJNE3QKDVfNE2wPY5Y6Ud0ahbLLY8rM96++xWlOR+tDtVmdMBzuDmKWSv1NDquwaNtn0dbAf0w5SdvdCuNhwksQzv1z3fUeA/CtNKSarkm4yjj4fYYJPxoZchP356l7dm0vRe/e1y9p9PAq24Msw2b+xs+V2Y8BnHOZ+sjmq5ieTzeDri/OVIOHbp2KpoTr8Jo63gWn+aSq13lvvLRypBOzcI2dNUKsTqi5ZrEac4XrrRf+xpPAlEK2uuaoqtvjhKE0FgbRNRtg2vdk+knTFrfen5KnCmh9odbPtcPeZ37mz5Jplp7xnHOd5/2uTbjcXPOq9wOL3VebOjzjdMPIF42v4tC8mDLJ81UIWNYzqNcwtsLQ750bQbH3K0d9aYQpTnferzD9jjlUkclg/Y+r5ahVV/bHEV8vDYkyyWaaPLuUotBmFbJjk7NYntjTJjkjKK8cj89CqaukeY533qygywoXe5ElVCdTtLFmdIpebTls9Ryudb1mD9jRlKU5ny8prS2vvO0xyhKudJxWWp7PO9FvLv8Ivypv8GD4PooxtZ1klRytVtjFGd8uDpkqeWWiZ7jz4U0L+j5imn5aNtnpa9YPzfn6qdWCJq0tYNqP/NMnd95oA50iy0Hz34hIuyYOncWGny8qlrQVgYBt+cbvLPUPNXCFBy9f4O6J0Gc41rKqS7LCx5uBTzaCjD0gA8uTVyytF17ecszafH6e/lR+/fjnQA/zglNVXh93g9ZG4RIIUpH3N1J49N0qpxGP0z4j3/7MePy4A7whSttltvumSQ7XwVJVnD5jPWlpvEPf7DEjdka33/W55feXjiRy6pt6NycrfPR6pBu3WGh6SA0jR88GygtmZbD1jhmfRjzvBeSFgXvX2qdabvWNF62f+eF5N6GT15IOjWT3jjl8U6ALODd5YC2Z+GY+i65lJOsWeeJpmNWa9N809m1B22NIz5cUW5ptqkrw5AgoSggyoqXkgkeb/uV/MNJoIqrOlNLDTM1i9V+RJwXjKKM7z/vc2XGQ0p471KrWod6fsKzXogQcHOuduRa0PMTnvfDV05ia3vMf64dUMD6wfMBYZzTqlm8tdhgrmGrM8m2OpNcn/VovORMFGfqOSwKCOKcT9ZHLLUc5hvOsa47yQoebvmlg7xLL0zxbAshtDN11T0KdduoinG39hQzXFNjx4/RpmRhhlHKb3+2zZOeT7fuYBn6iYsgrzveJ8WxdyIp5cVcHU4IIQS35xvUbRMhdh8aB6Hqf43TgjhXzl1hqpJYozh9Lbvhyfrs2TpvzTfY8tWmEWeqFSLJTxaotF2LzVGs/iMFcVoQxDkt79WD4rxQOlm9UlTvIBRSVu1EcfbC6UvXRKnRBS3HxI8zbs03zkx0semqtg8pwdY1BmXf+VnCMTQEgrZnk0uwdJ2NUXxg8kKW2j7D8GD7zsm9kxIyKbnaqRFEyg70vDTGjhrvaQ2lJCu4PltjdmX0udJAOwjzDYcPLreUXtEgBNdiGGbkhcTQBEnZ152eom7ZSTFTs3j/Uot+kLIyCGiX1+hZyuErSlUbZ3YUPe+M0K3bLLVcRLncTJxzRlF2Ys2zlmcqAwldrWNIpd0SZ/vXWyklaakH4hgaw0hybabGbN3GPsdg4WXzu5Cy0gZI8pybcw1+tDrC1jWSCzZ3RlFGmBSls1lOmhcvTaQKIar2bYlKnO6FY2qESY5piGO1m07QrdvcnK1XGmqHsS7HUUaU5uTFRAfw7OfAZLy3xqoIZNdUgsbUNRzz4lQfHVNnoemw3BY0HYO1YUSSKcex6f36ODB1jbpjMI4yNNQ9iNICv2TDncr1GjqupRGlBW3XxE9ykOq9giTbx/aYa9ikeZ0oGzKOMsZxdqrXM8FR+zeoOBHUPQElmmwaignYdM1K2/SscNT+PZkXSVZwvetxY7ZOGOfYujjXPVzKMpYQgjDL+dr1mV2OdBcB8w2bf/Ufeutc3/OdpeaxTT/2YrHlYBtalUzI8gIpJY6uM4ozrndrbIxihlGKoQl6fnJuiamX7d956aoJ6vlc7rh0XNUF8CruxhcVUVIoVlWYcrmtzFYm++bLtEmzvKgS9aeBpZbLfMPh0/URT7aDsphZYO/ZsyZrxWSuHkXW7pXxXhCfvtszQM0yuNz22PETDCGq1sfpPewojddxlFVxmBCqkyUtu6iOAz/Oqvfo+UoP8HLHo2brZ+rK9zqo2UpOJcmKKn4aBCmupROnEjHZXE+Isx7vvRAXTQDzVTA7OyuvX7++62tZIUmzAq3Ui3rTePToEXuv8U2jkJI4KxCoKszjx6d7jXkhSbICIQS2qZ2aEfBB93JiL6tc4H7/jndeSJK8HDNTf617elbXKFFBu5QSy9Beu5p9WteZ5gVZmXA+bV2u07rGyZwEdWg7zU6g6Wus1sdybl4knNVzmeQF+SmN/5ld4ymuY8e9xulnzjZ0zttp+E3sjXGqtOFMQ8M4xgc+j2uMMyXsfdxr2ouLGGNMoGzBVTy2+uzJK19nVO4rr3qPjovTuJcTh2VQLWrH0S08Cc5jvNVeniOZ6Kx9fp/LXbHTnr31olzjJEY56NxyUa7xKJzVdU7WR0MXr9UZAq9+jed5rnzd+3jW688Epxf7vkg8nfb1XqS5c9g+/7JrPGm8cpb41re+JaWUZ/rwX8y03wlx/fp1fu/3fm/X1+6V7QQAby3WX8kq+zTx1a9+dd81vmmsDaKKdbXcdvhDv/Azp3qNT7YDBqFqBbgxVzs1LZCD7uUPng0AJTL/3vKbr8ad1Xg/3QnoB+qeXu16r6XldFbXOI4zHm76gGI9HMSqOAlO6zo/Wh1WbL/3LzVPVf/ltK5xYxixPlRzcmIxf1qYvsb7m+Oq+nFn4Xz65Y+Ls3ouP1wZVtXaDy6/3hpxFtcopeSHz1WHvK6JXe1hr4LjXuPEChtUJf4kbSWngfPeG6M057P1MaAYzLeO0VJ51tf4Kte0Fxcxxpjgs/VRxSz65//kL7/SdQZJxv0Nta80HIPrh+iXnQZO416qdn3F/lto2a+kpfkynMd4T7fOTKQbToqL8lw+6wVVa+re2OmiXOMna6OKpfHu8u4W1Zddox9n/O0frjEMU37h7twbbRM/i3tZFJIfrai90dDFKzPNJnjVa5w+V5513PS693F7HFfu9PNN+8wMOE5rvM9yvbwo8/tl+/xh1xgmOfc21O/UHeNQ3c7zghDi22f9HmeamBJC1KWU47N8j8Mw17BZH0bUbOONJ6UuKjo1ZbmqicPbJl4Hsw2LKMtxDJ3aGdPaF1o2PT+lW78YmgVnBSVwmGPqGo0L6rBQK90Woyy/UOOx0HTYHMW037DT2cvQ9iyGUYY4ozk5wXzDZrWI8KzTcYH6PGChaVdOdxcRQggWmja9IK0ESc8DkzZRIbhQDk5nBcfU6dRMgiQ/9yTcYbiI13SamG84rA0jGs6r71kTQd8wVTbzFx1tz2QYKXmI9hmaLZwlGrZBwzFI88+XW/RBmK0rd6qLHDvNN2w2SlOj47LTnu4E/Jn/2z/g4ZZK2v5bf0vwP/uVt/hzP3/rwsY5J4WmCeabyun7Ta6P802btcHnI25quSaDMKWQn499/ffDenkUXmWfd0ztxb53gc5TZ4mzXp0/BK6e8XsciJZrnput5OcV9iuIoJ0EnmXw1sL52GfMN5xTr0heRLiWEoC9yBBCvDZL6iwwU7MujNjqYbAM7Uzn5AQNx3ypcOTvR3Tr9okcyd4E9oqongfO65m7SLh8DrbwJ8VFvKbTwmk4gwohTsWM4rxg6torMd8uEjRNnCkz7TwxEc+/yNjrCH0U4iznf/xXvsX2OOav/A9/kltzdf6tv/UR/85/9QlSwr/8i7fP8GrPFwtN58xYP8fFtOD5RYehaxfCYOW4+P2wXh4HJ93nP2/73mngtRNTQoh/9bBvAb//n7If48f4MX6MH+PH+DF+jB/jx/gxfoxzwl/9nSd8uDrkL/8zX+EP3JkD4Nf+yS+jC8H/7tc/4f1LLX7+rbk3fJU/xo/xY/wYx8dpCFj9b4AO0Njzp35Kr//KCJOcQZDy+0Hg/SwRZzn9IDnz90mygn6QkOVn46IUJFmlafX7HVmu7mV6RvfytDCKUkbRxRiTKFXPeXHBnNGmIaWkHyRE6dm6XxTF+bzPRcVZr0WvCz9+c2tZXj4bJ3Vxu+j4PMx/UGvAIEgrLZPfD3idde0i7SGvg89zfPJ5mTvHwefleTpqHYjSnH//v73Hz96e5VfeW6y+rmmCv/inv8Bb8w3+9b/+fYafg896Ekz27vN1lvx8rMmTc8FRjnUXCcMoZRyfnhPhRcdJ19LP45i+Lk6jle/bwP9LSvmtvd8QQvyPTuH1XwlRmnN/c4yULxd+k1LyrBcSZ3nZ6nOxWz2OAz/OWBtG1G2DjmeRFxL3EI2nopDc3/DPZZF/sDUmzWQl+tYPErb9hBlvN305SDJMXTuR88a0MOpEOC/LC573QwSCSx1llRulOZ6lf+577x9t+4SJsna/u7ibnr41jhmEKbN1m5qlE2fFG/nM/SDh6U4I7BcbTTI1NoYmuNxxCdMcQ9NO3S1vgiwvuLeh1oO2l+2ixr5YAwpmaiYdz3pjz8fzfkjPTxEC7i42ds2BybjWbJ1uzX4tZ5rn/ZB+kKJpcHehgXHGTpbPegGDIOV6t0btNXRmTguTtci1XrQzrw5CwiRnqeViGxphmuOaOto5u6D4ccaD0jxgrwB+Xkie90Ikkkttl0JCVhR4L7EvHoZqHs7ULJaOYRn+dCdgFGXomuDtxca5f/6zQF5I7m+OKQpoudmRrcY7fsLaIGS2bp97a+XTXsBHKyMMXfAzt7tQeq9eJE2TMMlZHYS4ls5SSz1TWV4cutc866n15qTL6rT49pUZl7ZnHfg+03P3sFjnTeKg+GQaPT9hJ3gRC/lxhm1oZ74uHweH7Z2bo5hhlDLfsLEN/ch16E2jKCTfedpjrR+x1Ha5NV+/0HIfj7Z9vv90gGfp/Mzt2X3f/9s/XGXHT/hzv3Br3/dcS+cv/qNf4E/9n/8+f/Fvf8y/9Y98cB6XfOaQUq3jWS7x7GRX61eU5qz0Q2xTZ7nlEKUFmsaxNIYna4ptaLvODBOdr7VhxNYoQQglev6mdIvTvCDNX8yzvZ/50XagdNQMwduLrycQ/7pIsoKsKLANfVfMMr2mTQu0n6ZB1nEhpeTB5piskFyfrZ35uJ40DgmTnEfbPpvDmDjP+cbN7v9fSHCcxlPwzwPbh3zvq6fw+q+EvJBMiFLZS5Iuwyhje5zwZCeg5uhc7XgYukbbNXEtndVBhGNqVfD1ecDaMCKIc/p+yvNeyCjKaLkGby81cUydvJCs9EOkVILAxTkwyqSUlSPa5O/n/ZDtccL9jTE/e2cWzzL4dG3Ig82ATt3kJ652jn34Xh9GrPTDKhEH6nAxDFUmXgjJZ+s+QsCtufqF1EA6CSbPdFbszqIXheThps+On/CsF1BISZbDWwt1rnXPVytiet7tTXxujWMebfmkecHTnYBhmNGtW3zhSutMNodCcuh6MAwzer5aA1xb5+ZsjUJK1gYxVzouV8/xvk3uk5Tsmpd5IVntR2yPY8Zxxs25Op6l8bwfsdC0uTlbP1ECYXIPikLdm7NEkGR8/+mAOCvoBQk/e2d3a0FeSD5aGTKIUt5ZOnsNkOm1aHK/wyRna5QQpRnff9pH0wSXOx5N1+D2/Pnqkrxs3vSChOf9kGGYsj6M6AcpNcvgzmL9QI29opD8xkcbfLY2Yr7p8E987QreEcHfZE0ppOTzz49QKOR0PLB7zQySjO8+6WMZGl+60ibJC775YIsolfSbKW3vfHXpNoYx2+OEHT8hTHOajkqWv64L62lifRjhxzl+nNN2LWxD497mmK1Rgq7B+5daNByTNC9Y6Yes9EI820DjZJmp6ec/KyRFIbm3qZLKtqExjFLiNMcylBjx+jC6kJpIL5vToJKRm8OYh/jMNS1WezGzDYsvX+0cWwT7rHDQ3pnlBR+vDgmSnGc7QZkoNHjrkHXoTaEoJCsDFetGac6PVoYMAsXQmBR/LkoybWscM4oy5hs2rqnzzQfbfLI6puUZvHdpf5Lhr33zKde7Hj91s3vg633pSpt/9qev83//7Uf809+49tpOdhcFk/mzdx5NXN2GYcq9dY0olcw3bd5ebL40WZ0Xko9Wh6wOIvwkwzF0ZmoWnq1XRaFJvCClipneBNK84FuPd+j7Gbfma9yer/PD5wN6vjJLablmdU+yXCKlfGMF1jjL+b1HPUZhhmfp1T7mWvqu9WF6DPP87KKNOCv4u59ucmu+zvJUce55P+T7z5TboxDw1sLZzpGXxSF7seMnPO+FfP9Zj56f4VoahhB89cbM7/vk1GuXY6SUn0gptw753vpRvy+EeF8I8dtCiL8rhPiPhMK/JoT4e0KIvyqEOPEI9PyEx9s+eVHQqZksvET93jE1JFKxigyd7z3tc299zIOtMSv9kHGUsTVKCJLPD9WwVm60QijWyidrQ573Q1ZLK85eoILeJzsB33rSo5DyzF0bhFAimkmWE6WqxVLXBB+tDlnphzzfCZFS8ngnJExz1gfxsdvU0rxgHOV4tk4uJWkm+XhtSJpLhFD3YXucsOWrg9zD7TGPt/0LT8t9GTquRT9IMDWNHT/h07UhgyBB0wR+khEkOWuDiM1hwjjK2BjF536NbdckSnPGSUpRFHy2PqrsYKWEfpAyjFIebPmEac7mOD4zuuraIGQUp+gaXNrDGhnFKWvDkCDJcA2drVHCg42AjWHMgy3/3GjG4yhlaxwTJCmXOs6uBF2c5ewEMdt+jGPq+HHGJ2sjdY2b/rFaRJK84OO1If0g4VLbZaZmMt+wMQ44+EipktdPd4LXbnezdI283I0PCpR2/Jh7m2M2hjEfrY5e672Og0GYkpSVR8sQfLY2Is1yDF0oZkeU8mQnYH0YVRb354mWayKRDMKULCu4vzHieV+xRlxTZ3MUEaY5n6yN8OOcjVFMfMh15lKy0gvY9BM+Whuwfsg6UBSSh1s+H68OqZkGMzWTq13vjR+KTwtSwkzNZBSlRGm+a535cGXAhytDfvh8wNOdkDgtsCfsJAGmfrb3YFzO5cfbPlJKFps2a8OQnTBmYxCxNVJ7YXyB2m49W90fQxeYumBrHPNw0+dpz6cXpFUVfKUfsuMn+GnO815wqDvvMEr5eG3I/Y0xj7d8Hm0pFnfHM1lo2Sw0bbo1q9rfQTFKnu6ouGZzHO26rouGpmPSKZ8/P87w44z7myOe7CgWVV5IhlFGkhd8tDIkTHNW+9GRh5fzgGVoJatZXfen60M+XR2yEyQESc6DLR8/ztkcxUQXLKbqhyk9P6UfpPSCBEsXDKOEh9tjVnoBz3vhm75EQMWwq/2IcZSxOggppERIGMYpD7fGrA52X+fqIOQfPNrhH/3K5ZcWpP78L9+h6Zj8b/7WR78vJE2EENiGRj9I8EydR1s+D7fGSClxTY31YUw/THmw6RMkOdvjo1ugsqJge5wwijKe7YRs+wmboxjX1Nn2Yz5ZGyIEDKOEvFCsqjeBNC9YH8SEac7j7YB+kLI2iPh0fcjmOKrOVlGWc63rvdGukCjJ2Riqa/10fUSY5myMIzzLYHMU89n6iH6QMI4zRlFK0zVe2xzjqOvZGif88PlgXwudKIfT0F5vXJOs4Ml2UJ1xDoImBHN1m27dqrp4VvohH68N919zqsZTAtt+xPefDdj2VWHy9zvOtFQghPjLUso/e8SPfSKl/Ony5/8jFMvqF6WUPyuE+NeBPwn858d9z41hxA+eDRgnGVfaLo6hv5QObRs6H1xqMd+0GYQZO76aLLapcWXGwI/VgcW6AJTq42Kx5dD2TAwh+O8+3cQ0NNJc4lk6cZbjmhorg5DVXkinZtOYPx+nCVMXGLpGXkg2xzGOoRGXi+mWH3NHNLjUcXi+EzFbt45dydKFwDI02q5FzdYZhClpXqAheGuhQZBk/OD5gCSTWJbE0nSGYUZWhJ9bF4hekNB0TYIk49uPVevNgy2fX35ngbsLDUVHFqotKM4Krr8BhtgwVMlHRzf57tM+o0gFrb9wd5bZhsWNuRpFURCmOWFSMNewz6QSMIpSfvdRDykllrG7XTBKc3p+ynzDpePZzDdtPMvgk7Uh41g5S55XIPLD5wOe9lR7zLvLu9/zeS+k7VpYms5Cy8axNCQQJCGuqR+rfSXPJX6csTmKubNgkeaSHT9mFGf7XNkGYcr2WOnOmbrGYuvVq+CGrvEzt2fZGscHvk7NNrANQZRK2ufACFkfRAggzgsebPgMo4znA5OfutnF0AQfrgxxTXWfr7wBp7QwySkKScs1+cHzAVFWICX89G2NhabDO0tNxnHGMMyQSExNY755cPHF1DXev9Ric5Qy27AYHpLAHEYpO+OYtWGEbejcXWx8btyHjoJKAozZGsd4lkFeqOd7Ytec5RAkOZoA2xS0PZO3F5sEScbVztkH+FujmCDJCFOBbUTc3/LVnDZ1PFtnrqkC2YvkKDnfcGg6JqauOFDrw5iGY7LtJ8w3bCxDY20QstqPWBtFZHnBtZka4SG6ZVujmDSTPBv5xElOnBVs+TFfvtLZVWE3dcFy22EcZ3hWjQ9XhxiazrtLLRZbzoVqd9wLKVU7ZpgUfLo+4ulOWDH731qoU0iJqWsEnsUwSlloOm+sZWgvclngmDr9MOGztRFN18LQ4cqMxyVcgjhDF4KF19gnzgKOqSGEuvc3Z2uMowxZSD5cHfHx2piZun0hnPoMTcWwSabus6FrXJurc29zzDgWfPfJYNfP/8ZHGwD86vuLB71chbZn8ed/+Q7/6//Ph/zWp5v84t35M/sM54EkyxlGisX6YMtnGKakuSTJJHcXG9xdrOMnOdvjGEPTuNRxaLovP0fYhq6K5nnBlRmPxabNXNNB1wS//dk2WSHRNbgxWyfNC4ZhSvsNuDt7lsGljkvPT7k846ILwZPtgCQrKAoYhBl5IbF07bWTLK+Llmex2HIYRxkzNZOma+JZOlJK/v69LaSEbt2k49m4ls5Z50wnyduWa+5K5C61XL50uUAC12Zej2m7PoyqAnHdMfa1JRaF5N7GmCQr6NYt1f6cF2yO4gNZtDVbr3QZbUNjvmHTDxPsz1Eu4lVxGq58M4d9C/iHj/p9KeV0pBwDbwG/Vf7/N4B/ihMkpoIkp2YbDKKUp/0QIQSFlC/ViTB0jUttj7l6oQ7KScHVrrcr+Pq8VY4nAdqVrke3buNaatP7dG1MzdZZajo0LIOdIMU0xLlUGnUh2BjFjKOMt5fqWIbBpZZHVrwYn7cXmtycrZ8oGaBpgtvz9TLppvMPHu6w0o9Ybjvc1upkhaTtWniLBksth0GUkuXyQgexL8PGMGJzFDOIUu7M1dGmMv5JVrDUVlocpi6qNq2z0m46DHkhWRlEPOuFzNRMarbBKMoxdUGaS2xD573lJnmhgvE0L85sPIIkpx+oSvXyHraUoYlqbi+2vCpx0nK7hElGzTbOTedjc5ywOohouua+A4lj6kRpwUzd4sZsDSEE83WHuwsNPFs/VstrVkiebIfcmFWfNyir2wcJEtuGXgX0jvn6n1/p9x0czHmWwS/eXSDK8jNvVUrzgi0/YWMYs9S2K0aCoam5cmehwWLTQdOgZp9/YkZpI45YG0a0PYumZxIOYgydqvJ7e75OmObYukZaqJamlyVPfu6tORquCZIDmbFFIVnpRzzthwz9lDuLDcILxM55XYzilMdbAUGSU3dyGrMGjSmds5tzKiA1dcFcw0EIsW+dOEsIAY+3AyxD0HYNbENnoenQ8kw+uNSiW7cvZPwxWa+llNimRguTn709S9M1WOmH3N+IqdlGKY8AAu3Q+d1yTfw4J81Ua7fQBFe7LmleoGu718Ju3a6SdIstFynVQeAiI8sLNkYRT7ZDFlsq0ZgXEk2DNCuo2SbvX2ohpWKYJvmbY2bsxUo/ZGMYszmOcE0N29TRhOBy2+Wd5SauqXQsLV27cHp0nmXw1kKDomQAW4aOpmkstV1mahbd+vknGA6CEC9i2ElB9nq3xnzLIdwK9hWe/usP17ne9Y5VWP2nv3GN/+S/f8S/8199ws/fmbtwY3QSPOuFbA4TdE2w3HHYHivdp7zcx99ebBJlOaYmyOXxdfmuz9ZYajsgFcvYNVWB2zQEWSKp2Tq9IGYQZDimRnNPguO88JVrnUoLK85yltsOSS6pOyZ5UfB4O8CzNd5ZfPPJ1q/fmCHJC0xNEOcFjqGzNY6xDI04LcqYNudZLyTtFFzquK+lm/oy1G2DX7g7t2//0TXB9dnTISeoZ03pKB5EZMkKWcVwk9hbCMU2nkjO7Pr5XLLYcunULD7bGJX3TCPKcrK8uBD6g2eF09jNN4HHsEs8QJb/P1Z6Xgjxx1Hufp+W1zThtQ1Qjn8H/c6fBf4swNWrV6uvL7YcJErwfBxlCCEYx9mxLsQyNN5aaO4Scfy8Ji8muDVXrwS/P15TbTJ+rKievSDlvUst2p55LrTPrJAsNh2KhkpMXG57pNdUG+XVUlBT0wSOdvJ7rmuiGrPZho1TBk9JXtDxLMIkr4Tw55s2cVZQO2ehvdPCKM7UodU1uTZb48qMx6Ntn45nVZ/pTQvAJiXL43rXo+YYXJvxuL85xjb06lChBO7Vz+89fJwmHEPjWtcjLyRLeyq6hq5xZ6G+S1ASKJlV5xu0zjfUAbTjmfsSiZc7KpB2zBeCv4au0fKOvzkZmuDmXK167Usdl+1xTOcADR3X0rmzUK+q/GcNx9JxzuGZjUqtg7ptMFOzeHfJ5HlfCYNP5kzjDer4BEmOlIJLbY9u3WKp5XBvY4wmqAw8hHix1unHuGWapvGlK51qH9iLJC/IC8nNbo2kndOtO8xekAPbaaBmGbiW0iC6Putye76xa7+bbzrUHePEhhunBVPXuDFbQxOCum2w3NKYrVsst9wj9cAuAoQQu+KMQZgipaBTM8lzyWLLYanlICWHHua6dZuOZ2GbGg3HoB+kLLfdI9eez8senuQFlq5zc65G0zG4MVfH0hWT/VLJypwuRrxKDHRWGMfKCGGh4fD2YoOr3Rg/zrgxW6vG5yLHyZahIaXEj1Xho+U28WydooAbF0iPbDqGBVVE+fr1LtdnPOamWIPjOON37m/zz/70tWPF7Zah8ef/4B3+wn/2PX79wzV+9f2lM7n+80CQ5FzquAgB7y23aNhKLmLSFqVN3cOT7uJ7i4Et1+S9pRbjJOPmbI0nvYC2m5MXaj6/iTkqhJiacwbfuDXLjh9zreuxNU64Oaf2kbSQvOkdfPos55X7qoq5msRZzs3ZOmvDCMvQ0IQgSvMz23+FYJfB1llgrmFTtw30kv24F5ahsdCy8eOchZLhnmQF8w2H2fp+xlTHs8p40OTdpSYPt8cUhSDL1fP348TUy/EA+GUp5ZO93xBCPD3OC0gp/ybwN4UQvwZkwESBrAn0D/mdvwz8ZYCvfvWr1ag6pl5tNquDkJV+RDTOkYy50a0dmeW2DA3r9aW3zgT9IOFZL8QxlUDzcTL2uiaq4G2p5bA1jmm5Fp2aTeecHQgdU6dbV5NtoemgaSqgfbId8PHqiIXm6TggLTQdpIyo2foL5tjM7pacyaR+1gvo+SndunWuVfLXwULTYW2w+/O9u9wiSnM+Wh0q2vpc7Y0Gi66lM1O3SqckB0PXuFu6hDzvh+yMk3O7503X5O5igyQvdrmSDYKUp70Ax9S4eUpVk9fBrfk63SChOzUvozSvHNpuztVeizlhGhq1KUFPFaQfHr6dVhvJOM54vO1jaBo352pv5PA/Qd02aHsmSa5aRx1TZ6dkUAnBGxfubblKhyYvJLN1GyFE1WryKvMmyQoebI3JC8n1bu3Ag8z0unyrVf/cHPaPi4Zj8s5ykzBRFebpe9ArNRtcS+fGOZtDTGDogtVBiGcZvL3YYLbx5uOPx9s+wzA70EHuIEzHGU3HpOVmZIXOpY5brSNHnaE1Tai4QMBbC40DY4EsL3iw5ZNkBde63udGBNazjGo/nLS7TVfqH235jKLj3+/zxGLLYWMY0XRMLFMHqar5gzA91xhjshcKwa6k2HEghGCp7dAPEmbr9pkbGkgpebQd4McZi63dzqrHxVzDJskL3q61uNx5sd7/7qMdkrzg5986flveH//iJX7tN+/x7/7Xn/Er7y5+bllTiy01hpMY6WrXoygkD7Z8laBqu6eSgJjMx8WWw5VSBmOp5e6Lu98Usrzg/qYyD7o+W6NmG2hCJbodU7tQe3iaFzzY9MmKgmvd2i5ziskzbunauTvyTTA5A842rNc2OTuKEDDfcGCKzDZ9TtoLTRPVufV5PyRIcpJMuQdeFMOGs8JpfLq/hGI17UtMAf/OUb8shLCllBNF1iGgAz9f/u4fBH7nVS9sqeUSJso5JojzE2e54ywnTFSF/VUX8jQvjuV6N44zCilfquvRC1KkVBok0RTl92WI0ryiWLc969wdhvZipmbhWS8q93khq77cXpAy33SIsxxNiFc+wNZtY59mzmHoB5P3TlhsOuoZecVNZyJWd9baLNOfb/o9R1FWuYcMXxI0FoUkeU1B6+NgIjJeFJJ+kOCYakPv+Uq7aMdPXnrAPq0KihBiX2IS1Jir+VTgx5micFv6oQmZLC/IirNrAZ2t2/sC2GGZpJj8O84KjKlD4F7khTy0LdLQxLk7zIHS84mSAl1TGld71yApXxxyzjrgm34W0rxgcxTRCxIMTaMfpEceCo+7nr8qdE3scs8cTFqtLePY82Z6fvtxRppJ4iynFyRlS61a86YP9Z+XpPyrYq/hQZqrOb85jpESgljpGu0NLM9qvKfHIExyLrXVM5nkBeYJW7hOsp4HiXoeXiY0m+VF1VpwnDkB7NqzNU28suvt3mR5UUiG0Yu1wU/ySui/H6T7ElNRmmNo4kJWk/c+g4MwrbSFRtHx7/ckpjsvNB2Thm0wDDPGUTYVryUVi/MgnDYDYnovHEXZsfeKSRzf8axqf33dGPMopLlkXI1p8kqJKcfUWWg4hGm2yzn3mw92MHXBV64d2ExyIHRN8Od/+Q5//v/xXf72D9f4I1/4fLKmpmOkyRpqaFp1sO+H6UsTU5P1XEpVtDmI2ZLmxdR8TGg4RhVjH/dccVaYxKBxWlRtYf0goW4bOKbGXN0+d9kOUHP9sPkYxC/MRiZr3uR+OqZ+bjq/gyDFMrR9e/zOOCHJC7bH8Wsnpl4F0/vCYfex5yc4hoFrvvj5g+K43y947cSUlPL/9JLv/doxXuJXhRD/avnvz4D/JbAkhPh7qGTXXzrJ9RSFZHUQsjmOabsmrqnTD9JSbOz4EzYvhcqKAppuuuuwcFwESVaxHV6GYaQ0MEC11xymxdItM6uepYRRJ/DjlM1RglZWhSab7aTCbpsa17seGyPV33teFblhpASU265Jp2YxCBN+71EPzzSYbVhcn1XsiU7NZBhmdOsWPV+xwjRNaakclCRIsoK1QXQsQeYgyZQY4CEBSNs1+WxzzHzd4t7mmLjU8dkbRB6FLC+4tzFGSmh7p+/iNghTdnx1L6NMtSXWLYMH22N0odFyVXWnF6jDa/MQJoyUkvub4zNxG5u2ZnYtjTApaLsmKwPldKVpQjEC6jY7fvJSfYf1YcTGMMY0Xi0hPIxSBoEKUiaVmO1xzDDKaNgGTddUlYpyI9jyY8ZRjqYpnYK9zKQ0L/hsXTFPltqvVgE9CBujiCQrWGiqeRsmOeslvbntqUPaJHmaZpL1gVonbs7V9iWn9oorvkqyIUqVu1KtbHU7DUgpWRkEmLrOWwv7g5BnvYBP18YESc7PvTV7Ku8JKoEzCJWV8mTzHoQpa4OQxZbD+lC52Y2jTOnWHPF5j7uenxRRqhw0XUtH10R5iDLL61drye35+rHmzd75XXcMRlHCSj9EEwLX1CvHtKtdj5Zr0vMT+nvu017sfU4vKsIk58OVAYYueG+5hVHq1+1t1X245ROnRZXE9Sx9n5ba64733v1vch1JVvDZxohBkHF3scFMTbHVHHP3vn4cnGQ9D5Oc+xvq8yxkh7OTjek9uZwTeSGrIsgwyvbNqSfbAUKoluNRlB1r/RjHGT0/oeWpxMfKICLP5a4Y5lkvZBCmaBrcmW8gUHtLmst9rz+x135Z7HDeyPKClX6EpqlYoxekNByDQekWp2uCW/M12p4qLB21r0yq+/Yp6P4dhNVBSJIVLLYcdCF41g9AqrahzZFildZspXf4smt93f37IEzvhUcJWk9QFJL7G8rhseGo+/3p+hCJapW5Pdc4Ezewyf49irJdDOij4MfKQbnhGDiGxt/47gp+nPHB5Vb1M7/zYJsvXm6fWK7hj35hmV/7zXv8pd/4lF99f/FC6tbtxbg0a2mV4tmbo7gyXJg4TV/puDQcgyDJX7rmTK/nUabc4q7P1vYxdUz9xdi1XJP7m+oc6FkJNccgLeOrOC2O3DdPE3GWV2fSpbaDa+lkRcFMTenVPdoesz6ICZKcr17v0PYsNoYRQZKfqTFElOZ8tj5mrmEfYm6jV9fadAzub47JcqWNudRyGEYZLddgFOf71v/TQpjk/J1PN5hrOnzpSnvXvYiynNVBxPIpGjcMwpRhmDJTs47NXotSdcY46Pw517BZG0TIQrIxirB1nSc7AWlecKnt7jKdmMyZpmNcKMOUk+DU+GBCCAf4l4CfRWlM/T3gP5BSHu6dCEgp/wbwN/Z8+S+Wf06MLT+uLIRn6iZFobLsSsxXLcTKCUW+tKomy6w6KG2kV8FE1+go5PmLH3qZPXDTMXl3efcCOLHe3BjHXO14mIZgtm6jC0FQ2tzHacFKP6xc0VxTP5eFdKUfkmYTloTJ052QYZipYDNSFM63FhrMNxwutQVCiMoKsyjURD0ouMwLyeYoPtD5YBqrg5CtUYKhK3c+YN+4a5pgtmaTZAWjOKFmGdV9OwkKSTXWBzksvC6e9QKKAlb6AU3HKp0H1SFhoaHE7ZVG2ssZMeqAcTZsqV6Q0PNT8qJgEKox/3htSFGoNo65uk0hFR37qKSiX47BxBr8pHiyHSClWqTfWVIi6yv9iEGU0vcTrs/WuD1f5/Z8HV0IHm6rgEVKSlvl3UFbnBXVuAZxDqdQ5BnHGeuDuPr/5Y7HyiBkEKQ86QVc7XhcnnG5WYqdb45e/OxBa9JuccVXS44+74cEsRKLr9vGqVTflNaYumH5AQviMFKuaUGS41qnE5AUhayswJOs4O6iiZSS3763RZQWPN0JmWvYCJQm3TtLzZe/IMdfz0+K9WHEKMrYKtk7UsLHayN0DRxDJStyKY81b/bOb1PXiNICITTWBhELLXvXz0oped5XyeQ4y3l7cf++MP2cSrm/Lfoi4dONEU921Li3XIvLHZfP1sfEWc5Cw2G5bImZMEsdU+fd5YPH/nXHe3r/8yyde+UBR9dhpR9RFPBkJ2C53T3W83cQTrKeT8+9o2Kayx1vl7rnw60xfqwSqMttlyQruDNvkBWyYitIqRJ+E/ZhzT6cfQrwdCeoWsKudDx2ShdQQ38hPj+Jh4pC8tnGiKJQCYobs265Tr/AZM0rCkqB4DefmNoaJxXDaLUf4Zg6n5Rz249V61GcFceeU5N7HZ/BHj6KUrZGagw0ESOB7z8dkheSmZpJy7WU1lTTOfKw9br790GwDf3I+GYvJFSMx2GUsjGKebYdMoozZhsWYZzzhSutl7/IK+JV1snVQUiYFCXbquDjtSF5Dk65L/qxcpj+F3/+5olfe8Ka+lf+2nf4L3+wyh//4vKJX+O8sdIPq+KRa+lV4brtGRiaRsMxyaTc1R52GHat5+U+GyTZgWeIaVb16iAiTDKe9XziTDJXt/HjjKx01Dxs3zxtxKX7Hqhk0O35euk+Dvc3xzze8nm8E9Ct2TzeDnBMnfVhuW8TnZme2uSe+ofEnIauVUyzJFPsqfVBDELyaNvnUtvjeT+kNtEGM8SpM5f8JOPe5phRlPHBpd3zvW6b3Jw1jmw1Py6klDzdUecPP8l4e/F4e/tkPwsPuI8LTYckK+gHKeuDmJqtE8QZK4OIIMmwTa3qRFjth0TlnGm55oVkDx+F02xU/E+AETBhSf0PgL8C/GOn+B5HwtZ1LENZxGpCoOvqaZs4TynXI8Vsudr1Dm27MnSNq12vrKa/GnNgIl52VCtA2zNJCyUWPXtC3aeKLi0hLQrCJOfj1RGmIVhsOuz4CQ3HRCIZRTlCcG4Vb9fUSbOstOxVwq4LTVu5JDZsikIFp36c41o6t+ZqzNVt0qzA0AXNlzjtaNrBzgfTmATsWS4ZhgnPS6bAzbkXPbqTg7dpaMw1VYLqVXSuLEPj6oyHnxxd9XwVuKaOH+dVQjHJClzLIM4km+MYzzaO5dRg6BpLbedQ2/jXukZLObkJIajZpQWsFMzUDO5t+jRsk3GcMXMMUfHF1kRH69WWqInzx2R8lRW8RjLOsU11bSv9ED/OsQyNKzOuSsY4B7vw1W1DVcmygvnm6YyvoYnK+W5ynZ6lsz2O0RFoQrA9jiv9o4kGjqGLA7WhJuKK4yh7Za02S9cIyNGn3ApfF/NNm6yQWMbBOgLdmrJHl5JTM2HQNKEcTNKiYqHkhazyjRujiKZrICXcPoDFdRCOu56fFK6pMwyz6hkYhhmmpsZ4ZRBSuOahAfRe7J3fPT9hJ4jpBykzs3WWmg6mpoGATml6YRu779NemPqL5/SiOIUdhqajAkxdiLJKK9nxYzZHCb0gYb5pY+ga12c9+kF6oEvhBK873tP7X1ZIikIlh7YHCXGa45kGMzWT15lmJ1nP67bBctshzSVzjeOvYVKq5JcAJOpe2IZWMYy7dYuma6AJgUQyCJRY9lGW5ZahkeVq/bVNrXrGpp9DZdCg2sAnieZBmDCK1XoxrTM117DJcolpaDQuiMbK5LMIodiLWS4ppGS25uDHAcMoZbUf4b2khXwaiy2HzVF8JoVFy9DQNJXYcy2dOFXFGNUGrEb+znzjWHvy6+7fpwW9bCsdR2r9HIZqjy9Q693mOOYHz4dHv9A5wTF1wqQozzCK4drPUhbL/fz3HvfIC8nXb3Rf6fX/yAdL/Npvfsb/8Tc+5Y98sHThWVOuqZ5D29RwTMV+1TSl2bY+jJBITO14CcDp9Vwv99eZI6RNBGXL/zimbhvkhWr5tk0dPS9eum+eNhq20qlLM6WPOUnSCaGucbZuse0nzDdsWq5ykzd0QZbLM71GU1fapcfpYHnaU0kTP0m5PlurWG8NW0eyf/0/LYiSqJHVin0GMJfaLtv+wSZAr/pe1fnjBGftiQbsYbH7JPaKs5w0z9kJEjxLOUROF6cmDt62qV34+X0YTnPXuCul/OLU//9bIcT3TvH1j4WWZ/L2UoOOZ6LrAsfQCdO86oUPk7zKOvtx9lI9oKZjvpZe0LR42csghDiyvW4QpIRpTrdu7UoszTdtpKRqL1ofquRLmklMXePmVP+uZxkYmjhzHZcsL9gaJzQdQwkMlwHX1RmPmbrFFy+32PITtemWAXWY5OTl4fWo6odjqsrZUQm2pZbDuojwLIOseJHZH8cZpq6xPU6U6O1c7VTuS8szz4QWDuqzrA4iujULy9C52nUZhhmGDrbuIBBKf+gYC+FBWkanAdfU6XgWBQULDYcoK7jccdgYJ9yeq+OYOuMoO1aLmGcZu57dk+LmbI0gVfbja4OI2brFrbk6C02bQZBi6BpxmayesIyOan07bR0ex9S5PV/HjzOSvGAcZyy1XNquxaVOTF7qISqXK4jKFouXYb7h8DoyUpc7Lm3PxDb0U9vUbEM/oloneO9SS7nLnCIb59ZcnSjL0YUSl67bBl+9NsPGKMKPMlxTJTGOKyR53PX8pJhr2ESZOqB3PIsoyRknOWGScUl46JpgFGXHHtfp+b3tx3imgdXQub3QQNO0fYHP5D4dFhDahnpOs0K+MYHS4+LGbJ22ayEEVQXRs3Rqtk7Lsao10rOMatzzQrI1Vi0i02vT64731RmPMM1BwiBKqds6SV5QlK19VXvaayZjT7KeH4fa3/OV5sZsXbmECiG43FGJ+2tdD9NQrTT3yrbAMM0rnRApJR0vO9b6cb1bw08yPFPH0BXbt5C7NfxsQ9+17o4ipVGyMYorzZBJksY29GMxJ84TLc/kpuaxE6TULB3D0Lg649IPU0y9ppKVhSRKjsfwajjmmbHdJ4wklYwqyHLJB5ebbI0S9DI+Oi6D9nX371dFlCotvUbpvAq74/iv3+zSD1JcU+Phls/GKL5Qa9rljsdMTc2fQZjylWszjJKUlqvWpW8+2MbQTqYvNQ1NE/xP/+Bb/Et/9dv8v7+3wp/88qXTvPxTx+WOi6EJCgnzDYumY9DzU8Zxhj2jzGDGSU7rGMv09HpuGdqxdPCiknl5baZGnOVc79ZoeiZN22TLj6lZ6ux1HhBC7Grx2hi+YDF36xZFAb/6fh1NE9QtA00T3JmvK72zOGNjFDFXGqqcJgxdHGuuF4UkiHPqtsH12Rrdms2N2XqVPPPjjBnPpHYWSXddaXfenKuR5hJrqsX4LM5tk/NH/QQi5co1+/D7ON908GyDQZiwM0651HYRGrRdq3JRLgqJpQvansly2z31sT4vnOaK/B0hxDeklL8DIIT4OvD3T/H1j404zXm6E1JIyTvLzV36UE3XpBmlZMV+jYKLijjLebITkOUFT3d8bs83KoE/29B3LbBzDZu07N/dmxk+rw14dRBVWgC35+uVcLymiSpAmCw+tqmzOYpoOC8oh0Uh2RjFaNrBLllHsb6yssJh6Vo19ll58AdVOXneCyuBw7uLjTciGHgSPO9HhElOkIS8s9TEtXRarkW3brHSDyudlGlM34fz6DXuBUoHC8A1S+aYY9Kt2zzrhcRlpWcv+kFCkOTMnpJwY1FItsYJaV5Uz2FWFFzueLRcqwry/DgjH0zu3fkHp1Gas+0nbI0iNKESpe+WY3vJKsWQs4KsKNDEwSyp04YQ4kwOPuNYiebOeNY+bQxdAyEFszWH2ktYkifFxDr6waZqQ9oeJ7y92GCuobSatsfxgUKpRaFYiJP207Pe3DfHMYNArUWOodP2rCrQXumHBEl2oMjw9jhW7oJ1+9CEdJjmFKXQq3uILs20xfZheNMuRCfB3jF9e6nJSj/CMdWeKKVqBZfAfEMVc7bLNrLDWH2vAiHUff10fUScFqXFeZPn/ZAozVlquWSFZH0U0nSMCyFiGiQZn66PGMcZ17set8ps6EHGKcrJcfezeZL1Q5+KB4Aj1/6ZmsVMzWJtEPG8FyKAcZQRZ/mFaNs7DL0wpR+oP7fn67iOTsuziNKc5/0QU9NoHLDuTSQLDF2cSSHpIJi6hpQFT7aVlmHDMfjK9Q5PdwKEEHQOOMBtjWPSXNmev+kK/dOdgCgt2B4nXOm4jJN8155j6loVg7y73KKxE5ypmcVJEGdqj6pZBp6l7vWdhTqfrI3Qyj3omw93+OBy67WYaL/63iJvLzb49/6bz/ijX1i60K0+caaK3KBaMq/MeDRdi6KQPOuFpEVxoDZkz08I05y5hn2sDpHJXNM1sStGrVk6bc8kzgruLDSq52ii3wsqsXEezMC9n2muYZctyxqXOwcnIQxdYxQlrA0UYUEgTsSWfRUcFs9rmmChpQrDV2bcaj+J0pzHW+Pq584iMaVrGjM1m7SQmPqL+ySlOmsK1Nn5tGI9Q9dovsa8qtYC29gV99dtpT2XlC3Slzvurud7axyzUbZjN52zI0qcNU5zNn0d+DNCiIk731XgIyHEDwAppfzCKb7XgcjyomQeqAMfKLbBdOC01/XorJBkRdkC8eoP+kS4W6BaKbbGCUJTgqC6Jmg4xr7X96zjO9KdFSbBiWrrkoe6X8DBLjxPdgIleCoElq6d2ElwbRjR81VCwrVU0sHQNW7M1sgLyThKq35edY2v8inPF8b0PZ36uhrvBlLKfZWA9VHMzjghL5QTydwZi97rUzdy+t97ndCKQlbJyjhTSWRQLRp35hv7AiUpX+76sReb45jNUUyc5WS5pGYbBwbMNds4lktdmhfoQrzUmVOiEl0nCVCe7ATE6UTI38XUtH3PomVox6pGHeca3xSklDwqLd5HYcrbe/R0bFNnvmzxPYsD5u71SP17csidXJ+aO+q52/JV+2ScKcraWZtFTLc87R2/5SlnyzQvqiDEj7NKxDxMci513APvnWsaiqkYpzzdCfBs440kYd8kpvfESSA6qTZrQlRrK6h1K0gUo/a0Wt4nz9/k78sdr7qWD1eVBl/PV0lpTRNIKSsx9LM+6IeJatut9mepCkt5IXluhFVi6iCcl5NjUUhyqRjggzBlcxTjmHrlaKed0gZeFJIwPZw5+KrYvf68+PpeR6q9MePGKKo0n/KiYKZ2vEP260Irr1NKde3TzPu8kLskA8Zxxmq5DinjF/OlZjNnfu2aKJ1plWSHqev4cXagNpWuiTfCsDssHl7pR4yjjG0S7lqqWHqlbGU1dY1CSr73tM+/8HMn15eahmJN3eFf/E+/zd/47gp/+iuXX+v1zhJiz7M4wbTz595nMkxynvXCUr4k5fZ848h19MmOzyBI0TWl1dpyzSouOIg1uyvWPYeYK0rVZypKB+O7C42KcX8YJtc/HVOc9bX2g4RHWz66ppFkRTW/sryoOoP2xlPTY3xW8asmVHK/5ui7zszbflKtX7omLoRYuJSSz9bHZIXE8BO8xRfdQZM4/7AOBG3XHDmXyz0TnGaE+qun+FonRl5IPttQav+OqdGpGUSpZMazKmcUIVQ/6Ukf/ryQVZvZcfB0J6j0al5VcG6lH7I9fiHcfWtOiTQnecHqIGQUpXiWzttLzQMP7BNl/oZjnFu1DVQwFaU53ZpFu2byvB/RL22FZ0vRwJcJsj3YGrM2iBnHGZfa7qE/N6mSTpzg8kKy3FbZ48lBb6IzBmphH8dKZHmlF1G3db5wuU3LMy+cy9RKXznjLLWd6rB5ZcZjECoKeloUWEJpEPSDBE0TbI1i/Din7ZnVRmpqglxKnvZCskJtUqd1mBhFaeWWMlnMW57JNc1DSnBMrUpAjaKULFcH6/Whcoa8PV9H15SOkhDquZEFgHrepzfQKFVuJAc5qByEJCsYhIrOf62rHD6mk5/T68Fy2z1ws44zZcm94yes9CNMQ3B7rn7485jmPNj0j+3oOAhSwkRZVl/ueCy2HOp7Es3rE0eVpnOgA0+aK92XUaQMBQxdcHu+fuGeZyEEW+OYnp/SqZn7ElN5XvCjlT6GoXH7Fdo/+kGi3Opq9oEVossdj6GTVs4weaEE1xuOgW3o3N/0CZO8GjtT0+gFCdvjBCklbdc6NUblxIHPNrVK4HOmpkSFkbJqe578rB9n1CydRzsBaSZZbjt0qxYrGIYp22PlxHNrrr7vObne9fjh8z6rg4iVfoxtaNycb2DpWqX7dRTiLGcUqbb3i8osjVLlrONM3VdQyYasrJL2g5QnOwFheV/nGw6mLmiV42vqmhJIHiq27nHaxQ+7lrVBhGWoQPdqx2UU55VZxWQterQd8HQnQNcmFW/1+4+3A0aR0qa6c0Kx55NgaxyzWq6DdxaUi51r6Sy3He5vjPGjjE/XRiy2nENdXo+ae0ehKCRpsb+NTUrJ6iDCjzOCJEMTSgdw8vzNNWxqls6ljodeavFNilCvikfbPn6c49mvnpgKk5y1odKMmhREF5sObtkG55h6tbcIIRhGKUUhGUVZJRg/SQJN4pjtcazYteOUtxYO34NOgkGQsu3HzNT2M+EMXbk4h2m+y1FuZ5zw0dqAum1ya75O3TZ26SRujeNdMetZHIKllCR5Ud0/5fgakeXKncwQsDIIGUeqsHl9tvZa43la1yqlYtk82wlxLY1OzdpXIJ8kyDVNJQcHYcqznaDSEAqSnKyQfP3GzGtf26+8u8i7S03+vd/8jD/xpeULwZqaxL3TDnK2oZK3UZpTs3XyQulDjeOMJCvwLI0Hm0HFpmq5JpqmYv+1vmIbCqFa2g4jCawOQp7uhPSDhKvdWsWomcQF3bpF3THIc0mndMDreCaOqVVzeoI0L6o19VXOmodhst+v9EMsXb3vrQNipTQvGIYpNdvgeS+kHybMN5xKU7EfJGhTbe6niZV+yPog4lk/5MqMh1Hex3Gc8WhLtX0vNh00TdB2TTRNVGvhZIynNR+3xjGjKGOuYb82i7mQBT941uPabI33ll+In4dJzsMtH11TeoYXAU92Alb7EXGec2O2Vp1hJ5pihq5aOtO8oO2p2HFyH2frNqamtAInzOVhlLI1iml71uemS+zUElNSysdCiA5wZfp1pZTfPq33eBmyoqicdgoJrmGQZCk7QUyYZqwP46rdaXKQPo5YdJLl3N/0yfIXh4KjMGkRG0cZUspXYk2Fpf5NlkuyosC1dK51XZ71Q4ZhysMtH6u0wv7ylQ7GngPDtDJ/+5yU+eMsf+HeBCwYDg82xjze8enWbN5abFAUKkt9mLtKlBa0XLXo35yrHchAUZbgQxbKgG/CjrKMmKWWy0LTxrV0LF1tGlJKHmz6ZHnBvfURnmUSlgwc45CNI8uVFWzdNqqN51XH8iQYRSlb4xiBQB/GXJnxVG92KX784cqAtFC0+cnmI6UkygpqllG1K4LqSRYC0rJPfvJMnQae90LSXJbJMLU4RqlaHJ/uBGyOYmYbNktNh0fbgapqlQeQJCtK8XYds3TsyIoCDVE977q296CiDnxHbVBxljMIUwxNw7P1iiUWJBlhoq51exyzOggxNLFrPZjg8bbPMMyo2S8YC2kmX6rhNekGmLgmvQz9IOHpjnJCa7gGy2114CoKyfY4rpgSj7cChKaeu72sqUGoXkOIF6KIWa4q/hctMQWq7cfSNTzbqObR5O/vPu3z/acDklxy6RXcWJ711L0Mk4CWt9txJUqV2GnbM/nR8yHjJCNKM9qujW0qXZvJmI3LdbtTs5gvtfEcU+kCnVZCZmOogq1RpKjWnqXjJzmWLvjRqmr5emuhTrdmc39zTJpJdE0CLxgK3bpdsS2e9nzi9IU70N7ElKFrpbuiziCIGcU5z3qBSlRnkrZr0Km/PPB7uOWTZpId8/B1+03j4daYMCmqJLRnKTOIe+U9NHRBnBY83PJZbju0PZPrsx4C2PETOp6lEvxjtX8VBbsYaifBxjCq2gO7DYv5hoNjatzbGFOzDG7N12k6BoMgYbHlEpcaTZO9JSqZenFWnOmeMzGEkWWr58S5+FLbrRLJf7e/xXzD4us3u+rgv+d+VHMv3T/3jkJRSD5dHzGIUi63XS51XjATRnHG9jhhHGf4sWoXHMcZlz2PW/M1skJWbYD3NkasDiIatsG7y62XztWidCM86MA42R+Ps4YfhrVhxChKK0ekSexg6BqmJvj+sz5BojRPu3WLx1tqbwzTjLpt4sd5NeZzDdUKY2iCrCyOprnkNEilz/rK5TdIQlquMkGYMIxBJU2llMRpQaemErcfrQ1Z7ce0XJU8mMRGt+bqJHnB1jgmiPND9/C9eJVne5K0bbqq4BomOTvjhEJKHm6N0YTg2U5A3TGYbyjttTflIvp4O2B9pHRBZ2q2ctQaRbS9g+PxS22XpmNimxpBmvNw0+ez9REN1+BS2ysPoiZfvf76iakJa+rP/pVv8V985zn/+FevvPZrvg52xb1aXI1ZmCjDpiQr+NHKgKZjcnXG42lPFaNdS6/ckidF74kmYpzlmJoSoS4k6Ic8alFa0PFUfHJ1xq32jsk6sDYI0YaKzR6lOTu+MtK4MVvDMdUzONl3t0sXToli6p9WImASJ48j5fAaHRLLP9zyS8dOyfef9Ymygrfm6/yBt+Z5srN/zp8mwjTH0DWWWy7LbYe5Mq4O4qyKT360MqDjWYQNuyIVGJrgg+UWhi5KAxx1/powmdLSvf11MIoyvvusz9N+yNdvdqnbqgisaYKltjonnUSo/CwRpcpgyY8zbs7WqjPI5GwXp+o+1kszKV0TbAxjCin54HILx9KqdRzUWU1peIWV4c1Fx6klpoQQ/ybwzwH3gSlTTn7ptN7jZbAN5QoQJMrd6KOVIQWST9ZGdDyLzVHCYsvGtVSV4sm2ahebMEwGQUo/TOjUrCrgeboT8HBrzOPtgNkyeD9OYmqp5bA1VhnKlz0EsqRlTg4PE0RpzjjKGIQJby02sA2lw/RbH2+yOY6IswLHNBhFKc/7EZ1asIvSOY4zdvyEvJDMNuwzp28mWcGDrTFpXrq45IqSrglVhfz+0wFN12ChaREk6vC8M465PlvfJ+Z8pePRCxKu1b1D26LirODpjrJD1QSsDUMajslVU21mYo8ezzBMebA1xirb+bICZusW/TDhyY7azPYKIT7thWyPY9Jc8tVrHdZHqj2wW7fOrIVhYt3+4cqQjmexXIoqPtz2CeKcp72Ah5s+jqXxlWsam+OI7z8d0HIt3l5SLIi9/eNzDQchRMUQOA1sjmLub44Jk5z3LjXRNVX5fbwVsD2O+dHKEF0TvLPcwDY0vv+8j5BwtVuj7Zm4lrHrAO2YOncXmmyMlFD93uq5rgk6tRcOKmGSE6Z5VXXZfQ/Vn5ptVOyTNC94sOmX9sA5wyjlRyvDsj1Q6W8VheThls/vPtqmH2S8t9RECKsSSzxIs20apqHRdI3qHheFpB+muKa+L1kwcWqftONODlIrg5CenyKE0vZ4sD1maxTz/nKTKzMepq6xOgj5vYc7bI5j5ho217q10mY3x75AblTTyAtJlikBzssdDyFExSqda9jEccbH6yOyvOCz9eNZ607Ds3QebPnEmaKL35yrle5GLxxY4yzndx/tlMl8iaGNabgmb80rQfxhlDJXfzE/bszVWB/E2ObpaQ6No5QPVweMItVaYhkaz3oh/SBlYxjx0doQS9exDeVgem99TC9IWWqppH5e7G4rdC2dm7N1VgdR5TK0F1legICNQUghFVNisekQJhnP+wG/9cmIumPyxcstfuLawQeeiVnIYVosh+1jZ4E0LxhFKmk8WSc2RzEbI5VIudGtYeoaQZLx2fqIlX5Ey1VCtXN1h4ZtsDIIWWq6bI1ivvdsgGUIPlhuc6XrlSyXCPcEunOD0sCj5ZpsjmK+86TP2jAilwUNp8WPng+Ikpx+mGCbOtdnPZ7uhAzLROgHl3YnUy61VftO+5SCyCjNCZKclmtWsUCSqcp6z0+4PltTzr1SrYHff9bneT9kpR9ya67B2jDi3saYbt3mrYXdzANNwLN+yPwJdEuyQlYHq2el1uMwTFlqvWAY2KVDXM3S8UzFYCykpOGo1n+1Vox4shPwdMenZpv4jsk7y4frBUUlq7Uo7eX3PquXOx49PzlQd+44yAvJ2iDk8XbAQtPmnSV1mHq6EzIomY0frg7RhOCLl1s4psYPnvcpCrjSdXFKy+/p+6sO2hrrwwjX2r+XvCo8SznUbQyjiqkQJop1mOVKf9VPMx5u+ni2wZevtvEjFVdqQu5ysHItHRdVCNwYKSe+o1qy1wYRm6N4F8Mb1Dqt3IeNA5PCk8PZk52AYZixNgzLBGZKUmpYCgS5hEsdh2td70wOYpNnCaj2m+lrzHKVBH9U7kt/6L15kjwnL923lw4wMdE0UbEOn2wH/GhlUGp2OngLyljmH/wv/qFTY+H8Q+8u8MGlFv+HX/+UP/z+4hvVuIvSnE/XRxQS/sAt5Tg4iSnTouB7T3sEccHljkvTNfjuk355EG/SrSvX32n3dMfUubvYZKtk9b/sDDQxSVpsOcyUDEFD16q4wCjgO4/6hGnOl6+2WRvEPNr2+XhtyBcvd3BMnaszHi3PxDE0Pl0fkRcFbdc8VYaKY+q8s9w8cI3aGsfc3xizOgjVviUl333aV4llV7G80qwo2cMaP1oZVqyr0zofLrfcKoafPod0ahbjWBUEn/ci7m/4fPlaCykF333cJysKtscxSy2PpmtwrauSMcMw4WkvYLHlcq3rvZbMQ5TmfLI2ZqmVsj6MeJSoJO9s3eL+RkGey8px9k3jUkfFJldnPNypGGSiKbY6iNkaJRhaTFQaN+lCMQMnrddSwkLLZr7h4Fm6KpT5ag9dbDl0DygyXSScZhT5jwO3pJTJKb7miaAGzuCz9XFJL5a0PcWeudp1ESj9hKWWwzBSweTk76e9ACnBj3PeXVZBWj9ISTOpso9CUW1HUVplWw9Dp2YdK7jZHMU83g7YHifcXqhVejc7fkyY5jQcE1vXy6+lRFlOlqvWj1tzNfwkp+NZZEWx63Wf9QI8yyDOcm7O1s48Q+rHGWkmAYFna6SBquxtjmLqpfi1Y2nM1BzCNCztuyOld2LrNB2V+TXKjfmolgBdExi6xlzdYm2obD4nVQzPViwcv8wkO6bOtp+w0LTx45x3llrV2Pzw+QB48QxMI8lUTzcoCvYkIOoFyZklpuJMiXUbmlbp2wBlBQS2RhFN12QUqSC35ycIBKahKJxtzyTN9y+up+3CNxFdzosXrZITZ7thnGIZgrxQmf2P10aEZbK46RjcnK0zTrJ9bATFCDy47dUytEqXJc2LKtngx9m+aqhjKjOAOM3pli6VPT8hLDVbilKrpOWaNByDNFfrxE6Q8NnGiI1hotp+wpjLXRdD046l2Wbs0a573lcJByGUuP70Z52pWUiptsGZmsXGKGIUZaTlPZRSfc4Zz0IAnmUSJDmuCZ+tjXneV9XCIFaVsZZrsnROei8nwSCcVEEhl5KWp2j2k7UV1HzSDEHNMpDIA5/fo3Bjtsb2OKHnJ3y2PqKQkrcXG8RZXjHZ1kcRjdJJp8gLZSnvmvTDlPmmw0zNIkjzqv10r6nEaeDBlk+YFBQFdGqqhTgux3yUZNi6Ri4lYVLwe497pLka35qjCiKC/boBhq69lBGwNU7w4xyBUI43ts612RrP+yEPtsYUUjHFNkfJodonN2ZrDKP0UPH9zVHMeqnZdGu+dqYaVo+31T00dME7ZUtonOXMeDY1y+DarErgrg+VoYBlaqz0Q2xD42kv4EtXWowjizQveFbu+XEqCbNSfN48fB06CIOyPRAoneuUg1maSeabKpBseyYP/IRCqnVCSlVMUUw2bV+scJrOa1lecG9jzCjKyIqCtxebldX4MMpouAaOpcY8yQv8WLkW60Lw/nIbz9JxTZ2GYyp9wD3MA1MXim0mxLEY6KAYvPc2xry92KBmGyR5QdMxyaVEY5KYeuEQJyXc2xiTS8njbZ/3llts+wnPegE9P0UTGk7Zgviyw8v6MOLxtk/NNqpC4zT26l2eFEGSqdYhBEkq2fET5psOSWmv2guUmK1q4YYPV4YMQsWAaDkmdxYaZdtsumv8T/pMHgfXux73Nsb4cYYf5+X+qOHHqmUqLVSb+PooohjActuh5ZncMWrYh5govGwP34uJSUo/SLncecGcelB2J7iWdqD+41LLYW0QMY5S4ixnHOUq2dwPmW86xJlKVtRsk0uds0lKgWJgTJg6wyitElN+rJJ5ALksiLOCmm2w46eMyp/r7BHLDhK19kyvmxLFMs4Kye35evVcnqYGjxCC/9WfeI8//R/8Nv/7X/+Uf+OPv3dqr31SjKIMTQjyXLITpix1XsS9YZyBfHH+erjlE6QZtqn0d691a/glK2cadds4VqHkoPklpcSxdDo1i81RTIFKPD/cHJPkEk0IdKHhJ2nVngsqnigK9f3RVPfCaWF6jRpFypVUIFjtR3y8OiLJc652dTo1k7ZrkVqKVfa8F5axuqRu6wRJQZwWBEl2anvNQfM/ywvCVLkZmrrG452QQZhwf8PncsdFoorIqgBHFQ/1glQVGtGwDR0/fj2DCyEETcfANjSGodKQ7AcpMzUVE6W50jbeLtnTb7Ll7aDnNsuVFm0hCwyhs9R2+XhtQN0yy3smudKpUUhZzYPJ/Lk641FIJdvwaNtnHGWM286BraAXBacZQf4QaAMbp/iaJ8aEMXGtW0MiuTlXI0hUFWYcZQRxzvowZr5pVwwYUJo4YVLgmBN9IkG3btILYq7PeczXHXaCmH54eqyZQqpgJUxztsYJSy0lnjwMM6VRoWu8s6iC74WmzVvzDTZGMbcX6tyaqxMmqm1pZqpSIKVUYqFFQfOcWvgajoFrKc2SjmcTp2pm5FLy82/NlvaVFm8tNEjygo1hRIxasAwheLg1ZhiqRNJE6+JlsA2Nr9+YoVu36ZX06CRTlfQdP8HQRKUhdGuuTtuzCJKcjmfvCjwXWw7b4+TARehS22NtEOGaaorM1pWT12z97BYs29CoWTqWIZirOxWz5sqMS89P+cbNLquDCE0ooeN+kOJaGpfbLlJKPloZomuq0rPXEv40MVOz0Mv5MXm+Zjxlxe5YTWY8C00oUeuNYYxrGsw3VRvsZ+tjkrzANAR3F05ulT698B7G4Gi5JrgmcZZXIse2qe7LTM0iyQuiNCfOCpbbilHmmHrl3tPxTC53amwMVWvC20vNE1eVJtcm5cHXOd1OdsV3IAABAABJREFUPGl/NXTBQtPGNvVKgHd7bDLftGnYBhJoesqlIy0kt+Y9wqTg0/Uxdxbq5+IMcxKsDkLSTOLHSo8sl7DQdMq11aIfpGVPvOALl1r4ScY3bs7wH57wfSbi+v0wrbQTJOo5iBrK1bBba3Nv06flGhi64OFWwELDqdhUj7YCkqx4LV3Ao9BwlCaL7RgVK/dS22VzFPOly21W6iEScE2dUZSVVVuHGc9iaxjjl20NE7bVceCYWikqClFeoOsaSabYMz99axbH0BjFOVe73i63mmkcxdTIp57v4uR5xROhmJr7k1aghaYaR9uwq/FvOoYqQjUdWrbB016kEkG6zvZYVeEvd1RFUgA3Z18tSJv+7LmUzNZtHuo+3brFUsvlxlyNfpByZ14oYW1LZ20YqTb7OOEnrrVf8468HJOr2x7HGLrG2iBipmYxCBM2hhGGLnh7USUAbEM5UN2YrdGtq+Lazbk6moCtUULT3W0ikeYFUqq10zTEiUXIJfClK+2ygLWfIaME6BX71LV0Plsf0nAsHm6NFfvNMfGTnKtd1fp6FCPYjzOEgHGc0nRPf62sWYql61o67ZpZPavLbZetUcLXrs/waNsvizQmwyikZqt9Z6ntMAxT7m2MMXWN2Ya1SyvttCGEEo6f8Wz6YcLVrodlaERZQcNWrIWsKHhWaqClmaq0398ck+UqUXh38dV1pGYbFlujhE7tBStQSlntlYetI926KjAuNFW7acs1lOamIQjijK9e73Cp42Hp2i7Hx9NGyzXpB0m1z0wwvdffmW/QsE3VCm5qpL5kFGb43ot2+wkrCODarFdd80JTxQfXuzVmG/aBznOngZ+42uHPfOMa//F//4ifvzvHL96dP5P3OQozNQtT16hZGla5D3XLWK3lGTiWzjjOMEtRbdvQmG84LDRtVnphZXZ1mPzHSTFhMsuSYbLcdni8FeBYBss15ajZcAzmGg7GlOu1EOqz+El2ZmMGLxiHSZ5za7ZOXkg0DWyhM1uzef9Si+2xIjP81M0uvTB9EefWbZJBVJ43zjZmfLDlEyU5mqYSJItNm36gdGYtQ+Or1zuEiYo/BKI6j+eFpOmqgqyliwNdS0+CmqVza67GWwtNdQ1hRqdmYmgaG6OYKFHP1JUZjzAJL5QWk5SSextjPiw7UTo1k4W6yxcvd3i2E+JYOl+/PkOBWouGoUrqTTQOhRAstVyiROndTZyJLzJO86n8t4HvCCF+CMSTL0op//gpvseRmNAq14ZKzC5KlC2zEkcfkWaSmqXvcwe4OVuv9Ax2fJWsKCR0PBtdUxvE/bISMmGHvA7yvGB9EBLEGd26VVG2QR1QJ0yniYBc27P4eklxncAyNFqeSc9PGOQpLc/keV/1kxYSbpywylZIyepATcqTZKcNfXd1y9AEaV4wW7fRNMGf+okXVqZXOmoBSrKc+abNp+sjtvyELJNc6rgESU4Q59QdgzhTGf0Zbzft0DJebAQzNYu1YcQgTyuNFb+sVEy0M2Zq1oG9tW3XZBCkFFL1k/vJCz2uumPw5WsdgliJH5q6tqvtcBAq8eqZ2sHCyFkh2RhFJ7KbF0LwweU2S22XQsoqCTZdQb85p1p31kcRN+fqXO54JHnBk52AtYGif8ZZwSBM0TXVEhQmOaM4rfrvJ3jV8Z5vOvzi2/P4cV4t4JomKtHv23NqLn26PmKp7XBzrsaVjseDLZ8nOz5Nx6LtmSSZEvSslcyBSRX1ZZuCbehcm/WqcUlzxTJrOMYuOj2AWTqsrPYDXMuoRKMNXeMLl9uASkqsDhR74QtX2nxwuYVrGfw3H60zLKvZd15ByHW57eKYCY6pWo7iLGcYKm2M6XutWH3qs2d5wZWOS70c69vzDW7Pl9ptI3Wwfn+5xe05lYT67tM+T3cCDE1wZcZ9o4mpJCvY9mNq9oukS80y6GcpjmVwfVaxUCd9/Mttt0ruWzrMt2x04XJzvkGaS4ZReqKDxWJLabZsj1+wJidfn2Cp7XJ/c8zqIOJnbneZa9isDiJWB7K0XdZL4fwUpGpJ9qyDq66vMr+vzai2S3PKaVSxeRXjaanl0C/ba2ZqFldmXGbrNk92Ah5s+TimTss1CZIMP6ZyZd3xExxTO7Dy2fYs3l5sMAhidF1H1+DTdcU47NYtfuW9RTZH8W6rT1Rg2AsSvGMISi80HHShKORn3cq33HJ4vB1gG5pqZ60rp7K9rLF+oBhouqYpZtXU9S22lHBonku+dKWNoWtIqfTdNCEOZDsfNt4dz6yS5d2aasP66vUOH66NsHR1eLrUVvvf+jDi2Y4S2m25pQ20VMYPHc86dW24opBsDSN64xjX1OjUbFxLK4V0BTdm64DEmlqPrsx4BzLwrnYNFWcEKs5QrXRjsryg5uhcm6kdm81h6BqLLaW503SNI5mJmqZMHaI0Q0pBXCaQ5xo2lzpKE+bJdsCj7YAbc4cbZDRdk0ttD01AlCg2pZ9k+/ZFeLX5rWlq/77U8cjK+AcUE+ZqV13TRGD3k7URdUfnC4027y438cv98ulOyOWOS5IVZFXbqtofh1FKnBaVWcKr7t8TqD1Kr9YVgKWWKnJlhWRrFPPOktINMwzBMMzIc8mMZ1aakWmuWuubrokmKFv99s+hHT+pYkJdO8ydS7lNDcOMdvmM9cO0XDMFK/0QQ9dwTGVUIITqThhFKT93Z54oLbhZFiJPipOOt2UoY4IgyVQRwdPK1nyTSx23Gv9r3RpSSoZhyrcf9xlFKV+40trVUjvB9L/b3n5R+rPC//wPv8PvPurxP/lr3+Gv/Qvf4P1LJ9OK24tX2b/bnsUvvT3PKFIJA9gdU16dqRGUc8SzdL7WmOFq1+PxdsDWOMbQFAs+SnMlim7raELQCxLqRzjRZnnBTpBQs4xKKzVOc/JC8mTHJ5eStxYaXJ3xFLM9L/jKtQ5Nd//4LLdV0XjSCfIqGEXpLq1YUMzctChoOgZ+nBMkGeNYERjCNGe+7nB3oYlr6Sy0VHHzD3+wVBVvao5RxUZNx9zVivsqSPOC7XFSFayiNK9Y1boQjEotrCQr2BgpnWdD1/ipUqtwGKUgBF++0i5dQHfPucnZ5/ps7bW6PbbGSnvJtXQud9TettR2We6o9wuTnMttDylldc+nJTu2x7GSxCnPsmcNKSXbfoKpqTPoMEyxDUX66IUJcarale8uKif2txYaWLpgHCsjpcl6vheTNtCrXW/XHDsu9o73WeM0o8j/GPiLwA+AY2duhBBfB/5dIAd+T0r5F4QQ/xrwJ4DHwD8npdzfa/USmIbgO096PNgM6Nb7/OmvXKYo1KbrmNqBm7imCfwkY2usDseWoRGlBYWU9MZKC2W57RAkKqFyHKR5oSifBzzQP1od8nfubREnBW/rGj95o8aOn7A1VloYtqEy8kcxnrbHcWUbfgW3nPCq2rj3sHEU4qxga5RUDk+HwS8TeJ3awcH0QYH9Vhn0z9QsPFsxafpBysOtgKW2Q6TlLLRsNkcxcVqga6pqlpZ6Ujdma7Rca9+9THPlmtWwlYi0a+rYula1TUzaAicL3yBQCaxu3S4P9kpAeqFpU7dNRlFWMSaajrlrcxnHGUGsFtwfPOuDEFxO3QMth9NMMWEmNqV7URRqAbJ0bV/r4uTnw0TR+lvei8D5eT9kGGYYQvDWYgPPMniwOcY1DVpeTtNVQdyTbVWFuz7r8WQnIM8lDzbHXOvWqkrsUeMtpWpHEOW4TWOSLJNS7hpbUCKIj7YCTE19tqszHsNQUa3nG0po8HLH5WkvUILFhgpUn/dCojTnuana59xDgonJuKR5wbce9xBA3TF4Z7G5xy5VMFMz+d7TBFPP+HBlwAdlQmoynj96PsDSNUxDCWH3o7Rqv5FSVSCmE49Zrpa2o+alWbJdQAXln66pgGrb13h78YWOkhAqCf3x2pAsh9++v82vvLdYfX8Qpny6rg6525oSnw7SnAKV+Gl6Bjq7K0oTJ7KzdlALkkyZK3gWn64P2R6ntFyD9y+1qhazuYbSvlLVveJALZpvP+nzw+dDAG7Oq0Pdk+1gXwvkBAfNC2BX8nj62ib3QWnbFHimQcud1nIR1VgVUvJkO2B1ENL2lIj23cUG4yjDTzKWmg66rh05vydr5PT7a5rYxWTcLoW2J0n2yXwQQnB7roZjGUpIVVIWSiQLTbvSgfFspevSD9JKJ+Zyx903bzQBUVaQxhlJ6jF5VKI0pxekrAwiBmHCeMarmEPPe0oX56BW1GkMQrWenjRwywtZtdUeBSllmYxTSWQ/ztncjJmv22yPY+4uNPe9d5TlCCFIsgLHMvjSlTaFVPu6VopQe6bB7z3u8e5ykyR7IbaqCbFvTZ6M90Sc1Tb0SkB27/iHaUGU5Jh26ZZjTPYg9f6zdYsdXzFJ/8HDHa52awzClFbpeviyA+m0o9tR2PJj/v79bR5uBTQdgz/2pSaLTZeVfqjcHm2ducbBrqT7Xqt08ANYKhw8U4kOi7Kl5STMbFMXbI0TJajva9xdPJ6w7bWuYp+5psbf+2yLotTQdK2MXEp0IYhfYpBxueMx42Xc3xrzvB+xMYqYb7xgTU8naI6a31AexsKU5pTIOewurMRZziBQrXmupcTl1wYRaS6xdJ3b87WyKKMS47MNC8/SWWq5PNoOCJMc0xBc79YqZs3qIKBbc47cv/e+917oQrHc9lbPlQagcii0TY0783XWS9OGTs2ibivWhaFpfLw2pCigGSnX02c7YXV4ujGntGImwtUt16zck0HFxz1ftTdOiiqe9SKJ8HBLtZ0Iofa0T9ZGxFnOT96YUcYFpRtg0zWZqVtHzp2XIU5zPloZIhcbLLTcamwPu3egYoGJdqUfZ1Ub02T8lVi9kizoBQmbw5goy7m/Nebd0hlsxrPKlm0qDc3zhmvp/OU/8xX+if/L7/BP/uXf4d/8k+/xJ7906ZXbII/avydx9N7zw/Rz0A8S0lwVZ0XZJvxgy0cTojItGUYqpmx7am+ca9gMwhQ/ztE1gWUIwqRgpVDJ26Zr7no+pJSsDSKe90JsUycvQiWILQSuqVF3lDGOoSldytvzDe5vjhhHOU92Qm7P65W50rafoJcJ2b26uROMopQwzfcV2qeRF5LH20HVFZBmOU96ASs9pZX4aaxa7wwdXFOjW7fYGScgBbN1ixtzNRUrjuNdcfvewvpe7P0MR2GlPIeAmsfferRD01UseE2Iat262lWawU3XIc2UfMWd+To/eD7EEIJnvaCaN3vX0716uZPrPOxMshf9IKn2rFGUcW/TZ3UQ8nNvzeGUc9q1dJbaDmGSq2QPL8yEBmHKg02/XF8LWp555Pi9DqSE7z7tk2YFrmVg6JDliu2+3HJKzSm9SioJIajZBlvjmIfldb6z3DiUOTyZdxOixUkwPd7ngdNMTG1JKf+9V/i9x8AvSSkjIcRfFUL8AeAXpZQ/K4T414E/CfznJ3lBKSfaGhkIyfefDRBAwza5u9Q4tLqkTy3EeulO8+HKEE0TrA1ibszVjiV+DuqhflpavR6kUaNRVqXDhFGs+qbvrY/wk5y5ZsQvv73w0tcfxxmDsp95gqc76mCfFQV3F5uvXIHVX7Ih5aVItJTqGva6hR2ErXHC2iCqXltpzaj3WGypVpXFlo2pq4SVRLI5jgG1wEVJwdOdkJuzNe4u7Q5iZ+tW6QCjEoAfr44wdFVhnf78RaF0bZ71AnVgyYvq3uWFSkBuj2PiLD+wlSfNCx6VnzvKVAJTSugcoUlxmOvf+ihia6SSoLeM/bosUkqlAVOoZ2liGz7ZsAxdVQ2jVB0KDS1lqe0wW7fZGKp7HaYZT3sBUars3j9dH7Haj/nildaucTtsvHf8pEp6Cg5LOO4f28k1TtoFCqkOI3MNmzQvWGop+vP6MCYvCnaGaXWffvC8j2XorA9j/uC7L58Dz3ohO76qItyaP5gdKCXVczAtXzSOVNtEL0jx44zZusVTUyconVgutV3m6s4uQc2JmDZwoHjuQRiEKc97IZvjiJZjMXdAUlvTBLqmkeXFrtagYZjw2fqYnXFSHWolEuSEfagq3nXHqFgPWV7w2cb4RC6ir4KikFVQ3gsSVgcR4ygnyfNdAe3kwDbfdEqHnf3P2ihKWS+foTB+oa120FN52Lw47NqGUVatv5Nbaxmq2t52zfKAbrBYthiqZzlDIOj5KUGSsxg6fOdxn3Gccanj8JM3XjBXD5rf02vkKM4OPDTumltlkPVi3qg22EnLwmTeLLYcDE2wMVIJrZ1xgqapeffD531qjsHTnZBfemd3O8YnayN6vjo4Nl3VNtQbJ8w17NIlNWYYZBgiYrmlnqnjCIGGSV4lwNNcVtXto5CUGkN5Ibl8DIvmh1s+9zf80jY9p2GrNt3VYUQuYdWN9r33jGcxihTzQiVedrOcZus2q/0IP8kIkozlY7ZNKWajujcqeb4/lnja8xlFKjH59rJ6PsMkp+UolqgmFGPUj3N6QaIOBWU7AVBpj0VpznzDroLglX5YVi21XS5+h0EXgigr6AcJIOn5KXXH5JsPdogz1T5xZ+Fos4F+Ob8nVuTjKGO2oZwr46w4dqFuGpNn/SSCs66pYzY0vv90wMPNMaM44+2lBq1yHt+YrdF0zNJxdb8RCFBpskioNII2R1E1pncW6ruSTIft36Bc1xRTNKn0zg76mTgt2BzHvLvUVG6k5WdW65B6/ZqlEzo6s416tRZNri+Ic573A/wko8gl97fH1K2geo/D9u/Je2+NE95d3n99m+O4anWfsH0mqNyLJOSFitM0EeNaTnVfs7yoxjFKcz5aHfJkJyhZsU0cS2lDprlKoBVSsjiVmH+6Eyj9OxHz9mJj32FvOmEWZzmPtsfkEuTDHd5damKbGi3XUrqkr6ENBmr92vFT1ocxCy2XJzsvv3fT92hyn6YRZzn3N3w2R1FlqKRpam+Kk6LSY9M0caYtm8fF5Y7HX/9zP8W/9Fe/zV/4z77Hr/3mPf7Qe4t87XqHr16feSX2z0FP5XQcHST5gUXdUZTydEfpu6pizItnRsWUan6ammr9ygvVbmfqGvc2RoAyPMqlxDE1Hm8H3Nv0sXTBL70zT91Wn+X+5pgfPBuy48fcmPPIc7BKSQdD17g+W1MyILEq+GZ5gaXraKLYNd7TMbB2iAlJnOVVwilKikNZogJVGMnLttbffdTj8U6AkKoFOckLvDLB/dZCg50g4f6GYk9PtDGnyQqa4FjJ2s1xXElK6Lo4crwnbdtCKF3mH64MeHuxga5pWIaSoshyScM2+Oq1GTZHMbouyvWvjGXl7nnzYNMvmdrpocWK6bjpqM82XazKSmOKhmOS5znwYo2v28aBzvUCteeq8ws0Q6vUpCzOxOnTjzO+97SPn2TcXWzQdk1sw6iS71+63GEYpSzsSTBKqWQz8gKebocHJqaOM+9ehunxPg+cZmLqW0KIfxv4m+xu5fv2y35JSrk29d8M+ALwW+X/fwP4pzgiMZVkStW/W7cVxTiXfO3aDJ+6Izply1A/SHmYBOia4OZc/UCB7Yk9r6lrVcB5ecatNu/DxiRMcp7sBBi6qmzpmmBcivFNFqK9eHe5RSYlDzZ8rs16aMBOkDAIsipJ4sc53ZrF416ZDV1sVhWFx9u+EinVVAVKCEV1dkwdIfRX6pF1DL10vTjeJnT8FrXp/6i/Fho2pi6YyRUV+wfPhwhgEKW4ho5t6uhCoygkuqbEzAsp991LvaT7DsOMzbFasLJcuf5MJ6Yebvv0/ITtsRIv1zXBB5eVG1KSKTHkYa7a3/pBsn/BK2nzUZrTrdlc7rjEacHyIQcry9S42vUODZjEMehs6mdkdf+kVAe5HT/Bsw2CWD13hSyQwKPtjOtdj+WWyyBM2fEzXNNQ1HrvBX13YoN71HhPj+9hQ713bKVUNrlXZ1SLYcc1+WxjRJwW+ElWjc2tuTozNYtPxhGuYRAmBTM1k7ptYOo6Sf7CNvswaAIWmw5+rD73ZCPaGEXEqeqxnmvY/MS1NkGcVUmMHT/h3saI+xs+VzoO4xjqtsnWOMazDJW08KxdB5RhlPLhyoBhmLHYUu95nMTUZG9carnUbaPaEIpCsjqMEKjP8FM3uzzvh1wpn6c0y/l0fcwnayPmGjaaUIn1jUFMu6aYQq6t056a52le8NHqgCc7YXlfcrpnqG84qVhrpc6PZ2XMHeICOjlUm4bgrfnGrqBhvuFg6xppUaBpKpl5e75+aFVq77x42bUJ8cKW3DI0rnU9wjSnZunc3/TZGsfoQlRM1fmGTVaopHUvTPBMg0GQVgK1E0v5I+f35P0Pu74D/n2161UMhygtSj2XAonET3KSLFdOpk2HZ31V9DA0JRfd9Cw0BFG6pwWgdMtT7B5FU3++4/PR2pjLI5ev3ZjhSttj20x2Pc+X2i6uqdaZgwoc6p4e/HmOQpTl1aF7b8vCQe8zjjIQqu3qyozLQsPh2myNZz3Vgrv3vSfPmkqSQpBmdDyrSv4LIbg+WyNOc/wk5ZO1MeMw40tX2zTdg803JuPtxxnbJat6+vNPr1WzNZs0l5ia0rmZ6IHoGrRcVd1HqrF5a6FOt+6w48f0AtW2FKV5FXznhayC4EmLephM3JVefte7dZtfvDuHaQi6nk3LMykKyfpQaTK2HKNk7xRIKVkfxVxqubv2tDjLeboTUsgCIVSArAoiBVe7+1vgjgvVspUeK9boB6o97FlpEd8PEwpUwm0UqNeYrTu0PYstP64KPra5X2fI0NU4jqOMq12XJJPUbYNxqT81GdOj5vc0XroOVX+L6vlYaDgYmoala9Rsg41hxPowRghJnCq3wSszHlc6Ls8HIf44JYg1NAEzDZvVsvB05P59xPXtWoPKH5o8x1c6Hjt+zPow4uGWz0zd4mrXIy8kv/tohyDO+MKVFvMNm36YYmlKo9XQFFO/7hjVYUYri7wzdatKakkpWemrwtJiy9m3z2+OIsJSX+byjMdKP2S27hBnOYYmeNoPsXTBT1x1XjspBapwtthyXjDs99y7g2IRs0xe3N8YMQxTfu/xDh3X4sZsjSgp2BpHfO/ZgLqt842bM/zk9Rl6YcL1mbM3JHoVLLVc/vq/+NP8ze8956998yn/17/zgP/gtySagK9em+HP/eKtY2lQvWz/3v3MHfz7e+NOKSVG6ag96dR4vB0wijLiNGOc5GyOI758pcNS0+HhtoqJa5ZJVhTM1i22xylFmVSY1OrC8izRck3yXMV8YZpTFCp23BhG/GhliAa0S3bXzTkl/j9pmdq3Dx46146OpUElUya6yBPOgWPoCCRCaMzWTR5t+ei6xtZItVZd6ii32ZZn7XtOj3PO2H+tR+NSW8Wzk3OyOi8JPMsozY4E12dq/ODZgGGc0rANNKExilLuzDe4PqtaMydGQEKI6r68PK47/mdrOibXZz2KMg7LZUHXM9GnnsuNUcT6IK70jadjnYZjcKnjkmaSds2sYpazgnKdNdgcx3imgW0YqqU5k/z9e1s82g64NVfbx3ybLdfVQnKoduJx5t3LsHe8zxqnmZj6cvn3N6a+JoFfOs4vCyG+AMwCfVRbH8AA6Bz1u3khWelHNBylsbQ1ivlsc4ShwbvLDUaRckJyLY3HPaW8//WbMzQck999uMPaMOSdpRa353f3p6vDiKKIerZ+qIbLth+TZAVJphyOWqUNZZzmGJq2T7gtSnN2/ISFpsO1GY9BmLHYtNkJEj5cHWLogk9WR9imztow4HkvJssLnvcC7i42ud6tISV86/EOoyjj6ze7fO16BymVLsjE8vSkEOJgVsw0dE1wa65e6TFNI0xytvyImmkwM8XUmK3bFW08TDL+0//+IdvjhJ+/O8dC0yXNJav9kK1xQpxlLDQc6o7JtW6N2/N14ky1nNRto7qXq4OAv/X9VUZRxuUZj0stD8sUVT/53qTBk22f7bEScL3UcSvNqaarKteDMKXuGBja/raEJM153g+pl+KmC6WL10EtH9V9EgdXTiZYaKrEnGVoeJZRtfZlRUGnTIpc7jiq6u+a/NYn69zbGGNoGrfmanxwuU2Y5pVDX5IXaEIjLyRhkpPkkiApaLkFddvg9nwdS9dJ8oJbJYPkqPGeqSlXuEmiBlSCZlz2j7dcU4mepzmeZdDzY/7291fZHEdc63p88UqnqmavDSM2hhFt1yZOVSJwFGZkmUQzCoRQtOmfvzvH052QSx33yOBN3SeNpmNVC6YfZ9wvXaj8OOPtpeYuqvCn60OebPv8aGVImKQEccrVWeVm4ScZAtVPHqfFrsTU9jjBMQyGKOel4yZ+G47JQstGSslC88WBb2UQ8qPnA2q20pbr1m065Sb9YFPZ/v7O/W3itGB9GPK16zPqM2Q5fqyq26Mow6q9qLoPwxSkwDVUm81BjIHTQpKrdqUgzfjKvLq2zVF8aNvL+jCqEr5ZIbGmElM7QczTnQA0VUWfuGkeBCFU4Ka0V3Q2Su0tQ9OIMuXQpGlC6QwOQj5ZG/HN+9uYhqDj2bx/qcliy2UQJjzZCdgcxhSy4NpsDaQSnx/HGUnpJtOt2TRcg69c77A+iKpK58vmt64Jbs6+WCPTvKAXJFBWvhxTuf2EaUZewMdrQz5ZG5LmBXfmG3z52oxKjAUJgzAhL6AoIElVgD6KMopC7U8dz2auYTPfsnm2E+5jDqVZwXLbJc1zXFO1Bv76j9bxy2D+i1fa3J6v0w0S7Cl9AiEEw0gxQ3UhCVK1Li00bL75cBshVCKtbus0HONEe07DVgFXkhcHPqMTLZ2WY/BoJ2AYpdQtHV2Aa6g2p+896/N422e54/JeyWiIUlWVft4PmfEsnvVCBkFKP0y50vF4b7mJV+4Lddvgy1c7+EmuWvbhpa1Ak/Fu2CpxpGsC29Aqdt7GKGIYpgzDFEMXfPlahxnP4rONMc97AS3XYhwpTT1D0+gHiXJaFBq2qRGnSvNqpmZSd4wqsTkdKC+01GGp6ZhHsqGLQpbJFsHXrnXQhMZCw+FJL6Bu69h1k/mWw+YoJs2Lql34RysDvni5zbVuTTlVxhnfftJTAu4LNb5xo8tOuRe/jkvStBbGpMWlW9ud1N4ax/z2vU1+uDKsrNfbns1i01ItXmiYpsCPUjquVbZ3vzg8HMZ2mrSCD4KUrXGEaypHP9fSq8901P4Nqk1+ohs4QZBkDKO0Et++1q2xOYpoOAZ+nPH3Ptvk2U6Ia2tc79Z4/3KbIMmJsoy1MhmZFZDlAZoQREnBIMiQhYo1bs/X0XXBIEiO3L+vlS2i0/Hn9jhmHKviSsMxyMtC0s445r/7ZINhmGIaOldnXK50PECoPT9OWWjYyg2xZLP84NmwKnYZjlD6iabGW/N1Zuo2nTI2sgyN2wt1DE2xS2ZqFtvjmGc7IQ+2RvQCjw+WWxQoVtwgTPl7n23zZEeZCCjxa40vXWnzaNvHNJQO0GKzVhUMXheupTNbtyox6PmGg5+o9tpP10dsDCOGUcrljsf7yy2yQjF347RgFGasDUNWBzGmrvHucpOfvD6DZykXsLptkkvBT92eZX2o9qtXFY0/a+ia4B/58mX+kS9fJkxyvvO0x+/c3+a/+M5z/vn/6Hf5Z75xjX/jj7/30ut/2f5tlMmdoHQUzwvJtq+KQ5ahVY5k800LKQV9P+a//N4KfpLx3nKLOwuqPXAQJmz7CY+2fDqeMrK60vHoBSlZLhmEGQ3HYqbmMNuw+Gh1uE9b6c5CnaKQmKZGxzXZHMesleOzPox4tO3TD1LWh0r3bbbhUEhJUcB3H/f47rM+NdvgZ27NMt9UMd4kEe7HygU1zpTjqGPq3JitEab5kfpOk7VR1wTLZUKgW7foBSn3NsesDmLCLEMX8O5SG0vXWO+H/OanG9Qsgz/1E5e5MuMi2H0+mchupHlBt27vWr/nypbFvczJw6BpL1r+LEPjy1c7NB2TZ72AzXGCO6X7l+UF96Ix17seM3W77Fbw+XR9yChOWW55/OydWS53XIZhylzDIS8koyglSDMa9guN3cmZ5GVnr2lMfi/NCzYGMZrczXSMkoJBqFjQlzsupvtiX50uYM03HdaGIZ+tjfEs7cii+avAtZTpxHxTGXt4tk5WSB7v+PzdzzbV+0nJlY7L015RsnUjVvsxTdugU7MqduEoSjF1bVc813CMktxwcrbX9HifB04tMSWl/MVX/V0hxAzw7wP/OPAV4FL5rSYqUXXQ7/xZ4M8CLF26gqGrVq4sV5W0HzwfogkYRTn/xNeucrXr8WBzzOOtQH3/2YB3FptVFe67T3pcLltj4EU7SJQqm/n3W4cLAiqHDhWQerb6fdvQD2xzG8cZH68OeboTstRyyiypCtKX2y6DMMPQBA+2lK3xQsumkIoKfqXM3g5DJbnVD1Sv7eOtMXcX6nTr9pm17kzjIJcmpQEw5NONMaYm+Onbs7souJ2aRZzl/H9/tMH3nw1JiwL3YY8/8gWHNC8IkwxNlJpRnk23Ye4SMl3ac+D68PmQJ9shW+OYbT9BFnBrvs61bm3fpphkBevDiGGYUXeMXUkF29QrEe/ltqIDTycg80Ly3366wWo/QhPw5asduvXXF6ZUzmQvxmp1GPHhyoAdP+H2fJ3r3Rqrg0hRL1PlJPm8HzEMUpKsYLFk4KwNIlxLI8lV5aZeureBqoAtt1USTQjBO4dQ0l+G6cUoSnM+Wxvx2caY2ZrN28sNJVAf50SlFtiWH/PJ2ogwyak7JrM1ix0/JS81NfJCVagn7Qfduk3N1kv9Nx3HdHclcA7DhBVh6ILZ+ovnLEpzvvd0UAqJKnHACTtnGKalGGPElh8jJNiWrsQFc0m3ZtHzU572Qjb9hPeWW9XzN2n7ujlX4+Zs/dh6OoMwZX0Ql2OjbKLTvOB7z/rcX/fLw8YLWm1SCt6u9iM2xzGmptMqBfajNKsSPw82x+z4Fmkp5ghKo8HQNRbbDjdma2da3dgcR9zbGCsdiJrPfNNhGCoh2Jtzu1tTozQnyyVJpqKCvdpXz7ZDNF2QFgW9ku3wMkwCt/ubyu48iLMykNOUY0nT4elOyPNewOMtn7VBRJLnfOlqh7VhxGLLZRRmjGPlWjNft5XWW3kQzXKJY+ost9xdrImTbOjTa+SDzTFPtv3/H3v/HSTZlt/3gZ/rXfrM8l3Vvp9/494MxhEkCJAgCYmQKFIUKVEid2Upw5A2uCuFVmu0EVKQq91lyIRWoCiuJIokFAtJIEUCIEACxAwwM5h588Y83/3aVFV3+fTXm7N/nJvZ5bq7qrvaDGN/ERPzukzmrbz3nPMzX8PGMOKV+RovL9QYxxl745R+mLAziiQtdZwSpQXzDYe5mk3fTwizgpqtEWcCz9LQVWXasDjXdGlXLGqlCPr8oXUTpQUbgwjP0njzXJNRlBGmGRVbkw6aZSEgz66DwuVBkhEm0sn2+s6IqmWQNaUY7HdX+4RpzitjSaWs2Map9KUmLorHxd445tauj6VrdH2FJBPUHZPVrs9aN+S9jSFxae1s6RoDP51OAHtBIoVvTZV+mND2zKmOjYKCZ2lTbReQydZb55v8UFexTqhPM4ozdkqUnWtKpM1vfLzF5iBmGCZUbGnTvdSMsXWNOC2mWnyerREmOZauTJGOUuRZTIckpi6bI3IgI8VuJ3FY8/BhcWvP5/aeT5IWsklds0iynDiTCKxcwMV2hXuDkK2hNNPIM2h5spHa9WPqjsEnZQ4khCDJCuK8OFaa4HFjP8VlQpGQcgSizNOGrPVCNrSIL19powBzNQdFUfnunR5745TUFsxUpYDxTNXCMlR0VZnuQeM4Iy4Lwv3P6a4fk+WCUS4bNQ8qph8Ulq4xU73/O3mZM17fHqEpCi/N15iv2XT9lF6QgiLoBgn3hiFhnBMkBbM1m7mazXfv9LANDT9JMTSNiq1Nz8hJE+lcU6KCT2rzbeoH6YxdP+Hbt7vTpmjHszB0laqllzpzKff6EQ3XIEoztkcxEpSn0Paktl27YmLqCmkuqO9ryNm6xhcvtaf57P5QFEm7ul3SfqM0oxek0p0yk4j47671qNkmnqWVxjc5PV/S4AsBb51vsth0yIXA0jUpYVC1DlADnySyXCLxorTAjzOGpbaVpsqm8Y1tn7woSDLBhbYnn08/ZRRJx9l+qbUnBGRFwTBO+cxKszR5EVybqzCOJNpykuOd9nl71uGYGl++3OHLlzv8mz95lb/4yx/yl792iyDJ+U/+2JuPXZjv1xFb6wZs9ENu7fpcnvVYaroYmsr2UNKP13sB2+OEtT2fJJXP1lLDYRRl9H2JxMkLiTRxTY2dUSIbOnWHlZY7pbh97nzryHXYhsanVhqAbNrYhjbVBJNOvjIfnPx7exihKQ22hhFvr/W4sTnmXMvhk+0RyyUKTlUVdFXlbi/ko81hacpi8cpC7YCG1klCgQOUq6Yrm95JknNzVwqZD8OUhqvz/bsDbu+GIARNZ4s/8cULR56vtW7IN27uomsKry3Wj2idPq4TnWtqXJurHnDVnGgcV22du72Qiq2xN5bo1jAtePfegOvbYxACxzS4uTvG1DSEoNRNSri+NZK0trkq1+bvS/A8ToMkKwSqphAXUmd4osPpWbL+s3SVcZwdQJ9OdBUVRQ7B3787ZGsYE2cFS033zNevoSm8daFFmss9qGob3NwZT//tlqALgUKaCW7tjHn7To9xlLPccvjK1Q5RlhON8mnNMdlnrm+PGEcyT5bSNy/23nNmjSlFUeaA/whYFEL8QUVRXgW+JIT4K4/4PR34a8CfF0JsKorybeDPAn8R+Cngm8f9nhDi54CfA/js5z4nrsxW0FSZ8KZ5QZoXJJnUW1JVqNsmry7UCUrhXNfUUFV5eH/n1h4rbZdPdsYHBJTjLGe9F2LpKosN54ELt2obvLZYO9FGHZdUEEWRDZPJewVJxlzV43zbZRCm1BKdMMupmBozVUkd6gYpS3lBzTEYRimXZqpc3x6iKAqr3YCrD1Dkf1YxiuXUz9RVdkfxtDG1M4rZGcUYmsJSw8U1NcIUZqtWKYId0qpYCOCaWcE0VIn+yR8MnZyr21Qdnc1RRN010DXlQGNxf0jRZQdLT3ENeZBNJj6LdXvqiDiZQgshBQg3h9K+/d27QwxVxbU0XlmoPRXhu0EgJ5GjKGOp4bA5DLm5Iwu01xarzFYtVvd8nJolGxCqwsYgJC0KGrrBG+caNBwDAayWKIOX5qp0zhg1s9oL2B7GZIVgJZZrJi8phhfaHrd2x7Q8i4Zj4Jkaq72QOJUJ22dWmqw0HVCk3e04TllsyATitElOVK6jLJcCo5ONdqJbM45T1FKcdUItrLtyKtZ0TT693GAQpsyWgpmzVY1BmKGqcGs3YBSlFAV8qXTCbHpSF+a01zlZ70LIa/YsnSQrqJgSSZUXgo1BhKpIYWxL16g50oXp08sNgjRnpelwtx+xVHcIEokU2hsn3NyRGhY/U1tELaeUry7Wnso053CIQvLaJ8iahldM/8700LpVFQXH1Fg0JJ3jcFydrWCoUj9rtnG653V7FDPwE7RS3HNrJG2es0LQ9EwUBequjq6a6KrKQgmDvtsPQUhx/C9fbU95+WvdkDjLqVjGVGzyLGKtG9IPU6mH1HT4cFPSPzoVi5ZnUi0TokZJOYvTnKyQDf/llseljndfO7G0ol5puQ/di/ZrtCw2HD7cHGJpKp9daU0n0Pv1MS503GlR6Zo6jqnSC3IWajZ+OaDJcilQGpVnK0gI+vWtEQI433YfG0mzO465veuz3pMT6oZrY2gFSV5QsTTCVDY+b2wNWWl7bA4iznfu7x2GqlIIQZDkNBwTQ1PkGhNM3SBloidYbkk3N9fS+cJFWbScZM30/IR7PZmsztdtoiTHNnSiNEBToR8mLLdcKrZ03esGUty5Yun0goTtoUTPfPZCi6olG4pCiJKyydRi/EHuOieNKM3RFCk8jSIRQFkh0DWouyaLdRvTkAjbQZSwWLMZxSm2Ke2zJwLVtqGyWHe43R2TFYKtQTRF9D6NiNKcG9vSNdI2VIlgTDLqts6VGYnEaXsmvSCh4Rq0PINekJEXEvXV9ROWm/fXbZTm3CrdlOMSPTiJhmMQxDmupU0Fb6M0n1LQThsKclh4rxdhaArnWg49X+HOno+qKry+UKXpSPOXiqlRLQuN7VGMrkn5hzeXGyw3HTRVJS/ksEfXVM633AMUlMeJIM5Y3QvLs1Oh5VqlZqbUM/PjjJmqWVKJM4ZBikC6hTqmJgevps7ve3WeOJOf0w/vDlAVmKlUMR5gthGnBZ/sSI04VZEOUrd2fVQVXFNlvmbjGJP7VXChbfHW+QaDMGGzL6YNs2uzFXZGEqV4ebZyppbuSV6w3o2Yr9vTZ0GU+4ahKyS5dGpb0KXw/zBO+Xh7xM4o5kLb5cuLbQZhQpwVzNccarbUttvvVh2myfR1wyR/4RtT+8PQVP79n3kVz9L5S792nSuzFf6133P5iV83LwrudAO2hjF118SzUrZLGudCXaL2PtgY0a6YEr1sG3T9ZIpqPt9xeW2hhqlrjOOMKJX07Wtz1dM1gRSJCLmsVPhoa0QhJMLpfNtlcxDxzmofXSu4N4ik2L5r0akmGJrKSstDKHJYujuOOddyGEUp2yPZxHiUq+2JPyshsHSVZsXkDUsjLh0y5xs28zUpQ6MCyy2PmztjQGGhbk8bOfcGITsjqWl4deZkhhOnCUWRCC/ZqE14daHGpY7HeDHlB2sDukFCnN4foHdK1Hij/Dw/2ByS5QUVWyNMsrJGyGh5Ftee8NomtV3DMQ40tlxTn54JhxG2E5dMIZiydnbGMVlRTPOJpxHjSDJMxrFkUr2/MeTVpRo1y+DHLrVxS+q5Z+lUbQMFiTas2/I8u7Xro2sKDcecuo2udaXhyUrbeSx657OOs6Ty/X+Avwr8++W/PwZ+HnhoYwr4Y8Dngb9QJob/HvCbiqJ8HVgF/tKj3lhVlOmDZxsa59sef/C1eW7t+lyd9abJ9mQCsNqVmk1BIjexubqNY8qCcZLKS6tSFz+W9JD9Vq7HxUkLwaZrEjWkpkPTtZirmWyPY/bGGavdkIWGzeWOy9euZ9ODy9RVquU0aaZqYRsaKy3pUvfGUo1xKRgcZ8VzO+wmls79IMVQFRolzHIYpdIa2dLJcjkB+Bd//BKmJqd58t5ICsreOMGxdDb7EcstybV9EFzztcU6NcdkvSuncLM164Dj1f6oWDqvLFa5veNj6Co3tsdcnZWoF0VRjtD+/ESKhe+OEkxdpe2a6LpsenYDaeV5uGv/uM2Aye81PalN4CdSD8WPsym0tuYY/MTLc3zxUputYYxtSPrM9W0pxJ0VxdSSfHsYSZcc2zi1K+OjrtHSVZYaDpamYpkqYUlpmbjCXeh4/AutC2wOJbV1oWHzw/UBcVaQF4V0PnRkYhGmBRXLOCAAe5pYbDhsDSNcUz/iiPT6Up1xLCl3EmGYEaUFjqnx2mJdImr2fJaaLhuDkJs7AcMw47WlGrVywtNyTcZxNhUphZOv8f3RrkiBYFVVphBuz9K5Nl+h5Uk6nq6q7Izj6fN7sVORKJE9n/m6pHO+d2/IXpDw0nyVi22PzUFMIUFhjJPsAJLiWehXZLk0HEBRaFUMZqu2FIk8RvxzojkRpfmx9Ji5us3nL7bIj5m2PyyWmw49P5mKSgsErqGzO4qZrVo0XYt/7ovn6fopiiKkVXyZfKiqIhMMXaNiyYZjmEhKr6lpmLp6Jk0pIQTnGg7LbZd2LJ3z+oGkqumKpHn/2KU2X70yw91eOLXIHpXun0GSyantnHQGGpT26ZqqPNoZUpeWw1IHRqKGtscxpq6y3HRZKKlc02vd97uTomqC3FRVhcW6zfYo5rMjSftbatjYpkQURKk8HwdBymzt8T43KfausVC3aVXM6WQ8znLON92pC9m5psuFjndAhH5nFLM5iNBUONeQP6so0HItPrvSZBCmGJoUtAeJHtmvOXXSMHRZSKdFQZzJ5/kzyw06nkmcySn7bN3mQlu6rU0Er7eHEUGcc6cb0HItvI0hny+vX1GUB55djxvnmi6eqTH0MgxNnnFBkpNkArtE0qx1Q+mm6lgEWc5KxcLSJHJMiAltv8pczeGNczVGUTkMOEOtDUvXuNDxiEpEk59kU0Fc19L5k188z60dn3bFmmpr9IOEJJPImbwQvLJQJc0LbCERar0gwTFlsbFfXPfwVbfLpvDk/nf9hLu98LE0OIQQqKrU2rs6lyMKwWLdYXsk9bxqjk7VMfgDbyzwEy/PsjmM0DXZKL+xNZYOxLlEMXqlOPNaN6YyoQalObUnLIYqts61uQq9IKFTlTT4pmeiKxIR1bpo0q5aLDUcNvohv/TuJmaJJlxpuVPKoqmrmLrK6l4wpb5FWf7AxhSUWqBNh0JIJJxjqLRciy9caPPyQhUFhX6Y0PQkqq1dsfnq1RlubI+mBe/dQYQQCo75+OiOB16fIs1ZZqoWF9pS00rX1Cnl+AsX2gSJFNjXdZU8lPIg81V7akCiqgoKsiF5XB7erpjlMJppfvyjFn/uJ69yY3vM//1XPuTNc3W+cqXz2K8lhGC2ZjNfs2k4BhXbIMly0kygCMk+uTpb5dp8jXv9AEPXWKzb7PnJ1HlYVxVqjnwWbu360zrQfcyzW9dUXGPiDJiy0pZ03awQaJpCnhdcmatiGypR0mGx6WDpGrd3x2wghzSjkplxba6KoSksNuzp3/skudneOKEoYBzluKakgLcrNqam8dOvL/LGuSZBklF3TIZhSlYUfLg55FPLDVxTp+2aXOq4oChTeYuzjkljv+FI6uGVWUvm4YVE7uaioGrr/K6rHfwkZ65q4Vo6fT/BVFWCOKcfyOHOYsMpEbKSdvgkn5+lq3zxYoe5mnVgf3dMjcuzHmkmjtSas1UJljBUhaZnUXN07vVBV+R9Vp9Sg2d3LJG8PV/KpkzquUudypQdUVus8dpibQpaeXmhSpwWrHYDGo7BIEqZq1tyIOYnzFQsbF1lqeE+dbfus4gnbkwpiqILITKgI4T4HxVF+fcAhBCZoij5I34dIcTfAP7GoS9/A/gLj3tNtqFxccZjoeEccf251w/5cHNEkQvW1VBaaacFUZZzoeUe4E5PHuKsECjAje0xM1XrscUW4yzHUFXCJOPmjk8v6HGx41K1TQoBjiEnKZ2KxeXZCqMoY65uYagKhRDSHt65z9ufqUoe/+YwOkBFeZYhhGAUS1jtMEpK6HJB109puRmrewFpnrPeS2i6Jq2KOU3WJ3Gx4zGOJHTRTzJMQyXNi4f+PYoidWRsQ4qXzz0isV+oO/hxRphIbm7+kI3FMTQpnOoY6KrCl6+2SbOCGzs+37q5x3LTQ9fuc7EHQcpaL0AvhZtPOnFd6wb0g5R2RTocRZ0Cx9AYRymDUGrMzNWlkG6SFaSFFKLcHUuxvqZnYOsaDc+YCj1XbYkKUjjacHucmLhLWrrKpZkKl2YqzNXsqSZWP5B6GroqedfjJMc1pU7Enb2ATsXEj6WF96Se8Sw5fc0L8VhuL3C/AX04Jm4qINENd0tDAGvfZrw3jrm+7fObH+/QcE0udDxMXaPpGGwM5dQ0ywXn2w9HpJwkJijOw7FQd1ioO6z3Anp+ekR3YBSlfLIz5tc/3KbmGLw0V6UAFmo2q92gRFelzNflBPdZxjBK+e5qn81BjGWoKEIhzQtGUTrVNTiMmnkYAmSx6fLmcp1hlPHZ84+UFASk+cMwzJitWaV+oNQA/PUPt1EAXVcwDcnRb1ckcmq9FzKMUhbqNnM1i6B8LsMSyWbpKo4pRXyfdC+VtJ4xcSbpSW+cqzMshZpv7fqMk4w8LwDZXNM1BcfSpkYbyy1X3ltTo2brpLk4cH0noZ3pqjJ1GFUVhR1VahU2XKnFM9EhUxRFJvjHrEVdUw88v3M12US8uTvm9p5PlBZoCqx0PHRV5V5JQV1qOKUT1cmTt9mqJSfNwxRVVQjjnOvbY/kZOAaXZiosNgpU5ei1RlNkosJszZKUvpLa2vJMWiWtTzabxYkNPg7HXFVqiWwPI95dH5AVgh+/OsO5psPHW2Ocspn4Gx9ts9xyeGmuhqJIY5UwyZmtWRiqNnWWehoRZzlhkrHWDaW4ucixdZ1OxaTpWtN7X3cl8vrijHSfKopCarQU95P0CSW14RpsDaOpDsxZxkRXBmQCPlez8JOMjmdiGRqvLdWJs5z3NwYEcc6VGU/q0vUCVAVcy+DqbEVOsw/dW8fUWGm7xJnUsDoc+/OQcB+69TQhnaJCHFPjfNuV2pGGWlLOZIM0THO2R1J7RWo2GuyOYt67N6TpSO2bpYbD/vlnzTHKhqr6WHt8lObcLNFil2Y8PFNSRHf9ZPr3Fn5MWqJ7hlGGGaW8e1fmaq8s1EizglbFOnZAWC+R+6auThFPx8WkKdUsmzyaovBJad0uEa4JX7zUnp7nwyhlvSd1rN5YalCxpPzCjdIRN87EmaOCJ4j7cw2Hm7s+v/7RNs1yIFi1dXZ1hYZuTgeSQVJMdcM+da6OY+qEiUSeRkl+7F5qlML7P8qhKAp/4Z96kw83R/y5v/kOf+ff+l2PzL0PR5oX3NzxSfOC822Xa/MVgjin6Zl8sDGSaHUk7T9KM5Jc0PIs7g1CPo4yzrel4H/NMQ+gkeSaSkqjj8d7Nia5f5LdzwEElIO1goZncH1rRJoLFuo2cVZA6VwZphlFIl/jtdm6fFaEPDNv7fqMy3ruONe0k0TDlRrKpq4wV3dwTY2ma9Ium7lXSzrdei+gH6Z0xwmtismtXZ9LbY9RKXngWhprvQA/ManY+hS5exZh6ZJZEpRDOJADp6WGS8VM8WyN1W6AgkKnIq87znK2xzFhmqMqcn2rispnzjfwo4yFcgi9PYypOfpjNdVcU+fqXJWrc94RfUbX1OGYdCpIZZPMNjQ6hSBKcvbGMWGS8t07fT53oflUtOLqrkE0iPEsjTDNWWzI5+zSjMeHJapsrmZLan95dnT9lDDJGUYZFVOjKAS7o4SabZTmErDYtB/72XvWcRYZxu8AnwV8RVHalIMpRVG+iBQvf6aRF4JBkLBQLtz9C+6jjSG/eX2HYZgyCKWV9LmGzZVZj5W2hzi0OBVFTsDyQvD+vSEgKUiPU7SkecHHm2MsQ+WT7THfW+sTphldP+HybIWZikXNcTA1FT9OudDxGAQJgyjFcky+fLlz7GGsl1ojzys2BhF744Rbe2OWG65EoSGbeAKBqkgNIMdI8SyDnp+WNuqyGJ9Y5Y7jlDgrMFSFT59rHHFqCZKsFC8/3NW+v9B2RzE3d6VA+KUy2d4fbc9iT0SgSFv4mn28A5OmKpxvu6y05DREURT+4Ufb3OuH3O2FxMvyQJ1EP0ymNBtDV6YTl0fFoNQK6wUJQZITJjmGpqCUAoRVW6PtWXz3Tg+QG9bmMKLhSAHAmmUgipSma0w7+I6p0fFM0nKa9KQxCNKShlawuuczjnNMXZVCp7FG1dFpudIl5dauj6VphGkKSKRXzTZwTBXHUqdTLEuXMOmdkXSEelQUQky5/6eJ/fS7KM3RhERWjuOM797p8v7mkJWmS8Mz+b0vN9kLEvw4p1OxWW45p9IRK0p4/mlRNueaLksNua6LQhBlOY4hNTTevdvne2sDZqsWjqnxh95YYJxIOpNn6lzqeGeOtDhJDIKUNM9Y7frUHYNbuyNqjkGaCUAi1PZrr0RpLsXS03zaTNqfuDdck9cWq2wNY1zz0XtrlhcMQyl6OwqlwPMoylhqqlyZ9UhzwepeQN02+ebNvdLuV8GPclRVNtNfmq9NETqt8j4nufx32zOfWOgxSLIpimh7EBGXz3nVlk27xbrNOJLacd+53ePSjKTqCaRrZdXWsXQF11RpV+6L+89UbYZhgm2cbi04psarCzXOt1x2xwlVW582XTsVifbZf76MopR+kFIv6cGOoU0nbRVbOvX94O6Anp9wsSPNGFoVi7u9kLWuzw/W+lyerfD5C61TJb2745iPt3w8K0IIQZQVjKOUa/NVokRqAWmqHDDNVOVEUAhZJBel/syD1q2hqbw8/2RU18l5O44ytoYJUZrznVs90MAzpc7J7d2AKMkI05wkK1is20TlRPbHLrYpCnFEM/GsYmcUszEI+eF6n1Gcsd4LSDOJ3tHLBplj6CTl4KcyLy3H0zyn5VnM1Z0HOpA9qzzD1FU+3gr5eGvMhZZDLhQcQ2V1NyRMc9KskOYG/YjtUcTOKKLlmUfu7ShMKYRsVPmJwvbo4TTEmYpF9hjnTC+Q538QS6T1OM4hzml7Co6hs1C3yQq5D759pzsd1IzjFEuXQ5rFus2uH1OzZWPTNSUV1C4bboMwPbV+6DBKp05SUpxf7plVWzr6bo0Tmp7BVolwnq2afLIlqfhZXjBfs0hziYS61w+pWHK4sD2SqMvZqk3NebSExQSd+snOmDCRSMM0lVprSQY7fsJHWyOuzVfpBylRmhGU59z+M26xRNW7pkTK6Y9wpTxNTM6QG7tjfuv6Lqu7Afc0hZcXarx5rsFLsxV+46MdPtgc8LuudIjSjKWmg6OrzNUdNEXBj3OSPD9zNNeLFp6l8//+5z7LH/7Pf4t/469/l7/+L33xVGsmiPMpA2VzEMnmDlBzpFYUwiZMCwZhyvvvDanYOqaqlO5q8llqeQYIhaV9e1LDMUmzJxsqaSXbI8kKvFIveLZmEac5w0hSubZKk4KtkTyjxnEmKXOuhaaWgttC4McZaSbdU8eRXHuDID1xcyAXgrVuQMsz8SydhmvyxYst7vUjdv2IJGVKAe/6Ug/JMTT8UlheVaQLrBDw7r0B672I6kTnUNP43lqf5aZLp3q/DnvS8JNcsmHaJjXHpCj3H1WR67Vumaz3Q4IkY6MvtXFtQ6XmmFNhc8/USbK8RMZJJlAvkM30YZgdkGI5aZiaysW2w+uL9el+JZt4IWle0HJNNO2g8HuvfP8gztnzY+4NwnIAoZMV0hznrIc0IGvajmehqgqDMJUSLoZsJt7rh6zuBSw0bGq2KY0z0kwiumyD+ZrFMJL9DYjoVE1mq/Zz7RE8TpzFpzp5Qv4d4G8BlxVF+S1gBvijZ/D6p4oPNgbc2PYxNZWvXO1MN6lRlPJ3fniPb9zcYxCkvLlUx7U1aq5BVkjo52H3vEloqiz4wySfblanjTDNub3rY+kK31vtstYN8CxNondyysKu4Lt3+mgqfGq5wYcbI8I051zT4c1zjRcSgjdpLNQsQxY3CG7vBlM4eJxLV7irsxX6gaRXrXZ9tocJqgpfutTmxrYUcSuEYKnh8Lljipn1XkhcHlbHRZjkfOdOl9u7AY6pUQjBp5cb0+KrHySs90K2h/IgzIqC822Pl4zqkUR1FKXc3pV27BMnje1RxEY/BEVORm7t+mianNy3PLlBtCsmWV6cmAqgKHBrx2epYbM5jEoqkUHdkZ/llZkqgzAjzQVxqQPx0eYIx9RouQaOKWlxEwe+l+arDMKU7VJAWlOVJz5wqrbO+xsDNFWhYmrsBWmZGEoI6WJNakbtjGJ0VaGfpeyOIsZxTsXWqNmm1IgxdfKcqaD9ei8kTHL6QSZd1R6S2EgL7TEvzVdPfSApikLPl/d+IgZ4Z3fM167vEKY5tq5ilgfSBD6r7RPOPWnEpTbKSS3GD18jSMHiIM6p2Dp7o4hf/3CbYZTJppwqqWVGrqIoElVTecB+9bRDok/kBKIQUiB2vRvyO7f3mKtZB8TcJ5ox0ilHOoZOmsKTuL494ue/fZc0L9g5gfh510/YGUtdrnMNh4+3x6iKQlEUCEVe05VZjzAtGEeSrn1rGHJn1ydICt48Vy+TG/WAIPL9ZzKlcgLns4dFnBbc6wclXcfi9l6AqUu7ZFnUWXhWzg/vytnN5iDCTzKGYcZCw6brJ3KPURS+ctVgCak3tdaVQtFhWnBt7nQ6EYqiULGNKT1oErf3ghKxqk/RhhNB6htbYzpV6Zb28rw0EnBNnb1xMnWkGoYZcSYRBJoK729IRPLdfkieC15dqh9ZE/1AohldUydIMv7+B1sIUdAPMuI8wxFy8mqVgrTbw4i1TLA9ikt9EcHVmQpX5yrl3ljQqphHrJQf9DmcNvJC8O7dAZ6ls1C3KIQgy3Pm6ha9SCJHi0Kw0nLYGETsjGKUUuPp7Ts93rrQ4t27g6lW5dOg3CdZwfdWe9zp+lzf8hEUuKbBOI3JREGSS+OUDzfGzNdtXpqrsDuOeX9DUu1X2jnX5qrPhAr8sBjH0g0yywW/8t4W55ouwyghLQ0+Nochc1UTkI3IpmdN9WQm1766F/DOWg9DVXltqcookjqHfpwd0P3ZH6auPtY0vu2a3N6V+YulKWz0pdmCrsq8RFUV6pbOKEqJU4Ef5xRCnmmgsBzECKESZ9L04upcdToY2RrKplSPtNR9O/lz4xgaG4NQapgVFrd2g6mBx9XZKhVbuo+FcU5ayLUXpBnpSDqlNRyJNL3U8VjrDWi60iRicg3HuR8fF2lWsNGXrnYqCr/y7gbb41g6azk6C02LYZjy/dU+li5pcWGSlUX2/UK0ZhvkuSwmd8cxV2erZ5YT54UgKwrWdyOiEimRFBIFLITgvY0hv/7RDmlRsLYXcGlGigrXSrHuvBDys8ukwP2PCjLhcePKbJX/+I+8wZ/7m9/jP/mVj/j3/tArJ/5dVZX6lALBuYbNnb0QU9PI8oKsENRcg4oQbPQjslwwDDLiLGNrGBMkGYs1m0GUc6HjsriPEXO3HxAmhUSN2LXHQrOMImlWA3IvWWo4qIrCWj/gvbsjDFUOTyq2KR1ULTkQ6fopSw1buuaGKXcHstYYxzl5IVG+d/YCzndO3iBIsoJ+kOIn2VSoXFEU/CTjmzd7pYOdxVeutLm56xMlBXVHp1O1UJAoxQ83RqR5gWdqCApWuwkrLZe0yKf17qNkak4Ta92gzPVSXl8yWesFbA0j3lntMVO1We2O6foZfpRxbaFKUVCalMkhWJTmBEmGH6vc2fPRFBXbUOmV7IxXFh/vvvbDhL//4Q7vbgz5s7/7CrquSqZPkBJlksE0V7NZaNhTgyHX1PiNj3ZI84KffHlm2mQrSq2vp8lUmOSkaV6w3g9JM8mWudsPubkzZm+cUHclolY6ilrEWU6WF9zrhYziDMeQLKpxLJlLpq5wsVN5YR1B98dZVDYziqL8O+V//8/A30U2q2KkePkPzuA9ThzjMgEZx1lprSxhiqoCgyBDQ6I9wjSnO4wxSnTNg5KVSVye8aYT9cMRZ7JL/LCErihgve8TpwWZgNmqyWJDWljP1R0udbwpVDkvYHscTSeuWUnhehFDTrBjlpoOWV7wg/WMqiULlKyAPKdsWMkEZ3sU0w/kJM81ZbJWCCEnjklOgaDrxzRd4wAk19SklsnhKVleSFpCWhTYunStUhSZlO2n1PmJhOn3w4S8EBiaBiWi63Dsh/SHac7eWHKeJ7okaVbw3t0BH24M+ZlPLVJ3DF5ZmDh6FUe0LA7HRFz99m7ATM1CKKChoCoKQZJTLznzaV7QrhpUHY1hmJHk5ZTO0AlTOYGJM5nkRmlOdxyjqeqxVuOPEz0/4cPNEbqqMlfapaqKQpwWpLmY0lbansWlGY8ole6KWVbQ9BQKUZQFXEFaCiX3/YRCCExNJSRH15QTUR8n9znO8tIR6OTNn/33s+vHvL3al0LOQk7oJk5dzXIypanKiTfvw/c7yYqSSpNTLSkSJ77OyTPqJ3zjZhddU7F1DcfQuLYgBcItXeGl+aqkq53w/gohSE6ATDtpeJZO1TJo2AZGWczd2PbplJbD+z+PrJBrW1XuX+9hUdKgLNTirHgkgi7NC95Z60kNsxIVa2kqSV4QZgWeqRNnGYWmMFOxcE2N1T2fNDfpjhNcE9JcIrgcVWVzGOGY2tTaO0zkM6k9QXHuxxnvrPUokDo2eaFgaRqjMKVmG5iaXM8SxVSl72fkFHiJTsWSCWOY5OSFQCmLWz9OSTMx1U170rV9+HoB/H3W65auEqWy0QeS/vrJjsJCaV+92HB4ab6KAC60PdQSxRSmOedbXummVaDrCv0gObJeu/5EL0Miiz7cGNKuWDiGxtWZKldnqwyjlG4g0WGSppGiqoI8l5NnRZH7elaK7U/+jqcRSVZwc2csKXiFIC/gzeUmjqnhRynbQzlFty2NpYbDXMViaxTjJ1JAekKfm+zxT+Ua84J+mPKD9YFEuGnSOEOIKvN1B9tQp59VlObEWcE4lnuVCo8t+n2WkWRyet0sUQvjWKK7skLw6eUm793t49oGqz2Z251vu9RtnaIQFIW478AaldP2oiBOZWGYi+PP+/0xjrOps9RJIi8E9wYRQYnm89OcQgh0VaXrp9KREYGqQs3RcS2BqctiK07lviyEQl4UZAUoitz/5FmQIMrdVFE4FULIj6UuYS4EC3WntEQvpOi2rk2NC1quiWdqBEleojIMdE1ldxxPnRKTvCDL5R6eFgVZVOCa2qkQ2aoindI+2RlNnTJVVeGLl5u8ulBHV1WCJCMpteEWGi5JVmDoyoHcd7JHFYU818+qMWVo0hzA0jSWWy4fb42YqToMIymy7RgamqoQZwJT18ilpwBBkk0dKyViWJ5nnL229AsXP/vpJb59u8t/9Zs3+cxKgz/w+sIjfydIMr631icrBIt1mzSXeWqWFwRlzjQMMzoVk4sznhx8RClxqmJoGl0/ZpRIyleSCaK0YBDIYY+hqYRI7cvHrZcM7X7+rCvy7FIo0daKpHc1SqaHqalUXZ2KaVB3NYRQSuqXHMKGiaSt5kLgWjozNYvbuxL9cmW28sgBwESkeiK0LYRgdxwzDFPyQub8hbi/poMop+snnG+7zFZttkYxcV4gCvlZ6ZqKZ2kYusJLc/Up6ucsm6imrpLlchjYDxLCJKco378QEKQFs1WbzCuYqZjkhRywaqrUebN0Wbft+gmGppHnMud3TZ1BmLLRD+lUrFMjlQohh/tZLmtFHZlba6pCljOlIk/OR5B7nWRd6WyOYpZbLu/fG1GzdZru6WQKHjf8OENTFPaihKZrsFCzyYscUKnaBmFS4Oj61JVa6marzNcdrs1XMTWV797ZY3sUM1u1malmz0Xy57RxFo0pDahwVGr5uWDHXl2sUYiCvXGKH2fcG0QsNRw8y+Cfeesc/9037pAjHZtmaw5hlnOpc3RKNrEsruybxB3XlJpoxDglf/9BoQCOoVOzZSFuagrX5ivM1i3OtyWd6LLwGAYpVVenKBMB19J4baH6VJzgziIsXZvCBP0onRbkS00XTVG4teuTF4LtYczGIMLWZeKe5oK5mtTrSjLBj11qEaVSCDqIc9a6ISM3m+qbLDcdtkbxgUUVZxKNURSw3HJ4bakuE1XHoOoc3Dg6FZPdkYS6TnRWLnYqxyY2NdtgexjjlRxuISDJct5calCxdW7ujbmzE1JzdN672+fzF9vTQvEk9ylMJeS/asnN9pX5KnVHbjIVWyaJfixFDONUcKHjYekqn+z4DIKcpCh460KTrUHMSsthtiYRFnf7EbqmcHnGIxdSuyNKZYF7GoeSSez5MZausjfOEQguzVSmLkYAO8MIUKTob8WgXbEYhhlhlrMzSrg668niIC8413TIc+gGCb1ATpcanoFjaORC4EcSOXXcYT3RqMiKgk+2pWbGSbj6Qgi6vnROqTsGmqaQ5QXnW65EN5kuf+qLF+hULKLSdew0iW6Y5HxSNpN1TaFdMWk6Bh9vj8kLQcVOpxo/j3qdUZxKB6o4nxojLDQcEIJ/6rPnWGl4xJkUcD9NU0IIMaVQnGUoKtRcA8uQLoINz+D6tnRA7O0Tlq5YOgsNmyQreGVB6mQd3kfPNRzOt1zGccZXL7f5fzzkfcdRhqVpBLEUka25JnMlh77tmeyOE4I4x9E1ekHKuaZNkORYhkbFNkiznFcW6qDA9iDGtTRu7vhcma1wrulQd+UzqapKmfiJU6PnekGCY+hTLbjZqmw0r7QdqZuRyWJZUSTt96XLNXp+wrt3B2R5wWzNolMxsO+q5V7qcGtXIphaFYOqbVCZiA6fcH1PKAeWfvQZX2w49IJkSmkEiRQN0pxLMx7bo4hxpMrPNs2Zr9kIwCr3Gl1XQUjUpJ9kLDVsXpqvkGYC01CPpdZJlGmIZ+moSGMFx9BYackpuKGpU/qjtA+PeXmuSrtm8YO1AZ2qgWPKInJC+5k55ECaF2JKizqLKaGkksgz2U8lZefSjMfuOJYaGUlO3TTIC4m6PN9xGUc5dUfnUsflXMNmXGpITmIcS3Hyx3Uy3B9CyH1otmLjWhqOqdL2bKDg8qzHjGdNRbcrtkRr743jko5tcOE5699MxMc1VeFLl9sIpJPcxlAiJ1RF4QuX29zc9gkSjY4njSWGUco4kg3dybO20vbYHSeIoqDlWaXTU/FQbbEJUvo0MY6kQYapaYyijNcX6zimRpoJGqWGV5IKikKeY23P5LVFW4qAhwnBMCtRigphnDFXs6k4Jn6SsztO0FSFlZaDXe77k3X8KMRd108wNelsnOUFy00Xz9TphxINGmdiSi8613TxSkTXrV2ffpDw1vkmt3Z9znccLs9USjdTSS3x42w6ABvH2SOLRMtQOd9xsXSVXij3kDQvaFkmflQwXzNRVQ0hpGaqbCwojEvU1P6cwDE0fF0yF2pniBhWFYXXF+vc3B2ztS6Fz9cHIa8E8nO8Nl/jT3xhmVGUSjp1lHJja1yifyIWy4Z9mGan1lz6UY7/4B97lXfvDvk3/8Y7/Od/UuGnX5t/6M/3ghRb1+jlCXmZt2uqdD60NJVBmJLmEgFrGyqvL9XZGkbcG4T0Ap9rsxVmqzY3uz7nGi5CCKlZVCL7mp45fWZOs7empdRAxdK5MlshKwTdccL2KEZVkQL9CszWDJJMIorn6zZLTYf5us1aV7pdprlA16QG5CsLEqnZcOVZdWfXxzF0OcBN80fmFaauTPVnAbaG0t18GKVcnavw2qLU+2tXLOZK7VGJPsrYHA5k47ikt1+br0wdeMM4L3Vez6ZBIYTcO6u2wYW2xyhKWeuGrHVDdA0WGzafO98kyXKudFw+3BrhGDovzdeoOQabg5B+IJkhAjHVe+uZKWqJWru+PSLL5d/SHSenbkx5ps5Cw+Tl+SqOed/E4aX5KnkhpoCFSQ4hhKA/TtkZxaiqwlvnG4RxTsszsE2d7AwHvfvjcD5XdwyyvKBu69RsOTxVVAVNlXlRw9HRNY1rc1Xu9kMqlo7TUXEMXboGl0MZJq7gZ+Qy/bTjLHb2DSHEf3gGr3MmUXMMPnu+VcKkId/XAQ3zgi9c7qApslg2NJUL7cqBZkKU5tzZ89kYRLQ96QRzOOHdH37piDeZcD8oAbZNjatzEulwoQPdUYxAbjaWrmNqKncHETOlbfNED+B8y8M6oWbR8w7PNqSIcShF/mYqFi/NV7m9FxCWGkq5kEnclTkPQ1P4eHPE9ijGNaU2SFYI9sYJDZjqIwBsjmK642TKNQape1QO/hjHGeea7gPvlaVrLDVdhFC4veejaip7/lHNKmBKl0lyeT8nbi2TWG65fI1ddoYxcSq4sT2mUdLv5uv2I5NGW5eCsopilrboJkKIUjdBPosTlyldU3AMDSHgbk/Cn01V5fZugGtq2KbGYsMhTHPiVDpf2OXBPGmcCCEPh9NqVDRckzApeG2pzoW2tGXf71K31HCm1t6eJbVzNgcj8hxMTSFICrp+woWOdMbUFIWwJ9dLLqBlGxSF4KMteejUHeNYcVBTlwLGw+g+jXP/s/Gg2BnHU1j2+Y5MzL+/3mO+7vCH3ljg9cUGYZbx9eu7NFyDN87VT9WECPY5SBmaymLDIS/EdOKeF48+vIpCTO+Ra2lcnqnw3t0BszWL3//qPFdnKyR5wTdv7VGzDd5Yrp9KMD4vxJk3pUBq1ViGimfKSc3Ftlei9lJu7vhUS30x4EAhflwkeUHTs2l6co9+WHiWznzDZqZmcbHj4Zo6ryzUUJDw5/m6w91+SHecYBkqWSEnZTd35Hr54uUWFcvgbi8kFQV5oSKERHbZ+0S1x3E2tZlfabkPdAc9LuqOQcM1mK1ZXOp46JpK25N0uImW2PXtsdSxsHUsXWPPl4l6Vsgi9r17YxYbLoau4Fn6VBQd7l9jUJpoCAFLTeeh2ib3BhHdstC9NnfwzJuIg+8PXVOpaSpRKhHIgzAmTOUaVRU53WxVLC7YZkkZtvnmrS5hIvX3Xl9qPPQzarjmtIlgmxq/69oslzpyj9E1iVxTFIlI3BxGrJd2xz/z5uJ0EFKx9alw9nGA51u7siH7qKHRSWLiLGkbKjNVm07Vnj5zEy09XVUZJhkqYOgahqYQp4IwLRhFGSttj7l9r7lZUv5UldLB6cmGT46pcWWmSsu1EAi2hpF0iYpydoYxVdtgpe1RsQ3evzfgg9Fo2rSYrVnPffg1Qbzl5Zqd6LE1D4mWX5ut0gsSNgcxYZpxe9dnEGZYhspnz8tnqigEzVL78MPNIefb3rEmFPtj/7T8pOGVdNOlpsP5tkvVNpipWiXFWeaCUSrP4aKQ1HhDk9QURSjYhkbXT9EVFcvUSAtpAnBnT+49hRBU9iFv7/bDKd38YTGheVybr073oJXW/bO75yeMowxVleeOosD1rTF+nNHyJP1eUeUZLt215PrxN4e4pk5eUhGFkBo8D2vGTMwKBkGKpihcmamgKbLJ5VgaWaGw3Dj6+4fPuY1ByO5ISkDM1bwzp5w6psYr8zVUBd5Z7VMzJXps8j6vlMhqkOhQ6eab0x0neKWFO0ikhcOPRgH4pGHpGv/t/+YL/Om/+jv8a3/tbf7Dn339oT9fdwx6fsJL8zUuzUgh6nbFQhr8Kggh8+koleYVpq4yDCUiNUxyao50MV9pejimyiRbkPqM95+Z7VHE1iBGUeDqXOWhzanJ8C7NDuagWyUKVgjQVZWVlkcvkBpnSSbRS54tTXg8S0q9tCvW1PEbOJAvf/5ii/VeiG1ItM6jQg4OZMNkueVO0eRhUjDfsIhTaTJVCDjf9nh9qc6tXV+ivkvK/WdWmiw1HHRNxdQDXFOnUzXPdK+Pspzbu8FUq6pqGyhKWLI2pNGHa+lsj2IQCrmQa20cZ7QrFjXHnMq8XJm9L60yXxPTM/YzK82pmcxpcrFpKHCpU4PyGZus6Qk74vCQe2ccc7cfSZOihjzv13shlqHhGCrth/QEHjeK8tkXAs41HbxS8gRFmp/d2QtRVJitWMzXHQxNkaY4hoptyP4CcF/XS5W5Zrsiqe6T5+BHIc5SY+qFCdvQONd0iLKD08lJMasoCj9+rUPdMQ+4dQFsD2N6QUrPT3ENnTh7OOx+vrTcrjsPp+1YuspXrnSIs3zqSLHeC7lcit5KSLf82TQrpg5FK60fDXvHSRzWaNA1hfm6zeYgYqZq0a5IBJKpq8RZjh9LQeTJlKRTsZgtf27/vZvwoPfX+jVbLx2mioc2DyfR9qQ44ihKHzpty8sbkT2gsdBwTX76tXlu7oxJczl5jNIcXVWBaKrT8qBQVeVIoSQLsvvPz0zVmiaxmqqwN44xdIUsEHiWNn2WhZAH60pJNaztoz/uf6Yeh8rVqVhHmgr7Nzbb0HhpvjoVHYaysEZC2/cXWnkhaFdN0kJeU7sshCXVT5TX+PC1VrMNFhrSMe8k9/twCCEwNY2LnQqvmCpLdYdv3dwrbdRLKP4pdEsbrsk4vt+cAnnQrbSlOPJji6Aqch1dmatwoe3x9u2udA5NY+I0h1M0pnRNZa5uTRvdZxVN1+SV+TqaotAPUpZbLhVLJ06LAwKSJwnH1GhVpLNk5RHi56auTvUWJnF4311qOLQ9E1OTtMLVbkCSyWno7jieJj5tz5KNhmOg4ft1F+QZcPK/qWobvL5UP/C1/etGVZVpw3F/EzsXotTtEtPkIi9Ru4sNmyQvDiRQSbZvfT9CJ2LyfWnZLE588G8NI/x4gjhTqTvSBShIcq7NSb0HXZOW3eea7rTBeppwyn3kwNdM+bXFus0vvLOOoamMIjn8WWm50rXtEQ3Pifj8WWhoaKpy5J5OomYbU2fZfpgSFxJtvdJyJI3DPB4Juv9My3LBk0pW6KrCG+fqxKnULrNarhywVUw0VZ0O6Sbvq6LQ9ixanvlCiKPOVC3SvHik85+uyebgBLmyO05QFVnA7kfwFCX9G5gKLD8sGq4xPZ9OGrqmHnl2FUVhP+vONjRemquS7zsni3Kt54U0LZnkHELI751ryvNc6rbdf7F43zp+WNQesQc1PRPX0tDKRvDGIETXFJJCIlFNRf5sceh9zpfFuaEpbJZDnzg92fqq2jqdisWVuSoolM5nJz8jz3q9HBeqqnBppsLL89J+/UHNYktXS/dPqTO3f485S82eH4WoOwb/w7/4Y/wf/5d3eeMBe+QkKpZ+5Lnc/3wrisLlmYNno6qWaFVFIcmL6bOfFYK5qmxqmZp6ADU8uQdCUDraPviaCnG/Kb2/3jvXlGL7nqUzCNLyZwVJ6bQp1658PhbqDk3XxNDUA0yN/Wtu/zDmJDHZhyZrfqE0/hhFJoaqcWcQoKlq6W7o4Vm6pNcL2ViJSpre5BqWWy7LrRO//cnjUA5yOAfeHcf3f1SRg9tC3N+b647BtfkKqqIcWG/7nwutdB183NBVlbqrl02zk7Usmp5BVhQ0XQOvNFx4dUGKpz8NV11Zy8n/luwIKYMxW7XoBwl+kmFoakknNVhqOCR5gXnomTv83086lHsecRaNqZ88g9c48zjOVenVxTo128SzNWar9rEPqG2qeKbOTNVktmY+EpZbd4xTcTYtXaNi6WSebMBMXGKanklRwu0udFzCNKdm156KSOqzjgk89nBYusaVuQpZUVCxDdqeia4ptDzzyIRjoW6zo8ZTZzeQB9WjpqD7Q1GkRkrdlYJwzQccEpPk62H3dSKUKgtdi51RUupmnd392n/vbUM69LVci7qjY+oaAgn51DW1hMweFDqvOxK1keYFM6dES500DiduDdeUroglrPpc08bUNWYq0pb+8GRC2tE7jKJHF5rwaPTN/pipWDLxVtXpJG2l7U6nwpausdBwyAlpOiY153TboXRvPNqErNnGiVFNqioTsYlLJUgaVT9Ip3vDQsMhLhO14yzPHxWzVftYRMmTxFLDYXsUo5XOpYam8tmVJl0/OfB5nyTqjsFLczVyIc6MBrF/7XzqXIM8l43PpbpDx7OgTHQf1OBsukap38apkYYnCVVVsNX719ipWBSFRD7NVi0uz1QI03y6Bx13DXXHIKoW5OLRjdr9++dpaGOOKfWwZqs2DdeQa/kB73X4OX7SMDSVVsXi978yzztrfWqOzlzNlmLSJ5ianm+79IN0alv9NONix6MXpCwUUsBfUeBcy2W2ZhOm+bH778TG2Ta0U7t5PixMXVJAk6zg8xckhUpRlGlONFO1yIWgU0mZrVq0ntLZcNqwDY1LM6dLomu2wZUZj3uDiI5nTfVYGq7JhY5EDhmaeqJBxnHn01mFrqkHkm3XlFQLafstRc1zIXANfbo+D5/nIPfdnVH8WNT8w7F/H5i873LTnTYG6o6JaSjMVO5/Jo6p4ZiT65J055Pu2aoq87X5uk27Yk6biAsnMCwAuV5UJS6v4enlxZau8bmVFt0gfmDDtl2xeGVBqgA1Pek+lpbGN60z2v9+lMI1df6f//Snz+S1jp6NNlkOUT1jqemWjpYyf5fmIkfXyVzNRghJI30U7UtTJXXscA5q6dp0Dbqm1GY617Ql26ZEPc3W7v/8Wddqpi61FSd7l66pLDZcao7JIEjQ1CrjOMc1NebK65jk40tPyfX1uDDK69z/WezPgedrNrqqMlMxEUDLs0rjg/vn8llQ2R8WtqFydbZ6YrTVpHbY/zsXOh6FEFRtA++U8g4niQk7Z5LPaarCckuyYd48V+cHawOiUopkUvfuXyf/KIUiTjMeekGj0+mICxcuPO/LOBJZIUjLLvLWvTWe9TXGaTGlFdmm9kho2+3bt5/5NR6ONC+m0wtTV49FoT2N6xRAVIrSqoqCdUo79sPxInyWx8X+v/N5PJMnjTgrptPaF+E6CyGmk2FNVY6gGF+E+y3KxjbI5O4wGvR5XWOS3Z9ymob6SGHxF+GzPC6e935+kjhufe9fS5Lm+xwv8Jj4/9/vx48XYT8/yZm9P57W/T7tPvOweFGfySgtmOTsL+ozCS/e+b0/0lJ3C2RRravKC3m/9+8/hq6yvnrnqV/jxIBl0jB/nHian6UQ8tmynzA//+TmLRbPrUzv/4sYhz/HvBD3UUmaMm3CP++YfJbH5ZwvSjzsmQwnFtPKfRH05xHTz/EM6s+nGW+//bYQQjzVC/zREC96RFy4cIHvfOc7B74mrTYlDPMspkunjTQvuLPns94LaXsmf+af+Kkj13g4ojRnGEoRuceZCA3ClH6Q0PRMarYx5eQ7psrlmUe7QLz11luPvManHYMgZbUboJUQREWRItvDWLoJzNdsPv/5zx97nUlWsDmIsAz1gVO8QZgSZ/lU82US+0WiJ1zpJ4kX4bPcH0IIPtocEaV56Soj+DP/xE++UNcIsDuKWe36WLpGUVI+/9l/7CeOvc6Ju49rncy2+kkiyws+2hqxOYiYq9m8snDQtvZh97vnJ+RC0PbMp2rFPtFnuNePJGT+XO3AJOp5PZM9P2G9F5YaApUjKLs0L/hwY4SqwivzVb7whS+8cM/lei9gvSut16uOwZ/+2Rdr7UzWzWLDmTqtTdb3Rj/k460RVcfg0+caz8RN5lGxOYhI84K5ms2Xv/jw+z0IUvphQsszT00TfVhkudTAc0zt2NeNUmmuATz1+10Ugl0/xtK0B051gyRjZyS1oiY0YXlu+Qfu96NikmfUHOPUxWeY5GyPoqnoLsAwSlndkwLEl2cqj3zNs9yHsrxgo9RitHWV9V40zR1OKoGQF4K9cYxtatMp/4t2fk/iXj/k++t9slzwf/3f/uEX6hq3RxFRUmCb0tUvyQSOoT3w/D5tTM77OJMD15mqdWpjCpBCzXcOPa9nfb+FEGyWov3zdYkoPm2+MtEQBInI/N1f+eKJr1EIwa1dn2GYcnWueuIa6NauzzjKaLjGqdgI++NprZ31XsA/83PfZK8X8salNn/1z3z+sZtnr33qM/y1v/33ibOChmPy8kLt0b/0jOOtt97iF3/ta/TGMbM1m4ZrcqM01lluOaeiBT7NuPLqp/iL/8Pf5fPnm8y+oML/n/ns5/i5X/h7zFZtzh16rlf3AgZhStXWHynD8jTjlTc+zf/5r/wiryzUeONc47ldx6NCUZTvPu33ONWurijKG8BfBpaAXwL+D0KIXvm93xFCfOHsL/HxYq0XEMQ5ihIfKSKfReyMYsJEujOcFFa52g2I04LdccKri6ffKCei3eM447XFOgt1h7ZnYWjKUy2IzzLqrsHLVhVVkaJ0t3Z9bu34DKOUC233oYnI1jBiEKYQSpHkw4d/mOSs7knXnTQXB+7LhNue5uJHStPrpLHeC/hgYwTAlRmPl17AgxjgW7e6JFmBqSv81CtzDxUEXu+FjKMMRYl5ef7pOlfqmspc1Z7q+uyVycKjYhCmUsAQibp6WlQRKKmqdZtRlE2dzB43uTzLaHqmtARWlGObIje3/WkD4HlOrB4Ufpzx3Ts98gLqrs7n55+GUMOTxWTd3BtE/MwbC6T7hJyzQkzNB5K8eO7w71Ek3W6AR6K3hBCs9eS5FiQ5ryycXWPqXl+eFw8SyLUNjVcWajwLVPnWKGJ3JI09LmnesYXkvX5ImBQMw4yarU+FmS/PeAfu96Pi5o50yu0F6RF9pEfFvUFIUOpCVm0DU5e03Zfnq1Jb6VnnWeOYfqn/stJyeXmh+sB95kFxrx9OX+Pq3KMba88zbF1jHGVPhAZ7GhEmOVuDmDiTlvULdYe6o3O+dXaF3lo3YBCk3OkGXGi7pLl4LP2U6jN4XodRNl3Pmqqw2HBY6wb4ZU1yknzFNXVeLtfnaXObXpDyw7sDikIiQr50uXOi35t8ri9iDvzv/sIP6Qcp//pPXOa/+PVP+M/+wXX+/E+//FivNVnjG/2YjX5MxdKPNCyed2SFbC7uDGO6fsrr5+pTTdcnNco4yxAIgjhDefHkpqcRJBl39kJWeyGdqom9z1Bspe2WmrjP9/qzQoqy39r1eX2p/iNTsz+NOO3T/V8C/xfgDeBj4OuKolwuv/f0hRweEX6csT2KyHIJI97zY4Ikey7LZbLx6aqCe0ySmReC7WE0FdWD+yryEzei7VE0dao5zXvuT6xMXf2ResCjNKcXJGSFFCnfG8fs34MfBhWd/N2KwrGbjKJIccNuEJNmOUIIdkYxXT8pv3+UovWPQuyMIm7t+qSlsKNjHbWMf96RZjkfbg4ZhfJeWLqKZWioqkJWCHp+cuR3TvpUD6OUrWH0xBavTmnZDWAdKl4KIaZ7z4Fr3HeRDzu4ozRnq3SeeZIwdW0KA36RYNWHRUH3h2UobA1DtoYh5nNODiYRpznv3xtyrx+iKGBq8n67pv5COZukWc6HG0OGkVwftq4d2ccKIZ1ONwbhCyHMK88k+d+PagIoyn16wFk3DA4ci0IOk7aH0ilvVDqASnH3p3e//ThjaxgdaCyl5dk/oeVOYtI4M3TliGDwg/bzopD70v79c/J3CyGdpQZheuzvHheTe6FrygEKjK49msL3NGLibqUoUk/mYfvM4QgS+dlPBI+TPGe3FA1+kSIvZJ6y3gvo+tELmdPpmkIhJEtgWD5Plq6dKTpTmgskqAqgPJg2JIREwPWDoznD/et9us+rtW+Pm1ynn+R0/Zi8KE58/wTQDRKC5HTmJZauoioKcZ4xjrMjz3SQyFopPZKvvJg58Nt3unz9xi7/9u+7xp//6Zf52U8v8t98/fY0dz9tKEDFkiVrWuTc3vPZHERneMVPHqpyP8eN85w9X5rf9ILkhdqjFBQUBbZHIWs9/1Q167MKIWC9HxAlOYZ2NI94EfZUVZEyMuM44+Ot0RPXAj/KcVocbEUI8cvlf/8niqK8Dfyyoih/iqk2//OJNC+4tSuts8MkRyAQQqCpCkGSS1vch6BtNgYhfpyzULdxTY3NYUSSSRck2zj9Q9vyTBxDQ1WPF3bbHEr7boDLurQ9tw1pobnS8rjbDxmGEg3y0vx9K+kkK6YJYZjm5XvIf1/qeNOvgTyg13shaV6w2HAOJPb7LSVfpJgUg6oi6FRtTE2j7hhcma3iJynD6MFJ9EzVwrO00h1PJnT7k49ekLDeDXBMnTgr2BnHbJXOMlrJj1aUkwvx+bGkVlRKt5kXLfK84Dc+3uZbN/ZY6VSo2Bo/drHFwjMURjxJXN8Y8GsfbgEqLc/gfNvllX2IrjSTDpaKwgH48nLLpRckeMc0C9K8QFUUsqLgzq5EyUVpfkSsPM0L1roBhRDUbINhlDFTtag7hnRdKW2MQaLwJhPaw0VynBVsDWL8OOfiPjhwzZb2w0UhjjVkiLMcU1P3oSVjXttnSw3yOb7XD4nSnE7FpBukOIYU5jy8jk1dijxmRfFYNIenFbujiO1xzELNOfI55IVgGKYUomAcP//DWAjBr72/wTtrAxxT409/+SJfutxiFGfMv0BQ9SBO+evfusPuOGWhbvPKvMtL80eRkHd7Pt+4uYNn6nimzu+6NvMcrvZ+WLrGtbmTP6OXZipE+861k8YgSOkGkgJ42MgiywvmqhauqVEIwc44pjtO2B7F2IZKmBQstx0udU5OCTttBHHGb93YRVUUVloOS02ndDuLGMcZ6wS8tlBnYxAiUFhq2KVpw8nzke1RPEWn6ZpC1TZYbjnSkj0uSDJZJF+e9ab3QghBkhf3nVbzgiSX92qpId2nLP1oA2hrGDGKMuZq1gFq5FnnGhv9kEGUstRwqDkGl3UVTVOm1xsm+VQHcHccM44yZmsHaV8TqlNRyEbfYsNmrRvS86Wz3/OMcZxxtxdSdwzaFZP1bsDdfsjWMGa+buEYxws+P+uYDFJmKiYbw4gb22MGYYpr6li6cqZ7ZZDIptTWMOJ82+PqbOWBRjOTvE4IQVaIaW4WpTn3+iGGprLUsBGcHWJqckYD01z76lyFOC3QNSkSn+cCVVFwTf2B7xtnOYYq19b2MOKH6wNcU6PqGNJhdi9AVWGx7jx0PTmGxudW6ny4Mabhmax2A66VrmZ5Ibi5I2ulfpByZaZyorU5jlLu9iNqjv7Mn7//5uu3abgGf+ILywD8Gz9xhV/83j3+5rdX+bO/58pjvebVuSoVS+ed1R7fW+3zq+9v8sc/v8yri40zvPLHj0JAp2JSt3SGccYgSPnO7S5Vy+Bcy+HTy83nfYlA2QRF4dZuQJznXGx7XJur0gtSwjRnpeU+dxRqIQT9cYx3aM9I84I7uz6KAhc6lecyXJlExZL52d444ju3u2wOQpYaLpahMVe1MF9gJO9Zx2krF0VRlLoQYgAghPh1RVH+KeAXgEfyGxRFuQB8C/gASIQQv19RlD8P/CxwB/jTQohUUZR/FvjXgS7wJ4UQw9NcZJzmrPVkY8fQFW5sj9BUlfm6faw7S5TmU9jt5jBipmqxO0oYRCk3tsYst6VTyWkf2ofpRO1/KVVR5MEbpOiqSv8BE8zdccxGP8LQJfYiyQQVW58WwqqqHKAADKNsClHfHd93GInSnE92xggBl2a8F6qA/XBzyK2dMbvjhOWWy1sXWlzseMRZTpyKaSPpQeGaOl0/4e4hTZudUcw3P+myOYxYqjuoioK6L7kfRxmrvnRTOulnsjGQ1IpRJPWvXiR4LcCvvL/JL75zj91xTCYEv/vl2ReuKbXW9fnLX7/Nei+g6Rl89cosyy3nRBprmqoc2xDcr3lyvuWiKHJioh5TzG0OQn54d0CWC0xd4UK7IgtBIVjrhpi6yuUZb9r4eiTC45ivPcjdcb0X0PNTXEub7gfHXWPXT7ixPaIfZBRCcHm2QhDnGJrC1jBGLQvLSWFm6irmqcGwTze+fadHlMjm3U+8PHvge/cGAbf3JF3r1s74OV2hjCQr+MF6n7/3/jYbg4iGa3Bnd8xnL7SpvyCaDiCb4n/5N2/yrVvdKVJkueUeWTeDIOVX39/h+2uD8qyQTZ7nnSie5hnVDp1rJ437FMCMunO/2Rsm8vwDWcBtD2Nu7Y5xLQ3b1AgSQZDkjKOMrp8wf0LXsNPG1jDibi9gFOXkRcG1sqm41g240w1kIdgN0VSVpaaDZ2qn1vA4nGcAjKIMTVHpRQmpLo7oa000q5qewULd4fr2mCwXU+3F4+5FkhVsD+Py74qnr+nHGbd2fVRF4dKM98TP3ThO+dbtLghJwZupyMHh5dLNb3L2K4qk9m30JQoiKw7SvpTy/C8Q6KpCu2KxO05eCETh23e6dMcphqqw2HS4sT0iywWDKEXXKD/b5ztQDJKM7WFMmhf85sc7bI8i9vwYR9e5MlehXbHOdOi5O4r5cGNMnOfytZUHy1NMkMl3+yFBKvX2llsuu2M5OCpExs44xnhITXDa2PPvU0odU6NTunqt90LyQlB3DHRNoeGaD8xttoYR28MYy1A533L5cHPE9Z0xuqrwY5da8hkoawPP1I8ddE3i1p5PEOdkSNrXcbei5ycEaY4QcGX24fVNlhd84+Ye4yhnrnbfTfxZRJBk/P0Pt/in31qe5uVX56p8/kKT/+/b6/xrv/vyY6NdFhoOH9wb8e7GYErt/g9+5lXaT1Fy4aSRZgVJJhCKHCp8/fouH22O6FQtgqT+wjSmQDb313o+RaGwPYxLlkKMqWkMw5S3Ljxf+YMgybk7iBlEB4cO692Ad+/J9oJlaA904XwWUQhwTJXtUUywG7DaDXhjKUNTVdYdk4sz3lPLRV60OG318heAV/Z/QQjxA+Angf/phK/xq0KI31M2pWaAnxBCfBX4AfBPKIpiAP8q8OPAfw/8Kyd5UUNTudjx6FRNciHwTB1NBQUVrUTQPAj+aGrqdCrq6Cp+lJEVBX6UYRkacVpM4d5nFfM1m5qj45hqST27Dy12DI2lhsN83eZixyNIJG9/VB5KaSYYlQvsYXA/x9DQVDmtSfP7LinjOKMoZLE+jp7vdDBKc/bGMXkhEW4VS6cXpGiqtHydIEMmB5J+DNUnLwTrvYC1bkBeiOnflOWCuEw0x1GKZai0PJO5us35tkfF0jE0hU7VnL6uEEzd1x4Vk4PZ1J/MAeisI05yvnlzj483BxiaKq2z2x5feM6Hw+G4sT3it6/vkmYFVdug7hh8+UqbmUNJgamrnGueXOzRjzOEgKKQBVPNNjA1hcV9m3qYSNqGikJRyOJ3QgupWDr3+iGjKCXJCqITFCuWLpPcc82TN/4mk/kgzml6Jqp60OY3zQt2RrFsQpdUn4qtk+UFhq7QD1L6YUqaF/gvANLoQSGEQC2LBXEMsLZum5i6gqqAZz1n/aMw5YfrfQxVwTU1Vlou7hkKbp9FrHd9fv3DTUZxSsMxsHWNr15tT8Wo90chChTA0hVMTWGp5UiE0Cg+8zPtRQvH1BBIJ6P9SFs/yaZUlq1hhJ9kCCT9+9X5Gq8s1Fhs2NiGhvuUnsc4yxknGYau0a6YmIbC3lg2dhbqDjVbnne5gCSXbnPHSQI8KuTARKHlmdOG0gR51vYsVtou5zsutq5N6U+TnMKP8wOOe9FDzkVdlU5CSVaUvyN/dhTJvTgvxGNRPIpSmHxCrUyzAkNVZcMxzomznK3Rffrd5P+FgFwIDL3MqfY1A4ZRysYg5FzTYbFhT1G0Fzou83WbC+3nI4A7jFJ6fsJE0mwviFnr+gSJPB9eXahxqVORuqH68803DE0lLwo+3BxytxeQ5QWOoXNtvsIbS/Vj96LTRM9PDshcxGlBxdZxDI2WZz5UD6ZTMVlo2DQcE8/U2R5F9INkqjmai/vOhg9D4J8mbF1lECb4STbNC7NCTF0i86KgYmlYhsLCA5rLuyNJqw1iyfjI8oKOZ9KuWCw33Glz6VGOeeM4Y3MQUQiBa2poGgcKWk2VTWLP1pmvWSRZ8ciGbJjm0zU8QXk/q/iNj3aI0oI/8Pr8ga//0c+d4+aOzztr/Sd6/S9dblG3DTqeSVYIfum9zYfSQJ9VTJptLc9ktmrTdE0cU6Hnx1O04DBKn/u1KopECV6bq8ohriqbVBOkbpIV7I3j59r011SFoihougbTDRYQyv1/PgMpyYeGoig0XYNzLZfllst8w+ZeP5waNeyOI/bG8RH67T+KcapMRwjx1x/w9VXgXzrhy/yEoihfQzayPgZ+o/z6rwF/Engf+KEQIlMU5deAnzvp9XmWzuYwIk4Fq11futsZGm6pDXPYqS1I5Aa+0Y/wbI3LMxW2hrGEgisKnz3foFfSZs5alDcr6St744S9ccLnL7S4NifFtydJ1EzVYhxnrO4FDMMU21Cp2gaerVMxdXpBQqtytFj344yNgXTOudjx+HBzyDjKudsPWW651B2DQZgiBM/V2WFnFPGdOz1JL2g6nG/LJlyrYjIOU863PT613EBTFeqOwThOp25E+2OtG/D9tT4CGIQJrqlTCEHd0dkZRuyVE9HLMwWaqkwdCq9vjUhzqb9ybbZCkhWoqkLDNegH0v2l7ZkP1Bg513RpedmZayk8SQgh+C/+4Q1u7oypOwavLFRYbLj8zJsLmCekKD6L+J2be/wP37qDa+rUPY3PdBr8xMuzLB8jlqqpykOng4ej7VmESY6uquUzIZPPbpAyU7XIcplQd/2ETsXicxcarO76tCoWyy2XOMt5d93HT3NcSzsC/z0uVEU59eR1oeawM46kg2Y/QgiJ2KyVCKvrW2M2BiEVW+eLF1t8tDVCQeFCx8PWVb5xc4+en7Lcdh+IynoRYiLKvjkMp2Ku+0NTFfw4LxsIz69Rfmt3zC/98B7v3x2jKoIvXGjye1+en6IxXoT4YKPPf/UPb+EZcuDypcttPr3S4M1zx09PpfmGxVrfpOno1Cyd1b1A7nu+wsvHUP9AFjf9kgb3IiFqQbp/5YU0EnjYlP9i22O1Kx137uwGXJrxiLOCKM1KzSWFhqNiaArbIzA0jYqt0/IsKpY2zQVqT9iYDBOpD1J3DIpSamAYpSAUlpsOlq6R5AX3+hGKouBZGoMgJUkLVBs+da7BYtN5LETuxkDS6+72QhxDpVWxaJRoB3WfnszEwVdSsVQ8y2C+Lptz83WbIMkO5E9BInOMyeBIVRUudzzevSfRp3e6AZdnKjQ9g3GcoSoPRo4+LG7sjFjrSlrba4t16o7Ja4s1ojSn4eq8faePrWu8tzFEVaBhG9RsHdNQaTgGNdsgzvLpM5zlBat798X0969tS9eYqT6fM/LOns9794bUSufhdsVkdQ/eXR8SpjkX2i5vnGvQ8kyCJDux3MBZh9Q+jdFUhfVewLdv76GicqHj8uMXmiw3PRZPgMouCqlvppW52f7YG8fc2vUZlOL851ouUZ4zU7FQFJM3l+oP1X1TFImkFnNwtx+QpBL9PF+TUg95IYfAWSFOdGaLkurrxxmmrtH2jqKFwvQ+LXmyI9mGxlzdmlJLe77MQ4ZRdiydPUzlvmDqKrah88ZSne+u9Wk6JjXHQFMVrs5Vput2EEraadsz0VSFvbHU35qgqMexZGDkOWwPYyoz99ffRFh9YxDhmtojEepaiTCcFMVxVjyWc/jjxC+9u0nLM48MVv/QGwv8n37xPf6Xd+7y2ZXHRw85ls6//VPX+Fvfu8s76z1+59YeH22M+Hf/4Mt4z3EoZWgKdjlMd02d3XHEu3f7zFdNojRnFKV8vDliZxxzruE8N8Fsy9B4daGOqsKHG0O+cXMPU1NZaTlcmfXw44y37/TQVYUfvzbzXDQ680LgJzLHLIRg8uQuNxzu9gLyHFoPcMN9VqEq8PJCnYZncGsnYHccEyg5QZTx7dt7NF2D8VxOp2I9lunDj1KcWcapKMrPCSH+5Uf82AZwDYiBXwRqwFb5vQHQBBrA8NDXThxCyEJnoS71B1RFoebo1B3ziFbEajfg/XtD7vZkw6bpmhTivh5Cp2IdQW+cVaiKwijO6AVpWSQkzFQtDucbQojSojmm6RlUHYOZioWpqw+0ld4suf9hkuOa9zWXJh1hQ1NfiGJrYyDthYM4ouHoFIWgZutUTIO2Z7HUdKb3bK0nNXjupUcFCgWCQsjO/cYgYr7mTDUm9sYl9NnSj+ivaKpCXgiyQjasJg5mYZKz1pV6AUlWPNTZ7EUr2j7YHHJ9S9K+AP7cT117qk5wjxPdccLXbuywN04Yahm///V5/sQXVs7s9U1d5VL5fO+fiO4X65XaIzmjOKNTaVJ3LfJCJo3bw5AwFWiKykLNeWqHfd01qLuGFGv1E7L8oCbaxkDSkbt+zLXZCk7pJLI3TjB1hXGUY2gqLdd4rtz4R0WQZGWT1ybJjo6l+kFSitGq7Iye/fQvywt6fsr3V/usdkOGScrljsePXerw8mO4oz6tGEcp/+CDbXbHMX1N4atX2vzzX7740N9RFIVmxeZ8yyHKCjYGEZ6t4xr6QyeEd/ak/s4oyg7ovT3vGATplM6toDwU2q6qCrahTdHF4zib0s1cS6fhSFqNqctnTzZ+5Dra8xPSXLA9jGk+4fBmcnZtjyJ0RepDjaKUqm3QqVrM12xubI9J86IUbk4wNJWmZzFXs1lpu4+9B2mq1KzKS3fDpmeiKMqRwnpCedwZxZxr2TimpP8IMSneDxbw28OYIM4l2rOkJ0mXM7VEq8qHy9K1x06i80JwtxcxDDPitOC1RXlPFxp2Sb1WOd/2CNOM9V4AQmHXTPj0SmPaRNOUg2e0oihTarf+Au2Z0nEuIU5zXpqrMlO12OhFxFlBLuQgc4KSeJ45x+YwYncUM4wSPtocEaUCSxN8ZqXFl0/o/AZSB2qyFo3S2XESAvl8xVnBWi9goeHgGDrzdYVcyM/jJCXkTNWa6jcCDKKUMJGNlXbFPFEDDWB3nHCvJw1k5mqy0XT4mRaCI43jNC9wDI2ZikU/SKeNqQcNMW1DY7npTlGamRAsllpOk+HaFI1VamNONHUNTZHrJMtRFYWKpVNz9Ck7YlID7I/9mpmHI80L4qzAK9e1AJqegR/nCKGwNYy40Hn6yMIozfkHH2zxj39q8UhDo2ob/NQrc/ydH2zwH/xjrz6RlMZ8w+Gf//IF1n8p4vrWmCDO+fWPt/mZNxafmyh2khdEacFqN+Dl+RqzVZtLsxXSTOBZGmGSszkISXPoltp4h2nZzyIU7iNSk7xAQZFax6bOG+cafOOTvSnNtRskz6UeKYR8XoIS+Tf5lMKsoGqZxFnOrp8810YkyNolzaHlWaXOo4ofZ2S5YGMQU7FC2qcY0v+oxqlOOEVRHsQFUoA/9KjfF0LEyKYUiqL8r8gG1FL57RrQL/9XO/S1467lXwb+ZYCVlftF7UrLpR8kXJ71SDPBzjhicxCzM0q4Nlc5sLnpqoqta9MExTM15mo2/SCl5ugHNiQhBHf2Avwk41zDfWBTaPKzcVY8VKRUUxWuzlYQgimlbBJ741giJ2yD5ZbLStshynKyouBeLyTJci60paX0ca9fsXSCOMfUVSqWzkrbJUrz5/JATz6L46DHdcdgoW7xya7PR5sjekHKFy7KR6zlmQfocYamEqfFsQX4SstDMEmGFXqBTHqywgYhXZX2C2UmWYGqwPm2x/dWeygK3C4nvACqyjR5fZEL/v2R5wXvrPV5d31A1TawdJWvXO68cE2pjX7Ib9/YJYxzOlWL2arFH3ht7qm9X802uNBxEeV/g3TkudD2eO/egDwXbAzCUodBpWLqxI6Jrcd0gwQ/TolSHUPTntqzIC3fK/hxRtXeZ2Pbcvlke8w4Lljthgjk5NKzJAK05RmsdaXOmR9LCsGL+LwOgpTvrfUI4oyfPgTHB7g8W+WNpRphWvDWhWermyCE4OPtEbd3A67vjKlaBq8vWnxmuc7r5+qPfoFnFL0g4Tc+3GJ7lDBftai7Jn/w9cVH/l6QZDRdg7woMBSFLBdcaHsoMEXmHReGphIXz99C+XDsp3Kf5NpmqxaaqmBoclCx0Q+52w9xTY2KJddL35cuR0sNW0L9kUVbmCTYhvrEn4GuKsRIZ0chBKMoJUgyXFMWolFWkBaCrMioWDq6WrBQdxgnKdfmK09UGC01HHZLqrxt3M8XDucY8zWbvJADHkvTuLMbsGtJROlK++hgxrN0RpHU8JwMj1RV4WLHYxRlNL0nT/AV5P1TkE38QZjy4eaQQZjS9izm6zbn265sPApY70U4pnasTt8kJojpMMkf+vw/yygKQZzm+ElOlGRsD6Xz3mvnauz4MWma0/Ssh/5dzypGYcLXP9nFUlU6FRND1ai5Gp865V65/285/He1PZPFhs04yWm4JqoCF9ou9/ohu+OE61tjLnTcaRE+YRVYhjzXhRAlNVcObxcLm1wIqpbOzVLw3jtFc09TZTNTU+Uzftx+MNlnTE3Fs+SQ9UapzdZw5RrTNJlUmrqKENIaPs5ybpfmLAsNmzQTU1aAa+ooitQ9PYxOmmik5kJgaPf1Um1DY6Eh13Lbs0jzgiDOGIQp790bsNSQkgiTgexxyLt837U3PYNzTRfP0rnY9khygWfoj6X59zjx9eu7+EnOH3xj4djv/+ynF/k7P9zg6zd2+YmXZo/9mZOGber84Tfn+fnvrJHmgo83R9SsXX78pedjFjLRSps03DRN5dPLDbp+wpWZCt+82aXrJzRdk07lKIrvJHXoWUfNNrgyWyFMMz613OBePyTOMjb7ITM1+8QyKWcdnqVxqeNxadbD2PfMm6rK26td/CjjM+ebR8yRnkdM6t65mk2nYtGpjPmN67sM/JR+lJy4of6jHKfdXXaQIuX7n3JR/vuRu4KiKFUhxKj851eA/wxJ3/uLwE8B30TS+15XFEXb97UjIYT4OUqa32uf+oy4vetzvu2iq9LGeL0s5LJCLgS5EYsDiKQLbZeWZ/KZlQaepU8Tlfn6/R8KE9ngSbJiOnnd8+MDjak0L9joR+iapKysdUMGYSoXw0OQSTNVG9fUETDlv8vXT7i+NeLeIOLLl9rM1x1mqhZhkqFrKvf6EVFa0K5YBxzAJlGzDaq2jl1SzOqOcQRGn2RF2WHXn6po9yc7Y8KkmB5w+2Ol5aIgeGe1T2Ko+EmOWephqKpKzTlYpI+j7FjNj6woWG66GJpKUQg+3i7QFBVNUZlvSKHGIJWaQqt7PpvDmKWGw8sLVZKsYGsU0/NTLnW80p5ck7SPtKCx7z5vDyPCNGeuZj938eD9URQF//XXbvKd1R6zVZvPLje4Nl/ls+dfLE2pv//+Bn/rBxsgFN5YqvLWhSa/+6W5E0PC80Kw2pV6FssPcPooCsGtPZ8olYKnci0YDKOUQZBO1+2VkroZpQWmLvXpTF1qzXmWxp6fUHN01nshvVBC4iu2RtUyHilAfK8fMoxS5qr2AymIUSotiiU1z5V0UEVnGMmC1Ta0qeFCP0hRFYX5ukXNMbB0WeD2AxtVgWGY8s5an6Zj4JaulIsN55FNqjSXe1rF0p+qRfQokho+BbDaC3h54WARU7Ek9SbLBa1nSC0ehgn/4IMtfvvmHioK59suL59v8dpijc4Zi/c+bggh+O7tLj//nTWCOOfybIXPrjT4fa/On0hzKMkKigIqtqQADcKEJJNIl+N+P0pzgiRnpekQl5PZB0WY5Kz3AnRNZaXlPpOmqGfpWLrKOM4wHvLMTgZJw0jSdy1DJ8mkVlMvSLF0lbxE9myPYlDkuTlJ4BfqjtSyUR8/qe8HCVvDuNQqk7pAH2wMWe8FtFyT768NGMUZhqpSL4vsXAhQpN5RwzWf+DNVVYU3zzWOnJ17fkKaFfzDj7epOyaXOnLQdXnGk65du9KARAhxbGNq4oDLoeGNZ90vWoWQYs1GWayfNIpC0A9TXFPjfNtjFGeoisLNnXFJWZK0qhvbI15ZrHGx49F0DVbaHrauPXRoCLJ4P+7syPKCO91gqj/0tCNMcqI0xzM1cgG6CpuDmN+51eX61ojLsxU+t9Kg7pg0vaOI/2cdPT/hnTs9vnNzD88y+GNvLfHK6w0q9ukaFeu9AD/OyfICy9SOINcURaLXr2+Np9/TNRXH1DE0mYPHWUFFCKK0mGqUBnHO7jiaom4vdKSO6H6q4MvzNQohiNL8QD7wsGiVVLlzTQddVana+tQcJUxzbEMlSvPyvzUso6QKltpsE51Tz9S5sT0iyQRVW+dCx2MQplPtnbwQBxCgdcfAna8Sl3sylC5iewEgWGm55IWYDrMqlnT23hvHfLA5ZKZq8+nlBllesOcnWLrMayqWPjU0OE78PS/EgWvPckmxr9gGX7rYJivEM3sWf+ndTWq2zpcutY/9/u9+aYaarfOL79x94sYUwFsXO8w3HX71h5usdkP+ytdv8sO7Pf7133vtiV/7tGEZ8lytlPe3busYqopr6Ly3MWTXTwjilJmKybW56pE67uauFMCvO8axe/jTiMszFRquyfYwZhAmfP36DoMolY7GmkOSFQzCFEXhiSnypwldlWjLw+yCXpgwLvPTx9FAPG1M8qu682CWw3LLLSn1kuLfrtjsjWKCJGO1G3J7zz/2fv+jFKdtTN0EfrLUlDoQiqKsneD3f5eiKP83JGrq60KIbymK8puKonwdWAX+UunK95eBrwE9ZOPq4SFk8RNncgO+15NT0ZWWi2dpuLaOY95PRiY8U7sUUpzEpKiN04LllsMwTNkexbimzuWOh1vCJw9D+7dL0UKQidlU1DjJp5ORB8XkQJ+IJGqqhOFuDqVryM3dMXkhIX4TOuIwlBoDxy2ke/2Qe+VE+OX5Gus9qbExWz14AN3a9UmyAttQuTp3VPflLCIvxBQ6PRFnnlj4GprK3jjh57+9xlo3oGobJUJBYWsUcalToesnUw0sTVWOTSIGQcpqV4rDXZ6p4JRT6Nt7Proqhb/9OGe1G7A1jOgHMb0gZc+PaTgGrq3jxTlVWz+A7HJNnf23OUxytoYTR8Do2M76/r/tWYUQgr/2rdv88nubpFkBAq58ZvGFcuwA+Ob1Hf7qb92mH6W0XQtT1/nK1ZlT6RSMo2wqbL/nJweEwicRpLLoBplI18qm1J1yKrlY2LQrFoqicGWuwp1dn36YcafrM1eV2h66JqW6d8YJhRA0PJONfkQzNQliKdT+oOvO8oK9sUyMd8bxAxtTwzAlzQQgGIYZM1WN1a5M2DVV4eX5KqqqcKHtcUeRehubQ2kjf77loarS6robpIyilJfna/RKzQlp160+soF2e9cnSqWQ+mGtoTQvuL3rkwvB+Zb3RHoSKy3p5GXqKjXbPLInfrw15uONMaoCv31z77Hf5zQhhODtOz1+/aMdPtkZ06lYzNZtXlmontr57GnG27d7/OWvfcLGMKZhGxRC8Htemj2xEHbdMVAU2bwOSxOMr3+8i6Fr7AXJAfpNUdqI54V45FAF5IAmSgtIC8ZRdqIi70kjSnPirJg6rT4ouV3vhXxvrY+hSSi8rqqoiqQYdCoWUVZQsTXSrCBIMoZRygebQz693Jw2JJ9Ux2dnFE+FhefrNpuDiNW9ED/J2egPMA2dQZCw3PJouAaWoRKlBTd3xmwOIhZL3ZAnLQL3n51FISiEoOmakrKcFNh6wdurPT6z3CTJC+ZqNrNVGz/OqT3gnma5vM4olUOCNC+O5Bnbo/t0rSuzlRPtIeM449u3uoRpzrmmw7mmU078ZaFm6RrzdYfdkRzO3e2HiKJs6MGxg7qTxkR4+lnE7ijma9d3UBSFN8/V0FVJxdoexhiaSpoXdGo2ddsoJR6ebxGy2vX5eHPE+5tDdscJvTBjvRfye14+ioB9WMRZTs9PibKMnVHCctNlexgfKZz7YYpn6URpMc3L2p451ThquSa39wLGUUaBQFMULF1ScSd9xSCWQ5f9eZmmKgz8hG98skchBK8vNlhoPHq/PzzYlU3+lKwouL0bY5sqfiSHYcNIroOlpoMfZ8xULfJC8PHWiI82RzRcuSeDLM4n+cJxe1nfj/mNj3aplEPaQZhOzQmCJDtwVk1yjY+3xoyjnHHkc6HlcHcQsTuO8UydpWa9bDaJ6WuAvL6JFpsUs7YJkpyZqsWtXZ/r2yOEgN/z0gye9WwaCmle8Kvvb/JTr849cA+0dI2feXOBX/zevRKF+uRIrnMNj69cneHrv/wBu+OYX353k07N5I+/deGJX/s0MUGKTqLrp2iaQj9MqTkGH22OuLEz4m4vouoa/PjVWbK8KB0rme5l42fQcJmErklNrO1hTD+Q1HBp0CMlaZI847evD/DTgk8vN7gy+3Rqz8Phxzndcco3PtnjK1dmsMo6L88FS03JsnpS04tRlLLWDafIzcONpywvuLE9npqOPahZqKkSnDGpW76/1mcUZ9ztBRiaxt1eyHzNxjE1LP3FZEk8aZx2Ff8lpObTkcYUEvX00BBC/F3g7x762l9Auv3t/9p/j3TkO1koULVlMZaXB1d/LF2Hvnqlw1LTRQjB1jCSxW2ckebS5cPWpTh6yzMJ9xW13XHCJ7tjBoGkQlzseA/UZZoIoyuKdOdabNjsjhOarnFsU0oIwb1BRJIVLJQTkrfvdBlFGfM1h5WWw49dbHFnL2C+bmHqsskjNbMk5DfP5WGd5sWBRsh6L+BuL0JVpTj3hNe+58cHGlNTt5CnOB3UVKkBMgjl1DpOc95Z65Uc/SpxltP1U5IcoiynKJPdVjnhOolYajeIudsPsHXpZOiYGp6l89rifVRGLqRu0DurPdK8QFNVXm/UGEUptq7Sqhi0PKtMbB4UYqpJdZwQflEIbuyMidOCufqT2w+fJIZBwv/rVz/indU+hSgwDI2vXunwmZXWC4H2APms/8J3V/n531nHj1JUXYoi/uOfXjgxH36iWeKYGrqmHJgSHg7X0IjSnLv9gE8tN4D7eicgn/csl7z9u/2QMJHCwDMVi7VuwJXZChfbHpYuEUu5KPAsnfm6jaooU1rQkWtEHjy6JhFXfjmpetjftNr1qdg6V+fkgTjRt5v8//Yw4vr2CD/K2BzFtFyTNJeOnC+VIuKXOhL5VXV06tx3pbJOgOibrP28OLoHjKNs6sLVDxMc82ATMC8Em8MQVZF6fg8L29R5Y6nGRxvjA6iU6XuFKbf35IH9lSsn1yk5bRQlajbLC377k11+4e11rm+NqVgqC3WHr17uMP+Iv+VZRZ4X/Mq7G/y337hFEGWgaSzUbP7o55apnwJVtucnWIaGY+jMVC0UVfDJlk+SFxRFna0ZaZIx2dMOP4MwEQ7NSqdbZfq1YZiyOQxZqDsH0DiTz/ksp+qDIGXXj6nbBpoKaS4OrK+Jg6WlS3TOje0xKkI6xGWCTT8kyXOuzVVwTJ2wtLvXSx2qvIAsl+5TT0JTGUYpO6N4ilIeRgGuobE5kAOjfhCz1gsQKNhZjtpyON92pwOYnZFEA00S+WGU0nlMh7M4y7nXl7SwxbrNKMr47qo8f5eaDp9ZaZLmgkGYsejZFEKebTVbWtEbWka9FA8/3KSLs6JsYsrPvlIWq/vzjP37SnHCPKPnJyRZQZwWBEnORj/kvbsDao4uBY5LI4XfGkuq9VzdoqBgHEunsP33b/IcGppCUSK7un5CXgg6FfPIPmTpKl0/4Rg5njOP23s+H2+N2R3HbPQDTF2jFyYstZxpc881NDxLe25NqUGYcGc3YGcU8969Pv0wLWUuDNoVi+pjUCGlA7bC9ihlHMtBylzt6PPdck3CJCw1UuV9irK8NLUx6Icpt3bHU0fXiaaYrkmqu6pIwxQhBJ/s+IRJTqdqslB3GIQZSSYbMd9f7zGOH10cjyI5pK6VjUJTUxEUCCG1lxQkQnIQJVyeked5w5Frpxck1G2DLBfMVCyyopgO1WxDO1bDL85y1rsBf++9LdZ7IXOlJEPF0qfPp22oZLmUt9gexRSFQFUgK3K2hiGdikkmBEUBSw2Xqq2jKnKIb2gyl5mt2hSF4Pr2iDSTLoKaquCYGpdnvKkeXpwKFEUayDyrxtRvf7LHMMr4Q68fT+ObxM9+eom/8Ttr/Or7W/zsp5ce+rMnjWvzNX7q1Xn+5rdWCeKUv/Zbt9nqx/xbP/XSmbz+40TN0RmECULIOinLMopcupBv9iI2+iEfbg4xdY3PrTRYbNj0gpTOMQZZTzN0Va7BqqNzacZjaxixPYxZ7fpkWcYHmz41W8fRtWfWmMqFfMYXG/aBeqDm6NKtuC7P4YdFkhVsDEOqlnGsCVc/SKfIzSA5qve1/wQ8Sd1dFBLZ6ccJCOl6WrV1gjjlt67v0AsSXlms8fpS44XTOn7SOK0r33/xkO/9Z09+OY8XjqFNhfjSvGBrGLI5jGkUgu+t9ak5BnkhuLUz5sPNkRTELPWZTE3qMPmJ3KwbjoFrGVRKEe4kFVOB1AeFdE2473JjG9pD3e78JKc7Tkp0RYyhKmwPEz7eHvLNeI+LMxX++FvnePNcAwX4aGtEnGUMgoQwncB+C+JMEKRjVpouhi7FW2u2wZ08IIkLdscxjVKb4TBF5kLHpRck5Dmsd4On1siYqVrMVC2EEHzz5h6/+v4Wmqrw0daIr17pcHXO4+Mtn91RxG/d2EPXVf7Jzyxxvu2eSANiox9yrx9Jx4I4nbqFRGlOq5ywVS2Nj7fG3Nr1URSFSx0PIRTGcYaHgWvqByatfpzRCyRaq2LprHUD+kGKa2ks1O1jN4EkL6b86Qnl82nG9a0h/+4v/IA7ez6GpjFfs/hXf/wyP/2IQ/xZRlEU/Id/+13+zg82URSBY5r8k6/P8a/8+GWcUxR/UZpzY2fMlZkKL89XEeLBAqJZIdgaRQihcGc3YKXl0XBN6UzVD9gaFHy0MeKjrSE7w5iigBzBrd2Ay7MeRQHzNWkjPghTOlV3OskMkgxDU48tFKI058PNERc7HpdmKtME77gYRik/vDsgyQSmppHkAtuQlrsfb44Ik5zv3unx/uaAnUHMMMqwDZXrWyMWGw566Ry5UHfYGkYH4PhxliPE8XbSRdmcnyA+bV1DVfIjFFtginDKiuLYBtvHmyN+6d0NdA3+yGeXj32NSQRJxt1ehK6p0+bf/v10rS9pBVkh0J+SFkJeJt9RUvDd1T3+x2+vsj1KaXsGlzoV/vRXznN19sUR+f7579zhP/21T4hzOfX/g691+HM/+RLeKYvBfpDQ8xMcU+PqXJVRlOHaCbEfM4wT3r83YGsY0/ZMLpbUF4FAgalA982dMX6cE2U5lzoeM1VLnh0FsoiumNPhSFpOBbNcsNiwn9g2HmTD9521HqqisCYC2p40/5icabvjmI83R2iagmvo9MOEjUFInOX89Gvz3O2F3L3rEyU5YZwz37CJ0oJcSB2WT680uNsLqdr6E7vv3uuHpJlMThuewTjKub3rY2sav/bBBnt+yvlOBV2Va6zhSqrx9jDCMjQ6FZOVtsswGmDoygMb8CeJ7WHMMEzp+glhIl0W310fcH1nxKsLNVRF4SdensOPM27u+MRZTtM1SHKJqAiSjO+vDVho2Fye8SgEuFORc4WabdD1E7q+FGu3De1AnjFXs6e6O1ku+MF6n/kHoBGzvKDrJ2gqUmA6zXlprsK3b/fIhGBzELPeC1FVBUfXWGrI/UZXZTPqzm5AyzN4rTQrGAQJb6/2UFGm4tp112BQivAKxBH9xWGpjfW0ZnU7o4jtUcxs1ZINhLxgvRuwOw4ZRTm2rrHcsvnxazO8PF/D3dcIftZxY3vE//Tdu9zrB4hCkGQF64OQhZrD5y82eG2pwRcuHE+velhMnLH6QUbDNhlF6bG5ctMzqTsGN3bGfLAxYqFhszdOGMcpP1jvY2qS0uQnKTXX4frWiPfuDZivO7yyUONS2RzK8mKKMBpFGR0vZxAmKAhsXX2gK1/PT/ATiXaydI3NgUToSbF/g+vbY27tBLiWxucvtAiSDD/JGUc5e36Ca+ns+Qm7Ja3QKHVOt0cRKy33kS7DH22O+P5aj+/c6VK1NXRdPquTXN7UFL51q4umKlyZqdD1U9a6Ab0gYa5qM1O1uTTjkebSvCBMc1CkZlPXT1huOiy3XRxTI8kK0kwiKe/2A841XcIknzZ1r81X2fMlrVc22SMM7aib4lnH3/3BBhVL56tXHz6s+sKFFgt1m1/83r0za0wB/IkvnMfSVf7K125ybxDxX3/tFpv9kP/oj376zN7jNDHRBvv+eo/fudWdot4WWzYzVZO//f27bAxDRCH3jC9fbj/1e3RcKIrCpZkK59seSw2Hr328zTdvShTs94RA12Qj2bUk7XRrGNEqNQOfVgghpgO2YZRO64+1XkheyHp6vRc+lD30Wzd2+M7tHi3P4E/+2HmcQ3XgRAfR0tVja0RDU1lpu2wNIlSYDnz8ODsW1dZwTTaHAXf25PkwW7NZatiM45zvrfXlEGycoKDy+YsvlmzLk8ZjZT2KotjAnwW+imwEfh34L4UQRy3TnnFEWYGmKPSjlK1xzN1egKaqXJ31+Icfb7M5iFlpuSxbGh3XYpTIh2IUpdiGznxd5/UlibZJcqmNdBJqx2k0hyxdQoq3hjIRkyguOSnUNYVxlLFb0tikJlLETEVC6ycFeVYINFVOWKNUitRena1yoeNxtx+iKdKC/bVFb+oq58cZXT+h7kob5WGYsRNE3N71p8itpxV5IUqaYcTmIORix2Wh7vB7X5mj5fX5jY92+GR7zEzV4uOtMV86gcOLEIKkFJfsBgkf3BvRrljsBREqKiCYqzloqrw/nq0zDDPartysozTHs+7DqichdYykPsZri/UpTVO6HB6/ZGxDo1UxCeKM2RNYED9JhEnGf/y/fsDt3YBxktN2Vb56ZYbf9+rpYPVPO/6nt1f5e+9vM05ydFXhtUWHP/bWuVM1pSYRpwVpKdb5sN5FXghsXSPNMlRVoevHjKOMj7ZGrO4FDMOUTOTc3JaFjG3oXGi7KKpSuouoU4j84UP9oVMJIVFQfpLhWQ8vKJKSmjCKspLumtPzE/pBwvsbQ2lfK+DO7hjPNtCB+UaFS67JKM6wDJU4KfBa+hG61cPoR2GS88P1gWyuWvqUFnmcY4+pq1NU1nFxY3s0pSCsdv1jG1PjOGNvHONZWtksLvDso9BjxzDQNYWsgI+2R0de5yzibi/kxtaYrp/wd76/wfZYuq7pqsof+/wKL82/GELnQgj+4cfb/NWv32YQpSjA+abFv/DlS6duSoFMhjaHIf0wJcsEV2YrDMKUmq3TqUix3V6QMk7kGvnS5TZxllO1TMZxwCsLNeKsKNEAKZ4pG5ayQSGFOvfTCuNMFm9bowg/zmi65hMPPbZHMVGas96VjYmqZQAqaVGgCYWNvkQf+0HG+bZOmsnpomfpVC2Dte4et/cCdoYxLy0UDKOUy3NVHENjvi4FRs/KJMIzdXbiGD/JuL49YmsYkxcF4zhha5hQIBv2nbrDcsOj6Vms9wJu7IzRFYUfu9RGV1UutOW6Lp5AK9azdG7t+AyiFHOostGXmltCSLrTBNG01gtY7fqS9p7kNMs9Ns3F1ATk+vYYBWWqjWMbGq8u1Xj/7pCKrWPpGi/N39e92B5GpIVgvmxO/dr7W4wiKVJ9XNzrRwzCtGyOmVzsVMo8ReeTnQJbV7jdDbA0jZWWIxtUhkSA3N4JMHU5MJj0lFa7AYMgI0pzqo5Olhd8sjMCoTBTtY6lb+magoLyVBBTwyjlm5902R5JgfbZmkUhCmaqJn6S4cfyWudzGxUVP86fi8MWyPPpO7e77IxibmyPAchyWVAWQrDU8Pj9r558ACbRdWOWW24pPyEbm1sj6aC8OYiOpbXE2cFhn64p9AJJt9wIIxYbNm8uN7F0lY83x0RZwShMD0hc6JpsPo2iFMfU+PWPduiOE3IhWCgb1DOVgzc8SnPWe+H0777Q8bB0lU92fExd4Wru0R0nFKUjXpDkGKo2ZSf0/ITllntg+KKr0slOICU+olKP6kGR54L10qmxKAw+s9IkK8SUGtsPEla7AWkmpEGDqk2dG+NcorV1VcXUVNoVizjL+frHu+yOYsZJRlrYU0S0qavM123evzfANTW6fswrC3UMTWr57QwlUsw1dT7ZGU/dgS1DO6CNe5aR5gW/8v4mP/nK7CNrK1VV+MOfWuSvfP0WXT85Fs3yuPFHPrvM99f6/MLb62SF4Ffe2+JTK3f44184f2bvcZooCsG9fszuKKZA8NnzLX7q5Tl2xgk3dnzeuzfkXN3mXj+gKFpScP85haYqBEmOpqiMoowoyzFUhdmah6VpjMKMX353gygtaHomP/ny3FOTA8hy2XjVVYnYnETV1lFkqYimSjfihmMeex0fbY3oBymDEjl6uDFVs41p7+BB4Rgacaltm/dCacC11psCTvZHlObsjBK6QVJ+jgk3tn2WGhYVS2cYpgyChDt7Phc6LjMvmNHVk8Tj7ir/HTBCipcD/Akk9e6PncVFPUm0KyYf3BtStTS644i67dIPE3q+iaqoJGnOOE75ypVlDE1DRUKEP94cI+DAprZQd6BeQsJLms5ZhKFJOlNeFKzuBWQFXJmt8sa5Bp/s+KWDnGCtG5AXIAoAwcVZD1FAISQdbRCmKAi6gRSTS/KCiqXz6mKN3VEiobtlURAkGV+7sYMipN3yG0v10qY+ZhilLJ6AZ/+wOM4BIs0LtkcxmiKnp7aukec5rqkhkE21OMmZqVhcmZWH/0zV4sps5ZGH0YTCeLEjXViKouCTvTHDKKUADFVlHKe0PAtQ+dLlNk3PQFcVskLacnuWgWNoRFnOD9f7tDyJ7jI0lSzPp0n2fN1mdxRP3VYeVGgdp3l01rEzCvlPf/U6630fXZV0x3/8zQX+1JcvvDD0PYCf//Zt/ue371IU4Joq59su/7uffon5+ulFGFVVmU4uD8dEs6JaCrA6psanlht8sjNCU+F3bnVxTI07uz7DJGNzGDJTsWl6BjMVmy9daVGzLUnxK2TDqGobRyiyjwpNVajY+gOt5cMkZxCm1B2DlmtyedZjsW4T5wW/dWOXmq1zryywNwbSLavhysbZ5843uTZXI8lzkkxqZTQ8OT1TeDB67HBMaICqGrFiuGyNIiqmLO4mMQhSNoYhnqlPG9rHxdW5Krd2fVRV4UpHFtFxKv9G29So2QZ3eyFJJpGbbyzWKIC6c1TQ+cevdfjN69uSBvsU9J2KQnC3HzKIEn7t/Q2yosDUVOaqJn/kM0t86SnSB08TYZzyN761yjdv7ZIVgqql4lkG//s/8ApLD7kXD4tOxSLPwdZ1dsYxX73aYaZikxcFChBkOUme8+7dIZoi9+SWZ5HlBaNYiqXXbJ3V3TFpVhCmEjVoaioXOi6mdh9NHKU5YZJNDUd0TWEUZyeiZB8XkzOFQuBHGboK55oOG8OQVxdqUxMAy5DF16xqcb7tkZfX/tJcFV1TygakgqErZBmcX/A413BoV8wnQiTtDymqLjXtdocR4zhhox+S5AUzVYs3l+p0/YxCFHz5cpvPnm9xpyvP+p6fMgwy/CSjsTmcIkgUhSdqkrQ8k3MtB7UnUWWdqtTWenWhyv+PvT8Pk2xLz/rQ39rzjjkiI+ehssZz6gx1xp4ltbrVEmoJSRZCshFIluEC1w9wMXoeX1+Mr20wvhhj44uxr81g2WBAMtia0IjUolst9azuPvM5VafGzMo5Y47Y8173jxUZlVmVVZVzZjX5Pk+dU5VDxIq991rrW9/3fu87WnAZK9g0eiF+qMxCNhKJlqFxbjhLNW/R9WOytt4PkAO6QTRgp4/kHZiA5ZZKPhuaoOlFXFtq0/AixZgSqp0/lZL1XkCx3wbkhQk31zoEccJI3hkUG1Za/kALLOcUuDCaw49TspZByw8JopRumPD8pDo4h3HKVNmlEyhNqo24oZSxMPUuoDE7lOH2ukeSqqo5gm3X6ZG8MjUxDygzpeQjVCJBFypZttTysXUljF10TbKWgakJSpkuhqZztpoh7+gHerjeDZIkZbWtGDG6gFimWJpG0TEYLthcGinw0pnSrl4zTSXdQBVfKlnFkpoo2oR9JzFNU0XT+02ANKHiPCGgmrMUg0wI3oqaCCHIOyZFxyDnmFwcyeGYymV7gy21gbGiw2jB5vX5BrdWO7y/pvQkpyoulYxN9b5CoqEJEJIgSqkYfYc82xi4eLb8mPMjOeq9AKOvB1bOmJwZUlprG8wPJTrtYuk6nUAVodqeWg+th8QWXpiw3g2YHnLJ2iblrNIX86MEIVThK04lQ1kDL1Bfcw3VMlVwTaSUVPM2WUtno2NpqenTCSJsU8cyNS6Wspwbzm7Za4fzNnnHZKHvULzR/nVnvUcQJSy3fM5Wc1vmxmbX7CBOWG0Hu3I7fBR+//01Gr2IT++wA+CHXpzk7/3uDX71jUV+4sMHmzT6z37gWa4td3h7oYmhC/7Zl25iaPAjrx59cqqSs7k4kqPRDYhTyVTJoWAbvLPYJoyVkULUb6MXAu7WVTfMaN4ZxIlpKgmT7Z3SDxqjBYdqweb5qQKNXkTRMcm7OgKd5bbHcsPHT9T64EUxXlOxG0fyB2s+s1EMeGGqSDl777mfqWTJ2wZhkjK37mH3C8YFV403SlOGsspx8/mJIr1AdeJsNubaDsstn3ov7Lvq3VtfNKGIJ50wZtbKEEQJa+1wMFc3Q9cU82y+4aFrSpdwre2hAR86W+HyhOoeydg687UuwLdMcmqvq8hTUsoXNv37XwshXjuIAe0XaaoC4k6Y4JoGAslUyeX8cJbPvSdp+BF2V2O5FWwRiJ4oZQbtN5vFeTfaCNIULo3mH0vB3QmCOOHacpu5ukc3UOyMgmtyaTTP02MFbq52uLrcYa7WY7zoMlPJcGk0TzeMaYcRtU4IqEC73d/wi65J3NfXGi8qnYLNB8D1TghSVWviRH0+TShr6HPVLMP7pHzeXu/R7gexGyyOpabPW3ebXF/t8PxUkcmyy/NTRW6u9xBSUUy+druBQFWaP/3sGGNld3DQffj1S3l3sY1rKUHbM0NZVtshPT+hpUc8P1kkiCXTFZdSRjmVmZpGNVcl55j9amBIO4gZLTp0gpiba13GCqpdZars8ubdJm1fOV5UczZemNDoqVbBCyPbj+9xQvf7Rb3j86f/0ddY7FOpZ6tZPv38OP/2B2YeyN4fF6SU/H9+5Q1+7a0VpQeR0Xlxpsqf+86LzOxRXNDuV/S2w1ythxeq5Mcz4wW0vnDg3bpBoxdyu9aj6Jh4UYofJLxypkwYJ6RJQsOP6IYpL05nyfRFUltexK31LnFyzzlnJ9hw9nsYNl6z1g15ZqLAaN6hYYTcWe+x3PSpdTUSmdL2YiaLDjPVLG8tNgmilHb/0LXBTGn0QnphzDuLrYHo/06CDNtQAedY0UEIQcbUMXWNRMrBRrDaCYhiSSOOGCk8qC2zgafHCwzlVEtBMWPTCWK+cbvOWkeJ0l+eyOOYGm0/YrnlE6fKcW87vZxGL0JIQTdId6SNtVu0/IjrKy1+7itzrLUDbFvnpeki//YHZvi2i/t38jkIRHHCX/q5b/DafBPLEFSzNt9+ocqPf+gMT0/snc1lGRofPFfhvcUWQzkLXdfIOYL3VzqEccpowebcSJaWp1gGecfk5ZkSby20yNo6f3C7DqlkoRkwWXYpuapt7+3FFgsNj5G8zfNTJXQhuL7aIU0Ve3SmkkETYl+tcRvixtfX2oqCHyS0g4ixYoa3FprcWutwabTAheHcoIW72YvQNI2zQ1miJOXdpTY522A4b/HcZJGJosMzE0VW2yH1bsR6J2SkoILH/ZhWzNd73F7rcnWlQ9sPuVPzCaOE56eKFF2Tp8fzZB0DQwieGs9ze90jaynW8ljRptYLCCKVeE5StXfZhr4vAfbVts9qO2Cu4WHrGlnL5KVp1ZbXi1KuLrWp94KBfuW5YdViu7HXRUlKL1Ti7avdgMW6z7nh7BY3s5G+pfXGIWKtEyCFpBPElON0oMc3UXJJUmU/D8p85b3lNiutgJG8w0fPDzFRcjA3Eom6oBfGvD7fJIxVIakXpiw0PJ4eNVluqT0waxlkbJeWF25h3eRtg9GCq/S1Shlcy+DGShddV8nah515DtIpqtYNWW2rxNRQzmI4bzJfU+Y6N9dS5moeWUfnmfEiHz03jGPqvHSmfGx24FJK/vV7K7w+3+ROrUO7F5MzDFIB54ZzXJku8anLow8kch4LoZKsWVs5QAshqPdillo9zgxlWWqp+FQTgplKhmLGxI8SvnxznSBMGS85uKZKCgmh1jRNE/1YXOmGnR3ODuKy1U5AEKdb9hohVEIJTVDJWDw1lmckr+Lu0n2Jc10TaEL0HU37J0YJa52QJFUGM6ahgVAmC1nLIJVwZapInMrBXnx7vct6J8TUlaNfKWORdZSR0sMO3fP1Hn6kknE/eGWcpheha31mByCksrgXQsM0lGD+3bqHa+tcHMkTxgkLTR8/ShgvOLyzpETLvUglxDbaZOu9sF+0vYeNOLngmLT9uO8EKUhSjdlqlomSQylj0fFjTENsMTNYbPi0/XjAGtsvfu4rc1SyFp94enhHP395PM+l0Ry/9I27B56Y0jSNf/wnP8Bf/7W3+f1rqyy0Qv6bf3WVxbrPn//uo9Wc0jXBp58fZ7LscmtNsWF/9/01NARIGMs7zA67TJYy/NobS8yt93h6ojDQE1Oaa8q0opKzDr2YXnRNPn5phKxlcH2lQ5ikvD7fYK0dMFHKECYxui6o5CxVvOiz8A1d7FlbcTskUhJGqkX9fpJJKuH9lS4tLyRnm4z3NaLfXVRGD9MVlxemS3z0QpULIzmyjvFInTUp7zEbV1rBls+R9E0YXEO1xJuGxvSQS9d/0HTD1DU+fG6IMxWX1+40+dU3F5ireYQp/KGcxfOTRX7jzSXeXWzR6Lq8vdjhk0+PMH5M+8dBYq+n2W8IIT4spfwSgBDiQ8DvH9yw9g7V3pXS7KlWjapm8dxkQVkij+RYbIe4ps5q/8FpeiFr7YCpcgbbVIHtXL2HbWgqW1n3mK+pDsVS37Z3M+rdkJW+2OlOe2SXmj5fvLlOvRPx7FSRqbLLueEcpq7RC9TB+Ot3GvhRwkTRZazo0A5ivnxjHUvX6EUxE8UM82vKzU7XxMBpbAP3sxIKrtKkiVJVMQWwDH1QzR7eJ1OhG95zIkxTyXpfxPTtxRaLTZ+Fpsf3XB6lnLNYbYf9Q2tMECdEqUpMTZRdLo09Xudlw1no9XnluqQJjeGcicQl75hMlFzyroljqGr+rbUOX7yzRidI+LaLQ5QyFo6pkUow9Y1gR+BYGroQAzfGoK9D8tHz1cHn8/qfb3Ngkfbttf1IiVoeRPLyfiy3PP7fv/AG11e6SCkZKdj89B+6xKtnqifGlSFJJf/w967zy6+rto2crfORc1X+wz90mewhtSVsPPMbTiTdfpJxvROQSMlk0aUVhBQzihnkGAZjBZdEajS6IW8uNDE0weXxIkGsKoOLTX9HrT27sRffsI9W/095f7WDHyb4UcpQzsI0NNZa/sBFspKxGMm5Ssi93uPz76/xzHihTzf28CPlzJl3TLzw0W0BCw2Pth/jWDovzJTIWgaLTY+8Y6JpWyufRVe9nmvpD63qgnI8en+liy4EV6YNmr2Iu/UeDS+m5BpIYKaSwTVVi8FCXRlPFN0HW6O/dqvOnbpiNHT9gwlsN3C31uXX31zkV19f7GuPQcXU+fRzE7t2lDosJEnKf/Ob7/HlW3WCKKGcNfnUs6P8yW87v69EXRCrILDZC5msZMjbJp0gphcot5y8Y3B1uY2uadimEld/drIwcNZZavosNX0avVBVOzNK9HOtE/DGfBMvStA1TVUGs/ZAmydrq/ZYTYh9VT27gXLhfGNOMSSqOYvZoRwSuLHaZShn4UUpUxWllSKlxI8Tgli116Qypd6N0TTJ+eE856pZrkyXB/bpXpjQ6LdprzQDZoeze2Z3bbgA3q31uNvyEAhG8jaGJqh3Q37zrWXOVXMM5S0c06Domqy2A3KOwVhRMX1urHUwNbVnPUqj8nGQUnJrvcdbdxvM1z0sQ2N2rMBY0aGcsfrFrID5hsdC3aOcNYhSydmqKpp9+eYaIPCimKlSlqV+rJSxDNIU1fqwCZvvcdE16QVKZH66khm0oxUck6lyBqOfqNI1lbRMUknONuiE8UBOQAg4O5Rlrq4Sk2GcshzEIDaKhiru2jiAW4bA0HTu1Dy+86kRVVzknryClJJzVcWS20gcCCEGLDfX1PcleP8wmH0mYSolfn9N9eKUlhez3PRZ7oR9Bm3AK2cqTFcyh8IY3QnWOwFfuVnjF74xTxim1Ho+sq+ZeqGa5ZOXR3h2srinONHdJPB9c63L2wtN5ms+yy0fEEyWMlSyFpouCPvF1dV2wJ31HvWucr57pp+cX2kFOIaObWpcHMlzfVXp2bmWxoWRPPP1HjdWuriWKrpsns8XRnKEUUo1FzEzlOHiSG7bLogklbyz0GKlHdDwVFueoQuqeZteoNy/672Q5VYwYEKfEQJD1+gEIX6UDHQt5+ueMhWwdMaKNnM1j7sNH8faPuls6sqZ09AFhYzFy2fK/a6GWCU017ukqcSxdIaytmr11SCKJW0/4g/u1Li+3OVMVTFBNCGUll7OxjE03phvsNYJ6fgxI3mHoqt04lxLZ6qcGcQoG/PhbDX3gPHFdm1OG8/6QZANV9o+v/3OMn/y287uODEvhOBHXp7ib/z6u7wx3+T5qYNtzTcMg//0Dz/HX/nFN/itt5do9mL+8VfuUMnb/PiHZw/0vR4Hx9R59UyZ+ZqHF6R0g2jgQO5HCeWMzVyty5dv1khT0HQ4W81Q00Lytj5o4ewdkVufrgleniljmxpfeH+NpabPWickiBMsU6eSsTF1QRCnA3LIQTubx7GkEyZ8fa5By4sGBlthnHJtpcNKS8VDk2WXM0NZ1jsBjV7EYtNDaPD0WJ5akHB1pUMlY/HMROGhJAQhBAVXycaU7psrmgDH0rAMDbuvC/3shHLK3A6OqTNVUXvw7FCWthdTdk1urnZpdEOuLneYr/dYyvtMlbPcXu9i9aWC9hNDHDf2uht/CPhJIcSGO98M8I4Q4g1ASimvHMjo9oChnM1EwUUIQSpTRvrCf7aR8sGzVVqeajXIWDrvLDZ5b6mNlIKFhs+3Xxqm4YVICX6U9n9PI+8YhEkyqPZtxkrfEnq1rdxodpIkaHohXpjSDmNkmnJmKIupq9a8O7Ve3x5XiYnGqWpDeH2+ydXlNo6pMzuUJWNplFyTtXagKLxIVts+dl98/X4UXZPnJ4sIce8wX86qA7EmHqOf86jP0k/kJalyLxvK2iw0Pepd1Ytrm+ogXnQtEmAoayNpcXPN44WpEpfHirT7G99OxxCnKW8vNGl5Svzt2YkCz46XOFPdcAJ0t9yHXpSy2AyIE8m1pS4fvVjl6lILXQjWOyFPj6lqixcpoWc/Ur3QoVAJM4G6Pm+vNRnJ2w9oHPlxghem/XsbHXhiygsi/tvffI9vzjVBk2QMnR//wAwfnK0eKkNrt/iNNxf4P786RzeIMXV4ZrzAX/rupw4tKQVwppKh5ccDUd5uECOlquQXHZ1bNQ/LECw1VStmy4+YrjiMFWzm15U72e2aSkQnqaqK5h3l1PG4RPNu7MVnh7J0+vbVfl9sVNc0xksWGVOn7kV4YUwqlQtOmkpmKxlem2/Q9CMWGx4ZU2m/rPbbdK3+2vQokwBlsKCqUIJ7jIDJkkriOuZWMffhvM1Q9vG6QDfXurw+1yBKUlxLYyhnUc5ZGLrGZPmeYPxIwaEXxgMK9MbBYzNsU6PRC/tOcQenPHx9pc0/+eItvjHXoNaL1IHfNfmjL0/yh184OJHU/SCMEv7nz77Pb761SJKmWJbGxy4M8ZMfPbdv9liaSpaaSrsnZxsUHZMoTllq+f3WEJUUWGr5gGSi7FB01dpVzVrcqfXIWobS/cnaXBjOUc6YfPmmslpv9iLWrIC1TsBwzuZsNUs3iCllrH21vS80vL6gtmC+0VXjlkrr5dJYjiCWvHG3Tq0TDfRONgwr5useqy2fUkY5rUaxpOnHfYMQdT0NXePCSI62H7PY8FjvhCRItHXBueHsrpMUXT/mvaUWy62AXpyQs82+O6CuhMfjlLytXINHCur6jhWdLe0KpYzFsxNF/CilsM/2wjhVh9SGH9PwVPvEaMFmrOBwdaVNmkIYJ4wWbKRM8UPVVlbvKYbPO4ttDE21XzumhqULat2IcsakmDFYbPgkebntPlfN2VS20RWbKrsUM+aAQXe2L6J/cThHJ0woOSbfvNNQ4s0F1eJsGzrDeZs7tR5Sk9RaIVGaUsjqyFSw0FCaY7oGo3l3INied0zKWVWB35BnEEJgmzqba/B3656SQxBs0cc6KKhknMPXbtW5GSR0wxhdSNY7fj8xp1F2Lc5Vs5ytZo9FqBiU5tnn3lvlc1dXmFtXe6Gla5SyNpWsxQ+9NMnTY4V9jU/XBM1eRMePKbgmC806AsmttS5l12S2miFnm5T77WgZS8e1lBTFSF+nLIxTglg5VU67GcI4Iehrym5sK4sNn/VuiNZTLJrNGCs41Lsh1cTmXDX70DVqueVzfbWDJgTdUBWr5mo9/FC14uYdi6ytDw6A54ZzTJZd6t1woE0lpRLxv7bcppw1letnny2x4dy1XdKl6JrKfdS1MQyNiaLbl8hQP+sYOl6UMNY3oLBMgZCKUZWkkjurHm8vNrlT7/HSdJFzw1l6YULBMaj3DXx0j8Hc2jwHZoey2LqG0BjEuBsmB4/DRNEhZxs45v7n0M/83i0SKfljH5zZ1e/9+Idm+P999jr//e9c4x/85Kv7Hsf90DSN//TTl7mzrrScojjmH3z+Jo6h80denT7w93sUUgkTZRddV+er1bbPe8stihmLomNiGhqOYdD0AnRNdQi1/YSJksNY0aHhqcLMm3ebTJczh6bttAHTUInkWifg7YUWXtQ3CwgSyq5Jx4t4fU5pnL1yprznAtHDkEjJeidA1yC7iemXpCmuqTOUtcg6OmeGsuh96ZDhgkWQJBRsE4Tg96+vcbfuUeq37eYeMS/ODGW3lX3ZiD027/OPY0abusaVqSL1njKKuLmmtFKbnjpjm7qgFyQUM6og/ObdJmvtgOenS1x6hJj7ScZeI6DvPdBRHCCcfvVrtp/1dCydtXbIWlslSZ6bKqqF2rX6jIUE2zCI+roYQzmVyHIMnYyp/mj9DO52ff8F12CtHZJzduagIqWk4ynB9fGCw/RQ9l4iqX8mO1PJUnBMsrbOlckSel/Uc6RgY2k6z08VGS04/NbbS32qfUjWNhAI6r3wofbt2x029yteWOupRJ4mNCZLqnLd61vW17ohF4fz9IKUat5mJGcrarOmKzci1+TSeF4JwaVyx4HPRgKh6JrkHZVkrORtpc/T8LmZdDhXzQ0+74XhLO8tOiSpZLighOOqOWcgaq5pAlvX6Z/JyNoGH39qhJYXkXdVcBQn6cAJyI/SLTRm19QpuAa9MKFywNasYZzyy68t8N5yG8vQcE2LP/HhM/yp7zh/opJSb95t8mtvLJJIyDkmz4zm+K9/7CWKmcMNto375mWpLxCuCUUPbvp9Md2hLNfXOviR5M27babKSkA3oyuWZMG1SFOJlDBVcTlbzT72+m6InO/ECt0ytIFehakrV70gThjO28SpRGiKEdL01IH8bjMgZyu78EQqjaSXZsoIVFBSyVo8+4iqzebrk7V1uvcl0IQQD938d8JyMQ1B2n/9OJWUMhaTpQyizANCtrPVHAXX4vpKp9/aoG1hBoyWHEaLDnGc0jggxlSSSt5ZanFjvctaR63Pl0dL/Lsfm+XFmZPjYPLrby7ypZu1vu6NyauzFf76v3UFy9w/g8PQBbahcbaaQxeCC6M5xSxEueIUXYNaN2Sx4TNacLYIcKaog7WhCYbyFmMFhwvDOVp+TJwCUrGhsrZOFCstqKxtHAjzpNZVe8pi06MXpISpZLRg88x4gaxtkrXhA7NDtPpi7Cstn+VWQKOnhELTFHRNsSUUCyCl4UVb2tVtQ8fO6X0x9+6gYrmXJfXLN2ustAPiNOXKdJF6N8LWdXK2Tt61uL3e5dJojmrOYXZTO/P982y/rXsbUNb1qoV2KGMxPZRhspLpyxSonylmTGbcLE+N5onTlE6QUHQN5moewzkbiaoSV/M2N9e6+FGKbSYqqSVTltv+Qwsw260fmrZ1vdlYD7tBjBalXF/rICWEsaQXJqy1A7pBgkAoeYO1Dn4gqeYs4hiG8xbPTxXp+DFnhzN0/YRKzt6icfO4eEJuMvA+LCc+P05Z74WsNAOkTNGEIO+ajOVtMpbBK7NlPnKhemxJqbjvovnuUpOVdkCSMpCOmBrKUMmYvDxT2RLv7BWupWPo6hn80Nky15Y7OKZOIgU526DgGry73EYTKkH8oXNlOn6yxcmxlLEouspt+eZajzhJqeTtAQu3nLUGbnL3r0XdMCFJFbu61o0eerCs95SO2lo7ZKacYaUVsNoOWG76lLIW0+UMQ3mbVCrm/sac3fwISZSm42Qpgx8lTJYcTEOJ2huaeGgxaa0TYOs6TS9mrOhyppohSNIBY2my7BIlqWJAWTp+LLFNHcdU3Q+6Icg5JiVXMa9HCvrgfFHpM14tQ+eZceX6KEQ4eO+GF+L318FGL3qoY+F2eFQ8sRusdwL+8Rdv8YMvTDxSGmE75B2TP/VtZ/nbv3WVN+82HytEvRe4rsXP/OQH+A/+xWt8806dOE35ldcXuDJT4sLI0SUBDF1jupKh2O8M+eqtNUoZE0tXbMKxgstowaPgGpypZKh3o0Hhfzhvk7X1fvcF1HvhoSemQMXLHzk/TJzAl26s0/QCllshQgilXximVPPW4Bk8SGh9neOJoo22yUH4dq2HFyaMlxzOVrODM7wQgqdGC2QtE8vQMDWBhugTXiTWDvbph8XRe9nns7bJC9MlhrJWf98STJQc3L7TZzXnDDoUvnmnQZRIsk7nkQn4k4w9RZFSyttCiDIwvfk1pJRfP6iB7QfTQxmmyi5DeZsPzFYIY0nbD4nTlGrOIdFVUJJzTL7t0jC1TjhYBHO2wdP3tZONFhy8UIn7lTLmlsradnpOj8KG6NwrM2VEv6d+o61C1wUZS6fgKgvrzYfOK1NFKhmLUsZkJG8jBw4DivG0sfkclkvGw1DJqOAyY+mDasl4wcE2NGxDMFf3uDJVwjFVcu3SWJ5btQ4tL2Y0bzNRdPfU7jFatCnYJhdHc5wbzlFwTK6vKgcZL0zVddbUNbEMnU8/P07LiwYBwWTZxbV0Mn3K9/2wDG2gpZD23U5qvRABA92MDYi+zhUo/Z9aN7z/5faEWtvn6kqbKEmYHcpScC2+55kR/u0PnDkxSak4SXl3scW1lTbnq8qOfqzg8uc/cX73WhS7hB8lWLq25fmxDI3zm5zqZqsZgjilkrEIU8n1lS6WrmHoQgngCnhpuszl8cI9y/a8vaPr65g6l8fzjz3UhLHSjNh4zoQQW4TFZyoZGr1o4LSx1lEiv8WMyXpXpyCUJfTT43k6vmrhG8pbO34Gzg3nBg5cB4Xz1RxLEwFNL2Smkhm0LpUz1oDWvxkFxxisUc2+MPIGXpgo8exEkTBOOf8Q/bbdotELlWaAZXJ5vMBsNcNPffQsk9u4Bx4Xbqx2mFv3GC86SAGfemqYH//wWawD0tkydY3vuDRC01PmABvX/0xVHZaylkHTiweaNpsPFlnbYKLkECYpRUcFZ7quYZtaX8A4ZqSg2v1sU+PyIxwcd4tK1lLtJaZBMWOSsXTODGWIU0mtGwxc2+q9kIJrUu+vt0XXJGsb+FHCSMFmupwZrA0Pc9Z1LZ1Lo3lq3RBD397m+XGQQpmO5GyDj12ostIK6PgJmiax+8LEZ4ay5B1jwNo6TPSihJJr8vJUmShJODeSo9mLyDlqLIsNj5xjUs09uIY4pmJg5myDsYIzMIUwdNXumbENvDA5sIr2RkLQ0DRcV5B3Dc4MZbizrpgnCJVImB3KMlF0SaVKTjmmPtDWS9KUM0MGuUfofmyHyZKLa4Vk+k6ThwHH0InjROkE2ZbSNMoGzFQcPv3cOJXswYr87ga9IObdpRZNL+LCaI6Wn3BuOMf5aobvfmYMxzIoZ8wDO9hYhsbTY3mmyy53ah5Z2+hrsUjytsFaJ1DFoX5L/nQ5+8Dvz1az9ELV4tvts46qeXuwts30D+s523jw2TZUvBwl6SPFi4uuQSVrcaaS4fJ4njs1j4ylU8pZDOdsElS7kc7W199cIKtkLW6uqZZClZDTsA39ofqk997bxI8CpfekCypZm+cndXphgmUoW/g0Ve2sr8030AQst31eMcoYusYnnhomY2gUMibljGq7LrpmX0sSyhmbckYxSEBpvzmmGqMm+nqPggMzhdgt/qtff5cgTvkLn7y4p9//qY/N8r/83k3+9m9d5Wd+6gMHPDoF2zb5//7oi/y1X32b66tdpoYyvD7X6Ot9Hl1yarLkDjSi5hs9zgwFZE2dp8eL1HoBz0wU6AQxtqkPNM42nlHH0MnYOl6YPNSw5zDgWjrf/ewoHzpb4bfeWeKdxTaTJbdvgJCQxCnOIazFGcvg6fECz00WBnG4FyVEsSRrq9jo/nVOaawpl25NE1wYziJFypXJ0qHtF4/Cxv0eydnMNzzGCzYlV+UE4kTtoZWsyXTFpenFA5mfJxF7Wn2EEP8F8FPAde4VCiTwyYMZ1v5Qzdk8N1mk6UVkbYNeGBAkqj1OCMlUxVVuOL2IvG0yVXr0YWVDQyhN1aHq/s1lx0mpOOXmWpfra11sU+PV6bIS1I5S7jaUMw7Q18tQeg8bG27eMbk8sTXwenmmzGLTY7ToUHJNxVw64gexmDEpZrZWJjRNDNwIZoayXF1q8fZii9V2wE2jS9Y0yVgm1YKzp/G6ls4nnxqh4Fr9tsx7lYDFxO8nybYeABxz69c26JqPQy+Iub2u2iu7vmpHulPrDRa3idK9tsFmL2Ku5u3682yHZi/kf/zcddV+5Zr84IuTnB3KcO4IqzKPg5SSf/rF29xc75GxNZ4ZL/BtF4e4MlnCOeQE6XLLZ6UVKA2MkdxD56DZP2xqmuDKVInzwzn8KOH2eg/L1KhkLCo5sy+sqtoFbq/1OD+S3dEhVfS1rR6Gth9xu2+Rfn4490DlWUoldrxxSHQtnT/07Bi9IGau3uNu3SNrK/0629DpioQwUcxAYxd95Ae9QfXChOurHYSE91c7ZC2jL7KaDJK0m2Hoqt2v5UcPGC1kHZM//e1nWWgo55/9IIgTWr2Qf/h7twDJmarLi9MVXp4pUT1BjiWfu7rCv35nBRBcGsvzEx+Z5YXp0oEnnK2+0+lmFBxz0J4xVnQoZUyGstZAXH8DQzmblh9xY61Lo+8wM13JcGEkx0i/xUoZeCR8c77Bi9PlAwnYJkouYwWHG2tdJbSbFdS9iK/PNchaOq/OVrg8XsC1VFC+oYVmGYqJl6QSbVPL+uMghNgXYyVnqYPfeMFhJOdybanLaidgvODw8UvDR16xjOKUq8ttpIDnJgoY/VaOlXbAZMmhF6b0wkCxdxwDQxODMRZdc0vSSUPwkXNVllt+/1mxBjogB4HJkjvQ2ipn7sUwo4WUWi/kQimn2uk3Fd9urnVZaCjtnjiRvLnQxDF0Pv3c2EA7ZCcwdG1HWoL7we1aFz9OuF3r8dJ0iemiwwfODu3IefgwsdYJ+Pk/mGOlrRK9L58p88x4EUvXmNnM4j9gCCH6iUCBqWlIFOvoSzfWKWVVkXOynHkoo2gjAVx0E1ZaAba5NZm83Xq3AUPXuDSaI5WP3g8XGz5fuVHDNASWofPcZBG/4rLaCUlTOTjIb+duttXV22FFqCTTTq/nSMFhKLdVEuR+JmrTi1SLrmvh2j6VrMVi01faa72I2eEcMxWXhaZPkkoavZALI/m+EYBDN0gG1+j+OPiZvhbYcSRLf+/aGv/iD+b597/z/GMTeA9DwTH5sx8/x3/9G+/xB7frvHKm/Phf2gNs2+Cv/dCz/N7769xY7fDuUpvX51t851NVvvPp0UN5z0dhKGsxVlSapK/NNYjTlFRKrkyXuDicf6BYqGliSwH3KCGEoJi1+IEXJ7k83mG56bHcbyG/MJzl5npvV+v4TlB0Tf7oK1M8u6m9N2cZ5Byjz0B8MI6WUnJ7vUeSSlbbgWLft0PeW+5wbjh3bOSAsyM5zo7kuLHa4fW7DaI4ZWYoqzQMw5Qr0yWSRDJZzpwYAsNusdfT448B56WUB0MNOWBEccLNtS5JqibBZEk53GxoCSSp5AvX18iYB1v9exxW+i45ulCbcr0XDsRA0xT0/t6VbnJOKGdVO8J2UEmhe2M/ic+gHyWqv9mLafbbFy1DYzTv7NmxyTa0wSHT4t6CW3BMCmMHdy/naj1W2wGLTcVqaAcRqUxZaUtG8upQ5Fr6gbpHgLpmv/X2EnM1D10TTJUyfNflo9/sHoUklbw+V+ebdxv4UcqYcPjw+eqBX4uHodMXbgzjlChJ0bUHn6WNFh9DF1wazQ9EPU1NDBgZtqnhbNM2dVCtHb0wGbxWL4wfSEzdXOvSDZItDoB234FofT5E1zSylrFtG/FhtZ/sBLfXeyw0PHQhGCk6ZCvGY8c0UXKZ4ME2Yy9MWGkrxsr9wsq7QaMXcnWpw5sLddY7Abah8/RYnu959mSInG/g+kqbz727wlLTp5q3eHGmzIszhxNAPw6PS873goQoTllthyAEhi64MJLHMXVSlAFFywu5lagCwZmhe4LX+0HDi/DCBNvUVZCdSsWS8GPeWWgyXckM2MGWoW1hIB5FlTBJJSttHw3RjyEM5htKAD2WymK6kDn6iqWUksWmj6FraCg9OtdKlHbMfQHCeidgqan0ji6O5h6qsVTObjV9OcjP5Fr6ltbfjSGOFJyHstz8KOH6SoemF6EJ6PoJsSFZavkHfqDZD6SUXF1qc3O1R7uvIVjKWIfSYrQbJKnkm3eUCLYXplRyKuaUUuk5HXbC7Npym7cX26x3/D6TyMCLUkZ0HSenmHCrbeUW+TDdVtvQt8z5nUIIgf6Yx3eu7hHEKV4k6QZKm9AyLAruvTkQRAlfu11DIJgZymwbozum/kBb+07wqPkl+239Uqp2+nPVHGvtgGvLLVZbPk0/YmYoS5zKQavq5j15KGcz9Ih8xHGx97ww4T/+hTc4W83yF79rb2ypDfzUR2f5md+7xd/6zXf52T/94UM7nOu6zsefGiHnGNxaW2C54/PZ91YYyts8P1k6lPd8GAxdY6zg9DXDwoHUyWorYLqc2ZbFftywDZ1nJ4vEUnK71qPdL4JtOAMf9H0zNI07dX+Q9NQ08ch2USnvtXsnqWSlXwwPkpRW38jnODFf76GhRNQNIWj6EXcbPc5V86qt8wTe851ir4mpN4ESsHJwQzk43K55SifK1Cm6BhNFh2thB0sXzNd63K716IUJzV7McOHhgYyUsi88qHGumqMdRJTcvdMe3b49+0rbV0LhOaVr45jqABWlkiBOKDomV5dVW1ovvKcNs13r0sPgRwnr3bBfXTr8CRQnKalUh+/3Vzpk+60AX71V4/Z6l7xjDOxJUwk5xzgwW+SVtk+askVM9iBwu9al5SnnwFo3HAT3dp/euUEB3UAxYzIl3R1pDj0MHS/in3z5FrfWe5RdnZxj8fGndmaZe5T4tTfu8ge3GlgCshmLD5wtH1lSSmnPJAih2JEPC6S7/bkTJ5IwvqcLttDweXuxSdePmSoPMVVWz+GGsL0m2LdWTjeIWWz6WLpiJWhie3bTxvzecH3c/BlvrXWZr/d4aboy0DfbSFAF8dEl1LdDQko1a9GLEp6bzBMnyklpsrwzBsLmtbXWUy5vqnVh9+vrhvD1jdUun7+2QpqqJFg5a/G9z52cpFQviPnX7y3z2lwDXVMaaE+PFnjlCJJSaSoHroTVnL3joGUoZ9ELY8qeSd42cDexE9pezJmhLPN984Clps9I3t5RYmpjfmRtxQ6+sdrB0LSB9ptjagSxap8fLdiUikrvarnlk0rJ3XqPpza13EeJMiBxTH1Xz1AQJxiatutky0rbZ62t7OP9UDlU5mzVGl7OZuh4CbOVo69YCiEIokRZ3cuUIc2m6UVICS9MFSlnbUAQp5JeEBMlMUmq5qKpa9uyQB6FbqAE1ssZc8dtkEGcstT0H2susdYJiJKU4ZzNSjugFyrx3mrOIpXKmAQpsXNKs/Kg4on9oOvHvH63gWvqlLImvSAeFEdHiy4ze0imHBSiJFXmAG2fME5I0hTDgJmKO5iz3TDhMQ0E+0YiJalM8aKUs0WbS2N5iq41KDZ9806dXpiQd0xEXxvmUVjt67vtRlLjUXhhqkijF+KF8UP1WufqPRYbyq274JpM9ZfwNFWJoyhJmSy79/SnpGJdpHJ/caoQam1c74QEvYSJknLa1oTAixJcS5ksVHMO5YxN248Gxeu1TsB6J+i3MSrd3KOK2R6Hv/OZa9yp9fjZP/3hfSdGM5bBn/vEef7qv3yb339/nW+7WD2gUW6PF6eKXF9tE99Wa+i/+Noc11c6/NCLk0e2/o8VHYJYxZJSSvKO0ui7sdYhSSWvzpa5XfNIEsnF0RyGLva07x0GZsoud+sukyUHL1LuebfXu7SDhJYX8txEkeI+2w2jJOW1+QblrMm5aoYwkdjGg8WazdA0pX231PQ5P5LjTDVDw48p9zXujhvnhnN9eRnBVNHh+lqP1ZbPaN7FNO59Li9MqPVCXEPDTxJ6QcJw35HzpGKvp6+/AXxDCPEmEGx8UUr5gwcyqn2gG8R4YcJI3sHsV3ebfkyawmJH9bPfrXu4ls7sUIazj6ho3FjrKrV712RmKLNvAcihnM1aJ+C5ySKr7XAgdNjyY4ayNtNDGeBei0XbvydAuNRUbCvb1LgwnHvsxjZf9/DChHo3JDdeONQFyI9UW0/YFzFtdCPGCg5BFNMLEzKWQd41+cj5KllbXcODEHkF1T633FSP4E6CmJ3CjxIMoSFQumCLrYCOHzE7lGWqnGGq4pCxjAc+x34c+fwo4Z995Q5fu9XAMVUy9Ec/MMV0ZXcikIeNL19f49ffWCaRkqJj8KMfmOLZiaOpAvtRwlpbETUzlv7Iw81YwWFRemQsY8vcfW+5Rb0b4fT1cjaYAomU1LohcSL79vR7D9qWWz5emOABF0cf3rYxWXKp9UKG7ntu5uqqTcrSdbKOvqXiFcTqGrT9eEdrwWFgrODyymxFtRO6NjdWO7T9mPeW2nz43OP1rzbW1lLGZK0T0A1jpJR44e4tjG+v93hzocEf3KyTpCmlrMWHzpX58LnhExF4gQqMPvPuMp+/ukrLjxkr2nzq8igf79vbHzbeXWrx3lKHvGtwcSS3bbvldjB1jXPD6uc3At876z2liagJRvIOApX8TaVEfxwdoY/B/AgT4jTti/Mr5mA5a5GxDJ4azSMEWLpKNlWyNg0vJO9YeGGKlHLwnC01fRo9JZzv9jVTHofVtmIMGbp4qHX8w2D0fdGX2wF1L2ai6JCxdVp+hPAFcZpS9yKGwnjPjrd7hWPqnB3OkCQS09C4tdYlaxksNn1GCs5gj/IdgxTl5JuzDdJU8v5qhyBSIrQPO5Rvxq31LmkKLS/i8njhsT8P6vC+2g4oZ82HxgGdIGax4RPGSpxbSihnLJZbAWcqGc5Ws9xteCRpylTZ5fJ48ZHupEeBKEn5zDvLXF3uYBqqGp91TGYqGZ6dKPDSTPmBdtmjRL0bst4JuLPeY60bUM7aCARhpNhzZ6u5B9qsDwNnqzlurHZxDA1d18nZJqMFhxEpefNuizCWrHUC8o7Zb7vvUnKtbQWaW37EUtMf/Hsnz+zjcGE0jx8nxCl4kXICvP85lVJpuflhQhAnzNd7jBddOn48WIfWOuFAA0iZEag4VdPYVwvpuWoOP2riWrpyOXRMspZBmNzTuhOCgb6VGq/k5mqXuw3lwvfUWJ6spQqrR61Lez/eW2rzDz9/gx99ZYqPnB86kNf88Q/N8A9+9wZ/61+9x8cuDB1qgkjXdX7s1TOcq9b4ldfustIM+O23ljF1je97fvxIklMFx+T5ydJgj256Eb/73ipRKuiGMTdWu1xb6dDoRcw3upyp5B7LlD0qlLM2n3xqmKGsyWtzTYquyVuLLW6udOmFCXfrHj/44uS+EpZxn3EtJby33CFOJBlbf2Q7oxfGXFvuYGiC9U7AC1NlyhnF4DzuOQMwVc5QyVrYhs57Sy1MXaOYtfCimHxqsNxSpjZ3aj1q3ZClppKZma5kSFK+JRNT/wj4m8AbKAOfXUEI8dPAH5FSfpsQogl8o/+tPyKlrAkh/jjw54Aa8ONSytZOX9s2NExDHSrHS4qW7PVZCa6ps9oJMDVBFKWUXBNN235Syr4d9lLTY9nQGC85+5rAElVldfv6R2NFh6mSyzfmGqRIVrs+UxV3sIgN5+0tbRYb1aQgSonSFEto+FGKAJZaPqahMVF0Br9v9A87yoXpcOFHyq2nE8a8v9zGDxPCNOXpiRzVvqPTs5OFA2nxuP99F5uqpWg4bw8+80HA0jXKWYusbZCsKwcY9fqSUtbA1PWBtslBYL0T8K/eXmS17aNr4Fg63/3syIlKSkVxytfv1PjC+2sYGqQJvDpb5srUwdNuHwZTVwKmYZw+dnNwLZ1z9208YZwqwwAUPXfzMxnEKXEiWWx41HoBHzo7tOfNMOcYdAMlWPqodeP+NhlQ7ENVzYI4TR84cHWDhPWuao+tZE2quaPXThruJ9lLrkneMehFCW0/RtcELS9+pMuLlMouG9S6VnRNLF2jG8a7eo5kP5H4xlyd1+42sSwNHZ1nJoq8PF05MUkpKSW//fYS7yy06IUJWVvnuYkiH70wdGRtZ0GkBPj9MNmT5pGuKW2Yq0stbq73iOKE77g0TNGV5B3lImXqGnnbJE6UPlDONh6alMnZ9+aHpimdtiBKeGehiWPrPDWSJ++aPDNeJExSwj7LppyxsQ2NvLtV3HijJV4IdfDbCbr9PTVOFEtoJ9cljFNur3eJ0pRSVuduIwUkvSjh2ckitqnR6Eb0egnpAWox7RQb97obJEyXMwznbW6td5GoQ/xmOKa+pZUh7v8uMHDxTFLFNtU0pb1jGRrjm+IMU9cI0vQBQ5DHwTY1zP6NipOUKJF9bU3JfMNjod4jSqR6RnRBJ0jIWDqjlk0vSnhxukjRNWn7MZahHbi5w14QxCkpkneXmzi6zqWRHCP9JNqVqeMRzN1Amkrq3ZAv31hH64tbl7IWd+ueckjM2pwZOhyGXxCnrLR9MqbSda1kLYZySqvMD9OBfbsQgky/cPn0WIGxksNCwyOKJW0/puA+6EK7OeYzdjrxt0EYp3z1Ro2xos1wwaGacwaFYHOb1y26JheH8/hRQieIsboRlq5RzJhompLmyG1a+4xN82O719sNNE1QydjcqfeQUjJbzeKaOotNj9vrPbp+gqaJQVIM+i2MfVfOrKXjhwk52zjQmHkvSFPJf/KLb5BzDP7y910+sNe1DZ3/x3dd5P/182/w2++s8N3PHL4UxquzFeqdgF9+fREpJe/cbQKST14axT0iMfmNBOpIXrUZvrfcwtA0HFPjznqPbhDR6kVMFFwwdPwoOfbEFIBjGbx8poKhq9b9jhdzs09ymBly6IXJvhJTgn68b+uEcYImNHpBsqW4dT9q3ZAwTmnHKWMlh2rOZrUTUHDMY9UH3IyN+OpcNUfHT9B1CONkUNTJWDqplNxe79DxEkZLDkGUMlY8GeN/GPY6W9aklP/9Xn5RCGEDL2z60htSyu/c9H0T+L8D3wH8CPBngb+109c3dI1LI3niVA4CgXLWwtAFmhC0/Yhff3OJth/zzlKbsZL70OC53gu5U/OYKDqsdYJ9VWPCOGW5GQwy2sp9z+TyeJ5umJC19EcGBWNFh+WWT85WLJ076z2aXkTTjyj2D9c5yxgcCGcqGdq+0rQ5bEZFwTEpuhHvr7QxdY0uCUNZi/eWukyWXCpZ88CTUrVuyNXltmofKVg4lnaglsuapqrocSopZUyyjslK//p/43aDsYLLZMXdsvnvFXGS8i/+YI5rSx2COOGDZyt87EKVp8ePV4vifnzxxhq/8dYStU7AbDXLq2fKfMel0SNtV9E33Ze9BPq6JkAKso5OxjLwonubU842CJOEm+tdylmLuVqPi6N7E5sfyTuUXAtDE7uef7omCKJUCVRLgaEJlawaCBQb/M67bSxd4+Zq71gSU28uNLm+0kUI+OTTJpdG8ziG3tfjePR9EUJZ3dZ7SghduX4pl8SNavNOMF/3+Py1Vd5caNIJEp4ZL/DqbIkXp8oYJ6i//nevrvLbb6/gRQmzQy4fvzTC81OlbbXNDgO6JpiqZLBNnbyjWtv3ik6YcHVJWbrP1XuYuk4QpWRtnbNVVYW92RctXxEBT4/lt034jBSUkLahCXSh5vTn3ltVLbZBzPykz0cuDDGct3HRB0mV0YLDRMl5oF1vrOCQ6WvG7ZSNO1pwSKSHa+o7ZjXN1Xt8+UaNWjck76p2/Ixt8NxkkafHC0pT0faZrrhMljMHxgzeKRYaHost1eo8mrcpuCbPjRfphPFj3ZcsQ2OkYNMJYkYLDrKvdRlEKX602YjFGOznZ6tZukG8qwqyY+oDpmecpFxbURXskYJqy76+3KHei7BNjcmSgyY0hgtwrpplvRuy3OpiGoLZSpbFlo9+QFb1+0XG1Kh1A4IoxdAEUaoManRNHHuS/K2FJl++WeP9lQ7DeZvZoSwfOFch7CcxK9s4NB4U0lQyv64kNJIUEpkyU84ylLO4MJLb0qZzrpolTNLBvKkZIVGsko/bjS9jGZwfUZpKhX3EmL0w4XNXV4nShI8/NcxzkyUuZXOY2vbSGZWshVdO6IXxIJlrm3pf17BAKuWWA3/eMTk3nCWV8kBi4SBJ6fgxXhSTs00qWYuOn3BztYtteuRd44HY9MpUkYJrYGgaeUcVDY77gP1/fn2er96q8zd/5Pk9tfE/Cj/yyhT/8+eu89/+q/f4rqdHjoRZ/t3PjZN3TV6/0+CNxRarnZD1TsRPfnT20N/7fgznbWpdm7YXc3OtSyVr0vRChAar3YBnJ4ongvmzAVPXeHG6RJJKfv/aKkGcEiQJK62Q3D67lYSArKOTtXUmyy6NXkw5Yz5yzXP6boaJlMwOZXl7scW15Q5CQM7RKWdORhssKCLDK7Nlat2A33hziXo3YnrI5ZmJwsAMrN6L0AVcmSqQ34ck0VFgr0/lHwgh/gbwy2xt5fv6Dn73/4ZiXP21/r8vCyE+D/w+8JeBS6hkVSyE+G3g7+92cJomsO5bhDY2A8tQ7jk5K36kWHgqVVVkrKic4zIHdIiI4hTXUpozfpxwfjhHL0oeKwSesw1ym9gfvUhVewVKuFLXBLZ5byPUNPFI1sJBQtMEk+UMK33BSrvpM150afYidE3pWRw0emGsGEsCNJSY+kFj4zmaKiu9mqYXstwMWOuoQ5IfJY95hZ0hSSVxX2us4Bp8+rkJJsrHr5dxP7wwwdLUgvzCVIlPPTN+LOPYbn7vFLomGCvanOnlEDwo1l3N2YwVHWVGsM9AZq8VciEEY0WHmW6WJJWkcqvDmKWrDTOI5LEZHoR9m3cpVatrNWeTtQw0bWdtukqEVW3sc7UewzmHThDvmO0CygFQEyCk4NxwllfOlHh19mBaAQ4SHT8auJ995FyVD50/XM2L7XA/A3evGC/aDBfsfpuzGDwHyR7my+b5oWsC09CIE4hSJezrbdJXLDgmF0fV/rfdYUqI3e93rvVoKv920FDMIiXSrxy6crbBMxNF9Rl07cCLMLtFlEgMXSNM1OJ2YTSPFyVkdnAIHS04bHAL4iQdHLo3zJfvn9+mru3YGXQDitUmBmON++P0QtXau2GAUHBNLvRdaDeYpwv9doQoVm2jjxKvPWqkEkoZm+m+G9J40TkxArRBnIKkr21qc340d6QFjY17KpH4UULOMcjaOmP3FXuVhue952umknlsfHwQrbISSSxV8SeI0nuFoYfA0LVBO7QfKYOTjbY5XRPo2/Qp7Fe3cjOCWDFdOoEau21oGLrqFBnKWduukYauDebTSUC9G/I3fu0dXjlT5kdfmT7w1zd1jb/03Zf4iz/3TX79zSW+/8rRxKsfPl9louxyq94bnPOOCxsOlEEsOTucpRMkTJZdJoruQ021jhMbSfyxfvEp75hUczbJPo+QUkLRscjYJjl7Z10GQzkb11JGRLahmFYbr7UR95wk6JoglSrXYfbF8G1Dteq6psF4yWWs6GIecbFsL9jrSvlS//8f3vQ1CXzyUb/UZ0N9XEr5PwohNhJTF4E68D8DPwCsAxute01gW2VYIcSfAf4MwMzMzI4H3g1iLo3laXsx4yV14+brPTUZCvco6npfsb/omlRy2/e37wa6JnAsjXPDRZZbAWvtEE2IgcDabjFZclUPe9kl0588x0nJ3LhecZIODkHnR7IkCYw8QmB+rxjJK1vwas5SVfVD1PHYYNNoqBaHK1MFTF0ffK4wTllu+djm7uyn17sB8+seE2WH73tunDfmG1wczZ2opJTS+GhjaBofPl9F64u/f/Bs5biHtmdUchauqfUPPlttX8eLLnGSIsTxHnqqOaWzows4P5zdcugvuAbPT5bohQmze3D92S+iJKWUMWn7EWcqWao5mzSV9MIYx9TZ7XI2UrBJUmWecGYH4sBhnDJf7+GFCc9OlJgoupQyFs9O7Ezj5iiQpJJrK210IXj5TAVN08g5Bh87IA2N48Jo3uXDZ4eIkpTZPlum5cUM5SykVM5oQmy4aSmti3LGemS1Ok4lUSJ5YbpEwTFYbHmUMybV+yycj7u6v94JGM7bfPTCUN+RTx02L/YdP48bqVQJnGcnCnQC1VrU6IWU+smz3cLQlYRB2485O5zF0BR7cy+toA+Da6l91AsTxooqHvvIuSFW2wE5x3zgMD9ZynBjtYNr6TT7zo3D+YcbYBwF/CjhznoPIeBjF6pkbJ2ibfLCdOnYxgSKqXR1pY2U8NRoHlPXuDSaY6LscLZ6dAkKx9S50tdnWe8GuKZOEKckqWCx6W2Ju+/HXuPj3aLomHziqWHCWDJasFlp+XQCpSn6OCbZcTx740UXP0goZ5QpRIrkuckiw3mbKJGMHEAR4rDxN3/jXVp+zH/5w88dGpvpD1+Z4O985hp/93eu8ennxo5Mj3OmkuWPfXCaW2s9rkyXWG37LNR9ZoYy+9Kh3S2myi71bsRY0Wa9G/LMRJ6yazGzQ43J48LFkTw/9OIkK22fF6dL1LoBjdWIqXJmT2fxnGPwzESeUmb7pO3DEMWSCIlt6DwzXiSVSg7hqE1NdorhnM0z4wXm6r1+gV1SyVpcGsvR8iLGiu6xx1E7wZ5WfCnlJ/b4fj8B/LP7XqsGIIT4RVTC65eAjRNGAWg8ZAx/nz6b6tVXX91RPnW9E7DQd9Ko5i10TbDa9ql374mmbq7+DeVsMpbBfL1Hy4uZqWT2HIAGUcJS06eSUY4yrqWz1PTphTF+lDJWcHY14fLOwbfH7RQLDY+2Hyu3pE3XSxOCtU5ArRshgNmhoX0Lxj8MlqHtWMD3IBAnKTfWukgJtino9AJWOz7PTxRZagU0PfUMPUpXZTNW2z4/95U7WLrOeMnhB16YeEAP6bjRC2J+/Y1FFho+4yWHD5oVvvvZk+NythekqeQrN2s0PaVnFG1yoOoGMXcbHo6hM71J7+2okaSSb841WGr5DOcsOkFCoZ+r7ASxMm8wdS6N5o5ljCvtgI6fKOMBw6eSU45K9W6EEErsfTctTLahM1vd+bP/ufdWeG2uyUTJ4dWzFb7jqZG9fIxDg5SS33hjkavLbUYLDh+5MMSnnz8eduFOsPHc24bGzGOc5DRNMLspYVvKWIM9YKHucX21Q94xqeQErY4SG/Xj9JEtz36U8PrdBq/MlJkeymD1nx0vSh4qFp2mkrl6j6D/2gfJRtgOYZzyzmKLVEqqOZtcn/UshKATHL3A+XYIooSry22GczZZ2ySIUuZqPeq9iDBWLmG7PeRXc/ahO3fdb1hiGTqTD6nmR2mKFyW8u9ii5cU8M1kgTuWxFBFW2wHr3YDFhs/dukfG0rkyXeR7nz3+uS6l5HNXV/jmXEMJ9l4YOrZEWZik3FjtMF3JMF5yuLbcodELub2misOOoR/pYX07xFJSyii29K21Lm/cbSIAx9AZPwFuj5sRJSk3VzvEUtJoh1RzNsvNgJxtbGHBLDV9Gl7ISP7B1ufjxtdu1fi5r87xZ77jHE+PHV5BSdcEf/4TF/jpf/4av/3OMt9zhPHr81Nlnp8qEycpv/32MnP1Hr97bYUfeWX6yBxEN86JjV7I4t02i00fKQVP36cJ6EcJczVF0DgzlD32Qouha7wyq4rfa52AL11fp+1H3Kl1OTuUwzRVrLJTMoYmxBYX352g3g2ZryuG7pR06ASJIiAYGsvNgKxlHHrcsVtofbfnIE7p+Anr3ZCOHzHf8PDDFBA4pn4iWt8fhT2VvoQQo0KI/0UI8ev9fz8jhPhTO/jVp4B/XwjxG8CzQoi/KITYOMF8DLgOXAWe63/9U8CX9jLG7bCRvfLjmNvrPRYaPs2+pokQ27ferHcD/Ej1c3f83TtGbSBKJGvtkIWmOgCAasFr9IPG1Y7/mFc4GYiSlPWOEoVbbQdbvhcnKevdiEYvYq0bbhF8/FbCajvgxmqPO+se11Y7gxZKIXYmwBnECa/PN2l6ESsdn0TKB1rKTgLeWWyx0glYbvv9Nqsn/37WeiH1XkStE9ILtwo/rnWUPkjTi+iGx0e/7gQxq52QRi+k6UWD9QJgrR0QxmqMvWMao6VrLDQ85uoe8w2vH+yo70n5YHvkQaLRC7m20qHlR9xteFgncI25W/e4U++x3t1wXj0Z7TwPw3onJIhSWl685+c+SlIWmh7r3ZDVdoCla5ueiUc/EHEiWairNWZzQtN+RGWvGyqmVhCp/eiwESUpq+2Qa8sdml5EkKgECRycw+x+ESUpa+2Q2+u9gahxKqHtqxhj7b79+kmETKHhRax2AlY6PtdXOxzX9Fpp+7S8iOurbWq9cGBQcxKw3Aq4vd5jre/+fJxLUJpK/Cil3gsH+0PHj1nrBGrv4PiDnySRg5jWj2JqHbX3NnqHv7bsFndqPZZbAfMND0MXSCnRtK2x54bzZRRLllsn62wRJSn/yS++yUTR4S9+18VDf78ffGGCM0MZ/u7vvP/YvegwoAlBItV9aHoxr91pDLSGjwqWobHU8mj0Ita7Aferq9R7IX5fb67l7Vzn8yggpfrPajvkbt3nblNpKDYPeZybL5EXptyp9QZnv04QnQjR+O2w+bwgBNyu9Vhq+tyudQmiB8/tJxF7Tff9b8D/CvyV/r+vAv8H8L886peklP/Rxt+FEL8HfA74qhCiC9wA/jMpZSKE+AfA51Etfj++xzE+gA1Ldj9MqPcTUoWMSdE10YTYluJWcE0afa2kDceQvUD1f1sUHXOgWWTpgjs1Dy9Mjt3qeKcw+tehFzw45nJWiVn2wpjp8s6z2U8CDF1jtpqlF8QM5yxW2zW0viXvaMEhZxsDx7jHQUqli3BxNE+SSr7z0vCJTPq4lsFE0cUxdD52YehAhN6PGwK4PFag1g14ZrKwZc4XHJOWF2Ob2mM13w4TmoDZSpayazJbzWwR9S/0nahsUzs2Su5wXjk4JTId2M6OFhxsQ8PpCy0eFoQQzFQy2IZqSzlK1uROoWkwXc5g6RpXpopMnEAth80ouAYtXwVazh41caS8JxaacwzGii6uZRDECUPZRzNudE2J4Ru6Rs42+u21j26RcU0ltB8lKQX38KuWhq71NS/U++Zsk8mSg65ph8YK3i1MQ42x6BrMVDJ4UYKla9yu9ZRmzhMSYzwKxYzJxZEc9W7ISN5mrKj0Uo5lLK5JJ4g5U8lhGFByrROzHkkk05UMqZScH85ybheM1IOGEOpPvu9mdaaaIUUqrTpNwz0iE4hHYSP+KromlYxJ208wNKiewJY4KWEkb9MOYl6cLg1kPDbHnpomyDsGbT8+ceyI//X3b/LuUpu/9xOvHAnjxNA1/tx3XuD/+X+9zmffW+UTTx8tw1rTBB+/OEw3SEjSlLxrHnkhOmMZPDtRYK0bUMnaDzBn847JekfJy+znnHsYqOYs5Wpq6RRsAy9SLrGH3eJbyVqDRGY5Y7HQ9Ci6KgY4N5w7MfqB9yPf1+OUUsWi5YyFkMq0xLVOPlsKdpmYEkIYUsoYqEop/7kQ4i8D9IXKd5UCllJ+W/+vL2/zvf8d+N9383o7gRBiQEvPOxFhkjKUfbT+RcExeWa80N9c9548cC2dp8bzDGXtgWYRwIWRHMkx2ErvFUIIzg9vP2ZD13hppkTHj3ctiPokIGcbg/v28aeGCeOE4b6I3m42WMfUeXaywNnhDNWsfaCaHQeJi6M5KllTfe5jFvQ9KGxQ2s+P5B6gt5ezFkXX3Pdc3y/yjsmlsRxRIgfJ9A1UshalEzDGS2P5gbbLxoF3pHD4YrpF1+RjF6qEScpI3j6Rvf5jBZcPndPRhaJVn3SUMhYFZ3/PlGXcS9xvzCsVAD1+3XAtnafG8oO1dSeJHqOvl6OCr8N/BmxD4/JEHsfUyVnGsc+/7eCYOpfH82RtA0PXyPf3lYsjuYEI7rcCzgxlGSs4NHohWcc8tv1zqpxhvOjS8eMdxZJHidG8gzGl8dJ0+djXIMfUeWa8MLg2Bcfk+Ykia90A29BPRGLXNjSemSgM5sjLZ8pIKU9cCxwoQfhGLyTnPFo2YraaPXFni7laj//ut67xqcsjfM8zo4//hQPCD788yd/5zDX+zmeu8Z1PDR/Z+24g55r8yCtTrLR9svbxuCFeHi/S9qNtCxQ52ziQc+5hQAjBTDVLMWsRxAkV10LXxZGMc3NR+NXZCjMVH10TB+oAfxjY/HydG87ilRwqGeW8epLWg4dhtynHr6ASSV0hxBB9tpsQ4sMoofInBrvRczqIYEMX4qHC2E/Cg3I/HjbmjLUzjaUnHY+z3n4cCo65L3vjo4Cpaw+45jzpEOLRm8pJOVg8KrF7EsZo6tqRJKK2w3HrkTwOmiYOxAHvKHEQz9TmxP1uYGhiT4UMIcSRulLuxtjiOCDYPjkshOAEdrzuC7apM3oC9ib9CN2Pd4OTtgbdv75o2sPj4ePC5pj2JCakNmAZO997T9LZQkrJX/nFN9EE/LUfeu5IEyCmrvHnP3mBv/zzb/Arry8e2ftuhq4Jxo9xzXKtRyeBT0Jc+SjstNB1mDiumHc/OE496r1it6WmjSf3p4FfBs4LIX4f+MfAXzjIgZ3iFKc4xSlOcYpTnOIUpzjFKZ5c/OMv3uZ3r67yH/6hp45M/HszfuzVaZ6dKPC3f+vqkb/3KU5xip1jt+XNYSHET/f//gvAr6GSVQFKqPz1AxzbKU5xilOc4hSnOMUpTnGKU5ziCcTvv7/GX//Vt/mup0f4yY/MHssYdE3wt3/sRTKWzg//3LEM4RSnOMUOsNvElA7kuMec2sDJVnc9xSlOcYpTnOIUpzjFKU5xilMcOqIk5Z9/bY6/9i/f5vxwjr/9Yy8ea8vYU2P5Y3vvU5ziFDvDbhNTi1LKv3YoIzkBkFJS64YYunYkyvX1rrKiPSmaKalUFrPlzPEJij4p6AYxvTB56LVKUkm9G56Ye7sdTu+3CpwavYicbZwIEdbt8CSMMU5S6r2IrK3vW2MuTiXdID4Sx5694kmY3zvFSduHdoJGLySVUM6YR6JV8iTebykl9V6ELk6mDtJ+kKaSWi/EMrRD0Wp8Eu73k7R/N72IqC8Qf9LEleHJuN97QRAntLyYvHN0gtt3Gx7/3v/6FRabPnfrHu0g5iPnhvgffvylb7l16DDghQmdID7uYTwSSarOypkTGo9uYCNO2CuavYg4Tamc0HXrqHDU93u3kf+39J1ZbgWstgNAKdkf5sGo3g2Zr3uDf5+EDTGIU5aaPp0g5mz1ZNgen0REScrNtS5SQi+Mt7WIDuOU+bqH5OQKaZ7eb7hT69ELEoRgi3PQScJcrUe3P8bL44UTJWi6gbm6R8ePEQKeHsvv66AUxWp+PTWWxzyhB64nYX7vBI3evX3oSfkszV7EXE2NOZVy4LR7mHgS7/daJ2Sp6QMwIzJPhE30TrHc9llrq4TqhZHcgSfsn4T7/aTs36mU3FnvARAnkrHiyRMQfhLu915wa61HGKesdwVPjxWO5D1bXsRqJ2CqnOEDsxW+86lhPvHUyImMrU4a0lRyY61Dmh73SB6Nu3WPphcdqfnIbrE5TtgL2n7EnZpatxIpT5xZw1HiqO/3bjMv37XdF4UQvy6l/PQBjOffGOwjiXvokPIkj+4UB43T+32KU/ybic1T/3QdOMWTgi3P7YmOpg4fp/P2FA/Dxtw4ykfk8niBX/kL3350b/gthtPpfDJwehuOD2Knm5oQ4uWHfQv4FSnl+IGNapeoVqtydnZ2368TJSlxoq6HbWpoB5gevHXrFpvHGKeSKFZpcdPQME5ANeH6jZtMTM2gaQLbOJlMBXjwWh41pAQ/TkAqQUVrm2u1cS1Pyr3dDqf3W1Wd01SCAHcfVPfTMd4bo2Pq+6LWXr9xk4npmX2/zmHiSZjfO7nfJ2Ef2u1zmaSS8IjH/CTe78331jK0E8O0PIh16DBjNXgy7veTtH+PTkwDYOjiRLJgn4T7vZd540cJUoLo78tHgSdh/z7uM8ROcJLHGMYpSb9Hbnlh7kSOc3OcsJcxbokzdA1DP9yn+Um532+/8U0ppTzURXw3jKmvAp9j+3a+0oGMZo+YnZ3la1/72r5fZ6Xls9xSrXwHTQ9/9dVXt4yx0QsHNMPpikspc/z04WdfeImf+9XPkncMZk8wNfz+a3nUiJOUd5faSAmljMl05UHt/2evvMTP/dpnmSq7J6JNczuc3m+4udal48fomuDpsfye6eaHOcZba13afoymweWxvbcbHuYYb693aXlqjE+P7a/d8NkrL/F//Npn990SeJh4Eub3Tu53s3ePrn5cn2W3z2XLj7i9psY8WXaPpPXmSbzf652AhYZq5ZutZsgfghbTXnAQ69BS0x/ILlwczR34oftJuN9Pyv798iuv8o9+6TMAjBRsRgsnryXmSbjfe5k3V5fbBFGKZWhHJvz9JOzfe7mW//DzN/h7v3uDj54f4m/+yJVDT/Qd9znnUZir9Wj0VGvXT/3Qd53IcW6OE/69f2v3Y+wEMTdXuwCMl5xDlwx4Uu7381Olrx/2++0mMfUO8GellNfu/4YQYu7ghnR8GM7bWIaGqWuHLjJcyigxNSE4FPHOvcAxdCbL7reUFsVhwNA1Lozk6IUJpYdcK8vUmBk62boep/cbZioZml5ExtJPrAbC9BMwxqlyhqajxrhfZoZpqPl1UoNaeDLm905QzJic0TJIyRPzWQqOyWw1Q3qEY34S7/dQzsbQNDSNE5OUOiiMFmwcU8Vqh3FAfBLu95Oyf2tCabZGSXpix/ok3O+94Gw1S9uPyR2hkciTsH/vFr/z7jJ//Vff4bnJAr/0zQVGCw7/8fddPu5hHRsmSy45++gE9feCzXHCXpCzDfX7Kf/Gi/Yf9f3ezWr1nwMPW2n+wv6HcvwQQhwpc+mkbYJCfGsJPx4mHFN/5CTVhThx9/d+nN5v1Yp50q/Bv2ljNDRxogMeeDLm905xUgoju8FRJ1qe1Pv9rRpQH3as9iTc7ydp/z7JDqvwZNzvvcDUtSN/Rp6E/Xs3kFLyX/7qO1wYyfHz//7H+Cu/8Ab/2xdu8ae+7eyJZP8dBTRNnFhm4WbsN074Vivo7BVHfb93nNKWUv6fUsr3HvK9XzywEZ3iFKc4xSlOcYpTnOIUpzjFKU5xTHhtvsn11S5/+tvPYhkaf/6TFwjjlH/+1W+JRqFTnOLEYddcSyHEkBDi7wohvi6E+AMhxN8RQgwdxuBOcYpTnOIUpzjFKU5xilOc4hSnOEr84jfuYhka3/uc8vc6M5Tlw+cq/Pw37p46Yp7iFIeAvTQB/xywAvwI8EeBVeD/OMhBneIUpzjFKU5xilOc4hSnOMUpTnHUiJKUf/naAp+6PLKl1fOHX5rk5lqXtxZaxzi6U5ziWxN7SUxVpJT/hZTyZv/PX+eYXflOcYpTnOIUpzjFKU5xilOc4hSn2C8+f22V9W7ID780teXr33V5FCHgM++sHNPITnGKb13sJTH1r4UQ/44QQuv/+THgVx/2w0KIDwkhviCE+LwQ4r+773v/mRDii/0/39X/2k8JId4TQnxWCPFf72F8O0KcpARxclgvvy386Gjf7ziQpvLfiM+ZpHJfz0/yhFwnP0pI92prcUIRJSlRkh73MB6JOEkJ45M9xuN6Np6EaxPECfEJf8YOGntd+6XkibhWQZyQnPC18FtxvX4YTspnPY5Ycic46WvQSZ5PJz1GOCnP/l4QxumJfi434xe+sUApY/LxS8Nbvl7N2bw0XeIz7y4f08h2DynV/vykth/u98x1EDjp68J2eFLOmpuxF6uMPwv8NPBP+v/WgK4Q4qcBKaUs3Pfzt4FPSil9IcQ/FUI8L6V8o/+9fyyl/KtCiBLwy8Bn+l//W1LKf7iHsT0WaSoJ45Trax3SFCbL7iNdK6IkZanpY+iCsYKDEHuzQveihPeW2oyXHEby95wc1jsBnSBmJO/gWk+Gk0WtG9L2I4bzNhnr3iMkpeTaShs/SqnmbSZL7jGO8nCQpJIoSfni9XVSKbkyVWQ4vztnjjhJeXuxxXIrYCRv8cJ0+ZBGuz/M1XpcXWpjGYIPzQ5hPSHP56PQCWJurXVJUsnF0dyW5zeIE5abAY6pMXKMbit+lHB9tUMUS2armS3uU36UsNI6/jEuNDxurHaJ05RXz5TJOSZJKtEEe14jdwI/SvjGnTrNXsSV6RITJ3CNqXdD3lpo0QsiPnCuQjljH/eQHomN5942tT27DKWp5NpKhzBOGSnYjBYcpJSkUjk2PgpelPDecpsLIzlsY+drzHLLJ4hSRov2rn5vL4hTyTsLbUBScE2ytnHiHJmiJOXdxTYZW+fiSG4wD1faPn6o7su3gltWGCe8Nt+g4ydMlBwujuTRHvOMHQZafsRy06fWC8mYBuNFh2r+ZMz1Wjfk2nKblhdyZbp8rM9qlKTM1XqMFx0MXUNKyWo7YLkVoGuCi6M5TH0vNfKDQ5xKbq93Gck7SCTXVzpI4NxwjtwJcxScr/eodyNMXfDUWP6h+22jF9L0IoZy9on5DI1eyBvzTbwo5tUzFSq5kzFftkPbj/hXby3xo69OYRkPPp/fdXmUv/Wb77Hc8k/cXrAdbqx16fgxRddgtprb8r04SVls+uiaYLy493PuYSGIEt5f6RAlEkODcs5mvOAc+rq/kfzVNMGttS7vr3SoZC2eGsufeKdRUOfVayttgijFMgQZy3gicg27vrJSyvwuf35p0z9jINn0vZv9vwbA5jTufyCE+Engr0opP8MBoRvE3Fzr0gtjdKFhGRqNXkijF6Jrgqly5oEgeqUd0OhFAGQsY8+WskGUcmuti6VruKbOcsvHNvTBa0eJx4WR3GNe5fgRJyl36x6gAo4LI/ceh44f89p8g3o34sJI7lsqMSWl5PpqFy9MCJNkcN+Wmj452+Ruw8MxNSZL7mMX9TBJWW0FvLvU4qs3IzpBwscuVI/iY+wKi02PpZbH+ytdlloB3/vc2BNvn9oLYm6sdlho+NQ6Ad/59Mjgfi03A5peRNODnGNsSVodJfww4dZal8WGz91Gj089Mzo4eC+3fFpeTNNTVrbHscH4UcJbC01ur/eoZC3u1HuMFVzu1j1sU+P8cO6xyYi9ohvEvLPQZqnlcWOtwx//8OyJs/lu+iHvr7SZq/e4XfP44x+aIXOCg5iVlnru8SBnG3sKuMIkxYsSVlo+692AgmMyV+8RRClTZfeRVsNhnHJ7rcdkyUUTgvm6hwCmyi7GQw6snSBmpRUAIARMVzK7HvNuEMYpN9e6tPyIp8ZyOJ7OeifAtQymyu6xH6xBzcuba10qWYtKxqLhhVi6RtOLAZBIzgxlj3mU+4MfJXzpxjrvLbWQEta7PiN551isy+drHk0v4tZ6h16YkHcMPvHUKMMnIDnVDWLurHd5Z6nNu8sd/sSHZihnj2dccSJp9CJMXWM4b3N9tcP1lQ7dIKbgmkyWXYru8c6fKE5peTFx6pEkKV+8sY5taOQsg9wJi8t7YUK9G7LeDQnilIyl41r6ltgzTSXzdQ8pwY9Snhrb1bHt0NDwIu7UetxY7XBrrce/88EZCids/97Ab7y5RBCnD7TxbeBT/cTU77y7wh/74MwRj253SFLJm3ebLDdVEm2ynNmyZ611wk3nXH1LMfS40Q1ivnKzxrWVFpWsTcm1kAgcQ2PoEBObXphwY60DwETR5Xaty3o3YL7RQ9cEV6aKJy6BB+qMPtc/ow9lLerdiPl6j5YX8/JMib5RESsAAQAASURBVDiVnB8+WWva/djTbiCEuCKE+EEhxB/Z+LOT3wGqUsq3t/n2fw78vf7ffxG4ghJX/2+EENuevIQQf0YI8TUhxNdWV1d3NO5OECMlOKaOZQpyjoGmQTdIaHkxLS964HecfqZcCLC3yZrvFLoGtqmRsVVSygtTat3w3vuYxx/Y7gSaEJiGmoz3V6m9OEEgBq0ZvTA+jiEeCsIkxQtVTlUDChkD19KYKLmstH28MKHejeiFj6dMZiyDsZJDsxfhmDqLDe9EUtqnKxnafoKpa8RJyko7OO4h7RtF16TjxxiaoOXHtIN7z+jGHNQ0MLTjm48ZWydOJamUxIlkrbN5nVBzTtPA0I9nU1xtB+T7yQvX0snb5mDtDKLDbWspZyx0XRAlEk0IFhveob3XXjFWcEikRN0dyULDP+YRPRr2pud+rwkWx9RxTY0klWRMg8WmRxApynvLf3Bf3QxNgGVoOIZGvRvS8WPafkxjm/14A5ausTFF7SPYOzUBrqVRcAwMTaMbJvhRSsePqW/ax48TmhA4loZtCta7IV6Ysr7N2vEkoxcmGJrAtQy6QUzRsan3juf6O6ZG1taRQJJIBILV9smY68N5m1gqBqshxPGuQf1tyjE1gjghiFJ0TdALE3RNnIi2LjEYo069F6EhVLv4yTt3MlZU+8tQzmK55dP24wdiT00TA5bPfs4tB43RvKNaoYRi0t49gfv3Bn7xm3eZqWR4eaa07fcvjeaYKrt85p2T387X8iJkSp/BDL1ga4y2Efuqc+7J2ifafkzbj9A1DS9IKbmGGuch72ftICJNIU1VQaSSsYgTiWvqSAndHZz1jgP1XkTHj+n4MX6cYBuCjKVTdE38OH0i4oBdl0aFED+DShy9BWzsKBL4+Uf8TgX4H4Af2+Z7PwwMSSn/GYCUstH/1qoQ4iowCizc/3tSyr8P/H2AV199dUen+lLGpO1HCCE4U8lg6BotP6Lj9xCCbdkH5YxFxlIJrP1MWMvQuTCSZ7zoUuuGeGFAxtKZHcoQJpLMHpgPaSqPnMKuaYILw7lBpWYzSq7FmUqGnG0wVc4c+gKXphJxyK1DG7ANnUrOouPHzAxluNzf7DcmecuLMQ2x4yDg2YkiHS9moekxU8mia+JY7uejMF50+b4rY7x2p4llaowWVHXipI1zN7BNnZfPlHl/pUM1Z+NuWqRHCg45x0AXAvOYkj6g1ooXpoq8pQuGMltp+KMFh7xjYGgC/ZiqNXnHIGubfOjsEFNll1LGpBsmhEmKa+pbrulOsdO5rGmCTz83xldu1sja+omkUzumwR9+fpwvXF8nbxtUctaJnjMjeYecrRIu27Us3I8NjYr779WZoSxxKpESqjkLQ1OBUfUxVU3L0Hl6PI9jGSQShAiQUpJ9BGPRMjQujuSJ0/RImI2WoXG2miNj6VSyJlEsme8fqk4KG84yNM5Vc4wVHDphTK0TkndNzgxliJK9X6ejeHZ3+h4Fx2Ci5FJwTFIp0TWNnHM81392KIsXJYzkbd662yKWkomSeyLmumPqfO+zY/yuuYauCSbLir3+sLl7qGMxdC6M5HAtnSRJKWVM4lT9P7tHhuZBwzZ1zlYzZG2DVCqGl6GLE9kqXnBMXj5TZqnpEyUpUrIl9tx4/s4P5/CjZE9ni8OCa+n8wAvjfP7qOq6lM5p3TsR8uR93Gx5fuL7OX/jkxYfOFSEEn7o8ys9+5Q5emJzo9ijX0pkecrFMjcmSiiE3o5SxsA193+fcg0aaSspZk0rWwtJ1zo1kmemzo3ebYNntc1ZyLVp9tnE1b1PN25T7DCRDFwPSyklD1tYHifasZXB5vKg6XaRkrOiSP6EMxc3Yy47wYSnlMzv9YSGEgdKj+g/va+vbYFH9OeD7N32tIKVsCSFc4CKwMzrUDmD3k0PvLbX4zLsrTJZcnp0o8HS/T/v+9pOba12WGj7lrLlvKqypC4RQeg/dICGVksmSi2nomHu4C4tNj7V2SM7Wybsmpq4dWUuLoWvbtljcbXjEqaTg6JgavD7fwNRVe9tBU+1bfsSd9R5+nDBVchnJH36/cTVnEUQJby+0yNk6k+UMjqkzlLMpuCa6ELsawwfPVYgSiakLPvvuMl+/0+DiaI7ve37i0FqhdouZSpbxoosuVI/1P33nDqYu+P4r44wWTl7QthMM5WzWOgFhktLqazBsIEklbyw0kcBL06VDr8o8DEVXteN0w5ggSmDT3DY0jbcXWrSDiGfHC0eu01DKWPTCmNfmmrSDkA+drZKzDS6N7m2NbHoRN1Y7+FHC85PFx/78SMHh+6+Mc7fhMb/e5TffWmKi6PDtF4dPzKY7WnT5oRcnSaTk+mqbf/7VO5i6xo+9OkXePTk0+Q3sNGkRxAmvzzcJ4oQXpko0ehFNL2IkbzNScHh6rEDbj1jthORtg5mhx7fYOabGVDnDrbUO37hTpxOmPDWaI4gfHexbhoa1N9L3rqEJpefiRzFfvL7OSjtQnznvnAjGByi220wlwzfm6oRxyrnhHNNl1d6zVybcjdUO3SBhOGdhGCpxWTjAdu40lVxf7eBH6UDvc7UdMFfvMZyzmSpvbY1veIoZUnBNZioZ4lTuKJl6GNA0MUisVLI2hiZ4d6nFP33vNnnH5AdemKB8jC0x5azN918ZBxTL9fffX2Cp6XNxNMcHZiu4R9Sqnkily/nmzQar7YCCa1LKWEyVXSpZ+0TEOmGc8quvLxKnkucmi3z0/BA5xziRrTqgGBy9MMaPEsaKDtOlDB0/5vpaB1PXGCsqLduTkPS7H0M5hx94cYJUSuZqPX7uq3fQNcEf/+AMuROyf//sl+8A8KOvbN/Gt4HvfmaU/+0Lt/i999f47mdGj2Jou8JS02etExCnKTnbpOckeFHKYst/QGrlJCXW2l7Eb7y5yFLL52MXhvjo+SpxKvvn6N3PyTBO+f3ra4zmbS7sUJPQMrQt8jrrnYC3F1uYuuBj56oPlRk4TigN1gZtP+SlqbJKtPeLvmvdCITas05aIvh+7OXKflEIsePEFPCjwAeAv9l32vuIEOLv9r/3t1CMqN8UQvxS/2t/SQjxReCzwH8lpXx0H8AuEUQJb91tsdYOuL3epRPEGLr2wOYYJynLLZ+lls/7Kx1WO/trY4oSSS9IuLXeoxvEaEK1EgVxosRJd6ma3+y3Odyu9bhb97iz3qMTHF/rXJJKlls+t9Z6fOlGjVs1j9vrPaSE2iFQ7VtehB8lzK173FzrsdQ6PKp6lKSstH3mah61bshS06cTJFtaMU1d2/VkF0LRrb0o4ZtzDdbaAV98v8a1lfZBf4R9YeOzvbPUYq7e493FNp97b/XEHMh2i7t1j1trPVZaAXO13haXktV2wELDZ7Hhc2O9e3xjbKox1rtKk2GzE0g3iLhV67LWDnlnqXUs47uz7uFHKcvNkNW2j5SS9U5As7f75brlRUrPrKk2/p1ACNUK8t5Kh5urXd5caPHV27UT9UxqmkoIvLOg9KbeXmjxuasHVmc5Fiw1PN6+22K+5nF9pUOjF21Z43VNsNYJ6AUJy61gx+6JUZLy7lKb6ytd3l/qsNTXUtuMWjc89ra5W2s9bq31WG4GXF1WccEbd5uDNu/jxnLLZ7kZUO9GrLUDhBDKMKHt77rFNkpSuv2Wj/dXOyw2fG6v9Q70s/qxaokEFdN0g5jX5xrcXuup58uLWG0Hg9im3g2RUrV3HGdS6n5YhkYqJd+cbzC37vHGXJM355rHPaxBEfF2rct83eP9lQ7fnGvyzg7X2YNAFKe8s9ji9nqPTpBwdamDlNDy48cmpcI43VN8vFts6M/ONTxWO76SpdjhAbjeDal1wyN1O1vvhNS7EUvNgLYfs9wJuLHW5b3FNrfXujSOqb11p9D7e+Obd5ssNNRe8tvvLp8ISYswTvm5r87xiadGHqtd+IHZCnnb4LffPpntfOtdtQffXO1xc73DV27UuLXWZfUQz0sHgWsrbb52p87dus8355r4cYJlaHtOFPtRwlo7ZKHpE+wwJpFSsrYppr2+2qHrJzS6MavdkylrUu+p8+lKK+TNRbX/LLV83l9WmrVNL9rx5z9O7CWd/o9QyakllGi5QLnxXdnuh6WUPwv87H1f/mL/e39om5//q8Bf3cO4BgjihDBOB0LN6gEL0YQS6A7ihFovZLzoPJS2aOgaUZKy2PQG1MH9YGP/rWRMvChBIillTN5ZbBP3afbPTNxvaHgPtW7IQsMjZxucGcownLNZ7QRUshZim0b4ME6p90KytnHojhxRooRhl5s+c/UuXpSy3PI4W80RJglD5sFXQYayNrVuSMbSiZKU9W5w4G4SYZzixwlLTY+ry23qnYiJskPeUXoqQwfEAnNNnclShruNHqkU/Pobiyw3fb7t4vCJqCZu4Gw1y9dv1WlGIe+vtvnZr9zmh1+aInfEgugb9yVv776iGSUpbT9kqeXhGDovzpS2CIbWuyFLbY/RvPPIVqLHQUpJO4hxDH3Xh6cklXS8iLWOT5RInhnPbWnbixLJWstH1zQujByPmPFY0Wa57eOaOuWMxWLD407NI2PpnNWyjxXJn6/3aPQU06acMal3QzRN7KpqN5yzGcpaOKbG7fUueVsQxAnffmHk2Np7tsPTYzm+cH0NiTq4JqnkYxeHH9vidpCYq/W42/AoOCaXRnN7rvY1vAivX63POya2qdH0IhxDx48SHFMnYxl4YYhtahgPWb82zw9QczpnG7iWjqEL8rbBUO7e+lrrhtyte6RS0g4iJopbhdGTVCVGbUOnmNnZetTsRczVe7iWztmh7I4KCznHoJK1iFLJWN4aaKt9406NK1Mlgjhlvu6RpCnnh/M7HstBIWPr5B2lk1PNq/d+b6mNFyWUMyZPjT08xpBScqfWo+3HTJQUe6mSs2j7ilUaJw8eGr0woeVHFF1zx60ViVTOyJahjGCKrkkviqn277dj6rT8mF4Yc3WpjWPqpFIyU8lQyVostXzytnIBfWexha4Jzlazxy5AL4RASsntWoeCY/YZuSGWoR+7rsdkKcONlS5JmhJECaudgDvrSsw/TiTDBedQzWoylpJC6PoxQ9kMDS+k1pUkScqlTc9knKT0ooScpar6d2pdvDBltR3wzHhh2/2+3g2J0pRq1t4zE8DQ+0wCoVqb87ZBy48eun8HsTIaaPsRAoFtqGe0mrPxo4Q4lQ/E3eudgLTf5rzfOHUoa7LU8sjYmtKWMzTiROJFidJXkQ++fi+IeWephaVrFFyTYp+5dpy4NJrjqzdreGHCW3cbtPyYH31pCvcY9+/ffGuJtU7AT3z4zGN/1jI0Pv7UMJ95d+VEtiQ6ptqXqzmTtxZb9EJlijCcs3h/pcPZavZEnTH8KCFKlE5pN4hZbQdqjPucL5oQrHV8ylmDphdyfTWknLUeueattAMW6h5BnPLMRIHxostiU5mWVU6g07IfJZi60uzrBLEiw4Qq3+FHMXP1HrYpmA0z2MbuiRRHib3M/p8BfgJ4g3saUycGYZxybVlVZIbzNmNFh/U+y6UbxKx3Awxd48xQhsvj+YceGqWUlFyLl6bLgGR4n4cIU9e4OJpjvROQpMqK9NZah/lajziVnHlMy0NtU6UwTFKGcjZDOVsxFbohpq5t2Qjn6j16QYIQAZfHC4e6+HT8WNl2F2xurWtIqQTjJkouq52AaysdLF2jmj84S1XX0rkyVaKS7XFztUuaKrbLyAHZtsZJyrWVNmkK76+0ma97aAImsHlppnKgbhBCCP7Iy5PMVjN87uqqYljUPGxT8OFzwwf2PvvFMxNFRj5h8yuvLfDVWzVur3lEieSnPnr2yBa5zfelknv0xvIweJFKXGtCIDaZgfaiBMvQeXm6jGVoTO0jUF9o+tQ6IZoGT43md50ISJF0ggRL1/DidMv1bfkRL0yX8cKE2erxJKZmKlkMXSNrG5i6xs31LiutkJxjcHb40WOSUlLvqgP9ejek1gVL1+mFCcVdJDnLWYvvfW6crG3w1Rs17tQCllsRtU7ED1wZp3BCnGUuT5T4M99xnt95d5k377ZYb6/S8iP+yEvTZI8gAE9SZc++2PBZ0wNyO2yx2w55x+SF6RKJTBkrOHSjmIJj0uhFdIIOF0Zyg6SG9QgW6eb5EaeSG6tdCq7J911R93Okv1e0/IggSgell8WmRzeI8cKtTlMLDW/gKnTRzO0oEVDvqT21FyT4cbKjdsbJkotzUR+INr8x32S55XNnvQconZdGL6Llx4Dg8njhSFskRvIOEyWXat4hiNR9f2exhW3ohHHKU2MP/12VSFHMpFpXFb3U+qp0k2q9UCWTNn2em2tdklRS74U8/Yik15b3iVLeX+nw1FgeXRMPPIvPTRVZ7Ys6r3VCmn6IHyotnbGiw7MTxX5Sqkk3UPet7cdUjsGZbzN6oZoLUyXleNUJYl6fV1XrV8+UcY7J5RWUkcn3PDeGZWp0g5i79R69IGapGTDe15+aOCSbeNPQODec49mJImGSYhsa37jT4PZ6j1o3opK1BrHh9dUuYZySpClTlQwbJKTtiq+g4uj5vgNVmqrnYy/IWgZ/9NUpRvIOuiaYq6nCia6JwXO6GbVuyEozIEpTDF0MCtxemHB9VZ0/xkvOoPjQ6IVbBOj369wYJpLhnEMqU8b7YujjJZswyVNwzW2d7t5caHG37uFFMRNFl6Gcjdnfw48LT48X+fPfdZFfe/2uYsg0AqI45ac+dvbYEib/5Eu3mSq7fMelncXe3/3MKL/y+iLfmGvwypnyIY9u55iv95iv98jZJmNFlzfnW5imRs42Gco5eOG9AtNJQBAnfP12nRTo+gnVjI2p6ZRzFt0w2ZeshkRiGzrNXsRSUxV1a53wkWuelMrZMk4lxYzJU6P5gcHISWp7BOj4EV+/U8cxdZ6ZKBDE6WBNCuIUIVQhN05S3lvsMFk+vrPDTrCXFemOlPKXD3wkB4QklaSpZLkVsN4JlPNe/8GLkpRyxqIT9NAR3Kl7VHMO5jbJKSEElZylbmjePpAN2zF1mn0mRKMX0/IjsrYSW94Qp9zAQsOj5UeM9q2QK1mLhUgxpqxNh1whxLaV943PLMThG4vkHKPvjGRyaSzPaitkpGDT9iMWGz5tP6LeDfnI+eogeXZQm+Hmqs9BBlWJlDS6EbVuSJSkTFcyrLZ9hNRYaPgkqTxQ4U5d13jlTJnrqx2urXSIk4TffW+Ncsbm0mj+xGgdVPMOHzpf4RtzDUDy9mKLL99c45UzQ0fSVhGnkrSfDn9cm1Dbj1ho+GQsfaBVYuoalq4j+1X79iZ3koypk7GVAOR0JbOvZFvUH1uaqjE/TE9ype1T64YMZe1BsKprAkfXEShtjvZ9LU2VrI0fpYwU7ENnQz4MSy2f+bqHoQkujebJOyZSQs42HxvoCCEoZ1UyYyhrsdj0WO+3aO22G8LQNSZKGZ6bTvjS++t0g4Rryx3+4HaDj12snphWnwsjOe42POZqPdY6IdeWO3zu6iqfemYE65DFRnVNUMqY3KlBwTXZi+FkGKd4UcJkySXvmGRtnYWGhxemrLQ8/DhFIBgvOjjm4xki4ab5sfnwWc5Yg/V8vRPw/mqHjKkE5IfzNu+vtEmlKkxIKQfr4sZc3c0yWc4qDTfX1AfMrcdhY79dbvmstAK0vltvzjZ4f6XDWNFBoARIVevBzsdzUEikxAsTOkFE248RKDOH+w/D3SDmbsPDNpQ2lWJSbCR5tv6spj0kztAgSe/FGzseYypJUrnt4bPomli6xvsrHYbzNilpX4tRsdiTVPLF62ustkNSUqbLmYcy844SGcvANnSmyhlcS8cylOtYrRsSRikvz5aPlaGSSsmFkTy31rs0eyHzNR/TEKSJpOVHvL/SYbqSOXB2l9HX4gJwNL0fF/ZYbHpcGssT9du3ZF+LqhvErHbU4bGSNSlmTAqOuW0MtPm5288joGuC8aKKwdNUUuuG/bYybdvntBvE3Kp18cKEj10YGiTjm140WM82t9+LAxrnxuvWuiEStX7eqfUI4hS/L8Q/nLcfmKtSKn0eUxd4EQNG8W7n7WFgtODwkfPDvDbfxE9Srq60+Oy7y3z80gjGEe/f15bbfPlmjf/oe5/ecWLsE0+P4Jga/9fX5489MdXttzw3vIjPX1sjTSVZJ+JCNctE2SXrqY4bJZavH4lxyE7Q9CK+eafO24stxdTNmkwPZSj5MfZ9pIu9IO2TOlIpeWHapBMklLOPZi5WczblrImuKeb3cttnrt5TrrDm8V+7NFWsc9fUub3eY70T0fS6TFdcZipZRosOGUsZJU2WMyw1fYRQ7NXwBElebIe9XNl3hRD/DPiXqFY+AKSUD3XlO0q4lk4pa3J1pY0uBO8vt7k8UcDUBdND9yhsK22fpYbPzUz3oaK9kyV3wMho+9GgKrfXjXul7dMJYq6tqGB7qpxD1zVMTZC1DNY7AUGcUsmYA5vn1U4wSEztpiI4XXZpetGRCJ2Zuja4hhdGctypdXEtg6GMSb0XUesGeGHC77yzwlTZAaEm9sxQZlAZ3yvyjsmZaoY0lQca9NmGjtmvDqdSUnBNJX4ep9S7Ib0wJmMZnKlmBmKwGy2je9Ua0DSNH3l5ClNTvfdrnZB/8oXb/ImPzPDU+ONFoY8Kl8dL/LEPTvN776+z3gn5pW8sMF/3+aOvTB16As0xdSbLLsstn24QMV/vMVXenv2x1gkJ45QwTpUDX7/KcXE0x7XlNi0/6s+5BNtQtt9Zy6DkmvsW+B0vOeitAFPXmK97CMHACXQzVloBUqq1YfPBcazkMjOUZa7WpRsoAXTbVIfxOFFJqeHcwSTM94KVls/XbtXohgnVrEXJNfuCyzurwkyVM0xtxHBSMlFyVNJwD4Ho2WqWas5iupzht99ZJogSvnprnbeXmvzhKxOcGTr+ypAQgm+7UCVjanz5Zo22H/O5qyvM17r8ux+dxT7kIOfccI6xooMfpZR2ITAbxAm31rrcWe8xnLepZO1NDBfB3bo6YI4UbbK2sWONkImSw0or6DPuBEM5C10TAwOPTl/zZaHuM5y3CJOEu/Ue7UCxooru1oPqeMHBNXVsQ9vx/lx0TYru/tbVSs4mSlLeX+3iWjoXR3I4lkZnn7HCfhAlKQsNjzhJGS+5jBZsJHLQer7S9gcW2EGUEkQp3TDpywTsbq6cq+Zo+9Guqu66Jpgqu4+c666lc3Y4SxQr97ZaN8SLEobzNmsdlRRPU4nQVKviQsPj2y8OHyiTebfQNeXSdaaSQdc1cpbGb761wvy6x0ozoB1GfOjcEGPHZBpSzdr9JAvM1wR36x5BJ+XMUIZyRhU71rvhobb0Adxa6xImKm7s9ouWUZLihSlZW8fQxCB5bhraI2PErG0wW80QJ0oa4yDwzmKLL91Yoxcm/FsvTm77nGpCkLdN8rZahzZi86JrMlqwidKtXRZF12RmKKM6MfYZp95Y7RInkiBWhYIba6ol09Z15moeqVRxcZSktPyYSsbCtXTOj+TUYTtjqkSvcXKYH0+PF/iTHzvLb7y1RJyk/Ku3l7mx1uUnPjyLc4Rj/Cdfuo3VNynZKQqOyfc9P84vf3OB/+T7Lx9LwqLRC7mx2qXphaQSlho+cSpBSKo5i/MjOTK2gZQwVXFPlPPeSsvnSzdqfP12jTBWjMqPXxrmwkgeP0q5MJzdljyyG5i6YKLkUHRNzgxldxQ3G7rG7FCWpZZPNWfzhetrvHG3yUTR4Ww1e+yJqdu1Ll+7WSdFcq6aJU3VXl5y7b4JmVoPzwxlKWcinp8q4kcbhk8no5vgYdjLlXVRCanv2fQ1CZyIxBTARNHFMXWiWOJHKQsNpdUSeTETY3mqOZsv31zH1vUdBdJpKgdC3t0g5uIe3aeiRBLEKcM5pVNUdC1SJFEseXephaWrxUKxcXS6QbJnpz1D144lSHMtfYuOxQdmK2hCcHWxRSeKSVKJaQrGCy7LzWDfiSngQF2CNmOmkuHuBpXTNVlsehRdpW2xsShFm1g7jT5NdD8wDZ0ffGkSy9T4ldcWMXXBF66vn6jEFMCHzlUpZWz+weev0wuVuOlKO2D0gFopH4VK1qLeC+kFqiWsmku2PQAWHIOOH+OY2sBKGWCs4HBxLMdiw8cLE+brHueHcyy3/EFC2Db1fVVpbENnupJhueUPxIKb9zkAggpYG73ogWd4rOAwM5RBoGj7Cw2fs8NZ1rshyy1VDzA07djaVyxDtaroQvDOcpupUgbb0FnrBNu2ETwKhYzFhZH8IAG8l7EM5WxMQ+Pjl0Z4c6HOm3fbNL2Yz763wr/70bO7fs3DgKFrfPBclclKhp/5vRs0/Yg7DY+vzzX4yPnqob9/xjLY7Zmo3o3oBQmdIMG1E/LuvfUub+sstwNMQ6PjJ8wO5Xas7bUxPzZwvy171KeiT5SU691Ky+faSpdUSnLDxoDdsAFNE0c6F0byyoVNF4J6N+LMUIZaN6QXxSy1VBtfKjuMFQ7fLXYzpJRYumo1tA2V9HMcA0PTWGkHaJpguanWD9tUTsGmru3Z+npj7u32d3bi0puzDei/9Ob3qHcjxT7vhegS6t2YbpCw3PKPNTEF6jl8avxe/FNwDXQdljs+tbbLYsM/tsSU1mcFjRUcat0QgWLz3l73+ppD1gM28oeBjWSIJiSNXsx7Sx10Dc5Wc8QpPDtRpNmLSKSkvINk00G3Ir271GK+7pNKye1al7PDuQd+5sxQllo3JE2V3ulmPExO4iBcszdYZZahkXMMvDghaxn4YULW0mkFEUkqqXUDal3F3ur4MU+N5Sk4+y+4HSauTJcpZWz+9y/cUK7btR5fn6vz0SPYG0Gd7X7+63f5vufHdr2O/DsfmOHnv36Xn//6Xf7EDrSpDhor7YBemLDUDPCjiPVeTNE2eH6qyIszZRxT59w2z/FJwFLTp9YNWOkEVLKqDXWseLBrpKlrXBjJU3B3rkubppKGF2EbOrdrXXW2k9ANk30nyg4CczWPxf55UwBjRRfXMrAMbctaY27KBdiGfiDr0GFj17uQlPLfO4yBHCQMXWOm7NLyYyZLLostpT/hmBrvLErKGYsrkyWaXvgAZX07CEFfU2J76vlOMZq38cOYlZZPN1QbdBAnRKhgUgjV1mDqGtOVzEOp7htYa/vcrfuMlxwqWYtUciytKw8T/ZNS0fXzjkEhY1HWLDKWgR8lzNe7uNbexupHCYsNj1LGIkzSwUSrd0PuNjxVRRvK7JtNMlZ0qOYsbq136fgJeceg6FoUHGPQ77z5MKTrB3MAMXWNTzw9wrtLbaJYOSP9y2/eZbKS4aXp0olo6xNC8PR4gY+cG+KdpTa2LvjC+2sUXINXZysU3cM9JBYck16Q4JjaltbWzRjK2ZQyFppQ4037WihhoqxzW34HoSmnTmBLO8h+xRY3kLMNVkWAENu3r05XMkyUts7zlhfSDRLylokfKyHV9W7AbHVry8pxilaeHcoyXXKJJYzkbDRNtRU8SoB4rtaj6UX9eXVv3XVMnUrGYK7u4YV7dxYtOCYvTpe4OJJltX2TKE65W/f4hW/M86HZChMPYdYdNSZLGb7vuQl+/c1F4kTyB7drRGnKx84fvdmB0l6MqGTtbZMFOcfANDQmSg7VvM1kyaUbxIO1NogSqnmbc9Usl8cKB5aEyTsGOVtnqeWhCYGuCQqOQc42eWmqvKXS70cJi00fy9CYKDoEcfpIfauDgBBiEOw5psZ6O2B6yOWDsxX+9Xurajy6EuN3TP3I1mwhFBvp2nKbbpQw62QoOKrFSAi2rJVDWZtyRskVPGp8q22fhYavnoGcTRCnB8YE6wQqHso5BpXMvRhmod8CN5y3yVg6Wt/meqModG44i5BZwiTlrcUWjqEMRE4aLozmB4wg19ZZ74R87XaNp0fzR24asgEhBC9Mlbix2mG5GRCnEg0IwoQbKx3Oj+QOVXfm/LDSgLtb73JjtUeSpgxlHYI4oRPEvLfU5mw1+8hYdmPO24b2QFL7UUhSSZymj2SMnB/Ocm2lrfRtMhZemNAN40F73+xQFtfSeXW28sgYvRfGLDV9MpaxK+0rP0oeun4JoTTZWl5EFCudNcvUODuSZaaS4dZaj5YfYWgahi6IYomxKS5daamujdGCs208stF+eFxGAjNDGb7/yiS/8sYChqbx5t0Wa62AT10eJXPISdNf+uYC7SDeU2LpA7NlXpwu8T999jo/+urUkTOSkiRlvt4lTiXDeZe8k5BI2V8zU2D78RynYHsviHlvucVqO8AxNIq2wexQlosjB59ASyV4UcyFTYz+JJXcXOsQxpKZocwDhejN537X1BkvuUjgXDV77AneJJWcr2b5xp0aYSyRgG1qTBRz2KZOy48oBybuMerH7Qe7HrUQ4hLwPwGjUsrnhBBXgB+UUv71Ax/dHrHS8nhtvtl35jNwDJ3/P3v/HSVZlp33ob9zfXiT3pR37WfajDeAwMEMIAEQABIAjYBHEBJo9AQuCqQoQ+lREikuUqIoiqRIkBQogABhSRAgAZDAwIzDzPR0z/RM97Qrb9KHj7jenPfHiYjKqsrKyqrKrMwe5bdWrq5OE3Hi3nvO2Wfvb39fyYYoTdGEGAY9IY6lE6eKJXFqqkh9SG/brF0BajM4NVXEDZMtK/rbbSSbYegai/U8vUA5I7x8tc0HT00wUVDVj2RIwQe1YGze8NpuxJWmS71gsVjLowl45UaXvp9wsdHn1FQRTWgcncg/0ozoyC3JMTU1hqEobGMQ0eiHrPUDojRjtmwzVVaJgt98dZWeH1F0zPHGfvs13w5BnPF7b65TzKlE0anJAov1PK2hmK1yXrw1ePaihLan3IOKtkGUKCe/vGls65xk6OpzbfRD0nZGnGYsVHNb9r6XbCX8nO2CbXDRNvmz33SKixt9vr7U4zdfXablxXzkzCQ/8pFT++7yM8L3PneEK40Br6/0eX2lw5evdfmVl6/zn/+hMzw+V92z91VtRTeTTndDb2iPOlEweW2px5WmRz+IWajlCCIlgr5eDjibltSB1lAHu51S3OM021YXqWAbPDGsoN9tfYjTjLVeRMlR+i4vXmnRcSNmy0rAuJeE3Gh7PL1YIUwyTF0wXbZ3PM+zTO56T7mhayzU8vSDmOOTBYqOQc9PKN8leEzSbCxO3XKjWxJTXS/iH/7+JZIs4z3H6w81Lk0TlHIWP/qRk/zmq0v83tsbvLXa46UrTf7kB09wZmZnAs17jeeP11ms5fnXX7nO68t9PvXWBi9ebPCjHz29q6LtQZzSciMqOXN8EGm5EUGcUnYMNvoh19seunB5Yr58C4tprRcQJRmnJgvYpo6mCdVit+FypeEqvQJbp+wYPL1Q2bUAdyQ83A9j3DAlTFJOTuZ5amGeimNQcEwGYUJroD5XL4gZDPUjrjc9oiRjpuJwZrq4ozGNxOFVS+H9M27UewsubbgcqbkULI1j9TwZ8Om3GxRsnROTBSp565Fowmma4PR0iY1+wLWWx6lJjcWaQ84yiNKMnKVTyRlbfla1n3uUHJPFWo5Mwhcvt4gTxcKYr+aIEtU2dS8r9Z1gtat0ykauw1kGxybyY+bqpQ2Xom0QJil+lCKBxVqO+WGCNG8anJgsULCN+xbHjZKMjUFIwdL3TPtpoZrjNUtjsVYgiFKuNgZ8+m2Pr03m+fgTc0yWLBzz0R8eqnmLH3r/cd5a69McRFzccHnlegdQcgwfe2KGgm0wUbB3tdiZpBndIB4bBGjDw98Lx6q0A2VcESUZvSDeUtOs40V4UToUbk4ZwC1r22i9Kw/jvM2IU2WMlGaqdfxuc71esHn/iQlyppq3FzcGbPTVOUHFsCY5SyXDNsfoUkrW+4qNOF2yh0n/FDdMqeZ35lq53PFpDiIcU+P0dBEhBF0/xhsWbKSU2IbGbNnh1aUuYSLpeCHPH62TtwyKlsbXbrhs9AMl3i3FmMUaJdmYbb3SDTg9XSROMxoDFQfruuBKwwXg5NT+tSq9+1iN2arDV661+Nz5Jp98fZV//9oyf+17nqJW3Bu2oZSSn/nCVR6bLT2QTpQQgv/yW8/yQz/5Ij/9B1f5zz56cg9GeSdGsiGrPSVNU3AMzs2WcMOEXpBwpenSciOmSw4TQ51GIQRpJrm0MSCIMxZquUfKNk7SjI2+z++8ucFbKz2OThQQUnJkIk/O1O4qzfEw6HoRv/zyDb6+1OWHP6zuzWBoogLqfH1nYkqwUM2NO2aiJCOKU+are98VcjdIqZxol9o+C9Uc7z5SZbkTKDfOVJEjXrzcYhAmbEyGfPjM5IEgMtwvHmTl+SfAXwJ+AkBK+bWh5tSBSUxdaXpcb3o0vYgsy3jfqUlKOYOCbdMYqOpVwTZwg4Qvr/XJmQZdP+ZjT8yMLaTtoZNIJiWr3QBT17aseoyC6JylqIL3gqVreEHMV651qRZM5qsO7z0xAagA14sy2p7LS1eaOKbB88eq5CyD15a6LHU8dE0JOM9XcwgkfpRgGxpJJrF0lYB5lImp7tAuO4gzwkQFvSvdgI4Xc7nhYmjw0tU2cxWHSt7ktaUulzYGY4vp5Y6HG6UkqVQH3B0G7m0/IkxS3l7p44VKS6uet/AjxZja3Lrlhwn/+pUlMgnnZoq858QEyx2ffpAAEeesO90Z+35MZ8ioK9gGgzAZt1rGmbxl4mSZ5FJDLfKLtdyuBblFx+TJ+SoX111utJVA9M9+8SqDMOEvfvwx9H22xwZ1CDo5XSLO4DdfW2at63NxPWX9X3+dv/0D7+JIfe/ow1tVKoM45UrTRROC6ZI9duxZantcb3mkmVRMviSj48doGnzlakfdMylouiFIwZmZe2uzjRx47oXbXyfLJJebLmGccaSeG7b7qXalphswCBI0IegFMUGc0A8Svr7UY67q4BgGjUGIG6VUc9Y9xyil5OIwANlNXNzo89pSFwTMN1zOzZVZ6wWs9bYOahsDpctmmxr1wq3r6Gs3Oryx2iNOs4d2KxqhYBsUHRs/yriwMWClF7DRC/mj7z3KN5+bORBWuTMVhyP1Ap86v8F6L+BXvrLE6yt9/s8feI7iLuilREnG776xTskxEAKemq9gmRpLwzkRpxlJlrLU9pmrOLib2GqKyRLSD2LeXO0xUbR5fLZMkmY0ByFdP2at73N6usR02SHOJPou5cpHe0qWSTpeRKMf4YUp9YLN3HAPvrTep+lG40JNx4vp+hFdPyZJR9VOleBPsoyuHzNVsu9oHe8FMVcbLqlULMkHaeE1DY1+ENHyIz59fp1BkGFoUM0ZlPM2L18bsN4LmCo5vHC8Rm6PD3wFy6Dphrx0pUU1byElHJtUTnEX1gdD11xJlCqjmGDoUlrNmyx3fS5tuGSZ5L0nJ5QsgqHT90OiRFMOiULgRem9B7ID5C0DP4oQCPq+cuHrBzHHJgr0g3hsAHG54Y6vYd5S7PK3Vvt4UcrReh4vSpgs2pyb3bkD8VLHZxAktFDs9b1gOSj3VyWg3QkirjY9VrshXT/i68s93nN8go+enWR+H9heuq5xbrbMxY0Bnzm/wY2Ox0Y/YhAm9P2YIxMFKjmdD56e3pWYMkxSLqwPWO+FNAcBFxsuBctgoZqnGyRMFGx6vtr7yo7J22t9BmHMYk1pkYZJyvXWzbXL1DXFSuoFzJQdirbBtabLai/E1ATvOzlxyzofJtlYusMNUybuEpr0goTr7UCxqzPlzh3EGV6U0vVUAjyIU6RURgOj9aLpRqyP2+wVw2+tGxKkCUcT5TB4peliaILjk4UtWUmjBFQQZyTDlry31/pUciZhkvG5Cw0yqYSZk1S5F85WFUs0SjJ++411zq/3qRUsnpyv3NK+JYC1nk/Pj3n3UZV8We74QyfOiFrBHBfZvGhnLqV7hdlKjqcXa/yrLy+x0vW50nD5sz/zFf7OD7yLudrua0Z++VqH11d6/LXvfuqBD/IfOTPJH3psmr/922/xiSdnH9j5dqe42nTp+UqqojEIuNxyMTWN6bLNXNnhlWtt3DDl2aNVrjaV+7sQygQjTNJxTNjz40eWmBoEMb/9+hpfvNxkECY0BxFtL+boZB5HN9A1nfAepkYPAj9OeXOlR9+L+OPvOzbe53OWxmo3HLObN+8BjYFyMtY1Qd7Sh1qGAU1XFWMfdUHhSsPlRsvnpatNdE2j68dcbvZp9mPmazkGYUxzoBjOUSLxwpQ0u5Ux+U7Bg1zZvJTyxdsm74P3X+wyvCjBDWOut138JCPO8kyXLOoFh2vNAS9fbhFlGU8vVDhSU8LVcSrHDImOr1g3QaxciNpuxKtLin31wvHaHdncUYDmR9k9W+9AZWHLeYuio7Pc9rnccHlivkLRNsYP0JWGx/n1Prqm4ccp33xuCssQbPQjcqbGV290aA5CLF2nVjCxDQ1d0yjY+h397pvhRymGLsYbopTKfUQTYkeaD1thsmgRJRlenHC5MWCiaI8/x2TB4otXmrRctVmv932COEMOXYOaXsTXrnfoBYqJplo17v1I6pqqanXckESqCdjoB3ixapuYr95qAXqpoRbwKMloF5XY5lovQBOCnKUTJSn9ICZKM+oFJXD+uYsNgihjoebw/LE6mia40faYLts45q0BRZCk48x7x4t3tfpq6Brf+a55Xr3R4TdeW8ULE37uxWv4UcJ//51P72s712acmy3xfc8f5W+sv07QD3l9pcuf+5kv8w/+xLMcnXgwTbad4PYK6YjinsmMtZ7Pek8FXh0/IpMSTQieWqxwo+WTZkpw9fhEYciekvSHVaaGG3JsIr9t9caLkh27yHlRMnw2TLKhRT0obYCWG9H1Em60PRxTY63n89RCBT9KGETKvfPphSpxIoniiJ6v3vfzl5pMFm1OTm0d5IJig2yVlErSjJYXqSrrbXPOixIsXbtDqH0zpFQ6XHGakbd1Om7E5Y0BbV9pXDyzWEEIxYR8e63PlYYSz54qOXdUwm+0PNb7PlkKZWd3kq2aJnhmscKrS2XcMGGtG/C16x0urQ/4/KUmP/6tjz1SUdW74RNPzrLS9fnZz1+lFcS8dK3Nj/3Cy/zNP/IupkoPVx1OMwlCiWRWHIvrbZ/FWg4pJUtdn5yrU3JMTk4XaA0izM1riVTtoyudgI4fc73lEcSpYhLYGnGmDmZeqNjCjqnT8dSzOVmyHupQM12yaXkREwWLZVtH9CWrPZ9Xl3pMlRx6fsQXLrcIoozZssO7jtQoOgYdz+Jq02OtGyCRuGHK26t9On7MiYniMFmtElODMKHthTT7EV0/IU4zZsrOA7Xwvud4jWtNj8FKzBvLfcI4xbF1ipZJLR8RpXC54ZJmcLXp8dhcWe2BsQqER2v4IEzwIiVWvN3cuxcyKZko2CxO5Lm87hLEKScnC5ycUtcglZJ+EHNtKFyfZZL5Sp5sKCnQdCNsXePNlR5+lGLpgoqjxqmElfUt2SwjbLV+xKkyDRmxN7wooTVQuiJZpowhLjeVgHzJMcdi+F0/5uJKjzhVB6m313qcmFKMqvNrA4SA9W7ATCWHF6UcqecpOSZZJlntBUiUMP5WiehRW7Sm7V7r9u0QAiaKFkXHpOOGXG24eGHM5SAGAS03pumGfM+zi49cjwxUcefMdJGnFiq0vJCuG7PU9lhue5SXulQcEw2NJxYqLFRzDzW+IMrGLpxfudbF0NQzP1/J0fFj4lRyZrqIoWusdnxeud7GDROCKGO6pOZmY5gUPzqR4/R0gbfXBnhhyvWWx+NzZbq+OuzqmqAfxrdICuSGxUc/Sjk+efd9fbpkc6PloWmC5bbP43NlUpmhCUGUpiy3fa41fRqDACEEJyfznJ4uY26yOzV0jSCOudFxqRVsljs+1bxJkkqSVDIIki1j7nre4qI7YLrs4IYJyx1/PEezTLLSVewIhrF7ywsxdEE/iDE09UwHsZJ/KA4LqqPEQy+I6YcJy52AMG0yUbTHa48QMFGw8KIUDajdZwy7OZ7YLSzW8vzgB47z1//t6wyCiDdWevzQ//1F/v4ff45z89Vdex+An/3CVYq2wXc/u/DAryGE4K99z1N8/H//NH/xl77Kz/3o+/csPk/SjOttnxstjzjNaA4CvDClbAuCOGW1G9AYRHT8kMqGwQsnFBPdGJ5jen6MRGIb+iMTwm67EZ9+e43f+NoqKz2fJMsQUmOyaFLPW8xV8liG9tCulVshkwzPupCmEky19i1U87hhyvW2T8MNec9x5S6eZpLXlrpcb6m49Ugth2loSrvRVESQbd8vkwRJSm6LNv4H2eebg4AvXWlyYW3Aatdntprj8kbK9XbIIIzGuosFu8wzi1Uag5Bzc6WHiiP2EzteRYQQR6WU14CGEOIUSvAcIcQfAVb2aHz3jY1+yGpXiXwaKKFPS9cxdcEXLrV5baVHxTE5NyM5PVNivpqj7UVj0eb6cHF2TJ28qdMCwuHBzg/vrBLOVR02+iGVnLnjRaiaVy5WmZQ4ps75tT6nh339J6cKrHZ9EIK+H2OgKj1PL1QJE7U5DsKETMIgSijYJv1AiRDX8tZdadeNQciVhosXpTyzWKGat2gMorFY94PaxpYck3OzJl9f7pJm6vo/OV8mZ+o0XaUNYek6SZphGQbLXZcwSTlay2MKjatNn0Rm9IN47Fpyr4qFoWk8OV/matPllKEhpeD8+oCmG1PNGWO78vwwyK3kTRZqDoMg4anFEtfbijmDJqkXclxYd7nSdFmsqeC25BgI1BhGPfd+lI6TFFLeakueM3VKjoEfp+N20N2Eaej8+Y+do+dH/NYbGySZ5HdeX+ddR5b4xFOz++4OMcI3nZtivXeCv/M75+n5MWu9kP/1t97mv/62x5ivPrzm11ZQB2bVCvLEXJlyzqTpRlxv+QgU9d+PUsI4pR+mnJ4ujhOTxWEi9PhEgdMzJZI0Y6njc6PtU9VM2m580zluC1Tzaq3YSevm1aZHkko6Xsy52RI5S6MfJKx2Y642PIQm8ZMUL0owhIal6bzV7GPpOvNVgyMTOU5NFzF1weWGy2A456Mku2uQCypAnq049IKYTErWegGVnMlaL6DnJwgRcnbmJmNwqeOrJIUhODtduutB5OR0ET/J0IXg1FRpnBiOYnUA7foxecvgRtujOVCOWi034tgWVURN15gqOiSpxDR2j+25WM/zIx8+wdGaw796ZZnLDZdOmPCpN9c5Us3xJz5wYt8Tu7qu8ac+fJIozfgnn75EEKW8sdrnH/7eef7ct5ylnrcf+DCoa4L5ikPZNgjTTFUETY2FWg53KJbrRolypJTqGS3nTKZKDhuDiLJjsizVoehGO6Bom6xNBByvF7nS8BAFwWTJZqKo3L5GbIYwSZmpOJjag7k+TZcdpssOry11OTZR4PzaAEPTWOn6vHqjQ26oUzhZsinn1dpnGzoz5RyaEGhCHc4ag5AwUYyHS80BJykQJykS1bIyaueeLefQdcbaMfeLnGVwarpA24sQBFxru/T8FEvXqRccCo6GoSkX2tG9vN7y6foxtqlxarLAWl/tzyXHxI/Sh3KSNHWNal4F+14lxdQ1NgYRQnPHjmsbg4ArTY/2IKZeMGl7IY/Pl5gtO3hxQpZKvFglwDMJlqXT91MKljrU341BM2pFcqOEYxN5Zkoq2XK95eGG6bjV6UrD48L6gGstj5NTeWoFi2cWq1xtugRxNjR9UJIAtqGTSuVEGsYGfpiha3B8Mq9E+U0NXQjylkFhuBe2vWjcDmjqgmrOojdMmpdzJjlLZ7GWo+yY2Ob2SfgHRXvIoJkuORQdg69eT0ilmjMyg5WeSjI0+xFXGiqBeGJyZ45RuwkhBN98bppaziQcMoOabkTfVyzXX/vqEr0g5rnjNU5N3X+RKZOSQZhQzhnUCibXWi4nJgssdX0emy5SySu9yCSVOJZy4UukVIUiP6UXxCRphqErUV9L19TvZ5K8pRPEN2UbFus5oiFzX9duvafXWj6XNwYESYamwdOLlS1ZcvWCxZMLigFcL9pMFpXRQdeLyWTGIFSthOv9EC9MkRnkLJMTkwVO6GreFm2D6y2PvGUODViUo64bqr36biYRLS/GMVVCqWAZnF9TrMC0IBECNJSDd8uLCBNVWDOG652ha5yYKgCC4xNKo+tKw0VK5So+MizJJJiaRseLOFJT2jqOqY9dOoVgfA2DOKXrK3OW7dbG5U4w1LEL7/o7D4KPnp1G/oeSv/KrX6c1CGh6Mf/Tv32Tv/0D79o1geyWG/Fvv7bCD7znyEO3Ws9VcvxP3/0kf+EXvso/+L0L/NgfOrMrY7wdmZQstTzW+yGDMMbSdOaGcV4/SMmXdJIsI2cqjcjpstIhzpn6uIvAMfW7OtLvNgZBzJtD91QvTogSyWTBRtcAKcibBk/Ol+n5MRv9CMvQd5XFpQulqVjJmURpSn6Y+jB0gT/sSpDovLXW48x0iY6n5AG8MCXOZQhN8NEzk5xfc6kXTYr29nHqpcYAP1JSQscnb+7lcZqN5+Ron+8FMcE2DOQwSXlzdcDXl7q8cr3DVMlmvupQz1sMopReGDFZMgkilR94fL6CrolHIhuwV7ifkf9r4Dng/4tq43tMCLEEXAb+k90f2oPBMbRhQsIgS2OSTPKFS02eXqiy0vXZ6IXITI4PSHnbIG8bDIKYOEgoOQaPb3JVWazm6M3GJEnGzBa9pQ/idDFbcXjfyUkuN1wagwDH0DE0jdPTBQZBzGTJ4pvPTnGt5eLYOisdn5NTBd57YoJ+ENMd6uY8OV9mpRuw3ku43vZYrKuFOs1URSZv62MmRRCnrPYC4kRyfq0/FG7MWO0FhHGK9pBxWTVvjTU/hBDjQ/szi1WKlsFzx6qEqdIACZOM1X7ARMGkXjTJMnDDmGsNl0Y/5LmjNSrbVGx0TR0+nj1aI0klXpTw+lKXG22PQWhScHSSVAWk9YJNOWfyTWen8CJVoW70B3SGm+0o8SRQromGJsiZOvW8icwbPDVfRROQt3S6frxl+5QQ4pbFZy9QLVj89e99F61//hJvrvXJyPhHv3+BFy+3+PFPnGWiYO97L7EQgu9/7zH6QcI//8IVkkzyypUmf/EXv8qPfcsp3ntq+oESAZI7dd9GGL2erimHKcfUVYUzkzQGIWv9kHrBInClesaaLiBYd31kpvHs0SrPH69haBpxmnG0rjFZtOkP7d63g66JW3RWtmNMjkQUDV0JOZ+eLtEPYi6uD+j4kaoUSRjE6XAT77LS9UgzwXPHarz/xARCqM94tFbA0ATrg1BtQPcQBVVMJRsvSvnq9Q4zFYe8qbPWC8ZtMSMEQyH4OJGqPfhunwf1ORxDG7ps2RytF9joB5RzJpahca2lmIoNN2Sx5jBXyW2p6/HBM5N87nxjeB129xmeLDl817OLCCH4119Z5lJjQJRJfv3VZbpBwg+9/xiVHRhg7CWEEPzpj57mesvjM+cb6AI+f6HJ2+uv8L3PzvM9zx15oLltGRrvPlrjk2+scq2p2vXyltJcnCnb+HHK43Nlrrc83vRjup4S933viQnWewFZBrNVh/mqw5WmTs7UWOsFPLVQ4V2LVZY6vgqQhlpvpqHEdvt+ghsOxvp8D2pJXs2r1pLnjta41vJww4SWF1Ec7n15y+DMdAkvShiEybAwo1qyBILJksV8RfLqUo8r6wN6bszlpsvzx2pkUiqTkVqeqZISAX8YNsiReh5dqALJQs3hcsMjTFLCNGXCNPnms9N86WqTRj9ksmARJGqehbGqfI9cTc/NlMhb+pA9uT0z6V7jKTkGb6/2eXO1rw7Jps4bXpcTEwXqeYtjE/lhIU4dlt0wwdA1nj9apxfEpJlKDB2p59VcDhTzYvMal2WKZZqzdCxDMbzdKGGlEyjdTSGYKTs0ByHn1wfjVl1DF2Qyo2DrJKmkYOnjZLlj6lxpepycLLBWCmi6IZPFPF0/ZilQ7Lb5qkpm5W0dXWj0gpjTUzc1xQTQckMsQ2NBOLyx0mO54yOE4Eg9Nxbq305f8mExmrJiyMzu+jGWrqE7JtWciakLcrbBTNni9ZUelzcGuGHCE8ODxaNEOWfykXPTGIbGV662udIYsDEIaHkx19oBn7nQYKUb8PEnJSenivelOxXGGZc3XI7WFQN55LiZszQmChYTw2dKCFXkA+VKe3amiFdLqQ5jSoCZis1Ll9sYmuBKw+PkVAEJOLpG14up5y3seR1Dv/VgJqXkRsfjRsfnRtsjSlNAUs5ZHL8tCWzo2lg3cXRwj9KMtqcSmxMlnamiKiyvyoDJooWhKdZSEGfjuGGiaJFmqtWv5Bgst32khErO2JG4+ErH48UrTXShcXZWXfOpsk2WSRYqNr/x9TXCJENqgpylUbAMnj9W4/R0CUMXQyfpgCRV7KqCZTBdspgp2UyXHWoFteaNGP5vrfa43PCo5syxzuaVpkucKD2i+WqOet6iFyZK53IXHLV3gm96bIa/juSv/tvXGYQJ11t9/uzPvsxf/NazfOjM9EO//i+9dJ0ozXbNTe97nl3kU29t8Hd/5zwfOj3B88ceTjfzdqx2A754uUGQpBiaYK7i4AcJF9ZDMjJutD2emCvx7U/PcmHN5exMkZJtjM+pxaFbdXUP177N6HoRn7uwwZWGh2noTJdsbENntuLQDyLVkhsnWLrYszOMaaiOoueOVShtYlGausaTcxUMrc9qL2Dgp1xuuMyWHSYKNkkmOTZZIGfq6IBh3NsYQMqbXQp+fGfCqefHw7NojjBJ+dr17riF93Y0BiFvrfZ4danL+fUBYSIZhCmLtQJPLZRpDCImiyYTBRvH1DkzU3pHuO7dC/eTmBIAUsqLwMeEEAVAk1L292RkDwgvSvHiFEPTCNMMoSkdifVBgBslTBQtFms2UsLba33SVFHultoeQmicnSmMBXLTTBIlGU/NV3Z1jKauMVe18eMY21B6DdeaLhc3+qz1Qso5gw+fnmSqpOi8V5seUZoxV8kpVoGuxNIb/QikYgYIcZOafmljoB58U+OxWfVZpksOZccgzZR2kRCCVKpE3sYwIHwYLFRzzFdubaGbLTtYhsYLx2sUbYN/+fIN3l7t0wuUbkDOMXjfiQmuNQd89mKfT59vsFjL0RhEfN8LR+76Xpah8dSCuievLXW52nIZRMppZKZss96PsHWdrh9Ry1sMgoQrjQFvrPRIM6jklVimYwp6foyuCZ45UqHimFTzFm+t9clZBpoGBcfgSsOlHyQUbWPbvvHR8/KgB7F7wbEM/tF/8gI/9flL/PLLSzTckH/z1WWuNnv85U88zruOTezJ+94vfuSjp3hmocw/+sxFvnajx2srff7CL32V//Jbz/Fd7168b+H2IFLaFKem7hQzPjZRoOfH5G197Lz39lqfay2Pas7gqcUKBoKOH1GUJtdbPvWiSc9VmiSDIOHzF5tj+nCtYHNionDfjAU/TnljpXdX0dATkwUGQULRUUK+lzZcWp5qzT05pbTVrjZV+8BKN0D0Q9wwI2dquEHEFy41sQwdN0yYKqkq7uYE+k6QpKq9qdFXbYqKKSBuaUecqzis90IKtrHt4eNL11r8zuvraMAffmGRc7Nl3n+yjh8rg4nRPTZ1jeMTBWp5g/W+OihO3RbQukFCx1dFhIddh7ZCzjQ4NV3mu54VfPb8Blc2+ry95rLUuc7FjT5/83vfhb3PrENNE/xP//HTfOrNNX791RVeutZm5UaH15Y6XG/5/NjHzj5Q0NZyVctTmKgkgBsqG+4gVtW8q02PV5c6rPZ8TF3jhCjy2nKHom3iRQnvPzHBWi+g7cX4iXL6ccOUx+bKwxYAMTYgOD1VpB/EvLrUpTmImSrbJNs4At0Li7U8C1XJRNEiSTNWuspIox8lnJ4q8fhcCSnh9ZUeUZLx9lqfM1NF/Djh4vqA45MFnlmo8rWlLi0v5usrfU5O5YnSjDNTBRZq6qC8G2yZhWqOSs7ksbkSb671OTNT4o2VHmEiaQ5ifvPVFT51voGQsNzx+ODpKTb6ASemirS8kCDOsE1BNa+Y1203BmLylv7AjNiSo9r8j03kcKOM1W7A1bbLS1dazFfzvPd4nSfnLb6+3ONGW7ngzVdzlBzVcrTRD4lTiaWrxLNjGpiGGDu2SSnHlWFdEzw2W2K+kiOMU6Kihalr4+SM0vaUdIcGCCcmCzimRhRnTJZs2sMKtUpC2eQsxXo+NpGjMQjRNW2cVLJNTbH5egG9TogXJfTCBDdMeM/xOkIIWm5E24vwo0wlFVyl1xcmim11eqqIrd36XMZpNtYT3Q2MDvwjLSJVQTdxLI2jtTxFx8QNYy43PZY7yn3ycsslTiVnZ0v7UvH+wKlJnpgr88nX1/j85QbXWgGWnnFpvUe7H7DS9fmudy/wgVOT9/3aUZrhhiqJLJDUCha1gsVE0R53LIz2HEPXePeRGq9ca49dafOWwWonRGiKWSRxOVrPkbcNvni5xVLHwzZ03nO8znzhJptmFJdNFCxMTb1Hsx/RrSQYumpB3owwSVViu2CTpGpzlBKKtnomT0wUaQ5CvChlqmQr8ei8yYtX2mSZ5NR0keOTBWZu2+c2+iG9IEEIpRG11bpzbELp5cVpyj/59CXWuqpwHccZmVQF0kxKWn6MBCxdMFMysQydz19qYhsaRdug6BgsdwOOTeQJ44xBqDS7rrcDHF2jlleJ6PKmuRynkoJlECTp+NnThCBOU5qDiKJtstTxKQ3ZIqpTQP17oZYjb+vjxOJu46OPzfJPJ/L87X//Nl+52ubt1T7/xc99hf/m2x/n+95z9IFfN8skP/vFa7z3eJ1zs7vHHvqfv/spXr7W5s///Cv8xp//yK65uIVxwm++usLnLmwQJRnPH6/xLSen+OKlNpalcXndww8zbsyV+L4XjvLMgirCbGbUn5gs3JfZ1MNguePz0uUm/+bVZdwww9FhvppjomCyUC+w1gsIY6nYPppa36XkgaVl7oZMQpxlQ2JKBsO1P0oyrrU8HEPjaD0/7pSpFSzedbSCoDLWhPzN11b5+kqXvGXwIx8+cVfJlpEzbseLt+ygMQ2BLbXheUUln7ZqugjilD+40ODTb2+w3g/wwpi5skW9aPPWSpcvXWkwUXA4NlHgzEyJI/U7nQXfqbifT7EghPg/b//m6OGWUv7Ybg3qYeDFKdVhYDVVsrE1g9lyjsmizUzJGbKDdF680mK6ZBOmigrb9RPylkHbS2gOQiqOycWGS8+Pmak4HN0FB5rxGKOElU6IF2bomoahqY337bUBApgqORiaxnTdYqnjUy9YWLrOctfHHirMDjoxRVtVlHOWRsE2yFsGLTfiaze66LrgxEQeP0pwo5RKzuQDpybp+fGYYWHrqmLY8c1bbKQfFLcvdJomxhXfJFULT8HWCRJVFZ0p51jv+7yxOuB6S4kyLgvB6emYQZjcc5JJKVnp+kqvRyrR5WrOxI1SpFQWoIau4ZgaF9YGvLHSpx/EvP/kBHlLR8UcqlJ3YvKmSKSpi3ECEBiLAm8n+JpmkvPrfeJE7pqA81awbYMf+egZLjQ8fveNdZIs5eKGzz/81EX+t+8rUzwg2fL3nJoiTDP+u3/9GoMgwgN++vNXOTFZ4j0n7r+CFMQZcZbdcZjQtVv10fxYJX3CJMPVUt5/cgI/TjENjbfW+hRMAzdSQV2YpHzhUou5ikOcSip5i/lKynzFIcuMobOjtrMNXKrgdRAmWx4kTV0bj3Ojr7R7un5MvWjy/LHa2G3qlesdwkS5PzbdEKEJXlvu0fSSsbaZFxXGiR8/SrGGve/3gm1oTJUsFmo5DE0bsv9uFZHPWwbHJ9X4u35MlikHrtuvQXMQ4g/nQ3sY2IthO80IR+sFxYLSND5/qUkQZzQHER89e2vL8WcvbNAJYoI4JYh3PzGlaYJjQ4vtjz8xyy+9HLM2UM5Qr97o8rMvXuWHP3Ry3xmHhq7xh56cY76e4/wvvUqjFyGFsrF+95Eq3/TYzH2/ZnOg3OZabsJE3uKNlR6vXOvQDRJmy4op1PMTjk8WCWOV9MwyRQmv5i1ylo4bpUyVHBquaovXdUHbjVjtqraNzQct09ApOxZJCkXLeGjbeSGE0iwcsiHdIOWZxZI6bKYZpqaSH003Is0y1vuqhcs2da61PB6fKY+t0wuO0sIaBAlr/Yg4VQHr8QnVhvcgwuebx1lyTM6v9bF1HcfKeGKuzNWmal1Y95WbWJyoVs3VXsixiQLlnMmRWg4/yrB0h1PT6tC73InRhMB4CCrzWi9gEKa03ITpsk1j6Cy23AlAClZqAYt1xRjr+DHVnGojNDRtLIkwYpblTA1DE+O9Lcskb631eXu1T7Wg9P3WBwETBZsn5iuKcZVKKjl1Pcs5kyBWyVFQ6+HR+s3kvx+nDAKYrzg4pkE1r8wnXl9R+nSXpcuRiRya0DB1jbfWlZtcNW/SciMkyjwmiFVhKEozpFRJ00GYMFtx6HgqwVXNWbS9mNnKrXvJej8cO4fuFkaHFz9KOTtTouiYVPOqdeq1pe5NV0I/xtCh0jMRw8+yX4eMgm2QARJBKWcgM8WeXe2HCE3jjdUeZ2dK1AvWjtZMQ9eYKtlMFCw2hoewjhfjxSmZhIVafssiSJrJ8aHQDVUreH/Y9pJm6lla7qrW9K4fs9YNqeYtNvrKPRJumn+EcUbe1njXkTq1gpK0CKKEpXY6djYbQRsyk0GM9VL7QYyha6QZlG3VYmfqGmL4+XphQtePkVLth8cp0HSVcQMoyY9KwVTFTtsglXLLw5c5vFYvXm5RcUw6XkLRUS2AAsath16UMFmwCVPVmrzWDYamKAkF08A21fzShWCyaGEPmc15Q2nINd2InGUwV8mNr1HXj+kFyvDn4oZi2hyfKNDxIsIkoRvEVIZnByFuZY7om2L9vcLJqTJ/5T96nB/+qS/R9hU77Sc+fYlTM0WeO/pgrKRPn9/gWsvjL37i3K6OteSY/N0/+izf948+z1/5ldf4u3/03bsSX3T8hLWeT8tV7L2rTZdXr3eYKJnkDR3T0MjZqo01k9yVEfqoYp1+oM6f691ozFLMpOpUenyuxuScTcdPmC5ZlJyb7pq7jSjJ6PkJFxtDl8JhG+ilxoC315SB0eNzJepFa5xEvNPAJySIMsJEGW/djpFms20ql9etElfaMEZ2DIaSMxonJvNDI65boWuCxrBVs+0qtvJivcBk3uRqM2C55zNfSajklYnaN0pSCu4vMeUDL+/VQB4GSSrHiYycqROmmepnz9k8e7zK+09O4oYJ7z85wexQ+0LXIckkOUMJiE+XbTSh2APLnQAvn7DUVjoQHT9icRvhxyjJWOn6GLqmDrVSBRYFW9+yKjLSc6oXLBxLw9Q0vnqjy2zFJkolp6YLmLrg7dU+c9UcfSeh7UWcms7TdhPSTKrgQUrmq7lbWDwX1/tDZkTC1DGbyw2lp9TxYk5PF8etNCM3waJt8C2PTZPuVMX5PhGnSrOgZBs8MVviWsvF1nXmqg4nJwv84kvXWWp7+HHCY/NlhITFukOjH2Lp2rasDSEEtZzJ9aZPKWfyxFyZvG3gGNqQIXDTQjjJJEmaUskZLHd8jtZzGJogzTLiVInBjg5RxycKqsd/+PfzlRxNNyIZ9gfPVpw7WD9xmhEn6hrejZa5W9A1wf/4nU9haF/ns283iNKUqw2P//ZXXuXP/gen75tJs1f48NkZ/tLHI/7e716iH8S03ZC/+ztv8YPvO8a3Pjm349YZTQgmipZqwxyExOlQDHWLv8+ZOhJJP4yZqyhtD8tUidsz00UWqioJ9eoN1TqhaTAIVStryVYH02reHDvZlR2DWtFCZpKWpxgMo+ruLWMcJl1r+aHIaJAwUbC2ZIeVHAPLAD9KSDODoq30G9ZlwHwlx2I1x1w1xxvLPd5c7eMNkzUDP2G25lCwDSYL9lgPyjI0Zso2lq7RdJV5w3zVuWPtcSydZ4/WyFs3k1qDocDq7dbv/SDmWtMD1Dp5e7L1vccn6HgJpgZPzG3NKLUMbeympGsCL0ooOfod963iKCteMsnZ6b1xcZwuO5yby/CjlFre5J997jJvr/eJkox//9oaAo3veNfcHWyu/cDjc1X+l+95kv/mV15lrRMQJin/+DOXaA4ivvPd85j34R5mGRonJgukGYRpxturA/XcuDG2DqemSjimTr1oc3Iiz3I3IEygYOkcmVC6cKOE6mzZYa6qnr9uGpNKSdsNyVna+FBSsPSh2LM+Phw+LKZLDovVPLNlidAgkxlIgUAoV9DJIhqCIEkRAo7Uc7xyrUuYpLy+0mWx6rAxVWDStzk7U6TiGLT8BNvU6Q8F53tezHTZ5uxM6b4ZnZuhDdvM63mbiSlTMQ6yjIKl40Upyx0fUxNEacb1tsds2ebZozVKORNT10hSyeWGx/W2z7F6fpx4fqCxCEE5Z2LoglNTRWp5k7afECcqPpoqWVxvubTdmJKt9GQMXSjxV5mh6+DoquXqxGTxlnnrRcmYidcPlPDqRi/CDVNOTRUpOya9IOb1FXWAf+FolfawFX4rzFWU3lPbjbjS9Pj6co+zs0WlnVk0iFPJiQkljK2MYEI6XoRjapybLfLaUp9o6FIGqqUhk5BlSn/I0DXOzZRY6vjDYt6d99jSBS1vdzVyRshZOh86M0k/UFpLX7vewTY03ChVhcdhC7Mz1AWq5AyWOpKSY+wa22KnMHSNjz8xTZplTOUt/CihF6Ysd300Db50ucV6N+I/fGaWZxar93w9UxdjR+ta3mKl65NKZcGuhLbv/HxJOnquNDRNMFO2WeuF1IsWtinQNY2WG7Pc8YmSjJmSgzdkE5ccY3weSDM51ojNMnjvyTrVvMmXr7XpeAnTZeeO5K+pa5yeLhLGap4A6JrGRMFG01Rb0MlplbCxDKWf2g8TDAFCF2O29eZ5qwvlyB2nkihN7ym2P1m0mK/lOD5sI/rK9S66Jjg+mafRD6nmDQwNTF1nsZ5jqR1Qzav1JmcIzq+76JrGdNni7bUBaSZZqDkkmWLKOoaOpWtjppQ/FJiXQ8e/KFGugNbwGV1qqwLH2ZkiecvA0MRDrZMPirlagX/4R9/Nj/7sK/T8iDhO+F//3Vt84skZ/uSHTt736/3MF64xWbT4tidnd32szx2t8Rc+dob/7bfe5pvOTvGHn198qNdL0oxBGHO0XmCp7ePHCddbPmnW4pvPTfKhM5McqecJ04zHZ5XBRtdTLP1H3RrcC2K6XkzPj2gOQiaKJkGsY2gqtqwWLHK2zscen6HrR+MYeK9g6IIky5SUxiaXOtvQCOIEXVNdSNu1p37kzCSW0WKmbFPfQv5htReME9FnZop3zA8pVSIxHLb7LtZyCCF4aqE6ltDYjExKZioO0yWbthsqcxJDo1yw2PBUx8djs2WeP1q/xeThGwH3k5hqSil/6n7fQAjxPuDvACnwkpTyL2z62TzwM4AD/A9Syk8KIUrAvwDqwE9IKX/6Xu8xEhQ7N1tCE4LFWp4gzpgqWcyUHLq+2uAeny9zarpIa5hkUJuSCm4dU8cftgwBaJpGyTGI0oxKziTJJAM/xovU5rdZNHFjEI5bUIq2wUY/HAeUW9FDHVPn5FRhbNE8Ehg9O1NkruIggN94bRUp4WLD5WgtTy1vkabqwKmEnYWihN/WWpazdEo5nQndol6waPujCuCtiaeRJbcfp3uWpZZScmF9QJJKio7BY/MVqgVLuarU8yx1fMIkQ6AxVbR5ZqHMXCU/Ptgvd/x7ajfNV/MEqcQxVCV1FIx0/Rg3VIFHP1AU/5yl0Rna/TbdhBOTReUsFcVc2nB5Yr6MOXQT2pztrhUsbFPj4rpLnCYIEdzR6qUYYDZulDK7ReJit5GzDf7adz/Dp9/e4BdevMr1ts/FjT7/9NMX+fFPnGW+ureaVzvFd7z7CM8erfP3fvc8r6/0aLoxv/jSDWxL4yNnZnbG9DE15qs5ekHMSicYf39uC/HLKM1YqOap5CymyqqiOwiSIRXfxDIMjk4oceWeX+VKw2OjHzJbdkiBszMljKEVa8ePWWqnLNSUIcFE0WYQaFsKgdqGxsmpImkmudb0huKGCaent57/j82WESgmRxCn5CydthePK8QzZYfJks2TCxVWuz7X2j6zJYdeGPPYbInJkgo4G4OAnh/jhnm8KCVnqhY8x1SCl5sh4Ja5HmfKcrvjxRy5reAob/n3nUnr6bLD9z63oFxK7pEoUeLaGanMxnoim1Ev2syUbIQmaHt7l9QdmRecni5ydrbMT332Ii9ebjOIEj53cR0EfP8LixTuIWz5KPD0kTo/8YPv4Sc+dZ7XVwe0vYh/87VlokzyfS8c2XGgOV1yeHOlR3MQ0OiHLFZVZbJesDgxVeTdR6vYhmIFJqlK0qtkyk3G6EI1NxbNHqGSN8n3NfzQwI8yeoHS7FPtVrtvk/3UYoWeH2MbGpcbKmG61PE5MakEyx+fV+6Lpq5h6oI4lVxpDFjrR5QdnaO1Auak0vrJpBJNrhfUwfhqq08YZbty0DpWV1pIBdvgRttnsuQAksVajomSw9eud4Ztc6Fq448zrjRdpko2mpBK6DnLhofYbMu5t1PMlG1sQ8MctvfUCyr59YGTdUqOSdsN+er1LpahE6UpTy9UaQyUs1aaSXShDBBmKnfuZ4auUXB0dA2O1HJomoaU3MI+6XqKQRIlGWEm7ylWXLCN4d6vYhM3TDg1XaDlRcxVLAq2gUTpQC61lcOvrgnilHFrf5hkFFHJhdH3NqPoGEjJlsk+Q9PIm3t3iBuZsgAULIOpksNzps7TRypEUcbrqz0GYcxyJ6AXxpydKY81Tx/1wbKSt/kjzx+hHyb0/YiXrrZZ7wW8dqPL1ZZPx42ZrVg7SkxthhCgC00lU1oBR6aLrPdDjk3cGoMudfyhOQdjc45jdVWYckzFGH7lehvHUPN5omixUJukYBuKYbfhcqSeo5q3mKuqGHBUXDENTQnqa5IM5Sp7OzbfK1DP+Ghea5oS0z9SL5BkGW+tDsjZOkkGC5vmSs7UmSxZlGwDQ9cQqHVpox9xpelyerpElsmxIcBM+aZO6MkpdRao5E1evtJhfjh34lRpzAAcnSiOP1PeMjgzU0QI+K2vrzJRtOn46pCcZmpd8SLBe4/XyYZGF2GiNGbnKjkmS0ry4qmFMn6smOJelFJ2BG03HDtyJqncd2bGidkqv/SnP8g//vQFPnehQdeL+PVXV5gs2fyHT82h7ZBlutTx+d031/iz33zqgZP/98Kf/ebTfOZ8g//hV1/j+WO1h9KiXekG9APF/v/Wx2f58vUWaeYhpWI0fvtTM1xteZQdk7lqjrdWVeEtb+ucmtqbgt9WGMXAG/2Ary/1aAxipks20+Uc714s8+VrHQxdJ29pW0o77AU0IZiv5Kk55rgVFRSzzTGVKUDuHnHs4/MVjk4UhjHGnc/LZqO+rXgeqpVZmZEk2c1WSl0TW57BB0HCYi3Pcr3AajdgpRvSdEOenK/wvc/W8KJkSEw5GGe93cT9rDDRvX9lS1wFvkVKGQghflYI8bSU8tXhz/5r4K8AXwP+LfBJ4D8Dfg74BeD3hBA/L6Xc0XsLoF5UjIWJgsVUyVHaBUNGxLmZEk7OpJy72VcdpRlpKoe0YeWcEyYpEwWbas5kvR9SHLKTloZuBkkqb1lgRu59QqgDqtLVuOnothUKtkHBVllwCZzaxBR4a1U5cXjDFjxDF0Mh0pCun3Ct5bFYy6Ft0Vl2YrJIwVbUescyxto2t1M6J4s2LTdicg+tQqUcWpajPifAbCU3DlCP1fM8f6zKZ883mCrZqgfZVJXlMEmp6beOOUzSO1oOlY6JRNMYi74ttX3aXoQmBLapU8kpZ76nFqu0BiFNN6KaM5mpOLx2o0fTjXDMmCfmbzKNklRVjEbBiaWrdqk0k3fto789EbDX0DTBNz82zUzJ5m/++zfp+epZ/8LFNh84pTG3S4yFh8VCvcB/9W2P87f+3Ru8ve6SSsVYKucs3r1Y2zFzytj0e9u1uOiaEv50zJttJG0vIpOMBR9Ljvpe0TExDY2Fao6Z8k2WUZxK4kSx4OI0G1vIOqbA1O8+XsEmofNtxqhp2ngdGhVPJ4vWWGPO0DUM1AFQ15RIc2WomTXaxCSKAZRKhho1iukAGs4Oqk9TJZtGP9pS5L3sKAHUJJN3XSN2qn1zuTHg4oZyJVzrh3foGxydKHBqqkiYZrvGstkOQgjmqjn+yHuOgabx4pUW2dBR9MLagDMzJfIHgBa9UMvzF771MX7iUxd56WobCZxf6/Pi5eaONV4yKUkyQAj8KEY3cuNWuJNThVsOX4auUS9adL2YiYI5Xm/vRvuv5W3CWK3v5kO0nO0Epq4xUbSH+6UkHRpVbMbm4E65byonKrUWaKRS0hqELHWUw6A5TP5EidKZPDaRe+jklDEcpxqzwEexLRxTZ7poUXYsavmEqZJFx0uwDY2VjrL6FgKO1vNMl5SQ6dF6/q46FjvBZrbb6F6eGYo5X1jv0w9S2l7MTFkjP/zchqbcgJfaPmkGV5vulokpx9R5ar6CNyzESOQdcUa9YOFGKllY2OFaMVNyODOj7t1M2aGS0zk5WcTUNZa6HiXb5FJjMHQdUqyP2apNkkAqs3tq3GynH2Xoj44FcmamSJCoVrZT00U++/aG0lDqBsSFlDBW7WRpJvGG7O2HEed/EBhDLaJa3mKqlOOttT49P+Za28OLEopDd0xDEzvWadOEQNOU7l85Z4DYmr2mkjgZpi7G+2M/SFjrqSTOsck852bKtLwIP1KuWv2AsSYUqD0cVKy7uc1ssZajNQhJpORdCxWcHTybqVT6S6OxjNr9NKEKxAIoDR2hBeq+XVhXTKUklRyp55ku26z2Amp5k2jIrm95ERvDxJSh39oOl7MMPvb4LLMVZ7zOGptiD11T89o29LGrnqFpzJQckjTAGJr/hEnGcsdnomix3o/UfB1ephHLf66Sg2EeN80kb632afRVq+yxiQJxKslbxiMpuu4E1aLFj3/iMTLe5EtX2mjAxbUBL5faPHe0hr6D5/FnvnAVgD/23gfXqLoXdE3wd37g3Xz73/0MP/bzX+GX/8wH7884YHh/Qa1d0ZB9nqHir2reYqpk86HTUziWwbmhprBiwt37HLrbkFLiRwlRouRV/GHbbZBkTBRtZqs5PlHOjU0eHhUsXWOxluP4RP6WZ2MQJKx0Q5JU8qUrLb7t6bltX2c7Esdc2cHUBbaub7mm2YZONW8yCJN7nrv9KB3mCFR3kZQC2xDIDOaqOc7OlvaMUHIQsONPJqV8P4AQ4teAnwd+VUrp7uDvVjf9b4JiTo3wDPDnpZRSCNEfsqU+APznUspUCPFV4BzwKtvANJSAsKFr5FGV8aP1PF6Y0guGWhKZaknZnBS93vJ5a63H9ZbHbDnHh89Mkrd01ZaVqlawE8ObH6fKYjbL1PttRq1gDe1pxVA7IU/Lje6pjt/xIt5a65M3dU5MFceVCMfUeGahQjeIef+JOkGS8cZKnyBOVStRyaGcM7dsKSrYBtVE2d4PwoTjE3mlfRMkmHltHNzMVpwxvXqvoGmCo0Ntl4ktqI8NV9nVPjlfoWirvvjpskXHixgECWLTunWj7dF24zsmvDlccFZ6AcsdH4nkasujN+xbvrQxIGfpnJgsYBtK6HJjEFLJmVRzFpapUcsbVPLWOGiN04zzQ/rzbMVhqqT0U87OFG9JVh0UPL5Q4a9999P86leXSNOMFy83+dzFDb796Tk+9vjuU5QfBPWizf/wnU/x77++wtWmR8eL+Od/cJU/mGnywx84RsG59wEsP7Rlj1N517nlmDonpgqEcUpteKhLUslcJXfLQn695fHSlbYSXKyqVs2OH3N8okDLjVjvBwRxymOzJeoFm2MTeQq2cc8gXNNU24xqW7v7/B85mQmUzluSZpiGxmOzpfEcvdZ0eW25R5ymnJgo4obKMWS6bKMLwY2Wck06M12kXlQHiLJjIpH3ZDGBYtNsR13eLQFKmal70A9iKs6delX1gqU03yLJ3BbOp3uF0zMl/tj7jvHkQoWVjk/bjfi1ry5TK5i8cKzOC8fre2Ijfz+oFWx+/BOP8ZnzG3z5apuOF/MvX77Bi5eb/ND7j1O7h65HkqpkatdXTBxD03jX0crQrvnO+ztiR11uuKx01Tp5N8OHqZKNZSiG0l7S8DcjyVQRKUxUm+3dUHJMPnRmgt5Q9yVvG0OtrUi1cxZMwiQbtjrm1f646V43ByEr3YCibYwdfO8XR2p5ermYphtyYd3FMTUmSsqRr+TozJThxEQeiaDlqRZctZ/lOb/e50rTpWDpFB+ilUtKyRurPYJIsbNPDivnhqbam58/VmW67LBQcVjthaz3lRGKoWkUbf2uGiVdL2ajH5KzdGxDxRX5YaKiMdxfC7YxNl/ZKbShY+lo7BfWB6x2fSp5k7myYq0o9pdN3tJZqDqkGTT9gEsNl+liyOPzpW0TenGa4cdKXmDzWlRyTE5OFcj2SNZgM0xD57mhW1eSZkO9IsnJqTzvWqwyU1FSA69ca/PqUpdnFis8MVfet/UoZ+m8a7FCo+/TdGPKjpLM+H/+4DKTRZvveHpuRwke5UhbZK0bDDsF5Jativ0gZr0fDPUQVUGw5YWkmdJljYcH3UreZL0XsNYLEUI54ZmGYu9NDNe3kVZi0TG43HBJUsljc+UdH+x6QcyVDZcbHZ+pksViLc9cJTdu9yvYOlGSsTEIMYaal3GajYuy0TAxULQNnj1SJUhuxiab15xk6CRczZkYuoYXJVxpeDiGwRNzqhBedkxOTBXIsoy1XshSO2CiaKEJ1d5qGoJT0+oscXQoJF20DRZrOTLJeK2erzoEScb0Fnqo6XCNBTVXJop5Joo2XS/ilesdTF1wtF7YU0fLnUDXNf7ytz/Or39tmbfXB/TDhF9++QaffGONH/3ISSa2iW0yKfnZL1zlE0/OjpnUe4X5ao6/+Yef5s/8zJf5O598m7/8bY/t6O/CRLXeV/MmR+p5hFASLZqAWt7g5FSR8jAx5YYxaXZT3kIIpavZ9eN7ukvvJq42Pb54uYkfJbxwrMaHz05yo+Xx1mqfNMvImQYnHiF7awRTV3qDMyWbzfn9iaEbbTYkNzwMNO3eTpU7YZOPzrqWIZgqWhyp5akVLWxL40hdJde+kZNScH+MqRH+NvADwN8QQryIYjb9WyllsN0fCSGeASallK9v+rYub3K/u0ANqAK92763LQztpuiuspVO6QXxmOlUzpnU83fqvQzChO6QURUmSpg3ldnYZebxudI4cBn1nY90Z27H5tfOW8Y92QRpJnl9ucdaL6TkGMyUb4qXHampSmnOVEmySxtK6LOc04dtgMVtF5tRkDsIVCXpWssbtqyle9JmsR3KjnlXjYSNvqpe5yydqbLNs0dqfPFSkwvrLjlLY3HTWN0hfdnfQoD8etvjK9c6gNqEZ8oOpq4NrbAV66UfJNjFW0XpLjdcBCA0wZlNjLUouRlUbH4/Q9e4D3mXR4rFep4/9aETfO5Cg1eXegyChF/58hLvXqwO20n2H3nb4D9+9yJvr/X45ZdusNoLaXsRMwWb79th1WonLJ2ibYznUj+IuTJs/RlR+9NMHdaUW09K3jJIMkmWQcePaQxC0lRVOicK9i3P4U5gGRqWce9gYPPh6eKGSzR0ThsdHs9vDAiilH6YUF406PmqJbHlRpiaRj9I0AXYpuDMFi2DBwWTJZuzs+ozbcXie2Oly4UNl0zC5843HunYjk0UqOYtljseL15q8cZqjwvrAxo9JWL57NF7bj97DlPX+JbHZjg+kecXX7rBpYbLRj+k5Czxpz68va5GOWew1g3RBWRoTOQtLq275C1lGX03JyI3VC2V/XB7MehHbU08YgUYtoYXp2xXc1UtpPGQZREyVbIo2SbPLFZZ6/nESYY2FFUP4oyNfoQzFC5tD/fQfpCMmRf3i5EV+2pPhUZdP8bSNU5OKjeiyaJNnMFE0eR6WzmKBbFyFV5uB4RJBhLed/LB3VaXOj4X1gZkgCbyY7bi0XqefpiQt3RMXRu2CqivI/UcJ6bylBzzroLGoxjDC1OC4RoqpeTShnuLpuXDIM0USz1MJG035l2LVeaqOfwoIZNQz5tc2HDx44QbLR8Qw5allOpdluwsuykvsFXSdT8CfmPYGlKwTRxT5/hUkWP1PL/9+hqvr/RJM8lMyeb0dHFfE+VCCM7OlEFo+GHCG6s9rjQ8LENjruzwoTNTO3odeyjSPErKBHF6S/zcciMuN5Q74SBIVWtQyxsLKZ+ezt0S/06XHRxLseccUx+3w4NKKo20Egu2PtabGrXl7QRKbF1pVYVxxiBIoHJru1/LjcZyHrWCMkA5Us8N2RE2XU+5oQIcn7x5sKzkVDI0zSTX2x5ZptacE5MFOl48ThINNokjF22DOM0IYtXB4YbJOCHhhgnesF2o7Sf02wFpplqXJ0v2+OwysU1BwzK0W8YOKg5+a63PUlsxvkqOue+JKVDP5He8a4HrLY9ffvk6F9YGXGv5/PyL1/lz33L6rmzfthshg4T/9CP3r0v1IPi2p+b4Y+89yj/61EU+cnqSD56+N+M5G55BBsO9OIiV82wYSyxD59xsieBGB5nBSjdktpK7pRhacsyHNh+5X6z3Qt5Y6RMnGUXH5LvfvYAXpSzUFNNrJ0z+vYAbpjTdmD+41OLbnpkfz9sMeN/JOl0/eeAC1G5jdOa81vQ5v9bnRjugnjfJGTrztdz4efhGxn3vwlLKTwGfEkLowLegWu9+ErhraUwIUQf+PvD9t/1oc5ahDHSGX2Ug2PS9rV7zR4EfBTh69OahNpOSJM243HApOQZzFWdcxbNN7ZaD7VzFIUpSLFNpMFiGYBCoxcANYy43XNwwIWcZnBwybnbCRNgJlM6FQcFOsAzl2DUIE4I4pZ63xgF/kKTkhu1ouqYyv10/JkpTer4SWL59k5koWASxT8EylGBeoKjgoxRgmCjmRZZxRzvHo8RE0eLShstcxeH4ZJFawWKt57Pa9ej48bAypcR2p0o2FzcGd63wjD5bNW+On4EolegaQ4cKyVeutZESnl6oYBqqjUPdA6UrcWF9gDZsp5gsWYRxxnT57ht4kmZ0/JiCZTwyxsB2yFkGHz0zxecuNLne8jANjf/r988zWXT4T953jPJDtIXsFjRNBbfvO1nnassjZ2p8/vIGl5su3/70HE/fp2bFVvCjlKstF30o/jvCqHIppaSet0hSSS1nEKYp15oeUyWbesGknje5LNQcXe4GzFVze6LxsdFXDIVKztxEu755CJ7Iq2dwsmSja4IbHR/bEBybKFIc6ruEaUbXi4mG7I+DiKJtDDV3PMLkzk3VMTXaXkScZOSsR/8ZKjmTslMmSSVLbY9VAUs9n1975QZuGPPC8YkDwZI8OVXio2cmubg+oGQbvLbU5W//+zd4cqHCx5+Y3VJbI5Ow3PW5tO5SyhkUHGUlnmU326y3wlxFtcFPPMJq605QdkwquYQky7Zk4W5GmKRsDM0STF1TulJFCzeIuZGqw+5kySZMUi6uqZa1mYp6TWW0EDFfyT30vJor59gYhMxWHDIp8SIlMh6nkksbA5bainFUyZmkUlLNGbQGES1fCd/nLY2jE4UHEjiNU8lkUbnuTQ81bKSUdPx4zPAG1aqUt3TKOYNBGGPogqnhwftG28OLUuYqzvigo4o+CTlTxxnGREGc0vNHrOabhZ3LDRdNg5OTxfu6lqPWUm8YE2mawNE1ltreMFayuLA+wDI06nmTDIZOZmo9PFrPK3fWKBmzUFRscCuT5SBgoZ6jH6pxtt2I5bZPy43IMqVL4kUxXT/GNnTaXjQ2sHjUmC47xJlEF9DxQ86v98nijE+9vU7TjXh8rszRifw94+SRwPao7X4z0kwyUbRpexFTJQtDV5qPN9qqHfzphfIdCYetip9LHZ/rLY8oyajlFSu3M0yodryIlhuxUM3dkxlcL1gEcQZCOY1u1WmQSjnWRsvGsag1LgxvlqC4PdFdGOqi9v2YtX7IRMHi+ESeIE54bbnLVNHi3LCw03IjdKFY1jNlm16gHDdNTWO1F6BrBl1PmSWt931MXRmyIO4sInSHLbt5S+fY0OhihNtdxeI0Y60bcK3pIrQ8tcL+F2w240g9z3/09DxvrPQo5DReXe7wN37jDb7p3CQfOj19x+93/JhvOVbj+WOP7nP899/xOC9ebvIXfvEVfvPPf/SeTCZdV4YeJ6p5sizj4vqAl6+1KFsWE0WTD52exI1S1noBjqnvWFpht5FJxfSzDY0gSej5Ebahs9oN+NKVFppQ7GpNE2Om4KOGRLLa83CMwi2MKVMXtIcJ4INQwB9pI19purS9mChO8aMMKWG6bHGkVthSv+obDQ/0JAshcsB3ophTzwF3FUUXQhgogfO/dFtbH8DXhBAfQGlMlaWUPSHE54E/JIT4ReDdwFtbva6U8h8D/xjghRdekAArXZ8ozcikZKHqsNxV9sg50yDIFCMqX7/5kWsFi1rB4qmFCm+u9mm5ynXLMQVhknJ+bYBtaEwUxbgquFtIM4kQknrB4sn5MmkmudJwkVIFeNW8xeqwlWCxnme24jAIE9wwZRAkNPqqyrTWC+9ITI02lZGYuxCqH31+2CbTD5Jxb3nPj/ft0LVQzVN5wsILE2oFCykluq7R9ZVLwlLL4wuXmnzg1ARumOAY+pa2mkfr+aEeAxybyLPSCdCEGGqBqcrv5Y0B11oeXT9mve/z/pOTzJRtXl/uDTWI4nGmuhckWwpr347rbV+1HAr2RaB0K1imzo9//CxfutLmi5caXG35vLnq0gsSfugDxx+Jhs+9oGmCjz0xy3wtx4uXWrx8tc1bawMuN8/zg+8/wftOTtxyLaNEmRss1nI7qhh3/EhpQyGZKAgkEj9KyZuqImLoypRgsZbHixK+er2LlJKNfkjRNinYOmemi3SGpgl+nN5T8DNOVSV+pmzvuErVdEOyDNpuTCVvcL3pc3zyZtXmsbkys5UcaZbx6lKXMM6IExVUB7HO6enisC1VJbXrO2Bp7QeEUK0/jmFwpelzbvZWnksYptiG0nAr5/bWcvruYxQ8vVhlpuzwr758g1eutfn6co9+kFLOmTyzeDAC8Q+enmKqZPO1611eudHh9ZUBr1zv0fcT/vDzR+7QoWm7Ea1BiB8nSCBMJEdq+bF+4d0wUbS3rarvF0bt4TvBqG0njFOOTxYo5yzKOWgMNKbLMYMgUYLviUQT0PMjltoeS22flhcxXXQobCGMfL+o5O9kFwRxyqs3uqx2fVIJC7Uc02WbiYLFcsenlDPwk1HBxCNK4OTU/bfXThYtVjo+R+v58Z62MQhZ64ZKd8pQOkJzFWUEs1DLsTw0mGgOIoq2QdtVB27F0lOfo5IzqeRuzuM0k1xquGMdxhEzu+uPWB+KvXq/z9ST8xVmyg62oYqKLTfk/NqATKrEw3w1RxClPHesRskxx06l/UAdzleGLWODIOH4pJJ7OFLP0Q8SDE1wcWPAZEG1hLXciJYbbum4tNd4bLbMdEm5pn31WodBmDIIYp5arNIchMSp5HPnG0yWbKUfuk8xm2MqIeUgTjk3WyXNBJc3BmQZvHi5xeWGMpH5lse2NzYxde0OA5kRJosWkgKaKI4ZO7ahBO+jJOPVG11eOFG/a/IrSjKutVwub3jjwuJc1SFNM0xdJ0xS3CjBMQxaXnTPOWXoymRou3VnZFZg6NpYT9WPUjqemjtKPDwjjJVRz+1QAsgm1UQVrP0o5fz6gCyT3GgHrHYDkuymzu0xLc902WF6Ex3gxFD3tuvEtL2IiYLNajdAF8rVcDPWegFvrPRwTJ00kwRxtm1xVQjFLqnmLfKmQeEAFGJvx9nZEv+/73yKz7y9zucvNXh7rc9ba30Egg+evpXNd3KyyP/xA+9+pOPLWwb/5x97lu/5B3/Af/XLX+Of/NDzd2V0gVpTHUOn5ytG6JsrPQwEHT9GDBON52ZKym29YG37WnuJMMl4c7XP9ZYLUp3HyjmTfhCz2g2pFgzee6JOOWfu27qlCYGj6+i6hlKEU7gxZCkKBD0vuWexay+RSsmFtT6fvdCg58dUcya6JjB0wYeOT1LJWWNDhG903HcpUAjxC8AbKLbUPwBOSSn/i23+5PuA9wB/Uwjx+0KIDwgh/t7wZ38L+Oso0fP/Zfi9fwr8CeAzwE9KKXfk3xvEKY1+RJqqlqE0k+QMnVrOICNDCGXTvhUyeVNFX9cEk0PXvXJO2a8W7JtVwd3CRj9EE0N3kOF7SwlJprKja70AP0rZ6IcUbJ3pskO9YCGGYpGTJbWZ3u0zAWMR9rxlUCtY40N92TGxTeWIUH7ErRi3o2gbTA9b74QQWLrOsck8li5w45ScpXGj5W2r+2Doys769LQSSa3kTYRQTIxRMrFWsBCo1oMwlqx0A/woo2ibZJnK+gsBmsaOq5GbHYjkAUpjFx2T/+CxaT5yZgqJJEkyskzytRudbVkSjxJCCJ6cr/Kd75qnmrfwohhb17na9LjRvlW6Ls1UK2bHv7OtKE6zO659JWcObZ3F2A0nbxlj9xtQNOfZikPe1LEMgUQ9L6P3Oz5ZYKJgU7CNsTDwdkhSJUS+1ruzoznbpNmwGaPqUTVv4obpOEE6+jyOqTNbcchtag1WFtFKQ2OuogTbC5a+7Tqw3xBCjOfUVgm+OFNV47JjIh7ChWw3MFG0+ciZKXKWgS4EgzAhSSVZJscHjv3GmZky3/GueY7V87hhTM7SWO6E3Bi2imxGztKGdtFKM0i5Wo2eq4N3uNhNSKkC0lrRuqU6XXIMKjmT+WqOxXqOoq3jWBqlnMlqJ2S9F9LzEoIk2bP10jF1xQbRNMI4UwWwgoWUKOOOoUB0xVECqKYuSB5gLL1Aad1JybjVCFRs0PFivFAdnr04ZabsKN2eYUxQy5vD9ii1Lm6XcM+kYi2rVkhznDSo5k1MQ2Cb2gO1leiaYKbsjNkbOVNH1wVCg9mh/MGxicJ4XSnaSqDa0MUtQuibr1w1r6y6G4MIL0xZ7vokacZyx8OPlFD0fqBesJguORQdUzG3JwqcmSkyWVLi1w03oufHSnLiAOzjOVPn3UeqPHOkSjFnksmMfpDQ6Acsd+9ci3YKIZRWy+Y20qKjNEA1IeiHybasgaYb4keK4TQIVVvcZNFmtHpbunJf1DR2jREqhBIaLw/nGigjJHs4dyxdQxNKj2+rGAFU4XiiaKk5owvKjqlaqYUcJ7hG2O7zV/ImxycKaEKAUOYvTfemf1SUZKz3QkxNo+2G5G2lE7cdCpahhPALJpWcyQF4/LbEQi3H9z63yFwlRy9QTmtvrw4YBPEtcaIQO9P72W08OV/hL3/7Y3zyjbWx+Pq90PVixajXIJNKO8rU1dpWK1hMFu19S0qBehbXe0qbsDGIKDoGp6eKHJsoogmYLCoX7P1knQsB1byNoQvkpkuVt9Q6oGvg7ANb/3Y03Yh+oO63GyecmCry2FwJx9SHxStn17q2DjIe5DTzz4A/LqXcwhPuTkgpfw7lsrcZnx/+7AYqwbX593vAd9zvoCxdbQJhnFEvWCRZRj9w6Ucpzx+vo2naXSs4lqEqIl6kMqaWoQTMo1TZmz+IG4oXJVxtepi64PgWlSFFK46Hduuq397QBW03oeyYFB0DL0yxTW3seHQ7vTYZVmhGWO0GNN2QyaLNTFnR7uerDnEqx7ayo897duZgatI8e7TKVEk5ItqmxkZf6Q1kUlIv2JydubtuxSBMuNb0sE3tDgZTNW/xkTOT/Pbra4RDDanRwUwImCjYzFVyCNjx/T5Sz9N2IyWKvc8iyVvhQ2emmKs4/N7bGxgCLm0M+I1Xl3n/iUmmtmlRfJSYLDn8+MfP8YVLDdZ6EY1ByOcvttjoR7xwXInDItQ9uj1hOBI9zVkap6aK4805bxk8OXT8SDOJaQjiRG6pKTFTcXjviToCcCyD3lAs0jF1npi/9SAVJcraPZOS4xO3tsCO3rto38mMuLgxQErF5tt8OJspO2MDg2tNxebLWfqW4uAjVmU1r4LM3FAL5/Zqb5ZJrjRdgjjjSD33yDUG7ob3nZyg68dbUrlnKw5FSzk0ndwHYczN0DXBkwsV/j8fPM6nz29QcUxOTRX5/KUmzUHIY7Nlzt5Fl+lRwjZ1fuQjJzk9U+S1pR5xkvL5S0023JDnh6LKAAXb5BNPziGEQBdibL2+n0gzOdSQyXZ0OFjuKJfVqaJ9X86nJyYL9Pz4juKLbeg8PlemMQhZ6QSUcyYff3KW5U5Ax4+wdZ1KPmO+krurxtJuYLGW5/H5MlJCOW/w5mpfMScslWzJzSpWZGMQKW0oJF9f7lJ2zB0fqgqWcgzWNgXeXpgwCBLypj5uY99ceLudGXJ6ukiaSQxdU21mXZ+SbXKknrtFg/PoRB43vLXq7Jj6fQugb4ecZfDRs1O4YUK9YI31hy5uDDg+UaCSMynOlcf7+InJAu6Qkb0ZQigRaD9KiYfmMo1BSC1vj51b9wvPH6vRdEPylkqgLlTzXG0MWOsH1PI259cHdP0HNcneHTimKiAGccrTi1U6XsSn397gcsNlYxCx3A4oWOauCS/Plh1OTha42vIYBAkX1wfMVXNbvn7BNmgOIuarDqemiuN9errkIFCuurvNBq0PGf8jJ8wkVbFCkmYcrSvjlatNl41+xHzmcHyycMc+fztL9cmFCo6pD80bdAxNMFd1VCvfPQrKc1WH8+s9rrd8sgyeWrjJbjR1MUw2m5ycLuyoO0DTBO8/OTF+Lvd7D9kOlqnz4996jl/5yhJtP8Y0NH7nzXWKtsFHz0xi7vPB/oc/eJzPnN/gr/6b17EMje9/4ciWiSVT12i4Ic2+EvZ/4Vidp+YrpBkcndj/zocRwlgVZI/X86AJTk4WODNdouOrluqpLeRXHjVsQydnacyUbDabai9Uc2Pn4f0eZxhnXGu6WMP45NxsWRlvabu/Xh10PIjG1L8TQnxQCHF8899LKX96Nwd2v9A0wempInGWYRs6XT/mSH3Y+iPEPdusFDX95mL/sHS5theTpKqFqOneSfqaKNqqki1uunxJqTLgXpRycqqgKieadtdEye3JkMYgRErFxhodeEebyEFoM9sJTk8XmSnb5CwDTQik7LHay5RTkC62rQy03Whor5xu6YpmGjqPzZWJ02yoVWJybraEEGoTyIZuTztlEpi6dl8Hpf3AyekSR+sFvr7S5eKGS5IqsfjiAWLY1AoW3/70PD0/4rdfX0MTGksdnyfCBHuoc/LYbOmO57031HTwo4wozbasJOiaEgaP02zLio3akG7ew+1a9tpeSG+o89G9rQXWMTXOzhbvGIMfpQyJiwzCuzv1HannmE7su1YuN29M2wWS/TCh5aoe/5YbHZjElK4JpofulrcjSiXPHquinAgOxjr17qM1Tk0VsU0dP05p9EMyCZcaA45NHgyRTCEE33xuhheO1fmt19cQCK63fZ49otaxESaKNh89O4UuBKent26feZRwo2TcNt12tz9gSylpDtTvNAbRfa23m8WJt8KoLTzNFDvp7IzaC6RUhiqaJoiSDJntDVPO0DXec7xOlGZs9EM6w5hhomYzX7szYH57ra8MGryY2Uo21oca7VtboZofOgZvijMGoZIK0DQ4M11C17aPj4QQY5v6Uftx14+ZSe3xehcOtTDvZnSym9hsqLLc8cdt24MwwTHVAX5kCV4Y6ttthVNTBcIkY6XjMwhTJoq2Msh4AC2v3YRlaLes8VMlxWITwGrP51rLQ39YC6ldwOb7kLN0Tk+XqA3t0POWQbMf7po5gmVozFYdcrbOSiccmhWFWyamyo6K67Tb4n5dE2N9qDBJ0cRNjbXdwOY92g2VNgyoPbmSt5gqKdaIbejEqcQytt/ryo7Jk/MVwuSmlMBOE+VdL6Lnp9QLFrYhOFK/+TwJoZyDR2elzRitJY6p3RFr3/5cHmSYps73v/coXT/i1esdNgYxPT9hrR/uewJC0wT/4I8/x5/5mZf5y//yVX7tq8t87PEZirZBL1BFAy9Se5MmlEZuJWewUMsxVbQJ4vTAxHUACKgVTB6bLzNXcbB0HU0Tj9QN8F4wdMELx+vYhkaUZOMizWh/DeJsnFjeL0RDwfhK3uTjT8xQ3MLB+v8tuO/TqRDinwOngFe4KV4ugX1NTIGa8LamFtqZ4WGz7Ji7uvnsFNWcyWrXZ6UbcLdH6/ZNYbbiKLvYvHog75eyVytYtN1ovCCM9BZsU+PMdPEd8ZB3vJgbbR8hVJLqyESeJFMimSXH3NZJpZI3hwKh2pZ6YAVLCUGGSTpuhRxVfqSUXNgYKMZd0WLhAGgx7RYMQ+PcbJmmGxElGUmWcWF9sN/DugPlnMVjc2WuNFwKtsHFDRfTEAjuTMKCEmJd6wYUbGPbuaIOXg9XJYvTjNWOYljUi9aWjlNbjaGcMykOdVa226iFEA9Ndc6GGhTrPWXjvlMtnr1GcxCy3AnGB+Hbq61HajlWuj5CiAM170rDQ5WhCeZrDjfaPhJ4e/VgzZ2io7QmrjRdjtZz43VshEyqVpB7zZNHhbyp45gaYZLdk52iGAhK0Hq3A92pkk2SqkLEVsUIL0q4tOHuqdiopgkcTWdqKMJu6TpFy9iyGFXLW6z1AkqOMY5pNu9bd8Pt93ym7Aw1aKz7Zj7U8hZBrNbckaDzyHFstGc/ypaNSs6k7UWqJTLJuN7y0TQ1jns966M1d7rskHR81YaY2z+tlu0wuk9ZpvQM3XB/GVO3wzH0ocSEYjV2/ZggEZxf7+/ae8xX82jCRxNibBh0N2wX83d95dQnBJyaKu5JS3PB1rFNpTs16nKYrThjSZGdzDs3TLjcULIGxyfvr6BQzlnMVGy6fsxj85U7nunNZ6XNuNRw8aOUcs64qwbYOwmVnMWpmRL9sIOlazT64Vgzbz9RsA1+8k++h5/6gyv8s89d4X/8N6/f8nPH1CgIldyJkkxpC+XMoe4YLNQ4MIkf5VgpMYTAMQ9OwXszbEO1mE+XHezb9qerTeX4mbeVft5+QROqjf/sdInSPhdH9hsP8hS9ADwhpZRCiDLw3wCLQog/LqX8F6NfEkL8X1LKP7dbA71fbCU4+ihRsA2OTxSw9J1vevWC9VCLzUI1d8vBzhvaSoZxRpJJTP3gBVy3w4tVrlNKJapXyZm868jOhIfLjnkLZfl2CCHu2gKRDO2A4eZ1+0aCY+p8y2MzJKlqWzioeHK+wpPzFS5tDHDDdCzSvxU2V2z3GmGSoWmC45OqXWSnwaw+bCd5FEiGWlZH6nlylrZr1eqHhTdkx2QZY8HlzajkLb71idn9GNqOoGmC9xyf4ORkOBaGPmh4cqHCkwuVu87vo3X1DCaZZL9zU4auceY+WskXa3n2Qnu+aBvbjsOP0kfmgOOYinGyHaZK9h3V/nTTvrVTbPU6O8VWovj+pj3bj9JHmpgq2Dfbtm+0la6RWme2ZtDe7TXu53ncT0RpxruPVAH4h/s7lFugaeKWYs1O9u/7xe1dDQ+KEVtzZDS0F4kpQ79TLuN+x+/HN9efEYNmp7AMjQ+emryvv5FSEgznshvuSKnlHYG5So65p3PjAtlBgalr/KcfOcmPfPgEG4OQIMoo5wyKQ2mQF37zv+fphSpPL6jf7wXxmH3vRcmBSUwVLIPnjtaIDqrwGErv7T96Zn7Ln43i09G6sF8wdY0Pn57aF2fqgwZxv6LNQohfAn5MSrkihPiXwHngC8CfAmKU/lQohPiylPK5XR/xFpicnJTHjx9/6NdJMkmcKNFEx9B3tavkypUrbB5jKiXRMKC0TA39AFTpLl66zPziUXRNHOge8tuv5X4gGAYNhr41HXx0LQ9yG+Xh/Vb0WeWQyUMdqA7HuDtjBPVcLhw5uq9imffCO2F+7+R+Z/JmYmO/Psv9Ppf7MeZ34v1OM0k0jGdsQwlHHwTsxjq0l7EavDPu9ztp/55ZOAISTEPDOIDX851wvx9k3oRD4xttqGX7KPBO2L8PwhnibhidLdaWrx/YMW7GQb2Wm+OEB7mWmRy2yMtHE2cc1OsIqmMkSVV8//WvvSKllHu6mDwIY2oSeF0I8SLwfsBEMai+Swjx3wG/K4T4rt0c5L1w/PhxXnrppYd+nVHrG8CxyfyusjFeeOGFW8a40Q9Z7ars/VzV2VOR1Z3iyWee5ed/4/eHegH7K0K8HW6/lo8aYZKO23kKtr6lYPPoWs5WnH3vab8bDu83nF/rEww3ryfmyw+8+ezlGC+s98d6FY/P3am1tVPs7RgH44rTY3Olh2qffvKZZ/m5X/99zs3uv1D33fBOmN87ud+bq8j79Vnu97lsudHYNn2mfH+C6A+Kd+L9XusFrPeUvuViLbdt69OjxG6sQzfa3rgl58RUYVttwAfBO+F+v1P272eff56f/tXfBTiwMgnvhPv9IPPm9eUeaSbRNMbMwr3GO2H/3u8zxN2QZpLXl3sA/PB3/6F7jvHVG11+9otXkRJ+4L1HeO7oHlCL74GDei03xwk7uZa3o+NFXG+pv58q2WN9ur3CQb2OAJcbLoOhJuczR6pf3uv3e5Dd/K9u+vdPA/87QzdeKeVfF0LcAD4NHNyd8i6YLtlkmcQytD1vEZooWMoCFKhv4VS1H7AMjWrePBBJsoMM29CZrzp4UXrXIMbQBfWitWt2xHuBw/ut7IWbg4iSYxzYSulCNU9jEI4p3gcRC9UcjUFIwTYeWtNP1wQLtdyBDWrhnTG/dwKluZch2T3r9L1GLW8SJimZ5JG51bwT7/dk0SbJJJpg353mdhszZQcpFRNst5NS8M643++U/VsXgumyTZRkTB/QpM874X4/CI7Uc7TdmGrh0c3/d8L+fVCha0qofmTMsR1+7611fvSnX8IeMkZ/8eXr/M0//Azf/8KRRzDSg4/NccKDoJIzCUpKk3ey+I21Ltwv5ioOG1q4J23PW+FBXPk+Nfq3EOIXAENK+clNP/8pIcQa8Pd2Z4iPDqau7diG+WGhaYL5A1Y5UoviwRBMPuiYKNpMbPNzU9cOZGVwMw7vt3KtzNcPpmDjCDlLP/D3aTfHaBnagdFPuBveCfN7JziI+9C9IIR45O5Q78T7rWsHy0xgN7HXsdo74X6/k/bvmQPuXvxOuN8PgpJjPnIHt3fC/n2QUc1bY8H8u6HrxfylX/oqp6dL/Nx/9j5MXePP/MzL/Lf/6lUemy3xzGL10Qz2AONh4wQhxJ6zpN4pcMxHewbZcUpbCNEXQvQ2fwF/BviV4b/HkFL+Oynlmd0e7CEOcYhDHOIQhzjEIQ5xiEMc4hD/b8NPff4KjUHE//pHnqGatyjYBn//jz3HZNHmv/uV17hf7ehDHOIgYceJKSllSUpZ3uKrBJwQQvw9IcSXhRAvCyH+rhBiO0LJIQ5xiEMc4hCHOMQhDnGIQxziEIe4B+I042e+cJVvOjt1iwt5JW/yFz9xjleXuvzGq6v7OMJDHOLhsFtNwD8PrAN/GPgjwAbwC9v9gRDiKSHEHwghPiOE+GdC3PRVEULMCyF+d/jzj+3SGA9xiEMc4hCHOMQhDnGIQxziEId4R+ELl5qs90P+xPuO3vGz73l2gdPTRf6v379wyJo6xDsWu5WYqksp/2cp5eXh118Dqvf4m7eklB+UUn5k+P8vbPrZfw38FeDjw/8e4hCHOMQhDnGIQxziEIc4xCEO8f86/NbX18iZOh89O3XHz3RN8CMfPsHXl3t88XJrH0Z3iEM8PHYrMfV7Qog/KoTQhl/fD/z6dn8gpYw3/W8IXN/0/88An5dSDoC+EKK0S+M8xCEOcYhDHOIQhzjEIQ5xiEMc4h0BKSW//foa33R2Csfc2iHte55doF6w+L8/e/kRj+4Qh9gd7FZi6k8D/wKIhl8/D/yXI8H0u/2REOK7hBCvAdNAc9OPdHmTh9gFars0zkMc4hCHOMQhDnGIQxziEIc4xCHeEbi44bLaC/jmc3eypUZwTJ0/8b6jfPKNNa403Ec4ukMcYnewK4mpoTC6JqU0hl/a8HslKWV5m7/7NSnlU8AS8B2bfpRu+ncZ6Nz+t0KIHxVCvCSEeGljY2M3PsYhDnGIQxziEIc4xCEOcYhDHOIQBwYvDtvz3ndye2+xH3z/MQxN8P/8wZVHMKpDHGJ3sVuMKYQQzwwZUN87+rrH79ub/rcH+Jv+/2tCiA8IIQpAWUp5B+tKSvmPpZQvSClfmJq6e/b4YREmKZcbLtdb3p6Iya33Ai5uDBiEya6/9l5hva/G3A/ie//yNyDiNONKw+Va0yPNHuyZCOKUSxsDbrT35rnaDSRpxtWmy9Wm+8Cf852E0T1Z7vj3/uV9gh8dnDGO1oHeI14HGoOQixsDuv7BXX/eSWvk6Llf6vgHdi26HVJKljo+lzYGBHF67z/YJbwTr9Vyx+fixgA/enTXaS+x1zHZTtHxIi5uDGi50b6NYTt0vZiLGwOag3BfxxElKl6Kkmxfx7Ed4lRycWOA+w6Kw++Fg7pPrr0Dzzy7gZWuWoe96ME/94uXm0yVbI5P5Lf9vemyw3c+M88vvXT9kcdne4lkF85eD4rduH/7idG8eyescbuSmBJC/CTwkyhXvu8cfn3Htn8E3yaE+JQQ4lPADPBbQoi/N/zZ3wL+OvBJ4H/ZjTE+KBqDiEGQ0PFiesHu3tAoyVjrhXhhymp3/w+aO0GcZqx1R2MO9ns4+4KWG9EPErp+TMd7sKB0ox/ihiltN6Z/QBeKlhfR8xN6fkL7AT/nOwlrvQA3TGkOogO7eG8e435ukMk+rQNZJlnpBHhhysoBXTP369o8KNZ7ai1qDSLcd0jywo2G4w1T1nuP7uD9TrtWXpSotSJMWesd/GdxJ9jLmOx+sNTx8cL0QBQJtsJofCvdYF8TeGkm6QfJgU3ggVqzvTBl9RtkjhzUfTJM1Hr9Ttkbdwt+lNLoj9bhB9+vvnSlzXuP19lkYn9X/KkPn8CNUn7xS9fv+bvvFGw+ez3KM8lu3b/9wuZ5t/IOmHfGLr3O+6WUT9zPH0gpfxX41du+/V8Mf3YD+JZdGttDoWDptABNA8fcNYIZAIYmsE2NMM4o2Lt1K/YWhiZwTI3gHTTm3Ube0hntC3nrwa5B0TboeDG6JnCMrUUM9xt5y0CIcPjvgznG3UTBNuj5CYYusI3dneu7hYJt0A/UGC19/8ao79M6oGmCnKXjRymFB5x7e43N1yb/DlgjC7ZO11dr0UF97m+HbWjomiDNJAX70a1N77RrZekahi5IUvkNs1/vZUx2PygO94uDel2LtkHXj8lZ+o4OsnsGAUJA7gDHEKPrc1D3lPvFQd0nTU3DMjSiJKN4QOfNXsAyNExDECeSwgPOgxttj6WOz49+9OSOfv+phQrvPVHnn33uCn/yg8cx9jFe3C3k7f05k9xy/x5hvLFbeKfNu90a4eeFEE9IKV/fpdfbcwRxiq4JzHtM1mreIm8ZaIJdndhJmhGnktNTRaI0u6vDwkGDEIJTt43Zj1JMXXxDLHzbYfQ5S47JuVllFHmv5+duqBUs8raOoakD1r2QZpIoyR5pcFe0jfv+nO+kZyHLJGGS4ZgaQggmizYlx9jxPXkUuP2+T5Vsyrn9H6MQgmP1PF6cUs1bj/S9T00VhvdtZ3MhTFIEAusRJRK2WiO3Q5xmpJnctz1gomhTfMDn3o9SLGN3n8Xb5+VWMHWNc7MlkizDfoSJ/btdqyTNSPbxHt4NcSo5NVVEIh/pddoLSCkJ4oyyY3JudvdjsvvF0XqeMMnuO0E5iv32ei8/Us8xndg7Gt9O5tyDwjF1zs6Ubll/gzhFE49uTb4XHFPjzEwRx9THz5ltaGgHJA64G6Iku+vcvt998lFA0wRnpu/vzHNQY8r7icl1TXBm+uH2q5G+1HuO13f8Nz/y4RP86X/+Mr/9+hrf/vTcA73vXmGnZ/DNeJAzyW5A1wSnJou4UUIlZz6y990Ko+fuftbqB5l3+4ndSkz9FCo5tQqEgACklPKZXXr9XUXbjbjR9hECTk8X73mjdnvzTNKM8+sDklQyXbaZKTu7+vp7DU0TOJq6Zmu9gPVeiKGrB/+gbR67hc2f8+xMaVcWxZ1uUFkmOb/eJ04kE0WL+Wruod97p7ifz7naDdjo37xGByW5sxWkVJoSQZxRzZscqaue/YN0eBuNMYwzagWTxdrBGWOcZlzYUNpjUZoxXXp0a5gQYsebay+IudrwEAJOTBYeGbth8xq5HcIk5cL6gCyDhVqOeuHRJvlGeJBnaqXr0+hHmIYKundrvl9uunhhStExODFZuOvv6ZpA38E13m3cfq3iNOP82oA0k8xU7Ec6F7bDcsenOYiwDI0z08X9Hs5D43rLHzKANE5Pl/Z7OPe1Do3wKGO/+xnflaaLu4M590Dj4NYYuuvFXGupNfnUVPHAMKlG1+pyQ12Lgq1zcurgzhsvSri04SIlHJ3I33FgfpDn81Fgp3sjHNyY8kFi8ofdr16+2qZkGzw2u/O172OPz3C0nueffvbygUpM3e8ZfDMeZUJqBCklV5ouQZzRzyfj88J+jGN0Jth8btkJ7mfe7Td26w7/JPCDwLdxU1/qO3fptXcVYaJ6rlMpkRLCbQQZN/ohF9b7tHe5Nz5OJUkqCZKE1e7ORFT7QcyF9f6B6hcH8KKUTEquNAZ86UqLQfiNI7S3GddaLm+sdlnrBcTp3ol4Lnd8Lqz3bxGGTDJJnKhnpONHtN1oX8XIe8Nn8XbNEn8oQpykksYgPNDilplUWiVenOANtWKklFxveVxYPxhCwWkmlT5MnNwyntFasJ8aDSOWDzAeWy+Idyz2PVpbH1Sj7XY0Bur1btcxCcb3FqVLsI9zJ0xSLm4MuNp0yYZjCJOMbLic9IfjC5Pdf/bWewEX1vt0vd1Zn70oYa0bIFFrU5Lt3po4fp6G12Ov1lsvSriwrgwoHgZRcnMuNPoh59d6vLXa3/c1ZLSutdxox/Nstauek4Mo2r8+CHCjBD/KyIZV40vD+XQQzDl2sn8kmYr9ANqe2suzfRx72424sN5neRhXdvd4zgF4cUIviLnSHPD6SveRmhfsBH6cEqUpa93grs9VkmZcbrhcbrh7eq22QxCrdacX7EzrNM0kV5sulzYGB06I3g0TLqz3WbpNr22ko5mkkpYbHoh1yQ2VXtooJvdum+u7vdeO8PLVNu8+Wr0vFp+uCf7Uh47z8tU2L19t7ep4HhS9IGajr2LX7c7ge7W+j9a8xj1MIaSUdLwIP0rJpJpvcOf9fpTo+PE4xvXvY908aHvlvbBbialrUspfk1JellJeHX3t0mvvGrJMcnFdZT0HYUK9aFF2tq6gSym50nBZagdcaz1c4Ho7cpZOOWfQdmPiVO5IcHGtF+JHGY2+OrgoMbNg34PfuYqq+LXcmKtNj997c/2RbHpZJtnoh7u++N8NK52Ajpuw1PH3RFskzVRQe7Xp4UfZLUkfy9CYrTjkLZ0gyrjR9nf9mdwpekHMG8s9BoES09sclM2WHYqOgakL1nshlzfcA5uc6ngqQdFx4/Ea4EYpLTdSLlbrg30eoTokJGlGx40pbVqn1noh672Qt9f6BPH+XN+8ZTBVUq2PM2WHjhdxteFxpeHd0wVISslqN8CPMla6wQPP5SjJWO8FeFGy6fVuDWzrBYtq3qScM2i6ITfaPtcf8dyJUzXO6y0PL0yVocAwwC7ZBhNFi3LOIEhSbrT9YRV894KHNJPj/WM3xH1XOj5fvtomSjOCOGOmYu8qi6+cMwnTlChVa93lhrtrr70Z670QP1IGFPdjJNB2IxqDcHyPCvbNuSAlXG8FvL7c483V3p4kGXeK+apDmmXEacZSJ7inO1OUZGz0w1v2HzdMWO8Fe7qn94OY9f7dkwCgWDZJIul6MUVHR9MELVeJ3/f85EA4j7mREnReavt3FUR3TJ3psk3O0nDDhBttf5wUehRoDsJbkvcrw3VTQ1CwdZLhnLuyB3OuN7zPtbxFmKQM/JSrDY8L632SfUrubMbo2sxXcrTcGBB3jbPaXswgSBgE+2cMU82ZRGmKF6Z0vJg4zcbzdatkWdeP6fmJMm84IEL0aSZZ7wdcbrj4UUbrNlOXuUqOomNgGxqr3XBH8cVeYsRSW+kG6DoUHYP56k3W4+a99lrLY70X7EritR/EvL3W57mjtfv+2+9/zxGqeZOf+NSlhx7Hw6LtqjhxEKYIwbZn8I1+yI2Wz0oneOh7LlFOyf0gHq95K53tTSFWewHXW8qJL8ky5qvOHff7UaLjRdxo+SSpREp5X50za32fGy2f1W5A7wDslffCbvU1vCmE+BfAv0G18gEgpfxXu/T6DwUp1cHHTxIurPfo+DGTRRtDFJASkixDcKtegZSqCn+j7VHNWTw2V3qo4NuLUr5wscHTixUKtkklZzJTdvBjtTnnTYNK/u69qyXHwI9SHFPD1DQuNQb4UcZSx6fkGFi6zmItN86mB7HafIqOQdnZu55Yx9Q5N1viWsvlwtqAS40Bnz2/wX/+zWc4usuU8M1Y74es91V7nWVoHJvIc6SW3xNNADdM8OOUIE6wdEHHi9CERpikTBRtdE0QJul9abR0/ZiVjocbpsxWHKJE8tpyh/PrAxYreR6fL5Kk2fiZnCrZ1AsWb6z0kBLSXWQo3A1RkrExCFjthuQtnfmKw1dvdHl9uYck4/G5Mn6Uw8yp9qOcpXNissB6Lxg7Vxy07LyUks+e3+DL19rMV3Ocmy2PBewdQ6MfRLy9NqCcM5mtOEyW7H0Z5x9caPCVa23qRYtzM+VbqM5CwPm1AXGWMlOyOTdXfuTjGwQJmZRMlmwcU+d62+Plqy0cU2OuYgN3X3OEUIcgN0wp2gbLXZ9XrnUYhDEfODV5z/c+v9ZXB9lUYpk6qz0fP0goOtZYf2AEQ9c4Us+TpBn91QQJpHvsUJVlkkuNAY1+yFTJQQi43BxwYd1lpmhTzZtMliyqqGsxCjDOr/UBSZopNu9uSb3oQyHc9V5AztKJ0+yB6fDLHY9/99oqHS/mmcUqj8+Xx61r/SCm58fUChY5U+dq0yNIUhaqOUrb7EGDMOG1G11OzxSHVT2PmbJDL4xxDJ0kVddklHScr+TuWOeTNGNjEOIYOrUdtkMWHWUkYBrinnt7mkk+d2GDLJP0ggRL13livkTeNuh6MdW8Wi9Wuj432j5elOCGCY9gmR4jTDI+e2GD4xMFFmt5tOGz5a+7LHd8qvntYwFTvynaX7RN0kxyueGOYyHL0LENjcVabqxt4YYqKVTNmw9kBBImKVca6vAfxhkL1Rw32j5RmpG3NKJEkknFyCvYBrap0RhE+FEXKZXbWyVv7qs5R9uNOL/eRxeCry93WWr7TJYs6oUj1Ap37h8zZYdq3sRfVcWPvdgjs0yy2vVZ6vgUbIOTU0X6QcIXLzVpeRFPzpeZq+TQNUgzmKvmODFZIIh7pJnc1TUyTDKuNAf0/RQpJZciFyS4UYKuG4Dgbu/WD2Kag4hq3ryrlmFjEJKkkqmS/cCtXl6U8qUrLWbKDgvVHBv9gHUJBUcD7oxjC7YywMmkSpaGccZ8Nbft+6/3A6SEqaL9UHFqmKRcbXoMgoQ0hXrRJMskF9b7vHK9Qzlncma6xNmZW/fCvKWjaYp9NAhjmgPBRPHRxjdZJrnR8VjuBFRzJrapcbnhcnF9gKXrHKnnOTtzs31yFFM2BiErHZUs38+YMtn03vW8zWzl1iSFQCVgb7Q8ukHM0VqexXqeuYrD1aaLrgmOTxbvW6foq9e7ZBKeP3b/iam8ZfCD7z/G3/+9C1zaGOxre+poXTF1jfnq3aULekHM7765yuWGx5F6HsvQOL/WZ7HqMFvN3/c8d8OET76+xkItx2I1jxeptuXtNJr6fsKXr7XQNY3F4VglKvbNW8YjbysdPfeVnKmSZHeRpYiSjOttD2sY+7692uMXX7pBlmU8tVDh8X04L9wvdisxlUMlpD6+6XsS2JfE1ErXZxAkzFUcio5JYxCx1gtpDkKCWNnCXvJcHMNgsZ6Mq4G397pWcyaD0KJoG7TciLnKg2v7hEnK+XUXARydLAytJxOudzwqOYtrLZencpW7TpSpok3BMoYbokAtgSrBoQuBLzIqOXOc3LrR9vGHDJDH58p7OokcU+ebzkxzo+lxo+0TxCn/8298nb/1ve+itkcbnxAqmFjrBcPEkBJ1ux/NhijJMDRx1yBhrRfghgmDMGGxlqPrxSzUclxYd8fPSZxJbENjpRPsWGcriFOuNT1evNxCIjnq5ik7JlebHmGcca3lYpmCcs7i2MTNoCjJMo7Wc7hRSu0RCE7faHu8tdrj/JrLkXoeXUgurg9ww4SOH5EzdQq2yfNHa+NrmKQZ1eGmq2liT4QCR/dFsci2X8KyTJJkcqxxcb3t8ck31llu+5xfH/DYTHk8ZwxdY66SZ7UbomsajUH4wImpEYsnbxl3BC9bIUxSLF2JGa73fT53ocGF9T6agOmSTTV/MyCZKtrkbR1dM2h4EeceaIQPjrYb8fmLDTp+zPHJAu87MUFrECIQRInSnLoXTkwWiFN1X16+0uIr19ukGcyWt19ju37M6ys9Vjo+bpgyVbJY64ckacZcWbLcNajmTaZvWwcyyXju7LWO01o/4I2VHlebHhMFixOTBd5aHtANIrpexNmZEhv9kGrOGuurJGnGfMWhFyaUHHNXE+xhkrJQsen5MYam1qqjEw+mkXCp4TEI0mEbg2S27IwPShfX+2odNnSOTeZxwxTb0Gm50baJqSSVnF8fgFBsrK/d6LJYjXjX0SoTRYtKzqTphrTdmEGYsNoLODFRuOVQtdIN6AwZd46p70i3ZrJoU8mZ6EKogDnjrvukH6es9yKWux4Vx8LQE165ltANEvKmTsEx+KYzU8xVcrhBgmUINCGQjFo2b87vvUIQp6x1Q5baPs8sVkhScEzBxsAniDPWeyFH6ncvFgkhOD1dJIyz8fMnhCrStb2YsqPaLKt5c3w/rzY90kzS9eMdB7zhkOk4mqOj9wDohwkdL2J9EBBEKoFqGIKpgk2tYKkCUZRypanYCAVL50h9Yt+0dAZhwpeutHhzpU81b9IahCx1PFZ6PudmynzTuSmEEHfEGrahc7Sex4sTJvcgRlrtBby+0uONlT5Tw+LBIEy4tDEABF+63OapRcW2eXyuzGJNrbvHJ/N0/ZiybRIl2a7oq2aZpDWIibOUvp+Syow4yYbix1B2jHGivDkIx4XjSs5kqeMTJ5JBqESHb58/vSAeJywkkrlK7oHmmmLtRmgCWoOIpbaPhLvq+eQtpfXTctXZYiSWPlWyudH2STPFaBhdv44XsdZVxTohuC8dulEMM8L1ls+FddWOp2lq7pQcAyPQaPRV69FE3oaZW1/HDZPhdc7woww/CrBNXTl3bhMH7ybW+yFvrPR4e23AZMFivupwreEN9VshE5L5psNjszfXkiyTlGyDrGIjENS2KeDvNcqOSgokmaSaU8n7zXvG9bbHteaA1V6ohOkllHIGKx2fqy0PTUCWwePz5ftas758rY0Q8O6j1Qca9w994Dg/8elL/JPPXOZvfO/TD/Qau4GJgkUm5R338fY4/a3lHl++2saLVEHiWtvlWsPnasXhQ2c0Fu5TZzeIU95Y6bHeD3juaA3b0DH17Z93N1KFJV1A0wtJsowvXWnR8RJOTBV4/ljtkepd1QvWOLG3XQz7+kqHr13vjfVUf/3VFTb6AZmUSKRi6Ar2lLDysNiVxJSU8od343V2A16UcKOlKkVXmi4fODWJMVw4CrbBhLToBQleFLPRDynldJz/P3v/HSVZlt/3gZ/7/HvhIzIjffmqrvbd0+MHA0eAIEEBIjkURXG1u1yuaHZXokRxKS61Z48giUcr6azo5JaUjihpqaXRAUFB5BIEAYIgOBhgfM+0r+rylT7Dx/Pv3f3jvojKzMrKclmmwfyeU6erKzMiXjxz7+/+7tcY6jQoRpIaLDRN8OJilRxZNIQe71RluaTvx3QDk3qgbio/zfBMAz/KSDN5z4k0y+V0IpqYq55sqQKiXbHZGkVoQuBYdx6SyXfWhOBp9HWrnslPvDLHr17aoh8k9EcpP/fd2/zvvvBkYkrbRcMgTnN2RjGeqT9U823C6rFNjXOz5bsm5TBRUjVQxU/VMWmVbYZhWjAZLBxTRxNqwge1wIrS/L7fVxTxyZMYb5BoQu0i5DJH00yiRO0GTzAxsnUtjbOz5acS/6wJgZQCQ1cLLD+W1DyTjWGIY+jkUtAdR1Nmx4TmDE/OaHr3dVnvh4fu/uw2mp0YS7umKoKDNKfqmXSCvZT2E02X7XGEzLmrufEw2BhEjKOMcaQWcocVIbd7AZ1RjGvpnGuXcQ0dx9QJkpxmyaLjJ3sKoKprcmG+wjBIOfkMTBjHccogSNkexmhC8MZynXbFYa0fYRuCunv/xo8QAsuY3MOSKMmnCUOHQRNqHI9TyUrTxTF0dsYxfizpBDEn8hIbg4iaZ05ZMBMDVcfUONd+8s+OJgS2qZPn4FoGrqVj2xrhUCWpxKnEjzO0YpgYhkoGDQ9vBHo/3Oz49PwEy1AJWFKCfp+C7DAsVB3aVRsp4a0TDXRNsNaPGIcpO6MEIWAcqYVhlCkWwYM0px1To2RrrPVVg9+2NNoVe/oMThZm26OIdsVmtRfSLFnTa6nvaqRoDzHdmLpGz4+52QnQNdWYOWgxPnn/+apLq2wRJTnjKGFzGJGkkhcXKvTChLapU3ZMZsqKKacJMb0Gnq1z9gnuVutCsXktU+PSxpjlhkucSQQapi4YPoCsOs0lV3fG0zHzTJFENC9t1vvKhHj3/WnogiyX03rjQZAXcpfJM3p6pkSQZDQ9i7Rocu2MYrJM0ixZ6EIrNg0cMim5sjWmF0TsjGICS3+mnh+aUOxl29DIc8ls1ebDjRESGAQxQgh2RhGrB2xc1TyT2iHM0sc7LgHF/acJQRhnxGmOaWjoQjBbsen7aeGjkkybV55l4Bg6lwuD3bmq/Vjz4ARlW2cQSiwjJ041/Cyj5lqUbGN6PqSUrBZNptU0oOaaOIZOkqbYxsGNpt33na4JbnV9uuNkOpc+KCQSIcDUdQxdzTFZLmke0jQ0dI1SEV8vJdimziBIpw3y7VE0ZcPurk2Nhxig8lxOr8UEmlAS8Ksj5VVYdUyVjIrGXM2h6hicnt1bF+w+t5N6VgjojCP6foplqLnxSbNANAGm0EGqsbfmmBiGqjH9KENIwc7oTk2WZjmXt0YkqWSh7jyRJu7DolW26Y4Vs97Q1ZwxaVB0RjFZLoiSnFzmmLqg5phkmaISCMA0tIdmQ3/7Rpfz7fIjNxNmKzZf+dQyP/vtW/zbP36B2WekBBBC3NWUPegaj2Jlc5NLyWzZUnWLVqxlH4HNmUuJH2VUHfU+D9Jwn686NMsWGoKZks36IOR2N8SPM+ZrNlH66MzzR8FB524/en7Mb1zpcKsbsFhzSPOcVsVmaxhhGxrtikuSStZ6IdX53+KNKSHEBeC/BuaklK8IIV4DflpK+eeO4v0fBpaukea58l6S0Pdjlhoeuq4m6JKl850bPa5uj2iULM7OlOmHKbq4m91R9yw+f2YGKeVjN1dKtsHrJ+pUbeVDMQgTFgsJV5LlXDgkaSFO8ymraxxlUFGD+mSQbpUtRpEySJ4sxlaaHsNQTdCH7YQcZZT6mXaV/+CnXuKv/rOPqTgOUZrz65e3eXmpSqt8dLrcNFcLu7mqw2zZVt4ZRWEg5b0bfLsxKdKjJFcRmvvSCkxdwzQESSo5O1Om6pqqSTCKGYRqAdYqW8xXHcIkJ80DHFN/oGaMbeicmS3hWsrTYaZs88H6gJMtjxcXypi6jkCw0ryzK9DzY/pBQpKpnU/H1J/4oDih0J6a8agUspeybfDZU008yyCXksVdsg4/zhiGqtgdBAm6dvSpMLuvy/3OdZjmU6PZUZjimRpxmvP73lziH7y3zmLDZaZk77lnTEPnMyebZFI+1vn1LJ1RIRO63/uMigZkUCweRnHGb39pDkNX8sIzM6VCC3/nvn5tqTZlHD0qwiTD1B9cfjrBTNlmrmYzjJNpc+D0bJm5qoOu318WtR+tisPZ2RJpnnPqPo22imPy2dNNTjRdNKHhWTq6IYiTnFbZpOHZWIaSO4dJVkiN7phFDoKUimM80d3hdsXm0ycanGy4GIaOqQlW6h6NQsJdck0uzt+Rho8itZixDY1hkCAlRxbbPvF4i1PJubaKD98/z0VpRrdgNd3vmTozW6JdUefYNnX6/sQsWfLCQhkBjKJsulh6Ya6MeZ/7oewY/MD5GUZhSrOkWL9zVXsPI6rqmEWcu5KauZa+5/ws1BxKBb1+FKbkFoeyprJczbsTJsnk34IkO/CZck2dH7wwg2PqGJpgrRfyjes7nGy6xGnOStObsjfnqjauqRdNOuVBI1ALrzyX97z3dh/To6DkGLx1sk4/SOkGqpl9ojiuYZCy1Lz/HBwm2XTMHEepauYX57HuWaRpziBIqLkmhq5xeqbEOErvKSvYDVWfqHM7eUZB1UYl22AYJqSZ5HQx3yR5zlLNo14yFXNK1wiCBEMTXGhXKVkBSJ7pYtWzDD51oslcLWCuosbCfhiTpnBhvkKc5lzf8YlTtfMfpjnlp7CYmava6FqdxZqrJFxCcLsX8upynaWaw3zN4WY3YLxvjhpFKcMwIYwzhFDNzEYRdPGo96VjqibRe2tDbEMnSFJONl06fkzNVTUUqIWXa+kEcUapeJZOtpTs5l6f7VkGZ9uKfVtzTT5cHwLqXtvPZgHFyEpzSbti7xk/LEPnpXnVXK65Np8/01INnvvYUZRsg/Nz5WLM1gmTbMoA3C0vrTgmp2dL5FIe2lxIs5yNQUTDM/FsgzjL9zSlAE40PQxNoGtqXA/SjNmyw7l2mdeT2vQ87sbuc7vSUAl+piGmASpxqrzoRmEOgkdiuk/qicMwW7F540SNhbqNXYylcxVlmWAIQckyWWrcGafGkdoAc02dYZBQsowjmxsfFWGSFbV4Tj/ImKsmNAvJ7mLDJUpzVloOaSpJcrURdHGhwlxNzQut8sN5Mua55NvXu/yu1x4vVe+PfPk0f/MbN/iffvM6/9aPXXis9zpKxFlOkkr8OOX69piKbXB6pswLcxUQki+eazFTdrjR8XFN/ZFSyR1DbQrNVCycB6yZF+ouP/7iHLqmNhonknVNg+WmR+kR5eOPMs8/6GsGYYKOhl6sT1caHr/79UXWTzVYrpdYHQQEcf5Mpe8PgqOiNPw3wJ8G/gqAlPJ7hefUU29MGbrGSws1Lm0O2eqEVByDmbI9LYjeWxvw0caQNJM0S9As24fuiuiaGrwzKVmo3u1tcRD8WKU21Nw7lHfH0DnfrtAZR7y3NlCTrVHhxcWqotLuG9DHUTpd2LuWTqtsMQgTHFNjox+wMYxYaXi4lk6cZtzsKP+NZJfW/l6a/An6QcKNHRXbe2b2aPygLizW+Xd+x8u8c7vH27f6/O1v3KD3TxP+xI+d47OnZ4/kM8Ik45vXOnzqZIOKo7wHPt4a4UcZFcfg1L5iQkpFBbcNxXDaHEboxURdsvUDH3aB6phPZIJXt8c4hkaQpOyM4+ku72TCf9idcM8ypq+J0xxT03EM1WxJUmXOHyYZNVcdfz9M6I5DrmwlbI9C2hWHFxer0wluUPi7NEvWI3l9HARdUx4lk4ng3dt9LF3DMjWqjsH1jk+zbE0bO1mW0xlFdIOIGztjzrYrnJopTXdnlGdVhGvqjyyn0jUVTf8gg3TJ0mmUTKI0p+zo/KP3N0nSnF6gdg82eiE/cqG9p8jx47Qo0iQVRy10N4cRjqE9lB/DXNVRxd8DNH7maw5bw5Cqa/L2rS7Xt5VMJcpUo6pdsfeMD0GsvDrCNEePlV/TxjDC0rUH3gmbsIhMQ53Ph2lOOabOUsNlcxARpSqV8/rOmGEhn7bLd1+X7jhiaxixcIDfUKtkKbZgjtpSvQ+qjjkt7jcGIQ3XIrEkS3WX2z2fXEK7YrHWj4iSjBxJ1TH4cH3Eai/gRLPES4t3pAL9QKUJtkr2kUSXCyH2zCtXtkZ4loGpadRLBj0/YbWnGtmOqTPw1bPb9SO2RiFLdY+6Z+6R8e6MIsLiXniYhulCzeFWV/mRDMN0yn6YjC9lS+fXPt5i4Gd4ls4PXpg9tDklhKBSLFr6fsxvXO1QsnRqnsmL81UMXTV/O+OYkq3fsynV82Nu9wI8y0ATgus7Y65tK1m7aQg+fbJZsLECoiRnoe5MF7hRmmPtOwdRmlOydVYLo1QhYLnhKr8uoOFZ6JpQbF4/oeNH6EKj5pq4loZradiGfk8jVmD6/G8MQjp+jFP4Qr68UGG9H3Gz43OqpTYcbFN5YnT9hDjJaVdtyo6xhw84DBP6xZhtG/o0fny2crd3yYNAAK8s1fl731vFj5URcpzluKaSje2/rpPglN33fNk2qLoG17bHWLo6/1XHRNcEpia4Wkj3ekHC2VnFFLhfnQFMmSy2qU2vo6aJaeOuZBnc6qoaZraq4tdNXaNRstgchHy0MUQU514IDUNTPj+zZYeKYzIIE8rWk2043wtzNYe54nqNwoRXFurkUl3fv/pPP6Y7jjk1U+LTpxr0xjHr/YDlhrdn/jqoZnwcCCGYrTjMFjvsH64P0TXBje0xFUsnk6rWWGm4WIZimw+DhHdXBwihFosly8DQdN653cfQtKmEKZeSuYrzwOdasRhVE3NnHBEPckZRxjjOqDgQptm0ZjkzUyJKM7ZHMdd3xizW3T33bZioza+qqzZ4kUoCVCl+Z65i8+2bXWqOdZdSYK0X8BtXOkoStVLj1Mydms0yNFzbIMqUzKji6IRpzvWdMSea3l2NkCDOWC+kpLsZZY6pc3G+Mk39vrYzwjXVfVq2DUZRqnxrPevAZu43rnVY7yt274+/NEcuJZ6l7xk3DF1jrWD8p7nk1cUKlqHGXe+QsfvMTEmNXeMIP04p2QYNzyKXMV7RtJo8gyea3qGet/sxqSeM+7Bx98+NN3aULYYEZssWt7oB2yONdlWN92uDkFGUsDUMuNVVIUTLTW+PFH1zGJJmUm2MHeHzf1BdsNYPuL49ZrXvk+dQtk3WeyHNkj0NYxmECWdmSmwNI6I0JyvY94/KPLyyPWIQprz5CMbnu3FmtsyXzs7ws9++xZ/40fNPbazMc8nGMEQTYk9DWHkhjdGFwDQEl24Nubo15qsf7/Dl8zO8ulwnR9IqOdQ964HmmXtBsZclcxUbbRdjcRI6lSM5M3P3Gm5nrAgB8zVnmqA8U7aZ29fYflBkuZzO8zMV64HsgbJcqqCjOEPTBEsNd7oZEyYZYZKxM4x5e7WHyGGcJJRsg5mygyaUJUy1UDGcscqKiPGMpO8PiqNqTHlSyq/vu1DPLI7L0BWVchSmXNoaUvUMNDSqnkGaqXhVW9fJcg7cVdmN212fr1/tAvDGSs7pfQ2INMvpB+pGmFzsGx2fJFUU6ZcXqwghEEItQDvjiFGYsjWKqDg6yw1vWtRkuTL5HEcZlzZV3PTrKzUans1CzaEfJKz3Qr57q0vdtXn7Zo83Vhp7pAsPk+Y0SYuQu6IwjwLtqsMPlef4/u0B760P8KOU/+Dn3+PP//7XubBQf+z39+OMd1cHzJRsTsx4pJnEj1JAHEjrX+uH7IxiNE1p8fu+ujVPznj33L261Q3YGinapmfpWLrOtc6YkmkiEIzDo/Oq0TVBxVWSnyjN2B7HhHHGN652+NTJJlGSqRjyrTFXNkc0XItPnWpwpl3GNhRL7MaOj5SKUbffAPqoULINcqlosevDkCDJ+P6tPkhoV22ubI9Z7Qe8t6qMGoM0p1W2ps2StX7AIFDn3rMObgg+CHRNoGv3f62SmGi4ns7tXsCNjiqCPt4YgwDb0Nga3vE66fsJNzo+1ztjZss2VdekbBtTar5XyLJ2ox8k93zmHuT7BXFGEGcsNzy6fszV7TEb/YjVvk8QZ5Rtk63hHW+YQZhwfdun68dYhZRgwiADtcjcX/BOmEO7MUm+SQrG5oOczz2vjzIsQ42hE8ZPb5wQZ/ldDbwwyfjqxzskqWRzGPGlczN7JvWtofJDCZJs2vR4UNiGRqWQJfhxyrVtH6EpZmyS52wOYtJcMXi+eb1LlsFgJZk2piaFiZTqWpyfO/pnxzZ1aq6JH6dEiaTrJ3R9lQTXrijmws3ueLp4/OypJi8v1aev9+N0KsPIc8nKQ8g3657Fh+tD1voR64OI3/7SHJomuLY9Js0lH60PuLI9BgQvL1bx4+y+rKksVzHKt7oBYZwx8BUzt+snzJStaYroYeiMY/JcsQWzXBXvEokmBEt1D0PXGEUpG/2QUZSS5jnLdZdeoDZsZsp3xt6JVErTmDasen7MOE7VQqbhEtYyFmouNzu+8mIaRCzWHN5f67NY9x64SAR1z3WDmDSTuIbOMMrIpGRnqJI+HV1wqxdyeWuIhkaYZUSZ+vxcjjnXLiOl5HoxZo+ilFOt0vQZHj9EQuB+GLpWzAmC9X4wld5NWElwp2a52Q3o+TFnZ0vT8UUIQc9P6IwTrm2PWWkqlkerZOFZehG6IR46NXLSBIuSHCHUGJ5kOV+/2lFsQVOwWHMZRRklW59KtIdhwpWtMd+90Stkg7BYd7nV9bkwX0HmkvfW+tMm46N6px0VLENnpuIgJVzdHtEfx+o6o2Twt3YCMin59MkGryzXSDNJ3TMPrBmPErahoQklA9/2YwZhSt2zsHSNhq4Sz75zo8Pbt/qUTJ2Fgk3cGceMopQTTY/1QTg189e1+8tK9qNkGySZSivrTiLPCx/USWNKKzYCJ3OuZUR7nsur20pmenlTsfRudX3ma2oT6Mxsme1Cmtb3U2arFid2ear5u+rdYF+9K1CN7AlbsDuOGEUZcapCDfYzXNb6AVujiCBSgUTVXfJ1Q9cwgK9e3ubtmz10TfDbXmxzrl3hRtHYHQTpns2R6TEWz0mY5PSCmLWesi2YsOelVPOHStUTGBr4iSRIY7aHERfmK1O2U54rv8eJDLIfJPwv373N1e0xZcfgC2dnuNCuTCWPO6NpbhX5Qz7fk3picv4eFI6pU/eU71DHT+iHKRvDEF2DE80SV7dGdP2Ed2/3SHIVfGFb2vQ57wfJHu+ux/EB3o171QWdccw3rne41QlASF5ZrJNJyVzNYa0X8M5qH1PT2BrFVFyDshSPzU752pUOAJ851Xzs7/WVt5b4k3/rbb5xrcPnzrQe+/0eBNvjiO2het5NXcnK00xydXvIVy93EKgE2evbY67t+JxCcqMz5sxMBSEerI6+H0ZRyocbI4Ik48sX2tOm3GrP5+2bPXKp7t3dgQFJmnF1Z4yGalwHcYZpaORSEUAeBUnBDgMeWIKeZEr50RnHJLlkFKak7Zyqa3Jla8yNjs+7t3vsjGMqto6f5DRLduEptReaJu5SBz2PeKzGlBDihJTyBrAthDiLMjxHCPH7gLUjOL5Hgq4JyrbBwFTadBVBmtOIDNpVJRuxdJ25qn3fDfqJke8k9edEq7SnkXW9iADXNcGLCxWEULToJFW01v0FxlLdY3smYhAmpBlsjgIsQ8MytKmRqBAUUZZwdcuncdIml0x3f2VRxE9c+jUhWGgoPenMASkw90KrZE0LxfoRm1TrmuD3vLHIP/5ggzBR8qS//ps3+D//iMV87fGKR72gGsf5nUQf29AxdEHrgO8/kUHmeeG9gJrEzEO0/nGmjNWjRCp5iat8GoZBRtXROT9fpnVAY2oYJvdxyTng+xTeJlGaT2VwnVHM1jCiO96gWVIJjr95pYNnGYyTjJKjT3cJJ/dcnOb3NfR7HJxoeozjFFvXeG9NeRbEScbXPt6hUTJYqpcKnyCBEJI8z/cweCZMj8nC5Eljwp6I0xyE5OXFGv0gZrbU5PLWmH6Q0PVT1voBCzWXMFXxz1GakWRqx/OwY54wDh8HV7fHBQMhxjMNzrRKCClolcwi4j2lM07YGUW0ympXbhyl+HGKKIr5yXgjBHd5veS55OOt0V3pYPM1h41BROkRG4TLTU/JYSWULWPKeDk543F2prxntzXOcrUQLRyk9o+JfpQrDyEpCJOHW5TXPcU2EUIZMYeJYnCt9QJk4bnj2TqXN0fF8y5p7FpEaMV1TbPHk24ehsVi4aQLuLoz5spORpLkfPdGjKH3uTBXYRilCAQSQY7y95lA18RUHvJIx1icbk0I0jzH0nSVRpvlRGnOiaZHz0843y49ULP9djdQqaL9gHGUMghT2qHNej9EiAeTVjVLFn4cKCmmpsavs7NlFurudC6ydI2tUcQozFjth1zeVD4UK00PTdxhME0KvDyHVs0iySSOqRVNY4p45TvX2jZ05qtqF7xZNLgmc8SDoO5ZvDhXZa0fYpsaTc9icxDR82OklHzvVo8gydGEaqJUdYMkk6SZnMa47x2ztSK4w2YcZ8xVH0+a9tpyXbHkooStYQxCSZfCRI0XlzdHdP2Yrh+TZXBN+MyUnWnTfVLOJrky7J7I3uNMcrKlmML1hzQgXqi7bA7Cu9hAk+fd0DTVeJI5w1Cx+SZydUMXmIZitS3XPYI0QwiND9dHnJ+TOLpBxTUfKHThScMyNC7MKUZvq2zxnRtd4iwnzySbg4gsV/NjN4intUuS54fWjEcBxZjTi+AQ9TmjKObd1RBD08hyuNEJ8KMMpCwsMSSupSE0A9fUaVftaYN8P2PxQTCOUm52AoZBiiY0OqMIPx6qBn3ZxirmIaeQwUqpJLQHIUoySpZOmCgJ2uTa73FUlXvP40rDw49ScuD8Af5TlUIunKQ5P//2KpvDkIWaeyBTxTZ01nqKBbLWj/Y0pu5832TqjTeO1BhlFp5sd/wV9+LNlTqXt0bMVx00ceccT77f+iBkexhTtgwqtqrhVR2T4Jo6N3Z8LsyrDcsr2+NpWMFKU0kig8K6I5gcz67jmKSOAQ+cbDrBQs1lfRA+dBOmXXXU5pqucavrc6lQs3zjaper22MaJYvVfkiWqwCTPJd7mk+7692jnL/vVRfMVx1EMaeYumAcZZxoGvzapS06I9UsDETOKyWTc7NlguSOLPVR8euXt1msOZw6gqb7T7w8T8l6h5/99q2n1pjaPVYkacbtrmpSbQ6VN1uOZGMQkuR50YSBt042aZYs5Z18BI0p1WcV+ElOLiUak3WgIJd7Azgm2BrFXCvWCZ8/22Sp7rEzimh4FuVDmNWH4VHmeacYe8M0o+/HbI2UN/KCZDpXDkO1dhlHGW+s1NCExolm6amss54EHpcx9XeBTwH/OkrGd1EIcRu4Cvyrj/nejwQVKx0q40ckFVvHKnYMaq7F2dkyL85XGUdqAXO/WO6lmku4kHFlc4xt6FzfGe8xXJ7sHO5+r1OtEqMoPVCDauiCtwoJmpSoTrLUiLN06i3kmToVxwDJtADUNcFKw2MQJvyu1xZZ74eMY3VTXmhV7qsJT7Kc9X6IpQvmioHd0NXOw+YgLHbNjxYnZsr8xX/5Df5f//AD4kwNRP/lr1zmx16Y5YdefHS9tGcbvHmizkLdVTsXKFp/LmFnHOFY2p5UloW6Q+f2gCjJWG4oM15D06YeT+uDEFPX9iT6LTc8NgcRwhXUPJMzsx66phGlKma0bBvTJMAJBmHC1a3xtPn1MFA7CWoA/5GLbS5vDvl7b6+phBlT44WSxQ9emOV21ycH5soO764OiFKV0Hey5SnJ2hMwHJ9A08R0YfHGiQaLdZdffHdDnT9DYGiCN1fqNEoWnWHE68t1buyM6QXKO+ZUq1QwC7Un1gSQhaxMRYqrc1eylJz3ds+nXXFolixWWmoHuOIY06IxyyRBmlKxTVaaDnNVVxnC2iq5Zr/3zMOyBiZIMiURyHLYGYVEqWSxoXw/wkQlfrTKFjvDiPVBSKts4ccZLUBIiZ8os9LFukOrbFP3lMzXKha4e46RvRPuRHY5aXTvT14Ok4ytYUTJNg5tUjQ8C00ohsDtXkCjZJHlEwP/vW9adUzeWK6rFL8DiquZisVy3WEcZXzm1MPT1ScL6kbJ5HNnWgRRyuXtEbaukUlJ2TZYrLkMwxTXUgyrX/lgg5Jtcq5d4ly7jB9n00bvUUMIMX0uX1qoMVO2+caVDu+vD2mWTAZByg+cm+GjtQGDKOO1pRqb/ZAP1weULJ3lhjrGOMsf2vw0SjPeXK5Tc8dUHYOqq6S3J1suUaqYMGv9kFMvlFioOQghGIQJm4OIqqM2crZHER+uDdB1wadONKbXt2IbdEYxZdtgra/kDPoDjn27qfmaEAeyB3Kp5BkaER9vjwiTFEvTSfN8T8HVrtrFYk+j4VlsFhLV2bJNs6QkM4Yu+M2rO/hxxvl2maW6+ryuHxMk2UOzPxYbLs2yNW2qrTRc8lwxd0dRSpRKTjQdfvDCDFEqybKcraFqXKmGYIapK3P8pbqHlHLK3AzijI+3RtiGSh962EbFfM2h5pms9lQ6sZIeJgyjlLmqM/W5idMMTWhUXcVkcVHP0fl2hbJlIKnQ9RPKjkPVNah5FlXXpHpIrTEZPzxL32NOL1ALy3RXhzxKc+ZrDoMg5fx8GaQK25DI6T1mFOzHV5dqLNYdFuouH64PiRNJmKTkEgZhzI2uz+fPPp2F1v0w2Wgs2QY/cnGOleaQK9tjwjgmyXPOzdV4Y7nOWj9ke6SYfa8tK8/AR/UtuR80ba+0L0wyvn5le7o4nK861D3lO7RQdXhhvopAGXi3SjZV1+CD9QGGpnGy5T2SrGZyTZVsW06lrdujmCs742kSm2PqvDBfIctyxL6F1emZEoMw4UTTpeMnvLKk0s2aJYvtUUSS5ZxoubRK1h72XF6MD2dmS3zvVp+3b/Z4faV+l4WGY+qs9Xw2hgG60O7JHl2oOZxoemhC3HMz8LOnVFrkxFgcFCsrTHJV3x+AZtnms2U1nl3aGPD92108S2e50S7OIdOx7uXFKuuDEMc00LSEVlmxJLJMInU5ZSlOGJgLNYcvnZnhndU+MyWL063S1N8L1PuGSVaE3tzx3dz99zDJWO0FmLrG8i5/UdfS7+vHdS9MzvGZWRU88b2bfd5b7eNZOiUr5+JclZZnsTYIeGO5zsCPubw5omzpvLhY5Vy7TJrnRyKBnWCSUOrHGZ6p895qn41BRNMz+PyZlpKl1R1mSzZppjyNO37MC+0Kr52oT2X4lcesc/Nc8rUrO/zYi3NH0rD2LIOffHWBv/+9Nf79n37lSKwL7oe6Z2HoGgLJzY5ihzddiwvtKgLBO7cU4zXN4YdemOHMTIXlxtEyXz1Lp+bqXJwr7XnmlxseacFIWtlXm07uqYpjoglBZ6yCRTxbu69HWD9Q9gyN0t2SXYl61rJdxfdha4m+nzAMU5brLnGaqWCNMGG4GrHjJ9iGzhsn6gggTnJmqy6aphJWP6l43Eq8MMmXHwM/JoQoAZqUcvjYR/aI2BlH3Or6fP9mj9v9kH6Y8uMve5xouUgpWe+HzJQsPlgfsjkMaXoW5+cq1AsPigmklFzdHqtI8qrFyRm1wMv2reRWit3msn3H30DX7jZSB9gaRtNd5ZWGS1YkDawPAjrDmHbdZq7i0Cpb9MMEP1ZNhwmyPKfnx5QdVUC4UskndHH/BfLGIOTy5pCen3JxXnlbjaKUK5sjbnT8Ix8IJjg9W+E/+srr/IPvrfGL763zTz/c5B++s8ZXPt3lz/yOlx7pPV1T54X5Kms9n1zmtCsOfpxxuxdQcwz+yabymzrRcvnUiQZI5XGR5SC0IZ8vdgo645gP1gbkUjGwnEJyA6pA+ezpJoMwncrO2lV72nC8tDECKIzBTZWesjHi+o7PbOXxJH5qIWtSctSC4UTTY7nhMQxTNgcBfpzyd759Gz9JERLOtCv84IUZXlqsPdbnPizKjpK2WbqgZBfxyX7M+iBE1zV+/eNtru2M0TWNVsnitZU6v+PlhSeqbd8aRnz3Zp9bXZ8TTY+yYzBTUjvXlzZHLDdcLsxVCBNlMpqm8CMvttkchnzrepc0l5xtl2mVnWmT517NgLpnHdjcuR92RhHvrQ4YxymuoSQ24zDl/dU+v3mti6UJzrUrVByNrWHMMMr4qVfLjKKUb9/sKcr+XIVGyZ4uEO51jLomOD2jGuWjKOXvfmd1uqM6kRE2SncS7G731K75ZEy7l7n6+iBgcxAjCnnshXYZ1wqYq9jT3dYwUe9TdQ0W6i4L9zCtXO2pxrjMBeIx6rjZso2la6z1A+QW9MOE2YpDnGbk0uDTpxrc6Iz52W/e4urOmNMzJT53psVbJxtPbPw7CK2STdk1sA0x9esCSdUziXPJr13a5mYnUIlauuDcbIl/6dMrD9+USnI+Wh9RdnTqrkXVNQjijCvbIwSCumeSSUVf3xnHfOfGOg3PxLV0DE0xjYWASxtDfvNqB11TASIvzFfI8pz5apkwVdT0+ZrNiZb3SKa5B2EcpVzdHuNHGRLJC/MVgiinXbM5O1vGNjRu7IxpV20c846v4KSpBsr882Td5dLGkF98d53r2z6tssWVrSHn2lWqjslsxX4oaeRuTMaH7jjmN6/uFF5JJi/MV9gZxby8UGW5oY5rY6Aa0FmuWA+/fnlbsdTmKoDgOzfUAvTL52bZGkb4UYYfqfn/YdNNPy5SvGxDY6nhYhsaYZqxM0wYhQnDMGO+5vAD52bx40z5puz41FxT7cwmGZapc2NnjKUrWSBA+QEWMau9gJ6fcLunaorzcxXKtsH3bvVY70d7mFY3Oz6GptMq67iGwY2Oz0Y/oGQbbA4iTrZ0vnerx3urQzxbo1VW8eyTjcGdUcStbsjtnk/dVcEki7XsnostP055b3WAa+qcn6scSeDL/fD6cp28YIG9uzYsFrGQpRkfboyxTMGZVpmqa/DSwtObv0dRyjjO6fspS3WHl4oFftePsXWdKMlYHYT0xwmZVJ6H76wO8Cydn3p9kflHkExVHJPlhkvJ0rndD7ANwaXNEe2qc9dmnqlrqgGZ5nue0QmLbmcU0fQsap5JnObc6vp8vDVitpi3d/tHXd0eMwpTkiznndU+Nzs+rZJNs2xx+gBfmdVeRN2z6PkJry1VidK8YOKqUAqv8DI7O1tiFGfM3cPXsV6y+MELqqGk1hMjbncD6p7JuXaFw9a2t7o+v/z+Jl+9vI1n6eS5Oj/zVYcbO2OQgq1RTJarOX6p5tEsW6z2An7lgw3Oz1VYrDv0goSZotG1NQgp2YbyqCk5U4/UCbZHMVc2x+yMY87MlnhtucZqP2RnGDGK02L+kcV4kFF1zSMb7ydYrDl8tD7As5Xv1Jl2iXGUsT2CmZJi7P3P37qFzCWubfCFfosfe3H+SJtSE5i6RtURfONqh194d52dUUSc5XzudItGycIUgqprUHct1ocRnq3j2jqLRyQnBHh/fUDPT/jiETbdv/LWMv/zt27xD99d53e/uXRk73sYyrbBziji460RV7ZGfGMUcX6+wtXtMde3fYQQvLhY4UyrzBsrRz8OZlIqT0tTZxQmlHfdL5OxIkwy1vth4Tups1T38BcyoiRnqenwwdqQrWGMH2WcbN07PVnKOzLQcZxOG+5A4UOm6pONQUjJMvhnl7fojJN7HvtqP+B2N+B7t3roSIQmcE2TrVGo0vfqDl8826JddWlXbQxNeQA/bmDbs8TjNqaWhBB/ef8/7uq0/4nHfP+Hhq3rXNseTf0TPFNnsx/y6lKNr17a4ePtMa1ip1ND8PFWh1yqB6dZtqaFYJLJKZNiGKScmilNzaX3fJ6hM1d9sK6zkgipybFiG3zx7AyepRfFN1Rs1RwZhMlUdrExCGmULPp+wrtrA7aHMe2KTcXV+d6tPsMoYX0Q8EMvzLJUV5P3xEiz6t4xCbYNnWGYFl4sWRETHCtmmXbHA+JJoOZa/L5Pr/DuWo/v3uwRxCl//WvXGYUJ/+Hvfv2R3vPSxpCvXt6m68csVF1OzLjc6gVcSXLCRJkE39wJqEyidIXGIIrJd3URVnsBuZRsDWPqnjk1yJdSsjOOESi5yM2OzyhKWay5zFUdtoZ3tPhRmlNBUa1NXaNVeKw8LoIkKyKdE8Ik5X99+zZXt8bsjGK6gfIyGQYZOTlzNZutXf4ATwtxmlN3DUaRiakJfv3jbS5vj7i6NcaPVUrkhJH26lKdnp8cmID4KOgHykC6ZBmsNO/s3E2iy3VNgFTXZ22gPIzCJOPd1ZgwTvloc0SeS26bAV861+LK5oitUcwwSHh1ufbAzLP7GaKHScbNjgoYONkqYeoamqYYS7qm0jPGcYplCt6+1cdPEq73I+WP1I/QdIhSyamWR7visN4L6YwTlhspjQeU00z8ZSb+Dzd3fN482VApWaa2R9JqG9pUmnwYDTjNJFGaMQoTvBN15mrulIk5gfLzydkeRby8WOVWN2AYpnclrn33Rod3bvVJJfyjd9cf6DsdBCFU4MPWMKLmmtzsJLx9o0OcQtnRCeOM797scWlzyDjKuL4z5svnZ+j5CcuP5yv6UMhyqaQxFYeuH/Prl7YZxCl9P1b+BWlOL4zpjmIWGy4rDZfNYfTQzbNcql25f/rRFq6pnpOzs2X8SCWvbY9CGp7NIPCnya+DMMEyNLI8Y3usfJu+e7PHle2xoqBHKTd2FBPn8tYIz9R5caHCbMU5UhZknCqPle/d7FN1DV5bqjNbVjHbUZLxax9tsT2KWKg7/MTLd9i3YZxNZWCWoZgZ377W4aONIT1fMVZaZYsbHZ8TDZU6uvKYx/pL723wqx9tEmc5Z2bKVFyDuYpNhvJ5KjsmrqlzeXNIJiWvL9cYhAlholjMnqUVflsZHT+iZKsEIEMX0znpQSGlYkq8v9ZnGGb82EtznJ+r8K3rHRBwsxMwX1NGzLapTLC3RpHy0gskwyghiDN2RjFlx2BrGDIsAiFsQ+OHX5hlrnrnOQ+TjO1RRMVWaYq2qRMmyoZAIBgEqsE9kUrurjNsQyPNVFJf14/RhCDOJQ1D5+r2mEubQy5tDlnvRZhFqvKNTsCnTza5OFfhH2yPCdNUJeuaGXGWHzr3vrc64GYnQAglVZqvOkWgzKP7Hd4PtqlRdSxqrkGSKq/IjX7Ih2tDhIBcqLHgXk37J4VBkBTG+Bplx+D6js/2KKI7TojSjEzmGELjg/UhUoClKdmIbQhWu48uX2+UlJ/Q2iDkWlf5bXXGMUGS8vbNHn6cMVNWfmaXNkZTCf2kMRUmGVe2RiSZ8qM7Z5SVlG2csD2MyHN4ceHOQlAlzaVIJKu9AFDJm3Ga0R3FWIaKVd+Nsq2aX6daJaquyeXNEbf7Pp1hQsU1eHlBhTz0fCXdKln6dINoGKoF5v5GSWccc2ljyM1OyGLdYanuHXrP9YNkKtHTBHR9Vd9pQr13LiXvr6oGTsOzONcuM4oSfu3DLd5bH7JQ3eGP/8i5acDOra7P1c0xH22OKNs6htA4N7e3KRelGVe2x9iGRpxlpLmcJq5uDtQznu6qr+4ls3wc5BLKjknDs8ik5FvXu1zaGBHEqUpGG0fsjBI2ByGnZksqCTpKnhjzJ85yun7MKIz5aEOdu29f69AoW8RZzjurA87OlhBS2aFUXPOhrTwOw69+tAXAF8/OHNl7fvZUk+WGy89++9ZTa0yBGnNGUcJ3b3YZhikfrA0YxBk6gmbFomKbVDwT94jCm3aj7yd8tD5kYxjxf/jyacqO2uS4tjMmLuwMbnWDaXDLS4tVdE1wcddYkuYDNgcBZ9qlQw3EhVAp91Fyd0iLoYlpsnDZNhlFCTujezelQIU4DcOUXlEfgmSuJrixM+TD9TEfrA9Awu98bQHb0I+8Wfws8Lh3QAB86ygO5ChRdQzKjoEAqp7JXM1lYxDR8VVjYhylvNAuM4ozTE1jtR8yDBM+fbLJMEx5caGqZAElk2GYMluxKdvGY8uk5qoOG/2g8HsRXNsZsdws3TGWLCbpyY5QnEp8O2MUpWRSTiOoEXCyVeZWJyBIUq5ujam7FuUijvxmJ2AUKZ+iV5drRUKLzesrqjnQrqpEgYZnMQxTzrfV7sqThKFr/Nnf/gJXNsd852YPKeGrl3f4u9++xU+/sbgnKeFBkOR5sXhRhWV5ZFBzTEo1nZ6fkkuJa+v4Uco4lNimoO4Ze7TBFUcluzRLSjN8uxfQrigfn7XCSyHJ7hhxbo0iap5Jq6QmJQE0i4LENrQ7VPgj2DHxLIOybWLrGqMoY7UbsjlUnkmWrmNqYFV0dKGSQc6175j2STkxvXyyNN2aa6LrGos1l0GY0g8i1rohmwO1uHItnTSFE60StqlzulXas9BKshxNHN4AuRe2RxFppnZBhmFCu+owW7GZqdi8uFjlwnyFhmew3ldpcKaukeU5Tc+GIk614ye0qzpv3+rjGIJRmFByjSNPdgkTteDv+irJarZs8+aJOlGaM1O2uLKlZMK24RMmGpVCKto3Y273Q1xL51Y3oO6a9IIE29LQH8GLxDJU+snZdpm5iXRD0/Yw2Jbq7pQ9eNh5yAoTRlNXk+ZBmByfJgRxIfExdY2dcbynMaVpgrBYuHbHj5+Z0SxZuKbBQt1hozDpH8cpH2wMVXKQJqi5Bm+uNGiUbNqF1j/PVcLTk2ZSWIZWJFPa+InyDVjrB/TGMTVH7dY1PYuqZVJ2DWbL9h7vwLTwG7nfjpiha4RpysBP6MiYNM95aaHC1lBJ3Sds3GbJREol4WuULC4uVOn7MZvDkJs7PlXX4o2VGp5lcK5dpuen3Or7jMOMmmtyti2OXJpb91TIhG0oNo2uF/dclHJ1e8SHGwNMTSeT4VRqsj2K2BhECAFzVZuZsmL/DONU+TDWPL5wtoWpa1imoOwYtA9JsYzS7K7nYz/yXNINImoli5s7PrMVk51xyloestoPQTI1588Kn4tBmHJmtkx3nPDyYoVmyWZnnOBZOjMl5bXjmPqBab33gxCCVtliFGWUbYMrWyNOz5RoVx36vjI0tw21gZLnkitbY3ShKXbIco2NQaTMm3VB1TFZqjt8vDni+7f7xJnk61e6/ORrKv0qTnNu7viEhVl1ya6wWHPwTI2NgTWtMQAuzFfYGERTdklnHJNlkrpnsFj3GIUpQaJYVpYuGETJtPmg6i+dUZghpeB2Ty0gBkHK0E852VTJsXMV69Axq2QbCA00VLF/u2B3CQEX5ytPZIe55ycYmuBkq8QoyvjW9a5K4Awjkkyy0nARKDP/KM32WBA8SZi6oGQpbx8NwdXtEVujiDRVaX1hmrM99On6EUsNj7Jl8JmTip34WuG59Kh1hq6pcKIgVl5XNVdtvOZSLSDLtkGYZriWxmovmMq/kyzn8uaIzaEyYZ+vOQihbBw2hyGubVD3zD21rKlrNMsWgyBRY1egxoWKZWAU/rP7GywV12S+4uJaerGJC36Y4SeqDv9oY0jZNskLn1c/SXl5sUaWSW50VNNuf6qdel5UuFGU5Djm4fdaq2xzcbFKZxTj2DpfODPDf416vlcaHle2RwzDZGonUbINgiSjFyYESabqjXGMqasmd5ZLBpH6WcUxuLhYmW5kTzAMU1aabpGuq1Ix2xWb7VHESlPJg042PCxd1XZPwr/G0BUjbabs4CcJ632VcrcxCJmvOMSZpOboGLpLu2LTrjjUd/l7xWl+3021+2H3/GobOiutEs2yw0JNrc2iXN27G4OIuZq6Z+dqLiXLwDX0I60f/uG7G7y2XHuklNZ7QdMEv/fNJf6LX7nMej880ve+F9Isp+wYaELDMQxWw1B52Rkq0feVhSqnZkpYmtqkOCoT+wkkEOdS3R/F+DqKUvwiuGRjEE79pg9aiiaZYk0ausbm4O4xYz/OzpZV8uW+JptiWpZJ8nwaXLVQt9kexfd8rxOtEmmeEyYJfpITxRmtisV3UkkqJWSSK1sj1vshy42jY60/SzxuY2pHSvk/HMmRHBGSPEOiEl5q8yaLDXeqE/3C2Sa//nGHpmfw1qk6uqbzzesdLm+OCJNMJQTJjO9czzgzW1K+JE76QDsDeWFaflhRYeoaLy/W6PgpQZyy1PBYqDq4ps6F+UpBSQ5UQWxoVBy1cyOQ1F2TUzMllhtKP28aOm+dajCKU2WcmeUEcUrFNri+M6IzVouMxbEyHVXRwB4nW+r4BqGKzV5u3B3f/qTgeQ7/wx/+LH/qb7/N27f7lCyDX3xvnXdv9/ljP3SGmeqDD0YvzFVJUskHawOaFYuyZVCyDCWTbJY4M1Pi460x79zuoxXJDpahk2WSazsjtocx5+fKxQAo+XBdSfM2pPJKmcAxlMeQH2XUXIM8lyqyc98OpxDikSUhB6FRUrT3KM2IE0k/SKm5Jmv9ANs0KNsCS9epuBbzNZPv3+wyDBMuzle5tDliox8yV3W48IQS+uCODr87Tqi5GZujgPNzFVxbSYFqReTyfNXFMgTDUElePnuqpXZM1gdkUvKpE3Uc8+GGorpr4keqaetZOuv9kGbJmpoogyqco1QSxhkvL1TIBTRci1GYMle1uN7x8UxVuHVljmfrrNQ9mp4qxvxIPaOTIudBnvH9qDgG26OInVHEUt1jtRfQLFlTDwJQeujNQcT5ubJafCExdJV6dNKPiQpj8483h9imoFmyWK67DIOEnXHEfNXFmRgXF153By2mPcvgX3htcfr/aic0oObdYVYKIabSVCV/ldPo9r3vpbNYd4nSfDr5TpiGuhA0Ssr3bBAkOKbG1Y7akXctnRdqe+/JC+0q52ZLjCO1KfDzD3x2D0bDszg14xGlDpaus9oPqNoGq/2Q2YoyIp+r2byx0kBKyXu3+/gzKWGqFg1uIa97WAnVw+BEq4QQAscSjEIHzzZY7wUIobFUt6m5FlIIao5Omkm+dXOHz52aIc5yPlwfMo7UYugwk1pTF1yYq/LRxpB3bg0QCPw4Z67mECY5S3WHuZo7XQyfni3R82O645hBmFB3LYYiZbZqk6SSFxerzFVtbCMiiD1u9QIcU8MpCnE/Vgacde/xWaNCCF5fqauQj0xScQxGUcb2KMQ1VbPOMnTOtst72JKg2MGmrhVNfJXyF8SKKfVTry8Wvmty2ojwo5RLG0Mcy5gmmq71A7aHMY55xx/mIGia4JXFOgLBKwsVVpolun5E388IknTqqWQVzZ4wyrB1nS+eqSIR053+n3x1Yfod3r3d47u3eniGzg9fbNN4iEATUEbEF+crbI/iqYn+yaZHx46RSCy9kGqOI4ahmlc826FZsnEtg3GUcnGugqapnV/PNrjZ9UkzdU9NFrrXtsfc7I050yoTJhnXOz5Vx0AI1fwGFSNvGxoLNXfPYmO1FyAlRFnOSlP5ONa8GlGacW17TJzkWIWnWcUxqDoG13cChFANs844wjYEczXVtO0FCbe6ITXPngZudMbK02vidXW+rQJLSpZOyTHpFhtOUvLQcuwHhRr/BfM1lxcXqtQ9i/fX+iRpxmovYr7wPOz7ygy9bOt85nTriUe5N0s287W08P6S7PgxZ2cqSJmzUHf5aH2Ia+p0xgntisOnT9Y50SxhmxrXtsd89fImpqYRpZKTM96e9Lv7QaIaNS/OV0iRnGwqJvHGQG0GGrpqvnTHMWdmyuiaqm8nPq4zZRUGdKLpFfOP8qQahCmWrt0lCyzbBl7hFXl5c4RrKLn37X7I6ZnSXQFI7aqyhtALXy7b1PEsjdu9gDSVVFwTSxf0Q5VEW3ctbneDPUmh6b60kbpncaLp4Vg6C9WD2aVBrDZQ6q7JUt3lpfkqUaxCeHbGijHV8xWDabnh0h0rVtVEHlt1TL5wpoWpi8IDq8S1Hb9gK0pOtUq0SjaOpd3lqZflEk1Au+JwekafsnOVObnOe2tD+n5Md5xQdQwWd0XWHzXusONMyrbaNDnVKrEzjFmou5i6ar43PRtN5Pyzy1t84UyLIMm5ujUmzjJeW64/0vzdGUW8tzagbBucnyvz8daY1W7Ap1aqnJstszEIiNIcP8pYbrpYus65doWapzbzVo7QEiDJJG/f7PGnf+KFI3vPCX7vp5b5y//4Mj/3ndv8n3747JG//25sFzYZrqnjmRrzdYvu2KRVUdYLr59o8MPnZxgnOVkun8h61DE05io25+fK07VGydLRBFzb9mlXbU7PlmgKtWG1v5Y1dU2pqkrKt/Kg1MoozVjrqUCUhdrB6+rOOGYcpdM5SgjB588oNtzP7PtdKSXrg5Asl9zqBUSJGuu+eKbJIMz4zJkZECqc5OWlGiXL4AlmXz1VPG7lfe823zPCOMpolZQPxbm5MisNtXjybJ0gSSnbOl0/5RvXeryx0uB0q8w4zMiRSCSb/Zit8ZCPt0d89lSTfhFP/cJ8BQHTTuduDEKVzjVJVzts99ixDD5zqs67twes9UKldS8WF54lSfKcjzeV8WmS5Zxrl/hwfcQoSnlhvowmBEGaYxo6c1WX3/nKwjRmvOZafO92n8tbY6I440TT5fLGiLV+OKXCTwb9G0VU9TBMeWnx6XVYDcPgL/3Bt/jFd9f4lffW+cb1Dt+83uHXr2zz//5X32Klde9FwG5YhsanTjZYarhc2hyx3gsUjdEzubhQJckknqnYPH6ifDW2hhFhmvLhhrqGoyjlc6db9AOVXIQUeJZRpEEoKULNM3Esnc5IGVGv9yOWG+5dC8K1fkAQq0jwo6AV24bOiwvVKRvgXLus4seFYgvVXI9z7RJRmvOrH25xu2h4/J5PLXFly0cAvTDh9GzpiRmNgzIPXKypZl2c5lzZGtGu2nzvRg+JxoVZj1bF5lvXOrx9a4Bj6YyjlLJpcK3rY+k6N3aCh26gtQpj40bJpDtOcC3trl0ylWqYEGU5uVRS2RNNRaFXDT6d99YGvLc6YL7uMl9zONMugZB87fIOfpJydjbi06eadMYxt7tqIX5mtvzAO3KeZfDSQlVp26PsrmIpyyW3iwTOvp8oppxj8MJchdv9gEZo8v1bfd5fHVBxDOaqynS1XbX5Z5eUr03TG/MjF9vEWc6VrTG5lJyZLU0juO+Fmx2fNJP0g4RXlvbq+tWO68GR3aCYgsp7TZmgTs73RqGf1wvGRbNk8eH6gG/f6DFbtllpeHcVxa2KhWloONIgPwIivKYJzs9VkFLyylKNnVHEr3ywxUzFIowy2rUKnin4cH2oUhEzMMxtLs5Vp75hcZZz4Qn60NRck+quWPiNQcAvv7fJpc0Ruq5xpl3GM3V+6YMN3rndxzF0xkHGYsPj2vYYELy31udL52YP/RwpJeMwxY8SwsTio80hO6OYvp9gGxorzRLboxhDE1Rdk1td1TAYRcmU6eNHKTMVe7qz2q46tKsOLxQL+5pnTtk3UsIgTA9t5jwoyrbBD5yb5VvXOvzye1s0SxYvLlaIEslCzWGu5uxJk50t32G+XdkakeaSqmuyVLNZ74W4ps76IGC+6pLkEkOHQRDzc9++zfYoZrnpUrZ1lhoe4yKJTqV+HX5PfvHcDPM1Zd6/OQzIpEDTUIbdDRWgMFOyGIYJa72AK9sj3l/vM1N2eHGhymzFZmcUYZs6UZrx4fqQj9ZHuJZB2eny4y/PP9R50zXBhfkKzWFEnObc2PFZbri0qw6OpTMKU0ByfSdA18C1NLrjmNVuwLm2SkYcRyl9P6HhWbQrDv/im8tc3hhhm1qR/jXmG9c6JGlO1TJplm3GYcqH60NWGsp30zG1KdvYtfQ9hXrJNhiF6V0s9K1hxNUtJQFulBxWmupaOKbBZ0836QcJUZLS9ROGYUIuBSMz5eOtEaNQycBmKzbdYrwGJa/ybINWyZ4azINKTNweRZSse3vpPS5KtsHLhbG/EILf+co8nz5R5+1bXeK0w/WOj6kLLq0PlYWDLugGCV86N/NENwwnxzUZf5bqLpe3Rpi6CoU50y7z7es95T0149EPU7768Q62IfjezT5hmqEBryw3SKV8qMZUt5DuXd4c8fpyfRpA0ihZvL5Sn9Yr59oVbnZ8xlEyTQos2cob8eJ8hRsdfypHX2m4NLyc0i6vV7hTm6vvrJPnsDYIWe0reejNjn/XnFy2DRZqyp/Jj1NmyjbNwsA5yyUV22QYJQyilHGccGljwGzFoe4a06StZslSPl5ROq3vNQ1KloFn7/V/STK1IL+yrdJzh2HK6ZkSJVt5yK73I969PSRKc7728Y4Kb2l6tMoWrYo13YgL04zXlmusNF36QcpqP0QIyc2uT8nWOTdbZrnp3RU+k+dSJZ5mkpKtT8ObJsf+wdqIK5tjbnZ95Y81W6bqmk+sMbV/bnxxocoHq32+Nt5B1wQvLyh/zbdv9/nO9R6aEFzZHPH6co3bvQgJuOaQNw5IUzwMUkreWx+wNYzZHEasdgP+6aUtRpFikP3wxTZzVZvv3x4wjjLOt6u8ulybNvF2m8QfBQaFLPQnXp47svec4NRMibdONvg7377FH/+hM0+MpXm76/O3v3GL9b5PkOa0yyYfbowpOSYvL1b5wtlZFuvutFFz1OdwCqEYop5lYhdJlIausdJSgWIfb43w45QvnpvBNnQ2B+Fdtey52TL9oEurbB3IEt0cqI2eYahY0vvntjjNp3NSnOXT5/Ze6PoJ28OY690Rv/zOOpe3x1Qdkxsdnxfmqry8UOULp1uUHI2iXKFkf/LZUvCYjSkp5ecBhBA/D/xN4H+RUh59vNtDwI8zBmFKvWTSKtn4cYYf5/T9Ed+91eNmx1cpF00XP0mZrzlc3R4zjBJMXckZosKnqB8kgIp3TbKcaztjklQyV91b4Ax2xVL7UUbNO7zIub4TcHXHJ01zaq7BhcIcbRAoM/Jr22NsU0cApgbvrA6pexZf+7gzvZlV51cVe6+vKEd+Q9cYhgkNz6SP2lVIM1jrK8bQ7iavY2oEcY59H0rxk8Jvf3mBZsni69e6REnO7W7Iv/m3vsuf+92vPpSJt6JYqiLatnJMQ3B1a0yaS3KZU/UMyrlOlPiFU7/gRmeEQOPigjLfy3KJrgnOtO8Y2u1Onbm2My4WFRGnZ0r0i7SFCfw4VemKKEO7U4+YTnIQJoN0jsQ2dHRdo+KaZDLn0taIK5sjPlgbABpJnvP1K53pLvdiyb0rAvVJYFIIWoZKQUMKSq6i1V/t+NzoBnz9apdhnFHLDL55rcOpmTLDIOHUjH3fiOEoyVntBSwewFJbbnjMlLM9Wu4wyeiMFdNoclxmQRG3DI1hkCjfnM0RQZKxNY6RQiX+nGh6+FHGzjhiEKToQu3aq7FALVSjNLur6RMVTbmVpndXI1AIwakZ1UScSBmzXE5lZZOo2pJtUHMtTEOQScnljSHvrw3ZHEaK0RmltMo2LxSGyYPwDtV9XPjATFgjwzC9b2PK2uXxsh+7I7u9A9hsN3vBlHFweXOktPi76onJX4dRys1uwHtrfYIop+GZdz0fUZorvy1NcmMnOPSYHwaTZyfNc0ZRwkcbQ+quyUvLNdZ6ATc6Y67tjDF1ldz4sRhyrl3mRHF88kjdIu59fAB+nNOuOSoKuEh/vbo95vs3ewRJRs2z+NaNLn6iZFOL9Qdjum4MI0xDI84kO2PF3Mtz9dmrvZATzTvNxBOaYiskqWLJzVUdvnZ5m0GYMQh9Ts2UqBWyCSklUZaBBCmN4vso9sXNzpgbnTFLdZfz7cpjsz8ubY7YGUV8sD7AtXRmyjbzNfuuhZGmCeaqDpc2hnywPkTTBC8tVNE0jXoxXsvi/Samymu9gFGc0vFjWmVrumCcqzpsDCIqzoM1LVS0eM6V7TFCKjkQwEfrQxbrLlvDiK1RzDjJ2BlFDIOMUZgxV3VI83zaBG5XbGarDpYxpOro1D3zoYv1JMvZ6EdsDEI2BiEnZ0rKpNezKFkGN3Z83r3dJ0dSdSwE8M3rPSpF2MFcVdVEk42rc+0yDU81DTSh6oyaZ6AJQcVVXlUVRxnrO9NzJYviXUnl9o+Jp4oU2f1jj2vqmIYgzMA1NW53g6kM2jY0Vrshwyghy1UL29AE2yMlsdntMSUEbI3CqTTMNDRMTfDKUn0qsVLJpk/e22n3tWuVlb9elOd841pPpZr2IwaBYimWLIOyZTJXdXjzIRfWj3NcUZbjmgbXO2MaroWpK2PnKMn45vUeSSapuUpSe2VnjIaSy9qmCjY5DLvnRinhZtfnvdUBfpyy2g+oOAZ6oZ/pjuNpbd0qzLxNXWetr+wBJr6va/2A9b7ymBxFymdM1wTn9/kmyV3EpYl0MU5tJR2Nc8VMPWCYX+urzaIoCal7Fmt9n699vI1t6Lx1skHPj4sNA5Xc1yrbDMK0CDNQ0qWrWyN6foJn67y0UEVKlc66+0mehDxM1hgTeQ8oi4ZmyaI7jtEN9Z5hkk/939653SdOMxxT+WFd3/bxk5StgUrF3OiHXJgvT2VnlzfHvGYbd0l90kLipBU+IZlUbEgp1Xqq4hqAxLN0Zis2dhEE9CSx+95MM4luaJRtE8sQXNnx8VeHXC7mhbJt8uHGkFKRlL3c9B55c7himwzNlEubQ/KCsQLwwfoAXaNIYlXju6GJPZsWR91Qqbkm/96//Poem46jxFc+tcy/+3Pf59s3erx18smMNd+41uHSxoDL22N0Ab2xhUBg6BonW2VeX6nv+f0n1SDLc4nQtMKuAfTi9rA0wT96d4POOOL1lTovzFdZ3JeEO/nb91cHxKnk463RgZuWrqXT8xM0jbu8pUDVCIYuSDP5QN6RyutTstGLuNnxWesF9G21YVh1TExd4/xchYW6S1JYy3ySDc9346i0Cv8Z8C8D/08hxNeBvwX8PSlleETvfyiiNJ9qZXMpqboGG/2waEqpBdr2KGajH7I+iJgpWSxUHVoli44fU7J1qq6JpsEPX5zl0uaImbLNqaIJMel8JqkahMb7jMInDTBT1/Z4GN0LtiHo+wlpnvPR5hC7SIP7lQ832RqoxcOpWY9RkNHwlOGgEND0JnIb9tCVdxd9ry3VMDSNxgmTF+ar5LmkXXHIZb7H1+X0THl6bp4VPn2qxZ/4sbP8xV++wihM2RmG/MzPv8Of/LEX+MK5BzP7U5phjbmag2drNDxbJXvloAmtiEG26AcJNzsB768NWGl4BEnOQs1Vfg+B8naZNKWU9CqmUTJpV5yp18lkkTKzz5dkItNIM4lnPxlfJ6/Q9DfLFvOaw84o5BtXulzeGdEu2ziGznzdQQol5TgzW2ah7jyV5KHdKFkGrq0ozbYu+HBtwDurfUxdo+GatCsWFcdE1zReXa5zera0xz/nIORSsjOK77lTsduEUErJN68rWWO7Yk8Nx21DI5eSrp/w9Wsd3l3tMwpTXEOj7hq8eaLBmycahdeTzpnZMjujiOW6S5IrL6g4VTKvg6S9yrsuo+vHB0bPCyH2HOftrs/7hQHuGyt1NE1wcV6lnI3ClEvrQ37zSocwzfCjlJJj8sJcmS+cbVErmqYX56ogFf0+yRQ7pBckSCn3pF/dC6dbJcb3GAMcU+fCXIVcygNNHvMs5zs3VBP0tRXVWJ8tq0QQXRPTpoljKBZI30+xdY13Vge8fqKxZ8yq2DpVxyCXkpOto18oNlzlPaMSxtRi++rWiA/WR9imYLasEpoWai4XF2vMlm1cS3/iHm27UbJ0PFNnpenS8iw+XB/yzy5tkWawULM5P1vGs3TSLOeVpRonW94DNabmKjbLdY/xUoZtCFxTSbXiLKPqKF+SUZjSDxOaZYtzs2WCJKNUJE+1aw69YIRlCNZ6ITujmBNNlRC60VcNrYmH4dnZMhuDkLVegB/nZFnAfM19bM+Dk02Pb1ztkOU5lzcG6FqtCJrIsA2dnVFEL0jU+Fiy2BiEGLpgexgRxhkrLQ9D13AM1dTqjJRsexSlVFyD0zMl6q7FF8+2mCsWxRP5/4NiueHhWTofb1us9kIMPeNGZ8wgyPjmtS6vr9TZ7IdsjZW30ELNpuIYNErmVEYmhGKfvXWywcX5ClGa0yrZD12sG5rANjXCRLEe3rvdp2TqvDAv+I0rXd5fG5BLSdnWcc2Mazs+hqbOx6TZN2lK7+4p7p5L5mseP3Jxlp1xzEsLKuEwSnPOFilaNU8lfXqWXpi4732W9o+HE7TKNl882yq8cEy+enmbvq+8QJIsJ0pzhmGRgiw0zrU9ekFK19dZqrvTpneaS3pj5e8UZTmjSPmhrQ/CPd4/u5HnSr5x0KLiqPHCXJUfvtDm4+0RPT9iexSqpotUc9i1rTGvL9efuKRvAjUHxJQsA9vUWC8aP2u9EEMTjCK1gXG65nG6pQynv3xhlleX6ofKiWHX3DiOkUDVNpEo2fStTsDnz7SmPoUT9tI4SrnZVaEz6hlQDYqNQcgoTDF0mK3YxFlO0zOJM+X3FCbZnrml5pksSZdcSlqFpHOlqdIi4ywjiPMDZTnKeDzmTHE/Xd9R0t4ceKlg5FdsE0OHM7NlNAEfrQ+4vDnkB87N4NkmgzBlexTjxTrBTM5Sw8WP0z31wcTDauKl5pp3jNQbJYsfvDDLq0tVWmWLv6QJcinRdUGSKhN4IQTrvZC6a9EPYrZHMYMg4vu3I863y1yYL7PU8BiEKQ1Psbj2828sQ2OuZhcWB86expkm4NxsmZmypTzBDI2Zkv3U7ksAz9YpF2mCcZrRGSf8kw82sXSNmYrFUt1TzQBD1SwrTY/qI8w5QqjGZrtik+Y528OIE02PQRCzNYr59cvbvLZc5/x8hUbJolHIgp8UDE3we95cfmLv/9NvLPKf/sMP+K//yWX+2//9Z478/YM4VWxFAcMgpu5YGBpcXKgxX3P53OnmkX/mvWDoGqYO7aq15979cGOoLBxS5e88GX9mioC03bVslKZ867piLOpi4a7PmCkrL2pDEwc2iCaKqjDJHsivumTppHnKWt9HAp5l4hga7cJLUQUpqd99kqqYZ4Ej6UpIKX8V+FUhhA78KPBHgP8OqB76wiNCnks2B8rA/OPNEYNA6bA/XB+wUHeYq9o0SibfvtmlYhf+IY5axG30I8I0QxcZdddmvqZizQ1NYxSl9IOEOM051SoxU7Hw42xK153AtdSAuB9SKlbEfv+CUzNlPncm493VPp1xwpWtEZ5lsDNURs2OpRNEGeM44+OtMYs1m5pncmFOJQW41r0N9mqexReKaNEwyXh/bYBlaFyYu2PuGaeK/ZVLpTvXjyAl7VHxL755kpcX6/zH/+ADrmz5rPVD/szPfo/f+cocf/Z3vXzf10+o536csVIvcXLGA5RBqqGJqXdOL0hUXG8voO8nvLxcI81yNkcReS5xKg6bg5A4y6epe6q54XB6psQgTHhhvnLgYtXQ1flNDklqeFx4hf/J+cJT5Zfe3yDJFUOmZCm/sbqnGqRlR+fDjQE3uz5Oset8slXihfnKtEk3SY85apxseczXHDSh5KLfuN4lkxKr8LB540SNYZAxUzIJ4pRvX+9Qtk06YyUnenmpxommR5KptCjP1ImznPV+wPl2WSUG5fKeDdVxnDEKUsV49FOqSyqGPJcqarkzijF0wThMcUyNlabHmdkyzZKFbQiu74xplSxWmqqIlAJMTcN2dGbKamGU5hJzn5g7yXOubo9olU21s1l4X9xrUTmMUvyiwR1nOVouuLQ5pl212RnHxLkkLIw8Z8o2Xzgzi2drRVy0j2NptCoW5Z5q6JQs5aszU7IZxekDMeW0XZPuQTisqXltx8ezTDIpiRO1LS2EuCu11DI0fvDcDN+93mMcpzRKJvvPyNYw5GZ3TJQ8GeNxy9T57Omm8hopUowsQyeXkKWKfXq2XWGmbGMbgl98d53tsTJqfmmxzqtLNTRN3HM8Pwq0q05RTDcwNMH3VwfqB0LywnyFT51ssjWIqHsmgyDhWze6zFfUvTIIU15cqHCuXZl6K02e71bZZhxnvLPao+WpgAxNKHaPlJLZss3tbkDNNen5MUt1l8quIuflxRonGh69IKbnpySZYiRPpKxhmpIVtATHVM2BzWGI3wmpOMaRJDettDw+c7rB5iDEKtL2JCrxJs1yVnsqGCJMMk40S7RKigWhCwECvnOjy4sLVU60PLJcbVyt9ZWX40rT45XFGtvjiExC11eStlGUMl+1MQ0NTTwYY2q24vDGSp2VRoxn6WwOAm7sDAr/NzllNZq6VrAOHNJM0q7YrPdDLF2xJ0dhytYwQhOC3jjBT1IWag6Lde9ACfH+8VwIwbnZMo6pkcse17fHrPYC+kHMej9kfRCwUHPwLIOBnxIkGXVPp+La5EWq39nZMuMoPbSp+ELB9M5yycYwZBAkyv+rYk/nSV0TXN0eownlE/Mgz7drGdNkplbJojeO0TVB3bUYRBllSyfOJHMVh36YYek6Ly+6lC0VYFJxTLaHEbapEaeSl+YrKuVQU8ESk5Td+aqzp6ny7lqfD9eGT8Vz0zF1fuLVeaIk56P1AR+sK1Z8xTbIcsn17pif+87tIv1MMF9Ti+35Yn446mOsuSYvzFd4UVQIYpUkG6eSJJPYptr4m8iWctRm3HLD4721Aau9AM9Sm6tNz6ZeMpmvOmyPVSo2gsKk/A6zcq7q0CxJmp56Vi8WUn5D14jSjK9f3SFIcuqeOU3R/s71LhvDEF0ISraBlIKlhpIBrfYCLEP5wARxxvXOGL1gKk/mpKSoIzTgdl8Z6L+8WL3Lwy1MMiq2gW1oU2ZDyTZoV21MXbHsTENTG1WWxqtLNb5zo8tvXuuiCYGp6/zYS3OcnikhpaTsmMSpGjf3P70Nz8SPVVNuqe7uWdBe2Rrxax9toWvw5fOz6JpiRkkkw1DJ7JJcYhmCzUFELiWWLlRYUp6T5DlrvQDHMlhuqPeeLxrvNzs+gzBhoebSLCm5bruimtPrg5CFQrZd99RCvu5arPcHrPcjzrRLnGodnSrgfpgpqyb+q0t1toYhP/vtWyAglZL5msuXzs6wMQppVywQkt+4so0QKvnYNjReXqyy0iztmb+TTLLeD2lXbIZhyndudFnrq8RO29BYqDskWcZnT7dUGra/DUJJtN88UefifO2em3afFJRtgz/8pdP8+X/0Ed+92eONfeylB4WyowgwNcHWMOLKtmIk7/gRwzBBF4JWycLQDc60q/yxHzqLbWoP7Sv7OMhzyfYw4uq2P2UkglpXlWyNONX4wtnmdL47qJaNirRfpJIDH5SSfL/7wdS1ezaRssLXVUrJ5jAiTXP+9rdustoLGMUZZ2Y8FhseP/xCm2ZJ1SY19/BNgU8qjuzOEEK4wE+hmFOfAp6qKbqmCfw4QxPKJ+jy5kgZA7qqkLdNnR88P8NHGyMWai6eqZPmks1RSGekTDJfmDdY7QWcKeRy3XFMnivfqjDNHjopoOcnU5nEbjimztl2ic4oZhynasHm2coXomxxouHx4cYQLVKyoZprsTOK+VbUZa7qsFhzSTJJ31e73Pfqvn6wPuTatoqqr9gGJ4rJZCJXBApz4mc7uJ6bq/Gf/Utv8Bd/6SN+4b0NwiTl731vjXrJ5o/8wBmMQ4rZpbpLZxwzV7UJi6aB8odSspRJd7xZsggKiWaS5ZwudlXCVMkoNCH43q0+uqYKp16QUjINNoch7YpzXz296q4/2fNo6hoUH3GypXb9lhoery5XaZdtrndU0XZla6wWkWnGjh9j6IrC2irbVByTmx3/iUn8du+Et6sOJ5sldE1jvmbzymKdGx2fTEp6QcqtboBnaHy0uYWhCdpVh1bZZq7qsN4PGYYpneJ7z9UctscRPV/JZhfrzh4G4AS2oT7rytaYumfQCxKCWN3rfpziWjrtisO5dmXKgHMtAz9WUcmWrivz3VQltDmmjp9kaAJWi6TGLJd3Gd0bmsaJlmILfByqCNqaa3KidbAZ5ommx0Y/ZBylyFyyU0gFt4YR1SLK9vxcCR0NoQkaJYNhlHF5c4SuaVzvxIxDZdjdKluM4wxNE9NUoDDJ7qthfxw0SxYlW0fTxH3NmQdRxkLRsPBM467dpHdXB3THKblkaoB71LgwV+FUq4SmCUZhyuWNESebLpksYsfbyhj2H76zzru3B9zqBZRtnXGcs9J0aZbse47nR4Xd4/AXzrYIk4xcSj5zqsnGMEJoglGccmM7oOoYfOPqTiGxUeye+apL1d37fMdpxi+9v8HWQDVc5mvKtLbmWri2jmcbzNUc/Ci7ZxOp4poITdAPVLpdyVZssqprMO4pGXPdtXBMHUPXeOtEk1cXMyxDP5Kd9YpjcnG+yqlWiQtzFW71lNxztR+yWHOmcvRJM+REq8RczWWuanOjG2BoGuNISeg2hxFJkbqqmnSBSspKc0wt43ZXbVxsDiNGkZLyHjTO3AsTg+HJLn8vSNF11Siq2Aa/+P6muucQU9Pk1V5Akkks16TvJ+yMY7ZH0dQbquen6EIlRO22EAA1Fh00nmuaMpC+3Q0IEzUvlmzlb/PqYo03TjYAyS+/v0mc5tiGzXzV4d3VAVe3x8xWbM61yxi6xvYoIogzZiv2gbXC9ihirRdyfcdnvuoQZ/nUY6znJwXTXDIMk4c6lwBlx2C24uBaOktF2tq3bnTpDJUh9MW5Kt1i8/BSf0gYq+CI2Yry4TGKFCRgKrv5cH04Pe7djam1XliM8U+F6D9dpJyfK/Pl87Nsj2JOzyg24s445pfeW8cs2NhvnahzarbCKEpAiql311HCmjZhlLema+q8cbLO6VaZ8+0SjZLFjY6Pa+loQiXavX2jx5Vt5T02CfV4caFGmGTEqaSDkme+uKA2VbNcquZO1eWjjRGpo+bs3XNCz08QqOQ+TQjmqw7fv91ncxgxjlOW6h7LDY+lukpm0zQxrdkBekFMkkq2A2U0fKZdpuqYbA5V/bDeD9gaRriWwfUd/675yyo2O0UiqBUbeVLCQt3lxfkqFdfENjWGoRoPN4dRYR0BWXbHHmOx7hImmToXWX6n5g6TaT2pJE2qLvdjJXsv2SqV9ZvXOny8PUZDsFAbo2sCieRWN6BiG7y+UsezDBbrDu+vDej5KWVHZ67qYWoxYZwSZRIjk7jWnVCYuEjRDJOMt28qH7EJU3Qi4RsZKRfn7/AKxnFaeHrlXFofsVBzniqjePJZSw2PT51okOWSLMt5Yb7CdlHj1j2Lf3ZpmyjNudX1EUKodETHYrGuglgm83dabEBPmLUfrA/4YH1AEOecmfHojFUwlB/nNEomXzozQ9ePeXGxxksLtd8ykqk/9KVT/PXfuM7/7We/x9/9v3zpkdaCcZrTGcWKzRil/NJ768RpRpDknJ+rcGamzHLDI8pzftvFuSnj/2kizhQr6srWmChOsYr7qWTpeJaBYxjk8vBr2q443O6qDY/KEwjGiTO1Fv361R2iJFchXaOIrp9QtkzOzVX4na/M8+aJ5tRk4kkkYz4POJKzK4T4W8DngF8A/kvgn0gp88NfdXRwTJ0X5ytc7/hUXIPuSO1KjqKMqzs+rbJNkOQs1j1eW65PF89SSuquha3pdPyILN/bAZ9QXx1Tx3mEQdg4xCK/ZBlUXLUwfnmpim3qJKmLWxT3QgiubI9wTQNNU94YUTEAqDQUJWMYxyrJ6iB4llakiLFn0VFxDLYNgZQ8EuX1SaBWsvm//66X6Acxv3Glg2PoXN8a8RtXd/jM6eY9J0FNU9TsiTG1Y6gY6P0mdBfnKryyVMW1dBbHULtuAAEAAElEQVRrDvWSRd2zWO9HhV+JyY3OmCxXTY+6a6NrgjB+arfxQ+HlxRoLVZc4y6h7Ftd3fE62NAah8jQYBCN6QYwQsDOKGEXq3hJM/FCevPlU1TX5ylvLbI8iPMtAou7FYdEYLTs6W4MAQ9fw44ztkTLrtXQxfXY0TdHJTV1TTInisKP04Oti6hqzFYdMSkxdJ5eKqRDEKSeaHvM1l1Mtj0ZJRVQ3SgarvYiypRaRs2UdiXpGxoNUxdWbOmmeT+UtB+146JrA0AQ115wWPxOPq4NQcUzmag5JmqvFq6YaX6daJU60vKLxZrHWCxVLJkypOspMuOwYJEXjKx5FCCikLeJO8X9Q5u0R4lMnG8pM2VTn+zCYhRdDyVKy5P1oFruyOtB6QkWLEAK7GAMbJYuvvLWs/DeSvDDFNEgySaNkoeuQ5TlhAjujmFGU0SwdPp4fNd462eTcTJkwzZBA2VFN9EEQU3Z0dvwIU9cZBjFBHPLqkjL+3f98jyMl4fPjDM9UzM6yY+CaxtTM/HSrRJhmh85xZVuZ+MMdTzlT1wrmAtPY8snPnSOUiNdck1eXlb9RnOWIgncQJZlKgJsts1hzCIodzZJtULIVG6FRsljvh5iGGlOkVKzKKMshSsllTt2z2B5GZJlkrupgGQLH1PBM/aFdxgxdmzY7Mik5366QSzg9qyQ1SaacyyYeVJtD1Tjz44yap4IPxlFKZ6TkauMow7N1TP3O/bsbh43nQgjOzCoj44kX5VJDRV03ShY9P2auYqNrGosN5VOhoTarNE3g9UJOtjTWioZ8mktOH+CfaBSSB10T6Lryr9x97TrjGE3jkVg+Tc9mHGWFdFOxG7IM6q5FzTVolC0WGyoy/p1VyeZghBCSpbrDbBEnP2GtWoYoGCzKeN3QNG52/KLJbrBUd9noR9RLT9feoOJa/G8+f1J5x9UcvnW9y7cKOfogSMmkYBSpxfZS7lJyjCe6mahpgh++MMsrizWkVL46kzkvyZTReSZzao6JYShfIiTEqWRrENHwAl5eqBKn6VRqMllAZUUDR2iimOfu9gOqOAazVZuGZ3F+roymCZIsJ81zTE3jjZUai/W7vRwnqLlmsaCL8CyVhFudN6f+Z15hxJ/m8i5bhsn3P9cuk0t13JuDcMrYmxCgs/yOnUaYZFxcqOJHKRLJ58/cUSxMPLH8KFN1T5pz8h6bVWv9UCUNhypdWzWCtWLTTgXynGyp760JQc0zisRjrWBc6pQcg4WaCvaYq6qxr2zfSRsFlaxZcQxW+0HB7IyoucrKQnlw5Rj76gfPMqg6JmGiWLv7f/408aVzM1xcqJBlqmHWDxIEam6Yrdhc3hySyRyZwY3OmC+ebU39ffbDLFiUqz1lpJ8DYSJpV+3CO0zH0D3mKjag5Ja/VZpSoJIc/+OvvMof/u+/yb/5N7/DX/oDbz782CLUddgeqcZUmGTkOUWKncWPvNBmvuYQxNk0JfZpQ9dU8e5ZOuYuokOQZrimQZzlU+b3vfDFc7OcbJUoO8YTaa4JIM0ytoYBO75SPZxqlXBNjQuzFV470eC1pyjvfpY4qhn4rwF/UEp575XYPgghPgf8BSADviml/JO7fvYzwO8BusDPSyn//OHvhUoymi1zZrbMOEz5+e/dZq2ndlQn/Fnb1KYU8eJzeHGhwuYg4my7RNU19yR0TCKMHxUVx+TMbOnA4nZjoEz7SrYs6IQGYZLR8xOqrsHLSzVmKyqqtVlSC9T1QTCN2i3baiF1mInaudkKDdfGNMQeM2/b0PfshjwvMAydP/8H3uLvfOsGb9/oU3INojTj7Zt9Xlyo3LOwbZYs6q45fWAPMqGreRb/28+f4nu3VYrH+XaFjh8zU1FmfJlUPiFxmvPSQhW/2Ol60iaPj4PmrnjipYZLZxRzaqbEOEp5ab7KxiDk2o7P+iDgjZU6Nzs+tql2zoL4gR/Vx4JtqpQrUHTasKrYZxJUsSQl3701YGsYslBTO/IfrA85PVOi4piq2WjeSSjMc0XJn63YaqdmrDzidt8bZdvA0pV5t63rReNBp+vH1DxzKr3Mc0kuJXGqCubzbSXtODXjsTOKFYOxWGTqms65dpmoaAjd9T0NbZpsZ+pqN3Wmol67M4rICtnUbmlfxTbp5ypRMM1VMRSm2TTKXiUeumiaYLUXsDNSxrBLdQdD19gZxZyaLe1hcp5rq2tbeQCvu8fBxKvjQTBXc/nM6QZ+lB34mhcXa3zh9Ay5zHl95cka/k5gmzqvrzRUQW9o0/vnXLvMH/jsCd5bHXCzE7BQdzA0QXcck2Q5p1oe4ikVBrWSxWT2EUKlXp5oKkPxkqXzG1c7Ktm1bNIsKTnLfM3Z83w7ps6/8OoCjqnRcC1sU+NL52YR3GkwaZp4IK/B/QXRbMWeMiAe10fqfpgsbG1DZ6GuGF6TsVnXBGXHpLxvflDeV87UowZUA83UFetLoOSyuYSZik3FNkhzydl2hVeXlR9ZLh/dAn+x7rI9jKk4iiVo6BovL9fwo4z5mrqvNgaKGVpxDNplmyjJVSpg4T0zV7Wnm0cHLRi0ghF0r/E8yyl8YwRhmrNYdwnijPW+anj/yMW56Vhl6xrrg4CPN33KjhozJ02nLL93rdEq21iGxukZD03T9viuuJbOS4uPXmvUPJOKUy022JSNwYmWR5hkXJgrT9kuUkrOz5WVHFJTcsCGZ921oyyE4PRMiTzPeW9tWKRIKgbLJG33IM+hJ42aa01lGZ8/O8PZdpkrW2NudRXDeKnm0fEjSoXJ/JOuSzRNu4udB7DccOmOE5VWbGr8+ItzvDRfxTI11nshmqahC41xnLLccO/y3FSG8w6erZNnkpJztxn3JMkW7pghtwplgB9nDIMMs3XvutezlOzLNXWCOJ+Gd7QK70BdKytv0kPGPSHENHq9WbKIUrUx1SjqaNfSmaup57VdVdLVH7zQnt6noBq2mgZ5rtYeSlqqkrkO2hD2LB0/yjAN5cn25fOzvLxY25No2SrZ0+b2fNWZ3t8XF6qs90M8WzHCbV2j68cEccBSw2FcyAUn3+3UTAm3aEoZutpUAzgzW8KPsru8cnVN8MVzM4yjFMu4OwH5aUIIwUxZ3ZtKGq3mcM/SaZVsvnCmyXdv9bmypawRhBDc6vjUvDvrMdvUODXjESY564OQT59q8dH6iNOzStrtFNLUQZBSdoy7ZF2/lfCjF+f4mZ96iZ/5X9/j9/5Xv87P/PTLfPYh/J90TdD3Y+arDj0/5UcuzqELNf+9tFSdXqtniYpj8NkzTZYbHoZ+Z0xqVxw+dbJOGOe8vnz4Wl/XxFR19CRg6hp+krPcLKFryjP71aUay3UXP8mpOAbmU2QpPksclcfULwghviiEOLX7PaWU/+MhL7sO/KiUMhRC/E9CiFellN/f9fM/JaX8pUc5npKjdr8MoZFKydlZJSfaHwsLikl0lClqE0xTt3RxoAxsUuQploP6t+s7vtLmjiPl7bFrZ2Wx4bLYUNRgleQl8OOU0q6JdRyl9AKVyucV5rWzz3Fj5V74vW+d4IdfiLi0OaI7Tuj5Md+63uWFuTIL9YMXw1qRirQ1ijCLdJb9JnRpLrGKQWljGFKyjOnu+0zZZrZioxVsuspzwiR7UJRtYyrpbJYspJQsNT1Oz5ZY7YX0g4SNQUiQZLy8VD3QoPtJQ9PEnhSkSdpUvWTTLzxsPlgb4No6UZrflUokhJiyPEB5MIyjjO2RanKZ0yakyQWrjECgCYriUOzZKVHvpyR45+dUw2m3JPagJqhtKEbaxiBjtnxvA9CJMSYo/5eJBBDJnmJ/pekym9jYhsbVIvHTLNiSu48R1CRfdU1s445G/aDxzDKUN97GMFRm5M/J7t6bK42CVXP38Ri6xlzdRgPMpygrNnXtrkbZbEUlrnqWwYlWiKGpgvfSxohBmHBqxuPs7JNJyTkMc7vum8lz82MvznF1e0wu4cP1AZ1xTNePefNEYyrLcS2dU7Nl3hjHGJrO0j18ig7C/dLgDjp/D4qdUaR2uB9A2jXxemx61jSVT5YePKlu93O6UHNZqLnEac6NHR9dy/CTlNON0jRl0jK0I2GkqHtIPaOTc9muOFDcPnkuWaw7jKOMXOZsFsmuZ2ZLnJ8rk2Ryz5g0SRstO8bUO3FyvPfybrIMrZjj7rAoJylgvSDm4nx1j5xtqVFioeZNn9WJIfBkfIzSjJ1RXCSI3jmGJ+nLtHux75iq0TVht0/qLL2YWxbrLuNIeaAddg01TZuyQ7q+smyAO2nHzxqzFYfZisPrSR2BMg+/2dXxo5yeHxOuPRsm94SBPrkeF+arnJ4tK1+s0pgP1wf0g4RKYFB20gON0SfJhIdBCLHHC2ah5mIZyrPxZndM1VUS5MPkZGdmynfNOZNG1MPI0Ixd49zuY9pfQ+2vB3qBStCquUoW+dH6SPlKCjifle+amxdqLnXXwjI0NE2gIe5qDt6rhnL2rWPOtMv88vvrJLlUmxdLd5/vuapDrUiXmxyLqWuHpoofVHM8S1jG3jlocm82yzZLjSFaYQ7f82MsQ+NzZ1pTxtk4Tnl/dUivCKz50nmblxarRVJjUZs+A9nZs8Af+tJplhse/+7PfZ/f/1e+xuvLNX7q9UU+dbLBXNUhy5SP1Nu3enz3Ro/LWyPWegF/8scvECU5/TBhue5xds7hzIyHrh3NHHpU0IVgoeZQ9/Z6nN5JtRdPPShqP+I0Z7Pw0Pvy+RlFLCn89R42mfeTjqOS8v1/gLPAd1EMKFDqs3s2pqSU67v+N931ugn+EyFEF/i/Sim/+7DHtNzwsAwdx1QxowctIicshLpn7hncslxybWdMkuWsNLxHGoy3CiNzONhEuF1VBtG3ugEfb4051Syx1g8YBCmL9Xs3DZw9kry9xeD1HZ8sV95Tj7NL+TygWbZ50zG5tDlkYxDywdqQ793q89LCvReF64OQK1tjdkYxL8yX75I4TmSNsqBoN0oWpqGhFzuxD4vuOGatr0x+H3WBdtRIspyPt0akmVT+JEFaJEsYbAyVN8X28ODkuKeJzWHIRj+i7BgYGgzDjGbJxDRUXP36ILzvYLx7ga3t+73dheeE6bRbF94dx9zuBYDyGLIMZSx6WCOn5ye7ksjuLkwPwu5hZ/8YJHbdd6daSnKzm20wOUeWoU0bVPeSAUzgxym3u8qDJ83u9sJ6VtC0ez9jYaq8fdIsZ6PwD3oW2BpGSvrgGCzVHfpBgqlrSKmMUtNcstoLn0ljaoLrO2MGQUq7atMqKQZUv/An8wsmzH44ps5y3eN2P5gu+O5X5Nzs+PT8hFbZ2rMQOgqMonTarH0QI/mJ78kwTDgzU+bKthrfTs+UDp2b1/shnXHMTNm6a4FnGYrBMEkgbBdG2NojzgWHYb0fsjWM7vKcG8UpmZQqyMBz2Bmr66gJUaSD7n2fW92AIFbNqYvzlQdqOs+UlTdaz1e+VStNjzjLuNUJcEydc7N3L5D3P6u7DVtvdwPGkToGb9dmwJPCte0xwzBlrmpPr6FZJCzB3XVWbR/r/WbHZxgq8/j9TZKzsyXGcUbfN5UcSNw9jzxrhEnGrcKm4Hy7wtXtEd+64T9Q3PiTgEo39hXLRgiSXNUZpq4RZ5Jm2aYfJCrV8zHO5eYgZGMQUXEMTs2UcEydE02XD9dH3O6FzNdcklwe6qN42JzzsJBScm3HV8l1NfuuuT9KM67vKH/Hky3V2J1IYE1dSfxPzyrvoopj3HP8Pex4pVT+aLqmPCpv98J7Hs8wTAiTHM/UKTvG1MdqP56n5sHjYvc9M1OxMTVFTCi7Bhv9qAiWSKYsy51hrDxLgZycsmURJhnr/SFJlnOi5e3ZAPitjh97aY4vnZvhb3z9Bn/7mzf5c3///QN/70TT48WFCj94fpaXFqvqnPVCXpyvUndNrmz5d62pnzWiNOdGJ1A+cHJq1Qs8XJP6SSLOcjb6EUme8ztemZ/epxMPx5Ktc3qm9M9Fg+qo2t+fBl6S8uE50EKI14AZKeV7u/75L0spf0YIcR6V7vflh33fk60Sdc/Cs+5twNr11Q5lz09Y2cVcHMcqnhjYEyH5MNi9aDbutUMtBLqmkeewNQqnuxdV99Eui6FPzCV/a9y4lqFxcb6KpWt8tD4ECdvje5sPTyRUQqhFWpKpxJIJHFM92HGq0l6AB4rtvBe2R8qXrOcnzFXzZ95xB+VloMxmlWfBxHuk6pos110kPBe05H7BTuiNYyiYS+M444X5StEstu47AC83PPpOgmfph7JA1CJv7+TTKwxNt4YxVdcgy2EYHrzDO4G+67l6UA+nimNyakalgR22+6YX/lR7jrE4Rxv9kIprYGiqCdGu3Hsi1TUxbb4+TU+kx8HEj2Dio/es0Cvmg1GY0jU1DE15msWZ5MSMxyhMaT3DZyfLJYNASTK6voq1D+IcS1fyDU3jwPt3seayOYg4M6vGvt1+UPfC5N7r+vGRN6aMXfeo+QDsLUNXzWplYp5Ox7d+kBw6N2+PIqSEzWF0oCxpqe5SslVy4GGso8dFL4inx5vnclqPdEYxSPX3qmviWgamod1zcTqpIzQhHmrRr8zNlbx9uaGS0EZhSsk27jvm3X0MGpA9lSZOmuUMQ3W/94LkwGu4e4zbX2dNTJ4BdsbRXd/T0DVqrjKyLTsGjvnk7oFHxSTsI4hzEGDpOjMVi+wpeEQehEExbw78lBxJyTLojGMWai5CKEnifE3JZyc11qNgwl4chilplqtr5VksNVw2B6quuWdd/QSQZJJRcS/2/eSuRlA/2B0olFLaJWGc1CZnZyvMlO9fr9wLaZ4TF/Nj108OPR5dU4mFQZxxfq7yW9YkeTd6wZ17RkrlZaYhmCs75BIcQ9vj09cq28wH6j62DcWiutUNp/YffT/556oxBaox+od/4DR/+AdOs9YP+P6tPl0/VmqFqsPLi9W72I66JmhXbVxTZ1Ckw+5fUz9rCMF04+l5fRQMTRS2JCrIa4JJXTqOVIjC89JIe5J4rMaUEGIe+PcAE3hRCPH7ga8A7wP/ppRy7T6vbwL/BfD7d/+7lLJT/PfSvRanQog/CvxRgBMnTtz1c127O+5xP2YrNtvD+K7f80x9qgevPeLkOltRvgumfm8de9Ux6ZoxEkWrTQu/jrnKoy0EThf+Qo/TbHneoGuC83MVxlHKpa0hS/eQ8gG0KzavLFXpjtVO/0FF5sQY9yigzNMVw+J5aQaWHQPP1kkzyULNYa0fkmQ57aozlbA8auPzKDFTtlkfhNQ95VMzDFMVDV2yGdaSB/K8eZBn/F5oldXu2ELdJs9V02m/r8J+VB2T07MqdvhhpCuPKnOZKdtsDEKWGg5RsRi/X6FkGzpnZ8vPzXV+EJxvl7m2UCXOcs7PPzs20uSeLNsGjZJF10/IpaTqmLRKKgjjWUoZdE3QKlv0fOWJU7INTENtRry+UkNysNRC05SnyGovwLX0B2JbzFZsxTaqHH0jzjGLezQ72K9tP87OlvfMa66lJFyN+8gs6p5Jd5zcc4zQHmP8eBjMlG02B8o0ePcmWd0zi3AVbSq9Pwwnmh6DMFGpaA9RXc9WbLaGEY2SiShSBoeF3O1h7+flhkvVNQqvnic75ykjeVN5YN1D+jVT+FsZB/gFmcWYPgrTQzcFntZ98Choli2CRCVmuqZOs2xxYa6M/ox2zZsli3Gc4phm0bTPp/Kzc+0yUaLmncfd1Z+tqLmv6ppTRl+rZBHEGTNl1fyqP8WodMvQps/rQfdi1THZHqqwmUphTn+2XZqmpsLj1SuT12tawfb3LOI0v+fxTJJMs2L++ucBk3qp4hhUXZNx7GMZGidnPGaq9l1rsbmimWIZ2tTrb6nuMo5TkkylHf/zjIns/X5wTJ3zcxVaZZskzw9cUz9reKbOqZbHhbkHYxo/C7iWzsX5Cpah73lmZ8o2a0WIwT8PTSkA8QgkpzsvFuIXgL8P/FvASeAKyjtqHsWCWjjktQbw88C/L6X8zX0/q0opB0KIGeB/lVJ+4bDjmJmZkadOnXrk7zFBnOXTnaijNvi7du0au48xzSVJ0RU1i8LqWePjK1dZXD6hpAQHeME8L9h/Lp82pFQUe1BF7UELvcm5nMQ9P484vt4QJvnUN8KxdB71Sj3JY4ySfGrI+9weY5qTF7osx9R5nHXJ5L583Pd5kvgkPN8Pcr33zEPP6Ls87H25+5gNXXsqmwKfxOudZJI0e75qDDiacShOc7JivLFM7cgbNZ+E6/1Jmb+vXrvG/OIKoJoqzxsrDT4Z1/tRnpsgyZSpitibzP0k8UmYv5/1GuJekEBYBFlsrN58Lo8R9tZ7D3ucozCdNkyf1v3xKNc7y+WUoWjo4snL1p/TexL2Xu/3vv9dKaV8sidDSvnIf4DvFP/9IWCj+O/kz6X7vPZfAbaAf1L8+QLwnxc/+yvAV4GvAT90v+N466235FFgFCby/bW+vLw5lGmWH8l7TrD/GMMklR+uD+SH6wMZJumRftaj4tXX35Tv3u7Lzih61odyKI7qej8q8jyX17fH8t3bfdkbxwf+ziuvvflcXduDcHy9pdwehvLd2315szN+rPd5kse4M4rku7f78sbO83uMnSM6RimlfPm1N+T17bHM86Mdg48Sn4Tn+0Gud5Rk8qNnPA897H0Zp+qYP1gbyCB+Osf8SbzeQZzKD9YG8tLGQMZp9oyO6m4cxTg0DBP53uqTqdWk/GRc70/S/H15cyjfX+vLUZg868M5EJ+E6/0oz816P5Dv3u7LtV7wBI7oYHwS5u9nvYY4DDc7am3xPB9jbxzLd2/35bXt0UMd5//j735fnvwzf0+e/DN/T37lv/rqU5u/H+VcJmkmL22oOsOPnvxxflKuN/BN+Rh9owf587i6BK1obv2qEOK/kVL+6uQHQohDXWyllH8D+Bv7/vlrxc/+2GMe1yOhZBtcnH86puG2oXNh7tnJVg6CZWifeNP0pwEhxB4T24Ngm9pzd3334/h6P1hC0LNGs2Q9d9To/didRPi4cEz9vs/Xs8Yn4fl+EFiGxvlP2Pcw9ad/zJ/E6+2YOi88Q2nsk0TZNu4KNzlKfBKu9ydp/j7MpPx5wCfhej8K5qrOnkTXp4FPwvz9PGO54UHj/r/3LFHzzIe2ufnHH2zwP37tOn/oi6d4aaHKv/Oz3+Mv/KOP+LM/+eITOsrHg6FrnGv/1hsTHgWPcr0fB4/bmLoohBhM/kcI8SeKv2rA873aO8YxjnGMYxzjGMc4xjGOcYxjHOMYRw4pJf/pL3zImdkS/+5PvohlaHzjWoe/9tVr/KEvnXogL6tj/PODx9IJSiltKWX1gD9lKeWh7TUhxOeEEL8uhPg1IcRfOODnQgjxthDiX3ucYzzGMY5xjGMc4xjHOMYxjnGMYxzjGE8Pv3GlwwfrQ/74D56desz9id92nlxK/uo/vfKMj+4YzxuOxMBKCNESQvznQohvCyG+JYT4S0KI1n1edh34USnll4G2EOLVfT//aWDzKI7vGMc4xjGOcYxjHOMYxzjGMY5xjGM8HfxPv3mdumfy028sTv9tpenxk68u8LPfujUNkzrGMeCIGlPA30Q1kb4C/D6UqfnfOuwFUsp1KWVY/G8K7L8z/5X7vccxjnGMYxzjGMc4xjGOcYxjHOMYx3h+EMQZ//iDTX7Xqws4+5Ih/8BnVxiEKb/wzvozOrpjPI84qsZUU0r5H0oprxZ//hxQf5AXCiFeA2aklO/t+refAH4V1bC61+v+qBDim0KIb25tbT3m4R/jGMc4xjGOcYxjHOMYxzjGMY5xjMfFr360hR9n/OSrC3f97POnW5xsefzNb9x4Bkd2jOcVR9WY+hUhxB8QQmjFn98P/P37vUgI0QT+C+D/uO9H/xrw1w57rZTyr0opPy2l/PTs7OwjH/gxjnGMYxzjGMc4xjGOcYxjHOMYxzga/P++v0bDM/nc6eZdP9M0wVc+tcxvXOlwq+s/g6M7xvOIo2pM/THg/wvExZ+/CfzbQojh7tS+3RBCGMBfB/60lHI/j+888HeBPwX8W0KIi0d0nI+EMMlIsvyJvHeWS/z4nsSw5xKfxGM+aoRJRpQ+ni76Sd5XR4Uoffzv+UlCEGekz/k1eV6OcTIOSCmf6ufmz+hzHwbP6tw8KoL4+R+L9iPJ8mfiTfFJO1dplhPEv7XG8Odh7pRSPeN5/nw+48/L8UnJJ8JD5rfaM/K8zpNZLn/LnesHwfM+DodJRpwe7ZgaJhm//P4GP/HyPIZ+cLvh97y5BMDPffv2kX72UeN5v373wyfpuTOO4k2klJVHeNm/BHwG+E+EEAB/FviDUsp/Q0r5BoAQ4g8BhpTyg6M4zkdBZxxzuxsgBJxrl+/SyD4O8lxyaXNIkkqaZYul+vMfmSml5PLmiDjNaZRMlhvesz6kp45+kHBjx0cIODNbwrMe/jHaGUWs9kI0Td1XtnF099VRYRgmXNtW3/PUTImyfSTDxXOLzWHIRj9C1wTn58qY95hInyU2ByEbg2d/jFJKPt4aESU5dc9kpfn0xoGPt0aESU7VNTjZKj21z31Q7B4jn/a5eRRsDSPW+2osOt+uTFNznmfEac6lzSF5DvM1h9mK/VQ+95N2rtIs56ONEVkumavatKvOsz6kx8aTrMkeBtd2fEZhimfrnJ0tP5NjOAzXd3yGYYpraZxrP0qJfjQI04xLGyNOND1q3qFh3c8MYZJxeXNEq2yx+Amowx8Ez+M8uXvN81vpXN8PaZZzaXNEmklmKzbztedrHO75MTc7akw9O1vGtY5mTP21S9uM44zfeYCMb4KVpsfnzzT5O9+5zb/+o+co+gHPFXbPo+2qzdwnbB79pD13R1ZVCSFeE0L8tBDi907+HPb7Usq/IaWclVL+cPHna1LKf2Pf7/z3Usr/9qiOcTf6fsLWMLrvblJQ7PRICdFjdJNzKdkchmS7Pi/NJUmq/v+T0slMczntqh90zH6csjkIj7zz/jwhSjJGUUpnHDMOH405tj2K6PgRSSaf23M1DFM64wg/Tj8RO54PAiklO6OIzji+62dhrK5Dlj/7a9LzY7aG0V27nZPxKMvlM2UMhEnGWi8gSJ7uvZHnks1hRC+In1vWZpLmbAxCRuEn47mZHGOe81j31ChK2RyGD83mS3NJ308e6jVxlpMXH/O0zvHmMGRrpPJa8lwdw/MEiWpcj6M7z0WSyWnN4X9Caoz7IUgy0jxnZxTRPWAcf1qYjD9bg+iBasmniTyXrPYCRlFKmOTPljVTfHSw6znNc8nWMKIfPNxz/6Qg9x1jZxyzM7p7/n0eEKc5m4Pw0PkvzyVhUtTpz9EcFGcZm4OIYZg8V8f1pJHmkijN6fjRdA552giTjM1BeKACYu869+iuyz94Z42qY/CFM61Df+8rn1rm6vaYb9/oHtlnHyXSXM2j/SBmrf9srt+jYhgmrPaD53I8uBeOhAIhhPjvgNeAd4FJtSaBv3MU73+UCOKMMEm51VU31zhKibMcXROcbHp30Q1nyzZplmPqGlXn0U9XmGTc2PGJkpyKY7A+CCnbBvM1h3GU0q4+nR3fx4WpayzUHYZhSnvfLnWeS/7/5P15kGVZft+Hfe6+vf293JfKWru6eu+eHRjsywAUSREkETRFWSEySJphibYUYphyaHXYDtm0w6ZkcadtSFxkCRYJcAOxDAgMBrNhgJnu6aW69qrcM9/+3t3vPf7j3PcqsyqrKqsqq6ohfyMQmO7sfHnfe/ee8zu/33f53VtddgYhsxWb7z/X+kR2v58UaZYTpjm2rjKKUlQgzHJGUcpGN8DSVU413Ue+5zDJGEcZ272A9U7AbMWkbH/yJol+nDEME67ujrANlYZroqq/v7/Pzjjmyu6Q9U7AudkSry/Xpu9ptmKRC4FtaHgvkB02ilKu7Y253RkzV7Z4a7UxnWDNVWyECHFM7YmYeicBP0752rU2nXFExTZ4ab4CyLXU0NRnyiIZFdKUa3tD/MhhruLQ8Mxn9veeBB0/QQjB9zZ7XFyosFhzXuj99ChM7ntLf/L7Pslyru4M2eyHuKbG5840URWFJMsf+ZpRknF9b8T5+TKGpkzZqKea3gMZgSVLZ6ZsEaXZc9k74yznxt4YBah5Jo6hsd0PEAJWm+4ngvEaJzk39se4psZ81WF/FFF1DGYrFkGcfeKm9E+KiqXz4TiiM0rohwnfZ7Roes+/flquu6x3fYZRylev7jFTsvn82Qaq+uJZdDvFEPSj7R7n5kokWRlTfzF7t64pVB2DVkmu03Gac2VnyI32GFVR+OK5FmXnxdY/hq5StnXmKrY8IN/q4JoanzndpFn6ZNXmtzs+fpQStjPOzpTYH8X31Z6qqrBcd+gFyfRz/ySgH6TkQvDB1oA0z1msOifGzvkkY38U8dFWH1VR8UydMMmeK9MzzXJ+8+M9hlHC6abH26cO+z21ShZJKtCKZ/UkkGQ5v/bhLj/28twja8Kfem2B/+QX3ufnv73BO6fu96J6UZgMvWxDw9RV2uOY3UGEAry2VP1EnofiNOd2ZwzAfMXmVtsniDMUBWol6/dFr+GkquXPCSEundBrPTP0/YTbHZ8ozchzcEyNfpigIm+uQZjed8gxdfVEaLBxKrjTCfAsnSjNSFJBN014af75yRBOCq2SReuIzXoQJny0PcCPclRFJUiyF3Z4PmlIKqSk4rqWxnxB5dQUhfYoIk5z4jRnHGePlLwpiryvhpFc9H7vdo+FV51PXBNPVxUQCn6c8fH2mIZrsfwJlyUdB5e3RvSDBE1VODNbolI0BW1DY6314inveS64sjNkdxCRZXCqFbNkSurtJ+Ea26OYNBPoqkbVNSlZOtv9kL1hhKrChbnyM5UYDsOEQZBh6ZL1+klrTIHcS4I4Z6cfsjuIOD3zyV0HLV07kT1uHGdESY6hquwOQ4ZhSp7zSOp7kgnudAPOzpboFwwPkJLpo/aZCZ5noyXNcjZ7IZoKlxYrhGlOr2B59f2E2cqLP1zFWcZmL6Ti6GiqSpYL2qOYS4sVtE9gAf0kGEcptzo+YSz9UExdpT2KX0hjquoY6KrHzf0xG92Q3jhhoWZz5hMg61NQCJKUIBHs9GNudcacf0FyPkNTWW3KuiHJpAT3w+0BwyCl5poMo/SFN6Z0VZnuqxs9n41eCALOzpQ/cY0pRZGS4mGcMggTWp5NnOb4cXZoCFD3TOqfsL1RAaIkx49yNnohiz3/hcpMnweSLOfDrSHjKCMTKZZe5nmX+sMwZW8Y0R7FBHHGpcXqocbYwWf0pPCN6x36QcJPvjr/yP+2ZOl86dV5/um7m/ynf/DSC5NnH8QgTLi1Lw3Z11ous2WL222dUZ4yClP85NFnvReBfpAQFOqPXpAU6ouYiqPz6lL1E/HZPgondXr4mqIon/jG1ISiaOkac1WLxZrN2ZaHosipjmcd/sKSNGN/FB2S3z0pDE2hVTZpuCZVR24WrqVhaMdboYQQDMLkkMQoTl8wRfsAgjij68esNjyqrsF8xcR+xlPkJMtP5Ls5DsIko+cnZEIghFyoFms28xWbqmOgKGAZKs4xHnpLl82F+bJN3TVxDB0hCjPfOGMQJp+I73W57rBUd5itWNimiqLIpkmUZPfdi79fUHNNFmo2zZKJa+m493xfYZLRGZ/MM/+kcE2NpZrDTMXENe9nagoh6PrxIcnO80TVNZiv2ixUbS4tyEPvZG3Nc0izR392aZbTD5Lp53zcZ7liG8yWbRZrNrah4hgqQoj7Xu9FYq5iMV+R+4uuyUn8ZK0eRekLkW0nxedzEnKjLBf3yfUMTeXlhTLzVTmRcwxtKrWLkoevE7qmyDXG0CjbBgogEM+86JvsqceRLmiqSqtsMle1URUFR1fRVAVV5RDbNc/v36efFzRVpVkymavI9Q2gbOuP1ZSK0/zQ/iPEs5c1548hnZbPESxWHWbKJnXPwHuBwy/P0jk/W6biGMxULPwopTOKXtj1TDBXsViue8yWTWxTwywGBWmWH3p2pTwleS5hGnku8CM5FF6sOhi6ylLdmt6rLxppsQfNlyULd6nu4D1EJeHH6QuRk682XCquwXLNwTV0BALLULEN7ZHPaxBnL6xuAJgpWyzUbOaqco+wDY04zcmy/Nhr8ScdB/faOM3RFNDVovas2Kw0nj/D1rU05io2NU9npe7SGUfPXAL/S+9v4RgaP3B+5lj//R99e5lhmPKrH+48k+uJ05x8Ksl79Jp3sG4Jk5y6Z3JhrsR81WKmqHE+iZjs+aoKTU8OBVtlE1NT6b1A6fvj4KR29J9DNqe2gQjZGBdCiNdP6PUfC2EiJ7cVR0cp5AQbXUm7rzoGuZCbs6YqlGyDVxalFOUgY0UIwb+6vMedbkCrZPLTry08MFXgODA0lapt4JiSEugYLiXboB8kGJrySGbRejeg50uWx0vzZbb6Ad1xgqnL39U1hfmKPX0PwzBhdxhRtnVmy892suzHKdd2x9xqj7i+N0ZVwdDLjKIURZHd8JNmA03M+rpjaQQ9U7FZa3onKiMKk4wwyajYBhu9gCTL2e9EvLFcBaDhmSiKQs01qdjGY9E6S5bOD788y94wouYa3Ngb8VtX90mzjGbZpmTrfP+5mRfa3dY1lTdXa8xWLARSQvFPvrPBzjCi4RnomsrnTjeZf85Gege/l8el0mqqwhvLVX7ndhfHUAmTnFLxXEdpxndu9/hoa0DZMfiJV+aeWGIphNz87KL4ehzomsqlxQpplpMjCJPs0HVc3xvz9ettoiTjx1+dZ+U5BxBUijVzvRsUhaRsVClEOKZ2LGr+tb0xcZrjWRquqfHlj3ZJc8GXXpl75O9eXKwwW7EZxXKN+8qVXfw448J8hYpt8PJC5YU+N4qi8NpyjbmKg2OoxFnGP313j1GQ0CpbJHnOK4vV5zYpnhjVb/VCNFXhU2v1J2ayhknGN290iNOct0/VqNgGfpKR5VIC+7kzTZJMsokmBdKjqOOmpnJ+tkSa57y73mOnH7LScPHj++UOaSGddk390FofxBlb/QDb0I5t7Lk9CNkfxiiKZPk9bO8wNZVTDQ8hcr5+vU2c5bw8X8IyDMZRQprnlG2D9W7A7jCk68dcnK+wXH9+TFhTV+XfA9I85+X5MrquHnu9zHJp2p/lgpprsFx3uLY3IohzKrbcw01dPcRU64xjun5Mwz0+OyPLxVTKMvmbcZozX7VplUy2+iE7/WBany3WnOl9UHV09key2bva9NjoBXTGMTXXeGFy2QvzZequQS+I+daNDn/vG7dYrNj8xR9/6YVcD8g16OWFMjVXJ8ulpOPDzR4fbo2oODovzZeJ0pzNboBr6VQcgwtzz2Y9itOc7UHAdl+yyiqOzjhKuThXomQbhw7pkvmTUrL0Y9XbQgjWuwFpLlis2U984A+TjF/4zgZNz+T15To/8tIsmRD32VVMcJBNsdp0D8mfxlFKmotD/y7LBRvdgFwIlurOUzGKDU3l0nyFm50RnqUxW7ZpeCZb/YCru2PKts5C1bmPUdoZx3y0NUBX5XPcKlss1Z4vU19RFC4tVKi7JpoKuqryi9/doDuOmfEscgQ/+vIcVfeT0ax8XIRxyi9/IBsrgyBBUeGd1QafPdNkdyCl1bXn+N6yXDCOU7JMYBkK3XHMKMyIM8FCNXlm4RF5Lvjl93f4oZdmji3V/PzZJgtVm//vt9f5115fPNHrGUcp/++v3uDMjMdq0yNKcixDfeia1/TMqY9k0zPJc4EATje9537meRyMwhTP1Jiv2liGRtnS+ZX1PoMgYX8U8am1Oos19xPNoj6pnfz/CfybwHvc9Zh6IYhSma4hBFP3+e44ZliYVFcdna9ebTMMU063PL54oXVkkZ5mObvDiFGYkuYZ+6P4qaQDArkoX94eYmhy2mqbKltdWcS+ulzh7MyDH5KJKW1WdHxHxdRjoxfQ9CxURTaoJpvhdj8kTHL8KKPhmk/VVHsUklRe0+4w4mbbL8ylEz7eGfHaUu2ZJA6OohQ/SbndDVCBoPDuWqiezN9Js3x6Hwl8brbHRHGOoav83p0e8xWbpbozTSV8Eq2xZ+l4lk6S5vzceze50xmz3Q+ZKzucnysxV3Z4rWiCvSgoisJS8R5/9YNtvnmzw1Y/RCC4OF/FMlR+omI/t0UuOfC91Nz0sRPPhBB8+3aX37nexbN1VEXh+wovtCwXdMYxgzAlFYI7HZ9Li0/2+W/0ZONYUeCl+ceXtl3eHvKVq/vYhkaU5PzEgbjdfhjTHsnJx9Xd4XNvTAF8sDng2t4YRYEfemkGS9fwk5Q4y6i7xkPXGyHuGrfHWc6NzTEfbg3Jc0HTe3QjsGTplCydj3eGXN7p8ZUrbfwo5aPNIZ863cTUVV6aKz/TNe9RsA1tSo3/F+9u8s3rbdZ7ARVL58J8haptMl91ngsVXAhZrPT8BENX2BlEnG492d/9eGfAu+t9HEOyc1xTZ3sQEMY5izWHc7Mltgvjd0WBi/OP/h5MXaXumnz5o12+c7tLkGQoikqrZE9lmmGScavtc6fj0/BMXEvjYuFtBtKYfBxJ776qc7wmxSR4RAgeybRTFHkAfX+zz2YvpDOW8qi5ss12P+T8XJl3TtWJs5zuOGEUZbRHEXXPfG50f11VMDSVd9d7xKng4kKZC3NlvnG9Tc9PWGm4vH2q/sDfz8Vdo/S4YI9MJAG3Oj714kBVsvXpe9rsyYFfmATHbkzFac61vREvzZUPhX+MohTLULm8PWSrHxAkGaebJW61fU63PE41XTZ6sq5Jc8kSUYtD9YsMggCYqdiYusp7G32+e6fPu0qPVsXiT3527YVdk6IoLNbkGvTeeo/furrPrX35/Nzq+Kw2XK5sj1isO6xpCkKIZ9KkyHLB7X2f210fhMLtjk/dM+iHCrapH/q71/dHJKnAMTXOzZbYG0bsDkNq7tE15CBIp5La/VH8xHVmEGdc3/O5vDNEAG+fajzUaycp7tkky/loa0DNNTnVdMmF4Ppe4e9yIC2058dTo/fOOH7qVK+dYcjeIGYUp6SZZHRs9kI+2Bzgmiq6qtx3Xrm6O2RnEDGKElYbLpqqUnGMqZXB84KuqdO67Zfe3+J3b3ZZ7/mYqsqF+QoNr8cPXZx9rtd0UnhvY8CVnRHrXZ/dUcRqzWUcZvy5HzzL2hPuuU+Dm+0xAz/hvY0+H+8MWO8FzJYsmQxYsZ8Zw/xbNzvsDiO+dAwZ3wSaqvBH3lrib/7mdXaH4YkSKkZRyq22z94oomRpeJY5ZbE/aM0LU+mxq6squRB8uD3g6o6seb94vvWJk/gCdP2YX/twh/1RzFrL5UuvLvDRzpCgkP1e3xtRcw2STHwiJOcPwklV7reFEL8ohLghhLg1+b8Teu3HghB3EzYmD51jaiiKLC7DJJv6AQ3CBIWjb0pD13hztUbNNTg/W8Z6SibO5K8cpA8GcUYviMkF7A3jh8q3FmvOdIpp6irzFRvHVFmuu6iKIqVkB67RLQpH21CfedOg6hos1mzWmi6uWZgfCzm1BZ6JFKBVsqjYOk3PnLLQTtLPKj9wH+2PYmbLNooiWVJ5Lj0cTup95UIURb9K2TEo2zqOpWEZn6yOtq6qOJaGaai0PAtTV7F07bl23vNCSgmPPkwehSiVzVqhyM3q4LTINXUuLZVplWUR3HgKicHk2oSQ1/w4SLKcXpCgKrKhYBvaoc3z4lyFxZqUsy3XXozn12SSNDnUd/2YJJUH2dEjpAKKorDadKm5BqsNl9mKhWtIptXj+EXNVWwcXaNk6VjF79uFhOwToOibouqZ5IBnalQcyRAoO8ZT7ynHhaoqnJkpUfcM5iv2fZL1x4EQCrahkGaChmtMJZiTxkCa54d21OMedHMhUItJvqGrVBztkPfiIJDyuLBIRE0zcWi/nDSidE059uc6X7Wpe3LvOu5Ud6ZkYeoKtqFSdyzao4RcyANynOUs1x3mqhZzFQtT157bd3wQSSGljdOcLM/pjOU1th8hMTM0lZWGrDOWag66pkpZpimZWCBrqIP2A5PP/XHldJNn1DE1GiW5h8+WLUxNRVXktdi6xjBMpB9jKL3HJsnIaSb3zGbJZLZinZhh79Og6pqcmXFQVChZBuMw+0RI8kF6nFZsgyTPpRm5bRAmOUt12RxfqT86tOVpULJ1Gq6FoSuUHWkyPmneT/6ulGTLz2uyf+6PIvIcOqP4SBmybapMvOa9pzDR1lQFTYWyZVCyjUfWdg3PZKYsLQ4mcrR+kJAeuMaD9Ylr6tMziHsCZt9xlqMqch2eSPkyIbB1eT33DsKEEDiGRt01aJZMqq4ph+MvOLSh7hhomkLZMvBsyYJ9mv3pRcMxNVxLxzE1ao6BAOrHGLY9K8RpjqJIqwUhFCxNo+QYnJnxmK/az4xl+j/+7gaeqfHjlx7NgD+In3l7mSwX/OJ3Nk/0eiZDm4ZrcGGuQs01HhlU1RlPalo58JqsTeLA2faThiTLJUOuIK+M45S6azJfc5gtWSzXXZqe9YmwvHgYTuqu/EhRlH8A/BOklA8AIcRzT+WzDY3lusMwStCKw2fZNnhpvkyeC253fKqujq7DO6dqDy1IpdyiNDVKfxoYukyz0xWH6/tjRmHCuYIh1Q+SR1JqbUM7xA6pueaUEhrEGarKIRrzUs2h6Uld6YNeVwjJEFEV5alNEmcrNj9YmmOmbHOnM6ZVdpgtW3xvo0fZNlgsaIUnBdvQeHmhytmZMmGSAoqULBQb89PC1FVWGy7jOMUxNG7sjzk/6+HZBg3PpOoYJ2ZabxkaP3ZpjrWWSy5y9oYxVdtg8Qj2V54L2uMYU1Opus93w3v7VJ2qozMIU8ZRwjjKOPsAI+5BmBAmGU3POtHGlaVr0+/lYcbIRyFKM/p+zKmGy/4oolEyeXmhcuj5WGuWWKy6pHn+VI3OhaqDoUW4pvZY8gIhBIMgoVkymCvbeLbGp9Yahz5D19L5I28vEybZExe5aZbT8WNcU38iRscrCxX8OKPhGTRLFusdn51hyEzJOlaxU7HvTmpfWahScwziLOdU4/gm3FXH4A+/tcTppsNGP6ThmvTDhCjLjmwGhknGIEioOMZzlfq9vVpHU2CzH6IrCmXbYL5soR2xLk+useoaJ+pD0fBMvnh+hjTPj3zd9ihCUZRHNgYXaw5vrzZwTY2FmkvSGbNYlcOSqmNQtg0cQ6MXJHjmg/2NZHR1hGtpCKSsbqlm03BbVByTtaaHqirSdyTJKVk6+2rMct2l6urMlO1Dz22rZFG2dXT1eIOYUST9YeYr9mMx62YrNj/92iK7g5BhmMipapTKmO0kx/BUXl+uEaXZsa/l3mt6GobzUs1hECbsDUNmyhajKGO+JlP5zh5jQnqwrgDZ/J2wO/w4RVcPp26uNV2iNH9kAy7JcrrjGM+StgOrTXf6OveyXD53pkl7FONaGmGasT+MCYqoc1NXGEYyzWsQSrnoJynR9s/+wAUarkM3jPm+My2+dq2NqsBnzzRfaLjJxQWZytfwTBDQKBssVBw0VcGz9IfKi/p+QpzlNL0nS+WdSGbOzJQYRfLQFCUZonht19DQizp1reVJCRSyKVV3DfaGUqp51N+2dI2X5srkgkfaODysdirZOj/7qRWiLMMxdDxT43bbx7O0I5kRWS5QVZivOOwMQoSQe5pjaizUbNJMHKoPHVPj4nwZAQ9lT8dpTs+PKdn6Q+uPmZJFbyxZETNlmar68nwJ19RQFYWl+uFnSlEUTs+UaJYS6q6JWsjoTqo2m9QTj+u789ZqA8tQ2eyGGJrKOE6pugZZLu67tqBIiT7pvfFx8LC6SQhBydJYbcghvWUoOIbGK4u1F3KtozDlTmeMEPCTr8xxq+0zjjPOznicmy0/s/UoiDP+2Xtb/NRrC49dQ5+bLfHGSo2f//Y6f+b7T5/YNdZckz/xmRXmqtLX9zi5fzXX5HbbJ85yVpsOL8+XGRf9hLnKkytznmSfH4YJQfJg9VOa5VzeGaIpCm+v1rjVCTjX8nANjTdWaqw0HDxTJ85yhkeEvH3ScFKNKQfZkPqJA/9OAM+9MQUyjeJr1/ZZ7wa8sljh/HyZ3UFEkuVoioJt6LRKNkEizdAettme1AKoIIvnm/sjNnsB+6MIU1U5N1fm9WVz6rUQpRmrDZc8l4f7Vsl6ZFPMMTV2hyFZLpk9kwX9UYev/VHMdj8EmFLinwaaKr1VXluuAfD1622+c6dHngk+2Ozz2bMtXl2skuY5XT+h6hhPdChOspz9UUSrJFk7pm7yweagYG4kvDR/Ml4Jpq4yCAWbvQBFFXxvc4BjyGnfWss70cPtYs1hseaw0Qvw4x79MOXnfvsGKw2Xz6w1KTsGXT8mTLKpvOKM5j1XX42KY/DWqQZBnPHNG22CRPCrH+3gGm0uzle4tFihFyRTo3gZFy9OXMZZdWUBuDeK8EztgUV1lBaHX1MWlx9sDOiMY/phzEzZojNO+O2r+7yz1ji0UJu6ivmUZFJTV1msOeS5YLsfoirS+PPejXYYJvT8ZCr52e5LOn57FGGZGoMg42vX2nzhXPPQAWxyoHhSbPQCBkGKokSP9Nc5Ct0i1XB3GLE3CPlga4AfZ9Rd87Fli4oiU+wkw+PxJjmaqvDWWpO3gKs7Qz7eG7MziLi972ObGvMVi5cXqjimJhNZk5z9IqnsecE2ND57pkU/SLiyM+RW22fjyi5pKrgwX+bVxSqDSDbAt/sy5r0XJCfu+SJZAfevWbfaY67ujKg4Bsps6dCQIi8k2qoqD0MzZWt64Lq8LeWcaZZzaaFCnMn9VNfURzaNt/pS7idNSAXdsZS5rLVKhwYuEx8XXVMYRTKFsWyX7wstALlXR2nGVj+i9JDDdpzm3NyXBXsQZ4+dSFiydcaxzjjOcE2VmmNypxvw/mafrh8zV7bZG0XTMIxJw+5hSLKnu6YJVFWZyvq/favLXMWiZBq8NFeh4ZkkWc6N/TFZLqZNLEvXjjVkcU2dQZiwOwxpelbBRFeOtQ/e6fiMowxFiaTf5hEMp91hSJoJ5io2iwcO1jXH5MrOiL2RTJXyLJ1fuL5BxTV4eb4y9TCbKVkvVL47wR/91AoAX7/W5lc+2OH6/oivX2/zv/qxCy+sOeVZOnNVG5ApwlEi+GBzgK4rnGp4+HGKQEFXIBMwW5af5ThKud2Rz2Ca509klaAqCrqmomtyLYzSjGu7ETf3x8SZYKluc2mhSi9IqLsGJVufPvdzFeuRdgbH/c53hxFXdobEWc7bp+pTaerkGieJw1ku+OX3t9kbRSzVHL54fua+/XGzF7LRDRjHKZ9eaxxqdD1o7TvOdV7dHbHVC/Bsnc+sNR54NukFCZ4lGavb/ZBcCNJcUHMMqo6JZ+qsd316fsJsxWK2bE8l8A/CZK1XFPn9P869utkL6QfJY6fNmbrKmysNXlsSfOdOl/5ewm9+vMc3rnc4O1vipbkyQZJRtnTWewF5Lgf555+RH9qjsN4NGIayblqs2fhxhmNoXNkZcn1vTJhllC2D1abNG8u15zYAC5OM9jimbOuYmsp76z1+88o+4zBB01TOzHh88cLzkUf+0vtbjKKUP/r28hP9/p/49Ar/4f/4Hr91dZ8vHtM4/VEQQiYT1tzjG747hoYfS4b2R1tD6p5JlOXYmfTBe5LB9ZPs81EqbQyEgDDOD6UndsbyTPj+Zp+PtoYYmsKlhTKXFivMlu8O3RpFaq1VBMx80nEip1ohxL/9uL+jKMpngf8bkAG/I4T49w787D8FvlT8438khPi1x3ntrW7Ar1/eI0ozBmGKH2dEaU7VMaaUWhD0fCkPsI/BOohSSeer2MczZTwKQgi2+9HUk2MUp6R5TmccgxDTtKb9kUzcEkL+3XOzZbb7IX6cslB1po2qzZ40RLd1lXHxuwr3a8sfhEObyAnWS2GSsdkLuLozYBim3NgfcyEv8f5GH0tTGMdyKtXzY155Ag+fcZTxe7d6fOFcA8+SD9nkvRx3Y/TjlO1+KAu2B+j917s+wzDl490hJUtnbxSxWtfphwl9PybN8vsOP8MweSoZkaXL9LuN7pgb+z7tUUKU5igoJHmOZ+qcbpUe672eNHRNQVMV/Djlo80BpqExDFP2xxEb3ZCqq1NzTFol6yRvq0PY6AWMwpQOsjF7VAN5ux9ybVeabH/mdF0+d4lgqxsQpHKCf7rl0RlHNDxzalhuaOqJNfz2xxF7Q0kiNTT1PmbirbbPKEz5cGvA26fq7AxCBmHK9iCk78eMk4zlml2YSct7fVIAPo03xEEJ85PcR0Gccnl7SC5yGq5BmGTFZvv4iT+3Oz6/+sGODGwYhI9/MQWGUco4TAnihBt7I3RNxdRU7nQDzs2WGIYp3nT9f/6YPNvDKOFOeyx9iMYxV3eGaKrKbMWmUTIwVO3Enpt+YXhZc4z7Jv9CCG7uj/na9TYICJKM83OHWTX7I3n/hknGKExZbbjT/S9McoZhQt9PMDWVpbqLrqrHanJYusoI2SxTD6zdBw+AgyBhECZUbIPNbsCN9gg/ygnjnKprTg+Ak8OzqavkuSBMpM/TvQbpExz8/hWkzGGzF2JoymObAedCsDuMubY3LOoDg9vtdjEVzXl7tcZ6EaAipWeP/mweZC/wOPh4Z4SmyOs71fTo+TGuqRHE2TRt6MruEFPTgATX1PAs6fez2Q+J05yFqpRbtUcRO4OIsiX3PiGQYQMncDjsjuOpZ+FEHaEoHGqA6EXC0CT5dqsf0PYjNnsh4yhhtmTT9CxycT/76kXCMlRutcfs9EN+dbyDoSr8hR8+h6q+mObZdI9UYBwlXNkZoanSkqBsGeyPIoZRwsvzVXaHoWS1Onf3wZO4LwG2eiG7g4iPtofMV2z2RzEfbQ8wNY1BkExlo5NrPQrDMGG9K8MOTjXcaQNHsgWlyfS9DaIwkV6xAHuD6FBj6iDWuz7vbfQRBQvrqN5QJgQ7Q8mU2uj5VN3769h+kLDRDfAsyfI+zrqyXez/0jsqx1Q1dgbhoSS9MMnwC4N1kMyYQZiQpILNbshKw0Fwt9nfLqwoQDaIh2HKYs2m5prTOtgt2K2TWkVXlefqoTOR7/bChDsd6S83ijKubg9RVIWao7NYdzE17YXt33B374iSjN++2qYbxOSZIEpyru+PsA2NpbrDmRkP/TlaXKx3fYI453Z7jK7C+5tD7nTG7PQjTrU8PtzsY+raVKL9rCCE4O985QZnWh6fPX0cXtL9+Jm3l/ivfu0K//dfvcL3F/6vT4uOH/EvvrfFqYbH//wLp471mkIIgkSew0dRSs+PuLEf0CwZT3RuvRfHXU8fVKsPg4RvXm9jG2oR7ia405EhE7ap8UMXZvj06eYn2uT8QTiR05eiKBeAvw7MCSFeVRTldeAPCSH+9w/5tVvAjwghQkVR/r6iKK8JId4rfvbfCCH+c0VRasAvAo/VmAqTDEtXGEeCIE6wisaNZWhcWixzIS/xvY0+uqpyu+s/ssASQnBtV04Ze5b2xKZhO4MIFPBMg9W6wZmWR99PCJMcVZUH7CiV5sFhIjWthqYSxNl0w9gehJxueQghpgbIveIwDYf9H+5FXPhzlGxDpnKUpJxEphieXHTo7iBiHGXUPYsLcx6uoWLo2vQQ7loaZ1olZp/CAHKio53gdMtjoxvgmhppmjOM0qnnzFHY7t81y61YOrap3bdYGZo0V52vyEjjpZqNqiqULJ3OOKFTbPyT5tTBpJYnRatk8YWzTeIk48aez9YwpDEwsYvufXnGoOHJaf3+MGK2cryJ9UnC0FQ+vdbANjQubw/ojBM01We+ak9p+GdaJaqOjh+ltEfRiRc5k01fVTlSEgUQxpls4qiw2fcxdI04S1ltSimfWtz7k2nC7jBidyCfs3OzpaeW7wIYBw4h+hHPpqnJYlDTFG63fUCgq0yj0Hf6MX6aUyp8FyZplCBjox9HzimEPAiWbZ25ioWfSDrxvQyno2j0970WsDcMURWFQZhyabFC10848wBp58OQpJLFlOdienB4Eqw0XN5YzrjZHjGIhtzu+CxUbbrjmJ2+TL9slkwMTWG7H6AANc98brIA29B4damKZ+p0hxFbvZAwzTA1hVxIf6Xzsx7S3kSwP4poFsmfT4rNXkCayZj2xj2vFSY5oyijbOuMw5Sqo1Mp/FUmchJdU8lywXrPl/KVQm4Dcs39aHuAY2okRVfBPGbRu1hzCr8tKSc5O+uhHmDf9AOZuKirCn6cYBkqgzBFV1RsUz10z3bGMWkmSLMMXVMQCFSUQwfKIM7ojCN0TaHhWZxueQSJZPht9WWTGzi2GfBs2UJXFXRV4YOtAbahkaSCqLiXB2GKrknGaNeP8UydIA4LGY28sIPPmR9lzFUkS6FiG+wNJePqcZvPojAwdwwVS9NYqNuoihzmXNsbcXamhGWopJmgaVvF9P/u2jSOMzqTw7sasdJw2R/Fko0cxGiqghAPlyNluSBIMrJMTNenxarNjbbPzD37wO4wkil9aYqmqKiqgh9lRGk2fS4HYUrTMykVn8X1vRGdYcRYy+j7Kf1gxGY/ZKH2bNOHHxdvrdb5/nMtfvG7G4Sp4DvrfX7+23f4o2+voL0AZlfVMTg3W+IcHt+90yPPYW8Y4RWysSQTKCjsjyLZqFBko3epbrPRDUgzmWb9tAfbMM3o+gk1zyBMMzRFoTOOma84GJqUOq82XDIhqD9gf5s886MsxU+yKRNoqyebqpPQn4OMo6ZnYhsKGYLsIR4x72/2SdKcYZTw0wvzR77flbrDdj9AUx48xGqP5L09CFKiND9WnXaq6bKhBjIFExkystkPmCsaS6IwVxcCNFWut2mmIUTCfMVmeySTV01NpebK1O9mMQyL0uyAUXxEzTUP1cGzFSkJVBRpPQKS4TEKU0q2jqGpD5RDLtUdXEt7bCnfBJO0PgVBfxSzP4y4tj/kbLMk70tF4YIl79M8F2x2fZpl67nt3Vku92MhBBVHJ0oVLm8ndEcJlg439n2GYUKrZPLWqSqvL9eeK3tTV1UGYchH20PGUUJ7JNU2dddkteni2SaDIMUx4qc6dz0Kv3V1n/c3B/wXP/PaE8l+QTbQ/8IPn+M//sff4ytX9vmBC0/PmspyKbXfHz/cZ/EgdE3ltaUqu8OYhYrFly/v0vNjDE05lm/sUXW0oanMVSza43jK9J2k5j4IAkHJ0tFU6RntRymupfPhdp8ruyMAXl2uIHKFkj1kvSsDQvaG0TMjBjxrnJQO6G8Dfwn4mwBCiHcLz6kHNqaEENsH/jFFMqcmP7tR/M8IeQY6Nvw4ZXMQkGQ5/XHEhVmXvVHExYUKSzWHXpBMaf5pJgjilJ1BSPUBviNJlnO747PRHTNXdR7byPggBALP1FmoWjRLFos1l+v7o+nPz82WaI/kdNrUZGG9XHNAUYo0JcmaqrnSx8MxVW7u+yzVbNZapWlk9VHoB1K2lGaCtZbLa4UPRnscceuIgvFp4Foa/SBhteGxUnfI8ja5EPhJzjdutFEVhf445qdeW3iklPIo6JoiDxZxRj+QDZE0l2yX2x2f34k66KpMjXp7tU6aC261x6S54ExLNhw8S2ccZURZxse7I0xd5exMaTphH4YJSZpTdnR+aG6WLIOyraOqkgq/2ZPMjoO3w1HmnE+CqmPy9qlGwYyRjTDJEIpYb8NW18dPMjRV5dXF6gtJMLEMjQvzZT51qkHXj6mXTJI0YxBE+ElMfisnFzmDIGOuYvNjl+ZOdENcrjtUbAPLUI8sAG63fcZRimUoNFyLb9/scas9puGZnJ31qLkWriUj0CdNrjjN2SkYO/MVC9t4sD/bcVH3THRNymvuLWDTLCfJxZT9dLM95PquT5BkvLxQxjEl7TYvvODqnnXoGpueiWdpxy6AxnHK16+3Waw5VB2DJJXU/bp3tzm1N4zY7oc4psbZGe+B719TFVpliywTtEoW52Yf3NwXQrDVD+n7CZ6lMVc9HOs9W7FplQ32BjEvLzw5C6NVsnjzlEazbGIZGqebKX6UEsQZ232fG/sZdc8kiFPWeyEvzZa5tFR9ZjHpR8HSZdrUp880qXsWAsEwkmvNemfM3lCyOIdhxkzZ4lNr9adKT/FMnd2hlM2tdwOW6w6DQHoclG19ykjQNYUwzvna9TYNT+6Nu8OIlxcqLNUtru2N2B6EOIbKVl8lSjIyIVhteJQsHVNXWGm4j0VvPygrue/3hGQlbPVDUASnGh4//NIsnqUxX7GpHJCCVYsDmK4pOLrK1Z482H28M6RsG1Qdnet7Y67tjUnSnOWmy+dON/Asnc1ewO4wIs9Fwbw83rOkKHcZBfXC5Ha16U7DSfaGES3PkEVslnNjf0TJNhiEyfRAuDeMZPNPVfjeRh9L1/jsmQa7w3DKdjg/9/hx3kohG46SnFcXq2z0AsZRVqTnZYW0UKc9kkX2SsOdPo+WLuVb0kelXAzI5Jpzqumy1vLwo4ySffT3vDeMuLE/Yn8Ys1R3WMwcZsoWH++MWO8F9Py7jef1rs9WP8CPMtZm3KIxHaEpCu9vDJirWAghE0qHYcpay+XiQoXXl2UozUYv4PruiFFhTPu4n1OSSba6Y2rPLJnsT3/xDCVL59cv77I7CPm7X7nBL7+/zV/92Tfx3Oef6jQZtqy1SuwOI+YTi5ZnU7Y09hEoUPgbqewMg2IgqmCoCqMo5cyMx2dON59qGDZXtujVEuYrJtuF1L7hyQRtP07ZG0YPZF32g5he4Us1DFOiNGNnEJKXLSq2fN5u7AdHGmhvFA3o9zcHdEYJrbLFzBHJX66pc7pgvJyfLbE7CInSHKPYx1uFZPRTaw2CJKNUrF1CyKYNyL256hjc6fgIYCVxjvWZnW560r7D0PjOeo9f+L0NtvshP/by3RpPMEkSU9gfx1i6yumWx0rTZS1yubY3oj2KOT9XOuRLqykKmz2fnUHEO0U656QONnQZGjHxxpusgzf3x5IZGyXMVWwUZJMbDltJaKry2J6f90LXVC4t1miPY5plWX/FWc56J0BRcr5+bR9FVdgbxtQdg7dP1Xlztf5Uf/O4uNUe89VrbbZ7kv0qcjnUGcUpFUemnQZJxnLd4Y3lxmPbGTwtdA1+72aXb91qAyqvLJRwTAPHVPnc6TppLgOyTmLY+jD8jd+4xmzZ4o+8vfRUr/Ozn1rmr//6Vf4vv3yZL55/etaUpStkec6FmcPMxc44ZqsX4Jgai7X7n9G1Vom1lmzqzlXswlfVfGRT4lZ7zCBI70ukl3tphBDSzmCp5vCtGx2GDwkMut2Wz+zl7T62oVO2dd5YruFHGSAYhAlBmFLxTL5wtsW7633SXPD2qfoTNwdfNE6qMeUKIb55z81zLE1Hwa5qCSE+OOLH/xlFs+u4GIYp24MIBQVD1+gHGW96Jq8sVrm6OyIomCZVxyBKMnaGKd3xgNmKdWQ0/GYv4Hsbffwoo+qaT3WImUw9xpGUF7673uPlhQqDUPot9fyYzV5IexShqgp112QYpdRck7WGy2Y3IMgzvnm9zWLNJUwzZssWQZIjEA/Vjg6ChCyXOnQ/lmkxe0PJbBpGT6aXBdkV7oxjbEOd/v1WyaJkyQnLL/zeBkEiN3VDkQXO7jDi/c0+Nc+i7JjHlh5OoKsKwzDh6s6Q5aaLokjW0t4wkqyljs+putyQwyRjZxBxZWdEkgmSNOfN1TpzFZuqY7A7jOj7SdGkzKaNqe1+SJjmkMrDpGoo7I/lJHHiR6TcYxpfc03SXDxV83KCxZrDD12cpT2K6Pox13YzbndCbnZCTEVB16BVctgvGpnPmzUFspnyhXMt9oaSfv7xzpCun9Aex6x3Q5kQo8spWmd8spMaRVEeyhbqBwmGrrFcd6m7Bl+/vk8/TBnHUhp7cd7hmzd6jMKAb1xv88MvzdLzpclunOZc3hkxiNJjGQY/Cg96Lv0kI8/hVNPDMVRutEeM4pTdQcRK3eGNlTJ3umN2BzHfudOn7plS3helmJrKld0hHT/m3OzxDq9pJmVOu0PJHprg4Ko9ibQO4ow4O9ooGyT7p+laBHE6ZZw9CINQvqcb+2Mqrk6cCc7N3v1cd4by4GxqyvTvPylKls652RKuobE/DvnOnT7bvZAb+0NKlsmHW0M0VcHQVdp+TPYCYuZ1TZ2uQR9uD8hzwbc2OigKZEJhpWGTZvIz3htFT9WYWmk4JFmGgmTLGbrKdi/gdsfHM3XKjsFC1ebj7RH9MGXyaVRsg1EkpZWOqbFSdwkKw+L9YcxWP5AyoCSn7uqcnSmd2IQ4TOTAYGIE75oaQZLx0lx52gya+NhVCpbXK4sV9oYR13bH08abqatESU7F1mVaTSST88ZhSrdokrZHMYaqYpnSh+NJ3sOdbkCc5Kx3fN5YrrJYdTg347HeDfidW13SLMc2VZqexa22T801p/f5KEwJEpk4FyZFUvBTFOGKojBXttkfxtRck8s7Q1bqLq6ZYxsq690AIWSxO1kz/DibHjDDJCNIJENpvevT8SN2+hFLdbtI5FOpug/+jAZhIqfTaU6a3d0Ld4YRUTHFnaA7ThgV3nKjMMUxdPw4o2RJKwBVVdgZBPTGqWS1xTH744jvOzvDasNjtmxzfqbEb11tU3eNR6aB3ovNqc8eT+Szd1z87GdWWW06/JVfukzXj+mFCf/JP/2A/+Mfef1EA2EeB7Nli0+fbrA7CBmHGR9sD9npR+RZBopCwzNoD2M0TWFvFGBruky0jeV3eLDh8biouSYzJYv17hjX1GiPY15frhKlgvYoARJ09f5AnjjN+fr1Dn7B7vn8mQYfbA3xo4yNNKCyIIfLrZIctEyawHA38a8TSKuF3jhhfyjlfPc+868tVVCBtZZHkgt2BhF9P2Z7GLJUle97tmJjaIeZm10/Yat317O1HyR0xtIoe6sfPtRgfgJVVab+a5s9n/1hhKpImTXI5/tMq8QwTNjqhyRpTm+c8MMXK3iWweXtAVd2RtzY96k6RuErJtEZx4wiuab+3u0ec1V7Wgcbmsp2P0BXVclSjSRjMc0FcSq/87JlHPLWeRaSOk1V+PRak8WqQ2ccc21vTG+ccGNvTMU1QAj0IvW7/Rjsl6dF148ZBTH7g4g73TGqokzVFst1j9WGS901WWq4z70p1fcTvnatzQfbw6lsUwgFRVXwY8F6N+KHLs5OpakTDEOp1ml45onIvd5b7/PVq23+8k9dfGomm6Vr/Hs/foG/9PPv8s/f2+YPvL7wVK+X5bKe2uxLr2lDUxlFKdf3RtzpBFQdA01VHuj5ZOkaTc9kdxBRc/WHMsNlgJHci/p+8kB5uQLEaXYMlYA8q/eCFCvJ5Z5FD8dUCNOMXpDwS+/vcGmxyitLFf71t5YBgfmCEzefBk/VmFIUZVUIcRvYVxTlLAW7SVGUPwZsHeP3G8D/A/jZI372R4CmEOIfPOB3/xzw5wBWV1en/77mGjQcg1yAospYVcfQ2RtGiFyw2fOJ05zVpkee52z2AgxNfoGXFiXrJRNiurioijJN5au75lM1AFRVYbZss9MPubEvEz8645i5ijQsn8Q8ayps9gMG4d2behxnhGnGKMwwDXlt/SChO4rYHoRs9QN+6KXZ+1gZQgiZqFIyOdWUh4uX5ytTJk53nLBadx/os/QoTHyuFEVOdycL0uRzsgwVBQVFUfjJV+bYHUZsDUJ2hjHfudPj7GyJhmtgPsbnKoTcZDf6Ab0woe6YzFdU5qs2jqliapKd4lk6N/Z9en7MzlBu4st1m7xo0NmGjKiOEimVvN3xWRIODc/Es3TCRDbcdFVhvTt5n9Is+kHStKedGk2gqQqrDY+mZ/HdO92iqEjZH0Z4ls7ZlkvV0dA1hTzPiVPlmRXWD8NsxWambPHR9pBRlDGOM7Z6IYYOF2bLeJaGY2lTL5eHpUQ+CfZH0ZTxuFx3CZOM2x2fcZRQsg3mKtL0c7Up2T+aojCKM67sjtjsBziGyv4oYrMfTCNh0zzHLCS0J4WdQVhIsyxmyxa3Oj5BnKKpcl1olS1eX6oRFE1GQ1e5vjdivRuQIWAsn/e2H5MLpAyvZE5NFI+zLlm6Ss3VWWt5LNUcXDO5j3E1U7YK7zUNXVWnm/i9yIVAALap0w/iBzaXozTD0qRHjFYkh95bBO0NIr51s0OSihNJujQ0lVMtD8tU+Zff2+HK7hCAYZghr1pwYa7CpYUKp5reA9/js0TJ0jk/V2ZvFPHtm13GcU57FGDqGqdbDjXHwNQV6o6U1kmfncd7buI056PtIZ1RyEY/xDM1Trc80lyQ5fKQk+cCx9I5M1MiTFOqjslS3WFnEHGnIw/uZ5ouOTmerbHccNjuSxnsoGB0hkn+eLTmR+DG/pg0E0RpSsUxEIV3ULNksTeM2B2G3On46KpK3TN4e7WOosg9xrE0GdltqsXhIeLa3phRlLLWcqg6LjXHwDU1TE3F0BWSVFCy9ScOANFVuYbsDiPU723x8kIVz9a4tjtGUyDIBDOmLr1iYp32KGK2bLE7jKg4OioWfpxh6SozJUuaRRd+W09Sb5RsnWbJZKMbYOnyc7g4XybJchRkkSbZoHIvHQTSl6fm6XRGiZQfjhMcS0NTJGvh27e6xEnOxpLPF87NHBlHH2c5M2WLNBOSGVmxp0zs0y2XrX443R+3+3I97AUJK3Vn2hxfqrlUHL1oJOTkOVRsnf0RXNkZcWs/IBfw4y/PyeseRdLg3TKO5Qt4cA86+H0/a9+az52d4Sde7fPffu0mYZrz3dt9/rf/6F3+45++RO05evlMoKoKC1WHumtyZWdI35f1RdePyVG4tSfIkJYIp5seL82XSHK5P9iG9lRr5t4owo8zOmPJZi3ZGlGaox2QvQsEv3F5l/Wuz6tLNd5YqaEoTCUvo0iatduGShDnUwmZZ+lykKgeDv9RFMmyD5MUr0gBHEcZH20PDw1J5PVJdrKfZMxq8jnp+jKFeHsQcqrlIoRgZyDXIcuQHlIHl2dVoXimNYJUGmQPC/8kU1dZa7qPbIJfnKvwVadNInJeXbob1uGYco2T5uYphqYQJDmmnnN5a8B7G33qrkEmZljv+vSDZHrG0BSFHMn+H0cy2XjyOQ0j2QCuOAavFM2xtaZHx49QFFkXrTZkmqahq0+VWvwweJbOhfkKG12fb93q0PZDtvshnUBjpWbjKDJQYq7ikGQ5qqI8Ux+dKM1YqNjSs9BQCDO40wnw45S5ik1nFLF0cfapmrVPCiEEd7pjvnuny2YvIMkEzZLJj78yz2/faAPcJ30H+RzdLGxHwiQ7kWv/G795jbKl8yc/u/ro//gY+Jm3l/nbX7nOX/mXH/ETr8w9VY3mxynfuNFhteHybxfDEq1QS6iqfF4njMGjzih5LhiGMpEvTMQD94tJwNpsxaLnS2nnQeiFEf04kpY9shnm0g8e3Jw61SzRHSeUbZXOWK5DcSYYD1Nu7I7ZHkTomnymP3Wq/kLOgSeNp11Z/jHwNvDvIJlNFxVF2QBuAH/qYb+oKIoO/D3gL90j65uwqP6XwB940O8LIf4W8LcAPvWpT03rYpHLhtRKw+H8bAkUEEphRNjzC8NHgWvrND2L5SIBr1WS5o8398fsDiNWGy6eqTGKUlabDiVLP/LhnZgtVmzjWIeqCeX1Wzc6bPRzokRSBPfHMSt1h9myLWOvNZXuOOZWZ0zdM9BVlaWajLEvmTqqplApUrwUVOJU0uA9SydKMoJETkFvd3z8KKPuGdO0PJDd8mGYslx3pn/vaeDHGeudgNmKdYgh8v3nZ6i7hiwCVVis2Xy8ozMMEvI847u3O7y/2eetlSqvr9SP1Wk3dJWaazIXp+wPY759u0PXj9E1hfmKw6dOyTSTzULCYGgKTdcky3NcQ+fq3ogoyZmtWMxVbE41PcLCELY9kmy6LBe4lsqpumxoBImUfD5IwnCn43N1V0pHToJlM4Fn6VxarNIPEv75e1tsDwJELunWJdsgiDP+8Xc2cHSN8/MVXl16elO+x4WiKJyZ8YjTJmGcsNH1ibOMKBVTicRvX9vjd25qnJ5x+ezp5ol5bLRHMXkup+8LVcEgkPHynmVMN4f1jo9jaLy9WmO+YrPZD1nvBuiKQpTmjEIpcx1E0nPps6ebhb/FwyecWS7Y6AbHYsjtDSV9d38k5TtTTxtbJ8lz7nQC8lxwplniM6sGwyjjTneMH6domoqmwPsbA261x9RcnbdPNXAMaVh6VMLVvX97ECY4psbnz7amhahrSsZI5t5lW1Ydg6ojPe4+2h4ghJQo3St1qdoGuchRVQVb14iTjO9u9FBReWOliq6p3OnIVCBdU1htuKw1PbJcHJJhAax3fMnizOEkWxwly2Ct4dIdxVLCberc7vmcnSnhGBqurvJL39smywXvPKVk7knxymKF2/tjNFWw1Q8wdcEwzDg3UyYVgu/c6fGNG11ONRw+d6b5WA38LJcsge9tDBjHKY5psDMIUBUFy1CYr1qcbpUQiOm62/VjgjiTfk2qSnsUsdUPWKg6zFdsqo5Z+NCE7A5DFquPZxb+OKjYJqaq0QtibralUfMoSkkzmSjmmjJp7J1T0mR1pmxhaHItqtjyHr6xN+JXPthhux+QpBn/1hdmqHmSXdsZx1QdA91WCl+ohHNPwPz69FqN6+0haSbY7oV8b6NPnuestcp8+nSDhZrDbNni/Y0Bpi4/0zgT6JoyHXbVij1eAa7vj1nv+oUnjv7Y8gvb0ChZGsMoYX+UTVm1mqKwU5haX1qsYBsaXT/m3fU+VccgzXM0VYanWLrKUs1hZxixhsvuICLNZfrWIEholiyEkAzkIMnZ7Esvs7pnTFNx0yxnayBN5c/OlFiuu1OJ0CRVV1FgueEyX7HJ8pxreyMubw9RAUWV9+l6N+B0y6MbJNKkP5bmz799dR+3GBhqmrzfhRAPvB83egGdUYxjStm+bM5ruKb+XBrTf/4Hz7FW9/i7v32d7ijm1z/c5d07ff7Pf/w13lptPvO/fxRsQ+PsbIn2OOLq7ohxIJtFvSDC1XWCOC0afgqtkoGC4PLWgCjNeX2leqQU7kEQQrDeDdgZhNzYH7PV8/EsnaW6jUDuR6tN2eDpjRM+2BqQpILL20NeXqhg6lI+d3l7gKmpfLwz5EzLIxMCS1Pp+3KPe2m+jKrcTcG71R4zDGUT4VNrTc7PlvnyRzu8t9Hn/LwMxbgXH2332eyF/OSr83Lgaqjs9iOSNCOIMz7YHDCKUjZ7IXVXhiqdmy1NjYqrrmyoW4ZKyZTym2/d7LDZC1lrejQ98z5G2L1wTJ2312pc3R5JGXImeH+jTyZk+l6a5YRJim2YcmhafJ81x5zW3BMf2mu7IxxDo1U2OdWSNggHh9FCCMI4o+IYdMcx611fMrlNDS/V6fgxpqZxZkZ/ZL1xUlisOXz6VIP2KKY7jomilCDJOdMycUyNa7tDvnunx0zJ4nNnG1ScRzPSHhffvtnh8vYQRZHNi/mqw94wIkpSLF3WNe+s1V9I6MJm1+c3ruyz05eJp5NndaHmYJsabyzVsAyFVxZrh36v78tAlDjLivCLp8et9ph/8d4Wf+4Hzp6YLFpTFf43X7rIn/m53+G/+9Yd/s3PnXqq14vSjN44kooDXTZ3z8+VWao7GKoqE6aHMV7hIz0IEr632Zf75UIFtwjAanjGkftFZxyz0Q3QNYVzs6UjyR7dgmAwU76bIPvmSo34COa+bH5HxGmGa2l8tB0xDGOGUYqhK9zeHzMME0xdYbFq89kzTdZaz785+izwtI0pmW8nxDXgxxRF8QBVCDE8xu/+ceDTwP+pKCT+Q+BPCiH+XeCvAHPAv1QUpS+E+MPHvaDLOwP2BjHtUYypq7yyWKHuGtRdg2/dCFnv+SRpjmnotDyLSwsVciEZDVd3ZVFUsQ3Wuz4N15r6DzwonvSQ2eIxKZH7o5j2OGZ3KDe6tLgngyQDRS7I19sj4kzSaAdhStU1WFM8uuNImoAKwZWdEWVLByFolAzmKhadccw3r3dI85xTDXc6CryX5j6JnxxFKXXvyaPTJ7rc250xfizZKgcTC6qOwWzFIYgzPt4estULyJFT+iDNubI7wi9YNmXb5OLCo69FVxW+71yLb9xoszWIWO+E+HFG07OouSnNkkw/mqvY0qMEqf2/1faJ85xzMxUMTWW/kBVUbFk4yM/CpD2OpiaRvVCaCKbZ3YSWew3m/cKnrOenxKmg7j25gfNRqLkmLy9U+ebNNtqOwjgWjOOMQZjw7VtdwiSTiVhFN/5ZTbIeBkvXeHWpxrvrPSm9GWe0/YgkL/HunZ70DShZRGnOmZkS808QO30U6q6UY1ZsOX0oWTrfHfTk5MgzCeKMO52ArX7IXEWmN3mmxmYvoD0OCQvDVz/OEQqUrRzP0o/VZO758bGlZw3PLHyiTHlAHATEmeCtlRqDUUqW53z7VodmyWYcJVycr/CtGx0GYYIfZ6h4JFlQTJh1skywtvBoo/G0iJOe4OAU+XbHJ82kN9u9Dc0gzqYpWeMova/Y8OOM5bpLnOY4lsa1vRHrHRlbXbY1LsxXGMcpSZZzbU+yVJfqzpGMwkGYEMUpaQ7NE/RdKVk6b51q0A0SbnXG9P2ELBNc2R3S9xNud30cQ6fumlzfHx/pMfCsUXVMvvTaAp1vRHiWyigW7AwCgrTM9b2xnMjrGn5UY7XpstY6fvNMVRU2ej5b/ZCOH3NpocLOKKZiGazUPSqOMZWRa6pClgu2+zJpKsulj9vl7QHtUcSNvTFfON/kVaXKZj/gVjsgiHL8OKPm3i3UTsIc+XTLYximbHR9On7M9zal/1J3nPD2ap0wlj5Jpq7h3tO0OSiXsQ2Nlxer/NL7W9xs++wNI755s8NnTje5vjei4khvqnIxbJiYlz/u9Zccky+en+VbN9t8vD1idxSTZQJV9flj7yxzZrbMZs/nRntMnGbMl23GSYZjapQsvWjYyPexOwzZ6Pp0xwm6qhYNxcf3ThqGMon46u546uVVdgyCOGe+qjMMU0qmzu5AejrtDyPePlWn4Zn4cYaiyDolTDJUReFsy+NGe8xSw5G+d7ng2t6IG/tjzEI2darpTf1nQMr3Jkbqzj0x1XXPpDuOuTBXZrE41N3pyBTa222fsm3gWRrbA1lfGarKxbkyQZJzquHwyx/s8v5mH1vXOTfvoQ6kcX7V0acH1Inn44RpOApT+mFC1xesNaVs83kmjwH85OsLuKbOf/7PvkeQZGz1Q/7Sf/8uP/enP8NS4/GDI04CrilZtO1hgqqP6QQxIpcDwDyWzY2Bn2DqKn6a4egacxWH6/vjx2pMDYKUnp8QJRmb3QChSJVALuSAZ0eNONVyKRcDt5myxVZP+rBMWABLNYes2LPSTJDkAs/U+M6dHhtdH0VReGetznxF3lNJlk9lNV0/ZqYsa+QsV/DjjMtbQ8rW4b1tpe7wj353A0tT+a0re1ycr7BUddgbRKRCsv0MTcWPU2xTxdTVqUn7QXuB+oHm0+5Q1qgdP0ZV4a3V2kM/q3GUcmV3yLeud4mLIIA0kwqPMM3ZVBW6QcLuIC72h5TZsslCzSFKBasNh6pjEqfSg8bUVPZGEVv9EEtXuDBXph8k2IYmw532pFfb7iBkviJ9CCesuGt7I4ZBBkgZ4PNqTCmKwqdPN/l4Z8i1vRF+ktMdJQyijPV+j34RKvHSfIW5is0bqyfbmOr7CVf3Rry/2edO15fNvLJJ14+JMyjZspH6+bOt5+7lk+WCL3+0y29d3SdKM0Qu8CydPJ+kUY9Ya5WoOPohJmma5dzp+kWAhRxCNB7RID0O/tZvXkdXVf7096099WsdxI9cnOUzaw3+6q9e4WfeWnritGwhIEhSgkQnSlJArvueJZnS1/ZGXNsb0fKsKRvq/Y0+24OQnX7EbMWiZGksVB3Klk6c5vcxkybJmdIyI7uveRWnOetdGVwUZ/mUwKCqCrZ6/x7f9SXpZRyn+GHKes9noyOf/6s7I9IsI80FlqHzwxdmOD9fpvycns1njac9wS4pivJf3vsvJxMrIcRffNAvCiH+IfAP7/nXXyt+9pNPekHSLBiaJYs3V6os1V3OzJQQQhSpd/k0iU56I2mstVx2h2EhdZFF9kJVMomCJHto8eKamjycmeqx6aSeqeHaGpXUoOXZzFZMciEfkjTLud0ZYWoajiEPyXGasd3P0FQpRxmGGX6SslCxCdOcn3p1fjpJ3xmMSfOcJBNEWc5Kw2EYpsyUDhcQlq4SJk8vYdFUhZmyRT9IpEfTEa9XsnRGRcz0Ut1lEKU4hsalxQq/e6snC0Y/Zm8oDVadYzRWNFXhrZUqd9o+QpKxisLUkN5QyM/z3GyJnh/zrRsdmciSCdrjiFwITE0lL2SBLx9oiA1D2WxQFPmaQSyj0t3CjPreiayla3iWPCSVbG2agnKSmC1bXJyvsNENUYBWyZzG1EZJRpZnVFw5dX9R0FSFSwtVLm8P8boBc1WbIEnJ8owgnqS7aMf6fo+L2Yp9yLtKQGHSqdD1Y7p+zDhO8UwZM9wsm7SwqLpddgcKti7pvIYuPS1a3vELbdfUjy0BWaw50wPY3jBiriIjnTVN6sT3CokmQMk2pHFwzWFnIItgQ1dQFSGvv2Qd25tEU6XcYcIIPAhTV0mz7Ejqb7VoWmS5oHmEh5Rn6SRpBih4hk7qCsIkZX8UM1u2ONXKWKg43GyPaZakWeR2L8Az72eAmIbGXNVFUzgUT34SONVy+fTpBkLAh1GflxZKbPVCBLA7CJkt25yblRPsFxWrW3NNvnBulqt7Y9rDmMWag8iZ+iIlmfTfKj3mJNLSZQLMubky2/1AsohnSnTGMcMw5U4nwTV1ru6OuDBbolW2ZJJcKg3t11oeiiI9BCu2QdU2ph4opq5imipzVXu6P17fGzGO5IHycX0DD8I2ZJpqP5DG1Hku6IxiPFNjtmyzUshJ+oGMPQcOhWgEccbN/RHNksVsxebsTJmtXkSQZsRJztXd0bQhe362LIMAsgDbUO9rdB0XNdfgwkyZJMnxo5T9cczFhTILVYc8F9zYGxPGcvCUIxme4yilM45Zrt+dcpqaSsUxCJKcumtQe4JCU1eVQtIupYGKKp/nZskidXKygmnxQcEKmSlb6IoMabB0KV36eHs0bWjPV21eW6ny/Rdmps+uTBLKpSxUyOakbajMH1iLJwOciTfVQSzVnPtYBp6lU3MNyo5O3TFYrjvYusYgkgfruYpNkksm6018KrZJ1dGp2QZdPy3WOGV6fVd2hyhIvyRNVbENlUHBnOz40ovlReCLF2f4j5WX+Q9+/j3COCPOc/7WV67zp7/vNKceo/F8kmh4FnNVi7KlM+OZ1FwDTYF4JyMXOa2Ky0ebQ1xLI00Fp1qHv+vjwDZVVFV6K6LI1Ny1hottaFOmUZhkVGyD2YrNT74yTxCl5CiHpIMzZZNhlEhJqn634XJj36dZstjpR9PGlFGk0w3Cu+l0jZIl5aKYzJTt+yS8rqmzUnfpjONp4y3OZLCQrsmGlqGpBfNC5c2VGm6xd98b5tP3E1Cg4Uoz9AsFk0J7SHo2wEfbQ3YHUXEGkX6aiiJTLJPCmkNXoOLqlGwdTVOIM8HZmTIvL1TI84lEy0FRpMXBb17ZI0oyOqOUqm2iqcUzlQmCOC8CoNTpMH7yedddk84oAUUwUz752vZh0FSFd9Ya0utX9Jkr25Rtjc4oZhSmZLlcN+reyR/IDV0qLcJUKlBsXUNRVFYaHoYecG62zKfXms81fW+CYSh9HkdRiq7AS4sV/DBjbyT93/IiPOTeRs5E9phmgqpjnoh1QpoL/odvr/NH31k68cQ/RVH4yz99kZ/5a7/N3/2tG/zFHz3/RK+jayordenlqh1oAuW5mIaKzZRkKu5C1WYYSpn4Zi9gqe5IP84iLVfTlPvICSAZ23EmbUBKRzTQNFWZDgCPk148qcuFyElzGUISJJIxrmsqpi4ZkJ9eq/Njry6c6LnqReNp30kAfPskLuSkcGamRMXWeXe9hx/nZLng450hSSpZOaMgYaZs4RrSlPlme8S76110VWqmf+jCDDlIuZwqfTQeNrFcabjMlA83ZAZhQmcUU3ONIw0Pz8+X6YUx+8OQharLSsNlEKa8v9ljHEozs0+dqpPoKn6c8Lu3AxaqNmGcyXhlIShbGrlhsFCzD8k7Gp6JY6oE45i6K3XYDS8nSg8fTE+3PPwkwzuhm/l0y2Mcp7j3HJi743iqYa44sqlzbq6MAFqeSZJlfO1qzM4w4O99/Ra//P4OP3Zpli+en33kFMIxDX7gwgzfvdNloWbjWSampjBbLLZywhSiKODZGr2dmOFmylozxzIm7CeVIJGHqQmbQ1dVaarr6JQsnQ+3BliGSpzmnJ25f6qpqQovzVU4N1t+ZpIA19L5mbdWWGu4rHcj4izlX7y7zUY/ZLFqcqZZomxpfLQ9IE5zNBVWm96RTYVniXfWGqw0HL56pY2uK3z5w12+tznENTVerpRYqNls9gLudHz8KKXmGZyfLZ+YHMg2tOlmU3WkXLfpyWlHzTXRNIUPNwdc3R3TCyIqtk6aC+bKJp5t8tJCmaZnMgikMW/V1dkfyQb2vdTciWzgcb3uy7bOZlewOwpxdBVLU1mpu6w1XBplE1uXnjVX94b0ColqP4hZrFZwTJnqttp0CeKMzjiibBv0ion2vQ0BRZEymqOowmvNo59ZkFOcBxlBAmx0A756tY1lqqy1PFYaLm+v1umMY0q2UciHTd5wa9xqj/mH37jFKMr44vkWP/ry3KFi7gcvzPDB5gA/TJ94IvYguKbOWtMr4rFliuObKzn/9LvbbPUDaraJpavsDkPe35AHgLKlU3WPpms/K7y5UmO+8hK/+fE+DU+atH/3do8wzXljucpqy+VOR07MBNIf73TLe2SD8myrzLt3+kRJykxZmgJv9gKGUSqlH3rKZj9kdxBxcaHEudnyoaSpS4vVaQPCNnX2RxGrDY/yJZ2bnTFl28DWVdIsn7Jltgch7XGEqcm0qCct3E+3SsxWbEqmzu/d7tIZR3z9eptPn27w0nyFqPBuubE/ZncQkuWCxZrD7c6Y3UFElOb8gdfn+fzZpjQazXNqjkHXl15vZ2dLWLrKna6PCoW07C7DeLeQbh+ngTEIUmxTZ7HmslCT3j11z+Q76z3GcUoYS5lanOWIPGe+6lCxDPZHMTv9kEGYYOkaKw2HtaaHpavTtNDHxeSZb3om370j//6FuRK2qfP1620645iFqo2uqizUHNrjkIEv2UTKYpWKrXNld8hOP2S2YnGq5U6TyCYQAjp+hBA5Z1olFmqulANmOaMonTYRHUPD0I7nlSW9Hau8uVLDLw6CNc/k27e6VGydXAgMVWGrH1J2DC7O65yZ8fDjlNttn1rJQCu+vxv7Y67ujNFUaI8MkmKKXXEM6q55pJ9YUDC+jzp0nDR+8KV5/sa/ofPX/9U1xlHKV6/s8csf7PDH31ri3//Sy8/879+Lim3wuTNNzs567A2lyfM/f2+TfpjQD1MUFOqegalpuJZKyzMJk4zvbfRYbbgPlVGFScaHWwNOtzxemiujALqicKc7Zqnm8PJChX6UIsThIYipq9zcl4y7uEjF++bNDsMwoWTrLFUdPtwa0iqbzJVthkFC3TNJ85w7HZ/FmjMdnEovJZX1rmQJf/Z0ExB0/OQ+Kb70Q51lox/y8rwcWKZ5zofbfWxd4/vPN9nshSQ9OTy41fE50/L4ypV9ojTnU6fqzFVtPtgacH1vRNOzeHmhzGtLNS7vDIrP5P5gkTTLCdNcDq5NFUtXKNk6nznT4K2VOn9NU1moStnjXNnkd2/3yIvhc5zkfON6G8/Upd2HbeCZ0iagbElZ86dX69JjM5LhEKMwnQbnNEsmoyjlVEvK9jd6AR/vDJmr2Kw1PVplC1WRclhVkdfxvNjFryxWaTo6X72+T5jAziDg8vaQVOS8XrM5M+uy1Q9ojyI0TcUxNM60vCeyi4iSjBv7Y/pB0fg0NZaqDpc3B3THMTVH583VOrZe57Nnmqw0nm8jOU4z/ul3N/m1j3Zpj+SAfWWmxKdX6iiaSi5kk/GVxYpUgYQpln43mEpVpczs4B7/tNgfRRhZzp/94pkTeb178fZqnS+9Ms/f/I1r/BufXX0ilqtVsBrfXKkd+v1b7RE//+0NdgYBf/CNJb7vXAtdU9nqB5xulWh4JmdaJTxL55s32nztWpu6a/LyfBnjnufXNrSH2rhoxWcfpplUOj0CJUtn4Md8+fIue6OIzkgGIcyVLVabMvDo9eUq5+bK/5NqSsHTN6baQoifO5ErOSEkWU6cCmqunP7KA6rJTj+iO46xTR3b1PnCuRZpLuTGsi/jImueSXscM44yLENGpg6CFFWFi/OVqcHnvVIp29AYhAmGKqcNG13ptzCKUqrO/QybUZRi6zqmJg+9YcHi6o0TOn6CZxUUfkPD1HT6gTQxNTWZ7HOzPWKxJou+tdbhw2NnHBNnAlPTGIYZozDhdicgywWtsslCIaHSNZXKCR68NFW5T+6T5eIQdfHCXJmlmsMwklHlH28P2e6F9MKMME7ZHyVEac5HW0PePtV4aMrgBJv9gHGc81tXOry2XOF0q4ShqYSJ9NaYSK1sQ2etWabnx9zpjml4FpfmK6SZNFzeGdw1Zr3VGZOk8vuruxaaqhS+LCrjOKNiK/d9p6qqoPJsC1pDV3l7rUmr4vPP3t0CFUxdQVFVdkch37zRpe6ajGMpv9jqh/zEpfnnPtGZrTj8yMtzfP36HkGS4VoGuiLNNa/vjbm8NWSmbHOn67NUc9EVlTOzD17Qs1wcO3lQUxUcU2ehphR0WwVTl+akQgg+2h5yqz3CMVQUz5SmqQrc6Ya8uSILWT9O+Y2P9xjHCWVLZ7VRoh/IAvbeAIRJ8yITkjJ/HH29bWg0SiaKCmEqmZy5gLmKRc01+WBzQM+PidKcuarDIIyouhZXd8e8faoOyPvxK1d3i3hqwUvzVTRFzp1d67Bs5kFU4aOe2ePio60BgzCFUHpErTRcTrU8NE1BU9VDPlLDMGWjHxDGOd+43uGHL84eeq2aYzHjmXRVhZ0DssOTQt010RSVki3l262SxW9f7TCKMrYGIV+92ub8XJnL20NeXaqSpIKVhsuFuZNLmjsO5qsuP/LyHLuDkF//eAddU1EzAYrgTieQyUSOQS9ImCnZ9MOkOGA9GJkQRShBzr94b4fwJcH1vREdP+Gl+RJzVYt+KA9/wzC9L2nKNXW+//wMO/2A3WEsgw1UlQzQVY0gzqeJm62yySBIGUUJfpRTsmUU+cNS3B6Gyf3ZLMnk2TgTbPR8ZtsWZ2ZKuKZkGI/ClEGQEmUZZVuaxbfHMUmac2PP542VGn/wzSXSLOfDrSH9UP6sVbKKgAGf3UFIL0h4ab5M2TbY7gcEsWy21Y7hXTIJDXAs6fGSC8H+WBqv+3FK3TGncnE/FtRd+dnMVmze3+wzU7YJk5xmbBIkWWGuK9nR76w9fiS6oiiMogxVVYlT2BpEBNGYKM1ojyLKlkbVtXAMFUvVSHOZ8nVpsYofp8SplAy3SkcnEa8XckMhQNckU1lKgsbEaU7F0TnV9I61hx/E5LA+qU12BiF5DjsDOWgzdSn/mq86mLrCei/g+t6QzV5IJlyu7494bblGLgSqKmut2ZJFZywb056ps1x3jvT3aY8j4jQnfrxwvyfGO2st/ur/rMZf+/WP+QffvEOaCf77b6/z9lqdH7o4/3wu4gB0TWWh6tL0bP7R1jqJEPSDlNmKlOCXbB3XVEkzwXrPZ+eWDO7pjBN+4MLMA19XCClvGQSJbDRbOt8ZBASJ4Fp7zFzVZvWIIYgMzZG/ryhwfX/E3jBiGEpJdpLmVB0TU1dZqNmcarkgBFt9acVgGSqeqXNjf4wQkjU4qQdNXWWx5lA9YnAcpRnbgxhNUaXZedPj2u4YQ9XIctlUapUsPtwa4hgqrqlydXdEP0hQFYXbXZ+6Z9IZxSSpoOtHhIkcjmz1Qjxbx9B9qo6Uz4dJRp4Lbnd9klRQcw3OzZbJC39HS7/LMo4zQS6kVFfXVHRNZXcgbTCiNGdv6MtExXHM2ZkSYZJJf7hMfn+fPt1gGKTsj0JURWWneH+LB9iLUZpNJbh7RYK5qal8b7PPnXZAs2SiKjx0cHXSmKu5fOb0DJe3B9zu+NJ/TtUI05wPNofT9yc/P5MozXh1qfbYf+d373TZ6ATsj2IUBcZFSrJpaKQCMiH3xLdX6yzVnr+fz94w4oPtIRu9gL4fY2gqXT8hynI+f7pJLgQlU8MyNN7fHBQStoyXF+6uw/fu8U+Lzijm33pl/pl6dP6lL73Er3y4w3/15av8Z3/olcf+/VwI6p4p6+4Dx7TLO0Ou7g7JBFzZHfKDL8natO6ajKOUku1Oky0/3BpIL68kZLMfPtH9b+rqsc3JwyTjg60B/TDhys6IQSAH5Is1j8+ebXJ2xqNZejGs32eNp21MPdBMR1GUHxdC/MpTvv7xLiLN6Rb+LTf3x9P0jJW6S6tskaSCpYbNOb+Ea2ucaXqsNjxyIT2c5qsWFdvg4nyZXrFxxWmOpshFWlcVkjTj+r5Plov7pAp7w2hKe59Et4+ytEi+ub9ZYWqS0qyqCrqmYOsqmqpS80zCRCbnpJn0lmq6AsfQ0BWFmmuQ5TBXtTE0Ddu4/+vLcoGja4RxjqHLBkpWeC1EB+Q8USqn208b6/kwqIo0f4ySHFufpPRp0ym/bUhqbM0xuOlHWEUCimVq2Md8eC1dauQFAlVRiYp7Yb0bECQpmqpg6RrvrNYRuSDOpLeHoSmstlx0VeF2J2C+evdz0BSFBDGVxZ1uebRHkjp7u+3TLJmHNvLnCUOTxq3fd65Bz5deJnNlk71hzHovZL5iU3ctmiUTQ9VkMowhnun3fBSqrsFnT7e4se+TZF0MHZI857u3u5iGVsgk5fedCnEohvhexKmU31ycLx+rURAmktK8WLW5MHeXjSWTyOBMq0Q/yNA1hbIlo+Q9S5cT+0KauzeK6I5iPFtlue7RLT7r9ig+Mlo8TnJu7fusNJxjxUI7hsbVUYSmqnzmdP3Qs6ypCmVbmgjHqcDUSlimhqYozFVsXFMrCv2UjW4ACE41vMJTSEoeHnT4Oimcny9zvT1CV1XOz8qDq21onJu9/xBbtXU0VLI8K1J9Dt+LO4OA6/s+ozB9Jgw/Q1c5P1fivY0+uYA4z3hnrUGQ7GPrssl3Y2+EpWtsugELNRs/TklzwfNO3G2VZOPsc2stNjoBtqGgoXB1V5prn50poamFdWDx3Ni69kB2qWtp2KYiTeh1uLU/xI+lEbala7yxUsczdXpBwmrzwYX2wemzqoKjadMCb3JokilfGe+t99kfRaCAZz39B1i2dS7Ml6RHYCoYhRnX9kZcnK+gayqNkllQ3DUsQ+XzZ1vkiILVEzMME6qulGoamiIHVLrOZk8OTdY7Ab0gYbGWEqU5ZeThI4ilT+VxmEuT0ADX1Oj5SfH/pWlv2TY4P1ei5uj8zq0uQZLw8c4YIRRQpHEp3E3hk8O1HEWBKE2f2LfLNTVURUFRpayuUXfoBgmuoRfDK4XOKMYyVLI8p2JL1sRC1abumvhxzmzl6H3OMTSEkEmbShFYIIQcDAKHpMMTn6onSQuq2AaKElB2NCxTJU1lavLuIGQYJnT9mH6QIpAylck+N1OyuL43Zq5iUy+ZlIrG2Xz1wetixTGmYQ3PC56l8+e/eIYvf7jHzlDWkL/wnQ26QcIffmMJ9QVI89XC5/TifIWzrRKaAp0gxVBVtgYRXT/G2FemDGJVefg6pChSKl9xDDpj+X1ZusZmGKIq0B7H9zWmwiIpue6ZuIVFQ5JJjxZdk5YBYZJSsmRoUZzmqCpFGIO8F21D7uUTQpRATH9m6gpBnB2phlCVuw2xCbNupiwTQfUiKfVmJ2C1IevHcSQl13tDybBcrjUwNIW5igwImClb1D0pAzJ1lbxIhAZpG3GzOFeEqVQwRKmUCi7XXD7eGZILUcgdmcpfDU3ho+0hcZYzW7YRyHSvKJGKi+EgZX8UcXbWozNOuN3xcUwd19RlKEwgQ2OcI4Z9pqZK1UWcT6X1SZZDLsjynCTNH9v37mmhKAorDRfP0rnTCaZhCTXX4MbekH6Ycmm+jG3qMo09zY89zJwgiFLyTKCpCuM4oTeO2SuUJ1XXwLU05ms2n1qrs/qC/ODqjkHJ0BBF0IOmStmYEJJhc3CNnSRWPmtmW9U1+F/84Nln+jfOzpT42U+t8Pe/cYs//X2nH1qrHIU4zdnoBpSK2tnQlenrqqpClopDXltH1bLvnKrjx21qrs7sc/AmVBWF5YbLzjBERe6njqEVah+FzV6EoWsnZjb/ScJTNaaEEJ8DUBTlF4H/DvgFIcS4+PHfBU4mN/IRmDBzPEvKcjRVYbHqTA+JWS5QFTg7Uy66oHdTWN5cqXFpocyNts/+KKbmGOSGLDRHUcIwDCgVrztp8ATJ4Rj5NL9bhCWF6XiQZEcu+iAL0JfmypxpeUSFiZpr6tRcnVMNjxv7I3aHsue3UHFYa8oHpuIYkvEkyoRpfuTrL9ddHFNDL6bNtzs+/TCmVbrbTBtH6XSKNKHuPgtMJAVhkh3p3XFutsQPXJjBtTTWGg5ClTHZgyDhNz7e40cuzj1SzndpoULF0aeRwTNli64/MVzVWajaBcsgxrMMTFVlpemyXHd5ab7CrfaYVslCiCLaXpcstNEBWdHEp2CvMEtPs5MMR38yvLnS4EyrzM32mM4w5pu39oliwXzF4u21BmXLQFPha9faBEnG26u1I6eSzxI1z+RPfX6NH315lu1+wHfW+2z1ZJLXubkKq3WbTMhkvQ+2Bsx4Jp8982DNvkAWSNmBwu5e+LGUKFVtGR9+sDGsqfJ+DOKMt041pnpvhCBHJousdwNmyiZ1x6A/jqm7FgtVm7KlM44zhOChKXxpLshzaaL8sOJNIFPHNFVhHGWHGlOnWx7jKOXigpSG5sVrqqrC3ihibxjJaPaSyc32mFbZnk6idwbyHk3y+6V7J4mXFyosVm20B+jpD6Limvz4pTm2BwGvrdTu+/kgkIlChq48s3SbxZozlZpVHYM/+MYSnz/b5PLWkP3CYHK2bDNXtYhSwXovIEpz1lreC0nc+dJrC8yULUYFy7AziilZMkHr/Fx5mib5ry7voioKXzjXOnIdNzWVUw2PDzYGlGwD2zS5UNWxdY25iiyuzj0g2OMgWiULQ1OnAQMAF+bK9xX/kwPh6VZJpsmewGR2pmzxhbMtPrMm6AUxo1AmY+VCoKFM/YoOJrL9wPlZvnm9g2WorPcCqq6JoiisNl0puzOkhLtiG6w0XJK9Eb0gmTamh6EMJFiquY9lbLtcGPxPvJo0RUEo8NpSlWHTwzJ01nsyDKBsG8yWLF5frhWNFbln1lyTL5xv8nFx8PyVD3dYqbvToddx0SxZfGpNx49SjELOMVO2We8G3GqPGccZ+3HMYtVmvurQ9CzSTB5kfvjiHFGSPdBMdbnhYuiSPTNbHMBvd3yGoWzKLdflXtMPpJm5ovBEwRznZkvMlm10VeFGW9Ys1/aHdCOZLKUogqZr8CMXZ2mWrKlfV801WSv2O1PXeGn+0XtfxTamSc7PExXP5h/9hc/zt796g482BwzDjF//cA9dVfnpVxdOLMH2uNA1lU+vNXh1sUrZ0smE4Dt3ugRxzu22TEyUzX6Pc7MVkkzwry7voiDXoXvNsW1D5WIhiZPPlWC2bOEWXkZHeXJu9cNpcm1rXh4ez8yUWK3L51FVlSI9MGYYyIZynt8dQkzWISFkwyfLxVTyDpOQh+iQimACQ1Ol3KkIWQBpEbJQdabPdZbLYZ8gJxfSz3W1IetKQ5cD6XOzpUNS5tWGS7NkTt833G3gaqpC0zOxdG3q+/Px7oCb7THzVWe69p5quSSpbFx/ak2mkc5W7hpYCwG/8uE2jWLIbWoqizWb3jim5ppTU+YLc2WSI9QfcLduz3IxvXZL19gdyqbkbMVi5jmHBkzQ8Ex++vUFyeJUBFu9gBv7PlXb4JWlKos1hyyX8rJfen+bxarNW6v1hzKEhBB8b6PPtb0xrqlxbq7MqabH797uoqs+rbLJj1ycwdINFqr2C2tK5bngN67sk+Y5L82XkWGZKhdmK/zAhZn7Gv9nWlKy96S+icfFUs3hjSPqupPG//rHzvOPfm+d/+uvXOav/om3Hut35VBK2rFkeY6B/Kyans0Xz82Q5YLXHsGw+/Rak3OzZTxLfy4y1iTLmSmbLFQtLi5USNOcVtXhX39jEZRCqfEJOIs+CzxVY6poSAE0gf8D8HcURekBm8W/e26YGIutNT32RgHb/ZB313us1F1OFxRDKes5vAkqikKQ5ERJjqooRAfc8ntBPJV3qarCXNXCj7L7fFwmHhS6qk43nEd5peiaKg+x4i5raaHqYGgxNVfn69c6hEnOMEp4pVkhiFLqriE3C1V54OubujrdaPtBQpjkVG2T0oGHKUyy6RQpjLNn2nHVHnKtiqLwmTNNluoud7o+PT/m5r7PZs8nTDJWmy4X5h6e0qeqCqsN79ChRNcsacSuqzRL8kAyClP2RiFRlrM3jPjMWgNRMA6yXBSTcfmwG4UB7WT6C7LIWao7hIUf1YuGpkqzbsfU6FZjwizl2s4YXdNYrXsIBN2xjEBXipjw592YAjnFOTdbpuqYqIrG99Q+Aqg5OrMVh2GY8PH2kCTN6YcpfpLdJzHVNTkty3LB1d0RQvBARpBWFK16sRGB9HwTuZzsTIyVgWLipCAdiaU2H2QaxvnZMk4RJe5aOvUiYt458PsHYegqc1WLhmtwdW9ElMhp3krj6MnOhNKbZDm6phClGeMoo2Lrxc8mhaaYFuIgfVCEQKaAlkwuLVYwdMk6nHweuYDWc/AWO0oGcRQqto5jaSxU3SMNxh1To+ToWMnDJZ1PA9uQck4ZZmFOzWvjTHonnZrxmClZlGyd67sjRmGCZ0iT1RfRmDI0lTdX69MkqW/d6JLmkj07YQ/sDULGUYauqvTGR8tIk8Lke7nhMvATZisWLy9UiLP8yITEh+HeA+c4SlnvBijKXaawY2os1x2iNKdVOhnG3qRZA3Jf/Z1bHZmqOooOHSoPNqFtQ2OxLtNgjQP3nKmpLDVsBoFkxlRsvZDOlAp/GkGQpIVPn8owSh/LdF5RlGlDWlEUkjyn7lmoqoJpqFRdA12VEfcocG6uRJLn95mhNj2L2UoiU7hieRCdpGg9DkxNxVeU6d5W90zpUWlr+FHGuxs9tgcR81XJ6qg5BmGSoijKIxN+DnruRWkmk/4sA8dUp3t+WAzxhJCH8GMuGVMoikLF0aeMib1BSMUySNMYBViue5xqyiGTrk7k23JtXW26+PH9LMwwyfCLpsPB9ciPZRP4cT0DTwK2bfLv/uhL/NJ7m/zyBzt4ls7l7SG2ofKZUw2qz9kr8uA+qSO95kZRSsXR6QR7OLrOa8t1yrbON661GYYppqbRG8cPTW1ruAZXdocIFBZrLnXXYOGI9XXCUlTVgsGeyWaxZ2nTe9kxNRzToeFlbPdDLF07NCSZWG9M1oj1ro+qKMSpwI+kVDWIs/v+9r3vHyTjQtfu7sMrdYfvrvdwTZ2Ko2FoFo6hSXZY8SwrinIf+65k64fW6Ubh1QVyeJLmMoEyyXLawwRd1RgEybQW1RSF2/0QIQSeLT1QG56scSdNpzOtErc7PmVbR1NVdFXw8kKFIMmmz+xEzhWnOfqB+mKCe689znIUVaFVsomK9NLnnWA7wWzZQlUUBFL22PUT4kwwU7KZr9i0R5Ilm6Q5wyBlHKUPZbFHaU57FBeycIGlSWLDjf0RQSwDNN451SROxYntaU+C290x797psjeOmStZnJ+rsFiXqoDKEe9PfcjZ6/cj5io2f+b7T/Nf//o1/uwXz9yXJP0wGJoqvUM981BAVJLnzNdsojR75GelqspzS3ENk4zNrs84yogTgWPqqJbCT786z6vLNfaGEYqiPFNVxIvE0961XwT+FDAq/lkF3gb+NeC5VfOmISccmqowDBNutwO+daOLpil0RglzVfvIyUCS5VzZHRJEGf1QehEcnN7MVWyECO8eUE0djhgua6py39TlUZgcsodhStnWeHWphq7dNS/244yun2BqCne6PuudALu4jlbJ5NzMo/1PSpaOY6rEqfTGmUDS9OVmeBJRoU8DQ5PmyWstjzTL+W9/+ya3OjLifLnustrwsA0ZldsPkiMXj+44ZqMnU5VONTxud326fjxl0BmawmLNoe5K/5EzMyU0TeVWxycXkCM4O+NNi9Qky7myMyLLBQs1e3qAe9Gf1VGwDRlhena2TLNkk6Q5v355h+t7Pgs1izTNUVWVxepz7RMfgqIozFZsNFXBNGRhuNOP+PJHu9Q9gzSVTcW5inWkGb+hqVN/iMmhwU8yjnJesXSN+arFtd0x3cI4fKcvWURLwqHhmdN45O1+xGrDZbXpFo0+OVGN05w0k02A87OlabH7MPmmrirMlm2yXEwls/cyKw+i6hjYpkrop+wNI5JMkGaCTmFuDrKQvrnvM1sxpw3aumcyjuXBOS8mmmeaJWoFI+SkU1FOAoqi4BgagyBF5Pef+vw4pe8nZAji9MGf2dOi6hpUuXsoyIVgue6QCVm427rGlz/a5lvXO+yNYi4tVjj7jBplx8Hk2S5Z+vT+6PkRf+cr16jYsimdZpLV86BUIlNXpaRtHKGrKqau0A8TwqIJezAR7iAkayih4jzYBN4/0HQ4eFB5lsWSoshmS5aLBx4qJzjd8tgZBOwNYz7aHrBcd7jV9vEjKQW0dI2zsy6XFits90PMglWUZHkhbxPH8pd6EPJc0CrJNWFnGE4PpJquYKsqhqbxe7e7eJZOz09YqjucaZUOSCNt8lxgaCqupT1RTPtGL2B/GOEnGW+sVClZxlQummY5fpKRCSlb3xtGvLfeJyuaaacKZvFxINMEpYdW40ATpemZU1nikyQM7g5DruyMaHgm52dL2E2Xmx0fFPj8uSZNz8It5KIfbQ8RQjJTqq4xlVceRJbLtT/PJVPzoEdnmOQvpCl1EF96bZGVhstvX2uz0w/5+d9Z51c/2OXf+eHzrDymfOUkUbYNyrZBZxTz5kpt6v/09752SzZBHJ3PnW5Sf8TBPRWCsmUwClM2egGaqjCbCw72OCahHvujmNeXq+iaytXdIUEsm0MHE5RB7vlH+b1c3x/jR9l0QFR3pQde1dULyVx+X6DJURiGCbfaPlGaMV+R7EJDV6m7k7Achdmyw+VtKbs7iqHSGceF7F76Rk3uS01VpsOrnYEMobAMlXMzJc7MeNzqjFktkgtB1hTyHpXDN12VydL7Q/m7mspU1rXadKaDvIqj3+dHuzsM2elLeeHk/PQglCydMy2POx2f1YaL9QSy3JOCoijT4XCU5LyxUkNVFHIB/+CbdwijlBypMFmq2Y9kdFu6tFG5sjtkqxdyZXfAfMXh4nyZpbqLrauULAPTe77vWQhojyIqjoGqKPzu7R4fbA2J0oxL8xX+8FuLJxYa9PsFf/4Hz/L3v3Gb/90/+YB/+Oc+d+wk5VwIhlFKu2DZTqCrCn6UoSg8c2bZcbHRC7iyPeTyzpBRmLA3jliqOlyYq/DKYvUTW+efJJ62MfV1wBdC/IaiKA7wB4EvAGvA1lO+9rGhFf4FPT/m8vZQSvdUMDUZm7zVl4at81X7EN3x5v5Y6rszwVrL4/x86ZAXj32EufhJQQjBKEzZ7of0A7U4XBxuinX9BEWBOBVTeupsScZ5T+Q8Dc98oMGoTAG4v5OmHtgMP0nQNWkeP1OyGEYyMWQYptiGxq2OPFActRD1ioZFEOdc3Ruy3pHxn6eaUio5SQX6iVcWuLozZBhJP4RuHqMgD80KcKfjF4a7+lS26UcZvLiz6bGxWHOwdI2BH/ONGwGDIMGPEl5ZrtJwpSRoIlV8Uai7JvMVh54fc7sjzXP7fkzVNXltqYaha0US3uH7Ocmkp0irJM0L0yx/KJU8yQSuqZPn4Ed3nWwn32mSCW7u+wzDlGEom1dJJovU5br0dYjIaXjWsTeALBds9AJaJZOFms0wTB/JrMtyga3r0yaxgnJIJnh5e8ggkJvpYsWh7ce4ps4ri1XudHx6fsJcWaNZNh9LbvS8IYSgZBmUZowj/VsGYYIfZWSIqRTxeWCmbJFmki1ZLhgKm72QbiBDKyaHp5WG+1wT+u5FydJZrDkMgpiru0M644RhkNIsWZyfK1NyNIIkO3IfmPjvmbpWvAeF7X5IzTHp+QnLD/DVvr4/IkkFnXHM+QdI/WaK5oauqVTs5zOZTYsghCDJWW48/J7XVHlYURW5Z3bHCXkOQZwSxNLnpjtO2OlHOEWKXFIwalsl66kHEQs1h71hRHsUsTeI2e6FqIqCa+h0/Zi6qzEuiuJxlJFmgmEoPS4/3hliaipnZr0Hfv7HQZYLtvohcZZzfW/M68u1Qz93TI0okUlgXV8+h1GWYZv6VPq6N4zw45S5yoOTuBTl6BRPXVOfuNbIc8H31vv0g5RhkMomci6YK9vMle1DXo89Py5MtuWwcanuMF+x7zu4CSGmzafsni6UoUrm6qMOss8aryzVONUq8bd+4xqKotIeRfzDb97kD725zMWFhzPInzUMXSVMJONusxswjiVjc75i41kGH28POTNTeuCzY+maVB4U8eySSXdYDjwIE7Z6EUGS8fGOTLULk4ztfoRjqofY8UchzwXbg5D1rk/DtRgXbvaepXNp8fE/Pz+Wz+Z6JyCIM5LivDBTltc1V7HZH0XT2kqy8eR+sTsMCWOZknzw+o7CsJAuRklOkudcmC+z2nRpF8x3kDVUEEtpYm+c0PfTYmAnX3MUpdMmzcfbI0xdwzN17v2T/SDh+t54ykyLj+Eb9dJ8hZfmX+z9dy9mK9ZU8fDB5oCtfkgQZdQ9ndlyiSznSBb+QSSZIE5kINPNNGcQ5qSZZAEv1p37vJueF6I0k/WIH7NUc/GjFEWR94Br6/9/15QCKbf+j/7AJf6D/+G7/NVfu8K//+MXjvV7k8TLcZThJxllTd7rmRDTfSv5hMjibrVHfHe9R5zm2IZaKKkkG/15B1m9KDytx9RPASiK8v8BPgv8EvBfA/9KCPFsTU7uQZzm3OkERSMn59OnG0RxxlzVls0FZAF4sEjKBbRKskCfq1jP9dCuqQolW8MJVMm0uKdI6voJnqmT5TllW6NVMinZclJRdWV6oBByEzyYuPD7Ha2KxXzVwQsSKrZOexTR9MzpZn6Uv0+zZE59rJIslywckVPzdLwDm62qQFJ4A2z0Ak41XW63faqOQTdICv8BaTA3ec3ZyouX7R0HFdugYht0xzpnWx53NJki6Og61/dHWLqKpnJko/J5YdIQXao5tEcxozAhiFNWmx4b3YCZiskHWwPeOVU/VAikWc7OIELX1GPJqpqelHLqqjQB3+wH+HFKo2h4SWaEjl8kX273Q+nlJEJOtzzmqzZ7w4iKbRx7IhOnOZ1RTJhknJ0pHUsmtVBx2BvJ1FBDkw2D+QONMOlzl1KxDbaHEUGcMQhkATVTtkjzu02VTzIURWG+atM/II0+iIZrYegqlgqW/vyKrYmf3ASGrnKq8P0bhwlxnrPeCbhV9acsthcBRZGMz/mKzVY/wo/lXtYqWTJ51E/QFBVL0+5r6vaDBF1V0VAQIqdq69Q9i66f0HwIu2FiUXbvvnQQpq4+12QmkI2WCSPnOPt1wzOl3FFTWKjaKAo4pkrVM4gSgWeq9IOEfjCZUMfTBrZrHi3bPS5KlpTapFlOmMgGXtOTqXsrjSphkuOZKjvDmIWqLDyrrsGHmwNu7EtfJs/SnkqCvVizubw9pGrq961lO8NI+vJoKnXPJEeQY2OoKp6lMV+1i4aANOWerI/PCwLJehjH0hNswqatOilpnh+6fyu2Qc1N2eoF6JrK/lA28e9lTOmayqmmyzjKKFkanXFMufAcXe8FWLp23yH+RaBk6fyJT6/w33ztFhtdH1VV+NbNDmVLY7HuvrBDqWfp0z14oSoNwbf6AedmS7SLFOS9YciPvjz/wMP8bNmm5phsFoypeyXIVcdA1xUsFDxLQyCf9SyXiYl+nOJZD65590YR7ZEcOqZZzmrj6dbuhmcyihJcS6dkG9M18aClh/xvZKpp6YCMdcLWLhWMxzjLHsh8nK/abPdDSpY+XdvWuz5BLAN94C7DKssFH24Npp6XC8XvNj2TOMt5f7NPs2SR5zmGpjB7YEiWZjl3Oj4qCsMwZXHeee5m5ieFg3v47jDi3KxHfxxT9Uy2BxH9QHrFvrlSe+Dw7k7H51bbZ3+YsFC3COOc5brDUt19ZsSE42CyDGW5bNbahlQDWJrOXPl/2oyZh+GPvbPM1661+S9/7QrzFZs/+dlHW1mrqoKpKdiGZL9N0HDNoj8AdffFn6PzPOfqzogoy1BVhTeWq/T8FM+Rkt1PwNb0XHBSJ5r/F/CXgbNCiC8riuIoiqILIYYn9PqPhKpIPXrVMTnVlDdYz0+IUplyp6nqfUXmqaZLzzd4dUm/T+r3KJPl4+Kgn9NBbA9ChJBGsrMVKSFMs5wkE1PzcpCHpQtzZfTFw5u8nPrmD6XUCiEYxxm2rv6+6bSu1D10VaUzjlEVhV6QsNELWG26bPXCIxePim1QKZpzcZpTsuJp7PdBTHTzSSrQNaVgEeXsDiManjTJj7MMU1eoe8eTZvrF5P24DYxnjbpn8YMXZ6X0MUzojRPWe/40/vbcbHk6PXhRUFVpknpxoUKYZPT8hI+zAcNQegUMw4RmSbK8Dt7fx/2MTV2dRtcmWU7Pl4y6zX44bUy/c6pOexxjFKmMSSanE3C3yXcv4jSfJvjdh+LSjMdIUaoWaS8AV3eHJJlkXVWKwvX15RrLdZdS0aAdFMbEuqqga+qRh8TJd+uZ2idqouaaGhXHPbKZ4Fk652ZLxFnO0gsyFgVYqbt4ps5n1hq8v9Hna9fbbPcDDtbsD1rPnwdUVeEzpxu8vFDBMzVud30+3BzQDWLWu+q0eXbw+bZ0eSByTJ2yrSMUhYWac6Svy0Gcbnn0g4TaJ6BYO4iqY7BUl14sj/JRmwwzzs+WpoeSe6Vp2/2QvWHEKErJejkdP8Y1dEq2jlr4tjzt973ScOn5CWVbP7R25Lng93q+9A1zjenzbBsaigoaCvYxDowPW897RQNyFKZTs3sovJ+KN6YosgF0FDs0K8JkZC304LUtKJqlJ+k7o6kKFxcqLNelVHXyHR6VyDQZeqiKws4glOm+upRjRml2qL6byNI+3BpIybapcm62jK4qpJl4rql8/z/2/jxKsuw670N/58435siInGqee0IDDaBBAARAkCAlUiIlarL8PEi2bNmW5UX5LT9rWc+jJOvZludnWpYsW7Il2/Kzl5cpWZItUhIJkiABkJgbPddcWZVjzBF3vve8P86NqMyqzKyszMjMaLo/LKzqnOKee4Z99tln7+/bD2fqBf7VH3+BX3xng9VuwDBXm255MTdOKVC+VHEwNVWhULQNfuTFRVxLZxQm/MKba7SGEZoGwyDGMvU9/VPL0PY89DumzheuN+mMYkqOkSsra/hxRj9M2BiEXN4nMDX2nesFi8vzxV0z4J5nviol5DKLFZdhkOyaDVawjMn6HfspRs57q9aQprguJaz2g10v2Er5PrgdaSp38N9sV7gci/TMFa0dPg+oCwUvTFnt+5QdlTU5/mwhlBKta6ng83aKgjSTijDb3FvpdVbx0nKZpVy1+GHX56u3thjFCY96Ph89V0XjsT3fnqm3NQoZRAlRmvLD1+Y5Wy8g4Lk5GKcN21BBzqprcKc1wtA0Xl6usVx1OFc/HVXwWcG/9/s+QnsU8q//3Bt8/1GPP/Gl65NAcZpJHnV97myNuN/2VMabrnGpUWSpYpNJGJt4Q9e4MFfAi9NT95clcHNzSBAlOLrB1YUiX7ixQJyqzPWirZ9q5v5JYlqBqfPAfwbMCSH+JLAI/NPAK1P6/GfCyJU0glzi9HsrXe61PIqWwaevzKFp4qngk4pAP70xhUnK++uqNvtMzTkU4VmSZtzZGvGw4++6kY1vZauuxVxOuvr1Oy1aw4ir8yWlNucoHprdgkqXm0rtzn0iBbo7iqkXleO10vHpejGmIbixUP5AbDTVgkF7qLNUtpFCOe9vr/Z585EKEvrx3jcFUZKx3g+wc66QJ5FlEl0IhnHChVxad4yCpeTPdU3QHsX73siNsdJR5WiWoe04/Jw2xvOtZBt0RxGNkoWlCx52fX7l3Q1Kzt68MScFy1CltVJKen6XZtHOVXgkX3l/a6Iyp2sq82s3B7PrRazmN4x7lYtk20o3tmfbGbrGYsVRJSBIMrmTh+1JREnGu2t9toYRjaLFK2erOwJljqHItctPlDQlacbd1og0U4HwvRzhMc++aq8qVRj30SCIJ2pGyzVnzyBzlkne3xiy2Q9xLI3XztdPJQX9SWwOQtZ66rB4fbH0VHBKiMckyc4JZkw9iXF/g7LLzaKN0AS2YfDGwy4rbR/X0mgUT++2smg/Dm6ckwXubo2IUgMvivn67RbXFoskGcSJmuuupdMsmbS9iK4fsbzl8OJS5ZlBXkUsfHy36Bv9gDDJnhIS2Q09P6bnxcyVrAnZ70Fwp6U4Zoq2vuPQtv1zxzx0FxsurWFMs2RTcy0WKjZxXv52VOzlZ6z3Ax60fTQB52WBd5JUle/Nl2iUbCxDUN3GceVHKVvDkFIuxgDq8unm5nAy3k9iLK5il/TJunt3bcA7a33qBZMbSxWqjrmnXdI1wfXFElGiAvJBnLI5CCluG4fOKJqQ4B9GeW8/jLPO9kKSZqz1A5UVqCkuHwlcmHOxdI33NgbEiWSuZO0IBkgpJ/tB3094e7WPqQvO111KJ1SWehAYusaPvbTA3ZbH1iDk3bUh720Mdtz6nyR0TfGbbOfhXKzaLJQdLjeLRKnK0PnanRaNkk35kO1UXJGP52SzbCPJWO36/Mp7quRtqbJ7po9aO0rFbre52PWiSXXF88zX/ebiIIi5m2c5XmoqX6U1iihYOvWCiW3qPGh7tEYRfpwcKPN7EMQESUacSBaaqmTt/fUhQiiZ+/3ac2muwG/cafOo42MJjTNzj5+na4KrC0WCKHvKX7m9OVSZnHvYzFnG9jnjRwlV1yJMUixd8CvvbeCYOmVH2awgTvnOgw49L2YYxri6jlVR2TQH4R07CURJxnvrfTqjiGKuXmkbgpJtnljp/KzCNnT+0h/6JP/xz7/LX/nKHf7G1+9ztuZi6oJHvYBo20XNR85W1CVTkpIh87LXx/7P3daIUZhOLihOC30/5r//yl0Kts7Hztf49KVGfg4QB/KTfithWrP7zwPvAk3gU/n3Fqf02QeGbTx2vkxdKeTZpo5tPl+kMUwek2DuR2C8HzYGIeuDkI4XY+/i9C3nErC2oVGwVFlRaxiRZfCo6/PKmcpTZRnbsZva3YO2R5ahlPzOVAlzIuE4UU6YdtI6yIdAljFxDOtFUzkQwL2WR71o7lu+sd4PJuV4hV027VGUEMQZtqnT82J165BLepfzG3JL1yf99iyMD9NRkpHOYP/GqcQxDS41irSGKhV8YxCxOYyU3O4MIM0kmtBo5vLRtzZHuJbOm496/MClOdJMccTs5oBtDcOcEDpmobI7f5Zt6FxoFPCjdNfSJT9WJX+G9jTXxXbEaUbPT+h6MWkmWRqGOzIMhGDX9doPkm1qf9GeIgkqezOeKFBtx5iUV4kA7J2+kUrJwE9ojSLsSGO9H8wEl9x2Za4oyZ4ap61hiGVqaELQGsan0cSnMFeyOD9XwLF0BmHCnU2PXq6OdJqBqe2QSM7WXKXgtTqgYGW88bDPtfmda7vrpyyULQZ+QjEvd9a10yvdGATxhEvsWZeUUkoetD2kVPb7SeLj/TAmR99rD2+Posl6qrkWhq7m4PimvJ2XzxwXojRjuebghymmqTJ54yQlSHZXfn3YVWU94+wrQ1fEx3sFpWCsYKUCHOPLmtWeT5ZB24txDO2ZAcixgpdqg48XqizXMfdKmB8Cxuv7eZX3joLNYUhnpGxGThuCpWsIIUgyOembJ4nyhRBcbhbp+wldPyJOlLiAVZu97HJN0ya8TW8+6hHG6b5jfhIYVxQABFGGH6nSk3H5uS40el5MwZzOEaNgqblWdBQX2lo3IM3Ys8R6L95VYMd8DQ+hFLkb/G17XBArDqiN3MZZOf1GwdKJM5W9MVaP3A9hopTCS47iiBqXmI6fsd+67fkxa/0Qx9QYhDEX5naK32w/K40hpZz0TXiKGfXTQJTKfH2rS71RlvGwG3KxISek9SttxZFmGxqaLrjcKD1zPzpJJJlkta84ysquhWNqVFyVFXrKy38mYBs6/8ZPvswf+swl/vb3HvHeuuKX/vFXlrjULHK5WeRSo0jFNXjpL0gqtskoykiybIeND3KxovG/p4UgTpFCcc1dnS/R/IDQyBwHphWYclGk59+SUv6MEMIAvjilzz4UmmWbNA9yPG92SNk2aJaVmszCIWt5bUMRwsZJxnx5d1n77ZH5cSrwWi/gynzxUGmFtqHl5X1qwzlTc9kaRJRyJ/aDgPmyuhkyc4VCx9R5Z3XActXBNvbnGLLNsUwvmLuk4xcsA8dUjnS1oEoDto/v2bpK1W7uMl67YbmqyG0PM8dOAhXXoFGySFKTK80SX73VIkNyZb5I9Tkk0I8Thq5xJicLvzpfIpOw3g+5ulCkVrAmiku7oVaw8KOAoq0/Jbe+HbupM43RLNnEiUTXxb6qV4pbQ3GuzBWtA/PRlWwDQ1ek5ruVB46xV1YF7JSU3i9bxNQ1LjYL9ANVgnWayjnbMbZz1h6ZjBcbRc5Uh6RSzc1ZwHzJJl4sISXMlyzubo1yvj97TwW8k0bVNZmvOMwVbYSA9jBmoazS/MdEuqBK2QZBnKsPVk9N5nsMU9cQQh2wnrWOhFBlPEG8f9n6bjhfLyiS8T3WTM01GYXJRBq+8ETwu14wCeJ0V17DaUCp/oLbUNlp91ueUuDbY3wsXccnwzRUKQ4oP+LJ8d4OTXtawefiXIE4GdEoWc+t9GcbGl7O2TXOumuWLJIsQ9f2t6HHgfH8EQLO1Qr0/HiHnVmuOQyDZFeuyLHSsm1oE1Vf5xTFQZ6FWsHit7+ySNefXsDnsChYioJizMOp52VrS1V3IixgGxqLU7zpf+18ne+v9Bi6CUXHOPT+1izZeXBeTK1UuVG0J2q89YJFnGbbbJxq57m5AkYvyEtynu3fzxWsSYCoUbQwdNVe7QDttk1dZUMFcH2pfCCbL4Qqh+158czscYfFQsVW3Fv5+v/+wz7Nksm5motl6nmWbJGVrochNF49VwV4pmDNScIacxJa6qLi1XNVen6cn0tnp52njQuNAv/Sj1zb93dcU6dZdjhTczD1nWvh/JxLZxTvmwhyEnBNnWbR5kzNnZnEgdOCkFNwuoQQ7wA/B/xe4GeAPw68JaX8N4784QdAs9mUly5dmnwdpRlJmhElElNXfCynfUi7e/cu29t4GpjwZQi1COI0m9wYW4bGg/v3jrWNaSYnDrSuiafSiA+K/fpSSnUjn8mcO8MxT+UW5DjHO0yyyVhahsA1jUO943G2URHzJ8SpRBOqNOiwwbujtnP7vDM0cSylGtPoy34QT0inK64xOXxOC+/dvM3CmfNoGvsGyU4bxzkvM6nmgpSKk7DsmIfKczyuNipOnIwoUQcnyzj83nXQNj65Vh1TP9ES0OPeGzMJYZ7FkEl16WEa2oSL5rTb6EUJUX4FfhQeiVnwMUDN4XEphaFrmLpQGSX5nrz28MFT7QyTjCyTk1IwIcQOmoKTxrT7MpMwCpM8Q1hddByVl/KkxjtMsgn/qZWvm+exD7MyL/04JU4yJOrQb5s64yGYlTZuhx+nk2CXa+msrtw/8TaqwPw401lDy/m+9sNx9qUfpZNgnWvqk8vo58XztjFKM4JI9YWpqxLR4z5XPG8bh2EyOc+VHOO59rej4LDjnUnJMEzIMuWLlezp+7xj3L17l4uXLpFm8sT65XmxXz8qNdAsL83fabtOGt/85jellPJYHcRpndBWgT8BDIC/BmwAJ+ZVXLp0iW984xuTrzujiHutEfc7HudqBRYq9lOkpyeN119/fUcbTwO3N4eMwhTL0HhhqTzhhtA0lRL9uc98+ljbGMUpf/+ddaJYcqlZ4OMX9tAqfwb268ssk/zq+5u0RzFzRYvPX2+eCjH5cY73Ssfj5vqQbhBzfb7Ei8vP5ozZDcfZxjjNeGOlx/22R8U1+MSFOrVD5swftZ1BnPKL72wQxtmR5t1+mEZffv1Oi0cddaP6Iy8uTD0L78YrH+PP/w//J4tVmx+82pzqZ08Txzkvgzjl129t0fMSlqo2n7nSOFR26nG1cRQm3NwY8qDtUS9aXGoWD8RHshsO2sYkzfj+wx73Wh4l1+Dj5+sH5nGaBo57b1RcHQNGYYIfpzRL9oQHZhba+O5an7ceDdA1+OIL8zt4pZ4Hs+BjgAq03dpQ3Fxjjs5bm0O8MKXsGPyBn/jiU+1c7wds9EM2BwFzRRvb1HhxqXxqhLTT7ssoyfjmvTZrvZB60eQzVxpHzlw8qfG+1xrRGkY86vmcrxc4V3efi3d1Vublu2sD1noBXpxwqVHk+kJpUkkwK23cjvutEd+63wXgB682+J1f+vyJt/HmxoBRmLLeD1iuujTL1p50BGMct618f32Ipgk+eq566HPd87axPYr41v0OoyDhYqPAq+dqx36ueN42vrHS4+bGEEMX/OiLC09lAB8XDjvecZrx9dstNgcR82WL1y/NHVs29yc++UmW/6n/jO8/7PPPfv4y/9ZPvXwszzkK9utH5ROOSFKVBXxjsXxq/LFCiG8d9zOOPHOFEBpwEfidR2/OdFAvWriWzrVFVRo063LqJ4WLjSLDUPGMwON+0jVxIqVolqnzIy8sMAwT5o9J8ULTBJ+71qTtRdRca2bU8qaJszVXKbfJ6dy8HgdMXeOVsxUuNgsULR3nFEsPHFPnh2/Mq3k3wynQn7xQ53IzonpM5PRlx+QHrzVOXW3mNOGYOj94tckgiPMSuNlaO0Xb4MZimUvNIrbxtJLsccDQNV46U+FCo0DB1HGmSF49C7AMjeuLJcIkm5RqzYIowBgvLFVolGxsXaN8wqVwx4GCpdTFUiknwb8rzSJBnO2p7LdYcai6Ji8ulfHiNBcjma21eRRYhsYnLtbp+zG1gjWTpf974Xy9QK1g8dKyChSedinwYXF1vshS1cHQ1DvMot+0HRcaxTzzRZso9Z40LjdLDMOEF5fKSKarunkYXJ0vsVBxMDXtREUK5ooWn7/awItTSrY5k3Pn1XNVFqs2Rcs4saDUUWDqGp+50qDrRZT2EeCYBtb7Ie2Hfb5wvclf+codvvTiAp+7NruXs0/iSn5BGaXpiWe0nwaOPHullJkQ4qvAHSnl/Sm0aSqI04zvrfQwdcFHz9VO3aDOAp7kgIjTjLVekEtRTt+QBXHKo66PbeqcrSk+pp4f0SxN/0C4NQx5Z61PyTJ46Uzl0Nxgs44wSXnUDfCiBEvXqBetmQw0POz6jIKYDBgYOufqp0sqW7ANVjo+bz7qc3W+yIXGbHAZbYeha9i6xtfvtHBNg09crE/VARLiMd/T5iDg+w/7NIoWHz1fm9ozZhldL6I1iqgXLIQQ3NkaKhW2k2RrfgZaw5C2FxHFGa6lc7buHpjP7LBI8n0AlBphz4/ZHARUHPMpfqIPKmxDpzOK2egHLFYc2qOIUZSwXHWmqiJ3WDRLtsoaGoZUHZOuH+OYilPxgxigeZKYeaMf8NbqYF/+xrGPVt3mdCdpxkrHRwLn6sqHCOKU5eruimyzhDSTrHQ8AJYrDhuDkCjNTi3IcBhIKXnU83nY8Sk7xkzumwdFKiUb/YDNQchy1eH8XGHmuFf7QczmIKTimJRsQ4knGdqhaS+OiifPDEGc8rDrY+ka5+qPbZMXJaz2AorHaEu3hiE9P0agysDmM+fEeIH8KOVhN0BKSXsUUXZmR71vOyxdY7XnT9TeH3Z8Mik5W3dnMhieSSUQNIqUTV/t+YC6fJ/m2pRS8o++fp4/89Ov8KX/+Mv8V1+++YEJTHW9iLdX+xi6xitnKsfuD84CjmRFhBADQAIF4B8XQqT51wKQUsp9rYYQ4l8Bfp+U8vPbvvenUVxVHeD/kFL+p8/TJi9KeNT1ubM1YhiMCYO9U5WBnEVsDUPeXx8QpZL2MGL+GBQANvohozBlFKZUHGNy+FntBdQK1sRxSzLJ+XrhSFHgm+tDNvsRLS1ivuLsKH9J0owHHR8pJefnCjNpoA+KzUHIMEi4szVkoeIQJhkFS+dRN8A2djoLp4VhmNAeRrRHEVEuCd8ahng5X8K5E94k00xyc2PAr76/SdVVROLn5wqn3k9PoufF/OI7G/T8mKprsVxzjq0E+c2HfVa6vgrmOsYHThr6MHjUDUgziRd6jOWCb2+OqLghrmUcumRuWpBSstoL6Psxm8OQK80SW4OQNIM4yzhbc4/lgqXtRfR9xcH2XthnpeNTsk38KGOuaM3c4e15kaQZt7dG3N4cslhxCGNvonClxEZOf+4HccpGPyROM755t03VtVis2NQL1rFcGp0EgjhlpeNjGxrvr/fp+elENXc/DMOEtZ5PwVKiImN+wEddfzJP1/sBl5qzHSTpbFtXcepN1Fm3hhFnay4Puz5+lLBcdWd2jAdhwnov5FE3oOwoZTzH1AnilDM1dyaCugfF5kC9x+YwZL0f0PYiXj1bm6nsg9Wukrr3wpSSY+CFKQ/aHq1heGpt6nkxG4OAqmsSpaptHimVbaIya71AfT88nIr5s5BlktVuQCYl99sjLjVKrPZ9vDhhFCYsVpx9lRgP+8wH+flESokfZax0PRoFGz/KcoGZ0w0SPOr6eNHj91/tBSSpxI8CBJKer+xtexTNRCAtTjMetD1FtF931QVROFY3H02U8VwrmmpywZmay7//+15F0wT/xGcu8h/9/Lvc3hzOxN6/F9JMKRK/+aiHFyn18EbRmuk2TwtHsshSyrKUsgL8KPDD+b8/tu3fPSGEsIGP7fHj/5eU8oefNygFKhgydgCSLMU0BPUZuhGfFaz1AgSCzijM1WimvzkXc0U1PU+dHn89Tu/v+TF9P8ELU1qjo228tYKJrilCxNITzlLXjxkGCaMwpXPMEuDHjfGNVNFWssNF22BzEOJHyun3ouNxDJ4HtqGha4q81rWUAleYSIZBwjBI6HgnOwZdLyKIMwxdZxQmzBWtmQtKAaz1AwqWTt9P0IQ8VoWrZtmm50XoQkycl9/qGNufgm1M/juIU/wooz2MnpKUP2kIIXAtJeNdyslVM6nspLKRx7NuCpNnSQZBiq5ptEYhrqXNZMnC86LrxwRRSpoxKaUaH0ZnJSBg6RqWodEPYhxTx4tSgjg9ddGWo2D7vuRO9q1nH+TW+wF+lNEaRuiayvQUQqkoGrma2ayM235wTX3S9rmiPVlLJcvAj9Lc5mRsDE4v6PAsOIaOZQpMXdkmQ9PojGL8KGNzhtu9G0q2gWvqj4UQMnVgnyUU8ixA19KouiZpltH3k4koymlgrR8QxBnr/XAiSDD278YYr0fTOJ79QtPU/NOEYK6gLtFNXbA1UGtovR9M/Zn94PH5ZEy4XrJVcNYyNEztdG1zEKe0huP3DyftA2Vni7Y5sT+FGcku7eSBqGGQ0PVjiraykZpG7peP2zt9+67l9vcPfPIcQsDf+d7q1J8xTXS9iEGQYGhKSd4xtefixfwgYypvKaX85UP82R9FEaX/2V1+9ueFEB3gX5VSfud5PrTkGAyChAtzRT5zuaFUjT4s43sKJdtASnj1bI3zcy7HIYjdKNmTGnldE1xuFonSbHLLULB0NE2pQh11wb2wVM6zoQTWE7cYxW0KGh8Eh3Y/1IsWBVvnpeUyqZRYukZ7pG5mTePZiiknAVNX5PpJlqHnHR+lGf1ABUCOM917NxRtA0MXfPx8lcWKMxM3R7uh7BicqRU4U3O5vlA6Vq6fj5ytomsQxNlMlbIdJy7MFQhzdSFQc3IQJKx2g4mzedq40iwS1jIMTSAZq4wmZFI+FXCfFkq2wQtLKqP4ftvDtXTKTpGLjdnLKjwMipaBpgnOz7mcrxeoF62JAtyslPhrmuD6QolmyWK1FxCnGTcWyh/obLWyY9D1Ygxd8PqlOfwopXCA/i7nmSK2qVFzrYmCqKFrlByTJMtOPVPhIChuW1emrgINY1XINFMKd1GSzfRhwzI0XlqqcG2+hK5paAJubg6JEznT7d4NtYLFaxdq3Fgscr/jowlxoEDpSeL8XIH5coqlKwW8oqVTsI2JOt9poOwYtIYRBVunUbKpuCaaEDsuLcYccdYx2qur88XJ/h2lGZaucXNjSBBnU8+WAlWOPD6fnJ8r4Bg6hiYmz9ZO+dLG0jUcUyOIMyp5qef5uQILFTV/hBC8sFTO1btnYx8p2gZCqCBa0TJwLZ0XlsqT+TQucz7OiorFisMnL9T5v76/xp/40evH9pyjomgbaBqcrbt84mKdsnO6XL0niam85baSPgALMIFRnk212++bwBellH9BCPFkYOq/kFL+aSHEdeCvAl94nrY0SzZV10QX4tQNxyzjUrNIlGTHbrC2O5BCiB1fO6bOi0sVpJRHdsCFEHsGnVxL56Xl6TxnFjDuw/Hbjp2FWZrzuibQtcdjbejaqY3BNOfZceJMzaVZsidy6ceNl5arRImSZ/+/A54k7rUNHbukz9R+sRu58ItLZbJjnrtjR/BKsziRhf+tgt3sv6YJHG22DqWaJmjk/ot44uD3QUQtL0Mcry3TPdicWig71AsWhqbsoMbjfnhyX5l1bD9g6ZpAz99FzwORaR6ommUY+k5+yBsL5Q9Eu3eDuoCwKbvWzPoDO/YoU+f6Qok4PY6r44Nhu18CewcNjjvIv31vHPvA1/K+OY79yjZ29xtnZd/QNMG1hRJJtnMtbj9jzdoaLdrGRG11vL9tb+NJtfcnPrLEn/u7b3OvNeLijPLmfVDOLceBqbztuKQv/78D/H7gv9znT/4Q8Df2+Kx2/u/7+z1TCPHPCyG+IYT4xubm5o6fmTMQzf4gYBYOH7omTmTRndRzTgsfhDl/mmPwQRl/y9BONEvlpJ83i5j1taOd4NwVQszEvjBtfFDWP6hAwAc9KDXGYdeWqf/Wt0vaCakhTxsf1HZvxwfJHsyCTZ5VP+G4+2bW54kQH7y1OAv72098ZAmAv/f9tVNtx7Mw6/PvuHAsbyyl/JvAl/b5lReAf1EI8feAV4QQPzP+gRCikv/bZJ+MLinlX5ZSvi6lfH1+fn7Hz1T9+OndMMwqZqFfkvQUi+X3wCz0y/MgyyTpjLdXSnnqY33azz8IpJy9sUzSDClnq03TxCzPi1lYN7thFufpXvgg2Ef4rbvOnue9ZnGuHyc+aO/7QfONDoI0J7P+oOAk58ysj/cs2MxZX8Oz3r4ncRrtPVcv8JGzFX7+zdkOTD2JD5rtOiymVcr3+7Z9qQGvw960RVLKf23b335FSvmzQoiflVL+DPAfCSE+kn/On3retozChDtbI4SAq/OlmeGQOG30vJgHHQ89T/88jSj7o65PaxhRtPWZURbo+TEP2qpfrs6XTv1m6lnwo5TbW0OkhCvzxZlUxZFScmtzhB+lzJdtlqonz+l0rzWi7yfUCibn545H2e6oiNOMW5tDklRyru7OBNfTxiBgvaeIr6/Ol2bylvQoeND26HoxFdeYuRRupR45JEoyztQcGqXpK6UeBuN5GieS83OzMU/3QpSotqaZUmA9TgGBo2C157M1mK29cBoY2w/HVPZjv2yp8VosO8bMK+xNAw+7Pu1hRMkxuPwBeN/tvtFp+YzTRteLeND2MQ3l7836O610PDojtUaOG4Mg5l7LQxOCqwvFmeNx2xyErPWCA9mW44JSe0+YK1mnruK7G25vDhmFKY2SxZkZbN+TuN/y6PnxqfjpP/7yEv/J33+PjX7Awozyzm7Hdtt1bb70WzqTalpv9ru2/f/HgQHw0wf5Qynl5/N/fyb/91+QUn5OSvnZw5CqD8MEKSHL1H9/CIV+ECMlSko0Ph31qTH59ShMZ+ZGezxflMTq6SvaPQvDUCm0SDm78zvJHvflIDgdxbexTPdYanwW4ccpcSInBNezgHG/+VFG9AG7eTsIxv08fs9ZQpikRLn6z6zMB1DqP3Gi7PUstWs3+FFKko7X1OyqTY7n3yzthdPAeH4E8bPtx/h3Z31OTQv9XP10GCQznZUyxmCbzzgLar/TwHiuxYkkOCU/+HlwkmtkEChfOM0kXjh7fTM+PxzEthwHskwpS8Ns7i1ZJhnl49afwfbthnE7T0MZ+sfzcr5feGv9xJ99GGy3Xad1hj8pTEuV749M43OmgXrBYhAkaLm88POi60VESUajZJ96Hew0MAoTBkFC2TEIkxRT145N3elZWCw7bA5DRTasCaSUEwn05glmBwyCGC9KmStaNIoWfqQkOU/iVuqoqBVM5TACNVdlLgzDhFGYUN8mg36aMHWNZlmtw4WyuokIk5TOKKbkGCei5rNYtel6MY3is7M7+kGMH6U0itaJ3kKULIOKaxAl2TPnf5RkdLyIon28/bdQsVnrBRRtg1GY0vNj5kv2b5nMqcWKTWsUUSuovaEziohT1f+nzTPlmjq1gkkQq0xDeDzuBUs/kvLQeB+oF83nvgkv2QZV1yRM0hO104dB2TEoOwZJ9uw1NUaaSVrDENvQqRZOJsNqsWKzMQipOOZTfoaUkq1hhBAnuy8eBeP5VXUN0kxStI1nZqs/uRZBHa62hiGWoc10Zt5hsFRR/k8tV+fb7Ie4lj5RHZw1NEs2Qax8xvK2PWeWbObzYvxOfpziRQkl25jpva1Zsrm5MWC+dPwZHXNFCy9K0DVtoo42RnsUKZtaPL0xXyjbrGYBBUvHMXVlK0YhpqZRP4CfdxgEcUrXi6m6Jq6ls1CxJz7RLODJfX3W2rcb/CidZEktVhw6XsTcMY3ffri+UOJSo8DPv7nGP/mZiyf+/OdB14uQUmLqgoJ1Mmeo08S0Svn+Q+DPAT7w94CPAf9PKeX/OI3Pfx5Yhsa1hcOlxntRwoO2D0CcyZlM1XweSCm5szVCSnBMjeuL5VNtT71o7dhA2qOI1W4AgCbEiRinOM241/KQErwo5XKzyLWF0+2X54GpaztKP9JMcjcf42GYcHVGykKWqy7L1cdfP2j7+FHK1jDkpeXKsQd9F8rOJCi2H8Ik5d6Wp/47zrjQOLl0Yk0TBy4ne9Dx8MIUIY63/yqOScUx6fkx91uqX5B8IFKdD4JGyZ6UyI3ChJWOsveplCxXT9feCyGeSmd/2PUZBglCwAtL5UOVnmTZ431gEMTPvQ8IIU50XRwFmiaeuyzsUden66kb2+vmyZT/1wrWnoGX1ihiraf2RV2IYzt0TQvb55dradw44PzavhbHWOsHtIbqssrUtT2Vdj+I2O7/jEtYAG4slWaubAqUKtSTvtFwxmzm80IFFxzutzw2+hFCiAP5CaeFMEkp2eaJZEjsNt6g9oyH+ZhLCYun5AuUHXPH5czGIGRzEAJg6OJIFzd74V7LI0oy2qOIl89UWKw4p/b+T2K73R2GCdcWSjPVvr1wZ2tEmkm6fsSLS5XJJdxJQwjBj7+yxF/5yh16fjyzZf/b4xKzWkI6bUwrPeC3Syn7wE8BK8AN4E9O6bNPDNq2m5MP2EXQnhi/0yzebG3vb/2Ebq22P2UGu+S5IYBx12kzfPM37mshdo7BaUMgJv03w903GduT6r/ta2OWb5SPgp32fjbfccc4HPIzhJjtfeC0MQ7yzsoU+CDMy+3YPr+Oaiu2B9w/CO9+WIgd++EH5z23m48P6vh8kN5hFmzT9j6ape46iXEcP0M7/UKEXTHZ12doXJ6F8ZyehbX3219ZIskkX35347Sbsid+K8YlnoVpXUeNQ42/E/ifpZTtD+JhxjF1rswXCZOM+gml9B8nhBBcmS8yCpOZjAbXi5ZadIITa5+hK+JEL0p+S5QKaDlp+6yO8RgX5gr0/JiibczU4dgyNK7MFwni7FClvyeF83X3RPuv7JhcbBbIMvlbYp3sBtfSuTxfJE6yHeVEs4Rz9QJdO6JgGYcuM531feC0sVRxcEwd29BmQixlrmipi5oT3BePgmnOr4WyjaVrmIaGa53+WBwXztbcvNxRm4ny+4OiYBkzbzOfhQ/S3rZUcbANZZtOC0Xb4FKzQJLKmRrz+bKNqWsYuji2zMpLzSJ9X1FQzBo07YO5r19uFhkE8bFkuD0vPn6+xkLZ5uffXOOnXzt72s3ZFb/V4hIHwbRW298WQryDKuX740KIeSCY0mefKIq2QXF2y3OfG46pz4SzvRdOitNjO1xL/y3l9M76GIMKCM6KytiTKFgGM+6fnkr/zSr3yTRRsg2YzWkJqNvFaYz7B8FGnBY07WTKyJ8Hp7EvHgXTml/iA1C6OA3M4pw7KGbdZh4EH5S9TZwQxcWzMAtBhCdxErbCnGG/FT6Y+7plzE6faprgt728yM99+yFelMykyjn81otLPAtTCcNLKf8U8FngdSllDIw4oCrfh/gQH+JDfIgP8SE+xIf4EB/iQ3yID/EhPsRJ4Pd8/CxelPJz33542k35EDmmEpgSQvwjQCKlTIUQ/ybwPwJnpvHZH+JDfIgP8SE+xIf4EB/iQ3yID/EhPsSH+BDTwOsX67y8XOGv/fpdskyednM+BNMjP/+3pJQDIcTngR8H/hrwF6f02ceKJM140PZ41PWR8mQmpR+l3GuNaA3DE3neSSKIU6V4MvhAVnIeCmGSv3P/+d6558fca43oB/ExtezoiBK1Ptaf891mGR+Ed5JSstrzedD2iNPstJuzA3FuM8fKYaeBzijiXmvEKExOrQ3PwkY/4EFbqfr83wFSSh511ZxNDjln00yy0vF42PVn2knMMsnDrs9KxyOdwXaOwoR7rRGdUXTaTTk2bA5C7rc8ghNQLNsPY59na8b8ufEcncW1dBp+90HxQVo7h/U9TxNSStZ6wUz6NseFdu6veNHp+CvT2JtPE+M12fWmvyaFEPxzP3SZ99aH/K3vPp015Ucp377fmenzwnZs901mze4fFNMqqBx7Bj8J/EUp5d8SQvzpKX32oZCkGV6cUrSMiQpA3494d33Aei/gm/e6lB2dK/MFgkgyV7KAGvNlm81BiGPqk9ruseOTSYlr6odSngnilP/zjVUKpsb91oj1QcBixeUHLtXRNJ2KazAKEzYHIYau8fHzNfSc7HYUJnhRqkhRZ4A4Os0kUZLhWjpSSvpBMiGO/d5Kl1sbI3RN8OJymTDOKNoGl5tF0kyy3vdBCLJUYlkaZ6sua/2AXi7X/d7GgGvzJV49V5tqm9ujkO+t9JBS8tFztX1rnIdhQmcUUSsoedpBELPZDwHJ3ZZHGKd0vJCSY/LFGwv0/IQHHY8wSXlVPLseX0rJ/bbHt+51WCg7jMIUTfis9wNeWCpTtA0etH3ao4BqweKV5Srr/YCbG0POzblcnCvS82N+7eYmmRT80PUmtWOote96Eb9xp02WSc7WC/hRwr2Wx0LZ5upCmZWOx0Y/RNMkLy1VMQ3BWw8HCA1uLJYpWDpfu7PF3U2Pj1+oc2OxPDXibiklgzDBMfTnIo/d6Af8X99f5Zt324Dg1TMVlmsuN5bKXFso0w9ibEPDnWKt+ShM0IQ4MK9Z14v4xXfW+JX3Wsgs43KzxOX5IlcXSrywVMGLEgxNULRPh/dhvR/wi2+v8Ve/cpuKY/K//bHPYNsnUwCfpBk3N4a89ajP+TmXYRAzilKSVPLx8zXC/MAzimLKjsXLyxXaXsTtjRFF2+D6YgldCL52Z4t7LY+Pn69xY7EyVUJ5L0p4Z7XPSjvgQqPAKExojUJcU+fVczW2hiErHT9fVy6Nos16P2BrGHKm5nCmVmBzEPAbd1poQvDJi3MsTEkC2osS3lsbYuqCG0tlDE1wZ2vE5jDg6nyJZmnnc+I0415rxMBPCJKUhYrDlWYRIQQ9P+Lb9zpomsbHzld50PK5vTWi7Bis9QIuNgsHkmIP4oxbm0NKlsG3H3QYhQm1osVGLyBOM2xTo+slzJUMLjZKkz09STOSTDIIEtqjkDjNyDJolC1MTaPkGFPjjMik5J21Po6hM1c0eXu1z/dWejiGzscvVAlTiaVrvLBYZmMYkknJ2arL22sD4jTjpaUyDzo+j7o+8xWbq/MlbGO63CBpJvn2/Q63Ngbca3vUXIOSZbJUc2mWbM7WHL55v0uaST5zpUFlG2Fu14vIJDPBZxMmKY+6AaYuOFtzJ/5WmknW+gGjIKY9ivjuSo+yZSCFxLV0Pnu1wXK1ACiJ+81BSMU1sQ2NMMmYK1g71nkQp2wOQoq2wVzRIk4z1nrBgfcTKSWjMOU377YYhSmLFQfH0Hh7bUCUZHz0bJWuHzMIYmQm0XU1J8Mkpe5axFmGlIKaa/Drd1ps9UN+4MoclxqlI/ehFyV8536XrUHE+YZLGKes9nyKlsH1xTIPux4POz7NosWLyxW6Qczbjwacm3O40ixzb2vEtx90KNsGn77SoHQEjiGJGtNhkND1Y9I045ff2+Tu1pBLzRI/+tIi5+sufpJRtAwE8Kjnk2aSimuSpJK5ooUfp7y71qc9irg6X+JyboemgUxK3nzYJUwkDzoeX7+9hakL/oUvXuNMrfDU7/tRyvvrAyxD44WlMgDfedBlpePx0lKVK/PFqYuUjNd334/Y6Id4cUqaZWSZxLF0ri9WmC9YhFnGfNlhrmARJhmOqc2Msq4fpXzvYZe1bsDFRpEwSVnvh1iGOvNsDkMedn3iJON8vcDZusv7GwPao4jLzRKLFYfVrs/Xbrco2jqfvdo8dv6rKMn49v02dzaHfOzCHC8tV9gcBNzaHFIrmNxYqLDaV0EfQ9NYqjqcrbm8uzZgvR9wbaFEexQzDGLeWOnxkbNVLjYKhxoTKSVfu91iYxBycc7F0HWuNAt0/YSeF6PrAg1YqjpkwJ3NIWkmkVLy/ro6l718tsIrZ6oEcUqYZFQcAyEEYZKiCYF5SJGVvRCnGb/y7gZbw4gfvNbAtQziNMPSNXp+jKlrDIOYTEqEEJRsk0bR4nsPuwgBHz9f537b435LBTLHe9c0RSN++mNn+e9/7S5/7u+8zesX5zg/V6AfxPylL9/if/jaPQZBghDwL37xKn/yx184sfX0/tqAbz3ocKbq8JGzVbw4o2BorA4CbENnGMQ4ps65eoH1foBr6ry3PuB+2+fqfBFL1/DjFD9W+5P7AeEkm9bp66EQ4r8Gfgz480IIm+llYx0Kt7dGhHFGwda5Oq82+rceDVjp+PzCW2u0hiGaBisdj4prU+kZzBVt4iSjH6iotmvqBHHKg47HSsdnseywULE5P/f0RvUshEnGo65PaxRxZ2NA24upOAPubI1yx8imUTLZGkTMFW1qrsW1xRJxmnFna4SUyqhfaDz/s6cJKSW3NoeEcUa9aCKEoD2MEAKuzhfxwlRlgglJKiWOoeOaOl6kgmudUUSQpARRRqNk4YcJ76wPSRLJdx92mC86bPRDLs+XFMnmlPDGwz7vrKpDgmMavO6aexpgdasg6fkxLy1X+NX3t1jrBjzseZRtk7VegB8nzBVs5ssOZ+suG/2QOE35xt0O5+r7j5Efpzxoq0BUaxjxqUt1bm95k3ZebBS4uTHgW/e61AomW4OAR92Q1jDiXtuj9IrJt+91+I07HdJMYmjwEx9ZnrojdK81YrXn0/MTKgWTR10fL0ppj2IsQ2OtH/JrNzdBCm5velyYK/Ct+12klCRpxlLF5VfebdH3Y9peRKNkM1+eTgDjYdenM4rRNHhhsXwgxbI4zXh7dcBbj/q8szYkyVJubw641CzxsOezOQzZ6EfoGnzppQVKUwj8dL2IB20fgEvNwoGcqHdWB7yxMuCd1T5xKnlvY8iVZonL60Paw4jWKEbX4IduzJ+KqpBj6vxPX7/Lo17Io37IH/ufvsN/9898+kSePQgSbm0OWesHxFnGmarL1lDdot3aGgHK9n/nQZe6a/Go4xHEGXe2PObLNpYh0DWNX31PzcuuFzNfdqZKxtkahtxvK0cVAUVbo++ry42ibTAME7630mG1G1J1TV5cKnOvPcLUdNb6AXNFm6/eavGdB12iOMPQBJ+/vjAVwYab60Pu5P1UsHSKjsGv3dyiM4q53/L4PR8/t8Muvrs64O3VPu9vDDhXL9AZxTSKFrWCxTfutvmldzdBQpgoldNMSu5sDXlxqcJ6L6TmWs90IKWU9L2Y+1serWHErc0RVddgvmTjWgZ3W0OGQUqSZXzxhXkuNoqcrxe4uTEkSlIGQUKQZKz3fYqWyd3WiPmSQ9k1eHHpYLbhWUhSSZxINvse76yp29u7mx7VoknrnQBdqAB5axTQ9VKkhAcVj42+mpvdUcT6IGSjH7JccyhaBhcbxSO368k2rvcDvnmvw2ovUEqjRZOiqTNXtKm4BpkEgcC1NL5wfQGAnhdPbJSU8tSJaTcHIcPcB6u45oSo+l5rxDtrfXpewq3NQb4XRYRxRsU18aOU3/uJcxQsg9VeQBhntEcRhq6hC0GUZJypuZPnrPYCFSzxYoq2ztYwousdPHv5bstjrRvwqBdQMNW6Xh+ErOR9+c20janr3Fof8qjns1SxKTkmhq6haVC0DBbKDt9/2OXXbraI04wgzlj6lHvkw0NrGLExVBllcZYxVzTpegkQIYF7LY+3HvUxNEHLi3nQHtEZJby3rlN+zeKrt7d4Y6WPZWjYls7nr80fui1BnPLOqhovUxd8636Hb9xts9GPWM1txIO2x1zRxrV0miWLziie+L6Nok0Qp3S8iG8/6OIFKWkqaZbtqZGYj8KEb9zrkmWSr9/e5J2NEY6ucbmxxj/9+StP/f7NjQG3NnM7ausYQuONlR5dL8aPUmpFk+aU15Efp9zZHPHmoz5RmtHxIrwwIUozmiWL1jBGosjpX1yqUC0YIAVV1zz1c8MYW6OQlbbHo26ArgnKjk57pNZ60dKJkozv3O+w2g2YLzt89FyFt1YHBFFKz0v4wo0mv/L+Jm+s9BAIyrbFZ681jrXNDzse//CdDUZBSmuUsFCy+M6DLu+uDrBNjdYw4o2VPq1hyELF5hMX6+ia4J21AVLC26t9lmsub632J+OzULEPdWmy2vX5zbsdwijl67e2+NTlJqtdHwms9QIymVEtWDzs+diGzkZf2cEky9gaRli6xjBIiBJ1wSclNEoWRcvgfttDCLi2UJpq8OKd1T5fu93Gi1JaXsgPXGqo/x6GgCDNMvpBzEY/ZLHicH2pzErXY72nMlDrroeUEi9KSWTGtx90WK66XG4Wp6bGqGmC//QffY3f+xd+jZ/62a/wA5fn+PrtFv0g4Sc/uszv+ugy//DtDf6rL9+i5Bj88R++NpXn7ocgTlUAvzXindU+HS/mUqPIlx/1KJgGD7sjwkRi6hqvnKmwUHa41/JY6Xh0RjH3NMHVhRJ9PyGTcpII0SxbLFfdZzfgFDGtk/8fBH4C+I+llF0hxDLwJ6f02c8NKeWkfGJ7qmjR1tF1qLkGwzDG0ARnqi6OZbBUVZLRuq4O90KApoEXp2QSwjgjSjO86HBp47omcEydiq1TL5rEqZKqTTMwNEEQJ5SsAl1dRWZLztOGQXL6aXlJJglj1ad+lE4OHVKqlMiLzSK9IKJgGpObMsdUjqFrabRHyoG2TY0kk5PDlhBQySVZi5aOqU83yFKxDQxdIIVQ82CfiLepayRpim1opJkkzdTNvG1oIMCxNRA6pqE2/aWKy7l6yChMyA4wRo6hA5L5skO1YHJhrsDGMGIYJMwVTVxz/P4SXROEiWR8thJCzZeyo6NrAiHUAXPaQSkAy9CpOOoQemmuwHo/5G7Lo2jr1AoWHS8mijMKloFEBSINTRBnylgWHdVHoIK8tjm9WHWcqn7OMtRzD/A3uhCUHYMzNZe7WyPCRMfNbxNtQ6fnq0NJmsEwSKYSmIq22Z9xm5+FqmswX7bywG2Gbam54No6vfzAlmYqSHMagalmyeZys8Tdlo9ATD3zYz+4pk6aSRYrNstVlxuLJX79VotMQr1gESYptiFAgmloDMKEom0iBKSorBbX2jYvDQ17yjdIY2fp/FyBc3MO9YLFdx/00HVBo2iRpBKZ231TE3hxiqFrpHnWja4JyraJIQTSFNiGsl3TQMEyEAJ0jacCXaauEybZjsCURKJpAsvUyXJ7Pf65JjQMoWyirWvUCzYCwYW5AqauYRkaxkHskgDH0mhoJoMwZrlqc67mEiQZuqbG0dBTorzf4lTtxWmm2ibzcS3aKttC1wTGlMV1xrZWSknZMSnaJgtVh/mShSYEW8MIVZGkIaXyEUxNy/8GCrZBMUzQhLL/x7FmdF3gmuqSqx9EVBwT19IZRSmGpmHqgjgFTQhqzu524/Q9DBWwGV862NuCmnEqsU0dPw5pFG0cU/XnIIhJswzL0NHyfb1g6YRxhm1ok3d68t3GPoamqb1h/KyDXoZ7UYJjaVRck+WKw5V5lcGja4I0kyxVHDYGIUJTz5L5Z0sJtq5PSkALloFtasRpRsU1DrZmnoFqwUQXgnNzLudqLrWCSc8fYBvKBj3s+qRSUjA0kJLtFR+2oVG2jdxn1bCOGtiVas4JlLpsxTGoFSz8vAqgXrIYBAlzRZsoyXBMXfUTMveVFAqWuuSM4gzb0nbMjaNDYBuCYZhRL9qUrABD06jukUFYyG2nsuFqT7HyPaVkG1PN5pi0UIyV6Ey8KCHNDDTx2K8xNYHI506UpsSJ8iO9eHbK3Qumjq5pnK27nJtzmStatEdddE0wX7bZGIT5mUjDNASDKMXQBJkEXVfzqGgZGJqGoYNjHn/myrgaxAtTCpaGk59PMqn2BS9KcQwNQ9NIM7B0tX4Kts4oSKkXLS7OFVjtBQx8FTx0Dmn/S46JbWqEUTrJYrRNjUGgzmKjUGUNO6aOAGxDR9PAMa2JTTg/VyCTknEFbZLKyRwZJ0BMMzBVyYPxkFLP/dUkVWeEOFW2R6LOXbpQmdAX5tRlP0CtqDKoolTSGUU4hq7aGadTC0wBXJ0v8b//8c/x5//eO9zaHPIjLy7wz33hCh85WwXgx19ZYhQl/Od//31++8tLXFs4embrflCBW3WOdk118ZVJMPM1nmVych4U+e5Wc01GgYVtary8XGW+ZDMIYvp+MvFzDxvDOElMZVSllJ4QYgP4vBBiBbgIvD+Nzz4MhBBcaBToeTFzRYs0k3S9iEuNIlXX5FMX67RHESVLp1l2GEUJmtAou8q4Fy0D11LO43xJZVHdWCrhmvqhSypKtsHv/8RZsjwDYnPoc65WZBjGDMKUK/MFipbJlYUiddeklmtDmrrGpWYRL0qYO4FDaJxm+6ZymrpKVR0EMQsVB0vXMPSQQp4ieLlZ5OKcS5SqIMXWMEQT6vCwOQj55MU6ZcdgaxhSsk2Wqg4l26Tnx/z4K4tsDSOWKvbUHfePnq9xbs5BCEHNtfYN5FxuFhlFCQVTx9A1XrtQo2gNKDsVLEPnXE2VH5q64NqCKgN69VwVP0oZbuO8STO5a+mlpgk+dXmORx0fy9CoFS1++MY8oyih6qq++NSlOZaqDuu9kI9fqKMJwUrH41zdoV60+MzVJvMlhxTJlebhDeR+4319oaSCXkKwWHVZrrlcmS9SsAziLOPcnMsf/sGLvPlowLm6y43FMnNFVUZzeb6IqWv84c9cZLXvc3GuNFWJ5jM1lVlXtI0DzxVNE3zkbJWrC0V+6iMLrHR9pBBYmsalpioR+v5qj6JlsDil0qlm0SZJJZoQ1A8oAX99sczZuQK/85VF7rQ8dF0dZM7UCpRdk7ce9XFMfcft/0njv/7DP8Cf+VvfJQgz/rkfvkpnFLHW97nSLB050CNRAYDd0qUdS+fz1+dpDwMWqi4Vx+RHX1pAAgXToOtFfPpyk+WKw6NewGsXaiAF5+uqnGm+bCOE4J/8gQusD0IuNoqHzszca33PFW0+d61B349ZrLqUbINmyVaOq5QsVuAPvn6ebzzooAvB1fkSWZqRCVgsOZi6xg+9MM/5ORcEnK8XppZef3WhSL1oogmoF22klPzQjSarXVV2+GRfvLRcwTQ0PnGxRsU2KNjmJKD12atzKjM2kbx+aY6CbU7GLYhTLF3b85CfZSoj1THVYfNMtQBIri6U8eOUIE4p20Z+SZDx1voAL0w4W3U5Vy/gmOqCJ0kl1+dLiDwYECVZfhhTZfzTyJYC5SS+sFgiXSix1gs4V3epF1TGcJpJ3nzYwzY1Pnquxq2NIT0/5uUzFa4vlklSSbNssTkIee1CnbmiNVWHegxDE3zheoPXzlW4uTUiSTJcy6DrR8SJ5PpiCcfS6XsqK3uMasHknHTJpJyJUr560aKQXx6Nx8+PUsqOwY35MjcWymwO1P7bLNm8vz5EIPjYhdrkQHWuXqBZUnNwGCWEcUbjiXc7W3OpuCaOofb5ZsmmYOmTNb3X+h7jXK1AaxRyuan8SlC+54+9tECSScqOQdHyMHWNF5ZK1As2ixWHfhAjhFCHdF3gGDpnaw5+knGpUXiuObvX/l1xTH7oepPWKKJesKgVTJZrLn6Y4tg6X3phgSvNAo96PufnCrx2oc6tzSHn8j75sZeXuLFYRtcFF+eOltmna4KSo0qOdF3jpaUyHz1XpTMMyYD5skvVNUkySb1o4Zg6LyyVyfILZj9OaRRtBNAo2kRpylzBwpyij+iYGq+eq7FUcfCihC+/vUGYZvzQteauv391QVEuCCFYyPeU3/Wxs/S8mFrRPBbZ+YJp8Okrdcq2yl7bHAa0hxFhCstVm5JlsjkK0cfnHz9mteszXzlZP2G//btRsvnBqw2GYcJS1aFgGdRcC0MT6LpASvgDnzjDdx/20DWNT5yvs9EMCJKMq/Mqk+fHX1nk6kIJx9CmnnW6G87UC/wTub9wpVGkaJt85kqTxaqLpQkWqw7fMjqcazi8fmGOKJMYusaXXlhgFCZUXLVPfORMBS9KWa66+54/pJQke3ADVVyTf+z183T9WJVyRQkX5wr0/YStYUi9YOLHKf0gZqFkc76uAkC1gkWSSSxdoGnKXpytu/hxynzJRghVsqhrYmLLnoU4zQ4URL/YLPJPffYiW8OQ843H5WVBnBKnGTXXYmMQ0PZCslS16/xcYXLWHl8Qv3a+RpykrPZChGAS5NoPz8v/eG2hxH/zh1/f9WdCCP7sT3+EX373l/jP/sF7/IV//BPP9dnPC1PX+N2vneHV81Uqtkk9Lze/2CiwMQj4wvUGd1qqmurFxQobg4BS2eLFpTJxXgat3qlMlmVsjaK85PxwmZwHHe9pYCrWUwjx7wCvA58A/hTgAg+EEP8S8GellL97Gs95HlScxyng91sePV/xEry71mNzGPG5aw1eObuArgkq+QTveTG3O6oOd1z+ZxkqMLQXel7M5jCg4pr78mkEccqdLQ/b1DB0jSwT/Oa9NkIoh1cTGut5hNgxdWrb/rZkG1Mta9sLYZLxzuqA+bLNUnXvd5kv7yzJOltzaY8i3ljpcnNjiG3qfPryHIausTmIWO35dP2I+ZLNhUaRimPuyPRolOxJ+cDzcBlkmWSl4xNnGWdr+6e/qxuZg23QuiZ2BFFag4hH3YC31/pcXyiTZurWPIgztkYhC2WVbacOS+q9/Djl7dX+JJDzJGxDp2gbrPdDkkxysVHEznS+drtFz49ZqroINM7WCwyCmGsLZaSU3N4cstIJuDJf4lrObXBYPGu8DV1juepya3PIO2t95YAXLG5tDHlrrU+zaFN2jUnpYphmXG4Wudfy+M27bc7WXM7XCzQPwDPzvLAN/VAltZah8ZWbbb53v48XJyxWFB+AF2cs10w+9xwlC2kmedD2yPYhb9U08dwBJEPX+NbNLb55t0OQqNrwy40iYSo555r84B7O8l7Y6AfHQrD/7/z0xwAI45T/6ss3+eqtFvWCyX/0+z9KpXj4MoYgSrm5MeTqfGlXBy5MUvxY0vNiKnn2yoO2xzc2O/m60kFonKsXGQYppq44w6JUcRktVBwWqi4LR0hnftb61oTAizI2+gHFZhFD03hvY8Bq12ep6lK0deaLY8dLBVDeX++z2g24ulBioexwbfFo63s3CCF2lGoFccYgULevVfdpR8/QNV5cqky+7owi3lrt8aDtUS9YlG0Tu6gy+Qq2OTmMmLqmSr5zrpDqE0HZh12frhcjhMpO/OrtLc7UXK7MlyYlMO287D3NJBpqD729NaJZtrmbO2SXmkXcbXvjeNodhRNnNwzDhL/7xhrXFoq8vFydzMvWMORua0SUZlRci64Xs9L1eNgJGAQJP/rSwuQgMC2esL0QJhlvPhrgRQkFy8ALUzbbI9b6IedqLnYeBFyPJQ+7Aalkso/XZyAgFcQpKx0f29A4V1fcUv1ACYQ86gRIJAVLx49TWsMIQ9N4+YzGZ681dw3OjP2BimPCLl0vhHjqsmS8lp+1vkEF9KoFFYy9vTXCC1PO1BwksDUMiVtqfwiTjCvzRa7n67nimmSZ5Jv3OgzDhI+dr3LxEJdLz9q/HUsn7GU86vl5RpbkdmvE5iDgSrPEfNkhzZSdWtLVDfubj3q8tzHk5eUK17et+6PA1LWcR26EELA5VJxC99sB/SBhuZbwUx89syMIOB7PYZDQHkVkmeLNOa55mmQqg8S1dCquyfogYqXrkUjJH/38lV2DhUtVlzhV7yWl5EKjwJn68QWBhFCXHisdn1sbgzwTUnBjsYRjGjTLNqP8sC+lpDOKaQ1j1vohr5zJTiSIA8/evwu2wcYg5H7b4+p8ibJjcL/l8eZqn7miRcnWmS+pfvSTlPmKw6OOxxsPe8yXbM7VXV5ans7cPCgWqy6LVZcsk9xveawPFF9bs+ISxBn1grKjq/1wwhV8Zb7I1fkSQgg2BgGbg4iyY+xbkq+oUkb4+2S1VArW5My6mH9vrmTlPMlqT3pvY8j3HvRYrjvMlxxKjsnWIOQ7D7pkUqrLz7rL2eLj+fo882NzELLWCw5cBbFUc1mqKa67b9xTFCSfvFib8KRWCybffZBypzui7cX0gwRDF4oXUCgeTE0IrswXD1yWGsQptzaH7OOePzeaJZs/8rnL/Je/dJM/8aXBhF/uuOBaBi8vq4ytJM1Y6Xis90PO1h3mivbkbPWd+13ubI2wDI1XzpQJE0lrFHFxrsAo5wY2dY2r88VDXdY973gfFdOKdvxe4OPACHgZ+DJQllJ+RwhxaUrPODTGB8fWMOCt1QFhkvHWoz6vna/vCJAMwhgpVZqhH6cHSsdd6wfqVidS6eV73bBJqQ6yfU+lct5vewzDhEEYUzB1NKFhmxoCwUbOPTRXtE40K2LM4D8I4n0DU7thtafUXx50fM7XC9xve1zKDV17FBEmGV0vIYjTiTMopSIT96KEc7WnDy/PwiBMJuVXW8PwmdxOY9xveXnJiHugG+KtnK+hPVLBzY1BiKmrzWUQJCzsZpukGvNhmOzp2LZzhYm+n5BmkrYXEcQZfpThBQmWqaFrOlk+dx51A+63fTpexPog4IdvLBwp5fYg4z0ME5K8BK3vKxLvjheRJJKuH00yqgBkBhtDZcBWOqrWeRAkk1TYk4YfpdxtjTA0waWmyuAaBTGr3ZBhmLA5CtRtkqvKCtJMPlfJVNeLGARHT5N/0PbyYKRDs2TjRQmr3YBhqEid1W2+amOSyecqc03SbBLwPi5kUvJ+ntEyCBL+jzce8Y9+6uKRsnyCOCPOMmzt6fndGak13/ViztVlbltiokSVWhcslf2hCUHPj9E1wYO2Rz9IeHGpjJQcPXvvGeu7k3PVjMKUKM1ojUKCKMWPMpW1sG1vyaQilF9pB7RyYvTPXm0c2J4dBcMwmThuozB5ZibP5jBUPAZtHy9M81LkIpncOY8VP6MqY+360VO2fbwnyzyN348yoiTbccP5qOvzsKM47tYHAbYuWKy4OaeGmLT5JC5tsvzg2hpFRGmGk8/LzWFIlAd6un7M1jBgpRMw8BMgwItSSs7JOHNje97zYwqWwYOuRxhl3NlUNvDWxpBXclscJinv5aTCl5qFEy3H3QubgxA/ShVHTy48sjVQ/bveV06xF6XEieIbMbRs4qs9aWvCJOXulodEcqlRfP598gD79+NnZXihOkh2PMWNlKQqQ3w8z8fBgnHgdmMQ5pdqKf/grYCPna9zsVF4rnY+a/8ehemOvVvXBF0vIknJebUev1cmJa3hYz7EO+YIL0rp+TGLFedI3JCZlCSpIorvjEJafswwUPxSzaJNx4sI4mRXMY+NQTjpy4WyfSyUBcCO8RbASldxE97aGO1a3hrEyrfo+3FeJqvR9WIWK8e3jiTwG3dadL2YtX5AyTYYBimLVUeV6Gpiws3WGkZIJKMowdS1qfgpz4P99u++r85ZcSIZhQmWodH11f7d9eIJ9QeoMVnvBaz2Qt5bH9AsWWTUj1QlcBSs9QO+9aDDWtefBN62nyHSLGMQxARxxihU/If1ojXhrhsEyb5VCmkm9w1KbUeSZupSJJFcbBQm63kUJgz8BD9J6YximkVHcT+2RgSx4jquF6ynLuCfB4P8onNM63IQPGh7vPGwy9Ywomyb3NnydpwNUpkpf0BKNgcBzZIqhc6kouzIUDbkoHvVKEzIjkGA8I9+4TL/7Vdu89/92h3+g9//0ek/YBeEScq37nV5f2MwKWFuFO1J/CLJX1RKydYwwjYUX9swUqT4UqqMuFGUUnWf3x85zHgfBdPy6CIppRRCSCllTwhxoDcXQvwrwO+TUn5+2/fOAP8j6o7r35ZS/oOjNu5sXWX0uGaVm5tDWsOI+eLT5HPNkk0QZ5Ma4YOg5Bi0h5FKPd9n09SEwDY1rsyrtMtXz1Z581GfgmUwX1Yp3lXXnKhUSKk2l+Wqc2IKAIauOAUOc7Nbtk3FF1AwsQ3BuXqBetEilRJNqMVSsHSaxZ239eONtO09fXh5FlxTn/A5lA/IBxQl2SSY1RqGBwpMvbBUpjOKsHWd+bLFJy7USTK1qS7s4bBpmuKy2i/dtFmy2eiHqvZbE1QcpQ5k6oIrCyUqrsEgUOV9ev55mVTlBZamT0phDouDjLe64VG187WCiaVr1AomcSKpFgyuL5To+orro1owibNscigt2gZhnD2zPPS40PEiklQ5xcPcQSjYBpfni/hxwpm6w1LF4UxNOd7Pe5OgUvmP1sYkzSZOS3sU0SzZuKbOhUYBL044U1VcDOM2Pm8/6ppSAzyos3MYuJbBT766zF//6j1KjsGZijvp78NAE4JGydrTARkrp47FF5SKoiq7tk2VZWhogmGu2vjWox5JKimYOoMg5uwUbrWftb6bJYtHXXV4sA11C9/1Ys7UVYbecsWhk9uhesEkSTMKls5KkjJv2XnQ7cjNfCbqBXPidBxkvGquSdU1aFtKSfbl5QpF26Dqmry3PgTUvnV9oUTJMQjidFcbe6bmYhsRrqVj6IKLjQIX5twdZQRlx6Bg6XRGMRdqBYZhTLNkcalZZHMYkUl5oHT+acDUNUqOztmau4PbpurmttAxqbgmrqVxvu6ygs/1xUMERI4AXVP8Rq+erYKAj5+r885an2bZouIYLFaVj3G27rLW87FSjSjJ6PsJ8+XTD0yVbIOuF+f7kmpP1TUZhSnXF4sEsaTsGmhA148p20o5eTdfre8nE57R/iH2yYPs32PYhkbVNRmGCc2SlRP7qoCfoQv8KOX83E4VroqreKX6g4iFsqPGIXi+dj5r/35y77YNjSvzJdZ7AQsVxePW9iNMTaPsKN7TgqUTJim13F6B2peOEpgalwfpOtimYGMYUndtqraFZao2uebu/rYSf4mouMbxBaXYOd4C+Ni5Kre3Rnz60tyue27Pj4kTiS40giTFNjXKzvEGyLNMPS/NYKniUHYMrIZOwVScVmrMlM9TK1o0yzZ6Xmq8+JwXzUfBs/bvekFxiumaoGQbaEJQsHSWqw4V1+Rys6iIrrOMZtHOfV4VpNKEIDqhw/FuCOIUkfPpClT750uKW3HMCeRaHq4V4lo6BVv1QbNks9YLFBfYPj6coWvMl+3JnrwfRvlFFyhfdxyYWq46LFVt5ooWixV1tixYBhfmCnRGIc2yRdk5WhXOQq6OWDjgZ8S5n1t1LB60faquSfMJm/LSUnXiL4Gy4VXXzPnxlODP86yxqmvSD5J9KxoOg1rB4vd+/Cw/9+2H/Knf8eKJ8LwOggRdKD67MEkp2jvV9V45U51k45VsJVRl6poqFy+KSYD6sGP+vON9VEzrKf9rrsqXCiH+G+Aa8J8IIX4W+PXd/iBX7vvYLj/6U8C/CXwP+DvAkQNTpq6xWHGYK1r87o+dxY9TbiyWnsqIckz9uQnNztZc5kv2M7MYbFPjRp7KXcy5lT5+oY6uC3Qhtm26JplUGUC1gnliQSlQ/XT9kOUjFxoFFqs2n7o0pzaQ/H2aJZtmyZ5wf2x/H9vQKNjq0HxQ/p3tGEv1ZlIe+MBuGdok4HNQPo3zcwXO1lziLMt5U549JmMncD+M+2aMsmPy6tnqhOQS2BE8vbZQYrFicy+XpT1oLfheOMh4m7rGtSdSwq4tlLnSlJMx3n6oaZbsXAXGZXMQUSvsrX543KgVlHOtOC5UPwoh+MGrTT5zuZEHTcW+AeX94Jg6Ly1XkEfY+AxdyzfQeHIIEkLwuWtNPnulMZHQPWwbhRBcnS8emHj9sPjJj53l01fneNAKKNjGpL8PA9vU9s0UfbKUWAjBtYUSWSZ3HF7GjtprF2pUt5Syy9m6OxVH4lnru1awdjyn4pi8vFzZsba3r/2FisMXblhcXSg+l206Kgz92XZqOxYqDj9SWuRzVzOEYAef2HgezxUVh9/lfUrgx1yFoC4YPnHx6SjchbkCS1WHvh+z1gtwTJ0rzSK6rk29VO9ZcC2d3/by0lPfX666LObKrI+6PiXb4BMX6hMS5+M8TD8Jy9B4+czjEpflqsvVhRICle1l5WM1V7QoWDp3tlRpVcU9GWfzWagXLUqOscMfapRs6gU1n5JcSOIgFwgV16A1Upw1lUPskwfZv8cYc5qOUSuowMF+Y1+wDH7bS4sMgpiNYXioLM5n7d+77d03Fstc21ZitZ1+Yq5o8SMvzpNmEtcyJhmQ9eLR19q4f9JMcqamlFTLjsFy1cXQxJ59NV5fx72Onhzvf+oHL+FF2Z77WNU1aY8iTEPnlUYZ29CP3VfXNMF8xabsGFxuFinn8zpKskkfvrBY3uF/v3jCJW/w7P3btfSnSqCuL5Z37N/bD93LVZe6a7FYcQji7FQVxRYqDpfnE64tFLncLE0O6tv9kavzJS43ijv2+rmideA9fanqHKhipWjpOKZGlGY7fA3T0Pl07t9u973HarZCKCGJoxD0l2zjuc6KZu7nCgE/+dFlGkUL94nEENfSubH4eL5unw+HKZkzdG1fH+Qo+MOfvcT//BsP+F9+8wH/whevHssztqPsGFQKBq+eq3Ku5lB2rR1nArWmHvddLe9rkfM0vnjEsuznHe+j4sgeiVAr738BXgQ84LPACvA7gJ8H/twef/pHgb8G/Nknvv9R4F/OM7AGQoiylHJw1HaCuuUo2gaXmtO9yTzMAhdC4OTyqA9zDoCxk3BQwzRrGEe6d9ufx30Up5mqVTXUTd/V5zgU7QZdE2hSlRJmUjmEzzrEH6bWXtPErmnJ08Z+DpgQgopr8cqyyVo/oDWKDvS+x4H92mnqGmdqBYq2Sc+LGZ5Quc2TKFgGixUbLy/T277kNU2gcfR+U31/tM8ZHwyL9s75Na02CiEmikHHiWbJpVl67DSOwoTWMKLqms+dDXkY7DUnXcuYHNj9KOV+y6PsGCfOq/Osw5XiMyzRHkWMQlX2PI19ahgmtIcqI/WowWxQ7+HswpMxbUnysVrmfFln/gg8dVLKnMsvY6niTI0QfYxxOcf44BGnGa1RNNnjThPjfdeLEtZaHhVXKaKNg+qzht0uMcbr5nnGzTb0p5xxL0om2TfHfcv9rLUexCmbg5CC9XQ7jxv7tc3aluVyfq6APVBy81GSTUVpTtcES1WXpecILjzZ3ijJJqWd+/G6HgWapu1bgvu86yfLJGv9AHh20HIvCJhcbm/H9nERQuzqf59Enx0V+/WJkx+8B0FMZxQjtCmU4z8n/CilPYw4n1eD7IeTuJAwnghMbw1VKfRCLh61m+84btdJ+INPYuwfDIJYXVoX5b5jeJKXOs+Ll5Yr/MDlOf76V+/xz37+8tR9iidhGzrLVZeeF2MY+1dnwWz33UFw5N6UKl3gbwK/CLwqpfyMlPIFKeWnpJT/ppQyePJvhBAm8EUp5S/u8pG6fJyC0AN2LWgQQvzzQohvCCG+sbm5+cx2BnHKStvnUVf9/7QRJRnDMGGtF9D1YtZ7IV40O7Kux4X1fv6+/XCSrhrE6ZHevevFbA0i1roBD9qjaTV1JpGkGQ86HpuDkPYwojU6Xv6gw2IQxNzeVOpUKx3vVNoQJRmPumq+Pbnm/Uipgpw2kjTjQdun58c87OxsY5jsVHn8oGGlo97r9taQgT998vXD4ObGgK2cxylOT68kYC90RhF3Nkd0vZiHU9qnxpkPD9rPvw6llAyCeJKtcho4ahv6viKj7YxiNofHay/jNOP25pDOKNqxx50WvCiZkIorW+w/t1LRaSLN1NhPo82z1AervYDOKOLmxpBhOBu2EXauNS9KWO+Fub/2lBs/VQRxeuBy84kP2VNE0yeFo/iprVFEa6j+P+YWnUZ7Zr3PpokgTnlvTfmU91sn71M+7Kp99ObGkOEp23V4bBuzTBLEKau5r7vWO961ehRkmeSd1T7tUXQof2SW8M987hIPuz6/8Nb6sT9LSiWk0fEi3lntn6o/dhKYVhrD11CKfJ4Qoiql7D3j9/8Q8Df2+Nl2S1sBurv9kpTyLwN/GeD1119/yssYBDFhklGydDaHEZYheNTzCGP1q9vTdr0oIUwUx8eTddFSSjo574GhiZyY03pmxDJJMzQheNTzn1IFiJKM7z/sESbZpGZW08DI1XviJOVe26PimDtuXMMk5UHbo+yYNIrWnlHaLJMMgoQky3KSS/25bqimiSyTbA4DSrZJcVI/rNSYBPCo63FzY8jGIORyo8hLZyo86gQIITk/V9hxg7cbpFTkp4NABbvCxKZoGySZxDYUKWUm1XjYhlJENHUNLU9z7AexkvgtmERJxiBImC/bxyLnfVQkacY373cI4ww/Sifp0j0vpuIadLyItV6Aa+p5doRFGKdI5A5i0fYoon+MgYL31ga0RhEdT2V0FfLMKdfSkVLyqOuTSqmkggsmtqFPiJfH6yqIU9Z6waRG/3mQZpL2MMI2tQkH2fZbxbFjE+e8Po2STdFW2YtBnOKaqhSt40UULcXfoAlFxBrEKUtVZypkwV0vUrwROqQpOz4zSjLeXx+SZhIhVNnXXMEiSJRzbBuq3Z1RhDbhalAO8DBIWKg8zaF30rANjWGQcL894h++tYaUkn/5R69hWSevAJakGTc3htxve8SpVDwWYYKha8Spuk3WNUGtYNEoWkSJ4kYbS4KDsmW72fNpIMsktzaHbA0jtoYhy1UH29DoB0p5ME0z7rY84kzJKxdtpbAWJoq/bfv83r6+pZSs9Ty+96DHxUaRawulHVlYSZrR9WOK1u5qQSsdf8L788JiecdN3ChU/A3lY765ftD2aY9C4jTjY+drz9wTYOe+bRkaQiiOEtvQ6fsRoyil5lpKJSzPXNmuVhjFKR1fySsftBQ5yyTvrQ241/YQqIwTXQhawxDb1CdZo2km6XiKc9HUBH6c0fUi3JxvEqAfxBiaoGAZJGmGZPdsItjbnreGIe+tDzF1MfEzxntfkmbca3sUrad9gyyTrPd9wkTuaUeklPT9RKkMa4LVXgAC5ksWzh58QYfBrY0hm0NVxnmm5qIJwTBU/D5XF0qTPgnilGGQMIoUmfJu5T62oRHGGYYuOK0L5c4oQhNqTm4Ow5xcXWeuYHK35XGxWcA1jYkvGmcZel6OAUwUv46Lz+jdNRW4nytauaKY6tso0ZSMfSq51x6RSTnJvHFNnVRKDO2xHXrW/h2nGaMwoeyYeFHC3S11SL3QKOyZ1TnOOup6EZlU2VdZpoiS00xSckxKtjEhhQeIcr9vbMO7XkScZgRxphRzD8jhOgxivv+wP1HpPkhZVmekLg5dcycfzJNzr5sHqmoFiyAn8tc1QZJkvLXWxzF0rj5BMTIME+5sqkvYC3OPhYO29+v2M0qWSbpehBDgRQ4FS4nqjPk/x7/b9aKJWqomBPNle0fb+74KEp80zcjmIOC99SE9XxFnL1Rsel6MY2mYmsbNjSFxmrFQcSjZBqYuciEUfbJ2tu/fUZrxoO1xpuZO5tEoSnBMnSBOaQ1Den7Cci5IMwgSBIpcfnMYECYpV+ZLJypOlaQZ91oeUkKjaPHl99YxdcWpqYjYFUn4eA32g5ggSpkv28c6Vkkmubs1YrHi4Fo6aSYn82oUJkRpxr2tEQhVArs5VH7vi8sV+kFMkkrqJzyfpoHf9vIS5+dc/spX7vA7X10+8ueN+3G85wZxClJxCSql8xZFU6fsmtzaHHFjscQgTEjTk1+Px41p7W4/AvwxwAc2hRBDICMPPkkp/8QTv/8C8JoQ4o8BrwghfkZK+bP5z74nhPgsimOqIqXsP29jel7Ml9/bIMtJHxXHkQpejKKUc3OPgz1+lPL++lAFfFyDF5cqLG4LBm0OQtb7yilOM4lj6ng5meVeWOl4dEbxRBnqSbRGAW+v9nFMncvNIjeWyli6RteP2OiH3MuVFoQGP3Jjnmqedv7mox73tny6XsjLZ6osV91dyyfGUtx3WkOSVCIQfP5640jlEIfF1+60WO8pouLPXm3kBM6CIElZ6XhsDiO+ervF1iDia7dbvLRUwTF1ul7MaxdqfOJCfV951Yddn85IbZYLFQsp4XsrPfp+QhAnXGgoIsUgTnjU9VmquIqgueZydb7E/dzQd0bRZGEnWfYUN8NpYpQr47VGYR60g0uNAvNli6/daqEJRdy50gmIknRSW120dNb6IXGW8YnzNS40iiRp9lRmzjQQJilemBKmKqg6DBIWKzZnajY310d870GPgqWRSiW369o6VUcRGfeDiNYgplm2+PTlBpahsdoLGAbJodRk3nrU4+bGCEMXfPFGE03TKG6bQx0v4tbWkM1eyHLNoR9ECDTubI3w45SzNZelqo2UgkEQU5j8reJ60kS47/o/CDb6Ad9d6TEKEy43C1yZL+0odwzjlAcdj41BgCk0biyVudca0R5FrHR8ztQcbiyWiRJF7C40VQceJxmGrpFk8rn58qaNC3MFbEPjq7c2+N+/9YggTnnjYZ+/+kd+4NhTn8cY3yq38n6L04yFskPR0fjKzRZhkhJECRvDiCjJ+MjZirILbY9RqLgIXz6jlGO6fjxRBJwW4lQJQPSCmPttpWK5XFXEtu+u93lnrc+r56qsdHy+e7+LY2rUChZX5kt4cUx7mDBXNHlpuUKjZD+1vrtexM9/f503V/vUXJOlqs1Ly1VWuv6EL8+PUoRQ6elPXriEibonSlKp9jMeH2DefNjHNjWuLZSOrTSq58V0vYhHPZ8wlhTt0Q4epd3QHkW88bBLEGUsVx2uLpQUB5mUPOz4fOt+By9MlahA1SWTj1XKxgeTr7y/xWovwNTFM3laklRdaFiG4EHHI4wzdA2uLRRpj2LubI7YHIa8sFTmxaVyrjQYs9ZXmTvdUUylYHC+XqRo64zCdHLrfabmqKAPcLFReCoIuJc996KEd9f6rPVCNE3wmctzFB0Dx1B27tv3O/hRRsk1+MK15iQoJ6XkrUc9fvm9LRxT4xMX6nx8F/6vR72A9jDKOapMOvkNeL1ocWW+eGQemChRB+z31vrc2hrRGoXMl2yyDDZHIQslh9cGAT90Y4EoUUHn9V4AGiyUHIq28VSZyIW5AsMwwTWPnw9oN7SGIbc2RqSZ5OUzZcV7mioxlr/+1buMwoSKa/ITryyTSEnNVfyMhi64Oq8Cyo+6PkGcTVVlzYsUUbxr6tzeGhHGKnBzfaGEBtzcGHKuXkDXNN7fGPDOqlJHKzsmyzWlnBUnkrmSxUtLZRol+5n7963NIXEiKdgRtW2BqK1hgCbYNdg9zjqSUl08l2yDt1b7eFGCF2VcmCtwfs7lYdfP1T4lSEGtYHJ+rsCjrsfXb3fo+zHnGy7zJYeCqR+opPtua8SdrREIyVLFgWewQajMyRG/cbeFoWn84NUG1xZKPOx6POwEjEJ1hujk+xLAWi+YcP9cmy/yS+9t8PajASXHeKqMMkqyPKstZRTGk8DUrc0hfpjS9iKWqy4XGwUsQ2MQJgRJSpxmPOz63GuNGIUJuqbRKFncWCyjCXURESUZKx2fy80iUZpN6DYetD2+ea+DoQleu1A7dtVYKSU9PybL4NbGSAkFuQZLVYeOF/PWo41JgPat1T6WJliquVxqFBiGqlR2vmzz+qW6OlNs27/TVNL1YmxTo1m0+db9Dg/aPpYhaJZsvvugix8rBbhrC0WGYYpjalydLxIkCZuDCFBqp5Yx5k86xuBPmvHNex2+cbeDqauMy7V+SMUx8rETzBVMCrZBo2QzDBO+erOFF6Vcni/w2vnjU1KJ8wv9TPpcbBR5f2OAF6aMomQSnP3qrTaGJnh5ucLnrzcJk4xmyeKth32EgMvN4qmXvT8vdE3wR37wMn/277zFdx50ee187UifN+7HJMsoWAb3tjxao5DFss3//u0VNgYhUZzxez5+Fj9StvXmxhA/Srm8UOBM9fhVnE8K0zod/A7gCvBvo8jL/xzw7wHfzP+/A1LKf01K+eNSyp8A3pRS/mxOlA7wHwL/HxTp+b93mMZsl4kcp7yFaYYuNLJUOa7jW5UkU9K+cSrJMvlU6cz48kXm/1Pt3//5fV99hnLqd/5ymkkedQOSVBIkKfWiuuWxDI32KN90w0S1T+7867H0rxelZFLS3yOdNHnc6JxbRxBEJ5/6l2ZK3hNgGDyWJd8YhGz2I+62PCq2UofIpMxVeSKiWL2flOA/o9xq3CfjLDY/v+1QUXtJnKioc2cUE8aSjUGAHykZZT9Smw2Aa+uTzX8WpLPHGIUJtzdH3G97dLyYpfxG6HKziB+npNmYPyDE0FSgNcsU6WEvl+CVGZP0cT3fSKcJKSW3N0esdHwetD0aRaX6sVh1qBdt+vmaWuuH+XoShJG6uU7SjG7uLIxy5wmYjIvxDFGB3TBew+M5UNqW9QLqxtLWNbw4puvFtEcxmlBSqFmmsqZyQSdGUYJE2YGxJKttHr3/4kwSRClSQpBkFK2dbdR1QdE0SFM5KcOSEoIoy+W3mZQiDiO1ttJMkuUWY3j91AAA5fBJREFUw5lCG48KTRMs11wWKg5hmioZ4GHIzc2pUAY+E+MspJWOz2rXVwpejlL9EQiiJFM3yX4MUuaS7kpm3c/Hpj16XHZh55k308TdLbVu7rdGzBUsSrZyvG1TJ0khzWCjHxLmAcdRpG7UozTDC9VlyViaGp5e30KojBxdaCSJJIwzOp5y9oM421GashuJ/9maymA4V3d3BBNXOv5E8v64FB83BgH32x5hmiKAxYo92YP3Q3sUIjNyZSf1F46pMlCGoTqE+3GqJKjzd1YZy2pw/SglzjJMTeS3lvs/817bU2PY9mkU1RieqblYuo5EKeqoeaUysyUSKWU+zzKiNMszuVXWyfYys0GY5BLa7NrPu9nzIE65vTlimPsJNdek6BiUHZMkU/M7lcq2IXe+XiahH4z9l2xP0YQ0fewLWbrKSh1nKY/n4lFwe0ut22GUYusajqFUaONUMsr9nmH+nLGvYJs6Wao4Lu1d9jghBGXHPLGg+JMYRQkPuz5r/YCtYci1hdJEhXXc116QqDUpoZeXMGbZY5nucfbKtPbw8Vx50PZZHwTMl+yJDZIIRnGSZxnG9PP26HmWn64pEmU/THM7lE7Gfr/9e5x5BeTZEhaNkoWmwTBIubvl7erbjt85SpUt1DV1mZvx2HYNA+X7q6zpeNLvAL3cLzd0gR+muXjDwfoxSSVhfslxkD1AF+ryNU1VxvMwTHAtpVas2pJntG77Gy9f31GS4SfpxA6E8dOqxvWCiZ+kBGlKN3+vcb/6cZr7hnLyHADH0DE0jShJcxuo7H+SSqIkU7y3poaWK/nCznU0CJTsfJz7zseN1V7Ag7bP7a0hlqFRzzkSLzWLdHJ/dr0fIMnQAC9OMTRBlGaTDNJxKfP4XSZjl//rmrr6/eCxDzqem36eXbmaZ1kFcUajaNMoKoEfx9S401JrZ1pl93shHp9RpaQfJKSZzCtDMharDuv9gNV+wFo/yG1GNplPA/94SzfHfeqYOnGaESdykrmXoS6XwiQlk2qfLdoqAWQYJqz2Ah51gx3z9IOEP/ip85Rtg7/8K7eO/Fnb+9GLErw4UftdnODH6szqWmo9NkvKFxr7YQ/bp09PNE0cKWNKCLEA/OsoFb43gH//eTOcpJSfz//9mfzfFeBLR2nXUtXh2kIJP0545UxFLYj8ZtgyNBpFe7IhlB2Ti80CpiFwTV3dhmzDQtlG1wSmrrIl/Gh3+evtWKzYbA0jFitFqgXzCcdPYhs6VxeKGLrG+W23Do2izXo/4FMXlapPxTV33ER/9FyNoj3kynwBxzT2VEs5W3PZGoacqzXZGqlbzYXq4eV+Dws9j5Dfa484V3MnTtXY8C9UbJoVh3/8By7w5qM+nVHE5WaJDFU7fWGusOM2bTecyd+1YOl0PYOBlVArGCQZVGyDRtkmzTIWKxZr/RDH0Ci7JmXHUJKpTgkvSiblCmGS4p6gxPezkG6bPAtlO1cyNPJgps6ZWkiSSc7WHLZGEa/ogvmyQyahZOu8vz4kSjOu5OoUYwWzcSbE1NqZO1EVx6RRsrncLFIvWkgp85tCnxeXlfLKmYqTyxerQ9VCxebO5ogzNXci/b1cVdLx1iEOER85W0XT+lQcc1e570bRZqHsIJHUXIszNZVFZ5vqULVYdThbc+mMIhYrNj0/xjZ0lqo2aca+GXwHxWLZ5sXlMv0g5lKj+BRZoWPonJtzCZIUS9coOQZX5ossVh02egGVglJ5a40iGiWLUahKWM5UlXrkaZfxbccf/NRFbm0M+ca9Ll+43sQQJ3MwHB9YAeYrqhTyhaUyxTyzbHMQkaQZr56r0Bkl6JpS11msOJi6oOfHvLCNXLRoG1xfLE21lG+8vusFm8WqzZWFElXXVOWFvYAozXh5ucLWSJV+NUsWZdvMlXUyVjoBVddgoaLs+5Pru1aw+Md+4Dy/9O4GV5pFXr/cQKIOQZahca7u0s9FQXY7sLuWvmtWbsnWmSuaSFRW8nFgbFMcw+CTF4vEmTwQeXujaBNEGdWCyaVGYZKJqGuC5apLKiVemHCm5nKpUZzcjI/fv+qaXF8o0RpGnJ8rPHO/H7czzSQfOVul7cVUHCVvv1Rx8BYT2qOIRknZ77M1F9fUJ+XCApdmyWax6mAZ2qScT89J1VdQQendMjt2s+dppub9QslmvmRzfu5xppVjKltyY7FMkqQsVt0dst26Jri2WCLKSzFePbd7tthyzcHQlc9ULyoFyvmyTZhkUxFuGffpC4tloiwjTlLCWKJpko9lVbJM8qlLc/k76ZyruzRKKijomPrUL1+mASWRbiGEoGibOKbO+bkCFdfkx15a4G7L49OX6ixUXOJU4lg6WSYxdDERyBi/57Quz7bbSF3TeGG5TJD7uIausVh2SVKouuoyzDV1Kq7K7is7BqMwYb5sTUjlx3Zov/1bCMGlZpGeHzOXKy6eqbmYujbJFEx3CYhWXZNrCyWklGwMQkZRwkfP1hBALDMqtipxjtKMTDIRPhlnA16ZLzIKEzQhuLFYwjS0A/fjcs2l5UUUTOOZNB6gLmU+dq6KhrrUHhOlL1Yc2qNoYlPmch8J1Dxe7weUbIOSbfLauRpFS/Xp2frODEQhBPWCRXlbPwkhuNgo0PaiPAArJqrIFxsF5kvqmYau4UUpHS9CF4JGyZ74NFeaJYIk5eXlsqJC2ZbFfbFRJMxLIC8dk9rZdoxtgG3oLJRtzs25NIs2miZ4canM7c0RLyyVlU2zTeaKFpV8zi1VE+61PJarziRzcvv+7Rg61xcfl7VfWyhzZ3PIUrVE1bU4V1eZqqoEW2elGzCX27l60WJrGJFmWZ45xSQR4rjgWno+9zNc02AUJ2wNQ15aLlMv2Dzq+uoiRKoAZcW1+MjZCq1hxNWF4x0r21Tn2bHPuVCxGQYacyWLOJF8ZLlEo2QxCBJ+20sLXFsoIYQgzjIWKzZJJnf10z8IKNkGf+Rzl/gvfvEm377f4eMXDp+Z5mzrx2EeIK24CUsVh3/yMxf52u0WSxWHj12oTezBfMkizuShlGdnGUc9vfx1VEbUzwI/BTwUQjzFRC6lvHLE5zwXNE3w6rnqU9///PUm7VFEyd65uTRL9g7p7jE2BgE9L6ZRsicBooPwaTRK9g6+iu0wdY0LjQKNkkWjaO84DDwpg74d/SBmvRdQL1jPrGu2jMdyrfU92jFNpJkiZksyyfk5d8dmf7buPrWpXmoW6PkxVdecGLPPX58/1LO3v2vBMmiNQgrW0zwFZ2oFPrrHZ2wf070O9FvDkE7uUOw1ttPAw66PFyYsVR3KjknFMTlTc0gyyXzJ3hHAcC2dT19pTL6+1Hz6817Pnfft0HPuksOi58ds9ANKudzz2NEcBDH1XPFpDCEENxbLu6rJPIbNhbmnN8/DtrHsmHz6cmPPnxdtg09eqtMeFYmSjPk8+NwoWqx0fMI85X2cWnwcKcZPKqo8CU0TXJkvca5eoDUKJ6Upc0VlI9Z7Aau9YFdbYE4tEXZ6+H//5CsMAqXQOFe0Jra1WbKnoo63OQjpeurwP3b6jdwhHz9zu10yDY3PXNl7jrx6rrbr949yIFQcgT6GJhT/kCa4OFek60c7bCGofWL72i675q7Sx+d3WTdPru/PXG1yeb5E34+Jc2np7eVwh1H+O1svYJs6BdN4SvZ5WlgoO2hCcTs+j82tF60959R2xdtRmHBna5QHNh6/g6YJri2UubZwsOddmCvQyQ+DUaqCXuNyJF0TXH+iLNzQBQsVh70+XimXPbY5z1KRfXK8i7bB2bq7w7aNIYTYV0J7teczDBI+cbG+r2KSUl59bHvGQZZp4VKjSD+IqbnWnhcBYZJya3OILtR6OmmVzSchpZzsH2drhafaXXUtXl6uTPbyx983+d2vnTvQM4Q42t79JII4I0qU+udY4Xf7uF9oFHYEpq8vlnfsW2O/+Oou7tt+7YyTDC9MMPXH2TnNkgrSCCH2HMvx717ahwP0yh5Kz7ah7+oPHQSLed9kmaRZsolzjiJQXHK78b+VHJPPXtvplO3m42+3bdvbvlRzWdrH17/UeLx3jFF2TOXPPvGaZUftL/fbHlmUcr5e2HW9attsyZNcfkXb2LWsdxoYhYpqw7X0SYngctXB1LVJ+fp2XGwUd9jFJ8e8sYdPuV05fPu+d2GuwIUn+uNi8/FnXl/cGaAfj6FrGnhxsuP8uN4P6PsxC2VnqmrE+6m1zxUt2qNoxwWTWqtP/64fpTzsetiGCugftQRRsHOtL1acHXQ4ANcWnz6PN4oW1xZLCASN0tPrPUyUaIcmBBdyf2kW8c9/8Sp/4zce8Gf+9lv8b3/ss0fKyB33Y8k2dlAInJ8r8Pqlp/3VV8/XJueu/TDuy/FeOat9OcZRd7glKeW/kf/3zwshfojH2U4O8I/wlIk8PYwlFw8CKSXrPaXgs9YLDkR2eFBU8oDD82CjHxLEGUEcTfXGbBro+/GES6A1jJ4ZOCtYxrFkdOxFejoNrPUCpIS1fnBsgakgVnK0oModxwGz4wyEHQYb/WAyF5slG1PX8lu+2cnSOQieXNOjKKXrqZTirUHEhcbpv89uc3qWbcF+GDvNO2xrP5jKgXK9r9bnas/fMa4TR30G0BpGkxKIQRBTK6hDt2sdL4Fqmkk2+qq/1/vhVPigTP34bO0YuiaecnCnic3BeB1lNErWofckx3zsV7y/Pni8Nov2qWXuHMZfCZOUrTwDYKMfnLgc+3YUbeOZAiSdUYyXl471/HiqPtphsH3/2ByEu2YaztpevtYLsAw9ryo4wef2czqLnuIOE0IghJhpnpntwYfWIJqULXa8aEIEf5J43r2j58cMcz+9PYqmktk4LWxss8VzRVXBYOjaTLVxN1QLJlUe28nte+1aP5hqYGo/PM/ZdmsY4kcZfpRRK5yefySE2HfdzJp93wsl2+Df+qmX+Jf/f9/hP/n77/Gv/cSLJ/rsg5y72qNo0pd9Pz71S5xn4ahekxBC1IUQc0KIcQAqQ5VO+1LK/5wjluUdBlLKvN76cX6lqrvdvQZjt+8LIXAtDT9KD62AkmVyV96O3RCnGVGyMx90+9+WbaVoZhsCM1fvC3aRrk23PTNJswM//ygo2HoegZXYpthXylLV6SeTMYKnuU12a/NufRnnHDFZ9nis9+vzZ0ls7tdX4zmwn7M+5lk4LDTAMgRSym2E2zuRZTvHNEkyvF34GHZ7Fyn3XgMHhZRycmtpGWLCy/Lk7zw5vl6YPNX/239nO55Xynu3+fPkZzz5O2kmSZ9cH1mmFPIyuaea0FH6cPuzsj3s0fbfkTLnSNuGKMlwTEEmJZYhdi2VmMY4HyeEEJTy9TReV1s9n+AQsuljGzfmNNltfT7Zp+O9YcwnttdaeRJHkZhP0oyirW/jEdg5buPxyp6oCRiF8VNz4Hnbpwllo9Xa1YgSlSXxLGxfn9vXbpY9vb6eF/vN0Sf3btj5buM2pU/8zl773fg9tu+NUiruRSkV2fDzBHf3e/+xk2jq8GRMavuaD2OVlflkO5+Fo/Z7kmZPlXGPn2tqyufZrrSYpNlT8+/JsTisdPX2sdjtM8ZjFkTJrvt6wco5Y4TEysfyNOEYGoaubHTpGWqyWabGIczfbS9Ma4/c/ncTftX0sSp0yXnMcTh+3pO2KIgTwl38myf3tb2wfZxLtoGUkuI+++yTn/3ke2x/Zpo9bae2//wgftl+Z4Qn26J4K1XmzVhYZTc/JNujnQdBlkmSJJv4ywfB2GcYz5vt66Zg6WiaarO5y3oZfx3E6Yn6D0mq1ouUir9sN1u8m08Z7GJDxz97EnudC3b7/pNfZ5nED+NJn2xvy5O/q2sC2xzbUOPQtnF7W/Zr3/b+UH2y+xodI0mzHfxvh8mWPgj2mq9SSqI4zefY/ufTgqUUk4XY+zw0K/jp187yj/3Aef7il2/xH/xf7zx1lgcVXPvqrRb/7a/e5k//H2/yZ/72m/zVr9zhjZXeY5/mGWeC7d9Taqm7+69PwjHUnBRCToWK5Lhx1JSAKqqUb3w6tYDv5/8thRB/Djh2eTM/Trm1McDUNX7jdotfu7nBr99qE2aS185W+X2fOEs/TFko2zk5nsyJAAUrHY9UQqNkcbbmUnZMNE2pDv3i2xvc2RyxWHP4A584x/m54q6DmmaSzUGIoYvJrcogiLnX8tA1MVG12I5+EPPldzZ4d73PpUaRy80ib60O6IwiXlou887qgG/d73J9ochnrjT4zkqXzjCiWjC5sVii5cW8vdonTSWXmwXmyw4LFQcvHKe3w42lClcXStRdEz/JmC+pG9woybjbGiGlUvo5qnGyDZ0Xl8rc3BjwC99fZ6Mf0CzZXJ5XinhvPOzRKFpcni/y1ZtbfPt+l0zCa+drnKk4bHkRJcdgqeLy/Ucd3l4dUnMNfvDaPGfrDmkGm/0QL0752LkqPT/mr/36bTZ6IQ+7HhLBXNHkI+dqLBQdoizjlTMV5suqnt81NX7lvU2+eqdNaxDQKFq8erYGmuTtRwMaJYtr82XiNGOx6nJjscQvvLnGdx50WSzb/NgrS7xypspGLks8lkLtehFrOSfActXl/Y0BcS6x/bxoD0O+/6hPmqX0/YS3V/ucqSnVxYWSxS++u8mX313n1qZHzTX4Rz55ljCV/P031wlTSd01WK4XePVMmY1BxJuPBpyt2diGztYoYrmiVOYWKjavX5o71M1kmkm+/7BHZxQyCGKCJOPt1T6vnKlyoVHgfmvE3/z2Q37zTptMwg+/0OT1Sw3+zzfWWOmokpmlqsOLyxUarsXX73UwBBQtg0RmlCwDKQQ11+TqQmlSr93zY37pnXU+fbnBo57P3ZZHzVVqmw+7Hl6UcWOxxMVGkWGQ8De/vYIXpXzqcp3VXsAbK11GUcZ82eJ8rYCpwy+/t0VrFPHRs1WaFYdRmNAfJdiWoGRr/LVfH1AvmfyOV5b55MU5UilZ6Xhs9FVZ3ZX54o4Mi0GQ8He/t8onL9ZIMslK2yeVUkn1SlgbBLimznLNpe6a/PJ7m6y0Pc7Ulc25szVktRegayrb4UzF4et32txre1xqFHn1bA0/jllpB9imRq1g8s5qnzSDH3tpkS+9vIihCdb6AXc2R5RsgwuNwrGppR0VlxoFkpyk/w/95V/hV28rQvRPnTs4H8Jqz2etF7DS9pkvqzKQe+0RtzaHfP5ak9Wez9/53iNaw4iSrXNrY0SYpiwUbAxLqZ9lWcZ82eF3vXaGuYLFb95t86vvbaELdcOyXHX4Jz59gZtbI1rDkBuLZV5Y2l+l7Ums9wPut0eKmFdKen7Cg86Iq/Mllqsuv/TOOr95p8VbawPKtsH/41MXuLZY4n/9xgPeXx9haKr8+cZimZpr8Z0HXcWXVHPY6If4cUqtYLFQUhxV43UTpxl/97sr/M+/cZ931gc4us6nL9c5U3dpDROuL5V4cUlxMM4VLZYqzuQm7b31Ab/6/iZV12SpYrM5iFms2Lx2vso/fHuDYZSyWLYIEkndNWmNImxT49OX51jvB2wNIy42irtmzyZpxs1NpRi7vZwkyyRrA5+Vlo9rGZytOQRJxt283M42lcLjN+728KOEF5aqfPryHD/y4gI3N4e0BqoNBUsnySQ3Nwa8uz5gs+cTZxnXFytcmlN8bl0/Js0y1vsBQZThxQlnqi6fvFinmGc0X2wUnipz8MOEbz7ooAvBq+dqGJrgrUd93l8fsNrzSDJB2dbZGoW0BgGWYXCuXsA2Nd5+1KMXxBM1sFhKFko2l+dL2IYitL/cLFEvmHzzXpuOF3NxrsDFZpELc4WJQnDRVmq+BynBeNjx+FvffYQfpvz2lxdIEXzrfpuBH3OxUeKb99q0RiEvLZZZqrr0/JitYYBhGJypWPSDhAcdRf5btg3O1V1Krsn5usswTHljpYtj6rx6tspnrjbpBzF9P6ZRtHOy55R7LQ9NwKVmEVPX8OOUr95W0tdelLDSUVmOc0WLkmNSdnTSDO5sDfm197dY7wdcahT5xMU6pqFzqeHy333lLl+708I1dc7XXcXnVXX41OU5XPPxLfKDtkfRNrg8rwQPel7EWj+k7BoYQpBJRYAcZxmDIKYzCqm4h7OZuiZoDyN+9eYWzZLFH3z9AlLCL76zxmov4CNnq2z0Q77/qMtaL8QLYoQmuDxf4qc+ssTqIOJee0gYS5olJeZyb9MjkRlna67ioatYvLk2wDlEJp4XJXwn970WyhabwwgvSjhbc0nTjL/z3Ufc3Rohkax2fVqjkLJtcWOphBelvLM2UGW1RYsLjQJLFZuv3+lgGRofv1DnYWfEai9kqWrz2avzE6XZMMm43/bwI6WM/c5qn/c3hiRZStW1+cTFGp+/No9j6jxoe6z1At5d6/PN+x2KpsHv+fhZagWDn/vOQ9Z6PmfrBT55fg5NFwgBUZyxOQzp+0px0Y9jSrbJxy/WudIo8K37Xfw44+qCmgNBnJKkGVuDSPHcVB2iJOOrt7eouxZXFx5zD0kpubM14o2VHms9n7mSxcVGkc4w4tsPOvSDhNfO11io2Lz1qI+pa3z0XBXH1NkchLy9OuBys8BHzlX4S790m1tbQz5/tcm/9KXrT5X89LyYRz2PJFVBhu+tdPmFN9eRAr54bQEpleLwWi+gaOl8/1GPIJH8ntfOkGaSX3lvkzcf9bnfHpJlcHWhSBBnCKHxiYs1LjUK/MO3NrjfGVFzTW4sVPnSywsE8WO+qfttj4JlcHWhxItL5YmNyTKp1EyjlFfPVqgXp5P5tzUMubkxJEkyBn5M149ZaXtcWyxxca7Ab95t8/PfX+N+xyNOMl5cLvOJCzV+6b0tNnoBC2ULxzL4yNkqr5yt8g/eWqfrRdQLFn0/wbE0ri+UEEJl9X/uWnOSxboxCPjNO23auXLcxiDA1jXCGK7OF3lxucRXb7dZydVyLVPjC1cbPOz6vPFwgNDU+enHX17ks1eb3G/73N0asdrzqTgGUZJwe2vE+br7zHLs3eBFCf/Nr97GNKDhOvTCiF99b5Oel3BjqciNxQor7QBTB5lJfuNeh1RKPn6hxmevNrizOWIYpHzyUh2B4ObmgL4Xc7FZ5LXzNS7MPc1tehi0hiH/33/wHufnXDb6IXe3Rpg5d6xAMAgVl9yLi2W+96jLb97tEkUJhVxk4dWzNc7WXN5c7bFQdvjSiwvYhs7f/s4q9zsen7pY56Xlp0sBZw3/7k9/BCnhL/3yLX7u2yt87mqTkmOw0Q95a7XP/bz0F9RemknJKM+gvzBXwItS/uIv3+Tu5oiCrfPq2RrLNYfv3e9xpzWkaOlcbBQ5W3X46p0299seXphQcBT36FK5wCcu1LjX9sgk/MiLC1xsFLnf9vje/S5BktAoOaTZgOWqM9PZqUcKTEkpL23/WgjxS9u+TIBPAn/wKM84WEOg6yVIJDc3h9za8un4MboQfPdhj1rBolqwuLM1Yr7k4FgapqYRxin3c6doECTMl9XmMle0uN8ecXN9SMdTxvL9jSGOaeyanr0xCCYp8LahUXZM+rkST5LKHcpHk7/pB9xtjeiOEm6mI3Shcb/loQnB91a6vPmwT99P+MbdDsMoxQsSun7MKM6QiMnfK6UXj8uNEheaBZL/P3t/HmRplp73Yb9v3+6e+1Z7VVf39DJbDwYYEDspgZQhhkTBpkiZRoSCpCkxZCnMoCQ7bDNsh8UwHZL/sIOmSUOkSYoMmUHSJAASgEgAswCz9GCm9+5aMisr97sv374c/3Fu3sqsNasqM6sazieio6uy8t577ved75z3vO/zPk8uaI/bwWpeTN01GASptJDPC86PtRv2XV4GYXosWXOBpK7eHTtgpQUkhRiPM6BmS8e9m3sjtgcRWQGWMeBmc4Q3duN7baHK79/pE6QZgyBloeajKNIpaHX8sH64PSROC9650yOMpc07CHqBFOtslmLmyg5r7WBsWSrtdD/YGtIdxqy2fZIspxtkmJpClBWMYunANVdxaA6lRfhOX2rgCAGrLZ8LU96k/SjNBOem5EEhzQTdLKViG6SZzFz78dO7YNzpBLRHCa1RhKYoZIVAVRVqrslWN+R3b7f5aHtI20/Jc4tfe38X29S41fTRNYWdvkAoKnGS0/YTRnHOesfnwrRLe5QSJTmqqlB1TTZ74TMtSlGas9r2SbOC1eaIuapDkCRcmCpxp+3zOzdavLsxYKMX4hga724M2OxF3Ngd0Q9TNE0mhVVFRVf2rdUzNEWl5plYuoKCCjMu652Az6/UUBQFMX6+19o+QZIzDDMUZPLXj3PS8Zxfrrusd3w6Y5e/76520FSVu52IvCjo+gmDIGWzF/HJ7gBFUQnSjC+tTNENY/IC7ETl/c2QvWHC7kDjQmPAq4tVOqOEzW5Ecxiz0nAYRtmhxFReSGeb280RZdukFybjAFOyY9ojqQVh+4kUth5EhGnBp7sjZsomN5s+/UC+pj1M+HR7yHfvdFFQ6Pgy0E7znL1BQqNk8PH2kHaQgIB3N/t8/nwdU5NryO4gJi0VVEPjpU1MKYo0lAD4xu17Ln3f3fB5iFTaQzGMMhkItX3iTDoMlW2DbpayN4z5/p0en+wMaQ9jorxgGGYUAjbUiNmqxSjMKDsGcVbw7kYP19R5926PjV7IKE4oWVI49rt3umS5oBBwtxs+dWKqH8i50xrFKApoKIS6Ss9L2egGfGe1w0fbQ7b7EUXF5jc/3uVuL+QHd3tyDUImyQxNIxcjNjoRKrDa9nENnTjLaQ4SrGWVO51gkpjKcsF7mwM+2R0xDDN8NedWK2B7KNerb9/qkGRy3l4ff6f9xNQHm338SLrGSZFii71RzKe7I1ZbAaMkZburcnGmzCcDWRRyc521dkDXT+n4CaMop+YaD7TIBWk+WSsHB9x49oYxd9shW72IhZot230Kwe4gxtSh46d8d7VPcxDRHVP7bzZHXF8os9by8eMcRREs1mSA/OnuiLvtgE93R9RcgzDpYxs6tq6y1gnQFLgz3ieCNCNIcixD59WFCgoKQZI/0E52pxPQHMj9daYcUXUMdvoRq22fteaImmtxc1e2Yf/+3T4LFYcbeyMuNDxuNEcUuXTDSjJB2dTY6cd4tk6WC2bKNs2hnCfrnVC6MaY5Nc8kzgrpHol01ZNJ3ScfKm7uDdnuRhRC8N21Llfny2x3IwTwrVtNWsOU1ihmbxBzeUZaxsdZgaIktAYxiiK42fQJIukqtt7x+dKFBlGSo2kKrVGKpWfsjMe63pZC7UGSc22uTC9IJ9XjQSj1OhGw24+YK9u8s96lKKTL49W5MtPlgjvtDM/SubXny308yUgyKQY+XbLZ7AbcbI1oDRNyIWiPYlamXIRQuNsJpPlHAUGc0Q+lo1E3SMeuvzFpDmmWE6Q55xoeq22f+YrNp7tDdFUlSJ6djfTRzpBhmBHEOXc7Pmku+HRnxCDK2BvGmKrKh9vygBinBa6lYZsR/+y9bRRFZavrY2ga/cAkTqV7ZH/8u1OljH6YsNuPqD1D8my7H7E7bjPqhQm6qsjnO8gYxgk/vNtlsxeiKAqb3RBFhfVWSJTltP2YrJDucs1hPE5KysRImhVYusreMAEhuJ3kXJmNqTrScTpMcr51o8VCzSbNZcK47Sds9yIWqtJs5tWFCotVh16Q4scZ72/2aA5j+lrKB9sDqrbOVjdiuxcTJgJL09BUlbKtS2e5Qhb3kqzA0BRCR9AaxqiKwvY4bru1O2K6bBNnOXdaPkFa4CcZjimTZ82B3E/9OJvExKM4Y70TcLvps9b2x+tITpQWbPUjkkzwg/Ue9ZKJH+U4lsZaK+Bcw+N7d7oMw4xBmBKlMn6JUsF7m322eiHnDiQrsrzgbjfgTjtAUeSz8t7mgK1+hK4pfLTTJysK2n5CP8y40/L5YGuIY2j8zqctGp7BnXbI+1v9sQtoMXFwrToGt/ZG9EdSEHy9G9K2Usq2yYfbfRarLnuDhG4Qs9kLmfIsKmOh+f01Zm8Yc3fs/HWj6fOVY0pMdUYJO/2IUSyvk6mrxP2QhZrDnU7Av/6kyc2mz3p7RMnSeW9DsNOLWO9KN77WKGap5mFoI4I449OdIX6ccVP4VGxj4hL6ynyZLBf0wnttl5vdkCQT3Gn5bPcj4vE8L1smUZZzt+czDHNuNn2KQroW/nqSy/0ikeexLC/415rKYt1lFOVsD0KGkVyvWqOEimOiK8ozJabCRH6/UZQTTwm2eiF32rJI8PvrfVrDlFGSYyjSSXVnII0DbuyOMIRKJ0oJxq7Sdc9ksxvRHsUUSH2yC9PH07u77xzcDxIGccZGJ8TRVZpDaTbVGiXYpkw6t0cJgyChOUpwDI12kGAbuiRZFLJ978K0x1RJ7u1JVvDx7pAfuzr9Uhn6PAy6pvJf/btv8vNvLPB3f+8Ov3u7TZjm1F0pRP+LX17m9aUqry9VpauekISW3/qkyW98tMtGmtP1E242fS40HL6/3uWL1PjhZo+eHzOIMrp+yneFwFAVNjqhZAwO5RmhKFSGN5pkORQI6p4k26y1fLb6EUEqBdVLlk4nSP7gJqb2oSjKPwX+AfBvCSH843jPp/t8KZyY5gXXZsvsDUI2ewFpJliuOSw3bMJUMF+xmfIsCgE1V5d2mgqAwsUpD0vXmC6bmJpG2TG4tlDiw+0hU66FZ2qT9pP7cVBIbP/PU55JEGdoqvLQHt65inT+6ocp56dcLs9Id6C2H3NpqkRRCL6z2mW54bJQsegZGo6p0fBMlmo2055BP0pwDQ3H1LEMjcWKdBc0NB9dUVmpOcxVbQahTJLtV2jKtk5Tkwf+4+ov1lSFpZrDXMVGUaDhmizXHFRFoesnVByDt5ZrxGlOcxiTA4sVm5JjMIwy9JLJbMXi8pzH3U5IxTI4P+WxULFRUCVtNyuYLVsoCsxXbMJEXl8UqVt1daaEpim4pkbNMSb3wjY0rs25DMKY5Vy6A16dLRGnMokzV7V5daFCkOTMlCwuT8tES8uPmS3ZnG/ISq+iML6O8n2rrkHUlxXssi3dU/yxcPnTYrpksdWLWKo5KAjCTDBfscb2oDozJWssDgqNksH1+TJRVrBZjtCBmmdQsaSrgzfQubk34nLZo1Ey0VWV5ZqDoUshyftFHo8K19So2gZBknN1royqKhMWXtk2mC9ZzJQMWkOpIXZtroxnS4t2RYG6azJdtlioSsvdXpggLA3P0rFMjYotEwH1sSXwfrVOUZhY1m/1Ikq2HEejJJNsYZIzW5Eiv8s1h4ZnEKY5b5+vs9YJmK+aZLmc946pk2QFu32TJC+4MlViumwyUzYYRjkVV8czNaJsQMmSffuOoaFpCp6pMTJVXFN/wIlMUyU9/vy0R5oJqrZJLgRzFSmUOlUycQ2dmbJFZTxXpAiuiWfJ8bYMDQWBrsmk+UzJYhClLNZtFus2jNsoK7bOlGvyzl2ZMFms29QcgzgvcAwNz5Ki1A8zdHgZ8XOv1PiNT3oAlJ9iOZor22z1QlYaLqaucmVWrh0lW2e6ZLJYtcYOfIKGKuiZGsNIMgRsQ+N83SXOhWRdNBzy8bXc6AXUHBfT0CjZGm8sVdjuxzSH8cTd8mkwV7G51fRZGpsYaKosjEhnTXWchJGiySVb4+3zDQQK5+sua0VA2daZL1vMlS2qrskwzMeC4KbU5cjkXKk5xqHxqWPh7WnPJE6lC9/lmRKzZZlkmilb4/ki21IOOrtcmPJo+wllS+f6QpnN8dq0ULVxTA1VFSxWHSxD5Wq5RNtPMHWNCw2PMBmgqVB29IdS00umdERNxs/FZLwKE7c6x9BYrDls9kLqnkEhBIuGzsVpl2GUcN51mSnZvLFUGSfwpZPhtGdhG3IfPxc7BEmKnzhommQur9RdkjznilYizQs0RWGrH2LFcp++OOXgWRq2oT60YFNxDFxTIxeS1eKaOhVXZ6pkkmYOuqZyYcZhbyAPQK6lMW3anJt26IWxZFGWbFRVocgFnqMxU7IoWRphJmiUTMq2zs29IY2SQcWVh3tLV5ktW+yMtZ8eJrb8MFyeKfM9t0eSF3xuqcxcRYr8dsOEizMe7653CZKEpbpH3ZNutVGSkwnBbNmSB7AgZaApkzFUHIOLUy5RJuiOUhxT49K0h6mr6JpCmonJ+KqOQcdPUFUm8ZOiyAqxoSksVm06QYqtq0yXTTRFwTP18TNps9N32R5EnG+4Mg6zNGZKJpenXO62fQxNYbnuULVNLs24nJ9yMTS5hlccjTDLZRtrIefWUFUwdBXX1pmu2KiKZD0kWTGJx/Yd8J4WuqbyylyJ5jCm5hgs1BySTOCYOkGWc2HKI8kLZvsmlq6Sj1uYlusOF6dKbA9CPEuy9WZrFp6hc7s1pGzrNMomC2WbxZpNWoiHttA/CXVXWtwrKKw0bKJUyLWjbKJpAs/WaXgmqqJg6QpdPyW35D5bdw12hwmzJfnvVVen4RqsdkJMVefV+QoVJ2S7HzFXsai7xqHkmWWolB0dQ1V5Zb5Mvj1EEQp1z6DhGUx5UmdqqmSSFQXXF2U8Zusa12Y96p7FB9sDwjTn3JTLdNnEM+UzP1O26AUpjiFlLpIiR1Mlq3iqZErX2iTjwoxLnAkE0jFMjBJM3Zg4btuGimfph8TELV2j6hjUXJ2yL5/VqZLUBuz4CcMwZanhsFL3+HhnQMMzuDzr4Zg65+oOt3Kfhmfy5kqN7651ubnnc32+wkz5cGJRVRRURcYYSV6wXLdpjxzudgPyXHB9vsS/VuWzMdAzLs54rPdkIXuhZjFXtvloe8i5ulwzdU1lpWajqPK7XZ4tc67ucKM1YC638CyDpYbDlVmZsJkumxSikBVmVeHC9GFB9/LYtTjJCqaOUTdppmJhNlXmLIuqI/eEqm3I+WLrLFRsNjoBsxUby1CZKdlcnHbxk5wcwZRrYOoaM2WTa/MVVtsBlq7KFlFFtqq9OlfB0FUqjk7jQKHuXMNlux9ycdrD0FWagwjX0ikK6WJ+dbrE+1t9zk+5BElGnBZcnSvRGsQ0RwmmoVJxDOarNp6pkReC5ZrLnhbLuWRqjOKcuWd0RDd0aURQsQyWqg6uobHR8RnGOfMVi7mynB9VR6dRskiLnCyHy3MlXj9X5ft3eqgKLNVt6q5JmGR4libFyY9Ru0tVpRPffNXmbjsgzws0VWWp7hAmGSgCBbnWl225lxuqgmmoOIbOTNnE1DXWx+zWhfHvrdQddgcRV2dKL5VT+pPwk9dm+MlrTzbz2tfU+8W3V/jFt1d47a/JtebitItr6rw2X2Gh6rBck7G/XHcNKpZOnBeEacYgzCbn7Zpj8PpShQ+3BiiqdO3UVIWZssXeMKKUSYdl19Je+rOBchx9+Yqi/CTwPwb+J8BvA38P+GPAW8B/LoT49ef+kMdgenpaXLhw4bnfJ83v9cBbhor6nG4FB7G2tsbBMWaFrDSBFDh+GVTyb91eZXH5HKoqg9CXFfdfy9OGQLKHEDIh9zCB2/1raejqMwWRp4Gz+y3ZAUUhYHwoflacjfHeGG1D43lm/K3bqyyunHvu9zlJfBae76Pc732mH/DCvsvTzssXMebP4v1+GWMMOJ51KM0LslzGrscdq8Fn435/lvbvucUVQCbvjsL0O218Fu73szw3UkPxQRe6k8RnYf9+0WeIxyEcny12t+6+tGNMskIWnRTY3Xw5x3kwTniWa5kLQZKeXpzxMs/Jg3jnnXeEEOJEN5xjSUxN3kxRfgj8L4H/NfBjwJeBXxZCfPHYPuQh+PKXvyy+973vPff77PRlqw7ApRnvia4wT4Mvf/nLHBxj10/Y6Epq7HLdeSlU8j/31hf4B7/yW5Rs/bGW0i8a91/L00aaF3yyM0QIqDj6Q2m6n3vzC/yDX/0tlurOS+smcXa/4VZzRBDnqCq8Ol955p77kxzj7eZo3KYEry5UnvmAeZJjXG1JDSVFgevz5eeyzP3cm1/gH/7ab/HKfPnIzJDTxmfh+T7K/e4FyaRF40V9l6edl/0gneg1LNTsU6n+fRbvd3MYs9OX7R3nptxDTJAXieNYh7b74UQ+4cps6dgFXT8L9/uzsn9/8Utf4m//038FwEzZeimd1j4L9/tZnptPdoayvVFXJu3aJ43Pwv79os8Qj0JRCD7aGVAU8Et//GdfyjECrLcD+mGKosD/7N9+Ocd5ME54lms5jFLWWvL1c1XrxJ03Hzcn80LwV/7ZB3xntcN/+oev8W98bv5Ex/I4KIryjhDiyyf5GceWeVEUxQFqwJ8HPg/8uhDih8pRFDpfEsxVLAxNQdfUY01KPQwHE1EvQ1IKpD7WfNWmfkoWp59VGJrKxWkp7P6oa2Xq6kuTcHwUzu63pHP3xvojxyEEeRJYOTDGl4X1cD9W6g7dIMWztOdKSoGsTl0cCyW/rPgsPN9Hwb4GmRAvzz70JFRdgxWciWj7aeCzeL/3BbQ1RXlpklLHhbmyjaGpmLp6Ii5Dn4X7/VnZv1VF4fy0S5oVL23S57Nwv58FF6ZdBmH2zM7iz4LPwv79skJVFS5Nlxg9g07taWKp7uCY2kvtlncwTngWlG2Dcw2XrHjx69bf/tYaf+d37zBbtviLf//3+f/+xa+dWqL5ReBYVg5FUf4h8BEQAueBPeDfUxSljNRt/UxA9rhbpxbE1T3zpdoIVUX2oz7vwfL/H+BZ+mOvlaYqL9W9fRjO7rdMMs6UrZfaQvWzMEZ9PMbjEKjUVeXECwPPi8/C831U1NyXax86CmquearB4mfxfiuKQsMzqb7kiYtngapKB+TKMWlk3o/Pwv3+LO3fFdtgqmQdyUnyReCzcL+fBZauMVO2Tq2NDz4b+/fLDMeU9+xlxr520ct+n583Tqi6L37dygvB/+N3bvGjl6b4F/+Ln8C1NP5Pv/rxCxvPaeC4drRfBi4DrwF/FnhbCBEABvBLx/QZZzjDGc5whjOc4QxnOMMZznCGM5zhDH9g8Z3VDruDmD/91fM0PJO/8FOX+e1Pm7xzp/uih3ZiOJbElBDiXwA/AvxvgC8Cv6Aoyl9Hak31j+MzznCGM5zhDGc4wxnOcIYznOEMZzjDGf4g49fe38Y2VH76unT6+9NfPU/F1vlb37j9gkd2cjiuVr7/N/DXgP8Y6cT388CfAO4Af+c4PuMMZzjDGc5whjOc4QxnOMMZznCGM5zhDzK+fqPFj1+ZnshkuKbOn/yRc/yL93fY6AYveHQng+Nq5fsy8DVgXQjxF5F6U39ZCPF/BcrH9BlnOMMZznCGM5zhDGc4wxnOcIYznOEMfyCxN4xYbfl85WLj0M//zI9eQFEU/s7v3nlBIztZHFdi6n1gHhgqivJfAP8B8CuKomhInakznOEMZzjDGc5whjOc4QxnOMMZznCGMzwC312VOlJfuTh16OeLNYeff32e/+476/gvuYPjs+C4ElPTwIdIB74/BewCfwNYAv7Px/QZZzjDGc5whjOc4QxnOMMZznCGM5zhDH8g8d21Do6h8bnFygP/9ktfu8gwyvhH3994ASM7WRyX1+P/7sCf54Bl4B2gBfzjY/qMM5zhDGc4wxnOcIYznOEMZzjDGc5whj+Q+PZqhy+er2FoD3KIvniuxlvLVf7bb67xp3/kPKqqvIARngyOy5Xvt4UQvw1cA/4S8B+N/74E/JPj+IwznOEMZzjDGc5whjOc4QxnOMMZznCGP4johykf7wz4yoWph/67oij80tcucrvl89s3mqc8upPFcyWmFEUZKooy2P8P+OvAK8AFRVEGQogbwOwT3uOCoii7iqL8lqIovz7+2V9SFOUbiqL8PUVRzjSqznCGM5zhDGc4wxnOcIYznOEMZzjDH1j8/noXIeDLF+qP/J0/+sYCs2WLX/7m2ukN7BTwXIkpIURZCFHZ/w/43vj/7wohKoqi6IA4wlv9hhDip4QQf0RRlBngp4UQPw68C/zxpx1XP0jZHURkefG0Lz1VFIVgbxDR8ZMXPZRjRcdP2BtEFMVRbv3Li0GUstOPSE95HrVGMXvDCCFe3us3HF+bJDv9Z6wfvpj78jRI84KdfkQ/TF/0UF56CCHYG0a0RvFzvU+SyWs+iF7Oa56P1/vuH7D1/jT3sSjN2elHL43gpxCC5jCmOYxf2vV68ALX6ochzcVL+4weBz4r8c/LuEf5ccZOPyJK8xc9lGfGy3r/g+Tlvraj8b2Ps5dzfEfBy/hMwcsfG92P44oJ770f7PQjhp+R7w/w/fUeqgKfX6k98ndMXeU/+Op5fufTJjf3Rqc3uBPGcYmf7+O3FUX5LwFHUZQ/DPz3wD87wut+WlGUryuK8p8CXwF+a/zz3wS++jQDiNKc9U7A3iBmux89zUsfijTLaY1i+sHxT+i9YcxaK+D9jT5d/8kPYJYXL0XwGyQZe8PDiYGiEOSFYBRnbHZDdgcxu8Pnv/4vCklWsN4OaA5jNrshwCTRKYSgPYqf64BZFELOq/s2sK4fs9EJ2e3HtEYv/gDb8ZMHvmeWF9xu+uwNIu52g1MdT5zlk/uy1QuP9b33Ewe94Pmv+1YvpDmMWW8Hxxpo5YU8CHf9F38Qftg68DTYf55ao4Tdfsx272jXPkxy9oYPHrTXO/7kmr/opOXDrs3eMGKrF7HeCRi9gMTKowo1xXhOPWvQujuM2B3IdfKkv9d6Rz77a22ffpjQHMbPdQB82j31/mvVDWTSZ6cf0R6vky/LPg3yoPTx9oBPd4esd568VgshTrygl+XFcz2jQohJTJYX4oUlAKJUrkMHD/qDMGG9HbA7iNkbHs+h6lkRZw+O7yD296jVpn+iyYC8kPHS/c/E/fNMCMFae7yGH2GuHieK8UH4aeZ+8ZC5N4zSSfz7ou//wX1SCMFqy2d3IO3nXyT8OHvgWheF4NbeSMaUp3zvjxMHn6n745PR+HvnL2C92jwQj6Z5QV6IQ8/j/pnmOGLf48B+TLjRCWnfl5x62JnkSUjyguYw5k47IMuLZ9rjhlFKcxif2v37/p0u1+creNbjpcD//R85h6mr/LffWj2VcZ0Gjkv8fB9/GfgPgfeAPwf8KvA3n/CabaQ2VQz8U6CCdPUD6AMP5bEpivJngT8LcO7cuQM/l/8JwUPFwPYfRkV5slDYt2+3+XR3RMlSuTJb4aLmUXrCJHkchBCHPregYHN8uN4eRNQ965Gv3RtG7PZjHFPl8kyJti+D8qpjsFC1j/R9jgN5Ibjd9BECRlHGpZkScZZza09ueoYGQijUXBPtBMcUJBl3OyGGpnCu4aI/RBzueXBw6JqqsN4O6IcpFUfHs3S2ezLppioKVffpu013hxGtYUIhBFfnShQC1ts+qy2fKC2YKVss1Z3j+jrPhPYoZqsnmVtCCOqeyZ12wHrHZ6sfUbENXp0vn+qYVEW593w/x/wqCvHA+rDRCfjenS67g4gvnKvylYvTaM8oKLg/NkV59nE+bIxbvZCbe0M+2Rmx0rD56VfmcJ9jTXpWFAfWgWGUcXmm9NDxPgprLZ9hlNEomYhCcKfto6kKK43Hz3khBLdbI7JcsN4O8Cydsq2TF4LVZoCiwHzV5kXKQO6vkXkh5Hd0TXYGER0/Zm+QoKlwYco71THdbo7w45zpsslC9fA13h5EdMZJ8KtzJWxDe+T7ZHnBWjsgLwrOT3nYhnZonb//9j/NnADI84L1bkic5SzX3Qf22/1nSRYO5N6Z5AVLtadfKzt+wmY3xDLknvqkZ70oBBvdgPc3+xTAj1+ZPvTdNUVhdxCxN4hxTI3LM96p7csHx3jweidpPl7DwdJVrsyWHvlaIQS3miPCpGCuYjFbsdnoBgyjjPmKTc01jvX7KOPPXO8EhGnOYs2hYhuTsTzqs3b6Ec1hTJjlqCh4ls6lGe+x8/YkcKcdkGQF7VHCqwsVkjTn26sdPtkecmWuxFzl0fHcaY0vSnKaasznlqqToo4QggvTJVRFYW8QMYwzSrbGldmT2cuTTMa5a20fz9JZqjl0g4R+kFG2dS5My7VQURRURaFAPNfe/iyI0pzvrHYoWzo/dmUaQ1MfOwfDJOd2a4QQcGnGwzXlOnVw3Opxl/3vw8PW1rsdn1GcM1+x2OpHFAUMwpQrs2WyXLDW8jENlZXGg2vraSDNC1ZbPkUh8KOMqbLFVi8kjFPudEJ0VeWVU44pjxOqorDZDYmyHEGBbeg0PJOaa3C7OUJBIU4LVhruqY5rf59qDkKGYUImYKZscWWmhK6pNEcxu32ZAFJVZbIOvyhoqkJrFPHh1oCVhsfPvTqDY+p0/ISt8dlLUaDmmkd6v0IIVlsjXFOjbOkMosNrz6Owny9I8oI77QAh5Fpx0vcvLwS/v97l3/ni8hN/d6pk8W+/tcg/emeTv/RHrj/TefRlw7GtTIqiqMgWvteB/+dRXyeEiJFJKRRF+efAACmaDjJJ1XvE6/4G8DcAvvzlL09SmJaucWnGI04LauMblOVyY4ySgiQv0FSF6bKJqig0XPOhgXOaSebVVjckzHKW6u5zHXaCJOObN9t8fqVGyZaXfcazWKhaKKqCazz+VgxCWYkOx9+hNYrJcsHdbkBrFE++9756/zBK2RvGlG2d2bL9HCM/wneLc5KsYKsXjoN2wZ/6ygoz5ZMLzDp+QpjmfLrj8/5mn4vTHq/MVzD144kGDE0eVsI0p+YYfLDVZ6MbErcKXp0v4ycZSVaw/IzJo1GUcas5IisEpq6gKAofbg3Y6UdMlU38KMM1TzfQvh9ZIdgdhnT9hCCRScibeyNu7A3RVRlEHtf1Piruvy/PgnfWOtzpBFyY8nhrpTY5kCZ5QddP2B3E/PBun+Wax8rUs21ASzUHz9JxDO2hjhqPgxCCdzf6rLV9Fqs2n1uqTgJfRZHVpOYwIogzZis2bz9CHPEkkeYFvSDBMlRcS6PrJ2x0Q+zxIf9xyQghZMIGZNBs6or8PmnOuSNc77WWT8dP0FSZlH7nTpc4zbkyV8LUNK7Mlo49Uf00KArBnY5Pz09ZqjvkecFGJ2S961OxdFBUtvvhqQUQeSHw43zSIlxzTJxnXFu6QcLH2wOyQh4er86VmSlbmLpKnBWM4gxTU1EUhVvN0WSNfFwAOYozfnC3x+UZj4+2B+wNYpbqDp1R8sDh6fyUyzDK0FQmiSkFGSxu9UJsQ2PxiEmqwZitGqcFcZZPnrGHIcsF37jZYrPr0xwm6JpKay7iylyF86qLEFB1DG7sDomznM1uiK4qTwx8jxNRWvD1m00uTHmcHyc+dV1lpeEQpgXz1cfHAUleECaykjyIUuqeSdeX12i17WP2VExd5dK0N3m+un5CJ0iY8swjHxKMcYJM11SCJJvENu1Rgmto3Gr6pHmOoamYusZC1Z4kneIs51ZrxF4/Is0FC1UH29AIkvzUE1P7GEYp31vrEGc5n2wP2R6EJEXOz70690LGA/vMvoi7nRDPlAewXiDFdHMh2yktXaUQguW6Q5gUj03EPA/iTDKs656Brqq8s9alF6UYqsKUZ3F+yp187qUZDz/OKdtHO5oIIdjohmSFYLFmY+nPNgfCpGCt5XNhyqM9GjNLCsEby9WHHtJHcUZR3Pvz/trhWToXZzyyvDj0POSFYLMbUgjBUt156pjgINK84ObeED/OqXsml6Y9skLw0faA202fhZqNroIiU7+T181WLIZxhqnJWHOxZrNUc043eS4E2/2Q5iBhrmqRjBNV6+2AkqljmoKae/oJs+PClGcySjJURfDt1Q6LVYflhkOa29zYHZEVBW8uV099XEt1h9vNIb/y3g6epfPmco2aYxKmOeUXGCs9CnXX4MbOiK1+iKLAt1dlAdLWNQrx9InrJCu43RpxcVqSOgxNZRhlj13zojTnVlO2x+2f8/pRigKsNJ7r6z0Rn+4O8ZOcL56vHen3f+lrF/nv39ngH35vnT/7E5dPdnCngGObkUKIAvihoijnnvjLB6AoysH0+NeAm8BPjv/+c8DvPe1YXFOn7pmTCdfxEwZhxnY/pB8m+EnKpzsjtnvRI9vNDF1jumRRcjSuzZeoOsYTKXWPQ5LJFoAbe8NDn/HmSo1L06UnJjhmKxaWodIomVi6Rs25t+kpKCRZQRDfo2Pv9COCOGe3Hx8rNV9TFS7PlJiv2pOsccUxqLoGSZbT9hOSVPD99f6JbngVR36en+QkmWBnENM+Qjvk08AxNRqeTFw2PItcCKY8kzQXZLlAVxXCZ+jXj7OcMM0JxkFCloMoQFNVLENBCKiXTJovmAoeJDlZJogzgW1oJFlBnBVUbZMoLZgumXT89NSpyQfvy9NidxDy3mafjU7Ijd3hIerypWmPSzMeDU9numw9VzuYnDPPlgDojd047rQCPt0dsXOgJXmh6vD6UpWqZ1ArmadeWd7HZi/E0jWiVLJV9ltSo7QgekJbiKIozI3Xs7mKTZIJgqRAQaH3hJbpYZwRJjnFmAHSD1PCJEfT5GuvPYHxcxpo+wlpKmTSWVOxDZ1RnDFTsoizHMfQibLi1HSSNFWhbOv4SYZjaOwODu95CxWbhZrNhWn3iddOURT2H3fBPfaxZ+k0h7LqutkLidKcOC0QgifqbWS5YLXps94JMLVxAiItqD4k8WxoKg3PpOqYXJh2WajZzFdsdgcRfpzTHiVHvq7TZQvbUKm5Bs4TvneUyffuh9lk/fHGB9aKbUzGOlu28eMM01AYRtmptmwmWU5nlPLB1mCyJlu6xivzFa7Pl1muPz7pa+kaUyUTy1CZKdsYmjopokl2k7wvwYE9b7MXEsT5hPl9FOiqMplntq7hmKqsfjvGeD8vGMU5G52QUZQd2gf9OKdiG/L5N1T8NMMx1YfOlZPGhWmXiqOT53C3E5JkBYMoRVdVSpb+xLXsJLE7jEgzQZwVNEqGLAQoUBQy6N/qhYRpgWNqVByDuap1YvGaockCcMM1SfMCU1dRkFIWcZYTpff2WUuXz9ZREzeDMKMXpIyi7LmkDyxdzqGyrTMIUzZ7kvm4/oi2t5pr4FoarnU4FgcoWfoDSdpekNAPU4ZR9txafOudgNVWwEZPPh9JPt5LhHyeRnFGzbW4NOMxX7U515BJ6pmSxWJV7reaCl0/ZXjKLeWdICXNBGlR4BgaAoiSgrKlE2YZdcecJMc/ixhEGdOeSZDIdSovwFBl4tzSFKK0wI/yU9f50lSF76/3SPNCdraoClXHmBR+ZkoWizWbcw33hbOlAII4wzAUDFWjPUqwdZW7nZBemGKOiy1HLYSAZEypqAyClJmy3OOetOYNopSikGtmnMl4pChkXHfSOqHv3OkC8KVzR8uAvbZY4UcuNvjb37rz0mtrHwXHnZpeAD5QFOU7wGRFF0L8wmNe84cURfnfI1lT3xBCfFtRlN9RFOUbwDrw3zzvoBxTQ1Gg6hpoqoKqgK48+TD9h65Os1x3KASce07qnqJIobL7H3rX1B9bqd1HxTYOvXa+ajNXsQjHmlq6ei+IBHAtnShNsA31mduRHgXH1A4duDVV4eK0R+MLy+wOYtK8eGJLzvOiYht86Vydsm1wa29ExT7adXxWLNUdCiHwk4yaY/K8EiKqonBuyiPNC6ZKJg3PRFGgEGWyvJgc9l405qsOAnkImC5bfPF8jc4oIc0LNFXFMY9/fp0kDE1jumwRJDk1zzg8jzWVn3pllgvTHnFWMPOCWjEMTaXumvSChNqB4AHks/bqQoWKY9DzE+aewII4SdiGXAcMTWWqZBJlOY6hPfGQDzBbsZmtyLErwOtLFQZRyvIR2C5zFZtukHJ5xmOxZvO9Oz0QcHnWY6r0Yttn9jFXsSUzt2RxbspFVeUhStcklV9TT5dtuNJwibKcNBO41uH7o47HeRTUXZPPLVVIxq12j4JralQcnSgtnnhPFBgzey3afsL1hQoXpp7cnl22DfarWq6pT66vdcTrWrJ0rs4drW1EVxV0VWG54bBSd/GshzORq67B60tVtnoRmnr0sRwHtPEY6/cx8UqWfuS2nfvZZhenPYQQBEnO3W6AqamUDuyznqUzijK8Z9x7VVXhymx5UrnOi3vz09CUyWfsY3+fny5ZlG0Dy1C5MOW9kD3IGhcvB2FGOdExdY1/680FVlsBnq29kGTZQdRckyDNKdsGtXHs+9pimbyQz1ySCxZrDpdmHt3eeRzQxszBlYaDEIK73ZC8EMxXbFxT53nyYbapoqry8Og9B8Pc0FS+crHBhWmPUZThGAFZUVDzHn743WduHxUHv+ezslUPou6YdIKYumtg6bKd2rV0Lsy4nKu7k/b+g4UGXVO5NFOi5ppsdkNUVSayThuzFYtCCMqOwZWZErauMowzgliyVl+GuPdZ4Voyviw7Orqq4poqF6ZLjKKMLcfAsXTs8Xn0tHG+4dIPMxqezh99c+HQ/qooyksTO4F8Ri5Pl2i4FuenXTRFxQpTSpZO1TGeKikFYGoqF6Zczk27LNbcI+0XNcecsKprjslIzag/5ec+K76/3mW6ZD3VOfqXvnaRP/933+E3Ptzl599YOMHRnTyOewX4K0/7AiHEryK1qA7+7K8Cf/W4BlW2Da7NlVEUuaGkuWw5yAtBwzXx4wxVUR7YMHRNPXLg+uQx6HzlYoOGZ8pWljjD1rVxC0Q+aX94GiiKgmvqXJ+vPPBvSzWHKc98pvd9VlQ9k7/wU5dZ7/hcOOFgB2Qi4dWFCldnpUbTSR70pObJPdqza0kGUWO8UA0jmck/CpXc0rVxAJRiGRoVWwaN1xcqpHkhBTUVnpmWflxYqTuULJ2FmkXVMbENjYWqw1zZJisEhZCMkM8SGp7JVy9NcXXGY6nuPpDMVFXlxAP1J6FkybXiymyJsq0z85AD8FLNeSZdneNCzTUwdclekYwcg8sz2lgD7OnWm7pn8tXLU2iK8sRkRMU2eHO5RphJ9k/ZMvi5V2cla+olSZDOVSx0TeFy4U32lOW6S1opUBWFrCjQ1dNN6GqqwtXZMmlePBejTFMVVuouhnb4PhuaysVpj46fUHWkFtH5I+poebbO2xcbVB2DmTHjKMmLB+bCfiXwYXNkpmxRtnUM7WSuq21ofPXyFLahUh4XiIIkQwjQNeXQPjtVsijZ+qnfY9fS+erlKTxLQ0FWfB1DQ1cVkrx45v1kv0jysDjjwpRLnBXPnYDbv3b7jGyQ9zsXAgVloqeja7IN8MKUy94wRlV5oc+9Z+mcaziUbI3FqoNlaFybr1AIga69uHHNjRlvCzWZwNt/5q/OVUiyAk2BtBCnkji1DW3Sor2/LqzUXTa6AbahPXE9elx8bOkar8yVyYV4rnjJMlReGc9vw1V5bamMpWvMVZ5c+HncurQPx9R4Zb6MOIY4dZ/VUrJqOKY2iT2vzJakGcATqqYNz8SztCPtt8eN2bKFPm7Bdy0dXZOJm6IQRKlkPr/ouPd5UBmfNbNCrrf7a1PJ1nlrpUaSFni2/kK+489cn+XaQpkrM94LlTo4ClRV5e2Lki3kmDpFIWiUDDRFeSZpGs/S+SOvzz9VfGDqKuenPFRFQVMVGrqJAozi9FiSy4/D99a6fPFc7ali6T/82hzLdYdf/ubaWWIKQFEUG/jzwBWk8PnfEkK8MD/nvBB8sjMgzQVXZkskWTFpw+qHKZ9sD9kZhLy1XJuI1YHsbz+5bL1CmOT0lIT2KKEbJJRtA9fUGEYZnqU99kCc5gVJVhwaX5jkDKMUz9LY7kdkheB8495h6LRbWtK84Iebfe62A97fGvLqfJkwK/BMjZWG+9RZ7kdhFGe8v9njtYXqJFh9FvhxhqWrT3z9Vi+kPUrQNUVW5RSoOiZT43bRfTFWRYFrc+UjBR4lS2e7F9IcJjhmQtnWWN0LUFS5iR0UqY3SnJt7QwZRyrm6x/IpCSfqmtSg2BskNIcJSzWbjW7IIEqp2OZEIHcfO/2QW02fsq1zba78wluqQPaWZ0WBa+psdAN6Qcpaa8St5oiaa/Jvvr5wpODzJLHPSLANbeLqs97xubU3wjY0fur67IkJ0z4L9oYRG52QzW7A9YUKV+fK9MOUux0pPn5ltvRUgVdeCD7eGtAJUl5fevDwez8qjs72bkgzSyjbKWmes9rymS7ZLNWdyf3c7IXcbQfUPYOlmtSiOY2ATFFk69yNXSmOO10y2OxJ6+Plusu1ufIkOErzYuwiG1H3TF6ZKx9rIaEoBGEq55amKmjq4fsyjFJWWz4KCvNV+4m6gPtr4b4JR1YIgjifsHV7Y5c621BZrDlHqsLq47aCJCv4YLPP3jBmpmxxda40SQL5cTZxkzooNrz/HVt+jKVpY62piJKls9I4un7KfmLzcWv3wWuz3Qv5ZGfIdj9ktmJzYdo7lFDphyl+nBMmOVVHtvbs34OTwj7zbKsXstENqNgmtqliaip+nFNzjSOJth5cM/f/3gsSSrZON0jpBymzFYvpkmyFeJ51Ph3r+lm6SnOUkBUFC1WbQZhhaJINs9uPJwdvBWm2YGgKW70QTVXIC15okn4YZ4yinJvJiKszJb5/p0vbj3l1ocJy3eXm3oi2H/PaQuWhRYaTgKoqGJrKdi9ib5CwVLdpDhL8JENVFRxDavEdfD46fsKtphQIXqpJHaTjjIf7QUovlPPIj2QLnqJkeNajWTJ3O3LPdi3tEEMpLwRtX2qrVh1jcpA5uJfe/6wVhXT9i8e6d+UDHQhCIIXhEfhxJluw9JzZ8uPbfcLkng7NhenD5khZXtDxExxTo2wbR2pP7PgJO/2Isq1PntUslxIK+9hvZ+4FCe9v9hjFOdMlk4vTJdY7AXkhHtnqNIozgjij7pmTvdCPM0xdJS/ExA3xwpR3IoXe/WL6reYIMYiZq1o0hzHbvZCZss1izWGmLNcTIQQ390bsDCLmqzZXX6IYCOBWc8hWN2K2YnNt7t6zFI1NBtqjmIptcHWuxN1uSJYLqo7B3CkxwtqjmLWWT5oLdA0+3hliaCpxWvCl8/VTN+Z4HNqjiPe3BjQ8kyszZfaGEe9v9ilZOl+7Ms3drmxbNXTlmeL1KM355s0m1+crLD2hpX0f/SBlvRPIYsmsTFB9sNUnSHL6YcbVuaeLc4+Ku52A9U7AL33twlO9TlMV/syPXuD/+Ksf8f5mn9eXTl/L7LhwXE/I3wZS4OvAzwOvAf/JMb33U2NvEPHt2x2SvGAYplTHC7TUSMj5YKvPMJLihW+s3Lt5J2kxno6D1e2BtO1MM8FsWZAVOgoKfpwfEmLbt6SeLVs4hsaN3RF5IZgpW8xX7Yk7lex/zScPSDdIcMwXE6TFWUGYyNbCOCt4f7PPhSmXKCu4NOPx+mKVc8fgRpXlghu7Pkt195mplQeTTQcPigcxGNuDtkYxrqGz1Q+pOSZ3uwFzZZvlusNKw53MGyEgKwrMI0q37QcbQZLxwVaf9jBBVeFL5xt0/ZQgCXFMjUGY8e3VDmFS0B4LKp/WprJveSsEfHetSy9IaY4ifuRig36oEqUFAoFjaLy3OeCjrQF1z8Q1T87l56joBynfXm1jairXFkp0/ZQ0L/i91Q6dkRRAfGWu/MTg8yTR9RPe3+qjjanUmiqv+Q/We9zphuiKwmLd4fyU91yCqceJNJfWztv9iFGc0fBM4kzqCQkhg/Wn2bB3+iG/9v4OcVbQD5/cu18IuQaA3MS3+xE7/YhzUwXDKCXJ5OH2blv+28e7Ay5OlZirWlybLT+TNtnTIsvFpN33w+0Ba62QIJWH7cWqzTDOpDZgnvPexoC73WDCcj3Ow+t6R7qq2caD7N84y1lt+txq+pQsHV1TnpiY2tdMCpOCNC+4PXYR9aNM6u0UguYoHhs3KFScox3IikLw/mafdzd7pJlkll2Yvlf595OMLC9oDhOyXPD6UmVysNoZRLT39WXGer/9MGU2s46UNNl3H91Pqj7pNR0/4VbL573NvrSeFoKpksVay0dR7onNr7V9lmoOdzuBFPA2Na4dEwP7UdjpSyeju92AharD5RmPKC3QFGViOLCPKM3Z7kdYujpp4Uuyght7Q4oC5qoWs2VbuuYlOTuDaOKG2hrFR27/fBzudgL8OJdVaENHUxVu7vkTJq5ATDQ007xgbxBLAf6dPj0/ZbpsU37BrT/peC0qCtjsh/zgbo8sFxQCDFXhtz7dk+YQ7ZB/50vLJ15tvzeue/HsD+/26AUZnSDm8rSHVrJJMqkxJYTg090hH24PyfKChmeyN5D3d6pkHtlM4HGQLXzSqv2dO50xa0udsMQfhf31JojzQy502/1wIsx/0El0vRMwCDMsQ+XqfYm3IM3xxzqsXT89lJhKxwZJO/0IgWCh4lB2dIQ47NB8EM1hzHpHHvw9U8ePs0OJqa1eRD9Mn6pg2R5JO/pekDJXkS3fN/ZGk/1uH2ttKRh+p+1TdaQMRJD2CeOcqZI11pk6HBtnuRR4FwL8JOfitMd2P6Q1lEYiNUcnHut99cP0xMyL0qKY7I0fbQ3Y3i/sqgqWoUoDDV3F0hQ+2B5wtxNQb5mUTJ2FF5iAPojdQcTv3uzQDRIW6w5TJamfFiY5CgphmvHB9oCKZdALE6ZLck9P8tPRlpLP84A7bR9bV9nohqgo1EsmcxXZ8WC8QEbnQcRpzq9/sMvN5kjqvFk6n+6OuLXngyJlCLKxZuJ+XPW04fogTPn6jTarrYD/8A9dOtJrRolce/JCECUFa+0RH+8MCeIc21DJi5MxNvndW20AvnZl+qlf+4tvr/Bf/+an/PI31/i//OJbxz20U8Nx7eivCSHeAFAU5W8B3zmm930m7ItL54XAT+4lpkBQCOk+YuoKhqGwULXpBSnauGp7Uth/kIpCimbnSsFMWR5C2n5Mzb0n1p7lxUTweLuIONdwJ2KmB0Xz9l03XFNHVeUD9CJ1DTxTVuFWmzJA74dSXHEQpixWHXb6MSsN91iSALah4j5HpXb/Oma5GOslPfhe271ICn6nBVme0nBMciEQ40V9P6Caq9goimSoPY3O1fkpl16Q4pka6+1A2t4LGYBvdgNMXZMJSyTlPkoKXEMjL06vTWC+Kr+bpWsMIskCKFkyYOsGCYYqGWdxVqCpslKrqyfbVnlUbPbkoccnx49yKo7UoTnfcBlFKbauUrb0F1o52uyF9IOUTAjKtsFcxSJKC+ZrDh0/pkCh7pqHbOlfNObKFjXPwE8kpVlVZEAZphlTnvXU4pl+kpPmxeS/J2G/nWwQpdiGSttPKNs6UZIT6Crr7WAiSL3dj2QbCJBmglwI1OfyVz0aPEtnvmoTZzmFELRHKVleYOgqW72AtABdVcmLQrpyAtYJtF3vC9HLxOFhBxoFBXUsjC7gSEn++arN3iCibEuHrTiVycB+kMpWOl1lrmKhqSq6pjxy3mZ5QXvMJgAZ6A+jlKptEKQ5CzWbumsghAxE667J3U44aVPpBvcOTgc/ou4akmFhakduU9o3sBBCOtM9KTGV5QUVW6fuGRiqwnTZJkoy1oOUmmuQI9AVdeIsZhnyviZZ8VCL9+PEvkOdqamYujIpnPTDlCnv8EFzbxAzijJGSDORkqWT5MXEbWz/kLp/fTVVwTN1htHxaW3sz0fH1DDHDN3pkskgzFAUWKw6dIOUvJDfIUxz/DhjEOQYukZeFIdYuy8CizWbvUGMZ+mkuRQ9HsUZ067JTj+iPYzJCinAm+YFDqeTmNoXGwc5Z7t+iihkqq/uGtiGfD4GoXRGzHMxeRb2dQKPS6RZGTv4xlnOKM5xDZ1ekJDm+UMTi/vP/ULVpjWKqTqHzU725839y8u+kPq+8cLBf3cMDduQscr9jqgyoSxjmLmKgzFOkvhJdiiBtY8sly7UmqIySBPmKjaN+/SonmUpr43nTMnWMTTZgnt/UgogTDJGUYauKpRt2a7r6LKIqak8MWm8P7T96yW13XR64+fuqK6Iz4LKOM5JC4GqCDp+imfq6Aq0hzGWoY2ZcDquoSEK8CxtkgB+GZBkBWVHp+MnuKZk6nb9lCTLSbIc29SxNHWiwXmuIeOVk3QqPzi21jAmzQr2BiEN16Jqy/XdG3czvCxFTpDF/LwQpJmgO4rZ7kdShkZX8UxZrJiv2rRHCRXHeKb9sxCQZgVBklEUBar65O8/5Zl0/YQ4lTGapqpUbB0VGQedlKbxN2+1JGN89uklRaqOwZ/40jL/4Dt3+c9//vqpzLeTwHFd2Yn9iBAie9EUwcWqQ9012B3ETJVsaq7Obj9mbxhTFFJ4149SzjfcI4uPPy9MTeXijMdeP2QYZXQDmbRZaWgT8c/1dkCc5SzWbGxDslFcU/bgz1Ut1toBRSgdAeqeycUpl81+hGOo1FzzhYsGKorU5/mf/pjNnXbAIEr44d0+2/2Qj7cGNEoGeSEI0oyikIckS1efuhWgZOv85Cszso3ET6i5xlMf6BZrDruDCNfUsQ1NusMkBWVbR1UVun7CVk8ehBQFaq7FRicgTGWCY7pksVCTAbGpq090PHoYyrYxCXp+9PIUbT/B1BTWWgFrHR8VhdmKxRuLVd6+0GCnH2HqCp/sDLlyQjTS+2Fo975bydK52/XxLJ27nZC1ls8oSpmr2lycLvHqfBlDVcgKQWeU4hjxiS+MeSGkWKmpPZAMmy5Z7LkxBbJ6HaZS8Pyt5RpBkpELaAcp/TA98YRuNta1K411FfbhmhqzZZu0KKi5Op1AzoE3lyr0gpgkF8RpTjyubr8M0DWVL6zUyXJBxdZxDJVv3W6PK0naUwcO055Jw5OHuX1dgSeh6kon0KIQWIaKKKAfJnxnrcvNdIRQCmbLDq8ulCmEdPwbxhk3dofMVxzq3tOvGU+L/bk/MxZDLQrBKM75aGfAIMyouQZXZktcmSkxV7HGtuojTE2lckzzcanmsNmTe85qy+f8AaFoU5e6UPNVWyY/D9w3IQSDMMM2D+vmVWwDBckO2RnINWAYp1yY8lBVqR/jmRp+kmPr6iPnwmYvnCQfslzQGiWYuixs7LcAZrlk3QZJzrkpF31sXBKm2aFq73zFHidipP7Tcv1o10YIMWaUpeiaQt09WlJ1umTRC1OWay5lR2Ox6vLB1oBOINu5z0253GqOmK/YvLZYZRRnfLIzGLcfJSe6Js5XbVbqDoNIp+IYE7e8S9MlHFObtOvkhRiz2jgk0l6y5EFgZxBSGx/ep0smLSHbzT3L4ML0cbCe5Xq4ULEY2TqeqR9a34IkG49LoyjgVmtEkglsY9xepgi6fsqFqRq9MGGzF7JQtY9NLuBpYOnaoRbJn74+Q5zJw9Zvf7JHkhXMVy3eXKlyY3eEoSksN1xpFHGCa7qqKixUJcOk5pjkFDRKsqX0bjegE0jWsKpIEfHpkknN9XhzuUprlLDW8omzHFXxOT/1/AXFyzMlwlQWtj7dHWIbKh/vDMlzwduXpia/l2QFt5qjMXvLYqXhPhDrLFRsbF3Fuk+jaqpk8v5mn4pjjJ247o1ZU5VHasYamsrnV2r0wxRNVWWr7vaQnV7EG8tVhOBQnNkLEja6UiD9ykyZ8w33gbVuseZIoyDjwdjkUZgpW5P1Ic0L7nZCwvTBRLCqKjiWRtlxabiGbLENU1YaDjMl6Sg8CCXjv2TpLDekmUTF1tnshUyV5bO9ULXZVWQcXHPNU3t+9pPJs2ULx5RJuG6Q8sFmn26QslRzuDpX5vpCiYZnkOSC5kgW65frzqmwnh8GIQSb3ZDdQcS0J10OZytSF3GtNWKrH+FZGp9brPI/+vwivSBheaxlen8y9LiQjl0ZhRCoioqly4Tqu3d7FEK6Q3/+XH3SxfAyaHHGWU4Q52x0ZXfNGytVBmHGZi/gvc0+P31tlp9/Y17up2NXSbfx7OdbZ1yoOt9wjpSUAnlmb4/iiaPphWmXjU7AYs3m0vTJ6NAKIfjWrTY/dnnqmdfbP/NjF/g7v3uHv//tdf6Tn7t6zCM8HRxXJuMtRVEG3EvEOwf+LoQQTxYOOUa0A2nrLPVxIlk9NTT6QTrZ4FamPIQYVzGFeGRyJC8Et5sj4qxgpeE+1wG2ZOn0xhtp1THHhyXJOhjF2cRWuz1KuTxTOlS9bbgmG52QLC/4/nqXuYps5xuM7ZTPN1yuHNDkeJFwTJ3rCxX2BhG/82mLJCsIdOncc7cb0vFjun6KbWjUXOOpe3WLQvDh1oBukDBbtokzm/mndCezDW0izlsUglt7PnkhqDg656c8muNWhTiTgVSQ5OwOZc94mssK/nEmhqZKFlMli92BbI+qWAZ+Ii3mW36COm7FuNP2yQvZivjT12dPVcTQMTWuzVWIs5xPd0ZYuobiyMOqENAcJggUbuwO8OMeizWHn3plhrnqydGv1zuBrBxqCtfnD+vzzFZsKo4xfoZ9BmE6DrYLao5JP8wIk4zmMKLqGOMgXLaptIbJkTVZjoLVccuTZaiH2nkuTnss1hwsXeVOOxhThn3yIsdQVTRFIcoKWiPJNszyYiI8v9ry0VSFS9OlU2eoBck9V7ZBlDGIMkTBM9no3u0GbPUisgJWmw+3534UVFWZBC53OwpVR6dq6+z0YkxNY6sXstJwMTSVQZjy7dUO5+ouX7pQf6Zk8rPA0jUuTZfw44z3t/roqkbNVXEtyYjsBxlZkfPB1gCBQnsU8/NvLB7LZ5dtA8+UFt2yZSqjbOncbo2IUqm18rDq+kZXtjoLBG8sVSfrzDBKWWtJHZLmKKIQ4JkGcxWb8wd0SZ7kAqceDLrGfyxZOhem3cke1gtSVsef1R4lY7fMnBI62/0QU1MnidCHaVkVhTj0Pe8/dIVpziDMAAXH0I+8h6iqgmtqk89c7/gMowxNkS1xG92AfpCx1upIp8m6i6lpoEl9tpNO1k+XLUpj1s4++2k/zhiEKaNxS59naVydKx0ShM0LQZRlzJRkC19zFE3YQEm7YLZsc3HGO7LL36Nwu+UTJTmtUcxsxZ4c4vexXyxsjWLudgO2exHTJXOyZy/WHKqu1Cfa7cfYhkZzGL+QxNT92Ncw+XCrT5QJpsoWV2fL6KrC9+902ewFnGt4fPF8/Uito8cBx9S4NF2Wh+phhGfqNIdSoqBk6zQ8c9K2f2N3xN2xzuF+K26Q5M9d+NRUhZKl88p8hamSxT//4RadUUyc5ry2VJ28vx9nZLkYt3gl9EOb6/OyBXujG9D100e2GCZZMWEGPqyd7XEo2Qal8drzwVafNBdsDyJKTVlMGkQyYSL/nLFQsbnVGhGmOZvjfeYgdgYRnVHCVOnZisb9MCVMchxDf6BQ4Zk6c2VbmuUIhYYnZQBqjslqy0dVZIvp7iACFApkrNENUrp+yu6gy0+/Ios7RzWpOAkYY6fAohDsDrvYhk7dBVOXJiGrzRjHVLnbCWiN5J7+s9dnufQMbJLjwGYv5Nc/3CVIpITBpekSa22fmmNiGzo1x8DUNeK0oO6azyTU/bS43fTp+gnNYcRCTRoWOYZGmOWIQj4Hr8yVJ06NLxpZXnBzb8QHm30+3B6yVHP4yoUGl2c9ojwnSQuiPOfq/PG1vUdpziBOubHrE6c51hHW3LwQdMN0HNfGzJatydoepDmVEzh7fbQ9pDmM+drlp2/j28flmRI/c32Wv/WN2/zJH1k5lTl43DiWmSqEeDlK+WMESU5WFOwMIsqWNmmF2283qbuGrBxpGqstX7qrlUxmStYDBzw/ztjshghkoPvaYuW5kgHTrskHWZ9RlIIiN5iOn2DrKoaukGYCz9L4eGdAlOa8tlgdM3oKmqOYnp9SdWUrVXuUEKYZ3VFMwzUOUX6TrHjAOem0MVO2WKw59P1EtglkBXdaPt+61WStHfD55Sp/6NrcpE3xqMgLwe4wYq3pMwgSPEsDbAZRynZPJiL3Wxj2daT2BhGKqnBlpvQAjbUQ95xM9nuZPVNjFMnNxzVVoizn1YUy7VHCXMWaVJ/vrz4Mo5Sn/DqHMFu2+NxihU4Qc7cTstqSYuJJLtjuB3x7tcNs2WK5IZkQzphxc5qwdI03l6ustnzCNGO7HzMIpTPMMMr4/fUucSZt4pujhCQXzFasY03kRWku9b+GEbYhtW2kxpGcG6qiMFuWGjNFIdBUWVlyTQ0VSC2NIJHuX4am0gsSbu/JipeuwmJNtlmuHI3A80jkhWBnELHdi6gdeEZbo5g4KyZjBGmFvtMPMTSFkiXbWfbdaoZROk4IDrjTDrAMjbmyTVHsi5ee7oFsqmRyuzUkSgvONxyuzpToBskjLbQ7vqww66rKYu0ws2E0FuDOioLt/rMHI0s1h7dWagRJzmYn5KOtATuDkE+2B1ya9mj5Md1Riq2pDIKUvPrg83uS8CydV+fLOIZGkmastkO2ugH5WPvw3c0+ddfgfMOhOYxI84K5so32jPtNXohxVT+nOYxolKT2W5jmhIk8hO4NYsJUHjoPsoXCNOdO25fzddxmulizJ4mOIMnwo4zmKGKhYk+o90fFUs3BGwfQuqqw0nDGbYX3xpAVUjxYVWTbc3MU0Q+ziZ5TcxCzMK6sP+y73+347PRjoizndnPET70yQ8W5N+9s/UBrz1MWnKY8iyDJMTSVzijmTmtILqDuGez0I8nILCDL4ObeiOmSRddPcC39ofvGcWK55vCdOx3COENTZHuQEHLNdC1tLBheEKY5apCiKhBlBTXHYKsf0Q1SECn2mK0UJgVhHBOlOVXHmLiQ7SPNC3T16WKNLBdSAzTOmBm3hR9shdobRHT8hDDJUBUVKLjdGpEUOZemPKZKFkEnI4gyBnGCpeu8eUAv9GXAldkSd1oBm/0QXVcIk4wPt/ts90K2e5L9MeUZzFdPRzOy4ZljVyuLTpAwiGJ2BglWoBLnDklasNaRLGhRyDVgGKZMl6xjn68lS6fuyf2uK2B3EFAIBT/OcEwd21Cl25yqEjj6hP3UC2TxthskLNYc2dYZpRPGZ9mW8bSmKo/thBBCauGpivJAYj5Oc2mYVORcmS6hayrNUcR7GzGNkslXLtSpODr9IMEzpcPaw1rQu35CmOR8ujuk4ZkYmmzjNjX1SMU6x9DoBQmGrlC27yWPhBDMlm2G8ZAsyYkyySxbrNl8/dMWH+8MOFf3uDIn3arLtkaWy1buYZiyN4xYbrj0wuQQiydM8gl7/LTZ2aqq8PpCBUOVEhlrLZ8bu0OSTDAIE27uDYkzwZvLVda7PrapMluy0U+xILc7iLjT9hGi4MbOCFUtGEYZFcegOYxAyGdeUxWuzJ5eu1yaF9zaG/CvPtljqebw1UvT2IZGxdJIc7g44700SSmQibIPN3t840abvWFEP0i4PueNTVB05io2145ZnzbNJQszSnL2Bc6KMXu448u9Z7nuHDrbG7rUoG2PYs41XJKsYLU14vJ0idIJdVn9xoe7KAr89PXZ53qf/9Ufe5Wf/2++zv/2n37A//1PffGlEro/Co7t6iqKogLvCiFeP673fBaESY4fpYyilLprEKYFfpozU7Joj2KagwRFgapr0okT2n7CfMXm5u6QzugwSyJIMtbaI4ZxykYn5PpCmfVO8Mx28r0g4ffXu9zc8aUA3bhPPUoLojTj0kyJiq1zpx3y/fUenVHCziDiZ1+dI0xzFqsOc2WLAoGqgGNpNEcxmqYgkFUGYFJVepLT30lDURReXajgmjpxnuOnOd+40eSbN5oUQl6Pn3l17qlbKTVVapdUbYPVVghj/YI0FySZdC+cKefsDiIGYcZqSzLedFXFVFUu31dt0TWVlYbLKM6Y8kyGUUo3SNFVqe+z0ZVaAtMlnS+fbxBnBZ/uDgGZnd7fxHf6IZ/ujqg8R3++oihcnCkhmvDt211GUcZ81ebclMN3V0MEgrudgFGY8YP1HmGa87mlCq/OP1/C9GkxVbLwLJ3/7jt36AUpeS74qeuzfLozJCsEwzjjTnvEtGcQpAWWofEz12ePrd10qxfixzmKolCydaZKUoNCJqska2ffvWYQpeQFNDyDXEitoa1eRJTK6oyqyMTlb3y8S9dPWKzaOKbOtWOo2LRHMZ1Rgm2qaJrC+SmXIMkmB5OiEJP1phumuJY+TpSlgMKeH2EaUl+hFyT89ict1joB8xWLL5yrc37KnTiinSY6fsL7GwMURTo8/cS1mbH22YNzcBilrLcDVls+NVeKbB9MTPXCVIq+CkHPTx94/VGhqgrX5iqstXy+0WoRJBl7w5gpz+YHmwNsXWV7EFG2NW61fKKsYLosq5qn5SBZcUxeXzT4rU/3xnNYOrK2x4fwJCsYxSmf7IzYHci2gLcvNh7QBzoKkqxgsxvy3maf6ZJJfXw4GoRSs8caV1XjoUzgX58vT+7flGdScnSiOOfjnSH9MKPm6vzE1VkWazYfbsnCSZTkVByDMHuyNthBqKpyKBFxP7MhSnM+2h5gGSqGJtf33UHMSt0hzgrWWgFpLtjohQ+4i4FkJg2ijK4f8707XUqWTpTm/OLb5ybvP4hSVhoupvbolsNHwRkLmReF4PdutVnvRnT9hCQvUBSFqmVQLRmkuVyjun7CRi/ANXRqjk7ds1CAunf8CeUbzRHv3e3jmDqmrjFXlRpIrVHMQtVhumxS5ILmKOGjrQE9X7Zjz1UsQGG2ZGPpKnMVm81eyHzF4pOdAYWQVtkHk3j74sn7Lo1HDYDPT7l0gwRvrFc4fd/83h3E7A4jBkGCqkm28CDMuL0njUcansl3b7f49mobXVG5NFs6lvX6OGHqGl+8UKe8q/ODu1LU39QUQKHtR/zLD7Zpj2J+4pUZvnT+OSsgR0TVNahiMIhSNjsx7SBmxjOZr7oUosAPM4aRTEqXHZ0sFyyNEj7eHrDccDF19ak1BO9H10/4nRtNWsMUR9eZLpu8c6fHTNlmEKZcnC5h6QqFgGaQMF21JuvSdMmi4ydMl0yEkC57RSFZIxXbwDFVXlsoH2rXCZKMUSzb4faTBc1RzG4/BqQr6EH860/2Ji2XP/2KbFFujyJMXaUXxnx3rcNUySIvBHXXQtcVluoPJpqmPJPVVpeyrXOnHZAXBZ/syPf92hXtic++NDKSjpppdq/audry2R3EfLw9IM4L6q7BbMWmF2Tcavls9WIEgp99bZaLMx5hWjDlmXyyM2R3GJMVAs/QHtDEWh23bt5ujfj8Su1UJE4OwjZ13lyu8a8+3mWzG5HkBUt1h2GU4icZgyjnZmvIuSmXb9/u4poaXzxfP3EGqh9n/P56j52+LATfbvm0g5iSqdP1E8lA7oRYmkrZMfnDr86daqvhXNXiNz/aY6094sbeiCjL+fHLM1ybr2CbOtdmT7Vh6bG40/L5jY92+R8+2qUoCgrkufX3Vjs4hrz/1+bLR2I0PQ2yXNANUixNJc0LLKS4eWskCQD7yez7WY+vLlTIxtqn//j7W7RG0pTs6nwZ8wTu8a9/uMOXzj3/nL48U+I/+yPX+K9+7WP+b//6Jv/xz3y2WvqObeURQhSKovxQUZRzQoj143rfp0U/TOmFGa5pECQpqiKTGOa4Hx2kK8R622e54WLosgKxfzAZRPJgtN/+0/MzNFWVFElbnzBrngXDKMMZ29gmWTF2cpAaOXvDCFPXxpobxUS01lA1ojEtNExyhJBim4Mo4/dut9BVSeOVjl7S8vVO2x9XGTlxsdUnYbZio6sqzWHEdj9kpxchkIm0sq2TFWO6sRBomkrDNZ84XlNX+fGrM3zndpscUBWVfpCyUHMI4hxnbJG93y5iGbLitdePqbkaZVunbB+uClUdYxJwD6J0LJwpxSdlhVlM7OY7QTJxFRnFUt8ozQtWWz7tUTIRjX0eJLkU7zR0RSZSHZOZsimFnmsGZVuTzh9bQ9bbPmGS85WLU09+42NEmMhDl6aoaIZAQVaMPt0bsWyZrNRd4kxwu+VLIW9R8G98buGpkwBZIcYH+HvLlWXINijX1DnXcCcVXV2V1fY4L5ityMDLT+SzpCgqFUsjTHKKsbvUWjvgSxfqdIOUNCuI0pyybXB1rjzR5zgK8uKe9ttB7LPEHEO2iHqWjh+nbPVDEDJZduh6IkUWa57Bjb0Cz9AnbQJ1RydIM+I0H+u5eVw8oV73JyEcs80EY+csRXmkIL+mKmhji3JVedBkYrcfkQtAOR6GZ5BmoIJpyNaqkilNBSTzRwp07w5CNrohV2dLBEnO9fnTC97SQgpMK8hrttKQjovdkRQQ9yyDIMm42/Fp+wn9IOHn31g4xPY5ChRFBtXR2I0qziQDaa0ltVHOT3kMonSi9XTw2jc8k1fnK7SGMd+/22VnEKLrLv0o5dV6hdmKzXY/wtA1BJAfYOtKdl9xpLX8UQiSHMfUKVk6qiLZZraRoqqKFJU1NFRFJtcOjnsUZ2iKnG8KCkt1l5vNEaMo43ZLOlkt1x3W2j5pJuj4yXPde0UB19JkMUIITFVFKApzVZuKrWOZUv9sGKV0RglDLcMzNTa6sn1YUR5Myj0PikJQFALblELTDc+aMJKDOOfW7pBBlFGypcBwkkkjjSiV17vi6IyijLmKjXogbqqXLIpirDE2vt6yrdOXbSMJT+X05Fn6Y4sUVcfgbjcgSgtMIVl1lq5ScwxcU2e1OSJKBXEqyNSCvUHEziA6VIjz44wgyam7xkMT5kLIAoqtH10D6Glh6SppJtm8rqVTFzZZIZPx/SDlk50huqry2kIVx5RyE7kQ1J9BN/NpsC9hYagKmq6S5jmLNZdOkFL0Is5NudiGRmuYkBc57272eH9zQMXR+dHL0891cFptjSTTZJzgmqs6FEJMRKQ1VZoySDaleoid0PBMXEubmJZoqkJRiHFsLLjbTccmIpJFvh/HCyHj731G774pQz9MKAeH5+G+W3JWCFBk8viL5xt8e7VDlMiiyjBKGUYZy3WXunNP1iEYO3m5Ywe5q5Fso9ZU8GP5vmkunniOyAvBVi/k27fbuKY+SSIJIVuy4zQnTKTJ02zZGouXa3iGjmeqzFccDE09YPwkWZHSqERDUe85LoNcN3tBQsePAYXbTZ9XFyqnrkeUF4IsZ3JvpzwTTYU7nYDlmslS1SHNcj7dlYSBNM/56uXpY3EIfRjSvOCHd3v8q092SbKcN5drLFQdigL6YSxb4csWu8MIRVHI84K0KLAeYqZ0nIhSyW7LckGS5ZQtDUVRyfOc1iCh46ecm/KYGRvVvCikeUEvSClZkgX5vTtdfrDeIy8EnmVQsjSmSzaepZEXck4e1bTkqSGk2L+f5pQcyUi0xmduz9IfGavomkpWFCR5Rpzl5IVBmObHvmekecEHWwP+i5+/fizv9+d+4hKf7Az5a7/+KVMliz/5lXPH8r6ngeNOiS8AHyiK8h1gIhYihPiFY/6cR6LrJ4yiDNdSub7YYMozuThdouYYzJWloOpuP2Z1nF2+OltiylUwdBXbUB/Qqqh7JjXPYL5ijwOGw0HkvuONfPAevxjNlKXA7c9cNxmEKVu9iKuzJdTxAeVuL6AzTCjbBp9fqSIKWKy7VGy5Cc9VbFZbPjeb0j62apsMSbm+UGZmXPW/2wlQUOj4yamIBA6ilM1uiGvKlsn7g6nFqqy+liwNP85YrDnoKmQI3r7QwI8z/NhnoxtKXa2sOJI9ccnS+erlKcz1DnFSsFRzqLrmofuw3y5yoeHyD1rrCOD3bncwNJ2aa1B3TbqB1AA4mIRouCZRUqAoskLX8Eyaw4hekHKn8Fmo2oyiDEWR7jb7KNuyVet59TcAzjVcvnpJsrM+t1Dme3d6TJdsLs0Irs+X+cmrs3zjZpOdfsCeoqJpLd5YquKcYpWr4hj82KUpNnshry5U6Piybe/ClMtcxeKnXpnDTzK+t95hdxDzuzfbXJou8cZy7ak+J81k0u+V+Xv06MWqTdUxsHT1UPBk6hplR6ei3HOcmSlZpFmBriks1RwankE/TPiND3axTY1v3Wzz1kqVL51rsDuM+PEr00e2yO6HKUJIpt7GuOX3YCWy6hpc0UsT10aAIJEVzKwQGAc2t6WaI+ejZ6FrCnGa8SvvbRMmsoI95Zl86VyD6VLA6wsVLhxRGyJK84nt9nHBNXUsQyVIsokQZC9IUFAeEPmU4sAO5xqS3XV/sKtrCo6hkhWCK8fA8FyqufzYpSmSXPDaQoXf/GhXsviilFcXXMI4Z7sX4Sc5cxULhdPRmtqHpWt8bqmCbciD9r74dJBIHb6fvDZLmGR882aL9W7AIEx5fanK55aeLoFh6RozZZtzcUaSC67OyvX1bjdACJlM8mwdW9c4P+0eui+KorBYc1isObT9GA2ZDF6qO2OmgMH5hotjSOecharcN6M0n2hQxZlcl58Wu4OI1jDG0BSuz5UkcysRfPmCTWuYkBWCuZqFY+hcP8CS6fgJm10p9n151sNqaPI5ynJ+73abqmOy1QskW2IQMVu2MPTnWy8VReFnX5lFV2CU5lyd8QiSnDgTCCHY6clWwutzZaJUEGU5QZrR7gYUQjKvjjMxpaoKi3WHrxnTRElOP0wwNIWZsoUQBb9zo8VuP2a+YvH2xSm+cE46tzmmxkLVQVMVZkqCtXbAanOEY0hR8otTHrqmcmVWrjlJVnCnHQAK/TDllfnKc7euCCGr2qaucm7Kpe4Z/PBujzQXlG0HW1MZJjlRluNaOtMVi8W6LR0tDSmgHib5oUKREDJZcH7Km/wsLwQXpjzaY61LVYVX5sonwjiuuSZvX6xTdnTCJCPNCrqRy3Y35E47YHcQsTMI+MHdLq8tVlnvyGdHuhOeHBPk8myJrCgIkpxrsyU+3B7w3kYfQ4O3VqqUTE1qg6Y5cVrw8c6AG3s+jqlRdQ1+svxsrSZrLZ/WMGF3EDLtWfzRN+cBBc/QyIWgbBlomkKay2JHXohJMinLC27sDSkKaJRMlmoOl6ZLtEYxQZLx3maPCw2P1iieJKYO4uCuM1WyxonLTIobH8Arc2Vaw4j5mj3Rdqo4Bj/9yox0PBvF3Ngd4RgafpIyXZItpP1QMoMBzk+7VGxjoi1YtnWirEDTFMqW/lBNvIO43Rxxe280Zolqk4I5yEKrQNAomfSDFMdQWaza1D2LH73SoF7SmS49yAK+OOVyt+PL9lhU6X42NplYa/nYhjZxwnxR0DWVz5+rjTX8TGqOwXdWO1yaLuGZKj/5yixBkvOvPmnSHqW8bw24Olc+sWclTnPe3+qz3pJmROZ5lT/6xjz/+qM9uqGBZ2m8tlDhXMNlbxg/tV7us0AImWzd7oWMkpT5isMXzjVICkGSFiw3XCqezrmGNBF5GDNv3/gjTHMWa85zsyAfhfVOQBDnqCrUHYPbzRGDIKZi67wyV2Kl4TFdloxIz5L7+UnoJOuagqEqeJY2IRUYmsrrSxUuTXsTU6uDKApBN0iwDI2SpbNYc9jux7iminMCyTOpdwl/+LW5Y3k/RVH4q//um3SDhP/yH7+HZ+n8wlvHo1160jjuU+xfOeb3e2qoqkLNNYgyiylPukzsV58+3hmxNYjY6ITEmWQh9aOUFaTW00GtCk2VjAQ/fnTFDQ4/eK8tVFAUhSyXvceepR/KqtqGdB3qjmJ+46M9RlHG3bbPv/flFfyxLlYy1v6YKzss1x0GYUacSRH0QZSSZAVZXuCPDzFzVSk6u58Q2tfpqDjGoarWftAXZznTJevY+p/bo4QsFzSHMYUQzFUO22gmecFWN6QANFVlvip74RuexSvzFbp+zM4wZrMbSLe78tMF6VXbAluyYrYHA4oCVhpSs8E21EmSYKZsEaaSiebH0ro9SnMsXeNOS9rL71dwdU0GxvvQUOiH2bi1Rme2bD/QImlo0uHqYbbBzwLX1PnSBUnvH0YpvTCl5SfEac5OP+LdrR5zVYulusMozPFMab9saOqptfRpqsK1+QrXxoyDG7sjmr50kuuGCe+sd3hjqcJizSaI83E7jbzuz9s6pSjKQxOAli4dzYI4J8sFWS611uar9qTNxtQ1emHKKMnIhNx8zjVcZisOnqUdmr9CCPqhNE24X3fhYCD6ONz/Os+65ySkAP0gpWxrE0fIkqUjhKAXSmHsfT25mmuwWHP48oXGoeTPvoOaoT+oq1EUglvNEUUBYjzmfeeth6EoBINIGhM87h6lRcFiVT4jvTDFG8V8sDkABd5cqlIbPwNxmnOr6ZNk+US74v7PXql7XJktA8qxULirjsEXx60xN3aHtIYxQZITZgVRkrM3lC5EjZLJXEWuR11fWhGfVoV4oeqwUHXojwX5t/sRmqrSCVK+dbvJF5drLNdshnFK2ZKHml6QjFk2Rxujosh1Ly8EozhFV1UcU5nsC0GSU3YM0kIm4fthOimC7GO7H5JkgpJjcHWmRHnsyHm3E3C363Nltoyla+QCDoaTfpzhWs92L5vDWDJWURjEGavtgDgvuDjloioKqqKwUvcOtR7CPQZAmGa0hwkr4zX83JRHnMm2+WGcYWYF056FbahHTu4+FqrCuakSAsFmL8SPchRFJqaiTDJBpsrWuCVXurX1ggyVgp1ByOUZGRjL+/P883+2bDNbtvmVH25xsylbO/7EF5c5P9ZmitMCz5Ki1zNla+LqtI8oHduNF4I0Sql50j3yYMywP0VKlk6t7kyE4/fXDwTyEP6YQ8b9cdLOQAqtB0nO5xYrVByDharN7WZAIQSDOCctCgZBimvKtvr9z5WOteojq9jJ+P77cYauqvTDdGI/XxSQC3HswfA+SrbBly802OmFfG+9S54LLk579MOU7UFElAl6fsLdTkCS5Zj6vcPTScE2NN5akfaVRSFo+ykdP2arG7FUd3hzucoXzzekU1bXZ7Xto49ZTNGYgXxUFEIwijMUpNHFZi9kyrO5NOMxCHLqnsH6OKF8cVrD03VMXXlArzAXYqJxF6dyDKYumfGuqbNS97BNHRWFQZRSseV6fnmmNFlHe0FCIcA2JJuoHz5YsMmKgpJtsDdIuLE75LXFKlGa8/5mn0LAK/Ml5sd6e7ZxL946qDO1vxbJOSn3wpKm8tpChVGUkY61LR+FMM3RdBXXVCnZ+kRHdGcQEaeSqTwIpeRE3TNojhLqnkXVMXllrjq5XgchBFyYKmHrOq1RxLLhIg78jqGpLNZcKdpdkbpi8qyR45naqcWVcxV7klh8f7PP7jBGwNjRdoijySK9IiSbztLVE3FWjrOcYZxRdwxqjjlOLqf8cKNLP0oRQmF3kND2Y95aqXN94Vg//rFI85y1tk+U5ohC4Y2VGrWSyVY3QBQCS9MYRJLVXrYPO0EPI+nW2A0STE2jM0pOLDG1P73ao5heEBPEGWKs/3Z5tjxuD8/40vk6K42TE+E3NJVXF8qUbHkv96EoCn6asd4OsA2NlbozYRlu9AJu7/lYhsqbyzUKoXB9voKhKYgnhGBJVkwS0k96buJMstlrrsH/4d//4rHK75i6yl//01/iz/y/vsN/9g9/gGdq/Oyrx5P4Okkc614shPjt43y/o3/uvZa1qqOz24+Yr5jEqbSkvNPxaTgGv/ruNqstn0ZJthlNeSZXZkuUbIOpkpyMt/ZGfLDVZ8qzuDpfYm8QM4ozLoztcoUQhwL3/YVdCi/LgG2t7RMmBYauPLRNoB0k7PRDKe6oq3z9RouVhsvrC5VxEkolL6RVNiiTil7Z1tlVYbcbMV22MHSVyzPeofEYqjIWg5RskqIQrLZ9NroBzWGMpqhcnvV4c8xauf/7PC1qjoEfZxPr4TAJeG2xMnnvW3vy0CUQFAhp+zqQbYsVW+OH6z7fWm2joeAauqywH9HuuxAQZRl3Wj6rLR9DV3l9HESYmoKuq1yfl3TkH7syRXlzgGOq3G4GjMYOKyVbJktu7o24Old6ZF+9pDpnsrXgvnaFopBaB2EqncpOQih0qWbz8U6f7V7E7bbPN260uDpXYrZkMVsGx1B5Z73H5SmXmarDTj8aO/F4z3V/nwZX5kp8tD2gPYrZ6Ga8s9bjtz5ucmHK5cqMh6qqY0HlnM8tVtkdSgHwc1PuYzdGY2xrf5Rkqq6pXJku8d5Wj0GY8k9/sEnVMbENaSW/UJUi+atNn6wQJGNB3zArJsFfkhV881aTfpixWLFwTNlyc3817FBQp6ss1Z0jJSVdU1aGRlHKnU4oE0dCMFO2qDsmrqUzV7GkWGMmK9ZlS0NT7zE6i0LwznqXzW5I1ZEVWFVRHnB5EtwLDuJUmg94tv5IkfKNbkg/fDKLYNqziNOcXAhmyyYdP2FvFDMMExxT422vwU4/Yq3lM4hSySJJM64EyQN6Km9fqPNbn+zSDWQC9jjhWTo1z+C9rT5+JJPLaVYwUzK5PO3hxxn/w4e7LDccGp5kR250wwlL5KQZp54pE4CuofHRVp9ukPDpzpBvfNri8ozHhYZL1TG53ZRB6Lmx7XdrmFD3jCc6C85VLL671uaT7RGf7gz5xbeX0TWFjU4g2WKKFN2/uSeTlzVXPxQg7vQiBlFCa5hwru6yO4jxY6ndleUyYXp5tjQ5HAyjFF2VBQk/yiYMlqdB1THoBfK9wjTnw+0Bfpyxuufzh65O4dk65xreA3NzpmzhJym7g4yNTof3t3tcmSkzW7bY6UeIoiBMMiIU4rTg9WUpEutHKXc6gdT3m/aeOmnuGBqqClu9iGGQ8uH22DG2YnFxukTd0TE1lbpr0BolpKKg4eqsdULWmgGu0UVXJfPzyngP2ulHY5e5Z3MGvduRotudkXyWP9jss9OPmStblG0NXVEI45StvKA9ku07riXNC4pCWrOHScFrC2VemSs/8BzIViiZtF+o3WOnfHetw2p7RJwK3lqusTKu2sODsgL3x0lFIcbC8Tm2ofL5lRq9UOoD7Q4jFCQz9Y2lKst1h6woGEYpG92A9XbATNlipe7gWjr62DkxSDLmy3It3Rw7zZ1reFyZLckD/TCW7M8TZjkkWcEPNnrsDaR2jq5a3O2GqCgIUfCtW02iT5pUHZ1ffHv5EBP7pKGqCuenXdbaI7phQsnWWWv7eKbOv/xwh/WOT92xcE2NiqOjABttn2x8qJyv2o9lrMRpwWrTp+FJuYS5qsXN3RHvbqS8Ml+mOdLwTHmAO9iyn2RSVH9/zli6xnzVZm8QsdkL+WCrz0JVum3uGyRUbIO2n3CnJVt2PUvnTkfqUG33pA5ckGaTOXBu6nByBqBsSWZHUcCH1oDXFqvsDSPudmTyrGLrXGh4rLZHkr00jqErlk7o6hiaRsM1KYqC3UGMrqm4hso3brZZa/tcmyuxVHcPufOCZJONYtlGO1+16YwSOp41SewlWcG3b7fHrc0GIBglKdv9iIvjovNcxZ4UGYahFI9f60iWWpJl0iWyZBKlGiiw3Y9YrDlcnimx0Q3wY8EwypgumZJJtf+MagqqAkkuOD/lngir5WFYqNpYhsp6SyZSvn+3i2caLNVs3lypYJsa31vrslhzuDTjjbU4U2bK1lM7dYNcN3tBylTJoDmIuNMJyXLBa0tVNtojvv5pm44fU3UMaq4pmXun5O57EM1BzO3WgM1OxGY94OrseUbjLpy6a5IXgs2xpqGpS0IEMJZ6CcbFkZS5inbsCb2DWKja/PoH23zzZpsCQVEUiELO571BjKKCpqj88G5v0vVzElCAOBN8damMfSAe2e6HvLPWpT2KmK047A0k622x5vDhVp+dQUzVNrk+X9DwDD7oBZyf9p64X9xujUgzgWPeu/YPQ5oX3NgdTQxR/tibx5/dtA2Nv/lnvsyf/pvf5n/+977PP/4LP8bnFl8uo5D7cayJKUVRhsizEICJLKL6QogTFfCI0pybzRFXZkpoqoppqHz7dpudfsT1hRJzFRdNlW1n0kVB563lGm9fbNAPE3YHMcMo41zD4Z07HTpBOnYqkofBUZQRpwUbvZAozVmqORN65ErDnegKybYwa+Ls9ii3uWxcMbu9N2Lak251UVpwux0w5Vm8u9Hl+3e6dPyEH700jWVqbPUiLEORFSNFHsDv1wWBexpZn+6OMDQVS1f5ZGdIXhQMwpS6a8ksu5D6Gt9Z66ApCm9fOGI26D7UPZPaOAkWpcWhpMwoylhry47OumugCPhhlFEgq8jNYcRv32iy3gmIkpxhlBFlObYuXUsOalAUhcBPpEbXPkqWjqGqdPyErh+jqhqrzREVz2S7K13QkqzANXWiNGO2bLPdD9nqhQRxTtU1UDWFW7s+u4OIC1OunLUP+56uSZLmFMhK1MFlSbKwZAWv6yfHvtArisKVuTIogn/x3i7vb/bJheDTnRHLUw4VS+duO6R7O2XaM1mqO3i21DRaqjmnJuy8UHX46qUpaq7OP/vhNsMoYxinRGnO5ZkSLT/kk90BqqLw4faAJBNyrKb22MSUriqTuRBnOUXxIAtpH1kuDwDfX+9iair+WAup50u79BuWbG9yDJ2GY2IZCqM45Vd+uMVb52q8MlchTHPudkJ6fspuP+JHL0+R5VLzoe6ak9abmmtSCFkR1g+IOedjJz3X1B6ZFBxGGV+/0WKnH8nnsmSy24uZrVr0goQvna+TZTl1zyRKcnRd5dfe3+bqTIlXF6u4psZGN2CjG7LaKvixy9M4psbOIMQ1JBNiX6fh4rQ3Dmwle2muajFTls5mFdvgwvS9REQ2LknnuWC9HaCosv3xfiaCFN2vIoRA1zSmPA1DU9A1jSwT9IOUbpDgmhqbvZB//sNNskLwY5cT3liqYh7Y2JujmCgrSHLBZj980jR7KizWHF6dq3Bjd0hTgfV2SKNkkhaC39/o4kcZ/ThnrmxTd6VD1sVpDyFM4qw4cXciXVN5Zb4MCKJcJsn8pCDYTeiGCefqHlke8+5GjwKFy9MuuqaxULNYytwnJqaSvOC9jT7vbvSIU6kI1ihZ9MMUXVP5wrkGQgh+uNFndxCxVLOputK9K8tl64mmSk2nfMwsWWk47A6ke6VnaSxULQohg3qp5ZJOWt7lfHq6a7jScFmuC27sSW2oT9QhigI7g5C2n1ArGQ9ozoFkcM6WbW7s+OwMIsI0w48Klus2lq4RiIKPt4fUPRNVUXhvo89MxeKdtS5bvZDXFitMlUxsQ6M9itnuR5TH6+jjsK+fNle2aY5dDh1DQ1MUZkoWmZDM6m6QMIplcWMUSSv42bLFWjtguxdJg5B4hnNTDr/y3jaaCp9frrNcfzrXtn1dj9cWKgyjlCnPJExzBFLfxtJ11ts+31nrSB2psfmHZWgs1RyKsWacqijEefHQ5OzeMOZm08fWpaOpEONWyl5Insu9vxBiwkr6YKvPJztDzh1Ish2Mkzp+QmuU0A0SNFUmPPNCYOkKW92Akq3SDjL6QcruMOJSy5fC6cAwkMzVbpiyWHN4Y7lGN0jHe7JCL8wma/I+G0OuVeoDz0+UPh0b6En3YX38TMyWLQZhQj+Uz0bFlu0huRBULIP3t2Qys+IYGKrCj1+b5vp8lZor752pPZoNdhyYr9j85LVZ3lnvSOfUqsON5og77YDbzRGOGXK+7jGMMv7ut9co2wafW6iwWJdsv6O0Upm6lHsI4gzbkK1k7Al+9OI0ZUdHU9VJXL3bD1lrB1QcY5IYDRJZWNjsyHvdGsYUQs6j0lgjxjTuXaP99u00EwgE2/2Q76112BskXF+QSaFrc+UHrutKw+XKTAk/ySesTyEks1lR5Wf5aUaaS31UIeQ6NwizMXNeJvzfudPlbiei4RnUPYMgyeVrhjFzFdkuF6U5t5s+WV6Q5MWE2fnmco2ZisVvfBgyjGW7XpoXZDn4Scp81Wa57qGpKnNlE8eU+o2DMOX9zR6rTZmo/fKFOkGSc2NvRJjkvLZY4fyUNzFf2T+jOKZGxTGIUuned2NvNGEWliyN76x2SHNBxTHY7AW8fb5B48A9P+iIfZyYKll87fI0JUvnNz/coTVKSKyCXBTMVixuNkf0g5SikBIXmqayVHdRFJ46MVWM9W7vtH1WP5C6qLuDBNdUuThdYrMvnUIHQYZt6ry1UuOL5+sn1kYokHupZ97TP/LjlA+3pObVd9d6+EnOIMr4+q0WU54JimxdbjgGqRAESc5qa8RKw5F6SkjyhKooXJopTQgXx4X9c5qpqbT9mO/f6fKr725zuy1bqN8ax34lW8czNRRV6v86odSX2xgzJ8+NjRaOC/t7zd4gJsuLSVFrve3za+9u0fQTPn+uyr/5uUV643ZyTdFQhHT6dExpFvCl8w0URcoD3J+citKczV6IqSlj51rloTmAO22ffphyYdrD1FQ2uyHBU7JQnxZl2+CXf+kr/JH/+nf4y//oXf7JX/jaqZplPS2OmzF1qASgKMofB75ynJ/xKMSpFJ2b8gx+cDfhbjeg6ycMo4xf+LxL2da5NF1CAc7PlLgw7bLa9tnqhKx3AzxLpzmMKNuyimbrsjr0/uaAumeQFx7hePJ0g3six/viaaNYVvZMXeV8w6MbPDpBYZsaddfirXPS9UQKqsmqRC9IxyKECXEmWGuP8Eyd7Z5kRixUXaY8WfWcrzzMCcTidlMGbUGS0w9SNEUhB96+0JALdsXm450hH20PSNKC7lgn51mhKAoXpmXQcrC9qhvIoNiPc67NSUdDx9AwFIW6ZzKIMjRNJUgKFOQ1vN0c8v/5fs6Xzzd4dbEy0X5a7wQMo+yBxcrSVWYrNh9sDXENQS9K8VPpAFjKVcIkH4uvx6y1fDpBTJwUlB2DimOiCEHF0TG0R7cR7fRlpa3tJyyPWQMHq9i2ruGORbXv1yA7LpRtnZpr8YVzNTxb54ONDkGSst7MWax7bPYC+V0VhaQQVGyZtLtVGqE+IxPgWTBTsYiyMj96KeV2e8hq06c1ijFVhVGaMwhTKmMGiBSXz5kumYzinIXa4yuvUZpzc2+EEDySnRRlBTv9iIqtM0pyztVdcgFmWeVmy2cYjQ+MFYPdoWybu7nnU3UM6p7FXMVhtmyNE7exdL2zdPw4ZxTljKLwUJvb/WMQQnBzb0QypuY+iu2w3vXJC7BMjYoin1vhSue9fpDx8c6Qsm1gjRJqFZ31VkCc5RiqSqNk8dpCRW7+w5jZii2FT02dYZgzDKU4+n7L1r7QsKYqlB0pKP3h1oDtXoShSfvwfTvh5bpL249Js2LS5tD24weE4G1D5YOtPrqqcG7KpeaavLVcZacf41nSeW+mbLE3iDF1BdfS8aOMrp9MTAn2MYgybu75BEnG5anjrz5emPa4vlClED2uzpZpDiM6fsytvRFxKltnNEWKzwsFNnshry2UOdewT802e65i86VzDdrDlM4o4sbeiI6fMYr6TJcsWoMYw1BY68i2c4HUY3lvo/9Y5lQQ5zi6NGzwTJ32SLba+olcq5Os4IcbPe52fBRkm+snOwP2BgkgWKo5XJsrE2cFC1V5qNdUhUuzHh9uDdkbxLxzp8fbF+rj1g/BXNXGNTUMTX3myvo+e2kYZegafP3TlmxpTDM+2BhOWmr222z88WHXNXU8S2qwRGlOxdLG+owm722EEzZW3ZNGEjuDiM2Oz41mQJoVfH6lBsg9Xgip+3BQJPhRMDRVOlRaGl9YqbE9iDg/5YAixf2bw5j1jo+hSpdBS9fGQvcalqGxN4yIwpw0L/j6jSbtYUI3iDE16d518SmYr4amUnF0dgcRX7kwRXMYoyoKwyjFtdSxIL485DaHEYtVm9+73eHyjEfJ0nljqUrZMnD04pGV4SDJcHSNOJNJuJ2+POjWHMk+vzZXYr4qRW0/2OrzL97fQUFei30cjJN2BxGqokwcbT1Lx08ybu5JFs8wlqYJgaoQxAXNoWSdp7kYC7SruMbBdqP9FmyZAEkLeZC1dI1GyXxoUO7HGZ/uDlE4noNaL0gJxgWrfpigKioCeWA2DY3zUx5xWlB3Nb633iXJC8I4ZRjn/Mv3d+n4GSVLGx+MdK7NnZwFfdUx6PopX70ohc1tXeVX3t0iTFMcU8fSVMIsZ3cvZLMb4Vkyrpyrumz3Qt7b6D9yvzM0ldmKxXRJFnL8JGOrL23iZ8sWFdsYt3Lfw/ubfVp+zCjKCZOMyzNloiwjTDIKCoIkY6ZiUTIlG1EIeQYwNYW5qgUCyfoZJz1zISjZMpEZpRnvbvQpj5l11xcO181VVeHLF6fY6oWTVt8wydA0xgLNOZoK317tkKQ556dc6p7FZi9gxrOYLkv3v2TspOcnGdcXynT8FFUVXJ4pc2FaXifpGCwTwZqm0B+kVBxjHK8O2e6HZIUgzWTRNy2kgHkQyzPDbMViseayUne4tTfik50ht1tD9obxOCksnw/TULB0mQhtjAsPUSbdyvex/+e8ELRHyXhe6BSFbAm62/b5eGfAW0t13lG6/MS1mcn60BrGE0fs48Zc1eZSVOLqbJmZssWtvRF+lPHd1S5pURCPC+LbgxhTkzG/Pe5qeBIbfx9BkrHa8lltjrjVHNIJMtqjiL1hiqlCL0zk9RTw2lKZpbrLxekS8yeoxxWn0n123119bxjxzlqXb97YY6MXkucFSSo19xCS6VexDdlya+ucL1vc2PUp2/qEHaWOW1uDJH8qWYCjYrXt0/MTtvoRwzDlu2sd4lQylQ1Vtt1em5MM67JjUHJ09kYRqiKLtftn7F6YTDoYjgNJVnCn42ONHez3kRZjMXRLtgDbY7dKXVWYq0iW6LV52YWQ5gW/v95lZcrjde1Brk1zGBPEOQGyEJGLB88HQZzx3kafNJeGTm9faODZOtoRTUOeBw3P5K/8wuf4j/7+9/lb31jlz/3k5RP/zGfFiSolCyH+iaIo//lJfgbIjWS6LJ0xbu4N6Y5SokQe4pbqDrYhK2OeKQ9nMxXJJuj4CbtD2W5ybspFV6UA8XLdZanuTKxrAVBkAiNI8geECw+yhDRVwTE1HPPRC9bS2D1urS0F7Eq2ziBOyXNBlBVcX6hyc2+IpavMVx0+3h6gKiqO7krBXNd4ZBW17pm8faHBZi/Es3Q6oxjb0Hh1scy5cYtGaxTT86Vl+DCWrRfPK8BqaOoDD2HF0RlEOjXXpGLr6Krs1U2ygq9cmKI1irg87ZHnBZYhnfXW2yFbvQhNUbh4oN0oyfcdTQ5vfI2SRW0Y88p8mawQVB0DTQFbz7m+WKbiSFenYZjyye6IMMlY+f+19+Zxkl5V/f/71L519T49+5JJMslkDwlJZA+7gAQFQUUEVFxB+QlfUFD4iV8BQVFAUUCIrKIgYVMWgUDYCZCFkH2dyaw90z3dVd21n+8f51Z1dU11d1XXU8skz+f16ldXPfU8957n7vfccz5nLM7ejUOct3WY2QWL9LRtLFFTNhyZz3EsU2AsGWEqHWM6k7foL2rv2eiqVx3su4loKMhZG01Rt3kkQa5Y5K7DWbKFMsGgWSvlShXSMSvvktrm88SC8ZINx8MtE3p3gk3DcSZTUYZiISYeCDObNfesbKnMRCJMOmoRnhIRi8hYKCnZQplCOU+htPrJa75UqbmlrXSynYwEmRqOEpgXztmcYMd4nJxzB9o3a9HIZhaLHM8WGI5F3ImgTea5kkW8K1eUR+wYZSQRIRkJsSEd48SiRdWqnjathIou8Uusdvq+MR3n4GyeVCzIpTvGKFWUmYU81905Tb5c5mgmz2K+RCIaYj5XZDgRIRQKkCsaV8d8rsQ5m4dRhUDAeGXikSDZvHFeNYbABuduOBJn03CMu45mWCyWOLFoPC9VxVQkFLC2VCwznzclYLPoWTftP8HPDswRDAp7N6UZSUTYOZFy0UHFKQhCTKSibE5HbaMxn+OxeyZP2hTO54puzAwynPT+9HEoHubp527k3M1pCiXlxGKeq799P4WyopgL2LaxBIIwGreACDMLRb5z93Eet2eyJ2GzR5wlXioW4u4jWUKho/zs4ByLFbNem0xHGU1ECAWdJUuxgmIWAccX8jXi6kak42Emh2OcMWlWBxPpGIVSpXYSmCuVjSewooQCVv/H5gvM54tEg8YHdu4WU/48cHyBheksO8cTTKSiREJZFgtG3F4oG0nxYqFc40rrFNU5JRoSHji+SLmiTA1FOejCvM/nSjUOteOZAtmCueiMJ6NcuG20pjTJlyrkiiU2jdicmc6VSEaDhAMBNg1HeXBmgU3DMbaNJ5b6jRqZ/7axk60Fm2HraJx03MLVLxYqXLIr4EhqF8jkS+6gwCKpCkFGEkHS8Qi7J1NEQgHuPpIlFQshoubeJcpQzOb5B2cXCYeErSOtn27vGE8yFDOXpAdnF9g8kqBYto2OADvHjcPyzsMZYhFhPl/i6HyBQGCevZvTnL4hxVyuyIYVoq+NJ6MsjJZrpOmLRXMJHE1GOGfzMJFQgELJrPXmchZS/YSzDK2ifp00nopSKFv00UVnPT23WGJ2ochioUIiEuTCbaM8MLvAQq5IIBBgsaBsGI5QrphF9oahWI242U69hcViiUgoQixkLivbxxMUShawZqghEtPhuRz3TS/glffuUCzEkXn7HAoG2DFuh0PpeJhdE0lQMd4krdTmvU1pi0ImEmB6Ps9900Wm0nG2jycolZVunS0lIqEaBQPA/9x8gNsPZ2z8HragFWPJCPcezTC7WKJSgQu2plHUuasJx7IhNg3HThrfQ44TCKBcrjCRirFnKsU9R7PEwiEaj0QtsnaRI3NGDxFwVhUZpzgslpW9m4fZPppg43CMhWKZ/TMLRIIBUtEw6XgdtUVQatyxRzM5fnzfcWZcdO1j2Xwtil49VJWgmAV0yilKY5EgqWiYcEgw/YQwHAtRiYbIlyrML+b58X2zDMVDjKcibEzH2TmRJB4JMjlkB16pqFEC1M8nVUU5wJnjKTamLcCDRQCndsBGwJTZW0fjFnW4pBxbsDWMkcJn2D+zSKFcZrFQIR4KMTUcZSwZo6JKfNc42bx5ewQC0pQQOxBYqifFFLUbh2MUyxV+9MBxopEgG0JW3qmIWVdVFVPpeJhs3lxwvUY6FubiHaMko0GmMwW+ePMB7jicZT5XYjwVZiQRJhwIMJEyi6Fc0aJtRjJ5VLWlYDsPzi5yZC5HJleiVIGxRJggSiQYpFguM7dYolhRto7G+flzN7FpNM45m4e7SpOhrmdU9z75YoUfP3Ccm/fPkS+XmRiKsX0sSDoR4vQNQzxi5ygVbO1n5RFlPlemossDMq3FH9oJMnmLfnvv0QzRcJBgMMDkcISjmQiRkFnmnrdtmAABdk4mOJYpcsbkUI3TLOCaz1DUW6+TQEAYiUeogC3S3etfsGXYPApyRR63Z8OyMTDiAitV++uN+2a560iWfTOLXLJ9hHTDnjkZNQVgMCCMrcDjPLNYYDqbr0UcDTlu4jmPKSxWws+ft5En753i775yB089Z+Myb4lBgteufL9Y9zUAXAInzTueI+o2U2AcKeFQkJ0TSWJBYeeGIc7bMsKo4w5JxcLkixUqTpt5YqHIhdtHmF0oEg2FSCeMfyoSChAKCouOqDkRCbFjvHln2TAUIxq0CECtbGLCQeOGuu9YloBTkE2kolQqFcKBABuGYpy3ZZjFYtlMfEsVMrkyuyaTllc4sOqAOJqMMJqMkMmXmM8VSQnLOkk6FmZmsUA8HGL3jiG2jMTJNpmgO8VIIsJQLEzAuRxuGTVy6fFUlOF4mIoqTzp7it2TpkG//XCG6+8/zvxiqWYSWcXW0TjHmpD0TaVjzDr3uen5ApNDtpgIBwO1zfp0Jl/jaEFgJBnlUWdMcCxbNELIiSR76vz9j87nqVTs/1Q6xngqwrFMgQu2DTOaiHTVJ3stGLHzKIfncsxmy0wKnL0pzeRQjMVChUfuGuVnB+e5f3qBWCjAHUfmLHpjrgj0JtpKKBjgrI1DRALCbYczJBfybB9LcMaGFCBsH0swmozwzTuOIgj3TWcZioYJjcWbuuhUkY4ZOX6prCuGqxYRLt05ztH5HLGQ8SjccSTLTLbErvEU2ULJyNgLZYbjAdKJEDvGLGLTltE42XyZfccX2DFuZvLRkJ3EJyPBGh/QahvVYMDa+XyuuKqSbSod4zFnTLBYMKXQvdNZ7jySYTwZrUU2vPNwhngkyFAszJlTQ8zlC5w5aYSRDxxfYNtYnDOmhggGbCwLBwPsmkxSUW16ShgJBjjbnQ6fvTHN9FyBWDjA0UyeqQaz91g4yJ6pIRSaTrBzi3aiWixrLbw20NRCZiQV5ennbmJ2ocBYE8XTWDLKrrEk2YKRYHYDiUiIPRvTlCvKA8ez7J5KEQ4JqViYS3eOsmU4welTKQ7MLHDtHdPcediUcvdOZ3vqj797cojto0lzCSuUzTJoKsn4kAW5mEiEufaOaeLO3ayiBTamzUW5mdWUOjfTnZNJptJRLts1zs37T5CMVJhKx2uRLXeNp9g2GicYDBAJBihpha2jydrhwMyCuauDWbiNJSNcftpYjcuuSpreDXejmYUi28dMoXD6ZJJ0POwUs+kah1rOzenlijKSCFMBUtE4oaCNL9l8hVgowEQ6yt6z0tx+aI5cqcJwPMIvXryV+44tMJGMkI7bmmCxWGEkEWlZKSliFj3pmG1Uq64MIgucPjVEAChVIJO3CJXDsQjBoJB3oeQv3TlmSkcgHgmRjIUYSYQISpD5XImZTJFYqLDiuNcMY8kIdx6pMJaMMrtYYDIVrVkDbR1LsHkkwVmb0hzL5EmG55nPl9g5niSbM+uzyaHUinyJw4kww4mlfrF9LM5crkAoEGD/zELthF+x8PbnbR1mNGFWqW9vll48XJtXbz80TyQcZHahyDmb06YwToY5e3OaS3aO8uMHZlGMN8Q2khU2jRiXVTUoREUhHjbuqHg4SLFSYSQZrikyS2WtKaqqCAdsPlCPjD5i4SBnO45REWubk0NRNo/EqaiSjNnmZDabZ9dEkh3jSbaPJyzqb94IeePhICcWCwzH0z2z3swVyywWKwhCOBjkqedMsSEdo6LwqNPH2XbHNMlIiL2bh7hvepFSCW7cd4LLdo1zaC63qntxxHExhoPCVDpONBw46RAlXyyzfcwUq9GQ/Z7JlXjg+CIVtX6WCAdJJ8K1YCHNuFwLJbOsGnIk6KWy8ujTJ9k8knFk2ZGm81XeKS7BSJuH42F2jhu/ZKFYYUM6RihoXgKLhQp7Nw9xx+EMW8biBBCy7kCqGtUUzA2wGnFx58QSR1M0FKxxTVUqSiIcYveGMNFQkAeOZ9m7Oc1CocJZG9Pm9hkLWxAXYPdkinyxQjoWJl+uEAsFSYYDXH7aOLFQsLbnqY6J9ZtuWAqaEg0HTlJU1EdTvePwPBduH+XGfTMMxUJEgkE2jcZq1o1g0atHHddXt7BnY5rTK8q90xnm8yXCAeHcrcOkomEmh2JcunOMT/94P+WKcvd0lkJJa0GjVrOaKpSM5uTgiUX2zS6wdSTJWDLMxdtH+NEDs8wvFrjt8Dxzbg926WnjnkZSXQmRoBkhVJWIkSAcOL5IoWJj+sXbR9k0asr47eNJRhMRHnX6BMcyeUYSEeKRpai13ebKrGJqKMqP7ztOUMzF+9IdIxQrZcYTMeYLJeKRIBMpU5YOx8JsH0tyYHaRgAgb0zE2OsWo1/LGw0E2pmPsnkyidXvnXAmevHcjFbS2Nq6icWzIFStUnDpjLlc6STE1lozUAgs1mzcLpQrHM0V2jSUpo7X+uGUkvq7oxeuBiPBXV53Lk/7uG7zmUzfx8d++vGdtox14fRT8rLrPJeA+4Nke57EiCqUK46kIM9kCiUiIDUNRRuIRRIybZsuIhbpOx0PO1C6CYOa0U2njoaj35U/HwqQ3taaEaAyRvhYCAWE0ETFi41iQLaMJiqUKkbCQitgpwHy+RDQYIB4JkXXkhw8cXzAi5g0pFFPKraSkCohFNooEg46s1BAJBThzaojFgvFoNW5KvUR9Bx1LRpZZVcXCQcKhIGdMpdk2GmfbWIKj83Yylo6G2Xd8geGEdfZEJERirHlz3TGRNH6U0TgbhmI14tj5XKZGBr1tLM6FW4cJBMVCz0bDHJqzk/dSWVE1a6yAGJ/UgdlFEhGLjlaNoDUoCAaES3aOutMF4bTxBMWKWc5MDsXYnC2xkC9RLleYy1UoVSyKY6dE9+1ARNg2nuQp52zkwdkF5zNuPAg7JxJmaj8UdZF6yoSCtvktlU/WY1dUWSiUSERCLdXDsUyeQ86qwvjPBBFzM9k5mSSAcMVpdno5ljRF13AixNH5Ys0nvBqmun6jvdpiRNXGkaFo6KR2vhIOz+XI5sscmc9TriixUJCclp0FUpiNaSP4HYmHEUfmWyops4tFRMxvfvtYYtmGpVmkwmZIRkPs2TRExm1Cm2E1H/RH7pogWzD+trM3D614XxUH53LkChXK5NjboOiZHIpyztY0QRG2jna3nwXdqfDjzpjk0FSKqXScZMSigo0nIywWyuwcNx6UbMGs5HqNcCjAY86cYDJtEdOS0RDjSYvAGQuZWwwKmUKJYMA47pr1G7B+WCwr5Yoyky0SDgU4Y2rI2vcGI9p+4tlTbvEeYt/MIhDi/C2jyzbt6ViY484Ns9rGEpGQpxFkVkLVqmAoFiYZC7O3Qbm5ayJp1l9Fi0C0eSTONvdb0UV+K1XMhWXDcJTj2TwPHF9E1SwqtoyOMDkUq81VC4UShXKZSDDY9qLNosFafxxPRtk1YREBt47Guey0cX528ASiQiwSQFV4cGaRyaEI8/kSp00kScVs3htNRDhjKkUkFKxF/lxPUI2haIRUNM+QU8AePJEjHlk6yAsHzVp4x3iSQydylMoV7p7OEgsFScWK7JpIUqkoxcrKbn0mW4BoKEilsiRnLBwk6g4J2wmjPhQzF9NQUDh3wwhTabNaG0nYAcuhEzkqahv8x+6ZrCmawgHhxGKReNh4zzIuEmz9QUepXKn1lUKD9fX4UIQNuSjDMe82nfXtp15hUypXiIdDlCvKnk3DJGNh7j6S4axNaYad4rVYqtS4tmLBAIuFEvEeWG9GQ3awFAwIk6kIZ20erm3si+UKl59m0fFGE0HuKmcoVcoMx0PgLDgLpcqqCuqJVJSxhHH4lcp6kvXOeCpKvlRh82icTekYgYBw26E5U9QG4PTJFFPDsVXnukyuyN1H7eA3GS1w2mSKoAjhUJAdE0kEs0Bq5i4UCVp0zMVCuTbnz+ds/EkNL+V5xe6J2ueRRIRCybiPHuHcgcHWEaVKhXx5yXq6uMJY/eDsorPgt3ecSEUZ3jXOg7OLFuVShHAwwKZ0nJ3jCTLOPSodD7N/ZoGgW1tlC+b+OBQL8eBsDkFOauvFcoV7jmbIl8w1cM/Gld1EY6Eg+WKF0yZTTvlkvJONa8leRLQNBoQrdo8zEo8QD5u1UCxkEXbDQWHrWILj2TwLRTv4PprJc+YKXL9VCMqxTJ5yBYZiEdLxIJtG4kymY5wxNUS+WGHrWJLZxSK7N6S6FsGu2btWXWOL5Qr7ZhYZG4qSL1fYmI7x7Iu2UKoopbLWuHfrFfzQO4UUVIMBKcWKOo6vOGdvHiYWCjCSMHqLR+4aYyZr69dYxAwI1uJw9ALJSJCLto+wedT4BavI5kscdvvA+fHSqmv8J501RSwcZDwVWdH7ZLVxLxQQwiGzphpLRVY8gO82ptIxXvfzZ/Pa/7qZ93/rHl722MFz6fOaY+olXqbXDkpli6yGGufJxnSMfbO2oDswm6NcMaLln9s9XhtQA4hFw5EAZSmzcThmBHI9wkgiRCKcYM+m9EknFvtnFpjJmlngjvEEx7MF44QJieORylCqmLvcSh07EQmxazJJqVw5ycrntIlkjaS1X4hHgpwxlULVFrEjyQj5Upkv/vQwmVyRH947QygU4Lwtw6suamOOr6GKKoGzOmLqVNSsJXaOJ7njSIawiw63eTjO7YfnGI5HmM8Xa1FXto7GiYYClCvKobncQCmlqtg4HOfp58ZqbXmhYMSb2byRfaeiYWYX8kRCAe6dXiAaDDIUDdfM2nuBSCjA5bvHUTXCwKprW6mi3DudZTwRJZsvkgwHODyXJx4JcOP+WX5u9/gypUi+WOHuI1l2TLTGF1CqW4gMxUIsFiLoCJy5YYiRZGSZgq5cUe48Ms+hEwVGE2ES0RDHs3n2HV8kGBDO3jTUkjIvXypz//RCW1G0qnJW1DZFuWKZ3RuSbB9L1qwMqzgyl+PwXN7cNkdiZHIlDs7mEOGkSHytYsdYYt1jwMRQlOc+YmtLZaOqbEzHyObLTaNNHc/muXn/HKp60qluN5CIhLiibh6o9h0Fd1IujCTCHJzLETpwgj0bh9iQ7p7yvhm2jyfNvVDENjwVJRQUbj80z1gySq5YYrFobniH53LO5TR6koVPsWyK6UOzi0RCAR6YXuCiHaPL5oOqGyXYKXyVuL8eyWiIvZvSPVNs12MoFjbLmRXyTjYoH+oRdlaCuyaMI7IadTIWDpgpfSDAHYcyBINLyjec5dXGsdU579ZCIGBuRNXxpuiUEaoQjwQsVPdCnpnFImOJCFtHEwQCwoMzCxw8sWjBT3aPs2MigSrrstTdOZFgoWDWIZtG4myqW1Afmc9x+ES+NoZMDkW588g8+48vMpYMu+jANj4WS8pUOrpiPwg2cJeAKSCq9AntWNJtHokzkggTCZqrQ72CtKKm4FksltkwFCMctMi7mVyRe6cXmM8VjUfHRVxuXDeEggG2jcWZz1kglf0zC4wlzTLuwGwO1HgPu41QMMCZUykKZVPubxyO8Ygdo4gYYe6JxSInFgssFitMZ/N8465pEuEgj9w1xpbRRNe4psDmnb2bhzm7SX8PB+1Qs1g2su90PMzMYpEtwzHuP5bl/mNZ9h1f5MqzNqx6sHF8oeDW3nrSu9RvyKtIRkJMz1vE1x3jCWKrKOiOZwvsP77AvdNZNo+YhwHYAYh5QhjPW3Xd2YhAwKLbVvvtTLZQI2VeaQ0SCwd50t7lYdjr+85kOkIoCPmiklwpcEt1PVCxOtg9meL2Q3NsHI6bhaDA3s3pmlyJujEvIMadc9+xBfZsHOLBQpkDs3kW8iVCwQBbRpf6baViPJj7ji8QEDuoKVdWdhPdNhZnvBDhrOAQ83nrN91sf2th9+SQ8QW7AB3VPnT30QzxcJBYxFzAHzi2wHQmx1Q6yiWOtLoZ9s0ucv/0AgdP5Ng6atZw4WCAE4ulZfuTXh7sNmL/zALfvmuaxYJFbXz2hVs4Y2po2fv3E/O5Ij+85xj7ZhaMGmcswdbRONtGE4wkbN9RLbuJlI2vvQrKBBas55YDcxzPFnjiWRupVmMqFmKji2SZWEOereMJnj+2bd1tIBAQTp9MDUR9Pf/SbXzjjqO8+X9uIxkN8WuX7Vj1fgs8kWekR95CXrvybQXeBTwKc+H7FvBHqrp/lWcuA94BlIHrVfWVInIC+Im75RdV9fhaeZdVa9YOI/EwM1okGQ5T0Qq5Yrm2aW+0ZKgqMSLBICPONLhSUfbNLJh7z0hi3SbU2bzxwTRblNnpJAQCtvhTVe4/luV4tshpk8kaT025YiGS1ZE5qlDjnbA8lhZRZRcRoboYtPcKWPSDhs4UqIt01k80LhzDoSCbR+McmIGCCwd9+6F5RhJh5hZLjKxhmZbJlxhNhAmIcZ9UBwA7vQ0QEBukYpGAix5hJ2OHTuSpVJRSRR1hqZXXSpYIYJvYw3MWuakfyqv6Oq2+Z7FsYUcnh6IEA7DveJaZbJ5cKclPD5xgOB5mcii64qldN+WsTkQnHKdCPBIkHBKyhTL3Ti8QCkY4dCLHzftn2ev89+vN/IsNxJqVioU2jkUCy9rRZCpa416KOY6ZeDjE7GKRkWRkWbllckXuOZolKGJcdO7EDUypWVGoHrBUXJjbZi67Ve6rxpNJsEG9XNGTTIO3jyU4li2QjoV4cHaRWNhI1huVUsVyhZ8dnCNXqDCVjpJyvBbVfOsVcapGqkidZctK6HQMaHWCFjHlerZQZqKJK9+901mOzOfc58y65WkHzfpOrlh20WqSHJzNUiopB2dzFnY5EuJErsBkKtZVd4VmMlbnj3ypjKpZxQ3HQwQlwF1HMjZfHV9gKBri7M1pIqFArX/nimUmk1EqzprhnqMZztu6smticJU24eWiPFcs16JprYVSueJ4Tdrjrjo6byHGx5MRxlPRGj9hOhaqWU0fnstRKFXIZkss5MvMZIskXISqVDRUm5s7Qb0SvJpUKBBwhNMF8qUKE0mzkI4EA5QqSkCsDjO5EjscD4S6sPGxho2h1kW/a4QRgJs1WdWlJZM3fsJMoUgq4tyc3BgiCJuGYzU+kGK5QtGROGfyJSZXkKFUrjhOsOXz+XrXTist3Kvud6VKpWbtks2XyDrS3Pl8kbAEqFQgVzCLo0zeNnNVhdmIc8e/5cBcLYrk5pEEmVyJYECWuSZ3EyGneKui2k6CLsLr9vEkxbKSK5rr1qETee6dznLT/tmuW5bWy9OIcNDc63764AnyJWX7aILxVMQI6edytYOn7WMrK9Cq6yoRWTZ/rYRMvkiuVOb+Y1mCApfvHmco1py8uViuIGLteCgWYpuzVBORmkVEqVxB1hhLqmkXK0vtobxCP6tGYBQsql84GGB+scjcgrkvzWaLFErKYsEi/p4+dbKl6eaRGNOZghG6uzE/GgqiRbMeVIW7jmQIBowOod5Cqbr3qR7GZvIlMrkCdxzJcMHWUY7OL7nRl9WsbCZSUXKlMltHlyI3V8eS+j2LyNKcMBbq3cH9aqjWTX0fKpXNdW9qKE44kOeGfQUSYbM43ZCKMpqMkIyGUTX2plK5wrFsgVsPzDGXK3JisciZG5NsGrb6K5aXW4n2WilVLFe4af8sKBzLFhBnMbdlNEHY1U/jGNIPLBRKfP7GAyzky2QKJYbjETYPm7VZMy6zXiqkqsiXKhzNGI9tvlgi7jisxpMRyhvMeKPZoWkjOm0Dg1BfYO/xjudfyMKHf8TrPv1TrvnJgzz1nI017uoTC0XunrZgCnceztT0Da952lk9kc9rzcQHgY8Bz3PfX+iuPXmVZ+4HrlTVnIh8VETOA25W1ce3k3GVGDCTLzE5FGU6M0uhXOHEQoWtY3FQacrPsMVxFyWjodokmikY8SYYUXirFhD1OJaxRcT+mcWmi4jqwC9iC5GFQpmfHZwnXzT/9it2WzSdVDTEaDJCRZVCucJkKkrIne5XF91V3DudMeLDSJDTN6Q4eGLRnTIF2D2Z6pu2vx1MpKKMJ6OEAmLm3oUKdy9kODqfZzwZZccqUbuqViUiNHUdKJQrtWgIU+nl5HSTQxFu3n+CgjsZ3joaPylqSbP88sUK+WKB8WS0q+GcW4VFvjFT2lQ0SLZQ5vQNFU4sFiiUK3zrzmlGk5GuhbhtBcOJMBvLjpQzFODwXI6zN1to8yPzOYrlCndPL7DHhXKuRnhrVCrXm76ftTFdW6gFAlILFVwqVwgE7BQy3KR+soUyiXCQxZK5tYKdyB/PGgFpNc1S2aKXPXBskcl0lHM3p5eZ/ZqrSfikMSaTL3Hv0SxgC8/6wAkxF54dIBzMUyyVa9G96jGzUCAZDVrYcMcHMTUUJSA4wlcbxlWVWw/OccfhDCNx42SZ6rGlTzPMZAs8OJMjFJQah0A9YqEAhbJxBCUj/eNvq7r8LhTKXLprjIXiMUJBIRYK8q27jnJi0Tjpzt3SO86pekRDS/JNpKIgGbaOJcjmS9wznSEUFKazeXZOpGrRbdKxMIGg8asEgwHCoYDnIb3bRX10zanhtcehe6az5IuVWnSiVlEN5X5oLsd4KspQLMymkViNo+7QXI5C2ZQXW0fiKMJ4Smo8iCJw68G5Tl51Gerb10Qqyv4Zs1iIBIMsFMo8cMzc9LeNGuVAJBRY5ma/77hZe4WCwp4pI7NXVe4+mq3VdyNCgaV1Rth9vnHfCY7M5Y2bbsqipVXHkM0jMQplU/pUx77JoSjZghEh759ZrBG87nHuXnO5Yk323ZPrs95sB/Vj7LFMngPOclQEAgQoqpKMBomFAzxw3Fxxj87nllmcVTd5hVKF2YUipfICxUqFdDzSFo9XN7FlxLiYto7GOXBikUyuxN1HM9x2YJ5Uj9yJVsJCoUwkGCARCTCWjLJn4xD3TGcple0g+O6jGR6cWVxmoVePKql+MCAtWQJuHo7zpblDZAslbtx/guGEudM0W5tPpKKUK8qGQJQNQ9GT5tP5XJH722ivE0k76BJhxYPRmYVCLQKjuR2H2D+7SLZQJBCEbWMprr9vxlw0K8ZV1Oj6Fg0Fl3HNLBRM4Tq7UGDvpjSlitb6+YnF4rL10OaRONOZPMmI8aqNJsJ8755jzC4UufPIPBfXcTeG66wGJ4eiy97/vmMLZHKltiy/BwXbxxLMLBRIx8PceRh2TSYpFI0/6vr7Z6lQYed4kng4RK5Y5is/O8SJhRIzC3YQuX08waaRJKdvSNX2Wv1ENXjEsWyeiWSUzcMxiyg9NDhjFFh7//bd0+zdmGbzSJwdYwm2jiX6usdohNH5VCirEgouVzZW99zFsg4sGXg3EAsH+cCLL+Wj37+fD3zrXv7qC7cu+z0cNKvNR+wY5QWXbmPLaJzzerT29VoxNamqH6z7frWI/PFqD6jqobqvJcxy6mwRuQ74NvCn2uKRZZX0G0wTWlGIhoUdYyuTeEZDwZP8ReNhIzIvV5qTCLeCgpugjbvoZPGn0kbMHQnaRrNc0dpJfCQUcIvYpYmhMRJgMx6b6klf1doqkzPl2mKhQqmiy3xrBxVVE2awTcvB2RzHsnnmF9fmSKq3IimWlcbD+HJFSUZCJJ1v81jSIkUEpBoBysp4oVBmyyoEnlWk42FyxbxZ/gxI2YosRVbJx43EdPOwReJ6YGaRios21e9Jozqxqiqnb1jiO7th3yyCcHzBIqoUSnYSv7EJD1rVOqlSsVPCYJMw36FggNM3pMgVK8vIOqtIxUJMDEUJiNT6WCx88piQK1VYLFh+i/nySWGRm7kfwPIT1tVOhneOJ8nkS03N/FPREPFwiG2jIU5zUUJDwcBJVnqmdLUxZ6HYWpj7XiCTt3GoVFYWnfVqPcaSMS7YOoxiLo39hEXHsyhfFYSIGyfuPGJkqqXKUmTIfsoHGJGnmtXgvUczhINBxy+ypKQIBIR0zCK1Hs0UOHvjUMtcP91CsbxUhmu10eoYALRtyTIUC5m7Ud0cXj/ulcoVYqEQW0ZCnD6VcpZKS9Y6xzJ5z+u6vv6G42G2jiaooEwko8znSuY2Eglxyc6xk56tupiVykpFLXpfuW6z2gy28TSXxar1UjWoiLnfJZe1h8Z1BrBs7D1YNsvGcsUs1IMBIZs3uVWxUO09PBGvzgGqEAwsyTrh3LaqURKbkVyfNplkoVDmeLZgXHtuLdiPE/1mCAbExvhhOGNqiFyxzBdvPkg0slCL2NUvxMJB4pEQQRf5WhX2TKWZHIpahCkVF3W3eZ+tPzxqBcOJCJftGueu6QyZxRKhVSzbggFZNQJxdY5UtbXeWvVdH61uJaSiIY5Ivva5UK56OVjwnJFEhM0jMeZyNsevtF5plDPigvgEg+KiNeIi+y2XORIKLHvnRMQi4o44zqGdDXQf1Siw9VDV2p5hPud9MKRuoz7K566JJAHnPj2fLzKbLbGQV/LFCjGjQ2OhUCFfMjL7oXiIiWSMTQ2Hh/2ECI7wPsKGdJSNwzH2bLQ209/efzKGoiG2jMZ55gVbesI11i6ioSAXbhshHQtR1gphltag83nz4KiuUx9OCAaEF12xkxddsZMj88bNXKUN2Dgc65vLrnRqpr4sMZH/Ba4GPu4u/QrwElV9YgvPng+8WVWfISJjwAzwz8AXVPWzTe5/GfAy93UPcHsLIk4A0y3c1400LgZ+3KW0vcAEsJ21ZWwlnW6+w6DJuVI6rdS317K0m2Y7MraaZrvwSs5e9p1mea0kY6/karUcH2jhvn6h+g6nQrvst4zd6N+d5NVJWuuVsxO52n22mYz9XE80e77VcjwV1hmDOp638myv7l1Nxm732XbQy3mnm+tzL/NbT5r9mnO8GCu9TN+L9NaSsVvjTzvp9nu91qqsna4zejGP9ns/1kq6varvTt9vh6pOeiVMU6iqZ3/YguOzwFH3d417ibWeGwO+CWxsuP504M88lO/6QUijH2n3Ku9uv8OgyTmoberhlmYv+047efVKrlbz6ecY0y3ZBrldnirp9SqvQUlrUMbtTtNYz/OnwjrjVGnf3ZoL+tEuupnWoM2Dg5zfoK2JTpU1vZfpdeud2033VBirByGfQRvv1ptuL8p8kPcA1T+vo/I9APxCO8+ISAj4CPBqVT0kIkkgp6pljET9Zi9l9OHDhw8fPnz48OHDhw8fPnz48DEY8NSBUEROE5HPichRETkiIp8RkdPWeOx5wKXAW0XkWuB84IeOY2ob8EkvZfThw4cPHz58+PDhw4cPHz58+PAxGPCa/PxjwD8Cz3HfX4DxTV220gOq+nGWOKmquNhjuap474Ck0Y+0e5V3t99h0OQc1Db1cEuzl32nnbx6JVer+fRzjFkL65VtkNvlqZJer/IalLQGZdzuNI31PH8qrDNOlfbdrbmgH+2im2kN2jw4yPkN2proVFnTe5let9653XRPhbF6EPIZtPFuven2oswHeQ8AeE9+/n1Vvazh2vdU9XLPMvHhw4cPHz58+PDhw4cPHz58+PDxkIDXiqm3ALPAv2MRLZ8PRDErKlT1uGeZ+fDhw4cPHz58+PDhw4cPHz58+Dil4bVi6t5VflZVXYtvyocPHz58+PDhw4cPHz58+PDhw8fDBJ4qpnz48OHDhw8fPnz48OHDhw8fPnz4aBVek58jIucCe4FY9ZqqfsjrfHz48OHDhw8f3YGIJIFRYFZVM/2Wx4cPH6cO/PGjNYhICNiDKyvgdlUt9lWohxm6XQciIsAUcFRVy16l6zVO1T4rImeq6h0dPH9KvvdDFV678r0BeDymmPpv4OnAt1T1uZ5l0rosZ6nqbSISAV4GnAvcDfyTqmbbSCcF/C5wOTCCDVrfA/5FVec7kK8r6fYy726/g5fpe5GWF22qG2X2cEuzl32nnbx6JdcgytQu1ivXILfLUyW9FvK7EvhzYM79pYEh4K9V9X/bSOePVfXvReQC4F0Y72QIeK2qXtemTJuBP8PWFgGgAvwMeIuq7u/B817MHx2lsZ7nRSQIXOWeGa175hpVLbUi93rRqry9lLGTvNqZ/9t494FaU3jUzj0ZP1rIx7PxpV/5icivA78F3MBSWV0AfKCdA30v+1A3++Mgzo1e1UGTdN+iqq91/eHtwB3A6cCbVfVTTe7vaXtuyLtXffYJwBux+fdfVPXf3fVPq+pzWkzjpY2XgD8C/l5VP9CmPF1571bqUkRGVHXWfX4mS2P/J9UjxUw/5/+OoKqe/QE3Y4u+G933KeBzXubRhixfc//fA7wWOAv4TeDTbabzWeB5wBgQxCr3eZ2+V7fS7WXe3X4HL9P3Ii0v2lQ3yuzhlmYv+047efVKrkGUqVdtYZDb5amSXgv5fQtINFxLAt9uM53qePll4HT3eaLddNxzXwUubbj2SOCrPXrei/mjozTW8zzwYeDVwMXAbuAi9/0j3Wg765G3lzJ2khdtzP9tvPtArSk8aueejB9t1EfH40u/8gOuwxkI1F0LYgf6PWnX3Uyrm23Vw/bqSR2s0l6uBSbc5zjw3V61rzZk7VWf/Tam/IkBbwHeC4SBr7eRxg3Al4CXAi8CfgO4CXjRoLx3K3VZd8+bsfH/acCbgA96WN59m/87ktvjRvdD9/9HrvEJcEtfXqxuUGi4fm2b6XwbCDRcC3jQcLuSbi/z7vY7eJm+F2l50aa6UWYPtzR72XfayatXcg2iTL1qC4PcLk+V9FrI76vAZQ3XLqdFJU7dMzcAVwLXN1xve8EPfIfmC8jv9Oh5L+aPjtJYz/PAde1c97gdtSRvL2XsJC/amP/bePeBWlN41M49GT9ayMez8aVf+WGKlRdgm9aI+/8C2j+s86wPdbM/etlWvUrPqzpoku5tmPLk5obrTeecXrfnhjx61We/0/D9KuArOGOWNtL5BeDjwO8AUeC/B+m9W6nLurH/Gw33fKOTvBvS6tv838mfJxxTIvJu10h+ICIjwPsw5VQG+IEXeawDm0XkOmCsajLnzKWH2kznH4FrReQmzNRvGDgH+KcO5etWur3Mu9vv4GX6XqTlRZvqRpk93NLsZd9pJ69eyTWIMrWL9co1yO3yVElvLbwQeK2IvAVb5JdxJ5JtpvNp4DHA5+rGyyHgp+uQ6XXA50VkAZhn6dT1z3v0vBd10Gka63n+syLyeezUfg5778cBn2tD7vWiVXk/00MZOymPdub/Vt990NYUXqTl1fixFrwcX/qV368Cv42V7wgwA3zXXW8HK7Xrz65Dpm6OGYM4Nzarg+/Rfh004s3u/9tFJK2qc669fHGF+3vdnuvRqz77RRHZoar3A6jqNSJyD/A37SSiqp/F2ulTMKugjeuUp1vv3UpdXiwi3wT21t0TAFId5l2Pfs7/64YnHFMi8keYhnkz8O+YkmoWSKvqTR1n4BFEJAyMquqRNp8LAWey5MN8h3rgn9mtdNvMe9jlfed68u72O3glp9dp1aXZdpvqRpl16d0GVs5e9p12ZO6VXOuUybO24QXWW1aD3C67JeOg1mGvISJxXJmq6mIvn/eiTjutx/XIICITmNviI4C7gLtU9YftyL1etPK+IvIL2EHmBSy91w9V9WgX5Ilga9UdWFmEgZ3AO9XxfbSZ3orzfwfjW1/XFP5Yc2pCRB4NnIfV2Qngh8Bpqvr9daR1CdYGgthmPaCqH/FIzoGcG8X4qkaBGfUJsH30AGLB4sqqeqv7ngDOV9XveZhH3+b/9cJr8vMd2KT/Auw08uPAx1X1Ts8yaV0WAX4eG1S/rKoVd/3ZqvqZNtIZ0S4QlPWC+GyVvD0hROv2O3glp1dpedGmulFmXpbTqSBnL/tOOzL3Sq42ZRpI8sP1ltUgt8tuyTgodSgi71TVV3iQzj+o6h+1+UwKM9tvLIN2iMM7eb7jOu20Htcjg4h8UVWfJiJ/DDwJ+DzwKOBBVX1tK3KvF62+r4gcAO4HDmMnzZ9V1ZkuyfRpzIp/FFuofwE4Bvyqqj51jWdbnv9brSsReQXweVW9p4N38my86eZY49X40UI+bY8vg5Zfu2mKyN8CG7C2OQ68VFWPisjXVPXKNvP+V/exAEwCBzBriw2q+rJ20mqS9sDNjSLyROD12DuewBRcXhBgd0z07e7vaXtuyPuU6bNellO33rteRi/77Cr59W3+7wSeKqaWJSxyEfABTPsX7Eomq+f/EeA+oAQ8EfgtVb293Uqv3i8ib8Y0/J/BKnarqr6kA/m6km6LeX8YI6r/X2wgTmON9gJVfWEb6XT1HbyS06u0vGhT3SgzL8vpVJCzl32nHZl7JVebMnneNrzAestqkNtlt2TsZx26E71zgbu1zVM2MUuY/1XVBQ/k+CzwEU4ugxep6rN68HzHddppPa5HhrpnvgE8oU6Z8i1VfXQrcq8Xrb6viHxdVZ8gIruAXwSeBeSBz6iqp+6q1bzc55tV9bzG66s82/L832pdibmx3Ii5onwR+C9VvbnNd/JsvOnCWLju8aOFtD0bXwYxv3YgIt9Q1ce5z+cD78RIjt+6DsVUfVpt9ZEW0h64uVFEvgU8pb5eRSSJKZ8f1a5MdWl8G1Nk5zEF1RjwBy7dpuUoIudgFjS31V27XD20oFlF3kcA+zBF/TOBRVX9chfy6fgdV0jjMl2HdWCTtP9AVf+x03TWStfLPrtKnn2b/zuCekhYhZlFPwv4KHAI+ARwlZd5tCHLtXWfN2Ps+M/GEY61kU5XCMq6lW6LeXtCiNbtd/BKTq/S8qJNdaPMvCynU0HOXvaddmTulVxtyjSQ5IfrLatBbpfdkrHXdQh80f3/Y4yL4HcxHoc3t5nOAYwv5Roscs5oBzL1nDjc6zrttB7XIwO2DvsQsB+I112/vpU8O2xHLb0vTSIyYRGdX9YFmT6PWUe8CSPd/RPgJdU2v8az19Z9XnX+b7Wuqu8OJIBfwpSnPwL+po138my88WKs8Wr8aCEfz8aXfuWHucr9EvA24P3A24HnAqE20/k2EKn7PopZAx5eh0z1kcOeVff52nbTapL2wM2NdI8Auy2ib+BvXf+/2vWbyfoy6+Yf8K+YIcl7gE9iSpK/At7rcT4dv6OX5YRFZPym+7vO/R0Hvtnhe66Zrpd9dhU5+jb/d/LnFfn5k4FfAZ6BmUn/O7aoyHqR/joREEc4p6oHnNnoezHz7XZwsRg55dniLUFZL4jPVoJXhGjdfodGOYeBx65DTliZYLUdckgv2lQ32lM3CO4GWc5u9clmaIdUtFdytSOTl6SoXmK9Y8cgt8tuydhrAsuI+/8clk7Z/tmdLLeD23W5JcynRWS9ljDdIg5/T4vPe1GnndbjevrMZe7/n2OWPlW3xlZJ3ztBq3PuWxofVNXD2NzqNZ6HheW+G/hrTMEQA57fwrPtzP9ttRc1a41PAZ8S48xp58Tcy/HGi7HGq/FjLXg5vvQrv6sxsuWPs9zi52qMmLlVvBKzQDoCoKozzsLreeuQ6WUiElTVsqp+DkCMm+3v1pFWIwZxbnwh3SHAbpfo+xJdbkHznyLy6g5laBWn63Iruee6z1/3OB8v3tHLcvo0cD5wtape69L8H1V9+jrTayddL/vsSujn/L9ueEV+/nXgY8CnVPV4xwl6ABHZiRGczjZcf6yqfrPDtBPAuaraUcRB6QHx2Sp5e0KIJkaS+ABL5p8F4KCq3uCxnMOY//glqvqmDtMacWn9ENjZ6nt3q02JyMuxE6N1Bwrwqj7XyGNg5fSqT66Q9qNZJ6lot+RqR6ZO5O8mvBr/Brld1qXfkYy96N91eR3CrEGuBM5QRxIuIter6iVtpPN1bXBZEJEp4Nmq2rbSQfpAHL5Gem3XqYfzbtVF6kFgTlVvbDeNXqDTOXeQ4Ob/GVU9UXftDzGi9lbmgpPai4ic39h+xANXkk7Gm07bqFfjRwv5eDq+9CM/EblOVR/T6vWHIk6lubGbEHP9e4KqFtz3Ucwy6BJVnep23urcFkXkWXUKyWtV9fFe5kOH7+h1OTml629hRg8fA37PA8VU19J9OKBrHFP9htPCN8OXVPXJHaYjmLlyy+k0SbfrxGer5O0JIZoskSTmsXfxjCTRpX8dUG2g4v7vBW5R1ce2mVbH7cGjNOoVWNV3Ogf4abvvVJem5wR3gyxnt/rkCnm13E97JVebMvVtnFkN65VrkNtlt2TsRv9eI78ddV8PqGrRnbI9RlX/p410nqqqX/JIpq6QMtcvwte4r+M67bQe657/I/f8F9p5vtfwag02KGhnPdJqe1khzXbblWfjjRdjjVfjRwv5eDa+9Cs/EXkV8HhOtvj5pqq+zcu8BgGn0twoXSIdXyldEXkkcJ/WReN0897z1BGndwtinE23qWq57loEeJqqemZd78U7dquc3MHVrwN7vJxPu5XuQxmeuPINKDLYwlVYPvGf36d0GtFPs02vTK27bf7ppZlltR7r0W49etEWrsF709FumM4Pspzd6pPN0E4/7ZVc7cjUz3FmNaxXrmsY3HbZLRl75RoDgDrXg4ZrGaCtTaXHm7irMZLbdbm8iMhpzS4D/4fW3D6uofM67bQeq8//4jqf7zW8mHMHCe2sR65p8V4v1jit5tUKOh5rvBo/WsinZ0qpbuWnqm8XkatZsircD/wbsNPrvAYE1zCAc6M0IdPGrFw6wgrpfrzZvdrEqt4pirqqlHL53NLkWgGPKR+8eMdulZM74PpgJ2n0Mt2HMh7Kiqlbgedondk1gIh8pU/pNCIkIhFVLajqTSLyHMwc8ZwO020Fe0XkQ8BuIAosuuuxNtOpbz9/VvdZGm9cD1T176rmkCLyu3Q2UXhRjx2n4fE7VeFVfdYw4HJ2q082Qzv9tFdytSNTP8eZ1bAuuQa8XXZLRs/79ymInar66w3XfuIsTlrBDRipa+PctKuVhz2q007r8VRrB2uOhyJSxhSOVVyFbcpfparP7CRzd7L+doxIXYFvAa/ANrGvcbdlMBeLNV0h22kDrd7rRbvyeLw51drYKQ1nVXgci8hYj48BJ1kVisg4RtYNFsmxDBx13x/plAleyfaHGIH9boxgetpdPwvbaF8MvE5V395qmoM4N4pZb08BJVe+L1XVo8CbaY/rrdV0/7qTdH0MFkTkWiyww5fqrv0xcKaq/n6PZanOpyFs/v0NHcAoomvhoezKtwk41jhQi0hI2+Ol8CSdJun202zTK1eNnph/unQ7Mof0oh69bgtemXh6VZ+nipzd6pMr5NVyP+2VXG3K1LdxZjV4Idegtctuydjt/n0qQDp0eRGR72BcMEcbrn9CVVshvq5/Zl112mk9nmrtoJXxUEQyqppq+P3xdKiYEuP++QHwAlX9rogIFv3sOmwTe6sa2ezTgTeq6mWrJNcs/ZbbQKv3ejRWdLpOOqXa2KkOEVlgBatCVR1f49k3Apl2FENtynYRMIONuZfUKaY2ADswJfLMevMflLlRRL6hy6233wm8GnirdkB30K10fQwWROR3gMtV9SV1174HvFpVWz0461SGoKqW6+dTEfko8CNV/bvG+3ok07r3PQ9ZxZQPHz58+PDhozWIyFYset1eLDrR57HFVWEV65PtrPP0fB3yrZtIe6VFkohc2srzPrqDtRRTIjKGhTE/DVjAoj3fJCI3A4/B3DqngVeq6odE5MOYK9RjAVT1L9bIfxTjt9ni7Zv5aIY+Wcg9GXgTUMEiU/2xqg6E+6uI/Ai4splVoa7Bw1ZVTAFfxyLmpbC+8GJVPegsOX6CkYJPYlHm/hQLhPIJVX29GKH/F4HvAxcBdwAvqreyEJH7qFNMNebfzTG/F5AukY6vN91mY2KL+X0fsxobA+JYYAyAq1T1vnbTWyOvAnAPFuzqbuAl2hAUqhcyrlZWIvIm4NlYvz+C9YsDdb/fB8y73w9j7f7QOmQYB24Dtqpq3vWpb2IckJdi7/lJVX1DXb6fAKqBFH5VVe9yStYPYH31KFamD4i5+l6AWXd/C3i8qqbcPPkG4CBwoarubVBM/S7mNvsf9fdh/f8t2EFfFPhHVf0Xd5D0CezQLwT8HvAd4F+BS7Ax9QOq+g43trxKVa9367LrVXWniLwYeAZmsZgEngW8y+UZwg6BPrNWma5ETunDhw8fPnz4eBjAWZT8F0YmfgYWvS4F/F9nffKfwGtUdQ9wNraZGcLcUF6BbQi7KV+9y8u/u//HMLeIVlARkUDDX7CN5310B3ERucH9fbrJ7/8/8BNVPR+jC/iQu/5tjOT4HGyDVI1gdjlmgXIu8KMW8v9NPOY+8rEqFlX1wrq/+7xIdI0x6qvABap6IfBS4P1e5OkRnsmS+1k9WuVcEmzj91xVfQS2sf2/db8X1EjF/xn4DPAHWN94sdtQA+wB3uv62BzQU/ejAcArscMOAFR1BvgFoFPi826l2xSqeplr43+BKR497WMNKGPRps/HlJl/OoAyvk1Vz3f5fd7l2YgnqOoFwPUsp6NBDGvqSFT1GGad+zR36QWYgud1alFIzwce56zmqphT1UcC7wb+3q1F3g18yJXpRzELuyo+i1kXNuKRLp+9DbKHsDHk5ib3/SZwQlUvxRRnvy0iu4BfxQKTXIgpwm7AFFlbVPVcVT2P1riyrsBcCK8EXgd8zeX1BOBtIpJcK4GHMseUDx8+fPjw4WNtXAnkVPWDYGSiIvJK4F7spOzfVPW77jfF+JqqOCIiz+iyfJ0SafcyYIKP1rHoFsIr4dGYCx6q+jURGReRYcwl77HA/cB7gJeJyBbguKpmTM+6OkTkCdgi/dGdvYIPr9ChhdxqY1QVSZb6f9+hqgdXuN6qC0wUUzR9xbX5IGYZUUWVUuNmLHrkQQARuQfYhlme7lPVb7v7PkIPDhoGCdo9Mu2O0nUWMW/E2ntV0f5CTAHyElX95br7/kRVn9Ukjd2YFfQk1p9+W1Vvc1Y4i8BZmFvmS4DfwJQK31fVF7vnM8C/YEqFGcw1+ihG6F5yeT8DSIvIs/so4xeAn3f3n8AURS90rtovwSwHdRU5vgm8wlk7/Q9mhXgFcJWI/DLwy1hf+7SqvsEpV/4D2Ir1ua8DLxCRKzBetgeAC53yd6e7Zy9wE2Zl/nEny0tdPjdjUarvEJEfurzqA7bcjFl3NeIHqnpv3fe4iNzgPl+HWTv9XMN9TwHOF5Hnuu/DwBmYBfoHRCSMHVDe4MaJ00TkXa6Mv9xEhkZ8RVWP1+X1C2JUDGCWVNsx/qsV8ZC0mHKLl+op3CERebDue2TtFNrK6w9F5C4RUWfS1upz5TqZbhCRnSLyeBH5vAcyPVJEvikit4vIbSLyfhFJiMhZIvJdEcnXNZS10uplWX7UyfxTEal2kEGQKywibxGRO51sP3ADHiLyf0VknxscV0ujl/L+q4jcKCI3icgnxXzuB0GupuXo2uYXXFu9RUTeMohyut++6Mr2FhH5Z7GTjmZp9EzeujzfJSKZurHlpyLynyKS6EZ+XqDFseovelj3V4vIvXXpX9jic71sn+LGnTtE5FYReYUHyZ5Dg4WJqs5hC6zTG3/rA6pE2lfW/T0B+HGbzz9hnc8vQ4/r+4ki8mOX9rdE5PQBkWu1cfL5bv65RUT+ppNsmlxTbCPxGPd3Leb68FxsMQ5wC+bCtJLs52OWM892J96rC9Hbcr3S1fdPReTfxE6/B0GupmtdNx690/12k4hcvEoyfbGQE5HniMht2Obqpa298SkBwRROVcuT81T1KXW/593/St3n6vdqu2pU1HWsuBuQdvlrrj3eJCLfEZELvMy3R7gIU3TsxRQVjwK+AlwuS5Ynz8csdJrhvcDLnTXdq4B/qvttFDuQeiUWmfYdWP86r27dkwR+rKoXA9/AXMIasQd4W59lvBNr0x8CvlQnx2OwKLYvxCymVpLjmSxZF+3BLJcucp/PwCyOLgQeISKPxRRvB1T1AlU9FyPKfxJmLXU/8FSMy/CJmHL4xywn5K/2sUuBrLNkirJkyXQFEBWzZCqxXFdT33+yDe9Rb5H6cl3id6y/T7Dyrt63S1W/rKrfxBT8DwIfFpEXOSu/C7A59g9Ysjatl6kx0EBjXr9Ul9d2VV1VKQUPUYspt9C4EHriB/1tzEzw2jafO+mkUExb2xFkyaS5kfSz3u3iqlbT63FZfpSl0N8fA34LOw3tt1xvAjZhpqt5V8aPc799DjPBvHO1BHos7yvdphIR+TvgDzGf4n7LtVo5vl1Vv+4WLV8VkadrHXnlAMn5y6o65/rVJ4Hn0eQErMfyIiKXsGQ2XhtbxAgQfxfjoKjeOxAEiG2MVQt17/NGus9r8WpVbXbaviJ6XN8vxk67z1LVihgZbaeotyRqvO5JlNUO0anLS6fPL0OP6/s9mALlVhH5feD1WBvot1xNx0mxU+K3AY9Q1aNOufJEVf3qqqk1xzeBXwPeJHbCPO3mtjm3CY2o6j1i4eFfhc11YHPyD0TkC6r6fQAReSHwv9jC/r+AX1fVO1oRolflKuY68m/AE1X1DhH5S8xK4F/7KZfDSmvdp2ObtzOAy7D2uhKZfF8s5FT108Cn3abyTdgm8qGAPDApIle4OTSMRQO7pY00tlefB34F47HpCAPSLu8FHqdLQQ7ey8rtclDxA1XdDyBmCbNTVb8lIl8EniUin8Qslv5P44NiB9I/B/xnXf+I1t3yOVVVMWvEw6p6s3vuFszK5wZM2VNV5HwEGzfr8ULMkurdLq1ey4iT8etY3f6Tk/G7To4/c/PEEPDyJnJ8XYz37iZsXh0B7lfVqnX2U9zfT9z3FDbOXQe8XUTeCnxeVa8T4116JnYIdhVmpX0CU9xchI3rVTwfU6jfj3F0gVlE/Z6I/CLGwVVwed2HHbL8D8aft6LBRov4ksvna2rBAs7ElFETwIOq+j6nULxYRP4bcwf+lIjcDVzt0qjK9APsQGi1vF4uIi939XiRqv5klfuBh6jFVDOIyCNE5Bsi8iMR+ZIY0Rcicq2IvEPs1P5WEblURP5L7BTwr9w9O8VO8/9NlqxQEgCq+hPtgn+siIyJyDUuv++J808VkZtFZEQMx0TkRe76h0XkSZhWc5lJs6p+UlUPq+oRNaLXYoeydass/9vJq1iD39pvuZxsv41pmPNOzsOq+h/u8/d0BXPsPpZjVSklGPFeWydgvS5HVV1Q1a+7awXsdGHNuu9Tfc+57EPYBqflsu1WfYtZbb2NJhM/NoGeLmaN+XUR+Rhws4gEReRtIvJDl97vuLQ2OTmqFlePcfde7b7fLObiVZX7Evd5QozUERF5sZil1ueAL4tIUswC8oci8hMxk2/oYKzqVll6iS7K+HvAX6pqxZXbkeYStIVbMILLevnTmALsLlaxPukFVPWgNgmFvpLS0+vnW0EX61sxQlIws/sDJ+feW7lk9XHyNOAOXYqA+L84ZcM68EbgEhG5CTtc+Y26376P8ZuAjXNbcJtqVT2MnV6/Xcwa81bs9HwOOzkfB/7JjXPXr0ewLtX3OJCvU5h9hTbLrlvtcJW17rMxCwN1G7qRap7rQFcs5GoJmVXAblnDu0H64NFQ9/ulLv/VNnxVVLByeKuI3IgpE36uTZFuBX7D9bEx3GGwiLxCRPZja7GbROT97vpGd/3/A14vIvvdXLEqet0uVfU7ahYfYEqArbKGZ8Mqsn/ftYMHRORofbtYT3prICimePkay61RyiwZk3wCcy+7EvihqjZz8woAs7qc0+3sut9bsaZrRG29KyJVt7rr3Z6t3zJWf9cmcoxg5P+NcjzB5fkiXSJvb7T4eXOdbKer6r+68fkRmJXVm0XkLzBjihjG53YR5pp4C9Yfb3dlVj3oi2JKtM2YNRjAjRgJewAzdDhbVb8MvA87GH8PZkHWaCXVLt4P/Az4sYj8FHPVDGFk6DeIyE+wOecfsDn1WjGF49UscYm9HVNufQdTaK2EN2GKtJtcXm9qSUJVfUj/YQubV2Ps8pPu2vMxdnmwSe6t7vMfYYu+TVjD2Y8tFHZijf1R7r4PYIz09fncB0y0IVcZm0RuwPxWcQ3j8+7zu4A3uM9XAje4z/+MaX3PxXxC3+eu34lpc/8LO11dq0xe1aqsfSjLMKaceEy/5cI4SH7SggyZQSpHjKTuMHaSkOi3XG2U4whmqn/aoMqJnQLMYBNRsN/17Z55ZbUd4toiNtl8BlNkPB6b0Ha5314GvN59jmLkj7uAP8FIEsH84oewCfgr9XVUJ/cl7vMEcJ/7/GIn95j7/tfAC+vq9w7M/LrtsaoHZXk1toi4CTMbj7bar3so4zGMVPJ67BTtjHZlbCKzuPReVFf37wP+Fjulux+4rO7+FwIbV6qnh9NfD+r7Ma7O92MLynS/5WKVcRJbPO93z4aAT2En332vq0Gvb9cP72dpXP0H4OZ+y9WQz33UrXUxa5VH133/alX+JjKetE5i+br3ncCf113/Sd19d2CbYIDXAPtw8werjFGYK3I1AvnFmHWArFGWq8rZQdupynmF+y6YYmnKfQ9iCon/xgjNu92Wd2JRKU/J/rJau2z47VXYhrzldfoK6bwYsw7qZnllMReyG4Dr6q6/G4ssV20n92EW57+8koyuzJ9X19YucJ+vrravxjbQ8JtiFu1gFkXvcp8Xsbno2fV9otcyYutdBf4SG4dej+2d340FQqjKUZ0/f7kujZPaS5N8noIdgKTc9y0YF9RmIOauXQVcg+2/N7hrY5g1Z7Xc3lp3r2Lr5cc3lN3LXDph9/1MIFn3+7L7H8p/DxeLqXqCwBuwhlJvkXESQaDaKWCVIBBOJgjslDCz3hf0OU1+fzTwYTCTZqDRpPmxmAb1PKkzae5QplbQi7L8J+CbqnodrWMQ67hv8qrqS7DB81ZsETAQcq0GMS6NjwPvVNV7BlVOVX0qSwunK1t5plvyishmzJ3wXXVpVQkQr8c4gqpuII0EiC9y930fW/xVCRBfImZ+f57a6VKNAFFEnoZZHayFRgLE17q8rmWJAHG96Gbd/ylGtnkptrh4zQDKGMWIyi/BlEcfWKeMNaitfJ4DPE9E7sQ2gTngz3QV65P1np4/BNHN+n4l8POquhU7cKi55fZZrqZQs1L4Peyk+jpsA+CZZdqAoCvl6vrhC4B3iMgPMPeOdsquH/PiSlZO68Eb8d5C7peAn7ry+Efg+a6c1w3pgkeDS/rlmCLXCyvYQUI/15XVIAevqbv2eGep9UlnifVRV2dPF5H/aLjvcyuku1uMc/RHInKdiJzlrl8tIu8Rs1C/R0QeJ2YxfqsYoXf1+YyI/K0Yn9xXRWTS/aSqevtq76RGxfB5zI12NSu+XwN+U8ya7hZMkdQOssA5IvIjbK37l+56FDu0/FvgMSLyz32WcSfWHuplfJ6z0vkJNg6MriHHSVCzWPoY8F0xd8JPYu99HuYqfgN2SPhX7vrn3dj1DZYsod6Hubj/AHM3XGnsWcmSCRG5DlPwPdGtsZ7aznucanhIckw1QZUg8IoVfu8LQeAaWM2k+Q+wjd3rsM1EM5Pmz3RRrq6VpYi8ATOB/J0BkesuzAd/SJuboq4XXW+TapG1PoGdVn2wz3K1Uo7vBe5U1b8fcDlR1ZyIfBabRL/SR3kvwk6E7zIrYarm7Rcuy9x+a0aA+KWTBDUejmdgBIhvU4t+dAFG6PgHmHn2S2mfAHHZYsuZq69nrOpa39Elt9y8iHwQO2ldD7rZv/djmxeAT9N6314VqroPOClqjvvtuywRDtdjgTZdrteCGEdRlY9oI2ZdXHULe6Q2ccnrIK/rsAUl2EnoD1T1qvUkRRfq221WLlDHk4Qpe77Yb7lYY5xU1c9h/IuIyMuwOnwooZtjUK2vichTsJPzvsu1CvazpDwAGw+aupuqaqrJtWtx/EDuMKPpxlRVf73u83dooCJZZYx6q/trB/XRre5tcnhcJWm/SkSuxEiXL2SJpP1+lkjaP4SRtP8e8Pss55qpwR0wPwfbXF/aprzrgpoL3Lk9yKovezBZCnLwdFU9Jsu5yC7CiLQPsFRvXwH+RUSSqpplbdLu31XVO0Wkym9UPaisknb/AjYOPgrjzP2hiFyoqjewRCz+J2KuYG8A/rCuj8xSt/5Q1Sp/Xv33Zdfc9atxXEDuIPJpTe55cd3n+6hrA/W/ue9/Dvx5w7WmRi19kPGTIpJR1Rc1PH5Snk3S39nk2rJ83LV/wCxX63E35jnRiEc2SfMw1v+rqLrDXUsdL5oaNcOfub/GNJqNaw9ZPFwspvI4gkAAsWgy57SZxvbq83hEELgGqqSfSB3pp9s8TGDuG/c4OV7FkmLq3Zi/eI3kT0ReKCIbPZKra2UpIr+FbX5/xXXSvsulqguYxck7xUUTEePheWGbafdEXnfqc7pLU7CN5m39lmutchTjEhjGIpAMpJwikpIlXoQQFp621bLtlrxfUNWNqrrTTbQL7m8tfAnzEQ87ec4U44LaARxR1fdh5XCxGB9HQFU/hS1QqlGX7mOJ12M1PowvYQSI4vK6yF1f71jVzTGoWr+CmV3/tM10uy4jZu5dXQA/jiUrgocEVPWYOmtizHX9HbpkXeyZUsrl9Zi6vL7LyeSuraJb9T0DDIsRlAI8mTVCLfdCrhbG8w3u/yi2GX9/m3kOOro5BlXLLopZeZxkjdAPuVbBZzHrWxGRy7HIUuvi3Rwg9MOj4e8x96OHmhIX+tAuRWQ7qwc5+IGq7nd7jRswsuwSpvh/llvjPYMmB2eynLT7Bsy6ZVPdLZ9zVnk10m6XTyNpd1Xp1W0PDR8+Thk8XBRTPScI9ABvxGOTZvHG7aJrZYktwKYws8kbxE4RBkGu12Mn9j8TM7G8xn1HRP7GlWnClecb+yyvAP8mZnZ6MzZZ/uXKSfRMLlihHEVkK2b9txczY71BTEk5UHJiJ1yfdfffiJnbt7pp6Ka860HfCRA7GKu6WZYfres7E5iJ9nrQTRnfAvySk/PN2EnsQxrSZbJ7ERnClH3XrFPErtS32yj9NvApl+6vYxawfZXLXV9xXgT+QUR+hlkivGWFjeGpjG6W66vdWHgTtsH92iDItcpa978x66C7MLeV328zv1MR3SBpvwT4d7EgIs/FyPmv8kzi/qIf7XKtIAf1llkDRSw+KGhm4ThoOBVk9NEmdACIrgb9jx4QBD5c/ga1LAdVrlNN3kGV61SV81SVd5D/ToWyPBVk7FE5vJHeEOe+CPikX9+nhlyn+t+gluugytWHcug5SXtDXlfTA/LzU+XPq3bJUmCYWl267wNDLF5377WsEETA//P/Hsp/DxeLKR8+fPjw4cPHqYdeEOf+ChZ4wYcPHz7WwhvxnqTdxwBA+0wsLiLPcRZgVwBfEJFmXEY+fDxkUQ2h6sOHDx8+fPjwMTBwrtFlLCrdScS5InItZv10vRgX46tU9Zn1vwHTwDdUdYe7fiVG/P8c930c20huUdVcl1/Jhw8fPnw8zCFG2u27ofnw0QDfYsqHDx8+fPjwMajoNnHu8zC3Dl8p5cOHDx8+fPjw0Sf4iikfPnz48OHDx6Ci24EDXoDvxufDhw8fPnoE31rKh4/m8F35fPjw4cOHDx8PSYjITswi6tx+y+LDhw8fPnz48OGjOXyLKR8+fPjw4cOHDx8+fPjw4cOHDx99gW8x5cOHDx8+fPjw4cOHDx8+fPjw4aMv8C2mfPjw4cOHDx8+fPjw4cOHDx8+fPQFvmLKhw8fPnz48OHDhw8fPnz48OHDR1/gK6Z8+PDhw4cPHz58+PDhw4cPHz589AW+YsqHDx8+fPjw4cOHDx8+fPjw4cNHX+Arpnz48OHDhw8fPnz48OHDhw8fPnz0Bb5iyocPHz58+PDhw4cPHz58+PDhw0df8P8AcI2cLP0w34MAAAAASUVORK5CYII=\n", "text/plain": [ - " Acetic H2S Lactic Taste\n", - "Acetic 1.000000 0.617956 0.604348 0.549529\n", - "H2S 0.617956 1.000000 0.643897 0.755763\n", - "Lactic 0.604348 0.643897 1.000000 0.703482\n", - "Taste 0.549529 0.755763 0.703482 1.000000" + "
    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "#scatter_matrix(distill.iloc[0::3,:], alpha = 0.2, figsize=(20, 20), diagonal = \"kde\");" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Which 2 columns are the most correlated with the outcome variable called \"VapourPressure\"?\n", + "\n", + "```python\n", + "distill.corr()\n", + "distill.corr().iloc[...] # <-- fill in some code to show only the last row of the correlation matrix\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": 191, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Temp9 -0.917730\n", + "Temp5 -0.909300\n", + "Temp12 -0.904225\n", + "Temp6 -0.901668\n", + "Temp3 -0.900017\n", + "TempC2 -0.899899\n", + "Temp2 -0.886628\n", + "Temp10 -0.861789\n", + "Temp8 -0.756223\n", + "Temp7 -0.453747\n", + "FlowC4 -0.366443\n", + "FlowC3 -0.355872\n", + "FlowC2 -0.353991\n", + "TempC9 -0.195908\n", + "FlowC1 -0.193701\n", + "Temp11 -0.102214\n", + "Temp1 -0.039136\n", + "Temp4 -0.020000\n", + "TempC3 -0.017537\n", + "InvPressure1 -0.014673\n", + "PressureC1 0.005279\n", + "TempC1 0.233138\n", + "OC1 0.329478\n", + "InvTemp2 0.891112\n", + "InvTemp1 0.911963\n", + "InvTemp3 0.926652\n", + "VapourPressure 1.000000\n", + "Name: VapourPressure, dtype: float64" ] }, "metadata": {}, @@ -222,9 +267,9 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmMAAAHmCAYAAAA/XYmLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABtzUlEQVR4nO3dd3hUVf7H8fc3nRB6EjqE3osQmoIFsK69i72hrou67upa1rWs61p+a2NtWLFh7w0VRUUQCL333ntvSc7vj0zWGBNImZl7Z+bzeh4eMjOZO5/MnLnznXPOPdecc4iIiIiIN+K8DiAiIiISy1SMiYiIiHhIxZiIiIiIh1SMiYiIiHhIxZiIiIiIh1SMiYiIiHgo7MWYmV1iZqPMbLSZNSxy/T1mNi1w/c3hziUiIiLihYRwPlig+DrKOTeglF/5i3Pu23BmEhEREfFSuHvGjgfiAz1jQ80svtjtD5nZt2bWNcy5RERERDxh4VyB38xuBzo55waZ2UPAeOfcB4HbajvnNptZK+Al51y/g20rPT3dZWVlhT60RIWlS5ei9nJwC9fvLPH6lplpYd2G19RW/CcU7SpY24zF9hIN7/NQKu352bZi3kbnXEZJt4V1mBLYBvwQ+Pk7ILvwBufc5sD/C8ysxDub2WBgMECTJk3IyckJaViJHtnZ2Wovh3DK0DElXv/pkL5h3YbX1Fb8JxTtKljbjMX2Eg3v81Aq7fn57IZ+y0q7T7iHKccCnQM/dwWWFN5gZtUD/6dTSpHonBvmnMt2zmVnZJRYXIqIiIhElLAWY865qcAeMxsN9ADeM7OhgZsfMbOfgU+B28KZS0RERMQr4R6mxDn312JXDQlcf024s0Sy2au38/PCjSzdtIsDefnUq57CYU1q0bt5HaokFT8uQkRERPwq7MWYVM6EJZv595dzmLJ8KwC1UhNJjI9j48595DuonpLA+T2bcO1RLahdNcnbsCJhpHks0a/4xOjC11yvceyJtve7irEIkZuXz7+/nMuLY5bQsGYV7jmlPSd1qk9m9RQA9h7IY/ySzbyTs4IXxyzhrQnLueWEtlzUqwmlHRAhUlQwdmKRuiMUfytsV6V9AFdmm1J+eu4OrrTnx24o/T4qxiLAnv15/PGNSXw/bwOX9GnKbSe2JTXpty9dSmI8R7XO4KjWGcxft4N7P53FXR/N5Id563n47C7qJRMREfEpnZvS5w7k5fPHNyYxev4G7j+9I/ed1vF3hVhxretW4/Ure3H3Ke35cf5GTv3vGBas2xGmxCIiIlIeKsZ8zDnHHR/M4Pt5G3jgjE5c1Ltpme9rZlx+RDPevbYPew/kc+YzYxm7cGMI04qIiEhFqBjzsbcnruDdSSu5oX9LLujZpELb6NK4Jh9dfzj1a6Rw2csTGTVnXZBTioiISGVozphPzVu7g398Mot+rdK5cWDrSm2rUa1U3rmmD5e8NIFrX5/E0Au6cULHekFKKuIPmlQc/fQaS6FoawvqGfOhvHzHre9PJy05gcfO60p8XOWPhqyZmsTrV/WiY8MaXP/mZL6csSYISUVERKSyVIz50Ms/L2Haiq3cfUp70tOSg7bd6imJvHZlL7o2rskNb03hh/kbgrZtERERqRgNU/rM2m17+c/X8xnQNpNTuzQI+vbTkhN46bIeXDDsF655LYfXruxFj6zaQX8c+b1oW6RQ/EXty//0Gklp1DPmM//39Tzy8h33nNohZIu11qiSyKtX9qRBjSpc8fJEZq7aFpLHERERkUNTz5iPzFy1jfcnr+Tqfs1pXDs1pI+VnpbMa1f14pxnxnLpSxN499o+NM9IC+ljir/oW7oEi9qSxKJgtnv1jPmEc44HvphDzSqJXH9My7A8ZsOaVXj9ql4AXPLSBNZv3xuWxxUREZFfqRjziV8Wb2bsok0M6d+KGlUSw/a4zTPSeOXynmzZtZ9LX57I9r0HwvbYIiIiomLMN54ctYDMaskM6lWxxV0ro1OjGjx7cXcWrt/B4Fdz2HsgL+wZREREYpXmjPnAhCWbGbd4E3ed3J6UxHhPMvRrlcH/ndOFG9+ayp/fnsp/B3ULyvpm8qtYmj+jOUThF6vPbSS1NT9mKhRJz2M0UjHmA0+OWkB6WjKDKnjKo2A5rWtDNuzYx/2fz+GeT2Zx32mhO6LTa9rxiJSP3jPe0vMf3VSMeWzqiq2MWbiRO05qS5Ukb3rFirqqX3M27NjHcz8uJrNaMkMGtPI6koSIduISLGpLEouC2e7DPmfMzC4xs1FmNtrMGha5voGZfWdmY81sYLhzeeXVsUtJS05gUK+mXkf5n7+d0JYzD2vIf76Zz1sTlnsdR0REJKqFtWcsUHwd5ZwbUMLNtwF/B6YDnwHfhjObFzbu3Mdn09dwQc/GpCX7p5MyLs546OzObNq1nzs+nEGdtGSObV/X61giIiJRKdw9Y8cD8YGesaFmVnRcrjMwzjm3E9hhZtXCnC3s3p64gv15+Vzcxz+9YoUS4+N4+sJudGpYgz+9OZmcpZu9jiQiIhKVwt0dUxdIcs4NMLOHgNOADwK3xTvnXODnbUAtYEeY84VNbl4+b/yyjCNa1qFlpj/rzqqB81ie/ew4rhyew7vX9qF1XX9mFX/RHCIJF7W14NDz6K1wF2PbgB8CP38HZBe5rejiVtWBrcXvbGaDgcEATZp4e+RhZY2au57V2/byj1M6eB3loOqkJfPqFT05K3DapPevO5wGNat4HavStOMRKR+9Z7yl5z+6hXuYciwFw5EAXYElRW6bbmZ9zKwqUN05t734nZ1zw5xz2c657IyMjNCnDaFXxy2lQY0UBrbL9DrKITWuncrwK3qyc28ul7w0ga2793sdSUREJGqEtWfMOTfVzPaY2WhgI/CYmQ11zg0BHgZeBaoAd4czV7gtXL+Dnxdu4pbj25AQHxknQWhXvzrDLsnm0pcmcOXwHF6/spcvluKQ6KK1lIJLz6dEqlhru2GvBJxzf3XOHe2cO9s5tz9QiOGcW+mc6++c6+Oc+zrcucLptXHLSIqP4/wejb2OUi59WtTh8fO7Mnn5FoaMmExuXr7XkURERCKef9ZTiBE79+Xy/uRVnNy5PnXSkr2OU24ndarPfad24K6PZ3HnhzN58KxOUbtKv0S30r55ixQXa700UnEVbSsqxsLsw8kr2bkvl0sOz/I6SoVd3CeL9Tv2MfS7hTSsVYUbtEq/iIhIhakYCyPnHMPHLaNzoxp0bVzT6ziVcvOxrVm1ZQ+PfjOfJrVTOf2whoe+k4iIiPyOirEwGrdoEwvX7+T/zunidZRKMzP+fVYnVm3dw63vTadBzSr0bFbb61hSRhp28Z5eA6kMtZ/oomIsjF4dt4xaqYmc3Lm+11GCIjkhnucu7s6Zz4xl8Gs5fPjHI2iWXtXrWBLB9EESXHo+JVLFWttVMRYmq7fu4evZaxl8ZAtSEqNnSYiaqUm8fFkPznh6LJe/PIEP/ngEtasmeR1LQkjfyMWv1DalPPzUXlSMhcmb45cDcGGvyD5zQEma1qnK85d054Lnx3PNazm8flUvkhOip+CMJH7aufhdac9J9vAwB5Hf8GMb1vsndPz4eldGRXNHxoqjEW5fbh4jJiynf9u6NK6d6nWckOjetDb/OacLE5du4Z5PZnsdR0REJGKoZywMvpixhk279nPp4U29jhJSp3RpwOw123lm9CI6NazBoCjsBRQREQk2FWNh8Oq4ZTTPqMoRLdK9jhJyfz2uDbNWb+fuT2bSpl41ujet5XUkKUEwhgAWrt/5m8uFww2ROrwQbp8O6VviEM0pQ8foOZRD8qKNRNuQop9omDLEZqzcxpTlW7m4d1Pi4qJ/pfr4OOPJ87tSv0YVrnt9Euu27/U6koiIiK9VqGfMzL4BznHObQ1crgW85Zw7PojZosKr45aSmhTPWd0beR0lbGqmJjHsku6c8dRYrn9jMiMG9yYxQk6ILodW+C1YpxMSv1EPjZSHn9pLRYcp0wsLMQDn3BYzywxOpOixZdd+Pp62mnO6N6J6SqLXccKqbb3qPHhWJ258ayqPfTOfW09o63WkmOCnnYtIRagNxxa93gUq2l2Rb2b/m51tZk0BF5xI0ePtnBXsz83nkj5ZXkfxxGldG3JedmOe+WERPy3Y4HUcERERX6poMXYnMMbMXjOz14AfgduDFyvy5eU7Xv9lGb2b16ZNvWpex/HMPad2oGVGGn9+exobduzzOo6IiIjvVGiY0jn3lZl1A3oDBvzZObcxqMki3Pdz17Nyyx7uOKmd11E8VSUpnv8O6sap/x3Dze9MZfjlPWPiQIZYoOGFytNzKJFE7TV0ytUzZmZtA/93A5oAq4FVQJPAdRLwytil1K+RwrHt63odxXNt6lXjnlM78NOCjbw4ZonXcURERHylvD1jNwODgf+UcJsD+lc6URRYsG4HYxZu5Jbj2+gowoDzezTmu7nreeTreRzdJoNWdWN36FZERKSoclUKzrnBgR9PdM4dU/QfcNKh7m9mWWa2zsxGm9nXxW67x8ymBW67uTy5/OaVsUtJSojjgp5agb6QmfHAGZ2omhTPze9M40BevteRREREfKGi3TZjy3hdSb5xzh3tnDuuhNv+Erjt0Qrm8ty23Qf4YPIqTu/agNpVk7yO4ysZ1ZL51xmdmLFqG09/v8jrOCIiIr5Q3jlj9cysO1DFzA4zs26Bf0cDZT0D9jFm9pOZ/bmE2x4ys2/NrGt5cvnJOzkr2HMgj0sPz/I6ii+d1Kk+p3VtwNDvFjBj5Tav44iIiHiuvHPGjgcuAxoBRXuvtgN3lOH+a4DWwD7gYzMb5ZybHrjtSefcPWbWCngJ6FfObJ7Ly3cMH7eUns1q06FBDa/j+Na9p3Zg3KJN3Pr+dD750xGaVyflovPjhZeeb6kstaFDK1cx5pwbDgw3s7Occ++X98Gcc/soKMQws8+AjsD0wG2bA/8vMCt56QMzG0zBAQQ0aeK/+VjfzlnHyi17uDPGl7M4lJqpSdx7ageue2MyL41ZwjVHtfA6kvhc0Z150ROUt8xM8yKOxBAVEv4Q7a9DRU+H9LOZvQg0cM6daGbtgT7OuRcPdiczq+ac2xG4eAQwtMht1Z1z280svbRczrlhwDCA7Oxs3634//yPi2lYs4qWsyiDEzrWY2C7ujz27XxO6lSfxrXLOsodeaJ9JyKxSe264vTcSXEVHR96GRgJNAhcng/cVIb79TOzSWY2FljtnBtvZoUF2SNm9jPwKXBbBXN5ZuLSzeQs28LV/ZqRoGG3QzIz7jutA/Fm/P2jmTjnu9paREQkLCpaNaQ7594B8gGcc7lA3qHu5Jz7wjnX3Tl3uHPu1sB1QwL/X+OcO8I518c590MFc3nm2dGLqJWayLk9GnsdJWI0qFmFvxzXhh/mb+Cz6Wu8jiMiIuKJig5T7jKzOgRODm5mvYGYPTRu3todjJq7npsGtiI1qaJPaWy69PAsPpq6ins/nc3RbTKolpLodSTAH8MIfsgg0cGrtqQ27J1oe+6LzhWNRhWtHG4GPgFaBIYWM4Czg5Yqwjz34yKqJMZzaZ8sr6NEnPg44/7TO3LaUz/z3+8WcrsOfpBDKDppP1I/WCJJac9xaR/2IsXpfXpoFT1R+GQzOwpoQ8GJwuc55w4ENVmEWLllN59MXc3FfZpSS4u8VkjnRjU5p3sjXvp5Cef1aEzzDH8eIbdw/c4SP4C0owk9PceHFm09IX5xqOdP+4XwiPYjpytUjJnZ9cAbzrlZgcu1zOwC59zTQU0XAYaOWkhcnDH4yOZeR4lotxzfli9nrOWfn83m5ct7eh0nqMq6Uy6+Qy/slo/2nZCET/GhnsI2V5HCQcVGxYXiudP+I7JVdAL/1c65rYUXnHNbgKuDkiiCLN24i/cmr2RQzybUr1HF6zgRLaNaMjcMaMX38zbw/dz1XscREREJm4oWY3FWZGVWM4sHYm6M7olRC0iMN/54jBYtDYZLD8+ieUZV7vtsNvtzdSJxERGJDRWdwD8SeMfMnqXgiMprgS+DlioCLFi3g4+mrmJwv+ZkVkvxOk5USEqI466T23P5yxN5/ZdlXNG3mWdZShpGKGleSCjnixQOL5R3W5o7JMUVvvbhnnT/6ZC+JT7mwXKonQZH0f1H0ee76M+lvT6Ft/mJ3/IEW0WLsb9RcFqi6yiYwD8FqB+sUJHgkZHzSE2M16l8guzo1hkc0bIOQ79bwNnZjajuk6Uugq20wk7zOyTYdCopCZZIKdwiUUWPpsw3s1+A5sB5QG2g3OeqjFRjF27k69nruOX4NtTWEZRBZWbcdkI7TvnvGIb9sJi/Ht/G60j/U9beMhEvaAkKb7TMTFMxIpVWrmLMzFoD5wMXAJuAtwGcc8cEP5o/5eU77vtsNg1rVuFKD4fRolmnRjU4pUsDXhizmIv7NKVu9dgYBtZOXUJNa7RFL72eka28E/jnAgOAU5xzfZ1zQynDaZCiyTs5K5i7dgd3nNSOlMR4r+NErVuOa0NevuPxbxd4HUVERCSkyjtMeRYFPWPfm9lXwFsUzBmLCZt27uPhr+bSM6s2J3Wq53WcqNakTioX9mrKa78s48q+zaJ2fksw130S8ZKGQyPPKUPHlHiaoWjd3/pZuYox59yHwIdmVhU4HfgzUNfMngE+dM59HfyI/nH/53PYuS+X+8/oSJGVPSREhvRvyXuTVvJ/I+fx7MXdvY5TIj8WTX7MJLFL7dF7B5tPWFLhpdcs/Co6gX8X8AbwhpnVBs4BbgOithj7Yf4GPpyyihv6t6R13Wpex4kJddKSuapfMx7/dgEzV22jY8MaXkcKGq+WGpDYow9WCRa1pdCp6KKv/+Oc2+yce8451z8Ygfxo575c7vxwBi0yqnJ9/5Zex4kpV/RtRvWUBM0dExGRqFXpYiwW3P3xLFZv3cNDZ3UmOUGT9sOpekoiV/drzrdz1jF95Vav44iIiASdirFD+HjqKt6fvJI/9W9FdlZtr+PEpMuOyKJmaiKPfTPf6ygiIiJBV9EV+GPCis27+fuHM+nWpCY3aHjSM9UCvWOPjJzHlOVbOKxJLa8jBY3mYEi0UFuOPHrN/EM9Y6XYsz+P696YBMAT5x9GQryeKi9dengWtasm8ZjmjomISJQJa4VhZllmts7MRpvZ18Vua2Bm35nZWDMbGM5cxTnnuP2D6cxavZ0nLuhK49qpXsYRIC05gWuObM6P8zeQs3Sz13FERESCxovunm+cc0c7544rdv1twN+B4wL/e+bFMUv4aOpq/nJsa/q3retlFCni4j5NqV01if9+v9DrKCIiIkHjRTF2jJn9ZGZ/LnZ9Z2Ccc24nsMPMPFnM69vZ63jgizmc2LEe1x+jeWJ+kpqUwJV9mzF63gZmrtrmdRwREZGgCHcxtgZoDRwDDDSzzkVui3fOucDP24DfzdI2s8FmlmNmORs2bAh6uEnLtvCnEZPp2LAG/3dOF62y70MX9W5KteQEnhm9yOsoIiIiQRHWYsw5t885t8s5lwt8BnQscnPRE45XB7aWcP9hzrls51x2RkZGULMtXL+TK4dPpF71FF66rAdVk3WgqR/VqJLIxX2a8sXMNSza8PtzqomIiESasFYcZlbNObcjcPEIYGiRm6ebWR9gOlDdObc9XLnWbd/LpS9NICHOePWKXqSnJYfroaUCrujbjJd+XsKzoxfxyDldwvKYpZ22SIeGi5+p3QqoHUSCcA9T9jOzSWY2FljtnBtvZoUF2cPAv4BvgQfCFWjbngNc+tIEtu7ez8uX9aRJHR056Xfpacmc36MJH05Zxaqte7yOIyIiUinhHqb8wjnX3Tl3uHPu1sB1QwL/r3TO9XfO9XHOheWE43v253HV8Iks2rCTZy7qTqdG0XMi6mg3+MjmADz/42KPk4iIiFROzK5keiAvnz+9OZmcZVt49NyuHNk6uHPQJLQa1KzCmd0aMmLCcjbu3Od1HBERkQqLyWIsP9/xt/emM2rueu47rSOndGngdSSpgGuPasH+vHxeGrPE6ygiIiIVFnPFmHOO+z+fwwdTVvGXY1tzce+mXkeSCmqekcYJHerx+i/L2LUv1+s4IiIiFRJz6zc8PXoRL/28hMuPyOJPOvl3xBt8ZHO+nLmWtyeu4Iq+zUL2OJ8O6VviEUmnDB2jI5IkZCp7FJzaZuzRkZORKaZ6xj6euopHRs7jtK4NuOsP7bWoaxQ4rEktemTV4sUxS8jNy/c6joiISLnFTDE2adlmbnlvOj2b1ebhszsTF6dCLFpc3a85q7bu4cuZa72OIiIiUm4xUYwt37Sbq1+dRMOaVXjuou4kJ8R7HUmCaGC7ujRPr8qwHxfz6xm1REREIkPUF2O79uVy5fCJ5DvHS5f1oFbVJK8jSZDFxRlX9WvOjFXb+GXxZq/jiIiIlEtUF2POOW77YAaLNuzk6UHdaJZe1etIEiJndmtInapJPP+TFoEVEZHIEtVHUw4fu5RPp63m1hPacHjLdK/jSAilJMZz6eFZPPrNfBas20GrutWC/hg6GknCTW1OykttJjJFbTE2efkW/vXFHAa2y+TaI1t4HUfC4KLeTXl69EKe/2kxD58dvBOI61BxKQ+1FymN2oaUJiqHKXfsPcANI6ZQr0YK/zmnq46cjBG1qyZxTvfGfDRlNeu37/U6joiISJlEZTF276ezWb11D4+fdxg1UhO9jiNhdFW/ZhzIz+eVsUu9jiIiIlImUVeMfTVzDe9NWsn1x7Ske9NaXseRMGtap6pOkSQiIhElquaMrd+xl9s/mEHnRjW4YUArr+OIR647ugU9smoTpzMsiIhIBIiqYuwfH81i9/48HjuvK4nxUdfpJ2XUuVFNOjeq6XWMg9JEXjkUtRE5FLWR6BE1xdjIWWv5atZa/nZCW1pkpHkdR3yqIjsv7dhiy8L1O0tsJzo5t1RWZdtG8Xa5cP1OAFpm6jMv0kVF99GOvQe4++NZtK1Xjav6NfM6joiIiEiZeVKMmdnNZjam2HX3mNk0MxttZjeXZ3v/N3Ie63bs5cGzOmt4UkRERCJK2IcpzSwZKG1Fzr84574tz/YmL9/Cq78s49I+WXRtXLPS+SQ6FQ49FXbrF1L3voSb5vlEl8oOa4uANz1jVwHDS7ntITP71sy6lnVjefmOnlm1+evxbYISTkRERCScwtozZmaJwFHOuafM7L5iNz/pnLvHzFoBLwH9Srj/YGAwQJMmTQDokVWbt6/pE9rgIkGmb81yKGojciiFPftqK5Ev3MOUFwNvlnSDc25z4P8FVsr6UM65YcAwgOzsbBeijBLFig9LaicmxbXMTFO7EF9Su4xe4R6mbANcZ2ZfAR3MbEjhDWZWPfB/OlG05IaIiIjIwYS16HHO/a3wZzMb45wbamZDnXNDgEfMrCMFBeJt4cwlIiIi4hVzLjJH+9LT011WVpbXMWJK8SMRC0XCEYlLly5F7UXKQm1FijvYvk/tRYo6WFuZNGmSc86VOCIZscOBWVlZ5OTkeB0jpkTyIfnZ2dlqL1ImaitS3MH2fWovUtTB2oqZTS7tfp6tkGpmDcxsspntNbOEwHW3mNkYM3sjcOSliIiISFTzcrn6zcAA4BcAM8sAjnHO9QWmA6d7F01EREQkPDwbpnTO7QX2FlnGoicwOvDzt8Ag4N3wJxOpuPx8x/fz1jNy1lqmr9zG5l37qZIUT7P0qvRuXofTuzakXo0Ur2OKiIiP+GnOWE1ge+DnbUCt4r9Q0qKvEj6RMDfMS2MXbuSuj2eyaMMuqqUkkN20Fl0a1WT3gTzmrd3Og1/O5eGv5nJ614bcfFxrGtVK9TqyiJSB9n1SVhVtK34qxrYCDQM/Vw9c/g0t+ip+lJfv+PcXc3hhzBKy6qTy5AWHcVLHeiQUO2n90o27eGP8MoaPW8bnM9Zwx0ntuKRPU0pb5FhERGKDl3PGipsIHBX4eSCBuWQifrYvN4/rXp/EC2OWcEmfpnx545Gc2qXB7woxgKz0qtz5h/aM/uvR9GlRh7s/mcVVw3PYsfeAB8lFRMQvPOsZCxwt+SXQBRgJ3AH8aGZjgOXA415lE3/zyxIbefmOP789la9nr+PuU9pz+RHNynS/BjWr8PJlPRg+din//HwOZz8zjhcvy9awpcgh+OW9L96LtrbgWc+Yc+6Ac26gc66Wc26Ac268c+4h51xf59wg59x+r7KJlMU/P5vNFzPW8vc/tCtzIVbIzLjsiGYMv7wna7bt4Zxnx7F0464QJRURET/z0zClSMT4ZNpqXhm7lCuOaMZV/ZpXeDt9W6Xz1uA+7MvN59znxrFoQ8mrN4uISPRSMSZSTks37uL296fTvWktbj+pbaW3175BdUZc3Zt857hg2C+s2Lw7CClFRCRSqBgTKYf8fMff3p9OXJwx9ILDSCxhon5FtKlXjTev7s3eA3lc+tIENu3cF5TtioiI//lpaQupgGibxOh37+SsYPySzTx4Zica1KwS1G23rluNly7rwYUvjOeKVyby5tW9qZqst6h4S/sYqSy1oUPTnl4ijldv4M279vPAF3Po3bw25/VoHJLHyM6qzVODunHN65MYMmIKz1+STXyc1iETAX14y6+irS1omFKkjJ4ctYCd+3L552kdQ7pQ68D2dbnn1A58N3c9D301N2SPIyIi/qCesQh2ytAxLFz/+6PvWmameZAmui3ZuIvXf1nG+T2b0KputZA/3sW9mzJ/7Q6G/biYlplpnJsdmp44ETk4DbH5Q7S/DuoZEymDR0bOJSkhjpsGtgrbY/7jlPYc0bIOd344gwlLNoftcUVEJLxUjIkcwpw12/lixlqu6teczGopYXvcxPg4nh7UnUa1Urn29Ula8kJEJEppmDLClTQkGS3dtn7x1PcLSUtO4MpyrrIfDDVSE3nx0mxOf+pnrhqew/t/PJw0HWEpYaT9iVSW2tChqWdM5CAWbdjJ5zPWcHGfptRITfQkQ/OMNJ66sBsLN+zkpremkJfvPMkhIiKhoa/YUm7RPpGyqGdGLyI5IY4r+4a/V6yofq0y+MfJ7bn7k1k8MnIet51Y+ZX/JfrF0ntVokvxtlt4sFq0HqCmYiyCaYcaWuu37+Xjqau4sFdT0tOSvY7DJX2aMm/dDp79YRGt66ZxZrdGXkcSiXraz/pDYREWra+HhilFSvHG+OXk5jsuOzzL6ygAmBn3ntqB3s1rc9v7M5i8fIvXkUREJAhUjImUYH9uPm+MX84xbTLJSq/qdZz/SYyP45kLu1O/ZgqDX53Eqq17vI4kIiKVpGJMpARfzFjDxp37uNQnvWJF1aqaxIuXZrPvQB5XD89h9/5cryOJiEglqBgTKcHLY5fSPKMq/Vqmex2lRC0zq/HkoMOYu3Y7f3lnGvk6wlJEJGJpAr+UW7ROoCw0Y+U2pq3Yyj2ntCfOxyfpPqZNJnec1I77P5/DQyPncvuJ7byOJD4T7e9ViV6x1nZVjIkU807OCpIT4jgjAo5WvLJvM5Zt2s1zPywmvWoyVx/Z3OtIIiJSTirGRIrYeyCPj6au4sSO9ahRxZtFXsvDzLjn1A5s3rWff30xh9pVkziru/+LSBER+ZWKMZEiRs5ay469uZzbo7HXUcosPs549LwubN2zn1vfn07N1EQGtKvrdSwRESkj30zgN7NUM/vczEab2cdm5v0qmxJz3slZQePaVejdrI7XUcolOSGe5y7OpkOD6lz3+mS+n7ve60giIlJGfuoZOwEY75y7z8zuDFz+2ONMEiShPi1LMLa/YvNufl64iZuPbe3rifulSUtO4NUrenLxixMY/FoOz1zYnYHt1UMm0a2i732dKuq39HwET2nP5cH4pmcMWAQU9obVBDZ5F0Vi0buTVmIGZ0fwnKuaqUm8flUv2jeowbWvT+KrmWu8jiQiIofgp2JsAdDLzGYB2cDY4r9gZoPNLMfMcjZs2BD2gBK9nHN8NGUVfVum06BmFa/jVEqNKom8dmVPOjeqwR/fmMxrvyzzOpKIiByEn4qxS4GRzrkOwOfARcV/wTk3zDmX7ZzLzsjICHtAiV5TV2xl+ebdnNqlgddRgqJ6SiKvX9WLY9pkctdHM/n3l3O0MKyIiE/5qRgzYHPg541ADQ+zSIz5eOpqkhLiOL5jPa+jBE1qUgLPXdydC3s14bkfFjNkxBR27dOpk0RE/MZPE/jfBN42s4uBA8B5HueJCZq0CXn5js+mr6F/m0yqp/h/bbHySIiP4/7TO9K0TioPfjmXeet28OxF3WmZmeZ1NEHvP4ksaq+h45tizDm3FTje6xyxbuH6ncDv33SVfbOF+s1ame2PW7SJjTv3cVrX6BiiLM7MGHxkCzo0qMENI6Zw2n/H8O+zOkfNkKzEtqLv/aL7raI/l7R/UAHxW7H4fISquCzt/nZD6ffx0zCliCc+mbaKtOQEjmmb6XWUkDqiZTqf3dCXNvWqccOIKdwwYgpbd+/3OpaISMxTMSYxbV9uHl/OXMvxHeqRkhjvdZyQq1+jCu9c04e/HNuaL2as4fjHf2T0PC0QKyLiJRVjEtNGz9vAjr25nBqlQ5QlSYiPY8iAVnx0/RFUT0nkspcnMmTEFNZv3+t1NBGRmKRiTGLaJ1NXU6dqEke0iKzTHwVDx4Y1+HRIX/48sDUjZ61lwH9+YPjYpeRpCQwRkbDyzQR+8UbxiYYVOY1DpNqzP4/v5q7nzG4NSYiPze8lKYnx3DiwFad1bcBdH8/k7k9m8e6kFdx7ake6N63ldbyoF4uTpiVyqb2Gjoox+Y1YerP9uGADew7kcWLH+l5H8VxWelVevaInn89Yw/2fzeGsZ8ZydvdG/O2EtmRUSz70BkR8IJb2X1J5fmovsdkdIAJ8NXMtNVMT6dW8ttdRfMHMOLlzA0b95SiuO7oFH09dRf//G81LY5aQm5fvdTwRkahVqZ4xM2sKbHXObQtcPgY4HVgG/Nc5p+PmJWzKs2bM/tx8vp2zjuM71CMxRocoS1M1OYG/ndCWc7o34p5PZ3PfZ7N5e+IK7jm1A31icG6deE+LjfqLXo/gq+yn0DtAVQAz6wq8CywHugBPV3LbIiHz86KN7Niby4lRdPqjYGuekcbwy3sw7OLu7NqfywXP/8KQEVNYs22P19FERKJKZeeMVXHOrQ78fBHwknPuP2YWB0yt5LZFQmbkzLWkJSfQt1W611F8zcw4rkM9jmydwTOjF/HMD4sYNWcdQ/q34sq+zUhKUK+iiEhlVbYYsyI/9wduB3DO5ZtZyfcQCfCqqzs3L5+vZ6+jf9tMkhOif6HXYEhJjOfPx7bmrG6N+Ofns3noq7m8m1MwdHlk6wyv44nHNGwlsSiY7b6yxdh3ZvYOsAaoBXwHYGb1Ac0Xi3DRuoOdsHQzm3ft1xBlBTSpk8rzl2Tz/bz13PvJLC55aQLHd6jL3//Qnsa1U72OF1Gi9f0l4aH2E10qO8ZwE/ABsBTo65w7ELi+HnBnJbctEhJfzVxLSmIcR7VRj05FHdMmk5F/PpJbjm/Dj/M3MvDRH3ji2wXsPZDndTQRkYhTqZ4x55wD3irh+imV2a5IRZTlG2F+vuOrmWs5qnUGqUlaZq8ykhPiuf6YlpxxWEP+9cUcHvt2Pu9PXskjZ3emV3MddSnBo94ef9HrEXyV6hkzs8Zm9paZ/WRmd5hZYpHbPqp0OpEgm7JiK+t37NNCr0HUoGYVnhrUjTeu6oUZnP/8Lzz01Vz252ptMhGRsqjsMOVLwGhgCFAf+MHMCr8SN63ktkWC7quZa0iMN/q3y/Q6StQ5omU6X9zQj/OyG/PM6EWc8fTPLFi3w+tYIiK+V9lxmgzn3LOBn4eY2UXAj2Z2KqCzDctBhbur2znHlzPX0rdlOtVTEg99Bym3qskJPHhWZ/q3zeS2D2Zw8tAx3H1KBy7o2RgdYR29NGwlsSiY7b6yxViimaU45/YCOOdeN7O1wEgCi8FK5IrGHezj53UlPk5FQagd16EeXZvU5C/vTOOOD2eQs3Qz95/RUfP0iojG95eEj9pPdKnsnvEFoBfwQ+EVzrlvzewc4OFKbjum6DDl0DMzsrN0HspwyayWwiuX9+S/3y3k8VHzmbV6O09f1I0WGWleRxMf0D4vfPRc+19lj6Z8rJTrpwDHVmbbEn56w0qwxccZNw5sRbemNbnxramcOnQM/zm3CyfoAAophfZDsUWvd4HKnij8yYPd7py7oZzbuwS4FIgHLnTOrapEPBHxiX6tMvj8hr5c9/pkrn19Mn89rjXXH9NS88hERKj8MOWkIj/fC9xd0Q2ZWUPgKOfcgEpmEhEfql+jCm8N7s1t70/n/76ez8L1O3nwrM6kJOqUVCIS2yo7TDm88Gczu6no5Qo4Hog3s1HAbOAm55yW8xaJIimJ8Tx2Xlda1a3GIyPnsXTTboZd0p3MaileRxMR8Uxl1xkrqrJLWdQFkgI9Y7uB0yofSUT8xsy4/piWPHtRN+at3cGZT49lycZdXscSEfGMn44z38avR2V+B2QX/wUzGwwMBmjSpEn4koVBrE1WFDmhY33q16jC5a9M5OxnxvLK5T3p1KiG17EkTErb55U2oVsqTp8v/lfZCfw7+LVHLNXMthfeRMGpK6uXY3NjgasDP3cFlhT/BefcMGAYQHZ2thaVDTK9YSXcujSuybvX9uGSFydw/rBxPHdxNn1bpXsdSzyk/VBs0etdoFLDlM65as656oF/CUV+rlbOQgzn3FRgj5mNBnoA71Umm4hEhhYZaXzwx8NpXDuVy1+ZwBcz1ngdSUQkrII5Z6zSnHN/dc4d7Zw72zm33+s8IhIedaun8PY1fejSqCZDRkzh02mrvY4kIhI2virGRCR21aiSyPAretK9aS1ufGsKH0/VMoMiEhv8NIFfDkKrFEssqJqcwCuX9+CKVyby57enku8cZxzWyOtYUkHab0mwRHtbUs+YiPhKalICL1/Wk97N63DzO9P4REOWIhLlVIyJiO9USYrnxUt70DOrNje/PZXv5673OpKISMhomNKHSuqOXbh+Jy0z0zxII+KNKknxPH9pNhcM+4Xr3pjEa1f2okdWba9jRbRoH+qJZXptI5t6xkTEt6qnFEzqb1CjCle8MpHZq7cf+k4iIhFGxZiI+Fp6WjKvXtmTtOQELnlpAiu37PY6kohIUGmYMswq2pXcMjNN3c0SsxrVSuXVK3py5tNjuWp4Du9e24dqKYlex5IiNEwWeSLpNfNjpmCKumIskhpXoYXrd/4m98L1OwE0R0ykiFZ1q/H0Rd247OWJDBkxhRcuySYhPno794O1Lytp3wLav0SDcL+2kfj5Gimid08mIlGnX6sM/nlaR0bP28A/P5vtdRwRkaCIup6xaFD4rSYWvm3om5aU16BeTViycSfP/7SElplpXNwny+tIvlDae6mooj0meo+FXyj3d3ptI5t6xkQk4tx2Yjv6t83kvs9mM2nZFq/jiIhUinrGIpB6kyTWxccZj53blVP+O4Y/vjGJT4f0JbNaitexYkrx/ZDmupZd0fld8OtzqX147FIxFmYlvdnKMrwgIr9VIzWR5y7uzhlP/8yf3pjCG1f3IjGKJ/T7XSxNr4gWeq38I+qKsUhsXJGYWcQP2tWvzoNnduamt6fy7y/m8o9T2nsdKWiCtV/Q/iV6hfu1VVsKHX2NFJGIdvphDbns8Cxe+nkJI2et9TqOiEi5RV3PmEQWfdOSYLjjpHZMWraFW9+bTqeGNWhQs4rXkcJO7yX/K3yNNDVFilPPmIhEvKSEOJ684DAO5OVz09tTyct3XkcSESkz9YxFIH0DFvm9ZulV+edpHfnLu9P473cLuXFgK68jRTXthypOz50Up2LMJ7RchUjlndW9EWMWbuSJUfM5vGUdemTV9jpSzNO+zd/0+viDhilFJKr88/SONK6dyk1vTWXH3gNexxEROSTfFWNmdrOZaXajiFRIWnICj57blTXb9nD/Z3O8jiMicki+KsbMLBno4nUOEYls3ZvW4pqjWvB2zgq+m7vO6zgiIgfltzljVwHDgfu8eHC/jZ0vXL+zxEwayxc5tJsGtuL7uev52/sz+PqmWtSqmuR1pHIrzz7Jb/uvWOG3/bTaQWTyTTFmZonAUc65p8wsJMVYZRupGrlI5EhOiOfRc7ty2lNj+PvHM3lqULewPK6f9hN+KxRinVdtQ+3A/3xTjAEXA28e7BfMbDAwGKBJkybhyBQ2OmelSPC1b1Cdmwa25pGR8zihw2pO6dLA60gxRx/4/qbXxx/8VIy1Abqa2bVABzMb4pwbWvQXnHPDgGEA2dnZMbWq48L1O//3c9EiTW8kkYO75sjmfDtnHXd9PJPezeuQUS3Z60hhV3T/Ab/uQ7T/iF5FX/O9uXn/u1x4QnfxF99M4HfO/c05d7xz7gRgVvFCTESkIhLi43jk7C7s3p/H3Z/M9DqOiMjv+KYYK8o5p69rIhI0LTPTuHFAK76YsZavZq7xOo6IyG/4aZjSc37rsi+aR/PHRCpn8JHN+WLGGv7+0Sx6N69DzVT/H11Znn2S5p16o2Vmmq8+O0o6GXnxYWrxn5gqxir7hvHTG05EyicxPo6Hz+7Maf/9mX9+Nof/nBuaJQ39tJ8o6YNZvONV2yg6T8xP7VN+5cthShGRUOjQoAbXHtWC9yevZPS89V7HEREBYqxnLJLp24xIcAwZ0JKvZq3lzg9nMvLPR5KWHP27Qe0/Yo9e88gS/Xsh8YyfFr8UKZScEM9DZ3Xm7GfH8tCXc/nn6R29jhQR9H72lp7/6BZVxZgaq4iURfemtbj88Ga89PMSTu5cn17N6/zvNq1WLn5V0kT8U4aOUduMApozJiIx6a/Ht6ZJ7VRu+2AGew/keR1HRGJYxPaMlfTtdeH6nVpdWETKJDUpgQfP7MSgF8bzxKgF/O2EtmF5XPXgRxf1pEowRGwxJiJSWYe3TOeeU9ozoF1dr6OISAxTMSYiMe2yI5p5HUFEYpyKMQkZddOLRA+9n7316ZC+Wrw3ikVVMea301KISOTRfkT8Su0yeoXsaEoz62VmY83sJzN7rNhtDczsu8DtAwPXVTOzT83sZzO7JFS5RERERPzEnHOh2bBZPWCrc26vmb0BPOicmxG47UngLWA68Jlz7mgzuxlYC7wNfA8MdM7tL2376enpLisrKyTZI0VpJ38N1RGl4X68YFq6dCmx3l4iWSjaXmnbTNi9UW1Fykz7lvCIlM+fg+WcNGmSc86V2AkWsmFK59zaIhdzgaIL+XQGbnTOOTPbYWbVgD7A9c65PDObBrQBZpS2/aysLHJyckIRPWKE+xD5SD4kPzs7O+bbSyQLRdsrbZtrht+ktiJlpn1LeETK58/BcprZ5NLuF/JFX82sM5DunJtd5Op492uX3DagFlAT2F7suuLbGmxmOWaWs2HDhhCmFhEREQmPkE7gN7PawH+Bc4vdVLSXrDqwNfCvOrC3yHW/4ZwbBgwDyM7ODs34qohIFNufm8/abXvZm5tHXr6jVmoSddKSSIzXCVlEvBKyYszMEoDXgVuKDVkCTDezPhTMGavunNtuZuOAAWb2DtAVmBeqbCIisSIv3/Hj/A18M2cdvyzaxNJNu8gv4ats0zqptK9fnS6Na9K3ZTrt61cnLs7CH1gkBoWyZ+wcoAfwkJkB3A4Mcs4NAR4GXgWqAHcHfv8F4E1gCDDMObcvhNmkAvw2Ni9SGaW15+zhYQ4SIgfy8hkxYTnP/bCYVVv3UDUpnt7N6/CHzvVpXDuVqkkJmMHW3QdYt30vC9bvYPbq7Xw5s+C7c63URI5pm8kpnRtwRMt0khLUcyZyKBX9nAzlBP4RwIhiV48L3LYS6F/s97cDJ4cqTzRScSSxQm29fCYt28wt701n8YZd9MiqxZ1/aMfAdnXLVFCt37GXnxdu5Mf5G/lm9jo+mLyKGlUSOalTfQb1bEKnRjXC8BeI/Fa07wOiatFXEZFYlp/v+O/3C3n82/k0rFWFFy7JZkC7TAKjE2WSWS2FMw5rxBmHNWJfbh4/zd/IZ9NX8+GUlYyYsJxODWswqFcTTu3SgKrJ+ggRCQa9kyQqRMphz9FOr4N39uXmcet70/l46mpO69qA+0/vSLWUxEptMzkhnoHt6zKwfV227TnAR1NW8eb45dz+wQz+/cUcLumTxWVHZJGelhykv0Ik8lXktFUqxkREIty+3DyuGp7DTws2cusJbbjuqBbl6g0rixpVErn08Cwu6dOUScu28PxPi3lq9EKe/2kx5/VozLVHtaBBzSpBfUyRWKFiTEQkguXm5TPkzSn8tGAjD53VifN6NAnp45kZ2Vm1yc6qzaINOxn2w2JGTFjOWxNXcPnhWVx3dAtqpiaFNINItNHhMSIiEco5x10fz+Tr2eu455T2IS/EimuRkcZDZ3dm9C3HcErnBgz7aTFHPvw9L/y0mNy8/LBmEYlkKsZERCLU6+OXM2LCCq4/pgWXHdHMsxwNa1bhP+d24csb+3FYk1rc//kcTnvqZ6av3OpZJpFIomJMRCQC5SzdzL2fzOKYNhncfGwbr+MA0LZedV65vAdPX9iNDTv2cfpTP/PAF3PYn6teMpGD0ZwxiQo6Ws8f9DqEx/a9B7jxrak0rFWFx88/jHgfrZRvZpzUqT59W6Xz4JdzGfbjYsYu2siT5x9G84w0r+OJhFxp+0G7ofT7qGdMRCTC3PvJbNZs28Pj53WlRpXKLV8RKtVTEnngjE48d3F3Vm7Zw8lDx/D59DVexxLxJfWMyW9onSg5FLURb301cy3vT17JkP4tOaxJLa/jHNLxHerRpVFN/vjGJK5/czLz17XixgGtdN5L8Zyf9mXqGRMRiRA79h7gro9n0qFBdYb0b+V1nDKrVyOFEYN7c3b3RjwxagFDRkxhX26e17FEfEM9YyIiEeKxbxawcec+XrgkO+JO3J2cEM8jZ3emdd00HvhiLtv3HuC5i7uTmqSPIRG9CyQs/NQdLKGn1zv45qzZzvBxS7mgZxO6NK7pdZwKMTMGH9mCWqlJ/O396Vz84gReuqyHb+e9xRK9Z70VWV+tRERikHOOf3w8kxpVErn1eH8sY1EZ52Q35qlB3Zi+ciuXvDSBnftyvY4k4ikVYyIiPjdy1jomLt3CLce3iZpTDZ3YqT5PX9idmau2cdXwiew9oDlkErtCNkxpZg2Az4D2QJpzLrfIbY8DXQMXuzjnapnZZcDtwBpggnPu1lBlk9KpS1oORW0kvHLz8nl45FxaZqZxTvdGXscJqmPb1+XRc7tw09tTue71STx3ceTNhZPI5ad9WSjnjG0GBgAfFr/BOXcTgJkdBvylyE2POOdeCGEmiQKa2yAlidZ28e6klSzesIthF3cnIT76CpXTujZk17487vhwBnd9NJMHz+qEmZa9kIOLtvd7yN7Zzrm9zrkth/i1M4APily+ycx+NLMBocolIhIp9uzP47Fv5tO9aS2ObV/X6zghM6hXE/50TEvezlnB8z8t9jqOSNh5fTTlCcCDgZ8/Al4F6gBfm1m2c+43kwjMbDAwGKBJkyZhjCmVFY5vK9H2TSncgvn86TkPjtd+Wcr6Hfv476BuUd9bdPOxrVm8cSf//nIuTetU5fgO9byOFFPK857Vvjb4POvzNrNWwCrn3G4A59xW51y+c24DMB/43ddA59ww51y2cy47IyMjzIlFRMJn74E8hv24hL4t0+nZrLbXcUIuLs74zzld6dywBje9NZX563Z4HUkkbLycgHAGReaTmVn1wP9VgFbABo9yiYh47q0Jy9m4cx9/6t/S6yhhUyUpnmGXZFM1OYFrX5+kJS8kZoTyaMpE4EugCzDSzO4ALnLODQn8ysnAaUXu8mczO4GCAvFB59yBUGWTkqnrOfLpNYwO+3LzeO7HxfTMqk3v5nW8jhNWdaunMPSCw7jwhV+47f3pDL3gsKgfoo1l2mcVCFkxFiimBha7enyR248s9vv3AveGKo9Ej9LepKW9qSU2RNPO+/1Jq1izbS8Pn93Z6yie6NOiDn89vg0PfzWPHlm1ufTwLK8jic9E0/sdtOiriIiv5Obl88wPC+nSuCZ9W6Z7Hccz1x7ZgoHtMrn/89nMWr3N6zgiIeX10ZQiQRNt35TCTc+fP3w1ay0rNu/hrj+0j+nhubg445Gzu3D84z9y01tT+XRIX1IS472OJWhfEQrqGRMR8QnnHM//tISsOqkMbBe964qVVa2qSfzfOV1YsH4nD3451+s4IiGjnjGf0CRGCZaF63f+7rpTho5RW4oAk5dvYdqKrdx3Wgfi4mK3V6yoI1tncPkRWbz881KOaZvJUa21rFF56fPF/1SMyf/ojRn5Ph3SVwcyRLAXflpCjSqJnB1l56CsrL+d0JafF27kr+9O4+ubjqRW1eg4Wbroc6eQhilFRHxgxebdjJy1lkG9mpCapO/JRaUkxvPYeV3Zsms///xsttdxRIJOxZiIiA+8/PNS4sy4tE+W11F8qUODGlx3dAs+mLKK7+et9zqOSFDp65dPlDTPR/xPczEkGHbsPcDbE5dzSpcG1KuR4nUc3/pT/5Z8OXMtd34wg5F/PpJqKYleR4p42of5g4qxCKE3TOzRax47Pp66ml3787S46SEkJ8Tz0FmdOfvZsTz81Tz+eXpHryNJmET7/lDFmE+0zEzzOoJEiWjZOcWStyYup1396nRpVMPrKL7XvWktLj+8GS/9vISTO9enV4ydLqoitE/wP80ZExHx0IyV25i5ajsX9Gwc04u8lsdfj29N49pVuP2DGezLzfM6jkilqRgTEfHQiInLSUmM47SuDb2OEjFSkxK477SOLN64ixd+WuJ1HJFKK9MwpZk9ADzsnNsauFwL+Itz7u8hzBaVtAaUFBXt8yDk4Hbty+XjKav4Q6cG1KiiyejlcUybTE7sWI8nRy3g1C4NaFw71etIEeeUoWNKPHhM02bCr6xzxk50zt1ReME5t8XMTgJUjAVJLH74RkMhEklZi4uG5z/SfTa9YOL+oF6NvY4Skf5xSnt+mL+Buz+ZxYuXZmuYtwJKKry0DyibYO5Dy1qMxZtZsnNuH4CZVQGSD3YHM2sAfAa0B9Kcc7lFbrsHOAPYAnzinHvUzKoBbwK1geecc6+W94+JZnpzxB695tHvzQkraJWZRrcmtbyOEpHq16jCnwe25l9fzOGb2es4rkM9ryNJiET7/rCsc8ZeB0aZ2ZVmdgXwDTD8EPfZDAwAfinl9r845452zj0auHw1MAI4ErjKzHS+CxGJWrNXb2faiq1c0LOJenQq4bIjsmhTtxr3fjqb3ftzD30HER8qU8+Yc+5hM5tBQXFlwD+dcyMPcZ+9wN6D7GQeMrMtwF+dc1OBPsD1zrk8M5sGtAFmlO3PiC0aXooser2kJG9NXE5SQhxndtPE/cpIjI/j/jM6cs6z43hy1EJuO7Gt15EOSfsEKa7M64w5574EvgzS4z7pnLvHzFoBLwH9gJrA9sDt2wD124tIVNqzP48Pp6zipI71qJmqQYDK6pFVm7O7N+LFMYs5N7sRzTM0AV0iy0GLMTMb45zra2Y7AFf0JsA556pX5EGdc5sD/y8o0nO2FagO7A38v7WEPIOBwQBNmjSpyEN7Lpa++fj5259fsvnhuZDw+3zGGnbszeX8npG5H/OjW09ow1cz1/Kvz+fw4mU9vI4TdKHYZ2n/4x8HLcacc30D/1cL5oOaWXXn3HYzSy+SYRwwwMzeAboC80rIMwwYBpCdne2K3y6RRTsCb+n5985bE5bTPL0qvZrV9jpK1MislsINA1rywBdzGT1vPUe3yfQ6kkS5YO5Dy7rO2GvOuYsPdV2x2xMpGNbsAow0szuAi5xzQ4BHzKwjBQcQ3Ba4ywsUHE05BBhWeOSmHFzRNWKKfnPSB61EK7/0albUgnU7yFm2hTtOaquJ+0F22eHNGDFhBfd9NpsjWqaTGK91zf0g0t+z4VDWOWMdil4wswSg+8Hu4Jw7AAwsdvX4wG3XlPD724GTy5hHRCQijZiwgsR446xujbyOEnWSEuL4+x/aceXwHIaPXcpV/Zp7HUmkTA41Z+x24A6gipkVTq43YD+B4UIJv6LfJrSiv//p258U2nsgjw+mrOS4DvWok3bQpRqlgvq3zeSo1hk8MWoBpx/WkHQfPs/aJ0hxB+3Ddc79OzBf7BHnXPXAv2rOuTrOudvDlFFEJCqMnLWWrbsPMEgT90PGzLjr5Hbs2Z/Hf76e73UckTIp6zDlBDOr4ZzbBmBmNYGjnXMfhSqYRD4/f/vzczaJXiMmLKdJ7VT6NK/jdZSo1jKzGpf0yeLlsUu4sFcTOjas4XWkStM+K7qVdXbj3YWFGEDghOF3hySRiEgUWrxhJ78s3sz5PRsTF6eJ+6F248BW1EpN4r5PZ+OcDr4Xfytrz1hJRVuZF4yV0NG3JYk1kdrm3564goQ44+zumrgfDjWqJPLX49pwx4cz+GrmWk7sVN/rSDErUt+z4VTWnrEcM3vUzFqYWXMzewyYFMpgIiLRYn9uPu9NWsnAdnXJrJbidZyYcW52I1rXTePBr+ayPzff6zgipSprMTaEgiMo3wbepWCV/OtDFUpEJJp8M3sdm3bt5/yejb2OElMS4uO446R2LNu0m1fHLfU6jkipynqi8F38ujiriIiUw4gJy2lYswr9WmV4HSXmHN0mk36t0hn63ULO7t5I5wIVXyrrCvwZwK0ULP76vz5251z/EOWKaVqtODbpdY9OyzftZszCjdx8bGviNXHfE3f+oR0nPfETT45ayD9Oae91nJDQ/iOylXWY8g1gLtAMuBdYCkwMUSYRkajx1sTlxBmcm60hSq+0rVedc7Mb89ovS1m6cZfXcUR+p6xHRNZxzr1oZjc6534AfjCzH0IZTH5r4fqdJX7z0bee0NC3TAmGA3n5vDtpJf3bZlKvhibue+nm41rzybTVPPjlXJ69+KBn84sKhectLr4v0z7Mn8pajB0I/L/GzP4ArAZ0fHaQFH+zFL6JWmameRFHwqCkYm/h+p16zaPMqDnr2bBjHxdoxX3PZVZL4dqjWvDoN/OZsGQzPZvV9jpSxNGX1NApazF2v5nVAP4CDAWqAzeFKpRfqSEWiMXnQd8ywyPa2tZbE5dTr3oKR7XWxH0/uLpfc94cv5x/fT6bD/94RMwsvlu4/4Lfvsf8/L6Ktn3BoZRpzphz7jPn3Dbn3Ezn3DHOue5AixBnExGJWKu27uGH+Rs4N7sRCfFlnZ4roVQlKZ6/Ht+GaSu38en01V7HEfmfyqyifzPweJBySBGFQ1VFvwGU9i1BokfLzLSo/dYXi96euAKAc3to4r6fnHlYQ17+eQkPfzWP4zvUIyUx3utIQVF836HPjMhSmWLsoP27ZtYA+AxoD6Q553KL3HY3cELg4t+dc6PM7DLgdmANMME5d2slskWFom+mot3M0TSvKJK6ovfm5v3mdYCC/GXNGguvpxTIzcvn3ZwVHNkqg0a1Ur2OI0XExRl3ntSOQS+M5+Wfl3Ld0ZUb5CnPwVWRtL+T8KpMMXaoM69uBgYAH5Zw26vOuXvNrCbwCTAqcP0jzrkXKpEpahX9wNYbN/RK+pZZvBATKc0P8zewZtte7j6lg9dRpASHt0xnQNtMnv5+IedkNyI9LdnrSEGnkZXIctBizMx2UHLRZUCVg93XObcX2Gv2+w4059ySwI/7im3/JjO7BLjXOTfqd3eMUqUVV3oDRS8V19FtxIQVpKclM6BdptdRpBS3n9SO4x//kaGjFnDvaR29jhMRtK8KnYMWY865aiF+/HuA5wI/fwS8CtQBvjazbOdcXtFfNrPBwGCAJk3Cf6i4GmKBWHwePh3SV8VxGERD21q7bS/fzV3HtUe1IFET932rZWYa5/dozBvjl3PZEc1oll7V60ghE4nvq0jMXBme7SnM7AwKFpN9E8A5t9U5l++c2wDMB+oWv49zbphzLts5l52RoUPFRcR/3s1ZQb6D8zRx3/duHNiKpIQ4Hhk51+soEuM8KcbMrDNwfeBf4XXVA/9XAVoBG7zIJiJSUXn5jrcmrqBvy3Sa1onenpZokVkthcFHNueLGWuZvHyL13Ekhplzh5qHX8ENmyUCXwLdgcnAHcBFzrkhZjYSaABsArY5504rcoRlHPAf59w7B9t+dna2y8nJCUl2iT7Z2dmovUhZVKatfD93PZe/MpGnL+zGSZ3qBzmZhMKufbkc9chomqWn8s41fShpnvPBaN8iZWVmk5xz2SXdVpmjKQ/KOXcAGFjs6vGB244v4ffvpeAk5CIiEemN8ctJT0vm2Pa/m2UhPlU1OYE/H9uKOz+cybdz1uu1E0+ErBiLRFoDRg5G7UMOZs22PZq4H6HOy27Mi2OW8OCXczimTUZEnzFB+6nIFHXFmBqiRAK10+jz9sSCifvn99BJwSNNQnwct53QlsGvTeKdnJUM6hUZr2FJ+5GF63dqIekIFLnlv4iIT+Tm5fP2xBX0a5VOkzpacT8SHdu+Lj2yavHYt/PZtS/30HcQCSIVYyIilTR6XsGK+xdGSI+K/J6ZcftJ7diwYx8v/LTk0HcQCSIVYyIilfTmhOVkVEtmQDtN/o5k3ZrU4qRO9Xjux0Vs2LHP6zgSQ1SMiYhUwqqtexg9bz3nZTfWxP0ocMvxbdmfm88To+Z7HUViSNRN4K8MTZ6Wg1H7kJK8PWE5Dji/p1bcjwbN0qsyqFcT3hi/nMuPaEaLjMiaDN8yM037qggUdcWYGmH56Kg+b0TD86u2Awfy8nk7ZwVHtc6gUS1N3I8WNwxoxfuTVvLwV3N57uIS1+j0hXC/1/SeD52oK8YkePTGi156bYPjq5lrWbd9Hw+c0dTrKBJE6WnJXHtUC/7zzXwmLdtM96a1vY70O3oPRxdNcBARqaDhY5fSpHYqR7fJ9DqKBNmV/ZqRWS2ZB76YS6hOGyhSKGJ7xhau31niNwN9K5CSqL1IsM1ctY2cZVv4+x/aER9XvvMZiv+lJiVw87Gtue2DGYyctY4TOtYr8fe0b5FgUM+YiEgFDB+7lCqJ8ZyTrYn70ers7o1olZnGw1/N5UBevtdxJIqpGBMRKafNu/bz8bTVnNmtITWqJHodR0IkIT6O205sy+KNu3hr4gqv40gUi9hhSgkOdaVLRcVy23lr4nL25+Zz6eFZXkeREOvfNpNezWrzxLfzOeOwhqQlx+7HZiy/50MtdluVHJLeeNFLr23F5ebl8/q4ZRzeog6t61bzOo6EWOFpkk5/6meG/biYm49t7XUkQO/haBOyYUoza2Bmk81sr5kllHDbd2Y21swGBq6rZmafmtnPZnZJqHKJiFTGN7PXsXrbXvWKxZCujWtycuf6PP/jYtZv3+t1HIlCoewZ2wwMAD4s4bbbgL8D04HPgG+Bq4ERwNvA92b2lnNuf2kbr8gqw1qXJXZVZlVqtRsp5Jxj2E+LaVI7lYE6D2VMueX4NoyctZbHRy3ggTM6/e/68uxbtC+R0oSsZ8w5t9c5t6WUmzsD45xzO4EdZlYN6AN865zLA6YBbUKVTUSkInKWbWHK8q1c1a+ZlrOIMU3rVOWi3k15L2clG3fqJOISXF7NGYt3v66itw2oBdQEthe77jfMbDAwGKBJkyahTykiUsRzPyymVmoi53TXchax6Ib+rRjUswnpacleR5Eo49XSFnlFfq4ObA38q17sut9wzg1zzmU757IzMjJCHFFE5FcL1+/k2znruLhPFlWS4r2OIx6oVTWJVjpoQ0LAq2Jsupn1MbOqQHXn3HZgHDDAzOKBrsA8j7KJiPzOCz8tJjkhjkv76DyUIhJcoTyaMtHMvgW6ACPNrJeZDQ3c/DDwLwom7j8QuO4F4ELgJ+Al55wG5UXEF9bv2MsHk1dxdvdG1NEQlYgEWcjmjDnnDgADi109PnDbSqB/sd/fDpwcqjygI1akYtRu5KUxSzmQn89V/Zp7HUUimPYlUhqdDklE5CA279rPq+OWckrnBjRLr+p1HBGJQirGREQO4oWfFrPnQB5D+rf0OoqIRCkVYyIipdi6ez/Dxy7lpE71dRSdiISMijERkVK8OGYJu/arV0xEQkvFmIhICbbtPsArPy/lxI71aFuv+qHvICJSQV6twB8SOu+XHIraiJTVp9NXs2NfLkP6t/I6igig/Vc0i6piTEQkWC7s1YSujWvSvoF6xUQktDRMKSJSAjOjY8MaXscQkRigYkxERETEQyrGRERERDxkzjmvM1RIenq6y8rK8jqG+MTC9TtLvL5lZhoAS5cuRe0l9A71OkQCtZXYEKy2qvYiZTVp0iTnnCuxEyxiJ/BnZWWRk5PjdYyY4ucjeQ6VLTs7W+0lDPzcRoorLSvDb1JbiQHlaasH+13tW6SszGxyabdpmFJERETEQyrGRERERDwUscOUEvkiaUgrGun5l2BRW/KfnftyyVm6mcUbdpHvHPVqpNCtSS0a1KzidTQpgYoxERGRKLFq6x6e+HY+n0xbzd4D+b+7vVez2gzp34q+rdI9SCelUTEmUUHfwP1Br4NEimhrq8453pywnPs+nQ3AWd0bcXKn+rSpV42E+DhWbN7ND/M38Ob45Vz04nhO7FiPf5/ZiZqpSR4nF1AxJuUQbTsviW2ltefs4WEOIr7n931fbl4+t38wg3cnreTI1hn8+8xONCw2HFmjYQ06NqzBlX2b8eKYJTz+7XymPrGVly/vQdt6OuWX1zSBX0REJEIdyMtnyIgpvDtpJTcMaMUrl/X4XSFWVEpiPNcf05IPrjsC5+CcZ8YxfvGmMCaWkqgYExERiUDOOe78cAZfzlzL3//QjpuPbU1cnJXpvp0a1eD9Px5O3RopXP7KRKYs3xLitHIwGqYUz/i96z/a6fmXYFFb8sazPyzmnZyV3NC/JVf1a17u+zesWYU3r+rF2c+O47KXJ/LetX1oVbdaCJLKoahnTEREJMKMXbSRh0fO5eTO9fnzsa0rvJ3M6im8cVUvEuPjuPrVHLbtPhDElFJWKsZEREQiyJZd+7n57Wk0q1OVh8/ujFnZhiZL07h2Ks9e1I1VW/fwpxGTycuPzHNWRzIVYyIiIhHkzo9msGnXPp44/zBSk4Iz2yg7qzb3ntqRnxZs5MlRC4KyTSk7FWMiIiIR4pvZ6/hixlpuGtiaTo1qBHXbg3o14YzDGjL0uwVMWrY5qNuWg1MxJiIiEgF27cvl7o9n0qZuNQYfWf4J+2Vx32kdaFirCje+NZXtezV/LFxUjImIiESAJ0YtYPW2vTxwZkcS40Pz8V0tJZHHz+vKmm17ufeT2SF5DPk9LW0hv6ET/sqhqI2IX0Vz21y6cRcvjVnCedmN6d60dkgfq3vT2lx7VHOe+n4Rp3ZtwFGtM0L6eKKeMREREd975Ot5JMbH8ZfjKr6MRXkM6d+KFhlVueODGezclxuWx4xlKsZERER8bOqKrXw+fQ1XH9mczOopYXnMlMR4HjqrM6u37eH/Rs4Ly2PGMhVjIiIiPuWc499fzCE9LSlkk/ZLk51Vm0t6N2X4uKU6ujLEVIyJiIj41M8LNzF+yWaG9G9FWnL4p3nfckJb6lVP4c4PZ5Kblx/2x48VKsZERER86snvFlCvegrn92zsyeOnJSfwj5PbM3ftDoaPW+ZJhligoynlN6LhqCMJLbUR8atoa5vjF29iwpLN3H1Ke5IT4j3LcULHehzVOoPHvpnPyZ3rUzdM89ZiiXrGREREfGjodwtJT0vigp5NPM1hZtx7agf25+Xzr8/neJolWqkYExER8ZnJy7cwZuFGru7XnJRE73rFCmWlV+Xao1rwybTVjF240es4UUfFmIiIiM88/f0iaqYmclHvpl5H+Z8/Ht2CxrWrcNfHM9mfq8n8waRiTERExEcWb9jJqLnruKR3U6p6cARlaVIS47nv1I4s2rCLF8cs8TpOVFExJiIi4iMv/7yUxLg4Lurjn16xQse0zeS49nV5ctQCVm3d43WcqKFiTERExCe27t7Pe5NWcmrXBmRW8+dRi/84pT0A934yy+Mk0cM//Z8iZRTNJwOWilO7iH6x8BqPmLCCPQfyuOKIZl5HKVWjWqncMKAVD301l1Fz1jGgXV2vI0U8T3vGzOxmMxsT+PkWMxtjZm+YWaKXuURERMLtQF4+w8cu5YiWdWjfoLrXcQ7qyr7NaJWZxt2fzGLP/jyv40Q8z4oxM0sGugR+zgCOcc71BaYDp3uVS0RExAtfzFjD2u17ubKvf3vFCiUlxPHP0zuycssenh690Os4Ec/LYcqrgOHAfUBPYHTg+m+BQcC73sTyp5K65xeu30nLzLTfXR9NXfaxLBaGZMpKz0VkiobXLZx/w8s/L6V5elWObp0Z9G2HQu/mdTjzsIY898NiTj+sIS0yfv95JGXjSc9YYBjyKOfcd4GragLbAz9vA2qVcr/BZpZjZjkbNmwIfVAREZEwmLlqG1NXbOWi3k2JizOv45TZ7Se1Izkxjrs/noVzzus4EcurYcqLgTeLXN4KFA6QVw9c/h3n3DDnXLZzLjsjIyOkAUVERMLljfHLSEmM46zujbyOUi4Z1ZK59fg2jFm4kc+mr/E6TsTyapiyDdDVzK4FOgDZFAxVPgwMBH7xKJeUgddDD5E0xCHlU1rbKgu1i9/z+r0abJGa+1C27z3Ax1NXc2qXBtSoEnnHrw3q1ZR3clbyz89mc3SbDKqlRN7f4DVPesacc39zzh3vnDsBmOWcuxf4MXBkZVfgIy9yiYiIhNtHU1axe38eF/by3yKvZREfZ/zrjI5s2LmP/3w93+s4EcnzRV8DR1DinHvIOdfXOTfIObff61wiIiKh5pzj9V+W0alhDbo0rul1nArr3Kgml/RuyvBxS8lZutnrOBFHi75GiGjtnpfS6TX/lZ6LyBQNr1uo/4acZVuYv24nD53VKaSPEw63ntCWUXPXc+t70/nixn6kJMZ7HSlieN4zJiIiEqte/2UZ1VISOKVLA6+jVFrV5AQeOqszizfu4rFvNFxZHuoZk/+Jtsm+sUivoUS6WGrDm3bu48sZaxnUqwmpSdHxcXxEy3Qu6NmE539azAkd63FYkxJXqpJiouPVl7CKxp2i+IPaVnDp+fS39yevZH9ePoN6NfE6SlDdcVJbRs8rGK78dEhfDVeWQVCGKc2sipm1Cca2REREop1zjrcnrqB701q0rlvN6zhBVS0lkQfP6syC9Tt5+Kt5XseJCJUuxszsFGAq8FXgclcz+6Sy2xUREYlWk5dvZdGGXZybHVmLvJbVUa0zuOzwLF76eQmj5633Oo7vBaNn7B4KFmzdCuCcmwpkBWG7IiIiUendnBVUSYznD50jf+J+aW47sS1t6lbjr+9OY8OOfV7H8bVgzBnLdc5tM4ucc2lFk1ia7CoCavPhpuc7+Hbvz+XTaav5Q+f6pCVH79TtlMR4nrzgME757xhueW8aL1/WA9UKJQtGK5hpZoOAeDNrBdwAjA3CdiXMtHONfHoNJdLFQhv+YsZadu3P47wejb2OEnJt6lXjzpPacfcns3j+p8UMPrKF15F8KRjDlEMoOL/kPgpO/r0NuDEI2xUREYk67+SsoFl6VbKbxsayD5f0acqJHevx0FfzGLdok9dxfCkYxdgfnHN3Oud6BP79HTg1CNsVERGJKks27mLCks2ck90oZobszIxHzulCVp1U/vTmZNZs2+N1JN8JRjF2exmvExERiWnv5qwgzuCsbtF5FGVp0pITeO7i7uw9kMcf35jM/tx8ryP5SoWLMTM70cyGAg3N7Mki/14BcoOWUEREJArk5uXz/uSVHN0mk7rVU7yOE3YtM6vx8NldmLJ8K//4eCbOOa8j+UZlJvCvBnIoGJKcVOT6HcCfKxNKyi4WJruKFKU2H156voPnpwUbWbd9H/eeGlu9YkX9oXN9Zq1uwdOjF9EiI42rj2zudSRfqHAx5pybBkwzszedcwcAzKwW0Ng5tyVYAUVERKLBOzkrqFM1if5t63odxVN/Pa4NSzft4oEv59CkTirHd6jndSTPBWPO2DdmVt3MagPTgJfN7NEgbFdERCQqbNq5j2/nrOOMwxqSlBCUMxFGrLg449Fzu9K5UU1uemsqM1Zu8zqS54LRImo457YDZwIvO+e6AwODsF0REZGo8NHU1RzIc5yTHf1ri5VFSmI8L1ySTe2qSVw5fCIrNu/2OpKngrHoa4KZ1QfOBe4MwvZEKkQrhVeOnj/xq0hvm8453s1ZQZfGNWlTL7pOCl4ZGdWSefnyHpzz7DgufnE87113OOlpyV7H8kQwirH7gJHAGOfcRDNrDiwIwnZjhpc7mkjfyUWqaHjeo+Fv8Fo4nkO9Tt6bvnIbc9fu4F9ndPQ6iu+0rluNly7L5sIXxnPpSxN4a3BvqqUkeh0r7Co9TOmce9c519k598fA5cXOubMqH01ERCTyvZOzguSEOE7pEr0nBa+M7k1r88xF3Zm3dgeDX53E3gN5XkcKu0oXY2aWYmbXm9nTZvZS4b9ghBMREYlke/bn8cnU1ZzUqT7VY7DHp6yOaZPJ/53ThXGLN3HTW1PJy4+tNciCMYH/NaAecDzwA9CIgrXGREREYtrIWWvZsS+Xc7Jjd22xsjr9sIb84+T2fDVrLX97fzr5MVSQVXjOmJklOOdygZbOuXPM7DTn3HAze5OCOWQiIiIx7Z2cFTSuXYXezep4HSUiXNG3Gdv2HOCJUQtITYrn3lM7xMQ5PCszgX8C0A04ELi81cw6AmuBrErmEik3TUiuHD1/4leR2jZXbN7N2EWbuPnY1sTFRX9BESw3DWzFngN5DPtxMVWS4rnthLZRX5AF42jKYYGV9/8OfAKkAXcFYbsxw8sdTaTu5CJdNDzv0fA3eC0cz6FeJ++8N2klZnBWdw1RloeZcfuJbdm9P5fnflhM1aQEbhjQyutYIVWZYizTzG4O/Hx54P+nAv9XrcR2RUREIlp+vuO9SSvp2zKdhjWreB0n4pgZ953akd3783j0m/mkJsVzVb/oPY9lZYqxeAp6wUrqO4ydWXdSJlrrKLbo9ZZw8WtbG7toE6u27uFvJ7b1NEcki4szHj6rM/sO5HP/53NISYznot5NvY4VEpUpxtY45+4LWpIYUdqOozRe71Dk4Cr7QeDXDxKR8tK+7bfenbSC6ikJHNc+tk8KXlkJ8XE8dl5X9hzI466PZ5KaFM+Z3aJv2LcyS1tE92w6ERGRCti25wBfzVzLaV0bkpIY73WciJeUEMfTF3ajT/M6/PXdaXwxY43XkYKuMsXYgIre0cx6mdlYM/vJzB4LXHeLmY0xszfMTCvjiYhIRPp02mr25eZzrk4KHjQpifE8f0k2hzWpxQ0jpvDd3HVeRwqqChdjzrnNlXjcZUB/51w/Cg4E6Acc45zrC0wHTq/EtkVERDzzbs4K2tarRseG1b2OElWqJifw8uU9aFe/Ote+PpmxCzd6HSlogrECf7k559Y65/YGLuYCnYHRgcvfAr29yCUiIlIZ89buYNrKbZyT3Tjq18byQvWURF69oifN6lTlqldzmLSsMv1C/hGMdcYqzMw6A+nAVqDwzKDbgFql/P5gYDBAkyZNwpBQgiXaJ+vKb+n1lnDxW1t7N2cFCXHG6V11UvBQqVU1ideu6sl5z/3CZS9N5M2re9OpUQ2vY1WKZ8WYmdUG/gucC3QHGgZuqk5BcfY7zrlhwDCA7OzssC+fEYwj30r73fIeiSThFaqjHkPxQaIjNKVQONtCebcZje30QF4+H05ZxcB2damTlux1nKiWWS2FN67qxbnPjeOiF8cz4uretG8QucPCngxTmlkC8Dpwi3NuLTAROCpw80DgFy9yiYiIVNR3c9ezadd+nRQ8TBrUrMKIq3uTmhTPRS+OZ/66HV5HqjCvesbOAXoADwXG1G8HfjSzMcBy4HGPcvlWNH6L9LPiz/fC9TsBaJmZ5kUckUopbL+FCtu39h/B9W7OSjKqJXNU6wyvo8SMxrVTefPq3pz33DgGPT+et6/pTYuMyNtPezWBf4RzLsM5d3Tg3zjn3EPOub7OuUHOuf1e5BIREamI9Tv28v289ZzZrSEJ8Z58tMasZulVefPqXoBj0PO/sGzTLq8jlZunE/j9Rr1PcjB7c/NK7GFQ+5BQ0T4pcnw4eRV5+Y5zumttMS+0zKzG61f14oJhv/yvh6xRrVSvY5WZijEfKvqBX7gzXrh+p4bIopw+eCXU9uYWHLReuI/RcGVwOOd4d9JKujWpqf20h9rWq85rV/Zi0PO/cMHzv/DONX2oXyMyTtKuYqwcQrnDKrptHVnpPy0z0yKmINYHqxQqbAtFv9T5RTS1U+fgpoGtSEvWR6rXOjaswWtX9uKiF8YX9JAN7k1m9RSvYx1S1LUc9S5IJCipnUZKsSfhccrQMSUWT2oj/hMXZ5zcWeuK+UWXxjV55YoeXPziBC54/hdGXO3/gizqirFo1TIzLewFZSwXtiX9jdHUYxnLr61feLEGWDS1YZGD6d60Ni9f1oPLX5nIOc+N442revl6DpkO+RAREZGo06t5HV6/qhdbdu3nnGfHsXiDf4bpi4uqnrHKduurVyD6VaY3Qu0jNixcv7PEduLF61/SvkvtUKTsujWpxVuD+3Dxi+M597lxvHZlL9rV999K/VFVjEWLaNnZ+nkozI+LYHoxFC2xpTLty8/vZ5GDad+gOm9f04eLXhjP+cN+4YVLs+mRVdvrWL+hYUoRERGJai0z03j32j7UqZrEhc+P55Npq72O9BtR1zOmbn2JBGqTcihqIyLB1bh2Ku9fdzjXvDaJG0ZMYcXm3fzx6BYETsvoqagrxiR49GEQvfTaek+vgUj41aqaxGtX9eTW96bzyMh5LNu0i/tO60hKYrynuVSMiYiISMxITojn8fO60rR2Kk9+t5A5a3bwzEXdPF36IqqKMX3TlEPRektyKDqQQiT6mRk3H9eGjg1r8Jd3pnHy0DE8ef5hHNk6w5M8UVWMib/4+QPNz9lE/EjvGYlGx3WoxydDqnHta5O49OUJXHdUC24a2JqkhPAe36ijKUVERCRmNUuvyofXH8653Rvz9OhFnPXMWBaFeYFYFWMiIiIS01KTEnjo7M48e1E3VmzZzR+e/InXf1mGcy4sj69iTERERAQ4oWN9Rt50JD2yavP3j2Zy+SsTWbd9b8gfV3PGIpBWwo4ser0kGqldS7SqWz2F4Zf35PXxy3jgizkc99iP3HdaB07t0iBka5LFVDGmnYdUhNqNlIfai0jki4szLumTRd+W6fzl3Wnc+NZUvp61jn+e3pHaVZOC/ngxVYyJ/8TSB5cfz4cp0SOW3ksi4dI8I413r+nDcz8u5vFv5zN+yWYeOqsTA9rVDerjaM6YiIiISCkS4uO4/piWfHx9X9LTkrhyeA5/e286O/YeCNpjqBgTEREROYT2Darz8Z+O4I9Ht+DdSSs44fGfGLdoU1C2rWJMREREpAySE+K59YS2vHvt4STGGxc8/wv3fTqbvQfyKrVdzRmLQJoDEll0CiaJRtoPSSzr3rQWX9zYjwe/nMtLPy/hh/nrefTcrnRpXLNC24upYkw7D6kItRspD7UXkdiQmpTAfad15Lj29bjlvWmc+cxYrj+mJTcOaEV8XPmWwIipYkz8J5Y+uGLpb5XwU/sS8UbfVul8ddOR3PvJLJ4ctYAZK7fyxAWHUT0lsczb0JwxERERkUqoUSWRR8/ryv2nd+SnBRs5/amfWVyO81tGbM/YwvU7S5yDE03fDrVuUPAEo73o9ZBgCFU7UvsU8d5FvZvSMjON616fxOlP/cwzF3XniJbph7yfr3rGzOwxM/vJzJ7wOouIiIhIefVuXodP/tSXejVSWLJxV5nu45ueMTPrBlR1zvUzs2fMrIdzbqLXuURERETKo3HtVD75U19SEuPL9Pt+6hnrA3wb+PlboLeHWUREREQqrKyFGPirGKsJbA/8vA2o5V0UERERkfDwUzG2Fage+Ll64PJvmNlgM8sxs5z9O393s4iIiEjEMeec1xmA/80Zu8Y5d42ZPQ284pybcJDf3wAsC1vAsksHNnodwkf88nx0AyYHeZt++duKUqayOVimYLcVP/79oRCrf2c3YDmR+7dH8usWadmbOucySrrBNxP4nXOTzWyvmf0ETDtYIRb4/RL/IK+ZWY5zLtvrHH4Rzc+HH/82ZSqbcGby498fCrH8d0by367s/uCbYgzAOXej1xlEREREwslPc8ZEREREYo6KseAb5nUAn4nm58OPf5sylU04M/nx7w+FWP47I/lvV3Yf8M0EfhEREZFYpJ4xEREREQ+pGBMRERHxkK+Opox0ZtYR6AgsisXzappZfefcGjMz4DSgHbAEeM85l+ttuuAzs+udc095+Pi+e77NLBE4AdjknBtrZhcBNYA3nHNbvcgkEmxm1p2CU/bVomCB8l+cczmehpKIpjljlWRmXznnTjCzm4ABwOfAEcAq59xtnoYLMzP7zjnX38yeAPYA3wFdgWzn3LmehqukwPp3hW8WC/zfAZjpnDvSo0y+e77N7ENgIgWnN+sOfEHBooyDnHPHe5QpHjidYh+ewEehKlrNrGrhYznndobiMSR8ir6ewD+BZArOobyNgjPGDATynHM3eJWxLLx4LwRLJGcvC/WMVV5S4P8zgGOcc/nAs2Y2xsNMXskP/N/BOTcw8PPXZva9V4GC6EOgMwVnhhgNYGZfOudO9DCTH5/vms65BwDMbKZz7j+Bny/zMNMrwHRgBL/98HwFuCiYD2Rm/YG7KDjP7naguplVAx5wzn0bzMfykpnd5Jx73My6AEMp+KKSANzmnPvJ23TBU9LrCRwFnF3s9fzQzH70IGJ5vUKY3gsh8AqRm/2QVIxVXnszexVoQcG3pT2B61O8i+SZ4Wb2ArDCzF4HfqCggIn47nvn3KNmlgRcZWbXAm96nQl/Pt+7zOzvFLwX1pjZX4DNwD4PM2U55y4udt2UQG9nsN0HHOec2114RaBX5WsKelKixanA48AjwBXOuYVmlg58TMHIQLQo6fV8EnjdzP7ErwXaAIJ/urVQCOd7IdgiOfshqRirvF6B/+8CcgHMLC1wOaY4514zs1HA8UBdCtrXC865ad4mCw7n3H7gaTMbBlwMePp3+fT5PoeCOWOLgAeASyn4YnKeh5k+NrPPgNH8tnfjkxA81j6gEzC+yHWdgL0heCwv1Q70GtV2zi0EcM5tNLNom/dS0uv5JgX7/UygNQXDZcOcc1PCnq78PgnjeyHYimevARwJfOplqGDRnDERiXqBXpueFMxl20rBvLasYB9oY2b1gdso6KGMA/IoGFp5xDm3KpiP5SUzu7vIxSecc1sDw7GPOOeu9SpXsEXj62lmfSkoMLdSMNw3EWjunBt/sPv5QZH3cQ0K8mc75/7paaggUTEmIlHNzEpbwmekc+7YsIYR8ZCZ/YeCHr08oA4FQ8wbCg8G8jbdwZVyEFV7YJZXB1EFk4YpRSTa7aTgqKuijILejrAwsyecczeG6/G8or/T97Kdc0cBmFln4F0zu8XjTGXlx4OogkaLvvqYmZ1hZs7M2lbw/peZWYMil18ws/bBSygSEeYAZzjn+hf5dwzhnXD9Rhgfy0tR93eaWYcS9sF+OICnIhICByLhnJtOwSoA91CwTI+vOeceBQZTcNDcW2Z2qteZgknDlD5mZu8A9YFRzrl7KnD/0cBftRihxLLAvJ9NgQMwil6fEOz1iUoZEjXgq2gaEo2hv/M/FBwck0uEDeuVxMx6Akudc+uLXBcPnOOce8u7ZOVjZgkUHETVJlrW81Qx5lOBIzLnAccAnzjn2gbeNA9RcPScA553zg0NrAb9KJBGwQKbl1FwePkrwCoKltvoA3xJoDgzsxMoONotHtjonBsQxj9PJCqZ2W4KhkSN385v6eycq+NZsCCLob/zh2LDek8CtwAPRWIxJv6lOWP+dToF3zLnm9lmM+tGweHUzYDDnHO5ZlY7cPqZocBpgW9s5wH/cs5dEVgH5389YwVnzQEzywCeB450zi0xs9rh//NEolLhkOi2olea2Tce5QmVWPk7E8wsyTm33zk33czOAF4nAob1JLKoGPOvCyhYVBHgrcDl5sCzhUMrzrnNRc6H+U2g2IoH1hxi272BH51zSwq3E/T0IrHpZH5d+LmoqJhkXESs/J1/pmA5lPUAzrktgblK53gZSqKPijEfMrM6QH+gY2ARxXgKhgIm8euQwP9+nYJDe/uU5yFK2I5EETPb6ZxLK3L5MgqOpPqTmd0MXEXBPJgNFMyDWRaYB/Q4BW3PUbBQ6bmFRbscmnOuxC9C0XDuvKJi6O+cUMJ1eRR8QY4Jgc+jUYGL9ShYFmND4HLP4nMxS7h/V6CBc+6LkIWMAjqa0p/OBl51zjV1zmU55xoDSyg4+uvawORFAsOL84AMM+sTuC7RzAq70HcA1UrY/jjgKDNrVmQ7EjumUFCYdQbeAx4OXH8e0ICCeT+dKDjSaqsnCUXEF5xzm5xzXZ1zXYFngccKLx+qEAvoCpwUyozRQMWYP11AwZoqRb1PwQflcmC6mU0DBgXeDGcDDwWumwocHrjPKxSctHyqmVUp3JBzbgMFhwh/ELjP2yH8W8RnnHPfFznX3i9Ao8DP9YE1gZPd45xb6Zzb4kVGEfEvM7vazCaa2TQze9/MUgPXn2NmMwPX/xhYRuM+4LzA59B5ZlbVzF4K3H+KmZ3m7V/jDzqaUiQKmVkeMKPIVbUpOCr3T8V+77/AWufc/WbWCBhDQW/YKOD1CDnfnpRD8SHsCm7jDufcA0Uuj3XOHX6w+0jkM7N7KFhE+WXn3KbAdfcD6wJH9s8ATnDOrTKzmoHTZF1GYIpE4PcfAGY75143s5rABAoOStvlwZ/kG+oZE4lOe4oMJXQF/lH8F8zsIiAbeAQKesKANsDtQD4wysy05ImU5I6iF1SIxZyOZvZToPi6kF+PLv0ZeMXMrqZgrnNJjgNuM7OpFJz0OwVoEtq4/qcJ/CIxyMwGAncCRznn9hVeH/j5S+BLM1tHwRIro0rciEQNMzsF+DuQBGwCLnTOrQusdziUgqLdAfcCPYAqgQ/TWc65C4v2tpnZrRQsyJkPfBkti3LKb7wCnO6cmxbo+ToawDl3rZn1Av4ATA1M3i/OgLOcc/PCEzUyqGdMJMaY2WHAc8CpxVbi7lZ4+qzAkZWdgWXepJQwGwP0ds4dRsGRgrcGrr8L2Oac6xQ44OO7QHFV2PN6YdGNmNmJFBTwvZxzXfj14BCJLtWANYF1Lv/XBsyshXNuvHPuHxQsQN6Y3x9INhIYYoG1mAL7o5innjGR2PMIBWdreDewP1zunDsVyASeN7PkwO9NAP7rTUQJs0bA24FTRyVRcPQ2wEDg/MJfKsMBHQMpmE+0O/D7WsMwOt0FjKfgy9oMfi22HjGzVhT0fo0CplFw0FnhsOS/gX9SsITO9EBBtpSCdetimibwi4jEkJIm8AfOY/uoc+4TMzsauMc5d7SZTaZgrbmFB9tG4WUze5SCydkvhPwPEYkiGqYUEZEaFJzHFuDSItd/DfzvCFwzqxX48UBgiKq4r4Eriix1oDUMRcpAxZiISGxJNbOVRf7dDNxDwbD1TxTM9Sl0P1CrcO0o4JjA9cMoGGZ6o+iGnXNfAZ8AOYFhqb+G+G8RiQoaphQRERHxkHrGRERERDykYkxERETEQyrGRERERDykYkxERETEQyrGRERERDykYkxERETEQyrGRERERDykYkxERETEQ/8P4IhzxJbLYfgAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmAAAAJUCAYAAACygJprAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3ycWXX4/899pndJo94sy03u3evt6+3L0ncJLYQQCCwQUkiAkJBGvvwIIQmEhCRAEsoSYCnLFli2N29170WSZfU20vRenvv7Y2Stm2TJljQq9/1av9YazYyOrNHMmXvPPUdIKVEURVEURVFmjlboABRFURRFURYalYApiqIoiqLMMJWAKYqiKIqizDCVgCmKoiiKoswwlYApiqIoiqLMMGOhA5is0tJS2dDQUOgwlDmgvb0d9VhRJko9XpSJUo8VZTL27t07JKUsO//yOZeANTQ0sGfPnkKHocwBW7ZsUY8VZcLU40WZKPVYUSZDCNFxscvnXAKmKJO1u91PdyDO2hoPS8tdhQ5HmeMOdQc55YuyrNzFmhpPocNRZqFQIsPOFh9GTXDj8nJsZkOhQ1JmIVUDpsxrqWyOloEoibTOsb5IocNR5oFjveGRx1O40KEos1T7UIxwIos/lqE7EC90OMospRIwZV6zGA1UF1kBWOx1FDgaZT5oKM0/jhaXqseTcnE1xTZMBoHVpFHhsRY6HGWWUluQC1wineNEf5jaYjtlLkuhw5kWN60oR9clmiYKHYoyD2xv9LK1oQSDejwpYyh1WrhnUy1CgBDqcaJcnErAFigpJd97pZ1/euIksXQOgyb4yPWL+dwdTfMyUZmP35NSOCr5Ui5FPecol6ISsAVISslXHj/Jf71wih0rynj31jqePTHIt15ow6Rp/NkdKwodoqIoiqLMayoBW4Ae2N3Ff71wivdfVc/fv20Nmia4Y3UlAP/xfCu3rapgfV1RYYNUFEVRlHlMFeEvMMf7wvz1I0e5bmkpXxxJviBfp/CFN6+ixGHhH584UeAoFUVRFGV+m7YETAjRIIQYEEI8L4R4cuSyzwghXhJC/J8QwjRy2fuFEK8IIX4lhHBPVzwK6LrkL395GJfFyL++Z8MFdSxuq4nfv34xL7cOc7ArWJggFUVRFGUBmO4VsKeklDdJKW8XQpQBO6SU1wGHgLePJGH3ATcA9wMfm+Z4FrRf7u9hX2eQz93VhNd58ROP79++CKfFyP2vXbRxr6IoiqIoU2C6E7AdQoidQog/AbYBz49c/jSwHVgOHJZSZs+67AJCiI8KIfYIIfb4fL5pDnl+iiQzfPk3J9hQV8S9m2rHvJ7TYuTutVU8driPWCo7gxEqiqIoysIxnQlYH/kEawdwK7AFONM6OgQUA0UXuewCUspvSym3SCm3lJVdMM9SmYB/fbqF4ViKL75t9SWPR9+zuZZ4OseTx/pnKDpFURRFWVimLQGTUqaklLGR1a1fAa3AmRovNxAc+XP+ZcoUax6I8N1X2nnP1jrW1RZd8vpbFhVT7rLw5NGB6Q9ulgnG00QSmUKHocxi6ayOlHLK7zeUyJDM5Kb8fpXpk83p+CJJsjm90KEoc9C0taEQQriklGeG710L/BvwPuAfya+IvQY0A2uEEIazLlOmkJSSv33kKE6Lkc/c0TSh22ia4JaVFTxyoIdUNofFuDAGyR7pCfHdl9sByX03LmFZhRrcrZzreF+Y/Z1BiuxGdqyomLIhy80DEfa0BzAbNe5aU4nDojoEzXZSSn62t5vdp/2Uu6187MZGHGYjZqNqLqBMzHQ+Uq4XQuwVQrwC9EopXwdeFEK8BGwAHpJSZoDvADuBDwLfmsZ4FqTfHOnnlVPD/NntyylxmCd8u1tXlhNL53i9zT+N0c0uLQMRwokMp3wxvv9KO9GkqoFTztXpj5PVdZ45PsgPX+vglC86Jfc7FEkB+dW1iHrczQmZnKTLH0eXMBRN8uPXO/jh6x10Dqvh28rETOcW5GNSys1SymuklJ8duewrUsrrpJTvk1KmRy67f+Q6d0spQ9MVz0IUT2f5f786xqoqN++7atGkbnvt0lIsRo3nTy6cQw83Li/HbTNi0OCUL8pXnzhBMq22hJQ3rK52MxhJ0uqL8mKzjyM9U/OUtabWQ1WRlRWVTirc83Mm63xjNmrcurKC6iIrS8udHOgK8vSxAX59uFdtSSoTotZK57FvPtdKbyjJF9+2etKz66wmA5vqi3mtbXiaopt9Spxm/vLuVTR4HQxF0zx3YpAvPXZsWup9lLmpttiO02IkkszSF0rgj6Wn5H7dVhNXLS7BF0nx2OF+wklVhzgXbFpUzGfvbGJ1lYc2XxxfJMWrp4Z5cF8Pg5FkocNTZjmVgM1TLQMRvv1iG+/cVMOWhpLLuo+rl3g53h8mGJ+aF5m5oMRh5oPXNGDQBFazge5AglO+WKHDUmaRIruZSreVqiIbS8oc4153OJoiNMFDHV3+BP5YhlAiQ8eQ2saaS4aiKRZ57VhNBspdVoKJDH1BlYAp41MJ2Dyk65K/+OVhnBYjf/mmlZd9P9sbvUgJr59eOHVgAOtqi/jYDY0sKXOgCfi/1zp4sXnhbMUq47t2SSlvXlfFlkXFFNnHrqts80V54ugAvzncx3A0dcn7rfRYsRg1TAZBTbFtKkNWptmyChfXLy/lnZuqsZkNdAzHgPzKeSSZ4ZXWIY73hce/E2XBUUdt5qEH9nSxuz3AV+9dN2bH+4lYX+fBatJ49dTw6LDuheIdm2pZX1fEd3aeJhDP8GrbMNsbveqEk0JdiZ0lZU5AcKQnTJnLQpXnwoQpPFJMr0uIJLOX/F302Ey8c1MNUnLJXn3K7LKmxsPKKje9wQQ7jUMAZEfKwPZ3BukOJGgfjlPptlI8icNQyvymXk3mmcFIki8/dpztjSXcu3nsjvcTYTEa2LyoeMGtgJ3R4HWwvNxJicNMKpvlOy+eonUwcukbKvNaLJnlpVYf+zoCZHK5MVtGrKxy0VjmoKnKRX2JfUL3LYQYN/lKZXMLqiRgLsnpEl2XLPLaKXOacVsNPHygZ2Q1DEwGgdW0MFr6KBOjVsDmmb//1XGSGZ0vvWMtQlz5u+jN9cX8+3OtxFLZBdebSNMEv3NNA4e7Q3xr5yl2nQ7wYouP/3jfZrwudVJtoXrq+AAn+iOkMzr1JRW4raaLXs9iNLC90TtlXzeZyfHY4T6SGZ11tR7W1Him7L6VK/dCs4+BcJLWwQjLK9ycGIjgdVgwaBrLyh2YDIZJH4ZS5je1AjaPPH9ykEcP9vLJHUtHtkiu3Mb6YnQJh6fouP1cY9AETVUusjmdcCJDJJnlmeMLb0KA8oZ4OstwNE04lUWfwW4DsVSWZCb/BYen6PSlMnXi6Sw5XRJOZJFSYhkpV3BaDLQMRjnWF2ZP+8LcTVAubmEtacxjiXSOv3r4CEvKHNx3U+OU3e/6uiIgX8cwle/m5xKrycDn7mjin55qxmUx0jYc46ljA9zSVK5qdRagzYuKae6P4LAaqS0Z+xSkP5ZmT7sfj83EtsUlV7wi7XVaWFXtJhBLs75WrX7NNtctLeWUL0ZjmYNMTmd1tYcSh5lTvij3v9pBsd18zlZ0JqeTyOTGXEFV5j+VgM0TX3+mmS5/ggc+un1KRweVOMw0eO0c6ApM2X3ORUsrXHzp7Wt44kg/L58a4qlj/fxiXyf/9dtbCx2aMsNCiQxdgQRZXeeqhhKWlTsvmogf7Q0xFE0zFE2zuNRBuds65n0ORpKYNO2SBdobRt4QKbOP12m54KBFKJHh5dYhQok0bb4oK6ucJDM5NCH4zZE+Yqmc2k5ewNQW5DxwrDfMf+88zbu31HHVNKxSbagrYn9ncME3JPU6LWxpKOFkf4S+YIrXTwX49gunCh2WMsMe2t9D+1CMU74Yr50epi988X5PlSMJl91swG0be5WjzRfl6WODPH60XzXvnEdC8Qy/OdzH08cHOdIdZjCS5FhfhNbBKPF0llgqP2VD/cwXLpWAzXE5XfL5Xx6myGbi82+a2LDtydpYX8xgJEVfSD1RLK90saWhGKtJw24xorOwk9KFqN5rx2ExYjcbKLKbKRojuVpW4eJtG6q5e13VuKffzrwQS/nG35W5L57Joksoc5opdVpwW004zAZKnRaK7GZWVrkoc1lYV1tU6FCVAlFbkHPcj17v4GBXkK+/e8O4TSGvxMb6IiBfB1ZdpBpE/sM961lW3kYmlyOV0fmrh47wto3VbFl0eRMHlLlD1yVehxmv08yqKhe/vX0RdvPYT6MTOTm8otJFKpvDZNBYNMF2FcrsV+Wxsa7WQ5nTTE5KKt1Wlle6Rh8vG+uLgXwX/Yf292A1ady0onw0WW/z5Qv360vsKkmbp9QK2Bzmi6T4xydOct3SUt62oXravk5TpRuTQSzYk5AX8+HrG7lzTTWnh+L0BhPc/2rHhLqdK3ObL5riaG8Ys1Gj1Rejuf/K+8KZjRpbGkpYX1ekDnXMM2tqPNy2upI711Sxob4Yu9lITpfsaffzetsw6axO+1CMeDqHP5ah/6xdhsM9IcKJLEd6wmTUcO95SSVgc9iXHztOMpPj7962ekp6fo3FbNRYXuHiaK9KwM5W5bFS6jTjj6VJpHN85fHjdAfUDL/5zGMzUVds57QvxnA0PWW1kdFUli5/HF1XW9rzUTKTIzDSOqRlIMzrbX6O90VoHohQX2LHZBDYzBrtwzFeaR0ilc1ROzKOqtJjwWRQL9XzkfqpzlGvtQ3z4P4ePnbDkinr+TWeNdUejvaGF3wh/tksJgOfvWMFb15fRXcgwe7TAT7zs4PEUhMbvqzMPVaTgfV1RVhMGol0jt5Q4orf/KSyOR4/0s/OliF2qT5R804ineNXh/r4zZF+jvWGOd4XoXVke9FpMRBL57huWSmrqjz0BpO0D8dpHYyyeVEJ79xUw44V5YX+FpRpohKwOUjXJX/7yFFqimx8csfSGfmaa2rc+GNpVYh/HrPJwD0ba3FZDGRyku5Agm+/0EY6q7YM5quTAxEMQoCA5RVX/uYnm5Ojj5d4Osv+zgAvNPsIJ1UiPx9EUpnRn68/lsZsNLCmxsOSMgcvNA/xo9c7efrYIDldRxMgRL79D+QT/unc3VAKa9qL8IUQnwbeCdwA/ACoAzLAe6SUQ0KI9wOfBPzA+6SUamT8JTx8sIcT/RG+8d6N2MwzM1tsVXW+T82RnpAqxD9PkcPM5+5q4h8eP4lB5LuUn/JFWVnlLnRoyjSoL7Gzob6IbE5yw/IrX51wWIxcvcTLYDhJqdMyOnvVpAmuWVp6xfevFFa5y8qqajfBeJq1tR5yuqR5IEI0mWFvZxBfJIXDYqDYYebN66uRUuJSzVkXhGldARNCWID1Ix9uANJSyhuB7wLvF0KYgPvIJ2f3Ax+bznjmg3RW55+fbGZ1tZs3r62asa+7ssqFJuBor8qPL2bTohL++s2r2FRfTLHDxL88eZK/ePAg2Wy20KEpU2yx10FWl5Q6zRRP0cnjKrcVXzTF6aEYmgApJSXO6TnVrMy8DXVF3LSiHI/NhNmoUWQ34baayGZzeOxGrltWSpXHhsNs4ER/hGeOD3CoO8hzJwfpCSYKHb4yTaZ7BewjwPeBLwI9MNo0qQgYBpYDh6WUWSHE08C3pzmeOe/HuzrpDiT40jvWzuiJKbvZyJIypyrEH8eaGg+LvHb++qEj7O8Kks1Jcjp85d71l76xMmc8e3KQaDJHNJlgf2dgSpofP3qol50tPkLxLE1VLpaUOWksHXt7M5nJIQRTOvVCmRnPnxwknMiyu30YKUGXkiJbPtkejKRoGYgipeSVU8MsKXMSiKV556baAketTIdpWwEbWd26UUr57MhFQ4BFCHEc+DjwIPlE7MySSggoHuO+PiqE2COE2OPz+aYr5Fkvlc3xzeda2ba4hBuWzfzWxOpqN0d61ArYeFxWE7XFNjI5nXg6w85mH997qa3QYSlTaJHXjhBgNgpqiqdoO17m6we7AnH8sRRZXRJKXLwGrDeY4KH9PTx8oJdgfGJDuXVd0jIQoWM4NjXxKpdNl7Cv08++jiCHekIYNY2OoXzS5baasJo0hMg/tuKpLNFUllhKraTPR9O5BfkB4EdnfXw7EJJSrgT+FvgzIAicKZRxj3x8ASnlt6WUW6SUW8rKyqYr3lnvof09DEZS/MGOpQUpzFxT46E/nGRI9bsa15/e0cRb1lVR6rQgBXzvlXZ+vKuj0GEpU2RllZu7VlfwoWsbqPZceQKWyubISYnFqLG2xo3HZqauxIZ3jLmQA+EkuswX7w/HJpaAneiPsLs9wMutw2pLq8BuXF4GCFZUuPBYTXjsJlp8MZ4+PojFqPHmddVcu6SERSU2UrkcBiHY2bJwFx7ms+ncglwBbBBC3AesJr/deOaM9RDgAZqBNUIIA3Ar8No0xjOn6brkWy+2sbrazfUFWP0CWD1SiH+0NzzyJKKM5e/fvhbx8BGeODpATzTJXz90hIOdQf5BbUfOaad8Ub706+O0DISxmQxcvbSUP9ixlDLX2IO2x5PM5NjZ4qMnmGRTfQkg2dRQTIPXMWaJwfIKF/5YGpNBo151zp9zPDYTH7qmgccO93H7mgrsZiPBeIYTfWHMBkGJ08wXHjpC+1AMgyZ458ZavKoecF6atgRMSvm5M38XQrwEfBP4iRDiefIrbx+SUmaEEN8BdgIB4H3TFc9c9+SxAdp8Mb7x3o0FO5a8qjq/WHmkJ6QSsEsQQvDXb15N62CU19tSSODhA7185IZGlpa7Ch2ecpl6AwkGwkmGY2kEgtO+GId7QtzcdHkJ2JGeEAPhFNFUlsYyB06zkYFQisFwirdvqLnoKWeHxcgtKysm9XWaKl2YDAKTQaNGnWIuuNU1HlbX5N/Qdg7H2dXuJ5rO0hNMsr8ryFAkRTydX/1qHYxy26oKHtrfw7IK5+gbYWXum5E+YFLK66SUWSnlvVLKm6SUN0gpT4187n4p5TVSyrullKrCewz/vbONuhIbb1pTWbAYPDYT9SV2VYg/QSajxtd+awMOqwGDJjBokm883czpoWihQ1Mu0+aGYopsRgxCYDIIXFYji7yOy74/u9mIJvLbUW9eWz26kmbQBNoUPjtrmmBZhYuG0suPVbk8sVSW3e1+Wgcv/ntf77Xz1vXVWAwaB7uDVLitbFlUhMNspNxlYV2th9Mj44qOqhrceUUN454DWgcj7OkI8Pm7mjAWeCTF6mq3akUxCZVFNp784xv44qNHOTkQZXdHgA/+7y6+/u4NbFLDu+eco70hpA4Wk0aV28rbN9Re0SSKVdVuiuwmNA1eP+0nmsqwotLF0nKnOuE4T+zrDNDlz9fdlTrNFF2kdYlEUmw3YzEasJkMfO3dm9jfFWAgnMRhNvBS6zChRJbbV73Rd27XaT99oQTra4vOSaxzuuT0UBSX1USF+/JWZpWZoTrhzwEP7O7CqIlZcRR5TY2HjuG46tI9CVVFdr76rg1UF1kJxjMMhJN89P69tParRHau2dse4PRwjHAiy3AsjcNy5UlSdZGNdEbij6VJZyXZnI7HNvONOBPpHIl0bsa/7nxnH9lGNmoCs/HiL7lmg0a9106xw0xDab7+b/OiEnI6vNrm53BPkC5/lGdPDNITjBNPZ2kdjBJL5TjWd+7zyIGuILtOB3j2xOCET8kqhaESsFkundX5xb4ebl1ZQZnLUuhwRuvAjqlVsElxWk385d0rcZgNZHMSfzTN+/77NfzqROmc4rQYiWdy5HRJLJXlUHdw3Ov7Iinah2KXHLJd7rbgshoxGkRBtgl9kRSPHOzh4QM9DITVuLGptLGumOuXlXLHmkrs5otvOgkhuGVlBfdurmVDXRH+WJo2X5RsTqd1IMLJ/iitgzF2tg7xNw8fYW+7n/KR14PzD2LoI/N6pcyvhimzl9qCnOWeOjaAP5bm3dvqCh0KkB/KDfmTkNunoAHlQrKyqoh/f/8mPvy93SQzOr5ohlu/9gIP/P42llUWFTo8ZQzJTI7mgQglDjONZQ6K7EZiySzJTI7jfWF0XV70xGIwnubp4wNICcFEhg11RWN+jXROZ/OiYqo81oIcshmOpciNjC/tCyWIJLOUuSwFWYmbbzRNUDeB06qheAZfNIXXYeapY/3kdCiyG3HbTCwqsTMcSxOJZ9jXHmAwnOK/f3crJXbzBWUpG+qKsJkMuK0mvM6pfdMeSWY45YtRXWSl/DJP/ipvUCtgs9xPdndS7bFyw7LZceqwzGWh3GXhaI8qxL8c2xtL+cLdq7AYBBLwxzLc8fWX6R6OFDo0ZQx72gMc6Qmzs2WIQDxDsc2MBCSCnmCSloGL/+wyOcnIYgSZ3MWHs+d0yc4WH197spkfv97JQ/t7eLHZN+OrUItLHVR5rPgiSX66u4snjvTz5NH+MeNWplYwnuaLjx7lq4+f4N+ePcmRnhDhZAZdh+piOy6biRUVTiwmjUgqS6svxhd+eZihWOqCvowmg8aaGg/13qlvUfJy6xDHesM8f8JHVj02rphaAZvFuvxxXmod4g9vXoZhBscOXcqaGo8qxL8C771qEb5Iin95ugUAHbj+qy+y7y9uptitWgTMNmd+9zSR/5Md2dbJ5iSpTHbMmY1lLgvbG0uIprI0VV58MPvpoRh72gM8eayfcCKD2WTg3s21BOJp3rahZnq+oYuwGA1UFVl57HCCE/1hTg/FWVxqx2gQ3LqyQg2HnmZPHuunxRdlIJTkcE9+gLfZYGB7YzGPHOrheF8Yi0GjxGEmlMxi1AQHu4J84aEjXLuklDXVHjK6zooK15Svep3NOHI0V9NEwdohzSdqBWwW+9nebgDetaXwxfdnW13tptUXJZlRBbuX6w9vXc7a6jdOz0ngmq8+S069q5x1tjYUs21xCRvrivHHMggJAjAaBLUl9nGbsDaWOVlXWzRm8bXbZiSnS5KZHNmcTjqTY2+7vyC/Wy6ridbBCG1DMY72BjFogkRap2M4PuOxLDSVbiu6LgknMwxFU/SHkxg08DosJNM6OV2SyukU2828fUM1VqNGPK2zvyPIoe4QL7f6aB+K81qbn0gyM221X9ctK2VrQzG3raqYVYsCc5VKwGapnC752Z4url9WRm3x7Op2vbraQ06XnOhX22ZX4tE/vJFazxvvVhMZuOWfn0NKVTg7mxgNGkvLnaPv+svdFhD5wumSMcYFTVS5y8rVS0qodNuwmA04LAY8NhPprD7jBdQ1RTbsZiNWgwGHxUgwlsFs1KhWjVun3Q3Ly1lb46bCZcFuNmI3Gah0W3Bbzdy2qoKqIhvlTgsGg2AwkqbOa8ds1NCAk/1h9nUG8EVS9IcTPHqwjyeP9l/y4MflsJoMLKtwqdrAKaISsFnqxRYffaEk79k6O4rvz7b6rI74ypV56fO3sqzsjQS7O5jkrx46XMCIlLEsLnWwrMJJTgenxYTFqFE2Bds9w7E0K6vd3LS8grvWVLF9SSlGg0ZWn9nV0NNDMZZVOLGYNSpcFu7b0cg9m2oumWQOR1Mc7AqOOTxcGZ+UkuaBCFc1etlYX0RjmZMlZQ6EpvFS6xAfuLqBBz66ndtWV1JiN5NM51ha5mTzoiKaqvKr6MFEFl3K0ZORgXiGVFatps92KgGbpR7Y1UWJw8ytkxw5MhNqi214bCZVBzZFnvrTHVzVUIxJA13CT3Z1cfe/vljosJTzGDTB1oYSFpc6SOd0NAFNVW6ePNrP08f6L7s3XpnTSpXHyqZ6D5/YsZTVVW6ubvRediPWIz0hXmoZIjLJeDI5nVKnlW0NXm5qqsDruPSJTCklz54Y5GhvmBeb1cDoy3GmDjCUyLKk3MW9m+tYUeXBYjSMHoJwWU2jU1Cqiqx84OpFfPmedSwrd+VPT4aTRJMZqjw2oskMyyuc2MwGWgejPHm0n/ahWCG/RWUMKgGbhXyRFE8fH+CeTTVj1o4UkhBipCO+WgGbKg/cdw0fuHoRmoCchBP9ET7/4MFCh7UgpbP6uCe8QskMFS4LXoeZXW1+Hjvcz6tt/svujdcTjJPK6FhMBspcVq5ZWnrZvcCGoikOdYfo9Mc52DW538+lZU4Wee3Uldgoc1mIpiaWwBkN+STNZFA1QZfjTGF7NifJjZQfLKtwsrLKdc7MXbNJY01NEetri0hkdJ45Pkh/JEWR3YTbZqIzEOfh/T3oktHVrz3tfoaiafZ0BGb+G1MuSZ2CnIUe3NdNVpe8exZuP56xpsbD915pJ5PTMRV4PNJ88ddvWcNzJwfpGEqQk/DQ/l7MmoG/e/uaQoe2YPQGE7zY7MNk0Lh99cVP/1mMBhKZHE6zgVKXmXAqSyyVHd3+mawjPWGC8QzhZIZ7N9ddUXGz3WzAZBBkcnLSdTqaJlhS5uB4X5hsTmdx6aVHLAmRPyXZH0rOulrVuaLea+d6UYqUkMrm8EVTrKnx4LaaONIT4qljA9QW2+j0xznWF6a+xI7baqR1MIqu52sUix0m3FYTLYNROvxxgvE0m+qLKHNZGAinLvuxqUyvMRMwIYQG/C5wD1ALZIEW4L+klM/PRHALkZSSB3Z3sWVRMUvLXYUOZ0yrq92kszqtg1FWVl38iL0yec98+iY++D+vs7sjCFLys31dmAzwhbeoJGwm9IUSoysIw9H0RRMwj9WEx2ZGlzrlLgtLy10sKXfSeJkzIVdVu2nuj5DM5HitbYgtDSWXvf1oNxu5e10VsVTusiZntAxGcVqMgCCT0zFol47DZTXNqTYVui7pDiRwWY0UX+EhiqlSV2Inkc4xEE6yqb4Yqyn/7948ECGrS472htAlLPY6WFzmYEWlm7U1UfpDCVZVu3nTmkr6QimOW8N0+uMMhJN8+bETrKn1cN1Sr0qOZ6nxli7+B6gHvgw8B/x65LIvCCE+NQOxLUi72wO0DcVm9eoX5E9CAqoObIppmsb//u42NtQVkZOSRFrnf17u4Pe+u6vQoS0IS8tdlDjMVBVZxzz9V1NiJZLKktUlvmia21dXXtFA7jevq6LIbsIfT/PwgT5eOOnjl/u7efxI32W1o7CbjeckXy0DEZ4/OYgvcumxVz3BBM+eGOC1tqF8b5R56GB3kJdah3jiaP+k6+Sm0zMnBnjl1DDPnRgcvWxpuRNNQG2JnU5/nFfbhmkfjhFKpAnE0/SFkpzsj/Dwwd7R9hDlbjP+eIaeYIKBUJJwMoumCbr8cV5uHVKjpmaR8RKwzVLKv5VSviSl/GPgdinlU8DdwCdmJLoF6Ce7O3Fa8u9iZ7PFpQ5sJoM6CTkNTCYDP/r9q1g68qIugWdP+vjzn6uasOnmsZm4c00lO1aUj1l/WVtkp9RhxmoyYDdd+TDufMJkHS26HoqmSKR1/LEM/aHLf7FMZ3UePdjL/758ms7hOHs7/Je8TSKVw20144+l2dkyeMnrz6R4OsuvDvXyy/3d+GMTHzI9EE7y3InB0YkFyUy+PkqX+X+j2WB/Z4ADnUESmRxdgTg/3dPFcycHWVPt4T3b6llR4cJpNeKxmTjWE+b+Vzo41htmMJwinMwQT+d4vd3P9kYv79laz7bFJVS4rTitRhZ57UgpebHZx+unh3niaH+hv11lxHg1YBkhxBIp5SkhxCYgDSClTAkh5ul7o8IKJTI8driPd26qHXNo62xh0ASrqt1qKPc00TSNH/zeNm7/+k788fy79J/u7abSY+WPb1tR4OgWNrNJI5vTSWZyF50BeTluXVlOicNEsd1MfYmdF5p9WE0GKtz5Jq+6LklkcjgsE39e2NU+zNPHB+gJJDBpGssrxy9pkFLithvpDyfw2Ez0hlLEUtlJfc2JyumSaDKL22accEf13mCScCILQMdwbMI92Ha3+wknsvSFkizyOthYn2+M67FN/azEyzEYSXK8L0KZy4IAvE4LqYxOXzBJJJnFbjFQ7DBzdaOX9sEogWSWV9uGEELQ4LWhaQKDEAyEUuxq93PV4pLR14/6Ejs/3dOFL5IilMgQSmQJxTPE09lZ/xqzEIz3E/gM8JwQIgmYgPcCCCHKgF9N9AsIIT4NvFNKeZ0Q4jbg8+RX3v5USrlXCPF+4JOAH3iflHLBvqI/crCXZEaflb2/LmZ1tZtf7O0ecxixcmVK3TZe/fNbuO4fn2UomkaX8O/PtRJOZvhrVRNWMPkXsgw5KXm5dYh3b62/4tPKXqeFHSvKRwcrv2vLuc8Bz50cZCCcorHMwfZG74Tu06QJNCGoLrKyZXExVy0uGff6mZzEYTZx/fIygvEMJQ4zlmk6hf3UsQH8sTQNXjvXLC2d0G2qPPkVnUxWp34Cw63PKHGYOdkfwWLUkFJiNRnYvKj4ckOfck6LEbNRw2Ex4rIasRoNZLJpKtxWbCaN3xzpJ5rMsrLKxXu31/OdnadJpHMU281cu7SUpkoX7SPTCjr9cYrtZpaUOTAaNI72hHitzU8ongIBa2uKqC22c6lez/5YmkxOH30DoEyPMRMwKeWzQohFgFdKOXTW5T7gsxO5cyGEBVg/8ncb8DHgNillbuQyE3AfcAP5Yv+PAV+9vG9l7ntgdycrq9ysrfEUOpQJWVPt4QevdtDhj7P4Mo/NK+OzmA08+qlreed/vkJvMEVWh+++3IFBE/zl3asLHd6Ck8rmeHh/D8OxNEKALiU5XedKOvpkcjoP7O7iQFeQdTUe3ntV/Tkni3O6ZCCcr9/qCyUmfL9bGrzkdIhnslR7bATjmXGLzs1Gjc2LiilzWagttrK03DWaEE6lbE4f3UL0RS9dl3aGw2LkreurJ/316optHLWZsBo1TvRHWF9XNOn7mE52s5E3r6viUHeQ1sEYsVSOqxpLWFLmJJLMEE3mV/0GIynuWF3Jy63DJNI56ortXLPEi0ETlLosnPZF6fIn+PGuThwWA+/cVEsqm6N1MIIvkqapykk0laW2xDbuquaZNkhSwrbFs/sw2Fw37m+XzM9EiQohPi2EeFAI8QshxJ8IISaaFn8E+P7I368mP3f4N0KI+4UQDmA5cFhKmQWeBrZf3rcx9x3pCXGkJ8x7ttbNmSGnq1RH/BlR6bHz+B/dQIk9f9JMAt99uZ1/evx4YQNbYAYjSR7Y1cXJ/igCiS4lBk274pl4wXiGNl+MbE7SNhRlOHpufZNBE6yv81BkN7GhbuIrNwZNcM3SUgSCA10hnjo+MNrYcywrKl3ctqqClVWeaWsvYzRobGnIJ3qb6qd/JcpiMmA2aCQyudHThbONdaQH3NkfQ/5nWF9ip9xlYWN9EQDv3lrHNUtL2dRQzL7OILvbA0SSGbY0lKBpgmA8Q1aXtAxEyeQkTZUuaktsZHMSfyzNt54/xaf+by8P7u0iMjK9QNcl+zsD7G73E0pkRlfIYik173c6TWQT+AdABPi3kY/fC9wPvGu8G42sbt0opfymEOKLQAVQBdwEfJT8atfrwJktxxBw0d9GIcRHR25DfX39BEKee36yuxOLUePtG2oKHcqELa9wYTZoHOkJ8ZbLeGeqTJzbZuYXn7iad37zFQKJLFkdvvl8GxazxqduVjVh001KyS/39fD8yUH88TTpnMSoCexmjd5g8rIbpwJ4HWbW1LjZ3e6nqdKN13nhKtXqas/oyePJGh0JKLnk1tNMWV7hYnnF5FdWYqksw9E0VUXWCSeIbqsJKSWZXL6ObrZaXOrAatLQhKDCbSWayvLY4T6iySwNpXa8jny92tJyF0vLXfhjaVoGokD+Z+x1WrhtVTlmY37reWm5kwq3ha2NXupKHHhsRl5qHeZ4f4RsTmd3e4DDPSE+vmMpkWSW4335Qwpra9ysq/WQyuZUi6FpNpEEbIWUcv1ZHz8nhJjIcawPAD866+MQ8JKUMieEeBb4M+AJ4MxP2A0EL3ZHUspvA98G2LJlyyx5Cpk6iXSOh/f38qa1VXjsc6efjtmosarazf6uYKFDWRAWl7p45k9v4qavPkc4lUMC//n8aeqKHbx9Y22hw5vXwsks8XSOVFbHZBCYjfnB3DaTkdIrbHKpaYJ3bqrlnZum9mc4GElyrDdMudtClcdKhds6bq3a4e4QR3pDLCqZeF3WTNJ1yZPH+kmkdaqKrOxYUT6h2yUzOcxGA2ajgUB84qcnC6HK80brk2gySzKd42hvmN5gAqvJwDVL3vi5lDjMXL+slHAyw/IKF8PRFLtOB3BZTdy8opzmwQj9oSTv3FiD3Wwkk9PpDiRoHYwQjOskszoHu4N0DSeoK7EhRD5Bd9tMLPKqkpKZMJG3EPuFEKNbg0KIq4CXJ3C7FcDHhRCPA6uBzcDKkc9tAE4DzcAaIYQBuBV4beKhzx+PHe4jksrO+t5fF7OxvohD3cFLbm0oU6PEaeHnn7iaYpsRgwCr0cCD+3qIzqJ+RvORy2JkTbWbdbVF7FhRzmKvky31xdy5unKkcenss7c9QG8wydGeMEvLnZdszHrKF0VKaB+OjzuKqVByUpIaaSGRSE98JavIbmZ9nYfaYhubJrGFW2iVHivLKlwU2UzUFNsu2hOursTO6ur8dnFXIEEqqxNL5TjQHeRkfzTfPX/kpLrJoPGpW5bxge2LWF/rodJjpdJjI5XN4bGZuGZJCbevrlDJ1wyayDPHVcDvCCE6Rz6uB44LIQ6TLxNbd7EbSSk/d+bvQoiXpJR/P1I/9iIQJ3/iMSOE+A6wEwgA77uSb2auemB3Fw1e+yVPKc1Gm+qL+e7L7Zzsj7BmjhwemOuWV3h4/jM7+MgP9uCPpmnzxbjnv17l969bzL1b5l4SPxdomuC21ZXcuqqCf3+uhZdah8hJOavHcBU7zATiGZxW44TiXF7h4mhviEVex7QU318pk0Hj+uVl9AYTLCufXOPby92+LbSrl3ipLrIyGEnRdIk2Ig1eOx3DMUwGjWXlLvqCSbK6POfgRanTwn03LeW3r27g8cN9ZHWJQRN85Ae78UfTvGV9Nb9/w5IrrmtUJmYiCdidV/pFpJTXjfz/a8DXzvvc/eRryhakU74ou9r9fO7OpjlTfH+2M4Wh+zsDKgGbQR67mR9++Cp++FoH//tSGx1DMb7w0GF6Agn+6LblhQ5v3srpkieO9JPI5EhncwxN4hTf+YajKY70hql0W1lR6SKWypLK6hPub3UpVy0uYWm5E7fVNKEX1FXVbjI5nUcO9HCgK8gHti/CZp5dRes1RTZqxphQMJ0K2WpnkdfBIq8DXR+/+qbIbuZtG2rY2xHgQFeATYuKON4f4WBXEItRGx1HNBRNcqg7RFWRlbU1RXxnZxst/VGyUvLUsQFuWlFOk6r9mhGXfJsjpewgXyjvAbxn/kgpO0Y+p1yBn+7uwqAJ7tk8d4rvz1ZTZKPcZWFfZ7DQoSw4FpOBd26qwWUxks7ppLKSf3+ulV/u7Sp0aPNWLJ1DE4JURkciMBov/0V5b0eAnkCCvR0B+oIJfn2oj8eP9NM6GJmSWIUQlDotk+pR9tyJQYZjGY71hunyx6ckjssVS2VnRaf600Mxfrqni8eP9BVkazaZyfHIwV5+vrf7nDYkkWTmgnhCiQwn+yP4YxkOdoWIJLIkMzotg/li/S5/nPtf7eTRg30c6QnTFYhjNxtw2oykszoWo4Ef7+rk4QM9xFLZGf0+F6JLroAJIf6e/FDuU7wxHUwCN09fWAtDOqvzi33d3NJUTrlrbja8E0Kwsb6I/Z2BQoeyIBU7LPz4Y1dzyz+/MHJ8XPLVJ0+S1iXv3jo/TwwXiq5LjvSEWFLuJJPTKbKbcVxBN/Fih5mhaBq72UAykyM7ssIRiBeunm9ltZu2oRiZnE4oUbg42nxRXmvzYzFq3Lmmclq68U9U62CUSCpLTkqCiQylM9w93xdJjfYC6xyOU+WxcagryOvtfsqcZu5eVz26xewwG3DbjIQTWexmAx3DMZxWI4u9+ea9wXgGm8kAEhKZHEV2M9sWezEZNDqGYwTiGQbCSYYi+TmTSye51atMzkQe1b8FLJFSzu7jI3PQsycGGIqmec+2uV23s7G+mCeO5jtbT9X2iTJxxQ4LD33iWj7+wz20DcUYjqb4wi+P0NIX4QtvVc1ap8rp4Rgdw3FK7GaK7GYqXFYyOZ1oKntZhfhbFhXT4HXgshoxaYJDPSGyOcmaKapXiqWyvHJqGE3AtUtLJ9QD647VlQjyL/otg1EWlzlmPOEARhvPprI6wURmyhKwoWiKJ4/247IauWtN1SVr3XK6pDeYoLk/wtJyJyX2mXl+03XJK6eGGY6l2FhfRJnLQjydZclIQvTMiUE6hvOrV01VbhaXOrAYDRgNGnetqSI20sKi0mPDbtZG26RE0/m5kdcu83JzUwV2s4FgPM1bN1TzcusQP9/TRTor6Q3GMRu0c57TMzl9Vtc8zkUTeVQfAYqA2TWZdR74ye4uKt1WblhWVuhQrsiZZor7OwPcsrKiwNEsTPWlDh78g+t413++wuGeMBLJ/7zSTkbm+Lu3XfScjDJJtpEExm030VDqoDuQ4Od7uxkaKV62mgzsOu3n9FCUlVX5E5PjEUKMnkw83hcebXo5HEtRa574qJ2xnB6K4YukiCQzNA9EaKp0c/2y0ksmHZJ8bWq91469QDVgq6rdo3Moq6ZwHM6LzT52nQ4gRL626lI/ozNJx8b6YortphmrA/PH03SObAGfGoxx26pzn1eL7CaGowb8sTR72wO0DkZ587p8L0aDJnDbTLisJkKJDFaTgT3tfqwmA60DUUqcJqSEl1qHODUYxevMj5yyGg1UF9nJ5CT13vwMyd5ggttWV1BXbOdQd4gyl4VbmsrV6LkpMpF09svkW1E8IYR45Myf6Q5svusPJXmx2ce9m2tn5YmjyVhX68Fs0Nh12l/oUBY0i9HAtz6wGacl/6IpgZ/u6eGHr54ubGDzRHWRjVtXlrOy0k0qo2M25JtmJkb6g+m6pHUwSk5ntEFmIVW4rRg1wXAsjUnT6Aslxx39k8rm6A0maB2I0htM0D4UG90WnWkem4lbV1Vw9RLvlL7Yu6xGhACzQcM0gfvVhMBi1IinsqMHjmaCx2aiyG5CiHyrifM1Vbqo8thYXuFCCEEslb2gSP+2VRXcurIci9FA80CUXaf9HO4Jsft0gL5QgmgySyiRHh1wvq2xhFtXVfD2jdWsry1iIJJEl/nHcsdwjIFwkldah+gJFrY2cD6ZyArY94GvAIfJjxJSpsCD+7vRJdy7ee430LSaDGyoK+LVtuFCh7LgVRXZeewPr+ft//EywVi+SPcffnOSUCLDJ29WpyOvVEaXDEXT1JXYKctkqRmZx+ex5RsoL6twctoXm3SX96ZKFyaDwGR447TalSpzWXjHphq6A3Feb/PjtBrHLBFIpHM8driPoWiKF1t8ZHI65S4r/mgat3XuNIe+mEQ6x3MnB8nkdFZXubm5qZzaYhsrKi990u9kf4RoKovZpBGbRO+xK2UyaNy1ppKcLi94g57K5jg9FMNuMaAJA13+GC6b6YKZvGajRrnbyumhGAAtA2FODUawmUzkRiY5rKnxsKTMSW2xnTKXZbQRbCans62hhE5/nK0NxRTbzbzYPITbZuJIT5iaIrtaBZsCE0nAhqSU35j2SBYQKSU/39PN1obiKxphMptsX+Ll359tIZzMzPkn7Lmuzuvgpc/dzPv/+3WO94aJpXP8y1MtHO4J818f2FLo8Oa0aDLLoa4gnf44y8qd3LOp9pz6pK0NJWxtmHw/PyHEtAw9Nhk0Fpc6WVTiGPcFM5zMkMqeGZItSaRyCAHVnrl5OOhsPcEEwXiGZCbHL/f3UFNsx6hpE0ogYukMB7qCGARcN8PTAYQQGA0XxqghaBmIEohn0KWOJjRiqRzNA5FzErAztjaUkM3pvNzqI5nRMRt0qott3Lu59px/g6O9ISLJLOtri7CZDbzrrJ6C2ZzO1Uu8HOgK8qtDfRzsCnLn2spJzSZVLjSRva+9QogvCyGuFkJsOvNn2iObx/Z1Bmkbis2L1a8zrm70okvYrbYhZwWb2ch3P7iVRaX5d7S6hGdPDPKT3apzzOXK5nQOdAXwRVP0BBM0D0bZ3T67H+9SSk70hzk5EBm3j1S5y8KyCidFdhNOiwmHzYjNZKAzkBjzNnNFlceKw2IAweiot1h6Yi0WTAaNlVVumqrcs6ZPYzqn01DqYHmFE4fFiNuWHzPUOMabeU0TxNI56krsVBfbuG55KdctKxtNvtp8UZ4/OcjejgBPHRvg359roXP43G1Go0FjY30RupQE4mmO9IZ5/qSP4Svog6dMbAVs48j/t591mWpDcQV+vrcbm8nA3evmzwDrjfVFmI0ar54aVoX4s4THYeaX913LrV97gf5ICqMm+OcnTvJS8xD//v7NhQ5vztGEwGzUkEgiyQyBuAHXFJ3Oi6ezGDVtUj27JuKUL8a+jiAARk2wbIytUSEE9SV2QvE0yUyOvlCKcrcVl3V2jlmaDIfFyNs25PssnugPE0lmWTvBptENXgcvnPRhNmlUuGf+NOjFOCxGlpU7CcTTXNXopWM4hqaJcU+KNpY58cfSbFtcQoPXQU8ggdtqJJHO8Vqbn2QmR3cgjj+WobbYxon+MPXec7fCB8NJQok0Rk3gsubr0473h9lcXzLrGvbOFRNpxLrjIn9U8nWZkpkcvzrYy11rZu8MucthNRnYVK/qwGYbm9XEc3+6g3duqMFoEAzHMvzmSD+///1dhQ5tztE0we2rKkmkcxg1QTyVnZK2K+1DMR4+0MsjB3uJTnHzS5NBIJEMhJN0+uPjroK92OxjMJKmodTBZ+9cwTs21lAxhScQZ4OmSjdbG0om1JID4GhvmK5AgrbBGEd6QtMc3cQc7Q3l53XqklVVblJZnXgqN+5q7NJyJ+/ZVs9Vi7281uandTBflH+mvsxqMnDLynK2Lc5vKdrO+/fp9sf55yebafPFKbab+MSNjQgJbb4Yezpm9yrwbHbJBEwIUSGE+B8hxG9GPl4lhPjw9Ic2Pz1xtJ9IKjuvth/PuGZJKcf6wmpZepYxmw185d71LCl1IMhvRx7oCvHdl9oKHdqc47AY0TSB2WjAbNIwTcGK1WAkhZT5xsyB2NS2W1zkddDgdWAyCA50BfnNkT5yYyRhZ1YxrEYDpU7LOTMEF6qcLiH/H7NlPvngSI+0WCpHMpOjaOQAyETeDBgNYnSV1WY2UOIwc+vKcq5e4uXqxlIaSh1Ueay0DEZ5sdk3Og1hOJ5GAgYhMGoavmia9uE4R3vDmLS5fYq/kCbyL/c94AngzH5ZM/DH0xTPvPfzvd3UFNnY3ugtdChTbseKcqSE50/6Ch2Kch5NE/z0Y9tZU+2i2G5CCMG/PdPKh777OrnczJ3umg92rChjcamdbQ3FU3JisanKRYXbQoPXTvU0zDn0WA2cGoxyrDfMqcEYzQMXH3V068oK1lS7CSbS/HJ/N5Fk4TrhT5f2oRgP7O7kqWMDYyaiZ9ve6OW21RXcuaaSTYuKpj/AizjSE+Inuzp5pXUIgDU1HkqdZlZUuih2mLltVQV3rK7g2iWXPiRgMRq4Y3UF1y8r5arF+degcreVxaX5QxpGTaN9OMZTx/r5ya5O/vfl08RSGVZWunnXllquXeblj29bRjKbY1W1m9oi2zkzgJOZHAe7ghfUkCkXN2YCJoQ4sz9WKqX8KSMtKKSUWUA9Y1+G3mCCl1qHuOe80yfzxepqN+UuC8+eVD17ZyOTycRDf3A9n7p5GbquE0ln2dkyxHu/8/olB/0qbyh2mDEZDYSTOdp8V97vy201ccvKCq5ZWjqhodmTMRxN8c3nT3GkN8xgJElW12kZiFx0zqPVZEAHpBQk0joD4eSUxjIbtA3l+7T5IqkJjVqymQ28aW0Vd6yuxGIsTJ3TKV8UXUL7cJxMTqfMZeH21ZVsXpTfLjQaNLxOy4RfU1xWE3Ul9os+1jbVF+GyGrGbDLzW5ueZ4wPc/2o7L5wcJJbKsqWhhCqPjU2LillS7uT21ZU4z6oT3NcR4GhvmJdahwgVcKTWXDHeCtiZIpGYEMLLyBxIIcR2YHZshs8xjx7sRUp458a5OXj7UjRNsGNFOS+ezPcRUmYfIQQfum4x141MXxBC0BWIs6fdj5QqCZsIi8GA02LEoInRbuWzVW8wQSqr4zAbKXNZsJoMRFM5Xm4dIpm58H304pHRSCUOEzVFU9OPbDZZVp7vt1blsY5u3c12y8pdGA2CJWWOaR8FZDRo3LSinAq3BbfNiMdm5kBXmFfb/BzsCtHtT+CLpih3WdmxopwVlece6jAZNTI5HSHAcJEWGsq5xqsCP/Ov92ngEWCJEOJloAy4d7oDm48eOdjL+lrPvOn9dTE7msp5YE8Xe9oDXL1k/m2zzhdff89GpIS9HX6qPFZ+tKuDn+zu5C/ftAqva3ac9pqNBiNJJJKuoSjWKR6TMx2Wlru4uamc1oEod6ytJJuTdPkTGA3aRVdAPHYTb1k/f05nn6+uxH7RzvKz2apqN6uqL900dqqsqy2iqdLNN55tIZrMsLrazUA4zVA0STSZxmkxEoilCcTT1JfYz2kUqwlBKJ6h1GXGdon6yEAsP26pvsS+YOsNx0vAyoQQnx75+y+Bx8gnZSngVuDQNMc2r5zyRTnaG+YLd68sdCjT6rplpZiNGk8c7VcJ2Cz3r+/dSE8gwY9eb+dne3tIZ3WGovv5/u9dNWt6Hs0m/liap44O8MjBXvoiKSyJLC+2+lhRNXMvjpNlMxv47e0Nox9nczp1xQm8TrMarKyMyWzU+LPbVwD5wyGtgxEcFg2L0cjrbX78sTRZXTIQTp3zPN8XSpDIZNl1OobTYuTN66rH3Bp9vnmQRFqnbSjKOzbOv0NpEzHeb6ABcAIuwEE+WTMA9pHLJkQI8WkhxEtnfXyPEKLrrI/fL4R4RQjxKyHE7H0mu0KPHuxFCEYHps5XTouRm1eU8+vDY5+2UmaPmmIbmxuK0WV+NElPMMFjh/tIZVWZ5/nObKufGVBtMWkjhRlXLpvTefbEAA/u66Y3OH3NT40GjYZSBy41rUKZILNRY5HXgc10Zr1G0h9Osq8jwMGu4DnXXVvjIZ3VqfJYiaZyJMd5HjGMnJ40LuBTlOOtgPVJKb94JXcuhLAA68+7+F6ga+TzJuA+4AbgHuBjwFev5GvORlJKHjnYy7aGEirnwWiPS3nL+moeP9rP623DXDPD4zuUybu5qZLP3J7m10f6WFbupC+Y5NGDvdywrIzyWb7FNpMq3FauavTisZvY3+6n1GXlLVP0hsofS9MfyrcXaB2MTstpyDNfxyDEaEd4RZkIh8XIzU3l+ONpGkuddPrj2C0GLCaNWCo72gR2kdfB713fyOHuIFUeG3azESklp3xRjJp2TvnNLU3l9AYT0/ZYnwsmUgN2JT5Cfpj3FwGEEHcDTwG/N/L55cBhKWVWCPE08O0p+JqzztHeMG2+GB++bnGhQ5kRNzeV4zAbePRQr0rA5oh3b6vnpqZyXmj28dihXroDCb71wim+9u4NrKkpKnR4s0aF28Lu9ixLKtwsLnVQOUUvHsUOMyUOE6FEhgbv1NSI6rrkhWYfQ9EU2xaXoAnBzpYhhMi/+F0suc7pksFIksFwir5QghWV7ovOF1QWluaBCG2+KEvLXSOlCimGIimGo2lKnWZubqoYTcJqimzUnPV70TwQZW9HAACDJkZr8BwW45iTGRaK8db+brmSOx5Z3bpRSvnsWRd/EPjhWR8XAeGRv4eAi072FEJ8VAixRwixx+ebez2mHj3Ui1ET3LWmqtChzAib2cBtqyr49aG+i560UmanCreVd22uxWLUCCWydPrjfOi7u/nN4d5Chzar5HRJmy/K4Z7QuI/vUDzDSy1DY/bdOpvJoHHnmip+a0vdBSNgLlcokaEvlCSTk7QORkfbLkgJ4eTFO+4/cbSfL/3qOF/81TF6g0n2dwamJBZlbtvXEcAfy/Ba2xBfffI4r5waJpLM4LIaiSRz9EzhtnlPIME3n2vlwX3dU3afs9WYCZiU8krnC3wA+NGZD4QQNwOvSCnPbvUcBM7UfblHPr5YLN+WUm6RUm4pKyu7wrBmlq5LfnWwj+uWlU7J2JK54re21hFOZvnVob5Ch6JMghCCj96wBKtJQ0qIJDJ87ueHeGCXGuIN0B1IcLI/zMn+CL2B+AU1MGfb0+Gn0x9nT3tgwk1Np/Lwg8dmotJjwagJGsucLK9wsaTMwYpK55irWns7ArQNRfFFknQOxxZEyYRyaWceB1ajgWAsSyYn8cfSxNM5zAYx7jbi8gon2xaXcM0SL7qU/M/ONr7+dDOvtQ1d9PoPH+ihZSDKi81DNPdf+s3LXDadwwhXABuEEPcBq4G1wFuFEHcCq4UQ/w/4O2CNEMJA/mTla9MYT0Hs6wzQE0zwp7cvL3QoM+rqRi+NZQ7+7/WOeTl2aT7b3FDCD35vKx/83130BJPksjpfeuw4LouRN62fnz3sJiKnS15uHWIgnKLNFyWQSNNY7uSqMaZauK1GeoIJnBbjpJp4tvmi7O8MUuWxXtEWvqYJbm6qOOeysWI9o67YxgtZictqYsviYq6ZQHd1ZX7Z2+GnfSjO6ho3TZX59ZEbl5cRG0m2QskM/ni+HYXdbMBsMow711gIwdJyJ4l0ju+9cppXTg2TyelEklmkzG9Lrqn2YB+5j+oiK80DUSwmjbJ53hJn2hIwKeXnzvxdCPGSlPJfgX896+MvjPz9O8BOIAC8b7riKZRHD/ZiMWrcvrqy0KHMKCEE779qEX//q2Mc6QmdM65Cmf0Wl7l44GPX8O5vv4ovkiKjw3deOk2Fx8bmhpJCh1cQBk1Q5bFhMWpYzQbcVhPBMbp953TJcCxNIp1jTbVndP7eRDQPREhlddqH46yve6PAeSasryuiO5DAYjSwonLeHkpXxpDN6Zzsz093ONEXGU3AhBCjSdaHr2vkrjVV/HhXJ26riVQmRyyVxWzUxm1tYtAEbqsJq1Ejp0vMBsHLLcP0hBLUFPn4g5uXYTUZePvGWtbUeCi2m+d9f7AZ+c2WUl431sdSyvuB+2cijpmWzen8+nAft6wsH/cdwnx176Za/uXJk3z7xTa+8d6NhQ5HmaSqIhs/+eh2/uSBAwxHUgxEUnzqx/u4dmkpX33XhkKHVxB3ralkbY2bRw72okvJutqLv7GIp7P4YxlcVhODkckNp28odeCPBan0WEZbXsyEaCpLy0CE5oEIBg2MByRLK9zctqoCq6kwY3iUmWU0aNSX2On0x8c9fFFdZON3r2mgfTjGQDjJn//iEKFEho11Rayq8XBzU/kFyZjZqPHm9dVctbgEKfO1wt9/pR0pIavnT+ie2cpcWr4wivMXXlYwg15tG2Yomuat87iz9Hg8dhO/ffUivvNiG39y23J1mmoOqi6yc//vXcX3X2vnWy+0kcnpvNDs48XmQW5YXl7o8GacpgnqvQ5+55oG/NE0tcUXr31xWU0sLXfSH06yepJdzJsq3Swvd834vNhALI0vkiacyJLK5ugJDrDKn6TYYeK6pXOr9la5fNctK0XX5SUff16nBa/TwteeauZkfwR/PI0/lqbYYSEQS1/0lK3HZsJz1giod2+r4+XWYeq9dioWYMubhdsBbQY8erAXp8XITSsW3gvVGR+5rhGTQeM/n28tdCjKZTKbDPz+9UvYVF+E0aBR6rSw0MdGuq0mGkod54xhOd+2xSW8dX31ZY2+menkC/KrGquq3VR4LHjsRorsZjSRL7xWFpbJPP62NBRjMWl4bCZcViNFdtOED5wtLXfxwWsa2LGifMoH0c8FagVsmqSzOo8f6ef2Bb58X+ay8N5t9fzwtQ4+duMSlpQ5Cx2Scpm+/TtbefpYPwahsWlRMXva/aRzOpvqixfUYzynS/Z3Bubd927QBDuayrmqsYRQPMPpoRgGg2Bj/UW7AykKANcvK2NxqYMDnUEayxysqp6Zet8T/WEGwynW1njmbK2YSsCmyc4WH+Fkdl4Ptp2oP7h5Kb/Y282XHzvOf39wa6HDUa7Aravyh0naRmab7jo9zGOH+vijW5dR5pr/WwhSSh492MOu0wHqS+w4zEbW1xUVOqwxheIZDveEKHdbWD7Bppd2sxG72UjVAu5QrkxObbGd2uKJrfSe6A8zHE2zpsZzznbk2fyxNLtO+3FZjVzd6L1gRS6SzLCvIwjkFztuXVVxkXuZ/dQW5DT51aE+PDYT16pO8JQ6LXzy5qU8fXyQl1sv3vtFmVvcNhPd/jjdgQTH+yN8/ekWgvH0pW84xwXjGQYjKRKZHL3BBEWzfKTP2b3IwhPsRZZI53juxCAvNPvUTFBl0nRd8sqpIZ46NkDovFPCwXiafR1BOobj7Bunye+JvjD+WJqO4Tj94eQFn7cYDdjM+fSl2DG7fwfHoxKwaZDM5HjyaD93ramc1PHz+ex3r2mgttjGFx89NjrUWJm7Sp0W7tlcQ4XbQi6n0xdM8O0XTzEYufDJcj5xWo1UF9lYW+PhzeurWDRFY4Omy5kVBotRwzLB56LWwSh9oSSnBqN8/5V2HjnYO+HkTVlYjvSE+NmeLvZ2vNG3vS+cpH0oji+S4lhf+JzrW02G0dfEsVa/IH8CWwiwmTWK7RduL5qNGnetqeK2VRVsmsNb5GoLcho8f3KQWDrHm6doUO98YDUZ+Ju3rOb3f7CH7+xs4xM3LS10SMoVaqry8LdvWcOPdnWO9I4ysrc9wJaGknnbQNFkyD/xp7M6thlsEXG5Ni8qpq7EjttqmnAzWLfNSDCe72HmtpmIJrN0+eOsnqHaHmXuONkfIZOTnOyPsqm+GCEExXYTVpNGMqNT4X7jeSCayhKIpbljdQWJdO6ipyTPWFzqoMpjxaiJMQ+6WE2GOV9/qRKwafDowT5KnWa2Ny7MhpVjuW1VBXeuruRfn27hTWuqaFBtKea86mIbH7uxkSeP9TMQTtExHCcQz7CjqYwqz/ysITJoYk4kX5BvoDnZ4/0Hu0M4LEbK3VbOvPbVFk3NfEplfllS7uR4X5jFpY7RMVp2s5G3rK8mk9Oxm/MpRjqr88SRflJZnQavfUITHuZ6cjURan9sisVSWZ45McBda6rGPaK+UP3tW1djNmj85UOHkQu9l8E84bKauGdTHTcuL8NtMxFJZnjq2MC4NR7K7JNI53j2xACHu4NoAkwGwTs21vKOjbV4Znmtm1IYG+qKeO+2erafN+LKZNBGky/InxyOJDOc7A+zuz1AVpWhACoBm3JPHx8gmdHV6ccxVHqsfPauJl5uHebBfT2FDkeZQisqXKyscmEyCATw7PFBXmz2qZq/AjvRH2ZfZ4B0dvyfQ/NAhP5QihKHBYfFoA4QKVPGZjZQ7rZiNubnRnb442NeN53V2dcZ4Ph59WPzkUrAptivDvVR6bayZdHcLQycbu/fVs+m+iK+9NhxArH5f3JuoTAaNDbWF7NtsZdQIosvkqR9OLYgnkhnq95ggn0dQU70RTjcExr3umUuC5oAr8PMjhUVlDrnZx2fUhjraj00ljlw2Yx4x+nbdaQ3xIm+CPs7g/QEEzMY4cxTCdgUCsbTvHDSx93rqgrSyXqu0DTBl96xllAiwz8+caLQ4ShTbE2Nh7vXVrKmxoNR0+gJJNjZ4iOUUCfpZprVZGCkNAfbODU1Ukr6w0kq3FZuW1UxZxtbKrNXbbGdt22o5q3rqyk662SjlJIDXUFebh0ins6OPk6FAOs87yKgivCn0KOH+kjndN6xsabQocx6K6vc/N61DXxn52nu3VzL5kXqwMJ8srjMictmwhdOsb8rSCCeIafLBT2WqxBKHGbuWF1JIpOjZpzGqt2BBCf6IgC4bVE2O9TvozL1zq4LO6MvlORYb36V3KgJrmr04raZsBo1vPN8FXZ+p5cz7MF93TRVuiY9fHeh+uNbl1PlsfKXvzyi6oTmoVKnhcVljtH+U0UX6eejTL8Sh3nc5AvAZTWOnnj02NTPSZk5TqsR48iO0ZnniJoi27xPvkCtgE2ZU74o+zuD/MWbmkaP4yrjc1iM/M1bVnPfD/fyvZfb+f0bGgsdkjLFrCYDb1pbRTSVpcxl4VhvmJbBCEvLnaqv1CxSZDdz97pq0lmdEoeZ19uG6Q8n2VRffFnDxBVlotxWE3evqyKZyZ2TdKWzOjtbfCQzOtcu9c7LN3BqBWyKPLivG03A2zeo7cfJuGN1BTc3lfO1p5vnfRf1hcpmNow2Zj3SEyKWynG4e/yCcGXmOS1GShxmIskMp3wxYqncBZ3MFWU6OCzGC1a8+kIJBsIpQokMLYPRAkU2vVQCNgV0XfLLfT1cv6xs3O6+yoWEEPzVm1eRzup87amWQoejTLN6r/2c/yuzj8NsxOvMrzbUq9UvpUBKnRZsZg2DBrXF87Op87RvQQohPg28E/gA8ANAAt3AB6SUOSHE+4FPAn7gfVLKOfeW6+VTQ/SGknzurqZChzInLS518NvbF/GDV9v50LUNLK9wFTokZZpsb/SyeVExJtWkeNbSNMEdqyvJ5HT1c1IKxmEx8rb1NehSztum5tP6XQkhLMD6kQ+DwFuklDcAp4E3CSFMwH3ADcD9wMemM57p8sPXOkZPGymX549uWYbDYuT/e+x4oUNRppl6UZ8b1M9JKTRtnFmQ88F0f2cfAb4PIKUMSCmDI5dngRywHDgspcwCTwPbL3YnQoiPCiH2CCH2+Hy+aQ55cvpCCZ4+Psi7ttQuiNlV06XYYeZTNy/l+ZM+drbMrp+xoiiKoky1aUvARla3bpRSPnve5dXArcCTQBFwZssxBFy0fbyU8ttSyi1Syi1lZWXTFfJl+fGuLnQpef+2RYUOZc77nasbqC228f89dgJdV3MiFUVRlPlrOlfAPgD86OwLRrYkvw/8/siqVxA40zTLPfLxnJHJ6fxkVyc3Li9TRcVTwGoy8Jk7VnC8L8xDB9ScSEVRFGX+ms4EbAXwcSHE48BqIcSngG8D/yGlPDZynWZgjRDCQH5V7LVpjGfKPXa4j8FIig9sV6tfU+Ut66pZW+Phn544STKTK3Q4iqIoijItpi0Bk1J+Tkp5h5TyTuAosIf8acg/EkI8L4R4h5QyA3wH2Al8EPjWdMUz1aSU/Ofzp1ha7mSHGq8yZTRN8Pk3NdEbSvL9V9oLHY6iKIqiTIsZ6YQvpbxu5K8X9BeQUt5P/gTknPJ8s48T/RG+eu86NXh7il2zpJQdK8r45nOtvHtr3bzsgKwoiqIsbPP3fOc0+6/nT1HlsfI21fl+WnzuriYiqSzffK610KEoiqIoypRTCdhl2Nni4/XTfj56QyNmo/onnA5NlW7u3VTL91/poMsfL3Q4yizQOhhlb0eg4LWB6azO/s4AzQORgsahKMrsc6I/zIGuIOmsfsnrquxhknRd8o+Pn6SmyMb7rqovdDjz2qdvX44Q8M9Pnix0KEqBDUdT7Drt52R/hP2dwYLGcrgnyPG+CHvaA/SFEgWNRVGU2aMnmGBfR5BjvWGO9l563q1KwCbp14f7ONwT4tO3LcdiVI1Xp1OVx8aHr1vMQwd6OdKjhjcvZGajxplSS6upsE9bZ37vhUA9ByiKMspy1o7YRBqzz0gR/nwRTWX50q+Ps7LKzds3qtqvmXDfTUv48a5Ovvyb4/zww1chhDrwsBC5rCbuWF1JJJmlrqSwg3lXV7vx2EzYzQZKHOqAiKIoeaVOC7evriCZyVFbfOneoGoFbBL+5clmBiJJ/r93rMGgTj7OCLfVxB/esoyXW4d54uhAocNRCqjYYabeaz8nCR+KpjjZH5lQvcVUEUJQV2LH67TM2NecCu1DMdqHYoUOQ1HmpIk+15Q6LRNKvkAlYBO2p93P9145zfu21bOx/qITk5Rp8tvbF7Gqys1fPXyEUDxT6HCUWSKZyfHM8QH2dgR4/fRwocOZ1dp8UV45Ncwrp4Zp80ULHY6izCmJ9BvPNbtO+6fsflUCNgHBeJo/+skBaovtfO6upkKHs+CYDBr/eO86/LE0X3rs2KVvoCwIUub/AKjRoeM7+99H/VspyuRI5FnPNVP3C6RqwC4hk9P5w58cYCCc5Bcfvwa31VTokBakNTUePnpDI//5/CluWlHOm9ZWFTokpcBsZgM3rShnKJpiabmz0OHMakvKHMiRF44lZY4CR6Moc4vdbJyW5xqVgI1D1yWff/AwLzb7+Id3rmV9XVGhQ1rQ/uTW5bzWNsxnf36IFZUulpSpF92FrtJjpdJjLXQYs54QgmUVFwwiURRlgqbjuUZtQY4hndX5k58e4Od7u/njW5fxnm2q51ehmY0a33zfJsxGjQ9/bzeDkWShQ1IURVGUy6ISsItoHYxyz3++wsMHevnsnSv4o1uWFTokZUR1kY3//uAWBiMpfud/dqkkTFEURZmTVAI2QkrJga4gf/6LQ9zx9RfpCsT5r9/ezCduWqp6T80ym+qL+c7vbKFjOM47vvnKhDoOK4qiKMpsMmdrwGKpLCf6I5zoD3OyP0JfKMlgJEUgliaT08nkJCCxmQ3YTcb8/80GbCYD1pE/FpNGLJVlKJriaG+YYDyD2ajx/qvq+dTNyyhzza0+PwvJtUtL+dl9V/Ph7+/m7d98mU/uWMp9Ny6ZUPdhZeHpCyXwRVIsK3dhMy+cx4iUkuaBfNuJ5RVO9WZSUaZZlz9OMJ5hWYXzkq9HczYBu+WfX6A/nN9+clqM1BbbKHNZaPDaMRs0jIb84l4qkyOezhHP5Eiks0SSWRKZHIl0jlQ2h8NipNhu5s7VlWxeVMztqyvx2NRJx7lgTY2Hx//oBv720aN8/ekWfryrk7+8exVvXV9d6NCUWSSRzvHCSR+6hOFomh1N5YUOacac8uUHmAMYNKFOiyrKNAolMuxsGQIgnMxw7dLSca8/ZxOwP7+rCbvZwMoqN7XFNvXOboEqdpj51/ds5L3b6vmnJ06Szc1cR3RlbhACNCHQpcRoWFjPEwbtjSoTo5reoSjTyqAJNJHvtTeR37dpT8CEEJ8G3imlvE4I8RngbUAH8LtSyowQ4v3AJwE/8D4pZXgi96tmMSpn297o5Wf3XV3oMJRZyGoycOuqCoajKRZ58z2w+kIJArEMS8udmI3ztxR2cakDgxAIAXUllx6P0h9K4o+l5/2/i6JMB6fFyLIKJ6FEhk31RZe8/rT+hgkhLMD6kb+XATuklNcBh4C3CyFMwH3ADcD9wMemMx5lfhNCqJVQ5aJKHGaWVbgwGzUiyQzPn/RxoCvIno6pGysyW9V77RNKviLJDM+dHMz/u7TP/38XRZlqHcMxTvZH6Q+lOD0cv+T1p/stzkeA74/8fRvw/Mjfnwa2A8uBw1LK7FmXXUAI8VEhxB4hxB6fzze9ESuKsmAIVMJ+hhBn/WuofxZFmbSzn08m8is0bVuQI6tbN0opvymE+CJQBJzZXgwBxWNcdgEp5beBbwNs2bJFTTJTFOWyuawmbm4qJxBPq2kKZ3FajNzcVI4/nqaxVP27KMpk1XvtXCO95KSksfTSI7+mswbsA8CPzvo4CJwp3HKPfBwc+fvZlymKokyrCreVCrcaYXS+creVcvXvoiiXrWECidcZQk7hZO9z7liIrwAbyCdWW4EeICelbBRCfBZoB9YAnwb2kC/MPyql/Mfx7re0tFQ2NDRMS8zK/NLe3o56rCgTpR4vykSpx4oyGXv37pVSygtKvqYtARv9AkJUAr+QUl4rhNgPSOAE8LvAXwBW8kX4AfKnIMdta75lyxa5Z88epJSq4FoZ15YtW9izZ0+hw1DmCPV4yVPPrZemHivKZAgh9kopt5x/+bS3oZBS9gPXjnx4CPiKlPLYSFAAt5FPvv7yUsnXGYORJM+f9GExaty2qgK7ec62M1MURZkVsjmdZ04MEoil2ba4hEZVH6cokxJOZnjm+AA5HW5uKqfEYR73+jPW6EUIsQ4oPZN8jfiGlHIz8HHg38a57TmnILv8cbI5SSyVYyCcmu7QFUVR5r1QIsNwNI0uoWMCR+gVRTlXXzBJIq2Tzur0BBKXvP6MJGBCiBLg34EPn325lNI/8v+W8W4vpfy2lHKLlHJLWVkZi0udOCwGShxmqjyqYFRRFOVKFdvNVBdZsZo0NbJIUS5DbbGNIrsJl9VIvffSvfdmohO+Efgh8JmR7cizP+eWUoaFEKWTiaXEYeZtG97ohB9PZwHUVqQyp0kpOdAVJBBPs7WhBJdVzSRVrtxEnx81TXDTioUzJ1NRpprDYuTWlRUkMrkJzZSeiYzlXeRPQX5lpObr8+SL7T8FfFUIsYb8StyfX86dD0aSPHt8EIAdTeXqaLkyJyUzOT75f/t45kT+sVziMPNv7914yWGuijKewXCSZ0ceUzc3lasWE4oyjZKZHL850kcirbO+zsPqas+415+JIvwfAz8+7+JXRz53xaOH/LF8zQLAUDSlEjBlTvqLBw/zzIlBPn9XE6uq3fy/Xx3nQ9/dzY8/ehWbF5UUOjxljhqKvvH8OBxLqwRMUaZRLJUlkdYB8EUuXZ8+56etNpY6qS+xU1tsU12tlTnppZYhHtzfwx/evJSP3biE65eV8cDHtlNVZOXjP9xHMJ4udIjKHLWk3EFdiY36EjuNZRNvEKkoyuR5nRaaqlxUuC2sqy265PXnfAJmNmpct6yUG5aXYTUZCh2OokzaN55poabIxidvXjp6WZHdzDfft4nhWJqvPH6igNEpc5nFaOD6ZWVct6wUi1E9PyrKdNtUX8wtKysu2YIC5kECpihz2YGuILva/fzedYsveIFcU+Phw9ct5se7utjfGShQhIqiKMp0UAmYohTQz/Z0YTMZePfWuot+/o9uWYbXYearT5yc4cgURVGU6aQSMEUpkExO57HDfdy6qgKn5eLnYRwWI5/csZRXTg3zUsvQDEeoKIqiTBeVgClKgbzUMkQgnuGt66vHvd77t9dTU2Tjq0+eZLpntyqKoigzQyVgilIgTx0fwGE2cMPy8Xt9WYwGPrFjCQe7grxyaniGolMURVGm04JIwPpCCU75oui6Wj1QZgcpJS82+7hm6cROp92zqZZyl4VvPtc6A9Ep81HncJxONeNRUS7LcDRFy0CETE6fsvuc9wnYUDTFcyd8vN7m50hvqNDhKAoAbUMxugMJblheNqHrW00GPnL9Yl45NaxORCqTdnooxkutQ7zUOsTpoVihw1GUOSWRzvH08QF2twd4vc0/Zfc77xOw3FmrXlm1AqbMEi82+wC4cdnEEjCA9121CI/NxH88f2q6wlLmqbOfB3PqeVBRJkWXcnSiRG4K63Dn/fTqCreVq5d4iaezrKhwFTocRQHg5dZhGrx26r32Cd/GaTHywWsa+MYzLTQPRFiuHs/KBC0pc4wmXktUR3xFmRSHxciNy8sYjqZZVjF1E3fm/QoYwOJSB6urPRgNC+LbVWY5KSV7O/xsbZj8jMcPXdOA3WzgP9UqmDIJQghWVLpYUelCCFHocBRlzqkusrG21jOlE3cWZEYSiKU53hcmkc4VOhRlATrlixGIZ9jSUDzp2xY7zLxvWz2PHOylY1jV8hRCTpe0DEToDqiCdkVRztXlj9MyEJnQob8Fl4BlczpPHx9gf2eQnS2+QoejLEB7O/JFnJsXTX4FDOCjNzRi0AT/8ZxaBSuEwz0hdrcHeLF5CF8kVehwFEWZJQbCSXa2DLG7PcCxvvAlr7/gEjAAed7/FWUm7WkPUGw3XXYtTrnbynu31vGLfd10+dUqTCFJ9SyiKMqIs+vzJ1Krv+ASMKNB45amctbXebhu6fgNMBVlOuztCLB5UckV1eLcd9MSNCH4rxfUKthMW1vjYdOiIq5fVkq5y1rocBRFmSUqPVauW1rK5kXFrK52X/L6Cy4BA/A6Layu9uAYY/6eokwXfyxN21Dssuq/zlblsXHvllp+tqebvlBiiqJTJsKgCZoq3dSVTPwEq6IoC0O9186KSheaduk32NOegAkhrhJCvCKE2CmE+NpFPi+EEAeFEB+Z7lgUpdCO9OSbAa+r9VzxfX38xiXoUvKtF9qu+L4URVGUmTUTK2AdwM1SyuuBciHE2vM+/1ZgcAbiUJSCO1OYuarq0svTl1JXYueeTbX8aFcnPUG1CqYoijKXTHsCJqXsl1ImRz7MAuf3fngv8MB0x6Eos8HR3jA1RTaK7OYpub9P3bIUJHz9qeYpuT9FURRlZsxYDZgQYh1QKqU8dtZldwAvkE/MxrvtR4UQe4QQe3w+1TpCmbuO9oYmVJw5UbXFdn7n6kX8Yl83zQORKbtfRVEUZXrNSAImhCgB/h348Hmf+gjw3UvdXkr5bSnlFinllrKyic/OU5TZJJbKcnooxurqK6//OtsndyzFYTbyj4+fnNL7VRRFUabPTBThG4EfAp+RUvaf9+llwEPAnwJ/LIRomu54FKVQTvSHkZIpXQGDfHf8j93YyNPHB9jT7p/S+1YURVGmx0ysgL0L2Ap8RQjxvBDiaiHEvwFIKTdIKe8E/hn4upTyxAzEoygFcax3pAB/ihMwgN+7bjFlLgtfefwEciIdABVFUZSCmvZGWFLKHwM/Pu/iV8+7zvemOw5FKbSjvWGK7SaqPFPfvNNuNvKHtyzjrx46wrMnBrllZcWUfw1FURRl6izIRqyKUghHe8OsrvZcUQf88bxnax2LvHa++sTJCQ2CVRRFUQpHJWATlMzkSGbO76ChKBOTyemc7I9Mef3X2UwGjU/ftpwT/REePdQ7bV9Hmf9yuiSaGvdwuqJMu3RWJ5Gev6+7KgGbgOFoikcO9PLwgR4Gw8lL30BRztM6GCWd06el/utsb1lXzcoqN//yVDOZnD6tX0uZn7I5nceP9PPIgV4OdQcLHY6yQEWSGR452MtDB3ro8scLHc60UAnYBPiiKbK6JKfDYCRV6HCUOejoSAH+dK6AAWia4LN3rKBjOM4Du7um9Wsp81MikyOUyADQF1JvOJXC8MfSpLM6UsLAPF34UAnYBDR4HVQXWanyWFlS5ix0OMocdKw3jM1kYHHp9D9+blpRxtaGYr7xTMu8Xr5XpofLamJVtZsSh5n1tUWFDkdZoGqKbCzy2il3WVhR6Sp0ONNi2k9BzgdWk4GbVpQD+e3I3xzpw2zUuKWpApvZUODolLngaG+IpioXBm16CvDPJoTgs3c28a7/epX7X2vnozcsmfavqcxtyUyOZ08MkkjnuH55KRvqiqCu0FEpC0Eqm+O5E4NEUzmuX1ZKhTt/Stxo0Lh2aWmBo5teagVsktqH4yQzOuFElr6QGoCsXJqUkmN94Wnffjzb1oYSrl3q5b93niaVVatgyvgGwymC8QyprE770Pyst1FmJ18khT+WIZ3VafPFCh3OjFIJ2CQt8tqxGDUMGhzuDvH8yUGyqthZGUeXP0EkmWVV1dSOILqUj9+4lMFIil/u65nRr6vMHtmczvMnB/nN4T6C8fSY1yt3Wyiym7AYNRpK7TMYobLQlbksFNtNmAyCxjIHwXiax4/08fzJwXl/kEglYJNU6rRwz+ZaFpc6iaVzHOgK8kKzj5zqu6SM4WhvCJj+AvzzXbvUy9oaD996sU09PheovlCS3mCSQDxD80B0zOtZTQbuXF3Jyio3oXhmBiNUFoqcLjnaG6J1MHLO5RajgbvWVvGuLXVUuK20DEbxxzL0BpP0Bedn8f0ZKgG7TFUeK8F4mp5Agk5/nON94UKHpMxSx/rCGDQx44WkQgg+ftMSTg/FePzI+WNYlYXA6zRjM2togktOYDjRH+FAV5Dd7QE6hhfWVpAy/Y73hTnYFWLX6cC4bSWqPFY0ATazhtdpnsEIZ54qwr9MdSV23ry+ihebh4gks7x2episLvPFq4pylqO9YZaWObGaZv7Axh2rK2nw2vnfl09z97qqGf/6SmHZzUbeur6GnC4xG8d/v20y5A+I9IeTvNQ6hC5hcaljJsJUFoBTvihHekLUldgxGsY+jFRbbOedm2oxaGJGDi0VkloBuwL1JQ5ubirHaTFgMxk41hse7Z+jKGcc7Q3N+PbjGQZN8NvbF7G3IzC6FaosLAZNXDL5AlhW4eLqJSXYTBoCwb6OALou1VgrZVwTqYGOprJEU1mqPFaKbCaqPLZxr282avM++QKVgF2x6iIb62qLQEKnP8bDB3pU92hl1FA0xUA4Ne0d8Mfzrs11WE0a97/aUbAYlLlhcamTFZUusrqOzazx4P4eHtzfQyA2dgG/snDt7fDz0z3dvNw6dM7l2Zx+zug+m8lAsd2M12kp6HPhbKMSsCmwvq6IW1eWU+G2cqQnzI9e71SrDQrwRgf8Qj7peOwm3rGxhocO9KgC6wUoksxM6qT2qio3SElzf5RgPN+NvFe13FEu4kzLko7hOFLmV0oT6RyPHurll/t7aB/K1xIaNMEdqyt524ZqVle71ZzRESoBmyIVHhvlLiupTI6T/RG+/NhxXjnvXYGy8IyegJzhFhTn+8D2BpIZnZ/tVeOJrkROlzxzfIAHdnfS5hv7VOFscbg7xKMH+3jsSP+Ej/QPRlIYDQY8dhOagGK7iUVeVQumXGhVtRubWWNVtRsh8luG/niaRDo/QujsxN2gCUwGjV8f7uORA73jLlL0hRL8bE8Xjx/pI50d+3E71093TzgBE0JUCiH+UwjxTSGEVwjxt0KIw0KInwohVHUvcNeaSjYtKsKgCSLJLP/3egc9QfXOcSE71humttiGx24qaByrqt1sXlTMj3Z1jr5TVSYvnMjQMRxnT0eAH7zawWBkdh+TPzNDL5rMEp/gWKolZU7KXBYavA7ed9Ui7lpbhdOizmspF1pZ5eYdG2vPOXxW6bZSX2KnxGFmZeW5K/+xVJZYKv84HAyPPVf5tC9GJifxxzIMRS+8Xk6XPHG0nwd2d3GyP3KRe5gbJrMC9j3gGNAFPAckgLuBncB/jXUjIcRVQohXhBA7hRBfO+9znxdCvCiE2C2EeMeko59lNE3wnq31rK8rwmExsKTMNW+nuCsTc6x3Zjvgj+fdW+to88XY1xkodChzlseWb1aq6xKvw0xPYHa/wVpX68HrNLOyyoXHNrE3AQ6LkdtWVbCjqbwgJ3eVuc2gCa5bVsqdayopdpzbRqLYYWZFpZNSp5k1NWPvCiwuc2A2apQ4zJQ6LRd8PprKMhzN1yXO5ZYpk3lbUyGl/DcAIcQnpJRfGbn834QQHx7ndh3AzVLKpBDi/4QQa6WUh0c+909Syi8LIZzA08AvJ/0dzDIWk4E/v6uJnS0+oqkcS8udDEdT2MwG7Gb1LnIhiaaynB6O8bYNNYUOBYC711bxt48c5ae7u9m8qKTQ4cxJmia4Z3MtZS4L6ZxO4wwMV78S5W4rd6yuvKzbhuIZhAZua2FXb5W5YSiawmE2XnI+8kSee6o8Nu7dXDvm591WIw1eO4ORFCurZscb3MsxmYzg7NWyH4zzuXNIKc/uAJkFcmd97kxFsA04MolYZjWTQePmpgogXwP07RdP0TGc4FM7lnDLqst7MlTmnuN9YaSEtbWz4wnCYTHy5nVV/OpQL3/9llU41LbSZbGaDNx+mUnNbDccTfH08QE6huME4xlcViMfvHoR1cVqPJFyccPRFN94ppneYJK6Ejsf2L6IxWXT+8ZECME182BQ92S2IB8eWalCSvmFMxcKIZYCzZe6sRBiHVAqpTx23uX/ARwCnh3nth8VQuwRQuzx+XyTCLnwWgYivHrKT/tQjC89dkwd515AjvScGUFU2AL8s717ax2xdI5fH+4rdCjzXjSVpcsfnzOFwv5Ymp/u7uInu7p4/qSPfZ0BBsIpjqopH8o4fr63i50twyNTFPw8fXxwUqete4KJceeUzmcTTsCklH8tpbzg2I+UslVKee94txVClAD/DlywVSml/ATQBPzlOF/721LKLVLKLWVlZRMNeVa4utGLzaQhkURSOf7mkSN0zeE9a2XijvaGKXVaKHddWMNQKJvqi2ksc/CzPeo05JU43B3iyaP99IcuXoSfzuo8fqSfnS1DvH56eFL3nc7qtAxEZvxFKZHJYTUZMBgEdrNGsd1Eudsyp7d4lMkLJzO0DETO6eM1HpPBQIkjXxtZ6bHitBphAj1UpZQ8sLuT/3r+FL/Y270gm5hPeg9CCOEF/ha4FpDAS8AXpZQXfZYRQhiBHwKfOW87EiGERUqZIl/QPy/fZlV4bPz3B7fw1cdP0jYcY2fLEPs7A/zH+zextra40OEp0+hIT4g1NW8cz54NhBD81pY6/uE3J2jzRWmc5q2C+SYQS/PMsQGebx7EZTMRTGT4rS11F1wvq+ujx+fjqYm9kJ3xatswPYEERoPg7RtqJtTFfirUFNlYU+OhJ5jAYTHw1vXVeJ0Wiuzzex6f8gZdlzx9bIBkRqdtKDZu/eCh7iAn+yOsqHJSXdSI02Kg1GnFYzeNeeDjeF+YvR1+kpkcDV4nLQNRIsksPcEkqUwOJnhQZL64nN/snwCDwD3AvYAPeGCc678L2Ap8RQjxvBDiaiHEv4187l+FEM8DzwNfvYxY5oRlFW7+7m1rsBo1EuksA+EUv//9vTT3z8ucUwGSmRwtg9FZcwLybO/cWINBE/x0T3ehQ5lTdF3yyMFenmse5GB3iOO9YYYiFz9Kbzcb2VDnIavrVBeNP3blfGeapuq6RJ/hliE5XTIUS9MTSBJN5VTytQBlR7bMx9o6j6ayPHWsnx+93klXIEHncII711Rx3bJymqrcY44ZiqWy7GwZ4okjAzx5bJDXTg1R5rJQ4bawrbGYcnd+WHw4keEXe7t45dT876N5OVW4JVLKvz/r4/8nhHj7WFeWUv4Y+PF5F7868rn7LuPrz0lVRTb++s2ruO+HewklsgzHUnzk+7v52X3XUHGJuVjK3NM8ECGnS9bMovqvM8rdVnasKOPBfd382e3LMRpUP+aJECI/oy6T0zEaBA6zkQrP2NvLA5EURk3jYHeQeq99wr20tjd6aR2MUuG2XnEbiGQmRyyVxXuRo/wXs7cjwP7OAGaDxqZeDysqXaoVxQKiaYIdK8rpDSZoOGsQeyKdoz+cxG018M3nTnGgK0ipy0I6q7Nl0cR2cixGDYfFgMmogQCzycA9m2uxmgzn/G78dE8XR3ryixO1RXbqvfP3AMjlJGDPCSHeA/x05ON7gV9PXUjz17bGUv7tPZv41AP7iSay9EdS/O53d/P939s2mv0r88OZJ5Dxet0U0m9tqePp44M8f9LHrasqCh3OnCCE4K41lcSSGRwWI42lTtbVFI15fcvI1qFBExgnMVjYYTGy/qzGlpcrlc3xmyN9JNI6q6rdNJY5eKllCE0IblxedtF2AbF0lhK7mWA8TedQgheafZfdxkKZm8pcFsrOq1t96vgA0WSWdDaHP5YhndU5PRhj6+ISeoMJfJHUBbc5I53V2d8ZwGgQvHNjLRvriomkMqyocF10hdVizD8uNQ2MhtlTvjEdLicB+xjwafJ1XZDfxowJIT4NSCnl7NtzmUWuXV7GP9+7js/84hCZnCSSzPKbI3389vaGBTH9faE40hvCbTVSWzw7Vzd3NJVT6rTwwJ4ulYBNgi7BbjGxpMxFmcvM0vKxa+iuWuyl2mOj2GGe0CpSNqeTzulT1i8wmdZJpPPbmf5YCk1AcOR0WlcgzvIK1wW3uW1VBZlsfrWj1msnNc4YGGXhOFPP6LaZWFXlYiiaxOu0kNMluoRQIj1mAnayP8IpX/7gmcdmvuRc3HdvqaWuxEa1xzbp7fu5ZtK/6VLKC39rlUnZsbKSL98D//Z0C0ZNoy+U5Imj/dyxulIlYfPE0d4wq6s9s6oA/2wmg8Y9m2v4752nGYwkKXepFdiJsJkMmAyCEoeZFZXjH7AwaOKcbZzxJDM5Hj/STzydY2tDMcsukhxNlsduYl2th6FoivW1ReSk5GR/BE0IKsZYcd9YX8yGuiJ8kRRdgTiLZ3mjWWVm3LC8lC5/nAavgxKHGQQc7g6jadBY6qBhnFmhZwryhQC37dIph9lk4KYV5VMW+2x2WW+1Rnp6NZx9eynlg1MU04Jw28pKrmrw8psjfYSTWb7/SjsP7+/mr968itoSNfh2LsvmdE70hfnA9kWFDmVcv7Wljm+90MaD+3q478YlhQ5nTmgbimIzGTjSM0x/KDFlg6rDyczorMa+UHJKEjC4cAv8nk21CMG4iaMQgnK3VZVFKKPKXVbSWZ3uQAKHxYhR0yhzm6ktsrOuznNOHenpoRgHugJUeWxsb/RS77VzpzW/uHD26chQPENXIE5diX3CY7Lmm8tpQ/G/wDrgKHBmfVoCKgGbJLfNxPXLyvjmsy20DkaREj7904Pc/5GrRvfBlbnnRH+EVFZn3RTU8UynJWVOtjYU89PdXXzshsZZu1o3W/SFEhzoDPLE0X5O9kdwWU3YLQbuu3HpFd93mdPCkjIHwURmWusGNbXCrlyGSDLDzpYhpITeYIJkJkcyrQPynC3z1sEoP3i1HYvRQCKts7bGg8NizK+anee5k4PE0zlO+aKzZlzbTLucFbDtUspVUx7JAlVdZOOt62t4+vggmVz+2O+uNj/bGktUEjZH7e8KArBxlidgAO/aUsdnf36IPR0Btjao+ZDjsZuMaEKQyUkMmiCr69im6ISgEIKrGr1Tcl/jyeTyqxhep1nNeFQmJJXN0eWPk8pkMRuN2M1Gylz5/nDLKs7doj7RH8ZjM9HlT7Cpvmjc3w/1fu/yErBXhRCrzh8ppFy+q5Z4+du3reLpo/2Ekjn+7tGjGDTB//zOVmrn8RHc+epAZ5BSp3nWFuCf7e61VfzdI0d5YHeXSsAuwWM38aa1VVR5LPznC23YTAauWzq7J3Mk0jl+ub+blsEob1pTRSKTozuQwGQQvG0Gm7wqc0s6q/PN51qIpnI0VTgZjKRpHoywptrNloYqJIJQIkO159xt6kVeO6d9MW5uKufONZXjrqrvaCqnJ5CYE8+T0+VyErDvk0/C+oEU+aEDUkq5bkojW2DuWlPNrU0VfPj7e+gJJsjkdN79nVf51R9cT7FTNUOcS/Z3BdhQVzQntvQcFiNvWV/Nwwd6+Zu3rMKlVkXG5bGbiKVzVHqsaELQHYyzZJyTkIV2yhfh6eOD+KNpOodjbFvsxWU1jZxeu7DRZiiR4aWWIYyGfKuK+dYDrDsQZ3e7nxKHheuXls6JLdmT/RGO9IRY5LWzZQbeJB3pCfGTXZ28fGoIp8VEXzBBpceGQQhsZiPhZJYqj+2ife1SGZ0Sh5lEJks8ncMxTu87t9WEu2phP99cztuf/wU+ANwJvAV488j/lStkMhq4e23l6BNjKJ7mLx86THgBzsiaq0LxDG2+GBvr586Yqd/aWkcik+NXh9SA7olI53SiySyZnE5t8exeoa702DAZBIlsFl8kTSyVxW0zcv0YydXpoRihRIbhaJruQLwAEU+v5oEIibROTyBBcI48r57oD5PK6jQPRMnkprctiK5LXmj20R9KEopnCSXSrKv1cM0SLxvqi6gpslHmtOCPpXmpZYhTvnPHQ6eyOkIIcjrTHut8cDkJWKeU8hEp5WkpZceZP1Me2QL17m2L+OztKyi2mzAbNfZ0+HnHN1/iZF+w0KEpE3CgOwjAhjlQ/3XGxroilpU7+cluNaB7IiKJDCApdVhYMgWzNOPpLC+1DLG3I4Cc4tFDpU4Ln9qxhBWVLspcFkwGjcWlDmou0l8pk9OxGASaAKtJG7NVxVzW4HWgCUZq4C69AZTK5nj+5CAvt/hGR0TNtMUjrUzqS+yYDBrBeJoXmn0c6QkB+aQplspO+P6SmRyDkeRFH2v7uwIEYmli6SzbFhdz0/Iy3retnptWlFHusnCyP4w/lmbXaT8tAxGePDpAIv3G1968qJimKhdXL/GqMVYTcDlbkCeEED8CHiW/BQmoNhRT6cM3LGHL4hI+/+BhTvZH8EXSvOc7u3jlz2+5aPdqZfY40BlECFhXOzs74F+MEIL3bqvni786xuHuEGvnUOyF8PTxQdp8MTr9CfpD+e2ZK3G0N0ynP7/aVOG2TPmqWiKrs7rSQziZpc5rZ8UYLS6eOT6IP5amzGXm1pUVc2ILfbIay5wsLnVM+Ht7vc3PIwd6AbCYDDOyBXi+dbVFrKn2jG6X7u8M0hdKjtZP7WkPMBhJ0VjmYPslDnKks/rodIRlFU62NpQQimeIZ/LbismMTmOZk0qPhcZSJ41lTtx2M4e7Q3z/lXYSaZ1TvhhvWlPFkd4wBg0O94TYtjj/da0mA5vm0Op/oV3OCpiNfOJ1O/mtxzPbkMoUWl9XzB/cvCTfs4f8ANTP/OwAvkii0KEp49jfFWBZuXPO1VLds7kWu9nAD15tL3Qos1oqmyOnS7I5nUxOJ57KXfF9Fo+sFBg1MeWPm55ggub+KJFUlg31Ht6yrnrM2Z9nSh3CiXz9TiJ95d/bbDSZxDKrSyT5PkuZAk4FOLtWrXikpYPVpGEyCAZHBsL3h5KXvJ907o3pCMF4hlA8w2+O9PHcCR8HOv34Y2n6QgmaKt3cvLJitJGw02Igp4MuJZmcTnWRlUVeO6urPSQyaqvxcl1OJ/wPTUcgyoXetLaG4/0RfvRaF9mczhPHBtjZOsTPP3Y1yyrVxKfZJqdL9rYHeMuG6kKHMmkem4m3b6zhF3u7+Ys3rRx9klfeIKXkyaMDWIwa6ZxOkclELDPxrZ+xLC134nWYMRu1cYuWL0cslUUIQXWRjboS+7iTNq5e4uVYb5hWX5Qv/+Y4Kypc3LW2itIJDvKeCzqH44STGZZXuCZ0AnRDbRF7O/xYjNqUzOecChvqikhlcoSTGXqCSRwWA9mcHLfsocsfZ19ngDKXhU31RQxGUqyt8RDPZNFl/o3Frw71MRTNsMhrH20KfMbiMid/sGMJP9ndRSiZ4dsvtlHntVNfYmdT/dhfVxnfpFfAhBDLhRDPCCGOjHy8TgjxhakPTQH409ua+O6HtgKQy0nCiSzv/+/XODUYKXBkyvmO9YaJpLJctXhutnP4nasXkcrq/HSPqgW7mKwuiaayCAFOqxG31cxwJHXpG05AscM85ckX5Jvtrqp2s7LKxdJL1KuFkxn6wwkOd4c4NRilL5QkEEtPeUwzLZnJ8dSxAR7Y3clTxwc41B3i4Eit5qW0+2OUOi14bGZ80an5WV+pRDpH80CUjqE4P3ytg8M9IQ73hMZNro/3hWnzxfjJrk52twdYVe2m2GGmymNjQ10RVR4rtcV2XFYjsXR2tO7sbIvLnFQV2UhndAYiSYTIT1qYa6v9s8nlbEF+B/g8kAGQUh4C3jOVQSnnWldbxMduaMQwMhk+EM/wu9/dRbd//p1SmsteaxsGuGQdxmzVVOlm2+IS7n+tg5w+tcXg84HJoLG+1oPbaqLcaaWxzMGGWV7vYtAEG+qK2FhfPObWI8BgJMnBrhDdgQSBWIpgPEM8laG+ZHaf8pyI7kACXyRFJJllaCSJmujM3UxW51BXiMM9wVnzO2EQ+ZFYh3tD+GNphiJp0lmdY33hMW/jsho55YtyajDGE0f7eKHZN/q5VdVu7lhdyZoaDzc3lfMHO5ZeMAorp0sOdAWJp7M4LYb8FI1FJWMO4FYm5nLectmllLvO20e/8nV4ZVyfuHkZtUU2vvDIEZLpHH2hJHd/Yydff/d6dqysLHR4CvkErLHUMadPj33w6gY++aN9PHdikFtXVRQ6nFnHZTWxdbGXem8SOXJkf0tDyeipwiM9IdqGYqysdE16nmOXP47ZOPWnDwfDSV5tG8ZlNXLDsrKLJmJ2sxGjlh8ynpMSs1FDRzAQTlE/x5tBV7gtWIwaRs3EVYtL6A4msE1wyojVZGB1jRuDJi7aN60QdPInI6s8VkyaoDuYoNhuGTNZ3t8Z4PRQHJtJw2LS0KWkYyjGwwd6sBg1GsucVLit5xww0HXJ08f7aR9OsL2xBKfFyK7TfrwOC9sbvdyxunLe9YgrhAknYEKIeillJzAkhFhCvi4RIcS9gGogNAPeuqkWu83In//8EEOxDKFklo/ev5f/+d3N3LBcJWGFlNMlu9r9vHldVaFDuSK3r66gwm3hB691qATsIlxWI16HmT3tfmLpLB3+GOFEhrdvrMFhNnKoO98a4HBPaFIJWMtAhN3tAQBubiqn0nPlSVgglubZE4O0DkYpc1mIpXL4oimqLnJq02kxctfaSvpDydEtLgC3beq3RWeay2riHRtr0KXklVNDPHN8EKtR40PXLr5kE93lFS5O9IcJJ7IzOjA6p0teaB5kOJpme6OXurOSK6vJQGOpg/1dQZIyf7LToAmaKi9ctYoms6PbyE0VLnQpiSZzaEIQS+U42BWidTBGhdvCjqZyTvZHsJo0LAYDTx0fJJOVpLM6jaUOXFYjgXiadTVFKvmaIpPZgnxo5P9/AHwLaBJC9AB/DHx8rBsJIa4SQrwihNgphPjaeZ/7GyHEqyN/bplc6AvTrSsr+eLb13DmTWxGh08/cIiOoVhhA1vgjveFiSSzc3b78QyTQeN92xbxYrOPtvOaLC50g5EkvznSz8mBCGaDRiyVJZWVmAwCgybQNEHNyFiVybaSSJ11wi49RafteoIJUlkdp8VIOJHBbbv4UOQzXFYTyypcrKh0UWw30VBiL9gLbSyV7422v3NqeqNpmsBo0BgIp8jmJNFUvoj9UoQAXeYnRuztCF5xHBMViKfpD6XI5CStgxf+HrYPx/BH0zT3h0GC1Wi44HTn08cH+PXhPrK6pLbYxrq6ItbWFrGloZgKjwWjJjAa8m8qsrrktbZhHjnYy/2vdrKvK0DJyOncKo+FCk++PcrVS7xzfkV0NpnM2xsBIKU8BdwqhHAAmpTyUtXgHcDNUsqkEOL/hBBrpZSHRz73Aynl3wkhioBHgGcmGf+C9Ka11cSSWb7w0GFyMt+i4gP//Rqff9Mq7prjKzBz1UutQ8Dcrf8623uvquPfn2vh/tc6+Ju3rC50OLNGOJFBynyxelcgRrnbys0ryrl6aSl2c/6p9MblZaSyOSwT3OIKxtM4LEZWVDhpGYiS1XXK3VNTV1PvtXN6KIbHZuKGZaW4JriCYzEZWFtbBOS/10IkYYd7QqO90So91ouu2l2O65aV4o+lcVmNrKq+9ElyoyZIZXOc7I+yuNSBlHJG+qMV2UyUuSwEYmnqvTZebPYRT+ff4BXZzfSHUwTiGWxmI6urPSw9ayi2rkuS2RzD0fzKVzyd4/bVlUgpiaVz7GkP4HVauKWpnDcZqjjZH6HcZWF3+zA9gQSZXI5uv4V7NudnhS4uzd/30jIXDothwvVzyqVNJgGrEUJ84/wLzzwYpZR/eLEbSSn7z/owC+TO+tzpkb+mGNnSVCbmXVvraSh18FcPH6ZtMEZ3KMkfP7Afic6b1tUUOrwF57kTg6yscs/p+q8zyl1W7lpTxc/3dvOZO1aMJhcLXYPXQac/zmunhvDH0uhAidN8QZuGiSZf+zoDnOiL4LQaWV/nIZHJPzUe7Q2xedGVn6R1W028Zf3kWqI8e3yARw/0ks7pfGB7PeWuwjye873RYhg1cdGZg5erymPjYzcumfD1jQaNao+NeDqH3WxgOJaekbYcRoPGbSMlAF3+ON2BfP/Hk/0Rrmr0cv3SUvZ2Bih1/P/s3Xd8ZNlZ4P3fuZWzVMpZrc45qWemZ3qCJzrOOBuMbbxgTDRmCS+8vKRlWVjCsrvY7IIBg8HYHhvnOPZ4enLoOJ2jclapcq669573j5I0HaRuSa3c5/v59Ke7VelIqrr3uec853kcbKn3T5bU0A2TH50dIZopUuaycnY4ic9hpS+SoSnoptLrwOe08sKlMfqjWd7f3oTNInjm/Cg94TRehxXd0Kjw2rFobwRfUOqDqsyv2byzs8DRub6QEGIHUCmlPDvFzX9EaVlzusd+HPg4QHNz81yHsOrsW1PBP37kDt72N8+TzBsUDMn/+7VTCKHxlu1qJmyxJHJFjvZE+bn72pZ6KPPmI/tb+NaJQb5xfJAP3qk+c1A6Ke5tDvK/f3SplNScyJHMzX3/UWi8hEUqp2MVpRZApgSvY+lOdCf74wghcFgtVCxh/a+J1kmOBaiNNltrKj2MpUqzZv4lKLlQ4bXjsmvkiyb145s97myrYG21F6/DelU9s3TeIJopLa1miyb14zOHl0MpmoJuvA4r6fEaXw6rxlgqzysdY3z16ADDiRzbGvysrfJR6XXM20ysMr3ZvLPDUsrPzeVFhBBB4NPA+6e47V1AhZTyC9M9Xkr5GeAzAO3t7Wqm7AqNQTd/91N7+KUvHieZ07FZNJ483Mu+1iCVaovwonjp0hi6KXnTxuqlHsq82dtSzpY6P//6Sjc/eUfTqmxLMxceh4WiaWK3ln4et9IfcHdzGaf649T4nTSUu3nLtjryukH1PM2iSikZSxXwu6wznpU7sL6SsfQAtX7nVYnfS+FG+WqLaX2Nj6agG7tFu6oi/WJx2608vrMB3TSv+j1ONRMXcNtYW+UhlMqzrtrDucFSA++14zNZrZUefmJfEyf7YzisFhrLXCSyOvFsEZtFI1cweX97I1vqA2qpcRHMJgl/ThX5hBBW4PPAb12zHDkxK/bL43+UOdq/vprvffJetjcE8DqsdI6l+cl/eIV/fbnr5g9WbtmzF0L4nNZVVRFaCMFH9rdwfviN3Xm3OyklhpQ8vLkGl81KpddJ0Dv3IKHa5+ShzTVsayj13gy4bfMWfAG82hnhR2dH+MHp4RnVsDozGKczlOYdO+r5lQfXL8ul595whpc7xggvclFUp82yJMEXQEcoxaGuCLmbtPyJpgt8/Xg/oVSevc3lnOiLky0a7Gkpvypxvr7MxT3rKhlO5Pj+mWEOrKukrcpLtc/BAxur2FznV8HXIplxACalvAtACPEtIcQHx5PwZ+J9wD7gz4UQzwoh9gshPjV+218CNcBTQohvzmbgytXqAm6+9PH9fGh/KwA94Qz/5dtn+fjnDi3twFY5w5T8+PzotPWVVrIndjXgd1r5nOoPiWFKvn9qmD/+9lk6RpP4nBbK3DZyheXbBy+WKV0zp/MGxRnM1JU2AUg6QulbmtlbKEXD5OWOMbrHMrzaGZnVY4/1RvnR2ZHJQqwrgWlKnrswyude7ubsYIIj3Tf+nnsiGbIFk0RW53IoxcSvcOJ9ADAUy/JXT53nw//4Gp99oZNnzo9gAp/96D7+x/t38p72plV3HFvO5vKT/h/AAeCsEOIrQoj3CiGmvWyTUn5RSlklpXxg/M8rUspPjN/2mJRy+/jXn5jj96CMc9gsvHdvA+UuO0VDYkj44bkQv/7k8aUe2qp1qCvCWCrPW7avvjpsLruF97c38dTpYUYTN2/0u5qlCzpnhxKcGUzwcmdpt9iZgThPnRkmnr15OYMZvUZen9fAp701SH2Zk021Pk72x+m7SeeMddVeLFop52k5noQtQuCyl5bgvM6Zz85F0wXODyUJJfOcGq/TthKMJHP0RDJkCgaD8eyUmxEujiQ52hMhVzRoDrpx2jQ8dgsbq0vlRJqDpYbZhinJFQz+19MX+Y9j/VwcTTKayhNOFXDaNKKZAq/3xXnuQmjKshfKwphLM+7ngOeEEBbgQeDngM8Cqjv0MlDmdvCln7uTA395kHC6dGL4+vFBLg4n+c4n71vi0a0+3z01iNOm8eCm1ZP/daUP3dXCP73UxRcO9fJrD29Y6uEsGb/TRoXHjs9hRTckeV1itUBBN4hlCrdUpLNomHz+1R5O9sfZXOfnI/tbpiz9MNsSCFU+Bw9srOYHp4eJpAt0hlK8a0/DtPlg2xoCk8uhy5GmCR7bWks4XaBmFvmtHoeVVL5IIquzdQalJ5aKaUoujibRhGB9tZeAy4bHbmVrvZ+NtT72XVGpfiK/78h4ekDRkNzVVsGGGh/PnB8lli2yp7mc1jo3//hiJ0OxHF6nheFEnkLRxKYJPHYre5vLaK3wkLhiM0mmoPNyxxgF3eSONcFluRS9WszpJyuEcAHvAD4A7AHmlJyvLAyX08bzv/kA7/o/L3MplEYCp4eS/NQ/vsrnf/ZOlVA9TwxT8oPTwzy4qXrVHqRaKz3cv6GKL7zWyy+/aR22ZTgzsljeubsBt8PCYCzDoJEdr8FnTO40m6tYpkhfJIuUMBjLEMsUqQ1cHSS9fHmM7nCGrfV+djaVzer5XXYLpMFu1bAsk8/+a51hesIZtjb42Vo/86DPabNMtn2aqVAqj8tmwappaMvk+5/KpdEUx8aLvdosGmsqPbx9Rx3PXgzRH83S7U/TVuXlaE+EC8Mp6gKOyZ2zLpuFkUSOQ10ROkNpqnx2agNOUnmdU/3xyXpw1X4Hu5rLqPU7edPGag6sr8RlLxXozRYMdNPEbbNweqDUV/L8cJI9y7zf6Uo266OpEOJJ4Byl2a+/BdZOLCkqy4fHZed7n7yP5oo3Vodfvhzmgb88SDozp/0UyjVe6wozlirw1lVe8uOn97cymszz1Jnhm995FSv32HnPnka21PsxKS2J6cbM8qtupMJjZ29LGUGPjb0t5VRfM7tjmJLucGn5sHNs5stD2YLBv73STcdokt3NZTy2tfamS4svXhrj317p5rsnB4mkF+Y4oRtmKc/MlFwamd1yVzxbnPW4dN1kNJnHkHLZJpcPxbP0RjKYpomUklimQLZgUDBMwqkCuiG5NJoiU9D515d7ePFyiNc6I7RVebirLUimoHPwwii5okGt30GF18H2hgBWC/RG0kTSBSxaaSb3A/ua+dN37+CRrbW4xi8chRBsqfezo7GMKp8TqyYQAqqWsBTJ7WAul+3/DHxQSmnc9J7KkrJaNZ77rYf40D++ysuXw5hAbyTLW/7meb75iQOUe1Z+0dCl9LVjA3jsllW7/Djh/g1VNAVd/Purvbx9x+wKe642VovGO3bWc6o/TsEw8ThtV9VhmgtNE7xtRz1vu+JnO5LI4bBqlLntWDTBxlovXWMZNtbMfAntlY4wR3tiZIs6uaLBh8c36EynoJv0RjKc6I+jGybpvMETu+tnXMJipqwWjdZKN73hDOtu0ovxSmOpPE+fHcGUcPfaClorZ7YP7OJoCpfNQlE3WV89071jiyeWKXDwfAiAgNuOJuDcUJKusTRv2VZLXZmT0USOtVVevnq0tMsxm9eJZQrYbRprqzwMRHP4XTbqAi7eubthsl5YMqezqdZPY7lOvmjgtFroDWeIZ4rTFlYNuG08vqsew5RLXoNttZtLDtgPhBB3CyFar3y8lPJf53Ngyvz5/Mfu4qf/8VWevxxGAr2xPPf894N8/9fupaVi5gdA5Q3JXJHvnhziiV31q3b5cYKmCd6/t4n/8aOL9IYzt30vOJfNisNuwSjAvesr5iVh/cxAnO+dHqLMZWPfmgrODiYQAh7bWkvQY2dvS3DW1fErvDaEKBV8jWV1Xu2MTFZXn4rdqjEcz3K8N4rfaWVnYxnz0IZxSnevreTumRekB0qtoCaqacxm44OUkjK3HatFIIRgKJ7llY4wAZeN+zcsn93LfZEMQpRmRF12K7miSXG8vmA6r/P5V3t47uIoRUPicVqxWTR+fG6Ep06XNk40Bd28e08DZW4bPzwzTCqvs6+1nCd2NTCayNIxlmE0kceQ5uRmhumoZtuLYy5LkP8G/BWlnZD7xv+0z/O4lHn2uY/dxfvb32hRlC2a/NznjtAXUU285+I7J4fIFg3ev69pqYeyKN7b3ogm4CtH+5Z6KAtuNJkjnpn+BB/PFikUTewWjVByfnZAHu6OMBDNcWYwyfGeUmK1lKWdkXO1s6mcn7t3DQ9srKIl6MZmufnymyElTeVuPA4bu5rKltWJuLXCw8ZaH21VHjbV+Wb8uAPrK9nZFOChTdVYLRqXRlLkiiYjiTzhBVpmnY0yt537N1Zht2rUBZxYLILmoJu9LeXYNI1LI0kujyYJpfK47Vaag27e195EQ5mLfFEihAQk+1rLWVfl4TsnBnnm/CgHz4/y5SP9rKv28oE7Wtha72drg5+72ipuedZWmR9zuXRvB7bI+WhRryyqP3/vLmKZIk+fG8WU0BNO84HPvMq//+wdrKma+QFNgS8d7mNDjZfds0yIXqnqAi7u21DFfxzt59ce3rBsc2lu1eXRUtFLTcAjW2qmbMdzcThBXjexagKnTWMkkaPK65hzoc4Lw4nx5PsC66q9tLcGyekGLpuFxvJbS/DfUh+godzNWCpPU/nNZy4r3A4kUOt3sL1xee2I1DTB3pbZJ4S7xxtWT1hT6WEonsXvtI33nFx6DePFUTtCKbbUeCdnO39weohIuohhSlK50gzgjsYAj++sx6LBxZEUBcNgW0OAuoCDf3m5h+O9URK5IlaLht9pIzUexD+ypYaRRJ66gEo9WS7mEoCdBmqBoXkei7II/v4j+zjcGeKXv/A6ybzOcCzH2/7mRX7jkQ387H2zXBO4TZ0dTHCiL8bvvW3zbbWj9APtTfzivx/j+UuhVdV26UrJXGlGy5SlAqZTrdDHsgWQEgFYBPzzS134XTZ+en/rnHJmvnF8gNFkkeagm5+7r+2WGrpLKTnUFSGaKdLeWk6l10HAZZtxmYzGoIt711di1QQzKJ4/yTTlklWKn62moJv3ly+v9lpSlmawtjf4SV4x66mP/xJMKdlS58dlyxDNFEnmilwaSVPhsWG1OBhO5PjG64N0j6WJZoqsq/ayv60Su1VjMFqqIdYUdLOmcnWnS6w0c/ltVFIqwnoImCwrLKV8fN5GpSyofW1V/OHjW/n9b54mWzTJFk3+4qkLrK328MCm1VdQdL7904tduGwW3rf39lh+nPDQ5hqCHjtfPty3agOwLfV+iobEadNoCk49+xRN6yAEmiboCmdIZA1imSKnB+Lc2VYx69e0aKXlILtVu6XgC0olFzpCpbSCs4MJ7ttQNavHV3rtHOqKUOVzEMsUZtQa6aXLY/SEM2ys9c1phmopLKfgK54t8vTZEQq6QdGQWC0a66o9tFV5uXttJb2RDI3lLk72xeiNlGbuzgwmsVk0knmdwVgOt8NCfcCJKQXrqrzsaS7nXXsaePJwL/EsxLLFJe/tqVxvLgvBfwS8E/hTSlXxJ/4oK8jbdtTz2Q+345xoKmxKfvkLx/ndr72+tANb5kaTOb59YpD3tTdOu4totbJbNd61u4Gnz40sei++xeKwWrhjTZAdjWXTnqTdTguJXJFYpsiGai+VPjtrKj1zbh69rzVI0GNjS72fgm7SGUqRyM0tt8zvtOFxlPK2ZrvUNBTPcvBCaDIvaiaJ7qYp6RkvkdE9pvJJ52IoniWvm2QKpXIZUCoH8sMzI7zeF2VXUxmVXgfraryE03kuDiep9ju4d30lNT4Hum4QTuaxaoJHtlRT43eyoaaUUlI2vsS6XBqbK1ebayV8ZRXY1RrkKz+/n9/8ykk6xlKkCyZfODTAyd4Y3/m1B5Z6eMvS51/poWia/Kd71iz1UJbEB/Y18U8vdvH14wN87N62pR7Oors0kiSUyCMEGBJiWZ1ff2QD+aJJ+RxPcql8kbxu8vzFMYbjWTwOG16HlSd21c96h57TZuFt2+soGvKmO92uFUkXEMDJ/hjD8Sxv33nz2XBNE2yu89E1lmZz3fKtMr+cNZW76QqlKRom0XSe0wNx/C4r1T4HkfFuJkXD5EdnRjBMyWAqy+df7UEgSeUNrDYNOxprqnxU+ZyA4NJokq0Nfh7aVE0sW1w2uW7K1Wb86RZCJIUQiSn+JIUQiYUcpLJwtjeV8+Vf2H9VsvHp4TRb/r/vYhiq1NuVckWDz7/Wy0ObqlkzwxpEq82GGh+7msr48pE+brd9OD3hNIe7o+SKOtmCQa5o0BdN47Zb5xx8AdgtGqf647x0OcS/v9LNa51hkrnCrHKwrmS1aLMOvgDWV/t4rStMJJWnN5zmf/3oEj84PTSZxD2d3c3lvHtPowrA5sjjsPKW7XX0hNO81hXh5ECMs4NxIukCd7SW872Tg3zoH1/lG68PEE4VyBVNTvXH+PaJIY72RsAEr8NCtmDQNV6oVxMCTQisFo1Kr2PVbppZ6WYcgEkpfVJK/xR/fFJK9clbwQJuO0/96gF89jfeDhkDNv/+D4gmb+8mzFf6+vEBIukCP3Pg9pz9mvCBfU1cHEnxel9sqYeyKHTD5PJoaVnQMCXJnI6UpcToSPLWyhiEU3lODsToi6ZJZovEcwb90QwCseilAqKZAsmcTt6QxLI6uiGJpItqaXERvNoZ5sXLYfqjWVLZIvGsTjxbRBPw5OE+Lo2mGIznyBaKVPpsdIbSZIsGhgmtlS72tpaztspDhdfBHWvKeXRL7YK0DcsVDS6PJuetAf3tThUDUQAo8zo5/LsP4rjiQqlgwkP/8znSubnXIlotTFPyDy90sqXOz/45JFqvJm/fUYfLZuHLR1Z/TTCAw91RDnVFODuYwG3XyOtmKQAzoT+WZfQGFynnhhIc7o6QK049m1xqqyNwWC1YLAKLRbC9MYD/Fpp7z1U4VWBDjY9av5M1Fa7xwqVSlS1YBN3hNHaLwOWw4HVYqfDayRYNhuM5JKWacBZKle2fOR8iXzSwWwTra7zsX1vN/rZKKrx27mgNsq7at2D5qS9eGuNQV5QfnS0thyq3Ru1JVSY5nQ4u/Nnb2PvHTxHOlIKuSEbn0f/1HP/0kXY2zaJp7mrz4/OjdIbS/O+f2LWsdlAtBZ/Txlu31/HtE0P8/tu3rPpOAMZkKYBSk2SEQFIqQeG0WYimClT7rg9SRhI5jvfGSo815ZQ7JFsrPexqKiOUyGOzCNbVeKkvc7OpdnHr8qXzOpdHkwQ9dnY0+llT6aM24OCJXQ3LqhjravXI5mpeuhSi0munrsyBbgjqy9wMxHO0VXqIpkt5h32RDEXdRFgt7Ggq53ffugmXzbpoOxx1s9T31DTleArC7X0svFWr+8ipzMnRP3iMn/mXQ7xwKYRpwHA8x0/942v8zU/u5p71s9vWvlr8/XMdNJS5Vn3j7Zn6wL4mvnqsn++eHOJ97au7HEd7azl+l5Wgx86ZgTixTGHytFMXcLK+ZupgyWmzoIlS4DZdfTCbReOhzTW0twbpj2YIuu3Uld1a8dW56I1kSOUN1lX72FxXj89ppcrrVMHXIqnwOvmTd+4glMpR6XXww7Mj6IbEMCRD8SzZokkqr2NKCDgt1Jd7+IO3bUbTNGqvmaGMZQoc7Ynic9rY11o+rxeMpWKxaerLnMumhdNKpn6CypQ++9E7+K9PbMdh15BAMq/zn598nUNdY0s9tEV3tCfKkZ4oP3tgzYLkVaxE+1rLaav03BbLkE6bhR2NZTSWu+kJZ8gUDBDgtFtobymftgBpwGXjLdvqeGBjFdsabjx7bJqSU/1xDl4IcX548fc01QdcOKwadqtGa4VnQZexbjfxbJHnL4Y4PRC/4f100ySvm9itGm/ZVsv9G6vQTRNDlhqRS1nK1717fRX/5fGtHOuL83JHmFc6wlc9z9nBBCOJPJdHU4wk5rdcjM9ZalE11YyvMnsLfjYRQtwphHhZCPGCEOJ/XnPbzwghuoQQn1/ocSiz9xN3NPOZD+2lwm1HE1AwJZ8+2MHFJThBLKXPPN9BwGXjA7dJ38eZEELwvvYmDndH6Qillno4i8aiCcrddmwa+J0W1k0z+zUh4LZRP4MZrUzRmNz1eCv9H+cq4Lbx7j0NvGdPwy3t6FSu93pfjP5olpP98fGcv+vphsmPz49yoi/Oi5fG8DltNJS5qPA62FLnZ09rOetrvDy+s4G/eM9OtjYE0I3ScuC1+YXV/tKOdqdNm3EHBGVpLMblfA/woJTyXqBaCLH9itu+BTyyCGNQ5ujAhmr+/WN3srXBT63fwfnBBO/+Py/x/v/70lIPbVF0hlL88OwIH76rZU5tZlaz9+xtwKKJ22IWbMKj22qp8tmxWTSkFDx7YXSyfdFcjKXyfOvEIOeHEmyp9+F1WLgwnOT5i6FFL/MhhLjt8xsXQtl4EOSwarhvUB6kczTF8d4ooVSeb5/o5/FPv8A/PN9Bc4WLrbUBttYHaKlw4XZYcdos3Luhio21Xu5ae3Vu4bpqH4/vquftO+rnVI5EWTwLHoBJKYellBPbhHTAuOK2sfGv3ZAQ4uNCiCNCiCOhUGiBRqpMZ0Odn3/56J28bXsdqbxOumBypCfGx//1MLpuLvXwFtQ/vtiFzaLx03e3LvVQlp1qn5M3bazmq0cHKBqr+30wIZoukMob6KYkli1yfjjJ8d7onJ/v8miKVE7nZH+cgWh2PAASpXIE8zwTFkkXVPmAJbCzqYxHt9bw1u11U+bUxbNFXrw8hsUiqA04CSfz/MUPLnJuKMmpgTg/PDvKmioPLRUeXFdseGkoc7G3JYjfef0sl9dhXfQyJsrsLdpvSAixA6iUUp6d7WOllJ+RUrZLKdurqm7PJPCl5nPZ+MUH1lEznvApBBzpjvCb/3GC1CotUxFK5vmPo/28Z08DVT7HzR9wG/rAvibGUnmevXB7XBhlCwZlbjsumwW33YLfaafMNfclu+agm2xBZzie5cJwkrNDCfK6QV2ZE880u0vzusFrnWGO9UYxZ1gKoGsszQ9OD/P9U0OMrdI2UstZpddx1WxUbzjDP77QycHzo7zaGWYgmiWZ1an0Oqgvc2GzCDQxvgPXlLjtpRZZD25anT1Yb1eLsqYihAgCnwbevxivpywMq0Xjmd94gF/5wjEOdUewAIe7I3z0nw/x+2/bzM7mldGId6b+9ZVuioZ5W7bcmak3bayiyufgycN9PLKlZqmHs+DaW4N8+K5mXrw0RmuFi0e21rGueu4lI+rLXLx3byNfPdbPD88MU+a2I6Vk4w1yyy4MJycbbpe77TPqyjAx82VKSOVKJ3placQzRT598BKxdJHvnhpiS52P5qCHnU1lvH1HHYYpSeV0TvRHMSTsbSmnYEjWVXuXeujKPFuMJHwr8Hngt6SUwwv9esrCEkLwtz+1l//nsY0EPQ6i6QLnhxP86peOk1hFyxuZgs6/vdrDI5trWFulDnzTsVo03rOnkYMXRhlNrP6uCRZN4LJbKRiSjrEsNu3WD6GB8U0uybzBheEkw/Ec3eHMZFPsa00sOQlRWmqaiU21PtqqPGys9dG8SDWjlKk9e3GUTMHg/EiSSLrUfSDosfHYtloMKfnuqSHsNgub6wKsr/YRzxa5a01wqYetLIDFWIJ8H7AP+HMhxLNCiP1CiE8BCCHeTik4e0gI8dVFGIsyT97X3sx/fec2PE7reEIyHOmJMBDLLvXQ5sWXD/cRyxT5+fvV7NfNvL+9EcOU/Mex/qUeyqIYjmeREnRDMjxPQafXaWNNpYe6Mhdep4V4tjBtwnZrpYfHttbw1m11M14ad9os3NVWwd4blM1QFodV07hrTZAtdT7WVHrIFQ12N5fjdVhJ5XSKRqnIaSiVp8LroCnoptqvyj6sRgu+BCml/CLwxWu+/Mr4bd8BvrPQY1AWxt7WIH/9vl188VAv1T4HR7qjfPfkII9treXRrSu3YKlumPzji120t5Szt0Vded5MW5WX/W0V/PurvXz83rZVX6BxX0uQVzvDlLvt7Goqm5fnfNu2OuwWDYdVYySZRxOCs0MJ9rVO/f6rUEuIK0quWGreXua288DGKjpCKRqDLg6eDxFJFzjSHaU56KHa72RLvZ94tsielnLCqYJaelzF1L565Zbcu6GKezdU8fLlMb54qIfTgwmO9cZ4vS/Obz22cUVua//e6WH6o1n+4O1blnooK8Z/uqeVj//bUX54dmTVdws4P5wkntUJp4q83hebssXQbOiGycGLIVJ5g2q/k0imiJSgJqpWh2zB4HunhsjrJruby8gUdC4MpygaJg6bBYumEU4X6A2nGUnmMaXkzjVB1YXgNrC6L1WVRbNvTZBt9QFMWWoc+8y5Eb5+fGDFNWyVUvKZ5ztoq/Lw8ObVn1Q+Xx7aXENT0MVnX+xa6qEsuJxuMBLPMRzP8cyF0Vt+vnTBIJYp5U8mskXetLGafa3l7GpaXZtablfJfJH8eLmecKpAZyjN6YE454bi7G0uY2Otl4YyF+mCQU84Q18ky+XR26e48e1MBWDKvLBZNH7+gXW8e3fDeB85O187NsAffesMI/GVkxf2SkeY0wMJPn5vm8qVmQWLJvjo3Ws40hPlRF9sqYezYHTDpGiU+vJZLeCwiFsumBpw2dhQ46XMbWNbQ4Da8f6SFvX+WxWqfU421/moK3OyvTFApc+BBCo8TurKXPzEvmacNo3ucBopJZoola24OJLka8f6OdoTWepvQVkgKgBT5tUnH97Af3/PDhqDbgq6STxb4JWulXMA+bvnO6n0Onjn7oalHsqK8772Rjx2C599afXOgoXTBS6Ppmmr8lDudrC5LjAvy+ztrUHeur1uRm2LlJVnd3M5b9pYTcBlY29LOXesKWdNlYfGcjcdoRSRdJF03mBPSxnv2FlPbcDJuaEEuaI5uVyprD4qAFPm3db6AB+/by1rKt04bRZSWZ1f+vxRPv3MpaUe2g2dHUzw/MUQ/+meVpV/MQd+p40P7GvmOyeH6Amnl3o4C6LcbafcbSeWKVDutrG1wX/Lz5nO6zxzfoTnL4YorPLOErcT05S83DHGF17r5TPPd/DkoV56wmn8Thvv2t3Iu3fX43NaqStzoYlSq6KmoGey5VlrRam+W2O5C9sq39hyu1JJ+MqCWFPl5U/euQ1Twkf/+RAXRpK8eGmMomnyyQc3LMvlvb9/vgOvw8qH7mpZ6qGsWD9/fxuff62Hvz14mb94786lHs68s1s1MoUi2aLB+eEE/3Gkn4/es4bgFA2sC7rJheEkAZeN5orpa29dGk0xHC9Vp++NZNSut1ViMJ6leyzDM+dG6I9msVgEg7Esj+9uoCXo5odnR4hlirS3lvOuPQ1YhLhqB/HOpjK2NwSW5bFSmR8qrFYWjM1qwWGzUOa2UdQlEjjdn+DUQGzZJef3RTJ8+8QgH7yzmYDr+t5qyszU+J188I5mvnZsgL5IZqmHsyCKpgQE43+hm1PPWh3rjXJqIM6Ll8eITlNUFaDa50ATYLUIKr1zb2ukLC/lbjsOq0a6YFAwDNJ5HUmpflwyp09uvOiLZHBYLVOWb1HB1+qmAjBlwf3v9+/i7Tvq2NUUoC7g5Lsnh/nv3z9HT3j57PT5hxc6sWiCn7lnzVIPZcX7hfvXognB3x68vNRDWRDv2tVAjd9BW5WHA2srqfZNXSTTZimdPIW48Ym0vszFO3c38MSuesrcNw7AhuJZzg4m1FLlMpQrGnSPpemLlHY5CgHv2FnP+9sbWVvtpS7gZF2Vl/XVpQ0XrZVuvE4rm+tufRlbWZnUEqSy4Ox2K3/2nh30RTK8dHmM75wcZCCW5URfjP/5E7toKFva1ihjqTxPHu7j3bsbqQ2oitO3qjbg5IN3NvNvr/bwMwfWsOEGfQ1XorNDCXQDioZBMj99I/pdTeUEXHb8LutNZ1VnknOYyBV59kIIKUu9HfevvbX6Y8r8eu5iiNFEnrNDcbY3lHGyP4bTZsFu0dhS68fvsuN1WSeD8bvXVi7xiJWlpmbAlEXTFHTz4KZqJGDRNCSlsg9LvVT12Re7KBgmH1dth+bNrz60Hrfdwp9899xSD2XeFQ0TTYOibhLLTr+0aNEE66q9086QzdaVc2grsL7xqjdR60sfbyU0EMuSK5rEskXqy134XRa21QeWeJTKcqICMGVRVfud/Ld3bufutgq21wc4N5jkb358ia8fX5o+gmOpPP/ycjdv31Gvmm7Po6DHzicfWs/zF0McnIdipcvJo1traRnvzxdJF6fN74plCnzn5CA/PDNMrmjc8uv6nDYe3FTN3pZy9raoIq3LzYF1layr9rC13k8yr7O/rQIhSsV1i4bEMME9w+bpyu1BBWDKomut9PDH79zGB+9qJlM0KBqSYz0xvnq0j7HU/DQ3nqn/c7CDvG7ynx9ev6ivezv4yP5W1lR6+KNvnSFbuPUAZLkod9u5e20l+1rL8ditFKdJwu8IpUlkdcZSBQZn0KReSsmF4STnhhKY02xSqfE72VjrU2UJlplUXqc3ksFm0cgUDXRD4rBZ+EB7EzubytBEadPGctt8pCwt9SlWlszaKi8H1lVQE3DQGUrxxUO9/PK/H6NjkdpwDMWzfP61Ht6zp4E2Nfs17+xWjT9913Z6whn+6ocXlno48+bFSyF+fG6EFy6NUV/mnHaJsanchVUTuOwaNf6bL0N2jaU52hPleG+MS6oVzYry4qUQXzrUy//80UVO9MXoDKXQDRNNE+xtKWdLvZ8D6yrVDmvlKioAU5aMEIK37ajnVx9cT5nbRjhVYCSe53/86AIXR5IL/vp//v3zQClfSVkY+9dW8KG7mvnsS12rpqXK8d4Y54aT9Eez9N6g4Gy138l79zbyzl0Nk8U1b+TKWS3VhmhlSWSLHO2J0hfJkM7p7GkpbcCA0gaLXU1lN6wFp9yeVACmLDmPw8ovv2ktrZUeAi4rY6k8f/CN0/zrywvX0ua1zjDfeH2QX7ivjcZydWBcSL/zls3UB1z86hdfv2E9rJWgJ5xmLJUnb5g4rRo36xCjaWJGrYoi6QJnBhN47BbuXluhirGuEK90hPnjb5+hO5zGbhUE3Haq/Q72NJezqXZ17f5V5p8KwJRlYUt9Gf/np/bwvvZmxHiRy2O9ccLp/Ly/Vl43+INvnqGhzMUvPrBu3p9fuZrXYeVvf2oPo8kcv/7l16fNb1oJzg8nWV/tZVONj4e31HBHW3B+nncoQSRdIF0wcNjUYXklyOsGL1wKEUkXGU7keWBDNQ9srOJnDrSxpd6viqgqN7Xgn3QhxJ1CiJeFEC8IIf7nNbfVCyGeGb/94YUei7K8uexWPnhnM2/fWUdtwElT0EXAOf85E3/9o4tcGEnyx09sxWVXPR8Xw66mMv7g7Vs4eCHEn31/5ZamaKv04LRbedfuBj56dytb56mswET9OZddo8ylquGvBHaLxrpqLxZN0Fju4qP3tPKxA21sa1ClJpSZWYw9sT3Ag1LKnBDi34UQ26WUp8Zv+x3g94CTwHeApxdhPMoypmmCD9/Vyrt3NeKyW+b9KvLFS2N85vlOPnhnMw9trpnX51Zu7EN3tXB5NMU/vNBFpdfBz9+/dqmHNGvra3ysq/bOaFlxNtqqvNSXlZL2p2pJoyw/QgjeuauBx7bW4HGo5Hpl9hY8AJNSDl/xXx24cj/6DuCTUkophEgKIXxSyoXPvlaWPY9z/t+aHaEUv/TvR1lX5eX33rZ53p9fuTEhBH/4jq1EMkX+7PvnyRVNfvWhdfMezCy0hRrvTKrhK8uLpgkVfClztmhV4YQQO4BKKeXZK75skVJOJITEgXLgugBMCPFx4OMAzc3NCz1UZRXqDWf46c8ewm7V+OxH9+G2q4KIS0HTBH/9/p3YLRr/8+mL9EYy/PETW2e0S1BRFGU1WZS5biFEEPg08LPX3HTlbJgfiE31eCnlZ6SU7VLK9qqqqoUZpLJqXR5N8r6/f5lUXuefP3oHTUG163Ep2Swaf/W+HXzyofV87Xg/b//Uixw8P8ob12KKoiir34JfdgohrMDngd+6ZjkS4KQQYj+lHDC/lDKx0ONRbj990SwWIXjy4/vZqLaGLwtCCP7zIxu4e20Fv/3Vk/ynfznMzsYA721v4t51lbRUuKdc6ssVDWKZIvFskXRBJ1swSOd1skUDU0qkBFOWqspLxv+WpaKwPqcNn9NKpddBU9CFw6qW/BRFWTqLMe//PmAf8OfjB9T/F/iglPITwF8A/wq4gD9chLEot6E3bazmmd98QOXYLEN3tlXww/98P08e6ePfXunm979xGgC33UKN34nNIpCy1OolmimQK96k8NYMCQG1fifP/MYDaiesoihLYjGS8L8IfPGaL78yfls/8OBCj0FRVPC1fNmtGh++q4UP3dnM5dEUh7ojdIbSjCRy6IZEiFKx3nK3jTK3nXK3nYDLhtthwW2z4LZbcdk1LJqGJkAgEILxPwIB5HWTZK5IMqczksjRE84QSuVV8KUoypJRma/KqpAtGJwdShD02FlT6Vnq4ShzIIRgfY2P9TXLe5l4NJmjN5yhtdJDpdex1MNRliHdMDk7lMCiCbbU+VfcTl9lcagATFkVjvZE6Y1kACZnShRlITx/cYyCbtIXzfCu3Y1LPRxlGbowkuT0QCml2W23qotCZUqq4p+yKjjH27dYtKubGivKfJt4r6kkfmU6V6Y8OFVrKWUaagZMWRX2NJdT7XPid1lVTSllQT20qYaRRG6yfZCiXGttlReXzYJVE1T71ftEmZo6UymrgqYJmitUfS9l4bnsFlrVkpJyE/VlrqUegrLMiZVW/LCyslK2trYu9TCUFaC7uxv1XlFmSr1flJlS7xVlNo4ePSqllNetRa+4GbDW1laOHDmy1MNYVnTDRDelKrVwjfb29tvqvaLeB7fmdnu/KHO32O8V9dle2YQQx6b6+ooLwG43g/EMg9EcG2t9mLJUCbxomJS57fSE0/RFM4QSeawWjf1tFWpp5DaVzus8dWaYdN7A67BQE3Cys7GMSLqAw6qBgKDbzoXhJFatVO5B09TWeEVZ7iY+23nd5J61lTSWu/jxuRHODyd487Y6GspdhJJ56gIu7FaV8L+SqABsGRtJ5PjH57uJpAs0lbuoCTjpCWfwOCxUeOyTFcKH4jk21/kZjGdVAHabiqRLVeJHkzl6IybZosnl0RS6Ibk0kmRrQ4CibnBqIIGmCd67p4G71lYu9bAVRbmJic82wFA8S18kw59+/xy6ITk1kOCt22vJFEyqfQ4e3lKzxKNVZkMFYMtYtlCa7QKIZ4tU+hzkdQNt/CLHYdPQNBsuu4Wgx87mWv8SjlZZSnUBJ81BN5pWumLWBFiEIKMb5HQTKSGcLpb6JBqSdMFY6iErijIDdQEnTUEXmYLBplo/L3WEEAiklBRNk7xeOkdki+ozvdKoAGwZa6lw8/YddXSE0ty1ppxk3qA56MJq0Wgoc9FQ7iKdNwh6VNHR253VonFgfWlGK5krAlDQTS6NpthQ48Vlt/LwlmoOdUawWgT711Ys5XBXPCklL3eE6YtkeHRrrfoMKgvGatG4d33V5P/v31DNUCxLfzTLB+9sweu00h/NsrbKu4SjVOZCBWDLmBCCO9squLNt+pOlKgapXMvntE3+u+KaVjlP7G5Y7OGsSv/9++f5++c7AfgfP7rIlz5+lzoBKovC47Dys/euveprdQFV8mIlUhl7iqIos/DcxRB//3wnP3lHM1/9xf0YpuRXvnAcfTxdQFEUZSZUAKYoijJDUkr+9LvnWFPp4Y8e38LeliB/8s5tnBtK8LXjA0s9PEVRVpBFC8CEEL8uhHjxmq85hRD/JIR4RgjxqcUai6Ioyly83BHmwkiSX3xg7eTy/1u21bKjMcDfHryMaa6swtaKoiydRQnAhBAOYOcUN/0q8AUp5YNSyk8sxlgURVHm6snDfZS5bTy+s37ya0IIfvbAGnrCGV7qGFvC0SmKspIs1gzYx4DPTfH1B4DHhRDPCiEeX6SxKIqizFquaPDjcyO8eWvtdRXJ37ytlnK3jS8d6lui0SmKstIseAAmhLAB90spn5ni5rXAd4G3Ab8vhJhyV6YQ4uNCiCNCiCOhUGgBR6soijK15y+GSBcM3rq97rrbHFYL79hZz4/Pj5Ap6EswOkVRVprFmAH7MPCFaW6LA89JKdPAZWDKMr5Sys9IKdullO1VVVVT3UWZId0wuTiSZCieXeqhKDchpaQjlKInnF7qoSjAwQshvA7rtDXU3rytllzR5NkL6iJRmb1Ersi5ocRkHT9l9VuMAGwj8ItCiB8AW4UQV+Z6vQzsEEJYgFZAHbkA05RcHk3dMEjqHkvzlSN9HOmOIOXME39P9Mc40h3l4PkQ0XRhPoarLJBLoyle64zw0uVSwc+Z6o2kefJwH4e7pn9vpPM6F0eS6mA/Cy93jHFXWxCbZerD5h2tQYIeO98/PbzII1NWg4PnRzneG+PgeADfF8lwqj9OLF3g4kiSePb6z2oomefVzrC6oF6hFrwQq5Tytyf+LYR4UUr5KSHEp8aT7v+cUm6YH/gHKaWKCIBTA3HODCYAeHRrDZXjxTRf6Qgzmsyxpc7Pd08N0T2W4fW+GOUe+4yLQF55Plb7tZa3q35XM/xlZQsGXz7cR380x9nBBG67hd5IBiEE922oxG0vfeQPXhglkdXxOCw8sUsVZ72Z/miGnnCGn97fOu19rBaNhzdX84PTw+iGiXWaQE1RpmKOf8illMSzRV64VNrQ8ePzI1T7nDisGu/a3YCmicnHfOFQLwPRDI3lbj7x4DqEEFM+t7I8LWolfCnlgfG/PzH+9xDw6GKOYSUwrjjbTnwoE7kiXWOlpahLo6nJJGC7VcOmTX2gN0151YcVYFdTGW67FZ/TqtqnLHMbarylno6aoLnCfdVtEzNb1x5whQDH+HtD00qNfKOZ0pVzbyTDpvF+ocZ4uQTdUGH4TLzcEQbg7nU3buF034Yqvnykn5MDcfY0ly/G0JRV4sGNNfRFMzQF3Vg0gSbgyqomhpRXXTQbpmQsmaegS0KpnAq+ViDVimgZ2tEQwGHV8NitVPucAHjHg6ZDXRHW13h5395GLo+mqPE7rjs5AxzpjnBxpHR70ZDYLIINtV6kKdhc51Mf1hVACMH6Gh/ZgkFHKEXRMLk0ksLrsDCWKmDRBA9vqcF/Reshp83CT93ZwoXhBGsqPZwdSnBuKEFrhZs6/xvtSh7YUE1PJE1T+fXvHeV6h7silLttbKzx3fB+96ytRAh44eKYCsCUGQun8owkcvRHMwzFc9y7vpL7NlTyvVPD+J1Wqrx2dreUY7nigtqiCd60sYqnz48QdNsZjGWpL1MtiVYSFYAtQ1aLxtb6wFVf0zRBa4WHWKaIRROE04Ub9oicmC072hOlsdxNOl/kVH+car+THY0BtjUEpn2ssrw8c36UeLbIpdEk66t9nBtKUO1zYrdqDMdzVwVgAEGPnf1rK0nmigzH82ys9VHhtRNwv3G/gNvGDnfZIn8nK9eJ/hi7mspueuFS7rGzoyHA85dCfPLh9Ys0OmUli2eL/OjsCH2RLIY0aQ566Aln8DmtkykDHod1MhXlSvvWBBmI5bBoglMDcRWArTAqSWEFqfE7sFsFNoug2nf9h/FKm+v8OG0a+1qDWDWBEGKySXNB9axbUQqGAUBg/PdXCqhsBD02GsunP+C67VbK3DY0IdRM1y1I5XUujabY2VQ2o/vfu76K1/tiJNQGB2UGDFNiSvC7rJgSbBZBjd9Btc9Bjd+Bx2FhXfXUOb5uu5UKbymVpEEFXyuOmgFbQar9Tt61uxEhmHYn1oRtDW/MchUNE00IusZSZAoGm+v8izFcZZ7cv6Ga7nCaR7fW4HNasVu0GS0hWzTBm7fWktdNXHbLTe+vTO1UfxwpS/mTM3H3ugo+ffAyR7ojPLhpyso6ijKpNGNdQTxbZF2VB6fNMrmB46HNN37/qM/4yqYCsBXGbp39pOVEsLau+sb5K8ryFPTY57xhQtOEOjDfotf7YgDsbCyb0f13N5VjswgOdUVVAKbMyJpKz5wfqz7jK5daglQURbmBE30xWirclM8wCHbZLWxvCHCoK7zAI1MUZSVTAZiiKMoNnBqIs2OGs18T7lhTwamBONmCsTCDUhRlxVMBmKIoyjTi2SIDsSxbZpk3eceacoqG5HhfdIFGpijKSqcCMEVRlGlcGE4CsKl2dvmTe1uCCAGHu1QApijK1FQApiiKMo0Lw6WWYJvqZheABVw2NtX6OdSt8sAURZmaCsAURVGmcW44id9ppdbvnPVj71wT5FhPjKKqu6coyhRUAKYoijKNC8NJNtX559S6q721nGzR4OxgYgFGpijKSqcCMEVRlClIKUsB2Czzvya0twQBONKj8sAURbmeCsBWoVRe52R/jFAyf9XXi4ZJJF1ASrlEI1PmoqCbRNOFq76mGyZnBuP0hNNLNKrVrz+aJZXX2VQ7t84RtQEnjeUujnRH5nlkymoXTRco6KWl6+F4jlP9qqTJaqQq4a9CL10eI5wqcH4oybv3NGC1aJim5KkzwySyOmurPDds5K0sH0XD5Punh0jnDTbV+djTXA7Aif745A49l91CtW/2OUrKjZ0f//lunOMMGEB7SzkvdYSRUs5pGVO5/bzeF+PsYAKPw8IDG6p59sIopoRwOs8DG6uXenjKPFIzYKuQZfxAf+XxvmCYJLI6AGOpwlQPU5ahXNEgnS9d+Yav+L1ZtDd+uRZ1Yl8QF0duPQDb2xoklMzTF8nO17CUVW5sfOUinTfI6Qba+Of7ys+8sjqoGbBV6MD6SnojGap9jsmmrk6bhb0t5QzEMmypCyzxCJWZ8jlt7GgMMJrMXVWNfUdDAK/DisdhocLrWLoBrmIdoynqAk68jrkfJve1lmYsD3dHaK5wz9fQlFVsV3MZp/rjVPkc1PidPLS5mnC6QGvF3PtFKsuTCsBWIafNwoaa66/aN9b6bulqXlka2xoCwNVBs6YJ1lV7l2ZAt4mOUIq2qls76W2o9uFzWjnSE+U9exvnaWTKalbpdfCmTW8sNVZ4Heoia5VSS5ArnGlKckWVnKmU6Iap6k7NAyklnaE0a6tuLcjVNMHelnKO9qhEfGV+5YoGpqk2VK1kixaACSF+XQjx4hRfF0KIE0KIjy3WWFaLUoL2MF87NjCZkK3cvmKZAl8/PsDXjw1ctwNWmZ1QMk8yr99yAAalRPyLIyliGZV7qcyPc0MJvnZsgB+cGUZXF1wr1qIEYEIIB7BzmpsfB0YXYxyrTSqnE88WARiIZZZ4NMpSG0nkKRoS3ZSMJHJLPZwVrSNUKu9xq0uQUOoLCXCsV9UDU+ZHf7S0qSOWKU5u0lFWnsWaAfsY8LlpbvtJ4MlFGseqUua20VblIeCyqcR6hZYKNzV+B5VeO2sqVcLuregIpQDmZQZsV1MZVk1wuFsFYMr82NbgJ+Cysa7aS8BtW+rhKHM0L0n4QohHpJQ/muY2G3C/lPJvhRB/fM1tjwHPAfqNxiKE+DjwcYDm5ub5GPKqIITgLlXPSxnntFl4aHPNUg9jVegIpXDZLHPqAXktl93C1oYAR1UApsyTuoCLt+1wLfUwlFs0XzNg/3SD2z4MfGGa2z4G/PPNnlxK+RkpZbuUsr2qqmou41MURZmxzlCatioP2jzVXmpvKedEf4y8rpaLFEUpmfEMmBDiW9PdBNxoGmYjsEsI8QvAViHEJ6SUnxq/bT3wDaCh9BLiRSnl+ZmOSVEUZSF0hFLsHu86MB/2tZbzTy92cXogwd6W+XteRVFWrtksQd4LfAhIXfN1Adwx3YOklL89ecdSgPUpIcSnpJSfkFLuGv/6RwGrCr4URVlquaLBQCzLe+exbtdEIv7RnogKwBRFAWYXgL0KZKSUz117gxDiwkyeQEp5YPzvT1zz9X+ZxTgURVEWTNdYGinnJwF/QpXPQWuFmyPdUT5+37w9raIoK9iMAzAp5VtucJs6pCxj54YSnB9O0FbpZWdT2VIPR5mDbMHg+UshdENyYH0lAZfa+bRQJnZAzkcJiivtbQny7IVR1ZhbmTEpJa92RhhJ5NjTXK7aWa0yc0rCF0K0CCEeHv+3Swih+tssY2cGE2QLJmcGE0ipKievRP3RDOFUgXi2SPdYeqmHs6p1TtQAq5zfVk/treWE0wW61O9PmaFUXqdrLE2mYHBuOLHUw1Hm2awDMCHEzwH/Afz9+JcaKSXSK8tU6/hVU0uFW115r1A1ASdOm4bVImgoV9vPF1JHKEVDmQuX3TKvzzvRmPuIKkehzJDHbqXSawdKx29ldZlLHbBfppR0/xqAlPKSEKL6xg9RllJ7a7BUDNKiWn+uVH6njXftbkBK5q00gjK1iRIU862t0kuZ28aRngjv39c078+vrD6aJnh0ay2GKbGoz/2qM5cALC+lLEzMpAghrIBa11rmVPC18gkhUBOYC297Y4C2BegkoGmC9pZyjvSoGTBldlTwtTrNJQB7Tgjxu4BLCPEI8EvAt+d3WIqiKEvjT9+1fcGee29LkKfPjRJO5anwOhbsdRRFWf7mMi3y20AIOAX8PPA94Pfmc1CKoiirUft4HthRNQumKLe9Wc2ACSE04KSUchvwDwszJEVRlNVpe0MAu0XjSE+UR7fWLvVwFEVZQrOaAZNSmsAJIYTqiK0oijJLTpuF7Y0BjnRHlnooiqIssbnkgNUBZ4QQh4DJgjZSysfnbVSKoiirVHtrOZ99sYtc0cBpm99SF4qirBxzCcD+y7yPQlEU5TbR3hLk75/r5GR/nDvWBJd6OIqiLJFZB2BT9YJUFEVRZmaiGfeRnogKwBTlNjbrAEwIkeSNul92wAakpZT++RyYsnji2SKGKQl67Es9lNteJF3AognV63EVC3rsrK3yqIr4yqR4pohEUuZWx+DbyVxmwK7q+yiEeCelyvjKChRO5fnR2RFMCfvXVrBmAQpQKjPTG87w4uUxhICHNldT7XMu9ZCUBXJXWwXfOD5AQTexW1WR5NvZcDzHwQujSAn3baiksVy1HLpd3PInX0r5DeDBWx+KshSSOR1zfD4zni0u7WBucxM/fylLvxdl9bpvQxXpgsGxXjULdrtL5IpIdQy+Lc1lCfLdV/xXA9pRrYhWrOagm3C6QNEw2VTru/kDlAWzsdZHpqBjtQhaK9RM5Gp299oKrJrg+Ysh7mqrWOrhKEuordJDIlvElLChRh2Dbydz2QX5jiv+rQPdwBPzMhpl0WmamEwKVpaW3apxpzoZ3xZ8Tht7mst5/lKI/+fNm5Z6OMoSslo02lvVZozb0VxywP7TQgxEURTldnLfhkr+6ocXGUvlqVR9IRXltjPrHDAhxF8IIfxCCJsQ4sdCiDEhxIcWYnCKoiir1X0bqgB48dLYEo9EUZSlMJck/EellAng7UA/sAH4rXkdlaIoyiq3rT5A0GPnuYuhpR6KoihLYC4B2ESBorcCX5RSzqipmRDi14UQL17ztT8UQrwy/uehOYxFURRlRdI0wf0bqnj2wii6YS71cBRFWWRzCcC+LYQ4T2n344+FEFVA7kYPEEI4gJ1T3PSvUsr9wFuAP5zDWJadojqQKrch05QqiJiDR7fUEM0UOayKsiorlDrnzd2sAzAp5e8A+4F2KWWRUkPum+2C/BjwuSmeq2v8n3luUMpCCPFxIcQRIcSRUGh5TtebpuSpM8N85Ug/ZwcTV91mmJKCbizRyGYvWzCQUlUWWSy5ooFproyfd75oYFwz1mzB4NsnB/mPo/0MxLJLNLKV6f6NVTisGk+dGV7qoSjLhG6Y5FfI+eJwd4SvHOnn4IURdQE2B3NJwn8foEspDSHE7wGfB+pvcH8bcL+U8pkbPO0fAX8/3Y1Sys9IKdullO1VVVWzHfK86Itk6A1npr09XdAJpwqYUtI1lp78evdYmv/y7TP8/jfPcKznjavccCrP8d4o0XRhxmMo6Av/Bj/UFeHrxwc4eGF0wV9LgXNDCb52bIDvnx5e0ANYQTdnFVR3hlKc6o9f9Z470h3hD791hv/6nTP0hN94j48mcySypYK+/ZHpPyMA6bzOpZEkqbwqNAvgtlu5d30VPzo7oi56FNJ5nW+dGOTrxwbou8lnab6Zppx2Nmu681VvOMNgLMvnX+nlj759hu+cGKRomPM2Iz4Uz9IZSq3az8Zc6oD9vpTyK0KIA8BjwF8B/xe4c5r7fxj4wnRPJoR4F1AhpZz2PkttokUMwJ1mkLVV3qtuT+aKXBxJ4rJpvN4Xo9rvpHssTWulh45QiqF4jkS2yNGeCNsaAhQNc/yKV9AbyfDErobrXlM3TDQh0DQBwMn+GK/3xfA5rOiGyXAyz97mcsbSBfxOK3e3VWCxaFjG738t05Qc7o6Qyuu0twav6jWY1w2smkbRMDncFcZu1Xi5I4VAcGdbELd9Lm8T5WZOD8T54ZlhHDYLQ/Es2xv8NJS70U0Th9Uyeb+OUIqO0RTra3zTtoqSUmKYkosjKS6NJqn1OTg5kMBigbqAk9FEgbqAk4c310y+p6ZrgzOayPFqZwRTSuLZAntbyrFbLRzqjtA1libgttEZStNS4SFXNDjaE6UjlKK5wkXRlJwZjLOlzo8Q178Xnzk/SjKn43UmeXzntNdtt5XHttbw9LkRTg8k2N4YWOrhKEvk3FCC471RLo4kqfY5GYrnaApe3ZZoJJHjZH+cuoCTbQ03fq+83hejeyzFumovLrsVi1a6wJYmHNhQRUOZa/K+uaLBU2eGyRYM7l5bSW3AedWx4dkLIfK6SW8kwzt21KObJqaE9TVezgzGsVkEQ7Ecx/ti1JU56Y9myRYM7llXOfk99EUyjCZzbKjx4XPevNftaDLHwfOlFa9Mwbjp97sSzeXMOjE3+jbg/0opvymE+KMb3H8jsEsI8QvAViHEJ6SUnwIQQuwAfnn8uWZMSklPOIPDplEXcN38AbdIN9+I5K9dftENk5cvhwmnCyRzRdZUerFbNfqiGVorPbRVehiMZUjnDU4Pxvi3V7p54VKI/miWpqCbd+1uvO71BmNZnr8YwmHTeHRLLR6HlVP9cV7tDNMbzuCwalR6nZwfSnBnWwUjiSzPnBvFabfw4btarvvQAlwYTXLwQojRRI6vHOljd3M5bVVefA4rXeE0FiE4Pxjj2YthMoUiW+sD1PldBNylgpHK/ErldV7vizGcyPH8xVEsmsaFoQRv2lQDAqp9DvJFg9ODCU4PxGkod3F6MM4nH9pwXZBdNEw+93I3/dEsLptGU9DDkxf6KRqS4XiWvGFS4bGzuc7PPesq8TisvNwxRvdYhtZKN3evrbzq+awWjVgmz9PnRsjrJuuqfRxYW8H5oQSjiRzZgk5bVSkQjGYK5IomG2p8aJQuVnrDoAnBxhrfZLA3YeLzs9TLFWOpPLFMkdYKN1bL0vZifGhzDZqAp84MqwDsNhVLF/jUjy/yWleEgm6yrtrLHWvK6Q2nuTCSoqncRXc4zVePDWDTBA3lLmr9Tip919ePOzuYYDie5eJoip5whm8cH6Sh3MW5oQQC2N5YRlPQfVUAFkkXSOdLp/anzgzhcdhYU+lh/9pSYWirRZDXQQB/91wHR3siuOxWGspcbKnzM5LIMRjPIpG82hnGYbXgtlvpi2ZoCrrJFgxevDxG0TAJpwo8urX2pj+TK8+11553l7P+aAbThOaKm/f0nEsANiCE+HvgYeDPxxPspz2CSSl/e+LfQogXpZSfEkJ8Skr5CeAvgRrgKSFEXEo5o4r654aSvN4XA0pNi2v8C9u0eE2lB92UmFKyrsrLaCKHzaKhaYIfnR3h3FCCSq+doMdBlddOumCwcbytT8Btp8bvJJIqMhjLU+cvMJzII4QgUzBomeKXNBDLYkrIFkwuDCfIFU0QYJrgcVjJFgx002BNlQ8BjCbyRDMFLDmNw90RwukC0XSBXU1llHvsAJwdSJSunvpiNFe4efrcCI8IQSxTIOCycWE4yaHu0oc/lTfoDqdx2CzsXxskWzBw2S3XjVOZu2xBZzSR4/RAgkROx2m1cLQ3htWisbHOR8doCqtF40hPBN2QhPvj7Gst59xQgm0NAaSUHO2Jksrr1AWcnB4o5R3GkTQFPTSWu8avQnXcdiuGKbFogpP9ccrctsnljf5IFtZePbagx47VopXeg0WTkUSO4WSekUSegMtOjd9Bmbv0vqryOmgod5HMFakLOLkwnGI4keXg+QIdoRSPba0lVzRI5krjfGBjFT3hDM1TXCQsllRe5+nxBvThVH7Juw8EPXbuXlvJt08O8huPbphy5lBZ3Q51RzjSEyWR07FqGvGszguXxsjrJs1BD6/3RskUDNI5nbFUHiHg9GCcBzZWTz5Hrmjw3MUQh7sitFR4iKbzZAsGHoeFgVgWw5RoAi6NJNndFCCeKRJwl2aiqn1vfI4zhVJ6QF8kMxmAPby5hqF4joJu8vS5UcKpInk9h9tupWf8XFHmshMY/1PutiGBjeOtlSyaIJ3XOTOYoMrn4M62iqtWYeKZItmiQW3gjXN5XcDFXW1BskVj8nmWu75IhhfG6/rdYQRZV+294f3nEoC9H3gz8FdSypgQoo4Z1gGTUh4Y//sT438/NofXv2pGSl+EyFgIMdmj6/JoikNdEYSAddVeCrpJa4WHoNfGveur8F8ztRr02LlnXRXnhxI0B13UBlwMxb2EUnm2N5RNOVu1vtpLKJnHZbPQEUpRNMAwJA9vruaHZ0dYU+lhW4OfhzbXUOV10B/N8NmXutENSVPQPbkJQIjY5AfU57Syu7kMc/xDWOay47BqbGvw0x/JEnDZ2Nbg5/xgAk1Yaa30Uu138npfnNMDCR7dWjN50lVuzZHuCBdHUhgmNJY7SeWLFHST5qCLar8TC6XZo7FUnmqfA9OUVPkcrK/24RhfFhiM57g4kgLAqgnqy5yE0wXuW1/Fo1tryBUNDnVF8NithFJ5NtX5aAl6JvMT11S6GU3mWV899YFtX2uQiyNJBmNZttb5WVflRUPQHU6zs6ls8uBptWjcv+GNvMzagItXO8fIFyWJrE4omefFy2PohmRjrY+9LeVL/j4yTDnZgH4xjh8z8c7dDfzmV05wrDfK3hbVluZ2Y0pJbcBJQZe47BY21fmo8bvoHksTTRcYTZaCqTKPjTK3jb0twavSFAAuDCcZSeSI54qE03ke2VpLKqczNp6b3D2WpmM0hSklR3tjeBw2Ht5SA1z9OT4zGOfyaOqqvpQeh5V11V7yRYPGche5okGZy8rGWi9ehxWv00aFx057Szm7msuvmxSxWzU21fpK34PbzlgqP3kMiWeKfP/0EKaEXU1lbKn3Tz6urerGAcxyo89y1m4urYgyQohR4ABwiVI/yEuzfZ5bsbU+gEUTOKyWq6ZRF0N6PHlYSih32agrc1LQTe5eWzHtuvZ79zRyZihOtc/Jumov72tvIpkrYtHElPlVZW47b91eB8DTZ0cYTeap8Dq4sy1IwSj9UtdWeSaXX1srvfzGoxvRBNgsGv3RDNmCeVV7k/s2VNEfzfKu3Q0YpsRu0SgaEr/LSl43eaUzjJSS9VVeusJpRhN5Am4boWQB3ZTEMsUlP3GuFmOpUiJrtd/Bhpp63rpdsq3eT38sh2FK7lgTxGWzkM4bWCyl2ZBkrjgZYAMEXDZsFkHRKB24f+3hDSRyRSo8doQQ2CwaG2p8jCTybAa2NfiREs4MJrBqgh2NZXgc03/8dzeXs6bSg8tumTzQXxhOEkkX2Nbgn/ZxDWUuDqyr4mhPlAqPHZdNQx9/z6aXSeJ9wGXj3vWVRDOFZdP8+M3bavm9b5zi68cHVAB2G7p/QzUF3SRTMHjrtlpGknk6QmnuWFPOSLx0LNYNye7mMpqDbqKZwnWzyEGPHZtFY2djGXe1BVl3zcWVbpg8ebiP430xdEPic079+d9aH2Br/dRL4Q6bhV97eAPpvD65upIp6Jzsj+NzWqd9HMDOpjLSBQO7VaOp/I2xZ4r65AVRurA8jhFz1VrhpmiYGKZk/U1mvwDEbHcXCCH+kFINsI1Syg1CiHrgK1LKe+Y04llqb2+XR44cWYyXmlJBNznZH8NhtbCtYepE4/lUNExCyTwVXjsOa2lGLJnT2Vznu+4KaEJeNyavNG5FpqBzpDuKw1pqFjtdgv9y1d7ezlK+V6YzmsxxeiBOrd911dXebOWKBnndvGoq/1oXhpPkdYMtdX6sFo3heA6PwzKjJNj5cmkkSThdYFtDAO8Ngr6lttTvl1/94nGevxTi0O8+POXmCGX5WMz3Sq5ocLg7glXT2NdafsOcxRtd2AMMx3N0hlJU+uysq7o+R3OpnBmMk84b7GgM4LStvnQXIcRRKWX7tV+fy9HwXcBu4BiAlHJQCLE8LiMXgd26uJ3rbRaN+itm+a7dgTkVh9UybXA2G267dbJfnTJ/qn1OHtx063mLTpvlpgeriVzECVfmWCyW9TU+1i/6q64879rTwLdODHLwwiiPzSBJeT6cGYzz/VPDhNMFttT5eOfuhkUNzpWbc9os3Lt+Zsfhm/3uagPOJTkG3MyNZs5Ws7kEYAUppRRCSAAhxNT74hVFUZQZu3ddJdU+B1861LvgAViuaPBfvn2GLx7qw6oJ/C4bXzzUy6cPXuZTP7mHO9aoZVBFWWhzmef+8vguyDIhxM8BTwP/ML/DUhRFub1YLRo/cUczz14M3bDo861K5op85LOH+NLhPn7+vjaO/t4jHPv9R/jaL92Nx27lI599jcPdM2rxqyjKLZhVACZKCU9PAv8BfJVSja8/mKjrpczOaCJHOJW/6msvXhrji4d6OT0QX6JRKbeLeLbI14/387Vj/cQyb1S4Nk1JfzSjqtUvgQ/e0YwmBP/+Ws+CPL9umPzyF45zrCfK//6J3fy/b908WYpgT3M5X/6F/dQHXPzSvx9j7Jpjk3J7Oj0Q54uHenlpvBg5lPKD+yKZJa/nt9LNKgCTpYz9b0gpfySl/C0p5W9KKX+0QGObN6PJHD3h9LJqZ9A1lubpc6M8dWaEkUSpl3lhvNKwlKU3/YXhJNnC8uwJli0Yk7VllOkNx3NXBTfLgZSSzlCK471RsgWTXNGkP/pGD8fXuiI8f3GMH5weXpT2V7cilinQGUqtmhNBbcDJo1tqePJIH7ni/H/2/+S753j+Yog/eee2KTsRVHod/J8P7SGeLfK7Xzs176+vzE6uaNAfXfxAp6CbXBxJEk7l6QilkBJ6whmKhok+3snlhUtjvNwRXtRxLaWFONbMJQfsVSHEPinl4XkbxQIKp/I8fbbU1zDZqC+bdgZXbsmf+LfdqrG2ysOF4SS9kTTJnI6mwQfvaLmuEGo8W0QIrqs7di3dMLFoYl53axqm5AdnhsgWTJqCrhkniN5uzg8nONYTQxPw2NbayW3bt0o3zJtWb88VDVJ5/apSJFAKvp4+N1KqQ2ZIhCZprfBeVbV5ohBjQTcpGlO3K1oOckWDH54ZQTclw/Ecd6+rvPmDVoAP72/h+6eH+eqxfn7qzpZ5e96nz47wLy938zP3rOEn7mie9n6bav188qH1/OVTF3jhUkh9vpeIlJKnzgyTzhvUBZy8aVP1lPcxTDmnbg7RdAG7VbuqHI1umHSNpTk3lGAonkMAd7ZVcHEkSUuFB5tFI68bpeLgvHGsWO0W6lgzlwDsTcAvCCG6gTSl7gRSSrljXkY0B73hDKaUtE7RJ+/Kwmj5ebyaL+gmZ4cSuO2W62oJ5XUDw5Q37KG4sdZHwTCxaoLWijfGva3ez1eP9nNpNInLlqCl0stTZ4bZWOujsdyFz2ljMJbluYulHlkPbpq+E0BnKMVrXRH8ThuPbKnBogle6wqTLRjsWxO8afA2Hd00Jz+Ay6W203I08bMxJWSKBnNp6NQXyXB2KEFz0M3mOj+XR1Mc7o4QcJV+p7YpDrwF3eT7p0sB8kTxU8OUdIRSDMdznOiLc2kkyWgqT7nLzq6msqveC/vWBDk3mKDa77xhrbCJ1yoa5pT3OzeUoGiYkyUw5pthSozxWe38Ta5Kw6k84XSB1grPsg0oJ+xvq2BnUxl/91wHH2hvmpef3Wgyx//z1ZNsqfPz22/ZeNP7/+yBNTx5uI8/+c45vv/JymVTruB2UuqGUpoFvTYdIFsweOFyiNd7Y9SXubhvfdWMWt9MmCgobtUEO5oCWISgrco73tc1zfHeCJfGCz3vbCzjfe1Nk491WC3cs7aSwXiWTbWzL4CgGybZojHtjs2iYXJmMIHLZrluF/dSufJYU7jJsWY0mSOeKbKm0nPTz+5cArC3zOExC6Z7LD05DWpIeV2Zhhq/kzvWBMkUdDbXzb3m0rVOD8Y5P5QESlXmJ4qixrNFnjozjGFKDlzRiPRakXSBWKZAfZnrqoPb85dCXBxJUTBMhBCsr/Zyoi9GpmBwaTTF4zvriWYKmKYknCpwfihxXQCW1w3EeKNvKUtjGknkeOnyGBdHkrRVeTk3mJhzC5aJD+BAbG4fwNvF1voApgSXbe4Fg4/1RhlN5Hn2wijv3dNAImcgJcQyReKZAm6H9bpAfziRpWssQ4XHPrn8+XpfjAvDpcr2fqcVj8NKKpxGmvDN14e4d/0bV9dOqwXDlAzGstSXOactaZItGHz/9BC5osm+1nLWX3Eh0hfJcLw3BoBALEiPQ4/Dyr3rKwkl8zc8UOeKBj8+Nzp59brcS6sIIfiVN63j5/71CN86Mci791zfL3Y2pJT81ldOks7r/M1P7ppRiRqnzcJvPLqBT37pdX54dpg3b6u7pTEos2fRBAfWV9IXybK+5urz2uXRFK/3xjg7mEADTvTHSOSKrKv2Tpam0Q0T3ZRXlaoJp/KMpQqE06X8vli2wI/PjVLuLrXQmwgyJJDM6ThtFl7uHOPOtVefK5or3FT7HRzpjqJpcEdrcEYXChMXh+m8wc6mqQu+nh6Ic+6Kc2v9Ihdbn4rHYeXAukrGUjc+1qTyOs+cGy21OUsXuOsm59gZB2BCiGrgd4F1wCngz6SUiZk+fqGYV+R1mdPkI92sH9NcTLSEEQLsV7zxounCZOXv0WR+2gDsaE+UWKbIcDxPa4Vn8kNS6XNQF3CSKui8Z089a6v8OG2l55/IYVtf7ePMQIJkvkhvJENfJDP5OqOJHAcvjCKEYGdDGYmcTpnLxtGeKC9eHmMolkUTggO3OIXaXOGe1RXX7chps7DvFmvG1fidfO/kMNFsgS8d7ucD+5pI5CxUeBy83hdnNJmnrcoz+UEvGiavdkaQUhLNFHjHZJ5P6b1TF3DSVlVqsvt/n+sgnTNYW3X1zHHnWIru8V14ZW7btDV6Erni5EzoSCJ/VQDmuGKWyWFbuBmnxnI3jeU3fh9K+cZxwlhGeaA38tCmajbV+vjbg5d5fGf9Lc2Cff7VHp67GOKPn9h6XXX0G3nb9jr++kcX+fTByzy2tVb1qFwC072/fU4rg7EsRcMkntMZjmdJjveJfGBjNam8zlOnhykY5uREwJUXIhVeG81BN3ndYDheykE2pWRvSzl+p42WoJNIuohhSrbUTf35vzSSone8p2y1zzGj91Y6r082/R5N5Nl6fRriVRcIy2m2uinonvZ8PsGUkokjzHTxyJVmMwP2r8BR4FPA24G/AT46i8cviDWVHkxZ6u22EIHWdLbU+fE7bThtFiquyLNpLHfRUlF6Y98oUi7NThTxu6xXBXB7m4N4H7aiCW3y8c1B92RXeSi9Kbc3BiaXV688p4wk8pRmSCUIJhNtv3NiEKum0Rh0c9+GyimXa5Xl5662Cg51hukYSyNEKSBrbw1impIvHe4DYCj+RgK9lIAsNbKt8jkIjued7Wwsw2234nVYJ99H//WJbXSH09cdOINuOxOTshWeq3PIrlTtc7C2ykMip1/Xnqja7+ThLaX2KjcLkBaay27hTZuqCSXzi3qMuBWaJvi1hzfwC58/ypcO9/Ghu+aWC9Y1lua/fe8c922o4sOzfA6rReMX71/L73ztFC93hLlnleTYrQY1fid7W4KYUtJY7mIsVTrua+NBciRVmEy5GU7kJj/zExcidouFA+tLv8++SGnH8/pqL1aLNpknXRtwkS7obKsvm3IMQa8dIUo5SDPtulLusbOx1kc4lZ82H3tLvR+f04rTZrkuh3W58ztt3Lehimi6cN2s5VRm3IpICPG6lHLXFf8/JqXcM+eRztFStyKaL6UZiiI+p3XKPJ6bMU3JpdEUVou4atk1U9B5+XIYiybYv7ZicmatoJu82hnGadNobwmiaQIpJcd6SzNxy6FJ8nxb6tYycxFJFzjeG6XcY2dPcylrLJEt8FpXhPqAi61XHLTODiboDqfZVOu7qmntaDLHaKI0M3ajPMQbSed1JCzr1kHzbbm9X6SU/MRnXuXyaIqDv/XArHM2dcPkfX//Cp2hNE/92n1zqoCeKxrc9Wc/Zn9bBf/3Q3tn/fjVaineK7phcrg7Sl432NcaJF3QCacKtFV5SOZK/15TWcpx1A2TlzvCZIsGd7VVTLYrG03kGE3mWVvlvW5j11wkc0U0IW6aK3q7m49WREIIUU4p4AWwXPl/KaWq3DcLQojJ2Ym50DQx5Qyb226d7HB/JbtVuy73JZTKc2G4lGh5sj++7HNjbgcn+2OMJPKMJPK0BN1UeB34XXYe2XJ9ZfQt9f4pe0lW+5xU+26t3Yg6oC49IQS///YtvOPTL/LXP7zIHz2+dVaP//vnOzneG+N//8SuObefcdosvL+9iX96sYuRRG7aDT/KwuuPZukaSwNwfjjJ3pbyyc+5w3v1bJHVcv3xHkoz09Xz+DtUbatuzWymXgKUliAn/vgp9YM8Ciyfy0ZlxkpLqKW3QJVvZU31rlYTvweXXVNBkMK2hgAfvquFz73SzaudM6+59FpnmL/+0UXetqNuynpfs/HBO5oxTMmXDvXd0vMot6bcbceqCYSAqhW2NKdMbcZHeCll6wKOQ1kCTpuFt++oJ6cbcy5JocyvrfUBGsvduGyWZZWAqiyd33nLJp67GOI3v3KCb//KgZvWkxtJ5PjlLxynJejmv797+y0nz7dWerh3fSVPHu7lEw+uUyUplkjAbePxXfXoprytUgNWs1kf4YUQ3xRC/KRqwr062K2aCr6WmYDLpoIvZZLbbuV/fWAXo8k8P//5o+T16SvkxzIFPvJPh8gUdP7uw3vnbYnovXsbGYzneLXr9ql8vhw5bRYVfK0icznK/zVwL3BWCPEVIcR7hRAqMUBRFGWB7G4u5y/fu4NDXRE+9rkjU/bpHIhl+eA/vEbXWJp/+Ej7dQWib8WjW2rxOqx8/djAvD2notzuZh2ASSmfk1L+EtAGfAZ4PzA63wNTFEVR3vDErgb+4r07eLkjzJv/1/N87Vg/kXSBoXiWf3qxi7f9zQv0RTL8w0+3z3vJCJfdwlu21fL908PLtj+toqw0c5rLFEK4gHcAHwD2AJ+bwWN+HXi3lPLAFV+rBz4POIE/kFI+PZfxKIvPNCUn+mPopmRnY5laMpvCheEk4XSe7Q0BtVtImRfvb29iTaWH3/3aKX79yyeuum1/WwV/8q5t13UDmS/v2tPAV47288Ozwzyxq2FBXuN2MZbKc3E4SWO5Kmh9O5t1ACaEeBK4E/gB8LfAs1LKGzZHEkI4gJ1T3PQ7wO8BJ4HvACoAWyG6w+nJdhFOq2XWrWaklCuusvZsxhzLFDjaEwWgaEjuVyU+lHmyrzXIU792H4e7I5weTGC3CPa0lLOlzr+gn6m71lRQH3Dy9eMDKgC7iZsdK17rjBDPFumJZKgra5xTLUhl5ZvLDNg/Ax+UUs5mHvpjlGbJ/viar+8APimllEKIpBDCJ6VMzmFMyiLzOq0IUaq87nPO7m10qCvC5dEUG2q8tN9iq57F0jWW5rXOMGVuOw9vrr5paxiH1YLNIigactY/H0W5GU0T3NlWMed+rnN9zSd2N/CZ5zsZS+VXXJXyxSCl5LmLIQZjuWl7HULp+BnPFnHbLVhW2IWoMn/mkgP2A+BOIcQHhRAfmfgz3f2FEDbgfinlM1PcbJFvlOKPA+XTPMfHhRBHhBBHQqHQbId82ysaJqOJHPpNurjPRrXPyVu21fLo1ppZtzXqDKXG/07P23gWWvdYGlOON1HPFm96f5fdwlu31/Hgpmp2N5XNyxiSuSKRdGFenktR5uKduxowTMl3Tw4t9VCWpbxuMhgr9VacKJo6lQPrKnlgYxWPba2ddVkPffx4XpzH47myNOZShuLfgL8CDgD7xv9cV2L/Ch8GvjDNbVfOovmB2FR3klJ+RkrZLqVsr6pSSzmz9eNzozx9bpRnL8xv8Frmts/pKnhznR+HVWNz3fVV3JerDbU+nDaN+jInwRm2bPI4rNQGnPOyLBRJF/juySF+cHp4MoBVlMW2sdbHplof33hd7YacitNmoa3Kg8Oqsal2+uObRRPUl7kmW8XNxrMXQjx9bpQfn1N731a6uayNtANb5EybSMJGYJcQ4heArUKIT0gpPzV+20khxH5KOWB+KWViDuNRbiIxPmMzk5mbxbCzqYyd8zQrtFgayly8e0/jkr1+Kqcz3nt92fweldvTE7sa+PMfnKc3nFEJ5FO4a4GXhePjn/+EOg6seHPJ/DsNXN+YbhpSyt+WUj4mpXwzcEZK+SkhxEQA9hfAf6OUfP+ncxiLMgP711bQWO5i/9rFyxdR5ldjuYtNdT7WVHrYsoJmDpXV5x076wD4ppoFWxJ3qeP5qjGXGbBKSkVYDwH5iS9KKR+/2QMnSlBIKT8x/nc/8OAcxqDMQlPQTVNQXamuZJom2NM8ZYqkoiyqxnI3d7QG+cbrA/zKg+tW3G7mla6hzEVDmWuph6HMg7kEYH8034O4XYSSebrG0rRWuOe1I/1snB6I0xfJsK0hMO9BWSqv47RqN90huJrliqW0xrnkdkzleG+UkUSOnU1l1AWW5qDbPZYmlMqzuc6v2qAoADyxu57/7+unOTOYYFvD7ErQKG/IFgyEuLXjxdGeCKFknt3N5dTMw3llKJ6lL5JlXbWX4E36jiq3ZtZHUynlcwsxkNvBi5dDZAsmPeE072tvWvTXz+sGJ/vjALzeF7sqACsaJmcGEzisGvVlLkLJPM1B93UFVvsiGfqiGTbU+PA7bRzpiQDgsVs5M5jA47Dwlm11cyrMutxqg812PKFknmfOjwDQVuUhlTPYVOfDbtG4MJKksez6oot9kQyaJsgXDaKZAlvqArjspYNxKq9P1lo70RdfkgAsmSvyckd4cjxv2li96GNQlp+3bqvjD795hm+dGFQB2LjZHi+G4lk+/0oPuaLJT9/dQnPFG7vJMwWdk/1xAi4bm+v8SCm5OJKkL5KltdLNuupSm6l4psiF4dKmnJP9cR7ZcmsBmGFKnr8YwjBLTd3fsbP+lp5PubEZB2BCiCQwVeK9AKSUUiWm3ITLZiFbMCdPsFD60IbTBXxOKw7r3K6CTFOSLug3rbZut2hUeO0Mx3OUu6++79nBBGcG43SMpIhlC2ys9bOx1scD4yfcdF7HIuCly2OYEsKpAlU+Byf74vhdNnTTxKpppPMGqbxO0DrzKyfTlBy8MMpoMs+e5nI21s5fD7u5ujSS5EhPlCqvgwc3Vc9oq/hYKo9hlg5iL1wcI+C20xNJU+l1kMjq9IYzlHvqsFk0nDYLXWNpnr8Y4uxgnLxusru5nGzB5MD6UhsZl82C3SLIFA3qy25+YJ2P2bdYpoDdquG2lw4NNouG1SLQDYlrnmb1lJWv3GPngY1VfOv1QX77zZuwzLKUwmpzZjDOib449WVO7t9QddNATErJy5fDdIcz2Cwar3SGrwrAXu+N0R3OAFDpdfD0uWGeOj2C3abR3hKc3IEukThtGrmiSV1gZsHXjY4T2vhsXDpv4LZP/3mfOG/5nTbVBeUWzDgAk1Iu/VlxhXtgYzWjiTzV/jdKNxzujnJ5NIXHYeFt2+tmvHx3djDB2aEErRUuwuki4VSB9TVe9l1T2PSVjjF6whnu31BFXZmLzXU+DneHiWULtFV5qR/PJXDaLISTeY72RBhO5LgwnORj97YBbxxcPA4LdotGTjdJ5Yt0hFK8cHEM3TR5+446aiucuB0WUjkdv9M64+8lXdAZSZTSCbvG0gRcNo73RqnyORa1UGsyV+TVzgg2iyCdN5ASRpN5knmdgOvGwW1BN7FqggqvjVzR4OlzMYZiOXY0BGit8hD0ONDH6ycJAW/aWE0qV+TghRHODSZx2S1UeOxsrX/jOuZUf5yOUBqrRbCh2oeUkmcvjBJKFnhwc/VVJUCG4lmeuxBCE4KtDX7ODyUJeu3ct75qxifHjlCK1zojWDXBY9tqCbhsOG0W3rytlnimqPJOlKs8vquBp8+NcqgrctsmhJ/qj9MXzTCayGO3agzGcuR184YXQacH4nzt2ABjqSyXRlOsqfBQ7XOS143Ji3DvePFmTcCXX+vhn1/pRkqoL3ehN5qEknmiqQI/vjBKLF3g8Z31bBmfibw2bcEwJaFknnKPjUi6MHmceGRLDbFskaM9UWr9Tu5ZV4EQgke31BJK5qm9QUB3qCtCRyg96/OWcjWV0LGInDbLdUtQE4U103mDgmFe9UbOFQ2euxhCNyQH1ldeFQScH05Q0E3ODiWxCIEQguF47qrnjqULfOP4AHldMpLI88mH1/NKR5ixZJFQIs8PTg8RcNvZXh/AlJL+WJbBeI5kXieZNzjeG+POtgpGErnJMT60uYr+aJaXLo/RNZomW9Qp99i5HErzMwfa+NaJAXrDWerLnJOzZ0d7onSMplhf42X3FInkXoeVlgo3w/Ecm2p9nBqIE80UiWaKrK/x3TT4mS+XRlOEkqVAsCnoIq8bVPuc+K+pZJ/XDQ6eHyWVN7h3fSU1fifPXwwxmszjcZQqWzusFiyaoCeawee2sbU+QNBr48xAEiQMJ3KcG0pwuj9OKq+TykNPOEOuaHB6IMa5oSSXRpKMJPMIBOeGEwRcNr59YghTQsEw+NBdrZNjCiXzmBJMKTneG0MTgqFYjmimMBmomabkpY4xIukC+1qDk8H3hOj4e1E3JYlscfLn7nfa8Ktelso1Htlcg9tu4ZuvD9yWAVheNzg1UErpKBgmPqeVxvI3antNdZwA+PqxAS6MJBiMZtnaEMBp1RiIZvjB6SJv3VaLbsKOxjKqfA76Ihk+93IXmYKBpoHLpqGbkh+cHuJQZ5jhZJ7GcheVPgdbGgIkc8XJtIWT/aW0hRculSrz+5xWmspdk8eJcDrP5dE0Bd2kN5JhZ77Us9Zlv/48lS2UzkWmLJ2Lopk3zltFQzLHxZvbngrAllh7azmnB+LUBpyTyz4T+qMZwqnSG71rLM2uK2pntVV5OTeUYF21l4DLRl8ke9XsCYDNKsaXzkrT1ABrKj1cHEkRTuXpDWeI9SfoCqWxalDQJR6HhXRBxyIEyVyBRK7ItoYARSNGpdfOUDzPS5fHKOiSpgo3JiZCCLbU+TFMSb5Yqs48Mc0NpeU8U8KlkdSUAZgQgnvWVU7+P13QCSXzBFw2PDeYBp9vtX4nF4eTWDTBjsayaQO/0USeSLpUg6drLE2N30lm/PvNFQ3aW4K8cClMQTep9ttxWi281hXmgY3VNJS7MKVkTaWHFy+FAIFEYLdouO0Wnr0QQjdNYhkdm0WgCUFdwEmVz4FhSqwWjYJuXrdcva7aSzhVwKKV7n+0J0q5x07ZFd9DJFOgL5IFSo3Crw3AttT7yRVNXHZNzXYpN+WyW3hsay3fOzXEf3li65xTKFYqu0WjyucglMyzt6WMvS1Xz9aHkm8cJzpD6ckAzOeyUu62gywdj6WUCE1wsj/O8d4oFR4Hd6wJcmdbBbFMkSqfk7FUAZfNwh1rKhmK50jlioykCqRyOsPxPH5X6dzhtlspc9uIZYqTS5KJnA6U0kjaqjxEM0UsmqA56EFKiGYK1PgdeOzThwN90czkZEH3WJq9LUHODJYCPNciHqNXGxWALbFKr2NypuhaNX4nzvErnmtPiLuaytjZGEAIQSqvM5rIMxDLUl/mmlxy8jhs/OyBNrrH0uxqLgOgvSVIXcBFIlvkB2eGiWV1XHaNgMuOpglqAw4uDCcwJbRUellX5cVq0Xhsa6n02xcP9VLmtjMYzfLg5hr2NK8nVzQnp8zvWVc6QGyo8U6OdX2Nj8ujSdZf8bUb2VofoK3Si8OqzbpNx62oL3Pxzt0NWDRxw+a41X4H5W4b6YLBmvE2TPesraAjlKYp6KIu4OJP3rkNKSXnR5J85+QQtX4nnaE0P7GvafJ7Wl/tY9+aIIlcgVq/k7qAm4DLRjxTIJbRaSx38djWWoIe++Su2Z+8o4lopsD+tsqrxjQYy6GbkrYqDy0VHtZVe6/LQwm4bJS5bcSzxSkLaLrt1sn8M0WZiSd21fP14wM8eyE0eYy4XQgheGhTNTnduO7iGaDKVzpOpMYDnwk/vb+Vc0MJWio9VHkdJHJFjnRHGInn6I0UKOiSwXjpQmljjY9PPrSennCKGr+LnkiWco8Nm0UjmilS9DhoKHfyyObSz96iCR7bWkuuaOAZ37F815ogF0dSNAVd+F127llXyaGuCK92hrljTXDKY8W1avxOHFYNU0rqy1w3PG8pMydmXtB+eWhvb5dHjhxZ6mEsGiklUnLDQORwd4RLI6WdMPeur5xxeYlQMsdANEtNwEnQYyeeLVLpcXByIM5gLMv2KUpVvNIRpmsszcZa73VXfMtNe3s7y+G9cqw3yvmhJC0V7qtm+rIFg5cuj6FpcPfaSpI5Ha/DSiRTYDieZW2Vl7IZtj360qFeTAkOq8Z79t64Yr9hyts+aXoqy+X9spLohsmdf/pj7mqr4G9/as9SD2fRzPd7xTQlz5wf5fW+GH6XjYc3V9NWdf0FayRdwGYR+JylC6mzg3E21PiomEVLuAvDSY72RAHY0RiY8S7WmZyLlKkJIY5KKa9r2ahmwJY5IQQ329lc5XVwaSSFzSIIuGeeq1Plc1LleyPRstpXmkre1VR21XLnlfavreDONUH1IZyFPc3l7Gosu+5n5rJbeHhLzeT/J3JHGuyzL7RY6XUwmsxT5bv5gVgFX8p8sVo03r6jji8d7iOZK950J7YyNU0TPLyl5qY7rq+syxVw2di/dvYz1kGPHYsGUjKrXr4zORcps6MCsFWgtdJDpc+BVRPzVgD0RlTwNXsL/TN7cFM1yZyOz6k+0srienxXA597pYenzozw3pvMvio3thjH1iqfg8d3NiCRUy6dKotH7R1dJbwO66IEX8rypGml2U8VHCuLbU9zGU1Bl+oNuYK47BYVfC0DKgBTFEVR5kwIwRM7G3jp8hijydzNH6AoCqACMEVRFOUWvXN3PaaEb58YWuqhKMqKoQIwZVp9kUyphpc5PztldcOkaJhXfU1KSSRdoKCb0zxqaWUKOvFs8aqvFXQT4xZ/JpF0gbODCbIF4+Z3VpRlbl21j52NAb54qJeVtrN+vmULxnXHjFzRmNXPZWS8UPNyPS4q80MtAi+SWKbAuaEktX4HnWNpQsk87a3lk01Vl5vheI4XLo0BkNfNW264G8sU+NHZEaSEN22qntytN9GKyeu08rbtdctqh14sU+CHZ0bQTck96ypoqfDQF8nw0uUxnLZSEcq5FCHUDZMfnxuhaEj6oxkeXab1k168NEZfNMP2hgA2i0YsU2BbQ2CyvpCiXOkj+1v5ja+c4OWO8FXlVm4n8UyRp84Mo5uS/WsrWFPp4WhPlAvDSWr8Dh7aXHPT50jmihw8P4o5XiT17jnsdFwpsoVSNwGvw8qW8ULiveEMr3SOEXDZeXhz9apuc7R6v7Nl5tXOCF1jaQ5eDNEfzWJK6Aill3pY05JT9l2fu5FEnqIh0U15VcukSLrU+ieV05fd1V4sU0Qfn+kKj1eBnvjdZQoG4fGxz8VynyOYaE8iJZzoj5XaSYXSvN4XW+qhKcvU23bUEfTY+ZeXu5d6KEsmnn3jmDFxbOuPlppqjyTyMz7Gyev+sTqd7I9xeTTF632xyZZ3nWMpDLO0ShAZb3m0WqlL2UXidViJpAuUuWwEPXbGUgU21izP2S+AuoCLA+sqyekG66YoCDhbLRVu+iIZDCmvqgq9p6WcMwMJ6sqcy66lRVPQzbpknrxusLm2dHW2sdZHNFPA47BS65++We2NWC0aD22qZjiRm6ykv9zYrRprqzz0RjKsr/ZzcSSJbko1+6VMy2mz8JN3NPF/n+2gL5KZcUHo1aSx3MX6Gi/ZgsHmutIxY3tDgDODCZqCbuzWm895+Jw23rSxmmimwNp5OPYuZxPHE4v2Rh3E9TU+wqkC5R4bFZ6Z1ylbiVQl/EVimJLhRI5yt+2Wt//migavdITRTcndayvUSXEat2tlcyklr3VFiKYL7G0tp9o3t0DxSolckVROpy7gvGnbkpXqdn2/zKeheJYDf36QD9/Vwh89vnWph7Ngbof3SmcoxbmhJK2VbrbW31oKyo0MxbO47dZpe++uBtNVwldLkIvEogkaylzzUnulL5JhKJ4jlMzTEUrNw+iU1SScLtAZShPNFDkzmJiX5/Q7bdSXuVZt8KXMj7qAi3fvbuCLh3pVSYoV7kR/jHi2yIm++C1vOrqRuoBrVQdfN7LgAZgQYpsQ4mUhxAtCiH8WVxzBhRD3CyFeE0K8KoT4hYUey2pR5XNgswgsGnNeBlNWL7/TNtkcfbYtjRTlVv3ym9ZRNEw+81znUg9FuQX1gdKxozbgWFabo1aTxVi7uiClvBtACPHPQDtwePy23wDeB/QDrwB/twjjWfHK3HbeubsBKZlRTsGNdI2lGUnk2Fznv22vQpaTWKbA+eEkdQEnLRVzyw+zWzXetr2OomGq7gjKomut9PDOXQ18/rUePnZvG7UBdZG4VIbiWbrHMqyt9sw6FeHOtgp2NJbhtKmFsoWy4D9ZKeWVBVHyQN8V/z8DBAAHsHy3BC5DUpZ23NxKja6O0RR/92wHPzwzwmud4XkcnTJXr3SE+cHp4clE5rlK5t7YjaUoi+0/P7IBU8J///65pR7Kqiel5OXLY3zz9QEGYtmrbnvh0hhdY2leujw26+eNZ4ropqnSDhbQomRvCyEeB/4UuAhceab/BvCd8X//8Q0e/3Hg4wDNzc0LM8gVxDQl3z05SDyrs6HGy93T1NwZSeRI53XqAy4yRR23/ep+kR2hFMZ4IdRr92KEU3m6xtJsrffjuiJvLZzKc7QnSpXPwe7m8mnHWNBNrJqY7E04FM+iCUHNNUumI4kcppTUBZbnUllBNxmMZanyOSY3O5impD+axe+yUua2I6WkaMhpZyNP9scYjOXY01J21VXoxeEkummyuc4/eZArGpJYpojNIugMpa7aSRYf35JtSgin8zQHPVO+ZtdYmhcuhRDA23fUU+6xz9ePQ1FmpCno5uP3tvHpg5f50F0ttLcGl3pIGKakM5TiwkiS0USeeLaIRRM4bRoNZW7WVHrYUOOd97pTE8eLnK7jc9qoC7gwTImUctrXyhUNBmNZesIZWirctI3vhhyMZRiO59haH8AxfiyPZ4t0h0sXa+eHElelHXjsVqLpPAILyVyRgm4SzRRprXDf8PvsDWd48fIYmoCHt9RQ6XWQzBVx261qOXIeLUoAJqX8FvAtIcSngLcDXx+/6S+BA8AI8CMhxBellNdd9kspPwN8Bkq7IG91PPFskVAyR2O5e8GWaM4OJkgXdLY3BHDaLOiGyXMXQxztieJzWllf42NfS5CA20Y8W+Srx/oYiGZ5dEsN6byBpgnuaqsgni1waTSFz2GlcyxNa4WH5qCbly6HSeSK9ITT2K0aveEMOV3HYdWo8DgZTmQ5eHEUixBkCya6YeK0W9jfFiSdN8gXTar9TuoDDkaTeRLZPH/4zVNE00USuSKDsSxOmwWf08rmOj87Gstw2608fW6YzrEMAZeV33nzZmoDTl7uGKO53E1LpYeXL49xuCuCSan0xIH1lWQLBk8e6cNh0XjHznqSOZ3ecAarRZDI6dgsGnubyzg3lKQ3kqa2zMnupnLWz7JMh26YWDQx5RWbbpgzOrAmckVeuBjiZF+Mlgo3fredRFYnnMpR5rZTX+aiqJu80hmmzG3jA/uaeO5CiI5QiqIhedOmava1lvNqZ4S6gJNyj51PP3OZSDpP42kXj26pozea5sxggq7RFJmCjs9ppTrgIui2saXGj80CdX4H5wbjvNQxRtBdKltybiiBVROAxGmzUl/m5P6N1aTyOmOJHF6XjRqfk4ujSV66HMbntNJW5aG5wsPR7ih1gdKW7jK3nTWVXrrGUlweTdFS4eFoT4TBWJYHN9VwZ1sFUDoIH+uLMhTNUjQld64JTt5mmpLTg3GKhmRHY6lQ60ILJfMkc0VaKzyq6fgK8EtvWstXj/XzO187xbd/5cCSlJkZjud4+twIz5wf5ZWOMNnijTtPeB1W9rWW8+Zttbx5ax0B98zSMgzD5DPPd3BxJMUH9jWxqc6PAM4PJxmMZfnWiUFGEjneur2O+9ZXcXE0RSavs6u5jAqPneR4HcQT/TES2SJdY2mG4zkay11U+51sa/AzmsjxzPlRBmKl3fT3rK9kNJEHaRJKF6nxObFb/fz1j86RypnYLYItdX66w2l6whleuBTi8miK9dVe7lpXgd2iYREa2xv8PHcxRHc4TZnTRsBlxW6zkNMNnFYr8WyRiyNJvvhaL6FUnnftbODejZWUu+1oQkwGggCpXJHvnRoiUzDY2VR23UX6oa4Iw4kcu5vKqC9z8dLlMeLZIneuCVI9fnGeLRicHYoTcNlZVz19GY7OUIpQMs/mej9+5/JJnxmO58gVDVoq3DedPVzwAEwI4ZBSTlSsTABXzpEaQExKWRBCmMCC/xQNU/L02RHyukn3WIaHt9y8MvFsSCn53ukhXrwUpiXoRgDtrUGGEzkuDCd5vS9GOJVnd3M5p/tjbK4PkC8afO3oALFskWM9URrK3SDh6bPDHO2NkS+WAqigx0GVz862xgAWDZI5nVimyGee76QvkqYvUgqaNtb6CCVz9Edzk1PImoAKj52uUCnwyRUN7BaNomGgCcEPTg+DEGQLOsjSTIzVIkBKTg7E+drxAaq9pWAkmtVx2zVe6giRL0rODJYCg831Pp45P0o4WcBts3CkJ8rJ/jhF3eRwTwSBKC2bSjg/lKTCa6el0s26Kh/fOTnIkZ4Yo4kcTUE34WSBxnLXVbNvN9IRSnGoK0LAZeORLTVXBQQHz48yFM+xtd7PzqayGz7P4a4I3z05xPnhJG67hbVVXjbX+Xm5I0ymYFDusZPIFhlN5LFZBJdGkgzH8yRyRQwJl0Mpnj7rIZU3EAJ2NPo41hslldPpHktzuCtCNFvEMCWGKTFNEAK0oRQ2q8Z3xTCVHju6aWK3WtBNcFo10gWddF4nWzAwpMSiCexWjaF4lhN9cVJ5A7fdwoYaH9U+O3ndwG1aONwd5SuH++iL5UjmiuSKBlZN4662IMmcjkXTyBaLXBxOYZiScLqAy26hM5SiN5Ll7FCC3nCKWr+bcreNLfV+fE4bPZEMx3tjdIymeL03yk/e2TwvO3ynE88W+fG5kcnq4Htbln5GRbkxt93KX7x3Bx/+p0P82ffP8cdPbFuU1zVMycHzo3zhUC/PXihVlG8OunlfeyM7G8vYXOenNuCkzGXDlJJM0aA/kuXSaJJDXRFevDzGb3/1FL//jTO8ZXstHzvQxvbG6cswRNIFzg7F+Y9jA2TyBif6Y3xgXzMXR5IIIbg4nODyaAoJvHx5jHXVXtJ5nRP9Mc4MxjEkFA2TaLqAzaJxYThJrqATyxax2zRq/A6O90UZiuXoj5aKI/cIweVQmlzRIF80sFktNJY5+e6pQdJ5E4tW2l3YF83QOZYhVzRIFwx03aQ7XCqobLdqtFV5+e7JQY72RIikC1g0QbXPSX25i+ZyN/dvrKK1wsOTh3p57mKIbNGgYzTFS51hNFEKWD98Vwsbx2ueff61Xp45N4pumuimZGOtDynh1c4wBd0klMpT1CWff7Ubt700qVAbcFLmtk0GYMd7o6UL1LE0966v5NGttdfNuqXyOq92RgBIF3Qe3DS/5/G5Gk2WgmQojetm5TsWYwbszUKIXx//9yXgh0KIT0kpPwH8OfD0ePD1fSllfKEHI6Wc3FKrm/NfeT2aKTIUK0XApfomVQBUeh247BZCyTzpfJGecAanTSOcKlDQS/0G80UTc3x8UkK2aJLO6ZgSUvkiUpZ6E66t8uKylz5wQghGkzkSOb2U8yMgkS2QzBuYstSz0GXXMEyJ12nBabWAEKTyOl6HRiqv47Jb0E2J3Soo/WgkmlZa6hISMnkDTTMAiZACTUg0IeiPZAm47ZM/y4Ju4rBq2K0aBhKnppEtGmQKOk6bBSHAZRUk8yZCA5fNwsYaH1vqAhQMs/T8ojQL1RfN8PS5Ud6+o25GOQgTVdtjmSLxbJFKb2m2J68bDI1X3u+JZG4YgA3Fs5wZSDCUyFE0TDTNSkuFmw21Hs4PO+mLZpBS4rJpuGwWNAHhdBGn3UI4lcftsOK0lq4c33jOPIJSkDXxs8jpEiFBjn9bUpY6D1iEQJelHgS6CS5NI1fUcbttWDRBrmBgs2gYuoFhSExhEkkXKZqydCIpGKXf5/iSiibAIgTdkSzhVJ5MQcdh0TC1icr+ApdWOmHphkm2aJIvGpweiKObpTZJA5HM+Cxlnmq/E894kOWxWwinCyRyOumCTmcofcvtqm7EMCUTKW1FQ+W2rRT3rq/iZw+s4Z9e7GJ7Q4D3tTct2GsNx3M8ebiPJw/3MhjPUeVz8MtvWscTu+pZW+Wd8jiiIfBbNLbUly4untjVgJSSUwNxvnZsgP842s83Xx/krrYg//nhDZMzwBMmluoS2WLpMyklVq3Utks3JYJSKzeBRAiNKp+De9dX8fS5kf+/vfOOj+O67v33zva+6L0QBHuvopolqlmyJUuOey9JbCdx7Ly8+KW8FKfH6YmfnbjXyHYcF7nIsq0uqlEiRbF3oncstveZ+/6YBQiSAIle7/fzwQe7gylnBrsz5557zu/gsllwWjV6ommsmobNIpBSYrMIwrqBAeR1SSSZRxpJJOZ9JG+ATTOjTUKY92kpIZ0zQIJmjpsBEGj4nTaEENg1jVReJxTPks7pZk9bKdENg8Km6IYknMpR6nPQVO6lKujCogmaK7wYhoEA0nmdV9uHEALWVPo5P5gYccCyOQOX3UI0beB3mvfDI50ReqMZpJRk8jrPnzMdJ6sAh83CQCxDXdHFVAun3UJP1HyG9kTT9EbTVF9WzW2zmAPQbN6Y1YHfZMmPujdN5D4165ZLKR8CHrps8W8X/vYI8Mhs2zAaq0Xj1jVldEXSrCybeRVyn9M6UvWztso30t/KabPwpu01HOuKkMzqVPqdrKvyF0YJfm5YWUJnOMVta8vY3lDMYDxLMqvjdVjpj2UACUJg1QSVARd+lzkX3xFKoWmCdVWSE91xij123nd9PV985gLHcjp2q6DU62D3ihLu2ViF12Exp6ziGc72JUjldFI5nSq/g6OdUSwahFMZIkkdj8PKUDJHXzSNRYPqoJvV5V5O9sbxOKxc11TC9vogT5zqZ0Wph8qAk9UVPjQN6oIufnioG0NK7t5QwROn+nHaNN68o5bucIbzA3Eq/E52ryhGCEHQbaPYbSNvGPRGM/icNhIZ0/m0TGC2aW2lj2gqR7HHTrH7Ys6Tw2phTaWXjqEU6ws3ifGIpfOU+hzcsa4caUCJz871TaU0lnpYUerjYGuI6oCTgNvOjw51Uel3ksqbI9cP3thI3pA4rBqrK3zsbxmi0u/EZhWc6I4RSeYo9dppDyUZSGRwWC2Uee24bBZSeZ3GUjeprGR9hY9IJofdaiHostFc7qHM5wIkneEU3z/YyZneGPFMDr/Tzt0bK2gZSHK4M0J10IXDotFU5sFps9Jc7qU7kmZNhZdkkcu8eesGmqZx++oyAh5zCqG+xMXf/ewUed3ghuZSKv0uuiNpbm4uLQwEdGqLXLx2VM/Kcr+T+7dU8cSpfvxO2xW5fTNNscfOjc0lRFI51lQu3A4Siiv5/bvXcqonxh9+/wilXgd715bP2L51Q/L0mX4efLGNx0/2oRuSm1eV8qf3ref2dRVTmhoXQrC5Nsjm2iC/e9dqvrO/nS/tu8CRzsgVDlg0bdaY+V02fvv2ZjpCcm3EFAAAeD5JREFUSWqLPAQ9NqKpHImszo3NJfzieC8C+NN71+NxWLl/aw0bawJ0h1PkdIOBRJbGYg8uu0YonuGbL7ZxqidGMquzrb6IYreNnGHQH80QzeRIZ3UcVg2rxYLLrlHhc3LnhgoOtUU43h1hW30Rt6+rwG238tiJXjQN7ttUxYP723nxwiA90Qxuu4XtdUFet7GKTz9xhpdbhshLg8ZiD42lHtZW+lhb+K79yrZajnVGONUTw2nTSGYl4VQWAWyruzjN+O7r66kuclIdcLGnqQRNM/N+T3RH0SwaN9WXkkjrtIaS5rb1ATZUB2kc1RFka22QTE7neHeUIred4jFyWB1WC3dvrCSczI7IZSwEqoMudq8oJp3TR67d1VBK+LOAYUiy40gA7D8/yPmBBNvqi2gq86Abkpxu8MjRHnK6ZPeK4jHnvU90RznaGaGx1MPKMi9uuzmyONMbx2YR3LK6jFKvA00TdA4l+ddHz3CmL05jiZs3bKlh79qya0aSzvTGeKllCE1Auc9BLJ1nbbWP7nCaUCxDfYmHTXWBkTnu1RW+q+4zlTUjQZPN/eiLpjndG6e+2E19ydTbmUxWrTqvmzkYhoStdcEJ3bzzukEiq19VwuNcfwyk6bQ8f3aQRDZHVcBFOqcTSZvTioY0c+au1cS4P5bh2/vbePJ0H267lfs2V/PWXWZUIZbO8cL5QfpjWTwOC/duqmIolSOWynGwLUyx184tq8quyJ/K6wYPH+0hns6zptLH9vogyaw5pfn8+UHaBpNct6KYFWO0RcnpxozIoSwEloO6+XwRS+d4xxde4GR3jL/9lU3TjoR1R1L890sd/PfL7XSGU5R67bxlZx3v2FU/rXvGeGTyOlJebJcz/FnJ5g0OtYexaIKtdcExE9R1Q9IWShIotKGbCAPxDF1DSTSLoD+aZUWpB3fhPtofz/D8uUF0QxJ023jLjrqr5kSaaQcCq0WjK5ziy/sucKg9TGXAye7GYt57QyNg3q8fOtSJIaGu2MXNq8quuAaheJazfTF+9Go3LruFN26tYVvD+MVYo23QCqkwT53uJ5TIcmNz6RWRrcuPZ9W0JZH0P54SvnLAFgjpnE5WNyaVTGgU2hsFXLZL2hFl8waPnuihZTDJ+io/N6wsnfADsi+WJps32HdmAEPCmkrvos23WcgP1Egqx8+OdGNIaCrz0FDipsLnnFByeVsowS+O9mKzatyyuuyS0WNeN+iNZSjx2CdVYJLTDRKZPEH38q2YXMifl6VANJ3jI984wHPnBrl/azV/eM+6SWmE9cXS/PxYLw8f7ubFC4MYEm5eVco7dtdzx7qKOR0EzPdnRTckfbE0Re7Jfc/BTGf56eFuhpI5djQUsWtUhWoqqxNKZqn0O8d0fB470UtvNINFgzvWVVDiXdq9GmeK8RywhTN5usxx2iyT/iJpmhhzBGG3arxuUzVSyklruJT7nAwlsiP5Ntn84nLQFwt53Ri5xgImJcNRX+zh117TNOb/12rRpqR+b7Noy9r5Usw+fqeNr39wN5998hz//tgZfnakh3u3VHHPxiq21AYo8zlGPs+ZvE7rYJLTvTEOtoZ5/vwgJ3uiSAkryzx8dG8zb95RNyvRrsWARRNTlu7xOmy8bVf9mPcPl91CjX38/eb0i3nTSrh7+igHbAkzVQG9Io+dG1aqfJvZpMTr4PqVJURTOdZWTe0aK4FExWLDatH42O2reOO2Gv7jqXP8+NUuvn+wEzAHjh67hUzeIJm9WMjisGrsaCjid+9YzV0bKlldMXZCvWJyTOUa3tBcytm+ODVB14zrpS1HlAOmGJPR01qK2WGFusaKZUpdsZu/eeMmPnnfBg62DXGiO0pvNEM8k8NpteB32agvdrOqwktzuReHVbXUWgj4nTa2X0WAWzE5lAO2TOmLmbpkdUVu5WwtQE50RxmMZ9lUG1ChfsWSxW7V2NNUwp7LqgsVV3K8K0ookWVzXWBBCY8qpo5ywJYpL54PEUvn6RhKUVukwskLiXAyyyttYcDUV7t1zcyV7SsUisXHUCLLofYwALqU3LK67OobKBYF6qm7TBmOqngdqrfXQsNps4xUdKnol0KhcNnVPWEpoiJgy5Qbm0sZiGcIum0qoXWB4bRZeN2mSuKZ/CXNuxUKxfJE3ROWJsoBW6ZYCgrFioWJ225dUC02FArF/KLuCUuPRSfEWlpaKhsbG+fbDMUioKWlBfVZUUwU9XlRTBT1WVFMhgMHDkgp5RUpX4vOnW5sbLxCgTieySOlxDfByhCzKejYrYIUS4f5VqtWzCyGIQtN4yefuprNG8Qz+au2gpnM5yWbN7BqYkKdC+abWKFf4UTvj4pro+4tiskghDg41vJF54CBKaHw1Kl+HDYLW2oDPH9uEAncuqZsQurAj5/sozeaYW2VT2maKBSLgExe5+fHeklk8ly3opimMfpSjkdON/jZ0W4SGZ01lV621AZ57GQfQ4kse5pKJi3D0h5K8uzZAZw2C3dtqFjQ00I9kTRPnOpDAHvXll817SCvGzx+so9QIst1TSVKp06hmGUWZRVkeyhJTpfE03nO9cUxJEgJoUT2mttm8jq90QwAHUOp2TZVoVDMAOFkjng6j5TQGZ7c9zaTN0hkTGX1wXiWcCrHYNxst3VhIDFpWzrDKQwJyazOYPza95z5ZCiZRUowJnB/jKRyDBSuS8sUrotCoZgcC3fodhUaSzy0h1I4bRq7VhRzpDMCEprLrz0qdlgtrK/20xZKsqkmMAfWKhSK6VLmdVBf7CaSyrG20j+pbb0OK1vqAvRFM2yqDVDktlMVcBJKZCd0z7icNRU+QoksbruFqkk0k54PVpZ5GUpkQZivr0aR205V0EkoPrXrolAoJseidMBKvA4e2FYz8v6GlaWT2n5rXZCtdcEZtkqhUMwWmia4adXkvuej2VAdYEP1xfd7105d3LbIY+d1m6qmvP1cYrdq3NA8seumaYK9SvR3wdIeSvKDVzop9Tp4044a1Z5pCbAoHTCFQqFQKJYLh9rDvOsLL5AoNCn/3sEOvvGruxd0/qHi2izKHDCFQqFQKJYDqazORx88SLHXzr7f38u/vX0rB9uG+Oufnphv0xTTRLnPCoVCoVAsUL607zwdQym+86E91Ba5qS1yc7gjwpf2XeDtu+rZVKtymRcrKgKmUCgUCsUCJJPX+epzrdy6pozrmkpGlv/OHavwO618+vEz82idYrooB0yhUCgUigXIw0e6GYhn+NWbVlyy3Oe08f4bV/CL472c74/Pk3WK6bIsHLCWgQTHuiLkdWO+TVEoFDNIdyTFkY4I6Zw+36YsaKSUnO6Ncbo3xmJrP7eceehQFzVBFzeNUcn67j31WDTBd15unwfLFDPBknfA+qJpnjs3yKvtEVMvTKFQLAmS2TxPnernSGeEF84Pzrc5C5pz/Qlebhni5ZYhzvUrkdXFwFAiy74zA9y7pQohrmx5Ve5zcvvacr53oJOcCi4sSpa8Aza6V5tlEfRtUygUE0MTguHnklVb8reyaWFR98FFxy+O95A3JPdtrh53nbfurGMgnmHfmYE5tEwxUyz5KshSr4O9a8tIZnVWlKjeZgrFUsFps3DHugpCiSwN6rt9VVaUerAUvNX6Evc8W6OYCE+e6qc64GRD9fidH25eXYrPaeVnR7unJS6smB/mfNgohHivEOIxIcSTQogaIcQnhBD7hBD/JYSwzcYxqwIuVpZ5L4mGKRSKxU+J18GqCh92q4qAXYv6ErdyvhYJuiF59uwAN68qG3P6cRiH1cKd6yr4xfFeNQ25CJnTu5YQoga4RUp5u5TyViAL7JVS3gQcBh6YS3sUCoVCoVhoHO4IE03nuXn1tdtI3bOpinAyp/IgFyFzPWx8LWApRMA+DewGniz87VFgzxzbo1AoFArFguKZMwMIATdOoM/xzatK8dgtPHykZw4sU8wkc+2AVQB2KeXtQBIIAtHC3yJA0VgbCSE+JIR4WQjxcn9//5wYqlAoFArFfLDvzAAbqwMUeezXXNdps3DLmjKeONmnJEYWGXPtgEWApwqvHwcageEMQz8QHmsjKeXnpZQ7pZQ7y8rKZttGhUKhUCjmhUxe51BHmOtXllx75QK3rimnJ5rmRHdsFi1TzDRz7YA9B2wuvN4KtAO3FN7fAbwwx/YoFAqFQrFgONYVJZs32F4/5oTQmNy6xgxMPHGqb7bMUswCc+qASSkPASkhxJPALuDbwNNCiH2YDtkP59IehUKhUCgWEgdbhwDY3hCc8DblPiebagI8cVI5YIuJOdcBk1L+3mWLPlX4USgUCoViWfNyyxD1xW7Kfc5Jbbd3bTn/7/EzDCWyE8odU8w/SjxHoVAoFIoFgJSSA21D7GiY+PTjMHvXlGFIePqMKlRbLCgHTKFQKBSKBUDHUIr+WIbtU3DANtcGKfbY1TTkIkI5YAqFQqFQLAAOFPK/dkwiAX8Yiya4dXUZT57uRzeUHMViQDlgCoVCoVAsAA53RHDaNFZXeKe0/d615YSTOV5pG5phyxSzgXLAFAqFQqFYABzrirCuyo/VMrVH82tWl2HRBI+rachFgXLAFAqFQqGYZwxDcrwrysbqwJT3EXDZ2NVYpBywRYJywBQKhUKhmGfaQklimTwbqv3XXvkq3La2nJM9MTrDqRmyTDFbKAdMoVAoFIp55mhXBICNNVOPgAHctrYCQEXBFgHKAVMoFAqFYp452hnFZhGsmmIC/jAryzw0lLh5/ETvDFmmmC2m7IAJIVxCiDUzaYxCoVAoFMuRY10RVlf4cFgt09qPEIK9a8p57twgqaw+Q9YpZoMpOWBCiPuAQ8AjhfdbhRA/mkG7FAqFQqFYFkgpOTbNBPzR3L6unEze4LlzAzOyP8XsMNUI2CeB3UAYRppsN86EQQqFQqFQLCe6I2lCiSwba6aXgD/M7hXFeOwWHlN5YAuaqTpgeSllZEYtUSgUCoViGXK003ycrp+hCJjDauHmVWU8cbIPKZUq/kJlqg7YUSHEOwGLEGKVEOLTwHMzaJdCoVAoFMuCo11RNAHrqnwzts8711fQHUnzSnt4xvapmFmm6oD9NrAByAAPAhHgd2bIJoVCoVAolg3HuyKsLPPitltnbJ93bqjAbtH4yavdM7ZPxcwyaQdMCGEBfiSl/L9Syl2Fnz+WUqZnwb5FSyKTZzCemW8zFIpZI5rOEU5m59uMeSG2jM9dMfMc7YxOW//rcvxOG7esKePhI90Yqjn3gmTSDpiUUgeSQoiZ/bQsIaLpHD893M3Pj/Vyujc23+YoFDPOQDzDw4e7efhID22Dyfk2Z04ZiGf4aeHcWwcT822OYpHTH8vQE01PWwF/LO7dXEVPNM3Lrao590JkqvHONHBECPFLYOQOJKX82IxYtciJpfPkCyOOcDI3z9YoFDNPNJVjeFAdTmWpxz2/Bs0hl5x7MkdDyfzao1jcHCso4G+YoQT80dy+rgKHVeMnh7vYvaJ4xvevmB5TdcB+WvhRjEF1wMm6Kh/JrD5jZcUKxUKiocRDKJElp0tWV8xc4vBiYPjcs7rBmsrlde6KmedYVxSA9bMQAfM6rNy+rpyfHO7m/75+3bRFXhUzy5QcMCnl12bakKWEEIJt9UXzbYZCMWtYNMHOxuU5ol7O566YeY51RWgocRNw2WZl/2/dWcfDR3r45fFe7t1cPSvHUEyNqSrhXxBCnL/8Z6aNUygUCoViKXO0c+YU8Mfi5lVl1ARdfHt/+6wdQzE1pjoFuXPUayfwFkANCRUKhUKhmCCRZI62UJK3766btWNYNMHbdtXxz788TetggoYSz6wdSzE5phQBk1IOjvrplFL+K3DbzJq2sIikckRUQr1CMS3yukFfLE1eN+bbFMVVSOd0+mMZpaI+yxzrnr0E/NG8dWcdFk3w9edbZ/U4iskxpQiYEGL7qLcaZkRsyWaj9kbTPH6yDynhljVmOFehUEyeJ0/10xfLUOq1c9eGyvk2RzEGOd3gkaM9JLM6qyq87FL5brPGsU4zAX82JChGUxlw8oYt1Xxrfxu/fVszQbd9Vo+nmBhTnYL8p1Gv80AL8NZpW7NAiaRyyJGy8+yIA6YbEk2YSffD6IbkiZN9hBJZrmsqVuFexZIlls6NDEz2rikn4L40idgwJBJzCmSYoYJ46WKVZ9ENyZOn+hiMZ9m9opjG0oX//ZZSYshL/w9XI5s3SGZ1YPH+nxYLx7oiVPqdlHods36sj9yykh+80snXnmvl43esmvXjKa7NVKsg905lOyFEI/AicALISinvEkJ8ArgfaAXeL6VccN/4plIP4WQOQ0pWlZuBvs5win1n+nHaLNy1vhKX3SzvDSez9MVMBfzz/VfOt0sp+dxT5zg/kODuDVXctq58bk9GoZgAUkq+8PR5zvbHuXN9BXeuvzJa1RlOkciYD+r2oSQB98VplHgmzy+P95DLS25ZU0aF3wnA9StLONefoGkROC5jEU2ZOTunemOc6YvxW3vHjya0DCR4qSVEud/Jzc2laBN0gGaSVFbnF8d7SOd0blo1sei9x2FlR0MRvdH0jKuzKy7laNfMK+CPx5pKH3esK+erz13ggzc14nPOTtWlYuJMtQry40IIvzD5ohDioBDirglu/ksp5a0F56sM2CulvAk4DDwwFXtmG6tFY/eKYvY0lWC3mpesI5RENyCRMXMlhgm67VT4HVgtgpVl3iv2NRDPcLInTjYvef78wJydg0IxGYYSWY53x8jmJS+cD425Tk3QhddpxeOwUFd0qRBrbzRNKmuQNySd4dTI8toiN7esLqOueHEKtwZcNmwWjVzewO+00RYavwvAmb44OV3SOZQils7PoZUX6Y9lSGR0dMO8Z02UNZU+XrO6jGKPmqqaLRKZPOf643OqFfnx21czlMzxH0+em7NjKsZnqlOQH5RS/psQ4rVAOfAB4CvALyaw7V4hxDPA94HTwJOF5Y8C7wS+O0Wb5pRVFT764xncdguVAefIcosmuH1dxbjblXgcrCz3cKE/oXIrFAuWoNtOc4WH830JdjWOrWnnc9p4w5axdYVqgi7KfA6yeYOVpVcORBYrmiZ4YFsNPqcV3ZBXOJ6jaSrzMBjPUOZz4HPOXJPlyVAVdFIZcBTyuZZsmu6i5ER3FCmZVQmKy9lUG+CN22r44r4LvPO6emqv8vlVzD5TvSsMx9JfB3xFSvmqGJ0INT7dwGogAzwE+IHewt8iwJh3eiHEh4APAdTX10/R5JlBSsmFgQR2qzYlUTtNE/z2bWr+XbGw0TTBR/dO/XPqtFm4c705EOmLpTnTm2ZFqQerZUpB9wWF12Hl/q0111xvZZl3zCj4XGKzaNy2dvwB4Wi6wilSOZ0VJZ55mS5dbhztNCsg53qa9xOvXcPDR7r565+e4D/evWNOj624lKneDQ8IIX6B6YD9XAjhA65ZVy6lzEgpE1LKPPAT4CymE0bhd3ic7T4vpdwppdxZVlY2RZNnhpM9MV44H+Lp0wN0R1LX3mAUiUxedaVXLEryukEyO/lptHgmz+Mn+nipZWjZNQTWDUkiMz9Tj5OlL5bmyVP9vHg+xPHu6Hybsyw42hWl1GumrMwl1UEXH7t9FT872sNPD3fP6bEVlzJVB+xXgT8Adkkpk4ANcxryqhQctWFuxHTAbim8vwN4YYr2zBn6KAdKn4QzdbBtiC89c4HPP32eTE6fDdMUillhMJ7hs0+e5avPtnCmNzapbQ1pVkICS2rw0R1Jcag9PK6DpRuSR4728NChLg53hOfWuClgjBo+T+a+ppg6RzsjbKwJMLHJo5nlw69pYlNNgD996OglOcyKuWWqDtj1wCkpZVgI8W7gjzGnEK/FzUKIA0KI54AuKeWLwNNCiH3AVuCHU7Rnzlhf5WdbfZA9TcWTmj8/1RPj/ECCkz0xDowRCXipJcTDR7onHVVTKKaLbkj2nRngkaPdhBLZK/7+1Ol+zvcnOdMXp3Vw4oncAH6njdesLmNzbYAd4+SSLTYOtg7x6cfO8vTpPl44PzjmOslsnkjKLOjujqTn0rwpURlwcsPKErbWBVXl4xyQzumc6YvPaf7XaKwWjX98yxbimTwf+9YrShh5npiqA/YfQFIIsQX4P5gSEl+/1kZSyoellDuklDdIKf9PYdmnpJQ3SSnfKaW88u6/wNA0wboqP02TzO3YXBvA47BQ7rOTMy79sEeSOc70xgkncyPCfArFXNEbTdMWShJK5Dh52fSTbkismqDEa8PntE5JMLIm6GJjTQCH1TJTJs8bed3gYNsQkVSOjqHUuDltPqeNdVU+ij02NtcuDoemsdTD+mr/hPXCFFPnVE8M3ZBzWgF5OWsqffzVAxt5/vwg//zL0/Nmx3Jmqg5YXpo9Ku4H/k1K+W8sYSX8yWAYklfahnjh/CDpUVONG6oDfPiWJqwWjWfPDPDs2f6Rv3kcFgIuU5OlWqnsK+aYIrcdt92CEFd+/r5/oIPDHRHKvA5+987VVF3296OdEZ47O7Bocp2mS2c4xaH2ITI5nZoiF9c3lYy77rb6Iu7eWEVVYP6+05FkjmfPDnB6klPHitnlaNfctCC6Fm/ZWcc7dtfx2SfP8dChznm1ZTky1SrImBDiD4H3YE4rWjDzwJYdfbE0OV2OCBx2DKU40W3e7BxWjW31F6ddnFYLxzojZHUDQ8KNzWZBgdWicc/GSrK6gdO2+KMEisWFy27hvi3V5C77/KWyOk+e7mMgnqXS7xgZJAzTF0tzuONi5sENzaWAGTXrGEoSdNmvUMdfzBiG5LGTfVg0DYkBEsKpLOU+57U3nicOtIXoiWRoHUxSGXDiv4b4Zmc4hU0TlPsX7jktBY52Rgm4bNQWzf+A+5Nv2MD5/gSf+O5hKvxO9lxlUKGYWaYaAXsbppTEB6WUPUAN8A8zZtUioTea5tHjffz4UBdfe+4ChzvCeJ1WhiP4/sseWDnDwGa1IBA47Zdeek0TyvlSzBuWMT5/Fk1gtWhoQmCzaFckZ7vtVqyFD7vfZTMdtlN9fHnfeZ463c/Pj/WQyi6dghMhoMRjp6LgcHkdNl5pC8+vUddg2OFyWDUc1qvf7s/2xXnqVD//9WIb336pjdbBxFyYuCw51hVhY41/XhLwL8dhtfD59+ykvsTNh77+8qQLbRRTZ6qtiHqEEN8DhoWCBoAfzJhVi4RMzszlai+M9o92RllZ5uWeTVXkdOOK/l5Bl529a8sIxbPcvq6c7ojZyqWpVOnuKBYO0XSO7nCa2iIX922u4kR3jKYyzxW5QV6HlddtriKZzVPuc3KkI0JXOE1nOE3AZaPC7yRnGLhYGgMLIQR3rq+gKuAk0GLDbtUo882thMBk2dFQRF2xG7/Tds0cvHROx5CStsEkFk1woHVI9bKdBXK6wcnuGB+4sXG+TRkh4Lbxlffv4o2ffY73f+UlfvBbNyzoyO5SYUoOmBDi1zGFUYuBlZgRsP8Ebp850xY+dcUuttYFsWqCbF7H77LitFnGTWL1OKy8aXstWd0glzf4+TFTgzaRybOlLjiHlisU4/PYiV5SWYNz/XHu2VjJzsZivA7rmKN1r8OK12HeRsp8DjQBK8s81BS5aCr1XnPKa7GhG5Lz/Qn8TivVQSfb6xd2ZacQYqQP57VYW+nDkJJsXsdhs6gH8CxxpjdOVjfYsMCqTeuK3Xzl/bt46+ee59e+9jLf/tAe3Pb56eCwXJjq1f0tYDdmY22klGeEEMuuq7QQgvXVftZX+4mlc7iu4nwN47RZcNos9MUulqbrUunuKBYGUkqGK9J1QyKEGLfZ9OVUBpzcv7UGIViy0+mGBAlYNA3XEjtHq0Vjc22QjdUB4tk8Pod6+M4Gw7pwG6dQUTzbbKoN8Ol3bOND33iZj3/7EP/57h2qKnYWmWoOWGa0ZIQQwgosay/C57RNqs1Kuc/Jjc0lbKkLsHmBjYQUyxchBLetLWdjjZ/XrJ581wmX3bJknS8wm3HfvKp0SemaXY6mCfxO24LIT1qKHGoPE3DZWFG6MKd371hfwZ/dt4FfHu/lr356fL7NWdJMdYjzlBDijwCXEOJO4DeBH8+cWYsTKSUH28JEUzm21xddswJsdH5FKJHFZhH4ltiUjWJxYBiSgXiGgNtGscdOsWdiUS8pJQdah4il8+xoLFpyU45jUVvkptSrE0nlKPctPWczndN5qSWERQh2rSjGtgT6dy4kDrWH2VIXXNAO7vtuaKQtlORL+y6wvsrPW3bWzbdJS5KpfrN+H+gHjgAfBh7GVMNf1vTHMpzqidEdSXOkcyKNAUzO9cd55GgP3325nc6hJLF0jvP9cbJ5pU6smD06wym6wikMQ/LwkW4eOdbDz4/1TqplUG80w+neON2R9Ehz4aVOKpvnP588y3f2t4/Z1WKxc6Y3TnsoRctgkpYBVQk5kyQyeU73xti2CHJ+/+h167i+qYQ/feiYqoycJSYdARNCaMBhKeVG4Aszb9Lixee04bBqZPLGJdVRiUyeznCKqoBzzAhXOJmjL5qmZTBJKqcTcNrRNEFlIMFtayvm8hQUy4QLAwmeP2e20XHZLLzYMgjSzAHJGxL7GHkfkVSO3mia+mL3yDSjz2nFbtXI5g3KvAu7InCm+OmRbp48NYAQUO5zsKNhaU1F2iyCvliaUq+doglGQhUT43BHBEPC1vrgfJtyTSya4N/evpXX/fsz/NaDB/nRR29a0ukF88GkI2BSSgN4VQhRPwv2LGpcdgv3bqni9ZurWFNpNgYwDMmDL7bxyNFuHjvRN+Z2G6r9BFw2KgMOfA4bsYzZQ05FwBSzxejP1mAiw4oSDy67hR0NRdjH0IsyDMkvj/fyyJFuvvVi20iUzOOwcu9m8zO/qmJ5NMPI5AyKPDZcdgvVwaVVKZjTDQ61h3HZLBgGS0rHbSFwqD0MwNba4LzaMVHK/U7+8S1bON0b5/89fna+zVlyTDUHrAo4JoTYD4zEqKWUb5gRqxYxDqvlEr2d/S0hHj7azVAiy83NpTywreaKbZw2C2/fXc8rbUM47Raq/E66o2lWTrLfpEIxUVaVe8npBpoQlHhsnOqNc+f6inF7nErgQMsgz58PUe51sKHGz+4VpmL2cGXvcuG+LVUYEoIuKzc0T75QYSFzuifGE6d6yeYlmhAkszqv31xFXbF7vk1bEhxqH6KxxL2oIou3rinnTdtr+c+nzvH6zVWsq1p41ZuLlak6YH8+o1YsEVLZ4cRcx4iwaiiRIZzIkszqnB9IkMrquOxXPqxcdstIKxfgip57CsVMommCjaOqbyuu0a8wmc1zfiBJMqszmMwSSV3a+zGazpHJGQtemHQm8LvsvOf6hvk2Y8bpjabZd3YAgUYml0OXksOdYZrKPMoBmyEOtYev2j90ofLHr1/Hk6f6+KMfHOH7v3HDgi4gWExMygETQjiBjwDNmAn4X5JSLo8uvNcgpxs8cqybVNZgZZmH6wpfsptWlvJgURuxdJ66IhehRAZP3kpOlxzvjlITdNJcfvWpG8OQSilfMSNM5LOU1w0OtA4hge31RYSTWQwpqS12kcrpBF22Sx4ikWSOR451oxum8vrw9PtSZrF8J493RRmIZ9hcG7imnpsmBF6nlTKfgzKvjbw0iyyOdUXYUBMY6XermBrdkRS90QxbF0EC/uUUeez8wT1r+cT/HOanR7q5d3P1fJu0JJhsBOxrQA54BrgHWA98fKaNWoxk8waprJlXE01f9En9bjt/+cBGDrWHqfI7eer0AOmcjiZMzaVzfTHSOYNKv5Og+1Itsa5wihcvDJLM6qwq97F7RfGcn5di6dAxlOTZswPkDcm2uiCrK3wjnzcpJZmcQWfErIw80xvHbhFc6I+T1SUum4X3X9/Iuf442xuK8Dov3jri2fyIeGs0nZuPU5szDEPy1Ol+DrWH2VofZO+amdOf7oumiaZzNJZ4JqUpOB6RZG4k50g3JHvXlpPK6uMK5Zb5HKyp8NE5lKLEa8NptVLiSVPmcxJL5wDlgE2HQ4W+oVsXePeE8fiV7bV8ad8FPvXISe5cX3HN1laKazNZB2y9lHITgBDiS8D+mTdpceJxWNm9opjeaJoNlykcryj1sqLUy7GuCOFkljO9cZLZPEIIUrk8qZxOx1CKDVV+bllTTl2xm95omidP9fNyS4jqIhfZnIEQUFfkpjKwtBJ/FbNLMpvnRHeU1oEkiYzOkc4IkWSOeEZn94piM8H+RC+HOyIIAdFUjv5YhlzeIOg2BTk31gQo9zvZNEbycHXAycYaP4mMzqYlLCqcyup85+U2vvNSOxU+J73R9Iw5YJFUjsdO9iGlWRW9s3H6gy2nXcNp00jnDAJuG92RFE+d6kcTgjvWV4yp9RbP5GkdTNAZ1njHrjrWVvmQEppVPuq0OdA6hN2qsa5qcUaILZrg/75+He/50n6+8Xwrv3Zz03ybtOiZrAM2MryVUubVPPClNJd7aS4f/0a1usLHsc4Ihzt0zvfHcNitrKv0MRjLks4Z6BI6hlLUFbvRC1VmVQEXNk2QyOZ55Eg3CMHv3rkazyy3CemLpomkcqwonZnRuOJKeqNpYukcK0q9s9ru49v722kZTFDsseN32PA5rPicNvKGGbZKZPMMxrMYhiSaziEQ+J1W9rcMEXBZWVPho7ncO25PQSEEmxdJVddUyOkGLQMJYukch9sjZj/IgTjl/plLpJZSMtyRLD8JHbar4bBaeN2mKmLpPGU+B4c7whgSDCkZjGfGdMBO98Q43RvHadOwWgQ7GlTUfabY3xJiW11wUUeObl5Vxg0rS/jc0+d5956GZVV8MxtM9im+RQgRBYafFq5R76WUUpVHXAWbReMNW2vYfyFEideFRLKxJsCGKj8tg0k0TYzkz1QHXexpKqYvmkbTBL883suB1jA+l5WDrYPsbiqdtS/yJaPxVI5dMzAaV1xKOJnl8cI1jqRys/KgMwzJ+f44RzvDnO9PUu6z8+FbmlhT5SXgsrOqwhws+Jw2GkvdaAIq/E58TisPHeqkyu9EAqsrfdw4qkBkufFSS4iWgSS6YRBw2Qi4rKRzOn3RLGd6YzMivxF027l5VSmRVI7VMyjnMbpCdVW5j1Aii0UTl3ThGE0im6fc5wAEjjHkSBRTI57Jc6wrym/eunK+TZk2H72tmXd+4UW++3I777m+cb7NWdRMygGTUip3d5o4bRbee30j3zvYicdh4Y3banHYNDojaRIZnXP9cY53GZR47dQVufnLnxwnls7jcWiU+x2kcjoH2yIc646xe0Uxm2uCMx6hGj0a12doNK64FEMyco1n4xKf74/z7NkBcrpkMJGlzOdACMnf//w0hiH57dubSWRc7L8Qothtpy+awZCm47+m0ofDqvHt/e2U+hz8yhjSKcuJQqAQq0Xj3Xvq+Z1vD9ATTtEfzfKLYz3TdsAG4hmePTuA227lltVlY+qwzQQuu4VbrzFleteGShIZnSKPDZvFQjqnqyjHDHCwdQjdkEtiMHt9Uwk7Gor4z6fO87Zd9bP2eV0OTFcJXzEFNtcFaQ0liaXzPHt2gF0riklkTMHDx070YtE0Sj12IlVZwqkc0gCBYO/aMnqjGexWCye7Y1g1DYFg2wwndc7WaFxxkWKPeY2j6RyrrlEFO1l6o2leOB/iSGeEYo+DrXVBSj0OzvTH6Y2a7YKOdkZJZnVOdsdIZPJUB104bBZ6o2nKfQ6OdkXZUBNgU02AIs/Sl5a4GjsbiwgWemQaUmKzWEHTMDB4qWWInG5Mq1/iub44iYxOIqPTG03PquRDKmsO8sr9Dsp9V04pb6gOsKE6wEOHOjnYFqY1lOS1GypnzZ7lwkstITQB25dA1wQhBB+9rZkPfOUlHjrUqfpEToNJO2BSSkMI8aoQol5K2TYbRi0H0jnT4UrndUo8dlZXeOmPZTjbZxBKZIhn8ty3pZobVpbQOpjg3dc1sGdlKaFElqdP9xNL53DbrbPWKLeu2I36Ws0us/WgtRbyyRpKPDhtGresLqe53EsokeHvHzlJXpfcub6CI50RWgaT2CyCtVV+fE4rG2sCZHVjJDqXySsldKfNMqKZZhiSt+2uo+fRM7jtFrbWB9GmmQtbX+KmdTCJw6bNuo7a8+cH6IlksGjwwLaaMdMYhitiATKqG8eMsP9CiI01AbyznLs7V9y6uow1FT6+8mwLb95Rq3TBpohSwp8nbllTRnsoSUOJByEEOxuL0Q1JPJOnN5Kiwu+k1OfgE69di5Ry5ANe7LHzwLYanj83QDKrs24ZaC4pJkeJ18G6Sh+9sTS3rC7DZTe/5sUeB3/3pi0jGlZSSloHExS57WytD17SeWFXYxHxTJ711SqtczSaJnjbrnpuX1tBy2CCVRW+SwooBuIZOodSNJZ6CLiu7Ps6FlUBF2/eUTtrumLZvE46a+BzWUfuI4LxjyWE4JY1ZXQMJVlRqqofp0smr/NKe5j37Fk64r1CCN5/YyN/+P0j7L8QGtG9VEwOpYQ/T5T7nFdMAVg0QVOZhwf3t5HJ6bQPpXj3ngbKL6s+axlI8MTJfoaSWXRDctc1pgjSOR27RVsUwpGKq5PNG2iCq+b9tQ4m+M7L7Vg1DafVwq1rL837yRkGTx7v44v7LpDI5Nm7tvyKtlfLpa/jVPE6rVT4HTxxso8Sr50bV5YiBDxxso+cLmkLJblvy8TFKmfruzmUyPK3Dx/nTH+C+iI3926pYlNNgOqg86pFPBV+57hVr4rJcaQjQjZvLIn8r9E8sLWGTz1ykq8826IcsCkyJQdMSvnUTBuyHIhn8nQMJakJuvA5xx4dtw4m0Q0zcfqZM/2sLPdy/9ZLk6DzhkFfLGOuH0qMtZsRjnRECrlAdu5aX6GcsEVMZzjFM6f7sVk0XruxctzpjLZQkkzeIC0NwqnsFX8/2R3jqTP9tIeS+Jw2OoZSVz1ufyxDKJFlRalHJdwCB9uGONkdozucojLgJJnVCVfnKPbYsVoEOV1is0z9e5bO6bQOJin12inxTm9KsnUwQW80Syqrc7YvzrHOKFUB17j7NQzJmb44VotQvWhniBcvhAAzqryUcNktvGN3PZ976hztoaRqVzUFpnQ3FULEhBDRwk9aCKEX5CgUV+GJk30cbA3z+Mm+cde5ZXUpJW47Fk0gBLzSNkTbYJKOoSQDcdPpai73cdOqElaUuin3Ofnuy21870AHfbH0FfvrDCcBCCWypHIqn2cx0x1OYUgzL2eg4IAPk80b/PxYD9/e30Y0maO53MO6Kt+IUGgik6dlIMFQIsuxrgitA0mcVg0B3Le5atxjJrN5HjvRy4HWIfYXHiTLmfZQkhfODfDcuQGOd0eJZ0zHy1/oDHDHugp2NRZxy+qpC7Q+f36QA61DPHaib9o5eGur/Gyu86MJ8DgseJ1W/OMM/gBO9cY40DrEi+dDtIeS0zq2wuSZM/2sq/JP25leiLxnTwNCCL7+fMt8m7IomWoE7JL5CSHEA8DuiW4vhPhd4FeklDcJIT4B3A+0Au+XUi7ZXiZGIbN5+PdYlHid/O/XruGlCyFeuBCi3O/kJ4e78LtsJDJ57t1SRU3QzZt31PHNF1p56lQ/yUyeNVV+jndGKV19sRF4OqezqsLLie4YVQHnrIu3KmaXVRU+BuIZnFYLAbftktzAznCSc31xzvXFSWZ16ktc/O6da3DYLOTzBt890I5AkMnreB02Sn12ttQGWVvt5471409hj/6oXu1zuxxoDyV55swAL7cOcao7RpHHzppK/yXSDj6nbdzo9kSRhesskUz3kjttFl6/uZqqgJtkNs/6Kj/1JeNHKoYLCpLZPImsavM7XZLZPAdbw7zvhqWT/zWa6qCLuzdW8p2X2vlfd67GbVfPmMkwI1dLSvlDIcQfTGRdIYQD2FJ4XQbsLThivw88AHx3JmxaiNy6ppz2UJLaoqv3VFtf5cdps+CyWzAk6IbBhYEEg/EsdqvGe69vJJ3TOdcXJ6cbtA0l0ZGc6olyqH2IX72xiWRe54mTfVdtO6JYXARcNu7eWMW+MwP87EgPVUEne9eU870DHTx3tp9wKk9fLE25z8lAPMuFgQRrq/y82DLI4fYIVotgfVUAIWBHQzHrq/zXbJztcVi5dU05A/HMVbs8LAd0Q5LO6VzoT9AfTxPP5Om6xvTtVLi+qdSUivA5ZkSDq9TrwKoJvA7rNf+Hqyu8DMQzvNIW5pW2MMVu+xU5qIqJ81LLEFnd4KZVZfNtyqzxgRsa+enhbn7wSifvum5pOpqzxZQcMCHEr4x6qwE7gYmO1X4Ns6n3X2BGzZ4sLH8UeCdL2AELuGwEJtArT9MEzeVemko9JLJ5BILPPHGGmiIzcTanGzisGhtqAlzoT1Dmc9AVTvH8+RBHOyPEM3nesLVmpO3IwDhtRxSLk+6I+dDvjaR5tX2IzzxxlqFkljKvnTvXV5LM5akelecTz5iR0I6hFDetKqEm6EbTmHAnhcqAU/UfBRpLPWys9pPO6eiGqakVz858wN5lvyh7MRNoQnDzqlKKPPZrOnRCCAIuU/NMSrO5unLAps6+M/3YLRq7l1gC/mh2NBSxodrP155r4Z2765UkxSSYakbtfaN+XgvEMKcRr4oQwgbcIqV8vLAoCAznjkWAMbMUhRAfEkK8LIR4ub+/f4omLz40TeBz2th3tp8ijx2rprF7RTFOm4X2oRQOq8bNq0t54/ZaDCkRSHQJQ4kczeVeKgMOaopcNFxlykGx+NjeUESxx8b2hiI6hlIM3+8MCfXFbt57fSPlficXBhJIKdnZUITPaaXM5+Bga5i8YSzqfnTzyfaGIsp8TuxWDZfdgk2bmeuYyOR59HgvT53uJzuD2ltd4RSPHO3hiVP9Izmk12J1hY+VZR5WV3iVDMU02Xd2kB0NRbjsS/f7JoTgfTc0cro3zvPnBufbnEXFVHPAPjDF470HeHDU+zAwXOLnL7wf63ifBz4PsHPnzmWXiBJN5/E6bJR4HCNTCAfbQqSyBrF0nrs2VHDTqjJyukQTgjfvrCWWyrOjoRifw6oqH5cYK8u8VAdcJLN57NV+bmwu5VhnlBubS1lT6CuayOic6omxssxDidfByjIfmkiQNyTJrD7tPKXlitWi8Ws3r+BzT5+jyG3nplUz0yPzdG9spLK5LZScseneWNrM4zKkJJrKjTPEvRS7VVOyAjNAfyzDie4on3jtmvk2ZdZ5w5Zq/vbhE3z1uRZuWMZ9YyfLVKcga4FPAzdiTj3uAz4upey4xqZrgK1CiI8AGzCnLncDfw/cAbwwFXuWOjc1l9IykGBFmdlAN5TIcqY3zkAsy82rSyn1Ori5uZQbm0vwOW08dqKP/3qhFbvVwl0bKrl7o2olspTojab5+nMtHO2MsKOxiLs3VPLxO1bRFU6zrtLHqd4Yjx3vJacbbKsPUuJ1sKXOnNLyOa1K32mKnOqJ0RtN43FYaCjxoAlBIjP1RHUpTbkZn9NKZcDJqZ4YFk1QNoPVcivLPJztj3O0I4zXYaGpzKt6O84Rz50bAMz791LHaTMlKf7zqXN0DCWpLVKzLhNhqkn4X8GMZL2l8P7dhWV3Xm0jKeXvD78WQuyTUv65EOL3hRD7gDbgX6doz5IlnMzSG02zutJHaeHG3BVOUV/socLvpLnMy6meKM+cGcDntLK+yk8kleVYV5REVudsf4wN1X6l0bJEyOsGX3+2he8f6sAwwGm3sLbSz0sXhuiOpOgcSnF9UwnNFV6sQtAdSbOxJoDbbmVbfZBTPTFaBxM0lHjm+1QWFfFMnidP9XGmL0bbYJJIKofXaaUneqX0y0R5uXWIM71xPA4Lr9tUxT0bK9ENScA9c9FJq0Uj6LJRV+whmTUYSmapCoxdBDQYz9AWStJY4qFI5YxOmydP9VPkts1oPt9C5t17Gvjc0+f5xgut/OE96+bbnEXBVHPAyqSUX5FS5gs/XwUmVeYhpbyp8PtTUsqbpJTvlFJeqRq5zHnqdD8numM8cbIPKSXHu6Kc7o0RTmZI53RSuTy/ONrD0c4oZ/riBN02msu85HSDWDpHbzjNL4/3zPdpKGaIUCLL/tYQ4USOZDaP125l94piWgYTHO6I8PjJXtpDiZEE6u5IkhfPD5rtUNrCHOuK8uzZQcJJ9VWbDHaLRjiZo2UgSUc4RTKTI5bOTau331DC/B8kMjqD8Qy/ON7LI8d6uTBwdXHliaIbkiMdEQwpcTssVAWdV42uPfhiGz890s3Pj3dzrj9OZ3jmKzyXC7oheeJUH3vXlF/SqmopUx10cdf6Cr69v51UVmlOToSp3j0GhBDvBr5VeP8OQGXfzQJ2i0YCHbtVozuS5lsvtnJ+MEGJx0510MXx7hhZXRbEIG3UBN34nDbWVfl56UKIjCF5uWWIG5ujHGoP0xvNsLHGz/VNpUs6MXSp0BtN8/TpfnqiaVZX+JBS0h1JY9EERW47d26oJOi2s6LUTU8kTbHHxuOn+rBbLZzsiRNJ5XjpglkK7ypMPWmCZfNQmCnsVo17NlbSFkqQSOfoCKeIZnT2nemnqcxLdfDq0jJjsaOhiKNdUSr8DnK6JKeb6a0D8QwrSqcfoTzTF+NIZwSA3SuKr5pX1hdL0zGUJJUzuNAf50xvgoZiN6/dWKmmrKfAK21DhJM5bl9XMd+mzCnvu6GRnx3t4aFDnbx9d/18m7PgmaoD9kHg/wH/Unj/bGGZYoa5dU05nWGz4vE7+9s40hVB18FrtyAlWDUzYTad01lf7UfTBEG3nbfvrieR1UFK3HYLD73ShdUiaAulsAhzne31S6s1xlLkpZYQx7ujDCVyGIb5oFxd4WMgluG6lcVcX0iWvmV1OS6bFQF0R9MMxDMIKQknswwlsvzgYCe/dnMTe5qK8bumLxa6HNlcF+T9N67gwRdaGErnyOYkr3ZGsE7RmS3xOrhltTlxYBiSlWUekjmddVUz0wDdOarS1Wm7+mSHy2ZKXxzpjNAVznOofQhNiGUvvjtVHjvZh1UT3Lx66ed/jea6FcWsrfTx1edaeNuuOiVJcQ2mWgXZBrxhhm1RjIHLbqG53Muh9jBuh5XaIjfZnE5lwJSXuG1NGZVjjL5vX1fByjIvn3v6HBf6E0RSObK6QXXAic9lpUTleCwKij12ynwOBmIZnjvXh8tmJZ0zeM/19dy/tXakN6PTZuE1hYd5LJ3j+XODJNJ50oVWNtVBFy2DCV63afy2Q4prs6uxGLfNwsG2MDk9T5XfSdA9ve+SYUj2nR1gKJll94riaU1rjqax1IPDpqEJcc0ols9p4/5tNbjtVloGEkTSeQIu67j5Yoqr8/iJPnavKL5q26eliBCC99/QyB98/wgvXgixR1XTXpWp9oJsEkL8WAjRL4ToE0I8JIRommnjFBdpLHFTGXCyd205e9eVs6bSDwh8LvMLfqwrwsG2oUs0hIbFM0OJLIc6wmhCY22Vn/u31owkYR9oHeJnR7pHxD0V80vHUJKHj3RzqD0MwPVNJTywtQavw0o0pXOsy5TN8zhslzTGPtsX56WWEMlsHp/TRlY3qClyc/3KUl6/uZqGEjerK5Sm03TJ5HX2nRvAZrEQdNlJZXWePdvPz4/1TDmvbjCRpWMoNSIdMpNUBVwTnkL0O21srg3gtluoCbpYUaoKd6ZCeyjJqd4Yt62dej/Qxcz9W2sIuGx87bmW+TZlwTPVodaDwGeANxbevx0zH+y6mTBKcSVBt537t5qSaS0DCQ61m2Xl+84OkMnpxNL5kXCv227BIkw1fbfdLHHXDUmgMPVkswjO9sXxOawjN/zDHRE12l0AHOmIEE7mCCdzlHsdJHM6lX6zJU2px0E2b1Dhd+KyaQzGM3SGUwRdtpFG2ef7EwRcVtx2C3ld0lzuZfeKpavCPdckMjrprEHAZSGVM6gJOukMp9GE4GRPbEoj/qDbRtBtI5LKzWh1aiKT51x/nEq/c8Jq9smsTnXQTWsoQX8se0m/UcXEePxkH8Cyy/8axmW38PbddXzh6fO0DSav2nt0uTNVB0xIKb8x6v03hRAfnQmDFNemsdRDY6mHZ88O0DqYJJ7JY0gDv9NOfzTDYKG6ymbReO/1DZzqjiEBt8PCrsYiHnyxnUzenI4Mum2Ekzmqr+J8pbI6qZyu2hnNAHndYCiZo8htw2q5MgBdFXQxlMzhdVh46nQf/fEsTaUefu3mJo50hpFS4nHY2L2iiB+/2k1OlzisGlZNkDckrYMJaovcWDR42y6VBDvTFHvs7Gkq5lBbiBKvhe0NRaTzkkzeoGqK7ZpsFo3XbapCN+SMFkc8d25wRAz0jdtqL4mYjofHYcFh1SjzOknnDfrjGcp9Kgl/Mjx6opemUs+MFFIsVj5wwwq+8mwLn3niLJ968+b5NmfBMlUH7IlC8+1vYwqxvg34qRCiGEBKGZoh+xRXoTLgpHUwSdBtw2EVaEJQX+IeccAsmmAomcViEWypC1LqdXC8K8qJniihhPlg/993rkFijloyeR2bpl2inJ/I5Hn4iPmg31oXZH31zCQIL1eePNVPXyxDuc/BHesvjpClNB/iW+uCrK7wEk3l+KdfnCaSzhFKZNjdVMzdG6s42DZEOJklmdGxaIKcLvE4LJR5nZzvj7Om0ksiY6jKtVkkrxt0hNNoGpwfSPKRW1aSN+S0BE4jqRwHW4fwu6xsry+akajTcHGAJgQT3Z3bbqXU58BuE1QFnMsuh2m6DCWyPHdukA+9Znln5FQGnLxzdz3ffKGV39rbrKJg4zBVB+xthd8fvmz5BzEdsuX96ZsjhlvSnO6NcqzLnErUhGB9lY9ERsfjsPL4yT46hpK0DSb5wE0ryBtm5KsnnGYwnuWzT55lT1MJfpeNwx0R/C4rd62vHBktJzL5kfJ4pR01fUKFaxi67Fo+frKP3miGxhI3hpQ8frKXWCZHJqtTW+RGNyQtA3EePtKN127FomlsqQvSNphkc22Anx/rBcCtWXjD1ko8SmJk1nj4aDedQyksmtnix2rRmG5rzaOdEbojabojUFvknhEH+vqVJbSFkpT7HNjGiLZeTjqn85PDXbhsFrwON3dvqMShVPMnxS9P9KIbktdtVMUuv3HrSh7c36aiYFdhqlWQK2baEMXUcNktlPudHO+OIQC7RfBKTwxDgtBMTaH+WBarptEXTbO+yk8yk6c7Yjpgg4ksHocVu1XDYbUQTeWJpnMjqvvlfifrq/1EUzk21S4PRefZ5PqmEs71x1lZdjEhPps36I2afQBfbh1CACd74rhsGjVFLm5sLqUq4OKXx3uJJHMMxLJsqPGz/0IIKc0cIp/TSiydp9TrmLEqOsXYDBdC6AYUeWYmQlTqddA6mMRh1WYs6uS0WVhd4Zvw+k+f7qc7kiaeznPrmjLlfE2Bnx3pprbIxcYaNVNQ4TejYN94oZVfvXnFpD6Ly4Up36mFEBuB9cDIUE1K+fWZMEoxOaoCLu7dXIUQAt2QGAXpHinhtrXlHGwNo0uDZ84O0FjiZs/KUtJ5gydO9nGyJ0rrYJI37agxR+DhNPvO9LOjoXikfdHWuuD8ndwSo67YfUlbqFg6xzNnBoimspT5HGyp9fOjQ93kdYP6Ci9v2FpDfbGbR4/30joYZ12VD6umsbbSzzNnzF5zhpS8dkMl8UyeohlsY6MYm9UVPloHk1gLYriPHO2ZdruvNZU+KgNOnDZzIDQTpHM6z58bxJCSG1ZeW3g5p0uay7xk8jp3LtME8ukQSeXYd3aAD9y4QhUuFPjY7av4/sEO/vInx/n6B3er63IZU23G/WfArZgO2MPAPZgNuZUDNsOc7YtzsHWIyoCT7fVBnj03iFUTXN9UghBi5KY6Wljz5lWlhBJZ1lT6cNosVAVcvHhhkERG57ETfVwYSLCzoZh1VX6i6Rw90RTfO9BB0G1DIvAUqiNV/8jZp2UgSTiZI50zONIZJZbOEkrmqClys7k2iCEZKecOuG00lnjYUhfE67Cyp6mYREZnTaUPu1Wj2HqxSCKT19GEKHQ/SLOtvohkJs8rbWGqgk5uai5VN8MpsqHKxzNn+vE6LBxqi9BU5uWV9vC0vy+BgqRMJJXjhfODuGwWblhZMmaxxkRoHUzSHTF7VZ7rj1+zJ+FNq0o53x+npsiFfQlFvzJ5nWfPDpDNS25sLsFuNbXRJjItG0nmePJ0H0IIbltbftXo8mMnesnpkns2Vs6k+YuaYo+d371zNZ/88XEePdHHneuVYz+aqUbA3gxsAV6RUn5ACFEBfHHmzFIMc7YvRt6QtIeSHOsKc7o3QV2Ri7ZQEofVwvpq/xURquEoi5kQOkDQbWdlmZeDrUO0h1Kc6o3x/LlB7t1cRW80Qyie5URXlFKfE5/DggBKvXZVgj4HaAK6IykOtA4RSebojaUo9jhI53QQkv948iwAJR47O33FVAedvHh+kGKPnW3jdDLojqR46lQ/Od0gksrROpjkYOsQ66v9hc9SimTWzBFUTJ7HTvYRTuYYSuaIpMxcvspp5GxlC9Ho490RKvwuVpZ5GIyb++0Mp6YsTVHmc2C1CIYSWU71RLFo4qoq+wGXbdzP1GKmPZSiJ5Ihbxh89omz9MeyrK708bZddSNO73i0hZIkMqaYcedQijWV40+j/exoD1UBJ1tqgzNp/qLnXXsaeHB/G5/80TH2NBWrLhyjmGoz7rSU0gDyQgg/0IdKvJ8VVpZ5sWhQ7LUjEAhgMJ5BNyS6ITnWGaEznEKO0TLkSGeEnkiGk90xSr2monpXJMmF/gQtgwl+eaKXRCaP1WKOBnXDoC+W5lhXhNO9Mc4XmgKf74/z3Zfb2XdmYMzjKCZGKqvz8JFuHjrUyVAiSzqn83JriLO9MbrCSXKGjsNiQUhJKqvzs6O99EbTnO6JkczqNJd7aRlM0hvNcKI7RihxZVHEYDzD4fYwmbyBEIJYKkdOl7gdVrxOKxYNaotcuFWS/pQIJ7P0xzNk8waGblAfdHLflqppaa199bkL/Ptjp/npkW5evDBIfzyDJsBh1aYl/eK0abjtFs73xznWFeX5c4OmY79I6I6kiCRz095Pmc+B3aqRyuoksjp5Q9IbTdMfy1xz27piFw6rwKJBdXB8JzuWzvHU6X7u3lh5SRW5wpRZ+dSbNtMdSfFXPzkx3+YsKCY1BBZC/D9MwdX9Qogg8AXgABAH9s+4dQoCLhs3rSqjxG3js11Rktk8ZT4PhpSc6Y3SH8vSGU5x29pydjZe+hAo9TroGDL7SPZE07QMJnDZLEREDpfNQjZnUFPkwmbRWFnm4VhnlINtQwwmIsTTeW5ZZba2Od0bJ6dL2kJJtmQCagQzRTrDKcKFB0rLYIK1lT5euhDixZYQhpQ0FrvZu6acjqEUElOawmYRCA10Q3KkM8L6aj/dgMuu4XFc6kR1R1L86FAXRwv9CVeWeyn22mkJJYkks6wq91HisRNN5ZGSCUsTKEwG4hm+f6ADiwY2DZx2K2mdaX8fjnVGSWV1QsksbptGddDF+io/Vk2MTD8ahiSezeNzWCcclW4dTBJKZOmKpLEUptzsU5zOnGuOdUV4tT2CJuCeTVXXjFRdjYDLxgNbq8nqBo+d6OOVtiE2VPupn8CUcX80zbdfaseQklKvY1xx1UeO9pDNG9y7uXrKdi5lttUX8eFbVvIfT57jjvUVaiqywGTnIM4A/whUYzpd3wLuBPxSysMzbNuypyeSHlFVrgm6qAy4CCVySMCiaVT4XUTTpgp+PJO/Yvv11X5qily8eH6Qnx/t5ZW2ISRw29oKttUHcdstHGoP01Tq5TWry/jkj48ihCBvGFwYSPC//+cQv//ataws8xBOZqnwO/HY1bTVVKkKOPE4LOR0SZHHxkcfPMir7WFSWR2H1YLDZuE9exp5qTVE62CS3Y1FnO5NcLQzzOneOI+f6CWnG1zfVEJzue8KYc1EJk8sk8eiadQWu9CEQJfgsllZXeGnZSDBgZYh8oZkVYWXXY1KIX8yhJM54hmdVNZAIrBo2oz0VN1aF+BkT5TGUi+NpV621AavEGR97GQf/TFTpuSG5ok1eK4KOHFYTYeuJuhkQ3XgmtGZl1pCtAwkqPA72dFQNG/T1MPTfoY0I8fTccCAglSIxn1bqrlvy8SdpJ8c6aE7bObRPXmyb1wH7IeHOmkocbO9PjgtO5cyv3PHKp4+3c/v/vchfvzRm2hcxkK1w0zq2yWl/Dfg34QQDZjth76CWQX5LSFESkp5ZhZsXLaMni7wOi34XVZqi13YLWZ0w+uw4HVaKfc52NEwdu5GwGUzR8HhFJm8js9pI+iycsNKU/vL67QSTuY41RvFkNBc5jHD8/Es7aEUf/D9I7z7+gY+dPPKa1ZRKa6Ox2Hl/q01vNoR5v989zCvtofRNIHLZmFFqYeg28arHWF8DhuvWV3G9voiKgIuXu0Ywu+0kMwaDMSypHL6mKrmTaVeXrOqlMMdEVaUeij1OjjRHaWp1I3DplFX5B6Ru1hMU1ELhcYSN06bhm5IJBDP5HnkeDfvuK5hWt+NO9ZX8GpHBK/TSk3QxcmeKBV+54gUjG7Ikemy3lj6qvuSUhbEenNsry/iLTvquGtDJaFElrqiq0d8snmDE91RXroQIqebx3zD1uoJJavPNJtrAwgBnkIrtfliQ5WfR1028tLghuax20z1RNI8d26Qj922SuXMXgWH1cJ/vnsH9356Hx/55gG+/5s34F7mA/qp6oC1Ap8CPiWE2AZ8GfgzQD2hZ5CGEjeJbJ68LtlQ7WdHw5U3wh0N145i7Gwspn0oSSyTI5HJ82pnhP5Hz1BX7KI7kqG+2M3LrSGiqRx2m8ZbdtbwmSfOYxiSTC7P4yf6aCz2cP+2GoYSWdwOy4yVyi8X0jmddE7H67DypX3nL5lmXFnmpchtI5k1eOhQJ7tXlPDMmX5ePDfAhcEkPZE0hjTzuFZXeguN2K9E0wS7V5Swe8XFB8WWywo0bFaNUCLD+iql6TYWg/EMz5wZwGHV2Lu2/BJ1e6tF47qmYh4+0oUhJRYhyOYMWgcTrL1Kcvu1ONkTp67YTTyTpyuS4khnhKqAk3ftacBm0bBogh0NRbQMJlg3zv9+mP54hlM9ccDMAX3N6jKK3HaK3NeO1NmtGgOxDKd6YvjdNgbiGfK6ZD4KIp02y4KI0N6+voLKoLMgcD32tf/Rq51ICQ9sq5lj6xYfdcVu/u3tW/ngV1/itx98hc+9Z8eUq3yXAlOVobABd2NGwW4HngL+fAbtWvZ0R1K4bBY2VF/9QZnXDZ49N0g8nWdPUzElhVFzTjdGRq7N5V4+fvtqTnRH+OIzFwDB2f44ZT4H4VSWWuki4LIhpaQnmuaHh7qpL/GQyesMxjL0RtN8+6U2QsksDqsFl93sXaecsImRzOZ5+EgPiUyeCwNxjndGSWXzuO0Wyn1OIqkc8UyOxjIvbpuFTN4gldOJpPN0hlP4nXZqipz86k0rqPA7R25Yed1AEwJNE+R1g31nB0hmdfY0lYybvL2i0KMumzdoDyUp8zmm1UJnqdEymCCZ1Ulmdboj6Sv6+fmdNtw2Kw6rBSGgudxHddH0mtg7rGZu1uG2IX4Ry1Dmc7L2smq7NZW+q1bgjbbPZddIZQ3K/Y4J25DXDV7tCDMQz7CyzE08Y7CrsWhWo97ZvDGh/pSXM/reNlkMQ9IdTeN3WieUu2fRBBV+Jy+1mAPUPU0lV0zjfv9gJ1vrgsu69+NkuHVNOX9+/0b+5IdH+ZOHjvI3b9y0bCOHk03CvxN4B/B6zKT7bwMfklImZsG2ZcvxriiH2sNoAu7eWEnwKqPX3liGzqEUAKd6YtzQ7ODV9jDHuqJUBZzsXVvO/gshzvbFqSt28b4bGnn+3CCZvE5eN3jt+gp2N5WAhMdP9vL15y+MTFNtqQ2gIRhMZBmMZzndE2NluRewEk3lsFnM3Izl+uWZCNF0jnAiSzZvMBjP0h1OE0nnsVo0yn12BuM5UnmdgMvKlpoAv7K9FqtF8MzpAU73xthaF8Rls3DHugqePx/CMCS3ri0jkzN49uwALruF126opD+WoauQq3K6N8aeprGnS4Z54lQfg/EsAZeN129WbVOGqSt2c74/gcNmGVNawmmzEPDYKHLb8TjM/8t0lev3NBXz2SfPcrovhi7B77TSXO6ZkpPhtFl4/aZq0nn9Crti6RxWTRvTqTo/kOBUTxyH1YLbYePGVcFZlaR44lQf3eE0ayp946ZPjLndyT66I+kx5XcmwivtQ5zqiWO1CO7bXD0hB/N4d9TsEJLKs7rSNzI1DHCiO8rJnhh/cf+GSduynHnPngZ6Iik+88Q5KvxOfueO1fNt0rww2QjYHwEPAr+nGm7PHomsmVBvSEjldILjrGcYkiKXDY/DQqrQMxCgNZSkYyjJy60hXHYLHQUHrT2U4h2761hV4ePxE72kcmYy8fCN+g1bavjxq910WjNIKfE7bWS8OslsDrfDgsdhpTbgJI/kqdP9ZPOSpjIPTWUe/E7bFZGUznAKTZhK/UuVSCpXyK9xXRJKH4hn6I2kebUjgi4ldqugrshJ+1ASu0XgslqxWy24nQbZhIHPbuf1m6sp9ztHcoxqityUeu3ctKqUzqEU2bwBwOmeGC+cH2QgkWVNhY+BeIZSrwO33UI6p1MTdJHXjauG9hOFoo3hz5rCpNzn5C0768b9e1soScBpxabBylI3upTT1suLpvNIKbFoGsKQ7Ggs5u276qe8P7tVuyKy1B5Ksu/sABYhuHN9BUWXRUh9TvNRIKWkKuDCabNgSLDMwtgqrxsjie3toeSEHbBMXh8Rlm0LJSfsgBmGeb8aiGcQmJ0jcnlJNm9MyAGrK3LTHU7jd1mvcGpbBhKUeOy8fpMaxEyW37trDT2RDP/66BnKfA7edV3DfJs050w2CX/vbBmiuMimmgACcNut4zovoUSWx070FhSay/A5bSMj5g3Vfl44N0C518GFgQTb64s42ROlqdSLEAK/0zrSYDtZeAAP35w+fscqfvhKJ4lMng01AcLJLOW+BKsqfKws83CgbYh9Z009sLfuqGP/hRDn+xO47Br3br6YsHthIMHz5wYBU5l/KarqZ/I6vzjWQ06XdJW4ubFQnXaiO8orbWHah5IEXVZ+dKiLTM7g+lUlbK0LUOSxMRTL0FDqIZ036ImkuHO92UC7L5om6LaPJMnrhsRtt1JX7KZlMIluGFg1gd9lZyCexWbRqCxMS75hSzU53eCp0/08c2aA7Q1B1o6TM3RTcynnBxI0TlHkc7kyEM9woitGbzxDvE1nfU2QVzsi4zoDhiHJG/KqU20+p5XXFhpfN5d5uH1dJYOJLN4ZlHsZiGeQEvJSMpTMXuGAVQVc3LOxkkxOJ2dIcrokbxhYtJmfgrRaNNZX+2kdTLCheuK5cw6rhTWVPjqGkpPaLpzKjThueUOnYyhNqdeBwzaxCGNzuZf6YjdWTVwx/XjPpiruXF+xrPOYpooQgr970yZCiQx/8sOjlHjs3L3Mmpgv7xKEBYrTZrlC0+tyusKpghMl6Y1mKPZcDIuvLPPylp11nCpMGQ7nj/RG0xxqD7OyzMNNq0ppCyVZWealPZQc6St465oyPnLrStoGE5zpi1Puc7JnRUkhIuPi3x87UxBolbzaGebG5jKyOZ1kVpLJX8zNyOQvVtllCpGbpYZeeLjCpecbTuYwDIMyr52TXTHO9MUBiTwDb9tRx5oKH32xDLF0Hp/Lylt31uF3Wvn58V6khF2NRdzYXEpnOMWaCh+d4RT9sQw3NpfgtlsZKmg7VfhLuH3dxZu/pgkyWYOBgop662ByXAes3O+kfBrq7cuVoNtOe8T87sVSec73x9k+TgQnndP5+bEeklmdG1aWjKto77BaeO/1jbxjdwPPnRugdTBJWyE/b6aqxNZW+oml89gs2rj6V/FMHl1K+mJpttVVzmqO59a64JSmEM3pWe+kBg4Bl41yn4PBRAaXzUZjiXleg4ksNcGJReev5kAr52vq2Cwan3nXdt71xRf52LcO8bUP2rl+5dXTJ5YSygFbpDSWemgPJRFC0FBy5Q11W33RJTkc2bzBk6f60A3ojaZ57YZKqgs3n4OtQ+QNg8F4hr95+ASD8QzFHjtVQRdNpV4sFsGOhmJzytNtfmTsVgtuu5WVZV5+criLmqALx6ib1OpyH3ldIgQ0LdHkVLfdyk3NpfTFMpckSPudVi4MJin22Cj2mVOzmbyB12FhfXWAnGHwvQOdxDJ5Hj/Zx3df6kACqyu8NJZ66ItnuHGlGTVMZvM8cqwHKWEomWXvmnKKPHZ+ZXvtmDb5HFZWlHroi6XHrdpSTB2HRaPEbactk0QTkDOMcaMxoUT2kjY24zlgoUQW3ZCU+Ry4CtP4NouGVZu5B7vLbuE1q8uuuk48k8dlsxCKZ3j4aBenemN4HBb2rim/ah7qXNE2mOSlliEApOSavS2HsWiCOwrCnwPxDM+fG8TrsFLhm3iRgmL2cNutfPl9u3jL557nQ19/mW9/eM81i8+WCsoBW6R4HVbumUDeQSyd47lzg1iEQEozx2MokR3JGzrfH+d4V4S+aIbTPRGOd8cIJ3PUFLmwCMHOhiKay3wYhqQ3lub/3L2Wv/vZSawWjffd0Eh3OM2qctP5iKZy6Ibk+fOD+F02bm4uXfKjw7piN9VBF8+c6SdSqJIaSGRZWeYF4MbmUk71xImn83zszmYG4hnK/U7WV/t57HgP3eEUHeEkVosgmc1jKzx0K/1OVpZ56Y6kiKfzeBxWhuJZfnK4i+qgi+3jJEgLIZbVCHKu2VDjZ1tDEeFUDpuASr9r3CT8Cr+T2iIX8Ux+3ArG3miaHx/qwmrRuHVNGdc1lVBb5KbIY5tSheB0WFXu5YevdPDMmQFsVo1NNSluWV1Bx1BqQThgNuvF6b/JXJts3uDZcwNmGsDKEl6/qYq2UJJIKjdSNa6YX4o8dr7+wd286T+e4/1feYnvfeQG6scILCw1lAO2xDnXnxhp7Ntc7qVjKEk8nefR473cs7GKvlgGTTPVsg+1D5HJG2TyBt2RNPXFblZX+Ai4bbxwfpDz/QnO9MW4c0MldUE3ayv9BFw2oukcJR4HRW47z50bJJHRSWR0BuLZeRVRnCsG4pdWIK6t9BFJ5Shy29hcE+Sd19Vzrj/BL4720l6VZmtdkA3Vfh470ctQKksyq+O2W4inc9QUObFqGn1RM2dn/4UhQFLhdxDP5AvVWDHWVfqVMO484HPaeGBLNad6YiDN79R4CfgWTVwz6nSsK8LRriiagHVVPhpLPfP24MnqBk+fNgcSAhiIZXDZLQsmf7Mq4OLWNWXkdGNSDco7wylaBhLYLRpn+2IIITjZHUMT8LrNVdOuYlXMDNVBF1//4G7e/J/P894vv8j//MYNl1ScLkXmdIglhNgohHhOCPGMEOIrwuQTQoh9Qoj/KuiLKWaQqoATiwYSyemeGCd7YkTSOQxpTp+sKPHQFkrSFU5x86oSs6LRZSPgspLM6kRSZu/CWNpM1h9ujnu8O8rRzggVPif3b63hplWlaJqgvtiNJsBt1zjaFebR470jFXdLDSklL54fZP+FECDRBNQXu6nwO3nDlmpuXlXG+YEERzsjZPM68YyOISXxTN6UpSg84HxOK5V+Fzc2l9ITzdAaSrCi1D1S9dgVSXOsK8pg3JQHKfHaL5nuVcwtFk0QcNso9topn+Y0lttmpSroxGoVDMQz89qh4MJAAiEENovAYbPw2o1V3LOx8pptgF5uCfHfL7dztDMy6zZWB12Tcr4A2kMJjnVFOdEdo9LvJJMzv1eGhHyhGEmxMFhV4ePL799FTzTN+7+yf8wWe0uJuY6AnZJS3gAghPgKsBPYK6W8SQjx+8ADwHfn2KYlTYXfyRu31dIZTvL8uRC1QRdWi2BPUzGlXgfn+uMjSbkNJW42VAf4wStd9McybKkNsq6QR7S7sZhjXRFqi1y0DiawWTUOd5g33BWlHjwOK8e7olwYSLCjoQghRMExgTN98Skl3C50BhNZzvWbEnjVQXMq6lhXFE0IqgJOWgeTvHhhEIfNggDu2ViJ32VjU01gRL+rI5xiZZmXW1eXU1PkGomkxdLmtJUhJf2xNCUeOxZN8MC2GhxWTWmvzSP98SxeuwW71cKaimuLo16NTbUBQoksr3aGCadyvNIWZl2VD5d97rtNVPqd7GkqweuwsrrCx21rK64p0msYktO9pvL+qZ7YhPOy5pJIKs+W2iASSanPQYnXgctuIeCyjStYrJg/djQU8dl3befXv36A3/jmAb70vl1zPh0/V8ypAyalzI16mwFWA08W3j8KvBPlgM04dqtGfbGHrnCaZFbnuqbikbB7VcCJ12kllzdYUxAZ3NNUSjydJzjq5hRw20aaAF8YcPP8uUGi6Ry/ON5DLm+wq6GYnx3rweOwksrluXNdJTaLQDfM6bN0TmcomaXc57yi0fBiY/hcgi5TjDOR0Sn22DnQMsTpvjgvtYQocttJZPLkDYOVZT7WVvmuyNu6ZW05u5uK0Q2J12n27ByM92G1CKqCLiyaYGNNAKfNwtm+GCvLvEq1fgGQzOpowlSvl0zvs+xxWLlpdSmhZJbOoRSheIafHe1GNyQfvqWJ+uK5K2Ap8Tr4o9etI5nN43NOTGBZ0wQryzxcGEjQXO6dAysnz9a6YGHw6B5xapfigHApcdvaCv72jZv4P987zB98/zD/9JYtS3LQOec5YEKINwB/A5wuHD9a+FMEGDOzWAjxIeBDAPX1UxcoXM5YNDGiUzUat93KG7ZUX7LMatEucb4uZ0WpBwvw5Wcv8Ep7mJoiFz2RDH6X2djb57Dhslu4b3M1CLOi6yeHu0hkdOqL3dy06ko7FguGIfn5sR4SGZ3aIhev31RFNm+2BNp/IUQqq5PJ57kwkCCWyuGymZGurbXBMffnGiUzUOyx86YdV1Y3Npd7F+zDbTnic1qxWgQWDTyO6TvEfqeNumJXQT8ujt1iochj50hHdEwHLKcbHO6IYLdobKzxz+iDyWrR8LsmFxW6rqmE667ReWE+qSt2L5g8NsXEeeuuOrojaf7l0dNUBZx84rVr59ukGWfO43pSyh9JKTcCnUAeGK7h9gPhcbb5vJRyp5RyZ1nZ1ZNaFXND21CSUCJHLJ2nM5SkodTN2io/m2sDRNM5vv58C7880YsQkDcMklkztyWazl1jzwubvCFHziWWzqMJwb6zA3zt+RYMQ7K60svKUi92izDFHwW83DJ0hYCjYvESdNso8zrI5iXPnh2YkX32R9Mc7QyjS3OwVFvkZHPt2NN5J7tjnOqJcaQzQutgckaOr1AsRD52ezPv2F3HZ544xzdeaJ1vc2acOY2ACSEcUspM4W0UsAC3AH8P3AG8MJf2KKZOZcCJxWJGA1ZV+GgocXPPhip+cKiT411RMnkDt91KJJmjvJBb0hVOXdFkeLFht2rcsLKEjqEUayp9pPNmtef5/gQWTbC5NsDuxiLSeYPeaAarplEdXPqVoMuJbfVFPHt2gPoS90gboelEoeKZPGd64xgIdN3gndfVc/u68nH36R4VdXOrSljFEkYIwV/ev5G+aIY/e+go5T4Hr91QOd9mzRhzPQV5txDidwuvzwB/AlQJIfYBbcC/zrE9iinSXO7j9+5aw08Pd+N12gi4bNisGi6bhcqAk2g6R32xe6SMuCrgpCrgXBI5TA0lHrOViVXDatFYU+mldTCBz2nD7bDidtioCri4d3MVK0o93L6uYr5NVswgXoeVX9ley6sdYZrLxpehmCg2i8DjtNFU4ibotrO1PnjVfa4s8+J1WLFqQulYKZY8VovGp9+5jXd84UU+9q1XePDXr2NHw9U7xSwW5joJ/yHgocsWf6rwo1hk1BS5eeeeBvpjGWoKSeN7VpbQPmg2yrUVKlf6omkePtqDTRPcsa6cWCFpfbFVIEXTOfqiaRIZnQOtQ/hdVu7bUs2OhmLWV/k52hllRambUp+TO9aVk9WNkQbpiqXFkY4wp7pjaAjWVPqm1TLIYbXwqzet4ER3lLoi94S0jypUGynFMsJUy99pCrV++SW++sHdE27ivpBRQqyKCXGgdYj2UJKNNX6ayy9OI3odVrwO82OUyuo8faqfvCGRwO4V5ijl8ZN9/OxIN4YhOdU7XM2ncce6Cl5qGUJKyU2rSvEtQEHEs31xjnZGqA66aC+oZ+87089gIovfaWVLTZBVlT4OtoVpHUzSGkryhi3VY/ZZPNAaoj2UYmNNQCXVL1LimTx/9ZNj/OxID1LAzvoidjUWUV9y5a00ksxxsH2IgMs2bueCYTwO6zX7vyoUy5kSr4P/+vU9vOsLL/DeL73Il9+/a0EXf0yEpSmuoZhRsnmDUz0xklmdY13R8dfTjZHm1KMFJc/2RomkcgzEM8RSOfpiGQwJrYMJQoksQ8ncgk0mPt4dJZnVOd0TJZPT6YqkiKXzhBJZIqk85wdNDaRUITE/pxvoxpXijumczqmeOMmszvHu8a+hYmHTMpDgdG+cnG6QyxnEM3nEOAUWRzojdIfTnOyO0RdLX3W/3RGz4bpCoRifmqCL73z4eioDTt73lf08crR7vk2aFsoBU1wTu/ViIvnVVKgDLhvXryxhTaX30vCw0PAUFN+31AXZUhsotAVJkM3r2CymcOl0iaVzI+rxo9ENOaLoP1kait3ohiSUzCEx82+21gdxWDXcDgtG4XDXNRWzusLLTc2lY7YIctosI+fYuAx6nC1VqoMuttT4cDusBN027t5QSdk4U4YlXnOK3WHV8DnGj+6e7YvzxMl+fnm8l97o1R01hWK5U+F38p0PX8/aSj8f+eZB/u3RMxhjDHoXA2oKUjEhbl1TTl43rtlce0WphxWllzppqyt9lPkceBwWHthWSzyd5/GTfQA0lZlOy3RlGo53RTnUHsZtt3D3xsqRZH8pJb883kMokWNlmWfSIestdUGK3Db2nR0EzG4BOxqClPkcCCEo95sPX5/Tds0ppL1rJ3YNFQuXYo+dFWV+djbkKPHa2dFYNG5hyboqP9UBFw6bdtXik9HR4uFIqkKhGJ9Sr4Nvf2gPf/T9I/zLo6d57twA//iWLXOq9xZOZnmpZYj9FwZpCyUZiGfJ5g3sVg2vw8rn37vjmt0slAOmmDBTdRxuXVNG62CSxhIPXoeVwXiG7kgKr8NKdbCIlsEEXoeVTN6g3O+YUguW4SmeZFYnnsmPPPByuiSUyBXWmfgUTzZv0BtNY0hJTjewanC2P0FtkYvVFX6kFMQzeTbW+K+9s1Eo52vxkzcMBJDI5KkOXv2GH03nsOev7oCtrfSRNyRWTdBwjejomd4YoUSWjTUBPA51+1YsX5w2C//01i3sWVnCX/z4OHf9y9P82s0r+NBrmmYln3ggnmH/hRD7L4R44fwgp3pjSGnOEDWWuCnxOPA7rWR1MzXBPoF7vfoGK2adcp+Tct/FKcb9F0JU+p3YrBqd4TSdQylOdEdZXeGjzGfn7o1Vkz7GppoAOV1S7LFdUkVmt2psqw/SHkqyYRJ96p4508+ZvjgXBhJsqQ1iGAZ1RS46hlKEk1nWLHI9M8XU8bvMCt6aIudVG1Wf6olxoHUIgNvXlY9buWi1aBNqjTOUMEfcYOZb3rxKiVIrljdCCN66s44bm0v5u5+d5NOPn+Vrz7Xw5h11vH13HavKpyYTI6WkYyjFgdYh9reYTtfZPjPf12WzsKOhiNdvquK6phK21AWm3LdVOWCKOSdVSESvL3ZT5DbzZFK5POcHYuy/kEUCe1aUUDQJmYoSr4M714+tt7Wuyj/SVPxa5HWDly4M8oODHVgsGpoQSCmJpvO0hZKUeO1z3iRZsbDI5nVO9EQ52RPl/i3V1IzTr3F0PuJYuYmTxWHTsGqCvCFV9EuhGEVN0MWn37GNX795BV985gLfeKGFLz97gbpiFzc1l7KhOsDqCh/lPgclXju2QnQqqxuE4lkGE1naQgnO9SU40xfjUHuY3qg5Y+J1WNnZWMSbttdyXVMxm2oCI9tPF/UtVsw5fpeNumI3XqeVrbVB2ocS9MczPHKkGykl396fJ5LM8bZddXPegPVIZ4T/2t/OyZ4YuiG5eXUpm2oDnO83Rz9Om4Ul2BNWMQlO9cRoDyXRhOArz7Xyx/euH3O9dVVmlNRu1SaUm5LI5HniVB+6Ibl1TfkV0TW33co9myqJpfMzUrSiUCw1NtcG+fd3bKM/tp5fHO/h8RN9/PRwN9/a3z6h7S2aoKHYzZ6mEnY0FLGjoYg1Fb5ZSx1RDphizmkq85DM6pR67ZR47TjtGi+1DFHksdMXzWCzCKKpHOmcfkmz6rkgkswhMHs++l02it0OGko8GBKSWYMyn6mAr1ieGIakzOfAbrVgswiK3ONPQVotGpvG6ec4Fh1DKaKpPABtg8kxt/U5bQtSL0+hWEiU+Ry867oG3nVdA1JKOsMpzvUnGIhlGExkRuSSbJpmioJ77dQVuagv9mCfw/u7csAUc87m2iCrK3w4rBpCCDx2K6srzGhB0GWlO5rmXH+Czz9zgY/d1jxnUbAzvTEeP9mLVRM8sLUai6axsSaAz2Fla12QtZUXbVYsT168EKLY4+B1myrZUO3nninkK45FJJnjTG+M7kiKxhIPdcWuGdmvQrHcEUJQW+RekF1JlAOmmBdGV4VpmmDv2nL2ri0H4G9+eoJM3qBlIMFQMjdnLYuOd0eJpnVAsLEmwB3rL236uhT6WCqmRzJrRqhWlHq5c30ljhn6TBzrihBN56kKuLihuYSge3G16VIoFJNHzaUoFhw3ry6l1GdnS10Qn3PuxghbaoNUB53UFrvYXq/awiiuZNeKYlaWebh+ZcmMJsIPt65yWLWrVlYqFIqlg4qAKRYcN68qY0tdELfNMqe6WY2lHj56WzOaECrapRgTv9M2K/3nmsu9VAac2C3anOagKBSK+UM5YIoFiX+eEo3dc5z0r1AM41XSEgrFskJIubh6KAkh+oHWwttSYGAezZkv1HlPjO3AwVna90JlqZwHzP25XOvzspCurbJlbObKlsncWxYTC+l/uRCYqevRIKW8Qjl50TlgoxFCvCyl3Dnfdsw16rwX177nkqVyHrDwzmUh2aNsGZuFZMtiRF2/S5nt66GSDRQKhUKhUCjmGOWAKRQKhUKhUMwxi90B+/x8GzBPqPNeXPueS5bKecDCO5eFZI+yZWwWki2LEXX9LmVWr8eizgFTKBQKhUKhWIws9giYQqFQKBQKxaJDOWAKhUKhUCgUc4xywBQKhUKhUCjmGOWAKRQKhUKhUMwxi6L3hRDCC3wE2AMEgTDwAvA5KWVs/iybXZbrecPcnLsQwgMUAWEpZXwm9qmYOYQQq6WUpxeAHQKoAPqllPo82WAF1lD4vAKnpJS5+bBllE3quixihBAW4AHMe+zw9XsB+KGUMj9/ls0P83E9FkUVpBDiR8A3gMeACOAH7gDeK6W8bz5tm02W63nD7J67EOI24E+AaOHHD/iAv5FSPjqdfc8lQoi9wCcBA9Mx/XZh+Q+klG+cT9smixDig5cvAj4O/KuU8svzYM/fSSn/oPBZ+UfgNNAM/K2U8ntzbMt7gF8DDnHx87oF+LKU8utzbIu6LksEIcQ3gMNceY/dIqV893zaNh/My/WQUi74H+BZQLtsmQY8O9+2qfNefOcO7APcly3zLLbrWrhGfsAJ/B2mZo0NeGK+bZvCuRwCfg58EHgv8L7CzfC982TP44XfTwKlhdcu4Pl5sOUZCoPlUcsswD51XRbGdVmMP8Azk1m+1H/m43osiilI4DPAk0KIw5gjnQCwAfjsvFo1+yzX84bZPfcMsAl4cdSyTUB6BvY9lwgpZbTw+g+EEA8ADwPF82fS1JBSbhVCvAF4B+bD/avA2+T8RTKqC1G5EinlQMHGlBBiPqYMhoC3CSEe5WKk547C8rlGXZelw4+EED/B/L4N32NfA/x4Po2aRx667Hr4gVuYxeuxKKYgYWSufzXmhyQMnJHLYJ561HkHMc/79HI4b5i9/7kQogr4A2AzZlRNx4y2/IOUsnO6+58rhBB/CnxNStk6atlm4O+llHfPn2XTQwhxF+bUUrOUcvs82fC+UW9/IKWMCiF8wP+SUv7FHNviBX4duB7zPjCEmZvyRTnHuaAL/LqEgeeZh+uyWBFClAK7uXiP3Sml/Mt5NWqeKDwXcpjXIwg0Am3At2frmbsoHLDlmiwohAhKKcOF1/cCG4FzwP/IxfCPmwbL9X+uUIxHweEoAoakKhpRTBMhxDPA8HNEFH6vB45JKV8zP1bNH0KIx6WUtwkh/h1IAE8AWzGd0rfOxjEXiwzFV4GVwLeAvwX+C1hRWL6U+T6AEOJvgddj5slsBuY8KXke+Cpz/D8XQvzbbO17Llkq5wHzdy5CiEEhxNeFEA8IIZzzYcMoW24XQjyB+R34a+C/hBCPCyHumAdb9gohnhJCPCGEePuo5T+YB1t+p/B7sxDi6YJdzwohbp5rWxYpPwDOA38qpbxZSnkzsH85Ol8FjMLv9VLKP5RS/kJK+fdA2WwdcLHkgDVKKd9z2bJXCh78cuAGKeUthdePCCGemldr5oZZ/Z8LITYAupTy5KjFD87EvueScc7jW/Nlz3RYYP+Tw8A/A28E/lAI0YH5wPqxlDIyx7b8OXCXlDI5vKAgofILYK6rdv8KeB1mHuUnC9WQv4U5ZTPXvAH4V8xqzA9KKc8WptQeAm6cB3sWFVLKfxZC2IFfE0J8hEV4/5thviaE+CLQLoT4JvAUZsDj5dk64GJxwJZrsuD2gsOxbng6UgihAd75NmwOuPx/PmMJkUKIf8LUL8oLIUowb979mJG226a7/7niKufxNyyi84AF+T+RUspDmFHnPxNCNGM6Yw8Bt86xLQupaESMckDnu/CjuOAAFkspzwJIKQfmqSBgUSKlzAKfFUJ8HngP8Oo8mzRvSCm/IYR4DHgt5r3IiplPOGvXZFE4YFLKfxBCfIWLyYLtgLMQHlyySCmDYyz+LeADc2zKnHPZ/3wHcBb4CynlSzOw+53DEcVC0vp3hRCfmIH9zjVL5Txg4Z3LJTfdwgP+Hwo/c827MZ2dv+PSopH3zoMtjwghGoYLP6SUPxRCnAfm4178A+Bm4MejBqg+4Og82LKoKeTVfmW+7ZhvpJRdzOF1WCxJ+MsyWVAI8fTot4XfG4CjS/m8AYQQj0gp7y7kedwB/ARzWqFTSvkH09z3s8DewugPIUQR8E1MJ6BiepbPHUvlPGBpnYtCoVBMhMWShL9ckwV/yJXn/eIyOG8Ae+H3G4E3SCn/s5ATdtMM7Pt/MSpnRUo5hJlP8vEZ2PdcslTOAxbJuRQqpBYEC8yWBVP4sZBsUSiuxqKIgAEMJwti5n49CPyGlPKe+bVq9lnG592DmWR8G7BKSpkqLH9ZSrlzXo1TLAuEEDsw0x0GgXuBlJTyF/NrlYkQ4reklJ+ZbztA2TLXCCGexGz99PNRy34HWC2l/M05tkUHjmCmM50A3je6WERxdRaNAzZMQZzzPcCa6U5FLSaW23kLIRpGve2SUuYKOkg3Syl/Nl92KZYHQogvYU77ZzDL0Lswi0HKpZQfmmNbxkrBmJdUBGXL/COE+DCwR0r5gVHLXgA+IaWcE2UAIYRFSqkLIeJSSm9h2X8BB6SU/3z5enNkk3WxaUQuOgdMoVAoZhshxFOjigKOSCk3FV4/IaXcO8e2/C5mOfxXpZRPFpb9bD4i4cqW+adQJXwSqJVSZoQQjcDTwE+BXZi9Of9HSvlnhfVbgO8Aw5/bdxYkOxowNSXLgH7gA1LKNiHEV4GfSCn/p7B9XErpFULcCvwZ0A1slVKuv8wB+wjm/+O/R6+HWbH7d5jVww7gM1LKzwlTef47mBXuVuA3gOeALwE7MZ3rL0sp/6UQ9fs9KeXLBamRl6WUjUKI92NqZDox+/neB3y6cEwr8Ekp5UPTveazxaKoglQolhujb2yT3O5FzJtcMeaNeLi10gNSypaZsxCEEH8J3I8pYNgHvL9QRbQUGH1v/KNRr8XlK842C0mvSdky/0gpB4UQ+4G7MWVR3o7pyPytlDIkzC4ijwkhNkspDxc2i0opdwsh3oupnXYv8P+Ar0spvybM/p7/jtl95GrsBjZKKS+MXliYobkHeOTy9YQQHwIiUspdQggH8KwQ4hfArwA/l1L+dcFmN6bDViOl3FjYb3ACl+R6YHPh3P8Gs2H8Bwvb7hdCPCqlTExgP3POYknCVygUE0BKeZ2Ucivwp8B3pJRbCz8ts3C4f5BSbi4c7yeFYy4VPlR4KCCl/DGM5GP+81W3miWklFkp5WcxJSlKmEe9JmXLguBbmI4Xhd/fAt4qhDgIvII5Fbv+svWHf19feH09F53WbzCxAqf9lzlfLiHEIUyx0jbM6NXl690FvLew3ouY/6dVwEvAB4QQnwQ2SbN/53mgSQjxaSHE3ZjT/tfil1LK0Khj/UHhWE9iRsbqJ7CPeUFFwBYAhZDyY4W3lZg6P/2F97uHS/Nn6Fi3YSpH24EDwK8utnnz5UQh7P9JYACzF+gBzIfN3ZhTBm8dtd7/llLeN8Y+VgKfwZxqSAK/LqU8WZhqSAFrgQZMfbn3Yd6YX5RSvr+wfRz4HOYUxhDwdillv5Ry9M3Rw8V8nEWPlPLYGMuywI/mwZzRNiwYvSZly7zyQ+CfhRDbMSPdQ8DvAbuklEOF7/boFlpynNeMsTxPITgjhBBcrEgHs0fiaFKFAdgI5iaXrCeA3x5dNDBq3ddgTiF+QwjxD1LKrwshtmCKof4W8Fbgg6Ntuuy8xjrWm6SUp8Y5xwWFioAtAKSUg8ORCuA/gX8ZFbmYSedLA76G+QDdCLRiPnAVC5ttwO9gjmibMPXQfgnsEWZLGoC3YU5DjMXnMW+AOzBv0p8d9bcizErT/4XZZeBfMEfPm4QQWwvreICDUsrtmO05/mx4YyHEXwsh2oF3sbQiYArFgkWazdifxMzh+hZmHlUCiAghKjCnA0fztlG/ny+8fo6LUbR3AfsKr1swxa/BTDGwTdPcnwO/IYSwAQghVgshPIUctD4p5RcwI2fbC/ldmpTye8CfANvHsOnN1zjWbxccR4QQ26Zp+6yiHLAFihBihzCbyx4QQvy8kLCIEOJJIcS/CLP57AkhxC4hxPeFEGeEEH9VWKdRCHFSCPE1IcRhIcT/CCHcmKHfjJTydOEwvwTeND9nqJgE+6WUHVJKA7M1TmNhxP8IcF8h/+L1mPkgl1CoHL0BU1n+EGYkq2rUKj+WZiXOEaBXSnmkcJxjQGNhHYOLzt03GTVVIaX8v1LKOsxG0R+dmdNVKBQT4FvAFuDb0myX8wrm9/bLwLOXreso5Id+HHOwBfAxzCnAw5gV9sOae18AbinkmV3HlVGvyfJF4DhwUAhxFPMeZMVMyj8khHgF8zn0b0AN8GThXvVV4A8L+/hHTCfuOaD0Ksf6S0yH8XDhWH85TdtnFTUFuTARmJUc90sp+4UQbwP+GjMUC5CVUr5GCPFxzIfuDiAEnBNC/EthnTWY04vPCiG+DPwm8E+ATQixU0r5MuZIom7uTksxRTKjXutc/N5+BzNMHwJeKuRQXI4GhC+fJhhj38ZlxzEY//4w1hTGg5hVWH82xt8U02CqBRmFbVuAGOb/sxd4r5SyZwbNmzGEEI8Ae4B9Usp759uehY6U8geMKgoZThkYh89IKf/8su1bGKPPqpSyF/P/MMwfFpY/iRl1G73uFZ/Ly9crDOj+iEuLWcCcjfnaGLZuv3yBlPIkZoXlMH9cWP5VTEdteL0U8OEx9rkgURGwhYkDM9/nl4WRwB8DtaP+PpyHcgSzHVO3lDKDmcA47FC1SymHR0HfBG4qRDreDvxLYXQTw5xbVyxOnsS8Wf0640w/FvK0Lggh3gJmTkchx2IyaFwM+7+TwlSFEGLVqHXegFkar1h47JVSbsFMlL7kIVj4PMzJc2C4qOEq/ANmJEahWBYoB2xhIjAdq+E8sE1SyrtG/X0iUYvLoxQSQEr5vDTbGu3G1I45M/PmK+YCaQoc/gQz3+MnV1n1XcCvCiFexZyiuH+Sh0oAG4QQBzBHzH9RWP53QoijhSmMu1hgbYOWGkKIWwspCP9TSDH4r4IDdY8Q4r8vW+/HY+ziaaC5kKJwQgjxWeAgUCeE+IQQ4qVCysKfF/bjEUL8VAjxauH//LbC8r8TQhwvrPuPhWVfFUK8eZQN8VG2PCGEeBA4IoSwCCH+YdSxRqIVUsrHMAeFihlEStkopRyYbzsUV6KmIBcmGaBMCHG9lPL5QvLi6rEqs65C/fD2wDu4GLUol1L2CVOP5fcxpzYVC4zh0P4Y4fyPXrbeRxkj92p0aL5QDn73GOu8f9TrFsyo6xV/K7z/E8yk2NHLVP7g3LMNs0iiCzPPZ7gg43NCCE9B72i8gox7MaPmYKYofEBK+ZtCiLswZQF2Yw7+flSoTivD7ELxegAhREAIUYzZn3WtlFKKiek0XVMT6jJpA4ViWaAiYAsTA3PK51OFqMUhzETqyXACeF8hOlEM/Edh+SeEECeAw5gJ2I/PjMkKhWIOmEpBxhOFVAY/8LeFZa1SyhcKr+8q/LyCGRFbi+mQHQHuEEJ8Sghxs5QygqnLlAa+KIT4FUxZk4nYfC1NKIVi2aEiYAsMKeUnR729op+ZlPLWUa+f5NLoyK1gVkEChpTyI2Ns/wngEzNjrWI5MNUEcMWsMJWCjL2jp6AKUavLtZP+Vkr5ucsPJsyG5K8D/rYQqfoLIcRu4HbMfNKPYk5LT1Q7alxNKIViuaEiYAqFQrH4eZJrFGRchZ8DHyxIliCEqBFClAshqoGklPKbmDIA2wvrBKSUD2Nq020t7KOFiWlHjakJNUl7FYolgYqALUEuz+dRKBRLGymlLoT4CfB+JimuLKX8hRBiHfC8GbwijtltoRn4ByGEAeQwmyX7gIeEEE7MaNawptQXCsv3Y3b1GE876ouY+nIHC5Gyfgr9B4UQz2BOf3qFEB2YMjoqUqZYsghTmUChUCgUCoVCMVeoKUiFQqFQKBSKOUY5YAqFQqFQKBRzjHLAFAqFQqFQKOYY5YApFAqFQqFQzDHKAVMoFAqFQqGYY5QDplAoFAqFQjHHKAdMoVAoFAqFYo75/7anIERYteH/AAAAAElFTkSuQmCC\n", "text/plain": [ - "
    " + "
    " ] }, "metadata": { @@ -234,21 +279,41 @@ } ], "source": [ - "# Here is the solution code for the above:\n", - "# \n", - "display(cheese.corr())\n", - "from pandas.plotting import scatter_matrix\n", - "scatter_matrix(cheese, alpha = 0.8, figsize=(10, 8), marker=\"s\", diagonal = \"kde\");" + "temp = distill.corr().iloc[-1]\n", + "display(temp.sort_values())\n", + "scatter_matrix(distill.loc[:, [\"Temp9\", \"InvTemp3\", \"InvPressure1\", \"VapourPressure\"]], alpha = 0.4, figsize=(10, 10), diagonal = \"kde\");\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Which column is the most correlated with the outcome variable called \"Taste\"?\n", + "Let us build a regression model using that measurement of \"H2S\", the concentration of hydrogen sulfide in the cheese, to predict its `Taste`.\n", "\n", - "Let us build a regression model using that measurement of \"H2S\", the concentration of hydrogen sulfide in the cheese, to predict its taste.\n", + "There are 30 measurements (rows) in the dataset. For this demonstration we will use the 15 measurements (0, 2, 4, ... 28) to build the model, and then the other 15 measurements (1, 3, 5, ... 29) to test how well we can predict taste.\n", "\n", + "To select every second row in an alternating way:\n", + "```python\n", + "build = cheese.iloc[0:30:2]\n", + "display(build)\n", + "test = cheese.iloc[1:30:2]\n", + "display(test)\n", + "```\n", + "\n", + "Try it below, and use the `.shape` command to verify the `build`ing and `test`ing data have the correct shape." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ "First, we set up an `instance` of the linear regression model:\n", "```python\n", "mymodel = LinearRegression()\n", @@ -272,22 +337,29 @@ "We need numeric values for `X` and `y`. We can get those as follows.\n", "\n", "```python\n", - "print(cheese[\"H2S\"]) # A Pandas Series (single column from the matrix of Cheese data)\n", - "print(cheese[\"H2S\"].values) # NumPy vector of values, \n", - "print(cheese[\"H2S\"].values.shape) # Notice the vector is just a 1-D array of 30 values\n", - "print(cheese[\"H2S\"].values.reshape(-1, 1)) # Force them into a single column\n", - "print(cheese[\"H2S\"].values.reshape(-1, 1).shape) # Now we have the right shape for scikit-learn\n", + "print(build[\"H2S\"]) # A Pandas Series (single column from the matrix of Cheese data)\n", + "print(build[\"H2S\"].values) # NumPy vector of values, \n", + "print(build[\"H2S\"].values.shape) # Notice the vector is just a 1-D array of 30 values\n", + "print(build[\"H2S\"].values.reshape(-1, 1)) # Force them into a single column\n", + "print(build[\"H2S\"].values.reshape(-1, 1).shape) # Now we have the right shape for scikit-learn\n", "```\n", "\n", "Scikit-learn requires the `X` data (the values used to predict `y`) to be a column vector or a matrix. Notice that a column vector is just a matrix with 1 column. This is because, you will see later, you can have 1 or more columns used to predict `y`. Therefore every input used to predict `y` must be in a column. Each row in the input matrix is one observation.\n", "\n", + "There is a shortcut to force the column to be extracted as a column:\n", + "\n", + "```python\n", + "build[[\"H2S\"]].values\n", + "build[[\"H2S\"]].values.shape # check what the shape is\n", + "```\n", + "\n", "So this will work to build your regression model:\n", "\n", "```python\n", "\n", "# A single column in matrix X (capital X indicates one or more input columns)\n", - "X = cheese[\"H2S\"].values.reshape(-1, 1) \n", - "y = cheese[\"Taste\"].values\n", + "X = build[[\"H2S\"]].values\n", + "y = build[\"Taste\"].values\n", "mymodel = LinearRegression()\n", "mymodel.fit(X, y)\n", "```\n", @@ -346,31 +418,144 @@ }, { "cell_type": "code", - "execution_count": 64, + "execution_count": 150, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "The intercept is -9.78843 and the slope is = 5.77641\n" + "The intercept is -128.5 and the slope is = 76.13\n" ] } ], "source": [ - "X = cheese[\"H2S\"].values.reshape(-1, 1) \n", - "y = cheese[\"Taste\"].values\n", + "build = cheese.iloc[0:200]\n", + "X_build = build[[\"InvTemp3\"]].values\n", + "y_build = build[\"VapourPressure\"].values\n", "mymodel = LinearRegression()\n", - "mymodel.fit(X, y)\n", - "print(f\"The intercept is {mymodel.intercept_:.5f} and the slope is = {mymodel.coef_[0]:.5f}\")" + "mymodel.fit(X=X_build, y=y_build)\n", + "print(f\"The intercept is {mymodel.intercept_:.4g} and the slope is = {mymodel.coef_[0]:.4g}\")" ] }, + { + "cell_type": "code", + "execution_count": 147, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 147, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAuF0lEQVR4nO3deZxcdZnv8c9TVd2dJgsJIcZAEiIE9CZIGuwZYKIooDOIrBfEOyDuxLkDDM5FCeooopc7LDKKwqCoKIxBxTCyBGV02DQIaEeTQCJCRMgqJG0S0tjppeq5f5yq7trr9HKququ+79crr+46VXXql0N46nd+y/OYuyMiIo0jVusGiIhIdSnwi4g0GAV+EZEGo8AvItJgFPhFRBpMotYNCGP//ff3efPm1boZIiLjyqpVq3a4+4z84+Mi8M+bN4+Ojo5aN0NEZFwxsxeLHddQj4hIg4k08JvZVDNbbmbPmNnvzOxYM/ucmW0xs9XpPydH2QYREckV9VDPDcAD7n62mTUD+wB/B3zJ3b8Y8WeLiEgRkQV+M5sCHAd8AMDde4FeM4vqI0VEJIQoh3oOBrYD3zaz35rZN81sYvq5i8xsrZndambTImyDiIjkiTLwJ4CjgJvd/UjgVeBy4GbgEKAN2AZcX+zNZrbEzDrMrGP79u0RNlNEZGzq7OphzaZddHb1jOp5oxzj3wxsdvcn04+XA5e7+0uZF5jZN4AVxd7s7rcAtwC0t7crhaiINJR7Vm9h6V1raYrF6EuluPasIzit7cBROXdkPX53/xOwycxenz50IrDezGZlvexM4Omo2iAiMh51dvWw9K617O1Lsaenn719KS67a+2o9fyjXtVzMbAsvaLneeCDwFfMrA1w4AXgoxG3QURkXNm8s5umWIy9pAaONcVibN7ZzfRJLSM+f6SB391XA+15h8+P8jNFRMa72dNa6Uulco71pVLMntY6KufXzl0RkTFm+qQWrj3rCCY0xZjckmBCU4xrzzpiVHr7ME5y9YiINJrT2g5k8fz92byzm9nTWkct6IMCv4jImDV9UsuoBvwMDfWIiDQYBX4RkQajwC8i0mAU+EVEGowCv4hIg1HgFxFpMAr8IiINRoFfRKTBKPCLiDQYBX4RkQajwC8i0mAU+EVEGowCv4hIg1HgFxFpMJEGfjObambLzewZM/udmR1rZvuZ2c/M7Ln0z2lRtkFERHJF3eO/AXjA3d8ALAJ+B1wOPOjuhwIPph+LiEiVRBb4zWwKcBzwLQB373X3XcDpwG3pl90GnBFVG0REpFCUPf6Dge3At83st2b2TTObCMx0920A6Z+vKfZmM1tiZh1m1rF9+/YImyki0liiDPwJ4CjgZnc/EniVIQzruPst7t7u7u0zZsyIqo0iIg0nysC/Gdjs7k+mHy8n+CJ4ycxmAaR/vhxhG0REJE9kgd/d/wRsMrPXpw+dCKwH7gXenz72fuCeqNogIiKFEhGf/2JgmZk1A88DHyT4srnTzD4MbATeHXEbREQkS6SB391XA+1Fnjoxys8VEZHStHNXRKTBKPCLiDQYBX4RkQajwC8i0mAU+EVEGowCv4hIg1HgFxFpMAr8IiINRoFfRKTBKPCLiDQYBX4RkQajwC8i0mAU+EVEGowCv4hIg1HgFxFpMAr8IiINJtLAb2YvmNlTZrbazDrSxz5nZlvSx1ab2clRtkFERHJFXXoR4Hh335F37Evu/sUqfLaIiOTRUI+ISIOJOvA78FMzW2VmS7KOX2Rma83sVjObVuyNZrbEzDrMrGP79u0RN1NEpHFEHfgXu/tRwDuBC83sOOBm4BCgDdgGXF/sje5+i7u3u3v7jBkzIm6miEjjiDTwu/vW9M+XgR8Bf+3uL7l70t1TwDeAv46yDSIikiuywG9mE81scuZ34G+Bp81sVtbLzgSejqoNIiJSKMpVPTOBH5lZ5nPucPcHzOw/zKyNYPz/BeCjEbZBRETyRBb43f15YFGR4+dH9ZkiIlKZlnOKiDQYBX4RqZrOrh7WbNpFZ1dPrZvS0Kqxc1dEhHtWb2HpXWtpisXoS6W49qwjOK3twFo3qyGpxy8ikevs6mHpXWvZ25diT08/e/tSXHbXWvX8a0SBX0Qit3lnN02x3HDTFIuxeWd3jVrU2BT4RSRys6e10pdK5RzrS6WYPa21Ri1qbAr8IhK56ZNauPasI5jQFGNyS4IJTTGuPesIpk9qqXXTGpImd0WkKk5rO5DF8/dn885uZk9rVdCvIQV+Eama6ZNaFPDHAA31iIg0mFCB38xazez1UTdGRESiVzHwm9mpwGrggfTjNjO7N+J2iYhIRML0+D9HkDN/F4C7rwbmRdUgERGJVpjA3+/uuyNviYg0FOXtqZ0wq3qeNrNzgbiZHQr8E/DLaJslIvVMeXtqK0yP/2JgIdAD3AHsBj4WYZtEZIzY8NIelndsYsNLe0btnMrbU3tle/xmFgfudfe3A58e6snN7AVgD5AkGDJqN7P9gB8QzBO8AJzj7juHem4RidZn736K25/YOPD4fcfO5fOnv3HE583k7dnLYAqHTN4erfGvjrI9fndPAn8xs31H8BnHu3ubu7enH18OPOjuhwIPph+LyBiy4aU9OUEf4PbHN45Kz195e2ovzFDPXuApM/uWmX0l82cEn3k6cFv699uAM0ZwLhGJwOpNu4Z0fCiUt6f2wkzu3p/+MxwO/NTMHPi6u98CzHT3bQDuvs3MXlPsjWa2BFgCMHfu3GF+vIgMR9ucqUM6PlTK21NbFQO/u99W6TVlLHb3reng/jMzeybsG9NfErcAtLe3+wjaICJDNH/mZN537Fxufzx3jH/+zMmj9hnK21M7FQO/mf2RoOeew90PrvRed9+a/vmymf2IYCPYS2Y2K93bnwW8PPRmi0jUPn/6G3nfMfNYvWkXbXOmjmrQl9oKM9TTnvX7BODdwH6V3mRmE4GYu+9J//63wOeBe4H3A1enf94z1EaLSHXMnzm5ZMDv7OrRUM04FWaopzPv0JfNbCXw2QpvnQn8yMwyn3OHuz9gZr8G7jSzDwMbCb5IRGQcWfbEi1x53zqa4jGS7tqANc6EGeo5KuthjOAOoOI9n7s/DywqcrwTOHEIbRSRERrN3vmyJ17k03c/DUBvMgnAZXetZfH8/dXzHyfCDPVcn/V7P+lNV5G0RkRG3WimR+js6uHKFesLjsfNtAFrHAkz1HN8NRoiIqMvOz1CZqfsSHrnm3d20xw3evtzj/cltQFrPAmTj/8SM5tigW+a2W/M7G+r0TgRGZlMeoRsmfQIQ9XZ1cPu7j76koWrq684daF6++NImKGeD7n7DWb2d8BrgA8C3wZ+GmnLRGTERis9Qs5kbipFU9xoTsToSzpXnLqA844+aDSbLRELE/gt/fNk4NvuvsbSS3VEZGzLpEe4LG+Mfyi982KTuS0JuPm8o1h4wL7q6Y9DYQL/KjP7KfA64JNmNhlIVXiPiIwRI0mPUGoyF2Df1mYF/XEqTOD/MNAGPO/uf0mnVf5gpK0SkVE13PQIwRyB0Zt3vKffmdgcH53GSdWFyc55LPB7d99lZu8F/oWgGIuI1JFipRCDOYLCydzmGLzam6xm82QUhQn8NxPk5F8EXAa8CNweaatEpKruWb2Fxdc8xHu/+SSLr3mIe1dvAYI7hStOXVDw+lg8puWb41jYYutOkEf/Bne/gRA7d0VkfKhUCvG8ow/iqjMOpzluTGyOK39+HQgzxr/HzD4JnA+8JV2OsSnaZolItYQphXjeMQdx0uGvVVK2OhEm8L8HOJdgPf+fzGwucF20zRKRagm71l/58+tHxaEed/8TcBeQ+S++A/hRlI0SkepRKcTGEyY75wUEJRD3Aw4BDgS+hjJsitQNlUJsLGGGei4kqJz1JIC7P1eqTq6IjF2VUjNrKKdxhAn8Pe7em8nSYGYJipRiFJHaKBfQM889vWU3X7h//aikZpbxL0zgf9TMPgW0mtk7gH8E7gv7AelVQB3AFnc/xcw+B1wAbE+/5FPu/uOhNVtEoHyu/cxziZjR1RNsthqN1Mwy/oVZx7+UIEg/BXwU+DHB7t2wLgF+l3fsS+7elv6joC8yDOXW32c/lwn62YabmlnqQ9kev5nFgLXufjjwjaGe3MxmA+8CrgL+z7BaKCJFlVt/n/l9b4l8isNJzSz1o2yP391TwJr02v3h+DJBmof8f30XmdlaM7vVzKYN89wiDa3c+vtizwHaeStAuKGeWcA6M3vQzO7N/Kn0JjM7BXjZ3VflPXUzwbLQNmAbuTV9s9+/xMw6zKxj+/btxV4i0tDKrb8v9txVZx7OHRccw2NLT9DEboOzIA1PmReYvbXYcXd/tML7/pUgzUM/MAGYAvynu7836zXzgBXpoaSS2tvbvaOjo2w7RRpVmFU9WpvfmMxslbu35x8vOcZvZhOAfwDmE0zsfsvd+0u9Pp+7fxL4ZPpcbwM+7u7vNbNZ7r4t/bIzgafDnlNECpVbf6+1+VJMucnd24A+4BfAO4EFBCt0RupaM2sj2AvwAsFKIREpQb12GW3lAv8Cd38jgJl9C/jVcD/E3R8BHkn/fv5wzyPSaIqt0x+N1Ar6Mmls5QJ/X+YXd+9XfXWRaOUH4+y1+JllmZf+cA0xg+Z4fEg7cLPPvXLDjpKbvqQxlAv8i8zsFSAT8VuzHru7T4m8dSINoljP/qDpEwvW4vclg8UYPf3BdFuYHbjZ5+5NJkl5cB7t4m1cJZdzunvc3ae4++T0n0TWYwV9GZZidV0bXWdXD5ctL9yBO7E5XnQtfrZKO3Dzd/f29PvAl0fYc0j9KbuO38xiZqZVNzIqStV1bXTLntxIT39ugG+KxXi1N5mzFr8lESOR939spR24md295WgXb+Mpm7LB3VNmtsbM5rr7xmo1SupPsfHqRh1iyB5vB7jp4ecKXrO3P8nsaa0smjOVA/adwM+f28Fxh+7P1t17uSxvSKjc9Su2gzcRg3gsRnM83Dmk/oTJzpnZufsr4NXMQXc/LbJWSd0JU9e1npVKj3zh2+aTiMXoITeRWioVDMd89u6nuP2JoM/1lYc2cE77gTy29ISiK3KKrdSZPqmFc9pnc/vjg/22c4+eyyUnHqZVPQ0sTOC/MvJWSN0LW9e1HpVLj3zjw8+RKrJ5fkJznMf/0DkQ9DPu7NjC/BmTWfLWQ4p+Rv5Knc6uHu7s2Jx3js1ccuJhLJozdfT+kjKuhKm5+2ixP9VonNSPRq3rWik9cnM8zkfe/LqC48mUs6PEBPh1P/19zuR4ufTMxcb4NZkrYWru7mGw4lYz0AS8qpU9MlSNWNe12BBXtr5Uio+85WBm77cPV963nqa4kUw51551BAtmFf9frCmeO0RWbhitke+0pLSKgd/dJ2c/NrMzCGrwigxZo+WOKZceOek+cNdz3tEHcdLC1xZ8KZ7TfiB3duSufkq55wTucsE9c6c1lAlhqX8Vs3MWfZPZE+5+TATtKUrZOWU8u3f1Fj6xfC3xWNCb/+ypCzj8gH1D3/Xc8ugfuO6nv6cpHiOV/rLI32l77+otBcE9+zVK0dCYhpydM+uN/zPrYQxoR8XWRULbs7efVCqFEQOcyS2JIU2sLnnrIZz1ptllA3elYbRGu9OS8sKs6jk16/d+goyap0fSGpEqqVYPeNkTL/Lpu4M9kJnhmOHsXwgTuBXcJawwY/wfrEZDRKql1NLH0dbZ1cOVK9YXHI+bjev9Cxo2Gv/CDPXMBr4KLCYY4lkJXOLum8u+UWQMimoHcf5u3M07u9nd3Utz3OjNK1/Ulxy/q2qq9aUp0Qoz1PNt4A7g3enH700fe0dUjRKJShQ7iLODYXdfP2bGhER8IBNmvitOXVj2s8Zqj1ppN+pHmMA/w92/nfX4O2b2sYjaIxKpcksfhxNwg8yaa+jp96wvE6cvGXTz40aQXC1u9CWdK05dwHlHH1TyfGO5R93oaTfqSZjAv8PM3gt8L/3474HOsB9gZnGgA9ji7qeY2X7AD4B5BBPF57j7zqE0WmS4Sq1rH0pxkuwviCCzZulFbkmHJYvncdLhsyp+oYz1HrU2g9WPMIH/Q8CNwJfSjx9LHwvrEuB3QGYb4uXAg+5+tZldnn68dAjnExmR/KWPAIuveShUwP36o3/guv96hkQsRspTOJUr09362B/5yFsOrhi8x3qPWpvB6keYVT0bgWFl4kxPDL8LuAr4P+nDpwNvS/9+G0EtXgV+qarspY9rNu0KFXAv++Fq7lwV7KLtTw0O61TSHI+HCt7joUfdiGk36lHFJG1mdrCZ3Wdm283sZTO7x8wODnn+LwOXQU6ikpnuvg0g/fM1JT53iZl1mFnH9u3bQ36cyNCFCbgbXtozEPTLaUnEaI7nHutNJtnd3Vux6th4SWQ3fVILi+ZMHXPtkvDCDPXcAdwEnJl+/L8IxvuPLvcmMzsFeNndV5nZ24baMHe/BbgFgpQNQ32/SFhhhjBWb9pV8TwtiRjXnX0EwMC5uvv6STlcuOy3oSZr1aOWaggT+M3d/yPr8XfN7KIQ71sMnGZmJwMTgClm9l3gJTOb5e7bzGwW8PLQmy0yuooF3OxJ3LYKKRb2aYrztfPfxHGHzQBg8fz9Wbf1FS64vYOe/tTAKp8wk7XagStRCxP4H05Pwn6fYEDzPcD96dU5uPufi73J3T8JfBIg3eP/uLu/18yuA94PXJ3+ec8I/w4ioyITbNdtfYXH/7CDWx/7I83x+EBP/X3Hzs2pZJUthbPwgCk559q3tYnmeCynnu5YmqyVxhUm8L8n/fOjecc/RPBFEHa8P+Nq4E4z+zCwkcGNYSI109nVw7InN3LDfz9LMmtgsad/sKf+2NITeN8x81i5YQcv7HiV7/16I4lYjL5kis+8a0FBMB8Pk7XSmMKs6iksDzRE7v4Iweod3L0TOHGk5xQZLfes3sJly9fm9MzzZXrqi+ZMZf7MoETFoTMnc+WK9TQnYnzh/vVMnpDIGb/X8kcZq8L0+DGzw4EFBGP1ALj77VE1SqRaOrt6+PgP19CXLL9+IL+n3tnVwxfuX09vf2ogF88nlheO32uyVsaiMMs5ryBI0vZV4HjgWoa5rl+kFjq7elizaVfR5ZSP/2FHxaDfkrCCnnqxWrY9/SnueLJwDkDLH2WsCdPjPxtYBPzW3T9oZjOBb0bbLJHhy16NUy4Vwz2rt/CJH64te64P/M1BXHzCoUXH73uThUNDNz78HOcePVdBXsa0MIF/r7unzKzfzKYQLL8c6oSuSFVkJznrTaZIplL0p8hJxbBg1hS27t7LZcvXFg3eGS0J48wjZxcN4tMntXDR8fO5/mfP5hwPu0tXpJZKBn4zu5Fgo9avzGwq8A1gFdAF/KoqrRMZgmJJzvJ5yjn5qytJmJWdzAUws7IrcM49ei43PvxcTpI2rdqR8aBcj/854IvAAQTB/nsEOfinuHv5+2ORGiiW5CxfT9IBp7fCuYqN6+ebPqmF685epFU7Mu6UDPzufgNwg5kdRJCm4dsEq3q+Z2bd7v5cldooAlQuUFJs3XxT3EilnArztwC0xA3MuOj4+aHH6bVqR8Yjcw+fBsfMjgRuBY5w93il14+W9vZ27+joqNbHyRgUtkDJvau35PTAP3PKAj5/3/qKwzqJmHHrB/6KhQdMUfCWumFmq9y9Pf94mJq7TcBJBL3+E4FHgStHvYUiJYQpUJK5G1g8f38eW3rCQA98885u4rHKOfP7U8EQkIK+NIJyk7vvIKi29S6CydzvA0vc/dUqtU0EqFygpNLdQLJY4duiKn9BiNSDchu4PgU8DvwPdz/V3Zcp6EsY5TZMDUelOrmZu4E9Pf3s7UvxieVrBj47mIA9gqb4YFCPG+TfBCRi5CRZE6ln5SZ3j69mQ6Q+RFEsvFzOm58/+zIxy43iPf3OHU9u5OITDwUGJ2DXbd0NGAsPmMJjG3bw8R+uxojhpPjiu9uGNcwznALtIrUWKlePSBijVSy8WDAttnomSK62pmix8xsf3pCzMmf6pBaOO2yw2JsDZjHiMSOZqpi5pKgovuREqkGBX0bNaBQLLxdMM+fYvLObna/2lgz6AM3x0p/b2dVTkI1zqF9Qo/UlJ1ILCvwyakaaf75SMM3+UvhLb3/ZtfnlPnfZkxsLlncO9QtqNL7kRGplePe4IkUMt1h4ZjJ43dbdBRkvM8E0fxK3VNCf2BIv+NzsyebOrh5uerhw72FvcmipFlRkRcazyHr8ZjYB+DnQkv6c5e5+hZl9DrgA2J5+6afc/cdRtUOqa6g7WXOTqiXJX3mZCabrtr5CssL22//91oM56fBZOZ+bP3R04dvm0xyPD1TWyrjo+PlD6qmryIqMZ0PauTukE5sZMNHdu9KbwFYClxBsButy9y+GPZd27tanzq4eFl/zEHv7BnvOiRjEzEjEYvSnklx8wmHsN7GZK+9bR2+ZwN+SiPHLy0/IKZI+sTnOKTeuzDl/SyIGeM7cQEvC+OXlJ1Z9VU+Y92rVkIzEsHfuDpcH3yhd6YdN6T/RfMvIuFRsnDxuRoqgp9+XhK8+9FzZgL9PU5wUPtDbXvbEi1x53zqa4jH6Uo7ldWya4zGWHHcwNz2yYVR66tMntYQaysoP3vl3Ohcdf2hBfiCtGpKoRNbjBzCzOEEq5/nATe6+ND3U8wHgFaADuNTddxZ57xJgCcDcuXPf9OKLL0bWTqmNDS/t4eSv/KJsYC+nOW782zltHHvIdKZPauHrj/6Bf/3JM2XfM6EpxmNLTwCoSk+6WPBePH//gjsdCO5Grjs7CO7F7oYybVfPX8Iq1eOPdHLX3ZPu3gbMBv46Xbv3ZuAQoA3YBlxf4r23uHu7u7fPmDEjymbKKAq7a/ee1Vs45caVxNJbaJvjRnyIGRMM+PjyNTy2YQfLnnixaNBvSRjNcSuYbK5GOcRiu4ovu2st67a+UjCJDUHpxsvuWjtwh1BqoltkpKqynNPdd5nZI8BJ2WP7ZvYNYEU12iDRCzs0kR0QM3qTzlDTvfYkHZLOJ5avKZgUzuhPOf91yXG82pusyjh59rDOuq2vEMvL/9MUi/FKdy89/cmi74+bDbxfq4YkKlGu6pkB9KWDfivwduAaM5vl7tvSLzsTeDqqNkj1DGVDU6mCKcVDYWVxixEzL1403WHaxGbmz4x+eCT7i29vf7JoHYDuvn4u/eHa4E6nSHtf7U3y9NbdLJozNWfVUG8yWJEkMhqiHOqZBTxsZmuBXwM/c/cVwLVm9lT6+PHAP0fYBqmSsEMTnV09rN+6m1d7c5dT5osBzXG49B2HcdUZh9NcZhwo6amSPf59mhM5bRjtBHLZ580e1ulLFgb95nhQzrGnPzVwt1MsZfQXVqyns6uH09oO5LGlJ3DBcQcDzi0/f57F1zzEvau3jGrbpfFEuapnLXBkkePnR/WZUjthhiaWPfEin7473A2eGfz4n45j/szJABz9uv04+asr6e3PnxA1rjt7EQCfyEvDkN+GKFfJVCr7uE9znMv+7jCu/+lz9CUHv/RaEjHcne6+0juA//2RDfT0+8DeA6WGkJHSzl0ZFaV27QL8/NmX+dw9T4cO+hCUTFyd1TOfP3MyV5y6gOZEjIktcVoSMS59x2H88vITOa3tQE5rO5BfXn4Cl77jMJrjwTLP7Lq5pSZao0wdnS3lzpvnzyh4TTLlpPJW1mV/WWmSV6KgXD0yavJ37a7csINj/vXB4mPvWYzCDR57+51P3/00ZnDtWUfgBEMgTTGjrz/FFacu5KTDXzsQADMrdeZO3wezWPqkg8MoUefWyd/Ju7c/ibvT2pQYuLuYP3Ny0d2+QMkdwJrklShEuo5/tGjn7thUblfphpf2cNINP6dCqVsArj7zcB5/vpN71mwr+nyx3baJGMRjMZrj5dfHZ6/br8a6+OxrAsX3ChS7buWuZX4dYW3kkrBKreNX4JdhKTVe3tnVw7InN3LDg8+FKnloBOP5LYlYzjh3tn2a4+Dwl77S634mNMW45fw3ceGy37KnZ3AMfXJLgu9+5GgWzZkaaQCNOrVCqfMrpYOUU/WUDVK/Si3d3LO3n8+vWFcyR34xDrhTMuhDpmZu+XMG4+BWdljktLYDWTBrCqs37aJtztSBieNihhJQq5FaoVhqCKV0kOFS4JeK8oNgqRw7V65YT+8Qgn4pTXGjL+lMaAomNfPHwTNZPLPnDvpSKRYeMKVsxswwgTJzx3LTwxtyhpFKBdRaFWRRIRgZCQX+OjPat/7FguWCWVMKdp72JVM0J2JUWJ5PwqDcd0NTDL71/nYO2Le1YLdt9sTxDf/9LLc/sXHgfee0z2b6pJaSaaHDBMr8Uo6ZpaHlAmqtCrKoEIyMhAJ/HRnprX/+l0axYHnpD9ekkxAEa3Fa4obFjM+8awGfX7G+4mc0JWL0lxnW+chbDs6pjZstM9zR2dXDnas25zx3Z8dmLjnxsIHXhNktnB0oM3/XYsNU5QJquVU3UY6/a7WPjIQCf50Y6a1/sS+Ng6ZPLAiWg8Mrwc+kwwMXvZn5Myfz51d7uf5nz5b8jLhRdsI3bkHgz/47FQucw+ntVgqU5TZglQuopQqyrNywI9LxdxWCkZFQ4K8TI7n1L/WlseKiN5fdlARBErStu7uZP3My5x49lxsffq6g19wUg75U0NtPppxEDFqbEnT39ZNMQXMiuIe47uxFocbjw/Z28784ygXKUhuwWhKVy0fmDy/B4NLRKMffh1rtTCRDO3frxEhu/UvtDn21N8m1Zx2RXkdf2ivdwcD+9EktXHf2opzdu5965xuw9Ln39qXoSzrxWIzzjplLPGa0NgVfBpe+4/Usnr8/azbtYsNLe8rusg1T2/ee1VtYfM1DvPebTw7kt8nkvvnuR47msaUn5PTA88/ZkrD0zuATQvXUs9M8V3O3bTXSS0v9UY+/Tozk1n/2tFb25k3W7u0PJlYXzZnK1H2a+fB3fkWpofkprYP/jPJ7oZt3dtMSj+Xk2EnEjW+tfJ5gWX5wd/D/fvIM1zzwDC1NcfqSqYLkZfl3L+V6u5WGvUpdk9HqQWv8XcY6Bf46UikYlgto+Rv5sh8vPGBKyVX0Biw8YN+cY/nBNT8I9vSliu7oTTr8pTf4AspP81AscBYL4p1dPTz8zMskKnxxlLoeYUopVqLxdxnrFPjrzHA2+mze2U1rUyJnx2trU2IgUE6f1MKVpx/Op39UmGTt/55xOABrNu0q+qWSHwR7kyn6kyHyOBBU5WpJxEMHzszfM27Gq715y02rlKUzQ+PvMpYp8Ne5MKt9wgxNnHf0QeDwL3c/PdD7jxv8/qVX+ML968sG0ewg+JOnt/G1R58P1fZ/O6eNOfvtEypwFqvqBUG6h/6U85lTFpRcohrVxqfRuHsQiYImd+tMfqGRMBONYSZLO7t6mLNfK01Z9RGTDrc/vjFUquPpk1qYPa2Vbz/2Qqi/RyIGxx4ynUVzpgJULJ5S7O/ZkjB6+5M0xYwvrFjPvau3KM2xCNGWXpwA/BxoSX/Ocne/wsz2A34AzANeAM5x951RtaORFBvCWDx//4LefG8yye7uXjq7ekJNlmbOGzOjt0J9xHJLSDfv7KY5HisolpKvOQ5ffHcb0ye1hB6WKXbXkllW2p9udKklqpp4lUYTZY+/BzjB3RcBbcBJZnYMcDnwoLsfCjyYfiwjVKrQCJDTm0/EIOVw4bLfFpTxyywNhMEedvZ5/1Ip6lM+iBYLzvF0Zs5gCWVQXOXxT759INNn2OIp+XctzYkYLfHCCd7MEtVydzci9S7K0osOdKUfNqX/OHA68Lb08duAR4ClUbWjUZTbwJXpza/b+goX3N5BT39qoPzfJ5avyRnfXvbEi1y5Yj3NcaM/5Vz4tvlFd7Tu0xQnhXNO+2zu7NgcavVKqdUupe40hropLfuuZWJznFNuXJlT0DzzpbRozlRNvEpDi3Ry18ziwCpgPnCTuz9pZjPdfRuAu28zs6KJWcxsCbAEYO7cuVE2c9wpthSx0gTt9Ekt7NvaVDDU0tPv3PHkRi4+8dCcmriZZGtfeeg5Ypbbc25JxPja+W9i4QFTmD6phUtOPCx0EC01pDTUPDilZE+olltSqYlXaWRVKcRiZlOBHwEXAyvdfWrWczvdfVq596sQy6ByY96VCo10dvXwN1c/WJBSoSUR4/6L38zJX/kFvUXKJMYM4jFjQtbSymrlfR9p8RQVKpFGVtNCLO6+y8weAU4CXjKzWene/izg5Wq0oR5UWopYLGdMZn09BEMnH1r8Om7OW07ZHI+xetMumuJBrvt8KYeYOzeddyQLD9i3qgF0pOvh1bMXKRTlqp4ZQF866LcCbweuAe4F3g9cnf55T1RtqDdhxrwzgS77zqC7rx+zoMfem0wFWTKzOvZ9qRRtc6YW5NjPlhkdqkUQVfAWGV1R9vhnAbelx/ljwJ3uvsLMHgfuNLMPAxuBd0fYhroylKyU+XcG4AMTuk1xI2HQHB8cupk2sRmzIMd+aVbmOREZL6Jc1bMWOLLI8U7gxKg+t56FzQFTLrc8wIREnJvOO5J9W5sHhk/WbNoVjOEni5fQSsSCnD0iMv4pZcM4k700E7wgQRqUzi2fEdSnzR2rL/We1kSMFJ6TK19ExjcF/jGs1IqUStWd8u8MMmP8zYkYfcnBvDXZit1NfOaUBRx+wL5aESNSZ6qynHOk6nk5Z6ngXir9wrqtu9ObsAb/u7UkYvzy8hOKpijOnPuBp//ElfetoykeI+leclnkcJc/atmkyNhTajmnAn8NlVqT39nVM1C6LyMRg3gsRjxmRVMnXPqOw7j4xEOLfk6x801oivHY0sIvi9H8e4hIbZUK/MrOWSPl8tAUyyDZn4Ke/tL5cr760LMls1dGmZFyKPl0RGRsUOCvkVLBeN3WV9jd3Vt0I1U57lYykEdZClBpjkXGn7qe3B3L487FgnF3Xz8X3N5BczxGyoPhndamBL3JJCkvLEeYrS/lTGyOF30uylKAqi8rMv7UbeAf6+POhSUJg+De058aSKLWkohx03lHsfCAKTy2YUfWKp0k/ancL4EJTbGCcoPZoioFqPqyIuNPXQb+apbXG4nsYLy7u5cLl/02ZwNVczzGvq1NBXl4JjbHeddXVxYUNKnUy44q9YHqy4qML3U5xj8Wx53zSyJmHgMsmjOVhQfsW6SCVDJn+CZTKGX+zMlcd/bYKiaSaZuCvsjYV5c9/rE27pw/7HTOm2Zz56rNBcNQmSETTzk9SScWM065cWXFAubqZYvIUNRljz9M8fBqKbbc8fYnihcoP63tQFZc9GY8nQxtb1+qYrlB9bJFZKjqsscPte8RZ1YUbfrzXyrmtMxOrfzjp/9EbzJV8nkRkZGq28APtcvjnhnaAXJ2y5aSGYbq7OrhpoefK3i+N6nlkSIyeupyqKeWclYUlQj6RpATP38YavPObprjhWvxLzp+vnr7IjJq6rrHXwvrtu4uKE6ezwnq2OaXMiw2Kd2SMM49WsXmRWT0qMc/ipY98SIfvq2jZD6dbM3xOPu2Nuf05ItNSisPvoiMtihr7s4BbgdeC6SAW9z9BjP7HHABsD390k+5+4+jake1LHviRT5999OhX19qeWmtJ6VFpP5FOdTTD1zq7r8xs8nAKjP7Wfq5L7n7FyP87Krq7OrhyvvWFRyf0BTji2cfwZTWJh7/Qye3PvYCzfHKaQ1UXFxEohRlzd1twLb073vM7HfA2EmWM4o27+ymKR4ryKiZcjj2kCBNxHGHvYaPvOVg9eRFpOaqMsZvZvMICq8/mT50kZmtNbNbzWxaifcsMbMOM+vYvn17sZeMGbOntZIsUtDmilMXFIzha8OViNRa5IHfzCYBdwEfc/dXgJuBQ4A2gjuC64u9z91vcfd2d2+fMWNG1M0ckexJ2YnNcZrjxlVnHM55Rx9U66aJiBSIdDmnmTURBP1l7v6fAO7+Utbz3wBWRNmGatGkrIiMF1Gu6jHgW8Dv3P3fso7PSo//A5wJhF8KM8ZpUlZExoMoe/yLgfOBp8xsdfrYp4C/N7M2gn1MLwAfjbANIiKSJ8pVPSuhaH6ycb9mX0RkPNPOXRGRBqPALyLSYBT4RUQajHmRjUdjjZltB16sdTvS9gd21LoRY4SuxSBdi1y6HoNqeS0OcveCjVDjIvCPJWbW4e7ttW7HWKBrMUjXIpeux6CxeC001CMi0mAU+EVEGowC/9DdUusGjCG6FoN0LXLpegwac9dCY/wiIg1GPX4RkQajwC8i0mAU+POY2Rwze9jMfmdm68zskiKvMTP7ipltSBeUOaoWba2GkNfjDWb2uJn1mNnHa9HOagh5Lc5L/5tYa2a/NLNFtWhrNYS8Hqenr8XqdGGlN9eirVELcy2yXvtXZpY0s7Or2cYc7q4/WX+AWcBR6d8nA88CC/JeczLwE4IkdMcAT9a63TW+Hq8B/gq4Cvh4rdtc42vxN8C09O/v1L8NJjE4l3gE8Eyt212ra5F+Lg48RJCs8uxatVc9/jzuvs3df5P+fQ9QrFbw6cDtHngCmGpms6rc1KoIcz3c/WV3/zXQV4MmVk3Ia/FLd9+ZfvgEMLu6rayekNejy9MRD5hIkI697oSMGwAXExSnermKzSugwF9GkVrBGQcCm7Ieb6ZOC8lnK3M9Gk7Ia/FhgjvDulfuepjZmWb2DHA/8KEqN63qSl0LMzuQoPjU12rQrBwK/CUUqRWc83SRt9RlTyajwvVoKGGuhZkdTxD4l1azbbVQ6Xq4+4/c/Q3AGcAXqty8qqpwLb4MLHX3ZNUblifSmrvjVbFawXk2A3OyHs8GtlajbbUQ4no0jDDXwsyOAL4JvNPdO6vZvmobyr8Nd/+5mR1iZvu7e90lcAtxLdqB7wdVadkfONnM+t397uq1MqAef55StYLz3Au8L7265xhgtw/WEa4rIa9HQwhzLcxsLvCfwPnu/mw121dtIa/H/PTrSK9+awbq7sswzLVw99e5+zx3nwcsB/6xFkEftHO3QHq52S+Ap4BU+vCngLkA7v619H/kG4GTgL8AH3T3jho0N3Ihr8drgQ5gSvo1XQQrGupqSCjktfgmcBaDacT7fYxlZhwtIa/HUuB9BBP/3cAnPCjLWlfCXIu8138HWOHuy6vYzMHPV+AXEWksGuoREWkwCvwiIg1GgV9EpMEo8IuINBgFfhGRBqMNXFL3zKzL3ScN431PAi3AfkArsCX91Bnu/sLotRDM7AsEOaBSBHlcPuDudbspUGpLyzml7g038Ge9/wNAu7tfNHqtKviMKZl9D2b2TwT7IP4hqs+TxqahHmkYZvY2M3vEzJab2TNmtiy9+/qdZnZn3uvuK3GOQ8zsATNbZWa/MLM3pI9/x8xuTudkf97M3mpmt6bzs38n6/1dZna9mf3GzB40sxkAeZvd6jaLpYwNCvzSaI4EPgYsAA4GFgM/A44xs4np17wH+EGJ998CXOzubwI+Dvx71nPTgBOAfwbuA74ELATeaGZt6ddMBH7j7kcBjwJXZN5sZleZ2SbgPOCzI/pbipShwC+N5lfuvtndU8BqYJ679wMPAKeaWQJ4F3BP/hvTmRf/Bvihma0Gvk5QgCPjvnTu+aeAl9z9qfTnrAPmpV+TYvBL5bvAQEUqd/+0u88BlgGRDSuJaHJXGk1P1u9JBv8f+AFwIfBn4NfpYhr5YsAud2+rcO5U3uekKP3/WrEhnTsIctdfUeQ5kRFTj18k8AhwFHABJYZ50uPwfzSzd8NA7eWh1tSNAZlaq+cCK9PnOjTrNacBzwzxvCKhqccvArh70sxWAB8A3l/mpecBN5vZvwBNwPeBNUP4qFeBhWa2CthNMJ8AcLWZvZ7g7uBFQCt6JDJazilSRSNdWioyGjTUIyLSYNTjFxFpMOrxi4g0GAV+EZEGo8AvItJgFPhFRBqMAr+ISIP5/7XPek+SKqPrAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAfA0lEQVR4nO3de5RcZZnv8e+vOp1OIImEpMFAyMlAUBcgCdiimCMKeAFELnLzKIjX6CxBHMcBdM4oHpbrAMIBZnRwInJTGEU4CIIyMiDOYUCwg0m4KshESIghxARpDJ1093P+2LuhulPVvbu7dnVV799nrVpdtWvv3s/aqTz19rvf93kVEZiZWXGUxjsAMzOrLyd+M7OCceI3MysYJ34zs4Jx4jczK5hJ4x1AFrNnz4758+ePdxhmZk1l2bJlz0dE++DtTZH458+fT2dn53iHYWbWVCT9odJ2d/WYmRVMrolf0g6SbpD0uKTHJB0o6RxJayQtTx9H5BmDmZkNlHdXz6XA7RFxvKTJwHbAe4GLI+LCnM9tZmYV5Jb4Jc0ADgI+ChARW4AtkvI6pZmZZZBnV8/uwHrgSkm/kXS5pO3T906TtFLSFZJmVjpY0hJJnZI6169fn2OYZmbFkmfinwTsD1wWEfsBLwFnA5cBewCLgLXARZUOjoilEdERER3t7duMRjIzayoburpZ8cwmNnR1j3coufbxrwZWR8T96esbgLMjYl3/DpK+A9yaYwxmZuPu5uVrOOvGlbSWSmzt6+OC4/blqEW7Dnvchq5uVm/czNyZU5k1ra1m8eSW+CPij5KekfT6iPgtcCjwqKQ5EbE23e1Y4OG8YjAzG28buro568aVvLy1j5fpA+DMG1eyeMHsIZP5aL8sssh7VM/pwLXpiJ6ngI8B/yhpERDAKuDTOcdgZjZuVm/cTGup9ErSB2gtlVi9cXPVxD/aL4usck38EbEc6Bi0+ZQ8z2lm1kjmzpzK1r6+Adu29vUxd+bUqseM5stiJDxz18wsR7OmtXHBcfsypbXE9LZJTGktccFx+w6ZwEfzZTESTVGrx8ysmR21aFcWL5id+UZt/5fFmYP6+Gt1g9eJ38ysDmZNaxtR4h7pl8VIOPGbmTWokX5ZZOU+fjOzgnHiNzMrGCd+M7OCceI3MysYJ34zs4Jx4jczKxgnfjOzgnHiNzMrGCd+M5vwGmkRlEbgmbtmNqHlWde+WbnFb2YTVnld+xe7e3h5ax9n3riy8C1/J34zm7D669qX669rX2RO/GY2YeVd175ZOfGb2YQ1mkVQisA3d81sQsuzrn2zcuI3swkvr7r2zSrXrh5JO0i6QdLjkh6TdKCkHSXdIemJ9OfMPGMwM7OB8u7jvxS4PSLeACwEHgPOBu6MiD2BO9PXZmZWJ7klfkkzgIOA7wJExJaI2AQcDVyd7nY1cExeMZiZ2bbybPHvDqwHrpT0G0mXS9oe2Dki1gKkP3fKMQYzMxskz8Q/CdgfuCwi9gNeYgTdOpKWSOqU1Ll+/fq8YjQzK5w8E/9qYHVE3J++voHki2CdpDkA6c/nKh0cEUsjoiMiOtrb23MM08ysWHJL/BHxR+AZSa9PNx0KPArcApyabjsVuDmvGMzMbFt5j+M/HbhW0mTgKeBjJF8210v6BPA0cELOMZiZWZlcE39ELAc6Krx1aJ7nNTOz6lyrx8ysYJz4zcwKxonfzKxgnPjNzArGid/MrGCc+M3MCsaJ38ysYJz4zcwKxonfzKxgnPjNzArGid/MrGCc+M3MCsaJ38ysYJz4zcwKxonfzKxgnPjNzArGid/MrGCc+M3MCsaJ38ysYJz4zcwKxonfzKxgck38klZJekjSckmd6bZzJK1Jty2XdESeMZiZ2UCT6nCOgyPi+UHbLo6IC+twbjMzG8RdPWZmBZN34g/g55KWSVpStv00SSslXSFpZqUDJS2R1Cmpc/369TmHaWZWHHkn/sURsT9wOPBZSQcBlwF7AIuAtcBFlQ6MiKUR0RERHe3t7TmHaWZWHLkm/oh4Nv35HHATcEBErIuI3ojoA74DHJBnDGZmNlBuiV/S9pKm9z8H3gM8LGlO2W7HAg/nFYOZmW0rz1E9OwM3Seo/z3URcbuk70laRNL/vwr4dI4xmJnZILkl/oh4ClhYYfspeZ3TzMyG5+GcZmYF48RvZlYwmRK/pKmSXp93MGZmlr9hE7+k9wPLgdvT14sk3ZJzXGZmlpMsLf5zSMbabwKIiOXA/LwCMjOzfGVJ/D0R8ULukZiZWV1kGc75sKQPAS2S9gQ+B9ybb1hmZpaXLC3+04G9gW7gOuAF4PM5xmRmZjkassUvqQW4JSLeBfx9fUIyM7M8Ddnij4he4C+SXlOneMzMLGdZ+vhfBh6SdAfwUv/GiPhcblGZmVlusiT+29KHmZlNAMMm/oi4uh6BmJlZfQyb+CX9F0kJ5QEiYvdcIjIzs1xl6erpKHs+BTgB2DGfcMwsLxu6ulm9cTNzZ05l1rS28Q7HxlGWrp4NgzZdIuke4Cv5hGRmtXbz8jWcdeNKWksltvb1ccFx+3LUol3HOywbJ1m6evYve1ki+Qtgem4RmVlNbejq5qwbV/Ly1j5epg+AM29cyeIFs93yL6gsXT0XlT3vIVku8cRcojGzmlu9cTOtpdIrSR+gtVRi9cbNTvwFlaWr5+B6BGJmlY21b37uzKls7esbsG1rXx9zZ06tVYjWZLLU4z9D0gwlLpf0oKT31CM4s6K7efkaFp9/Fydffj+Lz7+LW5avGfHvmDWtjQuO25cprSWmt01iSmuJC47b1639AsvS1fPxiLhU0nuBnYCPAVcCPx/uQEmrgBeBXpLyzh2SdgR+SFLTfxVwYkRsHFX0ZhNYLfvmj1q0K4sXzPaoHgOyVedU+vMI4MqIWFG2LYuDI2JRRPQPCz0buDMi9gTuTF+b2SD9ffPl+vvmR2PWtDYW7raDk75lSvzLJP2cJPH/m6TpQN8wxwzlaKB/NvDVwDFj+F1mE5b75i0vWRL/J0ha5W+OiL8ArSTdPVkE8HNJyyQtSbftHBFrAdKfO1U6UNISSZ2SOtevX5/xdGYTh/vmLS9Z+vgPBJZHxEuSTgb2By7N+PsXR8SzknYC7pD0eNbAImIpsBSgo6Njm5IRZkXgvnnLQ5YW/2UkNfkXAmcCfwCuyfLLI+LZ9OdzwE0ki7avkzQHIP353CjiNiuMofrmN3R1s+KZTWzo6h6HyKxZZV1sPUj65i+NiEvJMHNX0vbp/QAkbQ+8B3gYuAU4Nd3tVODm0QRuVnS1GOppxZSlq+dFSV8CTgHeni7H2JrhuJ2BmyT1n+e6iLhd0q+B6yV9AniapOibmY2AyzDYWGRJ/CcBHyIZz/9HSfOAbwx3UEQ8BSyssH0DcOhIAzWzV7kMg43FsF09EfFH4Eag/9P0PEl/vZmNEw/1tLHIUrLhU8ANwL+km3YFfpxjTGY2DA/1tLHI0tXzWZLROPcDRMQT6fBMMxtHHuppo5Ul8XdHxJb0Ji2SJlFhKUYzq79Z09qc8G3Esgzn/KWkLwNTJb0b+BHwk3zDMms+HlNvzSJLi/8s4JPAQ8CngZ8Cl+cZlFmz8dKG1kyGTPySSsDKiNgH+E59QjJrLrUeU+9F0S1vQyb+iOiTtELSvIh4ul5BmTWT0Y6pr5Tg/ZeD1UOWrp45wCOSHgBe6t8YEUflFpVZExnNmPpKCX7xgtmejWt1kSXxfy33KMyaWP+Y+jMHJfJqybpa19DSUzo8G9fqomrilzQF+AywgOTG7ncjoqdegZk1k5GMqa/WNQTh2bhWF0MN57wa6CBJ+ocDF9UlIrMmlXVpw2pdQ3vv8hrPxrW6GKqrZ6+IeCOApO8CD9QnJLOJbaiuIc/GtXoYKvFv7X8SET39M3fNbOyGSvCejWt5GyrxL5T0Z6A/408tex0RMSP36MwmMCd4Gy9VE39EtNQzEDMzq48ha/VIKkl6uF7BmE0Urttjjcwzd81qzLNvrdF55q5ZDXktXGsGnrlrVkNeC9eawbCJPyJ+OZYTSGoBOoE1EXGkpHOATwHr012+HBE/Hcs5zGqhFlUxvRauNYNhE7+kF3l1xa3JQCvw0giGc54BPAaU739xRFw4kkDN8lSrfvmR1u0xGw9ZWvzTy19LOoZkDd5hSZoLvA/4OvCFUcRnlrtK/fJ/d8MKdtiulb13ec2Ik7Zn31qjy7L04gAR8WPgkIy7XwKcCfQN2n6apJWSrpA0c6QxmNVSf798ue6e4DPff5DF59/FLcvXjPh3Zq3bYzYehk38kj5Q9jhe0nlkWGxd0pHAcxGxbNBblwF7AIuAtVQp/iZpiaROSZ3r16+vtItZTVTqlwf4y5ZeXt7ax5k3rvR4fJtQsrT431/2eC/wInB0huMWA0dJWgX8ADhE0vcjYl1E9EZEH8lyjhW7jSJiaUR0RERHe3t7htOZjc6saW0ctXCXqu/3j8oxmyiy9PF/bDS/OCK+BHwJQNI7gS9GxMmS5kTE2nS3YwHPDLZxtaGrmx//5tmq7491VI7X0LVGk2VUz1zgn0ha8AHcA5wREatHec4LJC1Kf9cq4NOj/D1mrxhLcl29cTMtJaB32/cmt2hMo3I8i9caUZYJXFcC1wEnpK9PTre9O+tJIuJu4O70+SkjitBsGFmTa7Uvh7kzp9JX4a5Vi+Cnn3s7C3aevu2bGXgWrzWqLH387RFxZUT0pI+rAHe6W0MoT64vdvdUvRl78/I1LD7/Lk6+/P5tRurMmtbGN47fl9aWV9ecaBFcfNKiUSd9qDxayPcLrBFkafE/L+lk4F/T1/8D2JBfSGbZrd64mUmlgYsElZdI2NDVzSPPvsCZN6yguyeqtrz7x94/8uwLgNh7lxljbpV7Fq81qiyJ/+PAN4GL09f/mW4zG3cPr3mBru6BnfP9ybW/C6gk0d0zsC+nUv2cWdPaOOh1O9UsNs/itUaVZVTP04ArcVrD2dDVzbm3PbrN9g++eS73/X4DZ96wku6ebcfnQ/1a3p7Fa40oy6ie3YFLgbeSjMS5D/ibiHgq59jMhlSpEibAVfc+zVX3Vl4+YrvWFvqIura8vcSiNZosXT3XAd8iGXMP8EGS/v635BWUWRbVZtxW0zapxLdPeVNN+u/NmlmWUT2KiO+Vjer5PhlKNpjlrb8PfUprie0mV18iervJLUxpLfGN4/floNe1O+lb4WVp8f9C0tkkZRcCOAm4TdKOABHxpxzjMxtS+WicT17dyZbegW2SyS3w7ZP3H1WVTbOJKkviPyn9OXiG7cdJvgh2r2lEZiM0a1obe+/yGk4/ZE/+8a4n2Jom/0kluPCERTUdqWM2EWQZ1fNX9QjEiqdWNWzKZ+6WBH/9jt05cI/Z7ss3qyJLix9J+wB7AVP6t0XENXkFZRNfrWrYVCqLcOW9q/jk23d30jerIks9/q+SFGn7J+Bg4AI8rt/GIGuZhSxcFsFs5LKM6jkeOBT4Y1qieSHgppSNWi2TtcsimI1clsT/crpoSo+kGcBz+IaujdKT617knifWs3lLz4Dto03W5UM6p7dNYkpryWURzIZRtY9f0jdJJmo9IGkHktWylgFdwAN1ic6aXvkN3Ev//Xdc86uBM2rbWoRKY6t577IIZiMz1M3dJ4ALgV1Ikv2/ktTgnxERK+sQmzW58hu43T09bKmw0ElvBLefNvqa9/1cFsEsu6pdPRFxaUQcCBwE/Ilk8ZWfAcdI2rNO8VmTGnwDt1LSB2hRiZeqvWlmuRi2jz8i/hAR50fEfsCHSGr2PJ57ZNa0NnR184vHn6NFGnbfwDdizeotS3XOVuAwkuJshwK/BL6Wc1zWpPq7dyaVNGxLXiQza91FY1ZfQ93cfTfJalvvI7mZ+wNgSUS8VKfYrMmUd+8MZXKLOOPQPfngAfOc9M3GwVAt/i+TlGT+oguxWZbyCpXq4283uYUtPb2Ur4dSKslJ32wcVU38EXFwLU4gqQXoBNZExJFpVc8fAvOBVcCJEbGxFueyfGQtr1BpMlVfBF87ah/Ove1RLz9o1iAy1eoZozOAx4AZ6euzgTsj4ry03PPZwFl1iMNGoVItnMELlfertsbsUYt25bB9Xutx9mYNItfEL2kuyT2CrwNfSDcfDbwzfX41cDdO/A2rUvdNpYXK+1WbTOVx9maNI+8W/yXAmUD57JydI2ItQESslVSxWLqkJcASgHnz5uUcplVTrRbO9pNbWPHMpooteCd5s8aWpVbPqEg6EnguIpaN5viIWBoRHRHR0d7eXuPoLKtKtXBOfNNcjvzmPZx8+f0sPv8ublm+ZrzDNLMRyLPFvxg4StIRJHX8Z0j6PrBO0py0tT+HpOibNbDy7pvtJ7dw5DfvydTnb2aNKbcWf0R8KSLmRsR8kslfd0XEycAtwKnpbqcCN+cVg9XOrGltLNxtB17a0uv692ZNLrfEP4TzgHdLeoKk6Nt54xCDkYzYWfHMphEtgOL692bNrx7DOYmIu0lG7xARG0hKP9g4Gu3Sh9WGbLqbx6x51CXxW2MZydj8SgYP2QSqjvAxs8bjxF9AIx2bX0n/kM1aLZpuZvUzHn38No42dHXzwuYtbOkdWDlzS28fL2zeyoau7sx9/7VcNN3M6sct/gIpb533BUwqwdTWSbzc00tvXx+fvfZBNm/tQRKtLSV6+4JvHF+9BV+LvxzMrP7c4i+Iwa3zrb1BS6nE//7APpQEPX3wYncPPX2wtTf4y5Zeunv6+NsfrajagvcIH7Pm5MRfEP2t83KTW0q8vLWPyS0tVY/b2hvc9/vnK3b9VJrV6xE+Zo3PXT0FUa11Pn/WdnT3Dr1wyheuX0nbpMo3b6sVZTOzxuUWf0FUrLnTMZeTr3gARQDQNqnyGrlbeoe+eds/q9dJ36w5uMVfINVq7vSLgC8f/gYuuuO3tKjE1r5eWkqlAfv45q1Z83PinyCyLI0Ir46/X/HMpm1G5LRNauEtu8/i3rMPHfDlUM43b82anxP/BDDcJKpKXwpDjcgpr6fv8gxmE48TfxMYqjU/XPmFal8KWWvu+Oat2cTjxN/ghmvNDzWJChjySyFrUveKWmYTi0f1NLAsJRGG6rKpNHZ/cO18j8gxKx4n/gaWNXFXm0TlmbVmVom7ehpY1sRdrcvGtfPNrBIn/gY2ksRdrR/eN2fNbDAn/ga3eMFslp7yJkDsvcuMUSVu35w1s3JO/A3Mi5yYWR58c7dBeZETM8tLbolf0hRJD0haIekRSV9Lt58jaY2k5enjiLxiaGZZRvSYmY1Gnl093cAhEdElqRW4R9LP0vcujogLczx30/NQTDPLS24t/kh0pS9b00fkdb6JxoucmFlecr25K6kFWAYsAL4VEfdLOhw4TdJHgE7gbyNiY4VjlwBLAObNm5dnmONqqDo8HoppZnlQRP6NcEk7ADcBpwPrgedJWv/nAnMi4uNDHd/R0RGdnZ15h1l3HrVjZnmStCwiOgZvr8uonojYBNwNHBYR6yKiNyL6gO8AB9Qjhnrb0NVdcZ3a8vc9asfMxkNuXT2S2oGtEbFJ0lTgXcD5kuZExNp0t2OBh/OKYbxkackPVVXTXTpmlqc8+/jnAFen/fwl4PqIuFXS9yQtIunqWQV8OscY6m64+vj9PGrHzMZLbok/IlYC+1XYfkpe52wElVryJYlHnn2Bg1630yvbXEDNzMaLSzbUWKWW/F+29PKpazr5xvELB3T5eNSOmY0Hl2yosVnT2jixY+4227t7ouLNWy+EYmb15sRfYxu6urm+c3XF91xywcwagbt6aqB8ElalPv5+vnlrZo3AiX+MBg/d/If37bVNHz9A2ySXXDCzxuDEPwaVhm6ee9uj/MORe3HurY/SWiqxpbeX0w7ekw+9ZZ6Tvpk1BCf+Mag2CWufXV7Df551iEfrmFlDcuIfg6EmYXm5QzNrVB7VMwYunWxmzcgt/jHyJCwzazZO/DXgbh0zaybu6jEzKxgnfjOzgnHiNzMrGCd+M7OCceKvYLhlE83MmlnhRvWUF1SrNBLHC6Cb2UQ3oRP/k+teZPkzm1i02w4s2Hn6sEk967KJZmbNbMIm/q/8+CGu+dXTr7w+sWNXblmxdsik7gXQzawIJmQf/5PrXhyQ9AGu71xDizRg2+CFUbwAupkVQW6JX9IUSQ9IWiHpEUlfS7fvKOkOSU+kP2fW+tzLn9lUcfuW3qGTumvvmFkR5NnV0w0cEhFdklqBeyT9DPgAcGdEnCfpbOBs4KxannjRbjtU3P5373k9/+fffzegj39wUnftHTOb6HJL/BERQFf6sjV9BHA08M50+9XA3dQ48S/YeTofOXAe19z3anfPRw6cx5J37MFxb5o7bFJ37R0zm8hyvbkrqQVYBiwAvhUR90vaOSLWAkTEWkk75XHu/3X0G/nIW+cPGNUDTupmZrkm/ojoBRZJ2gG4SdI+WY+VtARYAjBv3rxRnX/BztNfSfhmZpaoy6ieiNhE0qVzGLBO0hyA9OdzVY5ZGhEdEdHR3t5ejzDNzAohz1E97WlLH0lTgXcBjwO3AKemu50K3JxXDGZmtq08u3rmAFen/fwl4PqIuFXSfcD1kj4BPA2ckGMMZmY2SJ6jelYC+1XYvgE4NK/zmpnZ0CbkzF0zM6tOyXD7xiZpPfCH8Y6jzGzg+fEOYhiOcewaPT5wjLXQ6PHB6GP8bxGxzeiYpkj8jUZSZ0R0jHccQ3GMY9fo8YFjrIVGjw9qH6O7eszMCsaJ38ysYJz4R2fpeAeQgWMcu0aPDxxjLTR6fFDjGN3Hb2ZWMG7xm5kVjBO/mVnBOPGXkbSbpF9IeixdNeyMCvu8QdJ9krolfXHQe6skPSRpuaTOcYrvw5JWpo97JS0se+8wSb+V9GS6CE7N1SDGXK/hCGI8Oo1vuaROSf+97L1GuY5DxTjun8Wyfd8sqVfS8WXbGuIaDhNjo3wW3ynphTSO5ZK+Uvbe6K5jRPiRPkjqC+2fPp8O/A7Ya9A+OwFvBr4OfHHQe6uA2eMc39uAmenzw4H70+ctwO+B3YHJwIrBx453jPW4hiOIcRqv3gPbF3i8Aa9jxRgb5bNYdr3uAn4KHN9o17BajA32WXwncGuVuEd1Hd3iLxMRayPiwfT5i8BjwK6D9nkuIn4NbG3Q+O6NiI3py18Bc9PnBwBPRsRTEbEF+AHJamiNFGNdZIyxK9L/XcD2JKvHQWNdx2ox5i5LfKnTgRsZWH69Ya7hEDHWxQhirGTU19GJvwpJ80mKzN0/gsMC+LmkZUoWkslNxvg+Afwsfb4r8EzZe6vJ/gEblVHECHW8hjB0jJKOlfQ4cBvw8XRzQ13HKjFCA3wWJe0KHAt8e9AhDXMNh4gRGuizCBwoaYWkn0naO9026uuY6wpczUrSNJIWwOcj4s8jOHRxRDyrZDnJOyQ9HhH/MR7xSTqYJKn29/uqwm65tRBHGSPU6RpmiTEibiJZOe4g4FySNSUa6jpWiREa47N4CXBWRPRKAy5bI13DS6gcIzTOZ/FBkpo7XZKOAH4M7MkYrqNb/INIaiX5B7g2Iv7vSI6NiGfTn88BN5H8KVb3+CTtC1wOHB1JGWxIWgO7le02F3i21vGNMca6XMOsMZbF9B/AHpJm02DXsUqMjfJZ7AB+IGkVcDzwz5KOobGuYbUYG+azGBF/joiu9PlPgdYxfxZrfbOimR8k36DXAJdk2Pccym7ukvSxTi97fi9wWL3jA+YBTwJvG7R9EvAU8Fe8eiNo7/G4hkPEmPs1HEGMC3j1xun+wJr0uEa6jtVibIjP4qD9r+LVm7sNcw2HiLGRPouvLft3PoBkAasxfRbd1TPQYuAU4CFJy9NtXyZJVETEtyW9FugEZgB9kj4P7EVSNvWm9M/FScB1EXF7veMDvgLMImm5APREsnZxj6TTgH8jGQ1wRUQ8UuP4xhQjsDP5X8OsMR4HfETSVmAzcFIk//Ma6TpWjFFSPa5jlvgqarDPYjWN9Fk8HvhrST0k/84fHOtn0SUbzMwKxn38ZmYF48RvZlYwTvxmZgXjxG9mVjBO/GZmBePhnDbhSeqKiGmjOO5+oA3YEZhKMk4e4JiIWFW7CEHSuSR1VvpIasZ8NNIJRGa15uGcNuGNNvGXHf9RoCMiTqtdVNucY0akU/UlfY6kyuJn8jqfFZu7eqww0rrmd0u6QdLjkq5V4nBJ1w/a7ydVfscekm5PC3f9P0lvSLdfJekyJbXVn5L0DklXKKmzflXZ8V2SLpL0oKQ7JbVDMi2/7DR1rbRpxePEb0WzH/B5ktnWu5PMnLwDeKuk7dN9TgJ+WOX4pcDpEfEm4IvAP5e9NxM4BPgb4CfAxcDewBslLUr32R54MCL2B34JfLX/YElfl/QM8GGS2c1muXDit6J5ICJWR0QfsByYHxE9wO3A+yVNAt4H3Dz4wLSC4tuAH6XT6/+FZCGNfj9Jp9I/BKyLiIfS8zwCzE/36ePVL5XvU1aZNCL+PiJ2A64FcutWMvPNXSua7rLnvbz6f+CHwGeBPwG/jmRRjMFKwKaIWDTM7+4bdJ4+qv9fq9Slcx1Jff2vVnjPbMzc4jdL3E1S4fJTVOnmSfvh/0vSCQDp/YGFlfYdQomk6BbAh4B70t+1Z9k+RwGPj/D3mmXmFr8ZEMlCHLcCHwVOHWLXDwOXSfqfQCvJcncrRnCql4C9JS0DXiC5nwBwnqTXk/x18AfAI3osNx7OaVZHYx1aalYL7uoxMysYt/jNzArGLX4zs4Jx4jczKxgnfjOzgnHiNzMrGCd+M7OC+f8/S/HuKCC0hwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [] + }, { "cell_type": "markdown", "metadata": {}, "source": [ - "mymodel.predict(X)\n", - "\n" + "TODO: Visualize this with Seaborn" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, we would like to extract some idea of how the model performs. For that we have to take a look at the predictions of the `build`ing data, and then of the `test`ing data.\n", + "\n", + "For the model building data:\n", + "```python\n", + "predict_build = mymodel.predict(X_build)\n", + "errors_build = y_build - predict_build\n", + "avg_absolute_error = np.nanmean(np.abs(errors_build))\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": 151, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1.8751450770825844" + ] + }, + "execution_count": 151, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "predict_build = mymodel.predict(X_build)\n", + "errors_build = y_build - predict_build\n", + "avg_absolute_error = pd.Series(errors_build).abs().mean()\n", + "avg_absolute_error \n" + ] + }, + { + "cell_type": "code", + "execution_count": 153, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1.9788871919692939" + ] + }, + "execution_count": 153, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "test = cheese.iloc[200:]\n", + "X_test = test[[\"InvTemp3\"]].values\n", + "y_test = test[\"VapourPressure\"].values\n", + "\n", + "predict_test = mymodel.predict(X_test)\n", + "errors_test = y_test - predict_test\n", + "avg_absolute_error = pd.Series(errors_test).abs().mean()\n", + "avg_absolute_error " ] }, { @@ -380,6 +565,71 @@ "outputs": [], "source": [] }, + { + "cell_type": "code", + "execution_count": 161, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The intercept is -101.91491 and the slope is = [81.1501202 -9.56356174]\n" + ] + }, + { + "data": { + "text/plain": [ + "0.9069484718453001" + ] + }, + "execution_count": 161, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "predictors = [\"InvTemp3\", \"InvPressure1\" ]\n", + "X_build_MLR = build[predictors].values\n", + "y_build = build[\"VapourPressure\"].values\n", + "full_model = LinearRegression()\n", + "full_model.fit(X=X_build_MLR, y=y_build)\n", + "print(f\"The intercept is {full_model.intercept_:.5f} and the slope is = {full_model.coef_}\")\n", + "predict_MLR_build = full_model.predict(X_build_MLR)\n", + "errors_MLR_build = y_build - predict_MLR_build\n", + "avg_absolute_error_MLR_build = pd.Series(errors_MLR_build).abs().mean()\n", + "avg_absolute_error_MLR_build\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 162, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.6056633330452365" + ] + }, + "execution_count": 162, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "test = cheese.iloc[200:]\n", + "X_test_MLR = test[predictors].values\n", + "y_test = test[\"VapourPressure\"].values\n", + "predict_MLR_test = full_model.predict(X_test_MLR)\n", + "errors_MLR_test = y_test - predict_MLR_test\n", + "avg_absolute_error_MLR_test = pd.Series(errors_MLR_test).abs().mean()\n", + "avg_absolute_error_MLR_test \n", + "\n", + "\n" + ] + }, { "cell_type": "code", "execution_count": null, From 84b7ddadf803b61aa7f12577d653019f86d6b6d4 Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Sun, 22 Nov 2020 21:57:46 +0100 Subject: [PATCH 111/134] Updated the code for regression model building. --- Module-15-interactive.ipynb | 2372 +++++++++++++++++++++++++++++++++-- 1 file changed, 2243 insertions(+), 129 deletions(-) diff --git a/Module-15-interactive.ipynb b/Module-15-interactive.ipynb index a446c7c..304c585 100644 --- a/Module-15-interactive.ipynb +++ b/Module-15-interactive.ipynb @@ -7,7 +7,7 @@ }, "source": [ "

    Table of Contents

    \n", - "" + "" ] }, { @@ -45,7 +45,7 @@ "* Fitting a linear regression model to the data\n", "* Visualization of the linear regression model\n", "* Accessing data from your data frame using `.loc` and `.iloc`\n", - "* TODO: Summarizing your data using an aggregation function.\n", + "* TODO: Summarizing your data using an aggregation function and apply function.\n", "\n", "**Requirements before starting**\n", "\n", @@ -108,11 +108,11 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ - "import pandas as p\n", + "import pandas as pd\n", "from sklearn.linear_model import LinearRegression" ] }, @@ -139,16 +139,28 @@ }, { "cell_type": "code", - "execution_count": 166, + "execution_count": 6, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "(253, 28)" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "distill = pd.read_csv(\"https://openmv.net/file/distillation-tower.csv\")" + "distill = pd.read_csv(\"https://openmv.net/file/distillation-tower.csv\")\n", + "distill.shape" ] }, { "cell_type": "code", - "execution_count": 167, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -175,11 +187,11 @@ "The `.iloc` function accesses the data by `index` (the `i` in `iloc`) and for a given `loc`ation, so `iloc`= *index location*.\n", "\n", "Some examples:\n", - "* `.iloc[0:10, :]` will return the first 10 rows, and all columns\n", - "* `.iloc[20, 2:4]` will return only row 21, and columns 3 and 4 \n", - "* `.iloc[0:10:2, :]` will return only rows with index 0, 2, 4, 6 and 8; and all columns\n", - "* `.iloc[0::2, :]` will return every second row; and all columns\n", - "* `.iloc[:, -1]` will return all rows of the last column\n", + "* `.iloc[0:10, :]` will return the \\_\\_\\_ rows, and \\_\\_\\_ columns\n", + "* `.iloc[20, 2:4]` will return only row \\_\\_\\_, and columns \\_\\_\\_\n", + "* `.iloc[0:10:2, :]` will return only rows with index \\_\\_\\_; and \\_\\_\\_ columns\n", + "* `.iloc[0::2, :]` will return \\_\\_\\_ row; and \\_\\_\\_ columns\n", + "* `.iloc[:, -1]` will return \\_\\_\\_ rows of the \\_\\_\\_ column\n", "\n", "Now that you understand what `.iloc` is doing, you can understand why this code is faster, because it uses half the data set to create the scatter plot matrix:\n", "\n", @@ -192,22 +204,9 @@ }, { "cell_type": "code", - "execution_count": 173, + "execution_count": 4, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABKYAAAR3CAYAAADNfGxsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9aZBt25bfhf1W3+x+Z5+n727/2npP71WnelUlC0m2wLYQYBFgQCC6EDKE+WCM8QcwXUBYYSxECAxqCCNMSCAoY4EkJCiqUdWr19S7/T39yZP97vfqm+kPc+2VO/vmZOY5r5T/iBv33nMy955rrjnHHGPMMf5/RQjBFa5whStc4QpXuMIVrnCFK1zhCle4whWucNlQX/cArnCFK1zhCle4whWucIUrXOEKV7jCFa7wdyauElNXuMIVrnCFK1zhCle4whWucIUrXOEKV3gtuEpMXeEKV7jCFa5whStc4QpXuMIVrnCFK1zhteAqMXWFK1zhCle4whWucIUrXOEKV7jCFa5whdeCq8TUFa5whStc4QpXuMIVrnCFK1zhCle4whVeC64SU1e4whWucIUrXOEKV7jCFa5whStc4QpXeC3QX/cAzgOzs7Pi9u3br3sYR+Lp06dcxhhzIVAVBYAozclzAQo4hnbs717WGI9CmgmSLAfAMtTyWXIhUFBQlKPHOf1zp0WQZCBAVRUs/dVytm/CXO6FECCEIMpyELCx+uKNGyPId5hmgqxYuxsvX/84hYAwzRBCoKnqvvXxprzvIMkQAlQF7D17/nWNMckEabmnNdQD9uZJ9/frRJLlJJlA4c3cO5M5DNNs1/6O07zcS7ahcQbTeO4QAgTyrDrJ+54+1y4LWS6IU7lu35T3nQuBoii73uHk3LqsMe4dQ5oLknT/mX0Yznt/T9Z9mh9vZ06KN9UGRcVeFkKwtbbyRo1xek9P25zzPr8F0o85qz04aL1exPueno+zYNr+mLrKi+fPTjVG+f2cah+Epf+gYBln84HfxL2TC0EuKN/76spzlq/fRNcUdFU9U7xw0Xj69Cm3bt0u32EuBFEix69rKob2Zgz64eMnci5VBfMV46aLwtOnT7l569a+sxMgSvLiTNvvM18mHj1+wuK1G+ja/vjiTcJv/dZvbQsh5i7yO35HJKZu377Nd7/73QP/7r/54Sp/7lefstx0+D/+3re5OeNe8ugkvvGNbxw6xvPCw80xQZzhmBr356s82hrjRxmKAu8s1tC1oxf7ZYzxOKwPQrZGEQC3Z11qtkFnHLHaD1EUuD9f5Wd+8lsHjnNzFLIxiFAUeLBQxdJPbmSyXPDJ2hAhwLU07s1VX+k53oS5nEaUZnyxMSbNBcMgoeWa/KP/6198o8YI8GTbYxymdLyImYoF8EaMM4gzfnulz2o/pObofPNWm4ZrlH//JrzvNMv50csBzzo+tqHy9Zst5ut2+feva4wv+wHdcQzAvfkKrrn72Dnp/n6deLw1Zn0Q0vMTbrbdN2JNTuPx1hgvyjA0GaALsbNvnm57jMIURYG3Fmqv3XkMk4yHm2OEgMWGze//+Z8+ci6/2BgRJjkVS+PuK9rl06Dvx7zoBsCbYYNedH36foKhK7w1X0NVlV3n1mWMcaXn0/MSdE3hrYUamqqwOQzZGMoz++aMS8MxjvyM87RDXS/mZS9AUcA1NbwoA+DuXIWKdXb39k2w5wfhi40Rn66NyITgX/sn/p43ZoxJlvP5xog8h7maRZRmDIMUON91meeCzzZGpJmg6RrcaJ/en5/4iQA32y4N1zj39z1t45abNjNV69SfMVnbID/j7/rO0XZyGl6U8mTbQwi40XZouuaJfu+j1QF5LhNhby/WTj1mePP2zsS/GEcJhqZi6Rr/wB/4Dn/6v/jvUVVouuap44XLwNd/4if4s3/lbwDSrmqqwpMtD4DZmslSw3mdwytx/72v8G/++V/i/eUG9+Yv73w+Db7yta/z5/7K/4CmKry9KM+tCT5dH5KkAk1VeG+5/trG+Nb7X+Ff/3P/X5quzs+/s/DaxnEcFEV5dtHf8TsiMXUY/odPN/jj/9n3uTtX4dP1EX/rs03+4h/7yde6+M4D64OQ7XFEu2Ky3NwxTlGa7fr3jZZL14up2vqxSamLwouuzyBIWKjbzNWOP5znaxaqAoamUrOlgxsVtxxC7Pz3QZjcJgghqzQO8ku9KOVZx8fQFO7MVsp50VSF27MVxmFKu3KyQ/xNwkpPBi3zNWtXMmKCNJPBqqYozNctms7lP+PAT3jR83FNjdszFdQDrvIma7fpGMzVTNxXCC7OA4MgYaXnYxsaczWLIMloumYxzqMDsMvCKEx43vWxdJWFmsXAT6g7xpF75TKxWLcZ+DHDIKHrxfsSUyfd3xeFk9ioKM2p2QYCwWJj//66SOS54PG2R5Rm3Gi71O39624yb2kuSjs2gWWoPO/GzNbM156UAhnECiH/e7LfD4MQony281gbpzmPmq5Jlsub9ovAy35Az4uZq1ksHGCz92IyV0kqZAUZyq5z67yQZjlPtj2STHBzxqU6ZYPLdVZUtGqqIudRkWfLcUmps4zlaccjSnNuzVR2jUWOR86JEPJ9Va0cQ1NfKSn1OrA5DNkcRTRdg+utw5Mt11oOL3sBjnX5QXScynWRC8Gd2cqu6oI0E+TF9ozSjOWmg23EOOb5jjMrqqnl9+y3B1Ga8XTbP3CME8wVSSJNUXZdLp0nonTaxu2Mc20Q0BnHzFSPTyy0XINcSL/ttD5pPPX98Z55ynPBk45HmGRcb+1OJN+ZrTAMUpoXNC/njSTLeVrYqlsz7oH7fjL/VcugZmtULANDV2m4BopyeLxw2tjlvDF97sRpzlzN4nrLIclyZk+Q6Dzt+XJWGJpC3TEO9YvCJOPJtoeqKNyedV9LAnAyl1kuSPMcTZVj8KKUMM4IkowPlhuXPq5p6JpCyzUO3Xs7fr7GndnKruTa7zT8eJ3ep0Ca5fxrv/QJ9+er/NIf/xk2hxF//5/5Nf7RP/sb/NU/8btp/RgmHyboeBFCyBuV6cTUjbZL30toVeTCNnX10oOoaWS5oO8ngBzrSYy7qir7EivzNYssFxiaeqTjOzG+lq7uc2An6PkxWS6dai/KaLg7gVrV0g/9vTcZQgh6npznjhcfmJiqWDoLDYsoyVmo268lQO36MUKAF2WEabYvQQFwveXSHcc0HOPCnMbToO/H5Dn4UcadWRfH1MgFZ7oBvSj0/YQ8hyDOma/bvHetXr7nNwHyAFWoWAY9L+FaU7YCTTBfs8iFQFdV6vbl7r80y09ko663HHpecqKKkPOGn2QEsQzAe158YGLqRrvYN66xz44Ng5SWa5JllMmE14mabbBQt4jS49eooijcaLsM/IR29dXO7JO+62lc1D4XQpRVhJ1xfKK9eq3psjWKqO25aDrvc8uLM8Likqfvx7s++1rTYXMYUbX18gxRFIX52sXYGi/OCGI5lp4X73vOuar0DXRVpeUau+zKjxO2x/JsPMg+TsM1db56s1lWI10mhmFSJjkGQbIr6eOYGosNmzDJmK9bGJp6IeePoalcazmMw/TA/TsK00PHOMFFrtcJGo7BfN0qEwoTdIr33BnHxyamFEU5UQLiIDRdgzDNyHKxz4YFSYYf7Zwn0+eZa+oH+mVvKrwo3bFVQXJgYmo6fpjEQ7qq8O5SnY1heGC8cJaz4ryhqwozVRMBzBTx6knj1rOcL2eFoal86Vrj0MuAQZAUyWTBKEyxqpefmDI1laZr4JrarsRYP0jQVJWqpZKJC7qBOiFsQ1aENysH+5c9b+LnZ/hxWhZu/E7Ej48FOiX+54fbPN72+FN/5OvYhsbNGZf/8B/+Bv+bf/9X+Jf/qw/5U//g11/3EM+MmYpVVkxNo24bBwYtrwuaqtB0DQZB8kpVSLqmnqhk29SP/7mWazIMUgxNofIabh0vAoqi0KoY9P2kPMAOwkU7Y8eh7Zp4UYpratiH3Jq8acnBpmsyjlJsQ8M1dapv0P6aoOkaDMMES1epmPobZQMmmK2aZUXA3qBL19QjqwQuEnrhsBxno2q28docAdfQcEyNKM0OdUyP2jftisnGMKThGK89KTXBQcnzw9BwjHNJBp70XV8GFEWhXTXpebJ64iRwTO1SqAgqpoZtqCSZ2NcCNPGlLgsVU8MxVeJUHLj2X6ftOE/MVE22DrGPe9F0zRO3Zp0n6rZBR4/JhThwP15W8N6umIfu35qt09HVQ8d4mTgoGTBTNcuKqYuEoiiHJr4cQ8O1NMLk8PPkxwUVS9+xVYe878Pih6PihTflrJguPDgNznK+nBWmrh55gdNwDLpejKoo1C754nECReHAd910DAZ+gqEprz3uUBXlyLO1VTEYRQmWrv1YJY/Pgt+xT/eXv/eSpmvwe96bL//sg2sN/sQvPuDf+e8/54883Oan78++xhGeHH4sb4EajnRaFhv2a62EOg1utF1uHPH3QsiqKrsIvi4aFUs/cytnEGeESXYi5/Gy0XRNatabUWV0GAxd4XrLKdfxjwNkUNwgz0V5A3sZ6/Q0qNkG7xdlyKMwIRe8dqd8L+br9pHJiDjNGUfpa3Fclho2lTcsIToNP8mYq1pn3ttzNWtX0BilmawWfYMSVZeFg86jQZCgKlxq4jFKMxxDY+EE3I+XNR4vyqgX1VgPFs7GL3Pe0DWV+/MHj2WvX/TjjIW6zULdZhylDPzkjTzHJ7xDskole2WiYD9OiZL8XP0pS9fOzI10VoRFRWv9BPZ0qeFcODeQENJXMXX1wABWVZVX5lB9U6AWVWWOqZ07cfX1lkNtqjL0TcPEJz3s2a81Ha6dMbF1XkizHD/OuDtXea0cXrkQ9P1431nxKvHgZWLio7z/mtsNLwvntuMURfkz5/VZr4o0y/mbn27y+95f3LcZ/vGfvcv1lsO/+ksfS8W614Q8F8fya4A89B5vebzoBiXB6I8jojQ7cL7XBiErvYBHW+MTzcdeTCuXXCSiNOPR1piVXsDqILzw7zsIkm9l/xyNo5QnWx7Puz7b49e/Rg5619PreH34eubvVbA23Fmn0+stzfJSRfJ1YxgmPN32ed7x6Xpx+eeHrZvzRpLlpSrWafFk2+NlL+DptnfOozr+HT3t+Lws3u3rxEH7xpva2xNRiFdBngsebcq5ftY5+1wfZs8vAhf5XT0v5nnH5+m25BM5Dxy33oTYeQfPu/65fOdhOMncXeZ4jkOp5nYMonTnPFl7Tefxq2Kv73Lee/0sOG7+/Tgt533zDOf45Jkn72+l92a+v5OemVkuSr9wpXc5e+e4d7Q+DHnRDXi8JXmkfifgMDu20vNLv+wkduM02BhGh87jZflUR+FlP2ClF/Bwc7zP77qsuOg4THyrx1seomiVS7P80scWpfmZYo+TnkcXie4eH+VV/OwfF5zqilhRlPZhfwX8gVcfzvngt18OGEUpP/Ngf0WUbWj8i3/X2/yJv/gD/tonG/xd7y9e+vjyXPBwa0yU5MeqK0zIDwHS/MdzMU6U9ixD5f5cdRfp9WTTCwGnbfGNUql8kuenUx45C6bH9zoSmkJIByiIc1qV3QSp04bzdSZbAbZGEeuDEENXuD9XLasBpufvdRv6syDLdtZpXjxIEGevPZkxjel3v7OvdtbNRWIcpWVS6e7cfuW94zAZb3rOa2MSSAHcnt1Pnjz93dLWHs7vcpHYGIZsDvfbyGneg/ycOBAmn3PWz5uM1dRVHsxXDxQxOC+s9iVZsG2o3J+vnvu7Sc/Zdk7UuEAqKR3UVjttQ87rnR6EiRqmY6rcmzt87i5rPMdhokKmqQoPFqoYR1SS5fmP93ky7btMlOEuYq+fBhP1Ml1TuD9/8PxPz/VpOVmmn3m+br3R7+/xtocfZccq/4ld/vnFP8dJ9sir+NRvIo46A9JdzyqQoej5YBJvTdvHCR5teQTx8evjIrHL758aXprlfLE5Js0ES037zDxl54HJvE3GGibSZ562e5eCM9iak9jDy8D0mAd+zPNOiqrCvbnquVcJvik4be/CFvCM3bt/Yg3mD/yN14Bf+WIbgJ+6d3Cr3v/yS0v8O//9Z/zpv/WI3/vewqUHImkuSgU5LzqaxNI1da63HOITKjG8iRgXzxglOUmeY6k7m2mpYWNoKrahnnqThUleKsGMo/RCE1O2oXGz7RIkGbMX3LN9EHJBmVyYSGJP0HAMlps2WS5e+xqZrOckFcRZXiamHFPjRtshTPLXMn+viuWmJIx3jJ2yaT9O3yjHr+mapLlU7JrMcZaLC09KAfjRzlz48cHE9kfh9qzLIEjOXS3Sj7OdcUXpgYmpWzMuPV+Sir+ulqDDbGTdPt+9rRYqbqMwoXVGezkZa5zmxFmOrV6cczSxJ2GSk+YCQzvf9zNbNREIFJRz4VvZvd6yAxNT5/EOToLJ3AWxvPXVD5m7yxrPcZiMN8sFYZIdGQj8uJ8nYTzlu8QpDdc4971+Wkz8ijSTSpgHzX/NNrhWKIPNnXKM08+c5uKNfX95Lkpy8PEx/rmuqdyacRlHKTOVi39nJ9kjSw0HXZU+9ZtGO3AWHHUG3Gi5dLyIqnX+yuNLDQdDUzG13S2ReS5KMRIvvnwRggmutRw6Y6l8Od1uGKV5qVzpRelrjQlutnf7VtFUzOYVdu8yYOoqczXrVLbmJPbwMjDto0ySpXnOubRTv6k4bWLqMfCLQojne/9CUZQX5zOkV8evPurw3lL9UNI6XVP5Yz97l//LX/mIv/2ky7fvzlzq+ExdZb5uMQrTE3FF/bgTFC42bNYHIVVL39daqWtnVw6s2zpN15BO0iUQbzZcgwavh/tBUxUWGhbD4GA1mjdFJW6hbpOJQBJs7klOvA7C1vPCQet0Qoz+Jl347nVCdE0t181FolUx8eMMReFMwe1FqQG1CsJ9IQ63o7ahXTjvx3FYqB9uI897b7+qwMBi3WatGOtFO0aLDZuNYUTd1i/EMTxvha6GYzAOUzIhjiTNvQyRh8WGzeYwou4cH7S9CaITczWLOMuPVNWdxo/zeVKb8l2mg6XXeY7P1y2ZFNdVKkckNM5KBr33mV8n58xRUFWFpaZN309OlHy7TGGMk+wRTVV+bDhoT4KFiR074AwwdfXCzm5NVQ4ksFeL+R0EJ1sfFwXjkNipYum0q6ZUyHzNgkd7fatpG3DRpOzTOMuemNhD29COtIcXjWkfJU5zwiRHU5Q3UuTovHBaT+RPAi1gX2IK+LeP+2VFUZaBXwLeA6pCiFRRlAHw/eJH/rdCiK6iKP8g8M8CXeCPCCGGJx1gngt+e6XPH/qJ60f+3B/+xg3+73/9C/6jX35y6YkpmJBdXvrXvhZULZ378+dPtjiREv87BfM1m0N4YN8YOKb2O4ZY8zhoqsKtmcrrHsaxuIx1Y2gqt2ffvLn4cXlHF2UjLwKVSxzr61RDPAs09WhlncvEm6bSexxs4++cs0NV3zzf5aLn/0185sMwW7Vee/X5Qfg7aY9M8Cbasb2CIm8aXjfp+WH4cbIBb+JeM3WVO2+gn33eONUVpBDiTwkhfnjI3/17J/iILvCLwK9P/dmPhBDfKf7pKopiAP8U8LuBvwD8k6cZ4+PtMV6c8aVrR7PX24bGP/itm/yNTzd4cgGEu1e4whWucIUrXOEKV7jCFa5whStc4QpXOBpnqo1XFMVWFOVfUBTlLyuK8pcURfnnFUU5tk5OCBEKIXp7/vhdRVF+WVGUf1ORBB9vIZNVKfDXgW+fZmw/fDEA4Cs3msf+7D/0k7cwVJX/5FeenOYrzh1xmpeKBQDb44gPXw543nm9CjnnjSTLDySYHYUJH60OeLh5Psoafpzy8eqQLzZGl66YluXiXBUTTqpekeWCh5tjPlodMArPR13qpEiy3ev3KEzW9ovXrP50GNJijXa9mA9fDni67Z342S4LWS4K7qiMT9aGfL4xei0KLEKcTPklzXIebo74eHV4LKfeeeGkY5tgpefz4cvBmZSmzoo8Fye2T8PCRkri0NOvx4vad6d5hldBmp2POo4QgqfbHh++HNCbUq48T+THnAF9X9qWJ5doWw7zMd5UO3wQ1gYBH74csDYIyj877T5/XTjJPskLhbePVgfnphB5HA7zyQ5D75zPxfN4f+ftP8L+/XJRCJOMT9eHfLo+PLOC3nFjvQybd944zoZOY9oPOq+zaOL/PeucbJ2f1/l0UgyCw/2B08zdReNlPziRX5We0g6dF/Jc8PiENleIy/F1DsKLbuGfjnbP42Wvu8vCWUkb/jzwPvDvAf9P4F1kddNZ8ABZHdUC/iDQBCate4Piz/dBUZQ/pijKdxVF+e7W1lb55z96OcA9YTvRfM3mD35lmf/iuysM/MsN5id40fX5bH3Es6kkVNeLEYJSGvJ3AnpezKdrIz7bGO0zmn0/Ic/lAeOfA5lg308Kcsj80gJhmHYyRufyec86Hp+tj06UoPTjlCDOyHPoeZe3ljdHIZ+ujfhi82QB82Rt9/03b233/ZhP1kZ8uj5iYxgiBIzClPgNGqcXpXyyNuSTtSHrg1ASMyb5sSSt542J2t9n6yPWj5H79qKsJGDu+ZfjGD/tSLt6ksA7zwU9L0EI6FyS455mOZ9vjvh0bURnfLw0fM+LyXNJqO2fIYC5iH2X5YIvNsd8ujZi+wTPcFYMw4RP10d8uj58ZYnuOMsZhemFvesozYqxjg51dDvFuxiHKdElJFU2hiGfrY94uDkug6zp9fCmBDHHoTOWY+6M5XuTNkiekav94Jjffn1IspzPNuRePyoxEKYZfjQ5wy/eDnXGEZ+ujfh8c3Ti4Kbrx+W5eB5r98m2fH8rvbMnSM/bf1wfyP3yaGt84cmpYZiQpIIkFQzPcKE4iR+eHuEjRumOzete0vn7KojTfMeGniAu6wdx6QeNwvPxg7pehBAwDI73/6bPp7MmF0+Lvr/jDwRT3zmZu0/WTjZ3FwkhBN3CZm+PD193Az8p/e7LvmQI0wzvBDY3n/J19iaHLhp5Luj70j/tTo1xHKWXvu4uC2dlu3xbCPGVqf//m4qiHNjidxyEEF0ARVH+K+BrwF8BJuxLdaB/yO/9GeDPAHzjG98oT48frvT5YLmBdkIJ6z/6M3f4S99b4f/9G8/5p79z7yyP8EpY7QeMw5Q4NUuOloZj8HFvSMMx0Pc8hxCCZx0fL0651nReCwHowE8YRQmzVetY8tuXfZ/P10dkAhZqNmkmCNOc6hSJYdM1GIYJlq6eiAA5TnM+Wh2wWLcPJAttOAZ9P0HXFCqWTpRmbI0iXFM/M3HnNPJcsDEKURWF+ZpVKnl5UVoqThyHNMvZGEWYmnpor/rkkJ04LGGS8fHagDjNuTNb3UXM6Jo6jqkRpRnNyvn04+e5YHMkA86FunWgYtlkjFEiFboMVD5fH7E1DrnZdrk1U9n1e+2KyfogpG4br03l4jB0xxGfrQ8Ik5yFuo2uyX5u8w0aZ8+L+WxtiABmqiZRmnOj5V46cXGaC7ZGMX6UoijiSGLJiqXhxyl+knKjvZ/7IMsFTzseUZKfiJ9nGCYMg4R2xTzQXgghGBfrcrI+wyTjs/UhQZJzs+2yPMXBoKoKTddgECTMnJPQxHE2MkpzklQeW+NCLfB7z3sIAR9cb+zj1JgQ7Vu6hnsGwvHpfacpCo+3xoSJJCAN4pQgyZirnU5aOkqz0pEchxen/jMugiohZPA5IU3eHkdEac58zdpnS9IsZ30Qsj4McU2day2HhmNgaio1W2ccpWc6C5IsZ3MUYenqgc8bxjs3mE+3PUCQC7jRdsufb7smQRxQsXQs/eJty4uux8BPaVVMkkxg6goNx+CT/pCaZaAeokTZ92Ne9gMqps6tGffcFStP48t0vZg4y1BQmK2ZrPYDFCjVsS47MQ/yvO/5MU3XPNL+hklGmkm11N981sXWpez9cnO3rbN1DdfSCOLsXNQRJ+NrOAfztE1sY5IKolQqqXa9mJ4fE8QZpi4V56ZJys+ydtNMsDYImK/Zu/zyPBel8tVJ39/aIKDrxcxWLRbqNqMwwYtS4iyj4RhnFtDIcsFKz2e2apUV50H8akqga4OAF10fQ1N5e7F24NjqtlEGm2fhUZq8Q2kjxa49OjknW65B1dYZhQlRkvEbTzpUTJ0bM+5r4W7q+zHjQi3uoLMxiLPShk4UK190fR5vjVmo29yfr+4Sc2g6Jj0vQVOVc/ODWq5JmEiBj2n/L88FD7fGrPVDbrQd7s5VS3GVyfl0WEzU9WL8WIoXvSrxf9M1GYUpjqnhTH1fkMi5Ewh+9fE2jqHxpWuNY0UVslywMQzRVYX5AwjfzwJFUWhVZCx2ENH55kgmgMdRylLdBlSCJNulMLgXh8VexyHJZMw4V7V2PZ+ta8RZxsBPWGo0D/39OMvZHEZESYapn69gynGY9k+nfZZxmNIZR3T9hJ4Xc3u2wvXW4f7zcfvuTcJZd/H3FUX5thDi1wEURfkW8Cun/RBFUSpAKITIgJ8GfgR8DnygKIoG/B5281EdiSTL+Xh1yD/07VsnHsN7y3V++v4Mf+5Xn/KP/+ydSw2WkywnyQVhmpHmGUm2I0k5cWKHwY6kpjSAQt5+IFjtB5iayst+gK6p3Gy7CCHoBwmuuV8VbRrb44hcCOaqJ9/cIB3+Fz0fIaR864QEN0ozojjjZT/A0FWut1xsQ+PTtZG8dUhzFmsWNdvAmHJOwiQjTHIezNcwdRU/ThkGKU3XOHTzZLkgz2WZaM+P6XkJ19tOqf5QsXTeW95hln+67dH3Y/rBmPeW6mcyvHkuCJIMx9DY9iK2R9KZMDW1VPuqWTqWoaCrx6+hjVFEt7hFcEwNQ1N4tDlGVRSWGjYN12SpYdP14tIYvewHPO8ECAGOobFQt8mL9ePHGctNe9c7F0KUNxWzVfPUgUXHi9kqElOGpjBTtVjrB2yNIloVOT6pJhbgmlKha2MY8qRIMuhqyFLTwdJlwiyIMlRF4f3l+q6xSOcyo10xjzyULhprw4D1QcjDrTHvLEpVzw+u1c89IHsVvOz7bI5jnnc9bjRsWjWLG2330udNVRSiNCts19G3yn6Slap7fpzRdHfkrl1TJq1+9eE2Xpjxu+4eWCBbQgjB8460P16U0aoYdMYxVVMq0TiGVqrm9P24tKMrvYCnHZ88l87IUsNGCMHGKMI1NG60XW4U39H1YtIsZ7ZqoZ7wgmMau21kxv35Gk+3PYIko2EbzNRMXFOj6RpEacZczeJpx2N9IPdaqxtQX5Y2P05z/DglywXvLe1ei0GcMQgS6s7RioZ+nBIlOUsNu0hQBTzveDQrFp+uDUkyeaaESX7suTEpfY/SnLtzVVoVgzDJzoUINkwyXnR9FAWWGw5uEWTMVE2CJENXd5RovChlrR+WY9pLqLraD/hsfUzXj7jVruCaGg1HSlbfnq3IFqIsx4sSNFVlECS7bPlheLbt8fHaEE1V+Lm35qjuCeyqloauKWgKeHFOZyydQV1VcQyNOM1RFHhnUaoRHGVbkkz+vmtpZw4gwyQjzSHKMnIh0FSFOM3RVKWUt+9O7ZM0y4nSnIql0/FkJcL2OKLh6GyNYyxd5UbLRVUVvEgmNFuueehFoBCCrXGEqij7EnmTSo5MSF+m6ZrkueB51yfJcq63XBxTYxjEMsBXNWq2jqaodMYxaZ4zChNsQ6VuO/SLJNFl4XnXJ80EgyDh/WXJadr1Ih5ujVmo2dxsy2Re1ZJKVGuDgL6fYKgquuozV7NRFQVNVUq/bbZqoasKozDFStRXCiBe9HySVN62f3CtQZrlsvVHCO7MVpmvW+V6tDSVMMl42QvoejLhu9RwChVgjSwXbA5DKpbOB3v4W8Mko+8n1GydygGJAS9O+Wh1iFiSCXLb0BBCFMlwmQg6qf3olBUYck3+8EUfx9QKQYaDFT4me306GTAME/woY6ZqYmgq4yjle8963JurcmPGZWMQSl/1iHhgUqVw2DvaHkWsFjbKMTVutNx9+8U2NN5ZPFgFKclytkcRhq4wWz3YZ11q2GyPI+q2wdOOT5xmLNRtGo5RnpNbo4gbbRfX0Phia8TLXsC1pkvVjg+0K1GaYWrqPtvU92OiVJ6LJ73434s4zXnRDcr/vjtX5eHmiDgVzFQN2hWLmq3TcAziLGemIi9kvtgcMfBT0lywULdpVUzSTO5/gcK7S7Vd4+15MXF28rHutVMzxT9elLI1iqja8oz14pTVXkDPT4jTnJmKRbtQJNZVhbpjkOWCYZCwNQrJcsH9+SqZgJc9+dxpJs4sFDM58xuOwQfXGvS8mGGYlHbPKi5eNochQz8l1HO+2BwzU7UYRykvez4qCktNC1PXS79xexyVlaiWrpUx56vAK8692zMuYZoTxBmOqcm25jznecdnexSTZDl1K+VGu0Jtyn6s9HzWBzIBuFCXsV3Hi8vYy9DUE18ueVHKX/94g/eW6vziuwtlLBdnOaamMVfT8OOjq46iLCPKMrJL7pwbRymGpnKz7RClsvVZvjfBOErpezENS6fnJSw1xL717scpT7Y9vtgYs9Swy333JuOsialvAf+woigTdb6bwCeKovwIEEKILx/0SwWx+f8P+Arw3wH/EvCnFUXxgMfA/1UIkSmK8h8Cvwz0gD9y0kF9vjEiSnO+dP1o4vO9+KM/c4d/7M9+l//2R2v8PV+9dqrffRWoikLbNbF1lb6f8Nn6iFsz7q7DUC9ua172A7rjGE0Fx1R5uu3jGBo9vy8PlyRnHMobslGYls7vQTLRPS8unfqDHMbjxqypCmm2c5MUxJnkkFmTPd6LdZuKpbPUcJivWYzClNmayf2FGs86Pp9vjFloWMzXbJ5se6SZoO/H3J+v8mTbI89lG+Pbiwc7GpqqMAoThmHC1ijC1jX6QULF0g88aA1dZXsc40UpL3sBdefwpNdheLztEcQZFUvbZQwn7yfPBU86PnEqaNaP31aTuVMU0FWFR5seH6+N2BqGvLtc562FGstNZ9dNh6mp1BwdL0yZqVrl7c3TbQ9TU5mtWby9WCvXT8eLyzYrTVVOXSEwfVNk6CpJmvGbT7tsjiJsQ+Ubt9u8NV/b5RAamkrdMdhOI5qurFDYHIY82fZKBynN7DI5mGQ5zwoHyo/T12Yw1wYBW6OEpx2fvpfwm8+6PJirUbV7/Pzb8zivUS52gkGQsDWK2RiGbI0i1ocBCzUbQ1VZqju0L1F+V1WksmiaCerO0etdOrnyRnGyNicVOzVb5+HmiL/20QY5goZz9DwrioKuKSSpoONFRbsFQM5i3aVVMbg7V92nmmNqKg3bYBSltKsyQfG95z2edwIqlsZP3Z+laslb5YkDmQlxJinq3TZSZaXr8/3nfeIsw9E17s5XZQA0lUypWQaWoRZS6nLcfT/m8/Uxa8OAGy23dMoneNb1SFLJhzadiN+LJ9ue5DPK4c6sy+ebY7ZGEddbGbdnKmyNIlQVtGLcR2FrHPHh6hAhQFXh3aXTnbVHoePFjMOUFz2frWHMg8Uqs1V5u7y3NV/XlHJNHZSU3RhFDMOEgZ+gzbKvAuVZxy+r9GxDo+7o6KqKqasHBtc7Y4ykvQLeWarvS0ytFu21ii5vdIdBQs3RURQYBgnb45ggkZW1VVvn7lzl0ETgSk9WUytjdtn100AtEiMVU6fh6Hy2Ltu2Gu7Od04+d3KeJKmgVTFoOQafrQ1RFRUhBLahy7bhSoqtawVHljz/D1Na2hpHbBQJV11VdiWOLF3FNlQ+XR/Rdk02hyGWoZVVIB0vQg9U1gcha4OA5aaDoavleJ9ue8Sp5P1IMxiGKQrKuQRVJ4Gh7exxgCjJ+KXfXqPvJVxryyRwzTZK9eCareNFKYMgxdJVPl0boapwf77KIEjYGEQIZMLeMaQterBwdjlVQ5Nn9mR8a4OQj1clzYCpq9ybq2HoKuMw5UnH49ZMBVWVF3uKkmHoSmnbP14d8nBzjK4p/MI787v2yPOuT5TkbI+jfZdOIPdo30t4tDmm45osNCz8KGMUptiGeqpnbFVMesVl3fOuTPT1/Jj3lg+2Q5OW8yCW1aHLTYc4zXm2LVvfwiTj9myFPBc83ZYJ0TtzlWPHNI5SnmxJ0aRbswdXHrWrFs+6vpSaF5xov0zjZS/gk/UhYZzzlRsHP1+rYtKqmPT9mPVhyIuuz0o/4N3FOromk8fboxhdVYmzjM1hRM9LmKtmByZxV/sBnXGMbciqvsm79OO0TChNksZngabKMybL5b553vX40cqQcSirQe7MVXlrobqrcjpMMmqWwTBMcU2dqq3jxykfvRzysh+w3LS5PVMpfUovSlmZnOG52FUdfRgOslNJlvNoc8zzno+laXz5RoPZqkXVlvFGzdExdGXX+SSEbPla7QW87MsL2zDN+eBaA1WFPJe+9FnxtCPjpa4Xs1C3ysSngkKa56z2Q3RN4Z3FGl0/Jkxy5gp/YnsU8XjLY3MU0XJN7s5VeGtBFgRMd+boZ6wQnEaei3K9f7IWMVu1UBR4e6FWXlyDjH/aFZO3l+q74tAwyfjRiwFfbI5xLZW/7xs3qDvm7pjkFOP0ooxff9zli40x15o2mVBwTLXo6Ch8U/3wz9NUhYWajRDQdC6vyjDLJT9cngvWhiHLDYdBELPUcFjpBSSZ4FrLwSou3g7y3zrjmMebY37raY+ZqsHv/2D50sZ/Vpw1MfX7zvJLQogEWQU1ja8f8HN/gTNwVn30UlJTHafItxffeWueu3MV/qNffsLf/ZXlS6uQ0FSF+/NVVvs+uqrwvOvT9WK+cr3JnbkKmqKUAfHkdibL4Wa7QprLvnQvltVThqbimBon4TKdrgLQTvmsqqpwb65KkGRldjtKM7JcBqtZnhOmWVk6/sG1BrdmK1i6Sp7vkHl7UQY1mLTwC2TQqSoKOYK9PnjPiwtDr2HqKjdnXLZHEdtjmXGvmnr5WXux3LAZhylelGLoMkg+LSbzHyY5TddE11R6Xsyzjk/V0lksMtEAoxOUpc/XbBxDw9Dkrag0joJMCHRVPbBn+HrLoe4YOIacgzjNSwN/EO9MnguedTyyXDB7hqRFwzW4q0nD7ZrSqbYNjTTL0UyNJJXjVdndqvfVG81da3cyH0kmg4jp16QqCuuDgFGYcXv28mVk/Tjl6bbPy77PfM1kueEwVzXpBQkzFQsFzrRezhNhkpWJvcW6zY2Wg6kpDIOEuaqFrqkoyuVe4yiKtF1+nO265ToItqFxf75KkuXUbAMhRMlPEqayjFrXFMJUoJ3Aabs3J793tR+QZoLOOMbQFAxNIUwO7qW93nJouDt7ByjbSPw4K7lEJgd7kuU82fLoeQl3ZiunSkzutZGPt8c4pka/H9GumAghbeb0Zy63HKqObBuYJM3HkbTteS5LyffaN1Hsb1WF27PuoQkOBRkYjqKUME3RFJX5ms1y0+G95TrDMCXN8qI957jEIGiqPIe0E1SGngY1W+dlT74/y1DxowwOyVNbulxTcZYfGBS2ikRHq2Kw3HT2JSvGkaziDZIMS1fJcoGucmhb2wSLDYfZqo+pKwe2+E44sJJUMD9nc63lMgxlNdaE7zBIMgxVZRSkfO95j8W6w93Zyr7qvOmz+awmyCzaxuKCXHYQpIRJxvZWRNs1uDVToVE42hOfAuQ5t1i3udGWN/tJJitrdE3BNTSyqcV4FA3P9DPsfT5FUbjecss968cZrYqJrsnAtWYbbI0iGRTUba63HNoVWflrGyrjKGF9EMnK84IHRjA9LtkqOI5SlhoHt/2/Cu7MVhlHqUw8IN/rZP2Ecb6rxQZk+83vujODokhepM5Y8sSEcc70oagUb/ugas2uF7PaD45Mnk5we6aya3yKIpPJQuzs3Wm/Ri/80SjNqVn6Lj94wt2UZpPEmcbjba9sU5wkHA7ynQ1N4caMjWPIMQfxDi9OVBB3n8TnHhQtK46psVCzGQZjrrdckjzn9szBFShSJKRoNy72n6JQBqMTe69rskX0RtshiLNjWwKn/bMoyQm1rFT3vjNbwTY0rjUdFmoWXpxhaAqPi0TWSWmrFOTaUBQ5/7kQfLwqqzXvzFZ2JeRdUya/01xQKSqT781V6XkxmiJ/ztY1rjddbrRcbs645b6fxsRGhcnuNkZVUfbN2VkwiXmCJKNu6zzZ9jB1RdphQ9rhJBNMH0O2ofGl6w3eWaqVcUXfT8iFkIm+JNvnU/pxytogZBzJls/jxrzWD3i85TNTNblV+KFCQCpky72pyarihbrNN27P8M5SusvHnSAXcj04poYXp1RtnVzI+Gx6b50EcZrz4csBi42dFvvJhdfe5xHstMWmmUDTVL7z9nzpcwHUHaO0tVku5y7OZPXNTNXCMrQDn+k4RMU4r7d22rEVRb6HTIhd/nOaizJmabqy6mt6jBOYmkpU2HRD0xhHGXVnf0xyUkzOBQV5odl07dLmPVg4/r0Ymnqin3sVCEF5cTTx5xQoY2Jl6ue8WNI6XGs6zNWsIyvw6raBF8vq1JZrUj/m8vdNwJlmWAjxTFGUFnBj+jOEEN87r4GdBR+tDqiY2qGH1GFQVYV/7Kfv8C//Vx/yG0+6fOvuzAWNUCKIs7L8tuEa3GhXCJIhqqJQs3V6frxvoS03HDZHspTa1FWWGg7b44jlpk3LNYvDVuF6y6HnxVQsvayWGhYk6i3XRFUlv8StWRchOPBwOg6mru46FBuOwXzdQlXA0hUWGk7Z660oyq7AYaYqy14X6tLQLtQsPl6TfFFZLrg7V8GLMmr27qXZK0g3J8Z3rmaRZIKfezCLoavkguLmNN9XJaYoCm8tVOn7CZahYumyNP00B+yNlks/iMtWj6qls9YPSiJQS49JsgzH1Fk8YavgtDGecBn5cUrdMXZVRoB0sjeGsv1yYhhNXWW+bmHqKqoCS00HQ5OHe9+XrQ4zxU3FWSkFpx3giqXzpesNlho2VnGY7b3FH0cpPS+m6RqANICLdXnTULP1gsdGzuEoTIrWLgO7aAW8bMgbRh9dUbAMnZ9/dx4/SlFV0BWFB4v1196PvT4MWOkFGBqgaPzsg1k6XkyUZliayu3ZCq3K+fP7iMLxOyhAynPB1ihCUaBuH3+M2IZWzuPETk165m1d5XHh1H/r9vG219BUGo5a2BuVtxdq2Ia2a3/uRbfgTZkOFt9frvN4a1y0D8i9aOsaDUdnGCbomi7L8sPk1M7atI1cbDioisIHy3UE0rnca3ejIkHnmjvzNFu1irYqjfkp/qc4zRmG8sa2WTFxDY1BkBzqqN2fr/Fk08PU4XrTxTalvXx3UbY/HHUGxGnOxjDEMTVmqxazFYuv3miSZPvb514VddvgG7farA0C4kwwX5wRYSI5AquWvuv9Tq+pvbjZdlnt+8zXLXp+wrU9HaLLTQdVkU78Ql0Gj5Z+vFN+o+XyU/cgFwfzqi3WbT5ZG1K19PIWenL+TTh55usWQZyx0pOXGpNAfdrWhnGGZSjMamaRrDldErBfVE7PVi2cYk0JIRi5Kav9lJqlF5VQO79j6ipLTRsvSpmvSY69xYZdtFpJR1kt/AwduDUjW5PaRTCSFcpz4yil4cg2qJmqha6qKOrBHDqOqTFXs/BjGfQZmspbBT2Apsk9vjGMmLOsXYmlmm3wEzdb/HBlQJplOJaGbai7qkAmLaog/YfzTkzt3cdN1+TrN5tsj2LeWz64Wn3yjlUFnnc9NEXBNWXF3jhKZSv/oo0XZQfa1Qlp/YRD7zTjW6zbfPVGEyHkOgaZsO96MTXLYHVQcMwcwN3y/nIdVVWo2zot18CLUvp+TJBkzNcs5mo2FevgvVOxdL51Z5a1QUAQy1azrhfxvONzo31y7rKJD+hHsoX81ozLMEioH1IpAKBrKq6p0g/SMuFgaCp3Zyv4cVZWkVctg5+8O4OuqQV/T0LfT2hVDuYPa7tmmZxqV0w6XkRa9PjISjCt/P6GI9fB3v2yF0Gc4cUpTcdA11RutF3iLCeMM663XOI0L1peDcmRp+98jqmrfOlag/mqhZ9kzBd7ab5uY5saYfG9G6OIPBeHcikuNGw2hxF1W9/l21m6ykzFIEhyFl6xbXv6bFxqOAgheHepjqZK+7vXBieZrMazdI0JtU/LlT6ypass1C3maztnhRenVEyd+ZpFxZLtd0e1QqdZjqqoLNZtVFWeeUmRsHkwX0NXVCxD22Xvo0TSZ8zXd/NFaar0bYZhwrXmEmGalS3Tlq6diltqkjzqeTut1pNkc9WSVWOjULbyNxwDS9dIclkB7JpakcCf4oermPzMg1m2RyG5gNmatWttn5WfK5+M00+mElMK9+ZlLHez7bA2CJmvy7NIU2UVz/VW/dAzXFUVfuHtOX64MqBq6yxNzf1JkvJ7UbMN3l6ocHu2wldutORYHXnJcdL3IoRMjmeZONTPzHNRxuKnRT6lUDrx51RVKWLiFNdQWRmEvL9cp+Wa+EWcfL11dEVgwzX4fe8v8tHqgKptsHiGLoDLxplWoqIo/yrwjwCP2LnrEcAvnM+wzoYPV4e8u1Q/Ey/IH/r6df7kX/+cf/2//YS/9E//1KkdwdNgpefjRRmfrY+4Py9bOt5eqGPpGmGSH9iS45gat6YSbg3HODCgmBxGE3y+MeKjl0OaruzBnwQTBxnqtCi/nBj0k0JRFJabzolKZqd/ZhQk/LVP1tkax9yZSag6BksN50AjMVOxCBKfShF8WbrGnSJ5l+WCT9aGpcN2UPZYEvGZCCF4uDkmiDMWG/aJuQ0arrHr1n1zFOJFkh+jZhlsj2MMTR4IFUsveul9lpvOiRJgtqFxb/7wNraen5R8T7q2Q743X5N98F6U4RUH1mo/KG+UmsWYWwe0N5zlfS81nCPbm553fLJc8m5MuCgqll70vWcln0QQZzwtyulVRaXlqqVzcVkQQrDeD/ne0x62ofG/+9YNFurSqZiU+h/Hn3QZWBuEfLQ6IE1z/sCXl3iwUONWlvPFhmxju4ie9yjNeLTpkQvJh7DXadn2djgJJlU+m0Xy4CR7qumapRNjFwSdcSaTQFGaszkKjyWYrNm7SX0Pa+EJ4qxsXRaCsk2g7hjUHIMg2eFteNkPGASSy8LUVDTt4MTNafZ31dKpHtOiutYPGYUpfV+2JE8ctpqt40cZwzAt5/VpWQovWKhZpLmg6RxeETkKE8IsZ3MYM1e3+faNmdJxynJRKpod9Czrg5BBIIO0SiGwMKmiuQioqsK1PW0iL/sBfpSVc6OrCi+LS4Hlpn3gWW3qskWoO+XUT6NdMcug9MnWmB++GGDoCrahH5jAmH7ft464nfSTDNvQSXNps6fbpxVF2fXZrYrJSk+25E8nTP045X/8bIsoy7nddlk6wbk6jTSTPC5ZLniyPebuXJXlhoOqKiUJ+9OOh64qVPckP2ar1q752tsSO43p/fdk22MUJDI57Fr0/aTknzyutW464BsECS+6Promqw737vEJojTjRU9WQ2W5YBRlLDU0vCgtzzJTV2k4BqMooX3KxP1pz+8JDmsp24vVfshaP8LUFbbHEa6ll5dutaJV/yDMVExW04CqpZ/6/NY1dZcPCTvvcH0QlpyX9gEcM1Xb4Ju32yRZzueF//S8Kyv9W655LE3Aaj8oW8BMXaXrJVSK9qyTkme0KiZenOIYGrYuuQSPuzQahgl+nGNqahn0RWkm+QaFwDY1qpZOUlxoTt73hF5gHKW8u7S/TVpVlV3tbHXbKNWQD2ttP2wtg7TDj7fH5LlMbN0pKijnahYrvaC8lAySFCVg38UtSPuyuMdWDPyErh/TcmWy69oxtqRuG/tig4nY0LOOz2JD8pgeJXZy0vMbZFxz7xBusAnWByF9PwGS0r/WNZV2VfJP9YOUmaoUdZhQg+RCdjaYulrGDIdBJiMNVEXan7V+WNqvQZCgKAqOoZU+UJhkZQtdLsS+PTVprzwrtscRozBFUxVUld10HrpKWzfJcsFn6yN+9HJAnst3//5y41g1+qPs+WkQxBnrw5CKKfehqrLPBkwSPp+tj0gyKaRkaCqrha/zaMvjG0fY5bpr8rNvzZ15jHkuSj9BVRS+drPNjbZD3TGpH+EvTSCE/P1JO+i0H1Ldk7gFudde9KTYwb25yqlzCNKeqfv8OV1VWB+E/K3PNmm4Jlme84vvLp6Kp6xZMfnpB2efy+n3fRk4a03a3wfcE0K8Mdqjk+TEH/6J62f6fcfU+Ff+4Pv8c//Z9/nTf+sRf/wXH5zzCHdg6iprg5AgSRmGCV0vZq5mnRu/TprlDMMUx1DpF2o24+j4EuIklTxVWZ4fSiR5HhBCJi62vRAFeWvrJ3nZGhHEGbqm7Nr4MjG03+mL05y+H5PlQpY8HvGQsvphoiSmMAhOTro5jSjN2BhEaKpKzdK42Xb5fGNEnu/wnWSFxKdlqOei4DDdT21pRYtcEcRPHNpBkEhC9Km2pNszFQTiwGqKi3jfpq4WyllyHpJCnn0iJ+9FGWmW72q5WCxImV+lRPwsUBSFYZQWxO0qK115iE07uxesFn0i+IVCkqmpjMKUF12flmPstMFewBj9aEcZZxQm+xJTkzUIU/YszhiHslpiL+/PhKTfMbR9t0mGptKqmogcLEOSY24MovIW8FUhW0x28wgMgoRRIdUNsqq0MTWnuqpwreVQt40DLzrOe39P5ktV5XcLIT9/YxgCCkGclQS+kzFqqqyWSzNxZKWPdHQTrhXqjbtIYv24cPo58Fkm45ItfK+np9XUVHyysl2oXyTKQI55b3XpBJMkepLldL1YKiwd0Co6UT1NUlGqvMVpLgPXwhac9H1Pt/ft/a5BkKAqO5Wy8nJp/5kmbbJA5ODFGWGSAscH4ROoBQ9bZxyRZIKel+xSpHVM7cBg+yzIcsl30h3HqIqUBW+5Frt6006BYSBlsZNU4MdZWW2y9zufd3w2hiEbw4CmY5XtWXv5UU6i8nkQznt/78VEeazryZZSx5xqQUQmJ01N3RfcTAe953l+T6/Vaa4VL0pJsrwUDvDjjCQVksvLMZiv2bimVlSrH2yHMiHKSwxNDcvkVJTkB+7Hw3DYfgHKy7DpilMAMVUqPhGjGATJvrNt7/u2dJUwyfcFn4fBNrRDOVEnyIsxOubBVSI757kon2ljEMmWqzRHVRRuz1RpuidXNF7pS8EPL5JVQ4MgwTb2VyUdBT9OSVJRytVfax69H877/J4+g3Rt52zsFhV0aSZKFcmJ7+uYOjfbbsn3eBykMIhRCqRM3sEgkGdDx5ME6DVbLxNGec6J38NJkWZ5eYlm6mopqjDBZJ/ZxoTXTlZIbY9iep5U4DxLYcZpsTYI8CLp71kHjHMy1olCIBRtoIrCxjDE0NSynfeiMO0naKq8FKofcMkYJpkUgNizVgdBUiabTT3a5Ycc1PI/DJNyrwZJRu2Ua0OBfdx2YZLhR2lR1acQxlkprjUh2T/Mnpwnpt/3ZeCsiakPgSaweX5DeTU87Xj4ccb7p+SXmsYf/PISf/3jDf7dv/Y59+ar/IEvLZ3jCHdwoziYNwZS9vK4Q2IQJPhxykzFOtFB/rTjMw4TFGRQqyI5GpaPOVAmAYtzRsndk2JrFLExlNwQt2YcWq7BcksSpm+OwiLpI3t/jzP8j7bGkmxWgYW6te+mIi8cEEWRPxslkgOr4ZgnTkr5saxkaLpSjlhXVQxdEjC7plb2j8fpVK904Sjv5Zk4K2q2wf35aplkGkcpP3wxIM1yWoXSzaTi6FrTwVBl2+fzrk+cyiq8vbdlF/G+78xWylJqkKSpnXGMpSvM1mxqtrzt0jWVay2HJM1RVfhiY4yiwIOF6rk4MyfFB8s1RkGCn6R8vjnkeTfgwXyVay2HXBxe8n6ZeDBXw49S+l7Ko80Rq/2QuqPz9Zuypeq8W1RAVhNVioTvQdLlDdegGRrkQhSVNGnpHOoHOEaPt8ayxcc1y0rHCSQPhsI4TUtiSUNXMM6Jw0hWz+zsz54X88XGmGGY0HB0Gq7JbNVCCMF8zcQ2VDZGES+6AY4Zl5Ufu3DO+3upIfeGpWvomspqP+Dhppyza02HmapZ7oubLadQXtXLhPhh1Z9bQynJPAgSqpbGvbndjo+lqXT9CE1RDuR4W2zIFp297duXiQk/mK1raMWt4iTReNDZGaUZnbFsZ284Bk+2vTIIPih4vD9fI0pzbF3jWktyzMhzJef2bEVW9p3wfU9u6RV2n+vb44gPVwZoqsJXbjaPbC1puia3ZlzGccrtmQoPNyWJ7GEky3uhFjwuNVun68XHjnuiSIWQN+onbUOQlVk+4yhjFMm27LpjkImzt3nOVi0pGa6pB3J55LmseH60OWZ1GFCzdO7MucxVLSxdPfDs6HkTNbFTtESe8/7ei5szLs+7Prah0vVjdE2hYmnUHYMokRWehq7wYL52aGB9nud3u2Ji6Wqxv+Qzr/YCPt8Y0XRNlppSgbdWVD8nWc61puSHabjmkXZIZediYHJBdne2gp9kx1azDHx5Ns8eQBswjRddn1EoW/DfWayXc9ZwDa4JeZYrSA6XPJcJNF1Tds62Pe/7zgnGtz2OyHKpbH2SZMDLopJdUfaLGUx4o7wopenuVPb3/JgokyIVlqFxa9Y9lONm0lo5PVeuqTMOU1xTY3UQ0PPk909Ir0+Cmm0wV7foBzGKIuj5MctN98iEz3me3wt1u+SWtXSNlZ7Po02PNM9YrNu4llFWft5qVxhH8hknPuX9+eqRgXs2JfogVWm1stNgoW7TGcesd+S7W6hbvLfc2O/vnxM0VcEy1JKHaRpJUSWf5bL9/NaMyyCQxPa6KsUyRmF65mT8aSA5Z7NDidKjNOPhpqwAbFcNRF6Mf3PEfN1iFKQ8uMDiB2CXn6BM+I8TybU42a+DIOFZR56v9+eruypPd7h/wTV0DFteEM7XD1Z6nKgHWyeo0jsJel4sBVCihDSTAgh1xyir4lZ6PsNgv827CBz3vs8bZ529fwP4vqIoHwLR5A+FEH/3uYzqDPhoVRKfv3+EOtFxUBSFf/vv/TIrPZ//w3/+A1quyU/eO3++qVGYMgxkkHat6ew6IEZhQj7F/RSnUlaz60cIMeKrN5rHSiJvjyPW+iFCSFnImapF+wRO2USJ41UUyEZhwmo/xDE0brSdA53cUZjS8yO6XsJi3UJRQQhJ/m7pKsMwKVrtrENL8POC+yVKMjRVthLN77k59yIpk6koMlmzOYyKQ8fkrWNUV7ZGEVGaMV+zedbxC+XAhPeWpQF4MF8rbjq1UgXENtSyIsHWtWOTLJvDkK4fM1M5vrw2TDIGYYylaziGYDjV2jdTNcuAK88Fv/Wshx/LcvBJ+XoQ7890n+R9e1HKy36wSyb8MOS5YODHxLnA0lVURS0ltS1D5acfyDEKIXi85fGs68s2hMKIS1Lo/MITU34s35eqyBuv622Hpx2fT9fG3Jmr0PEiGq4sab8sIYS9yKaI6yumTtMxEbnghysDZmsWpu7S8eIj+TVeBZqqHFrBGcQZH68Nebbtsdi0S6LXdhGU710jWS74dGNEkgqWGvm+xFSSSR4j6WApWIbGg/nakWttbRDICsGafWTZfBBn5c3dZJ2nuWBtEJALyY/11kKNLJdqOpvDkLojCdpV5WARAuDY/Z3nghc9nyjNudZ0jmy1yXNBx5NJwElg1Pfjssqg6Rpl28hKz+fz9RGtisn1lkNe+K+HjTPOcvpBggDGUUaQpIxDhSSTbb5+oXgEkrh1GmGSHUhMehjSLOdZ1yfPZWLiLLd4UZrxousDSqlQu5en0DV17s1J4ml3z3cM/ITnXQ9Q6Hox7mKtrI6YSN7HhXLs5DysWDq/687OOR8mkgOy5yWESc637rb3ve+JmijIZ538+YTofPLsshUENgYhPT9hHCWYuspXbzYPXTthmknuL9tEYaeSIoyzEyWmQFZdTbielho7PkZYcKNMK/j0/aRUpNoYSlWn+3NVjCPscGccsdoP2RyFzFQtGo5B0zFLnpiz2nDH1A48m4UQjKIUVZE+UdXSURHYRbvIdkEKPluzeGdhh99pYusB0ny3mthRFSwnOb8nGIay/cc1tWMTcl4keWEcU35+EOes9Hw2hxF+nPH1W82yfTyIM551PKq2fmDV1nHnd5zmPC/UcG623SMTEVGaEaW5FNXIJCnwi75Pz5fVRRO+N1VVuD1bQQjB5xsjXvQCmraBVczfpOJwGpNETJbvVCDGac5vrwzI8pyv3Wge2FoTJlk5/jjNuTVTIYgzwiTbVxkyIeMXYlLtsvN3Zcvu9pinRRD6jdutXWth+n13vZjNUUjDkT5AngvWhyF+lHG9ZWObetnyNcGkanOy3w/apxM7JMe4/x1ULL08J9Isp1co7dkFv5HC/s8dF0rTaSbbyxxT43nH48FCjXbF4vaMFBewdLXcB0JwZGfBXkySZlme8+naiEebPnM1+1BKh+PO7ywXPO9KBcQbLffYeKMzjgiSrLxY7Yxjup48G99btspxvOz5fLI2oukaJYftpEruqLMozfMd0Yc0Y20g205/4lab2apF3Tb4dH1IHmXkQvDecgNTU9keRURJzuwJLrhf9gNGYcJi3T4yflMU2cI88dun4UUpq/0Ay1DLiq2qZeBHKS+HIWGaFyI4+21QmklbkL3C2TyNxYZ9YGU8yITKxjAsOic0gijjRd9n4Eu1+KW6rGS2DKm4WrG0Y32MyZ5sOuaRbaTTcE3p200qtvpFxfL0yh+HiVS9E3Jv3ZnbnZiatlsfrw6ksunakK/dbHJzDz/e5PteFRNOTa+olFofhGS5oGoZ3J2TfKo9Ly7FcUZhRhCnpULwjm9yvN0/KY563xeBsyam/hzwbwE/4uy8yueKj14OMDTllbOwtqHxH/8j3+QP/we/xj/x57/LX/xj3y65cs4LW+OQOM2J05yOF6EqCuMwoV+UGDuGzrVCgUZVpLF82Q3w44w0F3zzVvtI3oaGY0hlEUNyBaiKUkqGHodXSUqBLOWfPNtsYu5rIev7MVujiMebHpnIaU4pRcRpziiQssLXW07B0SHHHaUZPS8pe+tXejIwzQXMVYyyaiROi7YNW8eP0tIJ+HxjxDhKeLg14qfuzR75DH6csj7Y4aTRCyWM6WzxxAGXzxyVz+zFWZGc2l8auhebI1mmvTkKj0xMJVnOZ+tDnnQkx9Y7izV5K6Yr9P14l5OxOQ75vLhVsQzp5I/DtHQs9+J4pyAmSqT6n1dJjzxAXvYDPtsYMQ5T7sy6vL/cYKlu8+nGCMswJFm3LomaHxaVP1Ga8Y1bLVRVVracNPB6FXTGsp3z0/UhWS7n39LkLUeUZJiaQt9PZJWJfbE3EYdhQr76vOdLolkvQQipnBYlMoAI4pwgjqSE8gUphRwEmfj2+cGLPu2eyUJNKt8ctpYmxKujMD2QILc7ltVJaZ7z9mIF9Zi2sTTL2R5Jx3RzFB2amPLjlEebHuvDEKcgRn57scZs1aRVMXjZCxgV6mxpntMZR3yxMaZdMbk3X6Fi6QdyswHH7m8/yRgGhex9Ub1zGF50fX640kcA7y/Vub9QY7np8KzjMwhi+n7MzbZLlOZ8vDrkZU+eBRNFlijNDt3fSw2H5YZNlknn6kcvBnT9mIWGzXtLdQxNLW/Xp+e858X8cKVP1ZItEXuT/gdhGKZSSQ/ZIngUF91hGPhJqaI1CJID+aG6XsyjrTGmptL1Yt5erDGOUj582afvpyhAs2LI5IUi25nlbb8k0gYZABzGtyKJuxWqBddXUlTkTr/vQZCUQfjAT5iva6wPwlIQ4K2FWhk0RmlGluXoqgyyXuiSr+Sw6u5RmBbccQJTV2lVZIvpaSojN0cRSSpI0pTZqjwTkyzjt1cG2KbG3dlqmSDWinNtHCY87XjYhs44yvjm7fahnz8sSvpbrkndlrxyYZJL4vRD1uJZMI5SxqFUEhyFMrCZq5kYKgRJBdeS6ldDP6XnJURJzkzFLNfetJqYvqeCY28FS1JwcxmacqLze4Kt0c75P1c7PAgO4oxP14e86AY0HYO7hY1RFPj1xx2SNGe1Z/HVmy02hiHDMGEYpDzv+CQL+T7uNTj6/O4HcblG+0F8aEuiEIJHmx5+LFvurzVdmq68IQ+SlPm6WSZeslzQGUeoCrzoygqNMM7KC7uFxsHvXtqZnf9/uDXm6bZHdxwTxjk/dX9ml28RpZkM/AufQVOleu9vPu1RtbRdfKmwQ+JenRL92YuqpeMYmiTj3/N30+97q9g72yM5Zx0v4rP1EeuDkE/Xdb7z9vyuqmBNVUiynB+t9FkdhCzWbe7PV/clIK61HDpjqSp4XICna2o53gnR8V6Mo5RP14ZkueBHK338WJ5jrqmxNoj4hXfmpYpzsUaWmjamrkqOrjMkJpqOiaGp1G3twIqeCY47v8dhWrYEdbyI6+bhydyeF/E/fb4NwHAx4b1lKb7zpFCEDKbm5eO1ISvdgO2xxp1ZFyGUQzkip2HpMvHnRdLOPN32Jc+PO+ZrN1v4sWyXjdOcG01Z+PD5xoiPV0cA/MyD2WP99wl/29YoOrawYBJb5EKwPgilOJChFf6E4NHmGGWuim1qeAXlgh+kdEcxqqKwNYr2jWcUpiXlx1nP5r04yPYMg4QfvuhTsaQaYd2RZ/BGP6Lrx9yZdZmvy9brj14O2RpFXGvZvLNUP9L33xyFJKkon+2kPvlkn8VpztMtj3HN5HdlOZqqlc/gmDoqkkZhL6bt1kov4DefdlBQuNl2mKlaF+J3r/R8glgKecVZTteLGEcpd2arjMIEgbRNaS5/RkF2SU2qIPt+ciK7f1q8am7gNDjrrG4LIf4f5zqSV8RHq8NTlacehaZr8hf+6Lf4Q3/6V/nf/8e/wX/xT/3kK/M/CcCPUsZxWsoBp1nOVnFTluQ5WtHD7xh6ebuiFyo13XGMFaWEScrGMKDu6IdWc1xvSQLHiqUfS3Z43qjZOtujSBrTAxy7512fF10P21SpOxaGrvITiy0cQ6Pnx6S5oOEaUn1wysF40ZWbdcJVFBdSoqYuOUYmzsiEWH57HHF3tsLISgvJTXkotByTKMlLDpGJqsv0Qa2rOyWgRqFMNA7TslxYCMHmKCxI8WR7xShMy0P/JEizHEtTCdP8wIMzy6WsqV0QfWa55EvIC+Ujx5RVKoamMgxTsixH01SyDLIslyS8urqPzPa0MHWl5Fo56Nl6nnxns1WTXAjSTHIRZLkMrJZbDqNI9l5vDiNutGUVRJQKojQniCdtlZfXJuSYGg83R3y+PsLUNa63HdJMcGvWZaHuYBuS90zXFF4TrQ6GpvKi6/Hp+ogwznlnqVZyfcxWrXItKgoHts5dJOqOQZDmaIrAmUpsHIZJJUGYZAcKJCRF9WOWCzaGx9MWCuS+jw/ZO0mW0/Pi8hY9z3fW5aQqr+kYRZuixTBMmKmYJFlOlGb4iWxJuvkKJN+KkKqfE+dsL8ZRih+ltComcZaX1UpJPpFSltLldMGPJGeBrih4UUKc5vhJWraNHQVVVfjW3RlalTF9Ly45M4Z+yiiQKjoLdWvXbT3Ao+0xPS9hFKSl0+4V4z3sfUviTsnLcpoWB1EoqhqaStXWZVsZ0pncHkfMVMzyrBuGCS97AeuDgLptMlOVnCPdcUyUSK6Rxaa8RZ8vHFjpfDqyEmoUM/Bl1dJhMvWqqvDBtSYbw3AXL1WYZOiqUgaNE0e2YmlsjyO2RpIPTNo/UZ7hG0N501uxNJYaNpqm0vPisjpvb5A4UzEJ4hRdVWk4Ju3Kyfd3mGRkmSDJJCdZuyLJk+M051lnTJJBnKbE6U5AV7cNbs+6jMKEjeKyxI9SNkchbffgSmupipsX1XyyMrpmcy7EuhNkueDptlcoPkW0XAsh5N6Yr9lkQhBnAk1RMHX5T9M1dvkNtqGVFQh1Ry/twkzF3FfB0vUml2qnG2fF1Oh7CQ13t88yjb4f0w8S0jwvKlZAQbaSxUkuW4kRGLqKY2rcnq2wOQr54YsBXpSyNpCVaadJKJiqikDaoUlV5ASTKk2jCNxzIciFoHCryAXULB1npkqrIqvrwiTj8/VRyXXXdHXConXsWutg0ZrDoAC9Yp/XHJn8ncaLrlTwUxQpcNCumPz2yqCoXJeJggmEkOqLtn505UW7YvHWQq1UKz4Mrqmx0vWYKeyHqcnWqq1xBIrgedfjveUGd+cq0l91DLbHEX4sK28mhPx7MfElTwJ5tukIbKqWsYsbJ4gz1gcBXV9eGq70fUxDo2IZdMYhMxWzPOf2fr9tqPK8mWpnOilmqibvLdcJk+yV9rmkp5S29yDOn8lZ03RNoql1MXme+bpNyzUIErXkB4QJj6Wkhmg4JjPVk/uUE1Lw9UGAF8uLgUlZ2yBIqNsmeS7KxOt0RVNUVBb3vBjX2n9JqKsKrqXhR7LN6yDl8IMQpTlbo4hhmJSxrW3oNF0T19JpugbXWg6r/YAoywmTlNVeQMPRma2au6t5LNmWFibZhV5irvQCBmHCMEz4+i1Zldj1Iuqujq7JCvVWRSpaTmhWkjRnaxgeqXbXcAw2BhGOqZ7pojjJZNGAEaS7qhWbjslbBc3DcQkcQ1exVJ0oy8jFxbV5m5pGQI5tahiZynzdIezKttSWa9IPErpehG2oZLmMVyc+B8gYfFPmTKlZRqmW+7rVxU+Ds67Q31IU5d8A/mt2t/J971xGdQZ8tDrg9763eG6ft9iw+Qt/9Hfxh/+DX+Of/k+/x3/zx3/mlZJefpzyl763QsXUWahb9IMETVGpO7qUhcykbPBi06ZqScMyQcM1+d1vzfLZ+khmQxN5A3rY4Wrp0hm7jEqPYZiw2g9k615xa+XHKUEiJXOjNCsPZD/KeLrtMY4yXFPlJ262mKvZJHmOocoWID/OuD9XZalp7+K2mRjZCenc9ZbD9jiiZhm7jPzk7xVFlhRP+nHDRJJu+0lGxdIwNIXPNmRfeceLd5HB7uWkAXmr/KOVPk+2PQxNYRCkuIbOV2/m3JuvFuSgJ5MJTbOcLzYlN9Zs1WSp6fCs47ExjLg7V8E1NX60ItU2qrbOgwV5O2LrKksN6QQCVEwdP/LJMsG2F7NQt2m6Bu9fr6OgcP0V5dxX+wGdcYypqdyfqzAMEx5uerSrBrfaFR5tjVnrS4dZCCE5cgwFU9e5PSPbW9oV2XcdJjnrw4AbbZeKpfPWYpXFhgyIL7MiaRQmPN0a87c+28SLMgTwpWt1vnqzXSZ5ZqsW40L953W08oVJxmfrQ37l4TabQ1m5985Sle+8PY9taMSZlGwOU9lycdkHTsMxsDTBZxsjnvV8/ldfPZqLT1GUI1tclpoOVVNF07Rjk1xhIrkLhJA30E3H4MOVAUmel2XXv73SR1dVKpZO3dbpGSqaqpY3xp+uD4mSnL6fMF+3y/bbm21ZwZDnguVXuFHsejEvi1bRe3MVVEXh+897ch8tVOl5MR+tDmm5JsNQKgA6pspi3eHO7M4FiK5KgtA4DcnzOoalcXeuxlIzY7Z6fFJqAkvX+OqNJlEqS8Rf9gIMXSXOBBvDCENX9lVEVS2dmaqJqirMVEwebXmlStXkkmZtEPCjlQE1S+drN5s87/poqoKhKrzsBVTtk12MhEnG5xsjrjdtnnUDBl6MADpFVVzDNXhvWVZ3Tez7YsPG1DRuzshy+oZj0KoYmLrCvdnqvueJU5n4mq9ZeLGsktsaR4c6o3tVb9Nc8MXGuOQ+9KKUgZ8ghOC5ovC84xMkKdfbDndmqkV7mEwMhGmGrWsoisFC3ZGk+1nOxlDeIr+zuJt+wDa0M5FZJ1nOD170+MGLPvNVm/mawUqc0fUibs9UaVUsdFVBUZR9ij4TxbBv31XKqueNgWxVOWjvVi2d+3NVkjw/dxsZxBkrPbmWZBuGwkLdIU5l1dSTbY88z1npBWRCcK3pYuoa37ozg1Oodk1jIkE/CJJd7Ux7K1gajkHfT07FoxGlGR1PckTNVKRC5merMoHy3nKNrp8wDlPJ9akoNGyDsZOhqDKh+XBzTJLKKpelhsPSFA/ofM3m1kzCsCCsPs00T2yQpsi2TCEE33/ew9JVbs24fL4xZhiktCsm+pxMtPb8mOstm3bVZL4mk4CjUCajkyzn4eaYrhczihJuz1T54FqTtxflvjpJUmpjGBb+a8J3n/SIc8GNpsPNdmVXZaoQgq4nlcnmahYtVwbZ83VLCoFo6q7qsa1xVLaiqurhFTKaun/dSyEW2dr2+caINBc82x7zcNOj3g+51XZpVSy+eacFClQtDdeUCbmuF+MWVQTVSXWtIrjZdo9VKTwOz7s+QSwD4KW6XfpIQgh+7fE2W6OYF91xEXjC7VmHhmPyC+/MsTY8WB13HKW86Mr1n+ViV5IszwVJfjSNwnHn+EnQ92NedAMUBe7NVtA0he8/66FrCm8v1ul5MR+uDmi5JqNIcou5pgoovFf46HkuSHPBOMzoGzuJqfvzNRquiWtoB5JTnwR1x+Abt1skmWC5WGNBktHzYxxDK9vA3lmssz4MSTNB1dZ52ZPVl10v4u1FWfH8eMuj68XcX6hyb65aVtR68ZgH89Vjk1OTJ5i4x4sNG0NTWOlLZdrFho2uqoWdqPC3PttknCY86wTcmqngmBobgxBFVRA5rPUDXEsvKwufd/2yRfK8uLIMTeFGyyVHlGd/3Ta4N1djtR+gKiqPNsfcaLkoiqBiSbvrxznjyGdrXKzdqsXHawMA3l6sM1Ox2B7FxKlgexyd+rJdVxWqlsZC3cKeqvxRVWWfquJh6Ix8fvPZNu2qyeIhPFPngRtth2Zk4BRK16uDgLcWZKVgw9H54Uqfla6PpsJ7y016fsxCw2R7HFGxdLZGEUGccW+ugqEp0q5lkpfsJJXvbwLOmpj6WvHvb0/9mQB+4dWGczbEac7QT/jg+vm23N2dq/Jv/aEv84//+e/yH/7yY/7Zn79/5s9KM0Ga5rz0AjaGAV7B8+D6sqz+1kyFpYZNlMrSPMm1o+4iuLwzWy177g9zBif8UrqmnMj4vSo645gkFXhRRJrmfLI64EUvYK5msTGUbYpVSycX0HIlL0BJptlweNGV6jpN1+DubIU7sy6Ooe+7zbnVdhkESel02oa2iyNgghttl74f70t4ZLkgFQJbV5mrWsU8K8ibm/3PNZE6lc8Y8auPtvl0bYhAwY+klOtiwym5XU5z+5RksoID5KEXJRnff94nTDI+WRuwVHfIEIRxzl1L8kRlmeB620VR5Jw3HIO6a9B0dPpBypOtMTMVk4ql885inay4yXsV+MXVcZLlpAW/UXcc88OVmJutEQIVP86wDI1FxabvJ8xWbAQCP8lIhiEN22CxZvOiF7A+COmMI2aqFg/mawe+p/NGlMqAYJLw8OOUX3nc4fn2GC/OuD5TBaTRnt4rl9FSOEGeC+KpG40oyfm1R10eb43oeDHLTZkImKvtvjGvXvDePgofr3pkOQRRxqdrQ5quyfef9dE0ha/eaJ6KkDfLBO2qTZoLWpWj5z2Is5IjY8Kh8vmGnKeVvk/LkS2DSSb59QxdpVWxSPOcQSDbXieJ3CzPsfUdPqAbbZearZdy1GfFZN+kuSDJBU+3xny2NqLrx7zs+zSLMeZCViQKobDccKlYGsOiRazpyn5+FVm90PFiqrbB24s1vII76CSYEGhqBSH2rZlKyY3w2fqIOJUVHP6eROzd2SpzVYuavZvDbBgkfLQ6QFUUPl0bFIG+IomTNZUkk1VOc1Wb7jhmtmKW/DN7kWZ5+dlhnPO9F336Xsr2KGKubuEVSbvrbYcvNkaAVFhabspAbdISkeUCQ1f4YLmOekA9/vSZuFC3cI2i2nBfQ8/hyHNZUULh4D/cGvPhyyG2rpAKgVkkQk1Vtt5sjeSN5nxNXrAMC8WwNBe86Hoy0VeIkpwX8qLqZ60f4ocpL3oKN9vSZwjClJ9+e475qo1Anm9xmqMou5WlFhsO7YrF5xujI9U+s4KEPE7zc3d4t8dR2d4/cc7nqmbJ5fS86/F4a0zFktVmbVdecNhTSSkhRMH3taNANn3OT557Ojiv2QbvL9dPlWiTZLryQmwcS16v7z/vMwwSnvc8brWrhGlKnMhqANfc4Yv6Yn3Mo+0xhqZys+1wf76yz27en6vSDxJs42TJnwm8SNqgrFBDfbg55nknwE8SPl4bkmYCU1Olj4lMWjQds6hcVMhySRY/VzURha142vGYr8q5vjNXkdXcJ7wUyXPB5jAizXN+43GPl30fBcibDqam7przYZCWY0uznE/W5flyremwWLf3VQJN7+PT5CMmIgcgfbLtQpTn0eaIMM0ZhjGjIKFVsZipWnzn7bmykud51y+qxXNW+zLRf7PtcEet4J5DRYokaxas9KW/f724jEyyHC9M6Xkx26OQcZRiaBpzscmDBZtRJBN3SwdUZil7Pn+CvCD/lnxJ5rm0eR0Gv2gxynMZ47zsBDzZ9uh4MS+6HlVbJqRyIbkVt8cRy03p52+OInRNkWvQ1Bh4kux94Cc0XINbMy7NotvirMp0rqnz9mKdJJXVoGkmW/xVZIJbURS2RiFhkrFQt1FQ2B5HGEVb+TBMebbt8WhrzKfrI9quvAj5ztvzBEnhF2TS3zvOx7B0jeWmvauqbMLnF6eSXuPzzghFgXeXGtyZrfC8E6CpMj580Q34fH1EkKRYhsYoSBnHYwa+vPDpepI4vTOOzy0xdXu2wjBIqNo7HT16IQ6lKYKPVkcMw5SNoVTnbBbz6scZw0Lky48yfvSyzxfr47KSe6FulxXOB/HYHQdNVWgV58RhldJ7sT0O+ejlgKpl8MG1Bp+sSe7KgZ/ytONx/RUq6o/CNKfmtaZDw9bxE6lovTEKedGVpOdhmvLWYs5C3SZOBX4c83hzzPOezyCQNAK/+O5C0S0g8M4wb68LZ7KgQoifP8vvKYqyDPwS8B5QBW4Afx6Z1FoB/iEhRKYoymfAWvFr/4wQ4uOjPncSCPzEzdZZhnUkfs97C/y+9xf5U3/zIX//N2+cuS1KCEiFYLZusjEIebw9xjV1FgvjZmgqlqbwpOPT9SLaFakwt9SwS9nghmtwE5dcSCfnecdnGCbM163S2Zk4JGkmW6UuOjHVcAzGYUq3aPv4YtMrS2BtXeVZz8fSNO7NS3Wjr99o8j9+vsXaIOBF1+ej1UFJSr7S9UhzKdO+V85a19R9FWLb44j1gWy3mK1ZrPR8xmHKjdZ+cr+XPZ+Hm2NMTWEUZTimSsuRCbIJb9UEQSxvSBqOPOQ+XR/x+caIzzfGGKok5b01W6HlWtw7SLHrGDimxlzN4nnXJ0oloaJjarIPXRE86/pULZ0bbYc7sy7DUPId2brCD1f6bAwjXENloeES5Sk3WxUqllG+7/M6ZJaKxGHHi/lic4yqyGBbVhvEjMKMu/MVbs24aIoMWsM0p+uF/I1PNkpZ29mqiW3oXG+6eFHGTHVHvvUiMfATHm6OidKMr95o4lo6mZCJgi0vwY8ylpoZmVBO5ChcBIQQfLI2pO8nXG873JqpkOUZT7fHbAylY9x20yJ5cDSJ52Xi1ozDd5920Q2V5abNX/3RBr/2pAPIdfBzBQ/HKEzLtts4zYnSnMWGvaucPCjkerM8Rz/GYWg4Bo+2xiWPnGPKdxbEGXEs+Hw4Yq5qsdiwuTdXpeNFvOh6PN32GIYJ11suM1WTh1uetE8dn3tFdcp5rcm5msXWMKIbxIWinUKYZmWVTGecsNy0ma/bzFRNPlwZYOoqj7djHm2OcU3pkE748j641izLtE8TDAJFW0nOMMwYhQkzVam6FiaSyDdIcrZGIY82PSqWVlZDmbq0t1Ga8en6iI4XkmZI5bNM4/H2mK1hwMYw4vZsFddU6QcpgyCl4ej4cUrPj5mQg+/l1dgaSdttG6rkzlobUCkcf8dSmavJKswXPZ/eSsxHK30cS+dL15q0KyZ+KEmt56omgzAlSmQgMbnRDxNZqaupCl4kK3izSJKB3pxxyXNRKi+dBIoCa4OQhqMzV5ftjI6hMQoSFpsWv/Wsh6YqDKOElZ5P1TIwDbVQeZScUs86PuNIciEtNx3Jf3WAEuJZkQuBF6UYqsIgSmlaOs86Yx5vexhajR+9GLDUjFEUeXs8Sf7cbEuFLbeYf1NXuTNbIUgyyW8TyyolXZV/buoyATlpZxlHKfPn9hSyamGl57M2CAliySv1aFMwjjJ6XoSuacQZVHJYrFuy1UzZ3Ub/xcaYj9eGGJrCzz6YpWIZIKBua9iGfqgfd9rqL9maYvBoc0yS5dRtg3Hhgw2DhCfbYzRV5cvX69RsAy9O6XgR26OQR1seiiJIM8mz97IX8LWbLe5M0UaoqnKm6pv5uiVbvoYhateXqlhpxuNNj+WmTcUyaFYkz9UwlKT8hqayOYr4eG3I9ki2mVYLFb65msVSYbdvz1ZOlSQTQlIvVG2dzjjCS1IGfsq2H1J3DT7fkDxJQhGkRYu/FCCQiZ/78zW645iluk0/kPtrFCbcn6uxUKgA6qqCqiqnulDy4522Hk1VyJF27/58hb/64QaKCt991uPGTAUhZFdGkuV8/UYLP0r59ccd/DjhG7fbNB2TH7wYyDbTulUmnCd7xCxEfRQ4kX92s+2y2g9IcxtVUfAK4u2//biLEArb44DVfsjWOOb95RpxWiFMpbDB2iBkYxjwu+605bpH+hlJljNfl4p90xVqaS5KzqhJ/HBRmK1a9P2Y9WFUUiWkeU6UZAyDjJX+kFttl+st2Yr9cHNMv0hY/NUPh5LHrG6hKuBFOV+bleqlDdc4MEY4C6qWDsXHRGlGzTZ4ngU83hyz2vPZHEXEec67i3VarkktkxdGUZrzrJPx+eaYuqOTZXIdu6bO5jCU3KZxxlsLtX3cuwdBUfbzCma54IcrfbZGEX6UMgxTeZGPwmo/YBTF/NyDOdoVkxddnxc9H02Ba22XTOSMw5RPN0a0qyZ+LMWdXvUCexrGAe8gSjJ+9dE2X2yO2BzKy8Gn24LtcchC3eH+XIXlpk3N0fjRiyFpHhGlKSgwKtbjs45PP5Dk8WdtI03yTPIy5QJDkxQA68OQUZjimioqUninZkuO5v/uww3+9pMOFVMjR7BUt/jBC1F2B10GvtgcsdINqFgy8fl022MUpZiaxlvzNZ5sj2WhR93mWUcS7PtRKlt1FciRSpMPt8YIdigT3nScKTGlKMoC8K8Dy0KI368oynvATwoh/l/H/GoX+EXgvyz+vw/8QSFEX1GU/xvwB4D/BtgSQnznpOPx44yWqR0oBX0e+Bd/39v8tU82+Pf/5iP+lT/43pk+w9JVvnlnhiCWZd1zFYtcCPw44/GWR8s1SbKM9YHknqhZMvHkhSmGrvLWgpQNnpCeZ4WiDEDPS8rE1HzNJs0DbEM7kkfjvNCumLSK2/3Vvk/dlm2IX77eRNMUbFMGj5NA1IulwyEE6EoPx9AZhglfbI6KRIFNmuf7ElMHoefJz1nrBzzrSD4e19IZhfIGZTqA2xyGJbeIrsZ0xtAxE37PbGVfQuJZ1yNJpSzu+8sNVEVWBFxvOdyfr3FvzuX2bI2Z6uF8K8dhsWHTD2S1WRDnfOtOm83ZkKfbflExofPeUh0hFHpeUigiyFuOrp/ww67HXMXH0MHVdG7PVI4kWD4LKpbOfN0mKfh5bs1UuDtbZa0f8LLgvLjZkreYH60O0VSVhqOyOZRKT0+3PRSkmsS9hQpLTedciXGPwzCKWen55AKebHu8vVhjcxCRZpILwjI0TF2j6RgnchQuAkma82hrTJZDnEvloRe9gKqlE2V5UXYscE39wnraz4IHC3V+8d0UW1dwLJMwG5JnOZkQqMjER8eL6Yxi1ocBjqnxohswX7PIspy3p/a3rklxgSjJeV602hwGVVVwTR1Ll5wNd2Zcfup+m6cdqfoyV7cwdZX3lxvomlIKJmyMQwaeTGZca7mkeU6WyURP14tfufViGpauUXOkoxzEOXfmXH5aVXnW9QmTjBlXijW8tVjn49UhczUbP07xwrTgKkn54UpfKnCaGl+90T5zZc1czeLh5ogsh41hQMMxGARSOVVV4cF8rRR6CA5Q9lvpSdu6OZTl/+2K5CyIM8FSs8Jiw+FrN1ss1m2SbZ+KZcgkUC6rSaI0Z1BwWU1jVHCDhImsmqpaBnM1k9mqxa2ZCpau8j8/3CbNBb/1rItraHy2OZZ2uO3Q9+Xvb3txqUw4jpLS2dwexbIle75KxdRlS7IuKzzP4tjmgrI1oVFUrt2eqZBmOb/+pMtczWboJ2wPY0aBDBaSXPLvmLpK0zGJ0owb7Qq2KYn4lxr2+SqQCnhnsUGc5cRJTpqBQNB2LV72g6K1XkhFJyFoOSYzVYtP14c4hkxATFqdpjnHBkFCXtgnL0oxdZlsm62ZeFF2rnsHZPLZNXUMVeHxIERRZBBh6RpGQVRctw0arsE7izW2RjEg21QnFVC9QPoGcSrwooz1YcSTLQ9VkRdfkoD31f0iRZGt3z2vaClS4OfemmVzFOGYkmhbIGhXLUQOA39CcZDjxxkdL6Jiaqz2A2xTJ8lzlk/J13QQLF1jtiYrw4WAubrk82xXLcZRykzV5CvXGqiaypMtj4ppUHd0nnd8toYhD7fGzFYsOn5E05EKoL/7rTnuzZ2+Cj9MM77YGHNr1mWmYvC046EK0LoKmqLwxYb8/mEopc+bjommKSw3HPxYElJfazoF1UPK5ijis7URzzsBP3V/hhst90zqtE3XZFxU5+iqwrfvtOn5MZvjkO8/75PmkusqznIeb3n86sNOwT0kq/9brknLMfCijIZD6W9OKjrGUcrTbQ+AdsVgayTX5J3ZypHiRUBRReeia1IZdr5ukWaC7YJEW2TgpzmGCjVL4/58lbszFb73ok+ayhbt334x5N3lGk3XLG2iosD9+SpZEbiqqkxEz9ctRmFaqtldFExd2r4slzyky02bn35gsNoLWOkF3KtXaVdM3l2q86zjoakqbdek58s20LVhwIcvBQ3XZLZiMggqfHD9fO3PNCatmqt9nxe9gGEQE2U5N9sVxmHGnVkDVVHZGkW8tVAjSXNsXaPjJXz9VpPFustCwy4Ux2UXxkz17OON04xHWx4fvxywNgxZqtvcmavycGvESi+UXHl+wi2g6Ri8f61Okgq+dK3O+iDis80hAz9F5FIU5M5s5cLpKp51PX7tYUf6diJHKc77IJa20Itz6i7MVKyylTkXgsW6VK6XPxvRck1ma6fj2ZsgywVBku+qGhxFKV9sjFnp+kRZzmzFpGYbLDUd6o5ecF8K8qKl+b1rDeJcKsFW7ItbcxOEScbTLXmZ9bKf8tnagCedgNmqyU/em6FVNSVHdSSVl+frFtdbNnEmiwcW61LxfKAnzNcs1ILDuuH8Dk1MAX8W+E+A/3Px/58D/zlwZGJKCBEC4WQjCCF6U3+dAhPPuK0oyv8EfAL8ieL3DoUXZ3znRvPCWoLuzVX5e79+nf/015/xR3/2zpkIxVVVoWJqXG/adAqpU0OdyHabzFUtNkchwzBmtmrRrhr4kSxxTjN52zFREgC5cVUFvDhlsbFTUuiYWtnP/OnaqPj/izU+SnHz65qqrADKJeGsLL+UQcjWKCZIcjRN3kh4ccZi06HlmIzjlCTNMDVJ8r3csMtbx4OI+iTJtiSwfN712B5HeHGGEIIszzH1/YTMFdvgdnHbW7U0tkcJLdcgzQUTH3AUJqiKgq4qJIhSxefdpRp1R+fj1SGWLvkNTkpieRTkO4+k1LZrFsGKw6897hClgm1PcnwMgwTTUFmsu7yz1CAXA1RycqHimCrLTefA4CDNcrxIcmqdtRqobut0C4WQhbqNbWhcazkoz3psDGXLxZOOfAeuKTml7s5J4tY4zUgK4unlhsvsIeStgyDBmmqpOi+0XQvHlHwDdtGmZOgqt2YrfLw2Is1ylhsWCw2bgZ8cKShwUdA0lZZr4sUp7SJ4tw2d95Zr/MrDLeJUigHcnJFto4rCG1E1tdx0uDtXxdRlYHZ7xmV7FDJbtXl7qUbdNtgsFMpyAXGSYWkqSSbQ9d1zbKgqwyDGizNOskrn65YUMnBNVFUlTqFiGjRsGdC4psY4Sun3YhlIaxpLdQdXT4iznKWGwziUXDJ3Ziv4cXrg/gkKUYqztHXOVS3WhgEVU6dqGTxYMLg3V+VHLwe87AWYhsoXG6OiDQBarsXtWZdBKGWAh75U0ZmrWtyccQ9MOoeJlHiv24evW9vQaFWkqtPTjk+WS94eBYU8By9KaFcMolSU628amqJQd0x6vizPn6vZ3JmrcK0Zstr35f7OQVVlW9QoTLAMlTDOykTqQbfYczWLNA9xTQ1dVZirmVxruWX1DsCDhapMtizVWe2HVEydmYp0sFoVmWCbr9moCnyxOSbPBJ9vjJkIQku1RYFpqGXb915SYtnylR5rf3RVwdAVXEMq9e1uuVJwTZWXvYBKsfaedcY4us5c1WYUpsxWbFxXxzZU7s01j62aOMm73QtNU9A1hW/cbPNoe0ySCQxVkWMVgvvzVXp+TMeLqVs6KJKYf6LqGqYHl/pbmkrfj5mtmaXoAsiK2mcdr1RnOyv/jB+npfJa+Z2GyiiSLbnvLNapWDo9P6FZBAyaJgOrumMUiakdJbBhmHC7XZH8L5Y8k7bHsSSBRYqeCHG6tq+jYBsaTVdWQ6kK5ELhWsvlWsPh040hoyClO4qYq9ul/ZZnvSTpVxXBSjdAVWW73l5+nDyX5N4nUXObxt6ze6nhULVlC52iwBebHoNQzst8TVbm355xpQoZgrptEGZZmSicq9lH+hFelJILsX9tF1suTKQ9e2+5gWto2KYUQVlsyM81dZVcSGqFW+0K2+OYdtXkzqxUapUk1AamNlFElu13k2qiG233VNUf2h5+GV1TmavZ1GyDWzNVHm+PuDPrFu9kR2ZeVRVuzlRYH0YI4Bu32lRtnY1hKMUXCt/Qj1P6gVybeZ7zdNtHIJNUxyWmYL9yqKYq1GwpjPST92d4MQgxaxYPFhq8f61BxdL5+s0WH60O2BiEbHshP3yR8eXrOxW3aSZY7UtV10l7t6FJAaGF4++CzwXtikwITtqxNVVhvmYTZbkUEZg1eLrtsTkMSXNBxdL48nKL1X5EnGW4psbAT7ldcAkelMSN0owwzqnZJ2vrO+wcmPAXvrNUl4qLDQcvTFmsW3z1Rp1MyAuRIEkRyGTn045Hw9H5yo12+VlzVYv1QuzirJfZYZIRZ4KmIylR5quyWvT2jEurorM2iNALsv5HW2NGYUzTMWm5JvN1m2EoeXHbsyZ35irM7CFIf1UcNoempmEaUiyhZus0HZM4FbQrNpWClF0q7Er1uYqp8f5ynfVhhB9lhGmKZUh+ybp99gvkYZAQpTZa8cxWIaCjKgq6Iiu3G6pCmksxim/eaTEME1QFbrRcVBXuR7VCmfLiLrKTLMePsqJqXYpKVS2N9YFFM5Bx6/35Kvfnq/zaww4osuXdizMMTef95Tq6qpYt7GGS8bIXUHckV+ePA041u4qi6EKIFJgVQvx/FEX5PwEIIVJFUc7cwFi0+P0e4F8t/uhnhBBdRVH+JeCPAUcqAIZJxtcvoI1vGv/c73nAf/n9l/x7f+ML/s0/9OVT/76lqzxYkBVdv/+DJXp+hKYoZLlgFKUYqkoqpFLGUsPm7cU6QZyxOQpxTekMj0J50+0YGn6c8rTjI5BcAbaxW5FkolYRxFlZuniRsHSN+bpN35cJpSCRrVFNV1Z+9YOE6y2Hm22X/8X7C/T9hJttedOFIq+hpGxznYW6zZMtedN0s+3uO8SjJOfh1pgH8zVutStoikrPj7k7W+F62y3VmLJclKSFt2cqNByDmYqFZahsDEMcU3K6PO14aIpStjbcaDsIQemEN11TyrcWN/NRegT5xikwU7UODNqW6o4k1e0ELNRtSQJpWAzCjN/7/gI/dW+GcRTzgxcDHEPj1qxUBkyynGcdn0n7zPOOT5jk2MbO2jstJv3h05AKTAaWrtEZR6Ao2LpalMRq3Jpxud5yibOcT9eGdMYhD+brJe/B5jCk68sqlYla3+Qm7zyTLhVL51t3Z/DjlJmKXBP3Zivcn63xrTsyaXF7psrfftzhqzdatKvmgbxlFwlNVfjqzSbjKC3J/u/OVRgEMd++N0tnHHFrtsrjTQ8h5O3mO4u119J2OI3lplPygxmaQt02+YV3FnFMjZuFs3+z7dK1YhYaFs87Po6hcWeutq99qefHpQz5y4JT4yjsVZqc2LpMCN5dkPxqH68OiVJpP5caDr/vgyWEkKo9cj2YxAXPSpIJPl0fslCzS1WYCf+IELDQsE4tudtw9wcfqipVuFRFKfhJYuI0I0yg4Qq+dWeG95YbBEnG460xq72Ad5bq5Q3r9L5pOEZJAj9Xsw5NlA/8mIcbY1YHIbdmZJBj6TLA1RRY7YfkxWccFCxNgr1v3GoRpZPqJp37C1Lw4WXfl629o4ibMy5zNYs4zVkfhMzVLdmqfoDzOyHbBnmZ8jMP5vb9zFLDoeWafPNOm+8+6dALEkxdo2br1GyD68WRvz2OSm4u29S43nIYR1JFddJ2Zhmyand+T7XU5xtjPl+XFzi/+61ZzEMqVTRV2UdSPsHtWZeFhoWtS2GC//w3n1N3DATwYKFCu2KjFCpUDcegsqc6cxxJPgjbkFUScUE0fdy73QtTU8tK47tFVUSUSAVHQ5NO+PXc4dGWlFq/1ZacYw0npu8nu27yV/tBqVb52ysDOmOp6Hh3tgpTUzQqZN8HQcKNE41yN1Z6Pj0vwdAV3pqvlUHkYt3mwXyNdxZqGLrKO0t1XvaCQv0wkopV47BIkO+oo01aRAG+frNVOufXWg6mrqCpqmwFOudLzElS7nHBWRQleZEk1+l5Cd9/MeDdpZwH89VSvOKdpRq6olJ3DH790TbbXsRXbjT3Ba4vepJTRK7B2onHftDZPRGD+Wh1QD+IGYUpt2ZcWq5Bx4tRFJVv350pVALl83y2PuJL1xtl8n5tEDAIEuam/JdRmPB0e4cPaVpdS9OkWuJMRVapvbdU572lOh++HJR8NMtNmZySvKo7/uQEa4OAtX7IxjDkWsvm9oxL15dJfFWRSpnjU3Dvgay4VxVln92zDY2v32ryzlKNqi05aR7M12SldSb40nV5Cf5zb+9uYN1b1fp40+N/+myLpmPyrXttmgV/4kmTi3nhv1pFK7CmKnzrbhuQ9vP2fJW+F/PeUqPktapYOt+83eaXv9ji07UReQPWhyEP5quoisJK1+fxlvS35ms2QdHyDDKZMwpTqeo1jPDilKW6c6Ik2mlgGxpv7fFHwySjYZs0bLMkfc+h5JVdaDr8Iz91h81hyMPNEbkQ3JmtMleT3EMvugF+knKt6eCaOg83x+Q5u9q7j8LGUNoVRZEXItvjmFEoW8cW6jZZLnB0jTDNuD3rcqMtRU0ebo4ZBAkNx2QcphiaUqr5TlMvtCrmoYpzJ8G06Mu7SzWqpsaTjsdC3ebrN1sYuoqmalRMKSCz0pf7Zaa4KFYUSVdxa6aConAuF+t7sXcOJwnD6y2HD5brbI4svnm7Td3Ri7lRi04QlefdgI9eDqlaOm5tpyIeZNXr3vVyWoRpzjiULaFRKlXNLV3jW3fb/HCljx9lXG85NF3pWxmayv35GnER62VCcG+mxkzFKrqRLu5y+NGWFOVyLa1UwfTihCDJWKiZfHCtyXvX6nL892bwwrRQcNfJheRdzXNYatrMVqUgxyQB/7pUxk+L06b9fgP4OuApijJDcYmgKMq3gcFZBqAoigX8OeCfKJJeCCG6xV//l8A/f8jv/TFk0or2tTv84rvnyXKwH9eaDn/kWzf5C7/+jH/q5+7tU/c4DTRVYbZqFxU+gtmaTZrljOOUiqlzvSUTE7ah7rrRmajlxKmUBo3TnFGUIHLQVKkkNzGECzWbjVFI3TZ2HTwDP6FmG6XDBtLoTUgJXwWTMlUvSsuWrSDJcEyNnp8QJbKtY+jHaJrK867P3bkKQZxzb07Kob69WGNjuNPOM5FP34skFaR5Tt0xqAUJjqkxUzHL28ZJEJekMuH11kKNRnHTAJTz+oPnPTRVZTuIaDg7B8feQ8RQpdRumOQXmi2vWrokN8wyrukOaSbKEuAwyTBUacxXej6uaTBTMWlVpKPdGcVlGXl3HJckoXulmM8DC3VZ7XVzxsWPM7KCrBIUolSqDUpugIy5ukPFNsqqj81CknxzGFG15Tqcljt9VYiiAmASCNYsnUGQsDGUMsRCgRvtCv0gxrUM4kwQJnlJSH9ZmEg2T4L0UZDQ92LCQj3testF0xTma9KhHxcKSZkQZyp1zYXcFw3XwFBVBsW+OWsycBIECCFV5YJ4996wDY3lpsPLfiD3lgOtirEvUdFwDEaRrJoYn8EOLTbsXe14WiHPPAqlrbMMFVNXWKy7fLI+JE4Fa4OIBwtVKqbGw02ZBN8aR3J+c0GcZiX/yHmui9mabOlabNjEmVR2mq1YZJl0fhqOwcBP8KKMay2X5aZT2u/pfWPrajm+JDvYRoJs/d0axVIefhzz3pIqVRAtqSw1CGQgvT0OURV5m60oCoOCrHtScQX7K/VaFYOOr5GkYhdPn6mr3Jw5nwTv5DvfWW6wPgixDHVfYmdCFp9kUt1srrZDxh2lGU+2PYZBQt+XCqOtirylTzPJr5UWFSlelJ3J4VQUmYDIc4FtyMR8EGdUbYMvXZNCAGEi25m8SFZCLTedkvx9eyQD7okiKAiGgUzWJNnZgkJDUzE0OX+VTFYjKYpSBJ+ywmS2Jt9r0zWp2ztnoyT8lZUekyqQzVGIqak82fZ4Z6oNd6Fu0/NjZvaclzLxKkrZ8rygHpj2O4BSPCRJBZmQHEN9X6qdLdTlHqkVvE1enJJk8u9tQ5dtoAqYU9WE6ZS/kOQ5TpFFa1fM0j6IouL6IpL783WbtX5Q2tWarROlsspjfRCgKgqqKoNWTVF4d6lKJgTX2xWutyv7zmqZDJHPlAvBeVmixbpNlOQFybgkjR8UyS/b1Gm4JlEi98Pbi3VGYcr6IGC+ZrNdVKhtjSPahb2ctpF7fTZTUw9MDswVyn+OqZZ2Zy8mZ2SayfUTJjlxKjlW52o2uRCYuuRo3bsG9yKIJc+eoiiMo4RxKNfeTWX/2GaqFpov28AVRUFR4P1rzWPndQKZrA+pWkbRfq7RdEzyPN+lNn0UXvZ8frQ6wDU0vn1vFtjNT3V/rgZ78vkT32e2anNrJidIMiqmrJifrVp0xjGqqjAMZYV4dcqWPtmWFBZrigAh38XLvk+UWtQdSY0hhHwPhqaeK3XEtN87V7V52Q+I06y8yAnilLmaLUm1VQWzSOi2KjKRNaE12R7HLNaV8hL5qLNxGuUeywXjMJF8r0guxAcLNeZqFi/7PqlQcUzpr20NQ1m968ozXVVlgnVzFEvalXPkbspyUZ73mRC8f61JrYhXekWCOckEa33p3wVRhoK0/0EibehiXXbrnHT9nRaTORRC8kpNElMTX+Zay6XuGlxrOny+MaLrJQwDeWnyoudTsaSKe902iupFi2GYsHDKS8GDoACKqhCn8qJ+gpptFAlRmcxY3lOhWLE0vCgrz8e9lARnQZhkBHFWth8Pw6Q8B+XZtFPdqBedVh+tDqVSfcXkXpH0G4UJK90AgSDLQdVkDD45Qyax4GLdZmsc0XT2+95vKk5rWSZP9S8A/zVwT1GUX0Gax7/3jGP4M8C/PyE4VxTFBBQhRAT8NPDooF8SQvyZ4nf5xje+Ib52wRVTAP/Mz9/jL/7mc/7kX/+cP/kPfO34XzgAeS5YG4asDwIebUrVgZ+41WKx4TBTMdkaSYK8R1tj1gYBX7/Z4lrLJU5zNochT7bH3GhXeGexRpDmaKose98ah8XtqjQGB93YP+v4RImUyX5vqU6U5jzeGvOs67N4Tqo6k409jlI2RyEfrvR42Q9ZqNkEScxf/q0tBmHCjbbLvbkq1wry8Y4XoSiCLwqFrc4opOYY+EnKs22fpaa9y2g0XB21IPGVEpkhv/zFFk3XlC2FSc4gSFlqSvLI337ZZxwkheSvwbtLNZ5se3z3aRdVVfjJuzMoilK21HXGESu9gBzBfFXemFxvOeja/jbB84SiKNyccQs1mhGqAl++0WBjEPJ0e8z3n3V42Y9QFYGmaVRtWWb+9mKdIEkld04ueNmXkrxWYYR/8KJHkuW0KxY32+4rP8Nknp53PJI0573lGl6U8WhrxA+edRmGKUmeEmcCQ9XozMXMVc2Cr0o62FGSk2aygmWuavOiKyvrKpbGcsM5sJps4CckeU7F1Hi87THwYxquyf15aaz9OOX7z3us90O+eadNkub8+uNtHm15+GmGpWrcbMs2tKWGRS4k+ed83T63PeAX6kwtV1aE/dYzOff356vMVmXl1m8+7bA1irjRcpitW3y+PuZ7T3v0A0n42q5YvLNY58s3GjLoFVCzdWYq5pn5R6JUlvT2AylX/3hLCjD87gezGGf4zIks7Xzd4t5ctajM3L+u6rbOi47HOMq4e0BC308S/oePN4jynH9y7s6pxzGpoBJCVl3pmmzXjV2drXHM845Hz4/46OWAj9dGCCFVcZ51POZrFjM1CxWFpmMwDBOed3w6Y9k20HRNZitVnm57JFnOjfZ+YYXTwDV1HizU2BiGbAwy3pqvkmSy4ugvf68v2x+FYBTJYHYYJHznnTmiVJSJWz/KeNYJSAtHsOfHsrLW0Jmv71QxRGlOx4tZHXh8sTFmuenw+z9YKtujbUPKJ6/1Qz582afq6LyzUMc0dtQB31+uszGSvFcP5qs4pk6cynYoP5KtS8sFL8R5c3WBdHazXLacdT2F7jjku75UalqsyyqLhbpdtvIs1Gx6/k5SDeBpx+PzDclh+P5SwJdvNHjR83nRDej7MoHy1nyVZ0Vb+K2Zyqlapvp+zG+v9ImSnLmaxd25KrauUbM1XvR8ZisyqPmt531mXJN2tc3mMGRjGNHzY7ZHAVvjhGEQ0xlH3F+okQsYhxmtxbMFN8MwoTOSaoQvegGzNZOfvT+LZWi0qwbdcUIYZ/T9hBddD8eUfILXmk4hStJnpmqx3HC4PevQ8yNmKjJQ6HoxdVsvg4e9nF3DMCnUGqWjPV+3+WRtyOcbo9InidOccZQyV5P8TFVbx4tSHm2NMTXZ3vHeUp2uF/OD531cS6rH9YOEUSSrKOIk4wcv+qwPQ8I05yvXG9yZlRVBuqoe2IIrhODRlifVPREl6XuSSVLbiqm9UvLn/8/enwfZtuVpYdi39jyc+ZycM+9831zz0F1FdzV0I4MMLVogMQqMEG4gkISFQyZCA2DCxkhIRiCQBFLYwhIWyMiAAzO2oBuqxxq73ntVb7jzkOOZz5732mv5j9/eO8/JPDln3nur5S+iou7LezNznb3X+q3f+H0VUyu7k5O8St+dxOCSI02Abz0ZgikS7YoFJ0/6agqDpgC7XoybuX1MuMAH22MMgwQNR0fTNdH3E3x3cwxAnkn1dB7qto6FqolO1cBa3cYk5pBSkFKoyvDxzgTvPh+hOw6x6yVUPFxycHehmo/VKOhUqPtuFKRoOBoaDhH8d70I3VqMGx13LnfjOEzxoOuhYmqlBPo44hgGCZquUb63B3vU6bnesCFBXa074wiWoeDLt9q5WqFadipFaYYHuxNsjSO0XRovT4RExaBxru9tjfHe8xGGQYJ31mqwDSJ3P/jCC7vacDSsNx2kOYl1lAq4plp+pr0xSbkvVKkzdLqTTVcZbi9WkGSUnF2qWfhH72/jox0Pn96o49e/s3rIxkgp8bDrY3MYYq1p42sP+/ilhwPoKmbO2MBP8pHAfVubCYnNYYBvPR0iTDJ8/kYTy3UTv/iwj3/w/ja+fKuNd/JOr51JiMWKjYWKCS9OkWY0fiklcpU/oOGYZcInE9SV+tpSFX0/wc44BkAd7kWieRSm2BqFpeLpWVH4vUJI7EwiCAjc7FSQ8gyPuj4+3B5hEmeYhEleRGfoegl+3VtLCLlAKgR0RUGUctzb5Yh5Tu0hBb63Nc6TDNrMaGSh6jsJUwASo4ijYBlI8qJBmlHX8S896uMbDwcABL7zZIiqo6HpEAXHrYUKTFXBJOHw4gw3O+6l0cqkmcDDPQ/Ph5SA6HkJVuoWxlaKIBVwdBW2ruLejoePtye41/XQdk18Yq0KKYF3nw8RJhzqGo2/vla5fB7mmAv84oMeDFWBqtKkyjefDFAxNXxqownHVBEmHJmQaFUMbA9DfLQ9Rj9IsTMKc+EKGuXVNAYvSsvi3WV1dsVc4Kfe38Znr9fx+37o1szfJVmGgZ/O5ai+2XFLv3bgUwKwUzXOzUmbCYmfu9eFn3Dc7FRwd6mCR3s+JfeFxHcKcSuDihrvPhuhO4nw3a0JtkYhvnSnQ/Fw3ULPj/HNJwPwXNSgbmu41qpgFEbIhMT1vDh40W69l4GzPt0Fxtgfzf/8twD8PVCyKgaN4n3nuG9mjOkA/j6ATwH4h4yxPwXgNwO4zhj7IwD+PICfA/D3GWMegAGAf+2Ma7wyLFYt/N4v38Rf/mf38Yd+9Z1zka0PggRbwxBff9RHzyeZzrqtYbluY29CIy0Pux6+uznCKOToeQl+2xc2SGVmcwyRVyz2JjFEXkXaGUewdQ2OQe2+R5G7JjyjDhyF+Hae9Hx8b2uC7VEE+wyO+En4eGeCrVGER10fXsSx58fUrvnUx4M86BsECRRQIuvOAikA8UzivecjBEmGnTF1e7VcA7aplvO2RVDe9WL0vATdSULEyoMAGmPo+TEedlOMAo6qreHN1SpMTcEvPexjbxKhO0nxxkoNoyjF836IiAvUbR3b4xidillmrp8OAnxvcww/yVC3NLy2XEMqRNkKf5UgB3SE3UlMxOu6gq8/GuDbT4fo5qOdCpOwDR2aCnRcC9ujCGtNB7rKsFg10PdJUjhMMuxNiLg4TDksTcMwSM+tbFHAz8dP3tscgYEh4gK2ruCnP+ziUc+DBpp1NzQGDhrX+ZmP9rDasKEpCpbrJrqTJK8sJkgzqhSMIyJmVdlhdQ8v5njSD+AnnObF0wybowgtxwDnEp/cqKM7ifGLD/rY82J869kAq3ULD7oBtoYhul5K8teQ+HXvLGO95ZYV2cuCEBIP9nzwPPGhMobtUYStMQXBry/X4Bgqvrc5wZN+gJ+/38VK3UbPS7AzifG051M7eFvg0+tNfOFGu2y/vWi1I+UCj3oBlusmkozIkQslxenEVJDwUgn0KERpVo7MCClxo+MeOS5saAp2vRicS3z72RC/6k5n5u//65++h81RBDDgn3y4e+7PtzkMcW/XI84CTcWzfoAn/YA6aUwVfpQhTDge9wIYGsOTXoA3lqv47PUWPrleR8XSaYQpTPG9rQkqloaaRZ1/xchS14vPPe4phETPT+BFHA/2PIwjUrDr+jHefzbG5igAYwoqOX9KkkkojKp29bxy3HA1KD5V/jbHIQyF1Mh6foL1lgUxluW5EUKi68UYeCmyTMKLMry3OcTKlHO+UCXy6z0vwf2uDy6AW20HXT8t1eyGQVqKbXz+egv39zyM80CkUCJTVQU1U8frK9VLS04lXODj3UnJhXVvz8eH22MESYa3Vqv44o023l6tw9D2O4uf9AJ0PQqcPrlezztMNSgAxlGC97fGmMQpdicJhmECCYk7C1X0/RSpCLDetEv1wtO+05/5aI8SDgAWqyautW2MowxeRAmXMMmggKEf0OiQpZHCjp+keH9zDC4y3N/1UDWJAPpp38dKnfaYqpzvXn7aD7A7jvD1RwMwBozCBG8sV7HWdNDNSZjf3RxhkL/315aoY7nt6viH728j4RLDIEXHNfF0EKDt0ojm035Yjn4edRdGaYZMyJng7P3NEbZHdGfzTOL9zRFUhUEC+MQqJQq/+XiIfhDjdqdS3k/vbY7w3a0xFAb88N02JhGNx3ywNUaUCrRdHV0/JZ6+mHiujpO7TzNJSalc8fFay8W9XZ+6CSYJNJVdeJx8GCQ5aa7E1x8N8e2no5x7UyAVEgzAm6tUIPvW4z6utSuYxCkatlF2rj8dBHj32RB9P8Va08YP3bGhgDoZg4Qf+xlPg65HSdBRlCKMM/gJ7UE/4RiGKb71ZICeR5wvDMSb9UsPBtgcRHhrpY67yxW0KyaePxviaT/E9pj4+nRVwd4kgaYmqJg6rrVnQwyeCfzSwz4lcnmGt1brRBqdCTAw9P0Eaw0bVUvDxzsegiTDMEhoBFcyNG0DKgA77+qaxsOuj19+OkDPS3G97WASpbB0DRVLw82Oi64X496eh91RDF1V8GveWMRSzTpUwN3z4lJcwdRpPOlpn5Q2G46Oay0HMc/wzz/u4vkwRNPR8ZXXFssu0eL9v7lSwxvLNSgKw+Oujyd5YfjBnk+f6UAh7PkwxM98uAc/oWLsIEzQ84h8/b3NUfmzi6TvJCI/zjE0bA5DvPd8jH/+cRcqIx/yk+t1POkHYJLhW9oQtxer6HoR4lTgec4zlUmBSchxo+Og7Rp4NghQNXUsVEx6B7secdT0Q2QCYEyi6E/I5H5Gr+fFSLnEiKfn3pNBwnF/l5IwYSKw0RJ4PgjxnWdUsBFCUPEx5WCSAQz4qQ+Am50KdEXBzY6D58MIaUYiJwoDapaOII2wUqcOwc5UDDEMyD/eGkeQQsJLeO5va2hXDEhQEeiffriLJ70Aj/s+kiyDa2hIuwJMUbBYsUq782wQwdYV7OaKwJehjj0IkvysEvH7KEjR8xK0KyZeX6qiUzXR9WI8GwT41tMBtscx9mzqcr3WtvF8ECFKBbbGEZZrFu4sVc/FkXwchJDYHFJjRM3W8LQf4HEvgGtoaDhGOf4W8QyP9nykGVEVgDF8d5OShgoAVVNhagogGVoVA5pCHMuX4U/4uYLhz97rY28cYqFGz2BrGOJJL4SQ+8qU02CMqCp4JspzF/PsRGoUISQiTjyb0357kPC8u4+h68W4s+hic0T7nWcCXT+Bn48wbo1CmJqGB3sT3NvxMIlT3N+dYK1u4cmACgLbowiqAnywM8ZGw8F7z8fQFBVCEtfyZ681Z+KbIOHwIo6GY5yp+PaicdbElAqgAuBgBHIqT11KmYISWNOY94Y/e8Z1vTD8wR+5hb/2C4/xx//Oe/gf/rc/eOag1sydnpqtYxymSHkGBpqPN3UFH+1MUDU1pBmNF1i6gveeD7EzSQBGG75iEmEpcSIx2DpxaQghSyLTg+h5MRIuEaQctxcreNoPcG+XJNQ7VVI7uAz4MXFfeRFVLWxDgRoQaV3VJuJKU1NgqAoGQYr3n48QJhyDIEUmqZ1/axzCynmzLEMtRw+NqUA54RJFHNwPYiRpBtVQsdZw4GgqGItRtTTihpESAz/FMOBQFEljEypVh/eexUi4QM+jf+9IFaOARqo+3PHQdHQUv/ZFkE6PghTPB2E+zsNRtXTqDOMZbF3BJM7AFOQEeA4GQYqHex5VKqTEtZYLXVWxNaYOgRsdF1HRsq8bUJT5hPJnASVPyTCO8/l6Q1MwDClJyLnEJE1xrWmjXbWg54HYKO/CuNFxc0VK6qpzLa0kt63ZGhxDRc3eX2Occ9ZULA1pRn/OBFV3GaNKt6JQC3HTNaAylMFgYGXQ8s46Q6UE2Y2Oi0GQwkvGl8ahkHCBR10fq3UiuN2bUOdT1crJhSVVqTMh4RpU5cqkIKdhGKPhqCQAkBPALtUs2IaCj3cnqNv6hQMRgNTvOlWaoW+5Br466ZbBQOFEbQ5D9LzkEOfLoZ+lsJLHzdSPv+CklBACuZDDnNZ6xpDm3UAX6QTYGkXo+ymElFhpWFMS5QkqhobngxA74xhCEheHYxJ336Oej6qt4e0V4lH59tMh0ixDJpRcRYj4VzIxh9j3DNidUJAzClNkkp5DkgmITMLOSbMVpqBpa1iqWxhHGfp+iu9tjbFYs7Fct9BydUQ8w+YwRNXSYGuUcG5XDBiqOtMloqoU+L++UkPAOZqujvWGg71JjJ4fo+UYWKiacE0dTVenEVHGqCJe8FBIoCsSbI8jMEajHVKS4MjzfggwhiChym0QZ1hrWiWPw2rdPjS6dRZQMF/8mXgSe16MIMnwy08F1hsOca1MdeEFKSWvpSReoZql5+IhsuQY7FRMxKmAkKSgpClEMuzFHIxhhuD7JBRFIikkuJSoWBq6E6qs7oxDNCsmhABudmxMYqXsuk0zge4kQSYE9JzUGAAyKUhNMkjw2lLl3M+vCL5W6hbu7Xkld0smJCYhxyhKUbVU7E5i8Exid0TB271dL+flymBqCrigMQHbUKAoxMMohIQ4Yuy6sB+pEKjZBnbGEQYBEbYG8f7I5dN+WNoP11DLhEzdIs7JMM3woOtDZBkinuWjuBaEZOgHMeKMFB8ncYa2S3xebdcAm3JNt0Yh/Jgq78WdVxS4vJgq1kUnNM8k8a5dsEjhxRxP+xTA1GwNusYgIVC1NXAh4IVE7mtpWs7VlECCoVMlTqfNYUjjGFzA0lWMwqAMzGxDQZqp0DV2YeJ2S6cEUpF4UnK+U4CCl4QLTCLiHLrWdAAG+AmDoal43PehawpW65TE7XoR7i5WYWoqMoN+dlHxP4g0E3jWD/C4H0BhDNciDp5J4luVEruTXFnMJw5Ixkilb6Pp4FHXR5SqWKrbc4sgjAG6qkJRUwjsJ0aTnNLgzZUqvvawB8tgeDYMMAjiuSPHVn52GAMgUdogorxgeLDno+tFeNjz8r8j4vuPdiZ58ZfGgIp7HKCR1xttFx/vTXBzoYLmHJ+jGDOaRIBpKLhbreLjnQmGQYr7O/7Mv+0HMT7apuJJwTvVsDQwKRFygSgRUBkJqyRcYKVu4kHXA8+I5uHWYgWZpLFIkauPTWIOL8rgxxmut4nb9UbHwQdbE0wijs1hiFsLbkngPe1H1nN1Qts4X7BbFPT2JsR3Z2oqIKmbxTbUnIuRqCwatgYwBUkqsDOKIQTDUt2EqlSgKMCzIfGsNhxKpi/VzJwMWpmJISqWht0JjTh5cYq6amAUxng69LFctxAmGR71PDwfEN+ea2lwpYooyTAOOSxDRcVUEU+NsBEXXAJNCcpk/0VQNXU4Jt1RpqbA0lQaEbU0PB0E2PUijPwUm8OQpjk0EvhpOBqqJnUKmjrRQPTVFA92PSxWzcud+mDUXWjr9DzCNMMwTNB0SORqFPrw4hSuoWEcxvhwZ4LtESmo1myNRoo1BbapIU4zGmHnErsBFT4VhksZoUuFgMIOxJH5u1MYO5I2BqDzXKzrNHHgg66HMCffL/wTKSn2FBLQVOD15So0hcaYY3OfvzMTJE7Trpj45adDTMIEXNJ9KqQkpeMJx54fQUoJLxbouGb+OZQyB5BmYqYZVORxmxDU1Xxn8fK75y4LZ40CtqSUf+pKVvJ9goZj4D/88bfwf/ib38F//k/u4Y/82rtn+v6KqeGdtTqutR30cs4ohZE7pSsKVmo2VIXhi7eaeH9zgrqlQUiGukV8Qks1CzVbR8PWUbN1eFEKIYlTom7rM6TA0yhIDuuqkVdQ01wymSo7BWHfZYAcROBGp1kquXEhsdoIsNay8awXoFO1YOfGiPwhCVen6vLrCxRI/fDdBazUrbL6WmSeNVXB60sVRFygXTGwO4mxVKXfc3epgu4khtsPsNa08zG/GJ9cbyBMM+yMAyigC3utaWOpYUEKcsZqto6NpkNkho6Bd1ZrsHQVtzournXcCyd0ToXc31prOrjedrBYs7BYs/DDqYBraPjkeh1BkqFTJULm58MwVx4jR2G1QaMsKzXiMKlaGiomjbUUY2CX1SFUs3V8cqOBhYqJtQZJO5OSmAGV0UW6WLXAIbA9jKGrDBWLZKlVRtwWG00XpsagqqzkAamY2ky3TsKJRP0Hb7dwreXQzLypwdQVLFZNhGmGmm2UfE2/6wdv4B+8t0WjdCD1yjuLVYyjFMs1E5+93qKkLpfY86LLSUxlAvd3PagqcKtTAc8oeNM1BW+v1CGkRCIEGjYR6f+6d5Zxe9HFk14ITQHaVROrDQfDkGMUJvgX31kCUxSkXKI7SbBUtS783vbVdyzUbZK8h2QYh7z8N+EU5wsXEsZRiSmVOO0SLk7kmrB0DV+40UTXS8pRlWl88WYL3342As8kfv1by/iFc36+ToWCb11V8KmNOu50XDwfRdBVBUreRdVxQ8Rc4EbHxdur1DlpqiogGWIuSHWzYUNXGLyYY71pw9BUvLFM41WX0aJft3Xc7DhgYGi6BjZHASxDxUbbRpwILFQtLDdMPNjzkaQUoC5WTbgmccFYmopbnQqyfOSTMeKha7nGzLkxVAVfubuAW236rBtNG3eXiXRYSkqULdYsvLFcxVLVwCTieNgN0K6YcAyV/t9Usd6y8dG2h4ZDAYnlUlLVuNYobVGSkhNk6Wo56lEQop8XVUtHp0qB1Y2OAy+uIIg5epMIUSbRcs1DHCKdiomGHZV3Ts+n0c7bCxVYugLXVLHedPCJ9QYYKGCUkNidxDBysY49jzi8TtM1xRjwzkodCxUTqw0L19ouHveoI8I11bIj+u5SDV+4SbwjdVvHzpi6vJZqFrgghdm6ZWCpbiDh+52M58WtjovFqok3llPcWarCNTToGvHKVSwNtkEqSc/6IdoVKkw5BinefS4nur+7WIEEVa8VAJrGIHNf4yieksJ+WJqac6JQd9+dpSo2Wm7ZCbXWtDHOlR6jVODWAtkSTaWRmygRNCZct3Grw0kAxtDwmesOVuoWmo6JSZRiqW7hE6t1eDFHq7JfBY7SrORC2hlHqEx1d63O6RjIhESYUFLzIsnnaetg6Sp+y2fWcKvjIIjzEftRCAbgndUa3t2cQGUkaPHpjQae9ANkGZEoNx0dbyzXyqLj9ijCesvBncUqhLg411TDMXCj42AcUkF0qUb8JSkXaFUMtBwdv/xsDFtXcK3lIkw4UiExCkh6vFO1sDkM0alYUJkCx1KxXDcxCFKsN1uo2cZcWzmJONbbDoYhke3f7LhYqptouyaCvGOlO6Ex6hsdF5auYqNlo2rp+K1fuFbyss3rHr6Z+2jUEQeoSpGIpD230XLxv3p7Gd96MgBjDApTMA75obGcpmvAyotdhqogyzkULV0FyzsdJlGG1xZrSLIMX7jRQiYoKRmklEyvmNrsXjBU/NYvHr/+1YaNH7jVRpxmWG85yITEMIjxva0J3CkhHgAI4hSKQvLvXS/GzQ7xy/6+X2Xgm09oDHe5buLf+KGbCNMMDVvHw26AhaqJlQYJNcT5SDYXEmsNGzHPiKeLoeThMTXyHVuugSgfVZ6XJGhXzFwl9/z3I2NAu2Kg5hDPbssxsd5yULeHeG2pijjN4MUcVUNDLCQYk2jZBlxLpyKNoSJOBW62KxiFCZbrNlQFaLkmXEM99NwdQ8spTTLsTCJMQg47/6xBkpF6om3grVUNT3oBrrVzLtRMwjJU2IYKx1DxibU6OhULG80YW6N45vNcFLah4pNrDXxyrYGuF+GnvrcLS3PgRTwXxOJYrFnwE+ra2hqEuLFYwfWWi+sdBz/6JvnPj/s+goQ4eS+bZcjWVfzIa4tIhcDDro+6peOz1yj20xUGBaR6d73twlAVdP0UnYqJjZaNxaoBLiSW6hYsVYVjKvjMRhOjiJoVAMwUG86LiqlhvW5jrWkhnWre2Gg6iDnx+N09ZhqGMYY7CxRzuicUi2TZNLJ/HwIUI4SJwGtLNA5dFJuvtVyMI+Jt+9y1JtKMxnJ3JzFWajY2mi6WGzHqtobVhoM0k6hYKsJUwxdvtGCZKjQVMFUNN9ou7u1NADC8tlSZscGz+/HV5po6L8fU/6Lxr35uHT9/v4c/91MfwU84/vCvuXMmojtLJ2O/UKGLvHTG0gyjkCSfXYVahgEyTq6p4XrbmXGazjJSsli1IASgaxS8L1SJs+Bau3Vmxanj4OaKTSkXhwgtHUNDp2LiK3cXwTOJTAgESYY0o+BLYQyDMCZDVdvnlNIOVMd0laHp7gcNDccoVY0sjVTBrk2RxtdtHXVHQ1WoCJMUXky/90ab5oe3hhHaFQMrdVKQaueEnk2HCLtbuaLbi0DdpvcupJyZC35ztYbXlqvYHpEyUcs1sdqwsToM8XwYYhKluN520XQMCEkdQ1Vbx3rDxkc7lL1POAUAF4WqMNxeqMBPOBq2XgbDFUvHb/jkKvp+kld+Faw2bAgpcW/Xo3HDhoXrbTcPjOnnbbTcsrrtx+GhEdksb7OehBwLNQu2QVWZZi41fJBdrlM18Rs/tYphkFKwoir45pM+FEYBgKkpeND1EcREQHgZ4HnFcRRwbDRVvLNWLxUh5yVumq6BL9xsY70V5hVNG9fbLu7veVhr2ri7WMXWKER3kpxa8vgk6Koyo26yVLPQ82bJMFfqFnbHMVxTO7Hap5+Bb60gv5yHt1ab+IEbY0p2TRErnxUbLRcVS4djqLANjXhz8ss/E6TIV7M1tFwDb6/W0XAMjCPqUCROIiXnmSN1r4ajY3sUwzGoo++iwqZLNRO6ShXN6c6m2wtV3F6oouvF2ByGcE3q/Fyu2ej5CYYBte5vtGwYeVWUZxI3Fyr5qG4MgMjj687s+3BNDaauYqFqIeISUUpdKwM/Le8s19TKPVpzDIxDCj6LgK5m6dAUpeR9MDUVaw0buxNywhcqBgZBCl3bHyvkGcl8XxTTnYJVS8ePvbWMR10ad52nlth2Dby2XAXPJBYqJiKeUbBqZdho2ri1WJnL0VbcpU96QUmk6xjaiR1LDcfAG6tVvC6rpb0u9s9GywHP9rs0p7HasNGdxFhr2nAMFXWbkugrdQtfezRAJgSGQQLZcs41wqsoDLW8eFV3KNBq2Dq4IDEQTaVE7PWOCy/muN52y6Tu7YVZ1c+zjFKs1m3sjCPqSMxH7A2VkhvFHaprCt5cqYILib5HHEoVU8Pnb1DnxyhIsTkK4Rpa3jnLZsiWlxs2WhUTe14MR1fRcA00DqyROoSJa/I0BSVVYXiSjysVKp/ngWtquN5xwDPyHxhj+MJNGl2eRClueQnqNo2EgTGMI46316gAdq3l4N4uiRHUHZ262BmNmySZmLJTl9O5fWuhMnNHTY/3L9dsLNcdTCKOdoW6YaJUoOXqSDMaU1mskgBKq2LgWtvBzjiGH+d8LaY+12dyTA3LNQvmDSVXad7fF1WLZNBrlo5+LlRwa8Gd+bzHjZebGiWdd8YRdvPkOCXZ99//JzcaaLoGuhMSumgcUZSaPvfTNkhKCU2lDuwiYbPRcjCOUvgJL7m7GNjcrqjj1m/p6iH/7PWVGjKJUtQHIJvz1modIR9AYURuXFB4tFwDSq7AWfCANvLvu7XgYhJRx979XPXaNlS8lSs3pvl4P6ko7p+nTi5ZX7P1YztXLuKjKLlPOYl4WQABkPMMLSNKMzwbhAjzAnIxWq+rDEKiVHyu2zqGQYobHbJnXiTgxwHeWqnNtaOKQh3Ck4h4q5brVv7sdDQdA6sNGwmnApDCGGxdQZwn0DdazszeWqrb6FSt8kxdVldS8VwXazYWqyYmUQZDp6Jv1eK5Qq0DQ1eg58nKdsWYiRWX6jYGuajEVYg+KArD816IKMmQCoH1poNbCxV4MUffI2XmTsVA1VLhJ/TuPrPRRLwhMMi55aZj6HaF4sF5qpnnQcXS8OU7HSzWLLSm9rCisFMr/mmqgsopnh1jDOtNu4w/CpiaioZDQh7T6sDTXFqaquBBd4I4FbB1FdfaNvpBiq+sL+Bmx8X2KALPqKO4Zumo2jpaziyH1Oeut45c1/QZe5Vx1sTUj13JKr7PwBjDn/1XPgnbUPFX/tkD/N9/9mGZREm4ABfUmnyz4+JHXl/AT3x67cifM+30tSsmqhZd6JvDkIijVYbXl6q5msv5Df9BpaSic+IqMI90FKCs9VFOYiaI3FdT2am6MKbRcg00phT3DsLQlLJtUYIUWeq5QoGuMqw17RknSlHYlcipnhZHGWJVYYcC/I2Wg8WaCUMllS7GiP+j7VL1KhMSikLt6JfZvmvnFaN5mFZAKvDOWh2fWKtTdyBDKRsNFHPcCoAMinK4K8XQGDaaDsz8900H0vMgpUTNmnWivnx7Vr7m9kLlUvmlTE3BjbZTXq5qqbB1NISQWK5ZpcO00XJm1ItW6valdEodhcWqdSiwdwwNNzovoDNwCustBz/+qVUoDFi4QJL8uGeuKgyfXm/gnZyTqEDV1Mi+Tj3jsrLnJWUQfxlgjB3bhVOQuBeYPtsAVWsVhe6D4s/To5FHrVPPPy+N7FASZrU+f++vNey5HBQH7SFjbOb+mP5cry9R0uEqOAyutRxK8CnK3PUzxg4p63xqvVHanJOg5+y3jJ2+O+5gsFYEyACNI06PDkhJ6koH78I3V6rl+u8uVnKFQOVSVHQcQysDKE0F3liuQoL4S2JOY5hrDUp6nvY5HYWDSbg3lg8nmjWFleuZ5yscFG6pWfqhdekqw0rtaNuoKFThTnNemtPA0BjCRM68r/PgKP+nUF8t8OkDgj2WTp2ZWX52ijuyYevo++mZ9uRpcJy9NDRl5j0WghGmppZ7WFFYKfChKAyjIMVRd3iBiqnh9eUqGOYnaSxdxbW2g42WnfuDZ38X037OQZ/H1FTcWayee4ylsHuLVbN8HgC98zfzgpp6iX5WwzbwibXGIdtetXX8UM7VOP2M1DzQTrko7X6BoiAu8gmETMzudV2dr6barpin5ty7CIr1HfV3dxb3k3bFvaepRGFSmIaNloO1Bt1tD7s+kFIS6TiTVjxbRQFuL7gzsVZBZC5ycuqT7rTT+H0XwfW2iyChMeubC+6pbdtVrwug/aMqCm51Kri7WIGhq6iaGtquDlMjriVL1/Cl2/sco5ahHhnvXCZht2No+Jc+vZYrs189t1KRFD6IeeqkB6GrVFCxDBWf2miU9pUIzckmEyff8YnueTjujL1KOFMEIqXsX9VCvt+gqQr+9L/8CfyOL1zD339vC08HIVRGm0rLKxYfbI/xZ/7+B/gbX3t66p9raAqklIg5SUp2WvaVZLhfNagKw7NBkB9IZe7Iz3E4bfB+a4EMexEU7E1iIn83yKBeVRLgKmFqxIv1dBDkFW+33DOqwnBnsYIoFaidgTvlsqGrCoKEk7MA5KM1+wZyvWnnksSHeT4Kp+Q0ycpMUHdWmgmsN+0rq/AdhKWruLlQOfUzDpMMD7pUHT/4LK5qja8qGAAwBgHAuQAn0UlQFDYzmphmAvd2PWRC4lrbmQkoVxo2XEsr5dRfFkxNJbWpPR9CStzsuHBNrXS02xWT1GwU5chE8WqdePZ2JzHu7/m4vVC5UuLLg8/5snHa9/G0H2AYpGg4+qkcQoC6D1xTy4UbLv6Mptcac3qPhWLOdJJiOulyvU1dTFd1Foq7oWEbeNILwBjKruVXEQdtYMIF7u95c5/jwe8zldN/phttF36SnTiqcZWIcq5ChTHcXqTAc7Vho2LpMLWrVQQ+Dowx4pASEg/2PESpwFrTzrvi6d8cd4dP4zSfoecn2Bqezy9ruTTSqTCcWz3rJBTPo8D0fX6rc35uuIO41nIwiWnE7CCOigueD0P0vQQ1WysD2WkouU9YUCJ8P6L47F7MD52XYq9cz5+dY6jHJtuJbJ/27fQzLfjyCp6gq7zTTosbbQff3ZogSgWN1dZeHZs9ff4NTcUoTPG0H0BTqVPnKHGcFwGFASJP8EgpL6Xgc1W41nLK+5/lhfyDZ/pl3QMvCt+fVukVwifW6/jEev3Iv3/U9bE1ivBv/fXT/0xSjqEW9GhqRvVXMqSUOXEggxCXWxmcBnFx7R/qom0/TASSTMA6gyP7KmEcpZCSnPYwzVCdMlympr7U4LqAF/GSSNSL+UwgxBg7chyWlMlOmfBJs5LsdBSml0KaeBowhjON806itHwWk4i/skHhi8Ak4uX+9GN+wr++PAQxKYECxOlzsNPhqM6HF40gJ60G6FkdPAsnceIwajeBpijgGYkOGNr3l3zweVCM5I3CFBun/B7G2JW99+n9Non4ke9NVY62hZe6nmT/3I2PWc+rhiDh++f2EtetHfANXgYm+T2eSQk/zspOgxexH06DmGclf8ooTGc6oy9zncXZPa9f9kL4QKcwiafu8zi9tMSUcg5bMMq5ecYhPzIIN7TLSby/bEyflyA/LwVO++yO2rfFHpxE/NLVm8+NfLwNJU/wy5vsOIiDz3Ec0rtJuUSQZC/Vtha8b3EqkGYShvYKvMsjMO/+P82Z/pUEJo9Qcft+QqfTkTdu3Jj5mgQQp0SCeBlqKxfFo0ePcHCNrxqueo0xF2Ub8UUuxXnrlBKIeAb8L+R9J1zkY3pEMn4eXPUaCwUJgEbdlHMa08taZ5SKnCNCufTqzWWtkQuJlIu87flyL/LpNaaZBM+u5vdcFC/CVl7UFl3lGktbBuLKOa8tO+8aiWvkYrblLHhRd+NFzv+LvL/3bQCp+J52pa+yj0HKiGRvtp8/OfU6L+sOOSsu+1lehX/yIt/398vZOQlH7adXaY0FDtqBx6/AGjMhkRRr0tS5I3LfD3HEWdd4Xpt8EZznOV5GXHBWXOR9Z1KWhWTriP10GXiVzjcpAh+2pUet8WW80+PwjW98Q0opr3QhvyI6pm7cuIGvf/3r5X+nmcB7z0b4cGeClYaFW53KqVv5rwqf//znZ9ZYQEqJf/LBLr71ZIjPXGvgR99YfGnZ0KPWeF5EaYbtUQRTV7Bcs/De8zFGYYo0E/jS7fa5u0TmrfNx18f3tseo2wZqtoZaTvD+sjpRLvtZFoh5hq1hhI92JgADXEPDr7rTOfkb5+Cq1giQVPfzQYCel0BTFLy9XsNy7TB3zWlwGevcGUf4hQc9ABIbTRefvX6QMv1iuIw1Jlzglx70sD0m4u0v3W6fiWvtJHzms5/D3/pH/wydiokHex6eDkLYuoIfvN1+JTrqClzVvhyFKXpeDFNT8N2tCRxdRati4M1zEK5f1RoHfoLHPR+7k5iUYBZd3OycT7DgtGvMhMTmsBBVMODHHAV11Zsr1SsfJb9KO1Qg4QLf2xqj5yWwDIZbnQrCVGA5F1N4mWtMuMDOOIIXpbAMDQnPkHAqGN5acE9tA17EczwvfvFBDx/tkFT5v/97f+OhdUYpkfjbhjrDhVKM2gPAUt2EENQVu1K3rvRuv4xnWZwrKYl890kvQM+L0a6a+PRG45VY40mQUuJRz8dH2x5UBbANDV+82TrTKMmrsi8TLvDNx3086gdYrVt4a7Ve7rVXZY2TKMXeJEbd1uFFHA+6NML9+Rst/NgPf+mlrbHnxQiSDAnPECR0OVyb4tQMkwzb4wiOoeI3/OgPXck6+36Cvh/ndBAMC1UDn944nx931vf9YNfDg66PTApsNB10KuaVdyuddY0xz/Bz93rQFCKvf2ulis1RBCmB1YZ1Zff4Rc7O+89H2BpFpYhAMSG02rAvtbngVTnfCRf4+ftdhKnAWtPCJ9YaGAYJxiHHb/51X5m7xu9tjfFgz0PfT/Hr317CwkvukmOMffOqf8eviMTUNKSkGfjHAx9ezNGbJPj0xqv7Mf/jf/gh/sufvl/+969/exl/7rd9+tJagV8mdscxJhHHJNqX/n46CNCwdTwfhridq0plUl649XoUpVAVBQM/hqHROGCSCdzOVU6ChENKXGqg/zKwNymeaQqAwdFVxDxDzAUMVXklRsL8mKM7SRAlAntegsWqiZSLl/YOhJB42g+wO47AGMNyzX4l22G3hiG6foKdCakvhWl2qc8q4QLDIEXMBSQkuBDwYgnOT08Q/P2M54MQmZD4cHuCiqVhFKW4u0RSvab2crmkALq7ng9pjc8GAVYbNqJUIEpJufSqRq16PqkBbg4jjIIEFUtH3SIC6l8p/IZcCPBMIOIZdFXDxzseGo6BLRleilLpRbA9irA7ifC0H2K9aUNhRArbcIwr5Vx7EZjkMtibwxB+zLF9RIf+1iiCF3EMgxQVQ0UiJCxNRdPRy/FeS1PwuBcCALYRHVI6fNUwCBIM8xEMQ2fgQiAVApkQGIUprFzhq2pqr9xdVGASc3gR+Wh74xh3l6p43POxWLNemVHn02LPi9H3E4yDFApIpOFVw+YwQsIF/DhDy9UR8QwKGHbG4UtbU5hwfLTjkeq1rsI1SXFumk+zUFX2oqsZxRdClvf37pgUFaXYp66oWVdzhor4RAJIhUDPS1AzdWSCRBpets+QcLrTqqaGrWEEU1MwDFPcXHAxDNPS/pi6cmViV2eFH3MwRl2kcS4WVnQFTa/3MtXiXxXEaQY/yQCQgEQmJJ72jz7bQcJhqiwvIqv4zvMRfuwVeY9Xie/vKH0OtnOp2IFHpKd3liqomue7QL2Y43m+ITZa9qUbvp+738V/+dP38Tu+uIE/8eNv4//x84/wZ/7+B/gD//038N/8ns9/38+A2wYR4Kl5C6JdtXCz44JnEqamwI85HuSytQWR5s44wiBIDilUnQTX1LBcY3AMFUk+ilIojoyjFN/bHGNvEuNG28Xba/OlY78f4BgaBj7JkNYsHbauoTtJ0PdJQey1pWq5bxIu8KRP1aXrbeeFEeYVowqmruJ6y0HDMZBJ4P4uvevpShsAPBsE8GKOlZp9KdKwB+EnHNujKJdwNtCuGCe+fz/meD4MYWoKNprOC+EX6HoxwoSDgWG5bs4lPJ1GlGZ42g+gKAzXW86JSYTiI5uagoppkTx6JvFkEOLNlZcXZKSZwONeAEBeaWerY6iYRBwVS0PDNtCpmEgyiZ0uEUC/vkzqp0/6AdKMKqMvskBAY5VEMHyj7WKhakFTGO7tepCSlPGmJd33JjF6foyWYxxbvd0dR+gHCdquOfP9BRxDg64qYEyi6yVQFOWFVIRfFMZRisfdAGkm0bQN2KaKLCeEcQwNQcLxbBDCUBVca72Ysz4NQyPSXVKF4xASMDQVkBIf7XhwDPWld3yfB7uTCM/6IXbGEYI0Q6diounOtzOmpsAD8WtsTyJMQlJ3e32pWiageEYKWzyTcAwV4yjF1jB6ZZ+Pre+PpriGhpsdtxx/Uhhwb9eDEECrYswoYW6PIgzDBAsvSA3tOJiaAkUhUYCGrUNXFGwNI4SJQKdqYKVuo+fF2PNiNGzjpaoZnwRHV2EbGmqOjlHI8QsP+vjMtQauzSEIf1lwDBUJF7B0Im/PMoHtSYzqSxSu2RxG2BmH6PsJ7ixW8bnrzUMFM8fQ4MfZpSnYHoSiMNiGAj/OsNqw0amYqFhaKV4yLXAhhMSTfoAkF8A5DQF+zDM86c36UkHCS5/V0hWsNxzYugpDU6FrDPoLUHc7iN1JhL6foOUaaLsmPt6dQAig4egwdQXVvKC0XLOQZKJMAL2MRoetUUg8WFWr5KIbBSme9AMA1MVlaArWGjaWaiYcU0PXiwFcvmgBFxIfbI9fqo3KhMSjXoAsk7ANFQtVEwojJeCUHy7YeDHHwz0f26MIPMugGhpqrwjX4FXjV1xiKuECDcfA26t1XGvbWLiA3Hp3EiPhAgkX6KTGpR4WKSX+7D/8ECt1C3/ix9+Gpav4ya/cRt3W8cf+p3fxx/6n7+D/+ls/9X2bQAGAhaqJqqVBU1gZNJNCHKniFeSCAAWnUlI1BKBuq7Mkpm62XcT5hc6FLH8HAKR5p0iaSfSDBEFyuZ0oLxItl6ror7NK/nnVctRBSuoMMEDPehgkCPO262GQzg1KrwK6quC1pQp4Ttic5e9jElI1LZ2SuI95hoFP+2DPi64kMcUzifWmg06FLqVrrZMd0Z6XIE4F4lQgqGQvhEy1Zuu4tVABY8CbK/UTnYlBkJREtOOIzxDRzoOpq7jRcVDJK/SrDQuQrCTWflkYhSnChFq4C5LHq8D1toMoFTBUhiDNYOkqNodUrSqqV0G6X/Xt+THWjRcb8N7qkB1TV6rEpSElnuRdItPnBiAnVQhgdxIfn5iaxJCS/v08G1AxNby9VsPthQo+2pnA0tVDv+v7GWnOYeGaGhqOjk6uZFgo0T3tB+VZ9xL+wjtBlusWKpaG15eq2PMijALaf9vjGEau8LtQzV6JbtizIM0kxmGKKBW41amg7Ri4tTDf9q42SNHJUBU8z8+kEMRBUlheTVVwd5HuFUtXcX/PK/2zV/H5uKaG15aqkJBlZ4Wlq+WISkGWXexP+prE3oR8oD0vfgUSUypeW6oiExKMAZOQYyv3N4pgancSg2e07qWa+cr6rE3XwJdut/Foz8O7m2MISSP+r1Jiar1JSRdTU/Aw70zzk+ylFqmFlFiomIjyzqSelxzyn5frFhqOfqXFz1sd8nk1hdQrTU3Bh9ukhJhM3VdewjEp7nAvgdM62Xcb+OkMqX+7Ys4kC6qWjtWGhteWK5CSfNyXQYa+O87v8jElgksbkglstCqoWmRDtfx/B+3Pi0ImJLqThNY8iUrfdPo9McZwd6mCNNufmHkt72K87P3OM4GUk41arJov5d2JvFt4o+XA0BhW6lSMuLNACpkHkeZdZF7M8cZKDRVDx+euXS4FyauKS422GGMVKaV3mT/zrFip21CVCKsNC6auou8naJ5zJKFu66QYpV/+mMf7m2N868kQf/LH35pxqH7bF65hbxLjP/lHH+FWx8W/9WN3L/X3vmgcdBZjLhClAo5BzzepUStnp0IOTc3WMA45GmdMUFBFhX4Xg0SUCiiMElAt18CNtovNUYDFl8g7dVnQFIZBkMIxqKV6uW6BMXrW08nTqqVjL69AvOiKm6YqiDhHmGRlMi3NlZRaU0p5hkoy92GSXVk1oOHo6PsadI1hvXG6joiarWGcj6FYL8gp7FRM+DHH2ik7daqWjp6X5KqFp9jTkvhZjHxs7e5iFX0/OfNZu2xUTA1F8bFyhfuUMbIR4yhFwgVcQyvvC8fQyqBR16gr42VUpxSFIeakwkdS7AxLdVKSWTyQVKrbOgZ+eqLyUM3SMQqP/3dpJmn0ebECP+ZnKgq86mi5BoZBiohnWK5Z0PPzrOZKXzWbno+m0mj0i4aUEnGaQVOoKq+rERTGwADsjIl36VUgPT0LRkEKTQFWmxY0lVSGrnUcaMd8joqpIc0EdJW6I9quecjvooCL/ly3dQRxBttQyu7oVw3TAdYkouC35RpQFYa1po0g4TPJYkVhqFoaJhF/ZZT4AOo6rJgaOlUTjNE9Uoza1G26h2r2qzuSCFCH8ThKca3tYBhxhAnH9VcoKQXs31EAUDU1bA5DrDXsF1ZUPIgoJaW7TtWEaai5cuX8fXnVfrWiMDAGDPK7zNBoksU7cF85unrmO7xqUbfOtAJ03dGxxE1wIbFQNSGlLP1uS385+7xu6xgGxedXsN604Sf0+TMhESYZpC5Lu/OyEpqqwlCxNHgH7FjbNcCFyKcXdEgJTKIEQkrULP3K1lsUA6qW9tLUFXVVmbtfozwmPoiGoyPJLMScii4LVRM9P4GVd8b9SsZlRwHfBXDtkn/mmaAwytYOghR+HEJhDGGS4Vr77JXvpmugbutXspH/5jeewVAV/MRn1g793R/+NXdwf8/Hf/qPP8LNBRe/8ZOrl/77XwZ6XoyvPerDNTTc6LjYaDmHKv3X2y6yXHHjvHg+DDEOeTmeo6sKXl+p4u4SdaNMO08xz7A5jKCrDGuNyx/XvGxkQuJrj/qYRBxLNQtvrdagqwrWm4f3t22oeHO5dugzvwg8GwR47/kITcdAlNrYaDlzW2iJ4Lly4Xd+EH0/oZFQl7ojgrwjZ8+Py0rFcWg4NCp5lc9OSonNEXFKrNQtbI0i4kkLklM5ohVTw1srp3+/Mc+wM4oxClLcXarCNbVDlU8/5tgeR6ia2gsb5bJ0FW+t1CAlrtxp2B5F+NaTAaqWjlsLLlYb9szZ0VUFry9VX8ha5uGjnQke7PpoVwwISV2nR3EtrDcdrNRPPjfX2s6x5yvhAo+6PqQkx/fgXXlwn77Kif2CpyvNJBWnNBUxF+X535lEh2xl3dZRPcM5ugyMp0iOhZDYyTuFb3ScGfvUrpgvXWH2LPBjjvt7HvpegnbFxFLNxJ2F6txnOwpSdP0YTccoK+pP+gGCOANjODEx06mYaDnGqyHjfgKiNMN7z8cYBgnWmjY+ud5AyzXmdrne6FzcB7oMFL7R1ihExaCA7q2V2qEurtWGjaWa9dLXexIe7PkIE0pOvbZcxXLVhPqKJjQBGj9SGMM4TKG9gLGxhAtsDkNKmjZsKArD416AhAvoGsPnrjVf2r0IEN/Oz97rQlcUrDZtvLZURcMx0HBmz5B2jjvcPcKXmvaBHvcCPOkF8BOOL9xovZRuxo2Wg9XGvm1ougaauQ15NgjwcI+4lT9/o4mFl8zRdHOOHVMUNnO/fbA9xqOuj7qt4zPXmlc2cqirCt5arb0wG9XzYgzDFB3XnJkCObhfY56VvtdBMMawVLOwVLOQCYmHXQ/3d31oKsOXb7dhX/K446uEM38yxtgfPeqvALxcFlFQQDoOOdKsIMU7W2ZRSokgycrq+VUYYSEk/u53tvBjby4eMqoAbcg/81s+gaf9AP/7//GXsd50LkXF5WVjaxQhSgXCJCmDH54JxFzMBMjnMR7FzzmOLHbeu+x6STm6UzX1Kxklu0wMggSTiMOPM4zDo8eegoSXLb0vGmlGKlNRKtD1Eqw25ieCCsJD21Av/cIo1JCepyFunoMkN+YZpLzaKqAXc/Q9anfeU+Izf3+aCaSZuNQR461RhDDJEMTZCyX3FJKCt6sme94ahTmheHzkWFGYZtSq/0JEofcRJBw9L0GYZhgECW5g/vqEkAjTDLZ++nOTZgJc4Fzv8+A+fRX5fAqMI16OBne9ZIa75zgUIwYvKum2lZMcB3GGTuWwDzDth3w/4fkwzNWzkrKqe5QPVRD9h0l4KEFz2vygkBJh/P0xmt+dxOA5ebPI5b+nMX3nvApJnr1JDC/iGIUpFLBD3azTPtersN6jUDxXgPynmGfoewlqlobqK5SYmn6eRXKk5yXIhMTW6OrJz3t+XI7AVS3tUGySZrL0114GtnPfxBMZOkcU7graCFtXzxy7KQrRGkQJn3kHBYQkDkbGyE96WWO202dt2mYU6wOIF+xlJ6YAWuu0v3LwnWznMWHMz+7/ngUS9Kwum7tq7u+SEptDGnfe5OGlxJSqwrA3jjHwExgaca39/xNTs/jTAP4sgHnyCy/dytsGkUsaGrXNAexE7hWAnP1UCNzf9TAIUixUDLy2fHYZ8dPg/c0xul6Mf+GtpSP/jamp+Mu/+3P4if/iZ/H7/+rX8Xf+zV91aif7VUXd1rHSsMDAsN50IITEt58OkWYS19pO+fkSLqAq7NTOjhAS9/Y8pFyi6epYa9hwjP1RtwJS0riKlECQZKjbOlxDRR+AogCW8dK374mwdRWLVRMTnZfdYFGaIUho/l9TFWyNQnQnCTSV4c5CBeIFz5hrCkPN0rHSkHB0DasNGzwjJSLXpJGpmGf4eIdInVcapPBzlnd+EmxDRRBncE0VtqHiesdBwsXMGGGBMMkQphnqlgYuyfl6sEdVjGst58qSlaZGDn0mJFxTw0LVxDiaP3KVCYlRSHtaYQxSStzf85EJicWaeSrFFVNTsVQ3j+1EcE0aqzQ0BVGSIUyyucnzs6I4e4aqzO1KebDnIUrFlY+ctlyDeCpUhuWaBS/mSLlAw9HBGMP2KMLeJIaiADfaDhzjxY2nGKqChqNDSolOxUCnYsy89yJJ8bgfwIs4bEPBzQ51Gx7XAj/0E3ywPQEXAp9Yq6N+4H0amoIbHbccuz2I6X36qqvEWTqRNQsBuMY+r8+NjlOOUR3EOEzw7vMxDI3hjeUaqpYOnglI4Mo4UwqSY9tQsFSjrk5N2W/Rf+/5OG/5N3Cz417pWi4DUZphHCZ42gswjjgMTcG1tn3sSKhrqhiHfCbQ3WjaeNwL0DimE6rw1TRFwce7HngmDxGIv2qwdBV3llzsTRIs57a67yewdbqf/JjjYV45v9Z2YOkKdOXl8NgUcHOhldW6jXaFyJYVhcGLOeI0w+4kAs+ApqtjpW6faIdeBoKEl3f5Ys2EBCneRTxDlGavzEiMEHSfJ/ldtNFysFgxsVw3MQrSFzLK6+gagKSkhQCog3MUpuBc4JuP+9BUhmst96UIY7gm+ZJJJnBrwYWUMh/BVkqOooddD2EiULG0XOH0dD5lYVMe94hvsGZruN52kWYC4zBF1dKx0XSwN0kAyJc2ZiuEBM/PWZhk+O7WCGGS4Y3lKtYbDrabMYSUp4p5rxqZkKXCMCVSVNxZrCDhApOInum1lgNNDdFw9CtNeEZphvu7PpZqh0Vd0kyAARcu4ktJqoKGtk9P4p6QPDI1tfS95iHNBBTGEKUZ/Jgj4hkq1q98EvTzRAHfBPC3pZTfOPgXjLHff/ElXQxVS8drS9Q6flpHTgiJj3c9TKIUH2xN4OZcB3eXqhcKSqSU2B5HOMgt/DMf7QIAfvjuwrHf366Y+L/9b76A3/xf/Bz+jf/2a/ibf+jLL4SE+aqw0XKwUDVh5MSBu+OolMq0dRVrDRs7oxDvbo5h6Qp+8Gb7VMYik7IkKozSDJqqHBqFKgJ5L0rR9xMsVC1MohTX2y517DCGScRL0vWXVRU6Ca6p4e21OqSkgJIcGlL3GVmk/FPMK6eZwEc7EwiJUkEHIFL0yRXJ+gLU8Xd7oYKNnFwYAB52KZhWFODN5RoSLsoq5s4owtYwgqrQWJ+hUbJtbxKfOxAuSKQLh+6ozsmEC9zfowTZd8MEdduAoqBcW8Qz1EHfuzuJEKcCSzXrUhxwQyOS+EzOkuPOw5M8GTGKElRNHSRgzKDml1aBgZ/Ai4m35ODPYgwnSvCu1G00HQNxmuFJvyDdlhfiuEgzga897CPNBG52KnNHxeKcAHgeCeRl4lrLwVLNgqkpiFKBh7kqaJLRey2e5eaAqrPtill23B1lzy8LBVlpOnVunvX9ciz5jeUqNFUpnRgv4vhoZwKej60VFdzp8y2lxHeeDfHPPu6i4ehwDA2fvX7Yaa2Y2pF3y7x9+qrC1FS8vlQ9tNaqpeOorf+kH2J3HIMx2v+6quRKiESy7VzBnUt3YVbehdPV976f4FHXBxcScUYBNGMMNzru3Hd01fb8JPBM4Ofud/G8H8JPOG4tVLDedE6s2F9rOTM2GgAGAfEwbY8iVEzt0D1M9/h+Eptn+/d+0alrqMorqSj5xnINNzuiJHgfBmmppBtP3YfPBgGEIMn0OwuVmeRUmGToei9Gpa3pGnBM8o0KPyxISCmKZwKjKEXbNeHFh+3QRe/vy0KU7j/XUZhACIaEC4xDDj/ieHsNr0RnSSYlkvwOpC4Y2udPej6SjIpPV426o2NVWBiHaSlcY2oqXEPivb0RPtj2ACYRJAKdyosnkF6qWajbRLCu5vFDMQJ9a8GFY6il79v1Yvgx3Zu3FyqwdHXm/k4zGlssksT39jyESYZhmKDlmOXPedT1EaUCuhbjjeUaPn+9iWTqfn6R4JnALz7sIUwF3lmtwVAVPBuEEALQVR+dqvVS1seFxNN+MONzJlyUiol+zOGaWulbPexSAtbUE9xdrGCtaV994jW3AQf9y0mU4ntbE0yiFO+s1U9V4D0K2+OoJHy/s+iCMXaqz1X4Xln+HIv4s1Aw5IImSya5IuVaw37lCgCXjfN8un8dwOMj/u7zp/kBjLE/yhj7av7nf5cx9lXG2F9jjOn5134XY+znGGN/lzF25rYlQ1NmklKZIN4JGu85HFUkGSm7SEg4pgrHULFUsy5cKR8EKbqTpByDKPAzH+3hnbXaqYK9u0tV/MXf9Vl8vOvhf/fXv/XSFbROQs+L8aQXzATL07Cm2jlVhaFTMeCaKhbyi/dxP8Ak5NgbJ6V06HGQUqLrxWCQcEzlyLExIcmpkwCCfG3FoywCmGcDchafD4OzfORLByXsgtJROQhdVUrDJLGfRClUH1bqFmq2hk7FLD+jH1PgQsaPPudF4MccT3oBhkEy9+8Vhc1cjsW+lZLWXLV0LFSpe6cIPjIhEXF6N1ujCMMgLVtizwrG6PfPO8PT9iAT5LgKKUsFQ4WRhHfD0dHOK09+zLEzijEMUuyMz7emedDUo4UVul6Mp306S8W7DWLawypT0HR01GytvEzTTJR7+Nng/K3/lq7OzNLMs5lnwU7uQPb9FLve4WfHc8WnmGdYb56962EcpXjSCzCOTt7T0/sim/pcxfNdzs+OZdB7Kc4NcLQ9PwsSLvC0H2B3Mn8PqQfOzbS5L/643rJRtTQs1KwyMPdjOjcHz3eayfK57E1i9PwYMT978u+4ffoqIOZZ+VzPutaKqdFYj6mh6RgIEhqPGEUczwfhmd93+Y5PsBPWEeMmQlIg6hgq6qYOgFGXb3w4+XRZ9vy8GEcpvvVkiM1BiEGQwsqFYk7D6TnPRk/7N9ujEE/7wYxCJCnu7hdeVhp0XlfrNnbGEQZ+ip1xjMkpbMFVIEppH87zXYrPqyisvLPpPpRo2Hp55xR8QnEqkIpZH+DZIMAwSMuC3nkxOaXNNDV1pjhYvB5NVbBYM1GzSVzmoB266P19FmyPyF/ic5REp59r4TONohTDIMEgSDF4QedGShrHezYI5vrwuqpgtdjLDZtGPr0Yw4hjFHCMwstLPKcZ2aeDfgytMYIX0x4ukEkJx9BgagyOoaJiajPqapeFk/xe4ICq5dRjFFKCMYb1Jt2NDZuItYVAGYtM3988k+h5CXp+giQjRVaFsbyAoWEt90MKH6E4hgf92oMoOoS2RvNjzYug68XYHSeYhByP+wHqto6apaMyNXZ53PpOe+bPikL1vFA4BqigW+zzmq2hamklBUDx9eKdHeWnD4MET3oBguTie19VGPw4hXbgvg2SDFsj4iS+t3sx3baDvtpRn+soJPlzLFRpvfxzc0GKgks14qs6K1+2l8dqV6l4fdk4T9nlMYDqwS8yxhYBjE76ZsaYCeBT+Z8XAPwaKeUPMcb+GICfYIz9bQB/EMBXAPwWAH8ANDp4bvT8uHQuLV2daXMsEhs9P4IE8Im1Guq2cSnzw/OymkHC8c0nQ/yBr9w69c/5kdcW8Cd//C38h3/nffxf/t738B/8xrcuvLarAJEn5lLCQuD2wnzKMZ4J7ExiBHEKy1Cx0rCwmhNjrzZs9LwEpq6caoTo2SDEh9sTSsRUrZkZYp4JPB+GYCAFnKW6iXHI8ZkNE6qioD3F7aEwBk0lJY+XGYB5MS+rQACO5HORUpJMs5DYaDkIkwxNlzp7/JiDC4mGo0FVWE6UTvtZYYCusRkp3PPg+TBEnAqMoxQ162iBAC/mGOTKmBVTQ8WiNSVcIEozqArDat3C8xFVuqt5R4CpKfBwPr6xkzBtD8x85Pdh10MmiNvnE+t1NA/sPV1VwBgFEi+irT5KM2zlZ4kLiY2mg3u7HjSVKoV3lyqHFIXUmT18sTXWbR1rTRtcCHTci9lCQ1OgKBJDP8WCWz/099vDCDvjCArYuZy5p33qMJjEKd5ePfzzD0IIqpwqjGGtYZWqoNujCEHCsVK3UbN09PJ9O/05LoqdcVQmEVzjMPl8gYQL7E4imJoCu2rCNWksORP0HBkDFitG2W22eMT5VhUGMEBTAEvX0HB0bA0j3DgH79qrjJ1RjFHOuVcxtZl7oLBBDUefO7qz0SIVTEtT4ZoabF1iZxzNdWRPtZbpd5wLDEzvuaWaeazDWjU16KqClYaFt1ZqeD4MISRKkttpXJY9PyvC3KG/tztBkJCy7kbbxvW2g7uL1XN3di/VLGgKQ5w76QARoReE9bpKo49FQoFnEtdaDrbHEbZHZC8tXX1pY49bowhexDEMSMXuqCBxtWFBSIkgzRAlAiGoM66dkxkXHWMHfRFTU/MOjovdi0/7xO81zjsFjsLuhLjQlmoW9Hxkar1pI80pEbyEw9IUNF19xg5d5f09jVFIIgIxz7AzjnBnsTLjNyo5kTcAhAnH88EQuqJgpU7E56tzBFmuAoMgxfO8aOTHGV5fPhRCoV0xZ+KOxYqJe7seTEvBjXOINx1EzDPsjmOMggQy5090DLW0iYwxGJqCOJ3tYqxZ5AtUbRWbg3AmUXxZOK3fC9DduDOmu3GpZkJXaQQ6SjMM8lGq5bqJzWEETVHKbvl597ehKaXimRdzbFRsjMIUfY/GbG+0XQyDFCpjeNoP0HSNY21b14tLjkNLU+fa7POi4RioOxriVGC1bkNVFXxqvY57ez7ClONp38dC9WhxktOe+bOiuMrMqd9bNbVcVU5gpWah6yUYBglUBhgqQ8YYrh+zp4uCC0D79u7S4fNyFggp4cUZnvRCtCv7nV1NRwcXEkGc4bZ1MZ9ouWZBV+gMnYfLqnyO+T7tVGhyoeHoiFK6U17LqQYAlF2p8/jgpvFsECDl9N5rdu2VF/gCzpeY+gsA/gGA//eBr/8LAH4IwB864ft/P4C/CuBPAfgigJ/Ov/5TAH4nSNnvXSklZ4z9FIC/co41zsBU9w+MqjA82PMgpMR6k1rJB36KYcBRtTVwsa/E4MccO+MIFUs7cQRmHiqmhrtLlbIaDwDfeTZCJiQ+f6N5pp/1u790A/f3fPw3X32IWwsV/M4feKnih3OhKqcLjHcmlBi43/UAIfGdZ0Tw+PpyDetNB03HONQ5MA9SSjwfBHjY9aGr7FAirCDCBwBDY/Dyat5C9fAolpKPkUVp9lLHJXWV7SdA9KOf4ShMsTuOEaYcXsxhqiruLLpYqFplcnArC/HGcg1LUz2HjBHv1EVHpszcgSkSNkfhSY9aUT/cjmDqKtqugTuLVXS9faLNmqUfencrdQtV67BjfhkofmaQcjwdBNAVBV6UIUwldF3k1TQKdDtVs5SxvbtUQZrJF7I/tJxvK0w5tkYJMiHgx1Q91VWquHsxx+6UfbrsPXxZPAUVU8NyzcZG053Latz1Y/zigx4UxnC9ffaOKVOjef7T7pWuH+P+noeel6Bua7i7VC0veYASCzc67iGncp49P/ta6UyfNGpeJDe2c9LblQapEI2jtEzA2EZ6SGHu4Pl+2vexO47hGBrqtg4GhnGU4sGeh+W69ULIQF8ETF0BQuIK1BQFk1z1rmbreNzzsTWKYGsqfvTNxUOOmaqwmRZ+RWHQVYbVuoOYZzlX5RnWMucdd/0Yu+MIu5O4TLRstJy557TnJ+X3+XF2rKT9Zdnzs2JnHOEbjwf4+qM+7i5W0KmZ+LVvLKFyQc4eVWFYzEdqR2GaFwJmz3XLNfC452PPi7FYtZDyLB8zApZrJu4sVl4aafx0Qua4pKam0h590g/wtB+g7ero+ykeKQy/5vVF3FmcX9TbaNloxvqFP5+pKwjiDNYxPsYkSrEziktKAKUY0W854JnA97YmAIBtEeO1A4HjVd7fBUZBis1hgEmUYhhSgexpP0TF1OZSQMRcoGZRlwlNRZjYmcTYHl8t8TJA++LerpdzIjHc6DgnPpuqrWGhYiLJORHPi0LwI+EZEk6K5QVnYWFnng9DeBHHYtWEprJD3Dgt14ClK5iEubrpODrWLp0Vp/V7i88zyO9GQ1Ww1rThmlpJ1g8ANUvDrQM+5fT9berEd1R06xeK0buTqIwZHFMFzwTu7/rY9SKsNWxMIo63Vo8e4pm2/Zc9bmXpKr58u1Nyko7DBP/kg10ECYdtaIjbDtJMHvrc5dpOcebPA+JJmr3LGGNlcvFR18cHWxM4pooPtsdIuUTDNXBr8ej9M11wuQwbEqUCv/Cgi5Zr4rPXG/tf5wK3OxXEPLswb1hxd50Xpj77HE1Nxa2FCtJM4IOtCWIu8c3HfXxyvYFhmBIXo61jGBB371H+pKmpSDnxPn4/JKWA8yWmfkhK+ZMHvyil/GuMsX/vuG/MR/V+REr5lxhjfwpAA8A4/+sRgOYRX7sQ6o6OO1oFjFGlr2g3HgQJWi5xyuiqAltTZ4xJoVDlxxkatnEmQ5MJqrpqKptJan3zyQAA8JmNs3+s/+A3vIlHPR9//O+8h1sLLn7wVvvMP+MqUXAExVyUxLPzYOQHyNYUfLg9gamr+HB7gtsLFWiqcqiL4KhnSeM41N1hagpELhVuako5p1ucw5iLkptlGCZzE426qrx0gllTU3F3qQKeyWOVhop1DoMUo4AIIHWNoeEasA0FYSIOORddL6aqZtW8MOnntZYDL+awT2hXNTQFEz/FwE+hqVQdbjgGHENFD3SBTzsiQcLR9xOScL8iYtK6rePOYqXkbwjTLOdsAmxNha4wPM1H4ZIsRG05r7ipCoYBjYks5Ymgq4KmUiKMWpkzhAmNGqvKfkfA9ihEmIgZ+6SrCsZhis0owmLVfOn7GaDnVrN18Gy+ok+ciJIbbniOkYWbHRdBwk+dZDFVFb1cOSxMMnQqFixNKZPqjnl4jX7MMQguvi8Xa1bpRBx3nxiagphn2PMS6AoDlxJN10DD1kubNv15D56bQm3KizMojAFguN5xcL3lYHscw48zbI+iI53Yq8behALexVOMs0/yZFzLNY58x0v5czXy5/qo5yNO6WxMQo6USzAIBMnpFNwcQ0OYJKjl4xJnwbx3bKgKVeKDGFIw2Dp108xLTB1lG6O04BfSZ5xoTVVemLpYsYaeT7yAbh683V2sXmqS09KPvgfHEUfCJeJUYhimiNMMO5MIrqFBb9kvVclwtWGjlvsjJ/FjBiklCoQgYZCCIHgcpUdWwBljEBIXHie/2Xbhn2Azi6LTJKIRKF1V8JD5WKiaMDUFlk48fQWPVN8nRdGFCpH5X9X9PQpSTGJKPGsKdbzcqZilqIVyhD9CozWU/Ojk/z6Iry6hS+TwEks1C6rCysJAmgmopwkQJUOakXqjf8Z1SikpURNzTCIOhTGEeQKjnQsF2IYKUyMRhqKDvOfHuLM4vzuFVJ7Zkff4RXBavxeguzGISX1VVxVIBlTyZOMwSKEqbCaZMS9+UBigqWwmXgCQi51QolIBUYvsTmIMghSuoaF1Qvd4wzFgauoMgfxFsDOOiLi/ah4a07u/5yNMM/T9FHVB7+c4f+80Z/48SHMOpKPigFGYIuIZgpRDYYCUDOMwOfKcAvsFl+iEWPK0yAQpXk4ijiyTyGljYWkqdI1BVbSXLoRQkPkzxmb8Ak1hMDRGhTZHw4fbE1QtPeedSrFYtY61J9dbzpW896vEeVZ6nEU9yTv63QD+n1P/PQSwlv+5lv/3MP/z9NcOL4KxnwTwkwBw7drh7qGEC3CxL6VeGFLGcglLKctW6deXqrjRdpBJzATzjrGvUHXWlv7dSYReOS60f7C+9WSIm3Oq8aeBpir4z3/HZ/Cb/tLP4t/+H76Fv/dHfvhY1ZuXgenkjhDUqn5Q1nyhSkmju4sunLzS0XSNI9u+Dz5LkRNFGpqCN1aqUBmDY6oYhymCnCfI1tUZInyeSXgxzRBXzVdb0cDUVBy8m4tn6eQcFW5e/Wm5Oj7e8eAlHBVTg64ouNWpIMlm27H9mJejYSIf/7sIWD6PfxDFPH9xgd7suGi7OkxVxaOeDzfncGs4Rkk6P+3AP+2H5az126uX23aa5bK1rkFKSAs1C88HIWq2jk+s1RGkHKamwjE0dP34UHJvGFCXGpBXR66INNWPOcw8ybRct/Cw60NhDJ9YreON5RrAqFWaEuc09lrYpyDhZcfcZbzny8A8Uu9pVGwVFVMHINE4hwKiqszfi9Pve3of1R0db6/U8HwQIskEWO7YNl3zyDU+6QfgGamuXLQNfp7j7cd8hhtxqUbJMl1heNQLaDxNp1Gz15erpfjB9PpSfnh9G00a85VS4lMbDWiqgl6QIOWyvBuPek5XBS/m5djVSb1nUko87gVlh+AbxyjlFs6cH1NXYZySSt/bqzXc3/NRs0/fabLasNFyjZKc/KwoxveK5H3DMfDGchW2rmLPi2FqCmpHEFgfZRufDQKECdlGNyfCf9F40g8w8BNoCsO1lo0VYeFWx8VrS9ULJ+pjnkGIfV9t3j0IkJpf0zXykQmVnrGhol0hlaeXjYPJxjDJoCiHO79eX6oCEiWn6ZN+AEtXTuSwedoPcFH6GuUImzntN1t5VwnRAIwxyLuS9FxZ9fZCpSRajtIMz/NiTparLF8FeCbwJOc/GoccLZf4o252XEzys3bUPrR0lURRsgx1h0a/poVOLhPjvNuswFLNwvW2g3HIsd6yjzy7UkoESQZTIw4v6tIWZ/bziQszJvLpJEXNMnC9QyqzhjbLwaerrFQRM3KV53l78KR7/KKYd96llPCT2RhipW7DzJP+z4chjcTnPmXF0g7Zzen4wdLVstBQcNIBFC+4OQl1ETMojKFiaNBVhhstB3eWKlib6lAu7k3nwJ67rKQdF3LG3zzISbxYtVC1yDf48u0WbFMvqTAKpDl/smtqR575iyLLaOyu2FsH0amaEFLCUCmZvTdJsNKwDsV7B+2/piqoXNIdpyoMlqai4WhQpl6PoSlzxVJeBpJ8emsUzlJSMMZwd7GaqxxSV14qBFbqJharFprurIJtcWasvDhyVe/9KnGexNQuY+yLUspfmv4iY+wLAPZO+N7XAXyaMfYHAbwNIkv/IoD/GMCvBfALAD4C8A5jTJ362iFIKf8K8jG/z3/+8zNXS5Rm+GhngiwPzKaNuqmpeHOFHPviZWrq/OrWasNGMyejPKvTNZ25LjqEpJT41pMBvvLa8Wp8x6Fq6fhLv/Oz+Im/9LP4d/7Gt/FX//UvvlRJ4YOQUpbP9kk/wCTisHTl0IxwxdSQcIEv3WwjzqjqdlRQVDxLxuhZxqnAx7sT3F2souUY+NRGHZqqoO8nCJK4TD4C+8GbrpIaHIC5z6uQs3+ZxknkJNDznsPDno8gr6heaznQ8urJWtPBct1GwjMY2v4FaSmzn0ObapW+aItxJuTcJOK05PV600bFoq6BpmtSYLZCF37xjOc9a11lSHix3tPt65iTQ3Xcv5dS4t6uh4QL1G0iEGy5Buq2DiV/5sWMvJQSN1ouuJwdSZ1upzfOeGEW++ukdW4OQ/S8BJrK8NpSFa6p4a2V/X07PVS0VLMOBc+qsv+eX4VuqQKqwqAq889W0zWw3rIhhISunH3NQshDZ7pQNZqWfi7+LRcSd5equNlxkUkJhbHyWR21Rl1VwLPsQmfnqHOzM46wO46hKMD1tgPX0MAYQ90x8MkNHW+sUDKyOC/z3qumKEhxeH11R8dnrzfLPQ4Adxdng4viOVUtbYZ7KuECmsLmPtvp+/Os0Kb36IGfcdAGsvzdJFyUn/u48/58SGTlmspwa8EtA9VWxZx5BqfBUcHXcXa6QJoH0MXoxN2lKpbqNpquCSkltFxZ6ijMt40KQgioytFdIVeJKOF42vMxjjLULA3/4idWwMXJHQ7zcNAeRmmWKyES/1LTMY7cX6am4o2co6cfJBDDCDfbbq7M9fKrwtP7YxgkeNoPwRhm1pdmAlVLx+dvtMp9WXf0GVs0DwxkSwuy8bPiuLMb8wwf79A7KEQgTE2BVbXww3dJac+cShAoCiv9DIVNnekL8l8dXNP0WVcYjbhnQuJG28FSnRRWGWMndjYmXOBhz4cQJAqxWLVKnxCgZ3PWxHxxnxy0u7qizNzDqsLw+nLtxKROIV6iawyvLVbx9moNQp6Oq2v63er5ehQFuNFx0XYPq/QWYIwmHYq9Ogo93FyYrwB63D1+Ecy7wwHk6yHeqDsLhU+molUx0XQNvLNWP9GnLMQEGMOMfzEdV0w/3+l3+cZKDbcWXBja/r4v7sWj7s3pz3TSPXEcpr9tnr+51rTRcpfBIMEOdIkBlMT9eIeU8QpV7ouu6SgoytF7dK1hoz3lp15vE9F80VwAUPK+UMdeb9pl48ZR++KsUBWG9ZaNpapV7ocCmqqcKxFy2Sjeybx3rSgMbyzXyoaDIplePJs0E2Cgz1LYkEJNmTF2Ze/9qnCe9/HvAvgfGWP/LYBv5F/7PIDfA+C3H/eNUso/VvyZMfZVKeX/kTH2x3KFvicA/jMpZcoY+68B/HMAAxDv1JkQ5AEyzyR2JxHWGg7Wm3bZHs3yS/QkxDzDox6paBwl1XwUOhVqd9YUpcwAPxuE6HoJPnvtYtOJb67U8Cd+/G38e3/rXfzlf/YAf+hX377Qz7ssxDzD/V0fQtLzKhTWSAp5/9IfBSnefT7EOOK43nbyCsXRL2TesxSCyCwfjmkkZKNJMvC2oeaZeRUDP8HzYQjboErZUQauSFpEqSgN+ItGkdRRGMPtRffQJVPK2A9DhEmGTApoTIGuKRSAneCQmxpVP5NMnHk0ZRqPeyRf38rbwadRSF6nmcD7m2PUbR1CypLD5TQqlNfbLryYn1pm+tkgwMBPYRvqkbwcAClmJFzkvFLUAn1rwT0UBGSC9kKaCaw3Z8dCqpaO24suhDxcFT8JT/oBxiE/0okpEKUZMinxtOsjSjPcWqjMnX1/1PUxifih/XpZ7/lFggHYHITYm8SlQ31a7E1ibI8i2IaK2wtuaUdk/r4BlCpeQkj8zEd7GAYp3liu4M3V+qkvwJsd2pfnbSs/6n3R+nIlq2GEIM5QsTQwRjbuZsc9VQX2uPXtTWLsTWI0HB0bLWcmuJBTMuXRlFpfIcV9ULI+zQTu73lEOt12zrXHik6Mg3u0UFdUFerGKJzW2wsu/IR40572SZXMMdW54hpx/ix5JstEMtn2bMYHOC+KNWo5p+G8JELxbx73/Fzdl4KERz2SHt9oOaifo+Ngo+lg4hzfFXJV+NrDHn7+fg9RmuHzN1tYrFowdRXn7dd+3KOiVZE0jlO6O7gQ+O7WGE3HOLS/CkWpxZpZdqvO8w1eJkZBSryFqoLbC25pe6QklT3HAO7tTvDuszFqloYffm0Bar7PT1MUU/KzcR5OsYP+2cE7LMnvbwB40vOhqwr6QYy2a2Kt6RzLOWhoSnmmD3ZthAklHaft82mwNQrRnSSwdPrZjLGSRzFMM1TzLpDTIs1Eqa42yhXaFIVsZ5hm+O7WGLc6lVPvIyEk7uXJicWaOcNTR/dRBVyIslvhNEmdQjE15RL9IMH2KIKlK7jZOX7kOuFklzMhcb3tlL7KvV0PfS/NA/7ju9ie9APc3/VRdzSsNKwXwqUphMSDrocwIYXNg51h+zFEho93PQRJhiAX+rnZOV0ieqFqwtIP24iD8cI8qAqDbWhIM4F72x66XgxdUVC1VcSpgKooM/dmgZP8+dNAZVRcAeZ3WQO0zx7sebi/6wMM+NR6veQ54kKWCnhRKjDwEzwbhDB1BbcXKpcmTFCc/eN+3vTzVRjDzz/oYXcc4+aCg09vNGdsT8SzE/fFWREkGd7fHENdY1cuyHBeGJqCa23nSB9zuhDAWJ5o3/UwDpNS3bDgmAXo7zMh4cd85k56GZ3WZ8WZLY+U8pcYY18E8IcB/N78y+8D+AEp5e4Zfs4P5f//HwH4jw783X8H4L8769oKZFJiEqYI0wyGapaz1p+91kTXi6GdkqQsiLOyMjUO0zMb6oPtcyW/1LXGmX7OPPyOL27gZ+938Z/+ow/x5dttfGrj4j/zovDjfYnQSUTEvDujEBEX2J3EWKpZSDOBf/rBLh7lTrvvZoinquFHYfpZUrID+Gh3gveejXC97aJu66g7s3wggyDJZbbpdxx1+aTZvgT1tDz8i8Qk4pCS9q4fzxI5D4MEzwchYk5f3x1H4EKgXTEh8zWfJuCydPVCLdhSypIYchSkM4kpISS2RyE+2hnTGAqoXBjlij7DIDlVYqrgYjgtCu6FMMmO7Egpfu5CzcBXPx4j4QLffDLAKKQk8bShDtOsDNTH4eHnet6KfEH07p2wv1YbNh7d72JvEqHvpdgdR/jVbyzO7AchZPnzRmF6KNFx0ff8oiEl8KgfYOgnWOyfzQEpiMDDZPaMKwrDcs3EV+/1YBkKKiYR3JOaj4rNUYQ3T6HgV+Cs+3Iax72vYZDg4x0PUcohBCXp/IRGVAqi8tMESsetr+8n+e9Ksd6c7Qro+QkYAENnWG3sBy6TfJ8WypuTiJKqmZAkHpK33J83+TlvjxY2kGcSYZJBUxhxRXGBa3lCzc8llHfHMXSFoZPzqG2PSKVptWFjZxzBzcf0wyQruQUHwdHcPafFOCfkTjmN3NRtBQM/wdYogqbQSMwoSrA1ioljSlWw3rQRcYEwHzMfBem59pJygT14Xggh8d7mCP+vrz+Dyhiarg5LUy+s6ljYwb1JDIUxuIaKTtVA309QkRqkBPbGEXbHEQZBiqqp0Z5QFQz8dGaM+lUaUygI2xMuEKYZOhWj5EiLOMdHOzG+/qiPKMkw8BO8HcRYrp2tEGZox/PTHYWD/tm0PyuExPe2xng+CNGuGBAScHQNA5+jYdN7OUkM47h756B9BugcPB+GcE3qAp+2S2km8GDXQyaBpmOACwldne2Cfz6kIPu0I/WuqWGxZiJOi4JFikyACLMlFQImB+xtJiQe9XwkuQ0qEgRSSjwbBnjWD9FyjVz5ePb3MUY2N+anH8Vbbdi50pYOL7eHYSJOTEQGCQfPJIKE4x9/dxvrTRefWq+D5cwrhZ/U9xP4Mc+TNbPvSkqU48WtC9rJ0yLJpuximM48JyEk9rwIm/0ItxZc7I5jSCmRCup6H4Xpqf2xo2zEae8vP+ZIOAnQpJnAOFJRs1Q87nlYqZvIFqszvudx/vxZcJpu1HFI/JePez56Xozf9OlVmJpa3vtVS8Ny3SrH5+OUOD3P0+k6Dwc5vU5CzDPc25mAC6DvR7B1DTVLRcwz1CydCP+P2RfnQZoJbA5DLFfNGVvyKoEBZ7rfh0GCZ/0AwzBBmAg0HJ060zQFPT/GzQ5xNo+jaOZOelF8lBfBuVaYJ6B+BsDvllL+FinlHz9LUuqqIYScGl1ieNL3sT0K8e7zIXpegp1xjFEuN3wcwjTDnhchzbJLUaj61pMhHIM4rS4Kxhj+9E98Aks1C3/kr3/rxID3RSBKOHbz59V0SFbVMjQIQYHEvR0PX/14D10vAiARcY7lhnkoQ1zwKDztB6UjNQ2FMex5Mb71eIDdSYIn/QB1+7CRbbtmzj+jYRgk+HB7UhrraRiaglZFxzAkdUAx53deNQyNYWccYRylqB4gX/5414MfEwF2zDMafTQ16JqC3UmEvUkMPkfCdxSmeNT1T7XXTwsuBLbGIaoH+FH6QYJHvQAKUzAKUmSQmCQcaw0L22Nqx47mOFcxz/C455eX5lmxXLdgGwqW6vSupaS989HO5FCSUQFJ1O5NIjwfBHjSC7A1irA7ifCo61Pgw4BBEKPrxWieg+/oKKw2bNgGBc5F10kxWjgNxmjfZhK4t+eh5yd4mHdPPer62J3kzgXPsD0OX3igehXYGobYHIToejGSM3QCjII0T5qkaDiH+YOChKpwQZThFx4OkORqoVxQK/7uMQTCUkpsDkM86QWH3tFZMYk5vDjFKDosuvDRzgSTiMOLMzAGxFlWysyPogS74xjD4LDNAoDtUYTHPb+ssh/1ObgQ2B1HqNvaTPAXpRm2hhGEBAx1loi7qCZ3qgY+2pngl58O8e7zEaI0y+/QaK7NuQhajpGrp6bYHkfY84iknWeytNsrNRumzsAzgVHI8WwQlgqGO+MYXEhcb7ulI2vpCiqWhkwIDP0Ej7r+jH0vz9UpyaQbtoGuH6MfJDBy57bnE5fLRzsT7E1iPOkG4FkGBlbK16uMxCe2RiGq1slO/Gne7VUjSDh++sNd/Pe/8JAUQL0I11o2vnCjdeFuisIeMsbw4c4Ev/CwB1tX8eZyDQ3XgJkTaz/tU/BPSSkGRQHalVlfbBKl+Ghngqf9AAnP8KQXYHMYQl4FedAJyITA9jgEIOEapA5XjBp9tOMhiEn+exilMHUF93c83NudHPue/ZjjUZeCzovA1ilg6Xrxoa6m7XGI5wMS+9kaRbB0FVxkuN62oWsKOhUDzwZ0r46jw/6EEBLPBuSzHbQLjDHUbeISvbc7QZAnl7v5uRmHHPEBG7szjqCqCnWBmioyIfG455ek79uj/MyP4vLn7U4ifLg9QfeY57RUs3Ct7WCxZkLXGCydhDkYA3o+/czp9fsJLwvU077jKEwxCojMOeJZqeo2ja1RhAd7Hr7xaIDRETb8IByDOghrloZRmGBzFEBTAeeEQlPV0uHmqmfP+iHefTbENx4PYBsKbIO4KhMu8HwQ4lHPx1c/7pa+xPSzWW5YeHu1/sI6MjMhMQwTDOYULvcmMXZHCTRVwf2uB01liLnAUtXEnhehO4nLosNB7E1iPOr65d44Ccf5oZmQ6HoxdicRGrYOIQGmAI/6ITRVwZ6XYidXzy3QcHTEPKN46JJs+FF3wnrLhpS0Z4dBip/+cA8fbE9KXi039yc6VZNEXPxkri9+UZzky0sp8aQX4DvPRzB1UiWtWMT19uGOR8ktRuNolq7C0Bi2xxHSS/AzCr6u+3v+sSTZrwIGuZ8ymWNnCzwbBHj32QiDIKHEp85IFCDJMA45XEMv/VYqNEj0/RjDS4wFrxIX8S5+L4D/ijHWA43d/XMAX5VSDi5jYReBkRMYO4aOlqsjk/ut1Iaa83ScMAfPM4Gel2ChYiHiGRnOinmqNriBn6Dnx2g4xkym95tPBvjkev3SWunqjo4/99s+jd/+V34ef/L/8z7+k3/1U5fyc8+DTEj0/BSLFQuGtt8a251EePfZGMt14hmyNBWZBG4sVPD5a02szyErHQRJeYDmVcSElNjNiSUdQ83b0g8H6HWHuqiEkHh/k4QeaRSEFGbWGvY+z5iioGEbSDgp/VxGIvIs8KKsbAWPMwl96mTWLQ07GoOuqtS1IGWpqqKAIUoFHvUCABKdill2BTwbBBCCqtN152KEzQC1w2qKgpWaDXHA6TdyMt8uT1CxqVuhbutYqdsofM6n/QCMMTiGitW822p3HOddWBwVSztzwFO3ZxWqgiQr907Xi2eqQjVbh2voeG2phkmU5ntUliSlQoYwdRW2ruXJAg5NJYJNS6f9ct4Z7ZZrlHtqbxKXakAHFSINVUHV0nC95cJQFTiGBltTsTkMSWEsr8TpqgJdUdD1EjQdA8+HYdmd8SrOkQ+DBF3vsE0EaJ/aOjklnVN01RXYmUTQFQW6pWBlTmBQdzToGgPPgJZLjuJKw4auUMfBzjjGQtXEnhdjHKZYqFrlXhpHvHTsVJUdGls9C3bHUWmfDu7vlmuUgWAlT/Yu1y0s16yysr89iuDFFLyt1unc+zHH3oT2LUN8JNlwofYVczETUA78BF6cQkgBhSmHJLorplaOxr7/fIw0kxgGCRSlgoZDd+plc5jZBnHmJVyW1WlTJ36pep4krjs6arYGkXctTSvfMYZDldBhkMLSFTBHxySipMUgSMoR2a1RBC/i+VjZyeToSSbQyZWZhmEK29DQcAyESYSarUNTGWqOjrplIMlIwa4NssHFvi/yYl2Pko7TNhvAzLtVWPzCBQyklHg2CPHh9hgfbI0w9DMwhTq9f+On1s48bjsPhT381uM+nuSy1z0/QcMxcDPvxnraD+AnKR71fOz5Cr50s4PqnET83iRGnArEqUCS7Sutuab2QhP3PBPw4gzLNRumvs/7Z6gqQgg0bANpJqArKr54owUwlncHCjzs+tAUNtc+bg5DRCkpStVt/dz+4yTmaOd7N0wFKlMmk1RdGdKsGFPKsFS38HpOs0AJ3AC7kwhboxBfvt2ZOf/DMC2JpA1NmRlrs3QFnapJ40agO/9GR0PTMRAmYa4ON/uZDFWBa5A/sNqwSz9hZ0SquNO8QcWfd8cxeEY8rncWq1hv2kfaKEtXZ4QUVEVB27UQc1JIbBcqbbp6yAYB+7avXTGJT3OO3xImHPf3fFQtEjyoO9R51vdjtFzzWB9zHHEADKt1B03HPDFRpCoM600Hy3UL45Bjcxji7ZUaolSUYhhZXrB/0g/gRxwxz/CjbyyVHWLLdWtugu0qsTuJ0bDpORzkl7QMKpaUtlOSf3B3uYbH3SD//ggMDFwIrDXtUmWwSI5wIY+leCjXMccP3Z1EGIcpDJVUrherFjpVA5qqYBQmaOV3imOocA/EH5aulqqHe16CpQvSg3jH3AmdiokffXMJP3+/h81hBFtXSUnTSzDwEzhmGwtVExVTg2tqcE1gZxyXe/yyMP0Mq5ZW+t5pJvBsECJKM8QpjdO2XBM32hWMogQx52jkdnraDhiaiuWalXcnX0xVTmFAxdIgJfkxndznjjmJNmgK+c4vm69Z5sryUlLC+43l/X0VpVn+dxJBnEFVGBxTw3rThh9nqNs6FqomnuTiGIVP5xgaajbxFw6DFJ1K9kqMvR+Hc79pKeXvAQDG2CqAfwXAXwKwepGfeVmo2zpeX64iSkmO2tQDSAHcWqzA0gu1G4ZRkMI11bkXvZq35Q/8BJM4RXeigmenU7naGkWk2JBEaLsGGGOQEvju5hg/+ZVbl/pZv3izhX/zR+/iL/zPH+Mrry3gX/rU6qX+/NOCDomKIM7KbppMSDwdhNBUam292XExiTJ86XYLGy0XzSlnfHoMy9JVSBCRo31EoLBct+CaVAV4a+VwhScTsiQVVfKuqUnEwYXM25rpQiG5YQWWtj+7a+kvvtWxYmkYhUR6aR1w0u4sVrHSsGHrKt57PkKUt+Iu1iw864eAlEiyDIaqksqcpRNRtq5iHHJUTlGhPw1MTYGuMaRcHnLEapaOz11vQUqJrZzMWVMYDJ0qxl7EwQXN+YcJtexWLKrkSJkA7OyE4vNg5Y5kOEcW3tJVvLVaw5srVeyMI8RcoOWaJCGbjyY5hoadcYRMSuxM4rylmMaBmo5xKe3PFVND4YPZB1qgGWO4tVDBzY6LQZBiHKZouwZGMSUYNJX28sc7HMMwhamruL/rQUggAFXjX6XRlgLPByESTl1/hU0scL1dwWLNRCYkPn0G/r2qpSFOExodneNQ1G0Dv/bNpVIR5ttPh7kqWgRX17FQo5GVnVGMTEpkIioDWV1hkJBgYEfaoNOvU0eUxrAN5VDi5PZCpQziPtr2wAV1eWmqAtdUsTOOUbe1MujbHke42XFzZSwJngGWcfS5sXQVPS9CmFLAlQlZOoqZEGCMYaN1PPfS3cUKtkYRFmsmmo6BWwsVSIlTjeaeFdaUjWk4lLw4SEpcKIIFyT7PDHWnzI4URGmGZ7lSmKJQQWMYEjH6xzsTfPZaE7auYhSk0FV2KuVdx1BLJa/CBnYqJtou7aWC5yviAg/2PIxCjknMcaPtYo+RMIdrakh5ho+3PdgG2aqqtS/CoKsKrVdcjuT4WTGOKLDdHISYxBlW6hZeX6rgC7dbqFyibUm4yNVdNVi6ciiJREl2QFNU6KqCUZSiausQQiATKBNkdVuHn5PM120dQd59eDDZAVDST0h5JTay8Bnpfe7fExstG81Yh62ruLdHnQFc0GjY5jCCH3OwFPnoaTRjHzNBXZ5RSkTBF+FHqZgadhkFt+6BrmzH1PBr31pCygWGYYrngxAplxgEaSmwEXMKjlcbVv7/FGxLSaMxBdn3vD1raioMjRI8xbNpuQaajj63kLKYd2zqefeEZSgYhcDWOICqOHBMDTcXqHhjaEqerGIY+AkYGLyIOkNarnGqRJ6qICcHnh2fKpToDtogN0/cZ/KwL1QgExJ2zm1UFCY286BzMw3nJqYKv9XUFAQJKbVWrNP5HHrOe9ewDSSZgGvpMwGoqjC0XAOZoJGeUZBiaxTiZmc+99dx1AiXhaqlwYv43PHUuq3jh+52ANA+fNwLYGkqUi4AJuFHWZ64SiFBHTEbuTCQpgJxKk8dgFu6ikwk0FTyQzMhsTmMoDKGiGWIUpEr9dHEhqVrWGmYWKpaANjc31OzdAyDs1PAzIMxdd8Xv2ua7H6hauFHXlvAo5zc39IVPOr50DWGh3t+ycdYxEEHJx4uA0UihDE5I84x8BNMohRZJjEIElQtHe+s1rHnx3BNB4wBry9VEPFZFezpvXFRUSpbV7FcM7HWsFG3989d10swiTiEkCUdzMsEY2zf3h+wW9sj4iBNswxhSjQj12wtj3Wo67OSq7XzbFaUpGIefc5eRZx7dzLG/jUAPwzgEwC6AP4iqGvqpSPJBIKEY2ccQwgBTVGgaQpaU0ovH+1McvI6aisvgvkC5Py68KoGHvfDM6lc0egYJb0Kgx+klBS5KPH5PPzbP3oHX/14D//+33oXn9lovDSJ+JttB1zscwCoCoOuMIxDjsWaituLVXy4PcEwn4cuElMPuz68A8TAmZBgmP/MVYWhZuuoWFT1Okj8XaiL6BrDnQWas73RccEzAT/O8KQfQFHooG8OI8RZhk+tN3B3qVK23RdV66qllZWF86i2nBYt10A1l7o9+CsKuc+hn+BpP0DV1tFWKWArnrUQEjHPqCuCEaFnM6/QJZxRpfaCiR9NVfDaIkmrzgvibIOchsddHxHPUGnmjqPKYBlUhdUMpRx9aecE6tsj4swaRxefJVcVhpW6hYddH7tjen+mpmJ3QkZ9uW7B0lX4SYbtYYTvPBvi9kIFNzoOJEgx7PaCS2NfuoKKqWEc8jzovRyDbhs0srI5DPGoF6BiabjZcRGlxIFk6SQfzoXA3iTGd54Nsd50cL3twFAVpJnEa0suKqYKVVFQd3QM/JQkcV9BbqlJlOKXnw7RD1J8aqM+RVAuy8TIWsOBqp6OALjASt1Gp2LmKm9s7vkUUuacAtRNxwU5SLarUEs+JHpejEGQlkSjBXGpkMDNto36Bfk2lusW2hVj7plhjJIqXS9Cz4/BwLBSp5aaiqlhbHCkOc/h3iTGKFSh5XscYOAig6ke/cwYo07h95+PECQcX7zRKhW0ng9D2LoGJ5faPogwyZBkAtc7Ltaa+xLnbyzXSmW5y8a0jdlXTZrz3ED7J5MSCtjchPG0UljTMcoE4AfbYwQxcck5uoJnwwgbTftUSndFp8XBz88YgwIJ5OIPFVODrauIUvI/eCbhGCpargFLV/HRzgSjMMX9bgTX0PB8SAnHO4uVXE2nCp6dPrC6LMQ8w9cedPEP3tuGAMMn12t4Z62O15aqqNmX20WssP3Av2Zrh2w/YwyLVeoA4YIq7T0vxi8+7CPhAp+/0Sw7GR1DxVLNRMXSKfHP2CEH3Is5Hu5R1w4pWl3u5yl8xjQTMKbsGCXfaLRid0yjZ50Kdcz0vASZUPDB9gSmps50vBYk+gqj5FbVmp/EOS0cQ8ObucLrdMKhsJumpkII6uizDeJ82RwGSDPiibTzLpBHvQCOQQINnYqJe7tEur1UM1G15ncdqgrD3TyRU5xrKSW8mIMxNjd4n04eLlYtaEzBw66Hp8MQtzuV8nv6PnFwAsDNjoMPtj3seTEYk3lniFEm0Y6CwhjeWKbusKOSMaOAxi+Lz3dcAVNK+t26qqDtmmUnUsU8OjGwO4mwM6IChsIYTFXBIEjQ9+JTFUeKhH3DSWBrKpiCsuAKkD3/cGuCIMpgGQocU8PzQYhMSNyeErggRVuiNliqm6fm8DoPOhUTdVuf6/cCtA+DhGNnRN1LmkpJO5WRT5nkamRP+wH8OCvvMikZUsFPHIEsYOo04q+qCqSUeNj1sTkM4RgqCSzopIRmqAoyKTAOUygAFirWoSQvQM9wo+VgqSYuJRFQKLFykYGB7pji3BUiEU8GIYJEoG5T0vTbT0fwY4715v7ev952kGZXw7G0WLXg6hoeD3zc2/VK0nJNVfC4F2AQxLjWcnLqFAN7foznwwCGquDOonuoWNCpmKhZGjRFuXAnk64quNZycLPtQNeU0uYpDPjaoz4iToqjLzsxBVCx8ukgwChMS9GIZ4Ow7DpLMoHlmgnXVHGz4+I7+UhfJiTWGzaNwh8wLwtVE3Vbywuar95ExUFcJG36nwG4D+C/AvBPpZSPLmNBlwEvSvHhtocwydD3Ery2XIWmUMKqYLVPM2Ksv7/nYXccY7Fm4q0DZLiF7GLFUtFyTNTm8BjNw0bLwWItm8l4BjEZlE9fAvH5QWiqgj//2z+D//Wf/+f4d/7Gt/HXf/IHXyjzfsIFHnRJqelGxwVjKAPsWwsuLF3NuwYyDIMEm8MITAFuLVTgGpTJBYjEb6VOaiyjIEXN1hEk2SFHx9RUKAyQUsHDboA3lqszhqsg6E65nCF701QFdUfBGybJpf/iwz52JhEqloZxlM4k9D7cJi6FRj4qtpVzGsxTo7sskAQtOQSrDWum1daLUvx/39tClklkEvjCjSYSvl+ZWG6a4BklBXteApWxkgA4E8SXdhmjN4rC0J3E2BnFpWGcTjR89d4eHnV9GJqCN1er0FQFXJDCSMXScHexig+2JcZhiklM3UD02RWML4HkEKAAhIGVXGWMMYyDFJqqQIICQJ6RU5wJavce+An6QYrngwBVW4Oja7jWdtB0DFQtHZrCLrXNV1EYvJz/oOfFUBglcKRkpXpfQQKdCbJdfsKxlRNdppmEAmpTX286WKyKXPXn1bt0RvnI01KepARIYWsUpuhUDTzr+9jzQtqnR3BGHIViTxdqbdNBiB9zPNgjToZxmFL1XVNhaZTQSzOBTFJSuGZTdXkUUjCYCVLc4ZfEN6fnfCmPuj40leFWZ1917nHPx/ubY+yMI7y+tE+imgoJNT9b19sOhCSRhgd7PlxTpXZtTcU4So90qHpejB0vIh6H7Ql+/n4fP/xaB3cWK/BjUngrEl/TiNJ9+eaDilO0vqvbZ4rCoJzw8x/1AoRJBl1jMyM50yjUguJUoJbza9UsDXpe2NiZRHiw58PSyfY0KwautU4m9T7q82+PI3y846HnJXhzpVqqCTIGfP1RP09AJrjWckobH3EKpvw4Q5RmJSmtrip40Tlmngn83W9v4h9/dxtezLHRdNCpWnhnrXElCW9NVUoVoaNIiA1NwevLVTzLHfWPdimpKCDw9Ud9PHQNDIIUa00bg4Cebacyf/RpmjvosvnRAJT+ZMJJJbg4k2kmSh40W1fxpBfANTXsjKlTU0oaW7rWdGaC3FGQkgqYqlDi/pJk06dRKN81HBoDKc48zwS8iENhelng0VQVN9ouHvV8OIaGQU6kPfCpCyLmAgvH7JPpc/18EODbT4aIeIbXlmq43jlZ4ZNLeq5hmqFT3U8qTr/Lnk8BmqEpmIRZ6dut4mSf7SifWUoSABgGKZqOgbtL1DH6YM+HBCV1Dp6PNJNou0aejN7/XNfbDpLscDcEsO+3homAwgAv4RgGPA/qj+eoSnPqkUmcIkqou+fOYmXmHPhJinc3R4h5hus1G2+uVOHFHI/7ARxTK/3aoku8WNPixSlxj4WuKqWCtqUruNXZX7cfc3ztYQ/393ws1UxYmg3HoFFuNU8s3Oi4+V1OCbUbbVKjszR6981TJKAnEaeimCRqgWeDECt1C4aqoF0hAS3GAEUheoUsi/Du5hCThOMHbrZmkiqFAu/Be/MiSLhAwgW8mJejZ9PCXLqi4FHXA88AnhlYawrcXazATzg2Wg62RxEkJJaqFsI0w0c7AQxNwa3O5aq0qSr5r1GSwdQVdComVMaw3rBhaAoykXMET2IEMUd3kuBmx8FHOx5aroHFqlX6RUGyr2x4a+F8yoYF0owSxQLAo66HSUTTBaZOFC4MmMs//DKQCkExMgMYGNJMYhSSYIprKlAYJa6FpOksKYmn9dZCBY/7AYKUxvwWq2YZmxXF1oOKx68qzr06KWUHwO8DYAH4PzPGfokxdm4lvctCwqnLIObEq1F39DyLPlvJud520XR1KEzB9jjCNx4PSmJFAPksaqH4RD/nqExjJiS2R9EM6aKpqTP/PkgyXG87lxJ4de9ltgABAABJREFUz8NGy8H/6V9+B19/PMBf/Kf3ruR3HAU/5kg5OVjjMMX2KMLAT7E1jKApKlouKYBoCsNKw0LN0bBSt5BlEkJKjCIie3MNmo1+0vMxDBN4MS9VQqbBGGAbGlSFQUiJhGfYzYnDAaBTJfLUmj2fs0hXiV/GzbsFVuvWTFUoSjP0/QQDn9R0/ITjg+0xtoYh7u1MLoWMbx5ivu8QDMNZkrqngwBxSvxJtqHC0jVEaQYuRE7STR0jMc8wChM8HwSIeZaTe2qoXGA++yAKMnU/zmaC2r6fYBSl8JMMmQTqpoFRkFIXWj5m0fNJgn6Yj6k96QdoOBpMXbm00aCmY8A2FKgKcXdNIo5RvjeKKmfLNVC3Naw1LPBMYm8Sw49TJFxidxyVVViRO7lZToY9uMTLq7iE00xgHHL0c6daVWicp+FQV+BCVc+dtxRhkmESpej7MQYBx+6EggNDU6CwvOo6jq6cwF9Kia1ROJfs9iA6FRPLdRPtiolbCzQWUajpDYMUo5BjEPCc6+l8z7ew1dMOfJFU2p3E8JMMXS8h8YnlKnSNKpBRSsGLn3CoCsOTXgAvTvG0H0DXLlcFbVrRbZqYf28SE8lukpEalkFcCFkmkGbkZARJhrZroOeRQ/eg66FiqrB05RAZ9DQGQYqqQWPCmsLQ9SLc3/Xw8c4E11o26i4lXbdGs2TRmZClfPNV2buLoBDF4Jk8RHIdJlmpUGSoCpKMxhi9mEjmG44ByyAut+Wqga1hhHGcliMH5wXPZPn9k4hDgjiDtkcxgiTDLz8b4P7uhFRVMwEuJN5Zq2GxasExFUjQ6M+LhhASH2yN8Le//RzfeT7KOQEZFmoWvnijdaVdmJZOHQ5HJf2FkOj5MSZ50N52TLRcHSmXiJIMH+UCEj0vwSgnwN87QH69M47wtE9dPkt1EwtV80r8sCDhiFMaxR1N3d+FPzTMBUAqlpYnhAWutx1UbA1NR89tPylMCiHBM4GdUYStYQiGq7HnxYhwQfotJZBkGa03SvC9rTEySd3W19sOluoWrrcdjKMUPPd7nw9DCCFK/qrT4EHXx9N+iA+2JhiGMbIpP0JKIpvu+wmJCfQCRGmGhm2gautYrM3Kx3cq9E6X6mapltn3E6zUTRja6VX7jkLXS7A9itGdJBiHKYQgW74zjrA1jPCk7+NZP8DzQVgKVRiagsU6FRdX6vsFz6Izbf74InXmNF0dtxdpxHuhaqDrJQjT423w5jDERzsTfOPRAFvDAB/vTmbiGQBQmIKOa6BpG1iru1ht2JQMk0BvEpeE2KamounqMLTL88lOwjC/G8NEIJoi9/Yijp6fIuIZgkSg6erU2a4y4vurGhiFCQxdQc9PEKUcH26PYWqsTIycBm2XfEYuRCl4MggSqCoV+xSFhH9MTSFutJTG+4Y+7YkC2ZQC72USTVu6gpgLDPwEm6MQmaRi2729CSBpbcv1PLZq2DA1BZZBsVea+7fdSYKuH5d+SJyerPZ4Vqi5qMzzUYgop8AYRymYAhgqFYZWGxbMfDyvYmtI8hG/gZ/OEKePQ1Iq5llBv3J+pJnI+d1SdHPS/2GQom7p2Mj9oDuLxxelJlGKxz1/xrZfBQr6ga4Xw9IZ7u9NyJ/xI6w1HNxacNGqGLjWcsAziheargFVYYg4idPsjuOZdY6jtFQ8flnK82fBRUb5agCuAbgO4AaAOoCX7sE+6QcYRxx128AbyxZuL7gl0VkmKBGiqzSiQ221Kb71ZARbV7E1DNHOZ9IZY1iomhjk5KTHYXcSoTuhC8nUlLn8Ba6p4nf9wLXL/8BT+E2fXsPPfLSHv/A/f4zPX2/l89lXj6qlwTZIOaXlGqVBZoxa5rmgCpGmKlhvOPnFTMoVT/oB9sYJhJTYmUQYRxyTKANjpKB2VDZ/vWmTtLSlYc/bJ0t/bbkCx9Dw2onKhzSq9fpyFa8vVQ/9nqUatRgv1y08G9Ao58d7E7yzVsfWMDqSbPgiMDVK3vgJLwl2C7iGjjeX6/DiFF+61YafcOyMIzDGSu4sgOba+16KcUSB+OeuNy+dpLhTMbE9jlAxtZnMu64puNZ0YesqbnUqaLoG3n02QpYHjgWZs66SId0dx9ibxFio1rDRujwHyNJV3FmsIuYZPt6hCvDdRVqPY2jguXSspWugR8OQSQkLwLW2g4Ef55wv+87j1jAqDT0lBi8erBUEwI+6Sl5hs3CtSa3GukoVMICVIzQMrKzQbo8iJBnZsmKdhUoRQGfvKlvwxyEvbZ6msnIEdx4sXcWXbs/aok7VyIkYTYRpCktTYCgMwTkV8ApbPZ2kKc5vmrf7cyHwxnINlqGWlaan/RCqwtCwDUzCFAoDdiYxqoaWcxFe3tlpOiQrXiiFFrjeceDFGVbrNt5craHpGhj4MbpegphLjEPiLGw49Hme9kMMfY61hnPscweIW+HT11qoOTqyjM7uN54MYKgqNkcRPrXewJhzxJMEtr4/0uea5EAmmcDCOYL4NBNQjhmLOQ+m7+9rLQf9IEHdPlww2hyFCGJSp5kWQ1iq0+dYqFpYqpmwDRXffjqAZAyOocGPL9ZVuly34EUVjKMUy3ULusqQcBrlKEZMdJXOepiS2IWUwI3OfjfMIEgvnZT2JPS8GF/9uIthyOHHHBttG28s1/CVuwtYvKSK/3mxNY7Q9xLwTKDmaGi7Nj7jNHF/18PXH/eRZgIt18CbK7UpcuD9/eDFnGTmQYT6t09BhHxeuIaGiqUh5hlaU3aouCMbto5rLQdBkkFClmI6UhL5+DhK4UW8LE4lUyOB45ijdsGR4nlYqJq5Aq2BiqVjtWEhSDgVSyKOpmvANVQwkE0QUqLvqTBUNSdkTqApCuqOceTYqQR1NU3b0qqpIRXEN6UqVIQp0PMTbA0jxDzLOal0CEnd+POIrBWFlaNyfpwBOR3D9SO4k84KVWHouAYgyYbYBn32ICFumkc9H4aiIkwzrDfJZ61MdSCdFjVLn+kau7tUxVrTxkfbE6jKYbskBI2pG5qCNE/OAkRTUrdNfLzrYaFqlqTRVUvDZ643EKYCdxcqcEwNry1X0fcSKApmRs3Xmy+WDqRdMRCl1D06PbbYdA0s1kw0HB3X2w7Wmw6eDShxZKgKHu4F+XgScKPt4sPtMSipDrxxBvVzK/dZv/10iGFIohudqoGUU9d9JgUsTcPjXoDXlir47I0mHu75NKo5Za/V/x95/x1kWZbndYKfq+XTz7V76MzIyKwUVZVV1V3dXUADjR4WGliDpaGZYYBlbNiBsVnY3dkdG7GzM8zYsruwiGYQi1oYQy3KEE03DV1ddJeuykoZOsK1P/3e1fee/ePc91yEu4dHhEdkNvMzK8sQFf7Ou/eI3/n9vkJVaPpmif4/v/WqKAorDYfNYUSYFHy4NaYXJiAUPtwe84MvtbncltpCcxXpUP3yQoVCSE3Ju7EUi5+aCkwSiRDzzrFhDRDEmWyuGTpJXpQNdQkWaXkmhia15rwS9bZYs/FMnQc9Kdh90JSs7hoMI5mTPasmlqooeLaGb6os1V25t7kmlqHxhSutM/2MB91wVnisrTy7mdRJoZXU5qqjE2cFX7/XZxjuS014pj6rMSzVbXRNYbkuNfmCWLqqwmEZnGnuqSrKc9EXO+94lhH+7IH//SkhxMPzGdLTh9yoZULc8gxemvdplptGnOXc2plQCHEIZn1jqYYQCnGWz1A40zirS8XBf3NSIt72LX7fl64+y9c7U/xXv/FTvLsx5A/8ta/zt37/9/Ha8vNbQNOYQvKnsVjT8Cxt5phkHgDmqarCQlUmP1EqO3GaqrDRkzDetm8yVzER4vTD0Tb2nd0GBwphj4s0y9kYRGUxp+DlhUddEm1DY6luk6SCpbrN7b2Cti/FmZuuhf4c+Nly/MqJBa/VhkPdkw6Dein2ea8bIIBPLVXJSlHjpZpDmheMS2FIhcMJzHlEwzOPhUdXbYNXlipcSl2MUkByaxgxiXOWahaGLeHHDU8Kn6tIet80eUyy4ljK3MHE9uDl9HFh6RrX5n1ZmFCU2YUlzoqZSOSVtiu7YiistqXNfFYm5VLoWP4brXznisKJWjRxlmPpGkIIkrw4M/T4QtNlnGQYqkJaCKzy5z/sSfpHzZHORGkuWKo5rDVdXl6o0A9STF2dXQi0A/PyqMPNeYepq/tit08BsV6qOYeKKhcbHt0wQTwl0uukvVqiI0y+sz5AEQp3uxNemq9gG9JpR9eUGTJoSqcJkgLHlALF5ykA65RoraOxUHXwLalBI8cjeNiPuNcJsAxZNMsLqQtxpe0TpfJCp5S0mNOKQBdbHuM44+qcR1winya3slL7aF83baqtdzAeVyCZXmB9yzj02YNAIiE1VZlpJj1rHDy/V0paQMXWj9UQsXSVoDQKOKil4Zk6l+dkYXpa0PrUcp26YxEkGZdL2vlJ+9DjwtBUbixL/alRnPHB1oggyWl7JtfmfVqeSVYIFms2gyClKEXulQO0QGW2R+Wl4O3zpeZO4pR3twbsjGOKQvDZiw2+/2qrpLe+WGfa42L6CvSSzjZtCCzXLea6FpdaHhdaskDr23pZwD1QFCovrQ+6Ib6pY5vaiQUDIaT709OacKiqMnMUPBgLVRv3gJB3tURhRmlOmEqK8QfdIXFWIHxBw5M5Rt0xmK+UlzlNpSjEubtGzVWsQ6iYlm/RwqLumIRJF1NX2RrExJngcttDLynQuqqwVLUoCnkWT8+g49ZOlOa8vzXictuTxa1C6u+8tlzFtXQuttzD5gblf3VVpSiX91HX0JPiYtOl6ZkYmlLSvZ7t+YBsICVZQVIUhEnB3ihGAdYakpaX5YIoy2d74Hm+ItfcF1mfRlbKkLy3OSQrNYYuNF32xgm5EOWeLvOdg7mKoam8vCBpz1N0/XLNLnU41Rcq/3E0qrZBdenRhr6pq3z+cpMwyVFVhQddSbPrTqRekWOqRInMDS+2XPphgqHu76ln3UeTrEBFzrPVhoOuKSxWbTYHEaoCmqqxOZAUOl2FuapNw5V6gUeblCt157nIfazUHe7sjFFUhUGYsD2IEMhiaZLlWLpK299/htNz1zY0rs57CLEv7H8S/f1ZQwDLdeko3Pat0lRG0J0kjKNcGs4Uko57MF+zTZ84Kw4VZm1DOwPA4GyhqQq+qfPaUpWFqs1K48nnum2oM5ON5xlrTZfdkTS9eVi6beeiIM5ybu9N6AYJ1+Z8NFUhTHNavjnL3dzyjNOUw4L85/ksX0Q8iyvfGwCKolTgOeGMzxhxVrDel+J33XHCzjBkexTz/taIL1xu8sZagygpZvD/UbyvyaGpCp9aqTJJcmz9+A1sEKTomrS5z4pHL8XzFRtL1zA05ZksLc8jfEvnL/+ez/Ob//SX+fG/9FX+7v/2ix+LGPq0ojsVEhzHGYs1G01R6IwTgkQe5BdbDm+t1iRlTxF8tD0myguWazadSXwm1MdK3cEtUSzTBZqVlzVVVWZdrTjNudMJWO8FLFVtLrZ9ydnuh3iWNrsoD4KUzb60Jd4eRSzWbBaqNq8sVkhzcWatsWeJSZyVqB5tZmM6iTO+dqdHxdZZazqsNdxSRNziYS/g1t6YcZTxxWst+mEqCyuKws3dMXFanCvnHeSF+EFXdmLWmm6pi6Ly5Zt7ZLngSttjvmITOzlzFQvP0vm5W3ts9FW+/2qLV5erCORFYrt08rMMlWtz/rGJ7UrDZrMvhdMvNN1jdXWKouA76wOSTHC55dILEuKsAKS45tU5qWmyUndKrQqLuYoUGndLypOqyGQ0zYuZSOJyzcY3JeXwuIt2nMouVts3mSSZdJ87RXR1ZxRxd2+CgoJnacxXLLaDlCiVRZErbY+6W9rP24bUYskKPFObUVYbnixYTC8sVdvg8pxHIcRj9TqeNRxT46UFn6Lg0AF4kkHAKExJ8uLYYkdnGPK1+x2iVPDWM3Sipi5shqaw1nBna397GNEbJ2wNQ0xNOnFebvus9wLe3xqRC8FrSxXaFRvX1HnrQp2HvYBRlPHh9ohr8/65og6TTHYSFWRRUhYnBF+53cFQFV5droCgRIwqrNQdvnxzj/V+wGcuNnhzrUaaCxplR/F+J5jN7YNJci7kdy/K/+6NY16aq/ADV9vsTmKWavLcaqWyiP0kQtuDMOXd9SFbw4ilmiXRQLrKat1hFMv5mRdS4+88ClNhnBNnOZuDkHc3+pi6tJu/1Ha52DpcDFipOzRck81ByM4wLqnE2swcQMwE8SVyU9eUmQDz3jhmsx8dMs442/NIeHdjQNWRujLDMONbD3q4ps69rsKPvLpA27PYHEQkWcFS3UYBqo6E4F/Ane2FU700z9K4Mvf8ED7fvtfhL3/lHv0w5fqCz42VGr/s+vypDo0vOharUudFICmaCrIx8C/e3eFBJ2ChbvPK4tRx6tE9b+pUFpZalVM9y+Piw+0x720Occ9RcH66J+mqwlrTZRCmMyrzw9JBt2JrsxwSJIXv9u4YU5c29L4lpQe6QcJL85VzRSGCbFw96AUzXSSA3XFcUo5jVhvyUjspqYrr/RAV+GU35mlVrNledOIZLmQDY6pp9/N3O3zrXo+aa/LFq20Wj+QkLd8iSnPudySd+qje5sFIsqL8uSqmLhtJiiL1n47bE582dE3BNXTGccb3NobUHIMH3QlpIXhtqUbT03nQl0WMg4XN6fgqthTk3x3HqCUbYxrTe8lx73WjH9IZJzil82qY5NzcGdEZJ2wNIixDIoxcU6fm6AyjjMttl26Qcq0stAOzPS9IchSk3k6UFocMhz4JESZ5KYitsdaURgC6qvLOepdxnCNEwUrDxdBsLpVNly+v7+GaGtfmPN5aqzOKMqq2wXo/pDuWrr3HIe2mMRWdN3WVSy2PMM2pOwYfbA64tTNkoebyfVeaJFmBbWi8vzXi5o7UUf2hkpUihJiJUy/XnXNxbz4avSClH6U86IUYpVaQpsFrSxXudgKyXMiCWokS3x3GNDyTtab7Qu6lO8OI7dKNG0NlbxwRZQWGIs/SQoChSVbTOMpoeAYLVXuG4tmayP1jteGcO308yXM+2B6hqvCjbx9mLgVxJlkqvnUodz2ay15qeQRp/swuzY+LzUFIbyIlZC61PII4x9yB3kSiztJMJ8qkAP/31oekRc4Pv7KAbWjsDCP6Ycqcb71w45TzjGeh8n0K+KtAU/5W2QV+txDinfMa3FmjKARb/RgUgQDivGB3lKAqCt9ZH3B1viK7q6bG7b0xaV4csn4/yRUE9jetXAiJlkAu/KPc6/PUInnWWKzZ/OV///P8lj/zc/yuv/gL/K3f/33PldZzWmwMIr67PqAo5OW04hjSQSCX8N0Pt8ckWU4/TNgZSU2QKMmlOHV0NuFFVVUOJS77bjYKV+c97ncD3nk4ZBgmM1eDj/bGXJyTtIuw5EJPOyBJiSzoThLqwmRvlDBfsV+osPTuSCYOUSoLHK6p8817fT7aka6GX3ppnqWGjW/p1ByDb9yP2RnEbPYiLrYcLrblQRyl+YxCN44zFs5xjP0gnXG/e4F8Rvf2Jry3MWISZ2wNI24sVWn7pqQgdQL6k5RRlKFrKr/y1YXZxj8uec9xWpAWBZZ6YFMtE9veJJ0lceMkO7Ywdb8XcmdXFss2+yECOR9emvclKiUvqLsmbV/ahs+VOk8mUoBzyu92TZUgKbANdeZYc5pjR1F2NAdhOtPdGp/A5Q6SjPc2h3THUiuq5hp8uCNdQxuuLIipqoRuD8OUOd+W9ABNnaFRABquQT9MDyXg52FNfNY4irCZCiweFffuBwk/8+EuQsCnlmtcWzicJH71fo+skM/w1t74qcfTmSRyLQMjR86PvXHM5iDi2w/7bI8irs9XCcui+DjOZ/P3o50JgzCn4RmsNiTdOFRlNzzOnt3R8mD0g4Qg3teSa/sW76wPubk9Zhgn9MOUlxd8qo7OXMWmHyRSh2uSkGQFv+HNZSq2HM8kzhDl+phevqcx1d7pTKTuzmYvIkoKfsnLczP76HudCcNSUP8Vq3rmPS7NC4JUzu+9SSJF+6OUh92Ay3MerqVhqCqVc5iP/SDhfjfgQTegKARFITvGVmk/fzQURWGSZLyzMaTIBZkouLFY43434Nqcz63dMVFasFC1mK/ahwoa08JFmknU41kLUz93s8NH22McU+XNtTqOoWNq0lFKV1U+2h6zWJPCs72JdKVdabgz6+qDe8t035jE+XNzgv3Ogz5/8Sv3eH9zhKUpbDkGv/yG84kqSoF8l1XH4IOtEZulIKxnaWwNYraGMWlRcGcv4K0Lh/OxKM1n4tRX2v5MF2nOPzkP2htHZQHl/HRXuuWeBHC/O2Ec5eyNpxonGXlRsDeRKCHHUNkby7UepRlrLY+aLfUjQcg5mRXnfuEYRRnDMJs1mtq+xbubA4ZhSpgUNDyL5bpL0zX5mY92ZhSmrUF0qHA61dY5eoZrqkRGNzyTtCj4cGvEw15EL8j4/ivHz+8wzdkexTODh5MKU7f3xjN9sctz3szU4aQ98Wmj7hiMI/m+LE1lEMZ8b2M4c4Fs+g0MVTq9dstcaDq+NJPumhVbZ2co6aamJt10g0QadABcmfMeKSBM94IwKRDAtx/2y4KUbJBZutSk2h1JZ9ntYUxeFMxXbAZhhijF9acmT5koqFhSqN639E+c3szeOCZMCkIKGrFBxTa4353wnfU+24OElm/QrtisNVwqjsFHOyPSXHBzd4JtdPjitfZMemW6l0sDmZORz9P/X5JJA5m2b7E9jPjy7S5FAZoaUxRwdd7nQXfCnd0JO6OYtm+yUrd5ebFKmO5TxndH8XMpTI2jjCQryDJBqkhXvpZv8v72GMq5nhVyjxiGKb0gxeoHWMaz66ydJUblXFIUBU1R6AXSRbzumjRKA4CiEAiRlpItCfc6AcslsCAo98nOJDl3xFmSFSio3NsLCZIU35bnXJjk/NQHO6SZ4KUFn0+VjdHjcllVPblOcJ4xXfNBnM+QTzujhHt7E/bGKb/5Myt4psYHm0Pe2xwCMF8Z8JkLDbbL/WV7FJ1J9P+TGs+Sbf8E8EeEEBeFEBeA/7T8s48lKo7OYtWm7Zu8vFBhuW5TdXSWa24pXieFbD1TJ0zymUjhuESmRCeIwO2LrBZE5cJ5FoHUFxUvL1T4S7/n82wPI37n//TzH5vjQJ6L2SZdsQ0UJDXFNJTZQTBJ5H99S8M3NRarFisNd4bukUK8ZwfljSOZmOSFdDWTQn9ZKbytoGkqb67UsfX9i5NlqLNOV8szaVdkp6Fq67iW9sLdzqY8YLMUCRwEKZmQKDDb0PAdKSZftXV5uS3F75q+SXbgUdmGRrsi9R/mfOtcRbF9S1pGK4r8dZoX9KNEQl0VWThRgKqtEyU5VdeQFsamStU2ZmsLJN3BMeVYtWMSVcuQzh5118C1tBl//+jc8EyN6V3SMaf6HTLBmeqGaapC3ZXinrujaLaeD8Ll+6XYblQm2Y8L2R0WrDScUr9Gnc3fokQ1zf6/iuy+KgolCrPAN3Uqtk7dNWYIR9+Uc2+SZDNjhezAWEZlAl4UzA71FxV5XvDB1pB7ncnszwYniHtPkpyigDQrGITxIz/r+y63aDg68xWLX/Ha05dOp/NRU/dhzJqqMIpSiVKp2igIVht22WVXMHUF19rXtZheruYqFq4lTTM8U6Js8nNaO145TlVlP9Epjd6yrKDlG2WzxGAUpzRcA12Ve1TLN0sEoIyWJ22D5dl2/AVsoWqhKyq+rSEU6c50vzshSfMZBbgfpMRPIITadE2uznss1S1emvNxLJUwzXFMjX6QMlexuNByz4V61A9SFEUaZyzXHSqOzpU5jyttj9WGS5TmdMYxSZrPkGFRmuOUhVHXkM9YUxXSQhb7AYZR9sj+MV9qTzXLZsCThKJIwf2LTZe6a/B9V5o4hoZd6i/momAUSTdS29CJ02LWBIH9vWypZuOYKos1+9yLUpv9kG/c7fLOeo+WZ+GXe84nDSl1MIrycj2KJepSUxXaFQPP1rjU9nCPuSz0AomQlILVCfNVm2vzlUMFwCQrZg7AeSF4ab5C0ze41D4/hLmkqsu5Z+oqg1CKoOuKStM3sHSVumNgqioFoCiCOMtwLZ2GI8+s5YYzm5OOqT1ynjxrOKZGnOXslWgekBpQQZLT8HVqjnQiniQ5VcvAsVQ8S3sECblYk2d4yzfQD1DJTV3lctvD0GQuU7F1fFNjvmIyd8KFuVpqPBq6cgih0BnHvL85pDOOidN8luMVQkhKXZrP9sSqo89ok88auqZyqe3x5lqdpbqDb+m0fBNVkQ1Wz9KI0oz73QmTaFoQkkWCvBCzwsgMHaXtN+SmRbTjGlkyL1JZKGmTtq7iGBpVW2e1YXOhJSnxU0SWqu6bMNiGlD5Icrnn5UIipgxNnYl9nyeC/jximvcaujIrKA6jlCIHVRUsVx0arkGaF2wNQlYaDiDwy/d9MA9aLPfRqbbgcXeIohAzdEnLN2efOYpSlspns1CzCNOMfpDgWTprLRddk/vSVHfU0vfXw3lr+EzX+1zF4lLbo+kZ+Hp5nqOgCCl6LZAyGbqmYJcIO9fUOUP6ei5jnObwizWbtaZDw9UxdJU4yynTY2qugWnI/Nu1pcZzL0gwSpH56V3ivMOzdGqOxqvLFTxrf08I04woKSiEOCRiPxULP5jLxmnO+5tD1vvhuY9vGllesFR1ZvNWUSTqN84KfNug6UlAze29CYIC15JGBbYh0aJTV9fj0MO/mOJZZoAnhPjp6W+EEP9KUZTHey0/h7ANbQYdvrkzQlc1XlnwKVBKukvB+1sT7u5OuNsJaPkmay0HIQR39yazQ2HKwRRCsN4PSXPBYsVCVRR0VSHKCoI4+9gFQc8an73Y4C/87s/x43/pF/ixv/Dz/I3/8PteOLJrqW6jqrIT0vBMGq7BIJQibALJc685Onf3JuyOI9YaDp+73JpxoKeINRTZUfStx4+/6ZnlASzpTZ6l89PvbzOMcraHCRdbLp1xwptrdVq+pKEc1EVQVWWmgTPVU5iOZRLnLFSloOQoStkZSSvl8+5ItEpNK7lxx2z2Y5ZrNlbp1pbkkp7zMx/s0vJMri34/MhrC6S5YLmEZheFnMdZIWj7Jve7x1N+njYcU+OleZ+NQURnnJAVBYYqLwufXqujaSqdScxPf7BLlEgHoh++Ps8kyWi41gyNsDOSml8LVYvuJOG9zdEMuTKNNBdomnqIljqdG46pcXXOKw0LbL708hxFIXAtXVIiyqRy9nnDiC/f7HB7b0zTNWj5Fm+u1VmtOxRCoCALFjtD2fk6i1aUvCgoFAXMV+3ZHnFQG+dS28O3dGxD41MrNa7MeVRtnfV+NBNDbpZdjjiVnZyb22MMAy41Zdf/+kKFvEy0pv9WU87XPe4s8b3NIbd2JF3CNqSZwTBKKYQsRB9MzpaqNjVXZ2sQoWvaI1opnq3z+mqDNC9YeIZ1VHMMvMUKatmtG4SyQFJzDFabDve6ATeWqvSDlF4Q8KAnbdvfXK0hkBTeabfV0FQMVZ3R0e51AvJSG+VZn7VnSXOGzX7I7ihmsSpdaq7Oe1xuuSxWXYZRwj/89jpRWvD5yw1+/ZvLPOyF+JY+oxpNaYqqopDmBR9sjw+tG1uXNOC8EGw5MYMwYc63uNuRFLeGZ/D2pcZMO+NhPzyzDoGqKlxq+Vi6RpwWrDVdmq5FL0wYRRn39oJzow63fFNSclPpirTScDE1lWsLFRTgva0hRSGTTMfQ6Uzi0sAEFus2V9seZnkh1jVZ3JvEGYam8O7G8BAqcqrp8qTx9qUGdcdgrmLhWDqT0k1MVVS2BiGOrrJdvuulmkRpqaoyo2tPBWD1knr2PIpEgzDlp97f4V99sM0oylhrOPzYFy7ypZfbKIr6iRVFtXSN5brN/e6ELC9wdI3Xl+t8+kKDumPiHzPu3jjhw60xoyglLwq8EtlyMDb6YenYOsE1NHxb5wevzZ1rE0oIqU1Sd6RTcF66181XbFabDoam8vO393hnY0jdkcWYKZ34QnM/nZ7Oyc445uv3ejNtuGeJaWFORcHUpL14IWRRvkCQFILtQUR3HPPzQULdkZeiL12bkxchReH27pjlujND615qudzandAZD1ltOI907ftBwkLFQV2Wepq745gwzR9hIMxXbX74lfkyP5T77c3tEX//mxvkCOZ9k0+t1JmrWFyd8wmSlKpjlM0J5ZkpsIMwpVOKwh/8DooiGRM7o4ilmvzer6/UyfKCO3tjupMUU5M6YlO9unGccaFVI8vlWeJZ2qyJ0HDNGWKnccyarznG7PsrCgzCDNtQqTgGt7YnQFw6/znUHYObO2N2xzHbw4iv3evy3YcDXl2pljo0Cobm4NsGbd987vp1TxN1V4rtbw1iNvohNcdAReXags9KYvPSQpW9ccI76wOitOAHr7X4DW8tS/q1ps6e1bRZMaVuv7sxxDHlPj/93lO0mqLI5xym0vG4YkvnRyHgjbU6hqrwt7++TpIVXClReYUQWLqGZWj0goRRmOGaKpdbLuY5Ub2yXPDuxoBJkuGaOlfaPm+s1lGAn/lwl+1RwmrTBaWQUia6bGS2PZN+KPVHF6sO88/ZWXEUZfzke9t87lLz0Nk5X7XJBWz0I97fGqEqUtPy17y+hG/pPOwFFKUzu2/peJb+3AAUtq7x6kqVqy0fIfb1iItC0h+TLOf64v7YG67JMMwYRSl74xhdU/hga8SDrixK/fAr86cyKJ4mkrzgpz/YxTFUPn+5hamrbPRDxlHOS/M+d/cm1FyDh92Q9b5E3b59sY5nyYLV7d0xLc9kramfu+HVi45nyURuK4ryf0bS+QB+J3Dn2Yf05CG7z1MBZVkV70cZaw2PopD2i51xIl2bPJO2b2Jq0q53ZxhRCLh0QHR6FGf0JtIhZW8c8fpK/blaJj/P+P6rLf7cj32W//CvfI0f/0u/wF/9D77wQuk+U90hTVHpB7LjWZRdemlBLC/rWwNpg745iNkaRLPC1LSKvd4NmauahMnjy//SlW1/k1FRqNgGnUnM/W7E1TmPhmfODrHTNFCmCzzO8pnjWSGkM9p26ZARxPkswZgk2blY7AohZrDMII1Km2GdV5el+PX9TsB313vc7wdM4pR2xeL1lfqhC/8oymbw4nGUAlLoeRRl5zaf+2F6QLdDoCoKy3WH64sVwjQn2yz41oM+QSwTqjfX6lw4oAkjLbHl99zMQ+Jy/Q7DDBr7n1MUPALHns6NMMkPiY0fvNS9eoz4/yiS1tijKJtZjNccCWtfqe9rV9WeQvz3IAICJC1kpm0XpbO155jaDNVz6RjB3CjLGYUZUZqzOUgYBzlGKWo6X7Fmha+rz1GD5rTIi4K9sSyKZFlBt5xnnvXoxV5VFS40vRmN5ihV8+7eRKIINJW7neCZxjUVyN8oD+6siGj5Fi/NV3AMnZZnEWcFQZLzsCfpvit1hxtL1UPF5X5Z2JqON8v33+F5FAEHoYSzgxTrNnWNCw1Jgbs65/PtB32J5h1I/bvPX25xY6n6yM+Yru/OJKblWQzClNVy3SiK1CG7szchzgpqjskkynh/a4iqKNTcKoWApmvNTAWeJMbxvjOjpsqLZjsxubUjUXTH0eyeJiq2UTYPVB72A+Z8C01RKITcb4SQn7U1iKjYOmFa0PI0JnFBy1fZmySHTECW6w7jOOO7DwelULF0v3kWitRcxZ6hP97fGpJmgp1RhKbKAmfVMdgbJ+yOIkxN2njvjaWuySTOGevZrEMbps/mDnhSjKKU9zYHPCi1jXzH5Jdcn/9EQ/6jVCJ5pB6b3Ce7QUxTsSCD1cbxSbiiKrR8SYuOspytQci1I7oA07MkiDN8U2ccZXy4PTxX0feNflgieSKutD2apdtu1ZF6hromZQhcQ2d7FHOx6XK57Z9oKHFnb8LkAAX5WWJvHDMMMwSCKCtwDJ2KJREP/TChZhvsDSN0XaUzikmygqqj87lLLSbxPgVtexjNdN6irJit+1Hp6ncwkryg6hhUHYM4yxlHGeMoo+YYj+Rhvq3jH7iivLc1ZHcUEecFrqFRCEFe5mKnxSCQKMW2b50575m+tyAJqbuHnT9Fue9cbHlSBkBX2RwGbA/lHaPpW+iqOnM+s3SNvJCNm+n5n+YCU1cwNPXUItowShmGKU3PJC+YNa4mB1gbQZLzoCtdzXxbXu5VYKsfUXPlfvzr3lgCHk+Pmq63imWc+8X7rDFJcvrl2VuUEiordZe5isVizeZrd7t0xzGdccK7ns4bq3VeOtJQ2R3Fs3UyPSfCpDiUJ06ZFVkudXDrjslmEVEp3RGnOp1f/miXO3tj6fTYcnllscqcb83y80GQzpDWvpWfW2EqzQt2xzGTKGetKfXNKpbOw17IOMqY820utz1uLNW4uxeQFQVRCpuDiDQXGKo2o6A9z8gLwSTOuduZPLLeG66Jrijc3B7hOwaLrlnmjjGeqdMo90NDV7nXkXN4vReee6M1zgrSDG7tTciLArXMPydJPts/bGN/r7EN2XT/3saQKC3Y6EekWcHuKMLSVcRzkNVOs6LcD2F3FLHScOkHCeu9EAR84UpLsmci6WI/ilI0RRZKv7cxRAiI0ohXl5+PsP2LjGepUPz7wH8J/F0kEeFfA7/nPAb1LHGxFDxuenXGcS7dixQI04Kmb2HrCqsNl6Zr0J2k1F2TMMkPbcJ26ay1NYyYr1g87IVcnfOeyGnrkxS/9Po8f+p3fIY/+Ne/we/9/3yVv/Tjn39uwmhT2PLBJGOaDEySjHGcglCwDOWQgPVrK1WiNEfTJI93HGf4ltRY2RpELNalcPpBO9GDMY4lLeOkDe2XvjLHT75TMOfbmLrG9YWzC9uCpCRqKuQFM2i5a+qESTLrhD7shTNo+dNGkhWoirxg24bKMEppeSaLNYcozWeHZcWWyU7dNsgK8B39kQPIMlRUVRZ1FmsOg1KPqP6MCUdRCFlc0LVSkyvHUFWuzHlkhcA2pAOREJK25psaeYknnop4TkMKEqtEqexq11WFXnDYalfTFNaaziOJ63Ru+PbJqKYolfphNceYPZ+lmsOFtkThdcYxmqLw0e4E3zK5tTvmteUq1hMmF7qmMlexZuKx06jaOn1LJtHHdURBFj2DOKfq7LubVSyD64s+iiKoBwaGqrLRC6nbJht5hKYptLwXayt/MNq+dMEzVQ3X0hklGUGcU9P2j5Rp8c+zdBaqUrfhOARazTFwDKnPcbH1dNoCB+ekqoClK4zijLprsFKXVAfpbFiUneycNC+wNI3tQfRI0cc19VlXbd636AUpaV480zOfUpenVENRXqxcS6fuShRP1TGI0pyFioVvalRtA11T2R3FjyB1HVObOSOuNR2yUrfvaDRcA1WVa28QJtSc8uyzDSqWzuW2xyBMz7wvRKl0OjI1FQV52ZyeJ66ps1S3ibPiXDu1Es6eM+dbMxTctCBxqe3xweaIlYZDkgkutUzysitqahKNNIkzslzMzpupYHw3SErEx9MXgqJUOiJNL6+mprI7DLky5+PbOpoiKQo116Azks5ZH26PsA1NUo98i6WazdZQdv39cxaqFULQDxI+2h6xVLNm9KA3VqqfeIHU9b6k2qnl88sLWDVdgkSK6qvsu6EejCtzHgiZD0iqlXTsG4YpriWLBfv7gk1nkjAs9QG742fv2k/nxFQI39Ck69nVeY80E4zjlLudAEtXS9qwimc7LNZs2hVzhtw8GotVm71x/EyorjiT57VjaGWDUOHGonT2nVLf1houW/2IharNzjBipe4wiDIUpAmLdHFTyA5INYCk0tccgyjLj92L2p4sgk9Rnt1JgqIwQ6Wf9iwtXWOxbpPlBZ9eq5XnyumIzLwUdpeXtvyR4uRJoatSasIz9UeQRVP35GnBKMuLmWaqoSlcn/epuQZprs0KiA3XIE5zhmHGQs0+kyFEUQjul5f1IMlR1X2kx+srNSq2dD61NLV8jgot3+DqnEdrhohSWG3YM8F9U1dPpSg/7IWl1EmKZ1VemFPf0ZxSIO8RDddhsarNiqJpXrBad/Bs+essl3v40fXiWTr9IEVTFZaqNp1x8kieWHfNsjkkMA2FPOcRbagkK+gF6Uz781LbJSsK5qul4ZWukOaCXpDMZDam/26axz9tKIpCxZLn3FRWYBRJke6LLXl3+tRKlUppenNze8QgSBFlg7hiG48IdU/P7vMsVqmKzC2OmhiANEW625nwylKVYZTSdA02+pF0q/VNLrbdGZLK0uU9wC1zozgrDp2rzxKmrqKp0qgsyQXTGtRcad5gGyqGptCbSLrmtKCnqfJduqYBFZP5qkXNMZ9LHWBa5PZtDb+85xVCSp/oqkbFlrnhp1dqfFcdMQg10qJgZxRhGxphks/Q9AdzzV+M8SyufD3gD53jWM4lPEsnF5Jrfq3mzF6MZ0qb6L1RzEc7Y6JMLoDuJKHi6IcoYqau8spiRWoTZQUPOgH3OhNankW7Yh6iGP1iiV/12iL/99/2Jv/J3/oWf+CvfZ0//7vefmq3pAfdgGGUslg97JaS5gUfbY8ZBCktX1pkT7W95ioWYTfjo90JliZ5sQctgK/O+Vi6yp1d6XYx1XuaQpmDRGqBHXcxHEUpd/ck0qLpmxSFhIYerN4v11x++WuLdMcJZkkHOSmSrGAYpSjIxCZKcwZhhqkrXCp1U6aog4stF9/SKYQgyXMedMMzUSLGccb9TjDTX9BUZSZsPY4zLrZcVIUZP/ygLe0gTLnXCaWriifRM/MHRF23hxFpXrBYtbm+UKEQck4/KZIrKilMAJfaUhC6KAQf7YwZhAmeKfVJFJQZDebggXdrV1IpNE3l5fkqay1npj0RJmVnzta5OueTlAUD4JELuKmph1BQo1KwvumZXF88OdHMcikQOaXqrjVdJlHGO5sDFBQutTwWqxaeZRCmGb0g5sPtMXujmC+9PIf9BJc2o3RDOfjZ3Yl0hDmtI1oUgls7E/JC4Icpl9seUZrxnYcD8hwut/3ZAZNkOZM446t3h6z1HH74+vzsAHvR4VsaD7shkyRjvmpxseVxKxwziiXKyzY07nUDgjhH1xReWaxQOeFSUHdNXlqokOXFrIN2Wqz3Q/pBwlxFUmKmc3Jq9X6x7ZWOfGV3W1WouyZ1V6KzdoYxe+OEpZqDqWmzC9R0Tk73juvlGWDqKrUnpFYd3SP7gRT6HEUZ1xcqUgxUAVHIdeZbOqYuXRZvlS6abd+m7lrYpjZLOAZBKovVpQbSK4v76/uk2BvHLNUcBAKt4fLh9piWb3F1QdIaskLO1UmScbkln90wShkEKQ3PnHX5e5OE7VFEmslE7nLbQ1EhS+W5aqhS0PekS/XTxiBIeH9zxNYg5ErbZW8k9+idYURWyKLchZbL1iDCMRRWm15ZGJfJrXQ5k+iOxVwal5i6gmfqtH3ziVxrR1HKg26IZahcbnms90PudQNsXeWzFxskecHDXsBmX7oLXW5bBKUGTsOTqK/+JJ0ZsCzVpe24pipUngMdtygEP/Gvb/HN+33aFYPFqstv/vQqr69WudD0XtjF82BkuZg1nh4XG72QD7ZHtDyTX/fGcokwk26ZhpCOs70gpWrr3Fiqzi4xlq5xY7nG9cXq7Gy5szdhHGVoqsKNpcpsXwBJnZ+aX6hnfCRTPbOmd9jZ7HvrAzqThOWazdV5n1GUcb8b8MGWLJ42PZN7ncnMMfLavM+nVup0xlI0++DPirOcnaGkq7d9i9WmS7tiHXJ+Oyl2hhG7JR1t6g47pb8bukLV0umMY6qOdOQ8OBcU5J4iXYgNbFPDNnTyomBrKJGJLy9UyIrDzdpp0eZgxGnB+1tDLjY9HHPf/XgSZ9zvTLANnfV+yFrTJUwkncrQFcZRzjBMKQS4lsb1xQotv2wkl6i20wpa0++hqbKAdhoKMckKvrcxYLnmEGU5vSAmSQtuHMgvepOEcSwLA1NETZhIx+AozbnUcnFMnaZvsjuSDlqXSzR0P0joBekTFZ4VRboBppkoWQcKC6VOomcbrDQcPtgasTuKCZKc+arFRj/CKinc7mWdnaF0ld4aRqz3QoIk4621+omoQFNTCZHmIOo5FASOhhBiluMu15yZs/BHOyNGUYpn6lxougghKApQUA6hy+/ujSUSzzGZ922qBxoUB3NKqcUjHXinguaPfFddnaG7i1KLa+psluQFC1VpeNT0TK7M+fQCiTC8uTPmxmJ11uSYIqsFgqIouLUTsDdOZujxKZ3wbicgSDJW68c7Sh8NQ1OoOjrXa5VZwcw2VGxD43Lb59WV6ixfMjWVfpiyO4wJUklLW6has3+X5gXvbw4J0pymK+9mBws+YSIRT7qqcKnUgztrVB2DX3p9XrqextKkpebK9WEbGpdaLt2JzNcutz2+fr9HlBRkRcH1xSr9IOFOSam80HSpOjr3OhMe9EIqls5bF/apE1Eqx6kqMn8/6x126ri4WncOFWsOUvdv7owIkwJTV7m+WKEfJKS5bB42XJ2ff6fD7b0JryxWMLTzXxuGpvKrXls4lM+pSskUUaThi2PobI5ibixVeX9zyL1OSJIL3lipoSiyyT89xzRV4dq8FG6frrspGvJieZ/7pMYTF6YURfmHcDKOTQjx7z3TiJ4xojTn3l7AOEr58nCPq3M+ry5XsQyVzX7Erd0xSS6RJ5M4o+mZZcVXI8vloWtqKvNVmxvLVW7tjjE0hbudANfQz9Wx5UXHb3xrhTgt+N//ne/wv/ub3+RP/vZPH0pG8kLwoBswVzkZ8jwVygXpODMtTHXGMQ96ITvDkEksefVVx5hd1tNcQsXbnkyqWr5JdkDAMy9kR0eiqiQdrmobBGUB4mEvlFbF6aPCcwdFidd7AY4huyW+fRjmv1J3aLrmrBq+PQy5uTOh4RqHKF93OzKB3eiHXGx5UrNEVekHCRVLR9NU9kZJeaGUegIqksKWZALPkp3IjX7IYtU+tjvRmyQzdNUkkfa240TC2reGEQjIKajZJuMDc25rEPGwG3C/G6CrUhD4s5eaM6TOIEx50A1Y74c0PZMvXG5RCMHuKH4ELv+49z0M0xksfxhmzFWkY2GY5mUCpLI71mh5lqTT5AW2KoVUH3QCPtwekmUw51vcWK5y+YDO03o/4GEvpB+kfPpinYtNj17JLz+NWpJkxQzyG6b5I1bxB0MgbWJv70xQSh2mW7tjNnoR/SBGoNDyDKq2yY3FKt980GeuYjFJcnphwpL59M4gG/1ohlB7eaFy4gEqkHD19X7AIEzRSq2m9V7E9jDA0HTmfIMrcz4X5yu8uzGkXTHJc+le8nEVpiZJRpDm6KrC/V6AZ2t8sDXCNlXmy/k0XZePEw2P0ox31geoisJac0SSyUJJ85h5UBT7iIbpRS4tirJQEVMISUmbIvcOrp3NQcit3fFM6+Niw2Whbs8oQuv9kO5EuvhdaXu0yz3ouHd32vo+uEd2yj1yHGd0JzH9QF6Mr+KhoGBoEoHQLi/Gm4OQvVHMOM5xLCly+8ZqHd82ZrbuW4OIOMv53OUmLc9iGCanOjLujhIe9CYYqsqve2OZhaqNbaizn/nB1ohhmNHyTYKySDbt1I/jjBtLVXZHkmJ9vxvQ9Ay2BjnjOCXLpXtMbyLRJpc179yo4nvjmO4kYWsQst4LGYQpQTKSndW8kNp6cxV6k5QLLVdqSKnKbI9Ryg728IjAOMgL3yTJaPpyjQsh6JXInOP0nabveypmHMQ5QZpLnbCS0nGx5WJqWvmupeaerinsjmIcQ2OhZvPyvE/RllD97WHM3iimKGTR6rzpe3kh+GffXed//toD8lxwMXH4kRsLvLHWOFMB+HlFmhfc3ZtwfbFy6neWFJEMx9AQyIuDZWhopZDu/e6kzMcU9jR5+Tza1FBVBbukbUxRu+t9SXtpeSamrs3OxYYnxcU1VXns+Q1yfhaF3IemxZZxnHFrVzYaikJwdd6foRqBWc5ZdQx0TVI3CyFR2LYhDQSSTF6OtocR33nYR1EUFsoCvKoqNF0TtRTSPu383hsnB8YnhfSn+WuaCT7oj6QzaZKXJgsWu6OY3VEkiyilYPtC1abuSGrX7iiWcz/OcU1Z2BpFGUs1WYDvTpJH1lAhBNuDmCDJeGOljq5JQeTvPOzzrQcD2hUT15KX99t7Y4oCtoYhi1WHe50Jq02XB90AU5PUt9WGwyjKZ6Lhp4VaXs6CJD/VITTOpKSAoamlts9I/hvb4M0LDbK8mDn2xlkxu8wGSTZzDlyo2rimVtLIpevvFNEVJDnvbQ3IcilQfZbChKIopX6WHHteCLYGkqIugK1BLF1Vo5TVustq3WGr3IvGUUYvTLizM+bnbnX4zIUau+MUUcCdTsCbq8fnWKsNh5orkTZPi6o57fxO8kLKNCDPxoZnkmSFzO17EY6hkWQCTVUx9X335SQreNALuNedMA5zXEsWOF9brs5yoIe9gM1BRHeS8NZanZWGQ3eS4FnaqSixLJeoKMdQeWdnzM2dMXMVC6Wk+b99qcm7mwMedhU2BxH9MEFTZAHHNvadV0FSxTpjKQNwoSy0SmRsMZO86JROzCfFtPmU5AVhIr/3Us0hK3Pvu50JFcugN0lmjfpCCFqeFMh30xzPNA6ZpKz3Qu53Q9K8KJGhxSHZin6YkOVi5ob+OHr3tGDuHmje7o5iNgYhvYn8/p+92GC14dILUlxDm+VkU2OARlkcnYr+CynTiqIorPcj9kYJe6OES21vtp8Mw5Q0E4BgGKWnNsGmciiFkPesD7fHDIOUL740d+z/f3ofnRoM7Y5i3tkYSLMkWzpga6pCZxw/ByKfDE1VGEwSdE0lTDI+2BrRCWIuNDx2xjGWqmKbGhdbHvMVKY7uGDpRVszW2/R55oUgyiSyOClz0ge9EFOLUVXOjB6F49/384ynySD/x6f9MEVRvgD8CSAHviaE+MOKovxnwG8E7gE/LoRIFUX53wD/EdAFfocQYvhknyT4xv0+wzglTguW6w7tioWqwjiWyefX7na52Pa42PQAQZBk9IKU3kQWR1RV0lXWmi73OhMW6xZN1zyEigDZlZIaNcYjnaJPYvy2z60xijP+63/0Ln/s736XP/6jbxzQ5yrdmQ4cvEfD0FSqjj7TDxiEKeu9kPV+wHzFIsvlpuNZkmayO4rZ6AcESU6cFbyyWNmHLFoSxSa7PhH9MGMYpsxXbLZLQe2p5a+pqcTpYdv2LC/47vqAzUFEzdYxdY1JJIXVPUs/1t3tIHXh9q7sWu4MY5br+1bZU3G8qebKfMXmw+0h/TDlpz/Y5TMX6uxN4rKIkLEkxEwHY7luU5S89c44wdCORyrVXal5VRRgls+/7Zt0xjHGWGEQyQ6DY2qzDut3H/a5uT2hXbUQhWCt6ZAWsug0vZiamso4zmbdplE0tRAWDMLk0Gb0uPdddQw6ZZfQLDsEtiHd/dZ7UgxahfKSqxOnOd+83+M7DwczGoVj6SV1KKFqG7POraVrDMIUVVHoT1J8M57pAsHpxalpnNTR600SdspCnG/Juepb+ow+Yxsq720MEYqk7cZ5jqLAq0tVvvOwj2fpzJ8B9RFnOXf2Jse6njyu2RiWGkeGprJSt/nWgz6WpvLd9QGX2z6+rfHlmyWSytJJcllseWnRJ0zlYbN0RmHpe53JLBk8rxhGKf1JTJgWfN/VNuu9kNudMRrwmbU6cxWbC02XziSmN0n41x/uUvdMrrS9RxxDdkYJQeme2Q3kXF0vhb6PFoXU0lFxbxzjGNLZ0dI15irWLLnaGkZcaXkIRcHQ4J98d4MklZe9OC8YBAmX53y6YYpdXohAwsnHsaSrbPSlIH/VMY69QJ+2vqd75N44xit//lzFYqMXkRdS2L4fSmpBmsuE9Ss3d3lvayjpeBWTum0QpgWjODtQaAFNURhF2QztG6dF6VoHLy34x3bBHEOVzlUa3NodcWNpvwjfK7uCwyilYu+7E05h9XGa8/V7XUDS4lqeySBM2OiHvLMuz8pLLW8mmh4m0pHqWVxhbu6MZJMizukFCd9+0GMcpVi6zkuLPkIoxElO7shxX5mXhcWTmilV22CpbpOXDkxCCEZhjmfqDMOMlbq8JG2W+4+C8sjFYfq+p+eapio86ATEWYGhKwSRLEgURcG/en8XEPzQS3MoyEKZKOfFVH8kzuRZ9v7WiLWm1Lx6VsHmgxGlOX/na/f5K1+5x15p0DFXsfjs5fYL1Zg8LY5ukcMo5X5Jb7sy56MgUQz3OhMWqxZ7Y4k8XKhKDaQHnQBVhbpj4pqH3SqPi9WGy84wIkgkyve76wNW6lLHY6pRM51Djzu/Qer9dMYJdddgEKRYhqS2zvnSBGCuarExiCgKQcWWSP62b3Jnd8zWMOLD7RFZIemlTc9kaxBRc4yZfklnnGCoKr0gpenmrPfCsqhTsFJ3Hnt+Nz1peHJQI2mhapFkOeM4K8/CAstQGYVSc+1bD/qYmtSm+dylJqsNlSSTbpJNz6Ri6wSxPC8RYnauTEWLN45ZQwJ58TV1i6/c6uBaGlv9iK/c6tB0DQJTYxim3NwZk6YFqiqL9dvDiHZJae6OBdsTWeyfr0o6r6WrZ6KiSlHs04u+QogSJS8LAN+420M3FBaqFm9eaNANYr52r4umwBevtYlSeVEzdSm4XQjBYs0+NAcPzu8szwlj+XfdcXxm1sXBsQsBu+Oo1DRK6E1S3l0fzChPmrqPfm1XTFxT5bsbQyxd472NES8vVtEU5UT3VmDGcHiWOO38NjWZK06ReiBz8pZnsjUMUQQM44SVmltSPOHLN/e4uTOaIaqFEDRdk34gdRqnhSlLl/NIU5RZ8SVKCxQFbixVT6Q1PexJEwRJDZQOoMMonaESwyRnUKLd0lyi+P7trT2+fHOXlxervDTvSzc0AdujiDwvcAxpUjQTrkc21RSFYwt2B5/dlHqqlDMoyyWlEyQAQAHudcfsjSN2hjHXFnzmKzZrDYeWL1F8D3oBwzClP0lZbTql253GzihDU3SyXPCN+z0WqtKEoeYY9Cay8HKcmcTR2OhHjA9o2N7Zm5DlomyqyUJdb5KyUpfOlJvDqNTzKvhweyQL25ZEgi/V7Bn1bBSljOOM+YrUy6yWTu55IQtmtqGha5Ia/zhmSi9I2R3JQm2Sy+bl7iQmyws0dd9A5vbumPvdgIpt0K6YM63RrUHEzZ0xlq7w1mqNoii43wlwDI8wyTEes6c8TeyM5H0UIM4yQEEUsqkqBPTygo2ywfprX19iriIRlKamcr8T4FkyF57SdqfFeFOT5iYKlHIwT1Z0Pvq+n3c8TYZyRwhx/yk/7x7ww0KISFGUv64oyg8Bv0wI8YOKovxR4H+lKMrfB/4A8CXgR4HfD/wPZ/0A25CdC0tXSMcFgyiZcVYNTUWgcL8bcHVOkxVsRV5Kbu1MqDh6eZFKS0c3SWN47RgB5Wn0yhc1CNNHxJk/qfEf/OBlxlHGn/jJD/Etnf/iN7yKUupgAI91fDmIUrmzJy/PCgpJJmiXzi5FIRiFCd9+MCTIMuZ9afW9WLflRtAJWWs6VB2DD7fHPOwHLFQsKo7OQs2i5VsziCxIiOc4yXAPXD4msbQHj9OCTpbg2TqDICUTgjdWa4/t+DRck+1hPHNy2f9+7qzjIYAokVS+UZRiaRp39yQtZKFq41vSTekb9/uIAj5zsT6Db8PJFJuKbeCa0jL8YV+K0Y7ijCttj71RQlbk9ALpEHKvM+bdjSHr/YiNXkiB4NMX6lxu+2wNI7JcFqd8S0Ly31qtc3tvgm9Ld7StYdllO1Lmf9z7tg2NhmuS5YIHvZA4kxflumNwqeVxpzMBRSKX4izn292Ij7ZH7IykocBbF0xeX6mxVxbOOmNZbJt2PZO8YBRK4faz8shNXWpZdScJUSr51UcdEXdKodbdUcyFpstcVSYzNcdgqe7w7Qd94rzgTmdCy5WuTi3P5vXVGkv1pTONA2RXMs2O750s16XFt6EqbJfPf6XuzOaktLSXiVPTN2dOkTXX4HLb415nTJoXPOyGOJaGpsli6xurdX7la2dHcmUHOpTnFTvDiG/e63O/pK1mZTJuaSqeqaOX88k2JC9+ox/SnaQ87IVs9SM+faF+CNlwqeVxY6lCmgveWpOw7dP48asNeZEP05zbu2NJc1AVPnexyb98f5uKo7MxjFitO7yzPuTDkmqhq9K18WLbKwvX0pRhEKa0fIvVhoNVIhW6k+RM3aGT1vdC1WYUZUxiWbwEuNBy6AUaD7ohwzAlyxOyQrA7SljvSZh1VtpCX2i5rPeimVPNct1BURReWvBRSt2DpmcSp/LZn4YeWK473O8GuKZ+yMZ9On7f0vHnfC603NkzvzLnM0kyvnmvx0fbY1QFfvjVeVYaDnvjmPvdgG897FO1dWxd43OXm1Qdg63SyGBKWTop8kIcesbdSUJ3EjOOMt7bGmHrGuMo4dau7IIXQrDaMKhZBqsthzCRYu5rTWemu3daHO2sNn2z7Dg/GUWz5VusmRo/e3OPW9tjGp6JEAW3OxOiTJ5HeSGI0wJT17i24JOkOZapHUJsND2LIJGJpFEWrs4r7u9N+HP/5ja/cGuPIJW6EzcWq/zhH7n+iShKGeUefpRGOAjSUgtIXl6yXM6Ry22fOJWFfIBiGGFrCmFWIITA0goKkcizoGqdSFGwDa003pBU1bNcwE+jikydex+UCGZVhesLFVoVE9tUqVgaH20NGYQZl9pSNPm9rSF39wJ0FTb7MZausjmQ53+lRGdOx9/2TQohWG44LFbtGa1+anv/uPPbMWShOU4l6iIpn1chKKkhGRVHwzMN/vVHe/QmCXf3JizXXS76Dk3PwLV0HnZD8kKeWRdbHq6pY2gKVok2G5ZFq5PmsGNIQ4dRKbR+d2/Cz360xyhK6QYJP3qhQZIVvLc5RFEElq6zWLFBVVip26w1JWXnG/f7VBwdQ9MeaRA/axilc2+SFXzjfo9elBKNMobLsuB2a2fCKMxI85w0y9kcRDMEzEsL+y7HhqZyse1KZNSB4nbNMWn68pLtPaX7ZVbIQqQQ0JukfPNhn+1RTC4Em4OIjUFAd5xQCNgbxby2XOWlBZ/eROZYn7/clEyGF4CyPun8VhSFxarNOMoYhhkPusFM9/G15RrfetDHUzR2RhEN1+TD7RHvbQ6ZRDnjJOUzFwxeXa6W30PmlG3fwtRV1poOuRAMAonESvPTC9VHY0qdM3RpMDMtSO+MopI6mrJUd/hoa8R3tgeYukovlCyHK6VOowJEecGrSxXqrsmdzoSma7I5iFBV+fNPc1xVD9A3LUPOJQSztd/wTBQVClHwsBcxSXLCNOfqXM4HWyPmKiYvL1QIEukSeWt3xEc7Bm9dkMZIF1sOmiqL21Opku5YopKeRDR7RjU7svUs1x0sTWUUZzRLnTNL1/AMyV5Z70/YG8lm9+4oJsoKOpOEN1Zr3NwZc2c3oOJovLRQYaXuzJp8U9OHqSzEWe4LB/du39K5NCdRhdNzJ8sLvvWwzwebIxQUCmTeMqU/Wrqk3U6durNCMIxTvrc+5J31Pp+91HyudLj5ik1eQMuT2rMPewHf2hoSpAWeabDeCzE0lb1xzAMrxCjfa9XR2B1JNsEwlIjDqVPp1PjlSYvPJ73v5xVPs0P+feAzAIqi/B0hxI+e9R8KIbYO/DYD3gD+Vfn7nwR+B/Au8F0hRKYoyk8CP/GkA2x6Jgs1B0PXuNB0ccuJlmQFFUvHKiHTu+MY39AIy8tlwzGJqzkVy8DUVLKiwOT0N9HyTbaHstP1i6EoNY0/9MuvMY5T/vy/ucNqw+H3/tAVLEPjYts9FfJ8NOqOpEReantcaEgo8aCkgN3rhmwOQ7KioOGYVMvC0dfu9vBMnQ+3x3z/1RaqCq6pUbEMXlupzZBnjTgjSLIZdP3ogerbOm1f8upX6zZ7kxhVlaJ/j2EPAXB9scJcxUI70iU6qOcUZzlfvdNFU+RhcaFhy2Tf0AjTjOWaza3dCaI8A6NUQuUtQ+PqvHcqhHh6cE7ifOY2+M5wSF6I0lmjICuFXS1dR9cULrUdLrU9XlmqslCxiXMJg64eSHbqnslnDly4rs75DKOU+hFdgbO87+kYhYCNQSjdFScpYSqLMt9+0Ofagk+YFCxUbHJRSA0XQ+XVpRoXmi6epUsYqKXNNCGmMPWjofB4tJRr6mwNIsJECptPuezTqDo6eyOJbqi5kv8+1aSartFpIbntSVHsxar9xCKLFdvANpJj59pU12BnGM26DK6pzaivVceYuTI5hsbnLzdnHaKZgGYudcvmDYOlqlNaPD/RENE12bkbRufX6UhL2m2QZChI/YylhlNCrg0Wq/uFM9eQFx9NlcU5z9bph+mhwtRizeZXf2oJVVFoeNJW/dq8f+J+Woh9SpbUhJJrtxdIAdiHnYi0yKUwd1ag6yp5kvHZCw2EUFiuuyxWLR70QhRlX/BUURSp11aVArvdICkvYY+eAY9b34UQs0LRZj+i6hiz7l2Q5mxtRlQsnSQv0BQFgSgvRjlX5jyW6g5pLn/Owc6grqkzx1KQz2GKAjwJMTRftfmR1xaPvYxXbINr8z4Ccei7aOV+m+ZCotkQM8qSqkix7osth93hvvnDQaHV7DGXgik1T1EkhP5eZ8LdvQDHVOVFRZei+m3fJEhT9FLI19Q1XNPg1SXvkTE/SazUHVbq+/O05ZkoULoVPpq0HXzfW4OIKMkJkhzLyBhE0iGqM465vlBhHBesNDReX6meWJxreiZNzyQoqesnGSM8Tfz0hzt8uD1EVSVV9K0Ldf7jX/YSq42Tac8vMvRSj/BoNDxTonN1lVGUoSnSCEUIEIbKYs3mQTfAM/UZFaQQBYMwwRcGvSAlywWPS1+m+UWU5icWqM5yfk9jSgEpChhEEqWvqyp3OyF3O0HZGJB6Z7oq0eJJmvPKkkeYFKw1HBaqFoMwO2RAMN2LpnGx7RKnxayY+rjzOy0OU3mmDayWb9APUqn7UlgoQsXRVfqKLEjPVyw+faHBSsMlyyXSNMmKWf51sLh5kCUwdatT4NAamupoRaUEwNZACmyPo5wbyy7zVZM7eyG9cr9drJrEWU7NNGZ7+4WWR70sxD9pMfksYRkaTdecOZ1GpTNmWsi9rGJL/UzfMNA1TaJrkfvkUZ2r4wo/Ndfkl16fl42opxy/EPLivD2IuLk7ZhgkREnOXMXkQsMjK+TZHCY5eWGiqiq/6dOrbJc6Uwfz2ucZjzu/D87L7aHUxBpFGUGSkxWCdzeGtDxJCzVLJFjF1lmqSy3LCy2PKMnZLrXXpno/iqKUTWG5z6V5QS9I8C391LvZasOhG0jN1KPi5yB1bqO0YKXhsFSzSHKJeJ7EObkQGKrKRztj8lIyo12apQxCiRwK4mCWW6b56ReTaV4cpvkBdItszKcl/TgrpHlGL8hKCrDGR9sjJnHG1iCi4Ui0XJQW7I4TxklOsxPMHEHnKiZN1+R+LyRK86cyQ1qu2VQPiMlfbnuzvfQ4c5tWRc55x6yUbobSIEtX5Pr5zvqA3UEsaYq2hqGr1GyzNKzIZntsXogZo+Vx4ZcaXwJp0PAb31o5NBcmSY6mSA2zYSgdMw/mWtcXK9wrJVOEEPTHCWGUkZf74eMkKp4m5sv76FSv80LLI52yisYJn73c5ObWiJZvUrU0/u3dHrausTuWxapJkuFNNEBhqKeH1hrw1HvA0ff9vONpsrqDU+LK03yooihvAG2gj6T1AQyQBvF1YHjkz54oZPJeYZLk1A8kHa8uV8nygrqrM4pTLjU94rJDraryMHVMje2hVLk/S1LS9q1zF3t9EaEoCv+HX3OD9X7If/tP3uPqnH9oIzxrNDzzUCFhqW5TiII0U2cC3L6t8/alJqqisN4LMXWVMM14ab7CQtXmC5ebZIWg7ZnYB565b+mndng1VeHtS83S5YUZrbBiG49FfU2fQesx785QpfuMZ+l8ulHn6pzH+1tjJnGOnUM/lEW5uOxGXirRUqrCY+fPhabLMMqo2Tp39qTGkGuqLNQshlFCnBWM45yGb7JUd3j7UgNTV5n3rRkq5aV5X3ZATzl4T9qMzvK+F6tyo5zSnB50QxxTo+bIjtQg1IkSeTlu+ia/6TOrqIpC1dZngtELVZu2bz22cPskCZtjarMOytHCwVLNYc63Zp2Ro/PojZUa728NqLsG15dqfP5y84kEkKdh6uojNsVHYyqgriiHqUY1x8BfqqKWnHqA+cr+319frLL2oI9nSdHGT61UuX5A3PdJ4mm+22mxULG42vb4qO5QdUxeWvBJC3h1qYZvH4bv65rKjaUK1xd81vsRkyR7ZL88ug5VRTkVqaCpSkl/ylmsWdzZm5Dmcv9YrjuESYohZNfoQsvllaWqdJHTVeZ8a/ZOpnSz45CVuqY+gsQ7GI9b346hsVy60zVcgwc9qe9QcwyWazZZJrVxVAVeWqjwhSstAGxdnSEIbyzJS/lpyE9NVc5kanBaQnIaHeatC3XSXNo7F0KUDrU+P/TyPJdaHg9LHZ6KbVJ35YUyy+XeEib52Vzfyv3L0BVMTYqKz1ctBqWWxytLFa7O+eyNY2xDl0iQc9Y6eNxZoCr7bqyOqbHScBBCMF+xuL2nsDVIqLsmv+TlOYl6MaQT5ePCNfWnLq4dF1mWMwgS6o6BZ+n8jrfX+MGX53Ct54+SeNbwLSlgLoTgw60xozjlS9fncHWNu11Jb6na8uJjGSqvLvk86IVSTDnKaZbf+axx2po4y/k9jZW6w84owrfkxfZmInWSWr6JwOPubkCUFVJgWRRcnfNZazgMS/rQcinIm+XFqWL0VduAA1vS487vpmvMLk9xqvPe5oisyGm4PqqiEKeyqWVVVV5ZrvLGWp2qY9D2TLRyHLqm8vLC43MMkGvopDN8+pznfGke9PblJg+6E24sV1moOjimTj+wGEU5Dc9gsVZBUw5T9Y5+//MMeQ7LRuRCzeK1pQq5gJdL8fNXFqszp+G1pott7GuTndVAoGIbnHKkPDam9H1DVRmGsni2WLP5zIUG1xYqtDwLXR2T5QWX27Lp51n6uVKEzxKPO78rls5izSYrClRF4fbOBBTZZFitO4zCFEVRSLOCtabLpZbUcrJ0lbZvzZrUrcfklMZjzvBpPO6sny8NTKaf9dkLTS41PcI0L1HvObd2xwih4BoaS3Xp2Cfz45SVhk3TkzqTzTOJnquP5LQHC72GpvDqUpWlmnxW81XJQvn2wz4oMEoylusOX7za4uv3pYGBzMuk4cd8xZ5prz1tKKXr3zQel1/cKJtpqqqwVHNIC5kXrfcjupMYUSgEqXSmvtRyaXuWRAciMHWllIVIqFhPpn023T8UeOQd+6XMyI2lCss1h4ptHPrZFdsozyPQdZXX1qp0w1TO06Z7ruf2NBTlUaF+Q1N5bbnKct1hEmf8mleX8GydD7aGqAr0gpjPX25SIN3jR5GksS7V7VkRXwjxTO6GR9/3846nebLihF+fKRRFaQJ/D9hDFqZ+h6IovxNZjPqw/LPPKoryc8AIGJ/wc34f8PsALly48MjfX53zibL8UBd3rSktXreHGqOdnLsdqYt0kKonIaGffK2o8whVVfgff+ub3OsE/Mf/328+85mf5QU/f7vDR9tjLrZdFqsOP9BuY2oqTW9qzSr53m3fnCErFmtPLzIN+wmTdN46326aqir84LW5mSjoOxuj0qI6ox9KEeimZ/KplZPpnkejKKTI5944wdJVDNVBVaRWU8UxaJQC7UEskQqfWqmdWKlWFIXnYBABSH2w9V7IOE5LbajSVrWE2FccnZpjkouCi03vEeHZg3HeaMKlmkPdkfbMx/3sk5LFMMnpRykIhWtzFdaaLi8vnA0a/DRRtQ1eXvRReDRZO7GjWJowCCG40PBkIn+pifUCup1nCV1TMQ2dlYaLZags1GzSXHBnL5jpRhwMRVHQtEfdmp4mkqzg2w97dMYJry5V8V0bXVUxNHBtjYZuYuny0iWAN1frJyYy52mZfDBGUcp7m5LCc2OxQtU1MIYRjmlQtXVcS4rkRmlBwzOPRQ4Ch+jVH1e0fYsvvTzHRztjNGUfHVBzDGqrdV5drpHkBaamcGt3TJjkpYaDyu7GgLWGy2rDfaSQtFy3sU1pXT5JMh72Qt5cqbEzjjE1DQVwDIOr88aMFnix5T1ypr+oSPOCf/rOFjXH4AtXWryyWEVVFISAiy2fdsXG0ORaOMnx6nlHlOb8za8+QAjB5y43eWO1xucvtZ/bPH9esTOKSXLp9uZbsnB3seUSpjl1x+RuKfg8jhQMTeOleelMeX3p7FSU84o0L7izN2FzENJwTVqeiaWrZIVgqWYzX7G51HLpjNNyflizC5J7pIh2ng6Jwyjlzu6EXpCwWneouwZNTzZeZfOrgm1oqIrCjaXqqYXe88gxhBDcLkXhh1GGZ+pcbPm0PIumZ9L2rdnafl5n8Wkx1evSVYVXFn36QUqQ5lxt7VNOry8enl9PUgQ9j9BUhQstjwe9sESNyHfX8m3qrhTuf3mhQiHEC0FGPU2M44yPtkd0J5I+1nANDF1B16Q2jqYopZZTQd01ThVofpEMlYOfpSgK7SNFjinl3tRlkcvQFTZ6ocyXNRVFkRIIt3bGLNdtrrT9Z9qXp0XgaSH41eUqbd9icxhJXUNVmjGZujpDf9/enbA3jnl1ucpnLjRe6Do7+F0XDtBwX14w2BubbPYjrs37pZuijqWrTJIMTVHpBglhIt1uG67Jpfaz66CBfKenOmYL6YYXZBlXax69ScpiVbrGP4+i1Glx9H2DLAa+tVZHAG+s1hnHGXGas96X+4NeFtLf2xxyvzthreHy6vLTNbdfdDzN031TUZQhsgjplL+m/L0QQpyYHSiKogN/A3gfqAG3gc8JIeYVRfknQFH+2eeBOeC/B14+7mcJIX6Ckub39ttvP1Igm9rXH4zuJEFTVdJCULF0dE2l+hwsmn8xhWvq/Pnf9TZ/8qc+4l/842f7WbJ4I4WMtwbRTINhGjXH4FJb6ja9CJ77eYVjSk2D26WNu3RbkRpC4slo7ABEmaTu7Y1idE2diXhburyQtX2rFBlOSxrfx5NkDMIpF1xC7KfuMyApWU3fYs63pIDrx7COngY10Q+k08d81cY+YF39PONJ398gSNkexLQ8G0WRBfVPGk1YV2Gx7mBoCqqiMokTHENjGEr67fM6uCdxxmZfCqTf2h3T8vfdzDRFJoXSqS7FfcLu2nnFIEzZGyeltkvItQNr2LcN5ipWSQ/If1Hsg56l88pi5djxTl3PolQ6dQH0wxTXkMLiEzdjZxQ94p55sEstBKVWloKpyefkWjrLDamxUz2AbHvRCeE04qwou+Mx/UA6LaqKQi6kePWNZVmo+jg1nOKsIMoKNE3j+kKV15dPLsp+kmNqOgL7ummVUoNpKvi/M4xwDZ2Wb7FYk4XeF10oAOlIOYkzepOUrBBS/kHTkFuSwlzFBCzafvZCz0kpkC3HZRsauRDYho5tQNUxpXi4pmHoyrmjD08KgSBKc/KiwLUk6nG+YhOm+Uxz8+MOTVXRVZWKLQXpu0HC2inOvx9H1BwD29Ro+yaTOCfNi5nu2GlIpU9CDEJpMDUMM3YGMWqpQQRS06flW9Q9gyDOf1HdzS61PJqeOUMOSUkP+d2EgO2BFCoPSumJKMvPdb4risJCzZbuluzfr+arNmkudZw2+hF5Id0lr81XPpac/bho+1J3VleV2R4uxef39ScnpfOvrqoMgrPpAz5r9AK5p5uaxiTJsU2VpbqDpvHE+mXPI9YartwLDG0mR5NbOjujGCHkORpnBZv9sHR3DFlrub8ocs4nXhlCiGc5xX4r8APALeAy8GuBrymK8rNIdJSCpAd+Fak9NQbCZ/i8Q+Ga0lFnte5Qs3VscyqG+b/sWK47/N9+8xv8i//22X5O1TGoOjqFsLg27x8SAZ/Gi4QDnmfoqiItl1WY9y0sQyPOpHD1k4ZjaFRsHd/WsQ2ZUC/XpVjylO+tKMq5o7+eNFqexSjKiDNJz1qp2yS5wDH3L9ofx2XgWaLpm1QcnTXFZbXhcG3B/8R1EGqOLpFHisVqzeH6YvVcu+nnETeWaiiKStMzqDrSmngUZRi68lwLqRVbp+HpDIKMxZqDZxlcaLrEWT6jYmmqciZXx+cVTc+k5ugMFbmeW76JpklnmXa5X7wovY/ziseN1yrdqSZJxqeWa8R5jqYpaKr62D1CUaQu3GLNpuoaxGn+WJrGiw4psC/h/9PE7qCuxifhXRqaQsuz8G2NT19s4P0iPWsXKjaaKmmdR+fONIdruCaGKvXzzkJlfV7h2zoVR8exVGqOzsoBcd2D3e0XfU7KokrMOFZxDE1q1mUFhWC2B51mWX/eMdX/6QUSVRJlOXku3Zu9T0BBytBVFqqS5q0C97oBWSHOXWT9PGKpZtOdSDdI35Zowl8seXXTNak6OnGW49s6SzWbiZ0h2F8vH2cz9mlDugUfRrNcaLmzs2x7GMn1psj87nmhfo+bB1Nh/2FUNjx9E9v4ZOWTRwtNVdtgtSEpf5amcq8T4Joqvq091Z3raWJ61kx/fW3OZxLnGJryQhraj4ujcw5k7nup7TEpdSsNTUo9TJk99i+SdaUI8cRsvKf/MEUxgL8uhPhtZTHqzwAVIcSfVRTlGvB/BP4C8BuEEH+sRFj9cyHED5/2c9vttrh06dITjydKpUU5B/QjAHIhSEq3I009nS99UkyrlQpyo7137y5Hx5gVgjTb/5ypHsDTfuZUkO1p//3du4+O8XlFXghpe19qvzxJnDTOvBCMY0kXNDSpT/A8rzZT9BTIg+hgfeNFPsuDkRfSnhXkhW+6vDVVoRCya2mWLmYf1xhh/9lNdx+FkjKgSnvcg3P4eYwzLjU/skKgqcyodqddhoWQGhQCeRFXD7zw5zLG8hnlhUBVpaisoauPiK0ejSgtDr3n5znG84g4LRhE+wLxe5sPP5ZxTucESGecLJ/+WkUgyA/My4/rWYaJRCUpihS2nq718hg7cd0c/G5H96pjPyfNQTyqjXYeIYA4levI1FQe3L936rOcnmu6pqAq+9/5OH25477D0fP9aeJZ3vcsz+AwyvOggKplHN5Pjos0F2R5gVpq/p11jEfznKktOvDYPe9oTHOWk8Zwljjrs5w64oKc78ddpo7mWQcfoXT4k//+Scf7Sdkrj86RNBfEaU4hoL+z/sLHOB3PNO9RFWW250SpRO4cPaOe5llOfxZIncapkUVeCJK8QFdlA0Q/Jx2Dx43x4Fw8bi4dzOWNck3N9jhdRTuH5tftO3dZWlkD5Jk0NZhQFQXryNo4LVd53vFxrZ2Dc0ZVlcNneSEO7RF3795l7cJFklzuHYUoKT/siyhrmiyOf1zx4c3b1BdWUBVZtHuR7/BJ4sObt1lYWcM2NMTU9OUcztzzjA9u3qYxv4KqPurQ+0mJW7fv0FpcRVXls5vmNk+auz3v+PrXvy6EEM91YbzoVsWPIal80+gDK+Wvq+Xv++WvD/7ZI3FUY+prX/vaob/vBwlbw4iqbZT6OI/Gvc6EYZjhWtohnY80L7i1OybLBWtN96lgg+v9kO5YWs2uNR1+xZe++MgYJ3E2sxJfbTh8sD1iZxhxfaE6E118knhnfTBzLHgSzaNpvP3224+M8XnE//RvbvPH/+kHJHlBBPzgtTZ//Le8ceJ7OhonjfNBN+DD7RHD0p75rbX6ITRMUQge9ALirGCl7jxzF3NnGLFdus1daXuHPutFPcujEaU5N3fGCAGLNYu9cUJeCKq2zjsbA0Dh+qIUE/64xgj768PUJR8+SArmqxYf7YzoTaSQ8A9ea6MoyonjHAQpm8MQ39JZbTyZftH03cVZjqlLHYCrc/6pRdLOOGajL93l5qsWCwc0tU4aY5YX3OsGFIWYiaaeNR72AnoTKQCpKQoocKXtn0q9GMcZd3blnlJ19EMUqo/zfZ8WH2wO+dvfeEiaF/za1xf5g7/1V38s45zOSctQudBwuL0XUAjBxabLv73TIc6kmcPbl5of27O8uTMiTKT+xnzVmum2bPZDoiyn5ph86eU5YP99j6KUdzeGs33x6tzj9S1u7Y4J4pyKrc8MHc4rhlHKvT1pf113DX7Tj3zpxGcphOCddakWIDUhvNn+dqHpnor6eNAN6Acpddc4VjdyFKVs9CNcU2O14ZyKnHyW9z0dh2OqhzRTepOEh70Qy1BZqtlsDiJpN990j30/H26PSsojvLJUeaQod9IYp3mOY2pcm/e5szvme5tDmq7JZy81ngidMJ1/AC8v+k+FbDjrsxRCcHNnXGqxGcfu8Rv9kM6BPOtgB1kIwe29CUGcH9J2OhrTeeAYGmtN59Qz50XHzihiexCjawovzftsDUL+0Xe3MFSFP/OHf9sLH+P0DJyeSYWQuatlqNzamSCQ4rtt32a1tF5/mmc5Pfvs0uFNURTu7I351oM+oyjjjZU6nqU91nzkrPG4MQoh+GhHSjk0ffOQoyfIhsHtPSmHe3XOJ04L7nflHjedu9N8pWIbj/z7s8RnPvtZ/so/+ClUReHKnMv9bnjieDrjmO+uDxhFKVfnfF5dfvL7wNPGx7V2Ds6ZuYrFw16IUbqr39mdYJsan7vYpOYavP322/zNf/LTfLgtiTpLNQtd1ai5OqMooyiYaRt+XHHt1Tf5j/6f/zOGpvK5S00+faHxiaRqXnrldf7TP/13+fWfWiQTMIoevVN/3HHpldf5sf/ub7DacPjdX7z8iUA4H43rn3qL/+RP/W1cU+NHP7s2kwWYnnGmrvLS/LNpk51HKIryjef9GS+6MHUdeEtRlD8AvAa8jdST+uPArwD+LVIA/VOKomgH/uyReJzG1EY/ZGcY0zNS5irWsZ1VSQEpHul+GJrK9YXKYx2RTouWZxLEGbqmHguvnKJ75isW9VLs2jd17Oa+w9uTUozmq9JiteV9MivCAH/lK3f5b/7xe/zIqwv82Pdf5N2NIX/yp27yv/6Jr/D3/uAPPFM1u+WbrKUuohDSZfDI8wvSvLRuhs5YauLsjWNU9VEnhLPEUbeOT0LYhsYrixVyIbB0jbZvMY4ybnekUxCIxyJuXkSs1B1anompqailI1F3ktCfpLLjInjs/N8dR6SZoJelzFXyEy9JgzAlTPJDekTzVZuqY0hhSmQx93GfV3UM+mGKEOLMFrvDKJtp7/SC5EQIcJTm9IKEmrOvtbHacGn7+axrd5YxeqZWQuWLT2xn6Gh4lsaF8kK4Uv/4qNUH52QuBA1XankUgK1rRElxbh36p40rbb8UhlZRFIVrcx6744SH3RDE8WLpe+MERQFVEbR880xn2pXSafRpUTGnhW9KW+YkL2g9BpavKArzVYtekND2LWxD4/qiFPh9XFFkremyXBcn7s9744QkK0gyacM9TjLUY1xxnjVWGw5zFeuR7nvDM9FUhXGcsjOKZi5p4yQ7VgdivmKxPYyp2PqpSLGDURQCW1cxfJPFspA+SXLWGi6a+uT6d3MVm61BhGc9f7rN1Do9yYsTLxJNz2QSZ6WlvHHsv5+iyI/GJM4YRimDMCXNJNK4nZqfCK2jacxXbKq2PKdGUco4zrncdEmfg1X5WaLlW3iWjq5KpNQ0RxZCUHV0bu2MyQpB1ZZOnk/b/Dt49k3PvM5Yno+eqaNrypkc184r5F578lycOo9Nz2hDU/FtnSwvZvn47d0xgzAlcnPmfOuJiwyqIt3Ypp9x2niqtk6Y5KS5YHMQcmXO/0Rexs8zDs6ZKaqtH6Q86AUoikKeCwx9fx8wVJWiAEURGJp0Wm24JllezPLnjzNqjsFnLzQYRRlhmnNzZyRNNz4B+fvBMDSV1YbNMMm43PJYrNnPJW94lrANjUstl7nqJ29s01AUSdOdIn2nhanluiyQGuW8/l9CvNATWAjxR6e/VhTlZ4UQ/6WiKH+0pPXdB/4fQohUUZQ/D/wboAf8jqf5rFGUsjOKqdoGQZyhaeojwqQSHn6y29mzQOZs4/RuzuYgpDeR9BXf1jFRqXsm3fLwPekCGiaS4wqy0OKZ+izpmq/YL/SwftK4tTvm//qP3+OHX5nnz/zOz6KpCj/00hxfuNLit/3Zr/Cf/713+LM/9tmn/vmuqfNy+cyjNEfkxaEE3tYlbTDNC6qOzt44ZnsYA/KQmlJFnkQM9JNUlJqGrqnoyOLn3jhivReSF1NXF/cQ0ufjjOna6wfJTODQ0jUcSztWn+xoVB2DMIlxTO2RS1+U5tI1C8H9juxcxll+CEE0/fwkK6TmgaWfWviZoqqeJDxLK2mU4pGLkxCSzmrrGvc6AUkmi3My+VQOjVEIWci2dO3UhFZRlEeEpj8JURTiZNclRcExdAoEivLxXLimMX3eH22NZmYZry1XmataNDzzXJwFnyWmYuMA4zjl5s4ITZFzrF2xj9VEsTSFD7dHVG2T7WFM8wyNi9POxmcNtdRBOGssVO1De9ZZizJw8v4cZzm2rjJCUBSCbpDMzmP9GO2GZ4mTnmVeCO51JkRpMaND6ZqCY2jEWU6SFYf2jKdxnd0pDUlA6rNVbIOaY8yQZMdFXgjiA2v14P5Yc4wXKpp7cL5PI8mKmfPYcXnWOM7Q1f1nftwcEEJwtzOhKCTl0zE0bEP92C+jR0OeY7A3jtnohxQFmIbGyseoq3VwLiuKZBjkhUBVFFxLY2+UMIpS1prPpsNy8HOCJGN3HDOKUlYbLq+dwV3q1DPnKeK4uXj076ehqVJTa7p2wkRIMfpAujMaJzQ4wiQ/lV578DNOG4+qqlxoOXywNQYU7neDWW589PMMTfnEaVg+bUznTJhkfHd9gF1qwa7UbXzbOEQvm6taXE48NvoRUZrzzsMBn1qp0vCsF47YOC4UBT53ucU76302+hEq8B7DQy7yn4Qwden+FsYF724OS6OUpzMnep7hmDqGqs5kAaYRZ7Jx/HHv/ZauUndMwjTj5s6YLC+YK/UW/10vKh+Nj239CSF+sPzvf4903zv4d38V+KtP+7ODJGNrEDOMEuYqJnf2JmiqFDc8amkfpTm7o7hEGhjnvkFLx4xH/3x68MhOtvz1St1hsSonYpzldMYJnqlTcw12RzEbg5CiEDOedJaLx0ImgziTB+EnoEr83/yjd7F0lf/uN79+6OB9a63OH/rl1/gf//mHfON+j89caDzT5+yOYrYGEaoKL81XZhd5TVXwLBVdlQl2Z5LM/s0wSulOEtK84MZSlTDNidKc+Yr9iYTPHo0ozelMEnxTI0hzFBQedCc86IZ0xhGfvdTi2rzPtXn/kPbGiwwhBLujeKYtJYRMHr9xv88gTJivmCzXPVbqDk3fJErzRy6he+OYNC9mRdiW9yhibRCk3O8GKIpERU61to7j6Gd5wUc7I4pCCqMvVCzSXLA3jqkeuYTlhSA9pXs/jWEkHZFapUvLjaXj0ZcPuiGDUELPp19TVZRjk+iNQUR3nKCqcLXtoakKO+MEU1MPif8WpQbHJ+0ge39rSJgUtCvmI4WzLC/Y6AUIRerovKjIC8HOSNKnpiiZzjhmZxTxwfaYe7sTFus2F5rODEGbi30NtxcZnXFMkssCRpIVuIbGz97cY2cU0fYsri1UuDLn4Zr6bA6APAtv7o7Z6oX0rYSmZzwVGve4OO75vYgYBCmTJKP9FKiDnVHEIEyZRBmaWjYqMsH9boBjaOiqOtMnEUgNo6eV4ZzuyRV7XzC9O0kIkkyiuFWVnVHMMJQi+b/k5TkUBZK84KNtSVecr0rnU8HJRbaD7/toqAcez/TfH0SSHd2rtochH+1M8E2Nlm+xVLMP7Y8nUZDkmpDFied5yY3SnI+2R+QFXGy5h0wOdoYR6/2QQsgk/+rcybRnRZFNqAJB0zO40vZRFNgdx0/9vs8zxlHK7d2xpGtlOcs1l71JzIWmy8Wmw4Xmx9N8CBJZXKk5Bpau8rAXst4L0DWFvVFCmgvmKyY3lqvSDfAYZNcgSBlGKXkhcE3tkZz8uNgdxRKxqqisNtwz7V+3diUNtOYYs4ZCXmoNZYVAUc5W5C4KwfYoQkFhoWrNPrs3SQjT/ERGRnogt6jYOk3fpOoYzB34GQdjStkxdIWX5ysoipzv030K9nMogURQTn9OnMl7jGvqND2TO3tjikLBNaT76XG5z/ZQOsVNaaLSXl7MkLLHjTErz6BPimFMlhfsjmPMUlO2U1Lxf+F2l4e9gJZv8epylZfnKxhlU1qU+aeuqtxYrOKbOt992OfW7oS9ccxba3UMXRorDMJsVpD/OMIxNW4sVSmE4Cu3OgzChA9XG/ymz6x+LOM5Lmxd40LTpRekjMKMj7bGmIbKcs3m9dX6J8IgKS8E6z15fz44d0dRyq2dMWlR8Mpi9WM1ETA0lYttl2/e7/PuzT1u79i8daHBhYbDIM4O5RH/rscTzZiSXvd7gVXgnwohvnzg7/5zIcR/c87je6LYGkRsDkI6Y1mYCNKMrWE06xDHx1wo7nUmTOKc7wwilmo2a013dtELk5zNQYhtaGfWPzoYQZJxu9R7ORqLVZthkJHk0u7V0GQld3oA3dwZc68TYOkqbd+UCVchhSAXKjZxJtElp12S7nYmfOfBAE2VOk61sts6XaQCcchF5nnGN+/3+OkPdvnPftX1YxOR3/MDl/mLX77Ln/1Xt/iJ3/X2E/3scZyx2ZfvabXhzIouRSGTfFNXCZOcn3xvi5s7Y9oVix+6Nidhu0VOrXQveNANSHOBqoChTZEqHKtP8kmJOJPQ5fvdgDgtuBMmCCH4cGdMZxSR5tCPEuYqNr/0lXlgP2F7UZHlBQIYRxnbQ9n1jLKc7iRhdxQxDCWlYmdkcbHp0/TNWdJk6PIifq8zoeoYbJYaTwBLNefYy1pYvn8hmAmlhmnO/IECzkY/ZBxn1BydOJXr79bOmO44YRglWLrGuxtDXl2ustpwyArBR9tj8kKwVLcfuYinudRDmatYPOgGsoOUZFybr5yIvpyOU2qo6AzClMXa/lzrTRJ2xzFVW2ccZQgh6E0y3kmGBEmOa2h0JgkX2y4vl9o1N3elDkbLN59qz3qSSDKZpD4ONbg3ivi5Wx2iNOeVpcojhak7uyO+cruLEIJXl6on/JTzj6kmxbQjpasKd/cm/Mv3trm9N8EoxU/zMpkJ05P38+cVcZYTpwUb/Yg4y+kHKb0goVvSWHcnCeu9kNWGi61L8dGD6ztJC/7lezt8636Pumfw6dUG39sYopcObs/iaLYzitgr0Timrr6QpCnJ9rVb4qw4hKw8bj5Gac7DXoCuqjRcg+1BzCBM2RvHmLqCZ+j4tsEwyPDqGvMVk/VeyM4wwrN0CiGemtr1sBcSJjm9ScIrixWyQvCgG5AXgkGQloLn0PQMxnHGrb0xF5senXHC/W6AoSrsjSI0TaHpWVxue48k+Uff99FwTZ00D6jYkiIcZzmGKhEZQZzxlZsdNFVeuPNClHlTTuwaOKZOLkRJAefEXGMQptzbm7DeD5mrWFxourMzPs0L1nshqqKw0jh+vz4twkS+P0uX+k9RkvOgJ7V1ojRnrmrhmTqOqfHh9pgPt0doCry+WifJCxweLUxtDSLGcTq72FdsHVVVuLM75rvrA+rOi9eVKQohHah0jfe3hnzl1h73OwHdSYJpqLy+LOlfiiIYJzl3Os9/HxJClLTh/Wd4vxtI+vwkoWrr/MwHO3y0M8TUpbveXMViuW6RZAUPu+Eh6hTI+XC/G9AZx0RpwUrDwdK1Q1px0zWulo0lXVMZleefpik03dPXY5IVPOgF3N0LmK9aBKmUbxiEKQ+6AWGa058k5ELw9sUm7cfsgXuT+NA+1/TMcl+RhuFZLpivWtzrTNAUhSulhl9e7K+dLC9KCh7Mn0BfnuYDaSZI8pzvPBjwldsdLF3lV31qEZAW9lOUv6oos/37QTdgFGZoWkJvkvDR9piWb6JrKkmes+odzrl3hhHvbQ6lK7SpkxUCXWOmyXZUn3Kq9bfeC1lt2ry6VPtYaUXTubk7imdI17yQtMWb2yP2JhFpBtujiM9ebGDo6qH7WJTmfLg94lLbo+4afLA9YqMfcb8bcHt3xFtrTWxDghV6kwS97WEb2sfCkPBtg8WaQy9I+IU7XX7qvR12RzG/75dcfeFjOS7iLCcv5DOdJBlfubNLmknQxHtbI37FjQWW686h++2LjnGc8ZXbHRYrFr/t7VU0Ve4hnUnMV+/2iFN5D//i1blTf870/Hwecz9KpbP1Rj9gEKYMgoSNfsAkybnS9nh5scrbl5qfSJbOeceTZlx/DnCBXwD+X4qi/IwQ4o+Uf/ebgY+lMBWXF9dhmJW0JcEkyfAsnbZv4VkS8m1oKj/70S6+pfPKUpUkL3jQDekGCQoS0TCM0tlmvz2MmMQ5kzin7hpPnKCGSX5i9y3N5Rj3xjH9MKHl2QRJhgI0fYtb22M2BhGWrmDrGnEqcEyVhiNFbx1TYxCkp9qi90rh67yQB9q0MNULEgah3MwdIzlTx+pZ40/85Ec0PZPf/cVLx/69Z+n8ls+u8hd/9g6dcTyzfj9L7I5kkhOVF/L5qkUh5CY4pW/e3RvzjXs9bu5MuNhyub5QIcpyklzw/uaI6ws+rqWhIt249sYhFevjtaI+LXZGET/zwS6aovDGWo0sL3jYlyLbvUnMJJJUtjBNcQ2dKC0kosrSX1hRKssLvnyzw/3uhJcXfFYaDut92QFWga1BjG1o9CYBui5dxvphSpzlTEp3xTSTrnTDMOPgfqyrxx9wQgiiNKMXJLIwIwRpLtBVlX6YosUZ3XHMh1tjUCSioGob6KqKZ8kEPE4LgrggyaXu03SNTbu/QZzDEZBilheESc72IEJVFHIhThwjyAQ9zQsGYcK1OZ/dcYKpaeyV/+0FCe9tDsgL2d1dbdjEmcC3NDRVlXvHRM77cZQxCFM8S5+JIwdJ9jSv7Mxxvzvhp97fwdE1/r23lnDMk4sSYVrMuufHPZP7vYBR6cr3oKRdPs9Is5yfvbnHu+sDVEVhqemw1nSwdJ2tQURvIrVcqo6ObiizYsBp+/l5x3o/4Ku3e6BIZMj2MJo5NG72IzxbY2ccoCD3zl4gtXIq9uH17ZgaO+MYVVHojRPe2xrhmBoN1yRtFsxVLHZG8js3PfPE/S7LCzYHEaqqsFyzSwfNw3odzyuSrGBrEGHoCm3PRFVl02Gqlbc5CLnfkQWfhmdybd7H0FS6k4R3S8OHmmOUlB7wLY3tocDQdCquQZYX+LaGqqjsjhP6QUp3kpIWUuDZMZ6uMGVoCg/HMXkhuNr22ByG/LN3tjANSfO50q7gmjqKApqqEiUF/fJs9i2d+92AlbpNZ5ziW7J4dbQwlRfi1P18ox/SnaT0JimFENzZm2BoKl+82pohjKRLX0G7YhGmBb4tEQLLdRtLl9orkzhjvnr83AiSjKwcR5wVDKN0llN0JwmjSO5Fvq0/sZjw3nj/bG/EBq4ladv9ScJHO0N0rcq9vYC5isEkSeVerkkH061BRJBkh3T90vIyCyBEcogGeGdvwt29AE0Nn2iMzxpZVvAv399hYxDyynxFmuCMY3ZGct1mmUDXRFm8UVBQnvsZ/v7mgK/f6zNXNXl1qTYTntdVlfWxpECmmSHRT0GOY0rkhKmrWIZOL5CFnDQ7vGGqioKqSqe00ThlawirjcP5Zy9I6IxjOiUi6bXlmnRfzAsmQcrP3+5ydb7ChRNMAjqTmCDOcUxZqJ+i/EaR1K/sjWXDxzXlGjuuMLUzigiTnIWqfUgmYErBU8tmkxDyu9zZG/GPvr1Fmhf8ps+scGOpVja0bYIkB0UQTgpURWEQZbT9RwumSzWbndJMR1NV7nQmdCYJilC4tT2ZjWt7GFGxde53J4zjjLZv8qAb0g9S2hWTQZASJDn5MKJdsTE1jc4kpVE26JOsYHsY41s6kzjjSll0EULMXF8n8WFE/STJedgPiNKCzUHMtfniVFrj84x7exN+7naHqq3R8mz6oaTcL9cs7u5NyArBOJJNiiXXYmsQcbHlHT6/hXx3QZLRHUtUayEEQZKT5RZ3OxNemvd50JuAUNgZRjzshXxqpcpnLjZf+He+2PK41HL55+9uk6Q5f+3n7/G5yw0+feHFj+VoCCHRPpqqYJuazFnzgt1RzmY/5F99sI2pSTfYL12f+1jQnmlWECYZ2yM5/6fpqqlpaKoEfGSPIZHc3B7xszf3qDkGv+71JczzdisWAgUFR9dZrKrc60y4051wbzfgfickygouz3mfaLme84onzbg+L4R4A0BRlD8F/GlFUf4u8NvZd9l84VEUgn6Qzg68MM1YbTqIQqHuGlxoeigK/NWv3GVnFHNlzmOuaqOVwqq+rWPrmoQVHzikPEs6NOhl5zzLC9JcnJk7W3dNgiSfWeseHO96L+D9zSGqolBzDUwt5WE34H4/YK3uAgLLUMuCmbycLNbsQyiIx3Wor877jJMMU1cPaY+45r7l5IvgAX/9Xo9//eEuf+zXvPKIztfB+NHPrPIT//o2//DbG/z4D1w+088eRinbw4hRlHGhKbtvsgN8GL68NZBFRlOX73IUy+S/O5FFySApeGm+QpIX9IKEpmeSC3GsZssnId55OOCDrSH3uwHvbg75Zdfn8ExZfJ2vSLcuy3CwNJWH/YiFml2Khsq5MCwLAc8z1vsh720OeW9rwDfudfncpSaX2x5pobJQsVFUSDLB911rEcQ5WrkWDFWOUYrsym7eJM64Ou/R8iXV7iRo9STJediLpAuWobFSd1AUeRExdZWH3ZDuOOLf3ulQtXXWmi5rDQ9DV2i4JoMw5c21OsMomxWZrNK1r+WbxFlx7AWtEILOJOblBZ+2L4vMp8GCN/ohd8tLoqpJbY4gljouD3oBUZrxrQcDhJDf9eqcj23ApbbHZj8sqSeCh90QXZW6aKauslCTYvfPu9j87saQYZAxJONOJ+TVpZO/65xvogD9IMXUlEeoZNfmfWqOQVwUrDyjLslJMYrSGfIizQtu7ox5Z3NEIQTLdYdRqd/15lqNO50JtqHSrlrcWKzNigEn7efPI37u5h7/8r1d4izjV7+2wHLdoxDy8lKUFNhLTZdRichp+gaOqT2yvi1D4/MXG/xcVuBbGhVLA1V2xj1Ll3S8oaQvbQ+jEwtTe2XBBsA1NHxbZximpEXBlbZ36BzZHcVs9AMWqzYLJ4j9P0nsjmPudibc7wZcaDos1+U+v1J3yPKCvVHCMMyI85yKbbA9iBhGGRuDEM/U2R5GtHyThmdScw2iVOq45IV0BfQsnfVeiKbKfCHLBVGas1yzn9iSvlMWFOquAUKilhueyb+5ucfeWNJmigIUIYtKTc9kteFwe2+CELJ4E2cFWS4bK7auUpR/3jhGX+q0/TxIMm5uj3jYC1mq2zzoBgRJzt3OkN445kLLw7M0whi0UtvtyrzLWsM9pEPW9MxTC0pt3yJOpe6Tb+nMHUicnYO5xlMk8mlecGdvQs3VMXsKQZrTcHWi1EBBYXMgKVa5MLnc8kmLgrprMgpTuuOE9X5AzTbIhNT4aboGjqkSJrIAdzBcU2e+ar5wGvT9XsA/+94W4zjlo60hy3UX19B5c7WOa2koKLy04FOxDRarNp1J8lzRiXGW8+7miM444UFnwgebY1YbDq8tV2l4BipSmNmzdC62XSxDxS73hItND9fUWK7Z7Iyk+HmWC7aHkUSoIfPW3WFEXhQoKAyjbFY0AfAtWdhKymZPlOY0XBPPlPvVIMr4YGvIzijm+kJltqY1VYqOe5ZOZ5xQdw2uze+Lfrd9iyjNudh20TQp3L50TH4XpTnbA5kzFCLicttjHKV8uDOmEII3VmskeYFrarimzkJVFkQGYQoK3NkNuLFUk3IcpVxE27cYBLJA6x1pcE81blxT51J7/++uL1TYHERYmspywyYrBGkmqDg6oijYGkh30xtLFVq+Kfd/VeHrd7uM47ykoavlz9YIE1msMzQF25B/vtJwZrmCoigs1yUyp31Eh9DSVeZ8i61hxGLN+tikAuIs52c+2uEb93pM4pzPXWrw+mqDohA0PYsbS1W2hhGNsoHhGQYt3yz39v3zW1MVqo5O0zVBwFLdARSSvKDumLy86KOpku57e2/MV+91STLZSFyqOyea2DzP+F3ff4l/89Ee76wPKQrBH/+nH/Bf/PrXeGX5xaHMjwtdk03dl+Yr9IKEty82EMBmP8S1NG5vj9gYxeS53M9//Acuv3AqqKGpJerWPlRQMlRVGo7EKRdap6OlvvOwL9kdYcbGMORS63xdBw1dPscfeKlFL8i43Pb4/317HdvQ6AYRdztj/sE31/m1ry+haSqKQomi/XcPQfWkhalZdiKEyIDfpyjK/wX4KR7BELzYcEyNKy2PopCH5vYo5mLTxShpTr1AJq97o4SKpeFbGo6hE6byQqyryswRa2cYYekacxVLds1VdWYXO4XtHhWQjjOJUDnINddU5VgaWC9IeH9rhKErOKbOhaaLY2q8uzlEFPDB9pCrcz5ZLpP+UZhi+VIw8ebOGMfUTrWbLQqBqipUHYMfeunRxeaaOtcXpWbKi4BW/umfvknDNfix77t46v/v+mKFa/M+P/nezpkLU3ujGM/UsXWVumPQCxI0BR72IhSFWWLiWjqfWqnysBuw2nQZhTktT7BQMdnsx0RZzkpdOl7c2ZswjrLZZaszjulOkpnm0HGH8iBMidOcpmc+N2pkZxwTplKsMhey67XRj2h4Bu9tDqnYsqv++mqNX/v6Io6pS52UQoCyL+43V3k2Cs9pEaXyoiwpIAWdScS9vZCWZ7Dej9BUlTSXl4QvXGpRsQ0MTSGdaj6UMFnX1LlSaqftU63Ux85XW5fuRVMBX1NXubFURQipf7KtR3QmKYoqkZaTOOXr97u8ulTjUsubres4kxRQRQGt3PinzhjHQWlVRaFqG5hl19jUT0cGxGlBVgiyIqcoBFfaHml5GY13xowjOZ90TSGIU75+r8ultsta0511+QdhiqknKIoy6wTWHZO6Yz73dX255fKVWx0MVWHuMSiIh72Q9zclfWy9Hz5CD1mueXzuUoNxnGE8BwHKohB8836PWzuSnndl3mcYZ4yjjJZv0JnE/MKtLot1m7WGy+/9wcukucAqofvT933Sfn4ekeXFDB1Scwy2hxFbgwAhFNbLzvdmP6YXxHzhcpO6a2EbKnFWoJY6hdN95+D6zgvBL7k+R7V0wdN1lZqjU3NksaEXyIJTkGTHiuNGac7t3fGsOKMoUmBWOl0WGKp6iOIVJBnffThgEKbsjhJcS39m3QYhCr52t0OcCYZBQl7I77hYs9FVBc/SaHgGeaHT8Az2RhHr/ZhxlNJcMHl9tcbFhouuqxSFFL3OCkHNNmh6Jve7AbaucnnOQy8L0LpaeyrI/P3uhIdd6Vo3CiXy7mGvzxcutwjijKwsnjmWTlYUXGpVyAowVRXL0HAMrZQTyLF0+X6nLlMnxXH7+TjO+HBriBCyONn2LVYaNl+52SVOC7ZHMVFeULF1FAHDuCApIn7FjQUsQ2NnGJXocftUfZWiEBiayqW2d6ygfdU2eHmhcmY9n6MxLrU1FODW3pgoKciKYnapbPoG4yiX6PGWwcttOYfvF4L3NkfYuso3HvQYhVKTLIgzrs37s732YLy1VqPmGvjWi7l07wwj9sYxm/2A9X7AMEyZRCktz+TyvM+vfX0ZhETpZELMzsbzFOafhhCCvXFCIYSkrxqapEqNE1IhNRezvGCp7s4KnD/8ygK/4Y1luQeVLmhJXszG6ZfrPs0LdobxrFHYmyRs9GP6QYIQ8MZqjd4kQSDPWM+SRbmdkaT93+8ErDQc3r7U4Fv3ewzCFFWBeVVhbxKTFgWb/X1N0aptcH2xggKHcjHb0LhWUt6nTUhLl7n9wTA0lawoGAQpvi3nwuYgZrMfsd6NaHsGnSCVOqaKQtVpcWXO4+qcX2qUlrT67TH3uhOankXDNXllsfII0nQcZ9zdk2ioS23vUOP2rQsNXlmqkueFzOUEdCcxFdtAVVW+t95BURQWaxYrDZdJnLHZj6k7BkGSU3cMWr5F07O4153QGSe0KyZLNUeOtTh8DhdlobzpmWwNInZ3IhaqdpmjqXz6QoPsyL95EZEXgs44Js4KtkcR4zDlzl6Aa6qMwowgSbnXCdibxPzA1Tafv9zE0BQKJJpn6sJ28Pw2dXVGVZyv2vzIa4uIQp5veSGlML7zoC9lIEoE/1Y/Zs6zuLk9Js0kCvx55vtHQ9M0/t+//dP8F//gHb56t8dmb8L/6e99m//ht77JlfmPrzhlaMosV1/KbN5YqZHkgiBJ+dtffch6nHF7Z4KpK9zv2LzzoE/dt1ipOy+MDmqbKm+tVnlpwT+EoNnoBwzjlP4k5et3e1xsPurmPo26Z/DVu12W6g6L1fMvTOrq/nOM0pxpP+znb+/x3uaQW1tjuuMUQ1e40vapOSaGqp7KmvrFGk9amPqaoii/WgjxT6d/IIT4rxRF2QD+zPkO7exhGxrXSl63pat0x3l5oEuUUyggzXMUBK6hkOYFd/cmXJ2vcLnt8eH2iDiVh+e9zoR7nYDFqsXLC1V6oaQ/tX2LrBTmDZLDmL/eJOFhLzxUCDkt1nshd/YmFELw/Vd8Xl6sYGgqQZLzwdaIzjjELy1xbUPnWw/7DKOcjQOQ1MYJ1ML7nQnfeTig5hp88WqbNC/Ki4XKWsOdFVuyXDCM0hMLLecV724M+Zfv7/BHfuXLZxLB++FX5vlLX77DOM5ORVdNwzZU3tscMY4SHnYD5mo2tq5JRzYhCwBT/RhK/n9WCO53JyxWZednqe4cSv4vNt2ZUw/A5iAiywve3xrJ4kXNOgSnjNL8gPNb8Vwur/0gYb0fcntnglAEeV7w5mqdLM/ZGcV0xykXmjaX5qrsDmMU5CG8WLM5RmbjucXdjtQa6Y5jXENjzrd4Y7XKve6Ed9YHDAKpieSmGt95OODKvM9SzT51DiqAoSuc5QzTNZU3V+tsDSOqjs5GXyIhTE1BoHC17RElGQ97AdvDiNt7ASAQhWCxanGh5VEUgq/e7dIZJVyZ83hpXtAvHRwPCoUeDUNTZ/Six8ViXaKqphaw97sBFVsnDQQLFYuqJWkAG4OopPuWhRTP4vXVOgDvPOzz/uaY/z97/x1t2bqm9WG/mcPKYeddOZ18+t57bt/Q8d6m1Q00LYkgrGRkCTUYD8uGYQ0PWUKyxUBI4g/bMGxkhI2gRQskMAI1DTLQTcd7++ZwUp1TOey49spr5jk///HNtWrtVDvU3rvqNPWMccc9VbXDt+b8wvu97/s8z0LV5nzdRSAmGgrnG+6BVfUgTun5kv6yV+dkP4hJU7HnwWfoGq8slNBUhdYoYqZsT+hemqqwkNO9vCjh/dU+UZoxDDMMXd3loKgocK/t0xlFLJ3C2glzl5OP1gZUXZOFmsNSxWK9auMFUijfNiM6fkTB0kiyDNfUKZ2h4OlKN+DO5pCVnk/J1lmo2CxWbXp+zHsPewz9jIWytGq/uT7kXD2j5j69kwXgccfjW/e7fLQxpOGavH2uQHsUc2/LAwFVV9K2xvStUZgwDKUYt6VrfOt+h/V+iKLAj1xrUrT1ifmGpkrXy3HnSXskKThpLqyia8pT6ayHxQerA7wwpTWKWKzUcvHdJ0YBl2eKXGiIyYVvrRfQ8SKCOKFgqtRdg6/e3cLQVd5YLBMnsmU+EYI7m0M+XB2w2g/43KUa71xsHOviNdajfH+lz9Ywlsm/gsl82aZZNNBUhdmyNGtYHwbcXBtQcUyqrrz0BUlGkGTUQwM/zljt+ggBy3UH+4jC8mkmuNcasdYPedT1mS1ZXJkpMlu2qbxh8hu3WtxreSgCXMOgbMOHawMUFN5f6fPmcmWiY7PeD/ZMTKVpxm/ebtHzZCFkvmIzDBOSNGMUSUHooqnTGklh4sMmU4QQbAxkUnG2LOd/14sp5p1DYSITU8Mw5XGnx1LVwY8TSfOKEmoFKTA9X7Io2xp+JKnOcZrlVCdZYTb13fu0beq8ekYad91RxN//7mMedXz6XoylKWg5tSgTssNm+kw87SN8cyDPt0ddj6ojOwvfXCzJDt72iFGY8PH6CC9OeLDlESaCD9f6aJrsTnfzsT5t7Rh5l1KYa0D5cYqpa/SDZEIhE0JI0f2qg2vq3NsaESZZ3n2lca5eYDGTNPhhmBBlGX0/RlfVbZqi4yRolgked6W8x1LNmfz9w47HKEgQOR1vGpoqC9UFWyPKqYiWoUphbV3FTzK8KJkktL95v0PVMfnyKzPMVxwsQ2q/+nEq42xfFsNXulL3drHqTM7maXrZw7aHqcuO95JtTFw7H3V8GgVT3mXiFIFgseJgG9INTUFhtmTT9xMGQcIwkp2gqZDi8g87HrfWpf6lH8n3o6oKlvrE8XesLTVXsag4xoTuut4PMXWVB1sj2dnmmhNdsLPCas9npSv3VgQ4lsHVmQKDIOZWa8AoiCg40rH0/ZUeS3WXZsHaplt2EMafZ2sY0hqG3NoYIBB893EPL4jJMjjfcJipWHy03ufWxoAb82WWa+6ZOvU6tsl/9DOv87//W9/i3cd9upsef/znv8Vf+bc+w/nG/i7wZ4Xxc3Q0eTezLY0MhThLqJg2d9sev/D1+9QLNv/KO+e4cAR33mdBEGfc2vKouOY2Jk2jaNEdxgzCmJVOwOYgZHafWDZJpXahpe8d5wsh6HjxNgmZnRgEkmY7LnLvh/He/+ZymUEoNRw/2hyxMQopWzo9P+VczWHuBWX0PCuOlJgSQvwb+/z9XwH+yomM6BhQlCeOV5YhK4+Lls58xSITsN4LaRRs3jpX5fbmkDiRQfRsEGPrKq1ByOYwZKnq8P7jPv0gYRjG1FzphtNJYmZLNnNlCy/nnU/DmxJbDpODHbEMXc1bQQUz5SeOHq8vljlXc3l/pUc/SKi4BucazsQpZpzYMXRl28HgR+mkkn13a0TXj7nbGlHKqRoP2j6WIQ/rsVjs3daINBN0vIhX5k8vGPtLv3qbgqnxR75w8VBf/+VXZvnLv3aH3/i4xU/ngo9Pg6IozJctPvZjOn6CqoW8tVzNtbUEj7seH62n9IOYkmVQslU+3hhScUyGYcJ8xWEQJLiWJjU8TA1VVbYl0cq2wfrAn1Re/B2JybGopRDsKXJ9ElDyPP8wlMLhdVda1zeLJr9+a5OBn7IxiFiupWyOUgZhghfJC+ZZtl2PN/3WMKLmyordpWYR/ZbCg45Px49phhlzZYV7WyOCRCaMLzb3b7g0c4elvZJBQghGkbR+H//7Ys1hvmKznoszD4MEgcg7N2zON4p8/orgw9U+Dzs+q12fO60RzUc9GkULP07x44Q4yxiFkgo7TkYnaa5ZteORWobKxaa7b3dIlgm8PNmpqbK76u1zcp5+sDoApOHBbMlGUeBys8A7FxvcbY34aK3P5jDkYcfjWw86zJRsyo6koQoEPT/CMTRGUTIJcoMoPTAxdX/LI0oytoYRr+1oBx8EkiYAUuNqZ0eGY2o4pg5COg6BpFxN6F6mNrmMNgomzaKFrsIPXmjsqkiNQjkHSraBH568W+QglF0q81VZ/S2YOr5tcLlZ4Nb6kPYoxooSTF12S86XHIp2KnWJzsjyWFEkHVS6iToslG3+0Dvn+acfrLHSCVnv+ZQsjYtNeVkbBDGLVYd64ekaE1HeiXWvNWJUTFmqOsSZNA4wdJWKa9LzEwxVwdZVbueUskGQMF+xt9EWHVObnDtjt0k5dmViqAEwV7F5NU+ancTz6/kxZcfEsTV+7HoDQ9eoFcxtnQfT/32u7rLWC1BckzAR3Gt5bObixYsVm7mKxShMJxSclZ50w7q5NmSp5rJcc9kahqz2pJbLTrH+vbDS8xn4CUIozOVUl0+dqwIwU7KJs4zvPOiw1g8oGBqtMMLSJJ2w5ur0/QRDVxhGCe8+7vPrH21ScQx+8FKdH7raPHK7vqJAwdS40HBZqrq4+XlWcU1+/MYsdxtDHncCHFNjoWKx2g2ldIAqn6WTU3+mA+zpOONRx+e7D3t5EC73xzjNWOn5LFddVlP57LaG8rmPKVZjpJnAj6WBw3TVfL0f8r1HXUZhyrl6TNUxKdsGlqGyUHZYHwQ82PJoDeWlYbUXECcZrVFIyY641HApOxUGYULFNTF1OWa3pNMomCy/IEYmH20M+HBlQNuPcA1NJiKE7Hgt2gbnamc7zun5pSqyet/xpX7RYtXBTxLiRCCQXVSqUPjavTaZgHYt4rMX99+HLEN2I47nkqkrLFVtWqOI2ZKFHyXspQRSsLTcFVNSRKUERYiuqVyfL8nibgZxllKydSxj94Wwmyc2QSZZvSjlcddnvSfNI2oFnQt7UHKki/UT05JLzQLepRRFhbJjoCoKrjlCURTao4iKYxBnsssWZBJOOhdK5oVAmei6tgbh5GweC6knaUYvSEhSwVoWULIN2qOQ37q1xb2tEQsVh0wI/EjSHwXw6Qs1giTj6lwx79KW94qZkjUpCASxlKYo2Tpxmu1JQYvSTOpmAn0/plmQ3bhBLDsqb64NePdRn81hwGzZYrZl887F+pk51amKQhCndL2ImmsyV7ZYfGOBD1a63FwbsTGKKWdweUbGNMMoIagXqLiVI/2eLJMafCtdn9ZAuj/3PKlLVi9YfPFKg4KlyULwKMLL98OzRtm1+NO/9w3+2H/7Ddb6IR0v4v/+T27zn/+Bt14I9/UxFEXh+lyJD1f7LFULxGmGo6s87AT0/JTvPOxwvnE4h82TQMU2GEVSV9jJw5KFqsNb5yvcWh+yUHuyNrZJF+SxbMnWGYWpLJLsMea1/hMzmGtzuxtU4jTj/paXa5ul24xb9kLXi2gPY/wwJckyEPLsDTPBbMlivmpP5t/02fw7AcdS9VQUxQb+BPDDgAB+A/hLQojgqd94BjA0SS242/NRFMG5eoHlmkPFMXKOuzJJUtRcMxfITKk7hmwPrthoWsRSzWa2YrHek2KEhqbsq9syU7SIkwxdUyjbBz/SqzMFHENepBd3HBRBksoqVEV2aFUck89erOFFKefqrqRsqMokmOt5MTfXBuiawo35EhfqBW6uD3JNrBTBOLsrKExdElQV0gz2spE9KdxrjfgH31vh3/3Ry4euXnzmQo2ipfObtw6XmLINqRlTdiRlpFYwc10hKVjYGkSESUoUpwyDmLJjs1B2ECgULIMLDZcgTrnf9ri7OaLqGpyru3RybYBaQSaA5soWHS/Gj3cnJi1d4/JMgSDOqJ7wYT3W48mEkHTTgsGonSKAS40CigqPez73Wh5zZYvf9/YC33vUp+cnjKL0WPSJ444xTCTNsGRpmJpCnMJCxeJczaHvRwzDBNvU+d1vzqEoKkL0iRJp3fs0jKl8e/3eB22Pvi+TR9fnnrThqqo0DQCk8GiU5hbhspJzru5Scw2qawOarimNAYTUxTpXc6m7Frauc21eXr7nKzaCAMfQ9rxsq4qyb1Jq2jnLMTWuzspAWLb1y8RblGRoikLHk25HqqKwVHVoFE0qrsb9lkyM2obG/a0RnzpXpV60SDJYrttYhqQPenkF9jAiw+P74F5bwLTL906qA8Bsyeb6XBGVJ+Ky4+etTNFGXVPnymyRKMmouOaetvYFS827G5MT1UsYz0tL1yiYGudrLmGSMfBjmgUTQ1UkpTLNKLsG13IHxV4QUysap06HnNbaKtk6XT/CUOW1o1mU9I+eF/Mb8Ra2ofK7XpulXrARCEahpIAehMWqQ8nWqbkGMyWT2YpFP0jZ6Ae8tVymbBsTionCkwT7WPy3aMkLfbNk7erQHQdutYKJqjyZxzX3ZBMAn7tY57t6j3rBkDTgMGZrFLFQcSYdRyCTHev9AF1V+IFzVdqjiJJjILKMYRDRLNm4pi6NNfLi8vW5Eisdn7tbHgVLn3TJdnKaUd9Pnup8O4alq3iqwutLZaIkYXMQsdqTml39QDrAnW+4iEyQCoULzSI1VwqMl2yDkm3IZIAXMQhiNEUhyYsrRw3cNVWRHVJFkwywdX1yYe/5MYO8G0kIuWdrqsqPXm/ixynzeXX4ykxhG91taxhOZATGNKCyYzDw44nbn64+6YZ0TW1bbLEzzrjbGuFHKa4lf94YAjEpwgBcarp4cZobVCgsag7nc02u91b7ZFlGvW4Tr0kh/ycFSml4M3bzK1j6rrMwTFI2cymA06RDTK/zjUHAek8m1yxDwU00Xl0sYWkqW8MQoSh84UqDpTNITE2Pa+wQ+dZSBUNX2eyHJFlGEAmuL9iYmsXGIKTmmoSh7NzJEHkx9unFBFVRtiWMGkWL8/WC7D6eL3KpWcTPtX+mTW9Wc6qcpsrihpq7R3qh1JOqOAadUcxM0WapKguMUU7BH2NseDD+vGGckWYCL0yx86ToWG9pGhcbLqO8oAFQsg1eXSiTZJI6rakKN+bLPGx7eVEo5WKjwFpPXoHmytY2ymiWCSxdYWsY0yg+iRPG9LKxVEgYZ5MkcpRkCOR4jTwGms1dKGeKFqauoSC76xRFdnIHiRSc7vnJJGZtDSIMTeGdCzWiJNt1gbV0SYXu+dIoB5BSIrmL2no/kN1umSCIpBt4J0/GnRam56ahKbi5lEOcCqq2wVLdRUGwlTvy/ci1JldnS9xcGxDE2bESRmMnxTSDyzNFFioWozCh7cVcbhT4gXNV+kHMWi9EU8Ax1W2ukzu1M08Tl2ZL/Ae/+xX+zD/4AISgPQz4+a/c4V//wYtYh2CanBVeX6pwe3NI2TbIBMxWTL59v4tjKLSGPt980OFczZ04pJ7WM9RVhWEQU5wtTBoMQFJpX1+osFR1qbpPzK7Ge8J0LPv2uSqW3mOuvLe77HQ4tpcO6fR3HIZYoeQd4VdmC6x0qxi6jqEpfO5yXercCljr+Wz1Q5K8KWIv595PIo77Cf46MAD+Yv7nfxX4eeAPncSgngVFU2ppPGqPaA8i7m953JivECbSXrjtRcyVLD5zsUaSCh51PDYHAcMg4e3zVeZLFm8slicV5WbBOpAHa+rqnvoKeyGIEn791hZ+lPDpCzUUhYl1tB+lbPTDiUCvrqo82PK4PFNgqZZ3SAgxuXRuDkJ+7eYGgyChWpCVrYvNAu+cr/Gg7dMPUj53ucJSzaFoaZSnbJCloOPTBZqfFf+vX7uNrqn8Oz98OL0okInFz1yo8dU7W0/9ujjN+HCtx/srfebLDktVB8eSrdd3WyMuNQuMooT1gY+mqpQcg6prUXJ0Pn3epuvHLFUdMiHpX2P3mDBJaecW7BKCthfjhSkLVZtLlb3fs2vqnKT0Q5ik3Nkc5Uk1wccbA5JMulOVLEm5+erdLYqWzk+8MosA5ssOtYLJtTnB5iBkoWqfurXoo45HZxQTxCkbg4C+H0v6nKLQLKncXOuzOQipOCZ/9Ecv41o6yzUXL0oIYxnkHac6vDWU+lrrg4DZokWcZmSCCS8b5IVZAR53yQWjMx7miawkk3SCoqVzea4oxUT7IY86GnMlmy+9MkuaCmzzSYfIQRWOveBFCXdbI+5sDlmsuOxkNimKwrm6I3W5spRhmDIIYr56dwshJOUjFhlzZZuipfGg7bM5kN0cn7/cIIzTSSCrKByJRnqhIdvhd4oAg9TpW6pJi9/mHvbWG4OAe5seYZJhGTqXmkVqBTMP9uVhnmaCQSC7Hs43C9zdHBImGa6lbaPCrnT8J45euZvTsyDLZCIwTDIebo1Y6Qc0CiarPZ9RlHFnc8RC1eGzF+vcmC/nQtcOrdwFaqZo0Shap7p2xtblHS/Ei1IetDzWBwGqotLMBLc3BsQZzJRM/lc/dIGSI7soojTjfN0lTFOuzx7cuh/EWd7VYlDPxYAfd8LJxSbNxLZOxCszRRmMj1RaQ5kkKds6a/2Q1xZkN1RrGHJvc8SDjryUfe5SnXpRXsSCOMU9oS6zYZjwvYddAH7oaoOOF/P+irQ4X+v53FwdcGW2MHFJag3DSYfO+brLYlV2GfzjD9ZJMkGYZDSKFkLIC7WqSl2uL706x6s9H8vQJhfjmmsSxLLr56AE5Vdut/hwtS+LGHWXrWFM309Y6/W4Pl+k5lp0vYgPVgdkmeDt8xWuzJRIsyf0w/HvaBQtPnexTiEXVv7cpaO7LqWZ4Bv32rSGEa8slHhlXq7jrhfxoO2hqyqOqXJ1tsCHawMGuZ7itbkSozBhYxBQc80JXWFrGPJL318lSgRLuQ7bTNHmnYs1toYhtqmTioxmyeTqbAFFUSYuX+NOjp3J/CDvMh///xhzJRuWZeIqTDI+XOtTtk1EJrjb8lAU2e2XZgJdUYkBW5OFoXrBnGh/FC19UgAYX8Klu2uEY+jYpqRWDYOEzijGtbRToSeN939VUag5Bv/0ww0+WOuTJRkbw5AbC2WuzpS4PieFgxtFc88OnpPGKJTjUpCXqNubIwqmxkrPZ65s8/G61Dt9b6WPQPCpCzV++vUFBNKIZxgmaCh0g/hQHYXTKNs6tqFxuVlkaxhRMAMURWG9H/D9xz3myjbn6g4P2iPSVJ7jqRDEScZaL0Qg6K9JrbDFitSpubs5ZBAm6KrKK/OlSczumNpET1VVIIhHLFYcKrbO5jDiXM3ZZigET3SfdE3JO5ci+n7Mo450sCxaOpaukmUZti7PspIj7x1jCpyuKTSL1oQyqqqyy0lRpEP2bCnbtu8qisLVmSJR+oRxESUZ9YKNrqq8c6HOX1IV3rlYI8vkGO9uSsF1P07zpJngN25u8o0HHZbqNtfnztHxYs7XXXSNiWaXbWi8slDelqhdrrkE8UA6ISYpV2aKmPkzfG2hTMHU+fSlKmGYIRRONZE7PhuDOGUQJNzeGJIhDXB0TeH7qz0e96T+1R/54gWEkHRuL0pyZ3NlT73Ew+DNpQq2qWJpGpdmCsxXHLaGET0v4rsPu2wOI0SW4UcZ33rQ4YPVPpcaBSqujH3O1dwjUQifBV96dYH5ssN/97UHfO9xj7/+1Qf86kdb/OV/49NY1tnJEDwNZdvgD35mWWoqqwodPyJJMr5+r8P7K0M+WB/x9nKVH73axMuTxqeRXEkzyXTYHIYyRrF0kjRjpevzuOczU7A4X3cn7tbV/H1OJ6a+db/D5iBiEEgH253nxXzZxtAULE3bU2ZH1yTzQzJZDl4/FceQxSzhUHMtHrZHNIqSfdALUr5+t8VXb28xCBO+eKnJpy/WWajY/1wnpm4IId6e+vOvKIry3ZMY0LNCUZUJJWIUjWh7NucaBYahym/fabM1jGh7soLQ8xPut0c0CjapEDiG1HU6nx+00u1NVhdPwgUlzQQ31wes9QKKls7jjoemKqz3QjaH8vI0FkcM4hQ/jpnJA+XOKOLO5pDHXZ+ZksVbSxW+/aBD24uk9kbNntjdF22DKzNyUbmmTiHfpDYHAe1RRL0gxVKFJcVadVXl/Am3uK/1Av72Nx/xhz977sj2lp+/3OC/+Ecf0hqGNPfR1/hobcBvfLTF457P5iDiXM3F1GUC6v7WiA9X+zimNnFO6PqhFFJ1NGoFi1rB4mHbo+vFFCyN+YqNn2tjeFEy+T3Tbc5dL6aZX2w2hzIAmXZFWO35jML0RJz8en7Mei8gSjKiNKWVU7mGgaQbosjKjqapdLyIn3lrcRIsnKu7pybSvBP3WiOiXL8jiDM+Xh/yqD2i7Jqs9AKiVHbwNIoW9aLJ9Zw26po6by4frdV6Gt28Lb5syy6HmbJMJKSZYKUr9d4qtp7Pj4Cb60OCOKVRNFFRub81YH0QMl+2+fyVJkXX4E7Lk4ngZoGKW+QkumIHQUKWSTqPPiW+ud4PCOOMesHg9qa8uHy4NqQfRPhhylzFYaUrtRUcU+Xt5RrX54rcXB+y1gtoFi0uNAuTpNRh4Mcp/+T9Na7PlTjfKGDq6rYK9RhhkmKo6lO7rqI0yyup6jZq6/QF9N6W1K3QNYWrM4Vt62h6T7izOeLD9T5ZBh+uDQ/9efZDP5CXiIEvhe39KCNDcLFeoOOFrHQCPt4YECUJn73U4FKzSNk1KZ+CqPB+WOnKBOP99ohurlHY9SOaRYtbGwlRAonIKFkGn7lQ48tzpUn31yuH1MFJMsG91pCNPDFsmTqmprHak/pFUZrS9WKqroGiwJ1NSXG+PldCVRTutbw84RxKSvso4vOXG2yNIu62R4yCVFrX5x1F2g4K9LPi/cc9PlofUrJ1qgWDNIXZskXPi2kNQ1RFZRglfOp8DWXKeCQVAoE0AInijI1+wPurAwrWiKqjE6UC25C6R8s1l3rB3NWh0siTkwchywTvPu7yqBPwax9v8uM35tgcSPFzIZRJB1GSipzqrdD3E37rVou2F/L6YoWKY/Dth10Khs5nL9ZYrLksPkPHzOYgkN1NhnQbfGW+zP2tEX0/5vuPenkCqYRtSKOGvpfkcYHBSjcgzQTvPe7TLFo0iiY31/psjSKSVLBYs/P5olBxK9zaGOJHKZoq9QR1TcWPEu62hmQClnM9mo1BQGcUT5Lc5xsu3VGMa0nx6WGYSC3HTMhu20RqVT3ueKSZmBTQZDyjE6cCP0poDaW723LNZbG6/VK4s8v21saAD9cGqIrCl27MYGjjpMETg4uTRt+X+3/Hj/jKrRZfu9+mMwwJE0GSSmH7qmPwysLZ2tB3vIjWIJTucobU1bu16RMnGQ+25DPvDAP8RL6X4FaLbz/ooCkKX7jcmJzjx0WQpNxaH6AosDmIaBYllbHnxTQKFndbI6Ik43FX0sfGerGqChv9kCzvELg2VySJBR+uDYjSjHN1mYxWp/oTOqOIfhCjKSp+nDAKUgxdZbkmndjCHR2RrUHI5iDEMTQ2rYD2KObW5oD2KMLSNWaL0sk7E4KiLemGS1Vn28/Z2Z3X8+I8fg+YK1tcyY0WpqGqCnau+7TWC3j3cY/vPepKrR4z72zTNUZhwno/YGsoaY1jiuAgiPnKvTZ3NodsDAI+d7HBcs2ZFOI+XBtwd2vEbFEaR8zsiMuDOKMXRDzsSH3XubJNexTRHoUEUYppaCwfQrvyWbGan43DMGa953Nnc8T6IGCx5rK5GQKCIOyxUHX4sRszfP5yA02VScQ3lqrP9LtdS+ft5drkzzMlafTxm7db3N4YoalyDy85Gh+uy+RYJgTzZYeSbaDAkSmEz4JXl6r8q59X+Mbf+i6dUcR6P+Df+fmv81f/yGcxjBcjOWUbOj9wribZPetDPlyTMcl6P8A2dAZexMCLeWO5Qs2VHcYnnVwJ4pQHbY9BEBElCa6lM4qkBtxy3i3VGob4kSzk3ZgvbTs/4lzfrefHRGmCpjR2/Q5NVSZxrRBil8kPjCUwtv/dtx90JgW1nRh3JUZJxq3NAR9vjPjuoz5Vx+Qb99rczjVl31vr8cpSeU92wycRx33731YU5fNCiK8CKIryOeA3T25Yx4emKmwNQ3p+wtYwwFRV1no+r8yVqLkmnVFEwZSdByCpHPMVm6ItK24198lE2MgFQKVLn4oXppQd49iV9PV+QJrJCpWC4GKjiBcnrPZ8hrmwYLNgYupSJFIQ45paHojJan6WQZZJocS1vk8mpFj3G4uVSfB2rubSzilB46RJZxTxlduyC2m5ltIsmpOFuNobsdY/WRbmX/n1O2QC/tiPXjny937usgzQvna3ze95c2HPr1Fzl59q7pQ3UzJ51PXZGAREqaDhmsSpYLkmK7ZrPZ/NYUi98GSz7vkxw0AKI1+fL3J1toila7nFtSQU1AomUSID53GScGsUTeyE9fwCH8QprUGEFyWMphJbx8UoSBiECYMg5lzdZqlqEycpW5rC1jBCAfpeglAE5yo2H28M9qWanhZ6fkycZqz3pD1vxdYZRTZhnOLFCYMwJROyyumaGh+vD3l9sXIiPOhm0WIl8VlwHZZrzmSebw4D3nvc52HHY6lqY2garqUyCmOiVIoCX5stEabSlSsTCm8tV/horY9t6PhReiKCzWNUHIO+H+OYJhcaBQxNpTOK+PrdtnS40TSCJGO2LNvG41SwPgwpOgZemFAv5PO47qCpUkOj58UoytEPoDDOGAQp76/0KdoGK12fgqVzcYrnv94PZNemoU4MJfaCCpQdybnfr3qa5r3N466cqmvQz12ntn2dyNBVhUyRtL5nhdzXEtYGvrzQaFKj5Pq87Oi5uzliFKb85q0WV2ZKWLp/KOrjSSFOs7xTIyJLBY6hMVe2cQwVgayG94OUrWHIctVhfRCyMQxZqh4tWREnmewWtXRc02C57uDFKY2C7DAM4gxbl523UmssnmipxWmGQLBUdVm93+K9lQHzJZuZskXVMVmuuAzsmKpjyHGfcAt+14uIMilobRkqmqJgmSq6pnCxUSDMdYXmS/bk99YLJgLB/ZbHw7aPgkLJ1nENjTTNuN8O+cXvrfDGUhVVVTiXSafOZ3n3qqpQcy2++6iHriis9XyqjslcxZIdzI2C7EgUcGdrRJZJuve3H3QZBpJufalRoO8l9ElYHwQULIOHbQ/bULnULB4p3hiLh9uGdCf9wct1skzQGUUMw5SCJR0ZbUOVwvHNIt+436Zk6zzOnWzjNCNK5LN/+FCKRDeKFqaq8JkLtW3vebnmsDWSBjG6Jmk/tzeGtEcR5+ouW8OIxarDrXV5GRkH5WXboDuKWe2G9H15XoZxxv32iPmyTSbAUCWdca0X0BoEvH2uhm3qLFUdipbOo45HKmQhqu1F2Ia27SzYiXGRIEPQDxKWqg5lx5BitqdEea+6Bqs9n/vtEd+432at5+e6fCaaRq4LKDucj9p59CxIckqsH6aUGy6XGgWKpk7HiwkTSXtfqhfoBilelJAkKbdaHjMlC8vQuPYMiak0k9QaXVOJMykkXi9I6pila9iGimtq3N4YUcgZECA7Dq7OFlEVmbgUgrwrN2G2ZHO3NaA1iGgNo0lxMEmle7FA8GBrwDCI+WBtyGzJ5IevNWmWrEnMP8YgiFkfBLimxivzRTpejGNq2KEmXSbnpd5lexShoLBcc7Bz6ujlGfkOd16s4yx3K0TB0DS59z4lb7A1Cvlgtc/X7m7RLJj8evnJhXdsnFQay1c4JlGSkQpBydKxNI2yrVO0DKquFAV/2PYomTqOrqEq8P1HPV5dFNs0pyquwbfudzB0lYdtj3rBZKXrE8ayu/zKTJF7rRGaKosAl5u7k2vPivH7bA9DMjLKjknJjqTuq6njBQndIGK1E6BoMoHX9qIjF78PizCR8UJrGHGvNZJOhxULXdVYqNgULYOyY+auukF+V8vOREJjjFcXKvzMW/P8V792ByHg3ZU+//k//JA//bNvntkYDoOuF6Eg8OKEUr4+RmHCWl8gHnUoOXLO1k6lQKigawpa7nAKsqvWtbS8M9HkYWesqbqbum9oKkVLQ5AxU5LmWKWnvOO7LRljjqVhxhBCcG/LYxQmLFRsTE3lXq7luh/Wej5fvdPmew97RKmU/MhqMmbWNAVVSEfPZtHC0P451pgCPgf8LxVFeZD/+TzwgaIo3weEEOKtExndMTAKE5ZrBeZKNlkmaJYsZosWfpzx5nKZ6/NFZks27z3u0RqFvLlU5eqs1HuY3mQNTZkIAI4PyTQTFLxoYukIsmI6ihIcQztwkx5v6J8+X+NCw0VR5AE0Fr6VdCRB2bZoDaSg8ZjzWs3tZh+YPhVHJ4gzXl+o0PEifvBifVu13zE1lszd7cmuqTMIZDuskmvitAbSorxZPLmNtOfH/MLXHvCzby8eq3PnzaUKrqnx1Ttb+yamrs6VcE0971Ay6XgJUSKougaPuj5xIpgtSzeiKMn49sMujqETTOkhzJYt2qOIRsEkyyCInmS4x5eVIE4nwa7klwdMv+ZxpdXMLYZXusG25NdxYRkao1B2IRVMg9/zVoOP1vq8t9KnN4p4PAikE46qYBjPbsl+HDzp7EspC8GXr83y6mKZr93dYmMQ0fdiHnQ8rs0aFCyDgqntcmQ7Lip5QnIXhOwMCuKUOBVUbI2lqs2V2RL3Wx5zdYtXFkosVG3ub41oFmVwcb5RYHMYE+Z030bROpRwcxCne/LJx7ANSZGZhh+nJEJI8UxDoVEwMTWFN5erfPtBh0uNItdmS/zAcpX3VnrYhsZbS1XiTDBfthHIZ9/z4kO1jY/dfMYX3HElVAgYBsk2w4ZB8OSSGGfZxLlnN6TjWtlRGQYJfSumPZTipOMxna+7bI2eJMj32wtuzFd4Y7FCiuDHrs/y1w78RPtjrAc0CqXj0w+cryAyldmSyaWZIlXXZL3v86DtM192GOV29GcJqbcj6AcRFcfk1QWpRfKo67HRl/vxg7ZHwzVRcrephns0ZzZg4lz3xatNHFO67imMDUJUSraOH6fMlhxaw5DNgYJrahNL8LJtsFyz8aMKAz/D0BUMVYr894OEqmPwvUddvvuwx/mG7NI8qYBcUxUqttRXjJKMnhfhRRmXZwvUCiZffmWW9X7IXHn7c9GVJ45cw0gaiLyxXOFxL0Bpj6gWTII44fJMKdd2evZ3/+M3JJU6TFJcU8UxdbpejKWpk2LBej/gYl1eWqXbrkYQp9Rtk0bRYqUbYOgKVddkcyDNTvxIrtvDuNOOMe4ce32ximOoNIsm97ZGCGSH3HLNIU4FUZKRZQJVlfS5MMkmncPDQCbEH2x5NAomM0WLiqNzru5Kw4Mp2IY20ZgDGWdYhkoipD7W+IKe5vTJ6c6kYSj3Gi+SXcajMJ3o1J2ru1xuulQcg5trA3npny1yoVHAzBNgi1XZDSKTWBpCMNHx2wuvzJekAG9u864oyql3f4Ccy6Pc2WumaLNYdXhtocS91hBD12kWpUbgWcI1NRxDnySjP3+5ypXZjI1egKZJEf7NQZTTfTM2+yG2IbvpniW+CfKz2TJUXpkr8v7agLprYJvbtcZAFhiSlG3vyNI1rs0W2RxKyQvXlHqMkpJuMFuSVONxYkoK+av4UUazaLI5DNA1uU6KtrGLxgfyDBSZYL0XkAmklEbVIcnkOTmOtequiR9vL8zs1+nRKJhcaBYwdI16wTiQNmobGpahUbR0VE3F1seaN+MOL8HV2RIgBdHvtIbMliy+/Mosl5sFrs5Jav1aL6DqGrmzGJQcncddn5JtsDWMtiWmtPyM7nrxRAC/ZOukWTxJ3gkhyDKFMJMdjRXnZOftmFo6jFIcXePzV+vcmC/xuB0wimLO1xx++06HK005fw1dpbAHbeqkYKgySWpqKueb0rH5zaUyBUOn6ljMViwWKhZfud1hFKWkWbaHjP/p4098+To9P+bvfOsRuqbyoO3zWx9v8MVrs89hNHvDtaRO2NtLVbZGEZebRT5eH7DaC2QsGqYHyuYcF2Vb59pciUsNF0uX82WsxTjG+bpLx4u36QRv9IOJ2VSSQtWxyDLlqcUiIaQGKDw548aI8qIkyK7VS80iJVufxN17oePFUtvW0CjYOqamoKiwUC2QCliouPzw1SYV18DU5Z3sky6CftwV/dMnOooTRL1gsli1eHWhSLWgc7lZRFEVbm0MqDgGN+bLmLrKZy7WGYUJRXu3KCbknO9cvLDnR3S8kLJtTroAxnjY2Vt8WQZ92yfvbMnC1jU0FR52fJJUsDWSlfC6K3/GKEzpaBFBkhLGGV6cMm4sLTsGV2ZUXFNntedLalLBwjrEBXqmZBGlctO8mNubVhyDN5er1Asmg/DZu3zG+B++8RAvSo+kLTWNsc7Ub99p7/nvY7eMuYrNrY0hj7shsyWT5boMur90YwYFZSJuaeoql3JdhKuzpUl1f7ZkU3EMHndkZ8X0JSXLpB1yEEth9QuNAg9yR4WirXOh6aLAJEhRVYULdRchdrdxHweaAo87Ppqm8LDts1STeliOoVGoOXzqQo1UCJJU0CzZXJ8r7TnnThOqAlvDiK1hhGtq3Gt7ZJnANQ0KZspnzlXxE2nr3Cia3Jgrn7qLyWzJ5sZ8kaqrS1F1FYIk48vXZ/ioOsDKu1OqBWnHXHNNHnU8Ls8UiRPBSs/HCxNGYYKlq1IbYp9ukLHOw1FRL5hSTyJJ6fsJozhhvlrk6kyBmmMwCGMqjhSUXqg6stMz10R7famMY2okGXhxgpNIOs5+YxRCcGtzSJwISrbOT70+h2vpdL2Ix11/opcxxnzFnlCNnxY8z5etCcUiE4L3V/qsdmWV+YtXG5RsY9uldRRKYdq9uquuzpZ4fUlqPTVLR0/AjNHzYh60PZIsxU9ksWAQpMyWDFBgfRBQtgz+pU8ts9LzqbsGNxYqUmvuDNeOH0sdu/VBhK6pbIwiFss25ALi71ysk2YZrVFM0dS40Cxgm9qRu5KsvILvmhpdX142XFPnlfkSSZpB7na0MQi5UHe5Ois7AbpexFo/YKnmMFdxiDPBIKdkvrlcoevLJOTDLY/H3YAkSyeOVxebhSMlUvZDyTa4NFPgwdaIjTDk5toAx5AaOK8ulLk+V+JS3p2QZYKtUSSp3LZO1TVyjUaFnhdxvl7gf/HOOb77sEuC4NPnq8yXHaJUJmd6XkzZ0Y/d8dUsWfzQlQYfbwzJhOA7D7r4OR326myRMMkQQuBFkiIzW7b5qTfmaA1CKq4x0Ugcd5HUCzKwtQ1VFh+OiLFOWMeLuNfyWB/4zJZsFioOsyWLx10fP8r49oMOcSo7L87VpYW9qkr6oamrVByduy3ZuVV2zANNKkAmvYWQ/z9Xtidn4VtLVR60vW1n7ELFZqXrEWeya7BZlB1vWSZYrtmoqsrb56sUbJ0oSWkUTFxD4+b6gJvrA+IkY6FqU3VlF6m88O9/9hZtgy9caR75eT4L3lvp88Fqn/VeyJvLJaJE8LnLda7PVvhoY8DmMGS2KAtoZ7kHzZZtDK2PbSi0RiHfetim70n3p2bR5LWFMrNFi9V+QMnUEQiuzkntl+PSpYI45dbGkK1RSBhnBHFC2TEIErGnwcAbS9VdmnVZrhUzU5TC3lvDEFVRJro07ZGU6RjmiSop5C+1m0xN5fJMke887GLpKkvVfcyMShZfu9tGCMHX7rX56TcWdumHCiFjBT/KCJJsW3J2jChOedj1MDXplndtrjQROj+o6HWu5vIj15oUTJWCZfClV+b480htRwWZgF2Yt3jUkUyH1iAkTuT8+cnX53FNTeqDCUltvz5XYrnmTjoq4zRlwd3++aW+mcu5mjQdUBSFC40CC5UMXZU6nWEiiyayg+TkE0JdP6bnR2z0A843XB5seZQdA9tU8WKFN5fKXJ4t0hpGlCyDt5bLFCz9VIXH37lYR9cU1vshJUtjpmhzc72PYcgiwP0tn0yktAYBc/m83OlifBb4D37v65yvO/zW7S2CRPB3vvmY99d6/NEfuXbmY9kJIQR1VxYHk0zwxlKFK7NFXlso8eu3NjF0hY1+yPcfdYmTlM9e2k2VexZYhsaN2SKvLZZ3zVsvTIjSjIpj4Faf/Ntqz5/cQS81XKquia6qVFx9Tw2pMRRFYaFq0/WiXVI0lq5RyWP8RkHKj3z5lVmCOOXP7vPzGkWTTAguzbi0h1LvLgOWKy7XZgvUXNlYsd4PuL0+pOKauKbGm0uVM70PniSOtbMIIe4rilIDzk3/DCHEt05qYMeFoaksVl2aZZtYgFDIxZmlOPJqX9o6g6RpPU3ET1EUWsOAr99r44UpV2c1rs1tr+qMeeVxmuUaElI/ZGsYTcTLpn+eZajca4349oOuFBiu2jSKJrZus5JnjjujkMf5gVNygsnF6faG5N1/vN5Hyy+EN+bKPNjyuNAokAmxb6bUNnZXpEDaw1Ycc6Kr9azIMsHPf/U+71yo8cbS8bnWn7/c4M//zzfZGoa7tD5GYcI/u7nBjYWSfMGQV29MKs5uN62Vno+qqFQcE0NTeG+lj67JgEU66u1+Lg87Hnc2Zcv0bCKD7THvveJIkdudWfN60SIVe7uYHRZxmvHBSp+b6wPp1KSppELwuBPwj99bx4tToiTjD35mmc9MWTQ/2PLo+THNkrmnJfBJ48GWx7cedEiFmFi3t4cRH6z1+WhtQJrPxX/x7SX0/H10RhHvPu7jmCqXm/vTxJ4Fqqrw2mKF1xYr3G2NGAYJfpjy0eaITCh4UcrdzQHvrwzZHIZ86cbM5D0WLJ0wzmgNQwQKMyWLZtHkUcfH1KVw4fQ7P4xb116wDW2yNt593EMI+d7X+iFBIpOuQZzy4eqAzWHEj15rTjoNbF0jSQUjLyZLBVtuxEzRYnMYYmjqLu2KTDAR9gcmmlQl22CuLHLXoiefaVo0+GkIU4Ghq6SpYDFPELeGAQsVZ9dz8aKEr93douslXGy4fOpCbdu/b41CHrYDwiTlN2893fTgaZD0hx5BklJ1pPD95iik58fca41ojyJSIfjyK7P8oXfOT77vXmsk6SBla5fj5klCCMFqN+DbDztSb6cgK+4aCr9yc5N7rREZsivuR67PTvaxNBN8tD4gSjKWa86hhDNBVp8Lls57uVZTwdL4kWtSW+dOy8OPZWJVURS+J7r8+I0ZmiV7l77Scs1leUrzaD2nfY/CBD+KSTKp0yCEDPIOc2EJYmn04ZgaAklN11Qlr+zL+egaUpuoF8gksZtT4sjtlsfdCWv9YKLRcGW2QKMo3QxXuz732x6LFYcLDZefenOBe60RrUFMEGXYpsbmIERBoVE09+ye2A9elEwuaBfqLlteLB24NNkthFB40B7xyx9uoKkKGbBQdmS3mi6FtkdBymY/Isuke6IXJXT9mJpr8tozuFOGSUo/iPMuuIg4zbjc1GmWrNzVV3Y5rnT9PPFuc6GhTvbjWxsDPl4f0Qtirs4UWRkFJClsjRRuzJaIsmzXvjHGfvtHwdJYqNrbuhvKjsG3HkgqX9eTifcokd164y1EVRQQ8O7jPg/aPldmirRHkezS9GPqrkHJMliouBi6+kIF4sMg4dc+2uBerutjGQaKkvGNez2iRNAoSkfGRtGk68VsDUe7YsaTRJqJSUFT6p+oNEs2IoMsVXjY9qTwfcGk6yW4loZr6GwlMRfqLl9+ZY47LY+1foBj7i3w+zSEOf3OjzIMVcGLZLKo7GrbNE6TNONernN1vr7dTv5urls4DGOKlsG91ihPTppcnS0iEHzzXocPVwf80FVJ1Rtr8wkhyITg7XPVp+7z5+oO1YLOwE/37WTojCLeXxlgG2oucL577/j6vQ7fedjF0BV+5NoMry6UaQ1DOqOYWsHYtqeOEacZq92ARtHk6lxpQs0ZJ3jDWNLE0kxwv+1TtnR6fkTPlxpaxdzRF2RHSJKKyZ83BwF/7zsrrPYCbEPlx67PUMyFnkFempdq8nNoUzHE+BxSkXTKV/fQOEwzQceLJq6mx8HWMOTXPtpkFCZUXemSHqcZ76/0+XBtgB/JZPsf/ux5ylPaOx+u9UlScWJFkTGm44LPXZYJbT9K+R++8YD3Vvo4hs7lGZcLzQKqolB1pFD+r97c4EeuzTB3AlqzR8W//oXLvLZU42985R7fetjh6/c73N30+bO//7mRmCYGEAoKsyWL8fXo1saQdx/30TUNXVHR1YRv3GuzOQh4ZaF8oiyQUZiwMYzQ14f81OsCLdcXbA9Dfu3jFpoKby1Xt9Gp4ySTReooYalms1y26fqymDhtXLIXmkVrX33kZsnEtbTJHFZV5alasbMleW5uDGTxL0oFyzWHmZLFrY0RrWHIzbU2HS9BUwSfudBAUWUB/Ky0hk8ax1rFiqL8GeDfAm7DpJAmgC+fzLCeDbqmcLc1YrMfMVM2OV9zSTKouDp9L+Gb99toqsKlZpH58tOdy7xI6jrJFl59V+JnuSZdG8bVRnhio93z412Z/EdteaF/3AlwDCk+PA6ILUPyXaMkpePHjMJ0MrkFssU1zQRtL2KmZNPJrVLDJOOj9QFC5IfqIS8urWHIaldeMs4rJzOBf/WjTe5vefwf/oUbz/RzvnBFZsy/eqfN731rO50vSgRr/YDrcyXmKlIvpevJ59Xxol2OHOMuNyGe2IDHibQMrrh7V1jjVFoXd72IDEEQZwRJStkyGAUJX7/b5sZ8aVdi8ziVEiFELsyXoCjwoO2Rioyqa/DKQkm6M7Y9giSjNQgp2jq3N0e8uljGNWW1aCyA2fXiU0tMbQxy/SFd5WHHI0mlhs21mQILVZvWKGTgR3LzVhVag4hHXX/iWDkWLJdVxvTIge1RMVe2yIRAV2VF/WsP2mSZrIREqQyOUXgSICpS9LgXxKSZIMjFDoUgr/Cm21r1a65BmKRkx89Dslh1JnTSYZhwZ2vI/U2PzaGsxtqGFFcdU5bGicBMCDKYJEwFMkjz4pTyVFAp7aidXQH2445Pz49RFLgxXzpyl9/DLY/HbR9DVwkSadWeZBm1wm6NgLFuBMg5sHNPzDJJvYvSFP+I+mx+lHJvS+peRElKx4tzEUqLKMnw44w4EbimxoN2TJLKgOizF+soikKSZk/G5sWnkpjqjGR3mhCCUZTmYtEKFxouzaJNz5fud34kXaVWugH3t0YTCqgfy+5ZkGfKYff3Mdq50+EoTAmTFIEMrBQU/LxjygsTCpbOF640Dvz5i1WHzUHIKEqoxxZtL6LqSlrcYfWaVnvSEa3nxySpoOtJmvT9rRHX50o0ihajKKFoGSSp7PJdqDh0ci2haV2Y6fzIWi9gFKZ0/Uh28+Wajn6cTuZhkmW8tyq1jDqjmPmKTZIefhH7UcrX7rYZ5jpFjxWfNKfhO6bKD19psj4IWO35rPYCKY6bOwQmk7No+549U7K4sznKk3vpMyUnvnW/Q8eLSdOMiit1M4u2PqFEXWy6tAYhhq7QGoaUXF0aauQYhClJJsXFR2FCmscdhlC43RoSJeLICZQHbY9RmG57V3GaEefPfZxo6nox5+vG5ILpRTLJ1hnFjKKEtZ5Ps2DRHgVcbJQoO7IrxtTVyc96nsgywZ2WdNNd7UozlNYgomyZ0t0y16ZMMik1EKcZsyWLj9al6cNeMeNJYGMQcHN1QJjrNdl55X6x6lIrSL3BtZ7O2gCGfoIfyw7+fhYx8FM0RaHrx5NYahAkRz6/x1qgW6OQ1iDM41+bpdp2J6lBkEwMNTpehDMlSzH++yDJKJiCVDzRMQToeQn5R6Trx9s6cB93fb55r0Mm4NMXqrs0vcIk5V7LQyC4MVdirSepwlGS7Sp2dv2Yivt0jUUvSsiEIErEZHzju0HXi1mu7f6er91ts9EPMQ2FH5wqPI73jTFF8YNVj8ddH9tQmS3ZuUZlysWSO+nGujxTYBSmlPMuxTQTJElGnFMBgzjLzS/M/LnH3MudL4+a5JmOJ46CfiAd+HRVam9GaUaUZlzNabt3Nkf4UcLQj0FBCtFvDCZGAV6UTApvPT8+scTUfnHBva0hraEU3+/5EX5iEcYZn7lQ51FXFrN1oXBnc4QXJ4xCaah0mgWvnfjU+RofPO7zjfsdoiTlt++0+YffX+F3v7l4ZmOYxljbDwSKwmTf6/qSsp4KQc1VWetLU6mZosVX7myxXHUxNNkN+axaZpmQ9z0vSrd1/nbz+D5J5fyfxkzJplYwKbs6JUtqxXZGEQM/YaZkHUsLK06zI5/zUZJxtzWSsUTeXVy0dYqWjLcGQZy7jgscS+W7D7vUCiaNgvVUzcUXGcddxf8KcEUI8eze3qeAMMmYKVpkGSxXHa7mLkO6Crc2JPUmyyBMkgOFRS81C/KAycTkgj0N19Rx69sf40zJojUMqbnmtknhRVLPRVMVXEul4hrbEhkFS6dgyQlG7s43Tkx5UYJrymDiBy/V2RrFvL5Ypl6wADEJePw4pXrI57StseeEYrq/861H1FyDn3p9/pl+zptLFQqmxm/dbu1KTFmGdBGcq9iTDb/v9yc6FjuxWHUw9RDXkNbfD9oeqiKpUFqo7HmYLdccXFPj9aUy3VFMz4+ZL9v4UULgJViGzdYoOhHb3LGrXZRIweGSrZNkglcXStyYLxMmKZuDkE9fqHJrY8BsyeFczZ18VkWR3T0dLzrVFuL2KMKPUoJI6p70/YRLVZvPXqpPKF1XZotYhoYXZbwyX8KYCugaRZMwSSd86dOGa+rMlGTg4JpSnNTSNfpBhJEomLrGUsWZ7AFSa0zgWpoUvndNDF3Fj6X2ibuj/V5RlGdOAtYLJsWcWld2dGxNiumHcYqCpBov1Z5Ujeu5dXajaBIlKbqmUrENVnoBpq5S3OOyMBZAnYaYWvDHafDLELJbVJHJr7Jj4BiSRrWza6FkG7y6UGatH0hq9Y6DcqFq8+ZSiUEQ8875PaL1p6DnxwRRSiqkns2V2SJemDBXsRkGKYamIRTBUkVqhGRC2TYGXVNlh41/eu33W6OIKJGJTVNTcUyNBdfkjcUKBUvje4+6cr+zNHRF4fp8adt27OZFkSBJD+UUN40wSWkW5LqbLz8pWsyULPw45SdemeVXPtpEZE+c4w6CbWicq7vomsJqVzoTlRxj2/noRQmWru17vtqGyjCQc0dVpODoMEwoWRorXZ9G0cI1dUnjyH9fxTH2NHiYK0nKmKmrE7v2kmVQL0odOjun72qq7Iwan82WrjFXUakVjCNptnV9mRxrjyIGYcKlGZdBmLBQcThXl+5MHS/i/ZUewyAlTBMu1l1KjtR6ge179s7KqnjGw7jryWSfpauTote0Tk/Jlomfgq1zvuFuc5YFWKzYbA0jXl8sU3WlvpSpa7iGxp2WjJ/8OOVZIbXzyqz2Q+quwTBMmSvLoDvINfGKlk6zaLFYtTF1le4oQlVVlqoFipaKqWucb7j4UXqmBgb7wYtT+nnCUUHq9FxouFyo27y5VOZ8PcGLUz59vrZtT54tW2wOdseMJ4X2SIbq7WHE+bozkThYqMq1c2NeJpYrroWqSKfCimNQMHW2dDnfi5ZGmAiEEHvrOx6ALBOYukrdNSmYOq1RmGtFbn9vBUvH0GW3z87fs1xz6HgxyzWHNC/YpOKJJuhyzeH+1oiCJemp0whz1gTsPX83+uGkaOBaOldnTSmYvMceVnVNvChlqarRLOy9J3/6Qg3HkknfcRfhbMliKy9E7YUgHptPSCFzUZFJ2ywfuKGpnKu73NoYIkTGIIhzd0GdKzOlbWtg3Jk5xlzZ5qfemOfm+gDXVJkr21Qc2YnhGNrkmUittqNp2x0X3VEsi34iRdflem8ULD59vk7FNfJ5W8AxNTqjmAsNd9u4SraBa0VS++wERbP3iwscQ+e1xQqOMcS1dBYrLmVX59JMkWbJIklld07B1mgPYzIhaA3DM01MAfxrX7jA7a0+v3pziws1l0cdn0dtj6XnkKioujKpoyhy3YyLoGXHIMtAU6HhmoSJTJZqmjQ7CeIUP5KSGUctxu2Ea+pcmSnw6mJpW5JroeLQ9qTjrNRsewLbkNTfKMmknnGUEMQZlsHxguYdOOw5P/66im3gRQkXmgUu1F1UVWEhE7imimupvL86oGzpdL0QUCEvKOnaPz+JqXeBKrBxckM5GQgheNAaSVFC1+D1pQrNokWWyWzta4tl4jTl0bjan2e1NVXZc/JrqsJby9UjjWGmZO265ERJxs21AbqqcqlZYK5icXWmJKsFmrqNGqaqyraNLExS7uf6RlVX5VPnt9sKS2tKQZqKbUHuwe2GJooiRQ8PE5AfhGGY8E8+WOcPfmZ5V4XpqDA0lR+8VOcrd3ZTexxD4wcvNSbPSAjBxVxDqrxHwGTkHP8xbsyXuL81ojWQ+kjX50q7xjvuVFntBsxXLOpFEy9KWO36FC2DLBMTvYyxxollqIcWUx2L5vtxSsnS6Iwiur5smXeKUiBzfNGzdI2aaxLEGZ+/1OTSTFFqTU0d0PMVe1JNO0kEecXaNjWSNONx16fiGFxsuKgoXJt70m1TdU1sXefyTIlLTZeyY9CYCtrKtkF5/tnn2cO2hx+nLFTsp7b7BnHK/dzxol40+YlX51jp+Ly6UOLb9ztSYH4qQFUUhdmyzU65yFeO4UA0CGJWezLgO6id9kHbw49kN8EPXWlya1O6RD5ojfCTDD9PjKuqMtFG24kbR7woLFUdHFO23h91rWaZIIwzwiSlZOs4hs7VGYMwyXYl78a4NlfaJQI/RpikaLpC2TUpH2IfSjOBFyb4SYquKjzq+mRC8OpCmWbBotJ0udSUlJ+eHzMKE/pBwuuLVbmWd1wkFqvOkWhch0GSykRLnAos7UkyfK5kcalZ4PpsET2/NMxVbDYHEa/OV3hloYyqsG0/VlVlz6LIYfBgyyPJYLHi8urCEx266b3i97yxwL2tEY2idaRE+0LF4Z2LVdb7Id1RxN3NIa6psTmMyIS8hF6fLe1Jr1qoSE0jM6dfXZ8tYesqH28M0f14Yhpwfa60rYNkaxjSGsoOrfH+r+YFnCwT6GWFjUGIa2l7rpPxux4EMX4sRU1bwyhPaEVc1gr7ChjHuSNO1THp2DGryM7L7z7qMVO0Wao5k/dWd03ePlelPYppj0I0VSWI020J+Z179sVmYeLEeVw8bHs4lsZoEOb7cIG2F3F/y2O+Yk8u+vvtI36U0h5JWl29aO7SzlmqOZIyXnwyxoPiDJBi5p1RRMGSxi2POh7LNZfF/H9SsycgTaUg+8frQxRFcGWmyLW5EhebBaIkY3MY8mBrhKqqkElRfGu2SK36/JJSUZzSyjVIozjlu4+6REnGT70+x9W5Eh+s9DF0lTiFHzhf21Nu4WnUj+MiTjN6foyqKDi6NnFPvDxbZKZo0fNj7rZGkzNqsSoLIKMwkSY5qopraSxWK0RpRqNgPhNV8vbmED9O6YcJVUdnWXeoF41t8329H8gOwqI1Eaifxp5FlqmC5MYgYLnmoqrsMlq51CwQxClCyP/e/qyEdKQdhCxUpG6Za+g0itaec3vs4L1zfGkmu9+TNONcXYoST4+zWbSe6p786fM17mwOmS1b2KaOpqls9MOJmPIYV2YKfLw+IE41ul7MtbnigfvGxiBEVVV+5NpMngCFh+0nnU5XZoqErmw3O2qSZ7FqY5vqoQqO426kVAh0TcpmmDkler5ic7HuTvbRi80C37zXYblW4J2LNmVb33Y27hSwPknsFReMC9ZXZots9EKGYcKlvPOuZBt85kKV25sjbE2hPYroejFXZ4t4UcIwp7nbunYmlOM//TNv8oXLa9zf8vCjhL/5tQdcaLj8wXfOnWlyytJ3GwCBvA/82A2pr/TR2oALjQKLFYcb8yVsQ+MXv78KQrBYlUWqtiebC/a64x0ETVUo5YmwaTimxjsX6nt+j9SnK+TdmdokhpPd/cdLTBmaeuRz3tI1LjTcSbwynVgbnxtXZkv80JUZ7m0N+f+9t8F6L2A046JrKlkmiFLJvljrBfT8mNnS0WK9s8ZxE1N/Dvi2oijvAuH4L4UQP/u0b1IU5Q3gLwMpcAv4t4Eu8O38S36/EKKtKMq/DvxvgDbwrwkh+ocdmBelDIKUsm1SsOSF3ouSSfucQHB306MbRAgUPlwboCk5h1rd7tISJxl3t4ZoqspyzTnQSeNpGIYJ37zX4dpckYWqgxPrfLw+RAh5iY3iTGom7QFlH58HecgKHncDDE3hXM2dbHhj2/eCpXGpWdhzI1IU5USDoX/8/hpBnPEv/sDSify8L15p8is3P2C9H2xL1Jm6ynzFJowljeduy6NZNHlloXxoN4LpZ7rXHh3E6YQqeWtjiG1orOaBc8nRyZAVNlNTGUXJ5GuvzRUPHEOaCW5tDPnOww4qCst1aVu9OQz4tY83cAydesHCNvTJhl60dRYVB0WRic+jWIgfF2u9gO+vdGVyrmSzWHOo2DofrfV591GPWi6a/6VXZCpHU5VJ0FUvWKdSwQ7idNIOvzkIj8RDX6g4lCyd//ar9/jtOx3ON12Wag5XZp500IztmOM043y9cChnvr2wOZACr2GcMVN6ukvGeP4pitSAenWxzP/3m4/5px+uyS4Xx5Bdn1NzdqXr0fViFquHp+5OQ9fUY1ssrw8Cbm0M6YxiCpZOkknK3HcedHEtnXcu1I7Uer3aDaTGVJxydebp1rlBnPLdB12+97jHpaaLqSm0BgFbo5iHWx6fvlBDUxXCRHZQ1AvmRGvM1FXmys6pr52eF/P9x10+XBtwqVlgvmKjq9LG+cGWxkLFxYtTPnVOjtXStUkA7ORdsSeNTMg9J4gzlmrOtrV5kNbiNDb7Ad9+2MXUVT5/ucG5ujxbtoYRX7/XIU4zVEWRZg2ZmDg97TX/xwmggR/z7Yddrs4W8OOUbi9ACEkPreYdJEEsizN3W0NmSzZRIilQ43XbGUU86vhYxm4tuL0gHfl2P+f94vUozfjlDzbyOSTPHgHcXB3gRQmfvlDLkzUGXU+OZaz5lmYZfpTte46PUbT0Z+pS8OOUX/lwg6It51Cawc31Pq1BxChM6HoRn7v8dFHZ6c+vwCSoFUJSoSxd5WLjSQfnw7aX04GMpybgjSmHQiEEnVHMTCnF0jVJMcqyiZbmN+51WB/4ebJA7vGzJYsLDZfzNRddVfj2gw6310fYpsZC1dk36X3aiJKMX7/V4lHbp+zouIbKu496oEgq1U++No+uqbSHZ0su6HoR33vc487GiLmyxdXZIhebBW6t9/mn76+zXHMZhjG6pjFftmkWU9nJWXGIU1lEFULGSc9atAzzROQT1zJBaxix3gtxtjSsqxrNoiWFufvyOrExkNqiG4OAzUFI1d2dJAX5/G9vDqUeVcOFp6wxVVV4fR/d0zBJWev5zFVs0izjn33YIhOCf/lTS9T3iZEVRSFKMul6KeBCwyWI04nr1tYomow5iNOJZulYqH0v1AomnynsfVEeY6Xry2JAkEBOU1YY0R5GPO4FVGzZ1TP9O6af7Z3WCMcI0DUFaxft/3gU4sPGEz0/5r3HPT5Y7bNcczlXdzA1lYdbHt952OFCvYAQ0Mh/VtHSJ2ejbahPTeqdBfR8H0uFIHAyys72c+Rh2+fj9SGPOx6GLu9klq7y7uMe91seQhG8tVzl2mzpTGL43/XaPJv9kL/xtft8836bf/zBOt9/3OM/+X2voWkvjnObqspCyVh77Su3W3y8NpQi/RVJ9b2/5VN2dX782sy+a3I/hIksUvtRQhinWIe4Jw6CmG/c66BrklYb5QnVYZjwwUp/0o19VBznnN8vXpmGZWiUHWkQoigKD9oea72A7z7s8K0HXeYrFm8vVTF0jY1B+DsyMfXXgP8C+D5wFAXgm0KILwIoivJXgXeA7wshfnz8BYqiGMAfB34U+APAHwP+/GF/gW1oNErS3WW+IoVc1/tSVLw9itgcBvRDqedhVdV9g0UhBN971OVB26ds67j5of0sGGtEGZpKGGfomsLjjo9raoyiZF9tAVOXXVayC0xOpnFAOAhjSpaBDwycZBJEjPUrRrlehHEG7Xx/7zsrLFUdPnNEOs5+GOtMfeX2Fv/Sp7YnuzqjiJvrA25vDjFVFU3NLYMPueCXag6uJSlle+nrSMqNtBmOU4EQKSsdn0bBwo9SikX5e4ZhcuTqR5hIAfPOKJLVTFMmUO+1fMIkwYszirZONtUuOrYytXSZCCua+qlXXYZhjB+mdEfSrnQJm4/Wh2yNIrw4ld0OypOK+ThBIgSSAhelx07s7AdTU7ENNXdLfPpGbRsaF5suYZJNKoCtYciDto+mKmx0fSx9u4jvStfnuw97qApoisrVueNV48qOMXHW2lm53YnzuUVz0ZLvtNOPuN8egVDY6AeoqrJtjvphwtfvSq2MUZTw2Ysn62ByEBQkDUQK4EqK5AcrfTYGIeQObwtH6EBKUkHfi8h4QmXYD36UspZb+H5/pUfFNljrBZL6YNt0/ZjZsrXtmZ/L6R+mrjCKEkrW8R3YDoNBGMs1Eqas9aSW4M01mRSKk4xmSWq2+DldolmUotQKMjEQp9mJOHsCXGgU6Pmx7Czr+IA8G46bNL61OeTmmnREcwyFz12eoWQbbPRDBJI+Nqa/KIp0j9roh0/VUshynbSyo2Oqko5n6Sobg1Dauls6fV9SnQ1dZRgmu0SR+7k+xF5acAdhrmxhaAqGru6rmxMlmTROaMlLBygUHR1dlVpzUnNH7nV9X2ozGZrUXztfl++gZJ/uvIuSDMtQ6fsJ1+YcbENDQdDzQ5JUId5ZLt4D03tmzTG4vSnnbZjIJJIfpbme2PY4o+fHnDvCWB1T7otpJvh4Y0CcCOYqFpauoWsKqYA0lW5tfV+eP+1RRBBndEYxaQaGrlB1n4g9Pw+M9d96fkySpdz2Y9pehKEqEzfGhbKNpatYurrtIhMmKWGSncp+NAgSvFDqdpma1NJLkozbGyMsQ2MQJFyeLTDwE+yGOnEzTFI5z8/X83PzBC4vmRC0BhGDMKY7iuUaDmK6XkSaGYzChGZOJx1bp4/P9q2hNAdoDyMWyvaumMeP0ok+3CBIuNCQZ+mR15qAla7UvLF0la4Xk4qMe63RUy/BgyDepv9XcyX9L53qqAdJ7xrrTA1zPb/DwNDUiVbUGMMwYXMYIjKBHyeULIM4TVnvZ3y0JgXZNVWZ6DAB256tAhOd1bmSSckRx+qcPg6GYULPj6T22jDE1BTutUasD0J0FYY7dOhsQ+PSjOx0szQ1lzQ5fYrh0xDEKQVTx6yqkzhoDEWR7zrOMkZeRpJ6zJRkXNLxIgQQRHI/PavPMVO2eHu5zD95bw0h4L2VHv/so02+dGPuuZhFjEKppTv+/PLMke94HKcnqWRq+HHCh6sDLjRd+n6MrisMwuTIiSmRx8pepOXn5MH3krutEWu9AC2PnVxTwzZVQD91d/H94OUarPvNnfmy1OwbRSl1V3bFvr/SZ6MfstL1KRg61+fLlJ3nu4YOwnFH1xJC/IWjfpMQYlpdLAQeAq8qivLrwG8C/wFwHZmsShRF+SfIDqtDQ1MVrs0Wt1VNq67BIIipCJ3VviCKU5pFm2uzxbxFTrboT3dLpTk9a7XvEyYGBevpVYyDYGhShPiNpQr1gsl6PyRMpTCelnfBPO0gTVLJVfajlHN1l1E+QRUUBAJd3b5BzpYs1voBZds4sUvO07A1DPn1j1v83I9ePrHN7rWFMhXH4Ldut3YlpkaRdGoqmJJyV3d3iy4/DdP6XXtBzVuEszyh+U8/WGel66Np8OPnZyfWuc2iNQk6dwae+8E1dWoFg2uzJVIhJO8bWK7Z3N4cUrZ0LjcK26pXuqbSLJq5Tbag7Oi7xDtPGrNlm1Fe/Zst29QLltTzSFIEgoWqzfX57ZWfqmvSHkXc3ZRaJFdmCyd6AKuqwtVZ+V4OU3Eq2QbTtfSFis2NuRJJmjJflfTZUR4oZpng3taIjUFA2dGfiZvdLEpxRFXhwADZ0NRt1N+ZksXFujyIy7mg9LgNHJDUo2EAKKfm4PQ0zJUtfuBclY4XsVBxMHLdpNYgRNdUDrPdrPWCiSaaFPkvEyYZjQN0nsqOIQVtFRkgjunIA18mBq40C9s64CDXiyjItTPWLTnN59YsPqFyz5Qs6gWDy7MF7rVGlCy5T5Xt7YLT051dhq5wY650IpdVU5dz63HHozUMKVg6F5vH/+yyEydjFCdsDmI2+gGzZTt3urLY6Ic0SxZzZekYk2YiD+b2h9SeMFiqOQRxipekLFcd1noBYZzhmCrLNZfWMGKx4nC+5lDYUT1sFC2CWLrF7Ucn3YlBEPO46+MY2q5E104YmoplKPLiqSrouUvnq/MlwlhaTRdt2S310Xqfx92AxaqNoZYn7+C0YWgyiXdjriy1Eb2YJM2o9GWAulA+OFn8sO0xihIWyo68RMXbk1m6pmw742bLVm7ecPjP55jaZI1GcToRLx6F0k3TNjQuNwooyhPX4wzB465PlGQkmSw6Vh0dL5KFtyTNnlkg9zgoWTo3Fkp4UUKzaPL+6oCZokXR1nltQa5hRWFXrBGnGbc2hmQZe1ImnxUzJYvlmksQZTRLJos1eZ4sN6Tl+HxF0pREWY5lYxAyX7G52xrJdTSli3QSUFVJ3SlZBq1hSNU1eNjxsA2NYZ600XLK8vS7rBdMNgdSi2qvuLJo6xRtnSSnGu48Sw8LgZzLcxWbekHnw/UBhqJJK7o9ECUZD9qjiS6orqoTavIr86Vd8UnFMSbGH9UjdqC55nZ7+rmSzeYgwDU1FORZaKgqel4MsA19z9houeZwe3OIQAUEJdvY97meFhoFk/mKQ5gImkVJhxzk2rtZJpgrm7wyv737sWjppKng3pbspr7YdE/Use0o8KNUPkMhtTF3juPyTJHHXR8vSlCVlOW6dGK9Vi5iqCqpyGgUjTNPrn3plXkebPn8w++vYJsa7z3uYxk6X7zcONP33/NiHrR3v8edXUSXZ0pcmXFZ70fYlpYnpVUuNdxjdfqbmtSLOleXBiqPuj4113yq/ImiSKdnXVUoO9K98gcvNugFMZcae3eBnyZ6fsyDfA1caLp7ysYoisIPXZuRDvS6OtHVup87CBu6woW6Q+2EaeMnjeOujm8qivLngL/Pdirftw76RkVRfhb4z4CPgC3gGtAB/ivg9+V/N6bu9YA9228URfk54OcAzp8/v/PfmL5TWrrG1dkSaSbtYq80iySZpAo4po6zRz5DU2UAdqHm0ihah9YO2g9Fy+DLr85N6ICKIhj4CXXXpFmyDmyh3RyGxImgm8TMllMWKg6tYSitch0DVVG2bTB7cfFPE7/07hppJvjZt0/O+UFVFb54pcGvfrQ50UYZY6ZkSee8gslCxcZ4BprlfhjPIzlPZLt5kgoWq7sFBI9KiVyuuSxVHSmmp6tEqTyYm0WpO+Ja2+2Ye35M34/xoxRdVYmSozQqHg9l2+Dt8zVeXazk3RAyCaipCvWCFA+evpDEaUZrGDLwnzirxYmAE56GO9f3UWAZOv/mFy7ysO2x2vfpjGIGgaSkeXGKY+icr7uUbZ0Lz5i8OG6rtqap/KHPnucLVz1Wu9IidjjVDegnCRfqBcIk4/oxO7qeBYoiLxBVz8CPU+I0Y77i8PkrDXRVQVOffkEUQkxEqjcHIZeaBX70+gwKChcaT7+gafmeMO7i2BpFvLpQoZV31yQ7uk7HvyvNBHGSyctwerprxzY0vniliR/JrkIvd9u7UHcn9t/1wpNCxNYwJE7FpFtsLEJ+UlW5NBO0RzHNooWpq88U1L8yX0ZBVhMbRYtHHQ/LkNSxpZrL0pQF+vW5IkkmDgzgSrbBj16fQVMVKuflZakzekJ9ChOpj/Da4v5ab0VL58b80ehcW8OIOBHEidT6e9plwdJVvnRjLu888xBI3aRx0acziljt+fS8GIEscjUK1sQ17CzgmjpffmVuUqAqOzofrQ8oWDpzZfvA1v0wmaJJDwMqrnS9HQQJF5sujqHtijNmS/axLgrjue+YGs2SFJKeL9tTF3uxLdG0NQy52xrR9xPO1R3ON1zao4jWQBoL9INn0+Y6LsYFrIuNAlvDEFVROV9zuTRT4PLM3vOx60ntmSiWCZj4FM5y29B4Y6kiNdrys7tganzhckNqcjZl4fb9lT5pJnjY9kizjH4QY2oa8Qnukbap8eZShdVegB+nXGq6fON+h6WqXD9pJrbplE2/97my/VThaOmu/ewFuqKl8+ZyBUNVKTs6r86XcUyNkrX3XtnzY/xIPqP5yvY1sFd8omvqiWkhVVyDH7o6gx+lvLvSwwtlh+j12SLLNQc/yfZ8Zv0gIUqkG+tMyToVTdKDYBsanzpf49WFMpqqEKeye6VZsCbn0vT5HSUZW6MQb6pj7Cxi3/0wpjUDtEchUZLRKJqTe52hqcyXHebLDl4k96RGrpe2XHUxdfVMKHx74Y/80CV+5EaTX725iaFprHZ8bm8OudgsnEnzAjCJvdJM8KjtMVu29zR0Waq5/MHPnOO9x30Kts7VuTI/eNk8dldfydH5F16bpeQYecetjAvnyvs3hFQdc8LakdqIkgGyVHPOPCkFTPZkL0p4sOVxdXZv2ZiSbfCFKW27n35jkeWay53NkVxjnwCXvuMmpj6V///np/5OAF8+6BuFEH8f+PuKovxF4GeEEH8XQFGU/zH/uX8PGEegZaQG1V4/5y+Td1O98847h4r+NFXhSrPErc0BhiJtufcL1BVF4WJOg2gUnz3gURQmm1cQp2wNY3RNXpIOc0BUHGNCjTI1FUs/HS2S4+IffG+FKzOFXdWOZ8VPvjbHP3x3je8+6vKpKYqgpWsnEpAcFhXbYHMQ0ihYRGn2THpjYyg5jQ/AVjVeW6xgmyNJl5h6t3Ga8bAtxe9VRaHqGiculPo0TB8GSzUXQ1dZ70n9smmK6ErXp+9LUcuqY+CY2gvZMqqqCotVhzutEaoKfT9mvuJMbFhN3X3uNquaKh3/7mzKMQ6DBHJ5jJprEVake+BZOOfshSBOediW1LAkFSxVpeudgnLgBVFRFCqOQc+PJzz9y0cI2sfrxjG1SfI9zcQ26+sxWsOI9Vxbo+zoaOrZdK8Ak7U91gcYhgn3WiM0VZlQOYZhwko3AMC1VIqWFPc8ySqmpj6hcTzrmaGqCq8uVmiWZHenoig82PK4Mb/bQELXVA6zTaoK2y6lSSYoWAZRmlF1jVPTQqg48p3IbteDBzp+n5d2zFU/Sic0yVTIzo2CpXGu7px5ZXy6a/pxx8/dh1PO1RxqB3RqmJoUu/bCdOKUJhNPpzrkXRIJqqps09MD2Tlzc22AooiJu2XZNtgaRvl6er56KdLx0WK+GlMvmizX9i5qTO+bqqpQKxinuh9Nr0k97xqYRtWVz3AQJLRHcW6wc7JrTlKUlYlW0Ho/mNyNyo7OuZp7JjSyp2Es/g3w/kqfomUQJOm+77Fk62wOJFthv+TVaSNMUlQF4kx2uDmWjvOUeKBgSZfUTGynGT4PjC/UhqZydbZEvWDxuONjGyr21F680vUZBAlZ3mlm6dpzdd+sOAZzZelo2xlFhLHcj8bravqsvdgsbEsQnrSsxXFwuVnCUDXefdzDj1NGYcJqNzizzvtGwSTJMjb7IXEmnnoHny1LSpqW75PPskeoisL13MRICFmUqji7zQumMVe28w5EDVvXeH+1LymBYfJcNA3rrilzB6MQ29B41PF2OQnuh0vNIqDkjqPPfx4ehGPtTkKILx3n+xRFsYQQ4w6rPhApiqIJIVLgh5CaVR8BbyiKogG/C/jqcX7XfqjkIp3rPTmMp2WvzzfcXZ06J4Gx/kbVMakVDke1mylZz+yKclrY6Af89t02/96Xr534Zf4nXpFV6v/5vfVtiamzxtW5IrWCmdubn847mNDUdsw5NacDCAE11zy2QOVJYbZk0yxYu+bi5HKpSvHjs6rCHAe6Jp3JkvRJZV5TFa7PlU5lzR8Heu7OKS1fnzzLF2EvmJ6Tmiq7KI6iwXfSe+u5ustSdffP06f+XD+BztdnQdHSeT3v+hnvk9rUXlKyjFMTd73YLJzo854pWRMjAkWRyaWTgq6qRFlG2dZPda+rFcwTobKoKpO1MFe2mSvt1sJ5HtBVFVWR3RELe3T57oR0Idp9/rwIUBSFuYqNF6bomnQnLeyxnp4nDnN+jGM/IaDxlATWWWGx6jBftrm1OZxQUk87vtBUhZmiTaNgcWW2+NyKK/tB1xSKtk7DMPdNJtiGxqu5WdHzmnuaqmBqGnMl7VCFSkt//mPeD/WCKZkf+8SUmqqwVHWeC113J2bzmGwYJmSZ3GencdJn7UnjXN1lpmhxK6ckamegPzzGOE7UVOXAO/hp7e/jPe+g92Pq6mR/FjlTJEkPdqA9LaiqwmLFkcX/TBzITJjGi3ZWHoRjnQiKoswh6XiLQojfrSjKa8AXhBD/7wO+9acVRflT+X9/DKwCX1cUZQTcAf4TIUSqKMp/Dfw6kuL3rx1njE/DbMnG0jQMXTmwoqnmGjRjat9JQFYJigRximtqE9HugybMi7rR/dL3VxECfuathRP/2RXX4AtXGvyjd1f5P/70jee2qJaqjrR6zcXSJYf82ebEKEykM8qOav1eh/OVGTlfzvpi7UeyhXpngLbXXNz5jF5kjC9hozDZJqI+DBMMTcFSn39VQVUVrswW8MJ01xhNTcV8jvuBqUtqWs+PmS8fr+J/3P0sSTP8XIB0WwJ3j59XK5homkwmn+UFKE6lCPfOfX3n/uWYGldmC8SJeGb3q4PwtOc9mfdH6ARdqjqUbLneT/LCcHmmwDBIDqzqh0lKnIpneq/HmYM7n5WlS82kMEkPrMKeJZZrjuwSnBLaPwxe1DjjQt1lEEg9wJOOyY6DNBMTMWbtgH1ojOnY77Q73rNMMNpjfDuh5nS4YZBQPIVOGiHYJlrdLFoYmtREOopJwWlCwCQOP+yzeN7rvGQbXJopkAmxZ1y41zn5vMcM+5+N+8WUp3HGPCsOisn3+ixRIuUHnpc+1jTsXENueh86iTvNYXHYO/he89WP0kkn03Fx1DNOUaTDYtePntkE7Vmw353gMEgysee6exFx3FPhvwH+KvAf5n/+CPhbwFMTU0KIv4ek6k3j03t83c8DP3/MsR0Kh70EtIYhq13Zerwfp/M4sA1JyRsL8h5kt/wi4xe/t8qNudKptTf+7NuL/Pt/+3t87W77QLvr04KiPHGdmxbwuzRTONbFaHMQstY7/LyyDe25iu0dRnBy+hl9EmDqKqb+ZLzr/YCNfoiiwPW53dSk5wFL17YlC9Z60j5bVeUYn1cCUAjB455PnAgywZmKsN/elKKzRVs/FJ33rJO5WSa4vTmUyaZDCK27pn7iOmxHwUY/YP0Y815VT2e9G5p6KD2kj9eHeZeSdWY24tPP6tpccbI2x9TSFwlqfvH/aH1AlvHcdGVOCno+L04rJjsq7m2N8MIUx1QPTamAszvL722NGIUplqFy/YDY7DBr7rgIkpTbGyOWa87kd7xIMhQAYZxyr+VN7OpfZCv1aTwt9jzqOXkWSDPBx+tD0kxMnvXTcFpnzEngKOs4STM+3pD7cKNoTmitzxPT4++MIh51fBRFFobOgoJ+nELcUe8kJ4U4zbjfHpFlT2Q2nhd23gkOg6Ouu+eNI91qFEUZz9amEOK/BzIAIUQCPN3n+xOKsdCeEJy4aG4qxMTq9rQFeU8Ld1sjvnG/w8/+wMmJnu/Ez7y1SMnW+e++9uDUfsdRECbPLsQ4/hlCcKJCoyeJ6c/2PAUnzwpj22chIDmEtfrzwHjeZBmTveN5IMvtpqfHdBYQQkzWy4s6JzMhJs8mSl/8YzGcOuNe1L1oJ8YC8fBk/GeB6Wf1PNffYZGkgvFWdpbr9DRxmjHZUTA+L3Y6F74oGM/VKMkQZyjCvwv5r36RY9zx43lRz5SjIstezHNyLHQPZ7tvP28k2ZN9+EV6H2NMn2sv4vjGOIm713GQTr2/8AXd75+GT9q6O2pa9GvIDqeRoigN8iNHUZTPIx30fsdhtmSRCYGRi22eJAxNZanmMAqTMxPkPWn8za8/QFMV/tBnlk/tdzimxr/8qSX+5tcf8h8OwoO/4ZTRKFrEmUBVOFBQdj/MlW2EkG5PL0Jr715oFMxJcFN7QatWJ4n5yhOxw7MWLT4s5is2qiLFD59nh4amKpyrOwyC5EyF+Mct1f0gfq4iqE+DrqnP5dkcF2OBVstQXxhqzUEoWDpzFYsw3tuB6rTwSXtWjqkxX7EJ4pTZY1JuXzScZkx2FJyrO3S9+NQpuMfFubpLZxRRfs70Ul1TqRfNF3ovNHSVqnu6QvRnCVV9Mc9JU//k33mOA9vQWKja+NGLuQ/PlCySLENX1Reum3EazYJ0RlcUznRev+jv7yB80tbdUSOr8en2p4C/D1xRFOU3gRngD57kwF4U6Jp6qm1v9YL5Qh0cR0EQp/ztbzziJ16ZPXUqxR/54kV+/qv3+fmv3DvV33MYjIUYnwWGpr7w1M2xe90/LzD1F/+dWLr2woyx6prPpc2+4hov7GVwjOf1bI6DT8K83wvTFu1nhU/is/okBKJHwWnHZIfF2G3zRUXR0l8IYXFDe/Z46bShq8onbl0fhBf1nPwk33meBS9yYlZTlRdiTz0Iz/NO8iK/v8Pgk7TujnpqzUyJl/9d4JeQyaoQ6aD3vRMc20u84PiF337A1iji3/7hS6f+u67MFPmL/+qn+OGrTX7h1H/bS7zES7zES7zES7zES7zES7zES7zES5wFjpqY0oAiTzqnxnjxU60vcaLoehH/z392i89frvP5MxIk/5m3Tk/H6iVe4iVe4iVe4iVe4iVe4iVe4iVe4iXOHkdNTK0KIf7TUxnJS3xiIITgP/of36XrxfzHP/P68x7OS7zES7zES7zES7zES7zES7zES7zES3xCcVSv8eenoPgSLwTSTPBnfvEDfvF7q/zJn7zOa4vl5z2kl3iJl3iJl3iJl3iJl3iJl3iJl3iJl/iE4qgdUz9xKqN4iRcCUZLxyx+uUy9YLFZsZkrWxM1FCMF3H/X4c7/0Ab99t82/9cWL/Ikfv/KcR/wSL/ESL/ESL/ESL/ESL/ESL/ESL/ESn2QcKTElhGif1kBeBGSZoDUMMTSV2imr1wsh2BpFADQK5nO18x1jECb82//NNyZ/tnKLybmSzcOOx6OOT9U1+C/+wJv84c+ef44jff7oBzF+lFIvmBja7sbDJBNsDkKaxRfj3e6FTAjWegH1gompH7V58ncGwiSlM4op2i+Gg9FeiJKM9ij6RIyxYGnP7FQVp4JBEL/QjlefhPV9WLSGIULwifosW8OQ7AzH/El830IINochmqLQ+IQ7Cu1Emgm2hiGmrp6K++Un4X1/ks7vzigiTjOaRQtVffGe5yfhfR8HQZzS9WIqjoFjamfyOz8J5/eLjGGYMAyS5z2MpyJOZbx3VnPquBjHCcdFexSRZBnNwou5b50Vzvp9v5i3nOeE9UFAayCTRYaunuolsD2KWO0GAKiK8kLYOFYdg//Pn/giW8OIlZ7Pw7ZMRq31A95cqvC//vEr/Mxbi1Scf74PnCjJeLDlIQT4UcrFZmHX18RJxlovQFV4YS8FYZKxOQjxooTLM8XnPZzngodtHz9KaQ1DXl0oo72Ah8/DjocXvthjfNTxGIUprSG8Ml9C3yNZe1gkacb9LY8b86U9k74vAj4J6/sw6Gw7hz4Zn6XrRazkYwaYKZ3+mD+J73tzGLLeCwHQVfWFtI4/Ltb6Ae1hHqtpKoUTjtU+Ce/7k3J+Z0LwqOMDkArBQuX52L0/DZ+E930c3G2NSFJBexSdmezGJ+H8flGRZoJ7rRHiGZIpZ4GVrk/ff7GTZzvjhKOi58c8zvctBMyW7RMa2ScPZ/2+XyampqBOVUpO++43fbl8Ue6ZmqrwqfO15z2MFx7T70s9oLp20L+/CPgkjPG0MH6XivLiCuiN388nZownNJ9e1M86jU/62tl+5n0yPotyhuf0TnxSnhFsH6vyO+x+qJ3RvP0kvO9PwhjHeNHH+qKP76jQVIUkFc+lmPU760meDRRkDPWiJ6am470XFc8ah06vmd9JXZTHwVm/b0W86CvgEGg2m+LixYsn/nPjNCPNwNAUojQDIV+QZRw9yrt37x57jTGIUzIhqwyWoWFq6nNb7PuN8SQQJRlpJoizDF1VsQ312EHAaY7zpHASY/TjFITcDGxj7xbKKM3I8jl61ODjJMYYJhlZ3itrG9qeczcVgjgRqArHohycxftOM4EfpQgEuqpiHXF+nsUYhQAvSkgzga6pmLqKfoR3fpJjFMi9CwGqqmA9A5UkE4Joan6c1dpJMkGSZuja0Z4jPPuzzASEcQrIAGivdZEJuW8qCsd6vnuNUQi5Z4B81s9y1AiRzwH2/wzHHec04lS+J5BjPolL1lHf/WHfd5oJokSOVdeUPTsGTvIdHGaM03u0qiiI/Pc+r4LYUdZOmgniVKCqYO7xLMfr/Lhx2UmM8SBkQhDG8n1rmoKpqXIOJBkcc22fxBjHMRmAZWhPnQ879+iTGueTfVrBPsH3Nw0ZxwsMbf+9Y3qMk/WSnx3P80oap4I0k/vUowf3dz3HIE5lEkMBZ59z7igYrzdN5djdTs86L1MhiOIj7KHHuDMdZYwHxdincT4ddYwg12gQZyRphqGp+z67k8ZRx7nzecZpRpKO96Hj3wsPGuP80vlj30FOKtZ5Go7yHMd3gSTf16wTnHcH4Zvf/KYQQpzqxPod0TF18eJFvvGNbxz8hfug58WoKpRsg1GYsNL1URQFL0xQFAVLV8iAOBEUbZ1Le1C3DsI777wzGePWMOROa8RM0SLJBGs9n64Xc6FRYLZsMfecWganx3hcZJmg68fYhoprPple6/2Ah22Ph22fCw2XqmtweaZImgketD3SLGO55u57iXyWcW4MAv7cL33IP3p3DcfU+OM/dpl/90cun2oW/DBjjJKMYZhQsvU9D5CP1wcEcYZjqlxsFHjQ9sgEnK+7mLpKmKR8tDYEwDFVrs6WTnyMQgi6Xoyp702XeNTx6Izk+rkxV6Lrx2wNI+oFc0Kxub05xAvlpn5trniod3zUcR4F059pGCZ0vZhBEOOFKVujiItNl1cXykca50mPEaTWQJIH1a1hRJSkDIOUtX7AXNnijeUK5SPoOJzUGIUQrPUDvna3jamrXJ8rceUZqCR3W6OJpsLV2SI/8sXPHTjOIE7xopSyre9JG7y5NiBKMlxL43KzwKOOjx+nLFWdyTx+93EPkSev3liqHGnMh3mWozAhSjKqrrFrr4mSjI/WB1LbqWRStHRWewGOoXGu7gLwsO3R9WIAzjfcI1Oo9xrjRj9gvS/pXfO5wcVBn+Fx18cxNJZrzrbPMf0ZGkWTxarDIIjJMo5EG9s5zp4Xo6hM5vbd1oj3Vno4psYXLje2nSvHxVHf/V7Psh/EiB2ftetFfOX2FooCnzpXZW4P2tJR38FhMT3Gh50Ra72QC3WXMMnoejF+nGLml/Oqa0zm2VnjKPvQrY0BfiQvfdfni1j6kz3ZCxO+97iHgkxwXG4WOVd3TuRcP8oYxzGPY2h7anAEccqtjSFCwFzZYrZs86Dt8cFKnzQTvHOxdiyayGHG2PPl/rHX3rHa82kNIhRFxhQbgwBNVTlfd3ddcqb3ootN90j6QXvuQ4OAB1se/SBmpmhTsLRToSPGacaHqwNAXnqvz+0dI02P8c7mkPdXe2QZfOFKg5nS84nHs0zw3kofAENX+MO/+8f5hX/wK8yV7cn7vLU+YH0QUrQ03j737GyHccwJ8MrC8ah4h5mX49im4uw+G/0o5famXC/zFTk3Hnd8LF2brO/NQchaT9K05ioWs0d8R4dd39tjbI2rs0VETk3145TFqkMYpxPK2OWZwp5x8jheqTjGoRMIB41xrRfQD2JmSxZV1+T+1ojNQcjDts9izeZSs7DtuQyCmDQTJ67Jd5S90o8Sfv3jFnEquNBweGOpOnmXigJXZop77qFJmtEPEgqWtu0MOCze+oFP8zd+8VeAo+9f49//zQcdNvsBRdvgBy/VTyQOmcZR3neUZny8NmRjENIomnz6Qm2b9NDT9v1nhaIo3zrxH7oDJ/ZkFUX5j4UQ/+kBX7MI/CLwGlAEzgF/HVmAfwT8m0KIVFGUm8Bq/m1/Qgjx/kmNcydaw3CisXGx6dIeRQRxhkCgqgpCQNU1qRVMvDClZD/7I/veox5dL2al4/OTr81RsnU2+iGKwgsrbnxYrPR8OqMYRYHrc6VJZnmubGPpslNKCGWyYAZBPLmUtkcRi9WT1R/45Q/X+ff/h+8xDBN+/6eXWOkG/Ge/9CFBnPHv/cS1E/1dR8Wd1pA4EdiGyrU9AqZLzQKjMKVgaXT9mFGe3Ol6EbNlG1NTcUwNP0opn5Lu11o/mASvV2d3J5WWqg4l28A2VHRNZb0fkGUyETm+cFUcAy9McUx1z6r3WWO9H7I5CPMqcIZtaIRJSq1gUikYXN/jc541RmHC3c0RIA+ZimMwilKKtsYFw+VSs3CkpNRJYmMQ8tHagCjOqNjGM++JZVtnGCTYhnqo7oEsE9zZHJFmgu4+F5rLMwW8MKVo63hROrlUbQ7CSeBYcYyJMOxJI4hT7uZaEUGS7tJVMXWVq7NFwiSjbOvcbY0I44wwzmgWUxxTo+wY9PwYXVNwT0h0smQbbA7D/L8Pfm+bg3AyrnrB3BZ07/wMgyDmXssDYCGzaR5Dq6UziiZ6NONkXJoJZooWqnL0rtD98KzvvufHPNiSn3VZOBOzlDCRAs+ZEPvqrB31HRwVcZrx3qMBfpyyNQz5yVfnKDsGuqrwsOORpOLUzouTRtkx8KMQx9S2nR1xmnGnNcLUVDqjiGbJoufH1ELjzEWXH3dlYVFR2FNXxzbkhTZKsyd7thD4cYqqPKnEnzS6XsTDtlxL5+rOrgvpfNnGNXUsXaXjRXkCMKPvx7vMf8q23IsMTT2RzpybqwNaw4gMwfW50qnpTumqQsHSGIXpodd6KgR9P8HW1TyOeT6JKVVVKNk6gyCh4hgkqey82+gHk89iGRqy51IhTNJjXdqnUXEMgjjEtbQjdxEfFl70JLaJytmupKxjalyZKZJkGSXb4MGWRxBnBHFGPZJFnKKlo+bLrGSd3nqfjrHHzzyIs23xxKVmIe9eV/dMqqSZ4PbmkCyDvh/vqUl7VKS5WD/IeLbqmlQcg0GQcHWuwLmau229T5/NSSaOdTafBKIkI8m7ipO8W3OmZGEZKsY+zw/gflvqrGqqwqsLpSMXHzRVQVE49v6layolS2cThfYw4uba4MjF62dBkmaT970xCOX7LRiYhsLlZnF7UsqLedCW73qvff+TgJOMiv4o8NTEFNAGfgL4u/mfu8DvE0J0FUX5s8DvAf4nYFMI8eMnOLZ9MW5xB0mdKNvGRORrqWpTdsxJMFxxT+ZS7ZoaXS/GMiQdZ86ymS1ZBFFKLARCiE8sp3XMDBVCtpZOo+qaVF2TNHvCeXdMDU1VyITsRtv/5wr6+eX1MPCihD/7Dz7gb/z2A16ZL/E3f+7zXJsrIYTgT/333+X/9k8+4ks3Znlz+WidEieJTBamSPeh0+qaOplz44NYCCaXQ0VRuDpb3PY8d8KP0skBfxyMW/2F2Jv3rijKtoCvbMsL33TSpFm0qLnmvmOMkgw/TilZ+pk4X4znparIoLUfJMyXHS42Cy+MsPj02ilYGn6cULZ1Xpkvn6iO03GQZgLX0jB0lYKtPXOCrFG0ZECtcOj3P34+O/eYMYyptWMbGqauEiXZtgv5ubrLYnX/teNFCZk4XrFger2k2d5jtA1tEtiUHYNRmGJNJecqjkFp4env249SUiEOHOP0/vnqEeZQOQ92TV3dMwib/gzj/Qz2fy8HYXovHJ/NZUfHj46e2E7STCZzLX3XOz7o3R+E6bhhesxFS8cxJaV5P0Fux9R4db4MCIaRTEqcZICrqwqmoeDH4Jr6tj36xlxJ0gDiNH+mL7ar0mzJplGwdr2n8foyNJXZsgUoGLqy69IxPlvKtn5qe+ZBZyRsXycghXSvzRYRCOpHuCSO1/FhLlfpjth2J6bnRdHS2RpGqIqCa+3+2RXXoGRv3zeCON2ebDsCCpZGa4gsbFiH6yIRQjAIE0xt771oLyiKMunMP+xaV5AxixelR4qbRqG8N5ykEP/FZmEydlVV8OKEkr19vozj5pNQZZkt2zSKu9fbSeKgeQnk+5J8x8RSiZ0AAQAASURBVCVbp+fLDnc7PxsdU+O1hTJC7B8z9IP40HNlvxh0rxjb1KXUQxjLgowc49PnySQWOMJLEkIWQPaKi7WphGvZkWOouiZl29jzbJ9+ztl+D/2YEEI+65J18B7rWpJxFCUZFxtPEnQH7SHjMWdCTDqdjwJNVViuOhQs7djGPM2ixWo3QFVlgew0VJD2i+d0TcW1NLwwpWwbkxhir3c9Pcf2iz1fdBxpB1UUpb/fPwEHljyEEAEQjB+kEKIz9c8JMC4d1RVF+TXgA+B/l3/fqaBZtECRYpoVx0AIgamr3Nkc8qgTMJeJI7eJHoRPna+xVA2ouMZkkcSp4HZeYW+WzOfmXPKsSbGFij25xOx3IEwfepau8cp8CbHj73ficdefUMYOwncedvmTf+s73Nsa8XM/epk/9ZPXJ2NRFIX/y7/4Or95q8X/+X96j7/9x7/w3C75F5sufT+hegjai22MLzO7D+KnXaxvb8jK1EJ17w6Gg973QsWZcJgPc4k5V3dZqGS7Nv/9xpjl1SRZxde50Hj2atJBmCvb6Krk30v9Dw8vSgmT9MTbc4+Lkm2wVHOkXoCucm9zRJrBIEyeuyvm+PldbhapueZkPh537xiFCXdbcp4uVg/ea1VV4WKzwDBIqBUOfhaaqnB9rkgmds/D/ebldIXxOFUnx5S0g3EHzUEYJ2/VHYHG0xJ1ozDhzuaT5/Y0N6np/fPGXAn9MBspUC/ISuzOce2FimuwmNmkQnY4HQeNgjkJPMddG7Mlm3qe2D7K/LrbGk2o0HvRnJ/l8lUrmKR5kNyY6i4pWDqvLey9T09DVRVWe0+6Uae7i58ViqLwQ1ebbPZDqgVz10WrPQoPpJ68SNjrPZm6yvmGgx9lNIomqqLsmqNpJri1MczpK6dHXVyqOWwNI1xLO/Q7tA2NVxfKB8Y9O/GoI7uztEPsufWCObmQ1g6IMUq2wasLZRT2n7fTfx8l2YSeOFOymK8cvG9Pj/VT52ssVBxM/fBukau9gK3h8dbLUZ7xubpL0TJwDJXKIff96S6FC033RLuZx2PXVAVL0xgEKaMwoWDpT+Jtff94+6jn8mkX56Zjm8OcjbWCSXmPM0hRlH0TFGO69H6d/tM4TAw6/Uw0VeHa7N7xxF7QjhivgHxnYZLyYMuj4hicb+zeuy7PFCc6iWPst3YrjsFiVZ7NzcLJdEuN51WQpNxveRM6/9NgaCqvzJcO/ezGOFd36XoxJft4xeswyXjY8Z9K590P4885W7b54WsGHS/C3oe2/SzIhDyvQJ4p9R1dq1d2vO/9nkPNNSYJvJ0/41lwlg0zR41IusBnhRDrO/9BUZSHxx1ETvH7XcCfyf/qh4UQbUVR/k/AzwF/4bg/ey9kmeC7j7p0RhGvLZWZL8vFNAhi7m95xGmGgoKmygzmw7aHoamHOnz3Q5RkfP9RD11VqLg6jaLJ3ZZH3+/TKJg0itYkAxsnzyfLGSYZ7z7uH6h70RlFDIKEmZK1a3GuD0L6fjzRycoyMVlAWSZY6fkIAYtVZ7IxHWajGYvjTVfld0IIwX/963f4L//RTebKNr/wRz/PF640dn1d2Tb43/7ENf70//guv3lrix++1jzw9x8VQZzy/kqfyzOFXYeiEII7m0MednyWa85kXk0/qyBOWe8H2IY2eZZH3ZDjVEz99+4Hd9D7bo9Cvv+oR8HS+XTu1jg9RiEEq72ANBMsVOzJhnmUikQmxCSrv9cYTxrjw77nR1Qck64X86jj45oa82WbrWGEZagnnow+CtJMcG9rRN+PcU2N9ihirRfimhqNoknfj7EN7cS0aY4KTVVIheC3PmphGSo/dmOWUZiy1gsoWBqXmoUjHWDJ1DxNchH625tDLu/xc5I04/uPe/T9mDeWKli6xtjAY/y1XpSw0Q8p2fokWaMoCtoRls/0mKI95uXT1rcXJbz3uE+YpLx9rio7QqfWDUgK+ShMmC3Zkz30qBeCnc/taYin9s9UiMnBH8QpN9cGtEcRV2YKnN8nKN8ahgyChNmytSt5m2UCRZGX5mGYsFg9ms5PEGfc2RxyoVFAQV50s0zwuOuT7dhbQK7hO5sjtoYhsyWbizmVYifG7y06gfPUixJ+6fsrnK/LS6elq8yWbRRFIUkzVns+qqqwULYPvU+Pz3khTqaymWaCD1b7CCGwDY2CpXF/a0TPk+fxct3B0rVtc2V6Dn1SEMYp333U5aO1AYs1h0vNApausbAjPps+W/Zaw0/D09b3GIMgpjWMGAQxlq5NOhdEfimYPifX+gFxIlio2hOq33EuWOMzMs3EU89vL0q4uTZgFCa8sVhBUbbvQXGasdoNMHSF+XweH2X/STPxJF494NlGacavfbRB1TW51CxQMHU+Wu+z1g9ZrrnbihtPw3iu7tWN/6wYhQm//MEGnzovO+hvrvVxTI23z1UPRY+LpwLTODmdOEbkl/nHXY87rSE35oq8slDZV5O258VSAxDBYtVhuXY2mnJPO7/9KOV7j7pEacanz9dQ87NxuvOjPYro+zEzJWuSND/q2The70IcfDYKOHIMujOe8KOUjUFAwdK3JdvGa65o6bQGAV+53WexanNtdn862r3WiEGQTNbX0/au6XNxv/vVeAxxKuh4EQrKrv0iSTPW+gGa+mQ/eBrao4iVri/3xkPuA2PsfHby/JS/e6Hy5HdPzwtTUyU1fRRialLvdv6As3YcJ2Q5CwmYGJMcBlGScaclCxsXGwU2hwFfv9OhWTL54pWTvzNOb2n7Pcvp971XnDtGo2CiKApCCO5vjfDjFDun/c6WrSN3aG9732eAoyam/jpwAdiVmAJ+4TgDUBTFAv4a8O8KIRIAIUQ7/+e/C/zJfb7v55BJK86fP3/o3yeE4PsrPX7j4xYlWwrvjRNTPT9GCNBVlYIlKxBJ+oRP7FrHp62kmWB9EBBEKZmQukJFy2C9H0rnJVVhsWoTJNmxq83PinG7ZNeL9r30Jmk20QCJ0nRbJTpJM9rDCJDilu1RiB9lk26dthfRGclnedTL/0LVRh+EFJ7S0fJ//ccf8Rd++Ra/+415/vM/8NZTO0v+lXeW+X/88i3+wi9/fCqJqfFlY5xEmIYfp9xrefSDhCDOmC1ZbAwi/CidBJnr/YC+n9D3pTj6cTp5Ko7BXMUiSffu+jvofd/eGNIexbRHMcs1BwG0BhElW+dis0AvFzoHjp241TWVczWXQRifCe+958U86ngyoC/bFG2NiqujKQqD8ImOV9E63jM/CQyDhJWOz3urfQqmRsUxKFo6hqbghTF+LIB4Qht6HvjW3Q5fv99BUxSaJZOaK9/dKEyJU4GpHz6QrLgGc4klq3n5HPDClDDX/5pG33/SyfTBWp9PnatxtzVCVRSuzMoL6krXx48yBkFC2TGOJeBadQ3pHrNPhfFp63tjEEz2yFsbQ5ZrLmu9INfOKBCnYqJrmGT+sYXj93pu+2Gxakt9LVPfdtEaBAmbA5l0utvyaBStXR00cZpNOmySTHB19sl4x0H0WAsFZNLtKF19QgiGQcK7j3uoisJc2ULX1MlZYurqtsvXMEgYBDGbg4gkFXl32u5L14VGga4XUTsBjQWp7yL4YHXAbMmi48Wcq7m8sVym68WTGMExtENXKecrNpqmYB+yG/UwY4zTjK/dbVN1DHRNYbnmst4PyYR0uLrQKEw0sDRFOZJI/YuAjX7Au4/7fOdhG01VGYQxhqpSdU0Kpr7t8xiayrm6wzBMjny2PG19j/Gw7dPzYtYHAVdmirRHEaamcntzRJxmLNdkp2U/SGgN5FzWNeWZdDQXqw6tYUjR0p96fm8Npb5Umgk+XB9wvu6wNYwnZ/fGIJwI5LqmfuQuXMfUJvHq7AEFkjjJ2BpKU4SqY3BzbcB3HnSlI6UiBeEPQ5kbrxfnKd34x0WcCjaHAf/4/QAUBZHJfWepGrJ0iIRO3TUnibOT7FKYhqEpNIoG338c4scZjzqyYH5lj27QLBM87Hg87vroqoJr6izXTmVYe2K/83t9EEzOklvrQy40XR51fPk5ZmRR5HF+dsZptqf26mEwTq6YmnogzV1TFc7VXQbB8WPQlZ6PF6b0/YSybWDqal4AjakXTRoFk5trQ9mZH0ujp73iyyTNJueoqavUCsahx7TX/epx1+f/z96fB1mWpfdh2O/cfXv7yz2z9q7q6mV6ZjALAAIYAAK4iVtIQdmkLIvhcFAMymGH7FCQJukIinJYlhW2KcphhSjRlAiFQzYdFkOSySC4EwA5JDAYzExP93TXXlmV69vf3e+55/iP796b7+WeWZk1A9kfIjBdWZWZ5917lu98328Z+CnqtlZJ1OxPkyP7Rc8/+F5bV89EiI/CFFJSQU4vxnnZZu6+nxzcsQ363SVIRFUY7i54SHgOP+YYBikSLrDcIM3i01DifsyrNVk+y4sg34OEV82j/WmCX33cx6fbEzi6ivWWc+m5eVKoCuU+58nnAGBrFCNK87k8N86oKAwAd7qUp00ijiwXeN4Lsda0kQlx4Zxz9n2/jbjQzUtK+edO+bs/dckx/GUA/9dS4JwxZgBgUsoEwO8A8OSE3/eXi+/FV77ylTPbJ1kuoCkMUZpjHCR0MIcpvnyzWf2btmvATzh0VcHNjlt1iscRB2PH2xXPjOfMKvMoSEmmsKhe7/sJFagsEqBsOcaJoqlvA0anFtzZ0xaFwkjLIePySCdJUxXYhoL9SVJQ7sgKdBJlsG+o0AtbVynnNTXO89lMTT214/MPP9vDX/r7j/GvfGUd//6//IVz/bw//jN38Bf+u0/wrRcD/NjN9qn//qJR2lcfl/hbRXd1mnC4ugIpScgwSDjASH9hEKSIkhyupZ77Yn3cczztsDjrfXc8E6+GMUyNwdAYXg1j7E0SjCMVqw0LPT/FIEjQsA3o54SjHDfGhqO/tQtSzdIxiVIMwgRxxvGV2y0s1WzUbXJGDJIcioJjqU5vC8rqmCr8JMXITzBmQNOpY6VJTjy6qiDKaH1pJzzztzJOJtGbJrANBaaqou0YeB4G6NTMS1GSFutWNW7GqKh6nBC6Z+mwDYVg8YX+0cBPkeVE6XEMgb6fQhaadeo5n8PhZ8YYO9Ud9bT13SzWA89Jg2IUpuj7VBxYaVjwY45+kBy5SF9kfGWc183r8P5Z/jwqeqqIs7xaA4dDndnzZzX+/Jg68o6uQVNRicRamoLNQQjXVFGzzi4MSgCMSeSFOOw4SvHBWgOMAQM/haqw6rKnKQx1W4dn6tC1BDXr+HkCoBLJPSvOs140lRDUbddAJiSEEHg5COAnWZWgMobq+ZT5xmk/V1cZ1q7Q7EMpEN7TiAokHddAkGSIMg5bt6vzmgFY8MwjecaPirYlzwV2pwl0lR05v8ZRBk1h0BQF4yjFzY6LmqWBMbqMHY5S1/Kicdr6LsPUFViGUmgySTi6ijDNsTWiizVpA+bw4wxCCijsfHo3p70HSz9Yx6ed3w2H1kWS5fBMtWgikenHcs3E0E8wCDI0HR36JZBbUspTL4WzoTBGpjeM3t80yWBqCsJirzislyWlxN40ARcSS7WDeUqFouuRuGCMmm5LdROupWJ/ksDQdDTt4+dOnOXYn5YoZhOM4Y0YFeeN1aaDO10Pv/FiBNtQ8awXIOMCrqVjoWbOSFbQ/lKztIpu+bbitPO7LJjnQsCzNIzCrBJ1XmlYiLMcgyCFa6rwrPMVH49bL5p6sbnSsPVji7Pn3RN1VUHKM/hphr5vYKVp40U/QMoFcimwVDPhGirClJo41gkoPE2lAsok4qSLdEZRdHZ8lq5W9ytdVTCJMny2PYFtaJhEGXSNCq6rraPPpXxXjOFc+VvHM5FwYhpoZ4zzrGdYrn8Jib1JjDDNyYl6miCXEos1E56pQVMZDF2p8gnzjL20bhPtTkjag9YuiOQmt3SGlAt0PQMKk9ifxKjZ2rm1ji8aJ+Vzxz1DS1eKwiBDxgVeDUJwITEJOYJinq03HdiGgiQ40CI7j8HQ4Zh9328jLqox9bsA1KSU/69DX/9XAexJKf/OGd+vA/hbAD4C8LcZY38BwL8E4CZj7H8B4D8E8E8A/C3GmA9gCOB/dJExHhd70xi7Y3Lh4kLgm0/60FXqim/MLCjHIHHhMnguYGgKbncd6JpyIqS3rO5qKlV3j0vEs1xAVRlatgFNBbbHCRxNxY22gxsdB5am4PO9KTIusd46cPkpHR2SLEfbNbBYty6FADhPGJqC91brp/4bRWG4t+Ah5gKuQYiyfpCS0GySI0w59v0EKw0b/SBBxiVcU8OvPu5hvWVjvWXP6U+NQnJhMjUFdxa8S/Hbs1zgz/2Nj3Fv0cNf+IMfnHvz+R9+bQN/6e8/wn/8D5/iP/vXr7YwdRqXWVEYvnq7g+bOBJOEY3+aIkg4oowjSDg+35lSUTRIYOg2dgsXltKhr3RVKp9VygWe7BPk9Hb3/JohZ73vOwsemraOF4MQW6MEfkyXHFUBHu35SHMBVWEYxyn0CYOpKQgKQd0Sdl5eDMt5nHKBjZbzQ+vU24YKQ1ORc4HNSQJTVXD3y7XqYNVVBgZ25HAeBilejyJYuoI7Xe9aRdrpQqsg5gL7fgxTV/GlG+1qjJ6pHgtJjjOCLkvQPLhOxJdn6bjZsSHB0HQ0PN738Xg3wGKUYr111G78cPCcxEZdgzQDSjvytmfA0tVjNRUAmrMPV+rYHtNz0VRCugFAbxpDSAbbUPG8F8AyNGyPIxiaWjmelg6Ws+MrbdNP0nI4Lk5b303HwBc3Gnhd0Fx1jZAdtq7hZT9AUFzI9n1CUW2NQmiKgmbhvOjMWCKXcHKeS9zqupd2bZ193i8HIaYxr6zrf/xuF0HRkDkuKS33/ISLKjEJU47vvhrhs90JOJf4fV9Yray0n/YCTCOO33oZYr1t40bbOfUSywBYukbWvMMQnqnh6X6AjqdjfyqQFLSqslhwb8HDe6t13Fv0kOXijTSS9iYxtsYxDFU5lbZlaCpudenvW46OT7Ym+GxnilwArhlho+0g4TkMVcFn22PsThN0PRPvrR5vrlEizRbr5qkF0IuEkHSe3ui4ZLXeNDGNcnRdotwvFxe/0or9ZufANrscT8vVK4TmD6tItTtNKrScravVGHvTGH0/wZP9KaZJViETbEPF7a53ZRpdwOnru4zbHRdhluOD1Qae9ny8HsXgIsckzgiBG2V4uhdgEnOsNCx8tFGHbVCRKM5yyp+ERN3SoSjswmv9tPO7bun4qXsdfFrMUSEEpgmhbD/f98HAAEhMohSfbE9wu0tIzjK/8Kzji9RZLio9ntn5c1pYuopv3F/A014Anku8GoRIhQDPOX6wPYWUwNfvdKr5NomIogJQUfxtFHwsTcUXN5oYRSnatoHtUYzeNMbnu1N86eZRqBHpXSVVUzHL5ZkSGFcVX73dga4yfLw1wafbEzza9fFwpQ5e5H/jMMPmMMT2OIJn6lhv2tUeE2fE2LjO3OC087vpGPiJO2087YWIs5xyxuLs2RwGSDIyVtmbxjA1Bf0gqVCxAJ0Vs3Nuf5pcWkLgrBhHGTYHIQxNwZ2uWxVIg4SQOIpCCHFDZZhEGXpBjJZtYHcSI8o4uBAIM462NLDvJ3AtDTVbwxfWm6eOc73lAOdAt/V90goskdieqeHeoocg4Xg9jPCiH8LQGHbHERqODoVpGEVJxQQikw6Gjkuu86auFEXks4sPJxXyDsfOOMb+NJnLrSZxBllQkXVVQculnO+7r4Z4spfAszSstSz4KUcuJLZGUdWw/Gi9AYAVTaDTx6mrB9qScSbw/a0JNloOapaGIOVwjKOmKLORcMo7eGH203ENrDQttF3SNHxbEaU5nvb8goJpFLRThq5noOUYMDUF/+RJH30/haEx5EJCUxn8OIdSNC7CNEeeSnRrBpYvkW+c931fVVx0d/p3APz+Y77+90C0u1MLU1LKDKQlNRvHnf5fvuC4jvtdSLiAqSkVNLIfJNjsh9jzE0ipoFNTkOcCQkhMY15cWg8O46eFhbd7giV5GSUFMOMSYZIf797HAEhy1mg5Oh7vBdgexUjyHBLUbSlhg5QgUmEqTDmmEcerUYjtUYxxxPFgufZDdQ/TVAVesUlvjSLsTiN86/kIusKgqAyOoSBIOW51XIyiDL1JAsdSSd9ESJiaUh1K4yhDykWlS3UZG+v/+tuv8WoY4a/+sa9eCOLtGBr+2E/ewl/8u4/w2c4UD5avFpp5VggwGKqKMMux0rSQFhbzYYFeEJIEXYdBilGYIRfUSVyuW/CiDMt1i+hGQlaQ1UmcXa2YLaPutJSAY+qoWQY2BwG+vzVBmuVYbpiwTb0SmlUVBaMohWtQYrvetgklyBiSjIop4yi7ksJUwnPoinKhIlEuiMLCc4mdaQLP1vAbL4ZoOAZsXcXWKIaUxOufvTCOijUepQLxBUXSSbPu/NpbXEiyEc9z7E9T1O0Y33k5Qs3UUbM0DAvqkDpJ5vaCIOGVVsI05teafNYsDYaqIofEOMrxZM/HZ7s+diYaPlhtYPkM84bDe2tJKxkG6Zm/O0ypwBKlAmtNFTc7Lj7fneDRbgAhBVYbDhRGXVnSD9OQS4k443ANHbUow1rLRpBweKZWQdhpH78a1EjMJRxdQ8IpGbjZdvFqFOHT7QkiLrDg6TBUFdM4Qz9I0HZMPOsFcAzqDL67XEOY5hgUxX2A0ESXcwiUeLzvI+MSjqkgTGgdDsMMi3ULk5hQKCdd7Mv565oaslxgZxxhdxLj+1tTTEKOtmuAFd9a0idSLiAgoTAGP+FHClO5IL2Lslu6O0lwp+vgdtfD0+LivDUKwQUl/0t1CwnPwX2BjZYN29BgaMcX0srz3DJObiYBlDT/YHuCUZzhZtuBn/ATz49cSDDQHlazdLy/1oCf5IhSjkmU4ruvUjiGhu1RhM+2fUySDKtN0j+yi3VYPmdTU6ucZBRmV1eYEmTcomUKup5B+pjDkC7OgvYzhbFKp9FPOGoW7d17kwRcEj1oveVcq1j4WVEi0xmjTnfPTzAKUvzGiyESLjCOONqOge1xAoDhyZ6PxZoFQzsZ3ZJwceWJdakdE2c5Ui6R5jme90OIXMLUFXimio+3EggpwIUBS1cqjUMuCNm5VLfQsMnQIs3zN17rs5HkB6h2x9Rwq+NhGKYYhCkcTUPKBYKUQ/oZXgwC3F+s49sv6f1bulIUW+efW5gcjHEcZecqTDFGv19XFURpBkPVMApj/ObLERq2gTQX+HCtAbUwWdE1ViE/Up7j6Z6PlaZVraPrCEUhhEXT1TEOUzzeo2awpir44o2jhYSU53i855OAd81CzSQUxdsoTKkKg2dRvvJoz0cuqIG+2rTwvBegP42hqgr8mJowfkp7zaxZxg/TRj7NJWxdhZCEernZcbE5DPDZto8gybDWcii3kCQnYesapjFRanVVwY2OA6XYG0ZhWny2i0sInBXjkHK+JBMYhSl0VYWmAk/3Q6LcJRlajokoy+ksKnSQHu1P4ZmEVLu7UMNCzSz2ftrXuJDnZhicFtuTuHKCTLioWD0TUWrckb7iesuBY2p4NQjhJzl+42UfKlOQ5QJfvtmiZnH7eGrhm8aweD/jKMMoSBFmOfo+IchNXSWJCo3oljyXCNIMYcrxzpILlTGEWY5nvZDuGbqGKBOXosqWun/jiPKt0gH5tObDo90pPtmeIBcSbVdDmOQwNZqDb7o3XyR6foJJyJFLalQPgwxLNQsLdRO3uy64EOQqmXJEGfDhah3j+IByN405pjEV+yWoyPSjYvJ0Ulx0dI6Ucv/wF6WUO4yx67fTukA87QVUJLJ1LNZM7IgYbdfAt18MoSgKHF3DB8s1ONZBB1lV6EKgKCQaVqISzhLO7LgmgiSHprLKuvVwmJqKe0suhCCdir1JjE7NhJ9w7IxjMBCCK+H53OFmqgoGYYL9aYzluo1cyAtZ3153MAZwTkmxbijo+SmW6nUs1qgbH6Y5mq5eURabjkHaDFEG11TR9Qx8sj2BAob9aXzhwpSUEn/lV57hvZU6fvbBwoXH/6//xC38J//oKf6Tf/QE/6f/wRcv/P1vEst1C3tTQkO1XQOP96YYRbzoKACLdRM7kwTvrngIE1FoDNL/DxNedb47LtmHCimvRE9lNhq2jkmUQUiJtaYNP+V4tDchoUTGsFQnMW4pJTba5DIopEQ5O5/uBZXNr2dpSHiOtvfmY9ydEK3Q0BS8s3h+BJOUEhJEl1uoGfAMQtG87Ieo29qB4OQhRFLHM5DwHLaunsuqu4wSTQmQq8Z5tGSoG8Pg6graro66pcNPOF4OQtQsrbKDPbwXzEKXr7u7caNNNtaKwtALEoRpjnGUQFfnRfePi+P21oWaiUGQonOOubFct9DzEzQdA7ah4WbHwcevx/DjBGDUuXZMFTvj5EAQWVKXCSDx76f7BLO3DbpM9PwELce4so7rUp104lxTQ9s1MI0yPOlN8WoYo+0ZMDUVUSqL/ZL2ezHzXqcxx4t+iFwIcCFRs/RLr20pD4SDcwG0CwH9hZpZdV2B4x3aJnGGl8X8vbfoYWtE6LKtcYS1pgVdBbqehaUZytV6i6ixCzXSSzjusrY1IncxxuhzZ3mOfpBhtWkVyCOiQa00TUgASzULf+eTHUAydD0LH6wfj0QCyIFwFJID4bvL9RPPyoTTxS1Ic+iqcuqa0VUG21DgGFqF+P2pex18tjvF410fn+5McLPtYK3l0M/M8uLn0e/u+UmlK3ZnwUXHMzCOMnSvYC8sQ1MV0pRSYwzDDLsTkgpQGUOUCjzrBfjSjRZqUQYuZJXghynHNM1IT6lE6r0FI4qTojRV0RSG/SnRzz7ZnmAcpjA0Krot100s1MgwZppwfLo9wcOVetXQKyPO8gu7x100LF1Ft2Zgf5pgvWnj9SiCwhheDRPULQ1Pe35RWBVQis7/rHj3y2GIRqSDMUKG5AJXco7Pnt3rLQf70wQv+j6yHAg00sJ5PgixUrcgoUAW/wdQ8f+45+ZZGpwCVXXRC+LdBUKYGaqCfT+CratIeQ7P0rA1jhFnonJFu7foIc5y/NMnfcSZwMthiG/cX7g2FJ+uKrjVdWBoCn5rcwQ/4lVBp0QgzIalK5UO2c44QlqgKd5W8AKt7pka1lo2Oq6B16MQH7+eQlcZbndd3OjY8AytogfN5jTJNQm0nyc6noEoy6EpRK+qFWtka0RaUxJE694dx7jRtsEFIHCQU/b9pNICbbk6uJDwTO1KEZPlOMOMQ1MYdsZ0qS/nAQlL0397lorXwwhCAK7BEGcCfT/CWtOmvapBBif70/hc1PbzRJhyTEOOfT/GTcNFz08wDDLYRqnZytG0dIhizOstG1HGkfIcLwNe6cPxQmD8umKhZmJ/moALcsUbR2lBOWRVHqsw2qejgsZ5u+ticxAV5zYxiBRGzdDL5rWKQnIEbc/AZuGemXJxaiMyyQX8OEPMBSAFxnEGyEKT7y0VdXMh0Q8S9MMEkBIrTRvjMEMuaeyf707Bc4muZ2AUpVjwTKTFfpXlAmFKJmWvRxHt3TqxLX5INelzx0ULUxZjTCtFyssoKHrXQ/6+RGQ8x+thWGhXADcKyPEgSPHeagOtUYSuZ+HBSh2OoYEL0gQQsjyWaeOhi3Z2JNk5HLahnom2MTUFH6418Z3NEVRFwY2OW9iJ56gXIuyzHcow5fAL1MNy3UbLMZBygbWWfeUb8JvEWtMuBOt0jKIU95dQJe4KowPfNlS4Blnbqgp10AFKfjyT6JRSApcxCPr+1gSf7U7x7/6h81P4ZqPlGvgjX7uB/+KfPsf/8nfef2vOJcBRbaWWa6LrGchygZqtAoxENR1dx2pDR5jmuNVxqEOjKtWFEozNCRJfZZRWt2UoCpkF9Kcpao6GMJPo1Aw0bXqPIyvDna4LP+VQGCEhpARySLzTvZradS4k+j5B/VMukOYClnK04FNu6rN0EAmg4Rh4uNrErS7HWttBq9CR0AoB9zjLj6AY6paO+vLFDsU4y+fcVcKUHylMxVmOSZShbutzaI2mo+O91RZudTludz3UioI3F6K6ZLiHkrFZ6PJ1B5cSNwv6h6GqeGfRg6aQhkrDPv1Ymd1by8uNhETL1c9l/NAqoOdlWDrRrJ7u+UhygTiTaDoGFjwFNUujglPxmIKEF0VgEojkggonV93prln6HJrA1FUs12zsTlI0LQ1CAjVbQ93S0a0Zhd23i2FIcyEvNkNVUbDSfDO6l6IwbLQcTOKs0OHSKv2N3Ulc/bvjHNrCJJ+Zv4TutQ1yhLzRdmAVXc9RmCLMOJbqdqFdZaBxgj4LMO9AY+oquh59Pr04J6dxhhsdG0GSo+noCBOOtmsWhd4A763WTyxGl442QtCZruL4f7fcIATRjY5zptiowtiRtdVwDDRtoyocSgmsNSzUHB0PsxoW6weOi4cdFFeb9huJYB8XusrwzhJZcff8FB1XR7dWzh2JmqXN7edCEA0pyjgWPQuLngVLV67d8bO80J/WXCs70uU8cQ0VCzUPlqbi63faiDOBhAsMwxQ7oxiepcFP+JFcrbTNBmjvvK5YadhYadjYm8bFPq8hyfJKzFdlDGFKcgx3FlzEmcCdLhDzHJoCUJ2AXSlN/PDZbeoKLF1DlnNIEALy3eUanW02IRZ+4k4HUUZMgwPDAzH3My9r1qCpCuqqgg/WG4gyjo5joGYbeLhSQ1SgqacRr9D0ANFTASrEXHeU+/Vy3cLXbncQ8xx3Fjwcl5Y2LAMtV0fPF1j0LKw07aqpmhWmGedx87tsOKaG+0t1LNcttFwdLcfEP3nSQ5zlsHQdyw0LH23M88Hqloa6rZ2pI3vdYWrq3BwqhfR7hWZXnAm0XdIVWmnaEBK4q7l0b2DU2CoLU66hXVvOTuujjpQLfLYzBUC5Rr2mgQuJ+0skaaIqDHkOBCnHIEjRdgyIPMVK04Rb5G1XTYXigui2nuWhWzMqBG6UispZr0TQqwrpMjmGhvWOi3bNgKaQpnHHM9G8xiZm1zPR9cwDEXZLR93WsdFWoCsKDF2FY2gYBilURiYWjqEBkvQcVYXMIpbq5hsVpQ1VgWOoUABstB0MgxQNRz/1Z640bLy7UoemKOjUHEwSAZWpaLpvD21EJiUKbrZd2IaCuq1jsW7CLpBbLwdUu7B0FQ+W6kj4wX2ipBtauoqv3mpjZxKDSapF/KjoSZ4UF33C/28A/ylj7H8mpQwAoEBK/aXi737owXOB729N8XQ/RMw5vnyjWf1d2zXwtdttDAJyMSmhrIs1E+OIo+HMa49cB6/y4Uq9gN6qWKqb2ByQxfZsYSEX1NEn+hTHRtvGNOYwNKJIJDy/1kPvIqEoDB3PrKga+9MYn+1OwRhDyzGwWDfx7ZdDJJaAkMB7q3U6hPwULYe0FW52HExigucDlDDzgpZwVvyNb7+GrjL8vg9XLv0Z/qc/fRu/9M3n+M9+5Rn+/B94/8jfSymxPabk97KujOeJxZqJjzYaFSQ4zgSArHKIJDH+FK5J45CgJOjwZb5M4s5LHbtI6KqCD9cbiHkOP+LgkmiYqw2roqn2/BQKIw60bWjkTHKoRJ8LCSHlhbtHuZB4tDeFH+cAk7jRPlkXZhaVsVQ3kQvqgn2w1kDbNdCwqJvYD9LqOZbPLOH5G23eJaILkHBMDZrCjoXOPyt0N4ZhhrsLLno+0ZvKMbqmhqUa8e2nMUen4ONvtB1kufihoSeX6xY+WGsgSDjeW62DgYQbO56B+ikFiTJm99bNQYC/88keFAb8/MPFC49FVxV8sNZAmHA874foBwnWWzZUlQTMbUOFEBI9n6yGTY3oA+MoQ+sQpfQie89FYrFGRZW7HQ+8oF5MI46Wo1cOQoMgJQclXYViMizlJoTA3Pq+zPhyIRFzuuwdNvBY8MwK9n8cvbbsbquFUDpRSVPcXTzQMHveC/DtlyMwBfj67TZWzqBxAuQSaBkkfKwpDCtNCypj1f5aniflj3IMDRstG//8WQQGhm9vjvBjx2i/AMBay0bPT+EZR3VyZvcdUyOX3SjLwXNxqf1yoWai5RLSueuZQFGUa3fn14BrqtidSrRs/UKIy8vEzULLg+fkXvR6FGEYHHWX257EGBRGAQ2HCuNtx0DMcwzD9Nog/yWK6TxI13KerBSObB3XRJhybBYJ+WLNACTpEnktFVku5t65Y2gFCu9s97iriLpFzk+TiOPuoodRRcMHIEncV1OVObRRyzHQD8jt9vDzyHJCWV3FHt9xDXxhvYFRlKLrmnjSCxCnApaeYxyRnlOay6pgyoWoUHcnRVpczC8yvtfDCK6pY73t4GbXxUbLwTDMMAhSjKMMj3b9SpPmKzdb2J3GuNk+n35Quc+rRV56mVhp2Pj63Tb8hFeasYdzqrqtwzVJxNqzaI61XWMOoXcVdLmeT9q4h3O89ZaNYZDidqEttDkI0XYNjEOOd5ZdPFg6qj32rB9iGKRgjFgePyxH38NhaioeLNUQJjn2JwmEkBiHGbo1Aw2bigfTOIOQ1KjVFEKUlyyT2Sh1/t7k0n34jDU0cvcMU9rjGSPXy6xAnUpJ2myvhiEYqAlxd8nBg6X6ld8XUk6mGnWLio9cCCzWLLgmUbVKgetnvQCjMEPCc3z1ZhujKEWc5oi5wIerTdSusRh1XI6yVDOhFFTD2XU5ClPsTmIYmoJMSNRMDV3PwErDwg92fDQdKpq/aRHFTzL88vd30XJ1/EtfWodnnl3M3Gg5+BceLiHJBG50HLRdA69HEW5fUYP9tCjnsa4quNF24Kcc3QJpPxvtNEec5Wg7BnanEfamKdquCZ4L3Fg8oGeqBTrx0e4U/SD9oVL1zxMXzTr+HID/LYAXjLEXIJz6BoC/AuB/c8Vju1QEKceLfoCtUYSWo2ES51Uhh4T/CEFVvuBSnM3UFawZ1w/6MjQFXy4c4DaHIYKEw9SUYpulYKCJuT2KUbOou705iPB4zyex1MS6NoTMm4ahqWhYdBgHhXhdLiR2J+RCBaAQxyaNkbqtV+iCMOXYHcfoBwlycTb0XkqJv/XxDr5xf+FMVNtpsdq08Ye+uIb/6tdf4o/95K25LuPHr8f4s3/jY3xncwRNYfiTP3sX/9Yv3r+WajNjDJ6pY63lYHcSQ1Ops1Vu8E/3fDza86EqDL/jbgeyoGzNXqj8hON5j3QEzksdu2hYuooFz4KlZRhFKTZaTpWADYKUCpGZwIfrDbQcA5amzCW3swK8NzrOhQ7vLBfIOFEeXFM9FzXDjzM82p1WopyLNWtOzPJw97Ds7tiGgrsL3qXedVjZqtKBcB7ts++9GmNzGMHRVby7WsNG+2Cfqlv63HMaBmQaoCqElnvbKEop6QKjMlZ1mt9duVyy84PtKb71fABFYbi7eLlD3zM1uAU6CgC6NQNt9+C97k0T/GB7gknM8f5qDS2XXHJmL95l0TPjVy9kqygkyr7ctDCOMkoUWgbWmg5YoZXx688GSLnA+2t1rLVssEJYvrysljpuKRdYapjntmfencR4NQyxNYqx2qSCYvm5FeV0cWFdVXC76xb7NYk6L9YspFzg0S51kcOC8iLF+SkimqrMjf+0Dr6UsmomrbVs5AJ4NQhh6wqWG/YRSpGpqcc6MqVc4PEemURstGlNvixg/VkuLpWo5VLiVsdDxzWRCQHGSAh3dxLDMzW0isvq9jiClMAn21OMI36h93fRsPQDBDd1UDl0lR2h2DKQeLCfcHyl1kLLMfBoz8eTPR8dj9zszjJDuWykXCATAuYxSNfZODxPyggSjv1pgpiTEHGY5vhnz/pYb7nYaDtzDcXLFiguEwkX0BQqPDHGsNiwKhJSP0iLZhOgMmAQkr7mesvGct3CIEjhM16hxa56j2eMYbFuVdSuccxhaeQUxiGgzlx6tscR/vmzAUxVBSTgmfqRM2wQpHg9jKCpNL7zNplyKfD57hSbwxARJ3H+tmug5ej4+PUEAOWOALDUsLB0Afrlvp9Uwum6plyqMEB6TVSIcE1tLqe60XawN42R53SJVhVyZSznWJKJOYRp8w3ufsMgrei/5f2g1GC0DRWjKMMk5rjVcUiHLeRYbJj4ys0OrEN5n5QSUUr7EEBooIcr17O2LxOuqaPtmhCS1vZay8Z6cTbyXOC7r8bo+ykWaga+dKMFhbEjBYvSQMUx1Uuj+rJcFNphEqtNq3qvNUtHlkukucAPtifYGsVoOjq+fqdN502L5surYYiWa2DBs65W6xUHdHABgaWahbZLdwMhJAZ+Ci4EHIOeSZhy9P2UnHJ5XkjNkDawcU2OcgAVpR7v+0gyURl7CCExikj71tZVPN7zIaTEomdic1gifhQS5a5bWCykDcpcLkovpul6XARpjt98MYRjqPg97y/DMc+jjTfPYlpvUaHnup3pSjMe21CwVOgIL9etI8X/SZxhGmdwdDL54YLOwcWaciztMReyOn8O7ic/mnGht11Q+P40Y+zfAXCv+PJjKWV05SO7ZOQCqNsalhsm6pZeVGrphR6gEw5Ez0paWZKdL1G6yhBFQpXkYk60T1Go6xokOWqWVliNS6iFHfSPir7UcVG3NLQ9AxkXWKiZ2JuQQ1+YctxeoEvnOMyqBUI6G2aFEkt4jt40xWrTrt7NSfFk38frUYQ/+XN333jc/9Yv3scvf7KLP/Fffgt/7X/yNZiaiv/w7z3Cf/5PnqHtGvizv/chPt4a4y/9/cdwTQ3/xjfe/HceFy3HKBIiFa6hwrX0qjgxiTmynLoRj/Z9GCq5jT1cOdBRCZMD6lhwDHXsKkIvKG+uqeJmhzbrsjCYclHBrLfHYQUxJttXSjCjNK8EeIOEXyh5tHQVi3UTQcLPLEqtNm3Yhoq9KbAzIV2Cp3s+hKB1f1LnoxSUjFJxrL7EeWK5bmEHMRxDPbUodbvrYhpz1G0Nv/a4T8WR/SlaHrkwnkQRLtdGiYZ524Wpnp9iZ0xJ803lYsXFw2ForOp8evrlE5D3V+rQFVZots1fRhWFxL4B4Hk/RJjSBGQFEggoLsuFsK+f8CunMy3UTNJm8QzYGon2lyilJBNVsjCOM/C+RJIJ7E9ZVRzIclHphPgxx3lZm6rCEGVEyWNgCJKLJ3qH33dcITrp4s/AoGkKbl5DF253klSW4u8seQgS6vzmggor59W6ibK8MgfwE164EqFAjF3uTG05JDJO6CIFqqIULrUkKL43jWGoKgYhGUKUvz9I8uNtX644pjGJpvpJPtdwAQgt90TzsWialWlGqRsXZjna17SlKArDUt28NOq7ZumwTRUtaYBzic1RiJRLGIoC2aT9+206CM1G3dJI9yYnlIuuknmIqjAkWY44o3kc8xx+cTYOimJDie69v1SDoSnXvseXZ9Ri3aycutouSQl8Z3OEvl80COvGsTo05TnJc4k4y89dmKpZOoSUyHOJV4MYz5sB3lttgDGGtZaNUZheupg465alXrJ5mHLSYyOzExJJLnOq3Ulc7Xstx4BjanOonbp98P7flC43uyepCrltvSou8rOF5klMxcwSUXHcxy6f7d40PtON7IcRaoGatQ1CibRd48CJjzGMo7TSXny8N4WUbO4eBxzkREQ/vxzaPeGiol0HSY5OUd8q0fcA0Z9zITEK02q+mYVra8PWCq20o4XcNw0/5pBS4kU/RMoFpjHHO0s1hIVkBED6Wzc7bkUXrlsaVMaw0rCqZsl1sm0yISqTI3L+BXYmMfqFy2q7MOUAKM8pz1/P0rBY16o9qCyiMIYrEelXFYa6pcGzdFxWXu31kLSRZ/fo64jyXJhEHH5MhlJxlh9pnPX9FBmXGPMMEmTOcrPjYrlhHXv+ES2SGqPdt4AefpO47C1AAvhFAD8FQDLGfhXAfyyljE//tusPQlHYWPCIe912zSMH5qy+BYnUJte2YIOEzwldzoZWdGYo5jfRxbqJOCNB9YUadRIMjSzFF8+pNyKExCTOYBvqW6P+McbmutVrTRueSYKx5UFTs3Ts+wkY2BF3A0NVqUhX0K9Oi3/4Genw/+yDi9N/Dsdq08Z/9Ee+hD/+S7+Bn/zf/30AVEz5I1+7gT/1u95Fw9HJ6TET+D/+8uf43R8s42bn6iGdisJO7Nw/WK5V9ui2rlboBDkj7NxyDQRpTjDnE5LzlIsK5XDZOEmXZ6lu4faCgzgTWGvaxWEOzAo11G0d9ZhcBjvu8e9YSolJxGEe0905r95OqaVgagqiVCDN8nMlC0t1i4T4rXk0WpzlSAqB1rOSHrIwP3t+lHpsAPDOoouXgwiuqcBQTx/nQs1EmgsYqoLazBpKeI4ozSsL8rcRJ2xvczGOMhiF3tzh+GijhWGYQVMVPHgDhIZn6RUa9XAs1izcX/bgJxyucSByPzsvbUMlwdM0P3HvOW0/PyvK5PW46HgGbi+4iFKOO11vTvupDEufHd/Ja+Dw+u66BjaaNhoFzegwffE8IWcelJSE4OtNKdnseuZb0+a70SaB9ue9ANOYH6FynBZ1iy6RaS6KfYE663ElVH40znrf6jH7dV6gExxTrfSuSlTpYs1EmssrpZWdtZ+3HRNwUCGWy9C1Qig35mg5RvV8DM1F3dIvVByYxISmOw9KwNSUc+cwJ8VGy8HrYQQJgdsduoRZOiGxr7ujfVowxo6shUpHzyJNQE0lM5BRyJHldIkdl+fkTBy3x9PlPLuShtPJZxRppjWdHIbK8GCpdmz+ODu+w3ncaed33dJxq+tiGKRY8Iy57227xqVct2bHZKgKVPX0uXiR+dp2ac9VGBVzn/dDSMg5Dbkyjnv/l42GTfqDQuLIM/FMDaMCeeuaKkyNtP1K2YeTPsdPv7NQuHEe/7mzXFRutdchBXFalHpEh0NVGD5Ya+DlIMJy3UKWU/Ho8La80iBTlIZ9solJuZ8LSevosKuka6gFNVscm98yxnBvwcOeT8Yqs3dLz9Su1a1tsV64+6kMlnbwe2xdhamTzEuzkFHoeha+fJMKPSUd8jRn+TcJKQlsULPoDr1QmHod1zh2DRUTlRE9tbhDJJlA85Dek6aS9uNVRd3S8eVbrUpsfzZ4LigvNI9S/99mSEnUxtKMp6nphVP08f++YevwY14J3gdpfqYJwKzszo9yXHYV/TUAUwD/UfHnPwLglwD84asY1JuEqal4uFJHkGTgORVznuwT/YEKPHIuCT0sUnuVMY0zPO+FJ/79St0izRP96IWtbul4f7VeLdbDye/2OCJ6g2fCMlQo7GiRZ3MYYhLNuw2+7VAUdoRmZxsqHi7XMIkO0D2qwnBnwcXzfgDHUPGiH0BKiQfLxydFABWm3ln0jqVtXCZ+5v4C/j//85/GX/+NV2AM+AMfrc7BnRlj+At/8H38g8/28H/5+4/xH/zhj67k95436raOr99uY5rwCgXhGvMJREm9Aai71/MTdNwDSqQo6EBl5/6qQ1EYvrjRqtZfzSKhyM7MHFAVVhX1/MJd0NAU3O641RwtdVHOanrlQmJSwIRP2pBrlo4vF5bPQcIRpLyCCUsp8XIQIkhyrDVtEqQ/Rlsu4W/m7pTlAn7M4VknH34bbRdrTQdpLjCJszkU0jjM8HoUwTEIpWbpR+HqJdVLCKBh8ys92A9H1zOgMHqXZ6ETSr0txsjZ7XDi7BgabrQJtq9csst9nnh/lXSoEp6D5xKaqhzRVSobBeWzzHKBG20HrqmduZ+/SWiqgg9W65hEGWyd3vE4yo4g0crxCSHxdN9HUlCByjPs8PrmucA3n/YxDFOsNR2st+xzXTjKpkZZOF3wTKiF1k35vh+uULf6ukU0F2smNJVBV8hOfhgQolZX2YV+92FoPkDuc9vjGOMow82OM/fzLvu+u54JTWHQVQVCykLMl4Rcz3PpFkLieT848m5P+ren7ecd1wADIUmO0xC7VdA0T8ozZvfHuk2uuofzjFlnx1Lz5qw4z354WpTUL8YYxmGGTAjkObm3/crjHu50XDxYrr31y/VpwdiBzuA4zLDRtmEXDlWeqcEqXB/Lc6zc4/t+gk+3p+TIWqBGrhPxoqsKPlxrYMEzsNay4Z5Ae5k9g1Iu8KLvQ0jSOCtdwo5bnoam4Ku32niw5CHhJ7v7zTZWUy7wahjB1BTcmskTjovj5vlslBRE4Pj5amgKbnVdhClHxzWhKmyugDe77xFy9PhGUIluCdMcay37wii+cZRVxX+vQDmtt2xI0Pxfm1m3poY5eY8y96tbOjxTQ90m/VxDU9DWTt6DDtxq1R8puZAbbRcLnomEUyHUT4+iIpuOUa2vl/0QfsKx0rCq+8fsfp5kAs97YaUDNo2zU+fXaiHHYGoMQpKOoXONRajDIYTEs16AF/0QTUeHqqLK73JB6EzPVKHP3JWus0g2GzHP8XIQQlcZJKjxcKd78AyX61TAM3Wl0uCLUo6EC9St69ExPBwKIwOYlYZ1JGd43g8QpaT7eZqJWal3OLtHX2UkPMfmIEKUUZGsbuu46ThV/nA4Zs/ASZzB0JQfKWO0N4nLzogHUsrZW/k/YIx95yoGdBURpTme7tMG5JoqwoJaFKVH4XDXGce5HM2GorBT6SKnJd3lgfVkP6g2oJvdeUpNCfUtOwTKCe5EP4zYnSboTdO5y6pjkEZMb0oQxSjNMY4yLNaOFqYSnuOfPx/gX/vxm1c6rrsLHv7073n3xL9frFv4o1+/gb/2T1/g3/5dD96483vR2BrHFeT/3TMS7/0pOeL1/KQqpEjg0oiP80acHay/pbp56jMaFrQXnucIUl5dwsq1c9ZQX/SDgj9PxdeT1kz5ddfU5rqkCReYRAUMOkhOTGpzcdChK1EQF4nnvQBxJmDq8/Dzw6EoDJZytOtJumt0KUm4OLYrOutAlV2jAxVAz/O8nRcuDt7lcRfol4MQL/p0Uaif0Mm9ishygacFRaPp6Ng4ZV76Ma8g58OQDAfO2s/fNF4MQoRJDk1N8HClfuy+V0aY5RVldhgcdH4Pr+9pzBEkOXgOjKIU561Hv54xDij3mcPv+225uigzLlJP9v3iGdF6f9MYBAcUkTgTcw2iy77vw4Wai1JCT3q3x8VZ+/l51ulp77HcH8dxhpf9EGstG7e6ztyY+Mykys/5zJ71AiSZgKUreOeU/fA84y737NejCJOYg3MJP6F533B+9BL1vUmM3UIH6d4i6UCqCjtRc6xfzNFRmFW08us+w/tBioRLvOhHeHf5qCj74ZjG8/IM5zm/zzLJKBurigI4ulrlCVGWv5F+z6zD30luf6ehX8p5x3OBJ/vUCGo6/MjdIs5ERbEaBOmFC1OzYyvP89km72nrdn9K8h+/tTnCrY4LN0zPhZgpc5vrdLC8TORC4mkvgCikWk5jKySc7g0A5U3lMztuPy/3rmGQVfMrzPIj714t7mpbowh9n+4t7yx5b42JEhQu7Twn1kbTPhDCftrzC93Vt+fKPBfFY+0H5Lp3+BkevufyIg87ad1cR8QZx844we40wVrTgT5TwCnvyWfN+ZP0Dq8qJAiZ3vdT2LqGvp/i4Uodp/3K0jSnLLQfPpt/u8Zld/dvM8Z+XEr5TQBgjH0dwK9d3bAuFgkX2JvEWKyT1fsPdibYGkVYadhgUOEnGRhjuNl9uyr0TUdHJsS5qC6HY28ak45I3aoWOM9F5drVcnUMgwyepVYbw+GkcL1lox+k8EwNCRd4vO9DV6kj8MPgmPcKYcqGo0PMXFancYZhSIW2aczRcnXoKokqn6Rd871XY6Rc4Gu3j6fuXGf8az9+E3/1157jr3/rFf7Nn7t39jdcYURpjpeDABLUmawVhak4y7E1ihCkOZYKiGzbNdD307lkRlUIIlsmTNcRXEjsTmIEKXV2y8IUzwVejyIkmSDBUNdEwyG4qqkpc52T1aaNnp+cScsoCx1l4Ygx0gN4NQyhqwrWWvaJhwnPBRXGBDk5tU7hsjuGhrWWjTjLL0XD4RWC5QDJsjmkcbYcA7e77rHJtpQSPT8t1gs5/JkndEV0VcFG24GfkIPHZWIUptgakRbBRtu+kuLDgmtg4CewdfXYz6gpwDBMALAjoq1XGUJK9IMEozDDSsPCesvG61FUwdCXGlaV7LnmDDy+mBdvsp+fJ8r1keUCq00LDfvApfT1KEKQcDgmGQ/YugrbUBBnYq6Yenh9e5YGz1QxTTI4uoq9aYy15tnvdbaYyHOJlwNCZ220nbfWiT0uZtf7SX//rBeAC9LXiDKBtmOcaI7hFuhcSvTn19Vl33d+QqGmfI+5kDB1BcMgIz3MOrnUWjrZZdu6CktXkHBxJvrjTfZzKWk8vHBim+22+gnHNCbXSsdUMQyTigJx+NnPOjsCwCdbkzP3D55LDMIEfpzDs7RzOTmW0fcTbA5C1CxyFirHvVy3EKU59rSYbMfNHw3XsTL2p6SVlvAcWvGw8mJyTeOsolj1C1fbtaZdON0a2BmTEc5yw6oc/K4zciEQZRy70wSaynB3watyxid7Pnp+ggdLNTSLdeVZGnSNUeHA0qnBeI7z+6QIU45nvQCQQLdmom7r8BOOKCNtLsdQL3U2+QnHvp8gSDlud9w30q8REpVWZsIFXvapGbfWsklTjFOzzSwkOC4abdfA3iRBz0/Qds///eMowyTOkOfkFgecvF/ORpTmSHOSArjddbEzjtF2jR8JFIaQEtOIY3dKYyoR1lku8HoYIUw5mraBhTpROT1LQ5DwuZxudj/XVQWLdbNC8jccHZOY8lBbVzGNM2yPY+SCaNdlcf/1KMLWKCrc+N7e53cMrdJ/M1QFQcKxOQjJzS4XABh4cb6MwwyL9eNpkdcRhqag4xlYaVrYGcewdKWQGsmxNSLHPVNlyCWdFbPrZmcSk9u0Z5xbouOysTeJ0a2ZR1CcCzUDm4MIG42rqw9sj4nx0a0Z5y5mlY6FrqEhTPO5ubszjvHpzgQKIxr7LKpvtqB2XUyYtx2XPd2+DuB/zBh7Wfz5BoBPGWPfAyCllF+4ktGdM0Th+lZecjWFxAq/82qIpm3g7qIHBjaXePoJxyhM0XKMK3dPKIOxk7tg4yjDx69HyHPgyzdb8GYSjZQL7I6po7Yzjqoq+OtRVB3WX7/dxnrLgZQkxgd21DrV0g/ciTYHITIukRWH5VXbmJ4nen4CP+bYHkX44o0mNJXBUBVsj2MIKfF6GKHlGAhSjq/caqHnp3i852O1edR56TdeDAHgRMvw64w7Cx5+/E4b/9Wvv8Sf/Nm7bw05AFACaOsabENFmBCqQ0hUh8D+NMEkIqHibs3EB2t1vBpG+N6rcUVBO+zwdtVhagqswgaeMeL1D8MUGScR3mc9Hy2Xku2FmomNlgNTV/DZzhSMkSC4pasz+msnx0bbwWDGajtIyI3k9ZCKK4pCiXSY5vhoo1kd1lGa43uvRxCStFeOo5gdjjfRvrjZcTAKs2qNDgqb3N40BSQwCBLEmcDNgoICUKHis90pFRcdA6tN+0z0w3E0xItEz6fu/DjKsJRfXqB4NgZhBoAhyo5SFAHav/cm1OG9TlSSqZHWnqHmGAQptsf0/J/1AtQdDWkucavjYHscw0+og+qYGtwZEdbr7Jh1PROvhzFaDjUdXEPD3jRBmNJl4VnPR93WsTOOsVS3sNywqcA5CLGvK7jT9aAUVtLlMw7THLqmYG8SY39Cc6xm6mg4erUujzsD14rCsGtoyISYQfCkP9TC1I1ivddt/dh9dxbp9tnOFF3PQpRGVWGqPC+HYQpDVRBxgY5rIuE5vvdqDENXcGfBLUSEL/e+u54JiaP0uUmcVZp7H78O4MfkWtutm7B0BW2H1pttqBdCEZ22n/f8BL/1cgTP0vBjN1tztLlJxDEMsurfzdJYv7s5QsRzrDZsPFyp43bHxb6fQJmho5Ux6+z4ZN+v9o9Fbp64p97qOtifJlismehN03MXpvyE4/MdHzuTGA1bh20cnBOle91JFKTy3feDBLZO+itRJi5Fzb5M9HxCvTIwdFwDpk4Y9hf9ALsTKty/6IeVFhgDFa6aNrkjPuv5eLznY6P1ZmYT54n1Fp1Xix5pwPgJh6YwvB5F+PaLEQxNQZTm+MJGE35MRhE32y6e9QI87we4s+Ce6/w+KbaLQtw4yrBUN6GpCp73A0wjDiFJH608j4WQ2J3GUBkhM07Lx4ZBCiHozLffsHBpaApudJxKBL4UeLYNFS1Hx6thBNfQ4JoqPFPDrz7aR5ZLfLTeQPuMczzOcvSKAlrTMTAIjmqQnRRbowg1UwdjwDRK8f3tMb603gRAxVEuBBZrR12+hmEKXVHBdIbnPSr8Rll+Lq3M6w690KesmTpcQ0PPT5BwgSwXGPgZXg7CSoPJNlQ0baIwbo2o8HGr687t55rKqkJI30+wPSajmpql4WU/xCBMsDWKoCkKkkyQ3q+iQFeIjlbmuG8jslzg6T41W260HfxgZ4og5QjTHDfaLhyD7gO6wvDdV2N4FuW9b6swpSqkGbU9itGtGahZOl4NQ3Jlz6nILAFYmoKdcYy1ll2tm90JFf/2p8m1FqaEBLbGIQxdweEMc3eSQFMU9ILkSkTBpZQVo6k3Tc+dQ5QyCcMghaEpcAwVL/shPEvDbzwfYGcSI8kETFUpJCZc2IaKrls0ho45m3+7xmUzzN99mW9ijK0C+O8AvAfAk1Jyxti/DeAPAngB4I9JKTPG2L8K4N8EMADwR6WUk7N+tqEdbBp7kwQv+gHAgJQTlLPrmXP6JS/6BCWcxvyHYpu6P02wNynpeD4+2mhWf6cpDKZOG2KJInk9ivDJ9gTjMIWpaRhGGWxTqyyAz4qyaGdoCpxr3lDDlGNrFMPUFKy3DrqmLcfA5zs+bF3FziTG+6sNSElFRSnpQN+Z0AHxZN+HXjgkDsP0aGHq+QB3uu5b23wPxx/+sQ38r/76d/BbmyN86cb1F8fGUYb9aQxdVbDStCAlIAD0CkqAoTGojEFRyE0OkoMxVoisUlIzDNNrTcBLFJCUEst1E1Em0PEMvOiHhcsGh21QAcnSFfT8BKamYhpzLNbMqto/jfm5D/3DBSxDIwekmqXBUBl2RzGe9kK0XB3P9oNqvrwckGPgNOa4u+CeqWX1pkE2s9rcny1NgaFR1+/jrTHqlo6E57i/5IExhr1pgnGYoe+n1ee67mg5OqLCFdK4In0WZebHHOeU9HIYYmscQUrg060zt/oLxyTOsDeJ4Zk6bnYc7E3ImWhvGkNVGVQFsDSi0+z7hKh6NQwLIVF2InXyqoL0U8puu4Usl2g6OnanCQZ+ioTnRMVmVMjfn9LFOs4ETE0p3KMEYn7UbW8aZfjOyxH2JgksXSV0YiFIXK7LScQr578ySst0ABXCJ+Uk1PzDjLMK1o6pVl3kxZoFITGH2hhHGXbGMZ7sB2gVKATP1PBoz0fT1skNNuYwvcu/b3KdO9hnR2GK/Sk9/9KFqDeleeanGRbqJnWNXXNurVxFPNqdVvvccGE+STZ1pRpP+YyklHiyP8XHW2M0bB1W0cw7/JlOiqZN+wcZrpz8YRxDw/1lD71peiEBe5Ux6BqhUXbGHCtN89wFkHGU4fUwwvN+iJajIcxybLRcDILrPRejNMfrUYQozaEVOmOrLRrzp9sTpFxgZxLhdser3gNjRI1RGMM05rjZcehcB1Fyz0LSvWkMghR6IVJsaApcQ8Xnuz6SjGMUJVis2TB1paKQpHmOmqXPneFvsoZcQ0OY5Fhtami7Jn5rc4hxSIX0hSibO0d6flJdBONMIOFkZnBcXnzVeXDZCAoSXrkr2gWaq1xbqsKwNY6wX4zx5SA8szC1OQgRFwXBUZgdKyJ/UrgGFfQUBuxMUpiqihfDECstu3JWlZJQ6UHCsT2OYBsamrZOBXtFAStyjcs6G15VlKjOOMvR9cxKJ4s+B0MmyLmNMWqI7vsJmraBScShF7TXaUwmAydp2Q1DEpgeBClGIQnKD4IUlqYVGoF5VRjUVaKV120Nj/f8I3ec64gg4ZUb7+N9H2kuMI54NYdqlobFuoUf7EwgJBV1Z01WeE76bEJKbLSdaxH4LhscgyDFOMqQcdKHq5mkjcYY0AtobimMVYVrCaA/TZDmAo/3plht2teiORWmOfp+hiSbQAgBzDwDVWEQQl7ZXCctQR2jMLtwM7sUO0+5wJP9KTSFcja7QKExSAzCDJah4eUgxINCO7o8mxOe49Uwglroaf6ouW+eNy41A6SULxhjLQAbsz9DSvmbZ3zrAMC/AOC/BgDG2AKAn5NS/hRj7E8B+EOMsb8B4E8A+BkA/zKAfwPAf3DaD7V0EupTFFZ00CzcW6zh0Z6PhqPh/pKHumXg1TDCwE+w1LCgKQypkNXmVcYkzpBygv+/iVj4WXalizVyC1MYqxLkMtJcoG5qyHTiqD/enSLKBBoWWcivt2zY5zyoojTHNMnQtI05MfXrjP1pgqjo8rddo4JdL9UtPFypIc4ODonNYQQhRHGRMCtXAcdQoasKgiRH9xjntm+9GOIXHi5d+2c5KX7hvSXoKsPf/N72WylM7RU2xREEFusmeC6wM4qwO03QdAyYuoEP1mrgwsM04RiHHIwBVuE0Ngqzay/iDcOssjptuzo8U8XATyvRblUB1poWbnddJFygaSfV5brh6BgVugB1+/IHk66SgOGdBRcpz/FPn/QJUh8r1eWD5wLb4whxRpS3pYaFScTRdo8v/lzWevi08EwN76028P5aAx+/GsNQFYyjDO+uHKzRYZCiHyTwLBUbLRtpTu5bxx3cVzXGjkcU0FJUmAtR/fmskFKiH6RQ2bzhwWLNgqmqUBQci07teiYsTUWYckTZ1VNM9yYxfrA1xSTO8HPvLuLhSr1w8VLQLlyhPEND2zMrbYqWQ4iGun0ydfKqYhimFSKp4+lQGcMwSLE9iSudkftLNTxcriMTEjvjCLmgRLxduPTZhgr7mIvWNOFYqtvwU1r/X9xoVEU2XSUL8sNn4OFQFYb7S7Uz51hY6GCYmordooh+s+28selG2VHd9xNYGtFVTyoUlusfoPmYcDH3/kpNvtIdbaVhIUpy1C0NfsKRS3kpjYasoAU7M9o0O+MYo4gSdacoJN5f8gAGjKMUe9MEUZphtUHuXitNu0IoDoIUDDiRgnjeWKxZ6E2psN2Y+VxSSgQJNQRinmOn6FwbmoIgJhqBAjJkOE/M5hnn3S9WGjaW6/NitEJIDMIUuqrMIT/LuWcbZG5Dl34JnqMqhB2OQZBCShLX3pnE2B4T1V1TGDRNxaJFgtDd2vV2mct8SFeVSgMkFxKDICWjiyhFziXClOPdlXohiA68GkbFelIq5E3CjxfCvcqIsxx9P0XKJbJcQEiJ5/0QgISmqvhwrYGGo+Nux8PzISHxTU1Fw6bLmMIwh+hKOF06b7Tdqmg8DNIjeo+zsdyw0HR06CqdyU2HmsuuqeCD9cZcYW5WZ7MXxNAVFVEao1MUMmajNBUaRxnGUXbuuZrlAi+KZ3Cj7UJXWVU4bLuEOC21I0vq290FD2FKRbJpnMExiN60eIbbdPWZMoGmpWMcp1W+PApTZLlEx9XxehQjTHOsNq25PWujbWORm9AVhp6fYhSmJECtHBSidVUpmsIxolQgSlN0XAPvrzYA0ByI0gO30ovmAlcVYZpXRY+EE905yQT6wUGzeqPt4O6CCyHpYj+NOQxNQdczsDshCvJpxZiuZ2BrRPMlSnPkQuLeolfMYYndaYIwyRGmOTxLha2p8GNC7kVpjqZzfQZaAOWKtqGCi8LASxD11zU1RBlHP6ACqaZQjqvPoMGklBgVzwSgPfE6kEndmkHUNY9cwTNOZ8uNjgMFwOM9H1tJBK6pMFKOQUgU4bWmjaat4el+iCgV2JskuNW9DkS2hJQCTceCcYgFcLvjIkjzOXr0SbnsaVGeXUaRo6y3Lp6TtxzaKzRFgaqo8OMcusbw4UYDeDWGrpjgAlAYKr3B2RgEaaWpXe5vvx3jUjOAMfbvAvhjAJ7gwHBbAvj5075PShkDiGde1tcA/MPiv/8ugD8K4BMA3yvQVH8XwF8+ezyUPA+DFFujCDwXsDQF95dcfGG9heWGhXGYYXccY3scYxRneLhcg2voFQcboE3mReHakHJxaShyKZDXdPQThd3qto7f+f4SYi4qqogfZ/h8z8eooCp8sj3Bna4Lz9KhMHIX+2rLLjrsMfzkdDF3KSWe9kiccRJlb00Yr2bp1LHQGLbHEaKUiilLdSpKBAkhMnbGMb71fIgoJe2A1ZaNBc+EWSSlCzULoqAFxFleXUYSLjANM3z11tvXlyqjYev4qXtd/M3v7eDP/N6H135Ye5aGOEuR5XnluKIrdLl6tDuFrav4TFPwY7dauNF2EXk5FaZ0FUkmIGzSKDrOIvfKxmhqFfJoGGaIMo7XwxgrDQufbJPuyGY/xPurDby7UkfT1hFmOWydbNUdg1A6YZJDZaxKOIOE47uvRvhwrYFcSAhJyV85N2xjXixcVRhURcXAp07MSsPGRxuNaq2MI7pAmaqK5YaJvQKxF2dH19MoTCu3ljszOhuHI0pzfPNJHx+u1WEbGtL8AGXjJ0TZOUyxMzSFRG2jjHSDTBVfK+Z0+TkXPHICSbjAIMiwx0gYe3Yc4yjD5oA0te4uuG/sRFW6fLwc0F6YS3kuOPL+NKlEfVWVzV1OwoyjNyUB2MNugTfaDuqWBlUBFmtX47A5G0IAT3sBIs7xq497+F3vL0FKBkDiyX6A3UkMW1fxcLWOpboFSyc3tXFEl8LSzZHn8lqQCq6pgTFyLdyfpoUTWoQFz8SjXR/rLRu//nyI5bqJ+0t1PFiuF46cKkQh5C4liSMfdjnzTA2mTh3NBc9CNqNBMLsXnyeO2+NSLqAwgpE/3Q8gpMSz/QCGrmDBM9F2jDd+ZlujCK8GEXYmMToeFRlutJ1TBXDL8R4uYPWmCZI8xztLLpbrRIWcRHQJNzUqpJUFsIvYKr8eRpjGHIwleLBcg8oYnvUC7E1jCClwb6Fe6JbReL5+u43vbI4BJtH2TKwUxfEQHAM/xWc7U7imhndXam8Ez7+76GG5YRGiXKX95nkvwKtRCENR4CdECbmz4GFvmuDeogdNZdAUBs/S0DhHk2A+z+AXcvM6PKd2p3GFfrm76MJQFTzZD4i60CEKm2tquNEmDZyTnIiGQYrvbo4QZjkertThxxy6oqJukfulrqlwi4YZrR268AcJv/I17hWUNF1jVfF4qzAXGIckGt4PUkwSjq1RiC/eaGOtaWOpRho4uqpgaxyh6VDRz094VUC/jjBUBbrG8GQ/AmPAOOTFHsEQpCn8SEBTFIxijnsLXpXDJlzANQl5GqYcukp0WyEkolSQdIZr4Nce9+AnGW60Xby3Uj/xvJpdu7c7hI7PcnGEStx2DegqOYbuTGJ85+UYCc+r/PvwHJsmHJsDQnqJwmX3rBiFWUURHoUphmGGR7tT1C0dX9hooOkc1WIqHU0Bcoz7qXe6+Gx3gq1RDCGJLnlS3GyTbtzWOMSL1xG0gi61OYjAhcAgUCuHufJuUEa576Vc4OFKrSryMkZaYTHP8Ww/wHdfjbBSNOvK/eG4sfsJP8gFhHyrhj+mRnMxiHNEGcckJrQcz6loWrd0/Oqjfaw0bXyw1sDNjoMgzWFpCrJcom6TUP4wSI/kiQABEXIhUbc1uIaG9eJ+5ZoanvcC/NbmCA1bR5LlSHKBMCVdx4UaOa/Wbf3aKX1hRsXMuqVjbxqjN0ngJxy74xjPByHudD2MI46v3mqT/lpxnm8OQozCDK6pVnn5dcjW5ELCM0kDa3+aoG5p6BQutHEm8PnuFJ+8HsNP8oIZIQpEZFi5rusaQ8bltWnnGYUr4K3u/H7gJxzPewE0laFmHZxbp+WyJ8XOJK7ovKWpxUVCgtwiV+o2pgnpni7UFEgh8a0XQ3z8egI/ybDecmDq1ADLhZy7C3imVonzX1bf70chLjsL/hUAd6WU6Rv+/iaAkrsxBtA64WtHgjH2xwH8cQC4ceNGZSf7pOfDUBRsjSI0HR1P9n0s1kzYhlpUGCV0xpBLCctQ8LwfQlUY6paGUZidCvk8b5TUqVGYnVo11VQFXtG5eNkP8WtPeoCkzdLUFexNSJPpGw+6eLBYh2TU6fj+1pgeTpRh45ifS905OqhHISXdq823d5i0XYM2GAn8YGcKgJ7FUt0qLNrp+ZZdz4QLRFmOScjxaHsKAboI/8J7S4gzQbBkBXh3mS7kJaf/x269fX2p2fi9H67gH3z2XXzn1RhfnKFiXkesNGx0XBNhSkmVa2roTxO8GhId5+legKWGCfO1itWmU22KvWmC77waQWUMMc+x1nRwo+O8kQ7RSVF2s0uLcS4kVEZ0Ej+mC1cuJVRFQadmYKluwzNJ6+M7myOkXGAUZlhr2ajbWlVIzXKJJ3sBGoUAqhDUFZxE/MjcmA1NU3Cj7UJIOVdkdk2NrOZNFdOE40UvRMczoKmkodFxjSrZKKG1caEzcNLBnnCynVcUibZrIkoF2p6Bhk0UQoDsZo84mwFYrJsFJeDA/UhVGFxTLagREo/2prB1DXVLw9YogmdqVSdnMgP/DbMc9bdgkR5nOV72ySL4ZinEOPP4D+94WyNCj8ScHxFF/nR7gn0/IcHb/vTKx7rSJKHzzUIQvx9kWKmb+LXHffxgx0cuBN5bbVR7lGNo+Hxnis1hSJegAh4PAEv8dJfJy4RnapWj5OM9HykXcAwFmwMf4zDFOEih6wqSLIehqfhoo1ldzj7fmWB7FGMaZ1isWVioG3MNiI22g7/5ndcYhyk+fj3GjQ51luuWjuWGVe3FPBcXLmiOwhSbgwiKAtzpEh227DjHKaF9r0KAmjGinWkqwyBIkHFZObreKBA9kwKBZGrqsdSKKM2hsIImrGmQkoqvwyDDMMyw3rRg6CoGQYo4I0THjY6DG+dEfLFDc19RGF4PQ2yNYrQ9A3cXXFi6guc9H1FGKOCySFXSR/aKRHgUppjEHNOE4/6Si70JXWQXa+al0GflnjUOM3y2O8EPtidgTME4Im2NhAuoKsOXb5AG1UbLARcSmqJgGvNKhP9w8FwgyyWsAr3tx3Rx3GjbV6JNBwBBmlc0lnFI+nTjKEOQcqw2TLTc459JwnP0/LRqWLZcA37MsVS30DqEwN4axxj4KT7eGmHgp1d+0SzzIaLaz49VCIm6paEfxEhyiZW6jYGf4NHuFDVTx0LdgKYwTGNCjgghq73oukJRGN5Z8LA5iODHGYIsQ5SShfmrASG3hZS40XGrHLZfjJmBYWsc42bHwUrTIu0wRnRuz9LQ9xM83ffhxzmkQIXQOc+YXvQDvOyHqFkafse97tx+VRZm6paOmqVBxhLPeiHqtl4VdnMhsTeNEWd59X1ZLub+fFLULA17xdHkGCo+3Z5WKLK1FuUxLweUi93suMcWS3t+gpf9CGBUCDqtMFWep59uT6EwVC5iMadmH2N03quMIeU5nu77kKAmT3l/mXVrK5+BXaC2XhRC7ZqS4ifvdYAifzjtMp3loioGvy0tG01VcH+xhjDjeN4LkUtyLYuzHGmQ41kqEHOJVAgs1y14Xbe6sH/75QA8l0jzopCkMjxYOnCyHgbUdNwaRVAKGYyv3W6jZungucCzno+tcYSnez50jaHjmogY0K2RTutG20bd0t8YEXxajMODBqFnqviVRz3sTmgO3+w6iFJqepbgjLKoXjaqAMpdy7z8TZuWx0XKBZ73QkiQft4AKTSFoe+nGAQJLJ3WRpqLQoZEQs4ox5fvOJfyWmiGAD2DSZzj+1uTuTv+MEjRm1JTcKlmVmfDbP5Q/lcpOO+aKtZbRwvebxplDeP1KMRqw0bfT6EqwKdbU/T9pKJXx5kAz+mu1LDTuTtFzdKrXPK3K40PuHxh6mNQAWnvDX//CMBa8d/14s+j4r9nv3YkpJR/GQWa6itf+YpUisPP0cmFL8w4ghHRmSRKbrCBl/0AL/ohdE1BlAjsTRMMQ0poVxo2dI1hpWGh7RgYhxk2hyFsQ8XtGRX8s2KhZqLnJ2g554O9TosO2ChI8L3XY3Q9E/eXXCx6JuqOjttdD9rMQbdQM4nbLymJnT0k9qYxdscJVIVhuUFiqlxwWDOJYsJzPNnzEWUCD5drcK6hil4u/LZnYBIRxHMUptgekzCjBCUKXY+6/Z6lYXsU4tNdH0HM8WC5hp6fVEmilOTMoYIRfNk1cOeHLMr4O99bxp9Wvoe//f2day9M7U7o8mlpKrqegTBV8aofFqKIErbO0LQ92LoKISQUhWEaZ/i1xz28HkdoWBqW6geaMdcRYcorDQPP1GDpCoZ+gk93xtgaxXBMFWtNB56lVY4mUkp86+UQH78ew1BVmAYl74ddnHWNgeHAzSNI88qNYnZuAMCTvSmSXOJu14XWJiqAripzlI/9aYzNQYhegU5sOBpSLjDwUwQJx3LDwst+iLxw7HMM7Viq1GwwBriGXmmBBAmHN0O7K5+7EBJPiqTx/qKHuwse/ISjUdCJrEJPqjdN8LwfYHMQoWZpuNFxsFQ3MQpJRFlCYmecUIJaFLK8C/DzhZAVYu04ysONtlPB9w/Ho90Jvvl0CENl+D0fqlisE9qRIMjsCCpvFCV4vh9hqX5UnHYQJHg5CKlgYl59wXQacSzVTZg6XbpzIfBL33yBT7cnMDUVN7sOXIOg/5SQBvj1F30oUBCYHPeWDjpp/JrWzjgiXau6paPjWWi5Gv7v3xziac9H1zGw0nJgamql+QMAT/d9/MbzATIuASax0rTmxick8On2GE97AfaCFKuaCltX8LwXYG+S4CfutXF3oYaX/ZBQhI6OlYZVISDK9zSJCdlxmLIQFAgCIYCUS9xd8DAKUzg6IbnWmtaVJJqrDRu2ruKdJa8Q8x5D1xjSTBRonQBP9wIwJpELSjZrtoaapaPrmdgchPh0ewwuZFV47HqEPAEAW1fhpxwtjQR296cJBmEKz9LgGOq5CpGLNQsJD7FYM6vkf6Fw20uyHC8GIR7tTrHnx9CYgpWGjbWWBVVRKiRIGY6poik0CAF8uuPDjzlWGlZlWX7Z2BwG+P7rMb75tI93Fj2stx3kAuhoCmqmVlG9a4VuTpjmCJMce9P4CGIyFxKP9nzwXKJbM7DRcvBtf4iaSaLPdwtr+r6f4NUwgqWruN09/sI+G0s1mjPl5cHUaF/LcolcCDzd97E7ibEzThBnnPSamjYatg5n5jMIAQgIMMmw1rKxVLeOdJfL82oUZtBVBeMwQ8IFlKsW+sIBdYpcaQn9nWYcoyhFNObIcgkFhH75wc4U+9MYTceEqTcqh1XKZa9n/+n7CcZRRg54lo6nvaBy/11wDeRSYqdAanQ9E3VHw1JBSXve8/HtAqVUszQwhQorpZGFrat4uFyHUiAoGrYBXeVYbdqnXp7iLKdz0SZK386Ezuy9aYKUE8pvrXVA653EGSZRBkMjLb7DFK7dAtEgpSzo0xyTKEXfP7vIYukq3lupF+6TDJ2agaZNRbBSk+jj12PsThLcWwzxM/cXAZA7F0B7GBcSmkqN1e4ZFJuM5/iHP9jDN5/2oSrAT97tQmGkb5RkElnOsTnI0LB1mJpaUcEf7U6RcgEJovW0HQO5ODSfpUTCcygKw2LNhMoYHu1TQ6TtGZVhUhluISb+rZcDSBC97ks3m1dWfD4rtscR9qekFbzSsND3E/zSN18UgtkG1lsuHF2tECK5kPjnz/r4ZGsC19TgWSoYI4Ho2dVTOmJKEEI55jmEkPjGg8UKidm0dfxgFKDvcxhagN/34Sq+eKNZIW26NfNcLreXjVnHtd40wZN9H0/2fGgaCWXfWfAAJtGwNDzv+VDA4Gccaw0HCzUTwzCttLmOtguvNlTGUPRRqQmyM0U/TLFUUKVVpuDJ3hR3Fz3s+TEeLNXwtHCKX2va11aUAgABkkDIeE6HQ/G7Ep7jeT+ApatzRfKuZxTMi4Nc9pOtCb69OYSjq/j9X1w90rBZrlvVvDmpwMtzgYSLY11FyzuRMpN3Pd2b4jc3CVhwo2PjZttFxzXwrZdDSAn8ix+ugDGGlnNgBnMdxce3HZetSPx7AL7NGPsYQFJ+UUr5By74c34dwJ8E8H8A8AsAvgngcwAfMMbUma+dGZqq4N6iB72o1D7tBciFRC4kUk5dke1RgjATyIVEmOboeBI9P4EQErmgJLVpG1VyMwyJr/l030eQ8FNhx7OxUDMvlEDaOqG5MiELbSsFvSCFrqr4sF0/oimzWLMqCPirYYRaoZUAAHFxKc6FhBB0oJqaOudAMo05nvcDJJmEEAJfvd0591gvGp5BMNpBkGIYkltaludYrFlwLRUvhzFcQ0OacdRMHabGoDkaOp5RCeH1g6RAuRxQu37sZuutct2Pi4aj48fvtPHL39/Bn/rd717b74mzHHuTBE96PvYmMW53Xay3bIyiDGFGSIAFz4NjHmitAdTBBqNNdqVh4cFSHWDEY76O2BnH2BrF+K3NEVYbFh4s1yAg0Z9yJLlEW1XRss05d7k0F4jTHK3Cfvcn7rZJPHBm0/csDT97f4EoT8MIXEh0PQMM7MjceD2K8N1XBLiUQuL9tQaChOPxng8pqaO458cYhhwvBhEhuJiCpZqFiOd41gvhGAoUsMLpQsGNjnumE1nd1vAz73TRcg30/BSTOMNCkeSvCKKklvvK9jjCx8UYhZT4YI10f8oCgaEpWKqZeD0i6nEviKGrDtxCf+3znUlB02TVZWutddS58qx43g8QJDlsQzmW5nsapWUYkvtZooAg2qAu03Fj4LnA60GMKONIcx0pF4cuqKQhIqWEfgGR1/PE/jTBd1+Nse8nUBlwu8MwjjL0pnQxSTMJT9dQt41CxDZHnAm0HLPofjvouCYgUcy7q9dpE0LiN54P8Wh3ClNX8Ye/so6dSYJMFBo6eY66rWOtZeHmTDF+UtByoyzHR2sNtDxjbt0kPMfLPgnbvrNYw4MlDy3XwHdejcFziSe7ATRFwbdfjopEic7FlIs5yuXLfggp6dx4b/VgTnQ9AykXBaWBjDiWGzYWalalV3QVoSis2i/Ksy7NBFaaNp3lSQ7HUPG0TwLmL4chbF+Bn+S4t+DiSS/AdzfpM3/jwQLeWaqRk52tw9CoieOZsvj5Gm4vuBW15bxJ3stBSG66k6RqFG20bOyMQ2yPYvzK53vwk7y6HN1brMEz9UqkNhckbh/zHKNAwjZI2yzhAmGaI8vP1gI7KxgYBmGGtmsCCtCwiX40jTOYuorn/QD3l2pQFYY7C15FBdkdJ3AMbW4PzHJRFR6ilM7zrkf6J6VpQs9P8PGrMUZRhvWWjWmcnUmPVBSGlAv0/RTDIMOD5Rpud118sjXBp9s+up5R0SVIFFng9SjCF9abMCNeNEQICftgqQ4uRGUJf7gIsjOOESREea/ZKn7h4SK+vzWFbVxPYt/zE3zr+QDTmKPl6HjeDxAmAgkn19K6ZeDBUg1+Sg3VOCOEwXLdQjMhWjEVA9gc4uBNQwiJrVEMCYmn+z6WGzY+3Z4gyXLsjhO0HdK9c0wFXc/DIExRtwzsFU5a45jGa2iUg9NejqqgBqDKSdquga/faSNMOFZPQQxJKfF0n3L4UZji3mING00b3389Rs3S8LQXwrMM7E4T1C0dCzUT+9Ok+L0WvnzTgVpokpVRarJM4gw7kxgpJ4ph/QRE4OEoBc0B4P2VOryCSr1UtxBlvJKcmMQHQug/2CG0+INlcsJ2DQ1d10TtDMT6JOZ4NQyhKkCW0zsCCCGqMgU7kwjvrZKukGfpiDkVDXtTKjAKSWeXolDOA1Ae+awX4FkvwO2uCwngwXINvLgjAajoirOxOYiwPY4wCjnqtgY/5W9NFN1POD7fneKzHR+GyvAvfmG1Qs0LIYmKbuhYadjVnStIObiQaBUUzx+/0wEXEo4xX6jsuAaEkOh4OoQE/CQDY6zapx4s1QvHcxVJnkJTFMS5QC4F/sEP9hCmZFRTt6/P5bpdFIUBwFRttJ/0sG2SniTR3wRyATzeD1AztYpNMQlpj5k1triu0FXStup6BiYxh6Ur2B5H+M7rMTZaNpqujiwn2Y3tcQzGGJJMIMkEeoXkDQOwfooszZuGWjjWtVwDYSbQKF5XkHDEGaG7h2FaufIdl8v2/ARxSuceacfN/w5FYafmh2KmmdNy9SOISVNT0K0ZuNlxIAH0pjH+yeMegjhHw9ZQtwzcW6xjbxqDgVga/813tvBguYYP15q4vfDDd8+8qrhsYeq/APDvA/geyBzsXMEY0wH8LQAfAfjbAP4MgH/MGPtVAC8B/MXCle8/BfArAIYg3alzhamRhoNtaOi6FmxDQdezICTpvbgWoU0ggRstB7e6LqRkmMYpbF3DesuZE15uuQae9X0YhfNRkOQV9eEqQ1cVPFiqIUlzfPPZAOMoRce14Jk6atbxh6apqYgzAU1lmM23FusmhJQQkvRQXJPsvmc3zrpFG5amMOjq9W5agzAl16gsrxAjrkldtaQQd1QUhpplwdQUaJqCjmfgg7VGleAftpJOc4Gv/pBpfGX84sMl/Pn/9hM82ferLvFVh15oPkyiDLqiwI9zNG0Ddxa8wrklw62ui9tdDw2HhFWjLEfL0XG76yLlAu+vkvbRdYZrapjGGRgOUEwrDRt3F11ME6JhPFiuYaluVQgmxiRudcn2dL3pHKvrRnonNH8Pa0Adnhukd0NoEa1YGAkXVTci4TlahZXwStNCw9Kw0rBxa8HFy36IBc+EbarQVEDNyR3zPO49CmOVS8rhwvThw2o2OZoVMIw5JYUpF7AMFS1XR5wZaDkGVhomvrTexL6foOsZ0DUFpqaBC7Lxvgw3PymS0Tg79xZexf0lQsfYulrpVJwUQZKjWzPAhUDT1qv3Usbtrod3Fj0ADLfO0A26aEgQ1chPCF2R5hKuoeLuogemUPHgZscjIdMsB0DUh42Wja5nVonKRfSGLhqKwgrnPepphkmOjSYl2gpjaDsa3l2uY7lhw9LVinqy0rAhBBVuS+Hdw7FQM/HBWgOMMXz1VgsrTRsPlsghyjFJxLXtGJjEpLs2LOH//OCCYmqkq3HYGcrU1GOtxMtO43XFjUOC3N0aFVhWmib8hISboyyHAmr2qGBwdAVco0ZpWTjRVUIu1SwdL/shDE2BZ+po2AbqloZpTKLo54kSySJmCgYLNRNt10KYCkACnsWw6JlYbzvoeuacExwhnC3sTWJMFbr4OboGQxNorNSw1rTOfYE+KR4s1/BqEOKZEaLpUAGn6xGq2jW0ubEDqETjGcORopilk7U6F6ThpyoM9xY9xKmo9qI4y+FZGqYxPxZFeVKU8zsXElwICEF7FQNdVL98owU/4VBVCc4J+aCA9vZyb1mqm9idJKjb5onFRcfQisK8io2WC1VhuNX1oDCGP3Peh3qBiDM6hzIuCv0bHUJmcE0LXU8HUxR8uNbAJOZ4PYqw3rar8202f3sT1NxxQaZBSoHCZVVuuNa0UbcN3FmoIU5zRBk1MWxDq5zo/IRjpW4hzyUcU8X9pdqZDcPTKGyzUa6pclreX64jSHNsjyIkuYBtKBj4GWom0PdJGDtKRbGOj67bxZoFhQG2QaY6YcrR8cwLuUKWwRjNlTIsXcFXbrXweC8oUJkqciEwjajhHcQcHfeg6X0W8NbSVXy43iA5BAVYa9IzUxWGGx0Hi3VCgmqqUuUbJNshEKQcGQdqpl5ZygOEyi2LySmnoqeiMBjF3uMnvELBzUbMCeG3WDNQs3Xc6ry5juV5w9QUpFwW9HZyDVxp2riz4KJha3BMDQ9XaqgVGlphyqErtK9buopbHQcLJ+hjzjqau6aGRzs+ajYVr+IsLzQ7a8V/MzQK+h7tZwp4zhEdMte46mCMzaFV/9CX17H2fIAw4VhvOxgGGfRiz5MgpoIEkHCOJFfBwDCKsmvRlipDUw+QvKVEyK2Oh194SMWcuwseGtYEm/0IRmH45Zk6Mi4I3Sfn843rCFtXcX+xhoW6Ofcsmo5R6OepZ+LJ3lupgxdauMcZcp0VXMhq/ZW592wwNn+fyYXE1293CA1sKAXjhajC1CxM4OgackFOrcD/vzDVk1L+pYt+k5QyA6GgZuOfgYpcs//ulwD80mUGttywwMDw8w8XkOYCfkQoiLWmjQfLNdxfqs1pCGy0bHy6k1VJ0Oyh2rB1fO1Wh6h/Kju3SOxlQlEYPrrRxK0Ft6qsSgA3O8cf4httG62EFvf3tyaVOLOlk11230/xeM/H/aUabGV+3Iam4KfeWcAoTK9dtb/tGAhTDlvX8O5SDXt+giDlCGOiCNimAkNT8eO320hziZ+81z3zUnN3wcXv/2j1Wsd93vjF95fx5//bT/B3PtnF3W9cT2FKVRjeWazB0VW86IdouZQgLNRMfPV2E+stBzyn5MgxNHy+O0WS0QXhC+vNaxnTcbFUt/ATdzrUqWHAO4s17ExifLTRRM3U0CjmWsc1MAhSvB6SuOq9Re9MIePzxnLdwtfutJFxgRvFz2w5OuIsh5ASpq5icxBisW7iJ+91KqvYR7s+4iyHotAhNuuQddWxWLfwE3c7SHmOtZkkfa1po+cncA0Nm4MQTVvHg+UlcsIB8KwXwo85Ip6j5RlYrJuw9Mt3mdZbNgZBeim9iOWGjd/1wTIUxs6EYBsaAwNDzSQ64mFK9LsrdfyBL65iZxJf+TNf8Ey8v9bAYs1EJkjcmDENX73Vwu//aBVxlmMak1HDy0EIIeji97aMIsr46ftdeOYYDVtDy9XxvB/iKzdb6HgGDFUFFxILNRN+wivNsptdB1++eXKB3tQUrLVsCCmwOYjxZD/AatPGT9ztFiKpVEiWxc9abztwTUL7zRZT7yx4J7pB/ijESsPGSoHCT3gOpXA13J0kMFSG1aaNOBdYrVv4aKN5REOIHDLrc18bBESXHUUp7p9jLtzquBhH2Zx2X83S8eUbTSzWDAAMWS6K/a52osZfxzOxN40xTTKYmoL7y7Ur0zzSVAW/+P4yXVxzkjEAgA9W60hycWRMi3ULTqHHtzdJyNm1ZmClQbbz05hDUQ6K66amzq3fpboFKamZcBEnqNWmjb1JAseknycloR92p3ElYrvRqeP2Aj1zx1Dx2c4UCiMXMnJ0M87c1w47v5XP6LpioWbi7qKHvp+AC4GGo+Prt2x0agZej2JwLrAfpLi36GHjhLzvuuJO10PCc2yNIkSZwE/e60JKiZ6fIkpz3Ft00XAMxBkVdOJUYJJkeLYfoOnop+5DlwnGGG533ULjjOalqjB86UYLH6w1yFU7FxjWMgyDFB2Pij6n7VNRmmNnnEBIiYWagXHE0HGNc7nknWe8D1cauLsw78z30Y0GRgEhBhdqZqX9cpbGp2tqWG5YxX0GR7T6LF3FO4eaER2PmhB3Fly0HB2qosztHQ1bxyBIcavjYqluzq2PhZpZSHwEFVuhjDIvWWm0se/TPmBo8bW4ux0OXVXwM+904ZgqdEXBYt3C3jTGl2420XbIDTFKRYWY2xmT/tY7S96FTBgatoGv3G5jEmeVAdbNjo1uzcDvuLeAb7yzgK0xaVHVLB0PlmqIORXJ3xalkcbk4maHms25kHgxCLDZjxBnOUyN4d6yi4ZlYMEzsDmMkOUSzWvQkz1P3FukdzCNM9QtA3cWVPzMA8o99vwESZqjZmpYqFtHGsxXHaau4ut3O/hovTG3xy94pO/Kcwn1DETyza6LpYY1d15cJAxNwWrTQpDk52ouNG0d95druLPowo955b58b9HDct3EOErxzScDhCnH6hnN4d9ucdlM81uMsX8PwH+DeSrfb17JqN4gTE3FjY4DnotCIyGAlMAoyo61fcyEhKEeuL0dDncmaeWn2LVfRTB2QGn5cL0BUzuq/VJSJ5SiA1nSLOKMxlaz9KrjyHMqtqkzhalSf6hR6EhcdzQcHQ3ngLu73nLwbN9HqkrEXGDFseGYKrighVt+3iynDulxiaJjaNe+kZ031po2Plir45e/v4M/8Y271/Z7qFPmVsWWV0N677auwzE0NB0DWS4QxLyCZSdFR+K6EQyz0XQN/PjdLgB6h5M4Iwi1RjxyKQkGWwrYy8JylzFcyQHPGMNKwy6oJiTozBhdTqWU2BrHBUWPLoquaVQC56amziVlYcphXIDOc5Eo0RJ0kaYxuibpWIVZjngsoCpKZcUtBLnQlKKpJUImzi727Mr1D9DF+U0cGs//vkjLomkbJxaxTE3FUs2utDKuKhhjVUeZ5wKfbpOCbZqT0KttqJUw8uYgrBBJp+0/1xEtx8TPPyRdkt40LjR2VFi6Vl0AojSHHx+4cYVJDktTT6TMKYxso7/7aowsz7E94kiyHK6lo1kWiT2zQoOVBYDD5+RF0C4/7Cjn5GLdwmLdQpTm1KBZrME1VTiF2UKYctjGyTbiZS6QcVlRKU6LWRer2Sif72xBcRxm0FVW7S0Jz6ErDEqhz9Z2zcI1klDFVynGXeYNUtK+Yh2jLyclCQabmkod+Bkh3WGQYaVhVzmGEJRnHDdETWGnugafFIaqzDl3Msaw0bIxiTIkPK/0ZspnHqV59d6TC3ber9tR6/Dven+1jkd7PpICpXq7cFHdHsfQVAVBwudyzCwXUN6CkC2hpjTcnSnCxlmO/SmJwQ+DDN3awaWsYQGTvQINlPBj6NlvHo6hHcm1S8ddgPZmx9Cw1rQRpdR4mt2nZucxgOoyrzAGVS3ZFIXkwRXF4Wdwp+sB3YM/H3chLdeSpavFXqCQRmhEqB2GswtZZbRd40Q6vZASD1fmC/Czv69c44MgnStM2bqKmx0XUZpXTmXnEYy/qrBNDT/9zgIA0g9MMgFdIXZMiYYiCiXRJ6WkfZOBXWhOZrlANJN/jCPa6zRVwShMYWiEKs1yia/defuO4EJI8IIib2gKwpTovQs1E896ARRFgcaUas89XLh8m+PMhKjy1mGQQkLCNlToqor7yw6yrTGERSih91fr1y7LwkA6b4dP8lySMRidYWfPlTc9LygfOPr146jZWSHoL6TEx8GEmFAF1NKziB55f5nW88U5Dz/acdkKy5eK//3xma9JAD//ZsO5mpjGGb75pI/9KenPLNbNIxblZdRMFQs1Eh89rYrJc4HPd33kRed6+RorlK+GUdGVUHB/yasWbdkR0DWGewseNFVB2zMQFBuUWxzihzuOZWyPoznL9tJlo+QIX3cIIfGbLwd4PYzRdA3cWTjQ7nm850NRCGUTc3L8AqjqfiCAfrLD4Q8zfvHhMv7i3/v8WJHY64i+n+B5j0T87y958EwS7n60N4UQ5LyiKYCmKPhsZ1rRLK46cTwthJB43vPx2c4Ulqbg63dIx6yc29Q1VKEoCnYnMbJcYql+NY5nkzjDy34IxoC7Cx40heHbmyOMwhR3FzzoGoOmKHALiHvd0o7sAa9HEQZ+Cl1juL9YuxbnlVLDpeyCPNnz8XQ/wELdQN3SkXCBpkPrQ1EY1ls2CdQWhYTSsYUx4M6Ce2bBPEpz/N1Pd3Fv0SPRzLcUjAGP931MIg7LUI5Fx3U8E9ujCPVrLJZrqoKapeK3Xo0hhICpqxV1cHscVW4nqw0LnxVuoncXLm77+yaR8Bxb4xifbk9Qt3Sst2g9lKYWYKWlMsP+NMH+NMF6yz626VLGct3A916NCh2hEO8dSgSFIAHxV4MQbdfAuyv1gr7+o7nfAuc/CyxdgWOqZO1u6whTju1RDD/haDoGvnq7fSztZ61pY3+awLNOLl5dJGxNgWuq1CzICZmgqQyOoWJzGOHZvo87ix6+erNdWGqTUPKstMCbxOHndVKOAQBP9gNEaV7pYDDG0K0ZRXGC5tlyw4LCEljGUaHXlAs87ZGWxq3CJWscZacitEsdxSDJwAt6akkTLd2kgpRjexhDMglR6AU2HB22oWKpYSJOxZWgX64jhJD4bGeCrXEM11BRK3RpysL3RtvB3iTGMMjwZC8gswZNLfZ3iXeWam8VmQEQ4rJh63g5CDBlDKPnRNMnBA9R4UcBOUh+tjPFRtu+Ure2867xMi8u88cyz3naCxAmOZqOjo22g1GYYnccgwuBh6t1pFxCYbjQmXPVe+I0zvC8QOg4hoIwJcr0vQUPnZqOX31M5kvNEyjF5xnPrFHBbOOtPFN0jRD5Xc/EIEjntMFeDUMMgwxSygKFSDIgS40fzjobhSl+sENOhT/fpEZOmQdxQaYdrqnh9SgCz8kQ5Dy6kOXPkJBwzVIXVyJIc9xfrMHUFLwcBBgEKb50o4XVhvVWzsby/dI7nCLjEssNcrbbnSTIpUDd1nF7wcE0zvDJVoRJlOHHbrV/KK5suZB4tDut8vlJnBW6nTnW206l97fgmaTFGmX4e5/uYblh4d3l2rU1AhWFQVcZWof2p1xIfLrtI+X5teiHnhVCSHx7c1hp0pVR3tUtnXT7hn6Cx/s+6XEx0oCsWRpsQwEXck5b9L8PcamsR0r5c1c9kKuMl4MQgzAthNUMLNatquOQ5YQ4YoxhaxShX4ivndXZ44WQOlBqkZwdcZZXjmCzIaWsft7Toot6u3vABS+7EWWHp4TKlyiTjFMnSFOJS192QYSQiNIclq4cW4grOyKEEJHYmybV167C1vusmMYcmwNybcvyHB+uURdkcxACyMndKRcIC5FYgBxALF3Fiz4dCtdNPbxM/M73l/B//ruf4+99uoc/8rUbV/7zhSC1hfKgGUUZ/DiHY5DgcF50cah7LfB6mKDjmdCVAyH8mJNIOhfyWrrE5Zwu53rMc/SmGTRFga6plVtYObd7foKUa7AMclwCSD9kQUrSs9GUSxeDgoSTyPAMGuvVgNxxNgchvvFgEcMgxafbU5i6gncWa0cKs+U4M150qYqxkOONvJJLQpDSeo7SvCoO+AlH2Of4hYdLCFKOF/0ItkE8/cP0lJKXX3YIy7/iuTj2PSdcIEhyfL7rv9XCVJzlMFQVHVfBIEyP/L0QhWNKLs4Umb9oHJ6XHc+EoShIBPB418da04amsAoh0w9SPOuHMAukHSFriE70pvPypJi1Lw6SHHlOKF5bV9EPUrRcszK12B7FiBy9SvAAFEUW/cTxNWwTD5ZrSLmEn/C5MwWgPbfvJxiGGWKeo+2RePEozI7QOmaD54TGvEyCnuV0tp21F/Gc9JkyQVphWS6rosftrnumdgZjDMt1C2GSYximeNEL0Q9SgAGWoSJM+LFzzjbUE5tZJ30e7YRnsTOOsT9NyEVpxcPTfb/4bIREKi9/O6MY/U6ClaZ9Yj4SpfkcsvikEIJ0JgmNQ0nubJ5zUo6RFzkEgDn0ItEl7bkxnPR8wpSTUySASZTBM4maXOp0Hhfb4xh+zPFiEGClbhNlOeXYnSSYxqR9U7d0oAns+YTaCFKORkHTbtoGjNqPrhtRzHNsjynfSjOBh6uNORRM3dKhKwqilOZGlOXIhMQ0zrA7SZBxiY82moVj7YFY9VXE7FyZDcZIzyjmOYZBileDCLkQmEScmr1tG3rdQpRRYWUUpSciB88buZBgoPxgd5KgZmmVQcDsv0m5OJIvl/mjoSnkOFvMtSDlkFJiEnNI0F7ixzneWfLOPdZSjH2acKw17XNRcc6zx83qOw5Ccl1OMoFMCPhxXunp7UyTI9/7rBdgFKZYbznHjqfMVQBU2jazSKdyLWaFhlNJHZyNUZghywVeDkLcXSA5k7eZOxw+Y8YRodiZQuZUHc+s7mPTiOhOdLcqPyO5SJ50Fyu/XuZionB13fcTMqJiDFxIDEISRvdMHX7MkXBCskopi/3z6veelAv85sshup6JxZpV7al+ciA+rzICFdxZ8PCPPt8FALwexbhbPJu3EUKiMuF5OQjw6fYUNUuDY5A2pcIYmbfM5BGLdQuuqeHXHvUwLdblzY6D2jUVpkp9wlGYYblxsB5HYQZbJ2TwNLk65OR5I0g5Xvaj6s+E/lWqu36cCbwehPh4a0K5W055aJzlcE0Ndxe8ufz2vy9xqVsAY2wJwP8OwKqU8vcwxt4D8BNSyr9ypaO7ZCwUgoaTKIOuMbSLG9uTPR8vByRO+HCljmFxSRqFGTbOQGZaOnXlojQ/F7d6GKR4NaOhU4aUEk/2fexNEuRCFnaz5IxTHrSrRbe2ZmlzG95i3UQuJWxdPRYdUbpsnXR4lDzssupaWo+Xicf1ByVAfT+Brlp42Q9xo+NAVegAWm5Y8EwNhqogynKojCDMwyDFdzfHyOVBcfBHKd5drmGjbeOXv79z5YWpkvcvpKRnVXRPJIimqTBCRpkaUZZ6fgzP0iAloGsKNI2oEaaq4LNdQlQtN6wrF1B91qO51/YMLNctTKIMmioLwVS1Eogs53ac8Yqq1nQ0JJys3F8OQkwifqJT3Hmi45qIM1HNH1kYAfT8GIpiIOU5Pt+d4NFeAMdQUbf1I9TQ1YaN3Qk9y7IDG6YcT/eJGnyz67yxE8tK3ca+TxdWRWFYbVj4PJmCMYYoI9Tgq2FEhaZc4MHyPNKl45IrmqKwSsA1ywUeFcjOw+9ZUxlUBVhpWEi5wCAgAezrcpQpQwiJtqthexRDV0xsj6O5570zifHZjk+UxCssmtJeS+iPks7nxxyaCkSZACCRcQHdJDpIb5pgoWZBUxisYs6WhcAX/RDTmFfotquKEjVXt8l8I0o5uJTIhQAXohLqXqyb9GdNga1rSHOBpqMjLVB+p41vsW7iZkw6BXcXjgrXmpqCjmsWc9GAwoDPd33Ypop8SrpInqnN0WRKlELZ3b9IsS7hRK8TAlhtnnyWjqMMm4MQz3tBpZe10rCrBH18TlFXWuMahmFSrTMwopWfhjQ7b5ToSrdAX5dC+2XxmoRJabxCkCHE3jSGY9BZN45SCCHhWRqajg6eC/SDdG7+AQfoBSqmeycWBLNc4PGeXwgGq+j5CTxTxyjMsN6SFbV5f5qgbutz80FVGJYaJiYRP/aMKJt5pyFJPVODY6rIhawaSarCsDuO0fKOf96WrsCPga5rwtQJHfXZjo/XwxCZkBiGKT5ab6BvqISS0ol2PQpTbA4O8qy3Sc27SNi6CoCKqutNGynPkeUq+n4K21DRsAvkV50u2kt1C4wBT/d81CwNikKOjbau4sn+ARXwTSPLBZ7s+8i4xEbbhm2oGATp3Hrveib6fgIpJQyVoWZrqNs6cklo42ZRHBwFGaZRfmHkc6llFaQZ/JhXCBEGhmnMK0o+QGdJObfbnoG1po3FugkpMSd6rhSC3uMow4JnVpTuYZgg5TkmcYaLmFxOY45/+rSPXAgIcTq7AqCCR+kEfBqite0aVbGobjuE0jQ1mBoZNX1nk1zO2ofElrNc4DdfDDFNMozDFD/77tLc38/mKjc6DpYbFoKEz91dluqEzHQKSvtxsVg3sTdJsFAgJXVVwd6EWBZXsXeeFqUOaen2OI4yqAogpIAqD/asrkcyFqMoRc0iMei6o4HnEos168hdrNwjen6C7VFcORfGGSF7WK6g6xkV4srQFGiM5mnCSVdvGnPoqlKtxfMisy4SWS6wOYjwehjh595dRMczEKa0vhTGEKQZspyoqbsTchjdmcToesaF5vabRpLleLQ3xf3FGsI0R9PREGcCy4WkxijM0C72/TijBlHdInfmUZTiRT/EB+v1ivFzLWPkOTYHEXpBgl+sLUNVSMrDTzJISc6GTVufk7q4rpgWKLK2a8A1VDQdDX5Cxc7Hez4cU8VS3aoK871pAktXkHJy7Ys5r4xKZu9dayc0EH87xmVnwn8O4K8C+LPFnz8H8P8A8CNRmKpZOu52PRK6BUOY5WhKie9sDjGJOSYxx/2lGl3kp/MonHGYYd+n4s3hjeYiNK2yil+iGcrIii7p7oTsy4WUMHQFK8rBz3ZNbS7hzgp+uGNopzq/hUWn8zCia3scIUxzrDSsOY65a2rIhcD2KDrilHUV4Sccr4cRTI1crjaHEW53XfgxWVZP4gyf707xeM9HxzOgqqzqQNxsH4gkRxnBsYdheuWIiqsIxhh+8eEy/st/9gL+CR34y0aUHrgZTiKyOd4Zxdgchrjd9aCwAyRVWYj4ZGuMzSFZf5fFndJiF7h6fYDSthegTVfkEp9sT7AzieBZGuqWVl2iyrldtzR868UIhqbMdS43h2HxucWlYfOGplQ0ED/hCBOOr9xs4Z897WPgJ/jHn/cgpETPj7HRdpEd6j4LIcl6GpjrakfpAZIvTvM3LuiQ/hq5G+1NYryzVEMuJJ71fPzqo304hoqtYYSOayDLMaeXAQB70wRpLrDq2dVzKhEQ5XhnwzU1/PzDJbiGiu+9HuNFP4Cta/iZ+10Y10ATSTg5KPX8FA3bRC6BlmNgGvNKrBo4SPhGYYb7V1j04TPoj2mcYW8a48meD0CibmvoehZejSLcX6qh5Rr4aKOJZ30fQczRtA3caDvVcy331qteO5NCM2oac+xNYzza9fFiEMJQyeq8LIpaulqZWzzvEapisWZhw3POHF+WCyQZJUIt16zQX5ZOqLAslwCTuLvgYqVho+dTIWV3HGOxOCP7fjoHtZ8W404ygTQXsJTzz5+Ui2ovCtOTn+c0JtvzV8MINUtDzEVFrcyFPALLPykSLqCr1HXvekZBpSIKfJjmcA0qLgFE4bto97t8FpMog1+gNV8NQ9xfrKNR5BF7E8opSMtHnaOz/sx9QnDuTWO8GIQQEhgHGYZRio/Wm1hrHSCVAHrmh1FvsxFnOXgui58pYaoKfBByKcoIaXs4xyi/T1PIBeqknkD5vg4jScvYL+zqF2rm3N4Zpzn2/RiZPL6gstKwUbd0GJoCXVXwvVdjAMDLYYiksPN+b6VW6SUu1Ijq9oPtKbZGEdqucaYeV8oFRmEKzzqqXXQdkXKBlwMqDrQLTayNloOOSw3Ol/0RMiGpGbfgYX9KwtxrLbvqgL+3WsfrUYS6RcW4XMgrK0oB9M7LQu805pXYed9P8XCljmlEOdr+NMFy04SlanAsFYaqIEw4tkYRuq6JjmfgyR6h/8/LKChjFGbYGcfo+wlUlaFpG9BUhowT9Wx2PeaSml3jKAUXAmuFSclx6D1yxTTwehhhEKboFMXiXFLR109ytM557g3CFEmWI8rEiZ9vFpUz6wQcZjlaIAkGYN7hVZ3RYdubxBXltXTWfne5Xpi2zO9JQcIxjlKEqTiyh/JcYBxmB7lKRjQlCWJa2KDP7BjamU0W2gsspDzHi36IrVEETSGNI32mEDiJM2yNIjj61a2rcl9NuUBvGuOT7Qn6RQHzTrdW5TmaSrpKrqnhB9tjJJnAequJVlHMK1HaUqJCOgEH+6kQqOhR26MI3301Qscz8dFGo9on0pzOm2GQ4tEuyRK8t1qv1uI05ldemFIUclxvOgaiLMdq04YQEgkXMFQGnkvsjhMyfKibaLsmdscJNloOXo9jOKaGl4MIUkpstJ1rLdpnnHSlFmomhCDH0fJ8kRLYmyTguUTPTzCJMjxOfdzoOOjUTAgJeIaOfpBiXDRxNtrOlVKXc0H34HeWPGQ56S5HWQ4pGTY61LTrBynCNMfda2xwZLnAP3s6QJRx3Oi4+Gi9iZ9+ZwExF1WxKUrzSv9VSolHuxNAArkUCLMcQUJr8d2lWnXvmkTZ/+8WphhjmpSSA+hKKf+fjLH/NQBIKTlj7O2p4Z0SZQf6RT9AymXRccmpqxlmSLlA06HNrNx0Z2N7EiHjdKFpWDr8hLrQF52oXY80azRVmdOJMDQFHc/A1ihCo1i8pqZiexTDM7Ujv2e283IWh3+j5WDfT6ArDJMoQ5ByaExBb1pcNCYJbncPxjIq4KnAAU3wTYM4xRwd18TAJ/valAtEhQj3OMpgFV25pbpVdWDzXGC96eB5L4Cf5HBMtSrClc/yzqL3I+s+8DvfX8L/7dee4R9/vo/f++HKG/2sYZAi4bTJ1y0dNSsDFxJd18CjXR+jKMPAT1G3EtQtoqMkBbTd0lWEaY4kk/h0e4LVhg3H1OCZGro1St6vAi1Vdj5qlg7P1LBUNzEqupP9IEWQEA0jSnJYmoaMC0wKkfFGgfQIUo4gBZ73ArxbFExXmzb6PumgXZbDX168FUY/W0qyiKbNn2EUpUWRicEzDwQ0yxhFGXp+gjAlm+DS3rrlUMeqvGi8acRZXrjt0RinCS8SUgYuBHZG5DAjQQn67EEdprzQZOEVmgqg4lP5ng/rrTCgSiTJOhrwRSlce/UH8cs+7cWvxxFutujiaeoKlg49b1VheLYfQNcUpPnFL11hyjGOMjRtY67zq6vUYZrGHIt1C995OcLeJEGSC6y3bDRtgVGYV8XklmtgFJnYGY+xvzlClgvcX6Yb+lrhYNi6hLX4bPBcoFdYmzcdQhf2gxQtx4AQ9Hf70wQKI6egXNDenOUCTcdAxzPwrRcpeA5ITPE77plz4zvOgefj12PsjBPEfIpcUFFjHHEsNch9kNZDIfadEyS/4xHqwdLJWp0xzK3HxbqFl0Vh86Jno2dq6BRd7tM0gUoKxs2OAwmJmqlDZezYy9Th50qfMUPGBZ73A7weRRBCYqFmoeEYFYW95ydILA2TwtbdMbIL749LNQv7foKaSW6jL4YBxmGGNJP44o0mup55oAsXZVAY5tBnQcLxtOfjZT/CapPETvd9upxuj+lrjDGsnICkPu75NmwdYcahcwHX1IrmBcPT/QDvrdSPdIX7foKt0VGdnsOx2qROrlsgoraGESQk2q4JU1OwMyaq/vY4mitM+QmHpqgI4pPTxNlC2XLDwvNeAEen75nGlM9MorwYb0qULUnzdRJnYOx0NPXLQYgozbE3TY59BlcRWS4IBaWrSHNRrSs/5nBNDS3HQMPREPMcg5BypVsdB+MowdOeD0tXCuQUIVy2xzEUxtAtHN00lWGlaWH6hoLdUZpjFKWoWzRX0pyKFzsTen+MERLi051psY8nEAJ4f83CO0s1pFzge69H2BxGMJQAP3G3g4UardfzMArKC7alH1CP67ZOlu1MIuMojADmz1ldVaAwIE4FdCXH1jCCohQmF5555J2OowzjiNb6KEzBcwkpqeilXCC/aDkGFmv0828do15conIUhVA5dUtD2zPAc4GFQrvpN18MkXCBr99pH8k5slxgd5JgexSBMQZTU9FyqVDLGI6MVVEY7i/VMQrTOZHrJMvx/a0JlGK/bjkGHF3FZ7tTcC4qt8MgJcTPefOYmIuKQpTlhLxSZ8bUmxLd9P/L3n8HWZbd+X3g53r3/HvpM8tXdbUHGj3AgAPMDIYYwyG54tDFipJ2JUpLUdJGSCst5aWIlQmtKO2KuxRXIa8QZSgtORTdcDSGAw3MwDaARtvyJn3m8+9df+/ZP859r9JVdWZVlgFjvxETg6rqzLx5373n/M7v9zX9NHnEd3k09ta9mqrQKlnERSPJNTV6fsrWICSIc+quJBT0gwSKmrLuGgzClCDO+e7dHj//imSRzZSsKeuussera7ZgjFmGbLBlmZTOxanAimQAQZhkBHFGnEpG4PYwmobN6KpC3TOmjGyQz/XuSDJzn7RR5Rganz4j0y6bRZPt1q5kgHuWRi+QwzbH1Jgtm+wOI0xDZRRn1DxZ90yab5OAn14ga+vTbMyrBcvW0jWqjhxODIJ0ar1yv+vTHce0R9JiZKMfIIRCxZHXkiQytGAUpdP1sh8kOEZ+iH38JOiMIjYsbcpCL5l6kciXkZly76o4BsrO+FBK72khTnPGUUouZDMJZC+ipKmYmkrJ1vfVmKvdgN1RQpTkdEexTOeLcn76io2mKfvOXQ/DXpbacRjmLwJOepXfBt4CxoqiNJGG5yiK8pNA/5Sv7bEQJJJh0vNlAVhxdWxdY60XUnMMbEPlpfnD48DNfkhnHBOnGZoqi4O1ns/tXR8Q/L6LrSNlJkGcsTuSlPi9hZipH23yC7BUc7nXlrT8yUHxYXtklOyZvMQZtT2DISEE4zilO06mBua9IOZe2+c3PtzkfLPETNlC1xTyHLwDPlIVR6c9VjjT8E7FzDBOM9652yXLBGdbLjMle8oIaI8i6p4sPCxNYXsomwOyYFUYhHIhm8h89rI9HnUvXxS8fbZO3TX4jfc3H6sxleXyEBIleRFpL72jlmrO1GOh7yfUXYN+UYxEacadtk/XTylZGs2SxdX58vRZUlBkN6LAaSQZ9oOEvp9IWYyi0h7FvLJQmaZgxUUDyrN0zjUdVEVlaxDw/XsKqcg503BZyGQ6hqrISYa65wxUsY0nZiJNjH11bZJ2IaeYry1VWOuGGBpc3xzT9GTEtGNqxGnO3fZYXhfww9UeZUunXEisQG7Ae71fJgaUEx+Hk2BCU1egSM5UUZCHwiCRkfc3tkc4BtQ92cAA2XgfRSmmpvDRppykCODSrJgy5w5+zn0/mb6HE1ydL/MxI+ru6RQpeS7YGoYoyM1SUSRDxTY0FiuOnNQaOjVHssT24sP1Ifc6Pn6ccqF1shSvMMn4vZvtIlExOZQ6NF+xUZCmyot1m92RLCyjNOMH97uUbR1FgVcWqpJFYmpEiUBXFZL8QZPsSVNMe37MIEgJkpS4YCjIa5apbWGSsdkPaHgGWe6QC8Gd9pg0z2l6FhVHUt+lxFAjzfYf8B92fdJUOmStGyCQHh0fbPSpu1IydGm2TNky2FEjFBTKtj4t+F1Tw9BU+kGCrj5YSu51xtzd9YuGhJxsnyS1byIlO4g0y9nYE8ZhGxrLdRddVVnt+Dimzt2uz8WZ0qHErY1+OG022YbGei9gHGW0xxF+nLLeC1mu2yzUbM43Pe4WTQpZE2goimQzuJ9gdD8JDDF1dXoA35tk2B3H3Nga4sc5pqZNvSDCJOO91T5bw4jFqs2F2dL08woSmb5lGdKT45XFMmUrIkhT6p45bQiWigHDce7vmaaLpil893aHuJCkJKkoGoyHv8bfwx6I0uxQY2ocSUafZ0pT8jjNubY15If3e8RZzrmmx5euzuKYMiXvoCzj8lwJVRlT9x7+nCRZzvYwou/H6KqKrkoGtSCn6bnUHJM4jaYNjVvbY3ZHkv0iBNxtB5xpPjzBbLovPkWlxt32mNu7Pqam8ukzNTRVQSCYrdg0yxZnmy411+T2zphhELM5CLky53F71+dHq30sQ50GMsiJvvy+fvyAib230XkSCCHYHITTpq3000mmhzCZAAimprBUl3v09iDg460BmqJM16m4YCCCgsjBsWWS7MMm9nGaTw+l24Ow8HiSA5GKo3O26XG25cqhlWOwPQjZGkTEac4oPJyC3SpZKCiF4fWQQSDfk483h5xvefv2aMfQpp/3bMWaSmEvzHj79qEky1nrBSxUbNSi0dkvPPZcU2cYJsxWbHRNmcqP0yxHIJtlez2KpNeftu9+tNsRP7jfYxCmxFnOr3x6aV+jX1cV7KJBkgso21Je7pk6lqFOm/+ygRVi6RpvrlTJi3s2qUV+tNajPYqpOyZXF8vMVS2ub43YHoaF96ZCP5SH1Elq3XHWFLtICK97ZhEWY+8bAlUdg3GU4Zgn97rZHUW0RxGjUK47k7rXs3Quz5WLdMiI2bJJlKTYdZ2Nfih9OXdGnGl6LGT7SQZ73/GHnR8sXdvvX6ZMvKzENLX5xvaIrWFIZxSxO4xZqbskeU7dMwiTlFbZxq0/uH+7Y+mNluWCnUFEzTNkDfKYi87BejOIZWLwBxtjTE1hFKXYhlYwCAWLVVsOXxydXpAU3nFyX7+2NWR7GOEYGl+43HrETz0ZLF2d3vtoDxt6XDSVtgchH24McUyNn3t5lq1BhKmpnGu5vH22Tt9PUFX5Ht2KxwgErqHzg/tdgjhnsWbz6lL1EVfwyRjHKde2hoyjlHGUUi7sM+aqFsMoIc4Eni0HB5OPavKu2YZ2amw4t7Ba6PoJl+f2N7g1VZkqPSbw44yFisWd9ohRlFLVTfw4oWLr9PyEjX5I1TEeKau9uTNivRdi6SpfvNx6YQNt9uKkJ5LJb/TPA38TuKgoyteBGeCPn+aFPS4Wqja3d8d4lkbZNrjQ8jB0WWDLKa0gTARhIk2181wWuDuFuaChq1ycKWHpKt+902GtG+CaGtvD6EhD0vsF1bwfJJSPOYUbxymdsSyi/TjjXMvDeohpZMXRqXsGaSZkd7kwyk2znO/c7XBze4xnalyaLU8lDl0/AaHQ82PmKzYvzZbJjjBsdk2dV4qD3Gk8rDvDiLVegK1p1PyUS7MGZbvCnfZYTqQDWKnbfP3mLn5hSlh3TWYrDyZ1squrHVum8aJA11R+7uocv/nBJsljsD52hiH32v5Uvla2jX0TqfVeMJWiepbOmaZDP4jp+SnDIJk2JXIBry1VqdgGtVNqOkwgaaVDWTBGCQtVF1VRpgt5mGT84F6Pe90xmqJyoVUiSDMMXaXrS2PUrDD9ny3bvLFck7LNE5gMHweTQ1aawbmWR5Tm0+dJV1Q644hMyQnjfHqA6gcJwzAlSjM6owhLV6Tk4xFskJ6fTNeNk1+jLGQFku2iKAq1wu/l8myJ9igGBFGW4xgaqqoQpRntUUSS56x2ArQieVEm5cgG3EFkueB+158ecCaYKds0vcMT5sdFexxPmZmGJg8xZ5uu9IVQFFa7QfF7H2ZMRGnK7igizQWj6PjvTpZLyeggTECkU5+tCYQQ/Gitx1o3JMtzKo7Jp1aqRJngfscnjHPiVEpjsuIGzVZsPn+xyShKTiUhEiBJcz5YH2DpGkGaUrXNaYMgzwUbg5BrmwMpv0DhJ841WOsHGJo8TMh0NoNMCMqWziuLFcZReqz3puvHrDQ8PFNDUeRBpOXZmIYyZSs5pnZoH2h4knWU5jlRmrE2jLEN6TXy2x9usTOMabgmb501ptTzJ8UkjCNMMuIsZ6Xu8MP7PYahZMRdnDGmA4ub25I5OlexWWm40/Vvel+Lz7PmGERJxtmmQ901p95Ml2ZL+/wkJsOqTzIR3R5GrPcCciHvW8U2ChZOyCBI+OH9Pn6Sg6rgWup0QtkPEvziUD8uwg4mqLtm0SQzma9YmEUMephkU2++x8GtnRF5YWL/2lKlMO/Vj9zrJ+wBXVMw9qwJUZrxwdqADzcGmIbK+WYJ19IxNAUhJu+zwC8OTBdnvH1ymQnmqw6zZfvI9Wbi7TIMU9Z6ARs96ZOyOQjp+Ilkv6oCQ5NyG6X4HNJcMFu20DQQebH/PcKD8kxDrkclS39qPiKb/ZCtfohramRC8PKCfK4URZHvepDQHY+41/G5uTOmUTLYGsQgRDFQEDjFnjR5LoRg6pP6JOgHCXd3/en7UbKMfSb67631WesGjKKEfpCyULOpuSbnWx4KksEJstGmKCqfWq5S9wxUlEdO7LNcsN4LpXyx4+NZGu2R9NW7timtHub3DFMansnWIKKzx2dtb6N0vmJj6SpJnpNlst7t+THlwkdtrpJP/3vH1Lg6X542kBarR9sDpJngftsnSjPON72iFpsMgw1u7YywdA1NUafr4o1tKak+05Tm42kmMPT9rJwJ6p6BoSlT/8+D74iiKFycKbHScDG1ByyygwfOzWkDPuHCjFcktMIgkGyie22f61tDZsoWP3mxMQ2BaXoWcZJTL5kEkVyH5O9zvPfA1OVAP8vFkWzKZlHLn/S9CuKUa5tDBIJRlLFYdfZdU8+XTLNekKCg8NpSjSSXvod+McDNhZg2Qz53vsHWIGLuMdI5NVXhJ87VaY9ilupyOCStWDJ643TqUzlTsvh4a8R37nSpOgafOduYfk6Ta+/5MYau0hnHaIpyKrWEosiG8WrXp+lJFcm5lmzYD8OEja7PWg/+6HxlKsevF4EXiqLQ92N645i2EAyCmMpTSHIrW5IpmKQP2NBVx2CuYmNoCre2R1iGylo3oLprYGoKnmWwULXRNXW6XoaJJHyMQsnWftLGVF4Y2JumirJnkDxppLmmzmzZpuzo03dq77vmmkf7Op8UiqLw6lL12F5WizWbKM34zJk6ixWbfpgyU7bp+gnXd4b0ximZkO+zZ+vTxvpedMcJwyBhN81oj+Pnkj54Upz0Ts8oivLPF//7rwO/hjwNRcCXgXdP8doeC2XbYL5q0x5FRKlsxjQ8E62YSExSMII4w9RUbhTmdXGaYeqyITJpWOVCshkUVXvoVMHUVKIkR9cUjtvbqdgGDc8gKEzzHpWeoChSSjSOUm7vSg3/uZbHei/g3ft9BkGKa8qEHEtXWa67DKOUVsmkbBtcmiuh6+pDP+jT6p4KIRkThqYgFMH51gOWiSz2syK1QdI6e0HC5sDnF16dZxxnLNdcxnH6idHnLzJ+4dU5/to7q3z7dufEX9sPpO+YosDb52qUrAcMiGGYsD0IubkzousnXJktU56TBrOaKs2zK7ZBoyQLOBN1Ko07TcRZzvYgLIzKTZbrDq6lTZ+h9V7Aej/gvdUBM2WLc02Xs80Sph6Q5YKWZ1F1jSnl/mDazmlhsWZPU7DKtsGEH7kzjOgFCX6SM1eWRXfJnujgRWEuHGFoGoqq0CyZj0zrNJ7g0Li3kG0V5qwgp8sb/YgwySjZBudapSlbCkExvYsZxxkVR8ezpL/Gw6Q9Ew+ySSrPvn87xcOZuefnTwpXQ1Onm2CUSm+Og6k/QCFXlHIFcbCD9gjc6/h0/RghYL5iHZJ47QwjPtgYSoaLqvLpMzZRJjjXlL5imioP6hda3j6WnrzG05MMr/V8OuOYLBe8ulihVbYwdTkF3xlGfLw54KONIX6Ucnm+jKIovLZYJU5l0tvlufJU2jDZD46LqmPQGccsNTwWq7LYPj/jESU5zT1G1Af3gbgw4sxyQZRmWLpGmEi20FonZJykeIZGzTVOLSnV0lXiVDIXJlKiQZBOp8IlW6PpSQ+L27uSOSgbby4LVRu3YJNZumRaTaTGMxWbziiWjN09v+fe5/+4qTZplrNeSGzPNmUAwlovIIgz3l3rE2aSCfLWmRpvrtSmh8+KLZMUNRXONb19TdS9PjN78aQ+F5M0QtvUaHomqvrw39HSNc42Xa5vj7g+HtMsQizeX+/zw/t9efC3DaKqlDdbusaZhkuW5/TDhMXqA1+kh133UevN5DkTAnJEkWwoDwqTw2W7sCf4/r0+zbLJ5dlywfaO0BWV8y2XQSj9RA82p/di73r0NJDn8iCLApah4pravuet48dsD0KubQ2Luk1DCIW6a3Cm6XJze0Sz9MCb62HPxePCj1M2ByFCwBvLFRqeNW2cjiLJWP9oc0CY5MxVbISwmK9K5lStmMrXnAeyGk2Tw6dj3RshWO8FbA0iqq7OmabHja0hHT/mm7c6/MyV1tQTSNfU6eeYi8MMPrWQGrumTi+IOddyGRSJbCVbL9hcD7B3b3xYvZsJwUY/RCAZWYamFjYUGduDnCDJud+Rvp7yXu5hs0XSb/JR9UyrZPPzr8xzpz3m4mzpyIazqiqf6NU3+TpFYZ/H3OT+3G2P6fgxhi4TXS/MlFhpOIRJPpXhNlxT+m0ZDzc9PwoTf7eH4XHqie1BxM4oQgi4ulBivuJMn/88l0FRt9pjVts+V+crZEJwrumSZoJRlDBftWl41rQxWves6XP0OJgp2/tklmeaLq6lUbZ0BAoXZ0v0xjFJLodNi1VZR37KrqFrKs2Sha6p1F2Dd1f7xFmOZ2mnNuRqeCZ112C9HxIncuhrairv3OuwNggpmTq3doZU3UkgwIM16MJsibWCkbzWC59KY0pRlEPMyVeXqqiqgmvIM8t6N8QxNDb7AYNAstwnLOnJtZq6PHOPChsBaTfxZMlzmqqgsp8yvLeRtlCz95E3zD3v2iel4J4Ux31XyrbB60tV1vshzcLSJskk89nWNQZhQGcsZdZX5sqYmnrIiuDijMfuKMLQVO53fKqO8cKn+J20MaUBJQ6P5k+X8vCEsHSNkmVg69KETcaVSzrnatdHV1WpLd1jJFl1DS7OPEi6EUjPg1cWK4XELCwokfsLnzMN2Qg6WIQ8Cpqq8PmLLcI0o3xMzedkIxRCcG1rwNYgwjVUolTh1cUKZxouUZpTdQzeXK49tnH040IIMDWNCy1pHNcodN13dsfsjCJKts6l2TKr3TE1x6RkGby+VKPimFT+PvFs++nLM9iGym+8v3nir3VNnZWGvBFNbz9NWlcV+n6CZ8pnzy+kH5dbHi/NPbvPOc9hse4SpRnzZfvIBmKc5jRcA0WR5tMrdYeVuvNMn8WJceBBKIrUdTuGlOGULH16UElzwflWibJtMAxjwiSn5piPPByWLGkemp+gmTLBIRp5ARUIkhRNkQzPhmeyUEgHoixnsepSsQx2xxFhkuOZRpH4dDQm7JCTGtKeFFXX4ILmTQ+VB3FUQ2qCsqOzWLMYBTnLJzBwzHLBTMmibBm8sVw99FlFaUYQZdRtk5WmjabKBnAviHljpXbsn/OkyIpkpjgTnGm4mHuu09IVydDTFBJdQUHgWhp1z+Tnrs4+8XszYcXu/T55Lrjr+1zfGjFftShEv/u8i6L0QehCyZJ/X7Z1ciF4ab7EOM747PnGqUaHTwc0isDUNFQV5qoW5UjnbNNlYc+z4VkaSZ5TsiRb0I9l+qehqvQKduZc2Z5K9s40nYLx8WSoOSbLDRtVUaaBIbahEsSZTChzDM41PC7NlkjSnG/ebLNYdzjTcHllsfJM18GLMyXmqnbBuPzkQjTJHtRDfiybfnd3faJM3tsr8yVeXazgR5msoVyDT52pP3atIYQMenh/vc9i1WGmLCVqV+ZK6JpkptzYHjFTsogyeTCZRNsffK7tUzRdflwIJMPFMlTKtvEgldGPp4bFW4OQ7X5I1TW5OFPijeUKreIg3Dj/dCfZpq6xXBjpywP8g/fB0B5IyaqWDD6YKdtcmStzZe7hCZDHwUQ6d2fXZ6XhUC72zSBOCQovyOTA4GSmbBFnMpV071B4sx/SHke0Spb0qvNkk3+mzLGewyDOiNLskIelqausNKSRepbJIIhxnGFqCjd3xijASsOTzdk0p+YYjMKUTIiHNuY3+yGrXZ/5qs1y3eXVpeonrgFZLmSN8hBf29mKrA0NTd13iHZMjQszHi/NldEUFdtU8Yoacq8vbdnSubEzZmMQHtn0HIRJsRc83aTeCRRF4UzDLeTA+02nVVXBjzLUYv/MhSDJJDv37XP1Z7KWTiTyE/m4NPIOSbNcsnxUKafb27iYfE17HEuFyxM2VA7iYc2fe+0AUKh6FpdaHh9uDguv5Yzlusty3eXybGmfyuFZwDV1PnP2Qez9r7xl8P17fe53xrRHMWu9gHMtl+2BlMjXXEkkOT9TouwYuIb+WDX2XuiaSt0xWKm7+77XUfdygrmKPbUzOE0j9pNico2T6xxF6ZSZN2nYbQ/kGfvibEnu3eOYVhEQslBzeGm+jB+n6KrcV1/Q8NopTrqbbwgh/q2nciWnCFOThoGGrrA7DBlFsqlzpuHuK6RNVfqhDIsY1b0LnaYqnG26bA2k+WSWC7rjw14aqvpwT4NHXqOunqgD3PBM/DglSjL8WB7IhkHCm02pld/sS0nRJLb0WetI1eJ+DcN0ulHfaft8+06Xzjhiue5ysVXiTMPji1cEKgoXTjGB60WAY2p84dIMX7/ZPvHXLlTtYgFUD02xNvohvTCZHvpfXaxMPQ2e5efsmBpnGy5hmh2i7g9CaQwZJhmGoXK24eKa+qEkueeFPBdsDyIsQ6UfJbQ8m1w8mEC2ShZRmlO2de61QfWUKbvyUTjJxPE42BiEmJrKzjCiVTKlR0BxqCxbUtZbsuXkqesnlGydUZg+kmVoaOozmZA8rrHicq1E2TKxDcHwBCEMy3VnmtR5sIgXQn7eceGb8upSTYYs5ILdYfxEvg8nxXLdoWNqeJa+rykF0vNJU1WGhd/Rct2bytVO6/oOfp8gyeShKs95524PP04p25K1MQmcKBWTxKhIA9p7f3/fpRZpJk6VzTFBsySjsKM0L55/yVo+2Ox8dbHK7jii5hjsjmI2+5LF5BThD4oCZxoOo8IkujtOTqUxVXUNzjVlM3rS1F6qOYXkyWV7KFOHhmHGt263qTkmO6NoX8Ljs4KqKify65O+WQ/qoa1ByEJN+j0u1KQUb60XkOXg+fG0lnrc3ytKZRx6kgnutse4lkaSCUzNngbGfPpMXTYTkoy2H++Ltn/RvDImNeMoSqfS8fYo4p17PUZhytmWy+yeafbvu9R8qklZB9H0zOmh7GCIgxATGZKCokGjJBkXk4TFJ4FaWBOsNByC5EHtcHWhIpUMhdfeXtiGdmQC9W7Brrm+NaTqmPvM+j/peQiTjJs7kp0XlLN9Xoympk7f0Zorm1ZVR+6ZV+bKLNZsen6CbWjTfe6oJMC9+HBjIH1geiHzFSlV+qRrXO36DIIUVYWr85UjmRoPaxqVbYNfeG2elfXB1PNzL/Jc8MHGkLttn7Ij/er2rg89P+Z+J5j+bk/iqXhcLNRsDF3BOcLKZBBK4/qJT99L82VMXWP4CfXO04KiKIyiBF1VeXmhwg/vd/GjjGGQMAjSQ96ZV+bKdP34mdzH5ZrLz708S5IJLsx4DIKEm9sjNvohSzUHVZVM65cXKvSD5LlapZQdk89fapJck9LSpmtxr+1ztx3gWdLwfaZscabhyvX+ITY3J4GiQM0zqHvGiZhiz6pBexLsbdR/9nyTb9zcpV6k/2qqwteu7zKOMmYrFp+/0ERV5XB6dxThPkZYzfPA43pMvdDIxAM/pWCPeXiYZlTZ/6DNVmxmH/J9yrb06Lm9OyJM8kMLz7OELHq8Yso4ZhylLNWllCBKM7Tik8we4bHwtHGQqZILgalLLwrX0kiFwNXUaYLY34/4d/7Ia9Rcgy/8Dyf7Or2gsh6FMMlRkJOvmmvgGPpz21geVhBMIsyrjjQUl4mT2j6J1/OEQD6Plq7RK+KD4zQnF6Ap8lA2MR60DJlk+ShZyNNCmgs0GTOEQIYWJAVbYK+My48tbu+O0VTlxyZp42GoulIGESYnmy7ahvZQQ38hpPR0tmxP16C6Z0w/12d5qLX0h1+nbIbKSZ6pSf+Wp/1uO4WEox9kuKbGKJLys717x6MmiUsnkBI+Dg6uMSaHn4mq+8BE/37HB+RnPmEGThi8jikNyE/znh48qE+8mwBKtsGd3THDMMXSVTIhWY3PmsH8uNhbD8WFx9F8zabpmUSpbNRPBnVPCktX0TUFz9TxbE3KLDhcwzhFM6r2YyDxP1gDZblkeAFEcc5yw8bQZOLasz4gKIpyKIV6gjjLpRlwkcRpFp9N+Qi/pMdFzTWp7fmzoam8sngy75i6Z9IZxdP6Ps9l4/qoNeIgJp5BcHSd/DC5lamrNHSLxgklYo6p0fNlEEyaC44zn0uL65qoI0565Jop28y8dPTvIWsLRfpzZZIRftTPhmd3jjA09eF7Y5KjqrBQcynbUqJt6OrUfuF5wDV1bEMlSgWLNVcm1hb+nxw4W8p169nIQSQzfm+oV4KpqwhkPTv5PD1LfyHqRRlGVGV7EFGxdTYKj+G9dcijno2TQlcVLrTKT2WY9jzhmBqvL1WlRNoxikGevH9hkk3dtE7zXj4LKCfx9FAUpSGEOLmBzlNGq9US586de96XcQi5eECN31q/z7O+xslLrijH86u4c+fOM7/Gg0hzQVIUcpahcZQU92ldZ1ik4Giq8sR65hfhXn4SXuRrjDNpbIoCW2vP/t05CCFkYxshm4gHfSxelHv5qGf4eV1jkgnSLIdCF/9J5/MX5V4exPNez4+LyTMwucZpsVfsAy9ae+T//3k/GQ5+3s8a+/ds9VC0/UE8rc87zYQMHjnmOvMovKjP5N6abvMF2Bcfhhdt/96Lo57XF/Hz3tvUNHWV+/fuPvVrDJMcIaQx8+MGL7yI9xL2r+frq/dYXD6Dqaun7h90Wjh4H/fWoIauTqXkzxs3b91mcfnMqZybnhYe9UxKA3RRpEg/v+v/cbiPAN/73veEEOKpXuCJWqcvYlMK4Ny5c3z3u9993pdxCBu9YBp//Y/9kd//1K8xzwVhmmHrMsXrxvaIoJA1XJ0vP9QgeYK33377ud/HjX4wTfc623KnVOMwyVCLVKlHXWeYSJP1k0qX0izno80hokhbOmikfFI8zXt5fWvIf/Rb15ir2Py5X3zpsdMiXoTP+yCEEARJxmY/ZBxJ9sOzeHc+CX6ccnN7TJLJiOv906kX414mWc7Hm0OSNMc0VF49MI1+XtcoTeVlCumFGe/Iid1x3+/nBSEEG72QnVGEqigvxDO5F5P3xlBVPt6S69jkGm/vjqeSNimHeP5FT5LJA7ZtaJ/4eU/2NRn9/uyK8e44nqZJvgif9+QztorodpCH1w83Bvs+76cNP073XcPWIGR7IK0EzjTcT2SWn/b7PVk7dkYRnSKN6vyM99DAmuPgRVyDAG5sDxmFGWme82f/+C+8UNeYFsa8jqlNWYNw+s/lJJDhceue7UHIVvG8rjSkDPdpfN6SkS0emxnXHkWs9ySTZKFm80s/+1MnusbH+fnvrfURQtqgXH1MZcOL+O6EScagCBgC+N//8s/yV37tK9S9SWLc898TD+Ltt9/m69/8FiBZ18Mw4c6uZAc3SyaLJ/DjfJp4+fVP8d//7d+h6hpT1cGLhrfffpuvfuNbGJpy6Bz84caANBOoKodq5meJV9/4NP/N3/htap7B5QPnixcJiqK887R/xvPn9D0l7AwjNvshZVt/aulfj0J3HLMzihhH6bHpg5OmTK2I+DwpbrfH+FGGZ2lcmCmxXHdoj+Opee2PAyZUc11VqdgGu6OIa5tDBmHKct0+1BDYi91RxEYv3Oc7sBdZLri1MyJKc1Ya+zX0uqay0pD+EM0XWDLQ82P+1H/xLfwoxU8yNnoh/8k//NaPhUzkOPjWrQ4b/ZBW2eTCTGlq4HkUdkfyHfcsnXPNp+vh4po6ddfg+vYIRZHeG8fxDojTnFu7Mt3sfMs7lcjZh2GSbPKjtT5lobMzjJ7YH+Q0MF+xp02no5pSm4OA79zuIAR88fLMc7jCRyPNcr56fZeeH1N3zaeSePmk+NbtNhu9iPmaxauL1emhEMAzNW7vjqg55gsxZY3SjBvbIxmmUPvktKJbuyOCOD/1vbw7lsartqFxoeUdSsqpuQZJJuW+TxvDMOFu28fUVS60vCP369VuQM+XEo2JIbWmKpwpvB2Pi0mjuFU2T0zvX+sFdEYxhq5wZbaMqirMFH5EqsoztzuY+OIoCpxruqiKXAdP0pTq+bIB+bDn4EVCq2Ty7dubz9S8+DhIs5xrWyPiLCdKUkxdyi/nTymNDGRNv94LaI8iWmWLhmeeKKF0glbJIi+e19pTkk2HSTZNm1yqOzQ888T1SsMzyXKBgBPXpH6c8o0bbYZhymtLFS7PHe+ge67lFR5EL563zuPi5vaQH60NsA2VVxbKmLqOoalkec5373TRNYWfvjxD5Rl4QZ0EuRC8t9ZntRuwVHN4banKQs0mKSwKXhREac776z3+0BuLz/tSHoogzvj19zapuQY/fWVmH0vubNOl6x+vnn+aSHPBu2s9LrS8F7ox9Szw49GtOCbCJKM7jslzwc4wpDOO2ByEkt79jBEkWRFfbB7pb5Hngu1hSD9Ipn83YRX0/IQsy+mOY8ITpGlNTHMnPhu2obFUc577C3cSZLnA1jXqrsEwlAZ+4ygt0lTyKRX3KEx+/zyXVPKD8OOUYZjSDxLaowghBLujiO5YTlmrjsHSAaPfFw1/6Xdu0BnH/E//5Of5F3/xKr/+/iZfv3Fys/UXDXkuuLE15Nr2AJDvwiSKNxOCYZgc+pqeHyMEjML0yM97gmGYTJNUngSOqdEqWeiqSnTgvRSC6dqzF6MoJUkFec6+d/0gwiRjexBOn+HHvkZDo+XJNI4n/V6nBV1TWaw5D41q3y2GCJuDkJ1h9Iyv7mgkacb1rSHbg5BxnBXPn0ImxCMTBp81siJS++PNIUDh2WDs84eaNC3a44h+GD+X69yLOM3Ji1fR/4RnVAgxDSE47WTJXpBIX6o4I0wydkcR7VFEz48LprHCbMV+qp/3OErZLp57IaSvyjBM6I7jqYxngkktcNAP7ODnvReyFoqmvnog6wuAziim7yf48fGbWpM1JUnF1MtCVRXmq/ZzOSxNnh8hIMthofrwdeYggliuuZuDECHkPrHZfz714qMghKDnx2z1Q9Z7IaauYesv1kw5znLiNOP2zog7u2N0VcUxtFNt/Nzv+OyOQ7p+QpqJR9bG/SBh9JAgjWfxvEbpA2/bybq12vXlGhwkh1IIj4KiKDRLFqamPrK+OQpBnDEMU+Is46ONQeGB9ACTs9JBL6mSpbNUc57qAO1ZIUwyrm0OuTExvI9zHFNnvmqjawoCuW74Uco7d7vsjl6M2mOCXMj6Mc8ly+/27piypWPr2hOn1J0mVEWykO7sjtnsByc6sz4rxFnORj9grReQZPuvzzXlM/8kDNvTQC4ENcfkXtsvCBQv3n18VvjxX30KpFk+nVCMopQ0E/SDBC9/YHj4KPhxih9Lk1RNVaZSA0NTUZWTJ8DMlC3STKBpyjRhZi82BuGUdn5ptiTNPV2djX7IYs1hvR/S85Njy/AAVuouHT+msacYGIZyE6wfMPzN9xSVLxJu7AzZGcSUbBVL10kzQY5goWpTd01c8+H3YbZiFYbrD5mYCri9O0RVNEqWzs4oYqtIM3zcdMUgzp6ZTn0UpfyVb9/nl19f4LWlKpfnSvy3v3eH//h3rvOFy62n/vOfFpI043c+3qY9SvCjDNfIeXWpNn1e4yTnzq5/KCmm6VlspCElS39o8l+c5txt+1Kfn+RHJulMpCC5EIyilKpjFBM1se/dr7smQeHncjAiOkwzVrsBwzDd9zPKto5jqqT5o02t73V8oiRndxTzyuJhRs5kkzJUla4fT9OBslyg8OA99iydmbJFlMpUjhcFUSoL5YptHGIyagps9kJQBFn2/DdjIQTfvt3h460hjqHxS68tcKbhsTuKuDr/Yk2yvnZ9m5vbPmGSUrIMXls4TEXvBxHfudXBs3TmKhZ19/k+F2XboFU2idOcuU9gVEjDf4eun9AsneyQ+0kSwIYnzb1dU5OpooOInXGEq+soKpxrucxXnp5cYiLD01VpNK1rklW4PZRNKV1TuDxbkjJMBRZrDttDaRZ7XAb09jCaNnv1gknULJnTFMN7hXH85bnSsQYyizWb7UEkEyYPvMdBnDGOU2qOse/6TrvW2Ptz6q5BkubounpknTXx6TkqPfXW7mgaLmEbGrujBE1RGJ2gUfc0kOWCnVFIpQjfWesFbPZDVrsBi1UbTZEJrc8be6V7cZpzr+MXTT7BKIw51zo9o+EgzvDjjO4ooeIYNDzzoWzgvRK4vZJOIQRdP5Gm7sXeeZpKgskebekaFVu+Z0mWM1OyCJOMcZjR9xNsXTuWnDqIM95b66OrClbxbu6VvD8KddfkTNPh3dUesyWbe21/ypqaDDPyHCphwtnm8VioaZbTHseUbf2Fb1zlec7f+cE6fiJTeWcrFjXX3Ne0vjhToucnXN8KiZKc69tD/sRnlqmd0OT+aUFTFFoluUfFSU4QZ3zj5i6qojJXtR5bannaUFVIkpyNQcj9bsC5lsfV+TJBkk1TOJ+3oiPPBes9HyFk+MRedMcxqqI813AzkESSOJP37If3+3TGEedbJQxdxTW0HxvV02ngxV5dToBc8CB9L8noBQlqEf3aGUdkAmbL1pFa4iTLubUzLrrnGXNVixvbI7p+AkIuahdnSidqPhia+sg42b3fSVHkNfT8FFOT3g17o+onQ41BmLDaCXBMjaZnMAhlLPFEHrM3qQhks22iSU6yB4eAvbG551tHe748L7y72pOShXHMpbkyry9WWWlUMXWVnWHEjZ3xQ7/W0jXONj2GYcKHGwOZtNaU1PzdYcTXbuyyPYg503ALE+AHn4IQgo1+gKYozJSPt5BOJBGmrnJ5tvTUm3y/9u4GwyjlH/195wD5+/4jnz/Ln//1j7m1M5rGd/84IYwT/sJvX+fa1oi6Y/K5C01++srMkQk5B6d7dc88MiUwiDPudsboqrJPqnLUR9rzY95fHxAmqWwiGQY9P6Hpmax2Awxd4dJMCV1Tp5G7j0Ka759sGpr6UPnpzjBiexhSc83pk3jUNQ7DhOvbQ7rjhIqtYxs6iiJ9JzZ6IaqicHHWmzbnXiRGzwTfutWh48fMV2x+8kJz37+FSU4vTMhzeXB4nojTnA83Bvytd9dZ74c0XIPPX2zyqTO153pdB5Hlgr/2zn1+7d0NbEPj9aUaP31l5tBhLcsFX72+y7trPUqWwdmWy6uLtedu+HoSCZlMIz0582IibS/Z+j7vizjNudOW+/1K3eF+z+fDDZ80Exi6gi9SBkGKriroqnpsBs5JsTMI+XBzwNBPeX2lwhcvyzy8a1tDekFMexizMwwZhRlLdYflunNiD4+9H/Pkf7qGjq6q7I4iSpaMj967tq52ffpBwlzFplWy6I5jxnHKTNnCNXXOtQ7XC2mWT2uKUZhOJZfjKOX27hhFkQfBJ2UjR0nGV65tk2Y5Dc+kYpvYhpThK4pCmuVsDyN0TaHlyTouTnMaJfMQq0zu/4KyrXN5royiSAP19BhslqeJb96SdYpjqazUXTb7IUGSMY5SOn5MxX04Q+5ZIclyrhfSvTs7I1Z7gRwEmxpnGh6X5iqnGrWeZDlbw4AgkQOX5brz0IPa5FneHob4ccqFmRIzZYvtYcT2IJqyTVRFMqdOQ+4+keKClMOVLJ3FmkNnHMs93pG1ecWRkfVHoefHrPfC4mttvnevw3urfSxd4zPn6mS54PrWaPouHdVsncBPMuYqNq8v17C0/UEAokgnHEUpG/0AIaSc6VE17wM5e8J81eLtc40X0pcJ5BrxX339Fr97bZdWyeQnLzb52ZdmDyX+VhyDL12dRVEEf+sHG9ztjtkYBPwLX34J7xSf3ceFNOVWuDBTIowz3t/o8+1bHeaqNhdnvBemMWVqKhXXoD2KSfOcMM3wo5TVboCiKFyY8XhzpfZcrzHOcoZRijneX19u9AO+d6cLCnzufIOZ5yiRNDSVpZrDVj/k+s6AzWFAZ5SQCUGzZHKm4b2Qtf3TwIlWFkVRXEVR/kVFUf6coii2oij/qKIof1NRlD+vKMonnooVRTmnKMqWoihfURTlN4q/+3OKonxNUZT/XlEUo/i7f0hRlG8oivK3FUU51ttn6rIR1CqblG2dimNQsnUsXWVnGNMZxWwVkZQHsZdRJRDFggDjMCVKMqIkP3Va3XzFZqFqsVy3sQ1tytACebBeqjm0yiYrDXc6HemMJPV2FKZc2xrRHSfTiedR2HuO3/s7TuihQsjC8UWBEIKSaRDHGWkuJwY5UqM/kRscp2jsjiXV24/kZBVkUw9kZLxra5xtusyULearFmeaLnGaszuM2RpEj5Rc7cU+acUzoNb+3fc2WK47vLXnkPzH31pGUxX+5++uPvWf/zTw0eaQzX6ErioIBG+sVA81pQxdeicd1/egF8QkqSCIc+I052zDZa5iHWkW2Q8kU6Lvp9MpK4ip/ClJBWH6yTR6U1dplU/medEeR+S5fK9X6i6zZfPIg2eY5OwMYgZByr1OQJxJ1tYwSAsJi5gaxb+ImEhRRM5UNrvv31EomTpl2yDOn6+MJogz2uMI29BQkeyewQn8e54VNvs+N7fGWLqKEIKLs+6RB6yeH9PzUwxNBmLUPeuFkyo9LUxkZwelaoMwIUpygjjl+vaQ9W5ImOSUbI2r8xXOFOuF9ZQlE+M4xTU0So6OoapTZlGrZJJm0lumM06I0nz655NC7nE2Z5rOdADlJ/J+1D2TimOwVH/wb1ku6I4T8hzao5ioYIJ2xwkbvaPrp4PYe53DUK5ReX46tcYoSomSnDSDzcLIOEzyqdRpZxTRHsVs9SO6/gM55EFZc5rlXJjxWKjZU8bIuaZHq2yeKtPnpMhzwSiU17o9iAiiFD9KQcBi1aHhGbQ8iyR9vs2zSb0axBkbfSl3TlIpRbnwkLXoSdAPEhShAAqOoT1SCtcqWcyUTUxdxTX1qURr8ionmTw8w4O68EkxYVJLZrb83mGSsVa8O+1xzNmGy3zFYvEhTfndor7vB/KdH4UpdU82Xher9rSe3/szHoZ7bTk01VCYLctD7QR6MTTXVGmiPQzTfYPwh/1+k31jHGXHUqE8L2z0Au61AzxTJ8nhzaX6oabUXry5XCPNc0qmTmeUcGv34cPvZwkxbaBK5n0Q55iayihK8F4gxtrER63q6rQ8iyjJGYUJO8V7NzjmeeppQlEUPFPH0tR9h+GJrDZJBf3g+dZ5QgiqjkHNMTFUFbNQR4yilFyc3lr144CTPt3/DXAfcIC/A3wI/IfAHwb+E+AfOcb3+E0hxD8MoCjKDPAlIcQXFEX5l4A/oijK/wL8WeCngT8G/JPAf3Cci6s6BkIIVrsB24OQMMlwDa2I1lQxtcNm2OM4petHmJpC2TZQVVjvBuRCcKbpkgtBxTZwTtl3SFGgF6R0xzGz5ZSzLY/ZikUQy0mHqassVB2yXHBndzxNIVGKyG9DV0hSceTUIkozdkcxnqmxXLe52wnojmM8S6NsG9Qcg0GQkIunZ/54HPhxyocbQzQFzrdKVF0D21BJhcDUFWqOyfmmh6YqzJVtbsdjGkc0J0ZRyg/vdUlzwRvLVVQVslzS94eh9KeaLVtcmPHIcsErCxUsQ5uazZdsndoBI/QsF2S5eCRleqEqpRVlW3/q06N+kPC1G7v8Yz91ft9ka7Zi86WXZvjr31/lz/3iS8+dCXFc9McRf/mbd+mMY2q2QcnU+KXXF46cAumqcqJCt+oYdMYxmirNge91pZTPs/TpAWyt67M9jGiVTMqOziBImCmZtEomFUfn2taQ9ijmXMt7pAH7BJqinNhIuO6abA8iaq7BxiBkFKZkgmkDrT2KuNfxaXomdc8gSjNKhkbDNWmUTNa6IRv9QBYFL7CPnKIoLNZs7rUDXpo/PL9oejrtsVyvbX32OVyhRGcU8aPVHt+4vsvAj7nYcnljpf5CGMhPEIQJf/lb8r0R5CzWHS61yvzsS3NH/veOqTFXMrm+PaBkGixXbUZRyr2OT919uBwmzXL8JMMz9RduTQmTjCwXn8j0Xam7bAwCwjjjzu6YMw0XAViayvYwZByltMoWnqlxrzOm6urMV2xsU6Nk67RH8aGa4XGQ54JR0YRSFYUkz+n7CT0/RVNVlqoGaS643R6zUpds3mGU0PUj5io251oecxX7sUI5dkcxa90AELyyoGEa0icvSaXNwGLVRlEUgjhjteujqQqOoRIkOXXXQFMUVFU2lnTtwXOQZDk7wwjH0Kh7Jrqmcq7lcWd3hB+ndMYxjWLdGkUpqsJjrVGDIOHWzoiaa3K26VJxDM41PYZRwrmmx+3iELldDB0nW6OiSO+Q+eJ5nytkzUIIbu6MZU1QsfZJSR1TwzGfDxOp78e8vzGgZOlcnvPYGkTUU43v3O0wDFO+cKlF3bNYqTvsjOLn6ocyiiSbsOdH/NaH22iKoOpanG+4XJmvcO4RSoG9SLIcBQ4xnyaMxjDJuDxbwjHlu5hkAgXBfNV5JFtIekg5JJmgPYoJkpQb20OWag49P8bQdVxDJ0xlXXjca02znCQXlC39ELvIM3V6gZTlVm3JkNbUB+9OkgnudnwUBcqOga0evv4okUzv5ZqDa2q8sVzj+/e6zFdtWmXpi1R15Bml6shghiDJptcTpRm6orDeD1nv+ZRtnXGcoWsqiqrs89Sq2DL5a60nFRjWJ0gDXUPDNlTWewHLdfuFM98HiJOMv/Kd+4VkK2ehZvPWmRqvLT86aa3uWfzRt5b4jfe36AUxf/Wd+9zcHfEPvLn0XCVouqaAIpgt2wX73+bWznBay6ZZzu3dMdvDiPMtl8Xa82mo65pK07NolSx2hxEfbPTZ7gecaXnM1yyajsnv3dil6hq8vFB5PvdUCFa7PvWlCtqe9eZsw+X2zphcCOafs/WFpkpPuXMzHoupzc4oKhregq1+QBCnhIkkrTSfEov7RcFJd7crQog/qcgnawP4shBCKIryVeCHx/weXyr++18FrgFfKf7+t4A/BXwA/EgIkSqK8lvAf3aSC9waSBNRTVE403DRVLVgUOk0DmiH77THfLwx5E57zJmmy6dXavTG0p9KVRRemis/NXlWnOVTLfzOSMp5jvLbmBih3u/6lGydl+YrzBWb6TjOjixQ1nvykNtBxjdrikKaC3ZHMWVb+j+8CLKv61sj7rV9BLJIfs2pMoxSWiWbMMl4dalCq/hdd0bycx0cMXVd7wVsDyUT4zt3uyxUHKzCeHMSY71Ud3hjubbv6/pBQi4Eu8OI5ZrD+RkPVZHU1GtbQ9JMsFCzHyrl8Cyd88+oQPx7H22RZIJfem3+0L/9sbeW+a0Pt/nGzd0XMtXsIPwo5b/+vTt863aXkqnx2XN1/uHPn8M5pSmQa+rT2NfdUTQ1Wh5FKZ6lE6c5H2+O6AcJ9ztj3jpT4343wrM0UOBO2+fOboBlyCnL09pI5yo2cxWbPBe8vy5N3/tBMm1MvbvWozeWUpgvX50lF2Bo8l0ehxkfbw5RVfm8vmjNg72Q012Fcy0P/YiCfKMfEmUCFJUPN5/9tFJOqWO+fafD73y0zWY/5KW5Mp+9WOdz51unKkl5EsRJxn//7bt85eMdPMvg1cUyf/qLF6g84vpcU6fkGFyZrRBnOTd2xlQdA9vQ2BqED21M3d4dEyayuX9p9vnvFRP4cTqV3U/Srh6GqmswjBKSVDIgO+OYrWFIlgkcQ2O2bKOpkiX92lIVx9AZRAm2qeHHkhWw2g2euAlwt+MzCtPpQTVJBX6S4ho6F2dKtMomq52AgZ/Qs2JyIQ/ntqHRLFm88gTF/CBM2OgHhEmOpiq8vlw70mZgdxQxDFNWuz6zFZtLMyVcS9oKXJotESY5FfvBfdjoPQhucUwN29BwDA0hFISQMqqGZ2Lpj//8CCF4516X7jjBsyKaJZOybfDqUmXKLu/5CVGa8f17PYQCnqHzymKFhmcWjSZt3zOeZGLKnhoUcsUXAT9aG7Da9bENjc9fbPL5i2V+/b0NOqOEIElpjyPeXKnjWTql57gebQ+lAfs4TPjBvS5bgwjHUPnpK7N89kKTXHCs96UfJNxr+6jqYYln14+5sztmHElfqc+db2DqKmdbLnkumCkfr0G70nBxTY31XkgQ59zvBlOmlek82mpjL4Zhwu3dMXfbPguFafrBr+36MTVHPmd+klHVVdRiIKOpKkER4DOR0B2UtE7SP882PGxDfZC4WTCd+n6CAtOfm+eCG9sj0kwU67nK1iAiy3NAoVWyEeRTef8gSDnoKPAwKwSQg4k4y6deUuNEDsarjkk/SNnohce+f88CaZbzN36wxm+8v4mqKLy+XOFPf/HCPr/dR+FnXprj0myJ//Qrt7i+Neburk/DNfni5Znn1pzKckAo7I4iLsyUeHWxwntrA1xTkwFO45gb20PCRProVR3zudiyGJoylW6vdnz6YYqGwoqAnzzf5Bs3d1nvhdwv9panJY1/FOIsx9Q0tocJQZzgmHINnQyC4zSnFyTPdW0FWK7LNW6tJwM5ojRnsx9N08Avz5YxNPXv+8bUY40DheQY/lrx/yd/Pg65cwO4AnwJ+DLwNjAo/q0P1IHaEX93bEwMMBdqNp6lEyYZ/SApFu39lxincvHNcknlY89Ur2zrh5pSfpzSHkWHkrceB5au4dk6hqZQd619qRtp0bTyoxTHlP4PeWHe/OH6gGtbI0Be61EH0kkkuKqCY6jYhvyY9xaWLwJcU8XS5cJ7t+3z0eaQpYJ1cqbh7pMiTu7PUVK+RsG0MnRpaikQdMYxwR4Jx95p7wRzZZvtYcQwTGTjz5KmjhPpBLw4Usdf+9EmC1WbTx1orgH83MuzVGydX31n7dlf2AmRpBnfvtVm6CcoCHIheH25dmpNqQkm72jNMfAsrQgXkO+2ocmirx8kdMYJ93sBtq6iID1lJkzfTmGG+7QgvR4EqqowW7EwdXXfQcnSNMIkZXcYcWtXemaZmjRBjLMcQ1OmyTsvMvpBwo3tIR9uDEiPuNaSZVCxZLPkuIXkaSHPc65tDrm2NeLm1gjPlJ47mqZwafZ0fVKeBFmW8507HTYGEZqqkOU5ryxUH9mUAilhsnSVQZiQ5BmGxpQF+qivjQoJ1Ism+0vSB2EmB1PrjoJnSZbxZP3Pc/m7Jbls1CiAH0lfIiEEZatYI1R5j1RFeeKDyVROlsiJZ5LlJGlOLgSNQra31g+43/UxdWmEXndNHEOndiC05KSYKVuoqkLZkQ32iTxkUmMEcUqeS5+lJMtRFDA1hQ82BtzcHrPaDbB0jaqz/zom91NR5D0COfEtFTXGaTA4c8GUySEQaIrCRi/g/bU+17aGDPwYx5QsNEtXEbm8BkXhoYwaU1dplqTM60WJXBdCNsZ3RzG7o4g4zciynJZnoqjgWYZk878ANJUwzvloo8+dXZ8gEbiGimdqzBVJbsdt4k7qqjw/LEsrWbpMfFQEhqaQC5iryHS6JMu5sT3el7gnhKz3jkrh8yx9+kzstQI4qh58GPw4I8+ZJgEelZAn9wmBpspk3DwXXN8estoJGYYpdc/CMTVcSzv0bvT9hHGY4lrymZ38u64eft8myMUDL7Q4y/b97qoq38uzzRIzFRvLUAsG6OEz0FHIc8GNnRE3t8es9QJA/k6WLr2qPEs/0f172oiTjO/e6XBjZ4Rr6uQILs+WaHonM91eqnvMVy3J4lMV3l3tc6M4az0PTMTbk+ctF7IxqShy6PLRxoC1XsA4SvGKIcLzhm1qVGwDRYGGJ03/kzRjreczCFLGz8kWQVMVDF2l6Rlo6oO2h64q3Nkd89HWkPVu8Fyu7SCiNKdk6VRsk4qt45oaUZKxM4jYGYYvtDritHDS0+B3FUUpCSFGQog/PflLRVEuAsNP+mIhRARExdf8bWQDaqn45wrQK/6vcuDvDkFRlD8D/BmAhaUVbmyPuDjjsVB1aLomW8OIKM3wbI0sk5tKkuVoeyb2Kw0XVZEUyVbJYqmgQs5V7EMveZzuMUiPM1Ya+6cFgzDBUNVCPpZIiZJjPtLp/9WFCi1PJsntpenf6/j84H6PnWHET15s8PJCGcfU6Izj6fe/uTNmvmof+ZAu1x0qtoFtqpjFxDIXHPqd8lw8dcPu7jhmECa0Stahbv75Vom6axJd22EcpXzrVpvXlqpcmvWmTLe9v1N7FFM54vdtlW1+/hUpZUlzwUebAxRgGGbMlK0iRUQjTjPutn12hhFnGi5LdQfHVNkZxFzfHnG+5UktsqXTKJmESbaveA2TjCiVk+NnOUXx45TfvbbDP/jZM0d+Xpau8YfeXOSvv7PGv/NH0hfKzH4v7nWG/JVvr9IexSzWbL700ixfujr7UHPwg8hzKdNN8pylmnOkke4kcSZOc5brDjXX5MJMaXogAykt+9yFOro68TcyWKhZmLrcVC1DpT2KqHk6a/2AUZzimRq2KT3rPsnAd3sQMggTZspHv58gGwa3dmXRc3GmtI89NcGnz9SxDbVgO6jMVkw8U6dUHCJ3RyGmJv/9g40+Tc+iZOnkQhy7ofIs1oBRlEwnUl3/sMfUQsFWHEcpP3HuRHOIJ8IwTPj6jV0+XB+QC0GrbFIvl/gDb8xzZbZE9Tmn103QGYf8j9+6x61dn5mSyRcut/i5l+a4fIyEwDDJONP0WO36DIKYW7s+/8CbNQQPl3HnueBs06XnJw+dqE++91ovwFBVluvOM0l4rTh6kZ6ZfOLEfhJOUbZ1VuoOigKrPZ+PNwecbXl4lkYuoB+mtErmNB0X5H5TdeQe+rgFfz9I2BmGWLqKa2o4hs0HGwPudcYs1BzCYSQHT5ngfNNDIA1Qq47G2+fqqIryxI3Rim3whUstOuOY6p4m172OT89P+HBzQM0xeG2xwqXZEnMViyQT7AwjojTnYQqfhaotPTsMdZ/c/XxLyuUn90wI8Vh7ZV58j1cWqhjakIqtc3t3zDBM2RyEqAqs9QLeWKpyrlklScvcbkvPtU9KbzzKaxDk3nG/4z/TKPY8l8OZumswKhlSsn99l4pjslSz+JnLLTRN/USz62d1re+v9/jKxztUbINfeG2Omj1Dq2xz9gTsmY1+QM9PiNMMx9QOJQx6ls6rixXJCFakaX+zZJEJwVZfnXosTZpgm4OQ3YIxf3HGoxskCCFYqMoa4eWFMkJIiZ9XNL3Kln7sZ3OS3nlp1qPiGNPh0WrXJ0wymiWTKJHDYyV/YL4+8QGbJDdfmi0xCBPWe4H0d7MNen7M/Y48EK80HM41HwybmyWrsCFRsAvmU5pJ5pcQgvmqRZjkzJQtslyw0Q/xLJMsy7nT9tkdhlyZr5BkOR9vDgtP2YwzTZftYUgY58xVrUOJxulkUM+DpqGmKLy2VOHijEeSiSMTMJ8HtvoBf/n37rI1DLk449E63+Cz52q8eabxWN/vz/7sJV5d3OHbd7sMw4T/z1du8AdeneMXXl885Sv/ZJi6Ss01pqzgim0wUzaxdIWBn9AeRTi6xqU5lzeWa4fq0r6f0AukpPpZDdhemq+gCIrkaJX/5fvrjBOZhLlQs9G0B8ORZ3mG8kydharJKwuVfbYraZ6z0Q/IBc8sjfWTau75qs3WIGKuYjFTtljrjPmLf69HmGYMCub13+840eoihPgnHvL3NxVF+eInfb2iKGUhxKSB9VPAX0TK9/48kkH1TaS87zVFUbQ9f3fUz/zPKGR+r77xaRHEsmkQxDJxbmsQslx3sXUV15aTismLO0mlKFk6Lx0o7reH4TTGehjK1IqyZTBXtaaT2oN1y84wYrMvPQ4uzZZY7QakmZQPVJyH0/CVIhXkIOI0Z3sQybTA7bH0d1Al9VjKC3ziNOd+x6e6tF8/3RnHrHcDyo7OWdejHyQMAhm1vTfi9X5RmB6VVnNayIpGAsgu8JW5/fc6yXL+9rsb/PB+j9myxXLDJUwygiTnQsvdx1ZyTR23cfhxDeKMO+0xmqpwvuVhG5r0fiokfBM5wocbQ3ZH0lekPU7Y6Id8UW9RsnTGZkbFNogK+QRw6J7Eac6NbZk61CyZDy1unwb+t493iNKcX3z1sIxvgj/66SX+h2/d49ff2+SPfWb5mV3bcbHaGfPv/Z2PWOuHzJYsLsyU+OOfWXnkwfcghmE6lY+0x/GRz21QhBWAPBjWXNlgvLUzRiA43/JwTZls95lzDSlziTOCOJ9u3hXbwNSl1KkzjLkwW+JOe0zZMnBMjStz5Yd6j6VZzlbx7G0NHj7dGIbJVGI4DNOptGp7EE1TxBxT482Vunzfk4w4zXFNUXhnaVQcg7VuyLXNEeeaHoMgRUG+K8t15xPv7VovoDOKqbnGoUa7EILtYUSaC+aPaNSfBA3PIsslM2oYZocOBKvdgN2hnOZ+/37vsX/OSfHRxpBv3NzlvdU+FcfgM2fr/NJrM9NY7RcBa70xf+E3r3Fta8xMWXqg/cqnl49MrTwKNdcoGEICFA1Lh9+9toOiyPXyjQNpOXeKw/9sxTr0TBxEexzjRxmQUXWMZxK3HKU5qqJQsU12R9FD36/dUcT37nbxTJ04kz5HWZ4Txjkl26DvJ+R1yShujyLCNGeuHHF+Ru4xqvrk8dHS5zIHcq4ulGmPIvp+QpRk3NoeESTShHml7lJzJWNQUeD9tQHtccTZlkvpCD+bk2Kvt94EuYBxnNAZxViaytdutnljqUbJ1pmrWmwNQsZR9siI6o4fMwpTzhTPySDcX2dIqbSPoalcnPGOFXedZDkfbQ7ojGOWam5xENOIUkF7HNFw5cEsz2HgJ3y0NSTJ82nzfqXhPdIX8lHo+fE09OJpI4hTvnu3ixCCVxerJLlsBt7cGbFS96aNxKpj8fJC+blHhXfHMR9uDPjmrQ6b/ZDNfshPXWry5ZcfXpMchSjN2B3GxFnG9jBiue6yPYoO+TOmuZj+XZzl2KpGszBWBmi4JluDkJ2hrJP1ggXR8WO6RfLWhBWnKMrUE8k1dcIk5Ws3dkkzwWfO1ihZj37PjcI/bS/8OKU7lolZd3Z7GLpCnAjmqzbDKGG2bLNQsxkVa6kQgjttnx+t9ZjxpO/Zq4vVfaqAo4bHtq7ynTsdJiStXpAwKp7RkqXvW6MnktnfvbZDexSzM4xZrjvc74bc2hkxU7Yp2zp+nLLVj6ZfN2nwTxrKZhE2M47ktW8NQj7cGOCYGp85U8e1Xow0Pj+M+Q9/4yOubY1wDJ2zTY9feWvxieS5qqryM1fncC2d//Krt1jtB9z76oha2eCz556tTYamKPs+31EkU9j7fopQJEvwbtvn+vaIhmdxee6BP6sQgvuFt6ofZ7y88GwaUyVL5/WVGh9tDNkayOcuTFKGUUbDsUgzwbdutQmSnDeWq89MkhYkGWEiuLUzJk5zrOKctzOMKNkGfpQ+sWQ/yXK2BuFD2bhCCG7tyqTgR6WBlm3JkA2TjA83hry31mUYJWwNQxQFPtqQcs7TqA1eVDzWJ6Eoig3808AXkBK+ryHNzz8ptuWLiqL820jW1NeEEN9SFOV3FUX5GnAP+AtCiERRlP8c+CrQRTauPuF6mBZ2H6wPWO8GrPcC0jzncxeazFeKDS7NCZOUtV5IlGbMlKT55WTTH0cPFmwhYGcY0hknBK58kM62XII4O2RCujciPsllc2OUpVi6+tAHpzuOidKcVslEUxW2BhHDMGYcZziGxuU5WZzMVex9VPmaazIMEwRimsi1dzO7vTPiXkfG3Lc8i/sduTgFSbavMTQ54Pf8ow/4pwFVkcVBnOZYujQUv9ce48fS7H29G/DRxoBxlHI3SZgtWwjEtFlXOob0cGcUstkPsHWdVsmi4ZnMlCwURcoxKrbBzjCi78dc3xzRGYf0gpQzDY+tYUjDs9BVhapjPpIJk4sHEpKHJQN2xvF0Mz9N/MYHW9Rd45Fsks+crXOm4fKr31994RpTN7YG/Hu/9hEbfR8UFUvX+KXX547dlAqTnNWuz0zZQlMVciEoPUT655kaugprvZDZsmzajqN0OsUcBCmuqTOOUtZ7Pu2R1Oq3SiarXZ+XFyqSbWjIaVVaFL0TmYgQHDlRj4rG5UpdGrMGD/F/m8DUVLp+hGcZU4lhz5fv5ChMSYtK9H7Xpz2OaY8i6o7FzZ0RL8+XWay7KCiF8XCKZahESYZZPMPJMdLtegV7qecnrBwYME7SCkEWSE8SU1t3Ta7My4Z9wzMPrYlRkvLeWh9VhbefEmNqEorhxxkzZYNb22P+t2vbfLjWJxOChmfSLNms1J9vDPtevHOvw3/yOzdoD2PyTDZkvvTS7LGbUiCf9zDO5JTQUDBUlbYfk2cyYOJM08WzZHhDmuXTg3nPf+C/k+eCIJH7krqHCRPGGV0/pln4+Uz+/l7HJ0olq/G02JtB8bMEgvV+gK4pvF55uKntWjegakuPKS/RuNcOyPOcZsmk5hhSHiEEYSJ9WOJUsNYLmKta+wY4J0WYZHTGktmb5YK77THNkkmS5rI5JgRxJgdPjqmT54KKY0yT4bYGIW0/ojNOUBU5FHvc4j0rmh2mrk6n7hu9gJs7I2xDZbnqMJ7NSPKccsGASDOZ/OSaOpqiYutSPnUw3MOPMj7c6BMlUt7kmNqhOmMQJIjCL8tPMirHaK5sDyNWO0HxuUSYGny4OaDhmlye9UBRWGm0+PqNHTp+zGLNkSm8eY6hqlN2NsgB3jjKWKjZU9nquPgMjpKxTmSfzwK3dsb86H6f3VHE/a5PxTbIhGyCRFkmm5KFR9bznJBPwnd+4/1NNnoB2wP57jVcUza7T4g8F2wPA9qjGLUw7D6qnmqVLDayYCqtBrn/Tg7qaSZrAlOTUk7X0rA0GXCUC1HIO+XX9f1k+lw4hefU7jAmyXK+8vHOsfxWo1S+1yVLpsf2/EQahxdWGa6p089jHFOl5pjT32HC+g8TmbKnqyr9MGa2Kp/RumtM64m9UsMsF2wNAr52fYdrW6PpINQrApDSXA7ABkVjeNKMHUUpSZYTZyl118IvBlqzFWmgXfcMmTaeyj3BMtR9B+ZJLVK29Wkz7oONAd1xQnecsFQLT5Q8/DSQZDnfvr3LX/3OKnc7Y7I0x7AVfvpy69Q8495cqXG+VWK16+Nn8Bd+4zp/7DMBv/ja4nMLHijZOv1Akgnaw4DtUUjHj0lzwTt3uyzVXG7vjnBM2aSzdMmm/ySG/2lDVxUcU6Xq6jTLJre2E2xdpgm+c7fNu+sDqpaBAvzs1WcTdpPlgvfWe6zUvH3radUxi3AzlZeecCC52Q+nNfxRsuY4y4tBnqyvPylUZ3JuEQIMVUETKhXLYK3rs9odE2fwhUtNLs48PS/s54XHfcP+W6R07y8Wf/4Hgb8M/IlHfZEQ4teAXzvwd/8+8O8f+Lu/XHy/Y8E2tOmGleVyCrkzjmiWTe61faq23CjkJC7C1nS6Qcx2P+KjzQHLdRdLV8mFXPB1VUVTwI9loW5oKoamYOrGkQXNpDuqF42QkqnjF4X8UfDjdMokSvMcx9D44f0e768P8EyNhZrNl67OFgVzViQIZVi6UiQIQJxmGJrGje0RZxoOuqZiaNKfIssFWSybcIYmG0MH04VmylaRnPP0OumKIo1TgyTDNVQ+2Bjwteu7KAg+2BzymbM1mmWLYZTiRwlrvZDdUcyf+IkVlmrOtKv9KPTGCeu9kJKl89qynBioqmzKqapMG/JMjR+sdrm9OybNBItVB8/S2OoFIBSsPc/PUQiTbMo6A45cUKI0K9KP5LTvtJBkOb/94Ra/8Or8I6emiqLwK59e4v/9966z0Q9OnBD3tHB9s8c//z/9sFiwBW+u1PmXfukKK43jG+IKISPMWyWLl+bLCCEeei/SXE4mwyTn2taQmbJFxTHo+glZnssEvF7A12/ssDkIsXSNYZRyr6OxVLNBKLx9vk6rZGFoKrNlKUG9MCPZh46hHbnR50V0dj9IpnT3h03uR1HKO/d69IMEU9eIUnnwmylbbPYDaq5JkuV87fouN7ZHZEVTVFVHtDyLG5qKbeo0PJMozTnTcJmtWGiKUhj6Q8s7etPbSyOeLdvsjqIjDaRNXUVRZIP+qN8jTDLeXe2hKvCplfojn80wkYy0vDgoH6Qyf7Q5AAGjKDuWb9DjYBxlbPRCDE3h79xq88P7XX601kPXNM61XL5weYYvvzyL/YLEMN/eHvLv/u33We9GKIrgM2fr/NNfuszLi49OGDqIQZjgmAoVW+eluQppnnO73aEzTkCBm8XzdaHl0SrbNDyDQZjuW+Nu7coUM8/Spoe4np/gxxkVWw4EJs/IOM5kMyzJ0BSFi6dknH63Iw9Oq90x55ol0lzsYzT1/ZjNQVR4EgnutMekac5nzjUYRQk/XO2S5tJn0TY1fD9lrRdQc0zmqzaGFlN19Cnz4nFxvyPXns5YNn0brkkQpbxzr8v373XojGJMQ0cvDtCuqXO24U7fiZprULYMxpFsbD8u+weKJtdIXoepq3THEV/5eId7bZ/5ms3b5xr84mvzhEnOvfaYOJfy54knzyhKuLadMohSLrZK5EjT+AkDRUUlFymjKME0FFT2Jx83SyZ+IWMqFU24RxXQeS4wNZWaa9IeycTU69tjlKmZukEmZCPsbLOErmkySt3S+WBjiKYqXJ6Tz1uYSGaOpirc2h6zULURSBaognKkcb4oGCv6UyzyJzKWQRDT8SM+3BzQCyLCOEdRBHNlh7fP1XllocZM2cLQntzj7HHx3mqPb9xss9kL2B5FbA1lnfXSnMeVuSqfWjneEGEivbMNjUGY0vIsuuME19IJkuzIoUfVMag6BsMwYXsY0vQsur704HJNnVEolQCKktIqWQyDlO9uDVisOsyULc4V7HkpffMLI+GMS7Nlaq6U64+ihIarH1JAHIX7nYCeH6Mo8MZSjfYopmRpCCGDE/pBgqUrpJmYegMNw4S7bR+As00Xx5T2FAtVm/NFI1pRlCPNoD/eGvCDez2+fWsX19DYHsj3yjE1Xl6osDUMWO9IBYBjqgRxJgOP/BjXUElSgWtqqMimnfT8MfnR6oD2OKRsGswU9gFxKg/MuRD8aLXHUl3KuEuWXKcWKw4bvRCnCDh4nhBC8OF6j//g737E7jjB0BReX6zyD/3kWd445vN4HJi6xj/9sxdI84zfvbbDrd2Qv/T3boAQ/MpbR1tqPG00PBPbUPFXY96528ePMqI0pWQ5NDyDX39/g61+SC4UvnClxasLFcI0x33Gn5miKFycKckaWNNwTJVv3Wzz3TshiqIwCFLmqw6X50rkuUBRnr6sL80FaSItAHb2MDQHQYIfy3NyP0ioPsLjtD2K+HBjwGzZ4vJc+dA1T/wQFUX62B6EpUuf23GcMnPgnT/Kt7riGNzaGRNlGZ6lc66lSeP7MOXm9pggThmFCX/wDYULMy8Oy/808LhV+EtCiDf3/Pl3FEU5birfU8V81WEQpogNabZ7v4hotXSNr9/c4c5OwELV4nyrhKmpjCMp8+kFMY4hJTTnZzxcQz4AVcf4RANSTd0fFa+qyiO76mpR2I1CaaYeZzltPyRMUjrjSG5sQsoRtvohq72AlYbLei9CVRRURZkWUVuDkCBOMXSVy7NlLs6W2R7GCCHYHEZcmS0RpPmUYTJhWM1VbBxT417b59rmiPpTalBpxb2QGnifjzf7tMdy0mlqKn/49Xl+uDrgdz7e5p37XaqOwTt3u8yUrU9sTAkhaI9jXFNGp17fHOLZ8mfFmcBQlYIeDa6hEyeCKMtxDBVDVwnTnCzPSbP9n+1GX0706p6UOd5pj0lSga4pvLxQOfJa9sZqH7UoPS6+eavNIEwfKeOb4I++tcT/67ev8798f51/6mcvnto1PC7u7Az4M3/5HTYHEaamcKFV4l/+5assn6ApNYFjqnsYiA+/vzKCWv57nOVEaUaY5CgIbu+M+ebtNu1hxMebQzxTxzFlUzJIMnZHMaAwCBJWGi4rB773I9kfijQdLRX+Y6b+8GsMk2w6tYlTaYTcSWMQcpLyvbtdhoH0f9FUhTwXXJwtoykKHT/CMjR2hhEvzZcPsSlmH/HORGnOu2t9Fms2lq7RHkeULP3IKaNr6lyaLZHl4sjf+7u32/yv72+jawqWpvL6EUVhmuUMwhRDU0iyHNvQQZVFgrmnsLN1nVjkhSzi6aTyrXZ9tocB24OId+51+O6dLn6ccaHl8fmLLf7oWy8Oy3Cz5/Mv//V3+XBzhKrIIIj/089cOnFTSkLw8daIQZCSipySZdDwLGxdBj3sjiJWewH32mNsQ07JK7YuPUiSjMWaQ5hkhEnG3faYOMu50CpNC3NN3e8xZOsqfpyy0Q/J8pyl+tFecCfBKEq5tjlkrRfgWfJwO1+1MbUH0/5b22MMTcYtr/V88lzKMhquwffvd9kaxPix9LVpuBY1TzKabFPl0myZYZhg6uoTNYJA7v2Cokntx9zc8YtDuco3b3VIM8GV+TKOoXG24VFzDQahTCizDZWLs2Vemi+jqWAbxzeTPgqaqhAmGRv9gCST69t6L2StF9AsmeiqbHp8sNHnXjvANaUMvmTJEAhFkUOuPIePt4eoKFMmhWvpvLpU4frWCMfUUITCctOhWgzuhBDYuja1Svhgo8+t7fFDmZedccxaN8AxVa4ulHEM6Zmy2g1oj2NykXF7V7JjZss5tqmR5TmaqvPR1hAhBDMle2ps2x5FrPd90hSqrs5qzydJc4SAcy1vykjdi/Y4Is3EQxnRT4IsF7y/1uNuJ8AqfIPSXFCxdXZHMduDEENXcQyd+YpDzTWe+Fl8XAgh+HsfbvN339/k9vaAOJfs9zQXzJZsXluq84c/tXTsZzNMM65vjabSVK1g6kxYhH6UUXUP/65R4QkqBESJ/G97fsK793tkmeDcjMtcxaFk6Xz/Xo/tIuCoWqgnQNbamiobRoamst4N+MFqlzDJWGk4BEkOyv7Pe7KmBLGMZq97JnGasdoNUBXpCakqsDOMqbr6NEHzR2v9qTfT1YUKYZJPm15REbRkFJ6QmRCoj6hj/Cij7yes9SOqts4vvr7A/1fAhxsyF8rWFL59pw2KrHYMXeVue1wkdWs0yxZVxyTKci4WHpvfvdNhteuzM4q4OveAHWjqKnXP4MONAXEm2OzLxL2JUmO2YnFxxmNUJAte2xpiaCpnG+4zb9B8vDng3/nbH/LR1ghdUzjfKvF/+YWXOP8UUsbLrsX/9RdfZq0X8o0bu3THAX/ht67TLFn87NWTSVhPC+Mw5Tu3e7y33kNVZCP+F1+dZxylvHO3y82dETMlm8tzHq8vVp8bu2tSA89VbMqmwUY/IohzNDVnruqR54IsF/z6+xtkOSzXbV5fqj01yXKWCxIhU/jsPeczqeaRa8VeVuRRa+9vvr/Je+sDHEPjn/m5i9QOeJDOVmxcS0dXlUO+bROsNFxWuz4bA0liqLoGt3ZGDI6QkGuKNGb/3r0e6+2Aesmk5kkPOU0VjGNpNfTt211qjkXjE7wVf5zwuE/t9xVF+UkhxDcBFEX5HPD107usx8dKw6UXxFya9fj+vS4qCvfbAWdbLlv9mHGcEqYGry9XQZEHwe44xlS1YoF/0FSasH0OmjM+KWxD48KMx62dEeM4ZRCkIOR0WVMVWp7JziiasgdksSRNDieUec90i4M0ZEVCR5xJN/9zTbfwtgBdU6nocrLzwcaAUSClZudaHoMgYRylbAyCJ54UPwxBnKFrkymkQpIJ/DgrpjRSgjRbtnj7XJ1v3erQKpl0g/jYk5mZkjR+3OyHXNseMlO25UsuJDPt9eUqWa5wYdZjHKdYRfLXhBFTtvWpobxjyMSzzjhGCCm3XKo5RaNDPJLmr2uyMRimp/u8/PV31ijbOl+83PrE//Zs0+Pts3V+9Z1V/uzPXHiu+uPdodzEh1GKpSmUbIP/2//u1cdsSmmPNEhPs3y6obmmzpsrVdZ7ATXP4HuFj8eHG0PpL+ZH2IaGZcgY8TNNF9c00FV5qHxc7zDH0Hh5vvLIQm1ynQ3X5OKsx0xgUndNfrTaQ1FgaxDRHsfcbY9xTQ2QXjoLVYuFmlvI9SSr4XEOLVGScXtHJhrNV2yGYUIYy4CASSGf5YJ+kOCaRzPDJhhHGQJBkkO05yDX82NUVaFiG9zt+PiRfP9/4lyd9X7IfMU+dO1fvNLi3dUeUSE5OG3kxe9UsnRuRCO6o5g0z6l6Bo2SyR98DsamD8Pd9pD/6qt3We+GOLqU8fzJzyzx6mM1pcAy5H6hqypbw4irlyuSUp6kXGiVGEUpnXHMnV2fRMhDXWccU3dNtgcRMyWTlbrLD+93sQpZ9ihKaXgm51ouggfpfmGSMY5SaahraGiKss+373HRHcXomoKpqVxolliu25xryXUkLejxnqXR9WMWDcmEWY2DQtKtkKSCMElZ74Y0PBvLUDjb9JivWMwWMv8nNYfNckHPj5ktWWxkUua4O5IsrJmyRXckjc4nRte//Poi4zjlfMtjrRtwa3cMiCLYQKAq8l6PP0ES/CjMli0GQQKKZAp1RzGWrvDZ83VeXqjS8iz6fjw9TMdZhsKEge5QtjXyXK6/7bGUjOz1fVxpuFN5gqI8eA42+yGbRU1xtulStg3u7o4ZxQn3Og8aQkGcEiSyZpnIilc7Ad2xZCdfmClxZa5EUqQUbQ5CLEPBLBjOpib37ZJVNAfMB8EUoyij7phyKGfp0pIhlk2IcZwemf5ZcaRE6zQTxybm0X6U8b27snniORpLFZeqY8j3rB9Mg3nOz3hcaJWea4BJlOZ0/Ig8y+j4KSVLo+QYLFVs5msOry6d8MBbbA+TMJmX5srYusL9bkDdNen68ZF+bgoKaZZP99SqY7DWk8bfcSbYGkRcna/K++gZXCrq56X6/iHxpI5vjyJ+68NNOuME19Co2CbLNfeQlUWUPpDcdH05oGyWLGbGCY6pEWc5Z5ouXT9GK5q3tqFKRqDC1Deq4ZnTz19BPtvjKJPsvYf0PoWQ9fHV+TJfvb5D3TFxTMlEzITcx7JcYGoKc8XapWqycaiqChdbJcq2VoQESTZWmuXsjCJ6vpT5rdRdluvuvlpnuWBJ9YKYNMu5NCuHD/c7PtuDiK4vbUXudsZUbJMoyRlG6T6PPz9ODykzThPdUcT/+M27rPVlirJpaPwjnz/zVJpSE1iGxj/3+y/zwfqA3I+J05z/4dv3uDJbZrHhffI3OGUYmhx8zNdcVASfWqkzW7Z4bxgRp4IgyUmyHJFL5k6UZgjBM5fzTTBftTnf8lisOuyMIhxD5eqcDPqYMPz8KGerH7JUd6d7yGlfr2tqvDxf5tXFCpU9DaUzTZdM5GiKfG7XutIG5+p8ZV8tC+An8l6muZierw9isi5GacY4yijb+j4ZvPTYi0jyXEoeDVU2hNOj7UHiLCdJBLah0R3L5OCXFyr8A28ucb/rE2eiUH0k1Fzj7xtJ3+Pufp8D/g+Kotwr/nwG+FBRlB8BQgjxxqlc3WOgM47ZHYZ8tDmkF6bYpiYnkTMecxWTG9tDDFUyK15ZrCKEKEzL5LRl70TP0ORk6/auNExbabinUjAIIdgtDNPvdwPpnzBX5UzDoT2OWe0G7Awi/CRhqe7x1tkarqlTdw0ED7SsnqUVG96Ysm1MKegrDbnJVJwH5mjbw4gbW0OyfBIl66JrKjvDgkauPtmUsDuOaY9lAsSEIr89lMbMO8OAt87UpTGzpVF3dEBS8n+0JqedrqHzh95YQACvLlYf2TmfGKRWbAPTUKg6Oj1f4aPNEbujmPMtjzyXBuaWrlJ3Tc40HOquiWVoDIKE9ijGtTTKtsFmP+QH9/vMlE3ONDxaJenNVXFkcsu5lstqJ5CLyig6knoNnMrEfS+GYcKvvbfBH31r+dgL9a+8tcS/9tff4721gWy+Pgd87eNN/t2/+xHjoik1U7L5V3/5Km+cOX3/oI1+wO4w3iczapYsdscRd9s+H28OqToGSZYzCBM0VCq2joqU/LwyX+HsjDf1jprIeT/aHFB3zRN5FjxqU5iEDVQdgzNNl/mKTdnSubkz5t3VPiVLx09Sslw+36ZuMF+2SITg6mKFz6w0iLIcTZUblmdoXN8aoqoKZxvusSZNilLE5qrS22O1E+JZGq8tPbjutW5AP0hQFLg6/3DT3bfPN/DjFF1TeX2pQprlvLsqPVNmyzYXZ71CHy9Y64boxaT5qPXT0iVFeRynvLxw+pTkrh/THkf89odbvHu/j6LkzJZtzrdK/JmfvnAiA/6nBSEE/8VXb/JXv3sfRVVwTelx9gffWOD/+FMXH7vJXLZ0LsyU2B2GrFRd5qsOMyWLtV5IkGScb3mMokSyVXSNfpDw2mKVex0fP04RQpDlOfe6AZqiULJ1SpbGaten7yfT/TIv0jDzHCxDpemZ6JqUED4uOuOYzjhmtetzvxMgiuFAd5zQGXewDI2zDZdW2cQyJNPGNjT8KKNVslis2nTGMZoqsE2N11cq2LrKuVYZTVXYHSXkSEnrQQ+lk+J+Z8z9biATfvKcu+2APBfMVGwaJYvff7XFTNUijDO++NIMYZyTZBqb/UgybBVoD2Nu74xpFh6Jpq4+kXQmKoY/N7dHpLng0kyZWsmUh1dHNnrSPKdkaywrFnNVe8rA9CwdVVXY6IWoqbRHuLE94nzTncqyAFbq8oDuWTpacZC93/HZHkaca3oMw5SyLRkst3Z85qry6+4VRtCDMKXuykFhnOUFu10y2UdFglkviLEMlVbJ4l7Hp+bIqbFnqTimRZ6LKTNkAseQzbSSpTNTsam5Jve6YzxTMgWPWqsrtsErC5VT85kaRSl3dmWSc90zCOKU7WGA4Sv0xjGjMMHQVF5drrFQd8gFfOHyLK71/ORSd3ZHfOPGLh9s9NkYhDRcHVCYK5nM1xw+d6G57z4fB7omvY2ahbx8rRfQ8RN2hxFhIhnst3fHCCFYabgYmvQ1e2+tx1o3YK5qs1CVXrBxmrE9CHEtjfOtErYhm72fWqlPn0NbV/fJRid1/LurfXp+wq2dEVfnK8xXJHOydiBAwdJV4kxKQV9dlAz5hmui68pUotwbx/T8mLVeQJYLLs+X+NRKjSDJWCo8mNrjiHH8oHkjG+URrbL50Drxfkfuv5ah8sVLLdZ7hT1E0cnaHUrfx8tzHmkuG2iG6klW02yJvh8TJNLcea5iy+F3lJHkcgClKgK3eLe1Aw1Yx9BY62ZUHGNqLyDtBuS1Grps6E+at+6elMhJHXaaTd29eP9+h3/jb7xPexyjA3NVmz/+1jJ/8u2zT+Xn7cWVhSr/2h+8yl/8ezdoDwPeX+3zT/y33+Ff+4Mv81OX5576z9+Lmmfx+YvNQoKZEWU5H28NCeOMMElpuNIvSVEFH20M+HhzyHzV4eXFyvQ5lKnRkqBwlDXNaePyfIWfe3mWD9YHnGt6xfUmDKOUOJEec7YlmYTbg1HBanVPNUlQU2UDue4a7F36bUPjymyZux2fmzsjmp6Fqspz8Z3dMbujiIszHlfmK/z8y/O45g5zVfuQFO8gbu1I2xinYGRPr0NR2BlFjMIMW9ckg8vQyPLs0PewDZVPn6kRxAk3tsfc2R3RHsV8uD7kF19d4LWlKv/rB5uEccL373W5sT3kpy7NPLcm5GnicavGXzrVqzhFDIKE9V5Ez4/JU5nW8uZKjapjMlu2ma/YuKbGejfglcUqu6OYUZROvWQmPii2ocqmxSDkh/f78kCnqYc8M/q+1MBXHePY0/5+kPCNG7vsjCKWag7LdZezTZeaa1L3LHZHEb/z8TZ+lPHzr2j8xPkGmgJfv7HLKMqwDJWZksWt3VFRuCo0PItxJNO9bENjvrr/4cxyafDb8xNaZWlArCBZNmeb3hOZGwOs9wPyHNYTaXCc5XJq/P56nxvbI360NuBz5+osVR0643g6Ed4ahNLU3TH57PkmC8dgrKSZnBx9+3YHz9RwTOkNslxzqLoGF2dLKCh4lsZy3WWzH/CVazvoqspbZ6pESc5C1cExpSF7mguiJCfL5fMzW5ZskvudAD/OeXO5SpLLf9/ohTRc81BhOwwTwiSn4ZmnZlb6t364QZjk/PETmJn/odcX+b/9zQ/4a++sPpfG1Ldv7fIv/ur79HzZLPrUcpV/64+8zkLt6RhmDgI5wR9HGVku8OOUu22fWztjHF2j6e75PBSFt8/VMHWVtV7IKEy5tjvCc3SWai73Oz7r/YBRlLJYdUhS8cjG1EnixSdhA4MwIclyrm+NGEWJPESX5UE0y3PaUcJSzeFTK3XeW++T53B312ep5rBSd9noh9zcGaEClcKwfximj2yubA1CBkGCbcgU0lbJpB8kXJjxUBUpKZkwj7M9v8ujfqtmyeJnrs6hAJahs94LuLY1ZBAkUmKFx5mGvKeOqfHh5pB73YC3zzUOJan99kfbfOeO9Ku6fYpSPiEE768P+MaNXb53t8OP1vskaU7VNviF1+f4x7948ZnFKD8K4yjlr373Lv/p794ijCXj8qdfmuFf/eVXHul58EkIk5wb22M5SVMUHEsjTnPSPJ8+j9c2h6SZLPRrjsFri9Wp1OleJ+Cde90pi+58q8RizaEzTvjmTSkxXmm4fPZ8o4hflz9XPZAm9LhY78l38Vu32riGZB45xTDmdz7cwbV0btUc/vCnFlkolrphmEz36us7I+JUoKsq8xWH+YrFz7w0i21oXN8akeWCjzaGdEYJsxWL2bL12A3A+92A79zucK8zpjeOUVSFpmdxdaFCEGd8+06Ps42STHStutzYluHEuRAs1z2SXODoGp4lJVxXmt4TTT/9OOUH93vSQywXnGu6VFyd15Yl22W163N7d8RGP6BimTTLFjMVhZ1hxLWtAaoimwN112SjFxBnOZamkeUy5WlS/Jq6um+NzHJ58HWiFFNXpkOqlYZLw7Om8qBBmBCnObtDySQLk5xzTW9qcn95rsTmIGK1K31Jbu2MGEUZCNkMu9+VB+E4zfBsDVvXWddDLhUeU2VbnxrKu6ZGq+GyVHfo+jFl++GT5dOcOIfFhB0ko2WuYvHBxoCtYYyuhGwNQ+qeRcnS+fIrC5xruc8speoghBCsdgL+o9/8mPY4YRTGqKpKJqSU+O1zTa4slHj7bPPE39vQVJbr0kftXtvn480BuyPZ1FmpO7y/nnGm6WLpGt1xzGzFZmsQ8v37PcZhBijTvWgUZbyyUGEQppxtumwNwmL/M1iuuwzChPfXB0Wt7k0lNYoilRA11+Ttcw0uzZa4MFs6MuggywVdP6Yzlsb0yw2X3XFEb5yQiZwf3u8TJim7o4gokWvjMMymqXgTbA8i1roBQZLx9rm69Mwq5HB7m7t7EabygBolOWdbHlfmpKemoUjZsqmrRGnOta0RhqqSZCmbgxBNlaEyH24MudMes1Bz+MKlFuOC+WXrOrah8vFmzM7GsGjqqVObDVWRNgQTFtUkLGauIpv7b6xUp166i9XDvkATBslpy2CFEHz1+hb/1t/6gM1+hKVrXJ71+Ld/5Y1nmp77868u8sZynX/lV9/l3dU+9zoB/8pfe49//Q9lfPmVhWfKVHn7XJPPnG3w1es73N7xudv2MTS55+VIO5tRmPLfffMuaS54fakmGz2WTi7Eg9TofvhMGlMlS+ePfHqZl+YH/N6tXe63fTaGIQ1HRyhyj2h6hmSDTdmVOUcE2z02/DhjrRfwN9/d4A+8tkC5qKuyXPD91R732wE1V0dVkcO6MGVrELLalXvfYs1hoWbzcy/P4ZlSjvwwCCGmZ4KD1lGZEMxXHPKytMiwDZUrc2WC5HBjSlEUXlmscmGmxLdvd/idj7Z4d7WPpiiFPUHA9+/2uN0Zc7buslhzqTkmny4IAD/O7KnHakwJIe4qilIHVvZ+DyHEO6d1YY+Liq1Td3XaY+kn8dpKDVOThp2XZ0vcL6jAmga3dkasdSW9th/EfGqlzno/mMbNXi5o5IYmD29HeQdtDsIi7S+iWbKO1ZRY6wbc3BmzM4yougbnWrIplecyGajvy8Od7qj0injp99f7/PB+n4ojU0FmSxYlU2McZ2RCsDMKURSBY2pHbrZzRSqHoanTQ2zTM4lTSZU+mDR4XEz8RPw4xdZlLHW3YH11/IjtQYAfyyjOJBO0SpJRNQxSukHMa/NV2kFMLgThMY2Pkyzn/bU+fpRyr51wdb7CpdkSu6OYkq2zUHH2UcN3RzLWWkqYLF5aqHCv7TMIUrJMsFizsQ0NXVOYnZhBxnKhGIUpaS79AFa7Y+re4abUXi8E6V3w5IeyLBf851+9xauLFT59INL9Uai6Br/42jx/7Xur/HNfvkztCQ62J8X1zQH/xt94j0EoZRmuqfHP/v4rT60pBVKusjOKqNgGWmF2LwTSR6nwstgdxlQdk0wIrm0NeWO5imOorHYjtoYBnqEVKT2Cvp+iq1KCelTk616cJF58vmBv1F1pWJ7lAsfQpaFowRby45S5is3NnaGUIjoGd3bHrPfH0ySgMM4ZhRmGBqaeUbL1R07Y0yIBDCQNfOL54lk6W4MQd0/qEUiWYWcs2YSPYpFsDgK+8tEOaSb40tWZafKmbao0yw8mcedacsKa5XIiOwyTQ42pfhDRHkdyHRt8UrDr8fHBxoBw8xYtAAEAAElEQVS/+YNVPtoYcrczIs9ybF0y6/7kT5x5IZpSWZbzV797j//u9+7hR6n00KnY/FNfuvRETSmQBdL2KJSsg7KNrqoEScYwTNgt3hmBPATFWc5CzeZMsXa5UwafYBAkRaKTzkLF5rt3O2wNIjkI0VXWuj6vLFYL9lU6TXZ6XEyYUlkuuLUzku9lFjNXtViuOeyOYnJFEKc57YLerijSx+z2zpg77bH0fazYrPUChlHGa4tVmmVzuh7OV23ao4iqYzCKUjbuSx/HS7OlE7OnwkT6z7RHIWGc4Sc5rqmRpjkfbPTRFHWa1GnoD1jN3XFSvL86ry7Kg58fp8yW7ScqKuV9G3Nze8TNnRGOrvHaUoXzzRLjOGW7eMfqrskokhNr2ayULJB3V/soKJxrudRdkxz577omGSP3O2OyXBwZAjLxFLsw4+079CxUHXaG0TSlbK5ik+U5jqnTLBmUTI1v327T8xMWajZl2yDLk8JnKmQYJCSZYBCkvLaUI4RsVqHIhFMp4U9YKlJR654pk3RhWtvYhrbPC9SPUzb70tD7aUiIG65Jz4/5cGPI7V2IMllLDvwUQU6ag4qCqqqsNA+bsT9LfOdOh199Z5WPt0YApGlOo6Qx41l88VKTN1bqx0qvexSGYSoZOJrKze0hYSp92F6arxAkcqg6YdSamoqta8S6fJcm72SS5mwPIy7MeFQdg/sdySgaBCnU4db2iNu7Po6hTb0UJ3h5vkzfT+j6Ect156Hpmz0/5tu3umiK9Ci9OFvi5vaIcZQyTjJWajpNzyITgponm/qzFWkpMQnAWao7VGyd67GU8wwC2TyrF+tPEB/dmLINjbu70otNURTeXKlxY2tEP0xIcyENr7OMmmMwCmUKdGccs1x3yHLB7iji2taInWHI5843mClbDMKEmZJFXFgJqKr0qqzYBrujiI1eiG2oLFZsbhaNfduQ93umbB16z49amxaqNltKOE1nPS383q02f/7XP5ZMMUWycf/xL55/pk2pCeaqDv/nn7vMP/dXvk+YZPSCmP/nb17D1DR+9uVny5ySZ40cTZOBGT0/kg1ax6DhmVIOrioM/IT1vs/tHZ/dUcy5woQ/iKUk/+bOiMWqc+qf20FoqsK5lseP1rooqhzCdv0YTdNoeSZpCt+90wUEL81VTn0tTLKc7VFInBkke4avUZqhoqCpkGSCCzOyWe0YGp6l4dm6lBTngm/f7nBta8RcxeLnX5l7qJpAURTOtzwGweFayNI15qsP9nnlGEM829C4Ml/ifkd6yAVJyr22T2cUMYpTDFVlreczW7EIk4xv3NylO054ebH8SAuUFxmP1ZhSFOXfBv5R4CYPBusC+LnTuazHR90zMTWp1R+FiTR4HYfsjCLONF3+wKtz+LE0PBv4CRv9AEPTpsyLg5it2FyZy9CLqc9BlGydTiELOy5TZhQmaCos1x0uzpSmU7KuH9PzE5qeyYUZFxSFN89UMXUNXdWktAz4yQtNFqo2X78hH0DP1Kg6BkIo9PzkyA1XU5VDxZeuqU/cRNkaRPhRhqVLX4qqY3CvI5NI+n7K68s1xrfaVB2D8zMew8jmficgzQRLNZfLC2WWExnd7R1zccyFXNjKtk6GnI6eb5V4aV5OfMUBrsfZpssP7/coWfL+lSwdy1CnJuk112R+T8Ga54LLc2XaIylHMDRplj5bsQrzyqOLitPE331vg9u7Y/7Sn3rrxFP8f+ZLF/lbP1znv/zabf6FX3jpKV3hfuwOI/7SV26SZgJLU5mtm/zFP/UZLs0ebRZ/Wqh75j62kPR1yKkpBhXHQGn7VF2T+4U0aaZssTOMaXkmdzUFVdG4veszX3WwDQU/lpPYCzOlT/yMpdyFY6X6tErWPglosyQbVAtVm7ttv4hnV1jt+sxXbASSjVBzdVAU7rXHzFZMqkWqx1zF5tXFSpGe9+hghsmheC9sQ5syCvbC1NVjsSc3euG04XWn7fOplRrnW55M4txzgDE0lU+v1Kh7BsMgLZr4+9+fq/NVmp5JkuenxjacxG3f7/rc6YzxTIOlmsFnzzf4x37qwhM3fU4L37rT4X+7vkMiBBXHZKlm8xf/wU+xWH9y3wyjkLScb3oMo5SKraPANOHSMzX6Qcz17SHLNQfPesAkaZUszrc8HF1DVWVT8bWlKn6SkWTQLBmM42TqiRQmMjnmNKTu670AISAoZDOuodIomby8UKbhSV+oJBPc6/icbboyVbPtMwiSoqEFZVvDNDReX67hmFIa1tpzwJopW7RKJmu9gDu7klWWFv6HVedkjan31vq0RxFuESQwCFOSTFB1dWbLDje2RzI1U2XKLpIF6v71RR4AT4cx0wtihkHCTMlmueHw8nwFQ5PSPJCBIMsNORCTTAyNharN7d0RJdsAIW0NLrQ8uuOYgR8xV7Gn97A9jo5sTBna0evHwWdjcuBdqkes9wK2hjLYRTKyctIirWm54dBwpV/dasfnlcUKNdfENFSWm65kdTkmUZrROJBE+knso82+TDseR1K+dNp7uqoqeJZOnOSs9QJyIX35PEdnvixTgy/OlPjy1dlPHII8TWwPQ373o21WOwFBnHKh5fLaQoVa2cY1dD5/aYbluvPEnpW2qcrER1VhoeawPYhkUJCt88pClYpt0B7LZstM2eKnr8wwjtIpiz5MZB0+V7Xx44z31wf4cULZNpmryM9aVRUsQ0VVwTtQByeFakAeeh/+u2wOImbK5nTN2OrLoUkuBMs1KVPXNXXqUzupt3eG0ZSJ6pjSJqLmyiTJ2bJJ1S0GwYpyaDgzQZRk01rUNWRd3yiZzBTPx0zFYhSmLNcdKraBrqksVG2anqwvlKKpZOk6QZxxZo8aIkpkY9wxVN4+W6fumbK5i2xytIN4OqwZBCkz5eO/Dw+rJ54EfT/mr3zrLqMwxdQ1VioW//offJnPXZw91Z9zErx1tsF//Kfe4t/8mz+SbLgo43/+3n3eXKlTf8bm00s1mUCZC7i9O5qmk1+aK1M2NW7u+LQ82ejpB3KvHscZF1ol+mHMaifEjzK2BiHnWk/fL6tk6YVRuzTQDyLpwyiAnVEgQ00qNiVbP7U6cAJdVahaOst1dxrQAZKtngvBxdkSSzVnOkyRTeE6VWeMZUhJ/fXtIYMgJYhl6nDpEQMst5CMH4XH2ednSzafOlNnpeHyu9d2KNuy1siEXHeWazYrDY9cCD7aHBImOZapcrY4v/644XGryD8JXBRCxKd5MacBRVF4faXKva5Pkgk+f6GBZMcKrm2NC+aOnBwYhsrLC1WiNJsWjItVB0uXvlSTQuXKvDxciyNOoEs16dlx3CQ2aXIpm1yOqXG5oOoqijxAKgrYps7PvTw/fUmEECzUbDxbY74ifSCEEMS5NJYVRYwzKE88rT4pPEsrNg4pfZzE30apNGnujiO+/PI8Tc9ksepgGBp3dkfYpkwvmC3bhZwoP1GXfKbs0PRMPFtnvmpRdQ1u744ZhSn9IMUxtem0rGwb/NSlFsMwnbJLZsoWm3l4pMmzqipcmSvDnqmMZ2qMQg1DVw696JaucbYwnG945pHPyUkQxBn/3q99xJW5Er/02snTP67OV/jl1+f5r79+hz/9U+efuodOnktmQMWWEc/LdZd/8w+/wsXn0K3XNZUzTdlsFUJQdQyiNOP3vzzL7d0x1zZHBEmKYWiAiq0rVBydN5Zr5ELw2lIF8yGJGgdhGxpX5yuP9XnvNR6dq1hsDSJemq/w6lKV37vRph8k1ByDnWGMrskUv6vz8lD20nzl2IcoGd3rkZwyxf5M06VVtsjznDOF995rS1WUIgVpL3Rd5XyrxIcbA8ZRxmrX3zfJeXO5yk+crxMlOYunwDYE2ZDzilSzizMlHEPnyy/P8YfeXHxuaVdHYa0zpu6a1JyE1y9V+BNvL59KUwpkMfaZsw2Z4OhKqbncf6Tfgqmr6JrGlbkyWS72sWZNXVLMzzW9QrqlUrINxoXx+ThKeHm+QpqDoohTNb31LL1gqkqvlMW6y4WWy4WZB55nbyxXuTJXxtLVwhBZmiWbukomMhaqDi/NH4503gtFUViuuzQ9i9WuL8MwHqOxNgxTFBSqjsUffmOerUFEmGSM4pRRmE6btvNV+6H+hKeJMMmwNI3FmouhKVyak032yaE9SnIqxTp9EGW7JhvuijSR1lWVQZRgGbI2Kdv61Pz+NNDzYxQUsjyn7pmUbZ0LrRL3ujJZ0Y9TXFPn6nyFl+bK5EJQsg3mKha6Kg8Mi1WbbuGFc5LJv2vqjKPsyD39tFB1DFRNNmUMReNME0qWwdWFCp8916DqGs+1KTUKE7b6Eaap4tk6n1qp8ZMXm7x1poGiKMxX7VOT+1i6xtX5MvMVi7Ktc68t/dTKRd3Q8WN2hhN27+GhqRwQKpBKo35V0XBN6dk4MR1eqUtJYNUxMA6s85KdLL1sao9IoS5ZOp9eqZEJeHmhwr2Oj6Gq0mrDNbF07UiG3aR+n/zv7UE4fd9LtiGT7D6heVP3TDb7IeWCSfnSfAXP0vHjDEtXuTxXomzpWLrGD1d7GJrK7ijizZUaqqrw1koNBck4O2Qor8D5ZonzzdL03syULdI8xCnCYMbRWAYZOM/PfH+Cm9tDyo5BzbW4OGPyz375Mm8ckf77rPHGSp3/+6+8wf/jN6+xM4yoOSY3dgb8ROmTA4pOC6qqcGGmxDBKsHWNe50xy3XJcH1tqUKaCX7ptTm2h9HUZ9cxNeqFDUnZMjD0iCQ9OnX5aaHh2fyxt1bYGYb84H6XH9zv0/BMKpaGoqroOg9t2j4JXFPn02cbvLZUncrwRlE6lYfWXPOQuqRR7EcycV2GKFzfHLFYt3Ee0nR6WlBVmWreKploCmwMYpolg8uzJYZRSnccc65V4v/H3p9HSbbld33oZ5/5xBwZOWfWPN1bd+rb97Z6VEvdLaEBgRqBHgI98MNgGQxe+MF6fmDAIMCw8Htr2cY2BvHwhAEZZDQiEAjUrW6pu9XD7b7zvTVXVs4Zc8SZz9nvjx0RlVmZWZVZlVOL+q51162KrIzYcc4+e//27/f9fb95Sx8UQRIKlvFtmZSCx09MvQlUgLWDG8rBYark8j1Xp2j0Q86M57m+2mO5o5IQeUtNwlMVlzDLKNkmycBVA9QE2KkSeKfepzNwtHtQd2Y/B51eENP2Y2YH2lJJKnlzsUPRMUgGekfzVQfX1OkEMYWBUOeDm7QQgitTRZZaPnOV3BYnkqPEZNFRQYCmjartedtQiR1URvrd5Q7vrqje91O1HNNFd0C1dh8raTIUhZss2iSZHFV5huLvmqZE5jZjmDiyB/eq5JiPDLiyTNKLlEBfmKQIIYkSpSlgGxpiU7Ws6JhYhqoE7EVz6GH4O5+7zmLL56d/4iOPXTn405+5zL98c4W//4Wb/Off/8wTjedh+OqtOl++uYGmabx8qsTzcyW+9+oU1fzhHsDCJGW9G5K3jIfOoWrexDaUE9xzg3ajei9kueUzXjCxDIPvOFfFMrSRbbupK7OEvQiK6wO3yd2QZZLVbjCwOd+uYZMORFqHjkIA3/f8NBu9kPVuwFLbo+i6XJosMJa3idOMm+tKh+n8RH5PCaqhde9BYixnMVW06YQRmoDbG8rtb7ayc0uKgJFt94MOoEXX4sc+dIbFtse58SdLyvTCBA341bdXWGr5nK7meOVMjSvTRV6crxx4Je5xsdDo8ctvrFLvBlyeLvDdVyb4nmdnRvvQQWGzGQWow93lqQJJJrENjSST6JrLXNXdFhCauoYuBJ0gpuOnZJmk5Cr3K8fU6AYJX7/TIJUZrmkw95D2mP3gbC1HmGSsdQJkpnSYvDjjl99YppIz+cCpMhPF++0H1byldCLLNi+Vy+oAu4+AbFggelyM5U0mihZlx6CcM3l/rce11R7PzhT59DOTaOJgTTEeBSklvVAxqU/VclTzFm8vd8nbOqerLtfWenT8BC+fjBKUwyKOoWtcmd7Kcv3g6QqLTZ+ZQcxykBjL2ywnPpWcvSXGMdoaUZZRK9jMlFXxSmlRKVH0a6s9XEsnzSS/+s4aY3lzpK2xV0yXHSo5lTA4rHWh4yktra6fcHrM5fR4DsvQuDBRfGwH2INAmkm+fHODtxaVfuoHTlWYr+aZrzg8N1c5tMOqpgmqeQsvTihaBu+tdukFirEWRCl+lOJa+o4i2romuDRZJE5V6/G9ho9jauQ27YEPMqgf/P29tLbYhuCNxTa2oTFXdbk4WaDlRax3VR1+GBfEaYYfp6MYvbAp7rUMjTRvE8Q+OUsfxZ2PwoPMamD0zKkYwiFJlSNeztIp2Ab9SB1MQbVgvzBXZq7i0g0SFho+k0WbyZIzStj1wmQkRF90zC0t7c/OHC7DfS9YqPf4l2+u4MUZz0yXuDpT4jPPTjJdPjxJiP3imdkK/9XveYFffXuVVMJv3qjz2kKL7706xbnxoynIupY+2gOfmSyiC4GlC66tdlls+USJ5PnZMpeni9vixKGLeJJlW9pdjwLDZ7Sat5it5AZtkTF36n3ytj4w9jrY9afoGHzf89O8NHdfd9fQBEKojgdzl/V/pR3Q9lUrbM5UshnnJwrHEkeq++0yUVAayCD5568tkmWSuYpLmKaUdYNnZ8sYQnDmCFhwh4XHvft/E3hNCPEmEA5flFL+7gMZ1RMijFNeu9siy6AXZEyXHSxDuXeoYMTi/dUOaQZ5O94mWvgglM6GavVrefG+nLo2Y60b8P5qj4YXMuba5CxlcQ2M9F50IeiHKRu9HnEiKbnGrlWW+YHt63HjYQubY+p4UUI/TFjtxEofx4Bafrtt/F6xG214SG92LG1bUmHISNsP7jY8Gv2IxZbHTNllo6faF26u90bf+cz4fYvTXpA8sfjjrY0+f+/zN/nsB2b5yPn9C40OcWW6yA+9OKtYU584dyiV+ruNPv/0qwt0w5TpisP3PDPFxanikSzaSwPx8mY/JmfrO87B5XZAvRehaXB5qoipa4piO2aw3o3I2ya2qY/mStuLkZKRTft+W3p2wkY/ZGMQ0Jq6ti1pc3O9p5yJLH20DlmGxmzFZa0bkLctkjQb6dfV+/FImLQbJMfmwHFjvce3FlqqVdBsMVdRz2Nj4Mz5IIZtK/5Ac2Mz+mFCP0qpuPb+bMgfwEYvZKnp895qh6/ebmIZOmdrrhK7dHZ24joOrHUC/vFXFri14TFeMHl1rMCnn91ds+CgYejaSOz+URT+jV7IWifkTr3PeEElD4ZaTDfWeyPh6q/cbPDSqQqna7knrniKgSB/20/QNIGlaTT7KnC9uQ4dL+F7n58arbsF2ziWA1WYpAgJnSChEyasdUIMXafei5gpu2SApetHPu8WW4N1TwjCJKPeUyFaP0xpBTGgGHM31nqACs4vTRV23cdnK0pY9TDwYOJ0iPMTebwwJW/rW56LoXD93YZHEKUgMtY68cD5zX5kLPcgDnv9/OrtBu+vdllqBVRyBqdrOZ6dLR+J6PDD8Oa9Fl98v650uSoOnSDl0mRRMfMPmUFxfa3Hm4sdljs+RdugYJu8ca/FhYkimqbuvRL5TrfNSV0T6JpiuV+dPZxr+Fu3mtxc95BCMjeWY67iMl12Kbkm6aAQKqXk7eU2MlOOg8N4dHNMW86Z21lLB4Ab68ol3DE1So5JNWfy9nKHkm2y1g85M5bDi9ORVm59ICgPjNjkJxX3Wn3+yW8tcKvuMTFo3/6uy5Mn0mlssuTyI6+c4jeur3Njrce7Kz0avYgf+/BpztYOhvW8V+i6Rt5SJjRLrYCGF1EZdAvsxmYePkvHhYmiYh69u9ThXtPn+lofL0zJWXXmqns3fNoLhBCM5WzWehGVQVLWMXUuTBSIs2zH9TjNJC1PPUNLbZ83ltpsdEO6Qcx8NXdsc1LTBOWcxW/eWKftxYM8gcm4hNfvtTlTy5OzjSeKpY8bjzvy/w34W8AbwN4Uq48Q6z3loDFs2yq7Brc2euQtA03AtdUu19f7mJrGufFHL9S6JhgrWLS9mPEn6COOU+V+0fYS+mGKbWkYumIRnBsv4A+YOWXXHIkqR3sUBH8Q3SBmbSA2epRU8bVOwJ16n3LO5MxYntcXW8oKWJl9U80rzRzb1A6EDjkUjE8zyWzFPdBAYL0b0uxHeJESDE6zjIWGj21oTBZVYi3edH9KrknTi7Y5MewVUkr+8i+8hW1o/Bc/+OwTj/8/+55L/IvXl/ifPneDv/RDV5/4/Tbjq7c2+Ddvr9ILVRtL3tQ5O54/kqRUox+x0Q3RNLW5PMiOG2L47GSZ2mSG+8hK2+eL19foeAlXZ0sjbZJawaIfJZi69sSLepikrHVC4vT+/Nip3TccjPHB57zeC/nG7Sa3G33lpDcYY9k1aQ82y8OgPO8VHT/GixOiVFLNWZi6YKMfMlXavVpoGTszR9p+zJtLLUxNY6Kw/+/U7Ec0PCXc/NXbTRq9ULkGARcnC4dyOHgcJGnG6wtNfv36BhvdAAYt3M/NlY8kKbXc9vGjdOBIuregytSVTlWaga4LosF8FkJgaII0hYYXMFt1afTDPbu7Dp2v3MFD2ehH6Np97ZU4yUhSlVRxTV25DhkaplTOm/WBePsQQZyy1PJxBkzcw8bQ4EMgWe8GtPoqEWRqgqJtsNoNmSzZR56UkoPrE6cZAlhqeeiaYsZdnipQy9t0/GTEXAyTDCmVm9bjLHnDZ6+W394KsRuiJKPZjx7KdDU0QTeMaXgRM2WHNJP4cUo1Z1GwDTp+PFg75aDF0ESIg21Xfhx4UcJbix1MQ+NczWWp7VPvhliaYvGNF4/Gon03NPsRHT/m7eUOaz0fP8o4XcsxN9A1etx4cz/ohyq2NYQYJHp0ioPn3tAFyy2flh9jGzqnx3IPXb+llNxr+iSZ3CZ2/rgouQY5S6cfxpQG8hTAFjbocjvg1rqHLgSO+aAbX0CcSaaK9mhdHwqjZ1IyV3Ufu8VGSkmcKvOURj9iomjzznJXMSikQA5iHUvXqObNkWYtKCfMthdTsA1afoypC+YqT64ddhCQUvKNOw1+9e01Wl6odDuF4PnZ8olMSg3hmDrPzZX5jesbIFUs80++fJdPXpnko+drR7b+W4aGbepKdzeTND0llv/+ahfLUCzYG2s9oiTj7Hj+0OU99oqCbQyKrmAP2lKXWgEtT+2v/TDh2ZkiJffJxpukGd+612Isp9rfhnPetXRcdp5fSp9VY6UdcGYshxxcV8vQlPHLMc/LnGVgmzqOKchbBu+vdOmGMfNVd8s63vaV2U3FVZp0HT+mVrAOhN1+WHjckW1IKf/2gY7kgOBHqlJwppYjk5JXzlTpBjHTJZeOH/POssrOuqaBbe0saD7ESjug6UWMF2zmKi5zTxjwThVtlls+lbwSWu1HCTpKWNvQBRcf0BbpBsmI6dL2YpbaPgXb2JNg+Uo7IIgzvDBlLGcd6sEnSTNu1z38KGWh2We9E1ErWARRyr1GgGUo15yPXazhR8quPG8bj6Xn8SDafjzKatf74RbXnSdBOLDtFZrA1AUr7YBeGHNxqshYzsY1dUoDB4whTF17IheEX3lrhV9/f53/8oeuHohL0IWJAj/ywXn+jy/f4T/6zvN7PjQ+Cu+tdPjffvPOQA9N53ueneLTVyaxj2ChDuKUxaY/aqW8OFnYdW7PVBz0TrhNR+zNxTaNXgxCBWbDe+gYOo6hEySpoug/wfxcbgWj5PJMxSG3i1vmmVqOlhdvCxRurPVYbPnoQqPiWIwN1gHbUFoQy+2A1U5wIA6Qj4Oyq2y3QXBlusS9gSbMctvf09xdbvu0vJiJos1q2yeMMnwygnj/h8vFlhI5//KNOlGckrMNPna+xitnx554zT4oZJnkSzfr/PLry3SCmMmCzctnqvzg8zOjCt5h4uZ6jzcXlZ6DJsSexU6reQvT0JgqK5HVkmOy1gnI2wZhIvngmSqr3QABpNnOydedsNj0afsxQkCyyc3q7HhuJBpczpm0fIOxvE01Z/LcbIkvXt+gmrPoBslImxEU43goZF12zT2xPrpBzGLLxzXVAXg/BzRvYO+83guJY+VYV3ZMdF1gWzqna4pJ2wuTI61cCiGQKCZSnEnGCzY31z1cUyNO5aCVU+1RcZqx2gmwjftuaAsNj16YMDNglj8KQ32vIPb3nJhKM5VMyNvGrqxppZuh2KHr3QApVSDuRynnJvJs9EPqvZAgzsiZOmfHc1yYOF4HoiyTfOHaOu8ud3FMjXsNl1rB4fIMnBnL8YFTlcdm2x8E6r2QhYbHjY0+XpQylrPRC4KZsotEMlawmNxBxuKg8cxMkcWWT5JlXKwVeH6uzFjOoh8m3K57rHWVS+vZWoGWHxEmKUXH3DGZ3vGTUfy30YsOZL3/6IVxJKqwYeoayUCTdjO6QUKcprSjFMiz0Qup5S06QcLqwBREE4zi0ZYXjYTRG/3oseeBEILTtRxvLbYxdGV2NFdxSaVNEGecHlft1NWcRU0TzA+6W6WU3FzrsdQOaHghz0yVsA0Vwx43ew/gnZUO/+jLdwmTjKKr833PTfGpZyaP1FX6cTFdcvnTn7nMF65t8NXbDRZbPv/nV+8CGR+/eDRC7afHclRyJt0gh6ELvvsZjc+9t0aSSW6ue+ia4P2VHp0goelFzFaVlvKZsdyxM8lP13J8xpxmomBzc6PPZNHmt27VuVv36UcJS+2AH3px5on0ktJMGbS0PCXL48cZ1Zz10DNRkmSstJUpR5RJPnZhnLGCNdDnOn7tpmemS0pCRtdo+TFh0kOiTGOqeUWkKedMlloqwff2oG17tpLDj9NRHHAS8bgR09eFEH8T+AW2tvJ940BG9QTQB32jtYJyfXEtnSTLlCihAC9MkSjxxAuTZUq7sA5UJcZjpR2w0vb5rsuTT/wACyGYKjkYusZ6J6ScM1hph2RRwlLL37JZPSjGtt4LSVJFLZwspWhC0PZjcqZOJ0gwdLGlXStnGwRxhGMenn7CEN0gwY9SWl7I6wstkkzZuuZsk2reJIg1npstUXYtDihvhJQqe10fBDEV92AzwLpQjjqOqdPyImVRnkm8MOHiRIH56v4OMo+CFyX81V98m2emi/zhj545sPf905+5xM+9tsj/+GvX+Wufff6J3+9Ovc+/fmNZVebjjA+fK/ODL8wcWdXN0ASaBlmmWIwPq5Aqp8itiZs4zUjTDKEJcqbOdOX+M+fFKR1fHVZX2j6fuDjx2And4YFL0xhVKnbCgxoPoDbRMFFrlqPrnHmA1bnRC1lp+3T8hKKjU8kd/mHiQcxVXSTgmopd1uzH1HsRXphyfiLe9p02Q0o5am9c74ZUciaZVGvyTtoiuyFJM9a7IWsdf7DuSHRNMF12+fD52hanzeNEkmZ8406Dr99p4scJApituvzul+aUA9ohY9iKLlAHmcvT+0sgFzbRwm+s97i+2iVJ4cPnq3SChFNGjmg4XwcJ4HRwL/Y1TilZaQWs6yFl1+RsTWmohYk6GK73IgqOWpNtQ9+y5uQsZclu6GLPei71XkScSOIkwY/TPe0faSa5ud4jyTIKts69ZkaSgSFUVVrXBA7KHXaiIPc8loOEY+jMVFy0wR721lIHXTNZ74Y8O3P/35kPOA2HSbrpkB9SyVlK0ylMKFi6EhjXtS1ud0Oh+gcd0B4F1Uai7l8/VC5HQ2Heei+kGyZkMlPmD4ag7cWc3rSWPz9b5vV7LfwopVawGT9GAfEh+lFCGGVcW+lSdg0mig5lx6DkFPjI+bEnrvo/KTIp+eZCi26QYOmCcxM5+kFChkQTgtmycyj7eJxmtD3VbtkPVbF1qugovU4vQWYSQ9co5yyczug4QdEx6IcJHT9hvRdydaa0bXyOpQ3iAfbs6rwTkkzyzlKH6bJNNW9zfrwwKiztVCpxTZ2ibeGaGavdkEGemrxljHRrNrdQ5QavA/uWlHgQJcdkuuzSGyTnxwomUaKYVLc3PGxTQxdwaux+8UEIQZRKwjjD0ZVhkVtShbjjRJZJ3lvp8sVr6wRpRpxmnBkr8wMvzBw7I2U/KOcsfsdz03SCmF9/P0DIjG/ebWHpBi+eKh+6jpOmiW1nxufnytzaUIZftqHT7EcsdXwa/YCiYxKbihzxsFjtKKCSJUqGRdfqAERJymLTY7UbMFW06QZPbrgRRClV11SxkFB79FRpu+7rEGu9kI2eYu8VXZPLUwW0QXxxEKSKJ8WwFRHA7gQsNj3G8kq/uenFdPyEC0Ye29B4c7FH108ouWpNPWqTtP3ica/uy4P/f2TTaxL49F5+WQjxZ4AfkVJ+QgjRBl4b/OhHpJQNIcSPA38SaAB/UErZ2evArIFzRZRkoweu6JhcnioiBNxa77HeDVntRdze8DhVze14aJRS2Vbf3vCoFS3We+ETVbuSTPL2UgchwBtMjOfnythGlzjNHrkIV3ImfpSSs3UsXePGel+xwzyVlFECx9qo+jFXUa51lv5wO/mDQN420DRlG69rGlGSkknJWidQ7iqHoIW11lW6J4vNgJmyTdk1D7S1ydA1Lk4WCJMUU1fVMy9KsQyd91Z7bPQiztTyB+ZO9N//u+sstQP+uz/w8oGy206N5fj9HzrFT3/1Lj/xyfNPxLB5faHJT//WAs1AiQE+M1Pk9748f6RU8KFoY5g8HqNJAHnHpOqaGIZGtqlzwTV16l7E9bUeY3mLG+u9bULAe8VM2aHoqIDgce6nqWuM5WziLMUytC3sEE0I3hy0i7yz3OWjF44+MbXeDXlzsU3e1pX2UM0dMGqMR84HMbDLbvsxlZypWkFtHSfTWOkEex7D3YbHtxbavHanQduPeW6uxGTR4ZOXJ0YMs5OAr91u8s++fg8/SpkqWbxytsanLk+Sd44muNG1oVtrjrHCk7mAbXRD3lvpoQmYH1NsQy9SVtQzZQfH1FnrBqy2Q1xL58JEfsf5MFtxcCzlqmZogpmKw2t3G/z6UhcvSnnlbJXnZsujtrzGQNx3pqw+c+aBSudEUTl97UfIeigEbBvang9oN9Z6vHa3xXovZLxgkbN0qgWL+ZrDpanCYN+LGC9YD2VzHhYa/Yi7jT6NfsRHztU4N56nG1QHDJmH74+WrpGzdbwwpexaZJnkxnpPaXVGyuUHVEA8ZFgNher3k4CzTG1k9hAmqWr1l2p/reRM3l/tsdJWmkynag5xopIOqqgneHOxTdExRgcvXVPrx3HDMXTWegHNICZIMoqOzgdOVbF0bdcC6FFhodHnX7+5wuuLbcbzDh88W+ETF8dZ7QT0QpXcO6x9PEnVPFrp+ARRhmUICo5JzlIu05sZthcm8nibBMWvr3Xxowyxi8GIbehcmSqSSvlEh/9+mPAv31xGCPjYhXGuzpYUy9ne2dlqsmTTC3N0gnhkuiNgpBWZZHJLfOJaOlemiyphdQDJaksXLLU84kxiGgUmizbXVnu8v9qlaBvkLWNLYgrgudkimlDzdK7qUnSMI1+fHsTX7tT5udeWqPcjzo65nBnP89mX5r+tklJDWIbGj74yT87UudPo8+5Klzt1nzv1Pr/v1VNHPp5Lk0WSVNIJYlY7AZkAJCSZWg+en6+MWulPAgqOwXecHyNMUq6tdlnuBrS9mPVuuGcm9q4QUHQNiq5iYnd8dQZ/2Jqna6qjwotS5isuG4OY1zVVzHuS5uhkyeGj58fpBBG/cWODjW7E5akiFycLmLqGoWn0woS8bXBhMn+sTrB7wWNFxlLKTz3uBwohbOClTS+9IaX87k0/N4E/DnwS+L3Afwz8f/bzGbaxXQx5uBmcqeV5c6mDJgRelODFKaVdFufZijtw7NOfmHU0FCxuDVhOpq7R9mOenSkp971HHLLHCza1vDV6kIYW9dqmB8t4YIxH9eBYhsaz0yX6YYKhaay0fdWi0wmVGKngwIOeTKoqnxCgCW2kJ3aQGGriXJwsMl50aPYVHXuh4ZM3jV2FnveL62s9/n9fuMnv/eA8Hzo7dgAj34o/9emL/LOv3ePvfO46f/NHXnzs97nXCtB1QckyeGm+zGc/eOpY3Cl20yraCwxdo+iY1Ao2jqHT9uNR0kfXBBcm8rT6ESCe6LsJIR67EqVrgqJrMFawlF27nxCncuSsN16wOF3LkWUcy/UH1YolJfSClKYXcWYsT8mx0AfuRI/C6VpudN2X2z6lnEkQZVvWs0dBAt0wJgNO1XJcmizyySuTJ8Z5b4jVrnKPEsCHzo7xgy/OHvkYzo7ntyQ3HxfzVZf3cia2oaNrjBg2YZKO9pvOoGXFj9It83YzDF3bEhyVXcWaizOJH2UEcbrF3VS1IKo/79besd/9rpq3HhmcPghdV+zWLJP0goTpioOpCV45Mzb6/Mni4TBP9oK2H+NHyiWxNbgPl6eK9MLkkS07QiiDguE8STPJ8BYMzwVCbF1zhBD7vu76oIg2xGYTW0PTRhpEmiaYLLpkUuIOkmHXVrtIqVq4Zsouz81uZ9EcFzRNUHQs5isuIHANY0eH5+PAYstHCkHOMqjkTc6M5SjnLMo560DWhUdBIvHClExCuxdzplbAtbZLHxi6tiUePz2WH8XHu43R0LXHrrAPkWVSsT41dS7w4/ShLemOqfPsjBp7x0/IpBy14+/2PBykdXvbTzB1HS+KidNstP7W8jblnEFtBy3cvG3y6tmxI7nfe8VGV2nzlR2TF+bK/OCLc8feWvYkMA2dH355jjcXWyy3QnRNsN4LH/2LhwBNU0Kblq5zt+1xtpajH8TMVnJcnCqcyFYuRS4wWWx4jOUsyo5JwTWfPJkroeRYOKbGdNnh9NijCRuTRVsldXRByTG5ttYlyxiYk4UnwnhsM8o5Ey9KsDSdsmOh6yohbhkaBdvk1FiO0wOX3pP+jD3Wei6EmAL+BjArpfwBIcRV4KNSyn+wh1//Yyjx9L86+PuzQogvAL8B/HngMipZlQghfhX4qccZ426IM8mF8QKLbY/ZskvBMghi1Rq3efJrmuDqbInxgk3BMZ7Y1UwTKjk1X3GJ0mzkTmUZ2p7fe/ODdLqWo+3FXJjMD7QjxLGKmWma4Pm5MgXb4PxEnoKtE+QzNI2R+OJBYqroYGgacxXVU19yD++7G7q6R6am0fVjxosmBVff8r2COMXQxL4rUFJK/sovvIVj6vy5H3jmoIcOKJbBkDX1Jz91cd8LaqOv+qyfmSnS8SMcU+cHnp85cQmAvWKqZHOvaWIbGjMPiH/OV3KIswIp4dTY8bWCTRZtxnIWqRy6it6fVyXX4qPna3SDmNNjx2MJO1tx2OiFlHMmE4P1S9f23kYF99ezqaLDy6eqREm6p/Y71ZoWU3ZMPn5+jJyp4ZgGHzxbPTFzUkpJsx9h6BofOjdGP1QHh++6cjSaEzvhIA4jc9Uc33N1kiDOODeeZ7GltMKGCfohUznNYkxDECQppi4e+tlpJsmk5JmpEmGSoUm4MlPcphd4GHoj+7kmbV+58XzsYo3lto+OoOAoZsLmw+hxHfqkBNvQqBVMoiRjLGeSDQpr+0keDceva4Jz43n6YULZLRDEGZahHWjByzZUq3IQpYzllRbmy6cr3BkcTCquuSWIHstb3K73R0Y2Q0fT40bbU+Yon7kyTppmuJbB1bmjd4p8EE0vJJMqXmwNROqfmytvOZQe9ny1DI3nZsuUXaVPpwkNL04YLyiR3ocdOvcTHz8JCo7By6crxKlkuuSQppK2F1F+yJozvG7HYa5Ry5ts9AKqeXVor+Vtyq7FZMnG0MRDxa1PQlKq0Q8RCF49W6XpRVi6xqefmT7xB+a9QAjB83MVPnM1ZLHp8+HzY8RJRmNg+HAQjLm9Yrxgs94NOV1zsXSNsmtQyVnHFjfuFReninzswjiNfshnrk4SJRm9IBm1e+8XedvghfkyUyV7z8xKIbbGs+fGCzR6EYYuqJ1Q7bOxgsVEycbyIy4Pkv6TRXvQRZYyU3EPva30IPC4p/n/FfhfgL8w+Pv7wP8JPDQxNWBDfZeU8n8UQgwTU5eAJvB3gd8F1IFh614bqO7yXj8B/ATA6dOn9zTolhex0PDRNMF3XpoYuLsk3G14CKHEojcHOTnL4NSYznpX9Zo+yQaZpBJNg2rOohclhHHGvabPVNHGi1Nqj9DLeRC2oTNZOp4J1glieoOe381BapxI1rsh9V7EqbEcL5+uHBpVWNPEkVYj04H7n2nonC7YOJZOnGZIKVnvhay2VXXk0lRhX5Wxf/HGMl+8vsFf/eHnDvX7/InvvsBPf/Uuf/fzN/jrn31hT78jpeRrtxu8tdSlkjP4yPlxfuw7Dk7/6jggpeT2Rp8okVgGW3qt4zRjoxeSt40Da9F8HGQDMeh+lFCwzS36LfFAV8k1dS48gdD+k6DeC2n7CRNFi8mSQ5xJGoPnXgi4Ml3c1zOgaWJfwvxvLrZ4/V6bnGXwHefG+H2v7m39P0q8ca/FN+62KNgmn7g0zh/88Ml9bpI0Y70XYhv6nub9bOV+Ynu+mhsJ7PpRyvW1LiCYKTusdALuBB4TRfuh9zdKMq6v9XhmukS1YHFnwyOMlVjpw0TMG30ljDxRsA+9JSVKM+7U+yChWjC5OFGk5ccH1ppzEAgTVck9WysghGKzXV/vMZ63CJKMiUEFeD/I28boHhyWuUXJ2SrAXCvYW3SsNsM2dXRN417L5069x2wl/8j5dVjwooSmF+OFCW8tttE0wUunKvzBj5yMZ/3Weo9fe2+NnKXz8YsTfP/zR8/UBMVsbXkx58cLnB7L8/5ql26Q8PZSl6lyvC3uPg5oQvDCfIVaweJu3ePLNxtYhuBDZ8cOxIjmoBEmGdWcTTuICKKMG+t9Lk0VtjiSdoOYTpAwlrOO/fpuxttLbb5ys0HBMfj4hXF+/CNnj3tIBw4hBN97dRpQMefn3ltnseXjmIIfemEO54jux1TJYark4EcpX7vTYL0TkmWCUw+cqrNMstZVZ5iTwPIsOiY/9JJar5r9iC/faNALE87WHGareQSqfX+vSVZdE6p7Zx9o+zF36x6gEvumLpgby5EkGTfrfS5P7S/OPQrYhs7Lp6vc3ujT9hMqQYwfp3SCGC9MMXXVbXLSk1P7SkwJIQwpZQKMSyn/qRDizwMM2E3pHt7iDwH/ePMLUsrG4L1/DqVd9fPAsNRUAlo7vZGU8qcYsKleffXVPVk5Da2u0yzjvZWuqiQObpBylkm3LeBr3WAk1Gsb2mO350Rpxs31PnlLRw765b0w4Vak2t/8OB0JmZ1kJGnG3bo30oTY/LDHWcbdhkezryw141Rywuf/npFJOWrHXOkEbPRC4lTy8unKSP8gHdDB97pY9cKEv/ZLb/PcbIkfP+SD62zF5UdfPcU//eo9/uSnLu7JvfDaWo8v32woK3eRx4/38oifbPTDlHdWuvRD1TceJdlokV5pB6PWJNfUjy2YC5OU91e7rHZC5qoDl43Bz5Zbwcjdx7X2x4Q4KPhxSr0X8vpim1Nj7sBq/v46mmaSwxpWGKd8+UadhabPRMHm+RPASngQLS/i169tsNYJmS47eFFy3EN6KJY3zXvH1B6LeSul5N3lDrfr3kjvadiiFacPt6APk4xb633O1vIEUTp4Px6amPKiZOTkl6Ty0N0p01Ryc71PN4h5ZqZEGKfYhnr+gig9Ec5WSSq5sdZnLB+NEjUdP8aLUnQhSFLJ6drJaj/YL5I0o9lX+pKr7RAvkuQsDTj65MGdukcQp8rUIEoZL1h40cnYIztBzL97d5U7dZ9awaIXHN8aFCeqmKIJKLkmUirGzFIrIEgypkvOsSdOoiSj3osIB/9fbPmA5PJU8cQlptY6AW8vddE0lD6jKbfFnlJK7gzi9H6YnJi2rWY/4vPvr7PcCpguO3TCmFlOhknJYSEZMLwXWz5+mFDL2wdiprUfBHHKcitgpa00PK/OlXC5/8yt90LWu6rl0NK1Y2EB7oY4zfDihJVOwGrH58VYUnSUodBhFpA3xy29IGa5HfD6vTZSSl46VdnXWe8oEcTpKPbqRwk31vost3yCgUGNBM6f8FzDfiPQ3wI+CPSFEDUGhhVCiI+g2E2PwhXgA0KIPw48J4T408D/IKVMgY8Db6DYV88LIXTge4Av73OMu2I8b5Nmkn6YKHc+qTQjyoaJprGjePbm1hBDe/xJqAlBxVV6FtMlh7UB66HeD8kyMJ/gvY8SmhBoQpBKuU2QrmQbTBZtLF1jLL+zve+3K0xd49SYSy9McC3BUkst8F6o7KszKbeIwu4Ff/vfXmO1E/J3fvyVI2lB+hPfdYF/+tUF/u7nbvCTP/xoh75eEDNZsoiTjNM1lzOHfPg7CnhRwoWJPItNn/kxd4se0tARTgjlpndciBLJfDWHFIqGu7mCtWWMx0TJnyw6XFvtUnJV8kEImC476LrA3Wfb0H7RDxNqBZsoVQyQuRPW5w/qUDhTdoiTjOmSzVz1ZAfew+DqQf2g/SBMMqWxM2ipnq+6tH0lAv0oC3pdUy1aSSoZy1uEiQoIqw+hyw/1BaU8WO2Wh31e0TYwhEBKSckxydn6nllmRwFNU+YDBdtksuTQ8mImTIuNXoSU7Mvx8qSi7JpMlRyW2j7TZRtdE4wXjidxYOqCVj+jlrfIclBydM5PnIwWmbYXM1ly6AQJE0V732yBw4CuKT2yuapLL4zREJim9uTCxgeBwRAMTTBdVnuuY2onQlT/QTS9mImiTcuLeGa6SJztHHsauiBO9u+OepjohDFTRRs/TpkqKffD3+4wdY2XTpW52+gzUVDaoEGyNxfYg0LJMSjnVFK4VrC2FVI26xOftH1ivGBzdixHEGUDV7l0kJg63HHWBjEJwFje5OZGn7ytk2WqKLyfs95Ropqz8AcFkoKlOi7KroUIInLWzmYOJw37vbLDmfBngF8ALgghfgOYAH7fo35ZSvn/Hr2REF8EPg98VQjRB24Cf1lKmQoh/j7wBVSL3x/c5xh3haYJZsouaSa5Xe8TpxmTReehE2yy6GAbOqYunijRYhsaU2WH8aJN3jY4N/jMal657Z2EiuteoGmCC5P5HcdsmTrPzZXp+MmxUOsPG0M71mwg0BunklO1HI6pc3Z8fwHpm4tt/sEXb/H7Xz3FK2d27FY9cJway/H7Xpnnn3x1gf/kUxcf+e/PjRfIMvjAfJUrMyePmfI4KOeU1fJM2eVMbatj2HTJIWca2ObxUl3zts5kyWGsYHF6LLdlI5kpO+QtNcbjaiGyDI2XTlUZyys9i3PjhZGDyWGj5Jo8N1fizHieqzOlExkcjBdsLk0VOT9R4PnZMuYJafXaDVMlG9fUn2je24ZGNaf0M2bLLoau7dqO9SBMXe2NBcdA18Se2E9Dq+QoyQ5VX3A0RkMwW3VH39M5RkblbrANnZmKctuq5qxRYq+Sswjjo7lOhw0hBFdnlZblRi9iomgfW3X/bC1PNWcxVjCRwOmx3IlpkRjLW5yfKDBfzfHsTOlY1yDb1DgznhvFi2N5ixfmKyw0vCfqQjhIOIbO6bEcRccgySQfPC2RwFj++NuaHsR4wSLNJFPl4q6FGSEE58cLeFFyIq7vEBMFm4tTRc6OF3hh7uTvjQeFs+MFfuw7TnNro89EwT5yNzxd13hxvkyzHzNe3F5IqRVsTENDF+LExVSaptpsi645aGG1KDjGY7ly7wdCbJWYeGm+TM7SKdoGZ/Z53jtKbI6hpJRUcia2qTFeqGAOhNxPOvZ7ZyeEEH9m8OefBX4ZlawKUeym1/f6RlLKTwz++MEdfvYPgX+4z7HtGcp9a++Z+p2YVPuFZWg8u8PhficHwZOOh415vprbRRXstw+GC+XjIk4z/vOfeZ1qzuLP/+DhCJ7vhv/kuy/yz75+j7/7+RuP/LfVvMWr5w7eJfA4YRv6rrR2IcSJoDAburZrhfukjHEsbx0LU8TQNZ6dKR/55+4HOcvgxSdYH44aBzGnhBCP3SY2TDLtF651dMkhTYgd9++TBH1g2PIg9it+/u2A07U8p2vHezgYJl/3moA9SuRtg+dmT8Y6qYnth6GCbZyo50mI+yLmlia4dEJa33bCXuecci8+GWzOIb7d9saDxETRYaJ4fAX7mUFBdjec5ISFpoljbz8ruRavnPn2Og8JIfZNmjgJ2G9iSgcK3GdODXHy+ime4ilOKP7Or93g7eUOf/f//sFDcZp6GE7XcvzoK/P8H1++w8kIW5/iKZ7iKZ7iKZ7iKZ7iKZ7iKZ7i32fsNzG1LKX8q4/+Z0/xFE+xEz7//jr/7b99n9/z8hzf//zMsYzhz/6OK0yWHP7xrxzLxz/FUzzFUzzFUzzFUzzFUzzFUzzFU4yw3wbfk6WK9hRP8W2E37i+wZ/4P77Olaki/9XvebT4+GFhomjzZ7738rF9/lM8xVM8xVM8xVM8xVM8xVM8xVM8xRD7ZUx95lBG8RRP8dsMSSZ5416b9V7AejfkK7ca/Oxri1ycKPC//9HvOFJHjqd4iqd4iqd4iqd4iqd4iqd4iqd4ipOKfZ2OpZSNwxrISUA3iLlT97AMjfPjeYxDtFUM4pRbG30Azo3nT4Q4aZRkvLnYZrrsMH4CBT1PCqSU3Nro40UpsxV3RxHou3WP3/U/fHH095yl80c+do4/+zsunxjXi6f3G9a7IaudgKJjcOaYxXR3w7fDGDd6ISvtgIJtcKaW2+J2uF/4g7Xx7BO+z2EiiFPeWe6cmLX7cXES96FHIUzUmLNMjfkoBNC/He+3FyXc3vDQNDg/Xjg2F8/DQCeIuVtXrm7nJ5Qr6EHi2+F+f7vs3xJ4f7VLlGScqeVOlEvcEN8O9/txsNTyafQjqnnrSFxz4dtj/z7JuFPv0w2S4x7GQ9HsRyy2/BPnTLsZm+OEx0GUZNza6JNkGefG8/9ekwmO+n7/+3uld0Dbj5ESwjijH6WU3cML5DpBTJLK0Z9PwmaYZhIp1SQ8yYHOcSNMMvphCkCjH+2YmJos2fztP/QKE0WbiaLNZNE5cQeDp/cbml6ElNDxE5I0O9Rk9OOitWmMcZphnuAxdoOEOJVYxhMEpBJ6QUKYZCdiXdwJUkKSSjr+yVi7HxfdILm/D32bfJdekBAn9/fOowiWvh3vd8dPSDNJmkEvTBg7YQ5dT4K2p2K1IM7oR8mBO0p9O9zvb5f9O8skYaxOhy0vPpGJqW+H+/04aPSj0Rw5qsTUt8P+fVKRpBkd/2QnpeB+3OwNzkEnEZvjhMdBP0yIErVutf343+/E1BHfbyHl49+4k4Lx8XF59uzZ4x7GNkgJQaJu5OriAkc9xjiVJGmGpgnsPSRFbt++feRjfBCplERJhgBsQ2engsthjTNMMrJMYugapv5klZ6TcC13w/B7ri4d/Zx8HJyEaylRCWspJZahbavQn4Qxwv17a+oahn4yxphmkigdPNOm/kihwpNyLR/Eca/ne8WDz3eSSeJk7/vAUePp/X4yHPd6nklJ+Ig9ezMO637vd515GE7qnNwc0y3fu3sixwjcX3OEYHnxZI1zp/l6Eu93JhXrA8A2NO7euXPoY4ySjDST6LrAeswC2Em8lrB1PV9auMvsqdPYhoZ2QlldD15HFYOmSMDSt8egx4Wbt24xM3ca09AwTsiYHsTD5uRozmviWMkDN2/dZmbu1I6x+0nC17/+dSmlPNQL9dsiBXj27Fm+9rWvHfcwtqHeC1lqBQD8kc9+5sjHeG21SzCoVD0zU3wk0+LVV1899ut4r+nR7McAnB7LUc5tr64dxjjjNOPd5S4Ajqlxaar4RO93Eq7lTkjSjHcG3/Ow5+RXbzd4e6nD735pluoOrLK94iRcy16YcGtdtTyVXZPTtdyWn5+EMUZJxnsr6t66lsbFya1z+LjGuNDwaHnqmT4znnsku+EkXMudcNzr+V6w0/N9Y703qnRdmiqcuCr20/v9+DjK9Xw3LLd9NroRAPNV95Fr/WHd7/2uMw/DSZ2T7692R+yjkzonAW6u90as8pM2zpW20v0EmKsqKYaTeL/Xu6o9HmCqbPODn/rEoY5RSsmbix0AdE1wdbb0WO9zEq8lbF3Pf+wHv5uf/hefY6qsuhlOIh68jm1ftS8DVPMm89Xcbr96pHjuxZf56V/+HDlb58JE4biHsyMeNiffWmqTZSAEPD9XPuKR3cfwOh7E+fMwIYT4xmF/xr4TU0KI7wPmgX8rpby96fX/UEr5Px/g2J4ILS9itRNSdAxmj4rCugn9MGGx6bPeC/dMod3ohWz0QsZyFpOl/S+Ww37yWsFipuwyWXRYGWjTnMT2n50wXrDxoxRT1yg6Bm0v5tZGn6YXMlfNcW58d42dThCz0FC6E+fGt+tOSCm52/AIk4y5irtF68nUNWoFi26QnNiN6kngRym/eWODKFU6D7o43PnwL15f5k/9k28gJfxvv3mbn/9THz9wCn/bi1npBORt/dA36byl45o6NzZ6xGnGRNHeUwtRkmbcbXikmeTUWO5QkwKWoVHJmby70qVoG0wUY8ru8bdN1AoWQZxiGRqFHejQbS/iy7ca6AI+cqF2DCN8OLJM8rU7zZHO10kJCDfjzcUWt+oe52p5xovWlnYA19S4vtaj6longjGVZpKb6z2iNOP02KOv5b2mSjhMFG2mHmNf3A3dIGapFZCzdOar7jY9lLJr0vZjsiMglXtRwr2mj6VrnB7Loe1QeR7quG3WmjN0bdv9fhTWOgENT7V/7bcFrN4LWX5AS66as+iHCZoQlI54vemHCXfqHoYumC45BLGKHXZaZ3bDcB64ps6pse3z4CRhLGfyb95Z46R1OmSZ5Fa9jx+peRinEk2IHWUOHhfD/b7lR+Qtg5myQ+0xWhireZNeGKv56hxObT5JM25u9InTjDO1PAXbGI2/4Bh7OhNUciadQLWsVtz9Xccoyfja7QYtP+LF+cqe9iwhBFMlm6YXM1747dP2u9z2ee1OC9fWmK+oNUvTBGGS8pWbdXKWwccvjp+4go2U8Ma9Nsttn7mKy4WJAkXHIE4zavmT07rrxylvLLb4/uemjnsouyJMMn7p9SWmSg6vnqluWeOnSg71XkQ1f7yxcpJJvnRjg6uzpROdmDoK7CtKFUL8DeAvAC8A/1YI8Z9u+vGfOsiBPQ6yTI6or8vtgLVuwL2mR5w+pvrZE6DlxwghmCw6TJe3B9NZJqn3QrpBPHptrRMSJ5LVToiU6rtk+4iKh/3k9Z6qXpZzJlemi8eSmHtc2IbGqbEcZ2o5/Djl/bUu672QlpfQDWL64e4BeNuLyTLwowwv2v7v+lFK24/p+DH1XoSUkkY/oj2oss5WXK5MF3dkaX07wwsTvnmvQaMfEUQZYZxxZfrwFr5+mPCXfv5NXpyv8FN/6BVu1/v8d7967bHfT6ICvQex3guIkoxmPx4997uNZ6MXkj7BCVMIQTVvMlt2MXWNzqbndoidxtAJEvphShBnNL1o1/ePkoz1bkgQP1kPdzVvMV1yyNsGrYd83lEiZxlcmipyppbf8cC90PRZafsstQMWm8ExjHA70kyy3PLp+DHdMGG55ZOkkiSTXJw8OVXBLJOstH3euNcmSSTX13vMlN0tz3eYSMqOgRcltP3t8/ao0Y8SgjgjyxgxXHaDlJJmP96yrx0UNnoRUZLR8mL1fA72gjBJSQct3ecnCod6v/0oHZkbhHFGN0joRQlBnG5LPgz396HW3BAP3u/NkFLFGZvXq7XuMM4IRm0Me0Vzk5ZcNBiDY+pcnCweigj5o9D2Y9KBhlEmJZemipwd33mdeRBBrK79cktdh5YfDb7fyUr6gNpbOn7MRi/C0jVc82Q1OwRJihemLDQ93l3pYmiqSHJqD4nnveLWRo/llse9hk+UZDT6u68HcZrtGDOAat8bztfD0pTsh6makxmjffh2o89aN2CjG460ax4GU9e4MFFgvuruu0Wq46vCfDdIeO1ua9vnbT4rbcZkyeHKdPGxEn4nDUmaca/p8c5ShzDJaPUTyjmTi5MF7IEcQ5Iq/a3X7zXp7RDTHSdSKWl4If0w5U7D427T4/SYOyhwHn+BaQhNCHRNsNRS59n9nFmPCkGcstIJuLHWJXwgxh4v2FyZLh47ISGTkvGiza2NPitt/0TuQ0eF/e5uvwt4WUqZCCH+CvCPhRDnpZT/T3iilv4nRpZJrq31iJKMyZJi3Wx0I3KWrh6URyTDw0QdHkuOcSAVs2rOpOPHGJqgsIML20onGAXaFycLuJZOOWfS6EWUXIPVTsh6N8Q2NS5OFPYUaNUKFvXeViHMIE6J0+xECk7uhJvrPda7ERXXJJESP0wJo5S8rVO0jR2v5RCVnEk3SLAMbUehOl3A7XqfOJG4ps5GTx9Rpc9oT0b9P6nww4RffnOZIE5p9GPOjec4dciMj5/5+j0a/Yi//4df5ZUzVT77gTn+0Vfu8ie++8JjBTxBnPLuSpfzE1udMUquiR+FuJa+qx7C0FlDSnUIfFigHKcZXpRStI0dn7eiY2KbEZmU25hIQZzx/kqP8aJiKw6Rt3V0TZBJ+dBn8E69TxBnrHcfTqGXUtIJEmxD27HClzN1crZOEKdP1D550EhSZShRsI1th1chJDfX+wgBHzpbPaYRbsW3Fpq8u9zFtQw+/ewE40WLjV506M/OfvH6Yot3lrqsdgOmii6Xp7cnUfpBxBevb1B0dCZLDpXc8c6LvGXgWjpRkj1yjgohGCtYA4Hngx13yTHoBQmOqdELY1baIU0vwtQ0HEvj3Hj+UK9VlklubvTIMvVca5rA0AX1bkgvTEetEV6UkEmo5S2W2wFl19wzA3qtG7LWUW1L5yfy5G2DkqOYYEh4b6WLrgkuTu7Nta+Wt1lKfAq2sW3NjZIMP04PLIbaDcPPKdoGlZz6LrvFWQ/DzfW+SmolKbahU+9FZBm0j1l8eLjGO6aGbeisdQMW6j5LbY+pkksm5cnTIJEqcXR7wwMhmS27nBo7uIKoH6W0/YSml2DoYBli11hi6NgIKrbevE92gxhD0w7dMCFv67iWRpRIqjmLMElpe6ogqguxJw3TKMm4udEjjDPy9v7GW3ItKjmDd1d8So7JnXp/xMKQUnJjvUcQZ9vilYfhwXl50vH599fY6MaEaULJsSg6BtVNcdtcxWWh4bHcDvCjlDt1n9/14gzOCRG51oWg4lpsdEO8MKPtxXzlZmPEbDt3gtrm/ChlseVxezDPLk0WiNKMKM1OxLkqzSS31/tMFKxtyehemKAJjl3c3NI1ekFML0z50o0GFybznBvPH8l6ddKw3zthSCkTACllSwjxu4CfEkL8M+BYo90ozbYo6EdJhm1oTJVswiQjfMgDkqQZ19dUgDhkRdxteLT9GE1AJWftSPV/GHKWwbMzDzlgPvh3KUlTFXDUCjarHZUwCeOMOMuwNR0/Sllq+7imzmTR3nbQmym7WzaZIE65vtZDSpguO0wU7dH3XWj6ZFJyqpo7UW5xbyx2uNf08KKEy5NFzk0UmB9zGS/aLLcCltu7MyqKjsnVWZMgTrld72MbGnMVdd/6YcwXrm2w1g6ZqzhomkBuugtS7n+BGlKzj6td9FFYb/v8vS/c4m6jz4uzZZ6dK/E9z0wd6qFBSsk//PIdPnCqwitnVJLhj3/3Bf75a4v87GuL/LHvPP8Yb6rujxelW+7NZNGhlre3JTqiJGOx5aMLwWTxfvC6UwEiiFNurPdI0gxdE0gpKDgGUyWbpZaPbdxv87EMjcu7UGyH1Y3+A64VtqHz7EwRKdmW7Gr7MevdkLJrblsPHvw+d+t9elFKwdLwY4kQcHY8x2onRBeCU2M5dE1R1E9in//X7zap9yJmyy4fOF3Z8jOBhqYp97AgOnp262YMkwW//PoyKx2fSt7mYxdrfOzC+I738LggpeQ3r2/w019dwDIEz0yX+eTlceYeSJylmeTrd5u8v9olbxpcmCg+tnbIQWGYCNkr5iruYzlKrXUDmv2Ysbw12vtAXZN7TQ8p4dJknnaQcG21Sz/MSLMM29BZ6QQkWcaFieKBtiNtRjdMeHupgx+lPDNT5NUzYwgB7650CZOU9V5Ax49o9hMmijanxtwn0sAYrjGTJRs/TtnoheQH62mQpKM4YL0b0vZV62TZNbcU7ap5a8dkYppJrq/1SDO5hSkTJRkLTQ9NCE4P1qgnQZJk/Mb1DcIkZabskLMMSq65ZX5sTj4stnx6QcJ0ydmVCV1yTS5MFHhnuY2U4qGs7KPANxdaLLUCiq7OTMlltROQpJIgzvCjhMmixfnx4231kFKy0PDx44SNXsR7Kx36QYJlakwWXM5N5A48qZtJSZplnBrL89xsedc4ph8mSKmYSm8vdbgwUaCcM0eaTUKAa+pkUjJddg6kaBslqmUf4Ewth6krjcfhs6MLqOYsSo5JrWDtOPZemLAyaJOdLNq8vtDitXtNirbJc7NlpITra93Rs/Qwtpcm4OVTVSru9oN4PJhLQZzy7rLSlHpUckpKyVdvN9joRkyVbV6ar5xIB2NQe/gvfmuRX3x9iYmCw4unynzfc9PbDveTJYcfenGWz7+3xq+/v8HNeo96P+SPfvw85gk4EyWZcjX88LkajX7E3Uafr9xqMF6wOTeePzGJqZx1/zyaZpLbGz38KFEdQJnk8lTh2FvTpJRkmTJj2PzsbXQDvn6nNSqKVo+xRdKxdC5Pl/jmQou1jk/Lj6j3wkFLtL2r5vJvR+z36bshhPiu4V+klKmU8o8C7wHPPuqXhRBnhRCrQojPCSH+9eC1/5cQ4otCiH8khDAHr/24EOI3hRC/JITYUxTtmDoTRZucrZMzdRxTIzdgUtxteNzZ8Fjr7JzUSKUkG5yH4lTSixK6gdokVjshLS/Gf8IWmwcxU3KYKtnMVRxcS8cbtJklqWSjGzJVcsjZ6jsNqxOrnQAvTKn3It5a7nC37nFro7/rZ8RpNjqMb6b+t/yYXpDghemJafeB4eIhafYj1nvRiKZ/eiw3oj8/qvUDVGDthSnNfkw/GrgqdUKCOMM2NTJgtuwyUbCZLKqkY5pJbq33ubHWp7fHwHStq1oA6oOWkJOENJP8q7dXuNdUtHc/yXjl9Nih62dcX+txfa3H731lfvTa5akiL52q8M++du+x6Km6Jii5BtUdAt2dDjr1fkgvUG1LfpxyquoyUbSZrWyn6q51Aq6t9bi+pu49qGdloxvhR2q+DefQw2Do6iC0U9vuUNPgQSy3ffwoZaUdcKrqUsubnJ/YrqHW8iNuNzxurff51mKHNFPP9UY3wgtTusHJaNHaDVJKlluqVWmp5W/7eRgnBFFGFGdbWpuPA90w4W7DI84y2n5CnGRsdMNd7+FxYa0T8Pn31/HjlLaXjHQFH0Q3iLmx7uFFKV6c4Fj6E7eLfrtgraP2jNUH9v2mF9HxE1pexHtrPd6412a1E2IacH6iQCVvUs4ZOIZxqDIA690AgSSTkjhV66IQglrBYr0bst4JWWz6o0Jb9BhjmSzaTBQtTo25I0ZR04tGhTuJpJo3KQ5+lmaSlQGDYKUdjIp2d+seizs8u0OopIH6DpvH2fTUGtULkgOJNVpBpOKxKOPammJ9NHrRaE6vd0Nub3jcWO/R9mIag715vXd/DkipnO3OjeeZKtlKc1ETzFVyuJZ+rEWmLLvfYnlro0/Li2j2IzZ6Si/VMXXKOZvWMa/3w3i10Yv41qDosNYLkZnkVNVlpnywzNK2H1PvR3iD+/yweLyWtwesYVVsWu6oeTt8lsM4Y72n4sG1gQj6k6LlR/hRih+loxg1TjOurapnp+7FnBpzmSk7u86v1U4wau3144SNvkoce1FKJW+QZBl+lNEPUzrBw2PUWxt9Fpo+uga1/FazFmtQsO9HCa5lDGKdh+8JvTCh0Y8Jk4xGLyY9wW1GCw2PL92sk0nY6AWcH8/vyjjRNMGzs0XW+wFpBu8sd3lvtXPEI94ZSSrvs1AHXTR+lLLaCZ5IluKgkWaSyZKDoam2qeV2QLMfcaveJ0oyltq77xtHOcYog24Yb2ntWuuFeFFKP0zZOGCpgP0iy+QgZyFGe/RaR7X598KE1e7JkLk4Cuw3MfWjwFcefFFK+ReBU3t8j38jpfxuKeXvEEJMAJ+SUn4CeB347CA59ceBTwL/EPiP9zq46bLDXMUlTDMaXkTLj2l495MGDwZ2UsrRZpK3dSo5k6Kjs9oO8KKEvK2Ttw0s4+Cpq0IoyvHtuse9hodj6tiDvuGya1KwDS5MFJguO6NKjzugJJuGGJU/dwqc00yy0QvRNcF02UEi8Qa6FaBaKTRNjSG/T/r7QSJMVMXmvZUOXpQghKDg6CSZJGcKyjmLyZKNMRBCD5MUawcKdJxmvLnY5pt3m/TDBCEY2X96kQqIy67JVMnhTC3Hd12epJwzBzpkSldisx7BbtoED2LYzpWz9T1Rs48K7620+anP3+Bew6dg69QKFr/3lflDq/xvxr98cwUh4PuubhVC/NFX5nlvtctbS/vf9C1D40wtv+dqe942EILRf/daPhu9kHBT8rDtx9xc7yEEyEzd87KrWkPmyi7dMGalHaAJcPZQPTN1xQLZTzvJkK3gWjornZB6XwXfQwzZXGkm1WEqy8iZGnlbZ67qkkrJcttXr59gqq8QgpmKDUjOTWw/sDimTjdQgfhxhlv9MOH9lTbfuNOg5SXMVV2emy2N1uWTgCyT/Nw3FvinX7tLkkoqrsmzM0U+9czkjokzgaDqmiSJxNQFY65FkipG4cOYIVmm9saTqHMQJdmekmtl1ySVKrjf6N0/gOYsneW2z60Nj2YvwjY06n0VJ5yu5fjAqQrPTBXRtPvP6JNgGGds1t5Y6wSstEP8OKOWt9CB9Z7Slsxbqv3Xj1PiVDJdtpmu2Iw/RjV3oxex1glZaHgkg/Wv6JiIATP46myJ+WpOaaq1fVpehGup+Z639S1FuyS9P/5sEGMM55CpawPhcEmc3k8wD9diTXu8WCOMU25t9NgYBOUF22Sm4lByDK5Ol2h4yjCm7avkTZSqeSElIOToQDoUZVdtTH3eWe7SCWImS84otqvmLS5OFo5kn3wQfpTwrYUWNzd6nKq6FF2D8bzFW0sdbqz3OF3LMV/NKdaZEMfa2hHEKbomaPRDPvfempq3SE6P5fnI+XHO7FBc2Q+Gunl3G/1RLLbQ8PCjlCBKHxmPW4bSZjo3GEfXT7hb9xjLmViGRt7RqQ6YB8V9iJ+ngzVxJ+RMg4antNwKm5K8w+Wz40fca/ps9MNdk93Dwk0mJa5pcHGyMOi8KDJXVslTIVQxLm/ru46n0Y9YavnEacpSW8UV7QcKupMlh6uzJfKWgWmIR3ZNOIaGpUPbjyg6OqZ2cvbEIdI041feXOIXX18iTlNKjsnLZ6q8cmbsob83Xc7xiQvjjOVNwiThl99Y5jeurR/RqHeHJpRAe8kxGMsr90Db1MikpOQYZJlkoe7xrYUmjf7BJFgfd5y2oXN2vMCFiQIdP+K91S45S6OUM6jlbb610OROfXcSxWEjA+q9ACnVmWCIU5UctqFaa2fKx6urNtTqqhVsXjxVxbV0emFML4zpBCHrnYDrq90d9W1/u2G/kcIngSLwM5tfFEL8OLAGLO7hPT4lhPgC8M+B94HPDV7/VeAPAm8Dbwx0rH4V+Kn9DPBe08OPMtJUMl91sQ3FnnItnekHHH3u1D3uNT1urvc5P1ng0mSBjV400iB65XQVBhvBQTNNolRVHhZbPisdn3LO5NJkgUxuZYG0fXVAbvQjio7B+YkcBdtUlXI/3pFFMqyyCqFoxQKBH2UstwPODaoHz0wrItpRi5VuxvW1Hu+v9BjGGFemS4SJ5GwtT9OLeGG+xOyABRDEGYamsdNtWKh7XFvtAUrIcLzoDFoiLVbbasE+PZbjQ2eraJuYD8MHvOMnnKrmSKVEF4Kya7LWVQyPqZKz66Y9WVKuMMd5DR9E14v4e5+/QaMfU82b/J4X57h6qrJv96XHxb96c4VXTle3uUr+0Isz/OQvvsXPf3Px0C1ZS44S/RcoduDwYNULE/K2YkF8826TRj/GtTRenC9yc8Oj6JrYhkbLj1hqBjimxtgOPekHhVNjOSaKKaYmeHtg+d7x41FbypA6b+qC77w4xtfutnBMAyE0dA1urfcxNUElZ544R5nNCOIUW1fJtJ3aJsIkJR4cKJeaR19dk1Il7r9ys8EXrm+w2PS4UCtwdbbEy2er2/aN48QvfmuRn/vmknJFG8/zBz58itNjeexd7n85Z1LNm1yeUjqFXhxzp+GNRHmfm935WbxV7+OFKQXHeKgT6lFjc3v6qTH3oe1Cp8ZyCAHNfsxyK8AyNPwoJYxT1d5XEOi6IJWSS5MFKjnlyuoUbcJUJWRu1/sPbcnfCxYaaj92TI1q3sKPlJB12TV5Ya5CNW/Q6MWstgM0IZBSst4LSaWkVrT48LkxtMc8CHaCmOV2gBelAwv4MgXb4OpMaZC4V3vXajek0VOtAzNlh7M1F9cyMHSN+apLP0q2tEMutnxanooxLk0VsA2dkmMipSBOJEutgCvTqsA2vH773SellHzlVoN6T8U+H71gkLcNXjldIclUsitczEhlxjfuNHFNA8fSmC27OJZO2bUou9aoSAWKET88zHf8+EBdHp8E31xosTjYcz50tsrl6RJfvrHBu8s9egPzhU9cmqBWsJksOccWc2z0wgH7NeH6Wpfljk/eMvn4xRrPz1WQsKcEapJmrHQCDE2xdzbH1/V+xJuLHbpBwlo15JWzVWxTY7bqoANXp4t7+v4XJvKstAM2Buz7JLsv9zFZtBgr2HvSahsmbW9t9Cm7JmN5a5vLXSeIR855SZYBupISKdvEqdxi4tALk237dZwqE4LxooVr6miacrg8M2h/7UfK9XL43AK8v9ob6PSZjBds1rshAmh6MY6pGGNDp7FOkDD5wDI2WXSUXp2mbStqyAEDchj7+ElG0TUpOsrMZantnyh3WiklX7i+wU9/9R6GrnGu5vC7PzDPhT0K3P/eV09xZbrI//m1Bd5d6nJjvUc1b3J1tnL4g98NAgxNI0gypsomHzhd4p3lDmN5izCRND2VAOoGCc1+zEcu1I4lDrRNjauzJTIp+eK1DRr9GFNPOVOr8J0Xx/nG3RaLTR9Bn6JjHkviP8skAvBiZRxiDQ6dui6YqbhkmaQXZhSOcTsQAq7OlBjP29ype+RMnW4Ys9oKePNeB9PQuDhZIJGS0vRv75a+/SamfhIlgP4g/i3ws8C/ecTvLwOXgRD4eaAErA5+1gaqQAXoPPDaNgghfgL4CYDTp0+PXtc1DcgYL9oUbCVu6g3KFtoDWQ0vSpXjmx+z3gk5PZbDNXXiJMG1dAzjwd5stbEdBMvINpRIsWkIqjml+VB0THQxPCil2IaGqSvWT6Mf0Q1iGv2I07XcwDp058m5WTvJGAiqJqncwqo4CckUbSACudLx0TWBa+rU8iYLDY+ZsgPcTyINA+sw2V7BN011nZJMjv59EKdEm1xHJHLbBjVVdHj9XguJEqMf6mJ4UTJKaEnJFhr0gzgJ13GIthfza++t0fVTwkSiaxqvnq+ROyJW3N26x9vLHf7i79ze1VvJWXzX5Ul+4VtL/LkfePbQr9sw4Ky4yoRAwiiJqwlBmGb0woR6L6WSM5koqGBfoiqOw589c4juhcAokJgqqfaMiU0JxDjNCJOUpXbE3IYSrbZ0HVBBiRcl+HHKzAnUN9uMbhBzba2HgB0TpJmEnGURp9mR61ZIKbm50afRD7m+1kNIFcRIAReniycq+P7mQoPX77VJMrU/XJwocGnq4UmTMElxTQMvyXB0gR9JMpngmsZDD2XDw/ujWjyOGsqtTv3Zj1Mqj/j3m4sKSvciIs2Uu2Ipb6IJQb0X0gsTqjlrRybKk7LGvFixitp+jBelaELgRwlFV+nNJFnG7bqHqQvmqi6JhImCTT9MKTvmYyelQLXyXVvtUsoZZFJ9FyEU88KLUhxTsbOMIbvYjyk4Bm8sdSjaJhNFm+mys6tI/eZLo2kCx9QI4mzE7obH3yPTTLU5gprHApVMXWz6SJT2mGvr9ENJmkIzjilkBmZN2+KwtPnzLUNjvKgSkA8WT44LQ+fEpbZPyTFAqP3LNHSCJMXUNfKOOZqbxxlz+JFi8YZxwlo3QhMamYSpksv0HkW0QbEDm31VGHRNfYt2iqGJESMykZJMwnw1hwQ6Xsx7az3Ojxe2PKtelGBo2pbnXQhBOWdSH7hZ2oY20oAUQuzZQKDeU221G90IIcSO7GRDF6PzhaFpI2aeH6VMlWwqOaV1K1AxyWYMHTiHY88Nhc4lo/1w+JhpowTr/SSbH6UstwN6QUKUpggEOctgvGiNEmFjeZP+oDC3GTsxz4bi6H6UMVWyB6xCDUPTFDvG1HfU6zwupJnk7aU2X75ZRxPK8OdMLc/zc5U9v4epa7x0qsq/fWeVhYaPFILPv79O2bW26TYeFTI57PpIB38XzFUd2n5Cwda5ttrldr2PayrSxXHeE10T6CgDCtc26IeJek3TSNKU5ZaPqWt0g/hYElMArmlgGdvn7nJbaTkKwY5SHEcJIQTdMMa1FFs5TjMcS2elG1AftHPvVkz87YT9nlhzUsptHEcp5YoQ4pFlVSlliEpKIYT4JVQCam7w4xLQGvxXeuC1nd7rpxiwqV58+YOy5UVUchanx3J0g5h+qITYUlsSJ0rsL0ozHO3+QjxXdWn7EQXTJO/ozJQU08aPU5wHFuxk0C8+rGo8TCxQUdkT5VzzEIrs1ZnSqB1sbFPl917T58Zaj/V+yMfO17gyXUSiEg+mIegHCSttn4nizmyeuYqLa0XkLAPXMrg0WSBO5bHQv8NE9e+WHGPbofPceJ6ibfCtexDGkt+63eD5mfImkdT7K8hsxWGjF21zQwOYr7jkTdUyYBka11a7o17/WsHGMXUqOVU5XekEdIKY+bJLNW9RdA0afcVcGyamhswsKTlRbTwPw1LL42e+vkCcZFweVBR/+AOzR5aUAviVt1YA+L7npnf8+WdfnuVX31nlKzfrfOzi+L7fX0rJakdR4afLzq6BZb0XEiQZk0VVET3/gEikrgk+fG6ML92oK2q/ZVIrmJi6znjBIohTcpaGJGOtG6BpqnVir6L4zX5EN0gYL1q7/k6WSda6IUKow+Nkydl2UHrlzBiv3W0yWbQxdJ2Sa+AO5nLbjxnL2Sy1fXphzFLLo+xax9qauxu6QUIYp3T8ZMcWrLO1PBcmc4Sx5BOXavytIxpXnGZ8a6HFjbUemZSYBkyUbF45U+XcRH5XofujhpSSX317la/cqmNoghfmSrw0X+V37PKcbYYXplycLLDWDWh5EXebfX7guWk0TXvoXJmvujS9hweRcZqx0g4w9e2sh8NC2TW5J5Sg9dnxhx8Y+mFClGTUChaVnEpCLTR83l/tMVtxyNsGYawMFWbKql142IYzX3Vp9iPy9vZ9a6/womTgDGyQGpIpy+b91S4rnYCKa+FYOqau4UcJs1V1sHBMnZyl8/LpCkkqn5jRU3RMPnZxnHpPOd0O79G9pmI8LbV9qjmTZ2dKnJvID5JUGo1+BFK5n+0UrM9WXGxTwzX1LYfbCxMFgiTdkph6XBi6xvOzJW5u9BnLWSy1fda7ES1fuS2HccoL8xWlQ1nN8+5KRzmnPkJ2QZnEbH9dSslyOxglw44KSSaZKDrK6CbNeHupw72Gj61ro3lwadDWddxYanl85Vadas7ipbkK6VxGNWdxeR8FnHpPOU5HiRJ3fjCGreYtXpwvc2O9z2RRMdLH8iqBqyHIMpVsGcazm0XNL00VCBOlwVh2TXKWweWpIpmUOKZO3o5IMkltH4dj29AxdI3xgkU1Z45i/7VuQBBlTJVtJgo2LS/G1FVydgszb9AyemGiQJxmdIKEomOMDuq3N5Ro+qkx1eEx/F4TRVs5dWpiZNyUZZLlToCUksmSjRelTBZt2n5MD3X4Hi+a1LsxeUunNGAMvr/aJUkltYLFbMVVbZGxKso9uG5HqdKyUmNXTCvb0Hl+rsxcVX332jGKRG+GH6X867eXeH+lj2vpPDtd4tx4jt/9gblH//ID0DTBf/SdF/i/XlvgTt0niFP+0Vfu8iMfnOPi5NHHApauUXAMaoX7BdWxvI1j6CRpxnInoOwanBrL8exMadv5LkpU8XU4144Cw1gjSjKKtsnn3lsjjFUB5NSYe2yC+UXHYK7q8vxcacu1MHWN5ZZPKiXdYza9GMI2dPxIsR1fPVNloeFxfb2L0BSb+qDdiU8i9rvTOUKIkTPfEANdqEeWS4QQRSlld/DXjwP/Pap9778Gvgf4Mqq973khhL7ptYciTZVDSM4ykEjWuyHL7YBqzkLXVHIhZ+nbaI5l1+Qj52v0R+wkjSBOyQbuS70wYbUTULSV88tQcC6It/aIB3HKQsPD1DVOj+W4U+/jRxmmIUYtcztB08SO9vXdMObdlS5RkvGNu02emS5RsHWmSzZRqsRJ9b6gF6ZceSAg2Dzmgm2QpBlenFJ4IKhp+6rvvJo3D8SVZCdIKbmxpiyZW7a+LUFgG0qY/lsLLUqOQSWnLNmTLGOi5CI2ydQVnZ3HGSWqL1+Jl7pommCq7KBrSqsnbxkUHYOlgc5Qvae0KO5u9PnEpXGkFARRiq1rREmGZWgj97UozUYHFSkl95o+fpwyW3H3bU19mFhue/zVX3yLXpBSK1h879VpPnl5YqSrcVT4V2+tcHWmtOOcBvjMM1PkLZ2f/+bSYyWmOkHC+kCsVNfEjiKiXpSw1FJ6JFkmOTWW23LgmCm76Jqg7Fp856UJllo+mlCVHqW9IkbPcJJKbm14hIliWOQsnbJrPtShUzl+qXa0MEl3dSOp96PRdzEGfeXDg2xx4H5Vdk0+fnGcuw0PKSUFR1m9m7rGRNFmrePT8DQWGgFhIslb4WD+6qMg92HoBjHNfkw5Z+6Y8A1ildx/0mRX0TGIEuU4utoJuTq79edDUwc/TkdB+lHg3ZUOX7y2zrfutbFNwYfP1vjExXHOTeRPzPMdJyl/79dv8KUbdaquxUzV4fe8fOqh+8pmlFyTfpQSJhmaJtCAt5a7hHHG1dkis5Wtz2prIAxeK1iPbOFb74YjoV938GwcNqKBoUfeNljvhrvuXZ0g5ss36jimPir6DAW6NSEJIqVTVXVNbq73kUguT9/fn0xde2JGzVLLHx3wnp0pqj3Xj2kOkj431ntcmSowVrAZy1lKZ9LQWGz5hEnKdNE9EMH9kmNucyQO4pR2EPPecpe5istqN+TyZJH5MRdDaLS8iIYXbWnf2wxdE6SD5LquCSxdG8UZwwTKMHGpxJb3fi03eiHNfkQ1b5G3TVzTwI8zWn5EyTFZ6yqphq6fECR1np8t048SpsvOE7msNb2Y+hEJ4EopuV3vk2YqCRqlKeu9iDuNPqe9GFNX7THjBZvn58rHnpTyooRraz1+7b11Fho+d+p9Pny+yqtnJjB0sWcNVhWvqf255UVMlZwdE4GpVOzafpgSJim2oVNxFdMNoJIzaXmREkQPE0AgJdR70egezldV8XFz4quSs0bXPkkl5ycKj2SglXMmF40CQtxnOPtROmLVr3R8xUbMoOAY1PsR4wWbWsGiFyZMDNh7y22ft5c6lFyDsmtxeaq45SwRp5JK7v51FEIwXrBZaPRHGnlNL6Ix+H5TZXu0RucHZxTb0Hhrqc29hs9iy+fTz0yw0PC4vdFnvGATxOp63lhX7dDDeHYzbENnrGDRDxMmSzb9MGGp5ZOz9GNjD+0EKSX/y2/c4ovX1rEMjQ+drfH9L01xcar02KzCct7ixz9yli9eW+cXvrXEcivg2mqXv/bDV5muHG1Lu66JbXtw2VXMt+7ABGul49P1Y57bIdN+c6OnZGks7cgSa9W8xaefmeT1xTYdP+aNhTZ+ktD1EwqOjsZALy5OOVfLH5n7YTjQpVztRKRZhjYgqCy3VDtxGCXYB5A064UJhiZ2bams90L6Ycpkyd7138xXXSXPYWis90Ju1Xv0w5Tltk+aSt641+EDpysnWr7jSbHf3e6fA39fCPGnpJR9gAFT6m8PfvYofKcQ4q+hWFNflFJ+RQjx60KILwJ3gf9WShkLIf4+8AWgiUpcPRKaph7k91e73Kl7bHSVkOjlqeKWVpc4Sbnb9ImTjMmSTTVnjQ4hYXJfv2KqpHq2m35M11ZJk+mygxcl24KsjYHDRxArptRQ2/Bhzglqg8hGwXwnUM47fpSQM4yBEJ9EF4p+rGsCTWicqanNRSAGvexbcWO9x0LdwzI0PnlpnDsN5cpWdAzOblrkFhreiOZ7dfawElOMgo7h/70woelFTBUdFts+v/T6Eo1+TM7UeGHewNQVDTlnGnt68DZ6AcvtAFNXyYVq3mK8YJOk6iBccg0a/YiVdsDNtR6LbZ+OHzNTcbhb9yjaBsZYbkDFvv++wwTVEH58321loxvueHD1I3W4fpCqfZh4616Dv/3vrnOv6SOA+YpzLEmptU7A1+80+TPfe3nXf+NaOt/3/DS//OYyP/nDz+15YY2SjGY/wrX0+0y2XTY0XRNkUuKFqhoIWw8c1uDAmWUZ/TAhiFJWuwEd38Y2FbvK0jVylqGe6UErxVrXR6Co8bXCdiZUnGYst30mCzaWoQ1crx4i0KprI7rzcHNebPoEcUbbjym5ptKWCGLCJKXejegFKVHa45np0uDnapxNL8QxNHphgpXouBa0vJip0sOv772mT5JKOkFM+QHdLy9K1IFdKmbpk9Cvxws25yZyA008c9RONEQniHl9sY0GLM4eXmKqPnBgmSharHVDvnJjg9+6VacXZJwZd0kzODueOzFJqfWuz9/9tWu8tdijHcXYps6Lc5U9J6WAgV252i/SFJIUbqx1VbsJkkrOwjGUpkmaqQIPQJCkj2SMpVk2MAkxtjyP692QMEmZKu3OatwvkjQbtOEo0W3LUPpvu2GpqUwB6r2ULM24Xe9j6KoNZ6rkEMSKreHHKYYuaPYTvnm3xXecqz1SCPhhSDNJL0jI2aplYLUTKKYSQ+ZgRphkvLXUpuSYdIOEmUpulMBe6wQs1H1WOgHLxZCXTpWfqHDUCWJMTRtV07sDzSlkRtU1mCzZSCCKU6Ikoz0Q/a/kTAqOQWEXcWgvTHhrsYMfJ/SDGMvUiRO5Jc5Y7QSjPTNn6Xv6HuvdkK/fbhIkKfNVl/mqy1JLaXBOFh1sQ/DKmQpfu9ViuR3gWjo31nuYuvp+YZIxnLWNfkQ/VNpYw70mSrIRe+ZB2MZ9pvRh4/ZGn197d51OGPHMdAlTCHShxr/RCzkzlkfXVQHlINhnT4K2F/Erb62w0PBYa/t0g4iya7HcDMhf3t9aqTSQlCxFkmSkBRU/P1j8MAbBmKaBPtgrhqLmQ9xrekipJBwKtio8b75WyaiQnOJFKeXBnrrU8vnm3TZpJrlT9zjzEKmGIWxDoxsonSfL0OhHCevdAMfU1V5v6jS9iMImdspsxR21AftRykZXzcc4lRRs9SzU8hbhQHJiM4trqHv4jdstvnK7MZC2YKQlmElJy1NtyVNFB01T8e8wGRzGGVJKNvoR3UBpBUZpykTRHphaqM8ZnlHuNT16YTJqga3lrZHW5ev3WqNY4OMHkLB/UmSZ5E6jzy99c5Ffv7aBF6UUHYOrM0UuT5eemLlrGzofOTfOv3l7lX4Y0/Fj/ua/fIc/9NFzvDhffaL94YnGZWqDvVbH0GGl1WehFdDsx1RyK3z25TlWOgElxyRvG6N7e4jGsjvCMVWRKohTNF2w3orImzppKnlzqcl7Kz0MTbGCP3y+diRjipKM91e7dPwYwdnR65ahMVOx8WOTC5OF3d9gD1jrBKx2wi26iw+OYZiUj7Nsy1q2GUIIio5Jo6+S7KudkH6U4EcpmpDca3g0+yGmofGBUxXGiyejJf0gsd8I/C8Cfx24I4S4g9pnTgH/APhLj/plKeUvA7/8wGt/C7Z2b0gp/yHKkW9PsAaiYLom2OhGdP2E2/U+pqExU3aYSG1SKbm53qfVj9A1jboXstD0yFkGZ2o5Ko5JL0oGFVXV17vRC2n0Y+JchqGJQfVwewWx5Jq0vFjpJFk6Z2o5ml60rUo5xGYB18mSjWvpfP12k/dWOtiGsiv+nmenCJKMsmNwu+ERxCmGbnJttUcYZ2iaxEBnpR0wXrBGAu1RogLMcLAZDx1AHnQkdEwNP8oOtVVN0wRnx/N0AyXSvtDw+NV3VlU1umhzfjyPJgRxkrI2cEFr+wmffXmOiaK9J6ZGox9xZ6OPa2kj9phyCFLBRpJmmLrgmwvNgUC6pGAb2LrBcicYad5cnNxdJFFK5a5iGYIokTsmfeI0G1WhHuZ2dZD48o01fvIX3qYTpuQMjYtTRf7D7zx/5EkpgH/9tpKK262Nb4jPfmCOf/6NRT733hrf//zMnt57yEK6Ml3k0lSBNJO7VpAtXaPpRWx0Q2xTGxggbGrNNHRaXsRv3apzrxGg6wI/TFl1A8quRZhkvDhfoZKzsA2dgqPjmgZ5W6cfptjmzo5ASSrZ6EYYmsaFiTxBkpHfpXU2TjPeW+2w3AmYLtlYg3lnG0qw1DI0ZJbx5dtN3l1WFPwMSc7UcUwVcLw4X6GcM4lTyVzVVQkf1PMgJXtKrtiG6v/fKckXDdohhn/e6Tss1D2EJjhbyz00GFTir0qEuuxuZyTcrffp+DFJmpLukGw/CARxylJLtUB8c6HJtxaavHa3RS9MmC5anK3l+djF2qGxR/eLejfkL//cm7yx1CaVcKGW53c+P80PvLC3Z2b0Pj3V9lSwDZ6dLaILwVdvN2j2Y85N5JkoODimxoXJAoYmRknVza3s692QphdRy1vUButlJ4hpeQmaBhNFa3TQ74cJK20VfCmB8oOpsN8esJDXugFjOYsozbbosQVxykpbHRQNXXBzo0+aSs4MnOJuNfoEUcb5yQLmQMPm7oZHztEHe74KqJMsw9q3WfF93Kn36YcppiEQUiVq/DjltYUWt9a7LLUD/DglSTPq/Yj5JNtyMLZNnShTB1VTFzs+e3vF5kD54mSBXpDwuffWuNvwGMtZfPRijd/5wgz9KKHtRfSjjPGihWMowd22HxHGKXEiOTXmkmRydOiWqMN2nEqa/YhK3kYTYkucodZJJZC+1wRllKr1zx+0/L630mWtqyyzXz5dwY9UMnWm4uDFMWkmKVgG19Z7OKbOhUmVFAuTlMUBczWI0wFzltEefXost0XXSF1vVYwyDoCl9igst30WGz2ubXgstQI0oVq/HEPFj6+cqXBmvIBjaEfSIrsTVtoeX73d4Ma6x0Kjz2onRGaS2bLLmVqO+cd4tpt+RNE2WGn7I1HxnRJD81WXkmuOtEMNXa059V5EyTFoejFLrYCcZVByDPwo5fZGn1pBtbOrAqVFlim9pCxTXQLnxvMj8fB+mGCbYlsHxE5YaHp0fFVIujJVYKUdjPbYybHcIOYzsQwx2veHrroCwZlaDtMQVFyLkqtztqbmqaaJHXUMb2/0+eZCiy/d2EAT952iC7bBpanCgFUYE8aReu4SJZ7e9CIcQ+N6p8fpsRwaSv+q4lpU8ybvrXTphkqEfaroMFN2CJN0pPf12t0Gk0UXTYNnpksDnSDFRlP34oizHDtgrevzN/7FW1xb64FUnRIfv1jjk5cnDuxZyTsG/8FHzvDf/GrEzfUuX7nR4PaGx3/xQ8/y4XMTB/IZ+8Vk0cE1dNI04xdeX6YZJLS8eJDkzPjce2sstVVR6HuvTnG2lqcT7GyQdZgQQnBxosB8NUcYp8gs492VrpIiMAQrrZDZijtKth4Fkiyj0Y+wBu2z1UHskGUZy61gsPc/vCLhR8rds5wzd9TTG7p+S6li3gdDcH2T3vNuhfXNsAcJ8CRNKZg6ccHGMgzWez7fXAzp+qoV//ufmzn2ZPFBY1+JqUEL358TQvwkcHHw8nUp5dFbKW2Crt2nEs9UXHphTJKqIHGtE/Cxi+MULJ2v3W5wfb3HVNFhouhQsA3FdopS6l5I3jKZKKoe7Fpe0XALtkkpZzyUUl9ylEaDtsnl5mEaVEMb2SBOeX+1i0Cy0Q2U3fGgbehjF2sIIbi+rr7DRNGm7cUjHYpeGGPpghtrPVbaOo6lKzHcySLrnYhUZqx1Q06N5ej48ahPechWODdeGNGCv3m3SfGQkhmFQUthOggQ3l3u0PEVTT+MJ/i+5yb55kKb1xaafGuhRc42uDxV4JNXJvf0/hvdCF0XCATLrYCmGZNJSThguvTDFFNXelX9SFWs5yo5ojSlFyTU8vaW+QOKWVHvR1RzFhNF5ZDQDRJylsbF2Z0dYTZXWR/GlDso/MzX7vD//ZX36QQJZddgvlrgJ3/4+WNboH7lrRXOjee5PPXwqsPHLtQYL1j83GtLe05MAaMASX+EELAXpQOGoUa9H5KkSkCy6BjcWu9zu95jqenz9koHSxc4pknVNaj3Q2arGUkmOVvLcWEiTzjQwBhieIB9WPBjGRqGrlF4yEGs5cWqJUGqg9gwCVQrmCy3PW6sB3zl5gZvL3eIkwykZKaao+PF5G1joLnhcWW6RDVnYen3XXWmBtWTndarOM14b6XDdNkdPBNQdA1O7RAYl12TsJQN9E+2J+PfXmrzS99awtR1fvTVec7tUP2RUmn7SSkJkoxKziJJ1Xfe/LwFSYYEwvR+RemgsdTyubHeJYgzvnqrzm/dqtP1E85M5Hjx1Bg/8cnzFN2T0bvfC2L+ws+9zheubaAJwWTB5vd/6DQ/9Bi6GRJ4b6VDO4g5r+VwLIOpkoNjqtbVjYHo8rXVHhNFk3LOouQaA7ZRSK1gs9pRmhE313tcmS5xeixHkqo1zjEMNHF/riuNxoTlVsBkyWam7DyxrkQQp1xb7bLSUSzoYdvtcB1ebvu8v9LF1LXBdxowBpBcnCzwuffXubXhIWVGhmQsr1hiYZJS0U0+fmGc1a465D5py9QwuO2HCV0/4sa6h5+kFG2Nf/fOBmGi2u8tQ+f0WI65qqs0YFY6uJbBfNXlhZkyb692cCz9iZiKcabEU1c7ASBpeTF36h63NnrkZ8v4UUrRNVluB7yz0qPkqENvkknylkHXT+iFyv23uxSTSajmTearyiTm8nSBW+t9NF0jTjMmivaWtWK8YJG3lbj6ajvkxnqP2V0OI0Mml6VrXJrKk2SS+WqOz7+3RpgoI5MbA9bGVCkdsN8Uo+tO0yMbJKiG7f+9IOFeUwnK67rG7Q2POE0xDMFU0cWPU8psjXnWe6FitD32Fd8dUkpub/S5O5B86AYJYSoRSFbbPuu9CMvQeGaywEunqsxWjpe5+fU7DX72G4vcXOsSpBkyk4RpxtlanpdPVfjE5Qku7bE9KIhT3lnucG48j62r+WDqGo6p7tZODBQxaK8faiNNlWzqAwbctxZaaEIOtFQNqjmLt5Y6vLvSVa2P86UR8ycbFBVB7d8tL+Laao9EplTyxuAQuT3Zoty9lbFIYSDmfLveAwSnx1wyKVlqKxfFK9Mlio7OG/dC6v0elqFzblwlBVQeZ2BmpOuqsGU+XHsWYKMXsdFTToAFx+BDZ2tI4OZ6Dwk4huBrtxvEqeTVsxU0oXGn0aftqVj/1FiOs+N5olR1jSSZYozc3vBY7QZcmiwgUTpuupTkbJ0baz0aXkQmxZakwbPTRTp+TJhm6EJwp97H1FXR/6iTpovNPn/l59/ki9cbmIZguuTwH3z0DN/7/MyBj+XZuQp/4Xc+y5//mW9R70e8v9rjL/3zN/lvfuyDPHfIztK7Ic4kr91r8tZimwzJdNnl4xfG0IXO595XjsLVvM2ZMZdPPTN9bJqjwxj4ynQJL0z50o063TDFEJJSzsKLEuIs5QvX1slSyWzV5cJE4UBa13dCmqn24DjLRg7QoFy7S4O4rxfE+K6FbWx3qQT4d++s8Y2FJmXH5I9+4jz5B9jE02VnpHO809qta4KLkwUWW6pjy4sScpbB8qCL50HkBwn8txa73G0FjOUNHFOQMTAq8RLeXuxg6jo/+Pw05SNOQB4mHnfWSuB7gU8ActCK9z9JKQ/nVLEPnBvP40Uxp6o+byx1KDsmd+sep8dyvLvSY6MbYGka331lkiST9MOUpqdYBlGS4ZrGqIJxppajH6Z7Cg7309Octw1mKw43N/rEaUa9p1zA5qrKtnK67AzaITKSVNILU6p5SUHXKDjqQFfJG7T6CRnKiS5OpGojy1mcHc+RZipILjnGqF1woeFR70WjjUtRnBNubXiH7kagCRV8doKYxVaAbRr4ScLVShE/VpHDb16vU8mZLDT9EYvkYZBSUs6Z+HHKSifgraUO4wWLuhchM/DjhOfnysQpjOVspooOeVunUjCZLbtYmhLeHC/YWyylVzoBWaZaESaKNv1IMaD8ONv1PluGxulaDi9MR0nAw8Ib95r8gy/eIUqVbsxE0eavfvbqsSWl6r2QL92o80e/89wjgwND1/ihF2f5x1+5S3tgmf4oWOZ9RuSjMBRZXBu4LL52t0mUZFxf79LylOuUoUEUZ1Rdl9mKzURRaXxoKKHfOFPJ2wfbPR72+bapcWEyv6eDbcE2lLDpQM/qxlqPfpQMNAMClls+li5US59jMj7Q+zE0VUGZKNmjw/6DY3zYxu7HKW8vdan3lbaHN3AoSsoZ+iZTiDBJMbWH68IsNHy8KEOIjKV2MEpMtbxokAg0WWj4tP0Y19K4OlPiTsPjVHW79tWHzo3x5RsN4iyjcAiMpSyTrHWUo8lyu8dSyx+w33QcQyXWTkpSqtkP+Z+/eJO3FjuYgyTsd12p8f37ZEoNYemaKmYYOk0/4SPTRfxIJRsuTeQJUoneEdzY6PHuSsZHL46z0VVGIv1Qtb8UHUNVp1EH/mFLZpJmZPJ+C0oQp/TDhErOIpNK368fppRzT5aYWu+ExKkkjDMuTeWp5EzOjav1IEmzkVtWw4so58xBe6t6diSKHRXEKXfrHpauk7cMztXyzFdzyhzD0jlTezL9kDSTtP2Y8bwyJAjjjJWOotu7ls7qQONu6D77qSuTIODyVJE7DY/3V7romlobelFK2VHX1IvSxz5cTBVt1XbuGKy0Q1ZaKkF1fqLAmfEc4wWbthex1g1Hbf1+lFIsmUyVbCSSKMkwdAjjDF3T6PgJVNU6c2W6hECMKsVzFSVu2wti7jY9sgzOjufJGTpvL7fxo2xLAC6lVAwpXVPxTpyx3PLJ2wbjBWVccWGyQMuLKbkuLT/GNQxcS2em7OCYOv1AscKTTB06hpXojV5EwTZoBzHTOZOFfoAfJcSZxNFV28+DGLaBHcZZu+XH/Mb1OmvdQGn1VFzytsGlyaIyZPETTF2jOmih2s0F8SgwTAT3wpjlbohr6ORtjVreYbxgc3W2wrM7qcfvAikVo7jjKxHwsyKPlLDU8akVLNa721v5QCWMhgnwfpSSs3QWWz5+lAx08ySffmaSsmtiGRoTBRvT0LboqeoD1n4vSOiHCb/y1gpdX7XknR63mSza25KlQXyfQbTWCSgMHLCHiWsvSpktO6x1Q3KmjhcrXZmh/lVvwJgvuyZtTzEGjYHMiB+nINR327znPohzE3l+5a1l8qZB3jKYH3NHmm5ZJjE0gWtruCimhqkPGaoupiEYy9nomsZYXnVTNL2ExaYySik5Snd12NEhhODCRIF+kFDJmfSDhDM1ZUC02PJZaQX0o5SposON9f6IVVzY9B5HAS9K+Kdfvcfby52BtIng+5+bOpSk1BBnxgv8se8+z5//v94kSiUNL+IffPEGf+V3Pz9KaBwlpMzo+gl5SydD8h1nK1yZLnNjvYs30CHSNUEvSDmkHM++cKqa43a9R94xiFKJrsG5Wg5N10lSyZv3Wvhxxs2NnnLHPqS2NNvUOFV1uThZoJK7Xzw5XcvT9hOGx83raz1yts6FicKWWBZgoeUTRBlREtIOom2JKVPXRrmD4d72YKwrJXR9tT6krYDTVZfX7rZ2ZEYrA6+ITpgMChgRUZLxwmyFj52rca/lY+gatqEpOY6niSn+d6CLEi8H+AOo1rsfPYhBPQm8SAmtrXZ9/EjRGCWS+arLRNHkxlqX1U6AlPDifEUlZ8KEhaZPJiVnNjn9DAW3O4ESLa3lrQPL6AohCOOUew2Pgm3ywlyF8aJFL0y51/RoeTFRklJ0TE6NqVadmYpLzjLohQlelHC6apCzNN5b7ZK3jBFb5XQtT70XUt7kwtPsR7x2twmoKtJ81cXUNO7UPepewGzlyRaEThDT6CmW0ZAi3/Zjbq73iNOMqzNlcqaGaxjMlGxMDXp+wrsrHeJEaT58+uoklq7zzFTxoRWlTErWuqqXuuyaxGmGHye8t9KhUbQGjiFqc9aEoJIz+dSzU5wdz5NmEi9MqPsx43mNmZLDQtPnW/dajBcsTo/lKQ36e0uDYGmu4nK3oQLtoSjrTthJZPag8dO/dYd/+KXb9IIISxOcquT4O3/wZeZqT9Yf/ST42dcWSTLJj7w8v6d//9mX5/hff/M2v/LmCv+3D5165L/XB7oOO2G9G47mwqmBm+MLc2Wumzp3Gx631vvkbJ1+nOLFMUGkBD2nKg6OLvjg6TLlnI1AoA1amQq2MXrPvepgaUI8NCm10g6o90PG8srR8/nZMlGS8d5ql9+4vkE5b9H2Ikxd0BlY6k4VbYQm+MCpCpemiwPdNA2BspPf6IUYmqCyxw1pVDlOJVGsWk8Ltr7lkLbSDlgftEFefEgF64X5MotNH0MXXJ0ukmaSNxfbbHRDxos2FyYLeLHagJdbAefG83z8Qm1H9sypap6rsyWW2942M4eDQD9KaPoR37jV4Kt36iSppJo3mSq5/OGPnuH0MT47m/Gb76/zdz5/jW4QY+pQLVi8eqbMn/0dzz4262i8YDFZcmh7MdNFm1NjecaLDlGSEaeq1azjR9xc72Foan27MJGn5ak9z9IV/bznKyvyspuQs3RWOyFBnDJdUvomm1tmNKEOZaYuyNt7e352wlAofLHlsdYJSVJlq94NEhaafYq2STVnDuzVlSPveNHi3eUuOVO16AshcUzlbvTsbAHXVK1SJdek5SsG4kG41d5rejR6Ees9dXC8Ve/jRwklx2R2vMAnL02Qs3W8IOHTV6eoFWya/Zh6PwIpyaSk3o14e6nNxCAhrGu7r3t7gRAC19K4uR7SCxPOTeSwLcGFiSITRZumF9P0YsquQZikVPPmqAg3WXIYyyszkrytc7fu8f5al/lqbmQSAjA/5o5E6A1dY7UTKOZFPxqxtQu2gaEJ7jU9JkvqULDc9nl7saNaMos282Mu/TAlSjMqQ0bRQIez4BgjraXFVoAXqiTOMGlacpW2zrmJ/Gi9EqjklGvq5C2TqZJkvScZy9tUXAttB+btWN4iZ+mPLZz8III45daGYnlVcyYdP2atG+IaGmGSkckMXYNXz1QZy1tI4KMXJ47NTh1UMe6txRZLTaVjUrR0pJCM5R3OT+T5wOkKz83tXeMO1Dy0DG0kMdDoR2RI/DBlQ6o4a60TIFH7mjZwn1pq+Sy2PIq2ycXJAo6pgYRGL6Saszg/nsc2lWPeq2errNdyOKbGVGlrt0LBNshbOr91u89qR7lyXpkqUnVVfP/g/mnpGkGS0uhFPDPYGydLNveaqv1QJaPUueHmWg+J5MpUSTkCxtko0SWlEk4fasnVChaNfkT5IXHFWidgrRtSckw+cWmCej8ikyjmNIzapC9O5BFS0I8SbEMbuPraxEmGOzD8UcUhb6RfO1Fw0IQyjRkvWNuSAAXH4O6Sx1jeGrXeNvsRhi5Gnz9etAnjDCG26nyqddo/NOfvlhfyX/7sW7y10kJmkqpr8onL4/ynn7ly6KytTz8zwx/5eJ+f/updvCDm67cb/Gc//Rp//YefY3bsaGOHas7mubmy0jZLU6JUcq+lpBAymTFbdnFNnZyt0/Ai3lvpjp6f4b2p90K6QbJnuZQngaYJrk6X+dC5Md5Z7nBlqkC9GwOSu3UPL0rwIyWVE8QZ7yx3AEUwOUhxb9vQmCxafMfZMaxN71uwDT56ocZaN+DdpS4l18SPUta7IQsNj41eyIWJPBcmi3z0XI0kVW7fj3KlvLnRH+ncbpYz0AWsdnx6YarYyVIi2FnX0DI0npsts9IJEGSstgPqvZi3l9v8rg/M8ml3ki/dbGBqcHO9T9OLeWa6dGwaaAeJx52VV6SUL236+68JIb51EAN6UrS8iIWmT6OfkEkl4vrRC+NMlhymSy61vE3OMljtBDw3VyZOM+JM8uyMuqFSStpejG1qOKZOx4/50g1l031lpritHzyIU+r9aFCF2FtSohck/Ma1DVY6PuMFm4mSzdyYy0xZVUXiJOXLN+u0/ZjvfW6Kl05VMHWNt5c6tPohQgjlStRTjjgCZSPaCxNsUx+1z235zEElu+kp1y8hBBI4U8tzeiy3q/vOXnGvoTbtXphQzqlqWtuLeW+lw/urPb52u8kH5svMVx3eXo5UACklqx31HSaLDh85P0bJNXEfwToJk4x7DZ97zTqOpWNpGiJTB/S8Y/DsTIk4k4NkhQp4v3angcwkL50qs9QOqeRtpRsUq4pr10/Imwb1Xshc1eVOo89Sy0cIVXFb6QTEiWSx5e9osRvEKWGcUXKNQ9so/6+v3ea//pfvkUlJ0Tb5sQ/P8ROfOEfOPT7rXiklP/P1e7w0X95zUuGl+TJnajl+7puLe0pMPQyNfkSWqfa42YpqXbm10efGmtIcGWpCaVKJP3/i0jiGrrHU8un4CQvNkPGiy1wlx3o/YKMbcWO9R9mx2DAirs7uHoRLKVnvhXsSy90Y/Lt6L2Ky6HBrQx3e4kSx/gRQcgzWOiHnJ/JcnSnx1lKHNIO1bsTFKfWstr1YMR+76hnSNZVQe1hCtBPEg1ZUnYuTBabLDp0gZq7iYuoacSYZaAePqr1hnCkGwi5V3TO1PD/66rxyOMxZrHUCbm30R5bZaSaZrbjcrfcRAt5b67LY8nn59Hbx0C/f2OCL1zcQQuCF2ynNT4J7jT6/eb3ON+82+dLtBn4YU7RNPn1lkv/HJ85tc6U7DkRJxleur/MXfv5N2n5M0TF55XSZP/mZS1yafHwx1yhR2g6XpwqsdEKqeRspVRJ1KHLe6All9z5VxDF1npkucnGywNvLHVIp+fqdJmGS0vBizozlmBpYlH9zoUmjHzFddvjo+XFsQxs9B7ap5tmTYthO8407zYETpcNYwcYQGv/6zVXFUpwo8l1XJkjSDEPXaPsxtqEzWbJZ6QTcrXs4hsZ4TiXoPnJ+jLG8PWgLk7y93FGsiQGD5XGx2gn4rRsNljqKlh/EKWN5myuTShOv6cd8+pmpkYj3eyvKnNiPMs6Nq7Zhu6WRt80R5d/QxWOLx4dJynvLXd5bUw6MMxWHnGXw3VcmGcurpPZKO2ClE1CwdKoFi9lyjiDJuLfWG7TDZxiaxrW1iDDOQKoEZDeIR1pjSqPz/nXrhWqdafmK0TDUNzlTy1Ow7x/I672IdhCz2PQJE5WcujSZR9dU3HCqlmO5HfD+SpcozegGEUGcqZaMTLG/m16MHyVMlCwEGn6cMVRQmCgqxzJdE0yUbJ6dLdENYta74chYYicc5GGoGyQjxo8mVBLv+nqXthex0vVZbgZU8hauafHDH5hjpuIwU97d8fWw0eyH/P3PX2exHdDshyRJhmXozFZdPniqwoXJAh+7OLHvxJ1qd1OxwUYv5F7LY6UVcLfR58JEgRsbfaajDFPX0IRigK92Qr54bYOWF3NlujDSUPXilDO1PL0gZrqiEuw3Oz1qBZsztfxIv9UYOF4PxyqEwNQERdvkA/MVLk0WuTxd3DFml6jnx4sTGr1o8HnJSKT8GwtNZVISxOr/Ayb2c7MlMnmfWX1ro0+9FxEkCa+cHqPkGnR8dS6J02zHZ7s5kOto+zEvzJd5f6Wr3AAHMXHl/8/en0dJtl3nfeDv3DluzJFzZlXWXG8G8ICHGQQHUDJla6QGS5QlS7RNqT231nK7tSy3W/Igy3K3bZlqS+Ty1FRLLbUlSmK3RnACCRIE8YAH4OGNNWVV5ZwxR9z53tN/nBtRmVWZWZlZOT36fVhYryqzIuLEveees8/e3/6+vBDbHIaYukaaSVrDGFNXCfdvP+xwb8vjQt3htcuNsfmAoWkUHI2NfsDrSy2uTDxqlx2hsI05GsQpjqkzXbbZGkS8ulhjsqSY2kGcjtsxH41bdZ2MWNjHiffWuvy5v/cm724oDd7LEy7/9pdu8H03pk/tWfnTP3Cdz1+b5C/9k7d4b33A60stfuL/+Tr/1R/6KC/O105lDKASPT/8wgyfvzbBGw+73N4YcGfTwzE1NBRzd77uoEnJ//yrdwnijJfnK2Mt42SbXEKcZnu6Rh8npioOP/65K7y91uc7Dzp850GH5XaQF141ygWDmaoyDUo8tV72gvhY1+IwzrjX9PkHb6zwhRtTuNv2+vfX+9zeHOIYGmGScmmiTJxmbPRCVrs+EpitFnjlQpXZqk2lYIxNCHaDzM2X4FE8PUKcSSZLDtVCNjZreHG+MmZbboeuCV673OD6dIlvLrX5+Xc2eXetixAary+1uDFd5o0HXZaafW5MlSm7qg3xuUOY45xXHDUS+5YQ4jNSyq8BCCE+DXz1+IZ1dFiGjmMKHrY8ojTj5mwZDbUxLdZdrkyX8kqVYL3rs9TyGAQpc1WbF/LspGoNYCwy6EW7TzJQAVIQK9ewF+cqB2JULbUGfG+ly2Y/5KMXdT5/Y5LpsoOUkuZQOQEGcYKhayy3Aq5NJdzbGvJrt5tUHAND11TyJc1IUsEwTFnr+QihrN13e6CnyraqKk4WuVBX0VvNNen4EboQR24Di9OMzX5IlChdH8fUGYYJyx2frX7Adx72aHkhUZIxV3WoFa1xm8jmIOT6dIlukBCnGYMwZWYfba4RoiTju8vdsZaIcl60EYagXjBplHZqXdxrDljvKmeDiaLN1ZkSq11/fF9rrkmY2JRsnXrRUu0qXkyUSO63PBbqBUxNsNIPqLpPJp6iJBuL2U+UrCfsd48Df+s3lvgrP/8+QZwgNNVy9qe+eI2CfbZizb9+u8k7a33+4o++cuDXCCH40Vcv8N/+/Hu8t95/qvvXfqgXTTZ6qsKoa4LmICZJJTVXMTZswx3rhYVpylsrPZ7LqwpemPLGgw5F22CjH+JHSiAxyTI0BJNPSdZ2vHhsGf00NIqqWtooWvhxih+pjUnKlKtTJaIkZaXtM1m2ubXRp2IbFG2TzUHA2ys96kVzrE3VHEQIDRqu9VRhyzRTlSklXqrxygWVNLZ0jTDOcC19R+VztuqMhV33cxVsDUJ+7XaTJJN8381JhmFKmkmEkNRL1rhF8/p0mTcedNjsRxhC2d8uPPZ83FpX7XVpJnl7pX+g63kQvLfe5+feeMj7GwPeX+uPXRAbZZsf/cRFFuqna/+8G6SU/P++s8xP/8odNvshugYFU/DjX7jKzZln07EYaao8aHnjBFw/Z9s2hyG1gsWmHynHUT/mlUaBxVzIvlaweH9daY4Mo4Q0lRiGYLps873VHrc3B0qoX9dY7nhcny6PW2bqxWdbk4ahaheUqMNd24vRc+brTFm1uXeDGDc1uLXR54s3VbJZtWz63NkaIFCsn82c2fXcbIX5eoELjSIyFyVvDSME6jlebvtcnlRFmsOyoqNEtaBtDgJaw4itgRIgHoYxb6700XWNW5t9rk6WWJxwmS4743b9SkHpJH3sYo1Grms5UbSeiXmQZZLbG0O+87DNUku1xd+YLvHcbIVMStZ7AWmmTEGklPTDBMMQbPQDNvvwG3ebiLytebGh7unIXaztRax0AoQQuzJ7ZisOUsLHq4Ud8gCNohKsHyXQG0WLqbJFEGdKpFrCtx50aA4jZisOdddivac+p+NF9LwEiTqEL9Zd/CTlnbyl50HbZ7rssNEL+KEXZnBMtY+nub7QqNV0xIDfft+2BiFFy3hCCP04UCkYrPfg7uaQh+0hYZyQ5O6tSZLip5KCrRMkCQuNAjPl09fsGeGdtR5/7/X7fPV2EwnEicydGXVenq/yyoUaz89VnolN1gtiVjsBcZJxe2OAH6e8vtTm6lSJiq307Ubah0magVBtlWkmx8WMfhDjRSpOnK04fG+lh5QQJj7VgjkuSpVsg5q7kw11Y7rMRi9kcxAyU3X21PDyo5jfuN0EBEGUcXmyyLtrfbb6EV6csFArULIMPMekYOiUHWP8LDQHKh5Q8adksx9i6oK1XpC3Ksmxc+duzHtDF9zaGDKTP0evLNS4tdlnsx+SpBkdPyZKU4qWQZRkBFHG1iBgturgx6pd7+3VHms9n5cXqtRck64fK6Zi3q7b9RLuC5+r06WxtlvB1Km7ShxdF2LcfaGYWDvPBrudLyaKNkHs4x4zY+o7D1v8Zz/3Nu9u9kkzkEj+pVcW+OLNmWP9nIPglYs1/vAnF/lP/79vkaSS+x2PP/ezb/LnfueLfPxS49TGoZiwBh0vRgiRi2SnDKJE7SeWwWo/ZKsf0vIiJMogpx8kXKg7Y4OTMFFr0aht+iThWAY3Zsp8b7mLH0v8OONhe4hhmphGgSjOeON+mzBRz9txd574ccpyx6fvx/hxOk5MKa2mGD9KEcDLF6rUi8o0wTYFhqERRClJlvHd5QHvb/SZKTt87vrknmuhEIK5mkPHi5l8TNbFNjTqRXO8zwsh9pUREEIRLq5Mlbi0OWAQKLbZUtNjqx+y0fPpBynfftDl5YsVmoOQ15datIcRN2fKLD6jRMFZ4aiJqU8Df1wIcT//+yLwthDiu4CUUn7kWEZ3BEwULQxNY75WwItTdCHo+An9sM+LCxVsU/W2Fmyd1a6q8lu6sqF/YZ5xhUtKyDKo5w4wSZZxaReR4NHkVBWdg40xjCUIJSq8UHPGQo2jg66pazSKDlGasjihWu68KB27BX7ycpX5WmF86Kg4JhNFGykFrWG0a2LEMXWuPiZQrCrkz5ZdHTFPhBAs1BxqrsWDtkcYZ2wNYm7OlPjNuxG2oXGx7lItmCw1lcvgZNnm+fkKwzBVmiQHrFhLqSzuy7ZJlKpDwI2ZCq9eNGj70RO6RRNFm36ohCK9JKVkG2hC5A56ilK5/dpESZa3WkRMl22MnJlScnR0TWXVtx/atwtsjubPceLbSy3+3jcfkmWqSnV1usRP/tirZ56UAvjJX7zFdNnm9716OGHmP/bZS/z1r9zmJ3/hFn/lj7x65M+fLj96fkA5ZLa8iOmKw1RJ0e8dU+edtb5ywSw7+HFKpWCiaUMKQuPO5pCPXKyoVgFU6+ZCvbCvxhKoIPKgmK8Vxs9llimx0TDOeHG+yEpHiUsPQxVY1lwb3dAxkJhCo2Rr3N0cUrQeJZ1rBZMr+Qa+3yYuUAyZ9DFaV9U1dz2MlWzjQGyX+60hdzaHALy32ueF+QqXJ5Tj0WLj0WY4YuEIAZamkaYZWSZ3HP4vTbgUDI0olcemi5BmkodNj7tbHm+v9TCEEkq9PFnkT33/FV6YPxvx0sfx3Ycd/vGba7lDlEbNtfjzv/tlPrr47IGurgk6fkyjaNP2IqbKlrIQ70cULB0hlFbJ++sDpss21dyJElSC/dpUCddSGiol2+SjF2qkmdJIaLgWS01vrDsUJdmuTN2j4F5zSJYp1oLMJLWCiWloXJ8uM11xWKgr19tRMsmPUx62FVNppA9YtHQMTahEG2Aa2lj7b8SCvdhwubUx4EFLVZz7QUI/TA6ke7cd76338mSNchOr589V0VZJp4cdjzldMXdH16daMHd8ztMC1MMgkxI/TvDijKJtMFN2eGFOMeLeXlUH+QypEu9C7XflXNdpue0BgjSDqmNSL5qsdwUb/Ui1QOdtUhv9YNfEVHGP9WOiZI9ZVvBoPVzt+Cw1PYZhrFiaiaSXJ8IqjsmFWgHH0LiPR3MYcmXSpVGy0ASUHXU4r7jqmrqWQbZtnZss7V9YWOn4KtFPxHPW/vIBR4Ft6EyULG6tD3jQ9gnidGyMMlsrImXKtekKP/j8NLOV4y9mHRRemPDzb63z1uoAL0qYraikz1TFpu7afPG5Ka5P7e1afFCM3A4lSjdyECV567zJ4qRLo2gjUIfFuVqBj16s4YXJ2MY9TFQMrGuKkfv+xoD28JGuHKi27SSTdIP4ifspNMFC3WWh7uJaezPb77eUS1eYZBRtnYdtHz9JMTXBfMVhPmcaX51WraNTJRshBM1ByHpPJab0/OdvyT66puFaOrWCRceLMTRBydl9ncwyOd4/LV3DsZShw0RJtXrWCiZ+rCkGjBGT5rIcE0WLumsTxKrlOoy13I2yyIiT3g+Ui2UmM+aqNvPVAveaQyX4n5tFjFqUekHC1CEYK3vFE8+CME75ma/dZ70fIBDUCwZ/7HOX+Fe/cOVYP+cw+J0fu0AviPkffukO/TBhcxDyM79+j+dmyxRPMR6XEuarDvWCha5Jbm0MuLOpUbAM5ThasHhrpY9t6FyfLNIcxDimQddPFBnAj3jY9tnqK9b+4i7OmMeNkm3wA89Nsdb1xtpsvSAmzeBhN6AfpsxUlI7dcbKlADTAFFBxLcrb5AWyTI737YmSNd4zNE3w/FyFkq0K3Jau8e0HHTpezGYv4tVLtdwNcXdMluxd95+j7POj13z++hSXGkV+7XYTXdOw8qS4zJRx0mKjyCBKeHdtkGvZCebyteqDhqNGkT9yrKM4Rhi6xkcv1rjf9omSlM9dnRgLi93aGCpL9kTRZTVNcHmiSJxm40PobNVB15TwccFS///YxdoT1NURLk0U6QfxvhvddqSZJMuU1kHFNrg58ygxpOcH3VrB4re/XBpnsrPcGesjF6tMlixuzlSQUhKnkqJtkkqp7Klh3Md/WtiemCsXzHFbUc9XlXPH1PjSi9NMlWwWJ1wcS2e1E7BsG5QcJXY3XVaBxsHbCQVzlQK1gsGLVoWZikpOPGx7tIexon/PlMeB1FytwGevThBncixwWi2YeGFKwdKeEFq3DI3PXJ0gTlXvsxACQ9comAZCqIP+djimzoW6cvp51pbIx+FHKW+t99F1wWTZ4tpUnf/8975C+RwI3f3iOxv82u0mf+5feuHQG0mjaPHHPnuJn/rKHf7dL904ltYf2JlsTdKRForB7/zIHLe3hjxo+gzDmIrlEKdgGQJdg49dqBOlGTemS5Qc80CHlLJjcmWqOGYTHBSapsRGR6gWVE/7i/NVPr5Y5+v32qrKWbZoDmLCVBAkihlYzhNS1YK5L514x2dNF/Gj46XYz1QcKgUDcmZZzbW4OSvGbkrbUXMtXr1Y4+3VPl0/QeLt2Jw/dW2Cj99qEKWS+WNiMem5OKyhC2bLDmXH5OOXa/zRT16i+hR9gNPEe+sDnPxw9uJ8mT/w8Yt87sbBHEmfBsvQeHWxTmsQUbA0rk6WiFKlD+KaRp6gT3Jb8Z0MGMfUuTJVZKaimLaupSzY+0HMVNnGixIuTxURGugaxyq0amgaUZbhxyl6riV0bVo5zo724C/cmFL6RXn7axhn+JES7Y9Jma053JwuoevanoGZrilmwFTJYqUboGviSBX/rUFInEmmywW+cGOC9V5ImilnWD/OqBRMrk6WmKnax5Z82g9JJklSSclWbYOXJ12KtrkjSV11TOZrBW4+pudYcQwyqZII13JdkjdSpVsj8uvjRSm1YxL+HUYJRVslmBolC8fSuTpZZKWr2NCpVM5TEyWbjhdRztsopss2Qmg4psZivcD6IKRkm/vq/D2OR21exzt/t6PimMTpo8LbfM2hYBm8MF/hpbkKjZLN9V0cTU8LQZxye1MlpIqWKl6+dqnB565NYOg6U2WL6bJzLNqqrmVwbbpI0VFyE3e3lE5co6R0F4dhMm4xvjzp8tELtR2v13JDEtvQGUYxmhBUCiZz1cKYmbBQK2AIMRYr345C3tofJdm+yWdTF3xssU4/iPj4YoP1XkjRNPD1hIprKkbfbmynbbplRu4KfH26RJQoXZqCpfPC3P6F4KprEnRDirY6dL6yUMXN2VHKsbKEpeuUHOVY2A0Sur6S8LAMjU9camDkzoePH5wtQ+PmTJmrU0UauV5upWAyDFMcU2PCtekHCQLlYnzWeG+9DxLKtsF02eHHv+8Kv+Pl+bMeFj/2mSvMVQv89V+6Qy9SbN731wd8bLF+amPQ8vW5FyRYumC1F3KpUaTuWnz66gRhIvkXXpqhOQipFCyKtjq7lHJX55JtogmltawfosD6rLjQKPKHP32Zh22fWxt9vrnUpu5aVGx93OJ6EmdY1zZ49VJDOeKaam4Hccq9poehCSZK9g4tKFDsXzd30HRMjdmqQ5IpJul+3QQnAT0vslVdkzhTRex60eZjF+usdgNSmbHYKOJaOittZbRi7JGz+CDgSKuPlHJJCFEHLm5/DynlN49rYM+Ci40iP/qxeQZROtZzWO8HOIYSRqwWzFxfRWAZOl6UjCnepq49wThyTJ2uH9PzAyZL9g6avX4I8WGANFOiszeny1RdVZF80PKoFpSTkArE7B0VNC3XnLg6VWJ7z/zVqSKr3YDZihKmHP38NLGQ2+k6pj5+COpFSzFShOqVv7s1ZLXj8+5an2vTRS5PFig5BhN50HNY2IbGxxarzFbUQjEKMuKcrZRlkEq5Y3I/N1tmECZjVtZkyabuqsrrXtds9H28XGBSoKrRXpRScR7dh9F3ruWaWZLjYU29cb/N+xuK6fPbX5zBNnT+0CcuYh5zNeEoCOKU/+Qffo9rU0X++GcvH+k9fuL7rvIzv77Ef/Pl9/irP/bxQ702zSRtL8K19D0PI4aucXOmNNZ9eK1oc20qYmsQ0hpELNQLCODVxTqubWClGev9kMSPDjwvD8IQ6XgRArFnRXG26jBVtsfP9m93LdZ6AR0/VkGxo3O1UWKiZOfuP0q0eKaiHeh5tw392DfSuZrLq4tVmsOY+arDcsdnECR7unvqmoauiV3tuRtFmz/5uSus9nwWjknz6Y2lFssdn5szJV6er3KhUeAHnps59krcURHGKb9ya4uVrs+L81U+tljn93x0ntoxJ80WagVmyttcHDXlOKMYTjp3toZcmigyW7HHotsjjBhQ7WE0FjgvOyZXp4oqwZGplurVbsClieKh9sH9cHWqyDBMqPg6li6IExvX0vnWgxaNoj0W+BwxcCqOaleZqthM58Wc8gGDWyEEjZJii+23F+yHWsHmQr1AxdF5ab6KH7d5Z63P9VwrzjR1HEN7ZsbJQZHkDrMLNYdqweTKRJGVjk/ZMbg86fL+ej8X35ZPPA8lx+RTVxo7tHJemq+w0gmYrShTg8cZj8+CimPiRyFV1+TKhAu5CcVGXzFPirbBfLWApqnEwiBUuk1bg4iaq8TP7zSHVArWmKl2UCzUCpQdFbuc1L0J4lQlpzLJZNHi6pRLlMC16SLPzZTPrHUPYGlrwBsPOsQpfPbaBLNVh4t1lRCqFa0dc+C44FoGVydLTLgW81WHWxsD0ixjEKq9bqS9FO/CPDd15c6rmGcOKx3FbGrkLTEAc9UCUyV71/upEtHlp87fmYrN7c3BOP67OlVkaxDi2joCQZQ+6aAFKql0WVP7V9kZHSDTQx1kp8sOk0V7PD5DFztimIW8ayPLpOqscC36UTRmby82XASC6YpNlGa8u9ZnqmzTKFpYujYWdx4d/h+Pg1/ME2dnOS+TNOOX393kfmvIKxeqXGoU+YHnpnhp4XywnAF+8IVZZisFfuHdDSoFgzcettnoh3z/jUnsQyTHnwXbW5MXGy5SSmqOhR+l3N3y8OKU6zPlnPmsxjSaV5bx6Fk6LEP4WXGh7nKh7uYi4haG0EllSnMQUS0Y+FFyLMzr7ag4Jr/n1QU+drE2/lmcZioxp2m7rgdCiLHj+3TZ5uZ0CaTk1cX6mSR8Rt0RUyWLjZ7Stf7V25tIqdo5U6mSZp+60iBKMq5Mng9Tn6PgSHdfCPGfAn8CuA3jU7gEfuh4hvVsyDLJd1Z6eFHKYkMxdyxDI04zCpbGVEmJ/3a8mEbJekLzZLf3e9BSOi1+nB5ZE6cXxLy13ON+a0jNtZjNHeGSVLLa9SmYBroQRLH6vK4fM1tV1EYhBI8ntq9Olbg0UTz24OEwGPXAPo7RmGquha55rHR90rbP/ZaHJhSzq2AebfEpWDrXp5+8B/M1pdtRtJ7UxzF07YlxPu26bfZDVjo+W7kLzNYgZK5a4GHLU/oHqOTgKLjveEpc9TjwveUOP/WVO1iG4OZMhd/10Xnma4Uzvdfb8f/4pdvcb3n8zX/900dugZgo2fz456/wk794i3/zB7q8dIj2quW2T9dXVszPzZZ33Si6XszDjkfB1LkyWUTkYrx11+KdtIeuaRQtfcw8Wu+rhBWoQ9BBzQz2Q3MQjsUmF4X7RBCw2vVpDiImS/Y4qePaBlenStzeHFCwNKJEMlm2sAxlq77VV2M0dbGjPeY0sdLx+Mp7zbG2z6jFZ7Mf7hro6JrgYt2lF8RPUJyjJEMKlaBaqB+9pWUYJiw1Pda7Pv/8rXUsQ2ehZvPbX5pluuKcm6SUHyX8L792lzcf9pgqO3xsscqXXpg5lvm2Gx4/pI2YwADXp0v7HkC3BiErbZ+VTkCtqJJS02WHm7Ml3l3tgVAukv/0e2t89GKNyxPP7qZj6hoFS+dhO8GLMsqOwUYv4p31HmmWsdQc8ttenB1/TtU1KTsVxBETS3D0A7iUEi+O2RoErHXAtVusdnyKtkGYZirhdcprdnMQ8u5aH8vUmCzbbA0jvDCl48XMVG00oVgjD3IdTttQLCVtW9Fre6xxZbLEYuNRnHGc32e64jBRsp+4/pcmXBWfFa0dLf411+Lt1S53NofEqcQ2RM6E1/gdr8w9UfXeD9ohi4pHwXcedvjucpd7zSGfvtrg2nSZl+aLzFTOTk8KlO7V3/3msooxKzaWAR9ZqHF1qjRO6p4UkWKjF/Abd5u0hiGOYWAZOu3hFhcbRfw4YaFe3jPJ6Jj6o3b2PZLJT0syPm3+fu1Ok6++3xx3Tnzu2iSLDZeNvmJCjvavx2N0YMcafpDi50HG9/jzuNQc0vMTCrlj4mTJ4a3lHpqQtLyE+ZqDBDbytsL1XjBO3l3PzRi2P2/b/3yWcxJUu+Hf+NoS31vuMVOx+eiFKj/y0tyRNXBPEi8sVJmq2Hz9TotvPmjzjXsd3lvv8a985vKJryuPwzF1LF1nqT1kqeUpt0ZT49qU6gDY6zVnGRNdnihSsHTubQ25venzG3eaXJhwMXWNH35x9lg/y9AVI3wYpYxqn2XHZKZqE6eSmV06XdJMjs9z91tD3l7tsdlXzrt/6JOLZ8ZGckyDxQmDb91v8/ZKnwy4MlFgoVbkrdU+k0WL2ZpzIrqJp4WjXtk/BFyTUv6AlPIH8/+fi6QUKIHO5iAiy5TDXtk2aXsRqZTMV5RI4LcfdmgOQjpe9NT3E+KRnszjbV+HQTdnRCWZpOfHLHd8hlFCkCjGlmVoqs3C0ujk7hyt4f7j2yugDuJU6T8Fx+ty9TR0/Zg7mwO2chHI2xsD3l3tkaUqcWMaarMv2ea4re5ZsdlXDkOmpnGh7u5Ksz4KVrtKt6TrRYRJSpZJ7reGrHR94kSJWG53UzCPSaPi9aUW/+CNZdJMEsTK2n67w8xZ49bGgL/2S7f53R+d53PXJ5/pvf6NL16l4hj83//Zewd+TRCn9Px4zEzbq5Ou5SnHvmGYEsSPqpx9P+Jrt7doeyGGLsbaM6NnWwieedMZuXsGcbrjZ4+jOVBuNs3hzoSmFyW8fq/F/ZZyFRuxWbYnAY9rvh0Fm/2Q1jBisxcgkNiGRpAkeXvf7qjm1rmPCzt3vIj31/usdf2xi9Bh4EWJshZv+7y31uM7DzvEWUacZkyWHRaPIVlyXFjrevzDN5a5v+URpxlBkvLcHu5Qx42OF7HS8Xcw1kSu2bIXpFQMHD9OkRn0fHV/bENnsmLjRwnr3RCBcpsd/f4g8CIlBg25q2ny6FkZBAlZpqqaWwP1nAa5xswwTJ/YF1MpWesFtJ+yXx4Xgjjl/fU+d7eGdD1luJBKiR+lSNQaowlx6kmpLJN0vBjLEGgIVjo+S80hnWGEtq2VYyQqnWWqXdyL92/13WuODEP17HnRk8Ywe2HU5rjfe6tWLD3XIJEkaTb+DEPT6PkxzX7Ina1BrhMiGB5iDCeFKMm4vdnnQUs930tNj9WuapkJc82vsywwjfbOb95v0RwE9P2QTKrCgqZp9HYx+DluPGh7JCkkiYoXbVPppWhCUC1YmJrG7c0htzb6O/bPxzFy6hs5TI70u54VQZyp/SxO85hcfc5Mri+la4L2MOTbDzqsdYMn1iIvSsZx92iMUko2+gHrvYDsGcYppaTnq3vUD2LmawUGQcL7GwMGYYofpURJhoBxO96jjoJMnUEymRfEjqeIelx42PL42W8+ZKXjESUpXpRwc7Z8LpNSI0yWHW7MlAnilChJWe+F/L3XH3J78/hMXA4CU9coOYYiN2jquYrTjDeXeyy3PbJMstrxubc1YHgKz/hBoGmCuWqBsmPm8blgoxtyrzkkSjJWOt5T14CDIk4l97c83l/v7YjDp8uOav/dg2FZsJQ5RTWXp9nqhzSHEYNdXPROG0GktI4Lhiquv7/eV6QJBO3hozjMj1QuYBAqLdDRGnCecVS+3JtADdg4vqEcD6IkY7nj45o6GZKXFioIlMtQECe88bDLcsfH1FWl97m5vdlPqn0vpl5UQrB+nFJ6BprmRMniQcsjTBIyqavDdT4/rk+VqLmP6NNelNEL4rHrVhArHZqibewqOvo4HrZ9/EgF8C88o5vK0yDzFrYgTrjf9Fnu+NRdi8tTBd5eGTCMUibKFp+53sDQNDKpNsuniZMeBF0vZq2rGClC8FTB6oMiSTO6fszWICJOJSudgDhNWWy42KZOJjNK1k4B25FwdLZXpuQA+Pm31/gHbywjpaDiGHxkscqPfuxwwuInCSkl/9HPfhfH1PiPf+eLz/x+1YLJn/r+a/zlf/oury+1+cSl/fv041Q5ICaZMhC4Mlnck7FVd02GuX35due5Nx52udv0SDPJaxcb47a9qbLNIExIs+wJHbHDYrnj55uD0k6zDH3XKtp2t77teH+9z3trA/w4QZ8Q43ldLZgs1B22+tGJCO0fFJahc2OmRJxkfPRCja38cN7zE3YhMz6B0draKFqsdQOWmh6ZZIf21kFxb8ujNQz52p0mm70QXRe8slDh6mSJT119tsTpceJ7Kx1+9vVlNgYhrqlzc6bIl16c5YW5k29R2OgFfOdhl6prkKQHFzudLFlKuN5QrZiNokXXjymYOj0/4eOLNZbbPkjBajc48P1b7SrhVUPPhYzXBwih7n/B0qkUTB62faI0Y7biULQNFhsLfP1uE0vX2BqEO1ru17rBOKk50od8GsIkZaMXUrD0Q+9FW4OQIM7o5fO448UULB1dCBquRcVWhiRelBxK9+hZoWkiF4nWyKRqc3/Q8hDAbM3BtQxemCsjJQyihActTwW3eeK2PYwYhAlT5YMJ0C7l62jXj5+qnzPCyMX2+dm945JBmLDSCZBS0h7GxKn6TtMVm8uTRZaaQwZWSpIaZFJwaaLAtXPQuvD6vTbfXengGDqXGi6OqTFZtpgoWnz0Yo2bB1kcTwi9IObelmJU9IMIXdco2QaLdRdNgKYpce2TxmLD5fbGgG4Y85GFKjdny0wWbfphwnov4O3VHr0w5kLNzZ0rVZJyt2LRyOkPlGPb3AFcnZ+GL1yfwI/SXGDf3LX1rzmMGEQJm/2QCzWlj1W0Dbwo4faGMgUZtejDTgdfITiShIV6rdIafW+tPx6Ta+tcnizghRlzNcXSmiqrLovt7KhbG33WuyG9MFYMSCGwTf3Y26aOgpX2kL/+ldt0hjGGLnh5ocIPPD/N86ewNz4rbsyW+bFPLfKL722wtOXx7Ycd3t8c8K9+9tKpjX+x4VIwNWquklB5cb7CWys9vCjhG/favLSQ8uZyDy9OuD5VYq5awDa1I8/D44RqKVSGFxuDENcy+PrdJve2PPw44cpUiS89P/1MbL44zbizNaTsGLw0r/buymMGJI9DJYFVcVvXNV67VEfX1LN7xsRCAF6YrxBLiWMIXNPkvbxFvzkMWWy4BHGKY+rcb3n4cco7az0MTeVCRlq15xVHXZH+IvAtIcSbwDjtLqX83ccyqmdAmsm8xapEzVXin+1hhK4JolTiRQmDIEbXND5xub7nRial5N7WkM1+QNHW+czVyWe2sHQtVS2zDI2HHZ9EZnih6nO9szXkE5fsMWX38YPDcscf0/FLtoGhqQqhrWt0gwRL13ZQ90YOKJpQougniZ6vNuhhmPC1u1ukqUSfLhGnDpahqmAvzJV5/oCB60ExDBPaXkTbU058x5l8y6QSoa8VLL632mWl4+cClDovzFe4NlXaNSFyVJtvKSXfWGry67eb9IIE1zT4/I0pfu8h3e5OGv+f1x/yG3db/MUffeXYhN7/5Ocv8z9/9S5/+Z++w9/6Nz6z7wY0ckDUNfGE/ffjqLnWE8mgNJO08qRO0dKZqj76DmptSGjmGlSfuNw48px6lDRS7SJ7HfK2u/WNv2Mm2egFBEmKaxksTOz8fTtvGb23NeRz1yf3dPg5ScxVHdILNUxdo+iYvLM+YLMf0R7GzOcH4L0g5aPW6GGUYOgqCbud1XYQSCnpeBHNQchv3mux3gvQhWC2UuBTVyaPfb05KqSUvLfW5xff3mCjFxJlyhL5j356cdwCeZLIMqk0wMKEIEmZP4SOlxBih8PMUnPIvS3lmnd9pkicKHHq0f0+qFPl6F4nqWRUvEvzcVYLBq5l8NJ8BcfUidOMoqXT9RNqrhqLlrMQRmvFDiHrAxIJ17oBPV/ZRRct40Brd5ZJVro+fpgihHKn8+OMasHilQsVLF0niFOG0fEkuI+Ckm1yc8YgTFJMXbX/1lyL5Y7PjVzXSAilWbG9fTpOMx62lfh0lGZcmyqRpBlBklEwNFqecjrbHsyPEovGIdfJLGN8aI6SjCjNxgfkrhfTDxUjdnMQkmYZXpxxueEqgfuKEvX/7nKXYahxoV7g0oR7pgxSUPHIas/nnZU+RVvH0sGxTV6Yq/K5axNnzvwIopR31/ps9APCOGWx7hKnkgyBrmm8OFc5kVauJJMMQhWjRmnGVNnhylQRU9cZhCmGJnBt9fxt9lWiuBuoNv2OF+UMQI3nZp9M6m2fd8ZBH/w9xviw7TFZsmmUHF670sALU+JEdThYj83vTIKt6xgFjbV+QJxJLjYKOxJYSfZoP9u+Lj7LOIFcKF6xozKpXEvTDCaLSo5gcxBSdgymK854XRwleNtejBcldDwlH3DY5/YksNz2+PJb66x3Q5JM8vxcmT/22SvH1vlwGnhxocaFiSJ/49eX+OZSGz9K+YV31vP2yfKJMyQtQxs7To6QSXjQ8rFNtSe1h4oxvdEL+P6b0xiahmsdj5Pus8AxdV67PMHliRK/ensLgLVewJ2tAe1BhGsbdLz4meaDAAqWRsnRWW576JrSja7M773mrfdClpo+Qqhz3bXpMpapY+jiwA7yJ4maa/HFG1MA3NkcIIRgvlbIC/IptzYGXJ8uoWmwtDWk7SmDEEPTjnxOPS0c9er+r8BfAr4LHO40AQgh/gzwo1LKLwghusC38l/9qJSyJYT4o8C/BbSAH5NS9g763gVLZ6FeINjmkFYvWui6YFG63N7o0w9ivCglSeWO4PZx3N0acL/pUy+aXJt6NkppJpWl5+h8ernh8vxshd9caiGlao3Ybyy2oeGFKbqmWi/utzxlbx3E48P5Fb04XmQuNlz6garinnQ7gWkIQPL+Rp84yYgzSZioQGS6bOeuSsdbKdwaqIP5g5bPVNk6UtV7P1iGxsVGgWGUcn1KuZoJoOoapGnGWtc/Vt2af/bmGr/8/iZ+lHBlwuXmdIXf9ZG5Y3nv40JzEPJf/KO3+eTlOv/yaxef/oIDwrUM/q0fvM6f/7m3+OqtJl+4sTfLxTb08X2ZOsL9TjPJfN1hoeug6+KxZK7G5iDgzYc9KgWDybLN1SM6Js3XCmzmzJjDzpFMSupFi8sTquqx8FjyPE0zvnW/DUK1x3366sSRxvgs0DVBx4up5OLBjaLNMExpFK1dhWu3QwiBZWiEsdK3cU2dIEkBcahWvgctnzcfdnhrrcdqx+fmbAkQ/OBzM9zc5RBzVnh3rcff+voD+kFM0dF5ZbLC7/zIwqkkpYBxYHWhXsAxNeb3EKg/CNZ7Ad9+0IWcnXqhXhi3W1UKKlE8CBPWugFlx9iTwTpXdVgjwLVVoFdzTZaaQ9582KHtx3zkQpXnZytj4d/WMKLrK3F9x1JslO175VzVUdqCpnZgoWH17xI07eAJtaWmxzeX2nSDmKuTLq6lYeoWlULGYt1FCuj7Ca6tc2O6fOotpF6U0PFVsvYTlxrMVhy8MMFL0qcyrTUhMHRBkkosXUNKya3NAXEiCZIUJ7+u16aL40TklUklVH+Yw42hCxYb7lj38/2NPlkGk2WLimNya2OgtOpcQzE/ELSG6oBScxUDrOwYvDxfZaXjo50T9yFdU4mUzX7AMDb4UnWaSxOK0XvWSal+EPO1O1t8/U6TsmPysYtVPrZYY6ntoyEoOQdzlT4K4iTj1nqfrh/n+7ZFlGS4lo5jakzlrA1li+7SCxKen1XPzvsbA6Iky4WKn4yPR05/cSqfScTZj1J+7tsruJbO569PMVux2RIRRdvYtQA5W3XwwlQVufO5F6UZ066Tu3dlO9goIwffTMpnLnADVAsGK20foUkuNYqUHIN31/q8udyjZOsYmtgx54QQXJsq4icpFxsFpisqwX/WLe7vr/X4u99cZq3nM19XRkp/+JMXP1BJqREqjskf/uRFJeYfJNzb8vnbX7/PF25O8UPPz5z6eF65UMUxdaIkQ9cEQZqoJHGQsLTlcX2mhHmKjnxPw2TZ5lOXGoRJylrX55ff3aQ5COl68bEwlMLcpbtoq9bBUZvuXsik6nYYhgnTZVu1SHoxxfz5Ok8YdY4kqeS99R6bg4grE0WSTGLrGn6U0vZiNE3b1YHwvOGoiaktKeVfOcoLhRA28NFtP/qulPIHtv3eBP408EXg9wN/CvjLh/mM3QKw0Wbw0nyVWxtDpBQsd3yuThV3ZV1kktwWO1W/f8Z5GKdKf2I9UG0QuqbRC2I+vlinNVQOM/s9JAs15SbomMoKNkxUPjDOlLvO48yow7oFPgtcS4k1N4dKL2e14zNdKfD2ap9rUyVMQz/2isHo+4NKKJyEva1i3MBE0WK6XGCz7yMRvL8xHFuHHjVxsR1+lPL2unLfM3Ql4vrJyxNnLkT5OP7SP3mHQZDwX/y+V4492fljn17kp79yh7/8z97l89f3/+6j+3IUWIZy4HAtk6Kts9YNmSk742TJQq3Aei/AMYwn3OMO+zlPM1XYC4auNDdsU6fsWKz3Q6YrhXGAPF22mSxbGJpy4jgLvLXSY7MfstkPma06PDdbpuaaGJo40AHh6mQRP04pWgYrXZ/5WoEwlofqfQ+TlK1hSHsYM1m2mak4/PaX5k61deogeH+9r9bpDD52scbvefXCqR4IhBBcz1vRi9azHUCnSkqM2jE1Ypmy3PGRUs33UWFgrevjRxl+lFJ3rV0Pdo6pczmnkgtUYul7K11WuyGDULGYwiQbC/9OFK3x3Jip2E98ByH2dr3cC7NVh5JjYOnagRMbcZbRDxWz8r11VZE0Dfji5QYVx0RKxQ7Z7lJ7mtjohWz0QqRUScT5WoGXL1THQuL7Qc/df4M4pWQbpJkkTtQ1T9IM8sTU9kjD3MVU5Gkwt7G7RzpXoDSYcFRyx49TnETj+nSBMElZqBdoFC1ubQzwI8Ucf2GujGsrbaKzPmCDikNMTTBVscfX6MoxxAfHgbdWeqx2Q9W+5xjM1lwWJ0pcqBcZnkK7aZRmbPZDJIqp+IlLdaquyfOzlR36Lo+zoC82Csqta5/4+DjGnuT6S90gYak1pOaa4/VpN1Qck+dmy0gp6YcJmZRM5o6qezHJj5OZ0hxGSqvWi6kWYiXUbuiUbYOys7txy0y1QNW1yKQ8N3vkuxt9BmGCLjSuTRX5fa9ePBMG+HGhUbL5iS9e4zfuNPn7314hTCTvrvXOJDFlbzt3vbs24FKjRN/vcqFeYLZqc2OmdOxuzc+K+dz8ZmsQUrA0ZqoOps6xrO8LVWU+tFArkB7gGZjOn2NDF0yXHX7zXlO5xfZhpuocS9vwcUEIwYW6y1rPp+enhFFGP1DdVf0gZ5tpkov1Ipcm3HOxX+6Ho64Arwsh/iLwD9nZyvfNA7z2X0cxrv5C/vcXhBC/AnwV+LPATVSyKhFCfBn4qSOOcVdkUububREFc28bdV0TvDRfVYfggnUkdsZ2CBRVfvvmZOoaRds4EC1QCLFjs7lQVxv2xUaBNJOYhnam9MKibfCxizVqBZNrU0VcS2crF2A7iaz8dNkmyyR116SWO62dFBxTZ3HCpWjr3NoYYOjKnvM4BLKDOMPQBDemimioSvKnrpwfXZwRvnW/zd/5xkP+1BevcuOIrpT7wTZ0/r0fvsF/+He/yz9/a53f/tLxunJsR6NoMVm2yLKMkq3vCHivTZWQUq0TN85QD6RaMJkq24R5ZXn7M1R1LT57bZKOF3Nz5mwOPrWCyUonwNAFrq2P9YcOWkkydI1y/vzMVByen60QxBlXp57e9z56buaqDi/MVwkSZX/92qWJcxNwg0o4W4bGlakyy50ATQh+6IWZMwkKtl/vZ8HlyRLfdxOiOOXmTIm7zbzFeVvyqWgb+LmFeZJme2rAjZBJJbK+UCvQGkakmeTyRHEH20rTxNi18jhxmMNiEKdcmXBpDVS7jK6pQ/5MxRkXvh7fp08bI/aXzBjHA09red4Oc1uSztAFF+oF+kHClUmXML/Px9kG4Jg6s1WHIE6ZrtjYhs6N2RL3mx5116JaMLGMR7GXbSjhc10TaEKcm+c9zSRxKvnc9UnafkTFMbl0DjQ8oiRDotiM02UbAXx8sc6rizVAPVcnPV9NQ+PlhSoCQXMYUrJVe+5EyXmqg55rGbiNk7/HBUvn8qRLlGY0tum67rdWj54D9wzibkvXlC4Y6qwyUbIpOSaVvDi0l3bQeTmQBnE6ToQ/aHogBD/y8twHOik1gm3qfO76JEttn84w4sVcZ2oUD5ym8YFlaGN2otqnDKoFkytT5y8ptR0L9QIfu1hnsx/y2auTCMETccZh4NoG16aKzNWcAz+vhq7t6MKpFiweEqBrUDwn+87jKOT6mromxvvPTNnh5mzCILCZq53/pBQcPTH1av7fz2z7mQT2debL2VDfL6X8q0KIUWLqBtAG/hrwu4AmMGrd6wK7qiELIX4C+AmAxcXFAw26F8QsbXmUbIPLE8Ux62UkCnZporgj2TDSqInTTImSP8N6kkqJRAXcwyhltRMwCBNqrkmcykM/cAdNaJ0EpJS7jlnXBEGSsTWIuDTh8n3XJ4gySfkExmnq2qnSEbNMsjWIMHWNF+fK1IvW+Hv1g5iHbR/b0Lg8UTwwm+jrd5ssdwLmqw4//OIsnwriY21HPC6kmeT/8g++x0zF5t/50o0T+5zf//EL/LVfvsN/++X3+W0vzpwIY0zpEsUMw4SJosXliZ2Hh0zCzZnyqbtpbYeUkmEQM8gFVS/Wd7YtxankYt3l0sTZjHEYJmTAhbrD1ckSJdtkoxew3lPuaTemS089cGyHqWuHYh4uNYe8s6Zcb1673OC5GSXmfJ7scR80h3z7YQdN0/jctQZ/6JMXsQ39XGgT7IY4zdAP4CInhODmtsT0takiXm4KEqcZ97aGpFIyV7VZ74Xc3hwyU7X3FVkN45TbWwNuzpSZKtts9EKcA+o9pVKeCjMpTpVAu6ELPnqxjhclPGx7SpD7mLT2nhVBnNH1Ep6bKaEJjWE+xvlqQenkHCGorxetcVvNSaXAH2eYLDaKzFYKY9mC7ZgoKq0sLYM3l7sYumKmntWzHyYpwyDh1++0MHPR5h//wlWiJKNRPNt50fEifundTQwNPnm5wfc/N5UfXE53DTLyVsvXLtcZhgl3toZ0vIil5hA/Srk8WTzzVkzH1PmXPjKPQOnb/NqtLVzb4BOL9XPZVmbpGo6lYxtK422l43N5oriDrSylJEqzc5eA2Oj6fO1uC00TfO7aBP/ypxaxDI2SfX7272eFoWv8oU9coB8m1F2L37zbYrnjM1Ox+czV0+uGUOfNhOtTRb673KXtRRQsY1eyQJwqTcTz4P49X3P5F1+ZU1qSwNfvtmgNI15eqHIpP/cdJsY0NMFHLtYONYZBmHBvSxkZXJ4scn2qhKFBx0vYGoSUbONMzwm7oVqw+My1Onc2PTShjFCGYcogyBBoOGesw3hQHGmHklL+4BE/748Bf/Ox92oBCCH+Pirh9Q+AkWptBejsMYafImdTvfbaawfq//AjZTupaUqzIEgydA3iRBIj6QfJE3T3rhdzv+Wha4Jr08UjL/JxmrHeC5go2iSZyvy2hxH9ICbNVHB2EhXh44aUktubA/woY7Js7aAz+nHKveaQ9jDGNnVuzpaPpZ/+PCDJJFGSYeoagzDl7paypP/05Qn6oXIkS1Jlu32QKvz3Vrr8s+9tULR1Min55JWJsdbCecPf/s0HfHe5y3/3hz92okKJhq7x7/zQdf7M3/k2/+ytdf6FE2BNhUnG91Z6eGFCwTTw4pRKvsE1ByErnQDTUK1Ph9n4jhNRkvHu+oCtfoSpKXODUv4cbQ1CVs94jK1hRHsY8fZqj/V+yMcX60TJIzHrOJWcVCycZpKvvLfJnU2P+ZrD5YniuRE5H8GPEv7pW+usdnzmagW2+jHXz4jZdhC0hhHLbf9ISUVD18bPzzsrfe5tDZkoWZi6GIuaB9H+LbFRmvGg6XOp4aqWdCEIY+VKu1eifuzOmcpxm9dJIs0yHrSHhHHGIF/vHUNH06EfJKd+2N9rjPdbQxpFm0bRQiDY6kf0fBVjzNWcc1n42A17JdGCJENm8PaGaiX+6IUatqmdSWLqftOj7UW8vdql46nYsePFylzgjC9zEKf8kzdXeX9jwFTJ4fJkyMsLtTMZix8r0fXFCRdDEwgEXpSy1gvwooxG0WLijOdlEGfc2/KYrti0hsrpWUrVcn7eElNdL+bd9f7YOMA2DSWGHqc7Ch93toZ4YUrNNc+NpowXJvzjN9dZag25UC+w1g14cZsBw28l2KaSY4jTjLVuwL3mkO8ud7ANZd5wGskpXRNUHFMJn3dV8VBK5YS3/SzbC2LuN72xM+55YNWMWsTXewHtYcRmP+Srt7ZozlRwbX3s4HtS8KOUkVLGMEhYag751pK6fzdmygc+6502sky19YaxcpZ/0PJY7fqEsZIZuDJVPDb3+pPCkU41QogZIcT/KIT4x/nfXxRC/GsHeOlzwP9BCPFPgJeEEP+eEGI0sz4P3AbeA17Of/7DwNeOMsbdMFFU1HBT15CoiZekEk1TAt67TbJBlADqQHRY16jHYWo6aSapucqC27F0ZXsPDMKDi/6eJZJM4ucHjUGQ7Phd1TFxDA1LF2gwFkv9rQDL0Jip2pQcA12ow0gQZTzseNQKVi4wrI1tt/eDFyWsdgIaJZMwybjUcM9FlWI3tIcR/9U/fYdPX2nwuz86f+Kf97s/Os+VySL/3ZffR56AflLPj1VLgxCUC0p4e4RBqOZznMgdGmanjSDOqLkmliEwzZ2aTaNnLk5UNfQsUHNNmsOIMM0IopSOF431eqbK9okGCx0vwtA0HFPpazVK5+vQACqQGplOaBpMVc53MmA0p5JUEhxx3gdxShCnpDKj40fMVQtMle3cHWr/7y9QLVpRqlqOdE2JcO+nGxgm2dj58vF96KSgCy03TFEsvwzlKld5BtHl44ahaehCULbVM1gwdUbLxGldp5NErWBi5NOiYBls5pXrs0A/VCY6cabaunRdiXefB2z2QzSh2h0zKVk8y8RE3qo7DJWW1VTZxtKVI1gQJyfuGn0QjGKNfpBQtnWMvE3XPocMg/V+QNk2CeOMSxNu3l6r7UgmZJnEC1Uhfhidn+d+vR/imBq6Lkgzzk3C7CRh6hoLdYcwTmkUbTb7SkPvNFG0DQRSyZCYGpXH9tZhmCgJi+wRgeO8YKJo5YUWlAu9H48dnU8SjaJFzTWpuSZF22BrECqnUD8mTtMDnfXOAmXHwNAV883UNET+v5EsSP8DEAccdUf/X4D/GfiP8r+/B/xt4H/c70VSyv9w9GchxK8Cvwz8phBiCNwB/hMpZSqE+GngV1Atfj92xDE+AUPXWJxwd1Rbp8r2vuKdE0WLIE6xdO2ZWtIsXWkpVF1zh/32WjdgEMbnPoM5gqlrTFds+kH8hNOMZWi8vFDDj1Imy9a5ozk+K6bLDpRVYmmtFyq9sqpqI6i6B6/62IbOdMUmTkss1Au8snB+K0Z/8R+/TT9I+Au/5+VTqfCcNGuqaBvM1wrM1wpce4xxNF12iFMfx9Rwz9BO1bE0ZioFpsoOFxvujoPXdMUmySQFSz8zfZWyY/LJXOw5yTIWagUcU+fKKWiqFG2DxUmXetHilQvVfVvEzgp11+ZCzWWiaPPJy/Vncos6DUyVbaI0wzE1ikec91Yuqnx5osRM1VbaMAecn6ahMVm2KZg6lqHx4vzTGXBFS6fmqsT+0xJfxwFD15ivFZipqnEWbYOFWuFcGVRYhs58rUDB0pirFZjPrcOXOz5+lJ7KdTppaJrglYUaUkLXT1hsFM6slXK+WkAQcH2ySLlgcrHuUjwn7Uhlx+BC3aXqWnz0QpVK4ewS+LomKNo6E3lr42zVwTY0HuYszfI5WB8NXVCwVIyuC8HIWPa0DIQOg5JtEMYZjVKJ69O7M3FHmnxdP2KqdH72yEbRYqbqUHUtPnmlfqZ6fKeJj19qYBs6Sy2PmYpz6u2VlqHxscUGgyDZ1WhromjjRymGpp27eMXQNT59dYKJkk0QpQih1rfaCY9T18SOxOmFegEvTHlu1ubF+cq5JRM4ps4LeRdBmkkVMzeK6JqaBx+EzqxDnWyEEIaUMgEmpZR/RwjxZwFyofJDpVmllF/I//jxXX73M8DPHOb9DgNT13hupkwm5VPbFhxTUQafFY6p8fxc+YleejVJzv9E2Y6ZirNrIm1kSXsUzawPElzL4Ieenz6yvomuCV6er/LCXOXMtRX2w1fe2+TvfOMh/+YPXOO52dMTAv/dH53nv/+FW0pr6oXjdTMp2sZ40X58YylY+p6B3mnCNnSen919fXIt41yMcbbq0Ciqlq3TPJw7ps5nr04iD7B2nxWqrsnnr08oxsI5DV624zjmvaapNsAkO/ya6Jhqvh/mWgkhTrXabmiC5+fKB9LhOiuYuuC52fITz+RR3UHPKxxT51NXJohTZRxyVsnBkf5WlskDxZKniZpr8akrjXOxBlnGkxqC9aKVs8/PfnygzgTb18C9YoTzgPlagcmS/VRToamyvadD4FmhWjD5wvXJczEvTxsvLVS5OXt2e8jlCXfPs9luz+h5wujMflqakrvh2lSZyxPqGp3HdWE36HlcdpbX7Sg47Ei/nv93KISYQAmeI4T4DEqo/AMDTROnHkh8kCbGUSGE+C2dlBpBywU9z+r1J41eEPNn/953uTZV5N89QcHz3WDoGv/+D9/g7dUef/ebD4/9/XcT1T1vOIv16bCwDO1MDoX6B+DaGLr2v7vAW4ijrWkCPhDXyvwA3NOzeibPAqZ+Pr7reV2rz/sadJ6fp/MeI3yQn/PzPi9PEmc55z/oZ7PzcGY67+vCbjgP1+2wOGwvyOiO/BngHwLXhBBfBaaAP3CcA/sQH+JDnA2yTPJn/va3We8F/J0//dkzEUL8XR+Z51fe3+JC/be+BsGH+BAf4kN8iA/xIT7Eh/gQH+JD/O8Zh01MTQkh/kz+558F/hEqWRWihMq/c4xj+xAf4kOcMrJM8n/9ue/x5bfX+U9+14t8fLF+JuPQNMF//Qc/eiaf/SE+xIf4EB/iQ3yID/EhPsSH+BAf4vRw2MSUDpTgCSOND2kNH+JDfECRZpLmMOTO5pCf/IVb/OqtLX7ii1f5E5+7fNZD+xAf4kN8iA/xIT7Eh/gQH+JDfIgP8Vsch01MrUop/8KJjOQcIEoyVrs+pq4xV3VOtIc7zSQrHR9QYobnoW81ySR3t4ZMl22KZ2TB/EHBRj9gGKbMVOxd3aeiJONByzs393Y3dLyIT/7nX6Y5CMlyF5qybfCf/d6X+aOfXvzAahgcBoMwYbMfUnEMJkrnSyh0hGGYsNEPKTvG2M3zvGE0xpJtPLPgaphkbPSDc+m4N8IH4fk+CM7jPvQ0ZJlkueMjJczXnFPR9/kg3u8kzVjpBGiacpD7raTrEiYpa90Ay9CYqx6/uPsH4X5/kOK1lY5PnGbMVQvnUufmg3C/j4KuF9PyIhquRdU9Hbe1D8L+fZ7RHIT0guSsh7Ev/ChlvRecqXv10zCKE44KKdXrswzmas4HTqfpOHHa9/uoGlO/JbHRD+j5akEoOQaVE7QybQ0jOl4MKJeZ8+CeEScZgyAhzTKuT5+eC9sHDWGSst4NAcik3NW1Mc0kHS/GNrVzu0GbusYPPTfNdEW5t8xUHD5/fZLSOQ9yjxOrHZ8gVvO+WjDPpYjtyrYx1s7pGFe7AX6Ujq/jsxw+skyy3g2pFsxTt1U+KD4Iz/dB0PYe7UMflO/S8eMdY97NIfa48UG8381hRNdX18m1DBpF64xHdHzY6IWPYjXbOHbb+Q/C/f6gxGuplDQHEQC6FpxL3cgPwv0+Ch52PLJMFY6qbvVUPvODsH+fV4yKCecdq12fYZjSP8cJtO1xwlHQ9WPaQ/V60xAnUgD5oOC07/dhT6BfOpFRnBO4lkF7GCME2Cdc1SlYOiNCSuGcZJ1HDJnCLgygD/EIhqZhGoI4kXtnkAUIAYUzEA4/KIq2wV/6Ax8562GcKRxTJ4gzbFM7t5XSgqXGaBnne4x+lGIZGsYxjNE0BKZ2/hJwY3wAnu+DoGBu24c+IN/FMTWEACk5PWOGD+D9Hl2bD9q4D4KCpdPxYjSNkzn8fgDu9wclXtMQ4+d1N3b5ucAH4H4fBQVTZximp37GOPf79zmFrglsUyOMs7Meyr5wLYNhmGLo5zMehZ1xwtFerz9at8xzum6dEk77fgt51Lt2jjA5OSkvX758Jp8dxBmja7jf4n/v3j1GY5QSgjgFlMjzSSfBDortYzxOhElGlveKOdsOQkfFaJxpJokStYDrusA6R0ySk7iWfqTmjBACx3z273oSY4ySjDS/17apoR1DO+BJzkvL0I6FBnpSY3xWSCDI5836yoMTG2OSSuJUPYvmMyanjvNaJpkkztcIU9eObWM97vt93GskfPDW810/K87I8v3VsfQzo2wf9Fpun2+GrmGeYuD++Bi3xyZnee0ex17X8iT2jqPipNfz7bGLoR/Nzvu4x3hS13+3eO2o3/mk8Pi1fBRrnWLy+ym4d+8e8xcWz80zsheOfW88gT3gWcd4GvPjqGPMpBwntnRNnHjr7GHGeVZrwFGu5WnvRwcZY5xmJKka01kVql9//XUppTzRG3eqaUAhxKeB/wZIgW9IKf+PQoj/APg9wBLwJ6SUsRDijwL/FtACfkxK2dvvfS9fvsw3vvGNEx797lju+LQGEa6t79rSNcJrr702HqOUklsbA4I4Y6psM1s9H9Th7WM8Tqz3AjZ6IY6pcW2q9MxaF6NxRknGrY0BaSZZbLin1kN/EJzEtby1McCPUholi4Xas9NKT2KMW4OQ1U6AaQhuTJePZeE87nGmmeSP/0+/wVdvNfn0lQY/8699+pk375N6dp4VUkpubw7xo5Q/+Xu/dGJjHIYJd7eGAFybKj1ThfY4r6UfpdzeHABwZbJ4bFosx32/N3oB670Q29S4fgxrJJzcnDzuse43ztWuz1Y/omCpveOsdO8Oei2DWM03KeHShHvsLWb74fExrnR8moOIgqVzbap4bjQD97qW7WHEw7aPoQuuT5fONHFx0ut5mKTc3hiSScnFhku1cPh5ctxjbA0jlvPrf2O6dGwt46Nx7vjO9fMdr93ZHDAMU2quycXG+Wg9fO211/jnv/xr5+YZ2QvHPS9PYg941jHe3hzghSn1onliralHHWOSZtzaHBAnkvmac+LaqYcZZ5ik3NpQ++NR172j4CjXsjkIWcnPMtenjm893AsHGWMviLnf9BBCxdlnkTQXQnzzpD/jUFG6UCvCH0QV4v834IdQSaV3gL8mpXwa/3AJ+CEpZSCE+H8JIb4P+EEp5ReEEP8h8HuFEH8f+NPAF4HfD/wp4C8fZpyniYVagamSfajKqBBqU4lTeS6FII8bMxWHumth6uJYg2PL0Hhutkwm5bncoI8b16aK537OTJZsqgUTXYhzK7b7//7N+3z1VpN/8ZVZ/tF31/gbX1vix79w5ayHdSIQQoznzUmiaBs8P1tGCHGu2g0Lls7zs0p/5Txqc40wXXGoncAaeRIYjdXQTv4Zn6sWmCjaH4jrAqp6/vxsBSnlmc+3+VqBydIH59rVixYlxzjXe8dxwTb0cxe7NIoW5RO8/ufxO++FK5PnM9b639MzMsJ53AOuntP5ASrOuTldJj2Hz5ltqP3xg7AGTJRsKufsLFNxzHMZZx83Dls+/qvANGChElI28HPAvwg8B/x7+71YSrm27a8J8BHgl/K/fxn4MeAt4LtSykQI8WXgpw45xlPHbouTH6Xcb3noAhYnik/8XgiBZRzvxFrvBbSGERNFi+lcEDZJM3Tt7Bf0wyzgaSYRMF4MRtfS0AWXH7uWuiYYkXuHYcKDtodt6FxquIdeTKSUpNnZHyj2wrPMmSyTLLU8wiRloVY40Uz7s2w4W4OQzX5IzTWZKtnHvvhKKflff+0eryxU+as/9nH+yE9/jZ/+lTv8q5+7/FtioU/TjLtbQxIpuVB3KdnGiaw1u2G/5yZJM7Q9Nvj9nu+THtdBsdEPaA4iqo7JzAkxXJ8lyB2Nr+5azFRskmxnIvK494FnFbe/1xwSpRkXD1Btbg0j2l7EZMk+dZOQLJMcNqWr1pHjf95aw4j1XkDZMXZU6aWUT9zvEY774NTxIla7ASXb2MEkeXzPPioOu3eM4yxNcHlCjWevdea8YXvschjc2xriRScjQnvUvVtKyVLTI8jji7Jjjtec7Tjqd96OBy2PQZgwW3GoH1HQ/2nz9Vn3zDRf45JUcrFROLK21qiVaPt1PMg9itOMpeaQTMJiwz1UvBen2blLGjzLOrY9vlisPzoXdP2Y1a5/pPPCacRUUsL7630AFidcbEMf70dPi1U1TXA8IhVPRxCn3N0ccGWfjqHtOI414LBIM8nbqz2KlsHFRuGJOGivOX+az0GcZry53GGq7Oxr6HJez6fHicOult8npXxFCGECa8CclDISQvxN4FsHfRMhxEeASaCDausD6AJ1oAb0HvvZuUaSZqz1AixdGyeEWl5EP4h52PHZHITP9P4b/YAwzpit7m9ZudkPkRI2+iHTFYe1bsBmPzx3VP7tiJKM9V4wdibs+jEP8kDz2lQJy9BoeRFRkhEl0A/2dlloDSPiRBInCcMoOVQbxfaWp73aK7cGIX6UMlNxzlWlRErJei8klZLZirPrpjWMEgZBgkTyxoMOtcLpOzRt9kOCeP/rt9kPSVLJ++sDNnrhsduTfvthl/fWB/yXP/oKQgj+lc9c4t/+m9/iq7e2+OLNqWP9rNNGlmX88vub3NsacnmySMHUz4XDYseLeNDyMQ31TD++hrU8lXgYBAnOGTxXwzChNYyouuaeTqybffXsv7ve5/oBA7DjgJSSjX5IkklmyvaeQclWPyLNJBv9gGGU4IXp+Heb/ZC1bjBupe4HCb0gZqJknYkY8SBKGObjaw2jff+tlJLNvto/N/vhsSemskyy1gsQAmYrzo49cntb3nGj68WHvgdbA7U2tocxMxUVSEspubM13HG/T3I8ozF0vJjpSopt6PSDmKWmhyYEV6eKp9ZesNkPWWoO0YTSKlnpBPSCGF07v21O++Egz/rDtse37ndwrLP7bhu9gCjNmK044zH68SPHpuYgIoiz8ZqzFw4SDzyOKMnGTltbg/BIialBmHBva3hs7TDtYcQgTJgq2+P3GgSP1uDWMDrSOru9Df3q1MELNlGS8c5aj44XU3ctOl7MbPVg3/He1pB+kJyrFsb9EMQpm/2Qkm3sORdG54d+8Ojf+nHKb95tUXUNYkPuel6IU3U2sYyzcWpMpSTItaK6Xky9KMbSJRfrLrapsdkPKdpn67gaJhlvPOhiGIKL9Z3zdBRbVQrmqbXt7YYgSVlu+zSKFtMVe8cz/6Dl0fFiKgWDSydQGD0ovCjl/fUhzWG0IzG1X4zyWxWH3d0SACllDPymlDLK/57wKMG0L4QQDeAngX8NlZiq5L+q5H/f7We7vc9PCCG+IYT4xubm5iG/xvFiox/SHsas90J6eeKkWjAJkxQdgfMMrjHDMGG9G9LxYta6+9uI1vKe/dECPUri+FG6Z0X1rLHWDcbfzY9S+kGMlEpMeSQwWC2YCKGcPvbTiKnk/842tUO7qyTZo8/bLfnlRymrneBA9+G00fVjNvshrUE0PsQ9DtcysE2NLJMY4mwO/6N7vd7b+/rVXTV3NaEq38Exu5P8/NvraAJ+5OVZAH7bizNUHIN/8MbKsX7OWWBzENEexISxSlSeRfJxN4wOLHEi8eMnt4lqwWS9p57/ka34aeJBWwUm95see5mB1F2LIE4pWcaJJCr2Qs9P2Ojlz/Y+BY7R2l+2jSeSFKM9KYgzgjgdf9/ltn9yA98Hrqkr0wHBU3VmhBDb9rXjD2y3hiHNQcRWP6L9mLX0MEzIsqO7+uyFLJPje/DwEPdgdB1KjjFOuqSZfOakVLptPE+bE7V8fS7a+thsZBAmSKneZ7SHnjS8SO0naSZpexGmIUiy7FHssMs6c95xkGfdi1JcSyeIzsa1qxeoOLc9jNnYFms4hk7BUs90zTXHMdRe+/fo/h02njJ1QdFWsd1oLh4Wg0DN1yxT1/NZEKcZD9v+E8+ya29b4454IB89V1KqPx8U671gnDwOk5RK4WBJMSnleK8+LVv4Z8X2az8yX3kcFcdACBXj27qm1nOp5Af8KN3zvLDWDdS5rhsyPMT1Py7oebuWpkHZMfGilCSVSAn9MGal44/X7DA5u/VOuePu7iQ4uj8PWnvHVqcBKdWc9qP0CbOxUXx01nN+xCd4nOm2X4zyWxWHTeOvCSFKUsqBlPJHRj8UQswCTz1RCCEM4G8A/4GUck0I8ZvAvwn8V8APA18D3gNeFkLo2372BKSUP0Xe5vfaa6+dadZlVO0RAixdo+vHtIYRN6ZLDKrpoVsBtsPQH1ntjh6o0fvXXXPH5nyh7rJQk+OM6nTZYb2vqP9nVT1sDSO6fsxkydqVwbT92umaYLJkE8Qppq5RdtT0LNkGL81XnpoprhZMKk/5d1GSsdr1MXSN+eqj7LOpa0yWLfpBsmt1xNDVBpFlx98e8aywDI1+ENMPkj2DEF0T3Jwpj9lVvX2YZycBQxdEacpWP2I/FvJs1WGmYjPIE1nHbXP8C+9s8IlL9fFzYxs6P/T8NL/47gZpJj+Q7XxhkrLWDYhTSb1oYZsaH7lQPTfispMlm+YwZBimJMmTwUvJNnhhtkyYyFO3tQbwwoTNfsRM1d5z7ZivFZgqWTxo+8+0nh8Wo8PNVl8xIuuutWuFf75WYC5fz9a6wY7nu2jp3G96TFVsCpaOoQvi5Oz0MQxdaQNKKQ9U/bvYcLlQP9i/fRqag5BeoNgNJdvA1h9dy8d1IqsFk64fH/v9FkKth81+hPQls1VnT6bedkyXHaZKO+eooWtMle1nWs+1fDyjOSGlZLUbEKcZc9XCjnkyWbKZKFo7xtAoWgzDFF0TVI65Kr7XWAxNPReuZXBpwmW2WsCPUpY7HqauUToDJuCzoBfErHR9+kFM2TGx9yhmzuSxSfkMmLBZJnPjg4DJkr1jXmia4Pr0o2da1wRptvf+Pbp/Uh4unhJCcHWqtOfakWWS5Y5KEM1VnV1ZZ/WiySBM0DXxzCwOXQgMXZCkcseB19xjjet6MS0vouFaT92fRwk+yaOC3UFgGxqmrnF1qsj16SLOLlb3a92AIE6ZrTrj/UQIwUzVpuPFTJ6wYPZxwdIFS32V2Lw5U4JdplvZMXlpvkKaSe63PCRqvk5XbC7WC1h7PGtemLDS8akXzWNz8z0MhIAX5yvjOWRnGpWCQZxmTJZstgbheN01tCfneXsY0fEVC/Yg+8tR4do616ZLu7afWYaGH6V0fWVssVArnEmbterAKTJT3ck4itOMOMkYhAk3Z8qnPq7tcEydF+fLzFZ3GluNYpQ4zVjrqiTkXPXZza/OMw61u0kpf8cev+oBv/MAb/EHgU8CfymfHH8W+IoQ4leB+8B/m7vy/TTwK0AbpTt1rjFZsimYOromcExdabykkmHIgRIq+8E2dG7MKKH0UVvOctsnzSTDMHmiarT9s6queaaH0zST4wpslGQ8N/vkWGarjqq+Gto4QLk+/eQCcdBr+LR/tzkI6fkqM16yjR2ByVy1wFx199eZusb16RJRkp2q09JBUDB1bFPD0M2nVoqFEMxWnVN3grQNnbJjkGSSTCoG2l5BqxCCsmMe+3Ve7wV8b6XH/+lHntvx8x9+cYa//8YK37rf5rXLjWP9zNPARu/RnH5loUrR0c+kRWsvFCwd29DRhcZKN6D+2MEW4Np0mWGUUDzlcatkpEbVNccMkL1gGjpXT7GND9S1m6s6eFGCLgQbvZDFid1bLEbX9PHnuxckTJZsZAaZhOtTJfw4PfVr/TgOsy8eR1IqzSQrHXWIidOMmzNlqq7JNaOIQDyxHhm6diL3WwjBtckiHS+mYBost30qcwdb63a7Ds+6nguhXIe8nBHYD5Mxc1HXgidcpx4fg23oXJ8+medir7FYhvZEXFSw9F1jhw8Cltu+Sm6YGlcmXUp77H1nGdO1vQg/yqi5JjXX3DV5MZobT9u/R/fvqPHUXutB24vGrX628UhaYzuOc75qedtoEKe7ts0/Ps4HbQ8pFWOs6u4RbOYwj7j+TFccXNvA1MWuCU4vSsbMeiGCHe1L02XnTNrWjopKwaRoG9iGRnMYMb+HW7XIE4ij62kb2r4u6mkmiVJJrWji5vHLWWE0hzRN7LhXC7UC1YJKYj9eUJVSJWilVO2OB91fjgJL1/ZM6lxquNyVQ0Ax+FxLP3GXwN3gGDpXp0tPPKOb/VDFfwXrTO8xjJLZlSd+PopRlts+QZyx1Y8oO+a5kOk4KRzWle9fAMpSyv/tsV/9PmAD+Of7vV5K+beAv/XYj38d+EuP/bufAX7mMGM7TiRphqErFso7a30aRYtrU6WxzsjjParAjhazgqnTTxMcUz9SQO1FST75VN+0behsn4MFS2cQJLse7EfU9qJljH//uKh3mklFrQQu1AsnxqbShKJ4BnG2p1ZQECd0hhFxJinaBrom6ORCtwelareHioVTtA0MXSNJM1a7AYYuxj25qprqE+V0XyF4gtL5NKj7cLaL127Icrp3ZxiTZSoJqAnIpGS5EyBQ9/msRfM0IRiGCX0/ZrZq45gamVSbwyBMmKnYJ5r0+6V3NwD4oeend/z8izenMHXBP397/QOVmOoOQ37l1hZCCBZqBUwjT7CcM0YfqLaojhezUH9SeDJJM95e7RGnGa9cqJ3amKSUdL2IVEpkBj0/ph/EY3bShfrhRGNPCkKo4LLrxYwe4STN6AcJzWFI3bX2DfaCKOX9jT6mrrFQc3AsnSjJOGInzAcCSZrR8WNKtjG+h1re5r3RCzBCjaCR4pg6mhA8bHlYhsbFhnuiGg4dLyJMMsI4U66GQuzZdt7xIrYGEUVbP/YK6ehwWnFM6kULQ9eo5JPLNh6xWfZLcHuRao2ou9aOKvgofgK1Fy13fDShGN2HZaRuH0uaSZaaQ+pFxQCIU8lax8c2NcqOiUCcG5boYVEwNR4O1MHj1sYQyxAs1Nxz832yvE2zF0R4oWJsjOLKQZiwNQipudahmDbPGk9FSUYviHEMjbYXYxlabvaRtxflMedugtGrXZ9hmDJXdfaVhzgITF07UAztRQlRkqJrGsWcxZRlktVc2mC2bCN5JG48Yo0f5fnffmgd5swfU9fGOrWK0XZwhrKUkodtnyBOuXhIMfWTRJQzXvp+jGOqIo7S/A2J0uzARj/b16nZikOaSaVZm2YUDP3csOlbw4jWUOlKxYnETxKmSg4N40mCgmNq+FF2aFmT48JGP2C55ePHybg4dlbzJpWSNx92uNBwdxRaCqZOywuJE8mlifPJQtroBTzMW+2jEXP4A6afeFgcdkX+88Dv2uXnPw/8LE9JTJ1HPC6et9zxaQ0iSo7BcttjtRPw5sMufpSQpGpzS6XkyuTeImmXJlz8OD2yttQoM9r1Y8qOSrZs9AOiJGOm4lAvmGSZZCHfrPwoRdPURv+g5dEPEoSAF+YqCODW5oAwzpirOUyWbNpeNO6nbQ+jXatKR0UQp0ipkmejA/NqNxjrY2yHlJKvvLfJ/ZaPaxm8PF/BT1Qf9YOWz2evTey6kKVSstJRQnatYcTDtsfWQLkRXp4skkk5rpq5pkHVNdnoB2P9i4WaQ7lgPlVIPkxSpsunJ3TuRylCsO/iPQwTun5MzTXHh4bltk+cZbT9iEbR5CvvbaBr6sBTsAw0IWh78bEIB6eZ0u9wTX1PSm6UZGwN1OY5YqQNwgQ/yuh6MdWCybcfdtA0QcU2iRNJyTFY74Unmpj61VtNpss2zz1W3ak4Jp++MsGX31rnz/6OF07s848TfT/mv/5n77I5CLkyWebyhMvNmfK5FPztBTGWrlEtmJScJ7ecO1tDfvabD+n7Ca1XDq8xNQwTbEN7auLVj1LaXkQ1r7JuDkLWuyECSLKUasHiy2+v0xxETJYsbF3n4h7spMNi9NwUrb2LFe1hRJCkTJbs8X0chgnL7QAvVMnm1jDiK+9uUnR02sOImUqBIA72T0zFKQ9bPsMowdAEc1UHP87yls/aoedMlGQkWXYirLzte9mzYKnl4YUpwyjmYt1luqIOZI6hWu3nqw7LHZ9rUyUetDy+t6L8VhxTf+p+6EWqDehpY/QilYwdzbfWMOKtlS73mh4XGwVqBYsLDWdXLbiHbY/vPuyiCcF8rUCjeLwV3VGM0fMTZYmdr+UjYetrU8oOfRAmas12TbwowdAUszlKMu5sDnP2RzoWSr6zOWAYpkyULOZrhbGpAUDHjp6Yp10vZhglO1rDwiQlzaTSRTR0npstk2aS25sDskztJS/NV1nr+Ly30ac5iJmr2RiaxkzV4cZU6UyLMNuv0+N4fA0aQdcES02PzX5ArWAxXy+QSeiH5rGKL4dJSpaxb0JibDggGLeOLud6Nu1hxFTZoefHfHe5y0Y/JIwzFhsufhQ80eYJqkC2PVkJaj1c6wUYmmC6vHcL9ePYHv88bPuEcUZzGDJRVPOqOGUoyQIktqHvMDC4PFmkZBsEsZIUAFjrBVybKo2ZJbvFXiPxYU0IZipHG6uhadzZHKJrSs9o5D7bHEa0BhFSSlbafr7+2MxUnLHu4ij5ux+CWIk726a24+AdJinvrvdY2vKpOAZZ3g5eLujUHIvyAVsZO37Mt+63yaRa/19a2J/tdRjEaUaUZPsmCLNMsjkIx3If8Eh/V+krCfpBzD9/ax1dE0hU2+tmPzyQiHtrqNap5Y7Pm8tdkixjpuSw1lWSKSsdf/w+rWFEmKRMlfY2I4GDxfOHQZRkfOt+G8vQxoWNN1e6TJVtPn998glm60TRpkXE3DY27TBMsIyDJVKPitYwoufHbA0CHrYDbm8M0HV4YaaCs/joWgRxOhZG3439c5B5cVA0ByH/2+sPuDZd4ie+7xp6/v0dU6dkmWg2tL2YyjnQZfWjlK1BSNkxKNkGq92ApabHO2t9XEunYOk79pbRdSw7xp7np/32pPOIw95xV0r5hNJ4rhd1dnL2z4Dljo8XpnS8mKJt0PNVQmMQJGz2A752dwuACzUbwzDyrO/+N1cI8UxBu2Pq+FGKaahe/UGYsNYJ8OMUL0wIE0nHj7i7NWS+VlDWtwKuT5d26GFIqeioI1G6fp61LlqqqgTgHhMdMIhTbm30ubM5pFG0eXmhQs21eNjx1ebaTJ9oa4zSjCBW7kJemKBpgqKp8357qBKD+cHhcajqhse37rcZhgkSCOOMumvR8+Nx8CvEI/2CgqXT8xNMQ+lg7LehjIQ5QVXeLjZcJTKbtxqdRI/0ctvn9aU2hgavXqoxW3mSWQJwZ2sAUtD1Y16YU7TPTEosXcM2dLphTHMQYRk6qSMxDfXzkWDosyDLVCKxF8TMVW1eXWzsusE9bHsMAuXG4c6Wx+5RoCj+fpQyDFPVty8Z98efJDU1yyS/ljvv7XZdv/TCNH/+595iqTk8U2eOgyCKE37qK7d5e61PnEqqBYupin0uk1KgqN4jhqKbB2nbn6fVtsd3HnZJJDTutQ78vq1hxHcedkhTpdOzUC9Qccw9n8+7zQFpqto9XpqvjkWtDU2j5JhEaaaSQ3HGRi88Nl2J9jDia3ebmJrGhUaByxNPOpcFsbK01oTILcZVkDlazwuWRhArcfgkk/ixSjgDTw3chCZIUYyHzUGIbWj0gpSirbPWDQ6l+zAIYn7l/S3STPLqYo2F+vE5N7WGEQ9aHmu9gNmKw9Wp4pET1eqgmbDaCSiYBmkGtaJJaxiTZtDyY6arBQZhQpwLyuoaTzUJWev6fHOpQ4bkC9cnn2D1SqmSOY6ps9T0SFJJcxjyykINP1JaZlGS0exHTJUcKs6TB3lQe3XB1HMmiMDcRUPkWWAbKsawDG2s+dcPlJDuiFWcpJJbmwOGYcKN6RJppvbUGzOl/Luy479KXkAVf3pBzDwFXEsfxxqPz9MoyVhqDVntKHbzJ680sHSNWxsqkTBfc5jIk7SmrpgpYZaNE3SWqdELYjKZ0R7GKvDWNTYL4ZlpcHzjXovbWwMu1Fw+ebnxxEHgXnNAnMjxGjTCMFSivLquIVFaX36cIIfq9wVTf+aiTceL+OqtLUDwqSt1psoOWaYcyVzLGCcnNwch6z3V6mVoGo2iNb7HBTvXKxWw2gnwopRBEDNVVqzN3eZyGGe8t97HMnTiNGOhXmAQJDxsediGjmPoB2aG3WsOyTKlszr6qNGjIYTSidt+zUcGBqBi+pJtYOmPkqsjrS4/TvnyW+ss1Au8NF/d8R4j8WFQ8eTIAW1U6NwrybfU9MYdDNenVfJLE0ruY7Te2uajLoY0v8g9P2am4oyNLCxDeypD4t7WkLdX+zQHITdnSrxyoUY9v2+a0NA0tZf4UcLWIKBgmiDFgRNTmZSAQEqZ//l40B5G/NrtJoYmuDLlcnmitOvheXOgnGVHDpzVgjkeh2sZRIlyRvfCFEMT4+t60JiyaOts9CRdPwIpCOIEW9dxbR1D18af5UUJy20fmSdbLzaejBVHLu23Ngb0/JhXLlS5MvnsraMjs4etfsR02aLrq7OPLsQT4vhhkvKg5QGw2g24PFlkvRfw1kqPQRjz/FyFxYZ77B0gUZKN5VsGQYqpCzIpKZkmwWPi9PdbHkGU0hyEvLxQ3bF2pJnk2w863GsOmK0U+Pz1yWdiMvtRyvsbQ9rDmD/xmZQkTnEtA0MXOJaWa8SdDxbgcsfDj5T76POzJYq2jq6BzNQ+sN1gRErJ/eaQMFEMvxfnKk/Ecpv9kFsbA5a7Hi/MVHjxGeWFTgOHPQk6Qggjd+EbQwhhAueTB/cUWLqGR0oQJax1fSaKVt4CoPPmcoamCda7Ib9+t8Wnr0xQc81jDXq+87DDctvn+nSJGzmTo+aaqkKjacSpxNAEW4OQrp8QJGluARtRMA3Wej4TRRsNQZhkXKgXaA0jrJyuOwgTMqmEGUeMmYKl8/ys+qyjVBZXOj79IGG24owrqe+vD/juwy7yMTe1QZiwtOUhhETkn315QrGaTE3j5YUq672A+ZrDXNVV1bpBhGPqe27GAuj6CUlOr7UNjemyzUTJYrriUC2YOKY2rmq3hhHr3ZA4TZkoOTzNoHA3Yc67WwP8KMO1dS7UCzxoKdrvYsMdX8M4zbi3NTyQWK4fpTxs5+0jdZe1nk+UpNzvBVi6TrYgMDRBcxAxUbKYqThs9AOWtryxkF+aSaSULNTVAeDKRJEwybhveeNK0WzFYRglR0paREnG/ZaHyL9nGKd0/ZitQZi3mlrMVhxWuwEl2+Bio4AXpdzdGjIMUxYbBUT+PmXH5EK9wEzFJpNK62VroFpJnpsu0w3jE6Ucv7vepzmM+Pz1yV1//0PPq8TUz7+9wY9/4cqJjeNZ8aA55Cd/8Ra3NnpYus5k0eaPfPIC0+XTX35fX2qx3gt5ca7C5X0YpLomCJOUthczV1PVu9s5i7PkGFRci6mqQxgle2pEbMd6T7k59YIYP04JooxhNCBMMtWPP1VitevTHsZMli2my+rZubc1REPj0mSBJM2YKFpoQj1nlYJJL4hJZcZ6J6ReUiySvaroT8Nq16fnqzVyoxcQxhlbYcQgiElSyZWJIhsDZZd+oa6Em+9uDTE0Qc2tAWo9cU2di40CM1UbUxMstTwGQQpIbsyU0IRGJrN9Ww0W6w5lW0dIi4mizfWZMkvNIRXHpONFrHUD+mHMtakSi09pZWt50XhtX+8pwX0/TsdJwWdBEKcEcYoXpnhRSnsYjxPZ91tq3bs8odZbKRWrNkzSfP3bGco0XJOl5pA0k6qVJ0/eG7rgYr1AvWihAXc3h2Qy48ZMEcvQx3tke6haPB9ngCx3fJaaHoYuWO8FTySm7jXVARFgoergRRlNL8Q2dObKFpMlk6myzWzV5tJEcc97NlNx0HP9GsfSaXnRrmyUp0FKyVsrPe63PK5OFnkuL2ZMlS02ctHgMMketTR2lNaRY+pUCgZ9X7Gv13th3r7FWNfp0qRLECltHSnVPNCEShCMRbodk+dmywiejDU0oYpTXpRSdozxXjc69wa5UUKWSe5sDRRzpGhRMDS+dnsLTYMozvDChEuNIqahWvpOq81ha6ASFvWiyXTZYRjGvPGggxemJInkoxdrWIZywr3XHNILYrUGCTE+qEZJhqmr/XwQJlxsuFyZdIkSSZxlDII0T7gc/js1ByFbA8X4mK44bA1CokRZkm30Q2xT5zfuNMkyuDLpcn26zJ2tARu9kEwq8X8NddCerzk4psalSRdNqJhLoJIvN2bLLNQKGLrYdR2K04x3VvvM1x2KlklrENH2IlY6AcMwJiNjsVE8UBugoWlEmWKLXGy4vLXSwzUNXFtjpvxki8vIwEB9H4PNfoipC25Ml0gyuYOld7/loetQdgyiRFJ2DC423B0GCaN/3w9i7m2pg//ihLuriLqhizzRq2L2S5MuA38nc73imONE76iTYcSOK9oGjWKm4vs91omNfsBWP2JrGJKkGX6SEqWKRRal6nBbd02mSnXCOOMb91qsD0Jema8yUTo4O6ResHh+tsRGL9hV5PowWO74DMOE2aoyZ4qSjA0vJEoy4lRybarEcke57C02XCxd4+6WSmDPVh0MTRCnGUVLxZxx6uCaOg/aHhu9ED9J+diFKukh8mdCCCZLFh9frPHe+oCFusN8rUDdVS3DjaKVS2QI/DhhpRMwEVjMVApjUXVdE1xqFLi9NWStE3B7c0CjaLPaCbg8UeRh28ePVfvoUZLMlqFRtg0MTfDxS3WiJGOiZI33xThV47vXHNL345yppI3PemGs5kM3iHjjfocwzrgxUxozCx+2PXRNY7Fx+JbrEXRNjNtEpyoWV+0SN2ZKbPZCLuTvG6fq+ZVSstT0CNOUMEmpF20u53tikmUsNT1W2iGtQcxzs2Wmys4TZ5KDroumoVF3TS42CtxuDpFSJS+vThbpejFelLK4D7MuyzK+fq9Fx4v5yEKN+frJxduWruOToWnQGsZMFC1++MVZrk9X6HghV6fU/ez7Mb/8/gab/ZCbM2UaRZvdwoMgVqYg76z2WW55FG1j33j9POCwiam/B/y0EOLfllLVcnKm1F/Jf/eBwijr3RyGPGh5POwEzFVtPnNtEilVQihLYaJoYhmqBeNZ7WW3I0xS7uRC6b9+u4llaCzUVBXXMXSkVBWfetGiUbTYGoZ0PcGLc5Uxq6rkGOOAW9miqgd/qTnENjRVLRGCmmvtqB4cleoep9m4erTRD6i6qhVLE4KpssUgVAeFyXzTq9gGMxWbjh/jxQkP2z5fv9PMhYRVheTyRHG88T5oeVQLir0wucfGaRs602Wb277Sg7k0WeLyZHFHVWJ0UAnilPVeQCYl91s+aQZelO0rfrmbMOfoMDZa3EdZ6+42htbtjQH3msMDbfhbgzC3b88YFBMuTxTV9YwtJkoWYZzSjlRb5GY/ZLps873lrhLZdEymSjbvrPVoDpTGzNWp0rgiXXIMwjijWjB4d32QsweyQwtpdrxo/D07XkyjaLHYcOn5EQt1lySVbPZVFafrx0wnNvdbngoEM8lM2WalE7DeV20jN2fK46Cm5loMgoRyQbW4tIcx7WHMVb14LNTdx6EqxfD56xO7/v7SRJHr0yV+4Z3zm5jqehH/5T9+hztbAwxd41LD4U9+/iqvXKyd+li8MOF+U1XG3l/v77vReWHK/ZYK0N9e7TNZsonyQ2eYpDimRsnSKZo633djkv9+n89VzlCqmh/ldPowUc+JqSuKu5SqqphkGd+41+bShJqr81WVOJ0s2byz1qfvx1Rck4VaAV0TlGyDG9NlXpyrqnnbUwe7F+efFKTcD3GajVtF1vsBjZLNdDlCE5LpsoOUilEyanG6vTFgcxBiCEW/r7kmrWHE3a0BHS/m+kyJxbpKGBVtk54f5c+I4NbGAIAkU2Koj6M9DPnq7Rb9IGWhZjNfLyAQzFUKNEoWzUHIWldpvKnEgHKrSzPJnU2V7FuccMdJp9lKgamySqLPVQts5XtBcxA9c2JqqqzmRSolJVsfH/baXjSeL/1A7Yd3toZ892FXOesZOosTO9cML1Zt2NWCSZi3xZOzipNM7fvfXe6i50YL16ZKY+ZD14950PYI4pQ4cZnbdl2VdqOGEGLMnBih68e8vtRmqx8p1z/HQNdTHKuQizJHlAsWM2WLMMlY7QQs1Au7HgIKpq4kAaKUB61HNvSHdcvy45Sl1pAwltxtDjENNfbtwsi9QOmzKFdCSZCkxFnGpUaRvq8YZbNVRzFzcx0fUJX6IElZ76nDvrJrF2NZhBH2OjwYusZLsxW0/M+1gknFUYm7OM2YLtsMw4Sl5pC7W0PiVNIahqSZajV72PYRwMUJF9tUAryOqZ/I/rEb1nsBWabMJ1QyQbXJrnYC5qrO+DoNooRhzsq3dI1hlLDR8/n5t4O8xczl6mSJ5+cquKbO/W1yDBcaBQqmfqTk+HpPXav1XshU2WahVmC57ZNJuNxw2Ryo/T3NVKFvGCa8m7Nw56oOCzWH1V5A0pZMlS38OCPO5NjN+IW5CtNlxWhbHpsKyCdaigAmyirhKIQqvAZJSqNosNQa8LDlo2vageb21akiw1Axn3RNjOfWSt7uXLCUqPUogWvoKlnZC2KWO75y2ZTw/FxlRzystN40hFQF3ixTMc9MRRU7JmOLlU7AWjfg6qQqAI4QJTuZICNcnnDZ6odMWhYdL1ZOnMOYQZRyfao0jnlH93a7+U6aSe5uDVnrBUjZ41NXdo9btvoRaSapOgYzFyqUtgw6nioeDsIUXQgkkudnK3zt9hZrvRCJxLG0HS1eIwzChI1eQMkxdrSPaprANnWKjsn9lkfNtY7UFhQmKa3R+aEXqna7UkgqM2aq9pgN5+XMy41eSGsYsdYLqLkGE0ULP055f2NAZxhxaaLIxYbST705U6ZWNKnYynWxmQu867rYd28aF5SlSkp+4cYkcZIxmX//jV7Ar99pYhsas5UCkyUbL1Ts5TcetJnJEyYA3SAhSSU1V53Zqq5KngX5uQFgaxAdKTFVc02EpnT0tgYRFxsun746wSCIeW9twO3NAf0gYaJkUXctCpZOzbXG6+FM1Wa+5pC2Mia2FRls45GxAWT0/HjH+n0YjIopLS9koxfm5yOLxcsqPlzvBbyz2sOLUixDMIwTSpZBx0+wDYNBmIwF3S82CrSHEZNla8wO334mUW7vB9sPXVMfX48syxBC6WyudHyWOz6pzHjQ9vb83l0/YbWj5tOtzf6JJqYuNgrUQpOeH7ORz+ELdYdLEy4vzJURQpCkGV9+a53X77cRQs3bTyw2di1czVQcagVTaWwaBs1h+FsuMfXngP8MWBJCLKHIKxeB/xH4j495bMeGQZgQJRl113zMKlLSHEZs5BTH52bLWIagNYwoWhrzdZdPX1ULSdVVIqG7aSUdFZaumD63Nwa4eauZZahEQz9QOhaqepPhWDr1gkXBNpBS6Vj1/Jhq4ckN4s7mkOYgIs0yLjQKJKmkUTyecRuawLV1vDAdW0NXCgZTZZt60WSmbGNuo0TOVB0SKakUDOUoMAjxopQsSEhlRrMfUyua3JgpU7ZVm5ypK5p1P0gobKuEZ5lE0wRCqMD96mQRUH3/o8TRdnT9mPtNb6wJUnKUe0eUKPpozbV2HAo6XoQQYrwwjgL3NJPUXHNs06oJwaYIx+MAlQDzopQokbSHT7furjiqkmfoSguq4pj8yEtztIYRXpQyVVZ2sO2h2iTCJBuPqewYIAQ9P2a5rXQIwiTjYxdrGLrGajdnaAwEbS/EMfPXHBIlx2Cjr77nKBD8+KU6z8+WaQ4jSrbSLFjtBrnz2kg8V0cTUC6Y3N4c8qClKO0CcAyNqmvhRSmr3YDVrnLp8+JE9XqfEMX0V29tcXWquC/b8UsvTPM//erdsWX3eULPC/mZX7tLz4+QEiqOwU98/zWe38tG8jg+M1AJxt1MCAqWTsnR2cpbB/aDbWq0vYgwzpitZAihqt09XyU7f+X9TSaKFgiBF+0e5I+g5c/xIEi4MlliLj8k9YKYrhePHf9qrsmDlkfB1Mmy3OhAwGRZBWRJqg7qjcCi7yd84lKN9zcUw2aqrCpPg1A9x3tZk++FHWtkftCeLFnbdFU0JksWwyghiDMyKak4JptxxmRZFRDu5y1t7aG6BwVDaR9FacZqNwRCSo5Ox1fP4V6j8yLVltjxVGLs45caKkmDau2Yrjis9nzsTFC0DZz8GfbysYHSARoF9pah8YUbqnAjJePvUD+GfdHUNS5PFrk8WdxxzasFlagzdDEOsr380NUPEsrOzkO7zNm4mqaC+WGYIvJ/e2lC/ds3l7u4lk5rENHIE4E1qXR/hICNfkjfT0gzuYMhMFt1+MQl1aL1uO5Lx4u4UCswDFIaRZOZqmKMPmz7pEE8tqbuBUnOXElxrCf1g1rDiDfut0mk5JVt7V5HWRltQ7kgrbQVq3UQJEpqwNZwTKGelYKFFyWqHb5oUzBTtwFYbAABAABJREFUCoZqN/rIxRrDMCaIsx375Vo3YLMfstz2mM2ZYUGSUHWsQ42zYBt8/FJjfL9lzu4uOaplbNQO2R7GuXuvTpJmY3akY2nYukaSOy5OlhSzwdDFeA33w4REymNf0xXj8NGzUbQNPnmlQRClOyy/3dw1t1IYtcEJ4kxye7PPRMmiYKrYTwAV18TYFpOMWs2auWajY+rjOOip4ysYtIcxlYIqWBYsg+9/7pHxR5xJZqsFwiTl+kxJtRDqOlmmYrtUSnp+jGup9ahgPkpIWrpQ+lJJRjFP6A7CJE9u7oRlaEwUbS5PFscae4au4YcplydUi6i5x/cJExXbFE2dbpBgamLHfjRVtun40bh1y48ykkyOx5Gk2ViWoTUMaHsJUkLJ0ZmtFMbv5Zg6r12eYKZqIxCsdYN8Dqr3CeMMS9eULEWc0shlI9JMsSqBsVzBaN2yDJ25msN6L2ShVhjruoZxRpRmONr+ycauH/G95S6SR/Pg8c+oF022+hGNos10xSZDEMUpiZQMAnXvJkqPioGNkpqrz83s3s6z2lFFxGGoWF6jxF8/iGkNIpZaylVwruocqY3b0jUKlhLlrhRUAvsLNyaJUrVPFSxVkOh4ar00dMXAKRiqpe5Co8BGL2SjF9Achnn7o+TKVInmMGKzF7ElorwNWmmWHiSmlFLS9mOCJBnfJ8cyQEreW+/zsDXEMgzc3PlzrRtgGxqWrqNpqp1U11QCzNDUXnNzdpZCboCVZXJsBHWYWHz7sz4Mk1x7Tx8botzbGrLa9Vlu+wzCNGcHqwLGxYaLberj5I1t6Hz66gSvLtZY74XY5qMiQ8lWjFVNqNjlsMjyNpSOr0wIqo7FZi8aj7s5iPCihCTL2OiHrPcCZio2NceiYCkpBcvQxmsJwCcuNZjPi4ajItDjZ5KDQgIX6wVSCSVHzetKwWQQxHT9mDDO0Ob3fn3FMSjaKt6dKe/uQCil3GHCcBRIqSQXoiQb76NhkvKNe20cS+fyhMvFRpGWF5FJiR8lGLqKIUatwI/DMjR+4LlpbFMjTeHiMcovnBQOdfXyFr7/sxDizwPX8x/fklL6+7zsTOFHKXc3VaN+mFd5RzA0gRclrHZVhavnq+D3n765SsXRQWhcbBT57LVJLuQZ0uPozQzilPV+wCBImK86PDdT5HsrA779sM2VyRIvzulj+80kzXh/o69aSiydqZJNpWByZ1MxrTpePG4BHKHiGPSDhJJtkqUAAj9+OtMrSSW3Ngb7uqMJIbg2VdohZimE2NOuuuyYPD9rjr+LqWvc3hiQIdEkdPyIbz1os9r1uTldpuQYJGk2bh8wdY16UVX2VzoBBUt9ZqNoEaUZVyZdiraxa+ZciSIq9tR8TYnf3tsa0M51RgZhMtYT2hqErOZVv0uT7o4Ky6iNz8ndfwAarsWD9pA3l3tMlC0qjsEwSrhYLzBXKxAlqgqzlxte1TUpOZW89UGMr+NEyWZUG7tQd1moyXxjU59fdQ1emCtjGRpb/ZCVjk/HDzF1nQdtn0sNd1y9ub0xwI9TkkxyfRe21NPut2sZvJi3fmwPhF3b2KFN1tjWYlIrmLi2xmxFud34UZJXTiJsXWep5fGyYxLk83Gzrw7fXpzxyUv1A7vEHAZRkvH1uy1+/8cv7PvvvvT8DH/9l+/wq+9v8TtemTv2cRwV76z0+L99+V26XoRA8OrFOn/8c4snmpTqBzFLeatCnMonhPN7vmL8OIbGTMVmECas9wLKtvGEeHQmJa9erDMMk3ErX7VgjhkxE0WL9V6EpoGhScIkywOX3deUK5PFJ8R0K46545lVbaw2Sy2POFVtGUIIpvLE1HcfdljvBTxs+3xkocpKrt8Aan2uFgy+fqeFY6rD8eMVpv2e773WSEMXO9gE16fL42DmfmvIbFWZUyiNQp3uMOa9tR5eUGCybNMoWuPnJkxSNjZUcO6Y+p7W16qlOT80GhpvPOzQcBUrqmDqeFFKGEsEgtmKNR6vaxm4ts4wUO3jrWG0gyEkhMh1DcuHTtwdBNvfz9BVorFsq+A1zSRJlmGbgpemK9SLNkma5fpZ+tgBcitnkxqaSo5ur4YW8wJP0TZY7gX01gZcnnR5Ya5CxTGZLNoUDJ2SrQ7o2+/3i/M71+0R6kVVUHp+rsxivTA+hD83W2at6/PGgw7DMOXalJpLXpTix2qs16ZK46TPUlPtKwCNgsWNmbISLT5EFbvrx6q6HKfMVhxevVAjSFK+eb+DlBIn0KkVLa5OuYRJOm5LqjkmYptcQZxm3N0aWdw/EjkfzcOqq6rZYZLhmiaJlONY6TAYXcuNfjhmRF6fLuFaihn+wlwFx9RwbYOZss2FRoGlrSGuZXJzusgbD3t0/Zg4TTHz1qsrky4P2j7vrPZplEyen63s24Y0YmIZunjq/g1qjZmr7lyHdhMpH7E5Rsncu80hby13SRN42PKZKxd4d31InEheWajwkYt12naEa6nD+EhQXtNgsmiz0VcH+Kft3xfqLrOVbM/x11yLT16ujw/Oq92AWtGkaBWYLtu8v9Hn3pbHQq3A1akirWFMnKWs5Db076z1cC2DxYaKebp+TJhkNAfhDpF7x9SpOAYbvYD5bS5pVdfksuZSMPVdNXjiNOPWhhK8j7OMzlAlRl6ar/CJSw10TcWds1WHXhCz3g0oOztNbXRNjBMCk2UbXdOJ0pTVTkicKE25yZKNAFxbp+GqNdAxNXpBooxeLINGSRXTHFOJlwdJOtZTa3sqEfL6/TZSSl671MC1VUF5GKYULYMwNy5a6yqjn6cx4HRNmR7YZo8gTFnrhcRpxi++u0HDtXlhvqzag6sFZso2a92A37zbwshZw1GaMVWyxwXT1lAxbAxdJSj3Wktc2yCIVaLP2JYQubflESYZuqZYs/tp8e23f4/2xkw+ckkUQuQMmUd743Oz5bHr4zBUDuRXJou4loGpRzQH4SM5gDzmGK1JSZqx1PNZ7oQ0SgmvPEWo3dQ1msOI+02Psm0oBmbe3tYcqPXo3fU+czWX52QJx9S5MlXk1sYAyxDMVgtcqIttCUnriWKeljOJtn/vvbDRD+j5CWGS8b2VHjNVm4pjstIJ0IUqGJZtg9fvtfiNey2qjoltalQLBpqmcX2qxCsXKlh7aCZZj11rUOe0kVnWQZLeo3Oza+mEsRqnrsFIRurGTInLk+oskknJ1+602Mo7P5bbKiZTxXRViDI08cR+qmviCfblXmeS3ZBmMmeIqlb+lY6ak/NVRyUdUe3kL8xWxl1F25FlkuWOT5JJFmpKhqQ1DFjtBuOW+O1Y6wVjpvyNmdKhWa5SwturPW5vDJmu2DSKKkZ+fanH7Q0Px9ToeMp8wrUMLjRcPismqTgGF+ruvlIohq7xhetTB5p/u2H7/T4NHJXzLIHfBnwBkEKIXwX+ByllcGwjOyZ0/Ij31/vEacbLF6roQlUwh7k2Aqgs5UxuG7vaCej6Ma6t88lLDRol60CuDofB7Y0Bb6506flxLvpWGPdNf2+5S5pmfPb6JKaukUpJlqm+U7OgkWQZq91gnKF+fH/oB6oaXi0Yqre3rxgWB9ErjNMMP1Ktb0+rLm63g94chLg5hd7Un1xgpJRsDSI0AS8vVFXA2PLZ7Afc2Ryw1BzSzRkPH71Yx4vTsVbASHRwVOX3c0bFRMl+wuEny+S4LcExdSaKqjVECEGUpPzjN1cRqN7iom2SSaUF0xrudAKTj5E2okTmAXqfLJPM1ws0h1H+nQSaplgFZcekaOnMVpXdbD9IaHnRno46T1sgvChRLDpd8O3lLisdn0s5LdjUNYQmmK7Y3GsOuTKRKq2vjQFBnFIpGBQdnSiVWAZ4cUb9sfc/yP1+2uI/urdppizQv3pri7JjEBflWNBzquzQHChabxCnrHR9moOILFNV7I6nqPlhtj9b5qh440EHL0r31Jca4eOLNaoFky+/vXFuElPfuNfkz//Dt2gNAsoFi49drPHv/7YbzJywuO/2dUXusni8udLl63dbZFIxSoq2wVZfuU3tRvP340RVifPEwva5X3FMrky66JpGlMhxu17NNfcUpHxaK/IwVJXPqZLNO6s9vnW/zWzZxp8scW26pFibmSSKU4ZRyr3mkNmKQ8E0mK6ow9+InTOqoG7HQZ7v/cYopWLrJmnGIFD6hnGqCimvXa5j6hqTZRt7S2drGNP3E1a6Pj0vIZWKxeZF6hDu2iopXtlF52QYJYSJWhsu1F26w5iCYWxLDIfjA9bWIKbqqjVV6dgpx7qOF7Mc+bnLp7ofSZKx3lesmaJtcHVbYuVZMRi5WRUMvDBjveeTZHBrfcBHLirRekPTmKu643u0mjN4VGIBJktO/h4mwzhD0zTF0HMttFyTI0wybq33eedenySVLDYePVM3Z0tjt15T1/a930mqdC90IWgUVevg91Z7+GmKhmqlH7lJeZHH7c0hpbzFXdc0WsOIvt+hXjS5PFGk7pq4lj4+VB9UGHr7eN5f7/Ow5TMIYy5PlHAtg66v3L/eWeuzWHdxc3Hl7U/3dNVmuuzwoOWx2vVpbAvWt4sez1SUdkpKxsVGGS1PVhSsp7tj7odRcjhOM1rDkJmKQ6NoqRa4MGFrEPLd5Q6vL3WoOAbPz1lsDCJ0XT07kyWLOBeXiZKMvv//Z++/g2xb0/Qu8Pctv7Y36fN4c33VLd9Vra6W2ojuFpIQaASBpFBIwSAINDBAYGcGZmBA+JgJjGDEiGBgxEQwMGpJPS0BrVZRbaurusy9Vdcdb/Nk5vZm+bW++eNbe+dOe9LsPOfcZp6Ojjrn3DTfXusz7/e+z/s8au2Oc9b8LMZhwrNBQNEyWKk6U72eyTiet77h+ftQEKsWvoqrEsG3t0ZsDgNMQ6NU0Bl4ksd9j9YwYhDEU32X2ULb5KlLORsHpcc6v48aX5ZJWuOQOMm4sz3iYdtjreZytVnE0jWe9VWiN0ozRqHStbtQK/D+4z7tkWoJK9pq/ylYO623e2NS1eqv3kNrFLJWdfnd+51cIxSuXqxPz4tBEKMJMW0nnoQEUZJye2vEJ5tDHrTHrNVsLtR3kll7CxMTTBIhUZphGxrPBgGdcUScx3S3t4Z5d4HEC1M6XkTRMvjN2y3iJGO9UeDzl+pUHJNLTaWdo2mCONn5kKrzwmezH9L1IpJU8pOvLfKwM+bO1ohmyVaOtLbBjaWD2RYHYb3qslyxaI8ilsuWcur2FLPxUrOAAO63vOkevz2MKLuqK8BC3Sdubw8xdWWc8c569dDfP3HzXq06NJaKPOsHfLAxYK3qTk1AirZB2S1Rtk2WKoe3UD3v/BZC8DxfkU5+NmZS6ZMlmXp/FcfANDQcUyVtt4chb62q4nGSM+8aZZvWSDGJdaHhxSmVI9ZBkqr28bKjdCVrBYuuF/Gsp7QXe76aL2XbQNOFai9ujdkaBGwPAxoFE01TmrZHueMe53MnacZmP5w+R1B3i8ldNZMq8feo6/Hrt7Z53A2ouSZfulzn+nKZ9ZqTjz9GiOTAgr2Ucuq46sfptB33JOf3s74SmvfCdNcdrWSb+e9guid1RuFU9yrNlOt62dFxTZ1ng4A4zXh9pUKUa9jWCuaRSZ3jGrX0vGi6X6rEYJmiY2DP/OzJZ/aiGCl3x9R9P+ZRR7X0awJ+83abO9tjKs6IL16p79tzZ/e90xgEZFKSZJIUiZfrKQ6CiDDN6PkRwSCl6pp8626LraHS5/3p1xYRmio+bg3DI5/dcebfYZh93y8Cp01M/VfAEKZyIP8w8F8Df2IegzoL9lon+lGKQDCMYt571OXu9pjWSAk/hklG2TJYrystirdWqwh62IaqrhZs41hivMdBJiUfPxswDlO+/6jLk86YrVHE1ijkK1caFEydvhfT9eLcPShiqWwTpxJLF/hJiim03BECPnexSpTKfYKTnXGErmlUXQtD07jcKDCOUurHaOWbUF5P4ig4Efn9oB/QKFrUiiaOoSjPjZKNa+psDnyGgdrA7rVGfPdBF4C1mkulYNLIBU/jZEcPanmxOO3TBhAIHnbGu5gbk0QUqE2k6ynr3VGoqiRXF0vTjPuv3dpiexCSZJLPXayptgBd8P2HPcquSd01Wakqwdm9F4ELdZe/+YMnPOh4vP+kz1evNrEMJcBbcg0WyrZyc5QzzkO5COzznuXk3W0PVeJGMTokQZzwwdMhSSYZ+EmusZHysO3RHce8e6FKlkme9nxqromhK0HSUaAqmk/78PZqlaIV4ZjalG5+mved5a6PfpxOs+b1gkl/HCu3lGHIKEjY7AdsjwMMXedZX+nQuKbOZt9X7oCmyBNRsRIPbY95c6XCjSWl53V5zgngCX791jaagK9dO1inYQJD1/gDry/yjY+3jhSTflH4K9+8xX/6d+8S5zTwqmvyj/zE1XNPSoFiNK3XXZJMVV73ojMKubM1xDI1RkFMZxxN9aPeXCvvSkwpwVmNrYGqeMeZYj1NYBuCB+0xQZzx49cbgKIfP8+JLM0kWl5oGAYJV5suiVSCyN9/rPbxjZ5KWDwdeHz8TPA5P8aLEjYHIVEq81YajZprMQiUoYLXTiiYOqs19blvLB3Qj3+M9T1hSEiYVu6aJStnFQQ86gS0RgFRotaxEGqfqxdNbiyWGHghaZZRzlmIA1+x0jaHAe9erPHmapn7rTFlxzzUTnzgJdQKNm+vVVkoWJQKJuMowQtT3n/SVe5MSKXxM3NGTBL2aSYJopSOF6JrTBNQv367xY+e9hmFCTcWS5iGxpWmasEbBgkPOx4V1+DSAa5Fk2czCpPpxWUcqnbr9jji/cc9mkWL//FHPTKpxOmLtk6awQdP1Z8ftH2qrpnrd6QMg5iNvnKAXau5CCF5a7VMkkk6fXX5rroW4zCh68WkObPHNnWuLhQI44z1emEa1BUsg8uzulUHvO/tQUDXi9gehbz/eIAQkjeWK9xtjel4EXe2Rry9XiVJZV6J3pkTQZKyMQhYKNqkWUYQJ4zCmKWyEkX/6TeXiJJsHxv6efCihB886PJrt7eRUl1O77fHPOl7LFds7myN6Y0jQLJYsadtJS1T4IVp7gqpLuxBotqiri0U2RqoC9D0cQjVUiul5Gnf50qzwCg8XpxxFFYqyinuuw+7bPV9vhUn2KbBSsXhbktpnj3tKa3I1ihksaIYkDJDCco3CgyjBCRkQLNkkkqlFemaGg/aYzKpzvSJi5cXptQK5u79/pjn9wST8yJJM+7mJgaXGgU+3BiQZhn+VkbB1Phkc8z2MKRgaTzoeAgEQkp6fkyjZIHYudBIqUTfH3V8CpbOmysVMtTaLFrGsc7vyeV2sgeNw4T1uoutC777qMcwSBiFCT96MkAX8KDjkWRKcFu15ksQkmGg2FCt4YB77RFFS+l8Vl0lNl92TNbrKs49KNaI04xxlORi9wkPOz4fbfQpOzrjMOUnby4wilJawwiJJIwS2mOlT7Nac7m+VORR28uFkSW3N8esVJQRghcledu2wYX6fodRTRPTtjml46QMgraHAUai2HESyeOeh2tpPOl6/OpHW4RJxhcv1/j8pTqjMOFXP9hkFCV85WqDG0tlCmPFWlss22hCtcH1g4gbS0W2hiF+lLFYUWystZoz/T3Hcf+aCOXXXZtGwabsqDZay1BM1e4o4L/6zQ0+2RxRcgzeXq1wdaFEnKYMvZgwTRmFKjH/bBDw1loFKSWPu4oB0iyauSuZRpikU/2j9liZ5ozyC2h7rBwFJ7HAwhFC7LN43vk92QczqVgpoAwrgiRjHCbc3hqTZBmb/YAnPR8hlOZWnGRcWSzQGoUkScZizcnNMASjIKbrh6zFLq8tl3jc9Vmq2JSes4YNXeO1pTKPOh4lx2Cj57E5DLlUL+ZyKiYlR7WzvnuhyvuPe/zW3ZZqEUcok5Oqg6FpXFsoUHFNXMug7ytzlrWqi2vpx4opdU1MWx0lkoedMa8tl3NmYoHHXY9OK6IXJ4SxSlTUiiYZkm/fb/ONIOULl2tUXMVkHQcxy1XFZhz6EWXbZJAXfgZBzGLJIU0ll5oni71LtsE4d4xU81LjzUZF3T16yrXw7fVqLnYuqTomQy/icWdMLAVbQ0mSSp501b1xmBcOXEPjSU91BTzqePhJyrWF0pQpfZKYvDDjPp+kkvcfd/n85Zq6UxsCP0q5szVWTFHXoDUKd5FQxmHCt+8rc4iCrdP1I+53RpRtgyhOYU9iaqXiYObP4iR36Ak0TUkVXF8oUS0ojbdbm0OGfkKUJDQKNk/6Ht971MU2deqOydOex5WFkoplCyYbfY31usvAU3fJasHK75MqsXtaR/nZ9/0icNrE1OtSyndn/v53hRA/mMeAzorHXWW12BlHvLlaUTagQ5+n/YD3HrXZHiUEUYJl6KzVXdbqDtXQwjENVmoOK9UVxlFKwTqd4ORh8MKUb9/vMAoSfvS0x53tMQXbYKVi0x5FLK2WqLpK1O5hy0PehKf9gEcdj61BwKVGkVGc4EXKVliJeY/pejHLZYcvXK6rbL+r2gn6fkTaVf3IN5dKx2q1sE3txBTESUXOjxNkZvDXv/uEZ4OAN9fKLBRsnvR9Ol7EpXqBS40C9zpj7rW93O3K4AuX6jzthdzbHvGoG7A5iri5WCZMsl3Z/jBNp5ecMM4UxTLN2B6GvPdY6YVsD0KkkNSLNl0vZj2vkE7c7VTbi8FSWWlSffhsgGPotIYh1xeL+9qVJng2UJfbu1tD4gzCKOPmUomVmstbq1U0IWgNQwSCpfxnOKbO6yvlQ4Vf4zTjgycDtkchK1WbzWHIOEjwo5R2bk9ctFUlN0oSgkQ563XHIfdaHnfbY0xN42nPZ7WmLljrNZcfPu2zNQop2wYPOmN+4sbioZvJcd73067HR5uq6mbpGtujkDTNcm025QTz2mqZYRDjx8qaeRRF6BK+8fE2zaLJ/fYYQ9MIqpK1XNz/R0/7xIkSpP/a9cYuTY5541c+3OKLl+vHYh78zJvL/PXvP+UHj3t84dJejtmLw1/97Xv8m7/8CRlqk77adPk3/v63ubl8MiHus2CvuPMEfT/m2/e6bI1CSpaBaQg2+iFbwxA914kq5ktJVXJDPtgY0BqG6Fp5HwPhvSd9bm+P8aOUX/r+UxxT7VmHHaKdcch7j3o4ppFXkNqK3u4arFZd7rdGmLrSVWvl2gbtoWJs/mhjwMOuj21o9L2YC3U3D8oEWaxYfrc2R1xqFGgU7WlL9V48b323hwHff9zPbd517rU8RrlGRM+L6eQClJ1xzmhFMvTVGv/2vQ63N0d8sDGkNYq52CiyWFZaWj980ieMM+5ujakXLL58iCjuBKs1hwcdi5Klc6HhghT89t02cZrxW7c7vLVWYXMQ8pkLFVrDiGb+4ibMkdYwoOvFPO4q7ZEsA8fSVNAdJtzdHhOnGW+uVhiHMR8/G3FrSzFLk0zy5Ssp1xb3W4A/7Qd0Rqp904sSvn2/gx+rpNFmL8DQNQZ+RJhI1bLddOl4MZ1RyOsrpbzqqzQLB37CR8/6tIYxq1Ulhm8lGgVLUHOUzs7Tnq/0GtNsWkVtj5RIeZhkuJbO8hEsADsPwMe5js77j/r88o82KFsGXpzQ9xK8OMULFOU9yDI0lA1511MirX0v4u3VGr0wJkkzqo5JwdZZtm2++7CHZWiKye2YJzaqAJUc+dbdNr/2SYt77TFJnFIumKSZpOIYOLrA0JUYd8FWa8fQNT7ZHPKo65MkEj33lU9SCKIsN7gI+XBjgG3qfO36Qi44r1GwdW5vjig6BgUr2pVsPi76fpwzftTa1TQBAqJU8r2HXW5vjyjaBgXLoGwrwVovTDANHYnkfmuMs6Jjm0qDzbUNXNvgzvZIJdo0+MqVBre3x3z0bIQXJaxWXdo5o8LLg20r1+mwDSUC/7z1PYuNvs+HTwdYhoZravzOvS6jMOGLl6vc2vJoDQOKjsG1hZLSWZEZfT/FNFTcECYpAz/Gi9NdRgtdL+b25hgvSpXblS4oW8aUmfS887s9DPnB4y6aptEoWnz0bMAgUIzJgR8zCBJsU2OppNpG+r5iGLz/ZIAXJXztaiMXyxY8JVCaNJYJCFzLZKWqjBS8KGVrGByq3zhlqkmlMfQ/f7TFg47HJ5tDlis2jaLDx5ujXBBZwwsTfvN2iyBWGqk/U7DICvD3vL1CP0wYBTG3toZ0vIiL9QLjUDm+LuWGA4edW7NoFC0sQ/CgrZKDutBYKFrc2hrx4ZMB91sj4kxyI3c/ftwZ8zv3O9P2X8vQee9RH0sXSKmcJUuOTpAYjMKUimOw0fN5/3Gf1YpN34/Z6Cux+71SEQfOqZ4S1h/4MZcWClxsqlad33d9gQftMX/te0/4xe89IU4z6gWbgqXz5asNWsOI37zTVm6ltQKfy1ngV5oFBoFyz94aBhQdnWsLJW4slbB0LddtVJpUZq7jOA6TqXbgcZ7pBM87v7vjiO8+7GJogoWyzf3WmHGYsDUMyDJBECes1QvESYoXpyRZRpRk2AZ889Y2H2zYPOn6BEnCqnS5sVRiexTysDNm5Cc8THxsU+fHn8OQn8XFRoG1msu373dojWLFuA5VR0t7FDIMEtIs43/68BnDIAUJoyClYOuMwpiNnmqbf/9xD6Ep7dm6a1NwdIZ+hGnoylWwYvP6auXQfUUIwbUFxfATCC41ilMGaMU1iFsZXS9S5i1egmPrvLZUJsrUfULXNRxL5+ZyiVubI9rjkIWixcVmkTtbQx61Pa4uFvnK1YWphqRxChrNUu7IbmoalqHxeu78d3trxDBIGQZjFsq2at21NJ72lbmYlBmWqWNpSl5GouR0Hne8vMAYs1B2CKKU377XwdY1vnQ5wrF1WoOQtbrLWzO6i0dh4j4vUZ1EDzsBUdrlz/242mdSKekHquX/zvaQL16p0/OiaUufHymGbppJuuOILM3oj2PGfsxv3WvzC++s7UqU6ZrYJ2NxEgjYJ8nQHUeMghTHMOn5qjV/4MWYhppXQhP0fcUe/ngjy0ksCa1hxOsrZf7Ely7xuOtxa3PEQtk61ETheZh93y8Cp01MfU8I8VUp5W8DCCF+DPiN+Q3r9NA1DcimAcz9todp6PkBokQnJeqQj1PJYsnmrfUyCyWbcZjSKFq7qH7zQphkPOr4+FGCzAQ1x6JSNOjmYteZVBU2TWh5UkxR/DWh+nYzKVmtulNGTsEy2BqoZMujtsr031gqUS2YVAtVbm0OCWLVXpVm8tibz0mTcWu5+8xC2eJHT/rc2h4yClLCNOULl+p5IkPRnZerLh0/xtI0DEdZVi9VbL56rYEmBJ1RyMBXom7GngXQKFhT+mImJZ2RqqwptyVJnEhcW6fmmtiWTqNo0fMiNgfh1Gb1sxfqmIbANDTSDGxdfd3NZXtXUKWq6tHUyfBRx6NeUCKKSyWLIEt52g8Yxxk3lku5fXIugp5klHRlpXzY4aNaLUb85t0WrqEr/SVDnybPBn6ChqqwX6gXiNOEhbKqbLTHqvLWHQW0vZhxlLJYsrjSLOBaBp+7WMePMrq5OPnzEuRHve/HXY/v3OvypOezUnWQMkNKkdv9xvhJhqVpVByT9aqLHyth0IEfMQpVZfRBy6Mzjlmvu1xuFKbaQl++2uAHD/tzTwDvxdOezwcbA/6lX3jjWF//+28uomuCX/1w66Ulpm5vDfi/f/PetIXDNuHf/4fe5cby+WlKnQQDP2YUJVi6qsBUbRNJgJEHG0m2Q/eNctH+pbJDs2BTzFuYZuFYOkilG9QLYoQ4nK7tRynf/GSbh22fZsliveYwCBQDahylxKnE0FXLWb2gHC674wjbEESp5NkwxDVUW9dC2WK1qqjvF+qqCvusry7JRm57fBiOWt/tUcg3b7d43PFZrjhUHD2v0IdIFM1dtSNo3FgqIqUAKQmSjM44xtZ1fvR0wEY/pOQo1utq1cUyNKIrdd5/PKDimseqHjZLNp+9UOVZP6A1ClmvFVis2GgI2l5EexRj6oJhkNIs7bA1Gvlzcy0DP8nQELRGIULCWt1B0xQLwDQ1ao4Sdn//yYCNXqBE81NIpVRGInawrx1+clnNMqVd9P2HXXUG50Wj9bqDH1k8aI8p6wZRqqp+pZqJH2fTIkySSrpexDhUBZvVqqvc8DRVdTZ1LRdOVyzoibg5qCpoxTEPFPffiyBO+WhjiNDgnbUKj7oeMoWNQchC0cAyBGXHwrUMyq6JESk2WNHRGUcpUigtsadDn+uLJZolm1GQULQMqgVrGpDutbs/CcaRcspUhQCBbuus5U5sW4OIKwsl3lqrogmNZkm1b8hcP0sXAi9JlaGHpXOx6RInkuWqzYdPB1OdqZWKw2cu1KYtUn7uHOtF+9tdj4PtoTLqCGOVFFUCuAYLOaPDNRSTHAklW6PvJazVHcJYjXnoJ9xrj7jcKFGcqVJPOikUK0MVgpRukGL/7rx7MxfK3xHah6PX9yyCOOV373e4u60cnVxTsDFQenU/fDpgtVKgMw4xNRVzvHuxSmcYsjWK2R75VGxz+lkKlnLTnUAXSkzZj5XshHMA0+aws7M1CvnWvTZ3t5V2XccLCaKMpzlDoTUKKVsGJVslNOI043HH5+72kF6QIKTg2SDk6SDE0XUWShbXF8vESYapC64sFFmpOlNtsuftRaau2q8GfkSYSkZ5C6mfpLiWip8m7tKmJii7Jn4SMggUEz5MMt5eq/AL76zwsO3xwyd9oliqc6BsIYQqXh5XA2UYxDxoq7FfXyqi6wI/zkgSJaadZJI0lRQtHS9KpiLnfm700M3lH7pezKOOr9pkNI2rC0VuLBYpOaYylyg7pJJpUgrUGfa8xFTR1lVbsiGwdG1H8DrJuNse86OnAzRNkGVQcnXWqqrgFyQpEpVgXq05VFxlLCSEQBMwCFXSRRfqeyemOlcXitxvKdOkOM1OlWSe4KjzuzuO+I3bLe61lI7OOHesvN/28MLJ/qPi9XLNIUkz1qrKybY1itkaBmz2fR73PK4uFLmUM5QquaPn79xrY+ra1IjnRONGua6autL3+srVBmXH5EK9yEp1xPcf9kBKbMtgvVrg9SUdy1RajKauTV12R0FKEEm644RLDZe+bTAOVeHu1tYQieCN1cOT3hOGn54bPU27RoRA0wRRnBFEKdWiyc2lMm+sVdgehlRdiyBJaBQtmkWLj/P21C2p7kA/fDJQmmNxxpeuNPnSlTq2ofTfToODmH/Nos2jjk/FMaZ7QpJKNKGxWLYZhzGrFZcoUxIf1ZxV/aDtYWrq8y0UbX74ZDBdY89GAXIITzo+zwYhzaLN8iGaxnsxIU5IIJUZpiGm+mglWxU7LtRdpd2c77W1/Ht7foyUYnoWlF0ToQGaoDeOp/vyecJLUtUNY+lcarp5fGpyqeFSdy0e9QOCJONiwUSKhCBKedBWRcQHHY8n/TG/fbdDdxyzNTB4Y6VMxT2d4+JxmJ7zwmmf6o8Bf0YI8TD/+yXgQyHE+4CUUn52LqM7BS41Cjzpenz3YY9vfrJF0TaUu0SzqFqLtkZkuZjZaytlfuaNZcg1IE67QI+DiWbHQtmiPQz5ZGtE1TVYqbh5Mg2+cLlOyRnl7n9WbuGsgu2KY1LNneFALZRaweBua0TF1nmSWyffWCph6BqrNZetXHvgMJ2BMFFW1F6YnNptcOJiV3VNkJLfuO3SMULeWqlwY7HArc0hutB4a63MYskiXCjQGoRomqBiWxQsFTy/tRpzZ0uJe19ouPsOxqWKM81Gx1lG1w8pWkrA9o3lClGa0hpF1F2TH7+xiGvp3N1WVupRknFzpUypFyjb5Lpy9lipKtHQvYfYw45yAur7MW+vVVmrKbHHn3x9CdfSGflKSHixbGPk1Uh1wO92lTgMcSqngc4oVBXchZLqDb7UcHnY9XENjc9cqHFjucTjrsfv3O2QSrjYcBj4KYIMP3drfGe9ylpNXfxMXeMnbizQ92PcXDz1tAjijEbJ5OnAx7U0LjfLeGFK2TVyXRWfz6xXePdiHUMX/Nbddq4zpOOaJlIafBInLJQtrjRdPnepNv3Z1xZKLJZsJJzZZv4o/J2PtgD42TeXnvOVCtWC6tf/lQ83+ed+7vVzG9dh2OoH/Cd/57bS77A0dE3jL/6xN7mxXJvr72mPFAuiUbSOXYGaYKFk89pKWQkxVhyW6y5vSMXYKLvm1L0JmCatVRuTCrL2Hoxfu9rkby0+oz0Oublc5n8+4neHSYpjGJQdHUNXugG6EPxoQ3B9qUiWQcU1lfCqlHzjk20KlsGPXVtgexRgmzolW6ea65fY5o5N+ULJVp9tucw4TE7lZAl5cto2cEx10bq5XMEyvKlWziCIWSip5z4KYr73qI8fpby+UqJWjIniDGugLidXmkW+eqM5ZRzdWCqzVlNJg4p7vPENg0Tp7hk6RVvnD7y+xOOOx7tOFT9O8xbckMWyRZxmU52fi40ChiZ43PVwDA0hVLvEJ5tjyo7BV28scL/l5Q6cyqHTsTQuO0WWy4q1uleMeIK1msPWIJxqKVVdi+WqS8VRmjar1QIVV+dbdzs86wdkSJbKNrWCydeuLWCZ+tTVseqaZLme3XLVJk5hGMZcrBeoFywWSgG6Dr1xjK5pXGkWVAtyP0DAofo8s5hcKoVU72W1pqysEZLFos3WKGK5anGhWqTrRblteMbYz7hQL2BoGrULFkXHpOZaU40rO3+uVxYKPOn5bI9CMiRhTr0/SrNk/yDV3P/K1ToFS6dkmQyjGNvUudws5CLWJVxTOaguVZypQ2bZMTA11c5ZsAxuLpVJsgxNCLK8PXOxrHTNHrTHLJRUkvlCXbVFTZh2h6E1DPno2WCf5omSWwhxTY3WKCDNlPPh164vcLFR5Bsfb3Kv5anWsYpNyVYtKAtlC1MTCE1jveJSdgyGYUwpX7OXGgV6XqSc1QyNC3WXgZ/w2nIJxzSm6+mswXaYZDSKNo+7PpYh+Mx6TSXIs4xrC0W2h9GUzeyYKiEepJKlis1i2eJSw0VoGr97vzN141Vscp1qweSdCxXepnLiMzKIU2oFC1P30YTgxkKJJJNUXSW8vVRWBgifu1RjrVZgGMTc2R4jNEGzaFHJ24OjJGMYxgzCmLKts7JUpOzsuFtfWyySpPJINrKhCxoli5WyzThMclfKDD9OKNsWRcui4qrWxLWai5RKx2niROiaRn5JF6xWXCxdmQq0hiGrVYdm2SJOZP6MD3+fQZzyvYddOuOI5YqDZWhTxpehCd69UONBZ0yYJDzuKUHmStGaOkO+e6lGyTF5d71KmCqWVJpluWOxxkrFpuSY0yT8es1le6jcz64vFGnl7NiDWh0neNr1+WRryErFoVk0p8YTYd5Wuz0M0YXGZ9arGLpgqWjztRsLFByDS80CQTxiqeyQyYzriyWuL5am+2/JNnhjuUy/4mBo6p2UZy7WfT+mNQxpjZVz10HJpYnJhKlru9ayaqV+vjiyH6eUXWVioQvBGysVWsMQy1COnJNOl6uLJSqOwf/ww026XsxrS0WqBUuxj9tj1msuzZLF5y7uFA8XyzZ/z9srjIJkug+cBJomeG2lxIW6u6vwc22xyIdPbVarNqZhsF5zuNgoULR1Pnk2IpEmP/fWMn6csVp3+eBJn6Jl4lpKUuVSs8CzQcDmIKDuWkpLKJU8rx5rGRrv7BFuf325zNYgQGjqXvPZC1VWKg79cczlhQJ+lHBtURWy3lgtc689xko1PnexxlZulrRWc/Nuovnfd68uFtUZPBOf+HHKaytlHnc8fvbNJVarLp9sDTE0JQMxDBIcS7BecwlaGWmWKXF/UyNJMz67VuVuy0NovnJdTbPnjGI/HENnuWzzY5cbVGcKUTeXy8oVNUhy9+SdOd0s2by5WiGIlWtpmkk+3hgipeTKYuFYd72D8MFGn85IMZoWj9AvDOKUpZKDX08ZBTFl12S56rBYtrjcKKFr8J37PTRNrUtbl6wuOhgafPhsyErZoWJbLJZtvEixpw8TxH/VcNqZ+fNzHcUcoQl42vP47TutPIts8gufXeXnrq2w0W/SG8ekWUajbOIaSlfoRfRNFiydz16ocmVBCUtKdpzgvCjhxlKJsmPyY9d2B24rVWd6sPR9pc2zULIxdbiyoILMxz2fKE2J0ozWKGIlZzGV9tACg1xcrpKL/N16NuR+22NrGHLzIB2VE2K1VuBP/dhlul7Im6sVfudeh3fWa4zCmOWKzdN+wK1nI7p+xKW6ongiVA/3H3h9mZXqkDSTSrfgiHdiaKp/PU1hueJQL5o87vjoImEYpXyyOSBOJc2SiWvpKkh3DGoFaxrgHSVob+oafS9knAsGv7ZcVv3DuiADSpY+dfFaqtjYhn5oy89BmLSNlJwGpTxxqmuCa4tlxmHKV6+LXYfGpMUgkRkfb4x4e63C7U31rFYqDl+4WGcYxNiGYopomjiRg9NhWKupAObaYol6QbENklQFSH6U8odcc1fwUrVNyo7B5jCk4hi4lkbPUxf8z6yrKvsg2LHXnrd990H4Ox9ucrlZONS17CD8zJtL/MVf/ojHXW+fK8h54mnX4z/4nz7hSd9joWzz+ct1/g9/6E2a5fm0OUZJxrfvd7i2UOT9J31aw5D7bY/linOiC7Br6fzhz65xqV6k7BjUXJv1a0Uu1gu4lr6LgSKEmOp6HAYvSrm2VGLRt59rNFF1Td6+UOHyQoGrzQKOZbBac/nSlQZBklHN52SWSX7nfoeqqy6wqzUXL0pZLjtT2/CVqkPBNKasj4mwt2VoWMbp189iyea1pTJXmkUu5ZbNl5uF3E5d27W2W7qWi7QKNnoBmlAB+/Ywolm0uLFUUqLHXjy9/BUsA04wvKWyxSebI1bzxAQwdUzKMtX2LiT8Vt4CoiFwLMXmfXO1wusrFRbLDk+6PqamUbQy6kVlufwTNxfQc/v37WFIrWCxXHFwLZ0wUbbHB63zWRcm19T5mbeWuFBzyeROlXMUJlxplqg6KhgtOwbXF0s0SrbSmxBKV2+15uY6L4L77TFBnFIwDZolC9vQubRQ4PbWkMddj41+gGUI6gVbnYGbIxXslewjzxzX0nl9pUTFNVmtFlgqu3zlSoNMSn7wuM96o4ipa9NK+NCPubM95H7bJ04lN5cLDHyVILzQcBFCTC/RQaRam7cHEVcWivzu/S4V16RoGfn5dbwwrWgrw5Ov32xSy93Fel7E3bxN9tpikXrR2nU2ZJnE0jUuNQrTZMMsY1gTkoWSw9duNEBKMqk0D4M44/WVMrXCfgcqUMyIOFXsGsvQ+e17bZ52A0q2t+vrlisOzaI1bcnXdcWcXsgLSF+7voBt9FSBrmaxGmTYpkbNMXMhW41nvZCeH7M6U0W38sTbBIeN86yoOIa6jFUcagWTRtHi2mKRnh8TpxKNoTKuMQS9UcjH22OaZZOvXG7SLKkWrOWKQ9kxp62ts+yj056RS2WHLFNn+FLZmZ7dn7tY22UQM4EQgoWSRZjb2Zu6YnBVAlXY9OOUb93rcHWxxGfWqkhUnHacy62pa6znWq2VgsVPvbHI6ytlvvGxhUC5Wa5UnZkkoeDzOVs5STOGQTL9PZqmnFUXy8qJc5KwmiDNJFvDQLXV7Ln03doc8tt323THMSs1m89eqHGxXpiy5KoFk3ecKq8tlqg4JlEqub5YJMlUJ8Zry2Uu1As5C1jja9dVW8wwiA8ssE32pckYLx7jWf1oY8AoSOiOY640Hb73oIsQsF5zpkzP5YrNleYKv/DZVS7Wi7uSMF6YYmqqNe9So7DvHa/ncfdiydn37hxTI0xTKpZFx4tYyF39OuOIzijENDQMTcOLFCPaNnZcqreHYc58PDppoN6bZK3qcKHu4ubaSe8kVaJUnd+T95llElNXYuRPegEl22Ct4vDdhz2qjirqlx11Tk3O/YmL92lhG/quZPUoTEhTyYVmgbstj81hwBcuVkizjAdtdd4ZQuRMWbXnfOlyg74fK/MKQ5lBXKi7qp3SV8Wa07pP26bOxUaR5YpLwVYJbz9KKdkq9t8ahny0McI2DBoFk9eWy5RtkziDf+QnrnFrc8iFhnsuSakJ9sYnpq5xfaHEjUXVOjoKE15bKjMIYu5sDXn/yYArTZdGyeHqQolaweTGkmL3lm0lVr5cVS2bQnCk8P5hsAyNt9crVPfMjYJl8NrKwfIY1xZLqrivCSWlkP+focOXLzdP5UTcGgZ890EP19RJMskfeN3hfntMaxju+1qlp5cxjlL6QYIXZby+UuKttZrqHMokN5ZKSpw/lTiW6pq60izw5loN11QdQV+4VOdys8Ba9ejE/auEU81OKeUDIUQduDj7M6SU353XwE6LO9tjvv+ox93tER0v4uqCymwq8UudcSXNKxwvVtjYMjTemLGYjNOMUZgAkncv1vZtFJ1xpFhQQrGgTF3jUUfR6YM45cZSmdWqgy4EFxoFel6MlBxJYX3Y8QhjpcuhC8GDjqdaEtjvpHJa3FguAery0yzZ3N4agZD0POUAobRKUraGEZebkg+eDHAtndWaw42lkhIRF+r5DIMEL1KZ7NnDYlLlrhVMpFRB2DhU2h6OrvHJ5ghDUxeln31rWVV5c8r5hbo7PbjCOFUOSY7OxfpOYL5QsvjBoy5SCj55NuTzl2r7DruzJiwO6kU2dEG1sP/9lR2TCw2XHzzqESQpv3GnRZJkSlOn5vK47zMKFA365nIJO29/0DT1vYPc8bBZsk4kylewDK4s7P56Q9cw9INbCK4uFrnXHjHwlItYnGZTYXkhxPQdXGy41ArW9B2XbNU6tTkMEAiWK/Zc7Of7Xsxv3m7zZ752+UQ/7+ffXuUv/vJH/PL7G/z5n7x+5nEcB51xyL/9tz/mYXvMMEj44qU6/+TP3pxbUgpUAuhxx6fvxSyUlVsdQvC075+MmYGa/+riuiO+u37KNdEahzxqecRZxkr16HEIIbi45/fomsi1ZWa/DuoFkyBK87mqhF+fDQKiNMU1DYJYCfI+zvfZ15aVaHvPi8ikuqCX7MOttQ+DZWhc3sP4NHTtwItxo6DEfe+3xjzueMSp0vUp2gb1oo1j6tzdHgOwnCrHtDC3Kq84BplU9tKuqR/6DsdxqpzuvJhawWC5sjOnNE1dLn6318OLE957NKDiKHv0y80ik1WjNFk0BEqrZJhfngZ+wpWFIiVdm14YJ9gb5B8GxRRVz2t291M24IolVbSU+5dj6kgpp1bhtYKZ26DnDBhTiSkbupi2g5u6YHsQcWd7pALR5TLjUIk5I1TgHCcq4XHY/qMJsYtZOIkfNARvrapWipKjHPye9pTraMeLWa8pV6tJS6ty2tNzp7KYOM347oMOPS+h5ysGVprBOExZrTknilN0TeyrsBdMnVRmNEsW9QNYTXe2RwQzzxH2M4aXq+odLJYtHnZ8wli1xR2GQaA0ydpjpbvYKFoM/US5Gx3wbYauNMu83GGuU7C41/a4tlhkpWKzWnXQNMHba1Xa44gwzjA0xTxOsgRdg7Jt4D/nUjxBEKd4kXJaGgaq9eW0F7VJ4n0WpqGzWNbxoxTH0hC+Kkz+8IlPdxwhNJUE+dHTPmmmzBXeWa9OWZaTQmQ8TcqoddQahQRxynLFObQNaALL0PYJGk/WyEH7UMk2uFgvKDeofF9/2FFsyHGkNEsHvk69aPKdBx2Wyg5eSUlfeJESYRZwzDNcsZTeWClPDRWOcl+tF1WscGtziK4php+pH+z+uD0Mp/p4trHjFAhqXraHIS0vwjIEaSr33QU0TeDYBr//jSWCOKPiGGwNQ6IkY7mi4sx7rfEuraijkoezY7zXGhPOiDkfhEbBZBQklB2dx92AjhfR82J+604HXQiuLap9MskkD9se99tjrucXaFBMQTNviay4BtvDgM1ByOVmgbJj8rDjqfbp0NulZwYqkRblboOT+O5+e8ytzSEP2j4XGy5rVQfHVO3Qs3Ow7JiMw/TIfQHU9xw0Lw1dY2/0oGmCq4tFHnV9Ho1U8rk1DKm6SnOuZOvc2R4pLa4g5nKzSJJmDIJkytzaHoaqeHZEUjqI06kDq2Pqqp3LVW1d9/KzNwhVm2ijaPLtBz1WKmpvrucyAHvn4uy8A7VPLJadIxkyR2FrEBBnkrqr7j2Gppwrb22NiJOM9ijMHXYTtQZGPq5pEiYZukhoFKwDncznhWEQ0/PiaZwwu29NClWWrtEZRXzrXgeAq80CPV8Z5xgC1utFRjLBNlSsNHtXKdrGmZNpW8MI2/CI4hTrmAma2b39UqOQdzJpp2LaJmnG454yoAjyQtE4jPneg96ur9kchpiakpwZBeqcCqKUQRLzpG/QbHncXC7R91UMU7SNKft7GMTUXIs0E5iGmOpenUX76mXgVG9aCPF/Bv4scIcZN1vgp+czrNPDCxMKlnJFKKeSkm1OtQe6XkzPi0iLFo1zWqDHxdOez/tP+sRxRseLeGetOp08WV71mVC6w1wvq5PrBpU19XkcU59u8ovllCzjyEz85PwVCDIJVdditSa5VC9woT6/C/CE7rted/n9ry3i5dbkry2VuNcakwwktqkhJYyjGImyiLcMjfY4Ikoyns305Mep3O3iZWrTSyQoh4+yY/LmapnFss0PHvfoe6o6LdixoAalexKnGUM/5rfutOn5iv5fzi+CQF6dVwetFyW82BTmDuJUaU9omuCdtSobfR/XNBgEIUiQqINb5COUUmm2TJh4AJebLg87fq4Dkk5FCueFJJ0IKKqWxhtLZXpeQskWdD3lcrZUcWjkmirAtMf7QXusdGAMZY89CSgNXRxoc3tS/O0fbRClGX/0c2sn+r5LzQKfvVDll947/8SUlJI7W0P+P999ymbfBwFXF1z+6Z+9wdqcXQon9wTX1Hj3QpUgTlVf/ymTgAf110/c1RxTZxQmtEeKtXpUYLjR8fGTNBeRPZ1WzQRxqtqP9NweeL1ewNDgR08HxFnKQtHi2cCnUVDives1dRmbOAQpDQtFea8XVVtiwT5eguUkSNIs1yURfHa9SppmdEYRpgEDP6Hk6qzXHFarDmF+WUgzmc+XsRLktHVMTV3quyjh2r37vx+lfOdeh+8/6lF1TdZqzq7EFMA761WCKOXZIKDnx1xoFCg7OtcXdwvYTt530TYxtJAwVnu0H6U4hkacZsSZpGQZp3Z/2YsJs2uYa48leavhpDLvx7vti9drLrVJq0g+hjRVrmJu3h61WnWI0gzL0GjlVvH3WiOVPHRVYH0SsV/X0rnYcOl5EX6UMAhing0CdAHXloo4hs73HnYx9Z3WvMdd5a76oDMmkyoJtFZzublUIkok4yjlcqNw5nn33pM+jzsBUaIuxZcaxWmidRTEtEchrmVMWRCgzomBH7OSM5BmmSfXF0v4cXpkG8NkP8mkxMj//PZ6Rem6lSz+swO+p1awuNwsqGAaQZRmSAm1gs1XrzeRqPnXKCo9s1tbI571PVxLp2gbGJq2T5/Lj5TezuSCMw5zV8tBQNEy2BwErFRdxlHCG4dUzc8C19L5ypUm3VHI9jhive6iCcFC2SLNMjYHIbahKf2nONt3mZ2cj4YuuNwsTM90KY9mfJ8GaSZZrqoLTJJl3N4aTS/stqnx5St1WsOYpZKjErooBu40MeDHFGx9eoYftYb8KKHnRbimMiA6zmX9o40Bt7fGTF6xoSmNvr0XrjTL2Boqdo25R1e1XrD5ydcXedDxqDkWVdciPcTWfTapvjzzOwZ+PI1LO8MQmXEsU5VHXY9f/XALgTqjPrNeO/DrvnC5zvWlEiXb4KNnAz54NiSM06n9vK4pF24/X6+TQrVrKWMAI0/cgXK5/o3bbaSEJz2PN1eqDPyYkm1On02UqEJ1IWc631xWReVJYkrk0aWpCaRUTtplV+myzRYnF8s29b3OlqfEbNz79lqVsmPSHoaKrRXElAoWtq5zbak8fQ6TGP9hx2McKrMAUxMESUbPi1Xx85Bk7tOezzhMaY0Ua8XQNMZhQmVmPa7VXba9CGMoGAYJFdcgySRvrJa52lTPbNJOfhxtupNAGUSosd3dHlFzVXKk7Jiq1dZPSCQUbAM3TFgoWby2VGZzGPHVqw3qBZOSq/a7xdLxXBVPigdtRZoY5eYgk33rzZyMUXGUDM3WSHUIebk27lrNxdA0FsrqXF4qq+TZvMc4ufe1xiFxmh2YmBrm7tI116JaMHfFsrAjW3NaSNTc+tLlOkLAuxdqaiyGmCaEt0chnZHaQ4dhTN9X7NZ3L9TYHgcEUYofJwjB9MzOMlip2GRSYGrq3N1Ltvi04bQpyH8QuC6ljOY5mHngjZUy7XHIStXJafcu67ml9P32iCddVV3+8tXGiYLPecPQBEglsOaYGpsDVXEtWAb3WiM+eTakM45492INWxfcaqvD1jIU7X4vjhPAXmoUGQRqk86kpF40eceoUMwrvfPCRj+Y2s9eXyzm7RUZ/SDhi5fr3G+PQQrKjqrmBnE6FcOdTSJpmlp0ewMMTYhdFaeuF9POF3OSSX7ixiJbQyXyaega9dyZSKIqDp9sjXjY9njY9YgTiZ1TlCdoFm1eX1b92QXL4F7b48bSyV2SzoJJcskyNG4slXjaD7hYL3ArHlEv2MRpxlLFYb1WYKFk0RpFOKaGa+kMg3j6c6RU9OYoFy2dJ7wombI5ri4UCZMMQ9O42HDxwpiyI5DAjYUiV5oFWrlg/URjYdIqnma7D/N5tdb+9e8/5epCkc/sYREcB3/4s4o19aA95nLz7G2uh+HO1oi/+q1HPGyPqRUslqoWf/Irl1hrzP93lh2DL1+ts5Q7vL17oUbPj8502M5iluV5bbHIk66vAqcgoeKYhwYbFVcZGgg0ZHb6Odr3Yh51PTSh9KZsQ6dkG/zwaZ+HbV/pTzkGX76mWjB+/FoTQ9doj9QlyTH1qWOboankvaYpEeJ5YhQm3G+pdXN9scQwjKcusT0vpJTr3l1bLPHaSoX2KCTJlFEHML2kZJnEtNTYhDhYgPhhx5sK2mqaoHiA9oZj6nzhSp2BHyNyTaF6wTpyHTaKFkGeFHJNnQ83BjxoeyxVbJYrzlzXzLO+ckUN0xRdTNo1TGVecoCT6t7KqmvprNddosTirdUKa3WXO9tjsgwu1HUsQ2ccaWwNIuU+eor95/bWSAkSC8UITTOJZalkyZOeT8lWDL0reSEpzZQItyYEl+ouF2ou15dUy/T2SDGNDnOJPQkmc7fjRXhhxuOuT8U1GYUJ7z/pc297TM01+Ymbak14UR6MGzqFA4J3Pa/UH4WSbXB5ocBqLl5sGcqUJEwOZ1qtVB2qrslbq2V6uc16IxdDn30fQghSmXF3e8TTns96vcC7F2pksEsvZxjEU2HuS03VrvWkp/Q0NwchV5oGIl8v875IzmIYJnz/SZ9hmHB1ocRnL1S5VC/S8SJWqw6tUYgmNG5vjfa5tU3Ox0yqtlUhcuOEOY83TJRteibltB07jFPao4h+EPN2vUqz5PCVqwuYukYQp4pl5xrc3laFhFTKXYnBo2KN+22PjzeHWLo2vbg+H3myE+h7EYau0/f3Mym8KKWYs6D2isVfWyyyVLH5sasL+EmChpjuqcdFvWDliduIHz5VkhHvrFe4+Rwph4Ef40WJKsYGhxdfhBDTIs7ba1VsQ+fDjT5lxySTap+REpYqVt6+ptg520OlmTeJF3VNgBAYuiBOJKNAyXi4phKyn+wtT3s+wyChjdon9zLhry4UKdk6b62pYu1Re9JZ9Ewn6I4jHnf9XD+yRJKq1uELzQK3N0c0ysodbLXicn2xxCBQYu4Tjbvp2SglpqETJCpBclTxTa2nFE2IadIxk3JayJmcvVEquWeMFXMxyri6WMQLM/ycQHBra0icSFZrzlwKqxNYujZd+5P9PM3bqqM0IyOjUTAByWrVZr3qMs4dVRt56/bjrg+o82Ye58q+MRoaYayKPUm68w6klCqmyBTLGakc3OsFi7Jr8Mc/v869tkc/SLi9PeJpP+ArVxrHSvaeFFIqhvNhXUWPOj5ppvQUU+nuimVP0mlyGCZswcl81TSBrel8/eYig/zONtnbhVDrWj1LyZsrJf7ORxGGrkxgbENnterwjCBn8lmMw5QPNvp8uDGi7Bo0CvaBHTifBpz2af8QqAFb8xvKfCCFCpRXKw5ZlvH5Kw0WSipAkpnaeCxD27GwfUlYrxcQwLNBAAg0bWdS+nFKmpHTGXX0fGMyNPV1UZrhaCerpHp5y4qpazQKFpom5rLYDsLEAVAI0HUBqMvE036ALlQAs1h2uNQoIHNnlCRTrKmrC0X6foyWU4V1XewKOA+Cqe0EbU5u91x2zCmTSMxsxpNWGV1TQpsCpQmzPQop5AGNrgkuLxQJEuXu6Eep0jR5ge2fE3ZRlGSEiRLnNHXVU/5sENAPYkxdJaI0IabVbVAizoj8EBPKOTHjYIbLWTAO0+lBPs5dqADWawWe9n1aY5XYK+ctl3sPxMtN1YJqGypJe21RZfjnMS83BwG/dbfNP/XTN09VNfh7P7vGX/zlj/il9zb4Cz9148zjOQhRrNzIel5IpWByoe7yj339GqVTumY8D5oQu1pQXUvHtXazZ/pezMbAp2gZJ67KT/ZUKSFOJI6p9lnL0EgyyciLqOZ6arNYqRf43MUayLMFTaM88E+lJIiy6XyUebK7WbYp2TpemKhLb+4qOLt2Fks2AmXNbBsajaI9l4B7Fl6Y7Fo3k6T4Ws0hTlL6XoBjalRcAynlPvr91YUiw0BR3jVNcHlBjfWghIquCVarDqmUvLFS5urCwQn2gmUcuu6yTKo28CTjQt2dXvwmLNv2OCLNFLPVj9K5n62TnzcMYkqWiaGpM/xCfT/TIs0kD9pjkmznkm0bei6qTN4eabBYshkGCet1l4Efq3mqK5bYafbJXs6kSKV65us1FyGYMrd0TaNa2DGjKNoGT/s+1xYKVFyLxZKt3ClhnzbOWfD2eoWKa3IlUALslqGhCfVM/TCdtqqa+VpRlzNVxDnNvO/7MRv9g/ePvWy+1iikNQqpz+iSAazsmYdZJncltTujiCxT2leuqeNY+r5kzewcnPzZMXTCOONSw2W5YvPackkx/M5Rb2UcJuqZZmr+lh2DIMlwTJ3LzSKNkkUhN4sI4t1ubZebBeUIXDSxTZ0bSyXVHj9nbcYg2jE8GEWqBcexdKoFg34Q0x5HfOVKffp7Z5MXl5sF2iPF5Fdi6ypWPeoMH/gxjYKtRKCPqSFxc7lExTVwTR0EbPbDXTHzBLomKFqGSsikGX6QUs41VR1TJ5OSRx0f29itq3YcTObhxUaBjZ7gk01VXOj58XO+Ey7WXd5cq5CmkrcPKZRl+aXYNhUbSQhB2VXC6oJ8XU4TJ+xqiVOyIGquB1E6LTb/+PUm7ZFyfe77MWZuqGDkjpxerITo7fysftj20DTBlWYRXVMF4NO26J8Gk8+RpJIgTlX7uICiabBSddjs+wRRykLZIsskFcfctWYuNgp0xzGGLtCFoJ6bORzFwLlQd5WxVJIRpRkCQbOkYrDJ2ZtlqlhzKx2RpBkrFYeSbU4LQmGSEuesl1GQzDUx5Vr6VJtpIbVAKl22MEkpWgZFy6BSMCg5JpsDn44XYYQpVcdUDo0zSWLjnO4w1xaKjCN1nowCxfBarzvT9ZVmGVGcoWuaMgErqf3ey9vph35Elqk7yyhK5p6YcgzFOmoULfQ9e8akkO+Y2rQddTaWjZKMk8oTbg4CurlO2+xc2DtfgamrJKi7m2PqaKi1ULZN6kUzJxZAZ5zS99X555g6V2Y6icqOmBYz/CjZ9d4/bTjtifxvAd8TQvwQmKp2SSn/6FxGdUJEeY9ts2TT82LSTE61RL6aB+uGrvG5S1UWKxaWoZ9L1vi4SNKMu60xUZJxfbGMaajEzeSQvbJQ4lHHYxypzcXUVRXkQcsjTFNub41Yr7lTIenjaKC0R9FUnHAUJefqhLZSUaLCdt6Lu1p1aI9DNvoxfpxhCMG1q0UKtsFazcGLUpIs41v3Oghgve5OGVdXF4tHBg/tUcjTXoA2yWzn/bbbw3Cqz+WYOk+6Hq1RxLXFonLdcFQ/edeLeNT1SXsBzaK9a0NcqThsj4KpWPyLxFLFJsky3PzCeKmhKw0SVPBSbppcaji897hHnGa8uVIhyeTUbWmp7LA1CHja86bPYd6foV4wp4FEPQ9Kry4W6Y5DtgaCS/UCRVe1ifzqR1us15VYpSYEKxUHx9RplgQfPxvml0ZzbmLjv/i9J0jJidv4JlivuXzhUu1cElNZJvn+oy5/64fP8OOUlYrL5abLz7+zdm5JqeNiexQSJ5JeErNUSU/USrRYtkmlVG5GrkElf/eWrvF3P95iHKZcaRb4/OX6ru9rFi1cS58mpk+LZs7iMTVtl6PeatUhTpVg98BXWgjbw4DvPOjmDnCK4WPmiSpT16bU+aJtzI3BN0E9d+PUhKDmmrnGhmCzH1C0DS4vFKk6Bk+6Ph89G/LZ9SoZKumyWt1JDO1Uz+0D9/NMQtnRubpYpFYwCZKMx13vxBeyjb7PJ5tDKo5JIW+dCuKUu9tjJKoVvFYwubaoxPCPEro/DVaqDlvDACFVYWGhbNM4JFIcBcp+HOBhZ4xrKhOGimMwChPCJGMQ7LRGBHHKUsXBNvWp4PNpcGOhSCs/c9IMHBOuL6p28yvNIj0vou/HfP9hj0bJZBSkVB2LRx2flZoKQt9YKc+Vet/3Yx51PExd4521ClEqpxfeZtHi2mKBj54NESJj5EdYuc36ROR1FMY86qgW++VjalS0ZvaPxXK6j4Exi61BqMSqB+GhP39ylldcg8vNIl6k2vHGUQISLtbL+FHChpfgWjtxXaNoTdsBJwzdiw2XZqTcjl/Ued4sWVxsuCyWlXOvQLA1CFivuyyWTcq2TseLiGLJRk8ldifFMV0IgjhjoxdOE8fnIV5bdgyqrkmcZTRzlvnlRpGn3QA3Z5086Pp4SYapadOW8KWKciUehUpzLpPyWFom76xX+cbHmxi6aveuHMDYDeKUx13VHnRloThN5E1QmrRvzuzNE7ZrrWCwVHa41x4TJ5KCHU3NT9ojJRURJSeLg7cGSqupaOtcWyyxXHG4sVRkFCbcXCqR5XcOUHHj3kRIxbX4iRsL9LyIw1JxT3o+vVwb9LWlEtujiE82hyyWVHul0ouxd7FnJ1gq26RZxsOOx9YwoOqa3Fwu0yjaNHI2kZcXQYIkZaPv48cpSapanF5bKTEMlKkBqOThPAx0TorFsj11Ky3ZBkIIri8W2RqEeHGMpRcp2gZ9P+ZXP9pirepQdlWb3kpFCejXi3BrU52NC2XVsnkUhBCEsZIPAbi+pGKBcZjk8yXlUdfD1ARLZZuybaDpgpWaw1KeSAAVv6rzZP53S10TM/Imko+fDSk5Bo2ChWWqz56UMu5tj4gziW2mrFRslioOFcfk6mJxKnlyHjB0jaqr2vkfdZV0yPYwojOOyaRkFCZK0kWqGKbsqLhK3d0EC2V7emc8yrXytLBNZTi2Wt2tfdcahfz2nTZJJvnC5RrXFovT95nmTNWTdhRIqc40UGfcSZOUJdvgYdtTBA1N7bOfbA7Z6odUXHVHetgZowlFTFBaZ+bUVbLk7Liuflpx2pH/P4B/B3gfxa59qUgzydNeQNlRrmDjKCVKFJXz+496fP5SQ4mvGfqhFeMXCT9OpxoZfT/eJwYYpxlBLNGFxsOuz0pug+taOpGfTXvGpRQM/GSXtelhqLgmfV9VEg6i6M8TQohdCZ560aLimtzZGvOg5VF2DCVQaBtKkA/40ZM+mwO18aZIKrb6/omG0WGYBCOq7UY9gyTbyXZnUuJHCb9zrwuoA/frry1OD93NYaDE6OIEfc9jqRbMc6GUHgcFy+DG0g49XNMEfpwR5lWdS40CWSammg7vPemzll8IC7ZByTaI82qklBy7MnkSGLq2L5GgC0HXi4kzVRVeqzh89GxElGR8uDHgarOIkV+AmiU7p/uq751QgM+KLJP8N7/zkK9caZzIjW8v/vBn1/jXf+kDPtkcnsh18XnY6Pt881aLJ10PDcGVy0V+7jNr5+IadVJUXRM/SqdilSfBhCkyi6JtMA7jaT9819vf/f2jJ306I7WOP9gYnHLkqpK/932rFocQU9dZKNlYhs7Dtk+cKGq5Y+gg1Xpby8ceZzt7zrzm5CxMXZu6400QJ8p9xYtTFoo2CyWL95+oZ/G9h71p1drUVZJA6U3lYzxkbYdJytYgYhQqrbdRkLI1UE5CJwm2WiMl/rs1DKatN6MwmbIs/DjdVbmbNyxDmzKfhODI5GXBVg5oSSoZBAlhnPH9R2OKtkGYZKQZVJKdsCfO3+9Z21m3RhEX6gWe9HwMTSNJd1orJ7owm/2QZ4OAUWhTcQ0EAstULoyT9znPrtGJHk6UZPhJtusSrmmChbLDpSjjfmtMmAy5UE+5sVjC0AUlx2BzEFIvqOdTzM+U56Hqmnhhmr+vo/ePakE50R317FUxRumuZZlUrLw4wzbUvvKo6/Ow67NYcuj7ipE0Sb7tTZAKIc7Vjeog2IY+Pcc3+j6toWqrfdoLGPgxpiFwTYNhEOGaBg/aHvX8HJhthzuP83sCTRP7YtCNfkC1YDIMlQanEKrtvFG0aA2VXlYmVavQ8/ahvWgULV5bVqyhnhdP991ZPOl6fPB0kDMxs13GA3AwI2tiDqTYnDstRbPyEJM42NS1E8XBE1bUOExzt0mNz1yoTf97axRO5STM3AhiL4ZBwvYwgmHElYXCviTB5Pll2Y48RSYlXpRwNRc9PyyBW8xj6fcfD3ja96gXVMKkslaZXsQnz+z21igv3vusVFShw9Q1Kq5JZxwp1tlLutQ6OTNwFsMgYRAkaEKj5urYpuBRR7mdfuANuLaozKFcU+lkZRknjiln58jkTHicSxF89Kw/Za0tV2waJYthoAx+bEOjkD+r83RwnpwPaZZxP9dz8uKE5Yoz/b2dccTWMGQYJNxcKXJtYUcj8kUlKWbj+c1hQMFUromWqaFr4IdyaoK1XHGUg66lHBbnrZs3Cy9SSdgfPh3yhcsNSvnaGwTx9H33vHhqwgLsi2WPCyFUYXbgJ9ROeX+MZ+6wozDhSdenUrAIEiVn0PNikkyyPQynTqErVUVImCfj+mXhtLO1JaX8D+c6kjPC0EVOPTX4/TebPOqMaQ3VRJOH1iheDoqWQdlRgfKEMjoLAeiaqrzOBierNQdDF7imzjBI6PvxlJr/PFRdk/JqBSF4KYJomlA2t6NQVan2vpPFis3jrodjGiyXbUq26p9/3mV9oWwTpap1YBIITxwzLF2jYCk7eFMXxKnE2qNx0SzZSEn+XF/tDHOWSWxD5+pCkZtLJYI4VS5JScqFukuWkbulqPe7XLbRhOpRf1EHk0QiEKzXCtQLJgtlm81BSGsUsVh2drlnwcQ23sWL0rnRn3/9dosHbY9/9g++dqaf8/d9bo1/6299yH/zrYf8n/7o23MZG4Cl61QdJQjeLNn83NvL08vIy8Zi2aZZtOYqPqmc0Eq0RuGBIsM7VuDMfQ3O7jOZVMFGsKb0Np4NlJNJyTZ2XaIXivY0SXDawOKkyHL9iMsNxegs2Tr32x5BrNzZJq3Kk3EWc7ZplGbP1UlZKNn5ZSo+VcKxaBtcahYoWPo0UV91TVX9l8cT/z0rlspKj+d5upCmrvH6chkp4V57zDhIsAzF3A1i5Vy6VLZxTR2JcmCdBybzrOqqNqLaHiFg21QJM5HvxxfqBWquSZRmtMcRFWd+gvETNEtKD8cyNEoHXOSn2iWo9nqZF3cuN5XzYrVg0PeS6ZiPg4WSPZUKeB7Way6rB7BLZrFYstkahtTyinDVVS3PYZKioRzwsmxHGPq8WlXmgdWqy3LZYWuoHLQsQ5vuThMtm9WqQxBnCKGY40pMWDtXhvtBkEiKlsEby2WKueOhkRtlOFZ+hhvK7Xq1phipx70QTaQVul50aOeCber5fOTY5hyOqZwQbVNDiJ15PMuuPG0cvFiyeTYIqLjmgRpfs8wt+xAdNSl3n0V7sVZzaI8iipaBaQi2hiGLJYf1mnMssyYNte+0xzqVnJFy0Ge0TQ0vTLlQV9prhRltqbde4h3hMEyeVc1VBgm2qeFFKa1hxFLZmbaPTt7BRFMwiNNjd8ZMvk7XdhgyE8mXtZpLd6z0ud5crWDpGndzjchzzBfvgmPqXKi7qjVYg41eiGNqu+6PErVnDIOE5bIz1yLHcTEbzzexaI8iyq4xlU0wdWXSNXlXK1WHi/XCuQiyz2Ly4w1d7DrLLtULtIZKw/P64vyKa5ebxX0t6CfBhbpLK2+RLtmK0aoJwTv1Cm+tVZQbYxhPn2MmX60cx1lx2lvA7woh/i3gb7C7le+7R32TEGIN+CXgLaAkpUyEEH3ge/mX/ANSyo4Q4k8BfwHoAH9SSnlkGd02tV2tSrZl8qe/eoWNgU/dtc9NS+m00DRxZIW5VrD46vUmXpRyacYtz9S1aXWpVjBpRBbOIYfPYb/3ZUEIwWcu1Fgs2xi6YLG0O4hZKjv87FsreFFC8QSuThXHpLKyO2gzdG1XtdS1dH78+gJ9P9pX1VjLRVftGRenVxVrNRfb0LBNHdcycC2Dn7i5gBDq4BqHCYYupu1Xe5/Di4BqOywQpor5oWmCL16pk2ZymiScjHeCWsGiNsdiyX/1Ww9oFi1+/p2VM/2cZsnmF95Z5b//7mP+xZ9/40jHy5NgsWLz9767Sm/cZL1eeGnVycMw731CCLGv4j2Lt9er00TBWVr5DoLSjBK7As6rC0W8OOXdizWSTGnOzb4DTRPHbl2aFxZK1lQMe8Lm/Kk3lqYOaGGimLKzc/B51s+qrdemUVRttl6k2gdP2g50baGEF6e7GAaqvXy+Dp9HYbFsH/uSIXKh6KvNIuOcbaASNKpVzzbU/jlPXGkqbcSbbunA51t1Td5Zr3JzqYRpaNOYxNH0U1dmn4eCZRzpwjrRLlmtqqTIZH0o5rn6s1dK9rVMPQ8n2T+e97UHWZxfbBRYLNt4UUKcqnGnuavvvPXg5g0tbwfSNJXsc/IEzOy6nl2n59V68zxM5nPVNafzOU6zXOtEI0qzabHrNAWllaqzS9tvL9ZrLtYNlRg47rq/lu/rk31qdh7P4jTnWz0XkT4MFcfk5nJp37ucxWJZtREZ2sHtQRMtvAluLB398/aiWjB592KNt9cqOKZG0T547lxt7jynvc/iZd4RDsPsepm0fX7xcoMkyyhYxoHn2kmNrfQ9WpMAlxsFxlFCwaqQZNku1/NJjDsRXX8RmMzBlarD1YV02uo4wWLJ5nMXa0RJxmrNfWnJxdl4vuqau+4kkz1EdbKkNOZcBD0MVdfkp99YZL3u7nLkM3SNr1xtnsvvPMvnso3dccHXby7mc1HJONxcKhEmKnad3LV+L+G00dnn8//96sy/SeCnn/N9HeBngL8282/vSyn/wOQvQggT+MeBnwT+OPCPAf/eUT9Uy516ZqFEX92523y/KDyv+iTEjjtOlGQ5U+bVDsp0TewSUlSi3tqulofzCsQaJYvGQey0/DlmmRJbPA8Nh3lBaQwo+uskGz8btLwqCY5qwSRJdeIsw9b0XWtwXsmdw/DxsyG/8uEm/9RP35jL2v/TX73M3/jBU/7GD57wD3350ql/jpRyqp0ghPg9Q7mdFy40Cioxcw5JsdmLTZopTY3J3qlrOq/Cspno/qgElHKymXVAO82+pIndCbaTFmiCOJ1WOl8lvYLZcR0FbeY8Oe8LvmPudrSKkgxN7Haq2vs1rwKeN6bZOTPPOGPvfnhSvIrP8riYML90IQ5MpL0KhdTJs93ttLejgzpv3b29mJyRE83A4+Bl7FNZppzRjjMf955Fz8Np5vfehMzs+CZ41fbz50Elc51dMbplaFioeXFe62X2/NBnzKbCJKXkGFS1l5M0NnSN8sy6nN1Lj6Px9iKx904y2UOy3In7RRUSNCG4sVw+MVv8VYG2525s7Hp2ShxdSPnK5wCOi1OtaCnlT53y+wIg2BOIvCmE+DXgN4B/GXgNlaxKhBC/Avzlk/6eKMn4ZHPAOEy5tlhk8VNyAcwyiRenuCcQ5xwGMQ9yZ7vri6Vzv/jPC61RyEYvUNnf5dKhC0pKyThKsQ1tLosuSjLiNNu1YUopub09IoxVa+VBmgevCiZisJahcXOpdKKL/EFspfNAlGTc2hrmduzuiUQ000z1oB9UzTsO/qNfvUXR0vlzv+/qib/3IHz5Sp231yr8pW/c4Y9/4cKpDtIgTrnfGhOnkpJjzJ0V9GnHIIi5vTkik5K3j2BWnRVpJqeWzksV+0SsqDBJp6y/88LjrhK/nTBZToLnrZtRmGDpx2e+nGWfOU886ninfkYHYRQmcztbJuj7MQ/bO6YTx91v9zJezwun2WMHgfpMMJ84437bYxQklB3jXPXJjouTro+zoDuOeNz10TQ1P076voN4xw33vPC469Edxzh5N8JJkocHxVinwdOerxzlTLUHAYyjFOcVYcZlmeTW1mjK6jqKAQY7seyLGn+aSX70tIeUgkbROlcNn/NGlu3E6Atl60SdAEfdIU4aEyvNygBDV6yVF/Eeg1jpcx42xrutMV6YTg0iXjQyyYmK+iddN/NAlGb84FGPimvO3WRknhiFyYnu/zD/s/lVwKlWlRBiWQjxV4QQfyv/+1tCiH/klGO4iWJH1YE/AtSASeteP//3g8bw54UQ3xFCfGd7e3vXfwuSlEddnztbI374pL+rt/tVwDhMpm5ms7jfHnNve8zd7dGxf5YXqSBFSkUB/zRACcEGpJkkzVS2/zA86fnc2x5ze2s01ZI4LVTCcsjd7TFbw2D670kmp2L0Bz3DMFGaNC96HnnR/nkyjnZsgWdFmp+Hvh9ze2vErc3R1B51HkjSjL4X7xKpDxLVRz473uPi7vaIe9tjHnS8E4/l2/c7/NJ7G/zZ33dlbo4yQgj+mZ99jQdtj//+u49P/P1elPDe4x4/eNxjGMSMD1j3n1bMa120hiEP2h6POj6bg+D533AMBPH+scVpNrV0Psl7COKUW5sj7myNaY3C53/DMTEI4mnQCTtW2X6UnviZ3mupdXO/Pd733571A+5tj1VS7jlmEhPM7jMdL3olzpYkzdgcqHPDj9IznwcbfXW23NocPddk4yjEaUbfj6cCupNnJaV6l8fB9jDkbj6W2TlxWiT5mA76XEfNlcPghTtxhj+H8U3W30nPh4MQxCmDM5xpp1kfJ8EoTHatn8lnzjKOjH0OwjhMuL014vbW8WPE445rFhOziiDOdglDPw+7YqwT7OXJnjWkxqDGFsYZSSZ53M1jwe2zx4LPwzCIn7t24yyb2sofZx5Pxn9rDrHsYfCjdBrf3doccmfLY6MXTN/npwV7z8bZGP2kMdTsHWJ2fs3GxAfdxw7CZE4mqWKiTXDWPegwDIKYW5tHx+1+lJJJyeYgnM7HF4kwVk7xx30vh62b2bk7/zEqw4m72+NTG0lEidqjzmvtRknGve0xd05w/w/ilO1BONez+VXAadO9/yXwPwATL/ZPgH/6ND9IStmRKgr/ReAdoAdMFHIr+d8P+r6/LKX8kpTyS4uLi7v+W9k26I0jhrmN7UkO1vPGIIi5u60SUH1v9yKcBCmTdo7joFG0pna/r4Kr13FwrzXGj1Pa45BmyTqSVjyxr01SeWZnmji3jwamhxzkTldVm4Kts7KnEpNmkttbIx62PR53/TP9/pNgHCbc2VLzpDPecTJbqTgUbJ2lin2iSmuYpDN/nt/hda815mHH415r55JTtg3qRZOSY5yIuj6hJAMnvpz1vZh/4b97j/Way1/4qRsn+t7n4WfeXOJzF2v8u3/7413v4jjYHoY86QbEqSRI0nPTk3nRiNOMW5tqXTztny2ZVLQNCpauHLXmwFiIkmy6ZjdmxuaYyk5erfPjV+mi2X1jTmtnaxDwoOVxe2snEbFWcynYOms158QVvck+GcT7xzdZ+1l2fJeiyT5jGxobvYA7W+NjB+/nhTvbinXY8yNWa0eLZh8HkzMgzU5/tkip3B0ftj0e5sn0hZJN2TGoFcxju/1N3pGUzCU5cq815mHbOzD5dNRcOQzNkjX9TLUzOhiC0hAq2GfX1wryS9GDlrer2HQSnGZ9HBfdcaQuGzPrZ7FsU3LUGVk+IasoSrK5sKU6M+M66EK5WnWm++RJWCHxKffKu/l8vdfauZStVNUcWa7amLo2fU9xIknPsUjYHoXcz/fmoxLytqHisIKts3IM9u3keSTp+Yx/krS83/JoDQOSTLJQttB0ZZz0acFBZ6NlaCxXDo7Rn4ddz31mn98VEx8z3lyuOBRtnWbJmrKnw2RnD3p2xlhoL2bvKYetp7Waq5K6qTqLzjtpexCkPP56P2jdzM7d9hyLfxPomjJtKDv6qQwysmznnH/UPXnR/Fi/I98TomPe/yfzbpLEPUm88arjRKeiEMKQUibAgpTyvxVC/MsAedvdiVN1QogiEEgpU+D3Ae+jklzvCCF04GeB3z7Jz8wyyb3WCFPXlMBi5WQH63ljNvDpBxFP+z6mLrjSVG5M3XFMtWAe+2Ji6torQYWfIM0k91pj4jTjUuNgYec4zbANneWK/ty2ufWay/YwpJS7jJwFRdtguWITJtm+Nh6l+bPzdyklDzseXS/CC1PKjnku1dS9iJKM++0xfT9CoNo6Zn9v0Ta4vnjyFpZm0SZOJQJ2udScFo86HoPcMrdoG1PLVVAso9NY5wohuNgo0PfiA/XADsOtzSH/zH/7fR53Pf6bf/Src2+3EkLwb//xz/BH/qNf53//197nL/2pLzx3ffa9mCc9Hz9S7lZl1+CdtercmFwvGxP7YuBMbBOAimNQsFWStXqGudkd5/upJsikcofcu2ZPQxuvOCZLFZsoyVg6QaJ1L8ZhwsOOh6lrU3c9KXdswqvu6QOLybqpF/d//0rVQRMhjqkfm+Y92We2BgGbAxUoHvaeZz/X1YXiuZlIxGlGlKaMw2QuCcKVqoOuhWfSKwrilDtbI6SEy021553mTF6uOEipLmDz0MOa7MdhkvGw7TEMY9aqqq36qLlyGOYZZ/g5u+DaQvHMLRXJzD4UnzKpdJr1ceh4UnV+x6nkcrOwa/+ZrJ+Js+5pUCuYBHlb8VkQpxmjIGFrFCCl5DMXqrvexWHC4c9D0TZYrtqE8f4Y63njAXjSCwjzFp+lskNpJtZZrxWmseB5aqnMzqPnzanlisPyzN/3vv/ZWGQ2lj2P8c/eLVKpzoSKY9LIi79Pe/7UCfFV1Ld83PVylrP6++zZCLBUcVg6xc9dr7lsDUKKtr7rDjEbEx/XFdkxda7tib9nY6HOOKI9DilaBpebhTPvb82iNWVmHRa3N4oWazUHP1LsxoNm7CQ2KtnKnGierWy6LmiWLOoncOfdv252Rp3kWmIP8nb4K83ime9+hqZ0qBdK9qk+u4Tpnnte90DL0KYx4HHGOJl3hqaxUDKP1ao7WWNLZedEpIEXjZPe4H4H+AIwFkI0Ue8LIcRXUW13RyIXNv9bwLsoxtX/DvhPhRBj4C7wf5RSpkKI/xz4NaAL/MmTDNCPU7wowzF0wjTl2tKrk7QBqBfMaVUpzh2hklQyDlOqhZ1gYBjEbA4Cirbxwp3VzoJRmEwp0F0vOjAxdalRoOtFh17CJhf6laqrNtLmfHrj4zRjFCYIIXje3SlMMgZ+gi40XAvqRfOFLORhEBPGGbauo+tKG+A4rjc9L2J7GFItmAcGHbom5sbWiZKMXs72cy2NevF4bL0kzXjc9cmk5EK9cOBh87zLeZJmfOdBl+8+7PLeoz7vP+nzpOdTtg3+sz/9Rb58pXH6D3YE3lip8M//3Ov8xV/+iP/gf/yEf+7nXj/0azcHAT962sc1FRPoarNEwdZf6YPgpHBMZcnsxymLp3BlmkVnHE9bhfr+yRhps2iPI9Uek0kWSzYZHDm2IE553PWxDY0L9aNdbObh0tcZR/l+n1Ivmuh5sPQ8IVopVRtLmGRcqLuHur4dtm6UhfPp9tCFkk0qJbrY7yQVxClPej6tUYhj6CSpZBQm51a1u9ws0BqFaAh+8LBHxTHOlMRxzNM/lwlGoXJmGh/wuft+zPYwoOyYz50/pq7NVQPmUrNAz4twLZ2nXVXFb48j6kVr11zZHAQMg5jFsvPiqq0SBr5KLp5V77BkG6xUHeL09EnjyfpIM8n91vhM1tvjMMWP1MWlM45Yq7qHrp+j0PditoYBVdfcJWgshJhLPLhQsrnfGlNz1bkdxNmxknLdcURrFFIrWIeeZ89Lemz0fcZhwnLFma7fy80i3XGUt+hCexTt+zmupc8tFjwKi2WbTEoM/eh39rjrEcSpYrrmCSgV/6r33/XiXYmpeYw/STMedX2klFxsFHYluKoFk+VE7dcLJXuXE62UkvZIna0HPduXjTSTdMcqptQ1Qa1oHutsPM4Z7pgHP/fnxcSDIGZrEFCyzSMLWgXLYLXmECYZoyAmSmAYzGd/02bG6EfqvD3os16oq7Ox7JgHFoYmsdHAT4hyYsC8YM24xU9w0nNl79xtjXbaEgdBfCrnz1kkWUYYZ7RGEXGanTgxrGuqaD6cw1gOgybEgfP0sDiiYBms1RyCYxZMZ9dYexy+0veRkyamJjP+nwX+BnBdCPEbwCLwv3reN0spYxQLahZfOODr/mvgvz7h2ABwTR0EJFKyVi0wClIWzq6ROjeIGaekUZgw8GNMXZsyBibYHIT4UYYfRTSK1qfGXbBo6dimRpxmhyYrirZxqDBmEKd08gN0axDsqpidFd1xxDicJM3iIxembWgUbR0vSrncLJ7Yfva0KDkGpiHIMsHVheKxK7jPBgFxIgn6IQtF+1zFilVV32AUJqzXCsfeqPt+zDBQ1PiuF53osv+46/FXfv0ef/MHT2nl8+Nys8AXLtf5c7/vCv/AFy6c+zv6R79+jbvbY/7jv3ubKM34l37+jX3POUkztgYhtqHTGYcsVSpcWZhvhepVwTyfd5CkaIJdug0nRb1gEsQpxfyy+rxnvj0M8aMUP1JFgco5O7fVCiaDQO33VcfEKB4vOBqGyTQRvD0MX6iIraYdfhFujxWbFFRBqFG0KJ6j8GbZMbm2WOS7D3qUbIOtYXjubnvPH5NBtWCqgsCe/WxrEBDEGX4U0ihaL9Qxp2QblGwDKSUDP2EcJvsq2pO9CtRF4oUlpoQ65+w5CY3PK8DuedH0fDotivbu+Oeo9XMUNocBYZwRxGruzJv1r2uC15bLPOn5uJZ+7HexkWuDPusHp3ruYZLSGqrze3Ows34n8xVUnPCi4q2DoGviuUx+L0qml7ytQciVBTX2om3svP9zWE89P2Y0iaHG0b495zBXNiEEtYL50p/tYZgk0QZBzELZOnbi7DzP8K1BkN/B1Bo8irUziYG7Y50nPZ/CCdbUcTH7WevF3RIojqkf2aUwGxudtzNdfMpzZXbuVhyT9ihC09QZe1ZMWuT9KD1VKx+cjdF+FmwO1FlwUBzRPEGSbHaNzaNr5jxx0je+KIT4Z/M//zXgl1HJqhCVcHpvjmM7FTRN8NZqBUvXiJKM0hwm9XmhZBuHulBVHAM/SnFM7dh2ua8CDF3jteXy87/wEFi6hm1qhPH8313RNhBCbZjPq8QIIfZRdl8EbEPnjZXK879wD0q2QTeJKdinc7M7KU7T1lGwDCa5gpM49jzu+vyBf+8bCAF/8K1l/shn1/ja9eYL11QTQvBv/v2fwTI0/vI37/LB0wH//p94d1c1TdfENJl4daH4Sjs8vipolixuLJWQEhrF018ymyX7RAd12THoeTGGLnBeQOK/7Jinch10TR1DFySpnEuQNi+ULIOuiCjbJjeWSi/E0exCrUAQq+rnSfV5zgOOqfPm6sH7dckxCOII19JOHQyfFUKIQ9vGJnuVH6Uv1D7eNU/fynaeKNoGmsaZNJzOGv9MULINwlgx3s6rNbZetE7cWj7ZM08bm5mahmNqBHF24F52sVHg4ql+8ouFbeiYhiBO5K5nYc7p/R+G4iljKHj1n+1p2GSzZ7g7Z7fpkm3iRyGupWHqx1uDp1lTxx6PY9D3J/HKyc7ak8ZGZ4Exc66cNl5xLZ231k5+DzoMpq5xfbFEyTE+dUXisjM5C84eR7wIxuk8cNJZowMldphTE7wSn3ZrENDxIgqmwcW6izlnG+jzRpZJOl6EbWiUHIOuF1NxjFfGqvs8MQxiwiRDAJpQYo3zpkwWbYNGweRxN2Dgx78nbDUnThELJaUbcNABujUIGIUJK1XnXO3uD4OUkq4Xowl4c7WClHJfBdiLEp71A0q2sa/qNwoT/omvXeEf/cmrL72tVdcE/9offZs3Vyv863/zA37mP/gG/8RP3SCMM77/sMvN5TLXF4vEqXwhF/XfC7B0jSSVSJnNvco4i0mbcaNoqXaBgkXRNtCF2LfHBnHKRj/ANvbT1F8UJmu77Bi8vlwmlXLfeRanGU97PppQlP+Dzgo/Snk2CChY+lxaEieoFkyKtrJenr08T/byRs4YmScyKam5JlZZO5fE9OS9O6Z25r1moWQjJdSOqRkxQd+PaeftUufBbuh7MamUFCwNXajAd/UFWHa/aIzDBC9KqRfMYzGOglhZyp8H0+W46HkRmVTi4wslG1MXBHHGs0GAa57MtGGe8KN0GkMsVw6OM446wyfQNCVPkEnJ4jm1kx1nT5zH76gXFGvlpAmik2AYxGwPQyr5nHQtfRpDDYOEKIlOlQjZHoYMg5ilivNCk9LzQjc3oakXDz/DZ5/dUXeJybxVGrQ7c3Kl6uQMFcE4ZypNYoeXgUbRIs1UTNAaheia0iR6VeLM2fU/iYGFUHOtZBsv9b6laYJxlNAovvpzfRDEtIYhVdekWbJZrbo0i+osmMQRnXGEJvjUGJ6dFCd9SxtSyn/9XEZyRgRxyuYg5EF7jK4JriwUD61kvqrYGATTNjZdgzSDrWFE7VPUyncaBHHK/ZZyOmiNQhZKNlESzj0xJaXkvSd9/Chjcxjwhz6z+tIOmXnhYWeMH2VsDeGt1cq+C1CYpFPx4o1+cCrh9LOiPY7Y6Cmdk0vNg3UbNvoBXphOtdZm5/vrK2X+1T/y1gsb7/MghOAf/solfvx6k3/j//sh37nfwY9T7rU8UglfvFzHMj7d8+pF4m5rxN1t5R5WsM7nUhgmKfdbY6RU+82kHe6wwsX2MGQUJIyAimu+lOB9sra3h4I3V8sHMmdbo5CBr1o7lGva/kDl2SBQnyVQOkhn1b2Yxd4L/+xeHibZ3F0oH3d9hkGCEIpVMu8Wp83ps1LU/bMk8h92PLwwpetFvLlSOfYF+WnPz3UnfeonMEI5DgZBPHUPzKREy3/2MEzOvZX1RSJOM+7l692LEi43n8/QetLzyTII4vm7Qh0HfT/mUUc5/2a51grMzkm1fl/0BW/iSCWluuwfxiQ/6gyfoD0KeZrHApauUz2BYPJx0R5F0z2xZBtzZ7BIKbm7PSbNJEMr5sbS+TGkNvqqjWciQQGqONYdx7tcok/yGeM0m7rHPev75zr+80DPi6afXXK4pMDTXkCUqGdXLxyeUHrWDxhP5u2e89EytENjh5eBzUFIJiUfbgy50izS8yJuniND7yQ4aP3f2R7hhSmaxonOwHnDCxM2egHP+gEr1cIrfe/b2DNvNU3sSj62RuH0PiUQ57KHvmycNKp7Zd+mqWuY+WVw3pTOl4FJQGwZn65WvrPCNtVnLdrzf4dCiGmw5Jj/y3imprazLgqvAkPskDaJydhMQ+yb76/qpnO5WeQ//zNf4j/901+c0ut/L+w9LxqOqe88v1dhjrIzDl0T567JcBim7kSHLRqgYKpzQggOTThN1pahi08Vg/hlwJ15Vmd976dtCSvmZ79r6XNvO5gd02ReaBovpJX1Vcck5noVzsmD3pNavy/3NDxqSk/GeVTM+iKM7CdrWIjzO08me/JZ2j6Pg8kzPSpePekQdCGmcbb7Ehj0Z8Vxn/nsszsqDzFhvJnGweejlOf/no+LyWeyX8H7y+TcOiiGf9nPb5IQ+zTc+ybv2LW0/0V0Sx0EIU8wY4QQDSll5xzHcyosLCzIK1euvJTfHSYZWSZBHH0pvX//PpMxSlTmHakWzHm2r5wEs2OcJ2afkWPqZ040TMaZSUkYK7HkV+3SdR7P0p/znDmPMUZJNrVVnU04nAXnNS/PijSTU+eQzaePXskxzuI8n2OSSeL8WViGdqaK1DzHOTsu05if1s+8n+W890g4v/c9XeNCJTTOusaPGud5PJfT4LjPcnZPmOd8Ow72jvG4scmLxmHPMk6zqW24bWpTNtfLwHmfObtjl+Nr2Mxi3mOM0ox0+vz15zoXHxcHx2un+8znhb3PchJrCSFemcvs/fv3Wb946ZVZI4fhPM/Gee1jZx3jNBafSfLNG6cd44TZBXlh7ZzvlycZZyol0UvYA07zLGfvMvPcDw/DccYYp5IknU+cfVr87u/+rpRSnuukOlG6/FVMSgFcuXKF73znOy/ld9/dHjEOU3RNtVscVuH80pe+NB1jmkk+ejYgy6DiGseimb8IzI5xnnjY9uj7MULAGyvlM7dfTMbpRQl3tlQL0HLFPlTX4GVg3s8yyyQfPRuSZpKirc9FmP083veTnk9nFCEE3FwuzaUF9bzm5VkxCGIe5G1Lf+6P/czcx/hXv/WA/+jv3OYPfWaVf+UPv3lm9sR5PsfueIdef6lZOJN7yTzH2fd2Wpcu1N25tXXM+1nOe4+E83vfjzoePW/++/lBuN8aMwwSNA3eWKm8NAr+cZ/lMIinrYxrNeeFCc7C/jHea40ZBQm6JnhjpfzKVF8Pe5bP+gHbQ9VGd3O5NNeW05PivM+ccZhM25eXq/axXchmMe8xbvR9WkN1dt9Ymt/zPzBeO+VnPi/MPkspVayVpBLX0rmx9GrYen/pS1/il/7Or7M9DOf+juaJec/L2TNgXu1gZxnj7Pwo2Pq5yWOcdoxhknJrU7XeNkvWuWtknmSc89j3ToPTPMunPZ/2aP774WE4zhi3h+G0DffqYvGlSEwIIb573r/j08fjfMVwqVFgECQU7ePT7nVNcH2xhBelL8V+8kXjQt2l5BgULH2umiAFy+DqYpEkzX7PP0dNE1xbLOJFKZVXyJlrL9aqDgVTxzH139O6aKAsba8sFMjOgaZ8e2vIv/KLP2ShZPNf/MY9Pnuhyh/7/Pr8f9GcUC+qXngheKW0aqoFk8taASl5pfeI89ojzwPrNZei/WLGerFRoO/HFM7RnWyeKE/2hIyXrv1waebZvSpJqaOwXLGVC7GuvZIX7nmiaO/ELq+KgO1KxcExdGzzfJ7/bLz2qnzmg6AcmYuMw1cv1lqu2NiGhmX83l8jE1x8xfaxV3l+gHKMvLZYJIwzaq+Y/tCruO8dhtWqg2ue3354GiyWbSxdQ9fFp9K04Lj4vfvJXhAMXTtQfE9KSXscYWragQGqk1/e54kgThkEMRVnvgK3Z8XEieW0OOpZzi7OLFNfZ5vaK3U5nhfOOmcGQUwYZzSL83fLmkAIcSZWSpik9P1Xbw5P0B1HZFLSKFoIISif0zz7y9+8i2vq/PL/9uv8mb/yO/wnf/c2f9/n1l5pq9vTJn6et1eeFfPYC857Xp51j3yR6+asYwUl9Bwlai86CromKFg6g0AxtD4Nye7z2hPiNKPrRZRs41ii7Poc3tNeJGlGx4soWvN3IxNCnPiyct57x3nitBcLL0oYhcmcR3P2s3sYxARxdqRz2TwuU+MwYRwl1AvWuck32MbZC2t9LybO1B43r3P7JO9ob6zyacVZ97HD9oiz3BfmMT+Og+44OlLg/TAULIMXlfdJMsk4TI59HryMhIoEtoYBBcs49u8/6354Ukipxvi8GO7Tds6dBv//xNScMAhiDE1MA8atYchm7rK3Xj8blTKIU8Lk+ayge60xSSrpjCPeWKkQxCnbw/BQt6ZXAVJKBkGCnVeAkjRjcxhiamLamrc1DNnKneWu6oe3PT4bBLRzV8MbS6UTC1/2vIhhkLBYtg/cGCbvoeIYr9xB70UJSSYPPWD9KJ22nbVH4blaHB+G4zy/h22PIFZ2z42CRekVSTBKKXnvUY+ng4CVioOEubtGzv6uv/vxNj/95jILJZs/+/uu8C/8d+/x7ftdvnK1cS6/8zwRpxmbgwDL0A6kbm8NQ572fIIo4821F+8wk2aSUZBQsPVDLzr3Wx5hkvLxxpDrL7i143lrG+BB2yOMM1rDiPWayyCIp/9tcg4UbYNG0SJKMvwopeQYL4WF5EUJD9tqL0qy7LlfP3HA6nkxr52DA9EwiNGE2LcnSimnLkjzxmnewaOOxzhM2RIhb67utDX2vXjX+z7P8ey4IobTNs40k2wOAnRNsFS2X9jZGMQpj7s+XpQgEFyQDuMoPXSf+TTgeWt9HCT89r321PTgZcCPUuIs2zXGWTfOIE5ZqthsDY6OM04TTyUzbovjMOXqwsllMOY9X8MkJYgyyo4xLfiNwmTaQp5mkuVTyExkmWRzqNp2lk8wn6WUPO75bPYDbEMnk4ppcRwMgpi+F9MoWi8lRjwpskwyDBIcSzs0UTS5P0gkxZGBa+nEacZ7T3oIBJoQh94X+n48vZu8aKSZ3HEflJJmyWZrGBCnkuWyja4JBv7Rn/1FIIhTfutOmx+71thXlDlObPUiEMYZd7bGlGydN1Yru8YyChO644hawTy3otJx4McJ7z3qs1i2efdibdd/OyxG+b2KF/ophRA/BvxfgBT4jpTynxFC/PPA3wc8AP6slDIWQvwp4C8AHeBPSikHL3KcJ8Vs3+dkgxPAIEjoevGZnEGCOOX2luoXXqrYRx5wk/NV5BKxj7sefpTR8+JzsdaeB54NgqmuwWvLZVqjkE6eXHIsnYpjvhDB2yTNplbNYZLt0xWIkmz6Hl5E3/ZJMNu3fZiuyWRupFLS6ofnllQ5DGGyM48XyzYr1YPn8WSc28MIDUHfn39l+DS4uz3mh08HdMYRSNUmc174eHPI9jDk6zcXAPh7P7PKv/KLP+SX39/4VCamNgcB3bG6OB9UsRIobbI4kRSdF79H3W+P8cIU0xC8sVI58GuE2NnPJ8nvF4HZtb1ac567bqWUPOp6u1xwNvrKbr7nxRQsjXstjySVlBzjVBe7l4XzOAd6XjTd9y8vFHZdtrtePNU8mieklNzZHs3lHaTZ/vf9osfTGoXTNWEb2gspgk3Ok/YoIpMZCyWH7VE0Fdd2Tf2lXjJOg+Os9Sd9j1GQMAxezrnoR+q5w26NGCHU/0up/vdpb2fPOQiz8cBC2WK1erx4ah5Jz3nO1zST3NlSifOqa3KpqeKCeexVXS+iNVTjNE7gzL05CHnc8dkcBFxsuMc2p5BS8rCt9pJxlBx6Fr5KeNz16fvxsXT0BkGCH6UULEMV8Ecxhi6oH/L+NwcBW4NXQ89LCMEwiNns75xHWV6s0TR4fXk+upSnQZKq5ODmINi35x4ntnoRiNKUZ/2AenH/mfCoo+Khvh/zznr1JYxOIc6f495C2Kx+694Y5fcqzpyYEkJ8IqV87Zhf/gD4aSllIIT4q0KIrwM/JaX8CSHEvwj8MSHELwL/OPCTwB8H/jHg3zvrOM8Ts1XfOMtwpEbZMbhYd9GFOBbt/jCkmZwGnXGuxi+lJEwybEPbdVBfaRYZBgkVV/0+S9fxyTB08dLcO7JMEqXZoZv6xGFESvVZJw4SQjC1617MqwOGrh1Jw1ypOFiGhm1oRyYDwyRFF2LXRq4JgaELklQeaBOeyZ33MBnzq4IklWRSEqfZdI7shWPqXFkoEMQppi44BlFhrpjM4yjJpo4hB+FSo0jfjynaOuMw5QTx2LkhiFOSVFK0DaQ8f1HjX/ukBTBNTBVtg9//2iJ/+4fP+Ff/8FuvhM7CSWAZGlJK4izjoNe5WLZpFFS7gam/+OAvSjLCJEUIHSnlgZefy80ClqHhvuDKZJILmKU5Xf6wxNTlZoGBn1C2de61vV17lKkLwiTFNjUEYuo0kxyyV5w3CpbB5YUCcZIdeimYxbVFda7NQyNs73kUzzynvfv6ebkZTc46KSXjMD50zu3FxUZhWmSasJo0oVpdznImTcYDO3MiSTNSKfdV4i/UXbqe2p8n5+ds9fk8quIHjSXL1LjrBROEMlwIk5TNvrpIvkoOvceBlJJRqC4lmjj8fdqGzlrNPfScP294cUKcZpi6tmuMtqFzZaFIEKc0ChYbA1WoPez8nrw/OFk8pWs7+j71Q1pa4jRDysPXrzXH+SqlnF4k45mgqmgbXGoWSNJsVxvWYbH7QTBnxn+SvShOM0q2gSzbrFScA9ul00zFi7NxuRDKwS2Ms0/N+omzjCTNSDIVo2sHpASXyjaGJmgm1q6iUrNkUXYNFkv2gfeFMEnVuWno0/3xRULXBBcbrtrnihZBnE6Tv5auMUpUcjrLOFDn9CRz7SwwdMF6zT3wjjdZ236UEiUp1ktidhmaRrNksVyx983tyflXtF+uTIClaznpYXfRfnZfGYcJBfPV1yE9K06UMRFCDFHtmrBTFChM/l1KeWRKVEr5bOavCfBZ4Bv5338F+JPAB8D7UspECPErwF8+yRhfBiZVI0NTvcoP2mMGvqIvfu5i7UytAEXbYK3mECYZSzkd90HbY5gLrs+6s+3VILrYcKmFJq75ckQDpZTcbY3wIyXCd/EAlslK1UHXBI6p41rq/x1Tx8j/DdSBeZxEgKaJ5zIKJhVyTVNVkEmwq2mKzuvHKeUDkl+OqbNedwni9Ni06BeFasEk3EzxwpQgPjxgLTuKqlorWMru9gWiYBmYumB7FGGbgiTNDtxcLUNjsWyzULIYhgnOS9aUmbAhJZJ31irYpn7gPJ4nvnlrm5tLpV1V5F/4zAr/4webfP9xjy9cqp/r7583lsoOrWFIlMLTfrCPjSiE4N2LNXp+fOhl47wgpVTVsiCm7JiHBnC2oXOlWWS57JxLa9dhqLomCyWLW1tDEFCwwgP3H9vQWSyrtTLZxyaQUpJkkkJ+8bjULDAMkufqO50nTlL1m5ce44QZFMQ751GzaJFJiYB9c69kG9xYKs39fWua4FKzwA+f9LF0jYcd71jOvKau7Xv3Qoh97/u045nMiQmbJcv2O1kaB4yhUbSwc+vqebMKDhuLa+0+j9Vlw6RgGbtih08LHnX8qe7ahYZ7aIxxsV6gXrRwX8Ln86KEjV7AOExYqTr72Psle4cNu1Z1KDvGoef33vd3Eij9nIOvLl60wzq73CwcyJqrFy0sQ0MT4kzdDKDWw8VGgVG4fz89KJF+v60Yb8dhJlYck+tL6mtOUtxezWPqwwpoSZpxa0sxJFeqzq7nf22hiBenFM9QTH+RWChaPGx7OKbOKEwOZL/N3h/qBbXf26bGzeXSoc9VFQ0SBkHMUkl7aS1Us5/HMZVDZJJJSrZBxTVojSKKln5g4vJuS7GVztv5vWgZvLFWPvDedKlR4FHXwxsnfLI54tpi8UxEjdPCMjRuLJWmd+gJel5ElGaEacrN6stljzuWzucu1fY9x4WijZTQG0dsD0O645gbS6VzK5y9CjjpJ/svgV8Ebkopy1LKMvAw//OxeXpCiM8CC0APmLTp9YE6UDvg314KpFR6TROGRxArgVm5J1DVNcFqdSeYGIfq6/0oxTFPvqllmaTvqSAFoFmyWau504v8OFKZci86OBidZPeFEFQc88Dqx3kJaM4ik+BHWf77Dh6rqWssVxwMXRDEKXGakWbyRBWbLK8+z2IYxPjR7svZIIhVKxaqyrA3iWPqKrF42OW0UVQtfK9aNUlKiWXolByD1mh368k4TBjvec+Tz/miYRsaDddi6KfTNQKKsbJ3XU3m7svafLNM8qA1ZnOgKLQCwWrNPfekVBCn/M69Dl+/ubjr33/6jWUMTfA/fbB5rr//vBAlKjniR+m+tQrqeZePKeo8TySpRCJpFCxGQUKaj3F4iGaPa+kvPEgtOwYVx8SPUnreTsU3zRT9fC/zae/6HgYJWSbpjJU4cdk2lAPXp+zyflLsrXJnUu35UZqyOQyQUqJpguWKg2PphMn+pP6833eWSdI0I8skjqm0QWb3wllIqd5vmByddDrNfr43xqg45rTqHcTZlFE7iTUOG9/kGRdt49D5NAoTvCN+zlEIk52xDHylfzOZ7/WCSdE2yKQky9T/l44Yx6uMcaTYUkJIDE0wCuIDWRqadnhMd95Q+6MqKNmmNmXtTfahWRbXcc7vecRTk2c0CGKCOM3PF8WC8A+JOUGxPKI0O/AsOimqrnkoY2QWUsrpuTIbkx0Uo02+Pk7liXUADV1jreZOkzFSSrwomcZYUZpNmSx716WR7yUH/c6JudKrhIkwuBDQHu/EvoeNdbKfawd0sszuU0kq6Y0TKo6B/grF+4amGM9xoorQddc8cO+XUk7n/2F3r3lh4sS8994Up5l6nlKdUc9bk+eJSbFi72r3opQkVWdM/BJYcbMQHPwck0ydCXGqiqhpJp8bE3zacaKIS0r5Twohvgj8v/KWu/8Y9r3rIyGEaOTf9w8CXwQmHugVVKKql/959t8O+jl/HvjzAJcuXTrJEHZBSsk4SrENZVM8DhPao4iqa/KoO+bW5hhNwJev1GmPI0DQKFmsH6ExtF5zaY1D6oXTuWE86noM/GRX33SY7LQTNYsWm/2Qi439Y9gaBmz2Q1xL5/piESEErVGIH6VTUe9hEE+FKi823HPThNA1wVLFZqPns3iIeOMPHvW4tTmkaBtcbBTI8mDX0DXeWasc+PykVJnuimPixSn3W2NGgWpzWa+7jPPKHsD1JZWhn2hZJZmiObuWfqTVa5SotrhXTWwuTjPGYbJLM6w1imiPQh52PF5bLvPJswGaJtCFYJRfel5kb/JBgpRRktHzY374tM9CyeZ+e0x1rNowBkGMQBzKqnvRiOKE/9s379EehazWHL7+2iI198WIgX77focwyfj6awu7/r3qmnzlaoNf+WCTf/Hn3zj3ccwTfpQSJCndcXSgQ9HWMOCvf/cp4zjmD392/ZCfcnYkacYod48xdY1hEPOg7TEOVdBecy2+97DLxiCg5pq8sVJ5oezIIE4J44yKuyMGHKcZj7o+d7ZHaEKgaZJHHR0pVSBuaOqSeJQouBelfOd+J3e40yjZJoNACdxeXSi+ckYO88CzfsD2MMTQYK1WoOKq9rdaweB7D0cslR0ed30uNgo86/l88GyAQPBjVxsU5rTO9843L0r4ZHPIRi9gsWwTpRmlosFyZf85PgoTfvSkTyah4hq8sVKZq1D9w45iXRu64PXlHW2WMEkxNKgXTaIkw9Z1gjjdd+nOsh322Swzo+/F9P2YZkntl7P6GFcXi/ta8Q+a87Mo2wb1okmcqla3QZDgmBo3l8s86fncb40Z+jELZRtD17jcLNAovlqM5lnsnRMTlB2db3zUoe9H3G95NEqWYmjmRbsXLW48DGKE2LEkb49CnvYC7myPKdo6RVvHNQNVuI0yNE2xMV9fOb45gRclaOJk7LbZ+GejH9Dz4mlroRBwdaFIrWBO3eiklDwbBGRSST2ottdsysKrF00u1J8fc/iRaqM67Vg1IbizPWIUJNimxvW806Hvx1MjiIprIBAsllVr2ZOeT3e8oyH0PIzCZHqPmSDNJB8/G/DJ1oiFos3lZoHFsp0zHDm2KHuYpPzOvTZRInljtXysZzZv7DWYihJlknOvNQapkg+35ZAkVYZKrqnv0kE7CpN9ahQkFB2dNJVEaconWx43l0u0Rju6rH6UEqUvxwTpg40BSSoJkhRDCD58NmCt6vLjNxZ2xadCCJpFi61ByOoB98TzRJxmuTGFx52tMVvDgEGQ8NZahTdXd+ZxmqlEbcEyzr0A3fdj/otfv8vryyX+yOcuTP+94pj8cNxHE4LxIYy7F41JTsLJWci3t4bc2R7xqO0TpSlfvtqgZO/wgF7kc3xROHEEJqX8XSHEzwL/G+B/Bo5tFyGEMID/J/DPSymfCSG+DfwTwL8L/Czw28AnwDtCCH3m3w4ax18mb/P70pe+dOpU52TzN3TBa8tlHnd9oiRjEMQ8bI350dMeYZxRdHQModEs2cQHVFZnUS2YZ7J0nFSesrx/PU4ybm2OiJKM5aqtDuNMuZNkqE3V1DUuNQoMfFUl8KOUOJVkMpsmadJMcmWhuEtXI56TXlKaSTqjkDvbIyquybVFJRY4DhN0TWNrGO4LGMM45e72mF4Q0/WUm5Qfp2wOAgSCeuHgoCFMUu63PaI4ZRDGeGGqMt+ZBLHbjnTy+eJE/a+haVyoF46kcEdJxq2tIVkGyxWbpYozrTSdV4A4DmPee9zHMjTeXKkcejm61xoTxhmupXFjSW3ygyBWzouuRZJKvn2/q+jutkazaGMb+nPn7HHxybMhW8OQKwsu67XCgQfzk54/FWWcXKi8KJn2eUskH24MMDSNpYpFlEqWyw7RS9LNmEUUp/ylb9zhmx+3cEwNx9RYr7lU3RdzYP3arRaWrvFjB4ic/8G3lvnX/uYH3G+NufIpEq1OskzZy89YzM+up082hnzj4y2SLOMkd+8gTnnY8abaS0sV+8j1eb/t4eeuXa+vlBkGCVIyHZNjavzWvTZxLCk7Ohfqh7fUnARhkvLRxpA0k1xouDSL9r4kw2HmCl6oChJV1yKTGc/6IY/aPs2SxShMudIsPldvJohTMil51gv4/qM+NxaLdLyY7VGIY+onMnLIMsn3H/UIk5TPrtcoHpHcPymCOFXOc1HKQslipeKcWkthwuC4s+2pNviKQ6No0RpFpJnSbYjTjCjJ2ByE9D1VKd8ehVx+jpPYe496aJrgcxdqGAcEglGSYeqC++0xfpRNE4e9ccSDtsdmPyBKUq4tlrm8UDxwzj7uenTHMUGSUrSLpNnJmRNHYaKLmWZyWlkM4pRbm0PiVHKpWUBKuNMaEcQpb6+V6XkJlqFxsV4gTLIp41glomyyGSF2P055faW8a27GSQYzyylJM+5sj+h7MY6p8ZkLNXQheNjxiNNsek5PYoAPng4gZ5GAWhvP+urS40Upuq4xChLeXq+eyV7+LNjoeXyyNWK16nBzqbzvfJzMib1JnIGfYhoacabax6uuxdYwZBymcxNfjpOU7z/qIYHPrFdx8wt+mKRY+o4OzUGGABOB6UlhNE0l7z3pM/AS2uOQz1+q5fo3+/XSgjjjcdejaBkEScpCyWYYJNxvjTF1wY2l8rFb6mbjnwnDsetFLJWdqWbVbHGrO54VEFfsyFTKKQtvMpfCJONbd9tcqBdYqzm7PkPfi6cOe9cWi9PzYsLcO2yPmozVMVXMGcQZZcekaOvTC/BkfaSZ5GHHo+ZaRGnKjaXydGxZpkxrjsKjjscHTweMo4TPrFe51CxgG7pyDIwzZKaYWcMgoT0K0TWNhbJ17DnVG0e0R+pusdH355aYitOM9x/3yIBrzSK1gnWg7EhrFE7vMZN34EcpaQa1gkmaSbaHIR8/G2KbGpaucXWhdOz7TZxmZFLypKfOCz9OudxQc981dfp+zELJJohT7mwfbeIz0Yt70FYF8zdXK1TnkPDYHATcz+98BVM5C/a9BMdU58pbazvJiiTN6HgRmiYYBirhMg4Tbm+NiNOMm0slyo45d4mXNJPc3lJ31dYoJMkkGz2fWtHCC9NdLJYH7THjXBj99eUD9srWiIdtj8sLxTO3Iva9mG/d63B/e8jPvb2KzDWMDV1MJTNegesHoAT9e16MaQiuL5RIUpUD2ByELNdsBn6y61k97Kj2YENXRJa9z9GLEh60xvT8mBuLJRZP4RD6onGqqFJKmQH/oRDi/w18/gTf+ieALwP/Tv7w/mXgm0KIXwceAv/X3JXvPwd+DeiidKfODZPDLYwzBn6MZWhESYauCTZHIZv9gDiTdIYhq7UCZddg7ZgOIsfBOFQXhOWyMw0U1msut7dGVFwLQ9cIwoTWMKTrqQTOQsnm2SDA1DQGuS5EIDKGQcJiyeHZIKDkqOypF+6IVdqmOkDrBXMqEHkanZEkzQiTjIKlI4Rqwbu1NeQHj/oIVF90vaicVsIkozuOsEzB9jDANvUpc8fUNZYqNpqQlB2TtbqLBrRHEfWCeWBrBSiKXmesem3VZVaQSUXjt3ONIokK5KuumTOwBKYu8paDoy87SbbTPjAJvie6XhPnlUl7596DvedFBwoRHoRJssYyND5+NuJpL2BzqKqAn1mvUnEVs6HimDj5QbQ5CLB1HUPf2XwWyzZJKimYOlJAlNiMwpSSbbBYssjkfv2U42L2c3phwo+eDuh5Ibc2B/zEzUWuNAv0/IRCTpGWUrI9DKZB2ORCVXZMSk7MpUaROE0pWildLyLLlGg/wNILdgrcCy+I+Su/cZ/v3O9gmQI0+LFrzReWlAL45ifbfOlK/cCWtp99UyWmfuXDTf7XX7/2wsZ0GAb/P+7+O8iyNE3vw37Hu+tv+qzM8l1d3T3TY3rM+sU6gAABSFpAMBJEKkTBBBSBCJChCICCqKAMAYqhUJAESRGBkCBIgEQFiQUIYGGWu1hvZ3pnuqd9+Uqfef3xTn9855y86SpNZVXX8ono6Oqua8495zPv977P+zx+RM+LWGpazxS1rJsapiYz8CO6tqgUP9gVQUnL1kDKyRDzOj0DQznNcoI4ZX3g8dm2CP43BgHzDaGXUc7PURDTtDSRmE0ztscBqiRXLkUdRy8S5xKrHZs9N+J6x2F7HKKrMg1TJcvyCwVv02vkkz2P+zsufpF4uTVf4+ZsragsZnQdnTjN6LkRuiKLe1KgZqrUTBVFMSGHnhszDmLCJOdqx6ZuqqeKdq52bH7j/h6qLFE3FSxDQQ0S2rZOEKVsjwMkoGnpp1bc1gY+j4oKv6WNuTVfx49SOo7+3ImTPTdi4MU87fv4oWjJWenYVUu9KssHCj5RkpFk2bFzZaamszXyUWVQZCHUHKUZqiwz3zAwCt2qjzfHhGlKzVAwNKXSMAoT8f2H1/f7uxPu77ookkTL1o/opW0MfR7ueqgy2Lqwat8eByw0TWqmhibLLDYt2jWNlY51YiLVUBXmGgZulDBXN55L58qPErbHQpusvFdX2jafbY+pTbXtiESvKMxJkpi3m8OAPIfvrY3o1kyCOMN1BAukZWt40b5GUFoIESuyMCARz8EgzfPifh3cg7KitWNrFGLrChuDgKatVY5ze27IFV0cgCdhUsQb0LI0dschpibTc4VGSMfWMFRhjvKy2hyyLMeP00rDM4hT/tn3Nhn7KVutkMWmVWkcjYKYMBZzLc8kWofcoeYbBg92NZbbYi2qGyqyDHEiGOKHharPc32mpqDIEo96Pk/74nBfM1XuzDd4f21Y6TzdmK0xDmI2R0G1b5ctX7N1gzgNuDXnYGoKtq4weCISFYtFW/BszTi2UJXloi3e1BV0RSFJc7bHAY/3/MocaKVjn6naXyZy4jRnrm6yMfSZrxvVOnmY1ayrciUYbagyfpSiyBJXCmZ9OXajJOPBjluZw5QFTls/OJ7CJMMxDmpZXZ9xjmVTx6kw1RgFcdGZcHC+gIi/00wUoA1PIkmp1oS5uk6Siv3hpHUiTIS8yMbQZxwkrA99bF0876tdhyzLKx09Q5V42nPZmUTcnKvRSs8eEzZtndm6zsiPWXzOg225NzqGysNdl0d7PqMgZqMfcHuhxu25OpPi3FIyrPtuRN8TnSylIUj5zHVFQtdk1oeCGRenGYtNk5qp0LLOdsRtWWLd6Tg6A0/EDW1HZ7ktmLblMyvbhkWiVmjkHt6f7u24PO15POq7NAydnDHfd7NbFUIuyrwPYpHULc8HfS/GDVPqpspMbT9GHfoxbhgzcOPiXCTGzs445OGuyygUSeE3l5vcmqtVDDs/EmZDz1N8TzPRbiYX6/1MTUeVIUwz5hr6ATZfkuVMgoQkS8X6ramVLlsQp3zn6ZDHex4fbY35E++sVMm9k85ez0SRNEeWeLDrEqV5pdFsarLQEmvUnvkRfS9i5MdcaduXWiQ6jHK9iRMR5y61LHRNJstFK3eZDM3znId7Lg92XLHPZvuuqNPYm0R8vD3h0Y7LJ1sj/gdfunIpidIXiQvNEEmSTATT6QeBXJKkO8B/nud58Kz35Xn+94G/f+h//zrwNw697u8Cf/ci13Ze2LrC1jCgNwlZG/hc7Vpcm3HQZYnvPFGwDZXeJOKDzTFzDUu4tl0SXS7Lcn7lsz28MMXUxnz/zRkRmIUJIDH0YkZ2mZiQK/2lubqOFyUYqlLoEoieeasQwcsR1YMnPY9hwaBqWmqVGZYk6cwU3uOu+bOdCXGSV61XfpSSZ+JejgPBPisDMk2WiPOM0SRFU7xK0yXLcpbbNu9cbRNnOU6R5NoeBTQsFS9KjwjVldCLANQNE3rDmNmawZdXO8w3TGqGoNdOC0evD3z6XsSTnsdiU7hclLa+x8HWVeabBmGcMdcQ11DqcY3DuKJfl9TxcqPZHAZ8tjM5VgTwMMoKkCTB7fkaDUvQz/Msx9FVxmFCz4uIE7Hpvb4ggsihJ9hxt+edouKQ0HEMbs3VUIr+845j4IUJV1oWj/oecZKzPgzOXeUaBTGPipbP67NOkdhT2BxlzDgGQZzxqOfhR+Igc2ehztYoYGsUEiZZJQq6sxNUugeWrlT0ej9KxaE8y9kYBDzqCdr0y25bAJj4Ef/Hf/oh72+MIMu51nH4U9+4yvffnjn9zZeE7VHAR5vjE1v1Vjo2ry/U+RcffP6JqSTN+KVPd4mTnLWGzw/cmj3xtW6Y8On2mDDOybIBX7/eqXR1JmHCYtNiuW0SxCk/8lqX//cp331vZ0IYZwz9CMdQSNKMHJF8Hodivbu/45JkGZ9tTVjtijVKUyQmQcKNOYf7OxNh8W1rtG0RMLVsnYap0ZuEhGnG+kAUA0pm4lmR5wfXSK1wCR0GEXO6QZbB0I/YHolK/tCP6bsRXpSQqCIx5Ucpa32PMM242rGpmSJ5uzsJhXiuIQ5h93cngvkFx7YsBFHKR5sjDFXh1oLBQtPi9mydubpZta5/tD6m50XcmHF4fbFR7W/bo4AwyVhomlVAWTNVFFkkFSxdHCzyXASLz9uGWzfVwn1VwtDkKvm+Mwkrm+xrshA07rsR334smKE355wjvz3Jctq2gSLLhEmKG4JjiGRPy9boODqfbo3F79BUbl4VQriWrlSHzjwXSb3pZFiair1VkcHQjrLe3ns6ZGMY0DA13rpSJ/AFG+WzrQmmJrPYMou24Gcbklzt2MzUdPJcVER3xhGrXfvczoRxmvErn+0yCVI6jsbbKy2g1GWUGPsJPTei4+jYuigsBLE4oFxpWaz1fbRiP6/iDE3s1Ssdm6EfszUKmAQJwyAGJHRVJFdABNKLJxTydFWwvMuCj6JI2LoouqRZXhU2dichD4p2/a6jszH0edLz2R4HkIvnfKVjcaUt2IOzL6nA8bCo+Fu6ECWOkgxTVRiTkmV5JVDuRymPdj0GfsQkjAWLTpW4tz1mEqYsNk3mGiY/fneOPIeeF9GbRKS5uAeWrhwr4n0aHhWV9LL1sW4qyLI4vLQsnfWBz8M9lywTTPKglfDu4z5hnNG0Na42bSaFLudyy2SubqCr+5qpX7/e4UnPo2YoDIOErVEI0tF1KEoy9tyIGUlHV0TSxFBlbE3m460xjimT5Tm3z9Cudq3rVCYZtq6yMw4FW98TMg2loHcJx1BFEipMiZKMJz2/YqBNi/rHacbOJKRhq2yNA8gltqWQu4sNujWRIO5Noool5RaJcxD6YMclG651HX77YQ/HUHjc81lqWYSJSCCVz3M6Fp+tGfixKCgK9qGPGyaESUbjhHn/aM8jjDPRYWBpuFEiNDu9mHuZ2Cfrpso71zq8tzbg/q5HnKZcTe1j2T6lXpitHzScMDXBXNxWQsZhemEGZ5rllfB6pyYYW7oqFYkqhTjJ6bsRG0NxlEzSDD8S3SGyJIn9oWhvitOcpZZVrYmzdZOdkSgqmZrM+iDADT1uztaeychLs5x7uy5JmnNrXjBUSt1gXZWLtjSf9b7PXMPE0GTCccbTgY+myDQtTYx9YAULPxJrQpLkyBZVjPLplog5Zur6iWvis9Ct6dzbnuCYYg69sdTgxqxDVmgR/vq9XZKyrVWW6HsR9pR7asMSRYg0zTBMTbQEximaIletjJLEqffrWdBVmaWWSd8VjGVZkvna9S62rmDrKqMg5smeJ4qQWcbawMfWZT7YGNN1jIoNpysycpFQNjWFIMlowoGz17WZo63hJ8HWFVqWzuvzdcIkQ5Ik3DBle+Tz/tpIFGIMjddOaEX2woRf/mSHNIPdccRXr7046evlls3OOCTJMh4Wv/XWXI1bs8LkpDQm+K0He/zyp3tkec5bS01+8LWZY2OKuqkSJSk9LwJJrBlf/O9jYgr4fwJj4D8p/vtPIRJJf/wyLuqycVJlVTBQQnYmId95OuC1+RpPenB7vo4qyyw0LWbrntBmUhXy88lpnYqksGz144TdScLjnsdyfvyCtdA06XlRQT9U+OrVDjvjgK5joKliEpfVqk+3JqwPBRV7pW2R5VyagJ9oLSzpz+Jw2bQ0xrbOm0sNGqbKTM2srG4NTWGuZgpaZ5rz8eYYL0pRFYmeG/HUMVjt2NQMEcgGcUbT0gm19MQWFUWS6DiibW0SJKx0bOI0PxK8la0+m0MfW1eJkn3Bx+N0M6Z1BA4HV4tNk74X0XUMwiJjn+f7FbQ4zXi467IzCgnM0yu2wdRnREnGzVmHrqPT80LyXAQrT/te9fowSdkehcQpaIoYO30v5uGeS90IWOnYvDZfr4KFOBUJraEfY6rKM936TrvG8s81w+CHbs/y2rxgezQsYWHrs//Zm8Og+i5Ll1kf+GwOA8aB0PF5s3C2a1k6Q19U75I0rVh9UfLi2iVPwiSI+Tu//pBPtiaEkXC//DM/cI2vX+++1Ov4lc92AfihZyTDfvKNef7mL3xG340OBNYvAs+y3c7yfSvgk5iNJfI8r1qkbUMcahdbJoOC/fmtR33ato4sgW08+zfleV4JNpfiuSUzdODHdKfahd0gpedG1E0NP06wNBWrrhInGW6Y8mjPpWYozNQN3lxq8mjPw49TltsWT3s+fpwQeudnXwhxUnFvgjjl5myNpqWR52LOqrJMw9DYRiSmtkY+QSwC8IWGSAJtjQKeFm3mvUnEV1bbOIUIet8VTLUsExomlqYSnjC/dyZhocUSoSkSK22LJ4Xmz2pHtGSFZes44pnrqswkTKpgG/bbY9q2zo+9Pkec5tiGwqdbk3Pfn5PQMEXi5PUF0cbSeEa1+2HhfDsOEpZbJxdZGqZGEKckGWwMA95abgLwydaYOBOtEFe7gq1RjnOR9IzZnYTEacZXru4HoS1b52vXOoVg/sEEyOYwQFNk/ChhoWHSMHUcPWdvErHnhmS5WhWTynt7OPEFYh/6cEMEy0ut/RalME7hnImpJN1vW5qEKQ93vSoxUKIMZaWCJSLLQC5h6grfvNlh5McYaikaLOKMURCz1vfZGgZ0aoJlkKQZjqGhyPKZWYZzDZOGJZ5R0xLCr9dnbCQkDE3h0Z7L3iTivadD2o5Okok1yS2MCiQEE2YSCgbuctsiSjPSPH/h+0i5z5X7ZN1U+caNLntuxN2F+rEtXnkujDS2JyHvPhnQdgyhH5rlDDyhzVXtu7lYJ3VFzEdTlc/V2lp+TpgIke/5hsWPviYKCE1b50nPY7ZmMPAjFloGXpRV7VpNW8MyVLbHIgb5cGNcJaevz9hoqiwYz7lgumaZiFFGfnwkdtJVmWszDk1Lq/6xdSHz0KnpjPy0KqA+C26YoCnysfquvUmIJsv4UUi3ts/MyLKctYFPlsEoiBj6QsC9ZWvM1c1qzluawlevtqlbGjVDZRLsi4IrsoQiyeiqwtYopGaqtG0NNxQFgfYJhzzHUOk44nlKiFYsP8rwI5EIPhx/qopMvbjuNMsY+zHfejQAKUc5ZTo5hso719p8uj1mdxyRkbMx9GlZ+oGuEEUGSVK42nGOFZ1/UmjPTcswQJEgikWxdHPkM1PTT9SNfRZKRg2I8XljxqFmKCRZztBPKmfuEuMgYVAwg1q2SremszMO2RlFbI4Cem7Infk6M8W1BElKjjCY8GKhMxUl2TMTLWVC048T8HIMTalYWXGS8sH6qIgVNNI8Z7ZusDEM6LtJZaZUQpEl5psGI1/mj3x5CQWJesHyKoX6T9qrT0OS5tQtFVNVKxfWKMn4ZGvM455Hz4vwAsGgujVfo2aodGtGtdZ3HJ2feGOeviuSi5amVImdcoyIM0164cSUG4qkq67K1TWWGp7ie1LubbvsjAM6toYiK8d2mMiyxE/ened7rRF1Q630vcozZ56L/fCsiSlZkljtWgRJTt1SihZQHTdI2B4HJFn2zDgiyfLqOp/FyA2TFEWSLixBAGK97NR0Bm6Ei0iAf7o1IsthpeMgyxIDL+LDjTGPey66qpDmGZp8/He2bJ2furuADBXb9VXHRRNTd/I8f3vqv39BkqTvXMYFXTbCJOXTLdETfNgaVZEkgihl4MWQw844wtFVvvt4QM1SkIAfuT3HjhtypW0z3zBo25dTjYuSjCzP+OKVJg93XSREG5gswWvzNVRZRpEk6obK4z2P3UlE2zKqFr3HPaFVECYZN2YPUhDjohXN1ITmQpjkZ27ZK7P9J0FVZJbbFuMgru5laTd9HEqWzNWuzSSMmQRJxZYZeAlBnPHR5ogvLDe5MVujW9MYBRFumLLWDyqXkDgVPctlctFQRRWxFD09boEa+bEQVjV1bEPh69fNwgFFjInpykWpqyBJHLE03R4F7E4iujXRophmOV6U4scJfpwwDiS0on1hvmFg60q1wJ8UHJeaCJoiVwm1tqMfSDZc6zpVK59oQRGH+eW2ha2rrPU9nuy5Qhw2EcL4iw2T3kRslt/bHJEkOXGW8eOvz537eXcdo2jrkOjY+zbd12b2x1uSZti6qLBpisxC02QSiACjbRs83PV4sDMhycXGZ2oydxcbFRtsy/MIwpRhkPCVq60LVYafByM35P/yLz/h3s4ES5OpGQZ/7J0rLz0pBUJfquvovLF4ssHpT9yd5z/5+c/4+Y+2+emvXjnxdc+LIE4rzaPjmBqyBC1LZXccVddb6jcdrqRKkuiV73sRS0WVdqZmVMGGKguqfrnxZzknVmQlSbRhlLo25by3dbUKTkHM4e1RiKmLzXq1a5MXwUia53y8NebBzhhDVxkFKR3b2G8hmkTM1nV+8eMhtq6yOw4OfDbwzPl9eI2UZanSFGlPJc6uzZS6IypDP0ZXJa51bcyizexp32Ot7+FHDjVT5e0rLYa+cNYr23r7kwjHULk1d7wGg6kqRSIrxNIUHu64NG3RdpfmOTOOzgMJdFVirrYv8K8pUtUCo8gcaGmsTc3Rq13xGy5L00eRpSP6erM10cpmqvvMEVtXqBmCIbxQrOFJKtq6R0FcGH4ktBwdQxV6NPUpPaw0yzFVlUDL2BgGfLgx4sZsjTsLdVq2hiTl2LoQLY6SrHrecw1h3Wwc47ZraDIzNQN9ucW1GYe5ulElduumyvvrQxQJbhdV2TQTh8ec/IDo6v2dCb92b5c8hx9+bYaZuilacs7BBMpz4YIpy3B3sS4YKzWd3XEkXH1S8fs6jnjmn24JDbS2o9OVjKrtTpEkdor3TGuf7U2igv1cJiQSNFkCkiPtjaehHO8APTdire8jy3B7rl459Iq2R6HxWbbtuWHCXMOg7egMXeEweG97girLVZU5iFM+3hxj6aJt47SDTDmGTtu/Aa50LPpuVD07SZK4MVvjxiHyqKUrXJ2xWUxMoiTj0Z7L1kgUa4I4Zbam8zsPexiqYA7dnK2xPQ5wDJHIfNLzKs2R612HnhdVY+9Z+/eVtkXPjWhZ+4YT0y0cS4WTnKmJGMQNYxabBnGas9y2WO/7PNidMF8kD5NCEPrjrTGKJJLnhiojSSY1Q2FrFCBLguk/nWzVFBHHzjg6TjF/m5bGzdk6iizjhWklBj6NPBe6S16UoisS4yBlzwt4a7HJfDHnb8w6hYaOxsCLsXQZdWrfyKFK7GqyjCbLKJLQyuy7cbW3qYpo17rStlEVwTbRlf29rExgSZJglwFVsiFJc1RZsMBBiKxLklS5fQWx0JkTcghppYH0LKiKYNmGaUqS5HxvXRiVr/c9dE2p9s6rXcFatDWF+7suO+MQWRKarramMPAi3lhqkuc5V7sOYZyhazJL7eML4KWWlXA2zAGpigUGbkQQpXRqOm6YMnsCwe1Z+7euCtaoGybM1cV9KvfE6c9b7drEaYatCbfU2brOfMNkvm6yMfJ51HfZ6PvEiUhi1y1RsEnSnChJcIOYp8OAubrOF4pixEkwVIUoTXmw41K3VBYawily6MeM/IiHuy4P9ybUTI2llslszWClY1VtqItNkzARbeJ1U6NuakeSs5oizp9+lFZdGCchy3LCRCTXN4Z+tbc+7ft4YYZESsuy+HRzxK/d20VTFfzKREJjoWFwvevgFFIE03uzqSkstmwWD33nTE3ICZTyJ2dBGe+lWc7mMCDLRWK7XLtn6+L8oCoSj/c8NkcBuiqzMfBwA8EkvrPosNwyC+bcQQdcU1f56tWDWqvTZ5KTEsLTiBLBps/ynH7R2th1DBqFPIcsSSy3LOI0Y+aYDp2yS6lhidb7z7bGzNWPH/ilQYQiS9yaq12os2p3EvLZ1hhLV3F0hZatcX9nwvtrQ2H2FSZ8361Z0kxIOexNQkxN5VrXPiDvchgtR+dHX5+v5t1FUD7vl4GLJqbelSTpm3me/waAJEnfAH718i7r8uCFgmliajJNS2USKpUlqKnKpFnG5sjn5qyDbajsjSM+2RzTtDTuLjXRNYWfuLtwqQ/k8Z7L/V0XP0xY6Tp84UqL7zwZ8HBvghsJTYYvLDcr/aZhUbHUFNEXm2V5Va07zFZIMzHxsjRnvmHgx2ISR2cQAQxiIcB7mutgx9HPfBBRZKnaRBuWhmNo7IxCojRhcxSy1vP4aGNc9ZAvNW3cKK0c88I4AxPW+n5xcBRJlytt0bN/Z6GGaB+Qjzgs1k2N3UmEqkjM1w3eWxsyCRPSNGelY+OGKW7BtIinKwZxxvSatz0OyXPRo13SroNCgN1UFTqOjqZIhGlGy9a5PV8jKBKiV7v2sckWXZVPbX0pA/ZST6fvRZiqxGLTJMlydEWhbqis9wOudmq4QcyuLBGnGaoskWUZYZIjyaJaXjvCKHv28xZaDM++RlURml5pljPwIraHASAOMWVc0rA1PtuesNjMiZKckR/jhQlhkpKlOeOiEvqibW0PY3cc8L/9h+/zyZaLrcm8sVTjf/kjt7h5UsT1ApFlOb/86S4/ePt4Om6JLyw3mW8Y/NyHWy80MVXaboNgGB4OVj7dHvNbD/soErzlNUhz6E0idFXm9lztwG/QFRnHUFAUo3JKmtYiWW6bLBQ6JWmWExaada/N1Y+9Fy1bP9U9xdQUVrs2HUej70U82HaRFbFOdGsGUi50rbZGAVc7NmtDD0cX7bTtQudGtIFlbIzCI4mp0+b3WdbIuqnh6DmmJuNGCXGaszYIqFui4r/Usniw67I+8Hltvs7QF/pSSZZV7dBpwVgYBUmlUTgNWRYJ7/u7E9I851HfoxsnGIrCG4t1HvU9hr7YD6e3CENVuD1fY2sUsjeJGQUJt2ZrByqBkzDB1C7WZnRWeFHC7iQsRF5FkSJIRBBetzTuzIsAsOdGPO15eHGCIkmYmsrGSBQ2DFWm42jUjP3rvNZ1iiquOPSVbQ1RkqEZKq/NN9gYCK1GTZEOPO/DRZgsy/EK/Q+AOEsZ+BEdR2jKKJIYd4sNk6cDnwdbrigwaTJRKvTWWlZE09YL6/O8SAgKjZ9n7cXHIc+FucRWcVCerZu8vtBgUGjC7Y5Dbsw6kEvM1EUir4wnujWdZtFWvjbwqenKfqV/KtZo2xrbowBLV3htts6jnodU/M6LVttBVNdB6GvsuSFLTYuBH3NtRhht6IrQA7F0hQzRhtkwNT7bdsmynOszjmDx5KLF6t620G60dJmWpR9ITJUCwbauUjNUhl7Mk76HLEmnzm8QbLyzOt2Wr9saBczWdVRFYugljIKIIE6KFnihsSUKefuJ5pL5FCc5T3oefpyxN4lO3b/LQ/JJKLVzwiTl4Y7L476LpSncnq+jqzLffToUBjqZSDz33IimbbIx8Nl2RStlw9RpOZpIGjRKhlYK7H+vKst4ccr9XY/ltkXH0SvNzoal8tZys0pMTrPWgzhjVKxNvUnE4z2XjzfHfLwx5s988yp1Sz+Q1JxvZEVCXTrwG6/NOKL92bRZ6wvZjnJfWR/4RUeFSAYkWYala3hhylYQMi4Y+aKdWao0QftuhF/EK4I5lvOth33GYcLbV5p84UqLniuYkm1bJ8tEMbJt66jywWs8Cddnaiw1R+yMxTxww4TffNCnbWt8ebVN3VQFc1VT+WhzxNO+z0LTJMkyGoZKw9LZGJWM9ZgbszVatoYiSUf21XEQV/IZrp6SZBnbY8E+C2ORmK9bQiy7YWlH9OKmcdr+PV2UOgllvOGGCRKiEFwKlAvGscrDNGNr7PPaQo3NQUCYZqSZYN67kWCQeFGGF6XP1HVKM5G00FXRSpgjXO/GQcw4EOYjop3VRlMkshyiWLymFPU5S9HgLEYqpQxAGAs9qt1xhBelzDfMwqhFYeTHfLgx5oONIR9sjGnbKq8v1Lm9WsMyVGbr5rnd5VTl9PPINCrXW0UUbnbGIV6UYOsqWSYSOmWr6DiI+dajPiM/5s3lunA0tPaTfOIMcbZkyVnOJCWmW/LVgsnWtfUDa6KhivOpFydHmEQHirMdm6d9j/s7giRybaZ2hBVVnl/SLBeGEufMGaRZLjpMRiFtO8fQZKQkY33oszcJedLzi9/v4kYJTVvnj7+zgqZItG3jWAbkNM4y707C9PN+GbhoYuobwP9MkqTHxX+vAh9KkvQekOd5/sVLuboLQGgkZBiqoJMP/ZgwTVkbeKSF5si93QmyVAhK6gqzdeH+s9AQOidGpKCqorqy0DQvLSk1CROCSPTx39tx6bkRX4pSJIRAnRsmfOdJAEgstSxmagaaLDQbJmGCJstsDAPWhwG3i2rg4cNPudE2bI2VrsOkoFGedVEEIZZ6VkwHcy1bpWXrmKqCWyxSSpEoedr3kSWxsN7fGdP3Y6ErJQMS1cFisSkE0C1doWaqFdNLkcGPkyoIkSTpwAITxCnbo9I+OOet5QaWrlROFb/9oMd7ayPhTNix0FRhp/ru435VNWwVTILDm27b0flkc8T9HZfPtsZ840aHcVAks3KKg6KMo6sVc4giOPbj9EwHN0GVFv3D5Wb+cHfCwEsY+RHfetQnynJW2hY1U+PGrEOSpUwi4ZQ0DCIWGkbVImJpMl+80uL9tVHVW34Zz/uwJfHIF89/ZxzSG0d8sDFipmEUGi9CvD9KMtGOUFDEnw580lRUG7+40uQ7T4bIsvRS2VKbQ4+/9Pe+zYM9caBqWjZ/5vuvfy5JKYAPN0fsTkJ+8NazNa1kWeLH787zM++uHduOelloWppI4mb5sZvZk57Hp1tjAL600sR2Yx72PDq2xrWujSHvX9eeKw5/22OXxz2fNDuo8SYj9IQmUVyttXHB9Jv+nJMQJiJ4nHb8e7ArhGz7XsT7T0fseSFXmhZpmvOFKzKP+x5JJt4zChJm6gaaAotNG70Ysy1bJc04XuvunPM7iEWirzy0e2HC/V2X7VHAJEz4YEPYPm8M/YqhEISiBSQHojRlfegTJ4K18MXlFpvDgCgRjMmT9D52xmHFtik1Yvwoxc1T7u9McOOUNBMVfXnqsJRlwv0sLdr8vDBldyIS85Ik8eHGiM+2xuyMI67P2HzzZrdKjJWuRKamnBosHUaUZDzqCUH7SRDTd2Mhbl3TGfcTNEW0eEWpcHosCy6TouVjz41wTIVGLtrSVFlic+QTpRk9N+a2JvbNNBOFm9LRdFI4O5ZjaKZmVMK7Jz1vwZwVSYX3no6QpJy3lpt4QcZH/TFbg4Bu3RAHbVUmzXOSNGMQZwRpiqEpdB1d/MZEJEksrclr8w2COCNKct5Yena1/zisDzy+9ajP0I/xo4TVjiO0R1TBAtgYBXhRwtsrbRRZJPG2JAoLdKHd861HfYJYHIgWWyZeeLDSbxd7HUgMgpilgsX4vC6Wc8Xe8dn2mDTPmBSCxIYicW/H40nfo+eGPNrzMDUZbbVNnGbV2BZsDKGb0ixMQ0oWZ8NUGXhRocOoszbwC4ejkNfm64zDmDwvWCPnnN/TmE6uDLyI3UmEpQkB/m8/7rM9DrE0uRB4zrm/4zEMRFuzFx0sNIr2ZyHV0HYMJkGCH5dFtPPt34fXoJ4b8aTvsj0K+d7aEC9OWWwa1E2NxWKtlCUJLxJOyVGSIZGzMfLIM8GsWO0IjZ9W0Y6Z5UeZfVmeFwLfsDMO0BWJ33nYE8YTimiTuzlXO+B+t9gyRDunKhOlGTfnHT7cGDEKY+K+YLy+c61b3YeeGxWx29EDec1Qq4TknQWNLKsVbtwiubc5DKBIZIr24JiffW+DOMt4+0qLlY6NFyU86QnHttfmaziGhqZKhWOqxtYoYM8NGfkxj3sa802T7XFYFdzeWBIH77Ouh3GaicRsy6Zu6hi6XAmJjIIEN4p53Hf59sM+XpRwp9AGXB941X7tRTFukDDRk0oQuUzwTK9tSZrxaM+rEh8rHZuPNsbVmLk+41TOd3cXG0eSf8de/zn278PjMoxT7u1OGPsJAy/itx/16Vga4yDGNlRmbJEkTQt93SBJhb5dLjRtVzs2EjlrA565N5aQ2E8aNUyV612HezsT3DAljFP8OMbSVHYnIbqqsDkM+HBjyOYo4Dfu9/ja1TZtRySBr8/s6zNFSUaUZmduN4MiqVG2+uXgxQmOIVru5hoGmwMfS1OJkjLpImQDshw+2p6gKzLfvK7y0IuRJCqh7rgUnNcVJmHCKIgZ+TFpBivto+3kp6EkdyRpXvWCz9VNZFk8v+k7Pgpi2rZOkqa8+7hPzdAZpjGPei6fbQupnLdXmti6aFGcqYnCY7meHGduchYERUK1RJLmmLpamWEFccqDXY/NcUDb1uh7MfON/QT/JIwrF0NDk/hkY8wnW2O6RbHzcDJtti72rlID+byQJNHmLYzQhJPnw50JlqqQ5NCtaYRJwj94d41JlDBfNwrnaKtoMRZi8zVDrbTqzpIAPwsOPO+XgIsmpv7ApV7FJaK0WjQ0UblXFYmRF7M+8PmlT7ZZ6/tkWY5ZVNBsXeXWfJ0bM22+vNKm7ej03JCubRRCqZfTohAlGd961GNzIBa1z3YmgISpi0E8UxdCp7uTkE+2xnx5pcVeIfq5Mw5ZbJoEhc6QJMGtQvTue+sjrs84FZOnTGpMgoSPN8d0a/qxNOnjoKkyNVM9UXT8OPS8qLCVHrPQsPju0yHbo4BOoR0VJClrA5+uo6OrCve2J3y0MSbJM76y2ub6TI31fsiT3oSNocK/eH+TlY7DV6+1DmTGk0K3xdLFn/0oJUxS1vo+D3dd0lwIYJLlWIaKpkq8tdSs7sfWMODR7gRFkfnq1RZJCr/zqEcQZSBF3F1snFgxqJsqj3ZdHu65fLgxZGscsFC3UFSJGzMOcw2DjzbFRn5jVlQ6ywTXtObNYfTdSIw1x+DJwGPipzRMhe1JxOOeaO9UFZmsSFpBzruPewz8iHvbE7ZGAR+sj7jadWgYGi3H4NGey3trAzRFMB6+eaNLnnPsxnOW5x3EKRtDQdlPs5ynPR/HVMiylI83XbwooWHp+HHK3iQEKWe97zPwQrZGIaYm8d0nAxRFYrltMlMzmIQJD3ZHPO2JLPzXr7fRFOVEgc/LxrsPd/nTf+s3CVMwVJGM+As/cp03l1ov5fuPw7/6eAeAH3ntZBHxEj/5xjx/7zcf8+v39/h9d45v0XxeyLJ04nwIk5SPNgY82hPCt4osCSbI9piwLRiPRpEwy4p2pU+3JmwMfRRFOuAgA7A58vnVz3YF68QRrW/zTeOZbTQ746ASTf6dhz1GQcKNGRvbUHm65zMIYjRFYmccEiQJmwOf+zsT+n5UOQJuFAn+a10HXVHYnUQEcV4lhxYaFktt61hq+1nm91rfI0pzarrCvR0XRRZMsfWBz/YopGXrbBWOeAAfrQ+RFImGqTPf1Hn3SZ/NYcibSw26NR1Jkvlka8jWUDCIvnq1zffd6pKm+YmBpabKtGxx2GzZGrIk8V7hxLU7DvjKaodJGNG0D7YC3t+d4EdCp2Ot77E2CLhbaD91HI1He8IRcWvsk+UZS22L23N11gY+n26P6U0ibEPlx+7MYh4TWHpRwsYwwNFV8ry0Vk/ZmQR8tD7BMmSe9Dw0WUHKwbZk0lxUXxcaJtujAFNXmGvoPN5zee/pgMd9T9y7ho4mSwUrCDZGOY/2PFY6or1ysxBSz3LRErjacZAkWD7U3nKYedG01Op5992Qn/9oR8QXfsTDXQ8vElbsD/c8gjhFlSXeWm6RpDmWLiMhmDP9wqHNUoW+xmLT5NNtodV1revQrRl85VALw1mxPvD459/b5NsPB6TkGKrM1igkyzNmagZrfY/tUUCeG6iyOLQ/3hNs3DjNedL3WGlZbA5FAllTJJZbJvd2JkzCmNfmhXaSVGhN7Y5Ddichby43zhxnTCNJs0JsWQjPixZ9ofHz/tMhT/q+uO81jUmQosrC3bOuq2wOAx7uTrg5W2ccxNycrdO2dTqOxO4k5KPNMbau8P03u+xNQj7cHBMmqWCUF1pP+8+awg5esG7OMr9LeFHC5jDA1oU2zW/c30ORJH7gVodfv9fDj1KiNGOubrI3ifDjlDgR688kFGvY5jCgYUXcnmqDdMOE33nYo+/FLLdMVrsOLUujbop7ddr+nWY5a4WeXN1U+d7aiFEYsdK2GPkJ760Ni6KMShinpGnOx5suaQKpBDdmavhRwJN+xNYkxFAUbE1hcxCx0DRZKlqYxr4ofi6dwOyLCsfRMEmZrZn82r1dNoYev/Owz0zNQJFkgjjBjcTzjdKM//bdHnt+yN2FOj91dx5NU/mR12bYm4TEWcYHG2PiJGe1a7M+DNgaClfW1xbqp7YilXtbw9J4XDiM5uSM/ISnucf9nQnfetTDi1NMVeGHX5tlbxLyT9/bIEpzomSOr1/viGJxIcht6zJDL2HPjfjCioIsSYRJyuYwEIypXCRbs4J9cVpB6dGex9ATLcnXug6zdbEfXp0RSbL3Hg/4z37pM9wgo1vTGQYJf/iLS2R5zi9/ssPAE8niazMObpxwd6mOGyZ8sjkuOjBEu/nVrnNknZMlCVkWumGaIldGB2fFaft3XrAxkzSnbqh8sj1BlcGLUwaeaBdUFaVw1o2QclgfBWyMAnbGos3+s50Jk0C0Ja12HHpuxMYoYHsU8GDP4+5ina9dbxdC6M++17Is8fpivdJf/MXi/t2aqzHfNOjUDD7anLDnBvzqp9uMwpSNQUCSpdi6yv2dCU1Xx9IUPlwfoaoyHVvDNlSiOBdtyJrCyI+Yb1rPTFqoikiuj4MEJEiSfW2j+YZJ3w353ScDPt0eM3RjdE3i+qyDhMx3n/YLllXIm8stvCjh3Uc9Vrs1ZImCiZWw2BQs0J1JyErbFm6H50xMLTYtNkcBTrFmXynipE+2x3y0OeazbZdv3OgIuQVd4XFvwr3tMaam0HNjkECWHGQJeq7Ex5sj4UqsyRiKwo/emeNXPtshjDO+fLXNbN1gdxzStLQzt7S3rEIHLhcF9F/5bJe1vsefeGcFFJH89aKEzUHAkz2XN5YaXOs61Xhxg4SHexOCOGOupoMkYtWeF7LeD44kpkxN4frM8ZIKZ4EsiWeZZnm1hk2ilE+2JiRJxjDLebDjMgxiGpbO9lBIzHQcv4ipxVpUM1Q2hj43Z2u8c63DwI/ZHgW0nYuJ7sPB5/0ycKHEVJ7njyRJagMr05+R5/m3L+vCLopScC2MRW/oOBBJqb4bFf8OCRJRPYxT+NKKyUzdoGFq+HHK6wsn67s8DyZhwm896JFnsD0KGQcplibj+glP+z7duk7bFr3buiKcFESLmWCAJZlYxBcaJpoqQqrvPh3iRwkfb4z50ddnWe3YLDZMLE3hSU9Uu/puXFCcT6/UqLJ07onVsYVDYM1QCZKEf/yddcZBwq05R9DTxwFBlNJ2dN5eaZHlOZYmMwpTTE3mxozDyE/IctGr70YJuiodEeuOEtHnKwFxknFvZ4IiCxr12sAXlbVE9EjrqoyExMAvq5WK0GeYqWHp+9ogYSx612VZ4toUdT7PBa1b6CdIfG99yJ4rWjx1RRKtG2HKbN2ktqIyDtIDbSJweqve+sDnlz/ZIUckjaIkwwtTng5cgigjzUBRJO4u1kllsTDEWYoiKSQJfOdpnzyTkBAuSe2aXlg6ZzzueUhIuIHQMzgpQDjteY+DmG897PGk79MoXJmSNGfziS8qVpl4Fm8sK+iKzHzNxNYF1ViVZR7sTdAkIYLY0XVMTa3aEJ/2RWUvTnOSPGfuBQt5lxi6IX/p//O7+FNdg3/hR6/zE28uvZTvPwm/+PEOby41mDuDW+b33RAuJ//yg60Xlph6FoTjp9AUiBNRPd2bhDwZBHhxWrXFAkyiROjlyRILTQNdVpipH3zWW8MQP0oJ4pTffTrAUOUT++CzLOd3HvX43ccDVjo2jqHy8eaYnhvz8daIGzOi8g5iXtVNjTwXukh1U+dJP2DoxdRMlRnH4ErHZqZm0HY0tkcyQZLihsJVS9I48ZDzrPkdxCnfetTnw40Ryy0LVYbdScza0BPZEEkWjMssR5UkZElmpiZazshFQuvj9RF7boyjy8zUjaKNQObxnkdaE4UOP05PDdJuzDj4kdD102SZjmNQN13ats7ADXmw6+FFwtWpFI8Wv0E8w74rXEDzDHbHIYYyYWukEmcZuioq8OujgEkQ8+nWmPu7LmsDHxnYnUT8zsM+X7jSOhL4bg4DvDDFK0Srf+XTHXRVEgf3KCVIZGxNYRQm5HlOU7JY63mEkWBKqYpCzRCt2tsjwSLOskLfBQldVZgEKY6hIBU6KU1LqxKmJZZbFnVDw9DkZ+6RkgTf2xjxtGir/LXPdnn3Ub+g8+dFGwmMvAQvSPAS0U5d02UeD3wcw+LDjRFvLje41hVtaaYq2pC6jiY0mlSpapu7CPw45V9+b4vvPBniJylBkjFfN+i5ER9tjHljSeLNxQZeVO5XEnnh6BTEouVlpmYQZ3nltrvYtHh/fcRH60OCJC8cYetoiszN2RpDP6ZmqGyPwgtpVzwtWvQlCe4uCrHlMBFtmn6c0puEbI8DnvYUWo5GbxJRM4Ujr67KDLyIvUnISsdhvmlWh+y9iSiY+VGG3VZ4Woxn4ewn5sxyW+hflixnTaHSxzpLqz2IWOHdR30+3XZxDMG8/nhDGLxsjwMUSeb+7kS0/Vkary/Uedhz6U0iTF1BkWXiTGihtWydfKrA7cdpIVwuDu1JmqPpcqVD+az9O4gFO6GUpTBUma1xxO4k4N72hL4rkhOqInO969C5prHWC3nSn7A9CYnilIWmwfooQJMVFEmiUVNFRb8p2JeLLUvosyKu70SfqlzEiQM/AnLeXxNsy6EfoyoyGyOf15M6uqIUnQw5GyMfN0x5f21IyzZYadvcXmjwU2+mrA19NoY+D3Zd4YBpacRpzig4XUC9RJikgk1KzpWWhSqLAvH6QNyf9YJFFSUiqTjy4qolaOBFfLw15smeX7WDholwiJutGxiK0Jq7vzMhSjPGQcyDXbcyIRj68ZmYzlmeF+6ZOQsNA02ReGupwW8/6PEz31lndxwRJELQPM8EG3NzFLA9iVBl0Xqb5Tl35uu0bJ1hESvvTkIapuhuKBOjt+ZqPC5cJvteJPTZooO6fGfFs/bvMEn59uM+H6yNmakLd9Khl/B4b8IwSDEUmThPWWk7GIpMw9RRJBkvEkLz6wOP3bHPzjhkoSE0JhebJh1HJ0oEyzZOhaTHzXOQCgxVQbVlPtkShIG2ozNT17k1W2d7FNJxdB7sxnxvY0SaiWJCnKk0TQXH1JER8fLGwEdSJMiFPt/VrkOQJijIrA998rzHj9yZOzGJCwdbrsTY3mdIepHQwEuznIYtNHbfWm6JeCLNsFRhLjPwQr77dMjIT/hoc8xCw+STLZe1gctsw+RPfm2lMro4i1bTYVj6fhJGsDnFZ4yDhDyDKM+qs3iWg6mpzDdtem5Ew1DFhprl1GyV2/MOAy9hcxjS90NuzNT5J++t8eH6RIh1GwofbYi4s+sY/PjduSM6lMdhurgqEspCy3YUJMwUEgSinVlnEqbYmkrPjapnM/BjwUrLYLycEKUZSQakOe+vD7k1X3tmi+hFcDhp6YYJtqEQpSpZltG0dXJy6oZCx9YxNIW9SYihSgy8lCQVTodelPJ4z2N1xua9J0K8f6Zm8IffXkS7gCnI9PN+GbjQXZUk6X8P/JvAPagYpjnwY5dzWRfHYtPkad/n8Z7Ld5/0kRVYbAmK4cbQYBKmKHLOlbZF1zH46rUuiw37ubURzoKGoRFnGStdu2hdUrGKxUFC4p1rLSxNpuUYNCytaINKUVWLmZrOUsuecgLRyDL4dHsiMqQDv+q/7RTuNVvDsNDIOD7gTjMh2BglKfULTrCmrdG0m7w2X+d3H/cwCm2AIE6Zq2t8b32AIit8uVPj7mIdW1N43HOZr5s0TA1dVVhp2wy8iId7LqYiHB2uHKpeL7ct9iYhDVM4Y0zCWCRJhgHdmk6aZWRZzlzD4GrXYaltMfAiwjgjjEW/cxCLlpArbYvtccidorpW3usSj3seIz+hZqpcn3FI0pyltsWdoE7L1HALwVFVFhuEpQvx4jIpdhpEZT1iHCZkWS6cDG2DJ5HHQt3iYc/F0mVuzdX4xo0uIz/m0+0J4yCmOaOxNQ6pGyprg6AQeXWqSuti0+RLK6LN59qM/VzORFsjkWjou6Ki3bLUSjQXRIL12qzNl1datBxhZfu0LxKofS+io2isDQKSFLqOcLOSJAlNkfjatQ7fWxvhGArz9Ytl8c+Lz7bG/Gf/6lOCOEMphJ3/xNdW+ONfu/ZSvv8kDP2Ybz3u8+d/5MaZXm9qCj/y2iz/3YdbZH/0rTM7YE3DDRPu7UzoOPqZe/ZLCHaDiqkpNG3x/u1RyGrbomnrpPl+YsrSlEJYVkeVZeYaJi3rYCD0zvU2f/+3FeI0Y6n57ETL0I/ZGAakuZj7b680mS1aspYLHY65hkHL0phtGHywPqZbM5hvGqIy1veYaxoM3BhZkrAKB5SmJdadnXHIF1eayJJEt3axZOnuJKTnhgSxcAW8MWsz8BPquooqy/S8iGszNnfm65iayuOehxsKLZMnPR9DkRj6IeMg5krb4vtvdit9uK9ebVVr/lnapqQi8TVbM1nr+3ScnK9f67A2DFjtCsfWhqnwqOfScoRYapaL1vIozbk1W2dt6NF2NJJMHHxkRbSwvLncZKFhkUugKgrjytpcRZGE5l/N0hj4RyuyjqGKlit1P5Eg1ma7cu+Ugd942COMM3Y9cZBf7VgsNi2iNMXSBIPJi0Tl2tSEFbehKUyChJatV6YNsw0hmhonGUstk54b4UcJYaKeqVocJhlBlBFEIV1bR1dlWrbGKEi4Pe/wuOfTcTRmawY1S8GPBPNmFArdFj9JiwqrhKEo3F1qVMYWmiJzpZPRc0PcKMELE4KiMHKewFe0falCL6Rto2sytiaSipauMNewWGyavJVkdGyd5baFJAmdoYycLBXagN2agaEp+FFKy9J4f33IZ9subUcvWL4RjYK1s9qxGXjxqQ6hbiDWm8NtwdlUr8U4iJGQmKsbxIkQah4X7n+2rtC2dfIMHFNFkkTbTpKBG8eCYTCV0+s4OlujgIYpkpHdmtB1WmiaNEy10PKSnrv1cBQIM5WRH4OUM1d3kCWJhq1hqjJJLjTkrrTF9+Q5hSudijWOmG8aaDJ8uDnGjYQgcCkc3bZ1bsw67E0irnadc8WnO+OwaNkRCbySWbUzCXB0oRWkyBJvLjT4/tuzTMKEX0l2GIcxkyCmZqkMJjFyLhU6P3B91sZQVMIkLQSeBbs1STNmn5Egl2UJS1dYaDXYGgn2/zgQ+ktpljNbF2tvDlyfcYgS4R75uOfRtjUcXWHox2RZzu0FkRR1Cw3AtqPRdjQsXeZq13kmWypOMx7suIzDmFrRBiwXrDlNkXF0pYizLWZrBnmWY+syD3ZdvDhldcYmS3O+tNoiLBJCbpihqwp1U8Tqc6ZROX82LY26IcbqXN1gdyK0qJ6V7Bn5MQ93XTo1DVUW4yhMM7xYJJk+2ZqwMRTabmV73deutbk5VwNJtD6qskhMvrlU5+5isypeOIbKQlMUrkG0HJUMCFMT6/04SJiEMV+/3j02dsxz4R6pKkelNHbG4aljdHcSMfRivDhhEsjM1nRiLS+SJBJDP+HOfIOrXYfFpsGHm4Jldm3GZq0XkKTCUVcCNEXh69dFTGlqCq8v1tEUqRCGPv8hWpElbs/XCh0tlZuz4s9vLDb4aGPIPQR7qVE4Ny63bWFKZWu8sdhgZxxRs0ShzDFU6oYgGHRsna2RaPNUFImtYUDL1k5tUdMVmYalVnItkiRxtWvz0eYIU1dRJHhjsclszSCKUxabJj0v5tacw7UZwSL7rWGPNBctqb/7dICuKhiK6Bb68mrt1DbH8+K1+Rp5nmNpSrW2ppnQS1Jkia9dazFXN3mw57LYtEVXiCyTZRlXWhZenCBJOVIuEvBBLPag3iRi5AsdqD03OlNiahqaIiEjc7Vr057a72/M1JCQ2BoH2IZKbWpuZnnG1bZDkme0bZ0rLVvM3TynrssXlvh52vfouRE3Z5+d2BLGH6J4pCswX+giv7Xc4LW5BqYh81v3e8w4OpCRS8L1um6puHGKokiEUc7IFy3LXpzixRnNl+x6fhFcNN33PwZu5nkenfrKl4yaoeJHCb92b5ftsagMfOP6DH/gzQV+4OYMH2+NWR/4OIbGW0tNvnCliW0I6u159TDOA1WWWG5bfGmlBRJsDwNScvwwY+ALZ5dbczVuze1btBpqzq25enVdXpQQZ1nlsnJ7oYYqi8zu2tCvhCBnagZzdSEsN03TndbfyvKc+zsuT/ouW8OQq8+ZDdUUmTeXmnxldcLAi/iRO3M87fustB28KOXOQo2+K3RA2pZKyzGQKCuTFrfma3y0OS6Ea+UjLZTTOgF5Lir1TVPn9nydjqOzMfB50veJCq2ZcRAXzj2CmbXQsLk2U6sCl84zKPqTMMGLE3YmAfMNYSVfNzSud51CcFUESg1TwyksWeum0DM5i02orshoqsRr8zXSHG7P1agbGgttU2h/rLZoWcJlzNZVdtSAbz8aFI5TCV+40uDbj4bUDI3ljsYP3polTHJAaA4JZ6Dzt1UchnD5s6Cgny+37UKHwRZ92rLEYssSld4iaIoToQXWtg3qhsL6KORq1+ZLq206jqjQ1QyVuqnxzZsvz/nuu096/N9+8T7DIKZpaSy1DP7k11b5k9+8/tKu4ST8yqe7pFl+LvbTT9yd52ff3+S9tSFvr7TO9J40y3m067LQNHn3yUBoFMUZf/AL87TO0LJSouPo/IG3Fuk4Bk1bo2Xr/OBrsxiaQtPSDhxSNEXmznyd23M1pKLt4TBsTeVr1zr03Ygbc8/W+LJ0USkih5tzDm8sNllq2bw+38DUFRxDsPdalsZ3nwpRa4mMr1/v8sCeYBsqbhiLNrCaWQUGQSySG1e7z18Bc3SRMMkyuD1f4+Zcjdm6z8CNaNgaTUtFlmS6js7myOf+7kS4v6UZCw0DU5N5f33I9a7N26tt2rZeJTHajsHXr5/vMF03VB72XFY6Nm8tN5AkiTeWhD7HKIj5lU93qekan2yMMRWFOBNsW1WRuLvQ4OqMza2ZgJ4X83Tg0Z9EzDdMVto2i03BNlgohL2vdkVC70rL5lHPO1YHEURbQtPS0BWhbfX6Yp0vXmmQI4RtTV04DflJLoouCiiScJN6a6mJKkv4UYptKMzVDa52hTZYaS+uKXLFTLo247A9Eg5je5MIXZWwdU2IKwcT5hoGXcd4ZpCuKTKKLNbEa4Ug9pW2haYoPNybsNCw6dZ07i7Uxf4+CishU0WGNxaF3qOuylyfdQ6INqdZTpyKlihZknm428MxFCEzMFc7s46cpoiD6R/90iLLbZuWpbExDLi37SJJsNQyubPQ4PXFRpX8yIq2gfnGfqwQxKlo0TY1ojRjqWnx1nJD7KexaJ/vGwo3Z2usdGyutA+aGQCVUHFY6Av++oMdnvbC4lC8j5WOqKKnacZ3ngwwNIWlpknT1vmJN+aYrWv8xr0+hiaz1DIY+aLdp9Sf1FWFpq0SxNmBBOhs3TiQdFpqWc9kKVwUpiaz1DaJC4Hwu4sNFhqGELB1NB7suJBLaIpCnGR860kPR1O5s9Dg5qwjnIEbFrcXmnhRgoRUuGMphbtTnVsXIMXWDMEIvT6TsdwSLV1ekawYeDEZcK1rV45osiTaWpumztWOGN+2rnJvZ0KSCsb+e09HXOs4vLZQJymYfWcR5jdUwbID4bCZ58LhU1EkHE2n64jrMzXxmx1D5fe/tVC4bwm37JYtkmk1Q+WtK03uLjXYHonDZNPSKkONPM/ZcyPUY/SmHvVcfvGTHXZGAQstg2szNRYaFk6RPPrClaZgZdR03EjoK16brREnOaam8sO3Z7nStov5mgq3ZEWiVzjKTou4A9ycrRVJSIWGpTNbN48YfxzGtx73GbgxD/dEW+9Ha2OQcpYaRiXq33Z0fui1Ge4uNfjqapvVrkOciPH37ccJX7jSYqFucHuhfiDOVRVR7NweBVxpW5UzWYk8F0zWuqlWzop5nles1rwYJz1XMNNuzu27V28Mg0rn71moFXtj1Mm42nW4M19jz41YbJloqoypSdRNXbAa85zffNCHXDBxFlo6N+dsfvb9TRZbJjdmHeHQ6wmdQFtX+cKV1qnj8Vno1owDLGQvStBUmdsLDXYnMT0v4otLTRRFJNJBXNtyS7RFXp91eOdqGy8SzrlNW8RDyy0bTZVJ0xxTV051ZQSRKJs2QQARe31hucVby03ByJqxSTPYHIq5JUsSIz/FizJuzDjc33FpFzHaT391hd993Ge5ZXN99vKTUgBNSz/iaO3HGT94a5Y0z7k56+BHKVe7Dn0v5sPNEY97HotNA0WRWG3bdGo6t+bqrBQyJzfnany2PSZHrOOHRcrPAlNTeOd6i7evtFCm7n3b0av1g0Px6bWZGm9ciZCAL6+2cXShR6pIEt+8OXOhfEHfDfmlT3YxVJmhF/NDr80y8mP63tFUSpRkmJrCbMNkdxwCEj9wo8tri40ikSwKbUNfFHRsI+LWrMP6MOCzrTHXZhwWmya35usYmsJiy7yQ9tXngYte5ftAC9i+vEu5HDzYdfm1e7t8sD5kHKastkWV8M5ik71JSMsRoqYNS1QbXpb9YcPS+Mk356sqxJW2zebQZ2sYcGPOqTb4cmKUtsmSJA43mixXDgPjIBFBYctGRlSscnJkST7QCnB4A3zS8xn6haNNnvPJ1pjHPZcsh+X0+YM229D4U1+/SpSKCTUOEuqWhqbK+HFCkonkxfYkIkxhte3w4bqwcl5uWyw1TUZ+XCU64lQ4X9QPibipskTHMVAVCUWS6Dg6e5MQWRJC8b/7ZACIqscP357FixMeFloCq519ob9SNNNUFZypTHnDVPntBz0USeZ7xoivXG3zpdXWgd+aFlbB5fg5jwi1qsjcnqtzfcY5UJU6qXLfdQzmmgafbo3puRG7k5CRF6OoEm1LZxDEDL2kGiuGqhAmaZVsTVKRLa9NCaufBYtNi7YtWjDL97UdneM4+5IkrO6f9FxBJx8HhatUhmJKGJoYv7D/DPKpg4ssS5XA3kXFDk/Cu4/2+I9/7lOeDgJqhso717v8pR+/zcILOKhcBP/ig01atiaS1mfEj70+hyzBv/xg68yJqUmY8O3HA2brgvGxOw5Js4zHPf9ciSmAd6516NZ0DFUwGWRZ4o98afnY18qyVFWmj8PGyGPgx0SpEOJ8FkxN4ftudsnyfQvvhaZZOcCUKHUEOzUdpdDLuL8jtHTGXgSyjITQSnm85yFJcKeoxoeJqMgGSYapKufeI9qOzjvXOijyfqBza+74RHG3Jg7Qm4OAe1sTIRKcgYyEqatIwP1dse4vNE3BbslyonS/1XgcCNH4k9iRmiqjFK+bFGtyOZ8bpkbH0fl0c489LyrYoKoIptsWOSIpM9swibKc1+brpLOiaj0o3GKX2yLBd3uuJgRvi+s4jfpdrplNS+Mn31g4EigrksRcw8DWlcrGumTSfrYttB9atsZKx65aR/rFwUiRhXuSrkh0HY33nwz5ZHtMy9ZY7dgkttBs9eOkcmLtOLpg0R0T+BqqzO9/a6FqS13S1cpyfa5usFEc6KxC32EUJAxDcWBKMuGwJFoQ94supdvad58OeLjnsTMKuT1Xo+9H6J4IJM8DW1f5qTcXqvUUoGHpxGmOqSncmkr6lvf63s7B+whC3yZKhPPbnfm6aMNfbTNX19kYCofa7BlxRulmtDcJhXOspbI5EIyBMD3ovKopMvMNkw/WR/TcmJ434cHOhIalc7VrsdCwuDEbIUsSX1xp0HPjShtKWJEjNLQyKpe001DOH1WW8ArDkYse0gxV4e6iEKwv14mWrXNnURxc+25Clks4psK7j/o83vOYqRt8/60u93Zc7u943F5IuDHjsFHoVJXz4vD+GCbCNfIsYuxtR8cxVL640qp+W7ltXz3m9Y6uMlcX2jbzTRM3SPh0Zwy5kFcY+wk9N0KTJQZ+LNqN6jrzdbOK94AquXYSc0aSJF6br4vYRBasypuzDrauHBhH00mlMqEzLA5vzcKkZnFq/y7fuzMOKwMY5ZChytYg4MGuK5j0aca1bo35hnHAUGeuYTLXMKmbKl7RyrozCYWdfE04GJZx+NUZu1g/j987VUVmYUrTZRIURg7P2GvV4lnJssRa3+fxwGXsxczUxG9uWCp1s4auSeyMhOC7o6tYNfEbvrTS5lHPFc51pkYYp4yCmG6h3bg7CUkzWB8GRxJTiy2TNMtQZGHUAPBwz+OD9RFrfZ+FpsFC08DSxD2d7jo2VJkJnDqPmrbG2ystvrzaqoq4y7pgHx2FKOZvjwLW+h6SLDH2E4QzgVg77m27pFl+YP0KYsE8lCQYh4mQ8nhGEiHPhTO0qSqVULipCff2e9siZg3CBFkSWmTfftqnbQndsJWO0P8q26NOcj6zdZXfd2eOMEmrPeQ8COJUmLXoCh1Hwy/kUR7teURxxjBI2J1ErA99kiyn5aiARLNwIq2bGm8uN/jatU4VN1wmyjOGo6vIEgfWrdm6UcUr4yDmN+/3AVjtmGwNfTaHIW4Y8861Drqq0LI0Vrt2xTwEeGu5xd3FJslUfHEeSBKECTzp+8SFlE8JsVcevR9t2+Bfe2ux+u/b8/Wq9XvuAlpNaZbzcM+j74YYmjjzhnHKL36yc0BUfBImqLJEkgltvqEbMfZF7CZLErouYq2BF6PIIp7YGProikyOKGYst2zBKlaFCdYbS43n6p552bjoCfA/AN6VJOl9ICz/Z57nf+RSruo5MAkSarpG3dAI4hxDUzA0MQjbti6cXBTlwKHhZWF6YGwOfH7nUZ+kaAXLciidGPM8p++FheuK0FtKZaGXNX1oF210YpPYm4QnOmiVcIuDv3CNEfTZubo41J23neckyLKEIQnth9cXGiSZqMwbmsqCo/LR5hhdtYoWRgk/SlAVsRnMN0wmoRDFHfiR6JHPOGKHrBbV8Ong5e5ig6aloqsK3306FPcsy8nISafkqqJUtPyFccq7jwc8GXjUTZUfeW2uYk8YmsJC08SPssL6+Cied/yI959toZBlie+/McPIj2iaIgk3N28AEncX6qTFoiYODKLdqTxs35yt8bgnDhqOoZybSXWehNvVrsP2OMAttF0mQcxM3aBtCf20KBHXGRdiC2XLpG0Ill8pRFoGfJeBR3sTfubddfY8wZS6Pe/wV/7g3ZcmtH4agjjl5z7Y4g+/vXQmtl2JtqPz9esd/ul7G/zbP/XamQKNsmsmTDLRIhrEWKpyoVZAXZW5c4weX5RkyBLVbwni9NRAaG8S4QYJSXZ6YAuc6T7JssSN2RqzdYOmKcS6dVWiZWmQw3zLwFRVFlsmpetzmuW4YcSTns/OWGiX2LrKa/NHrYFPw1mTWYaq8AM3ZwqXqhRFEbomnZoQ+bzSsavnVmpNlMLkLVtU7HfH0YHE2jSSNOOjjRHvPu4XjDaVN5db1d+XB8WdcUjXj/AjoUtUtjGXz0NX5QOJpp1xyOYwKHR80gNs1vNCko5/7rIsVYLaZUAvFfoapQZWqWNRYrll0XMjbGM/oRjEORmi/V2Iy1okaUaY5uS5YFmsDzw2hsLx6Pqsc2xl8aTAru3oVdtBlu1bm7ctnYWmScvS+GhzjCTlmLr4nesDoZOyPvALh6SkENrVmK0bjIKEpaZ5btfNw6//dGvCw10PVZWYqxl0avtuXGGcMgkS1MI5rESQpLhBUrFUpp+7oQk28rN0SUqXrSTPSeOUmqny2nydPTdktmbwt455T90Ural+nOAYKlGSkaQw3zT5PkMlR7SDz9VFUmlrFAgtw1ww9HRFOaIfVs6X6TkRRAkPex5xkgumuqVfaF+cxkmxQN3U+Nq1NjvjkHEY87RukuZ5xc4L4wxZlui7Idp8/Yh4/HQhcbVj8+mWsC6faxiV2c2zcJ6EuixLvLncZKllEaVCQHkYxFU752pHtC21HJ243MeTrLK279R0HF3hSU+IrZ80h0CMjzDOuDlXY65hnEmQ9962y/vrQ3RV5p2rbZq2duwBP8kzRsU9m0ae5zRtnS9eafCk5zNbN2nZ+omabitTrWDTscLeJKzWuIkfn5r0KNFzQ/7VxzvkOXx5tXXieHvnapunfSFm/PHmhIahEiciQSkh1rcsF4VrWZLIc3E/y99r6Uqlk5tlOf/dx9t4UcpSy+RLq63q95bJ3SzLqzHWdUSyRUKq2p28KCHNMqI0Jcuh65jULRVdOeg8ttSyaBRaZqfhPOPyq1fbPOl5gm2qiPPC6wtNkETbWPl7omKuP+l5DLwYUxOtViNfnC/uzNdPjHNKwyxh6CBi6LmphCXAfNNm1Y+ZbZjsTQLajiA2vLXcOMJqehYukhzwo5R7O2Luh2mKoQiDiLqp8aTn40fCZbZTCHQ3TI2llokX5ry90sTRVZbaJqPCLOZF4P6ucNK1DQVNlqsxVTJ+b87WyLKcDzdG5HlOUhT2F5sWqiLGXjmGZhzjAFGgxHnOTIchik8pQzciTg8mpvZfc1Bb+HAs6xjqsTHvWZHlOaos8+WVNnGW8pXVlnBUnFqDdichG4VES5Sk+FHGXMNitmEQximGqhIXbo9eJMgHsiQkfCQkNFWqnvF8Y58FftH79nnhoompvwP8DeA9IDvltS8Vr83X6Xkh93YFK2OxZRcaRDnvrw15sOvSsXXeXm29sEl6FnhxSpyKZNP31kekeV64CMo86fn0JhF9L+KNpSaWJkT5tKIKsHqMKOdZnAqWWkKnqVVoZDStkNvzNRqWdm5L5GdhYxiwNxGHpa9ebTMJhIBtt2bw5dU2H26MqOkiEN0cBQz9qEo8lQHypNAQAHHYnYamHKRplws3QLdu8vXrHR7tuSw2LQxV0GbjVIiIdmyNz3YmPN7z+GhzRF6IFIZxWiWmOrbOnXlBeV9omlWC8GVDtCOKA5ZwZ6nx6faYuabByIvpOBq35us0bY3tcYhZ6KQNh4I1IA6NSRWgxy/A6rOsUluFDoSpqix3TJJEiAH7ccrVrs3tuRo7E1Hx7BatPeWz9iNhy1vi8PO+KDaHPn/nVx+yNgiYLaxV/9KP335lklIAv/DRNm6U8offPr/4+h/90jJ/5b95j/fWhnzxDBR2x1C42rW4NlNDU2S+/+YMPTe6NOfR6YTorbkaO+OQgbcfoJwEWxeHShOQ8uebZ26YoMhCc6Js//1kc8RHWyPcMGWuptOu6ShI/ODtGRxDuNPYRWtVzxVjNE5zoiTDUHPSPL/wRnkSppkFoyDBMTTmmgZeEBMnQuD0xqzDG4sN+l5cJe6zLMcvLOXdKMHW9hNCSZpzOI/xcM/jwa4Q811pW0jS0YCsWzP4xo0uuxPRduboKrP1ZydFOkUipvyzFybc251ALtF2tEsrdMB+EkxVJCFUrMgstUSgfdjhUVflI+y5rqOhqYJp8eXVFvN1kyd9H1MTbdm6KrPnZgy8mJWOJdafc0oPbQ4DnvY99MKRaXscUjMVFpsWT/oeiiwE2N9YEqwlL0qLQ6XQsdjVA15bqHNzRqyTyxLPrX8EMPLFeN4ehnxvY8hSy+LWXJ1JmPBw12XPi5gt9CtBHHLTTLRuHad/Md1SfxKalsbESbB1Ia7tGGrltHdSnLFctGjcnhctHkkqdEANVcGo7Y9DXRU6jo+ilF03pG3r3F0Rmj/T2iFelFQM3WszIknytO+xMxaB/3JLFMFall4dal8EbEMlGQYEccb1rs1Kx+bWrNCLMjSZcRijSSYfb465PuMcuOfThcQ4TauEyGXtj9MQzz2n7egkacbTvs/uOGRvEnFzzmGxZfGFK63CTCInKO53ySjxowRN2V+7nzWH3DBhY+hhqgp3F5/dul1iGEQVs3Fz5LM1ClEViVtztQOJIT9MySXh3Dw9TiVJYqllYWoy37guDnNGIXtxHrRtHS8SCd2NYcDTgc+bSw0c49kxxfYo4GnhkLjUMk9MTFm6WrU9fmlVJU5TPttxWWqLAsXHW2OyTLCbmpaGLO8bdEzHi1C6jok1+mnfw9ZVsly4Q3aKdXNtsJ+UubNQPyJavtyyioOvRacmROhPKh5dVpvQJEyKtmSlYLpkXGlb3N91RVJXkVhtO9xZaOCGKZMoqWLKslARxFk1X5JU6CaexNou538Q73cZuGHCfMNkvmkIHbSaQZZnfLAxomHqhEnGasc+EFNHSVbpr10monT/t0yCBMNRxP6B6Cjx07SKDRRJ4vZ8ndVOjZ1xwGLTQFNlHu+JsXelbZ2qB3ihayzWpCjJiNi/n9Mttvd2JsRJhhslmJpCx9H5iTcX+HRzhFS4WMapcmxS6nkhmNAypq4cWKemURbKHUOhWxTKy1j2vAWi46ApMqsdm0kk4hZdVdBVeHulVbXylfcxL1xjO44w73l9ocbPf7zD9licZWxdZaEhsYlg2bZsYaDihzH3diZFy/zzxw+fFy46AnbzPP+PL/VKLguSEFOzTRlF0nh9ocZqxyGIs8o60i80FD7PxNRKx2YcxjzZ85lrGCSpyNaqighWNkdCNDpNc3LEQNUUuWhxO5vL3jTGQSwCZ0WmaWmVreSLQFnFKCfXJBQCofd3XbxI2DWXGiNl5dsrNpTllkXfi1BkcW3yGQRK/Xg/aPMjITYr2vrEPZIkqaowRklWOTbO103GUYyiwM4krETQVUXm+myNR3uuEGsMYu7M1y+d/vosbAx9dscRsiySrUmWY6gK83WTtaFPnOW0igqXpsgHGGXdml61I+WIg2Oa5cdqvTwPxkHMw92iRbJrV8/9aqfGg50xo0DoFJi6gizLR6q8S02LvYLWKksSnZqws+9cQqLkg/Uhv/bZjmg/UGVem6/xZ3/4xqkB5MvGP/7uBjM1nW9cP789/B98a5F/7x9+j595d/1MiSlNkQ/Y0Nu6eqRtsle4l5ZaOucZ82UrZsmimT5Y+VGCF6U0LO3I2jXXMEVALEHDungAsDcJWa8MAfaDiUmUQi4V4tM55BKWqVIrhKen585MTYhkzzdFm+J8w7p0CvTQi3ncE/Pm+qxDUjAIV9pC2NSPM7qOjq2L9ejw+rfUMhn6cdX+0pKEGP1x7TPCnEFh1jGYretc7R6fMJpvmCeyMNIs58GuaPla7Qo2ozLleDMOYu5tuzwo9MtKhvJloRxXw4LObmrCNv24VsEkzbi/6xKnQsNEuMVm3JgRh726qdFydIZBzKBwn3IL0fZSv6V9Qkv1s7A1Ciq2SD6735ofJOLAbxQOfOVYEi1oAW1bwzYVfmhprmI/H06sPQ/eWGqQM0LXJNq2gR+Jvc8LE/YmIWM/wVT3hVyzPCfPxME95/yFjOn148Zs7cD6MZ1gApHM252EtGyRyCyLa/ONZzNodkYhn26PyXNJMLQ1+UixoUz8AXiFrqEbCtadYyrYhsqXVlok6eXvi9PouREPdl0mYYKjK7QdvWKoXZ+p0fciNFUhz0Uiajoxtdg0ebjr0q0ZOIbGYsssTGUub3zAfutlnou1pW5qKJKovseZSNi2bf1YZsh802B7FAh3SVsnSYU+3bPm0KM9jziFJE/P7EJ5a65OngtGoKUreGFaxczT+0mWQ7NwEBZaaft7TsfR0RSJR3sehipzpWOfmy1cOn1tDX0+2xmTpEIz9EurJ3oSAkJ7Z6lwJD4paZ+W7KXiN5qawvXZGntuDHnp0ideGyViLS6xPvDZm4h48c58HVWRMTSFt6802RwFlbabLMnULQ1DVciynJ4bEiWi1dcNE9YHQoLhxqyDVrQdX1bh6izYHgdsDcNKliIvdLVqhkbXNng68GgUoveqItO05QMSGItNk51xiKbIqLKEkWY0D5kbHcZyy2JnHJJmKmmeI7G/Bk/PtXoRL4RJzELDpG7qFdM6TjM+3RZJw9m6calreKkBOAoSljXhPDpbE2ZOjq6KVk5dRu046COxpv7Wgz0apk7L1qoCP1Bpw102Vrs2Qy+m4+iMw4SNvs/KVPxYspwVRaZbJDiDJKdjyHRqBjvjkKf9gL4nTEvOmzA+Daoiie6ghnlkLAx9Uch3Q3EG9aIU61Ase97E1NO+YO7N1g+yW6e7nEpcm3G4hlhb5+qG0HJDPCtTk+nWhR6zJEnEac760KviuukYaLau8GvbY7aGwoTg2jmYfK8aLpqZ+JYkSf8B8I842Mr37Uu5qnMijDPWBz5LLYuhL6ptXiAoeQt1MZEtXeFq166Cz+45NVUuGz03om0ZXLtdY9cNMTWlCkoWGia/+6iHJEv0vIirMw6rHZv7u4IVdH/HrbSEzoqBF5NlEGQiY31ZrVLHYbFpoikypiYYPGVFYteNWKgZ7LiREEmuG6R5Xrgqybz7WAgdNiyR/QXhxvGsRSGIU4Z+XPWZdxydzVHA7lhkoG/PiwNqnueVLs18w0BXBf1+5IvK11o/YKFh0bT3F62wyF6List+q+XLQJk5zzKxqK90RIuKrspEcYaUSzRNsZE+3vNomCq7biQCrrYQYtwcBqwPAkAc1C/bdTKcqtxGScZMwUyMkpRxYOAXidYZx+DRnlsFP5IksdK2aNoatqHw8eaYPIeWrbHceT7dpzzP+Y37u/z8hzsosmBJzNUNfvory69cUqrvRvzLD7f4U19bOXerGIhN7ve9Pss/+s46f/UPvn6hzziMnisq05MgKXQBzj5muo5BEAvtlmahY7QzFgfPbz/u44UZy22TN5aaB95nairLbRNyoYlwUYRT1aYw2dc9uTNXI8syDE1hHMQMvAQFic1BwOYooFnoDpkFe6ZuqoyDhCQVAc1lY1pnJ0oKR6viYLrctIQVdLEXPOl5lYZRmuesFAd4x1D5dEvsB7P143UtgMKBVASIErA28Lg1e3Jbw3HwoqRiaQ09IcKeZTkbo6BwjBEtNV1n3/nsMjFXNxn6Y8ZBTK2YwyexRtxQtAkBPNidYKoKTVujbop2sJmawdATrXOlJuN8w6wSbRdNUrRsDV0RiZKyfXWmblA3VPSOTd+LsHXhwJhkQlB4qSXYVK1cMBcalnqpxY8oyRj6CddnaryhK+yMw6oo1XF0VFnCjRI0T2Loxcw1FCxNuGMmaUYUn5+Z0/f214/pOXgcyrWm78ZcOeFcPykSaE1LCPi6YcIn22M2hyGSlHP9BOfZdvHaPKd6postk+1RyBvN5qWw0c6CMEmZqRnCwTcX6+nAi1ltW2R5SNt2CpfhhLEfI0sw9IXArqHKKLLMwIvpOMmlH9b2r3GfkREmGd1CoH9n7EMuQS7ixzBJMVSFp31harDYtKgbGlt5SN8VhgNnEZhvWhrrA58sFfPVOkZTchzEbA5FwmulY9O0NN65JooqQZyyNhBmP86hmGalmGs1Q+XBrjjA9b24YuwOvLhiKp4nDvaihJ1xSL3Q5GvaonBhqoKdG6cZT4piw0rHPlJ8ma0bfO16hyzLWWgc/xzX+qJ1U5Lg9QWRXBoHgrkTxCmKLNGyNZJjJDvK9XDgRnzrUV+I8rdsbszVuDFXI4hT1gc+xtQ9Wxv4ZMW+c31GmBSV2qmTIHkhzJrTUK7deS5YyzVDZaVj4UUpQZKQZCaqLNoIH+256KpI8iqSWL/rpnB4LNteO7XTE2tmIfeyNRRH2RuzQtR94EXsjMMqaa8pEpYmisOdmsZKWwjnO4aKH6VV0vAk+Y/nQcvW2R6LNtIkS9kZDwvzJfEsl9sWO6OQxz2XtqWx50YVs2ulo5NkOXmeH2EYXxYapkbD1IjTjN3dEFURci4DL0YtWp0zMiFQv9wgjDOatnBO1RUFVZZpWQotW38hjFBNkVlsmUeS+n034jtPBiSZ2EtyZNq26CCajmXPgzzP6RcGAXuFUcxZoRaF0oe7LuMgQZZFXP3RxoiNoY8qSSw1bbwoqdireS4S5lnBEo0dkdA6i9vwq4qLJqa+XPz7m1P/Lwd+7Pku52LI8py9SUS3sP1WZLHBjoOYj7YmfOVaRzzwtn2CyN7LxSRM2C4EGksdoGmIgERhEiXExSGmaWvM1IxqY+27EUM/oW6qZwoG2o7OuLAOdi5ZXPowhOjj/mS80rbpuxEdX+PdpwPm6yZNW0OSpEpf4HvrQx7uCurkTM2oFoPslDWqdANRZHEg0pSDAvBZnpOkGb/5oEffjXhjqcGN2RpzxWLx/tqQNMsIkpzDbcdX2hZ7k6hiCLxMLDRNZCmsKmcApqqwHvpIisRXrrbpOhq/86iPLEvUDZWmpQtNiGJhnbbinv7zZaFj61WLZLew327ZGvd2QrxIMBZuzDh8sDFiEiYYisxsXRwCSwHVsiJ2Wde4PQ74J9/dZGPoM1Mz+ENfWOSN5eYLC+qfB//1t58SJRl/6hurF/6M/+GXl/nn39vi1+7t8cOvzT73NXUdnfXEp2aoZ3KOmcZhHaKmpdG0NLwwYXcsnIu2xyFvHHrf2I942vfFgTZMLnztc3WjYhCW68ckFMYHtq5xc85h6MWVMPN31wZEhX6HY6gVy2W6qJi9gArjjCMYspIkdI8kSThRbY0C/Djl7mKDbs3g3vaYSZgwV7hzgjjMLzTNA3MlPWHehEnG/R2XhqkS1Q1GXsLQSxgF8bmq4JMgYXPkY+sq12bE/tn3InpFa+5cXQghd2s6Cw3zQpplz4Kli8B1rm7ScyOudu0TWZWOoWDpMnGaiwpoLvHg8YC2rVcHhsYBS2jhTnee4PE4SIBtKPS9uHIXW2palZV5x9F5/+mQ7XHIQkM4UEmSaH9RJOmFrM/b46Byybo2Yx9op1UVoRHnxxkDL+K99SF3Cge+mikOW0GS8cnWGL1oQTjLc+06OkHs4+jqqXozMzWdnUn4TL2qtb5PlGSMA5FEEGM9x1RFe/72JOSjDdEKYusKV9pW5f55mOFTHp5eJmZrohVICNnn7E6EYPWTgWDXJakYf1Ghp7k2GFf3I5hKir+I8VGiaWnMNQziNGOuSNiN/JimrROngCQOPr/7eICpyfiRWC+3x+GBBN9Zr/HmnBB6NzSZXTdk5pgk4fY45P6OYNgnWcb1mf2xW2rWHH1PQM+N6DoGNUOtriefuq6LxsFrfV+4ePoJDVPF1BS+fr3DOEiquLxkXPS96MgBWC2YIg93XT7ddrk55xxJqE6v43Ga8ajnMfQjTE2p2FErx8h4gEi6xnsu310TTI35uoEsycwUmnKlWzOI1ug9N8SPBIOw6xjULbVibKmyRO0FtFOdBeW5wdD2NaxkWTgfGqrCrfkaDVPj8Z7HOBIi0fN1wYIZ+TFtRz8YU55x/54euuVz2BgGJGnORxtjFEW85s5CjTDJccOEgR9XbXuWLswq/Chl7oTE4/MgKxIQSSYSoGkmYoG3V1oVA69hi8TQexsj7s7XadlaNT9fViK+vE6A3XGEY4gEn2jpVnCDlETNibMUf5gVCauct5abSBIH1qDLRNmenKZC36ps5xsGcWWYEiQZb04VTU8zbzkJkiTRqekMvOjCicD9tQuGfsRnOxMWGiZhkrHYMum7gnVfsrlW2kK66GrHoW3HL5QF/DJwodUnz/Pfd9kX8rwwNRlNFi4AX1pt87tPhkyCBK1wXmlcApvgslA6RuQ5x7Y9RElGw1aF7op2kNqtqzKmprA1CirnnLm6cSpbomaovLF0ceG250HNULE0hbWBz2zNLJhK8YFMdElfzrKc1Y6FqSsoknRq1tfUZCaBEMYrHU0WmxaaImOoMrauMvSiKhH4aNc70N8/Vzeq53C4cmfrKnbn89mgDVU5EoSMghhdUVhqWlzt2vS8sGAo5XQKppeqSFUia75hosqipfE4vZDnhSxLR4RL/TglTgQLoWULyniS5sRJjq6ALItkbBkU6qrM1RkbPzreVv68GPsxhibRNHVuztb4oddmX2oL5lmR5zl/77ce85XVViVWehH86J056qbKP3h37VISU6WQ82VCU2WudCzGfnLsZj8MEhGkS/stvReBqshH2iTGgUjkp7lIVMw1THYnEZIkVa3NhipTm5r7ZTAhS7yQNgZZlo4UE8ZBAkgsNC2WWia6IjPwRJIuTjNkWewXZYXU1tVKD+kkfcEyKDdUIZ68q4U4xvEtf8/Cnhux0LCQZapA3NCUag8zdeWFt8WbmlwxR59ViBGW6KJt7/GeV2k3jPwYN0poWjodR2exZVYJ9cuA0LsSrTplG/l0ImfgxSBBWLgXfaE4YAVxyqCwO7/sdUrsA4KBcZzgcN0SRa1JKLTKhn7MlbZokRwHCZMgwS+Eqt3oZH2oaZyn9ad0QHv2b5CJkqy6nw1T48ZsjTyX2JkE1A1hbLDUsgrWrnHpzODnweE1ab5hsTYQGqJDP0aRRBIgTFJUXaZla5UI82rHFg5NinzpujWHcTgxK1rKVBZbos3Tj1KCWLBOJ2FS6YbVDJUrbatyrTsLTE3latcWn3cCI9cxhI6Opkp44dn2hO2RYJRsjYQOSzmOW1Mx5EXjYFNTCOIMTd0Xup8e6zmi0FB+x3GY3ou8MD3y28tCqG0o+HGGF6Y4unam1jBDVeg4wuijFMOunbCmbI8D4fxauJ5OtxjfXfx8zgglNEU+EveOA8F8tDSV1Y6NJIuukTjJUTQJRZGQZap5b2pivwuS9Mzr+2xNtEupilwlr+umSt+N0VUJLxLsGcfQWGppPNz1yHMquQrghRY/y+SkXyTj7u24OLp6gJE6DhJRwKmZhQ6j9bkYfJXxvCwZbBZtZbIk7ZtiFG5zi00LQ5OPTTJfNrIcarpGlAqiQslonC+KauRcakJsuWUdkIg4L660bXpuhGMIc4WaoZJl8PqCzZW2MMJwI+GUutK2q3F4XKvg70Vc6LQqSdI88H8ClvI8/9ckSXoD+L48z//2pV7dGWEW4rrlIuzoKj94u8v9HZebs7UDh45XAboqF7pB2RGNFxDtR3fm64Rpxo2Zg1XOMoAI4pTtOMQxlEtp4XnRUGSJ2aKNomGpRxbxa93CdlUWAnVnxWLTolHQd8v7cLgC3rA05ho6fS9mdebgYjHXMIXugyy9kgmMaQi7YmFhb+sKOQarHZs0g7euNFAKh4byQKTI0qmB/2WjpouANSoCVVWRWGqZuGHKzTmnatWa3jAvs5K93Hb4xjXhOPcDt1/NpBTAL326y/0dl//oj7/9XJ9jagp/9EtL/Fe/85T/zR+6eyYThJcNTRGWtVHBTDqMm7M1tkcBIB1Y7y4DZUuPLEkVU6ZpC0edt680WWnbaFNrB4iK18uqMFbX6WhMwhhJkipNjLuLdcZBwkrHZrZukOf5ges8LQGgKiJBstAQDNXrXefA+nBWNEyN4aFCQs1QKwbOZQiDnoZrXQcvTiutlLNgtWuz0BSus2t9XwifqoJZoymXG7zNNwSb64tXmjiGduQ666YqKv6zNa53bZxivTM1hYXmi7l/MzUDu2CbHZeYMlSF1xfqtG2NUZDQLRKyZXvKUIt50vfQFPlc9/0ysdqxcaODz32xaTFfN9keBwz9hI6jFTo58plcwT5vdAuzAF01KmOSNxabyLKErSnCGa1gfdkvSAf0NJTjed4xhEB8krI5CvCjjC9eadJ29Opwd5FCxo3ZGn6cYp8wrhYaFl+7LoxzzhrDNC2Ngbe/TpXj+DJwpW3RcfQTHWZtXa2SOiclAw7sRcck8rWpToMwEa17WZ5TPyN7qWlpvLZQZ7Vrcb3rUDshpmpaGn1XsCqelyn6MlDOF1WRqZkqeZ6z3DaZBCk35pxCU+ygM2bT1mhy9jVePiZWvtK2matn3Jqz+WB9glqYLtmaQsNSRdvrC2qNOw4lA32+YRb6fRw4P3YdwVoe+mLOvOykVInpeL5t68iSRJQKbcO1gU8YZyy1BHngZcVZtq6wOmOz1DQPJIQtXeUb17snnsU/Lxw2cfmh27MHdLEtXewTCw2h6fkqdoQ8Dy76JP4fwP8d+HeL//4E+P8Cn0tiqhQGKyGswusstWxma8altxZcBnRVRuf4IEqRJW7OPdutZL5hMlMzkKXSOvbFVPcvEzfnalwrLMizLGd3EmKoohooy9KFq4KnBR+SJPEDt2ZJs/zYxVpTZLxICLSXluKvIhxD5caMcC3yCov2L15pFRXWV2OMy7LEtRmHUSAYCh1b5+5io+qDvmxEScbAj6gbGpYuWHc/+ebCC/u+y8Lf/PnPWGya/JELuPEdxr/5/df4f/3GY/7+bz3mf/Vjty/h6i4fmiKfaNjQtDS+dr2LInHpjommplQMGhCOULoic2ehfi7b6hcNwWpyGPgRSZajKvD6YuPQmnW+8awVv7PEeda1JM3oe0JgvTQ2OLx2voyEVAm5MOuIkow9N6Rhamf6fqEpaFauRS9qrZytG1WQnec5PTdClfd1Hmxd5Y3Fxktfq08LtmVZYrFlsXjM3wltrkbFBLnMOCOIU1HlLYSYT4IkHW/SIsuCXbhQdF6ctLe/itAVuUrsNEz1yF51knvYy0TL1sjJqRui6KerMrdM7dLu81nMd+YbJoYaY57RTGGlY7PUejHjoGy3Pgw3FKYeZ4kbD+9Fz4JROBaeJ45RFVHwnoYfpYzDmJalV/vdlbbNYvP3znwxNYXb83W8giHStjVeX3hxMeU0xD2T+crVlmgRRDCIO47+wlmMJ+HwWJxeS+yZRjMAAQAASURBVL/v5swrtRaWc8KUxRp/e642ZUB2cmL6smFoCt+83qVhqUfGzLPO4q8KxBq8v+/emqtVzznPhY5emKSvfA7grDjX05AkqZwNM3me/1cgfCHzPE+Ay1d8uyC8KOHxnsfGIGB7HJ7+hlcIyTmsixVZYs+NWOv7POn5DIte2VcZ5YK5MQrYGAQ83PUq2/GTkBbCfZfx3XmeH3GCSbOc+zsum8OAJ4Wl76uKtYHP5jDgQeE8JZ+D6ZVl+QvRzDkML0p4tLs//6RzsjTOMwce7LpsDgLu706q33be73vZ+NXPdvmthz3+3A/fuJTkyK25Oj90e4a/+xuPXojw5ovG7kSsYY97fuWQ8iIQJZkYL8OAzWFwrvcet25cNh7tuWwNhbZKud6dJ8B81rw57xp6eJ15VQLdxz1xj+7tTM69Jxy3Vl7W3jKNncId8nHPYxTsj+fT1uoXcS0n4axrbHnN5Rx9cklz9GEx1ktX1+fF847Pl3nvt8chG4OAx3seXpSee696Gfv4455XzbPp7zrLfb6stfJpX6xB93fc6vNO+9yXuU7F6f5+sjY4W9x4nvvyvHFMluV8Wrh0lS6wJV6V9fysSNLsQIx+3ntz0vw+61wqv29jKMbkWc4tl4XTrvH+jlhLH+2JZ/x5PNuzrkeSJJHm+bnnzfMiSrIja8mriPOe/4GDOYAXGD+/TJyXMfVbwFcAV5KkLiKBjCRJ3wSGp71ZkqQl4B8DbwC1PM8TSZKGwLvFS/5HeZ73JEn6nwB/EegBfzrP89E5r5NPNkesDwNuz9f4/Y2FV4ZREiap6E8m51rXOVD1fdr36Lui1e04a97/vmBrFPBJ4cR2GpVzexSwNRJ9yjdnned6jkmacW/HJUoyVjrWmbLLeZ7zuOcxCROWmtZLcyopg540E+PkeXUzvCjh/o5bie1fFtuhtPyeqR2vg3Bey/FHey4jP6HtaCfaKgMMvIj314Z8tjNhtmZwtfv5mxqcBXGa8b/7R99jpWPxJ79+cdHzw/hzP3yT/+nf/k3+7q8/4t/6oRuX9rknIc9zHu55eFHClZb9XH3tYZLyaM8ly7kU4dAsy3m45+LHKVfa9nPrH8Vpxmfbk0Lj6Pk/D4Qo++M9rxKMf95g8vGex9CPj503e0WipNRzOM93BXHKx5tjdFXmWtf5XFlm6wOfT7cn2JoqdCGeE+V9MYv7ctFDYGkNPd8wL9yaMPRE25yqSNycrZ3ILjwrnrUul2OlZWsniim/LJx3fziMNBOHnCjJWO3ap7JwjsPzzI/TEMQpD/dcZEm6lPkTxCn3d9znFkP3I3FdiixxfcZ57vFWYjrGutI+e7y0MfTZm0QH7NUPJxK2RgHblxQLPgtelPBoz0Mt2N9nuTdneRyXGcsehzjNeLjrkhQx4+bQ5/6uS11XuXpBIefPA5e9N26PA7aGIZYu5nd53y8rJs6ynAd7LmGccaVjXarBgh+llRv7jZmTnbUHXsQkTLC0o9q0Lxp+nPLh5uhC97CcN4fH7mXrBCbFecoxlAvrqD0pCk1lt9JlI04zPtwYUzPVMwmvl+NuaxQgU7DoXt2c27lw3l28XCH+MvCPgJuSJP0qMAv8sTO8vwf8OPAPpv7fe3me/2j1BZKkAX8e+GHgp4E/B/yfz3ORlqaQIqjoQZwdUOH/vDEOksoOc+THBybyyE+qf+eFzsBp6Dqih1eC3zOiZ7uTkI6jM/Rjrs7Yz1zMyoqzH6Xntq8/jCDJpu59UiWmFFnixqzDJEyOOASFSVY9lz03emmJqXGQVNa5Az/C0oU21nLLwtIjHF09VzA5KQQk81x89mUlpnYnQnB0dxJWByBbV1nt2sRpdqJ71nHI8/zAHOAEC3EQz2IUxDi6iq7KrLSdV5olVeKv/+xHfLo94W//G+9caivUD96e4Yduz/Cf/sJn/PRXrrzwcRrEGZNAPKueFz3X2mOqMp1iHZMvIVgPkrRySOq5UZVI0lWZazMOftF6cVZ4UUqSih1/HMSXkpjquxFpluNHaWVbfrUrWvkahWbGeVCuk0LA+vDfiecUxhlhkp5JS6FcZyaBaHEO44xJmNBRPx+qeF44787XTbw44cZM7bkPduV9CeKMMMkuFAxn2ZQ1tCtcymZrBkqheXLWQ8qoEEaOkxw/Tp87UXDcujz9XdP/PgtmajqyJPbKyxj/17qi3ft5D3FulOBHhRuaG10oMXWR+XFWDLyYOBFOguX8EWY1EppyflMSN0wupeI/8COSNCdJc8ZBcsR4ZLVj0/fE/TzPvjodY42D5Mz70N4kqsZrmZhambqG0jAHRCwYpzm6+mL2+4EXV/fGDZMTC5iaIhInpWTBaZiOZV/E9U+ChKCIGfteyCRMudKyCJKU1c85AX0eHLc3qopcxejniSlh/1zlR9mBM8R0TDwJzxYTLzYtDFXB1OTq9V6cVgL9A/f517RpjMO4ciafhMmxe9SNWYdhEDFnCHfIxWb2cuVIcuGe7p7xHh43b6bH7vR557IgSxKdmoatK1zkmBCnWeVw23OjF5KYKtf1SZCQZfmp62457oQwujCG+b2SAzgN5x29s5Ik/WXgRxHJpf8Q+FngbwE/cdqb8zwP8jzvH/rfdyVJ+mVJkv66JCLN1xDJqgT4OeCb57xGNoYBTUs4htyYvbxq0GWgbqpoqoSqSBiazINdlyc9jzzPmW8YhSaGceagW5IkOi/ASeuiyPOcJz2P+zuTE9uKuo5R6GjVTl3EZ+vCibBT058rKQXg6EK00NDkIxV3W1eZq5sHxsrmMOBp30MpnORehgVnmuU83vPYm4TI8tGDgKoI2/TzBrQtW8fSFWxDOeBSc1FsjwI+254UYqBH703T0oQG2jl2AUmSDsyBk7A5DBj6Mbam0nUM7i42XvkFOU4z/sN/9hF/+1ce8G9831V+/O78pX/Hv/uH7uKGCX/lv3nvhbelGKqw/5UkzpXkOQ6OoRZuLWcXej0OkzDh3s5EjI3i2g4HsTVDZfYMLqbTqBcOVKYmrLUvCsF2mPCk59G0VGRZuI5NO1TO1c0LJSznqnlzlLU4WzcwNOH4dVYR63KdWWwKZx9dlU889IfJ/u96UeNOkiTajkaUZKiSjBslz/2ZMzW9ui9n1bE5jBxww5iNoU+juD+SJNGtGefSe5ipGZiaLJzOLiEx0nH0al3eGgXc25kwCcU9e9ZYOQkX+U0nIUwyhn584bE+DeFMJSPLXHhfu8j8OAmH45+mpR2ZP7IsMVMzLpTga1oajqFg6c8X0zYtjThL2RoHTMKjCUqtmP/nTdI5hUOnocnnEoZuF+MV4LPtCUMvPnINc0Us2K3pL5S52bLFMzO00xOHjiHixnI/yTLx/B/sukfi39nai73+mimKdIosRLrnGwZ1U+PuQgNdldmbhNW9fRWxMxbXp8jSkb0R9mP08yZdZuvGsWeI6Zj4rHNRkYUxyrS+VOkoLtxPJe7tTM4tFXAS2meI201N4dZsHUNVKuOUwyhjo63R5VzXNGRZwjnHPYSj82Z67DYtrWJQPd7zLiURr8gSUZLj6Bdzv9UUmaalFfHuizkHqorQ8ptrnO3cZBfjTpYkrs/WzrQ3l3PsVW/5O28EpAA1jqqw2gCSJNXyPJ+c8zNvA33gvwD+MLAHlK17Q57JmzgKN0zYm0S0LJ25usybS81zXs6LhXDCEVTCtYFfsQ4apka3ZlSuWkma0fMEM+aynEVeBkZBUmWWd8bhse1YpVPSSZiECV6U0HWMyoniMiBJQmC9wemisEGcslPok9mG8lIsTUFQcstFY65hnPnwcFgE/DB0Va5ctJ4XcZqxNRL3xtJl3lo++xzruxE5Iplx3AZxmoX41ijg060xTUtjtWtz4yU9l4sgTjN++0GPn/twm3/+vU3WBj5/8msr/LV//Y0X8n2vLzT4t3/qDn/9Zz/iv/jF+/yFH735Qr4HSoOJy7n3oyApHIjACy+ecNgcBviRqCK9tlA7NZGdZTk9L6qCjpNQCvo/L3YnYcHkSmlY2rn2pqEfVwzE44KWubrJXP34eVMz1COiuGeFpSsn2qvnec6eG7E9DkhTKH/XZa3Xh3GlbTMOEsZ+wgdrI77vZgftOYoVdVN7bgHbvhfhGBqOoaEeOmzGaVYxPk7bbyxdCPxeFpZaFkstizBJ+WRThGSbw4Bbc7UDY8WLkoop/LIKeFmWsz0KadnPFj4/CxRZeu77Nj0/+m70XG1yI38//tmdRCy3rBPnz7NQjp3D+7lgjjz/umvrKm3bQJMVhl5CUE/PlCQMk5ShH59oPiBJEquntNW7YVKxJcqD6XLLYqlp8v7aCD9KWR/6R4pNL8sK3dbVMz2zcRATxBkdR6/azcbB0edf4rKuv4yhDhcDD5td2LpaxVJ5nrM+EEmJ4+7t5400y6tkTprlZ94bz7KHn3SGOC0mLufgaWcwRZaqz7m/M8ELRQwiCh7Pt75pyv41ZlnOzjjE0OQjBf1p843jMB0bXca6Ow1DPbomnXdfOTx2t0cB4+Js7BjKc7tNp3mOoch4UUqcZhfa605b154XqiwduAclTooj5KlxdxZMz7HNYfDC4rTLwHkzHht5nv/7J/2lJEmPgXMJp+R53ive+zPAl4F/CJS7QgMYnPBdfxb4swCrq/tfaagyWbEIz9R11gf+566jcBIcXaEHojpwqAK2NvAZ+QmSFHJnof5Ksb6ehbJ6mWVciFYfJSJTnucQRNmlLga9QiQOBAPqWRlmvcheR0l2od9xUdi6WlUO7XO0ljzuufhRxo4cFu5PL66tTZUlTE0miM9nsTr0Yp4W9z/L83PTYSdhwkbBlkqz/JnJzc8LQy/mFz7e5uc+3OIXP95hHCboqsz33+zy7//RN18IU2oaf/aHbvDB+oi/8c8+QlMk/hc/eP2V0dc7CXGaVSYVQXzx+V4zVPwoRVdlNPn09XJrHLA7jgC4Oee8cLtgR1fpuzGyzLmYGaWZB4h7tdi8XJr7RbE9DtkehYyDWLhsFayyFwlTlflo4GPqMuvD4HPXYrSLSrn488Hx86Tn4YYp21LI3cXG5yJKq8kyhiYTxkf3saww/Sjbu19W8QU48xx9mZjeny4KU9+Pf5zn0El53PPwirHzxmLjhbSpO7rCJEjQVOnM8eWjPY8wztgdRxdKuJVaL3kOXpgeSPhLkoRtKFV7yquMIE4r4f4gTqszxvTzvwzm42EMvKgao3men/nA/qrfW0WWsHQZP8pwjLPPmxe5hz/tC+KAJIW8vlA/E1OrZqi4YRGDXPKZbWMU0JuI33pr7mS9qZOuy49SDO3Fr7vp1L4yCZILJdKtqX31MvSm0kwU0bxYRv09IPkxjcuKI8QcU/Cj9Fxz7PPAuTWmila+Y/8OwaY6z4c5QJDneQr8APAe8AnwliRJCqI98DeOe2+e5/8l8F8CvPPOO1WJS1Vkbs/XSPMMTX61b37L1rF1FVk6n5X3q4ySEZZm+Stlx35eyLLE7bkacfZ8ulbnhaUrvL5QJ4dXNhkpSUKgN0qzC1eELro1KJLESsem7WjPZFa9bPhRyr/z//sO/+131gmTjJmawR/8wiI/fneOH7w988KTHiVkWeI/+uNvE6cZ/4d/8iEfbY75a//6G690daRualzt2kiA+RxByELTpO1oaLL8SuqNtR0dp9BL+b3mivQs1E2NK22LRtG29CJxpWNXFfJXAbauVlXOV+WapiHLErdmT97HJOlsws2XCVNTuD13cbH5VxmGqnBnvk6Wcynxz4usKcw1TJr2q7Ve3phxCJOLxxUvC5K0P3emn9FlP/9nX8P5ntmrfm9vztae6/qkC0eVl4cXOaemP+2868KrHhsdRt3UuLNQR+JyzsaaLLPSsbA05ZUv1L5I3Jx9tdeAEuc9Lf04sI4QIz+u5+KZI6gQNv9Z4G3gnwN/FfjPJUlygfvAv5fneSpJ0t8CfhnR4venz3px4yDGCxMsXeX2XJ0wyV5YP+hl4fDmFcQpqiwxVzfwwpRu7eVR7C8LFzl4JakQqc9zUcnTVPnSmQEdR69a9Iwz3FNZljA+h+TmeRbiPM8J4owrLZtxmFA3j/ZQT8IELxRCpJc1lmRZwjzHvQmTFEtXWOlYZPlRGnqcZvTdCEtXjrTXxGnG9ihgrmGy2rVJ0uyl6H2dBxvDgH/63gZ/7KtX+OmvXuFLV1qfWwCgqzJ/809/hf/rz33Cf/oLn/FLn+zw7/zUnc/lWs6CpqVh6zJJBp3nbDF4VhI5zXLiqWTqfKEpp6vykcShqLCFGIpyqW0P5zmslHPbVBWuzthEyVEzgTzP2Z1EqLJ0os5gkmb0Tphbz4O5uoEqS6iH2ijKtfxFBD+aItwBkzQ/l4bNWZFmOXuTEFNXzixie9KautKx2RwGtO3zJezCJGXgiXapy6gWH97H4jQjy3M0WaZuCD2PlymOLEm8lLXx8Hw/DYYmY2gSNeP55sjzHKTKZ7PasRl4sRC2zXN2R+cbk2fFWYtuWZYTJhlXuzYjPzlWC7Dcw21DPZGVoyoySy2TIM6YO6b1SJKk5143zrImPi80WWahYZKT0zmkO3iZReYo2W/jgX2Wf54LnZ4oyc68p0zf2xcREz4vzvPsS4H96T388FpZrqN189mt1Cftjytti74XV+ySID5bu+uLKmQvNEyyPCeMU7JCHN7U5DMnWl50gX06hr85W2MSJrRsTTC11PMnxC5zXGqKhCJJ59JV/LxweNyuTO0FZRwRJikS0rmT35exvr4MnCsxled5T5KkbwM/k+f5tw7/vSRJ/9YpH/EVhB7V+8B38zz/TUmSbgLvAleBJsK5Lyu/kjMaIMZpxqM9j6d9Hwm4PV97pfVnjsPuJGRjEBRimRJJlrM9Dl+pzeNFIE4zPt0SduzjMKZuaOhp/kKq7x9vjhh4CVujgJ98Y/73fPb8Sc9n6MdYusytueP7k8vWSC9KL0Ur57wYBTGPdj0kSTiIHBckrPV9xkGCJHGkddUNU37zwR7ff3PmuXvNXxSW2xa/9ld//FIP/s8DWZb4yz91h594Y56/9jPv87/+r7/LzOd9USfgad/jg/UJknSx9t+zIEkzPt2ekKTCZGKuYVYixMdhc5o2r56PNn9ZOG1ug9DxK/XeFOV4F7j1gWh/lSSxL15WgFoKYk9jei1fbF2+rfL6QNjK66r8TE2N5/n8UiPm9vzFLcRB6DgMvJggTrllnF109fGeRxBn7E4uvy3bj1Lu7UzIC0ZHecC7qO7Gq4osy/l0e0yc5MzU9TMVuR7uucRJTpp9PsKw089mtWtX4/tJz6vG5Fm08y4beZ7z2c6EMM5oO9qxuqEwvYefLD8xCuJK66hlHy/U/LzYmYRsDcWaKF+Si+Rh3N+d4EeZELevv7gY8nHPw49SdqSw+n8tW2cSJnyyNQbg2oxzrn0zmYoJJ+HFWq0+T7hhwoNdFxC//aQ95knPE/IW42e3w+7LpsBr8/XqsK8qYo85EDs0jRO1HF80ZFliHCQkac6vfLbLYtOqtFZfBRyO4WfrRrV2mZrQyvq8zltenPJwz2NzHPAH3lx4pc995bgt939NORjrnOU89XsdF9kV/ufAoxP+7p1T3vsI+LE8z38ImJMk6QsIB74fLf7pFayqPw/8MPB3gT93nosLkhRZkvCi4x3hXmWUlqNplhOl+/m4V3cKXQ7CJKucF8LCMvRFFVTLQDxJ80txe/i84cX7VrjZMb/neei/l4XSzjvPqSxhD2P62o67zCSFJDv+va8CDFV+ZZJS0/jilRY/8xd/gH/4F3/g876UE1HO+Tzfn5+Xjbiw/wZwz7A3vArz5rS5DQfbOU66zINz68X+mOm1vNzPLhPlvh4lgpV12SjvVdmq8zzwY3GtQZxxnkutrgHp0gPoIE6r1r1p17BXoQ3mMhFnGf9/9v47yrIsO+8Df+f6e5834SMz0pc3XV3t0OhuWBIkCFBDK3KEIUUOzYxEco0WSZGjJbOGlJvhzIhyI3FmRIgSjShBJASApAiQAAmw0aaqu7q7uqrLpM8MH/H89fee+ePc9zIibUSGrZ761qpVmZEv3jvv3HP23mefvb8vSYt1uMdYcDwHJ+YndzybMHlwzEKczHPKcjmx0cFj5vJJPhwgjNV3lPLx73UQ7Jyjo4gjpZQEsZqPsY0+Kmg77NFOBAeYx502RTvFB/RHYbxP1GXro+d//D2fZMt3zsHDXhdn+SR2OAqfth9oQiCRkzjpMNRpDwsPW0tP6wMPG2NBiySVRxI3HC6KdfsIK7rzPHVUNvSkIfYr7yyEcICKlHLjvp9PA30p5Z70KIUQ/y3wH6Na9t4B/gXwF4HngX9NSvl/FEK0gL8mpfzdj3uvVqstl84tkUt1GxAmGT0/IclzSpaBZepIKbF0DU0oKVJd08jynCxXy8AuSFulVI5YohzQKM4whCINc0z9oYYrk8pQqPfRJ8spzSUC1dp248YNzp07t+v3giQjLMh6HVMnTnOSTHFBxFlGP0yxCwlNKZm817iSyI8z0jxHSpXdH5f6JZkai6lrGLogySR58f3Hv5sUhtbU732hh41xP8hyiR9nZLnE0ASmoZGkOUGSKXJc2yBKMwZhipRK0U0XGmGaTeZOSlUybmgC17pXujhuD7ENjVs3b9KeW0QTxUFWKKPomHrhyEXxvQRplk+eWVCUwI77/3OpWgdNXRHEZkWVlmUoYu8wTTGEhmPpGJogSlSZ/VjWdLzeNE1gFM8ol/KRz/tJcxckah4MTZCj+JQ0TZDnklGcEqXqgGroGp6lEyYZcabmSi+8r2fpkzm3DbXec6mes9gxT0/7vINEPV/1eSqzrRWf7ycZfpSS5DmaUM87K1oAcikxNA0hFMeIUdz+CHGvZFcXAqGBhlo7Y5LCq9eus3hmCdvUSDNJmueTfZBksrj9FxPHOIpScqmIiaNiTyGVyIBq75DqgAZUHANrx62tJgRxljGKsonssm1opLkkSXMkEsvQHyBQvHb9OrMLZ3FMbWJDgMk6yaVEE8ruaEIdPNJMPUuBSrpludrkMlcHqzDJyDKJZxuTcvIxp0WewyBKQCq1H88ykFIdNrNcTsrbd+Kg+/u4sNdxSiAq1iMwsaGaJrANjSTL6foJmZTogmK/SmxTm9jHccBiGzoItZ/9WD17IUAXWiGtrp7PeE/tZy4lEMTp5NnpBfmoJkThY9KJbdE0QcM1CZKcOM3Iin2jCWUfDU0wilIkY6EP5afMwrft3DfXb9xgdv4MHT/Cj9WeUap+KlA09Xt7xtAFtqmrfY2qoAmKtnLb0EmyHKP4jH6QIKWc8IEZmiDN5GRvR2lOXNjwx/lMKdXvjucyy5UflajvY+qqoieTEk0Isly9b5BkGLrA0nW8Qi45Tu/Z5mIbkeWSMM2K91Tyyo6pT9aLRF1OhElOmudYhk7ZNhAwsen3r0n1ehUMjoUqojQnSpVvEUL5njDJidIcpMQ0NCxdmwTp432ZZhJzPO+aUPtWU+TJoyhVflTXcIt/l8V30oR46IH7YWsyl5JhmJJJSdk2MDSNMLmnTBSmKgZRz1btA4l6Nsp2qfkZ+1mniFVsQyeXqlVOyaSrtRkXiUlD1yaxhYpHBEbx9+vXb3Dm7BISSLKsWCvKXo19KKjPj5KMKMsn+w7Uvh2rw4Eas6EJReyrq/fQiv2bpDlCiEliNy/WkpKkVz5bE2o9IlXMpgvByt1bT2Ur4zRnFCmV0fFFRT9UippOMbcqDqHwfWLiE8ZJXbOYO10TxRpS38fUBYamTZ7F5sqdfY1x50F+HGtJqSots0zZoTSTk3UfZ+NLQhUzq7lSMZVexHdRova5Z+mTONjUNcyC3F4IeP/Da8wsnCmEAlR8GsbKtoESghirnuVSTlow/VhdMlccE02o6p5x65qhC5DKpo/9syye7Xj9qDU5PhRLXEvtfVnYTPX9lK+4fesmswtnHkpaHRf7O0pz9CJ+0jWh/LNU86UJ1eGg1qGyi3GS4ScZpq5RcQwGYcIoyqg6BuWHXGJFaV7Eq8r2RGnGKM6QUlJ1TDZW7jC/eFbFX5pgEKXI8b7WNQZhQpqpuQMm7VMq1lZ7pBeo1+iaIkN3jHv2MClibFW5bO6yMRKlmKvm0XgsgfS+fOOONTk+52hFbKcJJcqgDt9yMi9CiMkZwdTVvFu6auUbhGmxh5S9HMe7eX4vth+PcWnpHGGqklxplk/mLS34cV1Tn/ja8TqwDW1ih9XZWRQtgAa53PlzJnHf2H7vF1evX6c9u4gulO3MpTpfpYXtFkKtQVPX0AUEqToLVh0D29QZRil5LvEsXdmNLCMv7PrYbx4GPrx2nZn5xcIu55NYwNI10jwnKYoAxm2H92hb1DN1TTWWMM0wNI2qa6CJcXWYEliyDyiq8tY7H6DXptEFPL8PNeTjxPUbN2jNLpBlKv/gFs8oTLLJ2VXFPRoCMbG3INE1ZRM9yyjWrKRsqXWQ5pKwSGCpeRzvo6cb55tvvimllEdaXv00NWD/KfCPgP/5vp//OPCDwP/hSW8ghHgZaEsp3xFCXEZxSf1XwE8BW0C/eGkPaDzp/WYXzvD//Xu/AsCvvbfOr7+3wXdX+mgCPFvnR56dxtINHEvxFmlifIiR3O6MqDkWnq3zyaUGK72QVsni9rbPr3+wweYwxjE1ftdri7y0UH9o2eSdjk9npIKks02Pmmey3g8nLRbnp0r80Oc/yxtvvDH5nZtbI37hrWVWeiGNksmlmTLvLPfRhYalC7673GNzmKBrkufnavTDhF6Q0CzbLNRdtgYB762N8OOUqmtyrlXifLtElsPWKEJKeGa2zOXpyuRAUXYMzrdLu9TpZmvOpEzw9ddf3zXG/SDPJV++uslXrm+z0g2Yr7tMlS3WehE3tkZUXYOllsdbt7u8tzogyxUR21jNaWuU8NJClTdvbDOK1MHjMxfaXJwqAYL3VweUHZ2ZmsO/+a/8Dn763/1ZhmHG5jAqghedF+brVF2DmarLmaZLxTGIUxVwfeXqBh9u+NzYHDJTdSk7Oqamq/lzDM62SkxVbCqOGuc/fXeDd1d61DyTL1ya4vOX2xMVlopjcK5d4sP14SRjfWm6xLXNEXkOjZLJv/TjX9zXXH7rdpdrGyO6QYSU6hA2VXG4OFWmF8T88ndX+ebtLpujmOmyzbm2R9nS+cbtLqCM1TOzFZqeRceP6QYpQZxyvl1ibRCxWHeQwAvzda7MlHlhobbv5x3GKf/w7TWyPOfm9ojpikuYpnzmXAvT0Pjy1U3+xfubfG+tj2saXJouM1O1eG91wKaf4Ooai02Ps00Pw9C4sTEiKg6/jZJVJAwE51olpms2v+3FOYQQXHr+Ff7Sz/4CLy1U6QUpN7d8aq6JaQgGYUKUSM63PV5erPPhxoB/9PYaSKh6OjIXvHW7UzhznemqzXLX53urAxAasxWLV880CZKUIMlwTZ3VfsBqL8I1dX7rC7P87tcXWetHrHZDVvshi02H8+3yrhLyS8+/wr//s7/IYsPBtQyWuwFJJml4JrapcbcTUHVMZmoOVcfgn35vnc4oQQjJVMXm3ZWBUhvMchWkC3jj+hYSjbKj80NXphFCtXe1KxZ3uwHr/QgpJZ8+3+IPf/4cmhBc3xxxezugUTK5PFPZJVd9kP19lPilb6/wT763xh/63DleOVPf8zivbQz53uqAW1sjpioOcZrhmCpZ8IOXW/zGB1v8s/fW2RhGpFlON0jIc4lj6LQrFn6cUbZNXEvjh65Mo+uCt+/2eGdlwCiKKdsm59plfuhKmyhVCc1m2eJLV6b2NZfXNoZ863aPfqBkvgUCy9S4Ml2h48f82vvrvLvSY7kbMldxuTJb4sJ0hV97b52NXoRpCBYbLldmKmQSbmz56JpK5LqmTlgE6S8u1JiuOPz2l+cAeOHlT/BH/q9/m7/7xm36oWrle262StkxcC0TTUhePdMgSnOuzFRYans8O6uUtn7hrWWub47QNGgUIh2WITjb9PjV723gpxm2pnGuXcJPUoRUAfpz8xXudlRrRMU1+PT55gPthX6ccnVdtWK0KxY/9aNf4I033uBuN2C1G3Jr22e26tCqWERJzrXNIUiVFP/n72+w0g0YhAkvn6nx4kKDH3tumg82hvT9FJCcaXqs9UO+t9rn+uaIq+sjKo5Jq2zx6XNNHEPjdtdHSqUyNopSwiRjru7w4nyN5+drVBxzl/LR+Hm/t9rnnWXVQvPK2Rp11+IrV7d4e7nHrS31OYMwxrUM3rixzULDI4gzLk2XeG91SJrntDyLMFX73DJ0PnexSZareZ6qqMThN2/22BxELDQcPn2hxbOzVe50lDqPEDxUnedha/I3r27yD76zSp5Lnp+vcqFd4lffW0cgGMWqrWpjEOHZOudbJTRNqMpUqRR2Myl5f3VIkGQ4hs501eKTSy2qrokA3lnpY5s6L85X+bHnZnh/bQiAaQiena3uioMWGy6NksULL3+Cv/Szv8B02eabtzuTi7NnZivUXIsgzqi6Bu8s9/najW2GYULDM3lhvkar7GDokl/69irfvdtHIqm6Jgs1l+mqzWtnm7QqFlXHxE9SNvrxRCmy6phsjiLyHOquQZRJFUuNIlolm+/c6aJrGo6p8Zf+2O/ct63Mc8nf+M0bfLA2xNI1/uVPnyHKcn7p2ysMwxSnSJx983aHQZAQphLX0lhqlpir2YDg1vYI2zBolWzyPKMXpfTDhLMNl7pn0y5b3NpWvuRv/IU/sK8xXt8Y8tbtHnBPTTJKctoVm14Q8Y2bXe52fQSClV6IROJHGZdnK/T8RPnIKFPzXXfJUW32SZbxymKd5W5ILnN0XfATL8xxYarMmabHpedf4T/42V9Ubb9C8psfbrHSD1nvB8zVXC7NVPi9n1xkpurwzkqf7WHMP/ruCre2AixD40efnaLumvzK9zZY7ga0yxbPzlVxLJ2yadCPEvIcemFMlKhDe8kyeP1cg5mqzXeX+2Q5tMsWdc8izjKurY+IMpVEfGG+xv/+d/0Y/8F/+0s0Syavnm1M2v/6YcJbt7p840aH61sjWmWLpaZHJuE7dzqEqaRdtmiVbTrDhLKjc6Fd4kyzxK++t0Y/SCnbBs/PVfgf3rjDIEqZq9n8ez/9AvP1e2eJJMv53sqA29u+mvc4462b23z9ZhdNg1fP1vmHf+mP8F/83X/ExiBmEMa8dauHa+m8tFCjUTJ581aXr13fpOcnSKDlWeiaRsU1uTxdolm2+Pr1Dne7Pp5l8OrZOp8+12S64nJ9c8S2H7E5iClZOp881+Az51uT9rfVXsBvXt0GUDbpfOuR62w/vvHD9QHfudMnTjO2/RhL13AsjZcXGpRsnZ978w5v3+1xY2tExdYpOybzdZebmz5pniGEYLHuMVd3Odv0+OqNbcJYJacqjoll6rRKJpemyhi6zpeemaJZsnj99df56z//T/hwbci7qz1WugFhnLPpR1Qdk6myTaNk0PUzPlgbEGcqSTpXsxkEOcMoUfuyVeKFhSq/75Nn8OOc91b7dApxDtfUsQyd+brDZy48er4ehQvPvcwf/St/h0GYcKFd4m4n4DevbasYxtRYbLj0wwzTgIGfsjaIyJFcnirz3FyFzVGCHynf0yjZ3On4dEcxZ1slvnhlilfO1Pc9pofh7JWX+L1/+b/HM3X6YcqtzRGOpVOyVUJsfIaeq9ps+TGr3ZC1QUTJ0nEsnU+da6qkaAYlW+e3vTRHu2LxN/7FTfw4Y7Hp8kd/8MKBxATsucvM/aH/BIB/+/c8y+98/eKhfPfDxKXnX+YP/Ud/i2/e7rJYV2Iyr51t8I/eXqUbxvT8hMvTZRACQwjeWRmQ5BlCCuqewYXpCjXXIE7UpdtrS3V+x8vz/Oa1Td5fHeLHGVMVmyszFaqu8Uh6iCehoHM6UjxNYuoHpZR//P4fSin/phDi//ykXxZCNIH/HPh9xe9tFz//+8AngJ8Hxjq0VaD7iPf548AfB5hbODO5RdSLZJQmVEbQswymyjYl28SzdFxbxxDqJsHU1A34ODMpgFbJwjZ0aq7KNnqmhtAFTc/Ge4TEYqtk48fqgF0uSCGfVIc2lm5URKAa1aJyI0kl1bJJyTYYhimurbPYcrm2npFkBpYOli6wTIOmZ2HogpmKxXTVoe6Z+HGO8MefoWEZgpJtEKX3CKONHVVSOyumDgrPMvBMHVvX8EwD1zJoVyUbo5CKa1J3FZmraWjomaTmWqqqRuYs1HVaJYuaZ+EnEYYhdlWSVVwDiZJc1zSouRamSBmGSn69Pp6Lmg1S3cKdaXisDSLqnoFtGViawNB1yrZOs2ThGjrLPXWYdQz1/AVKOlnXiltzoWGZGiVLp+aaBElGu0jk2YZGEGeYhprDcadZkj3p6T8IRXSrEWU6MhOEKQgkmqb6iBueSp7aoapOWmp6UKxvHUCAaWi0yjY5kn6YUveUfLtlqFujtLjJMZ72mQtBu2LR8xMqjokuAKlupqarNmebHm8UlYWGJqg5JufaHne6IWkmkUKNveqaeKbOihFiaEUlSPGss1yiFzfD98OzjB1VVuqmcygEuqZuDNR+VxWLEqjYJmGSF6qXgpKtU3UNLKPExiAmKhINliEYxWpfaQjaJZvOKKXsGIpDQhO0yxZbw4iybTyW48M1dYyiEsXUmVSyqL+rPxu6NqlMcU0DWzfU7VycYeti8rm3qg5+nFN3DVxLVfHpxXtPlc2iEgJaZWWzXEsvgiHxUHLa04hfe2+df+1vKT/3K++s8Sv/xpf2/Lt58d2XuwF112QYigk5oa2rgLBsmwRJgqkbav3n47VgkmSAANtQZL3TVYe7nQBLE2i2iWmoNdX0LFYH6nBtPmVvSKtsEaYZjq7hJxlCqMP4hakS37xlULVNNrQITYepqsOVmTJvXN8m9NQtuqFrVBwLiaRUVPWUbUNVMkmJresYRYXsGEIIXFun7BgM4gRDqAObquQQ1D2TqYpDECc0SxaeeW/NjNePa+mMt6JA0CpZlBydPLxHXmwbGllRUe6YGq2ShZQwVbb3RdbcLlt0/ViRfto6VlHRJhBFIjGl6hl0RhqjWMO1TExNMF11uL0dIJ17rS+OqVOyDFzToGzr2Iag7hjqprm4dbcNMYkVkGpeW2UbUVSIPMxONjwLx1LVIGXLQC+qVO2i0sLStSJpI6iXLFxTVdy5pqrG8qMMy9QxTR1dg3IRvFv6uO1EULENqq6qsGiW7QOpONq6hmOoaq2KoyM0gWMa+HFKxTawDI2yY9BwTWZqNkGcMwwTciGwLQOZSyqO8iMVx2S26uIUcVGc5WjcqywzdY1mWfmHcdJ+Z/WJaeyuTDV0jXbZZnMY0yx4NEu2Pll7Dc/ENTRGRbXgXN3F0DVmKja2rmEbggwVE7i2utSwzaLSsaj00zXlS+YbDqamYRqC1V6EYxpAcYtcjMuzddLs6Ul3JVBz1RpzLFXVbOUaDdckznLOND0GoSK1T9KcHFUtrwvB2WaJIMkZRQkUF21RKggzia1lWIaObaqq+PH32y9KReVtLiUlRyeMx9WJglbJpu6ZbPs6nqmz7cdkmaRR0mm4JtqOSjbVtq726I1NH1s3sQu/E6daEWfdq9g1dMFSu4RtaPSCBEMXmJryUYam0SxiblH4SSEEZUvtD1MXlB2TkmNhFe9p6RoLNZcwywqxF+gFiaoMMvVJtZ9eXHgpvyupOMqW6blgumbTGamxVBxVoeFaOlXXZGcXifKnal22yipenak6bPsxuq6j5xl116RkaUS2PqkalUimqzZBmtMsWzTKlpqPCBxD32VrQa25umeyNVJ2HBGrtaQJDEPgGvou9e6Ka9AuW2RScq7toWnKbriGQWLmxJmk5JioagqBZejUHIuKYyjbVfzfKfhpdA3O1F16o4RmycbQlO3Viv6PqmviWBppljN1iLyBlq5T9wy6vqTmGKh7XrWHpys2MzWbD9fVmtQ05X/mazbbo5hRrKr2EMpfTVVtKraOLCpLxhVVrqVNbPrOfWMVjs3UBJ5pkGQJ9WJNVlxl60bhENMQaEIreA1dbCNVvtzUcE2N6bLDbM3h+qZfVHXd614p2feqAfeLcdxYKfgJbUv5xERk1DyTuZqDriseTM802PJjQPmjVtkmTFXHzlTFUTGPpfyPZ+uHS4BddE6UHYMkzTENNS8qrtJJMkndM1lsusSZZE2EReWtsiOuaTBXNbjTC2l4llprhrIvSaaqBXO5/zPVo1C2D1dU67AgCttnFj7LMw00Ac2ySZCkTJVtpio2rqWz0o1UBVqqKnxdy1AXR2Wbfqi6a+br7qTrQ/lWVfE8/qzTjKfZMY/7Rk9S5TOA/x74c1LKVSFECQillBnweeA7wPvAi0IIHfgx4CsPey8p5V8D/hrAq699Ul6ZqaBrgumKw+tLDa5vDVjeCvjp1xY52yqz1g/VYVpT/FOOoVq0wjhjaxTTLllIoZyUKkmscLbl8eHqiJcWa0zXnEduZtfSuTKzO/s4XVEBpVkYqfuxUHf5yZfn6PgRMxWHJIdzrRJhkrFQ9/jpV+b4+vUur5ypUfEsNgcRG4OAim2y2FS3sO+tDWmVTKarNkJomJpglKR0R8kk8dUq2Q8YxqpjcmGqhOTwyIYlqgKq5hokmUr4zdZssgwl722o5M6LCzVudkY4us5szWWm6jAIUzxbRwI/dGWKqxtD6iWV6DD1ceuTaieYqzs0SxZ/5kcucbenEh5xpspZL02ViTKJXtzyCyE4X3y/P/ips7y72lftK2g8M1MmzHLubAcTQz4IlVMuO2qTv3qmTsOzONcuoWkaszVnV9Z+fAPsGBqGrm4wRnH6VKS8Z1seJVsFQR0/JstUNYFrqbaJf/1HLvHbN2f5YHWAYxt85lwLKeBz51usD0Iuz5QxdYOpik2SS1a6AdNVlTCVuUQv5lECi/WnI0t0TJ2XF+tERUvK1jCiWbaoOKqV7Mefn+WVxRrvLPcYRCmfONtguuLw+YvTvL/ap12xaZcdyq5KBHzxSohlCHRdEMW5SuhogjiVzFSdifEs2TpfvDylArySxWJDBWI1x6AfJkRpTr143ouNEr/z1XkGYcqVmTK9IOEz5xv0QqVA0/ZsPEvj6saQlX7IlakyaKpC7W4npOwYVGyDfpjimhpzdQ/bUM/g9XNNOqOYXMoHVAHLjqoOma87pLlktqr+XyoCv3OtErksbvEMjR99fobOKFYk3AI+d6nB5jACNJolk1bJ5ne9tsj7awPONl1KjomUsNz1yXNYqDtsjWIEgsWmR7W44X1hocaZlkeU5LROmXLh/ZBS8u//0rtcnCrxn//B1/ip/+w3+Nkv39jz759telQcg0tT5Uk5/zBSN9QV1+T1pSaLTY8sydB1jeWOzzDOONN06fopAuhHCVMVm+fnagghuDhd4ouX2whdFNVrJpemK/SDhO1RzGxt/8Sniw2Pkm3wibN1RlHKMMoo2Tp1V+3vP/2jV7i2MWStHxLEGV+80sazFanpW7e6TJctZmseTmHPb28PsQyDpmuwNoxIM0nFNSb7ZgzH1PiZzy7x6mKN9wrbd2m6Qr243X9mpoRjm1iaRlLcwo7xhStTnGm6OKZB1TFY6QXF5YfF73xlYdLW6McZjZJJx1eHvOmKw6icstTKqT9CzdCzDM62PJJst8qgbei8MF9jse4RpZlKEgGLdRc/yai5Ji8t1vju3Z7yaRKena3gmDqfvdhiaxipA3LRsv7CfI2eHyEFdPyYdsnGs1UyS+Y520ECSDShYRcJq0bJQhOqAvVhCYrpqsNnzrfIclUpIYTgE0sNXlioEqcpm4OYZtlhpevzB+xFslxwtuESpTl3ugF+lODaJo6uIQW0XAujSOQHSUa7bGPpqrJbCImh6zim+j5nmt5EoWuviYlXz9apeiZ5Lrk4XWF7FFN1DEByrlXmw/U+gzDj2dkyElWBuj2KKTsm02WH9VFIFGc4RdLbtXT8OKPpWaSZ5MpMBSEE83UXTRMs1N1dVZqNkoVpKN8zJmk1DY0fvNQmzXOen68yjFRSYawoO46z5moOS02XQZQyX/eoFAm+km3wp35U5+27XeZrLhXXYmsUM11VxMS6JiYtfWebHo6pUy3eO05zojnVxm3pQrVWuRXCJOPidIlRmD1124iuCX7oyjSzNZfpis1i00MIwe/71BmlEF0yGUUpv/3FhM1hRD+MGUUZ59tlXlyoMUoy/DjFD1PVwmnpLHcCSo6OY6qLS0MTfHKpQZJJ/vo+xzdVsXltSTUglG1D+TKgXFRDPjtXJYhTun6CJmCl61PzbNoFAfS37/SouSaLLRfPVMn0q5sDhNCYrzn4UcqdTshiU932j1sZy7byjb0gIUoyLs+UWO2GSgXR0GiVHOqFr7owVWK6YnNx2uP2doCta1yZrWAZOnN1i0GQMF11sAylUBinctJ6D+ognuQ5rqmSzI6p8wOX2gxClSw1NDFpVwsT1WorURdan1xqoIl7ynegEkafPtfk4lRpEh8KoVpMX16sE0QJ56bKNDyLqxtDpahddchyyZWZMl0/plGyqLkWNdfg/dUhX7zcnnzfnTjT9DhTxPamLnh1oc5r55pEac7LZ+r8giZ4ebHGMzNlbFPntbMNcuB8q0yW5czWXH7ypVneXe3jGTqzdQc/VK2wF6ZKVF2T5+YqhElKJpWtPt/2GMYZF6ZKJFnOp8636AYxTc/eRUzvWQY//Mw0cZYfqjLkfN3BNtVa7wcJg0D547Jj4pg6P/PZc3zhUpuNfsQgSlhoeFyarvD23R63tn0W6y62pTFdUb7pufkKYaQusrt+gqkLZio2W35C2TZ3EeFfninj2hqfOd8gTDP6QULTs+jHKU3PolWyuLHlM4oSlrs+FcfmU0sNVgch19aGlF2TqapdVJpqXJ4ps1h3WB9EWIbObM2hFyRPPV81z+T3fnIRUxdYpk6W5nzxYpttP1Z+3DMZFRfjUZxxY3OEH2cstT3OtcsMwhTIaXoOuYS1fkCaKbXcdtkiz+WhqKPWHJOf+dwSDU9VoftRgp/kzFYtRnGOrmmUbIOGZ7Hc83nrVhddqMKEuZpLzbOougbdUTK5XAf4PZ9c5HYn4GL7YCIkAAs1B0+HL16u86MvzRctx4fP4XgQVByD/81rC/zUK3NEac6lqTI58EoRN5YsHdc2abgWb9/psdr3yaRktupSsnV0XWex7tIP1SVko4hPLk9XaJYsgjilbJuY96kon0Y8DcfUP0Mllr52388/BfzfpZRffMzv/gFUK+B3ix/9ReC/AEbANeCPSCkzIcTPoFoCO8AflFL2Hjem119/XR5Fi8r1zRHDUElenjmgnPJB22jGJfGOqXFxqnwkcstPO8Yozfhw/Z6azGFLGt+Pk2hJurE5YrCPtfA0Y8zze+o3x6H+8bTzuNpT7R+updbiURv343reaZbz4caQJJUsNNwHkk+Pw3GuybV+yHphC/ajdHLaWvl+7b11/vBf/zr/j9/3Cr/rtUV+8+oWn1xq8AOf/fS+x7nf/XlQPM1c9sOEW1tKTeXS9NGra+0c49WNIX6U0SxbuxIHpwEntS7HKriWofbR45I9ex3jcdvGnTjoPEop+XB9SJjkTFftI5PWPqznPQgTbhb76eLUwQ8vO/E0Y9yp3rVf//E0OIx5HKtmjWkejgIPG+dxfO5+sN+59OOUaxuqHfl8u/TUVTH7wUGfd5jcU31canlHJtbyNOPcjy0+DBylzxn72lbZYv4AvvaoxtgZxdzpBBi64NJ0+cBqrEc1zsO07zvHeNpszxhHuSYPcy6FEG9KKZ8kdHcgPI01/XPA3xVC/CzwZvGz14H/HfAvP+4XpZR/G/jb9/34tYe87r9DKfKdGGRBGgoUmeeTRb8YQ5jkJHmOrR2/fPmj4EfZpI1tGKZHnpg6CQwjNf/98OikpOMsn6jfDMKUp2wBPnIMijkIYkVieJjtoCeJML2n5DQM0yM/WDwtBjtsQVyIJXwU8XPfuEvDM/kdL88D8LmL++dhGOM49udBMSxEH8ZqKsf13LJcTtSEhqfAl50WjOdiTG58GLLLO21jkkks46NjG+Msn6imDsLkyBJTh4VRtFOdKzvc9pSnQJjeU+86zf5jJ8a+RNkmeWyJ1LG9Pu7PPSyM1x4oZbTjSEwdFH58L04fRdmpUhEeHIEtPgns9LWn4dz4MIz3XlqIAB00MXVUOCr7flI27yQxjHbHniftK5+Efa/IolLq06iWvj9c/CeAz0gpv3qYgzsKxGnOXqrEhBDM1hxF2vYU7RuPg5T35D73ipmqrfg7Cj6Z04Sqa1J1VU9wq/zkYEwp72V7eg77RZw+Wlr9ILi3Fo6u2sAx1fy5lrbrUDBWqTktmK6quZiq2BOnNn6mHyXk981rydKpe4rrq105PYeK+23WdGEL2pXTZwv2ijDJ+CfvrvETL84eiNRyjEftz6extUeFVlnxxFVdY1fy/qhs4Ri6Jib+Y/YQkw1HZWt3IsnyiWrUYUPxNWg0SqpF7CAYP8OZ2j3beBjr+mlxv23bC+xCFMAxNaZPOCm1F3/SKJl4BSfVaWhN2Ok/HtXOf9p8+VzNwTLEpC31uDBbxBCzNWfX56ZHuN8PiiyXpMWza3gmZUdxdjW8k4sV9uM7aq454QY7bUnT6R22eGdS6jh8zEGQ57vji6PytXvBXs+27bLiKap75qFRuTwt0iyf7Kn70SxZR2Lf52r3bE8uOVX2eL/Y67lr51xWT4GvfBKealVKKdeBf1cI4QJnpZTvHe6wDg5l0PIJuR+g1MGGEdMV+4EWmCTNFGHgjo06VbGfii8oy1W1lWfrD2Sjd5bLt8sWcztKPZMspxcklG3jgYxmxVE9+0GcESUZYZIr1YNHZLvHmeCxfPNYXegooGuCpdbDSyKTLMePFEnluP3w1rZPP0ipugZnCx6GOM3pBTGVguhOcZjoewrux9913O5omxqLdVdJFhfzE6UZXT8p+EfA1PV9zUm7bO9SYTsq3F/6u7NN8kzT22WgpZR0/KQg/FfEhmXHKGR31ZwMw4Q0l9Rc89ACz5prPuAorm2O8CPFN7PY2N1K5ccpoyil7pr4iZLcdQq56rF8bD9QZOOHdZgL4xRN0x76flJK1gcRt7d9bEOfcIVlueKOGstaj1/bD9PJmA8TeZ4TpkpG/GGtuaMo5da2T5zmeJZetAaBoQnOtUu7bEs/VGv7tN+EjPFr723gxxk/+dL8obzfw/anlJKrG0OCOKddsR5IWvWCmCxXBNRBnE+IdIUQ+JEikKy55qG1TduGeoY7cWvLVzb/IWXlStpbiVZEaf4Av0eS5QRxNpEJfhTiJGMYJszXHUq2IvfdHsVYhvbUt+brg5C1XoSpCy4X/I6HjZ6fcGvbR9cU95dVSGQ/CWMFRs/SH5iXsT+yDFG0Mjy8LDVKlTyzu4eb+7Eqr2er5zsmqx0jyyUdP57wI+0cyyhKFUmuZexaZztvcsOC02+vezvJcj4ct5TVHZr37YtRpBRIG571wHObq7lkFUnXj+kFMTX30QfY+2+b0ywnKmzVQX3NjS2fYZhSc02mKhZJLtEKbh9b14iKfbFzP5307bcQ4rFtxI/y5XkuC+XQjOmqi6lrjCLlc9JC5v6oqhrKjsFqn0I5S6dxX8IiiDNGcUrNMTANpWKcy3vcpFJK0lzuyQ7tRKNkUfd2xyTDKOXGpmqPuzhVfmx85sep4rd7yBpWcungmTphqpR2x58TxBlaQaa/H4RJxtX1IZJ7bXB7aQPq+oqcesxblWY5o4Jj8GGxexAXhPiaiovCJFNiFw9Z12PfMVaJHmMcs2S5UgUe/65exA3j79MLEkxNiQw96hxxP0ZRiqULzEO+ECvZD6qEbQ0jlrshpiEKVb17Y9x5XpAS0jwv/rw7piw5+p4u79Li7DXmAB1/RhBnlCydbhDjWMauRE6Wq7NcnOa71M2nq86RJPbTLFciW7riSUt2CFqt9kM2B/GuFvKxrxufCcZwLZ1L0+VHfcyhjDPJlN1K8xzPMpQ/8WOmqs7ERjxpv1uG9kC8dBholBRXbZzmfG+lzwcbA842HF5bah/6Zx0EQZyR5RLTUEIeW8OQIMlpF9x5cO/c9SQKi4fFnqcZT50uFUL8FPBXAAs4L4R4Ffi/SCl/+pDG9tQYhAm//v4GcSZ5YaGCrRvkUvLB2oAkU0mP8+0Shq427wdrQ65uDJmqKMLtnckBP1aHQ0MoYuYx2/3jMrjXN0cTAsNGydqlKJBkklGccafjc6fj49n3ssE3t3yCOGNrFDGKUqquyecutCYG+c62z7srAzp+zJWZMp5tPEC6DvcMepbnbI1iPNPgymx5Qip3XJBS8q3bXZa7Ic2SyecvtRFCTEopr22M6AcpUZbxlaubSAmzNRtHN+gGCS8t1nhmtvrYAGV7FHO3E6jXFPN8a8vn7btdDE1nseGQSbi77dPxEyxDESXO1R0uTpWJs5yen9AomeQ5DKJk18Y/aQQ7yq+XOwF3OwEVx+BM02O9H/HmrW3iVFJzDYJEETjO1VylWqjDtQ2fDMnLCzUuFIapFySTlpPDQL6jfHlrqAhddQ2WWiUE8ObNDpuDGE1TqpfL3ZBW2aDiKJWbrWHE5lApg332YhPb0InSjI1BNCEP3w8+WBvw9t0+JVvnC5enHlg/64OI6xsjbnVGeKb6rHLf4HurfdJcMlW2eX6+ysYgJkhSLF2p7TRLllIg3FEp9rTohwlfu7Y9Id19bq6269+jNOP65oibWyNGcarUFqXk1pbP+iCiWbL49Pkmm8OYrq/INk1dY7piE2f5qVrDD8M/+M6Ket4Xmkf2GerApDbP3U5AZ5RM9s7mMOQ3PtwCqZTcRnHKKMp4ZkaJXry7PCBM1bN5aaEO3EtoHqZCzCBS+3C9HxImqsR6qSC5/vLVTbIcXpiv0vFjrm+OsHTBYsPDMnSCJGWtpwQInpmtTDjpdu7vLMv5L3/tQ9663aXmWvypH71IyTbZHKgDU6ts0fXvzctesTWMubapDmozVeeBA+1hYDw3WS65vjkiSeWeOMTudAI2huqS4vJ0ZcJZMr4U+nBtwNog4vm5KpdnygRxjmfrk8SmH6e8eaPDxiCiXjJ5dvbxPdXj1gg/yljuBmwNY6quwVKrxDBK+fr1baI0Y77mFgTTGXe7AWv9gKRop6h7Js/OVZmuOJOA3dAFs1WHO51gwt/4sLjjfnseJhlpJhnFKd+41eVM0+PiVAlD14jTnOubIzYGIXc6AUutEp+50Jwc3qSUvLvS461bPXQNfuBS+6GXTl1f8ZQ4psZSs8T6MOTmpk/ZMWgWAhUHwaiY0/fW+rxxI6UXJoRJhmfprPZCWmWb15cavHq2QZ5Lrm0OGUWZItMuP92F4lGjM4q5vjFCCKjuqAK42w34O1+/xe1tnwtTJT5xpoFtKnVZ29AnXDCOqRMmGZvD6NDasMZrBVTc3AsSgiRjvu5Stg0+WB9we9vH1DVemK9xa8vnxtaQdtlmoe4SpBl9P6EfprQqNldmykxXnCf673FSZeeFwahoNwG1B+/323kuWemHKongJwgh1MFWQJTkzNWUMM7t7QCAOMuwdKWmfLblsdoP+Pr1bdJM8sxslXbZYqpi7ymZeWt7xPtrQ1xL2Ym9zP+1jSFfv7GNLgSvnK1zebrC9c0RYZLjmBqXZypEacbNLSWjbemCQajIrC+1y3z7bpdv31WE87/thbkH3n9sH8f2B+Dm1ojVnhLRaJVt0lyp6N3eDtgexcUltUaU5hMlw9maw+VplfgZrwGkUr1V1dnqOdzZ9vn23S5ZDj9wsXXk54nx9wqTnO+tDjB0wZlCSOQbtzqsFEmr2arN+6tDDF1wrlWi7Bh0Rgnrg4hW2eRT51q4lr7LfyeZZLUXMl2xkagYdbkb4tkaMxWHtX7I7e2A2ZpStAviHNfS+KErU0gEt7Z9kkztHV1ToitHaXPSLOed5T7futMFJGGcs+XHLDRcXpitsuXHhcKuotcQSH7tvQ3COOP8dIkX52tP+oinRpZL7nR8pipKzfGD9SFBnDEIU3KZ0xnF/PqHmwgJP/HyLD/8zAymrjEI1MVTlufUXIMzzePlewrTjF//YI2/8/U7hEnGn/jSef7Vz1861jHsxHge22WbrcJXdP2YhbrDr3+4yTt3+yy1PX74mRlePVtHQxXb5Lkky71j4VY9Lhykju/fQ7X0/RqAlPItIcS5gw/p4Oj5CVHBFfO95QHn2mWGUVo4y5h2xZoke/woI4iVgRlG6eR2coyOn5CkkmGakqSSsqMO0o9LTKVFJqEzikmy3YcYy9DwTI21fkjJMriz7VNbGBsN9dq73QDH0InTmG0/nhw4bm37DKOUjUGk5I8fUV3SDZTDuroxIs1zbCNloeGcQGIKtgpnOA54PMtgrubQ8WNsUyNKM375nVVWuiFl22AUZ8yUbQaRqnAKk+yxianxjdQwTImzjO1RTJTkCDS2RzElWydJJf0oZRCqG5QoU73LSZ5ze9tHShXcF6rhhEl+pDcK+0HVMam5KUmeEyUZy92QQZgihDJkUSKRUrLWD0kyVQUyDDOuzKqgJ83HQady8lkuJ9/5sKBpolAgUc+6M4pZ64f0gpQX56sMivXYL/6/1g/Z9gUzlYwzTY/tUcHLkqTEqeJMWim+Z2e0/wTa+iACVI/66CEBbphkrPVD7m4HLDRcRqG6mej6KZlUFUw3tnwcQ2d7lNAsKansux2VOMhzeWAn0CvWdpKpz71fISXLJLe2fZa76lDaKtms9SO6QUI3iPEsgxtbIyxdZxhm2BaULJUU9yyDKM1P7Q1JlGb80++t8ztentvzTe3TwNQ1pqtKbTPLc/pBwgdrAwZhimUIZK6qS1Z7AXGmbv2nKzaOpRMXNqIf3Av6u37Cej861DHO11y2RhG51OgHCe+vDugHCRVHSdePP3f82VkuiXPJUrNEz1fVC1Fyj5vu/v297ce8vz6k6yeM4pTrmyOemalOPn9zGCEQdP2EmWr+QIXh5jBitRdScYxdCYpSUQ3sGPqRlcK3yzZRmjMIUz5cGVC2TISAM0/4PQn0AuWvgzhTlTeeulkPkpRu8W/dQBGC2oa+q1I5SnIGUYIfq6qC+mOqhgDmqi4bw5Cqa/L23R49P6VdVsmZ7WFMmqkEaVDEFpujqLihT8mlpOcnZDkTHzg+MCapqmwbP8soyeC+uONh9rxsG9Q9k7V+MPGh7YpFq3TP/6/0QsIkZ2sYsz2MJ5XbebHmt0cxhi640/Efmpjq+EnBV5Fzt+uzPUpY66u15FkHXw+zNYeuHzMIE25s+kppSBf0NMFqP8I1DW5uj3j1rFLUCuKczWFEkqlDp5IiP10tCxKVaErzHFPX6Ixi7nYDOqOIGxtDokzyweqQK9MVwiTHMMbqgupC1DF17nR8gjin6x/OxdJ4rcSZqjh5+26PzWHM9ijmM+ebhRqyxNBgaxSxHUTFhU1eqCW6bI9iNE0jTLKJHXqc/5ZSxYMAnZG6kFKJZyU17xj6LmW8MbZGaq0mWY4fq4vb7VGMJoT6u2NiaOp9cykZRRmWp+MnafFZMWmmbMO1jQFZXsYytId+1v2IkpyuH7M1zHn9XP2Jr0+ynOVOwFovwjI0tgYxl6eZnAfG/1dKhXnx5xTHMEhSSZRl3OoE9P2UMM652w12vX+cqsqrjh/zUnF+yHM58Vf9MFHxvmSShOr6MUGaMVW2CWLVdaELQZqpqjdDV5fjcZpztxNwrl0iye/FEWqsatybw+jIzxNTFZskk6R5Thjn3NzyWe4EfPpCa5KIH4Ypa0g2hzFpnqNpGkstl16gzgVjNW/X0nf57zTL2RhE6Jqg6hqM4vEaSSiZJlc3hvSClDSXlG2dkm0SxMoXvbs6oOcnLDRcHFPDMnRmqkc7F0mmqm47o4Q4y9kYKPt9dzvA0ATnW2UEkumqU9iWaJLo3R4ebsxyP+I0pzNKSDLJXM0hzVS7cpCkBHHO1Y0RW0MVs37rVpfpsjqLuqaOLgS6rpMdIZXBo1CxDdb7Mf0gReaSn//mCr//U+dOjN9sPI+K51G1iKrzQcKHa0OCJOOdlT5nmyUaJZOZqkPZNhiG6S5F5e8HHOQJpFLK3mkkDpurOczVHII0ZbbikObqhmroqMCzsSO4KzsG9ZJJnNk0Sg+qKNRck84opmQZCFvdwj+pp/xs02N7FNMuW2wO4wf+fbbmslD3SLIMgar6sQ2Ns80SXT/mNb3O+6tDKo6xKyheaLgMwpQrs2UW6x7tR2To2yWb5TRQN1pJipTiRIhMNU3w/FyV99cGzFQdHONe+9ZszaXqmHy4PqRdsVXJoi740pUppZgQpSw2H1+ZBtAq20RpwChOyfKchbqHELDcDah5BrNVhyDOqJcMhmHGfN3BMjTFi+WYOKZGEOc4lqYcdKZk508LNE1wtqWSIOuDkPdWh7iWxnI34NJUifNtjyjNWWi4vLPcwzJUW4hr6lyaLrExiJT06LQ6XAgoysQP1xGM2179OOV2ZwshIElzVvshz81XWe6GvFipEBSHaNfUcC2DumcxVbFY7oTM1d3JYcIoCNW1p3gUF6dKRKmSl3cNna1hRH1Hyb+tazRKFlf0ChXHpOFZWIbg4pTHIEqZqbrM1my2hwlLTRevkGffGqpD4mG0VYwVW4ZRwpmGS8ePqbnmJFGToyq0NAEU0s6WoeS1TV3Qrlicb5dY6YXM1h3KloFj6WwNVXLQfJqJOyZ85do2wyjlt7wwc+SfNVN1mKk6bAwi3rrVxdQFW8OQC1NlzrZcsixnselyc2NElOU0ShaXpkoqQeAnPLOjWsY4ApL/cVl5z0948+Y2hi6K9g2NMw2XTEpeXKiy2osKtTfFE9AsWczVHDaLS5LpIjC+f3+XbINXFmsMgoSFhsP5VpnFhodrxVi6RpzlrPZCyo7xUBGDTpEY6QcpSZZP1v5s1S04LZSs9VHAMVX5+ftrA5rFHDVKT/6sxYaLlJLNoZovz9bphwlZJrnQKhHE6tJjse7SKJl0fdVOZxT2oe6ZnG+VQQ7RNe2J+73mmdQ8kyTLsXQNTbvXLlfz1LOpJgbPzFawDI2GZxEUEu2WLlSMIFRroaFpND2LYajGtFh32RjF5Ll86EHwYfZ83FIWJhlB0letH2nO1jCiZBsstVTscWPTp+IYu6rddE1wZabMWj/ENB7NqdgqW+rSyFTrcRBmTFVs6iXzUFQfx625q/2QUZThWBoLDReZw1Q1xjZ0Xi4qGcdj6Ic6JVsgxMNt9Lhdp/QQqoTjQN21mG84aEJQ80zeXemTS0nFMXn1bJ27nZCFhmoDsg2NdllVvxq6RtVRobqpawTkh9Y6u7P9MM8lUZozDuklsNR0GUYp7ZJqXTM1QWcU0yhZtDybimPw3HxVrXXXmtihx/lvIZT/6vqqOr1fJIpB0PSsR7ZB2cXhS9fEpCK44his9iIMXWCbGvN1F9tUNmscL495T8+1SkXLoka7+NlefXnZNgqOQIM4fXLspAtBq2Kz2HQRwFLbo+cn1F2TnHtniKpzr3r14lSZXpBSKhIhz89W6Axj6iWT+n02dhAmuKaOW3Mna0HTxvMqaFdsqo45+Z6upZGjYtuSbTBfdwgTxd9Udc3JfjB11T7qWGpe7B0XFRemSnSDBAG7KEiOCp5lcGm6TJrlfOtOlyRTlTXXN4Y8M1vm9nbITMVG05g811ZJJeBnqg53twNm6w5VV+2dh/lvS9ewDZ3n56pc2xgVtlAyXXEo2xlV1+CTZxvc6gTUXIOtUYwmIEMSZxkvLtSOhUvQtXTOtUus9ZXi65mGzZu3ekyVLYQUTFdtpivqIifPJWXH5GzTpRskPDdXffIHHATFtJq6wDFVks6PDWaqqvKs6uiM4hRDwPPzVXIJN7ZGvLpYV8nPLKddPv7zqRCCP/mlS3z1xhbDIOWl+TrXNkZcnjl6xeSHj0f939IVl7SU0Iwt2mWL52YrfLA5xNY15usOcaqobqarNs2S9X1VLQUHS0y9LYT4g4AuhLgM/Gngy4czrINB1zU+u0PhaRilCGBtEJLEKckOMj1dE1ycKj+yuqBsG7wwX93FOfOkZJxnGZOsa80zuZ+7r2wbXJ4pEyYZuqZxtxNMJMTH/cnPzFTQ7vPqS60S7bJqI3qcMRwHynkuGUQprrk3rqajwJmmx2LDnczZWE4b1Pd9/VyTumfixxkvzFdxLYNBmGBo2p44oBR3krrRWu6q27OXF+u8OKlCU3jUczvfLqtKLlNXrT9JRuWUKqxMVxxeP9fgbicobtEizrZKkz7zxYZHEKcIISaBxnx9t8HSivUeJEdDVO5ZBp8+3+T2ts+dbdViWbJ1Pn/pXv/283NVwjTHM+9xKy21du+/hSJJ9TQ3AbM1l9maS5qpEnApVfXUOMFXL1kTOfTpik3JVtxWz8zuduDztd1rpuFZD/D8PC08y+C1JdWG8u5qn46vSujH7ZaeqTNVUYH/dMUu5uLB/dAs7T6sNjzrVK9hgF9+ZxXX1PmBi8fX0z9VsfnMhQZfvb7NIMrYGsW8eqYx4fJ4ebGOZ2oTm9soPZgEqDgmF6dLD9jzw0DNM/n0+SbXN0fc6QTYhs5U1Z5Uq5yfMjjTdB+yb3ZXs9y/vz3L4PMX2zwzU6XhmVwqWr93th08jvi4WbJY6YVUHXPXIU7Jeh+PbGiz4IO40C6zUH9yAGbqGhemypxvlxTPXpRyc1O1y8zUbD5/aWqXP2iUFJ/POCkshOC5+SrPzVcnnDp7gamry6UsV3HF9Y0Rl6bLvLxY2zW/zZK1i/sFVCJrp1/fmRB9XKLncfZ8oeGSZOrCpxemRIlKaDw3V+ETZ5u8eqbx0Oferjj81CvzhGlO6RE+uOqYVOfu2UG7uP0+bC7Li1Nl6q5Fq2xNyITjgiB7HGMJobhzzrVLj+Xau7nt40cZmgbPzVYPjTtur3AtnReKlprb2z5hnLM5inhhvsof/oHzRJmczPej9uOZhsfASw9M1v8waJrg1bN1VnsBNVdxLm4MY6bKNq2yRcUxeW6+xuWZymRtPGqcT/LfczV3kvSM0oztkYZEPpaYt+qYXJ4ps9INGEYZaZ5yabrMucIGjsey8xJ2J++gaxl84fIUoM4EmmDP1RGLTY80V5VF9yeJHgZNE1yeLnOm6eGZGr1AUYIAnGm6E645x9R5fv5e3LHTn1+ZrbJQtMTer/qnuJBiJHLX5e3Oed0JzzJol1Tb4vl26ZGJ2YtTJUZxxrOzFdJc7tr/rmXsiuOOC4au8cpiXV1kbwyxdB3TyHeN5UyzRJzmu+bp7H2tYTv9t21qXJgqTV4/jhnHuDxdIUgyygW/15lWieubI7aGEb0g4cp0mUvTlWM9Vy21SsxUHZKiuvH18wM6fsLZhkfds3h/bVBUBWcsNjxeW2oeC++eY+icbXmT5PnOxPK5dgkpJT94ZUpxL0cpX7/ewTE0lnshz8xWTpQbcLrm8Hf/xOf5xs1t+mFKEGdc2xgdfTLvIbCLeazYim/y8g6anj/+Q5f45q1tRlGGH2eFyIbOs7PVE+dWPAoc5PTyp4B/C4iAvwX8r8BfPoxBHTbKtkGUZkyVHabK7Jvhf+dD3+8CeJjjGweToAKU8c3z7tc83ODtR5ZW08SpUKvZOWc7+VlyKXENnefv63/ebwm+LA4CZ5oeszXnoXP0qOema2JCaGgVRJCnGWeaHmXb4E5HlXbfz3ezF7Jey3h8YvOgqDomzxeGPc954GBn6BrlJ9xUCnHwtbvzY3fOk2Mqg/4k3L9mHFM/9Jt2yYQabdd4d9qI/eCon+1BIaXkV95Z54tX2sdetVB1FVnyKMqKtl11S7+X9TjGUZZ5lx2T5+bUJYiUT7dv4ME1YBo6rbL9yCqLx/m0Vtk+9hbw+/G0whPj77Vz74//uPM7P06ZaL/P+2zLw9BVdeX4sx82v/f/7CBy84/a855lTA69H64PJuORkgnJ/6Ownz0Bj5/Dg+BhB+3H3WY/7tJgYmdPgchXLlUSpuaZnG2WlFDLHqbwqGO6nXstTLLJXO3cQ4ftv21D35WIfRwcU1cUFjuk5J/mULbf9Wrq2q6D4l6wc552xyJ7f49H2QV1kbb38ey0Q49b/4auUXNPX/xgFPOfy7Gw1e5/N/UnV7bCPXuuCfFYm2voGpX73i+XqkplqVXimdnqkQh+PAk7Y9CLU/ee/869uvP5HkfCQojHn6mFEBOb7VkGF6ZKpJmc2JSTTqqUbIMvXJnmvdXBQ8/ix4XHzaOuCVzLwDYMZmvargqpk56/o8BTRRNCCB34X6SUP4ZKTp162IbOUtsjjLNTJZU6X3exDQ37CA69pxGzVUUmOC4pPgzUPJMF6ZLlclK6/P2MMaG+RJGJn0aMb+YGhbLSScDUNZZaHv4p2/M7oWtqnoZReqKy08eF79ztsdoP+bPPP3Min7/YUMTiJds4Un6rp4Wha5xrlxhF6aGt2aWWRy9IDqXS76OIqmOy2HBJc3ks9vIofNxBcabpqRZ52zj2SqHTgjNN99TMwULdxTVjXOvkqtmfBMdUN/hRkp14cnon5mrupAXrKNWmDxMNT6lNCziRWOSjOGcPw0n6sjM7YoeTSEo9Do55Os+3D8P5dolekJyKoomdOO1x0oV2mX54+ubtKPBUUZOUMhNC+EKImpSyd9iDOiqULIOtYUw/HLHY8E5FIkjXxAM99VvDiK1RTN0zJ8Tn3y/QNLHrO93e9gmTjLlCBeZpsR9jvNwNGEYpM1XnI7fJ0yzn1rZPLhWX2WnNlvf8hLWBIk0+qX2mSM6jgpPidM4TKGL6fpjgGKf3kHJY+OV31tAE/Miz08f2mVkuC/UXyZmmeyJ8e3vF5jBiexTT8KxDk4g/ikq/h2G1F9IPE6Yr9p4IhfeKUZSy3A1wTH1XW/h+cBSqgTvRDxNWeyEl22Ch7p46v20bOjPVe2sgTnNud3wEKml1WGvttCDJCmET1IFS8fPtnoOThKFrTBdtOVc3hoDy56fpOSgBE7WfD/Mg3gsS1vqK6P9+Tte94GEx83EjTlUcpgn13J50ySGEeKqqz/txY1MJGu33/HIa5uwgkFJypxMQFoqRJ5FcswyNmmtyp+NjaBpnm96JJrjzXHK745Nkaj1UHfPUJlUAVnoBgzBlpuKcyhhsZ5wUJhl3OgG6Jjjb9E48EZlmOSu9AAn/f3GBfZDrvBD4jhDil4HR+IdSyj994FEdMqRUXEvDMOFX3lljtR/wqXNNfvz52V0LLs1y1gYRpi72HFhuDiPW+iE113ysRHKcqkBpruYwijOWuz7fut1FoEoyz7Y8qq4iUF0r1JfWehFT5b3J2R4Gxgo/U5X9S82v9UPWeiG3t30qrsknztapOCajKKUzilntqyTFlZnK5PuMSWgBNgbRvhNTExnxLOds09vT7XSc5pM2i41BuKfE1PYo4s2bHTqjmFbF5rPnm8SpnEjEPmyukkyy0guYqTiPdF6DMGFzqEivmyVFJnt72ydMc863Sjimhp9klCx1Q3N72+fNmx2GYcJSq0TVMQ4UbOzleee5ZLkXkOcwX3cwdI07HZ+un1D3FNGtH2doBb9IL0i4uj7k7bs9GiWLxbo74UU7bmyPYoJYca/0g2RyOH37bo+rawNMUxENT1dsWmVn3yTOcZpzY2t0oNLfsToMKA688Rjevtvj6voAXWhMFcSWjZL1VAf+29tK1eqkIaXkF7+9wqfPNx+bSFbqJPEjkwn9MGFrGFN3zclr7nR8hmFK2TGYqthoQhAkGZam8XZRpaUJwd2uz4vztQNXADxpf/txylpf2bSpij3Z21kuma051D0Lv1AC8iyDrh/z9nKP91YHLDU84np+LJL3StEzQiIfa6vG6Pox760OuLYxZLrq8MpiDdvUcU19so7XB0psYLUXEiYZszXnAfsipaRfqMlEac61zSGzVWdX69xqL+TaxpA7XZ+yZRAkOZvDEi/MV9keJeRSMlt98pgPA3Ga87XrW5xteMzuOExvj2I2BhErvQDX1BmFKbe3R9ztBDwzU+H5+dqxHV7Swh+2Soo4dRQnvH23z0o3YKbm8OqZOrM1lyDOWO0F+JGyjb0gOZRD80ExjFJub/tYhsa5VgldEwzChJVeSJrl+AUXpGUIRnFOydKoutZDY7VekDAqvl/Xj/ftJ/fiv3difaBI2meqNmGibHrDMzENjTTLaXjWruRFkmb8i6tbLHcD5mrKR3Z2KDDvBU/y3w/z3au9gLV+RLNksdhwGcUZhqY4KQdhwjdvdgnSjBfmqnT8sYpudOBE8/ogJIwzgiTjrVsdXMvA1ATvLPc41ypxcbr80Dh3vL/qnnmkh9mdz1sI+MXvLPPByoAvPDPFp861Hnh9x1exRZZL3rrTpe5anGm6R0qanOVKfXmtH3Jza0SzpJ57LhXf2tmGy+1OMElUmLpgYxgRpznNknVsKpVP8t9JlrPSDdF1wXxNPdM7nYB+mFD3LOaqDnGWF4p4SgX9vdUB768NaRek0Ff20cZ4mFjtB7y/OmR9EHK+XeL5+RpTFZtRlKIJgWNqbAwiNoeRqmIq7NgoSlkfRFQc44m2tucne4rXBlE6UWHcHEaT82eeS95d6ROlOTM1m1axTjYGEW/f7RKlOWcaivbkaeOgKM1Y70d7rghOspzNgdozX/5wk9maw2cvtHbZlTTL6fgxhq6R5ZKtYUyjZNL0LJa7IZqmVIz36k/Hsc39dCd7QcePeX+lxy98e5myY/Jv/bbnqJ+gj+wGSpn5+uaIN65v89JijSszlYlPSbOc7VE8UTW90/ELzkvFjbfSCzB1jbma81T5hP0+74PiIJ/yS8V/px5Kkjfh2uaAt5e7xKnk+saQQWEIx1gbRGwXSQul9PJkQ741jMlzJTM6V5OPzKwqOXol9R6nOd+82VGVElGCoWtomsAahEgpyPIcXdOoOMaxVsTEqZIhVipu++O32RxGLPcCrm6OONPwuLox5OJUmRubPt9bVUayZBm0K/ZEttoyNGxTI0pyKs7+l+KwIKsDJiW2T4KpqwRKEGd7dtTfutPju8s9Plwbcmm6jACmChWJJMsnhNU7kRaG2NC0Rx4wl7shcZorOXPXZGsUs9IN2RrFjMIUz9YRCEq2ztmmx9YwJkozBlFKL0wObCT28rx7QTKRfFbSyibr/Yhb2z62qTGMxoo6cH6qRGcU0wsS8lwyilJymKhdHTcqjjGRk/ZsFTD6ccp37vT4cH3Alh9ztulxrlXiykxO2dkfb8AgvCf1/LTQNTU2P8omt11+nPLdu33eW+uzPVIBxzOzVc61lFrcflrQ0uzwpMUPim/d6XF9c8Sf/NKFx74uy9Xt6JiU/n7c7QSkmVpfdc8kKmR21/shUZZztukiEORS7U+hKcc6jDKa5Qrbo/jAiakn7e+VXogfZQzDlKprsDmM6PoJdzoBHT9hpmpPDs5LbY/NYUxnmCh5Zz/h4jERi48PfsBjbdUY64OIu92AjUGMAL5+Qx2CZqr2ZB1XHINRlE7eVxPRRHhgjLFP1jT1jL51q0enFfPsbHVi1zaHER0/Jk4l73eG6JpSXPNMnbhQoTOOqRIgTDLudpREd71kTRIB64OQnp9wY2tExTZplkz1jEcJQZJzfqp8bMFcUviS65tDpsoO76708OOcD9aGIODaxoiqa3J1fUSYpsSpInIunZA89v3ojOJCGTdjFKdUHZONQcQoTHl7uYdlKFLzJJN0gxhb03j5TB3PMh641FLteopvpfwUscVe/PcYUZqx1lNrPZdK5jvNJO+uDPDjlCjNuTBV4uXF+uR3NkdK+l3XBKv9gKmKve+LuSf57/t9t2NqvHW7RxBnhIlShO74CUIokvnOKGFrpOLf1X5Is2QxKvbzQZBLdck6DFM6QUSQ5Gz7AcvdkHbZYrUfqdbGh3z/tX5ImknW++qS9qiSvDuft0Dyz97dYBhnbAwjXjvbfCAuKNsGGyLCj1MsQ5tcsh5lRZ4mBKMoI5dwdWPEWj/Cj1JePdsgz2FjFDMIVaJiaxQxijK+t9rH1nXOtNwJ8f5R40n+e7MgEAcoWwamoZQeb2z5WEZAr5lMuPDm6w5bo5gwzfHjlDDROckmAV1ohGnGMEoJk5ytUYShiQnnq20K7nYC+kHKUqs0uRBd7gaEibLP9R3qy/cjK6qg9pJL8SwdQxdkudx1llnth7y/NqTnxzS2LS5Ol7k0Xea9tQFbw4Tlrno2pqE9dRy03A0ZhumeY0ujiHNvbY9AQhDn3OkEu87f31vt8+H6CMvQKNs6Dc9mvR8hJZP14lnGnrtjun4yiUH2i7Jt8PUbW1zd9LF0wX/z5Rv8G7/lZOgnxuMZxSn9IMG1NTaHMXO1dJL8fXelz9WNEbahkk+6pqn1VvzOOIFZdoynqqrb7/M+KJ7a40gp/9vDHMhRIk7V4dExDZZaJTYHEXM19wFiU2uiyrN3GdmGZ7I+iKg65uMPtUK9ryYEpl5IRic5LU9VQbiWRloI67TKNnM159g5UMYG336KdiIl563aD4WAqbJNUhweHFM5btfSETsMrl4ol2S5fKrvWrJ1bFMjyfI93+gJIbg4VdrXZzqGpqqWdIFnGdiGjq4ph/Ck1qvH/btn6cRpjmNqaEIlUjIp0TWVQAviDM8yJpLRzUIKd7bq8MyOA9zTYi/P2zH1gihaJWstXcMyFDlzyTLwo2yyV5JU3QxvOhFzDZeFmsOV2cqJtRtWxmTSMAloHUOpPdqGTsnUMTWBqQl0TbDfmLfsqKDqfiLO/UAIwYX27vWoxqhhamrdGZqGpSk5eW2fc2noGlXXmASsJ4m//827WLrGT7w498TX6sUzeRg8S6cfqGobIRSXj2tpkxvWNIOcDFNTrZG6Jni2UOHKcnmobV2P2t+uqZI0piEwNY2KY3JXBuhaYQ93qKiNb7RrnolpCK5Mlzk/VXro+x42zB3j30sbac01aZdtur7ixxkrVEVpvmsdJ1k+sZFj6fGdSAvfkOfKthi6SoyNfw7Kp3T9GM8ymKpY6hJCCEqOQbzjwH0cGNsw19J3xQZVx2R7GDNbdZmtKvWyjh/TDxMqtoF9jD58PMaxjVCHlZR6SSWfZmvO5BLBMQzmaxZzteOpONsLap5JL0iwC38LUHVNOqNEXdKhYidkjqEJNE0gpXzoxYdj6jw3W0XCgdow9rK+DE3DNARJKnGLdpDtQr6+H6gDdpTmu9STmp6lErgxvHa2wUJ975UAYzzJf9/vu6Mso2yrS7lxkhfUv8dZXqg5G0RFleNiwyMtYo+DQKA+y7E06ii1P8fQMQQEqXp+uv7w715zTbaGMRXneHjBVMunhmcbjBLF15NmObq2O+FUsg2em6sSJRnXi6rpoxIAGEMIeG2pzq1tnyTLEELFjZoAz9ZpeiadUUxW+MGun2DqGmmeT842x4XH+e+xoqQQSh3P1DUsUyvGrRMl2WTNxUW14SBMeGa2zGzVfeCS4zgxW3N4bq5K1TGouRbNQql5jDDO8WyDXqCU4McXoq6lEyb5JB55FDRBoRT85MyUqWs8O6sI4Xe+py4EtinIUftMSpXwmipbbPRV9aFr6gdqCRvbxUdodD2AcZzb9Ey+cm2bXMoH1GbDRBGPp5mcXPxUd6hRC8G+VLrNA8QGFcfkS1dmePN2D0vXjpwK4ElwTJ3XzzZwTZ3VfkjDs3ZduAQF+X2aSVzTIMlzDF3gmjpJmtNBXUA8zdke9v+8D4qntqRCiOvsFpsAQEr5+OvwY0KS5fhRRtlRfewbg4iFusOzsxWQ0CiZu0r8wiSjVbJwLR0NJptBSknHT8jyHK1QGtnpqKerzp5ubB1D5/JMGYHg5taIl8/U+cIVkzTL6YcpZ5oufpwTpRkz1d1JqSyXJFl+5DwhdkGg9ySp+SBWN5p1VyXjhgVR71xtiteWGuRSZballKRZTqtskRWl+JahHNAwTCnZOoaubqiCON2TotxOGLrGlX0qpYAyksYjAqGH4bm5CpYu+PS5JpahcX6qTD9IiNN8l3HNc9UyKqXENjUuTpceqeokpcQ1NayqxVRZlVdWHZMfuNhicxhhGTphknK3G/Bss0qc5tQ8gx95dmqi2JhmOVmhFPI02MvzVuvRLqSf1ee8MF9jpuoSZzkVS+fdlQHtikXNNRjGGS/O13Cse/snTDJsQzvUBNXOVqDHff/7gwBN0/jJl2Z5ZbHOKIoBQd0zqJds8lxyY2tE2TH21DZgG3tT93uSNPX961HTNH7y5XleXqzT9WN0TTBVtigVNx3Xi5uR+cbe+DmWWseT5HgcRlHK//yNO/z48zNPbJ+1TI1L0+VHBnDTRavedFHJMFYwXKh7bPsxnqkzilJud3yen6uqilQhsA1tcriRUhKl+VOvyyft74anBArGt/w11+T1c022hhFprn7+7kpPHRp1DakJfvBSe9fhK8lUoHbUCpoLdYd+mDxyvvtBglEk5WeqDu2yzRevTCGl5N3VPlGSM12xd61jU9e4MlMmzeVD/dZ83WVjGOGZOiVb5xNnG1i6Rs0zJ21bM1VnwkGz0g3YGoZ4tslczaVVsukH6hCW5/KBQ2uYZFi6dmiH2ZKt88UrbSq2aru0TX3CkVN3DW5sBug6LNQ9zIsam4OIM00PY8ezi9McTXBkF05OsW8uSHX59uJ8FSHgBy61GBbcHp6tM121yXLJzI42yONYa09C1TF5cWF3VUe7bNPwLM61vUkrH0hubvl4lsFczWF7FGMZgnZ5t80ef7csl6R5vi8/+aT9Dep59kOVNLs8XSFO8wn3zUxhm25sjdgcRrRLFh0/oeGZxFlOnOX8yLNTCCEQQqj1yv7W65P8t64JWmULz9SpeSZ5bpBPw4UpyWxVtQ7GWUarpKq1hlHCFy9P7WoPyaQ8UFsFqIqpVkkdpCqOOaniXWp6bPkx7bJajz0/mcSEY8xUHaqOQfmI29DMohq8bBtkueTHn5umHyS8fLaO/Yi4W0qVhH+uiAGOI3FWdUxeXqxzZabC3U5QXFapc4iuaUxXLHRNo+5ZJFlOkinbPFvbP5fX0+JJ/tsyNJplk6Z3rwX1mZkKs1WHYZTSLtu8vzZQYkYliyDNeWHuXkwJau/tp4DgoNh5Bnturspzc1XCOCPOczxTZ7Xg/3l2tsLWKOHSVJlmyZrEFosND8eIyKRUiaRHLBUhBJemy7surh6FtHi+rmVMzh6uqcjtL7TLvLRQU3GPqVOyDZ6ZrbJY8O2Zuqa6L8KEimNOzrn6HlU/52uO4o/dh02Ns5yKY/LbXppDSsmoqNy0DY2un9AsqTU7VbFZapUQ3POVl2fKaEKppneKLognUW+UbYNL0+WnauUD+KHnZpiq2qz2Qj6x1ODm5oAPN4Z87lwb7xi5ifNcEmc5rm3w2tkGmZQESYYuBKu9gExKnp2rqst2W+dcq4QQyi4IIWiVbUq2UTzvFMN7fHL0YXia530QHMTnvL7jzw7we4HmwYZzeLi2MSJOczxb5+JUmTNNj1tbPu+uDPhwrc97awNcS+fVxTqZVIHy2aZHu2xxtxtiGRoXp8oTDqnrmyPmqi6tivVUMu5xmvOr764TZRlX14bc3PaZq7lIJFXHpOKaPDdbYbkX4JkGn7vYpuwog/Ph+pA4VRt2tnZ0bQuCx8stgzLQVzeGSKlIm21DY2sYo2lwZabCKMq4saVIIQWSXpBScUwqjoEfZ/z6h5vIYqNZhsbnLrT5+o0t/DjHj1L6UcrFqRI/8uzMoRLO3dgc8dVrW+RS8tmLbc63H31YX+kFbA5Uf/NczeXrNzrc3g5UclIT/MYHW/SCmIpr8lOvzDFTdbm2MWRzGCsZaMdU7WOPCWrfXu6x3AlplS2qjsX3Vvus9UOenatSc0zeXenzm1e3VECZSbpBwrXNEWebHj/2/Ax3OwE//9YyEslPvDDLSzvaBPaKJz3vux2ft+/28WydlxZqrPVD3l3pM11xeG6uwo2tiL/3jTtoQii+iijjjZvbpLnkx56bZr7u8T987Ta3OiNeXqjzW1+cPbTk6s5WoGd29Fo/DlJKrm6MeOPGFm/e6NANY8qWjqEbfP5Sm1bJZHOoKjF+6Jk2jdLBe8q7fsztbVXmfa7t7al99E7H56tXt/najU26foJraRiGzmuLDeYaLt2iWuTzeusjQ2j6c9+4Qz9M+SM/eO6Jr9WLAORhyPOcr17fJik43paaHl+7sU2WSz51roGpC763OuA3r24WN60qWPvucp+Zqs2XrkxhGzr/4zducWc74JUzdX7LC7P7Tu4+bn8Hcca/+HADTRNESUa9ZPHNm11sU+NT5xqs9SN+8dvL3NryaZRMVvohQazaA67MVPjUuSbvrPT45XfWkBJ+7LkZXlw4HK6itX7IN252sAyN188pd/1r76+z1o+5PF3mBy+3d+3RaxtDvnW7x7YfUnVMzrfLvLxYR9cE37zd4Ze/uzYJgubqLn6U4ZiKa67sGA/cio5hGdrk39JMoglBlGb86ntrdEcJs1WHIM3QhcZ6P+DWdkCc5XzpcptcwmLDZX2g2o5ubavWh36o2ppcQ6fsGJRsg8vT5UOZN4FgEKqLAsUXGRClKc2SjUBybdPHNlSwf21TkYpbusZXrm0T5znPzVa4te1zY9Pn4lSZV8/WD114I5eSaxtDvnOnyzsrfSxDw9A0toYRCw2HubpSWAP4kefu+Vc/Trm2oWhCl1p7s1FHiSDOuN3xsQqODJVgselvjnhva8Ct7RGWrtMJYvJc8fyFieS3vTDLDz07jaGrw8v6IMKzNAah4gKar+/mVNkexSx3AzxL53y7hB9n3NzysQzxRP8NFJ+b0fMTzrY85mouUZLx1etbRKnk1TM1+kHKcifkGzc6TFVtGiUTP1IVkrlUVYG6gF//cJP1QciPPDPNZy+097RmH+e/4zTnN69uKh62mkuU5XzrdpeybfL8XJUvX93ijRvbOKZKCr9zt8e1rREzVZuffmWBt253+bX3Nqi6Bj/67MyBOH3iNFetyn6Mrmms9Xy+fHWb1V7AfMPhC5dmuLntM1NxcC2N8+0yN7dU/B5lGRoaM1UbKSVfu9Gh58e8tFhXB+9DihGjJOPNmx2+en2LO9sjvna9Axq0Kg5nmg/GihuDkK9e38Y2dD611MC1dP75uxvc3PZ5fq7Ca0vNQ79IDpOMX/z2skpsJjmdIGKtp5KyZdtkumoXCRvB83NlXMvE0FR17nGSNz/Ofwdxypc/3ELT4EJbdTp8/UYH21AXv71A8ovfWuZOJ2C6YpOkObe2R6z2Iz59vsUnlxp842aHf/K9dTxL46deXjjy6uKuH/Pzb93l1rbPJ87U+YkX5vjWnS5fubZNq2JxruVxfWPE+iDi/dUBr59rMlOxeetWl7VhyHOzVeZqLje3R2wOYqarNp8423jk55m69siEW5zm/MK3llnth9iGRqtkc2WmzNogVG1WUl0EjROR3SAmzaDi+CSZxDY0loqzz4frQ/Ic2hULXROTduS9xKnji/S9zt/ffeMW6/2Yz5xvMFvz6BWXSr0gxTYEvUDxhk5XHExdo1VKeet2Bwl85nyLkm2w2gtZ6wekucTSdc7iPTE5dVCS/BcW6rywAH0/5k/9rW/y/vqQsm3wj//MD9KsHm3lXp5L/tn76/zGh5ss1B1emK/hmgar/RA/zvBj1VrnmDqvnWng2Crh9LUb24yilFcW60xXHdb7SpSmH6SYusYoSvd9Wb2f530YOEgr39Z9P/pPhBC/Afw7BxvSwSGlym4Dk/+D4iYZBAlv3e7R8WOEBlkqqXkWW8OIpmehFaXPUZJPyuMm/yGRT5l9DdOMO92AjUHEra0hW6OEQZgqaemiAuZukRBplQTLPZ8rTlU5oaIVcRSffDvOToz5FEC1ZERJxvtrQ75xaxtLU7ffpq7jxxlRZpGkOWGcMwgVl0rNM7nb9RlFOWme8/Zyj9mqy9X1EZ+9kB5qgHx9c8i2n5CkOavdkIW6+0jnuV3wLHT9hOmKIqtPM1n0RJuKGyrLaEY21zZ8dE3w7kqfJJWUHP2JGziIMzYHMctdn9udESXL4MamD8D7qwOWWiVW+yHdIEEXgq1RTMdPyHPYKngE3l8f0g0SZC65vjnkhSMg2V3phWyNIj5Yjye3GkGcc3PLp+oq/qaOH2PpOt1RwqYT4RccCGv9CIFK8oVxzo3tkVKeO6RgLdnRCrTXW90kkyx3Ar5zp8u37/RIctVGea5VZrkXYO8oE84PQGi+EzvLvPdSng1wZzvgndWeGmMGpg5nGyVudwOq7r1vmh2Edf0QkOWS//qfX+Xnv7lMxTH4mc8t8dOvzD9QgeTHKf/lr17lE2frvPaYgGwv6PoJPT9hYxixMQwZhvd4VG5uBQihki+dkeILGYYpfpwpLrdIcYbommClExHEOTc2fJVgLx/eIWJ9EDIIU9YGEf1AVZMOwpRBqKrd/CRjbVDwbAioexbr/QhT11gfhERpzntrQ/pBSpzmLHd9Ls2Un3hQ3gtWeorrIkxytoaREizwU2UX++ED3BaK90fZTFEXrPcjVSFrKELSMXfBWCl0uRuwNYp4fq6mLlPK9hOrcJTQh7J34+D+bjeg4Vl4lsG1rRFRrKpM+lFKM88n48xyRfqZ57A6CChbSnBD10XRxiKxDsEuJlnOIFS8WUmWsz5QBMQNTwX1hqaRScmd7QCZq1LyW50Rfqz2/4frQ7p+wjBMWen5LI28Q09MJZlSn/zWnS4rPZXsbJRsTF0wDHNub/oTPsurG8MJWW4QZ5P53A/34lFhcxgRJTlRkjOI0sk8xakixw2TnKtrA8IMVrpKec81De70AoIko6JrrA+igoNJ+S5d0/DjjJ001h0/ViTxUaZ46nx1WArivdnVXEpGUcbdTsCWH7PaC5mu2GwVlxvfXe4hUIeubpBimap137MUd5ZnGUgPrm2NWOmExJniA/vE2eaBD1Trg5BtX3FWbo8Spqs2wzBjGGZYhmC1r2xUnEp6fsxKLyTPYXMYs+3HXN0Y0g8SgiRjpRccmGw6l5LOIMGzdd5eGXBja8hqL6IbJlyaqkyq5ZNM0i+I66M0ox8ogZlRnNELYtYGIX6YsdwNONcuHdoeUodkxRn5znKf5X6Io2u8fafDZy8+SH6+3A1IUkmSpnSCmEEkWO4qXsFbnYBLM4cX64yh+Nck7ywPiNOMbT8mijOSog0zlxIhFMXCMFStfnbRynVasDGI6AWK13AYpkyVbYZhyhC4tjkiSnPWhxH9IMEyNLb9mK6fqrU5iAiSjPfXBgyChGEItzujI09MbQwibndUHHttY8SmH7ExUAJVfT+h48b0gpRBkKJrihfRNXVubBUx/dqANJO8dauLZajqbT9On8qfbwxC7nYC/Djllh/TumBzfWuEhlCcu0lGq2wzCBNGccr2MCZKc0CyPYrRdUGaS56drU4oKOI0n7RXwkPaoA6IG1sj1vsq3vre6pCKaxGnsuDn0tgYJoyidNJ62oos3lnp0fVVbHF728cxdd6600VKScU2manqyEMf6aORSRXjZFLZib/2G9f48z/xwpFWSUZpzvurA8I45+ZWQN2zudAus9INqbomy91g0r53tzfibLPMcnfEahFLdUYJv+WFGdb6keLQGyoKo9NkDx6Fg7TyvbbjrxqqgupkpBLugxCCpZZHL0h2EaUtNBw2RyHPzJb57sqAsq2z0HDRdI2psq1aeGoudztBwXOg45l6ITevVFXq+1TuGkPXVL/nYsMlTlN0TWOmYvPauQZCCGYLNZcskzimxmxVZbwdU5Xej6L0VEhs6prgfLtUEA9bSCR6P8KzVLlokGQ4hlIKqXvmhPflYrukVLIMjXlshlFG3TM52ywRpjk9P+H1c02WuwFnmg/yfx0UZ1sllrsBmdSZqlqPPSy1yzabQ6VcYxkanzhT54Y34lzbY60XYumCbhDTrtgstTyCOCv4HDKWWt4DLQX3w9QFUxWbOx2fac8ikzmNkuLSmK+71FyT6YrNlZkSdc/iS5en+GB9yPdWB1yYKlH3TJ6ZKXN1fUiWZTw3dzTKT7M1h1tbPu2yjW3oNDwVxDc8k6myzSBMeWamQo7kU0stqo5Jz08RQnKhXaLimJxrl7i2MeTZ2cqhZtzn6w6bw5hSwRe1F1iGRrtiU3YsKq6BzCXzDYellsczsxU+c67JrY5PxTYOTI49Rrtkk+eqP36vtmO2blN3TKqORZxltMsmF6Zcnput8PlLbdYGEY6hM3eM5fn3Q0rJX/i5b/M/vnmHz5xv0vFj/szfeYv/6c07/Me/++VdMuB/9Vc+YLUf8p/+gU8cuJ3TtYyiDSVhse6hCQ1TV0TnMzWbKMmpeyYvLNao2Aafv9hitRcVylim4tQRgnNtjxtbPs/OlQ9M7ns/Ko5SC+yHqVJBQSjeOENjvu6y0lOJ8YZrsNgscXGqzPtrfbp+UsiAazw3W2G1G5AhOdcqHVoJ9VzNZa2nkmBTFbWvr8yUWe1HPDNbfuBAfHmmoi5ERBXLEDRK5mS+XlqosdYLQcDLC3VW+iFxKqnaihOk3rQw99gybejKxy53A6YqDq2SSdUzSTLJC/M11vsRNdfk+bka7YpquT/bUhVAJdtQSqvCQUrFb+jZikPjsFrTxvZ1uqjqiJKMjUGEZWg8O1eZ+IBPnWtwY9Mnk3B5usQ3b/WIsoxXFut8sD4kzXKmq86RSD4LodZeq+wQJhkLdZuaa9MsWbQrNhemSrx5o4sEzrfvVX3XPUVyLZF7JpY9SlRdxTWl2kfvrcczTZcgVnGHqQvubAdcmavghwmebfLKYm3CTVVzVfKnXbZwLMWbdD+JeatkESWh4qo0VPtTL0j2zMdzrlXCs0I2BiFZrpIqZdvANhSvz7lWiVGUkeY5rbJJ2TapeRZxmlFzTYRQPDyfOFtjpReyPYq5OF3eF4/Ko+AWraZl22C+5mCZGrqmfr5Qd4mTfCIe8dpSk9maSmgutcq0SxYX2iVWeyFlx+DC9MEO/pahsdBwqToG/TDl2ekKd7d9okSpKc83XC5PVwiSjIZnYeoahi4QQu1hIWC26uCaGu2STVfEtCvWrrVxUDimznzNIUpzXlyoMogyLF3wyaWHN4HM11w2BjGmLpirqs6HdsUiSDIWixjusGEaGiXH4EzDYRhnmLogTjMkyi4vFcreUsJi02O+5jKK032rDR8lKo5Jw1Xx/0zFwTSUbzQ0jfmay9ogZKnp0XBNzjQ9PnGmzleub7M1jFlqeXimznNzFdZ6IY6lPVR46LAxU3O4OFXixqbPldkKUyWLc+0S/SJp/vkLLepuT9FA2CaepdMoWTRLFtujmJmqgx9nBdVAxGzNeWrOr1bJZrpqszWEc1MeVdfgmZkK3SDGMMAzlYL3fN3F0ARxmmOnOTmS7VGCretF+5/OXN0hiFXLvKkrzj79CCpjzrVKzNZsNgcJn1iqM12xCR2lGNgNElzDpRck9GsJJcugVbJplSy2Rx1AUTfc7QUIqS6iFxsu01XnwEqh+0GjZPGlZ9r8r++sUzE1Xppv4CfZkfLKOabG5ekKHT9lrmbzwnwNieRT5+us9WM+db5B308xDY2XF2tsDROmyzabg4g8k9RcEz9Ji2pJ1V5bto0T58vaC8TTVgAJIX51x19T4AbwV6SU7x3CuPaF119/Xb7xxht7eq0s1B5GUQpIdF3jxqY/SbgcFcfCJ19/nX/2G1/BtXS2hiErPdUaca5d2nVYy3N163EShNGvv/46e53HR2FrGHF9c0TZNnbxP40D+7woRXlUIiXLH61seNBxHsbcpmmOpt0j6is5Br0gKbL6GhfaqnXkSWNMs5yb2z5BnNEqW8zVXOI0n6y/PJfkUhYkpY+eK+0A32cv87jaD1jrRZRsnfNtRVRv6mpMeV5UEIpHE12O99tBEmeHsS53YnMQcm1ziK3rvLBQOxTOl8Me4yhKeW+tT56p/vHD4Ng4zDH+L99a5k//7W/yr//wJf7sb32GPJf8za/e5D/8h99DF4J/+3c8z0+/Os9//5Wb/OVfepc/8Omz/Ie/66VDGWec5tzcUrer01WbVhGg6MVzzIp1+bi9I8dcD0+5Lp80xlGUcnt7RJrDmaZHydLRxD3C5jxX932PW3t7sYUHGeN+PktK+VDBiKyw57om8KOU99cHWLrOmaa758qbT37ydX7zq1/DMjSGYcL1TR9DF5xreZgFP9iT7MdB5+pJeP311/n1L38VUxcYukYQp1zdUK0QV2YrmLq2S2ThJMb5+uuv88+//BUMTWOtF9ALUyq2wdmWN9kHh2GPD2OcT1qXj/PVY7/39nKPPIeFhquq3e/7TgeZ6/3snfV+yO2OT8OzON8uFX4RDEObVNirivtH25uneS5PGqNqI1dVcufbJUUYX+ylcXzxuL11WGt15zjH79n3Yz5YH2KbGldmqg/E3Y+bj6OIkV9//XW++rWvI5Cqq2Hbp+aZXJl5NIfk/dx2B/UpexnjG2+8gZSSQZhg6TpBknKno6q9L01VToWQwZPW5TBMuLmtqomWWiUcXUMI5b9Po2/c62emWT7xAUKIonNHCSTd3BoxKNS39yps9bgxPmos95+vxv45yyXvrw2I0oxnZyuU7MNLPu11Lh83f1kuEdwTdBBCkBXdBrqusd4PJ2qCl5+CV/iwYt+bm0PWej7Nisv59qN51J4Gjxrj4855aSEyMz6PaZogiFM+XB/usvtJJg9chTuGEOJNKeXrT37l0+MgrXw/fJgDOS4oskmo7LjReH7+yQTGB/5c7skWT1ddpqsPr3Y4DY7lIGiV7cdWmzzp+x3l4eIw5nZMZuvZ9xxLzTWp3Ufa+sT30bUHuMp2BmeaJlBHnUfjOHgDlNrUvbW68zPVfD5+DOP9dprQrji0Kydfffg4lGyD186eGsq+XchzyX/2Tz7g2dkK/6cfvwKotfAznzvHl65M82f/p2/x53/u2/z5n/s2oDiS/t2fev7QPt8ytMcGJ/oe1+U+9A/2jZJt8Ozcw22CEI9WodqJY+UFecJnPUowYufvebbBq2f236opxD3bV3ZMXlrcv6z5cczVzsDOtQxeXKjv+z2OepzjSuMzrRJnHvLvp9EePwyP89XjOXzpCfN/XPvnfgGcnXt7fJh40pwfxXOpF4rPD8NJxRfj96x6Fp8892j/9rj5OKoYeew3ZmouM3uoRr5/HEftU3Z+TtVVz9Wx9EPhwjxOlB2TF+Y/Or5xr595f7JJCIFlqN85bAGaR43l/jU5fp2uiQeEJY4bj5u/h/2bvmM+9yoydtRYapdZah99ld5OPG7edq658bN3LeMBzuFj4iw/NBykle/PAH8dGAD/b+A14C9IKf/xIY3tY3yMj/ExPsYpw6++t84H60P+k9//6gNO82zL4+/8sc/yD95e4cP1IS8t1PjhZ6Y/8gn3j/ExPsbH+Bgf42N8jI/xMT7G0eEgDZJ/REr5V4UQvxWYBv5VVKLq48TUx/gYH+NjfJ/iv/5n11iou/zky3MP/XdNE/yOl+ePeVQf42N8jI/xMT7Gx/gYH+NjfIyPKg5CrjK+Av/twF+XUn6LJ/VPfAQQxEr+92m5t04bxso0417j04ZBmDAIk2P9zDDJ6PrxpB/7o44ozU71MwbVJ931Y6I0O+mhPIDxejjNe/60zN+bNzt87cY2f/QHzz9S0vijBD9OlTreKUVePPcwOdhzP+1+4CQhpaTnJwTx6bFNgzBhGJ0uFd7H4TDXV89P8E+ZAvFhQ8rD2dcngdNuM/eCUZTSP+a482lwWmzTKDqdz7wXHK2tSDNl13aqu58mfBT9elLMaXpK5/RpcZR79fstL/EkHKRi6k0hxD8GzgN/UQhRAT7SKy1MMq5uDJWyT8VmtnbyPa0HgZSSqxtD0kxSsuNjUbDYDxQ5ZwCoFqCjUDK5H1kuJ6S1dS/lTNM78s88SuS55Or6iCyXVJyEc+2jlc59Wtze9hmESiHi2dnTQdIJykl+uK72/LCUTiTUTxtOy/z9tX9+lZpr8vs/9TAGm48Wgjjj6voIgJmqfSo4DO7HnU5AL0jQNHh2tvpU3Bqn3Q+cNFb7IZuDGCHg8kx5zyqfR4XOKOZOR/nFpbZ36CpJh43DXF/r/ZC1foQQcGm6jGN+xMgx9oi73YDOKEEIeKYgz/8o4KNgM5+EYZRyfUN9h/m6c2gKvEeBtX7ExiA6UV44P065VszXbM15QN3ypLA+CFnrRQBcnC4dupI3wI2tEUGsRImemT0VovMT5Lnkw/UhWS4pOwnnT2nsfz+ub46Iklypzj0Fkflpxc69epi+6/stL7EXHMQb/lHgLwCfklL6gIlq5/vIIi+UQADS/COdYwOUEsxOVYbTkG3dOYZ0R5b/uLLnuZSMH+34FuQ0zMvTQqK+E+yez9OA3c9azXUuleLKcX/+o7Bzz5/UrdNexjl+trmUk+d93Li6MeQfv7PGz3x2idIRyuQeNcbznT3CFp00HrZvpOSpn/v9fuAwxnXasZ+xptk95bTjdPuPGuNuv3j65/wgccb9rx1/dylP1548LExsz47veVL2fC+4//mcVpu5H6TpvU1+2itNkiyfKBQeBx62d3c+55Oer53j2zmWo1qL4/fdeR48LX5wZ+yfncLxPQpjn3bP1p/u8e4VO2O1wzxv7zyjJNlHr8L2aXCQ08XngLeklCMhxL+CIj//q4czrKdHEGdc2xyiCcGFqdK+bj89y2Ch4RKlGVOn+BZlr9A0wVLLYxCmmLrgu8t9LEPjQru0J7nSw8ZaP2S9H1F1DZZaJVolS7XTCWiWHq4ec9gwdY2zLY9RlNIqWwzChJtbPqaucWGqdOpvLsMkm9xeXZgq4Zg6Z1sewzA9tjncC65vjhiGKTM1m+mKw2LDY3sUU3aMY1FUub3t0/UTWmWL+fqjFXZsQ0nbB0lG+5j3fJrlXNscEac5Z1uPr4xYbLiT+TuJvQvw//n1a5i6xh/6gXMn8vmHgZVewOYgpu6ZnGl6zNcdkkyeilvgPJdc2xwSJjmLDZe6Z7HQcNkaxpRs46lt004/8DQ2Yuc6PdM8nsrWp0WS5VzbGJFkOUstj8oeqo2UfLfAMfRDk1R+EsaVQWNfuBPtsqWCWgEN7/TO9Rg71xfA23f7eLbOhXbpoRLXY9y/FwFmqg6aEJi6oPwRTn4/DKu9kI1BRM01ma+7mHqEZ+knXqH3KOyMjS5OqZixbBunymbuF/0w4U43YBSnnGm6x+7z9wsBbI0i2uWjr5IYRSnXN0cYuuBCuzxRSq06JnN1h/SEn/n2KGa5G+BayrZMVxwESi32qKpKl5olOn488Xm3tnx6QcJ01WbmhKsF9Yf49dM0vkdhqeXRCxLqnsmdjk9nlNAsWyw8Jk7/KGC26qBrAtvQ2R7FXNtIaFcs5vag8Pk4jPMSm8OQrWFMkORcnCqfiDLlceEgJ5z/F+ALIV4B/jxwE/gbhzKqA6AfJuS5ysqOA6X9oFlSC+mkDn+HjYqjgqAwyZESoiTHPyFeg44fA9APUrJcIoRQMqAV57EB7GFjHBjahk4/TJFS9Wr70enPRg9CNXdZLukXPf/V4hmflraHJMsZFnuv66sxOqbOfN09traU8eeO19zjUPfUnj/upKSfZETFvuz5j+dvOO75ux/rg5Cfe/Muv+eTix/JA8kY2yO1Hsbro1VWpdGnwckHSUYQq/UwHp9tqOd+0GRQ5QA2ItixTvunkGdkJ/woI06LPbXHsRq6xlzNpXGMif1O8XzHvnAnTsovHgTj9RUUsYUfZUTp48vPOiM1B90dtk/XBLO1091e9bQY+6JekKALwXxdJZ9PK7p+MomNRjt4U06TzdwvesV3KlkGFcc8NZQCj8IgSo8lKQVqXUoJSSoZ3cdv1z4Fz7zjx0h5z7aMbcVRJhddS/nfkm2Q53LiU/YSVx4Hdvr10zi+h6FkG8zXXTzLuBenj07vePeKSRzhmTu+1+HES82ShWsa6JqmzvDf5xyMBzmJpVLVqv1O4K9KKf8qcOINozXXxDY1HFM79dwMx4lmycI0BJ6tUzqCXuy9oF220TVBs2ydmqCm4ZmYhsC1dMrO6b+hrbkmjqlhmxq1U3qbbuoadc9E18SJ3Ui2K2qNneYkStkyKNk6piFOVbXbw/Df/MYNkjznj33hwkkP5UCYqigb1K6cvvn2LJ2KY2DoykaeFpR2rNPjTN48DcqOgfcR2FPtwgeeJl94GGiX1P6quSa28fjwcmyjT+NePAqM459W2Tr1CRGAVvlezPj9Ur02joNLtk75hOLg/WC8Zo5jjzQ8C8vQcAs/dNrQLtkY+t5sy1FAK/buSca1j4O2w5+cxvE9DON47DTH6fuFEOJIzh+NHbbrpM7wx4WDfLuBEOIvAj8DfEEIoaN4pk4Ujqlz5fuIUO2wULINnp2tnugY2mX71BlMzzr5edkPLOOjQRh40qTyczX3wCW0Rw1NEx8JIuquH/Pf/eYNfvKluY8MweajMF1RlSinEUKIUyle8FFZp6Aqbi5+BMbaKtvfl1VBNc/c84XJad6LR4Gpiv2ROoB91GKjveA0xMH7wXGuGdfSTx3B907sx7YcFebr7mOpIU4aC3X3I9USN1N1Tm3L4UFwFOeP8kfMdh0EB0k7/34gAv6IlHIVWAD+b4cyqo/xMT7Gx/gYpwL/zW9cZxRn/Os/cumkh/IxPsbH+Bgf42N8jI/xMT7Gx/g+xFNXTEkpV4UQPwdcLn60Cfy9QxnVAdD1ldSyY+pMlSxMUzsSGdGPOsakcxXHYLbqKJbFI0CYZBiawNA1pJREaY5taAghiNOca5tK7vR8+2Byr3mu+uJNQ+CYu98nTDKub46Q8h5h+EcZYZKhCcgl2IZGP0i53fFxTI3z7dNBipdmOWku0YRACKVScVLPIEqzQqI2Y7qibmhOYyvFWP5YE3BhqnxsRMyPw52Oz1/79Wv85MtzH/nbGiklYTK2PxClOUGccrcb4piKUPWk10WeKxtpaCBRe2dM5n2uXTqylpoozRAIVnoB/SCl5hosNrwTn4/DwNj+Z7nkTMOl5llkuSRO81Oxx8bIcknPT1jthyRZzuWZ8kc6dhmTZ48FV4ZhireH9TsmOfYsnfPtEmmuVIksQ5v4lY+KD4/THInENnTSLCeT6s95Lrm+NSKIMxbqx8tvtl8kWU5ccPpYujYRaDjT8E68gmW/CJOssPkBQogDx52HjZ0+StMEUZpxtxMwOkH+0/uFGqI0QxfiAR7eMMmOlKdz7BstXZDkEksX3NwOGEXpkXBNjYU00jznXKuErglMXSNOcyxDO/E4W0oVU/txxlzBy/ewM9bY/pwGjMWbhIDzbXUOiNMcIZjM7Wka72FCSsmNLZ+uH1N1DS5OPb46MUrVXOW5ZLpiU7KNPfnP7wc89bcUQvwx4I8DTeAiqmLqvwJ+9HCG9nQYEzZeWx/yzTDGNQ0+e6FF+yNUQn0c6PoJwyjlw40BtqEzdQQ97BuDiNVeiK4JLs+UubnlE8QZNddUSnJRSpIq4tdekBwoQHhvbcD7qwMcU+czF5q7SEUHYTqRKO0HyUcmqH0YtkcxdzsBa/2ARsmi7lkYmkBKCOKcMMkonbDxSrKcD9aGDMKEOM1plCwqjnHvGYTH+wyGYUqU5HzjZhcBPDtX4bMX28f2+XtFZ5Rwt+vz/uqQD9YH/MizM1RPUAEtyyV/4ee+g0Dwb/32505sHIeFm1s+gzDFtXSEUCSq/TCh6pgEsSJUPelExbXNET0/YXsUMVtzqbsmcUEi3fXjI0lMjRMIaZYTpUq44OaWmo9L0+WPDAH3ozCMUuI05/a2z9Yw4uJ0eeJ7piqK1PekkeWSD9YHrPZCen5CLmEUp3zqXPPUK8U+CuNYLEpyvnp9i/V+jGc/eX+NSY5HUcb2KGalFwJKmXS5G5LlkpmqzfQpbwEZq5yBUn5c7YfkOZxpKuGVsdhKx49PbWIqSjPeXxtwc9OnXrKYrzkEsbJHHT/+SCWmOqOY99cGfLA+wNZ1zrVL9IP0VCWm7nQCun6CYyqezrudgFvbPmcaJ0eNsFOoYXMYsdIN0TS4NF2eJBDGipOGfnS+4trmkCDO6foxdc/CtbTJWuz68aEnpoZhOvG940vVjh9RsU1cW+fKdOVEL26iNJ8kLDt+Qqtsc3s7oBckBWm7w7UNNe6l9uNVn48L/SCZiH0Mo5Qozbm15SOEautb6ytbv1dF3Y8S4iynM4p548Y2uYThxZRXzjQe+fphcW5d7gZ843aHVsnmk0uN78vWx/txkIjnXwM+D/QBpJQfANOP+wUhxGeEEF8WQvy6EOL/WfzszwkhfkMI8TeFEGbxs/9t8bpfFELs65p+TP6WS4muaSSZpB+ebiWhk0C7bJNkGTXHJEpyolQ++Zf2iaBQcslyWdxUqb+PCkWBimPgWpoi1T2gOs04mA/TbJeCDNwjxLcM7UQP+oeBsRqDH2ckmSSIM5olC0NXpHjuKUi6xWlOlkuiJJ+oQZq6wB6Tth/zM6i6JoYmVOLB1un4iZJjP2Voly2GYYbn6EgpTtRuZbnk3/n5t/mNDzf59376+VPNq7BX+IVdCOJ0cigc33xWHAPHPNkEgLotz4jSbKJuJjTF/XGUZN5BkiEl6JqGZ+nEWU7NMwmT/AHFuI8iqo45OTCVbIN+kEwuRE6Luk2S5SSppGwbBEmGZQgcQ58cjD6KGPslz9Ynvn8vyrdjAvWqa5AV1VJjlcXxevTj06+gO95X6kAbkxePchRnOKZGxTEKMvTTe2kapTlxIkkyZZvyXFIuxn2aBBr2grEKrmOoi4lcSuqnLLE2XtdhkjOMssImG2QnGK+MCb8bJZOw8Et5rsY4xtiOji8fDxt5LgninFxKuoFScEtzSc1VIjut0uHvoZ3nE6u4HBgVcXeSSpL8ZG2zbWiT798u9uL4bBXEGX6kFMfHfz8NqLomlqHOAeMLQaBQIo4n9jI4IeX4o4Rt6DimRpzllB2D7Sco9lUcJXQVpRmWrtT47lfL/H7FQa4KIillPL5NFUIYwJOs0k3gR6SUYZGI+gLww1LKHxRC/JvAvySE+PvAnwS+CPxu4E+wD+6qqmPy/LzJUsvlO3f76BrfF4eqw4KUEiHGMqsWy92Qjh9TOoJKgemqTS4ltqkVsqYO3SChVRywTF3j0vThkC1emSkjgZKt0y5bk+8J6vD5/UKIP1WxSTPJ5Zkypq7RLNlUHJPn5k5PgFWyDdoVdaOV5RLXNJipusyf0O2SqWu8sFDDMgQrvYgLU6VTWQXSKtv8+PNTvL08wDX1IyFvf3elzy99e4Vv3+2xNYwwdY3Fhsu5VokzTZfpirrZ/ztfv823bnf5k1+6yO//1Nn/H3t/GmXZmt71gb89D2c+MUdk5DzduW7VrUGqklSlWUJIAoMA2dCw2oAXtN1r4cWCdvuDe5nVNrTtxhi3sRgWNCzLxqABCRlESUg1q+Zbd74354w5znzOnoe3P7z7nIzIjIyMyIzIjBL919LSVWRG5I599n7f532e/3Dk1/EssNRw6Hgxdccgy3P6Ycrp5smRoyiKwlLdwTE1aq5BydSZrdiYx5xANFWyiJIcIQRLDZez0yW2hlHR0PnuZOvshKmrvLBYY7pkMooz5qo2fpTixZmUsZ8AWLrKXNXCizPOz5QK1oT2zNmvTwLX1HhuQc4VK7bOu+vDyQFqP1QdnZorv08OtaS8Y6nuYOkxQZKdCJbbo9BwzcnBa8yYitOc6bJ5YoMO7kfF0lmo2+Qip+IYLNSd79pncqZsEcQJlqkyX7U51XCfuRzrfizWbVqjmKqtU7J01kTA84vVZ3qGmSqZEzZSlMrGjKEpVHck9y3UHDYG4bGcI0AGcCw1HPpBwotLNXIhh+vHOeTUd5xPwiRjrRdwabaEpmqULO2Zy80UReH01G4m3ULNpl3UOA3XJCgGw1MnhJFpG7sN9qfKJkGcomvyndwoGFPH0Wg8CXh+sQbA9ijm+YV792GvQfk46Gq2avPexgCjuEf/LuBJdpjfVRTlPwMcRVF+BPgLwK/t9w2FSfoYKfAy8DvF//9Z4OeBt4E3hBCpoiifBX7hsBfmxyl3OlI21nBN/Dj7rpZvHRXW+wGtYTyR0sVZjp+klCz9WNK2bEPbVXw1XJO31ga8tdrnpVP1I/03m2WL7yk2z+/c7XGr7XGq6fLqcv1ENiEeF5Yuo3zXeyHDKMHQVBquceJ+x7mKzQfBkBvbHlMlk5mK9cxkUmmW85UbbTpezIunapx6hrT4/fDu+oD3N0fMVi0+tFw/cpp4axTxE//959FUhavzFeaqNnGa852VPr/xxjo7yTFLdYf/9x97hT/06qkjvYZniZpjUDI1vnW3x3ov4OJc5cQ0pcZwLY2NQc5GP6RRMqg5BqZ+vEWlgpzU39gesd4PeXGp9l2RbHdQ5Lng+vaIUZSS5YIsF5yZck+MFGy9H/D1W11cU+OTF6axTY3md3FhPvaOTDMx8UXL83Eq797Pcj9IWO0GhEmKrkpm89lp6euy8/D13dCQGkNTlUk6bZ4Lun7M7ZZPP0h4aan2XdH0VRQFXVUwdY2tQYQQMnH3uLzujhObg5DtYUKSSSbbCetJAZIlMZYwtUYR720MUdXdTaCnidVeQHsYEaQZFUsOl/eq253CD+440SyZeFHKexsjDO3JVRaHQZYLtoYRXS/mwmyZmfLJqyHvdDxev9unYuucuTiNumP9OYnIc8Hb6wPutH2Wmw4LNftEX+9RYdycAnkPvnyjRXsUP/Tv1xyDUw2Xux2fb9zpMl+1uTBT/n3h//kwPMlq91eA/xB4A8lq+g3g7x3kGxVFeRmYBnrAmLPXBxpAnUIeuONre/2MP4f0uOL06d0T/Y4X40XZZOrY9eNjk0F8N6FXaMX7gZQydbxYUlLJGIXHTxEchunkBbzd8o5lI4vSjJVeQJbDRi8kWsh/3zUle0FCL4gJk5ztYcRc1T5xv2OYZrRH8ho7fkLHj1kyn83UbxilbA/lc3en7XN++mQeuu92ArJcsDEI8ZPsyIv/qm3wl3/2RX7yxfkH5CNJJpsh26OIhmtydso9cc3Oo0CQZGwNIrIc1roBF2fKx85IOgy8SEqeB0GKqkDLio7df2bsfRAmOV0/puPF37WsiL0QJBlhkjMMUoIkw9I1BkHKTOVkrJl3Oz5pJhgEKR0/YtH87i7O/fied+QgSChbOq2RbGpsj6I9v6c9ishywVo/ZK5iF76Q+XdF8+YgCFO57iSZYGsQ4U1n1Nzvjt+tFyQEsdzPq7ZO1zser7vjhBCCnp8wCBLCNKPhpoTJs/cU3A/rvWAilxszSZ42ul5MkgnWeyHujE5rFO/yb33aaA0jhmGKosrG3dM613U8uS9GSU57FHO6efLOFeN9pOsl9PzkxPsqe3HK9iAizQTbg5hgJqPy+2S9PyhGUcLW4OFNKZBrV3sU0/MTojSn7pgEJ8BL+DihPI7XiqIoKvAdIcSLj/G9TeBXgJ8DPgK8IIT4G4qifBj4D4C/D/xFIcRfKP7u3xNC/OH9fub09LQ4e/bsYS/l2CGEbJQIYHP1Lk/7GtNckKQ5qqpgHeDwdevWrad+jfcjL1IlFKQn0V5H4+O6zrE3kqGr6E/YjT4J9/JhGP+em2tP/5k8KNJckGQ5qqKwvnLnRFxnlOTkCEztwUSWk/J5R2lO/pBn+FldYyZkAtp+7/ROnJR7uR9O8jXe/37vfJcOsg88bZzUe/ms9++D4lmv5/f2bMnofVQ/+7g+78OuM/vhpD6T45pOUxXWTsi+uBdO4v49xl7P60n8vMfrD8jrvH37+K9xvJbomvLYoQsn8V7C7vV87e4dlpZPH2i9ela4/z4KZA0qU+tU1BNy4Tdu3mLh1DKG9uTnpuPCfs9kkuWkmUDT7nmJPQvcuHmLhaXlIzl/Hie+8Y1vCCHEsd6ox2q5CSFyRVFeVxTltBDizkG/r/Ch+ifAXxZCbCiK8jWkBPBvAD8MfAV4H3hRURRtx9f2xdmzZ/n617/+wNfDRJqGPQvKW54L3t8c0hpJ6dyf+dkf2vMad+L+qM/DIogz+kFCzTFwTI0PNoeTicvVhcojN5rXXnvtkdd43Fjp+nQLU7ix/4sfpQyCBNPQaJbMh15nlgtaowhLVx861clyQZrnD+jDkyzn3fUhALYhtb1PgpNwL+/H9jDEj1K6foqmKgd6Jp82wjhlcxgxDBOEkO/Aftf5tN7xUZRyc9ubJKN96PRuieh+n3ea5eRF3PlxIk5z3tsYMgpTFFXw0bNTuxpoz+qZvNvxJ2zNvdJh8lyw0Q/QNJW5qn2s17naC/jStRbff3nmidJNTtr7HcQpW8OIuqNzpyOn6+P35vr2iJ4fo6kqV+crJ2LSKyfxOVNli49/7KP73ks/ThkEKXXXOPJrj9IMQ917/WiPItZ6u+/lcSIuGg4P872J0oyul1C29QljJc1y3in2rYNe45PUGXGaF4w6bSI5GlsEgEzOexTD7yjfnTwXtLwIXVXxonSyzpyecg/lPxOlGbp6b+Bw0t7vMd7fHNIeRnhxyl/9Uz91oq6x70s2Ut0xuNn2Jqy5o3x3wiQjSjKCJKdZMh9rTx0nyIH0HdyvpnwSdLyYNMuZLluT9eUw9co41Rpgrmbxk5/51KGusTUMCZKcpbqNqj76PgkheHNVilU0VeH5xUPlTk1w0t6dPBes9HyiOCMsnsk//pOf5p/82r8FBEsNh5nKyZMIv/baa/yr3/mi3CdL0i/qTtsHoFEyTowlxeUXX+EX/tlvMl93TqwFwEc+8hr//F//LnXXoObs3p/eWuuT56Ao8OJS7SE/4fjx/Msf4r/7X36DhZrNy/uk9T1rKIryzeP+N56EC7YAvKUoylcBb/xFIcRP7/M9fxT4KPDXi4Lo/wZ8TlGULwB3gL8phEgURfm7wOeBLtJ36tBY7QV0RjG2oT6TyOutYUSQZPSDGPeAdOFx1GfJ0jj/GC/4zZZHVngZPLdQZapssdEPqdj6d03kdLNkMoqkz0TZ1lnvB7y3PmQUpyw3XIx94mg3BiGdQipo6uoDMcBJlvPB5ogsFyzW7V1yJkOT8bzDMD3RKTmPi+1hxBevtQGYrpg03ZP5O37xeptBkKKpcGGmTHkfb4XxgcgyVC4es+baNTSyXEqdDF2lNYqZOQBVOkwyrm2NAHlYOs7IXlNXsQ2VG62Q6bLFej84EcVLo3inTV2lvEc0952Oz7fv9gD4+LnmsV3HO+sDfu5//jLDUDY5/tl/9L1cnD2ZhdRh8aXivanYGlcXqgyCe9JsIQSr3YCKo6Mpzz4EwotSVroBIJkVj8LNlkeeSwn6TuPUJ8XWMGSzH2HoCpdmKw80hKqOQceLOcAlPjG6XsxKN0BTFS7O7i0vXekG+FFGaxTx3EIVTVXQNZVGydj1eT8KN1seXpRRdXTOTB1OTr/aCxiFKa0RXJmvFB6H5mTN3m+9Pg5sjyK2BrLJMFMxMXTJ9DiM1Gznc3Bxpnyi5YOOrvHNu90T0VzeiTDJuNPxSfOct9cG2LqGUKRh/VFhrRewNYhY6/mcarr4cfpYdXLdNegHCZoqTfmPA8NQeqYB5EJ6o+2sVy4d4ExScwyZVFb892HQ9xO+drtLGOe0plxePfPog66iKExXTLpewnTl94/1yZtrfa5veagqLNcdSraBqihsjyL6fsytts+nLk0xXT5ZzaksF9zYHrHWC5kum7x8qo5raSRZ/lT9tR6FOM359t0eP3PIveRpwotTvnm7h22q/NDVuV3760zZojV69nY/UZrzwdaIUZSd6MbU08CTrMr/j8N+gxDiF4FfvO/LXwb++n1/7x8D//jxLw38IlZxHHmt79PQOA6oKuiqyulmifMzB3thR8U1+3G2K1XuoNBUhSwXkwK7WTKf+ct2WLimztX5e5MaL8pQFYUklaa1+9FXd54r9vp7UXov/tyLMqbuq2l+Pxvvhem96NiGaz72NOw4IQopBsjo+hceMb3wiujxKMlJc4F5jI0pVVU4N1NGKyaPB03zCeJsct/9KDvWxhTIZzhK88Lc9WTQgcuWPknn2gtReu8ehenxxATnueCv/vPvYBsaf+uPv8pf+qff5j/7pTf43/78J35feGlFxXsTpUI2I3fUNbqqcq7wVUtywbO2e9/5XB7kGVUVhRzBUfcLxutHksp1536/GUN7cubsQTHe+7NcEKbZno2p8b1SFHbJ1O7/vB+FcST96DGip3cue+P/vD9p6Wli5+NTsQ3mHyPJ1N/5HJxwXyvH0jhVd59Ks/QwUBT5v3GWkwtB2dYnITtHBT+Wz2uSPboW3A9P43ndWR+M/3Mc9R4lOUkmMPX9r3+cyvVYUARRoZYIk4PvqQs151jSgJ8lxsmYeQ5nZ0o0SxaWoTJftRiFsi4eK0tOGoJE1kYKClGan0hGkq6qLDVcjEc8z88S4/oySnIUdi+es1X7RAShaIrCUl2SL/Jc/L42N38UDt2YUhTFBv4j4CLS+PzvCyGO3zn7kJiv2WwNIyq2jkAuTocxOsxyQS7EYzONZiv2xIvmoCZl8zWLzUHEbMV65GEpzwVBkuGa2uTvnpsuMQyTCcX+uxnjw6pM4RHM121myhbOPpPC+aqNrWsFc+TBv1cyNZplkyjJmK0+yHYJkwxF4VAxsFEqqdkn8XCb54JRlGLpKgtVhyvzKWkuuPKUDlsHhR+l5AjKlsGrp+usdANOH6BJOF+z2RyElC39iWRyQSzvy6Pem5pjcGbaReQcOM2t5hiMIvnzn6RJnGY5fpzimvq+ByfbkOk4cZpTP2GJcw/DxdkKgyKQ4bgYXr/7wTavr/T5b/7oK3zm6iz/6Y9e4T//lTf54rU2n7o0fSz/5nEjyXKiJMcyVD5ypsHdjr/neyOTaWX6qv2MI66hSHCaKZEc8Bk9P1NiFKZUD8kaEEI2Gh62Ps9VLXIhUGBfJu5xIk5zdFVhpmKRZDmmrlKx9Invxc6a5XTTpR8kuKb2REXrYt1haxAeiPEJcu2JsxzX1DnVcOnb8hpOQgNnrzorTOQwy9RV8lyQ7CHd34m5qk0mAhxDe4BlfRIghJiY9jdck4uz5Yn30LNEngs5ENJVLF1jqWETxjmpkD5Ye9VYT4KabRImAa8s16g65qFZRMeNNJPNDV2TbP1zMyXCOJ28w3PV4kzyBPXK2LfrUYOximVwZb5CEKWc/33CCj4M0ixnFKVUbIPnF6uYukrNMXalnV6drxQWCwrzVZu+n+Ba2olRl2iqwpXZCq1SRMU2KFvaoc+xTwOmrnB5tsx02SaIsyfyJzsuOKZG3dU5P13COAE10F5wLZ3Fus181XrgbP/vGh5nF/5HQIKU2v0E8Dzwfz3INyqKchb4PeAdIBZC/KiiKH8Z+BngNvCnCynfvw/8RaAD/LwQYvCwnzmGEIKVbsAoSlmsOWiqbC4FUcb2cEiey4Psw4oxmeSXMlOxUBWFa1tS8nUQz4SHYb/0ijDJWO0FmJrKqYYziSNNM4FAUnHX+gFlS9/F5JGTIrjRGhHEOWVbn6Tbmbr6gAxtaxiSZIK5inUiCslHYaXr88ZqnzTLKZk6U2WLi7Plifxja7h3qg9IKvL4sxrfp50v9iBI2eyHKIqUaaiKwkrXR1MVKpbBai9AUeRB6CAF6pia/azkoo/Ce5tDvnm7w522x/nZCt9zfvpIJ5hHga1ByFdutLnV8rAMlZdP1fno2eauZzVKcq5tDTndLO0q6MqWTvkhE6Q8F8UUV2GtF+DHGQs1+4EmcdeL+cK1FnkuuDBbouaYTJXNh37+D2M8xWnOO+sDFmr2rvf+UZG9Y4Zjz49pjSLqrsn0fe+wF6V87VaHnp8UG5dDydIeKjktWTonLW1+GCZ0vJipsvWAzGaj7/Nb72yRC0HjmC78119fp2rr/PQriwD8kY+c4r/7N+/zD79067uyMRWnOW+u9vi9m222RzEfPdvgR56bf2CND+KMr9/q8Hu32lRMjU9cmOYjZ5rPfBpXtnQ44Edt6RpW+fDF5O22zzBM95Ss5bnA1jVKps72MOLttQGuqU0YH1GaM1+1ma85B2ZHHhatUcRbq32CJONj55oTWdJ6L+Abd7qUTJ3nFysIoZALwXzVPnRzO0ozVrqyzliqO6iqgq4ppLngVttjrRdSsjTOTpV2PRPjdSnLBR9sjUgzwXTFZKHmPPQaul7MqKihjlNq1vVkMtdskUa7c73teDGrXbmPX5gpsdKVyWYzFasYct1DaxTR82OmyxYXZspsDUPeWR8w9YxZ5mGSsT2MKFuSdfTuxoBrmyOiLOdU3cbQtUM3aY8aaZZPnouFmsUwTHn9bo/NYcT5mRI/eHXuSN+bzUHAFz5o0/YiPnKmwXKz9NCfP5YVqorCcsPBKp7FNMvZHEYYqnLkDAkvSrnZko4m4/rR1lXutGOyXDBTsciEQIj95a47FQ89X8p70zxnpmKTCcF7G8Pi2S7v+47dbHukmSBDPuew+zyy0pVr42zFolkyD1S7jp/LkqWfaCVGngu+erPNF6+1CZKMP/DSAh85+6BFgKFrvLJcZ7Xr8zc/+wGDIOGTF5t85ur8iUjqjZKc7UJiFiQ5n3t/m2GYYmgqr51tsHQCbBpAMnk7fsyvfnuVKMmZqZh88uIMwyghTnPmqvYzb1SNwoTPvd/iVsvjz3zq3pkhzwVrvQBVUVio28/0DKcpMrTjX7y+hqaqvLRY5fxc5VjWq5OOQzWmFEV5GXheCPGSoigGMAf8JUVRPOCvCSH8A/yYfyOE+A+KnzcDfEYI8SlFUf4K8LOKovwKkpH1/cC/B/x54P/1qB8apXkRp5jx7btd+kFCJiRLoWTqWLr2UEprlGYTPXiaC6bK5kTytVUsxEe9UG0PI/woYySk38lYrgZyk0syQZrJiFtV9aUxp6Kw3g+xDJUgllPBMU11LwzChM2+3JQU5KR0jLCgiJ607vs3b3d5Y6VPN4hYqpd4aam2ywdgLPXaiSTLaY0inKJIHW/ohqZyYaaErqlkueDdjT532gGuJZ+HNBMMwxRVUSbPhhByQziIhHsU3pOLprl4ZlP3+xGnOa1RyNvrfb51u1c03KQXyElpTAkh2B5F3Nge8sZqnw+2hjQcg6ptstx0dzFnciEI4px+kBxoyj+KUm61PFRF4VTDmRRmm4NwcvgbhAlelDIMEtJMsiPf3xxxabZCkGRcnqswilIMTTkQgy7L5fs6bi4dBGu9gPYopmzrBHFGkuUEcchUUSiGSUbHi4nTnDCR8rw7bVlwW4FGydLJhZQ0nDTPkfvxlettRlHGVNnk+y/P7Pqzt1b7rHZ9FBXeXn/kDOLQiNKM33x7gx9/4V7BaRsaf/yjy/yd373O1jBk9gSanz4MHS9mexjyzTtdfu9mB9vQeHdN55WlBouN3TKMUZTw+t0ub6z0KJsaczWXi8UzXneNE8kQOSqMopRMCO50fMqWPmnkhknG9e0ReS7QC2nuai+g7kqvpjHDWloAqE9kkr8fuqOI69sewzChG8T80JU5ZioW6/2QJBV0k5ib2yMsXbIkdU059HPaGsmBm49C1TaouQZeJOUrXS/BMeR+OggTwkQytvpBwihMma6YNFyTNJN1yX61RpLlE9+wONstOfHj9LHXqDTLaY1iTF2lWTLxo5TPf9AiF3B2yuXCbBmrYEkDu/ZxL84mEp1RlAD37l2W5awXxvbr/ZC6a7I1iBCCfYdfTwN3O740zs5zgiTjvfUhVUen66WoipQsHobVfRyIUsnoa49CXr/bxY8zNgYBCiqWrrI5CHfVm4eBEILtYSQ9j8pyL+yMElqjiCjJWe8HPLdQfeja1fVjoiRnrRewMQg5P12SLMFhNPEg1VTJqCtb+pEcRodhSmsYoWsKXmTjmjppLibniK4Xk+TyWdwaRJydfvDax2bnjqlypulyp+3z3tYQS1XRFJU8l8+1EFKO+7D3SfrV+VQtfTL8TrJwUpfEaU7XS+gHCTe2R1yeq3DhAB6dt9s+PT/GNXVKlvbMn8G94Mcpa72ALxQM6ZJp8O27PV5Yqj30fr250ufG9ojWKCJMUpabLudnnn1ISF7oz7YGEWGW8d7GiPc2+jTLFpqqnJjGlBByn7nT9tBUlbV+QNuTDf9yUaOebj5b/yk/ztgahAyDhDjNMItnd6Ub8M27XQA+rjRZOEJPvMMiF4LWKGZ7GJPmgu1hyHZxPjg3XTqR5IfjwmGr0n+IZEsB/NfAFLAFOMDfAf7UAX7GZxRF+TzwS8gEvt8pvv5ZpNH528AbQohUUZTPAr9wkAuzdBXH1Ljb9RC5PIT6cUaYZHzv+WkURdmTWpzlgp4vE4IMTWUUJYRJSpLlJFlOnKp8sDXk8tyjU+0OA9fUeHOtT5IKZisWC3WHZtkkiDNmKzZenBLEGTmC9jAmSDK8KGW6YhElObMViyjNaZYffgiW0ZeCjUFU0Fp1KrYxSRiDw6fXHDVWuj6jKGWh6lBzDd5aG/DOxgCE4OpcdVI8lCyd9b6c7t6P9V7IB1tD/Cjjo+caxKmcTMWpLOwqmsrWIGRrGDEIU1xTo+4ajMKUG9seZVvje85P0fUTVFWh5sjiPUpz6o7x0A17rmazNYhOnLn8Fz7Y5tt3+3S9UCYQGjJa9v6J8bPErbbHb729RT+M2egHuLpGLqBkazTul/cospA8qFGpTPST8eHDMGGlGxBnOa8u1wF52LnT9hECdE3hVNMhSTOcotAVQvDZtzcYRRmnmy4vLFUfWYSNn5H7Ez/2wyCUS+koTBmGMZuDmMUdU5u7HZ8wkQyOM02Hjh9TsnQ0RQVyfu9Gm+1hxOmpEi8uPbxQf9aQkipZZO0lQSlZOnc6HlEm+NGrR2+e8rn3WwzDlD/w8sKur/+hV5f4//zOdX7jO+v86U+eO/J/9ziwNQz5je+s0xrF9LwQx9BIUsFUxdxTFtd0TTp+TM9P8KMM11TZGISTocdJ9Jo7KizUbN7fHKKgsNYLJ82LzUHEajfAizJONx1yIdgYBNzt+FyYLmGaMujA1LUjj4/2i309zQRdP6HrR5iaShDlrPdDlGJyu9LzWeuGGJqCIOZ0s4SlHf6gFCcZ17c8HFPj0pw8HEyVLII4Y6FukxVSrH6YMPBTRmGCF0up+yBIWag5zNXk39+vQTeWF20OQhRPykebJTkkutuRDavzM6UD2xqMsTEIJym9tqEWHnQKQgjW+iGtUUycZXz8/NQkrrzqyP14qiQHjMMwZa6o/YQQE/P3MM2wdW3C4Ky7Bl0veSb1UJLl3G77gGykDoKUW+0RQZKjCIFr6iw2bBbrDoamHliGeVxwTY2OF/Kbb23iRQllx8DUVaq2xmzFov6IeyiEXH80TXmAhdwaxWwWhva6KlnwhiY/c02Fc9Plffe6qm2wPYyI0oyGZvDWWh8vuiepy4XgbsdHU1WaZfNABu09P0ZRlIc+G0meEaU5UQrjGbZtaJN3xzU1vnqzQ5oLXnuIEfn7m0M6o5ipsslizaHrx3hhyjCH55fks12yNDT1wesYn2MAudZpGkGSYagKN7a9XT63hiZ/zlovoGzrhElOtIfH3k4Ecco3bkvW9uW5Ms8tnCw7CJDv0C9/Y5U7XY87bR9T09A1wVLNxtqHWHCq6WIbCgqw1g/4379+l1dON/iZV5aeaSNA1+SZtuHa3Gp72IbK1iii7SWULYMff3Ge2x2fPBcsN91n1kjTNYWGa2DNV7jd8dnox/hRwlu54NXlJqMowY8zmq75zJg/mRB8sD3i7H2D+SjLEAXXIdqD9PA0oakKC1Wb5abDrbZPzTH49t0uuqLS8SK6XkzVNZgpW78vA7p24rAnGQV4WVGUAVACfGRT6v8MlBRF+VkhxH6V7jpwGYiAXwWqwGbxZ32khWcdGNz3tUdfmCLTbFRFSrb6oWRXnGq41F1zT0+Yjhfzxkpvott9aanKxiAizSjSZgxGUUaeQ5oJjvK9L9s60yWL7WHEe5sDpivWrg3SMTWmSiZ+nPH22oC1XohraYxC2dGfrz2cdjhO5nNNjVMNFz/JcA2d1iimYhtEO5hj8qD4bBpTozDhZsvDNTW2RyFVR6fuGsyWLbJccHm+wmtnGriWLtNJhEDb43fOEQyCFEWRCV+2oTGKUpbqDkma0/cTkkz618xUbJ6fr1B1Td7dGHB2ykVRFBxTp1wUSGGScbPlIYQ0H3xY4VK1jWM3sz4sWqOIz3+wzUo3oFkyeWm5RtO1+MjpOqenT4bXwDBMeGOlx1dvdajaOnNVmyvzFZYbLq/dJ+MDcAyN5xYqBy4SGq6JF8kpvV5IWLJcTDbuMRtpaxAxVTb5+PmpgjGQYekq17ZG3Gr5BGlG1dZJM8GjzlOWrvLiUvVQhcxsxWa78JwAsA0d27j3u/uxlOFUHZ1PXZwmSqVvgqrIKdrNVp9BkGDpKpfnygdi+T0LKIrC5bkyK12f5xcfNLQP4oyqIw+R68fAVvj176zRcA0+eXG3ZO/SXIXnFqr86utr3xWNqTjN+fadLl++3qZia1iGzo+9sEDF1vjMlbk9G+iapnK6UaLtxYhc+rj5cVoU7Q9/VlsjWQhNla0TJdvIcsFK1yctZPb7NYynyhYXhJiwhqM0Y70XkaQZbS+i5pgYuopAUHcssjznzHSJC7NlRmFKN4iPpNjv+THbwwjX1On6MUJAL4ipOyYfPzuFgImZs64qTJdtZkoWaSZIczjVsDkz5R7Y124ncqBZpPa1RjGnGpL9PWaOjkNWNgchW0nE5jDCMVRZZyzIIn4vllaeCzp+jGNI5qamKpybLjEIpf/U1jCkWTJ3MZzjND+0xLjrJdzp+EyVTFRFoeaYPLdQwYtSFOBGS5L0310bkAsp0V+o25NrnqvazO2oSJNMTEzva7bOmenS5Bk61XBZrD0b09nWKGKtF+CY0i9roW6z2vXZDmS68w89N8tHzjTJBM9UZhTE0oJCAdqjmDDJGIQZC3WHT16c4ePnGqiq+kjbiO1RNHkvz82Udsm7dVVhFKby+TJVGiWTOBN84vw0uRA8v0+QBshBx0tLNeaqNrdaHo4pmy8V22CqLJ/J8VAoeoiKYifao4i1Xkh7FFF1DS7MlB9oDFmaNmGI2ca932X8HG4NQk41XLJcTKSFOzH2jlIUeYh2LZ35mk2U5pRMjeWmW9hM3KvhNvohwzBhtmozCBJ6fkKSZ6golC2diq1TthLSXOwa6CqKwvmZMlMlk41BhGtqu+qOvdAPEmxDwzEy0uJaTxq+c7fLF65vIwq/0k9fbXBhusxHzjb3rcteWKrx577vAl+71eHL19vcavv0/JRXluqce4Zm44oi12dVUXjlVJ04yXh9pYeuyeb7MEyLoaZ8lp9WUMf9MDSV7788Q5zlbPYD/offuk6UCholg4WaRduL6Yxiul787CRpQoaBaSpkmZh0Ps40S7SHMVmes1h/9oP7F5ZqmLrKej/k/c0hrqnRHsVs9EN6fsInzk+xNYz+/42p+1AD/gigIqV7z43/QFGU14UQr+z3zUKICNmUQlGUX0c2oJaKP64CveJ/q/d97QEoivLngD8HcPr06cnXz0yVGAQJZ6ddNgcRhqY8VNO90Q/pBQm329I01k9y6q5JexRTsXUW6pIRYxsajqnRHkX4xTTxSWmslq5h6SppnmNqxq6XNohlJHTF1qm7JmenXdJcFHIE85EU6dVuQD9IUBS4NFum6ZqESU61uA/Nkll4acD0MzSjGUdPt0cx+rSMb/2+S9OIHM7MuCw3S7hFwbIxkPKGMHnw4Hq64dDzJP0xzfOJMfwwTCYx2gs1G0WR3hfV4gQ/U7bYEhE1x3jAr2Cc4iDE0TM4jgvbw4gPNgYoipz+1BydH746h6FrzJ8QjXIQS/+H9X6EY6okec4nL0xzca7CzD4+aIdp+NiGxsVZuUknWT5hUI2LSU2Va0KU5tiGRmsYsd6Xso65qoVj6JRtjUEvoVkyDjzlP+x0bWdqpqJCz98tVTQ0hbprSFZMlhfyI9m0Llk6dceg40c4pjZ5t08iojRjvR+QCQj3kAOdmykzV3OIs5TFxtE+p2GS8dm3N/npDy3uyWr8mQ8t8l//H+9yp+2fGJnrXojTnDsdjxstn4qjEyU5P/LcFM8v1am5D2d1Alyer3CzPSLOBGmWc6rhYmrqvl4nG/0QIaSP3klqTA2Ce2t6exQ/ci+crdhYRROu4OwRJDlTZYu5imSgmJpKexRjaDJdSFEUWl7MKEwZBKN9EyUPgvHeNQgDdFUlzQRxkuNpKWemSyw3XblGIYcdW4OQIMlJUsFM1eTCbOWxfS6nyxbvbQxwTI2OF7NUd1AKC4DWKJrI+2YrFnkuQBHYui5lfPv8m6u9gJ5f1BhzUk7nmHKfGYbpZK2dKlskhd/jYcMY0ixHIGi6Jk4Rk749jJiv2VRsgzBOGUSS3T6MUoJYMj/2YwabukqjZDAMU2Yq9gN13LPyXtseSr+r1V7G5dkydVcOTL56qy0ZsopCVBjQP0us9nxutXxMXaEXJlQcg4Zr8sPPz3NproJpHPD6dpRV+X01VqNkYpkqU6pJEOekmTRS3x5GNNwH/ZCSLGdzIBmR40aQoijMVW1qjsGNba+QvMP2ULKKLF0alB+EeSaQz2LXTzB1yb6/vzE1W5XPkqErezKPaq4xqcl3fm+eCzaHIUIIZiomZUufsPtcS5ofC5QHLCzG7wLIpte4WWlqGssNF4Gg5hgT311NVbjb8Xf5v9Vck9oBp1nTZYupkknXjylZBmv94NiCSg6LLBdsDEK+cadLzTZoezGfvNDktXPT+w7wd+LSfJWyYzAIE751p4dtaHztdoe6u/86eJxICguH9X5Io1TlVLPEj7+wwJ2Oz/eca9LxYm63PXIhm0Nh8nB553FDUaTlRddPubJQpu+nfPhMg6pr0PNi7nQ8pso2XS9+JvfT1FWmXJMLsyXMHfcozXOSXIbIbAyiA4UuHTdUVZHJ6QtVyrbOu+sD1vsh7VHM9e0R33Phu88T9bA47C73u8BPF//9FUVR5oQQm4qizAOtR32zoigVIcSw+H8/CfwPSPne3wB+GPgKUt73oqIo2o6vPQAhxC9QyPxee+21yc6mqfcMsOuuOTkUlUz9gReiYutMly3CJGO+ZqOrKvM1m7mqPWlUjI2LwyRjrfAkyHLB2el71NixR5VRGJn7sfSGqbn7M2ouzVUmhdDOw+9qzyeIpWdWydSI0hzX0HAtdTIxFkIWensliYkdu76qKlyaq+yKn1QU5alFwvaDhEGQMF229tiwZRrRd1Z6RFlGnAqeW6xydlqane88EFVsg84oxt1DyqeqKh863SAvDOTfWe8TxVJHr6vyAKZrCssVlzTLWe0FE0M5y9Do+dKHozRhrmicnnKJkmxXZ3qtFxAkGYs150R5c+W54Ft3uryzPsA1VUxN5XsvTvHKqQZnTghLSgjB7Y7PV2+2KRk6SZrz3HyVpYbDR842qB5CAncYGJo6aVLtxHRZUuwHYUI1uvcOCeDibJlhGHN2ukQuFG5ue+gaxJnAMbTH9s7YD3vFNDdKJmku8OOM7UFUNEkVQLBUdxjMJ0xXpIfeuxtDpkoWYZFmudRwToy8tOvFvL02JEwyTFXhzPRuv4EzUyV+7Pk5WqOIK7NHKy37t+9u4cUZP/Xy4p5//gdfkY2pf/H6Kv+XH7x0pP/2USDPBau9gDdX+0RJThAnnG1Kv4HXzjUPNDmzdJX5ukwv0zVppN32YrR90nPKlpzInjRGqGtpqCqPNBHeiZ1Mo5Kl8t5mwOmGS9nWcQyNN1f7TJVMXlis7dkYf9LhRNnS6aYJDddkumLx/sYQTZUDJMfQqNg6XpxhF4dLAcwUpsQXZktPlLJbcwxeWqrT8xPK9j0/nZWulAn3g4SyXaXtRXiFXM82NAZ+wtd7Ha7OVSZM4r1w/605O13aZeCsqcqBpFJ7QVOVCcvMylVutjwUFG53PM5Pl0nynMW6Q9M1WekGDMKEkqUz84h34qQcqHeiHyR0RxH9UD4nNcfgI2caVB2d9iim5pjP3NNHCMGtbY+v3e6gKgqvna1zbqpE07V45XT9UD9ruiwTqNMsx1AffOfmqzbtUYxjSunadNmi6ZpsDSM2B+Gu5OoxmwAku9qLMgSCuYp8lp9bqBSeY/fCw+uueWDvuKmSiRCCTAgsXXvgfdwahAwKuejOxmHfTxhGsva1DY1LhW/lRj+kUZJNqI4f0yqaZQt1m/PT5qROt7R7A8X7VyBdVXBMlSCWTLDpsoljxNimlB+v9mRD6lTDIc5y3t8YAdLH8vxMufBTkrYhezHwer4MMhhfu66pfOxck7ormYsnZV47DBO+cK3F9kCGPC01HD56vsmPvbAwGWofBJqqcKrh8u99ZJmma3O9NaQ1jPjlb63wvRemuDJ/ODb8UWD8HIwtLBbrDpau8v1XZuj7Ce9u9Lnd9jhbSFvv/0wGYULfT6TP8iEl1I+LZsnkxaU6uqrw8qka37zdoxel3O54GKpG/IzSRF1T55OXpnllub6LhDAIEt5c6ROlOaahnIjG1HLDpevHEyZp1dL5+1+8SZzm9Lz4xNT1x4lDPa1CiD/zkK9vAD90gB/xfYqi/JdI1tQXhBC/pyjK5xRF+QJwB/ibRSrf30Wm/nWRjat9keZi0i3u+wl3uz6mLg0E1/shwzCl68ko0J2b+3LTZa5q8/xChTSXG9AoSonTnIZrTCQ/ZuFdoKqQ5w9SqaXBaAZkVG2D9UFAkgr6QcILiw9f0BxTm0xjd74spqbRSxPCNGMYyWtXVYXtgfSYudnyWKzb9IOEF5celMZMl0wsXaVsG2S5YBBEMoWOe//Gai8opBrmsTWp8lxq+ceSuMv3UU0Xaza/fKPF9a0R9ZKBIuRn0iwZWCVz1wu4VHeYKVt7GozHaY6qSE22nJYKtgYRigLNkoWqSINT6TOi0B7Fk2julU5AL0xoDWM+tKO4qjkG7Jhs+bFkdoH0Lzs7/WzN/Hbig80h//I7q2wNImaqNp84P8VS3eHS/MnxAdgehPzqN1dZ68vEpNfONJmumLxyqn6oplSeS6Py/aQCfpwSJTKKXlEUolRKM/Mczk2XcEyN6bLFwE/QFIXWKJQJkCWLmbKFqirM1xxaw7gIH1DY7EtpikyB2t80WghBkolHSi76gSymxxPUrWHI1kCyGE5PuSzUHBSkbG97FKEpCrWSznxVpmst1hzCWBr/11yDTrFpuaZOx4sfWXiv96X5et019jysDcKELBNPPOEKk5wgTgmTHC/JJvKhMXRNxdQUZmsWUXa0Ov9f/846UyWTj597MJUH5LrysbNNfuXba/zFz1w8ceaS28OQz769wXubcp5zcabMhZkyLy/XD8Rk6vvSNDhOBF6YYOgqG72QXEimwv2Npzttn0GYMFu1JJvoEc/wWNbxtJgmlq5xda5CnOUTT7iHYRgkRFmOpasy3SqTdYKhqWyPYhbqDu+uD1jpBlLubmpcKnRfpxoOXU/ut0+SZptkOUt1h9mKjaEpdL0YXVXoeAkbgwBdU+j6MVMFc1lBoTWM2Oj7nJupPFFTagxZ5+S79k5TVwtvmYytQcD2KEZBIctVqrbBm2uDIggk45MXZx74mYt1R8aCq8okWMaLUqqOMdm3h6Fko1u6yrnp0oHuoxCCGy2P9ihmumwyUzYYBga6qjIIY/l/g4T3NwYMwpRz02V0VaaVTqUGc8Xa+LjIcvFUWNJpmvP6ag8h4Oy0y/YwpBcmbA8imqWQqq1zeqrE5bkK6Yy0MHjWSZob/ZB+kPDe5gCjsM74vkszBw77GEMIMZHS6ZrK1jB8IDVzvhgOV3aYk3cKSSzIxkyzZMoDpTYeuMrAg3GjR1NlWIBSSOQqtsFyUw6O73Q8brU8Xj5Vf+SQUVEUZio202WrCLmRz/GYmT/2w7q2NeJ8IfNLspw7HSkzjVIZBpDlgg82h+iqyjBMeX6xumt9NXV112c8U7FQFHh3Y0iwfu9APzZUvzBT3nU9Y8XF9e0R6/0Qx1Cpuyampk4G06Yug5PGxv95zgNM4TjNJ75wcSqTv29se5RMjbPTLlGaT9arZ4k8z/m1b6/xzdtdwiznpaUaV5cqvHKqfqim1E7MVW0+/dw02nvw5nqftV7Ies/nT37vuadu4G3pKlfmK5NnZEy6SNKc7WHIta0Ra/2Anh9zYcbd9RwLISY+ql6ccnX+6XhJjs/UhqaQZLmUIw9C2oOEuXLMej9kYxASxBkvLtX2HXocJTRVoe6a3H98jLMcrwgeGodZPS6EEBNW5f3J0+M/v9X28aKUhZr90KGiqcvAlSjNeHdjwPYgQlNg4MdsjULW+wFuoZr4/YrH+s0URbGBvwB8CtnM/wLwPwkhwv2+TwjxG8Bv3Pe1vw789fu+9o+Bf3zQ60nSnGtbI67OV+j6MWkmuLbZZ2MQ0HBMQDaVvDDFU7JJ0wkklc8xdWxDFldjU/AozWgNI1Z6AfNVm1dO1bk0WyFKswceupKp0QFUFWxTxdBUkjTD1NWHHnTiNCfNJTU7ywXXNkcEccp01aJZMnhno88wyIiSLnNVB1H4J2RF+pumKnsa+q33A1rDGMtQmSlbvLc5KjynEi7O3mPPdD3pddHx4mNrTCmKNMZLUjExkV3vB/hxxkLNZnsUsT2MJqbjfpTx7vqAIEk51SgxX7N3Ua33OiT1g4T3NgaYusrV+Sq2oTFfc6jYUp5nGxrbw4ggztgehLRGIW0vYa4qf3bbi+l4MUMj4cWs+tDiecw2SDPx0AVhox/ixelTk81lWc7Xb7X5zbc2eGt9gB9JA8upssVys/TMJ6xj3GmP+KVvrvDNOz16QcJs2aJk6ZxquDQOUeDExXueC2n2uJcRaZhkXN8a4ccZi3WH5abLKEwniZfSK0Gl48VkRSz8jZbHYs2m60mq/WzVJkklxdc1NTTlnumooSv7GiILIbi+7RHE2b6y264Xc21rhKYq0rOiMN4VQl5jmuWEaY6fZGRCcKvl03QN1oehLCabLkGSkQnZYLUNTTYIiiLcPQCjr1OsAV0v4dR9Tn7DMOF24d+SFnHX9+OgaVtlW+dU02VzENLcsfaO8cbdHr/2+joZgj/06tJDfsrh4ccpv/XuJn/kI6f2PRT/9IcW+c9/5U3eWR+eKDPwla7Pr397hW/c6rHlRZLVs1Bleco9sMeArikYukqay0CItY7P9igiTHI+er65a1iQZvmkWdr1kkcmwG0NQ+52fBxD5+Js+Vi9b/Jc4CcZlqZys+0RJTlzNWvXNXqRjNJWFXhnfcD7W0McXadRMihbRtEwzlluuIRJKpNpFfm+jQcPy0054DI09bH8MIQQeHGGY0ifpdZwnCgn5WPfuNUlSjMEYGkqjqHhTLzvwE9SukHCKMpZ7wXMlK3H8pYaw49TdFXF1FXyPOe9jSFxmtMsGTRcnW/d9bjd8rFM6UUm07akz1GaCZx9pFn9ICFJZfJY20ukAXOQTBL5er5cz8JErmPVAzSmNgcR728MCRM5bDI0hVsdj5pjcLZZIslzMiFY64YytdSPqDj6RIpdd83HlruFScabq/0HZP3Hgfe3hnzjVg9NBctQiwZyTCakxULHi/nmnS7TZYsLM6Vn0jBPM8k6T7KMrp/wwdaQ11e6bPcjyrbB1iA69DuS54Lr2yMGQUK3kK7vVU+NpaLbSsSVeRk8pCkKfpxi6RpJnvPtOz0URfrtnJspoavyMDxuTI3DAraGIYNAMprqrkk/8FjpyOelYo/29D28H+P3esxqzHLBta0RUZoRJRlJkfCcZoJLc+VJ/dnzY1RF/v0Ptoas92SAz1KRnlq1DS7MyobH/c+toiis9QLeWh1MpPpBLBNFQQ7ZxvdunLJt6iprXZ87bangeG6+wvXtEZkQVG1d+q5movAverCmHoYJ6/2QfhhTs+VweLUbTBpZ0xXrqakt9sPAj/m1b6/x2Xc32RpGuJbGDz83w6XZyqEbpTuhKApzFYfnl6p8/XaXla7PVj8gy3P+5Pecf+qeUzs/n64Xc7vjc3N7hK4q9L2I1iii4Vjcbvmcn6mw1guwDI2lYqgUJflTZ9gYmsL1bY+Vrk+UCfwoJyPnbtfn4my5aM5khGnOp6/MPpVrGkUJ/8d31llsOPzl2cqkHrQNjemySZSmB2o8jqIUU1P3rHU2BuFk7bk0V36gLo53NL+6fvLIGm4UygH7as/ndsenM4xRNYWtQcSFmRK327JXsVR3nmh4dhLxuC23/y8wRErxAP4EspH0R4/ioh4XAil/2RqEbI8iWl7MbNnkExemUVW40wnYHIYoCpydKlF1dLYHMX6cFsWoMqGhj6cGUSrjaV9YlKZkez2Q42JIU2XD6OxUCS9OcR9yYIvTnPc3hwgBFUdDEQpvrvVZ6wdULBkNmWXyOpJMTOR8pxoOmZDpNpkQe/787WHE7bY07l6sWjv0+7ungFNlk04R6bk9jCYTrKOEoshDd5BklE2dla7PG6t96o5JmGSULQ1VVXBNKad7b2vAt+50OTddYq7qMAyTR3oAXN8acm3Tw7ZUqd+3ZTNgZ7FTdXRWez5fuLYNQk7RGiUTU9dYakgqs2vKVDiQxZMXp5PPtOvFk/jTqqPv2fAJk2wyzdsc7NufPRJsDwL+zu/e4J21AV4ijWCXmzbPL9U43XCe6DBzVEiznF9/fZV//o1VgiRlFMni8KVTNWYrFmenDjeBGke4g9wg9mpMSV+cEC/KiNKMUw3ZpLSMmO1hCAg6XkjPT+kHMa1hyFo/5m7b50JxuK45BkGSUzJ1DF0pNnlZkBiquu/kOsvFJFZ9FD18ArM9iljpSvbYQt2mhjRmvd328KOMDzZH9MOYYZiy3gtoeTHXt+TfLVs6NUfHj1McQ8cxdJbqNq6lo6vSS+dRxYgXpfhFMtWFPYqtfMdysReDYHMQ8tm3NzE0hR97YWHf563mGBiqQtmUkqU0y3dtpO9tDBnFCQh5sDgq/NY7W4RJ/lAZ3xg/+dIC/8W/eItffX31RDSm8lzw1ZstfuF3rrPtReQ51EsmVxeqnJstH+q9URWFqq1TdXRmyjarfZ/OKCEVufQi9BPWBwFBnHFlrkLdNdjoB0SZwvYw2rX+7mxEjqKUN1b7DPyU+ZpNEGfH2ph6Z31AlEr20/jZHIYpsxX5LN8qmlWmrpLlOV+/1aU1irgwU6Fq6dwYjsiynIuzZWaqMnQgTHIsTeWjZxqEhd/ck2KcqGYZUm+YZDm32h5zVYsv32hze9tD0xTmqhavnZnibOEx5cXppOF9Y9uj60eULO0B/53DoDWKWO+FRGnGpbkyK92Ar93osD2KeGW5xmLNIc2KBNs4w9SVYtqt8gOXZxhGKQsPaTzEac5KNyCIU7zIxDZ0NFXdtVY0Cga6oUmu9o3t0SObRmNvnDiNKFk617ZGbPRCVjs+FUvHNqT8UlPBMVWmSxaaIvcG29Dw4wzX1InSbGKF0A9TokQOKvb7jO92/AlT5KghhJTkpplgse7ghSlxmrLeD9FUeH2lT9sLeXGxypkpl2GYIvJ7e95+QQXHgb4f8RtvrLPWC0BR2OiHWLqGqkjWplFI5A6LJJe+ORsDGUIwVTaY3uOANt7nW6MIfUvh9JRLL0iKaPqQIEnZHEaUDGnTUDLlmmQbGhdmSwgh7THSLJ+YrEsWkUbXixmECZVCJjpu9Oy6zkz6lY2H0Ctd2SgzdIUrcxWCOOVOkYh2dtpFV1Vutdqs90PqrvSGnSqbcsiUC7YGIXEilRiWoXFuh8XCw94JL0z43PstNgYhs8U9anvRZK293fZYqEnm4q2WT2sU4UUy+GkQyeHr1jAqgptUFBRGkWzsXZorE6f5hJG5Vkj/vDBF11RcQ2exbtMsmWR5zh1lfD9lqqWhKRO/uqeNW9sj/tq/fJutQcAoypir2Tw/X+XKfJWFI0ieVlWFy3NVXlmu0fYirm+N+OIHbd5YHfIXPnOBz1ydP4Lf4vAYhjLR9fWVHmu9AHM8PDA1VE1aTnT9mH6YkOc556dL+ElG6Sn70qVFDZwXzdDFus3N9pDNfoita3S9hHrJxI/TglUVTCTfx8UKzXJBkKZsFAyz6WKgNQrH+5NB1dn/Pr27NuArN1vM1hx+5Lm5B2rsnTXzXvu2qcmzxe2OR5brjKJ0T2bVGBXbYK3X5is3WmwOQjRFBt4YusLb60O2C687U1NZOAZ7kWeJx31ir9xndP5vFUV5/Sgu6HGgayqnp1wMTaXmyP/+7Xc3WekGvLRYk35FZYvr20OubXvoimTn6Ko0F+75CX6SYqgaZ5ruZEHu+jHrvZClxqMlDTv/XFMfjMDdiTjLJ2ylzUGObaikWY4fpgghaHkxz89XaHtxIS+UB921XoCuqQigYums9QKqtrGLlWFoCp1RjEDh2rbH5fkKwzCl7hqEiSzWqo7OQsEqurE14m43eGwfiEfB0CSDTAjBO6sDfvfdLXp+zKcuzfDKcp2Ls2WEgK1hwEY3RFEVkjxH1zjQNK41ihlFCV6ssFx3GYiE1Z5PVlCUz05J5lDfT/AjyVK7OFvmynwZS1fpeClVR2e56U4+w5tFc8AxpT/RWj8gz2Xzaaay93TNKLroMnnoeDeCJMv5hc/d4Hff22Lbi5lyDT50us4nzk/z4TMNZk/ARAvgqze2+UdfusOdjoemwOWFCh87P81HzjR46VT90F3+SnHATjLB1ENkTLahkqQ5XpyyoNvkxVRwFCa8vyEZSoKx91mMAGxdI0ewPYwwdJUwKbNQSGWny9ah5DS6phZR6w9nnMRpztZAHhjnqhalgt2U5TnXtjx6fkzZ0tkeRiRZTi+IaZYsUKDjR5SGMslwvuawOQipWDrNAzBowiTjd97b4vJchaCQPtuGxlT5wXtZcwyWGjLNcHqPP//6rTZvr8nw1LNTJT52fuqh/64snnQEsvF//5ZddXTaXowKBcP1aPDr31ljtmLx0bN7y/jGaJZMvv/yDL/27TX+yo9dfeaSmVttj3/4xVu8uT4kSjPOTLl89GyDj56b4sOnG4d6b65vj9gcxDRdk/maxVTZ4I3VPj0/xTE0vn6nw0YvRADfutPlI2dkKqauqtILpZCI3mp7hElOs2RyfqZElGTUbIMoybF0ZeKDcRxojSKuFcb/p6ekF5sXpcxWZHrrzZbHej+csKE2+uEkIODcjEvHS2T6bSHbGz/bjZLJVMliuenSHkVYxfvwJAgT2ViNU2nYfH27SxBnvLHa553VPl0/YbpiADY3WyMuzJYZBglvrPVxTZ1Xl+ucmZIJXApPlsAWJhmjMGVjEJLmgjjJ6IVSnhwkOVXH5PlFldstj5JtEKdiEsLSDxI6XszWIKThmpxuurveC0UBTVHoeSmZgDNNaZg+lpd2vJg0z7lS+Gh++XqLjX5E4yEN7J4fs9INUBWo2BpnphosNVxutEYkmVwxhlGKbegYmopj6mz0A253PCxd5Xbb51TdnTRL7nZkszVI0qKhIpsr4wTE5eaDiY6WrhZymKOX8g2ClA82R9zt+JyednlursLX73QIs5zffW+LfpiS5wp9P+PCXIkkEaS5oOoYT30anuWC33x7k2/d7bPeC+R9EjndIKNkqXz6yiyX5yt87Mz+6+pesHSNqbLBrZZkBK90AxZq4QOG9UsNh9VugBenJJlgcxARpfLz7PrJxGDf0FWmyiZfuNZirRdQsnReO9tgviprIMmaVycMvK/darPSlQnXC3WbkqXjR7t9b9Is54NCaTBmPYdFet+YIZhkeZGgl6NrCq6ukuSSiTQsWBGGdk/SYxsamRD0w4RZc9zA3ScVdRjyK99a5Ru3O7imxmunG+RC0BpGtL0YS5fSpJVuQMWWao9u4Qtl6yplS8oWXVPHLKS2WSb40rU2/SDhwqzLckP618VpPrGpCJKMiqZSsfWJVNLSNeZrNnEmPW5Qxt5Hxp7DwePEKEz4b/71u3z7bo8kzTnVsHntTJNPX5nl6hH6QJm6yo++MI+iSB+ia9seG8OYv/3b1zjddLlwxF6YB8FMxWKt7+PHUjYdKLJhu1C3cE2N11e6/PY7m4UPmPTSexYekYamMlORtiuGpvDO2oC+nxKmGZ+7ts1yw6Vka1ycqfC1mx2ubY1YLAaux2WMrqDQGsUYVXWX0ijeESiRZvuv+5+/tsWtVsD1bZ8PL9eZv++cNV+1J9L2vZrNiqIwX7MnrPSNfsjF2TJvrfVpjR4M9VIUWOvLIXqaCXQ9p+kaDPyU9zeG3O3Ic7tjyvPAs65bjxKPW01+S1GUTwghvgKgKMrHgS8e3WUdDoZ2rxEUpRlvrQ1kdznJWRuEvLM+4Acuz+LFGWEsvST6QcLl2TJhmrHUcLjV8qQkxrxH4X95qc7V+aOZpO6ETNcz6AURlqLSGsU0yyZLdQc/kT4Niw2Xy/NV8lzwwdaIOM3JBETFJro1CClbMnXjZntEydR55VSduaqziyLoGPIl8eOUz3/QAgGLDZsXF2v0/LjYG++xPI4LWS5Y64fcbI0I45zPf9BC12TENEJShG19SM01WWq4vHy/tmgPCCELhzTP6YxiVno+Tdek7Um/jK4XkxRTr5prMFOxEAI+fWWWM1Nl3lztEyYZG4Ow8BWThphRcbgYHzJKpjQC3q/hpKkKl2alIetxSuj6fsyvfnuVb9zqMgxT9IJx84NX5/iJlxafigzhIPjCB9v88rfW2B6F5EJQsQ1eXW7w8x8789ibj6oqD3hRjCU443QpP86Yqdh4sZyOfOtOlywXvLsxZBhJI/4zUyXao5C5ik2aUfg22YXkxiLOpHRtr0nuQSAjyncX2sMwKSZF8jBfMmXhl+aCr9/uUbY07hYMhLVewELdZhQlVGyduYqFZerSpyITk9SesqVTPgS1PEykNOOttT4vLtXwIzl53Wk+O2bQlEx9EvywF5plU07q4KHF6eZAemaVLI3L8yW6XjoZIOyCIs1wkzRnpecf+PfZD/0g4d++u83Pf/z0gd6Jn/nQIr/97hZfudnme59R6skoTPjce9u8udqT/hAIbF3j+fkqP/PqqV1T9oPC1BU2BgHtYcSphsP3XJjmTLNEmgsptQI6XjRhG20OQholgzwHL07o+Ra32x7XtkYMgpQPn6lP1sqoLhPQFmrHN+kE6dHSKN7tqmWQZoLZikxmy4vD4FTJJEhSZioWgyBmexTz0bNNXl1u8MvfXOH3rrcZhAlCEZzXyhiaPNCeacoUvqOKsV6s2by3OWCtH7I9DJmvWizUbL6z0isGZyZnplzqrvRNurY1omLrhQQgZqk4LNcdE63whHlczFZs1roBVUcnKlJqp0oWV+YqnJ0usVi35VCvWZqwRhxTI4jlAGtrEEk/P1XldsdjYxAxVTK4NFvBLIJegjiT4SKqtA7wiiZc10uYr9oIIdfDuGBCjg2oB2HC9a1R0SRy8aIUIeBWx2embNH1E+ZrgtdON0gSwXTFoFGSgRXLDZeen1B3pSF414tpuDLRNckEugbjx9HSpT9oLuR6tFZIqcqWznxt9z69UDBAjof5J3hrrc9mP2IUJnSGMV0vwQ/TiZSzWbb52Pkm0yX7maVrgWQg5rkgzTJ6QUzZlCm1ugpnp1wsTeNTe/iOHRSLdRf1nMp3VnrUXNkYGafOje+9oalMly1utT2yXDBXs5ipWPhRRppDexSiqSYfO9ucNKq2BhF1V7DZjyaNqTFrP04zrrc8brd93t8cMVexOVVzaI2iB/b5NBcTxlZUXNdSw2GjF0pWctEYXajZdP2EKMmZLlmcbrrkQkzq72Zhmq4oMqmvNYqJ05w8h0yIfQ9fN1o+64OQ9igiNHVcWzJFNVWV0h0VwjQnyXKmSi6aqhIkMjHcNTTmimAfXVGI0hTX1PjK9Q7rg5A4zahYOpauM1v4ATmmyt2OLz3wNIUrc3UUReFmSw5pNwahDBzIpFedqsoh4NPE9e0hv/yNFd5aH0pLE0PltTMN/uwPXDiWBsxMxebnXjsNCP7H37qOF2es9gL+7udv8Cc+doZXlh99RjlKOKbGq8t13l0fUrV1wiTl+YUq0xWLtW7A77y3zWovpOsnrHR8+bw8o+PAfM2eNJsV4KXlKu9vjEizHEXIRN2v32rTDWI2ejFtL+LV08d3P3MhaLgG5ftq1UuzFbJM+tYKIXhjpU+jtLfn6lTJZmMQ4Zo69h5nPE29V0ds9EO6fvzAOUJXFSxDSixdU5sMzPdClgtmK5a0hhEC29ToewnfuN2mbOuoirQP2hrKc7VryXPMSfNJfRw8bmPq48CfUhTlTvH/nwbeURTlDUAIIV4+kqt7DNxue7yzLv2lokTGY5u6xt2uj2tKP4eyrfPqcg1FUTnluiw33Uma3s6mjqoqmKhc25K+DMtN90jMSJMsp+fLeOP1fsBizWWmbLNUt1nrh7imhiLg/Y0Bhq5xYbpEhiBOc95e6xexswoIhY4fEacCiCfT3++7NE0/SKjtiNZtj2KyPCdKBFGSy83S0FjpBtKfaeHJtNN9P6HtyTjfceNhGCZ8Z6XH9jDilVN1ZqsmDdeiJSL8OOX6tsd81Wa6bGIZKuenS9iGtssLay/I+zBgrmpxcbaCoUrG2Z12QJrm1BwTP8lI8hwvkqbLF2dK1F2TqmVgF0l8NcdgcxiiKZIKHVZz0lwwX7V4c7WPrqn4ccqZKZfWKGJQTJEfZjqsqgqWenwFZRin/LV/+TZvrvQRIme+ZlG1dT56bpoXF2snoiklhOCffe0uv/i1W3hhTtVWmS67PDdf5sOnG4eODAf5eT/svq90A6IiXapiS4+xesnA6GnUbIOVXsBs2WJzEJBlgnIhj2mUTEZhxofO1Pj05VlyAd0gJs8FWSafr0bJOLCfQpLlrBV+dHsd0iXtH4aR9GAxDZW6a5Blgo1BRJ4LRqF8h3RVQVMU6rZJ2494cbHGjz0/j26o+HHGKJQNq/eKdK8zU6UD+QhoMnWchmvgGjppHlLSNHbuY9ujiCQV9NKE2Wr20Cbra6encE0dS9O4PF8hzXLWelImvVh30FSFjidDBt5YGXFmyuV0092z2VcvGWz2A7JcEMVPZkA5xr96c504y/nZA3pW/ejz89Rdg3/0pVvPpDGVZTn/4+9c4yvXWiRZzmzVpGSrLFRdvv/q7GMniV2YqfClax2aFcm4/ZShcaHweQhiySz6xPkm722M8GKZZvXcQo27HR9dU3h9pU/fl+veTMks2MA6dzs+N9sesxWb2YrYtfZsDUPpAVXdO/HpoOj50v9vFCbEqZR4+UnKrY5PmKRcnKkwX7O5MCNTXGuOgRdlkgm0oNMo6by7MaDjS4P/RslgrmpzqiEbIa1hTMkwsE31SPZ1IQTrg5DX7/b5YGuEraksTzmcnynzqYvTdL0IRVH54edmWB/EDIK0YMXoKIpgGGTc6fhcmatyaU42z55kTffjFE1V2R5FKELh8lyZqXJGzTEnDLf1XsAgTJmtWjRc6SkTF/56OYLWKMLQFLaGgkEg00FnylIKf3G2zHzVphfI9UjXVFojnywXjMKU2JXG+AAzZZv2MGauaBjc7fjcbkuT87VewIeW66gqlAuPqzFjzE9yzkzLZvZK12d7ELM5CHlxqUaa51Qsnemyye2Oz2LdnkzDTzddbrU8QMocdE3hvY0higp+nO15qDY0dd9m/GERp7m0VQAWatI8e2sQ8OZqj36QcKvt0Q8Trs5V+IHLs0yV5fvV9uKJ+ffTxltrfa5vDflgS6aolkwd19apOwZNV6HuWpyfefx7lOWCtV4gvXA0pQjFyHi/CHc4M3Wvxt4o2HpZLmi6JrqmslCzudvxqTsWzZJFkksp02zFYhhI+ZprapMwJJB1mW3qxGlO149RFChZGigwVXrQM8k2NCxDZXsYTaRhqqLgJxn9UIYWIORAXBWQ5dDyYj52rkmYZDQKj6ONfkjHi2m4Bmme03RNukjm98P21dYoYmsQAQLX1Kg5cqCqKRq6qjBVNhGArgj+xetrCAEKgsWGy6cuTu8ajOa54O31QaHOiFio22yPAkZpRjdIOLcjpfvCTJlbbQ9FUVnvhVyazTCNwldTU6jYBqoK5xolXEv6bu5k8vX9hNVeIO/rMeDNlS7/z994l81BSMkEDYOXlmv8sY+dPVZWkK6p/OjzC9za9vjtdzdRVYXfu97h2uaQv/QjV/jeS0/HI2kMy9D5sRfnubHt0fdjKpbOME650wkYhimGqlB1DRZqFu+u93lvc8jpZokXl2qT92F7GDEME2ar9r5SsqOAH6egSLuHH7iU8c07Xb74QQtVVbi2PWKl6xc1hIWuKbvWgaMc8Ash6+ySoWHu+LmaqnBhtswHm0PeWBswV5bv+6mGZByv90NsQ2Wh5vATL85xZtqlWTKp7zNcF0JMbF22Brsb34oiJX1eJJvFpi5Tefey/bANjY+dneJUw+H29ogv3ezQ91PafsSZqRLNskEQZ1zbHLLWDZit2nz8/NQj7W++G/C4T+WPH+lVHCHWeiFpJlAVhVNNOTUoWxpVS6MfxNxueyw25KTw8lwFTZWpXTOF7EZ6S/lYhspsxWZzGPLGygBdVbD3iIp9HPT8mOtbI/qhnPqpqjQIHkaSsnen7fOVGy1yAWXLIEozLs+WudbxURQ5/VuqOXhRgm1odL2QqqNPFpmaa1K7zwCw6hgs1hyiNJ/Q3ZNMsFwcePInZK+v9OTB248DGXOfSRbT63f6rPYC7nR8/uArizimxufeb+FHKaaqSu19mrM2iFgoXqxHmRdmxUTrdtunbOuShbIpU0dQ4LnFKiVLZxDISZoXJ9iGTt02MA2F61sjVnsBHzlT59XlGivdkJVugG1KmmeaC6JU0PYivn2nxyfOT9H2YpJU4McBdcd4oPkgPUvkxOo4GFNZlvO/fPUWX73RlrpxS+fTV2dolAxeWqwzirNJ8sqzxDdut/lfv3aH1a6UxV1tVnjtbIOFust0RU4YD5ImthNZLljtBpQt/YGDrrXD4FFRZAF5ea6Cpav0vJgkz9noB9LofhgzV3Hwk4z2KEZTVLp+zLubQ2lA7hjcbHnc2PZYqNlkuThwYyrNBO1RPKEx3w9Ll0wEqzAqf36hSprl3Gj5dPyYOJPGqo6uoaJQMnVubvfIkQ2za60R52bKOIbGej/gZtvDNWRowyhMD8RCK1sG33dpmqpjcKfjo6tq4cV1jxVac+Rm51ravibvmqpQd0wUpK9Xx4/pBVImFKVSLjtdtrjZGuGYcjDQ9mI+eq75QCG50gqKhCN5P44Cv/KtNc5Nl3jl1KONbUFOI3/+Y6f5n373Onfa/gNJRceNr91s81tvb9Dz0yIdzuLDZ6e4MlthseGgP+Z7rakKiw2L99cTybgt2AldL2a6YuHHCX6SU7YNzkyVuDxfkRHFjkFnFOPHMkUxTnOaFTkI8OKMWx2vMEYWTFdMZis2XpSyNZCpO10/YbUb8LFzzcdek1a6AULAte1R0cDNUZAG/3c6Uq49ilI+eq45eX4NPUdVIYlz7nRk8myzZHJpviKHNhemUVWF9zdHCCH45t0uizWHRknuj497rUmW8/7GgLfWBlzfHtEaRnhRQiYyWqOYYZCw3CxLRnbNZarisN4LqbsGZ6dLVG2D221pJN/yoj193w6Drie9czqjGEvTZLR8klFzdJmgFyZ883a38OmyuNkWfPzsFI2SyZ2OhyIk6+jFpRpZLrjV9mgNY04379kaKIpCxTGo7JhC1xwDP8o4P1PidNOZhFsYmsKlHUb7lq5iGRpJJnBNnSQXvLBYmxjwlyxZD72zLoNN2sOQjUFEEMuAjzttn7pjAjLAwi7kSuPPLysOIpKxAmXbIEoy5is2i3VnUmNEafZI38DHRT9IJqzrYZhwqmHz9Vs5KgqrXZ+tQcRyw2GmbFItJFVCKAghkxsflap6lEgLL7R/9cY6W8OIzUHElGsQJnLYMFOy+OSlaS7MlA9kFr4TUZpzY3vEclPGoN/YHvHO+pAoybk4V2JzKFNxDU0+oxVb7kFrvYAwkYqGcYNzexTRLLybSpbG9iCUPkNVmw+fbtDxY1Y6Ade2RlyYKe9KKqs5BuenK8yUpXepUzRe7j+cZ7mg48X4Ucbdrs90xWIUJqx0ZWJp3TYYhCldPyZIMj51cQZLNyhZeuGBJ1BRaI0i1noB729mfGi5RsXRqTg6Z/bZW+QAWYYO/NTLC1iaSpxJCU+WCzqjmKqrc6sTsDmIaQ9jKb3WtAlz+Z31PqamcbZgJ8dpzkzFIkpzciEwdbkejO9NmuVoqsJ81WEUjihZ+kQdcHaqxDBMuLpQ3XfI0PaiIgH8aAZLO9EbRfzNf/MB17ZHIASWbvLjL83zsfPTzDyFd6RkGfzQcwvUSib/+s1NOn6A18n42//2Gpfmqk/lGnZivmrzwcaQd9aHgKBmS2/RhZqF3nT4wedmWaw6/MYbG/T8hFGYstSQybBCCDaKoIj1XrBrTT4OrHaDCQO36ZpULJ1TUy7vbwy5sT3CMjT8JGemYuLH2USt0g8SZitHd46KM0GaZgzClCjOsIyxfYbgzbU+d9sBhgZRlnG24krrmfUBXiwtC6q2gaZKj6iKtX8PQFEUao5BP0geGMRHaS6VLqpK24upuybfe3Fqsk/cj7maLeXcqsYH2x7vb4xYqtvMVy1sU+O99RH9KGWhYjGK5FrZLMm6/FmfBZ8Ej9WYEkLcVhSlASzv/BlCiG8e1YU9LmYrFksNh+1hiKmpXJorcXW+gqJIQz9Tk3GpN7c9lpsumwNpJlh3DZab7iQSF6RUJs0Epi5NyI09FuY4lR4wFct4ZOzsGD0/Ic4y7nY8vv/SDFcWqkyXLe60PW61Pd7bHFA2Ndb7cjLohSlvrA642fJoutLsLBeCVEi6ftXWeW6hum/0Zs0xeGW5vovmJ71dIlRFofyYHiF5kcSjopAXU56OF7PaDYgymRqmqrIJZqgql2YrxGnOW2t9dFVF11TWhxFbw4ima+LtYxg9xniSGGcZ7VFOmuV8eLnGrXZAxdEnk/pmSZqsr3R93tsY0vMTZsomt9sB3UAaS3/y4hQvLFR5bqFaGLLrk7QzVZHU8lxISU1rGFBz9Qde+CDOJot9LsQDcrMnRZ4Lfv076/zOuy2iNENTVa7Mlvnw6TppzsTs+lkvRDdbI/63r67Q9mMyBHOuwccvTHF+ukTBiN8zSfIgGAcL3I/lhotXknKI8bM9CGXzS1PgTtdnGKVkmZSUVB2DuZrNKEy43Qn48o0Ouqph6RoNV0qYypZsIh3kYND14l1Ghw8r3s5Nl/ALQ31gEtV+YabEWs+n56d0vISpioUfZyw3Hdb6AdvDiK/f6lCyDNmQbtjkuZTohmlGxdEf6Wnmx9J4XlGYMEIbrkkQBzimtuszmalYTJXMRz5Lt9oeX7vZIckFn74yQ80xCilAgq1rDKpJQWM2eW9jyO22T8M1GQTJA40px9IQRVNxv0nUQXFje8SXb7T5Sz9y+VC05j/1PWf5hc/d4B988Sb/xU+/8MTXcVBsDkJ+6ZurjKKULM851ZATztmqQ5ILrB3P9mEghGRAgGTVnZ5y8eOU9V7IxiCg5pjYhkpJVQvvwXueIYs1ua+gCL5xq8NU2aLmGDiGRprlpKkgSBOcTEVXZBz5zZZHXBxCXVMOVIYPCSnYD1EqvZFMXU4WN/shXuEP+PxCBVRFshAyMZHagCxm73b84jk38aKsmEzqvLBY4+JsWXo0CkHF0el6MSVLL3yY5MT54mz5sVKM3lkb8NWbHbxIerXM1016nkLHT2n7KbqqcHa6zFL9HmtwpmxN3rO5qo0XZwTxPcbF4yLNpHdPmuXc7XlMlSyW6g7nZ0pc3/YKg3aZhOtFKV0v5syUy2ovoGLrvL85IkpyHFMytoIk4/x0idmKxfmZ0r7rzXTZouk+uH7UXZONfjhhap2bLsufN1UiyQUN1yTP78Vt24bGSten7hhsDyPqromCTCmbq1o4psa1rREoOY6hEaewlodciqTkfhimtIvggKqj48c5tiEHG+Om89YgZHMQYeoql2bLR75/Vmyd1kih7ydEaVZIzQw6uUDTBKfqDlEmU/juFl5BWQ6O6Tz2Pvm4+Mr1Nu9uDFjtBeR5jqHD1iji8lxZ+kJVrMIz6fCD2TwXeFFG14uJEsksvr49wFB1Zqsm56bLlCwNBYVm8ey3RhElUyNOM2bK8nnKckHPj2mPEi7Mljg3XeLNVelzOAxTVFVhpetzs+XjGBrLDXdXTT5T7K266nJxtkwm5AD7/vc9zXKubY4IM8kgBcgBXZVnCMNQ6XelyXTJ1FGQyVhelHKzJZOyzk2XqDk6H2xm1Fz5/D2/WJVJlpngYa9QwzXYHERUHZ2KbfDx89Os9gKGBbPsvc3hhFELoKoCkOb4hqby9dsdrm+NKFsGddfgwkyJoGC+bY8iZioOWwNpkl53zElAgmXIBD+pWlBRC3m/qasHSoCtuyZ+UU8cJfwo5e994QY3Wh55LrANjZ98cYG5mrvnoPI4oGsKZUdnvury48/P8ovfWMGPMla7Pv/z717jP/nhK1SfoteWENArkmT7YcJ0uYaIUhZqDpfmKlyaqRCmGTkCRRHEmWC9F9IexVKKW0jJQHoB7jVoPyqYulo0xxIGYUKS5fT9ZOKtmuSCqm3Q8eQgK8kkM/qoWXCqAooi97MdzhVEaYapqlRtHctQ+di5KUxdEiYGQcKtYkh5daHC711vc7PlU3Uka20/ufXpKXdPooClq7jF+aJePDOuqbPflm/psmE/CFOWmw5BnLM1iDF16Z9nGibVks75qRJplvPO+gBVUTg/U3qmkvAnwWN1IxRF+S+BPw1c555TpAB+8Ggu6/FxZb46MRPfGISUTINRnCFENkknciwd29S4se3JyPTif5ab8qVFBpGgq1Lnfmmugq4qe0a/3+n4BHHGthrx3Hz1QC/4Zj/gjZUBZUtOCseFasnSC2+ZlLVuQLNkFU0WjSyX2u5hmPKZq7O4ls4373R4d2PA5bnyvk2pMe4/3IwL9ifBONYXZEOmYuvc6UjWg6Vp/IGXF/itd7awdJWNQUCS5tLvI0r51IVpTFPlVN2hZGqcmXI5M/3opo6iwFzV4lt3fK63PE43HC7OlvnoOZvNQcT2KJqYuduGRt0xuduVDBFVVTg77ZBsSfZKlkNSbHjjAsU1db7v4gwtL6JWmI9qhaZe5LIZuXND1AvNfZ5z5GypPBd8Z6XPb769QcuTRfT5mTI//eopSrZB3TGYr9lP3YTyfmz2A37pGyvc6sgCYq5i8VMvLbJUd5kq20yVDWYqj+edYRkql+bKezamVFXZxWLsetJEFwBFkGZQtU1mq2aRIiNZFnfaOlEqp+/r/YCXlmqESU6QZCw3S5zZywvpPvT9ZPJvWYUE9WGFmbbjOsNERj4LAc2SQRDLImG56fLcQlVK6xRY6Mipuq3rrHR8Ls+VyQWM4oSma3FuuvTIwizPBTe2ZUrnTjRLJg3X2LPhcZA1LIgzNocRCClZGMfe+3pGmucTW1dFkUwJq2B6db2EipXsSvE7M1ViumwzClJK5pMXmv/wS7cwNZU/8bHTh/q++ZrNz766xC9+9Q5/4TMXHmpef5S4vjXkF796hw+2Rji6RsUx+MOvLlFxLWYrUpZy7gBr4l4I04zrWyNpFm1pzFctTF2mjy43SsWaIbjd8fnQcn1XQ11RZDJtLmC5WWIUplRsA12FN1cH+EmKF6Q0XYu1vpRwKIpskF+er8rEWVuf+OccBjdbHkkq9+RrWyN6QYKhaVRtg4W6w2LdoT0VszWImKtJA/TtYUTXjxFCFu6uqZMLuDpfxY9lnPvtjs+FmfJEuiKmBW1PMjiaJZM0E/hxRs053DN4uz3in33zLsMgRZBzql6i7OhcmdXIhJQkzVUdKra+67PcbSZeXFPhSfMkUJAHe2mcrJPlgnNFCIiCwqmGw9DRCRIpL/LjhDSHri9lcgKBbaicbro8v1jj2taQb93tsVx3DnRI3Wv9GDepx7+bpipUHRPL0GiPpK/NxiCcmDDXXdmQynLBTNVEVxTao4irixUaJRNbV7EMlSSThefYrHmcXmeo8vplmrFMdPOjbJdJ/7AYgsVpTpzl2Ecsw7cNjecWqnywKY1qDQ2iOKMbxDLwQoHn5qucnS6jKgqOoXNupkTdNR6ZXnhUEEJwp+PzzbtdbmyP2ByEk1RkVYVcKFyYKXF5rsJC3X68NVGZ+GXTCxIyIRuRlqGR59In5XTTnbyj4yTRtX4IQkarz1Ydkiyn4Vo0XAvbUNkYhJi6DDMZ19CGqlJ1dTRFeUBWVrENXli8Z5D9sDt8s+UxjBLiRKBPSeZTeyjfDUtX+d4LU5yfKvGVmx0MTWWu8HXx4nSyz/pxxlzV4cJsQpzIIIRxEwjg3ExpTxnVbNVmpmKhKApCyGd/GCWSnawo9IOEPBfMV21eXqxxszOi7sphkhen3Gn5vLnaZ7Zi8X2XptE1lUpRx9Rdg7mKhaYofPx8k5prcKPwlouSnCQXuI8p7dqvnnhceFHCL/7eHb5wrUWe59QcnT/48iLPLdaZq9mcny499vUeBoYmB+qqojBdtvg5IfjVb68RZ4Kv3OzQ/PJN/uT3nNvFHD1OqKrC1fkKgzAhjCXbuWLpfPVWh44XU7MNLEOl6ZrMVSw+fXmGYSQDt7w44+JMWdbAHZ/VboAfp49tFfAonG66cqBlqlzf8lhsuDwXptxue4SJ9DauWAmaojAIUpbqNlcWjt5YXjIjNU43nckzkxd1Qy9ImKlanJ8p72IDp7nAMaRyIM1y7nZ9un4sm34HkBjttQ8+zj6vqgqXZ8s8v1Dl2uaIlhdhm1ICuD2MiOKM2ZLNUt2hZGlsDWPSLGe6Yv671ZgCfg64IISIj/JijgJa4Yq/NYwZhTlpKic0jqHTLFn88PNzUk7kGuRFnHOaiwnrYa4qzUfNImUN4PIR0h3HTY1yUbTvlMvUXbNw9ldZathUbemJsVR3eLOYfE9XLfwkk2aKQ2nyfavlY+gySel0032qD+O9A680dVMUhZmKRZzmBHHGSicoNPU6XpTTDyT9WVGgGyT87NUl/DilbOoTY8lHwY8zfvlbqzimpCmbBVtoexQTJjlhItMMx/fBtTReXqrTCxLmajaXZiucnykTpTlVx9jzfpVsndKOIlYIZdJ0uj9XbLxxxVl+5JrtQZjw7sYAP0oZhilnmy4fPTfFR840mKnYJ4KyOTbo7wcpPS/BMmUyzitn6rx8qo6hqU+ULLTXVPNhSHdsGIs1G4RCludcnq9wY1vK9IIkY7picbrpUCoMA8u2TnsU4xhakShyuOtVFQ48LZRGi+P/hg+fqXOn40/izL90rY0Xp1QsrYjQBdvQOdVw2RpElE2Din3waaGi8EBjSn798Z+b5abL2SkXTVGYLQrp6YqFZWgPePFpqsJyw2FUpBVtDsNdjSkpYQFDV+mHTyYF2ByE/O9fX+GnP7T4WFr7v/iZi/zSN1f4u5+7wf/9Dzz/RNdyEHz5ZpvbbV/KuksWP3J1lhdONTgzJQ1tH4e9sxPNskWUZLy0VGO2Kqn8jZJRrH06dzuSWXNtS0o4xgc8L0pZ64WoyM/uVME+6AcJrVHMWi/EiySzKUqzScHl7WBIqYryWGtTXpCg1vshXS8uhgs6P/XyEo2S9JoZRRnTZYsoyScNzyST7NlRLJNWL89VEELwVpEemd1XTCrFQaNs6ax0fQxNpfIY6/ebqwPyXCZaXZwu4ZjSXLts6Wiqwummy0LdYapkPnKyfhQHO7/wuanYBqoiDZNNXa7BczWLQZByeb4ijeNRWOn5k7qk48WYqoamwtnpEkGc8f7GCFUoDMK08CeR8r+DNKke9butdAP8KGN7GDEq2FvzNZvNQUbZMmh5ITXTYmMQomsqQSxlpaebLte2RjimlGDKUIV7e3TNNTg/XUYgqLvmJGhi5/s0X7VZ70sz9OOqmcIk4/2tIRv9EF2VIS/rgxBLk0yUV880OFV3ma6YlA9Y/xwlRlHKIJDSkr6fIHLpXTpft2m4FmVL41OXZp7I78wpGnRBkgERizWHsmXQ9mRK4jtrQ5nGqjBJyKtYGqebLgr3nhvb0JiuSCZkludFYAC7BkJLDQdDVycDxZ3Ic9n4itKMUw33obVaLgTzVYcky2iUTdZ7Ide2hgSJlAANwpSz0+WiEaFMrAmarjm5/oYrg4kUFCxDHiLlAFcie0gCWNeL2RhIZuGphsvZqTKGpuFFqTS/Pl3Hi2RAkqLAUu6iKoq0+CjSAnVVJnePkwTHUBWFmmtSdaRsCmQjbK0XSF9bBT7YHKIocLr56KHX/Thq0+X3Noa8szGgH6QYus4PXpnhp189xVJdyomfpsmzqas8t1DlwkzGxZkSQSz47HtbjMKMDzZHvLMx5GPnDp9S+bi4NCel6T0/QVMVPvf+FpkQkMFq32e6bDNVtoiTnJVeQNUxKVk6jYLNaurqpCbcqzY8KiiKTI+sOQZnp0qSoeVK9v9aPyDKcqbKNn0/YRileFHC6anSkTPvhJD1eViEiKnAKJZrX8M1qbvGrvVgpiJDS0qWTsnUEUKuM6YeMFs1n7ghethnt14y+dEX5rk4O+RGy6PrpSzWbRBSgXWj7XFxroKqyvs6CBPKtv5UhqvHgce9u28CdWDr6C7l6JAJQc01SdIcw1DIMrjZ9yjbGtMli7maQ83Wi0JFQQhlF+Nkrw3rbseXuteqtevDPjMlF4ey9aDEay8kWYZXSHXmKjaLdZs3V/vUJtKEjMvzFRnvmgtmyvLQd7pZAlFMelS5EVmGihYpJHlOnORkqqRm7sXsOi4s1m0sQy0kQUUjyNS5NFfhnfUBIO9vxw8niR6WrqEj0wHrrvlIT6n7IafiOSo6c1Vp+C4Px7KwsQ11V8PPNaXUMUpzpsvyYHNh9uDNxs1BSJhmDMNYRu/G0usE7km3xv/3vY3hLmnX4yLPBb/xxhp3uwFZ0f12zBqLdZtPnp9+IKr0WeHNlT5fut4iznIqlsaVhQqWpnFlvsaHlhsTLfdRw4vSghGp74qani7LJBwUaJYspgozwzTLGQYpWS7wooSFepmqbVCyNF5ZrmPq0uh+oy9TBF9YrD7ykFBzDZZx9vVnS7Kc1W6AqigsNaQpuGvqnGo4u57H8ef5weYQgSCMMyq2OZHYvnq6TsXSWc0CVruBTNgqm49k6Kmqwvnp8p7mik8C2dBVaXsJOULGF8cZpxrOngbCmqpMEr8q98mGS5bGbFU2Gar2k8mY/tvffI80z/mPf/DiY33/uekSP/OhJf7JV+7w53/gwmMnMz4K7WHEr39nlfe3PMgF52bKPDdX5geuznJl/mgmhqYuAyV2PieKokymo0mWA4Ken1Itpm/j31dTFRQFkjQnSgVbw6gwKJXei1EqJdp32z65ECxUHRYbzpEc8M9Nl2RhZar0/AhdVam7Or/z/hbTZYtXlxsTae9YwjL+fS1dJmYNgnRigHx2usQgeLi3nQzcePzhk6WaaYCmAAEAAElEQVRrlG0NS3f4+IUpvn6ry2o3oOkavHZ2Cl1TCzuBp3OQMjWVYZgwV7Eo2QZnmy7vb40oWzpLdZtBIOWcZ6bkEEvXSvQLie3tjjdh4LqFYbSmyQajoat0RjGKorA9ig7dmNoLY++0IMlwDI3cMajYBpauMgxTZsoy2U/TFBZqDrkQNEsmK92A8zNlen7MB1tDhkHMK/elOu1sfiuKNHHeiZKlPzJo5Unx3saAN1f69PyEpaZDs2xyeb7ClGvxwlKVS3MV6QnylJOUkizn6zc6vLUxwNAULs5KL6GNfkizZHB1rsKZ6TJ1d+/B3WEx9nI6PeWyUJN+R9++2+X1u32EgKWGhWsajCIpKS7bBhdm9Qfe27Hn43o/kIPZIplqjP3qST/JJsORzih+aGPKNTVWeyMUReUVo174oGkMQ5nwON6/mqXdz7+uqZzdwYgcN/LG3pczO9bWmrt3g7o1ikgzQddLmK3IZvGY/a8Ar5yq0/KksXK98LFJMmkLMFVycC2NmqOzVHfoBXHBNpPJYLKBJetnvbhpZUufDN63BuHE66YfJM/MRLkzCvkX316nG8RkecbpKZdp1+InXl7g/BN67z0pTF1jqenyk68ssO1FbA1CcnK+8P42b632+KlXFid+xccJmfSo4xTMyjPNEt9ZHZDnOSKX+3WQpFRtA1VRKVv6rntnGxqnp1zCJGPqCOwTDnK9ZVu+1zXXxNY13ljtst6Pma2YDKKU9VbIRj9iqeHw4TNH2+TTVEmYmKnaE786x9DQNSkR3ks6eHW+ytvrA8Ikw49TwkySLeaeUbNnqmzRLJnM1xzCJGe2YvMLn7vO1jBkpmpxu+3jmhVKpoahqozCtDhzP91hx1HgcRtT/xXwLUVR3gSi8ReFED99JFf1hFio2pRNDbvpMl9zZcqLalEydc5Nu5QsnWtbI8Ikn5ic76dpzYpobaDYMO49mA8zO94LHS/mrSJV7+yUy9mpEi1Pyg/WusGEvt0ZxQ+Y79Ycg3MzJemPUVzrJ85NsTEIqdo6GwNJe3+aWmeQm/HDvHjqRbMtFzmjSGMUpXiRbGYtNFwWa49HHzU0he+9MCMPXIbKdNF8mK3YNFxz0rjbiYOYQ++FsTdEkuX0gpSlusGttjcpOs5N3/PcGIbJJPb4SfH+xoAv3+igKArnphx+7qNnGIYy1ei5Izq4Pin8KOVfvbVG10upuwY/8tws3SDF0FWeX6weW1MKpDzGjzL8KNtVPD8s+l3XVBbqNqoGL5+qsT0KaZQM6V2iSCnA9jBCVWUR6R1Q0vOopmrHk15mIBswE4+nhzyPjZLJqYbD6YZLlstC2jZ1mq6c0kyVTaJUMvMGQcrMAQwiHVM78gnUje0R76wNUVV4d33AUr0kTYwfMgmWjJrSA6wFkH4zf/DlRbpewicuNvnvH/Oafue9Lf7p11f4s9937ol83v7iZy7yK99e5e99/iZ/9SeuPvbPeRiyLOffvLPB+5sejqnyyUtTLNZdlpouV4/w3daUveXnYxiaOjE/FYJdRp22oXFhpszdrpSqv7nap14yOT9d4vJ8mQuzsnkURNLz7mbbY7FxNM3y8bO6PYw40yyhqtAeJVzbGhElgrrr8dJSjVHhJzQOJjF0BT/OWO+FuNY977Qxe+mokecyYto1NZZqLmVbY7bqcHoqIkjyIs5ZDr2eZuPhbjegNYpwDCnfRJEMzWGY0vZjgoIt0fVjFmrOLrPji7Nlgjib1EOmrvKpi9O0RhFzVYvNQcQgSAvj8SfHcsNl4CTomjJJCF5qONLmoCiqh2HC+RmXNJOy7rsdnzQTBFFK24u53fJZ6wZMFeb8JwmbAzmQa48izk+7XJmr8iPPz+MYepHG+GzYztc2R3z+WotBmHBhpsTV+SofWq7z+t0+FdvguYXKAwE6R4GaY+DHChsDb7LmVByT1W7IxVmDsmVwdb4q/T3F3kNikGw3t/AMO6h9glOk7cVpvq/1wXdW+mz2ExRFNsA+fm6K5aZDnsv3YfyuPCpsZqku5bs7bSIe5VtZcw3CfkTJ0h5opIJcTwaBHALVHBmcoKDQHsW4hsaFmQoVx2C+YpNmAGIycNBUyWoNk2zP807FNmSCJ8oDw6OnhTzP+ew7W1Labqq8dmaahmtwaqrEK6fqz+Sa9sKLS3X+T997ViZr+jG3WgHtrZh/89Ymf+yjy2hPuRlQK5l87/km11seUSpwLHkeqljSq2yvOrW2w1PyqV6rY/CRs00uzVfwo5Q7bZ/vrPbZHkW4lsbmIHr0DzkkGq7JZ67M8sKO9HJDU7kyVyEXYs8htEDWRZaucafjc3vbpz2K+OK1FmemS8cScvUoKIrCclPWtl+53sLQFRZqNjNVq2hgK7y4WGOtFzJXO7zy46TgcVeffwT8deANpC/giYJAmXSDZ8oWFVtnrShWFQVutXzeWhvgGBqnms4jD5eaqlB35XTisIliO+FFKZau0A9SvHCEpqqUTI0oy1moO4RJJjdNV6aSjCJ54B8/XPdv0pahTQ5gjZJ1JP4UR4EozUgzwVzFpjWMyATEqSh+N5PpslkYvj3ei12ydF5eru/5Z0f5IvqxZOWkmUyLMDWFmy0PU5cJJuMUmXGhUrENTD1+YsbUO+t9vn23R5xlqCicnS7x0bPNE/P5Amz0A75xqyulk2lG2Xa4ulTDNvRjv84ku+dhZOoPlzuN03XG0pqz06UJw/FrNzv0/ATb1Cfv/3LT5U7bx9QfTOp5HIwiGd87vhV7NYfCJGMYSumRpWtMl6VfxCBI+a13N2kNYxbq2kRWOle1pRQWharzbIpHkE1YL06IUsH3nDcxNIVekDBfe3iTfi/WAsim4fnC82eq9HhT2o1+yF/6p69zdb7Cf/qjVx7rZ4xxcbbMT728yD/+8i3+/Peff+ym9l7YGoR8sDlkexQRpRmuqfHDzy+w1HCeybttGxovnarv+c46psZ8zeb61og0F9gFq3Dc7Op50tA0E3CqabMxCJivHqw5JYRgGKXYRXE3ilI0RZm8I0Ei95DWKC5kaNIzRlUFYZJOJAJjjBkIrqkz9RQYKIMw4U7bR9cUojQFRe5xqgKLdYetYcTlucpTZUqBvK+SFSIPsJoWyqa9kB6aDcek6yVkuaBs6rRGEZauToZdlq49UHDvbFydmXry9X1soTAO7Bh/jlfnjV0/e7yuV2xppJ+JHEtXqbsm37jdZRjGiFygqoKSJVOTTgLGbHdNVRhGKXGSMlu1qZcs6sXE+1nBi2QQxrXWiFwI4izHMaXnqqYo/PDzc8DRy7J2YhimdLwYFIWaY0rD/JJ8/kqWRt+PWe9Lmd/Z6b29mBTl4ayjh0FTlYm8d7/fr2ob2IZCkOY0XUsyU+77O+1RxM2WRy7glVO1XUO4MMnIhUybPKwaYLZiT1QSe0EI6csjhGBrGDJbtXhrdSDfJQXCNGe2bHOq6dL3E/pBMglTyAqpX9Xe2+zaMWVaMBzv5/8wjMKEr99qs97zibIMR6h8+srsM9sbH4UXl+q8sFhjYxDyDz5/kyTP2BwG/M7723zkTOPQn/2TwDU1SpbB6YZLWgRSaWpGzdYxNRkWMopSrH3q5aeNapF258Wp9MqtWoRJihenk+GJonAkjE1Z59QeYDupqoLK3s+WZPmrtEYxy3Wbt8WA7VGEaarFvXy2/k2WIfdqU9NYqDvc7njUbJ0Pn2ny4TP1PYkBaZZPwhCetQXMfnjck01LCPG3jvRKjghJJhPfVjoBZVtHU+9R4IZRyo1tn9ttD9fUJhKER/08Q1NZbrosP+G1zVYt1vuBNL4ERpE05GyWTWYrFrahIQr/mXc2pG+FnBZKCuY41vVhi/SzXLzzXDovJYVfiRBg6grXtjw2BgEzJYtXTzepOQYCwVTJfGSa2LNElgs+/34LP84I05RLMzK159yUO0nBq9jGrgQlU1e5Mv9kE9ubrRG/9fYWrVHMXMnmhVNVPnVpBni2n+9OhHHGv3pzg41+QJoKPnqmwaevzmIb8vM8zutMs5wPNkfyYGVrBaNi739vrTDmVxS4VKQLKYrC1jAkyXMUVeHSbHkiXypbOs8tVCaHiifBWi+gPYrRVIXz0yWMhxQEN1seaSboePeeHUVR2B6GxGmOoaucbjoTerhtaFydr07WgmcF19T50Okmuqpwaa7KWj/ENbSHxt7uhfHaerfj8/VbXQA+cubwTd00y/lP/tdvEcQZf/vnP3wkhcx//IMX+bXX1/gHX7z5xI2uMVa6Pp97b5s7XR9HV3lxqcYPPzfHqT2kj0cNIcSebLUxHvbOVm2DFxZrzBcN0Z1sRC9J+ejZKe52Pe60Ala7IR8/12ThAFLytX5IZxSjqtIX7ua2TLMap77VHYMtQ3ojyaRIiw8v1/nSjQ7rvYhv3eny2tm96f6HWX8etac+DIMgkelIfkKSCraLdLeNQciVuQofP9ecJFs9TUjT1hzbUKRfXtniTsen7kjJsFX4/QghWO/fMxu/NFee1B9ZvvcEeee/8SSIErmGX5mvPLCG7fWzxzVFnsu0xYqtI3KBrmqUHY3nF2s4lsbZqeN/jx6FIE55f3OEqij4sfSFrLkW8zWH5xeqnD3ixN7DoO8n3On4bA5D6o7OqabD5bkyCzWbtW6ApqqkuThQGu2TIIgzBkHCai/g1eUaF2alnDFKc263Pd5ZHzKMUpbqDoMgOXK246Oe39fONVEUhSzP0DV1z3qg68fc7QRkQlC25DM4/t3GwSaLdfux5K77XZ+iKCzWbd7bGKIoCp2RZD22RhEr3YDFusO56RJlW5e19o4m3PXtEUGc7SthfVY1Zp7n/Ou3NnhnfUCa5bywUOPHX5hn4YhYuMcFRZES4z/7/ef4V29tcrs94kvXWmz2Q/7wh5ewn1KIwamGS8M12R5GCKDvx7y5OuC9zRFdP0XTFII4R9fuNWcfZ987DpxuloiSnDjNWR8EjMKU76z0JsEd52dKT6wE8qKU1+8OsIwhP/7CApl4eC00hhBCyngNjVTAJy5MUS8Z2KY+kaA/S1yaq0wYmX0/wQsHfLDtYepSpnk/ezjNcj7YGpFmgqqjH3l6/FHicd+abyiK8l8B/4LdUr5vHuSbFUX5S8AfFkJ8SlGUPvCt4o/+sBCioyjKvw/8RaAD/LwQYnDQC0uynDyXC4bCvRcvzSX1O0xTRmGCrqt8/HyTZvnhXe1bLY9hmNIoGUeSWmDpGnNVG12VBSxIf6hxctKVYrq60xx5fEwbRxs7psr56YNFG0dphqkdv0lglGZc3/JI85xRJH16ZAJakRwwUoomofKARPEokGb5pFl0ZD8zz6WZIFKO9e2oR5oJrs5XOT3lcmaqdOSNgVGY8Nl3NieR51fmyxPa5kmBEIKv3mrz7vqQOMtYrNtcXahhPqXpQZqLHSbGhzdXFkIwCBOGofRQaO5oLKZZzrXtEUkqONVwnogpM46xzwq6/2GfzVGU0vVjGq4x8dUYY+daME4Ze9pYrDsIpJ+NbUhz1vV+QMuLWKjZj/TnutnyGBVra5xmpFmOqiiT+3YY/K3fvsZXb3b4b//oK0fmGXN5rsJPvjTPP/ziLf7DT50/9HT+fnhRyldvdHhvY0iYZlSaLs8v1CYeYseNG8X9rrvGoQsSU1cnzab2KOJ226NqG8xWbLaGIWXLIEqkJD3KDvb5jSXPeb7bfDUpvl8t2A22oRWhEhrXtj3W+z4NR3rU3M98iNMcXT34mtAeRaz1Qkxd5eLs3qmfD8NUSUbPt0Ypm0PZlKo4Bq1CCtP2TC7Nlp+6mTVIhpOll8jyHMvQGIYpSSawTXVSxyiKwv0tYCFEcXjNmatae0qi74coWDeHrTOyYh3f756PGa8rXZlOulC3J89Hs2xyp+MzCAULdViqu8/8kJVmOW+tDXj9bg9LV2mWTGxNpWRJ49/TU+5Tibd/GKJMsvB7XoyhKyxWHdIs51Y7oGJrnJl6Ov49mqqQI4iSnK1hzPJULj1TdZUkE5QsnSBNsQ2VXAjeWutTd82J19L9yIrwoqOq/8qWbNr5UfbQ57Rs6mwMAjRF4VZbRVNVzky5xFk+Wc/u38uOqk6dKlvM1ZKJ0XrJ0ugHMa5hsNYLQIGLM2VK1j2p6JhJebfjo2rKJIjhWQ63xhBC8LVbXb51u4sXp0yVLV5YrFF/Ct5HR4WqY/LcfJXNfshmP+DNtT6zVYsfuDL71BhKY2ZrmuV4hcw9yjIarkGY5PT9mM1hRBin6JqUvl+ceTZ71E4YmsrpqRJdP2EQSlZXL4i52RoxCjOCJOPV0/UnGjjmCNJMrjN3O/7/j73/jrIky8770F94c71Jn5VZvqp9T083xgMzA0MQECAQNNIDnShSJEVSjpR5fFp6EgWtJ1HUkshFSSRBicQjpAdClAQBJEESbgCMg+mZ6Z421V3epc+8/oaPOO+Pc++tdFWVWZWuofrWmjXd2Xlvnog4cc4+e3/7++gECQVb36IJtx29MOH6ag9NVTB0hflajgwZ8xas43VBB7lODZNPiuJjaCp5UxaHb671UBSF04Nz6kYv5H7D407DY6bsPlGcfZR40qj4Y4P//+Smnwngi4/7oKIoFvDKph+9I4T4/Kb/bgB/FvhO4PcDfwb4a3sdmGtKgcWcpVFwdCaLDr0w4fZ6n0wI0hRMQ+odrXZCZh8S0Agh6AaSUhjE6VMnplIhuLbSxdQVNE1qE52r5/jqjQ1KrjFwppKBtqYqnB3L0QuTESOnM9Cp8aOMOMuwNlkbt/0YQ1O2WAwPGRtHcXgdbuD9MOH9gYZWsx/xmfM16gWL+ZpLwdEPTJdiM5r9iA9XuuRMjfl67pFaYfuBpWu8NldmuR0wnjf5YLWLZaj0owQvTFls+4wXrAOjc15f6fH1m+uEcYqmSbeoj81VmKk4x04ZHWK9K5kKV5baFF0dL4DX5irM1dynanHdD2xDY6ps40fpY7XdpsuOFOY3HrSnhAO3yI6f0PFjXp+vjX4/SDLiRBDEKYstn/JT2B9PlWzW1BDHfLTj01DoefO8jVP5jnthKi3Sp4pbWDWdQAqedjsx02XnyKzFN0O6IoXkLZ35mnQ4cgydom0MWpAfPh8etBvJto6xgoWuKURpysQ+BVd/8+YG//2vXuNHX5vh93989qmuaTv+whcu8AvvLPP3v3aLf/d7Lj7x93hRwi+9t8zdRh9NhYpjcG48z5kx90jo/mkm6PryUHKvIffIJxW23ehHeAM3m9dPVzA0B8fQcAf2xadrcj6vtAPytr4jqTrEdNlmtROSs3QMTaGWN+mFMd+626RoGzw3XcQ1HwSOq50Ax9A4Wy9gaFJHYfO7ObRi1zVlzwmhofZblGSDtsq9vUdNL6LlRaRZRhBn0mHX0rg0XsCLUuJU8MFSlzjNeG6qeKStE/0woe3FNL2Qj89XGStYbPQjgijdYggCUovT1FQsQyaXwyTFj2TA2gniHYmpth9jauqWluQ7G96oFXmvCU9NlayPhyVpGv2QG6t9On5MmEo9oJyl45rSVaoTJEyVpZNqmgqEkNpix22N7ccpbS/im3cb6KrKj358hpdmS/SjlMmivcWp9KjR9aVG29WlDtW8haXL577SC5mtOuiKymTJOhSzhzSTe2rHj2WLkSIT0mfGpNPnUBRc6qfIFrTzE3nyls6VJdk50OhFTBXtHUnnMElHbLq5qvvEBYQ4FXzrbmPEgJkp2awNBNJ3m6eapvL6fJWVjmyVjZJMmiMVLMYKFkmWMb5pjR0yqUAaJj3tXKi5JiudDmkmKNgunz5X58OVDn4i5R8a/WhLR4KiKFTzJhu9CEUVvH2vxXjRHjiNHV9iwosSvnptjbfvtTF1lQyd77pY59JU4cB1MQ8TtqFxeUruTT/7jQVQBd++36YXJHzmQv1IBNGH0DWVM/Uc1ZyUnxnmIN661xxoDca8PFsGpBRJ4QS09uUtnRenSyOZl8Wmx69cWaXtRUyV7ade3w1NJYhTpsq50Vm6GySPbOtt+zH1nEU/Sqi4FlkmWO9KHaw5jp+duxkzZQfjXI2OF/ONu1JipWAZjBUs2l7Mt+81STLpNrjZUOGk4olONEKILzzF3/xTSI2q/3zw788pivJl4KvAXwYuIpNViaIovwz8xH7/wNhgcxjCCxOkUZfCRMkcKe0vtgIuTCS7JjOk64HCleUekwOq7NNs2kkqCOKMtW6MbWgkyD7g56aKrHXDHYdgqcH04PGMFy2W28GgGqqRZVKjwwsT1gd0/HPjudFn+uGDRJak5h9eYqroGBT8mK4f0ejHtL2Ikm1yZanH+cEhYa/aI/vBejfk3YU2TS+m4hrUC9aBJaYAJksOkyWH1W5AhrS5z5ka11Z7TBZt4iQ7EJeQIE75+q0N7m54rPUCzo0X+NhcmdxAuPCk4NsLLd5bbLPQknbG33G2yljBOXIBxb2+h5qq7LBLtXSVjV6EF0l9nzuNPqfrMjmdM+UB++pKh4mSzUon3OL4tx/YhrarO91uv7d9w5WCv7INxNJV7m14PD9VGgWQYwWL9xc7aJrCcjs4FqeaK0tdVjohK8h7dKrqkgqBrqqPbdFVFIWJkkXLi6nnLfphItkbQuXqam/PY+iFCf/ez7zF6VqOH/+XX3y6C9oFz08X+d7nJ/h7X7nFv/7ZM0+8tlxZ7PD+cpdmP6Jga7x8qsJkyRk56hw2NFWhkjO435KW5r0weeLElGNovHW3j6VrbPRD1ruSKVV0jB3uTkEcUctZux58LH3r+zFesHhvoc2VpS6qAiiCj29KGhcdg/VexExFtqpsf2eG+510ts32lJgaK1jEaYZtaDh7DHpXuwFv3Wmx0Q/RVIWcKVkJn5ivykO1H/PW3SZlV0dBMgCPMjG12g1Z7gTSUKXtM160mR/YitcLW5Og6sCpaAhL1wYJwmSUlIrTDC+SrkRDF7Tz4/nR/R+6fe7H9dPU1S0tTmGSEiYZBUsniDO+dafFSjcgTsSoCHFmLMeZWo6b6338KEVR4EzdZaktn8NxiPhuR97SuTVg2Zu6RqMf810XTwbj+cpyhzsbfe61AsJUSilMlhzmqnIOlF3j0A7PUZJxbbWLH0kN1UY/pl6wiJOMF2a2ut9uF2Su5kxWOzI+3o0JGUSyQwKk/fuTJqb8KOEbt1toKsQzgjNjuUfu32XXoJaXrrlJlqEpCkVbxvC7xQxelIyYVF6UPnVcJ5kvGZ0gpuQYmD2FJJWH7ST1mK/VdnxmtuwgBCw0fRxTtigGSXqsiakri23euttiuRNg6SrfcbbOfC1/It7n/aJgG0yWHD59oca37rW4s9GX7rWKwg9/bOZIxzJkT3WCDnGScrfpgaKw1g2JM4GhyXftMExBnhQl1xi9v9eWO7S8iCDK+HCpy/e/OPVU3x0lGZqqEsYZtTFzpN/8qMJz2TWlrnTepJY3efteayTMPlG0H1p0Oy6MF2yyTJBlUmpgoe3zxpkq395o0YsSltohZ+o5np8ungim5KPwRLNSUZQJ4P8DTAshfq+iKM8DnxJC/M+P+ZwBfJcQ4n9QFGWYmLoANIG/DfwQsAEMW/faQGXHF+0TlZxJP0qlMGnJ4YXpiMWWTDI4hjai+G1+WEIImv0EQ9XwB4ygp8HQojJn6yhCBnyaqjCet/Z0+B0KxQ1xp+HRCxJafkRpsCEmm8Y4UZIV6aKtHzpVU1MV5msu692Q8byFqsBk2cYebHiH0Y+71g25td6j4UVYmoZpqE8snPw4jBdsxgs2bT+W7Z1hgmVs1QyKUxmc7Ke1bNjDbGgqYZTgRSmnqi6fO1+n4BjHZte7HcNrc3SN9b6sIr5+uszFiRJFRz/xi9xmKIrCS7MlKUqbpsyWHwhrKoqCqSuoispaJ2KiED9xYuppcWG8QKMfsd6NmK04W0TDdUUlE5DGgrVeeCyJqYKtkwmBpasD4U2dFwY6G3vB8J0CmVRoehEI2M9U+pu/co2ldsDP/rlPH5pe3b/9xQv80Psr/IOv3eYvfPHCvj6bZYJUCHphgh8lOKbKFy9PMFV2sHR1pDV4FJiv5TA0FS9KmSg++bpiagqGppEJ2OiG6JpKnIjRGp9mAsfQ8KMMx1R3FbvfDaqiyOKJIljvx6x1I1Y6wUjvxjY0np9+uGPheMEmyXxsQ9vzXMhZ+siVcK/o+DEr3ZBmPxq0+JtSf3JwiC05Bp84W2Oh5R/5Mwb5Xg6fha6qiIHo+ak9um9vdnHMMsH1gSaFFyW4po4QbImFpssOjX70xJbj8UAzUIgH+lGuqeMYGqYumBu4Fw8TYYam4CPni61rzNfcEyHmG6cZKlDJGZQcE9fUuPyUepMHgeGzKli6ZNsPEoDnBq1esxXniXSQ9os4ke5wfpShqIKSbVCwtcfGbBNF+5GaVwVbp+waxGlG/RGyHI+DQDIhFUU+SyF4JJvCGBh27BXlQUEgExwIu1zXFFxTox/LhLA+0LNTFZlgbvsJxW0dCkMmzVTJZqHlD1qSjst9T7Zf+lFK209wTI3PXqhxYaK0pxbik4pqzuTiZJFqzuRfvL9Cb1BgHMb6R50E1FUVTc1wDY2pokMUZ4wVLDRVPRRZlYPCufEC4wWLtpdQLRqy2ykRGNqT62J1ghjblJqVj3IrHiK/LaYtOwb38FGQulMnEbahUXINDF3lxWmZ9K/mTG5veFRzJlGakQmB9hDB95OCJ12VfhL4+8B/PPj3q8DPAI9MTAF/FPj/bf6BEKIBoCjK/4VsEfw5YBiBFoHWbl+kKMqfBv40wNzc3CP/qDFYkEEegi5NFjg/nqdkG/hxyp0NqelzbuxBJTAT0qWiljcBQeUpM/iaCnM1h6JtcGu9z1o3pNGPKDsGcSb2TVMcanQUbckUMnV1S+JqeyLrIJFlUldi85gzAbYp2ycFMF9xOTeRJ07EobiHRWmGY+iMF2Ri73Qtd+gJOMfQmKs6XBjP4UXZyFJ3qFWy357tD5e7bPQipko233lhjPFil4Kjc3GycCztWbthpRNwc7U3Es3tRgmZyDhXLxyYns9Ro2DrzJQcSq6+Y3NOhaCWN0mzpwt0nxZlV7qLzVUczmxrxe3HCeMFCz9Jd7iMHAVkGxNMlmzOjeXID9aZbhDvy757CFVVeGW2TDuI9xQwAFxf7fH3vnqLP/T6LB+be+raxUPx0myJL14e53/6yi3+tc+c2XOFMYwS3rzbxDFk5fJzF8dI0oxXT5VH9+uo8ah7G8Qpuqo8du2yDZ16wSRJMyo5yUz2wpS8rRPED4R/Zyo2rilb5h/HDkgHwuyfPFvH0TXeX+4QxBkdP37koTRJM+kWaGg4psa5Q07QdgIpxDxRMCnYGrmBs+z2g6ZtHP5YdoNAspG+eHmM2w2PKBbcXO9zupYbMcP2g0w80PMrObKabWpbGZHVnPlUB+00e6CnGacZBdvgwmSe2ZrNZMHB2HaQO1VxWdVDEIKrg6TZRMnawYw9Cggh2XltP2KhGZAJwelajh94UQrSPje190T9YaAfxrx9r4Wuqjw3XeRzmjTS0FWV2YrD2BElADRVShPoqkKaCSxdQ9Mku+eD5c6WuHu/UFVlT8zkx8HUpBlF2dXRNYU7G9K056WZ8lN/NwyLtwfHnpuvuliaykTJpOOnNLyIWt6g5RmUhwfQQZxu6Vv1345rfRrCj1K+dbeJZaiUXIPPXaiTCsGnz409tcj1ccPU5VlzvurSi2J6Qcqpisu11a4sdpZMzo8/vMBy0Dhdc+mHKWfqLtdWeqz1A6o5c9cCepikqMr+9VAPA/P1HD/40jQb/ZDpssvV5S5eJI3CTlVcFGV/Wm2GpnJ5skA5Z5IOGGN7gRfJxK9r6pwZyxNnGR0/Yakju5eOW59rO8quyevzZVlQGsjrXJwoSKbcJt3bE5pXG2Ffp19FUXQhRALUhRD/m6Iofxlg0HaX7uErLgGvKoryZ4EXFEX5d4D/XgiRAp8B3kEmuV5UFEUDvgf4zd2+SAjxEwza/F5//fU90ZlaAyeNTAhMXaHpSdcsWR2RC+Zwg9QGG56C1A64tibb0p5U76cXJnzl2jqvzVVGVrJelHJluTuqFu71UAZwquqw0YsouYeXgNoNQgiur/UI44xq/oEgpaZK+97VwQuw2g05N5F/atHgh2GoRXNUQWk6qB5LMWtYbAUkacYbZyr0ByKUcbK3NhIhBO8utPknby9h6irnJnL8wItT5BxjwEA5GUmpxZbPP3l7kbVuyLmxPONFi4/PVaQ71zEcBA4CYZzyq1fW6PgxczWXIMlGwu1r3ZBWP0YIwaXJApVDYuA9DkmS8aUP1lls+ZyqusxEKeVB7L3aDVhphwgEF8bzzJSPvurVDRK6fsz7S22aXsSrp6Q47LDV59JkYV9Bw/Bdntdye2IJCiH4K//4PWxD4z/8/stPfB17xb/1xfP8vv/xa/zU1+/wb37+3GN/348SfuZ37nG34XGq4vKpczUmSzYFyzi2pNSjMNRn0lSFCxP5Rz67oqNzaaIwcu+S6778/Q+We9xa6zNWsOiHslVeCNky9yjmYS9I+PK1Nb7zwhhnx/PEA0HtwiOE4YdMmzST7V6HoY2zGWGc8eWra0RJRtHWURWFSs5EU9WR0Oxxw4sSfuPqGlMlm7xloKkZXT/hg6UOmdj/XqlrKqcqLp2BUcRhaDjZhsZMxcGLktHY5LPc/Xn6g+TntRXZGvv8dImcpTF+DOSkOxsebT/mynKbjifbyC5NFHhxtnzsbGc/Svmn317ig+UuYwWLSs7k3Fh+lCSuH+H4UiFo+/GoQNnyYpabIeu9kImCzWTRPnZ9MGlLr5K3DeIk483bLTIhqDjmkbim7gctL+Lb99sjRm4tZxEngmrFojAnNR7reWvU9lp2jQNJ3h0EvDDh//zGfW6s9zlVdfjU2TovzJZwTf0jn5TaDFVV+I7T9YHWl8Zv32zywXKbfpTw/S9O8dpc5UjMGnRNpeSqNPuyS8iPUla7AZ88u7XVc+jYub1V+zjx8dNVVrsBYZzy3mKH1U6IY2lsjIW4ls7Zsdyez0qOoXF+Io9r6nu+trYfc3fDA+R5+17T4627bUxN5eJEniDJyJ+wxBSAoqgUbBMhoBfGXF8NaXoRa52Qc5pK04tOXBviduw3mvpt4DWgryhKjYFpnKIon0S23T0SQoj/aPjPiqJ8Bfh14HcURekDN4H/VAiRKoryd4EvI1v8fmyfY3woooGjix+ndANByTFwLRXX0tBVZcfCWHIMejmTrBeRZRDE2RMnprIMokRaNJ+fyLPaCbB0jZYXA7LvfD9wTR23evTBcJJJNxWQm8xmGKpCxTVoeTF+vHcx2SeBrh2tgNvm6vFaJxiJNy+2As6P54lTOTfcPbRu+HHKSifE0BXCJCVn6ujqyROku9/0MHSFOBWommzJPAra/2Gi0Y/QVLlwpZnYQmX3oxRNVanmLEqHINS/V7QH4uaaCl6cbGmT8QfrRNE2qeetY2mjHCtYXFnqoKAQJZLZMjyYD1t99hPX7Pdd/hfvrfDla+v8pz/0/KEnJAA+NlfhOy+O8Xe/fJM//un5x65rK92AIMlQFLmuT5WcQ0vQHwSG7k5pJh6riaQoyq6tFkGcjtqS/TilYOujvW3opPYwCAEdP6EdxFRy5sDRVXnksw2TbLQe+/vcO58EcZYRJYKNXsRYwaKWtzB0aazwNO6dB4kkFcSJYKUTMn86R9OLMDV1JPbqhSnsM4GzWffjsLAf1lWUZASJNKRRVeiG0cgg5qgxNEKJU9mWpChSC+0kJAHWeyFhkpEJKeztGCqqurv+0aFjUDa2Ddl21w1SMiFG/zsJUgBCQD0vWZ59kZCKDMfQaHrRiUtMrXRC+mFCEGdMlSwsQyFvGbimhqLolF2TLBOjdbEf7V3/7bCx0g0J0wxVkXFwNW8+khX7UcZQ5wnAsWQbvaFprLTDQz8fbUfB1ulHCY4pDWq2M1G9QUvodoLGccLUpYvs6oCdFGc+Luqg9VMf6MTu7R4qCvs2MNsct/SChEY/wtQV/ChBVZUjb9PfKyquMdJ8dAyd9V5H7lFAztRGRIqTjP2+GcMd5C8CPw+cUxTlq8AY8Af280VCiM8O/vG1Xf7bTwE/tc+xPRb1nEWSCsqZQTeIyQTUc/YjA6963iROMnRNofgU1t66pgwqF86WNjtLD+iFyUdmcTY0lYmSRS9IdhxQxvIWp+t5/Cjl0uRHs83rYTA0SX/vhQmzFZtv3WuRZtINwTUf2HbuBZauMVmyuRQVcS2N1+cr+9KmOirMVBya/YhqzuRjpypH6ixyWCi5BnPVHPVCwquzW6tW40WLdKCbdJwMiIJtMFtxKLsGL82WtgQJE0WbNPNxTO3YmHW2ofHyrLTvzYRgtuJgGzqaKp3TDjOo8aOUH/8n73NposAf/eT8of2d7fh3vvs8v/9vfZ3/9Tfv8m9859lH/m7Fsbgwnqfk6HziTPVEJ6Vg67x/UjFUU5N6StNlh8mSTdk1SQZuXI9j6WiqdOkr2saetVvylk4tbxIm2ZGwUyxdug4O2V/u4FpPEoZjnCrZ1PLmiBWz1Pbxo/QjE2M8CmXX4MJ4niTJUFE4PeZSPqb3a6bsoCkBF9UCaSYo5/bHej9MFG2D82N5bEPl0mSRqWNg1g6hqQoFW76vhqYyXbalDmnRxrW0EyHAbGgqOUtjomijKgptXxaH5k5YUgoka3W8YBMkKZcmi7smxtWB82XLj4+keLNX1PKSuedaOh+fq/yuWJP2gk+cqSEywUYvPhanbV1Tef10hTsDraHtXTa1nEUYZyfGSGIzankZT9mGimvoozEedkGi6pqj5NREwSbOMoIo49yYycWJwpEw3p4EQy05kMXG4Z40U3YYK1gfiXduvzvCmKIof3Hwzz8L/AIyWRUi2+6+fYBjO3DIxVo+pKH43uParixdG1lWPw3yls7nLtR3/L3xos34U3/70UIKF+/8uaapfOJMdeACePIojk+LSs4cBQFfuDT+xNepqQovTBe5PFk40fdppuwyUZDtOid1Ed4vXFPnjTNVFNiRDLQNbbSgHydMXeWN01UE7Kgm24Z2LGLn2zFZsqnnzS1zY78VqSfB3/q16yy0fH763/jkkb47H5+v8pnzNf7Ob9zkj37q0Qmxkmvw+Uvju86xk4iDmPeqqnB+PL9lTdzrgahgG7xxurrve3WUSQBDU/j8pbETvRbahrrrGE86bX8/UBSFuWqOuWqOZGAgc1zPo+yaI3bKbmv1caLkGrxxpsonlNqxr0Gmrm6JoWt5yTg87ue3GbqmbNlXP3OufuKe6RBTJYexAVv6UfdueJ9PEoq2wecujn1k9saDgm1ofP7yxLHO+fPjhZEJynZsf0dPEjRVYa4mXTKP8mypqsqWvfNMPc9cNfeRmruaqnB5ssCF8b1rH58E7HekGpBHEsJzyMSWBrjsmyR+vFD3IPR60PgoTYwnhaIc/X09DjztdX5U7pOuqScicDxIaOr+3BOPA6qqnMigeDOOem7cWu/zt3/9Jj/y6jSfOrfTDvuw8W9/8QLrvZCf+I2bj/3dj8IcO2g8zZr2UbhXH4W18KMwxoPCSbnWk7pW65p6ot+rk/L8dsNJfaZDnOR79zj833FvHOK4n9tJEDZ/UpyEM9NHce6ehPu2X+yXMbUkhPjPD2Ukz/AMz/AMz/AMuyBOM/7i//YWlq7y//qB545lDJ84W+MHX57i16+uHcvff4ZneIZneIZneIZneIZn+N2KJ9WYeoZneIZneIZnOHQIIfh//9x7fOtui//hx17bVXz7qPBf/ehLOIbGJ//nYxvCMzzDMzzDMzzDMzzDMzzD7zrsNzH13Ycyimd4hmd4hmd4hk0Ik5RrKz3++i9f5ZevrPLnPn+OH3x56ljHVLBPljDoMzzDMzzDMzzDMzzDMzzD7wbsKzElhGgc1kBOAuI0Y7kdYOrqoSvXZ5lguRMA0p3kJPStppngXsOjnrdwTqgV5knBRi/Ei1LGCtauLmRxmrHQ8pk6Ic92Nzx73uBFCevdiKIjbZZPIvwoZb0Xkrf0E2NNvx3DMeYsfc/W7w/D9dUer/8Xv8R6LwLA0lX+k3/pef71z5w+gJEeDD4K7/deMNyHBHxkrkUIOeZMyL3zKLRgPorPOx0826ED2kdVk2Y3DGM1S1cPhUH5UXjeH6X9e6UTECUZkyX7ROrcfBSe95OgG8Q0+zHlnLHDie2wECUZjYGb8zPsHy0vouMnxz2MRyKIU9a64YledzbHCU/6+ZVOSJJlTBbtj5xO00HiqJ/38fu0niCsdkNaXgyAY2qHupBv9CM2BgcvU1dPhKVrlGS0vJgwyTg/fvzOXycVYZKy2JJJxTjNdnVJS1JBoxdhauqR2Jk/CZ49b1ho+gRxRtuPKdjGiRQ8XWh5+JF8VgVbP5Eb5EJLWtIPx/g0hw9dVfje5yeYKjlMlx2+eHn8xAW5H4X3ey9oepv2oY/ItTS9mPWuHLOhKkfS2vlRfN7rvZDG4NnaunZik9pPgpVOMIrVXEsnbx1sKPtReN4flf07FYLVTghIUfGZI3TT3Cs+Cs/7SXCv4ZNmgk4Q8+JM6Uj+ZpoJFpo+eUvH1E9erHKSIZPN/nEP47FYagf0gmS0Bp9EbI4TngRtP2atK9ctXVWZLB2fhMRx46if97PE1CZYg0VUUWSQfqh/y3jw/Sdl8R4WVK0TMp6TCl1V0VSFNBNYu7ClNuOkPNvd8Ox5g6VrBHGGoSucwJwUIMfoR8MxnsxBWrqKH6XomoL2lGM8Xc/xX/7oywc0ssPFSX6/94LN4/+oXMvmcVr60VZsPyr3CLbFMx+hce8F5qZrM7TDWxNP8n37qOzfKgqKAkKc/LGe5Of9JDAH+7JtHO11aSfc1fCkQlXA0BXi5AlpPkcES1fpwYl+xk/7Lpu6+pFZtw4bR/28FSFO9guwF9TrdXH69OnjHsYOJJkgTjIAVhbvcdRjDOOMbPB8bVN7rHL97du3j3yM2xGnGUkqx2zq6q4vwmGMUwBBlAKgKsqWxOGT4CTcy92w+TqPY07uFWGSkQ04uCdhnJkQhLF8lzVV2bHpnYTnLYSk3IKsTG/fTI9rjFGSkQ6epWWoj02unYR7uRuOaj0XQrIM9KcMAob3cfO7ZBsaJy23+X/35/00OAnreZwKklTep4ft2ZtxWM87SjPSYexgqE+VID+pc3JzTHdS5yScvP17M3abryfxeW9efwxd5f7dO4c+Rj9OQcik524SFXvBSbyXsPV+Lt6/y/TsHIauPvU+e1jYfh9TIYiGMaimHDp5Yq+4cfMW07Nzu8acJwWPmpNBnCIEoIDzhHP+IPBRuI8A3/jGN4QQ4lAH+LuCMXX69GnefPPN4x7GDnhRws21PkLAn/iR7z7yMS60fBq9CMtQuTCef6zGxOuvv37s97HZj7jf9FEUOD+e33VzPIxxCiG4ttojjDOqefOp6eYn4V7uhs3XeRxzcq9YbgesdUMMXeGP/EtfPPZxxmnGtZUeaSaYLNk76P4n4XlnmXy2UbL7HD6uMW70QhZbAaoKF8YLj61knYR7uRuOYj3/xp0mf+an3qTVi/jR12b4a3/glSeuUg3v4+Z36cJ44cRVOf/v/LyfFidhPW97MXcb3iP37M04rOfd6EcsNH1UVY7jadh0J3VO3m96NPsxlqHyYz/4hRM5Rjh5+/dmtP2Yuxtyvp4by+OY2ol83v0w4dZ6H5As4s9/5pOHPsbrqz38KKXo6MzXck/0HSfxXsLW9fxf/cHP8zO/8GvM19wTa2iy/T6GScr11R5ZBjMV58TIG7z4ysf46X/6a4wVrBPb7vaoOXl7vU83SHAtjXO7yLIcFV585TV++p9+6UDOn4cJRVG+edh/43dFYmo3NPsRy52Agq0zW3GP/O/3w4Q7Gx6qAvP1vf39tW7Iei+k4ppP9IIvtnwa/Yha3mSq5DBTdqi6JpaufmSETys5E8fU0FQFQ1NpeRE31/q0/ZjZisOZ+sM3y24gA2RLVzlTz+84gGWZ4E7DI0xSZivuFl0KRVE4P5YnTLITLej3pPCihK/f2CBOMz4+VyFfOZmb8bsLbW6t95mvuVycKDxSq6jlRSy1A/KWzqnq4b7jhqZyuuZyfa3Hei+kYOt7qigmacbtDY9MCOaq7hNXIfcCVVU4W89xbbVLy4so2PqRCZ4+CrW8Rc7S0VVlV32slhfxW7c2UBWFT52tHcMIH400E7x5u8FaL+TcWG5XTbmDQNuL+bP/yzdwTZ0/9qkp/sHX73B+PM+f+/z5p/pe19LIuhmmZpyIdtU0E9xa7xEmGXN7eG8XWj7NfsRYwTpQU5JOELPY8nEMjbmqu2OPdE2dixMFBIfPKveihHsNH0NTmK/ldk0ervdCltsBRdtgribv2+Z9a69Y6QSjOGG8sL/72ehHLLakfsx8Td6zkmtw0cyjKsqRC1t7UcLtdQ9dUzhTz3FhIv/QdeZheNw8OEmYKNp8sNTB38fzPgpkmeDWRh8vlKLNhq4yVbapHKChyDCmb3sxeVtnqmRTewJt1pJjcHHycOdrkmbcWu8Tp4L5mkvO0vcdr+Qsuf7A/tuSoiTjd243aHsxL82W9hwfna3nCJPsyFv/DhNLLZ9v3m1SsA1en6+gaQq2rlHLmXzl2jqmrvLpc/UTF/cLAe/cb7PY8pituFyYKHBxokCaiUONI/eLMMlYbntcmjy5OndhnPGP315komjzxunKljV+vuYSxMc/5wWCq6sdzon8iU5MHQV+96w+SEpesx+RZYK1XkgvjFnvhsTp0W/iLT8mzQRpJqnDu8GLEqJNAcZaNyRJBWvdkDTNaPajUWvOXtDoRwjBSMwWpIj7R8llJEoy/EFrQpJm3G14NL2IlhfTCWJ64cPdKlpeTJaBH2V40c7f60cJzYHo/OrAETGIU8LkQfvTSducDgL9MOHte02a/Qg/yrjf8k/cdWaZYKnl8e79NkkquLXex9QGWl5Cindux3pPvi9SAPbh70mc7j4f9gs/TlFQSFJB2986HiEYrT2b0QkS/CgljDOa3sOFGLNM0A+TUcvbkyJMM9IMskyO56TANrSHHhbvN32W2wGLrYCFganAcUMIwWLLo+NH9MKE5XZAnAgWWsGh6Rr9T1+5yVo35H/8w6/xV374Bb7v+Qn+h1+9zkYvfKrvXeuEdLyExZZ/IO/B06IfJfhRRpbxWDFNIaQo8fZ97SCw0YuIE0HHTwjijCBOCeKElheN9iBTVw9VxyodvPcbvZAoyeiHKR0/otmPtsQG8GB/b/vxlpjmcfuWH6W7xxmdkJYX0X/EnrodjX6IENANEqJNY7B07Vjc1lqejLPCOKMfJo9cZ7ZjeO/XOiFxImj0I5ZawbHEi49Clgma/YiOH7PQ8ugGKckJ06AJkpRekHCv4XF9pUecyHt7kOzMpbZP0wtZagcj57eHoe0/OlY87PnaD1OCWLawD/f9pXZAL4xpefGOd/th0FSFfpg8Mr7ZDR0/YrUT4sUpV5babJdsGZ6Vtscbw7XkJCdn94o4SVloery/1CFKBBu9iF6UYOmynX25ExDE0kDgnftNervEmMeJVAgaXogXZSy1A5bbMjbyo/RErVFCQCdIub3eZ6MX7uvMelQIkpTVbsDNtS7htvEpysmY81GSoaJyZbHLctvf9zv/uwm/axhTSZpxfbWHENALE6Ik5X4jIG/rexIMXuuGeFHCRNHGNjTWezKhVc+ZGE8QmJYdg7YXY2jKro4xa11Z/dzc3qIo8udn6i4LrYC2H6MocHmysKdgq5Y32ejJSugQS22fJBU7bHqHG9Vxv4zb8cFyh6VWQMHRqbjmKOlg6Qp+lI60AXZD2TXoBDGWruGaO+95EKe8t9TGUFRcU6PlRdxryLbBs2O5XT/zKARxykY/Im/plJzjZ6bshvcWW/zK+6sUbIN2EHNuLM9s5WRl4zd6Ib9yZYW2F9OPEsYKFpeniqOEahRn3Fn3mKu6lNwH97nkmPhRgGtpD+23Tza14NULkkm4GWkmE8GaqqCrCp0gppa3yFs6Qogt70fBNjD1iEyIHc87SFLuN306QbyFAp+zNHRNCuU/ir10p+HRCxIcU+X8eGHLfxNCsNoNUYCCrbM6sG0dL9g73mPX0HBMjTBJT5QLV9uLafkRlZy54z6owLv32wgEr8+Xj2V82/HVa2v8zp0WeUvj9398lrGCxVov3BPD50ngRyk/+dXb/MBLkyP3pP/w+y/xPf/tCv/Lb97l3/meC0/83cudgC99uIqmKtimyuvzx8tKy5k6jqkSJeKxc1RRFKp5k2Z/6762F/TDhJYfU3GNXdf2kmOM3jk/TlhoBqz1QnKGhhenzNUc5qu5Q3PBjJKU37rVQEVeoxTyVlntyqSUrilcGMuz0gvJMrnmrCUhRdvY86F62N62uc2uYOvcWuujKIystC9MPL4FD6Cas1iMfQq2vmPNXe+F9MOE8YK9JVF20LHGRi+kF8p9ouTotAZxVm6XOGuYoKjnzR0JxptrPZk8GOi5bfQiVEWhu49E3WHAj1KWOz4F26Cet1hs+6x2Qu43Pao5k6YX4p6AwlJjUDgdK1g0vYh37rdZ6wSgwlTZPtC1MkxSVjoBt9Y9XFPD1JWHtjKt90KWBgWOM2O5UfwdpxnL7QBdU5gcMC8Pak5u3qPHChY5S8M2VOJUUHFN4jRjox+y1omYrTh7Euxv9CPeW2xj69pobg/PDI9jOhYdk2rO4MPlLjnT5c6Gx+lBt0GaCW6syZaw4rZ45VEI4pTltk/OMk68c2EQJfz0b9+hF2YUbI2SY1J0DSqb4rbZssu9psfShs9Sy+cr1zf4se84xWT56DtsHoYkFSRZStvPWO0GfLDcQQjZyndULouPQyYES20PU1MwdY+ZisPlyQLrPbk+TJedYzcVSNKMd+62mKo4W/bONBMstnxUVWGqaB8ricPUVJY7Pk0vwrqhMld1GC/YGLrKeN5COyGaYkeBfZ3EFUX5C8A/FEKsK4pyHvh7wMvAh8CfEkK885jPnwZ+C7gCREKI71MU5T8A/mXgDvCvCSFiRVH+MPDngQbwY0KIzuPGlgmZuQW5AfXClLylMZa3uNfsg1CYKtu7Vj/lgis3sjTzGS/aLLUCOkHMlaUOpyouZ8d2toY9CjlL5/np4kP/+zCrnGUD0c5MkKTy8KxrKsmmSobY9JmVToBjaJi6StOLqebM0SF5quRsOXh3ggd2mZtteoM4lb3WCM7W8yeKPfPeYoeltk+rH3NhPM+LsyVmyjaaqtINEpbaD2cPFGyDF6ZLhEnKQtPHMtRR68dGL+Qr19bphynTBXlQCQZCgkLIQ8x6N0JVYbrk7GmBWmj5eKGsPOX2mDw8Srx7v8Xf++ot1rsRl6cKfMeZKt/93MSJSkb2w5i/8+s3uLHWo+wYvHGmxndeqDO9S/ttuq3qN1awqOfNHdeTpLLCpKkKFdcYVQWHz3sz1rohHy538OIU19Co5iyCOGOyaHOv6WHqKucG776pq1yaLOz4ji1j3FaBtHSN56aKO5JcIBPo692QkmOM1oMgznb87kY/4l7DY70XYekK9bxNx09QUVjuyOs8O5bD0iU78iRah19ZatP2E2p5k9dPV7f8t46fEGcCIQRLreO1SpZaYl1+/u0l1noBBUvnM+frfPp8fddneFD41Q9W6YYJf+QT86OfnR8v8LkLdf7h79zlz3/h3BOtL1GS8uatDa4sdSi7Jnc3fF6aSY/czW4zNFXZkXx9FGbKzhNR229v9Mky6Pgxz0092IuzTLDY9hECztRdbq33+fLiOtqgtacRS7ZDwdbJmdGh6Wbcb/rcb3h0g4QXZ4p86lwdRVG4utJlvRfQ6Mm2uTDJmC07TJbsfR9GhuuKEAxadDRsQ6OaN1nvhfSChLytb1m3mv2Ith9TL8gE/WonoB+lTBZtqjlz14RAlGSjZECc+qM1yIukTo6Cwrnx3FPPuyhJeft+iyxj0FJo4JgaZ+s5VFWR42j76JrKWN7kXsMbmUJs1g8RQozaHy1d5fKk1F5LUvHUrNWnxZt3Gqx3Iwq2xpl6noWWz0YvHCXMTlVyTJSONzHgRzLGAnjz9gbL7ZDVToBlaJyp5Jivby0iPS26gUwcKwjqeYvz44WHJlKHrOWOH3Nrrc/putQRWu2GklUvBCudEE1RmC4/WTvgdmz0JUMJ5PpWy1tcmCiw0pFaWyXHoGSbFC2Dkmvsuo/4kWR15CydsmPw/mKH9xbamJrG62cqo24KAEvTHnl//SjlVNXF1FTytkGwiX0hhBisByl3G9GoyPUopJngq9fX6fgJk0V7z1IGx4Ekzfh7X7nFV26sU8ubvDZX4fe+OIm9rTgxVrT4oZen+aX3lvnn7y1zv+nR9iP+8g88h20cP2cjTjPGCza1nImqKFxZavPbt5pMlGxafnRiElOOoTFbybHWC8mE7CxI04y7TY8klQnW1+YrxzrGOBUkQtALEzJgOHNXOwEfrnQBsDSV+jEmXE1d5eJEgbfutfhwqctqx+f5qRJ+nFG0Dc6O5w5UyuAkY7+R7r8phFgf/PPfAP47IUQZ+I+Av73H7/glIcTnB0mpMeALQojPAt8GfkRRFAP4s8B3Aj8F/Jm9fKmpq8zVXOoFE9eUeiYCiLOUrp/SDZLRxrEdhqaiDyoYtqENDiDQCxI0RSWIswOn1U0UbUqOwXhRBn+aKi11FRR0TSaR6gWTuZo7yvCudAI6fsJKJ+T6ao9ekIyCg13viTa0uxRsTlj3Bi1DWSZ1mY4TQjxwSBFCUMuZhHFKkmXEmaATRMxU3NHzedi5UAgxoreudkLafsxqJxzRuTt+jKGplB2dSsFkvuZSz5uUXYNq3iTNZHtWsx/T8vd2T4ZuHqqi7ImVd5RI0oy377cI4gxFhYKj8dpc5UQlpbJMcH21R6MfoSgKqYDnpopMbmM1GbrKZMmmsksgttv1rPdk6+dGLyJMMiZKFkVHalJsR5plNPoxfpiO5optqDS9iGTQIuLvgZps6ir1gvlQPbvdxrnQ9GXA3fKZLtkDPTxnx+8aqsp6L8SPUrxQtp5qqoIXJSQDF8t+eHJpv0IIml6MF6W0/J3tF5YhGYyOoWEdc5LcC1OWOwFFRydJBUXbHC06h/nu/PzbC4wVLD6xTWPrD39inqV2wJevrT/kk49GL0zoBgmmrpKmGWN586ncyj5KGO6b29kJTS+S67wX8+FKl5VOOHDcFJyqOlycKDBZsrB07VB1J6RDojIogiijwppM/ChkgD9o949TgfUEB8GxgkXZNagXTIq2PGzpqoKCQjVnMVm2mKk4I0ZGmgnuD9alxZY/KIbJBNZS++Gxhq4qGLqyI9bo+AlZJr+3Fzw9E6kfpvQDGc+tdUMEgl4Qj9oK13ohHT+h0YvohekoXjDUrc9RURRmK86WNfd0LUe9YHJ6j5qgB41s4Bo2vJaVTkg3kK2lpqZScy1qeZNq3jh2AwN5OwXtIJL7rR+TZFBxDabLDhOFg2Vle2GKY6qkGeRM7ZHxVj1vMVYwR9pw95qe1OUZTMwky0Yx515jvcdh8/waFhCCOGV1+Az9mImiRck1Hnq4XGh5NHoP2kn9OKGaNyk4moxdNl2y9hjG1b2mJ2MCRbKsNyf2dU2elTIhcE2Nlfbj26+8KEEg32M/SY6lbXevuNfwWO6EOIZOEKW8cbq2Iyk1hKIofPx0lSQVmLqOF2V8uNw94hHvjuETLrsGqqrQ8mVrbC+MR8WBLDv+RDoKTBRsyo5JPW/SDxM6QTwie0Rpduyth6oKjqnjGNqWpIcfp3T9hK6f4MXHy5RVFLl+5kwdQ5fO8KvdiG4QY+gKLS8+9vt4VNhvWnjz748LIX4WQAjxa4qi7LUE+gVFUb4M/J/AVeDXBj//ZeDHgPeBd4QQiaIovwz8xF4HV3KkuOtQl8iLU4qpgdAFCg/XYWj0I/K2Rsk26YYPxDRfnCnSDRMcQztwG0lDU8iErIDogwrL+fE8YZxRdHQURWGq5CCE4P5gYx1uxpoq2wPjVOxK6Q6TlPVeRM6ULgPXVrusdiI0VaWetyg5Bi1P6lUcZFVrv+iHMW/da0vh0lqO8aJNztJRBptpNWdyebKIbWjMlB0KloG1y0HBjxJ++1YDgUxsjH5HkboRXiiZGmfHJGX58mQBVVVZ7cp2yZJjkHcMIELZh2XoqYpL10mwTfVE6Xh9826DX72yhhclnK67WLrKH//UGYrOyWnt6ocJP/M7d1lu+5QcnbGCxfc8N84rp8o7fldXlX1Rx4eHyWHs2uhHZNkDRiVIplQvTKjlTE5VHZr9iHreYr7mYmoK7yy2WWmHnBnL4e5hPmiD93U/sA2VKMkwdZVOkNALky3vs2Q8ymrrhfECdzc8VJWRk8zVlS73mz6TJXt06DyJUBSFWt5kvRsxt0vibqpskWaCIE6PlfLd7Ed8uNzhN2802OhFvDZf5pXZyqjt47DQCWK+9OEaP/YdczsOnF+8PE7R1vnHby/yhcvj+/5u19Sp5Qw+XBHUSyaXp4r0w5SNvmwLKh+gOPFJw5l6jmY/ohvGo+SvoihYhsZKJ6AXJkyVbCxdJqLztmzdy9lyPVrvhSgczrq+0QvZ6IVUcyZn6i5hIhNC02WbvKXT6Ids9CLGihavzJaYrTyZcUIvSGj78ZZ1pZa3RjbpwxbHMElZagUYmgyIwzjDHujw6JpkEm1uh4ySjLVeiGtoVHKmZGqO5flwuUs3SFls+UyXnVF7vaooFJ+g3X04LlNXmS47OKbGXM0ljDPGCgbXVvsoioK70SdnGxjqgwKWa2qcH88TRJL9NsTt9T69MGGyZI/am0DqcTrm8bS5b/RCvn2/RcE2OF3N0XZi+mHMm3caJGnGx+YrVFyTc/UcvTDFNo83MWBqKv0w5mvX1+mHCTNllzP1HJcni8zX3aeKh5I0Y7EVoCiSLamqCt0wRkGRrMHZ0iP3CVVVmCw5dIOEjp/Q7IRkmXS2K7sGmdAQQiFIUuoHwJYCBoY9MumzOQE8fHdURbKqFGX34uqwFXClHVIvmJh6kVdny7x1v0U9b1LPW+iqwnzdRVN2b1sdYrktzQ0cQyVJJUuksC0+KNoGc9XcFhmDR8HUVBDQj2LmbZtMCLRDWhufFEma8fNvL3BjpUecplwcL/DG2fJjmUW1vMUf//Rpfun9ZRbbHj//1iIr7YDvfWHyWAu5li7NGAq2ThCn3FrvjSRmhj+7ttJlvRdxdiz3xC6KTwtb13h+usi58RwLLZ+vXl+nG8RMl2xO1Vw0Bb56fZ2CrR9bcVxBoRcknK65W1ri6gWL4oAxfNxGQaqicGlSSphsdCOaXkSYpOiqQtuPaHgySTX1hAzyjxL2e5r53xVF+UngPwd+VlGUfxeZYPpu4O4ePr8EXARC4OeAIrAy+G9toAKUgc62n+0ZS+1AVuhSwVTJxjV0xoomJdvA2ZY1X2r7vLfYYaHhMVN1eWG6SGdQQUlSIZ3tDinhEKUZG72IhZbPQsvjOy+M45jajuCz4yds9CKW2wE5S+P8RI6qa6Gr6kPdMxZbAb0goQHSZWawgXSDhHrewtB26tgcB66v9lnthCiKXBTGi7YMxvM27SDijdNVJoryBVzrhqx0wl21nO43fRp9+dw+XO5ScU00DcqOyUYvpo3syX5+eusGNRSTXe+GTJcdLkwMnVoU7m54BEnKTNl5aBCgqsqxJvZ2Q9uL+PtfvUWrnzBdtvjhV+e4PFHCPkHtmkma8Y/evMuvfrBGydb52HyZP/DxWcruwQSJZdccsBHknI8HQrGdIMYxNaIk4+pyl9VuSN7W+NgpOS90TaUfJaxHKSvtkJylUctZh5Z0nKu6eFGKqal8MKjSbfQjxgeJkHcXZHLMNlS+eGmcphehq7JyogwS8IamUs2ZJ66NdDOCOEVTVap5Y1fWx1IrwItSEiG4tdo/8vGJAcX72wstfun9ZZbbIefqLi/OFPn0+fqhtyz84nsrREnGD786veO/mbrK731xin/6zhJBnO57LLahUclbXJosECaCD5d7FGwNVVHxIv+hiamhLX0tbzJ9goKgKMm4uS41407Xco88oBmaSpwJvDDDC6OBrmBMlKS4pkbFNXEtDVtXyVsauia1pXK2zlovxAtTvMjDtZ5ur1zpBKx2QoqO1Lv0Iimyrioqk0Ub19JoewlNL8I2VDIhE92VnMF0yeHcWP6Jg/mGF7G2qYVpuO9vD8KHLOPldkAtbzI/0PPTVIUL43niVGwp7C23ZVGnAaO4RVGUkWZVJ4iZxsE2tJGz2JPgW3daLLUDajmTomOQt3QuTuQlw8FQ6YWSzX51tScTbYbGK6fKuJY+YnVsbh+MkozugLk1LEacBHy43GWjF9EJEk5VXc6N5/nSB6ts9EK8KOVylPDaqQqaplJyj2+t7wQxdzf6RIng2/fb3Fn3sE2VM+M5vuvCOAKxp3bNIE651/DQ1J0ulI1+JIWU+xEb9ZBX5yooKMzVXBT2Xjg8O5ZnqeUPmHyy9TMctPOPFawtSclHIUxS7m70WWqHFG2dmYq7o1C22g1IM8nA7gQJJUe+O6drLqDQDWI6vpx33SDBym+9hiQTFCwDvaJQsGUHRQZMDuLf4Wc3v7dDm/vJko1lqCy1AhRky27JMdAUBVOXbXtNL9rRsjhZsik6+iD5vHVOCSFIMjF6h8I0o+wadAOTtieTxUNn0JMAIQRfvrrKz35zEdtQuThZ4I99cp6JPRYLP366yljR4u9/5RY31nvc3ugzXXZ4cbZ8uAN/BOKB+dNYwWKyZPMdZ6p8uNxlomCz1pV6fottHy/MuLnWpz5wPz5qKMqQ4GCw0pUt6ADTZYdXT5X5+o0NNnrSdGq+ljuWNTdOMwSCtW5AGKejOFQduMomaUY/SjluebGcpUttPiFd+vphSqMf8da9NraucrouY57f7Ympfe1wQoj/GMlw+mngLwI/Dvxz4ALwh/fw+VAI0RdCJMA/Aa4jk1MM/r81+N/2n+2Aoih/WlGUNxVFeXNtbW308+GmNVV2KFg6QZyw3Aq41/R3OGY1+tGgoiipfJkQTBbtgTbRzgOpFyUD9sXTUyctXUNXFTIEOcvY0lKXpNnI3cAyVII4xYskff3d+11urXsIeKiTwKjFTJXiy5WcgW2oJ06wMGdplByDjh9zv+lxbbVLLWfiRylTJWdLC1Vj4Gyy3Q0NJFOu7Bo4poprqAgEzX48CkKAUSvgZtRyFisdnw1PannYA+0uL0pp+/Lz60/piHWUWO+G/OJ7S2SpkIKumspzkycvKfX1GxvcbXgyiEozXpgqHlhSagjb0LB0jaItWXaGroySmrqqECYZvTDhbsPj5pqHPqDi66ps3VUVhbVuNKrAHwaUQeXT0FWqeRNVZYvAc5wIwiTlzobHleU2mqqgqTKI9MIUW9do+xGpONn03n6YcG2ly821/q5rpwAsQ8NQFfJHXLUSQnBjrc/7Sx3eXehgD9ZlU9c4N1Y8Eh2Nn397kdmKw8d2YQsC/NAr0/TChF/7cHXf3x3EKYaq0PFjhMhQEAwNoR4loNwcJPof5SR5HOiHMtGcZbvvBdsxZDsqCsRJRm/AovCTFENXAOnq2fRjHFOlPCg0DFtzDqJNe3gP17ohjb50/Gv2Y6I0lUl0XeNe0+New8PQJMuiXrDJmTrTZfupKsy1nEkvlIwpL0pHQuSbYwxg9N/9JEUBrq70+HC5N9Jr2s4239xaP0wqaKrCeNHCMtQDYRkmaUacycnai2IQsNz2ubba407DI4gyqnkT19RwDRU/ykgy6EfpQ1uNTF2VzHqVA9EWOggME+ON/gMnuSwTklGbZpiaTFYO78VxotGLuLLU4epyBy+S8aljaEwW7H05WErhdOlCuV1OwjY1OoEsvsSDtrv6wBygEyR8sNwduWbCwLmzH+1w4dNUybAq2MZAR+nB894tHnwYWl5MN0ilq1soWyu3Y8gmVBTJhJb7So/rq306QUzRMUbtOduTwm0vxgtT6gXJYJ0enI43s5i2jzdOHyRYW17Eenfg6hklJJmMX8aK5qANTI5voxfuaPtyTX3HuzKUWPhgqTtyr86b+qDgJ9+f/dy/w0aaCb5xp8nXbzbI2fK8dGEsv+ek1BCzZYexvEmSyO6UL324xp2Noy+UDTF8VkP3ST/KmCzZBHFKzlT5cKnLSjsgFYKye/ztvXKMKYahEqcZhibXL0OTxZl+mGx5b48SqqKM4rrN0FWFpbbPtbU+K8esbzrERk92N9mGjmvKAnsQJax0AjZ64aEz+E8C9p1eFUL8JPCTT/LHFEUpCCGGDbyfAf4msn3vvwa+B/hNZHvfi4qiaJt+tts4foJBm9/Lr74m1rohYwWL2YpDPW+x3g0J0xTQSTMIY9m7b6sPJuZYXrqJ2LrKZNlhuiS1BnZzCooSmZUeCmWfeoTjyEYvZL0XUXGNEfthNzw3XcS1NDLBFpr7vabP1RW56Hz6fI2XZ0vYhsZyJyBnSjHSIE6YKju7ihbOVhyKtoFtykPsw3RvjgLDyup4wdpxX0/XJPsrI6Prp3zzdpOXZoqcHcvJqvGm/bKet1jthLsylMaLNkXHGLiqJby/1MaPpAD+UMMrZ+nEacb1lS7LnZBTFYezY3nKrnQyvLPRHz1T29BG7QzHTe/cK75xZ4Off2sJTVU4VXd5yTb5kY/NPJEuyWFhoxfyM799l7tNj5Jt8NJskS9cHueN03tzCcsG+idRmjFbcR6aNFhuB4RJOnLY3F6xV1WFj82VCeIETbWwDU06hwyCRqmz4lF0dG6u91npBuQtg1PVnfpPu0FqwcWMD3TkdsPQDQQeiDtvr4K8OFMkE4JqzkRTNao5k7ylk7d1ekGCbcgD43o3ohc0qeZMTlWero3iMNDyI6kv5UUsdwLOjG0VZ5+vukyXbZJU8Mrs0Ql6+lHCm3eavHO/TZaJUUv1G6ervDhTZrp8+AHARi/kq9fX+dPfefahc+uTZ6vU8yY///Yi3//i1L6+349SJkoOEyWHjh9xfa3Pj746jf4Y/aSxgkWjH1F/hBNeEEsnSlNTma3szTDiaVGwdbpBPGrFehTavtQLHC9aI02OK0sd3l/qcG4sT8kxBqYjMJa3mSk/0HOcrTiUHLmHPmnAL3UOA7JMoKkKEwWLO02fu+se0xWLfphiGzFJmjFXdREIzIED18untrbaPSnKrsknztZY70ZUcg9El+82PHphwo3VHhXX5KXZEi/OFClu6ERpJoWi/RiB2LVFeaok2+4tXd1ysJ0o2gcm0KprKqerObpBTMU1ubHWw49S1roBOVunHya8Nl9hpuxwquLywUoXW1d3tC1tx8OYHmkmuNfwyMTRarYkmcDSVXK2SpxkvHO/jaZB0TJ49VSZTEjZgIOWk9j3ONOMb9xp8KtXVqnmTT5/aYzX56vkHX2LucDjsNT2JXMhySjYOx0zi7bB89NFrq50MXUZw44XpcbSSjscOW8Pk6XLnWBk8nO67rLalb8zV3UxdZUzm5hRpi6NhfYT1+UtHVOXSeu8pY8Smveb3sh1rOQYNPrDtjjpxudHMpHYDWImijaXJ4usdUNurfep5kzGCtbIGRrgVHWreVEtb2Hqcv0Z3qMkzbjX9BFCkLc1/CijlrfIhGRXFGydimuw1ouwdI2JokOcSt0keXZJOVV1uNfwH9oREGfZyCimEySMFxmZqsxWHMIkOzHSAW0v4h/+9j3uND1qOZ0L4wVeminxvc9P7vu7VFXlT3zmLPWCxXuLXVpeyN/6tev8yCszfPJ8/RBG/2jomoKmKtQLcu8ydZWKa+IYOkkiuNvtU3RkK/ilyZ1FtNVOQNOLqefNI0vCz1ddXpkt0fUTio7BL763TJpK/caCo5NxtGvrEK6pMVG0uTSZ39IGHCYpt9f7A1bhyShUSDOkkKmyzZmay7WVHj/59Q5hktH2pX6XLK6crDj/IPFEq4uiKDbw54DPIgveXwH+lhAieMxHP6coyo8jW/m+IoT4LUVRfkNRlK8gWwH/+sCV7+8CXwaayMTVI5FmguW2FKwdWqGudEImCjaayugAt/3FHS/ajBdt0kHgCDKQjxKp89QNE1Y78lBayRkjjZrtccvQBc4YBOgrHVmZWOnIZNnDDhymrnJhF5p7lKTcWusTpxlXFjuoikLe0njtVJnWgF2kKiqrnXBHYqoTxKMxl1yDKMnwooSCvTWjvt4LaXkR1Zz1UNvdp0WaPXARWe2GOxJTiqLw1r0mX7++TiVnUnEtGl5Mkgnmarkt97met3algEZJxv2mpITPVlyqOZML44WR0L1jali6yq31Phs9WbFuehFBnMjFWmEgKKcTJtKtati+IARbXv7Flo8fp0yXnBPlZHh3o8ff/rUb9MKMWt7gh1+Z5vOXxndUB44TXhDzN375Q66u9KjlLE5VHH7/x0/tEDp/FLoDvRSQLW+70Vn7YTKacwohczV3y4FjtiKD1UrO5POXx0dW6poKhUGANlmyudswWe+GLLQ85ms5+pFPJ5Cik49qbUrSbDT3VjrBQxNTG33ZXgNyjtbzFm0/Zq0bjNpaa3mLz16oj8Zu6srooFxyDaaKDm0/5n7DZ7bi0lRiemGHnKkzs80Wdzc0+xEb/ZCya+76bvXDhFQ8fe992TFJsoy8pePF6Q53u+VOiCKGQbf3VH9rP7i60uM3b6zz7v02jqXzHWeqfPZ8nXPjhSOrPv7Cu8ukmeCHX9nZxjeErqn84EtT/PTv3JPV9308j6Ij9wCRCUxNxTVV3l5oEyYZz08XdyQdVjvSjXYsbz/SVRbkO+hHKT6pdJ06grbmJBMUbIOCLbWLHsYCbnsxX7u5jmvolF0dP0pJMtmONlGwiZKMTEAlZ3Jno4nI2HKAPYg2bVlAkge8y1N5Wl5Ez0+IM6kBud6NeGGmSM7SKDoGlq5haAo3BwmY2UcUv/aD8YK9I07IBAOmsk+WwW/e3ODSZJHZqoMYsNH6YbJDNHwIRVHohQlr3YSpklxrtscZw8Slpau7mjo8DIstn41+SC1nUXQNTlXkc9noh1Rc6cIaRBlhHPHm7QYvTJdY74XUcyYzZQfzCRM4LS8asVAOG0IIPljujLSP0gy6fsLtjT5+lGDqGpenisxVczw/VcA45r28HyZcWWpzbaVLJ4xpehHf+9wEnz5fH+gm7e3Zhkkq3Y8VlShJMDTloeLNMwPm0LCFueKaIwH9imvQ6Ec0+uEWt92WF+ENjEBaXrSjMOya8ozw/mKbJBNcniw+VtcwZ+k8P1VEmX5wnV6UjFilVxY7ZIKBmLhOox9Jx+CCHO9wDAstn2/fb1HLmcRpxljBYvOl73Yb8pbOjdX+yFWv5cejezBRtDhTf3B9FddEU2VMvdwKWWz5fP7iGPcbPvcaHvW8RcHWRx0BIM8B2xNTlq5RG4hYjxct2l7MnUYf19Q5P54/MW58WSb4u1++yTfuNrE0jclCmR99bfap1k3H0vmDr88xc32dn/6du6y0A37iyzeZKlvM149W/sTQ1C17cJLKjp47Gx5+mtHyYhZaHVY7PrPVrRqEYuA8CdJE4agSUxMlh+993uK9xQ5r3YAbq316QYwfJ5QdEzLB1ZUuQZxycTz/UFH6g8bQUKI5EBAfno02ehFFR871pz3TCSHo+NJo5mHftdT26YcJE0XJ5NwNw9gfZAHp9kaPOBWstgIMVeV+U+qDPuzzvxvwpLPiHwBdJOMJ4P+BdND7g4/6kBDiF4Bf2Pazvwr81W0/+6nB9+0Zhq7Ih9bo0/MTen5MzlS5MFHccuiKU8l86oUxZcfANnRylkbZNQnilBtrPYSQFePljk+zH1F0DKq5MvN1Fz9KqW1LsKz3ooErVkrRNig6Os1+PBIx3wturfUJk5Spks1k0Wa26tD1E2xToxskqIqCqWeUXZN+lCCQm+D2Q96N1R53NjxMXeELF8e53fBIUkHOiji7iamw3A4QApYS/9ASU5qqjNgdRUeO9X7Dp+FHnK65NHohv/j+Cq1+hBdnXJoojJKEmiI/+zhs9MORI1nHjqnkTMbyFooi27KKtsF6L2SjG/LhcpeVrkwuna8XWGr7GKrCRNEmb+ujdi6QAcjmR+dFUusLZMJhN32Cth/jRcmR9VBHScavf7DCP/rGPda6AUkKz0/l+NyFk5WUurHS5e/8+g1Z8U5SyjmT739xas9JqWzguDhMymRCkH9IL72pq6AIkkSMBGI3HziaXsREUdKh7zY8lts+y+2Q+ZoUiT8/USBv6hiagmtpuKjoqkqzH2GoGhu9iLK7s8qbCZnUHibB/Sh96BhBiommmUDXlFFAsdIJpAtgJEWRFUVhseWz0PRZ74VMDJLolycLjBVtMuQhXddUbFNS2BEa3Uy2HD+OubDUDgai48GOOdsLE26tSRr7bpbaw/YJXVUfe4Cv5S0+e77OWi/kVMXdsSZ6UcJv3dxA0xSemzy84C9KsoGYpMp7iy2+dn2NN+80iWJBNW+O+vuPkhL/j99a5MJ4nsuPue4f+dgM/9+v3+Gfv7PMH3rj1J6/34sSVFWuZ6auEcUpb95ukLMMgjjltXmZOHRMbVRMAclC2PxchyL9m5E3dZpKhKpsNRYJk5Q4ffg7+jQwVIVk0NJUsB7MySwTNLwIS1cp2AbLHam30ujLVtdb6x7aoL0lZ+soCFQEnUFyuB0kvHWvyRtnqntuR3ocXFNjox9RHrB5e0HCei9gqenTCxNKrslKO+CT52ojVvNKJ2CpLTWpml7My6dKB8bajdOMW+t9hBBSa1KV7YXpwDXPj1KW2yFnx3LkButbJWeQZWKnrEGY8M7A9bUbJNiGtiPOWOtKJ1E/Sim5xp6uY7UT8Pa9FmGSEVYyztRztPxIHtKmimRCrke/cXWdpXbAc1MFrq92URTJLuiECfXBejp83/PWgzhsvReSZfL6t1+Ta2p0AtlGcdi4ttrlN66us9YNOTeWY6wgnRgLpkGYCKp5yUbLWfqx6Qf6UUo3jHEMja9cW+fDlQ4LLY9ekDKWN1nphPuu2huqlFpoe/FgzmWsdoMdws2OqdEPU3RNGRVYhIC8rVMc7HlLbX/g+CjXJsvQKDkmnSAZ/S4wYlhWcyaWrrHY8vlwuUeSZtxveJyu53eMczu2X6emKERpihjs+6ahcq/hMVV2mK/JuGaq5EDpwb1s9OR+2ejHo4JAxTVGDL3NrsPSDTPgrXtN3lvojNaHnKmP4lJVUfCjFMfUaPYjBNLR0wtT/DglQ2F90OJYyclWSMfUBjq6AlAo2gZCCO5sSAblUEqgYOujAtzb95rcXJMFo7ylP5apehS4udLhZ75xn2/ebdAPMyoufNelsQNJ5iuKwhtnanzp6iq313r0woT/6heu8K9+Yp7vujRxAKN/MuRtnZavkglB0TQJox5LLZ9mL6Limvzel6a4sd6n7BjMVV2Kjk7HT45cB1cfmHP1Ao2cqdHyIixDdqx8816L9xfbFCyDXhDz6fNjRzKmKJEu5et9m82krXpB6m8mWcarpx4tZ51mMuZ1TG3X2GalE7LWDVEUdk3gDpPyw999VGJJU5URkeJewyeJUzRNxdJVFpo+HS9GAC/OlnaNqT/qeNLI8ZIQ4pVN//4lRVHePogBPQksQ+X8WB5VVWh6UlD81kYPAcyUU8jLSXVzrcf11R6WptIJY+6hoKlQz9uoitRkUlCwdI0gSWh5MS0vIUO66Jn67sFVztRoID9vmyol12WqJB56wJFOez5hklIeZGvfutdiue3hxxnPTxX54uVx4jRDUxTevNPEC1MUxaHlKWiKXJy8MOXGWp9zY7nRxEwzIXvNw4y2H4+qUdurUnlLpxtIx8HdAs+Dwpl6bpRsurLU4VeurGBpCteXLZ6bKWKo4McJ/UbCl66sUCtYfOfFMeZr7p5cfPwo5Z37TeoFmwsTMsCQtpvmKKDJmTpv32vxzbsNXEuj5FioqsxGz5RdNC3lwnh+9LzSTOBFCa4pRSgb/YjVTkAvjMlbxq4Cg1GScXdDbt6bta0OC0mS8tf++Qf80pUVgjChlDN4ba7Kn/zs2RPF5vqld5f4G79yjY2eDGKfmyrwJz99hnP7EN8P44xrKz0uTRa4PFkgG+hn7QYF6US13A4GuhL24HlJW11DU1jvhnztxhr3Gx5enOJFGTfXupyp5+lHKZ88Ux20hqpUcgZTJYeNnsVKJ8TQFelQs2OMKddXe8zVXM6N5YhT8dBKrBcl3FjrsdjyOV13Rzo4eUvHC0MsQ7IP3r7X4tsLLcJY4Mcp7y62mS27xGnGK5pCwTYI4oxpU+V0LTcQhpbJpIfpBw17/0EGny0v3nU+p+mD9SLZpZS71PL59atrKIrC970w+cjkthDy/Y+SbAfbFODaSpd2GJOmGb34YOy7tyNKUt5f7KCpKldX2vzy+8t8sNzD0lVmyi4vzJR4ba5yZBU8kK0gv327wV/63ouPDSxePVXmTD3Hz35rYV+JqWY/AiFdLedrLisdn6YXcWOtjx/lmCzafOtui6mSzcVxSXOPkmxLUWAosmvp0mZcJiGyUSLo1ICFCDL4urbSI06kHsbUAYl03m9KK/XN83eYLPUj+e4lWYauquRtjbfvtVAVuDxVIEkFHy518eMUXStSzclD9e0Nj7xtkGZyz7B0jaeV8WkNxMZLjkGcZiMtpzdvR/zah6vcaQRUXUPqIOkphiaZvkmaoalScy7LxGA80lXrSTFkLKWpYK7mcH2tz5u3Nri51uf8eJ7veX6CH3hpil4Q8617LRaaPpen8qSD1rIgVnjnfofZasz58fwWBqZAVvDjJGO1HVDJyxaTzXHGcH3RVAVb17Y8u92QDGzFXVMniCN0TeXORp+2F5MzNfpRQprJw/Wpij1KOOQtjVtrHgXH4OwgyRDEKd+408TUFFCg4phYhjZiqaKwg0XW9hNylrGTEn+ASFKp/9Psxyy3fN5dbLPc9ojjDKFB1bGYH3N5fb7KqaqLoSnHcuhoeyG/8M4Krb6UYmgGMXfXfUxdYa5sM1/PM1/fWxJAzpUMXVNlgUhAEEv2c5IKpsrlHZ+ZKsn2uPVuyK31HlMlZ8RYv7HaozqQYLB06RoZxBnvLrSp52zOjueYq8qW9jSTSZdhG9v58TyqAgqCIM4oOPqujK3tSc22H7PY8ihYBrNVl5vrfda6IcbAAXDIlAiTVMZ/jtxr7zdlm950SZ4xDFXhTM0dyUYoirJrIfPGao9vL7T4rZsbg0T5A/2b07UcYZLw/qL0iJqvu7S9hNVugBACXYUwSXBNqV9n6Ao5dBxT5cpih7YfU7B1TtdzVHImYZKOCndXljqM5aUJ0eXJgix6GRpCCIxjdMzdjCuLDf79f/QO6/0QW9e4MF7g+16c4OUDFCo3dZU/8enTNLoh7yy0efNuk/eXu/z5zwf8wTfmjuWdrOZMMiFodkP+2btLrHYDmn7CRNFB1eCXr6yy0pZSF198boIXpktbuoGOCoqicG5MvoOZkO/Zt+5tcGOli6ErNP2E6ZLD2fE8WSYeGc8fFOI0o+VL86BuEFMbxNwaCmGcoqlbiQi74f3FFt+826Ket/ie5yd2FLCGBTMhdp63QSblbUNq2G5uNx8aDWxHztK5u9Fnoe3jxxl5S2OiZNIPYr5xp0nHi1loBXz/i5OPlBb6KOJJo/BvKYrySSHEbwIoivIJ4KsHN6z9QVWU0cR2TX1UQXgvbrPQ9PjC5QlcS+WfvbPEQsun4hqcruep5cyBO560jpc92RYzFYeqa9IPJQOq4hqPXIjKrjlKYmwWAn0YpIBiTKMfcWvNQ9fkwWmhFYCicHWlxyunymiqwr2GT8ePmS47pBkMvzZOMyxdZqOvrWQ4ps5sxeHiZIGldkBB1VjvRczVHHphuuPgOF9zpdtfJ+CrN9apHKJtuDYIEBYafW6tS0bbVNmmlDP5l16Z4us3Grx1r8W3FzoUHINqzuLFmcebMQohRRpNXacfJNxc7WHoClEiyAQUbI0kA1tXyRBomsJ6N2Km7NIOYixDJRWCnGlsWRhvb/SluLQhWy2HlTnX1Lk4md+1oj60ARbi0c/+oPA3fuUqP/fWouw3tnVOV1z+4vdeZKx4ctwari21+a9/8Sr3m1LU91TZ5k98+jRvnN2bptRmpJlMLJm6ivoIm+IwyQbMNoW7DY/zg4SjY2pcX5HBXsdLeHehTc7WMFSVybJNECV0g4SNfkTTizlb35pcGi/alFyZrHrU842SbMBOefjv9EMpfpyk0OjHdMNYrluGRi+M+eZd2Rrw9r0WpqYTJDFnx/JoikI7iGn7CSvtgOenS1Rz5ujwomsqlycLCNj1ABgmGR8sdRkvWpLVFUtNivldNFdKrsFkKm2hx3YJnL+90OLdBRkYnxvLUz1T3fVa4zQjSmQCPYwzrq/2mK06W96hOBVYmko/Fax3Dkds+/pqj1vrHlmW8aUP13nrbptulDJbtvn4fJV/9fU5ckesm/Hzby8Ckg31OCiKwo+8OsNf/5WrLLb8PTvlZQKWOz6dIMJQ88zXcrT8hLwVM16yWW4HLLR9vDDh+mqPy5MFOQ+DhKW2z1TJoRcmdPyYtX5IlEoWix+no5aSThCPDBaSVND1E5Y7AS0/HumkPA3WeyG/eXOD5bZUCvj4XJX8wOJZAW6u91jtBsRpxkzZ5cOlLoamkmRSu+lrNzZoBzF+mPLh8mCPcU1UVTpgPT9VYL0fkjeNp07qL3cC4kTQD30W2z43V/uDhBi8c79DlGbkTcnSnSzZzFZdGv2IhaaPqaucH8/z0kyR95e66JpC2XnyObnWDVnrhCx3App+hBcmLLZ81nsRY4WYxVbATMXlvcU2nZFmnXQOVAcGEaoin+lC0yMZMI1kvCMtwq8syfspBJRdY0trZdmVLERNUfhgucPN9f4WAertY11uB+iaMnDHlYmjX76ywv2WT5ymRKkgFRnTJQeB1AIt2jqLrQBdU8lb+mhtvrXeY7UTEiUpBUdnrRuRpBmWqTJVcNAeEs9pw438gJFlgvcW29xvehRsg1QIVE3es4YXs9aR16DVFC5NFCnY+lO/N0+KNBP88pVVvnG3ya01yUaLE3n/Z8o2r8xX+O7LE8zt0Z4+iFM+WO5ypp4b6L5C20/x4wxFjR+afFVQaA/c6FYH7fmNXsR6L+R+w2OulqPkGNTzJr9zuyklNATUi+ao0KogzwfpoDiy1PJ5+36bIEmZrlgoKGwnyCVpxrXVLlnGyJX09kZ/xCDOWTLu9qOMRFNGbcwr3YC2l7DUDhgr2jS96MEaacnEft7WCZJsVwbqZkRpRi+IZSxv63zXhTr/+yDeBfDihHcW2iSpICPDNQxaXowXScdRU9eYGKzdF8cLpEJwbaXDRj9ise3z3GQRbyBEbenShOh+08MLU9paTCVnjEwfLowX2OhHhHFKEKdcW5Hr6zD5d5S43/D4j3/2fW6u91FRKJVN/tin5/ns+fEDTxbNVHL8B99/mf/wH32blU5ANwj573/1OufH87y2R13Uw8DXbm3w7lIXRRHMlBw+f6lOwTL57Vsb3FzzKDoalyYKXJ4sHpsg+jAGnio53HR6LLcjmXxRBJN5G0tXQQi+emOdbiAZhC/Plg9tvJkABOiKsiUJdGujP3J0v9f0OFPPP7R48lu3mtxa63Nd7fOJs9UdzpqTRRtNlcSW3Yq9Q522uxsebT/GNjSKttSxHbYfb4Y2INqsdUKWOgHVnEnLSxC2PGeGacadRp/fud2gljNxj8GR8bDwpFfyCeCPKYpyd/Dvc8AVRVHeAYQQ4uUDGd0T4FTVoe1J7aVraz2iJOXmWo+Jos1KJ6DRl6LknzlfxzU14iyj1Y+5ttpFU1TqeXNEsz03lseP0j0xd/YTRDiGhq4pRGlGKjJ6XkYlZ/D6XIW1vuz5zoCuH6NrD1yBpko2tqnJgp6QFrVJlhEmgjCJKQ/o8s9NFfGjdBB4GxQdmXRa74VsbBJlDxJ5uFhs+Vva2A4S/TDB0FQMTQFFxVCgE0ZUEoNWP+L5qRoChcZA92m8YFHNWXs+IOQtnaYXsdQO8ZKUuYor++cVGRBdmpD3YqpsEyZF6bhYsHBNnaprMp63qOXNLS2RQ8ZTmAxbRgzavhSce1ibh6HJQ4UfpQ/VFTooXFls8eUPpROloaucHcvxb33v5ROVlPLDhH/45j26foSlqTimyh/51Gk+9QTUXU1VmKk4e3rHXFNjsmSz2g2YKMhedz9MubHRY6MXsdb10QbJpbJr8slzVSkmmQrCOKOWl0y73ZJLj2rx0TWFWt7c0ea7GyqDA1ySZVRckzvrffpRRjeIuNf0udvw0BWVJM0o2gqvnKpyaaoEQh7gxooPbIG335NHVZ6iJOPOhmwZLrsmLU+2yEyV7S3XNmRQPsrFs5qzKLkGCsqW+d4LE7RBa9dCy6fRi7ANlbJjsBKHVHLGDt2aL14e5617LZIsOxQthCyTwrCmrnBlsY8fxwjkoX+iaPPDr06TP+R3djuEEPxf31rg9fnKnqtdP/Kxaf67X77Kz35rgT//hfN7+kze1vGjjCxTWO2G/MDLk5i6StuXbRuuoRNlGfcaPiLLOFV1aXpSbHq9GzGWl1bV3SCm5poIIZONm1tKhnMxTjOSTGBbMuFTcgz8OH3qA3aYZCRJNkg8ORj6g/UgzaQdej1vEaXZgMUhuLbao+IaqCj4UYIXSv2eklOh6OhcnJDGF+NFG0NTOfWUTDkhBN0wwdY1Gj2flh/L90uXVdJkULkuWyYvTJX5PS9N4YUpM1WHW+t97jWlAGvJ0Uei0ABenJG3nuz+FWwpZK6pMpZIsoypskPJMZks2wMdmXhQ8FJIM/ksTV2VyeaBo5+ta7T8GAWFxVZAeaDzdHYsL7WmAtkuOl120FSFOMm43/JJs4zZiothSOZTN4iJkq2UtOFaM3Rma/YjkixjLG+jDtrsVzshrmGx1gsGTqQxL86UcE1dtim54MUpRUcfxQ2GplF0dPqhTHDda/ioCnS8hMn87o58E0VrS+vYQWDoehhEKe8tdtjohZiGymzZJWeavDJjsuGFI7fSmYpLrXB0YsW7QbIsVIq2Ti9IsXQFRYX5ao6z4zk+eaa2w8DikRCMTINqeYs4yci3NTKRUbKNHXNiCFNXHzA4LbmehElKKgQfLndRFJg7P0a9YDM7MP3IMrHFtUpVFc6O5fAjmVT5taur+GGCoqgIFMYL9g6dvSQTI+bkMAbUVQUhZHdGlGScG8/T7EcUbJ2CM3C9zlsIGDl7yjVyoHepCG4P2uVmq85Dc59CCPpRyqWJAl+9tk49J3WhpioOmWB0/YaiSPMKQ3YHTJdcBNDoh5iaOpCykAxMVVVo92MWWyGZEJyr55gu21v0t+ZqLp1Aunf6Ucq5QQfKei9kqRWQpIJ63max5Y+Y2t0w2bL398PkUJOpXpTws9+6z8bgGjVV4Q++McPnLhx8UmqIqbLLX/ie8/yln3mLlhcTZRn/8Hfucn6iMDpXHSWKts5EwaY60A9+cabEd5yp8ta9NkGc0A1i6jn5TFTlwfpzXLpgMxWHiYLNRMmi4yUUbJXX5qv0o4QwFVxZ7JJkGc1+zFzVHcUSBz1ex9Q4W8/z3GSesU1M2Xre5Oaa3P/CWBZuh2zCzbEswFjBZK0bkre0XYvjuqZuWUt260SKBkzzOJVFH9dwubX2QENuM9JMMDk487umZB/fXO3zybM1vnB5TJ4TNCl70/CiZ4kp4PsPdBQHCE1VsE0dUwVXlwdMf+DQdWEsT8eP0TXQtQfByWTRYabiEMbplsXGNrQRjfUg2910TaXqmkRxymLbp+oaVPMWZ865dIKE5bY80CWZDFA/Nl9mLG9vWfTTTFByC6z3Qq6t9DA2adXM11w6fkzefqCt0PZjvn5jAwWYrbiMFSwMVaXRjwYsj6ejr8dpRsePKdjGaJyr3UC6qCBFJm1DRSgK4wVZ6bQHffn9MOGN01W+68IYOVPn0h4cXoYU1Y/NlankDK4sdvhwpUfbkxoXaSY1UMIkpWAbfN9zk6z3IxxD49Z6n+VOQAoUHJ1rqz0yIReBWs5irubS7Eej3uy5mjuwOk1GAum7YThfDhNfvrrK//QbN0izlLKr84nJMj/+L79C+ZB0wp4EXT/mr/6z97iy1CNnakyUbP69L57nu56bfKIAwtTVh7aKJQPbZNfSsHQNRVF4/XSVW2s9bq33ubXRxzE0wighiBJMVaPkGkwULYqWycvTZcYKNqkQsoIoJFtovxRoQ1MfyWIZ2jsXbGnP/MqpMpcm8lxd7fHl6xuUHYN+mKBrkCbg2AqvzpVBKHz67BjnJvLEqRi1mZZdc9Tys597qijKQA8rYaEp2x1fmnnw+SFzwTG1LS3C2/HqqQrGoOd92EJ7e73PUjsgb+mcG8+NDpsLTZ8zdZfnp4uUnJ3s01O1HL/v1Slubfic30eL517hxylenHB7rcv7iy36ccqZusPFiRJ/+JOnDkxkej94+36bqys9/osfeXHPn5mv5fjU2Rr/62/e4U9/59k9HaDreYta3sLS5dpk6hofm6sSJSkKCoauoqiCRi8iShQavZDnp0uyDVwIOn4sNUkGdvXWwC7ci1ImS7bUT9LUEXs1SSUDtThmYmrqyFDgSRAlGd0gpt2PyIR0q3lhukg1b5GzNNI0Q9NkYr4XJIOEiUzWz1YcLk7ksU2NoiUTFs9NlTB0lbmKFJtu9GMURdkz++xRuN/0B7byMUmaEicpOdNgomgzVXKZKtmcn8gRRII3zlQRQDdMWGjKhEmawXo3kG1Kg7jE1FXspzjo5S2d2YqNosj3fabsUnJMztZzaKrCcifk5ppHLW9SdHRqeXOkneGYGo7pkGayChyvdlnpyMTyZpyqSAOG3ICttN4LubrcpeXHzJYdGv2I6bKDa+rcWvcYL8p3P04zrq50ieKMSk4mCJdaPi1fgFBY64bU8yYTBYvlQbyQCJPbG5K5lWSC2YqNpqn4UUqcZlsSElXXYKEpDwrnxvJMl2zeW+owbtmjFq/t6/vD2qqeFN0g5va6bO+vuAb9MGatF1HNGVLj1NWJ4pQ3Tte4MJFHZPC5i+N7ZiIdBlrewKG4bHFrQ+XsuMtSK2CyZHNxosCnztX21YYPD7RGKzlzoBEJ0yUHa1DMKVg6iy0fwQPWATDQApOFomFx+PmpEmHc4pXZMo6pURj+fLrIdFm27W+PwWxDGuB89Xqbthfz/lKH5yYLFC2ZXN/e9m4bGrW8IZmFA82li+N5qeuiDA0lpFtlmKQy7rUcXj5Vwo9Tajk5h3KWPpKIaHhSEN02pPnCw9buuw1v1Bb48kyJuw2PMM2I4hRVkYWfLIMXpvO0fJcwEZQcyUx8fb5CnGYoCqNidioEzYHhz/DvX5jIUc/bO+a/qsDtDY+CrY8+P2SpJlmGbahU8zma/WjgFPjgvi22/IHN/eEkiKIk42/+yod8/XoDS1M5XXX5o5+c40dfP/y2uk+cqfPf/IGX+W9+8UNaXsx7i13+2j+/wr//fc9ROuK429Q1vv+lKWZrLnGUEKSCpVYokxymzkTRQCgKtqnhDVrcVUVhruqOzjNBnNIfJBUPu4XONXW+54VJbEvj/fsdzk/m+HC5Sz1v4oUxYZKw0Y9l8SSQLF6Q7akH6YjuGBqfPFflC5fGt5zjJ0sO3/f8BKvdkBtrPSquRS+UGq33Gx6dIOHSIJn1fc9NMlN2qbrmaI9+GIasqCHjcghNkXtbP0yxDNnRo6sKyi6JLtvQeG2+iiIE315o89a9Fr0g5p2FNr/nxQm+8+I437rbHOmDdoP4d40g+hNFjUKIO4qiVIBTm79DCPHNgxrYk2KjF0kB8Kak1VqGxhvzFeZqLo6loSgqjX7CzTWPqZLUdvDjlJypU7ANkjRjqe1j6xqVnEkQJfzO7SYAL82WKG9reQsT2ZZTsPVd6Xu7odkP+drNdVbbIRMli5KrUHaNkdDlQsvjnTsNNryI77k8znythKHJJE7TiwiTDFvXSLKMfpQShAljRRs/TgfsJHVHxa3jx7iWRsdL0Ie6BQqcqsp+94nS0wVkt9Zlq46hh1yelImlMM64sdLlnYU236g1eH6ywJl6jiuLXfphynJbthWkmRTKfeN0dU+C2GGSDfRioNmXiUaBDP5qedmKiVBwTFmZzETG2wstojjjhRl5L09VXCkEGSQkqeDORp9+kOKVZRLzftPjrXshz00VOT8u2yP9KGW1G/HcVGHHZtjyIvw4laKyh7DYR0nKP3n7Pn/1X1wjjGLKjsnve22WP/W5c0fegvQoXF9u8x/9n9/m+qqHa6g8N5nn3/2+y7z8GGHBJ8Xdhkc/lD3iz00VSDLBQtPn2moPXZFsQ01VaPkJQZLy8fkalg5LnZCNfsiXrq7yykyZM2N5CpbOSjfg1r0+KjJBtV2UdTvWe+GeJEmG74epq1ycyLPYDtjoSXFg19AGPemC1W7MZNnmlVMlrix2CZKMr9/cwE9TztbzOIZG2xfc3ujLRJaqcm4890g2Vy9M6A01gqoulZxBnArO1HOyVScTDD8+dOvxo5Ro0C68GwxNoZozRwFsoxfy1v0WHS/mwniBOJGV69vrfRQFbjc88v2IV2bL6NrWd+etOw1+6rfuEaeClx7jBLdfREnGm7c3+JUPVvja1XV6YULBMfme5yf4k589Q71wPEKuP/nVW+QtfU9tfJvxJz97hj/1D97kn727/EgnP5AtWNdXezIButKlmtNHGoRXV7qoijwYtj3ppmZoUvz/dD3HrbUevTDlazc2aPkhC42QF2aK2LpKL0z4+o2NUdLhO85UMQZi/iDbZ87th1HxENxal3P8q9fW0TUoOSapgPVuxJc+WMU2NC5O5HlxpjwyI1hq+fSDFFPTuLrSkxR+TSbTxoo2nzxTZaxgc21FFiOurXRpehGzFfepmK5rvZB3F9osNH2aXshqJ2KqZPFdl+o0+pKpMF5wqOZMJoo2Hy53Aek0eqrqMFOJEULgmFL0+uKEfDef9NDVCWI+XOpwr+ETpnJfSjPBfN0l70jh2Y1eyEpXJpLreWtklrDSCUbOpkKAIKPtyaSKbWhbAmB9W6zR9mWLfNzLBg6K8rnMVCRTa3gmuLnW5+pKl41uRC1v8bmLdc6O5QkTWeCaKNk0vIjfutXA0BS5T2cCXZF6Vcttn36YEiQZJVsyp4I4HSW2h0LQINe36YpLzjJY7QYUnQfOgVLCQT2UPTvcxATSNZWya/Lhco9mP2Cl5fPeUoeyaxJmgs+dH2Ou5h6Zccp2RHHK7Uaff/zWIo2+LE74UUKaKUwULN6Yr3FhKs8nz9b2PSdNXR05Xjb6EXcbHgvNPvebAR+bK9MNE3KmfCaGJllMbT/ml95bpuXHPDdV5JNna2iqIuO0KEZVJKM3zTLuNaRLVS1v4UUJV5Y66KrC6Xpu9FwVRSbhdVUmfJ6fLnF+Ik/JMXckU7JMcHOtz0pHMtlenavgRRl5WzK23rzTJE4z1joha72QXihF0OdqLoamSm1YVeNew5OJZxUuThSwDW2gq5U9tNA9nDNRknFxqsD8Ylu+M4MWpDiRccKHyz06YUqzJ3Uvu0HCubE8t9f7XFvtcqrq8sJ0kRur/UESFhxTZbEV8Uvv9ZgpO7w6V9nilF0aiGYbmjpgP5mUHNkieH6swNyg5X+yaO9Ym4bjfpjD4tNgtePz//w/3uGbdxrYusbpMYe/8IULfPbi0QmRf/L8OD/uWvyXv3CFD5e7/NzbS1xb7vLf/isfY7p6tInk6bLDVMnmSx+usrLusdBqYKkqLT8CVOaqDgrw9796k7YX8/H5GhNFC5BGFjfWemQZdIJkixPtYcHQVD53foyxvM237jZ5936bxVbA+TGXSIBj6Fwazw+MviRzKIwzOMDQLIhTfvXKGjfW+vxnP/TCFpfTpXbAjfU+uqrgRQkXJgpEScZKJ2Sh6RHEKZ+9YKBq0qn3cWLyQohRHN3y4i2JqVTIuDgT0gXc1FWmK85DdYknijaff24SxzJp9mPeW2rjRQlfub7Oa3MV3rwl8wRTJRtD0/iuS2NcnDha98jDwBOdaBVF+XHgXwNu8EDjXgBfPJhhPTl0TUEgWO0EZEJQcU3ylqSeT5UdpsoycWAODkfvLnZoedJ6XuoJBSOBTNvQuD/QZABGNPbNuNfw8KOM9V7I81PFPbGq7jd9bg/EEwu2zlw1x2xFsnJurvW5s+5xr+VhaRp3Nnzm63nans/Xb2yQtwwEGbOVHMudgJyp48cpLS9msemTm9B3rVrU8iazkYtWYeSaU89bA0qhsquOzF4xFLCT/ywPtQstKe7+7mJbtukN2hNylkY1b9DwIpY7EfW8dKNRVBnU7iUxFSUp672A+01PijPqOmfGchQdaSM+PRDOlIJ2Cu8v9vjmnRZhnA2SE1VWOiFhnKAqkp5tGSqOpZEKmXne6EckqXzm87UcmZDXuFv4GsQp9xpSnDJOxGgDPygkacYvvrfC3/r1m/QDWeUvugZ//DOnT1RS6u56j//yn33I9bU+SZqBpfGDr0wfWlIKHgRCmZAtPc2+dOAzdRVNgVMVl14gN4deYNDyQ56fKrHQkq5X693gAS1XkSyK9Z60Kn9cAN7yIpYGFZ69jjPNJFW/0YsQQh6azo7lidKUlbZs413phoiBAHHDi1lc8tA0hTgRlF2De03ptGkODjte+HAWX5oJbq/LNiFTV3luSgqaBnGKpkjnwc0V5rG8xVLHJ2fqj0x23Vzr8e37HQQCVaniRSlJKkiyDGOwgQNcntJ4+36LxWaAgmwn285QefNOg3sNj0zA125s7Ol+7gVtP+bLV9d489YaX7/RoOnH6KosAnzmfO3YklLL7YB/+s4Sf+ST8/t2rvvi5XHO1HP8xG/c4IdennrkHI3TjNVOwN2mx3TJwTENml7E7Y0+9zakG2ujH2JoKpnIuDBR4PzY0EBCtmgttHyCOCXOMoJYsk/vN6R+UseTVddOEDNesDlVke0gB3G4Hu4pK92AfpyQBBl5x0BTIIgzVjoBZcfgxlqfF2fKgHz37zc9rq72yFsatZw1WOczzo7lmau6nBocIqbKNhvdiJylE0QZb99rcaaeY7biPFkySEAUJYN9ycfUNda6AV+91sA01FGLvaYqzFak6+9KJ6DkGJRdk1dmK8xWXIIoY7xoPRXzIEmlEcfN9T73NjwsQ7YxnK67rHRDGj15OE6EwA9TwjiVTqe2jB2+cn1t4J4GZ+t5NnoxqchQkIwoy1BlknyXdvthTPHqbJnZTQ6X02VnEO/IdSHNBAXLYKUtWVhtX8Yv6/2Qkm0wVZJtQ4au0gsSoiQdaYMUbJ0kE7yz0EZBrv0TRamnM2RnVXMmcSoQiFF79fZDxWaWx6XJwoGzPaquiRel3G9Ky/QoSeiGCRu9gDhK8FMwo5RWP2K8aFE9RJ3PR0EIwZt3mrx9r8lv3twgSjO8KCVvaVi6zuuna3zH2SqXp4pPxU7pBjELTX+kp6oguLLU5cJEHtfQYWA8BND2Itb7EVGcsdD0pUBwKp95mkm3yNmKw3uLHdkmGCVcnixyt+Fxa61P3tIZK1hb4vXX5iqkacZqV7KHyo65a7wuhOCte02yTKEXJrw6VxnovYR4UUrBku3oqipZiaoiD5ydIObOgCE3X3dpeVLDFSTLquQYRIlJL0xp+/GWpNAQtZzJtdUuk0UHXVN5YabEnY2+fAcHrAg/kXIRQSTdT5NExj4tL+KdhRbXV/sstn1mys4oLjc06Z7b9hOpqaMonA1iTF26G7qmTsWVjMQolULLIAvXU6VsC7Nmt/dkqmSzqoQHbrzT6kf8lZ97j7fvtYgzgU7Gp86M8ZkL4wf6d/aC56ZLfN/z41xd7pBmgg9Xe/wnP/cOf+0Pvko1f7SxxNANUh0wjbpCwQsziraOa2lcX+2x0JLJ5StLbebr7mh9HBZSswPuBHoU9AEZ4LdubNCLMsJUcHWlh2kYTJUV/CTh9lqfDJgpOwfuFO9F0uWyF8a0/Zh6Qc7TIE5Z70V0/YScpfHybJlqziTNBEmWgiKLPF6YcnW1y0LTx9BUvvf5cZyHtP8rg6T5kKW4GZauMV1x8MJ0tM9fGM/zqHzusAB3ZSlHN5REinsNn4WWz1pHasY1ehGXJossNT2SNKMTxFycKB74fTwqPOmp9g8B54QQh6NU+xSo5y2qOZO8rdOPEhxTJU5TVjsBL82U6IdSjFBR4J17LW4MqI5pJrgwURhV8xVFuuyVHZlMidNsV+HO4UatKo9X9d8M2fKgM1WyRn2pw6pDLW8y6duEScZYwUJTpAh6N0hoBzGXJ4o4pkZpIJyWH7iOxalgrRvuaufqmjqXtlmSyyD56ZIoQ+FWVZHjrrgmq13JLrqz0Wem4nC/HVDLqcwPDi7vL3bo+TFnqjlem6uMFsZqbm8HmiQTvLvYQQNW+xGvz5WZLbtcniyO7Dw3b6Q5S5diowroqjzMb/Rl60o/TLkwkWem4tAfWAqDPDhs9CKmy5J2XbB0Fps+tYLUWdn8rIfPXgjQtINf5O83+vwf37hL109G9/kvfd9Fyu7x6VBsRxAl/OxbC9INMxWYusKPvDzFj7w2d6h/V2riRBRsA1VVcC2p61DPW4wXLVbaIaVBu2aUpORtnaW2z2zV4n6zT5LJOdAOYkSmsNoJcUwV19QGVaaHYz8b+umatD0vOZKZomsKSQqXJwus92Q7bRhnLLZ8HENnrRcxXrBY74WjCmY/TAiTjEYvxrVUajmTnKVtcfjYjkGxdRSMDN8L29B2TaDupSIEECWC5XZAnGVcmIiYKTmMFywmChYXNlVsbEPjuckiKvId6QbJyKFpiImCjR9nJJl0KTsIDMWGv3J1hd++20QR8r0Zz9v8K99xik+crR/I33kS/De/+CEAf+LTZ/b9WVVV+PNfOM+//4/e5p+/u8zvfWnq4b+ryERCwdZpeBGTRQtDla6SeUsHReAYGu8vdijaBpqqjuZ02TW4td5jumTjJymndY2XZkoUbJ33lsKRXXrHl2LEY3lrz3PncbjX8Gh5Mbau0OqHuIZGpezw0nSJ0/U8nSBmuuSw4Un9uiTN2OhHtPoRG/0I15Dtso6hybYbI6Ximlto7vW8TATc2uhzZ72PY0gNh+EBcj9YaQf81s0NVjsBJctAqUhBf8fQyNsGa72QimvQGWgjgWTzbA4aNVXZ4RL3pFAVhSBJ8cIEW1ep5k1O11yKjsn9pjwoC0W+d4oiW68rroltqLy/2KHrJURZxsWJAoamkGYZa92Qsmtg6SpZJoVid6vMlh5y/1xTZ772YJ06XZfMzemyQ8MLidOMRj+i7SUoyPhIVRRqORMVWO0mtD2pHWmb0tlIVxUyIajnZAtnyXkg2KwoymNt7Yf6K/IQIlkuBwlVVbB0lVY/YaUTkGUZihD4USrjNxQujOX4/hcmnzoOexp0g4TrK12+ebdJox9SyVmM5TVqBZupos3nL4+PNIeeBsNnYxsaCgq9KMGPM/woY2rGpuRIhzh5cLSYrzq0/JgXZh4UU0quQddPcE2NlU5IEMuizJAZFUQyid4J4x0tfVGSUbBNCraJbWgPvZ7FdkCWQZrJmP/Wep+7G5LxrABlV0dVVWp5kyDJqOZkMXTIkhj+rVpealyWXbnnu6aOosgj08MSOE0vJmcadIOEsYJcIzp+zPggFqnkDPKpTLz27Zg4lcmJesEcOHynLHekM1uaCU7XZUt9xTUJ4pS8qbEoMup5k3peJsf9KMOPIjIhRu1TnSChNhB33ku718PiiadBmmb8xG9c5/3lLpnIcDT47svj/OnPnz8WVzyAP/TGPNfXe/zTby0RAzfWff7HL13nL//A82iH3Ba3GYoiW/treYsLYzneWehwa72PrqWM5S0qrsG11R5xKqgXLO5ueEyX5Rw9Xc/R8WOaXsT7Sx1mys6uSdKDRsk1+D0vTbDQ9hAik2L6SUqcSifLK0tdxgoWZ+v5Ay8SCCEkW97WtmhGe1FClGacqjhU8w/2ZE1VeHGmjGP0sA0N19JYaPosNH3KrvHIRBLAZMl+6P5Tz1uwiVCuKAqPC3snijafuzDGTNnhm3ebmJpK0dG5t+Fh6yq6JlmRrqXz7kIHL0qJE8Gnz9ePTQD/afCkial3gTKwenBDORgM27QuThRJs4znpktsDFT3gyRltpJjvRdgaBopMpgRQmb8QdJUXUNS7CxdY6yg8alzNbSBU812zFelLpRrantaLJM0w49S6nkTx9I5Vc0NWEsqFdcgiFOqeZOXZ8voqjrSuzENSZmv5U1emilRdg3+xXqPnCnpmQ8TQz5sDDfjTEgRRsfUyFs6HT/BNqXWh2vojJdspisOed9guuxSsE3GyzYfm68QJZL2v9cDwbAft5qzqBYs5qo5xgoW9xo+bT+m5cVcmiyMgpW5qssPvzJNx4+ZGQSABUuXTBNDxRxY4m7uaf7Ema2uG36cypYFIROImwOLoZtSEKfkTJnEPAgIIWj0I75yY504FZRzJi/MlPhL33eJ56dLB/I3DgJBlPCNu02WWgGuoXF6PMfve2WWP/Lp04e+KNqGtkVwMG/JBOzwr270Imx0fs8Lk3yw3GG1E7HaDaWRgKFTzcnEzlzNZaMbMyEszozndgii7oaibTBfdxF7eNxDzZYhLk4USDLZKhckGY1exOWpIs9PF3n7XpumFw7ES41RZea5qTxLbZlgGCtYnN8DZVdVFc6N5UcOPAeFmYrDdEWumXlTp5q3eOVUGUVhhzZAcaAN9N5imyjJuNvwRqxNgLPjeV6cKUor9QML7gSr7YDlTkTRMqm4Bt/7/AQ/+tos9lMKXT8N3r7X4n//xn3+zHedfeJA/vd9bIa/8+s3+Gu/+CHf+/zEQw8OlqHy/HQRP8rIWdronk+mUnS/7BrcWuvjmhq2IfXChrANjXreppaTe898NYdjajT6EQVLtp3X8xa6ptENZML0oPT1hnvKjfU+hqZTcmG+4nB+PE/Oki3zHz9dwY8ydE0ZsIBkS7hrSq258YJs6X5hoC+z2/iG70YtZ3Kv4Uv3zie4hjfvNojSDFVT+NipMm0/oehINzpNVWn0Q86PF6hu05s4LIRJhooUba3kLGYrDo6pD/QlHbpBQr0gA/Bz4zmpwZdkAyvthGrexNJl9djSVW6u9bENeT1jRYs03d31cz9wTR3X1PGilJJtDjTC5AH+VM1hoeWTpIJUCGYqUtg5ySQDvhekzFQc3jgttbrO1V1SoUhNrn08vyGLazhnDgOGptKLEtp+jKYJzo3n5Lwbz3NhPMfLpyr/f/b+PEq2LL/rQz/7zCfmiJyHm3e+NQ9dXT2oW2qJloQE7wkhGWMMBh7PfsIsg1kPsMG8ycbvmWcbTxixGJ6XjWXLGGOEBGawJYTU3ZK61d3V3VXVNdx5yDkz5jjzOfv9sSPiZt6beW9kZuRw5ftdq1ZVZWZE7Dhnn71/+/f7/r5flk64FWgn2n7Mrc0evUiZ1MwUHa7NlnjrfIWFSp7FqsPMCHvhKMjbitm+3PD4wrVJvvOgCVIQxClCqDaagcbM0kSOH311btdz65g6r8yX8aOUMEnZ7IQYmsZ00WayXzSeKjnomvYYExjoS1gwZA/vh5Yf89b5Cp0g4ZMXKqy3ItphzHpLFbyqeYv5yuNr98DlW6DYcvcbHi/OlvDjlLmyo5x3Z4qqQLrP82PpGj4phi5wTYNX58s4pk4YK/mON89VyKS6Fu+vtMhbJt1QaWO6ls6LcwWiVP0tqHhowMrVNcFM2WWm7DJRULpUBcfoG4OoxFmjf1YyT8kRcoAkVSzWe3Uf29BYrOX4o993kf/jm+dOdVyWqfPv/q7X+fzlKX76n90gSDKW2wFfv1vnk+drx67ZNIAQyr3Uj9K+AVTMVici5+jMlVymSg5ffFGy2VVGYAOz0Xx/PmiCvns1+7L3jgOL1Tx/9Psv8869JtfXlC7wXFmRMMI4xrX0sRUnd8LuF9ZmK84wQe5HKcuNAMdUGnaXHpEfWKy6FGwD21St3osVFyklM2V7ZNmecUHTBFdmCsyUlRlCO0iYLFhMFx3u1j1MXePtC1UcQ6cdRPhxRphkT/AvP9s47NX9i8A7Qoj3gHDwQynl7xrLqI6IxZoS2m37Eef7LW9b3RBdE5yr5ig6qs1LSsmnLtRIsmxI+RVCPFb1LTomNzY6+FHWpxA/3JQMfX9h5r3Q9uM+C0KnlrMI04zr611cS1POAEnGYtXdVd3VNcEnl6pcmMhj9Sm5oNhcfhRSyZu8NFtCCg7cGnJUTBRUlStnKjFz9TObkmvy4myRu3WPkhtwa9Oj0XdLNDRlubtQdoeaWAeBqQs+tVQhQ2CbGucnlUiz5GEae6fujxB9ZtiOjrLpkkMlZ2Foeyccd2K9HdAOYlabAZahsVh9mAkfJKiUSD58tN490HfZD1km+XvfeMByyyfNJC/NlwnjjJ/4xBwvzI5Xh+co+M3b2/zmnTrdMOXcRA5NwAtzRX7PW+eORbdjgF6YDFtZH61M7PzcF2aUVbKpa7y2UOEDvT08iMdpRio1FqoucyWXMMroRUr4cCI/ms390wQa4zTrMwqVk9ggUadrYlihX6i4TBVsTF0M3b3WWzqmJvhovYulC16YLVPO2SSZom77fQHLUTbI4xDlL9g6XqgOXBcmXO71HYfm9qkS2aaOaxlIyWPVppfmynz/C1OKUTKGhKuUkv/5mw+4s9XDdTSmy0Veny/ze94+h3VMB9BRx/Xv/oP3mSzY/PERXfX2gq4J/syPvMAf/Zlv8He/8YDf9+n9WYlXppVews5gb8DMidMMTRNcmylim/ouPTXH1Lk4lacXKke71aavXPws5ZRVdAwKts7X7yiWxXTR5uLk0XWlQLFV672IiZxFL/QwdUErTPiFb68wU3L45FKV8xP5ocHH4DCla4JPXagRZxLH0Hc9v0+a/5WcOqQN9OgOCl1Ay4uHbn/v3Gtxd8tjaSLHpy9VqbiqwnocAfdeiNOU7X68YxkamoC7257aK2s5tnsh9+reMNkID6/Pi7MlFspu32lMad85lkaUZpRciytTBfw4O5Ko/U4Y/evtWjoXJvJIVAzz3ZU2ADlTV+5rtRxLtZw6dJs6W92QnK2TppJ/fn2Tom3ymUsHs3B3TH1kR8zDIohTmr2QXqhYL2XXwrVM5qsu33t16jFpiJNCnGb86scbfLTWQdc0Fio5OkFKYcHgtYUyn7s8QfqUBM5hULANzk/k+Xi9w2zZ4bsrHcI0G7Jvo1hJPgxckh99bgdtwitNHz+KMHRBJf9QM2znXvoobEPnyrRK3Dxp3w7jhF+7USdnabw0W8QyNCZyNrauU8ntLxitaYKFHYnnwXoyMDyBp1/PxapLOWfi7mB0XZkqkPSNTqp5e6iL65hK78+PU5p+zExJsc4m+zqrYZLx/kqL6aLDVNFG67fuZxlDF+7pokPFfRgH24bWF4Q/veLNetvn77+zTL0XMlNS0iufvVjjd75+MD3G48QPvzJHJ0j40vUtajmTX/pgnXfuNfndb84zu0fS8jhgGw8T6rNll0reI00lTT/i9paHROmILlRyw7hsMHcVm9joF9xPdg2aKbl8/zULJIi++2cvTNjuRjR9DT8ebxEVlDvxJ5YqvL0jeThoc7V0fc9zsxCCXpSw0lLyBBvdgI1OyOIJFJf2gm3o2AWdq7PKlMYxBd+531bnAMtguenz4kyJTy5V8eKMpVruRNo0jwOHXX3+FvAfAu8C46GHjBF2X4BQ0zS2PaUjIYRadCt5k1rO4s52j0zCVi98qlBrmkn8SH3NXnj4h2azE/LhWptWkFDLm1ybKeBFGaCYMa6pbkejF/cdfhJmSspVaS/79rfO1+gE8Ym4K+yHkmNSmn18kx9sxBcn8yw3erT8GOlLekFG0VH97IVD6iM5ps6b52s4pr6rR3q+4uKaqpVvlIDqaX+z1Q1Zrvts9kJqOQuJYtjd3OwNN4QLk7mH1t5RMpIQ9tMgpeTXb27ySx+tK0Hi6QK/941zLJRdcmdIU2q97fM/f+MBnVDN0++7Msm/+Mlzu2yIjwtr7QAvTPHClErO3PPg2fKVpkXO0jk/kaPkmnz6Qo00k3z5+hbTJZu8Ywz1pExDI28ZZJliV44jKK/3Na9AJWMfNSVYawXUe0prbbrkIITgjcUK6VzGV29vM1d2lFtRP4mraWLHfEtPvHIzwO3NHqvNAF0TLDcDNKGu/3Yv2rP6pmuCi30L3uojh7FUSl5fqNDqC90eFl6UcHe7x0drXb5xp4Fh6Lw0U+JHXp3j4mThxNmkj+Lnv7XCO/ea/Ee/5/Uju6f89pdneONchb/8S9f53Z9YeGLiZb/vbeoal6cU07Psmo8FMQXboBsktIOEu9setYLF+VqOF2eLXJnK8/Fah5VqgGvqfO1OnTiVLNVyR06CzpQcCrbBjY0u1byFKQTdvkbEaiugGyb86Kuzw2dppqThmCph5loGhwkbD5NED+IUwYC16RCmGZuduH9YVm5itdzeOjbHibV2yGYnRNcFMyUb19JJUiUo2/TjYSzzoKEc7mxD48KEYvI8msTWNcH3X5um6UUUHAPL0Mea3F2s5mg7qlK+83MvTuZp92ObAZNvwEj/YLWlRLDDBB140AwxdOWuePWMCb9+50GTjY5KBE4XbS5N5Lk2W2KyH9OdFt5fbvP1203aQcxc2cYwNL740jRzJYeFfrLuuFL4272I21s9trshU0Wbgm1ye7PLpekCYZwN3fWe5ICsGEj6sLNhJ560zo9SpHnQULIZ7VCZdnz/tWnkdIGmr3SeJvsH+ZsbHbxIjffRfR1UkqzQdwQddX3RNPFY54CmCawdc+XW0EhFFQ8sXWOzE9LsRbSDhMtTeSaLFo2eiju2+tdZ7zNE/Sjd9Rk7r9dpxRMD1HshP/Prd7mz7TGZt3l5ocxnL9VOlVW4H37yk+f49MUaX71d573lNu+ttGl5MX/k+y6OrS17VLimzuXJPKvtgPt1H6+vIXphMsdCxX1srRFCPNXY5zjhWjo/8uosn+yGfNxnTt1reEgB37nfHHtrs2sqN+LFHSz1vG1wruYSpRmTe8jIpJkcFr2WGx6NXkwQKd3kN89Xj92BfT8sVFwWKi6/fmOLbhyrdvaixXzZ4UHTp+IqN+DF6ukk0MaBw0bqW1LKvyyl/GUp5a8M/hnryI6AIMlUZT6DOMmYLTt0ghgvSpgu2Gx2Q25s9HjQ8AlGaHHRNaVXkLN15iqHX3DCRFU50kwFiBudiLKrxOouThZwTFWtKNg6TU9tgtu9/WW8LEO19+2VlGoHMTc2umy0RxNnHhfWWgE3Nrp0w4Q0k3y41ma1FWLqgjjNmCpZTBUdiq712AF1VOja7kravW2P232B5+mSMzbLzO1uBELpFiRZhqUrra+NdkC0wz1lgEpOuZg8SfPnaZBS8uu3tvjKjToAWSp5db7E1ZnimUpK3dnu8QvfWiFIFI285Jq8daF6IkkpeMgMtJ7gqFTvRX3B0ISg73oh+ro7H6622GiHmJrSYAHF1MjbOtW8OTZGgGrxVTTqvXQltrohaaYo1zvR8GNubna5s93DEAyt0Gs5Ze1eco1TFTZsBQmxzGj5MfMldUiIs5TqEzSG8rbBTMl57OCw2Qm4s+XRCZKhBuBBUO9F3Njocmfb48Z6jwd1D13XMITg7Ys1XpgtnXpSqhcm/MV//AGvLZT5PW8tHvn9hBD82z/yAiutgJ/96r2RXrPS9Lm52cWLHl5j1e61f/IkZ+vIvvGD02+JU0lcnXyfebzeDpgpOISxclQbFWGSkvXpc3GaKcOEPqJEaaR0/ISo36LnmEr7zTX0XXouquiks9oKWG76I3/+UdDoRVxf73J9o4suNPQ+8zeTkpytHHNLrnEg3clxQErlulh0TTTUHtYJUhCSmZJNNWdhGgJN62srpZJemOI9oUqta4KJgr1nkmDw7DWeEKc8CbomqOatx4J8x9SIEqW5F/bjucFeaxs6G+2QRi+hGURYpqDiWsfK0B0VXpRwc7PLasunFyastwIavYiiZVJwTBZqOaZLzqklpeI0Y7MT8OFai4YfEmcZ030tKdvQ4QTGtd7yyTLQEDi6Rq1gcnEyj0CwWHXJ2wYfrXX4eK2rdMX2gBCCSs7CMZT73a3NLmEyHqbFVNGh7Bo4hui3QSk2US1vMVVURazlhsd3HrS5s9VjoxPu+T7ajrmdZsr5+fZW70hSD4PnG9Tz8NJsiXYQs9Fn9ftx2nfDVK3awK44wTF1XEtXBhh1DzmOSuoYIKXk9maHX3hnBS9MyFKJrsMPXJ08k0mpARZreb5wbQpDF2SZJEhS/sE7y3zUF0g/KZRzJkXXYrqoiAxxmqHrgvt1j+sbygG20V+r64dcq8cNJRLucK5WIGcZFGyTZi9ive3TDRM2Ouos2Q5Gjyn2Q5JJGl7Eh6udXXO+klPtcHutx7omKLkGUZqyUHEx+u6wqZSHilPHjaJrUHUtJgsOVdfk9pbHva0uuqbO2oNCTstTuYCt7t7r1FnEYU9f3xBC/EXgF9jdyvfNsYzqCJBS9nvPFcPo5bkSUZoxV3YJ4pRv3GvQ9GIqOZMklSw+gcq92vJp9GKmivbwn6NgpuRQ70XkLaPf666s7adKznDTG6ATJrT9ZLi5NL2I1Zaydh6Ffr7eCghipWdVy1vHyqhK0ow72x5+lOJHCQ0v5u52j5fmSlxf7xLEKRN5mx96eQbL0Mj6WhHjcPBo+fHwkLLdC0fSBhoVXpSw3PBxbXUQ2uooC/Bq3sbuOy3tTK7pmjiSAKRiSm3xP33jAUhYqDj8wLUZPnfl9ISa98JmJ+C//vJtGn2h+e+7MsGPvDpzbDodj+J+3cOLUmbLNhP5/SvPFdekFyY4fZ2ZAe5s9+iESiR1qeYO2wNMTUMIpbPS6/fuHxadIGalGZCzdK5OK+HYvQ5OlZxJoxc/lqTdaAdsd9W8niw8rMgaukbZNVltBaw0/WNvRdkPZdfkE+eq6Lrg8kyRtVaAqelEIwbdO9fWtp9wv9FDonS0DoqVps9WJ+T9lRZ3655y3bs8wVsXqsyWzkbV6K/9yk3W2yF/9Q+8NbZD6eevTPL5KxP89C/f4Pd+6twT5+vNzS7vLbeUmLQQXJwcbW6XHJOX58ssVF2CONu1R4VJxpuLVTpBTMuPWG9LLk+NdojYaAest0MsQyOVko/WOggBl6cKOKZqmSm5BgVXMRon8hafvljja7frqn3lkYLSRmcHg9I1R6r8t/suYa6pGJUHEdQdJHIUM3ugWyOIkhSkYLGSo+RYR15HDgrRN+JwDI2CZTNRtNnohKSZwVJNMUxe7LeCt/yY+3UP29CG2lr36w9bckdpM1tp+kgJK4k/sk5JEGc8aHhPrIp3wmTojrzWCpRIbiKZLTucq+VYquWp90IyCbW8yaWpPOfHLL58UGSZ5Gu369zc7FLpa5YMpAbOVVw+cb52qlXsbpgM3aBBsFB2iVNJtWDRi5JhYe24cWEiz63NHtu9iMWJMm+eq1JyDMIk6zvLtQjjlLJr4cUJZfYfUyd4OE+2utGuVrrD4q3zVbS+uYOha3s6lylnvQgvTnl5/iFLL80k9+rKGevcDvZo04to++owW+9FzByygCeE4Fwtx82NLkmWsdrymS4q/apukPDSXInztRyOpVN2Tc7VHr52ueHx3dUOQZwwV3axDZ1yznyqHMFJYLUV8Le/fp8HdeUW+4VrU/yO1+bGYqZx3JgqOvybX7zKP3lvjQ/X2rxzv8VyM+D3feYc12ZORnZjsZqjlrNoeCrp9Opima/dquPFGR+tKebx1283sEyNRi9iwzWw9IdM2dPEQtXley5P4Jg6d7e7OJbBzY0Ot7d6bPUiFisuP/jSzJEKD2mWcXurx2TBGjIiq3nziedFKSVxmmHpOomEz16sUc1buOZoHTnHjSvTRQq2iWNpNHox19c7tDK11ry4o/NgpV8k+XC1zUTBouxazJWdE9MVOwwOGzF9ov/vz+74mQS+OMqLhRB/CvhJKeX3CiFawDv9X/2klLIuhPgDwL8B1IHfL6VsjzowL0rpBAmzZZeiY1DJW3SCGCFUe45AiSyGccrnrkzuuxFLKdnqRHSDhJanWm2O6gQhpRLdvjhVYKsTKueMVPLugxZxknFth2veozTLrW5EkkqaXsx06SHFWUrFqjI1bdcinrcNgjjCMbVjF6DuBOqgkGQZ79xv0vYTXpxRIvODNquXZovHQh1NsmzodjbOvvggTjE0jfMTeW5udllu+pj9DPrFKZOl2sEOMk9DlmVc3+jylZtbBHGGbWh87vIk33ttamyfMQ60vIj/7bvrbHdDkkxytVrgJz+5cGIuKUGcDgNR5Vyzf4BXzVt7Lr5JIgmTlIpj7qomenFKt8/aCeIObyxWDr1pb3ZCoiQjSjImCzb2PpvqYjXHYvXxn4ex0pEoOSbTpd3fYasb0g0SNtvKKWtcDMGDYKGqhCCdvnBwy49ZawVsdgOm9mFxDjBYW0F9F10oxkOYKPvrg0DpbSS8+6DFcsujZBtM5GxeWSifmaTU/brHX//VW/z4m/N88nzt6S84AP7Mb3+Bn/irv8Z//eXb/IkfvLrn3wyYRxqCphdzbfZgCWTL0IbPWaOnDo6OobFUyylGr5DDORj3q8QDXav91oVuv+IYJRlZJvvaY+pQV8tZTBZtrkwXyVkGUZJRdk3FcE5UkantJ0MdGlD7XdtPMHSxKwn9JNT7e2onVToto+wfg/3WNjQKts7tLdVeqAm41G8XtTP1/E+X5MhjGSeSVA6ZqzlLp96N6OoJhib41MWH86/smpQXHmq6hUm645Af7kpMZZmk7kVYhrbrIJvvt3seJPkmpWqRmCyk+7Zgt70IKSW9KKXhhYSxEp3thglTRZvvuTzBu8tNvFCZklRy9qk5dQ3QixK6QcLtjd5Q30sZCDi8faFCdUTX4eNCx49Zbnisd0KyTFIrWHhRSjdQrpWvzJeO5RommWIY5CydOJXUCjbnajl0TaPjp3R3tGxudpTTZi9UBgIC+GBVOdvtdYh0LA1NU90RhSPEf2kmWW+rvcsxdSaLthJZjzPiLMN+xLExZynTFV2DrV5Eut5hqZYj6McQoFoWB4mynPWQPZk7YkG27JqUXHMYc1dzFiXXxNI11to+d7Z7LE3kdq1nUkpub3l0g4QgTujaCbmSMRRJP000eiFfub7J/W0fDZguOPzut57cnn7WUHRNfvwTC/S+GrPeDlhr+/zq9U2KjsFc+WQS5jnbILdjHQ6TlHvbHgXHZLnh0/Yj7i37zFcc3jhXJU5SelFyKvHjTuiaaius5Cx+87Ya/3or4LsrLTq+KjR1guTIHQIFW833ra4yTdjqRMz25TP2QjdI+HC1g64LDF1waSpPJpVe6klrOe8Fx9S5MKnO1DIDy9C5OltgruSw2QnphQkXJvLkLJ2P19rEqWStFSq2qsZvvcSUlPK3HfYDhRA28MaOH70rpfyBHb83gX8d+ALwLwB/FPiPR31/x9SxTY0wzoZJp6Jj8sJskTTN+PZyi26Y4kcpH651mCjYe2ZihRB0w5h3l9ss1pyhu8FhEaeqKpxlGZ0gpuQYXJ4p8JXrW4AK1HcG2o+iklMbUc7WsXSNThD3beZTokQdBi7q+eEDM19RzhsDFshxIm8bmIbg9qqHHye0/JCb24K8Y2IaGksTLvNjrhRGicqALzd8qjmDyiFsvp8ES9dwLQ0/Ui0ZnUAJ9FmGxr26RxCnLFZzY+vJ/8fvrfGV61sEaUYtp4TjP/2IM+Bp4+Zml7/79ftstJWTxVTR4cdenzvRA4FyUFR24aVD3O8gTtE0Qc4ykMhdiRDX1Eky1UM+0xcMPWyve9k16YXpY25noyBOM+IspWgbBGmKqeu71oaSY/Clj7cwdMFU0eKlU3BobPQibmz2cC2dmaI91L/KWwbdMHki20K1YZhD5qpyEokRQhyIZt4NE756e5Nv32ux3PSZKzkYus7r58osnRKTbC/8xX/8AboQ/Lnf8eLY3/sTS1V+6KVp/n9fvs0f/vyFPavfql3KRIgctbx1pH3s7naP79xvDosspX7Q6MeK3ZuzdJWg7IQ4ptLH22t9mCk5rLYC8raOoWnkbZ2bG13ubPVIJbyxWOYT56tDF7uNtmIAG7qgGyaPFQYmC8qtxtBGL8RUcibdMMExtZEPaKutgHcfNNnqREyXbFp+TC9O0IRgsmBRzdtsd9XvLk3mT1z7cbMTstLy2eqGfO7iJBcnc3y83iWMM8L0ya1Olq7uQy9Mh8/vdjekHSQkaTZsh74yXRiynS9M5AiT7MBrnGs9XBeVZX3KbNkhzSTvL7dYb4dU8yaTeRuJoTSzhFDzZLNL0TF4Zb7Mne0emhBn4qCQswz8KOH6ZoeibfBGUualuRy2oZ+ayPkA6+2AL13f5DdubjNRtPnsxRoXp/Lc2fLwY2Uxf1z7eNyP1dq+0k0t55QJhqmrVreBo54QSii8EyRcnSmyUHH5YLVNkqpCxsweLTe2ofPibEk5Vx8hCexFKT//zjKWrvG9VyeZLNpsdSPlyrXH2jBVVMm1lhehC0EYq7b2as7C0AVpJndJOriWzouzRSRHd7QcvN+gXcwyNGZLDh+vd/l4vTMsRu/UWxNCMN03lZituLx5rjI0gTpN3N3q8TO/cYdm3zyi4lr88KvTz1RSagDL0PjiSzM0/YTNTsDN9S5/besWv/3VGT5/5eQLzJcmC8SxpBPFbLR9bm/1CJOMrV7IVidgoZYbazH/qCg5Bi/OFQmTjJsbHe7VfbZ7IVdn8uTto80HKVXhYLJkMVOy2e6q2PNJa14riCk5Jt0ooWgbw5jXMZUTqH2G5uhs2SHJpOoKu9ugE8RcnMwz2Y/Ni47Jzc0uBcfAtXInwow9Cg41K4UQM8B/AMxLKX+HEOJl4HuklP/VCC//11Di6X+h//8vCSG+BHwF+HeAa6hkVSKE+EXgbxxkbLomuDpdIJPsWnQH7m/XZoq8/6CNlND2I/w43XOjSDN1EJwsWmRjkHcfOAB0opS8rWyR40Ty1lKVuhdRzT2ZkTVZUO0Mg79ZbvrEiWS7F1LNWUMLzJ04qdYqy9C4Ol1kuxPyoKmjaxoXajlafsKV6QKOMbr446jY6AT9FpKYnKWP/QCgaYIr00Wl89W1mSoonTLb1Li37WMIDUMPniqcPwq8KOH6eockk6Rpxo++OcenL06eqYUP4MO1Nu0gJkwkry2U+Im3Fk9MU2oAdV8ef75HhW0o1w/L0Ck5Bn6cDZM+uiYouxa1vEWSySGr4zBQVXwLTXDggN/UNfw4w9A1phwTP1ZMIstQ72MZShdISqVFdRq4Vx+07qbUvZjL0wV0TVWWRgl2ztVyLFbVdX/Q8JgpOURpRnIAXYbVps+DesBWJyJvm5yfzPOFa9OHbpM4Dvz6zW3+0btr/KkfvjbWNuOd+JM/eI0f+ytf5m995c6+rKnzE3mWavsXPkaFEPQTrjrNIKYTpmhCUHIMXpgpDgs6oFq2ds7bncjbBlemC8P3PFfL8fF6h5af0AkS5ioOG+1w2BpddEw2uyFzJZfzE3sXBA663w1alw5yTTq+srRX7b4JcxWXac3hjXNlLvb3grny/lXY40Y3TAjjjIJl0gpiNE3jtYUy272I6adIEQghuDRVGK6HSZqx0lQale1+kL7Xaw56iHQtnSvT6tDsRykb7YEaRMBUn6kCgISCa9DxE5YmXC5NFri11cWPMrww5cU5i5fnjoflcxhIKYmlZLZsEyfK+WzwPU8bt7e6NDyV/JcSMgQXJgqcnyggkGja8SZQvShhpemTSVhuenzqwgRTfVbkTlyYzJNmcri3V3ImW52Ikmvsy15WDrdHmwNJmqmiiCa4W+9RypnD9WkvOKbOy/Mlgjjl1mYPiUpEqVbZIlLy2HjHGaO2/RjXNGj1BdkVw18o7Rup09tDO/fabJHL04VDxSTHhe88aOJHKUGc8cmFCj/2xsJQWuFZxFItz//58xf56s0tfv7bKxRswbfuN08lMeWYOqahkZMGW52IqzMl3ltu4ZoGlZzBtTNmFDF0T0clLA1NU47bQozlDD5VdMiZBrW8zVzZfeozUHZNagWLad1mpuzwzr3GMObd6oUsnJD74igYtPiuNpV+nx9n1L2InKnTDRLiVDJRsFmq5XhhtnjqJgdPw2FH998A/zXwf+v//8fA/wg8MTHVZ0N9v5Typ4UQg8TUVaAB/DXgx4BtYNC61wL2aHQBIcRPAT8FsLS09Ojv2M+ZueKavH2xwoNGwHTRpmgbdIIYXdt9oNKEEg2UGRQcnakjLpamLnAtjaLj0gliemHCXMVmtpxjofr0h2TwvQbImQatJGa+7AwF0E+zaqgJmCo5vLkoaAWKwuz3K6zH8RDkLFXJmq86nKvmhuLQ44auCaZLij0TJhkP6h7VfELO1sn354uUknaQYBvagYL0OFUBtmtqvDBTJAXOVRw+e3nqTAi5DtDyY+XcVMtzp9xjsQq/8/W5E09KDfCk53uU1yr2pCTJJPOPHCKrOYv5ikuSZZw/ojPIUYLlF2ZKZFlGO1B6EDurwQOb824YjyUxehiUcyZrrYCSa1LNmViGfuBWkMHfuqbOfMXFi5Kh/s3TECUZcZpxoZajF6bMlx2+cG2K2hkKatNM8u/9g/dZqLj81BcuHdvnvLZYHrKm/k+fv7AvNX8ch5FrMyW8SAnsXpjIs9UN8SNl8S6EapNX62JCwTZHZjEYmuDCRI5uELPRUS6oOzUIXUvn5b5uwjgPVQd9r3M1l/lth61uRNE2mC07XJrM73LlOs1D33TRpuyaJJnE0pWAuEoCjxZjwMPx65oYss/PVV1yttF3PhxfwcTUVVIhzSSupZO3DV47V1Yudv2Wr51jUqykCNvUSNIML5R9kfnTu+ZSStp+gm0IXp4pstEOyVs6n7483rbdw2BQXJktuayVQmQGL8zmeftibUfi5HivnWmognCcShq9iOqOar0XJY8VMnbum3Nl94ntNuOCa+ks1FySRJK3TZJEiYw/bf0aJKh2MpoHOm/HibxlKMYHKolXzVnkLEOZVJjakIX2KE6bITWAHymNz4tTBe7We8yW4cffmD9T+/dhUXJNfvDlGVbbIdu9iGvTRaJE6f0Wnf0TrMeBvK2E92fLDq6pkbc0qgWbav7sFO/2wieWqjxoeGx1I16eK6EJJeI9quP6o7BNndmSrfSWtf0lBnai6Ji7YtrFam5oVnSUtuHjRMk1Wag62KbgjXMVDF2xKVsTisSRt41TkRc4KA50dYUQhpQyASallH9HCPHvAPTZTaNYYvxB4Gd3/kBKWe+/999HaVf9PDA4nZSA5l5vJKX8G/TZVG+//fZIZfYoybjf8MhbJl+4WiBvG9R70bAqeHHqYSucEMpadb6sNGcaXnykHtc4lQiUNsv9bdVCtNGOMDTVllTLWwd64M7VXCZj5Upy0uJ13VBpKewcsxCCpVqOlaaHBCSC1xcrSoj1GJg/tbxFztLR9xGVHjeEEDS8CAm8uVimE6YMPnatrVgbQsDVmcJIlfs0k/zyhxs0ehHnJ3P8yKtzfO7KJHnbOPH2j/0gpdI/+3i9Q97W+dzlSf7w5y4gEOTPkEPgQdHsRfSihJmSs6sdMEkzojTj4mSeWv50XZ78OKHpKQ2tnetCkqqWgaVajqJjnArlfaMdECfKNnu27CBRrnMrTR/H1A90CAbFLsvbxsjP8v3tHl++scVk0Wah6vJHLk1i6CezDhwEf/s37/HhWoef/v1vHft9GrKmfu0Of/yLe7Om9kOaSba6IbahPbXlyLV0Pnm+1j8A6ZQckyjNcEydbphwa6OLEIL5ioMXpdzY6DBfcZ/IogvilNVWwLWZEpWcxVorIMkktrn7fj46p5peRNjXcDvuA1cmJR+vtXEtg5fny/TCGD9SrMazctiL04zlhsdbSxVWW8o59uZml7myQ5hkTBzQBGUQA4XJaPpbh4Gha1ybKRCncpjwmi46+7abzpQcml7EVjtgtelRyztU8+bY7cVHwUDvsBvG3N3yiNKMT1+o8a9+bxFTFzjm6e6Ry3WPL93YwjF1Pn9lkh99dRYplZD3SbHpB1DXpkqcKgfa5aaPFwr8KNsVd++Fk0g6mobGF65OUXZN1toB7620kFLyhWtTuCPM/ZNOjJZcnXagUcmbZBnc2upxdabA2xdqREmGa+n0QsU+Hei8nhXc2+7y5evbVHImn7xQ4w9+9qKSPDhDYzwqNE3jX/nsEk0/pmgZvHO/yd3tHiXH4AdfmjmxGH+pplqtkzTjw7UOqVTn0HOPSKtkmWSrp9qlJ85AcrCat/iXPr1EFGfomuDXb20TxhlzZZvZsoumiQMx62xD45Pna5i6GPnax2nG/boHKEZ33jaYKTqA4H7DH+qrniXkbYNXFsrc2/bwo4yWp7p8DE1g6xp5S+ds+HA+GQfdOb8GvAX0hBATKMFzhBCfRbGbnoYXgDeFEP868IoQ4k8Cf0VKmQKfB95Fsa9eFULowA8Bv3HAMe6LhhfhhSlplrHVDcnbxtCNBiB9RHhX1wTdMGWzL9Rr6uLQQnFBnPLuchuJ2sRMXSNOM+5s9dA1DS9KuHQA9oMQo7XMjBtpJrmz1Rv27O5kbLSDmAeNoC8qCy/MFo91QzzJzTZKsqFg84drXbZ6IUkqeet8dVhvlJKRKKdZJvnq7S2+cmOLnKUqKJ+6AOVT1qF4FB+vd/nnH29Q78ZcnspT9yIuTp4OQ2dc6AYJv3m3MbR73dk6ttoKhuK/ZdfktOIkL0r42p06G62QTEouTz80Ddg5xqJzOvciziTbnZB3V1qcq7lIqQ6YQax0aCYK1oHXplGf5TBO+YfvrrLc9Jnq2Jyv5cbK4BgXWl7MX/qnH/HpizV+52uzx/55ry2W+cEXp/mbX7rNH/7c/qypvTBwSATVDve067kzUappAkdTGmjX1zvc2fKYKtoUHZ1OoGpVm52Q8xNPSkxlfPNugx94cQpd0/r/KBHv/eBHKffrPqACyONOTIRxxndXO3SCmGuziv1h6xqGzoEF+48LQZzx/kqH5WbAQkWxTPwo5e62p1zG+uypg+BRJvlxwOhfx1HQ8pW48K2tHmvNgFfmy7xx7uQ19kC5u/pRytfv1AnijMmCxXo34OW50xnPTrSDmH/83ir36j4TBYsXZgpMFU9nXHGSsd4KVWumo0wKWl7E/XrAfMVhvuKcukZYlGS0/YRMqrX74/UOoHR6rs6erZanjXbA1+820PvyA7W8Ok9kGeiGwLX0vti5itM7QbxLb+o00fAi/pd311hpBsyXHS5NF0ZmST9r0DSNWt4mSZV74q2tHn6YYhqCH7g2cyKEgkGrdSvOuLHRZaMdEqWSF+dKlN2H+/hWN2S931I9cH4+bdiGSvystQLafsyDhs/trS6vL/b10YQ4kID3QePEhhfRC1UMs94OWGsFvPughUTy+mKF9ACyEycJwUMduzBNeXe52Xe2zbg8VSCVcHFy/EZk48RB07aDJ+lPAb8AXBZCfAX4b4E/8bQXSyn/rJTyR6SUPwq8D/wK8Jt9jalzwN+VUsbA3wS+BPxh4K8fcIz7Im8rZ4woVVnYgQDjVNFmpmzvaU26c+04SmW0LzFFnEgWKi61gsW5am6YvT0rVddRMCgOPapr5Riasql2DSbOWJXmqBi0YoKyBY8T5STV8WNmyw4TBYuFqjvS4hckKVGstCg0AZem8mfy/nfDmKmCjWUIagXrme79H8CLEqYLNjlLZ6pk7wqIB/fgtOUXojijaCvnnbJr7mIPaDvGeFrjnCna6IYS1JZSIGEo9GoZ2rFWkXphgmsalB2TgmOwdAxOn+PAf/5LH9P0Y/5fP/byiVXT/+QPXaXlx/ytX7tzoNfpY5hTYZJhaBq1gompC+bLLmZfW2qUJJkQak2dyFtMl2xmSjbVJ1iF7xzrSaydErWHCwRSSsqOwWzZZqqotB/PAmS/FiqAuX6MsTSROzPr2jiQs/RhUW+27GCZKn47DWhCEESK7V7Jm+Rs48zskS0vZrJo41o6OctgYczmM4fBgKllGRqa0Jgt2xRd40xYrw+gC8FMyabgGEwUbI5ZeutQaHgxecvAi1Jmy2qt3Cv2fPjcn50Hvx3EVFzV7ZB39DNlUnJcMHSNq9OFPhvJJE3VGeAkUXKN4T+mJnYRMmD3HDlrZ5GCY1Dtt/YvTeSGyaLjTuwV+vkCIdR/e1FC0TEoOAYlxzhTwvE7UevHUNMlm4JloAtlgBYlKY6hoZ+h9WA/HPTKTgkh/lT/v38O+EeoOChEsZu+M+obSSm/t/+fb+3xu58BfuaAY3sqCrbBS3PKweNBQ1GvB20k+2GqaGMZGoauHWkiKsHPAgs1F8fUH9rI2jpelJ6JDPUo0DVF799rzCXX4lMXa3SCZOim9FsFg7aGJJPoQtFB4zTj/GQeU9cO9H1dU+fCpGJ6zFecU2lDGAWXpwqkmeS1xTIvzZXP3IZ1GJRzJldnClyeznNpancVca7s4PZdPU8zqVp0Ta7NFDhfy3FpqrBbc6Okxqjc/k5njIau8ep8mZJjoglVfRlU2fQR+/cPi5Jr8umLNRpeyBuLlTOZ/H5vucXf+rU7/MufXuKVE3RMfH2xwg++2Hfo+9yFkV83W3Jw+gfGw15P21D33+gnpSxTV7p5mXwqdd42NV6YLVByTTRNjCRe75g6FyfzRElG5QkJrHHBMTWuzuTJmcphzTb1MycgmrMMrkwr2+2iYw4TgjlLJ4gzKs9IjPEkOKbO91yaYL7i0vAiposOhVOyO784mafimlQLJkiYqziU3bORpKzlLa5MF1isurw4Wzq1awTq+T5Xc4dtwtdmCsyUbNbaAbbxUKvzNOEYOgtVl7JrkmaSz12eIM1g8QwmTqaKNpmUXJjMPeZOOoAyMsjTDZIzdbaYLji8slDiynSB1xbKOGeQ7XwceHm+TMU1uVtXRi+PJoaOG0II3lqqsdUNmSw+LhszVbSHen+nzV58FAXb4LOXJpivusRp1t/bjD3NOMaJnKXyBaDOva8tlrm50aPoGFw4w50jQjyMoaSUzFcdiq6h7ruun6n1YD8cdAbqQIHH1RLP3uq9DwYOHqO2zSlr86MHG7ah8erC44cUx9TP5OHqSXjSmM+fUQbDOKBaMNXUf32xcqT3uTBZONOLGyjXqk9fnDjtYYwVtqFzbR/quDggNfi4oPcdIfeCpokjad2NC9W89di1OgndBEPXeHn+7FL/00zy53/uXWp5mz/7Iy+e+Of/yR+6yu/6K1/hv/31uyO/ZhzzXggxdNDb+TNjBJcC19QP5V6Wtw3yJ0RQ0YTg1YXKyXzYIWFogtf22JdylsEZ6xI/EnRdO5DswXHB1DWmS86pmYA8CXnbODPzVXskhh7E1OOIq8cF0Tc7ArX/Xps5u3tMLW+NFAPYho5dOFtnC9fSjxQ7P8uYr+aYP8Ui9GzZUS53++AsPY+PwjS0UzH62VkUruZs3r5wNhixo0II8UyeyQ+amFqVUv6Fp//ZczzHczzHczzH/77wV/7ZDb7zoMVf/pc/sWdr+HHj9cUKX3xxmr/xq7c4+3Wx53iO53iO53iO53iO53gOhcNqTD3HczzHczzHczxHH//0/TX+81/6mJ/4xAI/9vrcqY3jz/7oi7y+ePoCzM/xHM/xHM/xHM/xHM/xHKPioImpHzyWUTzHczzHczzHczyDCJOU/+rLt/njP/tNXl+s8P/5iVdPVXD2hdkiP/OvfubUPv85nuM5nuM5nuM5nuM5nuOgOFArn5SyflwDOQuQUtLyY0xdOxFh05YfIwTHLuI2KqSEei8aihg/x/4I4hQvSqn0BXsfRdqfS2dZaO75/VaaQC0/JmedXa23/72NMckkQZye2e8K6rn5U3/nW9zd9ri+3qEdJHzxxWn+89/35pl1a9kP7SBGSs70WvUoOkFMlnFi7ZLPwnq+F1pejKaN5oz4LOG4Y7Vn4X4/S/t3L0yI04yya54pl7gBnoX7fRjEaUYnSCjYJ+d++Czs32cZg7PFWUbWj/fO+j0exDaHxUnHGWcVJ32/n60I+pix2QlZb4cAXJkuPGa/Ok40vYj7dR9gl2PJaSJIUpYbPm0/5sLksyeYdlJI0owbG12kVAHXuT2cW6I44962x2LVPROC2nvh+f2Ge3WPbpCga4IXZ4vHbkF7GNyve3SCBE2Dl2ZLZ3KMDxoebV+N8cXZ0pEOSnGinq8XZ4snIqh+GHSCmF+7sc2FyRz/h9fn+NFX5/jC1ckzeeh6ElpezL26B3Cm16qdaAcxd7fUmBekeyJmAM/Cev4otrshK80AgAuTud9Syan1dshmR8VqV2cKYw+Yn4X7/azs35mEW5s9AMJSNpLr5knjWbjfh8HtrR5hnGEZGi/MHtxg4jB4Fvbvs4osk9za7JFmR8imnACWmz5NTxErzip2xgmHQTdMuNN//VzmMFl4toTPx4mTvt/PE1M7kO5IraZHSbOO8lk7Fp6ztggd93d/1rHzdj3t3j0L1/JZGONxYXD/Mik5q1dhcH+k5OyOMdsxRikZhxzhWf2uoNxHf+PPP/ud7Se5540L2Snunc/KNYLdY82yUxzIMWDXvD3GOfAs3O+zP8azG+s+irN/LQ+GwfU+jev+W+tKngwkKhY968h2xKRnFdkR5/zOZ+ao7/Ws46Tvt5BneWaNiMnJSXnhwoWn/l2aSaJERWimoWEcI/Mgk+qzhBBYhsbdO3e4cOECUZKpCS/AMfSxZiDjVJJkGYamYY5g0/0o7vTHOC6M63rvdy2f9Hf2GGnLYZKphUkoa/NRcNhrGaeSJFXXzDY1tDFOkDDJkFJiGep9DztGKRXdGJSd6jgp4kkmidMMQxOY/WrbWZmXUqprCBL7kWd33GPMpCSM1RgN/WDP86P3+bjGOICkPx8kaNrBn71Rn++n4TjX1iSVxNnDeXmYa3mUe3rQ8cHx3e9x4/btO8wunAPAMjX0R25cnGYkmcTUNIwxXrOD4EnX8qTiisHaqIu919zBGINYPf9CMHYmUZpJoieMYRQcdF5KqdhByMf3m0fXjnFd+XE8O3GakaQqvh7nXh4lGamUrC/fP9AYk0wS9+epZWhjb/8b7DumsfsZ3uta7lwLTf1gz/Xg+5v6+J61R8e4ay8x9QPPK9l/j7324XGM8WnjkygWmNwjVjluHPbZ8Y8QQzwJe60Rd+7cYen8+bGfF8YZg9y5c4fZhSUAbEM78HvtXn90juu4e/PWbc4tnT/yOSCTEPbPFYb+MI4ZB27fUTHGQfet45qTe+H27TvMLp7bFcONiuOMLR/FN77xDSmlPNaLcWqMKSHEjwJ/rv+/LwB/TEr59/u/+3eBnwAawC9IKf/TJ73XhQsX+PrXv/7Uz2z0Ih40VPvccVN2l5s+9W4EqFa9H/rC5/j617/O/bo3pMRdnSlgG+MLHN9bbiElCAGvLhzclentt98e6TqOip1tIvMVh4lDUiH3u5aPYnBtYbytCzc3u3hheqBWqsNey7VWMGxRuDSVH5t+RieIh7TUsmuyNJE79BiDOOX6eheAat5ksfp4K+Nh8cFqe7iZvjKvrvW45+VOiu9s2WGqONq83NkaM12yd7UkjHuMvTAZtj88+llPQjdMuN1/Xck1OD/xsMVj3GMcIM0kH6y2kRIKjsHFA7aVjPp8Pw33tr2hbt+1meJYE6bvr7SGrJPXFsuHupY7781B7uko+O5Ke1jhe63vyLdzjFJKfvqXb/Bz7yzzO1+b4//6Q9fOTEvom299kp/5hX8GwPnJ3C7NRSkl7y23AZWUeHm+dCpjfNL9Pux6clB8vN4ZBp8vzhUfC14HYxz8naELXpob7/W6sdHBj9QYrs0eLn456LMTJmq/kRIqOXNX6/xK02d7x9oxLkmEcayVqy2frY4a2+Xp/Fi055I044PVDgB/5Hf/4IHGuHP/Wqrlxqqb4kUJNzfU2lZ0jF2thXtdy53xyEzJZnrEtTBKMj5aU9/fMTWuzoynPe3RMd7Z6tEJEoTgUC1pO2PfccVIO8f4tPHtvNdTRZvZ8sm1Tx7m2ckyyQdrbbIMXEvnynRhbOPZGV8M5v3bb7/Nz/2vvzr288I4Y5Cd++JBnpEBdq6NxylN88rrn+C//4e/fOSW6p3niomCxXzFHdcQee3Nt/jZf/jLwOit3zvnZM7WuTw1vjm5F1554xP87f/lnx/q/L5z/T3u510I8c1je/M+Ti0xJaX8J8A/ARBCfBX4xUf+5E9LKR/92ZGwMxF13H3kFdek6UUY2m5xzvmKi2PquJY+1qQUqO/U6EUnorkxCso5k3O4ZJIjjancv5ZPEzot50xafoxtaGMVIF6q5Wh6MQXbOPbD3EzJxtQFxphFXXOWgWtpBHF25IDUMXUuTuUJ4pTamLXRanmLzU5IeR9R+XGg5Jgs1XKkUlI9wLUoOAamIciy4zcsyNsGSxM5kjQ70LPjmvrwPp+Ubp2uCS5N5emF6YGu5wD7rZUHxULVxbV0cpY+dqHXWt5iuxtROcKzUzjkPR0FtbzFVjfcd3w/984yf+l//Zgr0wX+y392A8fU+Td+25WxjuGwMDTBfMXB0LTHnishBNW8SdOLz8y+9igOu54cFNWcxXo7oOgYT6yonp/I0fYTis74w7tqziKIA/K2gXVC+jG2oXNhMo8fpY/NgbJr0hjD2nEcmCk6mLqGNcZ4xNA1Sq5BJ0gO/NqJgo0QAk2MX8zXMVRMG8Qp1RH2naJjHmotNHVB0THohsmxxvCLVZeGF5O39UPpJOVtHdvUiNPj2YefNr6iY2IaoRJufgYE3TVNcGmyQDdMjrTH7oWd54ec/fDMdRznhXHGILoQQyZh6RD3cLbkYBlq/TlOvWSEio2PyihyTJ0LkznCJBv7uULXBEJAztJHHudxzsm9YPTHeJh1LWcZnJ/MESfjjy1PA6e+kwshLgHrUsruI7/6D4UQDeDPSCm/Na7POylhw7xt8Mr841lPXRPHVlFdqLgsjDHLPA6MY1Mu7HMtH0XJMQ/FFHsaTF07tnv2KIQQh2aWPQm6JrgyPT7xy4JtUDiGg8BMyTkRcdTDBOa2ofPi7MkxNg4TUI77Po+KnGUcOrjbb608KI5zbZ0ru8yVj762HtchYbbs7FslSzPJf/aLH/PGuQp/7499jn/zf3iH/+IXr/OTby2M5TuNA09a8xarORarJziYQ+AkXHumivZI89s2dKaKx3MQmSjYx7I/PQ377TfjWjuOA5omjkUwdycL9qA4rkOLpokDs1wOsxYKIU5E6N04Ysxn6BrXxsTm2u/9nzQ+y9BONFYZB1xLP5YEyn7nh+M4L4wzBhGCIzFej2v9eRSuqR+YJb8fio7JcTw1hiYOda+Pa07uBVPXjjQfj7tYfpI4C5YJPwn83CM/+8tSyk8Cfwz4L09+SM/xHM/xHM/xHM8+/vlHG9yv+/zrX7iErgn+3O94kUxK/to/v3naQ3uO53iO53iO53iO53iO5wDORmLqx4Bf2PkDKWW9/+/r+71ICPFTQoivCyG+vrm5ecxDfI7neI7neI7nePbwT95bo+gY/NDLMwCcq+X4iU8s8He+/oB2EJ/y6J7jOZ7jOZ7jOZ7jOZ7jOU45MSWEmAUiKeX2Iz8v9f89yT7thlLKvyGlfFtK+fbU1NTInxklGXF68t7JA5eO3+o4ret7EsgyOXSjGxeCOD3zVqRxmv2WmrvHcR/HjWdhjI8iiNMTsaWWUl2bs+4oe1LX40lI0oxf/GCdL744vUuX6A99zwX8OOXvv7N8iqNTkPLs28jD2bifT8OztmYcBmdxP0rP6Hr9/FodDkmaESZne4zPQuy4H8IkHbpP/+8FZ+F+PavX/bTOlVFy9tbPw+BZu++nrTH148DPD/5HCPFfSin/BPAfCyFeRSXO/tx+Lz4o2kHMvW3llHFpajwuKaMiiFM+Xu9wYTJ/LNo8ZwHdMOHOlnIGuDg5Pke5s4Ask1zf6BIl2dgcIwYugq6lnYou0Cjwo5Sbm8oRaWki90wIaT4JUkpubnb74uC7HZ7OCqSU3NjsEsYZtYJ15nTj9sJGJ2C9FWLogqvThUMJxo6K+3Wflh+P3b1nnBg4clmGxtXpwqk54H1nuUXDi/mhl2Z2/fy1xTKvL5b5737jLn/ws+cRJ+kn/giCOOXGRvdUr9PTEKeS6+tdTENwdbqIfgbHGcQZ19e7Y3c0OkvYuR896uB4WsgyyY1+bHDSDmhPwlncu5M04/pGlySVzJRtpotn41rtRJio9SjLjt+9+7A4K/vLYTBwLBRCucUdxcntWcHAGdAxNa5MF05lvx240muauu7jNt86Lgxcb4WAy1PH5y74KH6rnGefxft+qldaSvnXH/n/P9H/9x89wnvixymOoe9arLNM8vFah41OQC1vc2Ojy2zJObAF51HGtdYKsIwniyIGcYquCUxdoxPErLYCcpY+FrvZ44YXJUgJvSjh5kaXC1P5kQJHKSW3t3p4UXrsCUMpJdvdiM1uSME2Rk5MJJnEjxK2ehFelIwl8PciVZHzo4x6N6IXJUwUrJG+fxCnarERShQ3bx2PY6Bipqj/bnoR7X5CYBRRRSklDxq+curJW5Qc81BOJVmfUTGOw2AmoRcm3Nn28OOEH35plskxiFVKqQLacSz6SSYJ44zVls+7y02+59IEF4/ZqvagiJKM9XaAbWpMFx28UM3lJJVEaXbgxNRWJ2S9HYwkIt2LlCOVHynW1GYnJEwyZsvOvm5l6+2A7W5IJXcyh/Ze/3pESUaUpjQ6MZlUTjmjzOO1VkDLjyg6BrMl99DP9tdu1wH47KWJx373Bz6zxJ/9n9/lN+80+PTF2qHef1yIkow4y2j3EoI4ZabvKDRAlknu1T2SLGMib1NyzRNNDmX9RTBOJHGaoWs67SCm5cVU89aexaa1ls96J2Sh4p6ICK2UkihVyQjL0Pb9zCjJyKQcHgg32gFNP2ayYJ8JR584zVhrBdiG9lh85u/Yj7wwfWJ8kWaSKMlwLZ21VkA7iJku2mN3SYuzh1X1bhCz0h/gbMkZ6bnduU9OFGxylj6Ww/rua5XgRcmB1iBQ9+Je3SPLJNMlm5JjHvhQHSYZNze7lByTRi9iuxeSMw21Z5yRepyUqlDoWjqmrpH1yQVenFJFXYf7dQ8JnKvmMDRBkKS4pn4qSYZemHKv3mO97ZNmGS/NlU61uHAQDPZvKdW8rPciYLTnpeXHrLcDLF0wV3FP7JCd9Nckr+86OYrA+WYnJIhTpks2Xqi+cxBnpJkcuu0dFmtNn/VuyLmKS22EvaXei7i1qfzFbEMniLMTuXZSSrwoYbMTEacZ8xV3pASPlJL1dkiSZYjhz9SadpjEVJhkfHelxcXJ0RNbKr5U/+1FKZah7bsvnQS8KGG54eOYOlNFC01oe56nGr2IbpgwWbBxLX34vGWZug7PQmLqLGhMjRV3tj1ubvS4vd3b9fNOkGBoGoamUe8pG9X1dkg3TEjS7Ngp+lmmglsvTIlTRUt8tBVlsxNyfb3Lx+sdoiRjoxMSxhmNXnzmqc8AtZxF2TVp+zFJJrlf90Z6XcOL+c5yi+vrXT5a6xzrGB80fL5xt8HNjS4NL8KPRruulqGhaYIkkQjEY9oscZodmKY7V3GwDMFMyWal5dP0Yh40/JFeW++psd/c6PGd+y1ubj5qajkelF2Tgq1TsHXiJKPpxaw2g5Hmox+nNL2YrW7EN+40+Hi9gxcd3OY6jFOub3TGQoPWNUHeNtjoBKQZvL/aGktLWJCkXF/v0hmDZs/ABfJBwyPL4L2V1plrj11ueNR7EeutkF6YMFNyyNs6k8XREqs70fJjvn6nwfWNLqutp8//+YqLa2lMl2x6Ucp6O6Tpxay1gj3/Psskq02fGxtdvnGnwXp7778bJ+bKDq6lMZE38aOMrU5EvRux1Q2f+tokzdjshNzd9vjm3Sa3tg7/bH/9Tp1Lk/k9A+kfe2OeomPws1+9e+j3Hwc0Ta2BaaaKN9u9iOXm7nnQCRI6QcK9usc37zXGth6MClMX5G2d6ZI9TBrc2eqx3YuGLOydyDLJe8ttbm30+Mbdxom0nZqGhh+lWLrGajOgE8SPfa4fKeb29fUuLS8eHgDCODuR52IUbHTU87zeDh/bZyuuSSVnUnINanlz33UxzSTXNzrc2OjyoOGp5HWcsd5++vN3UNiGTjVvkrM0TENjuxux3Y2oe9FIrx/sk00/4ut36ure+EffRyquSdExyNuqSDtYg7ZHWIMGaHgRvTDho/UO377XGjk+2Yksk/SChA9WW9S9iNubPTY7IY6pnZnW2Dh9GNtYuqDoGBRsncmCSmI2vZhemOKFKU0v4tZWl5sbPe6NGOOOG5Yh+GC1zXo74rsrLZres6MVOFmwyds6RUcn6ReKt7sR272nPy+bnYCGF/Gt+y2+u9IeS7z1NCRpxsfrXb5+t8Fq0x9pnfSjlLVWoNaxVshMycY2NWbLzpHZ5Fkm+eb9Brc2enzrfvOpfx8lGcsNHwl0/Jhq3qTknAwn5UHD57srHd5baeHHKZud0daetp+w2Qlp9GIyKSm5ah0rH3LcYZLy0VqXb91vjrwXV3MmZVf9U8tbrLfV/Vxp+rRGXNvHCZXozFhu+nz7fmvP81SSZjxo+Cou6a9NU0WbgmNQzZsUnxHW12+5xJS3o5q+E66lY5saJddktuQQpym9KCGIEj5c6/DhWvtYkz+moVG0TSxDsNUN+XC106dZP3xIBp8/YEvY/WyoY2pYx9gaMy4YuoahC1p+zP2Gh6E9fcy9MKHpRWj9y7Af42FcUIw0ldgRcCAGz3zFZaHqkrN10lQOA/t6L+LD1Q4fb3RG7uMN4pS7Wz3COCOI0+H3HuU+t7yYNMsQAuJMVRCC+OCJsadhwFJoeDFhmg2vlaYp+9UnIUkzOkGCRBImKXnbQEpVMToM4kQSZwd7rZSSRi96LMjXhNqsW35M3jLGU2mUDys6B0UQp2x1w11zxzYF9OeWoWnoZ6ga2vJi7mx7fLDaIogTDF3gWsoy2DH0Ax+qgjglZ+tICYKnf09DE/SilI12yFYnZHBpbHPvZ0fTBFEqafsJOUsfORl9FIRxSjdM2O7Fu4IH+ynrTZikNLwIQxfD5yaIHy9ijIrfvNPg7QvVPX+Xswz+hbcW+Ufvrh3osDpuGJqg4BgYmkaYpNzZ6nFvuze8T1km8eOEKE0J44ycZRAnkuQED7WaEEzk7WE7lB8pxuqdrR6ZlKSZZKsbDu+1pgkG25+paZzEUI2+VbmhC7Z7ITfWu9za2l2g28mAXWsHtP2EQj/YL52BVi94uAcK8fh+qGmCc7UcC2WX7yy3ePdBi43O4wfFJMtodGM6QUyYZORtlUwsueMPzO9u97hf90klu9rlRo0t/CglTFPCRA6T+uOIRTc6QX9OpuzcrkcdVxCnRHFGnKQkqezHGYcYl1D3reyahHHKRN4GKfna7Trfut84E0XXwR6iabDRVezdTpgM2QUF20DT1N/lbR0/ymj78Z5z7zjRDmI2OyF+lDJXchFCsNmJuFvvPTMaMm0/punFdMN0l37Pfvv3AL0wIU2VPpmlq5joMPHWQRGnan1Xe7HSiXqaaYih71j/dcFGJyKIUhq96MjzXQjQ+28epSn1XvTE+EDXBGmWcW+7RydMyFsnx/LzB2ebfmwcp9lI89QytOEzmbdNDF0l/N9dOWQhWarrZmhipLhBSkknSCjnTJYmcuiawDZ01toBH6x1uFv3Tv55k6hiUyaxDRUvPxrLakKQyow7Wz3u171hF1MtpyRBnhVW5bORPjsAFqs56r2IsmMQp9nDA7+hMV92CBP1YNS9iKmCw2o7ACkUrTRKj63fOcskmqY2uF44SJ5lxKnEMtRkme5XjVdbSkNFCHhproSuiWdiQmWZ5LsrbTQEMoP5ykO6Y5RkmPru7xElGbe3ekipevlLJ6D5M11yuL3VY2lCUUqfRmmP0wyjf/0nCzauqZOkGfcbPlKqbPRAJDNOJGHy9DamKMm4sdHl5maPomOg64IXZor4cUp+B9skTjN0IXbRmwf9+QAzJZtzVZe6F1N2zbG38j1o+Fxf7+JFCecn8ixWc1TzFrahD7/joOL56HW83/DpBgm6EHzqfJW6p+Zz5RCHH00TzJTtA1NQN7shyw0fXRNcnMxTdEyaXsTtLY+ZkkMlZ3JpKn/g8ewFXRNUcqYKug+ALJN8uNZBF4K2H3NpqoAXJXy40qWSs5kra7w8XzpTGhLtIO4zPlXCx+wHSZvdkPWWSnBcmMxRHFH/ZSJvsVTLsVBxuDDx5PvRDRNubHS5vdljqmgrjY2ZAnEqKdgGSZqhPfLMdIIY19SZrzpUXOvYNWA2OgG3t3qsNAIWqy5pZnJ1pkAmHx4893tu7mx5REmGocPnr0zS8hMq7sHbZ0Algbt+zKcu7N+m9wc+s8R/82t3+LvfeMAf/f7LB/6McSBKMm5u9LgyXWC25JBm6jr1ogTX0llp+TR6Maam8cnzVdpBQtk9XFvwYTFoaRICrs4U6EUJ82WXMEmZLFg8aKgEvibg5bkShq7x6YsTrLV8qjnrRNoOlVCrVIFo3kIg8MJ0Vxt02TXpRQn1boQfJdza6nJhIs+5qnusunAHwVRRtbPpmtg3Hru52eXOZg9T1yg6xmNaRUGUEWUpQZRxYUJnruL0W2jG+x39KOW7q22CKCNOMpZquaHu3aBlZK81aYCmF7HSDLB0jXMVlziTZJlaE4+CjXbAR+sd6t2YczUXEI+tQTuRZZJMPrw+Waa0GLMMyq7F0kSebpiO1ML0KFxT56W5Uv+wF/P+Spv3VlqEcUqcSeYrLnPl09VEM3WNi1N5LF3j3QctVpoq4bRQcZnot8S8NFtCotbsnKWz3PQoCIOWF4/Ugn5UZFJyd8tjpamK1nMVh+myRdm10YVGN1Tr4lk+K2x2VMJ8rR0M9btGeV7CJB2eFQatlKJfLDhuuJZiyhYdgyzL6EUZd7c8Lk3t1h3KMkkqJaauYeoaV6eLRGmGbWhsrXbY6kb9AkvGtZniofcvIQSfvlDjQdOjF6YsN3ziNGNmR3uZlKpwY+oauiaYr7hDbbcP1zt8z6Xjv26givmbnZD5SpW1lmL83Kt7XNpDmmLnGjTQDx0kBL/zoDlka04XHOarB1svCrbBCzNFJovWSOSHrW40ZOAPYllL1wiiFEMIemFKkGQUTmjPbHkx7UAVVufKDlEqEQKqj7SlC6GSUGE5wzV1ml5EvRermOAZ0auFY0pMCSEKUsrj6S16Coq2wUY74Ndv1ZkoWFydLjDR78EVmkAXgjCTOIbqJS/YOpkEXYhjF4dUAYFguuSw3grQNcHNzS6mLrgwkcc2dC5M5gmTlJubqgIyWbBPfdMeFRIoOAZ36z1cU0frb5ADke+CY3BxMr/j7x9mrqdKzokIUectnfmKy9OS7lJKfvN2nZV2wIVajjeXFOsgbxvDLDSoyuxU0SZOVe9uboT+5Uyqw8NEwUJmkrmyOhQUdY0oybiz2aXeCzE0jaJjcmW6MDxY7LxmmiYo5yzKY9bMGCDOMqp5kyRLKbvGrkrLvW2PzW5AGGeUXPMxbbCBJosEHMvg3BFEam1DGx48pJTc3fboRQmLldwTA8J6N+LOloepC5b6cytOJZWcSZRmzBSdxxb2w8IytF3zt+XFPGh65C2D8xO5fYPFO9s97mz1KNgGF/tJsiST5GydgmNQdMxdAcdZwFTR5vqG0rAp2gaZlGgIdkxNDlLT6oYJ76+0AKg+JdBMU4kuBNW8ia4pXQrb0LENuLfd4537TQq2wfdemcTuH2oHY5kqOMyU7WMXW01SiWvqFB0Dy1AsFsfU6YUJH6y2SVKJRKIJ8ZiY58PnW1DL29SOEHgP2DtP0o+6OlPk0xdr/OzX7vF/+b5Lp5oATbKMmbJDlGYIIYZJ7MFaG6Yp7y636IUJL8+XD3VIPiwGY5BSteVXXJNOLiFMVCX3ft2jEyaYusb5iRxlV+lOnaSpxWDmOKYKXus9pVH2oOHRDVUirZq3WKzmcE2dD9c6bLRD4jTjraW9WXXHAT9OubvdY6m2/7r4JB2SMEm5W/doBzEl19xTIzCTklrOhpxiYgghjqzrsheSLKOWt9jKQgqugaEJ7mz3iFPJUi1HKiX3tj31rE/nHyuuDIr3AoFp6MyMSeMrziQlx8SPUhxTo5IzHzuQDfYoS9eI0kwd+msPRdLlw6WIqaLD1BGmsopfBNW8Wgs1KeiGKbYudumzLTd9ml7EVPHkhdEH46gVTNbaalw7yRU718aSq3632Y5YzfvDOCRJs+H9Pz+ROxa91DSTIGC66HB+Isd6O1CaU9setqnvihd34jSv7QBJlpGzdfK2jmloTOSt4X58v+7xoOGRZJLJgs2V6cJwzkr5cD6aunbipjWDGGytFdCLVPFtZ4yT9g0Q6t2IjIyFSo7zEzksQ93/qaJNoxdSy9tqDzlia3c1b2EZGrc2FSN259sNDH786KEZg9YvfJqGRu4ExeYLtkHBNkgzyUYnUvdxj78bFOszKTlXy2EbGne2e2hCnY2nCjb36556Jg8UXSqEScZHGx0ans3UCHN/Jytr8F9xljFbsdnshORtnfwJibCrMQwKmRqGrjFT3jv2ub3Vo+0nZFJScAxKjsl2V7H7VJufR8uPmS46Jxo/HRTHxZj6LrB0TO/9RPhxSqMXEyUZzb4IWC1v0Q4SHFNjserS9GO8UCVKFqu5kaqZYaL6y4uOcaiqm2VoTBSUaF7LVwyXMM1oeTH1KKXiWhQcgyjNWKy4rLVCcqZGJ0iYKx/mSpw8dE2wWHXxwpSya3Kv3qOSs2j0BcM3OwHTRYu8rTZx29A5P5HDj9LHRFellMdS+TF0jYuTeXph8kS3lbCv8SUzWG0HvJZJkizrt6Ip8cK8rTNbUj3jgwNIJ4if2rbhmDqLVXc4H0xdox3E9MIEgWrlbHkJUkjq3YipojU8oFZyFll/Y3u0qjrua7ZYdXFNnaszRcquSRCrNqNBu1YvTGn5EV6YYuqCF2ZLw9eeq+ZoetFIrLSDIExUiyDAdi98YmJq8MzpQgwPBJMFCz9OsA2NhYpLO0go2ko4XkpJy48xde3IDhxb3YAsU9o4QZztK7joRSkLFZcgSTnXNzgoOSYzJRuBCmiiNNuVTBnQyE/LkcoxdT5zsaaSSUJV8JTwu8ZMSc3ng4xtrRUQJeqhWX+KxlQ5ZzKbOv3gWj0TG+0ATRPcb/hkmdInWGn5aAjmyg4lx1TMpRN4ZkAFsUKoauFkwSZKVGt2oxeRZqqN2DK0vj5Ol1fmHwrXXpjI0/bjPduqDjrWomPyF37fm8Ok7H74A59Z4k/+7W/xpRtbfP+1qQN913HA0AVzfXbtVjdkobpb1Ha+4hLECb1IqrZvobFc97g8lT8xdoDZX0tcU1cV8G6odGikoUxNTA0rEcyWHba6IW0vYbbiDCv7JwFLV2MUAqI041wthxDwwUqnv7cIqnkLL0owdUHRNpBFcAz9RKu/SPWMhkl24CRxmKTc6ksgLFZyat7sYY5RzVtI1DNznILuRcfk8lSBpVqO6aJDN0hYb6lkn2tp6EKj4yeAZK2lP5aMq+Wt4SFonDHQTNFGE7BUyzFRsPvt4j5FxxwmYLa6AatNnzSTTBQUI3nAutE0waWpPN0geUws/qhrpiosKObq+VoeP1Ii4romqHeVdst2Nzrx5ImUkq2uim8uTuSRQlLep/Wz4iq9lpK9O2HVDRP8SLX4NLx4rIkpTQjO1VyqeZMoTkmkYplM5G0yqTTUBvb2rqUTpxlemFJwDDTBqV7bAaaLDgLBQlXtjQNRcUMXw/a+ME5BKsmFQUzpmDrnJ3PKIOCRYs1xnRX2eu/pot03p9qdUL291WWt5ePFKRqCTpDQ8CLCJBuytCcKFpudENc8vLnBzvHkbYOlWo4ozXbFNU1PudgVbIMtoYpgW92IVxfKdEPV/XAS2DnWQddCL3x8PQFYbwW0+jppKgYXrDUDDF2jlreYq7h8j6kTJilThzASidOMLFV6ilGSYj2l+2KqaKNpgiyTyEztL46hkSSSS5N5Xpg9WbOBsmuSVR/fz1q+Ymm7pk4nSGh5MZ1QyWtcnFTx0bmai9c/Y19fV3yh7V74WzMxJYT4U/v9Cjg1CynX1MnbGvVeQM4yMHXBg4YSltY0uDyZ571ljxubHSaL9vAw+CRIKbm50evTCvU9aYhPw4BO2fSUdeN7y000BLapYZs6Dxoehq4hpWrpmynZqsXHEMe68B4V3TBhtamcAs7VcsyWHLwoxYsS2kHCejtksxPQDRI0TaOw0ub1xQqaEAihAruiYyo3xSjF1AR36h5BnDJfcUcKKgcaTU9LgARxOqwwXJrKP5HSqQmYK9usdyIuTxbohgm/+vEmTS/C1FV7VZrpu5KUA1vTUVDNWwxq1HGacW/bQ0olahmlqvf+5maHgmui3xO8NFeiGyZM5JXA/M5WujhVekkb7ZCyq3qixwHb0Hc5mN2re4Sx0rayDYEXJay2VDKgGUQUbAMvUs500yV7l3OFH6VIFNspk5JLB3DHGCBOVe/0StPrV/73ZhJKKQnijKmCPXSf0jVB0neL6/gJD+o+//zjTS7U8lyayvPKQpnNTjgUx70yfXhb2jtbPdbbIWkmma+6OPtoJwSxagPqBAm1fB5TFwSxSvC0fNWy+csfrXN+osAr8yWuzhRpehH36yp5s1R7MmPsOLHc8PiVjzfIMkEYZeQcXTFJcuaejiVJmpFkcs+AbLro8OXrm2TA5wpPd4fbuaFudILhPZssWKw2fTIkv3mrjmnolBydC1MFBHCu6vZdSRSDYqsbcr/ukbcNLk3mx9bmo2tiF8t1uanaWv04xTIEAsl622elFTCZt9jsBJyr5frMSTG8fnGq3NN0Ibi11SNKMpYmciMn/Uxd8ONvLjz173701VmmizY//c9u8IWrkye+15i6RsU1+XCtg5SqhbjsmkzkLcJEHVzW2wGNnnL2STNwTMFqKzgRh0VQQc3gszbaAQ8aPpudkNmyjaEJsgwcS0cX8O17LaI0pWir1vSSa3Jh8vgPA4Nk6PsrLbIMHtR9Wl7Ine0etbxKlrb9mLt9sfaJgs22F/KgGTFbdvZ0FjyegSpm9dP01uDhWj5YE795r8F2J2LLCzF1gRKnFBT8eBcbGx5P9DwNKunVOzCbYaf7oRCShh/1XXwz1lq9oc5XzjawDZW0CmLVFudaOhMFexj/OH1210ZbrWsl1zjUQdLQtV1r0P26RxBnbHcjrk4XWG0FfHelxe0tD8vQcEyNphdTyz9cWzQhhmMLYiVzsdry2epEVA4puxDGyjXyu2stXEMjlZLb2z1enCtxbaZIJafa7cMk4+52j/mKe+y6owM0+gYaH661WW0FVPMmAhXrgYph7P6Yu0HKVi/ED1OWdtyfvG1gm6rocBjZgqdB3QPVKl6yTb50fRPX0MjZBlemC0P2/IA1EycPzyyVnEnLj0/VeVPXxK5W+rV2QKOnEhKWrpFl2fCMtNm16YYJRcck13eCLuxwn/ajlCBRrWyWoY11DwdVJFltBhQcg5mijd2PIycLal9abnj0+medW31B/7ylU8vb5CxlQJFJlTx4cbaEqWtH2q9afsz9uoe9g50/iP/STGm5Zhl8sNrmXr2HRJK3TBaqLrrWb3kuOZRdc5cT6KhOeQfBna0enSBhpqzYeUrKRbnZxelDfTZDU2tP3Yv4YLVFBvhJwoWJPK0g7mvjqfP2UeatrglWWj6XpvKPJaXivvnZzthUtYlafLTeIU4kjqnxzr0G19e7zFcdFqs5CidUGN7oBCzXfXK2zguzpaHDrKEJpUGra3hhTDtI6UYxrqFTzVnUexETBeVCW+kv1cM14Ji6bMaFo8zG/wD4j4G9bLZOTawgTDK6YUoQS1wLVlvBkG3S9GLeXWnxG7e3MDWdOJE0R1iod1Ivj0rB1DXBew9a/Matbap51fP5ucuTRGnGYE2Nkgyvb1V5r+5zZapAyT2bE2ngFNANE/S++Oq1mSJJmvGdBy1WegH0aer5vmjt7c0eNza7VFyTT16okrMM7mx7SpNIg4GmXNOLnnpv1loBm50QQxfMlhzWOwF5y2Cx+rjQW9uPh9ounSDZt2rRDRPubPWwTYMfeKFMzjL47nKLu9u9PvtFoxcolttOHFZ8XKAOFVKCayox7vMTGvcaPUqOye3NLn6cUrANPlxtM1mweeNcBdvQhn3j7SCm5KhFR+mZjf9wOUj8DZztFio52l5CnGV0/Jhfv7XFVMHpj8ViacLl4mRB6a/0Yrw4wTVUO2A7iA+c+FGOlpL5So5awdqX8TZIRDumxpXpAi0/5qO1DpqmEk5NP6YVxHx3pUUviNF0eGWhvEsUMT3kcz4QfS86JrapcXmfJHa9F7Hc8Idjsg2dW5tdemFKyTVoesqK/vamhxcmZJnk6kxxLGMcB9ZagWL1Acstj8tWsa+dJx87sCRpxvWNLitNf6g3svPetcOYyX4F96Di+DtF4ecrLnGqErW/dnOL+XKOm5s9vDilllcU7CSVzJYdpko237rXpBMkiuUZp5SO6QA0GGPO0jlXdbknfOJMYnUi6l7MRicklUpfyjV1Lk/nqeQsbmx0kRKqeZOwf11aXjx2ppxt6PyJL17h//Hz7/MrH2/yAy9M7/u3G52A//Fr93l/pc10yeZf+ex5rs0cvV1tUKiQUtkdO4bO+8stVtoBad+lUBMa0yWLK9NFNjoB377fJJOSxRGKS+OErgkafoQXpQRxRtHR8eOEgm3QChKur7dpeAnVvMl81aUTJLv0Lo8bApUMffdBA4FG0w+pFWxKrmphfgiVDAljpXN3UhbYrqk/lkR6FOtt5b4VRBm6JnAtlTjpBAl1LyKIEgIEH651KbsWrnX0a9sNEpL0aGuqZehcmMgPY8ZukJK3dKJE6ad8uNaiG6ZM5m0+Xu9QzVm8MFscMpAHSYRGnz3Q9pNhQeUo0Hbs3ZvdkE6Q4MeSWkFZ2S83A65MF9jshuQsAz9O2O7GCKESf1LCbNkZJhGaXsy5p9cQHkOSKX3XzU5EEMWEieSF2RJJmhEmKUGs9niVRE2wjPDEpCwG67Rya04I45RgTh1v7mx3+WClQyIl8yWH5aavmF6Wgb/D3MLUtbGsh/tBuYhL/DjlveUm97Y8KnmT85MFXl80COOUGxtdSo4xnMtx/9/najnOHdvIDodBTCkETBUtojSHoWvc3uwRJinfvNvk/EQOTRNYWo+Sa/DGuQorrYB6N6LeC6nkLMI4G/se3uw7r93a7NLoKfb/1ekC311t912xEzShcbfeJWcZGLpgpuQyW3aYLDqqaJvIpxoFjQpltqTOLu8+aOKYBgtVl6Jj8M27DTbaIdMliySTVHI2nSBGoMTxX5gt8PK8ar0Jk5TtjnJB1IXot6aNLzEVpw+7Gpp91uCdfnJ+tuRwc7PLVjek1HdwtwwlC2EayjyrG6jC/KXJvvaYefSxZRIWKjnVbZJlaJpGNnBu3ewyXXC4PF3Ydd7MMmWeZGgamcxYafp4UcpKM1DnsZNKTLVD7tU9MqkSZvVeRN4yuNHosd4KlTGVrlHNWaQJzE44WLq+J1HjLK4Be+Eod/ybwN+XUn7j0V8IIf61I7zvkeDHKQJVMRiImc9XHLa6EUGSsNoMMDV9GNA+qU80TjO2uyG2qbSfOkH8mCbNdjdko6OYKqNkwy1Do5ozh0KG82UXieTl+RJelBImGdNFtajomnoo98p3ZJmkE6okRJpBztaPpZ/9aSg6Bt0gYaujGCK3t7q8Ml+m0g+44lRRi7d7IQXb4KW5It+811AOG5m6RznLGOqhpJmk5Jr0wscpu49ivR3w5RsbZKngwmQOKdW1aCbxUNdlJ8o5k6YfI+CJemI7NaSG40uUE4gXJbx5rsqFqRwzj9ChKzmLOJUHdo0wdJXAuL3Vw7WUG0UYZ3zyfJUwTpkt2tS9iHeXGwSRpFVOyNs612ZKw+BjwAoq58Yvgj7A+VqO1aY6VA+q3Vdm88RJxnYvJm+pRFmzpzYdP06YKjpD5whT0zB1gaZph9JzKzgGrqWTZBnVJzCFvP7nBXFGJqE3dPdSdPbFist626fsmASJouiCasHSNUHHj+kFT3cvidOMu9vervtt6BrVvEnbT54oYDuY71lGn8WjD8etdCAstrvq+8aZWjfCJGUib5FJZb/thaol+GlMweWmT3sM9uM7cW22yO0tjyhNeWupSpCkfOt+h5JrMld2d+m+xKkkjLP+IUuy2Q13JaYMIfDCBC9Wia1RkfXbd/K2RsmxhpXVXshQ8NvUBLe2umy0A/K2iW2oJELRMSi56gCmaewyHRg3FirKBdYytGHVdapgU7B1HjR9kkRyc71DnEocSydKM948V96lG5GzVWvGcVW7/6VPLfE3vnSLf+8ffJfPXJx4LGmcZZL/4Tfv8f/9Rx/SCRMuT+X5lY83+dmv3uM/+j2v85NvLR7p8zVN6W2ttwPSzKIXJay2A25vdGmHSk9uvuIwXbSZKNisNH2mCvbwmTlJxJmk5loULGPo1BTEGWEcMVdxCRJJK4hZqLqkmdKJPKmkFKh1rN6LKTgm7z1oKZZHJqnmTSb7LNK03wJk6zpJmuzLXlJs3Ei1JKJhGdqhmaT7IUxU3KMBy82AVGY0eioBu9z0mCo41HshcaoEfa/NFGgHCb1QtSRO5m0WDiiGuxdKrkm9Fx3JQVETYOsaOUunnFMaT21fMY+FgCDSaSQxqy2PO1tKEyiTctjeMpjPkwVryJgaBwvkfC1HO0jwo4Ru33znyrRq1euGCaau86DhU+8pAwtDh+miixdmaJpKXvtRymTRYqsTUc2Pvn+nmWJcZVJya7NHwdKwdEG+v0c4ptKAbHpxf8+WhHFKybHIjeFQOgoyKQnihJmSzacuVPlnH24QJxIvVsmy+9tevwCrGAlF28Dvs5unj9lMYyd0IVht+aSppOpadAoJTS/G1gVRnLLZjUgzSSpTLk+phOdJCIQfFjNFWz3HmjaUfZguOuQtnXYQM5mHu/WeEph3TSYKDku13DAZ6Fo6mlD747j38Im8zWoSYBlKzDxKMjph3NeSCtnuRZRzJhcmckip2CiqsKx0UWt5i+1uODbB6VpB7YsSga6pNdiLEixDY6sb4cUJm234xPkKfpSQSp3Zko1rKa1D1aoa8vF6B8c0aHkRU0WHojPe62bqStOuEyRMFmzVLdFfU29tdnnnXhMvSpjMW+Qcg7Jj4Jg6n75QY7mp2o0Xazm6QUzbjxnPcUay3vK5OJUnycDSoBMmNLyYKFYSHl6U7Iqvbm973G94pCn86CuzfGKpynsrLc7X8pRPkChSdAzlbArc3Oiw0goouyazJZuNdkTO1HEtHcfUuDSVHyZyBwVMKZWDfJRmlHPmgU2kTgNHmZF/BNje53dvH+F9j4SKa1JwDCaLykVhpqjEcRcqLhpwZ9Oj5BrMlV2++ML0UCD3UUgpeW+5xZ0tj7yt89b56p6Vm61uRJJKtrvR8GD7JFi6xqXpPK/MleiFKUXXpOkldINkV8Xy8nQBt9+KuNch/m7d49ZWl/VmQN4xOF/LcW22eOLJqcmCTcU10YTk/dU2H611+Xityw+/PMNiLcfbF2p8uNp+2FcsBGmm3FmmCvYw0bdYybHdC6nlrT17kB/Fg4bHL32wzgcrbWoFi6mixaXpAqvNANfSH7OZBhVcjVLNquUs/ChVmhw5i6YXsd2NuDSVp5qr8tpied8e5cP27d7Z6vGd+y0afsRnL9a4Ml0kZ+kkmeSD1TZb3ZC8ZRKnMWmW4ZrG0C3Ei1JmS87YDwyPIpPw7eUW662QkmPwAy9OUckpl4s7W4oF5xo6nqmRSiV8mKaSuYrLRjug6BxNcE/XxNDB5UmYrzhs9pPFA+p1lGT4UcJmN2SzE2IbGm+cq2AZKsE3eP8kzXhvpY2U8OZSmYuT+39e248fs2sF5Qw67NPcB1NFmySVWIZGsV+tmq+4bHVDGr2Ees/HjzM+d7lGmMBC1cXSVZtHwTL46q06SSpZmgj55Pn9S9dJmg21JcaJ2bLL7/3UIgIlbv+d+w16YYofpWz3wl2JKdfSmS07dELljvfoepZJyb2GR5xmfLQ6umfG/YbXd41MKdgas2WXharLXFlt0n6U8g+3V8gyhm6SmqbcNWt5iyDOmCu7am84RtHv5abPO/eabPciXpwt8j2XJshQyeTKWpv3ltvYloaWqISBayqNrmpeOarNlJxjT2xYhsZ/+C+8zu//m1/lz//cu/wn/+Ibw2uy1gr4t/7ut/nS9S0+d3mCf/93v8rlqQKNXsS/8bPf5M/8T99mqmjzfVePpk/VDmK2uxH36j4zJYucpePHGTqChYpD3jHI9dmwBdugHcQnrpNwZ7vLO3eVUP+bS4pN+2s3tugGCQtVl/mKw2LNpegaLNZcXpmvHPu6/CjKrslU0Wau7GAKaPdF2YP+WrVTX+aNpQotf+/rmPX3nlubPaIkZbroMFlUosTjMhCI077obcbQ3fZ+3UcXil1TcHTeW2liGjovzBSYyFucm8iRs3TubPUou9ZYklKgDlRXj8B2yTLJV2/XubPlkWYZX3xpmtcXK0iUvfd2N+SjNbW+nZ/Is+3FpKmStV2sutR7DxniEwV7aNozDhi6RhCn/OrHWzS8iFfmS3zuyiQCuLnZoxfFdIKYIFJ6eNdmCuRsnamijUQVFqZLqth3UH2iKMn4cK1NL0jY6ETMlHP8jlddbm4qpolEoAlB0THY6jO2XphVrmW9MOWjtQ6V3PGagHhRyq/drDNTsnlxtsj5mhIQb/ZUIkJoyob9/ESe6X4L5qcu1jB1jeWmz3Y3YqmWO3an0G6YMFd2mSraNHsRrq1Tcy1KeZNWkPBrN7doBwmfOFfhhZnyibNJD4oHDZ93H7Ro9CIuTOZ563wVp6/B1OiFfOXmNmmqtCGDVFLOGSBUq/xGJ1Ts52PaA6p5xcrvhQkbHVVYF0IwUbBYawfU8hZxkhEmGZ+7PDnUckvSjPeWW7y33KJoK7bzm2Mwl1CFfeVuudoKiBIlbm4bOpNF5QzrlnVAdRVIKbFN5Q6oaYIP19r8ykcbbPf1pl6aK3FxzO2PA+xkzQ8S0wCmpjQlC7bBuZpL00+oezFXZorMll0u9jsMGr2QX/xgnTRVc+T7rk0dKQYKk4y1Tohj6QxqzXlLp+KaeFHKVF/vdydWGh71rkqMRVnGF65N8db5Kq6pH8s12w9LNcUi3GwrSYOqazFRsLk0lUeiRO1zlkHRMViayGEber9LJeJcNcdmN+T95TbtIOb8RI5XF8onWig7DI6SxbgLPLaLCyGmgdYR3vdI0DTBZNHmlT5tcSfhYabkcHW6wLYXUXEt/CTF3idozKSazKAq/uk+ZbRKzmSjrYRQRxF5FkLw4qyyk95ohax3Agq2znpbiZENGBq28WS6e5RkxIkkTDPsVNmUJkcp9R0Bhq5xfqLAB6sd3L6Q6mYnZLGmhOVnyg6rzYCcrSOlWjRnyy5z5YeJvHJOJRSjZLRWHj9KMYSGaegUbJO5vphiLWcd+ZA5qNoM9R46IRN5i7afcHm68FThvMPAj1N6YUIUZzQ8VfVS9GUlQipQbalTxYzzEzmW+qLxkwX7RKzIQSU5/EiNU9egHSRDh4sLk3mSLMM1dJy2zlTR4tpMkZytKsKH0WU7LAa6ZQMMnqXNTsidrR5b3ZC5ssNEweHiRJ6ZHRXPIHlY3XlaW9mgwicPwPLZOaZHdWdqeUsxEP2Y9XZAwdGZyNtcmizsGmOUZMP1KHzKGA1do9BnNY4bmiaGzpt528C1dTSgtEcFbrbsMFt29mwzTfoOUkn6MIAZBXFftyqIFfW7ksvY7ETD5GWcSS5PFrF0jUrO4uW5EkkmmShYpFK19B33QQLUPWoHSZ81FuMn2TA5N9F3H2r7qqLlWjqvLJTRNGWFbRvaiTnlfe7yJH/6h6/xn/xvH7PVDfldb8xzfaPLz371Hmkm+X//7lf5A59ZGu5R1bzF3/xDb/MTf/Ur/Om/821+8U9//5HaDNNM7bNSghBKR2Mg5ouAibyFoauWrqmifSrinUH08HnLMknDi7BNnZKr4oupos1nLk6w1Q25Ol0Y6sYdtxPkThi6xguzRcquwUY75N3lFkXH3HM9myzYuzSSdiKTkihRbm1hkvXZwOwbCx0GaSbJ+sNyTJWIMHXBYjXHZNFitRlQzSmdo7ylM1V0mMhbCCGGrSl7aYScBiRqbW77MbomWG8HnKvmEEIb/v5CX/9xumSTSkkvTHllvkQlp9zJjvPAEEQpnX67YsePlXuopfPCbJG2HxNG6n7bpsYr8xVsUxtfAjJR1vWGptoCP3t5gsWay71tj5JroevKoOTlOVUkGqwxtzZ7JKlkox0yVbCPby3sT+lULT68MFtguemzVMuTZpKyY3G+lmOxulu8frsb0gvVntXwomN30HUtfZi8e22hTJpJ6v148U7fyTtv6sM98aST4gdF2E/sdMMUr89guTipkrNl12KplqNkm7SCiNmSw/mJPGXHIEolF57gdjxO5G2Di31mrKlrvDRXImfprDQUu6dWeFhMd0ydVS+iFyZ0wxRD0w4U04wCKaGas4bnE4Br00UcQzmha0LpNoVJxkzJGT4zG+2QqP8cDnSqTiLBMpB4MTRBWrTZ9mOyVHJxMke93xo8+B6DeGy1HeJHKX6cMZM6pJnkKEuRlIpwYOra8L0MXRtq2+21rtTyNo7Zw7HUuiyEGP77pDDQEF6ouMyXHe5ue9yve0wULCYLDvOVnNJZbYXDv9/qKnmdIM7o5pWMQNx3XR3slae8VT4VR0lM/WXgnwB/75Gf/zDwvcAfe9KLhRAXgK8CHwCRlPK37/jdPPDfAQ7w/5RS/uKog5JS2XAbmqCSNx+h5vUI+oc6iRwKh+0l+qlrgpdmS7imTiVn7usEMFNyRt4wkzRjvaNEO69OF1UrUZzyoOnvcmYaBedqLrqm2kRMXWOyaD/xUJD1NzBTP1wb1dNQcAx+20vTfPn6Fq6p3PYGGCSM4jTj440Ofl9wb2dFcCDWGMYZtYL1VPrrxck8fpyyNOGyNJFjoa/udtDARUrJdi/C1LShkODdbY9OkJCzdS5PFSg5qupxflIJj2eZZL0TIBDKPW0MC9XLcyW8KKHei5ktu+ia4EHDwzGV6ONsxVHMsH77ys1NVWW2DI2r04UTObzmbIO3L1T59v0mM0WXom30W28Uq2OxqrL1L8wpttdWN+T9lRa60E5cqDuIU9qBon8PqKtV1+SDWGl2tLyYczWT4iOuO+drecI4I5WSq09hZzmmzktzR9OTaPmxatHqJ1QHB5MklUp00dAfS55U8havL5ZpejHXZp6e8Ls4mR9Z/yxJlQZIvt+mtB+2r1a8YAABAABJREFUuiHfvtfENjU+eb7GdMnhrXMVNE1Qe0Klf695eq6W4zOXatR7EW+dH72yuFDJoQlBkKSEkdJhKbkqgNzsqGLBuZrLdMlituRgGsrVZbnhU+9FOKbOpan8sbNMz03keD0os9oKWKrlcE2dRt8xdjJv9Y0CbKbyNn6i2sI2Oz16YYpr6SOxBMeFP/7FK1TyFn/pn37El65voWuC3/7yDP/2j764Z6Ekbxv8J//im/z4T3+Zv/RPP+Iv/Pirh/7sgWNTyTXI9dtoByzGIM540PBZmsg9VaS75cXEWTZMYIwTV6YLxKlEE3BhUrUeThUs1loBjqmRtwxe6Yslp5nk4/WuWh/Luy3aoySj6UcUbXPsh8d2oPTpJgoq2bHWDugECUsTBzuEGLqqtpu6hmUI8pZBwTGfuC6Mun6AYki1AzXOTEqmiw6mrjQ04lQ+dKwNY3KmzouzJfRHDlK9MOGrt7fRhcYb58ojsa2PC7omePNcRWlCGRpTBWc4/zbaygAmQyU5posOs2V3aGyz3g7YaCutzGszxWMpNl2YzPPyfJHNbsiFyTxbvRA71JguOpRck8szeRZrDtNFh9vbPcI4w+gnCY8SMxq64Fpf1mG+6jKZt9jqKo3FAQNlsEc/+ryWXJN6N1LOcmO4Jlmm4j3b3O0ca5saV6bzTBZsLF2w3VNmLkOXy/4h/9Hx5W0DTVMH3+MwDwiTlJav2lozKVlrBYSxkpeI0oycZQw7OQxN0PJjOlHCq/OlA8dbUqozka6JE3uOliZyhHHGPbfHbMml5Bi0vHjIhj0/kaeai6nmKjimTt2L+O5aB6RqcToJUwlgaEaQZpLpssVrCxVenClR9yKKjkGcZqw0FauqYBtKO26mQDWvJE3GiVtbPfwo3WWMUMmZBLHNvbrHRifjhZkStrk7iXJpSsnR6ELw+SuTJ5bIH4jIaxpcnS7y+cuTQ/mLVHrUexGdvtP0dJ+cMZG3eHG2RDuMefNc+chjLToG12YLvDz3+Hvtt64sTeaQyGGO4EHD46O1Dq6l85mLE09co/c6fxwUA23WJJXMlFQBKW8bvH6urM6kSabMeyzFmAOVfOtoCS0/xtAFrqmTM/V+l1LCXNk59QLOKDjKSvq9UsqfevSHUsr/Xgjx50d8j/9NSvmv7PHzPwf834HvAP8QGDkxVe9FrDYDNtoBTS+iYBkU+5tqoxf1nQBUwNsLU+7XPV6aK+16jyTNhno9b+QqT/3MUTfM9U5IvRsRJilpX6R3uuQwkUlmDyjwmGSStVaIRPLibGnfqufDzw7Y6qiWnsvTx3MYm8jb/K435skkjz20mib40odbfLTeIUpTXp0vUXJMSv1ET5RmQ/bHTjHJ/WDommrBEUr74mmZ/61uqCrtBXvXhr3RCdnou3pd1PNDZzk1DvVvFeCrhN7AzWtwLU39oXNNmslDVyBsU+fzV6YUU0qodoaNTgAo/ZvpokOSZHz7QZMHDZ84lUwWVTuSqQkuTOZPJDl1cbLAhQlVReyFKXe2ewSJsvedr7qcq+VYbnh85cYWUir3PlPXlTbXUmWs/c3dUGmjPFplXm76vL/copqzKOfMYftmBlRzNgVL55v3mgz4A6/soLYaujasxI+CUQ6+fpQiBMMNIUkzlps+XpQQxkonKU6zYYBpmTqvnyvzzXsN7jaUtsXr58q7DnoHZaCNOjceNHw6QYIQIS/MFvet4N/b9tjqqkDt0lSB+YrLy/NlxAE+awAvSmj0ImxDp3CAdcm1Hjqk7nz+bmx06QQxqy2ft5aqGLrG/XqPei/Gj1O2OyHLTZ+X5ksEsctxx+COqfP2hdrw2Y7TviNOktANY16aK5NlkvdXWtzc6DJbdvHjFE0Dr5EyVbROTNNACMEf/Ox5ft+nznG/7j214AHw2mKZ3/+ZJX72q/f4V7/34qHtqAeOTUpkWTkzgUAIgdNvx58sKBbZ/bpHy49VUm9HwqcbJtyrK9e5QcIcGCYkTV3b0xhjVBi6xmuLD9eH+YrSkcqA1ZZq6VmoupyrKhvvAbuo7cd4oVoHFqs57tU9/ChlUwt5abY0trVbSsm9bU/ZsLcDFqsuc2WXNJMHduIJYuU8lrd1oiQjSDLmnqJHovTsnr5+gCoAhbGKtQbOZ8CwYFXvRWx2Qi5O5IfW1499XsNnpemz1Q3RNMn3Xd1fuP8kMFGw+ZFX53YJlq+3Au43PDY6Aa5poAnBrb6hiUCQdwziPlM86ceFAw2ZcULTBN97VcUYay2f1ZaKLxxTp+SYTORt0v5h6MZmF9tQDPcsGxxqk34rmXMgseRHi6H1XsRqWxmUTBedoQaaH6fkTNVu3Q0T7m0rx8BrM4V9JTd2ot6LlBNVfn9jlLV2wHa/tX2n866pa7y2WAHguyst1loBSMl00ebabOmx94nTjNtbyqn7Qi2vtI7GGH+lmWS54XNzs0vZNXFMpX0WxSmrfcFjYFfSY7bs8tlLgltbqqC5n2h+o6eEr2t5a1fhfrMbDpkXuiZ2sc6PC7ah8+pimVcWSmRSrV8frnXw44ROEPPyfJmyq7TmvnJzC0PTaPvKOEcXar847oN2lklubHRpBzHdMGG9bZDKJq8ulFmqqb3uw1XVKuWaqg31lYUyr/aZz+PEwL0TVFJ+YKoRxCkfrLX45r0WjqGx0Q744Vfmdr12sapc03VNnCjrx9+h8Xpnu0fcP+vlbUMlXr2YBw2PubI7NFlQLsXO2BhdA2b/RicY2bW85Ji8PF9GEyouurvdY7Xl4xo69elw2C2yF25tqrWh5cWHbg+PUznUEO5FKXHL7xcvNIpOzHsrLVpeTN42+B2vzg7XSNV9VBqOGzh0THZaOEp24kkze9TZ9NuEEF8C/p6U8j/b8fPXgT8ppZRCiI4Qoiil7Iw6sDBJ+Xi9S8k1iLOML1xTwUo3jFltBSxWVKBmaDwWOA3cskxDcGWqMFaqo6kLvDjh/eUWv3Fzm+mSzUvzZaZL9oGrLct9u2qAzXxwKm0Ne0EIgb7HzEgz2XeeSVhp+kwXHN5dbvHGYplfvb5Fmsm+O5k2sjtQvRch+3asylnGJ0ozLkzkdwVOWSZZbaogbKXl71tJGgx7oeKy3QuVy0F/U0pSSa+QslBxdzFYzH5QdWOjS5RkzFecI2lDDBJ6qcz6BzM4P5FDCHh/Rbk5+nHGTNEmSRWzoBelI7lLjgtCCAxdYBoqwRLGGYamMV91uV9XSakbGx0m8jYXJvJkUmLpSqBxXEKQK31dB10TvDD7sMLcCxPq3YggTml40a57bRkaM2Wbu9spfpTxoK7scnVNG4mldxi0/Jh72x5CKOZS3jZoeDFtPyFMUrwwfSyIXqi4rDR8ojjjwbbqFXctxdw8qQohPHmBdwzB9Y0uQsBbfsR8xd2zgjQwRAiTjKVabs9g9/Zmj06QAikr/cPSgcfan5Pqv5UGn4Zqw50q2Hz7fmtoUeyaBrqmWuzKYxb+fBIeuloqVstGX9z40lSBtVbAO/ea3NrqsuQp5thaM6TkmKy3wxMV2wS1Lx4k+fknvniV/+nrD/gvfuk6/+nvffPon79jje0ECR+utkkyyecuTxDE2TDYrfeiXYmp/ebsZmfQcpNScs2xsobXOyErjYC6F1K0Db55r8Gb5yq8faHGVNFWSca+yxhA0x6/5tsAos8W/9rtJr0wZqJgs1BxOT+Re8y45WnY7IR4YcpWN8S1lLhwN0j2PfQffsx7/7zeU3qATU9ZYy/tEVwXbJ3bmz02uyEFy+DNxeqwEHmaGMSNLS/mXt1juekjkRRtQRSr9tR37jVYb4e8Ol/mjXNlTEPt58d90NY11V56v+4jxEMmxd1tj9WmShiBMisZxJVRkg7jzbV2sK/b7CgwdUG9G9MNEsq5lErO5Jc+XCeIUq5MK/ewRk+1p/lRquQqRrgmK00fKWEl8fedo6Ocx7NMvVcvSna1i97eUm2FFyZzfbMDlRxqhzH5Me8jLT8eCjIL6CeaJHUvBiR5SzE4Mim5OJnHMZU4/bcetGj7idIfKjiUc4+fX1ZavvqOsX9iMePTMDg3ZJlK4q+3QwqOzuXpAl6Y8rVbDa6vdxTLeTJHkknKOYvNTviYC/C40fLj4TkxyyQ3Nru0+y6aSjPTGibkp4oWep/4cBwQQrBQdWl6ETc3O3y83uXyVJ4klaw2Q+5t95grObQC5UD+6DhOUhtpgKmiTZpJkkyZBX3jTgOhwfdengKhiolhos47qpitUe237Y8LYaJi/vt1nxdm411x6KPP9k7SxuD6SSnZ6ITc2OgxVbCOhR35KFxLH8YPM0Wbbz9o8vFalyhVHUf1bsitLY/Jgs2Dpr9rTT4peZfjwlGu7oYQ4tNSyq/t/KEQ4lPA5givXwWuASHw80KIX5JSfqf/O10+tLpqoaSER0pMTRTUQ3Bzo4uua7smVt42mC07aLrglfkScV/TYrWlFmjb0IeUwjiRhMnRbXp3YrrvUHZzs0s3UA9KztJGcvNTjgoREslU3/q54BgkaUotZ+2p3bITM0WnT8nXTsW9TxOo3mxT6QxkUlGP19vBcIOPkuwx9tp+CJOUKM3wooTZskOcyqGGRsOLdiWmNE2Qs3W8MH1sQZnu9z7rmhg6E5Vz5jChESXZMGs96BUvuyaXp1WQPHAUHGhjdYJkLKKlFddS4rW6RpopJoAfp8pp0tCYrzh86tIE97a9/jhOnp6Zswxmy7ZqOTPVtdvuRXSjBE2oZ/GtCxW2uhFZxhMdMA+Kwb1QwooJeVvdL7tvOTtfcSk65q6WUmDIPDs/maMTJpT6h5hmTzlPGZoYq+hs2B+nlCpplrcHbUoq2Fysuhi6tovNUM2r4OZcw6XpJdiGmp+dIGG7G5Jk8ti0xRarLg0vJmc9WeCx4JpcnipgaAI/2l/nqhclw983vXjPxNRUyeY7D1rKYatw9EB5ruSw2VYC9xvtgDjJsA0NL06ZKtpYhs5MyWahmnusNegkoGuC+YqDLgQ5S6cbJKy0fKIkJW8ZTBZslqqqZc2PsrFaOR8XZkoOf+h7zvNfffk2/+YXrx45gVqwDa5MF8ik5NdvBUzkbR40fKIkQ9cSXEu5iF14JFmRt5UAaPKIg2HBNmj0YjSN4Vo1DmSZHLK5cqbgo40uQggavYiOHzPb14brBPHQQjtnGZRck6YXU7DH06K0E+cncrxzv0kmMzp+Qm3BpjKi9mI7UMWjWt4ibxs0+25Yhi4wdfHUfWah4pKz1PrxNL2khYqDF2X7ukJVcxbvr7TJ2zr1XoRl6OoguKPYUHTN4WHCMDSlEXSGECTpcJ1XGoImUZLy7oOW0h4zNJq+alV7UgV+3MjbplqDNIFAMZSkVKyZbpgwXXT41IUKmqbY6EXbYKMTESXZkQ9lRcfsm9yYxGnGajPAC5W2Y72nkraVnEm733Y0qtta3laJ0yeNb2ccvF8Lba1gMltyMXWBHz90yl1p+FiGRtNT7paWoSmB/mOIpwcxwnzFVbFgxUHKgWSCO9QjS1JV8HVM1aaeswyWmz45SyNvP2Ro79zLC7ZB208e21emCja6EBiadiJsqb2g9fdGTQhcSzE179V7+FGCZQiqeYOLUwVE30TppBIEOVvHtXKIKry33CaIMrww4X7DJ2cZTBVs1dlQOn7N11reouQYfPu+knJ+0PCZLzt9Nq7LizNFrs6Wzkxywum72idpxrfuNTF0QZxlLDc93jpfoehYzFds6r0Y29CH2s7jhKFp1HshsyXnsfNvL0yGZ9CmF+95Pk4zia3rvDBTxDE1dO3Je9uAYXrUAtggfkj6bbumIXAtEwnMl126YULB0en48VNzAM8SjvJU/1vA3xFC/DfAN/o/exv4Q8Dve9qLpZQhKimFEOIfAq+iWvcAdqrFlYDmo68XQvwU8FMAS0tLu35XzVtcmMqz3Y2GgasQgvlKDtc0+q4aBu2Wz2/ebVCyTRZrLpemCkwVbaIkwzH1Yznsn6vmeHOxwnvLLao5k26YcmOj+1RHj4YXK3oxipao2hqUK8SdbY9tL+Ly1P5uOQM3qv0gjzmgE0Lw0lyRkqtTK9gsN31antpQi45OJpWl8X5QbZjh8EF/0FBVn7xtDJkujqmx3YtIswxNiF0Jv0uTeaI0e6yVTAhBLW9xc7PH/brPTMnexdiy+kmgXpgyXXp4/XYuXgMdsqB/8B0HKjmzf8CSQ1e5rp/2g3hB0TXJm0q4VPCwEpJmknt11cpxrpY79urrlekijV70sEIpJQVLp2louJZqs3thpkgm2TW/W17MWvv/z95/B+u6pml92O/N4cth5bVzOLH7dE93T6fpmWECA2gQYIMxkkAF1thjCUm2JVfJdmHLpYBsrLJkJBXGUlFAGVOGQkIwMwKhGQaa6Zmezn3yznvtldeXvzeHx3887/etHPfaZ++Z8lV16pyz0veGJ9zPfV/3dYVUbP1MidmDWKw7bA0jRlHCw23pnHmzYDjenauQ5offtbw8QbMs7cV3xjENV8fUZXA+aek0dPW5RJz3olW2iLOcjUHI+iAkTHKutlxen68gOMzYnFxj2dKZrznkBLLdwVAxNZW1gvmX5eJCz+3g5xykdOuaeqYxPF91uD1XJk5y7pygc1UydRxTJU7FsVXsMJaW3ONITKvyzwPX0rk5W2JnFBHEOYMgoV2xaJVNnnSkRfuNdpml+v6D4POOyfNgqe6iq/KA1A8SVBRQFZoli5ojW5zrrkGSi33jeGMQyha2inXpzJXnxS987SZ/9Tee8F9+/SH//h/+1HP/vcnB8fZMmffXh7xzpUaWw/1Nb9oCKQ/U+8fxUcFg3TVxTR1VudyqsaoqLDccBkFCzdXJhcL9nTHjOGVjGFF1DbxIsk3qrsF8dbc94aR5dtTcPCscU+dz1xo83B5j6xphIlnKcZqfyEZOs5ynHR8hpEvZrZky5cLgIUgyHu94PNj2uDlTOnZfOWn92HtPTzuyFbPuGsf+fKtscb3lstLz6frx9DBwx9iNcyq2wdfuzPJge8zV59RCehFoly2SLEdVZKEpiGW858dZkUS1uDNbPjY2GxcMc6dIbl1WC067bBYtgwp11yDOpGugqam0Sxa2rrExjKc6mwC3Z0oMo4SdkWQkX2m4Fz4IXW+XeLA9BhT8OKPuGOSIaWvapA1mUhy+NXN0K+e+v9mS7bNHOTJPIE0lTl43Zys2by1VGUcJt2bk+WEcpqx0fbw4Y7FuT1sMH2yPedzxD2nIPS9sQ+P1+Ypkmxfrv64pWIbKXNXGMTRWen7h5i3Hjmz5U1msyZbnKM152vXxoox2xZxKBVxtHv2cpN7X6Xv/86xNZ8Fi3UUr9kZpKCAo2zqjWKdqG5QsjeWGeyim7PsxmwUL+SgH9bMgL+LnJMtZbrg4BYNRxrCSHOCaGiVLSsQkqRSWnq/ZU7Hxy0KaCT7aGNEum4fei66p3Gi70yRkP0hQFIWv3pphqWG/tNatnXFEZxzTKBmH5oOuqXzldhv3aZ+1vk+Ww0ov4J1lixvtMo4ZTs87l40ky/HjDC9OyfL9rdIlS8c2VJJMUD+mm0bXVN5eqvJox2e5ebppzsRZ8jicZw4NgoT1foCgkPAQ0nl8rmbTqlis9nzpbIs4UkPrdyIunJgSQnxTUZQfBf4t4F9GsujvA18UQmyd9vsH2vO+CvzFPd/+gaIoX0YmqqpCiOERn/+Xgb8M8PnPf35fVsWPMyxNJS/6lcu2pO4v1Z197Tpbo5i0EEO81pZJEdfUn8sy+DSoqnSTeXOxNhWFC+KMvh+fGDRqewaxru469/X9BCF2GRkXGZSPdrwX4tp1ECvdgKfdgCTLqFiS8aUqCl+61T618rE5CknS3YPr5HkoikzUZUI6E04slzvjeFrVkj+nHKtvlGS7fdtSt2T/e5DWzcdfm6Iol04nVgpL3L1YbjoIRaCrKuMo5XsrA2ar1r7PHofp9F12vMtrnTsOVdvYl8RplS2ut8vYhtTF+t5Kn/mqw82Z/Rvl1kja3XbG8VTk9jywDY2rLZePNkbEeY4XZVPqsvxn/7uW4vpSNHKxbtMsWZia/JmrzRLjKJ0mfrVLDLo0VYrHTubpsGBkHnc4nrQSO6aKY2hcbcjndqMt6dqjUNqN689ZGZmsPa6lcfMY/ZaTYOoqX7jePPXnNFXh9uzJ6+kgSKdsx/ULtvIdxGzFpmTqPNz2AFiuO1RsHaN45087Pn0/2Rew7x2Te9eOFwGzcMUBCHY8yT6s2izXXXIhuLc1IsvlAW6yNOb57vq3OQpfucTUbNXmf/QjS/ytbz3jf/0zdy+NeXi9XZoysL75qIMAxpFs1V0642FdCMGznjykXbbFeN2Vrkxr/YDlpotjadM10Y8ytoq9K05zFs9wYBr4CSs9H0uX7ZQXqXzfnatMtfXeXxuS5eKQ8+9BKIqCoshYYrK+TObAOJSMmkwIydo9Z5yxu67J35usg4Mg4coxv5NmeeGIDGu9gKptYBvaVC9kgr3j41XDZP1PspyPNkfT1khFUbjRLvMj1xonJtN2RhFR0TbWKpuXxnbXNXVf3GDpWrFOS9e8USTfjx9lJGnGk25AEGfTA1WY5Hil9MLMmpmKZJasFnIFnz3wHDaHET0/lgUNNyXNBcZRGhF7cFKMN0EQZzzcGaOgHJtg1TWVd67U931NUxXKtkHFMfCKWDFK8ykbeBiknLLNnRtelLHSkzpbt2bKGEXRDeRBu+6Y1B2TYZBMhdkXag76HjbHxDFwGKQsFNJ4Z3lOx2EYSmkC2epdeiEuknv3xsmZZrnhUndNGq7Jk67PKJRF4Pk9bsVbo4g4zdkZxcyUrQsVIEZROmW2dryIZXNyHfJd7IwjrrRcGiUTU1cKWQDlzPIj50GSyZbfzWF05F76masNPnO1MWVfuqZGnGU86QSoinpmLaXLxOYwJM+lA+BRidrFumSOfutxj+1Cc/nepjyj35wpXaoG7V5MXOm6XkyaCfYuo4amnunMf7VVOrKd/DwQQvBoxztXHPL+2pCNQUjZ0vnx19r7ntFs1ZZmL1kCQrlwDuBVw4V3OUVRdODfBv4M8BSZmPoJ+S3l/yCESE75E19TFOXfQ7Kmvi6E+C1FUf6iEOJfB/6vwF8DHOD/dJ7r8qKUjUFAp6AEV22DYZAcufk3SgbLqYOpqSw3PvlJXN7r6HFKj3rNNbimymvcmwiouwajULZOnadauD2SG3/NeTFW8gchhKQc1xyDMFW51nTpeDE9L2a9L92WTlqUao7BziiePqcrTXcqgqiqCiM/JUkFrqHhxSntsjUNZNJMVo4Eslp0cDM1dZVW2WQUppda9bpM6JrK7dkyVUeKs6/3w4JWntAqy6qqpWuyNVGTNOfjWiReJGQrh0bDMej50nUqK2zVJ8m/K02XqmMQJhGupT1XkmW2Yk2ZdMcd4NIs58H2mIc7HnMVm36QUHcMxmGKZUjrXMe0MDUVTVNeSOvUXNWeJk2Pw8BP+N5KD1VRaGFRtXWSLJ0+o0kwmGT5czMD+n7CIEx40vWw9Jez/k3wxkJlqpdxe+byDpglS+fGTIksE9P2n0bJwIvSqR7Vaj9gHMrWsMmYdEzt1EPQZWKylrUrZqFDJIhTWWvpezGdcUSSCZYbDmVbrteXxei7bPwrX7vJ3/ztFf7qN57wv/nZu5f+9682S+yMY+7Ol7k9W2H+DAeCNMu5vzXmUUfO/0EQvxBNxoWaZDIsNeRcVxWFqmNIwf0zOovFac4PVvsycK1KfYnnbVepOrKNsWLrJybxNFXh1ky5cHzaP74aJYNxJOOM6hn3lTDJeNbzMTV5YIJdIdyT1sNRKNnhbnHfeS4PNFXb4MopzPJXFTLBI63ab8yUiJKMOM3YGAQy6XHMO646Mr6T+9SLPXBMXErjNEcIm61RTNXRycTue8tETmeUkAvB1ebzFb2aRcu6qnAowVVzDJquhZ9IRtBlJUBGYUKS5mwMI7w45Z3l+pnG03LDoTOOyYSYsttsQ6NZNvGidB+b/rIwCGQxa60X4EX7Y3R9jzzF3rk6V7WwjV3JjpmKNWXYXhR9f7dbYXLAj1PJQKk5L3Yu7t3Dx3HK0E+mBcWeH5MLgRelzNVsqrbBdhFTXrSNTUoYyPi5ZOo83vFIc0EuBEKAa8h5eq3lUi3W8xfV9ji5h6pz/Hq72g/wogRTV/mRq3XWB1JDU46dF8tsOwpV2ygkG46+5jiVurSqKlk/li7b4tJMmim9qDXOKdosb7ZL033lZeBJx+eD9SGtsnVqHJJmOSu9gGd9HwQkeY5+4H0u1mw0FXZGksn3qjGGL4rneUN/AagANybMJ0VRqsD/rfjn3zzpl4UQvwz88oGv/evFv58BP3WRi9ou2jeEkEmbiqMfexicuBS8DEE4KOzmC8ePs1CijzqMyErX+YUoN4eSNrna9wv2yIt9Boqi0K6YPO3400OgXvTIh0lO14tPpN8u1Jx9VRBNVfYxBsq2jmtpmLqDY6ooKERFS2a/ECoE2RJ4VHXjRbfuXAZsQ5u6gJQtnftbY+ar9nTMB7HUVZEU8JcjgKcWGk2tskWUZnz3SY9hmFFz9d134MfMVW1alyBw2DjBgWeCQZDQGcf0/QRDk4evmmtI3ZU9zhXntVc+D2Yq1qmH4Wc9Hy+UNrNXmy5XW+4hp8fnSZpluWCl68trKVt8tDHC0jV6XsJy48J/9rnhmDp/8Bg3z+fFwQPfcsMlTDK8aEiQpGiqSpjkhEnO7dnypYzJ82LvWrZQkwHJD54NGIUpVVtnWBQOdsZRwZy7XO3Dy8Tt2TI/++Ycf+0bj/nFn7h56XqG8zWb3//2/LnGSj9ISDKBpig86/u8ZlVeiB6Douy+x2Zpd64v1p2iYHD0O4vTnK1RiF3YOpuaSj+VdT33EqqfMs4525g5rgXhInHGdF8ix9QVOoXGBxxeD6M0Y2sYFeYQcTEnY+7OVagUzOrTilevMsq2jmWobA6kK9StdrkwTBFsDUPKx4iJN0smNcfYt0+9SLimPnUpbRRjWAjZ4vK062MbKnXHmLYg157T0vS4g9R8zaZdvvy12DE1Vvs+4zBjtmLR9eJ9rJvjoKoqn73WOLT2vkhGeqNk8GhnzPogPJQoVhQZxxy8HkVRqO95JxOX0+fB5lCaEDzt+HzmSg1TVzG045Opl43J59Rc2fXy4YZkkFxtOlOHxa1hyO3ZynOPGUNTp/HzXl1AQ1Po+XJ9+vQLcNs7Cqau8sZC5dj7CZOM7jimZBk4psZs1abrJYyjhOsXYMFfBqSb3vF7Td+P8SPZMbNQtwmTjEc7ntRNfoGFdNfU+KOfW36pcVOUZrLIoGsMg4TXi7blgZ9MGcR7MQikQcR8xWYcJ8yWTcI0p3Rgvs9XHearr/759Tx4nrf088Av7HXLK1ru/pfAH3jeC7soKrZOx5MCjpuDaOowchzOMlDHUToVW75spLmsBLxojSeQE+D+1pidcSSf0ziiV7ijLDXOPrCTLGcYJqdec5YLtkZSEwWgVbLwY+me93B7jGtqqKpsxzvLJnfSu0qynIqls1i32RiEvLs24PsrfUDq3CiK/JzLYsN4UTqtIl4UFxlXeS540vH4wcpAZtGzXQ0aQ5cC7opyea4gfpzix+dn1A3DhO887dHxYkxdJcuYvoPJu/6kNglbV/loc0jPl04/kwrpUba5ozAhSl/MXD8Nm6OQ1b5PkmWYxXs86hld9BqDJOOHqwM+XB9RsjSW6jZVW78ws26yDuT5869d5xmz6QU/N0wyNgcB33jQYWsUSq2+hgzaraLKfFlj8qLPxo9Svvukx1rfl+zIJCvG6S6r4FVNSk3wiz9xk76f8P/97ZUX8vcnYyVMsqlZyUkomTIm6PsxDcckTgUrPZ+tUUianV9odRQm5163T3pnT7s+764O+caDHTrjSDJXZku8vlC9lANQlGZTEedPAnmRAO95MWmeo2sKo0i6i/nH7Jnr/ZC+n/Dx5oj1fkDPi7ENlbKl89p8lTtzFRnQh8k0pnhRMdlZkeWCYZicOIa6BeNRUxX8KGUcp2yPIqIkwypE+A8mHQ7iovbuZ7m+s2C1F/Bo2yNJczRVmkgoytkTE3khM3FeXPY6tz0M+bUPtwAFy9QQiCkDf9Jmf1pM+6LX3jjN2RqG+HHKOJKxVyYEw+Dode6k67noPrkXPS9mYxjwaMcjyXOGYcpr85VDLcZpJpPrZ1mP4/Rs54eDCOKM91cHfLQxwixMgRyzmEOXuDdO9hfH1KZ778SsZr0f8K0nHcYXGM9Rmp37vk+6H1NTp0YeVUfn0bbH2iDAT7KpA2uvWH/O8pneJZ1zT7rmkiXPYqoKCKmZ6UUpoyhBU5XpenkS/PhiZ6/nHRsysXT+cTuBqUnd3YqtS/a7pZPlgu887fHu2uDQz5eKjqq6a+AYOl0/4ev3tlnrBxf6/IvOu5eB5zmlC3HEHQohMkVRXtqdt8oWr89X+JUfrvOkG0wdZu7OVUiynIfbHmmec61Vmm6saZbTDxIcQ2McpRiaOmVZ7YwjnnQ8NEXh9YXqpfVvCiHYGkbc3x5TsXQaJZNmyeRxx0NXVZYaNpYunTdkckAuNkcd3pIsn1JOr7dKx7qNrA0C0kJP6e2lKuMoZRimbA0jgigjF/sdCo9Cngvub41JM0HNMU7sY35vbcCjbQ9TV/nanRkURbrWZTlTJ5E35quESYafZPQ6HoMglS2WJ7QWhYl0NrzRKk0D94fb3lRjqO8nhHHOSE2J0kxWEyoWa/2A1X7AzXbpXIvUJNNdsfVC1yvmg/URUZLxzpX6kYydtEjKzZSP1vTYGoVsDiIURbIMThtXG4OQjhfhRQnbw5hHOz6jMObGTIk/8pkl2mXz3AHsae97ECRT179rbffU9qE4zXnc8RgGsmqz1ot42BlSNk3+4DsLU8fFT5rJlQlBs2Tx3uqAH4QprqExX3OkWGXFph/I5JmpqawPQlQF3lysfeItI5qikAvBwx2P7z/tszOK0DWVVsmUTiUKaApsj+ILXWOaCaIkp+fHrPYDNFXF0i/GFuz7Mf/wvQ0E8PlrDa40S3Q8WVE8apwkWU4uxJHjLMtl332cSmH4JJMHquPG24Nt+bNlW+fGCdoyz3p+0cYge/nvbY0Yhyn3t0eEsWzv+uPNK7yxUDn33Dlpfp9njQQ5z571fDRFYWtUVKe7Hiu9gButEj/zxiwck6R8FfG5a02+cL3BX/4nD/kTX7z6Qlgua32fB1uebC/Jc0xNY65mYagqKz2fPBdca7mUbQOBoO7KSrofpZQKMwLX1Ani7ExCsZP3LXW+YhQF7syVT7y3rVHI9ki2hl6pO3ywPsKLM27NlPaxdr0oZRxK4f2abbDcdLnWKj33OpkXjsOPdjxqjknN0QmSnDTPud7a1YcxdZWBL9uzTmOfHpxTR2EYJvR9KcbbcuVe/o8/3mLgp8cmphQVVro+q32fTy3VsSyV661dce0sF4zChJVuQL9oC7cMlbvzlSOZ1pP9terokr1bHNbOmug7bf8Gqc0ZxBm2cbRGSc+LebA1ZmMQUncN0jxnHEitrrcWa9yZLZPlgiTL+a1HHXRV4c5c5cxtuqft3487Hn5UPKczaKhkxbrlxyllW6c7lvvMxLTDixM+6zZ4ba5M6xwaPlGS8d2nfWYqJrdnK+ca117hRjyJfUdhwpOO1F262S6hKkphaqOeuH4LIWRRZmPEOEr5qddneGtxVyjYi1O+96TPjRmXK82ztZMPgoQsFzRcAyHg4Y5HmGQsN5wpaynPxZmub4Ifrg541vUp2TpLNZswEbimxtXW/jE+jlKeFGeFidbTwWf1YFvGYgLB20s1XFOfukcfFTeEScaTIt673pbsxLVBQM02KdtSr/S4eGOtL5PFisKJ+/dkjGW5ZOGdps26M47YHIZS4NtPebjt8aTj8fHGiM9cafAzb84W+mOXvzdaujY1qfnhsz7/9N4OSZJzY6aMENJBOExzZiqnC98nRTt5nkOrbJ4Yc43C5NjE10SjyI+lEZJ0+tQxdY0nOx5hnBMnuSzaBAm/9ahLlgs+tVyTwtnHYKIBCHBrtnQq0znJpBbncWfNg9f8cHvMxjBiueFMzwFpntPxIkZBiqGq/NN7O/T9hIWaPTWlOoiBn/C0uztGT2uj3BlH5EKuse+tDWiXrUMC9ZM1+KgzWGcckeUyjvvOkx73t8csN1y+dqd97nhMURSuNl3GxRl4tR8wU7aKM/HhlIltaCzWHN4vSBaGqlBxpH5y3TVwTf3IuLozjtgYhtPW98k9nmfeHcR53vdl4HkSU+8rivKnhBB/be8XFUX5l4APn++yng9l26BVtvDjjCjL6HsRD7eVwqpXLsyDIhGlqcrUuaLrRUV7j4Kpy2rd9jDiaSdAUWGpsGm9DHS9mLVBwNYwQlSgZOv0g4Q8h64vs8ZVR9rdP5k45URy0wPZMrU1Chn4CYamTsWDe36MYx696JUL+2fX0lAUhbmqzThM0VQF25Q2nTujeOrIcxRyIUgzOYkmuhHHoe8nbI8invUCKUB2d4YbMyVGfsrN9sQtER53fLJcthUu1aVQ9EmtRVEq3YPmqvY0uTjZ83VN4c3FKs+6AXXXwFBVNoch7z4b4MUpV1slvCij5u662J0WKD3e8aWooq7w+ny10DGTIs1Puv6RwXyS5mwOIlTlaDfEyTgUgmMXxQm6Xsx3nvaIk4x+kKCrinQe1BQU4Fk/4NYFlDdPe9+Ta5zcz0mYLPyPi+AsTHJ0VUHkSkGfDy90jZcB29C52nB5tDOm4Vo8KRyhSpbO+iBgHMpx3Czp9HwZECw1nE/UvhskDfpJ12dRkdphwzChXbZYH/h4cY7IoWRq+EVVa6nhnksrxzZUFmq23PiRY17XVC5QjGe1F7AxjEBIUwNFUfAiqaXz+vx++nmUZtOgbLnhHJov4yhlcxjQ9RLiNJu6g702XzkUcIoiyID94/MgslywM4rZGoWs9QNuz5Z50vGl3pStM/BC2hWT99dH/MRrM+e+/5Pmdy7ENNA4bY0chgnfe9qj7yfkAuIsRVc1DFXuQeMoZX0Ynvmw9Krg3/jpO/zJ/+qb/K1vPeNf+tK1S/3bfT/mWS9gZywdWP1Y0jF7fsxCzWa9LxNCH2+NeX2+wq2ZktSyUAyuNlyqjsbTrgzCJ/PgNEze90S3QwiZ6D2KNOJFKeuDgNVegKoo7IxjVjo+26NIJoMNKZY72Xuut0qMo6Rg9BroqnopyfsdL2J9ELI9itEUdZ/myNogmFpkN0om3aIlJheCVtlCCDFtlxz4kqVUtqRWFUhh4OPWHtuQTOg8h1qRDLrScHGNw4HtMEzYGoZkWU6zbKJpitSIrLj7nGbvbY2KBJ4M6ntBjBlrPOn4hVPX/hcxuc7tUUTPk45+UZqzULMR4nTphNP2b9hdf46zN1cUubaNwoRxLLVxUiFbNQWiYMQqvLs6YK0nCyLtsnXmxNRp+/fedfI0vZk8F7y/NuAbDzvUHXN62ImzDFUp9A3bFa613GmL31mRC2nakOY5Fds4cyEkTnMe7XiIQuPqSnPXRGQQxLy7mjGOEqqOQcXST2xfmrBgLF3FNW1aJWtfzJVm0gSpZGtnWmtH4W7RLs1zypY+ZXH0/IS6azKO0qlZw+2Z8pkS4H0/Jhdy3FRsg+WGg6ooh65pUJwV4jzHjzIck33ParnhkGT5tND22PK50nT41uMufpzx+esN5g60/wyDZDqmh0HKTEWjZOqM8pS3FmvM12wqZ2DJnbR/Z/nu3picwuRLspwfrAwI4pQoy1FQEDkoCGxTYxBIjdrmJZlsHAVVVUgKrZ+SqdFLM3KRs9LzedL1cXSNtX7AT9ydPbFImOWCvLjd0+KWyXnvKESpNPoJYinGvlx3CydxjeuFQY5r6ShC8Ksfb/PB2pCb7RJ9Pz7xPvfH+gJO6dBd6weFHubpkO6QAX0/oe9JYXrX0kkyuVd085heEJOkObmQ59TjVqpoTzyVZCfzX/p+zHrhYj1xlY0POCemWc69ooh40FlzECRTF+wwzfh4a8zAT4hTrzCtOH8ydNIFIYSMPSxD4+aMOz2DHETXl3u4QLqFz1WlhrCmSMb4/a0xQkjt5JprIITg3bWBdJEvzAEMTT3XvDsK53nfl4HnSUz9a8DfURTlzwDfBgTwBaRg+R+5hGu7MEqmxusLFWYqFnXXQAh5aDJ1FcfUppWr98dDGiWDyfBWFGX63xNnLtfWqDq6tPbWLi9bqKkKuqoyW7VoFL3TuZBVQRSBa+jTTWaCMM34YGOIEHCj7bI5iKZfN3V5X8fZXYI8+M5UMqxiAW2XLTRFQVWUfb3+J7mSSTcXh1GYnnoovjNb5qP1ITMVkyDJGUQpddskTnOidHdREcVTlxVN2fJ3EoSAIJFCrBPcaJcYhSm1Qv9gpiKr56oq7YirjoEfZ5iaMqVvr3SlM9dpGeTJ9U02i5myHFcK0DxFl+i4ZzlZHE1dPTXrvz4IsA2Vp12fO7NlLF3lU8s17m2O6AcpT7s+8zXnwm2Kx11jq2SS5jIgOEm0G3aFKMdRAqjcmi0zU7aouQZdL2ZnFLHS9S/dvfAsMHWVT1+pYxsaO2MZIK8PQp50ApYbNqCgqZI6m2ZM2+g+adxol3AMjYfb44LGn/Hx5phWWUfXNAxVxbVlMv0ibC7b0PjM1TqWrpILcC0Nx9AuVG2UdsBmwdJ0UdRdl8yDzy5M8mlQ5icZB3POpqbw0cYIP85wrd019qg3MHHAHAYJrRNshTVVHvok09RgYxCyWHMYRylNt0TXkweck4RFz4Kj5o6uqVxpuNPE4knYGoaYmsb2eMxsxeJmo0yzbPL2UpXvPunTD+Lp/H4RVeEXhR+73eZz1xr8F792nz/2+eVLZU2pqnRDapVNmiVpbrIzjqcFJYpWAUNVyHNIc+lSlxaD8MGWDFBnKta5WtgB5us2cZpj6dqx6+3WROcSmXiRrbIyQZ/kgqZrHdp7vnC9RZikxJmYtmE8L7TCfWumYtIsG1xpuJI1nQtsXSMsHMX2xhgCmaR4sD0mTHIW6zY745g4lZpPFVsv5tDx17hrr77LzLjRLtEomZQOVOK3hiFBnBdJC9lWPF+1abjmdB1JspwkFZiaRrui0SqbrPUMRmFCydSPTOK1yyabw4i6a0yd06I044P1EbkQXG+XztSKdlIsdLXl0vPiY2Ouuiv1HncK1pypq9RcA9eQSQzX1HnW83nWCxhHKXXXOPG5nvcarzRcul5MzTVO3c9GxX6T5XIPv9J08OKcOddmoW5TsXXiJOdZL2QcZefaxw1Npebq1I9h/B8HwZ4YsfjPZkkmfAI/Q7dUtkfx9DAfJPmxTnsAX7nVwtAUNE095K6lawoVWz9z0kwc+B/H0KjY0phmEittDgIGRaGr7ydca53+d99arHJvc4yqygRX1TG4PXvYmbPhyvGvqyolSyMrxLknmOyTXS/GMWWie2cU8d6aPD9UbONQYqrqGHS8uGgb3xX5jtLTGV9LDWcaT0yv4YifM3WV5Ybch087P/T8GE2DYSi7WK63HXRV4dasy7ee9BgECdvjF5uYAhgFiRQTB75wvclcTWojrXQDub47zlQ39TjYhsZi3caPsxOF8hV2XcaPgqWrVB2dKMmoFeeGyU/GmcA0ZKvYjpdgqAr1Qp/uRvtkfcCZikUuZKHkLDHRxBn1LGGyVZA8Ngchfiy4tzXmrcUqUZrTdC1Kps72KCLTBUGS8fpC+VjmbrtkkeUCBYXGKWevvcWHNBM82PIOzaM4y6dECz/KpGp2gb0/65o611suD/Mxs1XrwvpqEwOjvR1QbyzUprHJQTRdE8vQuN4qsdx0eHOhyvog5OPNMbqmTOe8F6fUXGlQoqAQpzlplu9jRZ913h2F87zvy8CFo3IhxCrwRUVRfgp4CzmnfkUI8T9c1sVdFLmA1+erha2tbPuSGUp52K67Bu+tDQGZFb0zW6Hvx9xou1Na6KSyN1+xWesFhQjx8Z95XgeE+h5a+aRClmQ57bLFUt2Zuvq0yxaWoTEKY3RNZXsoWQDjMCkCY4W6Y545UDi4ae9dAGxdY6nhnKrsP7HHPg0LdYcfvzvDP3uwg6YqNF2Te1sjTE2bir0pisL1llu4y8l2RmlZffzz1FQFQ1WJknwq1KkqCq3S7jPdexCar8rDRMnS923yE+2rkyyrAa63SgwDGSQIITANjS/fahHE2bHPyjSkXetx3zfO4QRZsQzysrwPP85Ic8Fyw6Vi6Xy4McbUZQvq3oNSnErG0kmV4dPet6oqJwrS70XZkm2On1qqk4kcP8qpODo/++Y8X7+3Pe0fX95j7z7RvvgkWpQ0VeGNRUkhftbzWRuEtMsm11plaq6OrinMlW02hpEMeEaSAry3gvKiXU4URWGh7rBQzP/feLBDxda4OSMFgMuWTrssxe7jLKPrxYyjlKtN98wB/2T+a0V1/qJYrLv8vrcXSDJBu2ySCxjYCa552BGnautUHdkaUj6CIh6lOaauEsQZKnITvT1bPnZc1BzjTO4jt2fLxVoi6fMbgxBLV+n5CZ+/3qQzjpiv2dOe+8m7FWLSfnH8gn/a/K65xpnE9MuWQWDnfPFGg1GYkmSC+apMMve8mK6XUDZ1giSbBhlZ4RL0KieqFEXhf/UzkjX1N7+5wr/8leuX9rertsH1tstVIZ9/z5MMKl1TWKw7zFVt7m2OiNOMJMt51vO40ihRdWSSPMslG8TUz85MOu1970XZks6JjqHRcGUbrmOo3JhxqVgGjZLJu6sDBGK696iKDH6rl/hOW2ULXVVR1d2Wh9uzFck8ilLKlkzqLDUcBkFClKQ0HIMolWYAfpzyg2cDqo5R6GPIqvxZcHDu6pp65HozDjNW+7JA8OZC9cj1VVNl20zHi6g7FrNlu3BXlOzhoxIREwMOkPt7lGYoKIzDsPjc9MTDxVned9nSTz2gLNQdfuxum51RjKkrBHFK14+mh9NBkEhxagW+eKNJ5cDnnbRHnrZ/lyz9zMUqmVgxeGO+StUxsAyVLJPOviVbp+mafLgxml7zcrEXnmUtMnWVL95oHekme9yemmY5mqJwreUS7En2+LHU3Gu4Jn0/Yb5mIZB7WZYL/Dg7NjFl6BpfuX00O9YxNb5wo3lmV6tqwWZKc7n/gUzOqHu0EpNc0PMjLF26UJ8F8zWH+ZrDRxsj4jQ/ll3jmjqvF8ZJIA9y19vyWdUdg51RiKqqfOlmk3EknT0HQSy7QEYRvXGEH6f7WrZsQ5u2WU2gKEfPr4OQc1SO6dP277MY1oDUBmyVLJrFAX57JBmx11ouPV9qzB1kA55l7z4JkpG9q0MqhMBPJPtkpmzxzpUaoyCj58W8NlchEwJVOZuTc6tscVpuUlWVaeLiOMzXbBol2dLlGiozk3WucCz0oowbbUcSFUoGP/na7KnPW1OVc0k6LNWlRtJRY+OoNeEzV+r4UUqOPKsFSUaW5fSDGNfQuDFTIkkFzVPaHM9zJpnECZMuOUU53B1j69KFMRfikElA+YCr8xdvtnhjQa6Pz8NolgYTu+NFUxU09ejx2ihZfPV2myTNUFWZcPILEykhBI2SjGl6fizP2CWTmYpFwzWn3VW7f+ts8+4onPS+XwSeWwlaCPGrwK9ewrVcClb7Ad2iF/JWUT15fb7KMIh51gvpeglpLpitWvS8hCBJ+XhzJB/8AebK047Pe+sDhBBcaZTojBNK1uGNaxylPN7xptnQsx4YJgkpIQTPegEfbw6JU4Gqwk/encUyNPw45Tfu7xClOe9cqaGpsvLXcE0cU7q07WVP9P2Y9YGk3Z+XnaIonMqMOS9y4LNXG6iKgl5QqZ/1AhxT4/7WmDDOeLgzJs0Ft2bKfO9pn7mqRbNsHasfo6kKczWb7bGsRH73aZ+eH3O9VeK1+cMaBo6p0Q9itocRW6OAH7s9g66pU8vqRunkYMQ2NExN5eGOrCJPNAQOTtKeF+PFMiOtHWChPQ+uttyChip1wEqmzsYwpO4YdL2IhztjHu2Mma85fOlGEy+WDkeWoXJ7pnxscuoy37drSkE/qYWVUXdNel5CwzXIBdzfHBGvDljp+Xz+epOqrfNw2wNkNf2yROnPAl1VEEKw0petNp+73qBdstgaS0vkcdGK8/HmiK/ebtMuW9P2IdtQudk+/pleFkqWhhCCnp/w2487/MTdOdplm54fY5sqRq7wcNujM47wopS3l2pEacbDbY9cCG62yy+0HzxK5YHS0JSp7fdxY2kSNOqa1P8pWftb/bZHId981Cmc8aS2zmVsgJO1fxTKROMgSGiVLKI0RlcVRmHKL/1gjWbJ5Ga7QqssE/wPd6Q2y0lMysua3/M1m2bJZLXn87Qb0nANWT0UAlB40hnz3lqf17pVvnyrRc0xp1oBV5rOmQoELws/drvNV2+3+I//4Uf8c59eeK5E6EHsZZk2SiZlW2dYmHt0vYgsE2yNIjnXUVjvR3ztbpuqrdO3NMZRgh9n7IwitkZS6+9G+3i2xXne94Sp/e6zAWv9gK4X89Zije1RRNeLebLjsT7w6XgJP3K1ThDL4hlwZibPWbE3OSqE4Dcfdvh4c8ytdolr7dJ0fD/r+jzY9pitWnzheoO6a7A5DCnbOqYm9Z7Ke0wShBA87fr4ccZi/fRi1lEIC2H/hZpdiOIeXlM3BgHvrQ6xDJWSpdP1YlCYutFGac5sxaIfJCjAtVbpEJtUXptBmuWMwomWlmScbAxCXEufuqv5sZQ2uMz9e6Hm0CpZaAr82sfbxEnOk86uJqYXyefwqx9uUbY0lhslbs2WURVO3CMvc//u+zGaAm8tVRFCOrElmdQlmavK4uzTbkCaZyxUHd5bG7JYk4WcLBfTVpLjcPDapa6gjKeuNPb/7iSeBrg1U2a2Kr+X54LfftQhSnPiLGembBGlUustyXJURTnS2WvgJ4wiyV69jPk9QaNkIoTgccdnox8yCGPSTHBnrsLNmRLdcUzVlodYgTStOet8ma1YbI2iQuMrOLWLICwKF8IQ/J3vrnJvc8ztWZeffG2OKM3ZHIYs1Gy+cL3J/e0xS3WH7VHEtZZ+6O/sjCMq1tkKK0fhsvbvkqXz2lyZ1b5sx3cLuZEgydBVhdV+wP2tEY92xtyZq/D6fIUnHV+62Tr6mVon90IIwYNtqRvXKpu4psa3Hve4tzUkSQVXW67svinYjh0v5krTZalmY17igf04Z1SQ7ZprPTnWHFNjYxAyU7G42nQZhdLxbrHuoGsad+eqIATRc5ofHAX1gCv6BHGa74tPwiTnwdaYxztjHEvDNnTSLKPvJWyOQsZhih9lfGqpBsrFOgFOwiROiLOc7zzt4UUpP/363DR+Xy/c6Y+rN+/di9NcsD4I8ePszAWa58VKz+fRlsfmSH5u2dKYqVgESY5ZJOhNTSXJpGZ1u2xNE6aXWbg87n2/KHxyp8FPCOPC3jMoaMm6JisYqrr7kgSSCaGrCr/+0RBFkX3iex98muW8uzrAjzN6fsx81TnWvarvxwjBNJs50S86K7aGEd9+0uPh9hjTUFmuSwruhDkx0Y/aGcd87mpjqilVc8xDE3lnHJFmgr6fMFfNP3EB54OoOgZpJihZGnGWE8Q5lqbR96TG13trQ2xdY3sUUbY0HnbGREV2GI5PTClI6nXPj4tqb07Xky0HRx3It4dSEC7u5szXHO7OVg5ZVp+EMM2mLQH9QkNgL6I041khHnha7/N5Id2n0uJzchxDJjWf9Xy6XsLWSIral0yDHS9iYtgWJTKAs4/Jxl82ul5MkgnSLCdKJZssinOedGUCJYhzFusOKx2fGzOlXRrqAbbXi0ZcPCvHSNgaB3x/ReVpx6dVlsnqkqky8FNcU7b+tcsWvULbIohzwjQ7VRzyeTF5NhXbYGsc8dGGdKuaL6pFzbLJMJDrTpTIyuo4TKe05GGYvNDE1MNtj483xpL2bxksnFJt26vteHB23N8ek2agKiqd0claCOfFhKkXJpKyHaUZV5sulq7yyz9cx4sy1vsh81UHzVdYrO1WpC7ivHMR6KrCIJTOrJ1xzGvzFYSAZ32f7XHMwE9YqEnRzztz2lQrYBSmr3RiSlEU/s///Nv8/v/0n/Dv/f33+U/++GdeGOOw58W8tzaULBpNYVy0f3SDhKplYBuyda3mGtycKfP+2hA/yljrB9Qd+QzHUXppFcFJUDjZu0dhQpJn9LyUUSDFbZcaLqMow4vT6Xz3o5OZPM+Dd1cH/ObDDl0vAcS0nUm650pZgJ4XE6U5V5oulqGyOYiwi6TQ3ncXJvlUc6JTJPTPi/2uUscYHWx5DMOUeJyz1LSp2TIZMNExBMmANQqZhZPaZ3VN3ScA/KwXECayRbFVMvGilLV++ELaFUxdlQxtUWhDjSMcQ77nRsng8VMpDtywDeqOxTCQ2qF7WzVe1B6Z54LNoXz/HS/matNlcxiyNpCJR4Ecv6qiFm2Xsm1scxTtrkVRcq5ERpjsiaeCeN/vetGe+RCn033s480Rq335zholk2EkjUxGoSzMHIUslw6cQsjPvH3JOpdJJhiHKR0/4oP1EZamYhsazZJJydLQVNlaFZxzvjRKJjXH4P31YcFePJ5BMwoTHu9IvasoTdkZRYRJRtdLCidi+XN9P+G1Qv8xTvMjJSSe9QKCOKPvJ4cKSC8DUSYYhSmqqkx1QR1TY8eL6fkJG4OAuiuNjW7NlKd79iRePg+yXEzbmsdRihem9PxYagwrYJtS+9HQFbaGCbapMQ5TglJ+qYmp4yCE1M1c6ft0xpF0NVdUNgotPCFkLBEXMXjJ1AiT/MyadZeBMM32xSfjKGV7HPFwx6fi6Ly9WEWg0A+k2UeSChxTZbyHFfkiIFnSOl0vKfQRJTtqwpY/i1Hd+6tDVvtSb7pVNk+VYLkMfLwxYqXjszOO0HUVRTExA3n+3BlJmYdJvOBau90K6hm1M19V/K5ITCVZziBIqDkG8zWb7ZFUpM/FrivGxiAkTmU2eUJ9jFOBpsrE0FxBrc4LGmIQZwWzIueN+QqfWqqSU2hGHAjSJn3vuqruqyqehjjN0VRJIxRCbkZJmrNYs2Qg28lplUxmKxarAx9NkcK/tws3l6M2jbprEsQhSZZxb2tE1daZqx7vpnFZmDy3tX7IOEpZrNvUXZOlusNsxcLQVFnVUqU1u5WpqIqkra73Q260S5iawnzFxoulbakXphi6tHHPczF1TrR0ldcXpLBi34+J0pSen/DGYmUaxEz67yf///pChVGYMFe1pF5GkVzwIrn5VOz97UFbo5AoyZmtWli67J13TJmZbhbU7SyXrRiuqRVtc1Lw1dAuviikWc7D7TGZkJpgZUtWrC1Dti6+Nl+h4ZoYmsooTGiWTQwVdF0hSGT1QddURlHMtVaJNBf0vAi3aLW7LGwMAjpjGVBOWhIrtoEXZSzUHa43XQxdpePFLNZsVGQLgBelZHnO0I/xopR2RVamul5MqWgDe95gqOfFhGnGTOEclOeCNN+lZ7dLJpauYpsqlqaR5hmjSFKtVVUmfdplgzDJpwmoVtkkTDI5Di4hCBGFICwKU+enKM0wNanlYOkqM+WC0ecYJFlOkKRSNBcFU1OYrdhsjkIcU8PQpLmDbUjx1Muo9me5QIij1xl9oikFaGcY7+2yPFDOVu3poT0peuBnSzZeGJMLhR+5Wj/3dU4cK2vO0W6ek3F5teVyreliGRpbo5CrTZePN0eUTBVDU7AMhe2xtLi3dBVbV+l58aVWivq+dL9xTKkboBbttlVb52rLpe4Y0xYk2dZtT/ejPBf0PdmCUXUMZipynwiTfF8b86uE27Nl/uzvucP//R99zJdutvgTP3r1hXzOjhdNzUA+tVRjue7Q9SIcQ2Gu5jBTljo5G4PCij1OsDWNqqVj6lLTw9ZU0ix/7vWn60VsDEJMXTKNNFUpNAkVfmljjX6QUDXlumPpKkJIfSXBbmv9JLi/DBH0CZsEJLM1y6T7nlAEGwNpXHCt5fJox8NQFbaHIbahMVuxp200BxOKVqHX+azn40UarqnRKlvnqtKqqnJkLJNmOULA056PF0vNzdmqxd2ZMqNYruuDMCFMM2xdZbHu0BnHdLwIx1SpO8b074VJhl+03B98lhVLp+9LVoupqXT2GJJcFLKt1KdiS+Oavc/NMWTrXZRIzctBIC3Sl+o2630HTVWI45xhGJNmDg3XYBwm6LpKwzXJczFljLjPWXTYHIbsjCNaJYtWWSZRvCijYku3p9fmq+RCHjTzXLBcd/hocyydHeOUKE25PVPhfm9Mxda5MycTfmdtzzdUhb4fgaJw7YDjXLNkMggS+n687/nFqdyPSxZ8+WaTUZSRpIK+H/OtJ11utks0DzCLFOQcSrP9DIKT9raDyAp3S1VRmK/a+5wiJ3O762kYqtQ+1VXJeP70cp25mo2hSo2d91cHjOOUL97Y39DlFcmUoxhxuqYQxBmOIq9z4Ceo6n7GaJTKQmDPS6g6GosNm2GYcGe2zO12ifs7HmGaoapSF3W+arHSC+j58aF5YWoqAZLBp+559pP4/kUlqqST7Yg0lwnzyWHb1lUMXaGElOFoFhIoMxWLnheTZTlhnKIwcUmULmVXmyV6XoxA7NOrOw6jICFKc1plg5Wuj6Lo6KpCWLh/zpQt5quSGXV3tsJM2WJ9EKKpyr54MCxEtnMEd2YPi7+fB0LIYu8klguSlDDNCOOUdlmyhMNEFuKbrsGgaB9XFCmUfXBt3Tvn22Vp8nUZMUMuoFt0r1QsfdqivliXDH8vkueummsUjnsqYZJxZ6YsJQp09cj1bKUrTYrmKhYzJ+h3nQWmprI99pkp1Shb+jT23NsWaJ1yRjb0gvmvKMcmftJir73ocx2Fct1LM8l2rlgGjbJJJnKiNGemLNn9XT8uOpA0lpvu9Ax6FCbuwFVbalm/inHiQfyuSEylmeBpR7pOpLngRrvMe6t9/u73VrnScLg1VyFOc9mjmeXTRapdNqWArpAuLAM/5sG2x1o/kPS4XAapi00bFIX7myPyXB5cl/YwBA72e0sByZSSqeHF2TQruxddL+bxjkcmBLfaJe7Olfloa0TFlHpBK72QMMn41JUa71ytkz4WvL825oerI3729VlKjkHJlAGAF6Xomhyk7bJF3TH49tMecZDw7mqfqmPSLlt8amnXHjdOcwRH27efF1Ga8WDLI0ozojSnZOrsjGPqrokfpzzr+cyUZV/07dkyfT9mWZGuRCtPPYJiod0YhCRpzoPNEa6usjEMudEqY+kyWREm+bSaOVnwpRB8maod0R1LG+lRmMjqla7SKhs0XIvbs9KG+dH2mHdXB4yChLmqzQ9XB9LVoOVyd65SLFgKz7oBgyBhHKa8sVjladcniKW4/KQCsdL1i2qO1DS7PVsuKhQXm1Z5Lnh3dcCjHZ9m2ZhqWKiqwp3ZMn6cMQxlC4qlC8qWzo9cqdH1Unp+yLN+wG897FJzdcI4R+SCMBM863g0y5Lue7VZwjG1aTB0EWwMQn77UQ9NU1gWDgs1GVTPVCxqjmSx9cNEBhGKPJxOrMofbnt8uDHkwbYmXU68iNWeT2ecEGcZV1ouy3WX2Yp01XRMyRDp+/Ehdkia5fT8hJKlTRNIQZxJYeEgYWcUcWeuwnef9vCjlLmazWvzVbZGIbNVS4pohxEfb44ZFsL5FVvn6/d22B7FRElGq2xRtWVv9dWme6wDUy4kW3HvoWiCgZ+Q5nmhnyYHcKfQxRkGiXSqDBPpHqWphdaKFHD+katN+n7Es750rdNUnzszJb630udpxydKZEW5WTKou7IVzYvS56bx7tXmu9Y6bMt7oy1blk19V+Pg0DPJpT4DQvDrH26xPY74iddmKM9UeLTjMQ5TGiWDR50RHU+2QXywMTz3te6MI9b6Afc25fUebL+bqch32PNjun6Egkrd0fn0co1RmFB3LZ71Avwk47cf9bANla4XkaQykfaTr81i6DKxbqjKIcbXWTEME367cEVabjjM7nEVvdEusTkMZYIyyRhFKZ9ZrqNrCu2yTdcLeW99yAcb0HIt1vo+QkgnzFGYsVBz+MyVOs2yiRA81/y+bPzZn7rNt550+XP/zbs0XIPf9/bCpX+Gqak0SxYzZZu3l2pUHINf/uEaUQprvZBrrRJb45Bn3YD72yNQBBoqpqaSCkGeCX7rYZd3lmrM1mxKhVC5yGUh5azYHIb8YEUeQK80bO7MVSlbOmGS8eHGUB4UVBXT1EDAD54N+O6THj96s8VczSYobL5//eMt8hw+f73JYt0pWN9HB5Rhkh37vvt+zAfrIxxDoV2x+drtFoMg4Vk/4B9/KD/jjYUK19tlvnizyT+71+Hr9zvojzr8+N3ZaaJX6veklEx9eh1116A71nBMnX92f4elukvF0alYRpHskGN7ou90VHFs4ky393pXugFRKg/H8zWHTAiuNVy2xxF9P+FZz0NkCpap8lHH49H2mIZrTl3IQGppZYWIe57LgP9q08UrdOySXFraq0iJgY4Xo6mSTX+SgcxJSLOcbz/tMgqkwPFc1d7HWt1NUOoEiaAzjmiWTOquxZuLFX77YYzIBeMw493VAUt1h76f4JgqTzoewyBlaxgximLa5ec7qO2MI/Jcsuiku7E2LfaBZHgt1W0+2hhRtnTeWKyy1HT4aH3I1+93UFX4wcoQgdRtLVs6M1WbjzdG5AiuN6WRR+mYWOjd9QE7Y1nUE2L/uDY0Veq8GjqrvYCypZMLwUcbQzb6Prdnq9Rdi6WGjh+nfH+lz0pH7qVfvtFiYyiLo+2KhYJMgikKLNakSHUQpTzaGRMkOe9cqZ/qvtsZR1OXxwkbam/77c2ZElHq8mBbuksv1JxpPDJfCIxvDgPWRyEDL6Jdkkx9XZMsuom7n2OqjMJUFnOrUvvwh0+6rA9jvnq3RZrL9lmQelKTPbnpmtzPpWC6bejcbFe4NSPNHr71tE+U5uR5hh9lfH+lRxjnlGwNECRJymKzRNU2yHKBY6gkubYvATeJ7zeHIYamcHumxGz1cg+4T3s+762NMDQF19zVbtM1lbuzFfpBPE3ASRdKOb6e9QK6XsRqP2BzGOIYGmGWEyW5ZGKnOW8t1bjWkq2waZGQzHLBwE/IhEw6fvtJjzDOmK9ZjMMcVRF4SUac5NyacZmvutydK+PF0nQpzqTDZ8PdXxDq+wmPOp40lhDw5uLRTL6zIEwzVnsBD7ZHpJlkNQ68kAdbHjfbJUqmTpRIdqGuqby1WCXNcholWUzfHAaMwnQq97I9ihACHu2M2R4ZGLrCrZnyc8eKXpTy936wzmxV6nANA1ks+95Kl95YinHnIme+anN3vsqjnTHdfoSp2SwU6/vBpEqa5awNAtb7IU+7Hj/1+txzsZmDJKPvpTzueNzfHIEimYwLNZtvPNjBjzK+dqfNbM3BMQ7rpAK8uVil7kgH2KPWtb1al7dnz/9ckyznV364zmovwNRVrrVcbrZL3J5x+XB9iF+40n7+WpNbsyWCOJueV9NMFrrrrnGom6MzjhmFKfc2xwyCmNuzlU9MK+qi+F2RmALIRc7jHQ9NVdkchPyd76zytOvz9Tzn08t1HENjoe4gCivWdllOopmKxcYg4nsrfR52xogcHENnHCfoikoOfLA2ZrZsT52lkhPsPgEed6RGSZRlWMc4+Q2DhJWeT89L2OgHLDUdNEVhHOV4kawG+nHOWi/gVrtEz4t4d7VPJgRbw5DPXmsgcsG1domoSNjcmSujKQrfeNjh0daYTiGKlgupHTBTtrjeLuFFKY+KHv6jDp3nhR9J+qamSPNtRZGsoTBJ+c2HnaItyucnX59hGKT88NmAJ10fL0qIYsHaQDrTXG05/ObDLve3R3zrSY8v3GyRZTnlok9/pmyhqfsneyYETzse9zbH04BAIOh6Mat9SXNslkxem6vw24+7/MaDHXRFYaXhMleTjJRRmKIpgu2hFIy82nLZGkm3IE2Fu3llSg2eiLZPPhtkckwU9srPk+iLsxyKAD6IswP6IPBwxyMt9BX8KOVxx6fq6ri6zuNOwOYoRFdg8CzB0nW++bhDGGfs+DFvzFclQwcpPHjQHek8GIXJVEi4ZO13Rdoexaz1A2xD48H2mJVOMBX/nbRK6KpCkubEufz6wx0PIRQqtsbr8zWSZanB0XAtFEUmUVcKe/e9yalnPbnxKgq8XlDUVVVWzjrjmLiwLf7h2oA0E7yxUCHNpLjl+iCgWTZZ74c86ciAcqXrUXcsKpbO066PAP7Z/W3SPEdXVVnBVGW156BAY5TKlrBxmO7rPx+GyTSYzAXT1lFdVVgfhERJxtYoZLXvE6eCumNiFRtaZxxjagmjOGW16zMIMx53PN5fH1B3TJ52fdIsxy+CoGbhWCLZdOlz9cFLho7874l19V7omnrq339aJG4f7Yz4G7/1lCgRrPQC/tzPvzltuR6FKffWRzzY9hEIfvkHa+e+1kZJ6i5VbWPf/JxACCEddIKYH6wO0DVZDW5XTGq2wZOOxyiMma1IzZS+H7M2CDBUlfmaw40ZF1OTbmSTZOVFIAWXJXtLgX2V1s1hyEpXBiTfX+nLoBlByZAHiKfdEFWFMM6I0gFlS+d/eH+Lfihb1260yjimynzo7LOmfhWgqQr/+b/4I/zpv/Lb/Kv/7+/wr/7kbf7sT92+1OBopmwTJvm07QwKd6M859HOmHtbI2YqJqCw1g8ZBglJlhGlGRvDCENVudJ0MTQYhCkPt8cYuoKpabx+QBD4JAyLqv2zro+uwBsLNRTgu0+6fG+lz5OOT80xGamw1ovYGAbUXOmG9c6VOnNVm4fbI/7JvR1GQcpq3+fmTJmrrRK3Z8uHgs58T/LlKNzfHk8Zha/PV5ip2GQiYWec0BmHmLpGtWew1HBx0QjTjPfW+gzDlIc7Hv/Cj17DMjQ+WBtQcQxmKzY32iVW+wHPugGPu2PSPGfgyaRJkGZ87lqDIHF4bb7CMEx4suOjKPIAf1oL9GSf1VWVHMkQTzPBs37Au2sDRC744TO5nidphlVUimuugaaqlC2D9UFIlgtutHbbxeX6Llkiq/2ApZrN1ihmvmbzpOvTKlk86Xos1pwT26ZOQpjmOLrOiAwh9lfgR2FC14sZBikbg5CVnkffT1CQboPfetLl/pZ0Jq070kXvB6sDHF2jF8TyXpCHwI4X03SjC13jBA1XiidP9u5xlO07HMZpzkov4OuFvulqP+D1xSqPOh6rvQCR54yTDIQUJH/c8QiSjFbFwlQVNgchzbLF3DFJn7hwZZamDocPgVNGriKNAb6/0udbj7t0/YRhmDFbkwzIG+0SiiIPdV6U8e2VLu89G0lWqWtwtekSpzlXmyU+2BjKBMsoYL0XkuZSU+jn3po78Vntjekm73S8p91wHKVoijp107SKdW1jEHJ/a0TZ1knSnN962GFzELHjJbQrFq8vVKfW7Vku+N7TPpqqsjEI+ek3Zvl//ZMH/N3vr5NnkkW3tyKyd76rqsLVpjt9n5qqsDUM+WB9QD9IZbusgIpj8OH6gOWay5OeT7Nk0fUSbocZ15oOj3Z81gchrqmxOQyZrcjkalaw7r/xcIetYcRr8xX+uU8vcLV5eTo7aSE4nmQ5jrk/xg+SlPtbYxxD5wcrfYZBSpCmzJRsmcDoh9NEth9lKAr89+9tMghiGq7JMMpQFYUkF9i6iqbKVsYfrvZRUPh4a8hvPuiwMQjRNZkQkOw8DaEoLNccKnbKP72/g6aouJbK9VaZMMl4Y6FC1dmNSUuWRpxI46H8ohWsPRiGCRv9kEzkvL824BsPOghFoTMK+dTVBu+tjWiVDd5bG7BQs1mqu3z+epOSlfPbj3okmWBnHPHOcgPbkK24U8Z6KqbaZM+DIMm4tzlitedRc0yedH3myhYbwwDL0BkFCTmwOYwpmSrfeNgrXEk1bs6UudKUov2zVWsaZ+qaila0J5ZN40RTg7PAi1JWe8GUvOBYMkZe6XT42996RpzmPNga8se+cB3HVI9s+bV0jRszx7sbTtpI0+xiz9WLpN71/a0xti7PT/ebDqDw8caQlW5A1TVoly1+9u05/DDjac/HNaR5k2vqhfuni6oo06JIwzXZGASULB0hJAPz/5+Y+gRg6lI74ElH9pL7cUqYZVJnSuTESY5tyqRBlObScatY2BdqDpvDiGddH5FLl5i5ms1y0yFIsmmCQC3ca/z4dLvFyWaTpvmxialWWYqWWbqKpikYqmQ7JWnOlabDKEwI4ozFmnQxa1ek85WuyZafjUFIxZIVpXbZQgjZ777lRdzfHDMKU3IhuNJwWBuEOLo2rfyGSTbdVIM4e+7EVNUxqARSVP61hQo9b1dseLrxFu4VYZyxOYzwwowoFQyCmDSXAchcxUbXpF2pF2fUbJ0slwdPq3D12etaI4RgYxBSd00cU8cyNASi0ASK6fpawbiBJx2vEK7LsQ1l2hY1DlNqro6ha4SpAOQ7vzVTpufHlC1Jf56rSlpqa09bz8SOuWRpl0Jxtg2NmapFydKYr9n73suzXsDmIGQUpjTLsg1gFKYMwpi2a6KrcL3pIhByIU8zxlGCUgjOm6p0bxSC5+tVAGYLWu3d+fI+KuwwlNW/tUHATEVShbdGEWmeoQh5eLjRdgnSnLpj8P7akEwoqMh2MOmSBWVbZxwdPhyc5bItXSuc/2Rw+3jHIynaHyqWIVt2DI0b7TIbhXX6OEoxVYU8VwCBZaq8vlhhHEhdDwGy3TYHXZX/fRxOusS99tdV22CuZhElGR+sD4kSqaVwpeGQC3mYX264srKdQZTlJGlGJMS0mnizXSbNJRNU6pEI0lwGHidd41kwmdOZEBfu/Z+wy7woIxeSARYXAmhzNYu+n8g2RlVBK6xv0wvosy3VHczb7UPzc4LHHY9nPZ+eL9mGhgZr/QhdrZABtqEyU63Q9WJuzJS4vykoFeuZa2gY6q5Dz/OgWTLx44yFms2VPU6KfT9mpefzpBMwVzGJs4xBIIsTfU2l5uhcadqEqcDRVR5ue7K1N80omRpxJigXwqIySf5cl/lCULUN/tqf+VH+3f/2Pf6zX7vP3/72M37hx2/yRz+3fCl/X7og7q9Of+VWm0c7Hk+6Y7ZHEcMg5fM3GtQcnQ/WRxi6yQ+f9QGBF6d4UULJ0NEUWYFUFQjz7MwPNE5zZioWm8OQt5eqtMuyDfNJ1+fe5pitUcxs1abmGDimhioicmEjRE7ZMRiFKTUnR9PUososW7eSTM6LUZgeSuyctpxXLB3bUNELPacky6UF/UyJiqWx2HCwdWl1X3UM3lqo8NuPOiSpwCtEqNtli1Eo3WAnbOE4zdkYhgz8lIqjYZsqYZzRdKVW0+QAP9FskRo/uy66x2GmYkmXTk3lStMphLB9MiGo2QYjP5lKN4zDlLKt0ygZVGyTiqUhFDBUqREYVHOutVy8SOqXPO540rUrzREo1EsGjqkyo1rk+e7afdH5UzI1rrZc5moWi3taJjaHIVvDiH4QUzJ1qftoaGwMh5Qtgx+uDdgcBggh98CaY9Cq2GwMQpoVg1GUYGgKQSJoVkwMXaVyhAnPebBYd1gsNEx3xrLSvtct9/7WmPfX+qz1A3RN5aPNETXHpOXKYq5rqIRpxijM6AcxQSLX+DjO0G19qp91HO7OVYoWJBP3CO0s6QIlNZp0TWUYJkV8l+BaGlGaURby9758q803H3XJcsH9zTHbY6mxVHF0dFUlVeQLjYq9R0MhFTmZgFGUstoLT7zWmmtwW5cOr5MDXd2V4vkgD34zZQWKz5kkNp71fLZHMhlpGSo122DgJcRpjhfLQ2zTNUkz2SbXGYcMQ3mgzXJBx0vIc8nc2R5F0jm4VhjrHGD1LdYdqo4hE3pC0B1H1F2Trp/gGjr1kkEYZ7imQZhnLDUcKrZBz0941g1Y7fsoResYmGS5oGIZbA4jyc6xtUKnRyVO5JnqMrFQuOM6psZcdTemjNOcB9seK72Ahm0Qpjn9IGHgx4RxTtnWmSmbZAJMTRb7hAIbwwC3aGur2jI+j7PDrFKBbIucHORzITB1jbKlTddv29TYKowrypaBplnT842UFdkVK6/YBl+6JVmps2fUrz0Olq7SKmQnnnQ8DE0r1nENXdcomwaWpjD0k0JrLWNtEODFKRVbIy0yY+NIJvYArjZdTF1lte9jatql6BnqqsJ8zSaMM0pFa7xlqlRdk4Waw73NkYyhc8HXH3SIUsH6wOONhRpJnpNkOSu9CD/OmKlYU3e8Ty3XaJTkOeJ5pSkUQNUUVE1hpmaRZBQGHwECUFSFUSTHdHjBsd0uy73L0tULPVfpym2zOYyYqRhFkUYmOBuFOVPdkbJB672IJ10Pv9DnnatZuEgG6cQw4+aMZAlKF0eDlW6ArirH6jm+SvhdkZjSVKmvcr1dwo9SUCy+equFMwm4bKnbcXu2RC52NYAmv/eppRp9P0EIwWevutyaLeMY2lSF3zG0wuLxbC4oVxqudIlryw3qqMx5xTb4yq02HU/a0lcdg7vzZQZBgqmpPO369H1ZWZET0+L3vj3Hai/k1mwJFWXaPmUUCa6ypTMMZD+vqsLtmTqWofFZ4HqrRLtYKGWLnUxOXYbgnKYq+9gTSSareQoKn1qs0Q8SFmqSrdbzY5l8cnWuNKpYmnTXsA2dW3MV/uSXTf7R+xuYurTvfWuxSli0Bx7uwZeBXNUx+NRylXbZ4tZMGU2V9q2fXqqx1g+l1tE4QlEU3lyocqPtsthwZWJQ07jSkq454ygtBDLLlIpn6VratKf9YELS1NVDFqPPi6VjRKTjLMPUVbw45Ypp054vExX9zAs1qdtTtQ0Z8AiKwEdwb1NuSF+7M0OjZE7br55H2LnmGEduFEkqGQtpLsU631yoMgxTgsLp6GqzJFtoFKlZcqXpkGWC7XGVrWHEm4sV3lqqAzLIH0eylc/QVZYaziGtn+WGQ9eXwf4kMTiOUtmuoSjMVx2STFC1dearNm8v1yibOpujqKhmCIZhymtzVZZqNp1Cc+GdK3XqjsHaIChaKaXekK7KZMBRjBlLV5mrWoeusWob8j7z3QRPmuXc2xqjoTBXdVBR2CpHGCp8+kqDVllqB0VpTtnWGAQJV5slZkoWG6NwqqX0xkKFp70Ax5DXZhvatE2z8Zyi2Afn9EWw1HDojmO+dKtFEKesD0L+0GeXUBSpjzVbVNN/7M4M//T+DmGS8/vfWeSHF/is44wMhmHCh+vServpmryxUCncFXUMTePWbAlNqdMZR3zhepOZssWDrRFrvYBBlLHcdLjWKkNRlRe54KLqyLahcXv2cMUtTnPyXBpwRFnOZ680eFcdkmQZSSa41iqha4qswqkqd+crqMBnl2s87gTM1WzeWa5TdnRqhdnEJyXcfh6ULJ2/8Mfe4Y/8yBL/yX9/j3/v77/PwL9csfu9qBZz+TtPumwPI6quzueu1skEvLVYw48z3l6o8r1nA+I05Z3lBj92p02QZpQdjSQVtMomNef0uTRptarYOl+82ZpqTFVsg7V+yK25CmGWc6Xu0CxbmLqK305pOCYCiJOMVMCtuRJvLpZRFIU4yWQrnQJVRz+yxUxTFW60S8e+7+vtknQbFoIsl3/HNorChyULABuDoGAUpiw3S/yhzyzxzcc9mq7OzZkScSattG1DnbbJLjUc1gYBmgquqVGyDMq2hqaoUkukKF60SuaU0V0/Q0B8cI5UbKkbmmQ5yw2bvp+CBt9+0qNsS93EL99q8tkrDQxdCmF3vYiyLUWSJ+8A5N7aGUsWhaYpU5e2LJcM64WaPY3FLgK5px3WuIuLBH3dMWmXpaj1hxtD2fpo65QtjR+73WalG3BnrkKzbPFwe8zbixUMXeOthRrjMKPqGrwxX+FJ18PWNf7jC13lfjRL5qEYMBOCZz0fXZMOUK2yxfWWvNbZmkXZMQqtT4UoEXhxzNogLOaLjMFcS7aqHtfKd9Tn7oWqKvT8BK9wR319vibZyJ40h5gp29RdYxoTXm26heGPRatkEiQ5X7ndxDZ0WfwtDHNUZcCVpsOP3mzyaNvDNtVjTY324qCRiHFASB+kpMTu96Wjl6EruKbG64sVBn6ErqosNiyWizhPLQ71IOfKxjBkpmzhmDp/6J1Fel5EnMPve3uefwbTPfMo6KoyTUA0SjKBuVB1WGo6tMsW97ZGLNQdSqZOqyyZu0Gcoigqm8OQekmek5bqjmz/E1CxZevuZ6400VWNDzeGXG26JzJHLoKSpXNn7jBLJcsFXpiRZjnjOOXLN5p8d6XP0NXRVJUbrRKWrtIp4kCALMt4slBltRdwa7bEV2+1SXLpZh0WCVRDV3l9oYoCvDZfpuWafG+lT901uDtXAkVFVVRURa6xmwURwDY0Pn+9wQ+eDUhzydJLDxzw5qo2c8+piQSS8fv6QpWuF3O15XKjLdsXwzTj596ew49yLENF1+R5Z9KqNwwSlhsOX77ZouvF0+4GgCiTRIvLNAEoWzq/9605KpbOx5seV1sODcfEizPiLOenXp/hO0/66KpkQvWDFCFyZis2t2fKNMsm+kjGVJO1EmSR+dYljTPH1JgtW9wopEKMggX5ldtt7m2MGAQJP/XGnDzbXLCV2zGPju/OipKl86Wbbd5ZbjAKZCdIJnIMVSVYrPG5a00A3lqooKgqFUujM44QwJdnmriGPP9N2o4npBCQz/J5ru2Txu+KxNQEE00eIQRL9RIly6BVkgKyVduYOid4UUqai+nhuu6a/IFPLRzSUNA1qf1xXpSsw0mUoyCrvPsnwWxFk6KPKNPDpW1ohZi4wZdutnANeY0TAbe9WKjZ2LdaZJl0ezmKyaOpRwdQl4W5qj2tLrXLFosN+fVhmBTJoRqmLg++uqoy8GNMXaVsG1xpuHzmamOf+OtJjRS3ZsqH3hvsJtzaFZtxJN3KvnanTdU2eGOxSpRmbA0jbs6UqNgGpq4eEpz9JO0xT8Nyw2VnFHOzXcLSda63StyaqZDlOUkm2wgnekx7RT2/cnvmSErpi3D4aZZMep6sFDVLUtD7596ax49ln3mWC6qO/Nwk2xUjP04wsFRUhXVVOTKI1TX1UKDmFxT7im1QdnRet6vcmCkxt0d0ezL256qyOuMaGqYxeXa7QWjtyOTO0ZuWqihTJtlBHNTGClPZnqJrUuPmM1cb7IylOOFkPdgbCNcdE0WhoOJKFkW5MGB4c+Hw9bwoV6/zYrIeA1z5ihQCPqp3/1PLdf7Mj91EQeHz15uXeg1eJBmufT/hWtvhervM6wvVqTNau2LJ1tI943HiMPiiBV8naBdCqvNVm2bZxDY0fu7tecZROr2Gqm0ULSu713nc9Vn6i5nfl4Wv3GrzlVtt3l0dMFu1+Bsv8LPyXPCZKw2uNF0aJZOF+v5971PLdb50q0U/SLANjUbJogEs1s63P05a0MaFvtve/fVK08E1Ne7OV6bJmTCRgtwTlkqS5Wh71sA/8PbCmcfeSfGGpWtHFjsmFX7H1NkchgghndWutlxuzVZYajg0S9Z0zbnR3i8ebRsaX7jeJIhTVEUejI40SdBka/zzYG/CuV2Gm+0Sv+e1Wb5+b5uGazFbtbm2JymQZqVj9pOjn9OkwPeiMF+T8ZCly0TPaj/garPEcsPF0lQW6jZVx9g3tw/GnUkm24MURZE28C8Qli6ZFKqicO1Nl08t1cmEQEHuq7dnxL5rneAyBfuFEHh73FHfWKgyV10kzwWaph76jOWGQ901uNpyGAbSHOKo4tnkcAfwzpWGXGNfAMVUURRem69wo12aMpq/dKvNUqOEqamYR0g+WIbGtdbue3/naoP/cL7K5jDkLI90r5tho2Ry64DOzeeuNSU7vChOAtM4+FrbxdY1ao7sDhHi8Dt+e6l2rPvhi4JjalQcnVZi0XRNLEPn595eYBylJIVucM0xyHNBJnbXqM8LaXhzMPadzH9dVfa5d/6eN2y+dndmum7svf8gzgpNTUW24sepNFzwYlz7clhHJ2F6lilZfHq5Pl1ns0yyx6T5jcqjHY8wzlAU2a41V7OZK5hoE5Otduny1zlTV6dr0kzFPnLtvdYqT7W9Vno+fa+CVRRSF2pO4TSfnZh4fR60yxb/yo/fZLmxm5QCqQ/9i7/n9pHr2ScNXVV4a7FWdD4cHrtxmk+vcRQmNEo6jZKFqankuUKjZFJ1JPtPU5+fZfYyoTxve8KrgHa7La5fv/6yL+MQJlR8BGyurfBJX2Oc5WSZQFGUqS3zSXj8+PEnfo0HkeWSao8Ctq4dSU54UdcZJrlcxDUF8zkPo6/CszwOk/t8GWPyrEgKy1tFgY3Vl3+dAnmYpKi2HRRrfFXe9+Td6ppyaGN7WdeY5kLq8p0wp/fiVXmWB/Gy1/Oz4uD8nuj07G1FeZXwqr7vvXiVr/Flr+d792xL1049RL+oZ3nedeYkvKrvO05zslzGdBurT1/Ja4RXb//ei6PG66v4vqf7DZKR/fTJkxd+jVIoXSYyLnpQfxWfJezfv9eePWXxylUsXd3nPvgq4eBzFIVL5nEx6MvCg4ePWFy+emTM+argpDE5GfNqIXvysvA74TkCfPvb3xZCiBd6ga9uWfUcuH79Ot/61rcu9Lt54XQRJCkzZZtW+XRr0bOi60lrcIA//Yd/+sLXeF4Mw4SNQcjWMMQxdNI850euNU4d7J///Oc/sWsE6QzT9SS1flKxlKKqPoamcmu2fGTW96zXGac5T7s+qiKp3gB+klE+wK4CWZH8cH0EcKz43XnwST/LvdgchgwCqd8jLWWzKcMmzXI+KO7zkxyTBxEmmWwXKESHg0SKr04Ozg+3x9OK6Yu+zskaEKVSi6RVsg6NDy/a7d2uOcYhFsAn8b43BiHDMMExNOaq9qHA8bQx/LLG5ErX44O1EcMw4Su32iw2jm5XneBlXKcQgme9gKAQtncMDa9gYk6q8y9rPd+LJMunYvpXGlJTLsl2dceOmt/ffdLl/o5H3Tb42t2ZVy45dZb3vdL1+au/8ZjFusOf+vK1F85iO4hPckweXBsnDrpHCYe/rPV8HKWs9QMcQ4qP74xj0iynXbEKjb/jY6jnfZZJlu/b0yZz93HHw9RVXEPnWtud6mFdBJ/0GrRdaNg0S7LdbxylWLp2aI2/tzmaaqC8zP0bYH0gzUdmKxaOqe1bhz7J/fusyHLBhxtDOqMI19KnepSNkvlS47Xj8GRnzLee9nANnc9ebfDzP/1jL/QahRC8tzYsXN4U3jhg+pDnOR9vjsmFmLrcHYWX9Sz9WApcW7rGlaY0MdD2xJR79+//6R/4Sf7mL/1j5moWsxWbuHD8MzWVZ335M1eb7ktNEBx8jsMw4f7mmCTLWWo4LDfcQ/d8WWfX8+CtT3+Wv/nL/5iSpe1rbw0T2eZo6eq+mOVlMJOOG5N5Lvjv3l0nSnOuNN1LZ+yfB5PnuDd29yIpg9LzpUnXXMW+cKvhZUFRlO+86M/4XZGYeh6MwpS+n/C067E2CHl9vnqszs95UXeMl2LbvT2KiJKiMjAMqDtSLLt9QTepF4XNYUiey39PElNZLhgECYYmdX2eB30/noqv9vyYjheTpLKdbC9lGqRmwELdngZav1OR54KtodT4Wh8GKEMp5Ft3Da40XXRNZbFuMwxfrgZNx4sJ4hzIebwzxo9ldfX2bBnb0ApTAukQ86IxClOGgXTPcyyNW+3yIX2lkqUzU7Ek3bj6yY+PLJd2sDvjCC9KuTFT4u5cZV/gZGhS82wcvVpjuGxJvS4hpEvYaYmpl4Egyej7sjd/eyR1//wowzbUqfbFy1rP96LvJ/jFgW9rGNIPEoSQbamzVfvQ/M5zwdogpDeOUYXySgqjn4aNQcgf+S9+g64XkQv4ztMef/FPfPZcQbgQgn/w3gbvrg75wo0mP36n/VKC+LNg79q4MQjoFpoRV5vuoaD0Za3nkxgjSnKuthzKic6TrjdN6L8oqYA8F9zfGu/b0yZzt2Tq0hmuYVJ5hVtZj8KknXJzKB3Gel6Cpsp2MK1oLZLiuA7bo+hMukgvEmmWszOSujXPisO+EDBblU5un+T+fVY86Xh8vCETK3Oa1HZ6Vdtd8lzwcEe6dkem+ETYMYqisFR36AfJkdIJD7Y9PlgfoamyfesydYouA51xTJjkMnHbFQwKnZ5bM2UcU9u3f2uqQt2VUi9ZLri3NSLPpbu7qsiYqu8nL7TF97ywNHVqKDWRG9gZ7d5zIzKe28jqIjB0lXKh4zpBmGTc3xpPk5wTU5t+EL+wdr2LYG0QFFp2KcsvOS6dPMdJ7N4ZR6z1w6lci21obI3Cl56Y+iTwO2v3PgFCCB7teFPXo7NaejumpHznAlxD3ye+9rxQn0PLqTOOptat0hL37BtT1Tbwo4yyrVMpek6jS7yvy0LVNuj7yb7K5no/KAQvFbLnPEWVbZ2tUYSiyF7izWHE5jDkSSfD0rVDwuXtsvXKJe/OC1VVpKtdKNkegyBhrR/wrCdFaltla/rPy0TF1ul5sexHV1QGQcjOOEYIwdtLNRxTmyaHwsK57ka79ELYHo6poWkKaSGQGWdHz5WThO6jNOeHzwYs1O0XMoakoL/G+iDHtTQplp0JDj6O40TAXyaqjsFMUZU8qloWpzkPd8bS4v05BdcvCqtwLY2SnKqt83DHKyqRUuRWU5XnWs8vC1KMXx4CLUPFH6SsDUI6nnRhMnV13/yeuKFGaU6QphivCP3/PPjzv/IB4yjhV/7NH+cffbDJX/gHH/Ezb8zxhz+7dKbfT7KcP/s3vsM/eG9TfuHX4H/2Yzf4cz//5gu86osjiGRQX3eNfXM5yjKO0ri76Ho+cVE1dZWb7dK5WGjVYo+xDJWyZeAY+lSA/bj18zKQCzE95Exc1iZzF6Qj2kX3trV+QGcc0yx/8tqSVVsWD2uOMY1Bs1xqsozCpDBs0LjZLr20NXIvNFXBtTT8SNq+e1HGIIjZHIZ4Myk32qXnNs+4KPw45dGOh6Yq3GyXp3uOqkhnWEVIw4Cl+stdy09CXjjUGZrCOEzoXaJJhBCCxx2fcZgyX7P3rTGNknmstqqiKBiaUjDjXr3DccWW8a6uKSgKdL2oSOoL3l6q79u/TX1XB3BjEHJvc4xlqFxtONKlTXl1tDonyAXkSO21jWHI1aZL1ZH3bOgKzktiQuuFAUdnHPFge4xrSi29yfFNukRLs62X9UyTTMbnk2LGBKqiULH1ovD8chNmk+e4OQx5uO0RpfKcqqoKZnH+/53gqHcZeLVm3nMgSvMpdbgfJLTKFl6UYurqiXRMU1f51FKNxbpDmGSf6KHOj1N0VT3ysNbzZSXcizKiND/XgXymYtFwDTRVYXsUEWc5c6/YYRVkVXWhlu8LiA1NuqSYuoapqXiFHeZF4Jo6bxZ0ZFVVWG44rA9C5qo2XS+WFqdJNhUm/d2CG+0SaSaf6/ogYL0fUrY0ul780hNSE1RtgzcKV5RMCOmAZ+rEqTg03oXYtUu/SGIqyXLiND92HJm6yhvzVRZqDl6U0rrAwSQvhF/7fnyhxFSeC4Ikwza0Y8Vjb86UmatadD0peHnQKehVhaYq/NidFt1xzMwRAvHjKGUcSoH8QZC8hCuU13hntkyWS8Hp7VGErigyyR+nL6USeRQcU+ON+d01bWMQYqgKrqEV+93+sTth0QkBFUsmXfWXLPJ5HjzcHvPffn+NX/yJW7w2X+HObJlfeXedv/APPuL3f2r+TOv2f/BLH/AP3tvkf/8HXudPffk6/9GvfMh/9fVHvD5f4Y99/soncBfHI8sFYSIP91Mh9DwvilEwWzERSFOGiwrXBnGGqh7e4wZFjBElOX6SUT1HYqpVtqg5MsaYmBosNxzGhdnAi4KuqdPPmayzB+fuWTF59o4hg/+Jc1XPe3FOkcfhasud7tlhkrE9igrrdZXVvnxPoyCh60e0yy+fcaAoCjfbpX3r5SBIKFkaPS9hsX6+mPUsiNOcNM+PbGndi0GQSPZLLt1Jm8WauNxw0RTpYrZwSV0R50GS5STZ6dcPcpy/Pl8hiDNKpnZhC/sj15dMMC4Yln0/PvN8XW44WLqCpWvHGr28TNRdk4ptoCryvh9teziGdFfNCt2so+DHKWVLJ8sFyw13utcflHN4mZgk4c3ifDQpMO2955fJAM5zwVo/JC9MCxbrKnM1izjNmavaaMW1vaxnmuaCIM7IcrEvMTVXtfnctQaC4x3RP2msDwLyHHRVpe4YmIbKbMU69/72Oxm/a+7S0tVpoNQqmTzteny0MeLe5pj0lAqeWriyXGm6aIpCdxxNrRajNJu6jVwmtkcRD7Y8Pt4cHcnSapfNqbK+VTjGhUl25r+vayqKIu+r7hr4ScZeofu02CRfFM763JJM0PPi6bXN1yRr6Wa7xL2tMQ+3PdaKnu+TEKc5gyDhoJi/qu46RDimxuvzFVxLo+4abAyC6Rjx41fPXv0gwiSbJkD2QjqI5Pv+308yojSjVTIxNIWOHxOcY/xcFMkJ4yrJ8n3vJ8lyvDhFUxQWajZektL1YuJ0/3VOxPsvQruPkoz31wY83PZYHxw9joSQ7mbNksmVpotr6gRxRs+Lzzz3NVUp1p6LHco+3hpxf2vMw+3xsT8zCWqvNF3aZYsozeh4EUn6Yt5rXlTsLwM1x+TGTPnIipkQgsc7Hu+vD6YBzGXjuLmT52K6P0wO2D0/JkwzcgR+kmJ/AknrOD37vBHAKEpJ0qzYG3K6fnykwYUQgsWazTiK2fYCNofhi7qFF4K//e1nqIrCn/7qdUCu5//bn3ud1X7A3/3u2qm///7akL/2jcf8yS9d43/+47ewDY0/9/Nv8qPXm/z5X/nwE0uEhgf2X5Dv5n6xx03aoUAydxUFDE0hSDLmKjaLdedCQX3Xi7m/Nebe5vhQ/NAsmeiaZL6U9hyWs1xMD0InYRJjTO6lbOvM1+ypmOwEUnz/7LFGmuVHztUJGsU6rSgyudYv2CTnDdofbstn/6TQP5mpWGgH3LouC0fFQ+mBeR1nOV6UYukqMxVr2k7VLJnkQrDjydaOrU9gDucnxJuTNTPJBF4sx3XF1rnStNkaRXT9+Fzv+yyI0oyPN0c82PLYHkUn/uxE98wx5SE+iDPGUYquqVxpuSzUHdI0/0RjviTLp9d/3Bo8iWEnY7/umrw+X8HQFJwLFhOmY7zjT79m6ir1onDdLkt5gtP2+TwXRElGydQ/8aTUSevRwbVCCMEwTMkFlGydKMsYRgknrZxxKuNQRRGoitxb9+K4fTlKs0sf50chTDLubY65vzVmpmzSLlssFOx9P0qnbucnYVKcfVF4uDNmFCZsjaLpmXWm6EBRFYXRAffLg8/0rHvORZHngnfX+gyDaN940VSFpYbLcsO9lMTeaXvXaeh6UktqtRdQdXSutFxmyhZhnJFkcn04ba7G6fn221cRx6buFUX5O8DfAf4bIcTxp6VXBIqiTAWJgzjjg/UuQZzJQKnYYE8LXNIs59fvbTEKMpYbDtfbJTYGIbomK3In/f44SveJN5+GyaYvhAxIDrKm6q45tZn3opQPN4aYmka7bBb2w8q0wnYS7m2O+GB9RNnReWO+ymLdwY93hZyvt0uXTq/cGUes9+Vzu33AsnYvRmHCr324hRelvLVY49NX6gRJjqZK+nKc5qiKcmpCbqI7keXiSGHqvdekKnIx+nhjRM+PC20phyjJsXRpiXzcASBKJXvteURVL4rVfkB3LA+ft2fL+w4ED7Y9el5Mo2Rws11mtR/Q9xPCNEURcqNdrDkvXHTwpHG1PghY68kx8enlGn6U8qjjk+UCL0pJMvlc22WLONu/8O7V+TkPkkIY+NGOT7tiUj5ClyNOcx5ujwgTwXLToV22GEcp33vaZ3sUsVi3+ZFrDXRVbq6Wrh7J0jB1lTcXL2bj/azn8/HGGF0rBK0LPZEJ8lywMQzZGkaULI3bs2WSTPC9p33W+iGNksGXbrawDQ0/lpbRF2UZThAmGQ+2pUbAtZb73IyhLBfHVvW2RxHfW+kTpTkzL0C/a9KiYxkqd/bMnSTLub81Jk5zGQQ0XJ71Ar6/0mdrFHJ3rkzNtch5scJMk5Yq2NXDmGBrGPKk42MZirRtz2UbRhBn7IxDojTH0nUW6w4cEX6vdAO+8WCbbzzs0HQtSqbJctPFjzMq1mETiFcJWS74r7+7yk/cndmnS/Hjd9q8Pl/hv/z6Q/7Y55ePDSiFEPy7f+89ao7Bv/17X5t+XVMV/o9/8E1+/i9+nb/6G4/5N376zgu9j5WuT9+XLMfbs1IcNslyhmFCmGSoilJYvct575oa6/2A9WHIB+sj3l6qcWe2fKF3tTfOOMhELVn6VOA4yXLGQYqtqzzY9shyMdUtm9h8nxRrPNzx8MKUQZBQd+Vae6NdYhQm00PxwbF9FAa+1Po7KXYQQrAxCPneSp+PNofcaJf5zJX6VDcyy0/exyd/YyJvMHlGc1WbuRdw6J7EHpqqcGdO3tP2KGJjEGIZKrdnynhxyoNtjzTLidOMim1O205qjsH1lkzEKSgXZs+cFXkuuFesixPNqAniNOf99QFelGKokrXrxymuqeNHCddbJVRFObSHH4UwyYizs8VTSSYt1EEUCaWj94nduSY1kMZRyqMiJpkInftRyq99vEWSCj61VOXWc2olxWlOmMr1dO9aNJk3MlYX5PnufR9EngsebEvttEkMuzkMebA95v21IXO18+2LozBB2TvGDxz6J6yRrWHIs80AQ1e4M1uZsopksU6ulVGa8cOVAb/1qEujZPC5aw1em79YrHNepFnOvUJT7mDb4SBIeNrxCJO8KDjrPNj28KKU7XFInOS0SxZVx5At7cekpwxdZb5q86wf8I8+2GK54dKuWFxtutzbHOFFGa2yua81dSKkrqlynXqRsXWU5ggBAkHPTylbBmGSMwpi/ruiPf2txSpvLtaO/P29cfllxHJHIUxyKrZB1TGmIuz3t8Z4UcrGICgMEnReX6jypOMxDNLp+nbSO74sjKOU99eHDMOUL9+eOTQWznKWPg09L+ZZT86lWzPHn3tPQphk1B2pkdgqWwgh+HhzxLurA7pezFtLNRZq9j6R+b2Qc8Lfp9f7OxEnnV6+COTA/0NRlH8E/H+AXxJCfPI853PCj1Oqts72KKQzhl/9KERTVb50s0nzBEZDkGSEsVzIB0HCKIyJswzQZAvEMQNtEnjsFdo7DXNVe6oTsvcAn2Q5ekGPB5kM+WB9yEo3IIhTcuCd5RolSy+0mIxjdU/yXDAKM3IhM+uTjLkfZ9P+Xz9KLyUxleWSdWJo6lScNy0ow36S4Rraod71UZjQHcc87vqsD0Jqjo4fSabPk25IzTGmmjkHD+v77lPsMjuO07eYiB4GSUqSyYVU11RGYYo+CimZGqv9AFVRuDkjN6CdcUTFNqg5hmTerA/RVZV2xWSh9mJon3kuA7CDG50fpcRZxuYoLLRHZLCY5oLuOGa1H7DS89kexQzDhGbJ4GknmL4TXVNYqDknUprPgzjNMTRl3zvx44xcCLpejAK8sVCdHg4645iVnl8ckOT4G4UppqZwb2tMq2LRdAzqrn4u4dqD82UvolQmOVtlkyBOi8NINk0sdb2Y+5sjvv9sQNM1SfOcpit/diKaHyYyGbkTJuyMYhQFXpuvnGvTyXKBEMcf7Pw4Y65q0fFiVFWh5++KjwZxxsOdMe+tDhBC6oddbbqEyW7FN0klTTnJch7vFO4nTWea2L4IgjibBtLj6Pla2SaJF02VG7apqwghiLMcS9cI45SH22NyAfc3Rxf6jL1/7yD8OCUTgtWeT8nSptoifpyRpDnffdonzXPeWKhStXVZbTV1nvUCVFUlTHIMVSU/4R2eFUkmk+1752BQrMddP0JV4LX56vT7m6NoyqaJU4Gla+yMIxquwUebY5quZETOVS107fAc2BqHfPNRjwdbY7JWjqnDg+0xSSpZDi9LB+Ys+MGzPuuDkH/n97++7+uKovALX7vJv/W3vs+vf7zNT742e+Tv//0frPPNR13+wz/yqUOCoW8v1fiJuzP89d98wi/+xK1LPVgcXBu9OMVPUjZHIXMV6ZQ6eQdCCIQCwzDlg/Uhd2YrDIKYJ12f9X7IfN0mSjOSPMdSzx9kzkxbABSq9v44Y7KGyeKGvB5VEfQDqdFTc3Q+d7WJF6eESX7soSHLpVGAAPqhTExNKuJ7Y40gyU6NjYahZLClmWxtPrjOJlnOg+0xD7bGfLQxnLJnao7BXNUmzvJDa81RUBSFKw2XfiCd8JIsR1OU507U5rkgK/bcCSbxUJzlPN7xqLsmo+I+oySfMiI+3hriRxmaonJrFgxdXsvGIGR7FBEmGXNVm3bFvNSK+MSNbDJe44JdkebyWeuqMpUA6Pox33zYw4tSqq7Oj15vMQilUPvqIKRqS0Zv+ZT3HKc5H6wP0VSF2Yp9on4jQJLmbPYDVgcB7yzXma3YR46lUZiyMw5RC32pZA9LZDImB2FCnMhBuT2OLpyYmrAj7heJ3L2xuBCC+5tjPtoaUbEM3lqqMle1GB9jrnNUDDsKE1a6Pjuj6FzaMpvDkB8+GzAKE5brDrM1expPDIKEvhfTrliUrF1duCSVrHtN1abrQRDnzNUsTE1lHKVkhdzAizJaiFMZy+2dg1GaT88RD+MxFVufHrbHUcrGMGLoy/ji1mwJL05RFYWnHZ+KbWBoMW8UBcOjzhBZLpir2DzteIyDhHGS0XQNHoQy6fW461O1DFQVrlOaXueD7aKgZRty/uxZZ2QHw+EY/qIomRoVW+Nxx6c7jpivQZbn/OBZn++t9Gk4xj7h8Qm2R9E0Pp6uwXFGxTYubb2bYLHm8Kzn40UZH2+Oud5yCeKM9UHA/a0xj3Z8Fus2iw2HUTF+BkGCO47o+bJAo6vqoaRzmuVTJvvzIE5znnQ80jRDZf+aN0mUNUoGy42L687tnUvhEXvXWVB3DR5vj4kyQTtMKJkaz3oB768N2RyGmJp6JKPXi1J6fjxNRAsh3/XexNRRseeripOe3JYQ4o8C14C/B/wCsKooyl9RFOX3nvaHFUVZVBTlO4qihIqi6IqiGIqifENRlLGiKLf3/Ny/qCjKbyiK8vcVRakWX/up4md/TVGU5fPeVN012RlH+FHG444vkx1JTnd8ck6tbOncnaswUzH59HKNMMnZGkZEaXZiX3i8ZzAk+dkCBlNXudpy91WjVro+H66P9tFu00weRnKR8+7qgJ2xrKB3insZnbBJSLE/h+Wmw62ZclFVh4ZrUnV0KrZ+rNDheRAmGR9uDPloQ1rCz1YtSpZGq2wyCGTy6VkvOFQpmqnYzFYtXFNjoWbTD1IW6zJh13It6o4pGQI7fsHeOLoKp2sqV5pOsbAcnTCardhYuoIfZwRJStnWuNpyWajbLNVdtkYRQhRBdpzxrBfQ82RgkGY5j3Y8Hu/4bAxCkvTFMChkkDPmo43RIbq+dFvLMFWVjUE0HXOGJmnZpq7g6BpRkjFTlsHETMWiahuULI1bM2VWuj4frA+nSZeLYr1ogTz4ThquKRMEqaT5d/cIdk5aChuuwTCQFVbLUHEtWVm3NJW78xXSHD7eHLPS9Y/66H3YHIZ8uH74OiYoWzrNssls1aJZsvCijPX+7nMdBgmqqqCogCIPEx9tjljvh8xWTRbrsjJRMrV9c/w87W2TufHhxmh6GDmI+ZpNu2KxWHPIc1jtBdN3NIqkXoamqWQip2RqbAxDnnZ9LF1lrmpxY6ZEzTFI9lSpn1eAuOoYVGwdx9SOdOg5D0ZhOtUJmyTTHu1Ih6SVrk+KtBRWFKjaF/usxx3JOnvaOTxu5msOYZKiKirdcTJt36pYOiVLI8kyKrZO34+5M1tmuWlzpenyxkKNumPS9SI+3Bjx4caIgX/x1q9BkPDRxogPN4b71sJmyQQF4kQQp4Kt0e4YbRRzu+buHiLKlo5j6tyeKVG2dW7NlPHjjA/XR4fmjanKpLSKwjBKsTR1Kh79Ilu5LwPfeNgB4Ku324e+9wffWWSuavH//PWHR/6uH6f8+V/+gLcWq/zxLxytI/Wnv3qd7VHEP3x/49KuebI2Skci+ZwXag59P8bWNZ71g+lcAHAtnZpjkGaCjzbG/HB1gKZKfY4rLZurTafYuy5W+TQ0tdBy3LUSf7zj7RsreXE9AsFaP+DD9REb/ZAoyel40ZShc9z6pakKs1ULx9R4Z7kmD+hFgN8smVRseY9nacWeqVg4pmzbLh8Rc8lksnTWtQ05D4ZBKm3ee8G+tea0fa7mGlxrlYjSnA/XR9wrWNcXRZLlfLQ54sP10VSvCpjGQ0IIwiRnYxDimBq2odIoGRi6iq4qVEwTQ1O53pbuuZPi1yRZ5xg6zZLJox2PDzculsA/iJWuXDcf71k3bUNjtmrhRxm6orLWD6fP0tQUFEXgmCrtskmjZPDOch2gaN2x2RnHfLQ53vcMDuJJR8ZTa/3gTC1GwzAhSHLGYcaTrn/sWDQ1WUhQkQznumswW7VoV8zpgW62YrPccKi7BncvwMQGub58uDHi/fUh46hIMu5LggkGYUKSSkb4KEwRgBdnrPaDQ/GKrqlcabjU3d0Y1jY0HEujUT6fy2Sc5oyjlO1RzIMdrxB4NgiTjF//eIvvrvT5YH0IyNjDtaRY9eQQG2d54QoKwyClahtca7ncni1ze6bMG/OX78a3PYqkrMaBOViydGqFwLemKqzukfVolaTciWmooMgW95pjMlMxWay51B2Tqy2pt/rhulyT97ZZeZEsBjzueMxVbOZrDss1h0bZombLeMrWVAxd2RcDrfUDOb6ClJKlHSrsP9iWMjKrZ5AgOQ2TcbY1iiiZOnNVh1wI6q5cK+arFpapcedAcnUYJmwMQjpjmayoOQZVR64fPS/mw/URH22OLiUGCJKM9WGAY2iULGkgluSS/aSpKtebJQxd7hGjQnDfMqR+0mRtyXJBydL2MaNHYVLEXcMjWYbngaKAioKuaTwu3Dkf7UgW2TDYTZQ9D9rlPXvXBcgeccHgH4YZ7bJ8VhPXXctQudpyKFk6V5qHz7hPOtLBcxwmVGydurt/vx2GR8eerypOenoCQAgxAv468NcVRWkC/xPg3wH+4Sl/uwv8NPBfF/+fAn8Y+L9MfkBRFAP4ReDHgf8x8L8A/gLw54DfC7wJ/O+Af+0c9yTpp0nGs55Pyda51S5RsgyWTsmGKorC3fkKd+crCCH4wbOBpBCfQkuerVgIpCbEedq81vqBFGcsmfT9mHubY2YrdhFcyex+yZK6DYNA0vjW+wGGDldbDoMgpXXKoXG2ah/qCddUhWvFgr0+kNWlheegsO9jV4Qpi3WHmzNlojTj+yt9/Dgreo1lQOLHGUsNh6pt8DNvzstWujTnatMlzQWuqbI5inCEioYGCII4P5YRAZLinmaSNWFqKj0/xtTVKdPDMTUWGy5RkVSqFQfvIM4YhQm3Z0v4cY6qSMehUZgQQOEaJx3bZioWSZYdWd0TQrDSDfDidJoAPC/iTNpvg2y/28sDqNgGN9sltkcRW8OQeknnSqMkD/Z5zt25CpauEqU5SZ6joFCyBIaqFAfz3cr1OEqfSzh7IpwZxDlpLjAKpoamKtyYKaMqKh0vQh9Ip5QwyekHCUsNpwgmJFNtvmrjJxmaqrBYk9/7cEN2DZ+UcJ1gEpweHBtCCHp+gqYozFUs/ChlZxxRtnS8IlituyYzFYs4y/nUUg0VuXhHiRRrlEHN7nqxUHPQ1BDH0M5Fjz2JeZRkOX1fbiQVS2djEJDl8utlW+Nas0TDNRmFKbdnymS5DDgfbns0XJOKbXJ3vjy974YrK2G5EKcKJYdJVth560eyIDRVuTQ2TasIhmTbmTygTYwqxkULU9UxcbOcu7MX+8wJI3IUHQ4uypbO7dkK97fGrPUD2mWTmmOwPY6IM8E7V+oEcSbp0Yoin7maogCOqVIydcZhNP37F7Xrle1aMrkZJrvVLENTuTVTAiHH9EZfULJ0dFXBi7Ipo8Ao7KIlM0pMRU9vzpSmB8vhgQPb6wtVFus2q32fxZqLUBTiLGccptMDZZbLhISiyMrnq9Le95sPu9yZLR9ZITR1lV/42k3+/V/6gG8/6fG5a4193/9L//gBa4OQ//RPfPbYCuHX7swwV7X4u99b4+c/vXgp1zxZG8MkL6rmUifyRrtMlEiWUlJogq32Aj69VMXSVfwoJctztkchS3WbH7nSJErlPnkWseTjMAqTqbvvQs3hScfj/fUhcxWbSe1DK9yqOuOIyLXw4pw0y3AtjStNl3GU4scnG8Mc1wYnEy0lvChlpetTOaKdei9sQ9tnQ9/3Y9YHIWVLMnGCOGV94FO2DL54o0nXixlHkkluaiqtkmS86qp67GdN4q65qk3NMabvLE7zU4uQJ2HC7gA5DuqOwdogKNqhS3S9mI2BZNZbmsZQpESFXMFM1cIyNFSlTMnSmava9P2Ybz7qYKoarq1RsXWSPS1hl4HJPjveE3PCLqN/exTR8SKULXkgKNs6X7zVYuAnvD5fIcnk2tFwDBqugRdnU3ewcZgeW9RIc0G7bBbiyKe37miKImMKVbb2H9eqvpf1kOU5O+MYv2D8qYoi56Cu8PnrjefSlPEiGU9pqkrD1rF1bd/8MHUpEeEVe37dMfjO0x5JljNftadrw16UbZ1+EPNo22O+Jsdm1TJR6+qU9XMWzNdsbrTlXLF0jXfXBrKdLRdoiixwJVk+LcLOV+3p8+x5MRvDkCjLqFiyY0Et4robx7QPwW48cdG4curoecQcXGq4jKOMnh+zOQiZrVhYusZK12e2YmE35PnB0FVKpoYXZzTLhjzX1J1pET9M8n3M08l+DFB2ZCF9FEi5BsfQcC2NpaaU+fDjjIGfYOoqm0PZQr/cdAqtu933mOW7CfHxJTDLxsU12oZ0vvRiaS5RsjRuzcrC1O2ZMvN1m3GU8qzny7FYtIFtexF54XQ92QcnzzrNLs7s2QcBeQ6Oo4EC3XHMe6t9rjZLfPV2i61hxLXIxdY1WiWT7VFElgsMXbonCiGNCWYrllwvx7BYd6ZzTAhZkHietjRTU6m5JlVbYxzJIqX8+wLbkHHV88a7slX/9KTt9ijCK/afvfMlzwUKUhtPVeWc+v6zPi3X5Mu3W+yMYr5wvYFr6kRpNi3CXmuVMHWFIBa45tEs+L2x50Em1auIk3bgQ7pSQogu8JeKf06EECIEwj1aOALYPLAZ3AV+KIRIi3bBv6woigsERULstxRF+Y/OejMTDIKEni81ilq6xueutw4FVUGcMQylPe9RLynJBJahEmfZPkq1H6cs1Jx9A0rX1HMr+kdpNl0wH++MsXSdimMQZxnNsqyKVezdVjbbqJPmOZoKtq4X1PXnayfreDF9f1KNu/hArTkGozAlzfN9jmZbwwhb18hy6XiQ5XJSThbbNxcN6Yi2UGV9EOInGd2C2jkMUmbKNjVXtveVbf3EqvGkTcwvXEw+3BihqQpfvd3CKTa5kilFz6NUBtkfb44Ik4yyJSsRew8wVxouIzedOvYs1GxsQ6VZso6k6EaFcCXIFsCLwDY02hUTL8qODPKlG1ECmPS9FMeIeNLxyAUs1Gx0TSUTsgVgFGQMgxRDlzTsZlkypxRFspaeB3M1m61hWFCl9z+Lqm0wV7WK9iSFrWE0FUUsWzqOoTMIZava9igiywRdL6FRMtkYRszXZEB+FvfA2arN5iA8NDZ2xvIAALuJsZmKRWccM181pPV28VyWGw535yrc2xwRJBlbaSQFgU2Nh9tjypYU+zR19UI036pjUAkSskJcfS+eFFpBW0MZ0FRsg41hQMu1GYcZO54cR03X5NZMeaqV5MUpuchpu/ZUu2SpEEc+q0bKWj/Ai+QY2UuPfxEwNYXtcUSU5Dwyxry5WJsm29tli/tbKUsNhzwXNC8oPDwdN8ck5Npli8c7Hs2SydogQFUVVro+lq7hmpJ11A8SnnQ8toYRO+O4YKOVqVhyDMVZ/lzCyK2yOaWsHyxgyGso8e7aAF1TWe0Fkh03CDA06dw6Wdsm1PetUcj1VplREeQcNW9MXeXNhTo9L2YcZ6SpwLBVmXyLEsI0I07z6T5gG9oLEX8+L5Is51uPu/zRzx1PmP4XvniV//zX7vOf/eo9/sqf/tHp1x/tePylf/KQf/6dRb5wvXns72uqwh/89CJ/9RuP6fvxc7W+TrB3bdy7T9xsl/CKfexZ1+fDdVm5/M7TnLcWa1RcgyjLURW5Lj2v7s0EWyM576IkL1xuM6q2Qc+L0VSL7VHETMWaMppsI2B7FLLYcKgXld/LeC7rg4Agzs9UcNiLnXFEmgn6foIQPt9+0sWLM0DhaqtKoxAGb5XkPaiqcuLhYHMYcn9rTN012BruygWkudTfep4k4G58Ifebrh/T8+S8sgyV2YqMIXRVpevHxGnOKCycohqS1SafUzbVR5y0Kv7sm7OUbZlcGBb7yWVgoWbT8SLqrnkoUTNXtciEbOtbH4akmdRDa5ct7s5VqDkm31/p86wXYOoKn7vW5OZMmWe9gCjNaFeOHzcLNRtDU6g5JtYZ9p5hmPLmYo2uF/OZK7V9iakwTnlvfYSlq7y1WMXUVTRF4XHHJ0olS/pK0+XjzRF1R16Ta+oXMlOZoPH/4+6/Ynzb8vw+7LN2Dv8cKpycbu48Mz3dPTNMQ4mmKJOGZZMWbZqCINCG5CfJhkHJhgAbtETpwYb9IICUYFsEbNh+YABhpjFJa1LPcHo63XxPDpXrn/877738sPZ/n6o6VafCqap76R/Q6HPq1qna/733WusXvsEzVbGHyssOK+6vttyqLtiaRPiWwe48wTReOnHnheRFSdXOioKP1yeKuhZnrLYcDB3lbnYKZIupa3zzepte3eYnT8fUbZNP1iclws0gSQu+fqXJWqlFKgS8vVzHMrRqvdm6zp2+f+Kmxfo4YhZlFfrktLHcUJRj13p1DeqacoD8yfMU11SSG4v/rzsGHd/E0DV0TTCJMoI4Z2Mcc7vnMY8zlho2m+MI396fJ7Z9i1mcIYTAKHP/UZgqMwhbXYdlaCRpwtY0IkiUdIpr6hSl9ubB+6NrilY/idJKbuNNou1ZzCIlw1KYks2JqhslkpZrcW+pViEr10YhG+MI39bp1W26dZuw1DDcncUVQGExkLV07VxkXDRNSUysNBwKCZ+sT9U+FeV850aLXEpudJTm7PooLAcUqma8t1SrdOZ2ZnG1XzqmQuoHSVaZgL1JmCWrZqnm0PYskryg5VkMg5Tnw4A4Ky7FlS/O8qo2KWS4TyvK1DUcUzWh53HO4x0FjImaOUWuavRRmNFNMh7vKICHbeiqqdZV+YVvH76Xdn1Vk+maOBUt+MuKI99KKeUfuYTf3wIm5Z/HQLv832TP95y6YpJSTZy7NTXFOwwG+2hH8cI3xhHdmvVKAmbqqtibx0psfGHhC7Axibj9mu7q7kwVNm3PPNLBwtI1XEsjTApWGi7TOKPtmdzu+bwYhkRpwTzOaXtmaSFcIBEYmsaT3QBNU1okS2+w+dnGywn8YY5OJw1NE4cKjtumxmCeME8zklzRjRaHobGnCbQ9javpgqFpzKOMKM2Is5ya7VWaMK8Lx1T30rV0XowDNiZKN2oUplVjauFS+GwQsDmJGIUqcVTc+v1JmXLmKvDKBmS3Zr+2WWIbGq6lEyY5rTdY+K/TrhJC6TEsbFm3JiE7sxgpBUmWE6UKsisESuxRgFMmQKauHSmYd9poOOZrkYEtz8J3YooCklzRImdxxiRMGcxjEAJLE/iOAQjVMEPx4BeN2De5DrlHrNq3deZJBrlCH2aFpG7pPB2GxGnBzizm/dUGLc8iGkfc6fmsNh3+8OkQTWjsCJWUNByrEnU8TbweeVRep1DT0mmkYPNZUWALjUn4UuvKNDQarslgntDyTG52PD7bnDEJVbK2OYmUs2jbOxLxUkjJ9lTpE7mWmsAZunjzidkxMYky1gahojYUBe9fae57zk3XJM/VxFOeUWi8VzrAvC66NaXx8WKktBDCNONK0yPNC373wS5tzyLO1WS0KKeUyKP3t9OGbeivXYOeraD2YaLETtfGETuzGEvXqqm/a+loQjWcFsXZcevGMgUIjZqlEve2b2HoqgjRhVbprgVJxjzO6HjWl46a+vmLMUGS87073SO/x7MM/p1fu8N//o8+459/tsUfe2eJvJD8R3/759i6xv/qz7x37O/5c9+6yn/5W4/4xx9t8uePoPydJo7akwxdo+mp8/DR7ozdWcL2LGYcptzoqDW7VLcretp5RcMxCeIcp6ROLPTrEkfppm2MoyrHgNJdVBc83Q7Ymsb0ag5vnxN1Rxl0HN6syAulTeha+6kxdcfkwdYIwxAEcUqSFwznSdUM2Dss2JpGZLlU9uSHvL/jIGVzHKnBGJLlUsDZLxGVbxpCiH16n7mUFSLAMfWK5l7oas8bztU7oAvBT54O8WydUaBQRhvjCNfUGAZK5xLxEpV8nrpwbd868pmIsgk1nKfUbIOPXsx4PgpZrivzHc/UmMYp0zjlhu8hka/cg6Oi7pil/tjJ9vuGa5AXktWmw5UD+eAnm9MKPVC3DTIpkYUkydUQYDFEXqo7CiEfp6zmJ8+bi0KyOY3QhFqjQgiMEgl40vBtg5pjkEmFVFo0hAfzpBpopnmBreukWcbuPK7y525JLXtdxJmqT3zrpTzHlaZLuJIzDjJmccruPGEcZFxtuXy+NWMWK8dZz9arc7fpmUTjmJpj7MvR5yVqcu9esTccU2MWcajO4UnCs4zKGOKwcCyFtolS5WT5YGvGKEwJk4woVZ+x4RnkeYEQGo6loWvqOo/ak/fmxJuTqBwACcahulemroyXbF1jluRMowyBxNRVA/qoJvZhLJWzxuIa4yzn47UJYarc7Wq2wVzLq0GDbxsM50mprWXwnRsddqYx27OYliv35S+OqaQ9zitsQ6vqYUXLlewGMW3fYH0cKU2urRk1x8A19HJgLlhp1iq3wKKQOKa+Z79UzdvzqlmEAAQIIbnScqt3+OHWlM82ZuXadli94OaUUUorZLmshsEL11BljlFXxkNbL3FBvq3zdDBnNFf7wuY4pOGa7M4TbnZ86o5R5RdHxXney8uIYzMgIYQD/LvAr6Iqqd8C/osSEfWmMQIWGNVG+ffhnq+BEmA/7Lr+CvBXAG7cuLHvv0Vpoeznk5R7fe/QUkfTIC9gdx6jCcFwnlYd8vLnc6dfq+DNC+hhmsmqWXFUbE4UVHFzog6fw4pZIZQ45163m8Xvci2dKC2wTTUFmMUZG+MIS2gITZTiwYIHWzNarnVmkT3l0qNob/c3z994sesrodemZ1YucU925zQcc5+ugGfpjALFIb/R9RSKyTFO1Sm/1fH5YntGnOQkmXLlUZpG6pBOSnvgaaQKvCgtqNkGTcd6BX4cJBlrpRZRUcgTJVpCKHeO14m0n0d0azaeZfDR2pjPN2cM5ynvr9bJStHVJ4OAmx2PpmNxpe0gUO/Lm0yCTxuWofH2cp2dacxPn494vDvnasPBt00KVDPYtww6vk23riyRwzSncw6TeVDJ6cxWVIpOzabjWXy0PmEU5IyChDv9XoVq08pn1a/b9GpqavzF5pQkk4zDiLptYJs24zClm1hv7Ha3iFmcKa03RyGlXEvnyWBONFYT3ndXahXVVF2nSt4+uNJACKW1ECZqemYagpWGwyTMmPnZkU3DOFP6JrM4o1ezqkT2osUQXUvHsTXSwqBuGa+sEcvQuNpeJAsXdy03O57SQxgrMUlNwDeuNtmZKa2xzWlE3Ta51fVBSG51/TPT9s4ad3o1xmHKHzzeZWOiXCwXsPZ5krE5ifjOjTZ116BfdxQq+Dg6d83hZtdhZ6oKoNWmTa/u8PmmEnBVyFyLh9tKBPR+OlN6X6WgdFra2Nds443F308av/tA6Uv98u2jEU8A/86v3ebv/PgF//P/18/43/+Fb/L3f7rO7zzY5a//G18/UXHwtasNVpsO//TTrXNpTL0utqeRckeSgn7NpGbpXGm5DIKEay0PUxdcazvYps79rSm2oXOtffpm+N7o123apTW8EIJ3SpmCFyOloeiUOQYo2t/WJEZDEGcFnZrFi1HI9Y73RtRvgFGQshvERy7vw9AbAKYmkEjSTJJo6ly51fO4269X772UkufDkM1JhG3oaEIcSrcXmjqnlSC0fWJ06VmjZhu8tVxDSjWI/PHTIRuTmKW6zburDT640qgEpYdhgmu5jEM10PRsHUN3uBPVzqwvdh5hGzpvL9e5vzVlFCgB9nGUEKU5gyCl59tYms71rsvyKYak29O4YgzYpn5snnet7bHSONyAaKFFJpHszCN0oZoSbc/CNXXeXqlVQscfr40ZD1N+9GTIr97r4tvH7+8785idqbpWS9fOpMvq2wbvrzb4aG0MiGqQ5Fr6oufInb5f6UuNw5QH20qD0TX1Y8/o9VHENMpUHWPr2IZe1RhpVvBwd840UkOseZIxmCcsNxw0TSF/Fu/YUt2hX9tfs6SlxqqUamCrCYGla1xrv6R9rzZdmq6JdYHnw51+jXmc8eOnQz5en9B0DW53m0SZch98vB3w7mq9RIw1ibPiSAT1wViq2+iaKPOihO2pYiOsNBx8xyBIc+5vTUHCL99p0/bsSxWRtg0dx9C52vTwbYOlhl3VTHa5Vyr3PsnTwZyngxmzSNXBunhzxNFpYrnhUHdMrrbU2bVTAjriNCdMcpquyQerDTRN46O1MVvTmK5n8Qu3OlVz8rwR/JoQXG95r6B/DV1RvgsJdffiayRdE9RshXqvOUblxrm3P68YHTp1x+SDVTUw+b2Hu4zCBNNwCBIltr9Us3hnuYZ+STnZZcZJnsR/DUyB/1P5938TpTn13z+H3/858DUhhA78SeCHUspACOEKIWoojamPD/uHUsq/AfwNgF/8xV+sHmuWF6yNAh7tBGyPE37GlIZr8/ZKncFc8c1rdqmrIktERawgbodtM4sNWteUnWqaF8cumoZrMJynNFzjtUmlEIJCSsUL3kOhuNb26NVeugYo1zFoeCYrLZs4kzwdBOilJee7K/V9E+5ppBBJByev4zBld6Zg246psTGJSseLnKZz/kK4uqZEA+dxTs3W+BePRgzmCU8HATc6nuJAz2JmYcbNjotX2u3apo5RinqfJPK84NHunPWRguaHaU7bN1mq2dWk8kdPhkyjhIZrUrNVon671yDO8lccxwxNqzr3p0WTXGRTahGFLPj9RwPG8xghBJPIxTZ0Or7J7a5fXYNj6qfSPDvPMHWNzzbG/OjxkEJKHEPHtnRsU+etJR9TV4mTaxrUHfPcLGzjLOfB9ryaUg/nCdMo4aO1MWujiHv9mpo0dH3GQaJEpw/oU5ml80XbV4frxjjGMrRzOywXlq4ANzoeSaaQW+vDkN9/NMB3DGaxy42OgdXWSLKcxe4khKAolHZYzTa41fPo11WSYujitZTcvJBKa6il3BkX7jIN1zwXus7BCJKM3Zlac790s8P2LKbrv9qoTzI1RU6zN0MbHheaJtAE3N+e8vn6hOWmw9o4Is8VguGtpVopDKmcHM/DGOIs8dHamJ88GyGkpO5aTL0U3zG4aXlkpTOgewoqSprl1G0Lz1Q25Jap9tnbPZ9plFJ3FJJ1ZxbjWgoafqXpEqWq6fVwe06SFZUF+2XEDx/u8s5y/VhKr23o/Bf/o+/wF//m7/GX/qvfB+Df++N3+Qu/dOO1/24RQgj++LtL/N0fv9jn2PkmkeUFm9MYUxcVonk4T3g2CFgbh/R8m+/c6iALiRBKF3AwT9A1wdtLNT7dmDCLctqeegfflG5h6BphkrMzU+5eTdd8JccAtWcLodCHX7/aZF4mwA+2Z4daTydZQZTl+Ka+LzkuCtX4UvuqGooMgwSkYHKEwOwiMZ/HGV9sTREIrpbaMUmmHMvuLdlca/vYhlYiyjN82+DFKGRjEvJiGHGz4x2J2jDLabVvGay8oQzCSWPxPo2DlMe7ymFNE+refbY+4dP1Cf2Gw2rDRdc0Prja5GrLxTF1tqYR3ZqNEOxDr1xmbE8j1kYhHz6fMAozBIK2q/QZF264Ld9kpemcCmVp7nlG5glRNoumVJoXbE6iKmd+a7lOwzV4shsgpWB9oqh7/bq9byA3mCc83J4zDlMKKXmwNVfDxGN+795my1kRQQvUVZwpnbnFEG5huATsGzBbhsZv399hfRxVbIrXxeK6NE3pcS1CCIFl6tzq+rwYBnR82J0mFIVkYxLxg7s96uWgOMpy6vb+mmUUqH3r8W6gBPETNSALyWkeEFi+6OGnrgkG85jfvr9LnGbEqUG6ooayV1supg6GrmMZGk33dGf3Ah0YZznDIGWllO6QKPTd2iBgPE/5g9mAft3il+9czv6xN1q+SVYoFOZyQzmkbs9iXoxCVpsuhqaQxr5t8OOnY759vcksVrprlxV6SevzLCUPca3t0vZM1schaV6wM014uDtllqR8+3pLuXXvBkzDlLtLtRNJeJwlNCFI0oKszDUXx3zLt/ja1SYAPV+xaVre+dUjB2N3FvNga07DVVTyWq/G7iwhTF9SYC1dwyjNq3Lg840JnZrNPMnZncX0apbSytM0no9Cbna/us7KZ42T7CTvSCm/uefv/0wI8dPj/lEpbP4PgG8C/0gI8R8C/wEKefWWEOI/k1L+XSHE3wR+E4WU+ovlP/9rwD8BIuAvn/jToLSGlEZRwjBMmcWK696rW7wYRmrSM0+40nK52na53fOZRBk7U+W81KlZR3JNdU2gn8Cy+XXTnYOxMY5KKG+KbykXrDQveDoIyHLJrZ5HXki6voVn69WGq2vKPjxMM+5vzXAttQlsTmI+WZ8wDlO+dqXBvT2uI2ujkCyXzOMQTYCQICm43fMvrPt/p18jK20qYchwljBNU/7551sMwxTH1InTgqWGxffv9MgKScc3y+nF8ZvUk915Rc0rpDqg264S1SwQfLw+Js8lv/9ol+1pzN1+jT/37au0PRMhBLVDloBlaPu4z1+VGIeKD/1we0aS53y6OVMOEO6Mjufw1nKNt5ZV83QSppja5XfS80LyaGfGOEh5shuyOQnZnScYuqZEYDsed1dr+LbJMEj2JVHnEWGS82hnhkBg6LA7g81pxPYkIS8k0zhhMI8pCkmc5WQFGFrMza7H09Kl6lbHp+1beJaukkhfCfefV9MxSXOeDQOSXBX7Cp6uGhK6pjGaJczjjMe7c6SUhGmBPU241fPYnMSEiRLgv9nzsHTVMFttymOvURPgmQYCJfD/yfoYTWg8GwYX0ph6NlCOS+Mw5YMrjX0Q6r0xChJ+8mxEmObnRhtaRJjkPN6dl41onx8+HPBiELI+iUlz+Gx9wtevtbEKrRQyVUWkJlQBdNE0x0VEac6jnTmjecLj3Tlbs5idScy9pRq5hLeXarx7pVFppdmGdiw6M8kK/slHG/zew13SQvILN9vcW6ph6hq7M0XX6NZsolTRFBYNqo5vsTWNeHu5ga4JslJtOT3GBOS8QulLDfnzv3gyQ957S3V+4z/4o/zm5zvc7HpVonnS+PV3l/i//d5Tfv/RgF97q3+WS2ajpF12axaFpHIAdk01+RyHCT99NmaWqMZM06vRb9r0azbr44gPgwRDCNYmMUFcsDtLcAytomK/aTwbBsSpWov11QaaJqpG09ooZDCPMTRNOSYZSnvk6SBgEmalCLYqqns1m5ZnkeUFX2xN2ZkmpEXBnZ7P7Z5fDkpSRkHK9ixS6LC6zY2Ox+Y4plM7fJ+52la6nS9GAc8HIUGitM9udT2lIaMJDE1XhjaWwbNByCfrY0xD42bXo+FYXGu7XO+4R+YNz4cqp5pEmRKCvsRmj0Ttz66lk+eSv/Pj5/z8xYggLrjR9fhL37v5yv64VHdISsH8yxar3RhHPN6Z8QdPBqyPlClHLuGDq3X6NYcoVQPabs2sEDSniW5NaXXupdrtjYXofV5Ilur2PvTjxjgqNfFSvFKTSAjB2jjC0XWud1zeL9/xRUgpK+OLjXGIY+l8sj7h080Jby+9Xli85Snq8wK1fFhIKavh0GFF7SBQw7FP16csNRz+3Ddfmi0cxXiwNEW33pxEfH319de4aGauj0N+9nzMStNhpfGyWbg9jVkfx2yXjdGbXUUf7vjK+fr+lnJRlEg+uNKs9DBfjEKeDQOCOCNJTd5drbM5USyTN9GlPU3M44wnuwGmLvjw+ZhREPN4d84HV5r8/PmYt5bqtBsmd/o1hvOErFD0sLMwSaSEjq90pG50PT7fmPLF5oxBmPLJxoSWZ/Jga4ZnG2hCcKPjXVgT42CsNJQuW5IVCKEajD96PFS5bLrDZ1szdmbKRVUAN7s1CikvDeUMqkZebbpMo5SrLUX57dZs2p5FEGf8/qOn/OTZiDwv+Oj5iNtLNVxLxzC0faih8455kvF7j3e53a3xZ/b8ooZj8rWrTTQBn25MyXKpaudT5hAniTQvWBupsy3Kimrw4ln6PlDMtbZL0zNJspwXw4idqcr3DE2w3PEYBym6kfF0GPDPPtviWtvjX//G6pn1Wb+KcZLG1I+FEN+TUv4QQAjxy8BvH/ePpJQpCgW1N/78Id/3t1AIrL1f+w3gN05wber7eUmD25jETMIMXQju9DzmSV4m4gmappwIFmLmaoErmOMCwTAKEq62XKSUFFIVc0rMUYmjnRTSftLN4CV1UP2uvJDMIsWbzsvJY1Raty7r6sVbNJgcU0PXFYQzzgpapSvXwjJ5GKrJyOJw8i1lu+paOnkhlYByzeHeUo3sDWySXxejIGFnFtN0LX7hVpung5BHO7PSGSolSnJcy0BKpYFzf2tKXigB74PigXkhy4JRfV+/ZjMJM0ZBwsY4ZrXpcK/vIzTBzlRpA3mWzs48rpI719IoDhR0aV5U079FOCd0X7vMBHdUiqluT2LmYcaVtotv6ehlcqf0GlSCNA5TRmHKO8s1NE27tGuclyiZrUnEOEqpOSZNzyLNFWUoLdS9TzJVfO2ScE26NFzzXK4xyZSoYZwq7v04zHAMjZqjc8116dUsTF3no7UJUioXi4Vw9sLt6MUoRNNUQtqrnT9k27F0fMvAKQ9IXVOc87pj0vF1NCFpuiaPdwPmcYZVFl+z6KXm1M4sxjbUc73W9k50jbqmaAgNVwm6v7VUI8nkhTVfLEMjKSfESpfj8GvcnkZsTiKyouDDF6NzvYZRmJCVzqqPduY83JlRoDROvnatgVPuhYau3DdNXbAzU03MQZByr1+7FL2lUZCyNlQ6XKNADSm6qxaGppoEabnPFAUVBSbNJcsNG1nqYB2MvJAlhSrBMw22piG2Lni4O+fZbkCB5Ffu9bANHdMQ1EsB05ZnYRuCu33VaLjV9RmH6YkRrG8aP3s+Jkxfry91MBqOyZ/5xuqZft8P7vawDY1/+unWmRtTSutPPZul0mVsEilk5ErTqSbdjq6TZco1dZF/yEISpeoMT3NFdfAtndt9/9yKCkvXiNMCQ1fo66J4qX+0NYmqMyPNJfeWalVetDYKaTgmo0BNdNdGES3PIpfKHW6hjTGP88qhdaEVoglRIYZudHzu9GuvIH9Uop6x0nTp1xViYWeqHHV1TblgLkS/1Z6nMwpCZnHKMExoORZZLunW1CDhYIN9kcfpmtLSi8p7cNkApJpt8NZSnd15zOcbM6ZxyjjI8Cy9sllfPOu8UFIEk0iZ+IDaSxcIzkUedFGR5gU/fT5idxqzNo6QCEwdvnm1ybsrNaRU0hZxmjMr2QaaEKfW1TmqoB+U6MIvNqdcaSlTmsXP3ppEPB8G5AW0vJc5wzhIudJ0SkOTV3UWhRAleh5++W6XrXHM+jhClkLjx8VxqMWtaVyJmL+7WsezDHZnMcMgoePbmLrG1kTpbmYlQvJ1ejYtz6Jbt7je9tQArUzPizJPP+zzCSBOC54PQ4bzBAnVkN0ytNK5VgKCUZDywVXV7CqkrHSvHEtjfRxWjSnPUg2YpmvRLXUc256l3KovK+8NldnHk92ItUmAZ+nc6PjUXRPPNkhydX7rmmB3rkwFJlHG3X7tVAPFJM15sD2jKMC3lTtzliu5E9fUudr2sHTB2iSkvmOy0nAZztMLbUztrS+EEGxPE9KsKLVF1TuZloj7LC/wLYPbfZ9vXW+yMYmqvfU8RM5Pcp1hklfrYMtI6NVeviuebWAbAscQbIU5syTn2SDggytNejXnQkW546xgFCQ8YU52wEhgcX9NXSPL8zNL4xwXArVur7Xd0nBLvV+1PeZDi/XddE0mkTINkQjqrsnXS9kJozQ5+sOnio2yMY74Z59t8Wtv999Ic/qrFCd5W38Z+B8LIZ6Wf78BfCKE+DnKbO8bF3Z1J4woybm/NeNuv0bftygKSa9u4VsG6+OQ1ZZLy1MFWVTyXItSMHYRyw3lotL1bdJcUVyyXOIYgucjpV1g6dq5iODujZWmo/QENMGTgZpq9momD7amRGnB1681WQgzLGzGF4WJpglWai4vhmEpYK6z3NBZbdokueR62993eFzvuCxlNpaukRWytK9X06aTwqlPGy9KJ7HdWcJ3brT5U19b4ZP1MVGa0687vLXsszNNudPzeTYMebg9xzX1Vw7tnVnM+ijCMTWyvCBMFF2iX7dZH4fc6ft0fZtOSd9rewpuvj2NWao5yGXJJEr52tXWPi2jrWnE5jjGMTV1kJ3isN2aRGxOYjxb507PPzdEzVFRcwwe7czo1C2utByCcpp6r19jHCQUSB7vBpjlZ0jzgk83FS3iZvdyJjueqbM+UY5v37reZNLzyaRylnNMVcBsTKJK+0tKycOdGZaus9R4c90Pz9KZRhlFIdE1hXyLMlfpcElFrXi0PUMTsNx0lXhrlJZ0CY0wzRiFiXKuCmZ0/Vfdit40fMugWzN5uD1nd6bz3moDBLyzXGNnnlB3dJ4PI6SULNcdgjSrEHALTTgtFWSmTpQpOstJ0IW2ofHWcq3SJLi7VGcaZReWtNzseEzjDL+kh6V5cej9bLgmUSpJs6K6tvMKJTKcApK1YUDbM3lnucav3OlQcyyEkEzChHdWGqV2n0SiaI7PhwFJphCl56UtdlToGqxPQmxD57u3O4zDlDjN6dUcbB0GoWr47kUYRmnOJ+tTCikPXd+6ptb9PGmyM4uJM/iNT7aouwbbsxjP0lkbhjQ8s6RCKCrXPM5LE4VyoGEbF/7598YPH5b6UqdoTL1JuJa657/1xc6Zf0a3ZrE7S+j4Fkt1B9fUub81Iyskn6xPuLvk063bPNudYxoapqGaNh+vTYjTnKttB1PX6NfV/2vi6ML9LHGjXIuepeyyn+wGDIMYpCArJEGSVbSchRDy7jyhZpsUUtGt0lxSd9R7YBt66RamBn+dmlU1uB1T552VOvcKn6g8ow4b6O3NZTYnEbV+jWttj45nEaY5vq1czHQhiLKMtCgwNI2ObzIOUkxdo+6qQqzjWxzcpqWUPNieEyY5yw2F2polymn3Mij3e8PQNd5ZqfPb92OankGY5vzaW32arnIEXSAXgzhjbRwhBPtcXItyiLHIV1zrYoqnWZzxbHeOIcAyNW53lWnN1ZbLatPlSsupTDeGQcwoyFg6hWHJSaKQknGQMg4zJCF3SmHlwTzhdx7sYpRaQHf7PvM4YzRX7tq5lFxtv6ojs4g7Pb+il274EZ6tk2SSq603L+Z2ZzG/80DtH726xY2OEn6OUqUZ+d07Hb57u82PHo9YaTn73KuPil+63cXQNdJM1QGFlHy8PkETgrtL/iu044UT6ChIiNOCJztzrrZcshL5/41rTT5cGzOLlPN3sDBWKR3LZrFaU3vzgVtdj6W6Xem+vm7AdFHRck1+9mzEOEz41rUWW9METSgNW690qZ1HOVGaV+tkHCZ8sj7B0AX3+rVjG/wPt2dKo6usAYtST0sKqDk6f+TtvqInZ4XSoZolrI1D3l29OGp7nBV8vDZhuaEQg1JK8qLg+SikkJJvXWvxzkqdopAMZi7PxyHIgm9db9OvO/z8+aRy77xICn6Uquu80nL2DfNHoQIl6JrgSsuhZpv8+nsrdH2bF2MFrmi56nx5e8m/sIYQAJKSPSVfARxMo5QoLbhRapD6b6ineFQYuqoxFzpbi6+9XbJcpFSorUJKbvV8Go6p6rykqM7npbrgOzfajKMM39b5rS922J0pQ6TNsZLKuEwk8EXFSbLN/9aFX8U5RJQWpEXB9a5HvbQ59m2DomiRFRLL0Eq7RI2V5v5DoSgkjqVz11c0h0mUkmaSrVnE7jRmME/p1+1KmPC8o+Eo69kwyQmSnGmUAqoIzQpZTYJ6ZVFnm2r6qaxSLeqOgV52pV+MQhzToO4qB5G9sZgaAViaoGNcvIbKQmfGsTQKJO+s1HlnpU6SKZTSw505mhA83p0zT/LKyvSg6+FCmyJKi6p5VLMNXFNnqa7sWW/2vOrzOabOSlNZjiooukPNMV9xLVvYVy/s4J1DqJp5IZkn2StC0Qs3lSDOSXOJZVzshjAJM+Usk+a8vaJoPZMoU5DPkWq4OobBctclzVWhPwxSJMoZ7TIaU8MgpeVayCKlblv88q0ug1LU9vONKaMgw9JTlhsOV1pKWHmrFEcch+mbC9IKwfXSqWkB51YH3svP/sHVJv1yWrEiHXZmCWGS068b5IXOME35bDSh6Vo8G4Tn3oxWDlwOUqr3ZWEvDnClbMi+s2yy3FCOSLoGw3nKNMpKmLnBPMlY21FUP8cwTuyktvdQVjTFs+8BUapQEkc1trTSvGAeZzwp7W3DtvuKmYCtqwZiXhTcPEfHKVAT3/evNHi4PSMr1B74y7d7vLVc48PnYz5an+Db6n4ClfbS092APgqNNCu1bC4yFslKlqt34Ds32gzmCVGW83wQMgkzbCOlV7O53nFJ8gJdiGr/UkOG/evbMjS+e6fLd+90+f9+vs3uNK4QDtMoxbcNJnGmin9N8O0b7VJM9csTWwbVmHp3pf5G7+Zp41fu9fhP/8GnbE2jM00dV5vuPkfVumPS9W3ub81IspwnOyFLvsUsTJFS6UYqPTMl/tz2zMp56iKaJou1CAqltD4K2Zyoffd2z+fach1TF7Q8q6Ir1W2DIM6xTY27PZ9MyurdyHKFeD1qoGDqWolSPvqaLF17mcvsWV+ebeCVf19pOCAl8zjDNQ00AR3fZh4XLDUcOjWV/3yxqQT79zaR01wSlpTA9XHIUsP5Uqn5ozAlySSGpvODu12+c7OtjHXygk/Wx0zDjCDNFZrWVALWV1oOkpdNqkmo1nuYnL8maJzlpQ15hkRwp1ejf8suGzgFO7OETzbUoMs2dOZBzlLDxrW0V3LNN4mub+HaOu+s1PAsA10XSCkrB9ogyak5Jve35zzcmmKZOvf6Nd5deT3dTdNEld+tttzKmOishdy+809SOtktkEkqP/1kfYxrGDzcngGicqS1TrDHdnyLP/J2v8rt80IipXJ7nMev6uFJVEGrXOpUzpVmOV9sKQdySxf0azZRGjCLsn2SJS3P4nt3uvv0NkGdh5c9mDgYQij3yDgryAr4Ux+sEKZ5qUc3YxJlOGZKmOTc6vpMopRppFy600wSpDmN1zSmslw5oGtCmSUtNWxanskXmzN2pgo9faWl8/27XWq2wU+ejbH0nG7NPqOH8MligZ4ZhylLDadyvNyZKcfAB1szhb63Db59s8V3jU717CahMptIM3nhGlMLZ81JlNHdk59ESc44y1grEXyFlHzjapP/9reuAvDhi5EyYMkLRlHG8gVqlFmmxrurpWblnvM1znI+ejHB1DWWGvZrja4WdaBXaiCfJQ5j4iwkghbIRVDNsppt8O5qg+1pzMPtGU925qSF5Grb5VavptzMhcbWJMLQdFzreJOEf1ni2DdBSvlECNEGru/9finlH17khZ0mNKHEam1D6TOFiXLfWqo7tH0LSxPM40w54qD0DPYmvc+GSkvB0AXvLNepWQZ1x2BrqibuuqYmChcphutZOvNYuWUoLSmdMC1o+ybbMwUBXp9EXGt73OvXqmYbqCRwHmfkUlZUnzST6nvKFzVKc9ZGYWmx/GZOPyeNvFBUqattNUGehBnjMKTpmlUhHiYZzwYBG5OwEmH+pVudVyas/bpNVkS4pkKX3eh4ND2TjXFUOrDYh+ocWIZWNezSvKDpzhVCpYyWa1ZOgUehNR7tqKmrY2q8tUeza6nusDGJqDvGxXb7UYfnJEzo+CY7c0mYZPz4acDuLCXOc661XJI8p2YbtD2rcpJMC0mWH+/cdV4xTzIluu6qDfbnaxNejEKyTOLbemnjq+77YnMvpGoQnkdy61vKyndzEjGOFP1xMUFdODPGacFgliAELNUttqYhQmgVGqBftytHxyA9HuZ/lmj7FpMoZWsa4wTqdzumTlFIplGGpinajJRQd3W2ZzG5VM1PU1dUwNUmmLpaJ7mUaOfgaLdwAK3ZxqHOVosIErWfSglXWs6xopVb05hppFAPC3rGIlZbHm+tKPeg87QxXjzvRcNmueHghAoV9LsPdvlia8rmJOJ2r7bPaXVhXf1kECAlF05hk1ISJDkrDYdRkDIJU4pC8qMnI4Iko+Up10ZNU0Kmi+QzL2Ql5Ns+RiPs/dU6P80KTF2UOhpKNy0r9QzTrODeUu1QtMHCxW1BZ79IvZskU/pSf+GCHfIOxg/uKnTW7z7Y5c+VifObxtW2yzhKWBuGfLE5I84yskJReYsCJklKkORcLfUuL+NMznJFIxoGKQjo+RYF6j2yDZ3Wnrx8qaR1GpoqjHVerilFe1B7/AJ5AUoPZv0E+wcoqhpAv26x1HAIkoyskPuaR7qmKP1b05gnuwG1Eh1adwyyUntzMbRaIMoXRbRlaNQcg4/XJnR8i81JdOFOfEd9Tl0o4fe0KGh5BndLuiTAj54O+ejFmDAt+M6NZiUg3DyE3t6v28rV1r6YNagkJOB622UUJPyjj9ZpeRarLYeGY6FrAs/UKSyNhmugaYKrLfdcaV1CCN5dqfN8ELAxjTHHGmku6ZVUT4EyLHm4PVeDMO/kv3s4T3g6mNPxLa61vTOvuYPn382erwZsgkqMuO2ZaEIjLSSTMKsavmGaH/lzi0Ih+11LNSaDOGd7FtPyzFKPS0MTgoazv3RL84L7W4qGZmgaSa4GrZvTuCp2o0wN5m90fK623VfO7DSXfLE5w9SUbf1lUfVeF3mh0HOWrrFct8klPBuGPNieMZwreZama2HqopKDcC2dumPwYhiqPeCYhoeha/TqFpMwY7lhV2dgr2bxeFcZf/zug136dYfrHbdy7/NMnUmYXpizsaErR+29g5Kma3Gz6/HTpyM2pjGeqXO757PaVIP37WnMOFTaa9fbHmGiDC4u0i1c1xRYYlHTLe5flOYkeYBpaKyNQtZGEVvTmD/1/jK+Y3KrV2On1FMdBUm1p1/E8MAzdW52PW52/H2o881JxMZEObAf18Bb1IG2qVWGBUfFzixmFKT0ataJ9Vt1TeDb+r58ztA0JmFGkOR8vD7BtQ0+3ZhWe4wulKbXwqgJ1JqZ7tlD/mWMYxtTQoj/LfBvAQ+gahBL4E9c3GWdLmxTq5AGw7mCDz4bhGzXY95errNUWl4vYu+fp1HK82GIbWgIoVdicbd6PksNm81xRFZIlhrOhfJ0RdlcS3OJlAXvXW3iGAaOpfF5MCuv+yW/3NqzEe5turU8A0MzqB1olmxPY+ZxDqWbxmVMDh/vzklLR53b/RovhgoKGyY5RSEpkKyUzlhNz8QzDa623EMdSPY6tyVZwbNhgG3W6NWU0LmuiyMLyCstl882JoAgSPY3GqKsoF9TG/8kzA61h08y9b4kB7jJTc+8NDv5nz4fMZilxFnGcsNlFisRfxA0HeWO8vZKfd8hthB8vqzYncU82JwRZjlmqWv1fDegKDXDGp7JtZbHasvZN3G48hqthdPGYqo0DlOkfKmJomgdip4bJCpJjNKcF6OQtm/jWwYN11RCqlD9jN4JIPdnCVPXWG44hElBlBZsT2OudzxelLbpaZGXjSahqBum0k9xLa2yQLYMje2pErE+L52ojXFEmCj03d4myMGI04KdaYzQOJbG4ZcuqLapKcrFAV22tm9xt6caUud1kO593pahGtrKWMIgzSVrY6WdI1BJ+MGCdQG7voxYH0cMA+VW2q/Z5AU8K4X4XUtd991+jdWmu29P1zXBnRNeY7/u8CffV5/xN7/YIskKJbLpKkcmXVOo1W8dkkTN4qykQ1K9pxcVP3s+KvWlOhf2Ow6LD640aTgGv3P//BpTD3dmbE9jNiYRvZpNmOp4lsotcikRKIe4K63LaUqBoqcM5gl3+zUMXQ14JFS6IAfPuL3v29415ds6yw1bNVT3NKA2Ji/3j5ZnvraJuTZS4tY7mXLufLClcpiVprNvT7EMjattl2mU0SgpW7f2nGumrpwNgVcatEt1m1nnJYJ2byRZwfYsLocZF7PP785i1kaq8Eny7CUCc0+xHCbKGTgvUrql5udR70PT3e+Edl4xjVK2p3FJhwJdF4zClCApECLlesej7hh4ln5qLamzRN0xud2vsXhkSVZUuiyjIGEW5yzVHWqWwa2ez7XO8TlElOalO7Paz1qedWYUeZrJSqw5zSXdmsEffadfDWBcUyctZEmlzpTYuBCvrJeDsRiS65pqzq2VlKcwyRHiaEpWXijNt6woGAcpTdei6apm1lLDrgxTgiRHExz6vj/cmfHFpqo1XFvpOH3Z8XQQ8GKoNOVankndNNgscxTXUkPqr11pstpy9uUUnmXsGyIfFwrxuv9rK02X794WfLKmKHF5IXkxDLnV9ZkVBVvTkHmcEZ/zQG0RZkn/PRgd32a56ZJJ5dDt2WpIsDYM2Z4pYfqsUOf7pxtTpfs0CrnWvphz2zIOb9Q4ps69pTqrTZd//NEGLV/lW1Fe4KOaRUFZC47mCUkppLback4kTXGaMHTB+6stpXm15z0RCFaaDske1sJRESQZOzPVDOQ175aUkvVyz18fR6c6Ww7mcwsUlVvuuwI1gLm/NaPjW9zoeGRFUVLZ1ed6NgiYRi/3kK9Cg/m0cZJOy58H7kopk4u+mPMI19JLcWu1MNJCIqVCjViGcsxYvPR5XvDTZyPiXFlIvrVU31cwe5bB7UsqTsaBgnnHmUpShBBV0+Na22UWZ0cunMXkEsAydJYbC4qUmlx6lkHNNhgFKbomcC6wizqPM+ZJRsdToqS6pu65b+n4JSQ8l7Kib/XqCkK8NYnIcoltakc2iPbGQizd0HUarvFa8XZdE7R9i+1pzGCeVDbTADXLYICavDhH6Dbc6HoM58mlif+Ow5QkUygnTRPEmRIUzAuwTCo02TsrDXVQ9jzu9o9OZi8iklJMsO6Y1fU8H4ZMogyJpFVX7/A7KwqKauiCb1xr4l6wpfAiFAIxr5rJhaSaHDZdZbs7ChKaJbrqa1carDT2N8wumkpkGwp6mxeyeh8X77Gp6XiWzpPBDFvXmZTQ3mvt/bbt5w2xr9lGNRV6natjnOZMIkUTPYkj0zsrddVEs19FF+Yl+tPUtTNB46M0ZxKmNNyXhbDc87zXx1HVzGs4JmGa895KnUGQcrPn881rzUtbO0Uh2Z0n2KZWDQeSrGBjHKMLwTzJ6AP3lmrUnJidWcw3r7XOxUZ5GqVsTiLCpKDhKYTe3X6NtVGEgCNdlhzz1ff0oqLSl7p9OfpSi9A1wffudPmdh2fXmVrE4hk/3Z0zCRU161rbq3Qg67bSGJqEGa51ecYUYTl1lUCYZvzSNUX9kFJpqkkkPf/o92zvmsrLYd1i7YF6T2ol/c8ytGP3hZptVNP9vef34nfsPQeX6g6aUPTHg01kXRNHNkv9ErkVZ6/+uxejkFmUMUCdqaamsTOPT+0wtzeyvGAQJJUbY77nc8lCrXXH0tiexdVA5lvX2/z02ZBbPZ9bl6BVCfv3TEvXeLIbECQZoyDlZtfHLd/ZzYnS8XxvtXGh4sSHhWMqKmOYKomHaZTyk2cjaqVQ/PWOouNFiTL8sXzttfeukEqyYxplSHgj5GfTM1nObNJCVnn5g+056+OwbAgJOp5F2lZGB8sNm1GQUnfEa3UUF+ugkJJCyipv945ByM3jTOlPzlXurKjaOv36fs2ZBSp7expjGdq+JqdlKDQxgi/F0flg3gsvG6ZCqDxDE4J+w6btm2yOI75xvclS42IkVkCxIuq3Tf7g8S6GrtF0lYuhMlKQhEmy70yUUjKYJ4oWeEH5Y15I2p6Ja2l0POXWvj5S9VSU5niWgW8pcMIix8hyeWiedBnh2wbfvd3ho7UxN7t+lYvtzFTOExdUWliLawXVCJrFGS3XemNGikAcqsu33HCqXsFxTWpB6bZbs4izV6m01fcJgWcrtOObglnyQtXEq3U1RBzNFUJ+FmdEacHdJZ+mtf/MXrgoF1KpRcaZovburdW+6nGSu/Yh0AK2LvZSzifqjsm3b7S52YkpUBvL55tTNsYKDturKVc2HcHOPGY4T8kKyZ0l/9LQLwcjSDKeDlRiIHiZJC2i7VuHbnLzOGMSpbQ9i5WmQ15I+mUB83QQEMQ5WyLmvdUGbd/Ct42Sz3oxiU+aFzzaUfDmIM650fHYLt0iBvOEa22PXk11yB+UCC9D06op4ItRyOY4YhZnvGXUX7uIGq5quE2ilGcDNe0tpDxSH6TpWqyPleX1o505766oJmTTM3nHqr/2vtRs48JdLRYRJFnlEJnmivaUlNbMWSG5169xp+8jgS+2pqWT0fnrTRwXTwcBYaJg5u+tNEratlRudq7FL9xoo+mCSagalUpYvMC9JNmY2z2feI+Ytq4JbnQ9plFGnGa82AkZBQlbk5iaY166rS6oRPCdlXrVmAFFC9gtaYafrk+YhzlP5yFNz3rjZPoksdJ0aPsmpqa9dtIyKpNIIQRJfjQ1YRGOqR9ZPM6TjDRTqLFbZ9DzWiAzB0FS6YxopfD3k90A11TDCiUG7pJLGAcJuVT7zzTKLpSmvTfWJ5FKboC3lmsIAUJIXFOj7toslzoHtqEzi9V9XRtF+LbxRs8+znKe7AY83FYonoXD0jzOudpySkrO4fd+Mbnd+55eVPzw4YB3V+qX9jz2xg/udvnHH2/ybBC8ESrs2TDg4facIFaOTp2aw+2+j6UJPl6fEsQKTbTXiOAy4vkoYDBPKYqC2zfaVWIthHgtiiNKc4ZBQs02uNn1lJZI+Xwe7czJ8pdrb7nh0PKO3z9AmbG0IpNZrBpbVQ5Tt/edg1lRsNp0Tz1FT0rq6lEDvYVDoKYpSsTWNGa7HJidNdZGEeNQ6fu8vVynV7OJ0oJxlHCjqxyDTV3bJyDt2XrldPh8GF4KyvnJrjJ22J0nvLui8p8kU+9r2zfp+xbbk4gPrjSoO+alN6UWsbch/3B7rlxGZwnfut7E0BRieIHmzAv5WqqmZxm8v9pg2kpZaTpvjDLeixwbBQmb44jNsUJK3Oz6VbG9kLF4XqISJRz5Ll9tuaXpwKL55tGv54fuE2leoJUU0QUqr+YY5IW6b1fb7is57SRKebQ9U87Xusad/ktNtttdXyHdBcfScM87wiR/Je9Vrsk6IEtNUq/KTT5cG7PUdBgE6YU2pgAGQULLU6ZYNzsueqlDnEtK2rJeUeV2Zgkb5TuwV9fvvGIcpDwbBOSFLN8Nu9QkVnFvqYZvG9iGan67lnIU7NcdHu3MqzW/V87komNe6lj2as6+5o+ha6y2FFpp8d7XHYWuLwpZUWWnpcPim0QhVTPW7eiV9iyoHPykSLIoVXXWOEhLo56j87E7Zf3xpvn6YmBg6Rrfut5WKN8SYLFwvj0YvmUwi2NudpRb98PtQLEyZjHvrzYu3fjjLHGSavs/AX4shPgQqE5tKeWfvbCresMwdY3lUoh0FCTVg8zygjgt8GzFv9WEgohHqWqifFkhSm2YohQ2TLP82AmJlLJqAk2j7BUo5WGv3kUXFXt/pxBlg00XjIOceTlFXWxMd5f8V/jE66OQZ4MQz9KP5fBOo2wfJfO4aHsmSVpAqauyd3Fe9H05TYg9d3FxiS/GoXKLLIqymBVsT2Me7wQUxX5aw5cRQijHHIFgqeZws+fi2gZxlvNgWzWFl0sY6uVdk3jlUGg4isL6ew93+XR9Sprn3Oz6pebal/MOHGyIKsFbl/tbUz7bmJFkBS3f4FrbvbRpx0nodEIIkkxi6q+6nJw2BIIwVeKjL8bhG/2cvVFIhfJY0PiudzxMQ4e84NFuwPooot+wuSG+vL3/+TAkiHOWmw7X2y7t0lVlaxLxeGdOmOXcaHuvOI6dNSxdZ7Xp0q1btD2DB9sBa6OwnEjrRwr9X+RAYxFJVvAHTwb8D37pxoX+nqPiV+71APidBzv8hc7Zr2FzEjEKVLHwnZstWp4aCn2yPuHJbkDdNWj7lzu1BjWJzouCLC8OpcsfFc+HAWGixM7fX23sKy4W7+XetXdSOq4Qgu1ZTBDnDOZpNSw6j1gr3YAVDfZwFNK1tqu0JU0No3SkfNM4+DM0TSh6pFSNr3eWG+RS7itYs7zgySAgyyX3li6/aBBCsNJwGJbFoyYEa+OIJ7sBjqnT+hKaxIeFqQtarsnGJOTJbkDLs0iLAo1Xz/qjouNbF4KElqWLW5pL6rbSB3uyOy/F6pMTN3ocU98nSr742sEYBynPhkGpr/vyXVppOOi6hm1or6zDNC94uhswnCsXMqVr9/K/L2QQviqxO08Ik6JqwCw3lFj9i1HIk50AXReXQrcXwPYsYhxk2IYSsF+qO0RJrhA/mWRnlpyrM+VRIaXk2TAgzSS+pRBxdcfkTt+nkLLamwfzhM2xKtdb3n7E0aX3JSSljqXSSF0gRTu+0gZDUul5LmQFikKxnuRZIPSHRC4lutD26SGeNjxLO3Gz6bD64ywxDhNeDCNsUw0HLUNTDoeOaj4e/B3zOGOndG8Okpy9PbeD+fFXOU7SmPq/An8d+Dlw4k6AEOIK8PeB94GalDITQvwvgD8HPAH+LSllKoT4HwL/HjAA/qKUciKE+BPAXwMi4C9JKZ+f5kPtDV0TNF3Fv6zZOprQFM8/Ua4UC2HPi+DtnzRcS+dWz+PZIMC3lJVxmBwNFQQqN5Esl4d2Ta93PEaBov9cFlXAKCcw8zivEt+9QnMHOeAHwykF9CzjZItaoJoNNzoeuZSvTbajrOBOv8Y0SllpvjpJ+qrE4l1IsqLSy9CFEkGsGUaVYM/ijNWGcmu82nIuvQt+s+uV0PTSQlhTMPqaY+Bb6jmESY5vmSzXlf7Xl4GCOCxqtkHTM9GFyftXGnRr9pe6/g8LU9doeUoP6YOrDW50/Eqc/asQjqFxo+thaOKNi8nlhs1qyyHN5T7tlZPG7Z7PJMxouPv/7WKNixJWv9hTotL5arl037lMpOxqwymLBpVULFAblqFVTSmAaZzRq9tMo4yrbfeNtbdsQ+dWz6dXtxCISlhZCCVeXXeNSoz6y4qfPh8RpQXfu3O5NL5F3Fuq0a/b/Pb9Xf7CGzTHVhtuhdZcaihkRl5IslxyteVSUHClebFT/sOiV7NYrju4ln4qlO0iv9CEeKWoudX1S+2ns+1NRrVG2XeGeZbBzZ5HmhVnaiTM4oV7XU5eyEMt7vfKJYDSo1Jugmc/S6+01ADBNfWqGKyQWULgWforSLK0kKyUtMjLcM4FuNXzmIRZdabspbIYmmCYZF+Joe3euNn1Kz2ucZQQZ8qZernhlG6NX15+4Zg6Xd+m41s0y7xtsW6EUAYalq6RS3ku1zlLssqhzzEMbnQMJaHwGj2bxfrt1JTm5s2ed2ge/mXEIu+Ns4JOJfys7p9t6LTclxo6s/JMnMfZpbybKw2H58MA3zIopKj2k5ZvMS5dMhfndq+mDAJ0cTE1pXJuVYgiY0+z6SDFfm99s7iPB9f8ZYVeukGm+atDzLpjIqWqYXP5UntU05Qr6CzOzkVCxdCUwP31tndmIELNMbnZ9bF07eSNkDeMjm8RpwW+bRBnRTlAOfrdWuR0Ur6svW92fcbhy1rtX4Y4yRu6I6X8P57hZw+AXwf+NoAQog/8cSnlrwoh/pfAf0cI8XeA/ynwR4B/A/ifAP858L8G/lVUU+uvohpXJ44kKxSfvDxsb/d98kJNMh5sz8iKly5lrqVXYtyHQc9nccbjnTmWoXGn558r3UdKyePdgHmcsdJ0uLtU4/kwxNSU/kiUKmvvBeR4Wmq6LFBGt7o+g3l8qJuZqWsX1sF/vDNnFmcsN5xXfodnGfsOu6WGg23oGLqovr47iyvdgL0F15WWh2PGxzpMLZ7FJFTOQg3HPPa5dH2LKM3p+NaJ3N/irLTyPqQgDJOcRztzhIA7ff9MReM0SnmyGxz6Xh1MTm/1fGalmN2zwRzfMliq2+RFwVLTof0aXZA3iSjNebg9r2y49x4qB9+vpmdyU/MoCkmSZawNU/p1h6Zr4tk619qXX4jtjahE5Czoc1lRUEi40fErJNKzQcDGOKLtm9zu1S69eVkUkijLcU2dGx2PWdQkTAveWqpX78T6WE0Le3WbOz3/SxM2XGo4PBkEzOKcIM7eiOoqhKDjmcSZPJGY97NBwChIK5t629Dp119dg0os1ybOVZN3GqZo2kvnRtd6dTp9XnHUHqlpYh+N43rbY2AnleumsoZXn0vKkH7dPhd9KTicknxvqUZRKAqRcuR6mRwGSUaaSeqOcoi1DW3fPvW6PfIs8cMHuwjBpQufL0IIwQ/udvnt+7tHuhiNQ0WlsA2NO/39e0RRFGxMIpquyb1+jYZrVme3rgmWmzaTMKVfcy5t3RaF5OHOnCjNudJ0uNH1yIqXxXFeKF1L11QDsShVwuVN16yu8WbXZ2sSUTsksT3M/vo0ca3tMXHSQ62u67ZBIBbvpLr3C0r74505hZS8vVTDOaS4Xm44bE+jE+UGixBCnKppsEBltX2zooPoB9Y3qCHhJFQ6QZqmho6zOMXUBY5pUK90sIpzpVBtjCO2p0rC4iAS5uCe6Vo6d/o+kyhFE4KWYyKlolu+KeUtSnM+Whtzu+dXOeAiR0/yAsGrOQ+oPEvXxD736beW67wYhfTrVulka5wLkjjOCj58MWa1ebjDrJQvnSs1TRV+iwLQKRG5N3oeYfLSXfhqy6VmGyVzQKPpnV/t0PUtxkGCZSgHusValVKyOYlxTEVR33tO6ppCGB1c35cZC6ZHkOSv3Ou6Y7KXJ9HylNZUGOcUsmB7GtFyLVYaDtuz6NJQ5Jq20EqN1HsqYXsaYWiKJuxaetUoOGoPKQrJo13l6na1dXaHd6d0lwuSbB9tNc0LtiYRpq6GIU3X5FbP21cvHpUngULaPN6dK0OVXu1cWSSOqZDYqs51SwOsjDgvKv3ju0s+QZzvowwvjF/2xt6a5DS1l21o1GydzhmbXEUhmccZ0yjlRsejfknSLkpeQeCY2j7n6EXsTCOyvKDpqffQMdU+nmRF9U5ahkavZh257r6KcZK7+yMhxH8C/D32U/n+8HX/SEoZAdGeROa7wD8v//wbwF8EPgZ+XqKpfgP4G0IIDwillFPg94QQ/+kpPk9l45rlkqttJY64SMZHQUKUFtWBkhfKZaYoFPd6qe7wbBhg6ho3Ox6aJhgFCVIqF6p5nJ/b4ZJkBfe3pjzeDUqb8IReza6gqYN5wuOdOYYueHu5TpwVFQf7ekcJoT0bBsRpQV5wJAXjNJHmBZ9uTFgpbaKP+p5ppKYEo+Bk8NW9U8n1Ucg//3yb7UnMe1fq/OBur+r2L2DWRZksH7Xp6JqCxd/fmjFPMt5aqvHuSuO1B+1C6DfNVUKkvQbWOI1SHu8ECKGaQgeLuUmUsjYKlTOIqXGr92oxHZfP90bHP3STHwVp9V4FaU7jNcmfqWvUHYMfPtzhJ88mOKbGv/L+8isOLVGal+6SJ0s4jnvekzCtxFunUXZsAdJwTB5tz/hnn20xj3O+daPJr97r77ueLC+Q5Wc6S2S5aiid5uAczhOeD8PS1UY9K13T0CSsjQLSQpLmkvVRyDzOkUhWmmcXLiwKlXCftmB7WNrR1hyD6yW90DYEa6MIiWpY39+aESQ5caYOmIsWoz4qTF1UDeRRmbCvT8JSoP10e9HPno/4p59sAZL/7neuEaX5kTo/RSErmtRgnrxWU2QeZ2xO1JG1NgwZBAkagrdX6pWOS5IVr7gEniRet7737pHDY/ZITRPMoozNScSPng5Yqrl87VqDd1ca+9Z3XsgL0XjSNcG4FK/WhKJU1myjSgClVBo/hqZhGoK3l5TLy2Jgk+YKiXoe0+EfPtrl3ZXGhTmknSR+5W6Pv/uTNT7fnO1zRFo8b4FASqU3sbhXi/iDJ0NeDCPmScb7qw3GUcrNUi9M0wRLdedIDcSLiCjN+XxzyothyGrTZRJl+2jfUkrub02Zx2pIdKXl7suHFpbU0yhlZ5awW7r5nWcxuDAmOSxejEKG8xTTUEijcZAhhNLQeDEIeLAz5/HOnD/9tVXMA+virO51i/PpuPMb1NoGdZZfa5/sM0ZpzqcbEx5sz5hFGXf6Nd6/0jh0rzvuPD/u/FauvYvrO94uXtcEa6WcwkKvUzXaXjqeSSkrNOBJ8wwp4flAaTp+50YHKSWfbSqtNSFUQ+Jmz9sn67Azi1kfRQhBqcWm3rlFHnfeEaVK40jXxKFF2/o4YneWEKU5hq6YCmmh7sO9fp2mZ74y5NBe826/SWR5wSzKyAt13XFWVGvy880pH69NQUhW6gqF/GwY8Is32yw1nDduJJ8kXnd+J3lRuoPDMEiPLZAX2m8/ez4iKxTi9NffW6LpvdybF/SvixgkxqXD9N795J9/tsWzQUheFPzCzQ63esfnO3FWEFSfO3nte7E2Co9ELydZUTUZF5HmBb/7YIefPB3T8kx+7e0et3u1U6EvJ1FKUbxswFjG69/bSZSyPooObZaA+jlqfaj/vloihIMk4yfPhny2MUMr8/EPrjap2caJmkwHaxK7dvS/SfOCJ7sBoMTC/9mn2/wLZ8hf/t4t7BOcYQuKdVFqN+eFGqR49uUhj1xL595SjTjLq2b4Ij5aG/PDh7vEac53b3X4xvU2lqGV4JD9P+e06+5gHPe8zztOUtV8u/z/7+35mgT+xCl/VwuYlH8eA+0jvtbe8zWAU92JYZDyZHfO82HIysDh+3e6lUhhmKoHI6XacAZz1dyo2wrVsTuPiVOlQzWNM5quSce3mEYZpq5RO0cI5ChMCJKMRztzNiYhf/prq8o6eRZjGxpPBwFPdgNMXfG+93Jts0JSlE0NgK1ySvumlJQsl6SZLKdsh29MimJkMomOfrmnUUqaK2rdwQUcpqqoLpBsTSJ2ZjG+bTAKFDS77VmVSN9yw66e3fY0ZrP8nIt7kGRFxUvOy2bT7kzZc9dt85Vm3SzO+HxzwjTMee9KfV+RoKaYGW3PrN6TMM1YH4WvTMYdQ1MIHO2lIN7BKApJmCjnusPslTu+xSzOsAztFfrSOEyRcj8suyhtprOiYBrlbE5CbnZ9ojRnFKRMwpS4FPXTNWVhfLP7eqj2cc+74ZoMAyXkejDJD5OceZLRcs0DKIqCKC2I0oWToJp2b8/i0slPHbh1x2AWZ4c+p4OR5pJJlGIbi8ZMRte3udlVvPoFpfCohGvfuk8LhAbTMGNrGpHkBe+s1BnMkqogd0xdWcKeIrLS6abrmzzcmTOLcwxNcKevpsRxlld0s6MO4Gjx3iU5WaHcXXZnMUmW8+5qk3Ea49s6caau8SgXtcsIY+8+4FtszyLSTDLMUpbqxakaKOvDgH/xeICUkg+uNpFSFVP9ev7KM9U0QadmVY38vZGXTouepabUC4cjKRUSbThPKpvpGyWK4fkwRNcE95YUzfeoveNgvG59mwfuzSKklAwDhZTYmzTm5fXFacE0StmaRLy70qjWtm1orI8j8kKiKUmGQ9GqZ4lRkGIaGllRkBdF9d4/3Q348dMhSw2lYVG3NdJMVvtsmCiHn81JzDzOuLdUx7cVQnmxl/dq9omLhThTVu7/5ne/HH2pRfzgnqIR/vb9nX2NqcXz9m2F/rUNrbpX4yBFIiv9ilmcMghinuxmPBsEmCWNoOVZF2bZfVgs9trdecyzYcCvvdVXf5/FilLkmjzYmhNnBfM4Y7XpVHnGXpe8SvQ1VA5ZbzoEWziiprk8Zj9UCLQgzrjWdrEMHSmh6RkMQoXsSTLJKEzoH9Lwm0QpQZzTrVknGoSESc6D7Rlw/PkNSsB6ZxZXLlN7f292RP6zyD2H84Q4L0r0wEvdk51ZrJBEWcFwnpIXBaauKapTdz9C9rjzu1dXTsRtzzq0kFrsl66l41mG+r2pRErV1N8mwjE10rwgTCWzKGNrGvJ4J6DhmPza2/0TrW8JJHmObVhsTUK+2JqxNlK5XMM1qGOSl05cUarysKe7qukoESzXHfqNiz3rBJAWRUV7Ohh5IdkYR2xNQ1aaLnku+WJ7StNVzIbv3elV92ISpeS5pHXI83/TWAzed6Yxz0chUkpcQ+Nuqcm6MMxAKjmMtfEMS9dYG4U0XJNZWde8KQrudfG689vSVZNnFmf0avvf2cWz33t9CwH5eaycFNfHIWGcMk/V1zWhDAd0TdD2THbnCU33VYTgSSMvJI92ZiSlHlKYFNimxlLNJsoKOp6phtJpVtYfcp/z5sE1tQjHVMPlIMlf2xTIcqXlB6qx8uGLMUt1VQftzmLWRhGGLlhtOkRpQcszmccZG+OYXKr95DAdpYO50cFouRbjMMXQxImofjtTlc8nByjhm5OI7akygGg4FjVHxzWVQ6DKrxf1QUacqeFOvsdVfm+MAqVbu7eu3VuTNI5pvE3CtNpb53HGDx/u0K85RL+UY5+grTCNsqqZGKRZ9fwumzL88dqYLzZnqun4Vq/SZnyyq3S5slzVV8N5wvIRiNvFuhvMY4TQSfPiVHvAUc/7ouLYN1BK+cfP6XeNgKvlnxvl30fln/d+bbjna3CErpUQ4q8AfwXgxo2XyezONOLB1oyfPB9xpenSsM0qsejXbNKSp7lwgVtuOISJSnzisnBWtDP14nqWce4OBrM4AwmbkxhZSHzTJE4L1sdh5TCyM40YBirpcU0lZJgVBUgF4xVCcK3t8mR3Ti4lTwcBN4T3RpPrRdJzXIPrdZt+kGQ83nnprrHccNiZKdvztmdxq+sxmjf58bMhTddiFKQ0HIVokVIyi9Lq5Z/FGUvlz92dx9WBp67BRROq6bDSeOmwMpgnFMVL69m9BXKQqA08Tgs+W5/QLTVdFsg5WTZ/FI0q48H2jLVBxNYk5oOrDRqOgj83XJN3VxuESU7vqOJQKLefo6YWvn34ezUOU56WTgxRmtOvO7y3qkTvfulWl91ZUvKHNZJMTaaitODJ7pwbXY/BLFGUASEYBulrG1PHPW/H1PcVZ4tY3K8kK/hpoJ7rOysNfNvgTr/G1jTis40pS3WHnVmCJtS7Pg5TtHJCujYKqdkm4zA9dpPMStHOlaZy8HgxVOLCYZIjhHp+W1N47wBqbhoptxpDEzRc5XKz0ELRNIlr6fjCIMkKrnVc6o7J2yv1U7s/AaRZwcY4opAFYVKwM42rRtNq0+HpIMDQNHbnonKOA9VUHgQJXd/mWttlGKR0Sj0kXQe7hPBmRUG/ZtNwDLIC+nX7S6PxLaJft5WgvGuQS0mYxHi2fmqNlmmUsTuPEcDaWO0drqUf6Vh2teUeSsG7vzXli80Zpq6VdDDBStOmkEr7YXMSESQZg3nCixJBB+p9jrL8tXvHK3HM+j5sj9yaxmxNYvW+G4I8V3D0a20Xz9LZnkbEqcQzjZLmrdwGgyTDtXSKAjZnykhgdx6fS2Oq7hjl/2rc6dWqd0pNGgUb45h3VxoEScZS/eU+2/Gt0szCIExyfuuLbTzL4Ns3W+xME6SUpHlx4kbMT5+NidKC739J+lKLuNb2uNn1+J0HO/zbv3r75X8on/dqcz99ZBQkPNyeK5p9IQHJeyuNck9WlNtJmPLLTofhPOVK83DJgPMOhQxWQufTMKNXs3k2CFhtOJWD1yRMmURq/73edjB0raJc7E2+F2snTlWjpumdDY1UXVtW8Fv3d7jW8hjMDz9jAJbqFg+3Z3RrFq6l0/Yt3FKe4V7f58O1Cb26iWPojMN03zUlJcJcodtybvX8I+UaFhGUuj3AsesbVHP4IGJzHmc8KfOfLC9ouCafrk8wdY13Vxvqc7g2PV8VuksNm6WGWsejecJ6+WxmSUrNMtmcxCw3bIoYoizfd54fd34fh9D7fHPKNMywTaV3JwTc6Lj4ts7mVA0awjRHAx5tzwDBz59P8CyDUZgyT7Jji0NQ5hP3lmoK4ZMpqtnaKAQkv3CrhW0Y+LbOKEgqh+XNSUSQFmRZwdo4pFNq91xUmIbGvaVatV9NohRdiAqR3PUtdB1udjwKCVGSKfrTzhxL13k+DLjZ9fc9/zQvjmxqnjWCJC+1pQq2JxF112BnFrPUVOvaFIKub9JvOLyzXGMYJoyDjGmsGlqLBsVBtP15x1HntxDi0MZ2UeaUQZwzjlKW6zZ3ejUajslqy+GXbrf52YsxS3WHTzdnmPpiD5aAygE3JhGGpjEKUlabxZlkV2ZxRpio+mNjHNN0LSZhyqwEJzzenbFUV0ZE37zWYrXl0vIsgliBDLanEa5l4NsG76zUq/NSCHEikyJD1/BtnXmck+WqSbwzU83xBeIlzQs+35xiG7pqghZqyLAz13lvtc7bS3WeDwNmcVahKZ8PAyahQpweZjLhWvq+vPS4aLom8zjHtfb/nJ1ZTJZLtiYJDUft30t1l51ZzHsrdVquybWWy4thQNNVTbCmZ5IXkk/XJyR5UeUbi3PqBl61xx1VkxwWCxf6osxFRvMUJBgnbBZ75RAqLyQNVwm1h8nZmRRnjbVRRCFhME8JkpwwLdgcx6WhV05k5zQck61pzDhKKaRCeO1tgCpjA5dZrJptTwfBqZCnRz3vi4pj77AQYhn43wFXpJR/WgjxPvB9KeV/dcrf9S+Afxf4z4A/CfwQ+Bz4mhBCX3xNShkIIVwhRA2lMfXxYT9MSvk3gL8B8Iu/+ItVy1UrBS2LXG3AG5OAKM1ZH4dsTWMldl5SFlquVfLoFdzeNvTSTpELg+otGg/qUDfU9C9ImMcpCFGinwwcw6Bmm0zjlOfDiDs9/5Uko+0ri+FFMsMbOhjYhsYHV15PiXtdFKX2w5PdOUt1h6LM8tZHSutgYxTRf7tHwzO51a8Rxkr3R0rJg+0pkzDj2zda9Oo2QZLvS/o6vsXWJK6ST9vQudOvkReSYZAwjzN826DtW2yMI+qO8Uph2fEsGo7BZhKzPUt4sDXj3lINuQeOJksBvmttj4/XJ0RJwR8+HbA9i2m6BveW6vTrdqXNctS9ck391NacYZLzxeaUnWlCmGRszWK+2Jxh6PD2shLp/tW3+kzCjDDN+Hh9wtPdgJpt0PUtPFNnqWEzCZVjYeuY4uGsz3sxzdQ1wYtRwBMRsjGJ+NNfW8UyNH7xVoe2Z1NIycOdGWmmYKRd36LmGviWQb9usTNT9rAn7dw3bIOGY+KaOnkueTEKyaVkteHu+wxpXpS20jFpLklQkOFFQXl/a8rTQcgkTLjdr/Hucp3aOQlVWrrOctNmVNqrKyRbztoopF9zaOrq90ipEFGPduZ4lsHWNOKDK81q8v1iFLI5ilgfR9zq+by/2sD+EhFSByPNC+5vqWZup2ahCdU8NnSHQsLB3tQsVo3WTqkbsTd8W6fn28yTnCSRFXz5NPFsEPCz52PSsqH0w0e76ELjdt/nbr/G/c0pGqJE/yihWCVKXdCt2dRtg+Q1e8fBOO36DpOcL7amzMIcSxdEec7mOObJYM6/8t4yq02Xb15rE6UFmgaPduZ8+GKMY+jc7nk0XIs0L6g5OlH6UiD2TcMpPwfsP/OansEsNjB01ew3NA3L0BjOEzZLrY3rHVchvKaKIhlnBZMwrZLKcZSy3DiZLfvvlvpS37395ehL7Y0f3O3x93+6Rpa/LG6Oet6705jfezQgzQtWmzb3+nUGQUxWFOhClIga1cRreZen6/Ko1JUKU6UnszWNqTkGmvYSMdV2La40XR7vzpnGGetjRfk72GwwdI0rLfelyco5OCVJqfZA+Zof1nAtlpsOHz0fYxoa75X3f2McMg4Vhf9K06kcnfYirPfeZk0IHu/MmUZZpbdzWLQ8i3mcU0h5pvMb1K0ZBQnDEkX3bBDw46cjPEsVYNfaHg3P4F6JcLnT9zE1jY9ejHk2DHAMnW7NZrXhkhWSu0s+UaqoWs4BZNlZzu+FDEGc5qwN1fnS9kxu9DwsXce3Db5xvVU1CZI85w+fDnmwM+OtpTp3+j7jUKFdTmpUEWdKJ+x2t0acF+gaJXXHYBLmXGmZPNoJiLOcF6OQay2Pjq8c2BZFVK9mc/UCdSr3Pu+dWczDrTnjKOXrVxusNN0KmZ0XBd+73WUcpayPI5K0YHcW82h7zkrzZc4L57JMXom2ZzGPM3Jp03QtZkmGaWjszBKGs4Q/eDqgbpulrplqtCpNGUu5Q6LQ9xcZpz2/pZQ82Z3zaHteMgNSng9CngwC/tjbfXo1m5ZrYuq6kjjZDbBKeYsbHaWjZBkalq6xNY1PpSt3MHxLxzE1krzg3lKNWZzjOxovhhHTMGUaK7T+d653eGu5hmPqzOOM3/xim/VRhGtp+JaJpqla895S7dTXsqhrdF0JWXdLZNlSw67oo3/4ZMg4yLi75NPyLHLgRsej7SvwxecbM4QADbWvFVINagdzlZe+qZN3t2bTPiSX6/oKRXp3SWm39uuOGmRvTRkHCe9faXK96xGkqsG6QGdtTSJ+9nzMPM5I8pymq5gzCv12tnXvmKpRp5akwLfNV1B6oPbEhcnG3v2+KCCIsxLV5fJ0V6HW6056qU7o95Zr/OjJEEsTPNyeEWcqd7UNnZWW0uxSgwJFO605Bo+257y72qgkiUCduYv9aW/Ne5I46nlfVJzkZPm/AP9n4D8q//458P8AXtuYEkKYwD8Avgn8I+A/BP4bIcRvAU+B/0Ppyvc3gd9EIaX+YvnP/xrwT1CufH/5FJ+Hd1cb6JrgyU6AUVIm1kYhm+OYj16MWJ9E9Os2v3ynS7dncbXd3PfvcynZmig63V7kxOZEwROX6vaJNDAWYom6doC2UUgmYcIfPh3RsFVTyrV0RT1sOjila4ukQBNqghsmudKs0V4tTLu+hUAlX66lszuLqTvmmbVI3uTFmyeK997xLUxDQbABJJKtaUSU5fTWbXRNbWAzXYme/s7DXe5vTrFMnZ8+H/Fnv3W14iSDupeWrnGz670ywVwbhYxKaGfXV9ONGx1vn4jeIgxd4/t3e/zm51tM44xxSX9zLZ3bPTXtavsWw3nC7jxmpWEzDlJGga42+80Zbc+qdFX23qvdWcw0TklSdaDA6ZubgyDBNnRqroFnCT7dnJDmki82VFK4NY0J4oz1SUCSKpenQRBjGRo3ex53+yrZPWrwMY8V/HgvxPy0z1vBrXP6DbvU54Hn44C8UM0gy9DYnkbM4pRRkDCPc9VpNzW6dYt3VxrV5HPlEGeqNFfFrbJDVe/7YpppmTp3l2osNWw+25hiaIJCQr9u0fatfWiPMMlLumxOzdKxymfydDDnR48H7M7SUggw56fPx3z7ZgtNCJ6XGnPX296h92YSpcji1Sm1ZSq0waJx2vEsBvOEWZwxj/Oq4FtMCzcnMdvTmGmUMY0yao5eNVc3xiE/fjLkaYmGm0QpP3s+5t3VOo6p83QQIFAN9cOK/sOe83lHEGf81hc7JHnBD+50mMQZg1nC83Li/e5Kvfrd6+OQzzamtFyLMMlfQRP90bf7fLoxIy8KvnmjdeprWVDeVlsOzwcBK02bL7ZmhImilN7qeHy4NmYWZ7iWxkrTZmsaMZwrXcGGo+5Tr2YfiZZbvJd799bT3NvdeUzdVpPBlYbDJ+tjXowCplHK02GgNK8ErI8DarbJ/emMzXGEbep860brWOTRYevmpHHY5/jOjTa3eglbk5hP1selI5EqzpqeyXAWUMiCB9tzLF3DMgXNUjDZtfSSAmgQHKHLOIsz0vIdBfjtBzt8cOXL1ZdaxK/c6/J///2n/OzFmO/ceCkedNh9ivOCuqMziyTTKOPHzwcVYuJay6XbcLF1jXtL9TfWZsoLlVN41vE6McN5wpPBnOEsZnOWULMMDF3tl46lk+WSaZKS5eoZtD2rRBocXgT0yubzwglsQXk+S5i6xvfvdCmkPPSc3hvro5CoRD99/UoTzzYYBqr5OYvBNTR++GgISL5/t7unMSUqY5ulutoPQCGuj2pM6dp+NMdZ9s6abWCbGk3PQEqlJxMkGZvTkDsDj65vs1x30IVgMEv4dGOCLOBHT4fkuaThGHz7Rvu1qPUozZmXroOnPb93pjFpptZxmCmkqm1qJFnBJMwwNVgD0lTJBSR5wThIMTT1Pd+/2zsSuaRQ3mogtve6VBNSME8ylhoO37jW4h9+uMEfPt3l8e6Me0t1bEPlySt1h6WGTdNV8gm//2gXU9cYzBNWm8o0IEpzglLA+zxRVIvnPZwn/MbH6wSZojf/qYbDpxtTZpGik2ma4E6/xothiGsZeLYy01i8W9faqqloG5pCGLrncw5necE//HAd3zL4xvUm66OIaZQxnCfUHLPSgssKyc9ejFhuuOWaldzsKgOoSZS+EdrxIiIsc8rlps0syknyjEfbc+ZxytOez1vLKvfdnkQ8G4Us12weDeZcb3vMk5z3Vl/mlIch1Ba1mKFr+9AusjzPLEOrkHFGKbC/Nx7tzAHJ55sz7vU8nu7OlAOia7DcdHkxCni4M2c4T3hnqUbHN9F1jTRXZ8JZdMZ0TWDpmsqVyh7CQl/tyc6MJ4M5YZyzNQv4o28vUbN1bNMiKwo+Wh/zeHeGbxtcaan7ca3tsjkOK6ffYxHhJ4jFGs+Kl+fBStPZZ+CQ5QU/fzFmfRKxNlY0v6ttD8vQ6TcslmrKjfT5KOThzoyabTAOFFq07ZsIeKOcQJROlE3X4Js3Wnznegt/Tw0ZJArhOAoSWp5VNfqzvOBnz0d8tD6m5Vp8vjljbRRyf2vK2yv1C2lMSckr9fvaKGQWpVxruXz0YszTYcCtTo23l2u4ts7Pn48RAuI0p+Upgy9lEqIxizJme1CtWiktMo3O5nR4mQyNIxtTQghDSpkBPSnl/1MI8VcBSqHyV0msB0JKmaJQUHvj94C/fuD7/hbwtw587TdQAumnDlNXbjl/8r1lpnHKnb5yGHAtjSelWHicFdybx7x3SAW/MY4quphX8oTzQjWrQBWUexdKmOSq6HD2w9u3ZzGbY/Vv7vRfvsRtzyRIcrYmEY+TDM826WsasyRD1zQajsYkSml5FoYmaPkmNds8ktay0GXSNMFnG1OSrMA2E95evlio7mHhmjq2qSGEWRX2eSFpuSaykBiaxjzOuN7xyPKC622XP3wy5P7WjI1xjOforDRdNsfRvqntUfcyLxRabFFwro9CZnHO2jji+3e7hybOhZQ4lsG07IQ7prqvvm1Uh9PaOKQowDENvvNuh5vbcx7vzqg5irJ0cH1Gaa4QAiWn+azOOg3HYDhP6NUsrrZcng5CslKYeWeW8On6mJ8/H2ObOnmhkCVJLtVEXn99kRClyklQSkUJOKoAOS6sUu8C4HrbRKCsc31bJ5eST9Yn3N+asT4O6NUcJqE6+Lv1k01YF00lQxcV1dHQxL5nWXdMvnGtpfTJykn0YaEEXG0MTWMaZ3iWobjSuWRjGlK3DbYmMZah82wQ4lk6YVIQUjD1slcSuAXaEeCqdGl7ColQSPmKPbBRuqP0Csn2LEYIRSVeJKgLpECvZhGlBb5lsDYKeWu5zuZYNXF35zG2obMzjVlpuDzZDViq2xXvXek47G+k7H3OYZpzpeUyDlOmR4hpnjUe784ZBMpNbmcW0605fPhiDFI1rcZhWiIQMtZKEeO8kNX0b2/M0oLv3uqwMY1ORA05GLaxeCct3nqnRs1Wz1NKhZz46fMRT3YVYuJKy2V7qpL3eZwzs7LXojaqz7szJ0oLTCM+FeR9EQ33ZeFys+tjCAXNNnWlV/dga8ZHa2Me7yhKyMYkRBMC29QxT5AQvLw+cabrOxiGrinaxPqEeZSzMY4rvazdWUSSFQgEkzCjWzO53a3hWgZpru5mr2Zj6uJQXcYwyXm0PQfU+VVI+PHTIf/2r9x+5Xu/jFjQCX/n/s6+xtTBiLOcuqNQtM8GAVfbDv+fjzd5PgoRKG1Io9wXNifRGyezTwcBsyhD016lLe+NLFdiwINZwuPtOeM453rbqZoZvmUwCGJ0odGqW6zqmtqfjqCG5oVUTsY1mye789dSQk4Shi4OpcBnecHmNMba4/g6j1PGYUKaF1UOtJj4J2nOi3HI2kg5St7oeLyzopr7gyCp9slJnNKtKQ2Vi3Iq3hvX2h67s6TUz9IIkpxplOLbJuvjkOsdZVn+s7URG+MY39Kr4VqvYWGbR9/TBeWpOKPUh9qTQ7o1izDNWWo4eJZByzWZaRk/fDRQ6JpMlmK7knmSsdp0udryjmwExdlLs4QwzfdRrTVNuUo1PVMNBIKk0vB6FM1xTZ3lhoNnmfTqCtG2MKm506+xM1X3cpFPVgL94cUgF8IkZ3uelrIUCsWT5gVBkgGCtBQf79Ucmq6l0LclrRkUkyFIMh5sqT0uaZwPpS8oEfVxXhDEKaZhsDuPqdk60zDjV9/qshPEzKOcpmOqJmQuudWzqkL3MlzsThuOoZd5uMGtqzXGgcM0yjA0jayQfL455ZP1CQ+35/RqNh9vTOjXHbJ8L/rj6DNS6dO+rB8Wef7GJGJnqvScFuinw0JKSRAXdGoWj3YDNE3wk6cjdqYxH1xpVgAI19D4+rUmy0230q58E3OavJBVvnlNKic/KSWb0xjX1PjoxYRe3ebHT0f8+vvLGEIgkaxFOaauURSShmNSFAphc2epxuZY6ZSeVm7hdZFmCj1/2Hlg6BqGEBi64MUwpJAF97fmdGs2v/6eEmpZH0UlMtzHM3WFKnVNCsmZGiiHha4Jvnm1wfWutw8JvZBvUQ3dgu2ZXcrPJKRZzuY4oigk7yzXWR+r+vLxthoonkZc/iQRZwVrowjLSHhnpa56C7OEMM15UubbG6V+V83WeWu5Tt01SbMc33IwNMGNjke/ZvN8FGLq2itauUoY/csxTDpNvO4Kfx/4DjAXQnQp+7ZCiO+hhMq/spEVEk0XeKUNb802aLgmH1xp8LNnY3JZYArBo90Z767sh2u/5ASDob20evZsnSDOXxGGez5UqIZRkFJffZks7k0c9sJ7CwlZkbM5jckLZel4ra2mSNfaHmlesDNLmEUZ/Yb9Wi745iQqC2ut5PCr37NXjO+yIkrzCq1k6VqVRHyxNS15+BqZVMfHpxsTgiTn3eUarqlXTlm9msmNrv9KMXPYvUyygp8+G/F0MMexNHoNn515zPpYaVXtved7QxeClmfiW4bqyB8yyaqX2ke+rZKhe8s1rrYdHu/M2ZoqNF0YZ9imQrdpZVfeMTVyWXDW4VjdUe/o82HA452AlaaLYwjSQvLffL6t6AhxiiE0bvRc3l5u4Bgaqy2HXu31iY+aWqo/v8n7oZXw5IXTnZSCt5bqFLLgk/UJHz4fMwoVUmrh0Hajq9BCK0332Ann4rkVUh5p2Q4Kun3lEJ0hUJBmJY6t6IJCKOpnnOVsTGLVPKxbhKkkyjOaroGpCxqOWaEcD3Of2At/zUt3uEXD+nX367AJ/XLdUU5numBzooQFHVOnKCSDIGUSKrFF1zSAgkwWlQHD1lT9zsO47nufc1EKcz4rqS7nGUJAnCgTg9WmQ6/ucK3lMI1youylG4uuCWxDZ7XlEKd5aWGd7Gvup5n6zJrQzjTFE0JU1NrHu3O2pkoE0tAE97emfLo5JYhyXEtR9CxDUDcMXEvjds8/0URuIcJ61oKwUa7trJB8sTkjyXJudX2COOPT9SnjMCXPC3bnSkPq/StNvLLRf5KipjiHtX1YOKZO07NwbR0hBA1X5+kgYXeW8GI4xzN1fNvlbr/GIEiJS5rh63QI95+HkiDOSHOFePkqRLdm895qg9++v8v/7E+8dej3LPRwNE2ZYcySjC82Z/QbNoNpTKEJ3urXWG65pJk8F+OUlzD8Y2hCUqE+JmGqaAhFXtHQm66Js6wzCiy2p2pvvNH1jtTNyPKCL7ZmZLksqUr7fs25xsYkqjQ257ESx226Fi0vo+XZbJZn79WWQ5oVjHPJPC5wLQ3X1PBshQoDKs0kKdWfG3XzyPPivONKy2Wl4RBlOfe3ZnR9i+W6zSRK+WJrymcbU252PbYnMcN5jIbFt6+3KJBcabmvpb5KeKO9vFMWt2ujiJpt4Pd0giRnECR8+HzC82HAYG5xreMqPS/b4r3VJv26/VrR333nzoE9yDYUCmUSpWyOY8K0oOEaNFyFqNQ06NRsWp7JzixWOqN5gSY0bnQ8Prji7KGjyH3n20VEt2bhmAIKA9fU+GxjSl5ITF3QqdlYpbbP04EyJ/q1t3o0DqCi9u7D57Ul65pgHufkUpIUElNILE3w6caUJJNc67j88XeW+XR9XA4WTAopWW1dnhPoWULTBG8t14nTnAfbioJ8s+Nj6BqPd+Y8HQQURc72NKbjWXztarNCNt/u+cc2x/fe/4O12GFfPxjXOx5xltP2TSaheu4Pd+aYump63er63Gi7SCTTOCMbhdxb8rEN/dwQ64v8QwjlGvn+aoswLSgKxSiIUjXsUfrISh5DF4KP1ibME2VOslR36Pk2YZpXhgnn6fJ71B282vH4WtSk69vEac7H6xMKFBroo7UJYao0EO/1ayR5QZor46crTfccUToChKaa4nv2qZ1ZjJSSmqPT8e2Kru6YGvNEaSSvNByut13qrsmT3YAkz1/r6n722F+/W4ZyQgalR5wWkiDO0QWMo0zpeGYFw0CZbeSFxNAEd/s1PrhAtsRlxOuypcWn+veBvwfcFUL8NtAH/nsXfWFvEkGcVeiMOCuoO6rofH+1wTxWDZRHuwGDIMM19/NtV5oOnq0resKeRXun55OVnee9YegapAVGyQdexFLdRhPqvy86q+Mg5cHOlO1ZwtWmwzzJeXulzrdutLlTCpE5pk7NNhSa5xhKxmICmmQFaV5wu+e/IgJ6WfFkNyDJVFPt/StqYp/mBWmmkFK+Y9Krq0nSx2sTejWbtXHMD+52udnz0DWN1aZDkhevUFEOu5dRpqyGdU3DMQxWGy6yAB1By7Ne6mEcCE1TjZT4gJDo3rjecVnObaw9z/r5MGRtEjELFTrrp8/H1F2DOz2lXfTWco04K/BNnTN3plAHT5gWjKOUaZTh1S1lzUxa6jII+g2b91aavLNax9S0E23erqVzveNWbllvGmGq9CcGQULbVQK0wzDFtRVyZbkhuN2r8Y1rLRqncIFRTaWUhnt2S1bLeFnMt331LliGxtY05WrLrZqjG5OYm4bSKLjZ9csJVx1NiFcFCGEAAQAASURBVEPvacuzyAqVGPdqylXxrKFpopre1x2TOMtxTZ20RMBFaU6YZDwfBoqnn0uutZ19ZgyHNfkWjnNRltOrqXWja6KaLp5XaGi8tazoFrf6ytVQCB3HgpWGXU1mHVPnTt8nTJR+iBKq3486bXtKQF3XT25Bfug1aYKgRLBOw4zlho2t6xiioF/XudH1abomLc/kreU6Ak6M+LjV9av38qwhhCDOcrKiYG0cYQhBLlXTVBcplq3z/kqT232P79/ukaMozCe5Jze73htf32HxCzc7LNfnjMKUQqoi0xRCoXfinNWmw/W20oRp+3b1Hr8ufNvgWtslzRUKZxZnOJr4SuhLLeJX7nb5r3/45EjK2rx0+ykKtZfMwoy0yPmz37hCy7HICjAMnRttD0M/W8P1YFxruwzniq75ugb/p5tTRqGiya+2XAxN495Sg6stByFESblQor2Lpv1REWdFtXcEScbVlstgnpRT9/MVQrX2DAWVO7GOLgRvLzXIioJHO/MKUSk0gaFr3Oy6ND0DQ9P4pVud6rPUbIO3lmtVY+qyY7EXCQSuZTBPMsZBSpQopOEoVK6ijqnz7mqNX7jZRRNCaaC+5tnqmhJRnkVnP3uirKhQAg3HoF+zSQqJZ+m0PQtT07jTq1V5nGseX2A75stzp3tEA8vUFDKv5Zrc6vsUcjHB1/n6lQazRAlPDwMl4Nt0LYI024eINkpJh3l8ce5YuiZYabikWUHbt8tCUQ2YujVH5QelmLAQYB9yf+qOydW2S5afT74F6l792W9d4f6WEqIPkpymZzEtHeuG84SGa9Ith5S+rVMrn++/DJGVyMzNaYSGwLMEeaHOnLyAb1xrcrXl8q3rLXzHOPHZeFj9ALDSUMMr29BeiyIxdY33Vpulg2aGqQtMXVGlNIE6w3WNWZKzNY251taJM6mam28QuiZYbSmn1L1r6k5PGaZ883qL9XHIUs3m860Zsyhnexpxb9nnds9na6J0rsKkqPRwJVSI+mmcnUoA+6hYmGYcdR50fIvv3lZDpwfbSuDc1BV7JkoL4lSyM0vo1208Sxk3nbfI+MK1seG9pMnNkqwcAJv0ajbLTaeqnVueVTormyS5RAr41rUmaVqofD3P8U+khHTysA2dft2urkHXBG8v1ckKWWlULqiODccgyQsGs4Q4zxWQpe4wS7JSh+yrh4w8TbzuzvaFEP9++ee/Dfy/Uc2qGEXR+9kFX9uZo+NbKikQSixwEb26Q69m0/BM1keKFjNPsgoJsdjkFslPlhdEWYFvqYPnMPjjzY5X0oT2H06aJl6ZdE8ixdXveDZppyBIC+71X4WQCiGOhdsVhcS3DLISrrn4GZcN1c3ygt25Eh/XBKQFFEWBpimnF7XZqGmmlMqZqlM2jq61XQxd43rnZWPwsAV12L2s22ridqfvcbXlVdQATSjYuPWapFkhYo6+v0KIV66jkBJZqKTZ0jU0Q6MoKGmEqpF5ls1gr4D6PFbOH6tNh41xRK9m4ZTaLpahcbunKABt3z6TlsxZudp7kUuLJmivZrM9VVS6lmcRZTlNx6AoLPyOWV2fZWinKmBU0XR+7/DetdXxlMaRY2rsziOmUco0TpXjTvkMDF0jSLIK6XMw9iaZdcfk7pL/xhPRve+jZQiWmw6moTGNlfOROqRf2g/rpc5GnMlD3+OmZ9LkZQJ2b6l2qIXwm4RpqGuWAFLS9Eyutp1SrHN/IryAD49CZd9+kK7n2QbXOi5JJllunDyJzvOCMCtwDK1qMF1tuWyVOoKupXO17VIIuNvzaZRmF651csH9RZz1vVycLfMkxzGUxkXDMdCFoFNTVMfdecJKy2G5rpABrmmg6wJDfHnrZhEqOfaYRFOV3Gsa17sua5MIyn2hX3vpEHlcU2oRe3U3ZnHG92+0vlIQ81+51+O//K1H/MHjIb/6Vm/ff4vSnJplENuKMnGj47ExURpiddfkF2932J0n+JZC3J7XVNo2jn/GRSHJ8gLH1Fiq29BQbnvLDQftwPt0koaNbWg4pmooLNUdLEM7M1X9qEiygqR0MHPKs3RzEjEJM272/FIEO1NN51lMxzdZaTisy5C8MKg76l06iHq4zOR8cUbuzRnbnkVQDkI128Qx1NmiaZKmY6L3NCRqzzpN86xmGycu2g7mtmGSU7cNQFK3DdqeSV6aVdzseWrPbLk0XPPU6/HguXMw9BI9PI2Sin2gCUG/7tCr29Qzk0c7c+qugWvqGJpG13/1PKg75rnTaIDS5Re2ppEyCkBwr1+j4ZmKlmzrSqfIMaoBgG8bRz67826cCQFfu9pknuQYmlD6UoEykHFMwUpTGU0Mg4R6iVb/sp17XxeLNTOLMyxd6Ty1XJO1YUS3rs7qlm8Q5ybX2y6uWSKBtNPl2ofVD/DyfTxpWIZGmmt0fIeGazGPU16MIhqujmFodEyd7WlcnfFFoWiwnlW6wx3jCnpYHNbUXNQntkHFqLnScnmyE1BzDIWMqiuzgDh7qfkmpVQ5U5JhGTrzKGNzEtH1rTOLxQMV2+B1sTgDlxse37im9nvf0pnGczQNrjTVHqhrygGuXTajF++GZWhnun97f3+3bu1DzbrmS9e95YbzCqDjWimsb+qLWkDgWDp+6Xp+3iEEr5ytmiawys9cs03u9GrK4d5XVGzfMZCR5N6Sj2Xo3OkppN7BfR/UvbRPWY99WfG6k0cHarxK3j2Z//OXGIauHco9v9Jy+fX3lng6CHBNjThTekEfrU3QS2GwxYannOLmJJmi2x1mcQrqxTkpQsk2NAxN0KtZhElGp6YKqpUz8M+fDgKmkbL6Pe9E8TSx0FaSUjJLlMXpP/l4k+WGwwdXmuW1qetL84IwzfnunS5Xmg7eG3TEd+cJcSrRSxcCUBoZbU8JYp43jFHXRGmrbHGt7TMKlSaEEr1UtDbL0Ljbr51YkPPZIGAUpHRqFkJKng5CPFvZtv7CzTYvRiGOobNUtzB1DU0ITENULiWXEeMg5dkwwDI0rrVcPlwbY2gaV9suX7va5MnunEJK3l6p82IYUHeU5sJyXRUZF5FAnjXUtFWhCldbLmvDiHdW6/sgyLuzmLVRhBCqoXNcwXARxfRyw6HjW4zDhAebc252PZbqTvVOR2leOeJdaTmvNIIOhqlrNN3zO4wmUcr2NObFKORW12Mcptzo+ry9XEcgjtT8utuv7eP3L2J7GhPEigJ70gP/8c6cLzZnJb3C4lZXOde1fYtfuNlhY6Lc9a62PVqeha5pdBbuaJewdhZaKEmmTCzmsdJN++a1Frd6NUxDZ1ZqXjUnEbqm0XQNvLLo/CrBsC1Do1OzmEUZddcgmRV8/WqTIMnUECjNSbICieTh9pwsL0rqj32ipkyY5vzgbu/Y77vM+O7tDqYu+M0vtvc1poJE2a4rrUr1TG90fXZnCaahESY5d3o12l6CbR4vUn7eIQSV82SYqNyl4aoi9XWC2oeFlJL72zPSTNLyzAsZeqV5wRdbU4oCenWr0j7s+JZycd1zfvzo8VA5QwYpKw2nlEWQZEVGt+Z8aWfN4sxwTY2kKJhHqvn+zmqdG11PacUMArJc5199v87jQUAhVd7Yq9v7hqfnGVGa82Bbib7f7dcYhylPdgJcS6/+row+XD7ZmOKYBk1P6VueRevvdZHmhZJwiHMsQzAIEiZRxq2uxzeuN5QWja5VDqGX3VDJC8lPn42wDK3Scqu7Bm/v0c0pCqWft8jv7pwD2uS0IYTgdk+hd7s1m3g9Y1QOsn3L4H6pvyWOQH1/FSLNCx5sK3qwY2oM5ymaBt+81uJG18c0NCYl4nl3ntAtKVbLDRtL10+9j51n+LbBzZ4ypNqaCBquhWcZ9Os2G+OI5aZT6at9tjFhHKZKDF3TmJcC7wfd1c8jrrRc/rVvrPBiFAIK8bf37J1GKZ9tTNmaKB3PrFDOo1uljMTrqPfnGR3fQhM1tiYxcVZwu1fjSsNhHKdoQlTMBVA53uZENYkbjtLorDtncxSUUoIUbIwjmqVro6lrvLtSVy7Sh6yV1YaDY2jYphqWxFlBmue8GGWle/P5mi8cF21f1Vbz8l4lmeR2z8c1NW50X96TaZTy6foUx9K411emK+vjkJ1pgqbBO8tn04a8zHhdVbUupfzfXNqVXFLUHJMozdkpnWpAceOzXInhLhpThVRJ6ItRqJpJdeuNitAkK9icxKpzLiVRJvE1aLpns2CMMyV2Mg5SPnwxxja0E/GtzztKGS4MXcOWks83x6yPI+4t1YiznDv9Om3v5UZwHtBRUJ8/l5K1YUiQZLy32qD+Bjaxx4XqQsPOLEEXU651PFabahqtGnMQp6rxdtJp5jhUehrDeczD7TmfrE/o1Gyutz3avlUJ2C/EbKVUXf7zgoaf9BoXn+2TjQm/+2AXKRWiYLnh7EvOLEMnSAq0Eg3yVe3MD2Yx2+MYozxs9jYBwiTn2TAgKd2qjnNDu6gYh0rDxjaUAOjea4yzgo2xEv1HyGMbU+d+bYFCcs3jjO3Seh5Ohsg7bH3GWc4giBnO0xOJcmZ5oZxl8pz1cczvPxpwp+/za2/1WG66anJfJq+DeYKuvTQ4uCyac5BkxKnaox8PAj7fnJKXifh7q80qeV0IXIKihFzm2j5NLK53ZxrxdDAnzSUd3yLNJZMoqZAiWS7ZmMTszGKWGy7vrNSPTd6utVz+9W+sXsbHOHH4tsH37nT5jU82+av/2nvV14fzhPtbU3ZmMXmhUERJWnC7r2hjlqF0By97TS5ifazEpdcnSlQ7SHJWW86ZnKHyQpJmam0P5jGTKC3zjJMPX07yOxa6bXFakOUFP346ZG0csdp0+ca1ZtXca3om00jtjaMwIUxUvubZSjj3y4pReY7P4oz1ccRHaxNMXdCvW3RqNromqutLsgKjPMt927jQ9T6J0urePh3M+XhtUhlotL3+PvcxU1euexeRX4SlucOT3TlZDoUs0HWNfs2h49tIuZ9p8GXELM740dMBNUsZ3Nzo+Ji6eIUF8VWI5YZD27P48MWIhzvqniZpzs+fj3g2CrnScoizry6VJ4jzal95tDPj588nFIUy/3lrucFq02W1NEufRhlBiY1oeV+NnLLhmHglOgqpEDVNd7/51ThI+Y1PNgiTgvdW69zs1qqvX0RjChQS/KAmcZzlDOYJ9zenPB2EPN6dc7vn8/6qagYrg4MLuZwjo+VZVT2sCYHvGvQPgCtmUcI//GiDaZjytatNrrRcNKFQgnlpCHWaiNKChzszVpsOWSFZAO6EEByVcu49x6WUCt0+U02hWWmedZ50w5NEy7VouBZ5IUvG0P56uigkv3N/h61pwkrDYbnhkBUFH74Yk+ZKw3Dv5/+qxkk0pv7/KrK8YDCLMYSa0PTrDoN5giYEjT0CpYqTarEzTSor2DdpTC1QGeNQCTs6htKYuXkEEuu4uNZ22Z0lGIYgyyRRWjA/wpr7IuNK08WzFPR6YxLR82NmUUaWq+LZNQ1mccrt3vlOl5bqNtMwxTN1XNMou+kXV3SuNBymUYqlCzYmMUIoCOitnk+3ZleaYP4ppsr9us1gnlB3DbYfxiR5QZQoccu99DlD1yo61mXrh3VrSufBNnQebUcEpfhmkRevQGuvtlx8W70LX4UE4qgISktV1xSs1B1utF/Ce2uldoFn6mcWuj6PmIQZ0yhF19U07Oqea/QtHUMT1GzjQiDFx0W3ZjGPc3zbQNe0Ss/vLAkDqET7/taMlmuSZMfzIg1do1tT1sjbkwiJQm5uTCL6dWffO9nxLXQhEBrnjgJ4XfiWQd0xiLIcz9SYhimmobM1iXhn+aVJhmvp3O77pFlxbg40FxmGruGaBrYuudKy2ZwkOIbO2jjkVtdnYOloJWonL5QJhX5EKrHYP9q+9YpF91ch/uR7y/zHf+8jHpaoE1jQxQRFAfMkIy8K6p7J7Z5HlBYXpntz0kjzghejkCQvcAuNd1bq3DkFindvGLrGtbbLNMpK6nBBmBTM91hQv2ksLMajNGepYTNPciZRplzXopQ0L6rG1I22y8frKa5psF5OrBdael9m9Go263lIy7LZmcWESQaWwRdbU36p1PFanOULVHWY5heO3Gy5FuPS7W9nqhBK0yjlatPhIEv4ds9nFmcXU2hJ1ZDzLKNEzUuajkGY5LR9a1/e/WWGLFR+/s5yDaGpnOsyERGniSe7c4bzFM8xcA0N31VD2a5vIxH7XBG/alFzDHxb6Wlaus48UQ5829OYO/39OcRXNad8XU5eFJJhkJBkkijNCVIlnD6Nskvfqx7tzJlHSi4gzQtarkXTUcjUumsQpcWlsS/2Rr+u0NSGvl/fa2Fu8GQQECYZUabOnWttl61pTNM9G0ppIZfhngHFvMhrLUOj5uiESQ6SVxzvLiO0ktkVJPkr+6aUku1ZxCTKmMcp80Sn6ZpsTWI6ns0gSGi5R1OPv0rxuhPh1y/tKi4pwkRRYCZxTqdmKi5uzT5ys7jadklyNQV+06LB0jVanoFEsjGO8GwlwHvWKYxvG/i2wTzOeLKr3EF8+8tZKItkfCFoe6Vt49smu7OYx7tzXGthB3x+CYipK6cXhXrJL7So2xhHbE9jHFNjteWS5BLfNioeb802zmTRvlRaI2d5wb2lGppQtvLPBgE7s5i7/Vp1GDtfAi0EwLP06rOFScadZVVE50g+Wptwre1W0/i978JXOQTQLpsr95YVrWoRDcfkVs9X75T/5TUKpJQ0yoThrQOUQkPXuLtUuzT784PhWQa/eLNNwzGwDGXW8GB7RhDnLDfsU1tjmyWFY5F4nCRWmw5XWi512+B3H+6iC4Fn6ny0NsG1lHjvYm/9MqD/QlBBzh1DY2eWVALiH69PuNH1quK+Zhvw1QRKvRI126hMFJbqLlH6EvFi6Bp3+0qYdXsaU3eO1vKq6E/WV6fYOBi//t4S//Hf+4jf+GQTUGuy7dv06zamrsRUW77NasPhyW5IISWOqb+RRfibxkrDUfRRVMPv/SvNN/p5bV/RY6elC5ltvGxEn1fs3cN0oYpqXYu41fWpl3bnD7ZnRCUCcfFOLTQqv+xouiYNR9FvTUPwfBRi6UpP7uP1CYautIoW1+pa+qVogZq6qBq+Uk7ozS02xxGWqeOb+5+hZWh0jAs6u8u85mbPYzBXjp6aEBRS0YjCNKf+JT9HS9e43fdxTZ1+3cE2FCri/taMu33/K0WtBrV/DoMUS9P4Y28v0a3ZPNqZV+Lwl601e5rQxEsapGtprI0j4jRH1wQfr03o1+1KnuSrnFMelpPvzGLWSymI1aZDmkveXqpXyPu9zs4XHeMg5UEp+dCvOby90iBKMpqeRb+udCEviEV8bAghXkHYZ3nBg+05aV5g6RpXmh5BkvHt6y26NZtuzT7z/VucK6cFgjzcnjGP1dDkStthFtcwNMH7VxtfGoLysPduQY8dzBLarkXbs3j/SgPb0Gl5JuMw4XbP26fn/FWOIzMMKeXgMi/k/8fenwfZ1eZ5feDnOfs5d783d6V2vXqXqrd2qIVuuhs3phsGpgcM3rCNIyYYzMzEeDwxJiDwRAyLCUN47IFwDIZhsbGNY7CbBkNDm6Yb6O7qrZauqnd/tSuV693vPfvyzB/PuVeZUkpKSZmprKK+EW+8UkrKPPec5zzL7/ddTgP9IOb+IEBKtZk2NME4Sp/Y/TN1bS6nellM45R3HqhJd7luU0hJzXn5xaNiG/P0lFcNKWFrGBIkOWsNl4qlU0hF0Z1E2bH78eiaiok/acwkd/cGAat1l8sLHpvDiEJKRkH63AffopDc6k7ZHcfK46Ht8YVLbd5aaxDEGeMoI81k2Y15dRu2vUnMg0HIKExYa7pcaCuTeV0INocRoO7Ni8hEXhXCJOfjnQn3uiGfXK8/ZgisndKYehqUH8eE23s+b63WMA/x6Tnf9jj/Cq5tBstUBqSN0tOtO43Zm8QMApWu8rwb+aW6c6SCVpIVfP1un56f8Mm1BleXqrRK8/q+n0CWEybKXNPRXs3mfBylvLep/CXeWFGb0optkuYFvWmiEnGi42OdnCZUp/jhmnhlocokTmk4Jjd2p4RJzlrTYb3lcr8fsjuJ513v/ZjNqWHyCmmJz8B6y+Ot1To/+94uSV7w09/Zou6YfPlqh1GYomtqc933k3nE8zhKX1lhKkxz/sl7O8hCcqGtOuLHhZpj8omXLHIdBYau8cZqnTdWH+5p4qyYF6VsU2Ma54RJzrc3RjQ8kysLr65wMDsQbA5CWhWLq0tVfu/n1pWsP8kYheVanubUT7H4Mo5Sbu/5dKfq/VtvqYbaUt3BNnSyUzwgu6Y+L9LXHZMkK/hga1LKYZQP2qv2onQtnd/1qTUGfkKQZPzcB7v4cc7b6w3Ot90zlXK1O4640wvYnURcX67RLM2rzyLr9FFMopSPd6Z0/ZjLnQqXOhV+9M1lDF2w0Q8BtTa8St/cl8G4XNekhB9/e5UkV+N7GCR8vDPFL5NNry5WT7ywMY7UfZzGGa+v1BgGCbdHMVkhudw5ewWKsPSqBGVr8KNvLWFoGo6l8cHWmM1RSKdic6lTee4zl21qz31ODpOMD3cmAOiaSmZ2zABLPxnz85dBkCh5bM1RktLVpku7YlEUkrs9n7u9kHMt97tGBnc2OLSnhPlaLJQMRte0MnrxNMxwlc41TDOWai6uqZ+pFKLjQG8a0/fVxHx/EPK5iy3SQsnSvhtkKk/CUs3m/iBASCXf6/vJ/NmNwucvTEXl4bnvJxj6w/TCim0Q2gZxHmDqWpme8+owChOmcUbfT8sknJyVhlPqrXPCNJ+nIX63YBgkpDnUHINpnJ3JcTmLFW+4FpMkPzSZ6FVjEmbzjpemCZBKCmFqGmGan9jc5scZexPl73O7O+Vix5v7AGiaIM0jPEvHPqYktBfBOEzp+wlxWrA5jFhpOCzWVOx4XKZatl9Vq/KYMWN/RKkqFoDy3HFMfV586k7jx4o1CzV7/qzOMv6DH75KnBX8yf+qIMlUrPUoTA94SNUdg4GtUxTyxIysjwKVmCrJpUrGXPoum5ufBMdUUdlBkuNaOlkOe5OIopDKGyl/dfHYQZzjRzmjMKMAauNYNTYcCBKdKFPd/+op7/VGQcokUnHoFTul6VlcW6pyvx8ARw/sOW6ow6fEMdT8IFApymcFrYrFIJgxuiRBnJ6pohTAIEgxNIGhaZxRpeETMY4yhkGKH+V0J6qJNWNMRqXFwqtggR8X9q9r+xlBd3sBfT9RzeZSgnzS579OVSW3dSoqFOpb94ckWcHWKGISZ69sDngSZvYHSZn6PdszbI8ihmHKKMiwdP2FzlwvgkmcYes6fpxh6BrTJKNeJsBOouxMSeJqtkHVUVLp862HjEnlR6uYqdujiMsLlTP33A/Dqa6WQohLwK8C7wOJlPJfFUKMgG+Wf+X3Sin7Qoh/G/g/An3g35JSjo/j57c8iwttDyQYpbFhp3o6G0lNUxHr15drLNfPrv77ZdDwTJqeiZ9krLe9YzU7f5VoVSyansnNPZ8wyVmuOYSZSmV6kfHjmjp116DhmZi6RsXW57pp19KPjaX3slio2vhxrqi1xsP0QyHEE1MqzzraVYtO1cSzNT651jhTi8sMTc+kU7OwTY23zzXOJC1/oWrPk+9mslrPMrDN54tyfl7UHINO1WYQKBbffqZE3TGpr7z6RbddUVTqUZioJMCSKbHfBPl7DbahigfTWPloOKaOZShD5cMaP2flWT0Lv/vTawD8KV3D0KFmm495chhnZJ1TUerw5lqNT547eXbTaUEIMU+NitKcaZTR9izMcsy9ysJB1TFoeAbVwKDhHgxX8Czjla3lnarFMEgJk4yKpVN1DGxDf8wc+bRhGzq2qdGsmjRLO42z1nhZrjss1ixanslnLrRe9eU8hsWazWrTpVW1uNj25uvLdwPantpLx3lOzTUOFGeU6fl399noSetaw1WBLJoGrYqJewr7zkfnnwsdjw+2J3Qq1plsCGmaODRxr+oY8zms7hqndmav2SbLDRtQgVSapgr+wJkr7mhP2Fs6psZKwybMchaqZ/O5HwZxmprXsjD1Z6SUf3Df135RSvkD+35vAj8H/Ajw+4ALUsq/8LTvu7CwIC9dunQi1/wyyApJWlITdzbvc9rXGKdFadYKjvUkC9qHuHPnzqlf46NI8oI8V9dsGdqhRncncZ0SiMqOvyYE9kt28c7CvTwM+z/nqxiTR0WcKXN1OBvXWUg5T1mbGSHux1l43lKqgxuohepR1tCrusYkK+ZSJ8vU0J9Bgz4L9/IwvOr5/Cg47P3e/y45pn7qKTzPwvfi8/bjjEIqT67Tut+v6j6mpQ8nPHnN3o+Tus4D88wRruNpOKtjMkqLuc/KWZ2D4Oyt3/uR5pIsL/3KDA1DE2fyee+ff0xdY+P+3RO/xhnrVQheuGl3Fu8lHLyfmxv3WFu/gKlrGEdIAn4VePQ+5oWcS90O24O+Kty8dZu19QuH7jnPCp42JsNUmZkjOJWC4ZMwv4/HcP48SXz961+XUsoTvcBXoRX6ESHELwA/KaX8L4A3y9//EvDHgevAd6SUmRDiZ4G/8qxveOnSJb72ta+d6EW/COIs53bXpyjg3/09v+3Ur7E7jdkeRVRt49BK9KP4whe+8Mrv4zTOuNvzMXWNKwuVQ81NT+o673R9pnHGSsN56fSMs3Avn4S7PZ9JlPGH/rf/ypm9xoGf8GAY4lk6f+DHf/iVX2deSG53lQHv+bb3WMfkLDxvKSV3e8ETx/CrusZxlHKvp4yTj5IQdhbu5WF41fP5UfHo+933EzbLd+nyK/TjeRK+l553khX8kf/u6/zcB7sArHQ8/ut/5/MvFI7xvHhV9zFIMmW8rGlcXqg888B0Utc5iVLulvPM5SfsHY6Kszom9yYxOyVT9ff9jh86k9cIZ2/93o8gybjTDdA05ZFnGdqZfN5RquYfUKmJP/DlL574NW4MAoZBykLVfmGfp7N4L+HgfP4HfvyH+Dv/+J9zeaFyJlnz8Ph9zPKCW11lDn6h7b1yX7YZ3v7M5/jb//DnWSt9jc4injYmt0YhvWlCq2K90jTLT33mc/wP//Dnj+X8eZIQQnzjpH/GaRemtlCFpxj4e0KIfwq8BgyAvwz8bqAHzKR7I+DscWmPCNvQT2VD+iQ8LXHwrKJqG6disnoYjlK8+17AxTNofPgoZmlQZwXKaP9sSCyfBCEOp0K/atQd83tCWvSq5/Oj4tH3u12xzuyG8SzjRZ73n//HH/BzH+zyJ37nG1zsVPh//L13+P1/+Zf5O3/ky98VY+dF4Fmvbs3ej9r3yDzzNOz35DnLOGvr93541tkJDHoaHFPnzdXTvc71lsf6d+2J6+nYP5+/inv7sjCOMYzrOGEb2nf1vHtWJKTWd/l9PE6cKl9MShlLKX0pZQb8A+CTUsq+VNzknwI+CQyB2YxRL3//GIQQf1gI8TUhxNf29vZO/Nq/j+/j+/g+vo/v4/v4Pg7Dzb0pf/Ord/g3f/N5/vBvvcrv+MQK//N/8BUqlsEf+uu/ztYofNWX+H18H9/H9/F9fB/fx/dxZnGqhSkhxP5y728BHggh9H2/vwl8BHyy/PqPAr9y2PeSUv4VKeUXpJRfWFxcPMnLfmGMo5QgyU7t52V5wShI5/r57yUc9V6OwnTus/N9HMQs9eQsIy8koyAlPaNj2I8zJtHZvoez53ya/oEvi9OeK58Xs7n1rI7Ls359jyJMjj4XpeVnm/kHnVX8f3/hNrom+L/9q6/Pv7be8vgb//5vYhKl/NH//htzj5DvVhTl/BxnZ2eNPetzx3EjyYq5Ce9ZwmmtO3GWMwrSuYfVWUWY5Ixf4V7hu2GvcloYR+ncP2s/zvp5wY8zpvHZnttU2vDZvYcznLV161FI+J49vz8vnqswJYS4IoT460KIPyOEqAoh/qoQ4h0hxN8pjc2fhR8UQnxdCPFVYBMl1fv10mPqPPA/SSlT4K8CvwD8e8B//Vyf6IxgbxJztxtwc9c/tU3T7a7PvX4w16V/r+Co93JnHHGvF3Bjd3qmF5tXgSjNubE75V4vYHsUverLeSLu9NQYvrk3fdWX8hgmUcqtPZ873YCBn7zqyzkUcfbwOe+M41d9OUfCq5grnxd3egH3+gG39s7m3HrWr28/ojTn5p4ao7vjZ89Ft/bO/ro2ClJ+6psP+InPnHtMPv/map0//699mm/eG/Ln/tH7r+gKjwcPhiH3+mqNPQuFwu707M8dx4mikOrd6Qev+lIOIMmK+bqzdYL7i7yQ3NxV88HG4OwyEMNErcN3uwF7k9Nfh78b9iqnhdn+4sbu9EBx6qyfF3IpubXnc3vPP5OF6Blm7/5ZWA+ehCQr5uvWWS38zK7x1hne55wWntdj6m8CfxtooJhMfwP4U8C/Cvx14Lc97R9LKX8a+OlHvvy5Q/7e3wL+1nNe25lCVhT7fn06L2xSvnBpfnYniBfBUe/ljC0gJWd6knwVKKRk1sg8y6yKWbpTlkuklGfKqDnb916lxdm8h3nx3fGc9+NVzJXPi9m9zM7oc59d13fDM8/2j9EjPO+zfu8B/v63HhCmOf/Oly8e+ue/61OrfO3uJf7GL93hCxfb/K5PrZ7yFR4PZs+iKNSa8uys35PFgTn5e2zfcxgkZ3Nvs39/kZ3gc5BSzpOmz+oaDAev7VXMW/vHyHfDmnCS2H//06LARYl0zvp5YT/xMDnjz7Ao1D18mSTUk8TsVqp165VeyhMxY5r+y/6+wvMXpmpSyv8PgBDij0op//Py639NCPF/Ot5LO11sDkOCJGOl4VK1X94TfqmmEi0MTaN+SukJlzoVhmFKs0wMKwrJxiAkyQvWW+6ZTZ/YjyDJ2BxGOKbGuaaLEOLI93Kl7qioTUOjcsgz3B1HjKOUxapDwzsbiRYnje1RxDROWao7rDUd4qxg6YyZp0ZpzsYgxDY0zrdcBmFK3TFOvSi1O4kYh08eH03PJM0LCgkLlVdzD9X7EeKYOust77E/9yxj/pzPkkludxoz8BM6VfsxI+5XMVc+C30/oTeNaVUsFqo2FzsegyB9LI3xVUJKNb/HWcFi1SbKikOvb/8ccBbub9U2WG06pLm67mfh0kKFUZjSOqU5Oy8kG4OAvJCst7wjxXL/43e3ubpYeap56R//8Tf55r0hf+LvfocvXGqxXH+x1KtXiXMtl+40oWoZmI+k3m2NQvw4Y7nunGhi1P7xvFizkUgMTTtT7+bLYBKl7IwjKrbxmCmvrgkudDwm0dlhh0kp2ZvEJHlByzNZbZ7cuDZ0jfNtj2mc0XlOc/UozXkwDDE1jfWWi3aCh+i6Y7LScMiKYr6+PS92xhGT6MXm7YZrktTLvcoxBSBN44ztUVjuMV69WfTTEGdqT2logrXyHXp0f7H/vDCOUrZG4YnPXc8DQxMs120ksFC1kFLyYBgSpTlrTRfPOu3sssNh6IIL7YPr5P69yVk4e1q6RrtqUbH0A9eZZAUbgwBNCM63vVdaWLMMdY2z8/tpzldnDc87sgshxHUUY8oTQnxBSvk1IcQ14OxXPZ6AKM3pTRXddWccUV2sAmqD2pvGOJb+3AuDrolTd/qv2MaBgswkzuY+Ht1pfOAg2/cTCinpVKwzxUq53w/YHsXUHIOWZ1GxjSPfS0PXnrhgJlnBB1sTLEMjL/iXojAVl/K9Gc5qqtzdrs/2OKbuGDQ885VEthaFZGekKPdb45CqY9DzY2xDnx94hBAsveLD5O44JkwKwqSg5aWEaYEuxIEEpM4ZTOLcHkVIqQ6vjxamdE1gG3rZdX/17axhkPDe1oiabRJnEQtVG88yzsxGcIa+n3Brz6di61i6xoXO44XK2cbLj3OSrOCtM5CeBs93WKraxrE0i56EopB0/Rhb12l4JqMwZRyqg3/fT54Zmz7wE37lVp8/8kNXnvr3LEPj//UHPs3v/Iu/wB//ye/w1/69L5yptfcosA390Pk5znK6k4d7qNnhTkpJz0/QhDiWZMg0L+bSqM2BmkuqtnFmDpPHgTu9gP40me+BHj3U1R3zTBSYZxgESjbmWTqGpj1WsDxuNFzzhYqQ3WlMEOdAjq4LTE2NSeOErvdlGkNpXrA1jBiFKdMo4zMXni8q7yT2Kjd3p4yClLpr0q48Pi7PEm53fXZHMQ1PjZXDzg+z80KU5jzYnszn/c9dPDuxhPufoR9nbI8i/DinKCTXz0jKq6lrj52nJuW1BkmOAK4uVV/Nxe2DqYnHmkyDIMGPlYxzGCSvdO+sCXFgbe35CUGcE6UJSVZwoXO0Jtn3Ap73U/7HwP8C/LfATwB/XAhxA/gq8J8c76UdH6SUTzVKtHQN21S3wjU1+n5CnOVsDkN2xkqffCY1yM/gJLqmjq4JojQnzx/eg2GQ8GAQsjWM6L1i/XmU5vT9ZP5ZetOEvp+wOwmx9KNv2h/9Po9iZxwxTTK2RhHmE75vUZyNg/HLoigkfT9hbxIzDNT/87M3fPHjjO40Ym8S0fNjen6CY7y6zY5nq59dc0xu7k64ueNzrxccapr5KlAUkqqjDuiWobE7jvlwe8L9QXDmTe1nhYXDDlTDIOHW3oT3N8fsTF6t/9k4THl3c8woSOn7Me4Z3HyneUHfT7jf8xkECZvDcD4uHoWpC/YmEff7AQ8GZ9db7lViaxRyc9fnva0xQZLhWTqaBkJAxX728//Z93fIC8mPfeLZ8rwri1X+49/xBj/3wS7/09c3juPyTwXPMpq2dA3H1EjzgryQcx+P7jRhaxjxYBAei0+KoQlcS+3VJnHKvX7AtzdGRPvm6O/WdXwcpQz9hFGg9kB9P8YqiyZnUWo023NtDUNGYcKDYYBrntzB6UWf6yRKGQUpNbtUEkjJ7jhiZxzzYHjyPlVHNWnfv4c1NME4UuNgGKYvFJpwnGMmTHK2RyH3BgGTKJmPy7OGWSOmO43pTtX+17WePodbukaY5uxOYvrTmDtd/0z6EFm6YGcclXODOrfNxvZZwewdtXWNnYm61u40pu8nrzT4I0pzPtyZcHvPPzCHVGwDIWZr/dlpPOaFpGobSCTbo4hRlHBjb0LfT87k2DxuPNeTkFL+U+D1fV/6RSHEAjCQUr7y01uQZIRJTtOz0DXB7iQiSDL8OEdKON/yHqvsSinZGkeYmmBtweM37g8ZRylrDY9OVXX4ZgP3NJEXkmGQ4FnGoRPrvZ46jLar1mMdzCDJ2BnHVCydmqNzc3dCmhfoumC95SH2+UJoQjAMklOhhquOREq7ophQO+OIn3lnm4pt8JnzDa4u1ajYOhVLI8xyPtqdcmWh+syFJS8NQbuTGNvU+MLFNoaukeUFm8MIIZRee73lEiQ5wyDl/c0R621v3mn144zbXR9NCK4uVbBfYYHkKJjGGQM/oeGZBHE+p3w3XJN3N0c8GIYMghRDgGXqmIY4dQ14UUi2x+r+u6bO3iSm7pos1x1GQcqv3u7hxxnjMKXmmNRd/dDN1Cyp72VZbn0/wY8zFmv2vNtXFJKv3uxyu+tzZbHCp9dbSCQfbqkO2qK0jvTuFxJ603g+97wo4ixndxzjWfqB7s3trs+v3upi6Tq/9foCFdvga3cHdCcJUZZzaaHyXD8nSnP2JjEV2ziUyZAXkvv9gFxK1lvuS78PtqGRmNqhXeQ4K/iFj7skuUSc0n53HKUMpglhmmPoiio9DFLe3xqzO4nQBaR5Tneqs1i3T5WhIKVkdxKTFRLP0ulOYqqOkvXkheSXb/YIkpyNQUDLM/EcA+MJxfY0V4ewb9wbslC1eWO1yvn208dKmOR0p4q12vRenuVyVjDwE6aPvP99P+FXbvV4f2vMct3hfMvBtQzansU0zojSgmcpcX7m3W3ONV0+ee5oHew/9JVL/KN3tvhPf/p9fvtby6/sHkspGQQppi6eyDgqCsmt7pQwKVhrOvM5KUpztkYRrqmz0nDYm8QURUGYZpi6xt1+wNXF6nzuTPKcB8OArHj6zZzJuq3ynQTYmSi25UrdQdMEVxerpLmSW357Y4SU8K37Q5YaDhVbZ3cco2uCa0vV52LvJFnBOEqpPaHI+7LYHUckecFK3SHKCrZHIa5lcK7pcr/v8+7mmJptYGgaFzsedcdA0wTbo5Abuz4tz+SttforYdnN1s6FisVeOW9uDgPirAAhWG043O+HfLgzQdPEsTMPhkGixoWhcXWx+sw1duAn6OWceLerjOJXGzZVS+f+MOB+P6BVsbhunRyLfGZUH6UF51ruUxmDsz1sUajmyKWFCks1m4+2J9zem7BUfb454n4/YBikND2T8+3HmbRhkhMkGQ3XfCZjrCgkH++Oud0NKIqCu0XBxU6FC53n23McF2bnCM/S5/PX+ZZHkhf80o0ucabmpqql7CCeVcuUgK5BmGbsTmLGccqDgcuXrnYYhSm9qVp/s1zimPorsUjI8oJb3YAkKzB1QcU2mUQpv3Krx4NByJsrdb54tYMfZ/T9hPoLsgpfBr1pzAfbE6q2wSfW6lxqV0gLxXD9xt0Bhib4weuLDIKEgZ/Qrlg0PYvtcYQulGzxpOa2IMn4pY+7XGh7vLX2cJ2uWDo11yDL5Euf8cNErXG2obPecp/4WQ7bh+zHzd0Jm8OI9bbLG8s1wiTna7f79IOUH7i2wGrT5doZYKCdJF5oBRZCOMAfBX4A9V7/ghDiL0spX1lLNs0Lbu2pZJYoyVmuO8R5QZjkTOKM5ZrDOHr8cDuOMvqljC/NQ4ZBSppLen7M2+fqeJaOY+qnXqjYGASMwwwh4I2V2mOLx4whMQySxwpTW6OIIM4ZhyoiNSug5z+U8jU8E2+qMwhV9XV3Ej9z8n5ZSKkOulKCn2S8sVLnnc0hd7o+BbDWdLm6BCBIcglSUBSqK/qswpSUkkmU0fdTHFNjdxKz1nTp+wmjMCUvCtKiQBOCNFMUadvQMA19viGfRJkyQZQSP87PfGHqfj8gK8dpmqmD7OYo5AeuLrA1igiTgoGf8MZKjZ2Jov8+GISHyn1OCj0/mUtkp1HKKMyQSH749UX2puqaen5C27WQEtIcbu5NHxvvs7SKCzxeWD4Ksrzg5p7Pre6U5ZrytrlSynVHYcrdXsDAT/m4mHJpoUrVMuhULSxD41zLORJlXTEsIyZR9txFohmGQcI37w8RUsnxKrYx/9m3difsjtW9vNcPeGutQcMx0RC0Ks8v7dgchmwOQ4ZhymcvNDnXPDguxmE6L1b3/eSlZMlBktHdJ5W++MiGNogz8lyChEl48gVyKSX3egGTKGNjEOBZBlvDgKZnk+USW9eJMkWX3xzGLFSjUy1MjcOM3TJR8W6spBxZLvFe00lzVaSdJim6UNKqLFeHr0sL3mMFBj/OGEfqPynhxt70qYWpnXHEtzeGVCyDumtSc8wza2h6VGR5wa29KTe7Pss1hyQvuLrv/ZdSYmo6pq6xPY6xDTUuluo2UVrQfMqcM40z/sXHXf7gFy8eeVOtaYI//ROf5Hf9xV/kL/zMh/zZ/93bx/I5nxc743gui7u2dHgDKMmVbBjUvZoVHLZHEdMoYxplVG2DnXFMURa66o5FUUjCJGcYJEgkuhDkBWwOn75F3JvE9KYx3WlCmGYsVO25RNDUVWFbCIFlCNaaLpsl42UYpni2we4kwjPVITKIcxre0QtTt7s+SVbQNY5/vI/CdJ6SqgnFYr/bDYiyAlvX2BiEhElBlCZ84VILx3woIf9oZ0pvqpjPlxYqp97ZjzO1dwDo+zF7E9XI3B4HrNQ9KrZG07PYnag/K+SYr1ztHKtETr2nEKcFUZo/9R7sTeJ58vB+X7pRmPFgGHKr67M1CInSgjdOUA4VZwVR+vDdeVphSu4zj8/LX4yjjPuDkP405n/59tZz/ezZ+WAUppx/5M9mRTApOdJ+5f4g4OPtKWmWM4ozbFPng+0JzYp16pLS/eeIOz2fNJMESYYuBBKYRhlxnmPpGpoQTKKEm3tT3lp9ckF3cxgy8DNkAbKQxFnBMEzpTmO+vTEkzSUCyvNTSsXWT13WH6b5nHGUZKVJdlbwrfsjJlFGXkg+sd5gYxCQZpJRmFI/5SL2xztTdscxeyLmYsfj2nKVaZwxjVO6kxRdU+vGdx4MQQqCZk5WyPn52zG1E2vSzPrdfqz2QbPbMokzxoHac+5N4kN9W4+K7vShzUbTMw9t9tzr+XznwYhO1T6wD5lBSsmHO1PitGAQJEgJd3s+e9OIIFL7mOVnWAt8L+BF367/FpgAf6n8/b+JStH7/cdxUS+Dga8m5GmcE6YpnmXQ8kxsU5szoPbDNrQ5o6ZZsTjf9hj4Ca8tV9F17ZVpTvcXig6rGS3VbQZBQucQE2bP0gniHNvUcC0dCbiWfsCUMkxzbF1nYxBg6NoBFtVxIkxyDF1g6sp7IMmKOQ24Yhpz+dTMyNIsdd89P8G1NJrusycqQ9e43K4wKjXCMx2ua+kIoQ4Plq5jmhpSZliGoJCS+r7OaNNTHQhNEwe+fhYRlrptUEykcRiTZAVFoRFlBRfaLtujmMWaRdMz52yK4qSrj/uQ5sUBCruhCzXmTI1JpA4cSzWbiq2zVHOYxulc7vWkq3zR6x+VBdokVd2b/YbLNcdgqW4zDlNWGi6eqXxm1guXXMojmTPvx8vc4Z1xjCxgbxpTdXSMfQWB822PW10f29TplP4OFzsVoix/bhNYUFLArVGEoWnsjZPHClNuKWeSkpf297F0DV1TjL3DDr911+TqcpUwybi+fHKdICklYZrjGMoA0zY04qzA0AoEJnkhWaharDZtNCG41w/JioKWd3prQFFI0iJHjSSBpWv4cY5lCMZhRrtisdZymIQ6ddckyor5ODls7NVdk4ttj61RSM0xON86/BASpXkpcVFNir6f0K5afJfXpABVtAiSgjQrmEQpizWbLC9I8oKFqsX5dgUhNFYbNp2KyTQusAwNKdV7oj9lc//PPtwlyQp+7JMrz3VNb6zU+UNfucRf/6Xb/Ou/6TyfWm++5Kd8fuyfT580t9qGRtMzCZKchX1MAc/SmUQZhi5wTA3PVnuO11dq1GyTpmeyN1EbdYHAsQSTKMMxnj6X1ByjlDMVBEl+4LosQ0kF07zAs1TR/lPnm4yDlH6gDjcrdad8p8UT5a1PgizfoONcJuNMsfUt/eE+U/lcSsZRhmkIhmHCct0hy9X8OAt9maFTsRiFCZ79ZGbkSaIoVLKZoWkYmoafZIBkserQ8kwuLnistzw2hxFTUqqO/lLr4GHoVFWR2DE1vGc1Kvf99Jpr4ljKv7BmG2wOQ9KsQC8Dck5yT6QO2uW78wzGk6Erltw0ynAtxRxvexY1x2BvEj/3c1+q22oOP2RvII/w3u/HOEoxDI2GZ7FYtzE1HdfUH5PzBUl2ohK/vJDEWY6hCdJc4lkG96cBQqgi3lLdZq3pEqQZyzWbe4OQmmUiJQeKEY+ikJKGZxDnFteWq0RJTsOzyAs1d8VpPpeoCkF5hilOzJvsMFQsg5qj1DOdqoVpCDzboFU1SbMC29KwdPVfmuWYuoYQYj7/nIYfWN016E4FdvmOWoYidby50uCdYkTVNoizHE0I/CSHcl6cwdS1E7tex1QM3PWWd8BE3DY0NE3NcS9bbKzaBsMgLdfEx68/znL6fkqaSbZG0aFejUIIWp5FdxphahrTKJvfS6tqcGmhwoVDGJDfa3jRJ/G6lPLT+37/80KIbx3HBb0ozHJiNzRBmCiZSpDm1NyCH7m+/ERHe8fUeX2lRl4omuZCxSaX8sQNHA/DKEjp+jFN1+RcSzF+PEs/9FqW684TU31WGy4tz8LUNTQBlzryMdO0mmOwOYwUPbs8jB03dicRO6MYTYPXlmpcXawQpDnVcgL49PkmuqZh6mJeNLu8UGEcpby1VscxdaZxxv1BQM02nmrmOEkyFqoOjqXNjXVrjslry1WipGBjGFAUknZF0SevLFZY2KfRcEyd15bPpjn4fvSmMZvDiEJKzrUcmq5KDbvXV8wP29C4vlznYkdt4oQQTKKUcaSKM3d7Puutk02fSLKCj3cnFIVarGapNKYxnh8YPMvg85da6JoqWs58c6I0514/YKFiz9lRpqGx1nQOGHyDKjjujKNnjo2KbWAaqstumYIwfcjKMXSNH31zmd9ybQFNPFxQnrcgbRsaS/XHE+eKQiWp5IXkXMt96rxSdw36Uw1DF+iaKjJWy79/faXOxU7lQHGn4Zk0eLGOpSbAMXTSvDhUuuKYOm+s1JFSvvQGzNA1ri9Xyco59lE0PYuri1WyXB4qOzgu3OkF5cZf48qCmovWmg7bowjPNrjY9pCoz66KVDa2oVN3DcVQLCRrTedE2ZQz2ZSla6y3PcyZ/6FURaaKbfD2uSYSiW3oSCnpThMmUVrKqeSBrqOuCX7kjWXaFYuGZx1KAZ9EKXe6aoOPkCzXHVxT5/Ji5bvOnPswVCz1/l9oe6w0HBaqNh/vTplGGblUspTPXWzNu+69aayMRnUNy9Cemobzj9/ZZqFq8fkXMMz9D3/0Nf7+tzb5T37qHf7uH/0tp5a60/cTBkFCyzVZbthY+uEptqA2yoe9k0t1h7prYmgCQ1fvU5of3GfUHWUkr2sCS1cM6GcNp6Zn8ZnzTXYnpZy5YlO1TSQSS9f4aGdKXkiW6jbLZVrZwwS0w+eXZyFMcjZHIY6h0/L0Y5PATOOMO10fKeHSgse1JTUHVm2DopBMVlKy8n3tVCxWG+58zd6P11dqSvZh6Ziaxr1ecGpNpjjL5+yauqtkh1p54F1ve1T2WU185VpHsdSDhPv9gLXm8aVxVW2VNqtYWfFT1/vFqo1AoGviwLPs+wlV2+C1pZoa847OygkGFD367jxrv1JzTAZ+SrcfYpsxry1V+YNfvMg7m0OqtsXffo6fvVRz0IVgGKbY+kGliKFrXFqo4McZrSMwVDoVm6IAd0XjymKVYaiaiPuf7dYopDtJTrRwequURXq2xlrLpWLqVCydOFMNhoWqTdU25nPS5cUqwyBFALd7PlXbOHBmyvKCjUFIISXnWx5vrtapOeacmSSRrDUz4izn6lIVgfLAvd8PMXTB9eXaibOJs7yY+6Ctt1xWGg6jUKUDW7rGD15dYBCknO+4WIbGpU6FaZLhmfrcnkRKuNDxTkzal2QF93oBVxardKr2vJAyw0LN5itXFwDVsA4SxZS6vlzDLVPydE2QFZKPd6bz+fI4Ay0c0+D6Su2xBqxt6Ly+XHvhtWM/WhVVSNaEOHQtt3QN19LUHtMQjzX9ZkzGix2XK4sVTF2oAlZLzbOWoXF1qXamQweOCy9amPqmEOJLUspfARBCfBH4peO7rBdDzTFpV3PudQM+2h2TpBJNg4Zjcr5deWIhR7F51K81TaCdEHvoWZgdYMMkp12xWK4r2dFHO8ojaqXuMI6yua/D07B/8FolNX1miN3yTC52KhRS8vFOSs9PTuRAGJc05qJQE1LFNrj1YMQgSHlrrcZy3eXzF1t0pw8lBX6s/E2yQnKu6bI9ipQePlbeYYelEgyDhHc3R1hllPCtvSl3ewHn22ozaBs6VafONM641wtwLYOglCcMS6PRzr5CyFlGmCpvgJnB49vnGnNvKVAyzhkFtO6aXOqoCT5Mc/pJSkjBwE6OLUL4MKR5QZ5LdsYRH+9mvLFa57WlKm+fawLqIHyvP2YSpVRtk8sLFRxTZ6lm8+7mGCnhQRrOn4fxBM+Ko4wNUAtCkirvpksLFeKs4PbelH6g0qJWG+4z36dnQRPi0PllFKYMS3PK3vTpCV9ZUfBgFGLqqjO90Q9KOYCKB15rutjmi89NUZrzc+/vcn2lSpIVXFqokBXK/+IwqE3Xy8+FSVawNQrRNfEYGwBgexRyu+ujC3Gi/g1hkiOl5P2tMff7IVeXKlxoVxCoQ0NaHhrv95V/31LNnqe0zZ7hy9K9nwZZyoi3hhHTOAWh5AOfWG1QSMk0zvh4Z8IkSrFNnQulR95izWZnHJVSl+hAYaooJO9sjgjSgkquZA/KN0N109eaLmGaszMK2RpFXF6s8JkLTar22Z8Lj4JpnHG367M7iWlXLJVyFWfEaTEPORkFGW+s1LhYSlqOmmYVpTk//8Euv+cz517ogFJzTP7k73qT/8v/+Bv89792j3/nSxef+3u8CDaHIVKq6/9EmdI4iZSk2TbU4XMQJIxDxS570gFh/x5jJq8DtcG+1w/Ii4LLHQ/XMvjm/QHDIKV4Qj0lTHK2xxFZXiBRLKFzLZdJuWY7psZK3SXLC/amMeMooemZ8yKxoWu8aL14ZxyVaW2KaXJcG/8ozefsq5nX6b1+wLnSI+TN1boyutY1utOYcah8ImcM1SjNud31AeZr5Mye4LQQZwXjMC1NjNUc0/AM/FigCyXzSnNV3J2lZ+6O47lX4otYB0Rpzq09H01Tn3v2jDeHIfd6IQj4wdfMJz4n8YR15P4g4HbXp5DwqfU6V5eOr7AwjTPu9nzMskhr6Bq7EyV3Xa47VGyD7ZGSaz5tvxKWIUtxqu77x7tTPMvgU+tHkxwqTzifMMnwk5yKZRzYS83wrKTT3dL+QdcgTAp0Tb1jimX6+L2dBcRk+ckUTItSYjfwE97fDnltqcZry7U5qaA7TcoijCRIcjpVVehdruvc2J3u2yc+nDP6/kNv3Zls/V4vUAyxMsFtveVSsQ3yQvLx7oT3Nse0PJPluktWFOjayRYJBsHDhFjPSonSfC4/z6U6u759roFnG/SmMd/eGNF0TT5zoUmcFfP5J05zOKHCVF4o6WDFVmz+211fWW+U+xPlmRmR5ZK1psubq2os65rg1t6Ue/1ANZ49a369R/F2fB4kpdXGwE9Zbdho2sN3bxJlc/XRy54Bn9bEFUJwseMRJjm6ppXPR/KdjRE9P1FFu1iN00+s1dE0QZqptXRjGCr/xWHIV64uPNXD6nsBL9oK/yLwVSHEHSHEHeCXgR8SQnxHCPHtJ/0jIcQlIcSOEOKfCSH+1/Jr/3chxC8KIf57IYRZfu3fFkJ8VQjxD4QQzyUCH/gpozhlHKmFIohV2sLuOD5TyXpSKnPzIHnI3pgtFEqCpgadX26iiwI+2B5zpzvl5t70hZLCdsYRSVYoyZBUvg9a2SV+mlzhRbFUt6m7Bos15ZczClJud4PSZHgCKPnJzjjGj9XE0fNj8kJyY2fCxiAgywsKKbFN7YC0aT8GQcpiVclvmq7Ju5tj7nR9vnF3MH/muibwLH2+EZmlLX2wPWFvGrMxDI79858ElmoOaS5JsoJRqFKJotLAeVgeoDfKBKRRoA4b26OQJC0UNVnwTCr8y6JSxndP44ysUN2UvYkypNU1wcYgZHccszlQi9VGP2BzGNL3k3kn+CjysdkzfHRsFIUqis2KnbuTiHc3J+i6YGcUsVx3mMY5vWnC1ihU7MrkZLyNZnJSIXhMxhalKvlzGmdkecHXbg/nmnu7lJuOwpTN4cEklhdFlKox886DMasNl5pjcK51fF3tJ6E7jdkeR3y0M2G3fCb7keQFfqy8AE+SCbDedlVKaVIwDFI+2p4SJhm7k4QgKdgahvNEy91JxDfvDQiTDMdUdG9Q7JuTghCCuqvkJUkZF741CtHKDvDGIKTnq45tUShPnM1hQHcaoYmD89oMozAlTBVT8qPdCRqqQDqT680+U5DmxIUyfx6eoZSfl8UwSPCTjGGQsjkMudMNCOIcv/ToAkmS5wzClJ1xxCQ6+mf/pRtd/CR/bhnffvyeT6/xW651+PP/+AN2xydj0TkKUvz44fw2m//3z7HDIC2LVQUPhgHf3hiqxLXR81/TJFK+aGFSMIoyNE2xpRQOf7+3x+oQ/+HOhHGYMgjSeeiFlOpwLFGF44GvIr53Ro/PJc+DpDzo2mWBwNDFsUqR2p5Fq6JkjZ5lcKervAxv7fmlf6iYh7RsDaOyKP0wJW4YpOyMIrqTeO4XGmc5Qry8Ue9RUXcUW60olEdT3495b3NClCrfxjgtlD/jzoS8kESZukZ4mHL7vFC+oJI0kwdCecZRys4kIk5VYMqzMI0zNssDnZSSPFdN32mcEmXFsaaEDYOEolAFJT9RfkA7I7Wv3RqpZ6qV7HXLEIfuZZOsKNcZxa6+1w/oThN2xkd/D8M0L88GYi57zYvi0CSvNFcNo2FwcF8RZ+rdmkYZ7z4Y48cZN3b98rMcfh1rTbWfWG6cTGNJK5taaq8kudsP2BqGCKFkfXsTdb0f7yrGze09n41BwO74YQq3ZWiY+woSXpnIJqUkjHNu7U642/NJs4Ibu1M1x4yjeZDWvb5iKk6jnFbFPBUfWq/cP0ZpTm8acWN3SpoVpfdYwjRWaxeo8+EwSLnTC+j7CU3XnM8/T/M3e2kIyItCFbGjlO4kYWf0kGwwDjMGvvIs3Zs+PAdM44xbez4DP+VuTzVkT+p61XPLiLOCdF93RErJdx4Mud8PTuUM6JgG51oetTLMZhpl3NzzGQbpfA83K/RtDkPuDwJsU+PBMKDnK++8YZDOC9jfq3jRXfaPvcTP/CdSyj8IIIRYBH5ESvkDQog/BvyEEOKngD8C/Fbg9wH/B+AvHPWbd6oW93oBpqZRc008W8M19bnP0VEgpZLfJFnxQnTkOFNV7brz5K7OzHhUCGU86pg6uqbSIVb3dWyrtoFracqATwiGQUYhU3ZGISvPeW1116Q/Tag5Kq2i6qiENCHAOYFihW0o/6BJrOJuK5ZOxdbx43zeddGE0v9GaVFSQM05Q+xrdwYs1WyW6jYrdYfbPf/Qokq7YhEkGatNl9WGwzfuqQ2NaQi1IJf3yCwlRbsT5a3Tm8YMffWSv7b8/IbVkyhldxI/U0p2nLAMjddXaiUlNptLPaM0VybJRUHTNTF1QZRlfLQbca8X8MZKjYWqzdXnTCp6UVzoePhJxo3dKVVbxyt9E3q+KopWbJ28UN2J2z2fUZBiaBpXFissN+wjMWdmklVLPyi36U7juXm0EOrQE6QZuib47OUWS3WHKC0Yhgl5obE9jqjayrPpUQpuXhYqbFN7IaNPJYmrUZTeIvtxrx/MmRvKd6SgN0l461x9TkP3k0wlTU0iTEOj5T2eolMUkl75PZ5G1579s4WahWvpL2zS/rxwTY37vYAgyamXc85+mJpGmCg2hXOCceN1x+T1lRpdP2bgp2X3VKNAMvIVHV7TBEIoE/5JpFgOP/72Cq8vH/4MjxurDRc/zil6EtfWcctC2DhS3VJT12h4Sm6QFDnvfTymKCRvrNR4ban2mK+Oa+lzOUB/mvArt/u8uVqnO43nmz/X1Lm6WEVKxeJxv0eo4n1fpf/kuaTqGFQsZWp/fxDQ9EyWGy65LABlRr01VIeQiwvekd71f/TONjXH4MtXOi98jUII/sxPvM3v+C//Bf/Pf/Ae/9W/9bkX/l6HYSanB7i6VMErU+Bu93wEau7QNEGrYs09o/pTFVqxO474cinBeB64ZQOokHIuE25XlS/ek3yfXFNnGpUpYZryrDJ05dGzNVLJro6hU/dMzNJ37SjNhJ1xxDRWrJVHmx23ulPSTEmjr69UMTTtWKU5mibm7Mq8kNRdg1GoUv/sffOcXs45/WnCudbDuTHOcqZlQTHNC27uTfHLZs+FZyRrHieuLtZwzZC9aUyQ5PPDvArOUWyzCx2PD7dVccrQNFabzguzshuuyaBkM8/ewyjNiZKcUZDgmE+WnoJKvcqLoiyiqAPw9eUa7ZKFl5VWHeYxys5qtsGH2xNMXXB9uTpn3CSZ8kNLMiVhEiivzSQvcB5h2zwYhkSJmo+qtsFCzebmno+uMWeTzJjF6y33ULmQa6o9dpQWfGq9wZ3uzCg8OCDjnkQpN3anc8mjY+rzs4SpafNrX6yphu9sX/GkpqZjnvx+olWxeGutxjsPxjimPm/0BYky2K5YSu6ZZGov/HPv72IZGp88V+faYhXb1A/cs6pt8PpKjfu9gK/fHbAzjViq2liGYLFuq4Imcv4MK5ZBkha8tlxl7QQloDNkuUq1blVM/Cjj/a0pEkku1Xo/ClPljVQ+t4Wqze5YvR9V2yDJi/me8CT9sHQh2B6HpGVq4SBU7J8ZKcAyBOMoBQnn2w/vm6VrVB2DaZxRtXWq9smlAAsEoyihUsqhZ+hOY7ZGqkF+WimGi7WH55ssF/MzsWVoBGnKYJpyv++z0nSIkmKeRBqkBUGUkWTFmQ/nelm8UGFKSnlXCNECzu//HlLKbxzhn/+IEOIXgJ8EPgL+Wfn1nwX+LeA94DtSykwI8bPAX3mea2t7FpcWPB4MA2qOzlLN5bMXmtScgzHuQZIxDjOa3uPFo0mczU3Ud8fRM2NRpVSHV0NXk8DdnjpwdifJgWjK/cgKdTAO4pyVhjJj7fkJAsHeNOZiufAauqYSBrOCmm0oyvtIdc7DrJjTIp+FNFe0wU7FZK3cLLUr1pxFdBLFilnUtIrAzVhrOlxouQRpwZVFdU8VNdykiWChajEOM2rlZ59EObomMDSVtDejOT6KhmvScBvz33/+YpulmoqOfnRCVklxKT1S0kx1IaQA+wifX8WH57Q9C00T7IyjOTW7VVGeXrON/kmhKCRZUXB1sULbs/DTnN1JyN1uSCYlLdfk9fM1en7C3V7ApOy0TuOMpbpzat5pkyil7hj80PVFAIJEyRKmcUbdNri2WAMh2R5G7I1jlUQjc4QQ5Ub9aPfwsMKsrgn8RCVG1R2D7jThUttjrfkwKnaprkzye9OYNC+YxipBqv3IZnprFDLwU3KpjLGbnvXcZuBP2hQYmmAriEtzXBXZvlSz+fLVDqau0alYSFmhYsVEqZJH9v1knkw1w/Y4mqcfLpQHwEf9uEAVHX70zSVqT1mAo1T581Vs49i6Vq2KPS989/0EKeWB6w/inFGYqbjdwcl2raKsYLWuvNmuLlYpCshzWaaP5aR5AVIJGPXSS6U7PRmp82GYxmrM/vD1pfL3KR9tj9mdJtRsnYptcrnjsTeJuT9QXWJDCEZhhmk87k/jmDoCGPkJU0NJgSxNsFhVkqXtUUTDVTH0V0pPqcPeqd2JYtsun+Ic8qLYHUckeUF3EqNrGnXP5EtXO2S55N2tEZtJyAfbE9YaDm+fa6JriskQl2lH+RHkKGle8LPv7/Cjby6/dLHy8kKF//OPXOM//ycf8a99bpcfeWPppb7ffviRYmUqQ2U1hmdJrqMso+aktCrWXEbbcA3eeTAmzlR4xfMyqWfzx1LNVt+3XAsvd5SEen/heRpnDPyEhqc8ohquWZrOP/S104RQBrVC0PMT6q4x99qzTSWBm63HjyLJinmDYnsUcm2pVib+xZhlx97WVcPkpDf6uiZ4Y6VG3THolO+elLKU5mTkeYFn6/T8lGZZNC7KAkrNMcq/r2wXLF07FVZjlhdsjyMsXeNT6w02h+q9MXRVyHUtHSvR6U9TxQre91mPMm4e3U/NMPM33I9RmHCnF1At2dj7v72UUjExxENGtkTixxlVW6WKFoXk0kKF5brN5ijCMx/fG74ogiRjcxTRqVjomsY4UlHw15aqpHmBU/r9bI8iNoYBa3UXx/Qf+4wzFpWmQZqrItZnzzeJ8wxd18gKxfoA5RF72BqvaYJLnQr9IEGgUq39SJ0xQK2/fpzS99VYEhKWG848nGR7HKEJuLpYmfvuZHmBEIIkK56ZkH2SiFIlgfr8xdbcl3R7GPDRro9laDQrJu2KzeYg5H4/JEiVl1GQ5JhP8Ao09bIxFaUkacE0zmi4FutNlw+2J4zClPc2R6w0HF5bqqKJMm0xy088mW8m7ZpEabm2q6JhzVaJuQtVm+40nq8/FzsVgiTH0gW5lNzpBuSFZBikXD9B/1zFlFR703Mth4WqNT8/J1nB/X5YzgnMGfN1R831ry9XaXkmqw3nRItncVbQm8Z4pgpCmNn1DIIEQ9OQsjhWG4lRmDIukzifVkQ3dI3f9sYSUVrwpwpJGBeEaUGS5fhxRppLXq/XWGs4fLgzYRpldKcR9/sBy6Xs/HtR0vdCb5YQ4k8Dfwi4yUNutgR+2zP+6RZwHYiBvwfUgZ3yz0ZAC2gC40e+dmR0fXWIa1VMwlRnteEihPZYUeq9B2NsU2cYJo8tEI6hEqnu9wPGoUr1WKo5bI1CgiRnteEcmJRmUkFgXnB5FtqexY18Wmryk7kvw3LdpiZ1bu5NqTkGdcfkTlcd1nQNPNNQHklpjnfIgJdSpb3YhnbggLEzjuaTRc1N574Rp2mkdq8f8Asf94iynCjN+cq1BTaGAbf3VAHlzXN1gjhD11Ri1peutgFlvjgMknlV+VlYqFr0/BjnkeQQP84I9kkabvf8+XgJzika6pM65XGWz41MozRnveXhWQZhojoUGsy17GvNk2NPDYJkHp8dZwUf70zYHIaE5XhoeWoinJReZA1XedAs151TS3PIcrUYgZJp7U1ibu5NudP1ubSgFvdOzWYSZaSZ8h7rVJXGf7nxuIH486JTtbmxO6XumGyOQiqmQSRy2hVzPonf6wdESU7Xj6mXXZukjAm+vFDBT/K5tEcXGt1JTJ6rRf615eqxHGQ6VZvtUYRlaOxN1HituSZm+b13JhHdSULfV8xK29C528vp+QlXF6sIAQ8GIT0/xtA0gli9V065+B7my/W0ohSorm0Q5wwDZXB6HAwhKSWepROnBZ2q9dhCOo4SvnV/iCbgw+2T7bre7wd8vDMtx6gy6H1/a1RG2StTUyHU5n4cpqy1PJqn5D0XJoq1o6AOf796u8fmIGSpbuPaBtcWq3MZd901eXO1RppLrixWnjiXh2nBYt2hO02wDME//3hPdcp1wcV2hUGQ8OZqfc7OehTTOJuzbqTk1Ip0L4JxlLJTrsVxVuBZGhVLVwlomiBOC3bGEe89GONHylfscqdajlGDhmceeuB7FL96q88wSF9Kxrcff/iHrvD3vrXJn/ypd/gn/9FvPbZDT1YU88IOPJR7BIma7xqeQcM1HzaQIp1zTYf3tsZ4lsHOOGb9Cc87znKitKBeMrBBvUN+nDMkpeYacw8WTROPHWrv9wOyXMkWPnmuse/PH84PvWnCrT0fx9IwNfCTjMWaNWcTTKOcOCsOTTgyNJUQFafF3ErgXi/gTi+gXTVpexYLNetIBtDHgQfDiKRMZDJ1lfr5YVkgHYUpzYrFB1sT+tOEt87V1L0t2c/tilXaLkiKsih30tiZxPM94zBI+JVbPcU+jgs+fb5Bu2IxCTNWGg6mpvHGaq1UAYhnzplRmnN7z5//+lm+fX0/pVOx2Z1ErDfdA/u6jWHAuxsTTEPwWhm/LhBzX669Scy7m2OW6yqifdbgrLkmgpdL0s0Lya09Hz/OGIYp55runFWkJEvq137JbteECmCZYb+59WrdmRchNwYBYVLwy7e6eKbBuVaEpj0MD3hagWjWqFLNaMXyHQYp394YEiUFuiYYRwlLNRtDE1xZrFJIye09nwfDkGGQcmWxwqfWVbN3VjB4lUUpUP6p00jJ/cM0434vZGsc0qnYBEmGqbUIkpw0U4nbDbeKJgRXF6tPLXqcb3lcX44ZBglSKmngrd6Uj/cmxElBz4/pVG0ulX55nmUQpgWvr5xsWNJszl6qOdiGSpXfGAS4ps6NnSlBKVFfbTp8ar3Jt+8P+dXbfUxdIMTDz3vSZQshYK3h4Fk6VxdrfLQzoeZI8kLyrft9bpcFssW6Q5jkfPv+kPW2y9XFGruTiKKA+4OQTxwhgf1FEWU5H21PGQbZgVTKpmuVgRMcW3NCSsn9vmIq+kn2WH3hURi6RlVXa3SnaiE0ON+ql80HoRREWcG7W2McXYUiJXnBN+9Jrq/UuLpY/Z4zRH/R3c8fAK5KKZ/L9ERKGaOKUggh/gGqAHWu/OM6MCz/qz/ytccghPjDwB8GOH/hAnkh0TWBrZepWhUH0xBUyqSyGfxS17o1Dml5Np6p8WAQzLtYoCbyKwtV4rRAE4Khn1B3zHlBYGccc3nh8FsngYsdTzF/nhJX7Jg6K02HNJMUqM5Z07VYqbtEaY6f5Az8hNfLSneUZQgEFUfnklmh7hiHbhi3x4q6r2twfaU2f9lmB0whOLWOt6apRWESKWbazd0pmZRzRgvA1jDiw+0xaS5ZrJlEaYGhCyq2yXLNmXc5luoODc88QMOcIS8kovx5wJx5FqWq2NT0lOntna7PNEpZqDmsNBz6foyf5ExCNVnt3+zM/BwaripmzCJn4eH/15ou7YqSks0YF6DiyU8KjxYK7nSVWWOa55i6oFrKvgqpqMpfvNzBNvUTlyDthyYEhi7Icoml6+yMIzb6IWGSszsOuLpY58EwxDZ0dCF4c63GhfaTD9bPiywvqNg6UgqEKP1UpEFlX9FRE4LuNGEYJBiakgzompKIRGnBR9uT8lCn06mqw0F6zMaeArXZMzSlra9YJnX34ZyhC8EoTNmbJDRcnZZrgtDIcokfKxnpIEhwDF0V9yoWg7KT/qJXaukaAfncB+BpmJmEPusQPY4ymq6FoWk0DymM+WmGEJIClcB4krAMlVQ6CBLGcco4TObd4qpjlHOnYKXh8KUr6t05rfnS0MU8utgyNHbGIXd7PuMwRdfhsmtSSMkwTOaSyHNN96kSw92xKnxausZrS5VS5pBjGTpmof7Ns56z2uiqee80DsQvgllDRrHxZgU0B880mcaqICGEktwkmaRiGaSFJCt9ZoQQLNSsI0sJ/tE7W7imPmeEvixsQ+fP/sQn+df/yq/wl37uBn/sx944lu9bLRk6hq4YD/1pgmPqBBJW6i69aUJz37wYxBkNx+TaYoWsgKX64fcjy1VTJMuVNHhWWLAMrTRNVkznp8EyNLL86c2mJFeNwKyQBGmOWSjJWy4ld3s+55oerYpJUahwgBkDG9R+4NpiVcmmTJ1JlKJpAlNXjJ5WmYS3H6MwPVaJ16OfN8kKTF1jEudzL7sozbm86IGUWIaSnGwOQ5ZrjopUL5mQrYpFq2IRpfmxemE9CQLFfEbC/ShhHGWESYah6yR5wVrTwTJUiuxCyeJ9HkuDaZSh6dB6QrJsmOTzxC7X1Mv9lsnVpYeFhiwv6E+VHUOYqvXjfNtFSiX9Svc1yYZhOi+YCaEMoTeHR/NuGoUpmuCxIIDZIdezDHShmqKHMSQcU0mV3lqts1iz5yEoB82tszlrY5Z8uDOKVPqlocbs9eUamnichT0OU0ZlWEEhJXGm3sG6Y5JmBYNQBT30/IT1lselToWaq4qzEvhwe0I/SLjXD2i4Jkmu2EYn9S68CGbzhK4JBn7Cra5PmudoAqq2SSEL+pMEx9JZb3tcbHsY+rPlubap88XLHaI0524/YBorn8W6Y3J7MmUUJMSZ8mf99HrrwLWcJGxT47Xlh0WHdsWaJ6pOoowgUZ50kyjl9eUaYZqXexkAyZXy7HXSEjXH1Pn0+eb8rOmYGtNY7SVv7sVoQhBkOQ1bZ2MYsTlUexKVeqwRJqclTZMIlKS2Uf68iq3TcK2559XCU1hTUkrGYYZtak89q6ggENUQeZ55Wgh4c7VOmstSRiqYhOo5D4IEWxdkUlJzDXYmEVmm1vBJlH2/MFXiHRSzafd5/pEQoialnJS//S3AX0LJ9/488KPAr6DkfZ8U6kQ5+9pjkFL+FUqZ3yc+9Vn58e6E60s1Gp7JVaMCUhUsQHVO7XJx35vE9P2E1YZLXhTsTmLu9kPWWjafOtecd41da8aa8llveRiawDSUS37lkc7BUs1WcjhNm8t8FmtPHyj7N015IfnFj7vkRUHFfpjIJYQ6IK00bN7fimm4FhVLac8brqkSbB5hSG2PIu50AwxdFYVmT3ipplhehna4VOOksF+7fm2xgp9kREnOSsMhiNVLl0sJQvLhjopKj7KMr1xdZGMQHkh1OWzymsYZN3YmWIbO1SWV4FKxDHokCKH04XGWk2Q5722OyAoQmuDaUpUvXelQcwyCWBmRzg6g+yOSg6pKRLN0jUsLHmGa06k8nLxmn80Wyg/DT7ITTbyrOWZJEc/5tdt9wjQlLwo822AUqGQjU9eVEWXdeSZD5iSglfdX+baE9MYRWaE8xPxYdaByWXB1oUqzYnKu6R2b/DHNVVEpziTtisGFtkqek/LhsxpHKY6hAQW5lPSmKbauUfM0KpYxN+ruTmM+vd7k7XMNlutKAuOa+rEsosNASS0LKVmu23SqdaI0n3dbo1TJynQNJAXTWDCMUpZqDkIIwrTg1p7PxztTLi14/Pa3lnEtg4qtDORflHW23nLn8uanbeh2RhHvb48xNcFnL7aeWpxyTA3b1DB161AWV5JLpJQkqWS1frLjda3hogHTKGVzGPDR9pRPrze4tFCh6VpMY1VEr9gG1WOMKz4KTF3j2pJKTMwLye44JM1yijJpyI9U/PO1xRqOqXGh7T2Txp0WkoUywnkYKPNRx9QxNMH/5u01FuoOGswlfYd1xW1D59KCx8z75KxBmahOSXO1wb3Q9tgZR3x7Y6IO9qaa281yPLerKtZ5sWbz9rk6pqGYDEctSuWF5Gfe3eFH3lg81rX0i1c6/L7PrfNX/8Utfu9nz/HaMcgvVhvuPFr8bj/gwTAgKySfvdBkGqlgGF0IOhWLrPSq2xpFpZmxScVSkrOskARxTtUx0DVlrHynG5DmkjQv5mmb55rq59nG0+cPgEsdtR94WqDAYlUVpSqWQZjm9CYJui7ZHsWkWYEmlDfIr93usT2K1IG0U6HuGgz8lKqj0seklNQckyuLFc63PBxLe8xLbb8f10ngYttjmmQ4usagTNZaqTvUbWNuajsMUpqu8pATqEP4jKU9G2unsX8Lk4ybe1OiJKdAYpRyuLZnUXNN8kLiJxmuaZAVBZ3nXG8mUVYWh4pDWepbo5DuJME01D75YsdjGo+xpc437g54c1WlLA8DJSNcqTtoGtRdg8q+RFFT12hXLSaRCshpVSw8y8DUxTwQ6Vn3s+8nPBio4taj/nO6pphZt7s+729NeGdzzA+/vsilheqB71G1lNF2UbKHZ3uImbn17NczXGh7mJrGm6s1oqzg9WX1/WYFkaKQdKfxvPDy67f7TKKMlbrNQs1Sfo6uwRsrNd7fGhOnBXEqubZUnRfPrPIa0vIMUrUMVhvKG2y5cfYk22sNh7qj7Ey+dbdPlCYkmcDUlGRzaxSz2lCeuVcXq8/lF6dpAs82ON9y+WA7U/YhYUSQKmkVImfgx9QcjcW6S/WEZXwz7B+bm6OIMM34lds97PK5R1mGxGYcpqy3XeVtZmpcX6piGPqpnfVm4znLVaiAqWmqUCYEtweKMfXBjmoMrbddNA1sXWepbhPnxYmGyoDyMo6ynKIAc9+eSTWeFQP3aZI7gI1ByMe7E1xD5/OX2k8tTl5ZqBCk+XOPExVy45fzo6QoFMNxaxAghEbF0XlzVSmLhmFKnGdoL8X5PJt40dHw54BvCiHeoWRAAUgpf88z/t0PljLAGPhFKeWvCiH+hRDiF4F7wH8ppUyFEH8V+AVggCpcPRNpJkmLAlvTcQyd97ZGbAxDZKEit9tVi7qjJE4IiWlonKu6DIIhozBlY+DTnSR8ar05lypUbYNLHbUgFBJeW6rNNeP7IYR4oWKEijjW8OOM9ZZHz4/p+yktz6LumDQ8kzDJGPgFvWlKGBd0asrAcbZwB6mSbGlCzE3U0yJnGhdsDEKu76ObvopDRZwpzwnPMhgECZauE5Hz7Y0x721NaHkmDdckLwr6vtqsDcoknuxhlM8T8d7miAeDiLqjFlXb0Gl4Jq9bNbaGoTKZn8aMgpQHgxDD0HhNVJBSYps6Dc/CLFl2s/jXolAbwVGQomtqMzEzS36SjEUIceISl9m9rFgG72+P+MlvbDDwEy60Pa4tV9GFTs1RppBHORicBKSUcymNrQv+9q/d48MdJVn9/MUmnYoy01yoWmiahm3ox+rJFZZeVmkuMbXKnE6v4q5jNAEPBhEbg3AuCcmKnM1RxFqZHpVLdcBdrqsI2zlr75jya8Mk5zsPRvSmCeeaysR05vP2YBiiC+Vfdrsb0HANBIIky+mOFavPs0zCVHlTrTYdFqs2eslOOIoM6WkQQjwxHn4/7vZ93n0wppAqAvjyYvWJf9c29Keah0/DlEmkioQ3dk/GYyovJFsjxUDaHkf884/2GIQpKzWbim1yoe1xrulyr+yu6+L0N+WzSGXP0vmZd7b5J+/tEKYZlxeqXFuqUXfMMiBCO7K3gGdqvL81ZnscYeiCpmthm0qaTmnQ+/Pv7yKBSwsen1pvPvY9FGtLFezOWmEqLyR3uj6745gkLzjf8hiGCR9uT3gwCmm7Jv1+QlZIBMqM+vJChYWaxaVOld40Jkzz53q3v3anT3ca82OfXD32z/Mnfucb/Oz7O/zJn3qH//EPf+lY/CNmReNxmGJoOoYGDcei7YnSq0VyY29KxTbUupurRo4QajNuGqookRcqae3qYhVQ8rLNUcjOOOTmnsXV0qPsKPMHMGd0PA0NT+2DpJS8vzXGNASWruOaGcOSyfDt+0N+Y2NInkuankVeKClFmCjZpgqWkJxveU+NAz+pqPsZZslQH49CLF0nzgqGQcL9oU9volKZFmsqoKTl2YTpQ0+fWZP1tHBjb8rX7/T5zuaYSx2P60tVOlUbXYOabbLeVrHnFVutr897dYVUB8EKh7N7w0QV5G/tBkyjjCuLKrRlbxIxCjOqdkCc5ziGgSYE59oO721O+PkP91iu2VzsVObsLSXzfMiMmyU7DspU7Gc1cfbf+5n/XJIpM/q89K4Sgjlb+VZpWbAfcVYwCFJ6U2VJ8UPXbTRNUCkNuOGgkiEr/Vl3JjFNz1SenPuwO3mYelZ3DdK8mFsPZEWFlmchxGxPq3G+7RGlGf1AyebPtVzWmi4XOxVMXTU5vv1gSLtiUXeNQ6WxrxLDIGEaq7POT39ni599fwcpJW+s1rm6VKfmGDRdE8dUBcAX3VLq5Z7UripfMGfRwBDwrY0RH+3k+HHBv/uVi4zDFM86Ph/Oo6AoVKrkOFQsqCzOWGl4tD2Tr97soWsarqVxzvW4NwipOgZpLlmu2Sfq37QfErWHdC2daZxyseMxChLu9FTh1tQF602PhmcxCBI2xyHrLQ/X1NFPUHSY5ZIokfSDlHTfudLQNa4v1+bqiKfhOw9G3NiZ4lk611dqhzZZ93/f+gve83wuNRT0g5ibuwHdIGW94bFQdfBM5YsYjSLuBCpR+hNrdbSSVXvW9mgvghf9BP8N8J8B3wGOnLkqpfxp4Kcf+dp/Vn6v/V/7W8DfOur31TTBcsOeD6wozfnW/RGTMEWWi32UZgyChHt9n+W6w2qpi685JuMwxTJskkzS9+N5gWGx5rAzjg54reja8VWg80KyOQyRUlHmVVS3Mh9Uum9oOAYPhkpf/tHuhN9cabMxCJitldMww9Y1RClHWWu63O35WFVtbmB6kmbchyFKVaysU/o7TKKM7iSZv/xb4wi9lCQ1XJO6Yyp5jZ/imAavXa5yvuMeYCapGNL4AC1VSqnMUU2BFMpzZRpn7I4jao453/BkubrPZtlluNSpkOQF9/oBhiZUYpP9sIvlWjqaUBvnpDTN04TGKEw5f5o3ch+mccbX7/QVpd+z6JWbkrT0m1htuFi6zvm2Q9dX/gKPMvtOGnkheffBiJ1xzGLNpupoTKOcopAkac6ltofnKKNDvZTSyWPeb+uaYnXEWYFj6WyNQsZhWsqXNMI0I80k9/s+O5OIKwseuq4hC5iEGZ6pfLquLqlEx3Ot49+gTeOMmmMSpwWmrqKjb+1NmYQqWj1Kc/KiYHMUcHOv4JPrdUxd+a7tTRIudkxcQ+e1ZZXcd67lnqpUE9TmvmLpaLo4komBH+dsjUMqlvFYAdc2lFmnYrYd/wHMjzPeeTAiLKOVt4cRmhB4luo1rTUtLi9UyaWkkBJDF6yeoE/co8jygg+2J2yNIpZqit7eLQsmAsFSzeZC22O5prrBPf9getfTsDdN2J3GOCVj+NPnG+gIukFKkqmUKyHUHLk/Pn12cOtU7Hlk+zg6ecPlZ6EoVGLubK0zykSzhapNkueca7nc7fpM4xRZwGLdJs0lQZYjC8WWanom51sVolLKk+YF93oBFxcqrDWcZxaDfuo3HuBZOv/KMZqUz9Cp2vyxH3uDP/F3v8M/+PYWv/vTay/9PUdhSm8aK89K12AaZdzp+by1VmehZrNXrpemrmEZgve3xliGzs4k5nzLI0mV2a9rqgMwKBbk+bZKXq05JmFyMtKf7jRmHKa0PJONgUpKXm8pWf/eNCLNCiW/FRpSKzjfcVmq2fPEvrQc01opi35aYWqWUHzcTJHZfmgUJOiaxs4opl1VspyaY7E3SchlQVbAWytVLrQrmIZgueaUnj9KuvOsjv5xYm8csTOOGIcpu+OYawuVueQlyZWX4SfWaviJUiM8ryfaYnmo0zVxqNSoZpuq8FM2iYaBasApVrHB7iTGNAQaGuc7LqNApZZujyI2eiFxVjYen8AYT/MCgaBdeban5ULVmgccDYIE09BIs2JeyByHKZc7Fc61XKSUXCmLUklWcK+vfLTOtzx0oVQXrqUfSOU7bLwFSU4/SMlz6E1SfmNjeODPNY15YW2p1uT6cpUwzVmpO3i2Tj9IqJgzJqhJmOYYuuDj3SnbowgJ8/d2exzhWboy3C84dsuCl8W9vs/7mxM6VQtDF/T8GA1BTsFS1WKpbnOu6VCzTW73fFaOMIc/CY6poWtqv/KFSy1udxWrXd1/wThMeDBUheW9yZjrK1UudSonYkCdFZJbe1M6VaWQWW04ICW7k4SNQUDDs1TaqaXjJ2qe2xnHnGt67E5ixmE2N/4HJW9fa56syXgQKwWMrWu8fa5Jz4/57KUWu37MJM4oCknFVvL6aZKyN07wTIPtUUi7YrPacE6E5SVRRVpDFwcK4dM448EgPBID3TVViqBqDp/cXLzecun7CVXbQBeCG7s+VVtnGMbzkBCJwNB0ojQjTgtu7U5ZqCl7mqan/AhnTe/vRrzo3e1KKf/isV7JS8A2tAMdzzDNMQyBRLBUs1isqaLV0A/nMa6LVZv3tyZUbYOluo2pa0jJARPGhqsSPe72VJrY5YXKsW5aen7M3V6AqSs6cKdqkRcFWV4wClNsQ6fqmLiW8rZarFkMg5SVhkqV2plEvL5amyfXzDYuX7zcYW8a03TNVzIwd8cqLWoaKY+Ie70Q19J4a61OlBZ88XKb290Az9L5xFqDhZrNN+8OeX2lRlbAD19fOOAHBMqLKskK/H2pfEIILrS9eUKFrgm2RyFhov7elcUKpqGRpDnTKKFA8onlOisNl1t70/n32q/jBsVM0oQqWtqmTtuz6AfJc9PVjxMb/UD5h41jri9X+crVBd7dHFGzDD59vsVbaw0WqjajIKXvK++Grp+caudrECRsjyM+2J6wO7b4HW+v8APX2vzTDzPeXKlzvlPhrTVlqPnxzgTH1NmdqE36cb1XnqVztZQRNlyTnXFMXiiPheWaQ9NTBpL1MpbcEBrLVQc0SNKcrVEIwuH1ff5sx42mZzKJVGz4hbbH7a5PnBb0g5iWp8axJlScdbVqkSQFr52rkpR04wfDgIWqzSfPNXht+dVoy68tVtgaKgbioz4tjyLLC379bp9pnLHacFiq2wfu7VLd4WLbIykknerxF4S2RiGbo5C7vYD1lsvnL7VIsoxhmPHD1xd5baWOa+nc2J2gCcWaO030/IS9ScQ7D4asNlx++PVFPnehyc3ulIZj8kOvL/Dp822KQvLupjKl3psktCvPZumGSc5CxWInl/zgtQ6fvdhmaxTi2ilSCqZRRi4lli54a/VhV/5B2TCJ0pDlutrw6JpgFDz9cH8SmB0KTUOlns4SyXp+zGrDVVHKiXrfs6IgKwrlJWQIFqoOaw2P+4MA19Q413I531LS4UKqotbAT9A05V00Cxx5EqI05x98e4sf++TKiRUK/o3fdJ7/5qt3+C/+yUf8+CdXXvog8cHWmKKAmmvwidU6H25PMXWNX7vdZ73lcXWpys44QkpVGLu5p+ajiqMpGa6h0/QMxtFDdsmMIVx3THYmETXHOPaCTpYXbA0jCil5b2vMOEyp2AaebeJa0K7Y5BJaZajFpY7H1ZJZcqHtMY4yHENjZxITZzmd6uPrd5Tm84aVrolnzmUvgtl+aG8a050k6Jrk8kKFL13pcKvrE2YOayhJ7VvnGizVD16DrqlwjLprnNiBqCiUr8nmKGQUpqR5wUJFSYSW6zbXlmustTxu7k5pGUoOR2k18SKYsYWiND+0eTpbr3fGiuW8ULNxLZ1PrNV5MFSsWs8yGIcpO6MY29RYaTh0JxGWoQzPn1YjXajaFFIxaw4zavfjjDDNaXmqGNeqWOyMY9JcpWJf6lTwbMVcaFdUEu7vfHu1TCNW328YJtzpBkyijDgr+NT5BtujCNd6tsSq4Zpc7riMg4RCMk85HAbqLNDyLAxNNSnHUca10ncrTHMlWZZqPA+CdN4I2pvE/NqtHkIoL9LlulMGCKgE49WmQ1R+5rOCIFHBGzd2J9wf6PzAtQX+ldeXud9TjPdPrTf58jXl8/fRzqQcExlZXrzQvDmJM/JCSeiyQvLlqx1u7FrsTiLe35rwxSsdmp7FV2/08JOUumuwULWPzBJ9HqS5OsfEWUjDNTF0jfOdCl8Bvn3foJAF7arFFy62ud1VBce3z9UpAM+yeH97Qp5LLna8OaPeMbXn8oF7XjwYhmgIstKzs+oYFIVkZxRx1/XJCknd1Xm7U8c2NO73A955MKJZMZUfrYi42Dn+ABxT1zjfrrDaOPis9sYRN/empfefYK35ZNXLGyt1gjTnQss70SAA29Dn69D5tlJBGBo4psmFjodrG6RScq7l4KcZIOdKiSDJ0YRqylTtw5M7vxvwoqvc14UQfw74+xyU8n3jWK7qJdCbxtzv+4yDFInk7fUGFzsV4izn5z7YIUpzFqrKqNGzdN7b9BEaXF2sHSrFGoUpO2OVptJwleHscWEcpnSnD9P8ZAHvbyl5jATGYcaDQcDb602uL9eI0nxese35MestF89SL/7GIGQc+ZxrunOTzFcF19IZhSr5Z3cclgbkXul1YhBnOeMoK1OAUlbqDqYu+Ma9Aa8v1/nWxoiFmqqezyYRz9LLuFqNIMn46s0un1yrs1R3Dky0bpmUZ5sanqVMoW/tTTFNA8KMu/2An3lniwKl+18si5L7cbc0yi2QXF2sYhkayy+4ATsO5IXk5t6Uj3cmmJpOmhXc6gV8cr3FRj/ANXR2RiG9aYJraXPz39NmTA2DhO88GDGYxrQ8k/s9n1bV5nMX2hiawI8zPtoeo2kapq4RpQW2qc1jkp+EOC2UGWzd4X4/IM0Lzre9Qzd3+yWVaV7QnSaAxlurNfw458buVHnF5SqBz7V0zrU9Xl+psTuOMHSdaaQYNlcWqkd+j+Ks4NbelPNtr+zyZyzX7UN9a0xd48o+6ZtrqsS69ZZHxdb55r1h6QOkMY4ViypMc64t1ZThuNDIioL3Nkcs1pxX0hnZGEaMoxwhVJzx0zbafqzMemWhDpuPGkKuNz2yQuJHybGa+u5NYkZhyu444s6ez91+AFJydaHCD7+xwq09n56fsBikrDXkgbnjWWPyOCGRfOPukJ1xpH62rthNVxdqCCGpOiZ3e77ynSnfbe+I73bLs/jchTaFlLy+UkPXBHuThPc2RzRdk8uLVZWuFWUESYFX1rpcSyeIlefZzJB3exRxrx9wUVMFiSjNud8P5lIQTRNIKbnT89kcKor+cWwyZ6m3KmlV46PtCZom+OHXFWNp5mM4ClM+2B5zt0wBWmu47I0jOjWb33Jt4bExaurKXLbmGMrcWONAUMph+Nn3d5hEGb/3s+sv/bmeBE0T/F9/+3X+yH/3df7uNx/w+7/w4jzd3lS9A36c45ge/SDhdm9KmOa8vlJjexTOI+wvLTyU9UyijNW6TYE6zNRdi7prsTeJ2RxGLJY+lzOp3YtidxwxjTOWajaDQBVEzrXcuRTdMRVT2dI16o6JoSsGYZwp2WaS50gJddfi4j4/SkPXiNKc3lR1mYtCeQUJ8VDauDOO2B0r5s1rSzWkVMnIx6maS7KCrh/Tm6if7ccpUVYQpjlvrtW5tFCh7yf8/Ie7TMKUX7094LXllLZnlfcjB1SYyEkant/qThn4CTd2fVxT48OdCe2KxZdfW2ChYuPHOdMopWYbPBiGZF6BbRzNAy3N1fq9Uld+YV+722cSZlRtnbprHZrKN1sTLy14XFuqIoRSBHzj7oCuH2PryrKgKBm2WS750pUO55quSuK1HvcIlFKxLWcpjk8qqiVZwe0ygTlMcs63PTRUemycFby2VKPnxzwYBHimQdZU15BLqeaqSczlhQpZXnC7O6VqK8+wmmM+s4AxKVNF647BZy60ubZU4+PdKYam5Ki3u0qK3vZMNocBUSb54qUWQggudirsTWLu9wO2RiHnmi71fYyxQko+e6HFxjBkoaYSAGfyUkNXTHMVRx9jG9qpyb+ehkmY8mu3+3T9hMWaTXcaEyQZnzhXV2w7z+LjnQmWoeEaaswo1tOLrd+2oc0DSLJC8mEZgrNQtXlzVc0rW8OQtMjpT1N+7U6fC+3KiRSmZql8s7U+SDI2+gF3ej7b5bnqd6+qnLBCqgbfUsOh7pgMgwRL93kwDrDKBo1r6SeerOhZOpMoYxqnfLg9wTV17g98tkYRuYTPX2rxmfUWmib4YHusfOR0QauivF2jzGSltGQ5XkimcULDraLvG9ez1FZTF4TJ0zuSW6OIJJXc6Qe8tlw7cf+uOMu50wvwTJ1xqKkGe5AAUjVb0oJPrNbIJARpxmrD41zT4aOdKYMgoe7+y1eY+mz5/y/t+5oEftvLXc7LY3scMQwyxqHqzvemCSyrSqJjKAPUaUnzPt9y6U5jlSRTfu1RmLpgGuXzg/VxwjF11luuMkQ0DdI8YqHqlAt5RJorX4d7vYA312rzierjnan6rKOIK4tV9qbxPDJ+1kUG5kmFp4W8kGhCpUfUHIMbuxOCpGBSRjrb5YTgRxlZaZo6DlOSvGAcZvPDhWPq1ByTvUk8n/DXWy6LNVsl4GWSnVGMZwV85ryiWWe5SmM613TplEl5M1pmp2LTcEx0oTand3sBjqnTWrEUxbqku87Se6RUi8J+Cedp3k8ppeqSlT8rzQvSQnKu6aqEGQEfbU+wDZ1cqg3Pzb2Aix2PJCu4vlyFY4w/fRIevR/jUBUZJ2FGkuVsjQPGgWKlzQpRcaZM/JfqKplm/3N6Egop6U0TDF3MZUW9fWywWUrRo8UZs0wii7IC19R5ZzwmzgpGoTK0n8YpLc+Ym03XXZNBkDIcJCzXlYziqBN7UUj8OGdvGtGbKEbH7iSeF6aklAdCGPZjZjhesQxu93zyAoaB8pqbWVVIKeYssGGQMp6kuKbOMEhfSWdklkA527zPPiNw4POlZULiWtOlU7UOpb1/vDsllzmGpvH+9viFrufRsVgUku2RSlzy4xzPVs95ECS8szniU+tN6o5iIEgJ0yQ7dO44CczmydnPCOKchmfQ89X96k/V4UZK5Q+yN05KebGg7qpQg2cVUGY433ZZymwEai2bxDlCKCPoim0iC0l/muDZBnvTeJ5Kc2WhwihM534Fch8BXiWUyjJRrCAq5doNz8RPcm7vBaoxERe0KtYzfYSeda+kVJT7gZ+SZhnTOKdTUYbG+zGJlGTN1DXaFZOqY9D3U4oCNochF8qUpv2wDZ2LHSXrMzTxzMPYT37jASt1hy9f7bzwZzoKfscnlnn7XIP/9z/9mJ/47LkXZiNJYLluk2QFy3WbW12fhmvRcCWGpjEKE2WMnBTouuCNlTpvrNTISpsBP87x45x6mQi5MQgwNG1ulg8vti6qhKOU7XGEQHAz8uf7m940Ya2c2y91VHjFzjjGLxmXszm14c6KoyG2oUJNZlBFKcUu2RoptrWUaoy8uVpHiIf7uTSTJTshO8DIflHsf7/7foI5S121dW7s+uiaxoNhwJurtVIWolO1DIJESdHONV1602n53giuLHg4lnHse4/Zc1PeNWoNDJN8HsLhWgYrZQFyYxCp5KokY7XhopfKg6Mgy9X6bZbFwp1RXDaGEt5wzEPl/OfbHos1xaaSUiVWpXnB5kgx+wQFb63U2Z3GDPyHbPb9+8RHoZKuy7V5HB8I1jkMhZTzaxuGKVXbxDZUY+VeL6A3TemLlJpr8PpKnTDJ538/SHL6fsrlBWXwf67lzmWlT0ue3RlHhIlKeG5VLKqOyafWm3MJ7TTOiJKCzVQ1hiqWwXDfPBgmeckO8biyUMEz9bnBe3VWyCuvcXsUcmmhSsNVMt6eH8/3VxU7PdEQn8Pw6L4XlOH3Ys1iHCYYAjYGgSrYZpLzbZc4L8gLiNKCiwsei3X7pdbvmR9mVqi5LslUGFPVNtibxNzp+tQdHQOBrsFq3VFFwH2WD0WhziIvu4ewDdU4ma313UlClCoW1TBI8WyDm3s+7YpdMj8F41Ax9gxNECSq2ZRkam97eaEyv7cnZfGiQgoybu+pRtqdnk9RqPd/tWlTKUMAwiRjox+iaxpJLlmtu8qWxNAPzP/HdeZKc4lp6GwNQ5Isnxv/rzZcPnW+IE6LUvZfHFhr99+nmTw8y5TtwWkZywtNsNZ00IGqqXFjd0ohwdA0wrTAT3IajjGXO1cdHdt0DjAHT7sW8LJ4ocKUlPJHjvtCjguOobM7CdmehEjg6nKVX/x4j2/cG9KbRnimmoR3xhHLdYfLCxWG4cFJOEhUKoNlaLQ8i2tLVcIkJy/kYxTRvJBMImWEd9SFWpadlfv9gO1RiJRKipflsuweWlxdrPLVmz1GUYKpV7BKo/S8kPN0wGGQ8iu3ekxCFZe71nQf6wZ6ts6VhZPRQO/HxiCg7yeMwpSma7HcsGm4VlmhL7jT9fm12z3OtV12RjFfvzvA0DQ+c77JxY6H0GC55nC+49L2LLKCA90eIR6mCaZ5Qc+P+Mz5BoMg5t0HY/p+wkrD4a21xmPmbw3P5AdfW2RjGHBrb0p/mlJ3TWpl4akolPlrnCpq7Erd5p2tMTVbsbtsQ3kVvbc1RhOCz19sPXbYSss0ilxK5EtIgbK84MbelCyXGEIwilIcU8kR4zRnGqd89UYPz5pRUz0cS2fJEKqY5hjYpzBhzsz3DV0QJDm6UJsxP07Jipz3t8bc7ZosNyzaVZuluk3F0REo+UzVNp5rYndMjbpt0tMT8kJSc9Qzvt8PGAbqHs06qzMUheROL2AQlIev8nC2M45498GYnbE6rP7W1y00MZME2xSyIMs5UndpGmdqsyfU5rnpWkSllHT/GLnTUyauFVs/wJaSUnJzzy/nl6IszGrYhuC9ByPu9kPaFZO1hkvFMjANjeWa6n4NfZVI9KzrjLN8Xjw6Lry2rIyjc6kW95t7U751f0inavHFyx0cU+fBMKQ/TajYOteWnmyODnB7NyTJc95ebzz3tczGwP5wgo1hwPtbI9JM4toaNVvHNAQf7aikqeW6y/WlKtNEeW/MErpOerMx8BM2BiFaaUzb9xNyKXFMnf4kIYgz/nGxxXrHw7MNlmoO7YpJgTrgNV3rua5xfxJt30/mEc0NV4VOJIXEMjW8Ms58hp2xMtc1DcFaw1WycKEiy11D45dvdrnTDdjzI5arLudKTy7H0PBsjVGojLJfhuVxv6/WFE1IoiRlFCZEqRrL99OA1abDQlXJeN7dGLEzjsgKSc1V5sxXOhVudn2CJGNzGBEkORc63qGFsqPc093SNP9//4OXT3yTJ4TgP/rt1/n3/+av85Pf2OBf/00XnuvfZ7mKxY6TjJ6fsDtWjS4pJdNYSeLeWq3x4c6Ub28oCemskaFCWRSzyI8VI/IbdwdM44y8kCzWbFoVdQ/v9VQR8mnBIIfhdlcZ6t/uTgHBUl2F00yjgsWaOiDcLNfB8y2PlYbDzb0pW+OIJJc8GIRM4pTVhoNnqaZEc99+wdKVDDFKCxquwSBI2RyodFjbVAbuKw2H7VFEZd9apGm8lO9hdxqzNVT+mlcXq8RZznceDJlGGZ853+DT6w0ejCJ605g/+w/fp2rr/L7Pr7PaVKlyeS6xDI2GZxLEORVbf8zW4DgwY9XsjWMuL1XoVExu703o+RF11yTLJfd7Pv1pzFrToZDKKH+5bmNqGnX3+Y8OlqEhZUGSZ/SmKRqSX73dY73lsly354fFGXp+Qn+qGKyvlcE+a02Hu/2AUZDzj97b5lLpC7M3jXFtnbpjPvFdViwgUSZwPfl91zXBzZ0Jt/s+P3htkQsdD8vQ0ITaY20MQgaBahyMo5y9SULdDVms2vN1tl1RlgHTWBWYdAH/6J0tJPCVqx0WnxC2ULEVa9fZx9qdBbhommC1bhPEGZpGWRyLKaRKNXtjpc5S3VYeP4aGn+R89WYPzzJoeiZFIVUQUJgyCBKypSrnWg+Z555lIERc/vp02fb7972rDSUxHIcp45LtaekaN/d8/CTnYtvFMnTOtz1W6s68aemZ+rGwvGbzX90xCZOYhmPhmQYbg4BhnCoLGEdZfEwjxcr85Ztdqrbyz1Tru+DKYuWl9xP7/33dVczeK4vV+VxuGxpdP+LdByP6fsJvutKeM5k3+gGgWKctz2RnHDHwlV9d3TVZrtvHLusTZUO/4hgEsfI8y/KCaRnwBYK//M9ucKcXcKlToV0xWW06xHnBtzaGeKbBV64tAMztVhZr9gtLhmfIC8ntPR8Kyf4RIkSZXo+aE+8GATXH4NJChYEf88s3e+QFfPlqh2tLFcZRytXF6oGz6UlBNc08NAFJJvlge8S7paLqfLuCa2kUFCR5zoc7IVkhaZXN9d404dKCIl3M9uGzz/XdgBcqTAkhloH/FFiTUv64EOIt4MtSyr92rFf3AmhVLFabLld9Rf/WgPsDJf9RjJgCNMEwSFmuO2UKhTmvku6WPj6apg7P0zij6RokWU6UFtztB/OBDCqxyI/V4eaNldqRCkC39nz+52/cZ3esJE9LdZdsW3JpwePT6w2anjL5+/R6kzjLWWspav39QUDVNri2WCXNC27s+oyjlDAtuNCusNKw513MUai6KEF8Mqak+5HmBd/ZGBEkOVlR0HQtxmFWRp/njCOltf+lGz0uLXrULLM0HzYYBCo1Lyk9IF5bqrFYsx/rnOxHxdZ5e71J1Tb49dt9vnV/pNKFsgJD03h7vfFYh1lJDhq8uVInzQviLMcxjTKVSFXMQVXyTU1QLyOHx2HGYk3n/c0x75XFqnNN98DhJs0LPtqZMA4z5WVxBO+XwyClog5/vDdlsWLx8e6UhmuxN414+1yD97fH9IMEpFr0ri4p6YVr6VxoV/Es41To171pzDfuDbA0nUGYoAnVnblQss8mccrQz1isCZYbDToVi+W6kmXOWE7P061xLH1edHpjpXZgbATlRjBKi9KLQbHidicRrqkrNkesDALXmy6rDZe8kLwvR8R5QZgXfLzt0/JsDE3wrQdD0kzyuYtN1p+iNwfVfb/TVX4XrqliXHVNcGWx+lgBe9ZtmV1vkGTc74foQnVyNaEWkAvtCnmhujHfuj8gzgvSouDeIFRmlxWLdzdH9IOUCy2XT55rPLah34+ikNzc9Y891clPcgZBSiFVMubGMGSjH7I7VobJVxarc0bL3Z7Pzjii7iiNfM0x56a+izUVF/zp8w2iNOdc6/mTLUdhSncacbs7xTI0OhWL37g3JM4KutOINaPCNM6pWTq+pVNIVawLMrXhvbTgnUo0dpBkfOPeYN7d7PspwyBhqe4Qlqah3WmKqYf85isdbEPnUseby1afNic+DZMoY2MQcKvr8+kydfYTa00mYcr9gZJ8WIZ2oLDgJ6rgens34ObulE7F5vOXWpi6xgdbYz7YnvDR9oQoVYeij/emfLGq0n9+86UO41Le+TIb85mM/jsbI+50p1iWzpVOhS9ebrM9jqhYBn0/UfKBOEMiWG+5vL5So1H6K15frtGdRuyOVdDCNMrmc7dK4w1wTZ1Lncoz56T/8dfvkxeSf+M5i0Qvih9+fZFPrzf4Sz93g9/7ufUjj9FZo+WDrTHvPBiR5pKFqkWaSy52KnxyrYEQEGUFdcfkN1/qgJBcbHvc7foMw4Tz7YrysvRMbu357E4i/DjnUsdjdZ8MamaI/7zBIEGSz1k3igGoU3cM0rxMT9UUk2lrFPDe1ohL7YoqDpSen4MgYRgkvPNgSM026dSU3Oz6cm3+964tVcu9j0anYuPHquEYxKrJ6FnGgSaBY+q8uVJ/jk/x+H1/58GIUaj2luutojxUq/VxYxDxhcstFmoWP/feLh/vTNB1jXZlj9/1qTUlY2x6LNaUz+CL+uQcBeMo5U7X5+belNs9n+srVfp+ym7Jyqg6Outtj34ZUFJ3DF5frdHyrOe+LtvUubqkDkT3egmrdZc7ez4f7EzRNUEQ17F0jTfXGqzUnfkcF5ZrZpwW8z3sb7rUpuVa3OpOCZKC3WlM1VLM18m+d/swmGUCV17IpzaRb3en/PxHu8SZJEpyPnexRZoVbI1CsrxgrenRrlgIoViHrqkTJDmGrh1gYdUdg/WWi1Wm7ZakJ/YmyRMLU6sNl3bFwtQeZ/3Eac7GIEKUDYLLnQrvbCoW+I3dKZcXqnMLDc+y2BqpdzZKle+eZ+nc3PMRUrJQs6naZunNp+5FtUwIFHDqMr6dScwH2xMcQ1dsmkHEKEyoOyaWIRgEMbujCM82aHoWry1X8Szl8fXmav0AA/m4sFR36FRtJlHK1ijktaUam8OAe72A3XGMELDWcgnTgq3RhIar5ti+nzBNMixDcG3paHLXo6DpWUpBIiWuIfiVOwMmccp3NmJsU8fQBd1JzN1uwP1+QFZIXluu8NY5ZXnyzoMReSG51/fxbIPdScQPl968x4lZsWc2T/hxhmNqZIXkwSDgqzf7RFmOYwh+8PoFWp7Fr90e4Jfvb5Aopk/fT9gahWyNQjrVpZfaozmmxqfONVismdzYmypvQs9ipe6U0siIUZiyWneZlkzaj3am3Nj1EQLaVZM4K4hTydYo4rWl2qnYZ9QckzdW6tzYGbM5jOhOFdv0zbWGOhtOYnp+VAa72Nzs+izVHDxLp+VaCKFYdHGWc3tjSpLlXC4TTs8yXvTq/ibwM8AsMuYj4D88hut5aVRtg6qlqIyerZfMEo+6Y1C3lWHg9lCxEBRbYcoHWxN2xkr2EZUFiryQ7I5jigIGQTafqB9NjZod+GaSg6Ngcxgy9FOSrCBIMzpVcy5/0zWNpmeqRLu8oOlZNF11kLu15/PtjRGTOMW1DLJCSeEarkGnah0wgF+q2eqQdozG0k/CtEyMscoNoGVoc1+S1aZL3baQEnRdqOSM7pTuNMazNDxLJYbsTROmccHuJFYL71Neek0IDKHxG/eHfP3OgFxK5TVR/vksRvfQf6sJ7FIqONucmLrGcsOmYuusNJQu39AVVVdKRdu0DA3H0OEQs8wslxTFw7/7oogztQHzTJ0wzanaBkmes1y3FRVTKPPhSZTS9kx1r3UlPez56altJvp+QtOxiLOcqqnN5VoNzyRKC8KkoB8k2IbgfEsVImbytFw+P4VY8HDT8ejYWG06VGyd1ebDDe3eJCbNJKMwRSCp2wZLVRvH0mlVzNIkWVHai0Jt0rp+zHcejLi9589lHc+6zkfjxfdf16PP4lzTpWIr6S4ouUqSqaJZlhfoGlxZqiIErDRcmp5BXkBRFAgpWKzapUfXhPc2x/ilJ9CzphwJcx+O40SYZnMvlrQoaHmW6vS7xtwUeqXukBcFaSbZHsVsj6IyiVHJx4pC3Yf1pkeQZiRFwVsrz7+RW647+HFO07O40/PnktyZb8D2KCRMc4pCscs6NYuGZ5Ln6p0bR8cr0X4ShkFKzTbnUmGAmmuSpAWTOCXNJVGWs1i3SLKCTtWmkMrA9llz4tOwWLNVIk/DJUzz+cG34ZnUHANDe9zAfqGqDF9vdadsDkO+fq/Pjd0JoKQoygNN4FgCEGhCFWpl+X43vedjdh2GpbpaQ+Isx09zpmGGLgQ1V/kq/urt/lxuu1C15zLHpvcw9EPXBItVh7pr4JbJUzMMfDUG/Tgnyp7OKJTA//Cr9/jB1xa4fEpdRyEE/+GPXmdjEPKT39g48r8rpCTNlO9klBaMgxRT12i6JufbbnmIUSxCgUQiOd9Wfk3vbo65tRfw0Y6S1DqmTqNM8gNJs2KyVHvYeFmqq/X+eTva6y01H35irT5ndBiGNg+hcQ0dKSVfuzOgP015b2vEg6EqfK82HExdYxpnmJpKOAtKGVWSH1x/Z6wTQ9e4tljDs3SW6k8+jGmaeOEDh5+oOHtdCARqrml4JpahY5ma6rLLWVE/IU5zDA10TbI7UUlf3Wk8v7aTXM9Vo8hAExoCwSTIiLKMcZRwvx8QJTlVS6X8erZBp2YxLpudz3tdWunrlZULRsXWeTCMMLSZD2DGOEzpTxN6vtq7BUnGJMoYBPE8nAjUO3Gu7c6LphdbHgs1G8fUjhROcxQJonp2SnJUc5Wx/rcejPhga8KN3Sl9X8nthkHGziQkSDJWDmGeLFQdPMug4ZlcW6zSrpg0PYMLnacb7NuGfugYlBIyKeeyvigrqNo6QggqlkGYZPzG/T7//MM9fvrb2zimxkLNYrFmlcUbQdNVc2XDVXN/7RF1gam/Gm+pKM3xTJ0sU8lpeaH2lI4l2BnHhGnBJMlwTOUh6llqTznwU/JCnpgiRHkyxiWD3mCl4VK1DfxESSp3x4qx69mGaigaOnGa4+g6SXb8+y4lp83xk4Khn7I3UYXjhmMwClXaqmMqT7pCSlquPT8XrjTUu7xQtdEQOIY+b5ieBGbjSDW5VKBPbxLjmhpxkpds3Iw0l9RcA9vUsM2Zl6CmJJkoBtbkJfdopq4xiRNs0yz31WrvOYlUeMLOSHk2BUk295Fuusq83TF1Op49Jy8k5TnttDCJM4JUyTHDpMA2DcI4RwjFKt5PpLnQ8ubjsFOu08t1hyhTCo44k+VafrbxXIwpIYQhpcyABSnl/08I8ccBpJSZEOJ4tSIvCMvQeH21Nk8p2B7H/Mjry3zpcodf/GiPX783IEoLbvd8Bn4679xNItXlWm6oh+mYGkleMAxSFmv2/OWYUdhnON/2ythf40gbmlGQ0HDUYlVzDX70jWXOdyo0XFWMKqRKYPtf39vGMnS+dKWNUUbFq+vSSTNJXqhuzcWOoos+SqNvetahxsvHjSQrmETKRHqhanNpwTuQHJNmkqW6wxcvd8hRB/4oK7iyWCm7lZKPdlI8S2ehaj0x3nc/HFOn7iqzvIZnYhs6n7nQwNTUIv2o/8rM1FSZXjqlX0XOSsOZF9CWag77mxtvrta53fXZGcfslHG659sO59seSzUHP87mRqqupZfSRVXQetFCoG1oVG2dqW1gld8nTHK+cm2BIM749v0hLc/EsxRV9mK7wuYoLOUKp5eU1apYDIJEvQsSpEh5+1yDlYbL9jDg450p6y2XhqsOi52Kzc44pmLrx24qXXfMA13SJCtU1H2YlL5w6v3+bW8sUbENpJQ0PZNL7Rotx2S947HecuZdyGFZ6H1aOscMTc8kLYojFaT3v49SSkZhwr2yq2VqGgjJFy6259TqwTThYqdCpTxILTdsXNNg4Cecb3ukWTHvxj4Nuia40PGOfTFarrm0qxOmcc7ry6pjaZbdsd40plV+3jdWdXRtwr1+gGmow7EoI6xHYUq7YnFrd8JSTTHZpi8gOVys2Xz2YosbOxO2hyGygNeWqkwim3NNl2/eH3Bzz+d80+XtVpO315ust1weDMP5xuc00HBNNoRi6FQdnVzCpQWX/iRBULDRD1huODRcW81LpeHvi9LG07zgw+0JK3WHT603GUcpS3V7/nmFEE+kdmtCsFJ3SXPJRzsTmq5J30+J05z1pou40uZi22MQJjQcC1PT+eqNHjXH4NpS9ZkSgbyQDIJkLqHs+8k8Ot6PM4ZhimNofP5SizTP8dMUTQgudjykFBQodoEfZVQsnc9dbD3xZ+1NY6JUScT2F8tansU0zlRK1jP8+CZhSjKO+NM/8cmn/r3jxouwppRnXsHFtktYptP+0PVFlkrWalFIgiTnG/cGDIOEim2wPYrIcpVAJoTyr5hB09RhcHaw3b/PUevm88ssDtufZHmBJpQMr+aaeLZiDO5NE2xDxzZU0aqQyjcyL3K2R4ot8NpS9cDYjtKcW3s+EsmVheq8SHSSiZKepRqEFdvgQsdDSkkQZ2Vql5Ll1l2T7zwYgoC3zjVZbdi0K0qO1PSsYw3XOQwDXzGcF6o2X7rSoV2xCZOMUZRhGwarDQfbUAeyNC9YqrnYloZrGi+9x6g7SrbzrfsDLEPQn+b8wJU2b51r4JR7xpmctDdVthDTKCNKD64JXplEfFJoVyx+86UWQZzxg9dVwIKtMfftVEFEBf/0gx1kAVeXaocmdD463r54pcPGQLFt3M7ze4YZukq+EKhDqEAF3LQrFu2qxb1+yNduD4iynAvtylxdMSsQtErGTV6oVMiTNsJ+HnQqFsOqRc9PSNKCmmvw2mKNiqMTJAX3ej7LDZvznSqvLVWpuabymbX1E1WDgHqO0Sgu04QdPtie4Kc5EsnFjsun15ukWcH7O2P8JMM2dRquyULtZM5fnqXj2vo8pd02ddZaLqMoZXsUEcTFPGm8U1XG+7ahzmcLVZvVpsO9XkCc5aUNhn6i5IV66Re8OQz//+z9d5BsW5beh/328eekzyxfdf179/k20z0W44eDIcEYEkYQApYgxIBAQhSDpCCSCpoAyGGQVEAMERoRIgiGSIQkSgBIEAIQBAYe0xjMoHveTLvn77u+fPo8/pytP/bJrKyqLO/uIPRFdPS795bZec42a6/1re/DtnS+dLvOk13VMve07fPaQpnVmnIldUyVLMtzyeuLFYzCMfWiMZqUcKdVxtCUbIOfZNQ9E882cG2tKAg7PFys0CxZxT1VcrvpsVh1eLBYxjI1fv1Zh7vN8qlley4DnqUjBJQsg3fXqpQtUxXZHRNNU/vC6wsV7s27PO9ElCwDx9qTZmiWLL7ndoPHOz564Yb6quOsI/wV4HuAkRCiRSGjJ4T4AaB3yWM7N9rDmE+2hozijIWqwzBWFEFNU1RHTcA3Pu8odoync7tRmlBrbUPfR8ddmzr/Zr1Q1fd+OovhrUHI+4/bfP1phyDO+L67TWxTp2TvuSXoQllujpknO8OIN4C7hXCdRCUGdE1VFT7fUVobVyVmdxLWe4ESLjf0SU/1MEpJCgepZ+2AnaESgU6yjO1BxK8/7/LtF8rqdqXu8d5ajZJt8Mbi6emRzbKF/yzFswy+fKvOF27V2RqEPOsEDApb63EVZRgpMXw13miiAzBuJToKwzClFyix9DjN8Wyd5Wyv3RPgzpzSLDlPcH4QQghKtokmYr75oksYK/Hjkt3mOy+HdIOEZsmm6lgsVV2Gccrri5Vrf/dlWwVVLzoRT9u+qvAJ+JXHbV52AlxLp24YLNZs0owJo+GyxhjEGTvDSFV1XWMf22N80XItne2BEkpNM0k/VBfbRztD+n7Cdj/gk90RozTnbqvMm8tVnncCfvB+i1tN71RBoxDiyPee55JukKBr0B4lCJj83FGcIaVgreGx0QvwY8WY6gYqCf5oZ8R2P2JnGPHZ7oi2n7BU8/iR1+eUUYJdYa0x25VwFg4m7y4Dz9o+n22NiDPJo53RpIVTJc2V3bZlKNbMw6UK9+fL7Awi1dIgFUNj3Pqz0Q8mYt8HBa1Pi9W6y4uOz9N2ysteh+WqjWnofPNphyedANfUqbgW9+ZKhaCoPrloXbX+3hhSSpJMEuc533mhnt16x2en0Oa73SorN7m6SybhneXKhcaXZorBuTUIeX3xbEy0sq0uorrmYmjKqbTrxzzrjEgytc7aowjT0AFJexTR9tVFoeMnJyamXnYDur7SSFMU/wCAu3MeT9u+ElDdGtENEnKZ8eOvL+HHCcM4Y73nM1+xCJKcuy3v2OeTF8xnULqL04ypcXv3abA7inmz7vKTby6c6usvC2PW1Fm0pv7ex9t8sNFnux/xQw9azJVtSrYxKRhphTCuSmDBi05AtdBh+sKtGsMwnbw/xRwPebzrs1xzLiWoTQuR7YMXY0PfY+697Aas90LqnmJ8p1KZJDRKJpW+gWfq+LFySt4exmz0w32ufIMwnbDZx4Wzq4auqdadQZiQZpL1XsCTXZ8P1wdomvrc7z/r8O3nPTQhWK07fPlOA9dULfjzVXWuXxV2h8pREcDsCx5tD/HjjPmSxdO2T5LmSqqg4SKlIJOCTpDwdqPK6wvlSzm/58o22/0ITWgYhoaf5qQ5PJgrsTuK+dbzrhLvbrh0RokybLjmCv+vPG7z0eaAXAreGkQMowxN01iq2lQdk2bJZmsQsVBxVIH4QGJk/P7rnrlvb+r48cT5qx8kZzYs0YRgseryZHfEZztD+oEqrL+7WsOONIaREj7fHIQESUbdNfexnySqpXdauuRVQdVR8h7DIOHjjYFyIUwlO37ERxsDHFNn0XNZrjromsZCxWGudHkx5XGY/l3POz6rdZdhkNDxE95/1sOPc5brDo+3fT6XI+YrNnXPpHFFxABT13hjscJc2eazrSGOqbPZD/hbH24RxBk//nAez3LQhcbWIMbSfe7PlwpTA4OqY/LaQplPNod0/QQpOdEI4CJwisJBlikLlZqnWNpPdkf88ue7+HHKSs3l0baSnHhjuaLMWSy1F11G0T0rzHCEUDGGNnG5HGLqGj/8oIXn7J2R4xb1UZTSDxOe7I744GWfzX5EJvvcnitfm/i5qWusFBqeeS7ZHIQsVR0+2BjyohPQHsVYGrRHFeI8Z6Hs4Bw47zzL4O2VKmGiNCNrB/aGVw1njTLGu8C/Afxl4IEQ4mvAPPC/OPUPEeLfAH67lPKHhRA94P3in367lLIthPi9wB8F2sDvkVKe2qopSjM+K4Ssk0y5wXnFBDINjeW6w8tOQC9QSYmm5505aD8vkkzSDVOGQUYu4Vk3IMmU+PG7q9XJOO60SrzsBmia4I1FpXlw0GIeFM34/nwJTQjVvqJdfwXEmFCs1Z+/9aLLZ1sjlqoOzbLamJdqDo6p41oO670QzzSYq9ps9ELeXK4SJIKVM1rem7rGm0tVciknSahhlGHryq40mnJNcE0dy1AtZ3Nlq7AzTY9NSilNMkU33R6EypnRELy9XN2n15NcoHXvIEZRyvvPOny+PcKPUoQQVF2N7UFCmuVUXSUwu1i1udX0Ji2F15mUklLyaHvIL322i6VpdP2YO02PjX40YUPdarq8tlCm7lk0SpcbBI1Fccc29YtVh8ZU21DZMdgaqLF88VadjzYGlGyD+bKthKaLC8MgSilbOhoqUeSYJwt0nwUviot3e6ScJU1dPatW2cYxtMl8fHe1xmahVzBXtlVbSpSxNQgZhDGuoapZozgllUoj5lWAHysHKymZMEbbw5ggybjT8ibi9KCS/brYa5kbi3CPUXNMbjXcgr5/9ouvlErk/qONAf0gYRilNDyTQZghNFGwXAVfWKvxpduNSVX+uhJSoJLj//CzXT7dGtL0lF6Ba+ts9UKE0Ki5Fg/mS9Q9k6prMV+xLzy+8b5wnsBOCMW02+hpRIlkEGbUPIunuwG9IGUYqraKNFcthobQsHWdkqUfu6+OcRTLUKL29jSTDCLV7m6ZGoMwpu3H9P2EesnmB+43eXOpeuLep2mCiqPYzhcJcBcqNv/+z759I842Z2FNKXHzlPYwJk6Vy9vuKOZlN+TOnMdX7zYBlZRbbTh0/YQ7LaWxVnVMlRiaytWFSYYmNO61SlSc0xu8HIckVXv4m0uVI4Pj3WFM3bXoBrHSySic15oldelrlWyV0Owqjb8wztnohTQLfceaa9ILijaXK2RJHcQoSvnG4w4dP6HiKCdNXVNxUtuPCeOcucI17p21Gl9Ya7DeU0nZq7rIjiFRSZOtgdL07AUJPV/9zzU00jTn9aUaX7pVR0qlUyYQzJWtS40x7s+X+HBzSCU1Wa671D2LXT9mEKV892WP5ZqHrsGXbtV4suuzXRgFnUVc/yLoBQlRIsnynO1hxEJFkObQLNksVh16YcJy3eEH7jfpBwkly+C7L/vcmyuRSznRnUzyfF/hquKY7A4VY807Rnz9KGiawLU0EFC2DDb7IbrQ6AcpX1irKxe5PKfmWtxuuofajR5tj0gzxVS9TO2jiyLPJZ9uDfilQqi9PYq5N1dicxjih0qz1tIFbyxXWW0od1+43rh3/LtaJZs3lqo4psYnmyOCVN0RXnYCyo6h9JssnV9+tIuhC95ZOax3exkQQhX2lVGEZHekJBHWe8q1+3bTU/FZccUfM/V2RzHvrVa51SwhFAHvUGL1KmAZOs3i7vXOSh1b10kyJWWRpJKdYazcKtMcIQSfbA5ojxKqrsFX7zYvnJwydMHtpsdSzUayR1gYJ4qDNGduqtOn4Vms9wI2B5GSb3F02qOEOJUTJ/nrSkwB1FyLXpCQ55Jl3UVDtSS7lk5TWmS5hkQUmmyqc+GTzQH358uTmEXd3VTyrxsk+7SyXzWc9RYwXySVAP5H4K+hklUR8E8B3zzpBwghbOCLU3/1LSnlj0/9uwn8EeBHgd8B/K+B/+NpByilOgDWmkrNftwKB/DaQoXNQch82WEQKTbDg7kSu0Vf/1W2vmW5pDOKWK44DAt1/7WGq3RupKrIviZVr/Rqw+V3fGVNaZEcs/nOlZV7TckyTm0fftlYqTmULdUfnGQ5wzDjecdnvRvwm16fY76irEzvFO4ppi4IY5U4erBQPvdFu2wpunmc5pMqeNOzCOKAkr3/eRi6xsPF8kQ8+DTvWUp1oV6qKTvYmguupdEPFPOmWbDWmiVL2aGO4kl/9GkRJhn9Inu9O4z5ZHOAlFIJ13kGlm4wV7GUg52lU7VN3l2rUnPNa7tUT382KeHxzoiXXZ+mZ5FkOW+vVGmVHBxD0WEHtZR7LY/785UrucSNL7SeVTgmmtq+djbPMnh7WSVzNU3sExmteYpSbJkazbJF1Ml4MO/xzsr5BW+PwljXyTF1EHLS9gmH5+NBwW+lGwGtsk2UBtxuuby1XL2Qw9llIs+VY2SW51Qdi7eWK0Wi16HqGCzVnEMXTkNXTnD9MDl0AfMsg++53SBIM26f8vIRxBmDKKFqmzzeHfHJlkpAakJwb065mDqWQaNs4UcZX1yr8sby2R3/LoJ+mBAlOVXH4NefddgaqJZgzza5N19iGGYsV11GUULZMfjR1xcmws2XAdvQeHuleqF1WLJ1TENV7BaqDsMgIUxz4lwoIwMpmK9ahInSamuWTLp+zEYvoOIc7dS2UndwTBVYGZpgue4gUGzn7UFIzTH50Yfz/OPHbUqWwXurNT7dHvEoG1JzTSR7xZCTcHeudGG75JJt8DPvLJ37+y+Cs7CmBlHKcs3h8x2d5brFat2m7Su9vI6/x0a0DZ23ptbDUc/Hs3QqjkGYZsydIuF4FhzVAe3HacEuyajaJgNS5qo2X1yt0ShZRaJfkOY5ZcugZAXomtjHnLUM7dou32mmNBU9yyBKMj7eHJBJKNkllusqwWwUscLzjs9SbvPOUo07ReX+defqxtkexQBUHIPOKGJrqEwoMqkKeHMVm7prsVK3yaS6ADVLqh1xtXE65vBpsd5TxZp782V+3/fbfLw5QNcF9+a8QqNV4tlG0ZolmK86+LEq4nb9hNX61THDMyn5YL2PZ+l8372GYmM7Ol+53WAQZ5hGSpbrKn50LSxd47XFCqMoZWegnIL7YbLPzS4/ULMs2yo2EecU6haoO8xC1WF3ENEoWXy+MySTOWGaslZ3eWOxwvYwpuSYSii7gJRyEpNcozzOkej5CUmuGHofbQ54ujNS+7qEL9+u4ZkmtqkRJCnDMOMrd+pFMuX6CwPTcC2dt1eqvLVc4b21gK8/bitpDcsgTDJaJZNBkGIZGi86AXGaT0xxVMHs8jR/x0Y7AGGa0h0lzJctfuqNBe7MKfb1045P3TX5aGPArz7p4Nk6vcDlFvDaQlnFJ+dw2DwP1qbi3FbJYrXh8mtPuxi6xlrTVRq0mWS+YrE9UhIqGz3J2ytVXFOnG8RUbPNc7FfH1HlvtT7RrYSxM7iS7DmoG+yYOgsVhy/fquPHGQs1l7dXcr72yW6hgXa9i2j6PItTpYV1p+kSphnDKGW15uBZKu+xOQj4YL1Po2SxWHMmd1LVBi+L/34FNoFjcNYZqQNl9phTY5yllPEvAf8t8CeKP78lhPgHwNeAfwd4iEpWpUKIvwn8V2cZoGPqPFgos1JX4o4le2/CzVdsfvPbS/zFrz9nFGbkFWUz6xdZU00Tl97yMkaaS6QUNMo2r0nJk45PnsNizUZIlc2d3nSFECcG3mPL75uEEGJSkbR0jTyXhElGxTHo+jHDKKVkGaz3I1brLrebJf7QjzwgKhyxzgtNE4dEaBsl60h6tNIQOv3PtwzlsBLEGb/57UW2igvT1iDmRS/gC6t1Xl9ULowvuj6dkQr6x73dp8HnO6qCtTOI8eOUpBDQb5Usyo7JfMUqXIZuTgtgvR/SHsbFn1TwlUlJo2SRScly1eH+Qom6a11L0DB+L2PdN9c8LBR6VPBqGyqoeNrxedZW+mSLNfdK1vxq3cUxY1zLmzA2p5M1x83He/Nlnnd9vvZJQNk2WK55rDWOb1m6TmwOQt5/1iVMcqquVIkLV+kRGcfoARxFFx9rRGlFMu4k5LkyrZASXsoQP0zJZGF8YetUXYumZ3F3rnStWgDTCJOMJ0XlfL0nCZIc29CoOjpNz8SzTFYbHss190pZOBf92coVpjIRX98dRhiGSsCnuaQzitkZxtxuumS5alt91vYpO0q8f7Gaz3wHhq7ta/ebK9vsDCO+u97Dj3JGbsaXbtX50q0GUoJlatxtecxXLObLDnOVs+03N8F0ukyMWVN/8m98zG9+e+nIc253GONaOndbZSqOTpRC3TXRDY23l49OgBz1fI7TITsvDF2bsLRmYXcY0/AsGp7S8VMXfoO7LY9cKkbLdj/kg40BAnh7pcrdudKNtSe96Co5AyGUtt5cxWazH1K2NPJc0PBMbrdKNEsW76xeX3K8PYonLbK2IdgqnmvPT7ANnS+s1Zgr27Qq9swz8DLXTJ6rOAfgRSekZOusNpRuWc2zqDoGKw2Xt1dqbPYidkcRn2+PsAxBkql44yoZMmkmSTPJy26IBry3VsfQNJplm7kZv3dswZ7JXLl/F/p4jqkMTpI8Z26GO/NlfIaqY050crqBxeNtn3/w0S7fd7/JF281iNKMB1NMCVDr+N5ciX6QHrqEXzeGUcrTtjobNzW1njNU54OU6k60UHFYqV/t2XgRCKGkGMbJlnGL1UYvRNdDNCEYhRl+kvGy6IwZu8Ie7Hy5DHxxrcFbSzVMXUzOxSdtn76f8LIbkOVKVD5IFCNpfCZfJ+tnGkIIbjVL3GrunS2dUczj3RG5VK7oQijmkpTwtD0iiHO2tahI7p5tXpQsgx98rUXJ3tN20zVxbLdUw7MmutINz+K55oMGW72Ybz3r8X33mzfy/CxDwzLU+f87vucWaS7Z7Id0/YR+kLDeDXnZDfDjTAm2F2HW+M48Syv7VcNZE1PrUso/cfKXzUbBhvoxKeXPCyHGP+d1oAP8aeBngV1g3LrXA86scnhcwsY2dEq2gRkkDAIlHDdOTB3EIFR21YYmWKq5F5qEEzodkq1hRNdP0YTG7YZH1bMOuWOchDDJaI9iqq4SMzR1sU90/CqRZDlBklGxjX0bxChOldjofIk8V330SQZlJzv0PuwLJluyXLI9iMhySdk2qLrGpV/cp7V5Vhoen24N+OazHjuDmOddH00IHhaXtvPAj1OQita9M4x4tDPiXrPEw+XKxB1S126WJRPGGWGSTbTDPtsekueSH3s4hx+rrLsmDlsbXyUuopkkCqZPzTUIkvxQYqvrx2z1IwxdbeLn/VxG0WZ4XuS52sdGcYqhyX0Cn4NQORiFaca9uesVYgQQCIIko+cnha17Tqtk89by+ZhnuVRVoCjN9lV5j0Ka5RM3me1exI4f4Zo6X73TKOjOqhBwU0kpYOLs6Fo6XT/i6c4IocFvejDHbpHElvLVSZgMQuXcNuuMm06otsq2ciRKM9I053nHJ5cwV7JZrDv0gpRy0cZZOoMwbZZLXnYDNopL6VtLFaI0mzAkBYI3D8yvMMlIsvxUc+Y3OoQQ/Me//T1+689/jX/rL36T//L3fWXm3Km7Jt9+2WMQKY0l1zZYqrvMVexDzMzToB8qAWrVfion7QMXgamLfe+s66sW4Lmycl+zDMEoVuyC5Zqzj3X3bHfEIEz5dGtAVIj6qp95/Ws9yyWjON1XPY/ShK1+SN018YrPqBd6JteNPJeFVbtO11emFLvDmLstl7mKg0AcmZS6TCRZTsePAXWBEgL6oU6U5ixVnQmDaPwumyU5sWyvudaZHR/Pi1971kYvitPNkk3NO3pOjSUcdKHxYKG8L549q3bUefBkd8QwTNnqq1ZXx9Txo5RWRQntG7pQ52SSUbaUMZNnGdd2RzgOSarORs/S6QcJH20M0AT8zNuLtP09PbFX5Ww8DTRNqLY4TWO56nGr6fLXv7PB+nqAhmoDTbKcYaSYgVcRLx+Md5Is52UvJE4zhFAO6bpQrJlZGn+jKEXXxI0lqzIpJ6YbpqHRKFnsDkKGQYym743Jj9Xd+SznUC6VS/dZOotKtrEvpu2FKe1RhMwhk5cn4XIRaJrA0sTEqXMUqWSUpeus1JRTuZSS3cLx1LP0V6rIfRTOqzF1Xvx+4P85/RdSyjaAEOIvAV8G/idgPBuqQHfmQIT4w8AfBrh9+2RB0Knfx+2WR8VVLimrdRfPMtDFfrZUlks+XB/wwXq/EBis8tW758+QGprg3dUq/SAly3JMQ2elCOQ7vqpinKWH/mnbJ0qUVkPNUa1dDxZKV37wqH7wIWmmhEfHLIg8l3ywPmCzF5Hkkq/eqROmajPQNViuX25wsdlXWeHnnYDlmsPdudKVO9rcmytjaoLvrPcZBBmPshErDSXIaBvKOfG082OrEOYO4pS7cy4fbQxIkpxnnYB3Vqu4lk7FMW/0cO4Vej1hmrHaUM92GCZIKXjWDni4VMUoKoW/kXB/rqzsf03Bl6bcfTZ6Id983uXjzQGLhbDpdenPHcRqw+XdtSoa8IMP5icHyXov4PHOiF992mGhrDRivv9+61rHtli1+cJalTBJ8WyTbpCwVDu/aO9GP5yI/asLzPH4fFclhV92fYIkp+enlBuKPVf3LLp+fC2OpEchzyXPO0rrQSLJJfhJRpar/XC57hClOQuX3Bp1Xmz2Q7YKnbOxMPxR2OiFfONxF4BbDYeyY+CaBgiVML7d9FhtuNRdA+2MSfWuH+NZOt2RwLMNQBz5rKI049MtxZpbqNpXvve/Cnhnpca/88+8xZ/4K9/l3/6L3+Q/+m3vHnpXjZLFvZbHWt0ljDPmKzYvuiGmnrBuBPva3U5Clkue7vpIqcwOPMtACNUCclmXlzDJeNZWrJ4klcxXbLb6MZ6p0ygdFmjNpKTrq9apkm1wb867EgbCafD5zoggzjB1wVJNxQC/9GiHKMnpyoSybSgXRClpXUOy4iB6Bbs5zXIaJYtukDAME3aHygL9tcXKlSelQF2W/vaHmxM9yI6fUPdMcqm0cA6OoeaZLKZKQ+w0enWXM8ZUMbkcg9W6x1zZ5nbLO5LhtFx3MAZRIaNx/Rf5XKoW+O+908CxtAk74uufd2iVLcJEMZjjNKfsGIe6C24KWS5Z74WTVuxcgh+lSAmdIGG57r5SZ+NZMB6zoQtySaHzl7M9iPjSrQbffN6jZOus98JTG2ZdBGsNl41egGVYyjVewK8+6fJ0V+mzfmGtPvnaaXblddwjZ6FVskgzlcBP0kxpOaWSDzeH/PgbC0RpTi4lj7YV2+7unHfqotQoSvnOiz7rZZPvv9c68/mVZDlZlnO74SmJhOXqjSXwZmGl7rIzjCg7OmXHYLURs1xzaZYsNvsh7z9RztRzFYuv3MlfKY25WTjr7PupC/6+N4AvCSH+CPCOEOJfA/4vUsoM+E3At4CPgXeFEDpKt+ofzfpBUsr/iqLN76tf/eqpy1FJJrkz1QokCr2ggxAoDYQ0l2iFc9BFBM+yXLI5iFis2NxulVhtekXv7xCAODtbBnZWwuKg2OFVIJdysnnE2Z6NrxDqmYVJhq4Lyo7Jgm3gRxmt8uX1VY9haIJcKnqsJvYyxleJXEqaZZuHixUebY/wbF0d/LaxT8z5NBgLtJuGQBOC5ZpNZxQXfc/6ia5W14EwzvDjTD3rHG43Hcq2iWPo6Lp2LYfrVWCuYpPlkrtzpX2B53gO5bm6AN1kG3azZHG76XF3roQ9teckqUQT6n3k8uKVgvNACMHby3U2epGiRk+5X1q6dmamkqmdvmdfSkkvUC3Cnmlg6pIkzZmvOFQK4ceLWgtfFHlxeU6ynLprsFZ3ebLr45o6orBqf5UQF9V/KTnFe9j7d9c2eGulxiBUhZUozUBAo9DAi9OcOMtPfB9jdtlK3SVKcnShqvuGfvSzSrO99RlfogHFq44/9MP36AYJ/8Xf+oRvvejxR3/iNX7qrQU8y0BK5bC3WneJUjlp2QkK9u1Zn5NAna2Z3NtoTjdHTg+tkCyQEvRCNwrUHjOOM6Zxq+GxO4xolSwcy7jyVtjjMH6eozhjXlN7k6lrtMo2pi5YrDo3yuYbs5QQ6pLaD1IWKs6EzXsZTsKnh2rJswyd5ZqOY+rUS0pHaBZuIv5xLR3PUq7cVdugHyRHxvu2oe/TzLlO5Lmk5hi084SVukvNteiHCY+2RmhC/bsuBH4Rn79K++NYiyvLc0zdZLHqUHUtTF0x5l61s/EsMKZi4q1+yFJNFQ6Xag6mLjB0laRVzsNXHzt7lsH33WvR9ZWI+GY/JJc5USImMdsY03MkSSXcQF1PCDFhR4ZxRsMzsQ21V+RSdQ20R3s6icmM8+Hon63+/6ws9bGDuxDQqjikOdQ9g8ULFGKvAqqF2FPsqFHMUs1hrjAJGEYJXT8iTFPAeiU05k7CmSL4MbvpAvg/A38FeBv4OvD3gCdCiAqqhe8tKWUihPg2qr0vAL5ywd85Qc9PFNMozcilpG8aZLmcHIJpplw4TF1jrmzzxVs1aq45ERe7SHVpEKb80qe7vL1S4Y2lKlJKtgYRliFwz5GIuNsqMQgTXjPK9IIEQ7+4PlaWS150AxX0HXEgG7rGrabLINzvaieE4E7T49eeddAzwfYg4r0r0u8BFbjYps5q3UPTYP6KD7RppphjaERpziBIuN3wZiY200zR1hdmuGvFxfc+3R3hmDoNz+Yrtxs0S/a1JqVOet9BktH1Y7YHqlWq7JT4Z7+wwu4o4vYNBWUXRXcU8yuP2iSZElJ9MF9mt3CVWyzaChYqNlXXPLUQ92VjFKZ87ZPdItEseGNJZ7dIWi7VHDQN/ilnAU0TN+bStzkIaXg2YZqxUlMW1p9uDylbBt9zp3GmRPRC1eF77zYZhimLNYcky+n5yUw3LT/OeF5Y5L6+UOELyxX8OKPhWdfaunfc+m77Mdv9mO1RiKXrfOVOA9cySHN5bW0pp4WUqvCS5TkrBXv4OCzVXL56t06USO7Nl9A1Qck2SLNcWaznShdoserwyZb680mMplGU8Xc/2uLHHi5Qtk3SPKdim0eKskqpWpQ0ARXXeOWe6VXj3/jph7y3WuPn/up3+Vf/X+9jGRpfud1gGKX8yudtaq7Jj78xDzCJMTxLZ7F6tmBa0xQLO4gzXFOn7ccTKYTLghJ1LRMm2cTUY6XukGSz2TJJpjR9PuuHhW6n5PvvW5eenDpufY9xu+Wx0Q0YRQlf+2SHumdxq+GyUndplewrT0odd35v9UP8MOPT7YESOU5zvnK3QbNskUvJvWs8N2xD43ZTsZBKts7uMOZZx+dZWxWJLpOBd5ExvjZX5vvuN5BC8Pc/2QXgi7dqN8bIOwpP2z6fbQ2VdIaUlG0lbbDWdGmUTMq2ofRxopSNXoCuKcbIZa7b43Dc+d0PE7qjmOfdgHeWlXPyT765QJbn52o1flUxV7b5vvtNgjjnTstjvRuy2Y/ojGJcq6bcZo+IV/phwiBMZ/7bWeGYOks1tbZedgPFOtLgzgG9z/mKTS6VAcZpxNDjVN2VSxds6z5y3JbOT725yEY/pGQbfLo15HknYKnq4NlKmLxxglaalEruJZfgWgZvr1RZa7injk37YcL7TzvIHL50u07NMdkZRJi6Ti9IXslOkYOFzyTLed728RPl1vneau1c95qrft8Hcd2l5TaKdfU/othQDeCbUsrfIoT4t4B/rmjpew9oolz5fjdncOU7DlGqsp+ZlCSpxDUhmUofbg1UDz6og6rimLyxdLmUt7E95e5IadkAzJWNMx/M0+5yF9V8GCPOcqVdk2THWknWPWtmq4wE5isOUkKYZoe/8ZJxneLv2RRTbBClpJlE0zRedANuzwjykixnq6/cHg9WgdQBoOaXbSjbVE3Trr1t7KT3nUlJ1TEJkxwJRGnOYtW5Nnr9VSBM80mlxY+Ug2QQ53RGMW8tV/cJWt4UoiybsB/9OOV5JyCIMzqjmDeXKmp8Z1beu1wkmaTsGFSEcuR82vbp+ymDIFXtLe7ZkkSLVYfFooE7zSRP2z5vWJVDwVuaSUxNo1WyQajL6030yx+3vtNMYhqCpmcX7XywdkNJzpPQHsW0Rwm6dnqduGnB0jEyKScuVGkuSfN88ucoOblin+UqOXaaJFPXT9gszk7H1G9M9Pom8dNvL/KTby7wy5/v8rc/2OJXHrcnjjvjwlt7pIoKAItV81yJW9vQJ61KZ2kDPAscU98X/xxngBCnudJskmrObPajmU6fF8Vx63uMsm2wUHPohylZDmmuxvb6NSUyjju/k8JlseHZ2KbScwJupKXLNjU8y8CPs0n7VprJCeP9JvS3DkITgttzJYSm4Ud7SYFRfPVx7FmRZIqJmkuIMzlx1Jwr2/vmas01J85wj3dHvLNyPcL7x53fSZZjmzqtko3QFIvuKFOU38jQNMFqfe9zxVmGZxrkrtIly4+g40+3T182ojSnVXIwdDh4IuuaOFMHxMtuwCBMuShT5TjUSxb1ohVteq9oeKfTnZuOEwxNnPkuvzOIaA8VQ2u9FzJf2SuwpdfQoXMZyHJJmkPDU0WBW03vXEWA63jf07jWxJSUMgTCqQD4+4C/W/z33wR+D/BdLuDKdxxaZZskl8wJC10I0lzu62U2CqFWIZiIsF0WHFO5ib1ZLA5z6ucf1FG4KYzfinnOzz5fUQLIwyjhraXzCSG/qjB1jdWGyyhKaXgmQZIRpRnLJ2yQs56lY+qsNtxJQnGufLWOM0fhpPe9WnexdMF8xabknL1d8VXEQsXm7ZUqfpzycLHM9iAGcnRN3Ehb3Cw0SzbvrFYZhAlvLFbZHUUEqOBZe0VEC9caqqe9YisdmOWqS5jkeNblMCo0bTbluuaZvLtaZXcU82C+fOMijrPWzkLF5s2lCr0w5XbTu1ER9pMwffacVqh8FmxD51bTZRRnzJUtbENnqeYQJtmJ+k+WofQXm6fcX4ypcZ73rPonAbom+KEHc/zQgzkAvvhndVYbDrebJQxd2/duX5UY46KoeyZhmvFwsaxaVAqHsqvCSfOr6ihtUNvU8Eyd5Wtsbz/u/F6s2CAl9ZJJ3bNu9OwW7LVrlh2lu1WydTQhKDvGtTF5TgNTU+yuQZiSZDlvLLxabCmAW00PTagi23LNPfZ8MQtr++tO3h91fi9UHNI8pz2KWay4p2Ln/JOA1bpyoAwLwf+jkgMC9dxmtTFfFF+6Veez7SHz5YsbHkzfla8ac2WlN1eyDequeeqOEuMC8QyoLpwx8WGubE00sIRgZpfMqwjH1Hl3tcaztn+h1vLrfN8AQt6AkIoQ4u+iGFO/C6hIKf+0EOI14P8A/FngZ6WU/7YQwgD+hpTyJ4/7eXNzc/Lu3buTPyeZZBQp4TRDV60GZ1Hjvwo8fvyY6TG+CggS5biWpBLX0tjdeHGpY4zTfFINs02NKMmJ0hwhwDX1c1/YZj3LUZQWTBjFRjI0ZW9+U5fCq3rfSZaTZsoNaJyoqHnmuZIqVzXGXEqiJJ9U9gxNwzFPLwx/EJcxTj/OGBWVUNvQqF4y0+4yxqhcW1KSVPXTlx3jUgPKzx59zsrabTRNkKT5hJVVdY1XJuEFVzcvw0S5vCVFtRnUvnSei+1VjTFIMrJMEiQZpq5hFufXeXDaMaa5JEoykkydl2NtIVCU+queGddxNkqpXGPHAb+hK50NTROnig2ucoxxsaeP2ztyKScaILapnXptnjTGXO5pQd4kZo1zEisIcAx9EgCnudxzQNMFWfH+rvpsv4z3PT12TROTz6hryvHponvudaybXErCJCdKMjIpsXTlhnWWc+lViX2nz1dDF1SmztdXZYxRogSex4t0zDb1LJ2Xz5/eyBgl6uxEqvkwnreWqU32qelYf/Plsys7G6VUsb6pa2ga506wnPV9+3FGnKqY1jX1iXvdVYZNZx1jnOaTZ2QZSutzvP+YhroTvQrjHENKpUs6ZvxZhkZezKHLHu+rsr5zKekH6h6ia2oPCoq1ddS68eNMuZRKcC3txl2Iv/GNb0gp5ZVerG86Xd0FVov/HjvwdTmHK9/Xv/71yb9t9ELef9rh060hC1WbH3+4wOI5dCh6QcLzjhKtvdsqXYjV8tWvfnXfGG8SY2rvo60hvSBht2hj+mO/77dc6hg3eiHbgz23p8+2hny0McS1dN5cqnB3Bq38RTeg68fMl+0jM+OznuU3n3f5bGuEoQsanknNtfa5kfTDhOftAMfULvwuT4Oret9bg5DNXsSvP+tiGoKKbfDT7yzNDBTDJOPJ7p6DxUH3mKsaY5RmfLI5ZKsf8nTXp+ZZfGGtyoMZThBSSp61AwZRMnGROIiLjjPPJd952ecfPdohy+HtlQo/+nDh2O8ZhAnP2gG2qXHvFPPlMp7li27A+0/aPNr2Wak7/ORbCzRLR1e6gzjjSXuELgR350onXhbe+eKX+e//6t+lZCu9mGe7AaYh+Om3FvcJrF83xvtRLiV3WyV++Ae//0rm5adbQ4I4Y2sQqoR8Jnl3tcZrU1XxNFNjSTLJ7aZ3ZFLoqtbORxsDOqOYbz7vMl9xuDfn8aXbs/s2N/shO8OIZsma2WY1HuN6T2lyzZVnaz31fGXZ/aIbTIRabUMVDh4uXj0r7TrOxjyX/MrjNuvdkJKlU3ENyrZJo2CUPN31sQyNe3OlmZX+qxzjs7bP7jDicdvnVqGZaGgawyjBtQwantK7O+k9HDXGKM349/7St/kL33hOyTL4l3/iAX/kRx/cCEsXZo/z6a5PL0gQAh4u7rUADcKExzvqDFupO8rRS0KrbOFZOi+6ASXL4E7rci2wL+N994KEp8X5u1Cx+XCjT3uUMF+x+OKt+pEXjOcd9SzmK/axAuXXsW7CJOOjjQEfb/YZRRm3Wh5vLVX3tf1sDVScV/csVmcwxl6V2HdrEPJLn+7yZFfFiV++3eSt5Qp1z3plxvj5zohhmGLogiBO+Yef7mKbOr/lvSX++Z/+0RsZY5LlfLDe50UnIEgyVusuJdvYpw32vOPTGSVoGvwL/9xPXck4P9zoE8Y5v/q0Q8OzaJUtfvTh/KGvy3LJ5zsj4jTndsubab5x8H2HScbj3RGaENxtlQ4lvb/1vMunWyM6fsQbS1Xqnskbi5UrZaLOmpMbvZDd0ewz/+muz3fX+wRxxuuLZe60vMneudZwaVwRy+eotTPexxYqs+U/gjjj/acdNvsRNc/greUqOwMlpXO76c3UKDsvvvQ9X+G//ct/i5pr3qhUR5xk/I0PNklSyVrD5St3Gnx3vY+U8C/+1tnr5h98vMUvfHeTimPyg6/N8cOvzd3AyPcghPjVq/4dZ05MCSF+AqX9dAtIgU+A/1pK+ek5fv8/Bv4V4D9jz4HvQq58wyil48csVh0eLpZplKxjL3fHoTOKyXMlzhqm2Y1YaF4F+mHCei8gznJaZZsffNA6dRvFWbBUc3AtHdvQsA2dN5aqtMo2Mpe0KjZplvO07ZNLyVphw9kuNL52hvGZRMDfWq6yXHWxTYFW6ASMN+Iky3n/SZdRnLJUdQiq2StFHz8LFiqKBny74dIOEpolizjN+XxnhFO004wDdGW3mhf/nTJfuZ7kg23ovLZQ5lbT4+2V6qRl9tMt5UA53d4UZzm9QPVxt4sD97KRS4nQ4M2lCos1h3tzJ9PzO6OELJf4UYafZNfi9GbrGq2yQ6usWmJn6bhNoxvEJKkkQTII0xOfnW1oLFZtGiWLuy0Px9BIUqmChxtMTPXDZFIZ7gfJCV99ftxteYyijAcLJXp+gl6wZT7aGOBZOmsNl1GUTXQAO3587fvE/fkSftXhwXwJv2iD+3xnRJrlh/QBdoYReQ67w/hY/Z9xsLczjGYmpmqeydurVVabLl0/RqAq0Us158ZbJS8DSZbzZNen4VkFPd+g7JhESU7VNXjeCchySRBnjOL0ygw7jsJK3cU2NdaaLrmEnh8TpbLYcwT9QDm4npdx+nN/9QP+P19/zu//gTus90L+s//5Iz7fHvGf/o4v3Fhy6iBW6g6Oqdg4YZrx+c4Iz1KaGK8vqv3aMVWbcJTmVB2DRzsj8nzP4famBbQPouaa3J8vIVF6VFXXYHsYUXWUQPWzto8fZ6zU91os8lzSGY3Pw/ianfMOwzF1Hi5WWGuqVm1TE/hxxsebA1bqLmXbYHeo4uT2MGblFd4zFioOP/Jwjju7rioA+BHrPePEc/Y6cbvpMQxTXEvnWcfnrZUqnVHMzjC6sTENw5RBmBCmGffnSriWrtyCpwqdq3WXin20y+Jl4MF8GT/KuNPy6AYJy1WH5x2fUZSxVHMmbVejOJ24qY2drk9C10+UGx2SQZjQKivn5ie7I7Jc8mC+TNVVbcO2oeNY2o20R+8MI6TcO/OnP/9K3cE2tELr10bXBPfnS+RSXjvLJpvax3ZH0SQxFac5T9sjQHCn5fHOao21RkKrbFGyjck4LzveTjOledkZJazU5I2de1vDiLW6h2tqvL5YRive0XCG2H2a5TzaGdELE37otRYCja/eqV//oG8AZ1pZQoj/BPgDqGRRAjwCPgP+vBDid57i+81CN+qLwF8H7gF/Xwjxi8CXgL8kpUyAPwP8A+BfAP5vZxnjziBS4rO6xkLVuVAyqeFZqu3M0nGMVyvoOQ+klIRJRsnSGQQpIGiWTW63Sld28a655iRgHAs01ksWpq7RD9PJRbDjxwghaJRMZc1ZPluwYOoa81WbqmsVQaA5oRx3/QTL0IjTnLSg4v5GRtUxsS1dVRVck51hRJSoBI8/JdZZdU0MXShmlXO9F2zH1CnbKuhba3j0ClHsIM7oBvHk6yxdo+IYCMGlC9iO0QsS0lTiWSZVxzpVG0K9mIeudb5Wr/NgZxip1i3LONV6rLnmhAJ9mq/XhFBzQlPJWyEEhq5NBCJvChXHwDSEcha9QjMDQ9eoeSaWrtEoWSxUHdq+St52/YQwySnZumqf0riRC4upa3i2TtUzudMqESU5wzAlTPJDl5NmSZ1PJ1VCm2XrRF0E19SpuyZ5rkSlR3H2T4wuUS9IGIYpwzCl4hjMFcn9mqdc4OqeiaYpHcjSDRSfdE0URh6WMg5JlNCra6lWkbJzfimCDzf6/He/9IR/8Tfd5T/8re/yZ/7AV/jf/uRr/PlvPOdP/sJHl/xJzg+jiNcqjsnztk+YZMWazPaJozumPnHvaxbxWcnWb1yq4SiU7L293DKUm1TdswgTtefEaT4RqAfV8lf31NnTfEUSJq6lU7IMlqsOJdtQicAkZ6cY93gfqhfr6VVFnks8y2C17lJzbaJEop3tCnTl0DUlzWAZGk3PomobuJbBTSlgSil51vHxTANb19E0wXLdPcS+F4WkxFUmh01do+oaKjHW8hCaSjSoNRROvq5kGTiTM/x08cQ4llKxsvqeQZgoUkKS0w0S7rRKVF2z2I9v5g4xXmvNkkWYZFOfP5rEN3PlPZfS6WTPdUI/Yh/r+jFBnBPE2cTZbqFqT/bvsn262PesMDRtskfdVFIqStX70jWBrmtohTagbegz495eoAq2tq72gO+50wDEK2EWcdU46wz4Z6WU7wEIIf574O9JKf+YEOIvoBJJf/64by6STv/Ugb/+ZeA/PfB1fw74c2ccG6Au44OCCvus7ZOdwq76KNQ8k5p3PU4W14Fn7YBekOBaOl9Yq9MLEhql69u0slzyydaAJJUsVG3qnjoMpjP6yhXtYr9nvRewM4ixDI3XF8pUHFWtrLpl7s1dfRvfVWPcImkagtcXKlQdk36QYh/QcXJMnbeWb0aEPs1yPtkakmaSxaqyzh5rtFbsvTknija0q4Spazzr+GS5mnenQdUxeXf1etd+L0h42Q2Zq1inSgp4hQXuaRGlOZ9sDqm6BndaJWquSWd087a3tqHz5jWZJcRpzidbA/JcsTSqjsEwTHFMDdvQ0DTBw2t2x5xGEGd8tj1ESmVH79k6RiFgezB4Wa65p3JKW627M1tsxpjel8M0wzH0G58TlwnH0Hje9UlzyVzl8GW/4pjX5lg1Cz0/4WnbRwhYrTsIoZLIa43zOehM4+f/zmeUbYN/7adeB9R++6//9EO2BhE//3c+473VOv/0u0uX8TEuBc87PrujmH6Q8nCxhHXMPtgoWVfWnnLZ2Hce1mzmSjaOqREm+aG1dqvpceuGxjkL4zYtx1StrmO90PG4laPqzTK7ToNHOyOCOJsYEeVSsta8PrH6syKXEscysPRkogd53Xi86xfOjzlvrVRvxNVxGo92RvhRRsVR7buupRPE2b6zUdfEmR2uXUs/FEt5ljE5eyuOsS/ufrhQuZF7xErdnbTRSqm0gYNYrcXtQcRGL0TXBA8XyzdeWJq1j5Udg61C3kWxLSNedkM0DV5fOOzieFkwdHHt8fxBjPX51HxVqZfpc+EgSraBrgmW6w735kqM4pRPNocYuuD1hZt/v1eJsyamciFEU0rZBlYAHUBK2RGvSKmk4hi4lkaW5QSpElUbRYdpckdhXKmrvGJuIRdBL0jo+jHffdnH0DUWKzYP1mqsSnemnsZVYWcY8WhrpLLijsFi1WGt4TAMs2MD0NNgXN1olqwJayhOc5JcUfzHLoEHD5MwyXjRDTA1jbWG+8onrdIs5+PNPkGcs1CxSbKcRskqGGLq4pFkObvDGNe6uQvmi07A59uj4n0YLFSdQ++gM4qJs5y5sn3p83BnGNH1Y1olG0NXtOGz+DzsDiMyKZkv21dWBZZS8rwTEKU5aw2l23Bv/vjL2DR6vqLXt0qnS2SNLYrH62Ot4bFck/ue/SBM2OyHlGzjyuzhZ8GPU/pBeuoK53mx2Q94suNTcQzqnnLUqnvWK7N2Hm0Pedr2mS/bBHFGzTV5c6mClHvrZnxGVV3jVIxgKSXbwwhNiJnuXEmWF20M0CpZ3Gnt11k6OE9ftZapaeS5GmuS56zW1Vg1TXDrGF0JKSU7RQv5XNm6FtZHz0/YHoZUHXNy6ZRSzcG3l6vE6fgdy3OzvntBwl//9ga/5/tv72P/CSH44//8O3yw3ud/9+d/ndcWyvt01q4LnVHM7ija5xrnxxl116LimNybK594HvfDBL84919l98s4y+mMYsWSyjIWKg6vLZTJ5Z572c4wIr/iM+csGMdGzzs+DVexvABeL8btxykbvfCVf/aq5VkSxKrlc70X8OZShdW6i/4KXe7GMWyjZGIbOn6cMQgTkkxSuwb3uijNeN4JMIr9UtMEfpwq+Q0kdddksx9eSbx2GgyjlI83BtiGEh8XQvDaQnking3744jznFOjKGUQ7n3/9Nm7NYjojGKGhTP3YvVmk5pCCBqeRdmWtEoWzzr+3vhK5rXGb8dhmh3lWQZvL+/dAz7eHPC8HVB1TaI0u7J9JMslm/3w1LHyRbE9iOgF6v4xLp7Mmq9JJo90YFTEgr359+nmgO+s92l4Freb7v8/MTWF/xh4XwjxEfAm8C8DCCHmgV+/5LGdC+1RPNEIcUzlTLB0CuHzYZTixyk7g4gsV4fZOyvVVyJAuAi2+xEfbPQJk2ziiDduYbigm+aZ0fFjPFvHT1Lmyyqp8rQdqPaFNOP+vFq0u6MIx9RPrfWRFhoiY+el5ZrDRi+kbO9RbseH7DBMqXt7gdTuKMaPMkBdAi9TcO8q0PEV482Ps30MqelA4WU3mDg/rDVckjyn4Z2uhe0ykGQ5/TDFs9S7HldTpy8ZoyjleSdQX5/m2IVL42UlAzYKkdz1NOSt5Qqtsk2c5scypoIiEBRCsNHbo4Zflc7HIErp+qoPf3sQsVp36RTJtKMwXh8C2OipVoo4VfpDJ8HUNUq2TmsqOXEwwNzsRwXVOqZZsi6Nsh4mGf0goeoeDhilVGKlec5Eb+yq0A9THEvDT7KJ7sH0M1jvhvQCdXlcrDjMVexrS8T4cUqaK+erOMsm7cxCiH3uP493RySpmge3mh5RktMqWUde4p+2fR7vjqg6qo3zYIuiY+osVG1GUcpSzTk0J4YH5ulp5tpNYRCmkzm0M4xYa3h4lsFC1SZM8pnMjvYonqx3XRM0SxadUUwmVcB/FTHARj9ULkpxxGsLZeI0x9DFpE3taScgSnJ2RxHLVQfJuI3j9GP5n7+9Tpzl/PbvWT30b7ah81/+vq/ws3/qF/nDf+7r/KU/+puuXVtrvRcW2l7hJDG1XHPYHkRFG/rs82oUpYzilLJt8LQ494Mku3E2x3HwLINMKm0TKVUCVdP2YrCuH7PeVXNw/G/eKVu6rwo7wwg/yiZnwFLNmbwTme/FXH6cMlexT9yHbgI9P5k8V9PQeNb2MQ2dXpDSKGVUXpHLndIz2othH8yXKdk66/2QiqPjF3eaq8TucBwLQ89JaJSUmH17FOOYGk92ld7NSt3l9RlGNleNzX5YdMQkzE1JfUyfV+M4ouvHzFXsmefdLAyjlFGUsNEL0YTGIEx4fbGy7+xdrNh8sjmgZOt0/ORGElP9ULU3t0o2wyjlZTG3NQHzZZsP1ge4lkYvSG48MdUL9toss1yds2+vVPftD2mm9roky690r4vTnK1+dChWllLSHsVoQlwa+1ZKOYknNrLw0M+dnq+upTNfsfHjw+QZKSW7oxhTUy2sL/shgzAlzyX/pHfznWkmSCn/30KIXwDuA59KKbvF328Dv+fyh3d2lGwDIdSF7U5LCfWdhDjNebwzQkp4sjukZBszXQTOg5vsBx1FKd9Z7/LZ9oiGZ1F1zH1U0OtG2TZolWw8W6fsGKSZ0pbKc0nFUZuFasOLEELwxlLlVJfC8eEhJehCBXT35/dXgPNc8mhbveOX3ZCFqk2rbFG2DDpCbUy2qTbI60rgnAclW8c1DdYaqh0L1GE1CFNaJUsxBIqTNJc5T3ZH6JrGKNoL3KWUV0oNNzSBa2m0yjZzFUsJ2iYZu6NYtVU65j6r7F0/Ris0FB4slCYMgSTLz20ZW7KNiaaMEOLYVqauHzOKUraHMboQ5DJHE2oO6FPjVAeCvLRKhWuqNq00U0LHx7WmjJ9fP0hIM0mS5UgkVqH7MMb43c6aw4YmDq2Lg6g4xqTdoesnSJmwULEvfNn4ZHNALlVi9Y2l/UGtEAJNCHKUlfpVouooHaWyY+CYOjvDiCTLWag4RRVWfd16L0Qg6IfpPor/Ve7ntqH0rRarDst1B1PXiNKM3WFMyTImSXNdCBJUpe1J4boTZ/lkjk+v7zTLed4JeNr20RCsNWavg+NacZwD8/RVhmupanqWy30tw8cF6bmUbA9DLEPnlnALN16VNE8zeWmxwDTKjkG7YOaNxYTHGAfLUaLW4YviTiphJuPtqP38r31rg7stj/eOaGFYqbv8/O/9Hn7ff/3L/Ov//a/xZ/7AV681qVBxDLp+QnlK/9CzDFwrPVJRZ+y4JSX0zL0k9nifTrMcTYhXKjkyxr25Ep1RgmfrpLlkpx/iWbpibE6NV7XjaAgR8cZS5dBefpFz8Swo2wadUULVMXltoTwp5u0MI8LClh4gzWfvQ9c1zuMgph6dlFDzLLb6EevSp+YalCzjlZkr0zFslktedkM8U2O7HzFfvvpWybJj0B7FZHk+uTfVPYu6Z/Gs7fPR5gBd00DCneZh57qrRsU28B2T+YrNXCFOvjUIMXVtsi+O44heoJhmoBIBY6mQ6fN7zFxJMnX/y3PFnF2o7An4+3FKx0+ouyZlx+T1xQp+dD1mOAcRJhmfb4+QUhKnqn1vFKskfbNk4tkGry+Wb2R8B+9NfpxOHEl7QUzN3dO9GkUp3SCh4Zm0ytZEO+xKSSDFjz641ndHqiCQ5urcuAgxIc1ytocRVlEAHp3yPUwTZ6af49YgYqvQf606OjJXjPZZxd1/0nCm2SuE+BmgIqX8Cwf+/vcCW1LKX7jMwZ0HZdvgzSWV6T4t3XS8HoIkxdB0TF3Hsy6+UMJkTy/kJrDeDfjW8z4Aa3WNH3l9DlPXbuwgXmt4LFRyzKJM2A0SXFMnTPJJMmIQpjzeVXob9+dKp1qAuiaUY0fR+nIUhFALf9yHHSaKpeXZFQSqnz6IFZPiNCy7m4BnKVtVWSRIslzuVY3jjNcWyhM7X0vXeLw72jf/pJR8tj2auJZcBYRQ7yPJ5CR4ed7xlcj9KOat5SqupXN/vkSc5oRJNmmlGWPcL39el5e7LW/f7z8KYZLxrB2odp5ByGLVpWSbLFZt8pzJQZVmOZ9uD0lSyWrDvRT3QFPXeGOxQiZnJ5Km8bwTEMQZWwNFR7YMjdWGA1JM5rx6t0PV5nlOXb3FqkPDs/CjlGfF5VyI4xMXJ6Hrx3y+4wPyyJah+/MlRoV2xFXiVtNjsar2oGGUTqrpUqqL+mrhNCWRCPYzla56P9c1pV0xPR9edAJGUcYuMW/a6pJ6d66kdBQ1wZMi+BsPc9b6zjLJRlcxSHdHMfNnZACeZZ7eNCxD442lCvkZxhomOa6p5p1t6CS5ygRFacan24MrccRarbvMl+3JWTiNnWGMrWukmaTh2USFs+qsU/uo/TxMMn75811+9/fdPjaO+YH7Lf79n32bf/9/+g7/+d/8mH/zN79xoc91FkyvxTE2+uHEmdcuDDSOgqFr3Gp6k3N/rNVl6Kpl4lWbq9Pxz9O2Tz9I2YUJO/zOnIfMldvqmPF8EGP9zNMUXC+KuqecsvSpRN8g3GMglW2dmmdhGxqPtkf7vvei5/dloeqY3J3zyHPFyk8zyTBM2R1GvP+0ixBwq3nzTLtZMWyU5rzshcRJTpJePWOq6pg4psYwkvuYsf0woesneKYxEd6+iUaShaoyDlDmLWKyFkDt+1XHnMQRYZKyO9zPvp4+v4Mk44P1PvfnS5N9QgjB7aZHq2xTLeKQp22fJJV0/Zh3VmrcnyudKq68CiSpKjTnUp1TyzUXTYBnGASJ2v9vYnxRkvPh+oDFmj3pLpgW67/T8ijZ5mQvf7yrWG39IOHNpcq1jNc2lFTLQakIgWLiDcIUUxfUvPq5f8dGP5w4Ed6b87Aa+pk+V5Sq5ziO3cdPMEhUN9dSzUET8PZy9ZU72y4bZ70F/HHgZ2f8/d8C/kfgxhNTwCFGQ5rlqgIuYKV2WEfI1LWiOhThWtqkF/aiGEUp+dWfJ4fQHsU83fX5fFvZoFu6zt1WCfsasqzbg4hRlLJQtWc+Q8vQCOKM5x1f2Q/rWsEUUGMrO8bk4n0acsJmL+DjzSF1z+LN5cqRyUhNE9yfK9MPEsZfMl7cpq6RZPkkuB+EyY0mpjZ6IVGqLGBntVIpRoCiLSdpTpqpys+4OqkV7Siwd+FveHsVo8tISg0j1fZadc2ZSRohBJYh2BlG7A4VI8nUNTSxd2SVbIOSrS5XlqFhGtpUglJt8FFyvgU0/v2zoKqRAaKgPwuhmBHGJFlZOqQvF6Z7OjzDML2UxBSod6UdwQ/YGoT4hRXwdOU5SDLu1hwa3n72RJLJSRvzIEzOnUyyDI0k29tDL1r1HoQpq3WXUZyyMGNMwzDlV592sAyNr9w5u/NBz0/o+DGNknXqVtDPtkckWU4uJZrYv3YaJQvP1ukH6b5E2WXs51GaqQuboc/cY8bzYRSlvOwG7A5jPEtH18WEZWjq2mT+3Z3ziNJ84nxzcH1nUjKME+V6qGm87ATcbZ0u4T9rXK8qwiRjsx/imDqLVQd9aqzjPahZsmaynwxdULbVpUvToGqZ3G56bA9D/Eg7cyJy1juOUpUA14SyhDd07cig1dSVW2bN1ViqO+S5cumbxaY8aj//+uMOYZLzo6/Pnzje3/8Dd/jOiz5/6m9/ysPFCj/7xZWzfeAL4OAzMIt1KIRyWN4dRizX3MnXjS/w7VHMMEp42Q243fTQNUG/ODPSTBIk2Y0E72Gi3r1n6zNbwKc/Rz9I6ATxROtu3EpZsnU8K6Fk64c+w6CwFb/oGd4LEjqjmIZnHckSyItzMk5z1hpKaHrsbiUllBzjyH3oouf3aSGlZL0X0hnFheuWdagjYMyWqUoDQ1OMGj/OyCWTpO9VIy8MJjb6IXdaHndbhws00+6TAAsVJZKfZPJSxjkszhRDExM332kmqZQqftCFmMwz2Dv/bzXVHFhruFeytk6Ke0Gtn/Hn8OMMDRXrjcdoGzq2oSOliWMa+9hS+85vqebwMEpZqDj74uTp+6OhKXbyIEj5aGNAq2zNZK2OMb5rappguepcKgkgRxUI4zSn5OhoQs3tNFNMr1wOWKo5R7Zkn2bNn2tcxQE5CFPGHZ6upXNnziNJlYzI+Dn0goQXnQBdU0nA4+L0dtEhMFexL8wAy3LJ+8+6zFcs3lutT/6+VbaL/VZndunn9NhLcHLs+X4U8uLC2w9U7D5fsSfs761BhJQwX7Gxij2iFyg92LJtHNsFNQgTdocxNdf8DWMWcta37RVte/sgpdwQQtx82eEItAvRSWBi/Z7lkrmyva8SVPeU7tHtlkfVMYhT1WrmWfq5LDdrrkk/TCcL9zrgRym/+MkOXT9C1zRaZYuHixVeW7x616s4zSe9tZmUPDiibWh3FE2ENC0dekFKnGaAyXxZaRWYujiRPSGl5NPtIZ/tDLE07Vimk5SSYZSiaapFMErkvp9v6ur7B2Ey8/J8XRiEycQ+WhNH67n0Cwv0LM+JUmXtXvf2BxmiaGucThAaU5/zInjRUQHrIEwnVruzMNZ68uMUy9BYnArWx2MUQuzTPQJVHVvvBnhXQEneHUZ0/YQsV+Ofr9iMwhRNA01oE7OEaRHMkqVT95RA4yxnr8tGmGRs9pQY7s4w4nbTw7N0ojTFNgxGUTbZn8aW5JahMVexGIazE0BnQck2uD9fIpPywtozc2V78txaMw7GT7f6fOu5ql4vnqNt6llnT5uj5p7svNLxY7p+TC9MKFs6izV38rzGc9I2dOYr+4Pjy9jPN3tRwYZIjzXYUO0yKnHW8xPWWu7MsKnimEw3Rh5c39sDpUdWcyxsU6NZtvl0a8h8xaZZuj7duavGZj+kH6STZKKuCTojZWLyonAVa4+imYmppaqj7NBNbXIhqnkmnqXxvBue+X1v9ffecdlRa7PrJ/ix0urq+jErdY+58mwh1rEYv6ZpJwbkR+3n/+CTbUxd8P33myeOVwjBn/it7/D5zoh/88//Oit191wJ4svAQtXBNnXiJGejP9b9ClmbEq93LZ3eTsz2QAmn94KEXIJAuVRZuk75EgqL58F6L2QYKgFlxUCZfcFerbusd0MsXeNJ22ep6tDxY4wi6XxU++hixWFrEF7YAv55xyfP1cX8KOfpQaTWk0Ty3fUurmmyWnd4MF8mzlQr0Xi/PLgPXeX5PYZiO/uTC5prGmS5urzN2tfGcUbJ1ietnxXHZGsQHvray0Y3SPj2iz6DMCHLJEvVk00klmsOt5ou3SDhndXzx++9QOkSDQr7+Wf9kJqnBNZLtpJW6IcJoyilVbaK/9+bf55l8GChRJqrWEBewX1mGKWnintBJayjJGdY6IGu1hycYt+ejikPFg+nz29NE5RsnUaRSD0YJ4/RKlk8Ckb0AqWztdnPj01M7U7dNT1Tv9REQKUwpIkL6YEsl0XHQYJjmkSJ0lE6Kl47zZo/Dwxd4JgaCwf2rPE44jSnPYgoOwZPdkcIAbqmXJGPQprlvBhr0Gb5mV0WD8KPM775vEvdMbjXKlGeekYPFyvsDiMax2i7ngaLVQfH1LF07VytdpPnWMSi0/eiimPS9WOklIRxyiDKeLQzxDV1okTNyaMSYS+6AUmq7r/1Ql/6VcdZTw1HCGFIKffxjIUQJvBqWADMgFPQnoVQPfBj+ieoKuSj7REbfXXYr9bdSdX9eWfEKMoQAt5cqpxZW8bQtWsX5Hz/WZen7RGfbA15e7nKV+40eKNobbxqGJrANARJKicJwFlQiyyhPYr59oselqmxM4r4Z95dxjH1UzsECSEQEvpBSsnWibP9VaUgzvh8R22ENddkt2gR0IRzKBECqtf3plv4bENH0yDPOZau79lKS2VrEDMM0wm77L3VOhs9JeB8VKLuMj6na+rEaY5tahxXFKoVTi67w5hcjsWnVUD0eGeEoasK+MFAsmwbFz6MjsJ4P9gZxlQdkzBRFP/1XsBy3aVk6xMdk2kRzOsUfTZ1DUNXTjAyV6LkUuZs9WM8O+PtWpXnHb/Yn6LJ/rRcc+GSYo7LciW1iwNzLEx9UIy0H6WFppNKuJ4VrqXjR9mxe840yrbBRj9kdxDj2jqepQ79cTJote7ODCgvYz93LI1eoJg5x1XUqo7ar150AwQCP8lwTeUkOG6buTc3W0Nxen37ccbuSCWxq45LmuX0/FQZTiTZRKfuNzpcUzHcNE2tnSe7I4I4Z2cYESQZHT+hbBuESXYoaBQztCXGrUhlx+D+Gd+5+vmJesfFvla2DT4pHC/XcwjinDj1uN06vKcMo5Sn7eDIvfEgZu3nv/jpDl+50zg189s2dP707/8Kv+3/+jX+8H+nxNBvSuS+5ppEZsbmQLEaDq7rnq80FTt+gq4J/NjkWy96xKnkS7dqM5/pdcE1dYZhiqGLY5mmY6bAKMrIc/j6kzYbvYiqZ/DVO80jmZ8173IMWlxTaaAcd4HyLB3TEOwMYnYGMZKQth/zvXcb1CyTxzsjBmG6r4VnjKs8v8d4vDtiFGasd0MqroGhaQWra/ZzT7Kcz7aVNfvduRJplvOsHVzpGMcQQjIqEn1Rkp/KebfrJzztBOiCSbLjrAiTbKL1M25Pr7gGhq6Yb7ahkWb5RA6iZOsz35tnGeS55NOtAWGSF21Rl5d0sXRtEveedKmvOOr83ih0IJM0x7EMXEvnWdvHMjQezJcPFUunz2/b0GbqbYZJNjlf1xoun22PeNYO8OMUXdMO6WMexDhBJgSX3saqaWLf3vbtFz2+/aLH7jBioebw5lKV6jHujeM1f9ltwKauHbvWP90a8MnWEIq9fBRnJzoK65rANjWiJL8UPaUky9nuRyqZOZVYTbOc3VFMnMlLeV8XMW867jmu9wK+9bxHvWTimUofNYxVi+9SzZ0pCTCGa+okaYptaL8hklJw9sTU/wD8GSHE/0ZKOQIomFL/RfFvrySqjsnri+VCY0hOElOaJvAL5sFS1aXi6vuCsemN7TfKCx23Adxrery9XOVWQZe8Dmia4LWimnbcplNzTcrLVT5Y72EbGn6UYQhxLiLlw+UqpqEjBJN2tTEGYTIROwyTPer7TVjdnhaWofFwsUKayWMPENtQVrYVx+DD9QGjOFWtPlJOXKk6fnxlibZbTZe5RLm2HTe/bjU9Gp6JlEonSRfq0O4FCVJCkqqA7TKDnJMw3g/KjhJIH0WKzXWnVaJZtvAsA00IsqL6dhPQNcHrC2UqtkHHT8ikJCoCQl0XLFQc/EgFUEK82vtTkGSTFsOufzgxdavu8c5KDU2DZvns8+Beq0SYZpOg8CSUbIOHi2VeWiGDSK0V1cpbjDFIrozyvFBxqNgmhi6OTTg0Sso0IMtznneUJp4mVHJvvKcNwuTEILPmmjQ9E9dULRhrDZedYawsiF/hOXNWLFQdKs7ecx1/Nk0I1hoejmFg6Ps1w45DL1AxwjBMJyK6p8V80Xow/Y5LtsGbS1UcQ+d5J1CtkUe8/ovujX6c8uHGgH/lxx+c6fuaJYv/5g9+L7/t57/GH/q//2P+4r/yQ9fu1DeGbei8sTT7HNQ0dVG+N1diue6QpDlRstdOcpNYqjlUXaXveFIhc7nuIqVqq9rsqwTJIEivJT65e4o9c6wtN1+2eT/pKl07IRAI0iyfPOuun1yZc+1x0IRqR7s77/H6QgVDE8c+81GUTtrx+8F+0f2rRskyeW+tRpJKlmqnMxMZRAkyhxTFOjkPhNgTVW+VbZaqSqcmTPLJ/pTlck94/ZhxnXSOXwSnjXtBfQ5T1xASXvZChKZc6frFvhklOX6cnotV2A/27gyjSMXUQqjz5eFS+cRkfc0zed0sF0m/q5VOMTRRtPQKlio2d5rusayf06z5q0CY5OT5HqN1oepQdo6/N4x1aqP09AXH4+AYOm+vVCnZOvbU3XQUZ5N2456f3Nh5dxySLGcYpgghGIYpNUetu2bJYrlu0yrZxz7L202PILn+934RnHVn/neB/wh4IoR4gmrKvAX8WeDfu+SxnRtSSl72QpI0Z7mu+pXHWVfbgHvzJbJMUvNMslzi2frEmWkaaw2Prq1aZc4aLIyilMe7IwxN4/781Val81zyshfwohugSXhtrkzZ1VmpeUXv7PXBmArI+mHCTkG3P0ir1TV1uf7y7QZxmvHOau3Iw3oYpTyZepZxmit2S81lrmxPxBAlqoowrobUPJNukCBQ7zJMVXLqVdx8pmHqGgf34p6fsDuKaJasSUCgacpla8xeapQsLFOnVbbo+sm+dgDlZjQkTJRd6kUy+8CkTXAaeS550Q0KIek9a+myY/LOapXlulO0xFmEidpsdU3sa1fZ7Ids9aOJ7sZlYmcY0S+YZBXH5G7Lo+snmLrGRl85c4zt4ZXmQLrvOUVpNrEjPoqtclH4ccpmP6Jk6SxUHdaaHhVX6aL1w5Sen7BYVe/1VtOj6+/fny77PV8GVCu0EuiclXiar9ioM/N8lr1ja/WD2B1GE+bgwSD13lyZubJDmikHorKt2iODJKM1Y4xjodVGydzXVnQeHJw3YZKx3gtxzf26U46p895aneVahGvpNEsWSaaEWCXsY05s9EK2B9Gh8S1UbN5dq7MziGiVLRarDjXXIkgy6sXcUK3uyl77OvbGNMv5fGdElObcOQW75XnRineSKYVr6fhxyvNOgGMorciSbWAbGiVrf6veSWiVbNbTkIpjnEuY1bV0+mHCs7Y/Of/myjampnGr4WEZ2iEh1jGanjVzb9weRGz21ZiOY7p963mPLJd8+Xb9zON+MF/mT//+r/AH/uyv8Ef/H7/Kf/MHv/da2j2lVGdHlsuJptSscxAU43osaG3ogsf9EYYGcxWbO9fMUJ+F6b0oyXJedgO0whl2OsZZqDjYunK8XKjaPN4ZnUpP5cnu6MIJuFl75livKZ6Km8ftJF+525icneP10CiZ9IOUubKtXI93RoRJxq2Gd6kaNgfH+GTXZ1i0nbVKGhXHPNUaLdsGwyglSDJuNdw9YfQrUNpIs5xHO0rH8E6rRNk2eGOpQpjkk313FkZRWqxxk6Wqy/15VYh4cMY7RJzmPNoZkueqJVAIQd01J/Nv+gwa67YNwoRhpNojV+ruoTvPSef4RTFrvY+lLWquua/LoeqavLNWY62QOKh7JqM4YxSnyhVtam6P7w9mwZgyp+4nT3f9yX1B18S+O0OrbFP3LBarNq611/Y3xlHn5mU5pkkJH6z3kVJpxR78uW8sVZBIdocxK3WXmnv4nWz2Q/w4Y6nq4Fr6pWgnH0SQqLj4bms2CeKt5SpZnuNYSus4yeREXH6M6f1/pa40zPQj4rrzQLkK5yyUS/vmddk2Jvf/y9KNPS+SLOdbz3s0y9Y+F3FT12iULKRUGsy3W95E7H5WvDaMUrb6IVXXZK5sz7yrveo402iLFr5/Wwjxx4HXir/+VEp5PXzYU2IQpax3A9JcYuji0EVi+uAfb8qzoGuCqmueS1OkGyTkOcR5PtGsuSo82R2x2Y/Y6IfUXJOlusO7R1hEXzXGgsK2ofOiE5BmklEU0JjR2+paKot90kbeO/Ass1yx3iqOiWNoE9HIZ22/aFHZq5g8nKJGHhe8xGlOmGZU7Cu2LT0GUZqhidlMiudd1R/uxz6aJnAM5fgghGDuQG/3St09JIbnx+mk2tXzk3MnLPJcCXE65mFaqNLuKSjnQtLwrElC4GAPv2vpM2nR7ZFiKnT9hNW6PLGymOeSYZzimoeFYqeR5XLiJpTmKvATYi8R8pqztwekRUvowXbPYThVcT0FW+Xg7x/FKSXr+CT3ek8Jng/DdKIDMX5X41bj8eeO07xwyNkvjL5X1YxficSUEIK7x1wYX3RD0kyS5cq2+awIC6Hj6eeaF3bbAEkW8sbSnt7BeJ0fDESOG+N4XnZGCWvnkN85bt1sFLo0/SABIZkr2ZOkrmPqrE0laC1DzKR7HzW+sdPQ7eZ+jZ7x3JVSTrQc4iygurTn8DiI0sk+M40ky8lyee4A3E+yicbgwRaVMMnQtb09UEo5cbppj2IWKjbDOMUz9ZnsiMn6AR4u2ZNE1FkTno2SdeT3HBzjLAyjlEdbI3RN7Dv/ap5JjePX5FF7Y8dXTLd+kB6y557G+8+6AHzp1vl0on7owRw/99ve5d/6i9/iP/jL3+Hnfuu7l34mHtwP+0E6ec+CgIVCr+MojM+Vl92AXMLduTK3mu4rUXQKk2zC3tkd7jnslW1jMqcGoSqIjBM4Jds4lVlFmuVHOvadBtPx2UEMo3RP7qAXUi9Zk3O14VmHLuZrDQ+KKabiC3VZ6vjxvsSUlOp9n7W4O96Dps/2JJOTpNwwTM/ULhimOeVCj3EQpdRLe/GJlOpsOGsS+qi4cRTtMTG6fqwuwJbBSSSj9V5AEOeMoow3lyt88Vb91GOZfreDMCFJJWme0/ZjHsyVj42lHFMl0ofFs3Ut/ZCW0knn+HmR5ZIkm92y9bKrEqWjKMOzDJI8nzzr8bsco1ywUg9ifH+I8hw/yqh56h33/OTQfcE29H13BoBVa//9Ua1dMfPcnMZx8fxpkElJmu0x/Ga1oL+1XCPNcvwk4+AtNUwytvpKt2uDkHtzpX1706VBqrWo4pvD79C1dL73Xmvf38VpTj9MJu9SCbOr/d/UI1bq7rHz4qyI0hyEYGMQ7hvncff/60ZaZMg7o3hfYgpUEXq6UH9wTo3Zfa6ls94NCBO1ZuquEvO/kvd+hThvGk0CPw38MCCFEL8I/JdSyqtXETwNpApYshySLCOIM1bqLqWiYqIXL/AkhEnGp1vKXvR282xVoIZn0g/UBnZRR4GjkGQ5v/6syz/8dId+mPLeWg3X0o8UzrxqBPGeHevtlqpk9IMU19p/GdsdRnyzqOouVm0eLlWOrWTPepa6prjHv/q0g6Fp3Gl5NEoWw6Itq2QZhR28EuA8uNCnkedyoj1wFUyd06AXqOqNEKpqfXB+epZqO9sdxQzDTLEAbMUCuNXwTkzglCxVGYiSnEbp/MH7ox1lTV51D1ftXUu1VPpxyvZmSMOzMA0lJL1QdU6VJGmVrYmo7Wno7k/bvrJ6NQRvLB6tpaYJcEyNXpCoVkcpFXvkQKSYZDmfbA7JcslSzdm3liqOiW2qy+FZEz6f7wwJYpWYOC6Y9iydUZTSHsV8vCEn7hwHP9ej4ucdnK+eqVOydcLk5itAp4Wta3zzRY9BmJxZLHfMZDINwcOFymTOaJoSkgyTHM/Siwtdwq+/6OJHOfcXSrw1I4g9CvNlm+1hdO5netT7AvXOB2HKi46v3r2nkp65lBN2zUmYK1tHjq89itkdRtQ88xArWAiBa2kEcY5n7j37F92AzkjpJD1cKBOkOY6hI5F8uqUq8asN91zPo1TogSRZvi/50xnFPO8ot8zXFso45pixYdHxY+bKFk/afkFrl9xqlqjYxr59wiv0xkxDYBa9cs87/r4Y4CIYj1HT1Binz608VxfpKFXGBVuDkLq351r6rO0TpRmrde9cbMtWyWKjH1J1zGMvO+8/7XCn5V1o/f+u773N5zs+f/rvfcb9uRL/0o/cP/fPmoVH24rV6Voary1UsE2leROlGS97Cb0gZbXuYBjaJDmqBO5V29g4Fqt7SrjZ0K4uzjoLdoYR613Vevvawt45LsQek+KzrSHfKpjdP/HmwpkuXsrkxJw4EJ4FB+Ozg2fYWN8yiDNedNU76PgxS1Wb5bp7bGuUY+iUHYMgPsymCZOMT7YG+/bn0+DD9QF+nOHZOm8squ8dMw37YTJTJ/Q42IY2cbkyNMFn20O0InEfphkfbw640/JO3QI2DFM+3OhjG/qhfb1k67iWRpLJQwm94+BaBkEcK2fcNOfJ7gjbUG3Yx2H6rtIomdRcE9sQPN8Jmc9tnrb9E5NKfpzxrD2i6ppX3uUxRla4FSapnMmI9SzVDaAJ+ObzLoamEWcZ8xUlDH8aBuz0/aFk7319o2QxCFNscz/DahbyXPKs4yvHPZSz4/h7ps/NMU6K508DXSidJSkVQ+woPNoZ8bIT4CcpX77VYLm464x1StNM4lk6W4OQzV6ErgkeLpYvL0khoOoaEy3Rk5Dlkq99sk0nSHgwX+aLt+rFWa8SxJ6lnzgvzoogzvilz3Z4b602cX591WBoSmfttOd2lks+XO8zLBzPTV3j3rzq5AgTpf+ra4LdYcTLboimwesLlXMxwK8b5z3J/ztgAPyp4s+/G/hzwO+8jEFdFFKqam6UZAyjlH/0aBdNE/zQgxbDUFV1HiyUTqS3hUk2sYr2k/TESuc0PMvgreWrc8LrjmL+yjdf8vUnbSSCu80Sd5oeX7p9M246sP95BXHG7abHziBmox/w0caAB0Ub3t/87iYvugFNz6LqmJOe7jHGrYkAyzX30LOUSExd8P6zDh9tDml5lqJ1l+19X7fVDwmTnDCJaZWsIwPAsX7PzjCiHyasNdxrZ02Nq41SKtbL9EH2shvwZHeIEDAMUtpZQprnRQ+2xsBNZyZNJ/awJYuaa164MiClnGh1+QfsqsMk4+ONQeGsIhlGKhFQdg0WKy5bBZvvIMZOjpahsVRzWKg4Z9KrGAvep5myVD/qtQkhuNcq8Y+ftHnR8fnGkza3mx4/XNip+3HKYtUhzeVkPh605B7rIJwHccG0OijQfxDLNRc/SvlkI+LXnnZolGx+8s0F5is2m/0QzzJolawJK+rge9A0MVPU81VGlGVs90O6YcJH6/0zfe/48yepJMlzbG1v3dxqePzSox12hiGbfeWu9vHGkIWKw3o3PDYxJaVkox+SpJLlusNC1Tm302GeyyPf11Y/5LvrfXKZE2c5m/2I9ijmdstDIOj48ZFMis1+SJTkSnz4iPFJKfnW8y5JJpmLLObLe0nOcfuNH2XMVWyWp4K/saZJnsOTtq9sxDXBcs1mux+RIZV+1TmSH+NL+0H4yd4eOBY93Rqo9/ZwsYKpa3y0MZi082S5CthbZYunu0r09v5cSSXEdQ2t0OAYV2K3BhH3DiQvwiRTjl6Wfqp9ZxSnk+cSJjm2oRMmGduDiN2hcsIdW5nbhmC14bJcdRnF2YQdtj2IThTonn6348tXq2yfeBmXUvL+0y4/9KB17NedBv/7n3mDxzsjfu6vfcCD+TI/8ebChX/mGON9cKsfEcQ5ZUfpvnWDhM2eqvJ/uj3EMnS6fsyD+TKdUYwQQjHDvT0m7jRLIsnUeWLogqWqc2PneJbLiXNdo2SyPYhY7wW4ls6vPeuoBCyCB/MlHp6QIB9FKTvDiIqj1tt5C2cH47Pp8zjNcr7xtM3uMKJsmfiJYkD1w5Sqa7I1iE5M2FiGhqGJmZf8WfvzeN2UZrBXtwYhn++OiJK80EhJ2R0mqhDX9Oj5Cc86Pu1RxL25w0LXs2DqGg8Xy6S5VC6ZkXpXXT8GuRd7HfycWwPF2lmsOpOE8ChK+XhzwLN2wELF3pfwAJVAbJVsvvWiy84w4iu3G6cquqzWXZqehWVovOgo9lQQ5ycyPqMkR0rYHYZ8uNGnZOvca6m90DaUMZCUkse7qvixVHMOMaKGYcpSzUXTLs/45CQkWT5hofvxfiZgmGS87AZ0/Zh6yeRlNyJOM6qeSdk2aY9iZfYyAzvDiFGUslBxjryLlW2Dt1fU30dpxmYnwja1medtP0zoBymDIGVroOKw+bLFKE7xI+WiOR2zHxfPnxZCsC/e3CjabJdqzr7kQhBnvOgEPOuM2BnG/HNfXMExlYFPlktuNZVQ/ZNdxUYf702XlZhyTZ07rdKkIHPUMxyjM4r5zss+mZT0A9UKGac5SZYzV7EKqY/syHlxHsRZzvYgYqsfKvbmKyi3ZOqCd1ZqdP2YxzsjWmXr2D33080BH28O6QXxJH5ZrNoEcUac5dxqqnvsOObMczXPfyMkps47wjeklP8rKeXfKf73h4GHlzmwiyDKlLAfQm3YnZGyaP10czj5mvGkPw5hnNELYnKZvxIU8THyXPL+0za//PkuUZoTpxlrTZe3l6/WBeUkxGlON4gRQtIqqxajKMuIU0mUZPSChCdF1VgTyqnkzpx3KEHY9mM6o6Sw+I4P/R6B4Fnb54OXfXojZcM9y4Z+vKhtU0MXgmGUks8QFDB1Dc9WS8E2tHM7oFwEnqXT8SPCJKN2oP/6ZTegM0rZ6MYITWCbgtW6OpzSPD8yGfO8o9hEz9r+pY5VWasecFYLEzb6IcMoY2eY4FoaJcdgpeYSZ5lajzOw2VcOgtuDiOE5Wl5vNbxJtXJcjVXU78M/qxMkgGC9GxClOUme0/VjNnrKan69F2JogmGkHNpaF2CWHcTtlhrnuKUqTLJ9gvxjJIWo7O4oousrnZlB4VrXD1I2eiFhkpHLnM1BQM27eZbARdEdxQxCZWkdp4efyVHoBWrth0nKYtU+VD3dHIR0fdUi9Hh3hG2olhTP0liq2YcS4tPohyk7g5hekLBV2FifF8NYsWiCJGX5gEXyk7bST9rqx5iFXfBqU+l75FJd3mfZc4+ilK2+0tAa0/VnoRckk/aXOMsnF/UsV38XxBlCCMIk23eJX6m71D2TtYarWogT1T4WpRnrvYAX7YA0P58g71GYL9uUbZ0ozdgeKM2szV5EZ6Tc7ECZLtQ8k7mKjSYESZZPWjKiRLU0OKY+uahOX1gNTQVm0xiv/c1eNHM9HkSzZKmWlzjFMcaMrICun/C8o55JLiVVV7VLeoUxh2No5FISpRmVE0SXT/tuZ2G9F7I1iPjyJRSoNE3wn/+uL/HmUpU/9hd+feZZfF7cbqr90LV1XvR8Pljv48cZ82WbZtmi4hiUHYNuEQvsDCKyYh3Men6jSM3P7UFE10/YGcT0b0AIXSLZHUVYxh6Dy48zDE3jRTdgvRMULraShaqFJsShAshBvOwG9IO0kEY4/5pTzMyEfhhTO+DetTWI2OhG9P2UjX5I07PxbJ3bTQ9dCCqOoUR4jziju0FCe6ha+XeH++espgkWqzbbg4hPt4aTi+Z6L6TrJ7zoBIfWZZzmLFRsKo7BUs1md6iYzpu9kM4oouNH6tIf5xO9lSyXR8Z4YxiFlXvZMRCCSRJG00SRfEj2nQvDKD20BwGTVtqFqo1n6YekE9TnC9joRWz3ozPFYK6l9i/TEESpYn86J1wmq65Bo2TysqeKMN9dH/CyGyKEYhXeanjEhYhynOY83h0dOv8qjoFZJNSuC1ku8eOUUZweYsV0R7FqzY5znu4GtMomZcdgsWKT5Bn6EYFvnOasd9W+/qJ7OpWZ6f12VuyoCUGajxMnJnXP4GUvwI9z1vshHX//3tgqW0gk3SC+0JodYxilbA/UGKfnISjN5LHpVVLoN3b9mDjNJ/8DWKw6xRpOJm2ml4mTniGod+PHKWsND00INCHY6oUTDeFRkSx2TJ2qY9AeReeS0jmIvJhnbT8+tQHKTUBKyfNOoBj0x8xdFYupu5/6OBJQZilh4fo5bnmer9jomjJTOI/r9U3gvLea94UQPyCl/EcAQojvB752ecO6GHQhGISpEiluuehCIITS5hhXdU5qy0uznO1hTMkyFH1TaKzUnTPThy8bWa5aKf7xkw5ZDlkm+e1fWeUn31jEuiTRvfOOa2sQUXetCa0QVDb/Zc+nZCmL2kGY4JoG76y4fOl2jfkZVeppZtMsC88ky3leiGzXPZO3V6qUZyQO5ys2dc/E0ASfbA2JkpyKY8ykNC9WXKJEXonN62nQ9RManppbQZpTnqpmLFRtXnYDFqs2GRJy5RJS90xedEKetn3uzx9mADqmamu5LJFuP84m7i7RgUtczTXxLIM0S3AM1TfeLFncaXp8sjVkGGbsDqND62eWtfpZ4Fr7nTSTLOeTrQF5rp7bdOXGMjTKtsGX7zSIkoxmxeZ20+PRzog0kzimVrRKqgD80+3RmTQejsO0HsIgTHi8owLVO3PevqS3chpSotcL1YCFqsu9lkc3SBiG6qIdpqqKOggyPng5oO4ezQb8jYAwyzB0HSuH15dOz/ba7IcgBY55uOIOSkTaMTXSTPL6Upmen3B3zlM6dZlqJzqqrVJZ66qK50mXghPH2QsnSbODDjOLVZv1bkDds5Tlr4Slimrf/HhzyFY/UqyBAwwbc8pe+7j9yjaUoHqrlE/2vTTL+WRrSJLlxbzXZ67L8bp62fUZBClWWSPLwTENHPP8TlFHwTI05qsOwygjSHJkEURKuacP6FkGd1oGdc+iHyS0yha5ZF8L9xhpYQ8vUfo2XT+lFwwnbYLjzzkohMaPspmfRpjsFak6fsJSTcc2NII4Y7Xh0iqp6nm/aIN61g3ohinNop3H1LUTK5anfbez8P7TLgBfuqR9y7V0/uTv/CL//M//Iv/BX/4Of+p3f/lSfm7FMSlZBo93R3y6OWSx6tApnL7GbfdhkiFzJg539+Y87BlaguN2Xl0TzFXUc1auWNd7jqdZTs9PD7kkzZVtNnohc2W7SFBovLda41bTU+fM1nDCapgFx1StGZahnVmnaRq9MJkU64ZRhju1VuqeiWNq6JpJs2TgJ+pzvLZQwjJ0NCH4aGNAlstD4rywf7+0D+xxtqFRdgw+21KMja1+xN25PVMBXROHkgyLBdvtTqvEfMVmqx/SC2BjEJJJiW2oNiXH1PGK3/d5ITPg2fqJ7PCyvceiUY6ngqpjEsSqWDXeDw1NHNqDQMU7UTWfGErMei9Rqlj4Vdc8thVrFvxY6X0ZmsZCxT6R3SKEMhNarbuEcU4uE6quSbNsHWox/Lsf7WLpOlJKvvfuHrOV2YMrAAEAAElEQVTyTqt0rHbdVWBrEE3i1oO+3PWSqVq+05zFqqsS1xWb+3MlnrQDNvsRQohD0iVGkdRL0pMd/sYY77Oadli/J4gznrZ9NCFYqFjk+djx2mYQ5ugaNA/cJ8eal3XXYmsQnZttvffz9ubhwViv6pj8zLtL/MrjNu1RjB8pA52NXkCSy8me6Jj6xFRivRdeuvPwcc8Q9mLzNJPcXyjRKJvsDGLW+yF3Cvf4aRZfDjRLNkGsklkXEfDWNYFrqn0sTHLMV9ShTgiBbSgJiqNc9MY5gDSXrDZc5ssmW4NESUWULHLiiRkWqPfuWgZZDu1RQrN0eXfCq8J53/T3A39ACPG0+PNt4AMhxLcAKaX8wqWM7pwo2YqpARLDMLg3X8YxtH0Jic4opuPHtEr2zCSVrikdqt1hOjmQRlFG6xT3prFGTM0zL5Vp1QsSfvmzXV50fAwB9+Y87s+X+bGHN5uUgr3nFcTZPhvebhBjmzqerSpueQ5lV+edlRrzFRXcbPQUa2ahYtMoWZRtg9cX1YOedeE2dY3X5sts9kNutTzeWakfOS5T15BSTi5Ro1hlos1Cr+DTLcWiuztX4vXF/TavUsprawUoOwa9IFHB1oGA+nazxEJFtZl9vj0EhGL8ZCoZKKXEszRA0TYdU1U677VKikZ8SXPDNrTJgX9Qz8M2dH7k9TmGkWJopblEIPCTHD/O6Aeq8uHHWVExVYmr+YIGb2gnX9hOg/EcAw5VhaqOwYOFEq9RJs5ynrVHfPN5j1bZ4nbTpmSb9PyEIEnRNMikqjZt9kMc8/K026KpC32U5DAVs2gCXl8sEyQZX75d51k74P1nXRbKNreaLmXbUK2naTbRLekHCTvDCMvQbsS2+ySM2zyHUcrbK9VDF7CSaXB/3iPNJQ8XT9/+XLYNoiSeVJgPouKa/MSbC6S5mq/fedkjz9UFJoxz6iWT1xbKfLQ5YLMX8nCpMmkNcEwlgprlpw9ujxynYxAmMa6lHUp+3G6WmCvb+HHKejdCIifMpnGrSy+IcUyN9X6ALrSJ7tjDxQpJlh8bsJm6qvTujiJWCp2SuEhIDUNlJHF/vnSsZppETC5frbLN3TmPNJOTn3eZcIw9XYxWWbERxu9vGjXX3DfmWa0a488pUGxZzzTo+Qm/9NkuK3WH+/NlSrbORi+j7FinuvR7ltLhkZJJ+85aQ7G49hkwNJjMt1GUUirmkCbGe3fM07aPXlysukGCY+jcarqTluGT3u0s/NqzDpahXaqMwNsrVf7Vn3yd/9MvfMxveXeJf+a95Uv5uXGWF+6opUMOhKDW4DurNR7vjMgKeQZNCB4XbmdrDaXVFSU5EqlaOx2Tim2iF+f7NMausbncc366TKgYSOm1TX+WZmnPlTiIUxoliWsazJUddgYDeoG6RFqGch2+1dxfOFsrtNzGmmvnRckyEEKxmQ62nnmWMdkr/TidtFP6cUbJNonSjM4o4mk7wNDg3bU6i1Vn8rlKRcw26+IMKrk4iR2K+HCl5lB1DGzjsJGBqWv7kl8LVcUQf9wesd4LWa27fPGWMvhJspxnuz5Pdke0ShbPO5FyOK06x2paTa93XduTAZhec46p89pC+dAeJIQ4Uay+4yesNFwanjnR/RmECV0/oe6Zx7bp7A5jnrcDPFsjTk8Xd5i6YKXuKp3Zsmrvno79pFRi6HkuScj5dGvIF9ca+9bJeE087/iMooyl2um0Qc+Lsq20Uy3jcPznmAY/9eYCfpLR9xPFdkEwjDL6QcIoyrAMQZbnPO8EeJbBrabSQnttvkyU5qduSVyoOJRtY1JUf9kNeNkNcE2dqmvwohMUbaoqubNQtak5Jo2ydaTxTsU26QXJpbRFjkXZx/FInkuetH3SrHBf9izeW6vzq4W0S5ZLKo7JMFbth2OUiud9Emv3PDj4DMdI0pxffdqh68dESU7ZMXkwX5oUkrJc8tZy9dBaHc+NsU7tReBaOvcXKizX9u8JaZbz3Zd9hnHKw8XKofbWm8D9+TJhkuFNxZ2TNkQp0YXgWTtQmqFVmzQzsU31HKuOOVPT7rh19irivLPzn77UUVwyBPDZzpD1bshr8yVut0oESU5Y0PyBia19mAQzE1NCqP7/Ww2XnVFMmGQsVE83aZ+2fdJM0gsS3lmpXkpyY6sf8he/8ZynnRF+nPPeSpX5isOPvD73ymQ/H8wrK9BcSp7sjrAMjc4o4dH2iIWqxY89XODXn/VolWzafsxKQzkvbBetMlsD1SIWJhlPdn10TVVxDm76pqGxUHV4c7lCzT18oRhGKc87Prahc6do8brV8OgGMXGW0x7GRGnGi6J/veZayoVkZc/JcCwUWHaMI21QLxPNkmpf0IWYGUxlueSTzQEbvRDb1PnSWo0kzxGoCsXTtrKkVqyQEl0/pmQbPOv4WLrG3VbpTMKjs2DoGg8XKqS5nLm5Sane4eNdH5C8vVxjvmLzwXofQxe87KkxfrY9ZK3hqp7yssXOIGYUp4Xl7cWCIM8yqHmGcsTSVYCVpDlBkhdWtIr1+GRjxIuOstK1TY3FIjtU80x+8EGLzkixMcZJU0go2Zdjt9v0LKI0pzOK2eqHdIMYU9OQSEZRNrEvXu8FrHdDdkcqIKt6ymHDAL7vXmsyx6Mkp1tQdD3LeCVEgKexO4r5tecd+kFKL0z4p99Z2ree5isWAsVYOQvLYaXuMle2i2ri7LntmDp+nPLdlz2etf1JFVNRoFWS4IOXAwC+/aLHcs0lTMYVUg4J/J8HyzWXVunocVq6xkaQ8slWH8fUWao20YtnoQlBLpUW1EYvnAS5rZLFs7avtAQa3pHB78tewN/7aIuX3ZBvv+jzh3/0Pp5t0CpbvOj6tEo2zzvBkWwNUI4wXT+eXI6/sFYnl/JKKuuGrvHGYoXsEn6+Z6nPGSQZd1oe7VHMk90RQaJEoLf7kUqahwm6phiMd1ulY/d6x9R5c6mKlHJymRYF2+IgVmouu6MYSxd8sjlgexBze86j7pp852WPR9sjhpGSGbjV8pgvO7Rii9KM4P60eP9pl/dWa5cefP7LP/6Av/HdDf7dv/Rtvvde81ICeKdIHpQtxdibVcEfhMmkJWFzEOEaGt9d7xMm6vx+a6midMJ6EWvN4538ukEyadO3jfjCgroHoWLGMkm2/3yM0oyNXjhpvxhGKbfWVCtjlGUgJB9uDFhrlBhGPdYaKt4YMzUMXUySdxdByTZ4s3B7nMXAmbAIDY3n7YDtYYgfp3T9hPvzZfpRwiBMGMUpi1UXIVSC+PGuShTebh6WZRhjVuwghDi10DioRGbDVa2005e2sfOhZxk8bY94squSCm8sVnBMg4WqfeJ81YTgzSVlnnLwOZ+HjRynqp3G0rV95/HTtnJX7ocJ70zFm6Bc4l72Asq2oVqhhOSzLdVyd7BVbBaEUNp9B+ffGP0w5Wk7YBSlDKKU77nT4O98uEXZMXhtocRiVSXPVBJyTw/vKhNT8xWbmqu6GmbFp4au4Q8jPtkaMAwzbrU8FqsOn24PMXRB108KuYpAtQZbOmXb4HknIEgy1hrHi/aPEcQZz9oBuqZkMrb6Ec/aAZYhqLlmkQBTzMKwH/F428e1NN7Sq0eSD263POI0V0zoC0JKyXpPaReuNlxkzsRBcWcYsdbwaA9j5so2vSDh9QWPX/hgi1GU4RoazzvKsfxWwyWXxzuUXwSuqfOsHeyL55+2fV52w0mLs2upNu2KMHne6eAYGp9tD7EMVXQbr7eT5sZZoAmBBriGtm/veNEN+NpnOwDkEn74tZtPTOmakij4cMOnbBvcanps9kPl3hwlSCmoODphnLFadwtmZkiWw9P2qBBRF6zU9jQWL/NZXgfOdYORUj4RQjSAW9M/Q0r5q5c1sIvgWdun5yfoQtDxE5brSoRyulXILdx7tgchf/vDgLut0iHR4K1Cr2BuBnX5OFiGRpopkbHLSGiEScY//HSHX360g5/krNRd7i+UudXwaL4CGd4sV4koJbTnsdWP6AcpUsqChuvgWepSv9Zw+XRriGtlE9pw2VHZ3Gqhe/Boe8jzTlBUGtNDbTqGJpgrK4eiIMkPvZv2MFZim6nqXa84prLp9kzlmhOH7AwjNARxKtEEhw6Xz4r2s2amdFY6vtIZGLN8rgKmrvGs7ePHGct1Z9+YXnYDvv2iRz9I+eKtOp5tkEs5Ca6jVLXZjee0ciTLiueQMYzTS2HvaZogCFM+3xlRdva7Hbb9mI83Bny+PWKp6uAVVdlbTY9hmDKKVLBTsXXavmr7HEVpkfhR2lWXEQSZukarbDMMUzqFYGrHT1iqOvQC5ebjmcaEfTQ+CD/a6LNdUMsdU63dvSBauWZcBjRNsFp3J5bOH20MuNXw2OiFLFYdpFRJ9LF7mR6iNLtMg893RrRHMVJK8hxut0w0DQjGY3z1Dp2KrRfi34K0YANt9sPJ3rrZjxjFGQLo+2fThRm/n61+SMdXycTxJWS8L32+MyTOJGGcc7floWmgCY2SrWPp6pAfhBkNz2JrEPKsrYI429CLdrGLr3fLUOtxnBy7M3XRfLQz4lefdPCjjIdLLkmh/bFcV0FkJnOQRdUrThhGOrujaKLH0B7FRyamOqOE3WHMZj8kjFN++fNdfuzhAitFQDMM05nfm+eSp0Xia63h7kvQ6ZpA5+rmmaYJtBN+/s4wYmcY0fCsY5kL09ovZVvns+0Bn20PsQ2NQZzwbFfp9zTLphK3jU7eJ9V7Ozy+YZTy4XqfQZjy+mKZtYZyiv1wo8/WQF0sh6ESbTZ0xZ6L0pyqbdLzU5ar4kItuVLCt170+H0/cOfcP+MomLrGn/ydX+Jn/9Qv8u/8D9/iv/r9X7mU2Gap5sAxCSJTVy1iwyhltKsctNI0Z2eg9sBf/lydHbcaLu1RwrO2z1LNmZnUc6ecn66imCelWjNRqmKS8bra7Kl4aHMQUrEMpITn7YCKrdhi/amEWbNkTZ7rZj/k6a6PqQvmjmD2nxUHE1I7w4jdYUzDM5krK/e2fphMmIadUYJnGYRJxu1miTCWOJFidrumzofrfbaHEa2Sze4wxmsefaXQNIFV7Hkb/YBvP+8RJjlvLlW4M3e4AHkQFVsJyTdKJmuNvfa08busOAY7Q4GUsNlXDqUrNZ3tQXSqROpR7XJZLvl0c8DWMGKt7nJ3rkSaKwMGUHppBy/6pi4mbKPF2t7vVm2/+cwCzPYwIs2UMLtraRNR+M4oOXGtjU0cBIIwzbB0jdvN/W7NhqZia0PXuN3y0IRG24/xY/X1tUISwNK1SfdD1b36IpdlKImPl90Qz9L3mQ8NwoSvP+7wrB0UjHEdQ1fxU5gol+MgVswppTcYs26ISTK7PYpPlZhqF5pMMHZ6TpDklG27iElVK13ZMfHCFEMXfLI5YhQrZktjSpdrvafOlHEHyGUgKNjT7VHMKFJ3AENXzKiqaxbJS3VHuTdfwjFN6q5FyZIM43SSaBy31T7eVJqbp3H0PguiNOdJW7XUjt2rq66JrqnfvVp3Waq5WLrGo50RSZpTtgwe7/jFXSacxBphkvG846uW3qZ3IbH2NFfmMjtDxU7thxkNzyRMMkxNw08y7EtIIF4G/Djl15930YViji9WVf5idxhTtk2SPKdZUsn2NJds9EKCWGnyPdn1JxpxnqlP5t907Hn7gs/yOnCuXUcI8R8CfxD4DKW6RfH/P3k5wzo/0ixH0wRlWyeXOe+sVPnirTq6tr9afX+upDLtnRFRIvkwHrA2Zc0tpZwIj272D2vjHIe7rRKjOJ30vl8UO8OI7673cW0Tw8j4sYctvud240zVpqvEmFYL6iBwLI1eALou+Or9Bs/bAa2SjWNqVF1VwbIMjV6QMFe2uTdXUk4JmmAUpbzshepgEfCePfsZbg8iklSqKkHJmrSwuZZOrbATtgztUAVvrmwX4pc6gyDlVsvlraXqPl0EP1b6ZEGSkWXKmnurHxWMoPDKElNhst+5afqCJITK+uuaQMp8coF5Y6mClKoFzE8yVhrK1WhzELFQthGiEHe/xFbPsUtNexgzX7Yna8Yx9eI9KhHYcUvi3ZZHlKpgbBipA3u9FxKmGc+7wSQIOo61cRZUHbWJq556iSYE82Ub0xCTdTxfsTB0QdOzsE3Vc98NErYHMXEW0PAssly1sZRs/UoosHXXUkFzSQk5L1RtbFPgWQaepbRrbjU93lwqU7JNBlHKMEzZ7Af0wxRbV0Ha64tl7s2XMLSLXWyvClXX4qffXmSzp1pvp/fWrUFEnCl6MgKcI9b7SVAtreoyN76EDEK1L6krlqLAl12Dey11sbCLwsGPvbHAKEqxdI3PtkdFkB/xcLG8ry35omiPYsKivbQfJJOgYRilGLpGnCc4pjbRI2qWLDxLx9AEmZQMgpTnnYA4U0FGyTZIMnmsfknNNflNr88x+tY6Nc+mN0rYGoRYhs5KzUHWZmvxjOJ0EtyfdOG8CWz1I6Vr2I9YqNhHXtyklEWLtBIfb3o2X1itEecSDZX886yYtYYSnD+Pzt0Yu8OIzX5InEpedkIWKqr9yDV1GiVTPU8p6AcpJVvnx9+YZ70bMoozNA2W67O1ak6LMMmI0pwv366f+2cchzeWKvyxn3mDn/trH/AXvvGc3/nVW1fye6ZhGxpzZYswSbENgzTPudVyqbgmQZKSZorh0/ZVK2TXV0mTWW5drqXzxlKFXMoLt4bMwjBK6Qd7a2acmBrHQ03PmojjG7rG7jDmTnE2vrNSZRCl+9g1UZqxPVT27pm8fLFi2FtHm/0Ix1SCublU67/mmcSp0uX0LJ23l6us1FwsQ+n6vewG9EIlSO5ZOne807sFfrwx4HknpB+oYl+9ZO1LHvX8BKHtLxi6lj5xUp2+TNdck4dLZbRCnyXJVOzx+kKFUZTNbG05C3aHigXuF0YRC1UHP84movXdQMVB432mbBsT9tI4rh3j3lyZUZzOdC6se+ZEI+v+XInFqsPzjs/TXf/E1qv1XsgwVML1Y1mHRsmk5u599iiVvDZfoePH3J9XLeSfbQ/xI/U7x0Wto8Z+ldgZ7ol1t8rWJG4Pk0yxZw3FHJ4rXGUfzCs5BqW/lnFvvqSSwknOZ1ujifbgaQudNdekM4oZRim7fkbdMVmu1VmoOZQtgyTP0YTA1DXmKjYfbvQxdZUEDaekGbJcslMUIcYdIJcBx9AZxSm9ICaTqt32zXHsr6lOiYpjYhs6VVuJxL+xVGEQpqzUHXaGsWqztXR2h6qlLkpyRqX0Uu+RUkp2BqrQ2Cqrzz5fsfmptxZACnRdMeO3C4METai9rVFWY5huPe36ycTNuB8eJiicBQJV7NI0wcteiKXrbPYjXlso8aXivHx3tXb8D7kmvOwqx9btgWKpD8KEharNSt3Fj1MMIZQJlqHxZNdXrDxDkOaStbpLkOQTmY8xOv5e7DkI00vXF7tsnDfa/F8CD6SUl2fTckl42la90e+u1Lk/51F2zUnQKqWcLGRROI3UPYtnu4GqyoXJhIEkhKDqGvSD9MRK1TBKebI7wtSVXbWhaxdmp+S5RKIuV3//421lmeqZfHltnp95Z+VU1rPXBa+oYqi+ZoNKofNg6GojX6zsBYmVQlNgrCnRCxI+WO+TZpIvrFZZ74cEUYapwzsrtSMDyJprEiYRJVtZinf9dGKvWnNNqgdaKKWU5JLJ7/XM0qSyNEvfoF5Smf7Fqs0wSlVFpxfS8EzW6t6lVC8PQlWqVEXt4IF6f66kLh5TQsibvZC4aIf7vB0UwqRKUHAYpVi64Mu36pcu9Dd+9p6t76Mpl22D77lTZ6lmU3WU1Wk/TOiOYuqexfOOT5iozH6YZKz3QvKiv7w+b15KBR7U4fbWUgW9cClJs/06QVku+Wx7SJ4rfQq3cCsyNeWK5poquLQMDU0ood6en/DJ5hDXUjbMF60ySSmZr9gsFu3BQZJN1sUYT9oj1WOvayzXJN0gIZNKv0TXFLXc1BWryzaUm9mHG31l+jBXuvIW381+SJpLlo4Qf53G/fky9+b22qTGe2vVNcllTsnS8ZOUiZ/5GVF1lJ7D9LrxLANDFyxUbBbKNq2yjVkkYfxEOUE2Soq1tz2IqNgGmqYulQ3XxDGNS73AVhyD9kiJNE+zlNbqbrEOKry5qOatlHLS/jOMMiQq6JBIXnRC6p7JasM7NikDsFp3WKjaLFVtHm2rdof3n3YJE2U7/X33mrws3Cinf5ZbCKUm2fkcafNcGUlcZgv09Pld91Tyueoah37HWJurXOgabhaX7zstF9PQmKs4rBTuiJ/vjDB1QdU1udPyLpTY9SydiqPmdb1kYuqCPJfcbno0SxY7g4jnHeW00ymYCgtVm/mqzbN2wLO2khc4b9DoF4YUl+HIdxT+0A/f4xc+2OSP/3+/yw/cb+0TVr4KbPYjtgcxYSKBjJpr8mC+jJSSbzzt8GRXVdrfXKrwtGA6HhSN3R5ERKly/DsozH2Z2LdmppgmCxVnEg+NW9mDOKNsK80oKeFlL8Q2NB4NVFvc3ULCwDFUW8ZpXKTPg5pn0i7Wkff/Y+8/gyzb0uwwbO3j3fU3b/ryVc+/dm9meizQMwMzEigMDAEGSEnQD4IhAhAlKCgExEBIQYqCAAIQBFFBCREKgCGSEEgJCBiCA2KAgWnMTPe0f6+fLV+VPq8/3uytH985J+/NvGnrZla9Dq2I7vdemZv7nrPNt79vfWtpSjn+d9dqGAUxVEVGp3IQE1cMhZgOGYfMiA1mqHKuF3WCTt0hvc6mreF7T4cYh+SCN5mQ63kxNvJ1Ymp0tnVy19Xjzt1in77TcbDaMMuzdB46obpK7WF+nMLR5FzrDOj7EVJOjPuPt0ZgYKhbGm53DoxoZp2LjqbM/B5tR0drgjFXMVS8sVzD3U4F8THObpwLSHncstFP4EYJnndjhClpSf3UnXY5BksjI4xOlYrBtk4dDEEyOw6+qqQUQDGlG6YwVGnqzK2ZGm4t2Fipmbi36KBmaUhTjl03ygu1CXZGtNfbmoJHe0PS/6oZuNtxzvzuHV3BG0sVfLA5ws4wRBhnuLdYwdOuD0MlNlmYZGjbGqqGip+7u4CPtsbQVWkqYSJLrOwAmWcLpCQxvL5UxcCLESfkOriFEJvDANeaVsnaEwKomBQfThq7NGyt1H8TnPSKVVmam/5sgYwDsiTBUqnDYGdE7rq2Rjqyuibl+6GCXYRYb1q43bHJ9fBQnE4MSHrP1gvGsoyRjlzVVNGyNIwjYgOamoKvXG+caZ64UYr+JWhHH4auyGhYWl48l/CD5wM86wV4d72K1xarU6YVVUPBIEiwXDNxe8Ehc6Qkm9JKBmgv6boxPcsLFn+vEhfNbnwAoA5gd35DmQ+4EBBCwIsTPNz3oGsHDh33d908QLVQMegi/FO32/i+2ocABQdVUy036Ost+0xVg4Efg3Mg4hxelKFmvRizIkozPNj1sDcO8/YoF4s1E9caJv7ge+tXJsh9VuiKPJW9B2ZT5ZOM42kvACCwXDOgKxJZj/cD7IzI5vZay8R600KaHW3Rm0SnaqDt6JAkhqc5pVoIlNaik88ozTju77lIUoG1hgEBho1+AEOVZrq3qLKEux0HScZh6yo+3CSNJAZgwTHQ9+NLSUxJEsOdTmXmnJMkCSt1C097HrpujDgT+K1HPdLBaVKipLi4XWuZcEPSTroMb9ROlXSaZq2LhYqBQZAgTDL0vRjfeNRDmHA0bLWkmAZxhpttG4pMoobZOYPHk4JNL6I2Q8aA2wvkvqXK0xflME7xcM8DF3RxN1TaBhccA19cr4MLoiRPis32/LhslQzT7FStqZPGOD0fTTTsgwphEWgC1JLc9xJUTQUZp1Y4W1Pw7modAqRjMSny64ZpeYEZhcmlJqaG/oGVvczYmfRaJp/H1N4qBBSZQcTAR1vuhcZzrWUdWTeaImG1buBx18cHmyM0LA1LNR2rDQtPu3SJHYcJALocjsIU9xZtBDElCedhUzyJiqHizeXqkYRNJ9dVeNrz8dHWGHcWHXy8NcKjfR+qAjiaSq2pUYqbbbt00sv4yesmSjk+3nbRqer4wnoTdzrUXv1rn9Cx3fdjag9wqb5kKHK5rymyhHu5mPFxl0GRn7XSoRbXUZjgaZe0cW4vOHPRokpyh700E7jWsrBcM9BxdCgz2F4bgwB+lOVOpyo2B6TNYWnSEUH7KCW3s0JvbLZH4+l41vMx8BNca9pYb1pgAJ50fYyCBAt58tmNyBikYavoe3Re9b2kvPgDQPYCc65uqvjLf/THsDJn7aRJyBLDX/rXv4Bf+r/8S/yJv/ld/K0/9tVLZWkWz6NmqrjZtkr3XS9/v3ShyVA1VdxddMD5dOzhRSm2hyE2BiRe/PZq7dS9SlzwHZy0ZibHtFg18KTrYSdvG3/S9fBgz8XAT7Cet38WSfb1pkWOkZfUZrJaN6cKC8X4P9sd44ONEXRFgqXLWKwauNV2EKccYc4cUlWpZBrKJ6zxIMnw4dYIt9pO+RyuNy38xK0mZOmAxV4gy1uZn3Q9unTVDWRczHRTPgzG2NTZPI9YuWaqeGu1CnNfgqpIiJIMccZRMzUkKSXBBcjYpW4RU2cWxmGCJ11yd7vdsWcWPWaNV5mRNMoyjof7pJe3WjfRsDQw5iJOMuy5MdYb1KodJFmZ9DNUGW8sT8fph5/Xy0LT1lAzVUiHzkYtbzd72vPxvB/AjVM82PHgJSlW62ap5TUOU9xbdNB147xod/6EZKEvdq1pQVEYFEkC58SC3HdjuGGKD7nAvSUnbx+UsJ4nQScx2QEyT3QqOlYbJmRGmkzP+gF0mc6utYaFxYqOZ/0gb4lUphj+U8k+S0XFOBqHzAOMUWtrnFLBvOfFSDOBf/nZPmxdwVLNgC5TwgogSZZibIePEVtXZsZLF0GaUaxS0VWsNq2y+4TGfLbPfjahHX2Z7KrC7EJXJNzfHePJPrVXf7pN8jKdqoHbCw64ENgehZAYsFg52MNnncfOHJ/lVeCiO9KfA/BdxtgHAKLiF4UQ/6O5jOqciHLnLFsn8eh9N8JH22PoCmWZV+okFpdmxaVtmr7YsImGW9jGTuIsm0vD0jAOU6gyO+J2chH4UYbfetzFP/9kDyt1cj6pWyreXq29spOKMXZsDiROea4jJJBmAmGa4bvPBliqmmg7ap7NJneN3SHpRq00DPS8+ET6ZnG4rtTzlom8mnUYQa61FKUZfv1hF36UYb1hASAGwzBM4OhKqVUSxBke7lMSs2FpEEJAk2XULdLzuWwaZHGw9n1qRysCi+1RiMf7JMp8rWlCCCATgKYy7Iwi3N8d47WlKn7iZhM9L8kZTdQ+58dkWT6v3uJiXQzyhE3xTLwoxaM9D3FK7mLZRJTGIPCtJ320HR2/7d4CbrRtCEFCzmnG0fPjmeLdKRe5VoBSXk6L5PJheFFathpWdAWWriDNBPbdCIrMcKvtIEw5OlUDYZzlYvucNIU0CZIkQcJRvYmmrZWWtbNsXLkQ2B2RBe9GP8A4TLFY1WfaBId5cL87jtD3Iry2VEXdVrE7Ik27pqORKLCuAHkFTJElpJmYqhofTjxVDBW6GoMLcamCpQCgKgf2xRcV9yzmkB+l+OHWCGGc4o3lM9ieHgOJUduFIkvl9/dyrYNxSG2Qm4MAAtQitO9GeLjnwdRkXG9ZWKqZ0FWyER8GCXjeBjbvyidArrCMoWxfHQUJHu97SLmAoUqI8wRjxqlV6XvP+qibGn76bgt3Ok7OlNQhhEDXi6FI7EgrLM/XXj8PDvt+jJqp4vVFYqbeattTGmqqMv0eT9rTgzjDBxsDbA1JE2KlbkCRJDRsDaMggRBAkgr4cyjUAHQmJqnAMIixOfDBBSvdWw9rTGmyBB/k/qlIlNRaqOq0VypH1/UoTEq7+IwLdD1igZynKjoMklyom1yYNgcBPtyii/2eG+ELazVwIajFWJFh6zKCJEPT1tCwNWR5UaFla4jSrGzNOE9yWZYYvvZ658x//qJYb1r4S3/oC/h3/l/fxv/2b7+Pv/SHvnBpcclS1ShNEYqkFOcC33vax6/f30enopfst1kXfUVmEBAIYnrWwyA5NjE1CmK8vzGCqV18vh5eM0II9H2KLYt9xI1ScC7woOti6CeQJCBOBWxdRpSl2B1zuFECUyXWz0qdTGLGYXIp8g2yxDAMEqQZR9PWIEkMW0MSEI9Sjq9cb4BzYBwlCOMM728MwRjwO99cIp2TfC869gwXoL8fUqvyR1sjfOdpHwzAa8vVIzqpbUfDOIoxiohN5YXpudroiz1RZmxusVqSCagSSQ585+kAusrwaM9DmDPYG6YGBjp7D7sqF3CjNI/ZaF88Cxs3TjkGfly2lIdJhod7HvpejI1BAF0liQFbJ6amALBU1eEmKW6b8hEJh2J+elEKL6KWnsswsbgIZIkYpj2PHIaLue7FGXpejL6XQJWBpq0j9DiSjOQhvvGoh7qp4rVFB2+uVMsze/LZnZR8m5y3N9o23DBFw1bx6Y6LbzzqYqGi4/aCg+1hiIqu4P3nI9J2spR8/6bPcaMUYUKto5fBNhsFKaJE4HF3BCEEVIkhSDNUTEpubwwCGIqMiqFi3w2hyjIaljoz5r8MAew04/DiFG1Hw9aI2FzDIEGactiGAgkMAz/Gx9tjbA1DrNQNkvbI//7kHlScJ/MaZ8o5PtlxoSik7XiR82pSO/oykWQCXpRCYirWmzZ+uDnC9ijEpztjdKoGooQSzl03wifbLjSFoW6ShnKYZBjnbL3D4/w8iJ4XuGhi6j8H8OcBvA/gcprfzwHOBTb7AQQT8GNO/ZRxBi8U2PeoRYMLwNIkcnbRZKQZLxfsWsNE3Sa758MvL8k4tochtXdZCuJMoKJPtw/YujJXe2Y3SvAPf7AJL8rAOcf/8N0VvLVaQ+UVat87K8IkwzcfdgEwNB0NVVOBP0xR0ekSMAhSfOlaDRu9ADtuhIGfoh9QQqZwgjoNiiwdCTbdKC01d9Rcu2rgx/CjDMMgRs+N8LXXFzEIYgQxpwuUqcJQqa2Lc+B5Pyitfa+3LLy9WrsyevPmgH42Y8DdRYcYHJyXiaC1uok7HRtgwN1OBdvDCFVDw/NegHdXs/J5JBnH432vZPucpep4Vgz8GM96RLkXoEse8st8kGSomlTtygRZ0m8PQ2rvC1I87np4Z61eftbzvo9xmIKxCK8tVY7YzW70A1QNZYIRNLs3XpUlRAkHA8PjfR9J/sxutGwIUQh6quWlfr1pQQhKfpmqXIotLlV0eEkGQ6H2DLKnP75KQsnxCKMgQZD3cg+CZGZiytZkCNABNAwieEkflirD1ql1bODHWK2bWG2YGAYJUZ8NBUGSwVJkbAzomS9XDQRJBokxmLmN8b3Fi3I+zgdLU47YaKcZx844gswYFqvTLWaFG9osBs37GwMQa0mCF1+cMbI7jkoW180FG04uHuuFKSSJDA1eW6xg4Cd4famCQUC6NAwMpqqgYijgXMDWiR7d9+h/dzrOXNlnXTfC5iAEQNoHNYvs7Xt+DM4FdnOxXl0j0eOUC2yNIrhRivu7Ln78ZmviO4eltbskTbvDKTKDrlJrzkfbQ+wOY9zp2HhtqYq7uTtXEGdlK9t5KufjKMEoSJFxYGPgw8/bDSuGipW6AV/NSmOLF0WccgyCGF2XBO7DOEMGuoAO/ORIYmqtYcLWZXzrca9c752KjoX8AhynHGGaoaIrpctegYL5BNC+e1Y2kMSAT3ddLOQC0posIeOCBHmDBFFeQU4yulApMsPdTqUMHif1dZ52qeV5z43yKuerF1D+rreW8Kd+xz385X/8KdYaJv7U73ztUn6OLDEsVg3sjSMy3MiNFD7YJAdLMDYlhF2Ac4GdcQghgLsLDixNRsrFFDvtMD7cGmN3FM31jN9zo3J9rjdNuFGKJOMQINdJXZUQpyTE23I0KJKEUXjQZlw1VARxCjfKpmKBecKN0pJ1vjMK4eikVdPMC0ZVQ4GpSaibGj7oDcDAoEoMbpROxRNP92ef4ZLE6O9bGuKM44ONER7t+XAMBT9zRz+SAKb2RobVmoW+R2tg+Zhk4tBPMAhi6Ap9vqHKU89cmkgIvgjqFrWKE1taRpSLCTu6CgZgtWFBzpmjfT8pdUiL8bUcnc6iKIMssSldQD8mXbJZ+++zPu2tu7lz9aN9D1uDAALEAJcZidAXAu9RwlExgOWaVRoHALTneTEVZ4QgWQAGeoeHTZ9eJnbGYanRVJy7LVvDb4wjdL0YLUuF1ZDx1moF6w0bH26Ry3eUZHjc9XBvqVqe1fd3qWV2z43wxlL12Iv55oCclxmLcG+xgqWaASFI7qFuahCC4XqTWh+9KMFHm2P0/BhhouKrN5sAqMuliLODOLuUFudhQPqQXTeGpck5o9JE1VDhhSlqhgY3poL03piE0HVVwns3mleSfNwYBHlMwKEwhq6fwAuznOmloJ+fqxJjqOgKkpT09p71SEOtuEukXJxoaHIRpJmAKjPsjiJ4UVoWOQC6e4yCBLc7B3trxomNNBnLzls7+jg87XkI4oPz//XlKoIkw/4owsM9F9eaJmxNxnbGEacZxiF1dxRzlnNgGMS407mau8Bl4KJR474Q4q/OdSQvCE2hQNDRGEJTQdPRYKoy7i3mFrAMaDsG/JgjiDPsuwd2wYcDeiAX1844Us4x9GmxPelxWCpZUK+cw6XvrNgfhxgGKX7j4R5kWUbKU6zUDHz5WuNStREuEzujEKOIWowcQ8H1lo2lmoFnuVChlwuGhgmHpSkQPEWTkTB1IVQdJhm4INbMLNHIwygufowBtxZs7I4isuBWGNzdBEFMDjNSrjcVxFShKYRvC/F0Q5VRyfV8qoZ65GALkwz7boSKrl5Ka99hSIy0BAZBCi4EFmsGOhWaw4tVAx9ujWBrCsZRilrOntgbRxTk5sKrcd66Mg/M6ngIU44Fx8DjngsuSGzwreVqKT78zUfklEgC86IUbtwZhWVbWhBnUIyjVQ3HUJAKYt0VAtFhQhfg4jJRzLGMC+yNQ4yCFGl+QWzYGhyD3uedDgVjJPxKGjv+hHtJ143AQHTf15YqZ76sKLKEpq5glAv7A5QcnBTcZYz6/1VZwoNdF0M/RqarpWNK0fK4XDOxXDPLZAUARElWtl4FUVomwW4t2Mc6s10WDl/a9924HJupHrSF7Y1DfPfpoGTRvLM2neC70bbh6FTd/fJ6HX9jjmPUFRntig51h7QgekGML9l1KLKE2ws2dkchZEauQE/2aY+62bYBIdB1IwgAtxdspBnP2Uzz3YdF7h0SpRyLFQOP9j2knCPhHF9YI60gL0zJwtuPEcTG1BreH5M7Xd1UEcbZVNFElSlR+azn4/tPBri/50KAT9HQNwYBkoyYPAsV/cwBbN3U0Knp4BDEJIVEVuiCGF/zTJBuD2kdK4qMtbqCQZASY6wy2yGVMYYw4QhijmduiHdWq+V4Mi7Klv66pZbf+YDWj/Kf58kHRQlHzaAqfc1UkHKBL67XsTeOkAmBnpdgpU4tmzujEJaqwMtZrLauoOWQ7h5Vc/MxXKLz4TzwJ3/+Dp73ffzVf3ofuirjj3/tzqX8nDDJsD0M8azvQWa0jqumijQTeGe1hrXG0Vis78fYH8cYhwn2DQX3Fisnrt0woYSDrrIywTAXTJyR5KhFOmDrDRt1S8fuKIQkUazTrmh42vOxNQwhSdR+0XS0nPlIfy9KMmwNwhdidR2HKM3gRpRstnUFVUuFqchwDGXqkjMKE1i5JuDGIEAnX0PFvM24QJyfywCxUyf/PmO07wkhYBuz30lRVFiqGbi1QFpBccrxvO+jaqhoV6iw9Kzvo+tGGAYpbi3YuLvoTK2beeV0VVnCnVze4UnXx25MbqZJ3rJlKBK6Xl4UaVNSohifEIAfZ3hjuYq1hjm13wyDpEwKXm9bx7I0GaML+7Oej64XYbGi483lKgxNxmrdxNYwhKHKuLPowFCIjWloEsKEQ5GA+7se9scRYk7sNi93H33Vkt6TMWVxNiYZR9PRsDMOwRkxpgqd1ZW6ic+2XYzCBMMggRfRe0kz6qLJuEDLIX0oXZWPxHFxynMdxxRBnJZaTc/7ASDIeOqtlRqqlopq3hauKh4yIdCwdSR5F44QF5bHPBYZF3je91EzVOiqjKZDRj0VQ4EsEWN+exRBVYhNX7c0vL5cga5I+NaTPvo+yTnsjaNLua8WoDVBunMAcgMAmVzwxhF2crdtMhQidtq1loWaqWJnFCGIqVB0mTA0YkAv1vSpOHkUkOujyA0ffuwGFf2mJA5USnrLM/IE88aTroedUQR7QoduqWpgHKRw4xQNR4OTr1tDlWHpMpq2jpS/dH7QXHHRm8y3GWN/DsDfw3Qr33fO+0GMsRsAvgHgIwCxEOJ3Msb+fQC/F8ATAH9UCJGc9BnUO11FmGbYHITkvmQQJZ6BYRwmeNYLsDHwEcQZlmvmlPtekompy7qb6xLQ+OjXMpE7RwGlreg84Ucp/uY3n+H+nos44/jCWg1+nOHf/rmbn9ukFJBfDB0Nz3o+9Dx5qCsybrYdRGmGR/sekizDs76HNBN4e7WKe4tV1C0NmiJhcxCg68a5JbGGPjtxKgBAKRQpBLFSdFXCg90QXS+CLNGGzznRgJdqBuqWCk2Wyo1AV2Tc6VRwrWmXVOCC3u5FKRarBiqGiuf9AEFMWhe2XpmrBedK3YQbJUTbjMnS1FBl3FxwsDOMoCoyskzgGw+7GIUJbrZtfPVWE7IklQfkMCCreMeQEfMMXgR8ujMuhS9fFA2bKqCbgwCjnD4tS+QuB0aaJ7IEPNhz8bjrY6mq48vXG0gyDlWWIEAsm2d9H7oqI8k4JEbaLFVTKW1jBVA66k26YxZzQ1NIE0ySSGz/taUKUk7izh9uDWEoBt5Zq5UVycKsYBgkiBNyc7R1FfWJ5CJj9IMzLs6kF8BAB/RiVYepKaU+WhBneLDn5tpfVlm9dXRyTbnWNPHBxgiaQqKQRcDFc4H2J12fbIp1oqNXJgJ5NjGmIii4SqQZL3UZCq24LGccHW4LGwfEhLQNGW+LaRZIp2LiesuGEKJ0crkIOhXSPVMlCX6UYnsYYMGhNl9a9xxVU0dFV5FmHPsuubGt1k1s566bxd5uqGTooMhkqT0MiEW5mvf/vwiatlYycfs+tRGbqoSFig4BwNFJa+O3HnXR9WK8uVzDj99sYuCTYGnKOTRIGPoJUi6gKhL6QQxFluDHR1mRisTQC6jKqsrEyPh0ZwxbV0rtGlVh5fl2FmiKhLdXaqibWq7HJiHhHJYmo+fFuL/rYrVuzoVpViSrx2EC2Tywi5/VkpVmHD0vxsM9F7vjEFVzei4W6xmghFfh4nZvkZLPKzUThkot4edhpixUiWGpMIaGRdoaqibBUCXsjyM8CF2oMsNriw40WUKU0vvPuMAwSBHmLqeSRPo7QUJuaK/axXESjDH8ud//LqKU4z/5R59AkRj+nd92e+4/p3ALe9oLYCgSJToWbGjLVby7NlveQFMkbI98PNj1cW/Jga0rM/Uk45Sj55HAugAJx7/o+j489iBJ0bI1tGwdo8ADcofQdkVHy9HwwfMhnvdcuLGOoZ9AkRjudhy8lrPwC000Q5XxtOvj053xXC7BYZJhYxBAlUiLz0tSmIEMzqmdTpPJ9akQlS/2w6/ebsELqcCXZcTyXG9aWGtY2FOohedhbv9+OHGcZHQuCwh0HB09N0Ga4chaXqwa1I4yEZd97/kAz7o+ZCZwb7ECDhL6TTJyWBWCmBFthy6RMrv4RbLvxZTwt6aT30WCigFYdKmg+eZKDVFGhjUZF/BiYmREKcdG30eUCry25MyMVybP7Vn3imtNC4P8jOCcdKwMRcFa04ImH+xPK3UTukpi1hIDPtt18Z3HQ7wvD3G9TX9WVST4QQaZMby2WIEA0LiCgup5UOid7Y0jbA1DrDVMKBJD1VCw2rDQtDRIDPjmoy56HjGff/puG103gixJ5fMkd0KZGHwAHux5U88dOND8ilNqna2Zan5mqIgzjlsLNtYaJq63LPzTj0mX8faChU7FAGMMDUuBIkmIU4qBJQY0Ha0sFr8o4pRjYxDgfXeI9aaFG20bv/DGIvZHEf7FZ3t43PVgqZSYvNG20bJJqiPJODSZIckyrDvmpTs1e1GG7z4d4N6ig+W6AUuTYWkUvycZR9+L8aTnIRWAyiS8sVzB9dzMaWtIrNampWHIEpLckOavkagrEtbbFm407anzYhwm2Oj7kCUJqw1j6s8D1BUCJkpme5xyKBK7lLa4IMnwnScDyBLQ6JDoP8vjibdWq/j2kz7CmCPLBD7bGSPJOBEsGEMQc9zfddGwNCgSuxKixGXiorfTL+X//OrErwkAP3/Bz/vHQoh/CwAYYwsAviaE+BnG2J8G8MsA/puT/jJjxHqyNAVRmoFzqk6tNyykmcDWIEDPjzEKUjBGvfqFyv8Png0RpBnWGmZJCS+qltujEKZK1q1Nh2i4XpTSxXuOSDKO7z7t4zcf9DAOI1iait/3zjLeud6YaXv8ecJSzUAQp6XI9Q83hgDLxaUVcgmp5UmeKEnxg+cjrNVtdKq5e1ZuySvyC4Winr4hdCoGuADUnMZdM1X8xoMunvYCbPQ9vHejSe1/+Xs8buPWFKlsxYrSrKQY74wiVAwKmgJQKxUDtWB4cTqX6oTEgDQjh4uNfoBdJUKYZFisGHhziZKwH22N8fXP9mBqMjgX+OJ6AwnnJQ220P4xFLqcJSnpmARJNld2jSKR+OT93XGpjfNTt5pIuMDmIMCvfrQDN0yxXDPx868vQIACRtIUQO6eA9QdDW5eUS7eO5AnfXKNsMnLYvFn4pTYLFp+WMgSgyzJWKjIeE9rUkVz0jrVi/C06+P7z4cwFKpefnG9jpTzMgACUDp7nYVhRlpLEsZROuWaESZZeYkI4myqrUCVJaimhh+/2ZwSKQWAMM3w6baLT3ZGiLMMtqbiC+s1xKkKU5NwvWWX7ItJ/ZKrwu4oxD//dBeWpuBn77SxP47zdyNwpzPdArVQMXCrY2EYaOg4OuKMT73HJz3S6lBlhp53euL5ODDG0HZ0ZFzg6SZVobdHIRq2CltXYCgKbrRs7LkRgiTDbz7olkmLG20HoyApE2PUvkn/znONFIDaLl704soYBTayJMENU/T9BG6cIeUcdzoOFqs69t0Yv/rDHex7MXaGEf7gV9agKZScLhKsZMjAUDNUjMJifEcrj1HKcavtYHMYoKar+DvffY6MC7y9UseXrtfBWAI/StHz46mWstPgRmnZ9qYrEt673sC+G2N3FFILxTgqE60vgqWagX03gizr2BlF6FT0vNWJWo62hyHZaHN6P/tuhAXHyJnN01p0mkKCzU+6Hva9CJaqlIlCWaJW/vM8gwKrdbNsBX+QGxt8sj0CYwxbgwBfulbH9jDEODcl6HsxBKjlmDFiwgA0zzgwkwn2KqIQQ8+4wJ/77z5GJgT+3d8+P+bUwI+JQcQE3liqIMkEwoyjpRZsVAFNORoTeFGKgZdCkUnUXptRNCraYPfdiHRNAEAcaJHOAzvjCKaqwI8peStAccwoSPC8H0CRyeluexjio80x2o4GW1OmXJfliTnJcy2yedTAuh5JGwAZen4EmREbYyF3zXUjmq/XmxY+3BxR66Ei4fXlClZqBnbHUXnuFeOsGCrUPE4KZuxFPS9GLY+duBCIUo69MT3/w+fs4bgsiBN8tjPGMEzgRhneWauTS2PHoXWlKmVcM7lHb+SFs6WqcWbNqa08abw9DNF2tKnLbJEgWqtbUBWGpq1h4MV4sOvieT/AF6/VUTFUuFGKxZqJKM1QNzWMI9orJ+OVpqWVyZSmdXRs+25USjpIEsNawyxNOT7cHFFso0mkfanKiFOOT7bH2B2H2BqFqBoq9GGEn7zdgheleGO5UibeZ6HvxdgehagYyswW2cuGlOvJFdITO8MQXi62/4W1GhYqBraHIX7zQQ8DP8beOMQf+MpaHvMdxEGaLEGRCsc8qjLGKTGRdYm+e5DrTxZO3aaqlHN5tW6SU6+h4DtPe/j1+z2oMoMiAV+53sRezlR+2qOW1IIJedhZ+UVA5wKHkhebgziDU9GxNQrwvB/A1kj39taCje1RiCddn/YFQayl2x0HnYo+10T7caApOX12Mkbuw2HC8WDHhW1IWK6bSHiGj7ZGqBgKMkH6rrauYGsYwlQVbI/CqQL0PJBmAhAM28MIYZzCyGOolAu8tVKFG6e425l2MZQlhijNAMGwNQow8GN843EXNVPFL7y2ONN45UVQ3BMyTkVWQ5UxDGJ8tkMM73sdB1VLxZOenxsjxXhjpYJ3Vup4lruYJlmCN1fmJyv0snCh26kQ4mtzHsfXGGP/EsDfBvApgH+W//qvAvgjOCUxNQknFwG8kVs/Vww1d+nLkHGBNMvg1BV0vRiqzPBw3wNAl/hiIzZUGdeaFtyQaKFulGK5bpZ99/OEEAKfbY/xuOfB0SWMQ4b1lom1tv25T0oVWKga8OIMccqRCY6+l8CPSW8mzjhZuy5W8C8/3YVtqPje8wGW8raH5ZqBnVGIt9eqMFQFhjp7MxiHCbhAydo57OgnIOAnJA7Z8xK8u1Y/F8OJGEtEja7kuilrDRM1i7TJEi5ygXcKJl4UtKnL8CJy1wtiusRkQqBiqni84eFp18+tWFVghVr7JnGgA8RhqnLZ3tiYEQBdFLaugLEIjB2ILUuMXHq8OMGzno+9UYRhkKBpEw11UqRZksi5K0ioDWkQJBj48ZGDSVclqIdaLIq54RjHJ49kiZGDyiFGXJySfts4zLBQ0TEKYtQtDX7MITFqKTyXTkDe+nO41bRmUoDKT2ADUauhABdAoSPO8v+LMw43Iqvzrhuj0dGRceSOkcqlUrRPwvefDbA1iABEuL1gl2ujcJgDiL0yClPYuow3l2vYHAao6OqRS2JFV7DaMJBlHLc7L653IUukuRXEGSq5dbNjULttknGMggRdL8KzXgBVZrjWsPGFdXUquVcxVNzu2OCCNMFkiSFJ+dwSBo6uYJfRPmGqEraHGUxVQcqJTbg/DtEP4zIBQ8WT6flo6wfruxA3L9pAJ9FyNCzXdNxoW9gehPBCEsgctRI4uopnvQBCIL+Enf37FayyNCOdMUWW0HY09H0SW5+HEUiBTlXHzpBaAlSZ9mJVkpBmvLwkPB/4qOgq6qaCOMvwxfUGWrZWnuFZJlCzVDIoGARYcHT0vBidqv7CVWXGWJkAszUFz1wfTAIkkGMlF5Qs6fsxvDjDcs3AUtVExVCxXDfAGLA1CKEq0udOS1KRJfyVP/xFyBLDX/iVT8C5wJ/4+btz+ex9N0Ka742LNQOcA5pCFWJTk441Xuh7CUxdBhhwq03Mh8n9SFeITQGQLbmhSkgygX03xn7ewjEPOLqSM6plhCldMhWJ9CvjXLxZVyVsjehi4UUSbi04U+zdSbyxVIHEMBfNGEdXyIQBQJIBskwFEVtX8GjfxeYgwK4bQWLItbAEbIUExSuGWjJLJllJtq6gXdHys+DoXmLrxD63dRJIH4fpie9xEqaqIOEcjibDizOMwhjXW3XULe3YmCbJeNmSs+dGZ05MVQx6b84M1qIkHViuF+8pyjL0/Qgpp/YlL9cs7XtUBK/bau7cF2GpZpTxiiSxY+N8zkVZDCUmCcPry1VIjNjiccaBDBj4CfZGxZwVsHK9yeWqAV2TcWvBRsMiFm5R3DgOxXrrewkWq/ylCKObmgxJQs7Sk5BmKTRZhswoMbo18LHvBthzEyzXya32cBzUqRowNLnU+ivixMmCWDM3vmEMuLdYQZzxcu81VBnrTStvb82wOyb3s64XQeQuwroil2z6ovXbmgNDuICuyHhntVYaczVtDXtjMkCKUhLhfnu1DsaowLs7CiEALDg6MkHs5bZzeQ6tBUxVxmtLDl5bPBq7daoGgiiDn6aIfQmmlqBhpfATnksQ0Hr046zcDy6jXc5QJbRtkh+IM47iqTRsDV5k4poqlWzvohhdNSlW8KMMFUPFtx/3sD2IsD2I8PZKrSxgzwu6KuG1JQeOrqCdx5nfezpAz0vABbGjACpIBnGGKOWAYEg4SVC4YVreTT/vuNC3YIwtAvg/AlgRQvwSY+xNAD8phPh/XuDjtgDcA7UE/l0AVQA7+e8NATSOGcMfA/DHAODatWvlr19rWghzQeDJFjhLUyCEwPN+iD03wo0FG2nKoSsMKRdYOLSAK4aCTlWHF5HrgR9Rj2fdPFrZeRF8/1kf3306QM+P8ZN3W0hSgeu55fSrjOPam6I0Q5hQIqR4To6u4F7Hwb4b4+OdUUmvlSVyIVJlCT95qwUGYiNZ2oFVu60ruLXglK40s3Q3RmGCJ/vEkFiqkd6BqU23Yrx3vUkCd20bdzoVvL5UObVNgnOBhFO11Ysp2SlASYsiCVNcZnlOt98ZhjCPSZ7NeoYSm7bv9KIUEAJanpTr5ZfNnhfDj6mNcBgkGPopfZ8FBwtVHV9ca0x9RsrJmY1aaeg5XIS9UCabDrWN+VEKXZVgKBKajgpbU6HkLV1F9e7TnTG6XoyqqeJOx8HdRac8dIr3WbynYq40be1I8tdQZdxZOKBgF++lmBvHIc2I3lq4shXfv6gGajLDnhvjesuBrrK8gpvBjxJoyvkSECSiPN3OGaXUgnnSWuZc4OGel7f0UEsmQKzN5ZoBU21gcxSi41DLKWOUhA1iDfWXuEUs1wx8vD1GxjnqporFmolBrmlQ4EmPhFsVmeH1pcqxl4K1po13ohQyo/3gLDi8/yQZz/XGGDRZxmo9XzuOlif9AnxxvY4gyeBFxOZZbRgwNQUL+QWKc4HRxJycFKM9nOi+yBi93I3LytsyV+sGolTA1BQs1nSMggRNW8eDPRdBwrFap9aF9aYNM18fccrhxyT8XyTgivV93PPdGYVQZGIDdao6Go6GmqXhp261S90EckA9CAiTjPT/ioRTASEE3CiFqVJb4ErNoPYSlYJ0RZbw2mKFGAFz07ITkBhD3VJwq23DjRJohaaNACxdBh8JLFUMpFxguW5NtWwUTqEAsJRRe1HdUtH3gDdXqucWWp3ctzknp0BTlcsqbJhkiJIMNxoWlNwxq26p2ByEeLDroZ0nqBVZwnL9IJE7T2OKq4YiS/jLf+iLkBjDX/zvP0XGgX/vF2cnp4RAqS94GkxVweP9IZbrJl5bPDizwzijBFVCukiH47K6rWI9s6ArEl7Lxe2f9rxSfPr1pQoWqwa2h0GpGbo1DMpEwFkxKw5KUo5xlKBqqFhvWlis0poN4wzVXH8MQmBjEECRGH7iVhPXmqSLeKNlTQmHi9xMpGC5yDK1jr3I+NwohSZLcHQFFVNGRVORCmJxFXFwxVARptQSZKgKbncseHEGS1UQpyQvcJwL8qxES/G+HV3B67nxgiJTO3KYpiXzTQhy8yUWdgJdkUpjkrql4UtrDXy8M0LdVFHR1VMTyoUBgxumqJ/CKi6eVZJx6KqE9aY5VayI0ozMFAwVt9p2yfwNkwxxKtCpmhAiQt1S4eTJz9fy70rsnhgMDLp8tuSFJDFUTSq0Fxf4glXdqRpYzWPCJOGI8rFYugw/4nh3rY6VWnG+yNgaBtgbU+LszeXasc+tZqkIhxFsXS5baOcNIfIi3MTnxykvky26ImO5aiLmGTo5AzrKi0LkXAu0HB0rdQvLdQsVfXZMOZngmBUnKrI0FROb+Tnqx6SJW8slPtqOji+u19Hz6P097nq41XZKJuZyVYcsoZTbiNIMSUrmWpPPedb3Pg2MUQG8OIPl3OjmzZUa7nRs3FuqkJOsGyFOM2Sc9PXeXa+h4xhQJ/bEMEkRJRyWrsxMOHIu8gTb+d67rh7sSWmu12XnP2O1bkKXGXp+hCQD7nRs7I4jjIIUnYpWFq+SjOLIlbpZ6kUPA9IUPixlM+tOchpMTcHbqzV0qvpUXFc1VLy5QvPks50xMfcVVhqiLFZ0cAeomiruGwrCLEPb0i6lQ0Fm7MjebqgyuIjBi1ZqSQJjpF+5PQwgSwwp57jRsqYkibwoLZOnBYQgtm42oXf7quKi6bW/AeCvA/gP8v/+FMDfAnDuxJQQgsruABhj/wDACMBq/ttVAINj/t5fA/DXAOC9994rudcZF3jc9XPr5hTrTQv3FitQFQY/5tgZ+UhSgZajw9Ik2LoKQ5WOXNoZY7i14GDgx3ja9fGtfh8rNRMjMy2Fk18EYZLi//Ot5/gvf/MJNEXCG8tV/MEvr2G5bl1aD+s8IITAw30PfpShU9XLoL7vxdgaBdgbRRgECeqmhi+s10p2zJ4Xo+dR0HetYcLIe5CLjVuSGG7mfcc1UwUD9ZkXyZjNQQAvv+QeRrFRAeRiokpUcXl9qVoeAtdbNv7wj11DP0+UqIoMN0zwyc4YVYMSJ8WG3Pdi7I+j0kI2zTjChMONE3xhrZ5XFD1IjOHWAn0HSWJYcHT48YEg9UkY+gme9X0oMiudyrouOQ897wdYb1Jwp8lU2S02yt1xiOe9AHGaYaluoGWr+Mr1Zuky4cfk3DXwSdz/taUqBn6MgU9tSuexm/bjFA/3PDAG3F5wysvnpztjPN73yFLdpBapHkvw2lIFdzoVxCnHg90xtochGha123z1VhMrdbN8xs96PvZder9fvtaAqZHFOmPASs2cmv8FjR04EC+OU9JzmuV6V6CYFY+7LhgDFioa+n6C9zeG8ENqn2rYGq61SGT80Z6Hh3sedkcRfu7ewpRzzmlgwNQFvmgT0RTSpDguGBFAbiMf4f7uGKYqQZElfOdJHz0vQpQILFR1vL5UQbuiY3MQ4LOdCF03xldlqaysXDVutp1Sd+Fx1weTJHzv6QCMAT95q4VKrrcBoPzncUizDN9+3AcANK3Tv8/jfQ/jMC0vlBkX+GyHNIWyTGC9ZeWOL6R/cG+R5uXOKMRnuy5Uiex1b7YdrDcsLOd288/65Mg2DpMymWhpyrlZUrP2yH03wqfbY+yMItxoW7iz4OB5n/rvUs6x1rCgyzK2RgF6XgxFYrjWsLBSN7DWsGHnzN8Hey7GYQIhgC+s1wFQ4slU5WPXQpA7FgHAT91u45feXoKjK6jml52qqaDnRQgSXrrVPtzzEKfESinW9MYgwM4wzA0YEnQqOvycCevHI6zUTdzpOGQkMYfzq+fF6HlRuaf1vARVQ0bGGSqmgrajw9Epwbd6p4VBkJZCpZPIJgR5ioJHw9LAGEqGWZrxXHSaYblqHHv+Fk6kmkLi+Z/tjvHJtgtFZvjtr5Hx9f29MZ7uB2g7Gt5dr+N5P0DfI/bFz95tIeVARZcxClPsjEhjY6Giz7W9+mVAlhj+4r/+BUiM4f/8q58iEwL/q1+8e+SiEyYZ7u+5U8WGWeD5Xj8KU6S5RqUiSaiaCrF/AcRphq5HOmE/ebtVBtzLNRMLjj617xbv3o0SclySqA29qDJ3KgYkxs7MEikcHGumWsaPUZrhn3+6By/McK1p4Ss3Gsi4KB2nWo6G6y0Tj/c9VHQFUZ6Eee9GA4/2PDTzQl3xnD7aGiHJyBimbtGeulQzznSx2BgE6LnxlF5jkXyTJPr8p11ijf786x10KkZ+DrnIMoFrDRM9XcFixYClqbi3WMXu+MBYphAD96IMDVuFIkkzz/AwyfDh1ig3uThIdH+6PcJvPOxhqarjdsfBnU6l3DfHYYKKoWJ7FKJT0SExIEgz1CwVv/PNJQgQM/ssWls32/apidAo5fhwc4SlmoFxmOAHzwYYBAl+8c1FrDUs0nzcpQJS1UxwvWVDV2S4E0nvt5ar+MIay91TPVxrWqXWS5pxPNx3kaQcLUc7swbM9dbB2AVIHFkIYKVmwFAVPNn38WjfR9PW8KXrdQy8BABdSJ/2AtzfdZFkHOsNExuDAGHMUdFV3D3GnKJTMdC29Uu7fxRnWBBzLNZ0dCoGkozjs90xnnR9mKpcFmwAMoBYb1pIMnJmftb3ITMJ15o2Xl+u4HrTLothhTC8F6X44noDSu7CVjGUE1vDgpgYUbZOSeOPN0eoWSpW6yY6VQM/fqOJpYqB9zeHsFQZ28MIuiLjWsuCrsjYHYclY23oJ9gahuj7MdabFu4uOrA0pdQMDROOlbpxpla1KM3wrBfAVCVYupLPPQU1U0GWoWTQyBI9ozChgvEoTNFzE8jswK18exji/Y0hojRDzVCxVDWwWDfK5J0bpXic32lud+xzJy6GfoK+H2MQEFs6TDN8ab1BzEhDxXLdBATtGTujCKYqoWpquLXgYHsYlm7KtxZsaIqED7dGeLDrQlck/PbXOuU7nnUnOQu8MMV3n/Zxo21Pmb9MoogTinj1ed/H+8+H0BUJX1qvY8+l1uVWRZty9ZsnkoxjaxBCkRmaNjl+RmmGtbqJx10PhiJDV2X83N02lmoGtkfkYmlpSpks2xtH2B4e7NGTjn2f7rhwdCXXT3t1yS/nioQYY4oQIgXQFkL814yxPwMAQoiUMXYhWX3GWEUIMc7/86cB/F9B7Xt/AcAvAvjN83xelFJbw3efDjAMYnTdGE1LRbtiwA0TbPQjAAK/fn8f11sW7i1WUXQIhUlGrgsy6VAwRoeMALXbRAkHDhWD4pSXAtlntdtOMo6/8o8/xX/3/ha8vAIjM4ZrLfvc2ep5IskoEFys6scmMFIucl0CcjRo2Rq6XozHXQ8MwMaALklxnjkfhyklCSM6MJu2joalomKQ7gvnVDnseRE2hwEGXoIg4VDkMSRWJCOCYy+5O6MQm4OAmG8ZiSxXDAaNSRBCABMMK0ubfkfvbwyxPYzAWICmrZWHxeaQRM03ByHudBz0ghgjP8WeG6LnRrix4MANU0Qph6PLuNY6qHQXjK445Xi8701VOyYxyi+XSSoQ5A42UUqsDzdM8WDXhaHJuNlySgH/7WGAH24MIUsSRkGKtRZt9tujEGt5dSblAgM/zumfwGLFwPMBteqEaYbXlyZZESe/b7IWRsk4os/nuVhkip1RBEeTcW+pCkWmSuPuKMKDvRF6Xoo0b1VYrFFCxVDl8hmnuX5DktElfjln3ABUJTiupSjJeCkS6kYpOjP+jBul6LoRqoYKQ5GwPyZ67vefD6HJErrjCN960ocsUeBXzeeil9s2Jxkxp4DTD5++F5cXnsPPDjhwfZGl6QM0zsWPNUXCtaaJ7zztw1RkfPtJH6t1Ez0vxm887EJmDDdaFuq5fk2hwZVkAnF2ti3Xz22i54nn/QCbQ3Ku2RwEAAM+2BzCVCkRVzFVXGtaeWIhw3ee9FE1iUFwOJj4OE/YAMDHO+NSGHqWuDXnomzBGQZJmZjKct2PcZBQW6gho2kbgDgQivTjFF6coO8nuN12MA5T9AJK4BauR30/Rt8jRmKrQnov1Opz9P0dt74n98hhkGCxaiBKOfwkgxACT7s+wjSDDGJ2DoMEEnx8sjvGKCDmmKXJEALYGkalo5wQJOC+OQihyhKe9XxoCu0Fo4BYVLPExhmoJcTSSZNssiqXZhwfbY4xChMsVhnClMPJBdYBYBSmeLhHtttcULJIlqjt7NGeh41+gLWWibW6hYzTXvaiTKkgzjAMEmwMyKHmO0/6iBJyyF2sGqibGrpuBDdM8NpiFeMwQ8PWsXTM+Vs1VKzUDWRcoO2Qm9fjrgfODxKXPS8u9x9TPdqyX7zvYq2PwwQ/3Bzi4X7xOSke7bsAgO88HYBxSkL0vQRuRJVqU6P9jzGGh3suRkGKx10P11t08Trusvh5giwx/IU/+C5kCfir/+QzcC7wv/6d947ENVEyrfcC0NruenGu76ZCANgc+HjS8ymRmrseGqqEOBP4dHuEhHN0HAOWrmDfjaeYjYfX5VrDwt44RDBMsT+OsDEMsFa3ECQZ3lgmBmJRaDvt/AboDJ/8JwCEMUcU09rp+VRsiBJeGn4wRntCyjm6XowgJW1GXaUkx8YgLNuhn3R97I9jeEmK5apBzmKKDAbSbjvt/B7m83kUpBBCgDGGKCFmys4ohBtm+blN32HgJ/j20x78hBgfX1hrEEsrF5WOc2dSgPaiKMnwrB+UjlaVvG0RoDVUnPVFm7AXpbjZtiEA7AwDfP2zfQR5zKMqEmk0BrS3399z0bZ1RCm12n+yM4YEBklmWGsaMFUqKJ/VXOG0REuUx/6aIsGNEnx/YwgJAj94PsBaw8IwiPH95wNosoS3V6sYh5SAIG04+uyqqeYtorT3u3FaJqCCJMPAI62ovVF4rhb8yaLcwCf3uSClpPZH2yPEaYqgbuOt1SrGYUqMOIXBi1J850kfYZrBC6toV3RUdbV8hxd9VqfhpPM7zsgtFUDOmqHvlWQCYZyh78UYhymWqgZMTSZznJ6PrYGPPZeE9uOM2kQ3+gE6FaPUY0vzlr0oEXi078FUZUQpp/awvAV8FjaHAfwoQ9eNEcQZ+n5CLrnFXpBxbI0CVA0FozAp2V174xBrTbvUe4vSDE97VDRTcxHyOOWwNOSxPX3vYZCcmJjazd2ki7c0CJKy2H1/d4yBn8KNEwyCBK8vV0mnt4y3YmhqDC9OMdojMkDL0eBGKZKUI4w5/DhAxVBwf2eM1YaFlq2Vxa5MUOxyWmLKi1JsDcOS8VS4T270w5KZ87jr4c3lKnZykxcA+GRnjL1xiIQLdKpkElIcDWnG8XDPhakp5Igs6Ln5cVqu88k7iRulJyamCldDnuvq9v0E3uYIv/ROCls/2C+3BgGe9QJYmoyapZR3j2ddH59sjyBJDEtVA097RLxQGJmVWZdQSNobR6UkzPOej41BCDdMSw0pwTm2BgGSlDT2ivvmKEywPfE+gML8i5P2XC4JEiUcQFpqop0Vh9/3ZeO8T/abAL4MwGOMtZCTEhhjXwW13V0EP8sY+49ArKmvCyG+wRj7F4yxrwN4CuCvnOfDbF0pN7Q4pY1czzOGYNQq9HB/jHquN6JI9Hf6Hi1mL8oQJBFMlVxT2o6OIM6oFcU62mb0tEdOf3tuhDeWqmfa1P/lp9v4+md7iDIOMOBa08S/+dVrL92BJ82Ior0zCo9NTKmyhJajYRymWKjo2ByEeWtZgraj486Cjb5PbSGOruBZL8DmIEAmBKqGgrsdBxVDRd+LywTH7ijC/b0R0owuQovVA9fENCMqcuF0NNlD60Upvvt0kGsIMSzWDGrZhMC1lnWqhlSx2UmMTWlXkQMK8lYfGa8tVvAvPt1DlHD0eYqVhJwmbENBmGSlSKbEgPWmCS4KWjEJCs9y6Wg7OoZBgih3cgJI8C7NBHbHISxNha6QDfFiTceDXRcfb4/wybaLxapBtqeagp1RBD8iO+0bbUqyLNdNEhO3NMgyiUkW7ZXned91S8PQTzAIDw4PXSH9tX03gqFmaJgqMsFxo+FgaxDgwZ6HD54PISCwXDexUjcxDGLIFs2VmqlCkYkmvzsOIEHKdQ/o+TN24IgxC4Yqo12h+afJEsLcVW8Sm4MAUcIxClIs1sjJL+MCNYOqtVGWwVAYel6M7WGAdkVH3dJwZ8EGF6SXcxatnaFPArazsFg1yo08SvkRLY7dcVgeQNda5Aw3CuigrVkaAAFDltHzY2wOQzzt+bB0BddbFtKUw9CkM2nQFa2C87Qy5lxgc+gjSTNEqUDT0kr3yCjJSp0sQ5XhGNTC9KwXoGIkeRVn+gJ+vWVhoULv6M3lCjgXU+LWkyja0baHAWRGYq+aImG1YUJVGD7ZGsPRFeiyBFOVEKUZPtpywQVHGGeomBpaFgViQcIRRBlpMzk61hpm7nokw48zSIzo07MC2pPWd7FHbg4DGBrR0hcrOsLExvOehyQDLJU0Z1SZRF7f7wX4dGeMTAjcXrBh6Qq2BnQO7XsxlnMGwrWmha5LmjVSLuo/ClLIEpvJJgUAS1PRqRpIOT+yVgZBAlkGEs7BBYed74k3WjaGQYKeF+HJvo8ky9CpGuhUdQyDGKngeP/5EA1Tw8hPsHiN2uOyjLQjWrZ2ofNMCIHvPesjE8DQi/G07yOIKQnecgw0c5esBtdoX0sztCunt38evghIjIFDlMWPol3guP2neN8VQ4GuSjkzNoOpSgjjDAnn8MIU33s2RBhlCJIMbUeDpctYkijRcKN9UHiSJUZaQQorrZ9/VCBLDP+n3/8uZInhP/21+8iEwP/md71WfndJYlio6EfW9vYoRDfXA7rdsUmLLmcwqbKEnhcj5QJtWcPWwIefZJDl3DFZwqksPUOVsVK3MApTcE5rEMCRcxE4/fwGaI/vujGqhoLdEblBVwwF95Yc7LsR2o6GIOakVWpQ26apSPhsz0MQZ3i4N4Yqy9gwyD3Si2geHYiJkzueHkm4tUAtMJwDhlbERief34tVHfd3XWKg589+uW6Q81huQR8nGe4ukszCs76P7z8bwjEU2JqMjPNcI5Han3eGEVbqBmlOKXJuW06JKXlCOoOxo8LlcZYhySS8/3wIWWa4vz3G834AVSEXSlOV8awXoGrKiFOBa3kctdYw0bA1JC0Lm31iyTm6Nn9zAEaXOEVm4BnHzjAAA0OaC5M/3Ce2VD8kNuveOEKUkHAzOX9KlHQGyrtFe0JTUldkNGwVGQfsC7ItqPAbIMxZqlFKsWMvyiBJFCuPwwRRInKHYANxxqEpMsIsw9trNQz8ZGpcl4GTzu/iORSXaM4FDFWmszdKsOfGaDsaMsFRtwwESYbPdsZ40gvghQluLjhoOTrGYQZFYtgchGXSaa1hYn8cAmClDmGUxwcnOc4aqgw/ooKKIhMzzdLkMjG1OQiQZcDAT1E1FQx5io+3x9BlCX0/xmuLVTRtFc97aV74oDmx1jhwYc44R8ZpLCfN3TTj2BlG+bOiOMJUZWzkxWVLV9D3EirAhRlkmSHjHI5eRZRmWK7pcAwZn2y76HkxgoQj4wLXWxZ2RyF0RULNonk4DBOocoQ4b5P0ohQSY2fqFNjJDU4KgwMj18G9tWCj70dQmEymUIwh4RzjIIUsAU8iSqCMojR3UfZxvWlipW5go+/DDSnRu1o3ock01rqlIUozDP0EmkLJaMZwajvdIDc8K8ZXM1Us13WY6sEdchiQacGeG6NiKmg61ZK8kAoBN8qgyDQvJAZ4UYIgVrDvRrh2CYkpY2IPdXQFSq5np6sy6qaK7z/roe8l6PkJ2hUdS1VaI1G+J8Qpx80FC30vhipL5bmgK3J+HmUwVXlm0vgkHH7fl43zPtlidf8pAH8PwG3G2L8CsADgD15kAEKIfwjgHx76tT8P4M9f5PMAuuhcb9mwtBDrTbt8OTVDRdWQiYFgUYVMV2QMgxTDgKobPY8yloX4maHKc61kPt538Xe/vYl9L4EiSfi5uy38mf/Bm2cWZbxMFEH6aS0Fk9UeN6KFv1wzcKNto+/FpSuZEAJdN8Q4SrBYMVC3NEiM4Z9+tAs/Jvr3O6u1vIUmxfWWhbdXa1hvWmSVDapWFBvFrCqTrjAEMS1oL0rQ81KsN004Z2Cvvb1SQ6dioGIoUxn0a02LDvRcOPGDjWG5sA1Vhq4yNCwVtq6iZml41vPxvecDCA586VqdtELYbDHsAqYm5yLbMp71A1xvWQjijGyb4xq2Bj76XgJDjbA9CvG875O1s8zQsBV85VoTLUfNaZrTgeC9xQoWKwYkibQiLI0SaIeFGU9735oiwTIUhCnRS3WZ9B4cQ8E7qzXc33WxN44gMYbvPB2A521+CecwNdKSeGO5iu1hCDfKoCrs4CKoyPixGy2Mw7QUG7ybiyeedklbrplIMx99n6pGk5ocAGAoMqKEdCIWHB0/c7eFKOVYrpm5oGiEB7tj+EmGNBPYHoRYrhp4d62GH7/ZOvFnT+GEe1AhTN3zqBUYII2v4jCl75iUQfxP32lh343RcXSoioQwqeOT7TF6nkAQE2ulZav4wloN791snn2MoHk4z8TUzjjE0I+xO47RclQwiarFq3UTdUubCmwMRc6ZAoJa1GQGR1enDsbrLQf/5levAYKVek+zxO4LLDjkyhalAk97PhYqOlSZ4W6ngjjhGIYJdt0Iqirhcd4aG8QZbi/acHQZKw0TLVvD9jCCIh8kBUqxUT+BnAcimizNbsM8ZX03LA1dN0YYc2wOAziagtW6iaal4tMdF7sjqgjujqj1oOvROuJCYKVm4vaCA13xIDMGYyK4r5oavnq7CS/KUM0TrRVDKS/vs3CtSc50EsORwkph7XyjpUwlTmydHK4+2x3j/Y0hJEngRtvGjZaN7VGEJBP4ZHuMKKN9/G7HQZSJcq5zIU60zc5ydlqRFOh5MZKMww0T7OTPRlPoYphxgYatwVQlNGwV6y0LxeK73rLOzFSexK0Fm/Qj80JHzVRxd9HJE1Mz9p/8fRctdx9uDvD9Zx4snaqRz7sBBl4MW5PABel93Viwsd6wkXJ+5DPXGhYqRlKK/c9TNPdVgCQx/Me//A4kxvCf/bMHcHQFf/xr5NanK9LMwHjy7visFxA7SpFwq00agE1bg8wYuABeW6pgdxxDcGIgJJnAR9tjVK2jl+FJyLnZhp8XGym+OP59H7e+ASoutR0dT7oeRm5aiiiTrpQBTWb4F5/uo+8nZJRiJNgI0rwNXiqLb5YqY61hoW6mqJjKlPzAeEKsvZ47uBXz/bTzmzFyqk7yYpcqUVFmuZa7Uo4jrDUMjMIU93dccr5kQNvW8PZqFa8vVyAxCZ/tjsuEmCJPF0SKZ1mYzsxaQ4Yq40bLgRslZG2et3J6cYp128RXbzXxvedDuGEKbcxwq+2gbmpQZAnXW7R3LdUMXGvG0JWjrbrzgCpLuNG2YWsyfn1nTJe8fO8BAFORMfQTSPl5ratkTGNqVKibLEjP0pTsVA381J02Us6xVL2YYQmx7hiETPviw10XXpzBMVQYqpInAUhDJkkFVhsW/sBX1rAxCHCjZZXz9Spw0vldt4hJ6kWUVDU1GZYm4wvrDbz/fIhBQIL8jzIP4zDBZ7tjZBntKSt1E/c6DgZBAjdMoSqsTDoZqoz3bjQxClNYmkyJnVz/8CTCwGrdRCPXk0oyUcqJTJrlNGwNdVvFWoMkH552PYRJhk+2XUBIqJhy7rZIrZqvL1Vh5wxCU5PxuOtDzjWoTpLTIN1ISvJIjJV3HltXwHOtxWsNC8/6Hn7wbISeF6Nt6/jO0z6e9wJIEvDVG03UTBVhkmEQkGZvknFUDOpU6VQ1WJqCJ11iORUx6OGC4UlwdEqkF3vYrbaTF2pkZMIp9y2AEvijFiW9gjjFoz0fpiLDDVM8Sjx6ZraOYZBicxCgaqr4ubsL6FQMyDK5LT7a9+mZSMCby9UzFb0sTSnPlJqp4Y989Rqatla+1yTjeLzvY2sUIMkEFira1Fmw2jBxe8FGlHKYCgnvRxnN2b1xNGX0My80bRqDxOh7d2oGBBel62LN1OBFvOw2+sajHrJMoFnRYKsKFJlhf0TmC7bOcu1Q2i/XGtaF2/cOv+/LxnkjugXG2J/K//3vgBJKDMR2+kUAP5jj2C4MVSbB4cWajqpxcIjJElV1hE8i28tVhq4XwcgzqHVLzbPcKWRGomIaTn4R11sWBn6CiqGcrJcggO886eGbj7p4PoqwVNGwWDXwZ37p9VciKQXQYXJvyTlXf/FKzYSlKTBVGaYmY+AnZNUcxNgc+CSYqVGGtmIQg+rBnkvti7nGw7WmhbWGgYal42bbnnqOJ7GebF3BV240MfQTLFZ1PNr3YOspua5lHIZ08vdQZGlmsouxA9E4AdoUABrrnY6Np10fQcIRpQJvrFSJXprLShXtVYYqH0mYHP059E+eswRGAR2oNVPDOMwQZxwP9zxiSFVNqDLZ395o21hvUqvpa0uVqWC1wKSGgZy74BzGWd735Ix+sOdib0xuli1HgyJJGPgkzBcmGd5erWHf1fD6cgWmKpfOhzfaNvw4g65IU++2+D4FzrPJFwFjQeudxHrTRCumJCJj1D5aQMotYMcRJaUYBO50HCxWjXMzPAr69KxWvsPjBKa10NoOMd5kiZWb/Vrj4B2FeftHmHAYmowbLRvNC1Q6JYkC/SKBPA8wsNJOO4gFpLxCebNto26paEw8b02R8NZKFdebJj7bc2EoRIc/fDFdmEhiHBa7nzmGPNk2DGI87/lIuMBShdqkBn6CKOF40vXh6CrudCTsezHeWKpBVyXcattQ5IMLzuF5dxb9j9PW9+RU2hoEcMMMQUItCroiYRQmkJiEnh/hTrsCVaKknCzRmnYMFW/qMjjHkXYVXZk2djgtMaPIx1dprTyBLDDb6atqqFioatgdx9gYBDBUBasNE3tuiN/z7jIe7pEQ7MYwLH9GmGTY6AeQGTu2ZWGjH2AYJGUL5bOej0dd0rXyoxSdqo4w4WVLx1rNwiCMsVy3oMoybi/Yx475LDj8DIGT95/J9911Iwx92j+E4NjoBXm7eopf/sIS1lukK1LR1dzG/OjnFi5LP8qQJIb/wy+/DTdK8Rf/+0/w1kq11OGahcWKUYraf/vJAKrEcLfjoGnr2M2ZEDvjAAsO7dU/frOJvhvh/a0RgpijYatIM4HTCtmFkDiAKXHgw3/mtPO7wKQhSxin+NaTPgSApq0Su8kX2ByE1Iqnylitm8iEwE/caiNKM7y2WMFyzSwvdgUOn4+Hk8+nnd+Tu+ezro9nfbI8/+J6HTJj0GQJT3sBVmqUqFckCW+uVLHWsHB7Yv+9tzg7xjj8LIv/PjIORonEnhdhcxCg60ZgIGkMBglRJrDesLA7DhHGHLIkYbmmozmhdaTK0rlNCs4DXZGQZRyf7pCWXZILoXsRSRIs1gx86VodiswgSySI3bC0I+Y1J+FFk0JCkAbU/d0x9ochdt0IXkwGOF9Yq5X3lzjNsJLrJr6+VCHdnit01zvt/J781Z0xsSSFEGhYGgxVQm+Pitt7Yw93OhWE9QyaKmPB0Wk/cHRyS5sRUyqH1sxZdfuKua3IR8/btYaJpk0MXSUvVCUZFdrciLRb7++5sDUFUZJiqUp6Xj0/QhSLUioAOH2uMMZKt/JJTCYElvMCIBMSmERmPlR8S9H1qJ15Of+ZfpxiZxhh4MdQJRl1S4XEiElza8FGmPBTTQFmoVM1ULPUMvkoTdwxJEyfbRVDxZsrpJEbpxmijENigARAVYittjceYeinyLiAqUp4uO9i342RcYEfu9FAMWtmmV8dB1OTy9iGROSnkzJBbpJ2e6ECM3evnNxLr9UtPG/6kBhDmAmkGSV8XX7+VrjzYHIPLfYMx1ARpRzrTRNdL8GNtgU/zCgZyQBHl9GydQRRht941IUbZri9QG6088Dh933ZOG9iSgbg4ChX4JVT0bq76GAYJFM2sotVA497HhIO+EmG7XGE14TAWoPaJKqGCl2RsDuKoKvSmSqx6glB/yT8OMUPt0YIkgw3WjYywfH7vrSKxhXYeZ4H5xW9kw4F2DIDnnZddKoGNgYhLE2BzCQ0bK2s8N1brCBKOd5ZraFqkuV9knEs144XnT0OVUMtW6TIWSeEdYxbzEWg5hXCvheXfcr7Xoww4Xm/POkmZFxACFGKjDKcfGnqeTE0hVgZC46OT7bHpOUUJKiZWs5YkEvdC0VmuLlgleMpDriTmBJnwUnvO0wyZBm1STRtDR9tjeFGKVLO4RjE1FrML45V04KpyfjpOwsQgi73RVKRsdmJsRfBasNE141havKRLP5JP49zYiAVDklVi9geqxd0wTwtidF2NIi8ZehwAvokfYyBT1oLNUtFy9aw1jJxp3O2StFhmJp8Zi2Os2CxqsPUZDQdDbpClPeYc+h5JfkwFFlC3daxlus9dE7ZLyfF7mdhZxSCc4GmrcGPJTztUjvlLqPAXck1ATIIXG+bSFLgDUYJwE5VL+fli+wRJ63vNOPouhHABNq2jq0hxzAIEaUZdIUC2WI/bNgKlusGbi1aEJwcd5wJ+vVV4KTk/xvLFWRCwDFCtB0DCeeQJYZ7i5W8RZtYXJwLZBnZaPNYQJYkPM6dUpuntPVFSZZrg2TIMqrONS1iTOyOQ6w1LCzXzfxSyNDIf+9KISgxX8vdEB2DksqWqmKpbiIWQMtW0aoYWG8rkNiPfuLpLGCM2vo+3XHx7/2/v4e//yd+5tg/K0mUyNwYBNAUhnGY4oZho1XR0PNjCEEXTdKTS0vjh/euNdD1YtxZcOZ2zpx2fk+CnOM4mWsEMYZ5+4jEqIU0TGjNLFQMxCkxDFfrJgZBQm2+udj+RcZ+3B6RZhxBkoExuvBvDTOMAjIEGuTtiXHGiQXo0CX2hizB1mUsHSrSvGiMAdCz2BlF5BoWJFhuWEh5QPpYuoLlmoGGpZZsl7qlnTsWfBGkmcA4Jp2h1ZqB3boBgQOnzLqlYTnXM2zk7qXncVebB1RFQt0kqYbHex7p3BgK1hsWFqoGMUwYK7X0gOki61XhpPO7cB8GBJqOjm7u0FawgZqOjppFmp+LVQ0tR6MzO29bb018r6syizj8s2qmhtsdB8txiiQjk5XbsHMdKRkCFDvvjiLITMKeG+InbrSwMfTBOZ9isRz38057Z6Ym4+6Sg1GQol3R0LR0fJv3UMsZo7oqo2kzPNonc5UkAlqOjOd9HzfbB8YuL0I+PM+8KmItQ5XxxnIVccrRtDVsDUP0vAiOYUCVqT22YeskIZLrUu2MIyxUdDzt+bBzHV31GNmCwzgpTnA0BVWTXEbXGtZM2QhLzZlquYREzdKgyQx1a353zLPA1GTcXiAm2t3FCixNwYM9F7c6NkZBgrvLDoJIIOYZwpj0LMGIud3zYuyNIyzXjHMZOh3GVe4j513ZW0KI//BSRjJnHBa6BqjdZKVmIc4EuuMQlq6gYqhTF0ZdkU+0d78owoQOvaat4au32lisGrjR+vzaQ89Cz4vxzcd99PwUshzjrdUaDEVC3VZLG/g0Ize1hZzdAODc/a7HoaCqzhtvLFfRdSN8vD1C101gqTKMvLUvyTgkieHe0tlpsAWjoHCwybjAetPEKEiIVmzrWK6TW4mR04hfBjYGAfZzF54bbQsNSwUgUDXJLjnhApzTHO5ULs/JZRZUeXY7yGnYdyP4icBizYCjy/jdb63gteXqJYyQwBg7saVpFga5AHc7d5X6xTcW8d6N5ivj1MkYw+1OBcMgga0pWGta2BwG6LqkmVboPh3Gcs3E8tmdzmdi6Cf43rMBwoRjsZriS9fq2B6GAEPpfrhcNxCnHI6hTOl6XRV2xxE+3BrDDVOEjQw32w5GYQJdMbBWN8nUIGcRtvLk3qsKQ1Xw3vUmhgExYVs5a69iqHhtScVqw8I4TGBrMp7kCUIu6KK3NQqgyAxxxo/ooa3UDRialLcaceyOQry9WsMwTODodNkCo7aYBedq95ZZ8OMUH22OITHgt99bwGJVR7jkwFBk3OrY+Mp1gOfsS+mKqoqfF5iajP/Hv/UV/Gv/6dfx93+weeqf1xUJTUtHy9ZLB7rrLRIpX6zp+OHGMBfTpQThat3E26o8f92hM2CUi2A/7fro+6QF16nqSFKOd9aq4ILhestGkpEpz0LlwCnQvEAL6lmxM47wvOdjcxBipZGhZWtYb5pY5gZuth2sNS00x9TKfBXtXSwvDMQpR9VQEGcZ3lqr4EbbLtuJr7VenislY0A1l49QJUqeZVzA1g4KbDfbLzdeVySG620bgyBBu6ojTDOsNy3cWHDK+Posbm8vE7vjEA92iQ2zHGfk/OjFUBUJtzs2JDCsN0xEeeLiVdXeo73m4FlHLQtdN4aukvxHYXQwChLcajvY9yI82Q8QJBmut7K5FM/rllayvi1Nwe96cwl7Y9KnatkahAC+uN6AGyUIE44PNoaIM47feNTDL76+ONdi5XkwyXy803HAOennrTWsco8wWja+87wPmTGoEsNnO2Ns9EOs1I2yI+pFIUmsJBLMwjgiofUgJq29t1br2MlJK+1zxvTzQMPWpu6Caw0TpirD1smRb+gn6FSI+Zpyjpstcrn/4PkQXS/G056Hn7278MquqUlcVGPqc4kkF3N8fbGCcc1AzdSuzG5dkRiWKgZeX6ngi+uNK/mZV400p2guVHSs1A28u1o7cqE4ztL8VYamSCSE7xpwjBSaTEwm0kE5/yInUUBqYTFzTZJ3V+uIMhIfftki+AVUiQ5ZSaLAcqVm4O5iBZry4hXUlwVFkiAxhi+sNbBcN/DWMdaxLxMyY5AkhrdWalioavjy9cZLv5gfxvWmDUORc+F6GZp84GR2Umvji0KRGdLs4PMNVcZP3Goh5bNbTV4GFJkhywRY3uZRNVV89VYLQkyz5OqvHM/4eNRMdabYqKMrcHSF9n4J4BxYaxgwVYXo+mz6fRVQZGkiYcvgGCputh2YuR7GVVXDzwsBQJYZOjZZfgdJBusUDZP/P0hf71f+lz+L5ZqJv37Kn207OixNhiId6DAVRaeBH6PtGMg4FXQ0WcJy3bxy9koBVZIgIMAFnS26IuEr1ym+e5kXAFUi5gxjdJ5UDRU/ebs9Na55FQTPitsLDvo+6QzWLQ1JKtC09WPbKa8Sqizh9oIDTSGW5saALvivypkyiZqpYrFiomFpWK4ZuN2xPxeXTYCeczEvFYnBNlR89Tbpen5evsMs6Ip8RBbk3bU64pTOsvu7YygykEV0FkqXEOMzxqbuV4wd6J2lGcf+OIYbkUxNwjlMvBrPW5LYzL3oq7da4JwccLu5e1/GxZXpHBWOdsW8XG9a+Mnb7Vwa5eoLnodxeM7VLBU1qMTSTekumXKBNNeZoRbUowY4ryKYOMclgjHWFEL0LnE8F0K73RY3btxAnHJwIaDkVp0QFEQe11+dcUHW87lY42XGNo8fP8aNGzdm/p4QQJhmgCC6riKRQGScULDvGOqVZARPGuNVIM0p+lFCltC6crRNC7j4OIMkgx+l4KKw9r28De4qnmWckjinxBjAqE1tpiNOvi7UQ0LOVzFGLgSilNbiZFKhmOcFyDKY54Lw0+/l4aNHWF2/DkVitF5BAc5xLmTnQZhwCCGmtJ4ugoePHmNlbR2qLJE+gKADdx5zLEo5OBcv/HnzfN+Te6ehyHiROCvlAl6ugWVpMjaePb30eVnYImc5LdzUlKn9nwuBOBUkgD7HPeg8SDKBNOOlbTQDJXQmaexCoHwPmiJNnRPFGAsx3OL70cVg2on0IkgzWrMA6d1cNNg+z7Ms2iQgMLVmUy6QzGE+HvfeL/K+i3ULRs5vAtS2KMTJ+1fK6b3LknTmloWzjLE4L4p3zwU5zzGQK+FlnofnGeergKseY5jPi8IFdHLuFKLM85iT5xvT0bMxSiiWmBVnHHeGT47zuPV7FkzGO/oJe9dJe+JxOO+znIzZixbjIs7RlGMMMy6A4pnKEsPGs6dYv3a9jIGKnzMZY511H05yYffDMeE8cBVrp1gfRQsgQHvY5Fc52EePOutOjpHOx6PztphvWf4z2BxinfPg8HNMchfOKCVjn0Kj9GWjjDMm1n8mRBkDa7J05H571bj/8BEWltYgywzOBYteRTzGGM21eX+L4jlOzlsu8pgBtN5nOcheNb797W8LIcSlBgvnekOXkZRijFkA/hsANoAhgD8E4H8B4PcCeALgjwohkpM+48aNG/j6b3wDn+24AMhmN+O0sbQr2rF0ve1hWFIfC1vay8J7772Hb33rWzN/bxwmeLzvQ0DAyntJ/8Wne+h5JA77i290St2Ry8RJY7wKPOv5+M2HXWwNQizVdPzErRau53RETT4QObzoOH/rURf/6n4XQgj82M0mfubuwry/QomreJYfb4+QpBQkqjJDnP/7WysHWkRhkpXrQpUZbnec8pC+ijHuuxG2BiQeb2kS/JiCqqWaMdV6cX/XRRBnuU6XheqExfVb734J/9U/+DU4hpzbyRIrb6lmHJkb5wHnAj/cHAGgTf+1c7RjHsZb734Jf/O//WfQFEqKF+yYOx0Haa5DcNHE14ebo7LK+PYLMLzm+b5JxJas3a81rTMJhh+HR/suvv14ACHITOCP/t5fuPR5uTsO8cHGEEM/RdshVtokS+dp18+1MIAbbSt3mxFl291VrJ3H+x7GYYogScFQaGxoU1Wy4j0IIdCp6lMi/sUYH+656HtJLsR9sE7eWK68kFbT5Pl5o21duI36PM8yTjk+3SE9voqhlBowz3p+qUlxa8E+M+MqTLKpy1nxzA9/zkXe94M9F36UgTGUuhr3d2kvrprKkbgkSjPIjOGzXbdM4L+9enZdudPG+NnOmJINELjVtrHvRvjesyGEAG4u2Pjiev1c3++ieNG18/e/v4n//Ncf44vrdfzpX3r9Uti7VxkLxSnHJ9tjAAdnRnEeFgmgwqb7dseGKksQAvipr/74pY0x4wIf5mejrkq4lztTf7JNjnWSBLy1Mn0WFWPOuMCtBbvUM5l8lknGSz1Nx1DO1R738faInPtkCe+s1Y5dF1vDAPtjOptWc+Hq03De9z0ZV9UtFZYmYzOPcxar+rGdAeeNVz7dGSNKKGb6n/3yL+Af//Nfx/M+tUwv1w20HX0qxlqs6SUTVeQJK12Rpp7V5HwzVGmuruPA1aydDzZo3+p6EVq52crtjj3FcCvmKgDcXrCn3PmKMcYpx+N9F1FK++3dRadMuD7cc0vnwLajQZYk3FywL5zYOC+KMRbFn51RiF/7eA99L8ZS3cBvu7dwqYYAZ8VXvvIefuMb38STrk/rXwjwPOlp6TI6Fb3Um2zY6oWd4V4Ed9/6Av7jv/EPoCoMv/zF1Qt1pUzGBnc6ztxbId977z18/Te+gUf7LtJcW11iwNO+jzDmuLvo4I3l6ktPRjLGvnPZP+NV4Kn+bgDfEEL8h4yx/wDAvwHga0KIn2GM/WkAvwxKXJ0IXZFganSAd6oG9t0IXS+BpUsQQsyciJMaQfUXuFi9KCqGinZFw6M9D2km8HDfw72lCj7ZHqNhaa9sW8O80anqWKtbsHXSjSAxcwoydFU61anrNNzpOPjO0wEyIV4ZJ8QXwWqdBMBrplo6IlYMZWquF+ui60a5nS0FjVdFUW9YWhlUr9TN0sWvfchhrm6pCOIMXS8GGFA3NVxr5QcYo+rqcs1EYGZIMo62o7/w3JAkhtUGaXu9aEtv8bMbtgpLU+CGKRo2Wfbe33UhBLWzzGqHOg1rTRM9N36pe9RhLFR0pLnYddV8sbnUsDTEGV1oWvbVfMeWreP2goOBH2OtYR3ZY2umilGYQJUlSAz4ZGect6ldbgFjEkRvD9Gp6tBz7YXDGiJVU0XPi7E9CpFyuogcTngkGSfhUF3Cj11vYhimqBjKCwuIdyo6JEbsn8vQ9psFTZFwrWUhiLOpC2enqoPnicOznpe7oxA7owiqwnC3U4EsMdRMFeMwha5KL0x5X29Y6HlxKZRuanLuNpgduVD0vBgbfbL7dnQFoyBF1VQuFEAfh5W6ib1xhJ4X4dG+D8bo1+KU427n86F3+asf7uBP/s3vYrVu4ltPHkEA+LO/582XPawXgqaQXqKXu1EC5Czb9+g8j1KOjTiAoUoQHPhkb3zpY5KPORsLF+pZe37NVDEOEuy6ESSJ5tZh/SpVlnC9ZcE/tH7PNCbG0HXjUufuOFQMFV03zltuLodhYKgyrrUshAnpd0mMuhyEwLHfqyginCdeqZkqdpOo/B4NW0MmBIRAqSs1GWO1JhxxH+578KOM3INbB8kAVWawdHJDe5GC0svEesNC34+x1iDjJE05alZVM1XsjSMESYoHex40RcLdzsFzH4cJnnR9DPwYuiKjYatT3TVr+f69UjfgRuT2fVVJqQJelOLRvgeACoBvrVTwrBdgqWaU7/9lI0wzfLI9LmN4R1ewWNXhRWT0oCsy2hUNccrPrbc6L8gSgx+lWLPNC5+pRTxmzdlMqECccny248KNEziaioqhoGFr0BSSe1ltvLyW9avGq5DxeADgK/m/10Fj+mf5f/8qgD+CMySmGGO5kBq1vPS9GC1bR5pR9WcWbV6RJazWzSPWnC8D5PxG4sEkmGdjsXJ+l7rPC9KMTzEQAGqn/Mk7rfIdAihtOaOEkiraBZ+HEAKZAH7yVgsCeCmiyC+CgiY7eVk6LPa+VJtl1UzroqIr2B1HEALw4+zSElOHGQiyxKaECo8T52w7Ohqmio+2iSbv5q1dALXBvLFcyVtQDr7jPOaGpcmom+oLrzNdkfDWSrX8nCKA6XvkJgUAQZxdKDGlKxLWGubVO5GdgEJ8vtBRehFwccAEuyzh6Fnz8nrLPpZNW7NUVAx6n8MgAc+PCC9OLyUxxblAnE1Xtw1VLhlBx8HRFby5XAW15LOZNsa6QlbIEmMwNAVVSyursC8Ccqq5+kBz0om1AAlk24hTjiTjZ2LRePllLkmpLdXUyGiiNof9AKCEAzkSHvzacRXuopWVc7p8rjesuZ/9tq7AVGV0PWK5SYzhveuNuazhq0CYZPizf/cDvLFcxd/5d38K/9E/+BB//V89wh/9qRuXYlhzGZgV9wCU6J9kEOuKXJ7nto7yjOpNnCfzxKz9p2lrR5IshirPjDOK72AoUnlO+VFGHt6HcFGTGsZo/WRcnOjMVeyJlz2vD+vurTUsxOlB6/Vh+DGt8fPEK4tV44j5w+Fk3+EYK0wykgPJ97fJWArIzUsWnKk4+1VGmtHzmoz9apZ6alJtqWagU9HxcN9DEJMpS8I5dIk+hxj65LI3i+VWJIyB2XFrwXC9zLjMz8dIP4/jy9eb+OL60fdWsPSvSn9pCoJidktTsFIzy7FNrvHD5icF4pTnHR+XO25FYvjS9QYkxo4lqpwG2vuMSxtroc3qaCreWKpAyd/lrDtDscZfpTvBPPEqfKvPAPwEY+yHAN4DcB/AKP+9IYBzKYUXi8LSFGwNAyRZdmKW8eG+i8923JIee1VwoxQfbY3wcM8lLQEADUvFzjiEH2cYR+nn4tC4CKI0wyc7Y3y67WLgx0d+X5Jo83jS9YhhwwUWq/oLbbpPez62BiHcmNgCCxWqXH+yPcb93fFcLmqXhYwLfLY7xmc7LnZG4bn//uYgwO44QpqL/zdexCP2BOyMQny24+Kz3TEyfr7oOUozPNj3ECQZFJnYYJOYdZAs1QxYunzi3Cjm0Yebo7I1q8Czno/Pdlw83HfPNdbjMGu91kwVdYuqHydVenfHIT7cHGFrOL0PDf0En267+Hh7TNocrwiGQYJPtsf4ZA7jMhQJfS9Gz4tRMeafML3IvBz6CT7eHuNJ10NFp2qqk+8bl4GLnkOjMMEnO/S9TE3CSv1o4mOxaiBIMvS9GAM/xifbtJfsu9G8hv9K4LxzcrGqw9bl3CEW+XMZkz7GHDAOE3y6Q+MpLqWH8azn48PNEWSJWpsatoqKrszt7PfjFB9vj3B/10WacTzYcxEkHOMowUqdCl+fh6QUAPwXv/kEW8MQ/7t/7U0Yqow//rU7YIzhv/jNJy97aGfCZNzT947GPafh0b6HrWEARcbc98l5xMFhkmFzGGIUxtAUqWR/zQM81yH87rM+9t0IvVOe38uY126UluvdO5QMKtrqtkcBLH22dupxOM9esDeO8NmOi093XCxUdLhRgnGYlC3XF/3cl4Uk4/h0x73QedXzYny8PUbGeRknTiaEm7aWs1IFdkYRnnb9M39234vx6baLT3bGiNLLi8salgpLk9D3Y+yOQ/jx0XthENM95tOdMUbhiao3lwJZYogzcho/zzsaTZyPRRL1siAxhp1RCIGLJaWAF7vfnAWqLEGSAC9O8LjnIz3mTrrvHqzxV/ne+iKYS2KKMfYOY+w3GWPPGGN/jTHWmPi9b57y1/+nAP6REOItAP8tiDFV+LdXAQyO+Zl/jDH2LcbYt/b29o78fpRmWK6ZUGWZhAFngHOBINe88Y4JHC8LPTdGmgl4UVb+bE2RsFq3UDXUS1+oLxNhzCcYCLO/Z5RyjIKcPmsqL1yZL5gEVUPFrQXqI+/7MeKUI4h52Tv8KiLJOJK8B/5wwHMahBClFlBBP78sOmgxtiQV594wh0FCoveKjLZjnIli7ugKbi84J86NYh5lXKB76ND087kXxPxSDhqAgr/1poUbbfvESsv+OEbGBfbHMSYNKYq9QQi8UompYn8iO90XG9c4StG0yR7+Mva9i8zLfS9CxgVGQYo4E1hrWLjZto8wHeaBFzmHinNEliSs1M3SPnoSRi6U2rA1bA6Dcq77M9hVn2f4E2vlLPPI0hTcWnCwVDMwDBLEKUeYcIyC+QT3RUX+uPGkGcfAJ1t6N8pws21jrWHN9ULd9xMkqUAQZxgGZBteM1S0HX3mXHlVIYTA3/qtZ/jK9Qa+eotcvFbqJr722gL+/vc3cR4Tn5eFMOFTzMvzwE8yuGEKzmnensakPA/mFQcXa6hqaGg52lzdn7w4RZIJ1E0NssTOHQddBSbXu39ovQdJBs6BpaoJ+RITZsUemHEBW5Ph6CQt8HktQkTpQWx23tig60a5SYvAtaZ1JE5UZAnXWzYMlZK8wyA5c5KpWCec49j75TygyBJajo6GpYFz2s8Po2ghnUcsdhFoigRNprW+d4555kcT477k2FYIYm0xsAsnc17kfnMWyBK5ldoa3f9nsd+Bg7gty6UbfhQxL8bUfwbgfw/gHQCfAvg6Y+x2/nun3TAZgEJUfR/ADQC/Lf/vXwTwm7P+khDirwkh3hNCvLewcFTE2lBkPO156HrRsS4AksSwUifWxXFUw8tCzVKx54bYHPpl0qFuaahbKqqm8sr0D18GqqZSMhAOaw3tjkJ8vD3CMIhh6eSAMQ+Gz2rdhKVP22tyDjzteRgE8ZX3jp8HhkraJLYun8nimYQ5x3iw5yLjotQmuiymVIGlmlEyEM4SlO67ET7eHmFnFKJqqKU48zyrwSz/Oc96HqxDehPLxdqvGy+9dzvNOB53XeBQRaft6KgYCu0Lr1D7acvRynFdpD1xEpYqY2MQYHPgXwpNupiXnerp8zJMMqo8+gm4ELD0y3crkyRWzsXDltOzsDUM8PH2CF03Qt1SwRhgahKMY5JmfT9B14uw54ZYrVtoORocQ5kro+FVQMvWzzwnt4d0zhQXtqqhQpLIYcuZ0/5TVOTrlnokCTT0E9zfc+HFdNG4LP04BuBJz0PPi1A11ZJlunyGc+RVwg83R/hs18Xv+9Lq1K//7reXsTkM8f3nw5c0srOjaijnYl4W5+P2MISpyjA1CSzXX5wnzrv/TGJjQHvRwI/LM1yR53uGA5To6XoRGCM9ubPEQVeNRr7v1Ez1SAskA7Gin/f9S9O9Aogda+tyvserCJIUj7vupSbDLhOOrpTn1VnWTN+L8fH2CJuDoNxzK4ZyYlzRyM9QS5Owk58LpzGPFir6FMP1MmHrCrlLMiBOMny8PZpiwNVzVn7VVM6t2zYvFOdX09am4vqT0HImzscXjCFPg4DA466LKM0uHGOeJ468KGomzUVNkRBn9K43BtMs1k6V5l7L0V7pe+uLYF7fyhFC/Er+73+RMfZtAL/CGPsfA8e2XBf4rwD8rfzPJgD+MIB/mzH2dQBPAfyViwyIQ+Bak6pKXpShZklTOj3jMMHAT9CwNdw+RvfmMmGoEhYcOly3RwGqJonRnqSVIARRTrkQWKp+PvWn3CjF9jBAy9bQsI8+90IHaW8cn8uB7LQe61k96TvjELoiX4pl7rxxWJskTsnKuZ9foBerB8mVvh8jzJ1cRmGK9aaF9eblj7FgIBQodCuSnBlALW0H72B3RBWt3VGETkXHmyvVWR/7QhgEJCDbdnSwCYNXL0ox9BO0Hf2FEysvijTliDOOGy1nSgsvzTh2xyS2+DK0fE6CKkunVu2L9oXTXIjijMNUJSRczI2tMonD83LfjeBFKZq2dkTrpOfFiBKe78WzGUiXgbajl9ohkxbhO6OQ2mJy0VCes+oAqk6+vlQ9dYy7oxCOrkCTJbQdrdQlKFo8Dq/Lzys05fg5mWRkc6/JEnZGIT7cGqFp69gbR2g7OkxNPuIy9iIoNCCO0zB73HWxN45RMRXcW3IuhYkHUCX6ehkHpWjZ2pkueF03gh9nufD+y7eo/tvf2YAmS/g97y5P/frveGMRssTwqx/uXJmr4EXBGJtypAqTLGf0Hj0bgYPzcW8cYbGq405nvu5pk5jcfyYxqe8zGTM7uoI45ejlbOy9cYS7i5VLOcMBoOvGWKnRs3t7tYoo5Ugz2qczLrAzCiExhsWq/tJaUxVZmhIZn8Q4TMvC4FnGF8QZ9t0IVeN0LaVJGKpcnnVRmsFUFdxoOZAkmm89L4IAw2JF/9zo00wmS4uYIszlToq9u8DuOEKSUpfAG8uVM+11LUdHy9GnnBb3xlFZCEwzjp0xERxqJgmk64p8LkfJF4EqHzhGv58n4HfHYfndClb+KEjwpOuhUzWuvIg5eccoXKSLuL6Y70nGsTMKocoMNVODrkjHno/zBhcCpqrkxgGz2/mOc7EscDiOvAw4ulLeez/bGSNJBXpujAVHhyIxxBlHlGblXPxRxbwSU4wxVhNCDAFACPFrjLE/AOD/C+DEK7EQYgDgdx365T+f/+/CqJoqBn4CJXegyLjApztjpBnpFRUJEDdK8cby5RymJ0HLrTQ3yp5+F3cXnROzuT0vLjPlisxemsPBi+CDjSG2BiFkiaqdhxNJtfy9naeCHMQZHuyR89n1tnWmTVkIATdMMQ5TCIhXPjE1CT9O8XDPwzBIoEgMlqZAmRAirl6BK81ZUIhO7o5DdCoGRmEydfmrW2rpKngZwSTPA9aNQYC6qeL2hPPU836AOOUYBgmqK2e3ZJ83hBB41PXQ82LIjOHN1YO9aGccoe9RosbQ5FeKMXUWPO8HGPgJTE068VLFhcAwSJAJgfAS9RoAqvB/63EPMmO40bbw9mp96vcrhkLvIl9XVw3OBe7vuohTjjjLSoq8pSlwcu2hiqFgHKZnDky8OMWzXoDmRFIKIN09znFkXf6oYdIZs2qS412aCQz8GPfmbJUOTDvs3e1UZhZLRvnZUyTLLgs1U4UfZRgGMXhXwNJk3Ok4J+53YZJhM7efz7iYa9vYRZBmHH/v+5v42usLR5KwNUvFu2s1/PqDfQCvvZwBXgDbwxB74whPez5W6yaGQXKkEFecj/N2ZzwrkoxcojIusFQzsDsOwTklWd5cqUKVKb7wrsDdbfJZdL04jyEZ7i466HnxhFyB9Eq2qDIGPOv7YGDHJq8m8azvI0ooPnGMi1nEF3cMP8qQceB7zwbYHYVYb1hgwLnZca8CnnR9DIIE28MAq3VyRbw7sYfXLRW7owjOBVxnNVmCqUkIYj7F4NlzI/TcOC8SElPl7il76GWhbhX3o+k5nmYcX7+/jyjhaDkhfvZu+6XFtMfF9dvDEAM/weYgQMNWsVAxriy5l+X71kmGCE+6PsZhCkuXcfuSE1BnQc1SEQ7JkVOVGR7sefDjFDujEEtVE36clQnLHzXMK/L+8wDewETbnRDiB4yxXwDwZ+f0M86FqqFOOXOMwwQPdl2kXECSyOkqTM7m3nMZKJwxJABulOW90NPj6XkxNgcBTE3GrbY9FeDq8suvYl4EaUYEOlliCNMMmkIVr4d7LqKUY71pYbVunosNVvRYA5SkOu0C3/dibAwCpFzgRtu6FMHly4QfZ/DjFM/6HtJM4M3l2tTcsHUFb+WVy5eZcPGiFBuDABt9H2bejjiJlbp5qcy/hHMwMNxs27A0uUw0RGmGpz0PXpzhZst+qeK/GRcIE47lmglNZlMtxXujCI/2PTQdFXfll39QnheFDkMQ8xMdgCoGtT7sjaOZGgrzwNOuj2GQwItTqLJErKgZ46kcOjeuGml+DmwNA/TcGMsNAy1bnxrrjbZ9LkclU1Vwa8E+crnRFQrC592qWNhwq7KE2wv2XCrzScbxcM9DknHcaNvnorCHE+dDoQ2xXDOxUjeOdQl9ERRaFJv9EOMgxc0F+wjjdblGVW1bv9ykQ9vR0bQ0fJYnO8OEgwtg0tDsWc/HwE+wUKEWKVlikCRqdX8pLk+H8PX7+9h3I/y+L63N/P2fut3C//2fP8Q4TD43zL9CC4gxmpPdvACx1jhgaV72+Xga4pTDj+kM3x2HWMrnsKawfOwMt87g7hYmGT7cHOHWgn3hFpjJZ1GIVBcaK5OJ3cuK58Mkw6N9D0Lggt+DlZfws8ihacUZJTPMerScU0EriDOs1s2ZTrGT7nvP+wHGEgMXxFB+Fdb1RbA5DLA9CDEIYqzUzSPve5aL4VkhSQx3OpUj87mYX5vDEKrE4CcpbrbtY10hLxN0PxLYGAR4//kQnaqOxaqBJBOl+2t2Qde5eeHwvsW5wMN9F5uDEEp+75Ml7Up14oQQABMntrAfaM6+GtqbnYqBtq2XZmD7boTtYYiuG2GhYryU+XdVmNeN/G8DmJW6CwH8yTn9jHNjcnPhnGhyYUKtfNebFvwkg60pGPoJdsakc3PVvevLdRNbw5AEag8F232frIEf58yT6y0LdzoOBMRLqebPA1++XseDPRc146A3+2nPxyfbYzQsDRUjPjdFsW6q8CKqPp+lx3oQJBACaFramS4nXTdC14vRtLWZdPerRkEJzzLAVBTUTeVIBeVlOy0xxtB2NHy8NUbFUMEB3GwfTa5cZtCtK+TE4kbp1Lp2wxSdioEgztB0VDzt+oizDKt1a4oWfhVQZLIkHofJFO0848TiW6kbMDUZAz/BKPSxWDmbMPxlI+MCz3o+Ui6w1jBnBuordRP74wi13Or8OBiqjLajQ5WP10l6EXAuSkdGTWG4t+hgGCQQYOi60ZH1/zJbpDWF2u2edX2YGrXPfGm9ceT5nmeMq3UTXS86skfcbDvo+zF6bozH+x7Wm/MxRhjm+2uc8rKN/kXhR2T3XXz+SYmpUZhgZxjC1hWs1E3UTBWuTSyplboJLgSJA1+SPkOnqiPJOCQJsDQy2aiZKp73Ayh528XNtgMvTmFfwTleaAjtj0lnavIdF+YYO6MQ26MATbsDTZFwt1NBlGavhIbF3/nuBmqmiq+9flRLFAB++nYb/7dfe4BvPurhF95YvOLRXQxLNQPbwxBfXK/DjRJsDUPsjyM4+vRZ/rL2omJe7I5DSGComxqajgZbV47M2dPGKARyI4nk3Amd530fQZxhuW6Wc7FT1ZEJAV2R6Nd02jclxi7t/B6HaVlUHQUJVFk69fybRNPWygvvWWLUa00LbpzCVOWZsVyU8lIEue/HaNjazGcF0PspnlnL0bBQMV6JdX0RmKpETDBNRso5Vmbc1150zRz++y1HR8+LoUkMmiJDk6WXRmgo0PNoz94aBvi5ewswNRnvrtbR8yPcaL5chisw/QzDNEPfS+CGKXRVwo/faCBI+JXqYSmyhOWqeaLObhEnHfdnintgwzpbO/w8IEkMm4OA7reczKFeW6pisapj8XPYMXVWzGt3+qsAfgWUoJrE7wDwMwD+53P6OReGrctYa1pIOcdyzYAiS6jmm8vOOESUcOwlUSnG/XDfQ5xyXG9Zl1qFM1TqVaYWjjHChGO9YaFmqWjbOh4FHjIuwIXA7jh6JSiGLwJLU/DORPsMzwMWRWYYhgnetWe3lBQsp1mBR9FjfVYUQUIlF1Q8LYmzNQwhBFFRJxNTRQbb0RVcb83XTekkyBLD9aaNnVGYV7dn/9yCZZByjhst+9IuYsdhuWagbqkI0wy6cryO1+N9D+OQkkfz3vA7VQOdQ79WMVRYWgxDlZFlwPee96EwEl6flTy7bCxU9CPfW5YYmo4G2WewdAnfeNQFAxAlGd6x6lc+xsMYh0npZNnz4pltAVXjbILtccrhhil2xxHudOY/R6X8WQ79BEs1GwsVHR9sDJFmAtujcGZiOkqpQs45cLNtX2nCcrluoufHuL/rom5q8OIU1RnJ+jjleLhPrTYnre+apSITApuDAH0/xq02sQRliRxqopSXWjezKu/nRdPW4EYpFEmam5C4rcsw88tI45TE7O4oQphwPO2TcPRSzZjS9rls6ArpvOiqjKGfoGXTxaa4mI5DasUQHPhoawRDlXCr7VxqEmJyLXpRisddD7LEcKvtQFWoit2wNPT9GItVg5yWXgFWhRul+Ec/3MYf+PLasVpXX77egK5I+Ff3u5+bxNSkXsnHWwl0RcIwTE4tOnTdCFtD0h28TLhRimGQYLFqwA1TVHJh5eIdFCyIyXj1OEiMQVelmXvYSQjirGxl3xtHSDOO5/2AdJTa9tR6uezYhiQmYgiQTMjh869pa3i454ExOi8OJ6pk6WwtfAUkiR05O7kQ+OHmkOKUlo2qqcCLstLNdvJZHU48FfeMzztutBy4YQZDk6FKMsZRitaMpOAoTPC060NXJNxacE4tuDzpehgFKRZr+hGJlDDJECYcizUDccovpf17FuKU44ONIZZqxtS9Q5JoPQUJ7dldL8Zq3cRqg/531YjycU6yPSdhqjKSjCPlHE1dg22oWK5fbXGVC4F9LzrR8GWWDvEktkfUyrwzCi8lMSUE8PE26XNRlwfp+BVtyrauoGHr0BUJi5XPp8b0WTGvyONnhBCHk1IQQvyXAH5uTj/jTNjMKY6HleyVvK1AlSU82fen7B6LA8DUZMgSg59kiBIS0x5cUmvJYQRJhr1xjA82hvhnn+yQJgYE3l2r4WbbBsP8nU5eBey7US7WnUGTJQyCBOkMK86CPfYiFufjMMGzno/3nw/Q96MzJaUAlAyuw8+/79GYxiFZGV8FeM5U8aIEnYoOTZaxNYjwrOcf+bNelCJOyaJ6cAmi0ifBi1I86QWoWQoapgY3TPHx9uiIHW+S8TLA6/vxzM8KkgwP99xzW4InGcfTro+NQTD1dzWFTAaW6wYkBkhgRIXGxTf6ol0hvIDtbdellj33ELV5wdGx2jBhKFShyzjwkolwJUxNRphmiLOsTD4c97xPw74bYWMYAJfEBBVCgHOBrhdho+9j4MdQZUYJn2MSZ26YIkmJWXOaQ888MQwSPNr30LZJHHRrGGJ4zBnkRTTGQifqJEzun5MWw46uIOMcQZJBV18sHOi6Ee7vuri/S1qOCxV9LgysMMnwvB9QIcHR8XDPy9tqaI4lGWmx8NxWvJrPxzhv1+x5s/eVecKPUzze96bcklSZgQuBIKY1Uj7nPOFTvJMg5pdul11g6Cf4V/f38cn2GPd3x/h0Z4ybLRt3Og6a9qvn8vMrH2wjTDh+/5dXj/0zhirjy9ca+Maj7hWObD7IuIAbpchy9sfOKMSHm6Oy1e8w+j6xEY+zEp8XNFnCnhtiZxTidseBrkj4bMct53eQZAjiPEYOTl5fuirh3mIFhiojiDN8+3Ef/+SjHWwOjsYsU2NQpHJPqhgKBvl377rRqT9z3tAUCXcXK+X32BmF+K3HPXyyM4KlyRiFCcIkw9BPLsXAA6C5sj0K8awbYGdEGmVRSvv24Wf1o4idUYhhkODWgoWeH+Ph3vjY82WYz5Uw4aWkwHFIM45RQH9m1n1PYQzbowCbgwArNSPX4DtfjHMRZFxACLpnTCJKM0RJBsEFum6EvheVbOKXAV6Mc8az2x2H+OHmCLoqQVckjMMEGb+au9JhpBnpd54Fs2LZqqHmUhCXE4RzIcp4rmD4qzJDJjiiJC27vjoVAx9vj2fep35UMDfx8xN+70rLbkUQ2s+zyJPYHoX4wTNyNeAQpeDrUs1Ay9GgSAyMMdiaAkuXEadXRzc0VaL877sRooSjbmsIkwxvrai403GQcfG5cdE4K8Ikw84ogqFK0GQZccbx8eYYYTwtaAiQFXiYBBcW894bE7vp0b6LIKYe+6c9/0zC9+tNC0u1o3pkLUfH9jBExVCurLrc92MMfHLTYkzAi8lpaeAnWK1P98Y7ugJTk5BycSrLYN7YHJDw9dYggqlLsFUFSUqC87pz8A5VWULdUjEO0+PbJPNAPEr5uVoB9t2o3OBtTS6rOXHKSzHkiqHgzqINmTGsvUC16aLtCmnGS6HhNOPlvM9yEeyMC5gaJdUzLnC782owJgd+UmovFBft4573aRAQUCWpbF+cN4ZBgp1RiP1xjCwjZ9MkE9Dl41khFUOFocbgAlfqfvK8T4Lkj/ZCcnZjjHSBZui4VIyD9X2ahXzb1rGR75+TmlL0PWUwxrE5CC7s/JVxgc1BCD9JsTeKcL1lY+gnc3l2O6MQ41wsHEwAgsENU8QZhypJuL/rIs0EqqaC6y0bnaqRt11r6PnxlbRfbw1D+FFWitJrioS+R5ejYZBgpW5AVSQwJrA9inCzraDpaPDjDKYmw7wk++lJ+HGK9zeH6HkxRn4C25CR1gX8JMMbS1UI4JUzAfk7332Oa00LX77WOPHPffVWC3/ln3xKc+4VaHU+K3peDAYGP+bYHgYIYo6GrWEUpDOT9G1Hw+YgvPQE4pOuj75HLWujIEFRK+z7MRYqOkxVhmMoCOLsXCzLUUh7cZRyPNjzcq2U2XuwLDHcnYh9NUXC834AN0qx0Q9gacql2bafBM4FtofUoi4z2vssTSZGhRBYql3WfsPghxkkieHBnouBT8mUlqPhWtOeelY/avDjFLsjSoo+63uQwSDAjr2YN3LWrqZIp7ZLKxMxaGvGXI45nb+aLOPDrRFeW6pCYgy2rlxqbCBLxGqeZHSnGcf9HRcP93xIjAFCQAiGPTc6ct+9KhTjnHVX7nsJ0kzgSddHktLetj8+vl3ussDy/6myhCQ7XVt6ViyrqxJ0WUKSCYRJNve9R5LYkXhuZxRBAoOXpKjodM+j5B4Juh++T/2oYF6n2y5j7MeFEN+c/EXG2I8B2JvTzzgTFio69t0ILftgMe+NI8QZp62M1vIR4dvJiSpL7Mpb5qT8EE4yjqGfQJEkGOqBbaVyKEtbWPc2be3KW7TmBUViUGQGU1XQrrDSPjtOObaHIQRESVk8jWZ5GgqGXN1SEWcRKoYyVVkqLIdliU1ZnBaYtZE1be1K+6QB5JdIIOU81wuRIJhA09GOXFzDlENXZCzZ2pVrkpmajH2XmCltW0OYCBiqdKQtlrRYGBYq+vHPkpGb1nlFmovLHmOYOkRSzksBUlliucNFikyIC2+IjDFoyvnbFeSclh0l00m3Qgen+OwbbQt74whelL0S9u1xyikwAspxHve8T0PT0siFk1ECZd7QFUrGWBq1g1VNBfvjGIosHVtp1BQJNUtFkomZIumXBVMllytZZmjaOnp+jJo1W6NrECQwNQWdin5ioLU7CpFygdeWKjMTD5kQkBhDnF68kikxYkZwIaNpa5AlhoY9n6DdVGWMghSyxNB2dOy5ESq6Cl0ht91i/k2yoBVZwnLdxPIpwXqUZtgbR7A05YX2clMl9ytVYeV8aTkadkYhaawxBiGorakYZ9VQ8ebK7Ge070aIUn7quz0PklTA1mRUDAVNW0XT1vPzVz6xLaDnxfDjFAsV/Ur3nq1hgF9/0MWf/Pm7pzKbv3qrCfGrwG897uEX3/x8tPMBdE5mgkSuG44GCEBV2JQrcZhkpX193dKuxHUu5Ry6KiHLRHlmj8KkvLhLEptqDRO51AQX4sQ2k5qpwjEU8DBBw9Ign/JeGaMYMcmo1bhuqWUyIMnOV6iaFySJYalmoB/EaFqU2JclhvW8XXhyrhZrp1MxXrh4qUgMNxdsCAEIcHhxBgiUbZ3FswKoFbPvkfbUq8aCvAhUmaQgMi5o/ghKyh0ns5JmHBVDQds5G2t3qWZAkiLMOgFNVYauyghTDkvTIATAJMzdNOQwNEXCmysHhfO9cQQ3ooJM1VIQxhmqeQLjKgobx6EYZ5JxbAwC6IpUFoPajoZnfR8VXUEkU/fGy1izmiKhYihYrJ3tPJ2MZYszL8ko6SvE5ew9DMCdTgWjMKEchqMhyTgYozsyzy8tCxUdPS+BxI6f/593zGvH+vcB/NeMsb8B4Nv5r70H4H8C4N+Y0884ExarxpQDjhul2B4SI6Fhq/ixG03EWVYeIpeJycP6LLi14MDWFSgSg2MoJwoBP+n6EIK+33GsnzDJsJ8H8a9iFVGRpTwZ9//j7k9jLEvT/D7sd/bl7kvsuWfW2tXV+0w32TPkDGlYtkhTpmhAkrVQljG2tfiDIUD+YkO25A+yCViyZICSDBGGIAkGRY8oSiZNyiaHpEjO0j29VVVXZVXusUfc/eybPzznnrixZkRmZPXQD9DoyqyKG+eec973fZb/UuCYGl6UcjCN2JuGHO7IoWpo6rVMvJdLTvBKy+IPP7CI0uxYs+ZwFvH0wMePU76y0WS19QfTSrdm6by1UudW12USJhcWVM8O/YqKtGgHPw6k6/4m40bHpVtOfvOiYKVpn5kgzC1kQRKseZN1XjDWTB3H0Ljdu7o+Qts1sQ0NtWwazcM1ddbbNmGa03J0Hu8LpSDNLrZGv6hYtA31laxb5845UZodSy4MTeVm12EWCZJsaxQyC1OGXlKiXs7eG0Z+XP3Mm0wAJJFTyoaPPLPz7nea5exOI0xNPZObHyT5UfETXf976ZgiGPlWScMAub/zZ3lWiIC2TGjn1tpX3c9fJe70aoRpxgNqHHoxXzVbZyIS/Dhlu0Ta5XlxTGNvcX2P/YQXw4ChFzMNUt5ZO/2O3u7VGPnxa00xT77H16m3t9y0adgGhqagayrLC+e7VuoLTsPklc6J7ZGgsYZegmtqx9bMVZ73eluEVU1drYryft06dk3z6+y9pPl60bM9Ky67n7dcg422U+VIaS4NsouaTVGasTkUWYQkK87UqZkPdfRywHBdz/6//NEWRQH/w2+cT+Obx9dutjF1lX/w6PAfqsZU3dL52s02G50IUFhpWKcQLyJqLXRVTXUZBQkN683mc7d7NeqWgWNK/vWyZzrykwrRoqkKLceozu/FsA2NX317CT9OsfSLG6KLMc8TslyQkQ3beOWiLMsL9qYhmvLq7+s7q41SV/Ro/Wx0nKoJBZJ/z9dOlhdXzmGKQtC9QDkshbdXGuRFUebFNrqm0K+fFkF+eij6iNMwPdbceFlMw4RxIE3DP0gDb0NTeXulXkpm1Dn0olIr9PQ1JlnO84Hc9yjNK5DB4n6eZAU745DlhriencxDFz9XURS+e69X1VKWIU2yL1MA3Svr2KEfkxc5D/p1Vts2qiLNul9Es2ceWV7wYugTJXnlbDe/h726Ra9uSf4RpjSdN4syO/8aYalhk+fyHiyueS9KK4OS+Z5yVi67UuaKpnZ6wH491ygyLfvTCENT8eOMe0uipWfrdiWZYekaS/9/LHwO19SYKoridxRF+SXgXwL+bPnXHwG/XBTF3nX8jlcNoecJSso8kdSCFHJbo4Capb9S8XtRLB7Wlwlx4TrdEMnzgieHHnEmQpM1S6hjUXI+JDHLC14MfIIkZ+Qn1KzGH0iIr6IIfBGk6TIOxKHm2cDn3dXGlQQjz4q57oiuqcfu7ckDTVGE6gkCnwyTnDDNuNFx/8BNnAQBop2JzonSjGeH/rFianGyM9/83jA9HpB7fFbikGY5Tw590jzHKXURFOU4jWSxYHydOO/AnsOj09I9K8sKtHLaOHc8aTpGBY++arF4ldBU5cz7tDgdnx+OBQWaouBFKc+HPqamcqcnh9d5CdmbCENTz4SOn3W/dyYhA09ocY6pnVpPeV7wdOChKrwxGsTJafVZTYw8l/cySnN6dbM6N+Z77FX381cJdeFduHHinSiKgueDgGmUlMViea5dsL4NXWF/GjH0I/anIWkudNHFn6lb+rXscee9x9cRF4nPtxzjUslulhc8PfRIsoKbXQfXPKJgq+ppGtuhF1/peb9MIL9piwPwk0Ovcgs8KzRVoaCA4vR7e9Z3usp+frypd/x6z7o/mqKgquJqfPJasrxAVaRhPxdoNXX12hA9v/n7m3zjVvtSos2iM9XmH/xDqDNl6RobbZc0y4/laF6U8mIYsFc6RpuaytZIaHBvWvu0ZukvbUzMopSnh54UoAvNc1NTX3p+q4rC53szNFXhTs99aW4634N1TeFGx31l9FFRFOxPQg6u8L6GScazgY+qSMNufi0nz7qTCHoxppG18ypNjHkespgbLX7vxXx2HCRSx5g6N7sOlq6WkhVXa7otDrzfXT3d0CqKgrz4xVB+dU1l3kO/YZ7Ov+ZmRC1Hr9BV5sJ9Xzy/0yxnfxqhlc30o/sqtLOCglvdWnUu2ob2pRponAxNVTiYhXy8PWGpbvFguVE1RFWlONVs+TIjTnOGXkKYZti6xt5UKK13erUKEDE/o39Rgt15UfD4YEbbNU7dp6eHHnEmzs2LA/yT61s/J+e9rojLff3ZoY+qQr9h8c5qo/qdb0rq4g9iXFsWWRTFnqIovwX8W0VRXKxq+CXE2E8YeBFrbYcHJUXurC7n9jjk8z2vtI/WaNome9MQ2xD6x+5EaF8rzat3KE/S7+YRxIJkatqXQzLN4hQvyshLZ6W3VhpstGxejMLKRXAe0zDh59tTvChFVaHlmJiaWtFufhERJlnZARadkG4p7PtiGPD00OfQi3hruc47q00KCulu1y1ajvnSgiNOc14MfXRV5UbHObbx+XFaOaWsNO1KM+ys4rlXs7jVcymKAlNXmYYpYZKxp4XUl+ov3fgPZhFBnFWORtcd8+mZH6fc7LgYukqeF+yXvzct319NUXi07+HHGfeXa9zu1agtFExqmeSk1yjWvnhvZlHKXklfmTd/DkukUZTmFIUIXB/OIrZGIf2GyVfWmrjWcb0IY6FgvMzvXYyRHxMkGUv1o+lzlhdnwm+9OENTFIZhjKJQTXr3pxGP9z1sXaVXwsHPagS86v3an0mCtHRiGh0mWUlxPV6g5HmOF4vmx/4sIs0Kxn7CoReTFwUPlhuopdPayYTsTUReCrEqCHrqorWhKQrPBj5JWrDStE41Qea6RCpcKxpp8f2Yawaslsi9gRdXun66qrLWsvlkZ8IXex5LDUGbnTw3ztvPr+P6olQEVS1dqwqO+fQ6TDIURaHnytm0OQx4MfD5zt2uuMsunGsn1/e8aPxifwqFNCw/251iGxprLfulxWec5jwdeESJNDq/THfCecypTHVLPzOxPCvGQcL+VJrLyw2bLC/4Yn/G3kS0YQZejGvqLNVNdE0QHovF494k5PGBx6EXX0p7bv4s5+tCVRRWmkdrO8tyfr495WdbY9qugV6iSs6KOM1JMqEbvwzFdt5+PvJjpmHCUsO+9DR9FkmeURQFm8OA212XwYJcQGPhXRl4MT96NiKn4K0F3bvrQhF8vDXh5ztT/o0/9ZVL/8x37/X4d/4/DxkH16Nt9iYiTDI0Veiee9OIvWlEr2biRymf73kVql8t96g4zWnaBr26yUrTZmsUEKX5tRcoc2Ft/YSUwfw8itKch3szoOD9tRamrvLjZyP2phEd16BfN7m/LDSzmqULzYzzz+9nhz7PBz5NW3627ZoX5lirLRvX0jAXdAGHXlzZu/fqFn6cMvKTSv/q5LsYpzlf7M8YejGqKlqy572vc6mMTs3Ei1KiRNCFkyA508X1rDA0lQfLdaI0p2HpbI0C/Di71L4LsDUWgfW2o7Pasqsm9Px8WozDeU4QJCynFnd6Nbw4o27pbI4CgjhjvW3LmeclBElK5wyJh4sG3vM9NEpyNjrOG5WxWHwXkixneyQNuvlAcOCJYVKc5uRFwUbH4dH+jM2hvMO//u4SGRzbs846v+d50krTxjXFRfX3ng5Fj0hRqZfOh6auCFKlLgirrVFAkuWstuyqQfQmm0O2odGrm3RrFoYmFPaDWcQPnw6Is4J7/TpvLdfICrk3TcfA0tUvB01VfuW1lo2ta5XMw/4souUa7E1CfvhsiGtqvLXcELSbZVQOgumXcI1FUZSGaMoxjak5/dCLspcOmyUPCalbxrW4F5+M+avTcnVsQ6/cDHVV4dGBx2c7U5I85zt3urimjh+n9GpWJcYeJvkx+Z9/mOO6x5t/FvjziqIcAn+n/N/fLYpieM2/58KI0oy//vEO26OQtbbNn/7mDWxDY2sUMPBEDNXSVYZ+TJxmsnhNmTD4UcBeCaVTVaBQCOKMhqWTI0Jol3nwc5tH21RZLZtaUZrx5MDjB09lkXZqZqU/8e5q89yC1zU0DE3hi32Pbs3CNnyiNCubMgEN20BTFUZ+zO8/G3I4i9FUoQKttYQGEWc5tvrlFxW7k5C9SYSqysRiEiSEacrdXoOBH7E5DKoi3YtTHEOj3zBxDK2iVcWpCPPqmnKqY33oRWXTLiUvcgqEXrTedpiFKUUhxe7Ptye0HBFEPMvuVVUVvrrRIkgyJkHCb326R5IXfLDepCgKgiRnrWXTq1uVYLWiyNRqfnACBEnKzc7rI+8mQcJvPz4kywu+/6BPnBV8sj1m5KfsTEIeLNX5dGdKkMj723ZMAltno2UTpBlpnpNmxbEEfZ7U3uw4XEdfKs8LfvhsyNYo4CvrTe4vN/h0Z8LzQYCiwK+81edpmYDWLR1FgX7dRlMUwkQarQpy7+cH0zhIOJxJ8Xi7757L4x94gnR0TLGOXkyk56ihNBNkU5YXfLY7JUlzWQeGJhs4cDCLxbXQT2g5JnuTCMdQ2ZtIc3p/FtGri7bKvX6NJwOPMMlOTbfPiyDOeHQwQ1UU7i3VsHRNJqElTUxTjsQt96Yhu+OIgRfTdnWatklBwfYkpGbq7Iwj7vVr7E1D1loO+1MR8Z6F4r5o6pIIPzn0SLL8jQg0zuPz3Sl/6fdfkOYFf+abN3hvYdJ0MpqOwVLZ3Jsn+IvxcHfCD58PUFD46s3L0w7Oi0mQ8HtPDklz+PadDo6h89nOlN1JxGPbo+XobI8jxkHM++tNTE1D16TpaBkKQz/m3dVG+Z6U76WfcOhF9OpGpevwOvFof8YnWxN6dYtv3+nw5MDjk+0pRQHfu98lL0QvR5qNcLNTw9TSSmTf0DWSNKdb0sLm19dxTR4s1ytIPUhxaGoq4yjBD1NyS6MoZG++9xJU3eODGX/jk13GXkynZvGHH/R5f715LLGL0/xKtI+iKNgahyRpzlr77IFPnksimRcFTw48Pt4akxfwS3e73Oi6rL2Ear0zDonTnCAWvcm9aYgXpYz8GFNXuOMIQuVhOZRK0pylBR2YOU1aVZSXTsof7c/4fG/GUsNirW2zMw5FhFhVGJduXfNG9/Y44Fa3xv3l83OISZhiqCpxljOLErq6PON5079hGxUlVlGUU897bxLyNz7ZRSlgrS20vSjNeWelgXvBc6qZGqau8vTQo+kYlZYXSMNeKZGau5OQnXFQicN6ccrdJTGQsHSVsHQefJ0E+Td//wWGpvAnPly/9M98916Pf/u/ecjvPv6DozMlw7EZO+MQW9dwS7R7v27yeN9nZxJy6BpsjSTvtHSRN+jWLVquwThIsHWN1aaNrqnc7Lg8KbzXHiyN/JjffTKgKAq+d6+PF2cMShSRpauM/IQXQx8FpSzCCh7vewDYujTtoVz/WY5r6uxPI4IkY01VWG/ZNOyzdSGzvODTnQkfbU9oWjorTYtJmDD2U3p180zWABy5Z+9PI6ZhwsCLsXSNMAnp1S2eHIjj6sEs5t6SOE3aZXE3d8dMS80s21C50XHPbLTvjnz+w7/zGF1T+dW3+3z9VoeDWYSCcul9bl4Ip1nBetshTI5s3/emEXfP+Jw8L6r8RCjYXik8L2LLUZrxo+dDkqzgvbUm622HhqXjJxkN22DkJ+V1wu2eyyRI2B4FBEmGrqrsTYTG9rPNCaaucKtbO0Xzu9c/amidjFmYMA1EUHwSJG+sMfX4YMZHmxP6DZNv3+6yNQz46eZYRKfTDAX42eYEQ1WxLZXlus3BLEZTxQVVVVSyoqjO6cX64d6SKzWCobLRthn4MV6cyr20DSZBUuWlaZZzMBVphK1hgFbWH/2GyY+ejdFUyPIWt3s1fvhkwO404r315rUi1edo2PW2za1ujSSbO/HF/Pj5iO1RSJLnFHnByI/ZLFFzDVun5RooiKnPm2ikzENB0MLz2mwcJvhRVunk/WxzxCfbEzRVYewlpKXpEEppapRkTKOEKJVG371+/dpppF6c8tMXY54NPP7Yu30MTe6HDLBt6lZG9yWamH/1p1v88NmIG12HP/u9O1jG9V6jrqnkyH4RpwWupfHs0GMapcz8lM92p6gKKIi+3zRM+es/2+VGx2GpaZX7k/bSnO4fhrjWO1sUxT8LoCjKOvBngP8rsH7dv+dloSDTlCDJOJxFJFmOpmrVwXDoRSIgWICmqLy31qAoxN76o00prG1TZblh8cn2hI2WjaGJpfzc+edkpJl0ieeInYNZJC5CCJQXYG8iE7K5zXeWFfhRRpgIkuRrN4+cZ+a2mm3XRFUUujWDL/YhTFKCEoEE8jvn6d+LYYCCUgljrzSF3/vZrth3rzQtlpu2IDamIvQ3nwC8TuR5wYthQJrLJGVOf9FUpUqYDyYRjw9mHPriQtN1jwrVIE6ZBglRzSIvBB3wfomiOXkvT2or1Cyd/UnE1ihgcyiThaWGRcPWabsmkzBFUeRQfXwwq7r0Z4Wpz51ffDo1s+z8C3pqFqXsTAI+3GiDcmTn6ZgaLccgyQQRdOhlRMnlksaiKIjS/FgSvz0OSq2tmC/2POLSie5btzsESVZO76RoUMqNvWFpoICmQrtmcr9f48mBR1yiMHRVwTGP3n+91GW5bJxE8UzChL1JSF7ATzfHTIOUUZBwp18Xi944Q1HgYBqR5jlZLlMRx9BIc3Gc/EbN5L99uM8syjiYRnhxRr9usj0OSNICL8r4YKN5bnEzt1r3T7j1yT1JQRHxYZDkOc0K0nLKtNZy+GhrzO1unaGfsNqyaRUGfizJYJwVZKUeQW8BkTiJEpK0YJKl2EZ8KRTlJEzIc3EBnZYOGrqqEiQpSVZwQzn6jKBcKwMvxrVUPtkZs9p0mAQJjq6x3LBI84KBF/H80GcayiR3Z6LytZvt6ln5UYpWJqKvS4U9L36+N+HZoU+Bwk83Rxc2plxTUEBBktEvC+r9qTSG+nWLNC2Y+RlhlpVTrZfHYhIPMjEe+jG9msXzoc+nO141Gftgo1mtV01VmASpoMp0tZwyadRNndQt8GPZMz7envBdp1c1KjZHAVle4McZ6+3L3dM0y49NA+d6PUUBn+1OeXzg8XwY0G+YUEjRr6kKcZYzLe2rwySjYetkuYi5rrba+HGKF2dsj0PSAtqOsXB9AR9stGg5ItI58GJmYcrToY+pKvSbJiD7ct16+eQ/SnOKXBq4hq6yOQy42RX9uCQT9FWeiyDnasuuisCLdIumUVoVwdoZVLk4zSv30YKCHz0fVVbh7601GXrJSxtTdVtnMItxTI0ky5gEaVmw1bi/VMO1dA5mIU8OPaI0I9jMuNV1+fqtDnVLZ6luszMJ6dbPN7iIU3FrenboVw31KMn40YsRtq7RcnSiUlD+cBZjG0K/frBSY71lV83kk9GrmXyxO2UcpoRxxldvtGm5BtujQOzPo4yOa1T7saGptJyS6lsUbJd6KUkqotp5Ls2uKMn4pbu9U+d9nOZMQ3ETbTlGhVqM0xws2VPV6nwKCWI5o01DwdI0+rUjFOTne1OCOKftGtzsuuS57KOqehodel5kecFf/tEWf/Sd5SsVVF//BepMzc/I7bFQ7TbaDo4pov2DWcIn21NQYKPt8GCpzihIiDLZ7w1NxSwb4o6hsTX2CdKcrmvylfXjZ2BeFHjh5S3C5+YOJ9+zxwcem8OQ3WnI7iTiO3eOcs+8KBiUNFZdU2g6Bq6poiiSO5iaoLVRChxD8uTHBzMOZ4JC3FVCbvdqx5CcizH0Y0ZBwjRIiNOMn+9MURRYazkM/bhqTEVpJvnNAvopyfJKM3auUzUvYjVVXNo0VYwGwiSjKOCLfXHgvdl1qNt6JYw98GOWVOvUvfnbDw94MQpRKdgZ13DNJd5fO/4c0kyGwgWw0baB47qKkwUa4/4sYrVE0h/OIupnOEsXRcHnJRqpWzdp2joaUnPYhoqhquSFGBgM/Ji9qQxGB7rG4SyiZmnc6blydoQpjw+9qsbx44ymreKYGj95MeJgFtJ0zDNRd/rCXnLyPfpoa8KLYcCtnsvdpdcbvqZZTrZwTvhxytYoxNAVPtma8qg8G1dbDqoiRh+6qpCkOUEi73+YZjRdnSTLqZka7601GXiSF36+N2Ot7bBUmmUs1g8tVwYOXpwxC1NmSFM+SHIeH/hYukrT0bm3XOfz/Zk0qUpX3DDNmAYpSZrjZTlQsD0O+MGzEXE21+yT5vxSw64GwyfzlUvdo7yoKLtSj9q8vVznd4JEzqyyoRMnGWnbJskynh7OyAsxHnlnuUGnZuEnGR2ozuaikFrR0oVl8roIm6KQ3DXOxGzpfskwmUUpm6OAnUnI2E8wDZWarTEOZHA+9hMK4NnQ5+mBj6KAoar06wk1S6/YMJoqDcG0ZAK8Sr2aZJI3m5ogVbNJRNs1K+OdWqax2jw/pwjilB8+H7E/lXxqbxpxs3u9bY0ky1HLNf/BRpMgyfhiz5Omti8as4aukmY5iiJn7Rf7U3anIW8tuzxYblX19sl9f/Fe3ui4f+Apgdd6ZxVF+aeBXwG+ChwA/x6CmvrSoigPVUtXibOU5ebRBtqrmwy8mJqp88n2mCyHGx2HApVxEBOkY56PfExdZalucjCNsTSNgZ/QdFNMTSM6w8Vp7Cc8H4p954PlOmbpAHVIqepvCKRyGqZYmoqlq3hRQlZkjMKYlYZDhYdEJqNf7M3Yn0SstW00TeUnL0bESUZRs+jVTdqOySRIcK0jAUnX1OjVLYHd2zqWrlVFOVDBq4d+UokqqqUAJMhG+PjAY7lhXaljPQ6SqvD74dNhdQh89UYLS1PZiRIsQ+V2v8bu4xjXVPjx8yEPlps8WHZxTY2Go7PWsvjp5ph+3eb5MKjEpE/ey8UI44xCgZqpo6owCYTCaOlahSAJk4yHu1OxYLbiMrGW4rhm6bRPcJ87jskz1ccyNDbaFnEGTw59vDDlvx5s87UbLbbHoqHQr5tVARXEaZVIx2nO84HPets5cxMYejE/35lg64Kcu9OviVj9VCDKe9OQME2xdZ26Kc0MQ1WYhAmNQOfBco3NoTRQ399osTcRhMAsTqlZOnf69Uo/zdI1lppmRfOaTwlf9ryjNOPh7qyyQH9rpY6hqeyOQ7woY3scEMYpiirFVJJlZcInwpSKAnlBSaUUWl1Uoo1MXeVGt1bpTa00baIkwzV0xmmCY148ce/XLDaTgLp1fCrrRVmVoLqmxt5ECqkkzcgRcelPd6c83J0x9hK+erOFpsL9fo2f70x5ehhgG5J4N2yjFHRM8eOM54cBu9OQm+dMWs+KliNTb4Wjie/8HVYVmdiYYcrAj8myglmUsNoSschPt6fsjSPu9F25xqUae7OYJ4c+uqIwizO6NXlukyDFMlQe7c94NvBZadmstt6MQOLAi8mzI5emm90aXiSHdd3STwmcK8rxRmhRFFVxsT0O6dQMtsY+CgUvDgTVtzcNKxHZk7E3Cflif1YJ/9/sumyPQ4oCHnqTElVUukrlOU9LPTNLh7qtsdKw+MHTEW3H5CtrDUZBwtNBQN0WUd2dcYQfZWyOfO72ZfrkmhrTMK2e+0XrO8uFcv1i4FO3DdbaNv26xeEsxosyBl7E2I/IioKOrQMKcSYC1q4pdJWapck74+gs1a2SJiBF7FLDplvqDmqqysiXM23x+kAS90+2x/zNz/YZewnL5XvVK+9rWjrabZXNwLO+y9srDYI4pVsTakDTlbMlzwse7k75eHPMeselYWtsjwJ+vjOl5RjcX66fS6eyda3SXnFNjSSThnG/bjENE54e+oRl8eHHGS1X1uFS3cLWVbo1g4+3JkzDhPfXmjTO+D0bbYd+3UQDfvepoIhrlsYv3+tV9JVZmKECP3k6IilyvCitNAVPusBGac4Png643a3Rb1hMgpjfezpEV8WJ8+e7U1xD0EY102AWJQtIhpiVhsXuJOQbN1t8baPF1iTEjzK6dfMUCtg2NJaaNkHisz+LeTrweNds4pgaYZJX4rsnoyhkPRUU9Osme+OQsR9zOBNJA1PXJLlf+NmRF/GjFyNGfoKCQsM2KHJ4MfT41beWsHQdQz9CtLqmRhBndGsW37ndZVA2GbLSjS2I8+q5ARx4QosGKTou02j6Ow/32ZtG/OlLiJ6fvG/XpTP1svN7MT7emrA3CanZOoYqz2Z/GnGz6xAmGUMvwit14Zq2TqEcNV/TLKNXb7DWtkmzgqGf8HuPh7yz1sQ7A9296OJ60fmdlf9u7gp5p3+kl5Nmc1paTJRkGKrCNMx4d7WOUTqY/s2DPR7uTbE0Edp9sNxmqWHjxykHs5ifbo5RUbnTr7Mzkf1jbxpxu6udeTbOqU9rLQdbVxnOIr7Yn2JoGl+/2aZXt0vXTbOULQj5ZHtCx7Wo23qF0NKUo+9/b6ku+kCayjhIyPJcKHx6hq7J2Tv0k0p/LUpz7vZrRGnGZzuz6jnf7deOPW8p3nOSouDbZcNunovMJRW2xgEH0whbV9mbhriGTr9uVrR2GTbKmnRL1z5Dl6I4iDOWmvYxVFKaFxWa2I9SNkpH0SDNybKiOhtu913MsYJfIhdnYcqhJ7nDr7/XZzCLGYcJDVsXKrBj0HAElRalOUMvRldU7nRd7i3JvdibRFXtcF4M/IjdiTBJNEW5UJPwovN7LpT9YujTtM0KzbM7kfuyOYyYhhFQ0LD1Sk8zzXKiJK+Gx88QSuOdrsv+TPaY+0s11lpOpc1maBp5ef8HnK4fHFNj5CeoKjIgLT9npWnRrZv4sbBSXEvjndUaD/c83NLVdxbHFIUiRjO6TtvV2ZtEhEnKw90Z/bpV6l0ZVdPRC2VgeqdXu3AfnA/iVeWI3jU3xnk+DCEXHdz1tk2cFtRtcer+0bNx+e4q3OmK7qgXJaw2rRKRPcHQ5Pw0NNnH2+6rmQgEccbOJKxkQgxdwVjg7RaF6JXtjEMOpjErLYvbvRrvrDT54bMBB9OI1ZYja9bScUyVg5loYYZxjTyXOt6L5ByZBNPS/AG+c6d7KbbCHHVdFKUBzyTENlSmoQxWgjikV9ZeZ8Uc9ZjlBd2ayYN+jaf7HrpqcDANWW051yqAPx/+uCUry9Y1HFPl422fJMtoOTrvrTdZazvc69f5ZHvM9jjE9mO+fqPFNExYaVp8ujORoZprcnepXtZYHkUujeeJnVwZQXfyeb/puG4k078NfAH8eeBvFkXx5Jo//8wI4ozP92bcX6ox8hM+252xPQ7QFBXb0JiW9osNy6BXM/lrH23z7NCn7Zil5ohA/+c28nZNo1+XRGESJISJIJPqtnbmZjuLS4pFCReeCyo6pqj6G6UteZYXdGomb680+Gx3xshP5CCmoN+wKi0ey1D4rc/22JvE3Om7vLParHSEDF2haeqlHffxl+tuv8buJOJ3Hh+yP1MIU0myXUuuY04pXORaGwv/nKQ5szAly3MeLJ/vMLY3CZmEKctNi6ZtyPdUhTq1M4kqvnvN1DENBS9O2R2H1EyDb95qM/AjvCgvRTxTJmFaQq4LNEWahN2aUXG2T97LecyTBBUFTZOJ27trBu2SdjD/+aIQ+OPAi5jFCd++1WUYJMzClCeHHpam0q1b3F8SSpihq9xouxx6EZ/v+9zoOLyz0uBv/nwPP075dHvCziTCMXU+359xu1vD1DR6dSkobUM44CNfGnIn35kwyXi07/GTF2Mals6HNwVtYmoqlqGWQpsKbjnB3ui6bI58Rn5KmomjSBBJkjcLU37wdECUFFVj7qs3BJ5tGzbjIGEWJdzSHd5esY4hOF72vJ8cePz4+QgvyvjGzRZRKgiUuq3zYhgQpVI0hknOjZI6uTeNSDNpSI38hJqpc6df44v9mSBICkm+v3OnQ7duCkpIKcqJvcrdvsNSYr3Uivdk4Vi9w1nO7lSadJ9sjdmZHFmdr7UcTEMliKV5tTcL+Tufxtzs1Th0TSDnYCaJyYOlGkkObVdosrPyHV1vOdzuuedOg0+GbWiniouitI3fmorIv6mpNF2DaZByp1cjzXPCWPacPS/kYBZxb7lOkOSkJZpGHHrqKIoilsjaHHGjcqtbo1s3znTAu47w45RplHK754rTXt3ks90pg1lc0ZNPTqHDsrnXcqVBWrM0vEgoA7/35IBZnJLlsD0NyfOC3bHQOU8ib8Z+wsfbEz7ZmnCre9QgrFk6e5OQj7amLDVM7i7X6LlyLY8PfdIMpmnKWkvl6WFA2zU4nMX87YcHAHRLZNx6y2ZzFKApQguYUzZv91xpCuhHmmXnre/dSchHW2Me73u8u9aoIO21UmdkdxqCouCamtA7NYVH41CSTEvlcBZTt2XdfLYzZW8SoqoqoyDlG7fabLQdDr2ItZZNlKRomsr7a8evbx4fbU7YK918mo6Gn2RYYYqhCRLU1EVgd38WMfAiPrzRPtYQtg2NX77X59t3esc02g5mEY/2PfanMYdejEKbxwceuqYQp3kl7n2W7oapq7yz0qj2orSkQotgr6AcBAkhxd2H6y0mnQTH1Mgp+HxvxubIZxZmvBj6/KMfrp85id6fRgxmMT98NiTLoGZp/Orby4Akra6l4Zg6zZrB2E/w4xS7LFyCWKjGiy6hTw98Bl7MRtupXJwUReFG2+Hbtzs8G/jMwoQoycu9NeH9tRZpVjANUgpgfxbzl3+8RYHC7a6IOGd5QV4UpdC43Kv1tsPQi6nZOmkmQ48bHZd+PcPUzm7ax1nOwVTOw7eWG9iGytODAEMXZPJyKfK7Nw3FnYiC3/z9TXbHosX1YLnOLErIcujYJl6UsXxiirzeFm0ZXVV4OvD5dGdK05HGYdOWIjjLcpbKXGOxWLmsRtt//oMXdFyDP/be1VFP16UzddH6nsfQi3k28Plsd4KuasRZxkp5v+q2zsCLeTbw+PzAw9Qld/z2nS5hIrptTw7ENddPDvkz37zBu2tNnh54PBv4/OTFmD90v0eeS0N6/rwVReHBUp04yy88v3cmIZ/tTnl26HO377Ky0AjZm0boqsq3b3d5PpRrGwcxTwdB5TQ38hNU1DK3LfgHjw5Zbdl0XIMnBzPCRBD4NUsT/c4kY6Vh8fZq49RaDJOMn7wYs9ywKj20rXGAguTnfpzx6zfb1fWN/YTPdqd8tDmhWzf51u0jNFeBFPZ5cVyXZm8SkpUF+0bLIcvlnG2UunR5IcXlLEqhkFwpSnKeHHj4cUqU5vx0c0yWF6y3Xd5bk5wszY6/s0M/YX8a8WLg8fm+h4pYvK+2FH70YsQt3+VeX7T43l6pE6c59TJXOJwKU2MSpnhReqy5Y2gqqy2bcRBXjtCOqRHGGbtlk0dVFL51u8tnO1OeHHocTiN5T70Y29T4e58PypyoYDCLZQA0CXlrqY6mquiagqlrmLrGrZ6Loal8sTdjFiZ8PBF0+J1+jX45CEnzosq327ZB09FLjdiL19VF5/feNORnmxOeHXq8u9qkWzfpIAYcB9NI9PlUlVp5/+qWzhd7sxKRqDLwYnp10dDaHAb8t48OoFBwDLWige6OA4rCYhaltFydTk3Qiyed9Pp1QXrqqsLBLMaLUno1GbystWx+vj3hxSBkGiVYhsadbg3b0DiYSVMqSDL2pzE3Oi5vLTdKJJdoKzmGRrcuw7h50/HTnSleLGyZD2+2zjyz5mchSI44zx1NXaUoCkH/hklZU2aEScY0jGjalpy3ilz7MIjZGmXc7rt8tjcjzwu+2JtRszWSzOFGx0XXjgYOF2n1nhXC7MiqvPit5Ub1MyKQXzAJYn6yOcIoUTrfutXhB0+HfL7vEcRC23trpSH3rtQffnTg06lZNBydmqVxMKNivOyX73tRDNjoOC9F/oyCpEKcJVmBF4kEi6kWJIXkoIqiMC3psu0T9fQ4SNgcBsyilHtLNVquyWrbpuOYHMxEPuM6G1NWCaSY5yAFsNywWaqbguzOCqKkoF+3eLTvMZjJwMsy5OwJEpW//+hQmD4oGKsqQz9i5KUEccbzoWj6nSefcFEsPu8vI66bytdXFOUrwK8C/wdFUd4CPi2K4p+5zt9zVgSxUHpEvC9jGmZAgR+l/PDpiCSXiWuS5jw+8Bh7Ka6lsdqSSUKa50RpgWXIIlpr29zqOrjWhDjN0VWVbu1sZEmvZorAt6oKd7aMxU05SnMeH8z4ynqTuq2T5zmupYKisNywGXgRFLLIbF3F1Er3qqJguWHixw7TMOH5IOD/+9k+v/bO8qniT1EEKVKzdCaBJBSPDgTSu9qyqyKuaRvcW6pVtrNRmmHpR9pZzgXOSkmWV2ir3bG4xdiGxrurTWZhwhf7MyZhwnLdIqdgdxyzOwnKQkxQH/3A4tGBJ1bfPZvPdz0GfszTQw/HVHk+9EsB2IJ31xqVC93JUBSFuq0zC1NudWr0Sm2qcZCUExOV+0s1HFPjbt/h2cCjbut8cTCrDv+nhz62rjEOU250HGxDqwQRZ2FaTvFT7vVdCkXgqc8GPlFWQDkRW25aZIVAriuKSTntcM44fFRFYRTEMj0aBdxfEnTTLEq52XZQgYd7M9LSzWVvEtJxLZZbNmGa02sYtOs6B9OEWSxinE/2vVJQNeThnspX1lvEac4Pnw1RFRF3bLkmi7fxZc/bj2QN7c8CNkcm95blOpuOwXtrDT7dmTL2U1xTZxQm9BI56HsNgaLPLVe3xoJsmgQJaZLjRxk/fjHmdrfGvX6Nv/dFUKFabnYvj0Y6K1xTw9BUhl7Mw/0E19DJ8jm1Upyuglgmakma0XUtxtGYP/7eMj/fDmjauqAB7vbICjksxJ7VIs1zOobx2q5Tc/rns0NfCnJDRVGlUSEccoEdPxl4FLnohIkekclh6STTsDW+d7+HVk4wa5aOXYr250VxISx5Hn6cYmrqld06l8oJfV6Aa+lMQrmfTw58OnWTDzeO0/rGQcJv/vAFsyjlqxst/sg7yzKlLqHfhqrRc02StOBuSZM+OYGbh6LA432PcZiwPQ74/lt9tscBrqGy1BCB4LBsdtY6ot+33rKZRRmzUCXOM1q2wZOBuI+leVYZBnzzlkmvYfGtWx1+67M9fraZ4kdCpRL30MXFc/76hoK9ScShF/H0UOObtzq8GIrO2rtrDaZhyotBgKGqpHlBUk7k2q7BUsMU5JYlmi2GrpLl0lAK4owfPRtxb6nOra7LOBCK0M2Oy940OkUttUrkrh8L7L9u6vRqdpmQwVJpNz70E2ZhwsTSztUX0VTlmIuboalCK4ozVKXgcCpT9ywvaLlSDD7cnZaadu6pJvKiw1JUJsX9utCnbV3FNkXs1Y9lWNRwZAA0mCUsN6Rp4kUZvbp1LmV13jhyDR3FgKWmVYlPf7YzJc5zVppmJdr69Zst2q6IHT8q9XTmE/08hxejAMcTit4okEbWctNmuWlh6CqzUIwpXgx9CmDoCX1QENQ6eRERpwUKKqYugtIK8Pe/OJS9v+Nws+vQLE0/vnuvx9Y4YG8S8WwQcAvlQrOUJMv5Yt+jYWlsdByatoFrRfhxzkrLJs3FMGGub3c4CylyyQe6NZP7SzWWGza/+/iQh/sekyjFNrVTtEnb0ErKcIZbDv6W6zKVzwtp5s8b952aiMvPtQSP9uKzY+wn/PWPd/mnfunWK5lMXJvO1IXrW2JrLCigLC/wohhVNVlv2TKgTDIcQ+XzvRleJNqZSw0Rm27aCnEmaIVpkGLpKp/tiQ6hZUgOqShiYZ+XZhv3l+oLDpIKtnpxvmaoMqg49AR98vWbbUGpLAwN4jzn/nIDrzwH5k2TlYbFja5IMqAUeLE0stOsKBFgKV6cstIUtOrPNsd8tjfjZrknnSy485JWNw5ibvVc/tYXe+QoGJoYBNxoO8ca6oYuNKt+w6JmatVAdW5mA5zS8Wk6BmES0bBkaKtrCk8PPWZRRq9ucrPtsj+NeHooeee9fo2Bl1RU1ywviJKMxwcz6paOHyeoqsqTgce9Y+L+5T03dJZqFrVSyycrCjqO7BPTSIZszwY+QZyz3LRYaYpGkJ/Imlk6B53kx3IN7yw3GPkxcSZ0Nz85KggNXcWLUn6+M+V2z+VO38WPhTpm6RpKAUme85MXE/p1k093J9zqrdJ0DO70c0xNdC0PZ5JjSNO8YEW1GPkxXdfki/0ZYXJ07bapc6fnsjeNCdP8TI3NeT4xf4Znnd95DuMg5tCPeXzg8fVbbTZHQit7b63JyI/FLU8R6uI0Sks6tYWlS2OpaWnslojrmqEz9BLSLOeT7SnvrDZ4e7XJ3/t8n+eDgKKQQv48t9j5EPnF0OfZwKftGvzySoPnQ18ccMOErIAVx2AaJdzoCqVsqWHhxVIfzKKUHBmqh0nOUsPkvXUxo3kx9Om4Jlme83zoY5sqwyA+14xqEREJR1SsPC/4+c6ET3emDP2E2123amyvNm0KVEBjuWnRrZl8tjNjlCY82vdYatj06yaGpgoNuAn3l2slclmuY67VC8J6eBmixjVFFF7XlGOukXkpkD8JUjaHkvebmuTQu9NIqLaKSsNWudF2WG/LPtOv2/x8e4afpHy+N+XDG22mYUqvJvnQj5+POPRCuqXEyiRIGVrxme7KR8/2CLWoa0Jv7LoGqy0Xx9ZL99CA//qnWwRJzh95u8+HN45Tmn/vyYACQWrqqpzjQZKz0roaq2gx0gVdvpMxzzH3JiGf7kyZRin9uoFfCvCrigKlzmivYZHlMlTVVEH/7Y5DWo7JNIppuwY912JrKIY5Xphxf6lRAmKuNrRefN5fRlw3la8J3AJuA3eAFnCa+3bNoSiSDM0PxPfWmjwZeHhhyjiQA6YohNsutCiFmq2x0XS40RU4qx/LZuuW4mHzTujtbk0QLKq8UHtTgcgtbsq2ob1U8M7UFZbqdtnxVbi9VJNGlqWhqhpNWy+FwTMats2DlToH04hv3Grz7lqLe0sN/tane6LbFGVMwph+XfSixkFSJb/dmkwNbnWFojcXgk6y44+hZumMg4SHuzMUBe4t1bAN6dhe1BjQVQXbkA24Zgm/+2AW4Ro6YZJxu+ey2pTJ2tY4JEgy0qKg75p0XIOlps3dJb0UONcpgMOZQHXjNMexNLo1izyXLr4XZRfqldzt10gyoet8sSeNJ1URupGqgGuq9Os2622XXt0UwURdY71li313EDP0YzTlyB605Rrc12t0ayaTUCavaVFQMzTMjkucZdyumSgofPt2B9vQTlla27rGWyv1M6/d1FXeX29yMI1Z7zigwJMD4f/GqUDUXUsjy3PMUkOh5cgkZLUhGjh7k5h+w8Q2asyiTA74YcAwiDFVSVy8SOinQEWvPHaNL3neD5br7M1CsbPuOny6O6Vhicjm+2tNTF1E+Yd+UiHz2pnJL9/pMPCEMumYGjdaDq6hsdKySZKMh/se/Ybc2ziTxrC4TGRnOuddJWqmTsc1SNKcmqWV0OWS7jUKRPPDi7ndc3l26GPo0hh+d6VJmsPuWPQaNFXBD9PqwK1Z+oUowqvGrZ4rNIymoBg+WG+y0XYY+DHbw5BRkLDSsISbr6ssN23u9Ws0LZ28EKrA3C1JGlNS7J8HSz4Z2+OAg2mMrslU7iqcc0vX+NatNntTKWwtXegbKy2LtmsS5zk6R/vjfNoVJFlFGxO6gzznP/b+CnuzkDDJ+e99uMq/e2ICtxhNRxyq5kiGOf0VoF83y4ZXViV+hq7Sdg38JCOMDfYmEYqV881bHfamIZMgZRanrLWl8R+lGVlRVM43k/Bsu/OL1vday6FTMzCNOssNm+1xSJIVDL2Ed1YbfPtOR2i5UVKaAih0axb//a/WS8HblFmYcqMjAsJx6Wj5cG9G3daYhAntxCBJCxxDJ0rzSlNgMVRF4Q896PHJ9oSWo+EnOUmecW+pVeouSqJ/t+/y+09jRn566pw4L1qOwbdutXhy6NGwDKIs4721Fv2GyVLdJkhEOxFgFMQXNlQMTaHjGmyPQzl3FaipOgoK95dq0lAJEpSJUCy7NZM/+bV1Pt8TOmfdPp3GBLEUpCM/4ZfvdRn6gkRwDI0nA4+fbI6xdY26rfGV9TZ+kvL2sqA9Rn5cfc5cN8Q2VL5+o01a5Iz9FF1VubtU4/5Snbpt4MUZdtlUeHdNkr+6ZaBrgoxyTY2bXYvNkSCtNFXl3bUG47LBNYtSHu7PxB2o57DWkqm1a+oYmryDokl0/n3UFCn0D2YRaQ69usVyQ4Tfe+VQTdcUsjwniAXJcaNro6sqv/pgiYZrkOUF/YbNeAFVt9aSs3gWpZXez1yHRVPldzZsnU/n9KgT71DDNng+8BmVe9lF8V/+ZIs4zfkz37px4X93XlyXztRF63sedUsnz+HdtabcT0tndxpSlANGU1dp2jpNR2e97fBheW1zisoff2+JzWFAyzWZ+CmWodF2pRk7L/CzvCgRc9mpe3fR+b3ctNnoOGRFTtsx+eLAO3Z224ZGp2Yw9BJ0TSXNc0ZBzHpbKHV/9O1lDrwIioKfvhgTxEKNv9N1sE0V2zRwLTmz06zch5Kz9yFFgTs9l42Og6aW2kCOTt2q8498ZZW6bR4r1F1T55u3OmyNAvp1i1Y5CJpFaUXLGwUxIEj6OapsvWPz/loDL8mwNZVPd+V9HAcJ620xC5kbs9zoODQcyf8cU8My5JxQUJiFGXXbpGFJrbAYDVuQhXf7LlvjkDDJKvrvs4E0zdqOKaj2WNw1D2cyNFhp2fTqZunwe/S5h6X5zziQpvEsSslzKfYdQ6NuaXywMOy51XX58bMht3o1wjTju2stLFMaxDXTwDHrbI9DZlGGrWu0XYN+XZry767UsQxpak7ClKW6JWLZli46SoqCn6TV3j0NU1ZKfXRVVat3PiuKY8XjzjhkfyqaZNYF5/fcQEhVYbXpsDUKmPeq7y/X+PadLp9sT5iE0sw1SsfU793rcljqR+3PYu4tudRtGTouNzOeDHyyXPS1HEMjy6VhOyv1fLmgz5LlBeMwkbVeiFzGNJSGseZKPWXqKh1Xx4tTilzEyJcadoXutXSN1ZYMfd5eadByTH62OaYo5B5ahsa7qw0mYcrby/Vz90FFUbi/VD+1jqKyFjI0jYYtzeJamTustlzeW2sw9GNudWvMorQURTcYzCJZl1nBr77TZ+gJJTQu12qQZPRL+ZfDmThTX2YwvNqyz0TGx1lOmAjQwzQ0eqpKQUG3ZpRujjVudmulLq7C4UwofR/ebPF85LM59KlbBoez6OgdjFJajsnXb3ZwDY2slDWoXQCgANlH3l5pCCOpZvKHHvT4+kaL9kJTZhjE7E9jsiLnxSA41pgS6rFNkouTeJTldBzRTnxVgfEsLwR0kBX0G+a5WpmTMKmQdgoKmqZw6CWMfBlMj8OYt5cbfL1Emg69hFGQ4JgKXpRzZ6nGctPGtXR6dVPQ6V5EnObHwDOXjfOe95uK66by/d2F//17RVG8uObPPzNsQzumYbLasnmw1GAaJJX4dd3SaDkmP3o24mCScLPnoGkajw5mUE75QNAvi/C8lmtwA0echEZhKe6cX1lUWFNUeg2Tft3io80xu2MRr247Bt+43WG5YfP57pRZlPH53pSmJVPMt8pTQVMVlkqdkju9Gr3SjWlnIhxeRZFGQsM2eG/tKHmNM0EeLZ9B65nreIhQpGwCL9uU5i5Ac7TDXPh1fzYRceusYLVls9F22B4LZaBfIlB6NRNLV/mdJwMmQcpyw+LdtQb3lmr88OlIREM7Dnf7JgNPbJSb5yyikw5F8+8iCZS4hkzCBE1RGPkJcZbTr9mlM4dQoBq2wbtrTYZefErg1jV1XFNnA4c8L/i7n+/jJxl5Dl+92aRpmbRrxrkuR4rChUntWsvhj7zT52AW03IMpqEIMhuaSpCIhsd/94M1vEigsp/vzTiYhvz4xYh+3aZh6eyMBVp9o+NwY6lOnBbkBQRZTqecNNz0Y5I0P2bpvRgXPe+GY/Crby3x9NAvrdBz0lymD0ku6MQ/9GCJaZigKgoHs4gDL+STrSl+lLDWcdkc+qS5JOlfvSGuhzeSnKGfcH9JXHPuLdV4MQjY6DivxHdfDFVV+PCGTIdVReFW162ayJsETALRfhmOfPxE6JD3lkUMue2aJGnGBxstdifC81eUiHdWG9cK2QV5N759p8v+VCDvcz0oI0pRFIU4FX67n6Q0nDp3ekLHyHJozSLu9uuE6ZFWk3qB/fxZMRdaF2pofgwNc6lQFJbrtghdlwXS33l4gFLO7hbDNsTyblIWpnkpJDqPtmvyzVtCcdmfSUP5okbZd+/12B4HLDdtzIU1VrelSTFfd16U8vjA4+HujF7d4NOdKYfH6IYavbrGqmbx+MCn7Zo8O/RF3LXvMglT3l87uxl50fpWFIXvP+jzbBjQLYuquZbF3CTj+28vMSubx08OPYZeTF6IGYauicClpqosNS2+ut5iGiUEccYkTHmwbFI3dZabliR9pbbJWXG7V+ebtzv8/rORTL51jYNZVDml3l+qoSqK0DJ1rUK0zJ3z4lSSs8VmcZrlPDrweLw/o1MzUVH46o0276weOTw5hkbD1su97HRVMBdHtXRpArccg7BMxvfGIZQC8b2aRadmsNF2aFgG769LUT0OSs0exzj1+VujgMNZTJLn3OvXeDEMaNpy9mRFwf4kxAtTUiPn/rKLbah06241JW45BlFTkDDzyaKhybOomTqmrrAzlgSxbhsCkx/4JU35qAmnqYIWeXwgepEHXlyix8DWpRDo1y2iZo5txsSJoG7naxOg4xrEaV4m1xdPOef0fjEdkWZXyzEY+xkt50hEugC2JwGuqbHRdvnmrc6xyTnASsOm5RqslDS2RwczaYSaKg+WGyiKcsoE5kbHYRalZ1KI5+fzWY2LxXfi//G7z3h3tcFXTriFXTZsQ+MbN9v8/UevpzP1svMbpEEQZ9JEelFSPuYIvqJ0A95ou/TrNm+v1qlZUij+lZ9sEcRCu/3W7Q6qIrSg3WlIt2Zxu1sjKwQ9PAtT9JI+f1ZcdH5/505X9DNLWYM0R2jiiaAi65ZO0xFR6ScHQin/Gx/vYhsaH95ocqPt8pd/ssX2MGS5abHedhgECcsNGy9OudV1aZSagkVR0K1bZ+5DtqHxlY0WhqaSpOLY2HYsXFPlo60Jd/t13l6ps6izutK0TyFAO67JLEzJC2nmHEzFvTaIc/ySnu8u6xVab6lhMQ6S6n2s2aIPpKtqiaAV6vta28YxND7YaLMzDvlib4auCCX7e/d7gLy/2+NwARWv8faJXOXk4MoxVZ5se9QsjRsdl6ZjnEIZibuwnOFNRycvCpq2XspWSFOpUzu+x2mqwq2ey49fjAmilJ9uTVgv6cRxJvTEw1nMOyt1mo4M5T7fEwH4Qy/iTk+amXOEascVrafPdqUxvj0K6TfkXi83j9byettmbyK6rCfXhh/L4DPNigvPb1VV+P79Po8OZziGjm2oDL2kRLYU6JrCd+/1CFORLjmYCmV85Md4cYJt6BiaQs00cC1BczYdh1mYMQtlOOCaGrd7NXTNZ+MMtO7JMHWV99eafL47KxFHkg+oqspa0+Rmx+HFKOAnLyYUwCwQVPrn+ox+3eZO3+VuX4YUrqkxi45ckqMkr4ajedngeJlwvKYqp9a1bQjVMy8KXFNjcxTwfODTck3eX2uwOQrZGYdsDkN+6V6XX77XZWccVs6bpib7taL47E5CPt2bEibCGEjSgls9l3dWG6UL8OWGlGftPVY5CDR1laWGxdNDn6at83TgYxsa/ZqJZej87pMB00gMI/7RD9dZbzv8yoM+n+5MMTQ5p+exVDfZn8U4plqdOQpcCuk/b6QoisIv3+lzp3+8bjc1FS8WuZ6lE3mEokgDuchz3l6t8ePnKesdF9vUTzWsLxtzt3Q40mE8K5bqoh/WdAxBu6kKQZTx0fYETVO426+TQ6Xhdafvcqfnst62GfuyFueIxfVSOH6lYbHecc5FD74sXofJctW4birfhwCKojQQiuQvJHRN5ZfvdXl+6LM9DitRv0kglpTtmlFB+w6n4pbjmMWZiIiDWcT2KCzdxYqS8nbx7y9KKPciVNIyVN5eaYj2lSbdWMcQUeuwFAzNCpnCbQ59xn6KpguaoWEbDP0YXVP5YKPFctOsPv+okKBy01mM8/QRQCiIcSoK//UrvHSLaIc5WncWprQdk4at8lbJi35/vclf/ek2cVqwNQxYa9nsTUKmJSLAMcS2fKlh0atJVzcvxLL2ZQi0RYeitmtwoyOaHO2aSZLm3O7V2B4HqJpS6qCEGLrGvX4NRaFy7OrXrZfCGp8PfR7tCz1jo+vwjZsdCpRzm2aXjdWWU1EKo1QQBlGpPzVvNLZdU6amec6nuzOGfkKUFry9Wqco5u9NQZikVYe/35DmqqGJjsTrhGPqvLsmRUKWSzGpqwoPd2fVs5sno0M/5smBCFvmmUzeHUfsjHVdKcUkRRC4Wzer+363X69Epq8jbEM7cy2vt2xGXsJby3U+3szRNJncdmsWh17MLEgZBxmf73nHmjxRkl36ILxKdGunHb96NYvBLObBco1pmKAogoRcaliEqTgSzaKcJwOf+wtQ+SjNSDLt0g20tZZMK+u29koItdWWzXrHEQSlrvF04NOwDHGxjDLsE4dfwzFQVBVNU08JMB/MIqZRShgLyu1lIfSpo33N0FVx7vETDmcxqgrvrDRQFGnA+XHG/o5M4CZhwkpTED0UBZqq4hg6K00bXVWqgvSrN9pXvieL0alZdMpGQlFIggFH1Oq5ILpWTg33xhG7UxE0tcrixIvF9S1IBMXlmIKo6NZMVFXhTr/2UoScpip8ZV2KwqxsCEZlkyDPBakZpjlenLHSsulUjbS4cs7bV6Njg58gyYiSHFVVWaoLSu7OiSbF/PrOi61xyKB8VoamMu9X9BuiX5SWDoi9mjzXGycKjK3Sij1MIpYbx93e/DhjFMQcTGPiVLRJrPKsTFNp+L2zVsfQNN5dbZ1KuBRFOVUUa6rCe2tHzZK6bZSIXJ2hF/N8EHAwC1lp2kzDlLZrkOXwfODxxZ5QTxUkMS3ykvZQSKPnwxstFEVo2H6UlQ3oohS/VS5tYmCWdJjPdiYcegmqIgMcRQFVUZmVuja6Ks2pZ4cBYZrzYKku52aWszuOcE1B6N7p16u9YZ5nXASo69TMcykg66UuV8s5/8z8wdMhP9uc8G/+Yx+8llPUr7zV58/99c/YGgWVw9ubiMU8aHF9NG2DOMsJInHhBEHRDL2Ij7Ym4vylqRi6So64NXfrJoauYGri7tapiSYi55udvjQMTeX90i11bnJwMIv4Yt/j7pKIoc+bOLqmMPATfr49oVuzSLKclaaDrghtXFEKejWLzZFPw5YpfNu93D6klNcCYOgaf/hBn892Z/ze4wGgoGsBe9PwpW6nhqZyb2luZiNoqId74poWJUXluDxv5K6eMABZazoohYKqIuYh5d/n5bu91LAETZJmHHgRTUXh0YHPWyvNSmh8Fkrj+jLFXcsxURQY+ykP96Z863aXPC8I0wynRC0tvuVN2+APv9XnYBrRdAz8OCUuGz0nU/te3eJW1+Xh7ow0LypU7cEsEvSEL5p8dVuvGg2z0l06zeBGx8Yx9cpgCI7WeJoXZ757li4AAGF9HNcOnK9v9xLnd83W+epG++h7OwlGqVmXpMedz58PRNdPzE402o5Cq2VXeoBhklErz0VTVysU0d2l2pWcA9dazjH0ynIpqp/m0vTMC4izgrqpcpBmeHHKLBBNqeWmVQ1UN0cBg1lc0kVdoqygXtJLz3N3vUzMDWRudl3GfsLeLKJft8smkMY0Eq1ey1DYHYcsNWyeD3ypiRyDr6w1cU2d+0t1klSGkQdhJO7oJT3rOoavJ41uwkTq5rqp02+ILIqqZkyilME0IcwyPt4ao6vi/pnmoqN11zao23JWOaZW5VKvGmmZR+1OQu4u1ap9O8nyauATn1hkfpSW1DXRBl1u2lil7u+rsjosXWOlKfdh/QJn4UUN3aIQ6ugkTFGQ7+HHGXZR8PHWlCDOyAoBoFi6NN/nKDiQHOXd1Vcb9Pyi4rqpfB8A/zHQlT8q+8A/VxTFz67z91wUQy/m2dDjyb7HJBR3C0tXudN3+f3nI1QVVBRWGja3Og6PD0XPaNEWfh7704hH+7NSa0BnrSUUvs5LNGaellbujqlVbiLziNOchmXimCFBnOKm4uQzCmJMTcUxVN5dbTAMEhxDI05zHu3PmIUpSS4opYNZzN4klul7Sf+6v1S7cidU11Rudl0e7c8q2PNVY6PtiIuRozONxEb1i/0ZG21xLJjrXm2OAjp7glr4bG9GxzX4eikAqKLI5CvJMDSVT3endF3zWPGZZDkjP6lgiJah8dnujDTLiJKUKJPpSt0SYcduzaycbvZnUenGkOIYakVfFKG5l28wAy/GMhTiVOGr6y2aztnPf28S4sVZpYlwlZhvlB9vjfGijKWGdcxeVkPuY8vW0TWV1YaFF+cMfB9dA12RxmZeSBPrtx8dstayudV7PVvfxZgjGx4fiPObTNyOikXb0IjSDFtXSbWCuqXRsA32p+JW8rw0BQiTjLV2jR88HeKYKm+vNK8VIurHKYezmKZ9tLnnecHzgUyLhrOYIMtIkpyGJTbDh7OIZ0OfOM24qTv0GyZaSYl8XNIs566E1xFJ6RJiauqx93zoRTw99NkeiztdkmXULI1315qkec7WyGcQJKUWkUxUh37M7lgcZd5ablzqXk6jBD/OKChYbpwWqH5ZWLrG1260K/fDFyOfoR9J4/EEinAapWJtHMYoRXHq+qI443cfHeLHGf/M925f6TpAmvk7YxH7dUwN1xBagq6KlluUZKw2hY+f5Tk3ujamqvB7T4ZkRcG7q00MXSXJ5RB/vO8RZRlLdetCp6LLhqII/fnT7Sl704jlplUhRxQFdFXFj+Ua86LgZtchywo2RzOSLGOtZRElJdLB1Ph4a4JlqNztX27P1zWZwJq6yq2Oy893pzzen/HOagNdM9AyQQbNHch2xiFPDjxeDH1udMWuexImNG2B2P/e0yHjQBLepYbFe6tNrCsmavPvn+dUVA5dVXEMjf6KVQ46dD7anqCrauVittqyWW3aJOXPu2UhshjrbdFs7NXN8t4KGlVBaEmmJrbVK01b6OOvMAlcFGr+0fMhh16EqaukWcpemGDrGksNHUWBRknTv7PkcLMrxgkPd+VdyAtK+3gFKLhVOlx+vjerXGWvau08H3AZmsLIj5mEMY8PCno1oYXGacZa06LtGBVN3Y9FO/FgFtGwdQ5mKUkm1JtRIGi9pqNzq3s1pPg85sn0WcOzefyFv/eEpq3zp795NTe+k/EnPlznz/31z/ivfrLFb/zq/df6rFeJKMnZn0UEcVo1OMNEdBV/9mKErausNExqlsaj/Rlf3Wjy9FCojhulvmnXlUbho32PSRhzf6nxWoXtXLsmzXO2xyGaStW0AkF/iWGQmMTcX3KpWTpfv9Xms50pSZbxV3+6RY6c8++V6IrHBx5Jll/JqXa97YoxiqXxbBDgmLK+9yZhlfc83p8xjTLWmqKrOaejUf7+lZaFF6ZEqVGhzO/0XfKi4ItyaHa7L2tt7nK21LDoN8xSp6qoTHUWNSNrls6HN9sceEIbrlu6uFyNQ54e+rimxv0F1MVcn8iPM4qiwDF1bnddVFXoyY6hYetHMhFPDj28SM70e0t1OjWzGnTPr2O+txRFwfNDGYje7BwvYpMsLwXgFZbqJje7Dpau8PnulP/m4x0cS+dOb51+3SobeiJJ4lgaaZ7z8x3R0lppWdXw+k7fZWsUVvIcZw1sx0HC84HkQw+Wj/Ih29AuLSNwMpol1ffxgUe/bmKlC3pjmsIsSmiXQuqdmknTlqbd5/szCgqhJqcZHddgc+jzKM3ZaLuvZP6yPQ5kYGdqhKlIOWxPgko/b6VRY6VhszsLpbkZJhXtFii1cXM2RxGGJrS8lwmJnxdFQYWon+dMu5OQgRdhKAq6KoMcRVG426/xyfaE/b2IIMp5e7VeOsqBpilomso0FDf2vJC64uu3OtRKvdPriiBO+WR7iqnLO3dvSUTq4yzns90p7682eDYK6DgWlqqyM4n42eaYvIBvlcwhkJrLiwVtfR1InSwv+NsP9/hgo8mvvLVU/b1taASJOPKmaX4Mze+aOruTEMcQWYF7SzX8KCuHjK8WRVEwCUWMfBomL/1uAy/mJ89H7E0iUIoKjLJUF81bQ1PAUGXIp4g+dpZr7E5EFuFGx3mtIc8vKq6byvcfAP+roij+JoCiKH+0/Ls/dM2/59zYm0bsjiI+251haCquofPWilDMiqKodFlWWjbPRkF1YJycrCWZoBMsXcOLE+70rGMF5EURlBPpMMlOTRZWWzZjf4ofZaiKys93piw1HTiEr91o0WnZ3F2qszMJ0VUFVQEvEnvLXt1iveXw+d4MKHi4P6VpmXTOoJTNqRKOoV2I9EizvLLkfJWYu+a1XXE8ebg75WAWoasKG6W4nWPErDUtplHKyE8I4kT0nnSxOt+bRgz8hI5j8vTQ426/XhZwR/f76aFPEGfsTeXPIrCq88VByLNhgKEo+InoMAz9hHfXmry31izpDUZliRumOWEiXPUovZyekaoq9Os2t7vnTwbDJKtE4beL4JXu5cEsxtY1RoFAm+fTTC9OQVH4pbtdfvB0yErTYXcas9yw8MKcxCn4aGvKN293iLOMn21OykI2Z7lpv3J3/7zvOQtlSjUOEj5YSG5HfsIH621+kBxiqCpxVpRFpWz2D3c9vnZTp24ZfL7nid6PIiihtWucbL8YBkRJzjhIaNhNad5mOQezRIQTo5jBNEZRFdLSIS9IMu4v1Rh6MStNm+WG2D775drIyqnkdTWm9qYy2QSByM4nbgezmGmYEiQF2+OgpD+IY9cgSLnTr1OfRSw3bHo1C1UVy2IQmmmUntYiOSsmgcB9gzivaLlXDcc8sgZvOSY3uzU6rkGYZtjl38+ilINpRJQWtB1xEDm5J36+N2VrHKIpCg/3rt4g92Ohw7mmTpxlrC/JOz9OxB0ub4kmwfPDgPtLDRq2yeYwYByK6OsXBx5fu9Gu9q3HBx53ejX2ptG1NKZAEkxFUdBVhSTLaZfJzSRMWGs5NGyd54c+qOKgNkem+HHGF3se7TIhf7g/I80Egdu0Ddzuy4/wvBA9j7lj5WZppT0NU95ZbbI/jSqa1/ya9qYRoHA4lYTn731+wIc3W2wNBdUTJTmqKyYdszg9l9J8Xqy1bPbVqDQrUETAU5HGt6KUlDRNYaPt8nzg898+PKBAoOs3u65QRlX1GKV+Fon47lyjZncasT8V44g4yxj7KUlWoKo5Iz+naZs8H/q03FeHpWxPAvw4RVMUmrYhRg+mwcCL+c7dDrqm8nzgs9KycU2D5YbFfqkpI9ojKkGcUrfkfRj5cZU/zDVALrJmPytudl2GXszTw5hJkPL5ns/tnsM/eDzk3VXRBlxakCzouiabo4AkFRH+xgIddujHzELR5UuynAdLx5GoWS5NrZqpX1iATQLZ6+aSAafu4zjgr/1sh3/h+3dfmWowjzv9Gl+72ea/+P1fTGPq831B8ShI4WjpKpqqogA122C5bdOydfYmMbZSiIlJ6ai6Nw357r0uiiJr7/lAhpxBnPHL93qvtE/Po1+zeLzvVQPPvYmwCbRyT+q6FveXaxx6MSgKQSzovcNZzI+ej6QRlOXc6Di8GAbULKNyaTr0Im6Yl2taFkUhLliuiWlo3O3VOJjFWHpWCeQ/3PXYHgf8oCj47r0eQZzRLRFaUDIBGtBrJOxNQtZaNo2ycT7vfYaxCI3PXc7SLC+dQgGUks52en83NJU/8vYy+9OodBdLOfBCng582o7BTzbH/NLdnqBjPGkuH3oxuqLQq881cYS29527XcZ+Qrc0SBr60shYpPGcZ6YyDVPSsmv/+NA/9u/sUkbD1DVcSxBGYz/m4+0JoyAlK4RKPF/jrqnz9nKDnUlIlGbsTUJx8lq4Dll3omm2PQppOcapfGcaJhSFUPb8OKPlvH4+FMQZI1+0j6ZBylfKnDLPxYXsG7c6PDqYEcQ5TXuuqSi6a5vDsBLP3ptF7IxDMVpQlCs3ptJMdIZeDANUFVqly+inO7PynZXvbZua6BOaGm+tNMREpRSDX2vZbI18DE0hLHPQlwmJnxdRmpXurzFvrTQoCjFV8eOUoR9ToLA3jTA1jbYr9LIgSRkFMX6Usd62MXWV9ZZDzdL5dHvCsDQnuM4h62J8sjPl6aFfDbFvdl2S7AjNszkOCEvqbbdu0bClblRL2txKOYQ79CKSUPTZfulu97WbK1Ga4QUpn27PGPpxldelmZx5WV5wGEjeM0dZJnnB+2stvDijU7PONeG6SsRZXq25SZi8tKewNw35aHvM1jAUJG3Xou1I3tIuG9+uqXF/ucEsTDF0QWHOSiH7lmtQN0UbzTX1Kw+5flFx3Y2p2rwpBVAUxd9SFOXCNrqiKP8I8L8u//gO8L8A3gL+FPAU+LNFUZytQHtGtByDpmNIYqsoLDXFFeaLfY+PtiYESVqieESssijO5kNrikCq4zTnTr9+6aYUSJNrUEIoTy4oS9fo1mUhFEpBwzYwNJkWz52ftLKpA5Kc6prYZPZqAlfd6IiQY9s28dMML1JO2YQ/HwSMgwRDV3j7HCFCENRUv2FWherrhK4qbI/CUsxa47ZW41u3O0zClH5dxK6/2JuiaRpelDL2jyydTV2VKVO5iTdPaQ0dn7TWTL2yTB75gjazNIFhn2zEzSHIIPdzfohclorXr1uoKDimeu7CNjQVQ1dI0uKVE+u6qbNDQZIKD3mvtAkOokwS1/Kw1RQFTVGoWzpL84lJKQZpG+JYFSUxlqGeei9eN0xNFe58Ktoaz4cBb6/US169QEo7rgXKUeOvWxd6Zcsx6NVMGo5QafdnESqcq5/xOtcYJXnlGAIyGbnRtasNOisKkihjbxKRZBmOKVoVt3o1NtpHU4blEsViG9oru3Ccd40giJnFBGG9bbM9DtifaZW19uYoYBqmlePgetvhVs89StLLazR19dIaXUsNi51xSM16/cNWrtsRfQmVY41QXZVmzJ2eQ5jkuIZ2qiEcpeLUWACOfvWD88Uw4GAaoaoK37rdqZKOmqWhIMm0rqqi5RYlqIoIAz8bia7KvX6Nuq1XDi61qtl2fZPEuUClOJQpPDrweHulUaFadFWh2zCZBhlhKpqAA1+KnqZrsN62ybKCtabN9kSS78tO7tZaNjvjkGkoWnvzButSwzqlzwhCY/hib7bQLI0EeToRp5edSYiTa6X7bfJKKJqTv3fjjMa0rYteR5Bk9Jsmg1lcumSqbI3EoWd3EtF2TXYnYaWbNUcNbrSl4ffs0Mc1dfp1DV2XM3ZOj3FfcxpbM3VsU8cyklIUXCsn1YIcfnulyWrLJoiPGjKOIRT/laZVIUHmzaq6rVOzpPiyda16F68SdUsnSrKS3i/GK0YpxK2qglKrW8d1a5q2IY5qusbNjsP+TBpRKw2bH78Y4ScyKT5ZaD0uC0bXutgARlxNw3Nd7v7Dv/0YgH/mu1dHTJ4V//g3N/jf/uWP+L0nA7595/Xo7FeJrVHAwIvx45T3VhvVO57lBWtth4NZhGOqmJpKUroz2aYg1w+mcYWAAEHaqSooqjQNLgCbXSpUVShOu+OInUkAiNBzxzXxS3H1mmWAIs2hQ08GILahSe6pqShKQcc1SzqbhqHLGXUVFIGiiED27V6t0iQrELT34SwqNeRi4jJPC+KM5ZZxZg5ramLEE8Si+Tb/LiBU+UWXszk6aq47e9H+Pt+fsrzgcebh6gYqBWEqRfS4tKKPU2nQ1C0x3TF05die0rTFodKLUh7uzoiTHENVuNV9ObpouTQVyAvJ/RejZus0bDnP0myuD6uLsHlpanEyr1JVpRKBfxr7xFnKgxNr1jY00T8z1DN1dHo1iyAWZsNJZPSrhqmLQPbQkwbeLDrK0eJMJC46rolKyihIeWtZDKvSvKBhi7GAbWiYulLRFV/l7NY1tXp2LdtgpWlh6uJwOvZj8gK6dYvH5RCsZgmVMC+OUL9hIoCDaRjTcrJrQfvMl72iKDQdQb02HdEAM1QVXVPwIjmLdaRuvdF1cM0GoyCp2EADP2ZnHNF0NHT1NTjCF4SlH7ntzveE5abF82GAAnRrBj/fFn0rx7DQtQIUjbWWRbNkg4Ag23+6OcbUNJ4PgitrOp+MooBZkmFEKYvGcoYmdd1K06Lnmsdc52rlwLhV6rxdR8zr/1mYsnSBzM48Wo5Bt2Yx8hJWWzbdmknT0Wk6JoNZRIGwh9I0Z7Vlc7vnEsQZsyhAW5DZmJVDsLdXrs/A6U3GdTemHimK8r9B6HwA/zTw+KIfKIrirwF/DUBRlN8GfgD8RlEU31cU5V8D/jHgL172Ahq2WFX/2jvLFfd3b1pai5o6aSbicQpSFPbq5pnUPLWEqk6CBOOKxX2rhMgvRpoX/GxzjG2o+FEm3G4F3l1pEGcFHdeAMwQ3TV2ofUVBdTC3HEELFUVBmORVo2Cx2IszOZyTtCAvClSOHzL700g6xzWz5Fdf6SueGaoiPOr9SciLYUCvJvSQeaHYsA3+xIfr/LWPduVwDxMOZjEFBd+81a4Ex+F0s/BWt8YoiGlYRvXv311rVm567642ZBqrQJHDRseuPiPJcp4P5pBo95Ro68tio+1UQpEfb08EGt2vHWuAaarCW8uNV6aGPB/4JUJP5Va3hlYiJ8ZlF79uiducbWrMwpS7/RprbYcHyw12JwK/1lWF1aYtDolpdkp75XVj5Mc8OfAoFFhpWKiqJNd5XvD00Bdbd9vg23c6bA5D6rbGBxtNPthosj0OGfuCUpprK/VqJq6pUX9NwfOTcavr4sVppeOQZjnPBj5FofDH3lvmg40mSVbwaN+j6eiMAqH8dkudgjjLSeKchm28FkT9olhqWDilQ+h83c7Rg++ttfjWrQ5qofDx7ph+3eLF0Oe99SZvrQi1R0EmLnVT0A1XfadbjkGa5Rx6cdUAvUrMIf22oXK3X6flGLy71jilxWUbGu+sNlltOTwtE7oXQ/+YBtj9lQa//t4SfpTx/nr7SteRZjk/2xyRZqIxclIbSNdUejWb/VlIv2ax1LC4tyTir7f7LgMvIYhFN+2dVXG2ub9cq0S5ryPiNGdzGDCNknI6J4mSoHKlsZIXBS3XZGwmbJSNx/fXm8wCcVuJ05wbHZfVlsOtntDq7EvuMzL8UCu0ytdvtbjZqZ25T+2MQyZhwjdutVFVhYal8/RQqCq2oXGvL06DzwYeYSJaLrZ5/Hw8nEVsj0Pqls7tnnvpPSjPC362NSbNCu4v1/FKTaT7y3U6roGlC40+SDJUFSxNqwqJub12Xgo8m6UEf9M2eHu5zvOhT5rL9N3U1erstI2rN+7nOnuHXsw4EIOND9bb7E0jPrzR4sXQ506vRlEIEmXx7Jqbbry1UkcpiwigFJCWPOH50EdXFdbb9pX375Ef8/nejP1pxHrbwbU0/vCDLlkhmpJ6qTV2EkXbcg0adhOl1LVaRJC/u9osbbLTU/qa83cqOgMJFcQZmyMfQ1O52XHPTYr3JiH/yW8/5U9/Y+NUk/RV48986wb/57/xGX/+t77g//YlNqamYcLQE9TOouGMpopWWJw2SbKcaZSw2rYwFY1bXZe2a4rT1sJQyzY0fvWtJQ5nMa71alqA84jSjMcHnqCgGnbVhB96SdU07dQM/vj7K/zkxQhL18TqXVd5a6XOnX5NNPiKgp/vzsjzAk1VeGfleG56VmSFoI13J2ElRn6vX2OtZVdIu1mUsj8RJ7k4TfnmrQ77s4i6rfPOSuPcoVCU5lXDLkpF2uLkOzR3OZvvd3d6Ls+HAU8P/ZICp5FkOb/3ZECnZnK3V6u+z5yy1qvJADnJC250pBGilLnnveUaTdtAU5Rq/Zx1nSCN55Wm9VJBbpBm5K+/u8yzgV+ZB8yj45r06ibjIOZgGlXUvl97Z4l3S9Hzjc7ZaylKsyonP/ncbnRcejVpUs6/xzwvaTkGK0270pC9jgiTjM92pwz9mJWGRd02qr1kZxxiapr8TzdpWOIU+pWNNu+vtxh6MQMvJkf07RxDq/7/VU10vrLRYr3tkBUFLdtgcxRwt1ejtt5itWVjaNIImoWpaCKVQtbb44DbvVoFeDA7Dn6c8tHWhAdL9Us975Nh6UJZXawlb/dq3OgICimIM3YmYlAijppCX/z1d5fp1SUP6tRMiqLg8YHH/lQkSdquea11wWI8WK6zVLdKl25Zs92axfcf9Kv/xiv1wWxDo2vpIpPTdo7ljStNm999PGCWpwy96LUbU3VL53v3etzoOJXswCxKmYYZ76+1MDWV2/3asXvdds0KZaSpCtMw4dlAhpl3T9R/l42tUYAXpay17TPAF8cjLZ/x1260+e7dLjVLp1e3mIYJrqmzNw34B18MUICGc6QXtzsRTeylhlP2BjL8OCXJ1FNshT+ocd2Nqf8J8L8D/p8IkvlvA//8ZX5QUZR7wC7wIfC3yr/+b4B/iis0pvanEUkmAmr704jdiYijdusm95ZqqAoMfIEz5rlwyhcFPh/tz4hScUQxNIUXpXjlRsc5l+N/mYctgoFziJ0gpZqOTvcSVBFFUU4lhHNb0a1xwNBL+Hxvxv2lI+vgjbbL/jRiHCR8sj1luWlh6xr7s4i2a7A7EQjsziS8NrpKkuWkRcH+LObuksvAi6sEd36PJlFKw9aEulDAT16MZPpvG6w0z1+opq6eKp77dZNtW2e9ZWOULhDTMCuhyjFRIgKYIz+p6IpDL8IrBZHn1rWXCUvXBNqdQ5QL/bHlHt+YznLTuExkecGzgc/eRKhEX73RRFNVVpo2aX6U8NumxvutJuMgYegn7IxDVls2m6OgFFCVKXjLNWhdYCv+qjHwYl6UlI9bXYelmrzDqqqIU18qVNmbXZflps3BLOLRgcday2YcxPx8RwQsG7bOcsO+EgrxKqGqyrHEZOTHPN73xEFJF3rQ++st6rZB2zF5VrqibbQdVJXKwWa5aZ1qdFxnnKTofLoz5bBEWv7S3S4f3mrhWCqWoTHwYj7anNB2DW73XD7dnZKkBXVb5+4lGmfiylTw+d6MfilcuzMR18zdcXRqbcVpzqODGVlecKdXO1UYjH2B9AfxEd3oPGi4Y2pYusrQj0lLeudi3F+qszsOSfIc/xyqz3nx+f6MsKSttk5ov6mKgqooZEXB3Z40ck1NYWscEo1zVhoWn+/NGAcyjerXrSs36C4TkyDm0YFQ8CiEamUZItRqaII4cEyNuz2XJCs4mMU8PvDYaDtMopSfbU2wDbVCfr7KHrM3kUFEw9Z5u9c8NQDZHgdMg7QSzR0XaZXovLvWJEwyTE2ats8GPjujENPQRIj9xOE09OPKJjvJCsxLouCeD32+2BPjh5qlV1NKVRHqzvx7W4bGt251SwqqvEsrLUuE6w31FGJ1EqU8KbUkDVXhVq9WoZNB3uXnw6Mm60UNyf1pSRdRStqsppUGIgobHZs7vRofbrTZn0XVM4bTJiSL9z9Ks5JeKUXP0IvZHAXsTkK+catzpYbE0E/KzxRk3M3ukcHGPM77uPOaCy3XoBMapNOcF0ORQqacRgABAABJREFUP5hf062ey8hL8KKUn74Ys9IUM5HNUSCaNoagPGe19NxE/M//1iPSvOBf/vUHl/6eLwvX1PkXvn+XP/fXP+PvPjzg+2/1X/5D1xB+PBchVvGSjPbCvzuYRrwY+WIY4Ii8AKZSUUvOuj+6prJySfH7i2IWpkyChM1hyNhPuL8sjdPVlsVu6SJolIiRb9/pittq+Y5Gac7eJKLp6FiaKk3eTNxY319vvdQMKE5EXybNi8rsYaVp01g4L+qWTuKazCLJt2/2XO4t1wVxe0EB2HKMSrPvLOdpOMrLDmYRIz8hy+V65nS3u/166awpuc16y8Exj1PODV1jvSPnrG3qOKbGO6uNY/fpoui4BlEq6JrL5pxhkvHR1pgfPx+z3Dg62+bXZRsq/bqNoiocTCMOPdl37y83KgOcs2KlaVMUnIuwXjxfhl7Mbz8+ZOQn2KbGr72zfK1I4pEfiyFIDl3XoO0aVc41R68oCtzuuqBIc2Cew6Ao/Gxrgl7SP99ba17L+T1HhI78mMcHM0Z+yq2e1H9PD326rino0KLg830xM5m/o/26GAfsT8RhWJklOIb6SnRxRTnbvEoaJfKMng98vChDU8VJdRhE+ElOj6P3JErz0t0TDqay18xdA687LF1juXl6PczfKaGQFiW6XvKzFyMfQxdNtvl686KUJBeX4llyDWyeUu/r3nINp8wPFs1uVprWme+1oSkLDdqEPIcwF7OYkzTWSZjw7NDH0sWk4WQeEaUZh6WhzN4kqvb7rVFQ0fcXYxxI3ZoVBeMgxtDU0sxN8vcbnRpvrSQURVE125IsZxKk6KrKJJS81tI1JkFAo6TBXqe0y5uK63blGwL/y1f88T8N/CbQBibl342Bzln/saIovwH8BsCtW7eqv2/YOtMwJUqzSrD1YBZxb6nOWumYkxVis27q6rEJlR+n1QRwkWYG59sc701CdstD+yLUgqaKG0jLMllumny6My0FIM8WGbxMzBc2yHRy6Mc4piShjllCUEtth3mxkGbCzW7YGtMwe2nX9iqRZDkt2+DeUg1NU2i7BmM/IUhT9idx2bzIWW44KEpB09U5mEWCILjC7xEXuowwydgZR6R5wY2uoEYmQcrWOCBOc6E7uobArFWZEJqGyt40Lu9JcqWmXMc1mYap2NVewn3ksqGpCnVL40Ap3RicI3cjE5X7yzWiRPj0LwY+cZbjGDpBnFG3tCNNhSS/dureYhxZ3mq4pcj8PO4v1fGjjEkY87tPhrimVjpLKexOpFmsKpRukm/uGs8OhWks4oa7k5AbbZdvlkKLmqKgqopMj/0Yy7Cr+3mRtTnIQfNo37tQ0PcqESQZYZyxl8ph9M5qs0RZyPqYF/txemQ5m1xkk1XGkwNPmgSpTGC2xyFtVzSLRn5C8wynLC9KSVL5HZMwOdWY6tQMZpEUYK6hEcQykVcUuNuvnTr8VFUSA9l7jn+Woal0aiZ+lF3q+yyGVmrcpVl+SicwKwpajs7zQVAhBLw4q7S9niaC5igK3liiBkKbUkux0oajH5vo3ynpLPvTiJ9sjlFQyoRJYeDFRGkmGmjxq6F7QBrf40AoO4aunCqkpmHCk30fx9QIEjHtOPlOzJ9nEosJxSRMqSvwYKl2qgDq1iy204CGZVzpnmqqIvo3WUbd1sSWPsw4mEXsTELuLKCvVFXBVo++x7xpVxTyXeeNPJAJ2TRKoSj1+k7EKIirJmuYZBdSdufv5xwdmmQ5H2y0qJk6rqWRF0W1J9xyxUHJtS52yzycxeXgJKNbM0SDomwUzKL0Solkt2bix9JUNDTYn8aESf76qE9Fiq8kFZTlalMQyU3boGbqfLwlKdvAjzF1lZGfoKJUTd/zKHy7C2ipq6I+Xxb/01+5x3/+gxf8a3/pJ/zlf/kPv3KedZVo2EZlfuIa8h5Nw6ScWmf0a0Kf1VUp+nfGOW+9xIH4uq5LLTXu6raOqWtVA6BuiYsgwA+fDVEVhQ8XXEl3xiFRImfHSsuC4nwX6PNiTpF+uDujYeuVQ+RidGpCpVEV5Uq0+csMj4qiKGUmMg49GTDCkROdVuq5moaKbag8O/QrdNdqy6Zu6dxbqpEXRdXMuYpGj6Iox1zfzos8L5iW2rD704jDaUyc5kxDKVznSGVTV3l/rYmpefI8DfWI6qlcfG1GaXp0VsyiVLTQyvu/NQ5Is7wyVnlVmtx5UbN0dEUBDVbb9rHrWm3aOLrG9ijgk50pnVLHtihgaxTSdHSRbUhzDPX6z27H1Er9TqmbdiYhQZyVVKm00jRc7zjCeEHeoxsdF12VvDfOrq4ReNlQgaTMA3t1i4ajYRkOh9OYoSfakMtNcRds2BqWJnRr19Cr9/7LDlNX+WxnSp4XrHfEOCvPhdmzP40qvVXH1Gg5JnWroONcx74tNN+TiNT7S3XiUnvuZMwHVvNGU6cm9Z+pq2c+0/mwNkxy/Dg91fQ1NRXHVCutNJC6fd6sOhm1sm4NogxNUTmcyV7w5MDjYBbx/lqL99ebYtJQfp5RStTsTEKWGm75d0fOvukv6LlfNa5lxSiK8le4oLdQFMX/4BIf8yeR5tR3gbktSxMYnfOZ/wEirM63v/3t6nf36hZplvP3Hx1yMIu5v1RnpSlWiaqqVJDKs9BPNVOnZokGSrduUjM1lpuWqOCfM42ZTygngTj/nDdt1VWlEvWTYkM20pEfv1bCtNyw8OKUgRdxWGpwzJstmiqismM/oV+3jkQGLY07/TpjP2ZrHPL53uxSqIuXRcsxiJricLjStHly6DH0fHYmAatNhyjJ2J+J28l7603WWy5RIkiy9fblJx1xkvP53ozlpkXTMSrxZkWR5/vF/oznA5+NjoOpiXbVe6tNivKeTAM5WPpnODFeFDVLP2YZfp3xwUabpYYk++0TsF/X1Hk+8Hm4N8PUZYOdZqJxULc0bnUdWo7o0LwKvPSy0XZN/ui7y5WY52IYmoqqZny8NZUEvCE0vd1xRMvVud2toS6LLtZ5roZvKlquQdPU+Hggxfezgc+dfo3lhk1RFBVVqVe3cE2d1ZZNlGYvTXhnYVo1iK4jejWTL/ZmGLrKw50Z76416N6QPWPgxeyMQxEmLvUvJgv6AedFmuVMS4HarBBE6L3SRvlm12WtlZ/5zjRsHcdUSfOC9hnPq2EbvL9+9J5Ow6RKds4rpk1dPbNRESYZcZqL3kjzanvhza6LbQjtZFH7pigKvtiflWKh0myYhqKPM4tS9iYht/s11tpiuXyn574xYUjb1Pj+W0tnPi+9FMJ9uDcjTnMpanWVgRcRJCn9usW9pRo1U7+UJsFZcfIcOBnPBz57s5CBF/PWcp2bXedcQd6GbWAZCq2aQc+VqfXJmFN1rxqrTRvlpoKhKhWaMs1lwje7JPrqxTCQpogK76w00DXRFntrqY6fZIyDlM92p9zuuVXjSpo5QlU8r4Eyj+VSD8fQlDOn2QMvrvaEj7Ym1EwdQ1cutGvOi4LHB7MyUa7xzdsmzwZC57vq4EhkBGTP+Gx3ChQiopydvc4vG4KyKHgxDBmUCfI8Zzj5ftmGhlo2Yd9tNypdsoF3Otf5P/2/P6Uo4F/59bde+drOC9vQ+L/8k9/gf/Tn/z7/3H/0O/yFf/47bwQRuRi3e9KUnzuIDbyYzaFojgVJxv5UnCX7DXEdNnUF95o1Fs8KU1f51u0Oe13RK118Do6p4aDxcHfK80FAUUDbMbhbNsxqlo4fRQz9CEUpuNVzUBX10jmjFOsOqqIcDX6D5Mzi7lUpWC8LRRFU9083Z/glpfqd1SY3SrqbqWv80r0uKw0ZTC0OdOdF3XVqTJ4XL4aiDTs37ZlECYpS8N6aPItJIMWvaGiKuPo8sqwgKR27XiXGvlCV4MjRsG7pbLQdZpHoh153dtmwDf7Qgz5elLJ84uxXFIVhkPDFgTT6RTNH5ekgQAWaToO7Sy6qIq7r1x2WrvGdO132pzGupbI9DpgEKbe6Ln6c8WLoQyFovJPn3VLD5sOb8u6fh+R73TANjQ9vNBn5Kettm0mY8Gh/jKoobLRtMkXhJ89HrDQdunWTX3l7ib1pKOfcNWhfvWq8vdJgGqayr8QZO5OArmuS5jm6qrLWFvT69+738EoNuteNoijw0xT/xGBqvvedFfOBVZgcsQLeXz//HJ/nltYJwMs85iynLC+qs9jUVQ69iLF/WkZb3E+bZHnB7z0dcOiJWVTd0mXIFqV0auYp5g6K1IxDP2G5YVd1zJye/Q9DXNdV/rnX+WFFUVaBuCiKQ0VRfhf4F4H/I/DHgX9w1c8bBQlFIQV8v25emjKkqgr3FqZXXtkt79XNc4uWXt1kbxLRco1LFzaWLjbv0zClV3u1RRel0mRq2DrLdZuw1Ak42RHdaDvHhGWXm1klvDyNpLBOs6xyV3mdmItOzu/XPEGfI5YcU6y901qOqsjk/qKE/aLI8kJ43raOXTYQQe6LoYn4X8M6EsxcpCm8Ll/5TYWuKlWD7WRkOTRtHT+RafjeNKRm6cyijLdW6tzqfTkHTVGIwOFZjYc0K6Q5WYrf3ymnX6YmgpwfbLwZwcWXhaootGoWK82EvCiOoXIURTmGJsjzgoJCCsqXFHJNR9y3rqs11SxpCUlW4CUpi0v5ZLGf50KlsF9CI9A1VRLcQMTzb3Sd4+Lk53xHXVOP6UC9LFquIW6SnGVccHFESVaK0l9NRyVORYOtWzNPFQ1zdGjd0onSDMtQabmitTTXK9IUhZsd940hpRavM0wyOjXzTGOENCtoO4Ls7dVN1ls2n+3N0FXRA7qOdXPyHJhHURTkBSzVLfK8oOXIVPC8xhTAUt0mTgM6NfNaEZq6JoLlYz+pHMP6dYvtsiF7mec0X9t5fiRIq2sq762Jzt3Ai4kSgbsvNeRda9gG761d7p3VNRXH0Epq/mkK/7yhKyhg+fy5I/B5dP80K0qnQZnuXdcApF8Xg4Omo79yU8orkQEd12Sj7TIO0kofbTFOvl/vrDTKBp783oMSpXxQirwD/GxzzF/64Qt+41fuvbEz+cMbbf78P/0t/sX/5If8yX/37/Jv/KkP+O+8v/LGdDbmxgLzCfz8PmmqStMWFJ+hqbRsgw82WqR5/kpN3FeNuV7KWblq0xFUlamraAsiwBttB0tXStS55NVX0QIzdbVq0gVxSt3WK4TJlxm3ug5f7E1LDSKde0v16rwxNAVdVStaZa9uMjqnkf8mY45cmzdi7vXrPFhuVCi8i4rf5abNLEo59GK6NfPKrmvxwppOSrT4ra5LxzXQNBUFBS8+TTl6nUgzMSNqucaZlMg0y2m7JgMvou0YrLZsppFoTflxxnvXIY57Qay2hAr9fODTskW/6kbbwYtTnh56dFyjQi0thlZqqY6DhDB5Nd3Zy8TNbo2bZW9yEqbSaC21z+I0rxq9SYkI79UsJmFCmGS/EEpXvXSQTPOcrivmJTc6IptDqYM8rxubtk6a5ddCP1MVBV1RqiHtZWJxYOVe4vfXL3Fuzxvk8ygKMZM4ySKorrukG9Ytg69utAkTcfA1dPXcn5mfOVleVGfwatPm0IsrFtkf9LiuxtTjoiievcbP/yngLwMURbGnKMrfVhTl7wLPgH/7qh+20XErl5s7PZfP96ZkOdzuuZd+wfNcBOOKQqYY622bpbp1KsHrl8nzVeN1RD7HfsLPtkZ4YUaUZfzy3R4rLevUJOysWNz8265snIamvjY1bfF+TcOEB8sNbnYdHu2Lhotr6ryzUuP5UMTfXicxibOcT3cn3OvVsQyNGx23KvjM0o3Ei3gpmuQPUmyXWmEAD/T6sYNsbxISJCnduslX2y3CVKzOh36MW+r3fBkRJhnPStviuQ7bPKI0Y28aUlDw/loT21ApFIW6ZZDmOe1rhH9fNTRVYank/jul7svHWxOajl5NTOexN414PvCZhAlfWW+e0mdZDENTr1UIVHjjLn6cstq0+WJfUBS3u+6xxupchHHoxSw3Ld5fvzg5u9FxoSP3YT7Jv+6wdO2VHT+8OGNrGLA3jWmdQSs8L54NfII4Y1+JeG+teazYUkvx6I+3Jiw3bG52XPIcNkcBjqmR5kUl7vum48VQdCAUJeLd1caxM2ToxQz9GENX+WCjhW1oGKXI96yciL2JGJbOYUEslOimrdOw6ygKpxCbizEOEqah6AXNzQWuM4I4q6b2cSaC7y+7B16UiiipLnbdQz+hZmqYusrQiwmSjKWGFJuTUPbY85K6l8U4SNgsdScLilMIHHE7tCuUTJYX3OxcLAA/f9aXQWxdJV4VuTaPIM74nceDUkML3l9vcqtXIjVfMlA7mSd16ybDsmAGScj/9//Vx3Rdk3/pGrWlzopfe3eZv/g//x7/6l/8Mb/xH/+Ab93u8D/71Xv82rvL12qZnh3LgdJKCHiOZl9q2IRpxjiIudl1eLD85il8izHwYrZHYgQ0N6pZvPZZiVrp1UTIe28SslQaqHRci6GXEKX5Kwk5h4noqDmmuMm9qnOxF6WMggRdhYGXnHk+nhc1y+D99RZPDr2y2Xb07NNc5D1Azsn1tnOKGn7V2B4FfLo7ZbVp885q41J75Y2OODc2LKEzDayYPKeiVl9U/KaZ0HyKQobEZyHang98NocBLcfgwUr92Pvfq4lbuKIcMUrmZg31Et1y3U3U7XHIqESLvL1aP6W9J653Bd+73yPLYRwIingapmeaVr2paLsGkzChYQhDQ1UVvnu/y6c7s0pW5GRt+bTUNTycxRciba4rOq64PzqmxkbL4aPtMUMvplMzq3f58YFHlheM/KTSkPwyQwaesu95UcoknIq2nSWDuY5rVgipxXfjrZX6azWn4jTnR89GvL/elEHlJXThrjKwetXQNbUCqZwXilLK4gQJt3q1U0yOMMk49GKati5u9WnOoRfx9kqjyom3RmGFAj25zv4gxnU1pv4L4JsAiqL8paIo/vGr/HBRFP/+iT//W8C/9SoXMnf/WG853Oq6TMK0ch0Z+Qmrrcs/EEUpOaBehKmp1WTzFxlRKon7yBchy5WWJXzTlxSnc4ccU9MEVq0KreorL/m5q8Rcx2V+ALumXrpe5Tw+8Gg7OklWlEXCq0+iigL8KGNzFHBvqc5iTqIoypVoiWEikNy5c9BlEpw3EXOtMHF1Of7v9meRoI4U2ay3xwGqqvBr71xvYn2ZmD/jk/dpHIh1ct0yGAYxs2GCF2d8926P/huCMl8Ue1M51Ho1k17d4lbPrabyn+5MyXKxJ15tHqe4qIpoaqR5wYthcGFj6nUjL39HnGVstF1ajsE3bomk3tNDjzQrmGUpfnJcp0BVlLKhkaAopR7eJYoFs2x+XBSTMGF3LGi8103MLxthkjHwBG31bBBc+ufmr6CiwFmrVkGpBNGHvkyLDmYx0yDhW3c6b5zWU13HsbV9/EoPvQhVEZfF+TM1dYVv3e6+ETdImO95AVEqelurLRvX0o6hhRejKAqeD+Q9bdlHxcCbQJ3M97+i4JSo+nkxp8+lWVbqr+UczCTRm5uXpFnBrZ772kikxUs67/oGXkyWFzwfhKy3bQ68mJUT+8hJp6tXEcd907E1ChiHCVvDgFtdl6GXsNZyLpy4TkMx5XBLCtA8TiKq/l8/3eF3Hg/4N/+xD76UCe4HGy3+yr/yff6z33nGv/9bj/iN//gHdGsmf/LDNf7Mt27ywUbztd9nhcV3V/5OVRU0VaXlmKX4dkzd0tkcBReiEt9ELL6vJ9OcWZTiRxk1Uy/NJEQX6/nQp1+3uNlxX2sIs7iuX+c2Pzn0yHPYn4YsNewzz8eLYq3lkBdFlU+dfa3Xs6/9dHOMF2VMgpQ7Z+gunhV2OWidx3JDTGTmWkeXjbO+QZRm7IxDQY764ni4WM/EWV45juYFaNX5qpx7NlxXyBl+Iqf0E+baQPtTOb8PZxH3l+tfOvq+YRt8Zb3F0wOP33kyoOOatGy9kjkQXcPjz1ep9oAv5xrbrklUosgf7c94dihn3zRIqgFcdU1/AIzZNkcBeQG7k0gQ5a51DM2pLOR3l80FzoskF4OS7Ul46j17EzGvP/p166XN3MtoK97suvTLGj5KxNRkvk89H/iESc7Qi7nRcchy6NWsYzpii/fyy/j+rxvX1Zha/Kb3rukzXymGfswsTNmbRAy8mLdXGhi6uDacJfJ7XszFegdeVMIMryZ2+KZibkm73nZKUTvptj4+8LjZcc6F7B/MInHQIqddM649GZzfL++EOGLbFbqTpavM4ow8h70kombq7EwCLF0aZVdNBlaaFmsthzt995WnbwCHXkwQ57yYBRzOYh6s1H8hUMfVpl1qU5ymyXVck8NZTNs1+Gx3xpMDn7qlM/TjL624Bkma7vbFEvckAqppGxVdo2Zq/PjZiKwo2Oz4b7QxNfYT9qZh6c5zdC92x4KY3J1Ep5qgHdeoDAtOrpelhsVGxyHO8mvVuzicyX7ULRtlALM4raYYB7PoWJLYLilVlq6eQlHULJ27SzWMoThtLNIuXjf2JlFZmMT06uaXMlnp10xsQyVIsiu9K7e6LuMgKUUiT9+DmqVXe3/LMfDjjM93Z6SZ0Ge+rLVzszShqFn6KQpN2zUJ4pCmY/Bi4PFwz2O1YbE/jd6YpolaniGGplKzpUA7OX2ehgm7kxDX1GnYevWeWnrG7b5LlhVvBM110R4D0tDZnwp1fv78WuU00dSF+jgJpIgb+nFVDOvXtEaatsHtvkueF+c2FhxT5ec7Pl6UoCnOmXnD7iQiTnP2EjE/eVP6Zq8Tpq5yo+1gqAq9mskoiHk+8LnZPV+PbW+6sH/UzDOL8Swv+Nf/ykd8Zb3JP/Gdm2/6a1RhaCr/7Pfu8E/+0i1+69N9fvP3N/nPfvc5//e//5S3V+r8xq/e509/Y+OVh1MX5UC7Yym+FBR2JiIm3rCMakj4ZURnwUHz5CBjjjBMspy2Y/J8GPBwb0rPNTE1jan7eqLXln7xuj4r5kOShm1UOk+GphLlOR3XRFHANk6fjxfFYh7ciYzqjBc3YclDr/I9t0YBfpyKy+CJfKHjmvhxQM3WKvmMq8buJCTNiiqfuSh0TRUTmviIir03EaTEcsOm6egVUrRhG6f2RKFaClVvEiRvDK27GBttB9cUzaOT6OWmY3Awkz28aev86PmQcZBSM3Xu9C7X6LvOmA8SXwwCDmYRv/bOEn6cUxRnyxfc6dWYhkklTP2mYn8qDe+OK7IyINqMuqaQF8WxtX5vqcYsPC3M/WXH1ihgc+iXOYZBWLrSdRfO1PWWg2Oc/W5cNTRVIc1zluvWG0fJF0WxUH+E14YyPG/vygvYHAm44sFSDctQiU8gWy9aZ38Q47pWTHHOP3/pIZDTlGmc0KlJwvqqOka2obHedum4Yq95lcbWZSMvobOXbczMoZBRkvP1m232phF7k4hZKEXueUikpm1UoorXSRdYjLmNdFEU5LnYgX5lvcWtrjSPDmYCaa9ZWnkI5gRxTqdmXkmUreUYfO9+n4Z9eV2v86Ju6exNQuHeOga74/DYIXORoP11hqoqx2gOi6ikRVj5YBax7ejYuobxCyhmapbOnMWxeG9sQ6vgykNfCseiEG2sNxHz370zCUsNH2lAza9n7s55FmVnuWmfqzunKAof3mgxi9LXbgws3p/tcUhRUNq9yg10DA1dk8bJyetsucaFKIrbvRqdmol2RQejl0XTFrdHx1TfiNPNWeEnOV/daJHmhdgwXzJ0TT213y3ec1NXj+39q02LtmuQZsVLHRevMxav8+R+v0gFn4UJvZpoltWv0fXzZJj60RnSdPQzz569aZkExQIRN3SFJJX39Kwk/Krn2EWxuMecjJ1JSBjnhElOv2ahlgLh8wl6nObomgg8d2sWay21+p7XFSe//8n9uijgRttlrenQdg02OqeRhw1b53AW41ral3K+vMo5ttF2qns78hP2pxHTMs84L9lu2Dp+lGEb6rnF+M4kxPVi/sKf/c4bNes4LwxN5Y+/v8Iff3+FsZ/wX/10i//0t5/xr/7FH/Of/vZT/p1/4huv/Nnz4dKiYd1yw2a5YbM5MtmfROxPVfp1kVEQF94vr0g82ZCavxe6ph6j9uzPIm603FJ8G9xr0Mi5aF2fdU2747Bscor2nqGJ4LpXOvq9yrvTsHVGfoKhK6caG1dFsC3av+9OoqpQnO8HX7/V5q2Veqmx+mprvGHrDL3LNzcc80jYOssLdstGxc4kpOU2eGulwZ1+7cw9sW7rDEo3N/cNnj+LoarKsTP8vJwyTmWYpKKQ5sUrN/pe91pzRBPIsUSv6Xbv9NqdfwdTP52fvImYU1D3phE1S8OLMpabNu+tNY895ywvsHQNq/6LpXHN103HtQiTnJWmiJ2fpTPYrZnXklM4hgjZN2zjjTowg+RAdVsvG4DXl3cs7l2LNfw8J7MNDS/OzpTUWFxnX1ZN+zpxXXfta4qiTBDklFP+M+Wfi6Io3jzBtgzb0GSCjiJTqWt4MRY3++uMSZjw7NBHKydtl10s8wYQyGGvKKLWf1GB2nINalYDVVHe6IQuyXK+2J9V1ImmbVQH/nrbYalhYWgqAy8WfStdnDauEqKDcj1d6JZj8NXS7jtaEAvM84JHBzOCOK9cIr6MCJOsshu/26+deqarLYcCBUtXK5rSlx1FUfDowMOPMlaa1qkmT90y+Mp6k2jBuem64uRzqds6gzMKvDv9GkmWvxLKUXjfr3dvD2cRW6MQ25Ap5rwxvLgfGZrKOysN8qJ4pST7TSD7lps23ZqYF7wpgeCToVCwPQlRlSP6wKvE/jRiZxzimOJudvL6XVNcVbwoPbNZ8KZjbvWta7Lfn3w3l5t2Ja7df8NorsUz5KxoWNJgsAwV19R5e/n893R+jp33va4zvCjl2WFAv2GeeY6ZuloJby8WOG8qwiTji/0ZAPf6og1Yt6TpZOhi03zW/ZifhfobThDFndIjiDNWW/aVHI4WXYxrVs7BjJc2KZYbNl334v1j4MX8K9+/+wszw1iMlmvwP/7l2/yT37nFb/7+Jv/6X/mIf/Y/+p1X/rw4lfwny4/yn3lstB2WGxZ+JHIMb3JIeJk4eUYtrqeVpo2uqmzoNg+W6mhfUiPg6aHHJEjp1U0atkGYRDimWq0T4zXP5rYrQ9DryIMNVcU2VMLkyP598fnf7rmvnUfc6LisNF8tj9FUaTDN7eQX7+1ZNP3m/4+8/w6TJM3z+7DPGz4ifWbZruqqNtNm7M7uzpq7PYfzMAdLgjAiCYgQCBoIAikJdI8ggaIgUf9AhCgCB/CRAJBHgiAAwh/cmb31ZnZnd2bHtTdls9Jn+IhXf7yR2VXdVdVV1dUG5Pd59tme6q7MyMh43e/3NY7Jy4tVBI9aNTwL3GyPGYUqhW3CkJvA1AUvzZUZhSkLNee5WW68slilbBu4BwS1tEcR670Q19K4MFN+Jte5uwhytunt2fdOrvFxe6Nnid3j5tOrDRr7GPX7ccqN7TGaEFyYfXJ2nATao7hI/nuilzoSzj/B+eMgTOauh9fWqmtSdc3H1gDgwRibqVgsPkWbkifFqRSmpJQvjJPWhC6tDvX6M9fxHwfDMJ2mRwVxdqIqbtk2uFoYKz6uCvosupN+nJGkql04CB5NAJgM1GZJJRHoT7lQdhQYusal+XIRR66uL87yqTdZP3h26SzjKJ1qg/dj7cxVHRolC+MZFg4eRpJJ/EhRb/tB8khhytQVU+WkBZfDsPt7GQQJF2aVway5T0XjeUpvJ9KnMFGpIistb99OjaYJtBdM8/3MWQxCsNr0QIhHUkWPg8k9D+Js3yQXTRNcmiuT5vK5PBvDUEV9J6nEjzNq7t5rWG54zFWcfZ/lZ4395pmDntNJhPlBn+s04VkGqy0PQxcHJt09y/VkGKbk+eTPCa6lU3HMI63Jz+IZVPPlg7n6pNHbR/1M8Pj54+JsmT/505dPdB1PC5om+D2fXuaz55tsDEL+rf/+ZK8TxNk0Veqg/U/N03j5GTQJH4eH16jdzdczdZeZYl19VvsMKR/IcPtBwsuL1SJd7nSv4bTWN01TxZLd64kfpw++/1OSTD3JPHFhpkSSSUxd8O59xRfoB8mB/pHPi0kxSdkGdX0PF6aEUE2P3Xv054FW2abqmgeeWwbTPUhOnOU42tM/Gp9reXvuy37Py+69UZzlz9X8er9x8zAmZ+NMymkwyBO9J2K6b8gkPIsn6Gms7/vNXUetATw8xl7kwpSQ8rkq704FMzMz8ty5c3t+luWSNFNyspNs9LOCjnvSjmaWK7lILhV98t7d2zx8jQ8jTnOSLMcy9BNdc5zme2ikoNJGJr5Uj8OtW7cee43PApNkEE0IMimJkqz4maJf37uz/71Mc0lSJAjZpr7vMSpO82mE5sNf7WQiPOp3Lotr1fYx53uR7qVEmR2OohSk6qJomjjwPj5r5PJBPHJYLJymLrAMHU0I7tze/15mUpKmEk17skUgzSWCx2/K0lw9i5oQ2Ka25zs/7PuePHOWrp3Y+HVSrHzcNeZSFblFEfu9+1l+ns/k7jH9MNJcMizS0mqOyZ0X5LmcjB1DE4yjtNhIqWTDuy/YNcZpVhxAFOMqk3I6vvNcEhQeDq6lP7GR6JNCSkXnl1IxnB53L6M0J39oXTvq+2Ty4PUvl5IklQiNA6UhmZQgeWrfd1qsHwJBnOUIOPAzJlk+3dPsThSbfM6jzudpJomzDEPTjn3ISzJJmuXFWvzgdw8b3w/jNOehyT4LAY6hkcu9Zrm5lMrIWTvY8nW/5+BFWb8Pw/O+xsm9NTSBBKIkm0oYhaAwMtYOXL+Pi8n6m0uJoWkYujjxuv/w83oa93L3Gi0lhGkGxRyna+JE+5Xdr3nr1i2WV1aPtFeREsaxanK65tF9ZaZz5iHj5XF43s/lBGnxHWe52hNpQuBa6lxw585tziytEKZZwQJVDeAn+dynjZu3bjGzsERePEMTmxQpn18BcT98eO0Gs4vL1F3zuZMMDsL1GzdpzC9h6tojKqrJOe6o5+SnhWs3blKfO4NlaM/F5/io+Pa3vy2llE+1tvd0XdmeEc6dO8e3vvWtPT/7aHM4ZU9dXawcawHz45TrW2OAfWmlR8H9XsDdjs96L2Sh6vDHf9/PPXKNuzu+YZLxj9/bUNGwjsFPvjx37C7Ru/f709ST15Zq3GqPGYYpmgZXF6qPnczeeuutR67xWWNrEE518RfnStzvBtzp+NzYHlPzDFYaJf7df+XRewkqnWASL3puxnukWzWKUm5uq++15pqstDwmhdlcwgcbA/JcaXaPkog1oUUKwSNx9S/Cvdz9eYMo4X4/IpeqCHNpvsIf/p0/9dyvMcsl768PkFKZBr+3pr6Drh/z1moDTRP8od+x/3Ve2xpO2VOPi0A9iF2xNQynRoX7PTMThEnGt2932RpE1DyVZrk7tvWg77s7jqfJYI+jz0582Q57jeWGe6ApaZZL3r7T4V4nxLN0Xl6s7tHtP69ncqMfsj1U93i/2N9v3Nzhq9d3APj8hRb/zu/df3w/S/T9hNudMQJBydF5916fUZgSpBmfPdd6IcbOIEy43faRSL53t0fJNkFILs9XyHOm1/jVa23eXRsQxCmfvdDk06vN58omnFw3KGPo3/WzP3bgvZRSTjv9uiaOFbv9/vqAtOgk7xeNPZm/AV6aK08LLZN5Yvd1Po3v+17XpztOAIlr6dO5bHXG23dj+vHmkDBR/2ayp8lzyfvFunXQNT489/3GR9vKVFiDn7o6dyxWx7Wt0ZSBNZlzJ/IVOHwOneA056G1XjD1+bFN5ScG6vs0dcEHG0OkPHhNz3PJnY4/jeu+OFfCs4ynPld2xjF//Zt38Sydf+UzZ0/ECHiee4wwyfh4U0lYGyWTZsni+taYcZzS82N0TQMJi3XnwPX7uPiNj7ZZHwRs9CM+d75Jq2zx0tzxkwL3e16f9F52xjH3izX6bNNFILjTUXNHs2yxVHe5tjXEj9WZ5MpC5bHFor6fTF9jueHym370h/hrf/dXgIPniAl2RhFf/KgNQKtk8mNX5o70OT7YGJCkEtfSTnRv4cXY+673A9rDmFxKdsYRfT8liFOWmi5Nz+b3/Zaf4E//13+HMFFMwaprsFB1KR2STvuscfX1N/kP/uLfJk4kVxcqrLZUyjzAXNXes/98nlh86VV+/3/23/LDLzX5rW8sPe/L2Rfnr77O//bP/4+Ymsa/8SPncHYFZk3WVdMQJ/ajPg2cvfwaf/D/9ktYhsYf+/GLzJ+g7vAsIIR4+2m/x/8sClP7Icsl17fG1DyTVzh5zK08oZf7TNmiPQwpO8a+RoITvxHL0LhQbJhKljJsVr5Rxy/dnqm70+QvKLq9qC6IKsC8mNXs3ZgoeXIp+XhzRHccowmoeQYN1zrU32K2Yhc0VW1fM3XH0PaY+I4jlWaoa4rmOen2Te7b4/Cisw0n17fRD8nynEzmuKb+TNJWjosozVjvB9Oo7aW6Ssg57BZXHJMgVh4UBzEedntSLTXcR017j/gVSqnGZ8lOcU39yEkbrqWjaer3DzP4nxywJgXTE1wiUkocQ6daJPWdVLZz2tg9nnZH2E7Q9CwGYYKGoPIUAiZOgs444vrWGNvUeHNZFSHjzKd1FPfeZ4hBqEypNU1gGYKluvfImHEsnV6RVtsvZHfPExXboO6ZxFn+2GdUCMFi3Smil0933qoU3hy2qZHmOT9YHyF44GmRP4Gs9CiQUjWwgjjj8rw6DBn6wb5D8zWHrUGkzOiL+U4Wr3MQhmHC7Yf8vzxbhxGULePYu5uFmsNGP6RsG9NGwO779JRv2SNolS3CRLG/NI1pYSp/aL+z32Xd2fHpB8m0S24Z2jORuGwNQn7nf/ll1grT4r/3zhr/zR/53DNPGTtNeJaBa2nc7apURkuX1EvWqc01aZbT8WM2+8rguWIbJz6Y57suKn8KGRhSQtVVc1yS5cyULfJcsj2M2BxEnG24R1JE7F4384du5OPua92zmK3a3Noe41oa6/3gSNKdyfr8tEJrnhWkhI4f0Rkl1Fwdx9Swzb1p5As1h/V+iBCSzigmzSWX5l6MohSoBPZWyaIziugGMaIDpqFRsoxHnofnCQHkMmdrGLHWCw6UiT5PaELQGyfMVS3sh+bZyTh7GnPBcWDqGjlS1S7aI5rlR723/peCF+MUcEro+THjOGOmbGEbGudaKta4XSRNtEr7G6Y+DM8yWGkpE7nmCT2qbEPnE2cbtEfRvotI31cHhCjJCZKMimPyuQtNRlHKXMUhSjPao5iyZTySpAKqYzUoUl0mm6lmydpzYD7b8OiMY8rOyRJMngc8SydHpfqN45RW2cYyBD/y0gzdIJlSbveDY+qHpnoZusZi1aEXJtimNj2kTTy+Ko5BGGecbTyaDrEfzjY9un48NaR70WDqGo4hCOIEzzG4UCvzieU6QZJNmQLPG4IHiZFSSOYqNudnSsxUbDrjGNfSSTLJ5iBkrmLvKdjOF0bdh/lt7fak6vnxIwWl2YpNkCj54GFGtK6l4q4nRvgPf99ZLrnfC4q558HrOKbOywvVPWbM+2HC9FPP5F6GQ7NkkWY5vSDGPKTLauga52ZKzFbUfXlRYmEXqg5mIcPaz5yx4ppcmi2TZpLWPnPd80CS5URJRpik1F2ThZrLp1cb9F6Aws5uREmGRHKm7vDJlQY112IUpXvG93zFouFZrLaUb8zzfi6EEJxtHm2Ohb3JhcfB+ZmSSls9gFkwU7Yp2wb9IGZrEJLnkObKzHyxporYaS6f2vc9V7G5aek0PBOzaFBpQhClOTe2B1iGzmrTm+5Zqo75yGfRNcG5mdKB8/mg8OpIUuULWPM0PrXSYKnhYgjBKEyJ0/zQ+zuKUvw4pVmYr7700OFtpmyDUAepZ5kwB2qfNWE4ZLnEEIJhpHx+SnaR4lZc+25IKae+K5oQXF4oEyYZG4OQ+lP8DFJK/v2/8Q5dP+F/+ne+wO2dMX/iv/8u/9WvXedP/syL5bt1GBxT59yMR5jk0zU1jHPiVK3h52Y8TP30QoNGUUrVMbgwW+LCTImXzxxsnJ/nkq1hhKYpM/6HMVs867oQ++6tT4Ld+4pJ4+9s02MYJvSDBNfUKdsmTlOn7plHajw3PJMgTun4Kk3b0ARn6g669vhxlmQ5l2ZLGAJKtknP3+sp0w8SRlFKq2TtKYienykxCFLqL8g6fFJUbINBkCCExLNNPn+xhmvq7IxjpFQFnisLVT5/ocUHG0Nut8f0/ORY6eBPG7ap8bkLLfJcstGPCJKMcZSoxvsh56BnjZmKzWfOtVioWnzzZodPrTaOtb4/C1iGxtmmy7lWaWrJMMG5Vomenzzzteth1D2Tn31lnkGQsN4NuFf1Of+CsPeeNV6cp/sJEac5dzvB9M+tsmLPaKjYWSEESZbvqeaOopTuOKbmPbrhO62H9KANX6tsMY4TFb/sJ5Qsg4pjTmnwt3cCxlFGh5gr1qO03xvbY7Jc0vWTfWUKoAbjSWSIzxN3Oj6jMGVnGOHaBqaestKqkuSSKMmxjcNPCWGSsT2MqDjGI8b3UkrudhUrJ4xzVluekjoK5e8xMd4MkqMZ0Zu6tu/G53ljaxCS5JKeHxMlOb0wAaHR8JR3QNk2nvsCPPmexlFKkkm645gky8lSxYQydW3aEU2znK1BhPFQtDA83qtBpRea+Em653ejNGNrEGHqYmq0uNYL942snaDmmdTYf16I05zOKCZMskeKo0cphs9WbNqjiIb3IB43iDPaI/Ush0lOlEhutcdcnj9YBrB7DnlRoGviEYP83egHMfd6AWkmWSskFs8Du+eOUZSxM46xDY31QcjFuQoa4pmFIByEfpAwCBJKts79bkiU5AxCtX7IouO3e3wPwoTv3x+ia4IolSwckWUwDBN6fkKjZD33uWI3pFSHzjRXn+WwYu/jkgdBpRX1/IQky7FNjaGfUrEN7ncDPEs/le/bj1N2RjFV19yzr7BNnYtzZQZFuMakefTx1pDrW2OEUGlUy49plBw2nzc9i+1BxDhOp+xvIQQLVZf7vYBOIYNzTH3f14jTnFvt8XTN3G9+1DTx1NbBvp8wCNX9eVyRQ9cEQhOESc6djs95vUTZNvYthguhGKVdP57e+zubKk2t58dP5bMA/PpH2/zGx23+9C+8wptn67x5ts4/e3+Lv/Dr1/lXf2j1uc8vj0OS5WwOQixD7X0mX3vfT7jZHrPeCwnTjE+uNB6bEHUYJmtf1TGpeSaDMCFOVZH4sLUEYHsUTaXjtq4/UnwS4mTPa8+PGRapcfvNKw83vaI04/aOj5RQcw2qrkGQZMwckckshFDegJKplH/3Huaw67m1MyZJJUkuMR5iT6dZzt2Ouq6H9yueZRza/H2RMXlmPEtnvR/ixznDojHhGDpCPFi/De3BPZFSsj2OyIr9R1z4gC0UKbnPC8q3LafmmlhGzL1upOxphOBuN+CV51xImcDSNb5waYZf+3CLQZDwT97b4De/vvhCMaeiNGdzEJHlkp98ea+s1TF1FmrPn62qCcHnzrf4pW/cJsvgvft9Vlsl4ixnexhRto0XUu3yNPAv5gy0DzQBmqb8WLYGIVuugaVrzJVtolTt2B9uUtzt+AzDhPfXB7y5Un+mRYaSrQpR28OY9ijCNvU9i4c6cGdIKbmxPWJ7FFGxDWxTo+Za08/ynH1sTx07o4iv3+wwihI+c67JJ1fq1FyTjzaHREk+7XLuxiBMpgeJJM3pBQnvrUW8fKbKSsObHvSFUGaZcZpj6AJNCOqeScU2Gcd7O87r/YAoyVmoOf9CUew7o4ivXGtzrxfgmhrzNRcQnGt5L8yklueSr13f4dr2kDDOOdtyGQYZ52bUNe421d2Nw9hCuxGnOfd7AYYmWKq7VF2DsmNMI50B3r7dZXsYUXNNyo6BpT/4joeFPKrqmkc/KBTj0NSOvpHpB+p96p5JxTGQSOrug+/o3bU+a72AqmOy+tCBMEoz1nvqgLBYc55r/O9R0B6pAsBs2X7koBAnOTe3xwhN0BlFz+kK1eb/XmfMBxsjkiwjk7DgOUd+7p428lzy9u0u17eHaELSKjnEmWS+4rBYc/e9ToEyRm+PIyqWTpRkrPcCun5Cq2wdKIeZHKhGUcrLi8/Pd+FhDIKUrcKDUBfisY0XP0652wkwdJX8uDmMCOOMKM0IkmzakLIMjUtzFRpexM4oPrKR91FwtxMQp2rt8ssWYZIzU7II05xJ4/ba1pC6Z6nkoKLYpgvxxNdg6upwa+qCe92AmvuArWFqk3VRMe/udhRrwNQ1SrbOUsPDeY7pTVku+WhzyMYgoGQb/MRldaC43wtIc8lS3Z0W6KVUjNXNQYhArfMH3Tk/ThlHGa2ytef5MXVB9pQTO//cP/uYs02XP/i51enP/sRPXVJyvq/d5n/3gqUVPozNQVj4ooGQ8J07XTaGES/NltB1NR7nqvsXbnYjyXLWegF6sUbvXr/CJONL17ZVI7nm8vpynVyCa+q0ytZjC16T8aMKjJIVUXqiRnOa5VOf09mKOk88zBr045Q7HR9T1zjXKhUm2g8+kxCqIVg9pHE0jlI2BkomO5mXDU0D8kcK8Kq4pIpVUZqxVPfYGIS4hkaQ5tzYHk+Tr2fK9h4WoCjmlXGspN2epb/QCV1HxYebA967P2AQJDRKJnFarI1199BzUqNkcabmcHsn4Bs321Pbh7fONZ+r31Sc5vT8hHGccn6mzN2Oz9dudLANg9909WieYc8K81WHi7NlvnJ9h482B9zYHvGv//A5Lj9Hz6bdSLKc250RUbr3OU8zdVYAlYr8vJUvrqUzV3W41R5za8fnazfa7IwSPEdnruxQ3iXj/58zjlWYEkJowB8Cfg+wDKTAx8BfkFL+2mlf3HFg6BovzZX5/r0+SHj7Vg/TEFyYKfHqmSqGrtF4iEFjGRrtUUyeSzb76pD6rGI002Jh3hnFBHHG+Zm9E+Bs2SaIM3QN2qOY9jDmbtdnruyQZrDUcMjy02N2vShojyK6o4hhIUeZbMwtXRmbGvto83dGMWmmooZtU9DzVXetN05olbJpJ1hKScXRCWJ1SLm14xPEGdtaxMsLKr5ZF4oy3R6qrqkmokNZNC8KwiSj68f0/Zjr2+NCBqeYKpfnKzRLFkuN57/5UAyFmO1RyJ2dAFMHXYNPrjRwLSUTebhLZZsaF2ZLlGyDTsGsmi3bBzKRdsbRVNqS53JqGCmlVEzKVMn7slyx4z5xtk6ay+n8sN5XTJRxlNHwrCMtVo6hs9L0CrZNyjBMaJasQ+eT9X6gJDaxMtBHCgZBMjUdHUUJea6ic5dqLsM4nSbs3N1l2FtxjBeOJbUbUsqp2exaP3ikMNUNEiSQphnxM9TJZbmkPYowdY1myUJKyc22z8dbQyq2wWLN5cpi+cjS3qeJ7jimH8Rs9gNutX0sXZDlgquLVVoli3MzpX073RP2oa5BkORsDiPSPKTuWmwPowMLU7ahKUPQQzZBeS7Z3nX/ngVMQx2owjhjrvr4onFnHBOnOXGqxnXPT+iOI663x9Rdi7lqzpWFynRcLdYcSraBbRw/se5hRGlWzFcZIMilnK4r97o+ddfi9s6YsqPTHafYhk7fT7iyUKXqmhinwERa64WKOZvmXJ4v7ykAzFUdMikJk4yen9D3U9a6IVGWMVd10IQyjT8/UyJIskf2T08bmlDJYmmm5PaTlLGJ7Lk9iqZd+X6Q0B0nmJqGXrDM9itgZLnkxvZ4WnQ9v8sQ/fxMiTsdH8d6Ohv/79/r8927Pf70L7yy59l6aa7Mb7oyyy99/Q5//CcvPffD0WGQEtqjkIpjcnvH5517fXp+QpblfPZ8i7JtsFA/nMk4CBW7KitSRMv2Xnb7xGIhSiRhmqMJiOIMoaHSFx9T9GqVbQxNEKYpIFjvB0+0T+6MFTPJjzOGYTIdB30/UQyosqXGeSpJ0oxRlBYsF206dvJcTs3RheARNj/AxiDEjzL8KKNeWHSsNBWrf8IWlFLSHsVkMkfXlBeUpeus95XCYjtJ0YXGQtUhLxLcNvoh4yidmv/rmuDiXIkP14fqDDSMqbvWqckunyUma7ila+yMYj7eGhHGGX5s8anVBg3P4uJs+dDG3VLdZRikZDLnGzc6DENlr3J+poxrqaL480hJmxQ2J/6p4ygt1gk5ZQS+SPjk2Tq3d0Z8/15OO435G9+6x//+5688szP1YchzSZYp5tQ4Tinb6vvs+PFUKdOx4ufuyyqE4FyzRHsY4Ucp377dRddUEnTZMp57ovKzwnEZU/81cBv4s8C/BAyA3wD+EyHE61LKP3+UFxFC/HvA7wb+XeDPFT9eBf5fUso/J4T4EFgvfv5vSyl/cJTXnUzk1zZHBElKkmuMopSyY+67STnXKpFlEj9W3dPNfshc9QFDRkq1CXLM09PK74ZnGSw3XEr2oz5S64OQKM3J8hzLEOgahR5cxeRWHfNINNOtQUic5Y/QUgdhUlCMX6wDra0LdsYJmqYSyiZm5ytNj1Gc4u2zKam7JuMoxTE1zrdKWLpOdxxj6to0VltKyXfv9rjfC5ivOI+wh4QQ08NVkqkOVZbLf2EW6zsdv/ArSzk/owyQF+oOWZ7THka8slh97qya7jhmox8SpRlNz6JZNml4yg9usx9xYc7YdxHThKBkGwwLZhyoDfJBbAnPMhDigURlWpgq/t7UBastl/ZIZ7nhTTeJE9kIRVhAkueESarSzh4DIZTUL8vlVPoyjrJHOqu7UbIMemmCZ+pEWf6IcfDVhSq32z6zFQvb0rEtnSjNuNvxCROVjDWOU5L0xXYqFUJFZW8PI1b2KY66poZr6Uip03qGrL7NQfgg0avwJLy147IzjNgZR3i2kqs873EzjlLudQMyKWmVLWYK1kCjZDEIlC+GcQhTz9DVAcYQ6nO2HJMoyQ/1ETk/U8JPMkqHyDo2h+G00GLq4pkURw1Nw9AEnmVM0+EOQ801pyygRklJghxTnzKByrZ65vpBwjhKi0OIoWj/Mn6sXPAw3OsG+FGGBFaaLq6pc6M9Js3kdI/hWjquaRBZSnJTcUx0TRVW8kJW1g8TbENnoeocO45bIlmsuURptqcIA+pQtzOKpxHxtqmM0a1M4Jg6pSK0pXSAHO5hdMcxo+hRaVE/SNAEx34+hBC8tlTj+taImmfimjppLgsLBMV46hY+hI6pF6wIxcA5yr7m4fCSUaSYVOPo8c/VSfDXvnYL19T5PZ9efuTv/qVPn+VXP3ybr17f4UcuzTyV9z8N+HGGZylPzbmKjWvq9EWMHys57OIuFtt+SLKcOzs+4zBVDZeG+0ihqeqYLNYdokQVjYUQaJqg7h6tSQRQ8ywanmruTuawNMvZGIRYukbVNQnijNoRIu4dS0cTgpWmy2LdYa7iECbZNDEvydRcOplndgf0TMbOzhGYwCXLwI+UjYSpaXTGEWu9cA8zsOcnbBSm+bMVC882qNhqvhpHqgmrCUGaSxYLc+/9ej22obNQd9jsR5iGOFIRvjNWaYYLNecRS4XnhY1BOJUjL9RslhsuQZRhmRr9IGW+6jzWaF4IoVJRo5yqY1CyVNCEENAexuyMYq4uVJ65rM82NVZnvOnzq+uCJM8JgowXhMS9B7qu8XOvLPL9e4Pi/Jrxqx9s8eOXZ3GfszzUKMZlydJxd928SaqsEHB+5vk3IEGleJ6fKXN9a0iUZPTGMWebpRe6YXHaOO7T8mkp5R8u/vwlIcTXpJT/JyHEF4HvAo8tTAkhbOATAFLK7wI/Ufz87wB/v/hn21LKnzjqRYWJOqydbXrMVR3KtkrC6/oxi3X3wE2VrgkuL1SUPn5nTD9IyWQ43cCt9dWkJ4SKOdcKn6r9OtNplqMVC+hRYOj7G3OqhBvJnZ0x3XHMQs3hUysNrs5XEJqGEGpzfpSHdBAmbBayByHUhg3URvHOzoMY2uct8UqznDDO2PFj1voRcxWbumfy+lJtumnRNHFg16JRsvYYSp6bKdHwLExDTDv+97oB760N6IyV79Ll+QorTY+7HZ9BmHCvG7DccKdyv8vzZdJc7tk0SakSE140I/ksl4RxxkdbQ1xT5+denWcQZozjlO/c6ZHmOde3R3xypfHcrjHPJXGacnN7SColn15p8tkLLUZhynfv9hhGCev9kHMzyYEHmN3P/EHn8DxXflUSydmi6GQZGhJlJgpqLFycq3Bh9oHJeJ5L7naVfMk2NSqOyeYg5OPNEVcXqzimTpLlhxqt57lEoAppmZSHjtEozQgTxYg82/SQqPG6W8q3WHNZqO4tjGz0w2mHp2TrjOOUmztjTENd8yRV50VbxGQuKVk6+5XQmiWL2YoFUlJznt5cJKUkl3vvzb2eT5apgk/VMfjMah1dEypdpuayNYwe62nyNJHlkiTNub0zJsoy3jhT461zLZJMef/c6oy53w2YKdv7Go4mWc4oyihbBmGSYZs6F2ZK5FJiHdLJNHSN6mPmud33cfef97vPpwVNKKazQDz29beGqvA4U7ZYKKQql+crREnGSssjLxiU6/2QrWGELgQvzZWJ0mzakTY0ceL0L72YB8yikZRLqTqeImel4RBlkguzraIjqu717rF+rxtwp+vTHkaca5Uw9OMzqJbqbuEbo08PB1KqcJFhmHKv45PmkguzJV6aq/DaUo0kzdE0cSwJe5LlUx+cOMunvjWdcTxtJjwu4n4/zJRtWiXlu5fnkihJMYQgTFJ+9YMtLs6WKTsGVxYqXFmokD20Zme5fOQ5vTBbYhSljzDAjlv0Ow76QcLffWeN3/XJ5X3vwU+9PEfFNvjb37n/whamslyiCcX01YTg4lyZP/D5Fb59q8POOOZOJ6B1wDw0gQCQUHYMWiWLlZb3yHPmWjorDY+1guFYtlUYUT84OMjAj1MMbS/L8eJsiSjNp6+/NYzojhPSLOfmzhjPVOzmxxk1Vx2TywtlBA8KOEIwHc8T2a+lqz/vVwhqlVVwi+BRttSkybRQc6h7JpaukUvJt2/3GIUpd7s+P/3yPLD3GTV1ZYItCklz3VPs2M44ZqMfEKX59IxRtY1p4X2CuYpDzTWPdJ4Ik4xv3uriRxlbw4gffqn1XJkwkyTQNMu50R6R55IfuzTD733rLJ1RxA/Wh4zihK1BxFI9PdTkPkqzovEDK60ybyzVWKy7fP9+n9s7Ps2yyVUqj8wlTxuTYKAJXj1T48ONofp+BxF3d3xaFQvX1J9782yCsmvy7/3MZf75Bxt8vO3zzZsdNvohf+CzK1jP0RLF0BXxYLHmoO06PERpRtnRSTNJnL0YqTbLDY9WyWap7nCv5/P++ohhmPCNGzss1hyWiqaVELww3/tp47iFqUQIcVFKeV0I8SkgBpBSRkKIo36rfwT4K8CfmfxACFECFqSU14ofNYti1/vAn5BSHuqIK6XqJMxWsqmZack2WG2VjpQuUbJ1LF0jyyWWoZFmOYauTSc/lWqTc6cTkOWSmYr1SMLF3Y6PVmxsjyoBeLgT2fNj7nUDNvohXT8myySupXGjMDI8bhHJ0lUhK88l+q4HeHe8c7bfKvoM0R6GfO9un4+2htPY51bFYqnmcmHm6PpuIcR04eiO1X0UQtHkHVNHSknNNRiFiaL/jiMuuCUoCn3q+XnQ6TV0jd3rbpZLrm2NiNOcM/UXp2O01gtY6wW8e7/H1jBmseawNYxZaZVoD0NsQ1NsiedYqBhHKde2hvxgbcDWoDCnHIScbbpTKn+Y5CotZZ/DcBBnXNsacXG2xPnZEmmW70uFB/CTrJC4CfpBQt2zDhwzuyd1ZTSs/McsXWN7FHG/F2DqgktzFdpRNPV0emmu/MgGJUgy3t8YcGGmzIXZEn7RjT0IfT8hLKLNB4cYqj688EzmFhWNnnGv8M85U1f38vr2CClVcfZFMa0Ok0x10BJlMP0w+oFiKgTxg8PtaSPPJde3R4TJg/HrmTo1x6Qzjvln728yV3E423Bpluypyaj9HFuTa72A9X7AnR2f7WGEJgRr/ZBzs2UEFN1/nVzKA69TFwJD1xjFKXGScXN7TJxkGLrya3kSg9K5ioOla0U38gEr4fr2mCTLWW64B47Tk6LjK2meEIIzj/GX2hpEhfQonhamtMI4Ns0kzbJFmkk+3BjSC2KWai653OsxZD1BE8LUNUZhymxFpQH3xwlxmrM9jPne3T4Vx+STK/UDD8ZxqryhpFSHYFs//sbe0LU98oQozbi+NWatp9ZHJUVSCagfboxO/ExoQmDogjRTxYsJ0l0Z3Lv3HcfBZA68uTNmFCr2YJqrIn2QplyeqyKlmhsnU2ieS260RwSx8oncfQ8OMniuOibnZrxHmKungb//vTXCJOf3f/bsvn/vmDq/+fUF/sH31vnPftdrL5yv5Y3tkQrjGatmjWVorGyNeH25zmLdZRznxdg5fJ8RZzlRlhHGGbljcG1rvO9+qj1W9gy792Vzlf3vyfYwYqMfIgR7gkGEUMXVyXM33ZcXCZLAtJHzODxchFnvhcRpTsnWCeJUrbu5KkD1gnjfAvJ+cudhmHCrrZrE52Y8PMtQxaec6TgyhDYtdtVck9UZjyBSCZIbg5ALM+UpaxDg+taI9X7IrbbPz782j1Oy+WhzqFJvHxrfRy0u5UWjbdr4eo4H4jBRyakAozBhsx8SJBkfbAz55GqDRsmi6plEaY6Ex57HJmxjQ9OouIqJ3AsSbmyPWeuHZJnLB+sDJIKlhvvMZOsP42zDY7nhoQmlMPjr37xDs2zzufMNXl6sPdXC+nFQ9Sx+4so897q3ubk94vaOT5ZL/o0fvfDcrilOVbhVz0mIkgynmP81IVjrqUTe+eqjqd3PC66l0yrb+HFOsxTz9u0urqnxrVtdaq7JrR1Vb7gwW3rh1orTwHFPLv8H4FeFECFgAr8fQAgxywO204EQQpjAj0sp/0shxJ/Z9Ve/GfjlXf/9I1LKjhDiPwL+KPBf7PNaf7T4OxaXzuLZOrahKSkOyneo4pgkac4wUhrtfkGDXaw7043qJOWo5qpkm1GU8v76kLJjUC5YV62ShVEUroDpgXKCUZRO6fBBnJHmOd0ifvKgw2HPj6dJI56lImTvdwOCOGUUJZi68juSaPhRhqlrSnsP5DInSuW+r98dx9zp+KSZ5NJCmQszJT7eGrE9VAlkrbJiI6W5RCKfunRmEKrkwYdjaQH8KOUffG+dH6z3CeIcSxfUPItPrtT50cuzOEeQ0Q2ChHfu9ugFCct1l6WGOy22TXT9Nc/kTN0ljDOyLMc2da5tDpmv2pQsnfVeSKtsTQ93PT9mZxzT3FXUiNKMuJBMDcP0uRemRlHKe/d7XG+P1SZ8a0yQZniWzsebajFolS0+tdIgyXNWn0N8a16Y1/5gvU+UKgPRtV7AcsOj58f82odb2KbB+ZkSZxous+WDTVODOCNK88cWW9xC0tEeRfs+21vDkGGoJKGGJshRh2nL0Kk4Op5lY+saX7nW5k7X5+JMWfme+TG6pgpXUZo9erCRFH5QyR458EHwLIOuP8DSdSrOo2O448eULR1ZbKL9KKPqmgjE1Afn1z/a5OOtIfNVh944YRSmTM6B4yh9qoWpJMt5504P19J5ebF66KYoTDL644TNYcC52UcPvZ6psTOK8OOM9b7/VK53HKlkNNfS6YxjuuOYDzYGtMcRnWFMWjQfsjyjYpvUHJOri9VTL6wcFe1RxC9/f404yxnHGT0/pmSZLDcdvnFzhyyHuYqaK11LP5BJo2mCpbrNr38YUrJ0RnHCh5upkrOmJc7UXfJcEqYZjqEf+D0mWc797gOzYk0TbA8jJHJPATZMc+I0x4/Twtj/ye9flGbcbI/pjROEyPEs9ZqplOgUjNEkJU5zHNPAtRQ9f3sUkWeSy7tSa3t+zFpPec6EScZQqPHfHsa4ppLsuJbOasujPYr29TQ8DBOvv6pj0g8S+sU6v9zwEMD76302+iH1ksE4Eny0OaThmcSZKi6WbIM8l7x7v0/HjylZBl94qUXZOX5aVpZLNgYBO8OYRkkZ3d9u+wyChChVFgGGrg7vwyghl3LqW3e/69MPEi7OlrH3mcuSNOO7d/tICVcWK9Rck5fmyny4MWAYpopxWFdzOlAEjRz/WZgcQh1DZxQpz8lWxVJMl4bDMMp4f72vGPOFYbFnG0Rppjynin1T3TMJEsUcPGyuynPlY3ba+Jvfvsfl+TKvL9UO/De/8Ikz/A/fusevfbjFz7+2eOrXcBys9wK2hiHNkkWWS757pwfAnZ0xSZqRZhkfbgzo+QnLTUfNQ6a+L7s0l4rR5FkGwzDF0nXGMuWdOz0aJQvbeDRtt+6a+FGGa+nTfVk6mYN0xWLsjFVwUJhkWLqufKlSNVdKlE9rnCkj8FxKzs2UqLkGQkDFNgnTnFZ5/2dyox/ixykLNQfPMqZhI5OkzmGY4hTS0ixXMrxbOz66Jrg0rxqqYZIxjlLqnoUmVKDEziimZOucbSoPtMlZQkrJBxtDHENnrmozX3X43Pkm790fMFe1psWVOzs+EolpKD/KPJcMyjFpbiBRe4V+oHw4y7ZFkOSs98d8vDlkruJM5bmdsUoQnq3YBzYD/Vhdu64pFUHFVmeomcrzO7xLKXl/bcAP1vvTVMF7PcV0HwQJX73exjUNGp7JUs1hruocKc3zM+cayvN3rNhW3XFE1w/Z7AWIXJnEm4Zga1jiJ67MPRdGum3q/ObXFvjldzf4+o0OcZbyweaA9SJE4Ori3rllFKnrbnjmM09abJRsftsnFrmxPSaKY/76N+7w3r0u//ff8zqW9eyfnzSXtMchzdJe6a5j6GwV3m5XFg4nQoyjhPfuD2iVLS7OVQ79t6eBVtlmZxShiRwtz7i+6bM9DMlkzqW5KpmUhYXN/8ILU1LKXxFCrAItKWV718+3gf/jEV7iXwV+aZ+f/y7gP9/1ep3ij38b+JMHXMsvAr8I8NZbb8kJdXyu4qhEtUyxp27vjPEsAz9O+datDtujmNWWx+94cwkpJR9vjbjVHuNZOlfmq+SFE80oVN4tDc8il2pjNV9TmvWHqf2tkkUQZ4XPhsFHW0OSVEmKXttnIzJJCtrohwhNLcL3uj4b/ZDr2yPmKjZvnlVJJBK43fWpuQaacBiGKbd2xizVXXp+zKtn9r7+zjgqFtUMTYMLM+WpYdqgKKhMopKfNvJcqoVUqiLUpfm9g/njrSHbw4idUcTdToCmCVaaHktN98idnA83B2wMQtZ7IWVbp+wYnJspkWZS+YbEyrTyzo7P9+/3aI9igjhlrmrTWLPwLBXjq++SaN3vBeQ5BHFAo2QxDBM64xhDF5j6s7l3hyHPJV/6uM0vv7vO7Y7PUt2i4dpUXRNdwPXtERVHJQ1emq88t4nrTmfM//jtu7x7v49taNQ9m5VmiUxKdoYR/TBlsaY6UIclfwkhaJTMI30OXRM4pjJj7vjKzFDXlMQ2TnM2+xE7o5CvXN/B1LVpUp9j6ryxXGexrpHmEl0XtEoWfpIyCFPiLMfT1eFqv0Ve09SB9qiHr0GYTP/tRCI4kYje7wWkWc7f+vZdDF0jzSTzVYdRlPKZc00aJRPP1klSyWzFJkxT/DhF15TUwDb1p25U/LXrbb74URsplPRxYtieTeSMuxb/9jDkqze2GUXq0PvmcmMPE6zkGMxVHHpBzDDam455GpBSyTQHQYIfZzh1h3/03jrfutWl7BjUHRPPNrjX82mWLaJUslCzp14qzxpJmvE3v3WXX/1gi3Gc8spihTONEkmasVF0wuerKmnoRy8dfNAFVSj90sc7CCGmhd31Xsj2KKJkGSRpxjdvd4mSnJWme+CGa2cUT4sWk4LnxOtEK2K4pZTYuiDNc7ZHiuEVJtkTzz/bw4jv3e2x0Q8pOyavnqmy1FBrhJSKCXe/q9jMCzWHumvwxY93qNg6qzMlFgtmVZ5L1vuK9TiOUl49U2O9H9Dx42mTZlQ0sdoj5dnixz5XF462CU2znDs7Y6JUsjNS6X63Oz4lW+frN3a4vaM68A3PwDWMadLY23d6NDxryvDt+Qm3ii6zU6T1noSyvzkI+XhjRNdPWEoz7nV97ncDbu+MWW66XK5VOdv02BqG3OmM6YwifvLqAn0/5pu3u8hcHfY+f/FRadnNtj9lN1ZcQ3n1CIGUSq40CBPOoKTxT2Lg/sH6gJttH5A0SxZxmmMaGkt1j8BVMqetUcTHmyOiVDFp3zhbpz2K6QUxWS65YJX48rU2VcekVbZYbZX2fa+tYchm//RNha9vj3j7To//6LdcPfR7/KELLVoli7/3vfXnWpiK0ox37vX47t0e3XFE2bYQQlKyTCquodIsXZPtUYxlGGRS8lOF1Gzf10sUS2+l5VH3TAZBzE5RUNoahnsKxxO0yjbNksVOwX6frdj8YG3Ae2sqdW215ZGjUtcsQ5uajSeZnNpXaEKgiQesqPV+QBirQpBl6Ad6VIbJAynvRj/kwmyZD9aH3NgeA/DjV2aZrVh8tDmi7hnUSyZbfVWs2x5F3NnxuThX5oP1AZuDiJKt84nlOsMw5X7PxzI0cgmvnKnSLFlEaUaa5fQKif4gSJivOozjDM82GEUq0TPNJd2i6KYj+d69PqDmENPQ6fgRvXFcHGhjPFsny3PiVFL3LDKZs1hzCeJsKq/NcvkIY1OxXkfTgIDVljJw1zUNTQg2+xF1N3ysBPK0IaXk1s6Yr9/c4Vc/3ELm8NJ8ibmKQz9MuNsL0AS0Sg6OpT1yNjoMtqmz2ipxrxewNYi42xsTJzmOrdELM96+u8U4zvjs+Qatkskby43nxlBa64fc643Z7keUXCWJ/XBjxErrQQCKlA+8TodhwtXnkI53fqbCv/5Dq/yf/957bA5Dtj6M+Pf/5vf487//rWd+LRMJ7WzFQd8l5Xt/vc83b3XIpaRZNnhl1zPz8F72n/5gk+/d6+OaOn/4C+eYecJgkschiDO+fafL+2sjvrc2wE8yyqHJt293OdcqUfOsF84j+rRw7DKqlFIKIUaFgfmPoGonXwL+q8dJ7oArwJtCiD8GvCqE+OPAXwBellK+AyCEsAAhpYyALwDXj3N9sxWbqmvwwfqQKM2mMe79IMGPUjYHISC53R4jNEWX746TaXfx5TNVumPVYdM1wUY/pGQbmIf4Ozimvsfk2NA0ErIDE40munTH1EjzXMmIhEYvSKg5FkGa0x2nICSeZZDnyji058ckuWQQxCxWbfJc+S7sniBVh8PHs/TCJFabdgtnDugOPS0IoQoFaSan0siuHxMk2TQBUdchSFUi2jhRrBhRSBeOgppjYekh9ZJJo2QxV3EwdY2zTY9ysakB1QEehilJmpFkEj/M2eiFOJZOzTP30H1LRWdvYmJ5t5BwCsFzj06fdJA/3hzSHkVEcVYcpB3mqy6upU8ZfDX3UZbas8JGP+SjjSG3dsaM4wwpJXXP5OJsmSTPqZcMoraSzs4+hn3mmBrLx0xGm7DbPtgYoGsaF+dKmJqGbWpsDCKiNFesRV+jVraI0pzOOGap6VJ3TZYbLn3HmCZ/eZbBpfnygQVTu5D4HRVZLotxIbjT8clzNXepDq3Oei9mHGekWUo/iKeb7q1hRLOsfAVWWyU0TRXDTUMrqL3lZ/Kdj6IMP84QKFNUqDAME24XFOOLc6XpvdKEQNc0LMMgynLiLN9zH2fKDmcaLo5p8NLs6Y+vMFFS0CyH1ZZKbLq2OSrMsyUtz+LyXJkoVfHk6oBr4uwjO3zauNvxlV9LNyBMVXKkpmks1lwkkpJlMAgUo3bhCN5HuVQSJc9MqJcMVhsePT+lYitPxK/f6nCvG2DrOq6l7VuYklLJsyRyyiiKdhnuT2QdN9pj/Eg9E6tNdfiPs/yJn8c4VZHOPT/hTN3lbNObylGyXBIlufr/NENK+P7agDjLuNmOuLgr5TPOsqm/kmupFD5D07g0V1Ex7Y4xlf5PCpJH9XGYFDXao5BW2UZDUHNNlhse26OQXqA89PpBQskyuLJYpeerZsdkrZsseZqmZD89P37EY+440Kc+UQm6ppHlmfK8MnQqtsHWMMIyNLaGIZrQMAwlvbMMg3GYEqQZDc+cWhvshmNpOKZGlOZT+YOuqaZNP0iYO6XmzWRdjjP1vNUKk2mBYGWmxEzV5tu3ewyDFNvQKBeNhp6v5s8ozlSRyk9I0pw4VebS85VHjeSPKus6Lv7W2/fQBPzON5cO/XeGrvHzry3wt96+P2UYPQ+YmsY4yri347MzjqiXUi7NVah76nrOzZZYbnjc3fGP1aiL05yaa1J1LUBDaILFmkurtP/vR2k+TXPNckmSqe8vznI6fkyzpGTYr56pYRoCgSTNMiQSgWoilm2DfqDYgK2Szb1Y7QcPS7cydQ3TECSpnFptTMaoJlQjKZeKddTxY950LBbrLnc66rXV/ktOk/wkKmDJs3UMXSuSUtX7T4IOQEm3h2HKXMWZFo8mjKvJfHR7xyeXksW6PT2P+EmGA9OE7yyPqJcsqo7JuGCdCWGx3HAZRuocFCYptqnvywjdPQomQ6JcNHBtUzuSYfxpY2KlcaOtCu1hkqNpquF9ZsVlPnMoWQZRmmMagoXqCeTIhaF/ZxTT8mwsXSNMM65vjZQHUZqxM0r4eGuMbRpcnD26bctpIUpz8jwnl4KKp5oBfpxRdpSHZGcc4xg6zZI1taY4LBjlaePN1SY/fnlm2mi5sTnm1z/Y4sevzj3T61BSYJuLD9lw+FFRcJXsKVjtt5fdHkVESU6aSdKntFbshqmrxl6YZJiGjpZJ4izH1DQV5uIdLQDtX0ScdOX7q8CQB2bnvx/4a8C/fNgvSSn/1OTPQogvSSn/vBDi54Bf2fXPGsA/EkKMgC7wvzrOheW5ZGsQ0RlHWLrO6oyLqess1Gx2BiGbwxAdePtOl9eWamhC8ImVGqMwVZIeXWO15U0ZDBPjzUM+E+M4wzX16QN/ruUxjtRCtB8sXZCkGVGScnG2zHLTYxgpCWBnlNDxY6quwSBM8CwVYW3pOqar0RnFrLbKxJlE11S3+KW5B3Gopq5RcXS2R0qCaBr6vp2NOM0ZRak61J7Cw51kOcNQyYd2a/wvzpanB8CPNod8tDnC1CAHzjZcztRdFjsh4zjlUy2XM40SP3Jp9sibsopjsFBz+NyFJnGqvKNsU8MxdRol5e0hBHy8OWC9r1hVn16to2saQZyx6LkEScq55fr0NVdbHl0/nlLIbVObxslGabZvcSLNcpJM4pjaUzOkC+KM3/h4i81BxPkZjxvbQ0ZBgoYyzvz8hRamroqdtqE/l2q6lMrb46vX2lQck5dmPbrjGF0XlG2Ny4tlzlRdoizn9TOSsnOw3PUkSLOcMFH/U7R15Ytwc3tMw7N4abaMa2pc2x7RH+fUHYNKUXSyDEGUKP+aL7w0O/08g1Adevb73ifGpcfBOEqLCPeMhZrHzkjJj7eHKslkrmIzV7H53r0+H6wPqLuq8/mpFfXcSikJkow3ztZ542wdUIV3S9f2LQKkWU64T3LffmP2qPjc+SbtUYBtGLw0p4pJt7bHdP2ERsnCj7Ipo0XXND5/ock4yvjs+SbmQxulW+0xd3d84jSn6p5+Ua0fJJRtk81BwLWtAWEqkbkky3I+sdzkZ16ex9A1ztQ9la74HDbeoOaoL33cZr7q8uZSlZvtEVLm2LrGpfkSi1UXhNpAH3V857liSa22PH7hE4uUHRND1xmECdvDCDvTlDG9pwqdYaIKjlXHwNCVNP6r19oYmsZKy+PcTAlT1xgECbqmGgqNkkWa5fhFmpllqNQrS9eeKGY7TnOGYcJGP2C+bNPwTF5ZqjJXsUmyfCrNOlN3cC1VmG0UzIAwzlmsOlyeq3C36/PFj7bIcjjXckEILF1nexhypu4oxt98ec+1Ljc8+k6CZ+lHYs1NAgmkhM2+j2ebrDRK1D2LOCtP/c3Kls65GZfrW6OCZQafOdekH6jkPcdURb/VlsebK/UTz41ZLtU6KyWzZZPVpkvZNgpJjjpgmpqumKCWYl/WS6pZZOiKubzeCxjHKR9tjh7xzlyquXRGMaNYsfgMTcmxFmrOlIkipWItm7p2pFQ/UGxyDYGfKFl6q6yCEVplk1GkDgXnWh6bg5Bb7REX5kr88MUmc2Ub0xCcLQ75VdfENZSHXJYrZk2aqwJbexijC/GI7Gyu4kwLGqeFLJf8rbfv8+OXZ48UovALnzjDf/v1O/zz97f4hU+cObXrOArCJGOt57M5iFlpOCw3HGxTYFvqoBvECRXHwigO8J9YqpEeIdnZ0AWtskWrYAdtDULmqhYakivzaj2+1R4jUWE8k/2ooQk0TckrbVPjjeUatqlNky4rtjF91m61fT7Y7DNbdlhteZxtetMQlQuzZaRUQSdm4SGra4L2MGJnHD/SBNU1wWLF4W7Pp+Gq5/bVxSqdcYSha1iaxsYoUIVkqYq5qzWPqwtl/Djj5UWV4HZ5voxkRNUxqLgGVdecJkGe24e1t9v76fv3+tzaGXNnx+fKQplqcR1zZYscaLgW672w8PJzyIEwsXFMDavwohMCKq7JcvH9bA1DvnO7R99PqLomZ+oq6VNKye0dn1GUslhzaJYsVlsefpzRLOb2QZiy0lQFycclup42pJTc2RnxjRs7aJpguWZTtnTGccZM2eGTZxs4pjqs60Vi61Hnm4dxZaHKQs3Fj9Np8Agy54ONPq6lM1+xiNKUb9zYASRXF55t2vVCzeVnXl3ANjWubwwIUjVmdOAr19uQQyrhykKZxZqLQEyL9RNM1viaaz4TRvif/NmX8aOMb9zqYOk6f+6ff8i3brX593/+laf+3hPkUtIeRfxgrc9vuvpAivnaco2fDWLud31eXaxOz3ejKFW1hJGyQFidKfHDF2bQRJuFygMroOPiOPfe0DV+/PIseQZnmyphU1WNc/7h99dxTZ2ri1VeW6pypv5iJAqeFk56IrwipfzErv/+VSHEO8d5ASnljxT//4+Bf7zr55vAp054XVzbHvGd2z22hiGvL1WJU8lyQ02+tbKFrqkJLc1VF+Ns0+PibIlv3upg6hq/8sEWlqGKQVXHJEweNc/cjTsdn0GQYhlqIRKF2WzNO/ig99HmiF//aJuOr9Lgzs+WySXMVWwuXayQZjnXtsdkmSTN4dWlapFKkyMKCliUqcW5PYxZaeZTH4ieH7M1iElzyf1eCEIwLMyVdxu73WyPC08O7RGJ3Ulwqz0mTHIsQ+PKLmq2ZSgj6e1hxO32mLV+wLv3+5Rtg5cXK7y7NmBrFLLccPmpVxf41ErzyBO9Hyb82ofbCCG5tjWgUXKYr9rYxgOGTc016Y1jBkFKs2SyVHPxbIMsh/makocpdsSDA/EgSLnfVZ261RmP860S37/fRxcaN7bHXC0ijCdIs5wPN4fc6fh4psHry0enEB8VozDh77yzxq9/sIUmBIt1RyVMpTmjMOHt2z2aJZsffmnmuaalfO3GDn/3u2vF5tNmtmJxebbC3Z7P9bbP9+72OPOae+Kkq8chzpQJa9U1cEx1+LzT8ckyFTbwmfMNbFPnbN3FD1MGcUYpzfloY0TVU4cf29CmhwghxIEb73GUcrOgSx8HfpwBgpKtDv+5zNkcRHT8CFtXCVo/dLHFfM3mftcgSHIWDI3r7TE6gkFh4H9lFz37oGtUUqfxlEG2G5MxaxriEap3lktu7yhvjuXGo8lJpqHx8mIdUGyxO50xP9gY0B3HvLnSoOqadMcxt3bG9IOEV87UKdk65wqW1258/WabD7aGGELQLqKfTwujSCWPfbjZ5737Q+quwf1eQMkyONv0GAYp318b8PJilbJz/ALdaeGbt3b4pa/dpusnnK07XF2s8dqZGu+t9bnWHvOdOz2W3vCOnRB4Y3uMn2RsjSK+fG2Hz55vIlHyj5WmV8hkLWUarGt8sDEkyyU9W+fCbJn31wZ8sDEkyXJKllorbm6P+Mr1Hbp+wssLFTzbpOaazFZsBmFSpKo+OTt3cjD75q0dkkw9hxdbKjb5vbU+wyBjvmZzYba8x6Om7pmsNEuULB3D0PjWzQ7fud0jSnOqzhzzVZedccQoTklzVVy73wvojRPONpX8TNfEsYxQ56o2t7ZH3O8HfOd2l8445hPLdf43P3aBsmPixxlXFysFK0ewVRyKf/hiC9vUmTMfeL/cao/ZGKiY+FfOVI/dOJJSsQu+e7fL1iBC1wTjOKNZtonTnOWmx3zFZhgpW4CWZ7PSNFktTJSTLKdRUixSrQgV6YxVs2zSMEpyVXDu+yHDMKE7jpmrOizWnKkv49YwYquQVb00V36s18vEeuEH632ans3ZpqtYI7EqZlyYLU/N/DdHEWudkJ1xxNmGxyDM0Aozd9PQOFN3yXKJBOYLKWTPj/nOnR5l22Cp8ejBQtfEgfKuk+Ir19us90P+49/68pH+/WfONZmr2Py9d9aeaWGq7yd8916XX/9gG9vSqDkWl+YqxHnOTNnBNgQ32wndIMEUOp5lYGgaF4/AEjZ19X1MmKs7o4jv3+8Tp5IklywMI8qWOQ2umcxx4zhjqeZiGNq0QPvm2UZhheFjaMrYv+sntEcRfT/F1GLO1J09yb632mOGYcp8TbGMumM1F/aDmNmKw2x573ee55K//d37DIKU99cH/MtvrTCOM+Yqrko6vtuj7pm0ShaupXGuVUIIwcsPScfma+50XpLAl6+18WNlX5DmksO2aZlUTNDuOOZXPtjiZnuspMI91cDZGZskmWQQpHywMWK54fHm2QYSqYzKhWKHT+YOP075zu0ed7s+fpzSKJtF01YQpdlUpn1te4TXM5QlRkutD9e2hlzbGgOSH788+8xTvL93r88//P593lsbsVCxWGmVWG2VWO8pWfKXr+3wY5dnONs8eZDHbtRctZ6NopQvX9vm3ftDhKaxVLaRUvDd2wM2hyE32kN++5vLfHq1eSrve1S8ebbBq4tV/tIXb/Ct2x0+LNbsIM7ZHAS8ulQnl5IolZypOdS0B2NhEgKT56phN0mgf9r4j3/hNf7ZD9b4c//0Y253Am4UISz/4S+8/kzeP0yUP11nHNMeBszX1PmwVbb5wsUZ1vtqHfvmrQ6X5ys0PIu3b3e41w3pBynNkkXVNXn1TF0l7D6kVAI1xu51A2xD42zDe+Tv0yzn2lYhkQ1TVlqHF5MGYcI4yvnkap1xmBAknWkAFwQYQu2RtkcBv+uTZ58bw/Zp4KSf5DtCiM9LKb8GIIT4HPDl07uskyNOVTek68d842aHYajiYVuFYaGuQZYpw/GzTY8zNYeer2LaO35cSBEEW4OILFPu+L3Cq2Y/TCQNE3rvUZptUap03+MwZRAmdMfK1Lxkq25pw7NI0iHdIMGx9Gl3aBAmzFasIhY+5+s3OyRpzl//1h1WmiU+f6FJo1gsk1xStnV2ioPexMhygglt/UlT+bJCnjeKVFzvfnT4MMnQhcA1NeUtNI7YHIT0CpNYzzIpWSZV53B22sPv+869Pu1RRJBkLNRs0ixnGKS8NKsm4nGUst4P1ftrEMTKn6Lh2liGihZeqDl4psbNtkr8eXhjmqQ5mqO8e9rDiGQ/I9hMmd6HcY6GMr89beyMYq5vD7nbGSMRlG2dRsnEtXQ0wLEMhoWE73lBMZNG3GqP2B5FhGnKUt1BChUPXbMtwkRJbk4LW4OQzUFE1VUpnAK1uY0zyRvLVaLEomLH3OsqSe4oTBlHKZ1CRuMnGWkmESJnexgiOHqCYZTmR77f93sBnVFMs2wxW7b5wVqfJJPMV200oaRad7s+tqeMVrf6IXcKM1WEesZMHfphgq6LIydc5ZJ9i1LwYOzvN2YHQcK4YMB0/XhPCimoA6CSV8ipj5ul68xXXWbKSnqwOVQdnkGgotmbBYPx0YuEziAkA4I4OdLnOirud3y+cbPD7Y5PRs4HG0MlPynbOLaOaxj0/ISenxxZPnza6Pkx37rZ4ca2kr1ahuBqwXZpeCaWoZKlgmOy86I0n6YL9fyYhmtyY2dM1TYLn0EL1zJUAaeQWk/uQdeP+datDte2R0ipxmyUSrJc4idKEpYWkhoVHmLuYcs8CSYHpTDJiDP1XJUsjdmKxdYooj2M+fadLrahTLsvzO49HAuxt6h0v/BvrBYBJ59YrvHe+gDH0On5yVQOGCU5rdg6Ubd9oxfwg7WBKk51A9LC+2p7GFF2TM7WXd5fGwBKKj5bURLLh4tfWS4ZhglRkjMuzGtnjhm0keZSjXmpghTKjsEozBAiZhxllGyDOJNcmCkTJjkb/ZAwzah4Fi2h/DIvzJaYr6o9U5BkvHu/x/XtMS8vVvjchRa2oVFxDFxLw9JVqm0zy9kchtOD6+555eGxtXs+XCqYImGS0fMTwjhnqKXc2vFpD9X6Pld2uN4e40cpn15p4Oo6o0jt7WYrGa6l7THvN3XtkefiXjdgvmaTH4Hlc1r4pa/foeaa/PQhHky7oWuC3/L6Ir/0jTsMw2RPgeVpohfE7AxjwjRle5xxXwbUXZOdQLGken7ChbkSSZwhNEGcSjp+xEWOLl+frJeWrkIGTF2wM44LubxiNE3G3tYg5IsfbbPWD/nUSp0vvDQz3Ru2hzFxKonJVMG1ZPHSfBnH1JCwRyEwYQWDSu5WXoYpozBjZ6gkYQ83yYJEWX6Yujb9XddUvnQTJl+S5UgkO+OYr9/scHWhsm8gzkRqszUMVXrf1piBnz7W8+e1xSpJlvLuWo84kwSRkik3PVVc1nUYR+rzR0WisUTyvXs9bu/4nG26vLXaYq03ZhAoNchkzC7VHc61StN5xTZ0qq7BvW5AexhNf57mKmVxECQEcaZCZcYxZ5/hATjLJd+/1+X99RE7o5A4TZmtOui6oFZSgUVJ+uA7Pk3kBePTcwwarqkUFALudkf0gpQkS/nevT6fWK4/c0mVpmnMVGxs0yDPcj7aHDEMEoQQbI8CLs+rIv7DQV2SB5LxUZjSHkU0vQP2ZaeMn37lDP/ge+vc6gREac7/9M46VxZr/O63Vp76e2d5zno/ZK5iPyLjrXkm2yPVKJqrOGz2I+YqDrMVh7h4rKI0ZxAoOXiUKGKL9dA92xnF033EuJQ+MnfvXgGPcu6e7PHjTJLkijlq6XrRWNSIkoyNfsA/fS+mYhtcmq9xYbb0XIkJp4WTzjCfA/41IcSd4r9XgPeFEN9H2VC9cSpXdwJcmS8zihI6o1B11gYRs1XlsbBUdxj4JQxdsNosMYpS3rnXQ0rV8XxlsYJn6mwMQlZb3jRFJEoyrm0N92UOLNVd2qOIqnN0WqTawNvMVkzONEq0PItuoDYhytcqwDE1PFvHs3WV8OMnivmR59N0moZn8dHGkEGgfLI2BxGrrRI/9fI8QaJSlm53fEZh+shG7NyMxyBQUr79qr9HxVrh/ZEXHkIPp5wMQ5V6KHPJpYUKtzt+kdKWKWnVXBnPMnhjqca5I1bv01zy1ett1nshtiVYqpdYbXnomkazbGGbgjTL2RyEBHHGOEpolm0aJZurC2UQSsbXKKnOSJzmjKabl5iLs2XSPCfL5PTgYOoPonKTTGLtSu5xLZ3lhkuc5ni2zswBngknxTBI+HhrQH+cFlIjHc9WpodLBYXTNnSuLDw/o/Mky/loY8jOWOmwXVNT8gpd45OrDbJM+UmttrwnMsN9GF1fFTIGQTo91DWL+y+EwLUUe67qmFQ8A9vQaI8yztRcDDQQObWSTck0GEVqDI6jlH6Y0vDMQ5kf9SLZ6ygFje44nv5/zTWn1xjG6pnxo4wfvtCiHyY0XJPNYTTt+is5i0PdNbnbCyhZOrYuuLPjo2lqDjqooKs8LNxpWuluv5hzrRI9P5nKBHbDs5WEKZdy38NR2TLYHIZoCKI456XZMnGqZJDnC5mCSkWVvLpU5UzNISu6dBV7bzJWxbNwLR0plbzitDCOUr5zp8Odjs8oTJgpmfhhwvlWmeWWx09cnuX9ott4ZfH5jJ1hmPBP39uk78ckecZMyeBMzcUxdF47U+WN5TphknO24bJcP15HOM8lcxWHlaY3lY0t1RwGoTp42YYy809ziSbUM3y26RHEGRsDn5vbAaamivfzFYdWxSaXkrMNDz9IeJ8RFcegO45ZqDmnIgkHxeZNUnU9Z+ouVcfANg1Wmx4dP0bThJqvbUmY7H02B2GCXhxw4zTnTnsMGrw0X6bumry12sAp2GI7I+VTY2jalPV8kmfAj1K+cn2He52APJcstxyyDC60ytztqpTJZtnm4qzyu6q6yvhcwHQemMiLZsoW52ZK6JpPzTuZzNnUNZolE9fWeX2pOpXzSwnbIiTJMuqeSSaVN+FGP2S+qhKAen5MnoNnKWnrOMpIU5VsFiU5a72AURGicm5GrbtBkrHWU2vt7n3GfNVRgQyFlG/33DOZD29sjUhSVRxolSwWaw6aAF0XaEDLs1jrBzRdnW/f6SNRRaWffXUeXRfYpk7dNak4Sr5z2P2qusZ0jdY1VdwfhAmOqT+VsX+rPeaX39vg3/rxi8d6/V/4xCL/v6/c4p/+YJPf/anlU7+uhxEmGXc7fhGgActVh+1xRCYltiZYqNqsNss0yiYgGIQxYZw/Uvh7HKqOwWzFJstzzjY91noBZUtHFxorrRJVxyAsEj2jVAUoIGGtF073XJuDgNs7owd7vcKH5dJcmeXGg9CcyZ7W1DUaJZNBkE4LLnMVC8dQEqfLC5VHmi73uiEvL1ZZ7wf85NV5kkwdagHcgo3nJylaAJ1xgmtKun5SNL/VOlsp9uw744iyo4r/rqU8K1ebSjJ9GIPQMDTmKx6fOdfk2uaI83NlTENjpekhUWvyzijC2R5SsnVKjk6c5qz3Am61xwzCmEtzlanEOM0lrbJN2dGpWDqmru15/9VWaVrc6YxjVlredD6/PF9hFKWYukb9GdpDSCl5+7ZqKkVJimcKFiouZVvnpdkyJUc1Gptli4vHfBaPgqpjqsRhNIyVOkmWszOKma3a5FlOmmbc7yhG7+cvzDxTSZ+uCX7y6hyuqXGvG3BnZ0x7FOFZOnNllwuzZYZBSg/JbGxPv2tdE5ybKdEZxbTHKjQqTLJje7ieFP/573mDP/pXvs0793qUHJ1f+vptSrbOz71+uP/eaaBkG3im2LNPmXg4nZ8p4Vk6ozCb7odfPVPF0FQxt1W2uNUesTUM0TV3X2Z9xVF+doYucPeZ701d2SH4UbanISWl3Lc5PNmbJakKP7gw4zFbthgnKct1l5vtEe+uDYmzjC9+1MYyDOYqNnb5f7mFqZ9/kjctjNN/t5TyR4QQfeA7xV/9billRwjxB4F/B+gAf0BKOTjGi5NmklsdFa24XPd4c7lOxTUAlzBR3hQ1zyTPc+51A2VWnuW8NFfh9WWTV2VtWmS63/X5xs0uirggHqEul+zj6ZmzXLLRC6k4FhXH4MpChcWa2sCNopRbbZ9+ELM+CPFMY+qZkEnJvZ6vTD5NjQszZYZhogokUmIbYrrwCiGmtL7zM6WpceQHGwPCJOPKfAXPMkgyyc32mEwqyueTwC5ibh+u1n75WpuPNkY4psbPvTbH9iBUrABdI5Xw6lKNz6w2MY4hoUkKo+qtQYhnG7xxtsaFmQofbw251wn4/r2+SttzDCxDJ8thY6A2Nwt1h7dWm2S5RNcUjfl+N8CPldfOTNlG0wSaELT9mCjLuTBTwtL1ItFQdaYexkLNPbHu+DD4ccq7a31+5YNttkchSEGeC8hzNYl6Fj99dR7LOJoXytPC9e0RX/x4mx+sjQgSxfpwbJ1hlFFxJW+db3Jxtnzq19gqW2wNImpFWEHNK2Lag4TOKGa+arPS8Pgn72/y7lofU9fUBs3Vud1JsQwVR/35i03udQPWeiFfvdnhfKs0NR49CJom9vhCHIbZikrKaZUtPFMvzCoVK0TXBednPO52fX6wNqDvJyzWHWxdbSAzKRlGKT96eZZW2eF+L+C79wcs1z1cS6dkGYfS6xsl5QMUJhlfvt7m/EyJ5bpHmGSPyFhHUarSzwqprZTsW7TuBTFZBhmKQWPoGm/s8mkDVTCbr9hkUvLx5pAb2z4zZYulhrsnGWuhamOZBkmWn+rmbhQl3Nzx2RxGCCQ7YyjbFm0/ZrZq0Q9Tfu6VeXT9+Y2dH6wNeHetz632GKRGkqkNcdePcU2Dz19scK6Qrx0XuiYwdMHLZ6rc7wZUivmtPYoZhaqY0A8SHFOx9KIkU+yepodj6ORSsXfPz7r0isLvKEy53wsYxBnVInL9tJlmk5frBwk74xiZw2fOl5krjMC3hxGvnKmia4K6Z079Y9qjiLUiValk6+RSJXR5psFsGS7OlnlvfUDVMXlprsJM2eb69oiokOvPlI/O2N2Nb97ustYL6PgRV+fL/KYz81Qck2tbKsnrnbt9zjZdpFRBBastD0PX2B5G9ALld/T++gDH1PnkSoOVpiqkH+QZ9ziESUbXT7B1HccxaZVtri5UyHPJtW3Far7b8afGxhfnSoRJTs0z6IwSNgfKu2ajH+HZOrd2xhi6wJZqvqvuOpxO9hovzZWVnKSQa+VFQX2ukNHdao9Y64XTMInZis1HG0Pudn2EUGnClq6ja3B1scr2MCLJlJSp4Vlc2x4SJCmWofyxbEPnU6sN2sOIQZhixDkV5/DvbrHmMlu2H+ztiqaaEHB1oXLqrIe//KUbmJrGH/rCuWP93ifPNliqu/z9760/9cJUmGR8vDnku3d77IxiRqGk4ghaJRsp1IFpHGUIIWkPVVPl8lyFmnt8loUQSiqpacpoOJfKfHhnHJPnklGk0qoBlhsOr52pcb8XcHWhUoR/5HztRkeFAdlK7j4JXKi5Jistb1/T4uWGBw31Wd+51+XD9SGWrk2Ltg8fIiWS8zNlLs1XWKw7fLQ55Gbhn1i2Verz1VaVrYEKDbBNjZmyNW0eA6w01Xp+t+MTZTmfOtvgs+ea3On608Pu45AkKd+61SXNcn721XkMTexJMNwcBEipAggqtkm1aLJ2/JgcqRhWxXWdny2hC/jytR2+2h5zYaaEJsQeOZGlawzDhJmSvYfFOIpTmp5FJhVTOpeqUfu0pUMbg5Cv39jh5vZIpemaGo6l0RnHlG2T15brXJorHzmg4iR4fanOK4s1dkYR//QHG2wPY2xdA03Dj1JutEeUbxisNEssPaPizgQzFYdfeHOZDzcG/Ddfu42l64zChO1hQJzmfOPWDlkOwzDlCy89SFYt2waGJugHqoj6LInipmnyl//wZ/iz//ADvnxtm1udgP/0H3zA9a0R//ZPXXmq760LQdW18YrzephkfLA+4E7Hp+5avHymytmGN10HSrbJp1YbgCp0D6MUTWj0g4Qkyx9pxNU9pWbSBOyMVeDGTNnac4aoOop558cphmYiBLy7Npg2ah7GTNmekiwW6x6OH+OECQiN5UaJG9s+Q1/tyX7j423V4Dkmw/pFxIlmFinlbSFEAzi7+zWklG8/7neFEDaw25/q+1LKn9j19ybwx4AfA34P8G8C/8+jXlt3HLM5jGBXFdJPMuYqThHDqtKNGp4y9TtTz4jTfMr0EULskeMlmURoitnQ9eN9H8ijQkpJZ6wSwc7UVSpMq2TRCxIqjkGaTRg5OfNl5dUwmTQqto5n6ri6TlBIoTzLYGbB4cJsztWFynTAPQxdE6z1Iq5vjZSuP5W8da7BsPCqubUznhrXHheLNWUe65r6nqJUXqTYTSLi01zyj76/yd2OX8hIbN44U+XcTOlYRSl4INWIkoyzrRK2YRCmGbfaPoMw4V7Xnx68f/TyDJv9iM5Y+W5pPEhDyXNJe6TkDZ5lsNzwqBWmjoNi0vYjRds8U1cRtJPPOWGgPGzu2z8lSZCUku1hRHusUgybnk3Xj3FaOpauMYhTrKHySJh4ojwP9IOEnVHEKFQFU89SMcxlxyBJJf1xTNk2lO/BU7jGmbK9R+piGzqX5iu8e19J5dZ6IbMVm2ubQ+52A0xdcLbpca5VojNKSdKcumsyX3Ho+TGOKRCJRphkp+qlMF919kgGzs+UGIYJt9o+ZOo5/M6dHnc6PtuDiIZn8vJqFdMQrPci6q6JYyj55tYoxNR1wlQFLBz18BomKlwhSYcIBD0/QdPgyvyDQ9lGXzEfJozCg2jBuhBYBoSJkpsdBEPXGAcJacZUBpZke+nlMxWbz6w2yWTOpfknT+XLcsn2MKQ9jpiv2mQ5DMKYkmUyChMVeT2Meedun5JlcPU5JG2GSabMd0cRKy2XjX7AuZZLIgXjJKXfUTHdO6PoxN1gy9B4ebHKrfYYS9cwNMEwSqemwmkuyaVabz7eHGLqOrU4L4r0Jkt1j9WWKn72fSV1vtNRh740k2rNylVylX6KB4PzM6VCPpLihymOqXO/G1AtfKxmKzYXZkt0Cyn45FAyOUSrNKwUpzAuvzBTIs4kG4OQ+72QlWaJhZpLCZ2okDoMw+TEqbVJmrNQdWiWTH761UVMXVCylen2d+/0MA3FyLo0V8a1VYPjw40hcZoXYy1le6g2pmcbLjlKriQEhyaBHoQgzuj7Ca2ShWEoxmQvSIpio1qbRlE2PZCXbZPzM3bx54T2KKTu2YyilDQXGELjkysNyrZxqB+lrgk2ByHtUcR6L2Sl6ZHlkrmqw7Ut5fPTHilG5HzVYWsQFf5AcRHwArc7Pn6ccb8XcK5VIpOSvp8SJoqVOV93+ZGXZhFCMFOycU2dL3+8Q56r4JHHeRfuLj5N9odSPkgfOy20RxF/41v3+N2fWjo2Q1jTBL/1jUX+v1++Sd9PpnuS00a3aO6NI9WoDWPlObpYeCP1xjG0oD0KeefegCTLubJQKRodJx/vs2UbP0pplUxlX5Hk2Ka2R6osEfzo5dk9v5dLxboO4xynYIBM9q3jQnMzDFPSTBbWDXuDam5sj/n6jQ73uyGtkjqITliMu3Gm6vDBxpCzTY84zclzqLkGQZIp6X2xj5mrOns8/3ZGD9i+aa7uZZjkuJbGOE5Zsb3HSvh24/3NkWIQC/ju3d7053GqZL6mrtMsmYzjlLKtmlgX5yrERQq2EIKlmjMtMm0NFDtGCOj4MY6lPveEXVZ2dOYqDoamfCzrnqVM0cOUtb7PuVaZ2+0xjqnOGUfxjTsJwkR5yu2MYuqeRaNkgxDUXEux4uOUzjjmXs/f42f7tKBrQpECwoRRmJBKqVhzUabYNCWbjX4wneueNfN6vurw2pIqnt3t5Kz3I/7JextYhl74GSVIKfc0GR1TZ3VGnZEOSsV8WtB1nT/181f5v/7DnF9+b4M4zfnH723yo1fmef2h5uZpwbMMPnde+bZO9gtJlpPkKvk4ydWYOsiyR9MEdddiaxAzW7IOPOPpmkBKOU0TXe+HewpTk3RJNaektMom1wvfqYNwa2fMzbbPrZ0Rpq6jC3XubFRsLs1XqLgmoyhjua7OFJOz97Nk8J02TlSYEkL8p8AfAq7zQDopgZ88wq//EeCvAH+m+O+XhRC/gfKo+g+By6hiVSqE+GfALx7n2jzbYKFik2eSqIin3fETPtocMldRm62KbbIxCInTnJJlcH7GOdDodLHuEKcVbrTHWIbGnY5/4oPCxAw0SFJmKhYXZyvc6fhESc62Lri6UCHJVeLFZAGpucpo7VYRE+vZBq+drVKyTDb6ITfaI5YaLoauDtMHTYoTiruuPYhgninbKk7W1PFOuMAYuvbIxqvnx9wrigCvLFTYGYXoQsks/CSn7hpcna/xmQvNE8m6VPSvxYXZEkkmmavaRGnObEVFwSMkbhGZahs6i3WHMFUH4ktFHPpk85xmOVrBLJgs1KASejYGIbahUqsSKafX2vPjaWdvpfmgmNUPHnTMnhTr/ZAvfdxGSolraZRsjeWmQ82xQEqiTBlcTky+nwdGUcqXPt6m6yfUPZOma9H0TFplk1bZQSAZBKro9zQ8Pfw4VQfufQrFnqUzCFLWi4131TUp+aqQJ6UyIbRNQc2z+Ox5xdiruRaaCPFsuLxQfsQU9aSYjOWHD5i2oaMJuNf1KdkGtqHG4WzFouoY3O34ZBIaJZM3lmvMVGwkEqv4vBdnSsxWnSMbduua8vVolexp3G2e7z2UlW1DbehN7ZH0vL2fKWdzqDrdXT8+1JS7WlChdU0xTB9mmS1UHWqewdYgPHFxYIIoVbKUd+/18eOMNIO5qsXZhkuS5ZStMmGujDB3FzWeJdIs53v3+lzbHJHLjDDKuLJQRuYCXYe6p7x9HFM7lgH3fljrBbRHEeNIFbrmKw62odLOao7JWj/k+vYI11TSDttU3XwplS/cXNVhFCbc6YxRhv06jbKFa6rExe1RRJjk3N7xWWrsT3E/LhxTebhYhoZlamhCJXvd3B4zU7aYKds4pj6V4IwjZTpq6ILFmo0fJ1QdC8tQwQVVx+R2x1e+VWSYhmJaGQXjansY0R6pGPqLs+VjN57ONlzudlQzxNAE93sh28MeC1WbT6/WWCt8Dv0k41JxkCrZSnrjWvo0Rdcy1HfQ35Xwl+9vD3cgpFQFuCTPiaKcLyy3CmNXJQM/U3cUO8oxaI/jgm3xYF7yTB3HNNgYhFxZqLBc9/DMERuDkLqn9iJREZqy39gp2wbbwwhTF3ui6JsFY3P3Jr3mmjQ8k36o1o8sl9PGz5maQ9OzqHkGH2+M0QScm/V49UwN19LZGATc7fjc3BrTCxJy4Hcc0yz8TGHDULJOP/Tgr371NlGa80d+9MKJfv+3vbHIL37xBv/4vQ1+72fOnuq1gSpSfPt2l1Gk/P9eXazimWPCJOPCTBnb1NA16Ixi6q7y8hlGit17XM+zhzEIU9qjGFPX2BknNEomG72QxbpDs6yktfs1O2xD5/PnW3T8iIZr8eHmkCzPKTvGdK2O05y1vk/FMXnFebQIVHct7nd9Ko5B3bP23Tt8f63PvW7AvV7Ab3vjDDMVi4qjc262hKFp08+f5yq+fbL/apasabFz4qfYLJtoCBaPoUgI4gzL0GiVLRqeydYoYvdIu749KprYqqDUKtvc2vE5P1Pi8pyyoah7FvPVvd9To2RRtic+e3XmKg47o4i1XohjKs8iISJyKffsKS1Do+aaBVPRmvrqpnkOnO7eM88l37nT5ea2Om8JATNlizM1R1kAGILtQUzJ1p+prLBqm7iWQb1k0SqVSHNJmCiZsxDqfPbR5oiVlsfnzreeqedU3bP43LkmG/2AYZAQZzlJluGaGrZlcHG2zPvrQ3IpuTBbmjLdqo75RKm5TwLT1PlTP3OZO21f7S0E/MVfv85vf3OBn3319GV9hiaIsozVXamfFcfkXKuMLtSe57CmRpLltMcRXT/GMsW+0rsJhBBTe46HpeV5USAEpimxdc+cWsnsh1yq+WSjr5QWZVs1U+93VZOw6hj88IUWFddivuLwD763RppLfuTSDLOnaJvyLHFSLubvBS5KKY/l8lywoX5cSvlfCiEmhalLQBf4C8AvADvARLrXBxoHvNYfBf4owMrKA/O0cnHwcWyDqmvhxyktz+SjjSF+lPHaUlWlDvlqYfRs/VA5jm3ovFR0IaRkGvd6Eiiqe8r2MCLLJc2SPX1I81xytxMQpRln6g5rvYwgzlnrB7RKNmGi0lFKts5MWaUMjqKUuYpDlOR8tDlESjjbdPeVHzVKFj9+eY5hlNDwlGTBMXWWGi51T6XUnRb6QYKUcHvHZ3MQMIwyslSSAZ9aaVBxDS7MllX19wQsmjjN+XBrxE9dmaNSLE66UIeM+aqSZAzCFK/Q0pu6xqsPJaZMaKyGrnyPSrax51pqnskgTNgZxXy0OdzDqNtdxNtjYndKXdcgznj3Xo+vXtshkRmvLdawTZ1KbvPSbIU3zlYY+CmGoT3ij/CskOeSO+0x37zZYWeswgE+dbZBxbWouSZvnW9QsnSCOKNeslg45RS+9X5Ae6gMzC/PVx55js7PlPhoc8A4zgjTgLfONVhplvDjFIFG148YBinnZz20ogCj6w+keWXbPBVDyH6QcGdHyVXOz5T2yH4tQ8kAJil9qy2P1RmX+92QOFUU+q1BxHLjQRqbJsT0O/fs4x2oyrbBZy80VZFQwq3Up1ky97zGQs2hUTIxNe3Qz5/mOd1xBFIFRXiWkiArr5C9mx0hFEtttyntbuyMlD9emsEPNo6u2n4YPT/m480RN9pDPt4Ycb8XMFd1uDhXYrleolm2WK67ZLmScxu69sy7hVkuud/z+fqNNh9tDDENnUvzZQwpWG45fOZ8U7FaM9VUedL0yn6QYBvqsL9apCw1S1YR/54pRrCAKJXM10w+e75FkimpdLnw8LjZ9pEoyWXFNad+FKMw4b21gSqsWgbjOGW15e3rSbYfojSbFj+TLFfBA8WmMStS3861SuRSkmaSr91oI1Cd+h9+aWa66euMY+I0J07BMTVaZQddiKncD1SKZM01MXWNuaryyhqEGctFOlvPT0hSWUQ5H21MDcIEU9PoBUpSf78f4tpDNgYRfT9hox/y5tkGhq5zuamaWc1ibV5ueMxWsmmRueIozyeJ8vQxdIFj6CdiJKh49wQh4eOt4Z4CUsky6Ach64MQ19IZBDk32j6X5lVBLkgySpZBqWlg6+r9J82nUZjx0eaQJFN+kvuN5/mqQ90z8SPlvTcprL6yWKVkG3sKrSstj1GkGEEqmEZMD8AvzdUL3zmJZykfTBVRL7i+PeTXP9jCT3LSNCcX4JnG9MB8VFiFX9Bpw49T/upXb/Ezr8zz0hFS6/bD60s1Vpoef/s790+1MDUZZ/e7Ade2huyMYi7NVzA0oXzPhFAMfmlypuax2iyxUHO4vTOm4qix/6RFvM1+yN1OQBCpgmLVMbnT9QnTnJKtszTr4ReJmQ+vJRNZ+u0d5UOnaxoLNXc6F4RpxtnG/l6lyw2Xu90xn15tcnGuzNwB7Iien3Bze8w4TnjtTIXLC4+mLOd5znfv9pBSMF+zWW6ouXV3g6Y7jml66j2O2jy8u+NzrxtQ9Qw+uVzHMXXWesF0rO32o5koD8Zhxp2dMcMgYXMYcbbpsVR3C6mwCk9oFiyPpYbHUsPDLZqwk31wmOSkqZwWwCbvcW7Gox8kXJov45h6wUZWhefd87yUkkHRTDkppJTc2B7xzZs7fLw9omQZXJwp4ZomM2WLz5xv4JoGQbFunHaC5mE4N1PCtjSCMMW2lO3At2912RxE+HHG++tDhlHKZk+x8S7PV5+JofgEuq7xqZUmjmkwjhKGUUY/SDFTFZK1VHenAWAvSnqb59n84r/2Fv/DN+/yqx9tcb095i/+2g38MON3fvp0DdGjTCXaf7g15ucL6T8wZWAfhI2+auzNlG02+hGDIMEx9w/52g3F0s4faUabusZ81aYzTjhTV03Ct841CeKDFUsrTQ9TF1yYLaEJ1dytexY7owihCcq2RbNiYesGb9/pcH17jCze67e+sfgvJHPqpE/ou0Ad2Drm7/2rwC/t/oGUsgMghPifgE8CfweYtDqqQG+/F5JS/iIFm+qtt97a85QYuqKq64XEKShc9PtBzPfu9dkeRbiWRpwpCdzjoGnqoRiFh3vOPA7zVYdb7TGdcczmIEIIeOVMDYE6cE4MFjcH0TRNwY8zluqqqurH2XQQCSGougaDQC0GcWEWGyQZ9QPev+yoGNgJumPFbAI4P3t6saEzZVVI2xqEvHtvwI2dMVfmSlyYK/OJ5TpBIpXR5TFTpnbD1lVCxgQ32sqcNZdgmzqzj9kIzFZs1rMQz9L3eGbshh+rzfW9jooZ3So8yxxLFbo8y9jT2at5JkvSfSIpX8+P+dqNDh+sD0hzZZJXdkw0DYSAIE3ZGanu97l9zPifBdIs51u3u3y4MWQYJpQsRSlHk0rOZ+ts9MMi2cJ+KhuIyUSeZuoQr2t774MQAlPXp8yE+YrL/V5IlsP17pBxmLMzjri8UGZ7GKoiQMXB0LSpWe9pICqecSkVc+rh1w2TvEgKillquGz1I/JcSeo6o5hhnHFhRhmT1otkuwmOKzUUginr715XxU5vDSMaD3WOjyIdEkDZMslR6Z/fu9cjTpUO/4cuzDz293dDIinbhkoMM0/ewbvd8fnmrQ7jOCXM1FxpahqOaVAvGdOUTsvQnokE4GFEacb76wPeudujM46xTZ2Zkqn82EwNx9LZHsZTY9rFUzg0z1VstkfRtBmxG7ah4Zga3XFCLpV8bBSpoIzJgX1zEKJrgjM1l5pnTgs5ALd2fPwkLUI0TGThQXKUwtQkTdMylIfahxtDhFA+UI6pU/csxnHK9a2Immuy2Y/QBcSpikgP4gfdyKqrfOVMXaVyTWSFaf5gXqg45vS60iznw80hea7YiDNlmyDJMHWNyhHH/fYwYqMfkssH5qR+nFGyTBwzIbWVvNzQRZF6CA3P3nNY2T3Oaq45vaaDij5HgZr3NDqjGNfUubY9ZrXpUbENFuoufpztCvpQRcusYEGZukbJMqg4BnH2wN6g7plT365JUqd/yEZ6Ugjdjc2hYqhvPxRuMFOx2exHmLoS2QshKNvGtCAnhGJ4frw1ZK0XMo5TNnohWyOVoHymbhdybmcPQ+t54m986x49P+Hf/LGTsaVAfe7f99mz/Oe//CHv3u/z2tKjxZHjQnmYjun6sbJxyCSNkrWnKRcWoTRawaxveCb3ugGa0Cg7p8MsM3TltXZje1Sw3dOpL0qQZIyjlBvbY0Ax/PbzTKm5qphpGdoej6i5isNWsZ4/3KzqjGP8KEcI5ad00IHt5cUK37vXxzUMvnO3z8XZCvpDDJi7nYDbOwFCqKCQ/VBzTaVIKJIrj4Lr7RHdccL2CC7NlfnkSoOZsj0db0IIzs+UuLY9IklyjEwwjhOiVBm051LNb+M4pTNSRafNgUrktopGvPLkUmN7pmKTFPtgiSr0gfoeJizuucqDz6drYt/93P1eQHesrAFOAikl728M+Mq1HdqjBFtTlhAIxS51TJ1ekBAmkpKtHzko6bRg6BpnGyXudnx6fkKUphi6YsYgcxZqNtFOTjdM+OJHbaJU8tpS7ZlZbASJ8ll7ebGKQK2n764NWO+FXJyNKVs6y023KO6/ODBNnd/7mbOsD0Pu9wJGseRvv7POxbkqr5+tn9r7CNSzWzpgrO6HNMt5+06XKFHF2GbJpDeOsA3tsaxqIcS+++g0U3vuPIftYczZpjFlMR4EXROMowwpM5q7PKsuz1fYHES4ls7NLZ9ekLDWC9B1tQZPWMgvyrp4HJz09PVnge8IId4FpjsNKeVvf8zvXQHeFEL8MeBVIcSfAP7fUsoM+ALwfeAj4DUhhA78NPC1417ccqPEZ883WO+FvLZc5epClZ1xTJio5Js0yyFXkoSjHuw9y3jiSvNkUt8cKv20axlFEo8yOGuPI5JUdRkrjkoYmy3MQ/fbqK62SlM96Vo/JMvksWjWu71ekmN2Gw9DyVam7puDkOvbY67MV5gtW7y8WOfVpTpxliuK+AknSdfSeXOlvucAFBfX/7B/zUGoOibVhcPf/0zdYXsYsdR0kPkD48eyZdIoWfvSYJ9UejOKUrJcmfGmuery/fDFFhXHVAtzmpGmir2X7KKRP0vEWU4Yq43LS3PKmPSVxSqfWK7RHseEaYYfHe/7OC4Way6bg/BQj6XFmkqrc02d+ZpDc8eiR8JMyWGurA60u7uymiYO7Z6cBM2Sor4LAY19itpLdRfP0nltqUbNUyl23iCk6dlFQmCGJsTULFUIcSrmhkn2QMqXSXnshcAyda4uVggL4+j1fgTIE3kNrTY9ftPVOcIk45MrDf4vx34FBcfQsQyBZSrqv20azFdsPnG2RtW1+GBjQFKwkZ4HwjgnyZR8fKVZwk9SXlms8sZSnWGkGgztUYyUE5nEk6NVtg98XjRNcGm+gkRyc9un5ppqbdz9+yWLOM1plEzO1Nw9hRVDE1RsszAYdlXa5BEbNxPvQeXhMmEjq4LzZDzXXYtGwThYqDl4tmIPXF2s7Jlna65J9UwVIQR+nLJZFFEOKrBmUk4lckkmcS2dy4d4J+2HyfejFQ2i87Nl0qK485nVJt3Cv61sm5xrlR5bRM53yfbSx3RjH4dcwpX5Kmt9f1psrxcynkjPpmmb51olhlGKbWjTjbFWpDbtxnzVYbYIBemMY/rB8f24pvPNQ02buYrDTMme7mHSLH9kDo7TnCSV5FLiRxkzFYvNocli1eW1pSqtioVAnGra60mRZjl/+Us3+PRqg7fONZ/otf7g51b5//zqdf7iF2/w53//J5/42vwone4bPFPnwpwKIznX8vBsg7NND4GEwqTcNnSGYTJl9U++wyfFYs1lGKZcnC0hUXL6y3MVekFCo2Ttef4Pes+6p5jZDxeXJmzQ/WAZqsEbp/mhvohnmyWuLlTo+MrsPZXyEcGaBGYqFuMoPZB51SrbRZHv6Gti07OIEsUcM4oqz8N7/5JtULIMAjLiLKNsm3iWkuBXHJNmyWKu4hCnKqxi0ngVQnBxtrwnhXv3PnhSoIb99yqHId21nzgJcqkk2RXHYKFmowmHKwsVLs+XiVLVyN4YRMXz+wzduh/CZO9gGwY/cmmWcbFuf7w5xrUGZJmk5pkEhZfmww3Tp4UzdZf2MGKp4aqivhBsDULKlo5l6lxaKPPS3LNvxh0FpqnzJ3/6ElGa8e79IcsNl45/LDHWY9HwLH7q5VnOzZSPxSDS0IAM09BYLdbSRsk88Rp9knU+y3fJ/3btz5plm89fbBEmGVGa0/UVC+tyEah2pu49U0npaeKklZa/Avw/UIWkI09FUso/NfmzEOJLwK8D3xRCjIEbwJ+WUmZCiL8E/AZK4vcHjntxgzDl8xdbSKk2rXXPolUsVjd3lI6+M45ZbjqPXTSSLCfL5akUALpjVYxZrqtN/NmGy9Yg4FqhTb4yXyGXTKvsRzkka5qKy52r2I9UceM0x9TFgQNxpmyTS9AEp1JJz3PJR5tD7nd9mmWbc02XV85U8SydH700S7mIiXdM/Ym0zfYuCVua5URpznLDZRSlT1wYehglW2m0r22NeGOpimsZ5EXShW1oxzamPQjbg4jr7SFZKvHjlKpj8kd+dIGybU4nl0bJmlbcTV07smTmtDAOVQrJOMwYxylplvGzr86ryR71LK4U17QzigjT/MBN25NgECYEsZLhHDbxupbO+V2HrNeXa4WnQsC3b3dpeRafP9+i/tAzk2Y56ROO+TTL2RnHuJZ+KPthIk2YYLnw6bnRHvLOnR411+DzF1qPMDUf5/XyOJypO7RHMZ558AH+MLQ8kxuFZ81i3SNKcj7YHGIb2p5Y+KNA0wRnag6ZlPvG7B6GPJd8sD7gfi+g4hgs1hzqrsWbKw1sY6//2ErTozOOn4rf2WGI0oz31wbc7wbkUkn0PrXSYKnwO9A0QasYJyVbRQ6f9jwG6l5lUj6yTrw0W6HqWAjxaGHd0LU9z+/OKOJ+L8CzVNdaCLVGVl2Tim1g6IrmPggSXOvgovF81WG9H04PYGXHwI9T7vd8/CjlTMMt/Mgc5RXpGNzuBFQd5VcXpdmeRpEQQhXqjb1jfj9MCml+kp3I08yPUuI0J82zQv6XYmoaV5YqU6nTbCVVHnJHPJRahsbZpss4Ptk1TSClRCIJ04zPnm9iGTo3t0f8YE2Z6C81PK4uVBSzTBPMHHF+nuwzqs5eOZ6UkiSTj2XSLDeUn1PFMUky1XSr7GoIAFOT5jjNVNPB1ImyXPlyxioWvlmy6PoJv/0Ti2iaeGwi6bPGP3p3g7udgP/kt77yxK9Vc03+4OdX+EtfvMEf/8mXjl083Y0wyQpfTZ9USpqexfmZEkbBDj5ICVBxTBZqDkl28rU8l+pwpcIJUjKp2Hhlu04uJWebbsFqVdYbih1sYugCAby31qfuWdPnY4LdoQdSyseuOZPrN3XtkedeSljv+ySpxDZ1fvqVedZ6inm13/p4pu5iGhqWroq17VHMaksx2LvjmCTPmSntZUge5TovzVdoli2q7uFWAnXXZGsY4lkGs2ULhKBiG9zr+oxjNT+dnyntWYsn97bmmuhSoAux5z10bf8G+FFwpu6yPYrwjrl+p5myIdnsR4XnjuBHL81yuQhk2c04skydQZA8c/n9biw1XNqjmJKl7xkz81XVQL7RHvL++pDuOOJbtzt4hs6VxQol++nuOR5m3Xzh4gwvL1T40sdtpa5xTL55s8MoSlhtelx4wYpUuq7zH/z8VX7lg23SXLJUc/jvvnEb19T5nZ988mRSowg9Ok7BNc5yqp6BHgleXaziGBrdcYRj6IcynA7DSdZ5x3ywX5l9qMk4sXqYr9q8c7ePY2hoGtzvhiosybPQNcGwkCDGmbIAqnsHBxu9CDhpYaotpfwvnuSNpZQ/UvzxU/v83V8D/tpJXjdMMu7sKAPquqeKUhMKM4ClC4ahkh+8fafHmfrBcqj31/u8fbvLUsPlk2ebT5SOEqc597oB4zjFMXRmywZdP+HG9lj5OwmVcHcQ9XOysSgXm4h+kLA9VKaIfqzMlV+aK08/y8SDx7U0Ls7uXyXWDqDlngRbw5D31/v88x9ssdGPWGm4nJst8YmzDcqOcaBc7qSIihS+W+3RdMC+cbZ+avrpOFWGvlIqo/RGyeLmjl8YRsYsJy5RknHhhEb4e98r45ffW+edu33CJGWmbHN+tsT2MKbu7Z2IDP3p+GIcBd++0+U3Pt7mften6hgs1DzudgMu7rPIPa3I0jjNuVN8L2GSsdo6OqXbswy0iuAbt7psDWO2hjEvzY/59K6DzZ2dMV+5vkPdU8WDw0y9D8NaL5z6N1xeOHqyljIztXj7TkpnnLDej1hq9Pixy3PTucGPUv7RexsgJW+ebXDxBD4mtqE/stE/Dt7fGLIzStgZJaqYZuos1QvvoejxkudhmEwLMLfaPn/3u/fJpOSnX5478jUMwoRf+WCTr3zcphckzFcdPrXSpOZZWMajpvinwXo9Cd652+Vvfvs+vSCm5VmsNMu0KjYrmvfI4WO35Ow00RnHvHu/h2cZrLZKe5oex1kH7vcCvnGrQ55JfvPrCySZornfavustkqYhsbOKGIQpGgaXF2o7rumKbalem6FUAbiX77W5p27PcI043PnW3zuQms6j2wNQrJccqcb0AtSBmHCK4vV6bo2MfE1DcFL+yRtPYxGyaKU5krWb+pHLgS2RxG/+v4W3SCm4VkMg5QoU6l8FUelj757v8cwyKiXTC7NPf5aJqh7FvUnTBy/3wv4eGuEzKEXJFyZd/hqwTSI0iFLjUefud3o+UrOOTGY3xqGDAKV5DgM1Xd6qWDJgvKRnBx2d0fPPwy1uVZ/n2Zqbb2yUMHUNdZ6AUGSTfc/X7/RYWsQEhfswtmKYo8u1T3W+oFKpQ1VymHHV8lyE2b584SUkl/84g0uzJT4mZfnT+U1/9iPXeS/+/od/rN/8D5/5X/92RO/zvvrA95fG/D23S7LdZeVZon2KCaXkpJl8OZK/cA1+0lZxFGS8dHmgM1+xDBSsuEzdYc0U3KnScqblJKb7TF5DrapcblZ4f31AXmuTNgXq482kqM04/rWWBW4dqUq74fD9k7DMOGvf/Mupq7xufMtzs2UDpV7m7rA0ATtkfK304SYxshP7DGkfHBwDJOM69sqfevcTOnAg61r6Sxbj58EdsYxaSa51VbBAEt1lx+sD/hgbUDZMdCE4MrCg7TdiX/TzighTDIWag6mrvHSXPlU5JmWoZ1oP/GdO13+3vfW2BnGWIZgtVXmXKuEvc+Z7HmadU9w0L5J15RtTJbDej/ifm9Mb5xQtk0+f6HJ7/zUkxdXjgNNE8xUHK6eqRLGKvXuVnvM9ihiueHyW15fZKVVeuIgg9OEruv8zKsLAPz1b9zh772zTt+PuLE94k/+zJUnmt97fsJf/codFusO/8pnzk4tCw7ba3XGMRXbpGKbaELjw60x7VFCe5SwWHdPPC+eZJ1vlKz9zbYLOKbB5y602B6G/P131hiGGaMoZaHucmt7zPfX+uyMIs7UXK4sVBmGyQvLoAM46Yz0bSHEnxVC/JAQ4lOT/53qlZ0QKiZR/XmyiI0LCrOUasETQiXGeJZxoIlZkma8fbvHzkgl+vnJwa75R8HkXbRdg8vSxXSibe7jAbIba4WG+24nIE5z1vsBQZxxqzOeOv3vNv8cFj4SQZw/sTTgcej7CWvdkOtbYwZhSphkZEJOvwjjKeist4cqIWF7FBNEGWGi4j5PC7u/irprsl5IJTvjGKEpScJx05sOfC8EnVGMJKczjuj7KX6UHWqI9zwQJSl+lBIkys8gSlS0/OOMAE8Tu78X7QQLlW1omIWUxbN0giSdBhr4ccr/n73/jrIky/P7sM8NH8+b9JnlXbvpnp7psTuzBm4BCAtHA2KxBEFSBHFAiRB4gEOJIkUJIGgkiiJFQSBWpGAIgCAFkli4JbFL7u5gdjE7fqZ9d/nMSv/8e+Ejrv648V5lVmVWZVal62V9z+nTVVmZ7918EXHN7/c17zzos9kPWen4j/mhPMs4hVDX9zBQXi86SSonBvI7Qxc+2OjzoO3zoBNwvzN65jE+D8ZzlRBqbqu65sSX5Gn+XFJK7rW8yXy22vUYRSlemLJxiM98vRcwDBL6gfIc6gcxXh4bfpZU9VsDJc8bBCltTx0Mel5EcITy6Schyx4eSjb6wURG9yxIM4kXKLP+zdx/SggxkZ1o4qFx7mHCQjQhCJKUKMkIYuXZtNl/eC9Ucs8YS1csGU3sZgKPf6c4kQc2wR77uD3o+Af2O9wcKCZoECmPumpBGXOXHAND01jp+Kx1QzYGAWGcntg1HiPLwMg/F11ou2TAtcKTn8s4zVhuq33Gg65PkmZs9EL8KJ2kzWaZKgaMMf7cB2F86LEKlHSzlftFjb01k1SlnSmfGx0vSinYumJA5nsJTQjaXsT2QPl1jpsAp4l/fLvF2w96/Es/evnIjI/rRYt/9Tdf41c+2uKXPjyspetDCKAXxGgIvCil5Sl/t5W2zyBMWG57zxXs8zQM/IStYUgYqxTX9Z5Ky1XNv4dm3uM1ffzxjQvGtcLeDKIgyiZSl2H0fPNanEh6fswgDzV4EtqjKGfypXiRMu6vOOauPcnO7ckoTMgyNScexT7V0AVZJlFWqwI/Up66XpwyCBOCR84rSuac5l6pPl0vIs0Us/I0sT0KSRJJP29UhUlGzzv9Z/lZ4UUpXpgw8BNaIyVHW+8/+z7yeWFoAiklmqYk7F6U0vNibm4OWesGR3pmOkq4tkbfi0kywb2Wz3o/eK7Xi1Nlo7A9DHl/tUdnFO+ae/ZCraBY5JahvNn0nXv6s7TB3AE991RV49YpmDptL2K967PeC7jbGinT9LP6C+R41vbxWPD+xR1fk8Bver7hPD/snMofJtkkTrResPKFQdHOv3i5QZapTlDRNggT5eOys9Bg5HTfIFaGY0dRWQ6ShKszij3hRyn1gsl02cnNIJ/cCVBjS9G03MTNMugmMQtV5VFj6BqVHcbmsxWHrUFA2TGPrICy79gMgSagWbQ5V3eZr9h85eo0Ly+U0TWdinv0LIVSrrNfqDroGsxU3COVv5i6Ypp5kWJ/FB2DlbZP1494fbHKdMmZbPhBdcQMTRxKwtTz1aFoqmTzk6/N8qs3t7kxW6JRVK99/RQMmh9Flklubw8BeOtig66XsFQPqRfVQfGNpdqJGTyCui6Xp4v583P46y2E4DMX6kqW4hp8arE6maR1TeT+bgbF3HPjWTH2jnIt/Zk6ki/PVyb+Hm9eqO+6r6qORbOkZA9Xpp6fsfcsuDZTxDU0KgWLRtHGj1JcU/2+BzGGNHWNKFHU/VcXq6z1lDny5w/gy9LzYrYGAcMg5sZcOS9mJLw8X6PsKOntaWvrR2HCg46Hbeq8ca6GFyW85JWYqti5d1yB4jMkrj0LRJ7kUnGVp+HzyGtfmiurBLs040KzRMU1mavYpDnLwdQ1pss2rqVkI/fbnkrJfYLEI8yZSz9yZYqCqbHWD5mvOruMSh1T55WFCtdmS/T9eFeIB6i1fOy5Vzjg5zo2BRXi6UXuTEpubQ0xNZWaVy+a6hkwDSxTxzX0SbpcrWBOEulO6hqD8nnxY8Ukci3FAtOE4MtXpibr2JOgiXHXX2LlMhrH1AjijHMNF4HAMnZLyOerDu1RdCiGrGlok2dUCIlpCOJEmRpXHIOrsyXKjpJ4qhTIh/fPYtVlGAwwdECqIpltPH3OOQn8xV+5zVTJ5ve9ebRx53/4Sxf5679+n//L33mXL/3vmgeWmGdZzkCSkpfmK2hC0CxY1Iom12crhPmepewauJZxbIcVTRMsNZXsvufHLJkOLS+iYD40vB9jHDI0ZtjPVpwnJpOWc2lvnGUTu45ngWPqXJgqUi+YvLZQZWsYsD0MWWq4e7Kdx+vLeJ+4k6l1capAkspd9hi1gsUgSMikfKZ9y6OYKtn0PGUN0ixZzJRtMiSvLFSoOOaeTO8rMyWiJGO+ZmPpyhz5oGEPRwnFeh8hNHhjqUpvFHO+6TJVtJECPn2EptcnjVfnK9xvjbg8U6Q7ihBC8PlLDXpexIOuz1TZPlEvvIvNIsMwYbHu8t1Kix8s93FsnZqrii4nuXc/DH73G0usdnw+WBvyqXNVtocRozDhYqOI8Qz76aJtsFh3uTxdpJkn2ZtPCEAAcAztobcrKqjMsXSVAH/CdhAHRaNo8RMvzdDxIs7lVidXp0v8YLlDwdS52CxwcaowYS+fVTzTrCSl/InneVMhxL8G/H5USt9fRRW1VoB/NveY+hBYy7/9j0sp3zvM6xdtg50yZMvQuDxdYqMfTLqwliEIU9X1XO0Ej0nhhBD8xI1pep7yNnjeBzhOM3p+gh+pjnBrGNEaRVybKR2ou7ZUd6m4Jo6pTbTg0+UU29j74aq65ol5qRQsg2uzZUqODkKxmaIso+Jax3ZArBUsCpaxKxL8qOFaD+O6l2ourUFEo6QKAVGasdrzma04dPNocF0Tk9jtp6E1DPnF9zeUea5j8ltemeXydJkky4hTZfZ42lXtIE759t02d1seZcfgM+fr/P7PLhElKVGq/ICOggZ+WDyPJCtOMr57r4MXqi68u+N1bEOZ6l+bLVErPN8zryR5z1YAiNOMH6x02RyETJecx3yXLk8XqRVNbF1/7IB+EmiPIm5vDekHMfVcJ7/RVx3wUajSYZ52fS5PF/HClJKjiiV/4HPnJ3T4J0FKyQ8fdLnXGuEYBp8+X+GPfPkSmZSMdrzeaSJJM75zr829lk/JNvjC5Qa/+9OLmJrGKEowNG0yr5wEhBBcnSmxUHUpO8ZzsTlcy+Cr16YmccQAlqHu89WOzzfvtKkXLOZravMXou6NJ0luoyTlg/U+X7zc5NPnG1S21GF6r8/I1LU9n6uCZRyamq6KXwa2oT11HosSdci3DY0vXWmSSsly2ydOEy4UrUmxZqmu0gtPY26M0pTltk+jaFKwDe5sezimkuu41tPnIl1T94mfe0mNzZLj7PHY6zGeZK6/HwxNTK6trgmuz5R3vcf5RoHz+zQF+mFCJlVx+t0HfcqOydUZ68hSVJ8VH6z3+ZWPtvjTP3njyANJLEPjz/6e1/iZ/+LX+Qu/fIs/+VuvP/VnkjTj+8td3lvtT9iGr5+r8fJCBcHDwsrV2TLDIDlUWtVhYRsaC9UCs2WXfhCx0g4Ik4z314ZcmS3gR6XJ/WAbOnbp4GPRNPFECelB4Vo6v+/NRQTw4Xqfb93pYBoaP2pM79mgqroml/Mk60fvvb2azPoeoQLPCj9KeXuliy404iwlkwFdL+babImlWmHf57VZtPnMhboK8Dml5yVJM753v82HG0PKtsmb52v8vs8uYQjBMErzpNiz633zNLi2wU99elHtbWydOJNYuuB/+mCTrhcjkfzY9WlmKydjx2HoGrWCRRCnJJmgWbY4Vy/w8mKZ6ZJzpj/rP/bj12iPIjqjkDvbHg+6PjcrA37zy3OHbkSUbIN/8auXMDWV3HuQOa/jxfR9xSgrWPEkCGazH+JF6USKftZQdgy2hyF3Wx4Xp4p0vYhXF2voQjUW55/XL+AE8EyzkxBiFvh3gQUp5e8QQrwCfElK+V8c4Gdt4I38r13gp6SUXSHEnwN+J/B3gS0p5Y8/y9iehIKlI4SS7ASxIEqUIaOuiccSgUBR4aYrep4aJJ+rUJCkkoGf0A+iyc2sDFRVItbTDgtCiMcKTac5qexM9gC1sDdLDpv9Lfw4pTOKiVPJcfqrneTG3zF1mmWVmCIQrHUf+giM2aBpJnPD+SePK4hTVruB6qDlMpDxodx6ZnXt0eNB16fnxbSHIY6hYehqjK5lcDouV8+PjhfR9WL6gWIQBEm66z6ydA3nlHX3ozChO4oZBikVN8WL0l2adCk5VQNQL0rYHISEccatrRHNok3B1hkEKkL5INHYpq5RLez43A/4LPf8mFGYsj2MmC0LMqkMXDXErtc7TWwMQkZRSmsU4pgacfrwoHDSgQVjPPp5P4pH5/MnYa9mQ5ik3GmN6PsJSSqZqdgYulBy1KccgtJMSX38KJ34tWi59ORJBU6ZS9iftdC215q6HzKp1m9fE2SZakyM5/1xGhaosZy0uf4YSSaVD5QQOKbaUAdxRiZByINdX+uRIp2mCexjTpY6zHu4ptrDPej6eJGSlEYnLJfcCz/7tdsULJ2f+cKFY3n9r1yb4ne/scBf+OVb/N43F59q8L8xCOl6MR0vwjS0iZz80b2Jronn8k49KLJ8n122TQw9ZHMQYuiCziihPQpZPICv0nFjbAbe8WKGYUIW8EQ7hdMqhq50POJUsu0HlPO943jvWbSNXc/So/P6aXgs7sTWMKQfKEmhqWtkyMnaWHXPxvr9vNi51uq6ajRqQtDzYjIkG72QimOdaHPKj1J6fowXKnbyTNl5rHg5Tng/7Yb4TjSKFoYu+P5yj74f4xg6qx2P883ioce58/c9yJw3rheM/9z2Ilbaat0xNEF4gLPeacCL0snepD0K6flKWlp29EnK8VnHs85Sfxn4S8D/Mf/7R8B/DTy1MAX8r1Gpfn9GStnZ8fUEGK8CDSHE14D3gT8hpXw+gWmOsmNyfbZMmKQTY+uZij2ZOPbaUPaDmPstD0NX3cNnvREtQ+Nis0CtYFFxTDb6KpFouePhhSmz1ZOleD4rxgaVozBltmLvogxXHIM3z9XYGATMVpwTnXiPG5qmTHWV90XCO6s9BFAvKtp0KiWO+XR/HVCbwVGU4Jg6moC3LjzJ1u70kGUSL05xLYNXFyqTJMRPMmxD5+WFMuu9kBtz5V1U9q4XsdLxsXKpyWkxb2xD5/pciZJrMFd2dsmIOyM1Rts8vTFOl22qrsldb8TWQDEk5/OkUUPTjnVMpq6BlJQdg2bRYv6IwhuOEqYmEFJQNHXmqk+WopwFjO/7sRnus1w/XQiqjpkXaQxmKw7zVUHyBLbNGJahcT5PtCrZBn6spPVPkrwkqSqKxmn2VNPjo4Cpa5xvFAiShFvbQ2xDp+ToaEIcS4Lis8AxdM43ChRsnYWqQ2sUUbQNbm8NCWKVXHuWEuyeBa6ls1BzWGkr03XH1Jg/pTCQMVa7Pn/n+6v8s1+6cKz34b/5u17mlz7Y5P/0c+/wV59ihG7qAokq5M2WrCNhFT0rgjjlvbX+xPT7+mwZ29C4uTmcyOdPG2GS8e5qn7mqw+XpEj0/pmDpZ3LutgyNqZJNs2RxZarI5jDac+95d3vEIEiYKltnZu9maII4TSlYOudqLkufAPbG88LUNV5brLI1CEilZBAmExn5SaHqmpxrFKi5Jpemi4+tyeOAMF0TXN7j308TFcfky1ebfO9eB8vQWO74jKKMy9PFYyVnFG1jEoCgC8GHGwO6foQuNGYrzqmxDp+GRtGaFNSnS9ZknfTilI83h8xVnecOtDhuHOqTFUIYUsoEmJJS/jdCiP8DgJQyEUI81UVPCGECPyal/PNCiD+z4+sLwG8B/mz+pa9IKdtCiH8D+KPAcyUA7sS4I3h1pkScZk/tYPd95fMSJxIvTJ+5K++aeu6doN7v8nSJMEnZ7A8n7/NJKEwlmZLMgGIv7CxMCSF443wNP04pnXJn5jigaQJH0+n5MYs1lySTFCwDx3x6RPlOKB8WCyhRtIw9E0jOAiqO8lm6Mq0x9Qm4Nw+CasHklfkqry483j3s5c96GCvj3dNaeFxL58ZchSsz5cfGMDb5DeOMIE5PpWtrGzqfu1BH1wS2oTEIE+bhRDYzrqkzVbZplKxjS7B7XtSLFvWSyVS5nsuvz+bzPUbfV+EgUfLs972ha1yfK3N+qkDZfihD1g/AhHFMjeuz5cnndJCkTT9OJ0yZnh+fQGFKcH1O2QH4ueHydPlsbU4tQ+PaXAnX1POuvfKhG9sX9Pz4E1+YAtURXqi71IoWV6ZLpz4H/MVfuQXAv/iVS8f6PjNlhz/1kzf4t//Ou/zdH6499XvrBY/6hTq2oXNKPRbgIat8EMSUbCM//JaYLtuY+tmQbmV5YEPPj7k6U5r4Q502w2gvnKsXGBaTyXN+aY/7P8vZk6ASyc5KYarimjRLqglfy9Nz/5eAimPy6kKNUaQ8CE+aaaNpgi9faeLFKcU97umxn2mSqnPuWSpMAcxXXeovW6x2fUZhSppJhmFy7HPH+Dr5UYqpKX/bon02/H/3g/6IvPnqTIlBkLCaq3x6fvwbqzAFfBP4DDASQjTJw+aEEF8Eegf4+X8W+Bs7v5BL+/4K8C/lRS+klO38n/974E/u9UJCiD+KKlpx/vz5Q/4aSpp1kJu6WbQn1L3n8XMR4nEZh23o1IsmwzBhuvTJOPibukajZDEI9r65TV07k/TGo0StYNL3TYQQE5POw2K+6pJm6vM6q0W8etFmECaA2GXk+UnHfsWcZskmiDPVfTxltt9+c9NU2SZMMtxDmDwfByxTsTP6Qcz0CUofNU2wVC/Q9aMTfd/DwNQ1luoFNUee0THuRLNk4cfK3+N57vtHZWAHhZKeHe59i5ZB2TEIk4xm6WSKLeU8dWul42MbGoUzcKB+FI/GqbumTtU18eP0xD6n48Z4T1ayjVNn22z0A/6rby3zT3526UQMZX/mixf4W99Z4c/+vafbrl6cKrI9DKk/JfH5uKHlJvqPMiBPu6C4E7omMA0x2dOexYLUGJomHnvO9/qe6bJ95tZJ29BZqLqMouTMH46PEo6pUSuYWIbGfO10znqGrlHZ52xWL1gMgwRNE7tCnc4SHFNnse6y3PaAk5XMO6ZG1TWxYo2FU7p+z4qxb58fpZ+Y5+6wd+B4dfvXgL8DXBFC/CowDfyTB/j5G8CnhRB/DHhVCPG/Bd4C/t9jg3MhhAUIKWUI/Ahwa68XklL+LPCzAG+99dax5dy6ls712eOrjp51d/y9sFhz4RPrMvT8sA2da895TxQs41jvq6OAYhae7TEeJUo7qLtnFWdpjAs1l4VTmAfmqg5zZ1DCtxOfpDmyeIbuqYNCO0Iz4cPgk/ZZCXE05tBnCce9JzsM/rNfuUWaSf74j189kffTNcGf+32v8W/93Ls8eMr3TpXsI0mTfl7Yhvbc+6XjhmVovDRXOe1hHCnO6jr5PGnHn1QIIc707+2Yz3+mOQnYhn4qZ5LfCOvoWb7/HsVhC1PTeaIeKDbTP0AVq0KUFO+HT/phKeW/Pv6zEOLrwLdRJuoXhBB/AvhPgF8Dfl4IMQQ6wM8ccowv8AIv8AIv8AIv8AIv8ALHgrvbI/76N+7z+99cPNFDy+tLNf72H/8yn/tLJ/aWL/ACL/ACL/ACJ4LDFqZ0oMRD5tQYh16VpZRfyf+4V/nzM4d9vRd4gRd4gRd4gRd4gRd4gePGv/P338fQBX/qJ2+c+HufpeSsF3iBF3iBF3iBo8JhC1NrUso/8/Rve4EXeIEXeIEXeIEXeIEX+I2F//Y7K/zi+xv873/HS2cyue0FXuAFXuAFXuCTiMM6lb5o07zAC7zAC7zAC7zAC7zA/+Lw7btt/s2//Q5fuNTgX/rq5dMezgu8wAu8wAu8wG8YHJYx9ZuPZRQv8AIv8AIv8AIv8AIv8AKnjDDOeG+1T9kxqDgmJcdgEMT8re+s8B/+ww9ZqLr8pz/9Jrr2olf7Ai/wAi/wAi9wVDhUYUpK2T6ugZwFBHHKatfP477dY9XxJ2nGSscHYKnuYuwT43mSiFPJzc0hsxX7TEX5nkWs9wKGYcJc1aFkP/4YRUnG3e3Rmbm2e+HF9YZ+ELPZD6k4BjNnVJLxSRjjIIjZ6IeUHeO5pS1hkrHeC85kotAYn4Tn+yDYuQ4t1l3MT8DvkmaSlY5HJtXaeRJj/iRe7yjJeND10YRK//2NVEQJ4pQHXR/rmPZqqz2f3/n//EeTvwsBMs9+/tHr0/yH/9TrzJRPd376JK3fy22PKM1YrLk4pn7aw3kMn8Tn+yBojyLao4hG0aJRtE7kPT8J6/dZxmY/oB8kpz2MJ2IUJqz1Aor22XuWx9i5T3gWZJlkpeOTZBlL9QKW8RtnXjgsTvp6H5Yx9Rsa28OQUZgCKRXXpOoe32Lf9iIG+eTT8WKmy6cf65ukGX6UstEPzvxG5zQRxClbgxCAjX5Aabr02PekmWQQJLS96NQ3sPvhxfVWBcYwVp9Do2idyU3pRi8gyMdYL1pnsniw0Q/wo3yMBeu5FvEsk2wNQupFE9s4mxufT8LzfRB0/XjHOvTJ+F26XkTfV2Nuj6IT8fj5JF7v9ihimF/bnhOf2MH0JLA1CPHCFI+UWsE88vVrruLwf/+Zz9IP1PPR82NcU+eLlxu8eb5+pO/1rPikrN9pJul6MaD22Ev1sxdb/kl8vg+CtZ5PlsFq7J/Y8/9JWL/PKpI0Y6MfnvYwngq130vxo/S0h7Ivdu4TngU9P6bnq3mrNQqZr7pHNbRPHE76er8oTO1AyTbojGJ0TeAec1enaBkIoSags1J11vKuY3EPBtALPISla9imRhhne7KlABCqy1q0zu5n+eJ6q989jCNcSzuzjIKibRDkYzTO8Bj9KMIxNUz9+cdomxqmdvYKcBN8Ap7vg6Bg6YzJJp+U36VgGZMxF6wTWjs/gde7aOtsD9WfT+xzOiGUbIOup/Zqx8HAcS2d3/7a3JG/7lHik7J+a0Kga4I0k/vvl04bn8Dn+yAo2QZ9Pznxz/3Mr99nFLomcC0NP8pOeyhPRMk2GIXpmWYR7dwnPAtcS0fTFFP2rM+xx42Tvt5CymfkuZ0hTE1NyYsXL+76mkR1QXQhnuvmfB4kmSRO1ASzsbrMo2N8FEc95jDOyPLr61j6U53r7969+9QxHjeiNCNN1ZgtQxULkkc+k+cZZyYlUvJYEUICQV4N1oTANp/vATwLn+WjSDOJhEPdkycNKSGVkiSVjOemJ43z0XvjuJBJSRirz03XxGMT9JOudyol7HHPHTWkVGw+AE0T2IcY43EiSjLSnE9tmRr6Hhdr52d0Fp+dTEriVJJlT78nTwPj50YTTO7T8RjDOCPOMoSAgvl8m7XjwGle7yRTn5m2x4dy2PX7eZFmErHPWPbDznXroGMc3ytHNW/GaUbyyJr9JBzX9d41zxxgHDvx6H1wFucggCDOSLMMCWyvrRz7GMP8M32ewuZRfpZHsd7HqSRJ1XNtGqrZc1LX+zDj3zn/mIbGyv17hxrj5DnXxIFTq8aMCCF45oLvWXx2kkztJ8fz1OrKfRaWzqMJgaGLM9mUHH+O6Q4tWpTfD7ousM4Ic/7m7TvML57D0LXH9pxnBXfv3mXp/IU9nz0/TtVCKjh2QsqTcPP2HeYWz50IMeZ58J3vfEdKKY/1Qj9TGVAIMQssoi7nqpRy40hHdUhcvHiRb3/727u+dmd7RGsYYhs6ry5U0E5h4gnilNtbIzIp+SO/5zc/NsYgTjE0MZEPfbwxIIgzDF3w8nzlud9/sx+w0Q8p2DqXp4pP9WF46623HhvjSaMfxNxveRi64GKzyP22RxirQ9VLc2UMXXvmcQZxys3NIVLCVNlivuoSJqlanDTB7e0RXpgyW7Gf28vnLHyWY2SZZL0fsD0MEQgyKdGE4J//vY/fk6eJKMn4YL2PQBAkCY5h4Foa/8zv/Ik9x3mvNaLvJ7vujb2QZpI4zZ6rs56kGbe2RsRpxlLdpVbYTYvf73oPgpi72x4A8zWHqdLekl0pJUGcYRvaM89VUsqH93DVfkyScFr3ZM+LWe54mLrGleniY9epH8R8vDFAILjQLPCTP/4jZ+K+DOIUU9cIk5RbmyOiJMOLE+oFa8/5/LQQxCm3NodkEhxTHchHYTp5vt9e6fLRxhBdg9/2yiwF+2zJfk7rvlxue3S9GCHg+mwZiUTwsOj8tPX7KJBlkijN6HrxRB5+daaEe4hCwO2t4a7r/SjGa9xYAvzBep84kTimxrXZ8nP/DsMw4e72CE0IrswUnyrfOa7r3fNjlttq73BluvRUyXOWScIkY3sYTu6Da7MlbEM/U+v3GEma8dHGgA/Xh7imzr/5z/+uYxujlJJ//3/4gL/4K7cBePlCnf/vP/c5qoXDzx1H9Vne3BzQ9WJcS+elucozFxNGYcKdR+7Xk7jehx1/EKfc2lKUx8tTJb765S8caozvr/WJkgxdE7y6UDmQD9v9lkfPj2mULBZrzyZdOkvPThCnrHV9hmFKnGaYukAIwR/4nT/Of/7f/SJGzricqdhMlewzVaB66623+MWv/RrLbeVzNFO2GIQpSSo51ygcq9XMYXDt1Tf4d/7y3+PVhQo35srH6s38rPjUpz/Df/7f/QKuqfPqYnXXv610PDqjmKprcr55ejLjG699mn/vr/x9agWDH7k6hXVGZbBCiO8e93scqjAlhPg08J8BVeBB/uUlIUQX+ONSymMf8H6QUrLc9hmGCYs1l61BwINOgGmow44QnKgOX0qlWZ+v2lTdx7Xd28OQtW6ArgmuzpSwDG1i0pZJSdeLWO0GlGyDc43HzT2TNMOLU4qWMZlMgzil78dUXDOfbB2aZ2yyfRpGodIEm5rgg/U+G70QSxcYhkbHi5h+gv4/yyStUYRlaHtO2lLC1kAZC2YUKFgG91seQsCV6RJzFQcpoeT8xqBtpplkGMZ8736XBx0fIWCpVuDVxcpjhZXTxCCI2ewHvLs6YK3nc6FZYL7q8sqC2rwFccbHGwMuNIu7mEo7TQ33432mmeTjzQFxIpmp2Hv60YRJSphklG1j30XV0DWuz5ZoDSPFPJNy1/dGiUpxmq861Hd4OewcY/YEdur9tkffT3Atnaszj3uWSSkZhAmOoe9LpxVCHci6XqSYh5k8E89+tWBSdioIwZ6f7/Yg4Bfe3QAh+Sc+s3QKI3wct7aGfP9+F9vQ+JGrU0RJxjBMON9wuNB8/PqcBlThZMjtrREPOiMuT5eYrbq8vlTb1WVNMsmDrodr6qx0fa7Pnv6GtufFRGlG8wC+J+N1rVo4Ws8SRdKTjMKU7WFAaxgzihJsQ6NWsLjYLPDyfJknPLbP+f6Sm1tDwjgjSlMsXf1um4OAziiiaBu7Ckdxmk2+vlNacHm6tOt670RnFLGSz/1XZ0o4pk6Wq0SGYcIH631MXeNis7jvXBElGUGSUrYNkkzSGUUUbGMiDyrZBq/M7/98HyekVGu+oQlqBYvyfIVRlJBmkqf1IW5vj/CjlFEYU7RNWsOQJJXM186Wx1DXi/hgrU8viCnbJgVTwzlmaebf+OZ9/uKv3OYPfv4cry5U+TN/9z3+N//Vd/mr/8LnT+XgGSUZ7z7oEaYZjYJF3TWZrjh7Fh+DOOVey0PX4EKz+Nj3FE/ofu15McMopmgZFC2dO9sjhkFKs2TmbPAnv7dj6syWbdb7Ia3R4XyH0nzO3+qHlGyVLLnz0L3c9vLzye79yvlm4czsG54HUZLx3ftt1vshYZwyV3WwdI3XFusYmoZr6lyaLvDR+pA720PefiCpFUx+7No0xTPk17Y9DNkcBAyChM4oouYaWKZBEKdnpjClWKaS5ZbPx5sDXpqrcHWmdKYKVH6U8vffXmOx6vDyfBlth8x0qV5gvnr697yhCwwNbm0O2RyEfPZCnaszz984+iTisCfwvwz8y1LKX9/5RSHEF4G/BLxxROM6NMIkmxiVbY9Cqq6JF6bomuDjzQGWrj+RCTMME7wooVE4GgPkzUHIZm5it9frjSmzad4xtQyNC80CXS+m4hqsdgPSTNLzY2YS+zG2x+3tEWGcUbB1ruTm23e2RySppO1FvDSnGFfDIJkcAE6DNXZYbPRC1vs+28OQomUyVbIYRQmubbDeC5/IelnvB7SGEbB31zmTGX6UUbIMNLTJNZAS1nuqqwJwebr4G0JTfGd7yFo34Nt328xXXDYHAecaBYK8i3YWsNkPWOsFfPNOC8vQCOKUYZCQVZS0Ah6yiXr+7pCApbpLexRRsPR9u+NxmhEn6tDm7WHcl6QZNzeHZBkUbJ2ybVDbx7y776tkClCFsJ3spzSTpJmkNQp3bfSqrsli3SXJMqb3YUvtHFsQp48VvQBWewHtYYREMl2yKTnGnoX2IE5ZbquUtSjJzozRbJRmu4rmO3F7a8TWIERKtWE+C7i1OeCjjQGWrnFttpQXFSVelJ2JeTRMFPvzW3fajKKEJJX0/ZTpsrrXx8+3FyXc3hiy2Q9ZrLt44el7V3hRwv38OifZ08dze2ukDJT9mOtHwPAZY6Hm0PEipISbm0PKjknPiynaBl7oows41ygc2/VOs4fy4JJtTEID7rU97rY8pISyY2AbOpmUdLwIP8oQIuTl+d2Mi/3mcy9+uMaFsWKNXpoq0vNjhkGMH2fEScooSqjsMZ8kacbHmwOyDBolSxVogwQhwl0sVU0TjMKEUaQYhccZ0LDzfTqjaGIWrGuCMMlY6waTZtN+zDO1pqjPpuSYTJdtRlGCrokJc+20kKQZbS+iYKni37urPZZbPtsjdVjx4hT3GPcnrWHIv//zH/CVq1P8ud/7KTRNIKXk3/q5d/lvv/uAf/KzJ988WG57RIlkGKZYekJrFBMkGZf3CJ7peNFE8jQIkonp96RxqWvPxPw6DIZhwu3tIffaHjXH5FyjQLNoY2pqD3OQM4YXJdzcGmHrGp1RfKj3/+FKh+1+yErH4zPnG4yihybQUZLtMqOvP9Ic2G8uefS+PKtIM8nHGwO+cauFrmkULIOwkGEbOlEqsQz1+40tQzb7IQjJvW2Pqmvy1sXGmTBtTzOJFymmF6iz4AfrAxZrLmkmTyT04yAQgB9n+JFP109IM5it2EgEUXI2zp5BnNIZRYRRSpBkFCz1/EkpaY8iNCEeew5OHBLCVHK/7TNVyvj+/Q4VRzXjjnu+Oms47OxSfLQoBSCl/IYQonhEY3om2IZGwdbxo5SaaxIlGX4hpewYeLmRXJTuvQkeR8VKqQpGF5rqVxmGCatdH9fUDx1JvPM79/q56bJNkklsQ5tM8o6pM1dVE2K9YBLEKQVLn+h200xtTh1Tnyy84/+r9xm/t/rDKHx4AEgzOYlvTdKMe2218T3fOFsxmJv9gLdXukgE12cMCrbB+WZhkq7wpGsw/qdMqgJBNXuY1jPwY7728RZ9P6HiGkyXbZola4fMQUwKU1GSUTz9kMTnRteL+eadFtujiIpj8vJ8hZprHdhv4CQQJhnvrPRY7QYULZ3Zqp0zCB9uDIRQ3YTyI0w2U9f2XJyllHS8GF0IqgWTmYqNF6XM7fG9SSbJslwGtzVkruLSD2IWai4POj62oe/JWHz0MxwvvHsx0fZLw4nyYnrZMVioubSGIbWCtec9Pn7ON/shcZphDXUuNAtsDgJ0TeN84/E4+LPUsfpgrU8/PyS89giVul408+61pFE63c1Blknutz1ubo7ojCJmq05uoqko/6e9wRojzSR3toYstz0ymTFbc7k0XcR+pOjnRykbQ8USLfkRF0+Rqr4XDuJ+8nBdOzp084JUNd8rbA8SpFTFqkGY0PUiSp6BY4XHltJl6BpTZYsHHZ/5WnFS6G6P1Ng0Db57r4NtKPbzmFV1mMd6umQTJ8oeoOKq+dO1dFxLp2/r3G95WIZGYcd940cpwzChVjDJpJwwrKIk2/caJGnGnXwPNQpTLk2pPVSYqEK5JtRe43mbfmkmeftBjyTN8r1dihemzFQchBCTeVJKiLMMl70PmEIIFmouXS+iWbKpuiZJJmkPI2qnfAj4/nKX9V5ArWBydUax4WxTp1G0qBdUYd84RmPpn/3abbwo5d/+qVcm890f+sIF/tZ3Vvh//MJH/O43Fk58z2jqgmbJpmQb1ArqPt5vfau6Ju1RRJJlBHFKlKjG7+YgnBQd7YEa/1zV2bMg+7wQ5J6e+bOja+p+qxct5qt7zydJmtHxYgqWjmPqvL3SU1K+DH7k2tSh3j9KJbZpMF8rUCuaLOyQ5Zm6oOQY9LyYTKpzztMKTVJKvnW3TXsUM1uxeX2pdqbODTuRpBnfvd9haxhh6nBpujFJVHv0XFYvWFybLfGN2y36Qcw7D/q8tlA9E4UpUOvjQs2dnFE7XkjHiyg5Z2N8oO7tK1NFWqMIIVQRe7Xr86CrktyuzJSOxJrmeWBoYqKG2Rkg1BpFfLg+AOC1heqpFoCEEFxqFnjQUez2UZRyr61YlrWCyaWp4plSuhwnDluY+nkhxN8H/iqwnH/tHPCHgf/hKAd2WIxlLFGSstzx2OpHDMMEy9CZqzqESbpvhTlKU7JMsRR2bpS3ByFhnBHGGc2SReEQiR3jroihiz0nfcfUqTjK6d6P0sc6e82STaOoDqk9LyZMUgZBjBcpv6X5qoOXR9yPcWmqOCm8PP75PPxz14/x8iJM14ue20/pqCClZBSpLm6YF+WuTBepuiYdL973s0wzVfUuWgZWTaM9iuiMYjqjmGuzSr6wNQyJM4lj6pxvFJirOhPZYDlnn2S5+XKtYE4YMGd18X0SBn7ER5sD7m17+HHKVNHi1cUyry/ViZKM+hmY3JI0437b40HXY7k7wjI0pis2P/XGInEqKTsPZXWOqR9qYdseRqznzKZzuLmsY7dhuRclDEPVdV+suwyDmGwiCBSsdn38OCWIMxqRRck2qBZMzlMgk/Kx7optaLy2eDAfhzHut0f4UcbmABar7mOm6lGS0fUjyrbJQs1hsx8ihDp0CaGKuMMoRReqwNUoWooRMV0kjNMzcZ1BPdcPugFRkhEl6WOFqaWqw4VmAUMXTJdOdy5qDUN+9eY26/2AmYrNy/MV5qsOmWRSRDxNZJnyEWsNApY7HkKDpWqR3/rKLAXLeGx8VdckiFIcQ8PK16MwSen5MRXncfbaSaBgGVycKhAl2YEizC9NFRkEyTNJF8ZSL1NX8u40k7SGIbc2RwzCmMvTRRCSetGk6lpcmCogpeR+S7EOD24bfDBkmSTOMrIMtgZKpmEbOjc3hgjUun95ukTZMfhoY0AmYXsQUStkLDVcdE3bJd9/6vvlfoKOqT82N1Ucc+I9k2VSeRAKWG776ELQ82OuzpRYrLuMwoSZio0uBF1fHZ73KzLtfJfOKJ4wk3t+TPMJrNH9Pq+2p+T5FcdkGCas9wKkVIeKS1NFUgmzVRvX1NGFYrOamti34NAeRQyDhOmyTWMH42ax5rJQdU61oJ/le5k4lXy4PmCl4+FaBi/Pl5ivFqgWTCU/3MGAOUr4Ucrf/NYyv/3VuV0yUk0T/Mnfep0/8pe+xd/6zgo//YXzz/1ecZpNEvt2YtxYEjBZZ0uOSdHWuTilZP6jKKG2z3xQsJRU7721Pq1hhBclXJ0pT/bAYZLixwmuabA1CA9UmIpTVZTd755/dJ4p2gbX58rUCia2odEs2bRHEXY+D++FB11/4pl5daZEx4somAaOKSZN5SchTFJMTWMUJcyWHUqWToag6pi73lMIwaWpIvdbI3q+8oe7Plt+4l53GCYMg3TCtjpDPa9dWO/5vLvaZa3r45gaF5sFfvTaNEmmmps7lRBzFQfb0FisOwyCmPfXB6z3Ar7+8TZfvNI89Fx11NA1wbmGi5SKzd/zYgZBiqHDwD+e5/9ZYBoab5yvYeoay+0RP1jp8Y3bLQZ+ylKjwPbwdBmooFIiF+s2l6dKu4r6PS+eKJt69ehUC1O2oXG+WeQPTRV550GXvhfzrTsdMil5Y6nG5iB8UZjaC1LKf1UI8TuA34MyPxfACvDnpZT/4BjGd2gsd3w2+xEfrPeoOIoav1h3d0mAdmKt6/PeWp84zfjUQpWiY3CvpaQDk0QSWz90BV0I8cRNd5RkrHbV4TlKM7UQjSKCJGWqZGPqGkIIBkHM7a0hyx2PKMmYr7lUHLXwPTpx2obOdFnHi5S5Y9HWuTBVYK3r40cJQZzimDol25jEYJ6mn1LPi7m1NcTUBVdnyriWTmsUszUIEIBlqM20EKogtT0MJ6lYO7Ha9bnX8vDjhLcu1inYBkGsvICW215eBDRZqrnEqZxsuFY6PlGSMQgSXpl/2FVS8oXhxG9iP8PqMElpDZXnx1nRew/DhL/5rft8uD6k7BjUCiaGpnFpqnSiHmtPQhCnfPtOi7//9jqOoaHpqhh4rn40HQG5w3Gq58cTtp2la8xUHJI04/aW6u4PgoSCqdPL/19yTKIk5QfLffpBzGfO13B2bNietHA984FGwnLHAwR+nE5kuJPClQiYLtmMQuV/Y+oCQ9N4Z7XPatfn9cUqRfvh/FSyzx7V3jIEXpjRLD1uqHqn7fPRxpAwSXnlFDtrq12fX3x/jV/9qAVAebbIhUZhktyz3xpyUkgzyffut/m5768hM0nJNZgtO0ouWnUx9jhYGLpGvWDywUaf9ijiG3daTBUddE3QGkan1sk8zFzkmPozFdBGYcKt3MPJyVnPa72AzijkbsujYKk15fpshe/d79D2Qq7rJWxTp1lK2ewHk2TQo0CaSW5uDhWbO04wNY0P1wfUCiZJ+jD5rOyYbA3CCZPhQtPlQrPwTAel1a7PKEwnRVXb0MkyyeYgRNce3tPr/YD1XsD99og4lSzW3EmzrFG0du1lpko2QZxyd3uEa+nMVhwMXePydJEHHZ80yyZjLzvGpOD1LPL4R+X5mlAFJD9OaRRVwyrLi40/WO7mDIjyZD3u+TGjMKFZsrANnTjNeNDJpc5p+piHx2kVpTqjiA83BlQckwvNAhv9kNWux+2tEZoGry1UqBZMwiSl46km3HHg7/zgAT0/5g9/6cJj//Zj16d5bbHCX/61O/zBz597rs9qbFQ/llzufL7bo2iyN9Zy1vPmIMDSNe61PGquue+e7FFIKdnoq+LvbNliaxhi5wERacqBilKDIOZeSykP9pOHrvcCPtpQRuWfvVCj5JhU8v9g7Bun5HPjQtWj6IwiNgchjaKFrgluzJb5zr0urmVg5sW7jX6AJh5fi8ZBRxLFcNQ1xYoaBurZj7NsYvkxxs7rJ/d16VRwTR3b1LjfCZkumwfycDtp3Noc8te+cYdRkKLpsFgrMl91qezh8Quq2Dq+DhebRZbbHne2R/yP763z7mqPP/Ijl061aT+W8jVzFrllCIZhTJpC14+QUnKvNWKtG7DUdDlXPx3RkkCpM6bLNnXX4of3e7k9jeDT56s0CxbfuNWi4hrceI7QgufBKEz5eF2xj373GwtYmpo/awUTXQhSmZ06S278OD7o+PhRxsYgJIgTQOPW1oAwTkkyybm6e2bOcseFQ69uUsqfB37+GMZyZCjZBgtVF9cyqOcdi/2w0Q8nB9coyxj0A3pezFov4PJ0kWbJOrSM7yBQaXyCJFXpOEGcspJvmMapC2MoI2NoFhVz4+JU4Ykb9bVegBcqr55zDZcokURJCgRcnCoqBkp++D1Nacqd1pB7ufm4axlcnSmxUHMZeDFCg4prTjaYq12fQZDQ2uN1kjRja6A2v2vdgJfmKli6Rj9QzLAgzijUdN48X0fbYXjpmBpRkuVFwIevFyYP469HYbLvJmil4+OFqWJrPSEV7iQxDGJWu4FKIckyPn2+xlTJQROnP7Yx/ChltRfkvm6wUHV4daHC0jOmwDyK6ZLq7Ot54uUgUDKdR2VOoDbBm4lKLZyrOpQck+1hRCahYCq/qeO6rucbxQkjarmj0iedPRbHnh+TpJI72x7TZZvpsk0sFNOy6pjYlnbqi+qT4OfsLcvQKO2RCOfnPgoagvu5P9ZJw49SVrs+7WGMaQoMoTFdUkyp7dHxybkOgzjN6PoxnZE6qFcLBtdmSzSKNi0v2pcRPFVxsE2dMMq4tz3C1vVcMnqSoz953G2NaI8i+n7CpakiQZySZpKKa1EvxlQci9mKYlQ2izaagH6QMG2q5o6uaWz0H/dgeVbEaTaRmqUZ9PwI19KRSJqlhxLe7ZzRlWSSkiX49LnaLrPWw8AxdUa51+a4U7w1fChpGvvtCKGaZVIKFqo2RVsxi/fDek8Z8g4C5U3lWjqOoRPknlkPOj435soTo2k4mr1G2TG5PlsmzjJKts4Ha0PiNOXdB310TSPLIhZqil0XpxnLuWWBH6dcmS6hC4FpCOJEnqk58721Ppv9kHUR8OUrTa5Ml/Aj9fnaxkN22oOOKjS2iI58DFJK/sqv3eOluTKfv9R47N+FEPxzX7rIn/5bP+Qf327x5SuHk5ftxChUa7KUTBqmT4Jt6Cy3fKI05UE3oGAbT/wZIQSXp0osd0YkmUHXi5V/YwbkLKJxQfVp8KJ0EoDgRcmehamOF9PO5+WOF1N65OC4817bax+S5DYjtqlhGRqmrgzux8XYQah8BMfsjkd9soY5+388v+ianu9/1BljrzPQQs3FNpUH09OeBT9OcUxBzbEIY1XsG1uenBXca43o+jF+JJmrWLy2WKFeVA29JxXFx1LZTy3WuL09Ik4U+22tG5xqYSpKM1rDaDJ31QsWl6ZKCAmzFZeeH3Nzc8QgSAiTjHrBPpWGZJSocSappOIaNEoWwyDh8myBL12Z4tfvtNXc1oep8uNp0SeBNJPKBzFKSXfUYE1Do1FW63t8AL/L40SaSdZ7ASsdD8fQaRRt6q6JoetEWcogTLizNUQT8NLci8LUgSCE+Fkp5R89qtc7DKIkoz2KaBQt5ioONzeHvLpYpVG08ON0Qod+NP40yyTNksmDnqBoGtRci/ttj54Xo2uKxm8b2mTDKKUkyeRjxp5ZJtkahpi6diBpAqhN2rWZEj0/pmjpuceKWqh1TbDZDwhi5Z0wW7bxo0QdkjWRdz/3vzELlo4XppiGIJWSjhdSsAymzYcFllGU0PVi6nmx6zRQtHQedD22hyGaUHKrK9NFipZOs2Rxcephh0fXBH6c7LkZWaoXWO+HaJqS5flxStnWsXTBcuQjpaTrq6Sy2bKjClZRwlzFIUw8Vjs+usake1q01eQaxOmuSbTnxUoaV1LFirFWWctZXaeF9jDku/fbxElG2TFpFC00Ibg2W+JCszQp0pwm/CjhW3db9L2E2aqNLmC6bDFdtHlpvsJUyTky2eTWUElwZyvqNa9OF1nvh4zyLv64u7/c8ul5IRuDkL4fT+QgSw2XrYHqrI43NEmasT2McM2jMSIcS2dAdVCvTCvG5ChK6HkqgexcvcByd8Qo0ljuePTDiLJrULB0agWT29sjpJQ0drDMtochmVQG6U+7J4ehSnqpFsw9O8fbw5A0U6/1PIdKKRWjIcvNnB/Fpxar/OL7G/jh413d48bbKz2+v9yhZGtUHIuZik3B0pkuOyzV1XphHqOfy9MQJRm/fmebrhczX1F+QYs1h7Jr8Oa5+qQbbOxzfdJMUnEMyrZBnKgu65WZAq1RzEL18cJDz4vpB7G6p4TqlJ8VX60xwkQdFJ92mI2SjDjJqDg6timQSKquQZxmfPnKFIaukaUZ37rb5n7H48ZsBcdU19q1DPxIScj055zbpVSdb9vQ8nTNmKWqw0ovo+IoCW+aSYSAmmvy0caA9b7yt7s2U3zmohSow2fZNkh3ML/Ga0GcZrRGAYMwztmiOpetImVHSQXvt0dM54y8R1GwdAaBMgtX/owJfT9CCekEjqkRpxkb/QDL0A58GEkzyUpHJYYt1FymSzZJllF1VfErjFN6fsRaL0DXYBiklBy1X0gzqLrGhGGg1mW1pxo/w5omuDpdIkgyisecbPckxLmpPFJwZaZImmU5s0elEV+dKfPVq1OUbRNDFxNfIrX3TDmOKek79zq8t9bn3/19n9p37fipNxb4937+A/7Kr919rsLUVMlmsx+QZuzyNwMlZw2TlNVOQJikgMmFRoEgTrmzPWKt53NlendRJMllgTvnKtfSWaoXJuzoimsSJmp9XOl4tEcqJMh8yr6jUbTwopRMqibmo+EkgyAGMtJMMTPL+Z5hvRcwDGNmKuoZujar1rZH5y2V8guOpaNr2sTjzDV1QLLSCVRIxI5LouuCJM0Ik4xCzlpc6wVMlS2yTObsuxLXZtS9Xsifx51nF10T+z6Xaz2fUZio4p2m8fHGgM1+hJ5bIrhngC6VZpJ3H/T4cL1Po2STZZLFqoumCz69VGeq5CDE/mbuYwhA1zRmqy4/dn2GW1sjdB22hgH/v2/eo+iYfPX69KmwVPw4oZz7SV2ZKfPbUPfV+WaBj9b7fOdemzjN+NLlqX0loseO/OPVdSWf/ur1KXpezMvzFe5sD3nQ8dgeqpAipOTW1oBhkHBtpkzhhM6eVq40eHWhjLuDbWobGuRy8bnK8zHi00yqc4Oh7dvM6oyUxdB0+fFAs/GU0izZGJoaa89PGIUx37zb5uONIW+er+/ZvP6NhkPdFUKIx9so+T8Bv/P5h/NsSDPJg44/kXsBvLPSV54IukBD4EcRzdyDZYx7bU9VdqdKXJoqkkmJQBkYV1yD+Zo72ZSlmZzIAuaqzi4q7cYgYHuguiVjL5uet3cC1U4EScZa7pdwYarA1ZkSYZzR9UP+5/dbjKKEC80CC1WXZslhGMaqi9sLJ6kMe73+fNWl5qoi1ocbA8q2ia7v1qnfy1N/hmFyrHIOP0oZhDE19/GkM5HvGjuDiG/d7XC/4/PlS02S3O9r3EUCdZBPUolmPb7ImIbG5y7WCZOM9ijkhys9WsOQi1NFLjQLjMKErUFEdxTw8caAB12fxVqBc40Ct7eG+JHy6DnXKEw6R48WMYM4nRjJx2nGuUaBc/UCfTfGtfRTK/ykmeTrN7f52ocb3Nn2Oddw+dRSjQvNIl+41KDkKFPX05Yafudeh1/+YJuPNgc4psYbSzWuz5S5NlfmlfkKYZI9lVY/NtiNU8mFZmHPLtgoTNjoPdS0n2sU8GMl1wR1gJ+pOPT9hLutEcMwxgszLjSLTJWsyYLyqUU5kbeEcUZrFE0i2a+ZpSc+18ttj54fM1fdXwbaGkUTicqY2t/xIoJ8rCWnwuYgZLWjimZhkjFTdKi5JvNV1en93MU6t7dGtL0IifKT6Xl5SABPl54ttz2SVKW9POr71PNj1nI5hYDn6hxuDxRrpRdEXJ0uMbf7rRhFyWTPvdEPnvl9DoubmwP+++8t8+H6EMcUnKsX+dylBq8sVHl5rkKcSTIpj8Uc96D4zr02X/+4xUcbA5CSq7MlrkwrM9FPLdbw45T0CWPs+zFFW9HVS5ZBnEnutXxKtpLHVHbMC2kmWe6odeGjjQEzZYeire+ZfAXqWbvX8jB15VlyEoxRL0z4+s1tvCjljaUql55QyNSF8hRJsowwloRxnEvLInp+wlLdZbnjcafl0fdihtVkwiparLk0cpbfsxbmWsOQtV7AwE8oOcbkYBgnkl/6qEXZ1qkU1PMspTJnXe56bA1VWEW1YDJXfX4W6XbuqeRaIVdnykyVbDqjiO1hyDurPUr5gfjydImirYIUvnWnQ5xl+64dMxWHsmNi6gJNiEl4jKlrnGsUKFg6D7r+RL7kmvqBDnYb/YAP1gZ4UcowVAmJwyClPYqpupFK7R0EhHl664VmgbLj8OlzdeJU7mKz6Jrg6kwJP0p3PR+GrlHa416NktzA/SmypqPAne0hH64N879lFCyDRtHko/UegyBlueVzebqIm3t53dwccW22xGLNpew8mS30rPgr//geZcfg9765sO/3OKbOH/jcOX72a7dZ7wUH8j7aCSlVuITyflKR9xuDcJdCAFTC9GY/Yr0f8FtemcEx1efTHVmYhmI+jA+1nVHESsfH0NX1HgYJmZQ0isoX9tpsaVLIbhQt7mwNubUZAkrO+spCdY+RPoSpa1xoFJRvZ8ujVjBZrLlq/xAkeHHO+M2lsXEmiZJswkrc7AcTP78gVhLh8dnAixJub40AOJ97yI0lvbWCRcEO8nk2w9AE8zWblbaS3CapRJDbIDTU+QHgVz7apOclfG+5y3TZpmDq3MzPLrNVxVjpB4pB1izaj+1dwySdnGc2+mEuZfRJ0ozXz1W50Cyeijfho1jtevzdH6zywXqfKMn40pUGF6aKXJoq8ea5mkpwNLSnjlXTVHHYj1IuNgt8f7nDh+sDfu67K9zr+Jyru+ga/ORr+z8Xx4UklYzdS+Isy0MdJLc2R3z7XpvVjk+jZBJn6WPnqyBO6fuqyXmc7FDHUOzaimtwZ3uELjQ0IXh3tc87D7qMgoQ4y7hxtcl6P+TO9ogsU0zELz1HcfswSKUilPhhRpJmk72KLgR3WyPiTLLRDx+Tdh8Ga72H692YibgTUZJNVFFR+ngTVhOCy9PFyX6uPYqIhjHfXe7w9364Ngnp+l2vzz/zGD8pOGy5cgu4x25/S5n/feaoBvUs0DUxMQ/2o5QP1nu0Rg4Xm0Uqron1iOngWs/nnQddyo7Sq48XDU0TuJaSOhQsnc1+QKNoEacPo50Hwe7Y+p0dVV0T3GspWc72MOKVhf2LPmH8kCLc82KaJYtqwWSt5+PHCWGcEadZztISFCyde+0Rm/2Qy1MFPtoY8Olz9ccOoH6kJikt7xZIXSUW7oRtaIzClH4Qs9k/HsqqMuodkmXQ91XKz3futOlHCZ+70KBg6ap6rSmz0qJpMIwS4lSZw7ZH0cRzKMjZQHtZfoRJikAdQtZ6PluDgM1ByFTJIs0kRdvg5uaIlY6HQLI9jIgSiYYycvXDlPPNwhOTbnYy2sYHFU0TuzyRoiQjTNITYaAFccr91oh3HvT5YK3Pg67qqnU8ldo2V3VI5bP5ehwlNno+31/u8O5an+X2kL4fo2sW7VHEtdkylq5j6tquLsZ+GOWyTFAG/nv9bqau0RqFBFE2CQEwDY1hmOSyTHW9HnQ9toYhfpTQLNrUC5Za9PPDo5c/myttj1GU0PFiavlmUnsCgyJJH0Yxt0fRnoWpNJNsDlTRa7psTzYUWm5oXrB1NJHLDPsB26OIc3WXqfw5VylbGlGiOq3r3ZCen2BoAj03Ot6rUDr2XBt3ayxDI0kf39DA7i7j8zJmNF2wPYxIZcbd1oirs6VdHefWMMoL5YKud/QSlUfxzoMuP1juIYQkCFNGYUSaGQSJknrpQhUjSqe4+e56ER+s9fnGrRb3tkd0RiEV12RrEPH6ooFjGmiaeOrz7Vo624OQOJVomoaUkCQZvTTCizTCpEezaDNXdWgNQ1qjkIptToqwQZzRGUW0PdXY2TnfdbxoEhIxClOqheMvTPWDmFEe3LExCPctTEkpd3w+kjjNWOv5rPd8tkcRVcckTRtUXANNKLZCyTF2MVH2kuwcBuN0vdYoxDRgrR+iAXGcMfBjPlrv8/JChaKl48WZsiCoOehagGXo1AvWU9kcB0EQp/n/M/woIZNq0+aaylDXNXSSTH2PJgR+lPDhRp+uF7FUL1B2zD1NwU1d5MnCau+VpCosZHxPjucVIVANN8/bt5McJimbOat1zP4zNI2BH3O35VGyDSquYnamqUQXAttQ3mOmrnFzc0jRNh4rcNjGQ3/QOFXJVqmUXNzjcD0I4l0px0eNJFW+IWa+Tw3jhJWOhxdFaJrGKEwIU5Vq1fZCrukltoYhM2Ub0EhSiWlpx2KAu9kP+Pm31/jnvnzxqSE/f/Bz5/kLv3yL//pby/yJ33LtUO8TpRl9P0EiGQQxVdfcc60aH8ZTKSc2BCXbpJyv6UVbR0pJEGdsDgLutoZ4Ucpm38fUHxZBmyUbTQiCRDEWMykZRaqoWTpEgS+VkjhRgwqTlCBJGYUpGeq+KTsmRctQsjhTsTOURUc2ka8nacaH6wM0IWh7iq01zCWNoPa4M7msaJxOvdLx8MOMqQmbQz1rUSzp+RGNop2zyh5CMSpiVTTWBF6U0PdjDE3w7oMeH+kDtocR02WbqJmxVH/4zEgpCaIUXYc0VQznKFEpnWmaTRIDTxOdUcg/vtXKG4eKXSk0aI9irs0qWaLkyX6gj2I8T/SDmGrOFu4E6iyyOQz53v0egzDlc5fqXGicHKu77JiE+ZzUHcVI1H0Up5lirQlwDIOSbbHcGfHrt9s4psYXL0+x2VcEhq4fc3322QsuT4MQDz/rIM5IMnX2bRRNun6MJgRelLHeU95xy22f+arLxaZSJoyDyR5VIh0lkjRjresj2F28UPOvOleEUbrfjx8I4/OjEOx5RhjXKNJM7qpFjFnqsPu8Nl4/u6MEIUQeQJDw7ftdBBLH0LkxV5mcC34j4bCn1tvAb5ZS3n/0H4QQy3t8/4nANjWuzZZyWrnGRt8nTFLubCtj7dfPzVO0jMkBq+tF3N4aMVW0GUYJ5/KJ2TF1Lk8XiZKMsm3wq7datPIH7KvXpmmULPwoeayIM5NLhgz98Srpk1AvKKnhKFQm2ut9f7Lhem2xSs+PuTFbZqZiE6dyUrDJMpVyVXZM1nsB9YI5qQCPDfxKts6nz9W5PF3EC9OJhEZ5KgkuT5dUFK2A99f7rPaOl6mQZZLv3+/w995ZwzV04iTjp79wgZfnS2hIEim5NFXk2kwRL5K5uenDDdhi3WV7ED7Wve15MffbHkIozwgvUt2ygqkTpYqFI4Tyk6oVDD7eGKIJQdk2sAzBy3NlhkHC5y83n8h6sg2dK9MlgjjdM046STNubg5Js5OJvH/nQY9v323x7oM+YaJSt5aaBV6ZLfOV6zM4pn7qZs3b/YB/9PEW37jTxg8T+mHG9bkyc2Wb3/Ty7CT++WlMiyDOeND1mS3buURE7pvIk2QqRty1HlYwC6aOIQRBnPDeWp9KvhluFi1CS+dLl5tsjxRb6ebmkBuzZbwwYXOgjEYtXWe6pDFbsanuwfwD5Ut2c3PI+UaBqmvSD+J9U/Hao4gsg3pRyS7Hm2hdCKRQsrfb20NcS5t0x2/MldWGdhRxa3ukPEjihO1RyChImCqVMHQ1RtvU92Q5jLu4YZIXLlOJY2lc2sMromQbXJoukh4B226x6nJjvoQXpkyXH5cYLrdGDIKYJJPMHpP/gJSSlY5KWvyVDzZpjyI+3hpyru5wZbrMmxfqVB2DC80iC7Xj3SQ9DV6Y8Gs3t/naR9u0hgF+nHF5usRc1ebGbJXXFqtMH7CRYOmKVv6VnF7/0myZex2PUZTRKBgUrBLbwxDX1HjQ9ak4JpmUTBUtojTl2lSZ+zm7Noj9XYfiesGi7yeYupiY70spWW6r9Xex7h5qPTwIbEMjlWodfFTOsxMrHZ8kUyY2L89X+MH9Lhs9n5ubihHjRylbw4B6qcLvfmOBUZQwU3aPtLOs5HAeNdcCBK6h0RpFhHFCLwgVm1tAkkLNMdDy/cPL82VMXVDb4bH4PFiqu7SGEY6pzNbX+wG2oYIg3rpYx9A0FuoOrmlQcZQfT8UxCWPVFGsPI6quuavhkqQZP1jpMQxjrk6XHttnpJmSGBcsFc/9zoMeW8Nw36bNWld5VkkkN+ZKGLqgUXT47r02K22PsmtyoVmkYOn86PUpwjjDi5T/44Ouuq6gJIZjQ+PxoWOu6lBxTAZB8rCx4cXMVXdf67JjYhkR2REa3o8hpeR7yx02egHzNZe6ayk2WJgSJpBmCWVbybRnqjZvLNbIUDIyU1fSqectlD4Jf+Ob90kyyc988XHT80dxvlngR69P8ze/dZ9/5SeuHI4pKdX6F8QJryyUqTjWnvupN8/VuN/2aJYeNm6KtsFLc2VEbk1wZ1sxljpehK5pDIMQ3zHppMlkTc1ypUOcKP8bL0zY7Ie4lsbrSxXqBWviDfUkmLrGQs2ZyHB6fsxGP6Bg6byxVMPQVeNbzxvboMz647xYOw7Uud/yKLvGhGlWLyg/nvGfx7jb8rjf9vjGnRbNos3FGcWcLDsG24aAVB1uu37E+eZuxtdbF+qs1QKqBRNDE9ze8ukHMVmmfv5+x2OQN88uNNXZZxQmjCLVvBsGKboG12ZKOJaOa6gGva5pDMOU21tDTF07Fu/dpyFOUn75w01+8f1NgrwBf2mqwELN5bMXG1xsFp/LF7TimEyXbb5wuYGO4N21Pq1hyIfrPW5t9dkahPyhL5zf11D9KGHpav83libXiiaDMOb6XJkoyciQGDos1Qp8arHCL7y3wa/faePFKboQnGuo9fEkr9BSw6U9jLBmNSTwo1en+M79DkXbZhDEmJoqsKcywzJ1ltseaz2fRtHiC5eax2ob0A1iCp7OKEqpuLlkPz/ze1HKa0tPZk4+DbMVdT7Zj6U3ZvDeb48U4zdMcE1dha3tseaUbOW7HN6Y5kHPoz2IWay7vP+gR8ePJ0EYP3pj5lRZ/ceBw+4a/2OgDjxWmAL+r0/7YSHEReDXgfeBSEr524QQfxqV8ncP+CNSylgI8YeAfwVoAz8tpew/6XUVxU3daBv9gKpr4YUpqz214b61OeTT5+t0RhEdL1IblCTF0jReW6zuqqwXLIOCpbprY0PBUaTc8B+Vd+3Ezg37xWbxqdHiaz2VCDdXdShYKQ86PluDRGlhizqfWqphG5o6xEr1+mGS4toRFxpFojRFExpOnjAyxv32iNYwojVUnkkV9yGNc7nt0fXiiTyj6pjc2R6y2vUfk/IcBZJMYusaMRkXmi7fv9/FDxMGQfyQKRakOLbBnS2Pkh1QL1i8cb722GvtlzTW8aLcGF3JHGcrNgiRM3DU5zJO9vMjSck2mC47CFQiYSbh4nTpQAdR19p/c5hKOWEZHGfXNU4z3nnQ41dvbtEaRNze9ihYGkuNAj/58ixfuDJ1JhIb1ro+X/94i482Bqy01QFhqmTx6nyVr1yb2hVF/TRIqQ5HUyXrqT9n6YoV0h3FE++lJMtY7ft8vDGg4lhMFRVjyI9SKq7B1ihS/hRCUafjNEPXNM43iug6zJRVrPCTPtcsU4ddtVHc3zQY1OFJsduUv9PYs2JrFHFzY8QoTjANjRszZeJMkmQZwyCZpINKqe6xNJMs1QpkUjJbtSlYxhMXqDjLuNfyWKg5REnKg06AYynpzl4z1VEx/zRNcH22zGY/5NLU48WErp9QsFUaYpg+X9dqP7RHEW8/6JGmGZvDiJsbQ0ZRzKhk8+XLU3z2Qo3zzeKpFqRApTf92sfbvLfW4157SN9XB6G3ztd5/XydV+Yrh9q8beRpVhXH4kuXp/DjlPudgJKlYerK27BiG3z7Xod77RGXm+owMk79Kpg6BUsZaO9MAhvH2pcdYyItBbVWdryInhcTxBmfes7N3hg9P+bO1lAxLWdUkbbyhKKNn2/OEYIHHZ+PNoe8vz6kYKnnuOraZJliO1ydKXFUgoJBELOdF3IGQULR0inYavP7w5UeuhBEqZwUuC9MFakXLD7eGOKFCa6hY+gC1zQIE/lU494nIUxS1nvK4+lCs8AgTBhGKX6kWKHNos2rC1W83GS7kMvGGkWLK7MlHFObMFoe9S/xonRiLH5X81isP5TBh0nKzc0hUqoihmMabA9CHnT8fVkMY2bYuGhfcgxmK4IwzXBMA4GgWTKxDWXX4EUJlq6TSDnZ/+gaO5h+6URWsTUI0YVijiAUI3LMpt0Jy9C4MXd0zIIsU3JwCdi6xsfrQ7aHEUkGjSXVQLAMjdYwZLZmszkMmS07XGgUaZTsQ8vknhVRkvHXvnGfH78xvef8vBd++vPn+WN/7Tv88odb/JZXZp/4vUnup9gsWnT9mEbRou8LWqOYenFvL8SSY+4psdtZcPAitT8vWDpTJVt5u+Q+rEt1l3rRUuySnOn08caQu9tDBkHC5elS7md2sLCNUZhwr62Ye7ausT2IcvN0sa/aQAiBZYjJZ5CkksW6i4TJ52zq2i6p9ChMaA0jCpbGZi9gsxeRZjDw1bpoGzovzVXYHASMghFpkjGKEqp5oaQ9iuj5MVMl1fDyoiT3iXQoWBqpVKzT6aJN2VUhUWOLhDG7s1m0STMwdMH9lvLiSiU0CxajMCFJdSDdFU6kJIrhY8qMo0TPi/nO/Rb/+FaLzX7AIEy4Nlvm85ebfGqpxqvzlSMplM1XXearLku1IvO3W3z95hbfvttF1yS20eUfvmvzYzemmT5mE29dE1zc8TxWHJNXF6pkWcb/+O4Gy1s+UhMYus4gP6tuDQM0BH0/5spUgVvbHoauWDonYTeyM4kS4MN1jWtBygfrfQwty4kDKlhIy8Oqbm2NaBdjLjWLjHd/8xXnSItUUub7WU1ZR4z3DtNlm/mai5TyuZmoQogDvcZ6L8CPlD/cjbkyq70Afx+2lmvpFGyDq9Ml3o36jKIUP07xwpRUCnpBcqznzdPCoXY8Uso//4R/+08P+DK/IKX8GQAhxDTwE1LKrwgh/nXg9woh/jbwx4AfBf4J4F8G/m8HHWPFMdnshxQdnWIgeNAJFTuqbPH1j1p0vZilhsuFZnGitwY16XX9iHrRouKYmLrGG0tV7rU8zjUKhzJmtgztiWyVYZhMNNxx6qEJQSYzyq7Oek/p3h1DY6WjkuiEgOuzZQSC+aoyM9U0oVKGUtURsnSdcw2X6bLN9kAZfXs7HkApJWs9H+RDI3cEVB0T380Ik6PvEm70A7woZRSleFHGjfkS91tlRnFCxwv57r02s2WbIO9e+1FCmmV7Fqb2Q2ukEobutUY0iiYgWaq7KHsqyXtrfWoFk6Klk8mMei7LdCyNJJPcmCvjR+kk3nqMLJMM8or2Qa69begs1By8KD02ppKUkpubAz5c67PS9ljt+Rga1AsmcxWHG/PVM1GU2uwHvLfaZ7ntcXNzSBClFCyNqbLDpanCM6W5uJZ2IHPHMWsxcSUbuRFhz4+pOgZpJkmShH98e3uSfDNm5S3UHD7eGE4OZ4t1lXrSLFkH60bkUs+DFHOKtgpakFL5Y7wd9ShaOmma4VgaAz9jpeVxc3NE0dSpFAx0TWOqqNgBKopXY77qsjkI82Lr0+85Q9OYrzqU8k79MEwIE0GayslKkGbKc+ooKPv9IGZ7EGIZGsttn9YwJEoyvniluev7Pn+pyddvbu06WB4lpJSKVbExYLXr5YxYHdOANMmYq9pcni6dePf3UXhhwjdvt7mzNeKdlS7DKMU1NW7Mlrk0Xeb6bPnQm7Uky3hvvc9ySxWwP3O+wWLd537LY6lW4qX5Cg+6Pn0/oWQpo+VzjQLtYYRrqabHpaki7VGEgEkRteNFE8nqmH0D4BgqBbM1Uka5j86rz4qPNwYst336gSoiLzXcfeeD1a6S7Bm6+uy+fbfFOw+6CODGbJk3zzfoBzH9IEFKdb9XHONIrr9KRI35cL2vmiVCYxjFGBrcb42U50HZVtIRU+ez5+t0vJhmySROVLHaNjUsXRWonpQo/DRsDR4mDpMn05UsjdU0Y5hLB6SUE8+PXi75kKjm2qvzFZJMYmhKetT1YqZKNo2ihWvp1AumiqLfET6TZZLVro8fpdiGzjBP7au4BoWROtSPEae5n55tsFB1KOdSyixTdgRppuQKqiCv8cHagDvbI+YrLrr+sBl5qVkgTDJqrjmRTlu6hmtp+JGSSN7ZHjEKE/w44bXF2pEz+fZC23voI+iaOralowswdBVIs9Ie0ShaLFRdbm4NCeKUJMkoO3VKT2hqHjX+wdtrbA9D/siXLx74Z37zyzPMVmz++q/fe2phKk4y1rqBagbaBpsEbI9CFk2XBx2fyvzh9ixBnPK9+x36fsxCXXkrWYZGwdKwDJ2SrWPqau0ydI1zDZe+H7PcVfPp5iDFMgUtL1JhLAdgn76/1mc5T4ytugYlx1D39hOK41GSTXxJl+ouw1ClfX/mfH1fZuaDrk8YZwgh+OylBiu9gCRJWazvHqOt66wPlMph6KdQzZUUHT/3wx1woVHkXKPAdNmm60eMwpRRqBJK5yoORVvNeVkeU9bxIto5s/LGbAUjT7bWNUGjaHFhqkCaZqx0AsUM27E/WOsFDIOEnh8/9bN8FoRxyrtrPX7tZou1ns8glzHWCyaXmkWuz5SPfP2uFy1eWazw3lqfxarF3bbPRj/ge/c7NIs2b106mG/eUaPrx7z9oMt6L6BsG5Qdg81+wNbA51zVpeKaXJ+r0PaTSfplaxieSsJg1TXRhCoGSalTsk3qDYvWKKQzihBComuquNwLYqL8HGrpTz5DHxaGLtCAC40C06Wd/tAhd7ZGyvoGgWMpCf3zJvGGudS37Bi7mp1ppqw+4lQyDBPiVDJbtidyzb0QpRl+nNENYnpBzCvzVS7PlBj4Sl57Z3OIa2okmQoUOwvp8M+LZ1r9hBAO8MeBr6DsCr4O/AUp5UH0YD8hhPhHwH8HfAT8cv71XwR+GngPeFtKmQghfhH42cOMrZhLtFIJhtAQOkxXbG5tjljv+7RHMVGa8OnzNUqWwftrfYJYRYWXHZNRmPLKgppsFusFFutPZj88Cyxdm2zAFI1XsNpThp7TZYcoSXj7QY/uKKLsmozChNuawI9TDE3ROy9OKY+E5YEyWhYk1IsmV6fLtPNO4fZQdXWEEGzmPiNdL+T1pRpCCBxDp2ibXJ4xJnLGo4RtaGwNQwZBgmsqdtdczeG91QF9P+Y7dzu8PFdWaXqWgWFqrHYDbm4MuDRdemqFX0qp6P+CPHLbYbaiUt42+gGtYZQf/hXt0TQ0ZQJraoQxDIKE7WFIexiTZpJzDXciA/hoY5CbUBvMlm06vmLgPGnCapZsmvv+6/NjpePzw+UuX/tok+1hqLxWBFRci9/66txj/hqngX4Qc3NzwNc+2mClF7De85FA0TF481yNr16bRj/kxOlYSka518Zj7DNh7zApLlo6H28OCOOU9x50ma26bPYVG88yNKIkY+CrTaUXxdxvK0PSWsEiy7uGM2XnwAmboA4eT2KzjMfpmCrls+zobA0zVto+m4MAxzSwDWUkXCkYmIZGxw/RATPSeNDx6HkRpqEKb6s9nyvTJS4d4tBvGRrNksVUyc7nEuV1srPw+qDjq/lEwEtz5X0XuWEQ8+t3WggEX7zcpGAbeJEywzbyTt9q1ydOpDI+9yLl05ekhEm6a2Oua1AtWthRSsc7+o1tEKe8t9qjNQq5vz3CtpVvhq5rTJdsmvt07U8SXpTwvfsdfu3WNqttj2HeQdM0wflGgbcu1p/Jb0hm8PHmgFGQ8j+/v8VcxWEQJFQLFqmEjq867H6sCghXZ0rMVV3lz5cbryp/JhXSEaWSuaoK3QiTFInEsdS8Mzb9bxRNSo6BnrMQnxfKiN9nsx+w2HA43yiwUHMYhAkly0AIdaha74VIJB+s9dkeqpSdV+erbA+jScLgmxfqXJsp8dGGkqP0/Jj7LY9myWLhCYzop6Ezirjf9vCihFGQ0B1FaLpgtqLMkH/9Tpsf3O+qYtTFOlXXoupa3Nn2uDxdYBS6RLHyQ5wq20yX7IknxbPCNXU6xGia2gt0vYgHXZ+ybTBTsXlntUtr6ND1VJGuaOtcnipyt+WpwpKpqUKVlGz0QqI0xY/SibzsrYsN3l3tYxmaKjA4Bmu9gL6v5FUXmsWJDOVco4hjGjiWuoellHy43ifLwDI1XpqrUHFMluoFtgbKpsDQVfHdNjTCVBmCB0nG1jDkxlyJYZgyCmLeXu1TslXxfjz/xllGEKUIYBTErPZ8RkGCY+msddVa8OhnOzbzH7Ncnhc7i4ozVRt7XUMKuLvt4wXqgGJbBu+udrnT8nANnd/00iyvLlRPNAnzL//aXS5NFfnRa9MH/hlT1/gDb53jP/2lm6x0vF0+RftBy8MI5ioOt7aGrHV9Xj9Xe+LP3NwYgIDFWoFBGLPZD2kPQ7aG0cTHpVawuLk5yENsfIqWsge4MlOkYBnUCsobz49Tvj1UchikwMz30k9SNowxLmSauvJSKzs6d7aGbPQDnJxNfWd7SJJKrsyocJSuH02YEHe3R/Q8xRa5uz2azKGPwjY0wjhnNBZsqq5BkuoEcYZEFeiTTDJfdZgp2eiaYtZ8uD5gaxgw9BMMQ5BlygJhexBOUg7vbXvc3h5Sc01eX6ry6qL67McpxXe2R2QSNnohry2qe3e+6uRFZ2fSoCva5mNzk21oDHl6At6zIM1Ug/l/fm+dHzzoqQRTTcM0dJpFi89dbBx6T3lQnG8UuTFXzhk/Aj9MeW+1D7l/65sXaifKso6SjA/W+gx8dY7RdYGB5Ft3O3RGMV6ccXnOwdRgteOz2g1olizOn9LZYK7q8JkLNb59r5UHcRmcr7vEGXy0OaDvq2RXpLqn77VU8dc2j/4zVQn0JlkmIX/0hkFCkkniMGVjEDJVsvEiH8fUudsaTRpzpq6x3PZ4e6XLbNXhzXP1J87Rt7dUOIFrabsM1S1D5+KUsguarTq4ls5M1cHP2Z+PYqMfsN716AxD4iQjzWAUxvzY1XPcaXms9wJut0YqYKxgU3aMQ6lRziqetS3zV4EBMGZJ/UHgvwT+qaf83BpwHQiBnwMqwEb+bz2UTLAG9B/52mMQQvxR4I8CnD9/fvL1QRCz3PZZbnlkUnIpl2ktNl2+t9xhve9TLRiMwmRi2LnaDRhFCVEiJ7G8O9EeRYRJynTJPpJqpGWoDV/fj/loY8hGL0AKZdb6wVofKSWm7tP1Y67Nlqi6JvdaHisdj1cXqiRZitXVmCrZSCT3Wz6mLrg6U0TTVLRw30+wDW1y4FKx4YpmOT5wVwsmV41S7sF0dBTcYZjwoOPjmBr1gmKqhEmGADRNBwSr3YB+kGIagpJtcnm6yDurA3Albz/oMVt19u1GpFJ1ZRtFi8Wai6FpNAomU2WbG7Nlyo6ZyzVC1vNY6bWez3fudpgqWSpRyBa0RyFubhS90vEIkpQgyQjjlK99vIWl67yyUCZOslwK6D93Jf1Z0fUifuWjTb724Rbr/RDHBC9OKbkm81WXl49QgvCsiNOMH650+Pm313l/rY+rq4OsoWtUHZPXl2rPtIEQsG/hYKXj0/ViHFPj6kwJL1KG/lGa4hg67dy42dZ0LkwXEUj8KO/wlywQgjDOVGcJJduTUrEuqq55KBnNkxaquy2VAFq0VYLJ9igiSjKqBYM723lBRsJL8xWyneaIAgq2jh9nDKOQkq1TsAwsQ2OjrzywDtpZMjQxWbTqkMt8tV1z2k6t+5O4S9+73+FXPtzG0AXNksUb5+p0vZgkVZKFYZBQtAy6SUzJ0XmjUuNBV3kUPcp0ud/xuLUxxA8TPvuUg8phMQhivnGrxa3tEV6QEGUSoox+qMIYMiTuMcoPDoIwSfnm7Tb/zbfvs5r7LdRcm81BQN3VKbkmcZZhcrhnJ0wy3l3r44cpaZpRL5psDSMKpsHt3H+xZOusdn10TTBfcyYpcO1RxPYgwjQEizWXMFbm4YNQyUSUKfFDK9Gdpv+aJrjQcLeqnTYAAQAASURBVDF0cSTMlNVcblMtmDRc5VXxtY+Hij3s6KQSbm+OMHRwLZXiFsYZwyjFi2LaXoSG+v3mqy6Grjwpx8mTQZzy8caQMMm40Cg8U1HgndUe24OIoqUjUGlWcZZi6cpw+fbmiO1RiKYJ4lQFouiaIJMSS9e5Nlvm4lSRMMmOTELbLNmYusZK16PnR2wOQrqesjMAqBRMbm+P2OgFDMOEl+YrbOfsYz9KaZYsVm1DSTgF3G/5VF0DP0pxLZ2irWScXS/Ow1aUZEQTIje3LU6K3mNplZP//c72iLvbir3YKFlcnlKsl+ojvlrnGi5TZQtT0xgEW0jgynQJKSW/9MEWcZaxUHVYqBV2yV4+3hjy8eYIUOlsjYKFAKZLygdkr0s8NvP3o6NhbZYdk2uzKiVurRsQJClTRZsP1vsst0a0vJgLDZc4zYiSDC9OQWacZI38W3fbfH+5y//5p1459H3/Bz5/nv/XL93kb35zmT/1kzf2/T7LUHLxsYxzrR+oJO2e2k/t9Fncia99tMX373epFUy+ck0QJsro/J2VHpqA+ZrLdF74tA0dP1IMvNYwouKaj0nqb8xV0DVBz1frFKg5ZbG+uyA99snz4oSFmkvFMXlloUK9aBIlGe1RzL3WiK4f0/MjRmHC5eki91peHjIheHm+goagNQqV3LlW5HZejAO5r4/Z+UaBUaQ8Q++3PRbqBbqjiAdd9Zl9vDFEogrhy22PJPdy6/tqz+3HKoHyQqOAEEpC2fFipJQT8/cklWwOIm6k6p5b7api3nzVZrkdULCNCXO5WbInzdqd1/NRLNTcyX7iKCGl5O2VLn/7uw94b12djaQEmSs/5qvusRWlxpirOJi6QNc04izDkCnvb/TJvreM0CSfPd84sUJyz4v4eHPIKE4xBLy8UOJ22+PWxoBhlGLpAkMI/DgjSZXSoFk02RqGbA4CzjcLR+qjeBBIwMufTdfQaXkxm8OQ9b6PbRq8vlgllZK1Xsh8TTH6j9pgf5y4mklI0wzy158q2VxoFjA0tVfx8rWt60e79rL1osXXP97i/bUBtqFxZbpIrbD3vlvKh893+ggRStcEN+bKhElG0do7AX7n63z9oy2+v9JDCOUDaeoG12YrzNZcVnsBH64P8OKEuYrNYr048YxTe7DCJ5Y99aw7oBtSyjd2/P2XhBA/eNoPSSlVRisghPh7qALUYv7PFaCb/1d55Gt7vdbPkrOp3nrrrcksX7YNdE2Z/GlCMFu2uT5bolG0eWWuwtbAxwtTNKFohp2R8oKarahN3OVHNPZepCZ8UP4zR8VKkVJVQ11TZ6HuoAkY5ubA7TylquyohAkhRG7i6RKmKYZu0BqqxK44k8xWbIq2QZwvtucbBbwo3fVwz1aciVfEzsP2URpqjhPNxpId5YMj0HON83zNoTUKSebLrHcDFho2tqF8nhbrLsMwVYuuFz3xQBMlWe6jFeJaBucaLp+v1gmTbFfHZrqsqL5epDaGF5vKzLlRNEkyqNuqa1qxdWpFi6Jl4EcJ6z1lsj4ME6ZLDkIodpWli4mU5aSxOQgRQtD3laTG1HW+eLlJmsGXrjQOlGp33Oh6MWkq6XsxMoVEg1cWKriWweVmgSszR59m4kUPE6cyqbreILjYLBLEKZenSwxDxQYpWMovx9Q0JXO1DWxNkGiSRtHm+myZetFS8bGJpONFvPqUKOmDjzOZjDdIlO+F8oWQXJxS1F4/Sig6OkGscXW2xCCMqRccqrZBkJuoXpsuMVW2GYUJG30VR23p2qESaMbY6wC8WHNpjyIKtv7ETmCcSiSSnYFAZUfNS7apUXIMagVlJIqEDMlMPgc9ip6n/OFKrnnkQe3DMCGIU0xNY3MUsFhzQGhcsNU8vlgvPNE78CTQGalUlp6fIDMomQavXaywOYwYhmrT4TzDZjLLJHGS8bkLdQxD44uXm+iaxv32SEmychaBF6WPbVbHz1WUp/K1hgGplBQsg36QkGQZWm5CHCUqZGJs+t8s2UdWwI+SDIlkFCWUHBPDFEgEG3ni0EzZxjJ0yo5B24s417AoXayzNQhoFCzW+yHzFZeFisvlmdLEA8LUVWNHE4LbW0PKuTRnECbPZDiuCyWt7/kqvXC6bPMgL5p7ccqri2VMQ1B1TSqupQrQUlJ2zMmhxtS1I+++d0ZRXhA3mK8KhIBy3ggK4lSl8lkGcd48kqjnWB0mVCjLRhoQpRkFS6OZsy3H+4alukujaE0Yq4u50XrB3i2BF0Lsmm+8vPD14caAc02X1a6/q7AEai5f7wfoQrEGf+zaFHEqKdgG/+ijLVxLR8RqE+7kc/tDKGPgJFXMBtvQefN8nZJtYOnanmt4rWDR8+MDScYPCsfU2eyr/dD5RoE72yNmqw7rXZ+ZkmCp5pIJGMUZrqGRotay4zQ634n/5Bc/Zqpk8U9/7tyhf3ax5vITN2b4r7+t0vn2u3d1Texan8q2SZyo9SyIU7YH4eRnx3tWP0q4uTVgFCVoQjFyirbBN25vKyl8weJHr01NQiDG9yFItoYhmrb3+nZpSoU9WLpGxTXzZunueyFMMrp5kXJ7EE6YQo2ipdiXQK1gcmtryDBIeHnOIMlUwUTXxMRsenMQqmRNXTBVsnltqUq1oPaZYZyxlx3Nzufk0lSRn7gxzburfZZqBXXgRXmZ9oMIIQSGrvbdrqWBZGIurWuC6zNlPtwYAmCbOl+80uRCU6V5F22dtV5AnHtwdZOYl+eqLFTdfcNTnobjSKP2opTWSFmT+FFMw7VZaLjYukaUSt48vydv4UhxeabEUq1AxTbJyFjt+LS9GD9O6XoJwyg5MfNpy9AYBinnGy46Sk4ZpxmvLlZZ7vjMVmwWqg6zFYc7rdEkpT6T4+CvmJmylie9n0zRYhAkzJQd/DhlpmSzWHcUa0kIZioqAfFcvUCUKC/VvZKsnxcCKNs6YZKR7Xjc60WLqmsSpSlZpuYC29DwJx6FcrKuZFlecBJMQjT2fC+hzh/7BSAddJ0P4ow4U4SOgmPwpasNTE1wvlGcJNJOlS3WexmmruOFCYYuJmPrB8mhVB9nCc86k3xPCPFFKeU3AIQQXwB+9Wk/JIQoSykH+V9/BMW4+mmUcfpvAb6Bkve9JoTQd3ztwKgXLd66UGdzEDEKY15drExujmGcEkQgM2UgVrAM6kUTU1cL51TRfnyRijPutUcYQtvzIsd5p3icnnUQREnG95c7vJ13fl5bqvHm+TpxmrHS8am5JpYu6PoxV2YKLNWKvLfWY70XqoSxvNCznRtCD+IUTQg6o4hSXsx6lOmha+JAWvpnxdhYvZwfSMcG8+u9gK6vTHI/tVihUbS52/JolE2qrsXL82W8SLGUPrVUZRAmXHmKjC9OMm5vDxnmD37FtagXTO63faRUfkHjLo+hq3SIJJO4psYb52vcmK3Q9iLWugGupXFhqkTJtRgEMbMVB9vQidKUqzMlLk6pA+zt3KPizvZol1nliUFKllsjNoYhVcfkcrPI5y83qbgmX7pyVNa9z4eCpbMxCLjbGhHEGZfKBb56rYljmnz5SvNYYoYXag5beVqjrinzwUGomEmLNTeXpSTYpk6WZWwOQjpeSGsUsdIJeON8ld/28iypVOyrjzYGxKmkWbRwD1AM6HnxgVKcxgWfRtGiaKmN3zi5bKbisNkPEUJi5pGz6/2AzihhpdPj6kyRf+IzS4DycvjG7Rau+TAqXdefXCgde6gdBJahHch091NLyjTZMlRi4ChMeGelhxBwdaY+WXiFgA83Bqx2feoFi9eXao8dui42XXQBGRwp5XyjF/Dug74KmohTXMOkF6Rcm3b51FIVIQRfvTZ94h3ER+GFCe+v9tkc+NiGonZ/+doMt7eGNEs2X7j8bM+3Sjaz0DWVKDVmQ1Vdk482Bkip5DVCKJPteuFhEXauYvODZSV/vL0NSZJNUuR0Dd5fU1Lni83iJGTgaab/h4Uy3g25sz1CEwJDU42jrhfnXjGK8frSfAHH1BRLQVMNn/mqQ5RKNrsBzaKFaWpc3MPbrlG0MHSVPKgYXs92L1yfK7MxCNjoBzxoe5im8kAa+DGdIGa2XOUnX5ujXlCSwec1Wj0INvoBP1zpcmtrxPlmgR+7Ns1CzVXplxWb9X7AYs1lrqqaL4s1d7KfqbqKdZxmkl4QU7J1NKHR8yPcgY4u1J5J5PKsMUz9YPPHUt1la6AhEDiGMsK9uz2iNQq52CzSLNms9Xw+3hjiRyk/WO6wNYyYqzr8ppdmuDpbYmsQkmYZCzXFxtnJHD1XV5v3imvSLFokmXzq+lOyjSNrRIwRJRkdL2RzoOThNddko68Y+nGasdwN+LHrU7y2UGNrGHCxWTpy1sl++M69Nl+/uc2/8TtfemZm409/4Tz/01/5Nr/43ga/41PzT/3+fhBTcQ2+en2Kb91tc3NzSMeLuOKVMHWdC1MFKo7J9jBioVogzSRvLNYmlhqfvdBgpe1TtFX64novoONFTJVspst2bkgtKDvGY3tImTPtwyRjsebuu8c0NcFq12djEPLpc+p+aA1DvnmnlafRFWiWbL5ydYqOH1FyTG7MlZku2/hROpEEG7pgs6/UFjMVVSyIElU02s+bqh/EbPYDSrbJXNXhpbkKpq6CWgxNJej2/Jh60eC793oEUULHj5kuO/zUGwt8/eYWyx2ftV7ApSmVMNvz4zwNV7Hss7yApWuCgqXsS1xLw9AFYSoJU1WcPwtsCz9Kubs94O7WQI3b0vj8xTq6rrNUd09EtlQvWPzTnzufh6ek/ENvg7aXsNwacXujz+uLlRMrTFULFm9dqrM9CDE0wXRZNfs2+krmLKUKjnBNnY1egBenzJZtZsoajqVRsnVubSlG7FTZYr56/E25uYrLmxfqvDRfpuaafONOi54fY5sacWKqs7OlsdbzSVKb+Zpz5HsyQ9dIpVLWWDteW0rJx5sDPtocMl1SihvHVKqEmbJitwZJn9cXq/z4SzMUHYN6QQUoPQlF23jm0JIxbEPj1cUqJcdgvuLy0nyZX7u5zbfvd9n2IhquSs4dBAkLNSU5vD5T5v31gVrDC8b/4gpTXwD+sBBinM53HnhfCPE2IKWUr+/zc18VQvxZFGvq61LKXxdCfE0I8XVU0t9/nKfy/X+AfwR0UIWrA0MIQcW1uNQsIAQ0Cjb3Wh5pltFwLc41C5i6ipz3woStvPMqhJLxxGnG9jDENnQaRQsvTpmrOMSJnERi78S93I9hcwCvHDAVouuFfPtum56XcK7hMptPLrqmc2mqyFrPZ75WYL4GNdfGNDQWagVAedDUigYly6DlBXz7XoeZssV02cGPlUTpJCabnQhilcQkUGa3F6eKVByTDzcGZFJya3PIXNXhg/UBtaJJkipp4eWpEo2iw2q3R5ZJrs+VmTtAGkMmYb3nQwYfbYx4dbHMbMWaJP0FjxjJtYYRCzWXmbLNxWYJTRMTxsD4vdSmRk02RdtgsebuGkeUs1z6WUKWycfG2BlF+LFivB11J2J7EPJLH6zzg/sdLE0lZt2Yq/C/en3hRL0onoQ4zfjecodfen+DLJM4ls5Ss8iXLk+x1CgeG8tsLNscwzI0ruwoHN6YK086HT9c6REkGa2hSkoydVUUuNMaUbAMtgYh7VHMVNmkWjCfyo7s+fHE3PRpGPtcjLHzEF+wDKZLqih+a2uIromJfFjXJHGScisvUjzoKKNqCcxWnYmJ6X7IMsnt7SHZEQd3TJVsXl+qkWUZtqHz0caQ9ZzBNV32uJLr6qMkYxTkSWBaQmsUsmTt/lw1TePSVJFeEOPFByugPQ1pJvlws8+vfrylpEa6SkiqFx1eXqzwEy/PUrKPxvD6edAehfzc91a4tTnA1JWUqVm0WKy7h07gexSmrvGVa9OPzVeGJrjYLJBkkh8ud1nrhtRyhugYmVTPVmsYsdH3KFomn56vcn22zK98vMWtzRHNUh6s8ey//p6QUuashZB3Vnvc3BwwX3VZqBWoF2ymSg43N4e5tEJSdQ2GYUI/iPGiZOKtUi2YNEsWM2Wbc43Cvte64pj52r2/ZPhJ6PmxKpLkkqy7bY9a0eJczVHvX7G5Ml3kykzpxMxy+0HMt+60WOn4CKGYZVKoePgkU2xQP8pU0EMeAhMlGR+uDya+TldnSvT8iJ4X8f3lHkt1l4KljFrX+vsn7B0E4/mwVghYbnt4kWCtF9D1Yrp+zJcvT+FaBqMoYXMQqkhx1yKIUjYXQi5OFfm9by6iaYIkVRKvMWMclERr5/j2O+fEaYahiWObB1qjMG+8ZeqzDBK8MGGh4nB72yNKM1a7Ab//s0uYOzyyjhtSSv6jX/iIZtHiZ7544Zlf58dvzLBQdfgb37z/1MLUKEy4t63WS8cUBEmGH6esdwOaJZvpkk6QS9EKlmosnWu4XNvh0fLSXJn5qkrJvbU15F7bY6ZsszUImS6rJMOZ8uMNZlCJoWO58dYg3LeQnmaZYukkKfdbSn7+zoMegyDBNlQzaKHmcmtryKzhcr5ZyNO8jV3hHVMlix8sd6i5Fpt95V9z9Sms8Y1eQBBn+FFIs6S83K7OlCZ7GOXPqNEaJtyYU0m3QZRODNObJZubGyOW2x7+hRpzlYe+qRv9gM1+QJikGLqy/BBCUM/3wZv9IPe8hY4XH1uIz0ERpxn/4J1VvnOvq4IbbJPz9SLX56rPvTYeFldmSlyaKnJ7e8hHG0N6XowXxXxvuYNlGvyhL144VEDW8+ALl5qkacZ37ndUUbZscW2uzO0tDynA0nU+WO+z1gsYBDFzZYdaweDydIkkT48GxZ6qF6xjaRjvRLVg8hM3phFC8D+9v8EoSsmAZlFZAnQ91fiIkowgzibntaOEEOp+n6+6pFk2OaP5cUp7GJMkUiUJ75AA3NoesjWIYBBxvlGgUbR4Za7MbNXFOIFrrWmCTy3WeHVeeQ7e3hry8dYQP0zxwoTPXqxTcRX72dAE9ZIKJQmilExmbPZDFnLrgk8anrUw9duf5YeklP8A+AePfO0/AP6DR772X6I8q54JfpSwMQgJ4zTv/I2Tt1xsU9GHo1il0WwMfIZBxuVp1U1dzzdHoMxDK45Bx9QpOeKpFVCp2IlPxdYgYhAktL2Iy9OlyQIQxOoA6uf0VaSSvwG5uad68UbBpmApQ8SybRIlKlLefESmdxLY7Ads9EO8KFWpOPnvomk5JTlfp7eGIVtDtThXCwbr/YDVrk/FNUgyJcOS8sk+PTuhIbAsjamSRdUxKdkmZUcQpxkzjyyotYLF7a0OUZpSLZgTxtOT3kvTBD0vZnMQKDaOEKz3lSfCowexIE4nscNJKo+EOTAKE9Z6yoTvfnvE2yt9NocRjqFzoVngx1+eOfWiVJJmLHd8pFTd6B+udFnu+IyilHN1k69emWKhfnxFqadh/Bm6lkp9SrKMIMrQhMb5hssHq0M+3hiSZpLXlmoUbZ1+IKg4Jgs19+kFxiM4kW8PVTpJM0+7sgxB30vIMlioOzzo+NxueYDgU0tVKgVDMRDz4ulBNhUHIHQdGre2hvzDdzdIpeQ33ZihWbJwTR0h2C3bcEzONZUE+VH/mDHG8iBdCPrB3rG5B8H4ObR0jaW6isHu+BFrvQBd11iq2izWXT61eLrplXGasdz2EEKw3BrR8WOWuz66BiXb5NPn63tSwJ8VO+eJJM24uTUkTmRuTK3kXVGaUd9x3ZycmSsETJccagWTi1MlhlFKlie1KUNtlUBnm8pb6Vyj8NyFeZWgltIPle+jaxoM/IQ4Tbm9NZx4RLWHKjVze6hMhlv5sxSlWc581TANjfma+9Q56Hnm0rWuxwdrKjUwSlSSqy6UxDFMMpJMoh+R39ZBkKQZ91ueStnyQoqWyUzZpuoYk2552VHr7kY/xDVVCICpi0mSXcVVEkPL0On6MRVHmcZW8i7tUT0/PT/G1HVGeay9ECpKXCJZrLncmCtTMA1sQ2OlrfzXhoHy+EkymTOvwlx2obwGD/o5bw4CNnohjqmaGcexnlq6xntrPaSUJInFg86I1W7ATMWmWVYS3eny0TMEnoZffH+TX73Z4t/+qVee677UNcE/8/nz/Ee/8BF3t0ePyTF3YrwMbQ8DvnOvwyCIkRIuTKuUOMVuU3u3ZknZU+jaw/TFLJPcbXmEcUaSZRiahszUvL9Uf7jn2+86OoZiBSWpfGLq4Uo3YLnjkaaKBd73EyqOwShMqRdNFmsOjqVTK5j0doR1eFHC7a0RAJenFbOz5toMw0RJ7Q6AsmMSxKFiMO34PTRNEKUZXT8mjLN8fyIAiZ9I0izjQVeZIQdJio2mkrd3wDIEfT/JJdgP5ayT0BjbQAjVXDoOWd5BMF7DbUPD1ATrXeV5F8QpVysunz5X5cp08VT2vsq3p8hnLtS52xqxPQq41/a5OOWzNVDNziBOma+6x34OE0IZ3KeZJIozlj2PMEloFm3F1BtGeeodCBRZQwiBqStP0q4XMQgTPt4Y7kqnP87xAizVHCxNY7biEMQZ3UGErqnE7WEu3b4yc/jU7qdDoiKylKfjGI6h0yyZhKnykN6Z2NcoWLQGEZahUbR0/od311lu+dQKBn/gc+exj7mgN4amKYVU348pmjq3N0dEifLGvjpT4n7by59XwQ9Xuqx01Xmh7JjHEkZwEnimp0dKeU8IUQfO7XwNKeV3j2pgz4OJRtoxJxHEUiojuJq08CJlSppkkqJtMlXSJykARi6LEULdxgAvz5X3Ndg73yjQ9ZSE7qCT5eYgUH4xMyXePF+dSFtGoTqQGprA0gVTJSX/mcoNO5fq6iA6PozOlh2i2GeqZPHaQhUhOPHq6Civvita6W6jxHONAo6pE2eqM1Z1LOaqDmXbZEuEZFKxm6ZLalI8aBKDZWh8+eoUqZSMAhX3O1tRKU2dbsR6L2Cp/vAw0ihazFed3IPo4Aff9X6QV/FDbEP5a4w13br2cFJSchh1jxlPkVU9DXGaTXwX/ChjGKRs9HwSCZemi1yZLvEvfOXyscoynwYpVdTpMEwmHbbWKGSzHzJbcbk8bfD73ljgJ54SI33c2Mw/Qz+KaBQsXl2oYOoaXd/ANXTutz2CWNIeqULPpakir8ynpPJgYQDVgsmSdA8k5dsP63na2Vpuer1UKzCcT2gN1AE7TiXrvYCNQcjrQvD6Yo1X5soEj/ip7QdNE1yeLk6u01FhGCYTA9meH/PKQoXPXVKb3Ufpw0v1Akv1Aisdj5WOz2xFUnWV91sx7zQr8/TomTdIaSa53xrhxxm+UF4+b51v8IPlHsMgoVa0eGWhyo/dmObS1ClIcXN4UfIwURPohzES9RldmylyeabMWxcbR/6+SarmYCkhziOZwzwZplIwmCk7u7qUpq5xY7ZM0dLp+QlCgGkIDF1noVZAShiECYMgIUpTipaJZWh0RtFzx1KP/a0sXWOmYhEmKddmypi6xihM0bWM2arN+YbqFHa9mK4XT34fKeFis0C9aD21IDUMEyxde65udxBlfLQ5RKAkfQv1BIFgqa7GYOrKDPzENolSSX69KONCU6VKXZxSISfjbnmUZjQKFnpulDuKUkq2wflGgWGYTAqjTr6XilPJbNXl2kyJOPe7OwqUbBM/UlLsTy1UaXsRrmUwCJLcZ9PkfFOlfHqLMZap0w8S0lyGutLxMLSHsmHtEE2QQT4nBnFGlGY42vMfNMIkJf7/s/ffUZZtW1of+Fvb7338CR/p3c1rnzf1PFAURjhREjQD1EgtiRK0bNMtCZqWhNQyQ3SrGSokDTUNPXBCaiEBQg1NQYEkqoqqV7z3quqZe9+9mTdtZIY/fnuz+o+1z8mwmeEjbul+Y7xxX0ZmxFmx9zJzzfnN78vl5GKvBPVVksKzdQxNo+EZ3JhWzm0zNZs3F87WuCTOcv6Dv/kut2erx2JLjfG/+fwV/tO/d4//+h894Y/+5jf2/Xfj+bXcV4mHkdC4OVXhizfbvDZXI8kLHqyPEAKuTVV2ncFJrphnwCTpcmXK5eZUBesA57VR7mm5fLm+TpCo/caPU96+3MA01MXetQz1XoVi6a30lQn56iCaaJKOQwE/zqk6BvMNB9NQCY2DYL7hlK6Xu1l8Apiq2BRScn26wuogJCuTxWmhTF3SXBk4uZaxK9nZcCxuzlQI02zilrkVFdvg9fkaQhzPDfSoGMUZq/2IMFHun56lxMZnGw5t1+Irt6f5jW8vnDrD52UwDY1f98YccVbwM/fWWR/Gqv0xzfETNTeX+yFzdedUGdnjAmDFNsgLZd5jaDqWIbjU8tgcKdJDyzP44q32Nrb+fMNB08Af657GOZzRFnRtuso37s6wMojwo5T7awGWLqjZOrqmGOPpFtZhkKhE6nHf+Zh5+Pp8beLm7hg6T7sBEsHnr7eo2NuLLTdnqjQ8E8fUsQx9EkP7cU5WSM6STyhQjn6fuNIiTAuqjtLHuzrlUXOUZp0uIMwkdccilwVv7ejgOqlneRY4UmKqbMf7Z4APeVEIkcCvO5lhHQ9GqafkWiqIdk1dVccGqkVPAI6p4Vo685pNP8ommdL5uqMqdKZyxYjTgoqtM1d3GJVOTls3fMvQDhWIx1lOy7O5M1vDMpQ+zL3VIZdbHmlelEGhwXzDVZWdMsB51gvp+ulE1V/XBJ+91uLNhboSAT0nVsp83eFhMmIUZzzvRepQE4K0UIHvTM3m01ebfLju4ycZcVpwqeUgNCik5ErLU04hpWvgQeCaOm8uKn38Qr6wqN0YxWS5oobO1OxtC3Ch6bIxig/FRNAEdIKYhbpDnOcsdQJsU2nqbIVVtj3EaUGa56wP4wN/xlZkecG9VaW5IKViwT3rqSTbr707S5TmfPXO9LkmpUBpMa0MQgZhStUyJmyPr9+e5v66z935Gl++fXq6V6M4I0gy2p710kRs1VaCxpahLp66pvPJy01ACew/7QY8WPe5OV3l5kyVNCv49uMeuia4NVs90HPeT+Q5LySbfow3DmZfMsZhlFErD0UhBK/P18lnVVo8THL8WIlGvjanLpc/XBnRD1Oma0qw/VVB5LjN4CTxxkKdpU5AkOS8sVBXIs9Jvi/9P8uLktWg1unGKCZOCxW8123uzlVJsoLPXj+amOmD9RFrw5hnvXDSgrQ6jPjU5SZXWx5+kvGZ6+09dYbOChvDmPdWBmS5agtfH8b4Uc7nr7fxo5QbZbvASbcCSyn5cN0nyQpqjqr0x1nOXCmqvt9FTdMEV9oejTDDNrXJuffWYh3X0uiMUt5d7tN0TVKvoGKaVOzjP99LTZdOkKBr4JgVRb/PJbmU9MOkFNl2JmNuVSyqjkGWq/3S0AQN79VJqZV+xPpQCSW/Nlc78nOPc+Xm1w9TZaUuNKIs462FOmGuROKbRxATPiqCLGeqYqGLKqah0XQt7q0NudR0ma4qcwdLt/E8JWRv6ALH0MgLNU+yXOLHOVfaHrom+OqdaaK0wDFV4tkyjhdrZIXSNKvYxq6L+FgH7cmmavny44w3FuoIVCJ0Y6Rczh5u+GTZOEGm3Jdna86hgu7Zms1KoVzITiJYjzPl7jgMM1oVpTukCXWJrLs68w2brJC0PIvLLZe3FhtYpnZm+jRj/Lmfe8SjzYA//89+4UT2mrm6w69/Y5a/8q0l/vCPvfZS9lfDM3n7UoNnPcUwb1YNhIC0KOiHKf0wxU/GYv3b23kcU6ddtQjijBszFWxDQxfiUOwZTRNovPzfz9ZsVgch7YrB1ZZH01OszJW+ahftBsp9c22ozrA3F9X7a3mWMlCIMvJCsTabroWhHW6M+yV97ZItXy8NE550fAxNY20Q8fnrbUZxPjk/KpZym37aCZiqWniWQTdI2PRjHFPfV8fsvNp+lvshz7qKeTRVten4CUUh+drtKRbqNnN1ly/dmr4Ql2pT1/j6azOYusbzbsCduSrvr44QQjBbNVnqJWz6CfN1h2unFG8IIbg1UyVIMjzL4Ofub3B92mO27hCnGWGasdBwlK6TZ5HlBZ0goVK2R6/2Y4ZRxnzDONP7hGPqfOpKi1Gc8eHakAJBy1MdCmujBE0DDRWzPNzwWe6rpO+N6cqxWGg1x+SdKw0utzwedwL8OJ+YdQF0/HRXYkrXBLah0w9SDE3w6StNfulpj3cuN868M0nTROk6ropGDzdGzJbSHrqmTRxtNSHwbIOGa9DeQhLp+glL3ZA4UzH6QsM9s9bTo+CoT/d3A7eklMlJDuYkoKigEUjV0mcZGiuDiI1RTC9ImS4dg6arFr0gpeKYzG05AEUp6imlJCm1iqIs5+GGr6rEUcrt2aOll7O8YLUX8bwf4Jg6c3Wb954rseWVYUTTsajaBhXb5HLL3VaZjMux5IVy5dBLXQRvnwVSFJJRotoKTtN9wbV0LjW9iS3m+jCi66d4lk6WS8WQckykhFGc8jP31nFtlRy8Ou0d6aDZqgWil1XgXEqarkkQK8egnQdvu7QlPijSXLVh1Gxz4g6UFRJTSpa6wWRjmq+rPn3HVPoIy/2jJaUAdfEKUp51Q6Qs+HB9pDL1ccZXbk1zfbpybhTrrQiSnKedkDDO6fh9gkziGIJPXWnx2z916UDit0dFkhU82lDU7g9XfW7PVfdNhszUbJqeuS14Hf93EKo2pOvTFa5NV9A1waNeOHHdmapaxzqwn3VD+mFKISPlrmnqLOyhn3Z9ukKSFbscrAxdsNwL6IUpszV7ok/T8ROe9UOiRGlK5DPyXKqbRaEq2JoQPO0GjL2I0rzY0xzA0JVT3yjKaDgG6+VzjrMcP8lLEWVzYgN9GOSFYr0NQ8V+SfOC//47S2hCBSSfvz51JnT1V+F5L2RjmBClOTVH493lEZoQ3Jyu8NXXZk/M8XUnCqneS5oXdIOCT11pbkvavOyiphygUkb9jKqt2o4cU6flWaz0Y6I0pyMlfpLz1uLJPN9WxZq4Xq12QgxdMIxSur6yZ39zocFKXxUZxr+HqasW/Stt98BtUXGpJ1EUqgX7KHeerp+w2ot41g15ba7KfN3hmw87BHHGd5/1+A1vLZx520meF6z2I3JZ8M5Mgx+ujgjinGfdkM9ea1G1TZK8IC8kry/UJvtjkhUTFmSyxedaCLGvS1xWWs5XrN1i0/shLa27786rZOBeAXLTUyLh9S0i1uNW4PtrI9oVm42RSiw+6wWsDCJ+/DOHc5bbqU94XGS5ZBSnPNwI6IYmrYrF5ihRpinrPnmhHAWvTlXO7SxfH8b8qb9/nx99fZZvvDZzYj/3933xGj/1g1V+6ger/PZPLr703y40HG5MezzZDHmyGZAXykSk5ho8WPdxTI3OaG+t1L0cVKNUMRhO6nmuDiK+t9THNHRank3Ts6i7Bhsj1VJTd0zCNOdyaSQwjitNXRWp/dhnfahc87bGEModTR75UiuEkqUYRKly0zQNCqkchYM05+58lbVBjESZV7y/OkJKFa+9NldVRU8/wzKUVMjW7ovzRpTkPNxUyeYgyfhwPcAylAPZ116b5eYrDJHOGk3P4je+Nc+DjRHffzbgyaZPlBXcna0SpgXDMKN6yq3bquCq5t6NGY/3l4es9EKWugF5Lmm4L9qal0qH2DjLJ2y5qYrN5ZZ3Zg6gY7iWjmvpVG2DmmuyNohZHkR8sDLi2pTLph9jGpoqNg4Srk65JJnLK/TGX/25hkGU5MjyaFNtwoKskHvqJRaF5GknQEoYhCmdIMHUxaG6bk4S4/fd9CyuT1dY6gb8zP0N0kxyddrFtQwMHd6Yq287U/NCsjlKlLlaL1R6ybl8pd7deeKoK+f7QBNYO7mhnByklKwNY2quwVKpgfOsG6FriuLvWDr/8P4mnqUzjLIJ+2YrhFDV4n6Q0qqYPO2E5FIei5m0Oox50g0Ik4LClHR8MaGbmZo2aQezjN2VyUtNpaVQsY0DZTqfdgMGoaqG3p2rnWpwXHcNZmo2cZaz2o9Y7qvL+FzDYWMUsz6MkUiCJCfRJFGmdKBOQpA5SDI+XFN9/ZdaLm9fOpgA/WGwMUppuBYbo5QKqpo7U15yLV2btC8e93OV4L7JLz2NWe1HrA0j2hWbxYbLW4sn/3sdFZeaLt98sMnaIObe2pB2xZxUQre2cp4mNoYJuiZYKefafgHWXknZ9UHET7+3xuYopeGZk8Cy6hi0q8rK+rhVpPGr6ocpeSEx9RzH0PZ8Pnut5yDO+DvvrvKsGzHbsLlaijdrQjBTtekFKZda51f1uL825L3nQ2U24Zhcbnvl77n/eG5MVyZC3I5l0A9S2lWLpW7Aaimcfm368MmZhxsjJIqaPlW1+P5Sn9V+hK5pzNRs3lo8W6HU/dCuWnywOmR1EPHuckSUSSqmwbUp99SSUjB2ZLX57tM+dc9guR8dWFx000/YGMY82gyYrdvEmQpopqo2t2ZyPlgZKi3HE9Yz6AUpYVIghEp+aEIZAkgk3SBltiwIjDFmPwmh2E8HWRfzDQdNKAbBYYPzLC/KdrmMTpii6wI/URqGAsiBTpCSFgX2CbSIHRRSSp71IuKiQCC5v+bT8RMsXaUfzS2t5pax3bbaMjQutVz8ODuw8PHDDeXA6lr6oQPdl82WmZpNN0iIM8naMNqWVLYNjV5QIAvY9COCOKcXZny4PuSNhZN11TsMKraBQBCkGXaikeQ5TzoBDzZGbI4Spnybd5rne5b/ib/9Q6I054/9lv1b7o6Cr96e5mrb4y9/8/ErE1PdIFWXKE0V9AxNsD6KcSwd19S42vYYRClL3YD5uvNSFk+YKF1WKWGh6ZyI1fy99RG9ICMrlHadEIo58cZCHVneATRU8tYxdab2KXhufcOjMjkJcKV9dFdOKSVPNoPJPeHObJW1YVyKq1t0S82rsSV9khWTNV9zDMLUJIhThlHG/bURt2erFyI51a5YDMMUP8pZG0VkucQ2dL52+2yc944CxWJRjsS//KRHnOb8ctqjVbHwTOVOflZIM5X07gYhSf7CnW9tEE9anZ/3VVLCs3SanoVtaOda6HYtnTcX6uR5n+8+C9kYqXuiaejM1mxGUU6YKcmI4z7LLC/YGCV0A/jKnWn8SJ3VDdecrOmdUNI4gjSTaBp8sDJiua9ILu9cbpw503UnHq6PSDJJgSTPJauDqNSp3b5fPt70GSUZwyil5ZkXgtzwKhx1hP8R8EtCiO+jHPYAkFL+9hMZ1THgmDo3Z6tKANDQS+tHjYWGg2VoFMCvPO2xMYqwDeOlF+mtYr03ZzT8ONtTvPegMHWBaWgESUZe6ExVlI13lkvuzFXxLIM031tY1DH1Q11e0vwFw6qQ8pX05eNAUfCVq89SJ8Q2NRquQcMxuFcmja60PG6UVt/dIMEydJwDakq9DGO9FFBsmpMK+ExdOYUNowyBCqautB0cQ1WpRnFG1TYwt2wCDdfk6pS3S3TyoMgLiWloOKZGs2IiNFhouHzttekLk5QCxexybZ2aozNbt5mpOnzicv1MklKWod6LRD0vQxeHZgS+vzak4ycYmsZU2VYBisJv6U0MXRy7kr5YCpNPl+LMQhxMt2qMe2tDOqMEQ4OGY06qx62KxR2hArXjuGIdF1Ga49k6SSa53Ha5OV3hWS985ZrWdrAfQDEXZuo2Gkps9rCIS5vkqaqFAKZrSnC25ph85fb0hUhK5YVEF4KGYxLVFBuz7hZcbVd484Qt6vdCzTEnLedpfvCKgGPoaJpi8KlCiWS5H6oW1DjntfkqQZzxyatNXOv4FsljmIZGmOR0/ZSZmsV0xZoIHk9X7YlZyRhjdrOUbHPGehls43Bn6lasDeNJBdoQkpqtrJnnGy7fuDvDUidkpmaXF6wjfcSRoARuNWxDUwxCo2Ch4eBHGZ+80qTuWtyeVe2bewWoh2UWj5lV4+d/EJjlHv6yhENWSARKy2epE2Dr+mS/u9xy6YcpU1WbXEpsI6JWGqCcNyaivkFMFOfUbZOGY+EaOgsNm8UDCPGfFn7xYYe/8u0l/uA3bu3Jaj0ONE3we75whT/xt9+fJDz2g6kLPNPg7UsNqraBZ+v0glRV8edqWLpGLqHrp2Rl10Dd3ftClRbFRNfpMHPwZbg1VWUYZGhCOW1vxfjdrQyVLEhRSJ73leHGTM1WOlpTHllebFtH6ZaxHWec4/U9TjjN1hzWRzF116DjpwyilDQrWGw63Jqp4Cc5tVLr6NZstWR0qXZDWTJpL0JiahRnTFVtpIyZxkJKwXzd4a1L55doPihen6/z1uKQ571ImVyYOs2KSZSesBXyS+CYOqamEk3TNYtGaVKRFZKn3YDXZqs82vTRhCRMc945xULYYSCE4FJLsaSCKMM0NBqOSZgUaBrcmKpwqXX8PdPQNWXQY2lULGNisjAew14oJNRsg9QouNLy+MGzARujBFvXSdICzpeAz6WWx5NuiF7ev4XQ0IQgTHL6YYplaLQrFmmuYk9VTKwwivMzTZoeBUcNmf48yknve8DZrb4DomobfPZamyjNcctNtygD1gdrI+6vjUqmi8mtmf17gJ91A95bHig2yGLz2BfvcdUvzXKGUV5S6nM8S1Wx31yoH/iQ6PoJ6yMlyh2mOUZpuT6uWl9ueawPY+qOeWZ94483fb79uINpaFwvnelWB6r68eZijatTFYIkoyhUhto9xoEYpTlPNgNWByFSwELdPXF724qtLlrPugG9UNE4my3lerHYdMqk5/YldNTEZceP+en31hhGySSb/9lrLT55uUnjBB26jgMpJd98uMkvP+4pB5Is56u3p3ljoc7l1tkddBXb4J1LDfw4UzoTh0g8pHlBmhYIDQSSz15rTQ4mIZTWyjcfdsil5HPXWkd+9nppBgAvdKgOurbz0s5d0wRFDl+5PbXtd6w5Bv/ocYeen/L25TqXmmcfZFybrhDnBUYZ8L6/Mpy4ZtmmfqhqUt02GIQpUZpxNTz479IPUu6tDVkdhAzCjPmGy/NSePRrr81we7ZKwz3/tdMPU/7n99fojBIcUyPJcj59pcHltsetmeqZuLs4ps5i0yFM99cB2wsNz+SuWePWbIVCwlIn4Ofur5LmBZ+52qLhWszUHGZrzqGCx1GcsdIP8SwDKZXLY5oXSossSJmp2lxpu2gapUW74EqrQpzlXN9DGHks6HoU9tNhMIxSfvFhh2GccanpsDaIuT1XY6kbcqnhYOkad+Zq1F2lRXnWWhQALU+58F1teWSF5NGGz1zDoRMoYfrDPJ+VfsQgSqmUa9QyNG5MvXDFUuYv6b5ae3vB0LY7HC91A8IknyTzH236pHlB3VXuvbau8a3HHRYaSrOlUiYBN0cJV9oen7nWwtS0Q43htBCmGd961GGmZrPcjxjFGbN1m3cu12lXnHOrVqd5wf/lr3+PS02Xf+VHb5/KZ/yuz17hT/7dD/ivf/EJ/9ZvfXPy9SjNebzho2lKaH6xqQoZT3vK3r5VsZitqb3JNXXi7IVRw/pQMRo7frIn06zumMzVbdJC7nJjPgyiNOfvvbfK5ZbLm4s1aq7BME4Jspy9UiO2oTFCtckVw3jicjdTs/eMAZWuX0Eh5bFZXbdmKqwNY0ZRRjdIaFdskizneS/k8aZPxTZY9F2mqjYN90XsP27da3kmq8MY8wQKcMfFMEr5hQ83WeqGqk0qyfjElSazVYdbMxeDzfUq2KbO7/j0JR6sj1gfJnz/eR8/yvjmg01+8LzH529M7dmWepK43HJpVywKqaQdPMvgh8sDHmz4VCwDc1EVvL+35GPoAVfb3kTP77wxVbX5wo0pbs9W+N7SgEGcsdT1CeKc91eGND1rX1bTQZEXBUvdgLtztQPPqbVhxP01Hz/OMHWNr92ZUclnx3ipq+dZ4cZ0RUmVaIJBmPLDlRHDKKXq6ISlEL9taLQrJv/oUZdCShqOyZUTcI0/bRz16W5IKX/yREdywtB3BD8LDdUKF2UFeVGwPIq5PVvdd7JnecGjzYBhlBOlBZeaCa519IWcF5J3nw+UeKvQsA3JQsOmF6qWhbFm1EGxOoxIM5UNn67YpEIq/ZYyE3pYhtVxkReSp90QhLKk/WB1SJTmaBrULWNy+TopEeaNUUwnSNgYpcw3VJLotHrQ+5FyWYrSnLTIyQpBkknqzskl/P7BBxu8+6yvbHFnq9ycrvD2YuPCJKUAnm76/E/vrTOIlIbYp681uT5d4eo5CUof5dInUNUTs7SofdwJaW6pniz1wgkdfqkbnsjzP2xwJWCik1MxdZ51Ixa3JJ96YcrzrnIE+nBtdC6JKVvXSNMC1zORBRNXtI6foB8ygOiFKVleIFCW8AfF6jBiuR/y/vIIiUTXBVMVu3QXqp9LUmAvPFof8ctPugzCjMW2w5dvzDBds868ReGohRU1f9V87AYJ/SBF0wRZoTSdslyWeojqvXf9ZNLOvd8ZtDaIJo6ZWVEQxDmPOz5LHZ8kUwLrnmXwzuVG+fMLnnZCXHM7S3UMy9DOJDn+eNOnH6T4cc4yEboQbIxiLENT7Xt+wnzDOdNE/Vb0w5Sfvb9BVhTcmqnyVsnG04TYZj9/EKR5MTHyWOmPaHkWWZ4zSrJJ4vm4Ok1jVhwoFlq7oiy6VwcRU1WLyy2P1UHEMMpoVwqe90IanknTM6m75rEdFU8SWV7wcD2gF6RsjCKarsliycZteva5tlD82Z99yAerI/7M7//ciRthjDFTs/kNb83z3317iX/9N96dnHtSqne76cckWcHaMGKu7hIlOamm9E8Wm+5kvx63hRZSqnbZOH9pfHxcF1BQrNv3loc82QzQBSA0NDQ2hokqtuzQrVtsutRdkyTLeVaexS9bX+OugpOAoWv0Q9XqOAgz7sxVaVVMwiRnFOVIoOvH7Ge1Zujanlpd54EH6yO+87hLJ0hYaDi8sdCg6VofCabUVliGzusLDfKiz2tzNR5v+vxwpY9jGhi6xsI7p/u8lUbn9nXtmjp1xyDJCn7laY8H6z5BklOxlCP1RUlMgYrlJQ6zdaU9ujGM+MFynzxXd9zXF2rH2reyXOKaBt0wJUzyAxVnJEq7FGDDT7g5paQoJC+XrDgrKAfsMqaTSlLH0jW++7RHlBYT7dwoLdCFIE4LnvVDpmv2meuKHRZHfdPfFkL8R8DfYHsr33dOZFSnhIqtHIn8OKft2ayPEvwtQdZWGLrGVMWi4ysXmOO08IGipueFpB+qXk/X1MkKuD6l2sUOe4mqOSadUcJcycIydQ3PPr/JpmuCxYZDx49YHybM1mzur/kqYLePLvi4H2q2iWsmeJaqBJxmW9Od2SpPOgFpphb4k05ImkmiNOf69PGTMnGa0/VjMinRdaWRMl1zqJ5zNWsnPlhTCYBcFtyYrnGlVTkRTYezhKGrtoCigFxTQptbqzHTVRvbUIKIc6co4v4yaJqg4ZoUEhCqmrtVIL1qq/2oH6bnkpQCNRd6YUYvzLja8lhsKpe0ubp96LVed5RGWT/IDlX1HtvkjpKM6YpJzVIuX66lH4uNedLYDBI0IdB1wWLdpeYa5y7EflS8c6nB836EkHC56bE2jCkKpe81NgXZ9GPyQrmjztWLPRMHVcfAj3NsU1PMQCnp+gmjOCfNJXFeKNMAQ5+0wmmaktg/zyr/fN3hl5/2GCYZQpNcn6qSFwUNz0ITgso5nsGgEmO9IGEU5dQdZXX9xkIdP86oHbLKa2hK9DxMchaaDnGq3qV3gmtr7JiqHCMNKpZOmCozE00T1FyDil3BNjUEgkGUEaUFayLmjYX6hRJE1jWBrkMuCxzLoOaq+Wvox2OHHxdL3YD/9Kfv8WNvzvHr35w71c/6fV+8yt/87jJ/63vL/PhnLqsvCnVpWik1bh5vBrimQcePmW+4e54X46TWtbZ3pPj4KIiSnCzPWR3ETJfnkGOqItZeqNoG2AamriHhTDVnekHCk05AVooYe5ZBq2Jxddql5phcn764wsZb0Q9TwqzA0AQLDYeFpnNmOqWngZm6reI2JE82fZI8pzs6H4+wumvSe54Sp8rx8lqrQj9MWWw6zJ+zs/desA2Nim2Q5ZKGa2JbOkGYkZd6Y8eBSmzD1B4aTPthoe5yYzohyXNmqjb31oaTmPdyM7pQiT3XMqjZJuvDCD/J0YSgKCSOqVrgK7ZOWhQ0XPPCFHJehqPu9p8u//sjW74mgV93vOGcLjzL4O5cjVGUsTaMXxlk3Z2vcWu2eiLZUV0TSCmVplRmoeuqBcnQj0ZBv9R0ma3ZGIdkWp0m7s7XuDlTYWOkKp7TNYu2Z1Nz9ROvFjY8k7fsOu9capy6hsyVtldqR2R8uD5S9tonoI8Fqj1O1wRX2hVqjsm1KY9PXW0d2gb5tCGlpFWxeGOhjm1o/Ngbc6AdXt/pIqDqGHzqcoNenLHY2N6/3qpY/Ma3FxBwrs+/Yht8+kqDTV8xAneKFv+auzNIOLeLWb285FqGhmsZTNdsrrSKI7WlNTyTr9yaRjvEnJdSstBw+eKtNo6pkxWSd640mas7F2btjBOeV1oeb19qoAn42mszZ9pefdKouxb/xKcvIwFNQDdMd/2bpmcRJhFVx2C/GGi25tDyLHQh0IXg9fkaeSGZqtgIIfnCjfauc/G8xUallEzXHH7sjXmWBxGbwxhdE9ycqTFXd5BSnvt7bboG01WH6arkWknZ3+redBgoS/KKcqM9pd9L1wSvzVVLvUD1GZ+51uTxZoBlaNRsxThoeRa5lCx1Q0ZRdmQdx9PGF6638WMlrXBtusKVlnfu+9G/+z++C8Af/+1vnfpnfenmFDenK/xX33wySUy5ps7d+TquqbM2jBjFOYYmuDlT5Wrbe+maOWp8fFhUbYMfudWmH6ZUHZOZmkPF0idGRC/DeSTKp6s2d2erdIIUx1Ri1jM1h7vztVNdryeF8dl4ue3xqcsNhCb4+p1pKvZH4+K8H8bn2hvzNbJCtSqOi9fHbUc7LFoVi5ul6/PaMKZRMfldn71Mw7Mu5PwwdY27czVyKVkfRHxyUZmHfOXWFMfdPiu2wW/9xMKhOpOEEHzySqNkgyuNaSFCDE0cSQv1NGEZGq/P15iuWkRpQZDkk8J6vdRazQt56M6s88KRsgVSyl970gM5CwRJxsMNH9fS+dz1FnN1hzSX3F8foAvB9enKtgUrhEAXqtfU0rUjO2mAonkbusbNmQrL/YjlXkgQZ4wsHT/OaFcOv1mc1+bixxmjOKPlbc8+x1nBd5f6rA5CXpurcWe2TZgWtE6JzXSWlwBTFyx1EwxN553FOlEmcS31+YMonYi+b9XfeBmKQvIz99Z41ou4O1/jS7emCJKclndxLq1SSu6tDvnO4x6tqsXnr7W40vaoOybmBWKkHBajOOP5IObalMflLa1GylY1xjb1YzMkjwMpJWGSsTKImKk528QfL8IYR3FGmkumahbzdRvLGLcWKPHzm9PVQ1/EDjPnx/T/mmPwmWstvnRLaXAdZ38+aTzaGPHzDzapOyZfutnmq3dm8Kzz0Rx6FQ47p7a+25vTVYZxStO1SPOCRxs+uZTcmK6w3A95d3nIlZa3J6N1fH6FSc5SL+TufJWZmk0/TNj0E2rOyy8p/Yn9tX3qCdqskHz/2QDb0Kg5Op6pkVWUIHO7YpWff74BX5wVLHUjPnOtySjOiJKcp52AhmcSJTntinXos0WJLZ/u7yWEEtcfo+Yoh9et0DSBhmCmZrHUC4iSnDDJqTgGl5pHdzk7DqI0L11XC773rA9S8NlrTX79m3PEacFUxTr3BPlPv7vK3313lT/ym18/k/YtIQS/94tX+ff/5nv8cGXA6/N1skKyPoy50va43PL4/vM+a4OYIM3IC7kr7j4PCAF35moIYHMU8/MPNnAMnS/caJ+7DtNeqNg6ObDQdMnygqedgOtl7Dler0GiRM6bnnlsxslJYqnj8zP3N6haBl+5Pc1X7sxgm9q5Fx5OCuO5/I3XZhhEKQ3X5JefdPnhyoCZqsM37s6cWYx/a7ZKP0y5NVvlw7URP/+gw9W2x5uL9W1rTkrJxijB0MS5avWN9/mFpsuXTR1D0zANwc/d36QXJrwxX6PhKZObwzLrDvvMozTnQemkeXOmwkzN5krLIc1hfZRQtc1z39+3QtMEs3WHT15t8GQzRMqy2yIveLIZkGQqWTVbc859v30VjhQlCyHmgP8QWJRS/mYhxJvAl6SUf/aA3/+HgR+XUn5VCNEHfqn8qx+XUnaEEL8P+BeBDvB7pZSDo4xzJ4ZRRlGoKl3HT1Tvpaac3VJkqWOwfVGuDeOJzoKhH91eM8kLHm2O1IFSKOe9bpDSCZQ7WJDk3DiBtrDTRl5IHm74SKkuqLe2uLsMwpQHGyO6foqhaVxpeycuSH5eSPICP84BWBnEDKOMD9cLPn1F/V1eSII4J0jzA82RX3ra5X/5YAPPNNA1waeutC7cpfVxJ+Cn31uj5ydcLSp0gmTSrvNRRZhkfG+pT5hkdP3trbzL/XCid3Jn7vyEN5Os4IcrQ3pBhmNkdIN00l//vBfSC853jF0/YRCkvPdswCB00YSGoQmkhDApiLL81HRMsrzg7/9wlaVOxHTV4tpUhdd3OCedN/w4429/f4X1oWoJuTtX5/bcxW2t2Drvb89WD6U/4FovxMbffT7g0YbPVNXC1MOJK1EvTF7aap3kBQ/WfBbrDrahIaXSQxhE6b6twmGS86QTAJAW8tQv3Vle8LTrM4wybs5UiNICx9BJM8kgTC+ESO94jKPYol2x0TWNtUHMZqn7FmfFmepOngaSTJJnkue9kF8e9HjrUmPCGDlrPNr0idOC7zzpEqfKhW1tGCuXzQvQKRMkGf/O3/gBr81V+ee+euPMPvef+Mxl/sRPvc9f/uYT/r3f8TZpVrDSj5AoJ0iBICsKfrgScLmpEqbn3b4VZwVrAyXbMYgynnXUxe76dOXCJab6Qcp7y0MMTdD1E/Sqah8L03wSQ0qp4vSiUHH5WesZ7odhlPJTP1jleS9ktuawMojOxJX2PDAWm09LveKlbsS9tRGOpfGV2zNnMgbb0Jmt6XT9hAcbPquDGKTk+lSFhvciObE+jNXfAbouzj1JKEoXOVAGHB0/Zm0YszaIeGuxgWcZaOJ0k2iDKJ04/G6MVB7gvZURSPVuD3rXO2voQsM1dZJMxVBPNgOWeyF+khNnkjSTJyJBc5o4atrszwE/BSyWf/4A+NcO8o1CCBv45JYvfU9K+WvK/3WEECbwB4GvA38R+BeOOMZdaLgmtqlRSEmeS8IkJ8sVvc0y9k46bU2IHic3KiUUBcRpQcuzEAKqjj6pblycvOurMWYCajsogRVbR0fpgGhCWY3/aoFtKH0yQ1c0zmGUEacF3SChWb5P19IPpL8RJBnDUFWyoizj2pR3obQyxtgcqUAtyQtcSzt1Z5GzwLiCmBWSiq1T2ZJAeeHOd16jU4jSAtfUEQJ0HZpbWCzjsQlxfuNseibdMEEKSZTkFFLSrloYuqDmGKeqpzJOApi60mxqVy8OS2qMTT8uxTylsvRuXOzk/NZ9/KhzKkpzolTNhX6YMldzqDkGpiF2FXt2QpZaakkhqbtqjzUN8VJNJHFC5/JBIYEsH5/jEs/SsUzF9KmfI7tyK6RUYywKqDlq/2i45kSU+bz3tZNAzTFwLBV0u5bOMEqpndPlQBOCIMkn+1EhJYsXRFQa4E/+3Q941gv59//xd860Qt6qWPyWdxb4q995Rn9Lq69AaW3VHOXE6Rg6UZpfqNhXxeUGEnX5NC7golkdRrimTj/MmG84ZTv9bl1FwQu34YuCTpBQsXRl5a5xodbLacHUNa60XaI0p+GahElBkGRnOgbP0sv2ZwnlHN+KrXPk4swWhaZnKu2pQlJ3TAahenY7758njYZr4phKw7jpmgyjFAHEeU6a5xdKx3Qrao6BoavYxNQ0pIRcqoL3+F5x0XGoE10IYUgpM2BaSvnfCiH+KICUMhNC5Af8Mf888OeBf6/88xtCiJ8Bfg74o8BrqGRVJoT4aeBPH2aML4Nj6rw2VyPNC+6vjchyyUzNfmm1baZmY+oahr7b9eAwsA2da1MV2lVVHRpng8MkJ0iyC9WG8jLomuDWTBU/zna1fXiWwaevtQiTnKnq+dPYTxrjanOaKzvjvFBujw3XpHEIFxHb0JlvOBh6m8ttl+vn5Gr3KlxqesRpwduX6nzqSutCBThHRcU2uD5V4fpUhVsz1W0JwYW6g2vq2IZ2rgwIx9K40q5wqeVxpe1t23cWGy5uWYk7L3p+zTH5zDXVCg2SG1MepqFTXzj9C7pnG7y12OD6VIU3F+svXEkuEBqO0mK7PVPlk1eaeBewqrYV83XlamodY95bukbVMbg2VWGuYVN1zAObN9imcolyyzG8cQAGnGPq3JhR+hmn1Sq+FaaucWO6gq7DdMXGs40LVy21TZ0b05VJEWHs5OnHGVGa0/qIxBgvg6lrfPFGm7Zn0Q2UY9p5sbKvT1Wo2QaeqaPrYt+W1fPAtx93+DM/+5B/6keu8oUb7TP//D/wtZv8tV96xl/4h4+wTI3LLXfCbrg+XaHumjzrhqqYcQESu7ahs9h0aHoWSVYwljCbvoCM/6qtTD9m6w63Zip7xmVCCG7OVBjtEaefJ5quxe25GtemKnzyavPUmNUXDZ+91ma25vB4M6BdPfvWStvU+cy1NqOyMLuzED5dtTA0Vey7aAxBx9T5+mszLDaVA3DNMWh51qnvtbahb2MavrlYR9c0ao7B7dnqhSQTABPDE1AdTnXXLFnFJp51Puziw+Kwu8IvAp8BfCHEFKqQiBDiR4D+q765ZEN9Q0r5nwshxompO0AX+C+B3wZsAuPWvT7QOuQYX4mtImuvqiSJE6ILOqbG6wu1XZ+3tRXio4IxRXUnxmKpY7G4X60wdY3PXWsfaP7sBSX4WuPW7MUWqZxvOKX22UdDMO8gqNgGr8/XlH7cjoNF017N7jgL2IbO6/M1ij3ElDVNnHvbA6iE7FTFPvO54Zg6n7jcvBBC0/uh4Zl86krzUGLu54mTmPeaJrgzWz2S8K5jqvl+2GelXLEO9S1HhqEJXl+onbuQ9ctg6oK787Vda7JiGxeuTfw4EELw2nyNJCvO9WyyDI2Fpstc3dlzrz4vBEnGv/7ffZfFhssf+c1vnMsY3lys8x/8zrf5tXdn+fN7xNDtikXNMS7MetLEC80a11IXu4t6xiw2Xaarrz5794vTzxMN96N1Np4krrQ95hvnZ85yfcrb9252Uvfc08Jh7uynhemqQ+um2iMualJqJ/QyLjvP53YUHDZaGb+NPwz8DeCWEOLngBngnzzA9/9vgb+89QtSyg6AEOKvo9z+/gdgXDKtA709ByLETwA/AXD16tVD/AoKY5G1s8RHaWIcFUIILOOjsWiPg+POn/OYf0fBr8YE40UMNnfiozA/zmtuXASh6VfhozDHThpHFco+bwfMg+KjcH7/atyv98NF+V0v0l4tpeTf/O+/x6MNn7/0z33xXFl9v++L11769xd5PV30M+aizP2j4H+NZ+MY5znnP+p3s4uwz35UElJbcRGe22Fx2FNrphQuB/hrwN9C7d4x8OuB777i++8CnxJC/EHgLSHEvwr8Z1LKHPgK8D2UXtXbQgi9/Jm/sNcPklL+aco2v8997nMX0zv4Y3yMj/ExPsbH+Bgf42N8jFOElJL/8G+9x//4K8/5N37TXb58e/q8h/QxPsbH+Bgf42McCodNTOlAld2lhANZvUgp/83x/xdC/CzwvwD/SAjhAw+Af0dKmQsh/l/Az6Ba/H7vIcf4MT7Gx/gYH+NjfIyP8TE+xq9qSCn53rM+//e/8wH/4IN1/ukvXeMPfePWeQ/rY3yMj/ExPsbHODQOm5hallL+e6/+Z6+GlPKr5f/9zB5/9xdRjnxniqKQbIxiTF079X5bKSWbfgLAVMW6EBo+hZSs9CPaFesjTRU+CwyilDDJSw2m3c8qK6Syi69ejHe7Fz5+3xBnOV0/pepcPDHjMZKsoOMnH4kxVmz92OKZaS6V29YFE+Hcio/C+j4oNkYxUvKR+l02RzHFGY75o/i+pZSsj2J0cTF06U4SeSHZHMVYhnYqYq4fhfc9jDL+qT/zTb671GMQZVQsnX/3t7/F7//StQs35q6fkOYF01X7QrbtfhTe91EQpTm9IKXhmmemZftROL8vMkZxxig6W9e+wyLNVbx30fWRx3HCUdHxE7KiYLpyMfets8JZv++jakz9qsTqMGJjqJJFpqGd6iWw4ycs9yJA2V5eBNHlOCtYH8YEScbNmep5D+fCIskKnmwGSKlcFa9P73bVS7OClX60TVTzouHj9w1POyFhkrMxinljoX4he8ifdgOC+GKPcakb4Mc5GyN4fb52LB2JLC94vBmUQs4XM2H6UVjfB0F32zn00fhdekHC83LMwJm4sn0U3/f6KGa1HwNgaNqFcYw7CawMIjqjMlbTtRMXd/8ovG8pJd0g4bd8YpFPXWnwm99ZoH4BkwGFlCx1QwByKVlouOc8ot34KLzvo+Dhhk+WSzp+wpuLr3Y7PQl8FM7vi4q8kDza8CeukBcVz3shg/BiJ892xgmHRT9MeVbuW0iYrTsnNLKPHs76fR/2NP/RUxnFBYG2pVJy2ne/rZfLi3bP1H4VVYxOA1vf16ue1UfhWX4UxnhaGL9LIS5u1n38fj4yYzyh+XRRf9et+Kivne1n3kfjdxFneE7vxEflGcH2sYpfZfdD/Yzm7UV+33XX5G/+K18772EcChf5ecLFH99hoWuCLJfnUsz61fUkzwYCFUNd9MTU1njvouK4cejWNfOriUV5FJz1+xbyoq+AA2B6elpev359z7/LC0khwdAFovxzkhWAcoc4iovQUfDo0SP2G+NxkeYSTaiFlGQFecldtE39UIH7aY5xKySQlWPOCklRSBDgHtDa9qDjnHyOpjb6tHzvpqFhnPJBfRbPMsslaV5M/nwR33chJWkuyQuJQM3Rw7YNnvQ4s1zNt6KQk7XimPqxNt2THuN43wKpxoty4jlOgHlW6/uwyHJJkqt9yzY0ni89ObVxFlKSF6qqCxxq39mK036WWSGR8sW71zSBfYR1s3jlKlm5/lxLP/V97yg47WcZpTlpeTlzDrlHjnESY8zL/SY7xl74MpzmcxyvG0MTk4tTlObA4efmUcc5HoOAybl3WjHcaT5LKcu4R5axD2CZ2rZk20FwFvt5LlW8LNWReaTY6aKeO1txEcdYSIkf5wgBln5656IEoiSnKO+CnmVcqFhoJ7JyHx2vHUMXh2ZmHXSMhZTE6YsY+yzuDmO8aoxJXpCX8YGpa0he7M9nicO87zDN1YQTisWra+JMikv3HzxkfvGKigEs/UImTQ/6HLNCTu6ymhDoujjTuO7b3/62lFKeaqnrYgqWHBLXr1/nW9/6FqA0Y9YGMY6pU3MM7q2OAGi4JlenPPw448G6D8Bi09lF210dRMRpwXzDIc5ynvVCXFPnats7UtZ0YxRTSMk/9mu/OhnjSeJZL5xQ2m/NVuiHKRvDBCHg2pTH815IXkiuTlUmrYlpXvD9Z32GYcZbl+qTZ/C5z33uVMa4E087Ab0gJS8KHm34xHnBG/N13r7UYKUf8XBzxGzN4c5cbc/vP+g4H2/6DMKsPFxy3lsZMlu3uTtXRdc0ZmvOtp7ZYZTixzmtioltHK+X9rSf5Uo/Yn0YszGKiJKCXpjw+Rttbs++eGZxlvNkM0AIuNquTC5BozhjGKX8th/92qmOMS8k7y0PJuOIs5yFpsvXbs9s69d+2gkYxRkLDWeiF5LmBZsj1dP8o1/70rHGKaVkuR9RSIlA0Cm13RxTI0oL+mHCfMPhcsvDKZMUozhjqRtgGzrX2h6aJugFCXFWMFWxdrWqncT7DpKMjWGCoQs2yzWtCSgkRFlG1TaYq7uTtt8ozXnSCdCE4PqUh6Frkzm8l27YzjEOo5Sun9LwTBru9haQ8TPLC8lCwzlWa15eavdZ+2j3rQ0j/uZ3nxOlBe9cbvCv/Z7ffCrzcjwfpVRtTjNVm00/Vvv7lMdCwyUvJI83fdJccqXt4lnbj8jT3s9BUdCfdkLyQvX1r49ipioW37g7uy0AXxtGbI4S2hWLuS00863r+2/9/Z/l//f9FR6u+1ybcvldn7/60hb1XpAwCDOmqtaJt0fth9PcK6M05+fub/B406diG/z2T17apZPQDWJ+5Umfim3w2WutbXvTSb3vMMm5vzYiKwq6fsJMzWGqarHY3N7WlBeSZ92Q9VGEa+nIQjFjrrT395c5i/38B8/7FIVKjt+dr5HlBe+vDikKaLomYZoTphm3Zmvb4ozHmz7rw5iZmsO1KQ9T1176vlWbvE8/zLg27TFdxiZFIXm3XLsStY+P4gwhYLHhcqXtUkheus8cBqc5J++vjegFCd9/1sezdG7NVnlzoTGZl8v9kF6QMlOzJ7//GHGW0/ETao7Jr/nKj5zq+Z1kBR+sDhmGGYMoZbHpcm3a4+mmOq/fulSnaptsjGLWhzFNz5y06b3q/A6SjH/lv/4l/sG9DX7vF67yb//WN89Vw+WsYt/D4LtPu/yt7y/TDzO+fHOKf/ef/x2ndi6+vzLk/toQTYOGa/H56+0XsVCU8u7ygF6g5sD16cpLz5DTfJb9MOXJZkCUZQzCjH6o9LO+dHMKrxxTUUge7XOGj/fz3/CNr/C3/qefZaZqI4TYFkuN9ykpJT94PuB7z3pMVSwsXWeqajNbt7edt6eFvZ7j+ytD1kcRt6ar6Jrg24+7bPoxl5ou01UH19K23QHOAp/+7Gf5//69n2Wqul1v93kvpB+mzNZspqo2Uqr468P1EUudgE9eadH0rDNpMb315if4l37yr3C17fJbP3Fp214TJjm9MKHhmrvivcMgKduBbVPbd35sjmL8OGe2bk/W1xifKZ/jOHYfx+DP+yFBnNN0TV5fqBOm6j41ijOQUHUM5ur2mbUaCiG+c9qf8asiMbUVK/2Ip5sBYVKw0LJZHyW0PROtXC8V2+D2bJWsKHaJ843ijLWB0mQQQm3YaSZJs4wwzQ89aXvBC/2O08LOtrKFhkvFNrB0jaVOwHvLQ6RUl9v5hoNlaCSZ6gGXEv7Row6fvNKcMEdOE5ujmAfrKjj3LJPlfkRcMrwkEiHg/dUBvSBjc6SSBYcRUFwbRmS5pOmaxFmhMvPAKE7pBxm2rimB+2GKa+lkRcjN6YpKVAhY7kVICX6ScesCay4pXZiAx92Quq0zjFJ0TeP9lSGLzRcHcT9IicpqTz9Uge5Z9bAHSUbPT3my6VNIxVApCkFnlLI2jJgvA9g4U+KcoIKGcWLquD3NUZoziFTQ4sc5K/2ItUGEaQiangoyFhoOQZKTZAVhUrDcj7hR6oV1Rslk7Qdpji4ETzuq3zzNCy63DmRE+koMopQkK2h7FkudgOV+RM9PaFdtmp5Fu2pRc0y1bnJ41g2pOwaGrtENkkk1bxBl1B1jsq730g2TUs2dumuS5gXfftzF0jUGkUnjUgNQ76kbpKR5zuZIvRdT15hvHP3Q26oHYxm79WA0IWh5lpqrpzgvBZAVBT0/BVmUibmELoJhnNHyLOK0wI8VE6TjJ9v2/LPYz4dRSsdPeN4LiLMCS9fIc8kgzHjeDbm2Rc9ufRhTFOq/40Bo5/qerTuESUaYZjzaCHi04fN2+a53YhCmvPt8gKkLHnd8PnG5OUlYbp2nF10EtB+mpLlKIGtCYOsCx9DRheCXnna4M1tjpvZiPn+wMqIbpHSDlKtTLnN1tTed5PtWLa6qSnxzpkrVNshlQZjkOKZGP0yxDbWX31sf8Hhd7TWvzVcpJMzU8l2BLJydJokmBAWS8b3D0DVuz1aJ0oIgSvnB8wEAcSa5MV3Bs3S6QcJSJ6QbpMRpztog4vbsiz0pznL6YUrdMbF09Qw6fsz9NZ8wzUmLgqqt0wuysqigtoeqbTDfcLi/NkIg1OUns+n4ySShf9oaoUfBs17A480AU9NY6YeMogxTVwyMcVJKxSfqd9gYxbsSU2NNxPHveZoQSHphgi40mp6JlJInmz4frIwQQiA0wReut1kfxmS5Gvd83UEI8crz+z/5Ox/w0++t8WvuzvDn/uEj5hsOf/BjJ8FteNYLWeqELPcjLp2iLpeuCW7PVgmSjPeWBwTxC40ogPdXRrz3fMjKIFJ7VppzfapyJtp+W5GVAszL/YAgLajbBnFaMCDjg7URn7rSBGCUZJMzfHOU4LXVPrB1P0+zgtV+jCYE01WbXpC+iKXClKmqzSDM+HB9hC40ekGCYxn4SYquQ8s7e8OgUZxNCmtZPuQLN9p0/RRDaDzeDGhXbJa6AR0/4dZM9cy00pJSqzZKX+jtKnMKtUetj2KmygRg0zMZRhmFFDzY8Lk9A//www0uNx2utCun1jInUDFm1d59n3zc8UkzSddPj5UkWx1E9MMUQrWmCilpui/mSZIVPO9FDKOUpV7AZ662cEydOMsJ4nyi+Tu+f3aDlLVBzPef9dkcJbQ8k6wouD1X4+ZMBT/OWJ3kKy52THZYXKyT+wQQJDkfrI34cG2EocOnrzSZrVksbtnYVRCgAgFZCjP2wpSKqZEXBbqmYZsapqYxijNsQ8M5AoPmLAL4+bqDqWmsDiKWugGXWx66EDzrqYAwynKStGAQJaqdLS+4PuXiWhorvZh+KFkfrvL6/MlnrdcGEffXRszUbG7PVvmFB5t8uDZCCPj6nRkWWw5PNgM822CqojauqmPweCNgumbv27YUpaoSu5XFtjoIee/5ENfSuZfl1GyTqqOTFwWuqVM46nJlagKjpP47ps7aMGZtEJctFgV2eYG5aFgfxnT8BA3J837ErzzpYpo6ccVksemxMUpwTR1D09gYxfTDlIptEKUZUVpwbUolUgTqkpGfwk0mywsedwLyXLI6iHjWC3jej5ipOkx5JnEuMXUVhCdZwbNeiC7A0gUrg4hL5os1etye5gfrPnkhVZWv4fBwY8T3ng6wTMEXb7b5wo0pqo6JY+qsD2OW+xHdQKBrMFd3aLgmgyjFMjRcUyfNi0kLy0npNQRJxuONAFDrsh+mfOdRh9VhzJuLdX7srflJoN/yLB5u+ARJhmMKZusudcdkc5Sga4KKravLwkvGGGU5Dzd82hWLJC9Y6YcUBXzqanPyb5a6IcMoI85yTF1DEwLHPF4ApgvBUs+nF6RM78HE8Uwd1zRI8uRERfhX+tGkYtcqf+eer4KCjUHMpbZHkGTUHQvX1FkfRgRlS0NeKAp/mOSTS+Np7eejOON5L0QT0PFjnndjHm2OmKk5VCwd1zLQNfAsnbyQLHXVnKnZBkvdcPJ1XRN7ru/LLYcfrgyYqtq41u53udIPeW95wCBK0RAMo4zpms3TTkB1oa4KGeU8TbJiF8vnImGlH/KtR11cU+ftyw3m6g6vLdRJc8njTsDD9YB+mPHOpQamrtGuWMxUbZ73IixTTMSjn3QCHqyPQEqmqkdLym6OYjZGCU3PZK7ucGO6QpIVND2TD9f90nRBVWrXhzFhmtNwTDaGCU+7AZ6lkRUecZ4zCFNsQ9sVgJ7mfr4VN2cqjKKMIMl5f2VIzTHKYp2OYWiYhmAYZjzZ9DE0ga4J2p5JxTYYRCnvr47QgeVBOPmZjzcD4rRgY5jgWTrvrwzphQl2mf1yDI1BmLE+VMF3q2JO2hg6o4TZms36ULFyOn7M026ILsSFOsOf9QKedSNsU/C9p302RjF1x+Tty3WSvMAo52DXT9j0E6YqFq6lsdQNudzavc7G+/pp/HpFIXnaDUiygkstl0GYYes6K/2QJMuRQrWMjOKUmmORZYW6uGuCnp9imxqFBF28/PzuBQl/8Rce87s+e5k/8U9+gj/4l77Nf/rT9/idn750JkyUi4y1YcS91RFzdZsoyXm86RNnBcuD4FQ/1zI0pmsWm/cSTF0wil4kPk1D0AuVSc63Hna5OV0FqRjn48Lxabl2df2EtWFMwzXpBgnPugHfftTlUssDqYgGhZTUHIMozXneC9F1FcdtjGLq7otYY6/ze7JPCJWErdkGHT9hFGdMVWxsQ6MoIMoKRmHGo80RWaHOwYWGO2E2noV5lS4EGoJOEHO17WDpGhVbZ2UQqTiRgu8+7QMq9vltn1zk+8/6+EnOmws16u7pjnFrzKlrAomk6yfcmKnyeFN1KVUdY1IYbldNfrg6oOenvO+ZfPpKi7Rk6F9quieabDHLdrd2ZXthrSgK7q+NCJKMu3PHuwOrwlGKEPCsG6AJjX6QTjp/1PNRhSTL0JiqWNyZrXF/daSIFCXGc9LUBMMopecn3F8bkmYFaZ6jaxqvzdWYrauOn7yQ25xpe0HC6kDN/YtoNHEQnHhiSgjRllJ2TvrnHhSzNZuGayCRPO/FIPvcnKnue6kYBz6PNwPqnsHVlsel1gvWSdMzj7xA6o7J9WnvWHaVr4IQoszOQpgUdIOEIFEZ2CwvmKnY2KaGZ+qsDiKGUYZtavzo63N8+0mHp5shK4OYQZie+NjeXR7Q9VNWB4pqKlAVDF0XJEWBZxh84nIDCVwuWxXm6y7xXIFpaPsKUUqpGAR+kk+qos+6Ed0gpR+maEIxcyQFt2ZqmJrG9Wkb19KxDR1TF1xpe1Rsg9WBqqDomphk7He2NV0ErA4Um+vRps/mKOHRZshM3eJyy+Wz11qM4oyGa2JoYlIVilJVZbcNvTykTTRNcHOmQpDkJz7GfpgSxDlBknF/bcRKP2IziJmq2Nyer04O+qpj8rwXTixxLV2j5VmEaYEfZ1Rsg0tNl6pt7MkSOCxMXSPNJaujkIZj8rwXTeaNoWvMNRyGccpKPyYtRsRpwZ25GnW3Pln7uqZzc6ZCnKqL5WkgLSQbQcKorIhneTH5/IWGw3I/JExUBTNKJXfmqry1WN+2P92aqRIk+Z5zOC2ZkmGSo+tg6jq5kFxt73aVdEydG9MemtCOHWzWHJ2enyIQvLc8YGFHYiMtJAtNhwWcE2Nu5qX9Nyi31VbF4vFmQD9MeVQ6FU2nBZ+71ma2bmPpOk86KvhvuCZRmhMkKpE3rqKd1n6+MYyJ04I4y7m3OmK5F7PcD5mrO1xuu9yaqaFrUHctNkbxhInQ8AwqtoEmBMv9kMstb9f6zvICXdf55NUWVUvfVqABdRn9YHXIrzztsTlK+dyNFpfaHi3PnCS6PkpYH8akuSTNVXIVoO1ZNCuWSpoXEqRKitQd9Z5vzlaZa9hYho6pq2Dy+896xKnEszQWjsgWXCuZJGuDmNmaTcU2qOxRxO4GCR+ujVgZRHz2WgvH0Lg1W8U2NBYaLkkmWR3EaJrYxaA5zf18K2xDx/A0nvcUM+qHywNmag5BnHN7tsrnr7f54fKAKM151gsoJEjpcbnl8s7lOv/9d5bYHKZkZYV3J4ZRSpDk+HGGW7O41Kzw5mKdaEvAbuoaG8OIhxs+NcfgxkyFty+p1oYP13zcsnh4c6ZyIWzMO37CBysjekFKxdZ5vBkQJOpMvjtf57W5OhLFvvj+sz5SwrM0pGIbEwZpmhfb2mOutj36YYp3Cr/fKMkme8vmKCl1a9Tc2xjGCB0+e7XFWwsNaq7B+jAhiHMkEs/Wt+1DLzu//9ovPSPJCv53X7mBEII/9o+9yd//4f/Mf/b37/N//cffPvHf66OE7y31GIQvGN6eqeNaOm/ON/ipU/7sIM651HKJ0oJ6GT+otvaCSy2P+brkaS9gM0hYH0a8c/kF8/a0XLvWhjFJVrA2jFjuhTzcCFgeRLQrNlfbHp+51iItSsZ5N5wwpTxLo+laDMo21Lpjbju/LVPj6pRHo2SPbwwTGo5JkudEaUGUFniWwTfuzDBKMpY6Ib/8tMfaIMYyRmhlAdAoSQFnkZgSAuabNu2qyWxdySu8dalO0zNLJlJKN0zJcsmN6Sorg4j7ayohZGiCz11vn8q4HEPnUsuluSXm9OMMgepO6IfphAnvWjrfuDNDlOXYhsbDdZ/1YUI/zFhsuARJwTDMcE39RBlfmiZ4faE+ISWM8bgTECU5cao0PY+DmZpNxVbkgPtro12xrK4Jrk1VeG9liKYJOqOEbFrycFMxtsbPcRy7+2VRdKHhKLkTCfdXAxabPjenK4C+Z0fReM1sDBNmqvaxZDjOC8dKTAkhvgL8GaAA/lng3wduCSFM4HdLKX/++EM8HKaqNl++NU0/SKjYOgt1F/clLXiOpaFratG7ho5j6pOklJRKqPQ44poHbUUbT+KjsDE8W59QB6vlRSWIczzbwCv/PF1VF/+KbVAU6nNuTFUJ44Lpqs3tuZNvXas7Jl1fBWWaJviRm1OEaY5paNRLtkpRqCz6GJomaLjWpPVhP1iGhrOFSuvZOpdbLqauKOadUYKlaxMWVLtiMYxy8kJuayeaLZlZ5gnYab+YLye/ETRck16QcrnlEqU5b12q0/IsPnuliWlozNovLk+upRMmORXLwE8yimK724xj6ieS8NmJim2gaeoCcaXtqn79aZcrbY9rpcbVOIlSsQw2SdA0tQaT/IWYH6h5cBydkJszlUkrX5IV3Jiu8KxXRS81BLYmc2qOQdU2KGSEY2iTJPbOhLRnGXgnGH94lsG1aW/SIrU2iHljoc6jDZ9bs9VttONxZb0XJCVzQj2rnWN82bvVNUWlrtoGrYqJlIoNZW9hRF1uuXSChIplnJjGkG3oNMo2ub1+pmepS42UchIQHxe6ptiXoyibHPTKCtziUstlruYwU7O5NVvFMVXVyTQEaaYuWWleKFOJHUv5MK3FB0XdVfT2uquYNXkBC02b69MV3lio45rGZE561guR/oplMAizXQy5rXNACEHNNogci4ZnYBn6trNGmwiCa8w1bGqOwZdvThGUbBitbDPaOk8vMuYbLqM4x9DFpP0lyQsMTeOdSw38JOfWjGrfzvJist9Utqw1TVPPME4zmhWLqerRfue6a9IZJdQcY9c6vdR06YUJTddifRTR9FT7uZRwe7bGsGRqtzxrQtffr1BzmP28KEW3jxKsbl1TM3UbpGJTmLpgqmIxVbXJ8oJBlOIYBrqmBHkd0+BTV1o8XPeZ2fIsr015k1a+vJD0wpSsyJmtulglW7PumFxpuxiawDQ0VvqRki8QqrIshMDStXLtwlzDPjNttFdBFwLP0ss2TY2v3pnieT/m5rRHw7V2zD/1XMfx24RxtPNnllX/04Br6piGcnGrOyY1xyDLlQ5oo2wjuTNX5XKrgiZgGCk2dtUxVIJKHuz8/qkfrPD6fG2S8L865fHjn77MX/n2U/4PP/bamVzyLypqjskgVBfSxaZiewrga69N8ydP+bOvTXl0gwSkmEgVDKMMS9e53PIQQmIaGnFW8OZifduec1quXXXXYGOYULF0Fpseq4OYz11rMV2z+ez1Fp5lTM6+im3QC1J0TeDZBkGyPaaEF+e3vqUAPf5bIQQV25ycjxVbsZUdSyUAumGCUZIAZmuOYo0mxYnFLK+CECpmdE3QysCk5VmESYGuCaarGp+52iRMC37kVhtD1ybSLadZbBeCXWt2sg8IQcXSJ4UTFUPrWKaGqWt8+mqLimMwW7UQmkaQFOq+eMITSS/jy9qOVj7XNDANDV3TTmTfGecOtt4/tv+9zp2yBX6xoQqxM1WbIMl3PUdNU7HzzZkqftkK33ItZqoOui72zRnUHZP1NJ7kBT6KOO4J/ieB3w1Ugb8J/ONSyp8VQnwG+FPAV47584+EhabL7//yDd5bHqIJdlXot8I2dN5abHB9qqro8FJyf21I3VGtPGFSMFOzj6Wx8ipEac6H6yOk5JXCgnvBNnTeWKipwEAT1BwlZmzpGkGa83QzwI8zrk15JZvCQgjBbN3BNnSExqSF4STx6avNifigY6pq9FzdUYFrKSj/pKOo48MopeaYLDYcXFNXF+Z92iddS+e1ueq2YN+zdEZRxtUpD8vQqViq8jiuMJu6xs0ZDT/Otm0WQuyuQh8FRSG5v67YNnONk+/tvtL2WGioA2imarMZJExXLII054fLw22CjPN1myedAMvQmG/sz6A5aTimzhtlS2iYKhq6pWsYusYHqyNsU+N2yV6su0bZglQwW7OpOyamcXx2ztaxjAMnS9dYbLr8lk8s4pk6czvWsm3oND3V7mvocKnh8HhTtQJebnmnqiWwdd1darlUbJ0v35ymXbW20XOBiRZCmksutRzWRzFhkrPYdA6kf2ebOlfaLlMVm4ZrUnVMdRnZckk1dGUKcJIwdI1fe3eWXpjsudb6YUpnFBOmJ9smdmO6Qla2y4DaW1ueyULTQUqVyL+3OpoYY9yZrdEPEzq+uki2K9a2pPlpoV2xaLgmmlCJwQ9Whngla+LBeoChC27NVLEMDc8ymK3bbI4SZPk7jtvD9oKuCT55pcl7zwe0KpZqH91UzLBbM1VcS1dtrbZJnOXcmathGhqNHXP+NM6H08C4rUITLxLLnqUSsVGq88aiWit+nNOPYlqFJMsLnnZVi9mVlkvNMfnc9TZBnDFbc47MmL7UdJmr7a5Y+nHGww1VyW66Srg+zRVzsV21aHuKGdfxE4QQXJv2kAXHLpwkZetVXkiutLwj/bytayrO8omzEsDt2SpPOsowopASx9InSb3X5+vM151tSSPb0Jmtvdjvv3p7mm6gdKbqjomhKzbC2iDGtTRuzVS5M1dlpmZjaoJ21Wa5H+LHGQsN96Uxw3mg4Smx2tfmajQ9k2e9kEutCotNh36Y8rQUW741W+FKy+XD9RGFlMw3HKqOoVrzz7Dabeoad+dqqh2vfKeX2x5f1Wb4YEUx5YKkoJASXdOoWAZJpqryWk28dB8aw48zvv24yz/71Rvbvv4Hvn6D/8+3nvIXf/4x/+qvv3M6v+AFx+ogou6YTF22S+ZSTiHBMYxJIuI0UbFNbkxXWR/GPOtF3JqpsNh06fgxC40KfpyjCY2r7Rc6fGNcaipt26M43L4MCw13wvqIM6XHlxWShmNOzrGbMxU8y6BdsYjSjGGU4xgq1tE18cr7lKGrvSVMc9UmHCTM1Gw8y6AoJB+uj4jSghvTVS41PQopuT6lWJlb44vThkpSVIjSgqarEmijOMM0BNfaFTp+jK5pzNVNmq6Jaeh89c4UeQ7tIxZXjgrXUmNNMrVfxFlBq2JSsXQ+XB8RJgWzdZs3F+vUXRPb0LjUdOhHGdopdK0UUvK0GyJR+YBxzDvfcPjq7Wkkkukjtuzvhf2KRYau8fq8Yvk2XMVKv9z2CPdgPM9UbSxdna9vLjR4b0UZEIzbU99bVnvyeP6PMd9QRdePalIKjp+YMqWU3wMQQqxLKX8WQEr5HSHEuTY3FhLuzFUPVEk0dI2Gpybqe8sDslwyCMPSylL1eZ5mYsqPFatl/P9ftpGGSa76ZXdshmN9mTHGv7cuBFlpUa3rux0bjhvsvgxCiG0isypzb9FwLQoJaSnqC7A6iKk5qm1SHTBKlHq/pMDWy0KSFUrc3NDp+Am3Z2tKa0vbbiN7WkwhUFX5sXjiMDp5SjMweeeX2x6X2x5xlvPByqj8zHSSmFobxuRFKfxoKXfKs9qktC3VqzcXFdX7w3U1xjgtSPICR9MZxtmkirI6iJiruyfafhGlOZoQE5bWy1ytxv9+fGnqhS9aGjp+cmprX0pJmKogatym87IkaZDk2IaObUCUFBNB8bVBzPXpV2/lhia2rf+zrEzbhjZpNd2JQZiy6atW4rHA/Elh6z5p6hrTNYfpck/6/jOlxzCI1GfrmqAfZoRJTj9XCfyzuuiO16dnGXzqagtQbpUAWa7myXgv3BgmSmuqE/D6Qv2VzMIgydE0gV9qWY0Z66M4m6y5s3DGOSvstdftNCvwkwzP1BnFGZ0gmbQVd0vNkHHrx3Gx16XFj7PJOxhGKVXH4MZUZZvcwKafkOWSlX7E25fqR06ObUWY5mSlvfgwTvc9+4tCXSQcc7em1dbfaefasHRtcgaahthmIKJr4pWtGeOzf+u+NCzXZpios8OzDExdm2hCjoXC14fxNmH1i4KtF6ytc/BZuQ5zKQkTxeROMklSCsKPz/IozXfFMacJIQQ7GwQWm+5ErzHLJVGq2FGbpbvtUjfkxnTlQAznn/9wkzSXfOPOzLav356t8aOvz/IXfv4R/8I3bp5anHZRkeYFa4OYOMsnLZCWrnF7Vu3Lo/h0Ysqd9wk/VomBMMnJCjlZj4MoZbkf4xg6Sba75Uk7RSbf1v1mrNezPoy3nWOeZSClnBi2LHUD7szVDjyPXEtHSuXIO9Zpna7apEUxMRDKCzkRhN85trNAlhcIXjznrp9M4tRemJCVBQdA6bkaymHxrJGVbPNx6/rY0XVjmND2bMJkfE9S+9zWfbt1SozsJC8mbfXRbL5tPz2L4uNWuJa+7a5zaZ9ibJQqgzZdExSFxDZ05urqrjDaEkP48W5jto9yUgrguKtq6/f/0R1/d2583CDJ+GB1yL3VkepvPQTGSaGGZ5aWjtqp2zAq9oKBZ+svXZhjMfEPVkdkebHvv9sKy9AmF5rzdqlxLZ1WxcS1NGZqNob2Qlh569j6Ycq91REfrA73zCTvhKm/+DkV22B9GE++P8kO9pyOC8fUaVctnJdYhZ40bENnumbtmqPjjXbMjvhgdTjRWzkPzNbUOlLPR23IrqloprlUGhZjTaqTQD843PwBmKk5OKYSAG2WLp5CKDr3aeFpJ+TDNX+SuHsV2hUL19KpuwZTFQvTUIfPWR+sR8GDjREfrvkTHaetmKs7tCoGNdc4ctvUUTDfUO98q4ZQ1TYYxRnLvYhHm0ps/rwwU1O6eA3XpLZlf6zahrrIjNQ+tzHaW7dnjDDJedoJedIJmKooHYSqY9A6xaLERYYfZ/hxxnI/pOoYVCxj0jp+mut9jFbFmryDUZztuQeMz8OxqcFJoGYbNFwT19L3TYBLqRgC99dGLHUPlyTWNIFXPr+TijVm6y/2ZdvQiVIlvn5vdYQfZ5M25NpHYA/ciqkte3ndUTblL+ag+l26fsK91RHvrwyJ0vM7v0GxdV1Lm7SCj2OuJM9ZHSjB7o7/aqfAf/Sog6VrfPZ6a9ff/cTXb7LpJ/w3v/jkNH6FCw2jFDp+2glZH8UUhUTTBHPlHWT+FGLK1fI+cW/txX1ivN5mavb2oq7xoi3ovO8RoLR/K7ZOZcudSbXi6WRFwfpQrZ214cFiyl6Q8OG6z+ogmiQHQcXYU5O4/mxdCLciywvural9eayL61r6ljjVKOMFtUYr56SxlxdyMs5xPD9+llXbmIjsn8W9eitMTcM2BQsNZ9v8HUbqrnBvdXRqyd+j4Fkv5H75HMd7wfhsrViKTT+e/6eleXueOO4O828JITwpZSCl/OvjLwohbgF/4Zg/+9BYG0T4SY6li0k2MUoP18Z0pe0xW8+x9LJauLez9onC0LWJTf0YQaKsICu2PmmtCcvgJC/kxNHlVdA1wZ3ZKlmprXTe2Fm5vj1bJc1fjK3rJ3ywOqSQaiOL0vyVTBohxLafM2YaFIXKlG/9vTt+Qi9ImKraJ04X3S/zfZpYaLi75uhszaHpWiz3lSDlRlld2kn5PCvUHHOXNo+pa9ydrxEkysY+yjI+WE3QBLsOrCQreNoJWGy6B6oEjNeJlBxo/oBKDm+dD6/P15GH0GLJCsmD9RFzO9pVDjLOKC0mh8/L4Jj6turSa7O1C7OuXwYp5aTqGO5xwXJNnZvTVeKsOFVm6k7sxVCbqdnEWY6uKWcbUxcT5t9ZY+f7HuPqlFeKbAqyouD+mrq4LjbcPedQWu6BjqnhWDrTZ2zzfdGgYgLF3PVMnYpt8HpZCc8KycMNH9fUT20uqrZy9V7fXxmWY3qxBwyilDRXEgIneRnSNMHVqRfnb5zlLPciLEMlZ4VQ+injtXoUQfWb0xWSvDgxpuFO5lqcFltiu4LbMycX2/SDlE0/PhMm6c617Vr6ZA6Oz5xgcj7k3FsdMlNzznR/3ArX0nex7W/PVun4Cc9Ls5VNf+wGrO/bDv7LT3u8uVjfc3584UabL9xo81/8zx/ye75w9X9VrCklrWFPJC/SosDWFLNiFGdkJ+y4sT6MeX9lgGPquBhkhcTQd8dBY1iGitcKeToaqofF1j10K25MV+iHKYYW4icZ768k6OLlbM2wdBoNyzN0oeEqDb0SF8GFNs0lWS6VS1uQ4Bi6ahWer297JzvX6FkiSDKebAasleL041jv2lSFOFN3atj7znLasAzVrrmzNT8s2Z+g9tmLkHQdRCkfrAwwdY2Ga5FLiYbYdbaepIP1RcNx38LfAWrAzjL4EPjJY/7sQyFK84lIqGMp0evVQUy7evjkw3GDqo1RzMYopuVZR2bPLPcjgjifiPdmuWQQpWz6SgjwSSeg7VkHyjprmsA6Q2pfUUg6QYJj6qwPYh5sjLjccrk7v7tdRAiBZbwY27NeiG3obPoxV9rugZNHW3/ObN0mLyS2qW3baKRUyYOVvgrGP3mlSdXeW+R5FGesDSJqjsnMBbjIZXnB875yspuu2rve++ogohsovYepql3qSzkkWUBeqHey3I+2tVecBjZHMct9pZVwqbU9kTSMUp73IlzzRf9/zTGZq9v8cCXBNXVWBzENz9y2BsdtBC+r9G/FVNUiyQo0TQleb45iklxRsudLi9VXQS8VdkdxxrNuiGNqXG17+7IX0qzAj3OW+9GBW0oWmw4bZbvlpq9smrtBeuBL8XhdB0nGUjfE0tUYX5XgOmsIIXBNnUebPtemdrdUbvox33nSA1Q16KSR5QXrw5hBlE4cH7e+x+V+qNpnag6tisV83eFZV7Vyp7nScTjtgKUzilkZRnimwWLT3XbRllLypBMQpQWXW0rLY6pqk+QFS90AS9fp+ilV29ilS5ZkBR+sDvneUo+pms2Xb02d6u9x0bHcD+n6CUKoS1iSFzxYH+GYisHU9VVb3yjKSh2847/3JCt4UrpbLTZfaDutDiJGsXKrvD79opXvWTckyyV+nJ9qlX5tEE/azquOYu6Mbb6/9ajDzZkqV9veoVqshRAn2v5aFJLHnYA0L7jS8qi7Bu2qRZzmaEJdLIIkZxilzNadY63TpV5AUUCQnGw7cVFIuoHSCxuEKaahsdjYfkHaK2acKcXkV/qqbWN9GE8Yb6eNIMno+klpmKOz0HBJ86LU9ZFcaXsTU5k4U+6BYZoTJdkkZt05D/JC8r1nfX73567s+ZlCCP7wj73G7/nTv8Bf+oXH/PNfu3nqv+dZY20Y0fET2hVrV/JOFd5UMdo2dIpC8ktPegyClKpzMu+8FySs9kPeXR4iUbqTt6bNA7nh6ppAPwef1lGcsdQNMDTBQsPdFq/nhZzogV5pezim0guN0oL15Xjiwtz0rH2Lmst9FTv1Q9VWPV2zJl/fGheMESY5z/shaVZwqdQkPG24ls5sXWnqtSsWS72AhtfY951IKfmVpT6dkTLU8SyDQspjGQq9Csv9iDSXgMA2xYTlF2d5SRZQxkNbE5vL/bBsWVPvtO1ZpxK/RmnOLz/tMV21+dE35iZfr1gG3WCIrgnuOueX1NuK5V5ExTLpBgl3Zl8wF8M03zfOHxdVWp6JRChx/48wk+q4UddPAn8b+Ks7vv5jwFeBP7TfNwohfhPwR8o/3gX+0Jh1JYT448DvBLrA35BS/j9eNRBz4swikYVqkxmEKR+u+UxV7DOtvqwNYvLihU30Uaj4nqUTxDmmIZAF3Fsd8nAjoOoYbIwSTEPn/tpo1yX+ImB5ENEZlTooXZ80h3vJiIWG0iqol6Jve8ExdUKZc2umuotddVDYhs71HQy0JCvw44wwyUhzST+MebDmU3MN7s7XdlWBlntqw/TjnJZnnrvl5pNOwPurQ6XTlMnJe++HKZpQcw6UvtS4OmQbOrdmlKh/mslTsZjeil6Q8O7yQNmU1mwcSwlp+3FGlqtkZZIVJFnBdGpNLn2zdYdcSjaGiXJ52in0WbY4HFRYM8slddfANjTur/nEWc4gzJip2SzL8FCVhs1RPBlzkOT7sqFeCC0fbIzDKJ2IV3+4PiKIc1YHITM159CX4s1RQpwqjbNRkl1IoeokL5itOYRJgZRy256oWkGGCATXXqEFdhQ87YY83BgxCDMlWmoq15eKbaAJJjo1a8OYVsVSYqizVZZ7EZrGpNJ3WtgYxdxbGbEyiJhvOFiGEuuPs5wgVvpQYy2JjVE8mYMLDRfPNHjSCRCCPc+4x5s+DzZ8RklONZWlBfHhjv00LxhFGTXHOPd98DjojBKWugGOoVoKpqoWH675bI5i4kwJ74+FRXVNnNh7f9Lx+f7zAXGaM4ozPn9jCilVfGDp+i6nNc/SGYQZrrW3xtNJwbN0ekGqXAjLGCJKc37wvM8oyhUDtOZwbdo7F6YtwDDOJvpfG6OYK22PS02Xp52A9WHCSj8iLzWxwiTjrUvNI3+WZylnvJM+J8fx0NooouGoc7tatlWO4mwSK+6MGS1D41q5X60OYgxdHMsh+qBI84IH6z7LJRNqvuFQd0z6YcraIJq4n83VVZvpmFGy3A/3P8OB+2sjgiTnk1f2p0v8yM0pvv7aDH/y737Ab3p7/sgx4EXF2kCx19V73p6Y8iyDG1u0Ipe6AZvDmKVeeGIsvqVuSC9IeLCuikRFofSAHm74vDZXu3Ds6zFb8NFGQL1MXtyeVUz7NJMUUsXooDTPxl0L8w2HNC/oBSmOqfGyXMfYDOPqlMe1qQpCCLK82BYXWEYpuu6arAwinmwG9IKUUZzx1mLjTJLFYz2mvTSFxsgLySBUjNuH68pg4ztPu1xtqftQIeUrtf6OivGdda5hc3umNkmc9IJ0oiu12o+oOmrvC5KcjaG6E9xfGzFfd4jS/FTWfJzlPNpQ6+nrr81M7nu9MJ20ggZJhmWcvyOoZ+nKAbla2WbUtDXO7/gJhq5cazVNTIoqz3ohzVJX7JrmXci7wEFw3Gjjq1LKn9j5RSnlfyWE+D+/7BullH8bldRCCPFN4Kd3/JP/o5Ry59f2hWpZq02C6G4Q0w/UBe8g1NMgyeiHKU3XOvYm0/CUTXTDNY8cWC40XFqehakr9peuCaUpI1W7yUo/QtcEH675vD5f25Y9jdKcbpBQd8xzsU6W8oWNZatisTZIqLvqAiUluL6y0Db13RadN6crE+HVg8CPMwaR2lxelnz8cH1ElktqrolrGfTDZPIZco9ikWvpRGmBbWoXQkhOAo6hxGXHgd+91WFZDVKOdnkudzHMtC3r4rSTs1IqkeuxVoZnGWyOYr671FeBuKfmomNqk4vQGFvn+86KiWPoBw6a4uyFw+W4ymjoGuOP2289SCnZGCVIlH3reN3WHZNBqLRMXvb8HFM7sNlCP0gnWktX2u5k/tljw4KXXIoHUYofZ0xV7MnzGF8aTF3Du6DtDw3XZHOk9oGde2I2Ng4QEs8+ncDYMXQGZAgBK/2QzVGKaQi+dGtaaf1E2906p6s2VdvA0HYbTZwGTKM0r5BlYJLmfPNhB0Mr3VPNvW2fG57Ja1YVTewtkFxISdMzGQQpt2a8I2nxPFj3Sco9eSw++1FCmORlu2NBx0+ZqgpmanbpGCrU3mqpZzddVe6mJ/nepYQky3m04SME3F2oqxY112AQZrsqm1fbnjp7TvmSOFW1qeyY41JCw7HojFLirKAfpjxY97k9u/feFmc5HT+hahunwhzwLB3TEGWx4cXPzwtJx0/QhCwLTRlxVvBaXhy51ej6lHruB409DovxmSeEOifHZ6Nn6ZNzaa/9cbbuUC+NI84yMWybGuvDGMfUkNJjpR+xMYoJ05w7c7uLOy87wwF+5WkPgE9ebr70c//D3/k2v/FP/gP+0F/6Dv/VH/jiR/ZytRNpXpBkOXEmudx6eXvYMEpZHUbkUlKxDG7MVF767w/6+X6c8awXTu4m16cufjuQOttemIOMopRvPe5i6zpXplwMXaiC946z7XLLZbpqlzHp/jH8fMNRMbT+ItY3dG0SFxi64N3nA0Zxxp25Kp6lIyXomvp3kpNts3wZbkxX9tyjxnHhIExJMkmBpOpojKKC6cqLRNRpjnS/9V9zlO5vXhQ864UESc6lpsuNmcrkeY/Pur3uYicBgSBKclxTTO6nAPWSJa1r4tyKLzuxdd5uxTjO1wQ87ytWtURyZ642KapsLd6f1rM8Cxz3Tbzsxn6gE1QIcRNYlVLuVAD+j4UQXeD/JKX85YP8LF0T6JqOECqrHmc5V9veRNUeXriGrQ0jun7KdNViqmrzcMOnKJTw9ut7tJyBquwHSf7KdqBLTZf5unPkhMbONjJdUwygdsWi6yc4llEGC8ryfOf8e9IJiFPl8vGJy41TrbruhJSS2ZpTapro1J0Gfpxh6Rrvrw7phynvLveZbzi0PXW5NnUx0bpYbB7cnU1KWb43ue29JVnBcl+14owrKGOqsmcZ3J6pkhcFH274yoErTHe1611ueUxXt2iNnSGklNssm0FdVmq2ctdrehbDKONpN+Deyoi6Z/LrX58jypSTYZTm2y4R43Vx0thplduqWNyerXG17dEuEyc/XB7wtBMQJBlfe22Ga1OeskIPkl1tefsldYTgwJU8KV9syIamcW3aJk4L3lqok0s5+YyNUcz6MGaqotphu0E6EWvUytaz1YGq7ry1WC+Tba/WgDoIsqLY8v8lV9sevSDh1mwFTYjJBSQsxesdU+dq2yOXkiebQamdpdq6nvdCNCF4fa6Groszn6sHgSz3KM9SLSE7YegatiUoChVAHAUvs22+3HKpWDqvL9SoOSZ//71VPlz3qToGd+dq3JiusD6MGUYpgyidXIROK5GbFxJty3yaqlgIlHbUuAXm8abPcj+k46fcnk358s1pVobqUtjc8fNexpj1bJ2rLY+5qsNU1ZwwHUC1Bo3bSl7Wrjyeryetc3LS2Plcx3i06bMxUm1rV9sV+kHMD1cGfPJKgzuzVa61vVKbUjuxQs7WsVyd8kpRXaVZ97wTci8dEWeKGbyz3V8IceoV+GGUsj6Mqbvmtn3YtXS+fKvNVNUkiHOEUPtpsU+U+7Sj2ss39YTX52snmjiRUqIJwd25GlKqy9eD9RHtiqWCdiExDZ26o5WW4zp5Idlv2WZ5wZNOQCFVQWDnujmp575zHs7XHUxdcG3am9h/m7rGe8/V2ejHGV97bZo3FxusD2MebvgsNJxt+89p7EX77ZmmrnF9ulK2lGllEi1hFGckpYmKYpbtXisvG+f3nvWp2QbXp16eZLnc8vhTv/fT/MRf+Da/5Sd/hn/x19zmN709v6tN+aOGp50AXdNwTSZrPi8kz3uqdXSrhmbHT1jtq9bNty83js2YWhtEvL8ypBMkbAwT3rlUo1WxeWOhRidQMgrnzZbaK+51TJ0bMxXm6g41R8lu/HB5wKN1nyDN8WydNxZqPOuF9IKUimVM7niHWc87561yTpVM11QL4N97dxVQY/v6azPUbINhlOFY+q51sPOueZIY/05RqmQjHFNjumqXDK6Ehxs+19oV2lWLr9+ZJSuUO17XTyjk7uTdSWPncxxr+l5queR5wd/4lWXyoiArCm7MVHhtTmkEKqmNnKnK9jgkL+SJEAOEAF0H11R6auPVVHPMiQv8fmfcWWOvebs5Uvp9l1suwyjlV572CZK8PPcC7s5VyQqwDUEnSFUr35ZCzsvi44uI487SNSHEF6SUv7j1i0KIzwPrB/wZPw78tR1f+0kp5R8XQtwB/t/A13Z+kxDiJ4CfALh69eq2v7MNnbcXGwSp0uPx44yHZbXy1oyq/I0ptSuDiKmqPUle6TuCWimVvs2YZg2wQrRLrHwnjrOYlnsh68OYtUE8aSOrOSZxViBRVq4Nz8TQNGqOseuzdE2wORprqqh2rrO4sI4dfcKkYK6hLLfH1tNCUCYlurQ9i66f0vZsdCG2aV3UnINXXoUQkx5zU9e41FT93hujeNL6UrWVdkbDNUnKnnBNE2iaTpZLDE1jdRDteTE7D/HNLC+4X7K7rrRe6JGYusZU1aYXJKR5ga4LDCGwTU0dknE6oTTrmmp5OE2MafsVW9/WGteuWPSChChT9vYNVzncVW2DLJesDqJJi2TTPfkWScfUudxyibKcmaqtfn557xvPqiDJ+PkPNykKyaWWq5K/5foYRRlBkpX04xw/zvfUyzgO2hUlaIgskxJC7NIMKwrJtx532RgmTFct5eRVHlajKCu1s17YBVds40xEe4+CQZSx1AnIcqX7tpOqLQtIM4lpaEdyj3zaUbT6pmfuOe+3rh2lPafjmJq6JOoaUspJUjLJQ+rzp1eh7/qJ0gkwNG7NVDDKxHe7YtEt7dhtQyViPVMnMDMqlsnjjtKKC+L8UExYzzRoV2webYx4uJHypBPx5dtt5uouq4OILJd8MBpSc4x997vrU0pQ9rSsnE8CW5/r7dkqmlAtBIauEr2tio1l6FiGoBOoNfPDlSFfujmNoWt4J8gs7gUJTztqLDenPfw459qUR16oFtY4V5obUioWzVm5uG7Fcj9ic6guv80b2/dh2zTwLLXnJbnaI/erJq8NolIX0ODNhb0LekdBmhcTlvOVlodpCH7wfEDVNgiSnIWysAVwqeUQZwWeuf8cBrUPjc/Irp8y3zj5831jFLPcUxfGWzNVNE2ga2LSttUPUhDQcDUanmKtVByDPJfEWc768EWMuVOO4CQx3jMbrrlNED9IMqK0oOmazNddRpF6Xo6lEhdJLoFiTy3IV+GD1SF35qoHurD/utfn+G9+4kf4Y3/t+/yRv/o9/thf/z4/crPNb3xrnh//zOULIVJ8EMSZ0om1DI1HGz6DKCs1DtXfq4u7cg53TH0Sh0ZpQd01KaTk1nQV8xhJo7H+btdPebjhY1saz/oRdc9Cwr5C9WeJrXHv5Za7LQlZd0w0IUiyAs9SiRbd0PAmzzAt56kSrz4JHaXlfjSJ/+quQdUx1OeXTKUkL3BtfRebbxRnPNrw0YTg5kzl1O4Qq4Oo1EIEz1RkjM2yyJTJgqttlyQvyHKJZyltqaedgOe9aNeaPy1IqZKuUkKcRaUGpkk/SKjZBppQ+qhZrljdO5/lg/URfpwzU7OPbfpQSMWiCbMca0ubcZAoDdm4dG+/iILiRSEnBhNxFpLliu0c9QKqts4oTtE0DbfUWN5Z8H/WC+mMVJfSaZ4pJ4nj7u7/OvDfCiH+HPDt8mufA34/8HsO+DN+Gyo5NYGUslP+995+CRUp5Z8G/jTA5z73uV2pzoZn0iivoh0/mTApRnGGY+rUHEWjHy+Gm9NV/DjbZr2e5ko4dhRnEzFCU9dOXasnLA8S01ALt172jFZtA01Tv4ey/d79+lTLlqJSXmq5hElBVsgz0SZI8mLSSzwIM2ZrinLY9VOEgDtzVW7NVCfiszdLerIfZ6pVxNIOnQCYq9ssdQM8W7mX1BxTiUnDRHdlXE0RQrFhxmi4ikFwkajiYZqTZmo6D6J0W5vH007AMFLtSG8s1HnzUgPL1HEMjSyXRGmGYxpn0u8+Toj4cb6tqjEOzAGuT3tcL1sz06xAE2LiguFa+qm1SL4qMBlGGZ6tMwgyNKFYRg3PpB4a+ElGP8jIC6VPMFW199TLOA6EEK8MBpO8wNBUW2SU5XiWjqFrTFct+mFKVkj8JGNzFOPZ+oH1t84DhSxYHkTIgj0TwFXXYLZuIyVHqor3w3Ty371ldV+sHU1TiRbb0KmXwaYS1tcIE3W5PU0MIjXWJCuIsoJqmRBY7kdsjpKS7Vtlvu7wySst1oYREklRVpNNXTtUZXuqTM5KWfDheoBpCNYGEQJlrf3Byki1hK+PeH2+vuearOxjEHGRsO25lq3s99dGeJau3KQKJfCdZgWPNgOSrGCmejoXsvHemGQFjzshYaKYR6/P1wizgjDJqVjKcfa8kslpVrAyiDANZVPf2lKptg0N29SIU7jVdvYd4yBKSbKCqapJ1TZPlCGw9Rzc9OOJwHmY5NyarU7mtSZUXLTpJ9uYqHvBK8+cQsptcd5JYlDuRVFakOQFzham8uYonlwwrk55XG17BFcVy7nhmQxC1Y5TsY2JNfhpYbxexv8FNV8frPtIqWKyK22PmzMV0rygYuk8LwtNtqHaK41Dnov31kb8hjfnXv0PS3zuepu//a99je8u9fmpH6zwUz9Y4d/+H37An/3Zh/zZf/pz5+pAdlA8WPfJyqSjY+oESc5UxZy0m7qWPklSbY3b6q5BkilL+OMkpUC1Mg/iFNdWzqxImKk66EIjTPML4bK3db0Po2xbHBAm+UQvKc4UU/ztxXpZxNHwk4xCqhj0pBJBnqUTJnnZflnw2lyNLJe8UbIax4WsGzOVbUnSUaSMCnIpCZL81BJTnmXQLzWuwsyamBplpZyHrmk8KJ9ZWih9z3GctHXNnyaEUO9jEKYkuWJr3Z6tEqU5by3UiVKl+wTq3rq1OJvlL7TDBlF67MSUqQtans1i0yUt5CTxIaVkpSzQ1U7IYOCkoWkC19Lo+ilGLspYzODtxQabfoKhaXT8ZF/W+/hMGkbZLn3Xi4pjnc5Syl8UQnwB+BeBf6b88g+AL0op1171/UKIeSCRUm7u+HpdSjkQQkwfd4x5oSw2x4r1Rhk8XZuqbKO3WYa2S/hsqRuyPojphSnXp7xJBvy0NpuikAzjjOmKRdJWWglyS2uLY+q8UbaraZpgYxTTC1JmqvYkgbHUVdR6U1ftSM2y5/csYBs67arFKMq2VH5ynvUCDE3j9kyFK22PhYYzee7vPh8o6rsGC3XnpSKFY8RZwUpfCQVLQBcafpRPLlXNUm9qTJmXUs2DMM3JigKr7DJVY7lYFMeKZZRBScFUVc3Hrp+w6ScMwgRTV3NPSsl0VemkLHUD4qwoKfjembiEzNZs1kqXIF1TYpFL3ZBNP0YXAl3TKAp1kX5trsZKf5wcFDRcgysvcbg7behCECUFUxWTdy6/EGKt2AYVy0Ci5krVMTB1cW4ud3GaYxuCz19rTtawZbyo0g2ClJproIuzEcU9Kkxd52rLLanvu9eabejUXRM/yvHj7NA/f67uTFrStqIoJEvdkFxK4tK6WErV2ne55fKsF/JgfYRnGZPWntPSlxljumorDT1Dp2LpSktkEDOKU3ShTQooQigdJENX+7yUgqanHAUPu181XJN3Ljdxy2RImOY83PBpeSZVR2cQZYRJXmovXNx5tB+iVLESemHC1ZaHa2p8c2XI5ijBNDRen6/Tqrxgnv7YG3MkeXFqyTbP1ri3FlF3VYU4iLNSsFafBNvvXK7T8qyJrtxZIs7U3na55WAZ+rYYA8a6hNVJW00/HLf9GZOEepzlPN4I0IRimh+1Aj+e/zXH2MYcq1oGNccgzQumKjZ+HDBdVczW6+VnjVsVthZDxq3ue8ExdV6fr6mY4ZT29JmaTVYo59lxnDiIUtYGMekWNqiUqq3z7UsN0iznaSfkecm0mm/YzJwyi2Wu7rA5SibrQkrJ007AUlc9ZylfrJesrNgbmmKl35ypKtbKIZ7hxki1DR9Wo04IwSevNPnklSb/xm96nV94sMm/9Jd/id/zp7/JX/1DXz4T5sdRMYpSPlgdYuuChabLxlAVwgr54rlVbYPXymeyteCw0HBfML6PgDDJyaXE0ARL3ZCKZWDpgtfna3T8FNsU1ByD6gXR1RnHvfGWuHccU4apKhTqmkZRXqw/cbnJs65Px1dmRq2KyULDPbG7zmLTpWIZPNr0idICy9B4a7GKaxmTGCWXkkcbIyq2yeWW+uxWxVQMFiFOtW2u5hh0TY1C6qwPEhxD563FxuRO2/VjlvuKrdQq74bzje1r/ixwc7rCD1eGpLlylHtrsUHFVqYJwy0JMuWarO6NjbKTYrpmlQSH44u1SwmWIUryw4s5omsa7ZK52q6cv/v6frgxVWF10EEiSmJCjSDNSxfEF632Ukqe9UKS0szFMRUje30Y0/SOrnl91jj2ypFSrgkh/hfgP5ZSBof89t8B/A/jPwgh/pSU8l8G/m9CiLdROlV/ZL9vPgj6YTqphN9b83nWC3nnUpMrbe+Vm75AsS90TXC57R26mt8PUnRdvJR2HCQZz3shtqGT5QWjOMfQlQaCqet7ilmDmoDjYOx5P6ThqVa1fpgipaTmmNzdpwJ+mhhrOo1h6ALH0LFNnTiXsMXy8kr7BaW5F6jM7/oo4e787uBl67MsCsn6MKZVUe2M802H1X7Eci8EqSrjW1sPFpsOz3oBQgie9yJuz76ga16kpBSo93tthwbD836o9HeEYLZuY+mCp92Qrh8jhGBjmND0lI30y5KmQZJNBJSPu0G1KtY2ZlI3SBlGGaamGB0zNZs4z/nhcpmQ0mAYZszVHVxb3zfZk+UFgyibWCYfF897IX6cMd9wJgm7+2sjkqxgs3TbGwczUxWr1KeSrA9V29fO+TGMUgrJrnV5HKwOIgahsjsf/9xn3ZBemCIlbPgZzXJKtDxzcggNw5RRqQOz9X0GSUacFud+EPWCRFmcly0fQzKGYbZLN8CzdGShgoZN//DVvJmavWe1qB+mkyphwzMmGjQPN1Tr75OOz+YoZapqcWOm8lKmYZoXDKOMqm0cS4ujsuUiAurdh0kBUtCqmtRsk16YcG81JkhzNIFy4XRNXFPfd7962fg6fsLmKKbpWTQ9k5//cJPNkfpau2LjGjqutf/PPg34cUaa7xZz3wtJVpRs2L2NTNaHMYWEpmvRrlo860WEWV467Tl4ptLsSnM5SUAel4XwMmyMEuKsoOdnvD5n0i0Z26uDGLcsmLimceikVF5qKXqv2Of3wngtVmydbilN4FoG8w1ncnHZCiEE41z3Sj8iKZleTddiFGcYmgqQWxU1p3a2DxwU4/kfJjktz5rMXU0T29oOFgqHd58PqDsGq4N4WwV9FGUEaYZnGi/VqOsHKWvDiLprnlr7ZM0xdxWGVvuqfV1KyWxd2X8bujIv8WwDASz1Qjp+wrXS8v5liNKcIDl8y/NWTFftbe9sEGUESU7DtTA0wWLTIc8Lfu7+BmGq9pWWpxIl46LfToRJTpTme54791aVhOyd2eO1yvzIzSn+m5/4Ij/+X/xD/vd/+dv8d3/wy+ciuXAQfP/5gM1RjIZQLUJCaabpO4a733ly1P04SDI+XPPxk4y2ayEEZFmBH6Vs+hmzdZuFhnuh2nr2ins7QTKR+Kg6JnVHGQPcK7Vqi9LZ9NpUBcfQX5qU6gWJEjTfcheTUu2nlqHt2ars2WqeK+FuxYCqOwZNz2KuYTMo75ajKKPjJ8zVHWxDP1Em3yBSMeDWczJMlMFPL0yRhaTpWQgES92AKM1ZaLhkhUr25YXE2NLiddR9+mXIC7lL13YMxfbRWV4LGSZKl262rhJOrYrF5ZZLnBWsDiKKJGelH01+14WGy8L+Bp6HgjI4UUXcrVuTcqXVSPMCTYN7q0Oa3ss1N08LEiZGIjv3hGEpRzSMUt5arHNnrkZd17jUcsmKFwL3ozijW8bQ60Ml6dKuWBdW5mM/nFRK958B/kshxCbwM+X/flZK2X3ZN0kp/587/vwvl//9F05oXOrSg8SPU6IkY3OYE6YF01Ubt7RlDBLVArbzsL3S9qgGCbM1myyXhxIQWxtGrPaVXsDNlzhqrA/jMjBTdsdPOgG6Jvgt7yxg7bHQ80IyilLCtMAyBEkmJ5vtww0fpGoD2q8t46zhmjoSRaV0TI21QUyY5HTTBE1Tz2YYKSpu10/oRykN12B+i0jyzmdZSMkgSikKyUzNZhAmhK5J10+VoH3N3uYipCj/gkcbPt0g4cZ0ZduzOSmBvdNC1TbYGCp70Kqt82gzYH0Q87QbYBvKKavpmsw1HPSygr0z8ROl+YSmH9byPUWojwPV3qoO79m6TZIpu9qOn7DUC/jstTYzdbvUDzD3feaPNgPCJMfQBW8cU7MkznI2R8ryV1Xl1YGn62rdSQoeb4y4NVvDNvUJSyVKlbaAroltF6BBlPK4pB5farknstlneTHRrlsdvDiUHVO5NiV5wXTPZK5mUysTitNVm6KQJGlOWigNlvGz3Pqeo+zk3/MYozjj/ZUBrqnz+nx9z0TjyiAizSRRP8bWlUNnIXevtyQvKIqCbpjyxvzJXTJcS0fTxmKkAsfQ+MHzAbomymqipO5azNXtV7ZCPtpQlVPTEPuaYxwFFdsgTBIsQ+nldUo32fVhxMNNnxtTVW5Mu7SrKoGw37p5vOkTJnuPb7kXkhWSKFVaeq2KyfowwtBNdUlKVeC+NozORG8kTPJJm0Fcf3n7FcCDjRFpJnEtbc+gfxAp7ZSZmj0pzlxquNQdk+vTFT7cULqHSnsxmdjbj7GfaPpRESU5cVoQFjkfrA0B1Tq2PozJZcGlhrfLie8gY3jSCZS+nAZv7LPm9sNqee5+92mPJJfcLAWFX3ZRidKcXpBSSPWOXEtjuR8yCFU7+dW2q9gKx9AeK6RkcxQzV7dfyvr0LH3yOUmWT844ZVqQkeeSqZY1ea4dP2F1oJJQ42LZyiAqWz1jpqs2AjV3TpMFD2qNR2mCZ+sYmmDTj0lyiSwgShNMQ+DHStuwVd2d2NqKopA8WPcnZi4nBb3Ue3FNnWtTLh+sDVnqBDzrRjQ9i4qtCnxuqTW1cx/a6oYbpPmuAuW9tSHAtqT8UXF7tsZ/8rs/xR/4C9/iJ//ePf6N3/T6sX/mcSGl5EknYGMUs9BQMc5SJ+BZL+RK0yWTkqmKYsuehPtXmOQ86QQYuuD61It4VkrJ5iihGyRsjhKiJOfWbIWikDQ8m1FcTO48r7rPnHdc7FkGQsRly7OJlJL7ayMKCd9/1ufOXHUSUzZcY9/xbr0/3JqtTJ7/6kAZ4Izb53fuAWOdqLwo6EcZ333a43LLo+GmXJv28EyDXhDimPqpyLvkhZzEm5dbLq2KhZSSBxsjHqz7TNcsWlWLxaZHkucsdUIqtsHaUO2nui5Ii+JE9VH3QpIV3F8b7Wt+caXl8t5yn6zUW8sKJVPxZDOg5hg0XLOMg3Iqp9XCLFXnyXzdKQvOap6keUHVNshLnVFL1/fVHPbjlHeXh9RsgztztRNfG0la8KzUyRyTM0ZxxlI3wI8yNFSyUUhVZLEMbSLcvjpUZmnjokFeit5/VHEiI5dS/n4AIcQi8E8C/zmweFI//ygYRimPN30Eyu1pumqR5AVJHjHlWXSChDnd5ucfbCILVUm9VQa9RSF52g0mNPLl8nKbFcUu4d79sFXuIN9H7X8UZ5PM6CBKePf5gHtrI661PZ73Q65Pb68udfyERxs+z/uh2iAdg+vTL9xlxhtz3TTPRGfoIOiHWUnNFFi6Emtf6Ucs90P1NUPDj5XOwsogxLF07q2OmG+4JFlB1495tBnQC5Uw8NhWvWobPCvZT5daHlFWsJoqfYa9XIQGUUonSHja86nbBp+93sYxdT5YHTAomTyHFQzvhymrg4iaY5xaAgBgsaFalYSAX3zYpeYYPNgY4Zg6UZZjaoIbM6p3+72VAaBsZR1DVw6NWY6lC553QzRNnCjbZ4xKaReeFZLvLvWZqdosD8KyMq+zGcR8/fYMnm3sEqte6UcTN7SVfsgoVlXXV/VD+3HGWskC2OtCbWpKU2EYZVSEPvl5d2ZrbI4SnnUDfuoHq8h3V/mxN+d4c6GBrgkelxo0msa2OVFsuQwc9GJQFHLCeFtoOruqenpZUfLjDMEL94zpms2tmQrL/YhvPuzwCw86fPHmFF+6NYWpa2yM4gm7KMkLXMYtni9cCbP89FxGPlgZ8MtPeuhCMFW192QgVG2DbpYCklFSMIhS3lyo76oG9UYpDzd9krzgJA2NHVPn7lyNp92AfpDyvaU+tqGSExVHJ0mV9odAtRTP1l/8HmmW8/7qEEPTuDGt3kOU5rtE6o8LZbFs8t7zIe+v9HBMjYqtk+aFMokIYu4aVdqleOnWdZMXqv1m8P/n7s+DbM3Tuz7w8+7b2Zfcb9699qrurq7ullpqIaEFBEKWJQTDAANM2EzETOBxjMOGCTAEwcw4AuMYx8CEBwceOxjCGBNCgAQebCShBUFL1a3u6upa75735n72c979fX/zx+89557Mm5k3897MqtI8FRWVlcs573nf3/L8nue7hAn9SYyf5E/A9KM042Hf58OtISXbQFVkkW1rEKKpKi8ulumoEYYqDUE+icLU/Np8mnk0/Z3siBpWmuXkudQa3BmGJFmOa2pUHB1DV/mdB32p1yMk2nReWyiIMz7YHspCVs2ZUcyft0hxpeWRC3kYv7snc5CXVsqYhorIBfe7E1bqNmkmvx6HCQowjnJuLJRYqztHrnvT+1D4Jpw6JpGk9m+MQ253JmjARs/nR15e5FLDPTLBvrM35uOdMZYujQOutFxKli6bX0U4pk7lOVB2cZoTJYKyo88aA8eFa+os12zGYcowTHhva8ilhjsbS2XbOPBs90YRaSb4cHvIMEhYrTuUbZ3OOJ4hIe7tj9keRuiqMkMcCwHmOSMHV2oOzZJJmgp++cMd0gx0Da40S1iGSs3W+dXCSXl7EHKleTSqKEozdgYhb9/rnuthUwiZ71qG1CrMBHy8PWYQxHT9iIWyxQuLZZpFEfPu/oRRkJDkORXbkIYyilI0Q1Lu7yckac7SnLPgRzujgq55PkiEH31lkZ95c43/+tfu8FNfWD2XgtfzxCCI+Zfv7dCdSHfKL6zX6EwiEKCoCpcbLu9sDOhOIqLk2eiHQki0t6ZKQ4c4zYlTqSETplmx90uzpnEoC8rjMKE3iVmpuWwNQlYbNkkqUFDYGoRH5rzSxEg6Vi9WrU9NHL1k6VxputzaHfPx7hiEdIbtTiQdbXcY8cJiiapjcHtvTJhIhGyzZBHEGQ+LM5ymSgFox1S5kj/+vHGaFVpRonDzVFituVQcnTv7E/woY7Ficb1d5l98dxvX1BiGCZnISXaldm/LM6Vj9gXIZyRZXqy3gjBNeVGtYGjSLCpMUu53ErzlKpNY5sH744g0FyzXbHRVxS4cNQf+xRqXBEnGN+53KVsalxreEw2TIM7YGUT0/Jhm2WTVqzAIEh71fdJMagH/0IstbPNJp9TzijQX7A4DTF26Kk5jqWqz1Q9nGnBoHMtw+vbGgPe2hli6zM/PG32W5jnffNDDUBWWqzYVx2CjO+FhL5zpMHu2jmvpPOj6s4Lqw55PEOd0xjGvLFd4calMlotP3WXzeeJcCkeKovwJpHPe68A+8LeQqKlPLX7nfo+Pdsf0JzEvLZcBhbcu11gtCksVW2d/HM1g9vNJzThOZwKmHaKZZfJZKqQLZQtVkX9zlLj27jDko90xYZxxc6E0O2THaU4/SI4UlhwESXF4FewMQvq+Ssk2aJflZL7a8ugHMTXnswPbUxWlgK4/1n+6seBh6urMaWMcSkF6XVUZh1J8Wr21xziSlCTH0ugXUNkklXBoVVFmz8MuUBs32iX6QYKpPQnNbXgmaSYY+tJmdasvK9O/9uE+doGcC5NMQopPQfME+QyjJCdKYpqedWELQQ6z8SB47Dq5PQzRNYW8SEhGYUqey0LoRzsj/DhlfyTh0FPkWtMzsS5QR0dXVRQUBHC97dH3E/pBSt01mcQZrqXP6FXbw5CBH/Pe1ghDk88ziHNKtoZZuJWdFFPnlHGYUnPMJ+6/fJYOv3Zrn64fY2gql4ok4nq7xGY/oOPHjMKEf/X+LjXHLA5q8u8Pz/eaa5LmUoi6VTrdHBsEyQxaa+rqEyKOiqJwve3xzfs97u1HTOKMz1+qSapr06MXSMeZSZzyqx/uUnUM3lirHtj856/TMTUuNSQ8unmB8N0ozfHjDE1TCI+hlazVXRbKObujkN4kOXaO7IwnvLclC6r3Omdlg58cuqbO6D2KImh4Nu2yjR+n7AwjKrbB7iim6hgMgoSmZ7I1CPl4d8xH20OYuQFJGqB3AQV/U9NAkQlalguutUvomsI7GwPSXNAPEtpxNps3j3qy4Ls9CLi1N0FXpbDllZb3hFD/MEh40PX5zqMhbc9kEknBbSEkmlXXVdolm76fnIub0WnCs3TW6tI16DTJ3dXW8a6AuqZSsnW2h2GBvomx6zaLZYfb+yPSXDAKUt68XD+gbTjwE97dHPCgM6Hrx+yNQvq+h23oTwjanjVqrskbazpxkrE1jDA0hZWqg64qvLc5ou4a3Nv32R+FEgUVpViaRtkx2OrLRkffT2ZCv9PO56WGM4P6nzYXedTzeW9zhGNKGotraNzZG3Op4bLR87na8p547lPhWVVVGEcJmRCzIv1a3aU7kcWd59VzUYsxb2qne61WSdLgpvSeYVFQVHicZwVxxkbPZxjEKIpCkgrSTLA7DLmxUC4Q1gkPOj4fbI8I4pxRmPDaapUHnYCKo1/I4cjSNeI0KcxXJP3mpeUyuqowDJJZ0XFvGM/+ZhyldMcxQgiGUcL+SNIx/SQ7V8TUVINzSnPRFAXX1LjfTbneLnO17c0ab3kuGIfSuW9nFBB4OfujmFdXK/T9mI93R9LYRJM52lQD6qOdMS8sls+VWv4X/+DL/PIHO/zFn/8O/+DPfu+npgUJRS4TJLIoFKXomkrFNvAjqfU0iTNu7Y+JkoxbuyOWqvaZ88U0FwTFXisdHaVURpRl7I/kuMmEfI6upbE7jngwidkdRXz1psZLy2XSLOd2gag+bg2RJkaF8HRhYvRphXS1lGeFJMuLBrLDB1sjbENjFErKdpjIrsXOKGQSyXv8oOtjaLLRU3VMNOWgcYihqxiaQmeScL/bIc1gsWzx+lqVfpBg6RqDQK7DrZJJd6JwqW5jGRp7oxhNkRpFFzXuhAAFQdePpWnHno+pqeyNQ1AVFss2qqLQ92M0ReFSw6VdFEySosF51nPrs12nZLv8xq19FisTSZ83pTviNK+KUomSErlcE+I0J0hSHvVCVEW65l0ksitMMm7tjen7CfPAXENTcUxthq6/uVA+Frk7iaUWZ5zmXMQJSiABNZ1RzM9/6yHfd73FrZ0Jg1CaYnz5agMFCofpZAbAmBp6qcX6PX82/t0a54Vo+i+B28D/C/gVIcS9c3rdZ45hmOJHGanIGfgJi1WHJIfXVqsz5ESaCZarNn6ccXWOby21PCQcrl2yMXRlps1z2lDVJy3g52MSp+wVFJ79oou3VLGo2AYvLVeeoBsAM6rCaysVtocSurc7egw7lBPs4pA7zxJXmu5MM2ialNQ9i0zIAlu7bKGpCsMg5bXVKu9tDaS9fMfHNHQEOVmmcbkpNWAsQzr3rdadA89DUxU0VWPxmG73K8tV4jTjQTfA1DU8W+f27lgmukXBb7q5DcP0VDStimMQJhGOqV2o+LSla6w3XCZxytWWR5zllG2JPJpEGaYuizg112AYJuyPIgxNZbMnC2ddP+a11QrjOKNVti7Manml5rA/jlit2SiKRALFWc69fYkamCYFCxWL3iRhVCA9upMY21BZqNiUHYmqa56i8DN1TjF1dWZqcDg6fsIokEnWzjCcIQRuLpapOjr/5Hce8aDLAVHLy01vptdzOM7aJbELK99pIeC42BqEJJkg6mV8bq1aFKxKLFdswiTjvUdD6p4pUQapPNAbqnqkht2zONudNabuKrqmnrjOmbpKq+hg6pp6ZGcxSgSuockD8AVMo+m4XK7JRK5k6QRJhmfJcWkbKrmQzYS9wlBidxhKsXZDI81zbENqnjUvQKNBVRVuLJRmOlJLVTl/8lVBZ5ygqvIAslCx6IxikjxnZxSyNQiJkoxQyGSl7h6tJeBHGQiYpCkVR2e94bJUtXl9tUK7LN9rrf7JurWcpQjmmvqJ9JerLQ/XUNkeyq7sWl1S5ZqeRZ6DrWsHUEhThEiS5vT8GE1RyfM5ammaw3M+Zl1T+cLlOvXOhJJlUHMloifNpLtibxKT5rA3ilmsWmgFCti15FicFl8643hWmLJ07czI3I2i8DWOpEvqW5cblCwNx5BGD0e5v02FZ3VNKZBcsuGxP4q41i49t0PS/PvcWCgRxNmpc6uyJUXRp0XNw3lW14+Jkhzb0Fmr2dRcgyDOD6w7m/0QIQRJKjWVPFsrDijqTDvrIqJsG3zxSp3+JOFy05sV40q2wasrFYZBwrWFx3now55PkgoedCe0i8NI2dYYhifnlmcNqe/jMiryHtvQ+NLVBnXPwNIPOnKqqqS7dycxaW6xM4xoly0+2hmRC6jYJn4iBannUfu3zujId5poeCb/5x9/mf/k597h5775kJ996zhP1ouPpmdxteXR8ExeX6uxWLH5wnqdb230Wa053NoZkSQCP5KF0OPylZNCUyn0JOVedalY00Zhwh6yMHWpIZkGwzCh7pjc2hnjmQYbXZ+XlioYmsq1tjfToDwqLF2j7hlMouxT0dqZD9fUWa07tMompqZiGZp0J1eUmSi5bajSZCLOCOKUvThksy8LVIaeS/q6a2Cb2oHGTcnSaZUt/CSlN1Hw44T9MXT8GAQzrdQ4zWl4Fs2Syc1FiUZZqckChamrF5ZPq6rCQtVG01TZlBLQ9QM0VaXpSqSWbais1V1GkSxUtIv8xHiGtfVZQ9dUWaBDwY8zbu9OWKhajKOUykqFhic1PJM044Wlx0L/n1+rUXUmeJZ+wBX2QkIBx9DRNZU0y9HmGiGLFYueL7VGTyoWv7hURlWkm3H5Au6poap4hWyLqWp859EAW9dwDU3mOKZOwzOliZumYOkarinzucNn7N/tcV5UvpaiKK8CPwD8XxVFuQl8KIT4k+fx+s8Sb16ugQKeodEsW4VLghQI3xoEaKrCas2ZFarCQtxTFhkkxSEXj8WPz/ust1J1uO/5BFFGlGasNjx+9q1LhY23fqAK78dSmLLumjPuqVlU8z+JQ+hZYmsQECWPYdy6ph55WJo/4NddE12Vm0uYSmeuYZhQtoxZB6DiSGqXViSOZ9X3cUyN77nW4qWleHZAHheCn7ah8dpqhfvdYLbwzEdnEnFv32e5arFSewwFXqxIK22ZzD7/gjAdm7qmslIcTqdRdY0ndEkanommJqwUBwVDU7neLtH0TDa6ATXXpGzruKZ0ZywVtu/Pi+zaHYZMYglznj8wmrp6ZEG17ppUbGO2QS6UbRbKNnf2FHYGEZcaDusNl6ojLcfrjnkqu+yVmjMTzD2ua1W25RgKkozLDZn07xZdtcWKxZ/66lV+616HtKD7gryP5yUW6JgaLyyWEYhjO0KKorDWcNgbxSxVLCloP5baKe2yxR99a50P1oZsD6TT15Rqcng8fJLRLtu8tCS79rYhxSM3+4/X1fmxaxvaiW5Mb6zVubvvIxC8daXxTNcz/0wPFzGOGpe5ENRcg6ptHriP+UQm+NdaHlVXp2Qa3FgsS4pLLp6Z5nXS3IajRZM9yyDNBIsVSQGdzpsPt0cESUbNM1lvuhiaROKVLeMJV8GqY/L6WpWaa1B3TX7whRaKKulq0rFUUiO0U1J8x1HK3ki6qF2EkOpxkeWCzX4AyHl/uCO4WHXwbEMiL4v50y5Le+jDaBxFkUXyZsnii5frWLpeUCh1dE05Ugz8uBiGCZ2xRNwdXjMsQ+PFQu9rimhdrNhYhiqRpH7Cl67WWa7YLFalEYimSqTJ/jg6czPsqFipO+wMpFbd5YaLoat8Yb0mCweGOkvQB74UE54WDKXwrCM1jQqNros44DxN3ymIM7aHIa4p3YUOi6Ifjoqt05sUeoyOQc0z6fkSFZ8XqCBDV0hSuL5Qpmwb1Is9XFcVojR/7m7zSWNiqeKwVHlyLXpxSWqWzM8pS9dIUlkscgrn0MWKxfdea2GbKn/lGa7t8P2cxuH1p+ZKC/phmLJ6qBi6VLVZqkpx9A92RuS51B+zdI1cCD5Xr7JWd3CKdTjNBf1ncOQ7TfzhL67xP769wX/2P33Aj7y8+ImhPkGioZNMasMKofBDLy6gacrsPr6wWEbXJAq84uhkuRwbX77afCaUjapI3U0FDvx92Ta4sVBiHCZs9UMcU2O5auOaGnku8Gydy3PuhbLQf/J7nVay5LxiZxjixxnLc/TPaRyVi9ULbZ3lqsw1ppTEBx2ffhCzVLO50fYwTY2rTemmfjhPLNsGNxdLrDdcHnQm7I0jwlRqMi0Ue8cslEJmQVWxdOXERsl8LrRSdZ4ZUWXpKm+u18mFYKsf8KAbUA50ypZBqyLR/WkmsA0Vx3yyUH14bZ2yckqWfq4Fx4qt80e+tMb+KGYSSwdaS9ewioa5a+n8wM0We8WaOA1zbn88HANfSq/UXeNczrhVW+fN9TqXmy7WoWe3ULGPLPQfztmWKg5ZLmh51oU43VuGyk9/YZV3Hw1IMkHZ1tFUlUmccL3l0So/dumcb1AdPmNHacZWP8TUVZaPyDV/N8R5UfkqwDpwGbgCVJEMpE8l8lwQxjmOoXK55XGtXZqJZT7q+QUlTqFsycP+nb1xAV1/LCqqqgrqBVpnW4bG991o8c7DAYYmndVeXanMBtHuMCTNBQ3PnIkZ+1E2g0avN10pgJzm3N4boyoKl+pntxI/zxhH6QxSrKnRkfz13ZFEhpRM6cBnaiqjoiM7CBJeXakSJBlOsYkcnFRPPo+jhL6Pir1RRJRms0MewJWmx0LFxtZV9sYRpiY7kYcLCN+412MSZWz2fRbK9oF7fJ4L1P44mlFIS6b+ROEhTnPu7o/p+TGtkj2DW1t6wlL18TXXXBNL17i5WMLUzhdqHCYZOwXSTwhJOzocO4OQe50JVUcnTKTNb5hkT3ye6f23NPWZXbKiVFI3qoXTUp4LdkYhCgqLFYkOe+tKXSKWTK3Q6ZDXn+XSUrXqWORCkF7QimXqUhPq/sSn4Zm0StYT4/H11RpBkuEa0p1z6rgZJxk3F6XFebOgsnyalIVpjKOU/UJ7T9Mk+nQ6dqfr6mmj6hq8tFQmzaWm31lj/pnmQnB9bkxmuWBnGMpDn2eyPYrwo5RBAdUPk/zAtUrEgKQOWLqEwk/v9/NID+3Nz21Lf+KQn+eCD7dH9PyI6wvSlvpBQWt0zJT23JvfWCjNxgpw7HiYfvbvudrgS1caR7r67Y2j2b270nqslTEKE7YHIa6ls1pzZuvsVj8gTPKCPmt8YvtNZyKRbMMwYXMQcLXpzRAz05h2ru/tTxiFUqD7paUywzBhUHREpweK6+3T3cOnxWY/IEkFu6OQpYpNzZGd+Y1ugK4qM4Tm/H2+2vZmYraWrh65h7ywWD713nZSrDc8tgeSTrg9jHhlRR4ErLnh97Dn88HWiIqjy8bGXHFEovnK+FHC5iBkGKasH6NLdZbYH0d0JzFNzzwRhbjZD/ALunbVMQ4ctKQDkXSknY7bsm3wynJl5lQaJhmPenItjQoL7RvtEmGa45lPdpjPYzw/6gWkmWASpdSPcKgbhwnfftjH1lW+sN7gQdfHL/LPpmfNEFuXGy5+kuEY2hPFiGeN7WHIOEyPvJ/zcWdnxK/f7rBQlnvOUQ0nrWjgTu/lNA5/3jCRecoLi8/nyHdUqKrCX/up1/iJv/kb/PV/8SH/2U+/fu7vcVRMNWzv7I0J4oyr7RK24bHgPT7gTufOdB43PYu9kaQcP00/87g4bt6pKtzeG/PB1gjHUvnqtTafW6vNUMDtT7CJcNYI4mxmALNN+EThOc1ydkYR++MQ15DagaNprjHX8ASJGGvEJq8sV6Tkx1PmjCygaLy2ViPPBZkQRGl+AAWVFAY1Qkhqo6YqjKOUVsliqfqkbuj+ob3+eQors7NKq8SVVokkzYmynHxOGH27KJ5UHZ0kE5jHoNi3BsHMRbDmGud2dlEUhcWKw2LFmemwTtetafQDuQcP/IQbCyXu7I3oTmJeWakeuf4/6ku5gkmUnkthyjQ0ri14B3LDp8XhnG2nkG4Jk4CXLwiFVnVNvu9mmzwXKIo8E9/vTNgbx4Rp/sTc2BnKZxqlGaaucanusDuMZojrsq1fiP7ZRcd5YRB/Y+7fvyWEeHhOr3uqCJOMja4/K4TsjiNu740ZR9L9Z6FiU7J0xpF0vdsZRbQ8k0GoszsK6QcJtq6dWVT0eWISSVeMIMnYGyVcaXmzjWrgJ7zzcIAfp1xveaTFgikOPa4HXZ97HenE1yxZUiPlU9yAZBGEooMmF6UozQiTnIot7/+jbsDDXiARLE0Xx5B0L0vX2BtJEbqKbeAeQl3MrOfnFoSp24ZnyQ6RqWuMo5TdguY4pRxMorQQOZSUquk4UVWFLBO8tzdkZyCdLPZG0RMLoWVIgXZDU/HjFEPTLkRc/vFCLkWZk+yg9sZmP+Bf39pnHGXcaHuzIpp0nUzZ6PnoqkQMBEnGlaaHapxvEcPQ1KLjLAUjpyjDaYyjlG886HFrZ0yrZLJcc2iVLARyLNzv+ChIFNXuKKRkG6yfUXR+PnaGElmwWzgt7Y8ivr0xIMkyPn+pzqVD9tuGqqIo8I17XeIs50tXG2iKLESIC5z924MQIeR/XVPjQVcKUFdtg69cax6AhCtCulj+9t0uk1iKHioFkuKTWp+eFkLIMadrCghJq+wgaQZn1TB799GAf/Q7j6Rbinr2eWWoj8ekqSkM/ATPkkWY/XFEZxyzNQgwNQWBRCX0JjHtis2Drl+sCdJhbLdAEzSKAtl5FQFdQ6NLQcWAmdj/NHaGIb/28S5RKhiHGV+59hg5lmQ5t3YlVcY21OLAaz6VQhCn+UyraLXmcHtvglborqU5T6Cr5sfWB9sjdodyvc1zKajrWbIDGyb57BkP/ORc9IaOizDJpLh/QYndH0tB4Q+2Rry6UmGt7j5BLZt+ju4k4r1NWahulSz8OJshjjX1SQrsWWMUJkXzStCbJPhRxiBMWK3Z2Lp87WGQoChwZ3eMH2eEaU6S5by8XDnw/nGaP4GqPI+xN4lSkkzmGIdpgGmWc6/j8837PQTSOv3yEWvxJEp5+16fQZAUDlhPIoHOGtP1cGsQHpuz7I5C3nnYZ3cU8cZqZTbG0kIU+NsPJU1qGBq8uvLYV3z+vs17oEy/1DWV0gUWVF1TYxik2IaKH2cIDgrqvrc15NuFfpxr6RjaY+OKMMnY6AVoqqSUJ2nOg45PxdGfQKI+67WNw5QozaQ5xqEzS5LJRucvvb9DEOWMAmlPPg0/Svnte10yIfji5TquqT8VMR4VEgkXJVD+8nKFP/PVK/yd37jLz761xpvr9Qt5n+1ByChMWKjYxGnKOw8HbPZ96o7F7jBEAfYnEdfbpSPn8SROGUcZ4yjD1rXnRjxPr0fmq4IwyehMIvZ3IrrjmB9/fZlRmKEpKruj+OLpUs8YhqagF80tVX1yb9wdRXz30YAPtkZcbrqs1B+vr2EiBcw1VSJdO+MIU9e43HTPPFdUVSFPxcwkyDZUhkF6gEHRncT0/YRbu2OutV2gfqABPwqTOU1LnstII80FH++MaJWsGRJQUxW2OwH9ICZKJapmdyjp3l+/3aHqGqzUnBnlcRyms/3ZMacOwMdLXzxv9IOEnWFA2TZQXJONntTFms8P9kYhv/LBHigKQZLzY68uzX42ldNwinXqvM5ZvUnML76zyVLZ5s//+MtYp3gu8znbtEk5idIL1eidxnTN8EzJjNroBoWZkzbLdx71fH7rbg8/Tml7JmXXxNZVXFOj70sJiN+tAujnReV7A0BRlDKfXG1n7v2h7ye0yxl7hTtBdxLPDnvTSTgMEkqWQWcckwnBdx4OJcpIlegK7wyios8Tg0J8sx9I0bqmZ1GbK7gIxKziOQjTGRz4cvPxZMpy+TuOqbE3imir1qduD2nqsoOWFpQXeaAak+dQ9wxaJWmXm+YCz5JFpKprcLXl4ccpSZbzsBsQpWPiLD9Q3Z5ZzyfR7HsDX4oBT92q5CImSDMIk4iGJ2leuqbMdH4OT9T9iXy9JM9IMsHiEZXwr1xtysRDgfsdSSe5sVA69+JU3TNxTI2HXZ+dYUSncHh5rI0iFywFKdx4vV0izQVNz+RR0bnvhQm9ICJKBPvjiO+/0T5XhI2mSle7rUFAbyI36HkLXl1VSFLZ/U1zMUNtVV2DgZ/MktT3Ngd0i+dXsh4XAs4ah52WUvFYIHQUJk/8vqoqaArc3R+TZOBaGj/80hKaqlyoWHjFliKQFdtAUxX8KJsV9wZBcgBarSjSwfJuZ0KU5PxbtcPPvnWJOM0/M9RdP87IhZgVnW1Tn1nVnrVI8agXzFB497tnFz9XizEZpzkPez5938cxVW4slDE0lVwIJlFGpWrTDyTK66XlClGSkzkSddqdxASxLKJ/vDtiqSILquvN86E0TOd2mufc25fFsHbZmiUZuRCSVpXIuVN1TdZE4egqBJ04JxeC+50JkzhDQ+H7bmonFgimebmlq3T9WGonAe9tjWaU5astT4plKgdNOoKiIDoKk9l8mkQZLy65tEpSxP5B12ccphi6wovnLGwMhWDprrSgX6hY3FwskQnBx9tjwiRjGKT07fiJwtRa3aE3iQmSlFGU8vGORERLE5Tzib1RNHN0Wq25WIbCB1tjDFUhy+UePnXcvNeZ4Jo6XT+hYusYmkrPj2d6kJMonbndXW6en8PTNM/YHUXUHUlXm0dqjKO0sOjW6fkxkLM3jqgfMikYhgm2qdLzZcPkPKzRy7bOMEiPNIaZRm8SS32sUBoVTF2Hpw3G/VHMMEz53qvH038dU2O96RKlGa1P6GC+3nAJE9nFvrMnn+ulhjNbu6e0YE2VjtHrbZe+H1OypTHIdJ7uDELe2xrixxlLVSkbcBKF6DSxWLGJ05zOWHCvM+F6+2AeM4lSklRQc0wUkbBUs1mdQ0s97Pt0CzOP27tjLEMjzx/b2R8VYZrRsnUWLlCv6D/80Rf4xXe2+As/9w4//7//vnPPhZMsZ28k96jdYUiU5ggh0FWFtbpNyTbY7IcoQ7nXH0WFm98XDf351srp9WS54NZut9DVM1mpO+yPY4ZhxvtbI24ulgqNtc+udbyuqdIAKk7Z6AYM/PTA3mjqKkGSYeqy4bpWczB1iXaM0mw2X/qTmP1JRBDnpHnOjTOqtgsh+M6jAfc6PmVb0rqbnsUwSLncdAnTjIWKyW983EHXFcKiETaN6Z6gKHCp7uAVa/2zRlKIum8Nwtnc+mhnxPtbI0qWTqNksFx1KFk6G90Az5J00SDJMDVV5gpRhqErvLRUYbXm0CikLy6K3vWgO+Fex0fkcHOxhBDS4XitYc7olOMgQddU4jTHmttnpvsVyPVyqWIf+PnzRJzl9CYpSeoTJdmpClPTnG2a0zqmyvZA3s8wyZ7bvfc0sT2M2B/FbA9CLjc9NvsBi4XcxyTOpNi5CvuTGD/LsQ2VN9Zqs1rGRTUMLzrOi8r3GvD/ARryf5U94E8JId49j9c/TbiW5LQGiXQvqroGb6xWaZSs2QCquwZ7owjLUKnaBkkqhUjrrnnuNuAnRZikBEmKriizRWe+o1Z1DF5akvz+dsliEmc4BsTp45qfpio0SyZ6oHCtJXWFPgsUH01V2C2smhueQV7QoyQXWuP1tSqOqSKEwtWCOqKqCmXHIM6kKO3UXWc+yrZBtyhATKNdttgahFi67AikmUBTJEWrZOszQXJL17ixUCLJ8ieS/pojnVNeWCyz3nAx5zpdu6OwsIy1WW96bA2C2c+SPMfhIhy6VLYKyGirZJILSLOMPJdUmyBpEKYZN9olKnPui5XC/aLi6vTDGBAYmkaS51jPgEI5KbTCSWizH1D3DJJMFljCRB5avny1yUrNZ7FiH0jQyraExyooVFyDziTBKvSJzhLzz2Wl5tAuW7Pi81LF5npbCsSv1o4uKhi6RsUx6Y4jFJgJ8J9nTDt5rqmxULFZb7okWT7bKF5frXJrd4xbiPk+eY0qFUenk0mhVEdXPzNFKZAIj+lcyopl6Wkb9fwYmU+MrjQ8liqSTvn6ytGaA08LTZWIt3udCZauoanyEFSxdZarNmVLJ8pyri941FwTQ5Pj7s7ehCST+jm6qhIkIQipN+Mn6TNdy3GhKgqPuiF7I4kSSQpIfpBkLJZtvnqteQDVM01GozRjbxyTC7k3jMMM19GYRCebNFiGxuWWS9nSmcTZTHtHFoelUKmiKEdqRa03PMq2pFpVHIOtgXSLO1CwCBKEEKQx3O/4565pMB0vU/dWS9dYrTlsDwIs3abi6EdSVIyCypDkgg+2h8VaaRzQ1HnemK5ZmYDtodwXXl6WxdFGyWShbM/oV2XboJvGXG+XEEiXuHnkb5BkM2RPEGfnUpiaFhVBIpj3xhELVevAs/EsHUNXWKs7LFcsVFXuy5IW8Pg5111TCmO7JpcbLuZzJuTS5VI/Uv9rGnkuKFkSJVdzDaquObsuz9JRFLluNzyDy83jNaeA4l5/MnQGIQRbg5A0O2jXnRSLZJRmXGuVyAt4/pWWdCie5p9CSFTGlIbkmjqTKEOI4zUKzxrSKEYeru7sjaX+XFH0KtsGrhXz5uU6FUdnsWwfEApueRaWMSbL5X31YzkP/CTjOJxSlOTn7sh3OEqWzl//w2/wp//b3+I/+Pu/w//zj795rgdHXVXQVNmQaZctlCgpDCck4rnnx1LLDInUzHNYrh2keU0bpVphDPO812PrKrvjcHZ4r7smX7vRZhJJ18aqrc+al4am0pvEDIKERsk8sSD8aYSuqYzDjEe9gJpnkGTy+vxYUk4/d6nG5YZLs2SxPJfXTaJ0Nl+qjsXDfoBlqDP66FkiLxgzmirXwPVGmajQ+as4BpViDfm+G012BiGerdMoWfhximvqJJksRnfGsdR1fc5G5/Q8N80PhRAzh+AgSbnUqNIuW8W/Jnf3fFIhuFEUm9OCVidpxQl7I4msapsXVyA2dRWRS2SmpkoDMUNTKVv6jCbtGBo/cLOFn0hH+mmRZ/4cECXZjI7/PDpd03AMjaqjc7XtHihKxWlOlotj5+P8GqKp6qyBPr23Fx1+LF2UB4E8K7VK5mwdXak5jMOUPBdUHJ0gyVEV5UQt1O4kZhgkF2qCdR5xXlf2XwP/JyHErwAoivKDxfe+ek6vf2I4pjZD19Qcgzu7Uuk/OfSA9sdyAVus2NRdk2sLJRzj4mgIR0WeS7FZP8qIM+kGqCjK7HAHEjHx8ooUZYfHfNvDB4iVmnMk9//TjFGU0pnTnlmrO/hJNjtAeJZOqbDR3Z/EVOcO25ca8hAlRe8OLuqrNYeFuQIESC2lmitFELcGIcMgAWTSdaXpHUiEjhNZbZYsGp75RNIUJvO6NQHX2iUWyjZCSIesi9rY+0Ei6Y2JLK5NUWdCyK7kK3OUhfmoOgaVQqPscsNlexhSsY0LsWBNspw4fZx4Vx2Dj3ZGRIkU+bzc9Fg+Ylw6plbofyhF4mSgFojB08ZRz2V+/mqqwhuXaidqOFxpuvzgiwt8vDPkSssrNLvOd7PeGkgtj1GYUim0POavs+aZfPFK/dhrXK7a/IHXV/hoZ0jVNrjT8XlxsfyZKD6DFMDVVGV2UHxaCCG4tTsuUF/GAfh7s2xKxyZFYfU5aJ1bAznmx2HKUtUizwW39yaz97y2cFBfwNBUXlwqz8ZK2TZolkxWaw6DYvM+z9gdhcRZjqHJJspS1eZe0dV0TO3YuW3pGi8vVxCFNslSJZAugpWTr0+B2TpVsvSZhuHAT+hMohOLWldaHqvZ48LB4aLo1iAgTnPGUcpC1ZohfL0j9LOeNcIkI4izGfISZFd6Kh79RuFeeVys1hxansnWIMTQ1QOo5OeNaZFLas1Id9SlmhSmPuo6pnuXoihPrE111ySIZXHqPEwXojTj450xeS7JyU3PpGLrmNrBvcDQVF5akuMqLnTtjnKZsg3tXGlYWS5mRg7HxVRw/YuX6xiqWhTwjdl1f/+NNrujsHAW/Owk2MPwcf5T9wwWKhZCyGcwjwBcb3hHIow8Sz+wR2a5YKUqGxvn1TyZjt2tgUT+/Pa9Hmt1h8tNj3bZOlGHpVGy+LFXlmZF181BSJLmJ2oYhWl2IfpSh+MHXmjzV3/yVf7Tf/Jdfua/+k3+/a9do+6ZDIOEboG++8EX2wdon6eNIJHFHk1RcAxtJkjvGppsLNvGTEszTnMGQYKuKU/k5+d1GFQUBVUF19CxDWiUTFolqS36B99YJogzVgrqp6HJNedRP0AI+Vkqy5+twlRWnIs8SydJpXnS7jBkZxihqpIGeuWIAvT8fAGZYw6DhFbp7E0ITVVYb7pUHJ2mZ1L3rCPzyKWqw1LVIc1yPtoZS/f2ssVixeZBZ4Jjakyi7LlRNZau8tJyebYHS5Mcl5It3dnm9+S+n0qhcePx+n2p7tKZRFQcg+1hhB9lRT6qX8i5AKRGs2fqCCELs6b2JDrL1FVeWa0yDBPu7/soisw3mp5JlouiSSPlA0AWlZ5XosYzdf7QGyszIAQ83ien1/q0M8Bi2UIprv+TKuqs1GwMTeGl5TILZdk8mkapaGqHRaOxWZIAl+Poe3kueNSTTbQozWcN0M9inNfd9aZFKQAhxL9SFOXkNtYFRb1wKuqMJayy6jxW9R9F0qLeLVwrPg2h8DDJeNAJiNNsRj9SVeVIyOJ0Qn/SDhnPE3Ihkp0/p9i0D3fSdochvUlC1ZUdnXGUkgtBxZYuOsd1Go4rINqFneZ7mwMGQUrJ0klzwWnX3qMON4amznjvozDh1u6IperFFwJtQ/KI9ZJKmOR8uD2adR2CJMNLc/w4pVxQwo76HCXb4MYFdsSmHT9NtVAUwUfbI/bGkUS6JbK7OwxSTF19ohMxvUZNVbh6BiHCaUyfyzBIGEdJ4UDz5DM56cCqaxLZkeQ5rqE/gc47j3AMyZEHwcOuj66pMyHk017jpbpLEGUoqux6pbnA/IwUpqZzse/LQupJxSk/lpShKeT+cDezZBus1j0UheeiCTmGtM+tutLqem80KrRepOj9ceNy/jkYmnRruwitPsfQ6JFQc6X+3YOuz4OOPzu0goSzG9rRrj+KIgsb609BiBwX0895lMPnUWFoKmGc8eHOENfUudYuzcZvmOSzYn/DNdkfxTMthvOKsKCuZkLQ82NGYcLuMERXVRYq1onzZxqWoZ3o4vasoany0DmODL5xvydpaY5OEKdEaU5lLgGGg3vX4evWVOVIo5Bnjam22DBICrSRRAMe1xVWFGk9fRH36bgwdAVdPX6shAXlO8kEy9UnZQpMXdqkCyHY6PoFQtb5ROgVJ4V0opL5j2vqlCydhz2fjV5G2TIeI+OSjGouJE3yUNNsfo88z3Exjan738NuwNYwgIKSFhbFl1Eo99XjDq/zefPqKfKhLBfcPCOt6lnjT37vFdplm7/6C9/lP/wH33ri53/jf/6Qv/gHXubf+9q1Y18jSiVyR1dV1uoSrREleVGcKp6daxz47KaucqXlHSg+Ohc8FntBQpoJSnMGFfc7E7JcsFZ3DxxQFUVqJgVxfuHX9SyhFtqUVQwcQy2ouhGOoZHnCkmWF/+KJxof8+tpu2zTLj87MrZVsg4UKI7aY4ZhgqpIVLUspAju7U8YRymLVZtxmKFr50OjOvwaDc+cNS/i4ixQsnQ644jNfohnyTOViszR10y5fozDFL+g9RknrLvPG4qinIhgna4vrqnPch4hpHRAZxzNxm6YZlDkFOexpmuazJumiEUodB2L9bg3iTE09cSmWncSy/ttf3LsqsNuqfP3T1OkjE2Y5qzUbF54SqFpqv8aJZ/NNWA+zqswdUdRlP8USecD+BPA3XN67TOFoancWJCaRZausdkPZ4WpKJEdXusId6JPKvxELg4bvZB13aPiSLG6360iZYdj2l3NxfFwQlWVYoeaqjIKE+4V7hKrdeeZO8ZBnOHHWSEGqT/3Yia1lGTRbKMrnQ+2ByE3Fi628+eaOjcXS3THMftjuTBrmkLNNWiVTG7vjUkzgWvFZ3KYOM+QbjOlmYZGlOZoCrLTVLLYGUbsjSIURWpxnedhYfpcPixsqvdHEl13lvfo+/LeBlFGydLPleIzjaWqpBr1JrHU5Ehy+n586oJHlGbc3pNaa+SCq63SZ2qNCOJshgzYHUVcPaYwJekik0LfTcE2tCc6U1VH2jbLwsazj5WVmkPNNUizfKYFN6VEtssXOy5PE83SYx3D7YGkozqmJpGlNXdm5gAXo2H3LPHu5oCNboCqSmTPFEW2XLXZUUJcU97bumuiKsq5jtGFskS9bQ0CemPBva7P5YZLjvjU1r7D4RpSw0iKw+vc3ffJckHFSZ5KMbuoKNsGWS7w4xQ/TrmxUGK5Zj0TiuAiwjJUbswVOY+KS3WXfhDTm8RsdCU95yjU1ihKZ531vdHRTsCfZBzOf7YHIZNIHsBKlk6rbJJmEmHxqB/MRGpfXCx/ojlpZxLhmBorNRvP1ClZkuq60fUZhdJ57KWl80Ho3lwo8xOfWz6Hqz5d/P7XlviRlxf4cGdEEGdUCrF+VVH4iz//Hf4v/+x9rrY8fvjlxSP/vjOOi2eWUXH0gvqtMA6lriLK8TSe0+S/5xHDMCFNZWFzpdBiGgTJzEWsM4meaNhda5UI0+wzeShVFIXr7VJBhYvo+1JbV9cK+hIKt3bHACxWLRaeo/j0PNGbxDwsUCeXWy6LVYvOOELPFII4o+oYXF+QSKGL1iu+sz8mSQWupaHMzlRHeZc/zo3O26X7rHGvM8GPZOHu5kKJKMlRC2Ofw2P3PHLCaZiayvUFD0vX5iiSBu2yRd+PGYUpYeIfi5xKs3ymg7pdIPM/jZjqhumawqW6bMSkuXRifFrMz7HP4howH+e1E/5vgTbwj4CfL77+M+f02mcOU9eouQaZEDN+blbouyxXnQMPJUozBn4ys7k8LnZHIbd2RzPB7WcNz9SpOiZNTx5cB0HCg+6E/XGEEOLE6xhH6ROCzkmWzyh/n3akBUfY1NUnNmU/Svl4Z8RG18c1VMq2TISyuc+b5qfXGpKUyIhJlMz+1tIleua8tHh0TZV0uMKFwTHVE59PlsvOyVTI9lnD0iXSbBQmbHR9ao7szkWJHKtJlh+4b59GaIX+habCg84EtXARMlSFzjjCj1OyXMhE7pxD19QZdcAy1FMtytPIcmkHDBJd2S4/FvrdG4V8d3PARtc/lzkl0TtmYV3OqYVrhZDaOqJw55vv4g2DhHce9rm3P5nNt08jTF2djc+p3UWa5k/Mj3QGzZbIqMtN70h0VZRmRM+gC3E4XFPHswwmsbTZVZB7gGvqpHk+g4pfxLg8TUwpnZ6psTMI6E9iFssWaZ7jR+lsXp9lLbyoCOLsgO7D1MUvz6eiv1JU+qOdEbkQ5144NTSVxbKFrWtsDSIGQUIOtEs2AllgPqs+3XmHqiosVx1Waw6LZZO+H/OgO+Gj7RHhOWuUnSWutKRIfcWRKNYHXX/Omfb4POOofEgIca5rjaooTy3CVF25Vpi6RiYEcSI10vzCtWl6fcMg4VE/YBylnxnNjPn8x7M0cpHLonNBr294Jn6cEacSoZTL3sMnGp6lS+26UYSpq6w3XXRVYRAkcp6J8/OotQ31Ey8k6JrKqytV3rrS4IXFMq1CsuG//F99nhcXy/zlf/LdY3WIciF42PPZHQXYhkaeC6JEHuZqrjFzXTsujsp/zzuyTOBZOp6p86gfsDcKcUwNVYVBGM9qZ/PzeKpZdpFaX88T05zSNXW2+oEsNNdtLEOaReRC5pOfZu6bFgipLBcM/BizQLZ3JxGbfR/Xkqjtiy4yyzX5sYZUu1jrLV1lsx9wa3dEEB/cf+av69PKHadngiTLmcQpNceg7hjsDEN2RyGZyGf5oW0cj9p8lvCj7Im8aqlqszyndZhmB8dWlguyLEdTFUZRzEbP59MkLSRZ/ngOCFkT8KNMapylT3+m2md8DZjGebny9YD/4Dxe6zxiUrjNIKQu0/44YqsfMopi7uxNqDkmJUvyVu91JmwPQhYqNq+vHs09z3Ix62RvD8MnaBBplrMzijBU5VgRdYFM9A1NYaFkoghB14/57uaQpaoUie6MZaJ9qe4eeI+9UcRmP2AUJVRtc+bwMnWBmHYgP81K+NQZz7O02QbumBJiOo5SPtoeESQZtq7S8xNpW950cE2dXOSYuoauKGx0fQmnVKBsHT+B7u6P+e7mCIHgazdaNEoWyzV71o18nhhHKduDAMfUWK25XKo7vPtowC+930VTVX7oxQXaZYs0k6J5QgiGYcokSmdaK0+LNMullbRgZm0PMpHYn0QYqsooko5YH+2MJJ1wb8KkcGn8/KUaG12fkqVTcw12C4eWxYpNmGRnKoScFH6cEiZScHE+2RoECVGSESU5fpKxNYi4tTfk3l5AZxLjxwk32iU645iemrBUselOYqJUipanmSAT4pkPEwsVm5ornaZOO+79OOVbD/r0g5g0zdgcRCxVbb54pY5j6LyzMWAYpqzUbFCkkPp0w4pTebg4K9+9ZOm8VEBsT5OsCCF452GfzX7IKIjZHESsNxw8U6fiGHx7o8/+OKbhGQgEy9XH9BUhBDvDiFwIlir2ha4H+6OQ7VGIZ+jEacpv3e3w/taQy02Pr1xtztA+JUtnpWYTZ/mxh5O9Ucj//O4Owyjhh15ceOp7x2lOlGTkAkr2YyfVNMvpTGJsQ6U3SdgfR7y3OeTmYpnPXaqQZIKeH7FYcQqqU8pixcKPM7qTmKorE7sozU9ce04TU60RgRRgn75WbxKT5DkIGEbS+e4X3tmi7ppYuoqlq9SL7v5G16fqGjOdpaWKTZrnz3x9k0iKiSZFp71Vso5FZYWJROxJipfLpYbLIEzpTGL6vkSxuJbK3jDG1DWiJOPl5Qo9P8Y2tKcKeE+flWNq5EJqHzim1G4ZFVSJnWHIu48G9H1JwddUhTjNWK053C06r1PHodNGmGQHTDDyXLAzClFQZm43x0UQH6RoTAoKumdqbHRk4UdT4DsPB2iqQj9M+IGbbeI0Z7FiY+qqLMCmOSKXe0az9PxOa/Phx6nUQVQVLrdcgjjjNz7ex9KlE1zJ0tjoSc3KKy1vtv4O/ISeL91/KARn15tu4folteGeB9H8rNEsGby3OWJnGPD1uz0ansEbazX8OGNnGDAsaA1RmqEXjn2fdIEqSjL6vjTcmd8jp42q7UFIjhSy/fWP94jSnKWKXTgU51xpeggkJdGPUkqOwVJFaviNwgRDe7ZCR5hkBEmGoUlNFCFEobMq0ZuGJu3a39scUXMNHvVC/s3tfdJMcGOhRNWRiILD7707DElywWLZmr3+p02hPG1YusZf/kOv8Mf/ztf5uW8+5I9/5fITvzMOU97Z6LMzioiznCvNEvf2J4RpRt01qR5a26aIi6Pu1XnH1iAgzwWOoSIQbA18wlSwPQj4wZcWZmvprZ0x1xdK1ByTVtk8Uu7g04qwyBsVlQPIk0mUMo5SskwwiVME8Bu39gkTgaXL7p5EuFtsdH3qnsz/9kYRZVtq0I2jFM98PkZMmGTEmaQ77QyluVLF0dkdRmgqDKOEgZ/wsCdIMrAMhTDOQJH/3RnKIuH8Z4vTXO4fqoJlqM98fcNQ5t1hoee6O4xolEwcQ+NR1ydMcjYHAQiF+x2fmwslqo5J1TUYhwmjKGESZQRxfsD58DwjTnPCNKNs6QRJxs4gJExzmoUO2rc3BuR5zjhM2RtF6JpKs2SSFtqDKgqvrlYPIM6yXDym251ChuBwDPyE/+G3H3BzocSPvLJ04LWrjpRWyHJxwDm0N4n5tY/3GIUJb11uYGoqaZbzoDNhre5e2FzPc8EoSnEMjVGYFHmG/Nm4OGO+slxhHGeoqsI4TvmFdzap2jovLVd463IDP3mM0k2znDjLzzXPuOh4ritVFOUX4PjGihDiJ5/n9Z81NjoT3t8aoakSFTF1RPl4Z8LeKGJ/FLE5CLhUdwqRYulOsl5owDzqBVi6iqbCIJAbjmNqBHFG6QgHrd1RRLegtdiHFqRpRIksMHQnMY96Pu9vDQmTjCstl82+FFZTi6R4ECSYmsLeJEJVJO3jG/d77I1CXlgss1Qt0BMFeipK5MCzz9l97TQhhKAzifmdBz1yIWGYDdei4ui8vlplZxixPw6ZFPbym4MQgeyaPuj6hHHOw25Az5dikdOEbQo9PQ6aPyqcR4Ik5dsPB9xYKJ0axi+EmDmVHBW3d8d8+2EfBfj+Gy3STPD2vS7feNBnrW6zVLG539HJheCFxTJJlvHuoyGjKGWpYlF1Tk7ep6KJd/bHlEydtYbDjQUpwvz2/S6b/ZCGa7DZCzB0DTvNGfgJH2+P6Acxr65Uud/xWarafLg9KtyLZCV8HKYzRNCV1vNZjz/qB3y8PWIUplxuubywWMY2NB72fN6+18M1pTPYJExwyhbdsewo3NkdU/dMolrO/c4EVVH4YHOAoqi0yxZ+lM2u8XkOO8chNHqTmN1RRMXRqdgGuqIwCGWh4t6+z4fbQ3aGIbqmsD+KSDLBa6tVLENlZzdkq+8TpzXGYcpLS9JNaGsQMAxSekjKzlk2paOSkCDO2Oj5sphdtjB0lTQX7I9i3t0c8qDj88HWANfU2R+HqKoir1HXmMQpD3sTBkHCOEy5WTyXnp/MLK11TbmwLvXuMOSX3t/hVz7co2Ib/JEvrfLB9oSBn3InH/PyUuVAwaPhmWx0A27tjlmtOzPdlb6f0C5bbA8C3r7fRcCxluPz9+3W7oi7+xPaJZulms3VlsejfsB7mwMQinQznMT4seyQBXHKN+71QZEb9d4oJEhSdoYhS1UHU1MQQqEzidBV+XWzZD6znlxnHHGvM+FhL2Ct5rJad2Zirv/mTgdNVSiZGuMoJZ06+YxgZ+hzbbFExdG5vTtmcxAwDlOuND0sQ0PkgkGYkOdS7PY0+i7T+O7mgI+2x9QdA9vS8AqNh5vHiFpPkWVJJpPMD7eHpKlAqBIZFyQpH+/67A0jXl2tEiQZb9/r8rAX0CxZfO5S7cR5/agv55OiwCTK+O17XdbqDuPIojOKCZKM3VHEKEzZG4Xc70wKbSmbcZQyDOThoOoaJxodzMe8/stSVdIt3nnYZxynrFQlnf64a04zWaDRVEVasCcZ9wsKetcPubPvszXwaTg637zfxTZ1HFPj7p40YpkKrN7alVTsziSmXZIH+/MSFo+znNu7E+51xjzqBUziRHbGhYplagwDWQiddoX7vkQgBXHG/iQizXJ++YNdSpbBKytl1pvurMAKUuj9ky5MdScJPT/i490xmqriR7LL3vUjfuX9PYI0xdF1biyW2R6EvLxcYa3u0CxZM2TFRVJqwiTjN2/vzyzu22WZb643XcZhyt39CZM4JYoz0jTHtVSGQc7Dri8P1I5Bu2TxnY0Bt/fGhEnOa6tVtELcemfwbNTjzjjio+0xO6OQ9YbL9cKVeIqaUxXk3BqG5AK++UDhYc9nqx+yWLV52JP0yZ1hSLtsEaVSwysrmh/T91BQUBRpDX9RgsrnHV+93uT11Sr/za/f5Y99af2JBs7H20P+5fs7AGQi46e/sMat3RHjKOONtSr7kwgxhp4fFa6hKpauEaX5hUo9BHHGb93tEsQZoyjF0lU2OhN0TUVVVBregI93hmwPIzRVovtfW6vS9yWqM05z7u5LDaqrLe9ToYr3JjG398Y87AVcqrusN13aZWtWBDB1FR2JhHRMjUGa40cZW0Oflmfz6lpFrsOKyruPBtItzzbo+wmWHhIVpjzPKuwcpY/3iDTP0VWVcRjQD2JMQ8XVddI0Z7MfsDOQ+UPZ0VCQGm0fbA8BWSD/8tUGK4X2163dMXujiCjNWKu73FwsnVmDamsQsDeMuL03xtRVbu+NWa7Y+FFGydYYRSmZEAz7CQtlm94k5n7Hp+amLGUWv323hx9nhGlKyTbY6E74nust6q5xrk66t3alIHzNNfDjjHt7Y+52fC7VbS63PDrjiP1xRNnS0TSVRlEA7E2iosmV0yxbNFyTu/sTNFVqjN3eHaMo8D3XmscCQI4LP0n5cHtEdxLxynKFQZhScw1Wqg4PCo3CS3X3wFqwN4q4vz8BFD7aHjGKYn71g33Kjo5laLx1pXEha97DXsAgSMhEjoJCz4/Y6Erad9nWudLyGIayAPugM2ESJUyiXO7TWyMcQ0MACgorNZudYcQkTgjjnIWKzbW294kavj1LPG8J7W+cy1WcY+yPIm7tjvj63Q6OobFYsXl9rcbWIKDq6HywNWB3EOI5OkM/RVUFVVfap07F5OJUHhaCWELkOuNYWkFn+ZEDcXpAVhSOFZZLspyPtocESc7b97vsjyMcXSNO4a0rFV5ZqbA9jNgfx6RZzr98f5udQcSVtstqzSXPBVXHLOyn5WNbKFts5yHuGQ/K5xmbg5B7+/KQ7BganUks7dY1hd1RyKN+QBBlxb1TeXmpzHc2h+QIVBS+tdHjYS9kEMbUHRNNBSEUciFQVJdLx7zvi4sl4ixnbxBSsvTikHuyC0aa5dzdH/PB1ojFqs3lpnekvtA4TOhPEiZxyrc2+tRcOTbCJGWrH7I3DBiEGVXboGobmIbCJMpQUag55lM3xSSTUMxxlNIrUAMVO6QziemOE4SA97ZGgOwcffVqnW8/GhKlGXkueNCZoMCsop6LnP4kpeTotEomjqHP3ud5YkrlkV0NhYZnEKWCnYF0d9nsBQRJSibgim3gmTrDAkk1ChIedH0WKzai+GcQZERphm2q1GwTXVNPRcVJc0EQZ9iGysNeQJLJ7v1xm8LuKCJOc7690WcSZgRpxotLZVQgE/JQ3ZlEMvnIcl5aqpDnguWaQ5zlTMJ05sKTC9CUx3NcVY8+6GS5oO/H1FyT3VHIMEhZqFjHctH3xxFRknO7N+GbDzJKljEzC4iSHD9K5AE8lF3vz18SBHHO1bZLnGWFYLYUA51a184X6s5CbzxrJLng3r48WE0KKHGrJBOdNNfZGYbUvMeOkEGSMQge68B4pkZvIv+/O4mJkozdUUiaCoyn5EdhIpPynaEs2tdcnfudCR/tjBmFKY/6AY6hsVQ28UyVS3WH7WHIKEzpTiLqrsnnL9cYFY6JcTrBMjRWqw6aIotSwHNRxIIkI4hTdgYRtq5RsjX8WHYH85xCV08mXO2SiaZK7TjT0LizNyEX0l3WjzImcVoUzFQmcYqhqpi6eirY9jSmjkcgDUBsSz6Xk6h3XoF0u70ni+cfbI/QFIWKa7DecNgbRQz9hM5YNiXqjsFHe1LzYhSlrBTU4ziTaKHD67I6lwinWT6zQ/bjlN1hRJTmhEmGpqgIIX9/kqRsdCb88gc7jMOUhmfRKJ0+qZa098dfT6IUXVUJ45w4k2jm4yLNc7YGAbausVq3uVuM/4UCOfvuwz7dglrYcHXGkSBOUu7sj1goO7TL1oy2pQDTCznPeZpmOY/6Pt95OCw0zBLqJQvX1LjSdnlzvUbZNtjoBVJIfhTy9r0unqWxXHVZrFiULIPSnLW3a0r0c5hkz41EfpZIMnk4rDtmUSATfLA95IPtIbtFwV5FZRDKhoFExMn94v2tIUGS8vpqjcopHBmzwrXoLDTfKJUOtaMwoR/EaEqZIJHjea3uYGoat/tjPEunXjJRAU2VOeYoyoiynHceDkiyHFWF/UJgN0wyNgcBaSqoe+aZ7cmDJCPJM7rjeKb/OAyk5ljVMdkfS2RjlgtaZYtv3usRZwIFwXLVJstzPtwekwvB9bZHs2ThRyntksXDnk/ZNqjYOhRC72km+IwwKZ8aiqLwp796hf/oH36bbzzo8aUrDeDx83/nUZ9U5MRJjldQw01do6HL5vTeMOJhz+df3+pg6tIx6/XV+rkaPxwVmRDc35/wnUd9dFVlGCSUbYOrrRKKKgqUdTbLOa60PGxDm6FAxgVCF2Tz+9MoTAVJRphm7I8idEWhUdJnDAUF2B1EDKIYS9Noly2aJZPfvtcjSQWbg4A4y/nCepVHfR8FBYGgN44pOfrsc07lTZ6l2PLYFU7mv4MgpO8nuLbGfi/icsPl3c0hu8MCBZmkvLpaYRgk9CYTbu2OZ1Ic9/YnBElGzTGYRCkb3QmGLuVkkkJa5iwxDlI2+5LyZusa+6OIYZCwPYp4Y6WGAoRxxhurVYn2S3M6k4hxnGJqCn6c0fNjJmGCZ2j0Q8FHOyPWG+65mTpNnUR7k5jOOKLuGexPYsI05WE/pOfHbA2imRBWo2TimBqurbEzCOmOZXMhy3LefTRgECQ0PZM7e/KMWfOMZzIrynLBo76PqSp0JjGaKlH1ZUufsVz2x481Ckdhwv5Enscrjs5yzeK99wd0/Zh+mLA/Ci+MUhpPc08hawqjIOVeZ0J3HFP35FlUVeB+x8czpdHXat2kN0lQFMHb93rYhnRyDpLssc5rLt2Vx2H61Abwpx3Pu5XcFUI8OJcrOad40PPZn8TEaU67bDOOEqqOIelhuTy0SlvXnCTP+Oq1JhXbpGzrhRCawiiUwuk11yysR82Zc83hCGL54Jsl6ZZwfGFEIUNSly7VHYI4pVWy+PK1Om9ermPpGrYh4Xu3dkfsDqW9bXcS83tfXKBi6/SChPW5A/lhxf5PI9JM0rwanqQklGydvh+zUrMQQqHqmIxDn1bJIhcCx9IL63OZILTLNn6S4ScJNdek5hi4pk6Q5jP3hKPCMXW+fKXBB9tDNnshZVt/apLf9WM+3B5xd99nECbUHPPIwtSLSxXGccpmP6BVsijbBjcXyySZwDY1MhQsTSXOJBy25hoFUkU6NT0NpuuYmoQj93TUwhZ6axAWDhQKVdfC0GAqgVB2HjtNbvZDVmseV9seLc/CT1JZLc8ymp6LpWs0SgaaolJ/BsjrfKzUbAZBzCTOKNs69zo+VdskF/JnjqEyiTNURWGhYuEaOjfaJUZhQsUxWG951ByJaHjYC1GQmklNT6IDG575VItWgCTNZXeoas+EbvfH8bGIkYqjsz+StEFVVcgywTiUFsK/79UlRlFCmuekueALl+o4lk6jZLJYIIwGflIIwzqzItRy1ZlZsU4TCiEEuyNJnYvTnI2uLJrNaL8niCRWHINBkBBnAiEUgjRDKII6Jl+6XAMEcSbwo5RXV6tYulpQK2w0VeVh1ydIM9YKBBJINNCNhZKkF82dEgZB8oQ23fPEYtnicsvjzv6EUgGhX6467I8TskzS7Pwom61Tlq7N3ECqjiwkNEomvUlM0zN51PVn1NinoQ1rrkGSCRYqFpahFvbQqRT9VARXmi4iV2iWLMpFofbrd7rsjwYSVWpoGKrGKytl/DglzQRNz6JZls9/GMrD2/OgzRbKNvf2fRarVuHsKQ+vqgpLVYuBr2DrCpqqsVSxKNkGnqXz3c0BjqqxWJaoy4epT8kyUBUFz5Z6Iooi78FZigSaqkjR8BxaZZObCyXCNKf0FGh3s2ShqZIS0PBM6q5JzTO42vJIspxbuyNUTcU2NTqThLpjEaQpoijSPur7tEs2ChHrzYNo1tWag2fpOIZ0pq3aOp6pUXVMHvUDiXQu6GN39lRURSHJc2xD5V7HJ05z6q5JyTr9Gle2DRarlhw/ZYtJLAt/FafElaaHdwQa+nDkhY21qoCpSev4m4tlWuUuqqpiaAI/ylmsmXiWjorC/iSi7hqyAFp38OOUawuepKKeI7x+eqAydIW1hs3DrqBd0Hh+5OUl6p41c5TKcuiMIkZRQf1rKLy+VsU2VUZhxivLkh6pKBfjDHdUTCURTE2dje922UJB4eZCmXGUcnt/xINOQNWW1thZDi8slbF0jaWqpPO3yxZ7o5AHXR8h4JYx5s3Lh72Bn4y+H88K6KeNiq1zveXRD2KWyhb9MCZOBa5lg5ACybYh5QtUFNYaDmXbZBKl7I4iVAXqjoGhq4yjtGh0qeyMQlxDo5PEtMrmmemJC2Wbzjii5hmUHYPtQUDVsdAUWawP03yGzhICekFMGGVomsr3XG8yDlPevtfD1CRa4VE/oF2yeG9rSLtskQt4eaXCbvG8TnJl/SzG739tib/0j9/lH//Oo1lhqjuJi4KNzlrNJc1yfuCFNm+u1zF1le4kljmVgId9n/1JhGtqaIp8zuULvgeaomAaChXb5GHPJ80FTp6z2pBi4KqqYugqV5ouVUeyDebPIyVLxzJUsvxJZ7tPKtpli81+QLNs4doaozBDIYcCpawpUtpCU6WLcdk2eG0151/f2sfQVFbrDo6h41kyx1CBetmcmapEaU71ORBArqmzXJOsDV17LBMxiVI8S0fXFS41HGmkFae8tlJlsWIX6KAcgcDWJbI3iOU1RkmOpim0yhZpLmiUjGeiVSmqgq4rXG97bBcUvjDJud4qkYmcm4tlwjTDsw28OKPmKnTHEStVlyQXLNekluXVlhwXw1A6Fh/WVXqeMHWVparFziik5hjsjyPWGs7j3L9ssTuK0RSFK02P1bqLZ2vs9CPaZZsXFg3aFZl3KEpBTUewWncQijRdWaqdPTfTVJWlioOhqzRcg2GUUfdMXEvH0KX7+nzzYhxJlOtq3abumqzUXVolm1bFQgOutcsXRo1bq8vGX8U2cEyNOM3Yn7gkqUR1+XHGnT2fnh+xULZZrNj86MuLpLng1z/eI4wzgjTH1BVWaw6dcYRraESZpI4fxfr6rMXzXuE/Bt4EUBTl54QQP3PaP1QU5QrwdeB9IBZC/Njcz1aAvwfYwF8WQvzL076ua2rcXKwQpzlrDZfXVmuzny1WbdYb8gELIWhXLL50pXlggNUK9JSqKuyPJbz9pM7Cw57k9SqFJs3xnxdsXafm6CxVWyxWbeqOyULZnh3gpp26qd1pz495calMu2yzeIgjPgwT9kcRVce4EGvz08ZKIRx3teXRDxI+2BpSdQzSDIIkpmrLgl1U6HosVmzW6ups4RkGsnB4o13CNmSBYGot3zyhqhulGR/vSKh60zOpOMZTNXVcU0JHK4485B13uGuVLb7nWotxlBAWh+mXlsoYuip55orC+kKJdtliseBof9+NNnkuTq3rs1CxeW2lNrOHf9jzubvv88Kix/debzEJU97fHspDaMVG11QGfsLVtkuUCtplm0t1F4GkwnR96bLjmjqrtfM5SLimLCJauoYQcpP45oMutqHxk59bwdQ1PtgakuY5N9slBJLv/9XrLdJc0C6ZLFZkccfQtJlou6ooXG6enWZoGSqqCnkO3glzcrnqsFCWc/13HvRYqztca0s6lGdqvLZSw9SkePcrKxVeX63hFknlpbqLpgTomiI7wnNx+Hr7fsJuQWuYhoIUyQ/i/MRkveoYlJcrrFRtPtodS02YpoemKnimxjDK0BSF7iTm5eUKX77SwCler+4a+LF0dzos9H94rcpyUYi5H3spZw5dU/ne603GUYKlq7y0XOFBN8AxVfq+LAbOb/JTJ8VcPEabrdacWWHxctOjVZLFymsLJzuZKYossjRckyzP6fkJH++McEydr1xpFd0mMSuST6KUsqNzueWyktmsN0us1h1aJZuvXG1KW3BNpV2Sc2zejvlZw9RVrrY9qo6BoSvkueC373YoWQY/8cYypq7y8e6IKBG8vFxmFMli2FeuNhgEKYsVm6WqQ8XWCRKZ7BqaSp7L+/Ys3a71psf6nEuceUoI+nQ/vLlYYhJlVG2dt+/1GEcpn79Uo1kKqDom6w1XOgwqykwTMcly2iV7Jpo+H6qqzO6zoam8sFRGABudAIQUTH55qUzXT7jcdHFNjReXKmwNAu7s+jimyuWWx/oZiybzBceqo1J1jtaVPBxaIXKuFnvW9iBEVWUCW3Vs/sDry3x3c0i7LJsrUSbojiNyUWiKFOP+PMbXSddYdUwpGG9qvLZSxtQNPEubrRPTdaBs62iqQ5RLjawvXKpRdUzeutw88Jp7o4hRmLBQsS9Mu2l7EM4QqkEskeoPCq3Jqy2PhbLUWwpiicDLc4jLFtfbHq+v1siE3FPm50XVkQjUXIgn1vHjwi0Kv2cJRVG4tlAiLcSIwyTlu5tD4jSXFLqaNNtZiCXaqFW2qNgJO8OIty7XZLPL0FioSHe83YKKLRAoyLXupLzyuDB1lZuLZTRVIg6FyLm3P2YUpbTLJldaHrqmsN50qdg6K3WbD7aGND2L/VHM1ZbLm5drUlaharM5kDpsmRBYuoZnSROHs9CJP0vhWTo/+soi/+w7W/yVP/QqabFG9/yEL6zVECg0PYOGJ7Ua31irkeUCTVUYBLKAFSZSxPmLV5qfiEuXY0rHvySlWE/kKJnuZZ1JTBBnWIZ6QHtyGqZ+tLPlJxmGpnK9LWmfigIa8G/udnEMlT/0+RV0VeXu/oQkywvmgcLmwOf7bzTp+SlXWx6tkilNEXJBydYIYilOXXPNczHgmDZLVUUiAT1TFm90TcUxVCq2SZZDwzXQdVks0xRF6gAJuNYuYekq/+LdbT7cGfLqcpW1hjtDO688o95X3TUIYhtVldcoUOj5MesNl4YnnQulcU7OKErw44xWxS4K47FEnromWS4lSAxNJbgAJGyrZHG54RImObYh5TQarmxs7Y4i3rhUw1ZVyp7Bcs2W5zdLp+rpOIZEao/ChIc9n+4k4Y21CpYutVqvtb1nos85hkarbLJSdVhteKzPndNeXCxLVPbc9xqeSZLLNVhVVQxV5ftvNgmSlIWKzY2Fi5tHtqEdaAYt1100VWW9IfeSrh+zO4x5faVGvWRypenOzi9vrFX51Y/20FWVki0LtGt1lySTqPlWyfrM0/jg+QtT89v4tWf4+/9FCPEnjvj+XwD+EvAO8IvAqQtTV5qepGtcqqFrB1FOdc/kB19c4HqrxCBMsHTtAER6ysE3io7dVl/y8dM8PPYQrWsqJLK6flJSo6sKl+oupq5yueliG9JKfhiks4LGctXB1FTWGy5Vt0WUZhjq0faem/2AJBVMIinIeB5Cx2kuuN+Z0C5bp64GG5rKSs0pDsAB7ZLNRs8vRM0FNxdL1FzJAddU6TA2T4Wq2AZrdZeBnxClGc2ShQIk+dG0yWnsjSS/f+inuIZ+qslWsnR+4GZ7Rrl6WuHgcFfp5qIUkzQKkWLH1AiTx/TB+WeQZDkPez7LVedI6hfApYZDMzYxNIkCkHD7THZnbJ23ik4eSJTEcs0hzcSMZwzMrMpfWCqhKsqZ4OSned6uqXNzsSQ7zzsjbENDV1UedH1eXKrw6iHDgLWGw/5IJh0vLJYxdXXmcKepstgj4EyLo67JOVOyDF5cLJOLk2lI0/equgY/+NKTYtrfd6M1E5qOU8HuKKSSygPj3jiaQXvLlnGi0KI+R/0xdHW2yTY8a4bOOSlUVaFRsvieIwrL33OtWejcyW7Oo35Ao3AWGgbpjAq3P45OhGGrCrPXOM/QVZUvXm7IBLlAvzm6xsKizc2l8hNjXlEUjmNK2abK999sAQqtsk2c5uyPo2PRdJebsmu00fPpTxIURWG5apEJMZsX05AFUpt2yabuSbvkaWGgWaAhNVU5sw7N0+b3as2hXtgzf2ujJ9EzioSRX2q4vLz8eN5YhqSISAFlk5eWKmgFZXuqKzAVrz5v57s8F2wNQ4QQx36WqZuTa8o9K4gzJlFGo2Tyv3lxERR50Jt2qX/nfg8rlCgKuZedfGizDHlg8mPpvBYkOmkm0FTpvjkIEq61Ta63S1xpeVxfkPSKin1+2hinCdtQKds6eyOZ4E3FWPcnMZ9fr/P59TrjKOXu3gQHuV/EaS4p6p9AMmgbGlXH4PPrdeI0x9ZVtodSQ09WpBSqjsFqXe7XrZLJV69z7FqVzmkSbfWDY/XInieCOJvp4sVphqlr0uTFkZQNWfiT48cxNb7vRovXV6vkhXh8mOZHCvg6ps5XbzTx4+zUhUDH1HipKJCeZv+exrTwLs01BpQsYyaSb+rqE2tSzTWxdG1GLZ23KDd0dfZsojTH1NRjx/jT9u/5vXscJoWYt+BhL6DqmgcOpC8sVqg6JrtDqWll6CovzpkKOKakXL2wWELAhdPWPon4iTeW+aff3uS37naZRClbg4iSrXF1oUSrahPGUrB5GtNxUHVM3rra4MZieSa6/UnFqys16q4FQjAIYnKUokgBa3WXD7dHBHHO1iDkxkKJYZjQm8h895NCST1t/657kr6lKgrvPhpQKvbG7jhhveny8vJBM4vVmltIIyi8uFhGVRVsI0IAzUJD+Fn28KfFctWh7pqyiRmlRIk8n6iKzP2SVFAq9maAV1ce7+mTKJ0144dhUujemUVB7uTr7E7iIxHuzZJFydbRVWmiMQpTXl6uPLF2x2lO149puNAqmbimxv2upD7uDkMuNVz2xzGvrFR4Oo706AgTKfJ+1LqjKArX21JqRVVk8axk6XgFM+H2rnQtn1/3WmWb1lzTKFAzdFW6og+DjC+sl3Gts7n0TXObPBfYhsrXbrYp2wZJlqPN6TErypNnd0vXeL1AkwoEnqURpQZfvdFCUxQpjs8nQ4VdrTk0PTkOe37Mo75sBl5teqwdaswtVR1eKXLLqetos2QV6FzlVJI3R8VJz/si4nnfRRzz9WnjhxRF+XXgHwkh/u9z338D+D8KIYSiKCNFUcpCiNFpXtA2tGNv+t4oIs1z2hWLqNA88uZu9O4omlGFHFPFNiR8dxjk1BzjSMG1yw2XUZTimicvOLqmYhkyWS/bOktVCReN0ox3Hw14Yak865xNQ0FhaxjimdoTyAjP1OmnCY6pEqYZmno01fAskaQ5wyAlyfITK8JTF5J5VydVkYl7lGYslOW1tgqXkrW6Q6XoYB63eWSFIHkuJDrAeoqQu2fKDWGlbrNSdU5d9fcsWcTaH0sO9lnQB62SzTiUnd2HXX9G07l+xL1KM0FvIoufR11bkuXsDENMTcJ+l6oWgyDGs7QjD5+KonBjoYQfS7eLPJc0MlXlSDriaeJpzzvPBdtDSTFcLNssVG1u7U0QiGM7hEsVG8+StEpTV4uDpuzKPGul3tCUWfJ3Hja86kwEO0IBRqHGKAywdZW+H7M3CqX17hFIj/ko2wbXC0qOXhRdoUBHPqcRgSzimtzZ90nzHMtQCXryGvfGIT0/wjI01oyTn/38uDnPqLoGj/o+fpzPbGsXqzaKIrtTZwnPMihZkg7rR6mktvbDWUHmcAxDKX6tKrKoMS2WHlUAqRTPaBQkpEI+s/kx9KyFnqfN7/k1slmyedgPEQLq7tFb7nSNtA1ZjByGCaMwpTlHD78IEeeuH0tth0k8S3RPCsfUqHsGmgavLFUpHXHYWak7DLaSAjn39BRDVRR0TcWzFDxLY2+UU7ZsXEuj4UpHoal+YZrnmJpGnifc2R+zP454bbV64V1AiYbJ0ZSMjd4ES1dZqbukmThQ+ChZ+mxNkLbi6YVbh8/HSk0KV9dcE0dXGUUZYZLy/vZoJlA9f72KAkksHRIbrnkAcakVDlJRIlHjkyh9otn3vGFoSrGPCkk9MiUVfatwGz4KGeuaGr+z0cOPMhqehWcd7QI5L3Vw1Hw6Kh7bqZ88v4GZRmTVlQLMZdugXjLYHgWULGumBXpUOKbG9XaJNJeH16P2yacdHp62f08KKYiqK+l8zZLFsEBou0fc18WKjWNqmJo6e8ZTujpITdPPus34WeJrN9vYhsr/8t42eS7Y6E24uVCiVbJYLSgzU5SgEIK9kSyGLBSFwE/D5Wr+GXUnER/tjCXVu3DfykWOqqi4psYgSPjGvS4lW+roVI9xHT/veNr+3Z3ETKLHZgH3OxJt1PCOzikv1V1GrpQ5SfKc/WFMydRn+72pX9yYnM7BqmMwURW2h5Kidr1dOjA+DodToPPjNCvyIon47IxjKUNwzBo61Tk7LqZ/l+XyvHQUEt7UVW4syMJQxZZSGiVLlwiqYi3zrCeR9dvDEL0w43naPJemYSnD4GgXclVVZjnwYkUKsQ+CgHbZ4sbC43XvuPAsnaqjM4lDaq5B2Za6h/NnkqWKfeJ19oNkZkqWC8m0qNinAzGAXKOrroGuKoxCad7V9xMWK/aJjI2LCNuQjYwozam5JjcXykcyuYyi8TqOUupzNQPHkBpeArjePpmVcFQ87Xmfdzzvyvo5RVGkDQE4xdcU/y+EECdluVvAC0AE/BNFUX5JCPFO8TNNiNmUGwB14FSFqeNiGCaz7l+rbPLaEYu0PSdibukaK1WHO/tj/CgHZXyk456qKqfqROiFq9Y0yrYu9TL2JULrUT/gevugo8ejvnRl6iInyfxitlaXxZhRmHB7d/JMzi2HYzrHT0o800xq6YCk000TIolasBmGCWXb5FLDmRXTFOXke+TH6WwxznJxKk2LuieF0u/uS3cvywhPrQszdVgDeV9Pe89Kls5rq1W2+gH3Oz5ZJFisnFyPPa64IV0opkVQjStNjywrOjHHCCMamkrVUWd/P+00W5r2TBaqT3venUlMp1jYTU1loWzz0lKZSZQRHiO+rCjKbI6EScbD4rmmhVPRZyH6fkIuZCchFfJzmLo6EyTvTmIcQ2MYJE8dGxeVnOa5YBxltEsWPT9GQcHQFXZHUSFimbBQUhmGKXXv5KLs/Lg5ryhZslMshJxPjqnhGJKvf5I23FHR8Ey+9UDaGL99rwfIeaAfYSQhxGNqolnobqmKgnmoyTAftq5xZzxBCHlYO086w1Hz+/Aaeb1dYhxJN73OJKFkP1kMn18js1zwoCM/YxCnFw4bnxalBn4y09I4KVRF6pwoxwypLJe6XSAP76dFFPT9GF3VuNYuS52UYv+oOsaB/du1VMIkoztOMFWN7UH4iekg7QxD/Ehqh3z+knUkjd41ZePgva3hhYy5k6LmmrN9d+AnGFrI9iClZGVsD0IuNw8mpUII7hdjbRymB4w7FEXhRtH5HoUpd/Ym5+7Apmtq4WwrUVthksmCkCYLaEcV9XZHEUGc050k2ObRjZz5yOfmkx+lZ0J+ndSceNDxyXLBIEh4bbVaaGZaRInMw9SnrIPyYKE98z75tP37QdcnzeT1vbpSkQ6zMHPbPCoO57fdSTyjq2tzzZf/fwjH1PjazTb/+naHJJO6S+tNl1JxD+b3zJ6fzNwI1eI5f1pRsQ3p5DpOaHpWobUmuL03kY6yZZPlqs13N4dEaY4/jHhp+ZO93uP27zjNZ7l+nOVcaXpcacn8Zhims3s/H/NnrNt7Y/woo6fEuFb5E6Ul3Z/Od19KQJyUUw1DWcBolExutEvSzKBg4GT5k8juaaiF0U58TH4NB9fs4/aWeYCGoihca5fYGUrB7kzkLB9Cme7NOctbuvoEEOLJ11cZh6drlh29vj2FTaAoNEs2TiG5Mt0H9ifRgTPJSTI2lq6iFOYMcZrTL2QBTtvgs3SNUuGoC0Ki9sr2AXOQTzK2B+EMONM+4XMfHlt7o0iu4+OQqy2P7WHItfbZ3EPP8rzPI57rVCWEeObsRAgRIYtSKIryi8BrSOoewHx7vwL0D/+9oih/FvizAOvr6099P33uhh61YII8qLqmjqbKg04/iXENHT+Sbjvn6aBTtg1eWCyjKoo8WB3x2tNrVlWeOOwpijI7VICcfFH6dPrQSWEZGtfa3pHdtGnI7rbscJrawd9L5r4XJqd3jZrqTQlxNoqXqqqz5C86w/tNFxVFebaJ5pga6w1X6kgck0TahsbNxeMLhQecHDUVP05m34uSnKfsCwfH8wluUifF0573AZe3gpKXFnSiKUz0pFCVx8/1Wa/xImL+Wi7XXSxDw9LVGSJDohul/fOnFdOxmWaC1ZrUHLJ0lf2x1LdQoDjIfTrXOA9nN3W1oK6ZWPrR1OOnha5JKH6aCyxD5eZC6ci5qSiSIhOnOaaukhf6MmkmSPODEO3Hf/P4Xuo/FR2tAAEAAElEQVTntLGeNL8Pr5FCSPSrqpxuXVSYv96LTYBKls4LSyV2h5EUhn/K+htnOZqqosGx82M6vxTl+L32qJi+nqooj0/dRcy73VZsk3bJQlXB1LRPhFY0fd4f7ozQ1CLhPeH3L2LMnTWqrsGLS2V0VUEr9E0Oh1KM1SQVR67R0873tAkiixrn68AmaThyHsVzzonHjS9Tl1opbqG587Qi2YFnccr84mn79/Q6gjg7MP6SVMw0GeMsPxUi81n3yaft35aukmYZpi7pgHGaz+bjafeN+ft1nOP07+b4a//Oa9Rcg1f/jsJK1T3WvfEAbf8zkMscHjNRIufNNJee7pNSA1bh2jGFkIuIk/bvKeUuywWWrs5cN+H4+T4fcgxmKApPLfyedxiavO7TPP8ozVEUBVPTCh05ZaaPetKaIGlw3on3Yn7NPsv5JUry4rwpJWzmjxjz55HTrFnLVYeKbVzY+pbmeTFGtANFdGvuzPm09/YKM6DT/v7hcEy5B+S5vO7OJH7q87vImM+rzrIUh4k0qLJ17VQyKEfFWZ73eYQijsICfhJvPEfPUxTl7wF/Uwjx9eL//x/A30cWqv6ZEOIHT3qtVqslrly5QpYLolTaBU9Fyy39SfrY9CMfta4lWS4fXrEhZ+J8Est79+5x5cqVY3+eSTLr7FqFkJNTVaQzRJhkUEzspx0eCjkJFKQOwVS0Udpuy/cIk6ml6mO46tOu8bQxvf8oEq0wvc/TZE1BTo4sF0yiFIGE5xuaPGhOr/e4jees15kJQZzkCORnz3Nx4N7qqiIX++d8zrmQAva6qpzbvZxGnMqFWibZ6uOimoBxlJDlFBD9JwVcs4IiqRd/N43zvsZciFmBUNMUFBTkOibHb5hK3rhrHj0np8/k8M/u3r3H2vrlMyWEeSFGK+HOYia8PdVtmn/fJJeCuqoqE59nyXfu3rvH2qX1J+7x02K6ZoFCluezcT9/IBJCjuGpPa2hHT83TorDzztKc/JcFEXuqdOgXDNUpbBOhkLn5Mxvd+rIcmm3rgAl22Djwf0Lmzty3ZHrIMAkTmcFccfUZqKJAol8Om5dOM+5k+Vi1iGVyYcyS0KiRIpB68X1HXUtyTHXee/ePZbX1kmzXDZW9INFnKOS2qDYZ1T1oF6dXEMu5lB23utQmovZXgly7kSJnGOmLoXIp3NKUyRCNUwyFEVSCbNiTszfz+e5xvnxZxua1DBK5UHS0A/O5SwXhEkmm0y6OhM1PU2c5hpzIWYH2KPGuBAQpnIMGJr61INEXuQUT+QZKoi8QOYcygOm1zldazT18SFTCDknp5R+W9dmz2l+DYrTfLZOWcbjefs8MZ97PLh/fmtQmkmRbIFsKOmavEfDYs1zTf3EhP+4vfG85818hElGLpjlatNnrKAQJHLNtI2DaLVP4zoPx3Rc5EJg69rsXmdCPlel+GxhkhfyEzLvvH//k7vGZ43z3nPyIi/Ki7xi2ujJc4E5N1+nkiMUVPin5QLneZ3z65FW5OnTRn2c5kziFE2Vh+7Dc2g2HtUnUdzz13jcuM2FwI8z0kw2Kz1TRyDI8ilNWzyxtp1nHHUf59coRVEYh3KttHQpaRCn+RM523xebh7Kf8/zOk/K4aeRFme+PBfSEU9TZnm6giyEX0SOcfvOXRqLqxi6emEmHtPz7fSMneUUZ8vHvzPNr6bgl/mY3sdcQJbL5zXVhp2+xvTeqoo0opg2MacxyyUV2Zi4iOLtN77xDSGEuNAK1afpG/g1RVH+GhI19RtCiK8rivI3hRB/DvjrwN8FHOCvPO2Frly5wm/+29/iw+0RH26PuL07YncYkoicpYrFj7yyzGurVVxTJ0wybu2OEQLWGy4lW+deZ8IkSrF1jaCoLpZtnZ4fszeKaHomX5wToj5tRGnGnb0JuRD8qZ/8Yd5+++0jf28QJDzo+IDUiGiWLO7sjZlEEpVyuelyv+PzqB+gAF9Yr7FQsWcHjs2B1CpaqzvsjSNu707oTiIWSha39sZYunQk0FSpofPKSoV7+xNGoUww2mWLhmfwJ/7Q8dd4lnjQ8We2yw3PlNQoU+VRd8I/f3eHPM/5yvUWrqHxrY0BFJ/p97+2xC+/v8N3N4csVm1++s21I4twb7311hPXmedSIDpKpYjw7khyk4NY3iNb0/ju1oBJlLJacwnTnOWajWtoVBwDQ5PJVy5gqWojEOwMIjxL42rLeyrnOslyPtweIYQUKv93f+wHzuVeTuPW7oitQci9jo+tq3THIfuTGA0IUpnEv7FW5UdfWaIfxPT9hIZn0pvEfLA14nJLWghfa5dmz/7P/NT5PO9pdMYRd/cnPOwFjKOEkqXzzsMBuio7tLmA6+0Sf+D1JSqOyYNCp6tkavzOgx6eZVBzTV5cktbgm31JEfvJH/4af+8Xfnk2N54WQgi+82hAGOfsjkKqjs6//GAXP8p4baXCF680iuq/wsNewEY3oDeJSfKcF5dKfPV6G4FgexAWNuQ2WS64szcmSnMuNdwnqKmvvvEF/t4v/AqupT1ByT0q8mKDvtfxud+Z4FjS4fBh18fUVH7stSWWqg6epbM3jNjoThgGCfvjmCttj++52qTmSi0WVVVYKaDZ9zo+4zA9ICw5jZff+Dx/9f/9T7m5UGal7vBvbu+jq9LoYUozvrs/YRymjMIEx9DQNZVWYTn/rDEIYn7z430macbvudmiXT74Wr/47Yf8/a9vEGU5/+uvXOL/9md/+pznzpjOJGKrHzKJUjrjkEc9qWGjKLBYcbi5WOJy0yuKgyp7o5A0FZQdiTrxLP3U6/lZY3cY8qgfcGdvwiROcQ2Vj3cm2IbCIEhJMsHlpsfve22R5arDg+5kts58uD3CjzOWKjaXmx5V1zgwv//W//j/5R/81gbffNDjxYUSf+wrl2iVJcpzXpj8QWfC+1sjen48GzdvrFVZqNj4ccpH22M0VaFRMs/dieuo9fxZYxQm3NuXe+l03P76R7v85u0OYZJxqeHy+moVy5Colp1hyO4opDuWIvNvrFUxdY3dYYiuSe2ThYr1XM/7w+0RDzoT7u373Fz2UITC+1tDbEM6Da23HL69McApUDr/7NubfHdzRNXW+YnPL9Muy3XvOF2/067nfpzOhGcXKtK6fErfuNr2KFnSxfLf3u0w9FNW6zZvrtfRVNkt7hdjo+aa9PyYf3O7g64qXGm6vL81mh3UrrY89seRNAgxdPpBgsgFcS4pJP+7n/kx3n77bT7cHhGnOaoq9UI2+yGPej6bgwBVUXlpuUzV0XnQCVAUeHGpPEOuv32/RxRnmIbKctVmEKToGlQc6f50reWdmW7x3uZQusaqnOv83uj6dCcxv/DtR+wMA1brLms1m4+2fRKR88X1Ol+51mAcZTQ9E02V+9JqzaFVtrjfmcykB6ZGMmVb5w///t9zruvkNKI046PtMfc6Yz7YGqEqCnGaMQgTlqoONceg6phYusLVdgnP0vGjlL1RSNUxZ5TG/bF0Cv6jP/6DF3KdR8U37vd499GAcSRdTq+3S2wOAvJcHgq/fnefdzf6dIOUdsnkleUK339zgX/vp3/kxGv81Y/2+O+/fh9VUfipL6zyY68sfuJ6W+exTm50fTrjmN1xwHLFpevH1ByDja5PnGW8+3CApeu8fqnC73t1mUGQ8Ksf7nJnb0IQp9Q9g9W6y0tLFV5cKh95D85zPffjlFu7Yzb7AfujmLKt8e2H/VnhO0wEl5suX7nW5MZCiY2ej6VrmJrCOw8HVG2DimvwynKFJM9n+/cf/fEf5O/+01/mWttjexCyO4x41Pd5eVl+pqnL3698sMs7DwckWYqpqeQCXl+pEmU5rbLFas3l+kLpQoodh+9jmuX8w7c32BtFvL5a5YWlCn//6w8YhglLNYulis1vftxBVRV+32uLrBYaiBVbZ1CsH4tV69SSJ6eN1z//Jv/dP/kl0gJNDXKt3h+HdMYJKzWbnh8jBGz2Av7Fe9tQmD6EiTSxqTkmP/3mGnXPfIJufh6xdP0VPv/n/itansl/8Uc+R8mReLE8F/yrD3foTBI+v17j5nPIJmx0payMELLZbBv6zNgF5Bnxg60RnXGEQPDWlQZl2+Df3OnQm0T8+T/5E/y3//iX8OMU19QZhQlCwEbP55v3e+QiZ6Fs88pqFdfQ6EwiLF3jclMiPcfh4yIqcEBO5zxDUZRvnvuLHopPrTAlhPjnwD8/9L0/V/z3IfB7z/J6agFva5VNdkcaD3o5nbGE3r37aEC7bHO1JQtT067crb0RS1WHUZByrzPBKTpAUtRb5ePdiEmUkYuIIM6OFBs7KcZheio3rHnU2tQkUBZkMlRVQhIXyiZbA2ml/fHumCTP6Y4TBmFMxTbwUai5BmGc0w9i4lRyzqfww5KlEaYSWXN7d0LJ1tkbR1QsnZ1hhHIuPUcZS4UIsmWojAuHMz/O+MaDPnf3J8RZTtOzuLpQQlFEIQpskmY5390asjOM6AcJ/UlCu3I6bvwoTOn7iZz82yM8U+ftu30Wq1JM9FZ/zN39CXlR0X9hqULVNkhzWbhSgFTk2LpO349nNI1JlJGeAr47DzycIlvOM1ZrLpv9kMWSxZ3OhI92x8Rxzs44pF2yuFR3Wa0XdK+RPGx8tD1ibxTxaBCQ5jlfudYkLfRCLiLqrsmmEVIqDvEfbI/YGYTSPUZI7nPFlmKyW0MpPj+Jct7fGrA9iEizgC9fq6MqUm9GaoI8pgwap4CRZrng1u6Y+50JddeSYrJqgR7Mcm7vjVmo2rRKJn0/wTN1oixlEiVMEll4WK252IZWHAZSyoWT4JT+MPCTJzXTiuFxGrpDEGfc3hvPkBSLFVvCnVFIc4jSlI93xuiqysc7YxxTxdA1OhNZuLi3P6FVslipOQwKzrlraHiWPptv/bkCwzSSVBCnssCmqnK9GIbpAVe/aWfRNrQZJe95dbS2ByF3O1Lv5O17fX789YOFjZ1hyN4kJsvETJvpPGO15tD1Y+quyb39MR9sj9jo+rQ8i9W6tGlfrTlESc44ShkECd1JRBjnLFQtXlmRUomnXc/PGs2SRWcSUbY1/Fg++51RRBhlDOKYlYqLZ0nNw36QEMRyHL77aMDDXkDfTzA1lesLpSfmd8Ux+XhXFg3udgPZsStiGCYMwwTH1Njsh/ixpP0Mw4T1hsvOMKLhmTzsBdzrTChZ+qeqrXKamO8eaoXgbN9PGEcp9zs+aZZjaApV12KhbBEm0lggTDPqmoFragzDlI93x1i6KkX1n9PNaq3u8M5Gn36Q8K0HfZaqDnGaMwxDLjcdNjo+YZwTxjmiQClqqkI/THjQDXjUi7jcdLna8p4w6zjLej6/LeVCYKjzlEv59dS4AgQPez66quKYUgBdU1U2+yE112R3GBIlORFSGFVTYaMbYJsqCpJu0nBNBmGCbai8tznENXWyufkzfVSaqswaWYMgmdE31hvObFzmueD23pimZ/HN7R4C2B2HXKq7vLc5lO7GIufV1RquoTOJsyc0YKZC3tM193BX/zFV53ybwYsVm91hSH+SkGQK9zty7UnynEmc8LDv42xorDel/sfuUDrDPuz7/L5Xlg5ID0zdui5qD4dCX7Vmc2dfFqUe9XwmUcowTBn4Ma+tVlmtuZi6RDu8s9EnzQWdccTVlsdi1WYcJU/s3xcVWS7YGYZsD0K2Bz5RklN1DOI0nyH4BILvPOrz0faYnXGEH2W4hsYwShlHJ9/Ln/vGQ/6jf/jtQmwZ/qd3t/mJN5b5Gz/7ueeSzvg0QjYOZXFKESpXWu7MwfjObkTXTyhZUt8SpPt33TUZhj2iJGd3FNHzU0xNY7nmXLjTn2vqND2LnWFEs2Ty7sM+m92QQZggRM4LS1VMQ+Fa26M7iUlSwcAP6fmxbHyqKl9Yr6EoB/dvIeS4GQYJKIL3t4cMw4Q4zVite4UrNyxWLHRV4c5eIMXDPRtNGfK59TqmplFzjQtD4ByOnp/w4c6ooPANuLFYomRr+ElCmgo+2Bry8d4IU9f4rbtd/mDZRkEidlplU+qqPkWP9FkiL0TYJ1FGxVFRVQjjlN+625sVVi7VXYIk5VsP+4zjFAQoCO7sS62sYXC8w+p5RJIJen5MlgvGcTorTD3o+by3OSIXYOnD5ypMuaZG30/QNVXqb4rHexzIM/1y1WZ3LAX0d4YhCNgutMemyMVJUZgSSKT3Rzsj+n7MMJRGKg+7AZMowY9z6iWDRsmi50u9OVVVpDnNKbWvP6vxicwoRVFWgF8EXgFKQohUUZT/GPh3gPvAnxZCJHO/Xwb+e6AB/G0hxN992nvomnQiWKu5XG64OMYO724OURWVhbI1WzyqjsHYS9keBrQ8i+44YkpbrboG7bLFWt3B0jWutVI2ugF1z3wmjZyKY9CdxDytTlFzzRlVolXY067WJKfTNiX0crHqsDqJub07xkVnoxtIsV8hqWlTd6qFikp3YtP3EzTNxDaltsRra1V6Eykw7FmSTnCtVUJVpMuVa53fBmvq6kyM1jYS4izA0nRuLJT5aHtMnOXUPNnNXqk6oAhuLJYwdI2bi2WSVNDwjDMVAqf3CVSuNj16fsyNBZc4lXSJaw2P3iRBUeD7rjd5Y70uDyp5jh9n3Fwq0ytEgJslCwXYHkpnkdMkqqaust50Cc5gT32WcEyNz63V2BwE0rlPU/j2hjzkrNVc3lyv8sXLEtVXcXSGQUq7YtGZxCxVLFZrDmt1B0WRC9dFuCuoqrTzdQw552q2jh+nRGnOUs3icqPEH3h9BbU47PUmMbYpIdINT2CoKpebstPd9CzCRH5Wy1C51vaeKsoMEqYfpzmrNZlwvbJSQQjB7f0JH2yPuNp08UyNvWEs70OY8j1Xm+yNI97fHHGpIYsmU9FbVS0oLapSWMbm1I9wj7F1qTt2khPTNMbRY/pYw9OpOgY110CIvEBsSuefUZjiGhpRkrPWcFipWnx3c4hraoUr5eMDy5RWUXONwn3qyQTE0BQMTWG9Ka8ziDOqdZPa3Aa2Wnco2TpuQRt7Vk76fCxVHcxCQ+qouXFzqcpSZZ80E6zVzl/E2jE1Xl+pcr8z4cXlCvc6E1pli7Kl8XtfWuBL15qULYM7+2OSTKVq6yRZRrOksVA4i8Lp1/OzhqYqvLBYwdSl+2rNM8ju99nJQ25WyzQ8kx95ZRFDVynbOnsjBYEU6+37Ka6ls9pwZvNjfn5fbjh8bq3Ke8XY/uGXlhhGUqNjexAghMLAT6h5BoMgoeLqLJRs/DjDKdbUOM1ZqdnkuUzUP8vhmjpX2x5pJg+nuYBLdYePdg0QLo6pEWeChcJG+8WlEj0/ZrkiXRGvtj32RjGjKKU/iVFVTtRcPE14ls7NxRL7E4kgudJwUQSYhkbdNVmo2OyNY2xDo1W2+LFXlnDNfdJc7iXjUKK40yMGnq6pp17PS5bOWt0hyXJaJZnE2qaGoaoHDtiXmy69SUyUSieylZozK+JM17eFss1OKSIXgtdWqmz2A7JcFuHSXGDoUl/lZtWmP0lYrtrEaX7AQfZKy2MUppQsnTDNSLKQ6wslQFC2DZarDq4pUVy2ocrCVi4karagkq3XXcJ0WLynPCS6lnbkYXEQJAeEvA+72V5tebP86DzD1FVeXqnw5uUG7z7qs1p3+Px6nYWKxZ39CRXLxE/k82t45gFx31zASlUK7lq6ih9LEfvT7DPPE82SxQ++sECW7VBzdLpBzLsFkn217vJ7XmzPzHnqrsHuKC7chR2uL3iEcc6jfnDu9/Ko2B9LQeQHXZ+qo3OpobJad7hSIAmutDzGYcq1lsfeKCTJMlxTY7XmstpwWDyh2L41CPhL//hdvudag//uz3wZXVX42792h//8X3zIIEj4b/7Ulz41zZmzxjCUaI5+kLBYNinbOtfbJVRVuh4rFO5fec6XrzTQVKVwdYPf++ICH+2M2Z9EIBSqjn5m991njdW6Qy5kEcnUFEZxSrifsVBxudR0+Nk3L+HZcq0fBIlE8MUyjy+ZOusNV5ryzO3fqiIdR6uuQVUYrFSd2Roz3ffKts7XbrYZBglJlvGwF+JaCm9eqXGtWaLqmrN88ZMI19S4VHfo+9IQZaFi89XrLbaGAZqqcmd3TN0xMQ2VlxbLOIZWnCntM4MqzhJT3bBXVysoKNimSpLm6KpCUiC2NFWhM4opWwY32iUqts6ry1U0VeVBz+flpTKvrlTO1fF1PkxdutVdqrvU3Mfz3dZVap5J349ZrT/fs2yWLEq2jq6qpHnOJMqeWKebJVPuWUlOyTJwLZ1W2WTgJ7P7+MZaDUNVGYbyjLRed9FUKevw8nKVnGkzKaXlWVRtvUD0S8DHwjO6tH+W4rl2N0VRflII8U9P8atd4IeBny/+rg38kBDi+xVF+fPATwH/cO73/32kxtQ/AH5FUZT/QQgRP+1NLF1qSlUcnReHVWxD59WVMi8t1+bE3RTW6rKAEBY2yDcWSqzXXfwko+lZs9+9vlBmueZgaOozddEMTT21A8xhipJadDHmY73hUlBPqTkGQZpxo1yi7hrsDCVVZblm8/n1eqEfpdAZRySZoF22WKlJwW5DU4iznCwTdP2YxYqcMOcdnXHEh9sjWiWLq20P25CaFSVLp1WyeGmpMhNqnMYPv7jAC4sl6o5J6ZjkK05ztgbBAXpRmOTYhjyYv75Wffw5iwWyM4mpl008U+eFpfLsIJ/FgqZnUrL0J5LZw93pp0XFNo6lWzxvDPyErh/TLoqsl5seP/ryAt/eGKDrGm9ers9+93LTmz3/pmdKqk/1sbXqWt2VPpfnHHnRuTQ1DbcsnQLfulrnG/dlR/Vyw8Mp7nHJ0nl1pSLFHlslNvshVdeYFS6qrjEb/1M75NOEa8ouVphkhfCnnLc/8+Yl7uyNedgPuNzwiLOcMMlpeBZXWiWutEq8tFRhFKY0CkvxsmUc0HQ7yclCUTi1M6IsHiUIZNI1ff0vXmlwtV3iva2BREmWbHq+LKZebXmFIG+ZTuEaWHNNqo4xcxEFTnQn8yydH3t1aSZePw5Tyo5+QKz8uOLR80TVMfhjX7lM349pHFEwe32lwg+/tECSC7589eyU6eOiO5FC8a2SSdk2WK3L5FNXFCZF4vq1m+3Z799YKCOEIMkE4zAlTLMDXaezrOdniTCRh03P1GktWrRKFl+6UudRN2RrGNL0zNl12IbGy8vyGoSQaAxFkRbP05if355l8B///pfZ7PtcaXpYpk67QMD1/ZgglsXQJJLFz5eXKqiqQpRmhU6FPMD3/JimZ37m7eL9OGVvJCnYiqKgKfDGpTpXWpLSk2WCnKm+j8LlpseLSxWCOJvpPlxq6NiGRpZL6PyziPlTvEdnLKkyr6xU8Wzp1ne9XaJZsmb5x0rNYaEsmwi7w5jlmsMfeesShqYSJBKpoinKrGl1OM6ynh/e047ar5arDqOFFD9OiVNZ4Fur2yS5YBJl3N2f0CqZfO1mazYemmWLy22PSSTXT12VZhm6ptIuZVxqOHTG8YE1cmptLb9WGBVOxa2ShWvK51dzTb7vRguQa9OjfoCpa3jWY4q1LCZG2IbKpcbxNJD5HO5IsxlNpeqeX5EhzwUbPZ/tYchyxeFn3lzlp95cwTUlovjzl2r861v7TOKMy02XV5YrxZ5tsTnwD+Si8/P/Ihpf09jsB8SFzEHVNfmpL6yxOQgIk4wvXJoQpjmX6g6mrnK15c3Q/pv9AFAkwkRTsfRncwp+lpg+y0axTq7WnQNo4WluV3VkM+bzl2p879UmqAqeebLD1t/+1TskWc5//ocfo6P+Dz90g3bJ4j/5uXf4Cz/3Dv/FH/ncZ35dhMcuZm+sVjF0VTami7WtXbaou03udSZYuspK0SBab7qF0UiVt6422R2FlC2dumcdQByGScbuMDr3AsgolPIFFVunbOt4lsarKxW+uTEABNdaJbyZi6JBpcgpw7jEzijEK84acHD/nqdYAXz5WoPuJKJdsma55vSZfvlqE13TiJKM11bK6JqGZ+uoisK9jk+zZF5Y3j8fnqXz7765Rs+PuVRzMXWNNy7VeF1IGYbVmsNLy2WGQcpbV+oslG3e3RzwrY0er6/Wjj1PPW+YujpDlU/D0jW+cq3JqEBfa6pCw9UxNlXiNON7r7dwLY23rjYIkgxdUdgZRby3NWSpYnOp7j7zvntUVGydH3pxgett70ATZrFi82OvLAL8/8j772DdsvS8D/vtHL78nRxuDp1npmcaGGKQB4QYiqBESUZRtixTLok2KUMuW3ZZtkplsVR2iZJsUrFklstBpqUSTYJBpEiKFAMIkgBmMANMd890vPnkc768c1j+Y+29z3fSvSfevgM9VV3dfe8J69t7hXe97/M+z6UkdMo4XFO1Y5Ns8kyThaS2K5lNP35nlkwI/q1Dz7FhS+3B3/+lJUZBiqYIZps2z3oB66NS1qdD3TpInphEMgZq2PoPrYvqqWeqoij/9OE/Av4TRVF0ACHEL5/0vUKIEAinNu8fBf5e8d9/G/gfcjAx9WPAvyKEyBRF+W3gNeD90451GCR8tj0hjDM2hhGvLx39mluzNfwkqyzGW65JC5n0kJuvZOxclR38eSBFz+Smem3KDW7gxxUV3tAVllrOfsBYt5hEKXtedCDQsXSNLT+k78nvc67gc76/NqTvSZvd5bbNUtthvmkXOiqyVciLUrw4petKa2jT0LjWqbE2CBhHKaudo/aeWS6KfvN9Gu0nm2OCWF62XVNnbRBgFW5hiqIw37SPbDy3Zmt4cXqizfyrhGcDnzyHh7sT5uryc9yYdfm5NxfJhTiQuEmznJ4foyrSgtfU1Et1lDwJfV9qWwVJShDndGsmqmLwc28sHvucR6G8+MRZRlYIOF4U5UW6pKs7xTwTwA82R6QZeNGQ3/vWIl4i6fwlGrZRWdsPCtrvVVwCDE3l9lydoZ/weM+n5UimpqIoPNidsDtO2B0nLDUdbs3V0NV9MXRT16qE7DhMiuTa6cdYrv+NoWyR8eNMMjOvuPoZJBlBkhOn+ZHgVdNU7i3IpGBySXSkPBf7ttRpzmuLBs/6AWkmmG/a3JqrHbvucwF7nrTXrVv6S2nV2BqFjMO0aCXIsXTJzPvazS7jMJEi0FPjiLOcoZ8wChIUVWGl7Tz3cmXpKkGS83DPry6/ALdm60yihO8+HtD3E/bGMQtNqU02HVTNNaxXvoWvxMYwxI/kOdByDCxdrv92zaRdrJPdccTjz338KMPSZVt32eLY1eXXXMbnXR8EJKnUkntruXmgTeD2XB0vlq0ln23Ldt3eRJ7FaZ6z0nHY9SKaBXPoZaLvxyiKTFCV5yeAgWCtPwHKNXUwSdu0DQxVZRgktB2z2mtsQ+NZ3yeIJTv5OIyCtNK7MjT1wHlWzu0gzqQ+zijCMVWpBVkIzt46haZU6dJ0+Ly8KvT8mIc7Hn0/IUpyGrZeJQbL9fUT9+aqeGjgJ+RCnjl35hqFpt0EQ5NxzGVe1I7DuEikAmijiGtdFy9Oqxjx3kKDTs2s9k0vSqt/cnjhPnRV6NTMQqC9fuBs2RlHDAPZ5lyzNPYmEVEqz5e1UcibS63n/twgzvhz337KH/zK8pGCzy/+yDU2hiF/6m9/wtdudvgfff3G5X+wS4ZtyCJ8mgvqBavos+0JbpEc75WFijjHMfelAMp1nOaSydh1zSNzcWMYMgnT6h5yWdgYypbhUm9HVRQiXfDzby4QJBn1Q2d4lOaMwqSQYBGnju1tQ5UaSIOQlmMUc0p+xvmmzU/cm0UvEuOj4nMmeY6paURpRnPx6hNT6wPZTrjcdjCLeGA6Tr2/0GCl4+AW2qDrg6DSFDS0Ee+dQyf5PNgYBnhRxlLLZq5hESaZ1DKrWXz9tnEknnFNnaGf8GjPY3cc44UZrnm5sgGqonBnvn7kLM1yUZ1J0/pMV4UozdgcStbu+iDgdsFYVA9J6YxDeW9u2DpNRxJPwiSjFyS8sdhkpetQN/Vjz4SNQUCY5EzClLZjfCF78kVxltP5zwF/A9imUlShBvwC0sToxMTUMWgDo+K/hxyt973o75+LMJHOHOW/j3MI0DWV5jEv7PGeR5jk7KjRgSD+VcD2KCIXFAFeWiXNbEOr7DgP02ujNOPRrhTLjZL8wAFrF8GRUij4Xzaajk7fS4p2wjKTrFTVhTTLeViMzYsybhWWtj0vrrRyhnZy7MVbWoUXzom5YLfQhEGR7Qd+lOFHGW3XPLEHfHosrzocQ8OL9hkciiI//3EX5/VByDBI2BqFdGsmhiYpy1f9WR1TqyziixbuygXv8O/245Qnez5RmjEOU2brFluj8LmspNNiz4sK44CsugyoCtStUjjWQDth/YNMbJdaR7m4nEvqcdgYyYtrEEvRW1VVaDkmzwjRVQX3GBZfiTDJKpHnUtT5LLB0lQlyDVy2psphCCHYKPro14fBkUq6pavseTFpJnVKLgOqKp0GwySvWrFK+3TX1E5cC+uDgM93JvS9hBszLnVLP5Xg/kXgFHpmuqpiWmphLy3H3DhmnI/3pJjy9ijk1mydnXH03Pf/yeaEJ3tyPrfdffFyrZhv7ZpB30+wDe1KzoGXCdfU8KMMQ1cqG/LDyIRAIAPSMM3peXGVxFQ4O1P2JDiGRpLKNrTDcUS5J360OSJJBZMoxdAU8lye50/2fMIkZ3ccV4K8LwNZLk0/QJ7J07/3uDU1DSEED3Yn5DmMgoS7U4k4S9cI4hxDP/5zlEYEx8UwJXRNOsLJZ2WwNQwZFQYufpRxc/bForlX2dJyGJauFgmoBFM//qwu58HQT3hWzEEBzNYtdidxdY41bePKGUgyiSst7cv3a2j776Vm6Udit3GYMgoSltsOu5NIsve+ABxONOa5NC+ZRCm7k5CbM3VURbo4Co5nCh7G3/loGz/O+Ge/unrs3//SN+/ym0/6/In/+vt87UaH1xebx37dq4TpObg1ktq5QZzRcU0cY99d7vAaLOM1kCLOhy/40/HEZcIppAxkW5rUyLR09cQulgc7HpNItuzemKmxPQ5PJaa9N5F3joe7HnMNi/nIOrB/lXGYbZTni4qlSBe8l9HSWCblQb63W7M6o3A/Ts2EYL5hH5jXdUtHL1zvXtY9J0yySuO2jOcf7/nEqdR8fmPp+DViGWoVe9iGWklpXBbSXBDEOd4hPbmeH1d6fX0/ufICnK6q1TuxnjNvtkZhkSTOaFg6qiJj06YjSRfPY+7bhlZpZ172enxZOEti6seAfwf4FvCfCSGEoig/I4T4F8/xewfASvHfzeL/D/99EwhP+HsURfmjwB8FuH79+oG/a7sGX73WYhJlvLXcPNPLKTfm48TAs1za/r6MKnqYyFaK6YxozdIZh2mh37C/cG1D4/5CQ1rkHhrb80TNW67BXb1eadRcNt691uF6R7r9vKgPP8n2HQVcS0ORhdljA2Db0HhtoXEgE7zSdgiSjNmapOJuj8MiMPzhvmiVuDVbk5uNLoV6NVU5QhVNs5xsSoW9fHalne5VwzV17i80EEhb6STLj61Mh0lWCf3pUwHGZVGNa5YuxT2V/YuIoij8xN1ZBkFC55QBfpTuj/MqUDN1BmmCa+0Ljd9faDBXl8zGF1X1FWXfiv6sWC6ES6/CPvgwFEXB0hXGUUrbPUqXtnSNG12XuNAFuizcmasTpbLFF+DmjGTJHhdI5rkgznJEsYcqimyhfBmM2fmmTdMxCmthheAQk69EmGTVWpEJ32LdvGCe1Ip1NS14PY0vrbS50ZWt1lfBnH2ZWGo5FVvnpHldM/XCxVLh9lydJM2vZCzXu261Zx9G+S7LPUC2Z8u2mZql8+nWuPraq0pKHRdjaKqCY2oE8fFaS4fX1Mk4OObVjkOnZmKfcB7bhsZriw2y/GgMU0JXFe7NN9AVBdvUcS2dUXGpeIXqhxUatsG7N9pESYZjvjgGAnnBjAr2Xt3U6SF1zmzz6uMYU5ftTdPvwC6cIrNcVHthmGTV27X0/fnzskSgj0OUZmiKUsWEqqrgWhqTKMUx5LgWWg7Xui4CaDkvTj7/tffXma1bfP32zLF/r6oKf+oXv8w/8ad+hf/dn/8ev/zHf/yVvQged3epWRqTMMXUpQ6to8p3DRzbhvQ8TMcTl4nVoi3T0lUEknldO+ZOEKd5tQeYmlolwE/LjKxZOrvjCEXd1xc9bn9caUtXSlNX0RTllHvhxWHq8jMlqajWWZTITgOtMM45jKZj8LOvzRGngu4VSLUcB0OTcylOc+q2XjnUSZy8NmxD493rHV5bSLEM7dLvo6Vr/WLrYOKpZurkIiTLxUvRw9NUhbvz9eqcPwk1SyeI4yIm07gzV2MUSv20F51117ous3VpZPMqEWvOglOfJEKIbymK8vPALwF/p9CGOu+t7VvAHwf+XeB3A7926O//MfBziqL8OeArwMfHjOfPAH8G4L333jswDtvQeHuljYAzswGud2sMA2nHO/1Ss1zw6bZ0RFhoXq3A2NogoDeRk/LufL0ax1zDolVcYA5T+E46EExd5eZs7URR7qusICqKwuxzMtC6JkWtn/V8/Cjnk60Jd+frNG1p0a7AsTRERTn45+Vi96KMjmvISi8KWU7hsnMVn+7lQlGU6l0dd1lOspxPtyaF45CFY9rcnqthaGolqvcyMD0Pj5uTz/q+ZNEZKtdnHJJM0LYN8hO+/jw4af4YunqqiogMsBSGQU6/0PW6ijaKa12X+WZ2pM3yNIyNUmvk8+0JmqqcyzX0ZbSzgLw0xFmOgnLi5eX+YoNx0X51WVBV5cAzUdWTf/+DXU9WpwpB2NcWGzSs5+uPXCamA7HjxrgzjtgchmiqwvUZhyDOq+T8i9bN3fk6kzBhXLQglG2jJaSTy8sJXF8GnrcO8lywNggwNI2ZetEKPrUlXOZzmN6zp7FVOK8Zuky0zDetSs+rjFduzOzHIVeB6X14OsYAuDMnNfiOu5weXlPTUBSFO3P1Y9exopy89kpIFsTJf/9oz5ftCTWLGzMuhqbiGBp+nJ262PCyYZ/yktVyDZYyi892PHpegqGHzDdsXrcaqMrLO7+PewfT82BzGLIzjmRcOeMSJHmlFflFiYDvTSLWB2EVB5bjuD1bY7XjEMQZuYCOa5z6opbngn/42R7/xJsLz332M3WL/+MffIt/9b/8Lv/Pf/iQf+knb1/KZ7pM5FN3l7mGVTmfzTds2o554D5xUkLKNXVuzMrEefcEC/qriCcO76EnmRo82fNRFGl0EWeC1wutxNPOyZZj8MZykzvz9ULiQLrjmrrKvfn6EYJAiZfFwNRUhfvzDdJcYOpqEQ9ExGnGzZnaifqD9ZfcEaKpCveKdlFTV/l8Z0KaCVRF4dbC85lrsrPjauIQy1C5NVc7MnfLjg4hpDbTyyhEnkazeqnlyG4XVcYFzwYBhibbTa8/R0exxMtkBl8FzvQWhBA58B8oivL/A/70ab9PURQD+OvAl4G/CfwfgF9RFOVXgSflz1IU5T8SQvwS8H9HuvL9EvBnhBBn7u8474XCPOHymmQ5SVraOV6tBa5f0A3DRLIhph0Bz3P4Hyfs/apAumDoRGlClsvsuqmfXWzeNfVqU/HiqPr+MMl+6Cx9z4NoijkTpfmZW7teFsp+7jDJXyg8ehFctD1NK5wDk0yQ5DmWejVz6CIuJGohDgyykviqHkZhkiOEdAT0k+zYvuzTXuCuAkLIdkqAMD1dS9DLhh/LMyHLJRvxrJRz19LRVPXYM+W/T0jyvLKRL/Vm4HITUi9C2U6QpCczsE+KQy4L0/vw4fkgGY7nW4tXuY69Ki7aZw7WLP2lJdivGq6lV5o4fpRB4+Ln2GXDK/ahOJXs9rlXQAqhnMvT8SPsz+PzzOXvb4wYBgk/dud4ttQ0fuFLS/zl767x7/+3H/P731liuf1yNeFehPjA3eVgK9NZ7hOvquxFeXYLcTHphTJhULN0PtuW7WhxKuVgzFeACaeqSjWOMh5wDL1g0Xzx4ytRjrOMqwxNtq99kfcwVVGOFQKXLHmZUCv33FcF5b6VF22Ilq7JbqnfIV1Az8NZxM9toCGE2BFCrAO/WPz5PDAqBM6PhRAiQTKjpvHrwJ889HW/VPx7BPyB047tZcA2NOYaFn6cXrll9mLLZnsshU9/GIXLzoq5hlVl2C8jgTZbt6rLx2UyMF5l1EyNmbpJlOavtFDx0g/J3F5q2WyNwsKm+9VM+MzUTcJEtnW2X+F53rR1OjWZ5DupsvdFQlEUlts2gyB5ZV1MFpo2WR5gG9q5LuI/LOvuqmHpGgtNaQiy8AXZKi+2bOnC+JLE9Y/DD+N8WO047HnSHfJ3IlxTWocHhYvuq4jFpjwXv8i5exiXHT8C/NqDPYBTJaYUReFP/JNv8c3/y9/n3/0bH/Gn//C7lzKGy4JtaMw3LbwofWXn1UUwHQddVry/2HLYLuK/VzERUMYDjnm+eOBlQMZVDn0/ZvYYN+ZXAdN77hcVD7wIqrofn77Kd7vLxFlm9H+IFD8/LHL+88BPAH/ssgb1quJlberT7mD/fYBtaJXw+WWgbF/87xPKQ+BVxw/L3K5Z+qUIsV8lDO2HY54rivKFieKeFjN168pFzi8C29AuNB9/WNbdy8B802b+C/z9rvnF7y0/jPOh7ZoVQ/R3Kl62A+NZ8Sqei5cdPwJ861GP61331O9jtePyL/3ELf7Tv/c5f+THb/GVa+1LHc9F8apeui8DVxEH1S2d+is2z6dx0XjgZaFbM6/E2foy8arvufDqx6eXjbOkgn9CCHHEeU8I8f8FfuryhnR5COKMJDu9sKkQlyN0PPBjPtueXMhhKk5zwuT4lsG+9+Kff1mf5aLYHod8tj2pbGSTTH6uyxzfaX5WkkmHg9KC+WnPv1Jh66vC4TldfvbdSSSfs3+5dr3nQfmOS5RjLO2J1wfBlf7+MMmmBBfPhsNzKYgzPt+ZsHbJYy7n43lweIxhIsf4tOe/Muv+MMo9cfeEPStOsxP3u4siTDLiQwLX08/p8B71ReHwvC3HKITURfp8Z3LmOePHKcPi2W+PTyQ1/45Gngu8KEEIcWXvOs8Ffpw+90w5vDb3ij174MeXOpazohz79Hx72vN5sDM51Zq8yj3neWPJsvyFz/xVRbknlc/uRfvjy8b0fC7HmOWCx3seD3e9M8XVFx3DaeeXEOLSxvjB2ogvrbbO9D1//GfvMlu3+Lf/6ve/sHM4esE5Wo7rvOfJF4XDZ3j5OfJ8f384b8x3Eg6fFdPv9CLx21VBCHHgOe2+IudLUjh4Pt7zyIr9JC327pcJL0qOnBU/TPfBMs5/1t+P868ybv4icRbG1POaWF85ruOH60N+9ZMdZuomv/CVFcIkr1zfmvbRntynPZ+BnzBTNyvmSZhk7HkxdVM/k1Xv+kCq/JeC48f1/6ZZzvowJM9zOq6JZWgMg4SdcSQtr+MMIeBa1zlSJVwfBuS5HN/hLGqYZHy0OcYLUpquwb2F+kulXIeJtJ9tOQYCKuvpzWGIbah8ujVhexSiKLDcdlloWniFeKlr6mS5wItTaqbOJExZH/pESU6nZnK96x55lo92PX6wMcIxNd672T2Wyh2neSX+uD4IiPOcxaaNa2j0g5i6pbP4CmXN/TglTqVD2fTn3R6FbI0iNFVhrmHytB9g6SqLTYvffjbE0TWSLKflGnhRiloIR06ilJ1xyChIpQjgbO3C7WlpljMOU1zroIZDlGZ8ti0tw+caJgM/IUxzZusmW6OIURDTqVl0XOmc5cUprqGhqYoUdByFKEhWw4uqfD0vZn0QVI5WiqIwChMe70ohzFuzNXRNkcKYwI3ZWqXZMQwSVIWKNRAmGQ92PABuz9VIspxRmDIJ5bvwo4y2Y5yZNl0eymkmuDVbwzG1aj7muWRhthyD7VHIJE5ZaTk0nP0xlWtJLXr2H+x6+FHGUtumbunseTHDICHLBD4ZbffVYUJkuWBSzJGNYUiayT1x5tCeuNbz+NP/3aeowB/9mTtn/j1JljMJU+q2fkSTZegnPOnJ+XBnro6lq2xPpJC4oSrYpspaP6TjmmwOQ1qOwSSSFzI5N3VqlsbDXY84y7kxU7tQu4gQgmEg7eOnhTanBVxXOw7jMGXgx9jF2ni859GpWeyoEcttGz/JqJs6mRDsTiKGfkKaC2br++K2YZLzwbMRv/l4j+1xzHzT4g+8s0TN1gmSvHJ//J2A8rlauoZjatXZ3bB13n864Gk/YK5uMt+U+/xa32ccGvS9mJqlc6PrsufFKMrZ9bsAHu15eFGGa2ncnq3xrB9QszS6RQtDEGd8vj1hEMbc7NZYall8uj0hzXLW+j5vrbTYGkkn2Vuz9UsTu06znId7HjVTo2YauJbGzjii58XVXCmF/+u2zq3ZGqMwZVAUOHYn0Ylsx74X82B3wiRMWW47z7WwPg+8KKXnRfT9BAXlwFj8OOVXP90lTHLuzNeYrVsocETYfxp5LipX4zQXqMAolOfk7kTGXTdnahcyushzOQ8d82StrZ4X86zn82wQ0HVNlto2kzBlZxyxNoCfujeHoijkuWBSnI+6ptL3YsZRwiRML6wpU+6ZtRNalR7teYyClI1hQLducneuzsYoZOgnNG2Dnhez0LTlBT2RluYghf2f9Hxqps61GfdCukSf70wIk5ymo3Ot4/L+2oC9ScyNGZe5pk2a5QRJjqEqjMMUvyja6Zp0Ket78blMivpezNog4F/4sRtn+r66pfO/+vl7/Bt/8QP+/ic7/MxrL5eX6ccpD3Y8KZA84zKJUh7tekyihHvzdQQw8BMMVWFUuPHpqsKNmVeDdX1S3NvzYtb6QRXT7U1iel5E3dbJhdzLOzULexKz2LSZxCmOoZELwd4kJili1ek4EWR8VcZmTUen7Zo4hkaYSlfcrWHEOEzYGAastl1GYYJlqKy2XR73vCp+O3xeHI4tL4IwyXi05zHwE5bbNgsNmyiT+qwKsDOJQAgmUcrTnk+YClbaNnfn62wMZCFqfRDSds0XrvmLjPG3nvTp1EzmG/aBuF7XVDaGAQ92J7iGTpTmjIOEp32fG90ai237RMZSlGb4UUbTMS58Hva9mH/9z3+PN5eb/LGfvVf9+d4kxosyIKNm6WiKQs3SvpD29jQT/PbTAVkuuD7jMlMzGUdyLhuayqdbYx7tesw35Z1hFCZ861EfW9P42s02c43j97ryrnbZ7/0qcZYIe1tRlB8VQvzG9B8qivIjwM7lDuvi+PXP93jSC3jSC7g33yAHHu/5LDZtrs24rBxqeyoDsb4fV4mptUGAH2X0lRjXapxaiLJu6QyDhJqlnRhArA9Cvvu0T28iXb9uztbIculesDmUvc2ldXj7mJ8/CtJjL8lrg4Anez5bo1C6kABvLjevxFXsMNIs5/MdmZQYhynXZ9wD1tNRmtObxDzc9UERNGyDvh9TM3XGYcLri00e7k4IYqkPlRXVEOkqpx5xChJC8IPNER+uDxkGKWGc8/Xb3SNCtnGWk+dyo0sKsTsvTPl0e8zGMELX4Cfvzb0SbQJlgkQICBv5gfbRoMiMj4KEjaHPKMhkYi9KiZOckS91U/pezLO+ZPjcmnV5tOezN5FB7Y1ujVGQMte4WGLqSc/Hi2Rf/xtLjWqex6l81gAfb47p+/IwLys5Az/F0DRMXeXRnkyyWIZKtyYTA5/veMw1TDRVPUViKkIIOdfKuRFOCWF6UcrnOx7fetijZmn8aJLxzmr7wPO5PuPScgzGYVqJxw+8mF0vRgjwE5mc0DXlWNv3F2EcpkSJfCCDIMYxHZJs/xn5ccruJOIffLKDoijcmHH5+TcXSHPBZ9uTyi3kWtclzmSCDOR+NQwS/ChjFCa4pkwQviq6HwCPi8u6oUtHroGf4B6zJ/7V723w0eYEgL/14daZf8/DXY8oybEMaXc+jXLNCCHX1s444sHOhGGYSNc9VWESSYHO63W3cnjaGAZ0ayaWrrHUsgnLd+jHF0pMbY5CdscxiiLd8sr3VVa90kzw0caYUZigKooMvnPBOMwQRKy2bT7f8So7Zl1VGPgJn21PuNZ12POias8QQibXPt4aszmM+GRLOlPN1W3mmzZJmv9QtIKeBhvDkL2JfK73FuoySE9y9sYRT3oBO+OIvUlIy5XvdHcS87QXIBCstF3WhgFDX1Zw9XO4FJbzLIgzPlgf8tmWh6LAz742R8s1GYUJPT9mbxKDUOgX//1w1+PufJ2PNsa0HIMgzvHi9NKEht9fG/Jo12fXi3hzqUG3ZpGkOYqiVHMlnBo7gFMkQ7NcnDjXwyTjWT/gO48HgGASSdOAyxLrDmJ5DiaZfB5txzwwllGQ4icZIpfFqXI/1TX1xNaRJz2fYZCw1g9YadvsejHzDZudccRcw8KLMnkpvYAz09ogYOAnKAq8tnh8zBgU+9CjXY9hTbovp7mg70uXxFGQ0nKNKtlp6irXuy7P+gHDICFMLq6H8mjXI0xyTF3ltcWjCcUgyRiHSZEcctkbR8wVz8o2VFxTIy/OqDQTtF0D29B4vOezPgiZb1rUvfjc81jazOfVWH6wMeIffdZDINjzYu7M1VkbBHRrBjuTGENVaFgGjqmhKqBrCu459+kP10cAvL1yNsYUwP/ga9f4T/7OZ/wH/92n/PT9uZcqSi1NRuR/B3HKzijkWw977Hoxn2yO6bgWdVvHNtSicKmy/IoUZE8T9woBn25P2BqGJHnObN0iywSjQO7bt2ZqPO37jAKZfNZVhSDOedb3WWrZB+JEkHF0mgnWBj4DX6fvyfNDVVQ6NQNNha1RRNPR+XR7DEih/UmUYqgqqqIcYauU8QPAzVn3wsmpUZgw8BM2BiFxkrPWD6hbssDQtA22R1FRRE14uOsTpTmmpnK9K6hZGl6UVc6uL1rz54UQ8KjnM4kygkS6THtFXH9/ocHATxj5KRM1xTFUnvYDnuwFgHIi4SPPBZ9vS4ZVPUgu3Ko7DBIe9QKeDQL+uR+5Rrsu51fN1NkjRlUleSLLxbFx5MtAmuf0vIiBn1aF+jSTxiT35+t8f33M1ihk14v56o0OD3YmiByCPGMcpsydMORHez5BnKFrCm8sNV/uhzonzrJz/2+BP6coyv8L+M3iz94D/gXgD1/yuC6M5Y7D2iCgZuk4lsYoSBFCVvGT9CjFd65hySpiYz+oMVQVyFAVBfUMB8z1GVe6gzwnSFMUyHM5nlwIhIC2a1QJHUVRyDJxrBjv9eKSetzPN1SVjmuwPZZZchR4WQRFAdXBmBX/MW09LYSg4ejMN0zSXGAZGq4iA2BdlZ+lDEbSLEdVFZqOQZRmNB39yOdVFIWZmokQUvxbUTiWvl23dOYaFkGi0XB0kjTn+kyNT7fkYZPlnOn9XiUk1bX470N0cBmMhpi6dLiI0gBFUei6JrYuK0Q3ZmTlv0SaCzRVJgbiTAa5TefiYollEqecu+Xja9gGsw2TKMnIcgNQ8OKUxabFOMyoWzqrXQdNVap3Fac5miLfZ9PR0VWVmVOIZHdrFutJQMPenxszdYsozVEU6SITpRmKIp9DXqyEdIqyW9J3W47BwI8RQLtmMAgTaa9ct1jtuAcslc+Chq1jGSpZLmg78jPVivkYpRlzDYvPtyfkxeLJhXwOudgPMvPiPyxdo+1KRs9s3SwCsoyOa3JrtoZZWN++Kiifc5oJVjsO803r2D1rpWPjGgoZMpg78+/J9ltNDmO2LiuFqqrQdo2CRWPIip6pYeoabdfk+oxL2zXZGMqEpaooJJnANqBuaTimSpyKCyevy7EKsb9XAszUTOI0J8tzhoFcT6MwKZwhc1xTZ75p0a1ZbI4kCzVOc8wi6Gy7Brp60HnG0FWWWzY3Z+pEiUBVBLahI4op8jvJma989+Vz1TUVkhxDV3ltoYYXS1bPStuhUzP4bBvGakrPj6hZGjVTrxJT2jmey2rHpe/FdFyTz3bG1ViiYo9rOQauqTHRVWqmRg6stG3CRJqpyKS3gqkrlTPbZaDcO9J0f41065LJOlOwuVY7DgM/qZJx5cUlKwSlj4OmKiiKPHfjXF6CLtNBrhy3oancnKmx0LQPjKXtGlzruEzChGsdt3JKft6clkUpmfAQKNWc6dQMVFUm5OwLMonLcUuHsOMjr7m6xSNTY7ljoxSXs6ZtoCryMl1+hriYO0mWoygCRQHX1FCUi7tqlrHFcXsmyPksclhuOeiqQsMxKi2newt1XFMnzfJqP4vSnHohiG4bKoZ29uTuNBRFYaXtMAxkF8PDXU8WfMMY15TuaZqikOY5uirdaXMhWGzZLLVsBOd3NPxgfQjAW8tnv8SZusof+9m7/Jt/6QN+9bNdfvLe3LnGcB60HaNofZQGQFFhAFQztSp5mAsZfyy2bPIc2q+I/k8ZR8LRuHeuSEDpmsLAj2k5BrteRNsxiNOcmqWz0LRoFfcekOds+f7brommKgfiRICmY9DzY2y9EBBXQAgFFEgywb35emGipJLlOVvjiE4Ra7ddgywXzB8ywpoee37+TtL9MdoGtiGZbTVLx0/2XTGNYg8wNJW2a9B2DRQU6rZG09FpOvqBRFwZj5205s8LRQFH13BNDV1Vqn2rbFVuOQY3Z1x0TWWlbbM2CFnu2NQs7US2lGB//7yM8RqaiqEqdGsGxtQe33INXrcaqIrCJ8V98LDsw8uCrqpVR5eqKAfi51yI4nnZNB3ZGXC9K9nNhvZ8Ddfp5yiEeKUcHE/CqSMgIcRvKIryo8C/AvyR4o8/BL4uhNi+grFdCN98bZ4bMzVqxWIZ+QnXOjY1xzhWJHqxZR8RN1/tOFi6yp4X8bTnc73rnvpy+qJWqdWOU2hfpNimRssxCnqenGhly9ZxCRNFUQiTnM1BSN3WD7TzrXYcWo7BV663mUSSvvqyLquGpnJ9xsWL0iro9eKMJz2PmqlzvevyzkqLhaaNoUk77KRggZi6Qs+TVFwvSqtDdbll03bNA89dCJlQUFWFH701w1zDoj+JWWjbxybyJkVLQC4Ery02qwPr7ZUWdUtSeGuWzrO+ZGctNu0vbPHWLJ3VjnPEXS9KM6IkqwLAtquy2LKxdBVNlQeqbcqNbbZukRX6DEM/Yb5hoTYVvmy3Lo2ieq3r0vflJb98N2mWE6VZxaS6OVtjEskEACjM1BUE+7bD1zouW6OQKM1JMsHNWfdMVabjhBU1VeFad3+T/vJqC7s4NN8qqgUzNYOdcYhjyABjdxLhR7IKvVNUvG50XeJUULcvtn4M7fjqy/Rec32mhqLI4P5OIWhp6Rptx2AcJyw2JathexRhFnaxe17MaluuddtUX0nnwGsdlz0vom7pPNz16Puy0n04ufNPvLlEmAjyXPCzry2c+ffcnHUZBkmV+JuGoigstmz8OOPT7QmmprLQsrg7X0fTZLtHt2ZQs+Scm6tbheW0WbT5gKap3J2/nAraUkvufZau4pjyncVpTpJJrQDb0LjedfDijDt6HUNTMXWVJM/3103XZRQk5EKQZTkLTfl5yp9XQlcV7i82yITg1pzLXM3i+kyNpqPT9xLajsGgaFvp1s0fChHQkzBbN1ELGn4ZhHpRwkzd4ivXu6zOSEbyfMNGUxWuz7gM/YT7i3X8OCMXcGPWlSy1czAtyvMb4K2lJkLIpHTd0vl4c0SU5Ly51OS1RcmKLiuiSy2nKBYcbFfYLvbFwwmZs+Kt5RaOofHOahPb0Gg6BoYqL/ajMMHbSbnedY+sSclSluPZnUQMvISVjo1TJM0MTeXufF0WhhB03PMLs5aXrOkzt2bprHQku3S2brExDOh5Md2ayUrbwTY0vnajU339uGAYmrrK056PoalH4rlrXZfdSUS3bqKgcHtOzomGrV/aubjcdjD1CNfQj7S4I+BpP0BV4CvXWgyCGq4hY79hkLDScWjYesXYutZx6Xkxpq6wPZKf3S1ixYvGJze6NQZBfMDFLMsFT3qytWmp7fD2aotOzWAQJNyerRGnkk1Qsjx1TeVaV7Ydz9bNih39jbuzl+KO1qmZVXJLJk9jWk6TN5aaPO0HXJ+xMTQNQ4uYqZncm29cSmfAB2tDVtpHJTROi198b5X/9O9+xn/8dz57qYkpVd2/oK4PAsZByu//0iIDP2GubpIJuZZrpkHL1XEM/dJcDC8K1zw+7k2zHIRAIPDjjPmGTdPJeG2pgRCgKvJzl2fjakeu8bLAO9swub9YPzY+sg2N1xeb3J9vsDuJGIVSg8gpikCGrvH6UpMglpq412dc/FgSDkahZLUgqCRiAOk+J+SYziL/chJsQ+Mr1zrcm2+wOQyoZbLboOyWuVmcWTVL53q3RpBkzNUthIAHu5LNeHO2hm3INuXDa/4yYBsa33xjnp4X48epTKKZKi1X7lPXOm5RJM5xTJ2feW2Ovi/ZlFujkDTPWWk7qKpSvSdNld0Dkyi9FPH02brFH/jSEl9abVGbul/kec7Hm2OZ1G7axFn+hXXO6JrCT96b42nPx4tSZhsWQSwZb4Yuz/DtccTri/Ie03RkcSYtyC0lSrJLec+9XtzVmvbFz42XhTPtSkKIbUVR/j7wJ4UQ/hWN6VJgGhpvLDV50vP4q9/bJBdy8t80dEbh6WzB1SL7+6QXkGQZhq4eaQE8CXku2JnI5NJxv0tRFG4coid+vjORrYN+RNuROiyjYL+SGcQZ6wOfvp+wMQyJU9mC8u71Dte6Ln4stSHahV7TF6E107SNA/Tt7zzu8b1nI+qWzj/17jJt1zyQGDQ0lSRP+M6DIU4RdM01LIaBrHw07EKrahRWz3ISJfy339/kvRtdZhsWt2br3JqVB8T2OMLUD9L5t0chn297pLlACIV3ClFL19RZajn0/JjPdyZVy5Wtaxeq9l0Uh3/3kz3ZgrDnSabEKEj42s0Opqbtt+zN1dBVlSd7ftGe4vDxVkyQ50zilLeWW/S9mKjQe7poIG4bB6sdXpTycNdjdxIhhNTyuDVb442lJh9tjhECmo7OjZkafS+m50vbb6Og/W6NouIzKKwPApqOcSlBU6dm8bvuHFx/76+PeLAtW20GQULfkzas2+MQS9fo+RFbo5Bbs/UjwcXOWH6+52mZnBUtx6C10j7wZxuDgG8/7qMogoEfkwuFuqkzCmQ7HMD2SLag3Jw5WC3pezFhKgOUL9IK3jE1Vk2XnXHEP/xsjyjNGHgJP/3a3IFxDUKprTeJUn794d6Zf49r6se235RikUJQ6UwM/JivXu9g6iqfbcv2wXGYYhkR8w2Lhm2w0nYYhQk7Y8k83B5HdF2TflGtvYg9s37owrw5DKs2szDNSbKcH7nZpeUYPNqVR+xSkXCfXjfdmllpoimKQgN5GTk8voGfsDYIsXWd6zM1VrsuG4OAjzbHhGlGnMiguusZzNRenuZUz4uJD11CToIXpQyDhI5rHkm+AVVrrqYqzDctnvV9Pt2eMA4Tel7CIIh5fbF54Dwsz6kfrI94vOdjGyq/687MpbTCjqNM7iNewtPeHn0/RldVoiznK9faVcBYJtDDJOPxnodtaCy3HbwoZWu0L4Jdfl2UZuxNpG7Wac9229B4c3m/JSnJZCC+50UkqZCt375saZuG1DvyCaKMxz0fU1NZG5j82J1Z9rwI19RpOQZLF3CCFULwnccD1gYBqx2bd693Duyp3am4Z2sY8aTns2ZImYJuzWK5bWOo6oE4a71opQOqeGL6WVy1O6ihqUcSvOuDQGqZxAlRkjMMEqK0UbVVPOv7MvaLM75+s1vtZTVLp2bpfLY9JohlbDK/1GASpYzDiwkHO6aGY+6PM05zPlgb8njPp1szeNYPZAtzmqMpCtvjqNIi2p1EDAMZQ5dOiT0v5tGuR5TmNC390i+/kzCjaZt8vDnik60xQSxbhfw4491rHcl6v6QC7GfbE16/QKuTpWv8iz9+k//zf/MR318f8eY5mFcXwSRK+Y1HPYaFZu7vf3sJVVXYGARsDUPWBwNWOi4/dX/2xJ+xPQoZRymLTftC591ZcDjuLWNKL0pJ8pyBl9B2TX7X7S4Pi7Y0Q1d4fbHJxjAgiDOWWg4LTZuPNyX7JUdjvqGyNQrRVeVAET/NcnYnMaauEqV5tcZWOibDIGEcBsw3LPwko1e0id+Zq/G9Z0PZkeKYbBSx6s1ZqT2pqsq5dM1OwvY4BCHXq1+MT1FytkYh2+OIjmtULafTd561vs/f+3iHKM35xu0Z3r3RObLmLwtJluPHUqpjEkrm6u25/XmjKPDJlpT1WGxavLXSYrXj8mBnwgdrQ+q2LlsmbYNOzaj26Mt0jp1ECdvjiMf9gK/d3GcNPdzz+O7TAX6U8t7NDl+70b2U33celHppUmtSY3eyn4R6sDPh460xTVuyHkEWY8ZhyjCQWrt35uvMN6yqvXq149CpmUfuaj8MOE8U+keA31IU5R8rivLvKoryC4qidF70TV8UNoYhUZoxClKCwrXhLOr7mqoUGXOl0q85DbbHEdujiI1ByCg8nQNQqbRvGxoo8neXl1CQyZm+n/C0F5CkGbtjualOIhmkPNqVWkKP916dnOEgSCp3lfSY557lgo1BiBel7I4lq8mcoqlbhsrOoWeZ5RDEOZujg05pmyN5yVvrBwccH5qOgUBg6AqH7+mljlivaH9TFF45gbhxJOePgrxo6qoUQhWHsuR9Xwphj4KUnh9X1QdL1/DjlGf9oBIYv2x4BYXcMTS2R1L7KU4F4ZRTSvn6y2e+NgiwDPmsFQUMTeFJT87hR7velTnbjAtNgp1xyCRMGEdSt6PtGrKFKkgxNDnvptH3YjaHUoB+d3K1Tiflmh4GKXvjmDiVWlJS4FthEqWFhkJ24JISxFL7ZXccszF8NVzY/DithCwFR1uLN4ch68NQJlH6lzfmIM7IZcEVTZW6Prqm0vNi0oJnn+UyyPOjjM2p52VqatWeaukqj3uenJd73qWND2TABJAWunwK8t1Ob5XleTW9boxTji9IMrworbQxQK5VP5YMraBoDUBQtQZcNbwoZe0Me9GjPfnZnvSOP9fKz5Xl0pUoF1I7IklzybxVVKntdAzGUUKQZAzCRFbnLwHleLZHIZoq9S10DQxVOba9a2sU4kVZIcSaHnm3JZ72gup8P297Q9kyUzN1BLI97HABIM1yNochG4OQ7UnEoBDWz4R0PNsdxzzt+Rd2ZovSnK1xQJYLtkYRSXb8Z7J0FUOXD0RRFPpeUomFH46zyuelKJxLE/AqUM4HFbn3lPqHJeI0pzdJCOP82D27PMfLZ/C40Iy8TASJlKwwNIWdSYSuSlb+uHAkq1r3i3jt8H4phHyHAz+hfwXOwJahSm3NUcjjPZ+PNsf0/RS90B69DHkCkJ/zwa7Hnfn6hX7OL753DdtQ+X//o0eXMq6zIBdSrmToJ4yChN2ioGkZKl6UFwzdvIp5DyNKZaHQj7IvNIYoY0pTU+l5CUkm0BQpdD/dihrE8i7kRRmbRQKqbHW1dJXtccj2SDLhx1N3sen7QnnGlvvu1jCq5nj5d6XeJ0CawZ4XYRvakfV8WUhzwdYwYmskRdjLsRm6LOaOg5RxkB4bi0ZpTpjkZLlgGF5trJpmhRZwMT4Zy+/vvaNAEiaCOKPnJ1XLpnyWyoH9wouuxmEuyWSx/PPtyYFzRldVxqEsGEyCl+sSeBhxmtHzEiloz8Guq/VBQBjn7Iyjaj46ptSCHASJXCNF/FC2V0+uYE6+LJx5NxdC/AsAiqIsA/8s8J8Ay+f5WVeFnhcTJBnzDYtrHZfduQgBvHutg6Erkm55Siw0bV5falSU8tNimpavn1DJyXJpX62rsq3tWtel7yU0bEm9VDhYBXItDSNQqVkaMzWH2/N1XEOv+px1rdRr+mLpejtjKcg337D48mobVVGYrZl0j6FIaqqCY8oqo6LAzZkaNUvn3oJclLahHRAY1IsWg7arH6nyljpVUsBw/xnM1i1+5rU5vCg7UpVxTSkQuFi4wCkKVdV84Md4ccZs3XxprVJCCLn5CGQLnqqw3JKixm+3W4zChHGQ0qlZ1XzUVIWWI534yo/tmjqzNVntcQyt0Kko9FfUiwfsQ18mdGbrFrah0XVN/EJo8VrHYWcSU7d1aqZ0QvGirKrolM+8Zsp3WDNLcXGtem9Sw+T4edz3YvyCsnyeJOJbK00+2Ryx1Ja/u10zudaR7SxZLrUY+p5kHk5jWnvmRe19cZqzM4lwjfOx71Y7ksYcFu9P11TmGxadmommKHhRyuPCGGC6oqko7L/nV0RDqO2YfOVam3GY8M5Km8PaHzM1k6WmzSiMeWf1/NXlKM3YncTUTKkbVYrap3nOSseh7RoMPMlAbdgGqx2HOM0Kp0RxQCzXNjTuLdTJcoFr6gz8mARxobVTMjrLNmaQ58vWKOTN5SajIKnOmZZjsNy2yYSozqvpdWPqskU0yaTGxihMSBBH5mW3cDPNRF6xW250awXzj8o1dqV9/vbl4z7X81DqE8m96MW/U1OlQ5mmKvhxSs+TzLWymjrXsCrNxbolW6gcQ+O1hTo7E5nwOLyWS9ycqSGQiRrnHNpOQgi2i2dZ7tfzDdlKfa3rYmgqqx2nEKzVjz1HXFOameiabEUr23/Ld1uifFaqojzXIvkwDp9j12dcgjjjnZUWhqYeYZpoqoJtqDRsgzDNeO9mB11TWG47hLG88Bw+Y8+CJMsrrZiVtsvawK808o6Dqiq8s9JiuWUTJDn9wv68ZuoHil2aotCsW1XA/kW1N5fxz0JTto0utmy2RyELTYultl21JJa41nHYGoWAcqzmT1X51tVK7/SwDs95MH1GtV2DmbpJ3ZYss+1xhIIUy01zUY1XLeK1IM6LFn2Jhm1wfcZBiKPMl7NgHEpTD9m2uD/3F5o2CjKR/2DX4+3lJq6l85VrbVbazgHdmItgfRAQpzl35i4mttx2Tf7Qu6v88nee8a//vtdfKgO/aRu8d7PDx5tj5pt2dWYZmsrNWZearTJXt09ktRmqbB+X+k0vbw2NQplIK2PKjmviRRkKsmXtSU8WMmuWzk2zxsBPpPZskbhOUkHN1FBVhbvzdaI0p2Zq1UUfDt/L9u8LCy2b2YZsfzI0BctQiZIc19JZaMg409Y16rZemBRorHacqohUro8yBjlv3DeN6d3VNaVkS5oJqZtsaKRFe3/tGBbxatvhreUGQZzz+lLzSGx02VAU6aTdcs1KfqCEZagstiz6XsKd+f19fr5h77e827IbYK4QJc9zea6qyvOdVk8Ly1BxTJV783Wmj7uVtsPXrrdJUrg288WyispT/Ua3xvUZF3eKvb3cdsiFLCKV88rSNV5fbEjt1IJJ3XIMxq4U+T8uFivX2EzNOpZ9/qrgzJGYoij/PPCTwDvALvAfA//gksd1bgRxxlrR3pQXwWG3aBk67jLpx5IW3XaNYwMZ6TrWPLNo2FyxmemqcqLLy/ZYOjSBXDhN28DUpbOBFLk8+PvmGzZNW1I31UIsehq3ZmuVbfoXhXGYHKik3Zipcb3rHhnrwI+Js5zZmsXt2Tpxlh9oo5j+7/mGjaVr1bNs2Do/89r8kZ+50LSktWYhDj4NU9cIplxLStyarRGlOZauHvh5UZrxtCfnUZzmF3aFOC0GflK1caiq/OydmomuSXbMtY6LNrOftJmmDdcsndcWZe99ufmX1XBN1bgzJ8UcL1pdTLOcp32/cDrLuTtfRy8uYD0vxjY1ltpONcbDlNzpZ16Ou8TNGbeyNj0OUZpV7YvndRXruCZfvz1LlMqKWLdIVIBc76sdl5X20fXetA1uzdXIhXih29D6IGAcpvTgudbhJ8ExNd693iHPBVtj2cY6nYhtOAZvLTePjNE25HuO0uzS2ymmIYRgdxKjqcoLNQBarsE7qy00RTm2tdDQVd690UEFVtrnb7VZ6wd4UUYPGciZutS8S4vqcMeVCcjymZUH/FzDPrL/wMGK1c2ZmrScvsDeuj2OKqZDefEv//HjtEgw69iG/B0zhwohh9eNqe8HgOX4Dq8b29B4Z7V1YE/wk4w7c3W6tYu39J70uZ4H29C4PVcjScWp9qLbs3W8KKVh65Uj4cBPqvlfzvlyTupFMgCgW7eee3bPN22pu3RCfPAi9LyY7WK/1lSFuYZFzdK5O1+OJ0JVlCPvchpzDasyfSjHMP1uS5TaYq6lnbptKU7z6hyLCje3MJFFgpMSQYqicGeuzrWue+RczHP5zuzCue88kBX2AHdR58vX2nxptfXC2EpRFGaL/W+pJRO25fos46xy7p/WVa/cFxxTu7SWkdFU/KMosNRyDsgbDPwYS1cPmRRofP3WzLF7kPw5B3XP7szXKnfWi2D6jBJIofv5poWla8zWT74MHhevmbrKm0utC507Qgge7/kFAyU74hw237T5XbdneH2xQcORrceX7Tb92Y5s7749dzHGFMAf+cZN/svfeMJf+M4z/qWfvH3hn3caZLlgbxLRrVn8xD27ilXKZ+uaOvfmm9xfqJ/4flVVkcLfJ8zHq0CeCylDIeQd7t6CdLS8NVtj6CdEacZby80D59Via39s9+ZlIr8cr0ww7SdALE2TTo0Hkp0n3xfuzh38/NMumPcXGmRZzl6RXJ9O9GwMwmpNuZZ2oeS41Gl1D+iyltvAUsuRovDFPtjzYrJcMFuXhSbT0PjZ1xeqs+/BzuRIbHRZMHWVO3PyDnBcPGEbGm8ttw7s2SCfv3TQlNIr0/HtrhdVHQvPc1o9LRxD52dfmz9SfNI1lR+9NXMgrjoJV3FeTMM0iiKWrR8p3t6arbHclprX5Rq3dI2WKzWzl1r7hcVpjd1pHLfGXlWcJ8r+08DnwH8G/F0hxKPLHNB5kGSCUZhUG/AoTLB1rWIMlJtLngvWBgFJJivouqLw7Ud9QAY70y+q78UkWc5M3Xoue+N5eNEBPV19HwcpHz4b8nDXo1s3uT9fx7UMujWTOMtJC1G25x0UhqZ+odpIID/TYcbG4Wc3idIqWM5zKQRtqxpPehO++2TAfMPmaze6BzZP1yw2XyGO/Mw8FwwDWcU4SXDw0+0xj3akBsLPv7lAqzhM0lxUNvbTyQZNUVBVOb6TqvpxKjequn15IpLTLBejmB9xmlcBW5Bk3Jip4cdpZf96f7GBY8ieZFNTaTkGPS/GNTX8OCPNZQJQ9phfPNCYrtpOu5ysD0KGgaQc319ooKtSP2NrFLLYtllpOex6MQryAjcKk6rNahKm1WXpeXP4wHs5gRE08KWW1sxzLt5Vf7ul890o4b0b3QP6Iyet99O+Z2OqpeS4C5wQUoNOQamCicNY6/t8f2OMoggmYcb9xTpvLO4no04a42W95+fh8Z7PP/p8F8fQ+Obr89V6OgnPC9B0ReHZng8qvL50/sNSHuYZqnrwma8NAkZBWs1LQ5Pzcn0oBfAXGhZzU0FRKeCfZBmqolaabBfdW/f3w4NUdyFEZZU9DhPuzjfwopSnPZ8wzbjRrZEJKWg5V7fw44wky2k5Bn0/qdb3SeMzNJUoyfhwbUgmcraGkkF8b77BrbkaPS+m50ntqvN8xunPdVpGmWvqcMpfJZM0ZvW74lT+u5z/2+OQvpfQ8yIyAS3bQNMU0lTwtO/RdAzmGvaJa/cily9j6ow67Di558VsDveTVkkm+GBtgG2ofPV6F01V2POkK5SiQijy58YMmnp2pzNN3d8vozTjr31vA01VWGpbvL4otUnSTO6VozCthHVVVcFWjz4XtXBAuyim1+jzYish5Pk8LfirayrDScQwTyp24WGMwoTtUYSmgGPqxybiDu8LpSD9RZimxnT8c2gteFNxTyZEpfshhOCjzRGjIOGNxSZR4SI6W7cYFq105WeUbLPkAFvp3GOtnofgSc9HU9Rq/xn4CU8KEfnbc7UDa2QcpgRJhqFJ7bemo1cV+IucO4oiW7CSVDAOYz7dHrPQtKu4rDeJ+Fs/2CLNBXdm68zePr/g/kn4vNAdvHMJianXFht8ebXFn//Ny0tMbY9DNEWhbuus9WVL93LLrpyYozTncc+jP4n5xt0ZZgoGyvSz1bUX32dOWv9XhTJOSjNxIGYL4qxq4U5yUTk1llqqt2dr+LE025mpW1LnqDDcGQVy32i75rH3AkXZFyifRCmTUH5fmguaRQFqYxjgGhpb44hxmHKt6zDfsNmeRBWpwNCm96aC1arKWPUiyIU40GkAECYpv/rZHkGU8mN3Z5it2wz9pCJjAAeYMuV7Pik2uiwMg6RooVSlJlgmTZr2vBhTU9kcSamGN5eb1V62O4mrIrymHBSLnz5LL0NiQAjB5zseq137CNO3LG69CJ9sjfmtJwNcS+f3vb2IdclJWwX5zvt+zFxRGNgaBvzW0yHzTZPFllPFfL2iEHhXl6Y3p8lPKApTe8Cr0eZ+Es7TyjerKMpbwE8B/ydFUe4BHwsh/seXPrpTIs1ynuz5vLbYYHMUyqyiEMwfqlJK8Vt50O9OYnRFXmKznANJCS9KK1ZGmotjXfwuA3MNC8tQiZOcR4UIW8+LmUQpCrDcdtmbRJXeSJzlR9rXXjU4pqxeT7tIHcb0Eir3SCEEf+ejHR7ueCDkZeHd6/vSZetFEHkc1ocBfW8/IXJcNWAYpKwNQrJc8IPNMe/d6KBrKmt9WTVUJge/Vy9ch8Ikrw6pw3ja9/GjrBCpa1zKYm/YBrfnZHtJfUo8sES5qW6PIh7seCSZQCCrD30vqf4uznL8OC1c+1SEOFj1uQhKqnTpGFFiepyKItfbk57UkhlHKUGcVwLzfpQyCtPKPbBhG3hx+sKA8EXvJYj3mW5Jlh8rdjsKEr63NqzEQGcbNroyoOkYL2RCnRbLLbtoK1KPVD9AXlq3pi6thytCcZrzvbUh28OIT7dHzDVsoiRjselcikvJRfH59qQKzHYm0QsTU8/Dg12Px30PFHi4e34Np9WOQ9OR9srTwdd0IKIoMgh9uOvzrO/jxxmvLzYRSJZNmSTqezGDQFrRA6dqUXsR5hs2tqFhqOqRQGi/PUeOdXMU8rQXMImks2ataAML47y6rO6aUSXYiuC5oqvvrw152gt41veJ0gxTk9XcW3M11gcBQsB6GpwrMTX9ua46IXpzRrKCS+3FNMsLHY6Q7XGIY+hYuiTF/+MHu+yMI8Ik48fvznFnvnZqNs1p0Txmvy4xfc4JAd9fH/H+s1HRtqwz17AY+AmTSDrxWrpWtW1dFrRirw6TnI83R1LUOEwIkxqqIs+FuqWzOQqrVoJ7C/UrZUqYutzDT3NB2hrtV87LcY3ChPWBZCXlgiPueyB16/wo5dGez82ikHOYBTPdEKkoUuvrotpNz4t/jjvHAXp+zMebMiGy5+1yvStZwEGUMSjWejkvnvUDJmHKBe+8wP4ZZWoKD3dL3TL5g58NfB7seJX2Y1m0DROZKJBs44Akk604X1ptXYro8525Omv9gGcbPk97IXvtfbOK7z7t8+nWmDDJadk6ozC9dFbw5zseHde4tDP2n/3aKv/mX/6QD9eHvDVlQnAelJpDIN+J1MrJSDNR6ckkWcb3ng1JM4FlaPz8mwvVpfXOXB0/yr7QjoqTULI0nxtTFv/eHIY83J2Q5VJSokyU65rK5jAkTnOGQUyrcOk1dfW5+36WCx7temS5YHMYstx2GFgyQRUlOdvjkCBOSTJZBO+65pGYosRK26FhyxjkoveBKJWaQtN7168/6PF3f7CNoalkAv6pd1dQpn7NSfvCSbHRZSBOc7ZHEVEi28dKUxaBQEFh6Cc8HXjYutQ1/Mad2SNjVQ49qrYri4EKXIr4fpBI/bFhEPPjd+awzpF0/Xx7IvW8vJg9L2L5Auz+45DlojrXynjuv/tom91xzK89iPm9by9St3U6U7H2Wc6Bco29qnvANM7TytcErgM3gJtACzizCqaiKL8X+NeL/30N+GNCiL9U/N2/BfwhoA/8FSHE//VUPxOZcbR0rdBaOdTmYqoIpIaPY2h0alLjwI9TbszuT7LpTec0i9iPU570fHRVUk/PsvA1RWEQxARJSruwAV5s2dUhnyNY64fEmez3viTX8ivDzjgiSrPnJkFqls7NWZc0E6gq/GBjhG1o1EyNXAgcQ+Owikb5To5biHl5NxMcKy4L8NpCnc1BAAo4xn57wsEL7MHvsXR5eQvijN2JFJ43NJWVjqTna1NjugyHtjTL2RpHGIecPcqqZRBn1SFcs3Q0VUEgNcWe9gJ2xxGLLbuqMKiKUglNX0YgW6LnSZG9ucZBKv1K28EtqqaGpmKbohJstXSN7WFIz09YaFpVC4+i7Ithn1azpHwvx2FaY+mkn+dFCQMvpmUbhYW8ha6qz/39ozDhWS/ANTVuzBxtTT06DuX57IfpPeaYn+VFKQMvxjJUFpo23ZpsEXre1iKZdR65gBsz7pVeLq91HTaGIbomkzZZLtgchUfm7mmgKRAlOUGaMwjOdzHsFwn9uYZ1ZG4sH5qXIEVRVVXOpUmY8Nm2tAxeatlkuaS/l3vJZcRx02u72Tx8YZXW9ZNo/6LVKNa3qkoXrN4kZrXrHtBKmt7qXjQftSn2cCZEwQaTP6Bm6bIF/BQBoNwLpYPOdIXzshK6J6FsaVVQWGhaB/Zvx5StXPNNC9fQuTVbo2Eb8mIg9vf44wTDpSOej6rItvOztjiUmlfNY9b6NNu65RjUba0S5e77MaMwQVMVyQItIvPL0A46jCjNJXtAU5lv2RiayrWuizq1926PQvw4o+OaJ56hl4Wz6D8FScbWKMQ2tGpcWrE2N4chozCmZh1trahZOn6cyXV+Amt1peNQs/b3hcvS5MuFYFgUQKfXhWvKuCfJBJ2pteMaUmMxSjImkbwkL7ZsxNTXXNZeFKUZ26MI19SYmWKbnbT/mPrBC7YQkm0axBkoAgXJEDvrvM1zweOeT5hkVTwF++wTXVMhyQmilPWBT6dm4Rg6y22Xnhex3HZwruB8+3xncilsqRK/8OVl/u2/+gP+wm+uXTgxNY26rdP3ElQV6rZWJaYMTSFJc9JUsDeRQvvl0WBoKi331WRK7E2iQhfYPhBT2oYsnsRpXq2ZmiW1SHUDojTl4W6MY+rcmqtVe/z0bHxRXKlwND7OhTTSeLTrE6YpXcckyTJqllbIKliVHtV00qtsuy1dxOcvQR+pHL8QAtNQ0FWFHIGqCL6/PqJmaVzvOgg4kc2qKIoUgh9FNGz9cnWmio+nqgfvX0LAIIjZLBwTbf2gW+ds3UIvzsfD8cMkSul78YnakGdFmktXZlM3j5jvnPg9h+5jN2drDPwUx1Rp2lej01WiXAOOKbXERmHCxjDkjlVjqSULgaZ+tMAJsiC/NQpla/YhIsurvAdM4zxps1+d+uc/FkI8O88vFkL8DeBvACiK8uvA3z70Jf+aEOLwnx0Lo6jA6UXAtTuO6fkRH2+NuN6tVRlXS9fo1kzSTBAkGXOaxb3FOppyUEDYMeVmmKT5qRZGz4tJUkFCxiRMT2wnOw5P+z5JKnBNg599vY6qqnRdk0wIvEjqjgyDlCzLj91gpwPrm7O1Y9kZLwtelFb6CkIc7HU9rPOhKAqbo6C65KSZ4JuvzfPGYhNLV1k51Ce70nYq0b/DWG7bmLr6XC2fuYbNH/jSMl4sdWLKQLX8ub1JxCdbE5Za9oGKtRCCtYFP34951gu5NVujN4lp2gbXui4DP66SRBfFTnEBBbAMjaatV8/MNXVcU5e03UFA3dL5qfuzRElOWiQFhJA28tdnXPYmMa4lBfSzXFxaZTFK9zXc0lwc0N5SCzp1lgs+35mQZDlvLDa5N9+QQqvjCE1Tadg617sue4VDUd2SLYfnGePuRLoytVyDlbZT6ddEiVy7h+ddnObsThLuLzQQwB9cXWHPi+TF8TkX872J7OEv2xjOyrwoq/EzdZOFppxjaiEC3TjGFetZP5CstCTn9729yLCgmT8voJBMCJmlLVtbrwr3F5t0a5Lx2bANNobBgbl7lnf52mKTf/T5Hl315MDqeYjTvGK4xmnGnUPZ+5LmLwpXMS/KuDff4N58naSoljqmxt4kZqllc2tW6jXdna9haie3B58F2+P9tW2b2pFAzDY0xmHKp1sT2oVuwDccnc1hyO4kLtoL5J5Ttwp9vrqFH6eFYP/zn9uXV9q0Cy2lT7fGpJmgWVSUb864lXh4iel95lp3Xy9ubeATFKytmnU5LNHTYM+L2R3HDIKYhzsTrs/WWCl07O7M1VntOESJqM4BgJ+4O8t6P8DQFZqOeawuxDBIiFO5ZkZhciaDE5BOebJCn9BYaqKqSnUma6pkeJXP6KvXOyw2bZJUyg0IZNLo7ZUmfpwhhDQCuGyUuhKGpvLN1+awTY002xfKj9OcTAgGfoxtaMfubdOf6cbMxeOMw/vhSciFbD1Slf0LWs3SWWrZTKKEpm3S8+Ij73al7TBbN3ltoY4/VdCZRrkvlCi1LC/aOlLGdMNA6qDBfuK4YUuTko+3xlKMeqaGY2r83OvzrA+lRp4fSYfYa5395EvJ4FntuAzt5NxJmVIDZ1CwMMszwja0A3pidUtnuWXjmCrXp2KxOJWsiCjNma2Z6LpKzdTOzOT3Y9k6BbKoML0fztZN3lltst4PedLz+GzbY7GV8bXrbZbaDnVLo1uzrqQl6cHOhG++Pn9pP6/tmvzcG/P85d9a43//+18/9br5a9/b4L/69lN+8b1V/sCXlgEpKXGt66Cq8iI/38hlYltVcEydURCzN0lYaTv4ccqd+Rqf7Ujr+Pmmdea97WUhTLKKKZLl4ogmbd3SwYKnPZ9xmLLUsvmZ1+dI0pytUSS7JVTZ/nVrtsYwSLgzJ/UYjRMu79NQVXmGeFHKjRmXMMnp1AzW+gHduomtWyy2HOqWjgJ8tDnGNjRudN0jGmeleVGluaifP36wdY3ltl3tXYqi8KWVjlwrQiaNwyTnwc6Ejmux3Dm4Bg/Hvs/6MkE08BPqZfL3EmDpsljfdgxUVZGmMkV7+Hee9KUObFEsXWg5CCEqNvhy+6AIfznmpz2fNJN76NsrF0/o2rpGy9G4P3d6NvDhmO3tlRaLLVnkvAwW12GoisKNWZd8Kp77+TcW+E23z1evt9F1jdmaTHQebO88mAPYLByuQd4bL0tm5mXiPK18XwJQFKXBUefvM0NRlNvAlhBicuiv/qSiKH3gfyOE+K3n/Qxd3e8RtXQNXYPvPh4wiVJ+5GbKj9yaAWQm8bPtCVujkJWWDV2XpmMwiVIe7ExoOka1edctnWGe8Kwv2xue93LbrsmgYNO4p3SxKG1LDU0lSSV9dakthXqjNOPXPt+j50sXA12BQZjS8yKazj7NuOfFPNiZVM5RoyB5rsjqVaG0CvbjlFzkqMq+cGuYZDza84iTnE7NZLUjmRZP9nwsXSWIMjb6Ie2aznLL4q2VFs/6AU97AUvtfX0B9Zh2Jy+SltF1Wz+Wzn8Yqiot4x/uTpipWSwViYy6pVfJlt1JVCWmtkchW6OIzZHPKEjp+TEtR2e+Kf/+cGB7URiayjCI8eOMXOTkhWPF7dl6dQD+YGPI4z2ftmNwp0jGth2DIMno+3HBmFJP9TzOA01RKqvhYaDQm0gxwGkdiq1RyPfXh2SZYODFUmDYNlAVwTCIsQ21uliXeJ4jlkDOsVzAk55PmuVc60pGUJkw6k1iFgsXJJnEg91xxAfrQ1xT570bHdQiiFMVIZNRtomhKRiaysBPcEyNUSCd8Baa9gH2RMeVFwrb0LBPqPZnhXPY+iBgFCYsNPaTnKUL2s44qi5iLcfgWd/nw7URpq7w1nIL25DVQE2VX+uYGpah4eaCUZFs0gstlJqlH1gTdVtW3oV4GQyWnO2J1Lu4Padhamp1uW06+gsTU8NAuoN0aybrg4CNYUiYZHx5tX3msWiqQphmbA0CcqDnJby10jxwwf5kc8z2KKyqio96HrauVjbp0k1KMlZrln7pgYehqWR5zp4Xk4ucIJYmBLenAqWPNkf0vQRTU6iZGqMwJUpzTF2hP4pxDA0/Tg8kzk8rwjkOpbV6t2Zye67OKEhZaFokWc76IEBTpftnGcfuepG0mg4S6r5cF3Vbx9Q0AuSFyI8yPt0ZyHUiFIJCVHulbRcMlIsHvkGc4cUpu5OQ3UnIx5tjslzw6faYr1zvVOwo29ApH4UXpWyPI2qWxr3FkynGUZoxCqS7aMd9/hl/HIZBQiby6mf9zQ83ZbLE0ambJooi1/D1rst8066e841Zlyc9eabcnHGrosNVYBxKp0ddVbFNjdmGTZ4LMk3wcM/jg7UhjlG6vanUGzpPez5zDaual2mW8+HaiEEgtS8uI844bj88DD9O2R1H0hTANSqtxyST7TVr/YBtLeKt5daRS5gQgr4Xk2YCRZGX2sWi0nwS0ixndxIhLsAY2x7LhJtjyMvL9iji0Z5HyzW4PVvH1FV6XszmQLLgG5bOOErpTWKudR2SYryuqfHx1piWY1RaVHB82/dZsG+AkBKlGWku2BmF7PlS6+xGYT7y6dZYujlG8iwsC05BIu3pXVNjueOcSwT4Nx/1+NajHkLAl6+3DyS+oGB3aBqbw4CtUcQ2kTQnMnVuzV7dJcuL5Ge7MXO5Rjf/9FdX+esfbPIPPt3hm68vvPDrv/2ox//iv/wOhqryq5/ucHu2zptFgtOP5SW0WzO40a2hF4nw3XHEx5sjnvUD6pYmE/GWjh9J/aW9idQQ3BpFZEJUsdKrAE1VyETO7jim7ytsDEI6NaMS1AbJqPr1hz0MTUGInJploCgyobrnyWKOpoA5pXPmnmGLso2jRW0ZF8Z0HAMVGU+Gac6jXY8gyTA1hZWi1T/PBQ92ZauXisIoTGi5etUxcB4oykEDFC9Ki2KRwWrb4cONER9vjvDjjIZl8OHaiGg+Z7ll86QfFBIAWsUENjWVAMl0XBsEOOdIKB8H9VCipFPEdJ/veLQckyDOqFsa25OYZ4OAG12XT7bGAIXDukmS5TzY8RgGMdc60s02SmXyenMYHmBJnwdRYQLimHrV8dF0jBPj1CyXWk89P2KmZmGoKsMgYX3gM1e3ryQxBUfj9rptMFMz+dajHjVL53rXIc+lfEucZGxPIkZBWuiRpQz8mCDOyYVgtmFVZ2bZ0aApyoWf5cvAeVr53gb+P0BX/q+yA/xPhBAfnHMM/zTwFw/92X8ohPi3Cv2q/wfSBfBUeNrz+WxrzLOBT8MyqswhwMMdj74nRTENVWVtENB0dDYGAWGS40UZbUe2AMisbuEQEqe8vniyjXnd0s+U1R0WwpIgK3tzDQXX0Oh7Mc/6AU/2PB73ZM+/rinSiU1T2B7FGJqsYmuqsp9M8SJuO8YX1jc6CtJKB6LtmpXLWZkI/HxnQt3UC8qmLinGyIx0nMmN8lk/IEoE793s7OuAjaPnXrA3hgFBLCmarYIN8DwM/JjHuz4fboyYb1q8d6PD3fkGhibFJCdheqCy2i/GMQkzgiTHUFXGUcreJKHtppd+mWgUbgxRkvDbz4a0HYObMzXCVDJ0gjij58dsjyMGoXS/S4WAHIQC17s1vCgjz8Wlu9WU0DVpu5qOcz7bDqlbOte7NWk4UBzsAz9maxzhhylewQT4cH1Et2YU9F2ZCFponi6JG8YZn+/IZGJZZd3zYlbaDh3XYGsU0XSOstYe7Mr13vcSrnddFltFMKYojIOMJJUsuRLJnl8xjuAg46/tms9lpQRJxg82RlzvOlW1bGcqydmpmfQmR6nJe5OYzWGIospE1d35BqoqadcDPyUoKmJZMayNQYBaJAXKyld52bB0jTeWTt6nLhOfbk/4eEM+O8tQuTlTZ+AnpFnOKJC6SCdVCg/vrY92J+x5MSowjpJjv+d50FRJbxcKrPd9slz+2VdvdAAYeDHvrw/ZGgZEac6P3OyiKDKp6scpt2br3Jh1rzSZN9ewGAYxQZLx3ScDKVrbdphvysuyF6VkmeBJz2OmZvH9jRF+kjHyUzo1g8WmvJzuTWLc7tn2nTwXlYtmkGTcnzL52Bjua/fVrX2Kf9sxCOKsYpKFidxn7y/UadcMHEPjW496bA0jvDjlZsdlx4sLO/cJS03nwnpJYSLX/cYgLDRVpHPOp1sTVE1htmjbfG3x4HvbGIYEsWQvt52T3ec2hyFhktOw5D57Fobh9jhkaxiRC8Fiy+LRrtTk2RlHLLZMFlpS48/UNIZBwpu5OPCcL/vyexzKOENBoeMaLLUdwiTjwY7Hnier+s96AaauMtuwuDNnsz2OSHNBnOVVS9PuJCYnZxzJds/LiDParkHfS547P9YHAY6hIcRB5pkXpWwNo4JlluFFUoR7en/em8T85uM+oyClZmncmq2jqdGJjkUgE40Xcbsrx1XuybMNk99+OmDoS1bjYlO2khiawqAQC14b+Kz1w8rAZ65hoSoK2+MIXVXZHctk4GWxG5Za0pUxyXKe7AWkeU4Y52yNQ27P1Xg2CEhTgZ+kvL82Yr5h8eH6iNWuW5w58tyF0yfFp9H3Yv7mh5usDwLarslXb3SOOHN6UcpvPu6zPgzpTSJuztav1GG2xNO+jMkPJ8ouip++P0fHNfjl76ydKjH1b/+1H7DUtPnzf+wb/J4//Sv8mV/5nD/9h9+tmOi745hRIIWjm7ZOKgTrfanlmeY5qqpzZ67Ockcy+kdBSseVd6HK6UxVLk1z9KIwNJWaqTMxUj7aHNOwdYLEZqnt0Czm/ZM9n71JVBVqolSAgOW2Ve2lXpJVX38ZiArjkSDJ+I1HfYQAIXI2RxGqIoukywVrN0wz1vsh25OIvhfx2mLzRPbpebE3iYkSqdP6rUGfh7sT/EQmpZ72A9quzsCX+8okTNkYBuRCkOaC1xcbXOs6tCODvbFMZoyC9EoYNUmWVzHwKIxp2qZcy0WHxDiQhi1hklOKjfhRRm8SszkKGYUpX73WkR2CRfHCeoEp0ouQ5jlRKvhsy+PxzghdN6RxwzHO1iAJCnkumVZzdWns8O1HPXYnMQ93fX5vffGlOFbGac6jno+uafS8pGrPHYcpm6OQtmMgEGyPIpJckGY5d+capLl0Sy/HuDPN/jLUy23lvAKcZxX/GeB/LYS4IYS4DvxrxZ+dF78A/JXpPxBC9Ip/f3rSNymK8kcVRfm2oijf3tnZqf586CckmcAuhESnLWdr1r6VaNM1yIVACKoMuzUlDKcoShXQHnbbuSjSfP/yK5AtGrqmMi4u3Yqq0HA0JlGCrWm4pWZPMT7J+pDjtXSNd5bbvLHUvJA16UVg6EpVaS/tz4Hq+XZc2dc72zCxDI1c5HhRykLD5OZMDU1TEUi6ZJTmOKZ83i8KRspFZ+rqqRwwGrZBmGboilL0le+/61uzNd5eaVZ6OU97PnEqg9SlIgFi6Vo1J9Jj9EouCk1RaNiGrIq6ZsXe2KftC0RetJrO1LAMDT9KsQyt0t1o2PqVJaVK1C0DW9ekmKKuYugH9ZSiNMfWNa51HWZqJmEqtT5sXSfJctm+dsbLTRDn6JpSOMrsf/980+btleaxF725hoWmgmUo9LyItUGAEEIGDJZWPF+N0jypYevVPD6zna6Q7athmlf7zPQzWWk7vL3SPCLGPt+0pBOhY+DHGQ93vcLhRKVmS/aUY2hYhhyPY2rVfqRryhdW9dQ1tXpWliY/b7tYI+XYTsL03mrpGvN1m5qpYZtalYA5K+qWzmLTwdS1Yl+ccnXR1SLplWEbGo2CYVm2shi6ciV6JYfRrcmkbM3ScUzJfCuTYaauoqhQNzXmmpK9U16SdVVFU2UF9TgtoxehdGMBjlgiu8a+1tt0oDVTt3hrucmduXp1Phq6ZBdK9qPCKEjY8yJcQ6Nd03FMyZQtSETVeXZelOeHrsmK31zDZqFpc3uuRtOSbc3H6SGVjmWmrp7oqCqfhfw6VX3+fD0OpZaJqkiG5mzdomZp2KZKx7FoWAZtx5TObEKpxnT4OV8lyjhDUxVsU2qj+HEmC16KimVIzc00z3EL1lS5d03HPLYh9+67c3W+tNq+lDhjtePy9kqzSnIcB9uQe3SZCC1Rt3RypOBzmuWgHN2vBYI4lfqLpf7Ri4T5y5b88xaTy7NJVRRmaiYKcn2XrNzyAtitWdybr1OzZPtu+aj1QvSrdKqVY9IutV1WUZQDWnu6Kv+/bstk2kLDQlGks2XbMQrhaK3ai8pnc95EUZRKVmWYSgkC11SPXAzTXGAZKm3H5Fq3xv3F+rn2vbPiyZ5MTD0veXkemLrKL3x5mb/1/S1G4fMLL99fH/HbTwf8yz91m+W2wz/5lWX++gebeJEUvHcM6eAZpzkjP2FjFDIJUrp1E61wcpxr2JWW3Y0ZGdfOH2KAHz4HvmjUbWnu0Sj+bekq9amkjlrceeYaJl3XQuQUdzcZsxm6LO5fJso5Zxtqpe3WsA3mm4W2qrLvbugYcu83NMnutHT10gtdTUevzAhURUHTZCvfStthuW0Sp4I4y2g4RlUAbbtmdVaVWk41e//MvwzHu8PQ1f1z5KBWsAAESZajKSo3ZxyWi3i4butSP0uDliNF0meKOQ3niMcPwdBUTENhrmniWFMx1wmbfRk3uOZ+IaaKWQ31WL3Kq4Be3AU1har4HqV5kSQVlTP7vYUGd2brzNSsqqVvOs4o17tyzFn5KuI8qdKaEOLvlv8jhPh7iqKcq/ynKMoiEAsh9g79eVMIMVIUZfakMQoh/gxFQuy9996rZoltasRZztdudLi/2DhAg17puPy0qRElGQKFhq2TCcFqx2Wmlh3osQe4PSuz5bVLZsZ0a1JDCiEr02UL0GzDJEoz3lhsEqQubyxkWIbGYsvh1myNNJeX6nKx3pmrE6XZS7lUPQ+uqXN3vk6WiwMUR0vXuN51mW2YzNSsakHMNiySTKBpGt26wTc7c2yPIhRFXtRdU6+eyTTSLD8QpK12XLq1FEvXDiRj0iyvRGen4Zga37gzy40ZaYN861Ayo/z6PS8qWFsKS22bmZpZ2cf7cY5lXP6hA/uOc/MNkyjNaTrGgarkIEhY6cj209tzNeabNnuTiFEohfNLsd2S6nlVSYvVjkPTli0ItqEdaMkL4gxNUbg3X8fSVV5fbBKmmdSXUhWudZpoqoqqKie+p8NQFIVuXbLwXl/UpbD51Gc76ftvzdaYrZtsj2R1vTeJqZs6N7qSKqwIwWrXJctFtbY6NZMkE2euIqmqgmtptB2T+YZ97Pw9bpxLLYeff9MiiDMe9zwmYUoQZ9xfqKOq+1ptQlAkbTWEELRd48Be8LIhn6G8cJV77ExdrvGynfJ5mN5bdVXhx+/OIIRybgfU23N1/Djl9aUG4zA9wEyrWTq/+435yhgjznJuzdRYbjmYmlJofcnneNo5eR50aybWcpPVrvyM00yIKM1pWgZvLLVoODr3FxrMN212xhHzDYu5hlXN+yTLz6TxoygKd+fqx55lLdfgvllHVZQjPzPNBYamHLvP9ry4Yj/enqtxe67O/UXJEhr4sn1stnGxqpxr6qx0HGbqBpahUTN17szXedrzebrjM9O0jhWDXm5L50pDU5+bpF9s2UV74vHOmc/DfMNGQcHQZDGhbunM1E1ykfOkJ10Og1iK5S40HVquScMxjn3OV4XpOKN0MG05slLsmBr3FmrMuFYhcK1wb0HOgzDJDux/bdesWowvM6h90Rpb7bh0XJmkn36PeqHNpKsysXZr9qjb4lzD5u3VJl6Ucr0r2yVflBC0DY03lhock+s8FSxd495CvTo/hBBcn3G53nWZmxJBNnWVpbaNH8tE+XzDYrZu07R11obSOfha1ykS0qc/J0+L6bnbcU28OOUds1WdJXXL4MHOhN91ewYvynhrucUoTBmFCe9029iGeu550K1Z/MitLt2a1BY7rnLfcgzeWGqy3Cra87UX6wRdBp4WHQjXOpfvwv2H3l3hP//Hj/kb72/yiz9y7cSv+3Pffoqpq/yhd1cA+H1vL/Fnf+0Jv/5wD1WR7f73FyQ7+YM1KZewOudQs3W+dr1bJQ6n12o5b2qWzr2FOrkQV9Y6fF4sFRpO12dcciGYqx801nEMlTeXWqDAOytNmRhV5B1IU5TKgOgy1koZP8837Oqi37QNJlHCzZkaH6wNWWjYB7RBFUXhaze67IwjFASupV/KvXH6rG+7Jk3bqFrE67Ys5rmGxs44RldzWsVZVLek62tpzDH9POYbNq6pV06wl400F9yeqxearAnb44j7Cw1qZputcYgXyeLITN2qzhlNVfjq9Y5MCgt5dpUFTFVRLrz+XVPjG7dmmGvY3JqtE2f5c9fAcbHs1250WGgG1K5IY+o4qKrC12/P8OZSUxbPFAVTU3nS87F0jWsdWTxYbNpMopTrM+6xRYNOzcQyLudZvgyc5+k+UBTl30S28wH888DDc/7+fxL4y+X/KIryHwkhfgn494qWQZV9575TYaWgqwdxRpKJSntACME//GyXh3s+X15t8aXVNk97PuvDEbqq8M5K+0gQq2sqjSsIIjeGAd9fHyEQdFwTu3ASkgeHZHj1vJjPgglrA5+Wq9Ot1dgtqKwzxaI9zQXwZeGkyd5yDVocFLfbHoV8vj1htetyvevQ8xN2JpFcYFnhvHPoXawPAvYmcZWJj9Ocvi+1HKIkwdJVHvc8PlwfUbd07s43uDNXO3JAdWoyyN4YBmyNwwOJyxKOoVUHvFNUbWXWXKdzxR0YsgVgn2JdtuGkuUABHu1OUFWFLHdZ6wckhchgx5Vi2nEq2yfzIii+igSaoii0XJPWVFC5PQ4Z+onsJR+HDIOU23M1en6EF2WVHpJRHISbw7DSUDruPU3DNtSqsq4oL65op5lsO3ILt6Y0E/hxIKuIhkqaC773dMBnOxPuzdf5mdfmcQw57lKH56ywdPWAm8+LEkZCSP2e0oXI1FVqnmTJOAW74dOtCR9tjZlvWnzj9gzLbUnNj1Opz3XVzLjnQdfUytZ8GofbO/JctumOwoQsFziGykLLoeUY1d7qWhrDQCY0nvWCc41HU5Xqd0+P4ePNEX0/Zq5hUbd1xkFGnEodlzjLSfP9r98ahWyPTjcnz4vD+lU9T7rWpJnAS1JGfoplqOx5MdvjkI5rVi6HiiLFeb0oY6ZunimJ97yz7Ljg9PGex1pfMgy7dYu2a7DU2h93LgRPer50finGZ+oqpm7imBrrA0ndL/fP8yBMMnpeTJRk5CJiz5Pi5GmWEeY5u+PoRObGaYOv87YxaKpS6fgN/JidcUTDNtgc+Hy+6zHfsDF0hZqpMwjiSgtx2iziqiCEXHPjIGYUyUR3tyYd2G7O1g6Moe8nbI0iFCBM8opVJdnB++/tZQez0oky4knPY28itTavdWUVuFUUbGbrkkV7UkvZvSkThJ2xZMzONaznnomnOV+eB8n22P9Z88ec5QMvoeHoZCLnSS/ixoxLkKQ87fvcmTvIDtqbRKwPpMPS3fn6pRQipueuEIJBMQdWOw7bo1Dqzxg6liEvvg/3PPKiHciLMz7ZmmDoUjD6NEnW0i12pe1g6ipvLbdQFQUvTPHjlK2RFH2PsxwF2cauawp+nLM5ji7VJe95eNrzcU3tQhpeJ+Er19rcmq3xy999dmJiKkwyfvk7z/g9by1WCbuv3ehg6Sq/8skuIIurDrK48v7akN2J1D39yQUp2O7HKc96gZRNOEY/6FW+lE53W4D8LOuFzEqUpIwjWfB4uOvRrUkNvCwXGAWbvIwpXUvj9uz5zu9SfiTLBdc6Li3XqMyDbEPl2SBgexxjaPKC/8HaENuQxbmadTqt29MiTnM+2hjTqRkV076M+aI0Y3MU0rQN6sX+8XDHY7njcHuuhlroLp8UI1yVIPbTns/AlzqLN2ZqlQTGp1tjtschdVPnWd+nZurULY3vPunTdk2udRx07aiL3GXdb6M0Z30Y0ikKVpahVZISPS8mzjI6jslqd9/N+vC5omuqFHJ/ydibSJ3CLBdYmoJfMKReW2zw/fURj/Y82q7BrRfsk69KruA0OM9I/6fAnwB+GWkU+SvAv3ieXy6E+L8d+v9fKv79PzvPzwO5cd+ccfl4a8yw6LddbjsM/YTvPRuSZoLvPO7z5lKTvhfzaNdj4CcIAe/d7J73154acSpF3n6wMSZOc1a7Dm8utfCi9MCFpVszqdsahm4z9FN+y+uzPYqYqZso8IWInF8G9ryYx3sBiioDtTQXbI9D3l8bYesqfpTx1kqLSSTFecvFVFKgvYJS/rTv40fSSnq2bkkByEnEzihmYMgLTJK5B4LrEpsjmbWXmmLmEYp/wzZo2gZhkn3hApGjMGEUpKS5FByPspy6rvO4Jzf3Jz2f+YbF9RmX1Y7LOExYH8jLfcsxrlwEGwor96HULijdNErtiqe9oNIMW+06vFFotX26PSaMJauiZGZcFp70fLxC9PONpQadmlklewxN5ePNkdSDGUXoqsL9hYCmY7A9kp8hSjPCJKdp61e2zrbHUfX77s7Xq/bMKM2xDdnW+9HmmO1RxMCLuTNTxzH0yn0uSOQ6kIwl+5UVM5zEKbuTiIe7Hn0/5tZcDZSDrZ9DL2at75Pk8PnuYQ+M82PPi/j++phcCD7f9pitW1Ub6NNCHBSo9KXK1rRokDPfsF5K+8jGMOBJzyeMc2qWykxdXkg+XBsyDFIMXVbG5hqWvNj2pA5aLsSZElNZLqp9YbntvHBf2xlHbI0itsYh9xbqpJlgtm5VF9HNUUia56RxzjhIDgS6O+Oo0oJr2CcLjL4Iu5OoYhLuTSKGfspMzWSxY6MpoKjyInFY+PokCCHYGIYkWc5Sy7k09s/mKCRJBZ/v9Hm465GkgjwX3F1oECQ5zwY+q223EHKVF62Fpv3C1rLzYhLJJO8nWxP6XkyY5ry9TCHyf/BZ3S5crExd5cmex+4kJslybszUDsggvGxsDkPSTPCPPu/RdqRZwe97ewkFhfuLdRZbdqErKQt0QgjWhyFplrPcdg4kTLJcVG7BG1lIc/Hq1/VxGIVS4+dpL6DlGOiaFKINEik2DgoDP+FnC1e4KM34aHMkHfDqFlF6djfYF6GcKwBPeh6fbE5IMkHTzfjRG116fsR3Hg+BoiBVrOUklWYc41Am0o8r8JXICn01x4yZb0hNPSHg2cDnUc/nesEOi1PZ5t+tSbdR15SFmsNM+avCs77PtY57JWepoij8U19Z4U/97U9YGwTHtrD+zQ83GYUpf3gqcWUbGl+70eFbj3oHvtaPpNmNpsJ3nw547+YMm8OA99cGZLmCZaj8zGtzP1SX0cPYGUfsTmI2BlJLR0VBQWFzGLE2kHG/ZUhWvqYqrA8DtkcRDVuy4s/ang1SXH5rGFbs9JZrVG6AD3cn1C2DLM9xDINBEPGsnxdC8iq3LjnZU7aLjYIUOjJxuTkMyYXgt54MeNYP6NaNfVdwBXbHMeuDgNVLbkc9LUZhQs+PWB/KIoBr6mwMAz5YGwGgqZIJ2/Ni1gbSPW6xldOw9St1jUyynJ4fywSPEKgojKOUrVHIR5tjoiTj7nwd19LPzdq/LJTmLeUz2R5HrPVD9iYRhiYdhk3d491rHfw4RVMV3l8bVWZevxNw5t1eCNEXQvyrQoivCiHeFUL8L4UQ/asY3HmR5YL1fsjjPY8glhc4x9KqoH+pEEFebEn6m61LgdfSNvoqYWiFro0i3QjajiFbgI6hNM8UrRJJljEJZCKl7yWVbfLAj/lgbcjDXe9CTjIvE1ku3XK2RzGuJSmRpcuZbBeQQekkTCsLWYCFho1lqMw35eYlhEyCPO15BHGKqavULY2Wq0vHvZZ94sWjNqWZctzXlGKqUZpXyYMvCo4p2Vtrg4CdcYipqZiaVrX2gGQqlLJlSZ6T5YI4zSvtpKuGWvSUl4G3F2eYmoprSTZQLgS2qSKEZFoMgwRdUYlS2fZ32a0t5YFeatQAVXXto80RAz+h7epYpqTAlgmLEluj/fl3Vb3k0z+31ECRVS5J032469F0pBbWctuhbusHkne9iRQ13ZvETKKLaflcJZyi3VBBJkrz7Gi1Lkgy4lQyYJRLfNwq0PMiNoYBNUu6b7YK3ZTpZ5kVLM2mbTAJ08o562XA0lXWBwF9L8YxZLuR3MvkM7INrdJRijOpLZBk+ZntcHtezMBPGPjJqT6bdPdUWG7ZqFBpYiVZzidbYzYHAXkuNaq0QxeAsoVBVSXb8bxwi+rqwEsk29FUcQyVubpFzdaZq9sH2jBfBGlcIdfN9jh88TecEmkmRYml2Ln8vJ2aWbF7r3VcLEOl5ersjONKuPSqYBsauiaZJ7ah0a0Z1C2DhdZRNx5Nk0KopRbIKEhknOHLcy8vBJc/XB8yDM5uTHBelAYvc3WLnh8jcsmEVZR93RLH3NdfGgVptSeWAs8lVIVKt7J2Stfkq4CmKqwNAjaHAbqqVLqVdUuvzsDpQtrOOMJQNYJYtvNchWRDOVcyIZ1t9yYRYZLiFrpTNdMo2qRkEWS2buGYKi1HutSOw5Td8QvOoOL7yySJEFLofRjIhNxaP6xa4V1TR1WltbxlqMw1Lk/4/UV42gsuXV9qGmV73l/67tqxf/9ffesp17oOP3Z75sCfv3u9zUeb4wN/NlO3WG470vxhvsHGMJD7yjDi0Z7stEizH447wUmoWzq7Y3l+p1mOa8s56RZ7g0xIU919sjwnzXKpYXTOgrKKPGezXJAXz6+Mz2xDOv7VLF26r+cKm8OA7Ul4Zs3U08DQpQ5gycLaGoWMQ7m/ybNVasU1bNm6tzeRzNwsv/p77Eno1kzGQYpjaGwUxQBVodLR67jSpKpTkzpcm8OAp30flctPBk8jywWDSUycSoFw2O+GsQodvVzwhRmITWNjGEjx+oEsos3UpWHGbMOkZsn9se2aGIUgfC5kLuCTrTFhcn7zjlcJp34LiqL813ByPCyE+IOXMqJLQJTKlxmnOfUiELF0jX/mq6uMQ+neoigK802bb742z1phT/o8odTLgqIofOVah+WWQ5ILllonV68XmrIqKAQ82J2gFRW20p1gr3A5mBS24j8M2VJdVXh9sUma56x2JG3ynZUWN2dqDAJpaftsEJCkohKMBRnoT7syzNQMmo5Ot97C1FTuzNdpWDpRmlWiqSdhvmnTLFz8jnv2ZW9xlsuEyhcJS9dY6TgVC8nUVO4vNrANjTjNuTnrkmSiSrq6pl44hUDbeXnOC7dmJdunZulMwoTXFxvM1C1yIV1uvFg6OumFXkTDkaKCl+2AA1KTqe/HNGzjQLvbKEiKeaXzzTcW6DgmpiH1ZYQQmMV8KC/w1pTo5WVjobBrnhbFBRkUjYIUVVH4kRszrHzFwTJkUkBRFG7N1UjSnCzP2RjKAOVVFjM0NJV3VlqsdhziNKflGLiHElMzDZt7i03u5IL7l8jSUBWVN5ebJGnOrdkac00bXZXCoYpCkTBTqn1lpm5yZ16yg66KzXIYTcfgS6ttwjjl5myNpZZdFR5WRyF6IWgL8lkutGxmMsFc42zVRdvYF6s/zWdb7bjSxrkQ8zc0qb84DhOiJGep7bDQtFlq28wdqnR2aiauJQ0ZLnKp1DWFpZbDcltqgdUsjYZj0HEtkixnFCRnCiSlhqQsalwmk8A2VK53XVQFOtelwcZKp4ZryJab8lxOsxwvmsj5dYVntaGpvLbQ4NZsjZ4Xy/bw51Sj78zJvRukG18Q59yZk+swSLJK+LrvxS/FHQ1kYiLJpJnHp9sjGpZsHT+p4GQZ0+/24LNVFIXbha7IFxkjBYl0+ZpvWMzUpQB6qUV4rSOlGqad0pziInxz1uX2FbUWl3NlEMSs9UPeWG5iqCpfvtZCUaTz5Y/fnSFMcpZadqGDKefG7iRiGKTyDHrOOrcNjfsLjQOaR/cX6qwPAm7N1Vhu27yz0iqYVKKSqVg8vdH1peBp3+cbd2de/IXnxPUZl/dudPiL313jj//MnQPv8/Gexz/6fI9/7efvH2nR/+r1DjdmXEZTf1azdP7YT99lEqV0aiabQ9kFcGPGJSjkPo4zhvhhQsc1WWk7dOsmRqFBJJAaRkIIBkFCrYgpQWon2bo04TjvWrFNGW/nObSLuGC149DzYm7MSHOVMob4zpM+X3baOLpG+wr2Rcnm34+HHENjFKQ0bIMbXZcok8xux9TZm0R8aVUuGPMLMsECSSC4u1AnSffPuPmGzddvzRBnOasdp+iQUHm4O0HQpmbqRNnVJlRcU+drN7vM1q3qDDA0lXevtbnWdaTm1ZQO8hcJ25DFiNK8Zanl8I27GkkmmWVqkUwD+PrNLi1njB+nKCgH3NF/mHGW6Ozfv7JRXDKajkGnZsrLec0kz+UmZmlKRV2+MeOiqiq35uosFrR+taCEj8K0qja+CHkumMQprnE695Q0y9kZR4SFaPkoiGk60n3Ai1LiNKft7ovVlWO4v9CQiZKpMXVdkyAOqFn6F+6ykecCP8lwjYNC5NJ2U1Q09IZt0K3LQ7MMcsM0Q1VlZTnJc+7NN4gLKu1JaDomiy2bcZiyVND6Qbp0nAbPe7e6qnBjxpGOaKZMdu0VLQ6uKbWSDie0wiSTAsa2fmHhxd1JhKGpuJbGJJQtnnVbY3ecUrdkQsrS1UqjbPp5N22D+4uy1/gqXRqHfkKYZpUwvKLCYtPmSc+XorRCXnK0wgVoui3KMWWgmgtxJZuobWjHthY0HYOdSVRdBtaGPpauFpceo2It1i1JoX2ea0eJIM4QZ+avyKTIcXbNpiaZf4MgqRgjNUunYUk3lbqlQ3HHrBcOji9inCVZXrX+XSb6fowKtFyTnXHIg50J17s1lg5RoVVVeW5L5ELD4ms3OkRJdqGKdZLJdtfSuTBKMzquiR/L+enFKVah6ZXmgq5rHtizdU3l3rwUL76qxFTPi0kz2ZozjlIQsrWwZqrEacruOGKuaaMqMlFmavtzUFOVc4+vYRvcWzjbvlC3dIQpz8O8cAqzC7ZZ30u4OVujbhkFA/GgwOqLfsf0uwKpUacpB+eJo2soSo4XZ9g1E02V7nAgg8qzttlausZri0fP0dPipJbBjmuyNYpwDJVrXZftScRnm2PuLNRxTZ04LYLMlzC/QJ5F2+MIXZEslFwIvDChVrR1jwu9t3K/U6YEUb+02j7wfJzCwTSIswvZdZ8WkyhFL/RRTF3ukX4sNUOFkC2SWS5Zt66pVUzYSShFzs0T4jZVVbDVlxuwZ7lgaxgQJFKyoWkb9MwY2zS53nXZLoSAb8/VJSNWVzCmaM4zdatq07kMVrEQgt1JjKLAbN2qdA51TaXlmDzt+QRxyuJsnTyHJM+KNuLjdXNmC/HiF41PYb94EiYZaeGweWPG5eHOhG7NxDXLYuIX05Ke5gI/zrjWudoWqD/01RX+jb/4AR+uj3h7ZT/z9l/8xhM0VTlWf+rn3ljg595Y4Gv/hdSbQQFDVfELcwUvSpmpm7QcgxszDs/6YeVgvDeJirbRL/7C/SKUDLxOzSBOJWtptmEx8GUBvlcUGy1dJc5kC930fny96xIkWdWBcR6Uidp0ag+0dBlPRmmGoaokec7Ai7E0tTAQsIoYWN7pynPtsmU05ps2DdtAVyFHMkeDOMPSBQ3bYK5hkwu5r2+PQ8IkqxwOpzty0iwnSvOpNXd5UFXlyP1NUWTxrxSl3x2HxFnGakcWH9JM3gXjNOdZX8bki88hbJwHjqHxzmqLa92DrbqqqhzRtZrGxxsjJnHC64tNHENn14toWPqp75nnQWnGZuqyyyTOpJNpnOb0Pdm+i12YH2lS2/aTrTFbo4CapTJb+2L1Zy8DZ3m6D4UQT65sJJeI0ulkECSEcc5WEDEMEt5fG/DR+ghdV7g547LcrvHu9RagEKWytW5zFLI7lof3vYV6FWBPb5rTQfeTov/Y0BVeW2icuNDHYcJf/e01bEPjk60xn21PsHSVax2XazMuX7/dZXsUF5bz2ZGLtaGpHI63DrOIvgjkRZC4MQzw44yPN8eoCrx3s8Ncw2ZjEPLZzphh0Y7xpdU2TUdHIEVWS/0XgSBMMhxDP5Wwr6ZKt6jPtifSkUJ7flX4LHjS8xkFaSFWq/NbTwZ8sDbg480xSy2Xn74/i1Ck0Pg7K9Jl7tuPexiqSsPRn7vRgQwQn/R8Hux4RKkMTMvKyNZYzr8kzfhgbUguBF+53mGpbfMbD/foeQkrbYdrXRdL17ANKYp6lkvhaTHwpQbb457PUsvm7ZUWrqkTJhlPetJa+Tce7LE2CLk1W+Prt7tsjQKe9UJ+62mfr17voGkKpqYdcYu4aGXCi2Q7TM08veCkVWz0/+CTXT7fHSNymRT46vUOX7rW5uZMrUoKnmZdTSIpOPk8JFnOWj9AVRRWOi8+bBVFIRPwrUd7fLQxknofjsFP3J7l9kKD+wv16nJRmiA8D0LIVpwkvbzqaZ4LfuXTbf7Cd56hKQr/8k/e5u99vMv7a0Pajs6/+nP3Khvg00BRFN5Yap7qa9Ms59uP+qwNA1baNl+93q3m0vogYBSkhGnKJ1sT4iQrEqDw9z8eoWsqcw2T5Zas2oF09ZlOEuiaykWXjx+nvP9syPogYKXt8rUbbTRNZRwmrBUaYQ92xny4MaZmafzYrS4P9iI+LfRdfur+rNS8ClNqlsbtKVHLi4zvPPvC077PD9bHDIOYtiuDX1tX2RpHPO3LPaDtmry+KM++zUJbYrXj8mhPWhmXIrLTKN8VyGTdf/O9Db5yrY2uqQRxih9nbI9DnvUCdiYhz/oBpqbxlestfvzOHLNnZIyVOO4cPQ3iNOevvr9Byzb4ibszqKpK34vJhWDgx3y+M8E1NTQF/spvb9LzYt5eafDezS6qIl3YZgsXxquqF/hxxl/5rTXCWCam1odBxaSdqZn8zP0FZpsWj3ble0uOYd4dfj6qqrw08entccjWULrz3p2vV60zt+dq/PbTAb/1ZEgu+hi6QhDLdtbFusX31gekGXz9dpcfvXV1jJfjkOWCz7fHfLA2ZLZh8dZyq0qYbo1Cvv24z+YwxNQV3rvR5bXFJmkueLzr8be+v0Uu4EdudbgzX2drGB0ROT9v4caPUx7seHy2PWauYfPu9TZ+nFVaW2mW872nA9YHAfcWmyy1LJ70fJ7sBawPQro1k+W2y3zTOraAUuIs4wvijE+3xzzrBXz78S6//WSIoamsD0KajkGaC2Zq5rGyFleNUsbjKlv5AP7AO8v8if/6+/zZX3vMv/PPfAmQybo//+1n/O435p/7rIMk5a99b4OtUYgXJ8w3bTQUXFPj5lyNr9+cYTdIcUyN5ZbNg12PNBP0/YS78y9nDb8IQXFHeLg7YaFp897NDqaukeeikCSBT7bGfLIlTYx+6t4ce5OYx3s+/+CzlK/f6uCYOnlOJbBdQlEuxwzquD263JtycpJU8K1HfSxdZbXrsNCw+Zvf32AUJLyx1KBpy/X/2uI+S/DxnscPNkaoisJriw2ud8+nZeaYGp/vTPDClL3CGbduyzuTpoLI4HvPBvxgY0SaC5aaNtdnapi6ykcbI36wMUJXVV5bbFArCrCHi0oXhaYqB2Kqnhez1g/QVAVLV/hv3t8kzwXv3mjx1Rsz2JrKR5sjfvNJnzCRCcev3aQSfPfjlI83xjzYm3CjW+ONpeaZXfFMXT2zhvRvPNjlP//Hj8mB3/PmAlGS8Xc+2mG+YfHHv3mXxefo6l0UjikLLp9sj0lSwVzT5Fkv4AebY8Z+zP3FBl+51uaDtVGRhFYZhxkfbUxwTL2K9TquwUcbYz7fnbDcdvjSSuuHIkl9lrf7l4CvAiiK8heEEP/MlYzoEiCEqPSJ1pKgonb3/Zg4E/SDhL6XMPAzen7EGwVnWFrYi+JnUOn2TG+akyipqMwgW29A6kwIwYmOLlkuBY8HfsLDnQkboxBVUUgygalrfLo5oVm0Xl2Vrs1VYH0Y0PcSHu562LoitXFsg28/6vO731wAIElzxmGCl+SwNsA1dZZajry0FIFAlgvpSGboeKfUzCk1V4BL1Qcr9RK8KCVKpa7Xs37I5kgmLX6wOcI15UWrVuhk7Y5jvCil4xq8qMU7SDJGQcrHm/KgSjMhbW8LijDA4z2fjzYnsj0BhUnUYGccM/QTZmsmwyBmviGfoZxDl58h351EPOp5PNkNiNOc+YbNzVm90pwYhynffTogSnIGfsxC0+JZP6gSRl4sLeZNTVb1LrMNZHMU4keyzaTtGqcKkJNMsD2K2BoFPN71CdOM+YbFYsvhjWVRJQVBHmQvOvxOM+d6ntSUATlXTsPy2BwG7I1jHvcCwoKpcL0TcK1ozdmseveVFzoI5YJL15rYGof8vY92+MH6BEtX+OsfbFbPIslgbxKfKTF1FpT6POv9gJGfMFOzKifTcu2s9QO+vzYEFPp+zErHZWccYZsaXdeULQBFAOvH6aWzV8p39LQnk/VzTYtbs7XqspnmOe+vjXm066Eq8pwpLxCOoUmGV/FZ/IIp8kWJ2+8WmkifbU9YaNnkuSILCwI2hxE9P2KmZmEbKoamsTkMi8SpTB4ADIL4SGKqfFdl+9UokLp+Az/m/WdDBkHCzjjEMXQe7vhShyyLWBrZrPWDcyemzos4y0lTwd4kpu8naKrCs35ALgQfrg/5eGOMqkIQp/S9iCDJ2RxGREmOY6pMwvRKxV1BJsHTXPCDrRHbw4jdScSznkarJi8e398Y8ruc/cTNq6ZLWe4hQlAljoEiTsrZnUQkWU6eC1QVRmHK+88GbI9DXMNgrmnxtRtXb2AzjUmY8un2hGf9kEGQMNewqz1eVRTGgTR/GAUpqqoSJJJJ8HjPK9yrDIaFrlf5DKRGzsX2pL1JzNO+TDT5UcZszWRuKunxYMfjg/URe5OYVMAwsNkaRdI5y9YZhgnLyFho4UIj2Uec5URJzpOeTHZvjKSY77OBz3ce97k73yBMgi8mMZWViamrFT5uuQb/3I9c48/++hP+5z99h5uzNf7srz1mz4v5I9+49dzvzXMpiP+scGMehxnDIKHrmmwMQ2mwUMyjPT06oLX5qqDnx6wN/epsnG1Y3F9ooChyvcR5zvtPB6wPQ6mrZsr2tY1hgKVrpJl0kWzaxkvV1izXpx/lZFlOnGT0POlmmmQ5P1iXZlZRkvONu7NF67v83iwXfLA2lC63wFzdqoTBzwoh5D0pF3JtSpfanM2hdBSWQu1SR9I2NeIi9huHCd99MmQcJIR5xnLLqRwP/SQ7Voz/slDe57JcsDORRmNenPFgx6fj2oRJysdbE36wMS7YSAclVkZByoPdCWv9kCDJmWtYZ05MnQc7k4hcyBh6exzyjz/vsT6Qmli//mCP3/P20pW2zcVpXhWUJ2FGkGQkScbOJKY+CFkfbDDw5bNdbJoYutTzHQUJcSrvMUGSsVZI42yPIry5jJbzOysxNR0Z377sgVwmlILC7kcZdUtnqW2zN4n5+TcW+PbjPk97E8ahXJCNQ5vDYiGMbunqFBVRbprZMReE1Y7D3iSmeUjP5jBUFSxD496iyeYooOsazDctZuo2q13ZRy3povmVB7CXiTIJM9+0aFg614YhXiwv/AM/IUwyvnKtzZO6z9BLUFVJf1WQWhAtR4qyZrlgsWnjxRkLzdN9/qZtsNC0iIte68vCcsthz4ulUJ+qcn3GZc+LqJkaNVtnpmHyaMenbhl0HBNVU5hrWuje6dwS7YLp1HQMENBydNb6AZMoZbFpsdpxUBTJqvLilBuzLi1H5958g3GY8KXVNt2awTjKaNj6lfVFtxxJsW/YOraukuU5H64Pabsmt+dq7E1ibsy4rPdDllo2dVvntcUmtq5xbcbh9qzU0Ehzcelzum5Jxx4pZH26z2/qKnfma/zmE4Omo9HG4LWlJq8v1bnedSvnR9i/OD8PHVfSj58X+P3/2fvvIEu6NL0P+530mdfXLd/eff3ZMTszO7MGa8HFgrAE6MQgQTIkQgQZFAQqGNQfUgQlBsUAZQhxKTEEMUSRIAKiiGAIkAhQy+VyCbPcwe74mc+2N+Wrrk1vjv44ebNvua6q7qrq+lbzRHR0d5l78+bJc8573vd5n8crxevheNo+AHcWGnz/WZ8Z1yAxDW7OedxZrHGt6+1KMunHuEalX7L7s70uBIKllg0UmLrBjRmPD660+fUP17jccXln6ezcvGq2QbdmsdoPWWg6pHlRsTSvznjUbAMhJI+2A8I44858g7qjRMVnaxYLLYe5hs2On6IJzuQQ1HRNWp6BNVCJwzjN+XBlSM1WejFxmtP3VeLA0NXPtF2LpqtcICduaFtjtQa9ScfFa7MeO35csZ5arskXr7T4ZG2EbQo+Wy/w46xkb76wWVai7YoNcFDy9FJb2WtPxPFvzHt0PJOVfsggVGMz41l06zbzdZtNXxkS3JqrvRGWsNKfUwL+tqHx0eqQjVHCcsuhXbYBu6bGu0sNNKGco/7AnS6XZjyiNH8pE+K0MNFMXG65hHGGxKoc6uYbDssdl5ZnIVGCvrO1ixVnTO7RtPj/5P9futJmGKXKsWgYK51Cx2RzpJEVBbautCrP48AyDc/Wq3bHmm0w45k82BwTZwWX2g4/eauDZQqe7oTYhnqGpISrMzWSLMcxDX7mZhfd0MgLSc3WT+Ww03RNapaOV4o1Z0XB6iDEMASX2i4bw5i2axJnBZc7DvNNB1PXqFk6by81adgmCE71uW25Jlc6Dt9+IunUbNJSM/Nnbs3SmWqjfxNIsgINzryVD+Bf/sXb/PVvPeMv/D+/y7/2K3f5S7/xGX/gziw/devlbD/H0pVmYl4wCJVb81LLxtSV9t5MzcJPQqSEmm3Sci1GUUbbezMulAeh6Ri0y3a8ZqkP+NHqENvQuNH1GMcZd5eajOO8Er9faLgYmmKcX+nWsHTBIFQOreeFhaZNISUztfKcJyRPd0KudWulGLVJmOTcXqhzqe3ScEy2xjE7fsKMp1iAgyClQKp45BVps0IIltoO/SDly1faCE3QrVlsjWN0ocxzLEPFEgsNh/mWQ5jkDELlch6lOcsNl7mmjROruLk4YyLEXEOd0WxD452lRuUueGtWsd0EAlMXzDdsltsOP3G1Q9Mx+HhtiKEJFpsOddvEs1I8Uz83ncOfujnL5ighLQr+6AeLPNgKeNYPqZnH66h4XbiWMmwL05ylllNJOziWzlLLYRCkDCMlB/HupXbpPA6bg5j1UVyaI2jK+bU8k7+p9fWkOMlVykP+fSFxsxRjtkudmMWWw2LL4fpsne8/6/Pp+ghL1/jldxcYx8odbNITPGkje94PGYYpDcfgUtshK+S+SeFZBt7M0bexbpv89M0Z+mHKH/viMoNAUXHvLjboBykLTRvHPP5wbI1jNkeqf/y87S3TvCBKXyT9LEPjqukxTjK+cn2GJMvRhGBrnCgNAl3jl99eoB+kxKW2lm3qlS7WUa1vByFIMp7uhBi64Hq3dqr9yHtbJN9ebHBlxqUfpGyPY3pBylsLDWqOzpWuR1FIbEPDNlpIQB5BpNE0wZ2FBh3PJM4kTdfgmw+3ebIdsNx2+ZV3F2l7LWZqFlGqROKjLGeu4TBTs6pE1GlVMg/DXMPmp67PMlhKabkm9zZG/Oj5CCEkf/QLy1yZ8fgTX1pmfagOrqahUbdN3r/UOvPNY2IMYOnaifqpr3Vr/JEPlnh3uclaP+Jr19q8taSEVx1TYxim9IKElUF45HM1WVdehoZjVhXB4ybQFpoOf+j9Je4uNLi/6fOFyy2+fK2zq614bRixNoywphLoh6HlmfsYK6+DhabNT1ybIcmVCOnPvT3HXMPlrcXjtePthR9nPO0FWLq2i5p/ECxD46dudbm70KAXJqz2Q7b8hJZj0XTN6rlQAtk5y22XfqicTKeTo60zNAZoOiY/fWuWuwtNDF3waMvnw5Uhtqnzx764zGzD4aduz3FtVmkQGZoqenztxsyu5+08mQPjOMPUxb52v27N5ufemifJcpJcUrN0nvZCPNvgZ27NlkLygoZj8O5yi6szHkGaEyYZTcfkxuzB46lpL9h+bc/kV99b4uPVEVGaMo6zUhC5TcdT+m/9IEETSth1sm/EWU6ay3MJtixD4499cZm8kPydT7cYRAmWJhgnGT9ze5bb82qO3+jWuLvUJsuV0P95JhU9S+dX3lngNz/dYK6uWGx3F1XbQ5ypSrN+hN7bXjzrKamChaZzJDvzVTBpaw+SnEsdt9QdKXi6E2DqLxyp6o7JL729wLcf97g2o9qSrsw45BKCOKNVM1lonG8clBdKfuBn78zxfpkUe7Lt882HO2WiUufOfJNrM3W2xhFJVnCtW2MYZoRpzttLl3btCafZbtVyTX7m1iw3Zuu4ps7GOOLJdsDGMEJen+HWXJ1/+AtLhFNJ00GY0natU2eQSgl+nHJ/w2d1GHJ7vsGVGY+8kHzjxiyaplrqC8kb00pN84LlmnUuic35psP/9h/7Iv/KX/sO/9R/+E3mGjb/9p/64MjfMzTBz9ye46vXZ/jW4x6WJri/OaZuG/zkjRlansVOoBiuUkpsQ6ew9ZcK0583Go7J127McH2ujq0LVoch33rUxzY0/vAHS8w1HX72jsn1WY+mY9L2THb8lHeWm7tiyrmzq30dCM8ydrU0L7VchlFKEKvCy83ZOsMorQydAH79w+2yeFvjp2/NcmO2hmNozLxmkXa2bu8r9F7ueMzWbaK0QZCoM1bbM/lwdYht6KwPIq53ldGAY+oVESJMc2bLdu8gUaY7p80Cckx91737hbvzFIVkcyKb4Zlqb7oF802l9/ysF3B/Y8zGMOLLVzv8wt05hpHS2JWoltCTrFO5lHy0OsSz9GO3Uc7Ubf65n3nBYvxjHyzRdnSWOm7Van7WmD7bexZ8/WaX9y61GEXqTLbaj7BNweWOirM2RzHPcuXmZ+iielaudj2ebAd8sjbk7cUG2nlZtr8iTrIKf1EIMUQxp9zy35T/l1LKVzuVnBHEIRPM1BUtfKJlFGdFFXCNopTH24FKtHRc1gcRn6wN6YcpX702wweXX70/M80LxnGBlIKOZ1G3TYpC8vc/22ahqZyYrhwjwTXB1jgmyyVPewHbfoxt6NyYrb2WSGaSFfzw+YDFlnMow6UoJPc2lLNQ2zO5MuOx2HKU1sKmsql93g/5iasdhmFCwzHolC6Ip5ll3vETRVPcCNgcxby73Dx1scEJNE3QKDVfNE2wPY5Y6Ud0ahbLLY8rM96++xWlOR+tDtVmdMBzuDmKWSv1NDquwaNtn0dbAf0w5SdvdCuNhwksQzv1z3fUeA/CtNKSarkm4yjj4fYYJPxoZchP356l7dm0vRe/e1y9p9PAq24Msw2b+xs+V2Y8BnHOZ+sjmq5ieTzeDri/OVIOHbp2KpoTr8Jo63gWn+aSq13lvvLRypBOzcI2dNUKsTqi5ZrEac4XrrRf+xpPAlEK2uuaoqtvjhKE0FgbRNRtg2vdk+knTFrfen5KnCmh9odbPtcPeZ37mz5Jplp7xnHOd5/2uTbjcXPOq9wOL3VebOjzjdMPIF42v4tC8mDLJ81UIWNYzqNcwtsLQ750bQbH3K0d9aYQpTnferzD9jjlUkclg/Y+r5ahVV/bHEV8vDYkyyWaaPLuUotBmFbJjk7NYntjTJjkjKK8cj89CqaukeY533qygywoXe5ElVCdTtLFmdIpebTls9Ryudb1mD9jRlKU5ny8prS2vvO0xyhKudJxWWp7PO9FvLv8Ivypv8GD4PooxtZ1klRytVtjFGd8uDpkqeWWiZ7jz4U0L+j5imn5aNtnpa9YPzfn6qdWCJq0tYNqP/NMnd95oA50iy0Hz34hIuyYOncWGny8qlrQVgYBt+cbvLPUPNXCFBy9f4O6J0Gc41rKqS7LCx5uBTzaCjD0gA8uTVyytF17ecszafH6e/lR+/fjnQA/zglNVXh93g9ZG4RIIUpH3N1J49N0qpxGP0z4j3/7MePy4A7whSttltvumSQ7XwVJVnD5jPWlpvEPf7DEjdka33/W55feXjiRy6pt6NycrfPR6pBu3WGh6SA0jR88GygtmZbD1jhmfRjzvBeSFgXvX2qdabvWNF62f+eF5N6GT15IOjWT3jjl8U6ALODd5YC2Z+GY+i65lJOsWeeJpmNWa9N809m1B22NIz5cUW5ptqkrw5AgoSggyoqXkgkeb/uV/MNJoIqrOlNLDTM1i9V+RJwXjKKM7z/vc2XGQ0p471KrWod6fsKzXogQcHOuduRa0PMTnvfDV05ia3vMf64dUMD6wfMBYZzTqlm8tdhgrmGrM8m2OpNcn/VovORMFGfqOSwKCOKcT9ZHLLUc5hvOsa47yQoebvmlg7xLL0zxbAshtDN11T0KdduoinG39hQzXFNjx4/RpmRhhlHKb3+2zZOeT7fuYBn6iYsgrzveJ8WxdyIp5cVcHU4IIQS35xvUbRMhdh8aB6Hqf43TgjhXzl1hqpJYozh9Lbvhyfrs2TpvzTfY8tWmEWeqFSLJTxaotF2LzVGs/iMFcVoQxDkt79WD4rxQOlm9UlTvIBRSVu1EcfbC6UvXRKnRBS3HxI8zbs03zkx0semqtg8pwdY1BmXf+VnCMTQEgrZnk0uwdJ2NUXxg8kKW2j7D8GD7zsm9kxIyKbnaqRFEyg70vDTGjhrvaQ2lJCu4PltjdmX0udJAOwjzDYcPLreUXtEgBNdiGGbkhcTQBEnZ152eom7ZSTFTs3j/Uot+kLIyCGiX1+hZyuErSlUbZ3YUPe+M0K3bLLVcRLncTJxzRlF2Ys2zlmcqAwldrWNIpd0SZ/vXWyklaakH4hgaw0hybabGbN3GPsdg4WXzu5Cy0gZI8pybcw1+tDrC1jWSCzZ3RlFGmBSls1lOmhcvTaQKIar2bYlKnO6FY2qESY5piGO1m07QrdvcnK1XGmqHsS7HUUaU5uTFRAfw7OfAZLy3xqoIZNdUgsbUNRzz4lQfHVNnoemw3BY0HYO1YUSSKcex6f36ODB1jbpjMI4yNNQ9iNICv2TDncr1GjqupRGlBW3XxE9ykOq9giTbx/aYa9ikeZ0oGzKOMsZxdqrXM8FR+zeoOBHUPQElmmwaignYdM1K2/SscNT+PZkXSVZwvetxY7ZOGOfYujjXPVzKMpYQgjDL+dr1mV2OdBcB8w2bf/Ufeutc3/OdpeaxTT/2YrHlYBtalUzI8gIpJY6uM4ozrndrbIxihlGKoQl6fnJuiamX7d956aoJ6vlc7rh0XNUF8CruxhcVUVIoVlWYcrmtzFYm++bLtEmzvKgS9aeBpZbLfMPh0/URT7aDsphZYO/ZsyZrxWSuHkXW7pXxXhCfvtszQM0yuNz22PETDCGq1sfpPewojddxlFVxmBCqkyUtu6iOAz/Oqvfo+UoP8HLHo2brZ+rK9zqo2UpOJcmKKn4aBCmupROnEjHZXE+Isx7vvRAXTQDzVTA7OyuvX7++62tZIUmzAq3Ui3rTePToEXuv8U2jkJI4KxCoKszjx6d7jXkhSbICIQS2qZ2aEfBB93JiL6tc4H7/jndeSJK8HDNTf617elbXKFFBu5QSy9Beu5p9WteZ5gVZmXA+bV2u07rGyZwEdWg7zU6g6Wus1sdybl4knNVzmeQF+SmN/5ld4ymuY8e9xulnzjZ0zttp+E3sjXGqtOFMQ8M4xgc+j2uMMyXsfdxr2ouLGGNMoGzBVTy2+uzJK19nVO4rr3qPjovTuJcTh2VQLWrH0S08Cc5jvNVeniOZ6Kx9fp/LXbHTnr31olzjJEY56NxyUa7xKJzVdU7WR0MXr9UZAq9+jed5rnzd+3jW688Epxf7vkg8nfb1XqS5c9g+/7JrPGm8cpb41re+JaWUZ/rwX8y03wlx/fp1fu/3fm/X1+6V7QQAby3WX8kq+zTx1a9+dd81vmmsDaKKdbXcdvhDv/Azp3qNT7YDBqFqBbgxVzs1LZCD7uUPng0AJTL/3vKbr8ad1Xg/3QnoB+qeXu16r6XldFbXOI4zHm76gGI9HMSqOAlO6zo/Wh1WbL/3LzVPVf/ltK5xYxixPlRzcmIxf1qYvsb7m+Oq+nFn4Xz65Y+Ls3ouP1wZVtXaDy6/3hpxFtcopeSHz1WHvK6JXe1hr4LjXuPEChtUJf4kbSWngfPeG6M057P1MaAYzLeO0VJ51tf4Kte0Fxcxxpjgs/VRxSz65//kL7/SdQZJxv0Nta80HIPrh+iXnQZO416qdn3F/lto2a+kpfkynMd4T7fOTKQbToqL8lw+6wVVa+re2OmiXOMna6OKpfHu8u4W1Zddox9n/O0frjEMU37h7twbbRM/i3tZFJIfrai90dDFKzPNJnjVa5w+V5513PS693F7HFfu9PNN+8wMOE5rvM9yvbwo8/tl+/xh1xgmOfc21O/UHeNQ3c7zghDi22f9HmeamBJC1KWU47N8j8Mw17BZH0bUbOONJ6UuKjo1ZbmqicPbJl4Hsw2LKMtxDJ3aGdPaF1o2PT+lW78YmgVnBSVwmGPqGo0L6rBQK90Woyy/UOOx0HTYHMW037DT2cvQ9iyGUYY4ozk5wXzDZrWI8KzTcYH6PGChaVdOdxcRQggWmja9IK0ESc8DkzZRIbhQDk5nBcfU6dRMgiQ/9yTcYbiI13SamG84rA0jGs6r71kTQd8wVTbzFx1tz2QYKXmI9hmaLZwlGrZBwzFI88+XW/RBmK0rd6qLHDvNN2w2SlOj47LTnu4E/Jn/2z/g4ZZK2v5bf0vwP/uVt/hzP3/rwsY5J4WmCeabyun7Ta6P802btcHnI25quSaDMKWQn499/ffDenkUXmWfd0ztxb53gc5TZ4mzXp0/BK6e8XsciJZrnput5OcV9iuIoJ0EnmXw1sL52GfMN5xTr0heRLiWEoC9yBBCvDZL6iwwU7MujNjqYbAM7Uzn5AQNx3ypcOTvR3Tr9okcyd4E9oqongfO65m7SLh8DrbwJ8VFvKbTwmk4gwohTsWM4rxg6torMd8uEjRNnCkz7TwxEc+/yNjrCH0U4iznf/xXvsX2OOav/A9/kltzdf6tv/UR/85/9QlSwr/8i7fP8GrPFwtN58xYP8fFtOD5RYehaxfCYOW4+P2wXh4HJ93nP2/73mngtRNTQoh/9bBvAb//n7If48f4MX6MH+PH+DF+jB/jx/gxfoxzwl/9nSd8uDrkL/8zX+EP3JkD4Nf+yS+jC8H/7tc/4f1LLX7+rbk3fJU/xo/xY/wYx8dpCFj9b4AO0Njzp35Kr//KCJOcQZDy+0Hg/SwRZzn9IDnz90mygn6QkOVn46IUJFmlafX7HVmu7mV6RvfytDCKUkbRxRiTKFXPeXHBnNGmIaWkHyRE6dm6XxTF+bzPRcVZr0WvCz9+c2tZXj4bJ3Vxu+j4PMx/UGvAIEgrLZPfD3idde0i7SGvg89zfPJ5mTvHwefleTpqHYjSnH//v73Hz96e5VfeW6y+rmmCv/inv8Bb8w3+9b/+fYafg896Ekz27vN1lvx8rMmTc8FRjnUXCcMoZRyfnhPhRcdJ19LP45i+Lk6jle/bwP9LSvmtvd8QQvyPTuH1XwlRmnN/c4yULxd+k1LyrBcSZ3nZ6nOxWz2OAz/OWBtG1G2DjmeRFxL3EI2nopDc3/DPZZF/sDUmzWQl+tYPErb9hBlvN305SDJMXTuR88a0MOpEOC/LC573QwSCSx1llRulOZ6lf+577x9t+4SJsna/u7ibnr41jhmEKbN1m5qlE2fFG/nM/SDh6U4I7BcbTTI1NoYmuNxxCdMcQ9NO3S1vgiwvuLeh1oO2l+2ixr5YAwpmaiYdz3pjz8fzfkjPTxEC7i42ds2BybjWbJ1uzX4tZ5rn/ZB+kKJpcHehgXHGTpbPegGDIOV6t0btNXRmTguTtci1XrQzrw5CwiRnqeViGxphmuOaOto5u6D4ccaD0jxgrwB+Xkie90Ikkkttl0JCVhR4L7EvHoZqHs7ULJaOYRn+dCdgFGXomuDtxca5f/6zQF5I7m+OKQpoudmRrcY7fsLaIGS2bp97a+XTXsBHKyMMXfAzt7tQeq9eJE2TMMlZHYS4ls5SSz1TWV4cutc866n15qTL6rT49pUZl7ZnHfg+03P3sFjnTeKg+GQaPT9hJ3gRC/lxhm1oZ74uHweH7Z2bo5hhlDLfsLEN/ch16E2jKCTfedpjrR+x1Ha5NV+/0HIfj7Z9vv90gGfp/Mzt2X3f/9s/XGXHT/hzv3Br3/dcS+cv/qNf4E/9n/8+f/Fvf8y/9Y98cB6XfOaQUq3jWS7x7GRX61eU5qz0Q2xTZ7nlEKUFmsaxNIYna4ptaLvODBOdr7VhxNYoQQglev6mdIvTvCDNX8yzvZ/50XagdNQMwduLrycQ/7pIsoKsKLANfVfMMr2mTQu0n6ZB1nEhpeTB5piskFyfrZ35uJ40DgmTnEfbPpvDmDjP+cbN7v9fSHCcxlPwzwPbh3zvq6fw+q+EvJBMiFLZS5Iuwyhje5zwZCeg5uhc7XgYukbbNXEtndVBhGNqVfD1ecDaMCKIc/p+yvNeyCjKaLkGby81cUydvJCs9EOkVILAxTkwyqSUlSPa5O/n/ZDtccL9jTE/e2cWzzL4dG3Ig82ATt3kJ652jn34Xh9GrPTDKhEH6nAxDFUmXgjJZ+s+QsCtufqF1EA6CSbPdFbszqIXheThps+On/CsF1BISZbDWwt1rnXPVytiet7tTXxujWMebfmkecHTnYBhmNGtW3zhSutMNodCcuh6MAwzer5aA1xb5+ZsjUJK1gYxVzouV8/xvk3uk5Tsmpd5IVntR2yPY8Zxxs25Op6l8bwfsdC0uTlbP1ECYXIPikLdm7NEkGR8/+mAOCvoBQk/e2d3a0FeSD5aGTKIUt5ZOnsNkOm1aHK/wyRna5QQpRnff9pH0wSXOx5N1+D2/Pnqkrxs3vSChOf9kGGYsj6M6AcpNcvgzmL9QI29opD8xkcbfLY2Yr7p8E987QreEcHfZE0ppOTzz49QKOR0PLB7zQySjO8+6WMZGl+60ibJC775YIsolfSbKW3vfHXpNoYx2+OEHT8hTHOajkqWv64L62lifRjhxzl+nNN2LWxD497mmK1Rgq7B+5daNByTNC9Y6Yes9EI820DjZJmp6ec/KyRFIbm3qZLKtqExjFLiNMcylBjx+jC6kJpIL5vToJKRm8OYh/jMNS1WezGzDYsvX+0cWwT7rHDQ3pnlBR+vDgmSnGc7QZkoNHjrkHXoTaEoJCsDFetGac6PVoYMAsXQmBR/LkoybWscM4oy5hs2rqnzzQfbfLI6puUZvHdpf5Lhr33zKde7Hj91s3vg633pSpt/9qev83//7Uf809+49tpOdhcFk/mzdx5NXN2GYcq9dY0olcw3bd5ebL40WZ0Xko9Wh6wOIvwkwzF0ZmoWnq1XRaFJvCClipneBNK84FuPd+j7Gbfma9yer/PD5wN6vjJLablmdU+yXCKlfGMF1jjL+b1HPUZhhmfp1T7mWvqu9WF6DPP87KKNOCv4u59ucmu+zvJUce55P+T7z5TboxDw1sLZzpGXxSF7seMnPO+FfP9Zj56f4VoahhB89cbM7/vk1GuXY6SUn0gptw753vpRvy+EeF8I8dtCiL8rhPiPhMK/JoT4e0KIvyqEOPEI9PyEx9s+eVHQqZksvET93jE1JFKxigyd7z3tc299zIOtMSv9kHGUsTVKCJLPD9WwVm60QijWyidrQ573Q1ZLK85eoILeJzsB33rSo5DyzF0bhFAimkmWE6WqxVLXBB+tDlnphzzfCZFS8ngnJExz1gfxsdvU0rxgHOV4tk4uJWkm+XhtSJpLhFD3YXucsOWrg9zD7TGPt/0LT8t9GTquRT9IMDWNHT/h07UhgyBB0wR+khEkOWuDiM1hwjjK2BjF536NbdckSnPGSUpRFHy2PqrsYKWEfpAyjFIebPmEac7mOD4zuuraIGQUp+gaXNrDGhnFKWvDkCDJcA2drVHCg42AjWHMgy3/3GjG4yhlaxwTJCmXOs6uBF2c5ewEMdt+jGPq+HHGJ2sjdY2b/rFaRJK84OO1If0g4VLbZaZmMt+wMQ44+EipktdPd4LXbnezdI283I0PCpR2/Jh7m2M2hjEfrY5e672Og0GYkpSVR8sQfLY2Is1yDF0oZkeU8mQnYH0YVRb354mWayKRDMKULCu4vzHieV+xRlxTZ3MUEaY5n6yN8OOcjVFMfMh15lKy0gvY9BM+Whuwfsg6UBSSh1s+H68OqZkGMzWTq13vjR+KTwtSwkzNZBSlRGm+a535cGXAhytDfvh8wNOdkDgtsCfsJAGmfrb3YFzO5cfbPlJKFps2a8OQnTBmYxCxNVJ7YXyB2m49W90fQxeYumBrHPNw0+dpz6cXpFUVfKUfsuMn+GnO815wqDvvMEr5eG3I/Y0xj7d8Hm0pFnfHM1lo2Sw0bbo1q9rfQTFKnu6ouGZzHO26rouGpmPSKZ8/P87w44z7myOe7CgWVV5IhlFGkhd8tDIkTHNW+9GRh5fzgGVoJatZXfen60M+XR2yEyQESc6DLR8/ztkcxUQXLKbqhyk9P6UfpPSCBEsXDKOEh9tjVnoBz3vhm75EQMWwq/2IcZSxOggppERIGMYpD7fGrA52X+fqIOQfPNrhH/3K5ZcWpP78L9+h6Zj8b/7WR78vJE2EENiGRj9I8EydR1s+D7fGSClxTY31YUw/THmw6RMkOdvjo1ugsqJge5wwijKe7YRs+wmboxjX1Nn2Yz5ZGyIEDKOEvFCsqjeBNC9YH8SEac7j7YB+kLI2iPh0fcjmOKrOVlGWc63rvdGukCjJ2Riqa/10fUSY5myMIzzLYHMU89n6iH6QMI4zRlFK0zVe2xzjqOvZGif88PlgXwudKIfT0F5vXJOs4Ml2UJ1xDoImBHN1m27dqrp4VvohH68N919zqsZTAtt+xPefDdj2VWHy9zvOtFQghPjLUso/e8SPfSKl/Ony5/8jFMvqF6WUPyuE+NeBPwn858d9z41hxA+eDRgnGVfaLo6hv5QObRs6H1xqMd+0GYQZO76aLLapcWXGwI/VgcW6AJTq42Kx5dD2TAwh+O8+3cQ0NNJc4lk6cZbjmhorg5DVXkinZtOYPx+nCVMXGLpGXkg2xzGOoRGXi+mWH3NHNLjUcXi+EzFbt45dydKFwDI02q5FzdYZhClpXqAheGuhQZBk/OD5gCSTWJbE0nSGYUZWhJ9bF4hekNB0TYIk49uPVevNgy2fX35ngbsLDUVHFqotKM4Krr8BhtgwVMlHRzf57tM+o0gFrb9wd5bZhsWNuRpFURCmOWFSMNewz6QSMIpSfvdRDykllrG7XTBKc3p+ynzDpePZzDdtPMvgk7Uh41g5S55XIPLD5wOe9lR7zLvLu9/zeS+k7VpYms5Cy8axNCQQJCGuqR+rfSXPJX6csTmKubNgkeaSHT9mFGf7XNkGYcr2WOnOmbrGYuvVq+CGrvEzt2fZGscHvk7NNrANQZRK2ufACFkfRAggzgsebPgMo4znA5OfutnF0AQfrgxxTXWfr7wBp7QwySkKScs1+cHzAVFWICX89G2NhabDO0tNxnHGMMyQSExNY755cPHF1DXev9Ric5Qy27AYHpLAHEYpO+OYtWGEbejcXWx8btyHjoJKAozZGsd4lkFeqOd7Ytec5RAkOZoA2xS0PZO3F5sEScbVztkH+FujmCDJCFOBbUTc3/LVnDZ1PFtnrqkC2YvkKDnfcGg6JqauOFDrw5iGY7LtJ8w3bCxDY20QstqPWBtFZHnBtZka4SG6ZVujmDSTPBv5xElOnBVs+TFfvtLZVWE3dcFy22EcZ3hWjQ9XhxiazrtLLRZbzoVqd9wLKVU7ZpgUfLo+4ulOWDH731qoU0iJqWsEnsUwSlloOm+sZWgvclngmDr9MOGztRFN18LQ4cqMxyVcgjhDF4KF19gnzgKOqSGEuvc3Z2uMowxZSD5cHfHx2piZun0hnPoMTcWwSabus6FrXJurc29zzDgWfPfJYNfP/8ZHGwD86vuLB71chbZn8ed/+Q7/6//Ph/zWp5v84t35M/sM54EkyxlGisX6YMtnGKakuSTJJHcXG9xdrOMnOdvjGEPTuNRxaLovP0fYhq6K5nnBlRmPxabNXNNB1wS//dk2WSHRNbgxWyfNC4ZhSvsNuDt7lsGljkvPT7k846ILwZPtgCQrKAoYhBl5IbF07bWTLK+Llmex2HIYRxkzNZOma+JZOlJK/v69LaSEbt2k49m4ls5Z50wnyduWa+5K5C61XL50uUAC12Zej2m7PoyqAnHdMfa1JRaF5N7GmCQr6NYt1f6cF2yO4gNZtDVbr3QZbUNjvmHTDxPsz1Eu4lVxGq58M4d9C/iHj/p9KeV0pBwDbwG/Vf7/N4B/ihMkpoIkp2YbDKKUp/0QIQSFlC/ViTB0jUttj7l6oQ7KScHVrrcr+Pq8VY4nAdqVrke3buNaatP7dG1MzdZZajo0LIOdIMU0xLlUGnUh2BjFjKOMt5fqWIbBpZZHVrwYn7cXmtycrZ8oGaBpgtvz9TLppvMPHu6w0o9Ybjvc1upkhaTtWniLBksth0GUkuXyQgexL8PGMGJzFDOIUu7M1dGmMv5JVrDUVlocpi6qNq2z0m46DHkhWRlEPOuFzNRMarbBKMoxdUGaS2xD573lJnmhgvE0L85sPIIkpx+oSvXyHraUoYlqbi+2vCpx0nK7hElGzTbOTedjc5ywOohouua+A4lj6kRpwUzd4sZsDSEE83WHuwsNPFs/VstrVkiebIfcmFWfNyir2wcJEtuGXgX0jvn6n1/p9x0czHmWwS/eXSDK8jNvVUrzgi0/YWMYs9S2K0aCoam5cmehwWLTQdOgZp9/YkZpI45YG0a0PYumZxIOYgydqvJ7e75OmObYukZaqJamlyVPfu6tORquCZIDmbFFIVnpRzzthwz9lDuLDcILxM55XYzilMdbAUGSU3dyGrMGjSmds5tzKiA1dcFcw0EIsW+dOEsIAY+3AyxD0HYNbENnoenQ8kw+uNSiW7cvZPwxWa+llNimRguTn709S9M1WOmH3N+IqdlGKY8AAu3Q+d1yTfw4J81Ua7fQBFe7LmleoGu718Ju3a6SdIstFynVQeAiI8sLNkYRT7ZDFlsq0ZgXEk2DNCuo2SbvX2ohpWKYJvmbY2bsxUo/ZGMYszmOcE0N29TRhOBy2+Wd5SauqXQsLV27cHp0nmXw1kKDomQAW4aOpmkstV1mahbd+vknGA6CEC9i2ElB9nq3xnzLIdwK9hWe/usP17ne9Y5VWP2nv3GN/+S/f8S/8199ws/fmbtwY3QSPOuFbA4TdE2w3HHYHivdp7zcx99ebBJlOaYmyOXxdfmuz9ZYajsgFcvYNVWB2zQEWSKp2Tq9IGYQZDimRnNPguO88JVrnUoLK85yltsOSS6pOyZ5UfB4O8CzNd5ZfPPJ1q/fmCHJC0xNEOcFjqGzNY6xDI04LcqYNudZLyTtFFzquK+lm/oy1G2DX7g7t2//0TXB9dnTISeoZ03pKB5EZMkKWcVwk9hbCMU2nkjO7Pr5XLLYcunULD7bGJX3TCPKcrK8uBD6g2eF09jNN4HHsEs8QJb/P1Z6Xgjxx1Hufp+W1zThtQ1Qjn8H/c6fBf4swNWrV6uvL7YcJErwfBxlCCEYx9mxLsQyNN5aaO4Scfy8Ji8muDVXrwS/P15TbTJ+rKievSDlvUst2p55LrTPrJAsNh2KhkpMXG57pNdUG+XVUlBT0wSOdvJ7rmuiGrPZho1TBk9JXtDxLMIkr4Tw55s2cVZQO2ehvdPCKM7UodU1uTZb48qMx6Ntn45nVZ/pTQvAJiXL43rXo+YYXJvxuL85xjb06lChBO7Vz+89fJwmHEPjWtcjLyRLeyq6hq5xZ6G+S1ASKJlV5xu0zjfUAbTjmfsSiZc7KpB2zBeCv4au0fKOvzkZmuDmXK167Usdl+1xTOcADR3X0rmzUK+q/GcNx9JxzuGZjUqtg7ptMFOzeHfJ5HlfCYNP5kzjDer4BEmOlIJLbY9u3WKp5XBvY4wmqAw8hHix1unHuGWapvGlK51qH9iLJC/IC8nNbo2kndOtO8xekAPbaaBmGbiW0iC6Putye76xa7+bbzrUHePEhhunBVPXuDFbQxOCum2w3NKYrVsst9wj9cAuAoQQu+KMQZgipaBTM8lzyWLLYanlICWHHua6dZuOZ2GbGg3HoB+kLLfdI9eez8senuQFlq5zc65G0zG4MVfH0hWT/VLJypwuRrxKDHRWGMfKCGGh4fD2YoOr3Rg/zrgxW6vG5yLHyZahIaXEj1Xho+U28WydooAbF0iPbDqGBVVE+fr1LtdnPOamWIPjOON37m/zz/70tWPF7Zah8ef/4B3+wn/2PX79wzV+9f2lM7n+80CQ5FzquAgB7y23aNhKLmLSFqVN3cOT7uJ7i4Et1+S9pRbjJOPmbI0nvYC2m5MXaj6/iTkqhJiacwbfuDXLjh9zreuxNU64Oaf2kbSQvOkdfPos55X7qoq5msRZzs3ZOmvDCMvQ0IQgSvMz23+FYJfB1llgrmFTtw30kv24F5ahsdCy8eOchZLhnmQF8w2H2fp+xlTHs8p40OTdpSYPt8cUhSDL1fP348TUy/EA+GUp5ZO93xBCPD3OC0gp/ybwN4UQvwZkwESBrAn0D/mdvwz8ZYCvfvWr1ag6pl5tNquDkJV+RDTOkYy50a0dmeW2DA3r9aW3zgT9IOFZL8QxlUDzcTL2uiaq4G2p5bA1jmm5Fp2aTeecHQgdU6dbV5NtoemgaSqgfbId8PHqiIXm6TggLTQdpIyo2foL5tjM7pacyaR+1gvo+SndunWuVfLXwULTYW2w+/O9u9wiSnM+Wh0q2vpc7Y0Gi66lM1O3SqckB0PXuFu6hDzvh+yMk3O7503X5O5igyQvdrmSDYKUp70Ax9S4eUpVk9fBrfk63SChOzUvozSvHNpuztVeizlhGhq1KUFPFaQfHr6dVhvJOM54vO1jaBo352pv5PA/Qd02aHsmSa5aRx1TZ6dkUAnBGxfubblKhyYvJLN1GyFE1WryKvMmyQoebI3JC8n1bu3Ag8z0unyrVf/cHPaPi4Zj8s5ykzBRFebpe9ArNRtcS+fGOZtDTGDogtVBiGcZvL3YYLbx5uOPx9s+wzA70EHuIEzHGU3HpOVmZIXOpY5brSNHnaE1Tai4QMBbC40DY4EsL3iw5ZNkBde63udGBNazjGo/nLS7TVfqH235jKLj3+/zxGLLYWMY0XRMLFMHqar5gzA91xhjshcKwa6k2HEghGCp7dAPEmbr9pkbGkgpebQd4McZi63dzqrHxVzDJskL3q61uNx5sd7/7qMdkrzg5986flveH//iJX7tN+/x7/7Xn/Er7y5+bllTiy01hpMY6WrXoygkD7Z8laBqu6eSgJjMx8WWw5VSBmOp5e6Lu98Usrzg/qYyD7o+W6NmG2hCJbodU7tQe3iaFzzY9MmKgmvd2i5ziskzbunauTvyTTA5A842rNc2OTuKEDDfcGCKzDZ9TtoLTRPVufV5PyRIcpJMuQdeFMOGs8JpfLq/hGI17UtMAf/OUb8shLCllBNF1iGgAz9f/u4fBH7nVS9sqeUSJso5JojzE2e54ywnTFSF/VUX8jQvjuV6N44zCilfquvRC1KkVBok0RTl92WI0ryiWLc969wdhvZipmbhWS8q93khq77cXpAy33SIsxxNiFc+wNZtY59mzmHoB5P3TlhsOuoZecVNZyJWd9baLNOfb/o9R1FWuYcMXxI0FoUkeU1B6+NgIjJeFJJ+kOCYakPv+Uq7aMdPXnrAPq0KihBiX2IS1Jir+VTgx5micFv6oQmZLC/IirNrAZ2t2/sC2GGZpJj8O84KjKlD4F7khTy0LdLQxLk7zIHS84mSAl1TGld71yApXxxyzjrgm34W0rxgcxTRCxIMTaMfpEceCo+7nr8qdE3scs8cTFqtLePY82Z6fvtxRppJ4iynFyRlS61a86YP9Z+XpPyrYq/hQZqrOb85jpESgljpGu0NLM9qvKfHIExyLrXVM5nkBeYJW7hOsp4HiXoeXiY0m+VF1VpwnDkB7NqzNU28suvt3mR5UUiG0Yu1wU/ySui/H6T7ElNRmmNo4kJWk/c+g4MwrbSFRtHx7/ckpjsvNB2Thm0wDDPGUTYVryUVi/MgnDYDYnovHEXZsfeKSRzf8axqf33dGPMopLlkXI1p8kqJKcfUWWg4hGm2yzn3mw92MHXBV64d2ExyIHRN8Od/+Q5//v/xXf72D9f4I1/4fLKmpmOkyRpqaFp1sO+H6UsTU5P1XEpVtDmI2ZLmxdR8TGg4RhVjH/dccVaYxKBxWlRtYf0goW4bOKbGXN0+d9kOUHP9sPkYxC/MRiZr3uR+OqZ+bjq/gyDFMrR9e/zOOCHJC7bH8Wsnpl4F0/vCYfex5yc4hoFrvvj5g+K43y947cSUlPL/9JLv/doxXuJXhRD/avnvz4D/JbAkhPh7qGTXXzrJ9RSFZHUQsjmOabsmrqnTD9JSbOz4EzYvhcqKAppuuuuwcFwESVaxHV6GYaQ0MEC11xymxdItM6uepYRRJ/DjlM1RglZWhSab7aTCbpsa17seGyPV33teFblhpASU265Jp2YxCBN+71EPzzSYbVhcn1XsiU7NZBhmdOsWPV+xwjRNaakclCRIsoK1QXQsQeYgyZQY4CEBSNs1+WxzzHzd4t7mmLjU8dkbRB6FLC+4tzFGSmh7p+/iNghTdnx1L6NMtSXWLYMH22N0odFyVXWnF6jDa/MQJoyUkvub4zNxG5u2ZnYtjTApaLsmKwPldKVpQjEC6jY7fvJSfYf1YcTGMMY0Xi0hPIxSBoEKUiaVmO1xzDDKaNgGTddUlYpyI9jyY8ZRjqYpnYK9zKQ0L/hsXTFPltqvVgE9CBujiCQrWGiqeRsmOeslvbntqUPaJHmaZpL1gVonbs7V9iWn9oorvkqyIUqVu1KtbHU7DUgpWRkEmLrOWwv7g5BnvYBP18YESc7PvTV7Ku8JKoEzCJWV8mTzHoQpa4OQxZbD+lC52Y2jTOnWHPF5j7uenxRRqhw0XUtH10R5iDLL61drye35+rHmzd75XXcMRlHCSj9EEwLX1CvHtKtdj5Zr0vMT+nvu017sfU4vKsIk58OVAYYueG+5hVHq1+1t1X245ROnRZXE9Sx9n5ba64733v1vch1JVvDZxohBkHF3scFMTbHVHHP3vn4cnGQ9D5Oc+xvq8yxkh7OTjek9uZwTeSGrIsgwyvbNqSfbAUKoluNRlB1r/RjHGT0/oeWpxMfKICLP5a4Y5lkvZBCmaBrcmW8gUHtLmst9rz+x135Z7HDeyPKClX6EpqlYoxekNByDQekWp2uCW/M12p4qLB21r0yq+/Yp6P4dhNVBSJIVLLYcdCF41g9AqrahzZFildZspXf4smt93f37IEzvhUcJWk9QFJL7G8rhseGo+/3p+hCJapW5Pdc4Ezewyf49irJdDOij4MfKQbnhGDiGxt/47gp+nPHB5Vb1M7/zYJsvXm6fWK7hj35hmV/7zXv8pd/4lF99f/FC6tbtxbg0a2mV4tmbo7gyXJg4TV/puDQcgyDJX7rmTK/nUabc4q7P1vYxdUz9xdi1XJP7m+oc6FkJNccgLeOrOC2O3DdPE3GWV2fSpbaDa+lkRcFMTenVPdoesz6ICZKcr17v0PYsNoYRQZKfqTFElOZ8tj5mrmEfYm6jV9fadAzub47JcqWNudRyGEYZLddgFOf71v/TQpjk/J1PN5hrOnzpSnvXvYiynNVBxPIpGjcMwpRhmDJTs47NXotSdcY46Pw517BZG0TIQrIxirB1nSc7AWlecKnt7jKdmMyZpmNcKMOUk+DU+GBCCAf4l4CfRWlM/T3gP5BSHu6dCEgp/wbwN/Z8+S+Wf06MLT+uLIRn6iZFobLsSsxXLcTKCUW+tKomy6w6KG2kV8FE1+go5PmLH3qZPXDTMXl3efcCOLHe3BjHXO14mIZgtm6jC0FQ2tzHacFKP6xc0VxTP5eFdKUfkmYTloTJ052QYZipYDNSFM63FhrMNxwutQVCiMoKsyjURD0ouMwLyeYoPtD5YBqrg5CtUYKhK3c+YN+4a5pgtmaTZAWjOKFmGdV9OwkKSTXWBzksvC6e9QKKAlb6AU3HKp0H1SFhoaHE7ZVG2ssZMeqAcTZsqV6Q0PNT8qJgEKox/3htSFGoNo65uk0hFR37qKSiX47BxBr8pHiyHSClWqTfWVIi6yv9iEGU0vcTrs/WuD1f5/Z8HV0IHm6rgEVKSlvl3UFbnBXVuAZxDqdQ5BnHGeuDuPr/5Y7HyiBkEKQ86QVc7XhcnnG5WYqdb45e/OxBa9JuccVXS44+74cEsRKLr9vGqVTflNaYumH5AQviMFKuaUGS41qnE5AUhayswJOs4O6iiZSS3763RZQWPN0JmWvYCJQm3TtLzZe/IMdfz0+K9WHEKMrYKtk7UsLHayN0DRxDJStyKY81b/bOb1PXiNICITTWBhELLXvXz0oped5XyeQ4y3l7cf++MP2cSrm/Lfoi4dONEU921Li3XIvLHZfP1sfEWc5Cw2G5bImZMEsdU+fd5YPH/nXHe3r/8yyde+UBR9dhpR9RFPBkJ2C53T3W83cQTrKeT8+9o2Kayx1vl7rnw60xfqwSqMttlyQruDNvkBWyYitIqRJ+E/ZhzT6cfQrwdCeoWsKudDx2ShdQQ38hPj+Jh4pC8tnGiKJQCYobs265Tr/AZM0rCkqB4DefmNoaJxXDaLUf4Zg6n5Rz249V61GcFceeU5N7HZ/BHj6KUrZGagw0ESOB7z8dkheSmZpJy7WU1lTTOfKw9br790GwDf3I+GYvJFSMx2GUsjGKebYdMoozZhsWYZzzhSutl7/IK+JV1snVQUiYFCXbquDjtSF5Dk65L/qxcpj+F3/+5olfe8Ka+lf+2nf4L3+wyh//4vKJX+O8sdIPq+KRa+lV4brtGRiaRsMxyaTc1R52GHat5+U+GyTZgWeIaVb16iAiTDKe9XziTDJXt/HjjKx01Dxs3zxtxKX7Hqhk0O35euk+Dvc3xzze8nm8E9Ct2TzeDnBMnfVhuW8TnZme2uSe+ofEnIauVUyzJFPsqfVBDELyaNvnUtvjeT+kNtEGM8SpM5f8JOPe5phRlPHBpd3zvW6b3Jw1jmw1Py6klDzdUecPP8l4e/F4e/tkPwsPuI8LTYckK+gHKeuDmJqtE8QZK4OIIMmwTa3qRFjth0TlnGm55oVkDx+F02xU/E+AETBhSf0PgL8C/GOn+B5HwtZ1LENZxGpCoOvqaZs4TynXI8Vsudr1Dm27MnSNq12vrKa/GnNgIl52VCtA2zNJCyUWPXtC3aeKLi0hLQrCJOfj1RGmIVhsOuz4CQ3HRCIZRTlCcG4Vb9fUSbOstOxVwq4LTVu5JDZsikIFp36c41o6t+ZqzNVt0qzA0AXNlzjtaNrBzgfTmATsWS4ZhgnPS6bAzbkXPbqTg7dpaMw1VYLqVXSuLEPj6oyHnxxd9XwVuKaOH+dVQjHJClzLIM4km+MYzzaO5dRg6BpLbedQ2/jXukZLObkJIajZpQWsFMzUDO5t+jRsk3GcMXMMUfHF1kRH69WWqInzx2R8lRW8RjLOsU11bSv9ED/OsQyNKzOuSsY4B7vw1W1DVcmygvnm6YyvoYnK+W5ynZ6lsz2O0RFoQrA9jiv9o4kGjqGLA7WhJuKK4yh7Za02S9cIyNGn3ApfF/NNm6yQWMbBOgLdmrJHl5JTM2HQNKEcTNKiYqHkhazyjRujiKZrICXcPoDFdRCOu56fFK6pMwyz6hkYhhmmpsZ4ZRBSuOahAfRe7J3fPT9hJ4jpBykzs3WWmg6mpoGATml6YRu779NemPqL5/SiOIUdhqajAkxdiLJKK9nxYzZHCb0gYb5pY+ga12c9+kF6oEvhBK873tP7X1ZIikIlh7YHCXGa45kGMzWT15lmJ1nP67bBctshzSVzjeOvYVKq5JcAJOpe2IZWMYy7dYuma6AJgUQyCJRY9lGW5ZahkeVq/bVNrXrGpp9DZdCg2sAnieZBmDCK1XoxrTM117DJcolpaDQuiMbK5LMIodiLWS4ppGS25uDHAcMoZbUf4b2khXwaiy2HzVF8JoVFy9DQNJXYcy2dOFXFGNUGrEb+znzjWHvy6+7fpwW9bCsdR2r9HIZqjy9Q693mOOYHz4dHv9A5wTF1wqQozzCK4drPUhbL/fz3HvfIC8nXb3Rf6fX/yAdL/Npvfsb/8Tc+5Y98sHThWVOuqZ5D29RwTMV+1TSl2bY+jJBITO14CcDp9Vwv99eZI6RNBGXL/zimbhvkhWr5tk0dPS9eum+eNhq20qlLM6WPOUnSCaGucbZuse0nzDdsWq5ykzd0QZbLM71GU1fapcfpYHnaU0kTP0m5PlurWG8NW0eyf/0/LYiSqJHVin0GMJfaLtv+wSZAr/pe1fnjBGftiQbsYbH7JPaKs5w0z9kJEjxLOUROF6cmDt62qV34+X0YTnPXuCul/OLU//9bIcT3TvH1j4WWZ/L2UoOOZ6LrAsfQCdO86oUPk7zKOvtx9lI9oKZjvpZe0LR42csghDiyvW4QpIRpTrdu7UoszTdtpKRqL1ofquRLmklMXePmVP+uZxkYmjhzHZcsL9gaJzQdQwkMlwHX1RmPmbrFFy+32PITtemWAXWY5OTl4fWo6odjqsrZUQm2pZbDuojwLIOseJHZH8cZpq6xPU6U6O1c7VTuS8szz4QWDuqzrA4iujULy9C52nUZhhmGDrbuIBBKf+gYC+FBWkanAdfU6XgWBQULDYcoK7jccdgYJ9yeq+OYOuMoO1aLmGcZu57dk+LmbI0gVfbja4OI2brFrbk6C02bQZBi6BpxmayesIyOan07bR0ex9S5PV/HjzOSvGAcZyy1XNquxaVOTF7qISqXK4jKFouXYb7h8DoyUpc7Lm3PxDb0U9vUbEM/oloneO9SS7nLnCIb59ZcnSjL0YUSl67bBl+9NsPGKMKPMlxTJTGOKyR53PX8pJhr2ESZOqB3PIsoyRknOWGScUl46JpgFGXHHtfp+b3tx3imgdXQub3QQNO0fYHP5D4dFhDahnpOs0K+MYHS4+LGbJ22ayEEVQXRs3Rqtk7Lsao10rOMatzzQrI1Vi0i02vT64731RmPMM1BwiBKqds6SV5QlK19VXvaayZjT7KeH4fa3/OV5sZsXbmECiG43FGJ+2tdD9NQrTT3yrbAMM0rnRApJR0vO9b6cb1bw08yPFPH0BXbt5C7NfxsQ9+17o4ipVGyMYorzZBJksY29GMxJ84TLc/kpuaxE6TULB3D0Lg649IPU0y9ppKVhSRKjsfwajjmmbHdJ4wklYwqyHLJB5ebbI0S9DI+Oi6D9nX371dFlCotvUbpvAq74/iv3+zSD1JcU+Phls/GKL5Qa9rljsdMTc2fQZjylWszjJKUlqvWpW8+2MbQTqYvNQ1NE/xP/+Bb/Et/9dv8v7+3wp/88qXTvPxTx+WOi6EJCgnzDYumY9DzU8Zxhj2jzGDGSU7rGMv09HpuGdqxdPCiknl5baZGnOVc79ZoeiZN22TLj6lZ6ux1HhBC7Grx2hi+YDF36xZFAb/6fh1NE9QtA00T3JmvK72zOGNjFDFXGqqcJgxdHGuuF4UkiHPqtsH12Rrdms2N2XqVPPPjjBnPpHYWSXddaXfenKuR5hJrqsX4LM5tk/NH/QQi5co1+/D7ON908GyDQZiwM0651HYRGrRdq3JRLgqJpQvansly2z31sT4vnOaK/B0hxDeklL8DIIT4OvD3T/H1j404zXm6E1JIyTvLzV36UE3XpBmlZMV+jYKLijjLebITkOUFT3d8bs83KoE/29B3LbBzDZu07N/dmxk+rw14dRBVWgC35+uVcLymiSpAmCw+tqmzOYpoOC8oh0Uh2RjFaNrBLllHsb6yssJh6Vo19ll58AdVOXneCyuBw7uLjTciGHgSPO9HhElOkIS8s9TEtXRarkW3brHSDyudlGlM34fz6DXuBUoHC8A1S+aYY9Kt2zzrhcRlpWcv+kFCkOTMnpJwY1FItsYJaV5Uz2FWFFzueLRcqwry/DgjH0zu3fkHp1Gas+0nbI0iNKESpe+WY3vJKsWQs4KsKNDEwSyp04YQ4kwOPuNYiebOeNY+bQxdAyEFszWH2ktYkifFxDr6waZqQ9oeJ7y92GCuobSatsfxgUKpRaFYiJP207Pe3DfHMYNArUWOodP2rCrQXumHBEl2oMjw9jhW7oJ1+9CEdJjmFKXQq3uILs20xfZheNMuRCfB3jF9e6nJSj/CMdWeKKVqBZfAfEMVc7bLNrLDWH2vAiHUff10fUScFqXFeZPn/ZAozVlquWSFZH0U0nSMCyFiGiQZn66PGMcZ17set8ps6EHGKcrJcfezeZL1Q5+KB4Aj1/6ZmsVMzWJtEPG8FyKAcZQRZ/mFaNs7DL0wpR+oP7fn67iOTsuziNKc5/0QU9NoHLDuTSQLDF2cSSHpIJi6hpQFT7aVlmHDMfjK9Q5PdwKEEHQOOMBtjWPSXNmev+kK/dOdgCgt2B4nXOm4jJN8155j6loVg7y73KKxE5ypmcVJEGdqj6pZBp6l7vWdhTqfrI3Qyj3omw93+OBy67WYaL/63iJvLzb49/6bz/ijX1i60K0+caaK3KBaMq/MeDRdi6KQPOuFpEVxoDZkz08I05y5hn2sDpHJXNM1sStGrVk6bc8kzgruLDSq52ii3wsqsXEezMC9n2muYZctyxqXOwcnIQxdYxQlrA0UYUEgTsSWfRUcFs9rmmChpQrDV2bcaj+J0pzHW+Pq584iMaVrGjM1m7SQmPqL+ySlOmsK1Nn5tGI9Q9dovsa8qtYC29gV99dtpT2XlC3Slzvurud7axyzUbZjN52zI0qcNU5zNn0d+DNCiIk731XgIyHEDwAppfzCKb7XgcjyomQeqAMfKLbBdOC01/XorJBkRdkC8eoP+kS4W6BaKbbGCUJTgqC6Jmg4xr7X96zjO9KdFSbBiWrrkoe6X8DBLjxPdgIleCoElq6d2ElwbRjR81VCwrVU0sHQNW7M1sgLyThKq35edY2v8inPF8b0PZ36uhrvBlLKfZWA9VHMzjghL5QTydwZi97rUzdy+t97ndCKQlbJyjhTSWRQLRp35hv7AiUpX+76sReb45jNUUyc5WS5pGYbBwbMNds4lktdmhfoQrzUmVOiEl0nCVCe7ATE6UTI38XUtH3PomVox6pGHeca3xSklDwqLd5HYcrbe/R0bFNnvmzxPYsD5u71SP17csidXJ+aO+q52/JV+2ScKcraWZtFTLc87R2/5SlnyzQvqiDEj7NKxDxMci513APvnWsaiqkYpzzdCfBs440kYd8kpvfESSA6qTZrQlRrK6h1K0gUo/a0Wt4nz9/k78sdr7qWD1eVBl/PV0lpTRNIKSsx9LM+6IeJatut9mepCkt5IXluhFVi6iCcl5NjUUhyqRjggzBlcxTjmHrlaKed0gZeFJIwPZw5+KrYvf68+PpeR6q9MePGKKo0n/KiYKZ2vEP260Irr1NKde3TzPu8kLskA8Zxxmq5DinjF/OlZjNnfu2aKJ1plWSHqev4cXagNpWuiTfCsDssHl7pR4yjjG0S7lqqWHqlbGU1dY1CSr73tM+/8HMn15eahmJN3eFf/E+/zd/47gp/+iuXX+v1zhJiz7M4wbTz595nMkxynvXCUr4k5fZ848h19MmOzyBI0TWl1dpyzSouOIg1uyvWPYeYK0rVZypKB+O7C42KcX8YJtc/HVOc9bX2g4RHWz66ppFkRTW/sryoOoP2xlPTY3xW8asmVHK/5ui7zszbflKtX7omLoRYuJSSz9bHZIXE8BO8xRfdQZM4/7AOBG3XHDmXyz0TnGaE+qun+FonRl5IPttQav+OqdGpGUSpZMazKmcUIVQ/6Ukf/ryQVZvZcfB0J6j0al5VcG6lH7I9fiHcfWtOiTQnecHqIGQUpXiWzttLzQMP7BNl/oZjnFu1DVQwFaU53ZpFu2byvB/RL22FZ0vRwJcJsj3YGrM2iBnHGZfa7qE/N6mSTpzg8kKy3FbZ48lBb6IzBmphH8dKZHmlF1G3db5wuU3LMy+cy9RKXznjLLWd6rB5ZcZjECoKeloUWEJpEPSDBE0TbI1i/Din7ZnVRmpqglxKnvZCskJtUqd1mBhFaeWWMlnMW57JNc1DSnBMrUpAjaKULFcH6/Whcoa8PV9H15SOkhDquZEFgHrepzfQKFVuJAc5qByEJCsYhIrOf62rHD6mk5/T68Fy2z1ws44zZcm94yes9CNMQ3B7rn7485jmPNj0j+3oOAhSwkRZVl/ueCy2HOp7Es3rE0eVpnOgA0+aK92XUaQMBQxdcHu+fuGeZyEEW+OYnp/SqZn7ElN5XvCjlT6GoXH7Fdo/+kGi3Opq9oEVossdj6GTVs4weaEE1xuOgW3o3N/0CZO8GjtT0+gFCdvjBCklbdc6NUblxIHPNrVK4HOmpkSFkbJqe578rB9n1CydRzsBaSZZbjt0qxYrGIYp22PlxHNrrr7vObne9fjh8z6rg4iVfoxtaNycb2DpWqX7dRTiLGcUqbb3i8osjVLlrONM3VdQyYasrJL2g5QnOwFheV/nGw6mLmiV42vqmhJIHiq27nHaxQ+7lrVBhGWoQPdqx2UU55VZxWQterQd8HQnQNcmFW/1+4+3A0aR0qa6c0Kx55NgaxyzWq6DdxaUi51r6Sy3He5vjPGjjE/XRiy2nENdXo+ae0ehKCRpsb+NTUrJ6iDCjzOCJEMTSgdw8vzNNWxqls6ljodeavFNilCvikfbPn6c49mvnpgKk5y1odKMmhREF5sObtkG55h6tbcIIRhGKUUhGUVZJRg/SQJN4pjtcazYteOUtxYO34NOgkGQsu3HzNT2M+EMXbk4h2m+y1FuZ5zw0dqAum1ya75O3TZ26SRujeNdMetZHIKllCR5Ud0/5fgakeXKncwQsDIIGUeqsHl9tvZa43la1yqlYtk82wlxLY1OzdpXIJ8kyDVNJQcHYcqznaDSEAqSnKyQfP3GzGtf26+8u8i7S03+vd/8jD/xpeULwZqaxL3TDnK2oZK3UZpTs3XyQulDjeOMJCvwLI0Hm0HFpmq5JpqmYv+1vmIbCqFa2g4jCawOQp7uhPSDhKvdWsWomcQF3bpF3THIc0mndMDreCaOqVVzeoI0L6o19VXOmodhst+v9EMsXb3vrQNipTQvGIYpNdvgeS+kHybMN5xKU7EfJGhTbe6niZV+yPog4lk/5MqMh1Hex3Gc8WhLtX0vNh00TdB2TTRNVGvhZIynNR+3xjGjKGOuYb82i7mQBT941uPabI33ll+In4dJzsMtH11TeoYXAU92Alb7EXGec2O2Vp1hJ5pihq5aOtO8oO2p2HFyH2frNqamtAInzOVhlLI1iml71uemS+zUElNSysdCiA5wZfp1pZTfPq33eBmyoqicdgoJrmGQZCk7QUyYZqwP46rdaXKQPo5YdJLl3N/0yfIXh4KjMGkRG0cZUspXYk2Fpf5NlkuyosC1dK51XZ71Q4ZhysMtH6u0wv7ylQ7GngPDtDJ/+5yU+eMsf+HeBCwYDg82xjze8enWbN5abFAUKkt9mLtKlBa0XLXo35yrHchAUZbgQxbKgG/CjrKMmKWWy0LTxrV0LF1tGlJKHmz6ZHnBvfURnmUSlgwc45CNI8uVFWzdNqqN51XH8iQYRSlb4xiBQB/GXJnxVG92KX784cqAtFC0+cnmI6UkygpqllG1K4LqSRYC0rJPfvJMnQae90LSXJbJMLU4RqlaHJ/uBGyOYmYbNktNh0fbgapqlQeQJCtK8XYds3TsyIoCDVE977q296CiDnxHbVBxljMIUwxNw7P1iiUWJBlhoq51exyzOggxNLFrPZjg8bbPMMyo2S8YC2kmX6rhNekGmLgmvQz9IOHpjnJCa7gGy2114CoKyfY4rpgSj7cChKaeu72sqUGoXkOIF6KIWa4q/hctMQWq7cfSNTzbqObR5O/vPu3z/acDklxy6RXcWJ711L0Mk4CWt9txJUqV2GnbM/nR8yHjJCNKM9qujW0qXZvJmI3LdbtTs5gvtfEcU+kCnVZCZmOogq1RpKjWnqXjJzmWLvjRqmr5emuhTrdmc39zTJpJdE0CLxgK3bpdsS2e9nzi9IU70N7ElKFrpbuiziCIGcU5z3qBSlRnkrZr0Km/PPB7uOWTZpId8/B1+03j4daYMCmqJLRnKTOIe+U9NHRBnBY83PJZbju0PZPrsx4C2PETOp6lEvxjtX8VBbsYaifBxjCq2gO7DYv5hoNjatzbGFOzDG7N12k6BoMgYbHlEpcaTZO9JSqZenFWnOmeMzGEkWWr58S5+FLbrRLJf7e/xXzD4us3u+rgv+d+VHMv3T/3jkJRSD5dHzGIUi63XS51XjATRnHG9jhhHGf4sWoXHMcZlz2PW/M1skJWbYD3NkasDiIatsG7y62XztWidCM86MA42R+Ps4YfhrVhxChKK0ekSexg6BqmJvj+sz5BojRPu3WLx1tqbwzTjLpt4sd5NeZzDdUKY2iCrCyOprnkNEilz/rK5TdIQlquMkGYMIxBJU2llMRpQaemErcfrQ1Z7ce0XJU8mMRGt+bqJHnB1jgmiPND9/C9eJVne5K0bbqq4BomOTvjhEJKHm6N0YTg2U5A3TGYbyjttTflIvp4O2B9pHRBZ2q2ctQaRbS9g+PxS22XpmNimxpBmvNw0+ez9REN1+BS2ysPoiZfvf76iakJa+rP/pVv8V985zn/+FevvPZrvg52xb1aXI1ZmCjDpiQr+NHKgKZjcnXG42lPFaNdS6/ckidF74kmYpzlmJoSoS4k6Ic8alFa0PFUfHJ1xq32jsk6sDYI0YaKzR6lOTu+MtK4MVvDMdUzONl3t0sXToli6p9WImASJ48j5fAaHRLLP9zyS8dOyfef9Ymygrfm6/yBt+Z5srN/zp8mwjTH0DWWWy7LbYe5Mq4O4qyKT360MqDjWYQNuyIVGJrgg+UWhi5KAxx1/powmdLSvf11MIoyvvusz9N+yNdvdqnbqgisaYKltjonnUSo/CwRpcpgyY8zbs7WqjPI5GwXp+o+1kszKV0TbAxjCin54HILx9KqdRzUWU1peIWV4c1Fx6klpoQQ/ybwzwH3gSlTTn7ptN7jZbAN5QoQJMrd6KOVIQWST9ZGdDyLzVHCYsvGtVSV4sm2ahebMEwGQUo/TOjUrCrgeboT8HBrzOPtgNkyeD9OYmqp5bA1VhnKlz0EsqRlTg4PE0RpzjjKGIQJby02sA2lw/RbH2+yOY6IswLHNBhFKc/7EZ1asIvSOY4zdvyEvJDMNuwzp28mWcGDrTFpXrq45IqSrglVhfz+0wFN12ChaREk6vC8M465PlvfJ+Z8pePRCxKu1b1D26LirODpjrJD1QSsDUMajslVU21mYo8ezzBMebA1xirb+bICZusW/TDhyY7azPYKIT7thWyPY9Jc8tVrHdZHqj2wW7fOrIVhYt3+4cqQjmexXIoqPtz2CeKcp72Ah5s+jqXxlWsam+OI7z8d0HIt3l5SLIi9/eNzDQchRMUQOA1sjmLub44Jk5z3LjXRNVX5fbwVsD2O+dHKEF0TvLPcwDY0vv+8j5BwtVuj7Zm4lrHrAO2YOncXmmyMlFD93uq5rgk6tRcOKmGSE6Z5VXXZfQ/Vn5ptVOyTNC94sOmX9sA5wyjlRyvDsj1Q6W8VheThls/vPtqmH2S8t9RECKsSSzxIs20apqHRdI3qHheFpB+muKa+L1kwcWqftONODlIrg5CenyKE0vZ4sD1maxTz/nKTKzMepq6xOgj5vYc7bI5j5ho217q10mY3x75AblTTyAtJlikBzssdDyFExSqda9jEccbH6yOyvOCz9eNZ607Ds3QebPnEmaKL35yrle5GLxxY4yzndx/tlMl8iaGNabgmb80rQfxhlDJXfzE/bszVWB/E2ObpaQ6No5QPVweMItVaYhkaz3oh/SBlYxjx0doQS9exDeVgem99TC9IWWqppH5e7G4rdC2dm7N1VgdR5TK0F1legICNQUghFVNisekQJhnP+wG/9cmIumPyxcstfuLawQeeiVnIYVosh+1jZ4E0LxhFKmk8WSc2RzEbI5VIudGtYeoaQZLx2fqIlX5Ey1VCtXN1h4ZtsDIIWWq6bI1ivvdsgGUIPlhuc6XrlSyXCPcEunOD0sCj5ZpsjmK+86TP2jAilwUNp8WPng+Ikpx+mGCbOtdnPZ7uhAzLROgHl3YnUy61VftO+5SCyCjNCZKclmtWsUCSqcp6z0+4PltTzr1SrYHff9bneT9kpR9ya67B2jDi3saYbt3mrYXdzANNwLN+yPwJdEuyQlYHq2el1uMwTFlqvWAY2KVDXM3S8UzFYCykpOGo1n+1Vox4shPwdMenZpv4jsk7y4frBUUlq7Uo7eX3PquXOx49PzlQd+44yAvJ2iDk8XbAQtPmnSV1mHq6EzIomY0frg7RhOCLl1s4psYPnvcpCrjSdXFKy+/p+6sO2hrrwwjX2r+XvCo8SznUbQyjiqkQJop1mOVKf9VPMx5u+ni2wZevtvEjFVdqQu5ysHItHRdVCNwYKSe+o1qy1wYRm6N4F8Mb1Dqt3IeNA5PCk8PZk52AYZixNgzLBGZKUmpYCgS5hEsdh2td70wOYpNnCaj2m+lrzHKVBH9U7kt/6L15kjwnL923lw4wMdE0UbEOn2wH/GhlUGp2OngLyljmH/wv/qFTY+H8Q+8u8MGlFv+HX/+UP/z+4hvVuIvSnE/XRxQS/sAt5Tg4iSnTouB7T3sEccHljkvTNfjuk355EG/SrSvX32n3dMfUubvYZKtk9b/sDDQxSVpsOcyUDEFD16q4wCjgO4/6hGnOl6+2WRvEPNr2+XhtyBcvd3BMnaszHi3PxDE0Pl0fkRcFbdc8VYaKY+q8s9w8cI3aGsfc3xizOgjVviUl333aV4llV7G80qwo2cMaP1oZVqyr0zofLrfcKoafPod0ahbjWBUEn/ci7m/4fPlaCykF333cJysKtscxSy2PpmtwrauSMcMw4WkvYLHlcq3rvZbMQ5TmfLI2ZqmVsj6MeJSoJO9s3eL+RkGey8px9k3jUkfFJldnPNypGGSiKbY6iNkaJRhaTFQaN+lCMQMnrddSwkLLZr7h4Fm6KpT5ag9dbDl0DygyXSScZhT5jwO3pJTJKb7miaAGzuCz9XFJL5a0PcWeudp1ESj9hKWWwzBSweTk76e9ACnBj3PeXVZBWj9ISTOpso9CUW1HUVplWw9Dp2YdK7jZHMU83g7YHifcXqhVejc7fkyY5jQcE1vXy6+lRFlOlqvWj1tzNfwkp+NZZEWx63Wf9QI8yyDOcm7O1s48Q+rHGWkmAYFna6SBquxtjmLqpfi1Y2nM1BzCNCztuyOld2LrNB2V+TXKjfmolgBdExi6xlzdYm2obD4nVQzPViwcv8wkO6bOtp+w0LTx45x3llrV2Pzw+QB48QxMI8lUTzcoCvYkIOoFyZklpuJMiXUbmlbp2wBlBQS2RhFN12QUqSC35ycIBKahKJxtzyTN9y+up+3CNxFdzosXrZITZ7thnGIZgrxQmf2P10aEZbK46RjcnK0zTrJ9bATFCDy47dUytEqXJc2LKtngx9m+aqhjKjOAOM3pli6VPT8hLDVbilKrpOWaNByDNFfrxE6Q8NnGiI1hotp+wpjLXRdD046l2Wbs0a573lcJByGUuP70Z52pWUiptsGZmsXGKGIUZaTlPZRSfc4Zz0IAnmUSJDmuCZ+tjXneV9XCIFaVsZZrsnROei8nwSCcVEEhl5KWp2j2k7UV1HzSDEHNMpDIA5/fo3Bjtsb2OKHnJ3y2PqKQkrcXG8RZXjHZ1kcRjdJJp8gLZSnvmvTDlPmmw0zNIkjzqv10r6nEaeDBlk+YFBQFdGqqhTgux3yUZNi6Ri4lYVLwe497pLka35qjCiKC/boBhq69lBGwNU7w4xyBUI43ts612RrP+yEPtsYUUjHFNkfJodonN2ZrDKP0UPH9zVHMeqnZdGu+dqYaVo+31T00dME7ZUtonOXMeDY1y+DarErgrg+VoYBlaqz0Q2xD42kv4EtXWowjizQveFbu+XEqCbNSfN48fB06CIOyPRAoneuUg1maSeabKpBseyYP/IRCqnVCSlVMUUw2bV+scJrOa1lecG9jzCjKyIqCtxebldX4MMpouAaOpcY8yQv8WLkW60Lw/nIbz9JxTZ2GYyp9wD3MA1MXim0mxLEY6KAYvPc2xry92KBmGyR5QdMxyaVEY5KYeuEQJyXc2xiTS8njbZ/3llts+wnPegE9P0UTGk7Zgviyw8v6MOLxtk/NNqpC4zT26l2eFEGSqdYhBEkq2fET5psOSWmv2guUmK1q4YYPV4YMQsWAaDkmdxYaZdtsumv8T/pMHgfXux73Nsb4cYYf5+X+qOHHqmUqLVSb+PooohjActuh5ZncMWrYh5govGwP34uJSUo/SLncecGcelB2J7iWdqD+41LLYW0QMY5S4ixnHOUq2dwPmW86xJlKVtRsk0uds0lKgWJgTJg6wyitElN+rJJ5ALksiLOCmm2w46eMyp/r7BHLDhK19kyvmxLFMs4Kye35evVcnqYGjxCC/9WfeI8//R/8Nv/7X/+Uf+OPv3dqr31SjKIMTQjyXLITpix1XsS9YZyBfHH+erjlE6QZtqn0d691a/glK2cadds4VqHkoPklpcSxdDo1i81RTIFKPD/cHJPkEk0IdKHhJ2nVngsqnigK9f3RVPfCaWF6jRpFypVUIFjtR3y8OiLJc652dTo1k7ZrkVqKVfa8F5axuqRu6wRJQZwWBEl2anvNQfM/ywvCVLkZmrrG452QQZhwf8PncsdFoorIqgBHFQ/1glQVGtGwDR0/fj2DCyEETcfANjSGodKQ7AcpMzUVE6W50jbeLtnTb7Ll7aDnNsuVFm0hCwyhs9R2+XhtQN0yy3smudKpUUhZzYPJ/Lk641FIJdvwaNtnHGWM286BraAXBacZQf4QaAMbp/iaJ8aEMXGtW0MiuTlXI0hUFWYcZQRxzvowZr5pVwwYUJo4YVLgmBN9IkG3btILYq7PeczXHXaCmH54eqyZQqpgJUxztsYJSy0lnjwMM6VRoWu8s6iC74WmzVvzDTZGMbcX6tyaqxMmqm1pZqpSIKVUYqFFQfOcWvgajoFrKc2SjmcTp2pm5FLy82/NlvaVFm8tNEjygo1hRIxasAwheLg1ZhiqRNJE6+JlsA2Nr9+YoVu36ZX06CRTlfQdP8HQRKUhdGuuTtuzCJKcjmfvCjwXWw7b4+TARehS22NtEOGaaorM1pWT12z97BYs29CoWTqWIZirOxWz5sqMS89P+cbNLquDCE0ooeN+kOJaGpfbLlJKPloZomuq0rPXEv40MVOz0Mv5MXm+Zjxlxe5YTWY8C00oUeuNYYxrGsw3VRvsZ+tjkrzANAR3F05ulT698B7G4Gi5JrgmcZZXIse2qe7LTM0iyQuiNCfOCpbbilHmmHrl3tPxTC53amwMVWvC20vNE1eVJtcm5cHXOd1OdsV3IAABAABJREFUPGl/NXTBQtPGNvVKgHd7bDLftGnYBhJoesqlIy0kt+Y9wqTg0/Uxdxbq5+IMcxKsDkLSTOLHSo8sl7DQdMq11aIfpGVPvOALl1r4ScY3bs7wH57wfSbi+v0wrbQTJOo5iBrK1bBba3Nv06flGhi64OFWwELDqdhUj7YCkqx4LV3Ao9BwlCaL7RgVK/dS22VzFPOly21W6iEScE2dUZSVVVuHGc9iaxjjl20NE7bVceCYWikqClFeoOsaSabYMz99axbH0BjFOVe73i63mmkcxdTIp57v4uR5xROhmJr7k1aghaYaR9uwq/FvOoYqQjUdWrbB016kEkG6zvZYVeEvd1RFUgA3Z18tSJv+7LmUzNZtHuo+3brFUsvlxlyNfpByZ14oYW1LZ20YqTb7OOEnrrVf8468HJOr2x7HGLrG2iBipmYxCBM2hhGGLnh7USUAbEM5UN2YrdGtq+Lazbk6moCtUULT3W0ikeYFUqq10zTEiUXIJfClK+2ygLWfIaME6BX71LV0Plsf0nAsHm6NFfvNMfGTnKtd1fp6FCPYjzOEgHGc0nRPf62sWYql61o67ZpZPavLbZetUcLXrs/waNsvizQmwyikZqt9Z6ntMAxT7m2MMXWN2Ya1SyvttCGEEo6f8Wz6YcLVrodlaERZQcNWrIWsKHhWaqClmaq0398ck+UqUXh38dV1pGYbFlujhE7tBStQSlntlYetI926KjAuNFW7acs1lOamIQjijK9e73Cp42Hp2i7Hx9NGyzXpB0m1z0wwvdffmW/QsE3VCm5qpL5kFGb43ot2+wkrCODarFdd80JTxQfXuzVmG/aBznOngZ+42uHPfOMa//F//4ifvzvHL96dP5P3OQozNQtT16hZGla5D3XLWK3lGTiWzjjOMEtRbdvQmG84LDRtVnphZXZ1mPzHSTFhMsuSYbLcdni8FeBYBss15ajZcAzmGg7GlOu1EOqz+El2ZmMGLxiHSZ5za7ZOXkg0DWyhM1uzef9Si+2xIjP81M0uvTB9EefWbZJBVJ43zjZmfLDlEyU5mqYSJItNm36gdGYtQ+Or1zuEiYo/BKI6j+eFpOmqgqyliwNdS0+CmqVza67GWwtNdQ1hRqdmYmgaG6OYKFHP1JUZjzAJL5QWk5SSextjPiw7UTo1k4W6yxcvd3i2E+JYOl+/PkOBWouGoUrqTTQOhRAstVyiROndTZyJLzJO86n8t4HvCCF+CMSTL0op//gpvseRmNAq14ZKzC5KlC2zEkcfkWaSmqXvcwe4OVuv9Ax2fJWsKCR0PBtdUxvE/bISMmGHvA7yvGB9EBLEGd26VVG2QR1QJ0yniYBc27P4eklxncAyNFqeSc9PGOQpLc/keV/1kxYSbpywylZIyepATcqTZKcNfXd1y9AEaV4wW7fRNMGf+okXVqZXOmoBSrKc+abNp+sjtvyELJNc6rgESU4Q59QdgzhTGf0Zbzft0DJebAQzNYu1YcQgTyuNFb+sVEy0M2Zq1oG9tW3XZBCkFFL1k/vJCz2uumPw5WsdgliJH5q6tqvtcBAq8eqZ2sHCyFkh2RhFJ7KbF0LwweU2S22XQsoqCTZdQb85p1p31kcRN+fqXO54JHnBk52AtYGif8ZZwSBM0TXVEhQmOaM4rfrvJ3jV8Z5vOvzi2/P4cV4t4JomKtHv23NqLn26PmKp7XBzrsaVjseDLZ8nOz5Nx6LtmSSZEvSslcyBSRX1ZZuCbehcm/WqcUlzxTJrOMYuOj2AWTqsrPYDXMuoRKMNXeMLl9uASkqsDhR74QtX2nxwuYVrGfw3H60zLKvZd15ByHW57eKYCY6pWo7iLGcYKm2M6XutWH3qs2d5wZWOS70c69vzDW7Pl9ptI3Wwfn+5xe05lYT67tM+T3cCDE1wZcZ9o4mpJCvY9mNq9oukS80y6GcpjmVwfVaxUCd9/Mttt0ruWzrMt2x04XJzvkGaS4ZReqKDxWJLabZsj1+wJidfn2Cp7XJ/c8zqIOJnbneZa9isDiJWB7K0XdZL4fwUpGpJ9qyDq66vMr+vzai2S3PKaVSxeRXjaanl0C/ba2ZqFldmXGbrNk92Ah5s+TimTss1CZIMP6ZyZd3xExxTO7Dy2fYs3l5sMAhidF1H1+DTdcU47NYtfuW9RTZH8W6rT1Rg2AsSvGMISi80HHShKORn3cq33HJ4vB1gG5pqZ60rp7K9rLF+oBhouqYpZtXU9S22lHBonku+dKWNoWtIqfTdNCEOZDsfNt4dz6yS5d2aasP66vUOH66NsHR1eLrUVvvf+jDi2Y4S2m25pQ20VMYPHc86dW24opBsDSN64xjX1OjUbFxLK4V0BTdm64DEmlqPrsx4BzLwrnYNFWcEKs5QrXRjsryg5uhcm6kdm81h6BqLLaW503SNI5mJmqZMHaI0Q0pBXCaQ5xo2lzpKE+bJdsCj7YAbc4cbZDRdk0ttD01AlCg2pZ9k+/ZFeLX5rWlq/77U8cjK+AcUE+ZqV13TRGD3k7URdUfnC4027y438cv98ulOyOWOS5IVZFXbqtofh1FKnBaVWcKr7t8TqD1Kr9YVgKWWKnJlhWRrFPPOktINMwzBMMzIc8mMZ1aakWmuWuubrokmKFv99s+hHT+pYkJdO8ydS7lNDcOMdvmM9cO0XDMFK/0QQ9dwTGVUIITqThhFKT93Z54oLbhZFiJPipOOt2UoY4IgyVQRwdPK1nyTSx23Gv9r3RpSSoZhyrcf9xlFKV+40trVUjvB9L/b3n5R+rPC//wPv8PvPurxP/lr3+Gv/Qvf4P1LJ9OK24tX2b/bnsUvvT3PKFIJA9gdU16dqRGUc8SzdL7WmOFq1+PxdsDWOMbQFAs+SnMlim7raELQCxLqRzjRZnnBTpBQs4xKKzVOc/JC8mTHJ5eStxYaXJ3xFLM9L/jKtQ5Nd//4LLdV0XjSCfIqGEXpLq1YUMzctChoOgZ+nBMkGeNYERjCNGe+7nB3oYlr6Sy0VHHzD3+wVBVvao5RxUZNx9zVivsqSPOC7XFSFayiNK9Y1boQjEotrCQr2BgpnWdD1/ipUqtwGKUgBF++0i5dQHfPucnZ5/ps7bW6PbbGSnvJtXQud9TettR2We6o9wuTnMttDylldc+nJTu2x7GSxCnPsmcNKSXbfoKpqTPoMEyxDUX66IUJcarale8uKif2txYaWLpgHCsjpcl6vheTNtCrXW/XHDsu9o73WeM0o8j/GPiLwA+AY2duhBBfB/5dIAd+T0r5F4QQ/xrwJ4DHwD8npdzfa/USmIbgO096PNgM6Nb7/OmvXKYo1KbrmNqBm7imCfwkY2usDseWoRGlBYWU9MZKC2W57RAkKqFyHKR5oSifBzzQP1od8nfubREnBW/rGj95o8aOn7A1VloYtqEy8kcxnrbHcWUbfgW3nPCq2rj3sHEU4qxga5RUDk+HwS8TeJ3awcH0QYH9Vhn0z9QsPFsxafpBysOtgKW2Q6TlLLRsNkcxcVqga6pqlpZ6Ujdma7Rca9+9THPlmtWwlYi0a+rYula1TUzaAicL3yBQCaxu3S4P9kpAeqFpU7dNRlFWMSaajrlrcxnHGUGsFtwfPOuDEFxO3QMth9NMMWEmNqV7URRqAbJ0bV/r4uTnw0TR+lvei8D5eT9kGGYYQvDWYgPPMniwOcY1DVpeTtNVQdyTbVWFuz7r8WQnIM8lDzbHXOvWqkrsUeMtpWpHEOW4TWOSLJNS7hpbUCKIj7YCTE19tqszHsNQUa3nG0po8HLH5WkvUILFhgpUn/dCojTnuana59xDgonJuKR5wbce9xBA3TF4Z7G5xy5VMFMz+d7TBFPP+HBlwAdlQmoynj96PsDSNUxDCWH3o7Rqv5FSVSCmE49Zrpa2o+alWbJdQAXln66pgGrb13h78YWOkhAqCf3x2pAsh9++v82vvLdYfX8Qpny6rg6525oSnw7SnAKV+Gl6Bjq7K0oTJ7KzdlALkkyZK3gWn64P2R6ntFyD9y+1qhazuYbSvlLVveJALZpvP+nzw+dDAG7Oq0Pdk+1gXwvkBAfNC2BX8nj62ib3QWnbFHimQcud1nIR1VgVUvJkO2B1ENL2lIj23cUG4yjDTzKWmg66rh05vydr5PT7a5rYxWTcLoW2J0n2yXwQQnB7roZjGUpIVVIWSiQLTbvSgfFspevSD9JKJ+Zyx903bzQBUVaQxhlJ6jF5VKI0pxekrAwiBmHCeMarmEPPe0oX56BW1GkMQrWenjRwywtZtdUeBSllmYxTSWQ/ztncjJmv22yPY+4uNPe9d5TlCCFIsgLHMvjSlTaFVPu6VopQe6bB7z3u8e5ykyR7IbaqCbFvTZ6M90Sc1Tb0SkB27/iHaUGU5Jh26ZZjTPYg9f6zdYsdXzFJ/8HDHa52awzClFbpeviyA+m0o9tR2PJj/v79bR5uBTQdgz/2pSaLTZeVfqjcHm2ducbBrqT7Xqt08ANYKhw8U4kOi7Kl5STMbFMXbI0TJajva9xdPJ6w7bWuYp+5psbf+2yLotTQdK2MXEp0IYhfYpBxueMx42Xc3xrzvB+xMYqYb7xgTU8naI6a31AexsKU5pTIOewurMRZziBQrXmupcTl1wYRaS6xdJ3b87WyKKMS47MNC8/SWWq5PNoOCJMc0xBc79YqZs3qIKBbc47cv/e+917oQrHc9lbPlQagcii0TY0783XWS9OGTs2ibivWhaFpfLw2pCigGSnX02c7YXV4ujGntGImwtUt16zck0HFxz1ftTdOiiqe9SKJ8HBLtZ0Iofa0T9ZGxFnOT96YUcYFpRtg0zWZqVtHzp2XIU5zPloZIhcbLLTcamwPu3egYoGJdqUfZ1Ub02T8lVi9kizoBQmbw5goy7m/Nebd0hlsxrPKlm0qDc3zhmvp/OU/8xX+if/L7/BP/uXf4d/8k+/xJ7906ZXbII/avydx9N7zw/Rz0A8S0lwVZ0XZJvxgy0cTojItGUYqpmx7am+ca9gMwhQ/ztE1gWUIwqRgpVDJ26Zr7no+pJSsDSKe90JsUycvQiWILQSuqVF3lDGOoSldytvzDe5vjhhHOU92Qm7P65W50rafoJcJ2b26uROMopQwzfcV2qeRF5LH20HVFZBmOU96ASs9pZX4aaxa7wwdXFOjW7fYGScgBbN1ixtzNRUrjuNdcfvewvpe7P0MR2GlPIeAmsfferRD01UseE2Iat262lWawU3XIc2UfMWd+To/eD7EEIJnvaCaN3vX0716uZPrPOxMshf9IKn2rFGUcW/TZ3UQ8nNvzeGUc9q1dJbaDmGSq2QPL8yEBmHKg02/XF8LWp555Pi9DqSE7z7tk2YFrmVg6JDliu2+3HJKzSm9SioJIajZBlvjmIfldb6z3DiUOTyZdxOixUkwPd7ngdNMTG1JKf+9V/i9x8AvSSkjIcRfFUL8AeAXpZQ/K4T414E/CfznJ3lBKSfaGhkIyfefDRBAwza5u9Q4tLqkTy3EeulO8+HKEE0TrA1ibszVjiV+DuqhflpavR6kUaNRVqXDhFGs+qbvrY/wk5y5ZsQvv73w0tcfxxmDsp95gqc76mCfFQV3F5uvXIHVX7Ih5aVItJTqGva6hR2ErXHC2iCqXltpzaj3WGypVpXFlo2pq4SVRLI5jgG1wEVJwdOdkJuzNe4u7Q5iZ+tW6QCjEoAfr44wdFVhnf78RaF0bZ71AnVgyYvq3uWFSkBuj2PiLD+wlSfNCx6VnzvKVAJTSugcoUlxmOvf+ihia6SSoLeM/bosUkqlAVOoZ2liGz7ZsAxdVQ2jVB0KDS1lqe0wW7fZGKp7HaYZT3sBUars3j9dH7Haj/nildaucTtsvHf8pEp6Cg5LOO4f28k1TtoFCqkOI3MNmzQvWGop+vP6MCYvCnaGaXWffvC8j2XorA9j/uC7L58Dz3ohO76qItyaP5gdKCXVczAtXzSOVNtEL0jx44zZusVTUyconVgutV3m6s4uQc2JmDZwoHjuQRiEKc97IZvjiJZjMXdAUlvTBLqmkeXFrtagYZjw2fqYnXFSHWolEuSEfagq3nXHqFgPWV7w2cb4RC6ir4KikFVQ3gsSVgcR4ygnyfNdAe3kwDbfdEqHnf3P2ihKWS+foTB+oa120FN52Lw47NqGUVatv5Nbaxmq2t52zfKAbrBYthiqZzlDIOj5KUGSsxg6fOdxn3Gccanj8JM3XjBXD5rf02vkKM4OPDTumltlkPVi3qg22EnLwmTeLLYcDE2wMVIJrZ1xgqapeffD531qjsHTnZBfemd3O8YnayN6vjo4Nl3VNtQbJ8w17NIlNWYYZBgiYrmlnqnjCIGGSV4lwNNcVtXto5CUGkN5Ibl8DIvmh1s+9zf80jY9p2GrNt3VYUQuYdWN9r33jGcxihTzQiVedrOcZus2q/0IP8kIkozlY7ZNKWajujcqeb4/lnja8xlFKjH59rJ6PsMkp+UolqgmFGPUj3N6QaIOBWU7AVBpj0VpznzDroLglX5YVi21XS5+h0EXgigr6AcJIOn5KXXH5JsPdogz1T5xZ+Fos4F+Ob8nVuTjKGO2oZwr46w4dqFuGpNn/SSCs66pYzY0vv90wMPNMaM44+2lBq1yHt+YrdF0zNJxdb8RCFBpskioNII2R1E1pncW6ruSTIft36Bc1xRTNKn0zg76mTgt2BzHvLvUVG6k5WdW65B6/ZqlEzo6s416tRZNri+Ic573A/wko8gl97fH1K2geo/D9u/Je2+NE95d3n99m+O4anWfsH0mqNyLJOSFitM0EeNaTnVfs7yoxjFKcz5aHfJkJyhZsU0cS2lDprlKoBVSsjiVmH+6Eyj9OxHz9mJj32FvOmEWZzmPtsfkEuTDHd5damKbGi3XUrqkr6ENBmr92vFT1ocxCy2XJzsvv3fT92hyn6YRZzn3N3w2R1FlqKRpam+Kk6LSY9M0caYtm8fF5Y7HX/9zP8W/9Fe/zV/4z77Hr/3mPf7Qe4t87XqHr16feSX2z0FP5XQcHST5gUXdUZTydEfpu6pizItnRsWUan6ammr9ygvVbmfqGvc2RoAyPMqlxDE1Hm8H3Nv0sXTBL70zT91Wn+X+5pgfPBuy48fcmPPIc7BKSQdD17g+W1MyILEq+GZ5gaXraKLYNd7TMbB2iAlJnOVVwilKikNZogJVGMnLttbffdTj8U6AkKoFOckLvDLB/dZCg50g4f6GYk9PtDGnyQqa4FjJ2s1xXElK6Lo4crwnbdtCKF3mH64MeHuxga5pWIaSoshyScM2+Oq1GTZHMbouyvWvjGXl7nnzYNMvmdrpocWK6bjpqM82XazKSmOKhmOS5znwYo2v28aBzvUCteeq8ws0Q6vUpCzOxOnTjzO+97SPn2TcXWzQdk1sw6iS71+63GEYpSzsSTBKqWQz8gKebocHJqaOM+9ehunxPg+cZmLqW0KIfxv4m+xu5fv2y35JSrk29d8M+ALwW+X/fwP4pzgiMZVkStW/W7cVxTiXfO3aDJ+6Izply1A/SHmYBOia4OZc/UCB7Yk9r6lrVcB5ecatNu/DxiRMcp7sBBi6qmzpmmBcivFNFqK9eHe5RSYlDzZ8rs16aMBOkDAIsipJ4sc53ZrF416ZDV1sVhWFx9u+EinVVAVKCEV1dkwdIfRX6pF1DL10vTjeJnT8FrXp/6i/Fho2pi6YyRUV+wfPhwhgEKW4ho5t6uhCoygkuqbEzAsp991LvaT7DsOMzbFasLJcuf5MJ6Yebvv0/ITtsRIv1zXBB5eVG1KSKTHkYa7a3/pBsn/BK2nzUZrTrdlc7rjEacHyIQcry9S42vUODZjEMehs6mdkdf+kVAe5HT/Bsw2CWD13hSyQwKPtjOtdj+WWyyBM2fEzXNNQ1HrvBX13YoN71HhPj+9hQ713bKVUNrlXZ1SLYcc1+WxjRJwW+ElWjc2tuTozNYtPxhGuYRAmBTM1k7ptYOo6Sf7CNvswaAIWmw5+rD73ZCPaGEXEqeqxnmvY/MS1NkGcVUmMHT/h3saI+xs+VzoO4xjqtsnWOMazDJW08KxdB5RhlPLhyoBhmLHYUu95nMTUZG9carnUbaPaEIpCsjqMEKjP8FM3uzzvh1wpn6c0y/l0fcwnayPmGjaaUIn1jUFMu6aYQq6t056a52le8NHqgCc7YXlfcrpnqG84qVhrpc6PZ2XMHeICOjlUm4bgrfnGrqBhvuFg6xppUaBpKpl5e75+aFVq77x42bUJ8cKW3DI0rnU9wjSnZunc3/TZGsfoQlRM1fmGTVaopHUvTPBMg0GQVgK1E0v5I+f35P0Pu74D/n2161UMhygtSj2XAonET3KSLFdOpk2HZ31V9DA0JRfd9Cw0BFG6pwWgdMtT7B5FU3++4/PR2pjLI5ev3ZjhSttj20x2Pc+X2i6uqdaZgwoc6p4e/HmOQpTl1aF7b8vCQe8zjjIQqu3qyozLQsPh2myNZz3Vgrv3vSfPmkqSQpBmdDyrSv4LIbg+WyNOc/wk5ZO1MeMw40tX2zTdg803JuPtxxnbJat6+vNPr1WzNZs0l5ia0rmZ6IHoGrRcVd1HqrF5a6FOt+6w48f0AtW2FKV5FXznhayC4EmLephM3JVefte7dZtfvDuHaQi6nk3LMykKyfpQaTK2HKNk7xRIKVkfxVxqubv2tDjLeboTUsgCIVSArAoiBVe7+1vgjgvVspUeK9boB6o97FlpEd8PEwpUwm0UqNeYrTu0PYstP64KPra5X2fI0NU4jqOMq12XJJPUbYNxqT81GdOj5vc0XroOVX+L6vlYaDgYmoala9Rsg41hxPowRghJnCq3wSszHlc6Ls8HIf44JYg1NAEzDZvVsvB05P59xPXtWoPKH5o8x1c6Hjt+zPow4uGWz0zd4mrXIy8kv/tohyDO+MKVFvMNm36YYmlKo9XQFFO/7hjVYUYri7wzdatKakkpWemrwtJiy9m3z2+OIsJSX+byjMdKP2S27hBnOYYmeNoPsXTBT1x1XjspBapwtthyXjDs99y7g2IRs0xe3N8YMQxTfu/xDh3X4sZsjSgp2BpHfO/ZgLqt842bM/zk9Rl6YcL1mbM3JHoVLLVc/vq/+NP8ze8956998yn/17/zgP/gtySagK9em+HP/eKtY2lQvWz/3v3MHfz7e+NOKSVG6ag96dR4vB0wijLiNGOc5GyOI758pcNS0+HhtoqJa5ZJVhTM1i22xylFmVSY1OrC8izRck3yXMV8YZpTFCp23BhG/GhliAa0S3bXzTkl/j9pmdq3Dx46146OpUElUya6yBPOgWPoCCRCaMzWTR5t+ei6xtZItVZd6ii32ZZn7XtOj3PO2H+tR+NSW8Wzk3OyOi8JPMsozY4E12dq/ODZgGGc0rANNKExilLuzDe4PqtaMydGQEKI6r68PK47/mdrOibXZz2KMg7LZUHXM9GnnsuNUcT6IK70jadjnYZjcKnjkmaSds2sYpazgnKdNdgcx3imgW0YqqU5k/z9e1s82g64NVfbx3ybLdfVQnKoduJx5t3LsHe8zxqnmZj6cvn3N6a+JoFfOs4vCyG+AMwCfVRbH8AA6Bz1u3khWelHNBylsbQ1ivlsc4ShwbvLDUaRckJyLY3HPaW8//WbMzQck999uMPaMOSdpRa353f3p6vDiKKIerZ+qIbLth+TZAVJphyOWqUNZZzmGJq2T7gtSnN2/ISFpsO1GY9BmLHYtNkJEj5cHWLogk9WR9imztow4HkvJssLnvcC7i42ud6tISV86/EOoyjj6ze7fO16BymVLsjE8vSkEOJgVsw0dE1wa65e6TFNI0xytvyImmkwM8XUmK3bFW08TDL+0//+IdvjhJ+/O8dC0yXNJav9kK1xQpxlLDQc6o7JtW6N2/N14ky1nNRto7qXq4OAv/X9VUZRxuUZj0stD8sUVT/53qTBk22f7bEScL3UcSvNqaarKteDMKXuGBja/raEJM153g+pl+KmC6WL10EtH9V9EgdXTiZYaKrEnGVoeJZRtfZlRUGnTIpc7jiq6u+a/NYn69zbGGNoGrfmanxwuU2Y5pVDX5IXaEIjLyRhkpPkkiApaLkFddvg9nwdS9dJ8oJbJYPkqPGeqSlXuEmiBlSCZlz2j7dcU4mepzmeZdDzY/7291fZHEdc63p88UqnqmavDSM2hhFt1yZOVSJwFGZkmUQzCoRQtOmfvzvH052QSx33yOBN3SeNpmNVC6YfZ9wvXaj8OOPtpeYuqvCn60OebPv8aGVImKQEccrVWeVm4ScZAtVPHqfFrsTU9jjBMQyGKOel4yZ+G47JQstGSslC88WBb2UQ8qPnA2q20pbr1m065Sb9YFPZ/v7O/W3itGB9GPK16zPqM2Q5fqyq26Mow6q9qLoPwxSkwDVUm81BjIHTQpKrdqUgzfjKvLq2zVF8aNvL+jCqEr5ZIbGmElM7QczTnQA0VUWfuGkeBCFU4Ka0V3Q2Su0tQ9OIMuXQpGlC6QwOQj5ZG/HN+9uYhqDj2bx/qcliy2UQJjzZCdgcxhSy4NpsDaQSnx/HGUnpJtOt2TRcg69c77A+iKpK58vmt64Jbs6+WCPTvKAXJFBWvhxTuf2EaUZewMdrQz5ZG5LmBXfmG3z52oxKjAUJgzAhL6AoIElVgD6KMopC7U8dz2auYTPfsnm2E+5jDqVZwXLbJc1zXFO1Bv76j9bxy2D+i1fa3J6v0w0S7Cl9AiEEw0gxQ3UhCVK1Li00bL75cBshVCKtbus0HONEe07DVgFXkhcHPqMTLZ2WY/BoJ2AYpdQtHV2Aa6g2p+896/N422e54/JeyWiIUlWVft4PmfEsnvVCBkFKP0y50vF4b7mJV+4Lddvgy1c7+EmuWvbhpa1Ak/Fu2CpxpGsC29Aqdt7GKGIYpgzDFEMXfPlahxnP4rONMc97AS3XYhwpTT1D0+gHiXJaFBq2qRGnSvNqpmZSd4wqsTkdKC+01GGp6ZhHsqGLQpbJFsHXrnXQhMZCw+FJL6Bu69h1k/mWw+YoJs2Lql34RysDvni5zbVuTTlVxhnfftJTAu4LNb5xo8tOuRe/jkvStBbGpMWlW9ud1N4ax/z2vU1+uDKsrNfbns1i01ItXmiYpsCPUjquVbZ3vzg8HMZ2mrSCD4KUrXGEaypHP9fSq8901P4Nqk1+ohs4QZBkDKO0Et++1q2xOYpoOAZ+nPH3Ptvk2U6Ia2tc79Z4/3KbIMmJsoy1MhmZFZDlAZoQREnBIMiQhYo1bs/X0XXBIEiO3L+vlS2i0/Hn9jhmHKviSsMxyMtC0s445r/7ZINhmGIaOldnXK50PECoPT9OWWjYyg2xZLP84NmwKnYZjlD6iabGW/N1Zuo2nTI2sgyN2wt1DE2xS2ZqFtvjmGc7IQ+2RvQCjw+WWxQoVtwgTPl7n23zZEeZCCjxa40vXWnzaNvHNJQO0GKzVhUMXheupTNbtyox6PmGg5+o9tpP10dsDCOGUcrljsf7yy2yQjF347RgFGasDUNWBzGmrvHucpOfvD6DZykXsLptkkvBT92eZX2o9qtXFY0/a+ia4B/58mX+kS9fJkxyvvO0x+/c3+a/+M5z/vn/6Hf5Z75xjX/jj7/30ut/2f5tlMmdoHQUzwvJtq+KQ5ahVY5k800LKQV9P+a//N4KfpLx3nKLOwuqPXAQJmz7CY+2fDqeMrK60vHoBSlZLhmEGQ3HYqbmMNuw+Gh1uE9b6c5CnaKQmKZGxzXZHMesleOzPox4tO3TD1LWh0r3bbbhUEhJUcB3H/f47rM+NdvgZ27NMt9UMd4kEe7HygU1zpTjqGPq3JitEab5kfpOk7VR1wTLZUKgW7foBSn3NsesDmLCLEMX8O5SG0vXWO+H/OanG9Qsgz/1E5e5MuMi2H0+mchupHlBt27vWr/nypbFvczJw6BpL1r+LEPjy1c7NB2TZ72AzXGCO6X7l+UF96Ix17seM3W77Fbw+XR9yChOWW55/OydWS53XIZhylzDIS8koyglSDMa9guN3cmZ5GVnr2lMfi/NCzYGMZrczXSMkoJBqFjQlzsupvtiX50uYM03HdaGIZ+tjfEs7cii+avAtZTpxHxTGXt4tk5WSB7v+PzdzzbV+0nJlY7L015RsnUjVvsxTdugU7MqduEoSjF1bVc813CMktxwcrbX9HifB04tMSWl/MVX/V0hxAzw7wP/OPAV4FL5rSYqUXXQ7/xZ4M8CLF26gqGrVq4sV5W0HzwfogkYRTn/xNeucrXr8WBzzOOtQH3/2YB3FptVFe67T3pcLltj4EU7SJQqm/n3W4cLAiqHDhWQerb6fdvQD2xzG8cZH68OeboTstRyyiypCtKX2y6DMMPQBA+2lK3xQsumkIoKfqXM3g5DJbnVD1Sv7eOtMXcX6nTr9pm17kzjIJcmpQEw5NONMaYm+Onbs7souJ2aRZzl/H9/tMH3nw1JiwL3YY8/8gWHNC8IkwxNlJpRnk23Ye4SMl3ac+D68PmQJ9shW+OYbT9BFnBrvs61bm3fpphkBevDiGGYUXeMXUkF29QrEe/ltqIDTycg80Ly3366wWo/QhPw5asduvXXF6ZUzmQvxmp1GPHhyoAdP+H2fJ3r3Rqrg0hRL1PlJPm8HzEMUpKsYLFk4KwNIlxLI8lV5aZeureBqoAtt1USTQjBO4dQ0l+G6cUoSnM+Wxvx2caY2ZrN28sNJVAf50SlFtiWH/PJ2ogwyak7JrM1ix0/JS81NfJCVagn7Qfduk3N1kv9Nx3HdHclcA7DhBVh6ILZ+ovnLEpzvvd0UAqJKnHACTtnGKalGGPElh8jJNiWrsQFc0m3ZtHzU572Qjb9hPeWW9XzN2n7ujlX4+Zs/dh6OoMwZX0Ql2OjbKLTvOB7z/rcX/fLw8YLWm1SCt6u9iM2xzGmptMqBfajNKsSPw82x+z4Fmkp5ghKo8HQNRbbDjdma2da3dgcR9zbGCsdiJrPfNNhGCoh2Jtzu1tTozQnyyVJpqKCvdpXz7ZDNF2QFgW9ku3wMkwCt/ubyu48iLMykNOUY0nT4elOyPNewOMtn7VBRJLnfOlqh7VhxGLLZRRmjGPlWjNft5XWW3kQzXKJY+ost9xdrImTbOjTa+SDzTFPtv3/H3v/HSTZlt/3gZ/rXfrM8l3Vvp9/494MxhEkCJAgCYmQKFIUKVEid2Upw5A2uCuFVmu0EVKQq91lyIRWoCiuJIokFAtJIEUCIEACxAwwM5h588Y83/3aVFV3+fTXm7N/nJvZ5bq7qrvaDGN/ERPzukzmrbz3nPMzX8PGMOKV+RovL9QYxxl745R+mLAziiQtdZwSpQXzDYe5mk3fTwizgpqtEWcCz9LQVWXasDjXdGlXLGqlCPr8oXUTpQUbgwjP0njzXJNRlBGmGRVbkw6aZSEgz66DwuVBkhEm0sn2+s6IqmWQNaUY7HdX+4RpzitjSaWs2Map9KUmLorHxd445tauj6VrdH2FJBPUHZPVrs9aN+S9jSFxae1s6RoDP51OAHtBIoVvTZV+mND2zKmOjYKCZ2lTbReQydZb55v8UFexTqhPM4ozdkqUnWtKpM1vfLzF5iBmGCZUbGnTvdSMsXWNOC2mWnyerREmOZauTJGOUuRZTIckpi6bI3IgI8VuJ3FY8/BhcWvP5/aeT5IWsklds0iynDiTCKxcwMV2hXuDkK2hNNPIM2h5spHa9WPqjsEnZQ4khCDJCuK8OFaa4HFjP8VlQpGQcgSizNOGrPVCNrSIL19powBzNQdFUfnunR5745TUFsxUpYDxTNXCMlR0VZnuQeM4Iy4Lwv3P6a4fk+WCUS4bNQ8qph8Ulq4xU73/O3mZM17fHqEpCi/N15iv2XT9lF6QgiLoBgn3hiFhnBMkBbM1m7mazXfv9LANDT9JMTSNiq1Nz8hJE+lcU6KCT2rzbeoH6YxdP+Hbt7vTpmjHszB0laqllzpzKff6EQ3XIEoztkcxEpSn0Paktl27YmLqCmkuqO9ryNm6xhcvtaf57P5QFEm7ul3SfqM0oxek0p0yk4j47671qNkmnqWVxjc5PV/S4AsBb51vsth0yIXA0jUpYVC1DlADnySyXCLxorTAjzOGpbaVpsqm8Y1tn7woSDLBhbYnn08/ZRRJx9l+qbUnBGRFwTBO+cxKszR5EVybqzCOJNpykuOd9nl71uGYGl++3OHLlzv8mz95lb/4yx/yl792iyDJ+U/+2JuPXZjv1xFb6wZs9ENu7fpcnvVYaroYmsr2UNKP13sB2+OEtT2fJJXP1lLDYRRl9H2JxMkLiTRxTY2dUSIbOnWHlZY7pbh97nzryHXYhsanVhqAbNrYhjbVBJNOvjIfnPx7exihKQ22hhFvr/W4sTnmXMvhk+0RyyUKTlUVdFXlbi/ko81hacpi8cpC7YCG1klCgQOUq6Yrm95JknNzVwqZD8OUhqvz/bsDbu+GIARNZ4s/8cULR56vtW7IN27uomsKry3Wj2idPq4TnWtqXJurHnDVnGgcV22du72Qiq2xN5bo1jAtePfegOvbYxACxzS4uTvG1DSEoNRNSri+NZK0trkq1+bvS/A8ToMkKwSqphAXUmd4osPpWbL+s3SVcZwdQJ9OdBUVRQ7B3787ZGsYE2cFS033zNevoSm8daFFmss9qGob3NwZT//tlqALgUKaCW7tjHn7To9xlLPccvjK1Q5RlhON8mnNMdlnrm+PGEcyT5bSNy/23nNmjSlFUeaA/whYFEL8QUVRXgW+JIT4K4/4PR34a8CfF0JsKorybeDPAn8R+Cngm8f9nhDi54CfA/js5z4nrsxW0FSZ8KZ5QZoXJJnUW1JVqNsmry7UCUrhXNfUUFV5eH/n1h4rbZdPdsYHBJTjLGe9F2LpKosN54ELt2obvLZYO9FGHZdUEEWRDZPJewVJxlzV43zbZRCm1BKdMMupmBozVUkd6gYpS3lBzTEYRimXZqpc3x6iKAqr3YCrD1Dkf1YxiuXUz9RVdkfxtDG1M4rZGcUYmsJSw8U1NcIUZqtWKYId0qpYCOCaWcE0VIn+yR8MnZyr21Qdnc1RRN010DXlQGNxf0jRZQdLT3ENeZBNJj6LdXvqiDiZQgshBQg3h9K+/d27QwxVxbU0XlmoPRXhu0EgJ5GjKGOp4bA5DLm5Iwu01xarzFYtVvd8nJolGxCqwsYgJC0KGrrBG+caNBwDAayWKIOX5qp0zhg1s9oL2B7GZIVgJZZrJi8phhfaHrd2x7Q8i4Zj4Jkaq72QOJUJ22dWmqw0HVCk3e04TllsyATitElOVK6jLJcCo5ONdqJbM45T1FKcdUItrLtyKtZ0TT693GAQpsyWgpmzVY1BmKGqcGs3YBSlFAV8qXTCbHpSF+a01zlZ70LIa/YsnSQrqJgSSZUXgo1BhKpIYWxL16g50oXp08sNgjRnpelwtx+xVHcIEokU2hsn3NyRGhY/U1tELaeUry7Wnso053CIQvLaJ8iahldM/8700LpVFQXH1Fg0JJ3jcFydrWCoUj9rtnG653V7FDPwE7RS3HNrJG2es0LQ9EwUBequjq6a6KrKQgmDvtsPQUhx/C9fbU95+WvdkDjLqVjGVGzyLGKtG9IPU6mH1HT4cFPSPzoVi5ZnUi0TokZJOYvTnKyQDf/llseljndfO7G0ol5puQ/di/ZrtCw2HD7cHGJpKp9daU0n0Pv1MS503GlR6Zo6jqnSC3IWajZ+OaDJcilQGpVnK0gI+vWtEQI433YfG0mzO465veuz3pMT6oZrY2gFSV5QsTTCVDY+b2wNWWl7bA4iznfu7x2GqlIIQZDkNBwTQ1PkGhNM3SBloidYbkk3N9fS+cJFWbScZM30/IR7PZmsztdtoiTHNnSiNEBToR8mLLdcKrZ03esGUty5Yun0goTtoUTPfPZCi6olG4pCiJKyydRi/EHuOieNKM3RFCk8jSIRQFkh0DWouyaLdRvTkAjbQZSwWLMZxSm2Ke2zJwLVtqGyWHe43R2TFYKtQTRF9D6NiNKcG9vSNdI2VIlgTDLqts6VGYnEaXsmvSCh4Rq0PINekJEXEvXV9ROWm/fXbZTm3CrdlOMSPTiJhmMQxDmupU0Fb6M0n1LQThsKclh4rxdhaArnWg49X+HOno+qKry+UKXpSPOXiqlRLQuN7VGMrkn5hzeXGyw3HTRVJS/ksEfXVM633AMUlMeJIM5Y3QvLs1Oh5VqlZqbUM/PjjJmqWVKJM4ZBikC6hTqmJgevps7ve3WeOJOf0w/vDlAVmKlUMR5gthGnBZ/sSI04VZEOUrd2fVQVXFNlvmbjGJP7VXChbfHW+QaDMGGzL6YNs2uzFXZGEqV4ebZyppbuSV6w3o2Yr9vTZ0GU+4ahKyS5dGpb0KXw/zBO+Xh7xM4o5kLb5cuLbQZhQpwVzNccarbUttvvVh2myfR1wyR/4RtT+8PQVP79n3kVz9L5S792nSuzFf6133P5iV83LwrudAO2hjF118SzUrZLGudCXaL2PtgY0a6YEr1sG3T9ZIpqPt9xeW2hhqlrjOOMKJX07Wtz1dM1gRSJCLmsVPhoa0QhJMLpfNtlcxDxzmofXSu4N4ik2L5r0akmGJrKSstDKHJYujuOOddyGEUp2yPZxHiUq+2JPyshsHSVZsXkDUsjLh0y5xs28zUpQ6MCyy2PmztjQGGhbk8bOfcGITsjqWl4deZkhhOnCUWRCC/ZqE14daHGpY7HeDHlB2sDukFCnN4foHdK1Hij/Dw/2ByS5QUVWyNMsrJGyGh5Ftee8NomtV3DMQ40tlxTn54JhxG2E5dMIZiydnbGMVlRTPOJpxHjSDJMxrFkUr2/MeTVpRo1y+DHLrVxS+q5Z+lUbQMFiTas2/I8u7Xro2sKDcecuo2udaXhyUrbeSx657OOs6Ty/X+Avwr8++W/PwZ+HnhoYwr4Y8Dngb9QJob/HvCbiqJ8HVgF/tKj3lhVlOmDZxsa59sef/C1eW7t+lyd9abJ9mQCsNqVmk1BIjexubqNY8qCcZLKS6tSFz+W9JD9Vq7HxUkLwaZrEjWkpkPTtZirmWyPY/bGGavdkIWGzeWOy9euZ9ODy9RVquU0aaZqYRsaKy3pUvfGUo1xKRgcZ8VzO+wmls79IMVQFRolzHIYpdIa2dLJcjkB+Bd//BKmJqd58t5ICsreOMGxdDb7EcstybV9EFzztcU6NcdkvSuncLM164Dj1f6oWDqvLFa5veNj6Co3tsdcnZWoF0VRjtD+/ESKhe+OEkxdpe2a6LpsenYDaeV5uGv/uM2Aye81PalN4CdSD8WPsym0tuYY/MTLc3zxUputYYxtSPrM9W0pxJ0VxdSSfHsYSZcc2zi1K+OjrtHSVZYaDpamYpkqYUlpmbjCXeh4/AutC2wOJbV1oWHzw/UBcVaQF4V0PnRkYhGmBRXLOCAAe5pYbDhsDSNcUz/iiPT6Up1xLCl3EmGYEaUFjqnx2mJdImr2fJaaLhuDkJs7AcMw47WlGrVywtNyTcZxNhUphZOv8f3RrkiBYFVVphBuz9K5Nl+h5Uk6nq6q7Izj6fN7sVORKJE9n/m6pHO+d2/IXpDw0nyVi22PzUFMIUFhjJPsAJLiWehXZLk0HEBRaFUMZqu2FIk8RvxzojkRpfmx9Ji5us3nL7bIj5m2PyyWmw49P5mKSgsErqGzO4qZrVo0XYt/7ovn6fopiiKkVXyZfKiqIhMMXaNiyYZjmEhKr6lpmLp6Jk0pIQTnGg7LbZd2LJ3z+oGkqumKpHn/2KU2X70yw91eOLXIHpXun0GSyantnHQGGpT26ZqqPNoZUpeWw1IHRqKGtscxpq6y3HRZKKlc02vd97uTomqC3FRVhcW6zfYo5rMjSftbatjYpkQURKk8HwdBymzt8T43KfausVC3aVXM6WQ8znLON92pC9m5psuFjndAhH5nFLM5iNBUONeQP6so0HItPrvSZBCmGJoUtAeJHtmvOXXSMHRZSKdFQZzJ5/kzyw06nkmcySn7bN3mQlu6rU0Er7eHEUGcc6cb0HItvI0hny+vX1GUB55djxvnmi6eqTH0MgxNnnFBkpNkArtE0qx1Q+mm6lgEWc5KxcLSJHJMiAltv8pczeGNczVGUTkMOEOtDUvXuNDxiEpEk59kU0Fc19L5k188z60dn3bFmmpr9IOEJJPImbwQvLJQJc0LbCERar0gwTFlsbFfXPfwVbfLpvDk/nf9hLu98LE0OIQQqKrU2rs6lyMKwWLdYXsk9bxqjk7VMfgDbyzwEy/PsjmM0DXZKL+xNZYOxLlEMXqlOPNaN6YyoQalObUnLIYqts61uQq9IKFTlTT4pmeiKxIR1bpo0q5aLDUcNvohv/TuJmaJJlxpuVPKoqmrmLrK6l4wpb5FWf7AxhSUWqBNh0JIJJxjqLRciy9caPPyQhUFhX6Y0PQkqq1dsfnq1RlubI+mBe/dQYQQCo75+OiOB16fIs1ZZqoWF9pS00rX1Cnl+AsX2gSJFNjXdZU8lPIg81V7akCiqgoKsiF5XB7erpjlMJppfvyjFn/uJ69yY3vM//1XPuTNc3W+cqXz2K8lhGC2ZjNfs2k4BhXbIMly0kygCMk+uTpb5dp8jXv9AEPXWKzb7PnJ1HlYVxVqjnwWbu360zrQfcyzW9dUXGPiDJiy0pZ03awQaJpCnhdcmatiGypR0mGx6WDpGrd3x2wghzSjkplxba6KoSksNuzp3/skudneOKEoYBzluKakgLcrNqam8dOvL/LGuSZBklF3TIZhSlYUfLg55FPLDVxTp+2aXOq4oChTeYuzjkljv+FI6uGVWUvm4YVE7uaioGrr/K6rHfwkZ65q4Vo6fT/BVFWCOKcfyOHOYsMpEbKSdvgkn5+lq3zxYoe5mnVgf3dMjcuzHmkmjtSas1UJljBUhaZnUXN07vVBV+R9Vp9Sg2d3LJG8PV/KpkzquUudypQdUVus8dpibQpaeXmhSpwWrHYDGo7BIEqZq1tyIOYnzFQsbF1lqeE+dbfus4gnbkwpiqILITKgI4T4HxVF+fcAhBCZoij5I34dIcTfAP7GoS9/A/gLj3tNtqFxccZjoeEccf251w/5cHNEkQvW1VBaaacFUZZzoeUe4E5PHuKsECjAje0xM1XrscUW4yzHUFXCJOPmjk8v6HGx41K1TQoBjiEnKZ2KxeXZCqMoY65uYagKhRDSHt65z9ufqUoe/+YwOkBFeZYhhGAUS1jtMEpK6HJB109puRmrewFpnrPeS2i6Jq2KOU3WJ3Gx4zGOJHTRTzJMQyXNi4f+PYoidWRsQ4qXzz0isV+oO/hxRphIbm7+kI3FMTQpnOoY6KrCl6+2SbOCGzs+37q5x3LTQ9fuc7EHQcpaL0AvhZtPOnFd6wb0g5R2RTocRZ0Cx9AYRymDUGrMzNWlkG6SFaSFFKLcHUuxvqZnYOsaDc+YCj1XbYkKUjjacHucmLhLWrrKpZkKl2YqzNXsqSZWP5B6GroqedfjJMc1pU7Enb2ATsXEj6WF96Se8Sw5fc0L8VhuL3C/AX04Jm4qINENd0tDAGvfZrw3jrm+7fObH+/QcE0udDxMXaPpGGwM5dQ0ywXn2w9HpJwkJijOw7FQd1ioO6z3Anp+ekR3YBSlfLIz5tc/3KbmGLw0V6UAFmo2q92gRFelzNflBPdZxjBK+e5qn81BjGWoKEIhzQtGUTrVNTiMmnkYAmSx6fLmcp1hlPHZ84+UFASk+cMwzJitWaV+oNQA/PUPt1EAXVcwDcnRb1ckcmq9FzKMUhbqNnM1i6B8LsMSyWbpKo4pRXyfdC+VtJ4xcSbpSW+cqzMshZpv7fqMk4w8LwDZXNM1BcfSpkYbyy1X3ltTo2brpLk4cH0noZ3pqjJ1GFUVhR1VahU2XKnFM9EhUxRFJvjHrEVdUw88v3M12US8uTvm9p5PlBZoCqx0PHRV5V5JQV1qOKUT1cmTt9mqJSfNwxRVVQjjnOvbY/kZOAaXZiosNgpU5ei1RlNkosJszZKUvpLa2vJMWiWtTzabxYkNPg7HXFVqiWwPI95dH5AVgh+/OsO5psPHW2Ocspn4Gx9ts9xyeGmuhqJIY5UwyZmtWRiqNnWWehoRZzlhkrHWDaW4ucixdZ1OxaTpWtN7X3cl8vrijHSfKopCarQU95P0CSW14RpsDaOpDsxZxkRXBmQCPlez8JOMjmdiGRqvLdWJs5z3NwYEcc6VGU/q0vUCVAVcy+DqbEVOsw/dW8fUWGm7xJnUsDoc+/OQcB+69TQhnaJCHFPjfNuV2pGGWlLOZIM0THO2R1J7RWo2GuyOYt67N6TpSO2bpYbD/vlnzTHKhqr6WHt8lObcLNFil2Y8PFNSRHf9ZPr3Fn5MWqJ7hlGGGaW8e1fmaq8s1EizglbFOnZAWC+R+6auThFPx8WkKdUsmzyaovBJad0uEa4JX7zUnp7nwyhlvSd1rN5YalCxpPzCjdIRN87EmaOCJ4j7cw2Hm7s+v/7RNs1yIFi1dXZ1hYZuTgeSQVJMdcM+da6OY+qEiUSeRkl+7F5qlML7P8qhKAp/4Z96kw83R/y5v/kOf+ff+l2PzL0PR5oX3NzxSfOC822Xa/MVgjin6Zl8sDGSaHUk7T9KM5Jc0PIs7g1CPo4yzrel4H/NMQ+gkeSaSkqjj8d7Nia5f5LdzwEElIO1goZncH1rRJoLFuo2cVZA6VwZphlFIl/jtdm6fFaEPDNv7fqMy3ruONe0k0TDlRrKpq4wV3dwTY2ma9Ium7lXSzrdei+gH6Z0xwmtismtXZ9LbY9RKXngWhprvQA/ManY+hS5exZh6ZJZEpRDOJADp6WGS8VM8WyN1W6AgkKnIq87znK2xzFhmqMqcn2rispnzjfwo4yFcgi9PYypOfpjNdVcU+fqXJWrc94RfUbX1OGYdCpIZZPMNjQ6hSBKcvbGMWGS8t07fT53oflUtOLqrkE0iPEsjTDNWWzI5+zSjMeHJapsrmZLan95dnT9lDDJGUYZFVOjKAS7o4SabZTmErDYtB/72XvWcRYZxu8AnwV8RVHalIMpRVG+iBQvf6aRF4JBkLBQLtz9C+6jjSG/eX2HYZgyCKWV9LmGzZVZj5W2hzi0OBVFTsDyQvD+vSEgKUiPU7SkecHHm2MsQ+WT7THfW+sTphldP+HybIWZikXNcTA1FT9OudDxGAQJgyjFcky+fLlz7GGsl1ojzys2BhF744Rbe2OWG65EoSGbeAKBqkgNIMdI8SyDnp+WNuqyGJ9Y5Y7jlDgrMFSFT59rHHFqCZKsFC8/3NW+v9B2RzE3d6VA+KUy2d4fbc9iT0SgSFv4mn28A5OmKpxvu6y05DREURT+4Ufb3OuH3O2FxMvyQJ1EP0ymNBtDV6YTl0fFoNQK6wUJQZITJjmGpqCUAoRVW6PtWXz3Tg+QG9bmMKLhSAHAmmUgipSma0w7+I6p0fFM0nKa9KQxCNKShlawuuczjnNMXZVCp7FG1dFpudIl5dauj6VphGkKSKRXzTZwTBXHUqdTLEuXMOmdkXSEelQUQky5/6eJ/fS7KM3RhERWjuOM797p8v7mkJWmS8Mz+b0vN9kLEvw4p1OxWW45p9IRK0p4/mlRNueaLksNua6LQhBlOY4hNTTevdvne2sDZqsWjqnxh95YYJxIOpNn6lzqeGeOtDhJDIKUNM9Y7frUHYNbuyNqjkGaCUAi1PZrr0RpLsXS03zaTNqfuDdck9cWq2wNY1zz0XtrlhcMQyl6OwqlwPMoylhqqlyZ9UhzwepeQN02+ebNvdLuV8GPclRVNtNfmq9NETqt8j4nufx32zOfWOgxSLIpimh7EBGXz3nVlk27xbrNOJLacd+53ePSjKTqCaRrZdXWsXQF11RpV+6L+89UbYZhgm2cbi04psarCzXOt1x2xwlVW582XTsVifbZf76MopR+kFIv6cGOoU0nbRVbOvX94O6Anp9wsSPNGFoVi7u9kLWuzw/W+lyerfD5C61TJb2745iPt3w8K0IIQZQVjKOUa/NVokRqAWmqHDDNVOVEUAhZJBel/syD1q2hqbw8/2RU18l5O44ytoYJUZrznVs90MAzpc7J7d2AKMkI05wkK1is20TlRPbHLrYpCnFEM/GsYmcUszEI+eF6n1Gcsd4LSDOJ3tHLBplj6CTl4KcyLy3H0zyn5VnM1Z0HOpA9qzzD1FU+3gr5eGvMhZZDLhQcQ2V1NyRMc9KskOYG/YjtUcTOKKLlmUfu7ShMKYRsVPmJwvbo4TTEmYpF9hjnTC+Q538QS6T1OM4hzml7Co6hs1C3yQq5D759pzsd1IzjFEuXQ5rFus2uH1OzZWPTNSUV1C4bboMwPbV+6DBKp05SUpxf7plVWzr6bo0Tmp7BVolwnq2afLIlqfhZXjBfs0hziYS61w+pWHK4sD2SqMvZqk3NebSExQSd+snOmDCRSMM0lVprSQY7fsJHWyOuzVfpBylRmhGU59z+M26xRNW7pkTK6Y9wpTxNTM6QG7tjfuv6Lqu7Afc0hZcXarx5rsFLsxV+46MdPtgc8LuudIjSjKWmg6OrzNUdNEXBj3OSPD9zNNeLFp6l8//+5z7LH/7Pf4t/469/l7/+L33xVGsmiPMpA2VzEMnmDlBzpFYUwiZMCwZhyvvvDanYOqaqlO5q8llqeQYIhaV9e1LDMUmzJxsqaSXbI8kKvFIveLZmEac5w0hSubZKk4KtkTyjxnEmKXOuhaaWgttC4McZaSbdU8eRXHuDID1xcyAXgrVuQMsz8SydhmvyxYst7vUjdv2IJGVKAe/6Ug/JMTT8UlheVaQLrBDw7r0B672I6kTnUNP43lqf5aZLp3q/DnvS8JNcsmHaJjXHpCj3H1WR67Vumaz3Q4IkY6MvtXFtQ6XmmFNhc8/USbK8RMZJJlAvkM30YZgdkGI5aZiaysW2w+uL9el+JZt4IWle0HJNNO2g8HuvfP8gztnzY+4NwnIAoZMV0hznrIc0IGvajmehqgqDMJUSLoZsJt7rh6zuBSw0bGq2KY0z0kwiumyD+ZrFMJL9DYjoVE1mq/Zz7RE8TpzFpzp5Qv4d4G8BlxVF+S1gBvijZ/D6p4oPNgbc2PYxNZWvXO1MN6lRlPJ3fniPb9zcYxCkvLlUx7U1aq5BVkjo52H3vEloqiz4wySfblanjTDNub3rY+kK31vtstYN8CxNondyysKu4Lt3+mgqfGq5wYcbI8I051zT4c1zjRcSgjdpLNQsQxY3CG7vBlM4eJxLV7irsxX6gaRXrXZ9tocJqgpfutTmxrYUcSuEYKnh8Lljipn1XkhcHlbHRZjkfOdOl9u7AY6pUQjBp5cb0+KrHySs90K2h/IgzIqC822Pl4zqkUR1FKXc3pV27BMnje1RxEY/BEVORm7t+mianNy3PLlBtCsmWV6cmAqgKHBrx2epYbM5jEoqkUHdkZ/llZkqgzAjzQVxqQPx0eYIx9RouQaOKWlxEwe+l+arDMKU7VJAWlOVJz5wqrbO+xsDNFWhYmrsBWmZGEoI6WJNakbtjGJ0VaGfpeyOIsZxTsXWqNmm1IgxdfKcqaD9ei8kTHL6QSZd1R6S2EgL7TEvzVdPfSApikLPl/d+IgZ4Z3fM167vEKY5tq5ilgfSBD6r7RPOPWnEpTbKSS3GD18jSMHiIM6p2Dp7o4hf/3CbYZTJppwqqWVGrqIoElVTecB+9bRDok/kBKIQUiB2vRvyO7f3mKtZB8TcJ5ox0ilHOoZOmsKTuL494ue/fZc0L9g5gfh510/YGUtdrnMNh4+3x6iKQlEUCEVe05VZjzAtGEeSrn1rGHJn1ydICt48Vy+TG/WAIPL9ZzKlcgLns4dFnBbc6wclXcfi9l6AqUu7ZFnUWXhWzg/vytnN5iDCTzKGYcZCw6brJ3KPURS+ctVgCak3tdaVQtFhWnBt7nQ6EYqiULGNKT1oErf3ghKxqk/RhhNB6htbYzpV6Zb28rw0EnBNnb1xMnWkGoYZcSYRBJoK729IRPLdfkieC15dqh9ZE/1AohldUydIMv7+B1sIUdAPMuI8wxFy8mqVgrTbw4i1TLA9ikt9EcHVmQpX5yrl3ljQqphHrJQf9DmcNvJC8O7dAZ6ls1C3KIQgy3Pm6ha9SCJHi0Kw0nLYGETsjGKUUuPp7Ts93rrQ4t27g6lW5dOg3CdZwfdWe9zp+lzf8hEUuKbBOI3JREGSS+OUDzfGzNdtXpqrsDuOeX9DUu1X2jnX5qrPhAr8sBjH0g0yywW/8t4W55ouwyghLQ0+Nochc1UTkI3IpmdN9WQm1766F/DOWg9DVXltqcookjqHfpwd0P3ZH6auPtY0vu2a3N6V+YulKWz0pdmCrsq8RFUV6pbOKEqJU4Ef5xRCnmmgsBzECKESZ9L04upcdToY2RrKplSPtNR9O/lz4xgaG4NQapgVFrd2g6mBx9XZKhVbuo+FcU5ayLUXpBnpSDqlNRyJNL3U8VjrDWi60iRicg3HuR8fF2lWsNGXrnYqCr/y7gbb41g6azk6C02LYZjy/dU+li5pcWGSlUX2/UK0ZhvkuSwmd8cxV2erZ5YT54UgKwrWdyOiEimRFBIFLITgvY0hv/7RDmlRsLYXcGlGigrXSrHuvBDys8ukwP2PCjLhcePKbJX/+I+8wZ/7m9/jP/mVj/j3/tArJ/5dVZX6lALBuYbNnb0QU9PI8oKsENRcg4oQbPQjslwwDDLiLGNrGBMkGYs1m0GUc6HjsriPEXO3HxAmhUSN2LXHQrOMImlWA3IvWWo4qIrCWj/gvbsjDFUOTyq2KR1ULTkQ6fopSw1buuaGKXcHstYYxzl5IVG+d/YCzndO3iBIsoJ+kOIn2VSoXFEU/CTjmzd7pYOdxVeutLm56xMlBXVHp1O1UJAoxQ83RqR5gWdqCApWuwkrLZe0yKf17qNkak4Ta92gzPVSXl8yWesFbA0j3lntMVO1We2O6foZfpRxbaFKUVCalMkhWJTmBEmGH6vc2fPRFBXbUOmV7IxXFh/vvvbDhL//4Q7vbgz5s7/7CrquSqZPkBJlksE0V7NZaNhTgyHX1PiNj3ZI84KffHlm2mQrSq2vp8lUmOSkaV6w3g9JM8mWudsPubkzZm+cUHclolY6ilrEWU6WF9zrhYziDMeQLKpxLJlLpq5wsVN5YR1B98dZVDYziqL8O+V//8/A30U2q2KkePkPzuA9ThzjMgEZx1lprSxhiqoCgyBDQ6I9wjSnO4wxSnTNg5KVSVye8aYT9cMRZ7JL/LCErihgve8TpwWZgNmqyWJDWljP1R0udbwpVDkvYHscTSeuWUnhehFDTrBjlpoOWV7wg/WMqiULlKyAPKdsWMkEZ3sU0w/kJM81ZbJWCCEnjklOgaDrxzRd4wAk19SklsnhKVleSFpCWhTYunStUhSZlO2n1PmJhOn3w4S8EBiaBiWi63Dsh/SHac7eWHKeJ7okaVbw3t0BH24M+ZlPLVJ3DF5ZmDh6FUe0LA7HRFz99m7ATM1CKKChoCoKQZJTLznzaV7QrhpUHY1hmJHk5ZTO0AlTOYGJM5nkRmlOdxyjqeqxVuOPEz0/4cPNEbqqMlfapaqKQpwWpLmY0lbansWlGY8ole6KWVbQ9BQKUZQFXEFaCiX3/YRCCExNJSRH15QTUR8n9znO8tIR6OTNn/33s+vHvL3al0LOQk7oJk5dzXIypanKiTfvw/c7yYqSSpNTLSkSJ77OyTPqJ3zjZhddU7F1DcfQuLYgBcItXeGl+aqkq53w/gohSE6ATDtpeJZO1TJo2AZGWczd2PbplJbD+z+PrJBrW1XuX+9hUdKgLNTirHgkgi7NC95Z60kNsxIVa2kqSV4QZgWeqRNnGYWmMFOxcE2N1T2fNDfpjhNcE9JcIrgcVWVzGOGY2tTaO0zkM6k9QXHuxxnvrPUokDo2eaFgaRqjMKVmG5iaXM8SxVSl72fkFHiJTsWSCWOY5OSFQCmLWz9OSTMx1U170rV9+HoB/H3W65auEqWy0QeS/vrJjsJCaV+92HB4ab6KAC60PdQSxRSmOedbXummVaDrCv0gObJeu/5EL0Miiz7cGNKuWDiGxtWZKldnqwyjlG4g0WGSppGiqoI8l5NnRZH7elaK7U/+jqcRSVZwc2csKXiFIC/gzeUmjqnhRynbQzlFty2NpYbDXMViaxTjJ1JAekKfm+zxT+Ua84J+mPKD9YFEuGnSOEOIKvN1B9tQp59VlObEWcE4lnuVCo8t+n2WkWRyet0sUQvjWKK7skLw6eUm793t49oGqz2Z251vu9RtnaIQFIW478AaldP2oiBOZWGYi+PP+/0xjrOps9RJIi8E9wYRQYnm89OcQgh0VaXrp9KREYGqQs3RcS2BqctiK07lviyEQl4UZAUoitz/5FmQIMrdVFE4FULIj6UuYS4EC3WntEQvpOi2rk2NC1quiWdqBEleojIMdE1ldxxPnRKTvCDL5R6eFgVZVOCa2qkQ2aoindI+2RlNnTJVVeGLl5u8ulBHV1WCJCMpteEWGi5JVmDoyoHcd7JHFYU818+qMWVo0hzA0jSWWy4fb42YqToMIymy7RgamqoQZwJT18ilpwBBkk0dKyViWJ5nnL229AsXP/vpJb59u8t/9Zs3+cxKgz/w+sIjfydIMr631icrBIt1mzSXeWqWFwRlzjQMMzoVk4sznhx8RClxqmJoGl0/ZpRIyleSCaK0YBDIYY+hqYRI7cvHrZcM7X7+rCvy7FIo0daKpHc1SqaHqalUXZ2KaVB3NYRQSuqXHMKGiaSt5kLgWjozNYvbuxL9cmW28sgBwESkeiK0LYRgdxwzDFPyQub8hbi/poMop+snnG+7zFZttkYxcV4gCvlZ6ZqKZ2kYusJLc/Up6ucsm6imrpLlchjYDxLCJKco378QEKQFs1WbzCuYqZjkhRywaqrUebN0Wbft+gmGppHnMud3TZ1BmLLRD+lUrFMjlQohh/tZLmtFHZlba6pCljOlIk/OR5B7nWRd6WyOYpZbLu/fG1GzdZru6WQKHjf8OENTFPaihKZrsFCzyYscUKnaBmFS4Oj61JVa6marzNcdrs1XMTWV797ZY3sUM1u1malmz0Xy57RxFo0pDahwVGr5uWDHXl2sUYiCvXGKH2fcG0QsNRw8y+Cfeesc/9037pAjHZtmaw5hlnOpc3RKNrEsruybxB3XlJpoxDglf/9BoQCOoVOzZSFuagrX5ivM1i3OtyWd6LLwGAYpVVenKBMB19J4baH6VJzgziIsXZvCBP0onRbkS00XTVG4teuTF4LtYczGIMLWZeKe5oK5mtTrSjLBj11qEaVSCDqIc9a6ISM3m+qbLDcdtkbxgUUVZxKNURSw3HJ4bakuE1XHoOoc3Dg6FZPdkYS6TnRWLnYqxyY2NdtgexjjlRxuISDJct5calCxdW7ujbmzE1JzdN672+fzF9vTQvEk9ylMJeS/asnN9pX5KnVHbjIVWyaJfixFDONUcKHjYekqn+z4DIKcpCh460KTrUHMSsthtiYRFnf7EbqmcHnGIxdSuyNKZYF7GoeSSez5MZausjfOEQguzVSmLkYAO8MIUKTob8WgXbEYhhlhlrMzSrg668niIC8413TIc+gGCb1ATpcanoFjaORC4EcSOXXcYT3RqMiKgk+2pWbGSbj6Qgi6vnROqTsGmqaQ5QXnW65EN5kuf+qLF+hULKLSdew0iW6Y5HxSNpN1TaFdMWk6Bh9vj8kLQcVOpxo/j3qdUZxKB6o4nxojLDQcEIJ/6rPnWGl4xJkUcD9NU0IIMaVQnGUoKtRcA8uQLoINz+D6tnRA7O0Tlq5YOgsNmyQreGVB6mQd3kfPNRzOt1zGccZXL7f5fzzkfcdRhqVpBLEUka25JnMlh77tmeyOE4I4x9E1ekHKuaZNkORYhkbFNkiznFcW6qDA9iDGtTRu7vhcma1wrulQd+UzqapKmfiJU6PnekGCY+hTLbjZqmw0r7QdqZuRyWJZUSTt96XLNXp+wrt3B2R5wWzNolMxsO+q5V7qcGtXIphaFYOqbVCZiA6fcH1PKAeWfvQZX2w49IJkSmkEiRQN0pxLMx7bo4hxpMrPNs2Zr9kIwCr3Gl1XQUjUpJ9kLDVsXpqvkGYC01CPpdZJlGmIZ+moSGMFx9BYackpuKGpU/qjtA+PeXmuSrtm8YO1AZ2qgWPKInJC+5k55ECaF2JKizqLKaGkksgz2U8lZefSjMfuOJYaGUlO3TTIC4m6PN9xGUc5dUfnUsflXMNmXGpITmIcS3Hyx3Uy3B9CyH1otmLjWhqOqdL2bKDg8qzHjGdNRbcrtkRr743jko5tcOE5699MxMc1VeFLl9sIpJPcxlAiJ1RF4QuX29zc9gkSjY4njSWGUco4kg3dybO20vbYHSeIoqDlWaXTU/FQbbEJUvo0MY6kQYapaYyijNcX6zimRpoJGqWGV5IKikKeY23P5LVFW4qAhwnBMCtRigphnDFXs6k4Jn6SsztO0FSFlZaDXe77k3X8KMRd108wNelsnOUFy00Xz9TphxINGmdiSi8613TxSkTXrV2ffpDw1vkmt3Z9znccLs9USjdTSS3x42w6ABvH2SOLRMtQOd9xsXSVXij3kDQvaFkmflQwXzNRVQ0hpGaqbCwojEvU1P6cwDE0fF0yF2pniBhWFYXXF+vc3B2ztS6Fz9cHIa8E8nO8Nl/jT3xhmVGUSjp1lHJja1yifyIWy4Z9mGan1lz6UY7/4B97lXfvDvk3/8Y7/Od/UuGnX5t/6M/3ghRb1+jlCXmZt2uqdD60NJVBmJLmEgFrGyqvL9XZGkbcG4T0Ap9rsxVmqzY3uz7nGi5CCKlZVCL7mp45fWZOs7empdRAxdK5MlshKwTdccL2KEZVkQL9CszWDJJMIorn6zZLTYf5us1aV7pdprlA16QG5CsLEqnZcOVZdWfXxzF0OcBN80fmFaauTPVnAbaG0t18GKVcnavw2qLU+2tXLOZK7VGJPsrYHA5k47ikt1+br0wdeMM4L3Vez6ZBIYTcO6u2wYW2xyhKWeuGrHVDdA0WGzafO98kyXKudFw+3BrhGDovzdeoOQabg5B+IJkhAjHVe+uZKWqJWru+PSLL5d/SHSenbkx5ps5Cw+Tl+SqOed/E4aX5KnkhpoCFSQ4hhKA/TtkZxaiqwlvnG4RxTsszsE2d7AwHvfvjcD5XdwyyvKBu69RsOTxVVAVNlXlRw9HRNY1rc1Xu9kMqlo7TUXEMXboGl0MZJq7gZ+Qy/bTjLHb2DSHEf3gGr3MmUXMMPnu+VcKkId/XAQ3zgi9c7qApslg2NJUL7cqBZkKU5tzZ89kYRLQ96QRzOOHdH37piDeZcD8oAbZNjatzEulwoQPdUYxAbjaWrmNqKncHETOlbfNED+B8y8M6oWbR8w7PNqSIcShF/mYqFi/NV7m9FxCWGkq5kEnclTkPQ1P4eHPE9ijGNaU2SFYI9sYJDZjqIwBsjmK642TKNQape1QO/hjHGeea7gPvlaVrLDVdhFC4veejaip7/lHNKmBKl0lyeT8nbi2TWG65fI1ddoYxcSq4sT2mUdLv5uv2I5NGW5eCsopilrboJkKIUjdBPosTlyldU3AMDSHgbk/Cn01V5fZugGtq2KbGYsMhTHPiVDpf2OXBPGmcCCEPh9NqVDRckzApeG2pzoW2tGXf71K31HCm1t6eJbVzNgcj8hxMTSFICrp+woWOdMbUFIWwJ9dLLqBlGxSF4KMteejUHeNYcVBTlwLGw+g+jXP/s/Gg2BnHU1j2+Y5MzL+/3mO+7vCH3ljg9cUGYZbx9eu7NFyDN87VT9WECPY5SBmaymLDIS/EdOKeF48+vIpCTO+Ra2lcnqnw3t0BszWL3//qPFdnKyR5wTdv7VGzDd5Yrp9KMD4vxJk3pUBq1ViGimfKSc3Ftlei9lJu7vhUS30x4EAhflwkeUHTs2l6co9+WHiWznzDZqZmcbHj4Zo6ryzUUJDw5/m6w91+SHecYBkqWSEnZTd35Hr54uUWFcvgbi8kFQV5oSKERHbZ+0S1x3E2tZlfabkPdAc9LuqOQcM1mK1ZXOp46JpK25N0uImW2PXtsdSxsHUsXWPPl4l6Vsgi9r17YxYbLoau4Fn6VBQd7l9jUJpoCAFLTeeh2ib3BhHdstC9NnfwzJuIg+8PXVOpaSpRKhHIgzAmTOUaVRU53WxVLC7YZkkZtvnmrS5hIvX3Xl9qPPQzarjmtIlgmxq/69oslzpyj9E1iVxTFIlI3BxGrJd2xz/z5uJ0EFKx9alw9nGA51u7siH7qKHRSWLiLGkbKjNVm07Vnj5zEy09XVUZJhkqYOgahqYQp4IwLRhFGSttj7l9r7lZUv5UldLB6cmGT46pcWWmSsu1EAi2hpF0iYpydoYxVdtgpe1RsQ3evzfgg9Fo2rSYrVnPffg1Qbzl5Zqd6LE1D4mWX5ut0gsSNgcxYZpxe9dnEGZYhspnz8tnqigEzVL78MPNIefb3rEmFPtj/7T8pOGVdNOlpsP5tkvVNpipWiXFWeaCUSrP4aKQ1HhDk9QURSjYhkbXT9EVFcvUSAtpAnBnT+49hRBU9iFv7/bDKd38YTGheVybr073oJXW/bO75yeMowxVleeOosD1rTF+nNHyJP1eUeUZLt215PrxN4e4pk5eUhGFkBo8D2vGTMwKBkGKpihcmamgKbLJ5VgaWaGw3Dj6+4fPuY1ByO5ISkDM1bwzp5w6psYr8zVUBd5Z7VMzJXps8j6vlMhqkOhQ6eab0x0neKWFO0ikhcOPRgH4pGHpGv/t/+YL/Om/+jv8a3/tbf7Dn339oT9fdwx6fsJL8zUuzUgh6nbFQhr8Kggh8+koleYVpq4yDCUiNUxyao50MV9pejimyiRbkPqM95+Z7VHE1iBGUeDqXOWhzanJ8C7NDuagWyUKVgjQVZWVlkcvkBpnSSbRS54tTXg8S0q9tCvW1PEbOJAvf/5ii/VeiG1ItM6jQg4OZMNkueVO0eRhUjDfsIhTaTJVCDjf9nh9qc6tXV+ivkvK/WdWmiw1HHRNxdQDXFOnUzXPdK+Pspzbu8FUq6pqGyhKWLI2pNGHa+lsj2IQCrmQa20cZ7QrFjXHnMq8XJm9L60yXxPTM/YzK82pmcxpcrFpKHCpU4PyGZus6Qk74vCQe2ccc7cfSZOihjzv13shlqHhGCrth/QEHjeK8tkXAs41HbxS8gRFmp/d2QtRVJitWMzXHQxNkaY4hoptyP4CcF/XS5W5Zrsiqe6T5+BHIc5SY+qFCdvQONd0iLKD08lJMasoCj9+rUPdMQ+4dQFsD2N6QUrPT3ENnTh7OOx+vrTcrjsPp+1YuspXrnSIs3zqSLHeC7lcit5KSLf82TQrpg5FK60fDXvHSRzWaNA1hfm6zeYgYqZq0a5IBJKpq8RZjh9LQeTJlKRTsZgtf27/vZvwoPfX+jVbLx2mioc2DyfR9qQ44ihKHzpty8sbkT2gsdBwTX76tXlu7oxJczl5jNIcXVWBaKrT8qBQVeVIoSQLsvvPz0zVmiaxmqqwN44xdIUsEHiWNn2WhZAH60pJNaztoz/uf6Yeh8rVqVhHmgr7Nzbb0HhpvjoVHYaysEZC2/cXWnkhaFdN0kJeU7sshCXVT5TX+PC1VrMNFhrSMe8k9/twCCEwNY2LnQqvmCpLdYdv3dwrbdRLKP4pdEsbrsk4vt+cAnnQrbSlOPJji6Aqch1dmatwoe3x9u2udA5NY+I0h1M0pnRNZa5uTRvdZxVN1+SV+TqaotAPUpZbLhVLJ06LAwKSJwnH1GhVpLNk5RHi56auTvUWJnF4311qOLQ9E1OTtMLVbkCSyWno7jieJj5tz5KNhmOg4ft1F+QZcPK/qWobvL5UP/C1/etGVZVpw3F/EzsXotTtEtPkIi9Ru4sNmyQvDiRQSbZvfT9CJ2LyfWnZLE588G8NI/x4gjhTqTvSBShIcq7NSb0HXZOW3eea7rTBeppwyn3kwNdM+bXFus0vvLOOoamMIjn8WWm50rXtEQ3Pifj8WWhoaKpy5J5OomYbU2fZfpgSFxJtvdJyJI3DPB4Juv9My3LBk0pW6KrCG+fqxKnULrNarhywVUw0VZ0O6Sbvq6LQ9ixanvlCiKPOVC3SvHik85+uyebgBLmyO05QFVnA7kfwFCX9G5gKLD8sGq4xPZ9OGrqmHnl2FUVhP+vONjRemquS7zsni3Kt54U0LZnkHELI751ryvNc6rbdf7F43zp+WNQesQc1PRPX0tDKRvDGIETXFJJCIlFNRf5sceh9zpfFuaEpbJZDnzg92fqq2jqdisWVuSoolM5nJz8jz3q9HBeqqnBppsLL89J+/UHNYktXS/dPqTO3f485S82eH4WoOwb/w7/4Y/wf/5d3eeMBe+QkKpZ+5Lnc/3wrisLlmYNno6qWaFVFIcmL6bOfFYK5qmxqmZp6ADU8uQdCUDraPviaCnG/Kb2/3jvXlGL7nqUzCNLyZwVJ6bQp1658PhbqDk3XxNDUA0yN/Wtu/zDmJDHZhyZrfqE0/hhFJoaqcWcQoKlq6W7o4Vm6pNcL2ViJSpre5BqWWy7LrRO//cnjUA5yOAfeHcf3f1SRg9tC3N+b647BtfkKqqIcWG/7nwutdB183NBVlbqrl02zk7Usmp5BVhQ0XQOvNFx4dUGKpz8NV11Zy8n/luwIKYMxW7XoBwl+kmFoakknNVhqOCR5gXnomTv83086lHsecRaNqZ88g9c48zjOVenVxTo128SzNWar9rEPqG2qeKbOTNVktmY+EpZbd4xTcTYtXaNi6WSebMBMXGKanklRwu0udFzCNKdm156KSOqzjgk89nBYusaVuQpZUVCxDdqeia4ptDzzyIRjoW6zo8ZTZzeQB9WjpqD7Q1GkRkrdlYJwzQccEpPk62H3dSKUKgtdi51RUupmnd392n/vbUM69LVci7qjY+oaAgn51DW1hMweFDqvOxK1keYFM6dES500DiduDdeUroglrPpc08bUNWYq0pb+8GRC2tE7jKJHF5rwaPTN/pipWDLxVtXpJG2l7U6nwpausdBwyAlpOiY153TboXRvPNqErNnGiVFNqioTsYlLJUgaVT9Ip3vDQsMhLhO14yzPHxWzVftYRMmTxFLDYXsUo5XOpYam8tmVJl0/OfB5nyTqjsFLczVyIc6MBrF/7XzqXIM8l43PpbpDx7OgTHQf1OBsukap38apkYYnCVVVsNX719ipWBSFRD7NVi0uz1QI03y6Bx13DXXHIKoW5OLRjdr9++dpaGOOKfWwZqs2DdeQa/kB73X4OX7SMDSVVsXi978yzztrfWqOzlzNlmLSJ5ianm+79IN0alv9NONix6MXpCwUUsBfUeBcy2W2ZhOm+bH778TG2Ta0U7t5PixMXVJAk6zg8xckhUpRlGlONFO1yIWgU0mZrVq0ntLZcNqwDY1LM6dLomu2wZUZj3uDiI5nTfVYGq7JhY5EDhmaeqJBxnHn01mFrqkHkm3XlFQLafstRc1zIXANfbo+D5/nIPfdnVH8WNT8w7F/H5i873LTnTYG6o6JaSjMVO5/Jo6p4ZiT65J055Pu2aoq87X5uk27Yk6biAsnMCwAuV5UJS6v4enlxZau8bmVFt0gfmDDtl2xeGVBqgA1Pek+lpbGN60z2v9+lMI1df6f//Snz+S1jp6NNlkOUT1jqemWjpYyf5fmIkfXyVzNRghJI30U7UtTJXXscA5q6dp0Dbqm1GY617Ql26ZEPc3W7v/8Wddqpi61FSd7l66pLDZcao7JIEjQ1CrjOMc1NebK65jk40tPyfX1uDDK69z/WezPgedrNrqqMlMxEUDLs0rjg/vn8llQ2R8WtqFydbZ6YrTVpHbY/zsXOh6FEFRtA++U8g4niQk7Z5LPaarCckuyYd48V+cHawOiUopkUvfuXyf/KIUiTjMeekGj0+mICxcuPO/LOBJZIUjLLvLWvTWe9TXGaTGlFdmm9kho2+3bt5/5NR6ONC+m0wtTV49FoT2N6xRAVIrSqoqCdUo79sPxInyWx8X+v/N5PJMnjTgrptPaF+E6CyGmk2FNVY6gGF+E+y3KxjbI5O4wGvR5XWOS3Z9ymob6SGHxF+GzPC6e935+kjhufe9fS5Lm+xwv8Jj4/9/vx48XYT8/yZm9P57W/T7tPvOweFGfySgtmOTsL+ozCS/e+b0/0lJ3C2RRravKC3m/9+8/hq6yvnrnqV/jxIBl0jB/nHian6UQ8tmynzA//+TmLRbPrUzv/4sYhz/HvBD3UUmaMm3CP++YfJbH5ZwvSjzsmQwnFtPKfRH05xHTz/EM6s+nGW+//bYQQjzVC/zREC96RFy4cIHvfOc7B74mrTYlDPMspkunjTQvuLPns94LaXsmf+af+Kkj13g4ojRnGEoRuceZCA3ClH6Q0PRMarYx5eQ7psrlmUe7QLz11luPvManHYMgZbUboJUQREWRItvDWLoJzNdsPv/5zx97nUlWsDmIsAz1gVO8QZgSZ/lU82US+0WiJ1zpJ4kX4bPcH0IIPtocEaV56Soj+DP/xE++UNcIsDuKWe36WLpGUVI+/9l/7CeOvc6Ju49rncy2+kkiyws+2hqxOYiYq9m8snDQtvZh97vnJ+RC0PbMp2rFPtFnuNePJGT+XO3AJOp5PZM9P2G9F5YaApUjKLs0L/hwY4SqwivzVb7whS+8cM/lei9gvSut16uOwZ/+2Rdr7UzWzWLDmTqtTdb3Rj/k460RVcfg0+caz8RN5lGxOYhI84K5ms2Xv/jw+z0IUvphQsszT00TfVhkudTAc0zt2NeNUmmuATz1+10Ugl0/xtK0B051gyRjZyS1oiY0YXlu+Qfu96NikmfUHOPUxWeY5GyPoqnoLsAwSlndkwLEl2cqj3zNs9yHsrxgo9RitHWV9V40zR1OKoGQF4K9cYxtatMp/4t2fk/iXj/k++t9slzwf/3f/uEX6hq3RxFRUmCb0tUvyQSOoT3w/D5tTM77OJMD15mqdWpjCpBCzXcOPa9nfb+FEGyWov3zdYkoPm2+MtEQBInI/N1f+eKJr1EIwa1dn2GYcnWueuIa6NauzzjKaLjGqdgI++NprZ31XsA/83PfZK8X8salNn/1z3z+sZtnr33qM/y1v/33ibOChmPy8kLt0b/0jOOtt97iF3/ta/TGMbM1m4ZrcqM01lluOaeiBT7NuPLqp/iL/8Pf5fPnm8y+oML/n/ns5/i5X/h7zFZtzh16rlf3AgZhStXWHynD8jTjlTc+zf/5r/wiryzUeONc47ldx6NCUZTvPu33ONWurijKG8BfBpaAXwL+D0KIXvm93xFCfOHsL/HxYq0XEMQ5ihIfKSKfReyMYsJEujOcFFa52g2I04LdccKri6ffKCei3eM447XFOgt1h7ZnYWjKUy2IzzLqrsHLVhVVkaJ0t3Z9bu34DKOUC233oYnI1jBiEKYQSpHkw4d/mOSs7knXnTQXB+7LhNue5uJHStPrpLHeC/hgYwTAlRmPl17AgxjgW7e6JFmBqSv81CtzDxUEXu+FjKMMRYl5ef7pOlfqmspc1Z7q+uyVycKjYhCmUsAQibp6WlQRKKmqdZtRlE2dzB43uTzLaHqmtARWlGObIje3/WkD4HlOrB4Ufpzx3Ts98gLqrs7n55+GUMOTxWTd3BtE/MwbC6T7hJyzQkzNB5K8eO7w71Ek3W6AR6K3hBCs9eS5FiQ5ryycXWPqXl+eFw8SyLUNjVcWajwLVPnWKGJ3JI09LmnesYXkvX5ImBQMw4yarU+FmS/PeAfu96Pi5o50yu0F6RF9pEfFvUFIUOpCVm0DU5e03Zfnq1Jb6VnnWeOYfqn/stJyeXmh+sB95kFxrx9OX+Pq3KMba88zbF1jHGVPhAZ7GhEmOVuDmDiTlvULdYe6o3O+dXaF3lo3YBCk3OkGXGi7pLl4LP2U6jN4XodRNl3Pmqqw2HBY6wb4ZU1yknzFNXVeLtfnaXObXpDyw7sDikIiQr50uXOi35t8ri9iDvzv/sIP6Qcp//pPXOa/+PVP+M/+wXX+/E+//FivNVnjG/2YjX5MxdKPNCyed2SFbC7uDGO6fsrr5+pTTdcnNco4yxAIgjhDefHkpqcRJBl39kJWeyGdqom9z1Bspe2WmrjP9/qzQoqy39r1eX2p/iNTsz+NOO3T/V8C/xfgDeBj4OuKolwuv/f0hRweEX6csT2KyHIJI97zY4Ikey7LZbLx6aqCe0ySmReC7WE0FdWD+yryEzei7VE0dao5zXvuT6xMXf2ResCjNKcXJGSFFCnfG8fs34MfBhWd/N2KwrGbjKJIccNuEJNmOUIIdkYxXT8pv3+UovWPQuyMIm7t+qSlsKNjHbWMf96RZjkfbg4ZhfJeWLqKZWioqkJWCHp+cuR3TvpUD6OUrWH0xBavTmnZDWAdKl4KIaZ7z4Fr3HeRDzu4ozRnq3SeeZIwdW0KA36RYNWHRUH3h2UobA1DtoYh5nNODiYRpznv3xtyrx+iKGBq8n67pv5COZukWc6HG0OGkVwftq4d2ccKIZ1ONwbhCyHMK88k+d+PagIoyn16wFk3DA4ci0IOk7aH0ilvVDqASnH3p3e//ThjaxgdaCyl5dk/oeVOYtI4M3TliGDwg/bzopD70v79c/J3CyGdpQZheuzvHheTe6FrygEKjK49msL3NGLibqUoUk/mYfvM4QgS+dlPBI+TPGe3FA1+kSIvZJ6y3gvo+tELmdPpmkIhJEtgWD5Plq6dKTpTmgskqAqgPJg2JIREwPWDoznD/et9us+rtW+Pm1ynn+R0/Zi8KE58/wTQDRKC5HTmJZauoioKcZ4xjrMjz3SQyFopPZKvvJg58Nt3unz9xi7/9u+7xp//6Zf52U8v8t98/fY0dz9tKEDFkiVrWuTc3vPZHERneMVPHqpyP8eN85w9X5rf9ILkhdqjFBQUBbZHIWs9/1Q167MKIWC9HxAlOYZ2NI94EfZUVZEyMuM44+Ot0RPXAj/KcVocbEUI8cvlf/8niqK8Dfyyoih/iqk2//OJNC+4tSuts8MkRyAQQqCpCkGSS1vch6BtNgYhfpyzULdxTY3NYUSSSRck2zj9Q9vyTBxDQ1WPF3bbHEr7boDLurQ9tw1pobnS8rjbDxmGEg3y0vx9K+kkK6YJYZjm5XvIf1/qeNOvgTyg13shaV6w2HAOJPb7LSVfpJgUg6oi6FRtTE2j7hhcma3iJynD6MFJ9EzVwrO00h1PJnT7k49ekLDeDXBMnTgr2BnHbJXOMlrJj1aUkwvx+bGkVlRKt5kXLfK84Dc+3uZbN/ZY6VSo2Bo/drHFwjMURjxJXN8Y8GsfbgEqLc/gfNvllX2IrjSTDpaKwgH48nLLpRckeMc0C9K8QFUUsqLgzq5EyUVpfkSsPM0L1roBhRDUbINhlDFTtag7hnRdKW2MQaLwJhPaw0VynBVsDWL8OOfiPjhwzZb2w0UhjjVkiLMcU1P3oSVjXttnSw3yOb7XD4nSnE7FpBukOIYU5jy8jk1dijxmRfFYNIenFbujiO1xzELNOfI55IVgGKYUomAcP//DWAjBr72/wTtrAxxT409/+SJfutxiFGfMv0BQ9SBO+evfusPuOGWhbvPKvMtL80eRkHd7Pt+4uYNn6nimzu+6NvMcrvZ+WLrGtbmTP6OXZipE+861k8YgSOkGkgJ42MgiywvmqhauqVEIwc44pjtO2B7F2IZKmBQstx0udU5OCTttBHHGb93YRVUUVloOS02ndDuLGMcZ6wS8tlBnYxAiUFhq2KVpw8nzke1RPEWn6ZpC1TZYbjnSkj0uSDJZJF+e9ab3QghBkhf3nVbzgiSX92qpId2nLP1oA2hrGDGKMuZq1gFq5FnnGhv9kEGUstRwqDkGl3UVTVOm1xsm+VQHcHccM44yZmsHaV8TqlNRyEbfYsNmrRvS86Wz3/OMcZxxtxdSdwzaFZP1bsDdfsjWMGa+buEYxws+P+uYDFJmKiYbw4gb22MGYYpr6li6cqZ7ZZDIptTWMOJ82+PqbOWBRjOTvE4IQVaIaW4WpTn3+iGGprLUsBGcHWJqckYD01z76lyFOC3QNSkSn+cCVVFwTf2B7xtnOYYq19b2MOKH6wNcU6PqGNJhdi9AVWGx7jx0PTmGxudW6ny4Mabhmax2A66VrmZ5Ibi5I2ulfpByZaZyorU5jlLu9iNqjv7Mn7//5uu3abgGf+ILywD8Gz9xhV/83j3+5rdX+bO/58pjvebVuSoVS+ed1R7fW+3zq+9v8sc/v8yri40zvPLHj0JAp2JSt3SGccYgSPnO7S5Vy+Bcy+HTy83nfYlA2QRF4dZuQJznXGx7XJur0gtSwjRnpeU+dxRqIQT9cYx3aM9I84I7uz6KAhc6lecyXJlExZL52d444ju3u2wOQpYaLpahMVe1MF9gJO9Zx2krF0VRlLoQYgAghPh1RVH+KeAXgEfyGxRFuQB8C/gASIQQv19RlD8P/CxwB/jTQohUUZR/FvjXgS7wJ4UQw9NcZJzmrPVkY8fQFW5sj9BUlfm6faw7S5TmU9jt5jBipmqxO0oYRCk3tsYst6VTyWkf2ofpRO1/KVVR5MEbpOiqSv8BE8zdccxGP8LQJfYiyQQVW58WwqqqHKAADKNsClHfHd93GInSnE92xggBl2a8F6qA/XBzyK2dMbvjhOWWy1sXWlzseMRZTpyKaSPpQeGaOl0/4e4hTZudUcw3P+myOYxYqjuoioK6L7kfRxmrvnRTOulnsjGQ1IpRJPWvXiR4LcCvvL/JL75zj91xTCYEv/vl2ReuKbXW9fnLX7/Nei+g6Rl89cosyy3nRBprmqoc2xDcr3lyvuWiKHJioh5TzG0OQn54d0CWC0xd4UK7IgtBIVjrhpi6yuUZb9r4eiTC45ivPcjdcb0X0PNTXEub7gfHXWPXT7ixPaIfZBRCcHm2QhDnGJrC1jBGLQvLSWFm6irmqcGwTze+fadHlMjm3U+8PHvge/cGAbf3JF3r1s74OV2hjCQr+MF6n7/3/jYbg4iGa3Bnd8xnL7SpvyCaDiCb4n/5N2/yrVvdKVJkueUeWTeDIOVX39/h+2uD8qyQTZ7nnSie5hnVDp1rJ437FMCMunO/2Rsm8vwDWcBtD2Nu7Y5xLQ3b1AgSQZDkjKOMrp8wf0LXsNPG1jDibi9gFOXkRcG1sqm41g240w1kIdgN0VSVpaaDZ2qn1vA4nGcAjKIMTVHpRQmpLo7oa000q5qewULd4fr2mCwXU+3F4+5FkhVsD+Py74qnr+nHGbd2fVRF4dKM98TP3ThO+dbtLghJwZupyMHh5dLNb3L2K4qk9m30JQoiKw7SvpTy/C8Q6KpCu2KxO05eCETh23e6dMcphqqw2HS4sT0iywWDKEXXKD/b5ztQDJKM7WFMmhf85sc7bI8i9vwYR9e5MlehXbHOdOi5O4r5cGNMnOfytZUHy1NMkMl3+yFBKvX2llsuu2M5OCpExs44xnhITXDa2PPvU0odU6NTunqt90LyQlB3DHRNoeGaD8xttoYR28MYy1A533L5cHPE9Z0xuqrwY5da8hkoawPP1I8ddE3i1p5PEOdkSNrXcbei5ycEaY4QcGX24fVNlhd84+Ye4yhnrnbfTfxZRJBk/P0Pt/in31qe5uVX56p8/kKT/+/b6/xrv/vyY6NdFhoOH9wb8e7GYErt/g9+5lXaT1Fy4aSRZgVJJhCKHCp8/fouH22O6FQtgqT+wjSmQDb313o+RaGwPYxLlkKMqWkMw5S3Ljxf+YMgybk7iBlEB4cO692Ad+/J9oJlaA904XwWUQhwTJXtUUywG7DaDXhjKUNTVdYdk4sz3lPLRV60OG318heAV/Z/QQjxA+Angf/phK/xq0KI31M2pWaAnxBCfBX4AfBPKIpiAP8q8OPAfw/8Kyd5UUNTudjx6FRNciHwTB1NBQUVrUTQPAj+aGrqdCrq6Cp+lJEVBX6UYRkacVpM4d5nFfM1m5qj45hqST27Dy12DI2lhsN83eZixyNIJG9/VB5KaSYYlQvsYXA/x9DQVDmtSfP7LinjOKMoZLE+jp7vdDBKc/bGMXkhEW4VS6cXpGiqtHydIEMmB5J+DNUnLwTrvYC1bkBeiOnflOWCuEw0x1GKZai0PJO5us35tkfF0jE0hU7VnL6uEEzd1x4Vk4PZ1J/MAeisI05yvnlzj483BxiaKq2z2x5feM6Hw+G4sT3it6/vkmYFVdug7hh8+UqbmUNJgamrnGueXOzRjzOEgKKQBVPNNjA1hcV9m3qYSNqGikJRyOJ3QgupWDr3+iGjKCXJCqITFCuWLpPcc82TN/4mk/kgzml6Jqp60OY3zQt2RrFsQpdUn4qtk+UFhq7QD1L6YUqaF/gvANLoQSGEQC2LBXEMsLZum5i6gqqAZz1n/aMw5YfrfQxVwTU1Vlou7hkKbp9FrHd9fv3DTUZxSsMxsHWNr15tT8Wo90chChTA0hVMTWGp5UiE0Cg+8zPtRQvH1BBIJ6P9SFs/yaZUlq1hhJ9kCCT9+9X5Gq8s1Fhs2NiGhvuUnsc4yxknGYau0a6YmIbC3lg2dhbqDjVbnne5gCSXbnPHSQI8KuTARKHlmdOG0gR51vYsVtou5zsutq5N6U+TnMKP8wOOe9FDzkVdlU5CSVaUvyN/dhTJvTgvxGNRPIpSmHxCrUyzAkNVZcMxzomznK3Rffrd5P+FgFwIDL3MqfY1A4ZRysYg5FzTYbFhT1G0Fzou83WbC+3nI4A7jFJ6fsJE0mwviFnr+gSJPB9eXahxqVORuqH68803DE0lLwo+3BxytxeQ5QWOoXNtvsIbS/Vj96LTRM9PDshcxGlBxdZxDI2WZz5UD6ZTMVlo2DQcE8/U2R5F9INkqjmai/vOhg9D4J8mbF1lECb4STbNC7NCTF0i86KgYmlYhsLCA5rLuyNJqw1iyfjI8oKOZ9KuWCw33Glz6VGOeeM4Y3MQUQiBa2poGgcKWk2VTWLP1pmvWSRZ8ciGbJjm0zU8QXk/q/iNj3aI0oI/8Pr8ga//0c+d4+aOzztr/Sd6/S9dblG3DTqeSVYIfum9zYfSQJ9VTJptLc9ktmrTdE0cU6Hnx1O04DBKn/u1KopECV6bq8ohriqbVBOkbpIV7I3j59r011SFoihougbTDRYQyv1/PgMpyYeGoig0XYNzLZfllst8w+ZeP5waNeyOI/bG8RH67T+KcapMRwjx1x/w9VXgXzrhy/yEoihfQzayPgZ+o/z6rwF/Engf+KEQIlMU5deAnzvp9XmWzuYwIk4Fq11futsZGm6pDXPYqS1I5Aa+0Y/wbI3LMxW2hrGEgisKnz3foFfSZs5alDcr6St744S9ccLnL7S4NifFtydJ1EzVYhxnrO4FDMMU21Cp2gaerVMxdXpBQqtytFj344yNgXTOudjx+HBzyDjKudsPWW651B2DQZgiBM/V2WFnFPGdOz1JL2g6nG/LJlyrYjIOU863PT613EBTFeqOwThOp25E+2OtG/D9tT4CGIQJrqlTCEHd0dkZRuyVE9HLMwWaqkwdCq9vjUhzqb9ybbZCkhWoqkLDNegH0v2l7ZkP1Bg513RpedmZayk8SQgh+C/+4Q1u7oypOwavLFRYbLj8zJsLmCekKD6L+J2be/wP37qDa+rUPY3PdBr8xMuzLB8jlqqpykOng4ej7VmESY6uquUzIZPPbpAyU7XIcplQd/2ETsXicxcarO76tCoWyy2XOMt5d93HT3NcSzsC/z0uVEU59eR1oeawM46kg2Y/QgiJ2KyVCKvrW2M2BiEVW+eLF1t8tDVCQeFCx8PWVb5xc4+en7Lcdh+IynoRYiLKvjkMp2Ku+0NTFfw4LxsIz69Rfmt3zC/98B7v3x2jKoIvXGjye1+en6IxXoT4YKPPf/UPb+EZcuDypcttPr3S4M1zx09PpfmGxVrfpOno1Cyd1b1A7nu+wsvHUP9AFjf9kgb3IiFqQbp/5YU0EnjYlP9i22O1Kx137uwGXJrxiLOCKM1KzSWFhqNiaArbIzA0jYqt0/IsKpY2zQVqT9iYDBOpD1J3DIpSamAYpSAUlpsOlq6R5AX3+hGKouBZGoMgJUkLVBs+da7BYtN5LETuxkDS6+72QhxDpVWxaJRoB3WfnszEwVdSsVQ8y2C+Lptz83WbIMkO5E9BInOMyeBIVRUudzzevSfRp3e6AZdnKjQ9g3GcoSoPRo4+LG7sjFjrSlrba4t16o7Ja4s1ojSn4eq8faePrWu8tzFEVaBhG9RsHdNQaTgGNdsgzvLpM5zlBat798X0969tS9eYqT6fM/LOns9794bUSufhdsVkdQ/eXR8SpjkX2i5vnGvQ8kyCJDux3MBZh9Q+jdFUhfVewLdv76GicqHj8uMXmiw3PRZPgMouCqlvppW52f7YG8fc2vUZlOL851ouUZ4zU7FQFJM3l+oP1X1TFImkFnNwtx+QpBL9PF+TUg95IYfAWSFOdGaLkurrxxmmrtH2jqKFwvQ+LXmyI9mGxlzdmlJLe77MQ4ZRdiydPUzlvmDqKrah88ZSne+u9Wk6JjXHQFMVrs5Vput2EEraadsz0VSFvbHU35qgqMexZGDkOWwPYyoz99ffRFh9YxDhmtojEepaiTCcFMVxVjyWc/jjxC+9u0nLM48MVv/QGwv8n37xPf6Xd+7y2ZXHRw85ls6//VPX+Fvfu8s76z1+59YeH22M+Hf/4Mt4z3EoZWgKdjlMd02d3XHEu3f7zFdNojRnFKV8vDliZxxzruE8N8Fsy9B4daGOqsKHG0O+cXMPU1NZaTlcmfXw44y37/TQVYUfvzbzXDQ680LgJzLHLIRg8uQuNxzu9gLyHFoPcMN9VqEq8PJCnYZncGsnYHccEyg5QZTx7dt7NF2D8VxOp2I9lunDj1KcWcapKMrPCSH+5Uf82AZwDYiBXwRqwFb5vQHQBBrA8NDXThxCyEJnoS71B1RFoebo1B3ziFbEajfg/XtD7vZkw6bpmhTivh5Cp2IdQW+cVaiKwijO6AVpWSQkzFQtDucbQojSojmm6RlUHYOZioWpqw+0ld4suf9hkuOa9zWXJh1hQ1NfiGJrYyDthYM4ouHoFIWgZutUTIO2Z7HUdKb3bK0nNXjupUcFCgWCQsjO/cYgYr7mTDUm9sYl9NnSj+ivaKpCXgiyQjasJg5mYZKz1pV6AUlWPNTZ7EUr2j7YHHJ9S9K+AP7cT117qk5wjxPdccLXbuywN04Yahm///V5/sQXVs7s9U1d5VL5fO+fiO4X65XaIzmjOKNTaVJ3LfJCJo3bw5AwFWiKykLNeWqHfd01qLuGFGv1E7L8oCbaxkDSkbt+zLXZCk7pJLI3TjB1hXGUY2gqLdd4rtz4R0WQZGWT1ybJjo6l+kFSitGq7Iye/fQvywt6fsr3V/usdkOGScrljsePXerw8mO4oz6tGEcp/+CDbXbHMX1N4atX2vzzX7740N9RFIVmxeZ8yyHKCjYGEZ6t4xr6QyeEd/ak/s4oyg7ovT3vGATplM6toDwU2q6qCrahTdHF4zib0s1cS6fhSFqNqctnTzZ+5Dra8xPSXLA9jGk+4fBmcnZtjyJ0RepDjaKUqm3QqVrM12xubI9J86IUbk4wNJWmZzFXs1lpu4+9B2mq1KzKS3fDpmeiKMqRwnpCedwZxZxr2TimpP8IMSneDxbw28OYIM4l2rOkJ0mXM7VEq8qHy9K1x06i80JwtxcxDDPitOC1RXlPFxp2Sb1WOd/2CNOM9V4AQmHXTPj0SmPaRNOUg2e0oihTarf+Au2Z0nEuIU5zXpqrMlO12OhFxFlBLuQgc4KSeJ45x+YwYncUM4wSPtocEaUCSxN8ZqXFl0/o/AZSB2qyFo3S2XESAvl8xVnBWi9goeHgGDrzdYVcyM/jJCXkTNWa6jcCDKKUMJGNlXbFPFEDDWB3nHCvJw1k5mqy0XT4mRaCI43jNC9wDI2ZikU/SKeNqQcNMW1DY7npTlGamRAsllpOk+HaFI1VamNONHUNTZHrJMtRFYWKpVNz9Ck7YlID7I/9mpmHI80L4qzAK9e1AJqegR/nCKGwNYy40Hn6yMIozfkHH2zxj39q8UhDo2ob/NQrc/ydH2zwH/xjrz6RlMZ8w+Gf//IF1n8p4vrWmCDO+fWPt/mZNxafmyh2khdEacFqN+Dl+RqzVZtLsxXSTOBZGmGSszkISXPoltp4h2nZzyIU7iNSk7xAQZFax6bOG+cafOOTvSnNtRskz6UeKYR8XoIS+Tf5lMKsoGqZxFnOrp8810YkyNolzaHlWaXOo4ofZ2S5YGMQU7FC2qcY0v+oxqlOOEVRHsQFUoA/9KjfF0LEyKYUiqL8r8gG1FL57RrQL/9XO/S1467lXwb+ZYCVlftF7UrLpR8kXJ71SDPBzjhicxCzM0q4Nlc5sLnpqoqta9MExTM15mo2/SCl5ugHNiQhBHf2Avwk41zDfWBTaPKzcVY8VKRUUxWuzlYQgimlbBJ741giJ2yD5ZbLStshynKyouBeLyTJci60paX0ca9fsXSCOMfUVSqWzkrbJUrz5/JATz6L46DHdcdgoW7xya7PR5sjekHKFy7KR6zlmQfocYamEqfFsQX4SstDMEmGFXqBTHqywgYhXZX2C2UmWYGqwPm2x/dWeygK3C4nvACqyjR5fZEL/v2R5wXvrPV5d31A1TawdJWvXO68cE2pjX7Ib9/YJYxzOlWL2arFH3ht7qm9X802uNBxEeV/g3TkudD2eO/egDwXbAzCUodBpWLqxI6Jrcd0gwQ/TolSHUPTntqzIC3fK/hxRtXeZ2Pbcvlke8w4Lljthgjk5NKzJAK05RmsdaXOmR9LCsGL+LwOgpTvrfUI4oyfPgTHB7g8W+WNpRphWvDWhWermyCE4OPtEbd3A67vjKlaBq8vWnxmuc7r5+qPfoFnFL0g4Tc+3GJ7lDBftai7Jn/w9cVH/l6QZDRdg7woMBSFLBdcaHsoMEXmHReGphIXz99C+XDsp3Kf5NpmqxaaqmBoclCx0Q+52w9xTY2KJddL35cuR0sNW0L9kUVbmCTYhvrEn4GuKsRIZ0chBKMoJUgyXFMWolFWkBaCrMioWDq6WrBQdxgnKdfmK09UGC01HHZLqrxt3M8XDucY8zWbvJADHkvTuLMbsGtJROlK++hgxrN0RpHU8JwMj1RV4WLHYxRlNL0nT/AV5P1TkE38QZjy4eaQQZjS9izm6zbn265sPApY70U4pnasTt8kJojpMMkf+vw/yygKQZzm+ElOlGRsD6Xz3mvnauz4MWma0/Ssh/5dzypGYcLXP9nFUlU6FRND1ai5Gp865V65/285/He1PZPFhs04yWm4JqoCF9ou9/ohu+OE61tjLnTcaRE+YRVYhjzXhRAlNVcObxcLm1wIqpbOzVLw3jtFc09TZTNTU+Uzftx+MNlnTE3Fs+SQ9UapzdZw5RrTNJlUmrqKENIaPs5ybpfmLAsNmzQTU1aAa+ooitQ9PYxOmmik5kJgaPf1Um1DY6Eh13Lbs0jzgiDOGIQp790bsNSQkgiTgexxyLt837U3PYNzTRfP0rnY9khygWfoj6X59zjx9eu7+EnOH3xj4djv/+ynF/k7P9zg6zd2+YmXZo/9mZOGber84Tfn+fnvrJHmgo83R9SsXX78pedjFjLRSps03DRN5dPLDbp+wpWZCt+82aXrJzRdk07lKIrvJHXoWUfNNrgyWyFMMz613OBePyTOMjb7ITM1+8QyKWcdnqVxqeNxadbD2PfMm6rK26td/CjjM+ebR8yRnkdM6t65mk2nYtGpjPmN67sM/JR+lJy4of6jHKfdXXaQIuX7n3JR/vuRu4KiKFUhxKj851eA/wxJ3/uLwE8B30TS+15XFEXb97UjIYT4OUqa32uf+oy4vetzvu2iq9LGeL0s5LJCLgS5EYsDiKQLbZeWZ/KZlQaepU8Tlfn6/R8KE9ngSbJiOnnd8+MDjak0L9joR+iapKysdUMGYSoXw0OQSTNVG9fUETDlv8vXT7i+NeLeIOLLl9rM1x1mqhZhkqFrKvf6EVFa0K5YBxzAJlGzDaq2jl1SzOqOcQRGn2RF2WHXn6po9yc7Y8KkmB5w+2Ol5aIgeGe1T2Ko+EmOWephqKpKzTlYpI+j7FjNj6woWG66GJpKUQg+3i7QFBVNUZlvSKHGIJWaQqt7PpvDmKWGw8sLVZKsYGsU0/NTLnW80p5ck7SPtKCx7z5vDyPCNGeuZj938eD9URQF//XXbvKd1R6zVZvPLje4Nl/ls+dfLE2pv//+Bn/rBxsgFN5YqvLWhSa/+6W5E0PC80Kw2pV6FssPcPooCsGtPZ8olYKnci0YDKOUQZBO1+2VkroZpQWmLvXpTF1qzXmWxp6fUHN01nshvVBC4iu2RtUyHilAfK8fMoxS5qr2AymIUSotiiU1z5V0UEVnGMmC1Ta0qeFCP0hRFYX5ukXNMbB0WeD2AxtVgWGY8s5an6Zj4JaulIsN55FNqjSXe1rF0p+qRfQokho+BbDaC3h54WARU7Ek9SbLBa1nSC0ehgn/4IMtfvvmHioK59suL59v8dpijc4Zi/c+bggh+O7tLj//nTWCOOfybIXPrjT4fa/On0hzKMkKigIqtqQADcKEJJNIl+N+P0pzgiRnpekQl5PZB0WY5Kz3AnRNZaXlPpOmqGfpWLrKOM4wHvLMTgZJw0jSdy1DJ8mkVlMvSLF0lbxE9myPYlDkuTlJ4BfqjtSyUR8/qe8HCVvDuNQqk7pAH2wMWe8FtFyT768NGMUZhqpSL4vsXAhQpN5RwzWf+DNVVYU3zzWOnJ17fkKaFfzDj7epOyaXOnLQdXnGk65du9KARAhxbGNq4oDLoeGNZ90vWoWQYs1GWayfNIpC0A9TXFPjfNtjFGeoisLNnXFJWZK0qhvbI15ZrHGx49F0DVbaHrauPXRoCLJ4P+7syPKCO91gqj/0tCNMcqI0xzM1cgG6CpuDmN+51eX61ojLsxU+t9Kg7pg0vaOI/2cdPT/hnTs9vnNzD88y+GNvLfHK6w0q9ukaFeu9AD/OyfICy9SOINcURaLXr2+Np9/TNRXH1DE0mYPHWUFFCKK0mGqUBnHO7jiaom4vdKSO6H6q4MvzNQohiNL8QD7wsGiVVLlzTQddVana+tQcJUxzbEMlSvPyvzUso6QKltpsE51Tz9S5sT0iyQRVW+dCx2MQplPtnbwQBxCgdcfAna8Sl3sylC5iewEgWGm55IWYDrMqlnT23hvHfLA5ZKZq8+nlBllesOcnWLrMayqWPjU0OE78PS/EgWvPckmxr9gGX7rYJivEM3sWf+ndTWq2zpcutY/9/u9+aYaarfOL79x94sYUwFsXO8w3HX71h5usdkP+ytdv8sO7Pf7133vtiV/7tGEZ8lytlPe3busYqopr6Ly3MWTXTwjilJmKybW56pE67uauFMCvO8axe/jTiMszFRquyfYwZhAmfP36DoMolY7GmkOSFQzCFEXhiSnypwldlWjLw+yCXpgwLvPTx9FAPG1M8qu682CWw3LLLSn1kuLfrtjsjWKCJGO1G3J7zz/2fv+jFKdtTN0EfrLUlDoQiqKsneD3f5eiKP83JGrq60KIbymK8puKonwdWAX+UunK95eBrwE9ZOPq4SFk8RNncgO+15NT0ZWWi2dpuLaOY95PRiY8U7sUUpzEpKiN04LllsMwTNkexbimzuWOh1vCJw9D+7dL0UKQidlU1DjJp5ORB8XkQJ+IJGqqhOFuDqVryM3dMXkhIX4TOuIwlBoDxy2ke/2Qe+VE+OX5Gus9qbExWz14AN3a9UmyAttQuTp3VPflLCIvxBQ6PRFnnlj4GprK3jjh57+9xlo3oGobJUJBYWsUcalToesnUw0sTVWOTSIGQcpqV4rDXZ6p4JRT6Nt7Proqhb/9OGe1G7A1jOgHMb0gZc+PaTgGrq3jxTlVWz+A7HJNnf23OUxytoYTR8Do2M76/r/tWYUQgr/2rdv88nubpFkBAq58ZvGFcuwA+Ob1Hf7qb92mH6W0XQtT1/nK1ZlT6RSMo2wqbL/nJweEwicRpLLoBplI18qm1J1yKrlY2LQrFoqicGWuwp1dn36YcafrM1eV2h66JqW6d8YJhRA0PJONfkQzNQliKdT+oOvO8oK9sUyMd8bxAxtTwzAlzQQgGIYZM1WN1a5M2DVV4eX5KqqqcKHtcUeRehubQ2kjf77loarS6robpIyilJfna/RKzQlp160+soF2e9cnSqWQ+mGtoTQvuL3rkwvB+Zb3RHoSKy3p5GXqKjXbPLInfrw15uONMaoCv31z77Hf5zQhhODtOz1+/aMdPtkZ06lYzNZtXlmontr57GnG27d7/OWvfcLGMKZhGxRC8Htemj2xEHbdMVAU2bwOSxOMr3+8i6Fr7AXJAfpNUdqI54V45FAF5IAmSgtIC8ZRdqIi70kjSnPirJg6rT4ouV3vhXxvrY+hSSi8rqqoiqQYdCoWUVZQsTXSrCBIMoZRygebQz693Jw2JJ9Ux2dnFE+FhefrNpuDiNW9ED/J2egPMA2dQZCw3PJouAaWoRKlBTd3xmwOIhZL3ZAnLQL3n51FISiEoOmakrKcFNh6wdurPT6z3CTJC+ZqNrNVGz/OqT3gnma5vM4olUOCNC+O5Bnbo/t0rSuzlRPtIeM449u3uoRpzrmmw7mmU078ZaFm6RrzdYfdkRzO3e2HiKJs6MGxg7qTxkR4+lnE7ijma9d3UBSFN8/V0FVJxdoexhiaSpoXdGo2ddsoJR6ebxGy2vX5eHPE+5tDdscJvTBjvRfye14+ioB9WMRZTs9PibKMnVHCctNlexgfKZz7YYpn6URpMc3L2p451ThquSa39wLGUUaBQFMULF1ScSd9xSCWQ5f9eZmmKgz8hG98skchBK8vNlhoPHq/PzzYlU3+lKwouL0bY5sqfiSHYcNIroOlpoMfZ8xULfJC8PHWiI82RzRcuSeDLM4n+cJxe1nfj/mNj3aplEPaQZhOzQmCJDtwVk1yjY+3xoyjnHHkc6HlcHcQsTuO8UydpWa9bDaJ6WuAvL6JFpsUs7YJkpyZqsWtXZ/r2yOEgN/z0gye9WwaCmle8Kvvb/JTr849cA+0dI2feXOBX/zevRKF+uRIrnMNj69cneHrv/wBu+OYX353k07N5I+/deGJX/s0MUGKTqLrp2iaQj9MqTkGH22OuLEz4m4vouoa/PjVWbK8KB0rme5l42fQcJmErklNrO1hTD+Q1HBp0CMlaZI847evD/DTgk8vN7gy+3Rqz8Phxzndcco3PtnjK1dmsMo6L88FS03JsnpS04tRlLLWDafIzcONpywvuLE9npqOPahZqKkSnDGpW76/1mcUZ9ztBRiaxt1eyHzNxjE1LP3FZEk8aZx2Ff8lpObTkcYUEvX00BBC/F3g7x762l9Auv3t/9p/j3TkO1koULVlMZaXB1d/LF2Hvnqlw1LTRQjB1jCSxW2ckebS5cPWpTh6yzMJ9xW13XHCJ7tjBoGkQlzseA/UZZoIoyuKdOdabNjsjhOarnFsU0oIwb1BRJIVLJQTkrfvdBlFGfM1h5WWw49dbHFnL2C+bmHqsskjNbMk5DfP5WGd5sWBRsh6L+BuL0JVpTj3hNe+58cHGlNTt5CnOB3UVKkBMgjl1DpOc95Z65Uc/SpxltP1U5IcoiynKJPdVjnhOolYajeIudsPsHXpZOiYGp6l89rifVRGLqRu0DurPdK8QFNVXm/UGEUptq7Sqhi0PKtMbB4UYqpJdZwQflEIbuyMidOCufqT2w+fJIZBwv/rVz/indU+hSgwDI2vXunwmZXWC4H2APms/8J3V/n531nHj1JUXYoi/uOfXjgxH36iWeKYGrqmHJgSHg7X0IjSnLv9gE8tN4D7eicgn/csl7z9u/2QMJHCwDMVi7VuwJXZChfbHpYuEUu5KPAsnfm6jaooU1rQkWtEHjy6JhFXfjmpetjftNr1qdg6V+fkgTjRt5v8//Yw4vr2CD/K2BzFtFyTNJeOnC+VIuKXOhL5VXV06tx3pbJOgOibrP28OLoHjKNs6sLVDxMc82ATMC8Em8MQVZF6fg8L29R5Y6nGRxvjA6iU6XuFKbf35IH9lSsn1yk5bRQlajbLC377k11+4e11rm+NqVgqC3WHr17uMP+Iv+VZRZ4X/Mq7G/y337hFEGWgaSzUbP7o55apnwJVtucnWIaGY+jMVC0UVfDJlk+SFxRFna0ZaZIx2dMOP4MwEQ7NSqdbZfq1YZiyOQxZqDsH0DiTz/ksp+qDIGXXj6nbBpoKaS4OrK+Jg6WlS3TOje0xKkI6xGWCTT8kyXOuzVVwTJ2wtLvXSx2qvIAsl+5TT0JTGUYpO6N4ilIeRgGuobE5kAOjfhCz1gsQKNhZjtpyON92pwOYnZFEA00S+WGU0nlMh7M4y7nXl7SwxbrNKMr47qo8f5eaDp9ZaZLmgkGYsejZFEKebTVbWtEbWka9FA8/3KSLs6JsYsrPvlIWq/vzjP37SnHCPKPnJyRZQZwWBEnORj/kvbsDao4uBY5LI4XfGkuq9VzdoqBgHEunsP33b/IcGppCUSK7un5CXgg6FfPIPmTpKl0/4Rg5njOP23s+H2+N2R3HbPQDTF2jFyYstZxpc881NDxLe25NqUGYcGc3YGcU8969Pv0wLWUuDNoVi+pjUCGlA7bC9ihlHMtBylzt6PPdck3CJCw1UuV9irK8NLUx6Icpt3bHU0fXiaaYrkmqu6pIwxQhBJ/s+IRJTqdqslB3GIQZSSYbMd9f7zGOH10cjyI5pK6VjUJTUxEUCCG1lxQkQnIQJVyeked5w5Frpxck1G2DLBfMVCyyopgO1WxDO1bDL85y1rsBf++9LdZ7IXOlJEPF0qfPp22oZLmUt9gexRSFQFUgK3K2hiGdikkmBEUBSw2Xqq2jKnKIb2gyl5mt2hSF4Pr2iDSTLoKaquCYGpdnvKkeXpwKFEUayDyrxtRvf7LHMMr4Q68fT+ObxM9+eom/8Ttr/Or7W/zsp5ce+rMnjWvzNX7q1Xn+5rdWCeKUv/Zbt9nqx/xbP/XSmbz+40TN0RmECULIOinLMopcupBv9iI2+iEfbg4xdY3PrTRYbNj0gpTOMQZZTzN0Va7BqqNzacZjaxixPYxZ7fpkWcYHmz41W8fRtWfWmMqFfMYXG/aBeqDm6NKtuC7P4YdFkhVsDEOqlnGsCVc/SKfIzSA5qve1/wQ8Sd1dFBLZ6ccJCOl6WrV1gjjlt67v0AsSXlms8fpS44XTOn7SOK0r33/xkO/9Z09+OY8XjqFNhfjSvGBrGLI5jGkUgu+t9ak5BnkhuLUz5sPNkRTELPWZTE3qMPmJ3KwbjoFrGVRKEe4kFVOB1AeFdE2473JjG9pD3e78JKc7Tkp0RYyhKmwPEz7eHvLNeI+LMxX++FvnePNcAwX4aGtEnGUMgoQwncB+C+JMEKRjVpouhi7FW2u2wZ08IIkLdscxjVKb4TBF5kLHpRck5Dmsd4On1siYqVrMVC2EEHzz5h6/+v4Wmqrw0daIr17pcHXO4+Mtn91RxG/d2EPXVf7Jzyxxvu2eSANiox9yrx9Jx4I4nbqFRGlOq5ywVS2Nj7fG3Nr1URSFSx0PIRTGcYaHgWvqByatfpzRCyRaq2LprHUD+kGKa2ks1O1jN4EkL6b86Qnl82nG9a0h/+4v/IA7ez6GpjFfs/hXf/wyP/2IQ/xZRlEU/Id/+13+zg82URSBY5r8k6/P8a/8+GWcUxR/UZpzY2fMlZkKL89XEeLBAqJZIdgaRQihcGc3YKXl0XBN6UzVD9gaFHy0MeKjrSE7w5iigBzBrd2Ay7MeRQHzNWkjPghTOlV3OskMkgxDU48tFKI058PNERc7HpdmKtME77gYRik/vDsgyQSmppHkAtuQlrsfb44Ik5zv3unx/uaAnUHMMMqwDZXrWyMWGw566Ry5UHfYGkYH4PhxliPE8XbSRdmcnyA+bV1DVfIjFFtginDKiuLYBtvHmyN+6d0NdA3+yGeXj32NSQRJxt1ehK6p0+bf/v10rS9pBVkh0J+SFkJeJt9RUvDd1T3+x2+vsj1KaXsGlzoV/vRXznN19sUR+f7579zhP/21T4hzOfX/g691+HM/+RLeKYvBfpDQ8xMcU+PqXJVRlOHaCbEfM4wT3r83YGsY0/ZMLpbUF4FAgalA982dMX6cE2U5lzoeM1VLnh0FsoiumNPhSFpOBbNcsNiwn9g2HmTD9521HqqisCYC2p40/5icabvjmI83R2iagmvo9MOEjUFInOX89Gvz3O2F3L3rEyU5YZwz37CJ0oJcSB2WT680uNsLqdr6E7vv3uuHpJlMThuewTjKub3rY2sav/bBBnt+yvlOBV2Va6zhSqrx9jDCMjQ6FZOVtsswGmDoygMb8CeJ7WHMMEzp+glhIl0W310fcH1nxKsLNVRF4SdensOPM27u+MRZTtM1SHKJqAiSjO+vDVho2Fye8SgEuFORc4WabdD1E7q+FGu3De1AnjFXs6e6O1ku+MF6n/kHoBGzvKDrJ2gqUmA6zXlprsK3b/fIhGBzELPeC1FVBUfXWGrI/UZXZTPqzm5AyzN4rTQrGAQJb6/2UFGm4tp112BQivAKxBH9xWGpjfW0ZnU7o4jtUcxs1ZINhLxgvRuwOw4ZRTm2rrHcsvnxazO8PF/D3dcIftZxY3vE//Tdu9zrB4hCkGQF64OQhZrD5y82eG2pwRcuHE+velhMnLH6QUbDNhlF6bG5ctMzqTsGN3bGfLAxYqFhszdOGMcpP1jvY2qS0uQnKTXX4frWiPfuDZivO7yyUONS2RzK8mKKMBpFGR0vZxAmKAhsXX2gK1/PT/ATiXaydI3NgUToSbF/g+vbY27tBLiWxucvtAiSDD/JGUc5e36Ca+ns+Qm7Ja3QKHVOt0cRKy33kS7DH22O+P5aj+/c6VK1NXRdPquTXN7UFL51q4umKlyZqdD1U9a6Ab0gYa5qM1O1uTTjkebSvCBMc1CkZlPXT1huOiy3XRxTI8kK0kwiKe/2A841XcIknzZ1r81X2fMlrVc22SMM7aib4lnH3/3BBhVL56tXHz6s+sKFFgt1m1/83r0za0wB/IkvnMfSVf7K125ybxDxX3/tFpv9kP/oj376zN7jNDHRBvv+eo/fudWdot4WWzYzVZO//f27bAxDRCH3jC9fbj/1e3RcKIrCpZkK59seSw2Hr328zTdvShTs94RA12Qj2bUk7XRrGNEqNQOfVgghpgO2YZRO64+1XkheyHp6vRc+lD30Wzd2+M7tHi3P4E/+2HmcQ3XgRAfR0tVja0RDU1lpu2wNIlSYDnz8ODsW1dZwTTaHAXf25PkwW7NZatiM45zvrfXlEGycoKDy+YsvlmzLk8ZjZT2KotjAnwW+imwEfh34L4UQRy3TnnFEWYGmKPSjlK1xzN1egKaqXJ31+Icfb7M5iFlpuSxbGh3XYpTIh2IUpdiGznxd5/UlibZJcqmNdBJqx2k0hyxdQoq3hjIRkyguOSnUNYVxlLFb0tikJlLETEVC6ycFeVYINFVOWKNUitRena1yoeNxtx+iKdKC/bVFb+oq58cZXT+h7kob5WGYsRNE3N71p8itpxV5IUqaYcTmIORix2Wh7vB7X5mj5fX5jY92+GR7zEzV4uOtMV86gcOLEIKkFJfsBgkf3BvRrljsBREqKiCYqzloqrw/nq0zDDPartysozTHs+7DqichdYykPsZri/UpTVO6HB6/ZGxDo1UxCeKM2RNYED9JhEnGf/y/fsDt3YBxktN2Vb56ZYbf9+rpYPVPO/6nt1f5e+9vM05ydFXhtUWHP/bWuVM1pSYRpwVpKdb5sN5FXghsXSPNMlRVoevHjKOMj7ZGrO4FDMOUTOTc3JaFjG3oXGi7KKpSuouoU4j84UP9oVMJIVFQfpLhWQ8vKJKSmjCKspLumtPzE/pBwvsbQ2lfK+DO7hjPNtCB+UaFS67JKM6wDJU4KfBa+hG61cPoR2GS88P1gWyuWvqUFnmcY4+pq1NU1nFxY3s0pSCsdv1jG1PjOGNvHONZWtksLvDso9BjxzDQNYWsgI+2R0de5yzibi/kxtaYrp/wd76/wfZYuq7pqsof+/wKL82/GELnQgj+4cfb/NWv32YQpSjA+abFv/DlS6duSoFMhjaHIf0wJcsEV2YrDMKUmq3TqUix3V6QMk7kGvnS5TZxllO1TMZxwCsLNeKsKNEAKZ4pG5ayQSGFOvfTCuNMFm9bowg/zmi65hMPPbZHMVGas96VjYmqZQAqaVGgCYWNvkQf+0HG+bZOmsnpomfpVC2Dte4et/cCdoYxLy0UDKOUy3NVHENjvi4FRs/KJMIzdXbiGD/JuL49YmsYkxcF4zhha5hQIBv2nbrDcsOj6Vms9wJu7IzRFYUfu9RGV1UutOW6Lp5AK9azdG7t+AyiFHOostGXmltCSLrTBNG01gtY7fqS9p7kNMs9Ns3F1ATk+vYYBWWqjWMbGq8u1Xj/7pCKrWPpGi/N39e92B5GpIVgvmxO/dr7W4wiKVJ9XNzrRwzCtGyOmVzsVMo8ReeTnQJbV7jdDbA0jZWWIxtUhkSA3N4JMHU5MJj0lFa7AYMgI0pzqo5Olhd8sjMCoTBTtY6lb+magoLyVBBTwyjlm5902R5JgfbZmkUhCmaqJn6S4cfyWudzGxUVP86fi8MWyPPpO7e77IxibmyPAchyWVAWQrDU8Pj9r558ACbRdWOWW24pPyEbm1sj6aC8OYiOpbXE2cFhn64p9AJJt9wIIxYbNm8uN7F0lY83x0RZwShMD0hc6JpsPo2iFMfU+PWPduiOE3IhWCgb1DOVgzc8SnPWe+H0777Q8bB0lU92fExd4Wru0R0nFKUjXpDkGKo2ZSf0/ITllntg+KKr0slOICU+olKP6kGR54L10qmxKAw+s9IkK8SUGtsPEla7AWkmpEGDqk2dG+NcorV1VcXUVNoVizjL+frHu+yOYsZJRlrYU0S0qavM123evzfANTW6fswrC3UMTWr57QwlUsw1dT7ZGU/dgS1DO6CNe5aR5gW/8v4mP/nK7CNrK1VV+MOfWuSvfP0WXT85Fs3yuPFHPrvM99f6/MLb62SF4Ffe2+JTK3f44184f2bvcZooCsG9fszuKKZA8NnzLX7q5Tl2xgk3dnzeuzfkXN3mXj+gKFpScP85haYqBEmOpqiMoowoyzFUhdmah6VpjMKMX353gygtaHomP/ny3FOTA8hy2XjVVYnYnETV1lFkqYimSjfihmMeex0fbY3oBymDEjl6uDFVs41p7+BB4Rgacaltm/dCacC11psCTvZHlObsjBK6QVJ+jgk3tn2WGhYVS2cYpgyChDt7Phc6LjMvmNHVk8Tj7ir/HTBCipcD/Akk9e6PncVFPUm0KyYf3BtStTS644i67dIPE3q+iaqoJGnOOE75ypVlDE1DRUKEP94cI+DAprZQd6BeQsJLms5ZhKFJOlNeFKzuBWQFXJmt8sa5Bp/s+KWDnGCtG5AXIAoAwcVZD1FAISQdbRCmKAi6gRSTS/KCiqXz6mKN3VEiobtlURAkGV+7sYMipN3yG0v10qY+ZhilLJ6AZ/+wOM4BIs0LtkcxmiKnp7aukec5rqkhkE21OMmZqVhcmZWH/0zV4sps5ZGH0YTCeLEjXViKouCTvTHDKKUADFVlHKe0PAtQ+dLlNk3PQFcVskLacnuWgWNoRFnOD9f7tDyJ7jI0lSzPp0n2fN1mdxRP3VYeVGgdp3l01rEzCvlPf/U6630fXZV0x3/8zQX+1JcvvDD0PYCf//Zt/ue371IU4Joq59su/7uffon5+ulFGFVVmU4uD8dEs6JaCrA6psanlht8sjNCU+F3bnVxTI07uz7DJGNzGDJTsWl6BjMVmy9daVGzLUnxK2TDqGobRyiyjwpNVajY+gOt5cMkZxCm1B2DlmtyedZjsW4T5wW/dWOXmq1zryywNwbSLavhysbZ5843uTZXI8lzkkxqZTQ8OT1TeDB67HBMaICqGrFiuGyNIiqmLO4mMQhSNoYhnqlPG9rHxdW5Krd2fVRV4UpHFtFxKv9G29So2QZ3eyFJJpGbbyzWKIC6c1TQ+cevdfjN69uSBvsU9J2KQnC3HzKIEn7t/Q2yosDUVOaqJn/kM0t86SnSB08TYZzyN761yjdv7ZIVgqql4lkG//s/8ApLD7kXD4tOxSLPwdZ1dsYxX73aYaZikxcFChBkOUme8+7dIZoi9+SWZ5HlBaNYiqXXbJ3V3TFpVhCmEjVoaioXOi6mdh9NHKU5YZJNDUd0TWEUZyeiZB8XkzOFQuBHGboK55oOG8OQVxdqUxMAy5DF16xqcb7tkZfX/tJcFV1TygakgqErZBmcX/A413BoV8wnQiTtDymqLjXtdocR4zhhox+S5AUzVYs3l+p0/YxCFHz5cpvPnm9xpyvP+p6fMgwy/CSjsTmcIkgUhSdqkrQ8k3MtB7UnUWWdqtTWenWhyv+PvT8Pk2xLz/rQ39rzjjkiI+ehssZz6gx1xp4ltbrVEmoJSRZCshFIluEC1w9wMXoeX1+Mr20wvhhj44uxr81g2WBAMtia0IjUolst9azuPvM5VafGzMo5Y47Y8173jxUZlVmVVZVzZjX5Pk+dU5VDxIq991rrW9/3fu87WnAZK9g0eiF+qMxCNhKJlqFxbjhLNW/R9WOytt4PkAO6QTRgp4/kHZiA5ZZKPhuaoOlFXFtq0/AixZgSqp0/lZL1XkCx3wbkhQk31zoEccJI3hkUG1Za/kALLOcUuDCaw49TspZByw8JopRumPD8pDo4h3HKVNmlEyhNqo24oZSxMPUuoDE7lOH2ukeSqqo5gm3X6ZG8MjUxDygzpeQjVCJBFypZttTysXUljF10TbKWgakJSpkuhqZztpoh7+gHerjeDZIkZbWtGDG6gFimWJpG0TEYLthcGinw0pnSrl4zTSXdQBVfKlnFkpoo2oR9JzFNU0XT+02ANKHiPCGgmrMUg0wI3oqaCCHIOyZFxyDnmFwcyeGYymV7gy21gbGiw2jB5vX5BrdWO7y/pvQkpyoulYxN9b5CoqEJEJIgSqkYfYc82xi4eLb8mPMjOeq9AKOvB1bOmJwZUlprG8wPJTrtYuk6nUAVodqeWg+th8QWXpiw3g2YHnLJ2iblrNIX86MEIVThK04lQ1kDL1Bfcw3VMlVwTaSUVPM2WUtno2NpqenTCSJsU8cyNS6Wspwbzm7Za4fzNnnHZKHvULzR/nVnvUcQJSy3fM5Wc1vmxmbX7CBOWG0Hu3I7fBR+//01Gr2IT++wA+CHXpzk7/3uDX71jUV+4sMHmzT6z37gWa4td3h7oYmhC/7Zl25iaPAjrx59cqqSs7k4kqPRDYhTyVTJoWAbvLPYJoyVkULUb6MXAu7WVTfMaN4ZxIlpKgmT7Z3SDxqjBYdqweb5qQKNXkTRMcm7OgKd5bbHcsPHT9T64EUxXlOxG0fyB2s+s1EMeGGqSDl777mfqWTJ2wZhkjK37mH3C8YFV403SlOGsspx8/mJIr1AdeJsNubaDsstn3ov7Lvq3VtfNKGIJ50wZtbKEEQJa+1wMFc3Q9cU82y+4aFrSpdwre2hAR86W+HyhOoeydg687UuwLdMcmqvq8hTUsoXNv37XwshXjuIAe0XaaoC4k6Y4JoGAslUyeX8cJbPvSdp+BF2V2O5FWwRiJ4oZQbtN5vFeTfaCNIULo3mH0vB3QmCOOHacpu5ukc3UOyMgmtyaTTP02MFbq52uLrcYa7WY7zoMlPJcGk0TzeMaYcRtU4IqEC73d/wi65J3NfXGi8qnYLNB8D1TghSVWviRH0+TShr6HPVLMP7pHzeXu/R7gexGyyOpabPW3ebXF/t8PxUkcmyy/NTRW6u9xBSUUy+druBQFWaP/3sGGNld3DQffj1S3l3sY1rKUHbM0NZVtshPT+hpUc8P1kkiCXTFZdSRjmVmZpGNVcl55j9amBIO4gZLTp0gpiba13GCqpdZars8ubdJm1fOV5UczZemNDoqVbBCyPbj+9xQvf7Rb3j86f/0ddY7FOpZ6tZPv38OP/2B2YeyN4fF6SU/H9+5Q1+7a0VpQeR0Xlxpsqf+86LzOxRXNDuV/S2w1ythxeq5Mcz4wW0vnDg3bpBoxdyu9aj6Jh4UYofJLxypkwYJ6RJQsOP6IYpL05nyfRFUltexK31LnFyzzlnJ9hw9nsYNl6z1g15ZqLAaN6hYYTcWe+x3PSpdTUSmdL2YiaLDjPVLG8tNgmilHb/0LXBTGn0QnphzDuLrYHo/06CDNtQAedY0UEIQcbUMXWNRMrBRrDaCYhiSSOOGCk8qC2zgafHCwzlVEtBMWPTCWK+cbvOWkeJ0l+eyOOYGm0/YrnlE6fKcW87vZxGL0JIQTdId6SNtVu0/IjrKy1+7itzrLUDbFvnpeki//YHZvi2i/t38jkIRHHCX/q5b/DafBPLEFSzNt9+ocqPf+gMT0/snc1lGRofPFfhvcUWQzkLXdfIOYL3VzqEccpowebcSJaWp1gGecfk5ZkSby20yNo6f3C7DqlkoRkwWXYpuapt7+3FFgsNj5G8zfNTJXQhuL7aIU0Ve3SmkkETYl+tcRvixtfX2oqCHyS0g4ixYoa3FprcWutwabTAheHcoIW72YvQNI2zQ1miJOXdpTY522A4b/HcZJGJosMzE0VW2yH1bsR6J2SkoILH/ZhWzNd73F7rcnWlQ9sPuVPzCaOE56eKFF2Tp8fzZB0DQwieGs9ze90jaynW8ljRptYLCCKVeE5StXfZhr4vAfbVts9qO2Cu4WHrGlnL5KVp1ZbXi1KuLrWp94KBfuW5YdViu7HXRUlKL1Ti7avdgMW6z7nh7BY3s5G+pfXGIWKtEyCFpBPElON0oMc3UXJJUmU/D8p85b3lNiutgJG8w0fPDzFRcjA3Eom6oBfGvD7fJIxVIakXpiw0PJ4eNVluqT0waxlkbJeWF25h3eRtg9GCq/S1Shlcy+DGShddV8nah515DtIpqtYNWW2rxNRQzmI4bzJfU+Y6N9dS5moeWUfnmfEiHz03jGPqvHSmfGx24FJK/vV7K7w+3+ROrUO7F5MzDFIB54ZzXJku8anLow8kch4LoZKsWVs5QAshqPdillo9zgxlWWqp+FQTgplKhmLGxI8SvnxznSBMGS85uKZKCgmh1jRNE/1YXOmGnR3ODuKy1U5AEKdb9hohVEIJTVDJWDw1lmckr+Lu0n2Jc10TaEL0HU37J0YJa52QJFUGM6ahgVAmC1nLIJVwZapInMrBXnx7vct6J8TUlaNfKWORdZSR0sMO3fP1Hn6kknE/eGWcpheha31mByCksrgXQsM0lGD+3bqHa+tcHMkTxgkLTR8/ShgvOLyzpETLvUglxDbaZOu9sF+0vYeNOLngmLT9uO8EKUhSjdlqlomSQylj0fFjTENsMTNYbPi0/XjAGtsvfu4rc1SyFp94enhHP395PM+l0Ry/9I27B56Y0jSNf/wnP8Bf/7W3+f1rqyy0Qv6bf3WVxbrPn//uo9Wc0jXBp58fZ7LscmtNsWF/9/01NARIGMs7zA67TJYy/NobS8yt93h6ojDQE1Oaa8q0opKzDr2YXnRNPn5phKxlcH2lQ5ikvD7fYK0dMFHKECYxui6o5CxVvOiz8A1d7FlbcTskUhJGqkX9fpJJKuH9lS4tLyRnm4z3NaLfXVRGD9MVlxemS3z0QpULIzmyjvFInTUp7zEbV1rBls+R9E0YXEO1xJuGxvSQS9d/0HTD1DU+fG6IMxWX1+40+dU3F5ireYQp/KGcxfOTRX7jzSXeXWzR6Lq8vdjhk0+PMH5M+8dBYq+n2W8IIT4spfwSgBDiQ8DvH9yw9g7V3pXS7KlWjapm8dxkQVkij+RYbIe4ps5q/8FpeiFr7YCpcgbbVIHtXL2HbWgqW1n3mK+pDsVS37Z3M+rdkJW+2OlOe2SXmj5fvLlOvRPx7FSRqbLLueEcpq7RC9TB+Ot3GvhRwkTRZazo0A5ivnxjHUvX6EUxE8UM82vKzU7XxMBpbAP3sxIKrtKkiVJVMQWwDH1QzR7eJ1OhG95zIkxTyXpfxPTtxRaLTZ+Fpsf3XB6lnLNYbYf9Q2tMECdEqUpMTZRdLo09Xudlw1no9XnluqQJjeGcicQl75hMlFzyroljqGr+rbUOX7yzRidI+LaLQ5QyFo6pkUow9Y1gR+BYGroQAzfGoK9D8tHz1cHn8/qfb3Ngkfbttf1IiVoeRPLyfiy3PP7fv/AG11e6SCkZKdj89B+6xKtnqifGlSFJJf/w967zy6+rto2crfORc1X+wz90mewhtSVsPPMbTiTdfpJxvROQSMlk0aUVhBQzihnkGAZjBZdEajS6IW8uNDE0weXxIkGsKoOLTX9HrT27sRffsI9W/095f7WDHyb4UcpQzsI0NNZa/sBFspKxGMm5Ssi93uPz76/xzHihTzf28CPlzJl3TLzw0W0BCw2Pth/jWDovzJTIWgaLTY+8Y6JpWyufRVe9nmvpD63qgnI8en+liy4EV6YNmr2Iu/UeDS+m5BpIYKaSwTVVi8FCXRlPFN0HW6O/dqvOnbpiNHT9gwlsN3C31uXX31zkV19f7GuPQcXU+fRzE7t2lDosJEnKf/Ob7/HlW3WCKKGcNfnUs6P8yW87v69EXRCrILDZC5msZMjbJp0gphcot5y8Y3B1uY2uadimEld/drIwcNZZavosNX0avVBVOzNK9HOtE/DGfBMvStA1TVUGs/ZAmydrq/ZYTYh9VT27gXLhfGNOMSSqOYvZoRwSuLHaZShn4UUpUxWllSKlxI8Tgli116Qypd6N0TTJ+eE856pZrkyXB/bpXpjQ6LdprzQDZoeze2Z3bbgA3q31uNvyEAhG8jaGJqh3Q37zrWXOVXMM5S0c06Domqy2A3KOwVhRMX1urHUwNbVnPUqj8nGQUnJrvcdbdxvM1z0sQ2N2rMBY0aGcsfrFrID5hsdC3aOcNYhSydmqKpp9+eYaIPCimKlSlqV+rJSxDNIU1fqwCZvvcdE16QVKZH66khm0oxUck6lyBqOfqNI1lbRMUknONuiE8UBOQAg4O5Rlrq4Sk2GcshzEIDaKhiru2jiAW4bA0HTu1Dy+86kRVVzknryClJJzVcWS20gcCCEGLDfX1PcleP8wmH0mYSolfn9N9eKUlhez3PRZ7oR9Bm3AK2cqTFcyh8IY3QnWOwFfuVnjF74xTxim1Ho+sq+ZeqGa5ZOXR3h2srinONHdJPB9c63L2wtN5ms+yy0fEEyWMlSyFpouCPvF1dV2wJ31HvWucr57pp+cX2kFOIaObWpcHMlzfVXp2bmWxoWRPPP1HjdWuriWKrpsns8XRnKEUUo1FzEzlOHiSG7bLogklbyz0GKlHdDwVFueoQuqeZteoNy/672Q5VYwYEKfEQJD1+gEIX6UDHQt5+ueMhWwdMaKNnM1j7sNH8faPuls6sqZ09AFhYzFy2fK/a6GWCU017ukqcSxdIaytmr11SCKJW0/4g/u1Li+3OVMVTFBNCGUll7OxjE03phvsNYJ6fgxI3mHoqt04lxLZ6qcGcQoG/PhbDX3gPHFdm1OG8/6QZANV9o+v/3OMn/y287uODEvhOBHXp7ib/z6u7wx3+T5qYNtzTcMg//0Dz/HX/nFN/itt5do9mL+8VfuUMnb/PiHZw/0vR4Hx9R59UyZ+ZqHF6R0g2jgQO5HCeWMzVyty5dv1khT0HQ4W81Q00Lytj5o4ewdkVufrgleniljmxpfeH+NpabPWickiBMsU6eSsTF1QRCnA3LIQTubx7GkEyZ8fa5By4sGBlthnHJtpcNKS8VDk2WXM0NZ1jsBjV7EYtNDaPD0WJ5akHB1pUMlY/HMROGhJAQhBAVXycaU7psrmgDH0rAMDbuvC/3shHLK3A6OqTNVUXvw7FCWthdTdk1urnZpdEOuLneYr/dYyvtMlbPcXu9i9aWC9hNDHDf2uht/CPhJIcSGO98M8I4Q4g1ASimvHMjo9oChnM1EwUUIQSpTRvrCf7aR8sGzVVqeajXIWDrvLDZ5b6mNlIKFhs+3Xxqm4YVICX6U9n9PI+8YhEkyqPZtxkrfEnq1rdxodpIkaHohXpjSDmNkmnJmKIupq9a8O7Ve3x5XiYnGqWpDeH2+ydXlNo6pMzuUJWNplFyTtXagKLxIVts+dl98/X4UXZPnJ4sIce8wX86qA7EmHqOf86jP0k/kJalyLxvK2iw0Pepd1Ytrm+ogXnQtEmAoayNpcXPN44WpEpfHirT7G99OxxCnKW8vNGl5Svzt2YkCz46XOFPdcAJ0t9yHXpSy2AyIE8m1pS4fvVjl6lILXQjWOyFPj6lqixcpoWc/Ur3QoVAJM4G6Pm+vNRnJ2w9oHPlxghem/XsbHXhiygsi/tvffI9vzjVBk2QMnR//wAwfnK0eKkNrt/iNNxf4P786RzeIMXV4ZrzAX/rupw4tKQVwppKh5ccDUd5uECOlquQXHZ1bNQ/LECw1VStmy4+YrjiMFWzm15U72e2aSkQnqaqK5h3l1PG4RPNu7MVnh7J0+vbVfl9sVNc0xksWGVOn7kV4YUwqlQtOmkpmKxlem2/Q9CMWGx4ZU2m/rPbbdK3+2vQokwBlsKCqUIJ7jIDJkkriOuZWMffhvM1Q9vG6QDfXurw+1yBKUlxLYyhnUc5ZGLrGZPmeYPxIwaEXxgMK9MbBYzNsU6PRC/tOcQenPHx9pc0/+eItvjHXoNaL1IHfNfmjL0/yh184OJHU/SCMEv7nz77Pb761SJKmWJbGxy4M8ZMfPbdv9liaSpaaSrsnZxsUHZMoTllq+f3WEJUUWGr5gGSi7FB01dpVzVrcqfXIWobS/cnaXBjOUc6YfPmmslpv9iLWrIC1TsBwzuZsNUs3iCllrH21vS80vL6gtmC+0VXjlkrr5dJYjiCWvHG3Tq0TDfRONgwr5useqy2fUkY5rUaxpOnHfYMQdT0NXePCSI62H7PY8FjvhCRItHXBueHsrpMUXT/mvaUWy62AXpyQs82+O6CuhMfjlLytXINHCur6jhWdLe0KpYzFsxNF/CilsM/2wjhVh9SGH9PwVPvEaMFmrOBwdaVNmkIYJ4wWbKRM8UPVVlbvKYbPO4ttDE21XzumhqULat2IcsakmDFYbPgkebntPlfN2VS20RWbKrsUM+aAQXe2L6J/cThHJ0woOSbfvNNQ4s0F1eJsGzrDeZs7tR5Sk9RaIVGaUsjqyFSw0FCaY7oGo3l3INied0zKWVWB35BnEEJgmzqba/B3656SQxBs0cc6KKhknMPXbtW5GSR0wxhdSNY7fj8xp1F2Lc5Vs5ytZo9FqBiU5tnn3lvlc1dXmFtXe6Gla5SyNpWsxQ+9NMnTY4V9jU/XBM1eRMePKbgmC806AsmttS5l12S2miFnm5T77WgZS8e1lBTFSF+nLIxTglg5VU67GcI4Iehrym5sK4sNn/VuiNZTLJrNGCs41Lsh1cTmXDX70DVqueVzfbWDJgTdUBWr5mo9/FC14uYdi6ytDw6A54ZzTJZd6t1woE0lpRLxv7bcppw1letnny2x4dy1XdKl6JrKfdS1MQyNiaLbl8hQP+sYOl6UMNY3oLBMgZCKUZWkkjurHm8vNrlT7/HSdJFzw1l6YULBMaj3DXx0j8Hc2jwHZoey2LqG0BjEuBsmB4/DRNEhZxs45v7n0M/83i0SKfljH5zZ1e/9+Idm+P999jr//e9c4x/85Kv7Hsf90DSN//TTl7mzrrScojjmH3z+Jo6h80denT7w93sUUgkTZRddV+er1bbPe8stihmLomNiGhqOYdD0AnRNdQi1/YSJksNY0aHhqcLMm3ebTJczh6bttAHTUInkWifg7YUWXtQ3CwgSyq5Jx4t4fU5pnL1yprznAtHDkEjJeidA1yC7iemXpCmuqTOUtcg6OmeGsuh96ZDhgkWQJBRsE4Tg96+vcbfuUeq37eYeMS/ODGW3lX3ZiD027/OPY0abusaVqSL1njKKuLmmtFKbnjpjm7qgFyQUM6og/ObdJmvtgOenS1x6hJj7ScZeI6DvPdBRHCCcfvVrtp/1dCydtXbIWlslSZ6bKqqF2rX6jIUE2zCI+roYQzmVyHIMnYyp/mj9DO52ff8F12CtHZJzduagIqWk4ynB9fGCw/RQ9l4iqX8mO1PJUnBMsrbOlckSel/Uc6RgY2k6z08VGS04/NbbS32qfUjWNhAI6r3wofbt2x029yteWOupRJ4mNCZLqnLd61vW17ohF4fz9IKUat5mJGcrarOmKzci1+TSeF4JwaVyx4HPRgKh6JrkHZVkrORtpc/T8LmZdDhXzQ0+74XhLO8tOiSpZLighOOqOWcgaq5pAlvX6Z/JyNoGH39qhJYXkXdVcBQn6cAJyI/SLTRm19QpuAa9MKFywNasYZzyy68t8N5yG8vQcE2LP/HhM/yp7zh/opJSb95t8mtvLJJIyDkmz4zm+K9/7CWKmcMNto375mWpLxCuCUUPbvp9Md2hLNfXOviR5M27babKSkA3oyuWZMG1SFOJlDBVcTlbzT72+m6InO/ECt0ytIFehakrV70gThjO28SpRGiKEdL01IH8bjMgZyu78EQqjaSXZsoIVFBSyVo8+4iqzebrk7V1uvcl0IQQD938d8JyMQ1B2n/9OJWUMhaTpQyizANCtrPVHAXX4vpKp9/aoG1hBoyWHEaLDnGc0jggxlSSSt5ZanFjvctaR63Pl0dL/Lsfm+XFmZPjYPLrby7ypZu1vu6NyauzFf76v3UFy9w/g8PQBbahcbaaQxeCC6M5xSxEueIUXYNaN2Sx4TNacLYIcKaog7WhCYbyFmMFhwvDOVp+TJwCUrGhsrZOFCstqKxtHAjzpNZVe8pi06MXpISpZLRg88x4gaxtkrXhA7NDtPpi7Cstn+VWQKOnhELTFHRNsSUUCyCl4UVb2tVtQ8fO6X0x9+6gYrmXJfXLN2ustAPiNOXKdJF6N8LWdXK2Tt61uL3e5dJojmrOYXZTO/P982y/rXsbUNb1qoV2KGMxPZRhspLpyxSonylmTGbcLE+N5onTlE6QUHQN5moewzkbiaoSV/M2N9e6+FGKbSYqqSVTltv+Qwsw260fmrZ1vdlYD7tBjBalXF/rICWEsaQXJqy1A7pBgkAoeYO1Dn4gqeYs4hiG8xbPTxXp+DFnhzN0/YRKzt6icfO4eEJuMvA+LCc+P05Z74WsNAOkTNGEIO+ajOVtMpbBK7NlPnKhemxJqbjvovnuUpOVdkCSMpCOmBrKUMmYvDxT2RLv7BWupWPo6hn80Nky15Y7OKZOIgU526DgGry73EYTKkH8oXNlOn6yxcmxlLEouspt+eZajzhJqeTtAQu3nLUGbnL3r0XdMCFJFbu61o0eerCs95SO2lo7ZKacYaUVsNoOWG76lLIW0+UMQ3mbVCrm/sac3fwISZSm42Qpgx8lTJYcTEOJ2huaeGgxaa0TYOs6TS9mrOhyppohSNIBY2my7BIlqWJAWTp+LLFNHcdU3Q+6Icg5JiVXMa9HCvrgfFHpM14tQ+eZceX6KEQ4eO+GF+L318FGL3qoY+F2eFQ8sRusdwL+8Rdv8YMvTDxSGmE75B2TP/VtZ/nbv3WVN+82HytEvRe4rsXP/OQH+A/+xWt8806dOE35ldcXuDJT4sLI0SUBDF1jupKh2O8M+eqtNUoZE0tXbMKxgstowaPgGpypZKh3o0Hhfzhvk7X1fvcF1HvhoSemQMXLHzk/TJzAl26s0/QCllshQgilXximVPPW4Bk8SGh9neOJoo22yUH4dq2HFyaMlxzOVrODM7wQgqdGC2QtE8vQMDWBhugTXiTWDvbph8XRe9nns7bJC9MlhrJWf98STJQc3L7TZzXnDDoUvnmnQZRIsk7nkQn4k4w9RZFSyttCiDIwvfk1pJRfP6iB7QfTQxmmyi5DeZsPzFYIY0nbD4nTlGrOIdFVUJJzTL7t0jC1TjhYBHO2wdP3tZONFhy8UIn7lTLmlsradnpOj8KG6NwrM2VEv6d+o61C1wUZS6fgKgvrzYfOK1NFKhmLUsZkJG8jBw4DivG0sfkclkvGw1DJqOAyY+mDasl4wcE2NGxDMFf3uDJVwjFVcu3SWJ5btQ4tL2Y0bzNRdPfU7jFatCnYJhdHc5wbzlFwTK6vKgcZL0zVddbUNbEMnU8/P07LiwYBwWTZxbV0Mn3K9/2wDG2gpZD23U5qvRABA92MDYi+zhUo/Z9aN7z/5faEWtvn6kqbKEmYHcpScC2+55kR/u0PnDkxSak4SXl3scW1lTbnq8qOfqzg8uc/cX73WhS7hB8lWLq25fmxDI3zm5zqZqsZgjilkrEIU8n1lS6WrmHoQgngCnhpuszl8cI9y/a8vaPr65g6l8fzjz3UhLHSjNh4zoQQW4TFZyoZGr1o4LSx1lEiv8WMyXpXpyCUJfTT43k6vmrhG8pbO34Gzg3nBg5cB4Xz1RxLEwFNL2Smkhm0LpUz1oDWvxkFxxisUc2+MPIGXpgo8exEkTBOOf8Q/bbdotELlWaAZXJ5vMBsNcNPffQsk9u4Bx4Xbqx2mFv3GC86SAGfemqYH//wWawD0tkydY3vuDRC01PmABvX/0xVHZaylkHTiweaNpsPFlnbYKLkECYpRUcFZ7quYZtaX8A4ZqSg2v1sU+PyIxwcd4tK1lLtJaZBMWOSsXTODGWIU0mtGwxc2+q9kIJrUu+vt0XXJGsb+FHCSMFmupwZrA0Pc9Z1LZ1Lo3lq3RBD397m+XGQQpmO5GyDj12ostIK6PgJmiax+8LEZ4ay5B1jwNo6TPSihJJr8vJUmShJODeSo9mLyDlqLIsNj5xjUs09uIY4pmJg5myDsYIzMIUwdNXumbENvDA5sIr2RkLQ0DRcV5B3Dc4MZbizrpgnCJVImB3KMlF0SaVKTjmmPtDWS9KUM0MGuUfofmyHyZKLa4Vk+k6ThwHH0InjROkE2ZbSNMoGzFQcPv3cOJXswYr87ga9IObdpRZNL+LCaI6Wn3BuOMf5aobvfmYMxzIoZ8wDO9hYhsbTY3mmyy53ah5Z2+hrsUjytsFaJ1DFoX5L/nQ5+8Dvz1az9ELV4tvts46qeXuwts30D+s523jw2TZUvBwl6SPFi4uuQSVrcaaS4fJ4njs1j4ylU8pZDOdsElS7kc7W199cIKtkLW6uqZZClZDTsA39ofqk997bxI8CpfekCypZm+cndXphgmUoW/g0Ve2sr8030AQst31eMcoYusYnnhomY2gUMibljGq7LrpmX0sSyhmbckYxSEBpvzmmGqMm+nqPggMzhdgt/qtff5cgTvkLn7y4p9//qY/N8r/83k3+9m9d5Wd+6gMHPDoF2zb5//7oi/y1X32b66tdpoYyvD7X6Ot9Hl1yarLkDjSi5hs9zgwFZE2dp8eL1HoBz0wU6AQxtqkPNM42nlHH0MnYOl6YPNSw5zDgWjrf/ewoHzpb4bfeWeKdxTaTJbdvgJCQxCnOIazFGcvg6fECz00WBnG4FyVEsSRrq9jo/nVOaawpl25NE1wYziJFypXJ0qHtF4/Cxv0eydnMNzzGCzYlV+UE4kTtoZWsyXTFpenFA5mfJxF7Wn2EEP8F8FPAde4VCiTwyYMZ1v5Qzdk8N1mk6UVkbYNeGBAkqj1OCMlUxVVuOL2IvG0yVXr0YWVDQyhN1aHq/s1lx0mpOOXmWpfra11sU+PV6bIS1I5S7jaUMw7Q18tQeg8bG27eMbk8sTXwenmmzGLTY7ToUHJNxVw64gexmDEpZrZWJjRNDNwIZoayXF1q8fZii9V2wE2jS9Y0yVgm1YKzp/G6ls4nnxqh4Fr9tsx7lYDFxO8nybYeABxz69c26JqPQy+Iub2u2iu7vmpHulPrDRa3idK9tsFmL2Ku5u3682yHZi/kf/zcddV+5Zr84IuTnB3KcO4IqzKPg5SSf/rF29xc75GxNZ4ZL/BtF4e4MlnCOeQE6XLLZ6UVKA2MkdxD56DZP2xqmuDKVInzwzn8KOH2eg/L1KhkLCo5sy+sqtoFbq/1OD+S3dEhVfS1rR6Gth9xu2+Rfn4490DlWUoldrxxSHQtnT/07Bi9IGau3uNu3SNrK/0629DpioQwUcxAYxd95Ae9QfXChOurHYSE91c7ZC2jL7KaDJK0m2Hoqt2v5UcPGC1kHZM//e1nWWgo55/9IIgTWr2Qf/h7twDJmarLi9MVXp4pUT1BjiWfu7rCv35nBRBcGsvzEx+Z5YXp0oEnnK2+0+lmFBxz0J4xVnQoZUyGstZAXH8DQzmblh9xY61Lo+8wM13JcGEkx0i/xUoZeCR8c77Bi9PlAwnYJkouYwWHG2tdJbSbFdS9iK/PNchaOq/OVrg8XsC1VFC+oYVmGYqJl6QSbVPL+uMghNgXYyVnqYPfeMFhJOdybanLaidgvODw8UvDR16xjOKUq8ttpIDnJgoY/VaOlXbAZMmhF6b0wkCxdxwDQxODMRZdc0vSSUPwkXNVllt+/1mxBjogB4HJkjvQ2ipn7sUwo4WUWi/kQimn2uk3Fd9urnVZaCjtnjiRvLnQxDF0Pv3c2EA7ZCcwdG1HWoL7we1aFz9OuF3r8dJ0iemiwwfODu3IefgwsdYJ+Pk/mGOlrRK9L58p88x4EUvXmNnM4j9gCCH6iUCBqWlIFOvoSzfWKWVVkXOynHkoo2gjAVx0E1ZaAba5NZm83Xq3AUPXuDSaI5WP3g8XGz5fuVHDNASWofPcZBG/4rLaCUlTOTjIb+duttXV22FFqCTTTq/nSMFhKLdVEuR+JmrTi1SLrmvh2j6VrMVi01faa72I2eEcMxWXhaZPkkoavZALI/m+EYBDN0gG1+j+OPiZvhbYcSRLf+/aGv/iD+b597/z/GMTeA9DwTH5sx8/x3/9G+/xB7frvHKm/Phf2gNs2+Cv/dCz/N7769xY7fDuUpvX51t851NVvvPp0UN5z0dhKGsxVlSapK/NNYjTlFRKrkyXuDicf6BYqGliSwH3KCGEoJi1+IEXJ7k83mG56bHcbyG/MJzl5npvV+v4TlB0Tf7oK1M8u6m9N2cZ5Byjz0B8MI6WUnJ7vUeSSlbbgWLft0PeW+5wbjh3bOSAsyM5zo7kuLHa4fW7DaI4ZWYoqzQMw5Qr0yWSRDJZzpwYAsNusdfT448B56WUB0MNOWBEccLNtS5JqibBZEk53GxoCSSp5AvX18iYB1v9exxW+i45ulCbcr0XDsRA0xT0/t6VbnJOKGdVO8J2UEmhe2M/ic+gHyWqv9mLafbbFy1DYzTv7NmxyTa0wSHT4t6CW3BMCmMHdy/naj1W2wGLTcVqaAcRqUxZaUtG8upQ5Fr6gbpHgLpmv/X2EnM1D10TTJUyfNflo9/sHoUklbw+V+ebdxv4UcqYcPjw+eqBX4uHodMXbgzjlChJ0bUHn6WNFh9DF1wazQ9EPU1NDBgZtqnhbNM2dVCtHb0wGbxWL4wfSEzdXOvSDZItDoB234FofT5E1zSylrFtG/FhtZ/sBLfXeyw0PHQhGCk6ZCvGY8c0UXKZ4ME2Yy9MWGkrxsr9wsq7QaMXcnWpw5sLddY7Abah8/RYnu959mSInG/g+kqbz727wlLTp5q3eHGmzIszhxNAPw6PS873goQoTllthyAEhi64MJLHMXVSlAFFywu5lagCwZmhe4LX+0HDi/DCBNvUVZCdSsWS8GPeWWgyXckM2MGWoW1hIB5FlTBJJSttHw3RjyEM5htKAD2WymK6kDn6iqWUksWmj6FraCg9OtdKlHbMfQHCeidgqan0ji6O5h6qsVTObjV9OcjP5Fr6ltbfjSGOFJyHstz8KOH6SoemF6EJ6PoJsSFZavkHfqDZD6SUXF1qc3O1R7uvIVjKWIfSYrQbJKnkm3eUCLYXplRyKuaUUuk5HXbC7Npym7cX26x3/D6TyMCLUkZ0HSenmHCrbeUW+TDdVtvQt8z5nUIIgf6Yx3eu7hHEKV4k6QZKm9AyLAruvTkQRAlfu11DIJgZymwbozum/kBb+07wqPkl+239Uqp2+nPVHGvtgGvLLVZbPk0/YmYoS5zKQavq5j15KGcz9Ih8xHGx97ww4T/+hTc4W83yF79rb2ypDfzUR2f5md+7xd/6zXf52T/94UM7nOu6zsefGiHnGNxaW2C54/PZ91YYyts8P1k6lPd8GAxdY6zg9DXDwoHUyWorYLqc2ZbFftywDZ1nJ4vEUnK71qPdL4JtOAMf9H0zNI07dX+Q9NQ08ch2USnvtXsnqWSlXwwPkpRW38jnODFf76GhRNQNIWj6EXcbPc5V86qt8wTe851ir4mpN4ESsHJwQzk43K55SifK1Cm6BhNFh2thB0sXzNd63K716IUJzV7McOHhgYyUsi88qHGumqMdRJTcvdMe3b49+0rbV0LhOaVr45jqABWlkiBOKDomV5dVW1ovvKcNs13r0sPgRwnr3bBfXTr8CRQnKalUh+/3Vzpk+60AX71V4/Z6l7xjDOxJUwk5xzgwW+SVtk+askVM9iBwu9al5SnnwFo3HAT3dp/euUEB3UAxYzIl3R1pDj0MHS/in3z5FrfWe5RdnZxj8fGndmaZe5T4tTfu8ge3GlgCshmLD5wtH1lSSmnPJAih2JEPC6S7/bkTJ5IwvqcLttDweXuxSdePmSoPMVVWz+GGsL0m2LdWTjeIWWz6WLpiJWhie3bTxvzecH3c/BlvrXWZr/d4aboy0DfbSFAF8dEl1LdDQko1a9GLEp6bzBMnyklpsrwzBsLmtbXWUy5vqnVh9+vrhvD1jdUun7+2QpqqJFg5a/G9z52cpFQviPnX7y3z2lwDXVMaaE+PFnjlCJJSaSoHroTVnL3joGUoZ9ELY8qeSd42cDexE9pezJmhLPN984Clps9I3t5RYmpjfmRtxQ6+sdrB0LSB9ptjagSxap8fLdiUikrvarnlk0rJ3XqPpza13EeJMiBxTH1Xz1AQJxiatutky0rbZ62t7OP9UDlU5mzVGl7OZuh4CbOVo69YCiEIokRZ3cuUIc2m6UVICS9MFSlnbUAQp5JeEBMlMUmq5qKpa9uyQB6FbqAE1ssZc8dtkEGcstT0H2susdYJiJKU4ZzNSjugFyrx3mrOIpXKmAQpsXNKs/Kg4on9oOvHvH63gWvqlLImvSAeFEdHiy4ze0imHBSiJFXmAG2fME5I0hTDgJmKO5iz3TDhMQ0E+0YiJalM8aKUs0WbS2N5iq41KDZ9806dXpiQd0xEXxvmUVjt67vtRlLjUXhhqkijF+KF8UP1WufqPRYbyq274JpM9ZfwNFWJoyhJmSy79/SnpGJdpHJ/caoQam1c74QEvYSJknLa1oTAixJcS5ksVHMO5YxN248Gxeu1TsB6J+i3MSrd3KOK2R6Hv/OZa9yp9fjZP/3hfSdGM5bBn/vEef7qv3yb339/nW+7WD2gUW6PF6eKXF9tE99Wa+i/+Noc11c6/NCLk0e2/o8VHYJYxZJSSvKO0ui7sdYhSSWvzpa5XfNIEsnF0RyGLva07x0GZsoud+sukyUHL1LuebfXu7SDhJYX8txEkeI+2w2jJOW1+QblrMm5aoYwkdjGg8WazdA0pX231PQ5P5LjTDVDw48p9zXujhvnhnN9eRnBVNHh+lqP1ZbPaN7FNO59Li9MqPVCXEPDTxJ6QcJw35HzpGKvp6+/AXxDCPEmEGx8UUr5gwcyqn2gG8R4YcJI3sHsV3ebfkyawmJH9bPfrXu4ls7sUIazj6ho3FjrKrV712RmKLNvAcihnM1aJ+C5ySKr7XAgdNjyY4ayNtNDGeBei0XbvydAuNRUbCvb1LgwnHvsxjZf9/DChHo3JDdeONQFyI9UW0/YFzFtdCPGCg5BFNMLEzKWQd41+cj5KllbXcODEHkF1T633FSP4E6CmJ3CjxIMoSFQumCLrYCOHzE7lGWqnGGq4pCxjAc+x34c+fwo4Z995Q5fu9XAMVUy9Ec/MMV0ZXcikIeNL19f49ffWCaRkqJj8KMfmOLZiaOpAvtRwlpbETUzlv7Iw81YwWFRemQsY8vcfW+5Rb0b4fT1cjaYAomU1LohcSL79vR7D9qWWz5emOABF0cf3rYxWXKp9UKG7ntu5uqqTcrSdbKOvqXiFcTqGrT9eEdrwWFgrODyymxFtRO6NjdWO7T9mPeW2nz43OP1rzbW1lLGZK0T0A1jpJR44e4tjG+v93hzocEf3KyTpCmlrMWHzpX58LnhExF4gQqMPvPuMp+/ukrLjxkr2nzq8igf79vbHzbeXWrx3lKHvGtwcSS3bbvldjB1jXPD6uc3At876z2liagJRvIOApX8TaVEfxwdoY/B/AgT4jTti/Mr5mA5a5GxDJ4azSMEWLpKNlWyNg0vJO9YeGGKlHLwnC01fRo9JZzv9jVTHofVtmIMGbp4qHX8w2D0fdGX2wF1L2ai6JCxdVp+hPAFcZpS9yKGwnjPjrd7hWPqnB3OkCQS09C4tdYlaxksNn1GCs5gj/IdgxTl5JuzDdJU8v5qhyBSIrQPO5Rvxq31LmkKLS/i8njhsT8P6vC+2g4oZ82HxgGdIGax4RPGSpxbSihnLJZbAWcqGc5Ws9xteCRpylTZ5fJ48ZHupEeBKEn5zDvLXF3uYBqqGp91TGYqGZ6dKPDSTPmBdtmjRL0bst4JuLPeY60bUM7aCARhpNhzZ6u5B9qsDwNnqzlurHZxDA1d18nZJqMFhxEpefNuizCWrHUC8o7Zb7vvUnKtbQWaW37EUtMf/Hsnz+zjcGE0jx8nxCl4kXICvP85lVJpuflhQhAnzNd7jBddOn48WIfWOuFAA0iZEag4VdPYVwvpuWoOP2riWrpyOXRMspZBmNzTuhOCgb6VGq/k5mqXuw3lwvfUWJ6spQqrR61Lez/eW2rzDz9/gx99ZYqPnB86kNf88Q/N8A9+9wZ/61+9x8cuDB1qgkjXdX7s1TOcq9b4ldfustIM+O23ljF1je97fvxIklMFx+T5ydJgj256Eb/73ipRKuiGMTdWu1xb6dDoRcw3upyp5B7LlD0qlLM2n3xqmKGsyWtzTYquyVuLLW6udOmFCXfrHj/44uS+EpZxn3EtJby33CFOJBlbf2Q7oxfGXFvuYGiC9U7AC1NlyhnF4DzuOQMwVc5QyVrYhs57Sy1MXaOYtfCimHxqsNxSpjZ3aj1q3ZClppKZma5kSFK+JRNT/wj4m8AbKAOfXUEI8dPAH5FSfpsQogl8o/+tPyKlrAkh/jjw54Aa8ONSytZOX9s2NExDHSrHS4qW7PVZCa6ps9oJMDVBFKWUXBNN235Syr4d9lLTY9nQGC85+5rAElVldfv6R2NFh6mSyzfmGqRIVrs+UxV3sIgN5+0tbRYb1aQgSonSFEto+FGKAJZaPqahMVF0Br9v9A87yoXpcOFHyq2nE8a8v9zGDxPCNOXpiRzVvqPTs5OFA2nxuP99F5uqpWg4bw8+80HA0jXKWYusbZCsKwcY9fqSUtbA1PWBtslBYL0T8K/eXmS17aNr4Fg63/3syIlKSkVxytfv1PjC+2sYGqQJvDpb5srUwdNuHwZTVwKmYZw+dnNwLZ1z9208YZwqwwAUPXfzMxnEKXEiWWx41HoBHzo7tOfNMOcYdAMlWPqodeP+NhlQ7ENVzYI4TR84cHWDhPWuao+tZE2quaPXThruJ9lLrkneMehFCW0/RtcELS9+pMuLlMouG9S6VnRNLF2jG8a7eo5kP5H4xlyd1+42sSwNHZ1nJoq8PF05MUkpKSW//fYS7yy06IUJWVvnuYkiH70wdGRtZ0GkBPj9MNmT5pGuKW2Yq0stbq73iOKE77g0TNGV5B3lImXqGnnbJE6UPlDONh6alMnZ9+aHpimdtiBKeGehiWPrPDWSJ++aPDNeJExSwj7LppyxsQ2NvLtV3HijJV4IdfDbCbr9PTVOFEtoJ9cljFNur3eJ0pRSVuduIwUkvSjh2ckitqnR6Eb0egnpAWox7RQb97obJEyXMwznbW6td5GoQ/xmOKa+pZUh7v8uMHDxTFLFNtU0pb1jGRrjm+IMU9cI0vQBQ5DHwTY1zP6NipOUKJF9bU3JfMNjod4jSqR6RnRBJ0jIWDqjlk0vSnhxukjRNWn7MZahHbi5w14QxCkpkneXmzi6zqWRHCP9JNqVqeMRzN1Amkrq3ZAv31hH64tbl7IWd+ueckjM2pwZOhyGXxCnrLR9MqbSda1kLYZySqvMD9OBfbsQgky/cPn0WIGxksNCwyOKJW0/puA+6EK7OeYzdjrxt0EYp3z1Ro2xos1wwaGacwaFYHOb1y26JheH8/hRQieIsboRlq5RzJhompLmyG1a+4xN82O719sNNE1QydjcqfeQUjJbzeKaOotNj9vrPbp+gqaJQVIM+i2MfVfOrKXjhwk52zjQmHkvSFPJf/KLb5BzDP7y910+sNe1DZ3/x3dd5P/182/w2++s8N3PHL4UxquzFeqdgF9+fREpJe/cbQKST14axT0iMfmNBOpIXrUZvrfcwtA0HFPjznqPbhDR6kVMFFwwdPwoOfbEFIBjGbx8poKhq9b9jhdzs09ymBly6IXJvhJTgn68b+uEcYImNHpBsqW4dT9q3ZAwTmnHKWMlh2rOZrUTUHDMY9UH3IyN+OpcNUfHT9B1CONkUNTJWDqplNxe79DxEkZLDkGUMlY8GeN/GPY6W9aklP/9Xn5RCGEDL2z60htSyu/c9H0T+L8D3wH8CPBngb+109c3dI1LI3niVA4CgXLWwtAFmhC0/Yhff3OJth/zzlKbsZL70OC53gu5U/OYKDqsdYJ9VWPCOGW5GQwy2sp9z+TyeJ5umJC19EcGBWNFh+WWT85WLJ076z2aXkTTjyj2D9c5yxgcCGcqGdq+0rQ5bEZFwTEpuhHvr7QxdY0uCUNZi/eWukyWXCpZ88CTUrVuyNXltmofKVg4lnaglsuapqrocSopZUyyjslK//p/43aDsYLLZMXdsvnvFXGS8i/+YI5rSx2COOGDZyt87EKVp8ePV4vifnzxxhq/8dYStU7AbDXLq2fKfMel0SNtV9E33Ze9BPq6JkAKso5OxjLwonubU842CJOEm+tdylmLuVqPi6N7E5sfyTuUXAtDE7uef7omCKJUCVRLgaEJlawaCBQb/M67bSxd4+Zq71gSU28uNLm+0kUI+OTTJpdG8ziG3tfjePR9EUJZ3dZ7SghduX4pl8SNavNOMF/3+Py1Vd5caNIJEp4ZL/DqbIkXp8oYJ6i//nevrvLbb6/gRQmzQy4fvzTC81OlbbXNDgO6JpiqZLBNnbyjWtv3ik6YcHVJWbrP1XuYuk4QpWRtnbNVVYW92RctXxEBT4/lt034jBSUkLahCXSh5vTn3ltVLbZBzPykz0cuDDGct3HRB0mV0YLDRMl5oF1vrOCQ6WvG7ZSNO1pwSKSHa+o7ZjXN1Xt8+UaNWjck76p2/Ixt8NxkkafHC0pT0faZrrhMljMHxgzeKRYaHost1eo8mrcpuCbPjRfphPFj3ZcsQ2OkYNMJYkYLDrKvdRlEKX602YjFGOznZ6tZukG8qwqyY+oDpmecpFxbURXskYJqy76+3KHei7BNjcmSgyY0hgtwrpplvRuy3OpiGoLZSpbFlo9+QFb1+0XG1Kh1A4IoxdAEUaoManRNHHuS/K2FJl++WeP9lQ7DeZvZoSwfOFch7CcxK9s4NB4U0lQyv64kNJIUEpkyU84ylLO4MJLb0qZzrpolTNLBvKkZIVGsko/bjS9jGZwfUZpKhX3EmL0w4XNXV4nShI8/NcxzkyUuZXOY2vbSGZWshVdO6IXxIJlrm3pf17BAKuWWA3/eMTk3nCWV8kBi4SBJ6fgxXhSTs00qWYuOn3BztYtteuRd44HY9MpUkYJrYGgaeUcVDY77gP1/fn2er96q8zd/5Pk9tfE/Cj/yyhT/8+eu89/+q/f4rqdHjoRZ/t3PjZN3TV6/0+CNxRarnZD1TsRPfnT20N/7fgznbWpdm7YXc3OtSyVr0vRChAar3YBnJ4ongvmzAVPXeHG6RJJKfv/aKkGcEiQJK62Q3D67lYSArKOTtXUmyy6NXkw5Yz5yzXP6boaJlMwOZXl7scW15Q5CQM7RKWdORhssKCLDK7Nlat2A33hziXo3YnrI5ZmJwsAMrN6L0AVcmSqQ34ck0VFgr0/lHwgh/gbwy2xt5fv6Dn73/4ZiXP21/r8vCyE+D/w+8JeBS6hkVSyE+G3g7+92cJomsO5bhDY2A8tQ7jk5K36kWHgqVVVkrKic4zIHdIiI4hTXUpozfpxwfjhHL0oeKwSesw1ym9gfvUhVewVKuFLXBLZ5byPUNPFI1sJBQtMEk+UMK33BSrvpM150afYidE3pWRw0emGsGEsCNJSY+kFj4zmaKiu9mqYXstwMWOuoQ5IfJY95hZ0hSSVxX2us4Bp8+rkJJsrHr5dxP7wwwdLUgvzCVIlPPTN+LOPYbn7vFLomGCvanOnlEDwo1l3N2YwVHWVGsM9AZq8VciEEY0WHmW6WJJWkcqvDmKWrDTOI5LEZHoR9m3cpVatrNWeTtQw0bWdtukqEVW3sc7UewzmHThDvmO0CygFQEyCk4NxwllfOlHh19mBaAQ4SHT8auJ995FyVD50/XM2L7XA/A3evGC/aDBfsfpuzGDwHyR7my+b5oWsC09CIE4hSJezrbdJXLDgmF0fV/rfdYUqI3e93rvVoKv920FDMIiXSrxy6crbBMxNF9Rl07cCLMLtFlEgMXSNM1OJ2YTSPFyVkdnAIHS04bHAL4iQdHLo3zJfvn9+mru3YGXQDitUmBmON++P0QtXau2GAUHBNLvRdaDeYpwv9doQoVm2jjxKvPWqkEkoZm+m+G9J40TkxArRBnIKkr21qc340d6QFjY17KpH4UULOMcjaOmP3FXuVhue952umknlsfHwQrbISSSxV8SeI0nuFoYfA0LVBO7QfKYOTjbY5XRPo2/Qp7Fe3cjOCWDFdOoEau21oGLrqFBnKWduukYauDebTSUC9G/I3fu0dXjlT5kdfmT7w1zd1jb/03Zf4iz/3TX79zSW+/8rRxKsfPl9louxyq94bnPOOCxsOlEEsOTucpRMkTJZdJoruQ021jhMbSfyxfvEp75hUczbJPo+QUkLRscjYJjl7Z10GQzkb11JGRLahmFYbr7UR95wk6JoglSrXYfbF8G1Dteq6psF4yWWs6GIecbFsL9jrSvlS//8f3vQ1CXzyUb/UZ0N9XEr5PwohNhJTF4E68D8DPwCsAxute01gW2VYIcSfAf4MwMzMzI4H3g1iLo3laXsx4yV14+brPTUZCvco6npfsb/omlRy2/e37wa6JnAsjXPDRZZbAWvtEE2IgcDabjFZclUPe9kl0588x0nJ3LhecZIODkHnR7IkCYw8QmB+rxjJK1vwas5SVfVD1PHYYNNoqBaHK1MFTF0ffK4wTllu+djm7uyn17sB8+seE2WH73tunDfmG1wczZ2opJTS+GhjaBofPl9F64u/f/Bs5biHtmdUchauqfUPPlttX8eLLnGSIsTxHnqqOaWzows4P5zdcugvuAbPT5bohQmze3D92S+iJKWUMWn7EWcqWao5mzSV9MIYx9TZ7XI2UrBJUmWecGYH4sBhnDJf7+GFCc9OlJgoupQyFs9O7Ezj5iiQpJJrK210IXj5TAVN08g5Bh87IA2N48Jo3uXDZ4eIkpTZPlum5cUM5SykVM5oQmy4aSmti3LGemS1Ok4lUSJ5YbpEwTFYbHmUMybV+yycj7u6v94JGM7bfPTCUN+RTx02L/YdP48bqVQJnGcnCnQC1VrU6IWU+smz3cLQlYRB2485O5zF0BR7cy+toA+Da6l91AsTxooqHvvIuSFW2wE5x3zgMD9ZynBjtYNr6TT7zo3D+YcbYBwF/CjhznoPIeBjF6pkbJ2ibfLCdOnYxgSKqXR1pY2U8NRoHlPXuDSaY6LscLZ6dAkKx9S50tdnWe8GuKZOEKckqWCx6W2Ju+/HXuPj3aLomHziqWHCWDJasFlp+XQCpSn6OCbZcTx740UXP0goZ5QpRIrkuckiw3mbKJGMHEAR4rDxN3/jXVp+zH/5w88dGpvpD1+Z4O985hp/93eu8ennxo5Mj3OmkuWPfXCaW2s9rkyXWG37LNR9ZoYy+9Kh3S2myi71bsRY0Wa9G/LMRJ6yazGzQ43J48LFkTw/9OIkK22fF6dL1LoBjdWIqXJmT2fxnGPwzESeUmb7pO3DEMWSCIlt6DwzXiSVSg7hqE1NdorhnM0z4wXm6r1+gV1SyVpcGsvR8iLGiu6xx1E7wZ5WfCnlJ/b4fj8B/LP7XqsGIIT4RVTC65eAjRNGAWg8ZAx/nz6b6tVXX91RPnW9E7DQd9Ko5i10TbDa9ql374mmbq7+DeVsMpbBfL1Hy4uZqWT2HIAGUcJS06eSUY4yrqWz1PTphTF+lDJWcHY14fLOwbfH7RQLDY+2Hyu3pE3XSxOCtU5ArRshgNmhoX0Lxj8MlqHtWMD3IBAnKTfWukgJtino9AJWOz7PTxRZagU0PfUMPUpXZTNW2z4/95U7WLrOeMnhB16YeEAP6bjRC2J+/Y1FFho+4yWHD5oVvvvZk+NythekqeQrN2s0PaVnFG1yoOoGMXcbHo6hM71J7+2okaSSb841WGr5DOcsOkFCoZ+r7ASxMm8wdS6N5o5ljCvtgI6fKOMBw6eSU45K9W6EEErsfTctTLahM1vd+bP/ufdWeG2uyUTJ4dWzFb7jqZG9fIxDg5SS33hjkavLbUYLDh+5MMSnnz8eduFOsPHc24bGzGOc5DRNMLspYVvKWIM9YKHucX21Q94xqeQErY4SG/Xj9JEtz36U8PrdBq/MlJkeymD1nx0vSh4qFp2mkrl6j6D/2gfJRtgOYZzyzmKLVEqqOZtcn/UshKATHL3A+XYIooSry22GczZZ2ySIUuZqPeq9iDBWLmG7PeRXc/ahO3fdb1hiGTqTD6nmR2mKFyW8u9ii5cU8M1kgTuWxFBFW2wHr3YDFhs/dukfG0rkyXeR7nz3+uS6l5HNXV/jmXEMJ9l4YOrZEWZik3FjtMF3JMF5yuLbcodELub2misOOoR/pYX07xFJSyii29K21Lm/cbSIAx9AZPwFuj5sRJSk3VzvEUtJoh1RzNsvNgJxtbGHBLDV9Gl7ISP7B1ufjxtdu1fi5r87xZ77jHE+PHV5BSdcEf/4TF/jpf/4av/3OMt9zhPHr81Nlnp8qEycpv/32MnP1Hr97bYUfeWX6yBxEN86JjV7I4t02i00fKQVP36cJ6EcJczVF0DgzlD32Qouha7wyq4rfa52AL11fp+1H3Kl1OTuUwzRVrLJTMoYmxBYX352g3g2ZryuG7pR06ASJIiAYGsvNgKxlHHrcsVtofbfnIE7p+Anr3ZCOHzHf8PDDFBA4pn4iWt8fhT2VvoQQo0KI/0UI8ev9fz8jhPhTO/jVp4B/XwjxG8CzQoi/KITYOMF8DLgOXAWe63/9U8CX9jLG7bCRvfLjmNvrPRYaPs2+pokQ27ferHcD/Ej1c3f83TtGbSBKJGvtkIWmOgCAasFr9IPG1Y7/mFc4GYiSlPWOEoVbbQdbvhcnKevdiEYvYq0bbhF8/FbCajvgxmqPO+se11Y7gxZKIXYmwBnECa/PN2l6ESsdn0TKB1rKTgLeWWyx0glYbvv9Nqsn/37WeiH1XkStE9ILtwo/rnWUPkjTi+iGx0e/7gQxq52QRi+k6UWD9QJgrR0QxmqMvWMao6VrLDQ85uoe8w2vH+yo70n5YHvkQaLRC7m20qHlR9xteFgncI25W/e4U++x3t1wXj0Z7TwPw3onJIhSWl685+c+SlIWmh7r3ZDVdoCla5ueiUc/EHEiWairNWZzQtN+RGWvGyqmVhCp/eiwESUpq+2Qa8sdml5EkKgECRycw+x+ESUpa+2Q2+u9gahxKqHtqxhj7b79+kmETKHhRax2AlY6PtdXOxzX9Fpp+7S8iOurbWq9cGBQcxKw3Aq4vd5jre/+fJxLUJpK/Cil3gsH+0PHj1nrBGrv4PiDnySRg5jWj2JqHbX3NnqHv7bsFndqPZZbAfMND0MXSCnRtK2x54bzZRRLllsn62wRJSn/yS++yUTR4S9+18VDf78ffGGCM0MZ/u7vvP/YvegwoAlBItV9aHoxr91pDLSGjwqWobHU8mj0Ita7Aferq9R7IX5fb67l7Vzn8yggpfrPajvkbt3nblNpKDYPeZybL5EXptyp9QZnv04QnQjR+O2w+bwgBNyu9Vhq+tyudQmiB8/tJxF7Tff9b8D/CvyV/r+vAv8H8L886peklP/Rxt+FEL8HfA74qhCiC9wA/jMpZSKE+AfA51Etfj++xzE+gA1Ldj9MqPcTUoWMSdE10YTYluJWcE0afa2kDceQvUD1f1sUHXOgWWTpgjs1Dy9Mjt3qeKcw+tehFzw45nJWiVn2wpjp8s6z2U8CDF1jtpqlF8QM5yxW2zW0viXvaMEhZxsDx7jHQUqli3BxNE+SSr7z0vCJTPq4lsFE0cUxdD52YehAhN6PGwK4PFag1g14ZrKwZc4XHJOWF2Ob2mM13w4TmoDZSpayazJbzWwR9S/0nahsUzs2Su5wXjk4JTId2M6OFhxsQ8PpCy0eFoQQzFQy2IZqSzlK1uROoWkwXc5g6RpXpopMnEAth80ouAYtXwVazh41caS8JxaacwzGii6uZRDECUPZRzNudE2J4Ru6Rs42+u21j26RcU0ltB8lKQX38KuWhq71NS/U++Zsk8mSg65ph8YK3i1MQ42x6BrMVDJ4UYKla9yu9ZRmzhMSYzwKxYzJxZEc9W7ISN5mrKj0Uo5lLK5JJ4g5U8lhGFByrROzHkkk05UMqZScH85ybheM1IOGEOpPvu9mdaaaIUUqrTpNwz0iE4hHYSP+KromlYxJ208wNKiewJY4KWEkb9MOYl6cLg1kPDbHnpomyDsGbT8+ceyI//X3b/LuUpu/9xOvHAnjxNA1/tx3XuD/+X+9zmffW+UTTx8tw1rTBB+/OEw3SEjSlLxrHnkhOmMZPDtRYK0bUMnaDzBn847JekfJy+znnHsYqOYs5Wpq6RRsAy9SLrGH3eJbyVqDRGY5Y7HQ9Ci6KgY4N5w7MfqB9yPf1+OUUsWi5YyFkMq0xLVOPlsKdpmYEkIYUsoYqEop/7kQ4i8D9IXKd5UCllJ+W/+vL2/zvf8d+N9383o7gRBiQEvPOxFhkjKUfbT+RcExeWa80N9c9548cC2dp8bzDGXtgWYRwIWRHMkx2ErvFUIIzg9vP2ZD13hppkTHj3ctiPokIGcbg/v28aeGCeOE4b6I3m42WMfUeXaywNnhDNWsfaCaHQeJi6M5KllTfe5jFvQ9KGxQ2s+P5B6gt5ezFkXX3Pdc3y/yjsmlsRxRIgfJ9A1UshalEzDGS2P5gbbLxoF3pHD4YrpF1+RjF6qEScpI3j6Rvf5jBZcPndPRhaJVn3SUMhYFZ3/PlGXcS9xvzCsVAD1+3XAtnafG8oO1dSeJHqOvl6OCr8N/BmxD4/JEHsfUyVnGsc+/7eCYOpfH82RtA0PXyPf3lYsjuYEI7rcCzgxlGSs4NHohWcc8tv1zqpxhvOjS8eMdxZJHidG8gzGl8dJ0+djXIMfUeWa8MLg2Bcfk+Ykia90A29BPRGLXNjSemSgM5sjLZ8pIKU9cCxwoQfhGLyTnPFo2YraaPXFni7laj//ut67xqcsjfM8zo4//hQPCD788yd/5zDX+zmeu8Z1PDR/Z+24g55r8yCtTrLR9svbxuCFeHi/S9qNtCxQ52ziQc+5hQAjBTDVLMWsRxAkV10LXxZGMc3NR+NXZCjMVH10TB+oAfxjY/HydG87ilRwqGeW8epLWg4dhtynHr6ASSV0hxBB9tpsQ4sMoofInBrvRczqIYEMX4qHC2E/Cg3I/HjbmjLUzjaUnHY+z3n4cCo65L3vjo4Cpaw+45jzpEOLRm8pJOVg8KrF7EsZo6tqRJKK2w3HrkTwOmiYOxAHvKHEQz9TmxP1uYGhiT4UMIcSRulLuxtjiOCDYPjkshOAEdrzuC7apM3oC9ib9CN2Pd4OTtgbdv75o2sPj4ePC5pj2JCakNmAZO997T9LZQkrJX/nFN9EE/LUfeu5IEyCmrvHnP3mBv/zzb/Arry8e2ftuhq4Jxo9xzXKtRyeBT0Jc+SjstNB1mDiumHc/OE496r1it6WmjSf3p4FfBs4LIX4f+MfAXzjIgZ3iFKc4xSlOcYpTnOIUpzjFKZ5c/OMv3uZ3r67yH/6hp45M/HszfuzVaZ6dKPC3f+vqkb/3KU5xip1jt+XNYSHET/f//gvAr6GSVQFKqPz1AxzbKU5xilOc4hSnOMUpTnGKU5ziCcTvv7/GX//Vt/mup0f4yY/MHssYdE3wt3/sRTKWzg//3LEM4RSnOMUOsNvElA7kuMec2sDJVnc9xSlOcYpTnOIUpzjFKU5xilMcOqIk5Z9/bY6/9i/f5vxwjr/9Yy8ea8vYU2P5Y3vvU5ziFDvDbhNTi1LKv3YoIzkBkFJS64YYunYkyvX1rrKiPSmaKalUFrPlzPEJij4p6AYxvTB56LVKUkm9G56Ye7sdTu+3CpwavYicbZwIEdbt8CSMMU5S6r2IrK3vW2MuTiXdID4Sx5694kmY3zvFSduHdoJGLySVUM6YR6JV8iTebykl9V6ELk6mDtJ+kKaSWi/EMrRD0Wp8Eu73k7R/N72IqC8Qf9LEleHJuN97QRAntLyYvHN0gtt3Gx7/3v/6FRabPnfrHu0g5iPnhvgffvylb7l16DDghQmdID7uYTwSSarOypkTGo9uYCNO2CuavYg4Tamc0HXrqHDU93u3kf+39J1ZbgWstgNAKdkf5sGo3g2Zr3uDf5+EDTGIU5aaPp0g5mz1ZNgen0REScrNtS5SQi+Mt7WIDuOU+bqH5OQKaZ7eb7hT69ELEoRgi3PQScJcrUe3P8bL44UTJWi6gbm6R8ePEQKeHsvv66AUxWp+PTWWxzyhB64nYX7vBI3evX3oSfkszV7EXE2NOZVy4LR7mHgS7/daJ2Sp6QMwIzJPhE30TrHc9llrq4TqhZHcgSfsn4T7/aTs36mU3FnvARAnkrHiyRMQfhLu915wa61HGKesdwVPjxWO5D1bXsRqJ2CqnOEDsxW+86lhPvHUyImMrU4a0lRyY61Dmh73SB6Nu3WPphcdqfnIbrE5TtgL2n7EnZpatxIpT5xZw1HiqO/3bjMv37XdF4UQvy6l/PQBjOffGOwjiXvokPIkj+4UB43T+32KU/ybic1T/3QdOMWTgi3P7YmOpg4fp/P2FA/Dxtw4ykfk8niBX/kL3350b/gthtPpfDJwehuOD2Knm5oQ4uWHfQv4FSnl+IGNapeoVqtydnZ2368TJSlxoq6HbWpoB5gevHXrFpvHGKeSKFZpcdPQME5ANeH6jZtMTM2gaQLbOJlMBXjwWh41pAQ/TkAqQUVrm2u1cS1Pyr3dDqf3W1Wd01SCAHcfVPfTMd4bo2Pq+6LWXr9xk4npmX2/zmHiSZjfO7nfJ2Ef2u1zmaSS8IjH/CTe78331jK0E8O0PIh16DBjNXgy7veTtH+PTkwDYOjiRLJgn4T7vZd540cJUoLo78tHgSdh/z7uM8ROcJLHGMYpSb9Hbnlh7kSOc3OcsJcxbokzdA1DP9yn+Um532+/8U0ppTzURXw3jKmvAp9j+3a+0oGMZo+YnZ3la1/72r5fZ6Xls9xSrXwHTQ9/9dVXt4yx0QsHNMPpikspc/z04WdfeImf+9XPkncMZk8wNfz+a3nUiJOUd5faSAmljMl05UHt/2evvMTP/dpnmSq7J6JNczuc3m+4udal48fomuDpsfye6eaHOcZba13afoymweWxvbcbHuYYb693aXlqjE+P7a/d8NkrL/F//Npn990SeJh4Eub3Tu53s3ePrn5cn2W3z2XLj7i9psY8WXaPpPXmSbzf652AhYZq5ZutZsgfghbTXnAQ69BS0x/ILlwczR34oftJuN9Pyv798iuv8o9+6TMAjBRsRgsnryXmSbjfe5k3V5fbBFGKZWhHJvz9JOzfe7mW//DzN/h7v3uDj54f4m/+yJVDT/Qd9znnUZir9Wj0VGvXT/3Qd53IcW6OE/69f2v3Y+wEMTdXuwCMl5xDlwx4Uu7381Olrx/2++0mMfUO8GellNfu/4YQYu7ghnR8GM7bWIaGqWuHLjJcyigxNSE4FPHOvcAxdCbL7reUFsVhwNA1Lozk6IUJpYdcK8vUmBk62boep/cbZioZml5ExtJPrAbC9BMwxqlyhqajxrhfZoZpqPl1UoNaeDLm905QzJic0TJIyRPzWQqOyWw1Q3qEY34S7/dQzsbQNDSNE5OUOiiMFmwcU8Vqh3FAfBLu95Oyf2tCabZGSXpix/ok3O+94Gw1S9uPyR2hkciTsH/vFr/z7jJ//Vff4bnJAr/0zQVGCw7/8fddPu5hHRsmSy45++gE9feCzXHCXpCzDfX7Kf/Gi/Yf9f3ezWr1nwMPW2n+wv6HcvwQQhwpc+mkbYJCfGsJPx4mHFN/5CTVhThx9/d+nN5v1Yp50q/Bv2ljNDRxogMeeDLm905xUgoju8FRJ1qe1Pv9rRpQH3as9iTc7ydp/z7JDqvwZNzvvcDUtSN/Rp6E/Xs3kFLyX/7qO1wYyfHz//7H+Cu/8Ab/2xdu8ae+7eyJZP8dBTRNnFhm4WbsN074Vivo7BVHfb93nNKWUv6fUsr3HvK9XzywEZ3iFKc4xSlOcYpTnOIUpzjFKU5xTHhtvsn11S5/+tvPYhkaf/6TFwjjlH/+1W+JRqFTnOLEYddcSyHEkBDi7wohvi6E+AMhxN8RQgwdxuBOcYpTnOIUpzjFKU5xilOc4hSnOEr84jfuYhka3/uc8vc6M5Tlw+cq/Pw37p46Yp7iFIeAvTQB/xywAvwI8EeBVeD/OMhBneIUpzjFKU5xilOc4hSnOMUpTnHUiJKUf/naAp+6PLKl1fOHX5rk5lqXtxZaxzi6U5ziWxN7SUxVpJT/hZTyZv/PX+eYXflOcYpTnOIUpzjFKU5xilOc4hSn2C8+f22V9W7ID780teXr33V5FCHgM++sHNPITnGKb13sJTH1r4UQ/44QQuv/+THgVx/2w0KIDwkhviCE+LwQ4r+773v/mRDii/0/39X/2k8JId4TQnxWCPFf72F8O0KcpARxclgvvy386Gjf7ziQpvLfiM+ZpHJfz0/yhFwnP0pI92prcUIRJSlRkh73MB6JOEkJ45M9xuN6Np6EaxPECfEJf8YOGntd+6XkibhWQZyQnPC18FtxvX4YTspnPY5Ycic46WvQSZ5PJz1GOCnP/l4QxumJfi434xe+sUApY/LxS8Nbvl7N2bw0XeIz7y4f08h2DynV/vykth/u98x1EDjp68J2eFLOmpuxF6uMPwv8NPBP+v/WgK4Q4qcBKaUs3Pfzt4FPSil9IcQ/FUI8L6V8o/+9fyyl/KtCiBLwy8Bn+l//W1LKf7iHsT0WaSoJ45Trax3SFCbL7iNdK6IkZanpY+iCsYKDEHuzQveihPeW2oyXHEby95wc1jsBnSBmJO/gWk+Gk0WtG9L2I4bzNhnr3iMkpeTaShs/SqnmbSZL7jGO8nCQpJIoSfni9XVSKbkyVWQ4vztnjjhJeXuxxXIrYCRv8cJ0+ZBGuz/M1XpcXWpjGYIPzQ5hPSHP56PQCWJurXVJUsnF0dyW5zeIE5abAY6pMXKMbit+lHB9tUMUS2armS3uU36UsNI6/jEuNDxurHaJ05RXz5TJOSZJKtEEe14jdwI/SvjGnTrNXsSV6RITJ3CNqXdD3lpo0QsiPnCuQjljH/eQHomN5942tT27DKWp5NpKhzBOGSnYjBYcpJSkUjk2PgpelPDecpsLIzlsY+drzHLLJ4hSRov2rn5vL4hTyTsLbUBScE2ytnHiHJmiJOXdxTYZW+fiSG4wD1faPn6o7su3gltWGCe8Nt+g4ydMlBwujuTRHvOMHQZafsRy06fWC8mYBuNFh2r+ZMz1Wjfk2nKblhdyZbp8rM9qlKTM1XqMFx0MXUNKyWo7YLkVoGuCi6M5TH0vNfKDQ5xKbq93Gck7SCTXVzpI4NxwjtwJcxScr/eodyNMXfDUWP6h+22jF9L0IoZy9on5DI1eyBvzTbwo5tUzFSq5kzFftkPbj/hXby3xo69OYRkPPp/fdXmUv/Wb77Hc8k/cXrAdbqx16fgxRddgtprb8r04SVls+uiaYLy493PuYSGIEt5f6RAlEkODcs5mvOAc+rq/kfzVNMGttS7vr3SoZC2eGsufeKdRUOfVayttgijFMgQZy3gicg27vrJSyvwuf35p0z9jINn0vZv9vwbA5jTufyCE+Engr0opP8MBoRvE3Fzr0gtjdKFhGRqNXkijF6Jrgqly5oEgeqUd0OhFAGQsY8+WskGUcmuti6VruKbOcsvHNvTBa0eJx4WR3GNe5fgRJyl36x6gAo4LI/ceh44f89p8g3o34sJI7lsqMSWl5PpqFy9MCJNkcN+Wmj452+Ruw8MxNSZL7mMX9TBJWW0FvLvU4qs3IzpBwscuVI/iY+wKi02PpZbH+ytdlloB3/vc2BNvn9oLYm6sdlho+NQ6Ad/59Mjgfi03A5peRNODnGNsSVodJfww4dZal8WGz91Gj089Mzo4eC+3fFpeTNNTVrbHscH4UcJbC01ur/eoZC3u1HuMFVzu1j1sU+P8cO6xyYi9ohvEvLPQZqnlcWOtwx//8OyJs/lu+iHvr7SZq/e4XfP44x+aIXOCg5iVlnru8SBnG3sKuMIkxYsSVlo+692AgmMyV+8RRClTZfeRVsNhnHJ7rcdkyUUTgvm6hwCmyi7GQw6snSBmpRUAIARMVzK7HvNuEMYpN9e6tPyIp8ZyOJ7OeifAtQymyu6xH6xBzcuba10qWYtKxqLhhVi6RtOLAZBIzgxlj3mU+4MfJXzpxjrvLbWQEta7PiN551isy+drHk0v4tZ6h16YkHcMPvHUKMMnIDnVDWLurHd5Z6nNu8sd/sSHZihnj2dccSJp9CJMXWM4b3N9tcP1lQ7dIKbgmkyWXYru8c6fKE5peTFx6pEkKV+8sY5taOQsg9wJi8t7YUK9G7LeDQnilIyl41r6ltgzTSXzdQ8pwY9Snhrb1bHt0NDwIu7UetxY7XBrrce/88EZCids/97Ab7y5RBCnD7TxbeBT/cTU77y7wh/74MwRj253SFLJm3ebLDdVEm2ynNmyZ611wk3nXH1LMfS40Q1ivnKzxrWVFpWsTcm1kAgcQ2PoEBObXphwY60DwETR5Xaty3o3YL7RQ9cEV6aKJy6BB+qMPtc/ow9lLerdiPl6j5YX8/JMib5RESsAAQAASURBVDiVnB8+WWva/djTbiCEuCKE+EEhxB/Z+LOT3wGqUsq3t/n2fw78vf7ffxG4ghJX/2+EENuevIQQf0YI8TUhxNdWV1d3NO5OECMlOKaOZQpyjoGmQTdIaHkxLS964HecfqZcCLC3yZrvFLoGtqmRsVVSygtTat3w3vuYxx/Y7gSaEJiGmoz3V6m9OEEgBq0ZvTA+jiEeCsIkxQtVTlUDChkD19KYKLmstH28MKHejeiFj6dMZiyDsZJDsxfhmDqLDe9EUtqnKxnafoKpa8RJyko7OO4h7RtF16TjxxiaoOXHtIN7z+jGHNQ0MLTjm48ZWydOJamUxIlkrbN5nVBzTtPA0I9nU1xtB+T7yQvX0snb5mDtDKLDbWspZyx0XRAlEk0IFhveob3XXjFWcEikRN0dyULDP+YRPRr2pud+rwkWx9RxTY0klWRMg8WmRxApynvLf3Bf3QxNgGVoOIZGvRvS8WPafkxjm/14A5ausTFF7SPYOzUBrqVRcAwMTaMbJvhRSsePqW/ax48TmhA4loZtCta7IV6Ysr7N2vEkoxcmGJrAtQy6QUzRsan3juf6O6ZG1taRQJJIBILV9smY68N5m1gqBqshxPGuQf1tyjE1gjghiFJ0TdALE3RNnIi2LjEYo069F6EhVLv4yTt3MlZU+8tQzmK55dP24wdiT00TA5bPfs4tB43RvKNaoYRi0t49gfv3Bn7xm3eZqWR4eaa07fcvjeaYKrt85p2T387X8iJkSp/BDL1ga4y2Efuqc+7J2ifafkzbj9A1DS9IKbmGGuch72ftICJNIU1VQaSSsYgTiWvqSAndHZz1jgP1XkTHj+n4MX6cYBuCjKVTdE38OH0i4oBdl0aFED+DShy9BWzsKBL4+Uf8TgX4H4Af2+Z7PwwMSSn/GYCUstH/1qoQ4iowCizc/3tSyr8P/H2AV199dUen+lLGpO1HCCE4U8lg6BotP6Lj9xCCbdkH5YxFxlIJrP1MWMvQuTCSZ7zoUuuGeGFAxtKZHcoQJpLMHpgPaSqPnMKuaYILw7lBpWYzSq7FmUqGnG0wVc4c+gKXphJxyK1DG7ANnUrOouPHzAxluNzf7DcmecuLMQ2x4yDg2YkiHS9moekxU8mia+JY7uejMF50+b4rY7x2p4llaowWVHXipI1zN7BNnZfPlHl/pUM1Z+NuWqRHCg45x0AXAvOYkj6g1ooXpoq8pQuGMltp+KMFh7xjYGgC/ZiqNXnHIGubfOjsEFNll1LGpBsmhEmKa+pbrulOsdO5rGmCTz83xldu1sja+omkUzumwR9+fpwvXF8nbxtUctaJnjMjeYecrRIu27Us3I8NjYr779WZoSxxKpESqjkLQ1OBUfUxVU3L0Hl6PI9jGSQShAiQUpJ9BGPRMjQujuSJ0/RImI2WoXG2miNj6VSyJlEsme8fqk4KG84yNM5Vc4wVHDphTK0TkndNzgxliJK9X6ejeHZ3+h4Fx2Ci5FJwTFIp0TWNnHM81392KIsXJYzkbd662yKWkomSeyLmumPqfO+zY/yuuYauCSbLir3+sLl7qGMxdC6M5HAtnSRJKWVM4lT9P7tHhuZBwzZ1zlYzZG2DVCqGl6GLE9kqXnBMXj5TZqnpEyUpUrIl9tx4/s4P5/CjZE9ni8OCa+n8wAvjfP7qOq6lM5p3TsR8uR93Gx5fuL7OX/jkxYfOFSEEn7o8ys9+5Q5emJzo9ijX0pkecrFMjcmSiiE3o5SxsA193+fcg0aaSspZk0rWwtJ1zo1kmemzo3ebYNntc1ZyLVp9tnE1b1PN25T7DCRDFwPSyklD1tYHifasZXB5vKg6XaRkrOiSP6EMxc3Yy47wYSnlMzv9YSGEgdKj+g/va+vbYFH9OeD7N32tIKVsCSFc4CKwMzrUDmD3k0PvLbX4zLsrTJZcnp0o8HS/T/v+9pOba12WGj7lrLlvKqypC4RQeg/dICGVksmSi2nomHu4C4tNj7V2SM7Wybsmpq4dWUuLoWvbtljcbXjEqaTg6JgavD7fwNRVe9tBU+1bfsSd9R5+nDBVchnJH36/cTVnEUQJby+0yNk6k+UMjqkzlLMpuCa6ELsawwfPVYgSiakLPvvuMl+/0+DiaI7ve37i0FqhdouZSpbxoosuVI/1P33nDqYu+P4r44wWTl7QthMM5WzWOgFhktLqazBsIEklbyw0kcBL06VDr8o8DEVXteN0w5ggSmDT3DY0jbcXWrSDiGfHC0eu01DKWPTCmNfmmrSDkA+drZKzDS6N7m2NbHoRN1Y7+FHC85PFx/78SMHh+6+Mc7fhMb/e5TffWmKi6PDtF4dPzKY7WnT5oRcnSaTk+mqbf/7VO5i6xo+9OkXePTk0+Q3sNGkRxAmvzzcJ4oQXpko0ehFNL2IkbzNScHh6rEDbj1jthORtg5mhx7fYOabGVDnDrbUO37hTpxOmPDWaI4gfHexbhoa1N9L3rqEJpefiRzFfvL7OSjtQnznvnAjGByi220wlwzfm6oRxyrnhHNNl1d6zVybcjdUO3SBhOGdhGCpxWTjAdu40lVxf7eBH6UDvc7UdMFfvMZyzmSpvbY1veIoZUnBNZioZ4lTuKJl6GNA0MUisVLI2hiZ4d6nFP33vNnnH5AdemKB8jC0x5azN918ZBxTL9fffX2Cp6XNxNMcHZiu4R9Sqnkily/nmzQar7YCCa1LKWEyVXSpZ+0TEOmGc8quvLxKnkucmi3z0/BA5xziRrTqgGBy9MMaPEsaKDtOlDB0/5vpaB1PXGCsqLduTkPS7H0M5hx94cYJUSuZqPX7uq3fQNcEf/+AMuROyf//sl+8A8KOvbN/Gt4HvfmaU/+0Lt/i999f47mdGj2Jou8JS02etExCnKTnbpOckeFHKYst/QGrlJCXW2l7Eb7y5yFLL52MXhvjo+SpxKvvn6N3PyTBO+f3ra4zmbS7sUJPQMrQt8jrrnYC3F1uYuuBj56oPlRk4TigN1gZtP+SlqbJKtPeLvmvdCITas05aIvh+7OXKflEIsePEFPCjwAeAv9l32vuIEOLv9r/3t1CMqN8UQvxS/2t/SQjxReCzwH8lpXx0H8AuEUQJb91tsdYOuL3epRPEGLr2wOYYJynLLZ+lls/7Kx1WO/trY4oSSS9IuLXeoxvEaEK1EgVxosRJd6ma3+y3Odyu9bhb97iz3qMTHF/rXJJKlls+t9Z6fOlGjVs1j9vrPaSE2iFQ7VtehB8lzK173FzrsdQ6PKp6lKSstH3mah61bshS06cTJFtaMU1d2/VkF0LRrb0o4ZtzDdbaAV98v8a1lfZBf4R9YeOzvbPUYq7e493FNp97b/XEHMh2i7t1j1trPVZaAXO13haXktV2wELDZ7Hhc2O9e3xjbKox1rtKk2GzE0g3iLhV67LWDnlnqXUs47uz7uFHKcvNkNW2j5SS9U5As7f75brlRUrPrKk2/p1ACNUK8t5Kh5urXd5caPHV27UT9UxqmkoIvLOg9KbeXmjxuasHVmc5Fiw1PN6+22K+5nF9pUOjF21Z43VNsNYJ6AUJy61gx+6JUZLy7lKb6ytd3l/qsNTXUtuMWjc89ra5W2s9bq31WG4GXF1WccEbd5uDNu/jxnLLZ7kZUO9GrLUDhBDKMKHt77rFNkpSuv2Wj/dXOyw2fG6v9Q70s/qxaokEFdN0g5jX5xrcXuup58uLWG0Hg9im3g2RUrV3HGdS6n5YhkYqJd+cbzC37vHGXJM355rHPaxBEfF2rct83eP9lQ7fnGvyzg7X2YNAFKe8s9ji9nqPTpBwdamDlNDy48cmpcI43VN8vFts6M/ONTxWO76SpdjhAbjeDal1wyN1O1vvhNS7EUvNgLYfs9wJuLHW5b3FNrfXujSOqb11p9D7e+Obd5ssNNRe8tvvLp8ISYswTvm5r87xiadGHqtd+IHZCnnb4LffPpntfOtdtQffXO1xc73DV27UuLXWZfUQz0sHgWsrbb52p87dus8355r4cYJlaHtOFPtRwlo7ZKHpE+wwJpFSsrYppr2+2qHrJzS6MavdkylrUu+p8+lKK+TNRbX/LLV83l9WmrVNL9rx5z9O7CWd/o9QyakllGi5QLnxXdnuh6WUPwv87H1f/mL/e39om5//q8Bf3cO4BgjihDBOB0LN6gEL0YQS6A7ihFovZLzoPJS2aOgaUZKy2PQG1MH9YGP/rWRMvChBIillTN5ZbBP3afbPTNxvaHgPtW7IQsMjZxucGcownLNZ7QRUshZim0b4ME6p90KytnHojhxRooRhl5s+c/UuXpSy3PI4W80RJglD5sFXQYayNrVuSMbSiZKU9W5w4G4SYZzixwlLTY+ry23qnYiJskPeUXoqQwfEAnNNnclShruNHqkU/Pobiyw3fb7t4vCJqCZu4Gw1y9dv1WlGIe+vtvnZr9zmh1+aInfEgugb9yVv776iGSUpbT9kqeXhGDovzpS2CIbWuyFLbY/RvPPIVqLHQUpJO4hxDH3Xh6cklXS8iLWOT5RInhnPbWnbixLJWstH1zQujByPmPFY0Wa57eOaOuWMxWLD407NI2PpnNWyjxXJn6/3aPQU06acMal3QzRN7KpqN5yzGcpaOKbG7fUueVsQxAnffmHk2Np7tsPTYzm+cH0NiTq4JqnkYxeHH9vidpCYq/W42/AoOCaXRnN7rvY1vAivX63POya2qdH0IhxDx48SHFMnYxl4YYhtahgPWb82zw9QczpnG7iWjqEL8rbBUO7e+lrrhtyte6RS0g4iJopbhdGTVCVGbUOnmNnZetTsRczVe7iWztmh7I4KCznHoJK1iFLJWN4aaKt9406NK1Mlgjhlvu6RpCnnh/M7HstBIWPr5B2lk1PNq/d+b6mNFyWUMyZPjT08xpBScqfWo+3HTJQUe6mSs2j7ilUaJw8eGr0woeVHFF1zx60ViVTOyJahjGCKrkkviqn277dj6rT8mF4Yc3WpjWPqpFIyU8lQyVostXzytnIBfWexha4Jzlazxy5AL4RASsntWoeCY/YZuSGWoR+7rsdkKcONlS5JmhJECaudgDvrSsw/TiTDBedQzWoylpJC6PoxQ9kMDS+k1pUkScqlTc9knKT0ooScpar6d2pdvDBltR3wzHhh2/2+3g2J0pRq1t4zE8DQ+0wCoVqb87ZBy48eun8HsTIaaPsRAoFtqGe0mrPxo4Q4lQ/E3eudgLTf5rzfOHUoa7LU8sjYmtKWMzTiROJFidJXkQ++fi+IeWephaVrFFyTYp+5dpy4NJrjqzdreGHCW3cbtPyYH31pCvcY9+/ffGuJtU7AT3z4zGN/1jI0Pv7UMJ95d+VEtiQ6ptqXqzmTtxZb9EJlijCcs3h/pcPZavZEnTH8KCFKlE5pN4hZbQdqjPucL5oQrHV8ylmDphdyfTWknLUeueattAMW6h5BnPLMRIHxostiU5mWVU6g07IfJZi60uzrBLEiw4Qq3+FHMXP1HrYpmA0z2MbuiRRHib3M/p8BfgJ4g3saUycGYZxybVlVZIbzNmNFh/U+y6UbxKx3Awxd48xQhsvj+YceGqWUlFyLl6bLgGR4n4cIU9e4OJpjvROQpMqK9NZah/lajziVnHlMy0NtU6UwTFKGcjZDOVsxFbohpq5t2Qjn6j16QYIQAZfHC4e6+HT8WNl2F2xurWtIqQTjJkouq52AaysdLF2jmj84S1XX0rkyVaKS7XFztUuaKrbLyAHZtsZJyrWVNmkK76+0ma97aAImsHlppnKgbhBCCP7Iy5PMVjN87uqqYljUPGxT8OFzwwf2PvvFMxNFRj5h8yuvLfDVWzVur3lEieSnPnr2yBa5zfelknv0xvIweJFKXGtCIDaZgfaiBMvQeXm6jGVoTO0jUF9o+tQ6IZoGT43md50ISJF0ggRL1/DidMv1bfkRL0yX8cKE2erxJKZmKlkMXSNrG5i6xs31LiutkJxjcHb40WOSUlLvqgP9ejek1gVL1+mFCcVdJDnLWYvvfW6crG3w1Rs17tQCllsRtU7ED1wZp3BCnGUuT5T4M99xnt95d5k377ZYb6/S8iP+yEvTZI8gAE9SZc++2PBZ0wNyO2yx2w55x+SF6RKJTBkrOHSjmIJj0uhFdIIOF0Zyg6SG9QgW6eb5EaeSG6tdCq7J911R93Okv1e0/IggSgell8WmRzeI8cKtTlMLDW/gKnTRzO0oEVDvqT21FyT4cbKjdsbJkotzUR+INr8x32S55XNnvQconZdGL6Llx4Dg8njhSFskRvIOEyWXat4hiNR9f2exhW3ohHHKU2MP/12VSFHMpFpXFb3U+qp0k2q9UCWTNn2em2tdklRS74U8/Yik15b3iVLeX+nw1FgeXRMPPIvPTRVZ7Ys6r3VCmn6IHyotnbGiw7MTxX5Sqkk3UPet7cdUjsGZbzN6oZoLUyXleNUJYl6fV1XrV8+UcY7J5RWUkcn3PDeGZWp0g5i79R69IGapGTDe15+aOCSbeNPQODec49mJImGSYhsa37jT4PZ6j1o3opK1BrHh9dUuYZySpClTlQwbJKTtiq+g4uj5vgNVmqrnYy/IWgZ/9NUpRvIOuiaYq6nCia6JwXO6GbVuyEozIEpTDF0MCtxemHB9VZ0/xkvOoPjQ6IVbBOj369wYJpLhnEMqU8b7YujjJZswyVNwzW2d7t5caHG37uFFMRNFl6Gcjdnfw48LT48X+fPfdZFfe/2uYsg0AqI45ac+dvbYEib/5Eu3mSq7fMelncXe3/3MKL/y+iLfmGvwypnyIY9u55iv95iv98jZJmNFlzfnW5imRs42Gco5eOG9AtNJQBAnfP12nRTo+gnVjI2p6ZRzFt0w2ZeshkRiGzrNXsRSUxV1a53wkWuelMrZMk4lxYzJU6P5gcHISWp7BOj4EV+/U8cxdZ6ZKBDE6WBNCuIUIVQhN05S3lvsMFk+vrPDTrCXFemOlPKXD3wkB4QklaSpZLkVsN4JlPNe/8GLkpRyxqIT9NAR3Kl7VHMO5jbJKSEElZylbmjePpAN2zF1mn0mRKMX0/IjsrYSW94Qp9zAQsOj5UeM9q2QK1mLhUgxpqxNh1whxLaV943PLMThG4vkHKPvjGRyaSzPaitkpGDT9iMWGz5tP6LeDfnI+eogeXZQm+Hmqs9BBlWJlDS6EbVuSJSkTFcyrLZ9hNRYaPgkqTxQ4U5d13jlTJnrqx2urXSIk4TffW+Ncsbm0mj+xGgdVPMOHzpf4RtzDUDy9mKLL99c45UzQ0fSVhGnkrSfDn9cm1Dbj1ho+GQsfaBVYuoalq4j+1X79iZ3koypk7GVAOR0JbOvZFvUH1uaqjE/TE9ype1T64YMZe1BsKprAkfXEShtjvZ9LU2VrI0fpYwU7ENnQz4MSy2f+bqHoQkujebJOyZSQs42HxvoCCEoZ1UyYyhrsdj0WO+3aO22G8LQNSZKGZ6bTvjS++t0g4Rryx3+4HaDj12snphWnwsjOe42POZqPdY6IdeWO3zu6iqfemYE65DFRnVNUMqY3KlBwTXZi+FkGKd4UcJkySXvmGRtnYWGhxemrLQ8/DhFIBgvOjjm4xki4ab5sfnwWc5Yg/V8vRPw/mqHjKkE5IfzNu+vtEmlKkxIKQfr4sZc3c0yWc4qDTfX1AfMrcdhY79dbvmstAK0vltvzjZ4f6XDWNFBoARIVevBzsdzUEikxAsTOkFE248RKDOH+w/D3SDmbsPDNpQ2lWJSbCR5tv6spj0kztAgSe/FGzseYypJUrnt4bPomli6xvsrHYbzNilpX4tRsdiTVPLF62ustkNSUqbLmYcy844SGcvANnSmyhlcS8cylOtYrRsSRikvz5aPlaGSSsmFkTy31rs0eyHzNR/TEKSJpOVHvL/SYbqSOXB2l9HX4gJwNL0fF/ZYbHpcGssT9du3ZF+LqhvErHbU4bGSNSlmTAqOuW0MtPm5288joGuC8aKKwdNUUuuG/bYybdvntBvE3Kp18cKEj10YGiTjm140WM82t9+LAxrnxuvWuiEStX7eqfUI4hS/L8Q/nLcfmKtSKn0eUxd4EQNG8W7n7WFgtODwkfPDvDbfxE9Srq60+Oy7y3z80gjGEe/f15bbfPlmjf/oe5/ecWLsE0+P4Jga/9fX5489MdXttzw3vIjPX1sjTSVZJ+JCNctE2SXrqY4bJZavH4lxyE7Q9CK+eafO24stxdTNmkwPZSj5MfZ9pIu9IO2TOlIpeWHapBMklLOPZi5WczblrImuKeb3cttnrt5TrrDm8V+7NFWsc9fUub3eY70T0fS6TFdcZipZRosOGUsZJU2WMyw1fYRQ7NXwBElebIe9XNl3hRD/DPiXqFY+AKSUD3XlO0q4lk4pa3J1pY0uBO8vt7k8UcDUBdND9yhsK22fpYbPzUz3oaK9kyV3wMho+9GgKrfXjXul7dMJYq6tqGB7qpxD1zVMTZC1DNY7AUGcUsmYA5vn1U4wSEztpiI4XXZpetGRCJ2Zuja4hhdGctypdXEtg6GMSb0XUesGeGHC77yzwlTZAaEm9sxQZlAZ3yvyjsmZaoY0lQca9NmGjtmvDqdSUnBNJX4ep9S7Ib0wJmMZnKlmBmKwGy2je9Ua0DSNH3l5ClNTvfdrnZB/8oXb/ImPzPDU+ONFoY8Kl8dL/LEPTvN776+z3gn5pW8sMF/3+aOvTB16As0xdSbLLsstn24QMV/vMVXenv2x1gkJ45QwTpUDX7/KcXE0x7XlNi0/6s+5BNtQtt9Zy6DkmvsW+B0vOeitAFPXmK97CMHACXQzVloBUqq1YfPBcazkMjOUZa7WpRsoAXTbVIfxOFFJqeHcwSTM94KVls/XbtXohgnVrEXJNfuCyzurwkyVM0xtxHBSMlFyVNJwD4Ho2WqWas5iupzht99ZJogSvnprnbeXmvzhKxOcGTr+ypAQgm+7UCVjanz5Zo22H/O5qyvM17r8ux+dxT7kIOfccI6xooMfpZR2ITAbxAm31rrcWe8xnLepZO1NDBfB3bo6YI4UbbK2sWONkImSw0or6DPuBEM5C10TAwOPTl/zZaHuM5y3CJOEu/Ue7UCxooru1oPqeMHBNXVsQ9vx/lx0TYru/tbVSs4mSlLeX+3iWjoXR3I4lkZnn7HCfhAlKQsNjzhJGS+5jBZsJHLQer7S9gcW2EGUEkQp3TDpywTsbq6cq+Zo+9Guqu66Jpgqu4+c666lc3Y4SxQr97ZaN8SLEobzNmsdlRRPU4nQVKviQsPj2y8OHyiTebfQNeXSdaaSQdc1cpbGb761wvy6x0ozoB1GfOjcEGPHZBpSzdr9JAvM1wR36x5BJ+XMUIZyRhU71rvhobb0Adxa6xImKm7s9ouWUZLihSlZW8fQxCB5bhraI2PErG0wW80QJ0oa4yDwzmKLL91Yoxcm/FsvTm77nGpCkLdN8rZahzZi86JrMlqwidKtXRZF12RmKKM6MfYZp95Y7RInkiBWhYIba6ol09Z15moeqVRxcZSktPyYSsbCtXTOj+TUYTtjqkSvcXKYH0+PF/iTHzvLb7y1RJyk/Ku3l7mx1uUnPjyLc4Rj/Cdfuo3VNynZKQqOyfc9P84vf3OB/+T7Lx9LwqLRC7mx2qXphaQSlho+cSpBSKo5i/MjOTK2gZQwVXFPlPPeSsvnSzdqfP12jTBWjMqPXxrmwkgeP0q5MJzdljyyG5i6YKLkUHRNzgxldxQ3G7rG7FCWpZZPNWfzhetrvHG3yUTR4Ww1e+yJqdu1Ll+7WSdFcq6aJU3VXl5y7b4JmVoPzwxlKWcinp8q4kcbhk8no5vgYdjLlXVRCanv2fQ1CZyIxBTARNHFMXWiWOJHKQsNpdUSeTETY3mqOZsv31zH1vUdBdJpKgdC3t0g5uIe3aeiRBLEKcM5pVNUdC1SJFEseXephaWrxUKxcXS6QbJnpz1D144lSHMtfYuOxQdmK2hCcHWxRSeKSVKJaQrGCy7LzWDfiSngQF2CNmOmkuHuBpXTNVlsehRdpW2xsShFm1g7jT5NdD8wDZ0ffGkSy9T4ldcWMXXBF66vn6jEFMCHzlUpZWz+weev0wuVuOlKO2D0gFopH4VK1qLeC+kFqiWsmku2PQAWHIOOH+OY2sBKGWCs4HBxLMdiw8cLE+brHueHcyy3/EFC2Db1fVVpbENnupJhueUPxIKb9zkAggpYG73ogWd4rOAwM5RBoGj7Cw2fs8NZ1rshyy1VDzA07djaVyxDtaroQvDOcpupUgbb0FnrBNu2ETwKhYzFhZH8IAG8l7EM5WxMQ+Pjl0Z4c6HOm3fbNL2Yz763wr/70bO7fs3DgKFrfPBclclKhp/5vRs0/Yg7DY+vzzX4yPnqob9/xjLY7Zmo3o3oBQmdIMG1E/LuvfUub+sstwNMQ6PjJ8wO5Xas7bUxPzZwvy171KeiT5SU691Ky+faSpdUSnLDxoDdsAFNE0c6F0byyoVNF4J6N+LMUIZaN6QXxSy1VBtfKjuMFQ7fLXYzpJRYumo1tA2V9HMcA0PTWGkHaJpguanWD9tUTsGmru3Z+npj7u32d3bi0puzDei/9Ob3qHcjxT7vhegS6t2YbpCw3PKPNTEF6jl8avxe/FNwDXQdljs+tbbLYsM/tsSU1mcFjRUcat0QgWLz3l73+ppD1gM28oeBjWSIJiSNXsx7Sx10Dc5Wc8QpPDtRpNmLSKSkvINk00G3Ir271GK+7pNKye1al7PDuQd+5sxQllo3JE2V3ulmPExO4iBcszdYZZahkXMMvDghaxn4YULW0mkFEUkqqXUDal3F3ur4MU+N5Sk4+y+4HSauTJcpZWz+9y/cUK7btR5fn6vz0SPYG0Gd7X7+63f5vufHdr2O/DsfmOHnv36Xn//6Xf7EDrSpDhor7YBemLDUDPCjiPVeTNE2eH6qyIszZRxT59w2z/FJwFLTp9YNWOkEVLKqDXWseLBrpKlrXBjJU3B3rkubppKGF2EbOrdrXXW2k9ANk30nyg4CczWPxf55UwBjRRfXMrAMbctaY27KBdiGfiDr0GFj17uQlPLfO4yBHCQMXWOm7NLyYyZLLostpT/hmBrvLErKGYsrkyWaXvgAZX07CEFfU2J76vlOMZq38cOYlZZPN1QbdBAnRKhgUgjV1mDqGtOVzEOp7htYa/vcrfuMlxwqWYtUciytKw8T/ZNS0fXzjkEhY1HWLDKWgR8lzNe7uNbexupHCYsNj1LGIkzSwUSrd0PuNjxVRRvK7JtNMlZ0qOYsbq136fgJeceg6FoUHGPQ77z5MKTrB3MAMXWNTzw9wrtLbaJYOSP9y2/eZbKS4aXp0olo6xNC8PR4gY+cG+KdpTa2LvjC+2sUXINXZysU3cM9JBYck16Q4JjaltbWzRjK2ZQyFppQ4037WihhoqxzW34HoSmnTmBLO8h+xRY3kLMNVkWAENu3r05XMkyUts7zlhfSDRLylokfKyHV9W7AbHVry8pxilaeHcoyXXKJJYzkbDRNtRU8SoB4rtaj6UX9eXVv3XVMnUrGYK7u4YV7dxYtOCYvTpe4OJJltX2TKE65W/f4hW/M86HZChMPYdYdNSZLGb7vuQl+/c1F4kTyB7drRGnKx84fvdmB0l6MqGTtbZMFOcfANDQmSg7VvM1kyaUbxIO1NogSqnmbc9Usl8cKB5aEyTsGOVtnqeWhCYGuCQqOQc42eWmqvKXS70cJi00fy9CYKDoEcfpIfauDgBBiEOw5psZ6O2B6yOWDsxX+9Xurajy6EuN3TP3I1mwhFBvp2nKbbpQw62QoOKrFSAi2rJVDWZtyRskVPGp8q22fhYavnoGcTRCnB8YE6wQqHso5BpXMvRhmod8CN5y3yVg6Wt/meqModG44i5BZwiTlrcUWjqEMRE4aLozmB4wg19ZZ74R87XaNp0fzR24asgEhBC9Mlbix2mG5GRCnEg0IwoQbKx3Oj+QOVXfm/LDSgLtb73JjtUeSpgxlHYI4oRPEvLfU5mw1+8hYdmPO24b2QFL7UUhSSZymj2SMnB/Ocm2lrfRtMhZemNAN40F73+xQFtfSeXW28sgYvRfGLDV9MpaxK+0rP0oeun4JoTTZWl5EFCudNcvUODuSZaaS4dZaj5YfYWgahi6IYomxKS5daamujdGCs208stF+eFxGAjNDGb7/yiS/8sYChqbx5t0Wa62AT10eJXPISdNf+uYC7SDeU2LpA7NlXpwu8T999jo/+urUkTOSkiRlvt4lTiXDeZe8k5BI2V8zU2D78RynYHsviHlvucVqO8AxNIq2wexQlosjB59ASyV4UcyFTYz+JJXcXOsQxpKZocwDhejN537X1BkvuUjgXDV77AneJJWcr2b5xp0aYSyRgG1qTBRz2KZOy48oBybuMerH7Qe7HrUQ4hLwPwGjUsrnhBBXgB+UUv71Ax/dHrHS8nhtvtl35jNwDJ3/P3v/HSVZlp33ob9zfXiT3pR37WfajDeAwMEMIAEQABIAjYBHEBJo9AQuCqQoQ+lREikuUqIoiqRIkBQogABhSRAgAZDAwIzDzPR0z/RM97Qrb9KHj7jenPfHiYjKqsrKyqrKrMwe5bdWrq5OE3Hi3nvO2Wfvb39fyYYoTdGEGAY9IY6lE6eKJXFqqkh9SG/brF0BajM4NVXEDZMtK/rbbSSbYegai/U8vUA5I7x8tc0HT00wUVDVj2RIwQe1YGze8NpuxJWmS71gsVjLowl45UaXvp9wsdHn1FQRTWgcncg/0ozoyC3JMTU1hqEobGMQ0eiHrPUDojRjtmwzVVaJgt98dZWeH1F0zPHGfvs13w5BnPF7b65TzKlE0anJAov1PK2hmK1yXrw1ePaihLan3IOKtkGUKCe/vGls65xk6OpzbfRD0nZGnGYsVHNb9r6XbCX8nO2CbXDRNvmz33SKixt9vr7U4zdfXablxXzkzCQ/8pFT++7yM8L3PneEK40Br6/0eX2lw5evdfmVl6/zn/+hMzw+V92z91VtRTeTTndDb2iPOlEweW2px5WmRz+IWajlCCIlgr5eDjibltSB1lAHu51S3OM021YXqWAbPDGsoN9tfYjTjLVeRMlR+i4vXmnRcSNmy0rAuJeE3Gh7PL1YIUwyTF0wXbZ3PM+zTO56T7mhayzU8vSDmOOTBYqOQc9PKN8leEzSbCxO3XKjWxJTXS/iH/7+JZIs4z3H6w81Lk0TlHIWP/qRk/zmq0v83tsbvLXa46UrTf7kB09wZmZnAs17jeeP11ms5fnXX7nO68t9PvXWBi9ebPCjHz29q6LtQZzSciMqOXN8EGm5EUGcUnYMNvoh19seunB5Yr58C4tprRcQJRmnJgvYpo6mCdVit+FypeEqvQJbp+wYPL1Q2bUAdyQ83A9j3DAlTFJOTuZ5amGeimNQcEwGYUJroD5XL4gZDPUjrjc9oiRjpuJwZrq4ozGNxOFVS+H9M27UewsubbgcqbkULI1j9TwZ8Om3GxRsnROTBSp565Fowmma4PR0iY1+wLWWx6lJjcWaQ84yiNKMnKVTyRlbfla1n3uUHJPFWo5Mwhcvt4gTxcKYr+aIEtU2dS8r9Z1gtat0ykauw1kGxybyY+bqpQ2Xom0QJil+lCKBxVqO+WGCNG8anJgsULCN+xbHjZKMjUFIwdL3TPtpoZrjNUtjsVYgiFKuNgZ8+m2Pr03m+fgTc0yWLBzz0R8eqnmLH3r/cd5a69McRFzccHnlegdQcgwfe2KGgm0wUbB3tdiZpBndIB4bBGjDw98Lx6q0A2VcESUZvSDeUtOs40V4UToUbk4ZwC1r22i9Kw/jvM2IU2WMlGaqdfxuc71esHn/iQlyppq3FzcGbPTVOUHFsCY5SyXDNsfoUkrW+4qNOF2yh0n/FDdMqeZ35lq53PFpDiIcU+P0dBEhBF0/xhsWbKSU2IbGbNnh1aUuYSLpeCHPH62TtwyKlsbXbrhs9AMl3i3FmMUaJdmYbb3SDTg9XSROMxoDFQfruuBKwwXg5NT+tSq9+1iN2arDV661+Nz5Jp98fZV//9oyf+17nqJW3Bu2oZSSn/nCVR6bLT2QTpQQgv/yW8/yQz/5Ij/9B1f5zz56cg9GeSdGsiGrPSVNU3AMzs2WcMOEXpBwpenSciOmSw4TQ51GIQRpJrm0MSCIMxZquUfKNk7SjI2+z++8ucFbKz2OThQQUnJkIk/O1O4qzfEw6HoRv/zyDb6+1OWHP6zuzWBoogLqfH1nYkqwUM2NO2aiJCOKU+are98VcjdIqZxol9o+C9Uc7z5SZbkTKDfOVJEjXrzcYhAmbEyGfPjM5IEgMtwvHmTl+SfAXwJ+AkBK+bWh5tSBSUxdaXpcb3o0vYgsy3jfqUlKOYOCbdMYqOpVwTZwg4Qvr/XJmQZdP+ZjT8yMLaTtoZNIJiWr3QBT17aseoyC6JylqIL3gqVreEHMV651qRZM5qsO7z0xAagA14sy2p7LS1eaOKbB88eq5CyD15a6LHU8dE0JOM9XcwgkfpRgGxpJJrF0lYB5lImp7tAuO4gzwkQFvSvdgI4Xc7nhYmjw0tU2cxWHSt7ktaUulzYGY4vp5Y6HG6UkqVQH3B0G7m0/IkxS3l7p44VKS6uet/AjxZja3Lrlhwn/+pUlMgnnZoq858QEyx2ffpAAEeesO90Z+35MZ8ioK9gGgzAZt1rGmbxl4mSZ5FJDLfKLtdyuBblFx+TJ+SoX111utJVA9M9+8SqDMOEvfvwx9H22xwZ1CDo5XSLO4DdfW2at63NxPWX9X3+dv/0D7+JIfe/ow1tVKoM45UrTRROC6ZI9duxZantcb3mkmVRMviSj48doGnzlakfdMylouiFIwZmZe2uzjRx47oXbXyfLJJebLmGccaSeG7b7qXalphswCBI0IegFMUGc0A8Svr7UY67q4BgGjUGIG6VUc9Y9xyil5OIwANlNXNzo89pSFwTMN1zOzZVZ6wWs9bYOahsDpctmmxr1wq3r6Gs3Oryx2iNOs4d2KxqhYBsUHRs/yriwMWClF7DRC/mj7z3KN5+bORBWuTMVhyP1Ap86v8F6L+BXvrLE6yt9/s8feI7iLuilREnG776xTskxEAKemq9gmRpLwzkRpxlJlrLU9pmrOLib2GqKyRLSD2LeXO0xUbR5fLZMkmY0ByFdP2at73N6usR02SHOJPou5cpHe0qWSTpeRKMf4YUp9YLN3HAPvrTep+lG40JNx4vp+hFdPyZJR9VOleBPsoyuHzNVsu9oHe8FMVcbLqlULMkHaeE1DY1+ENHyIz59fp1BkGFoUM0ZlPM2L18bsN4LmCo5vHC8Rm6PD3wFy6Dphrx0pUU1byElHJtUTnEX1gdD11xJlCqjmGDoUlrNmyx3fS5tuGSZ5L0nJ5QsgqHT90OiRFMOiULgRem9B7ID5C0DP4oQCPq+cuHrBzHHJgr0g3hsAHG54Y6vYd5S7PK3Vvt4UcrReh4vSpgs2pyb3bkD8VLHZxAktFDs9b1gOSj3VyWg3QkirjY9VrshXT/i68s93nN8go+enWR+H9heuq5xbrbMxY0Bnzm/wY2Ox0Y/YhAm9P2YIxMFKjmdD56e3pWYMkxSLqwPWO+FNAcBFxsuBctgoZqnGyRMFGx6vtr7yo7J22t9BmHMYk1pkYZJyvXWzbXL1DXFSuoFzJQdirbBtabLai/E1ATvOzlxyzofJtlYusMNUybuEpr0goTr7UCxqzPlzh3EGV6U0vVUAjyIU6RURgOj9aLpRqyP2+wVw2+tGxKkCUcT5TB4peliaILjk4UtWUmjBFQQZyTDlry31/pUciZhkvG5Cw0yqYSZk1S5F85WFUs0SjJ++411zq/3qRUsnpyv3NK+JYC1nk/Pj3n3UZV8We74QyfOiFrBHBfZvGhnLqV7hdlKjqcXa/yrLy+x0vW50nD5sz/zFf7OD7yLudrua0Z++VqH11d6/LXvfuqBD/IfOTPJH3psmr/922/xiSdnH9j5dqe42nTp+UqqojEIuNxyMTWN6bLNXNnhlWtt3DDl2aNVrjaV+7sQygQjTNJxTNjz40eWmBoEMb/9+hpfvNxkECY0BxFtL+boZB5HN9A1nfAepkYPAj9OeXOlR9+L+OPvOzbe53OWxmo3HLObN+8BjYFyMtY1Qd7Sh1qGAU1XFWMfdUHhSsPlRsvnpatNdE2j68dcbvZp9mPmazkGYUxzoBjOUSLxwpQ0u5Ux+U7Bg1zZvJTyxdsm74P3X+wyvCjBDWOut138JCPO8kyXLOoFh2vNAS9fbhFlGU8vVDhSU8LVcSrHDImOr1g3QaxciNpuxKtLin31wvHaHdncUYDmR9k9W+9AZWHLeYuio7Pc9rnccHlivkLRNsYP0JWGx/n1Prqm4ccp33xuCssQbPQjcqbGV290aA5CLF2nVjCxDQ1d0yjY+h397pvhRymGLsYbopTKfUQTYkeaD1thsmgRJRlenHC5MWCiaI8/x2TB4otXmrRctVmv932COEMOXYOaXsTXrnfoBYqJplo17v1I6pqqanXckESqCdjoB3ixapuYr95qAXqpoRbwKMloF5XY5lovQBOCnKUTJSn9ICZKM+oFJXD+uYsNgihjoebw/LE6mia40faYLts45q0BRZCk48x7x4t3tfpq6Brf+a55Xr3R4TdeW8ULE37uxWv4UcJ//51P72s712acmy3xfc8f5W+sv07QD3l9pcuf+5kv8w/+xLMcnXgwTbad4PYK6YjinsmMtZ7Pek8FXh0/IpMSTQieWqxwo+WTZkpw9fhEYciekvSHVaaGG3JsIr9t9caLkh27yHlRMnw2TLKhRT0obYCWG9H1Em60PRxTY63n89RCBT9KGETKvfPphSpxIoniiJ6v3vfzl5pMFm1OTm0d5IJig2yVlErSjJYXqSrrbXPOixIsXbtDqH0zpFQ6XHGakbd1Om7E5Y0BbV9pXDyzWEEIxYR8e63PlYYSz54qOXdUwm+0PNb7PlkKZWd3kq2aJnhmscKrS2XcMGGtG/C16x0urQ/4/KUmP/6tjz1SUdW74RNPzrLS9fnZz1+lFcS8dK3Nj/3Cy/zNP/IupkoPVx1OMwlCiWRWHIvrbZ/FWg4pJUtdn5yrU3JMTk4XaA0izM1riVTtoyudgI4fc73lEcSpYhLYGnGmDmZeqNjCjqnT8dSzOVmyHupQM12yaXkREwWLZVtH9CWrPZ9Xl3pMlRx6fsQXLrcIoozZssO7jtQoOgYdz+Jq02OtGyCRuGHK26t9On7MiYniMFmtElODMKHthTT7EV0/IU4zZsrOA7Xwvud4jWtNj8FKzBvLfcI4xbF1ipZJLR8RpXC54ZJmcLXp8dhcWe2BsQqER2v4IEzwIiVWvN3cuxcyKZko2CxO5Lm87hLEKScnC5ycUtcglZJ+EHNtKFyfZZL5Sp5sKCnQdCNsXePNlR5+lGLpgoqjxqmElfUt2SwjbLV+xKkyDRmxN7wooTVQuiJZpowhLjeVgHzJMcdi+F0/5uJKjzhVB6m313qcmFKMqvNrA4SA9W7ATCWHF6UcqecpOSZZJlntBUiUMP5WiehRW7Sm7V7r9u0QAiaKFkXHpOOGXG24eGHM5SAGAS03pumGfM+zi49cjwxUcefMdJGnFiq0vJCuG7PU9lhue5SXulQcEw2NJxYqLFRzDzW+IMrGLpxfudbF0NQzP1/J0fFj4lRyZrqIoWusdnxeud7GDROCKGO6pOZmY5gUPzqR4/R0gbfXBnhhyvWWx+NzZbq+OuzqmqAfxrdICuSGxUc/Sjk+efd9fbpkc6PloWmC5bbP43NlUpmhCUGUpiy3fa41fRqDACEEJyfznJ4uY26yOzV0jSCOudFxqRVsljs+1bxJkkqSVDIIki1j7nre4qI7YLrs4IYJyx1/PEezTLLSVewIhrF7ywsxdEE/iDE09UwHsZJ/KA4LqqPEQy+I6YcJy52AMG0yUbTHa48QMFGw8KIUDajdZwy7OZ7YLSzW8vzgB47z1//t6wyCiDdWevzQ//1F/v4ff45z89Vdex+An/3CVYq2wXc/u/DAryGE4K99z1N8/H//NH/xl77Kz/3o+/csPk/SjOttnxstjzjNaA4CvDClbAuCOGW1G9AYRHT8kMqGwQsnFBPdGJ5jen6MRGIb+iMTwm67EZ9+e43f+NoqKz2fJMsQUmOyaFLPW8xV8liG9tCulVshkwzPupCmEky19i1U87hhyvW2T8MNec9x5S6eZpLXlrpcb6m49Ugth2loSrvRVESQbd8vkwRJSm6LNv4H2eebg4AvXWlyYW3Aatdntprj8kbK9XbIIIzGuosFu8wzi1Uag5Bzc6WHiiP2EzteRYQQR6WU14CGEOIUSvAcIcQfAVb2aHz3jY1+yGpXiXwaKKFPS9cxdcEXLrV5baVHxTE5NyM5PVNivpqj7UVj0eb6cHF2TJ28qdMCwuHBzg/vrBLOVR02+iGVnLnjRaiaVy5WmZQ4ps75tT6nh339J6cKrHZ9EIK+H2OgKj1PL1QJE7U5DsKETMIgSijYJv1AiRDX8tZdadeNQciVhosXpTyzWKGat2gMorFY94PaxpYck3OzJl9f7pJm6vo/OV8mZ+o0XaUNYek6SZphGQbLXZcwSTlay2MKjatNn0Rm9IN47Fpyr4qFoWk8OV/matPllKEhpeD8+oCmG1PNGWO78vwwyK3kTRZqDoMg4anFEtfbijmDJqkXclxYd7nSdFmsqeC25BgI1BhGPfd+lI6TFFLeakueM3VKjoEfp+N20N2Eaej8+Y+do+dH/NYbGySZ5HdeX+ddR5b4xFOz++4OMcI3nZtivXeCv/M75+n5MWu9kP/1t97mv/62x5ivPrzm11ZQB2bVCvLEXJlyzqTpRlxv+QgU9d+PUsI4pR+mnJ4ujhOTxWEi9PhEgdMzJZI0Y6njc6PtU9VM2m580zluC1Tzaq3YSevm1aZHkko6Xsy52RI5S6MfJKx2Y642PIQm8ZMUL0owhIal6bzV7GPpOvNVgyMTOU5NFzF1weWGy2A456Mku2uQCypAnq049IKYTErWegGVnMlaL6DnJwgRcnbmJmNwqeOrJIUhODtduutB5OR0ET/J0IXg1FRpnBiOYnUA7foxecvgRtujOVCOWi034tgWVURN15gqOiSpxDR2j+25WM/zIx8+wdGaw796ZZnLDZdOmPCpN9c5Us3xJz5wYt8Tu7qu8ac+fJIozfgnn75EEKW8sdrnH/7eef7ct5ylnrcf+DCoa4L5ikPZNgjTTFUETY2FWg53KJbrRolypJTqGS3nTKZKDhuDiLJjsizVoehGO6Bom6xNBByvF7nS8BAFwWTJZqKo3L5GbIYwSZmpOJjag7k+TZcdpssOry11OTZR4PzaAEPTWOn6vHqjQ26oUzhZsinn1dpnGzoz5RyaEGhCHc4ag5AwUYyHS80BJykQJykS1bIyaueeLefQdcbaMfeLnGVwarpA24sQBFxru/T8FEvXqRccCo6GoSkX2tG9vN7y6foxtqlxarLAWl/tzyXHxI/Sh3KSNHWNal4F+14lxdQ1NgYRQnPHjmsbg4ArTY/2IKZeMGl7IY/Pl5gtO3hxQpZKvFglwDMJlqXT91MKljrU341BM2pFcqOEYxN5Zkoq2XK95eGG6bjV6UrD48L6gGstj5NTeWoFi2cWq1xtugRxNjR9UJIAtqGTSuVEGsYGfpiha3B8Mq9E+U0NXQjylkFhuBe2vWjcDmjqgmrOojdMmpdzJjlLZ7GWo+yY2Ob2SfgHRXvIoJkuORQdg69eT0ilmjMyg5WeSjI0+xFXGiqBeGJyZ45RuwkhBN98bppaziQcMoOabkTfVyzXX/vqEr0g5rnjNU5N3X+RKZOSQZhQzhnUCibXWi4nJgssdX0emy5SySu9yCSVOJZy4UukVIUiP6UXxCRphqErUV9L19TvZ5K8pRPEN2UbFus5oiFzX9duvafXWj6XNwYESYamwdOLlS1ZcvWCxZMLigFcL9pMFpXRQdeLyWTGIFSthOv9EC9MkRnkLJMTkwVO6GreFm2D6y2PvGUODViUo64bqr36biYRLS/GMVVCqWAZnF9TrMC0IBECNJSDd8uLCBNVWDOG652ha5yYKgCC4xNKo+tKw0VK5So+MizJJJiaRseLOFJT2jqOqY9dOoVgfA2DOKXrK3OW7dbG5U4w1LEL7/o7D4KPnp1G/oeSv/KrX6c1CGh6Mf/Tv32Tv/0D79o1geyWG/Fvv7bCD7znyEO3Ws9VcvxP3/0kf+EXvso/+L0L/NgfOrMrY7wdmZQstTzW+yGDMMbSdOaGcV4/SMmXdJIsI2cqjcjpstIhzpn6uIvAMfW7OtLvNgZBzJtD91QvTogSyWTBRtcAKcibBk/Ol+n5MRv9CMvQd5XFpQulqVjJmURpSn6Y+jB0gT/sSpDovLXW48x0iY6n5AG8MCXOZQhN8NEzk5xfc6kXTYr29nHqpcYAP1JSQscnb+7lcZqN5+Ron+8FMcE2DOQwSXlzdcDXl7q8cr3DVMlmvupQz1sMopReGDFZMgkilR94fL6CrolHIhuwV7ifkf9r4Dng/4tq43tMCLEEXAb+k90f2oPBMbRhQsIgS2OSTPKFS02eXqiy0vXZ6IXITI4PSHnbIG8bDIKYOEgoOQaPb3JVWazm6M3GJEnGzBa9pQ/idDFbcXjfyUkuN1wagwDH0DE0jdPTBQZBzGTJ4pvPTnGt5eLYOisdn5NTBd57YoJ+ENMd6uY8OV9mpRuw3ku43vZYrKuFOs1URSZv62MmRRCnrPYC4kRyfq0/FG7MWO0FhHGK9pBxWTVvjTU/hBDjQ/szi1WKlsFzx6qEqdIACZOM1X7ARMGkXjTJMnDDmGsNl0Y/5LmjNSrbVGx0TR0+nj1aI0klXpTw+lKXG22PQWhScHSSVAWk9YJNOWfyTWen8CJVoW70B3SGm+0o8SRQromGJsiZOvW8icwbPDVfRROQt3S6frxl+5QQ4pbFZy9QLVj89e99F61//hJvrvXJyPhHv3+BFy+3+PFPnGWiYO97L7EQgu9/7zH6QcI//8IVkkzyypUmf/EXv8qPfcsp3ntq+oESAZI7dd9GGL2erimHKcfUVYUzkzQGIWv9kHrBInClesaaLiBYd31kpvHs0SrPH69haBpxmnG0rjFZtOkP7d63g66JW3RWtmNMjkQUDV0JOZ+eLtEPYi6uD+j4kaoUSRjE6XAT77LS9UgzwXPHarz/xARCqM94tFbA0ATrg1BtQPcQBVVMJRsvSvnq9Q4zFYe8qbPWC8ZtMSMEQyH4OJGqPfhunwf1ORxDG7ps2RytF9joB5RzJpahca2lmIoNN2Sx5jBXyW2p6/HBM5N87nxjeB129xmeLDl817OLCCH4119Z5lJjQJRJfv3VZbpBwg+9/xiVHRhg7CWEEPzpj57mesvjM+cb6AI+f6HJ2+uv8L3PzvM9zx15oLltGRrvPlrjk2+scq2p2vXyltJcnCnb+HHK43Nlrrc83vRjup4S933viQnWewFZBrNVh/mqw5WmTs7UWOsFPLVQ4V2LVZY6vgqQhlpvpqHEdvt+ghsOxvp8D2pJXs2r1pLnjta41vJww4SWF1Ec7n15y+DMdAkvShiEybAwo1qyBILJksV8RfLqUo8r6wN6bszlpsvzx2pkUiqTkVqeqZISAX8YNsiReh5dqALJQs3hcsMjTFLCNGXCNPnms9N86WqTRj9ksmARJGqehbGqfI9cTc/NlMhb+pA9uT0z6V7jKTkGb6/2eXO1rw7Jps4bXpcTEwXqeYtjE/lhIU4dlt0wwdA1nj9apxfEpJlKDB2p59VcDhTzYvMal2WKZZqzdCxDMbzdKGGlEyjdTSGYKTs0ByHn1wfjVl1DF2Qyo2DrJKmkYOnjZLlj6lxpepycLLBWCmi6IZPFPF0/ZilQ7Lb5qkpm5W0dXWj0gpjTUzc1xQTQckMsQ2NBOLyx0mO54yOE4Eg9Nxbq305f8mExmrJiyMzu+jGWrqE7JtWciakLcrbBTNni9ZUelzcGuGHCE8ODxaNEOWfykXPTGIbGV662udIYsDEIaHkx19oBn7nQYKUb8PEnJSenivelOxXGGZc3XI7WFQN55LiZszQmChYTw2dKCFXkA+VKe3amiFdLqQ5jSoCZis1Ll9sYmuBKw+PkVAEJOLpG14up5y3seR1Dv/VgJqXkRsfjRsfnRtsjSlNAUs5ZHL8tCWzo2lg3cXRwj9KMtqcSmxMlnamiKiyvyoDJooWhKdZSEGfjuGGiaJFmqtWv5Bgst32khErO2JG4+ErH48UrTXShcXZWXfOpsk2WSRYqNr/x9TXCJENqgpylUbAMnj9W4/R0CUMXQyfpgCRV7KqCZTBdspgp2UyXHWoFteaNGP5vrfa43PCo5syxzuaVpkucKD2i+WqOet6iFyZK53IXHLV3gm96bIa/juSv/tvXGYQJ11t9/uzPvsxf/NazfOjM9EO//i+9dJ0ozXbNTe97nl3kU29t8Hd/5zwfOj3B88ceTjfzdqx2A754uUGQpBiaYK7i4AcJF9ZDMjJutD2emCvx7U/PcmHN5exMkZJtjM+pxaFbdXUP177N6HoRn7uwwZWGh2noTJdsbENntuLQDyLVkhsnWLrYszOMaaiOoueOVShtYlGausaTcxUMrc9qL2Dgp1xuuMyWHSYKNkkmOTZZIGfq6IBh3NsYQMqbXQp+fGfCqefHw7NojjBJ+dr17riF93Y0BiFvrfZ4danL+fUBYSIZhCmLtQJPLZRpDCImiyYTBRvH1DkzU3pHuO7dC/eTmBIAUsqLwMeEEAVAk1L292RkDwgvSvHiFEPTCNMMoSkdifVBgBslTBQtFms2UsLba33SVFHultoeQmicnSmMBXLTTBIlGU/NV3Z1jKauMVe18eMY21B6DdeaLhc3+qz1Qso5gw+fnmSqpOi8V5seUZoxV8kpVoGuxNIb/QikYgYIcZOafmljoB58U+OxWfVZpksOZccgzZR2kRCCVKpE3sYwIHwYLFRzzFdubaGbLTtYhsYLx2sUbYN/+fIN3l7t0wuUbkDOMXjfiQmuNQd89mKfT59vsFjL0RhEfN8LR+76Xpah8dSCuievLXW52nIZRMppZKZss96PsHWdrh9Ry1sMgoQrjQFvrPRIM6jklVimYwp6foyuCZ45UqHimFTzFm+t9clZBpoGBcfgSsOlHyQUbWPbvvHR8/KgB7F7wbEM/tF/8gI/9flL/PLLSzTckH/z1WWuNnv85U88zruOTezJ+94vfuSjp3hmocw/+sxFvnajx2srff7CL32V//Jbz/Fd7168b+H2IFLaFKem7hQzPjZRoOfH5G197Lz39lqfay2Pas7gqcUKBoKOH1GUJtdbPvWiSc9VmiSDIOHzF5tj+nCtYHNionDfjAU/TnljpXdX0dATkwUGQULRUUK+lzZcWp5qzT05pbTVrjZV+8BKN0D0Q9wwI2dquEHEFy41sQwdN0yYKqkq7uYE+k6QpKq9qdFXbYqKKSBuaUecqzis90IKtrHt4eNL11r8zuvraMAffmGRc7Nl3n+yjh8rg4nRPTZ1jeMTBWp5g/W+OihO3RbQukFCx1dFhIddh7ZCzjQ4NV3mu54VfPb8Blc2+ry95rLUuc7FjT5/83vfhb3PrENNE/xP//HTfOrNNX791RVeutZm5UaH15Y6XG/5/NjHzj5Q0NZyVctTmKgkgBsqG+4gVtW8q02PV5c6rPZ8TF3jhCjy2nKHom3iRQnvPzHBWi+g7cX4iXL6ccOUx+bKwxYAMTYgOD1VpB/EvLrUpTmImSrbJNs4At0Li7U8C1XJRNEiSTNWuspIox8lnJ4q8fhcCSnh9ZUeUZLx9lqfM1NF/Djh4vqA45MFnlmo8rWlLi0v5usrfU5O5YnSjDNTBRZq6qC8G2yZhWqOSs7ksbkSb671OTNT4o2VHmEiaQ5ifvPVFT51voGQsNzx+ODpKTb6ASemirS8kCDOsE1BNa+Y1203BmLylv7AjNiSo9r8j03kcKOM1W7A1bbLS1dazFfzvPd4nSfnLb6+3ONGW7ngzVdzlBzVcrTRD4lTiaWrxLNjGpiGGDu2SSnHlWFdEzw2W2K+kiOMU6Kihalr4+SM0vaUdIcGCCcmCzimRhRnTJZs2sMKtUpC2eQsxXo+NpGjMQjRNW2cVLJNTbH5egG9TogXJfTCBDdMeM/xOkIIWm5E24vwo0wlFVyl1xcmim11eqqIrd36XMZpNtYT3Q2MDvwjLSJVQTdxLI2jtTxFx8QNYy43PZY7yn3ycsslTiVnZ0v7UvH+wKlJnpgr88nX1/j85QbXWgGWnnFpvUe7H7DS9fmudy/wgVOT9/3aUZrhhiqJLJDUCha1gsVE0R53LIz2HEPXePeRGq9ca49dafOWwWonRGiKWSRxOVrPkbcNvni5xVLHwzZ03nO8znzhJptmFJdNFCxMTb1Hsx/RrSQYumpB3owwSVViu2CTpGpzlBKKtnomT0wUaQ5CvChlqmQr8ei8yYtX2mSZ5NR0keOTBWZu2+c2+iG9IEEIpRG11bpzbELp5cVpyj/59CXWuqpwHccZmVQF0kxKWn6MBCxdMFMysQydz19qYhsaRdug6BgsdwOOTeQJ44xBqDS7rrcDHF2jlleJ6PKmuRynkoJlECTp+NnThCBOU5qDiKJtstTxKQ3ZIqpTQP17oZYjb+vjxOJu46OPzfJPJ/L87X//Nl+52ubt1T7/xc99hf/m2x/n+95z9IFfN8skP/vFa7z3eJ1zs7vHHvqfv/spXr7W5s///Cv8xp//yK65uIVxwm++usLnLmwQJRnPH6/xLSen+OKlNpalcXndww8zbsyV+L4XjvLMgirCbGbUn5gs3JfZ1MNguePz0uUm/+bVZdwww9FhvppjomCyUC+w1gsIY6nYPppa36XkgaVl7oZMQpxlQ2JKBsO1P0oyrrU8HEPjaD0/7pSpFSzedbSCoDLWhPzN11b5+kqXvGXwIx8+cVfJlpEzbseLt+ygMQ2BLbXheUUln7ZqugjilD+40ODTb2+w3g/wwpi5skW9aPPWSpcvXWkwUXA4NlHgzEyJI/U7nQXfqbifT7EghPg/b//m6OGWUv7Ybg3qYeDFKdVhYDVVsrE1g9lyjsmizUzJGbKDdF680mK6ZBOmigrb9RPylkHbS2gOQiqOycWGS8+Pmak4HN0FB5rxGKOElU6IF2bomoahqY337bUBApgqORiaxnTdYqnjUy9YWLrOctfHHirMDjoxRVtVlHOWRsE2yFsGLTfiaze66LrgxEQeP0pwo5RKzuQDpybp+fGYYWHrqmLY8c1bbKQfFLcvdJomxhXfJFULT8HWCRJVFZ0p51jv+7yxOuB6S4kyLgvB6emYQZjcc5JJKVnp+kqvRyrR5WrOxI1SpFQWoIau4ZgaF9YGvLHSpx/EvP/kBHlLR8UcqlJ3YvKmSKSpi3ECEBiLAm8n+JpmkvPrfeJE7pqA81awbYMf+egZLjQ8fveNdZIs5eKGzz/81EX+t+8rUzwg2fL3nJoiTDP+u3/9GoMgwgN++vNXOTFZ4j0n7r+CFMQZcZbdcZjQtVv10fxYJX3CJMPVUt5/cgI/TjENjbfW+hRMAzdSQV2YpHzhUou5ikOcSip5i/lKynzFIcuMobOjtrMNXKrgdRAmWx4kTV0bj3Ojr7R7un5MvWjy/LHa2G3qlesdwkS5PzbdEKEJXlvu0fSSsbaZFxXGiR8/SrGGve/3gm1oTJUsFmo5DE0bsv9uFZHPWwbHJ9X4u35MlikHrtuvQXMQ4g/nQ3sY2IthO80IR+sFxYLSND5/qUkQZzQHER89e2vL8WcvbNAJYoI4JYh3PzGlaYJjQ4vtjz8xyy+9HLM2UM5Qr97o8rMvXuWHP3Ry3xmHhq7xh56cY76e4/wvvUqjFyGFsrF+95Eq3/TYzH2/ZnOg3OZabsJE3uKNlR6vXOvQDRJmy4op1PMTjk8WCWOV9MwyRQmv5i1ylo4bpUyVHBquaovXdUHbjVjtqraNzQct09ApOxZJCkXLeGjbeSGE0iwcsiHdIOWZxZI6bKYZpqaSH003Is0y1vuqhcs2da61PB6fKY+t0wuO0sIaBAlr/Yg4VQHr8QnVhvcgwuebx1lyTM6v9bF1HcfKeGKuzNWmal1Y95WbWJyoVs3VXsixiQLlnMmRWg4/yrB0h1PT6tC73InRhMB4CCrzWi9gEKa03ITpsk1j6Cy23AlAClZqAYt1xRjr+DHVnGojNDRtLIkwYpblTA1DE+O9Lcskb631eXu1T7Wg9P3WBwETBZsn5iuKcZVKKjl1Pcs5kyBWyVFQ6+HR+s3kvx+nDAKYrzg4pkE1r8wnXl9R+nSXpcuRiRya0DB1jbfWlZtcNW/SciMkyjwmiFVhKEozpFRJ00GYMFtx6HgqwVXNWbS9mNnKrXvJej8cO4fuFkaHFz9KOTtTouiYVPOqdeq1pe5NV0I/xtCh0jMRw8+yX4eMgm2QARJBKWcgM8WeXe2HCE3jjdUeZ2dK1AvWjtZMQ9eYKtlMFCw2hoewjhfjxSmZhIVafssiSJrJ8aHQDVUreH/Y9pJm6lla7qrW9K4fs9YNqeYtNvrKPRJumn+EcUbe1njXkTq1gpK0CKKEpXY6djYbQRsyk0GM9VL7QYyha6QZlG3VYmfqGmL4+XphQtePkVLth8cp0HSVcQMoyY9KwVTFTtsglXLLw5c5vFYvXm5RcUw6XkLRUS2AAsath16UMFmwCVPVmrzWDYamKAkF08A21fzShWCyaGEPmc15Q2nINd2InGUwV8mNr1HXj+kFyvDn4oZi2hyfKNDxIsIkoRvEVIZnByFuZY7om2L9vcLJqTJ/5T96nB/+qS/R9hU77Sc+fYlTM0WeO/pgrKRPn9/gWsvjL37i3K6OteSY/N0/+izf948+z1/5ldf4u3/03bsSX3T8hLWeT8tV7L2rTZdXr3eYKJnkDR3T0MjZqo01k9yVEfqoYp1+oM6f691ozFLMpOpUenyuxuScTcdPmC5ZlJyb7pq7jSjJ6PkJFxtDl8JhG+ilxoC315SB0eNzJepFa5xEvNPAJySIMsJEGW/djpFms20ql9etElfaMEZ2DIaSMxonJvNDI65boWuCxrBVs+0qtvJivcBk3uRqM2C55zNfSajklYnaN0pSCu4vMeUDL+/VQB4GSSrHiYycqROmmepnz9k8e7zK+09O4oYJ7z85wexQ+0LXIckkOUMJiE+XbTSh2APLnQAvn7DUVjoQHT9icRvhxyjJWOn6GLqmDrVSBRYFW9+yKjLSc6oXLBxLw9Q0vnqjy2zFJkolp6YLmLrg7dU+c9UcfSeh7UWcms7TdhPSTKrgQUrmq7lbWDwX1/tDZkTC1DGbyw2lp9TxYk5PF8etNCM3waJt8C2PTZPuVMX5PhGnSrOgZBs8MVviWsvF1nXmqg4nJwv84kvXWWp7+HHCY/NlhITFukOjH2Lp2rasDSEEtZzJ9aZPKWfyxFyZvG3gGNqQIXDTQjjJJEmaUskZLHd8jtZzGJogzTLiVInBjg5RxycKqsd/+PfzlRxNNyIZ9gfPVpw7WD9xmhEn6hrejZa5W9A1wf/4nU9haF/ns283iNKUqw2P//ZXXuXP/gen75tJs1f48NkZ/tLHI/7e716iH8S03ZC/+ztv8YPvO8a3Pjm349YZTQgmipZqwxyExOlQDHWLv8+ZOhJJP4yZqyhtD8tUidsz00UWqioJ9eoN1TqhaTAIVStryVYH02reHDvZlR2DWtFCZpKWpxgMo+ruLWMcJl1r+aHIaJAwUbC2ZIeVHAPLAD9KSDODoq30G9ZlwHwlx2I1x1w1xxvLPd5c7eMNkzUDP2G25lCwDSYL9lgPyjI0Zso2lq7RdJV5w3zVuWPtcSydZ4/WyFs3k1qDocDq7dbv/SDmWtMD1Dp5e7L1vccn6HgJpgZPzG3NKLUMbeympGsCL0ooOfod963iKCteMsnZ6b1xcZwuO5yby/CjlFre5J997jJvr/eJkox//9oaAo3veNfcHWyu/cDjc1X+l+95kv/mV15lrRMQJin/+DOXaA4ivvPd85j34R5mGRonJgukGYRpxturA/XcuDG2DqemSjimTr1oc3Iiz3I3IEygYOkcmVC6cKOE6mzZYa6qnr9uGpNKSdsNyVna+FBSsPSh2LM+Phw+LKZLDovVPLNlidAgkxlIgUAoV9DJIhqCIEkRAo7Uc7xyrUuYpLy+0mWx6rAxVWDStzk7U6TiGLT8BNvU6Q8F53tezHTZ5uxM6b4ZnZuhDdvM63mbiSlTMQ6yjIKl40Upyx0fUxNEacb1tsds2ebZozVKORNT10hSyeWGx/W2z7F6fpx4fqCxCEE5Z2LoglNTRWp5k7afECcqPpoqWVxvubTdmJKt9GQMXSjxV5mh6+DoquXqxGTxlnnrRcmYidcPlPDqRi/CDVNOTRUpOya9IOb1FXWAf+FolfawFX4rzFWU3lPbjbjS9Pj6co+zs0WlnVk0iFPJiQkljK2MYEI6XoRjapybLfLaUp9o6FIGqqUhk5BlSn/I0DXOzZRY6vjDYt6d99jSBS1vdzVyRshZOh86M0k/UFpLX7vewTY03ChVhcdhC7Mz1AWq5AyWOpKSY+wa22KnMHSNjz8xTZplTOUt/CihF6Ysd300Db50ucV6N+I/fGaWZxar93w9UxdjR+ta3mKl65NKZcGuhLbv/HxJOnquNDRNMFO2WeuF1IsWtinQNY2WG7Pc8YmSjJmSgzdkE5ccY3weSDM51ojNMnjvyTrVvMmXr7XpeAnTZeeO5K+pa5yeLhLGap4A6JrGRMFG01Rb0MlplbCxDKWf2g8TDAFCF2O29eZ5qwvlyB2nkihN7ym2P1m0mK/lOD5sI/rK9S66Jjg+mafRD6nmDQwNTF1nsZ5jqR1Qzav1JmcIzq+76JrGdNni7bUBaSZZqDkkmWLKOoaOpWtjppQ/FJiXQ8e/KFGugNbwGV1qqwLH2ZkiecvA0MRDrZMPirlagX/4R9/Nj/7sK/T8iDhO+F//3Vt84skZ/uSHTt736/3MF64xWbT4tidnd32szx2t8Rc+dob/7bfe5pvOTvGHn198qNdL0oxBGHO0XmCp7ePHCddbPmnW4pvPTfKhM5McqecJ04zHZ5XBRtdTLP1H3RrcC2K6XkzPj2gOQiaKJkGsY2gqtqwWLHK2zscen6HrR+MYeK9g6IIky5SUxiaXOtvQCOIEXVNdSNu1p37kzCSW0WKmbFPfQv5htReME9FnZop3zA8pVSIxHLb7LtZyCCF4aqE6ltDYjExKZioO0yWbthsqcxJDo1yw2PBUx8djs2WeP1q/xeThGwH3k5hqSil/6n7fQAjxPuDvACnwkpTyL2z62TzwM4AD/A9Syk8KIUrAvwDqwE9IKX/6Xu8xEhQ7N1tCE4LFWp4gzpgqWcyUHLq+2uAeny9zarpIa5hkUJuSCm4dU8cftgwBaJpGyTGI0oxKziTJJAM/xovU5rdZNHFjEI5bUIq2wUY/HAeUW9FDHVPn5FRhbNE8Ehg9O1NkruIggN94bRUp4WLD5WgtTy1vkabqwKmEnYWihN/WWpazdEo5nQndol6waPujCuCtiaeRJbcfp3uWpZZScmF9QJJKio7BY/MVqgVLuarU8yx1fMIkQ6AxVbR5ZqHMXCU/Ptgvd/x7ajfNV/MEqcQxVCV1FIx0/Rg3VIFHP1AU/5yl0Rna/TbdhBOTReUsFcVc2nB5Yr6MOXQT2pztrhUsbFPj4rpLnCYIEdzR6qUYYDZulDK7ReJit5GzDf7adz/Dp9/e4BdevMr1ts/FjT7/9NMX+fFPnGW+ureaVzvFd7z7CM8erfP3fvc8r6/0aLoxv/jSDWxL4yNnZnbG9DE15qs5ekHMSicYf39uC/HLKM1YqOap5CymyqqiOwiSIRXfxDIMjk4oceWeX+VKw2OjHzJbdkiBszMljKEVa8ePWWqnLNSUIcFE0WYQaFsKgdqGxsmpImkmudb0huKGCaent57/j82WESgmRxCn5CydthePK8QzZYfJks2TCxVWuz7X2j6zJYdeGPPYbInJkgo4G4OAnh/jhnm8KCVnqhY8x1SCl5sh4Ja5HmfKcrvjxRy5reAob/n3nUnr6bLD9z63oFxK7pEoUeLaGanMxnoim1Ev2syUbIQmaHt7l9QdmRecni5ydrbMT332Ii9ebjOIEj53cR0EfP8LixTuIWz5KPD0kTo/8YPv4Sc+dZ7XVwe0vYh/87VlokzyfS8c2XGgOV1yeHOlR3MQ0OiHLFZVZbJesDgxVeTdR6vYhmIFJqlK0qtkyk3G6EI1NxbNHqGSN8n3NfzQwI8yeoHS7FPtVrtvk/3UYoWeH2MbGpcbKmG61PE5MakEyx+fV+6Lpq5h6oI4lVxpDFjrR5QdnaO1Auak0vrJpBJNrhfUwfhqq08YZbty0DpWV1pIBdvgRttnsuQAksVajomSw9eud4Ztc6Fq448zrjRdpko2mpBK6DnLhofYbMu5t1PMlG1sQ8MctvfUCyr59YGTdUqOSdsN+er1LpahE6UpTy9UaQyUs1aaSXShDBBmKnfuZ4auUXB0dA2O1HJomoaU3MI+6XqKQRIlGWEm7ylWXLCN4d6vYhM3TDg1XaDlRcxVLAq2gUTpQC61lcOvrgnilHFrf5hkFFHJhdH3NqPoGEjJlsk+Q9PIm3t3iBuZsgAULIOpksNzps7TRypEUcbrqz0GYcxyJ6AXxpydKY81Tx/1wbKSt/kjzx+hHyb0/YiXrrZZ7wW8dqPL1ZZPx42ZrVg7SkxthhCgC00lU1oBR6aLrPdDjk3cGoMudfyhOQdjc45jdVWYckzFGH7lehvHUPN5omixUJukYBuKYbfhcqSeo5q3mKuqGHBUXDENTQnqa5IM5Sp7OzbfK1DP+Ghea5oS0z9SL5BkGW+tDsjZOkkGC5vmSs7UmSxZlGwDQ9cQqHVpox9xpelyerpElsmxIcBM+aZO6MkpdRao5E1evtJhfjh34lRpzAAcnSiOP1PeMjgzU0QI+K2vrzJRtOn46pCcZmpd8SLBe4/XyYZGF2GiNGbnKjkmS0ry4qmFMn6smOJelFJ2BG03HDtyJqncd2bGidkqv/SnP8g//vQFPnehQdeL+PVXV5gs2fyHT82h7ZBlutTx+d031/iz33zqgZP/98Kf/ebTfOZ8g//hV1/j+WO1h9KiXekG9APF/v/Wx2f58vUWaeYhpWI0fvtTM1xteZQdk7lqjrdWVeEtb+ucmtqbgt9WGMXAG/2Ary/1aAxipks20+Uc714s8+VrHQxdJ29pW0o77AU0IZiv5Kk55rgVFRSzzTGVKUDuHnHs4/MVjk4UhjHGnc/LZqO+rXgeqpVZmZEk2c1WSl0TW57BB0HCYi3Pcr3AajdgpRvSdEOenK/wvc/W8KJkSEw5GGe93cT9rDDRvX9lS1wFvkVKGQghflYI8bSU8tXhz/5r4K8AXwP+LfBJ4D8Dfg74BeD3hBA/L6Xc0XsLoF5UjIWJgsVUyVHaBUNGxLmZEk7OpJy72VcdpRlpKoe0YeWcEyYpEwWbas5kvR9SHLKTloZuBkkqb1lgRu59QqgDqtLVuOnothUKtkHBVllwCZzaxBR4a1U5cXjDFjxDF0Mh0pCun3Ct5bFYy6Ft0Vl2YrJIwVbUescyxto2t1M6J4s2LTdicg+tQqUcWpajPifAbCU3DlCP1fM8f6zKZ883mCrZqgfZVJXlMEmp6beOOUzSO1oOlY6JRNMYi74ttX3aXoQmBLapU8kpZ76nFqu0BiFNN6KaM5mpOLx2o0fTjXDMmCfmbzKNklRVjEbBiaWrdqk0k3fto789EbDX0DTBNz82zUzJ5m/++zfp+epZ/8LFNh84pTG3S4yFh8VCvcB/9W2P87f+3Ru8ve6SSsVYKucs3r1Y2zFzytj0e9u1uOiaEv50zJttJG0vIpOMBR9Ljvpe0TExDY2Fao6Z8k2WUZxK4kSx4OI0G1vIOqbA1O8+XsEmofNtxqhp2ngdGhVPJ4vWWGPO0DUM1AFQ15RIc2WomTXaxCSKAZRKhho1iukAGs4Oqk9TJZtGP9pS5L3sKAHUJJN3XSN2qn1zuTHg4oZyJVzrh3foGxydKHBqqkiYZrvGstkOQgjmqjn+yHuOgabx4pUW2dBR9MLagDMzJfIHgBa9UMvzF771MX7iUxd56WobCZxf6/Pi5eaONV4yKUkyQAj8KEY3cuNWuJNThVsOX4auUS9adL2YiYI5Xm/vRvuv5W3CWK3v5kO0nO0Epq4xUbSH+6UkHRpVbMbm4E65byonKrUWaKRS0hqELHWUw6A5TP5EidKZPDaRe+jklDEcpxqzwEexLRxTZ7poUXYsavmEqZJFx0uwDY2VjrL6FgKO1vNMl5SQ6dF6/q46FjvBZrbb6F6eGYo5X1jv0w9S2l7MTFkjP/zchqbcgJfaPmkGV5vulokpx9R5ar6CNyzESOQdcUa9YOFGKllY2OFaMVNyODOj7t1M2aGS0zk5WcTUNZa6HiXb5FJjMHQdUqyP2apNkkAqs3tq3GynH2Xoj44FcmamSJCoVrZT00U++/aG0lDqBsSFlDBW7WRpJvGG7O2HEed/EBhDLaJa3mKqlOOttT49P+Za28OLEopDd0xDEzvWadOEQNOU7l85Z4DYmr2mkjgZpi7G+2M/SFjrqSTOsck852bKtLwIP1KuWv2AsSYUqD0cVKy7uc1ssZajNQhJpORdCxWcHTybqVT6S6OxjNr9NKEKxAIoDR2hBeq+XVhXTKUklRyp55ku26z2Amp5k2jIrm95ERvDxJSh39oOl7MMPvb4LLMVZ7zOGptiD11T89o29LGrnqFpzJQckjTAGJr/hEnGcsdnomix3o/UfB1ephHLf66Sg2EeN80kb632afRVq+yxiQJxKslbxiMpuu4E1aLFj3/iMTLe5EtX2mjAxbUBL5faPHe0hr6D5/FnvnAVgD/23gfXqLoXdE3wd37g3Xz73/0MP/bzX+GX/8wH7884YHh/Qa1d0ZB9nqHir2reYqpk86HTUziWwbmhprBiwt37HLrbkFLiRwlRouRV/GHbbZBkTBRtZqs5PlHOjU0eHhUsXWOxluP4RP6WZ2MQJKx0Q5JU8qUrLb7t6bltX2c7Esdc2cHUBbaub7mm2YZONW8yCJN7nrv9KB3mCFR3kZQC2xDIDOaqOc7OlvaMUHIQsONPJqV8P4AQ4teAnwd+VUrp7uDvVjf9b4JiTo3wDPDnpZRSCNEfsqU+APznUspUCPFV4BzwKtvANJSAsKFr5FGV8aP1PF6Y0guGWhKZaknZnBS93vJ5a63H9ZbHbDnHh89Mkrd01ZaVqlawE8ObH6fKYjbL1PttRq1gDe1pxVA7IU/Lje6pjt/xIt5a65M3dU5MFceVCMfUeGahQjeIef+JOkGS8cZKnyBOVStRyaGcM7dsKSrYBtVE2d4PwoTjE3mlfRMkmHltHNzMVpwxvXqvoGmCo0Ntl4ktqI8NV9nVPjlfoWirvvjpskXHixgECWLTunWj7dF24zsmvDlccFZ6AcsdH4nkasujN+xbvrQxIGfpnJgsYBtK6HJjEFLJmVRzFpapUcsbVPLWOGiN04zzQ/rzbMVhqqT0U87OFG9JVh0UPL5Q4a9999P86leXSNOMFy83+dzFDb796Tk+9vjuU5QfBPWizf/wnU/x77++wtWmR8eL+Od/cJU/mGnywx84RsG59wEsP7Rlj1N517nlmDonpgqEcUpteKhLUslcJXfLQn695fHSlbYSXKyqVs2OH3N8okDLjVjvBwRxymOzJeoFm2MTeQq2cc8gXNNU24xqW7v7/B85mQmUzluSZpiGxmOzpfEcvdZ0eW25R5ymnJgo4obKMWS6bKMLwY2Wck06M12kXlQHiLJjIpH3ZDGBYtNsR13eLQFKmal70A9iKs6delX1gqU03yLJ3BbOp3uF0zMl/tj7jvHkQoWVjk/bjfi1ry5TK5i8cKzOC8fre2Ijfz+oFWx+/BOP8ZnzG3z5apuOF/MvX77Bi5eb/ND7j1O7h65HkqpkatdXTBxD03jX0crQrvnO+ztiR11uuKx01Tp5N8OHqZKNZSiG0l7S8DcjyVQRKUxUm+3dUHJMPnRmgt5Q9yVvG0OtrUi1cxZMwiQbtjrm1f646V43ByEr3YCibYwdfO8XR2p5ermYphtyYd3FMTUmSsqRr+TozJThxEQeiaDlqRZctZ/lOb/e50rTpWDpFB+ilUtKyRurPYJIsbNPDivnhqbam58/VmW67LBQcVjthaz3lRGKoWkUbf2uGiVdL2ajH5KzdGxDxRX5YaKiMdxfC7YxNl/ZKbShY+lo7BfWB6x2fSp5k7myYq0o9pdN3tJZqDqkGTT9gEsNl+liyOPzpW0TenGa4cdKXmDzWlRyTE5OFcj2SNZgM0xD57mhW1eSZkO9IsnJqTzvWqwyU1FSA69ca/PqUpdnFis8MVfet/UoZ+m8a7FCo+/TdGPKjpLM+H/+4DKTRZvveHpuRwke5UhbZK0bDDsF5Jativ0gZr0fDPUQVUGw5YWkmdJljYcH3UreZL0XsNYLEUI54ZmGYu9NDNe3kVZi0TG43HBJUsljc+UdH+x6QcyVDZcbHZ+pksViLc9cJTdu9yvYOlGSsTEIMYaal3GajYuy0TAxULQNnj1SJUhuxiab15xk6CRczZkYuoYXJVxpeDiGwRNzqhBedkxOTBXIsoy1XshSO2CiaKEJ1d5qGoJT0+oscXQoJF20DRZrOTLJeK2erzoEScb0Fnqo6XCNBTVXJop5Joo2XS/ilesdTF1wtF7YU0fLnUDXNf7ytz/Or39tmbfXB/TDhF9++QaffGONH/3ISSa2iW0yKfnZL1zlE0/OjpnUe4X5ao6/+Yef5s/8zJf5O598m7/8bY/t6O/CRLXeV/MmR+p5hFASLZqAWt7g5FSR8jAx5YYxaXZT3kIIpavZ9eN7ukvvJq42Pb54uYkfJbxwrMaHz05yo+Xx1mqfNMvImQYnHiF7awRTV3qDMyWbzfn9iaEbbTYkNzwMNO3eTpU7YZOPzrqWIZgqWhyp5akVLWxL40hdJde+kZNScH+MqRH+NvADwN8QQryIYjb9WyllsN0fCSGeASallK9v+rYub3K/u0ANqAK92763LQztpuiuspVO6QXxmOlUzpnU83fqvQzChO6QURUmSpg3ldnYZebxudI4cBn1nY90Z27H5tfOW8Y92QRpJnl9ucdaL6TkGMyUb4qXHampSmnOVEmySxtK6LOc04dtgMVtF5tRkDsIVCXpWssbtqyle9JmsR3KjnlXjYSNvqpe5yydqbLNs0dqfPFSkwvrLjlLY3HTWN0hfdnfQoD8etvjK9c6gNqEZ8oOpq4NrbAV66UfJNjFW0XpLjdcBCA0wZlNjLUouRlUbH4/Q9e4D3mXR4rFep4/9aETfO5Cg1eXegyChF/58hLvXqwO20n2H3nb4D9+9yJvr/X45ZdusNoLaXsRMwWb79th1WonLJ2ibYznUj+IuTJs/RlR+9NMHdaUW09K3jJIMkmWQcePaQxC0lRVOicK9i3P4U5gGRqWce9gYPPh6eKGSzR0ThsdHs9vDAiilH6YUF406PmqJbHlRpiaRj9I0AXYpuDMFi2DBwWTJZuzs+ozbcXie2Oly4UNl0zC5843HunYjk0UqOYtljseL15q8cZqjwvrAxo9JWL57NF7bj97DlPX+JbHZjg+kecXX7rBpYbLRj+k5Czxpz68va5GOWew1g3RBWRoTOQtLq275C1lGX03JyI3VC2V/XB7MehHbU08YgUYtoYXp2xXc1UtpPGQZREyVbIo2SbPLFZZ6/nESYY2FFUP4oyNfoQzFC5tD/fQfpCMmRf3i5EV+2pPhUZdP8bSNU5OKjeiyaJNnMFE0eR6WzmKBbFyFV5uB4RJBhLed/LB3VaXOj4X1gZkgCbyY7bi0XqefpiQt3RMXRu2CqivI/UcJ6bylBzzroLGoxjDC1OC4RoqpeTShnuLpuXDIM0USz1MJG035l2LVeaqOfwoIZNQz5tc2HDx44QbLR8Qw5allOpdluwsuykvsFXSdT8CfmPYGlKwTRxT5/hUkWP1PL/9+hqvr/RJM8lMyeb0dHFfE+VCCM7OlEFo+GHCG6s9rjQ8LENjruzwoTNTO3odeyjSPErKBHF6S/zcciMuN5Q74SBIVWtQyxsLKZ+ezt0S/06XHRxLseccUx+3w4NKKo20Egu2PtabGrXl7QRKbF1pVYVxxiBIoHJru1/LjcZyHrWCMkA5Us8N2RE2XU+5oQIcn7x5sKzkVDI0zSTX2x5ZptacE5MFOl48ThINNokjF22DOM0IYtXB4YbJOCHhhgnesF2o7Sf02wFpplqXJ0v2+OwysU1BwzK0W8YOKg5+a63PUlsxvkqOue+JKVDP5He8a4HrLY9ffvk6F9YGXGv5/PyL1/lz33L6rmzfthshg4T/9CP3r0v1IPi2p+b4Y+89yj/61EU+cnqSD56+N+M5G55BBsO9OIiV82wYSyxD59xsieBGB5nBSjdktpK7pRhacsyHNh+5X6z3Qt5Y6RMnGUXH5LvfvYAXpSzUFNNrJ0z+vYAbpjTdmD+41OLbnpkfz9sMeN/JOl0/eeAC1G5jdOa81vQ5v9bnRjugnjfJGTrztdz4efhGxn3vwlLKTwGfEkLowLegWu9+ErhraUwIUQf+PvD9t/1oc5ahDHSGX2Ug2PS9rV7zR4EfBTh69OahNpOSJM243HApOQZzFWdcxbNN7ZaD7VzFIUpSLFNpMFiGYBCoxcANYy43XNwwIWcZnBwybnbCRNgJlM6FQcFOsAzl2DUIE4I4pZ63xgF/kKTkhu1ouqYyv10/JkpTer4SWL59k5koWASxT8EylGBeoKjgoxRgmCjmRZZxRzvHo8RE0eLShstcxeH4ZJFawWKt57Pa9ej48bAypcR2p0o2FzcGd63wjD5bNW+On4EolegaQ4cKyVeutZESnl6oYBqqjUPdA6UrcWF9gDZsp5gsWYRxxnT57ht4kmZ0/JiCZTwyxsB2yFkGHz0zxecuNLne8jANjf/r988zWXT4T953jPJDtIXsFjRNBbfvO1nnassjZ2p8/vIGl5su3/70HE/fp2bFVvCjlKstF30o/jvCqHIppaSet0hSSS1nEKYp15oeUyWbesGknje5LNQcXe4GzFVze6LxsdFXDIVKztxEu755CJ7Iq2dwsmSja4IbHR/bEBybKFIc6ruEaUbXi4mG7I+DiKJtDDV3PMLkzk3VMTXaXkScZOSsR/8ZKjmTslMmSSVLbY9VAUs9n1975QZuGPPC8YkDwZI8OVXio2cmubg+oGQbvLbU5W//+zd4cqHCx5+Y3VJbI5Ow3PW5tO5SyhkUHGUlnmU326y3wlxFtcFPPMJq605QdkwquYQky7Zk4W5GmKRsDM0STF1TulJFCzeIuZGqw+5kySZMUi6uqZa1mYp6TWW0EDFfyT30vJor59gYhMxWHDIp8SIlMh6nkksbA5bainFUyZmkUlLNGbQGES1fCd/nLY2jE4UHEjiNU8lkUbnuTQ81bKSUdPx4zPAG1aqUt3TKOYNBGGPogqnhwftG28OLUuYqzvigo4o+CTlTxxnGREGc0vNHrOabhZ3LDRdNg5OTxfu6lqPWUm8YE2mawNE1ltreMFayuLA+wDI06nmTDIZOZmo9PFrPK3fWKBmzUFRscCuT5SBgoZ6jH6pxtt2I5bZPy43IMqVL4kUxXT/GNnTaXjQ2sHjUmC47xJlEF9DxQ86v98nijE+9vU7TjXh8rszRifw94+SRwPao7X4z0kwyUbRpexFTJQtDV5qPN9qqHfzphfIdCYetip9LHZ/rLY8oyajlFSu3M0yodryIlhuxUM3dkxlcL1gEcQZCOY1u1WmQSjnWRsvGsag1LgxvlqC4PdFdGOqi9v2YtX7IRMHi+ESeIE54bbnLVNHi3LCw03IjdKFY1jNlm16gHDdNTWO1F6BrBl1PmSWt931MXRmyIO4sInSHLbt5S+fY0OhihNtdxeI0Y60bcK3pIrQ8tcL+F2w240g9z3/09DxvrPQo5DReXe7wN37jDb7p3CQfOj19x+93/JhvOVbj+WOP7nP899/xOC9ebvIXfvEVfvPPf/SeTCZdV4YeJ6p5sizj4vqAl6+1KFsWE0WTD52exI1S1noBjqnvWFpht5FJxfSzDY0gSej5Ebahs9oN+NKVFppQ7GpNE2Om4KOGRLLa83CMwi2MKVMXtIcJ4INQwB9pI19purS9mChO8aMMKWG6bHGkVthSv+obDQ/0JAshcsB3ophTzwF3FUUXQhgogfO/dFtbH8DXhBAfQGlMlaWUPSHE54E/JIT4ReDdwFtbva6U8h8D/xjghRdekAArXZ8ozcikZKHqsNxV9sg50yDIFCMqX7/5kWsFi1rB4qmFCm+u9mm5ynXLMQVhknJ+bYBtaEwUxbgquFtIM4kQknrB4sn5MmkmudJwkVIFeNW8xeqwlWCxnme24jAIE9wwZRAkNPqqyrTWC+9ITI02lZGYuxCqH31+2CbTD5Jxb3nPj/ft0LVQzVN5wsILE2oFCykluq7R9ZVLwlLL4wuXmnzg1ARumOAY+pa2mkfr+aEeAxybyLPSCdCEGGqBqcrv5Y0B11oeXT9mve/z/pOTzJRtXl/uDTWI4nGmuhckWwpr347rbV+1HAr2RaB0K1imzo9//CxfutLmi5caXG35vLnq0gsSfugDxx+Jhs+9oGmCjz0xy3wtx4uXWrx8tc1bawMuN8/zg+8/wftOTtxyLaNEmRss1nI7qhh3/EhpQyGZKAgkEj9KyZuqImLoypRgsZbHixK+er2LlJKNfkjRNinYOmemi3SGpgl+nN5T8DNOVSV+pmzvuErVdEOyDNpuTCVvcL3pc3zyZtXmsbkys5UcaZbx6lKXMM6IExVUB7HO6enisC1VJbXrO2Bp7QeEUK0/jmFwpelzbvZWnksYptiG0nAr5/bWcvruYxQ8vVhlpuzwr758g1eutfn6co9+kFLOmTyzeDAC8Q+enmKqZPO1611eudHh9ZUBr1zv0fcT/vDzR+7QoWm7Ea1BiB8nSCBMJEdq+bF+4d0wUbS3rarvF0bt4TvBqG0njFOOTxYo5yzKOWgMNKbLMYMgUYLviUQT0PMjltoeS22flhcxXXQobCGMfL+o5O9kFwRxyqs3uqx2fVIJC7Uc02WbiYLFcsenlDPwk1HBxCNK4OTU/bfXThYtVjo+R+v58Z62MQhZ64ZKd8pQOkJzFWUEs1DLsTw0mGgOIoq2QdtVB27F0lOfo5IzqeRuzuM0k1xquGMdxhEzu+uPWB+KvXq/z9ST8xVmyg62oYqKLTfk/NqATKrEw3w1RxClPHesRskxx06l/UAdzleGLWODIOH4pJJ7OFLP0Q8SDE1wcWPAZEG1hLXciJYbbum4tNd4bLbMdEm5pn31WodBmDIIYp5arNIchMSp5HPnG0yWbKUfuk8xm2MqIeUgTjk3WyXNBJc3BmQZvHi5xeWGMpH5lse2NzYxde0OA5kRJosWkgKaKI4ZO7ahBO+jJOPVG11eOFG/a/IrSjKutVwub3jjwuJc1SFNM0xdJ0xS3CjBMQxaXnTPOWXoymRou3VnZFZg6NpYT9WPUjqemjtKPDwjjJVRz+1QAsgm1UQVrP0o5fz6gCyT3GgHrHYDkuymzu0xLc902WF6Ex3gxFD3tuvEtL2IiYLNajdAF8rVcDPWegFvrPRwTJ00kwRxtm1xVQjFLqnmLfKmQeEAFGJvx9nZEv+/73yKz7y9zucvNXh7rc9ba30Egg+evpXNd3KyyP/xA+9+pOPLWwb/5x97lu/5B3/Af/XLX+Of/NDzd2V0gVpTHUOn5ytG6JsrPQwEHT9GDBON52ZKym29YG37WnuJMMl4c7XP9ZYLUp3HyjmTfhCz2g2pFgzee6JOOWfu27qlCYGj6+i6hlKEU7gxZCkKBD0vuWexay+RSsmFtT6fvdCg58dUcya6JjB0wYeOT1LJWWNDhG903HcpUAjxC8AbKLbUPwBOSSn/i23+5PuA9wB/Uwjx+0KIDwgh/t7wZ38L+Oso0fP/Zfi9fwr8CeAzwE9KKXfk3xvEKY1+RJqqlqE0k+QMnVrOICNDCGXTvhUyeVNFX9cEk0PXvXJO2a8W7JtVwd3CRj9EE0N3kOF7SwlJprKja70AP0rZ6IcUbJ3pskO9YCGGYpGTJbWZ3u0zAWMR9rxlUCtY40N92TGxTeWIUH7ErRi3o2gbTA9b74QQWLrOsck8li5w45ScpXGj5W2r+2Doys769LQSSa3kTYRQTIxRMrFWsBCo1oMwlqx0A/woo2ibZJnK+gsBmsaOq5GbHYjkAUpjFx2T/+CxaT5yZgqJJEkyskzytRudbVkSjxJCCJ6cr/Kd75qnmrfwohhb17na9LjRvlW6Ls1UK2bHv7OtKE6zO659JWcObZ3F2A0nbxlj9xtQNOfZikPe1LEMgUQ9L6P3Oz5ZYKJgU7CNsTDwdkhSJUS+1ruzoznbpNmwGaPqUTVv4obpOEE6+jyOqTNbcchtag1WFtFKQ2OuogTbC5a+7Tqw3xBCjOfUVgm+OFNV47JjIh7ChWw3MFG0+ciZKXKWgS4EgzAhSSVZJscHjv3GmZky3/GueY7V87hhTM7SWO6E3Bi2imxGztKGdtFKM0i5Wo2eq4N3uNhNSKkC0lrRuqU6XXIMKjmT+WqOxXqOoq3jWBqlnMlqJ2S9F9LzEoIk2bP10jF1xQbRNMI4UwWwgoWUKOOOoUB0xVECqKYuSB5gLL1Aad1JybjVCFRs0PFivFAdnr04ZabsKN2eYUxQy5vD9ii1Lm6XcM+kYi2rVkhznDSo5k1MQ2Cb2gO1leiaYKbsjNkbOVNH1wVCg9mh/MGxicJ4XSnaSqDa0MUtQuibr1w1r6y6G4MIL0xZ7vokacZyx8OPlFD0fqBesJguORQdUzG3JwqcmSkyWVLi1w03oufHSnLiAOzjOVPn3UeqPHOkSjFnksmMfpDQ6Acsd+9ci3YKIZRWy+Y20qKjNEA1IeiHybasgaYb4keK4TQIVVvcZNFmtHpbunJf1DR2jREqhBIaLw/nGigjJHs4dyxdQxNKj2+rGAFU4XiiaKk5owvKjqlaqYUcJ7hG2O7zV/ImxycKaEKAUOYvTfemf1SUZKz3QkxNo+2G5G2lE7cdCpahhPALJpWcyQF4/LbEQi3H9z63yFwlRy9QTmtvrw4YBPEtcaIQO9P72W08OV/hL3/7Y3zyjbWx+Pq90PVixajXIJNKO8rU1dpWK1hMFu19S0qBehbXe0qbsDGIKDoGp6eKHJsoogmYLCoX7P1knQsB1byNoQvkpkuVt9Q6oGvg7ANb/3Y03Yh+oO63GyecmCry2FwJx9SHxStn17q2DjIe5DTzz4A/LqXcwhPuTkgpfw7lsrcZnx/+7AYqwbX593vAd9zvoCxdbQJhnFEvWCRZRj9w6Ucpzx+vo2naXSs4lqEqIl6kMqaWoQTMo1TZmz+IG4oXJVxtepi64PgWlSFFK46Hduuq397QBW03oeyYFB0DL0yxTW3seHQ7vTYZVmhGWO0GNN2QyaLNTFnR7uerDnEqx7ayo897duZgatI8e7TKVEk5ItqmxkZf6Q1kUlIv2JydubtuxSBMuNb0sE3tDgZTNW/xkTOT/Pbra4RDDanRwUwImCjYzFVyCNjx/T5Sz9N2IyWKvc8iyVvhQ2emmKs4/N7bGxgCLm0M+I1Xl3n/iUmmtmlRfJSYLDn8+MfP8YVLDdZ6EY1ByOcvttjoR7xwXInDItQ9uj1hOBI9zVkap6aK4805bxk8OXT8SDOJaQjiRG6pKTFTcXjviToCcCyD3lAs0jF1npi/9SAVJcraPZOS4xO3tsCO3rto38mMuLgxQErF5tt8OJspO2MDg2tNxebLWfqW4uAjVmU1r4LM3FAL5/Zqb5ZJrjRdgjjjSD33yDUG7ob3nZyg68dbUrlnKw5FSzk0ndwHYczN0DXBkwsV/j8fPM6nz29QcUxOTRX5/KUmzUHIY7Nlzt5Fl+lRwjZ1fuQjJzk9U+S1pR5xkvL5S0023JDnh6LKAAXb5BNPziGEQBdibL2+n0gzOdSQyXZ0OFjuKJfVqaJ9X86nJyYL9Pz4juKLbeg8PlemMQhZ6QSUcyYff3KW5U5Ax4+wdZ1KPmO+krurxtJuYLGW5/H5MlJCOW/w5mpfMScslWzJzSpWZGMQKW0oJF9f7lJ2zB0fqgqWcgzWNgXeXpgwCBLypj5uY99ceLudGXJ6ukiaSQxdU21mXZ+SbXKknrtFg/PoRB43vLXq7Jj6fQugb4ecZfDRs1O4YUK9YI31hy5uDDg+UaCSMynOlcf7+InJAu6Qkb0ZQigRaD9KiYfmMo1BSC1vj51b9wvPH6vRdEPylkqgLlTzXG0MWOsH1PI259cHdP0HNcneHTimKiAGccrTi1U6XsSn397gcsNlYxCx3A4oWOauCS/Plh1OTha42vIYBAkX1wfMVXNbvn7BNmgOIuarDqemiuN9errkIFCuurvNBq0PGf8jJ8wkVbFCkmYcrSvjlatNl41+xHzmcHyycMc+fztL9cmFCo6pD80bdAxNMFd1VCvfPQrKc1WH8+s9rrd8sgyeWrjJbjR1MUw2m5ycLuyoO0DTBO8/OTF+Lvd7D9kOlqnz4996jl/5yhJtP8Y0NH7nzXWKtsFHz0xi7vPB/oc/eJzPnN/gr/6b17EMje9/4ciWiSVT12i4Ic2+EvZ/4Vidp+YrpBkcndj/zocRwlgVZI/X86AJTk4WODNdouOrluqpLeRXHjVsQydnacyUbDabai9Uc2Pn4f0eZxhnXGu6WMP45NxsWRlvabu/Xh10PIjG1L8TQnxQCHF8899LKX96Nwd2v9A0wempInGWYRs6XT/mSH3Y+iPEPdusFDX95mL/sHS5theTpKqFqOneSfqaKNqqki1uunxJqTLgXpRycqqgKieadtdEye3JkMYgRErFxhodeEebyEFoM9sJTk8XmSnb5CwDTQik7LHay5RTkC62rQy03Whor5xu6YpmGjqPzZWJ02yoVWJybraEEGoTyIZuTztlEpi6dl8Hpf3AyekSR+sFvr7S5eKGS5IqsfjiAWLY1AoW3/70PD0/4rdfX0MTGksdnyfCBHuoc/LYbOmO57031HTwo4wozbasJOiaEgaP02zLio3akG7ew+1a9tpeSG+o89G9rQXWMTXOzhbvGIMfpQyJiwzCuzv1HannmE7su1YuN29M2wWS/TCh5aoe/5YbHZjElK4JpofulrcjSiXPHquinAgOxjr17qM1Tk0VsU0dP05p9EMyCZcaA45NHgyRTCEE33xuhheO1fmt19cQCK63fZ49otaxESaKNh89O4UuBKent26feZRwo2TcNt12tz9gSylpDtTvNAbRfa23m8WJt8KoLTzNFDvp7IzaC6RUhiqaJoiSDJntDVPO0DXec7xOlGZs9EM6w5hhomYzX7szYH57ra8MGryY2Uo21oca7VtboZofOgZvijMGoZIK0DQ4M11C17aPj4QQY5v6Uftx14+ZSe3xehcOtTDvZnSym9hsqLLc8cdt24MwwTHVAX5kCV4Y6ttthVNTBcIkY6XjMwhTJoq2Msh4AC2v3YRlaLes8VMlxWITwGrP51rLQ39YC6ldwOb7kLN0Tk+XqA3t0POWQbMf7po5gmVozFYdcrbOSiccmhWFWyamyo6K67Tb4n5dE2N9qDBJ0cRNjbXdwOY92g2VNgyoPbmSt5gqKdaIbejEqcQytt/ryo7Jk/MVwuSmlMBOE+VdL6Lnp9QLFrYhOFK/+TwJoZyDR2elzRitJY6p3RFr3/5cHmSYps73v/coXT/i1esdNgYxPT9hrR/uewJC0wT/4I8/x5/5mZf5y//yVX7tq8t87PEZirZBL1BFAy9Se5MmlEZuJWewUMsxVbQJ4vTAxHUACKgVTB6bLzNXcbB0HU0Tj9QN8F4wdMELx+vYhkaUZOMizWh/DeJsnFjeL0RDwfhK3uTjT8xQ3MLB+v8tuO/TqRDinwOngFe4KV4ugX1NTIGa8LamFtqZ4WGz7Ji7uvnsFNWcyWrXZ6UbcLdH6/ZNYbbiKLvYvHog75eyVytYtN1ovCCM9BZsU+PMdPEd8ZB3vJgbbR8hVJLqyESeJFMimSXH3NZJpZI3hwKh2pZ6YAVLCUGGSTpuhRxVfqSUXNgYKMZd0WLhAGgx7RYMQ+PcbJmmGxElGUmWcWF9sN/DugPlnMVjc2WuNFwKtsHFDRfTEAjuTMKCEmJd6wYUbGPbuaIOXg9XJYvTjNWOYljUi9aWjlNbjaGcMykOdVa226iFEA9Ndc6GGhTrPWXjvlMtnr1GcxCy3AnGB+Hbq61HajlWuj5CiAM170rDQ5WhCeZrDjfaPhJ4e/VgzZ2io7QmrjRdjtZz43VshEyqVpB7zZNHhbyp45gaYZLdk52iGAhK0Hq3A92pkk2SqkLEVsUIL0q4tOHuqdiopgkcTWdqKMJu6TpFy9iyGFXLW6z1AkqOMY5pNu9bd8Pt93ym7Aw1aKz7Zj7U8hZBrNbckaDzyHFstGc/ypaNSs6k7UWqJTLJuN7y0TQ1jns966M1d7rskHR81YaY2z+tlu0wuk9ZpvQM3XB/GVO3wzH0ocSEYjV2/ZggEZxf7+/ae8xX82jCRxNibBh0N2wX83d95dQnBJyaKu5JS3PB1rFNpTs16nKYrThjSZGdzDs3TLjcULIGxyfvr6BQzlnMVGy6fsxj85U7nunNZ6XNuNRw8aOUcs64qwbYOwmVnMWpmRL9sIOlazT64Vgzbz9RsA1+8k++h5/6gyv8s89d4X/8N6/f8nPH1CgIldyJkkxpC+XMoe4YLNQ4MIkf5VgpMYTAMQ9OwXszbEO1mE+XHezb9qerTeX4mbeVft5+QROqjf/sdInSPhdH9hsP8hS9ADwhpZRCiDLw3wCLQog/LqX8F6NfEkL8X1LKP7dbA71fbCU4+ihRsA2OTxSw9J1vevWC9VCLzUI1d8vBzhvaSoZxRpJJTP3gBVy3w4tVrlNKJapXyZm868jOhIfLjnkLZfl2CCHu2gKRDO2A4eZ1+0aCY+p8y2MzJKlqWzioeHK+wpPzFS5tDHDDdCzSvxU2V2z3GmGSoWmC45OqXWSnwaw+bCd5FEiGWlZH6nlylrZr1eqHhTdkx2QZY8HlzajkLb71idn9GNqOoGmC9xyf4ORkOBaGPmh4cqHCkwuVu87vo3X1DCaZZL9zU4auceY+WskXa3n2Qnu+aBvbjsOP0kfmgOOYinGyHaZK9h3V/nTTvrVTbPU6O8VWovj+pj3bj9JHmpgq2Dfbtm+0la6RWme2ZtDe7TXu53ncT0RpxruPVAH4h/s7lFugaeKWYs1O9u/7xe1dDQ+KEVtzZDS0F4kpQ79TLuN+x+/HN9efEYNmp7AMjQ+emryvv5FSEgznshvuSKnlHYG5So65p3PjAtlBgalr/KcfOcmPfPgEG4OQIMoo5wyKQ2mQF37zv+fphSpPL6jf7wXxmH3vRcmBSUwVLIPnjtaIDqrwGErv7T96Zn7Ln43i09G6sF8wdY0Pn57aF2fqgwZxv6LNQohfAn5MSrkihPiXwHngC8CfAmKU/lQohPiylPK5XR/xFpicnJTHjx9/6NdJMkmcKNFEx9B3tavkypUrbB5jKiXRMKC0TA39AFTpLl66zPziUXRNHOge8tuv5X4gGAYNhr41HXx0LQ9yG+Xh/Vb0WeWQyUMdqA7HuDtjBPVcLhw5uq9imffCO2F+7+R+Z/JmYmO/Psv9Ppf7MeZ34v1OM0k0jGdsQwlHHwTsxjq0l7EavDPu9ztp/55ZOAISTEPDOIDX851wvx9k3oRD4xttqGX7KPBO2L8PwhnibhidLdaWrx/YMW7GQb2Wm+OEB7mWmRy2yMtHE2cc1OsIqmMkSVV8//WvvSKllHu6mDwIY2oSeF0I8SLwfsBEMai+Swjx3wG/K4T4rt0c5L1w/PhxXnrppYd+nVHrG8CxyfyusjFeeOGFW8a40Q9Z7ars/VzV2VOR1Z3iyWee5ed/4/eHegH7K0K8HW6/lo8aYZKO23kKtr6lYPPoWs5WnH3vab8bDu83nF/rEww3ryfmyw+8+ezlGC+s98d6FY/P3am1tVPs7RgH44rTY3Olh2qffvKZZ/m5X/99zs3uv1D33fBOmN87ud+bq8j79Vnu97lsudHYNn2mfH+C6A+Kd+L9XusFrPeUvuViLbdt69OjxG6sQzfa3rgl58RUYVttwAfBO+F+v1P272eff56f/tXfBTiwMgnvhPv9IPPm9eUeaSbRNMbMwr3GO2H/3u8zxN2QZpLXl3sA/PB3/6F7jvHVG11+9otXkRJ+4L1HeO7oHlCL74GDei03xwk7uZa3o+NFXG+pv58q2WN9ur3CQb2OAJcbLoOhJuczR6pf3uv3e5Dd/K9u+vdPA/87QzdeKeVfF0LcAD4NHNyd8i6YLtlkmcQytD1vEZooWMoCFKhv4VS1H7AMjWrePBBJsoMM29CZrzp4UXrXIMbQBfWitWt2xHuBw/ut7IWbg4iSYxzYSulCNU9jEI4p3gcRC9UcjUFIwTYeWtNP1wQLtdyBDWrhnTG/dwKluZch2T3r9L1GLW8SJimZ5JG51bwT7/dk0SbJJJpg353mdhszZQcpFRNst5NS8M643++U/VsXgumyTZRkTB/QpM874X4/CI7Uc7TdmGrh0c3/d8L+fVCha0qofmTMsR1+7611fvSnX8IeMkZ/8eXr/M0//Azf/8KRRzDSg4/NccKDoJIzCUpKk3ey+I21Ltwv5ioOG1q4J23PW+FBXPk+Nfq3EOIXAENK+clNP/8pIcQa8Pd2Z4iPDqau7diG+WGhaYL5A1Y5UoviwRBMPuiYKNpMbPNzU9cOZGVwMw7vt3KtzNcPpmDjCDlLP/D3aTfHaBnagdFPuBveCfN7JziI+9C9IIR45O5Q78T7rWsHy0xgN7HXsdo74X6/k/bvmQPuXvxOuN8PgpJjPnIHt3fC/n2QUc1bY8H8u6HrxfylX/oqp6dL/Nx/9j5MXePP/MzL/Lf/6lUemy3xzGL10Qz2AONh4wQhxJ6zpN4pcMxHewbZcUpbCNEXQvQ2fwF/BviV4b/HkFL+Oynlmd0e7CEOcYhDHOIQhzjEIQ5xiEMc4hD/b8NPff4KjUHE//pHnqGatyjYBn//jz3HZNHmv/uV17hf7ehDHOIgYceJKSllSUpZ3uKrBJwQQvw9IcSXhRAvCyH+rhBiO0LJIQ5xiEMc4hCHOMQhDnGIQxziEIe4B+I042e+cJVvOjt1iwt5JW/yFz9xjleXuvzGq6v7OMJDHOLhsFtNwD8PrAN/GPgjwAbwC9v9gRDiKSHEHwghPiOE+GdC3PRVEULMCyF+d/jzj+3SGA9xiEMc4hCHOMQhDnGIQxziEId4R+ELl5qs90P+xPuO3vGz73l2gdPTRf6v379wyJo6xDsWu5WYqksp/2cp5eXh118Dqvf4m7eklB+UUn5k+P8vbPrZfw38FeDjw/8e4hCHOMQhDnGIQxziEIc4xCEO8f86/NbX18iZOh89O3XHz3RN8CMfPsHXl3t88XJrH0Z3iEM8PHYrMfV7Qog/KoTQhl/fD/z6dn8gpYw3/W8IXN/0/88An5dSDoC+EKK0S+M8xCEOcYhDHOIQhzjEIQ5xiEMc4h0BKSW//foa33R2Csfc2iHte55doF6w+L8/e/kRj+4Qh9gd7FZi6k8D/wKIhl8/D/yXI8H0u/2REOK7hBCvAdNAc9OPdHmTh9gFars0zkMc4hCHOMQhDnGIQxziEIc4xCHeEbi44bLaC/jmc3eypUZwTJ0/8b6jfPKNNa403Ec4ukMcYnewK4mpoTC6JqU0hl/a8HslKWV5m7/7NSnlU8AS8B2bfpRu+ncZ6Nz+t0KIHxVCvCSEeGljY2M3PsYhDnGIQxziEIc4xCEOcYhDHOIQBwYvDtvz3ndye2+xH3z/MQxN8P/8wZVHMKpDHGJ3sVuMKYQQzwwZUN87+rrH79ub/rcH+Jv+/2tCiA8IIQpAWUp5B+tKSvmPpZQvSClfmJq6e/b4YREmKZcbLtdb3p6Iya33Ai5uDBiEya6/9l5hva/G3A/ie//yNyDiNONKw+Va0yPNHuyZCOKUSxsDbrT35rnaDSRpxtWmy9Wm+8Cf852E0T1Z7vj3/uV9gh8dnDGO1oHeI14HGoOQixsDuv7BXX/eSWvk6Llf6vgHdi26HVJKljo+lzYGBHF67z/YJbwTr9Vyx+fixgA/enTXaS+x1zHZTtHxIi5uDGi50b6NYTt0vZiLGwOag3BfxxElKl6Kkmxfx7Ed4lRycWOA+w6Kw++Fg7pPrr0Dzzy7gZWuWoe96ME/94uXm0yVbI5P5Lf9vemyw3c+M88vvXT9kcdne4lkF85eD4rduH/7idG8eyescbuSmBJC/CTwkyhXvu8cfn3Htn8E3yaE+JQQ4lPADPBbQoi/N/zZ3wL+OvBJ4H/ZjTE+KBqDiEGQ0PFiesHu3tAoyVjrhXhhymp3/w+aO0GcZqx1R2MO9ns4+4KWG9EPErp+TMd7sKB0ox/ihiltN6Z/QBeKlhfR8xN6fkL7AT/nOwlrvQA3TGkOogO7eG8e435ukMk+rQNZJlnpBHhhysoBXTP369o8KNZ7ai1qDSLcd0jywo2G4w1T1nuP7uD9TrtWXpSotSJMWesd/GdxJ9jLmOx+sNTx8cL0QBQJtsJofCvdYF8TeGkm6QfJgU3ggVqzvTBl9RtkjhzUfTJM1Hr9Ttkbdwt+lNLoj9bhB9+vvnSlzXuP19lkYn9X/KkPn8CNUn7xS9fv+bvvFGw+ez3KM8lu3b/9wuZ5t/IOmHfGLr3O+6WUT9zPH0gpfxX41du+/V8Mf3YD+JZdGttDoWDptABNA8fcNYIZAIYmsE2NMM4o2Lt1K/YWhiZwTI3gHTTm3Ube0hntC3nrwa5B0TboeDG6JnCMrUUM9xt5y0CIcPjvgznG3UTBNuj5CYYusI3dneu7hYJt0A/UGC19/8ao79M6oGmCnKXjRymFB5x7e43N1yb/DlgjC7ZO11dr0UF97m+HbWjomiDNJAX70a1N77RrZekahi5IUvkNs1/vZUx2PygO94uDel2LtkHXj8lZ+o4OsnsGAUJA7gDHEKPrc1D3lPvFQd0nTU3DMjSiJKN4QOfNXsAyNExDECeSwgPOgxttj6WOz49+9OSOfv+phQrvPVHnn33uCn/yg8cx9jFe3C3k7f05k9xy/x5hvLFbeKfNu90a4eeFEE9IKV/fpdfbcwRxiq4JzHtM1mreIm8ZaIJdndhJmhGnktNTRaI0u6vDwkGDEIJTt43Zj1JMXXxDLHzbYfQ5S47JuVllFHmv5+duqBUs8raOoakD1r2QZpIoyR5pcFe0jfv+nO+kZyHLJGGS4ZgaQggmizYlx9jxPXkUuP2+T5Vsyrn9H6MQgmP1PF6cUs1bj/S9T00VhvdtZ3MhTFIEAusRJRK2WiO3Q5xmpJnctz1gomhTfMDn3o9SLGN3n8Xb5+VWMHWNc7MlkizDfoSJ/btdqyTNSPbxHt4NcSo5NVVEIh/pddoLSCkJ4oyyY3JudvdjsvvF0XqeMMnuO0E5iv32ei8/Us8xndg7Gt9O5tyDwjF1zs6Ubll/gzhFE49uTb4XHFPjzEwRx9THz5ltaGgHJA64G6Iku+vcvt998lFA0wRnpu/vzHNQY8r7icl1TXBm+uH2q5G+1HuO13f8Nz/y4RP86X/+Mr/9+hrf/vTcA73vXmGnZ/DNeJAzyW5A1wSnJou4UUIlZz6y990Ko+fuftbqB5l3+4ndSkz9FCo5tQqEgACklPKZXXr9XUXbjbjR9hECTk8X73mjdnvzTNKM8+sDklQyXbaZKTu7+vp7DU0TOJq6Zmu9gPVeiKGrB/+gbR67hc2f8+xMaVcWxZ1uUFkmOb/eJ04kE0WL+Wruod97p7ifz7naDdjo37xGByW5sxWkVJoSQZxRzZscqaue/YN0eBuNMYwzagWTxdrBGWOcZlzYUNpjUZoxXXp0a5gQYsebay+IudrwEAJOTBYeGbth8xq5HcIk5cL6gCyDhVqOeuHRJvlGeJBnaqXr0+hHmIYKundrvl9uunhhStExODFZuOvv6ZpA38E13m3cfq3iNOP82oA0k8xU7Ec6F7bDcsenOYiwDI0z08X9Hs5D43rLHzKANE5Pl/Z7OPe1Do3wKGO/+xnflaaLu4M590Dj4NYYuuvFXGupNfnUVPHAMKlG1+pyQ12Lgq1zcurgzhsvSri04SIlHJ3I33FgfpDn81Fgp3sjHNyY8kFi8ofdr16+2qZkGzw2u/O172OPz3C0nueffvbygUpM3e8ZfDMeZUJqBCklV5ouQZzRzyfj88J+jGN0Jth8btkJ7mfe7Td26w7/JPCDwLdxU1/qO3fptXcVYaJ6rlMpkRLCbQQZN/ohF9b7tHe5Nz5OJUkqCZKE1e7ORFT7QcyF9f6B6hcH8KKUTEquNAZ86UqLQfiNI7S3GddaLm+sdlnrBcTp3ol4Lnd8Lqz3bxGGTDJJnKhnpONHtN1oX8XIe8Nn8XbNEn8oQpykksYgPNDilplUWiVenOANtWKklFxveVxYPxhCwWkmlT5MnNwyntFasJ8aDSOWDzAeWy+Idyz2PVpbH1Sj7XY0Bur1btcxCcb3FqVLsI9zJ0xSLm4MuNp0yYZjCJOMbLic9IfjC5Pdf/bWewEX1vt0vd1Zn70oYa0bIFFrU5Lt3po4fp6G12Ov1lsvSriwrgwoHgZRcnMuNPoh59d6vLXa3/c1ZLSutdxox/Nstauek4Mo2r8+CHCjBD/KyIZV40vD+XQQzDl2sn8kmYr9ANqe2suzfRx72424sN5neRhXdvd4zgF4cUIviLnSHPD6SveRmhfsBH6cEqUpa93grs9VkmZcbrhcbrh7eq22QxCrdacX7EzrNM0kV5sulzYGB06I3g0TLqz3WbpNr22ko5mkkpYbHoh1yQ2VXtooJvdum+u7vdeO8PLVNu8+Wr0vFp+uCf7Uh47z8tU2L19t7ep4HhS9IGajr2LX7c7ge7W+j9a8xj1MIaSUdLwIP0rJpJpvcOf9fpTo+PE4xvXvY908aHvlvbBbialrUspfk1JellJeHX3t0mvvGrJMcnFdZT0HYUK9aFF2tq6gSym50nBZagdcaz1c4Ho7cpZOOWfQdmPiVO5IcHGtF+JHGY2+OrgoMbNg34PfuYqq+LXcmKtNj997c/2RbHpZJtnoh7u++N8NK52Ajpuw1PH3RFskzVRQe7Xp4UfZLUkfy9CYrTjkLZ0gyrjR9nf9mdwpekHMG8s9BoES09sclM2WHYqOgakL1nshlzfcA5uc6ngqQdFx4/Ea4EYpLTdSLlbrg30eoTokJGlGx40pbVqn1noh672Qt9f6BPH+XN+8ZTBVUq2PM2WHjhdxteFxpeHd0wVISslqN8CPMla6wQPP5SjJWO8FeFGy6fVuDWzrBYtq3qScM2i6ITfaPtcf8dyJUzXO6y0PL0yVocAwwC7ZBhNFi3LOIEhSbrT9YRV894KHNJPj/WM3xH1XOj5fvtomSjOCOGOmYu8qi6+cMwnTlChVa93lhrtrr70Z670QP1IGFPdjJNB2IxqDcHyPCvbNuSAlXG8FvL7c483V3p4kGXeK+apDmmXEacZSJ7inO1OUZGz0w1v2HzdMWO8Fe7qn94OY9f7dkwCgWDZJIul6MUVHR9MELVeJ3/f85EA4j7mREnReavt3FUR3TJ3psk3O0nDDhBttf5wUehRoDsJbkvcrw3VTQ1CwdZLhnLuyB3OuN7zPtbxFmKQM/JSrDY8L632SfUrubMbo2sxXcrTcGBB3jbPaXswgSBgE+2cMU82ZRGmKF6Z0vJg4zcbzdatkWdeP6fmJMm84IEL0aSZZ7wdcbrj4UUbrNlOXuUqOomNgGxqr3XBH8cVeYsRSW+kG6DoUHYP56k3W4+a99lrLY70X7EritR/EvL3W57mjtfv+2+9/zxGqeZOf+NSlhx7Hw6LtqjhxEKYIwbZn8I1+yI2Wz0oneOh7LlFOyf0gHq95K53tTSFWewHXW8qJL8ky5qvOHff7UaLjRdxo+SSpREp5X50za32fGy2f1W5A7wDslffCbvU1vCmE+BfAv0G18gEgpfxXu/T6DwUp1cHHTxIurPfo+DGTRRtDFJASkixDcKtegZSqCn+j7VHNWTw2V3qo4NuLUr5wscHTixUKtkklZzJTdvBjtTnnTYNK/u69qyXHwI9SHFPD1DQuNQb4UcZSx6fkGFi6zmItN86mB7HafIqOQdnZu55Yx9Q5N1viWsvlwtqAS40Bnz2/wX/+zWc4usuU8M1Y74es91V7nWVoHJvIc6SW3xNNADdM8OOUIE6wdEHHi9CERpikTBRtdE0QJul9abR0/ZiVjocbpsxWHKJE8tpyh/PrAxYreR6fL5Kk2fiZnCrZ1AsWb6z0kBLSXWQo3A1RkrExCFjthuQtnfmKw1dvdHl9uYck4/G5Mn6Uw8yp9qOcpXNissB6Lxg7Vxy07LyUks+e3+DL19rMV3Ocmy2PBewdQ6MfRLy9NqCcM5mtOEyW7H0Z5x9caPCVa23qRYtzM+VbqM5CwPm1AXGWMlOyOTdXfuTjGwQJmZRMlmwcU+d62+Plqy0cU2OuYgN3X3OEUIcgN0wp2gbLXZ9XrnUYhDEfODV5z/c+v9ZXB9lUYpk6qz0fP0goOtZYf2AEQ9c4Us+TpBn91QQJpHvsUJVlkkuNAY1+yFTJQQi43BxwYd1lpmhTzZtMliyqqGsxCjDOr/UBSZopNu9uSb3oQyHc9V5AztKJ0+yB6fDLHY9/99oqHS/mmcUqj8+Xx61r/SCm58fUChY5U+dq0yNIUhaqOUrb7EGDMOG1G11OzxSHVT2PmbJDL4xxDJ0kVddklHScr+TuWOeTNGNjEOIYOrUdtkMWHWUkYBrinnt7mkk+d2GDLJP0ggRL13livkTeNuh6MdW8Wi9Wuj432j5elOCGCY9gmR4jTDI+e2GD4xMFFmt5tOGz5a+7LHd8qvntYwFTvynaX7RN0kxyueGOYyHL0LENjcVabqxt4YYqKVTNmw9kBBImKVca6vAfxhkL1Rw32j5RmpG3NKJEkknFyCvYBrap0RhE+FEXKZXbWyVv7qs5R9uNOL/eRxeCry93WWr7TJYs6oUj1Ap37h8zZYdq3sRfVcWPvdgjs0yy2vVZ6vgUbIOTU0X6QcIXLzVpeRFPzpeZq+TQNUgzmKvmODFZIIh7pJnc1TUyTDKuNAf0/RQpJZciFyS4UYKuG4Dgbu/WD2Kag4hq3ryrlmFjEJKkkqmS/cCtXl6U8qUrLWbKDgvVHBv9gHUJBUcD7oxjC7YywMmkSpaGccZ8Nbft+6/3A6SEqaL9UHFqmKRcbXoMgoQ0hXrRJMskF9b7vHK9Qzlncma6xNmZW/fCvKWjaYp9NAhjmgPBRPHRxjdZJrnR8VjuBFRzJrapcbnhcnF9gKXrHKnnOTtzs31yFFM2BiErHZUs38+YMtn03vW8zWzl1iSFQCVgb7Q8ukHM0VqexXqeuYrD1aaLrgmOTxbvW6foq9e7ZBKeP3b/iam8ZfCD7z/G3/+9C1zaGOxre+poXTF1jfnq3aULekHM7765yuWGx5F6HsvQOL/WZ7HqMFvN3/c8d8OET76+xkItx2I1jxeptuXtNJr6fsKXr7XQNY3F4VglKvbNW8YjbysdPfeVnKmSZHeRpYiSjOttD2sY+7692uMXX7pBlmU8tVDh8X04L9wvdisxlUMlpD6+6XsS2JfE1ErXZxAkzFUcio5JYxCx1gtpDkKCWNnCXvJcHMNgsZ6Mq4G397pWcyaD0KJoG7TciLnKg2v7hEnK+XUXARydLAytJxOudzwqOYtrLZencpW7TpSpok3BMoYbokAtgSrBoQuBLzIqOXOc3LrR9vGHDJDH58p7OokcU+ebzkxzo+lxo+0TxCn/8298nb/1ve+itkcbnxAqmFjrBcPEkBJ1ux/NhijJMDRx1yBhrRfghgmDMGGxlqPrxSzUclxYd8fPSZxJbENjpRPsWGcriFOuNT1evNxCIjnq5ik7JlebHmGcca3lYpmCcs7i2MTNoCjJMo7Wc7hRSu0RCE7faHu8tdrj/JrLkXoeXUgurg9ww4SOH5EzdQq2yfNHa+NrmKQZ1eGmq2liT4QCR/dFsci2X8KyTJJkcqxxcb3t8ck31llu+5xfH/DYTHk8ZwxdY66SZ7UbomsajUH4wImpEYsnbxl3BC9bIUxSLF2JGa73fT53ocGF9T6agOmSTTV/MyCZKtrkbR1dM2h4EeceaIQPjrYb8fmLDTp+zPHJAu87MUFrECIQRInSnLoXTkwWiFN1X16+0uIr19ukGcyWt19ju37M6ys9Vjo+bpgyVbJY64ckacZcWbLcNajmTaZvWwcyyXju7LWO01o/4I2VHlebHhMFixOTBd5aHtANIrpexNmZEhv9kGrOGuurJGnGfMWhFyaUHHNXE+xhkrJQsen5MYam1qqjEw+mkXCp4TEI0mEbg2S27IwPShfX+2odNnSOTeZxwxTb0Gm50baJqSSVnF8fgFBsrK/d6LJYjXjX0SoTRYtKzqTphrTdmEGYsNoLODFRuOVQtdIN6AwZd46p70i3ZrJoU8mZ6EKogDnjrvukH6es9yKWux4Vx8LQE165ltANEvKmTsEx+KYzU8xVcrhBgmUINCGQjFo2b87vvUIQp6x1Q5baPs8sVkhScEzBxsAniDPWeyFH6ncvFgkhOD1dJIyz8fMnhCrStb2YsqPaLKt5c3w/rzY90kzS9eMdB7zhkOk4mqOj9wDohwkdL2J9EBBEKoFqGIKpgk2tYKkCUZRypanYCAVL50h9Yt+0dAZhwpeutHhzpU81b9IahCx1PFZ6PudmynzTuSmEEHfEGrahc7Sex4sTJvcgRlrtBby+0uONlT5Tw+LBIEy4tDEABF+63OapRcW2eXyuzGJNrbvHJ/N0/ZiybRIl2a7oq2aZpDWIibOUvp+Syow4yYbix1B2jHGivDkIx4XjSs5kqeMTJ5JBqESHb58/vSAeJywkkrlK7oHmmmLtRmgCWoOIpbaPhLvq+eQtpfXTctXZYiSWPlWyudH2STPFaBhdv44XsdZVxTohuC8dulEMM8L1ls+FddWOp2lq7pQcAyPQaPRV69FE3oaZW1/HDZPhdc7woww/CrBNXTl3bhMH7ybW+yFvrPR4e23AZMFivupwreEN9VshE5L5psNjszfXkiyTlGyDrGIjENS2KeDvNcqOSgokmaSaU8n7zXvG9bbHteaA1V6ohOkllHIGKx2fqy0PTUCWwePz5ftas758rY0Q8O6j1Qca9w994Dg/8elL/JPPXOZvfO/TD/Qau4GJgkUm5R338fY4/a3lHl++2saLVEHiWtvlWsPnasXhQ2c0Fu5TZzeIU95Y6bHeD3juaA3b0DH17Z93N1KFJV1A0wtJsowvXWnR8RJOTBV4/ljtkepd1QvWOLG3XQz7+kqHr13vjfVUf/3VFTb6AZmUSKRi6Ar2lLDysNiVxJSU8od343V2A16UcKOlKkVXmi4fODWJMVw4CrbBhLToBQleFLPRDynldJz/P3v/HSVZlt/3gZ/7/HvhIzIjffmqrvbd0+MHA0eAIEEBIjkURXG1u1yuaHZXokRxKS61Z48giUcr6azo5JaUjihpqaXRAUFB5BIEAYIgOBhgfM+0r+rylT7Dx/Pv3f3jvojKzMrKclmmwfyeU6erKzMiXjxz7+/+7tcY6jQoRpIaLDRN8OJilRxZNIQe71RluaTvx3QDk3qgbio/zfBMAz/KSDN5z4k0y+V0IpqYq55sqQKiXbHZGkVoQuBYdx6SyXfWhOBp9HWrnslPvDLHr17aoh8k9EcpP/fd2/zvvvBkYkrbRcMgTnN2RjGeqT9U823C6rFNjXOz5bsm5TBRUjVQxU/VMWmVbYZhWjAZLBxTRxNqwge1wIrS/L7fVxTxyZMYb5BoQu0i5DJH00yiRO0GTzAxsnUtjbOz5acS/6wJgZQCQ1cLLD+W1DyTjWGIY+jkUtAdR1Nmx4TmDE/OaHr3dVnvh4fu/uw2mp0YS7umKoKDNKfqmXSCvZT2E02X7XGEzLmrufEw2BhEjKOMcaQWcocVIbd7AZ1RjGvpnGuXcQ0dx9QJkpxmyaLjJ3sKoKprcmG+wjBIOfkMTBjHccogSNkexmhC8MZynXbFYa0fYRuCunv/xo8QAsuY3MOSKMmnCUOHQRNqHI9TyUrTxTF0dsYxfizpBDEn8hIbg4iaZ05ZMBMDVcfUONd+8s+OJgS2qZPn4FoGrqVj2xrhUCWpxKnEjzO0YpgYhkoGDQ9vBHo/3Oz49PwEy1AJWFKCfp+C7DAsVB3aVRsp4a0TDXRNsNaPGIcpO6MEIWAcqYVhlCkWwYM0px1To2RrrPVVg9+2NNoVe/oMThZm26OIdsVmtRfSLFnTa6nvaqRoDzHdmLpGz4+52QnQNdWYOWgxPnn/+apLq2wRJTnjKGFzGJGkkhcXKvTChLapU3ZMZsqKKacJMb0Gnq1z9gnuVutCsXktU+PSxpjlhkucSQQapi4YPoCsOs0lV3fG0zHzTJFENC9t1vvKhHj3/WnogiyX03rjQZAXcpfJM3p6pkSQZDQ9i7Rocu2MYrJM0ixZ6EIrNg0cMim5sjWmF0TsjGICS3+mnh+aUOxl29DIc8ls1ebDjRESGAQxQgh2RhGrB2xc1TyT2iHM0sc7LgHF/acJQRhnxGmOaWjoQjBbsen7aeGjkkybV55l4Bg6lwuD3bmq/Vjz4ARlW2cQSiwjJ041/Cyj5lqUbGN6PqSUrBZNptU0oOaaOIZOkqbYxsGNpt33na4JbnV9uuNkOpc+KCQSIcDUdQxdzTFZLmke0jQ0dI1SEV8vJdimziBIpw3y7VE0ZcPurk2Nhxig8lxOr8UEmlAS8Ksj5VVYdUyVjIrGXM2h6hicnt1bF+w+t5N6VgjojCP6foplqLnxSbNANAGm0EGqsbfmmBiGqjH9KENIwc7oTk2WZjmXt0YkqWSh7jyRJu7DolW26Y4Vs97Q1ZwxaVB0RjFZLoiSnFzmmLqg5phkmaISCMA0tIdmQ3/7Rpfz7fIjNxNmKzZf+dQyP/vtW/zbP36B2WekBBBC3NWUPegaj2Jlc5NLyWzZUnWLVqxlH4HNmUuJH2VUHfU+D9Jwn686NMsWGoKZks36IOR2N8SPM+ZrNlH66MzzR8FB524/en7Mb1zpcKsbsFhzSPOcVsVmaxhhGxrtikuSStZ6IdX53+KNKSHEBeC/BuaklK8IIV4DflpK+eeO4v0fBpaukea58l6S0Pdjlhoeuq4m6JKl850bPa5uj2iULM7OlOmHKbq4m91R9yw+f2YGKeVjN1dKtsHrJ+pUbeVDMQgTFgsJV5LlXDgkaSFO8ymraxxlUFGD+mSQbpUtRpEySJ4sxlaaHsNQTdCH7YQcZZT6mXaV/+CnXuKv/rOPqTgOUZrz65e3eXmpSqt8dLrcNFcLu7mqw2zZVt4ZRWEg5b0bfLsxKdKjJFcRmvvSCkxdwzQESSo5O1Om6pqqSTCKGYRqAdYqW8xXHcIkJ80DHFN/oGaMbeicmS3hWsrTYaZs88H6gJMtjxcXypi6jkCw0ryzK9DzY/pBQpKpnU/H1J/4oDih0J6a8agUspeybfDZU008yyCXksVdsg4/zhiGqtgdBAm6dvSpMLuvy/3OdZjmU6PZUZjimRpxmvP73lziH7y3zmLDZaZk77lnTEPnMyebZFI+1vn1LJ1RIRO63/uMigZkUCweRnHGb39pDkNX8sIzM6VCC3/nvn5tqTZlHD0qwiTD1B9cfjrBTNlmrmYzjJNpc+D0bJm5qoOu318WtR+tisPZ2RJpnnPqPo22imPy2dNNTjRdNKHhWTq6IYiTnFbZpOHZWIaSO4dJVkiN7phFDoKUimM80d3hdsXm0ycanGy4GIaOqQlW6h6NQsJdck0uzt+Rho8itZixDY1hkCAlRxbbPvF4i1PJubaKD98/z0VpRrdgNd3vmTozW6JdUefYNnX6/sQsWfLCQhkBjKJsulh6Ya6MeZ/7oewY/MD5GUZhSrOkWL9zVXsPI6rqmEWcu5KauZa+5/ws1BxKBb1+FKbkFoeyprJczbsTJsnk34IkO/CZck2dH7wwg2PqGJpgrRfyjes7nGy6xGnOStObsjfnqjauqRdNOuVBI1ALrzyX97z3dh/To6DkGLx1sk4/SOkGqpl9ojiuYZCy1Lz/HBwm2XTMHEepauYX57HuWaRpziBIqLkmhq5xeqbEOErvKSvYDVWfqHM7eUZB1UYl22AYJqSZ5HQx3yR5zlLNo14yFXNK1wiCBEMTXGhXKVkBSJ7pYtWzDD51oslcLWCuosbCfhiTpnBhvkKc5lzf8YlTtfMfpjnlp7CYmava6FqdxZqrJFxCcLsX8upynaWaw3zN4WY3YLxvjhpFKcMwIYwzhFDNzEYRdPGo96VjqibRe2tDbEMnSFJONl06fkzNVTUUqIWXa+kEcUapeJZOtpTs5l6f7VkGZ9uKfVtzTT5cHwLqXtvPZgHFyEpzSbti7xk/LEPnpXnVXK65Np8/01INnvvYUZRsg/Nz5WLM1gmTbMoA3C0vrTgmp2dL5FIe2lxIs5yNQUTDM/FsgzjL9zSlAE40PQxNoGtqXA/SjNmyw7l2mdeT2vQ87sbuc7vSUAl+piGmASpxqrzoRmEOgkdiuk/qicMwW7F540SNhbqNXYylcxVlmWAIQckyWWrcGafGkdoAc02dYZBQsowjmxsfFWGSFbV4Tj/ImKsmNAvJ7mLDJUpzVloOaSpJcrURdHGhwlxNzQut8sN5Mua55NvXu/yu1x4vVe+PfPk0f/MbN/iffvM6/9aPXXis9zpKxFlOkkr8OOX69piKbXB6pswLcxUQki+eazFTdrjR8XFN/ZFSyR1DbQrNVCycB6yZF+ouP/7iHLqmNhonknVNg+WmR+kR5eOPMs8/6GsGYYKOhl6sT1caHr/79UXWTzVYrpdYHQQEcf5Mpe8PgqOiNPw3wJ8G/gqAlPJ7hefUU29MGbrGSws1Lm0O2eqEVByDmbI9LYjeWxvw0caQNJM0S9As24fuiuiaGrwzKVmo3u1tcRD8WKU21Nw7lHfH0DnfrtAZR7y3NlCTrVHhxcWqotLuG9DHUTpd2LuWTqtsMQgTHFNjox+wMYxYaXi4lk6cZtzsKP+NZJfW/l6a/An6QcKNHRXbe2b2aPygLizW+Xd+x8u8c7vH27f6/O1v3KD3TxP+xI+d47OnZ4/kM8Ik45vXOnzqZIOKo7wHPt4a4UcZFcfg1L5iQkpFBbcNxXDaHEboxURdsvUDH3aB6phPZIJXt8c4hkaQpOyM4+ku72TCf9idcM8ypq+J0xxT03EM1WxJUmXOHyYZNVcdfz9M6I5DrmwlbI9C2hWHFxer0wluUPi7NEvWI3l9HARdUx4lk4ng3dt9LF3DMjWqjsH1jk+zbE0bO1mW0xlFdIOIGztjzrYrnJopTXdnlGdVhGvqjyyn0jUVTf8gg3TJ0mmUTKI0p+zo/KP3N0nSnF6gdg82eiE/cqG9p8jx47Qo0iQVRy10N4cRjqE9lB/DXNVRxd8DNH7maw5bw5Cqa/L2rS7Xt5VMJcpUo6pdsfeMD0GsvDrCNEePlV/TxjDC0rUH3gmbsIhMQ53Ph2lOOabOUsNlcxARpSqV8/rOmGEhn7bLd1+X7jhiaxixcIDfUKtkKbZgjtpSvQ+qjjkt7jcGIQ3XIrEkS3WX2z2fXEK7YrHWj4iSjBxJ1TH4cH3Eai/gRLPES4t3pAL9QKUJtkr2kUSXCyH2zCtXtkZ4loGpadRLBj0/YbWnGtmOqTPw1bPb9SO2RiFLdY+6Z+6R8e6MIsLiXniYhulCzeFWV/mRDMN0yn6YjC9lS+fXPt5i4Gd4ls4PXpg9tDklhKBSLFr6fsxvXO1QsnRqnsmL81UMXTV/O+OYkq3fsynV82Nu9wI8y0ATgus7Y65tK1m7aQg+fbJZsLECoiRnoe5MF7hRmmPtOwdRmlOydVYLo1QhYLnhKr8uoOFZ6JpQbF4/oeNH6EKj5pq4loZradiGfk8jVmD6/G8MQjp+jFP4Qr68UGG9H3Gz43OqpTYcbFN5YnT9hDjJaVdtyo6xhw84DBP6xZhtG/o0fny2crd3yYNAAK8s1fl731vFj5URcpzluKaSje2/rpPglN33fNk2qLoG17bHWLo6/1XHRNcEpia4Wkj3ekHC2VnFFLhfnQFMmSy2qU2vo6aJaeOuZBnc6qoaZraq4tdNXaNRstgchHy0MUQU514IDUNTPj+zZYeKYzIIE8rWk2043wtzNYe54nqNwoRXFurkUl3fv/pPP6Y7jjk1U+LTpxr0xjHr/YDlhrdn/jqoZnwcCCGYrTjMFjvsH64P0TXBje0xFUsnk6rWWGm4WIZimw+DhHdXBwihFosly8DQdN653cfQtKmEKZeSuYrzwOdasRhVE3NnHBEPckZRxjjOqDgQptm0ZjkzUyJKM7ZHMdd3xizW3T33bZioza+qqzZ4kUoCVCl+Z65i8+2bXWqOdZdSYK0X8BtXOkoStVLj1Mydms0yNFzbIMqUzKji6IRpzvWdMSea3l2NkCDOWC+kpLsZZY6pc3G+Mk39vrYzwjXVfVq2DUZRqnxrPevAZu43rnVY7yt274+/NEcuJZ6l7xk3DF1jrWD8p7nk1cUKlqHGXe+QsfvMTEmNXeMIP04p2QYNzyKXMV7RtJo8gyea3qGet/sxqSeM+7Bx98+NN3aULYYEZssWt7oB2yONdlWN92uDkFGUsDUMuNVVIUTLTW+PFH1zGJJmUm2MHeHzf1BdsNYPuL49ZrXvk+dQtk3WeyHNkj0NYxmECWdmSmwNI6I0JyvY94/KPLyyPWIQprz5CMbnu3FmtsyXzs7ws9++xZ/40fNPbazMc8nGMEQTYk9DWHkhjdGFwDQEl24Nubo15qsf7/Dl8zO8ulwnR9IqOdQ964HmmXtBsZclcxUbbRdjcRI6lSM5M3P3Gm5nrAgB8zVnmqA8U7aZ29fYflBkuZzO8zMV64HsgbJcqqCjOEPTBEsNd7oZEyYZYZKxM4x5e7WHyGGcJJRsg5mygyaUJUy1UDGcscqKiPGMpO8PiqNqTHlSyq/vu1DPLI7L0BWVchSmXNoaUvUMNDSqnkGaqXhVW9fJcg7cVdmN212fr1/tAvDGSs7pfQ2INMvpB+pGmFzsGx2fJFUU6ZcXqwghEEItQDvjiFGYsjWKqDg6yw1vWtRkuTL5HEcZlzZV3PTrKzUans1CzaEfJKz3Qr57q0vdtXn7Zo83Vhp7pAsPk+Y0SYuQu6IwjwLtqsMPlef4/u0B760P8KOU/+Dn3+PP//7XubBQf+z39+OMd1cHzJRsTsx4pJnEj1JAHEjrX+uH7IxiNE1p8fu+ujVPznj33L261Q3YGinapmfpWLrOtc6YkmkiEIzDo/Oq0TVBxVWSnyjN2B7HhHHGN652+NTJJlGSqRjyrTFXNkc0XItPnWpwpl3GNhRL7MaOj5SKUbffAPqoULINcqlosevDkCDJ+P6tPkhoV22ubI9Z7Qe8t6qMGoM0p1W2ps2StX7AIFDn3rMObgg+CHRNoGv3f62SmGi4ns7tXsCNjiqCPt4YgwDb0Nga3vE66fsJNzo+1ztjZss2VdekbBtTar5XyLJ2ox8k93zmHuT7BXFGEGcsNzy6fszV7TEb/YjVvk8QZ5Rtk63hHW+YQZhwfdun68dYhZRgwiADtcjcX/BOmEO7MUm+SQrG5oOczz2vjzIsQ42hE8ZPb5wQZ/ldDbwwyfjqxzskqWRzGPGlczN7JvWtofJDCZJs2vR4UNiGRqWQJfhxyrVtH6EpZmyS52wOYtJcMXi+eb1LlsFgJZk2piaFiZTqWpyfO/pnxzZ1aq6JH6dEiaTrJ3R9lQTXrijmws3ueLp4/OypJi8v1aev9+N0KsPIc8nKQ8g3657Fh+tD1voR64OI3/7SHJomuLY9Js0lH60PuLI9BgQvL1bx4+y+rKksVzHKt7oBYZwx8BUzt+snzJStaYroYeiMY/JcsQWzXBXvEokmBEt1D0PXGEUpG/2QUZSS5jnLdZdeoDZsZsp3xt6JVErTmDasen7MOE7VQqbhEtYyFmouNzu+8mIaRCzWHN5f67NY9x64SAR1z3WDmDSTuIbOMMrIpGRnqJI+HV1wqxdyeWuIhkaYZUSZ+vxcjjnXLiOl5HoxZo+ilFOt0vQZHj9EQuB+GLpWzAmC9X4wld5NWElwp2a52Q3o+TFnZ0vT8UUIQc9P6IwTrm2PWWkqlkerZOFZehG6IR46NXLSBIuSHCHUGJ5kOV+/2lFsQVOwWHMZRRklW59KtIdhwpWtMd+90Stkg7BYd7nV9bkwX0HmkvfW+tMm46N6px0VLENnpuIgJVzdHtEfx+o6o2Twt3YCMin59MkGryzXSDNJ3TMPrBmPErahoQklA9/2YwZhSt2zsHSNhq4Sz75zo8Pbt/qUTJ2Fgk3cGceMopQTTY/1QTg189e1+8tK9qNkGySZSivrTiLPCx/USWNKKzYCJ3OuZUR7nsur20pmenlTsfRudX3ma2oT6Mxsme1Cmtb3U2arFid2ear5u+rdYF+9K1CN7AlbsDuOGEUZcapCDfYzXNb6AVujiCBSgUTVXfJ1Q9cwgK9e3ubtmz10TfDbXmxzrl3hRtHYHQTpns2R6TEWz0mY5PSCmLWesi2YsOelVPOHStUTGBr4iSRIY7aHERfmK1O2U54rv8eJDLIfJPwv373N1e0xZcfgC2dnuNCuTCWPO6NpbhX5Qz7fk3picv4eFI6pU/eU71DHT+iHKRvDEF2DE80SV7dGdP2Ed2/3SHIVfGFb2vQ57wfJHu+ux/EB3o171QWdccw3rne41QlASF5ZrJNJyVzNYa0X8M5qH1PT2BrFVFyDshSPzU752pUOAJ851Xzs7/WVt5b4k3/rbb5xrcPnzrQe+/0eBNvjiO2het5NXcnK00xydXvIVy93EKgE2evbY67t+JxCcqMz5sxMBSEerI6+H0ZRyocbI4Ik48sX2tOm3GrP5+2bPXKp7t3dgQFJmnF1Z4yGalwHcYZpaORSEUAeBUnBDgMeWIKeZEr50RnHJLlkFKak7Zyqa3Jla8yNjs+7t3vsjGMqto6f5DRLduEptReaJu5SBz2PeKzGlBDihJTyBrAthDiLMjxHCPH7gLUjOL5Hgq4JyrbBwFTadBVBmtOIDNpVJRuxdJ25qn3fDfqJke8k9edEq7SnkXW9iADXNcGLCxWEULToJFW01v0FxlLdY3smYhAmpBlsjgIsQ8MytKmRqBAUUZZwdcuncdIml0x3f2VRxE9c+jUhWGgoPenMASkw90KrZE0LxfoRm1TrmuD3vLHIP/5ggzBR8qS//ps3+D//iMV87fGKR72gGsf5nUQf29AxdEHrgO8/kUHmeeG9gJrEzEO0/nGmjNWjRCp5iat8GoZBRtXROT9fpnVAY2oYJvdxyTng+xTeJlGaT2VwnVHM1jCiO96gWVIJjr95pYNnGYyTjJKjT3cJJ/dcnOb3NfR7HJxoeozjFFvXeG9NeRbEScbXPt6hUTJYqpcKnyCBEJI8z/cweCZMj8nC5Eljwp6I0xyE5OXFGv0gZrbU5PLWmH6Q0PVT1voBCzWXMFXxz1GakWRqx/OwY54wDh8HV7fHBQMhxjMNzrRKCClolcwi4j2lM07YGUW0ympXbhyl+HGKKIr5yXgjBHd5veS55OOt0V3pYPM1h41BROkRG4TLTU/JYSWULWPKeDk543F2prxntzXOcrUQLRyk9o+JfpQrDyEpCJOHW5TXPcU2EUIZMYeJYnCt9QJk4bnj2TqXN0fF8y5p7FpEaMV1TbPHk24ehsVi4aQLuLoz5spORpLkfPdGjKH3uTBXYRilCAQSQY7y95lA18RUHvJIx1icbk0I0jzH0nSVRpvlRGnOiaZHz0843y49ULP9djdQqaL9gHGUMghT2qHNej9EiAeTVjVLFn4cKCmmpsavs7NlFurudC6ydI2tUcQozFjth1zeVD4UK00PTdxhME0KvDyHVs0iySSOqRVNY4p45TvX2jZ05qtqF7xZNLgmc8SDoO5ZvDhXZa0fYpsaTc9icxDR82OklHzvVo8gydGEaqJUdYMkk6SZnMa47x2ztSK4w2YcZ8xVH0+a9tpyXbHkooStYQxCSZfCRI0XlzdHdP2Yrh+TZXBN+MyUnWnTfVLOJrky7J7I3uNMcrKlmML1hzQgXqi7bA7Cu9hAk+fd0DTVeJI5w1Cx+SZydUMXmIZitS3XPYI0QwiND9dHnJ+TOLpBxTUfKHThScMyNC7MKUZvq2zxnRtd4iwnzySbg4gsV/NjN4intUuS54fWjEcBxZjTi+AQ9TmjKObd1RBD08hyuNEJ8KMMpCwsMSSupSE0A9fUaVftaYN8P2PxQTCOUm52AoZBiiY0OqMIPx6qBn3ZxirmIaeQwUqpJLQHIUoySpZOmCgJ2uTa73FUlXvP40rDw49ScuD8Af5TlUIunKQ5P//2KpvDkIWaeyBTxTZ01nqKBbLWj/Y0pu5832TqjTeO1BhlFp5sd/wV9+LNlTqXt0bMVx00ceccT77f+iBkexhTtgwqtqrhVR2T4Jo6N3Z8LsyrDcsr2+NpWMFKU0kig8K6I5gcz67jmKSOAQ+cbDrBQs1lfRA+dBOmXXXU5pqucavrc6lQs3zjaper22MaJYvVfkiWqwCTPJd7mk+7692jnL/vVRfMVx1EMaeYumAcZZxoGvzapS06I9UsDETOKyWTc7NlguSOLPVR8euXt1msOZw6gqb7T7w8T8l6h5/99q2n1pjaPVYkacbtrmpSbQ6VN1uOZGMQkuR50YSBt042aZYs5Z18BI0p1WcV+ElOLiUak3WgIJd7Azgm2BrFXCvWCZ8/22Sp7rEzimh4FuVDmNWH4VHmeacYe8M0o+/HbI2UN/KCZDpXDkO1dhlHGW+s1NCExolm6amss54EHpcx9XeBTwH/OkrGd1EIcRu4Cvyrj/nejwQVKx0q40ckFVvHKnYMaq7F2dkyL85XGUdqAXO/WO6lmku4kHFlc4xt6FzfGe8xXJ7sHO5+r1OtEqMoPVCDauiCtwoJmpSoTrLUiLN06i3kmToVxwDJtADUNcFKw2MQJvyu1xZZ74eMY3VTXmhV7qsJT7Kc9X6IpQvmioHd0NXOw+YgLHbNjxYnZsr8xX/5Df5f//AD4kwNRP/lr1zmx16Y5YdefHS9tGcbvHmizkLdVTsXKFp/LmFnHOFY2p5UloW6Q+f2gCjJWG4oM15D06YeT+uDEFPX9iT6LTc8NgcRwhXUPJMzsx66phGlKma0bBvTJMAJBmHC1a3xtPn1MFA7CWoA/5GLbS5vDvl7b6+phBlT44WSxQ9emOV21ycH5soO764OiFKV0Hey5SnJ2hMwHJ9A08R0YfHGiQaLdZdffHdDnT9DYGiCN1fqNEoWnWHE68t1buyM6QXKO+ZUq1QwC7Un1gSQhaxMRYqrc1eylJz3ds+nXXFolixWWmoHuOIY06IxyyRBmlKxTVaaDnNVVxnC2iq5Zr/3zMOyBiZIMiURyHLYGYVEqWSxoXw/wkQlfrTKFjvDiPVBSKts4ccZLUBIiZ8os9LFukOrbFP3lMzXKha4e46RvRPuRHY5aXTvT14Ok4ytYUTJNg5tUjQ8C00ohsDtXkCjZJHlEwP/vW9adUzeWK6rFL8DiquZisVy3WEcZXzm1MPT1ScL6kbJ5HNnWgRRyuXtEbaukUlJ2TZYrLkMwxTXUgyrX/lgg5Jtcq5d4ly7jB9n00bvUUMIMX0uX1qoMVO2+caVDu+vD2mWTAZByg+cm+GjtQGDKOO1pRqb/ZAP1weULJ3lhjrGOMsf2vw0SjPeXK5Tc8dUHYOqq6S3J1suUaqYMGv9kFMvlFioOQghGIQJm4OIqqM2crZHER+uDdB1wadONKbXt2IbdEYxZdtgra/kDPoDjn27qfmaEAeyB3Kp5BkaER9vjwiTFEvTSfN8T8HVrtrFYk+j4VlsFhLV2bJNs6QkM4Yu+M2rO/hxxvl2maW6+ryuHxMk2UOzPxYbLs2yNW2qrTRc8lwxd0dRSpRKTjQdfvDCDFEqybKcraFqXKmGYIapK3P8pbqHlHLK3AzijI+3RtiGSh962EbFfM2h5pms9lQ6sZIeJgyjlLmqM/W5idMMTWhUXcVkcVHP0fl2hbJlIKnQ9RPKjkPVNah5FlXXpHpIrTEZPzxL32NOL1ALy3RXhzxKc+ZrDoMg5fx8GaQK25DI6T1mFOzHV5dqLNYdFuouH64PiRNJmKTkEgZhzI2uz+fPPp2F1v0w2Wgs2QY/cnGOleaQK9tjwjgmyXPOzdV4Y7nOWj9ke6SYfa8tK8/AR/UtuR80ba+0L0wyvn5le7o4nK861D3lO7RQdXhhvopAGXi3SjZV1+CD9QGGpnGy5T2SrGZyTZVsW06lrdujmCs742kSm2PqvDBfIctyxL6F1emZEoMw4UTTpeMnvLKk0s2aJYvtUUSS5ZxoubRK1h72XF6MD2dmS3zvVp+3b/Z4faV+l4WGY+qs9Xw2hgG60O7JHl2oOZxoemhC3HMz8LOnVFrkxFgcFCsrTHJV3x+AZtnms2U1nl3aGPD92108S2e50S7OIdOx7uXFKuuDEMc00LSEVlmxJLJMInU5ZSlOGJgLNYcvnZnhndU+MyWL063S1N8L1PuGSVaE3tzx3dz99zDJWO0FmLrG8i5/UdfS7+vHdS9MzvGZWRU88b2bfd5b7eNZOiUr5+JclZZnsTYIeGO5zsCPubw5omzpvLhY5Vy7TJrnRyKBnWCSUOrHGZ6p895qn41BRNMz+PyZlpKl1R1mSzZppjyNO37MC+0Kr52oT2X4lcesc/Nc8rUrO/zYi3NH0rD2LIOffHWBv/+9Nf79n37lSKwL7oe6Z2HoGgLJzY5ihzddiwvtKgLBO7cU4zXN4YdemOHMTIXlxtEyXz1Lp+bqXJwr7XnmlxseacFIWtlXm07uqYpjoglBZ6yCRTxbu69HWD9Q9gyN0t2SXYl61rJdxfdha4m+nzAMU5brLnGaqWCNMGG4GrHjJ9iGzhsn6gggTnJmqy6aphJWP6l43Eq8MMmXHwM/JoQoAZqUcvjYR/aI2BlH3Or6fP9mj9v9kH6Y8uMve5xouUgpWe+HzJQsPlgfsjkMaXoW5+cq1AsPigmklFzdHqtI8qrFyRm1wMv2reRWit3msn3H30DX7jZSB9gaRtNd5ZWGS1YkDawPAjrDmHbdZq7i0Cpb9MMEP1ZNhwmyPKfnx5QdVUC4UskndHH/BfLGIOTy5pCen3JxXnlbjaKUK5sjbnT8Ix8IJjg9W+E/+srr/IPvrfGL763zTz/c5B++s8ZXPt3lz/yOlx7pPV1T54X5Kms9n1zmtCsOfpxxuxdQcwz+yabymzrRcvnUiQZI5XGR5SC0IZ8vdgo645gP1gbkUjGwnEJyA6pA+ezpJoMwncrO2lV72nC8tDECKIzBTZWesjHi+o7PbOXxJH5qIWtSctSC4UTTY7nhMQxTNgcBfpzyd759Gz9JERLOtCv84IUZXlqsPdbnPizKjpK2WbqgZBfxyX7M+iBE1zV+/eNtru2M0TWNVsnitZU6v+PlhSeqbd8aRnz3Zp9bXZ8TTY+yYzBTUjvXlzZHLDdcLsxVCBNlMpqm8CMvttkchnzrepc0l5xtl2mVnWmT517NgLpnHdjcuR92RhHvrQ4YxymuoSQ24zDl/dU+v3mti6UJzrUrVByNrWHMMMr4qVfLjKKUb9/sKcr+XIVGyZ4uEO51jLomOD2jGuWjKOXvfmd1uqM6kRE2SncS7G731K75ZEy7l7n6+iBgcxAjCnnshXYZ1wqYq9jT3dYwUe9TdQ0W6i4L9zCtXO2pxrjMBeIx6rjZso2la6z1A+QW9MOE2YpDnGbk0uDTpxrc6Iz52W/e4urOmNMzJT53psVbJxtPbPw7CK2STdk1sA0x9esCSdUziXPJr13a5mYnUIlauuDcbIl/6dMrD9+USnI+Wh9RdnTqrkXVNQjijCvbIwSCumeSSUVf3xnHfOfGOg3PxLV0DE0xjYWASxtDfvNqB11TASIvzFfI8pz5apkwVdT0+ZrNiZb3SKa5B2EcpVzdHuNHGRLJC/MVgiinXbM5O1vGNjRu7IxpV20c846v4KSpBsr882Td5dLGkF98d53r2z6tssWVrSHn2lWqjslsxX4oaeRuTMaH7jjmN6/uFF5JJi/MV9gZxby8UGW5oY5rY6Aa0FmuWA+/fnlbsdTmKoDgOzfUAvTL52bZGkb4UYYfqfn/YdNNPy5SvGxDY6nhYhsaYZqxM0wYhQnDMGO+5vAD52bx40z5puz41FxT7cwmGZapc2NnjKUrWSBA+QEWMau9gJ6fcLunaorzcxXKtsH3bvVY70d7mFY3Oz6GptMq67iGwY2Oz0Y/oGQbbA4iTrZ0vnerx3urQzxbo1VW8eyTjcGdUcStbsjtnk/dVcEki7XsnostP055b3WAa+qcn6scSeDL/fD6cp28YIG9uzYsFrGQpRkfboyxTMGZVpmqa/DSwtObv0dRyjjO6fspS3WHl4oFftePsXWdKMlYHYT0xwmZVJ6H76wO8Cydn3p9kflHkExVHJPlhkvJ0rndD7ANwaXNEe2qc9dmnqlrqgGZ5nue0QmLbmcU0fQsap5JnObc6vp8vDVitpi3d/tHXd0eMwpTkiznndU+Nzs+rZJNs2xx+gBfmdVeRN2z6PkJry1VidK8YOKqUAqv8DI7O1tiFGfM3cPXsV6y+MELqqGk1hMjbncD6p7JuXaFw9a2t7o+v/z+Jl+9vI1n6eS5Oj/zVYcbO2OQgq1RTJarOX6p5tEsW6z2An7lgw3Oz1VYrDv0goSZotG1NQgp2YbyqCk5U4/UCbZHMVc2x+yMY87MlnhtucZqP2RnGDGK02L+kcV4kFF1zSMb7ydYrDl8tD7As5Xv1Jl2iXGUsT2CmZJi7P3P37qFzCWubfCFfosfe3H+SJtSE5i6RtURfONqh194d52dUUSc5XzudItGycIUgqprUHct1ocRnq3j2jqLRyQnBHh/fUDPT/jiETbdv/LWMv/zt27xD99d53e/uXRk73sYyrbBziji460RV7ZGfGMUcX6+wtXtMde3fYQQvLhY4UyrzBsrRz8OZlIqT0tTZxQmlHfdL5OxIkwy1vth4Tups1T38BcyoiRnqenwwdqQrWGMH2WcbN07PVnKOzLQcZxOG+5A4UOm6pONQUjJMvhnl7fojJN7HvtqP+B2N+B7t3roSIQmcE2TrVGo0vfqDl8826JddWlXbQxNeQA/bmDbs8TjNqaWhBB/ef8/7uq0/4nHfP+Hhq3rXNseTf0TPFNnsx/y6lKNr17a4ePtMa1ip1ND8PFWh1yqB6dZtqaFYJLJKZNiGKScmilNzaX3fJ6hM1d9sK6zkgipybFiG3zx7AyepRfFN1Rs1RwZhMlUdrExCGmULPp+wrtrA7aHMe2KTcXV+d6tPsMoYX0Q8EMvzLJUV5P3xEiz6t4xCbYNnWGYFl4sWRETHCtmmXbHA+JJoOZa/L5Pr/DuWo/v3uwRxCl//WvXGYUJ/+Hvfv2R3vPSxpCvXt6m68csVF1OzLjc6gVcSXLCRJkE39wJqEyidIXGIIrJd3URVnsBuZRsDWPqnjk1yJdSsjOOESi5yM2OzyhKWay5zFUdtoZ3tPhRmlNBUa1NXaNVeKw8LoIkKyKdE8Ik5X99+zZXt8bsjGK6gfIyGQYZOTlzNZutXf4ATwtxmlN3DUaRiakJfv3jbS5vj7i6NcaPVUrkhJH26lKdnp8cmID4KOgHykC6ZBmsNO/s3E2iy3VNgFTXZ22gPIzCJOPd1ZgwTvloc0SeS26bAV861+LK5oitUcwwSHh1ufbAzLP7GaKHScbNjgoYONkqYeoamqYYS7qm0jPGcYplCt6+1cdPEq73I+WP1I/QdIhSyamWR7visN4L6YwTlhspjQeU00z8ZSb+Dzd3fN482VApWaa2R9JqG9pUmnwYDTjNJFGaMQoTvBN15mrulIk5gfLzydkeRby8WOVWN2AYpnclrn33Rod3bvVJJfyjd9cf6DsdBCFU4MPWMKLmmtzsJLx9o0OcQtnRCeOM797scWlzyDjKuL4z5svnZ+j5CcuP5yv6UMhyqaQxFYeuH/Prl7YZxCl9P1b+BWlOL4zpjmIWGy4rDZfNYfTQzbNcql25f/rRFq6pnpOzs2X8SCWvbY9CGp7NIPCnya+DMMEyNLI8Y3usfJu+e7PHle2xoqBHKTd2FBPn8tYIz9R5caHCbMU5UhZknCqPle/d7FN1DV5bqjNbVjHbUZLxax9tsT2KWKg7/MTLd9i3YZxNZWCWoZgZ377W4aONIT1fMVZaZYsbHZ8TDZU6uvKYx/pL723wqx9tEmc5Z2bKVFyDuYpNhvJ5KjsmrqlzeXNIJiWvL9cYhAlholjMnqUVflsZHT+iZKsEIEMX0znpQSGlYkq8v9ZnGGb82EtznJ+r8K3rHRBwsxMwX1NGzLapTLC3RpHy0gskwyghiDN2RjFlx2BrGDIsAiFsQ+OHX5hlrnrnOQ+TjO1RRMVWaYq2qRMmyoZAIBgEqsE9kUrurjNsQyPNVFJf14/RhCDOJQ1D5+r2mEubQy5tDlnvRZhFqvKNTsCnTza5OFfhH2yPCdNUJeuaGXGWHzr3vrc64GYnQAglVZqvOkWgzKP7Hd4PtqlRdSxqrkGSKq/IjX7Ih2tDhIBcqLHgXk37J4VBkBTG+Bplx+D6js/2KKI7TojSjEzmGELjg/UhUoClKdmIbQhWu48uX2+UlJ/Q2iDkWlf5bXXGMUGS8vbNHn6cMVNWfmaXNkZTCf2kMRUmGVe2RiSZ8qM7Z5SVlG2csD2MyHN4ceHOQlAlzaVIJKu9AFDJm3Ga0R3FWIaKVd+Nsq2aX6daJaquyeXNEbf7Pp1hQsU1eHlBhTz0fCXdKln6dINoGKoF5v5GSWccc2ljyM1OyGLdYanuHXrP9YNkKtHTBHR9Vd9pQr13LiXvr6oGTsOzONcuM4oSfu3DLd5bH7JQ3eGP/8i5acDOra7P1c0xH22OKNs6htA4N7e3KRelGVe2x9iGRpxlpLmcJq5uDtQznu6qr+4ls3wc5BLKjknDs8ik5FvXu1zaGBHEqUpGG0fsjBI2ByGnZksqCTpKnhjzJ85yun7MKIz5aEOdu29f69AoW8RZzjurA87OlhBS2aFUXPOhrTwOw69+tAXAF8/OHNl7fvZUk+WGy89++9ZTa0yBGnNGUcJ3b3YZhikfrA0YxBk6gmbFomKbVDwT94jCm3aj7yd8tD5kYxjxf/jyacqO2uS4tjMmLuwMbnWDaXDLS4tVdE1wcddYkuYDNgcBZ9qlQw3EhVAp91Fyd0iLoYlpsnDZNhlFCTujezelQIU4DcOUXlEfgmSuJrixM+TD9TEfrA9Awu98bQHb0I+8Wfws8Lh3QAB86ygO5ChRdQzKjoEAqp7JXM1lYxDR8VVjYhylvNAuM4ozTE1jtR8yDBM+fbLJMEx5caGqZAElk2GYMluxKdvGY8uk5qoOG/2g8HsRXNsZsdws3TGWLCbpyY5QnEp8O2MUpWRSTiOoEXCyVeZWJyBIUq5ujam7FuUijvxmJ2AUKZ+iV5drRUKLzesrqjnQrqpEgYZnMQxTzrfV7sqThKFr/Nnf/gJXNsd852YPKeGrl3f4u9++xU+/sbgnKeFBkOR5sXhRhWV5ZFBzTEo1nZ6fkkuJa+v4Uco4lNimoO4Ze7TBFUcluzRLSjN8uxfQrigfn7XCSyHJ7hhxbo0iap5Jq6QmJQE0i4LENrQ7VPgj2DHxLIOybWLrGqMoY7UbsjlUnkmWrmNqYFV0dKGSQc6175j2STkxvXyyNN2aa6LrGos1l0GY0g8i1rohmwO1uHItnTSFE60StqlzulXas9BKshxNHN4AuRe2RxFppnZBhmFCu+owW7GZqdi8uFjlwnyFhmew3ldpcKaukeU5Tc+GIk614ye0qzpv3+rjGIJRmFByjSNPdgkTteDv+irJarZs8+aJOlGaM1O2uLKlZMK24RMmGpVCKto3Y273Q1xL51Y3oO6a9IIE29LQH8GLxDJU+snZdpm5iXRD0/Yw2Jbq7pQ9eNh5yAoTRlNXk+ZBmByfJgRxIfExdY2dcbynMaVpgrBYuHbHj5+Z0SxZuKbBQt1hozDpH8cpH2wMVXKQJqi5Bm+uNGiUbNqF1j/PVcLTk2ZSWIZWJFPa+InyDVjrB/TGMTVH7dY1PYuqZVJ2DWbL9h7vwLTwG7nfjpiha4RpysBP6MiYNM95aaHC1lBJ3Sds3GbJREol4WuULC4uVOn7MZvDkJs7PlXX4o2VGp5lcK5dpuen3Or7jMOMmmtyti2OXJpb91TIhG0oNo2uF/dclHJ1e8SHGwNMTSeT4VRqsj2K2BhECAFzVZuZsmL/DONU+TDWPL5wtoWpa1imoOwYtA9JsYzS7K7nYz/yXNINImoli5s7PrMVk51xyloestoPQTI1588Kn4tBmHJmtkx3nPDyYoVmyWZnnOBZOjMl5bXjmPqBab33gxCCVtliFGWUbYMrWyNOz5RoVx36vjI0tw21gZLnkitbY3ShKXbIco2NQaTMm3VB1TFZqjt8vDni+7f7xJnk61e6/ORrKv0qTnNu7viEhVl1ya6wWHPwTI2NgTWtMQAuzFfYGERTdklnHJNlkrpnsFj3GIUpQaJYVpYuGETJtPmg6i+dUZghpeB2Ty0gBkHK0E852VTJsXMV69Axq2QbCA00VLF/u2B3CQEX5ytPZIe55ycYmuBkq8QoyvjW9a5K4Awjkkyy0nARKDP/KM32WBA8SZi6oGQpbx8NwdXtEVujiDRVaX1hmrM99On6EUsNj7Jl8JmTip34WuG59Kh1hq6pcKIgVl5XNVdtvOZSLSDLtkGYZriWxmovmMq/kyzn8uaIzaEyYZ+vOQihbBw2hyGubVD3zD21rKlrNMsWgyBRY1egxoWKZWAU/rP7GywV12S+4uJaerGJC36Y4SeqDv9oY0jZNskLn1c/SXl5sUaWSW50VNNuf6qdel5UuFGU5Djm4fdaq2xzcbFKZxTj2DpfODPDf416vlcaHle2RwzDZGonUbINgiSjFyYESabqjXGMqasmd5ZLBpH6WcUxuLhYmW5kTzAMU1aabpGuq1Ix2xWb7VHESlPJg042PCxd1XZPwr/G0BUjbabs4CcJ632VcrcxCJmvOMSZpOboGLpLu2LTrjjUd/l7xWl+3021+2H3/GobOiutEs2yw0JNrc2iXN27G4OIuZq6Z+dqLiXLwDX0I60f/uG7G7y2XHuklNZ7QdMEv/fNJf6LX7nMej880ve+F9Isp+wYaELDMQxWw1B52Rkq0feVhSqnZkpYmtqkOCoT+wkkEOdS3R/F+DqKUvwiuGRjEE79pg9aiiaZYk0ausbm4O4xYz/OzpZV8uW+JptiWpZJ8nwaXLVQt9kexfd8rxOtEmmeEyYJfpITxRmtisV3UkkqJWSSK1sj1vshy42jY60/SzxuY2pHSvk/HMmRHBGSPEOiEl5q8yaLDXeqE/3C2Sa//nGHpmfw1qk6uqbzzesdLm+OCJNMJQTJjO9czzgzW1K+JE76QDsDeWFaflhRYeoaLy/W6PgpQZyy1PBYqDq4ps6F+UpBSQ5UQWxoVBy1cyOQ1F2TUzMllhtKP28aOm+dajCKU2WcmeUEcUrFNri+M6IzVouMxbEyHVXRwB4nW+r4BqGKzV5u3B3f/qTgeQ7/wx/+LH/qb7/N27f7lCyDX3xvnXdv9/ljP3SGmeqDD0YvzFVJUskHawOaFYuyZVCyDCWTbJY4M1Pi460x79zuoxXJDpahk2WSazsjtocx5+fKxQAo+XBdSfM2pPJKmcAxlMeQH2XUXIM8lyqyc98OpxDikSUhB6FRUrT3KM2IE0k/SKm5Jmv9ANs0KNsCS9epuBbzNZPv3+wyDBMuzle5tDliox8yV3W48IQS+uCODr87Tqi5GZujgPNzFVxbSYFqReTyfNXFMgTDUElePnuqpXZM1gdkUvKpE3Uc8+GGorpr4keqaetZOuv9kGbJmpoogyqco1QSxhkvL1TIBTRci1GYMle1uN7x8UxVuHVljmfrrNQ9mp4qxvxIPaOTIudBnvH9qDgG26OInVHEUt1jtRfQLFlTDwJQeujNQcT5ubJafCExdJV6dNKPiQpj8483h9imoFmyWK67DIOEnXHEfNXFmRgXF153By2mPcvgX3htcfr/aic0oObdYVYKIabSVCV/ldPo9r3vpbNYd4nSfDr5TpiGuhA0Ssr3bBAkOKbG1Y7akXctnRdqe+/JC+0q52ZLjCO1KfDzD3x2D0bDszg14xGlDpaus9oPqNoGq/2Q2YoyIp+r2byx0kBKyXu3+/gzKWGqFg1uIa97WAnVw+BEq4QQAscSjEIHzzZY7wUIobFUt6m5FlIIao5Omkm+dXOHz52aIc5yPlwfMo7UYugwk1pTF1yYq/LRxpB3bg0QCPw4Z67mECY5S3WHuZo7XQyfni3R82O645hBmFB3LYYiZbZqk6SSFxerzFVtbCMiiD1u9QIcU8MpCnE/Vgacde/xWaNCCF5fqauQj0xScQxGUcb2KMQ1VbPOMnTOtst72JKg2MGmrhVNfJXyF8SKKfVTry8Wvmty2ojwo5RLG0Mcy5gmmq71A7aHMY55xx/mIGia4JXFOgLBKwsVVpolun5E388IknTqqWQVzZ4wyrB1nS+eqSIR053+n3x1Yfod3r3d47u3eniGzg9fbNN4iEATUEbEF+crbI/iqYn+yaZHx46RSCy9kGqOI4ahmlc826FZsnEtg3GUcnGugqapnV/PNrjZ9UkzdU9NFrrXtsfc7I050yoTJhnXOz5Vx0AI1fwGFSNvGxoLNXfPYmO1FyAlRFnOSlP5ONa8GlGacW17TJzkWIWnWcUxqDoG13cChFANs844wjYEczXVtO0FCbe6ITXPngZudMbK02vidXW+rQJLSpZOyTHpFhtOUvLQcuwHhRr/BfM1lxcXqtQ9i/fX+iRpxmovYr7wPOz7ygy9bOt85nTriUe5N0s287W08P6S7PgxZ2cqSJmzUHf5aH2Ia+p0xgntisOnT9Y50SxhmxrXtsd89fImpqYRpZKTM96e9Lv7QaIaNS/OV0iRnGwqJvHGQG0GGrpqvnTHMWdmyuiaqm8nPq4zZRUGdKLpFfOP8qQahCmWrt0lCyzbBl7hFXl5c4RrKLn37X7I6ZnSXQFI7aqyhtALXy7b1PEsjdu9gDSVVFwTSxf0Q5VEW3ctbneDPUmh6b60kbpncaLp4Vg6C9WD2aVBrDZQ6q7JUt3lpfkqUaxCeHbGijHV8xWDabnh0h0rVtVEHlt1TL5wpoWpi8IDq8S1Hb9gK0pOtUq0SjaOpd3lqZflEk1Au+JwekafsnOVObnOe2tD+n5Md5xQdQwWd0XWHzXusONMyrbaNDnVKrEzjFmou5i6ar43PRtN5Pyzy1t84UyLIMm5ujUmzjJeW64/0vzdGUW8tzagbBucnyvz8daY1W7Ap1aqnJstszEIiNIcP8pYbrpYus65doWapzbzVo7QEiDJJG/f7PGnf+KFI3vPCX7vp5b5y//4Mj/3ndv8n3747JG//25sFzYZrqnjmRrzdYvu2KRVUdYLr59o8MPnZxgnOVkun8h61DE05io25+fK07VGydLRBFzb9mlXbU7PlmgKtWG1v5Y1dU2pqkrKt/Kg1MoozVjrqUCUhdrB6+rOOGYcpdM5SgjB588oNtzP7PtdKSXrg5Asl9zqBUSJGuu+eKbJIMz4zJkZECqc5OWlGiXL4AlmXz1VPG7lfe823zPCOMpolZQPxbm5MisNtXjybJ0gSSnbOl0/5RvXeryx0uB0q8w4zMiRSCSb/Zit8ZCPt0d89lSTfhFP/cJ8BQHTTuduDEKVzjVJVzts99ixDD5zqs67twes9UKldS8WF54lSfKcjzeV8WmS5Zxrl/hwfcQoSnlhvowmBEGaYxo6c1WX3/nKwjRmvOZafO92n8tbY6I440TT5fLGiLV+OKXCTwb9G0VU9TBMeWnx6XVYDcPgL/3Bt/jFd9f4lffW+cb1Dt+83uHXr2zz//5X32Klde9FwG5YhsanTjZYarhc2hyx3gsUjdEzubhQJckknqnYPH6ifDW2hhFhmvLhhrqGoyjlc6db9AOVXIQUeJZRpEEoKULNM3Esnc5IGVGv9yOWG+5dC8K1fkAQq0jwo6AV24bOiwvVKRvgXLus4seFYgvVXI9z7RJRmvOrH25xu2h4/J5PLXFly0cAvTDh9GzpiRmNgzIPXKypZl2c5lzZGtGu2nzvRg+JxoVZj1bF5lvXOrx9a4Bj6YyjlLJpcK3rY+k6N3aCh26gtQpj40bJpDtOcC3trl0ylWqYEGU5uVRS2RNNRaFXDT6d99YGvLc6YL7uMl9zONMugZB87fIOfpJydjbi06eadMYxt7tqIX5mtvzAO3KeZfDSQlVp26PsrmIpyyW3iwTOvp8oppxj8MJchdv9gEZo8v1bfd5fHVBxDOaqynS1XbX5Z5eUr03TG/MjF9vEWc6VrTG5lJyZLU0juO+Fmx2fNJP0g4RXlvbq+tWO68GR3aCYgsp7TZmgTs73RqGf1wvGRbNk8eH6gG/f6DFbtllpeHcVxa2KhWloONIgPwIivKYJzs9VkFLyylKNnVHEr3ywxUzFIowy2rUKnin4cH2oUhEzMMxtLs5Vp75hcZZz4Qn60NRck+quWPiNQcAvv7fJpc0Ruq5xpl3GM3V+6YMN3rndxzF0xkHGYsPj2vYYELy31udL52YP/RwpJeMwxY8SwsTio80hO6OYvp9gGxorzRLboxhDE1Rdk1td1TAYRcmU6eNHKTMVe7qz2q46tKsOLxQL+5pnTtk3UsIgTA9t5jwoyrbBD5yb5VvXOvzye1s0SxYvLlaIEslCzWGu5uxJk50t32G+XdkakeaSqmuyVLNZ74W4ps76IGC+6pLkEkOHQRDzc9++zfYoZrnpUrZ1lhoe4yKJTqV+HX5PfvHcDPM1Zd6/OQzIpEDTUIbdDRWgMFOyGIYJa72AK9sj3l/vM1N2eHGhymzFZmcUYZs6UZrx4fqQj9ZHuJZB2eny4y/PP9R50zXBhfkKzWFEnObc2PFZbri0qw6OpTMKU0ByfSdA18C1NLrjmNVuwLm2SkYcRyl9P6HhWbQrDv/im8tc3hhhm1qR/jXmG9c6JGlO1TJplm3GYcqH60NWGsp30zG1KdvYtfQ9hXrJNhiF6V0s9K1hxNUtJQFulBxWmupaOKbBZ0836QcJUZLS9ROGYUIuBSMz5eOtEaNQycBmKzbdYrwGJa/ybINWyZ4azINKTNweRZSse3vpPS5KtsHLhbG/EILf+co8nz5R5+1bXeK0w/WOj6kLLq0PlYWDLugGCV86N/NENwwnxzUZf5bqLpe3Rpi6CoU50y7z7es95T0149EPU7768Q62IfjezT5hmqEBryw3SKV8qMZUt5DuXd4c8fpyfRpA0ihZvL5Sn9Yr59oVbnZ8xlEyTQos2cob8eJ8hRsdfypHX2m4NLyc0i6vV7hTm6vvrJPnsDYIWe0reejNjn/XnFy2DRZqyp/Jj1NmyjbNwsA5yyUV22QYJQyilHGccGljwGzFoe4a06StZslSPl5ROq3vNQ1KloFn7/V/STK1IL+yrdJzh2HK6ZkSJVt5yK73I969PSRKc7728Y4Kb2l6tMoWrYo13YgL04zXlmusNF36QcpqP0QIyc2uT8nWOTdbZrnp3RU+k+dSJZ5mkpKtT8ObJsf+wdqIK5tjbnZ95Y81W6bqmk+sMbV/bnxxocoHq32+Nt5B1wQvLyh/zbdv9/nO9R6aEFzZHPH6co3bvQgJuOaQNw5IUzwMUkreWx+wNYzZHEasdgP+6aUtRpFikP3wxTZzVZvv3x4wjjLOt6u8ulybNvF2m8QfBQaFLPQnXp47svec4NRMibdONvg7377FH/+hM0+MpXm76/O3v3GL9b5PkOa0yyYfbowpOSYvL1b5wtlZFuvutFFz1OdwCqEYop5lYhdJlIausdJSgWIfb43w45QvnpvBNnQ2B+Fdtey52TL9oEurbB3IEt0cqI2eYahY0vvntjjNp3NSnOXT5/Ze6PoJ28OY690Rv/zOOpe3x1Qdkxsdnxfmqry8UOULp1uUHI2iXKFkf/LZUvCYjSkp5ecBhBA/D/xN4H+RUh59vNtDwI8zBmFKvWTSKtn4cYYf5/T9Ed+91eNmx1cpF00XP0mZrzlc3R4zjBJMXckZosKnqB8kgIp3TbKcaztjklQyV91b4Ax2xVL7UUbNO7zIub4TcHXHJ01zaq7BhcIcbRAoM/Jr22NsU0cApgbvrA6pexZf+7gzvZlV51cVe6+vKEd+Q9cYhgkNz6SP2lVIM1jrK8bQ7iavY2oEcY59H0rxk8Jvf3mBZsni69e6REnO7W7Iv/m3vsuf+92vPpSJt6JYqiLatnJMQ3B1a0yaS3KZU/UMyrlOlPiFU7/gRmeEQOPigjLfy3KJrgnOtO8Y2u1Onbm2My4WFRGnZ0r0i7SFCfw4VemKKEO7U4+YTnIQJoN0jsQ2dHRdo+KaZDLn0taIK5sjPlgbABpJnvP1K53pLvdiyb0rAvVJYFIIWoZKQUMKSq6i1V/t+NzoBnz9apdhnFHLDL55rcOpmTLDIOHUjH3fiOEoyVntBSwewFJbbnjMlLM9Wu4wyeiMFdNoclxmQRG3DI1hkCjfnM0RQZKxNY6RQiX+nGh6+FHGzjhiEKToQu3aq7FALVSjNLur6RMVTbmVpndXI1AIwakZ1UScSBmzXE5lZZOo2pJtUHMtTEOQScnljSHvrw3ZHEaK0RmltMo2LxSGyYPwDtV9XPjATFgjwzC9b2PK2uXxsh+7I7u9A9hsN3vBlHFweXOktPi76onJX4dRys1uwHtrfYIop+GZdz0fUZorvy1NcmMnOPSYHwaTZyfNc0ZRwkcbQ+quyUvLNdZ6ATc6Y67tjDF1ldz4sRhyrl3mRHF88kjdIu59fAB+nNOuOSoKuEh/vbo95vs3ewRJRs2z+NaNLn6iZFOL9Qdjum4MI0xDI84kO2PF3Mtz9dmrvZATzTvNxBOaYiskqWLJzVUdvnZ5m0GYMQh9Ts2UqBWyCSklUZaBBCmN4vso9sXNzpgbnTFLdZfz7cpjsz8ubY7YGUV8sD7AtXRmyjbzNfuuhZGmCeaqDpc2hnywPkTTBC8tVNE0jXoxXsvi/Samymu9gFGc0vFjWmVrumCcqzpsDCIqzoM1LVS0eM6V7TFCKjkQwEfrQxbrLlvDiK1RzDjJ2BlFDIOMUZgxV3VI83zaBG5XbGarDpYxpOro1D3zoYv1JMvZ6EdsDEI2BiEnZ0rKpNezKFkGN3Z83r3dJ0dSdSwE8M3rPSpF2MFcVdVEk42rc+0yDU81DTSh6oyaZ6AJQcVVXlUVRxnrO9NzJYviXUnl9o+Jp4oU2f1jj2vqmIYgzMA1NW53g6kM2jY0Vrshwyghy1UL29AE2yMlsdntMSUEbI3CqTTMNDRMTfDKUn0qsVLJpk/e22n3tWuVlb9elOd841pPpZr2IwaBYimWLIOyZTJXdXjzIRfWj3NcUZbjmgbXO2MaroWpK2PnKMn45vUeSSapuUpSe2VnjIaSy9qmCjY5DLvnRinhZtfnvdUBfpyy2g+oOAZ6oZ/pjuNpbd0qzLxNXWetr+wBJr6va/2A9b7ymBxFymdM1wTn9/kmyV3EpYl0MU5tJR2Nc8VMPWCYX+urzaIoCal7Fmt9n699vI1t6Lx1skHPj4sNA5Xc1yrbDMK0CDNQ0qWrWyN6foJn67y0UEVKlc66+0mehDxM1hgTeQ8oi4ZmyaI7jtEN9Z5hkk/939653SdOMxxT+WFd3/bxk5StgUrF3OiHXJgvT2VnlzfHvGYbd0l90kLipBU+IZlUbEgp1Xqq4hqAxLN0Zis2dhEE9CSx+95MM4luaJRtE8sQXNnx8VeHXC7mhbJt8uHGkFKRlL3c9B55c7himwzNlEubQ/KCsQLwwfoAXaNIYlXju6GJPZsWR91Qqbkm/96//Poem46jxFc+tcy/+3Pf59s3erx18smMNd+41uHSxoDL22N0Ab2xhUBg6BonW2VeX6nv+f0n1SDLc4nQtMKuAfTi9rA0wT96d4POOOL1lTovzFdZ3JeEO/nb91cHxKnk463RgZuWrqXT8xM0jbu8pUDVCIYuSDP5QN6RyutTstGLuNnxWesF9G21YVh1TExd4/xchYW6S1JYy3ySDc9346i0Cv8Z8C8D/08hxNeBvwX8PSlleETvfyiiNJ9qZXMpqboGG/2waEqpBdr2KGajH7I+iJgpWSxUHVoli44fU7J1qq6JpsEPX5zl0uaImbLNqaIJMel8JqkahMb7jMInDTBT1/Z4GN0LtiHo+wlpnvPR5hC7SIP7lQ832RqoxcOpWY9RkNHwlOGgEND0JnIb9tCVdxd9ry3VMDSNxgmTF+ar5LmkXXHIZb7H1+X0THl6bp4VPn2qxZ/4sbP8xV++wihM2RmG/MzPv8Of/LEX+MK5BzP7U5phjbmag2drNDxbJXvloAmtiEG26AcJNzsB768NWGl4BEnOQs1Vfg+B8naZNKWU9CqmUTJpV5yp18lkkTKzz5dkItNIM4lnPxlfJ6/Q9DfLFvOaw84o5BtXulzeGdEu2ziGznzdQQol5TgzW2ah7jyV5KHdKFkGrq0ozbYu+HBtwDurfUxdo+GatCsWFcdE1zReXa5zera0xz/nIORSsjOK77lTsduEUErJN68rWWO7Yk8Nx21DI5eSrp/w9Wsd3l3tMwpTXEOj7hq8eaLBmycahdeTzpnZMjujiOW6S5IrL6g4VTKvg6S9yrsuo+vHB0bPCyH2HOftrs/7hQHuGyt1NE1wcV6lnI3ClEvrQ37zSocwzfCjlJJj8sJcmS+cbVErmqYX56ogFf0+yRQ7pBckSCn3pF/dC6dbJcb3GAMcU+fCXIVcygNNHvMs5zs3VBP0tRXVWJ8tq0QQXRPTpoljKBZI30+xdY13Vge8fqKxZ8yq2DpVxyCXkpOto18oNlzlPaMSxtRi++rWiA/WR9imYLasEpoWai4XF2vMlm1cS3/iHm27UbJ0PFNnpenS8iw+XB/yzy5tkWawULM5P1vGs3TSLOeVpRonW94DNabmKjbLdY/xUoZtCFxTSbXiLKPqKF+SUZjSDxOaZYtzs2WCJKNUJE+1aw69YIRlCNZ6ITujmBNNlRC60VcNrYmH4dnZMhuDkLVegB/nZFnAfM19bM+Dk02Pb1ztkOU5lzcG6FqtCJrIsA2dnVFEL0jU+Fiy2BiEGLpgexgRxhkrLQ9D13AM1dTqjJRsexSlVFyD0zMl6q7FF8+2mCsWxRP5/4NiueHhWTofb1us9kIMPeNGZ8wgyPjmtS6vr9TZ7IdsjZW30ELNpuIYNErmVEYmhGKfvXWywcX5ClGa0yrZD12sG5rANjXCRLEe3rvdp2TqvDAv+I0rXd5fG5BLSdnWcc2Mazs+hqbOx6TZN2lK7+4p7p5L5mseP3Jxlp1xzEsLKuEwSnPOFilaNU8lfXqWXpi4732W9o+HE7TKNl882yq8cEy+enmbvq+8QJIsJ0pzhmGRgiw0zrU9ekFK19dZqrvTpneaS3pj5e8UZTmjSPmhrQ/CPd4/u5HnSr5x0KLiqPHCXJUfvtDm4+0RPT9iexSqpotUc9i1rTGvL9efuKRvAjUHxJQsA9vUWC8aP2u9EEMTjCK1gXG65nG6pQynv3xhlleX6ofKiWHX3DiOkUDVNpEo2fStTsDnz7SmPoUT9tI4SrnZVaEz6hlQDYqNQcgoTDF0mK3YxFlO0zOJM+X3FCbZnrml5pksSZdcSlqFpHOlqdIi4ywjiPMDZTnKeDzmTHE/Xd9R0t4ceKlg5FdsE0OHM7NlNAEfrQ+4vDnkB87N4NkmgzBlexTjxTrBTM5Sw8WP0z31wcTDauKl5pp3jNQbJYsfvDDLq0tVWmWLv6QJcinRdUGSKhN4IQTrvZC6a9EPYrZHMYMg4vu3I863y1yYL7PU8BiEKQ1Psbj2828sQ2OuZhcWB86expkm4NxsmZmypTzBDI2Zkv3U7ksAz9YpF2mCcZrRGSf8kw82sXSNmYrFUt1TzQBD1SwrTY/qI8w5QqjGZrtik+Y528OIE02PQRCzNYr59cvbvLZc5/x8hUbJolHIgp8UDE3we95cfmLv/9NvLPKf/sMP+K//yWX+2//9Z478/YM4VWxFAcMgpu5YGBpcXKgxX3P53OnmkX/mvWDoGqYO7aq15979cGOoLBxS5e88GX9mioC03bVslKZ867piLOpi4a7PmCkrL2pDEwc2iCaKqjDJHsivumTppHnKWt9HAp5l4hga7cJLUQUpqd99kqqYZ4Ej6UpIKX8V+FUhhA78KPBHgP8OqB76wiNCnks2B8rA/OPNEYNA6bA/XB+wUHeYq9o0SibfvtmlYhf+IY5axG30I8I0QxcZdddmvqZizQ1NYxSl9IOEOM051SoxU7Hw42xK153AtdSAuB9SKlbEfv+CUzNlPncm493VPp1xwpWtEZ5lsDNURs2OpRNEGeM44+OtMYs1m5pncmFOJQW41r0N9mqexReKaNEwyXh/bYBlaFyYu2PuGaeK/ZVLpTvXjyAl7VHxL755kpcX6/zH/+ADrmz5rPVD/szPfo/f+cocf/Z3vXzf10+o536csVIvcXLGA5RBqqGJqXdOL0hUXG8voO8nvLxcI81yNkcReS5xKg6bg5A4y6epe6q54XB6psQgTHhhvnLgYtXQ1flNDklqeFx4hf/J+cJT5Zfe3yDJFUOmZCm/sbqnGqRlR+fDjQE3uz5Oset8slXihfnKtEk3SY85apxseczXHDSh5KLfuN4lkxKr8LB540SNYZAxUzIJ4pRvX+9Qtk06YyUnenmpxommR5KptCjP1ImznPV+wPl2WSUG5fKeDdVxnDEKUsV49FOqSyqGPJcqarkzijF0wThMcUyNlabHmdkyzZKFbQiu74xplSxWmqqIlAJMTcN2dGbKamGU5hJzn5g7yXOubo9olU21s1l4X9xrUTmMUvyiwR1nOVouuLQ5pl212RnHxLkkLIw8Z8o2Xzgzi2drRVy0j2NptCoW5Z5q6JQs5aszU7IZxekDMeW0XZPuQTisqXltx8ezTDIpiRO1LS2EuCu11DI0fvDcDN+93mMcpzRKJvvPyNYw5GZ3TJQ8GeNxy9T57Omm8hopUowsQyeXkKWKfXq2XWGmbGMbgl98d53tsTJqfmmxzqtLNTRN3HM8Pwq0q05RTDcwNMH3VwfqB0LywnyFT51ssjWIqHsmgyDhWze6zFfUvTIIU15cqHCuXZl6K02e71bZZhxnvLPao+WpgAxNKHaPlJLZss3tbkDNNen5MUt1l8quIuflxRonGh69IKbnpySZYiRPpKxhmpIVtATHVM2BzWGI3wmpOMaRJDettDw+c7rB5iDEKtL2JCrxJs1yVnsqGCJMMk40S7RKigWhCwECvnOjy4sLVU60PLJcbVyt9ZWX40rT45XFGtvjiExC11eStlGUMl+1MQ0NTTwYY2q24vDGSp2VRoxn6WwOAm7sDAr/NzllNZq6VrAOHNJM0q7YrPdDLF2xJ0dhytYwQhOC3jjBT1IWag6Lde9ACfH+8VwIwbnZMo6pkcse17fHrPYC+kHMej9kfRCwUHPwLIOBnxIkGXVPp+La5EWq39nZMuMoPbSp+ELB9M5yycYwZBAkyv+rYk/nSV0TXN0eownlE/Mgz7drGdNkplbJojeO0TVB3bUYRBllSyfOJHMVh36YYek6Ly+6lC0VYFJxTLaHEbapEaeSl+YrKuVQU8ESk5Td+aqzp6ny7lqfD9eGT8Vz0zF1fuLVeaIk56P1AR+sK1Z8xTbIcsn17pif+87tIv1MMF9Ti+35Yn446mOsuSYvzFd4UVQIYpUkG6eSJJPYptr4m8iWctRm3HLD4721Aau9AM9Sm6tNz6ZeMpmvOmyPVSo2gsKk/A6zcq7q0CxJmp56Vi8WUn5D14jSjK9f3SFIcuqeOU3R/s71LhvDEF0ISraBlIKlhpIBrfYCLEP5wARxxvXOGL1gKk/mpKSoIzTgdl8Z6L+8WL3Lwy1MMiq2gW1oU2ZDyTZoV21MXbHsTENTG1WWxqtLNb5zo8tvXuuiCYGp6/zYS3OcnikhpaTsmMSpGjf3P70Nz8SPVVNuqe7uWdBe2Rrxax9toWvw5fOz6JpiRkkkw1DJ7JJcYhmCzUFELiWWLlRYUp6T5DlrvQDHMlhuqPeeLxrvNzs+gzBhoebSLCm5bruimtPrg5CFQrZd99RCvu5arPcHrPcjzrRLnGodnSrgfpgpqyb+q0t1toYhP/vtWyAglZL5msuXzs6wMQppVywQkt+4so0QKvnYNjReXqyy0iztmb+TTLLeD2lXbIZhyndudFnrq8RO29BYqDskWcZnT7dUGra/DUJJtN88UefifO2em3afFJRtgz/8pdP8+X/0Ed+92eONfeylB4WyowgwNcHWMOLKtmIk7/gRwzBBF4JWycLQDc60q/yxHzqLbWoP7Sv7OMhzyfYw4uq2P2UkglpXlWyNONX4wtnmdL47qJaNirRfpJIDH5SSfL/7wdS1ezaRssLXVUrJ5jAiTXP+9rdustoLGMUZZ2Y8FhseP/xCm2ZJ1SY19/BNgU8qjuzOEEK4wE+hmFOfAp6qKbqmCfw4QxPKJ+jy5kgZA7qqkLdNnR88P8NHGyMWai6eqZPmks1RSGekTDJfmDdY7QWcKeRy3XFMnivfqjDNHjopoOcnU5nEbjimztl2ic4oZhynasHm2coXomxxouHx4cYQLVKyoZprsTOK+VbUZa7qsFhzSTJJ31e73Pfqvn6wPuTatoqqr9gGJ4rJZCJXBApz4mc7uJ6bq/Gf/Utv8Bd/6SN+4b0NwiTl731vjXrJ5o/8wBmMQ4rZpbpLZxwzV7UJi6aB8odSspRJd7xZsggKiWaS5ZwudlXCVMkoNCH43q0+uqYKp16QUjINNoch7YpzXz296q4/2fNo6hoUH3GypXb9lhoery5XaZdtrndU0XZla6wWkWnGjh9j6IrC2irbVByTmx3/iUn8du+Et6sOJ5sldE1jvmbzymKdGx2fTEp6QcqtboBnaHy0uYWhCdpVh1bZZq7qsN4PGYYpneJ7z9UctscRPV/JZhfrzh4G4AS2oT7rytaYumfQCxKCWN3rfpziWjrtisO5dmXKgHMtAz9WUcmWrivz3VQltDmmjp9kaAJWi6TGLJd3Gd0bmsaJlmILfByqCNqaa3KidbAZ5ommx0Y/ZBylyFyyU0gFt4YR1SLK9vxcCR0NoQkaJYNhlHF5c4SuaVzvxIxDZdjdKluM4wxNE9NUoDDJ7qthfxw0SxYlW0fTxH3NmQdRxkLRsPBM467dpHdXB3THKblkaoB71LgwV+FUq4SmCUZhyuWNESebLpksYsfbyhj2H76zzru3B9zqBZRtnXGcs9J0aZbse47nR4Xd4/AXzrYIk4xcSj5zqsnGMEJoglGccmM7oOoYfOPqTiGxUeye+apL1d37fMdpxi+9v8HWQDVc5mvKtLbmWri2jmcbzNUc/Ci7ZxOp4poITdAPVLpdyVZssqprMO4pGXPdtXBMHUPXeOtEk1cXMyxDP5Kd9YpjcnG+yqlWiQtzFW71lNxztR+yWHOmcvRJM+REq8RczWWuanOjG2BoGuNISeg2hxFJkbqqmnSBSspKc0wt43ZXbVxsDiNGkZLyHjTO3AsTg+HJLn8vSNF11Siq2Aa/+P6muucQU9Pk1V5Akkks16TvJ+yMY7ZH0dQbquen6EIlRO22EAA1Fh00nmuaMpC+3Q0IEzUvlmzlb/PqYo03TjYAyS+/v0mc5tiGzXzV4d3VAVe3x8xWbM61yxi6xvYoIogzZiv2gbXC9ihirRdyfcdnvuoQZ/nUY6znJwXTXDIMk4c6lwBlx2C24uBaOktF2tq3bnTpDJUh9MW5Kt1i8/BSf0gYq+CI2Yry4TGKFCRgKrv5cH04Pe7djam1XliM8U+F6D9dpJyfK/Pl87Nsj2JOzyg24s445pfeW8cs2NhvnahzarbCKEpAiql311HCmjZhlLema+q8cbLO6VaZ8+0SjZLFjY6Pa+loQiXavX2jx5Vt5T02CfV4caFGmGTEqaSDkme+uKA2VbNcquZO1eWjjRGpo+bs3XNCz08QqOQ+TQjmqw7fv91ncxgxjlOW6h7LDY+lukpm0zQxrdkBekFMkkq2A2U0fKZdpuqYbA5V/bDeD9gaRriWwfUd/675yyo2O0UiqBUbeVLCQt3lxfkqFdfENjWGoRoPN4dRYR0BWXbHHmOx7hImmToXWX6n5g6TaT2pJE2qLvdjJXsv2SqV9ZvXOny8PUZDsFAbo2sCieRWN6BiG7y+UsezDBbrDu+vDej5KWVHZ67qYWoxYZwSZRIjk7jWnVCYuEjRDJOMt28qH7EJU3Qi4RsZKRfn7/AKxnFaeHrlXFofsVBzniqjePJZSw2PT51okOWSLMt5Yb7CdlHj1j2Lf3ZpmyjNudX1EUKodETHYrGuglgm83dabEBPmLUfrA/4YH1AEOecmfHojFUwlB/nNEomXzozQ9ePeXGxxksLtd8ykqk/9KVT/PXfuM7/7We/x9/9v3zpkdaCcZrTGcWKzRil/NJ768RpRpDknJ+rcGamzHLDI8pzftvFuSnj/2kizhQr6srWmChOsYr7qWTpeJaBYxjk8vBr2q443O6qDY/KEwjGiTO1Fv361R2iJFchXaOIrp9QtkzOzVX4na/M8+aJ5tRk4kkkYz4POJKzK4T4W8DngF8A/kvgn0gp88NfdXRwTJ0X5ytc7/hUXIPuSO1KjqKMqzs+rbJNkOQs1j1eW65PF89SSuquha3pdPyILN/bAZ9QXx1Tx3mEQdg4xCK/ZBlUXLUwfnmpim3qJKmLWxT3QgiubI9wTQNNU94YUTEAqDQUJWMYxyrJ6iB4llakiLFn0VFxDLYNgZQ8EuX1SaBWsvm//66X6Acxv3Glg2PoXN8a8RtXd/jM6eY9J0FNU9TsiTG1Y6gY6P0mdBfnKryyVMW1dBbHULtuAAEAAElEQVRrDvWSRd2zWO9HhV+JyY3OmCxXTY+6a6NrgjB+arfxQ+HlxRoLVZc4y6h7Ftd3fE62NAah8jQYBCN6QYwQsDOKGEXq3hJM/FCevPlU1TX5ylvLbI8iPMtAou7FYdEYLTs6W4MAQ9fw44ztkTLrtXQxfXY0TdHJTV1TTInisKP04Oti6hqzFYdMSkxdJ5eKqRDEKSeaHvM1l1Mtj0ZJRVQ3SgarvYiypRaRs2UdiXpGxoNUxdWbOmmeT+UtB+146JrA0AQ115wWPxOPq4NQcUzmag5JmqvFq6YaX6daJU60vKLxZrHWCxVLJkypOspMuOwYJEXjKx5FCCikLeJO8X9Q5u0R4lMnG8pM2VTn+zCYhRdDyVKy5P1oFruyOtB6QkWLEAK7GAMbJYuvvLWs/DeSvDDFNEgySaNkoeuQ5TlhAjujmFGU0SwdPp4fNd462eTcTJkwzZBA2VFN9EEQU3Z0dvwIU9cZBjFBHPLqkjL+3f98jyMl4fPjDM9UzM6yY+CaxtTM/HSrRJhmh85xZVuZ+MMdTzlT1wrmAtPY8snPnSOUiNdck1eXlb9RnOWIgncQJZlKgJsts1hzCIodzZJtULIVG6FRsljvh5iGGlOkVKzKKMshSsllTt2z2B5GZJlkrupgGQLH1PBM/aFdxgxdmzY7Mik5366QSzg9qyQ1SaacyyYeVJtD1Tjz44yap4IPxlFKZ6TkauMow7N1TP3O/bsbh43nQgjOzCoj44kX5VJDRV03ShY9P2auYqNrGosN5VOhoTarNE3g9UJOtjTWioZ8mktOH+CfaBSSB10T6Lryr9x97TrjGE3jkVg+Tc9mHGWFdFOxG7IM6q5FzTVolC0WGyoy/p1VyeZghBCSpbrDbBEnP2GtWoYoGCzKeN3QNG52/KLJbrBUd9noR9RLT9feoOJa/G8+f1J5x9UcvnW9y7cKOfogSMmkYBSpxfZS7lJyjCe6mahpgh++MMsrizWkVL46kzkvyZTReSZzao6JYShfIiTEqWRrENHwAl5eqBKn6VRqMllAZUUDR2iimOfu9gOqOAazVZuGZ3F+roymCZIsJ81zTE3jjZUai/W7vRwnqLlmsaCL8CyVhFudN6f+Z15hxJ/m8i5bhsn3P9cuk0t13JuDcMrYmxCgs/yOnUaYZFxcqOJHKRLJ58/cUSxMPLH8KFN1T5pz8h6bVWv9UCUNhypdWzWCtWLTTgXynGyp760JQc0zisRjrWBc6pQcg4WaCvaYq6qxr2zfSRsFlaxZcQxW+0HB7IyoucrKQnlw5Rj76gfPMqg6JmGiWLv7f/408aVzM1xcqJBlqmHWDxIEam6Yrdhc3hySyRyZwY3OmC+ebU39ffbDLFiUqz1lpJ8DYSJpV+3CO0zH0D3mKjag5Ja/VZpSoJIc/+OvvMof/u+/yb/5N7/DX/oDbz782CLUddgeqcZUmGTkOUWKncWPvNBmvuYQxNk0JfZpQ9dU8e5ZOuYuokOQZrimQZzlU+b3vfDFc7OcbJUoO8YTaa4JIM0ytoYBO75SPZxqlXBNjQuzFV470eC1pyjvfpY4qhn4rwF/UEp575XYPgghPgf8BSADviml/JO7fvYzwO8BusDPSyn//OHvhUoymi1zZrbMOEz5+e/dZq2ndlQn/Fnb1KYU8eJzeHGhwuYg4my7RNU19yR0TCKMHxUVx+TMbOnA4nZjoEz7SrYs6IQGYZLR8xOqrsHLSzVmKyqqtVlSC9T1QTCN2i3baiF1mInaudkKDdfGNMQeM2/b0PfshjwvMAydP/8H3uLvfOsGb9/oU3INojTj7Zt9Xlyo3LOwbZYs6q45fWAPMqGreRb/28+f4nu3VYrH+XaFjh8zU1FmfJlUPiFxmvPSQhW/2Ol60iaPj4PmrnjipYZLZxRzaqbEOEp5ab7KxiDk2o7P+iDgjZU6Nzs+tql2zoL4gR/Vx4JtqpQrUHTasKrYZxJUsSQl3701YGsYslBTO/IfrA85PVOi4piq2WjeSSjMc0XJn63YaqdmrDzidt8bZdvA0pV5t63rReNBp+vH1DxzKr3Mc0kuJXGqCubzbSXtODXjsTOKFYOxWGTqms65dpmoaAjd9T0NbZpsZ+pqN3Wmol67M4rICtnUbmlfxTbp5ypRMM1VMRSm2TTKXiUeumiaYLUXsDNSxrBLdQdD19gZxZyaLe1hcp5rq2tbeQCvu8fBxKvjQTBXc/nM6QZ+lB34mhcXa3zh9Ay5zHl95cka/k5gmzqvrzRUQW9o0/vnXLvMH/jsCd5bHXCzE7BQdzA0QXcck2Q5p1oe4ikVBrWSxWT2EUKlXp5oKkPxkqXzG1c7Ktm1bNIsKTnLfM3Z83w7ps6/8OoCjqnRcC1sU+NL52YR3GkwaZp4IK/B/QXRbMWeMiAe10fqfpgsbG1DZ6GuGF6TsVnXBGXHpLxvflDeV87UowZUA83UFetLoOSyuYSZik3FNkhzydl2hVeXlR9ZLh/dAn+x7rI9jKk4iiVo6BovL9fwo4z5mrqvNgaKGVpxDNplmyjJVSpg4T0zV7Wnm0cHLRi0ghF0r/E8yyl8YwRhmrNYdwnijPW+anj/yMW56Vhl6xrrg4CPN33KjhozJ02nLL93rdEq21iGxukZD03T9viuuJbOS4uPXmvUPJOKUy022JSNwYmWR5hkXJgrT9kuUkrOz5WVHFJTcsCGZ921oyyE4PRMiTzPeW9tWKRIKgbLJG33IM+hJ42aa01lGZ8/O8PZdpkrW2NudRXDeKnm0fEjSoXJ/JOuSzRNu4udB7DccOmOE5VWbGr8+ItzvDRfxTI11nshmqahC41xnLLccO/y3FSG8w6erZNnkpJztxn3JMkW7pghtwplgB9nDIMMs3XvutezlOzLNXWCOJ+Gd7QK70BdKytv0kPGPSHENHq9WbKIUrUx1SjqaNfSmaup57VdVdLVH7zQnt6noBq2mgZ5rtYeSlqqkrkO2hD2LB0/yjAN5cn25fOzvLxY25No2SrZ0+b2fNWZ3t8XF6qs90M8WzHCbV2j68cEccBSw2FcyAUn3+3UTAm3aEoZutpUAzgzW8KPsru8cnVN8MVzM4yjFMu4OwH5aUIIwUxZ3ZtKGq3mcM/SaZVsvnCmyXdv9bmypawRhBDc6vjUvDvrMdvUODXjESY564OQT59q8dH6iNOzStrtFNLUQZBSdoy7ZF2/lfCjF+f4mZ96iZ/5X9/j9/5Xv87P/PTLfPYh/J90TdD3Y+arDj0/5UcuzqELNf+9tFSdXqtniYpj8NkzTZYbHoZ+Z0xqVxw+dbJOGOe8vnz4Wl/XxFR19CRg6hp+krPcLKFryjP71aUay3UXP8mpOAbmU2QpPksclcfULwghviiEOLX7PaWU/+MhL7sO/KiUMhRC/E9CiFellN/f9fM/JaX8pUc5npKjdr8MoZFKydlZJSfaHwsLikl0lClqE0xTt3RxoAxsUuQploP6t+s7vtLmjiPl7bFrZ2Wx4bLYUNRgleQl8OOU0q6JdRyl9AKVyucV5rWzz3Fj5V74vW+d4IdfiLi0OaI7Tuj5Md+63uWFuTIL9YMXw1qRirQ1ijCLdJb9JnRpLrGKQWljGFKyjOnu+0zZZrZioxVsuspzwiR7UJRtYyrpbJYspJQsNT1Oz5ZY7YX0g4SNQUiQZLy8VD3QoPtJQ9PEnhSkSdpUvWTTLzxsPlgb4No6UZrflUokhJiyPEB5MIyjjO2RanKZ0yakyQWrjECgCYriUOzZKVHvpyR45+dUw2m3JPagJqhtKEbaxiBjtnxvA9CJMSYo/5eJBBDJnmJ/pekym9jYhsbVIvHTLNiSu48R1CRfdU1s445G/aDxzDKUN97GMFRm5M/J7t6bK42CVXP38Ri6xlzdRgPMpygrNnXtrkbZbEUlrnqWwYlWiKGpgvfSxohBmHBqxuPs7JNJyTkMc7vum8lz82MvznF1e0wu4cP1AZ1xTNePefNEYyrLcS2dU7Nl3hjHGJrO0j18ig7C/dLgDjp/D4qdUaR2uB9A2jXxemx61jSVT5YePKlu93O6UHNZqLnEac6NHR9dy/CTlNON0jRl0jK0I2GkqHtIPaOTc9muOFDcPnkuWaw7jKOMXOZsFsmuZ2ZLnJ8rk2Ryz5g0SRstO8bUO3FyvPfybrIMrZjj7rAoJylgvSDm4nx1j5xtqVFioeZNn9WJIfBkfIzSjJ1RXCSI3jmGJ+nLtHux75iq0TVht0/qLL2YWxbrLuNIeaAddg01TZuyQ7q+smyAO2nHzxqzFYfZisPrSR2BMg+/2dXxo5yeHxOuPRsm94SBPrkeF+arnJ4tK1+s0pgP1wf0g4RKYFB20gON0SfJhIdBCLHHC2ah5mIZyrPxZndM1VUS5MPkZGdmynfNOZNG1MPI0Ixd49zuY9pfQ+2vB3qBStCquUoW+dH6SPlKCjifle+amxdqLnXXwjI0NE2gIe5qDt6rhnL2rWPOtMv88vvrJLlUmxdLd5/vuapDrUiXmxyLqWuHpoofVHM8S1jG3jlocm82yzZLjSFaYQ7f82MsQ+NzZ1pTxtk4Tnl/dUivCKz50nmblxarRVJjUZs+A9nZs8Af+tJplhse/+7PfZ/f/1e+xuvLNX7q9UU+dbLBXNUhy5SP1Nu3enz3Ro/LWyPWegF/8scvECU5/TBhue5xds7hzIyHrh3NHHpU0IVgoeZQ9/Z6nN5JtRdPPShqP+I0Z7Pw0Pvy+RlFLCn89R42mfeTjqOS8v1/gLPAd1EMKFDqs3s2pqSU67v+N931ugn+EyFEF/i/Sim/+7DHtNzwsAwdx1QxowctIicshLpn7hncslxybWdMkuWsNLxHGoy3CiNzONhEuF1VBtG3ugEfb4051Syx1g8YBCmL9Xs3DZw9kry9xeD1HZ8sV95Tj7NL+TygWbZ50zG5tDlkYxDywdqQ793q89LCvReF64OQK1tjdkYxL8yX75I4TmSNsqBoN0oWpqGhFzuxD4vuOGatr0x+H3WBdtRIspyPt0akmVT+JEFaJEsYbAyVN8X28ODkuKeJzWHIRj+i7BgYGgzDjGbJxDRUXP36ILzvYLx7ga3t+73dheeE6bRbF94dx9zuBYDyGLIMZSx6WCOn5ye7ksjuLkwPwu5hZ/8YJHbdd6daSnKzm20wOUeWoU0bVPeSAUzgxym3u8qDJ83u9sJ6VtC0ez9jYaq8fdIsZ6PwD3oW2BpGSvrgGCzVHfpBgqlrSKmMUtNcstoLn0ljaoLrO2MGQUq7atMqKQZUv/An8wsmzH44ps5y3eN2P5gu+O5X5Nzs+PT8hFbZ2rMQOgqMonTarH0QI/mJ78kwTDgzU+bKthrfTs+UDp2b1/shnXHMTNm6a4FnGYrBMEkgbBdG2NojzgWHYb0fsjWM7vKcG8UpmZQqyMBz2Bmr66gJUaSD7n2fW92AIFbNqYvzlQdqOs+UlTdaz1e+VStNjzjLuNUJcEydc7N3L5D3P6u7DVtvdwPGkToGb9dmwJPCte0xwzBlrmpPr6FZJCzB3XVWbR/r/WbHZxgq8/j9TZKzsyXGcUbfN5UcSNw9jzxrhEnGrcKm4Hy7wtXtEd+64T9Q3PiTgEo39hXLRgiSXNUZpq4RZ5Jm2aYfJCrV8zHO5eYgZGMQUXEMTs2UcEydE02XD9dH3O6FzNdcklwe6qN42JzzsJBScm3HV8l1NfuuuT9KM67vKH/Hky3V2J1IYE1dSfxPzyrvoopj3HP8Pex4pVT+aLqmPCpv98J7Hs8wTAiTHM/UKTvG1MdqP56n5sHjYvc9M1OxMTVFTCi7Bhv9qAiWSKYsy51hrDxLgZycsmURJhnr/SFJlnOi5e3ZAPitjh97aY4vnZvhb3z9Bn/7mzf5c3///QN/70TT48WFCj94fpaXFqvqnPVCXpyvUndNrmz5d62pnzWiNOdGJ1A+cHJq1Qs8XJP6SSLOcjb6EUme8ztemZ/epxMPx5Ktc3qm9M9Fg+qo2t+fBl6S8uE50EKI14AZKeV7u/75L0spf0YIcR6V7vflh33fk60Sdc/Cs+5twNr11Q5lz09Y2cVcHMcqnhjYEyH5MNi9aDbutUMtBLqmkeewNQqnuxdV99Eui6FPzCV/a9y4lqFxcb6KpWt8tD4ECdvje5sPTyRUQqhFWpKpxJIJHFM92HGq0l6AB4rtvBe2R8qXrOcnzFXzZ95xB+VloMxmlWfBxHuk6pos110kPBe05H7BTuiNYyiYS+M444X5StEstu47AC83PPpOgmfph7JA1CJv7+TTKwxNt4YxVdcgy2EYHrzDO4G+67l6UA+nimNyakalgR22+6YX/lR7jrE4Rxv9kIprYGiqCdGu3Hsi1TUxbb4+TU+kx8HEj2Dio/es0Cvmg1GY0jU1DE15msWZ5MSMxyhMaT3DZyfLJYNASTK6voq1D+IcS1fyDU3jwPt3seayOYg4M6vGvt1+UPfC5N7r+vGRN6aMXfeo+QDsLUNXzWplYp5Ox7d+kBw6N2+PIqSEzWF0oCxpqe5SslVy4GGso8dFL4inx5vnclqPdEYxSPX3qmviWgamod1zcTqpIzQhHmrRr8zNlbx9uaGS0EZhSsk27jvm3X0MGpA9lSZOmuUMQ3W/94LkwGu4e4zbX2dNTJ4BdsbRXd/T0DVqrjKyLTsGjvnk7oFHxSTsI4hzEGDpOjMVi+wpeEQehEExbw78lBxJyTLojGMWai5CKEnifE3JZyc11qNgwl4chilplqtr5VksNVw2B6quuWdd/QSQZJJRcS/2/eSuRlA/2B0olFLaJWGc1CZnZyvMlO9fr9wLaZ4TF/Nj108OPR5dU4mFQZxxfq7yW9YkeTd6wZ17RkrlZaYhmCs75BIcQ9vj09cq28wH6j62DcWiutUNp/YffT/556oxBaox+od/4DR/+AdOs9YP+P6tPl0/VmqFqsPLi9W72I66JmhXbVxTZ1Ckw+5fUz9rCMF04+l5fRQMTRS2JCrIa4JJXTqOVIjC89JIe5J4rMaUEGIe+PcAE3hRCPH7ga8A7wP/ppRy7T6vbwL/BfD7d/+7lLJT/PfSvRanQog/CvxRgBMnTtz1c127O+5xP2YrNtvD+K7f80x9qgevPeLkOltRvgumfm8de9Ux6ZoxEkWrTQu/jrnKoy0EThf+Qo/TbHneoGuC83MVxlHKpa0hS/eQ8gG0KzavLFXpjtVO/0FF5sQY9yigzNMVw+J5aQaWHQPP1kkzyULNYa0fkmQ57aozlbA8auPzKDFTtlkfhNQ95VMzDFMVDV2yGdaSB/K8eZBn/F5oldXu2ELdJs9V02m/r8J+VB2T07MqdvhhpCuPKnOZKdtsDEKWGg5RsRi/X6FkGzpnZ8vPzXV+EJxvl7m2UCXOcs7PPzs20uSeLNsGjZJF10/IpaTqmLRKKgjjWUoZdE3QKlv0fOWJU7INTENtRry+UkNysNRC05SnyGovwLX0B2JbzFZsxTaqHH0jzjGLezQ72K9tP87OlvfMa66lJFyN+8gs6p5Jd5zcc4zQHmP8eBjMlG02B8o0ePcmWd0zi3AVbSq9Pwwnmh6DMFGpaA9RXc9WbLaGEY2SiShSBoeF3O1h7+flhkvVNQqvnic75ykjeVN5YN1D+jVT+FsZB/gFmcWYPgrTQzcFntZ98Choli2CRCVmuqZOs2xxYa6M/ox2zZsli3Gc4phm0bTPp/Kzc+0yUaLmncfd1Z+tqLmv6ppTRl+rZBHEGTNl1fyqP8WodMvQps/rQfdi1THZHqqwmUphTn+2XZqmpsLj1SuT12tawfb3LOI0v+fxTJJMs2L++ucBk3qp4hhUXZNx7GMZGidnPGaq9l1rsbmimWIZ2tTrb6nuMo5TkkylHf/zjIns/X5wTJ3zcxVaZZskzw9cUz9reKbOqZbHhbkHYxo/C7iWzsX5Cpah73lmZ8o2a0WIwT8PTSkA8QgkpzsvFuIXgL8P/FvASeAKyjtqHsWCWjjktQbw88C/L6X8zX0/q0opB0KIGeB/lVJ+4bDjmJmZkadOnXrk7zFBnOXTnaijNvi7du0au48xzSVJ0RU1i8LqWePjK1dZXD6hpAQHeME8L9h/Lp82pFQUe1BF7UELvcm5nMQ9P484vt4QJvnUN8KxdB71Sj3JY4ySfGrI+9weY5qTF7osx9R5nHXJ5L583Pd5kvgkPN8Pcr33zEPP6Ls87H25+5gNXXsqmwKfxOudZJI0e75qDDiacShOc7JivLFM7cgbNZ+E6/1Jmb+vXrvG/OIKoJoqzxsrDT4Z1/tRnpsgyZSpitibzP0k8UmYv5/1GuJekEBYBFlsrN58Lo8R9tZ7D3ucozCdNkyf1v3xKNc7y+WUoWjo4snL1p/TexL2Xu/3vv9dKaV8sidDSvnIf4DvFP/9IWCj+O/kz6X7vPZfAbaAf1L8+QLwnxc/+yvAV4GvAT90v+N466235FFgFCby/bW+vLw5lGmWH8l7TrD/GMMklR+uD+SH6wMZJumRftaj4tXX35Tv3u7Lzih61odyKI7qej8q8jyX17fH8t3bfdkbxwf+ziuvvflcXduDcHy9pdwehvLd2315szN+rPd5kse4M4rku7f78sbO83uMnSM6RimlfPm1N+T17bHM86Mdg48Sn4Tn+0Gud5Rk8qNnPA897H0Zp+qYP1gbyCB+Osf8SbzeQZzKD9YG8tLGQMZp9oyO6m4cxTg0DBP53uqTqdWk/GRc70/S/H15cyjfX+vLUZg868M5EJ+E6/0oz816P5Dv3u7LtV7wBI7oYHwS5u9nvYY4DDc7am3xPB9jbxzLd2/35bXt0UMd5//j735fnvwzf0+e/DN/T37lv/rqU5u/H+VcJmkmL22oOsOPnvxxflKuN/BN+Rh9owf587i6BK1obv2qEOK/kVL+6uQHQohDXWyllH8D+Bv7/vlrxc/+2GMe1yOhZBtcnH86puG2oXNh7tnJVg6CZWifeNP0pwEhxB4T24Ngm9pzd3334/h6P1hC0LNGs2Q9d9To/didRPi4cEz9vs/Xs8Yn4fl+EFiGxvlP2Pcw9ad/zJ/E6+2YOi88Q2nsk0TZNu4KNzlKfBKu9ydp/j7MpPx5wCfhej8K5qrOnkTXp4FPwvz9PGO54UHj/r/3LFHzzIe2ufnHH2zwP37tOn/oi6d4aaHKv/Oz3+Mv/KOP+LM/+eITOsrHg6FrnGv/1hsTHgWPcr0fB4/bmLoohBhM/kcI8SeKv2rA873aO8YxjnGMYxzjGMc4xjGOcYxjHOMYRw4pJf/pL3zImdkS/+5PvohlaHzjWoe/9tVr/KEvnXogL6tj/PODx9IJSiltKWX1gD9lKeWh7TUhxOeEEL8uhPg1IcRfOODnQgjxthDiX3ucYzzGMY5xjGMc4xjHOMYxjnGMYxzjGE8Pv3GlwwfrQ/74D56desz9id92nlxK/uo/vfKMj+4YzxuOxMBKCNESQvznQohvCyG+JYT4S0KI1n1edh34USnll4G2EOLVfT//aWDzKI7vGMc4xjGOcYxjHOMYxzjGMY5xjGM8HfxPv3mdumfy028sTv9tpenxk68u8LPfujUNkzrGMeCIGlPA30Q1kb4C/D6UqfnfOuwFUsp1KWVY/G8K7L8z/5X7vccxjnGMYxzjGMc4xjGOcYxjHOMYx3h+EMQZ//iDTX7Xqws4+5Ih/8BnVxiEKb/wzvozOrpjPI84qsZUU0r5H0oprxZ//hxQf5AXCiFeA2aklO/t+refAH4V1bC61+v+qBDim0KIb25tbT3m4R/jGMc4xjGOcYxjHOMYxzjGMY5xjMfFr360hR9n/OSrC3f97POnW5xsefzNb9x4Bkd2jOcVR9WY+hUhxB8QQmjFn98P/P37vUgI0QT+C+D/uO9H/xrw1w57rZTyr0opPy2l/PTs7OwjH/gxjnGMYxzjGMc4xjGOcYxjHOMYxzga/P++v0bDM/nc6eZdP9M0wVc+tcxvXOlwq+s/g6M7xvOIo2pM/THg/wvExZ+/CfzbQojh7tS+3RBCGMBfB/60lHI/j+888HeBPwX8W0KIi0d0nI+EMMlIsvyJvHeWS/z4nsSw5xKfxGM+aoRJRpQ+ni76Sd5XR4Uoffzv+UlCEGekz/k1eV6OcTIOSCmf6ufmz+hzHwbP6tw8KoL4+R+L9iPJ8mfiTfFJO1dplhPEv7XG8Odh7pRSPeN5/nw+48/L8UnJJ8JD5rfaM/K8zpNZLn/LnesHwfM+DodJRpwe7ZgaJhm//P4GP/HyPIZ+cLvh97y5BMDPffv2kX72UeN5v373wyfpuTOO4k2klJVHeNm/BHwG+E+EEAB/FviDUsp/Q0r5BoAQ4g8BhpTyg6M4zkdBZxxzuxsgBJxrl+/SyD4O8lxyaXNIkkqaZYul+vMfmSml5PLmiDjNaZRMlhvesz6kp45+kHBjx0cIODNbwrMe/jHaGUWs9kI0Td1XtnF099VRYRgmXNtW3/PUTImyfSTDxXOLzWHIRj9C1wTn58qY95hInyU2ByEbg2d/jFJKPt4aESU5dc9kpfn0xoGPt0aESU7VNTjZKj21z31Q7B4jn/a5eRRsDSPW+2osOt+uTFNznmfEac6lzSF5DvM1h9mK/VQ+95N2rtIs56ONEVkumavatKvOsz6kx8aTrMkeBtd2fEZhimfrnJ0tP5NjOAzXd3yGYYpraZxrP0qJfjQI04xLGyNOND1q3qFh3c8MYZJxeXNEq2yx+Amowx8Ez+M8uXvN81vpXN8PaZZzaXNEmklmKzbztedrHO75MTc7akw9O1vGtY5mTP21S9uM44zfeYCMb4KVpsfnzzT5O9+5zb/+o+co+gHPFXbPo+2qzdwnbB79pD13R1ZVCSFeE0L8tBDi907+HPb7Usq/IaWclVL+cPHna1LKf2Pf7/z3Usr/9qiOcTf6fsLWMLrvblJQ7PRICdFjdJNzKdkchmS7Pi/NJUmq/v+T0slMczntqh90zH6csjkIj7zz/jwhSjJGUUpnHDMOH405tj2K6PgRSSaf23M1DFM64wg/Tj8RO54PAiklO6OIzji+62dhrK5Dlj/7a9LzY7aG0V27nZPxKMvlM2UMhEnGWi8gSJ7uvZHnks1hRC+In1vWZpLmbAxCRuEn47mZHGOe81j31ChK2RyGD83mS3NJ308e6jVxlpMXH/O0zvHmMGRrpPJa8lwdw/MEiWpcj6M7z0WSyWnN4X9Caoz7IUgy0jxnZxTRPWAcf1qYjD9bg+iBasmniTyXrPYCRlFKmOTPljVTfHSw6znNc8nWMKIfPNxz/6Qg9x1jZxyzM7p7/n0eEKc5m4Pw0PkvzyVhUtTpz9EcFGcZm4OIYZg8V8f1pJHmkijN6fjRdA552giTjM1BeKACYu869+iuyz94Z42qY/CFM61Df+8rn1rm6vaYb9/oHtlnHyXSXM2j/SBmrf9srt+jYhgmrPaD53I8uBeOhAIhhPjvgNeAd4FJtSaBv3MU73+UCOKMMEm51VU31zhKibMcXROcbHp30Q1nyzZplmPqGlXn0U9XmGTc2PGJkpyKY7A+CCnbBvM1h3GU0q4+nR3fx4WpayzUHYZhSnvfLnWeS/7/5P15kGVZft+Hfe6+vf293JfKWru6eu+eHRjsywAUSREkETRFWSEySJphibYUYphyaHXYDtm0w6ZkcadtSFxkCRYJcAOxDAgMBrNhgJnu6aW69qrcM9/+3t3vPf7j3PcqsyqrKqsqq6ohfyMQmO7sfHnfe/ee8zu/33f53VtddgYhsxWb7z/X+kR2v58UaZYTpjm2rjKKUlQgzHJGUcpGN8DSVU413Ue+5zDJGEcZ272A9U7AbMWkbH/yJol+nDEME67ujrANlYZroqq/v7/Pzjjmyu6Q9U7AudkSry/Xpu9ptmKRC4FtaHgvkB02ilKu7Y253RkzV7Z4a7UxnWDNVWyECHFM7YmYeicBP0752rU2nXFExTZ4ab4CyLXU0NRnyiIZFdKUa3tD/MhhruLQ8Mxn9veeBB0/QQjB9zZ7XFyosFhzXuj99ChM7ntLf/L7Pslyru4M2eyHuKbG5840URWFJMsf+ZpRknF9b8T5+TKGpkzZqKea3gMZgSVLZ6ZsEaXZc9k74yznxt4YBah5Jo6hsd0PEAJWm+4ngvEaJzk39se4psZ81WF/FFF1DGYrFkGcfeKm9E+KiqXz4TiiM0rohwnfZ7Roes+/flquu6x3fYZRylev7jFTsvn82Qaq+uJZdDvFEPSj7R7n5kokWRlTfzF7t64pVB2DVkmu03Gac2VnyI32GFVR+OK5FmXnxdY/hq5StnXmKrY8IN/q4JoanzndpFn6ZNXmtzs+fpQStjPOzpTYH8X31Z6qqrBcd+gFyfRz/ySgH6TkQvDB1oA0z1msOifGzvkkY38U8dFWH1VR8UydMMmeK9MzzXJ+8+M9hlHC6abH26cO+z21ShZJKtCKZ/UkkGQ5v/bhLj/28twja8Kfem2B/+QX3ufnv73BO6fu96J6UZgMvWxDw9RV2uOY3UGEAry2VP1EnofiNOd2ZwzAfMXmVtsniDMUBWol6/dFr+GkquXPCSEundBrPTP0/YTbHZ8ozchzcEyNfpigIm+uQZjed8gxdfVEaLBxKrjTCfAsnSjNSFJBN014af75yRBOCq2SReuIzXoQJny0PcCPclRFJUiyF3Z4PmlIKqSk4rqWxnxB5dQUhfYoIk5z4jRnHGePlLwpiryvhpFc9H7vdo+FV51PXBNPVxUQCn6c8fH2mIZrsfwJlyUdB5e3RvSDBE1VODNbolI0BW1DY6314inveS64sjNkdxCRZXCqFbNkSurtJ+Ea26OYNBPoqkbVNSlZOtv9kL1hhKrChbnyM5UYDsOEQZBh6ZL1+klrTIHcS4I4Z6cfsjuIOD3zyV0HLV07kT1uHGdESY6hquwOQ4ZhSp7zSOp7kgnudAPOzpboFwwPkJLpo/aZCZ5noyXNcjZ7IZoKlxYrhGlOr2B59f2E2cqLP1zFWcZmL6Ti6GiqSpYL2qOYS4sVtE9gAf0kGEcptzo+YSz9UExdpT2KX0hjquoY6KrHzf0xG92Q3jhhoWZz5hMg61NQCJKUIBHs9GNudcacf0FyPkNTWW3KuiHJpAT3w+0BwyCl5poMo/SFN6Z0VZnuqxs9n41eCALOzpQ/cY0pRZGS4mGcMggTWp5NnOb4cXZoCFD3TOqfsL1RAaIkx49yNnohiz3/hcpMnweSLOfDrSHjKCMTKZZe5nmX+sMwZW8Y0R7FBHHGpcXqocbYwWf0pPCN6x36QcJPvjr/yP+2ZOl86dV5/um7m/ynf/DSC5NnH8QgTLi1Lw3Z11ous2WL222dUZ4yClP85NFnvReBfpAQFOqPXpAU6ouYiqPz6lL1E/HZPgondXr4mqIon/jG1ISiaOkac1WLxZrN2ZaHosipjmcd/sKSNGN/FB2S3z0pDE2hVTZpuCZVR24WrqVhaMdboYQQDMLkkMQoTl8wRfsAgjij68esNjyqrsF8xcR+xlPkJMtP5Ls5DsIko+cnZEIghFyoFms28xWbqmOgKGAZKs4xHnpLl82F+bJN3TVxDB0hCjPfOGMQJp+I73W57rBUd5itWNimiqLIpkmUZPfdi79fUHNNFmo2zZKJa+m493xfYZLRGZ/MM/+kcE2NpZrDTMXENe9nagoh6PrxIcnO80TVNZiv2ixUbS4tyEPvZG3Nc0izR392aZbTD5Lp53zcZ7liG8yWbRZrNrah4hgqQoj7Xu9FYq5iMV+R+4uuyUn8ZK0eRekLkW0nxedzEnKjLBf3yfUMTeXlhTLzVTmRcwxtKrWLkoevE7qmyDXG0CjbBgogEM+86JvsqceRLmiqSqtsMle1URUFR1fRVAVV5RDbNc/v36efFzRVpVkymavI9Q2gbOuP1ZSK0/zQ/iPEs5c1548hnZbPESxWHWbKJnXPwHuBwy/P0jk/W6biGMxULPwopTOKXtj1TDBXsViue8yWTWxTwywGBWmWH3p2pTwleS5hGnku8CM5FF6sOhi6ylLdmt6rLxppsQfNlyULd6nu4D1EJeHH6QuRk682XCquwXLNwTV0BALLULEN7ZHPaxBnL6xuAJgpWyzUbOaqco+wDY04zcmy/Nhr8ScdB/faOM3RFNDVovas2Kw0nj/D1rU05io2NU9npe7SGUfPXAL/S+9v4RgaP3B+5lj//R99e5lhmPKrH+48k+uJ05x8Ksl79Jp3sG4Jk5y6Z3JhrsR81WKmqHE+iZjs+aoKTU8OBVtlE1NT6b1A6fvj4KR29J9DNqe2gQjZGBdCiNdP6PUfC2EiJ7cVR0cp5AQbXUm7rzoGuZCbs6YqlGyDVxalFOUgY0UIwb+6vMedbkCrZPLTry08MFXgODA0lapt4JiSEugYLiXboB8kGJrySGbRejeg50uWx0vzZbb6Ad1xgqnL39U1hfmKPX0PwzBhdxhRtnVmy892suzHKdd2x9xqj7i+N0ZVwdDLjKIURZHd8JNmA03M+rpjaQQ9U7FZa3onKiMKk4wwyajYBhu9gCTL2e9EvLFcBaDhmSiKQs01qdjGY9E6S5bOD788y94wouYa3Ngb8VtX90mzjGbZpmTrfP+5mRfa3dY1lTdXa8xWLARSQvFPvrPBzjCi4RnomsrnTjeZf85Gege/l8el0mqqwhvLVX7ndhfHUAmTnFLxXEdpxndu9/hoa0DZMfiJV+aeWGIphNz87KL4ehzomsqlxQpplpMjCJPs0HVc3xvz9ettoiTjx1+dZ+U5BxBUijVzvRsUhaRsVClEOKZ2LGr+tb0xcZrjWRquqfHlj3ZJc8GXXpl75O9eXKwwW7EZxXKN+8qVXfw448J8hYpt8PJC5YU+N4qi8NpyjbmKg2OoxFnGP313j1GQ0CpbJHnOK4vV5zYpnhjVb/VCNFXhU2v1J2ayhknGN290iNOct0/VqNgGfpKR5VIC+7kzTZJMsokmBdKjqOOmpnJ+tkSa57y73mOnH7LScPHj++UOaSGddk390FofxBlb/QDb0I5t7Lk9CNkfxiiKZPk9bO8wNZVTDQ8hcr5+vU2c5bw8X8IyDMZRQprnlG2D9W7A7jCk68dcnK+wXH9+TFhTV+XfA9I85+X5MrquHnu9zHJp2p/lgpprsFx3uLY3IohzKrbcw01dPcRU64xjun5Mwz0+OyPLxVTKMvmbcZozX7VplUy2+iE7/WBany3WnOl9UHV09key2bva9NjoBXTGMTXXeGFy2QvzZequQS+I+daNDn/vG7dYrNj8xR9/6YVcD8g16OWFMjVXJ8ulpOPDzR4fbo2oODovzZeJ0pzNboBr6VQcgwtzz2Y9itOc7UHAdl+yyiqOzjhKuThXomQbhw7pkvmTUrL0Y9XbQgjWuwFpLlis2U984A+TjF/4zgZNz+T15To/8tIsmRD32VVMcJBNsdp0D8mfxlFKmotD/y7LBRvdgFwIlurOUzGKDU3l0nyFm50RnqUxW7ZpeCZb/YCru2PKts5C1bmPUdoZx3y0NUBX5XPcKlss1Z4vU19RFC4tVKi7JpoKuqryi9/doDuOmfEscgQ/+vIcVfeT0ax8XIRxyi9/IBsrgyBBUeGd1QafPdNkdyCl1bXn+N6yXDCOU7JMYBkK3XHMKMyIM8FCNXlm4RF5Lvjl93f4oZdmji3V/PzZJgtVm//vt9f5115fPNHrGUcp/++v3uDMjMdq0yNKcixDfeia1/TMqY9k0zPJc4EATje9537meRyMwhTP1Jiv2liGRtnS+ZX1PoMgYX8U8am1Oos19xPNoj6pnfz/CfybwHvc9Zh6IYhSma4hBFP3+e44ZliYVFcdna9ebTMMU063PL54oXVkkZ5mObvDiFGYkuYZ+6P4qaQDArkoX94eYmhy2mqbKltdWcS+ulzh7MyDH5KJKW1WdHxHxdRjoxfQ9CxURTaoJpvhdj8kTHL8KKPhmk/VVHsUklRe0+4w4mbbL8ylEz7eGfHaUu2ZJA6OohQ/SbndDVCBoPDuWqiezN9Js3x6Hwl8brbHRHGOoav83p0e8xWbpbozTSV8Eq2xZ+l4lk6S5vzceze50xmz3Q+ZKzucnysxV3Z4rWiCvSgoisJS8R5/9YNtvnmzw1Y/RCC4OF/FMlR+omI/t0UuOfC91Nz0sRPPhBB8+3aX37nexbN1VEXh+wovtCwXdMYxgzAlFYI7HZ9Li0/2+W/0ZONYUeCl+ceXtl3eHvKVq/vYhkaU5PzEgbjdfhjTHsnJx9Xd4XNvTAF8sDng2t4YRYEfemkGS9fwk5Q4y6i7xkPXGyHuGrfHWc6NzTEfbg3Jc0HTe3QjsGTplCydj3eGXN7p8ZUrbfwo5aPNIZ863cTUVV6aKz/TNe9RsA1tSo3/F+9u8s3rbdZ7ARVL58J8haptMl91ngsVXAhZrPT8BENX2BlEnG492d/9eGfAu+t9HEOyc1xTZ3sQEMY5izWHc7Mltgvjd0WBi/OP/h5MXaXumnz5o12+c7tLkGQoikqrZE9lmmGScavtc6fj0/BMXEvjYuFtBtKYfBxJ776qc7wmxSR4RAgeybRTFHkAfX+zz2YvpDOW8qi5ss12P+T8XJl3TtWJs5zuOGEUZbRHEXXPfG50f11VMDSVd9d7xKng4kKZC3NlvnG9Tc9PWGm4vH2q/sDfz8Vdo/S4YI9MJAG3Oj714kBVsvXpe9rsyYFfmATHbkzFac61vREvzZUPhX+MohTLULm8PWSrHxAkGaebJW61fU63PE41XTZ6sq5Jc8kSUYtD9YsMggCYqdiYusp7G32+e6fPu0qPVsXiT3527YVdk6IoLNbkGvTeeo/furrPrX35/Nzq+Kw2XK5sj1isO6xpCkKIZ9KkyHLB7X2f210fhMLtjk/dM+iHCrapH/q71/dHJKnAMTXOzZbYG0bsDkNq7tE15CBIp5La/VH8xHVmEGdc3/O5vDNEAG+fajzUaycp7tkky/loa0DNNTnVdMmF4Ppe4e9yIC2058dTo/fOOH7qVK+dYcjeIGYUp6SZZHRs9kI+2Bzgmiq6qtx3Xrm6O2RnEDGKElYbLpqqUnGMqZXB84KuqdO67Zfe3+J3b3ZZ7/mYqsqF+QoNr8cPXZx9rtd0UnhvY8CVnRHrXZ/dUcRqzWUcZvy5HzzL2hPuuU+Dm+0xAz/hvY0+H+8MWO8FzJYsmQxYsZ8Zw/xbNzvsDiO+dAwZ3wSaqvBH3lrib/7mdXaH4YkSKkZRyq22z94oomRpeJY5ZbE/aM0LU+mxq6squRB8uD3g6o6seb94vvWJk/gCdP2YX/twh/1RzFrL5UuvLvDRzpCgkP1e3xtRcw2STHwiJOcPwklV7reFEL8ohLghhLg1+b8Teu3HghB3EzYmD51jaiiKLC7DJJv6AQ3CBIWjb0pD13hztUbNNTg/W8Z6SibO5K8cpA8GcUYviMkF7A3jh8q3FmvOdIpp6irzFRvHVFmuu6iKIqVkB67RLQpH21CfedOg6hos1mzWmi6uWZgfCzm1BZ6JFKBVsqjYOk3PnLLQTtLPKj9wH+2PYmbLNooiWVJ5Lj0cTup95UIURb9K2TEo2zqOpWEZn6yOtq6qOJaGaai0PAtTV7F07bl23vNCSgmPPkwehSiVzVqhyM3q4LTINXUuLZVplWUR3HgKicHk2oSQ1/w4SLKcXpCgKrKhYBvaoc3z4lyFxZqUsy3XXozn12SSNDnUd/2YJJUH2dEjpAKKorDadKm5BqsNl9mKhWtIptXj+EXNVWwcXaNk6VjF79uFhOwToOibouqZ5IBnalQcyRAoO8ZT7ynHhaoqnJkpUfcM5iv2fZL1x4EQCrahkGaChmtMJZiTxkCa54d21OMedHMhUItJvqGrVBztkPfiIJDyuLBIRE0zcWi/nDSidE059uc6X7Wpe3LvOu5Ud6ZkYeoKtqFSdyzao4RcyANynOUs1x3mqhZzFQtT157bd3wQSSGljdOcLM/pjOU1th8hMTM0lZWGrDOWag66pkpZpimZWCBrqIP2A5PP/XHldJNn1DE1GiW5h8+WLUxNRVXktdi6xjBMpB9jKL3HJsnIaSb3zGbJZLZinZhh79Og6pqcmXFQVChZBuMw+0RI8kF6nFZsgyTPpRm5bRAmOUt12RxfqT86tOVpULJ1Gq6FoSuUHWkyPmneT/6ulGTLz2uyf+6PIvIcOqP4SBmybapMvOa9pzDR1lQFTYWyZVCyjUfWdg3PZKYsLQ4mcrR+kJAeuMaD9Ylr6tMziHsCZt9xlqMqch2eSPkyIbB1eT33DsKEEDiGRt01aJZMqq4ph+MvOLSh7hhomkLZMvBsyYJ9mv3pRcMxNVxLxzE1ao6BAOrHGLY9K8RpjqJIqwUhFCxNo+QYnJnxmK/az4xl+j/+7gaeqfHjlx7NgD+In3l7mSwX/OJ3Nk/0eiZDm4ZrcGGuQs01HhlU1RlPalo58JqsTeLA2faThiTLJUOuIK+M45S6azJfc5gtWSzXXZqe9YmwvHgYTuqu/EhRlH8A/BOklA8AIcRzT+WzDY3lusMwStCKw2fZNnhpvkyeC253fKqujq7DO6dqDy1IpdyiNDVKfxoYukyz0xWH6/tjRmHCuYIh1Q+SR1JqbUM7xA6pueaUEhrEGarKIRrzUs2h6Uld6YNeVwjJEFEV5alNEmcrNj9YmmOmbHOnM6ZVdpgtW3xvo0fZNlgsaIUnBdvQeHmhytmZMmGSAoqULBQb89PC1FVWGy7jOMUxNG7sjzk/6+HZBg3PpOoYJ2ZabxkaP3ZpjrWWSy5y9oYxVdtg8Qj2V54L2uMYU1Opus93w3v7VJ2qozMIU8ZRwjjKOPsAI+5BmBAmGU3POtHGlaVr0+/lYcbIRyFKM/p+zKmGy/4oolEyeXmhcuj5WGuWWKy6pHn+VI3OhaqDoUW4pvZY8gIhBIMgoVkymCvbeLbGp9Yahz5D19L5I28vEybZExe5aZbT8WNcU38iRscrCxX8OKPhGTRLFusdn51hyEzJOlaxU7HvTmpfWahScwziLOdU4/gm3FXH4A+/tcTppsNGP6ThmvTDhCjLjmwGhknGIEioOMZzlfq9vVpHU2CzH6IrCmXbYL5soR2xLk+useoaJ+pD0fBMvnh+hjTPj3zd9ihCUZRHNgYXaw5vrzZwTY2FmkvSGbNYlcOSqmNQtg0cQ6MXJHjmg/2NZHR1hGtpCKSsbqlm03BbVByTtaaHqirSdyTJKVk6+2rMct2l6urMlO1Dz22rZFG2dXT1eIOYUST9YeYr9mMx62YrNj/92iK7g5BhmMipapTKmO0kx/BUXl+uEaXZsa/l3mt6GobzUs1hECbsDUNmyhajKGO+JlP5zh5jQnqwrgDZ/J2wO/w4RVcPp26uNV2iNH9kAy7JcrrjGM+StgOrTXf6OveyXD53pkl7FONaGmGasT+MCYqoc1NXGEYyzWsQSrnoJynR9s/+wAUarkM3jPm+My2+dq2NqsBnzzRfaLjJxQWZytfwTBDQKBssVBw0VcGz9IfKi/p+QpzlNL0nS+WdSGbOzJQYRfLQFCUZonht19DQizp1reVJCRSyKVV3DfaGUqp51N+2dI2X5srkgkfaODysdirZOj/7qRWiLMMxdDxT43bbx7O0I5kRWS5QVZivOOwMQoSQe5pjaizUbNJMHKoPHVPj4nwZAQ9lT8dpTs+PKdn6Q+uPmZJFbyxZETNlmar68nwJ19RQFYWl+uFnSlEUTs+UaJYS6q6JWsjoTqo2m9QTj+u789ZqA8tQ2eyGGJrKOE6pugZZLu67tqBIiT7pvfFx8LC6SQhBydJYbcghvWUoOIbGK4u1F3KtozDlTmeMEPCTr8xxq+0zjjPOznicmy0/s/UoiDP+2Xtb/NRrC49dQ5+bLfHGSo2f//Y6f+b7T5/YNdZckz/xmRXmqtLX9zi5fzXX5HbbJ85yVpsOL8+XGRf9hLnKkytznmSfH4YJQfJg9VOa5VzeGaIpCm+v1rjVCTjX8nANjTdWaqw0HDxTJ85yhkeEvH3ScFKNKQfZkPqJA/9OAM+9MQUyjeJr1/ZZ7wa8sljh/HyZ3UFEkuVoioJt6LRKNkEizdAettme1AKoIIvnm/sjNnsB+6MIU1U5N1fm9WVz6rUQpRmrDZc8l4f7Vsl6ZFPMMTV2hyFZLpk9kwX9UYev/VHMdj8EmFLinwaaKr1VXluuAfD1622+c6dHngk+2Ozz2bMtXl2skuY5XT+h6hhPdChOspz9UUSrJFk7pm7yweagYG4kvDR/Ml4Jpq4yCAWbvQBFFXxvc4BjyGnfWss70cPtYs1hseaw0Qvw4x79MOXnfvsGKw2Xz6w1KTsGXT8mTLKpvOKM5j1XX42KY/DWqQZBnPHNG22CRPCrH+3gGm0uzle4tFihFyRTo3gZFy9OXMZZdWUBuDeK8EztgUV1lBaHX1MWlx9sDOiMY/phzEzZojNO+O2r+7yz1ji0UJu6ivmUZFJTV1msOeS5YLsfoirS+PPejXYYJvT8ZCr52e5LOn57FGGZGoMg42vX2nzhXPPQAWxyoHhSbPQCBkGKokSP9Nc5Ct0i1XB3GLE3CPlga4AfZ9Rd87Fli4oiU+wkw+PxJjmaqvDWWpO3gKs7Qz7eG7MziLi972ObGvMVi5cXqjimJhNZk5z9IqnsecE2ND57pkU/SLiyM+RW22fjyi5pKrgwX+bVxSqDSDbAt/sy5r0XJCfu+SJZAfevWbfaY67ujKg4Bsps6dCQIi8k2qoqD0MzZWt64Lq8LeWcaZZzaaFCnMn9VNfURzaNt/pS7idNSAXdsZS5rLVKhwYuEx8XXVMYRTKFsWyX7wstALlXR2nGVj+i9JDDdpzm3NyXBXsQZ4+dSFiydcaxzjjOcE2VmmNypxvw/mafrh8zV7bZG0XTMIxJw+5hSLKnu6YJVFWZyvq/favLXMWiZBq8NFeh4ZkkWc6N/TFZLqZNLEvXjjVkcU2dQZiwOwxpelbBRFeOtQ/e6fiMowxFiaTf5hEMp91hSJoJ5io2iwcO1jXH5MrOiL2RTJXyLJ1fuL5BxTV4eb4y9TCbKVkvVL47wR/91AoAX7/W5lc+2OH6/oivX2/zv/qxCy+sOeVZOnNVG5ApwlEi+GBzgK4rnGp4+HGKQEFXIBMwW5af5ThKud2Rz2Ca509klaAqCrqmomtyLYzSjGu7ETf3x8SZYKluc2mhSi9IqLsGJVufPvdzFeuRdgbH/c53hxFXdobEWc7bp+pTaerkGieJw1ku+OX3t9kbRSzVHL54fua+/XGzF7LRDRjHKZ9eaxxqdD1o7TvOdV7dHbHVC/Bsnc+sNR54NukFCZ4lGavb/ZBcCNJcUHMMqo6JZ+qsd316fsJsxWK2bE8l8A/CZK1XFPn9P869utkL6QfJY6fNmbrKmysNXlsSfOdOl/5ewm9+vMc3rnc4O1vipbkyQZJRtnTWewF5Lgf555+RH9qjsN4NGIayblqs2fhxhmNoXNkZcn1vTJhllC2D1abNG8u15zYAC5OM9jimbOuYmsp76z1+88o+4zBB01TOzHh88cLzkUf+0vtbjKKUP/r28hP9/p/49Ar/4f/4Hr91dZ8vHtM4/VEQQiYT1tzjG747hoYfS4b2R1tD6p5JlOXYmfTBe5LB9ZPs81EqbQyEgDDOD6UndsbyTPj+Zp+PtoYYmsKlhTKXFivMlu8O3RpFaq1VBMx80nEip1ohxL/9uL+jKMpngf8bkAG/I4T49w787D8FvlT8438khPi1x3ntrW7Ar1/eI0ozBmGKH2dEaU7VMaaUWhD0fCkPsI/BOohSSeer2MczZTwKQgi2+9HUk2MUp6R5TmccgxDTtKb9kUzcEkL+3XOzZbb7IX6cslB1po2qzZ40RLd1lXHxuwr3a8sfhEObyAnWS2GSsdkLuLozYBim3NgfcyEv8f5GH0tTGMdyKtXzY155Ag+fcZTxe7d6fOFcA8+SD9nkvRx3Y/TjlO1+KAu2B+j917s+wzDl490hJUtnbxSxWtfphwl9PybN8vsOP8MweSoZkaXL9LuN7pgb+z7tUUKU5igoJHmOZ+qcbpUe672eNHRNQVMV/Djlo80BpqExDFP2xxEb3ZCqq1NzTFol6yRvq0PY6AWMwpQOsjF7VAN5ux9ybVeabH/mdF0+d4lgqxsQpHKCf7rl0RlHNDxzalhuaOqJNfz2xxF7Q0kiNTT1PmbirbbPKEz5cGvA26fq7AxCBmHK9iCk78eMk4zlml2YSct7fVIAPo03xEEJ85PcR0Gccnl7SC5yGq5BmGTFZvv4iT+3Oz6/+sGODGwYhI9/MQWGUco4TAnihBt7I3RNxdRU7nQDzs2WGIYp3nT9f/6YPNvDKOFOeyx9iMYxV3eGaKrKbMWmUTIwVO3Enpt+YXhZc4z7Jv9CCG7uj/na9TYICJKM83OHWTX7I3n/hknGKExZbbjT/S9McoZhQt9PMDWVpbqLrqrHanJYusoI2SxTD6zdBw+AgyBhECZUbIPNbsCN9gg/ygnjnKprTg+Ak8OzqavkuSBMpM/TvQbpExz8/hWkzGGzF2JoymObAedCsDuMubY3LOoDg9vtdjEVzXl7tcZ6EaAipWeP/mweZC/wOPh4Z4SmyOs71fTo+TGuqRHE2TRt6MruEFPTgATX1PAs6fez2Q+J05yFqpRbtUcRO4OIsiX3PiGQYQMncDjsjuOpZ+FEHaEoHGqA6EXC0CT5dqsf0PYjNnsh4yhhtmTT9CxycT/76kXCMlRutcfs9EN+dbyDoSr8hR8+h6q+mObZdI9UYBwlXNkZoanSkqBsGeyPIoZRwsvzVXaHoWS1Onf3wZO4LwG2eiG7g4iPtofMV2z2RzEfbQ8wNY1BkExlo5NrPQrDMGG9K8MOTjXcaQNHsgWlyfS9DaIwkV6xAHuD6FBj6iDWuz7vbfQRBQvrqN5QJgQ7Q8mU2uj5VN3769h+kLDRDfAsyfI+zrqyXez/0jsqx1Q1dgbhoSS9MMnwC4N1kMyYQZiQpILNbshKw0Fwt9nfLqwoQDaIh2HKYs2m5prTOtgt2K2TWkVXlefqoTOR7/bChDsd6S83ijKubg9RVIWao7NYdzE17YXt33B374iSjN++2qYbxOSZIEpyru+PsA2NpbrDmRkP/TlaXKx3fYI453Z7jK7C+5tD7nTG7PQjTrU8PtzsY+raVKL9rCCE4O985QZnWh6fPX0cXtL9+Jm3l/ivfu0K//dfvcL3F/6vT4uOH/EvvrfFqYbH//wLp471mkIIgkSew0dRSs+PuLEf0CwZT3RuvRfHXU8fVKsPg4RvXm9jG2oR7ia405EhE7ap8UMXZvj06eYn2uT8QTiR05eiKBeAvw7MCSFeVRTldeAPCSH+9w/5tVvAjwghQkVR/r6iKK8JId4rfvbfCCH+c0VRasAvAo/VmAqTDEtXGEeCIE6wisaNZWhcWixzIS/xvY0+uqpyu+s/ssASQnBtV04Ze5b2xKZhO4MIFPBMg9W6wZmWR99PCJMcVZUH7CiV5sFhIjWthqYSxNl0w9gehJxueQghpgbIveIwDYf9H+5FXPhzlGxDpnKUpJxEphieXHTo7iBiHGXUPYsLcx6uoWLo2vQQ7loaZ1olZp/CAHKio53gdMtjoxvgmhppmjOM0qnnzFHY7t81y61YOrap3bdYGZo0V52vyEjjpZqNqiqULJ3OOKFTbPyT5tTBpJYnRatk8YWzTeIk48aez9YwpDEwsYvufXnGoOHJaf3+MGK2cryJ9UnC0FQ+vdbANjQubw/ojBM01We+ak9p+GdaJaqOjh+ltEfRiRc5k01fVTlSEgUQxpls4qiw2fcxdI04S1ltSimfWtz7k2nC7jBidyCfs3OzpaeW7wIYBw4h+hHPpqnJYlDTFG63fUCgq0yj0Hf6MX6aUyp8FyZplCBjox9HzimEPAiWbZ25ioWfSDrxvQyno2j0970WsDcMURWFQZhyabFC10848wBp58OQpJLFlOdienB4Eqw0XN5YzrjZHjGIhtzu+CxUbbrjmJ2+TL9slkwMTWG7H6AANc98brIA29B4damKZ+p0hxFbvZAwzTA1hVxIf6Xzsx7S3kSwP4poFsmfT4rNXkCayZj2xj2vFSY5oyijbOuMw5Sqo1Mp/FUmchJdU8lywXrPl/KVQm4Dcs39aHuAY2okRVfBPGbRu1hzCr8tKSc5O+uhHmDf9AOZuKirCn6cYBkqgzBFV1RsUz10z3bGMWkmSLMMXVMQCFSUQwfKIM7ojCN0TaHhWZxueQSJZPht9WWTGzi2GfBs2UJXFXRV4YOtAbahkaSCqLiXB2GKrknGaNeP8UydIA4LGY28sIPPmR9lzFUkS6FiG+wNJePqcZvPojAwdwwVS9NYqNuoihzmXNsbcXamhGWopJmgaVvF9P/u2jSOMzqTw7sasdJw2R/Fko0cxGiqghAPlyNluSBIMrJMTNenxarNjbbPzD37wO4wkil9aYqmqKiqgh9lRGk2fS4HYUrTMykVn8X1vRGdYcRYy+j7Kf1gxGY/ZKH2bNOHHxdvrdb5/nMtfvG7G4Sp4DvrfX7+23f4o2+voL0AZlfVMTg3W+IcHt+90yPPYW8Y4RWysSQTKCjsjyLZqFBko3epbrPRDUgzmWb9tAfbMM3o+gk1zyBMMzRFoTOOma84GJqUOq82XDIhqD9gf5s886MsxU+yKRNoqyebqpPQn4OMo6ZnYhsKGYLsIR4x72/2SdKcYZTw0wvzR77flbrDdj9AUx48xGqP5L09CFKiND9WnXaq6bKhBjIFExkystkPmCsaS6IwVxcCNFWut2mmIUTCfMVmeySTV01NpebK1O9mMQyL0uyAUXxEzTUP1cGzFSkJVBRpPQKS4TEKU0q2jqGpD5RDLtUdXEt7bCnfBJO0PgVBfxSzP4y4tj/kbLMk70tF4YIl79M8F2x2fZpl67nt3Vku92MhBBVHJ0oVLm8ndEcJlg439n2GYUKrZPLWqSqvL9eeK3tTV1UGYchH20PGUUJ7JNU2dddkteni2SaDIMUx4qc6dz0Kv3V1n/c3B/wXP/PaE8l+QTbQ/8IPn+M//sff4ytX9vmBC0/PmspyKbXfHz/cZ/EgdE3ltaUqu8OYhYrFly/v0vNjDE05lm/sUXW0oanMVSza43jK9J2k5j4IAkHJ0tFU6RntRymupfPhdp8ruyMAXl2uIHKFkj1kvSsDQvaG0TMjBjxrnJQO6G8Dfwn4mwBCiHcLz6kHNqaEENsH/jFFMqcmP7tR/M8IeQY6Nvw4ZXMQkGQ5/XHEhVmXvVHExYUKSzWHXpBMaf5pJgjilJ1BSPUBviNJlnO747PRHTNXdR7byPggBALP1FmoWjRLFos1l+v7o+nPz82WaI/kdNrUZGG9XHNAUYo0JcmaqrnSx8MxVW7u+yzVbNZapWlk9VHoB1K2lGaCtZbLa4UPRnscceuIgvFp4Foa/SBhteGxUnfI8ja5EPhJzjdutFEVhf445qdeW3iklPIo6JoiDxZxRj+QDZE0l2yX2x2f34k66KpMjXp7tU6aC261x6S54ExLNhw8S2ccZURZxse7I0xd5exMaTphH4YJSZpTdnR+aG6WLIOyraOqkgq/2ZPMjoO3w1HmnE+CqmPy9qlGwYyRjTDJEIpYb8NW18dPMjRV5dXF6gtJMLEMjQvzZT51qkHXj6mXTJI0YxBE+ElMfisnFzmDIGOuYvNjl+ZOdENcrjtUbAPLUI8sAG63fcZRimUoNFyLb9/scas9puGZnJ31qLkWriUj0CdNrjjN2SkYO/MVC9t4sD/bcVH3THRNymvuLWDTLCfJxZT9dLM95PquT5BkvLxQxjEl7TYvvODqnnXoGpueiWdpxy6AxnHK16+3Waw5VB2DJJXU/bp3tzm1N4zY7oc4psbZGe+B719TFVpliywTtEoW52Yf3NwXQrDVD+n7CZ6lMVc9HOs9W7FplQ32BjEvLzw5C6NVsnjzlEazbGIZGqebKX6UEsQZ232fG/sZdc8kiFPWeyEvzZa5tFR9ZjHpR8HSZdrUp880qXsWAsEwkmvNemfM3lCyOIdhxkzZ4lNr9adKT/FMnd2hlM2tdwOW6w6DQHoclG19ykjQNYUwzvna9TYNT+6Nu8OIlxcqLNUtru2N2B6EOIbKVl8lSjIyIVhteJQsHVNXWGm4j0VvPygrue/3hGQlbPVDUASnGh4//NIsnqUxX7GpHJCCVYsDmK4pOLrK1Z482H28M6RsG1Qdnet7Y67tjUnSnOWmy+dON/Asnc1ewO4wIs9Fwbw83rOkKHcZBfXC5Ha16U7DSfaGES3PkEVslnNjf0TJNhiEyfRAuDeMZPNPVfjeRh9L1/jsmQa7w3DKdjg/9/hx3kohG46SnFcXq2z0AsZRVqTnZYW0UKc9kkX2SsOdPo+WLuVb0kelXAzI5Jpzqumy1vLwo4ySffT3vDeMuLE/Yn8Ys1R3WMwcZsoWH++MWO8F9Py7jef1rs9WP8CPMtZm3KIxHaEpCu9vDJirWAghE0qHYcpay+XiQoXXl2UozUYv4PruiFFhTPu4n1OSSba6Y2rPLJnsT3/xDCVL59cv77I7CPm7X7nBL7+/zV/92Tfx3Oef6jQZtqy1SuwOI+YTi5ZnU7Y09hEoUPgbqewMg2IgqmCoCqMo5cyMx2dON59qGDZXtujVEuYrJtuF1L7hyQRtP07ZG0YPZF32g5he4Us1DFOiNGNnEJKXLSq2fN5u7AdHGmhvFA3o9zcHdEYJrbLFzBHJX66pc7pgvJyfLbE7CInSHKPYx1uFZPRTaw2CJKNUrF1CyKYNyL256hjc6fgIYCVxjvWZnW560r7D0PjOeo9f+L0NtvshP/by3RpPMEkSU9gfx1i6yumWx0rTZS1yubY3oj2KOT9XOuRLqykKmz2fnUHEO0U656QONnQZGjHxxpusgzf3x5IZGyXMVWwUZJMbDltJaKry2J6f90LXVC4t1miPY5plWX/FWc56J0BRcr5+bR9FVdgbxtQdg7dP1Xlztf5Uf/O4uNUe89VrbbZ7kv0qcjnUGcUpFUemnQZJxnLd4Y3lxmPbGTwtdA1+72aXb91qAyqvLJRwTAPHVPnc6TppLgOyTmLY+jD8jd+4xmzZ4o+8vfRUr/Ozn1rmr//6Vf4vv3yZL55/etaUpStkec6FmcPMxc44ZqsX4Jgai7X7n9G1Vom1lmzqzlXswlfVfGRT4lZ7zCBI70ukl3tphBDSzmCp5vCtGx2GDwkMut2Wz+zl7T62oVO2dd5YruFHGSAYhAlBmFLxTL5wtsW7633SXPD2qfoTNwdfNE6qMeUKIb55z81zLE1Hwa5qCSE+OOLH/xlFs+u4GIYp24MIBQVD1+gHGW96Jq8sVrm6OyIomCZVxyBKMnaGKd3xgNmKdWQ0/GYv4Hsbffwoo+qaT3WImUw9xpGUF7673uPlhQqDUPot9fyYzV5IexShqgp112QYpdRck7WGy2Y3IMgzvnm9zWLNJUwzZssWQZIjEA/Vjg6ChCyXOnQ/lmkxe0PJbBpGT6aXBdkV7oxjbEOd/v1WyaJkyQnLL/zeBkEiN3VDkQXO7jDi/c0+Nc+i7JjHlh5OoKsKwzDh6s6Q5aaLokjW0t4wkqyljs+putyQwyRjZxBxZWdEkgmSNOfN1TpzFZuqY7A7jOj7SdGkzKaNqe1+SJjmkMrDpGoo7I/lJHHiR6TcYxpfc03SXDxV83KCxZrDD12cpT2K6Pox13YzbndCbnZCTEVB16BVctgvGpnPmzUFspnyhXMt9oaSfv7xzpCun9Aex6x3Q5kQo8spWmd8spMaRVEeyhbqBwmGrrFcd6m7Bl+/vk8/TBnHUhp7cd7hmzd6jMKAb1xv88MvzdLzpclunOZc3hkxiNJjGQY/Cg96Lv0kI8/hVNPDMVRutEeM4pTdQcRK3eGNlTJ3umN2BzHfudOn7plS3helmJrKld0hHT/m3OzxDq9pJmVOu0PJHprg4Ko9ibQO4ow4O9ooGyT7p+laBHE6ZZw9CINQvqcb+2Mqrk6cCc7N3v1cd4by4GxqyvTvPylKls652RKuobE/DvnOnT7bvZAb+0NKlsmHW0M0VcHQVdp+TPYCYuZ1TZ2uQR9uD8hzwbc2OigKZEJhpWGTZvIz3htFT9WYWmk4JFmGgmTLGbrKdi/gdsfHM3XKjsFC1ebj7RH9MGXyaVRsg1EkpZWOqbFSdwkKw+L9YcxWP5AyoCSn7uqcnSmd2IQ4TOTAYGIE75oaQZLx0lx52gya+NhVCpbXK4sV9oYR13bH08abqatESU7F1mVaTSST88ZhSrdokrZHMYaqYpnSh+NJ3sOdbkCc5Kx3fN5YrrJYdTg347HeDfidW13SLMc2VZqexa22T801p/f5KEwJEpk4FyZFUvBTFOGKojBXttkfxtRck8s7Q1bqLq6ZYxsq690AIWSxO1kz/DibHjDDJCNIJENpvevT8SN2+hFLdbtI5FOpug/+jAZhIqfTaU6a3d0Ld4YRUTHFnaA7ThgV3nKjMMUxdPw4o2RJKwBVVdgZBPTGqWS1xTH744jvOzvDasNjtmxzfqbEb11tU3eNR6aB3ovNqc8eT+Szd1z87GdWWW06/JVfukzXj+mFCf/JP/2A/+Mfef1EA2EeB7Nli0+fbrA7CBmHGR9sD9npR+RZBopCwzNoD2M0TWFvFGBruky0jeV3eLDh8biouSYzJYv17hjX1GiPY15frhKlgvYoARJ09f5AnjjN+fr1Dn7B7vn8mQYfbA3xo4yNNKCyIIfLrZIctEyawHA38a8TSKuF3jhhfyjlfPc+868tVVCBtZZHkgt2BhF9P2Z7GLJUle97tmJjaIeZm10/Yat317O1HyR0xtIoe6sfPtRgfgJVVab+a5s9n/1hhKpImTXI5/tMq8QwTNjqhyRpTm+c8MMXK3iWweXtAVd2RtzY96k6RuErJtEZx4wiuab+3u0ec1V7Wgcbmsp2P0BXVclSjSRjMc0FcSq/87JlHPLWeRaSOk1V+PRak8WqQ2ccc21vTG+ccGNvTMU1QAj0IvW7/Rjsl6dF148ZBTH7g4g73TGqokzVFst1j9WGS901WWq4z70p1fcTvnatzQfbw6lsUwgFRVXwY8F6N+KHLs5OpakTDEOp1ml45onIvd5b7/PVq23+8k9dfGomm6Vr/Hs/foG/9PPv8s/f2+YPvL7wVK+X5bKe2uxLr2lDUxlFKdf3RtzpBFQdA01VHuj5ZOkaTc9kdxBRc/WHMsNlgJHci/p+8kB5uQLEaXYMlYA8q/eCFCvJ5Z5FD8dUCNOMXpDwS+/vcGmxyitLFf71t5YBgfmCEzefBk/VmFIUZVUIcRvYVxTlLAW7SVGUPwZsHeP3G8D/A/jZI372R4CmEOIfPOB3/xzw5wBWV1en/77mGjQcg1yAospYVcfQ2RtGiFyw2fOJ05zVpkee52z2AgxNfoGXFiXrJRNiurioijJN5au75lM1AFRVYbZss9MPubEvEz8645i5ijQsn8Q8ayps9gMG4d2behxnhGnGKMwwDXlt/SChO4rYHoRs9QN+6KXZ+1gZQgiZqFIyOdWUh4uX5ytTJk53nLBadx/os/QoTHyuFEVOdycL0uRzsgwVBQVFUfjJV+bYHUZsDUJ2hjHfudPj7GyJhmtgPsbnKoTcZDf6Ab0woe6YzFdU5qs2jqliapKd4lk6N/Z9en7MzlBu4st1m7xo0NmGjKiOEimVvN3xWRIODc/Es3TCRDbcdFVhvTt5n9Is+kHStKedGk2gqQqrDY+mZ/HdO92iqEjZH0Z4ls7ZlkvV0dA1hTzPiVPlmRXWD8NsxWambPHR9pBRlDGOM7Z6IYYOF2bLeJaGY2lTL5eHpUQ+CfZH0ZTxuFx3CZOM2x2fcZRQsg3mKtL0c7Up2T+aojCKM67sjtjsBziGyv4oYrMfTCNh0zzHLCS0J4WdQVhIsyxmyxa3Oj5BnKKpcl1olS1eX6oRFE1GQ1e5vjdivRuQIWAsn/e2H5MLpAyvZE5NFI+zLlm6Ss3VWWt5LNUcXDO5j3E1U7YK7zUNXVWnm/i9yIVAALap0w/iBzaXozTD0qRHjFYkh95bBO0NIr51s0OSihNJujQ0lVMtD8tU+Zff2+HK7hCAYZghr1pwYa7CpYUKp5reA9/js0TJ0jk/V2ZvFPHtm13GcU57FGDqGqdbDjXHwNQV6o6U1kmfncd7buI056PtIZ1RyEY/xDM1Trc80lyQ5fKQk+cCx9I5M1MiTFOqjslS3WFnEHGnIw/uZ5ouOTmerbHccNjuSxnsoGB0hkn+eLTmR+DG/pg0E0RpSsUxEIV3ULNksTeM2B2G3On46KpK3TN4e7WOosg9xrE0GdltqsXhIeLa3phRlLLWcqg6LjXHwDU1TE3F0BWSVFCy9ScOANFVuYbsDiPU723x8kIVz9a4tjtGUyDIBDOmLr1iYp32KGK2bLE7jKg4OioWfpxh6SozJUuaRRd+W09Sb5RsnWbJZKMbYOnyc7g4XybJchRkkSbZoHIvHQTSl6fm6XRGiZQfjhMcS0NTJGvh27e6xEnOxpLPF87NHBlHH2c5M2WLNBOSGVmxp0zs0y2XrX443R+3+3I97AUJK3Vn2hxfqrlUHL1oJOTkOVRsnf0RXNkZcWs/IBfw4y/PyeseRdLg3TKO5Qt4cA86+H0/a9+az52d4Sde7fPffu0mYZrz3dt9/rf/6F3+45++RO05evlMoKoKC1WHumtyZWdI35f1RdePyVG4tSfIkJYIp5seL82XSHK5P9iG9lRr5t4owo8zOmPJZi3ZGlGaox2QvQsEv3F5l/Wuz6tLNd5YqaEoTCUvo0iatduGShDnUwmZZ+lykKgeDv9RFMmyD5MUr0gBHEcZH20PDw1J5PVJdrKfZMxq8jnp+jKFeHsQcqrlIoRgZyDXIcuQHlIHl2dVoXimNYJUGmQPC/8kU1dZa7qPbIJfnKvwVadNInJeXbob1uGYco2T5uYphqYQJDmmnnN5a8B7G33qrkEmZljv+vSDZHrG0BSFHMn+H0cy2XjyOQ0j2QCuOAavFM2xtaZHx49QFFkXrTZkmqahq0+VWvwweJbOhfkKG12fb93q0PZDtvshnUBjpWbjKDJQYq7ikGQ5qqI8Ux+dKM1YqNjSs9BQCDO40wnw45S5ik1nFLF0cfapmrVPCiEEd7pjvnuny2YvIMkEzZLJj78yz2/faAPcJ30H+RzdLGxHwiQ7kWv/G795jbKl8yc/u/ro//gY+Jm3l/nbX7nOX/mXH/ETr8w9VY3mxynfuNFhteHybxfDEq1QS6iqfF4njMGjzih5LhiGMpEvTMQD94tJwNpsxaLnS2nnQeiFEf04kpY9shnm0g8e3Jw61SzRHSeUbZXOWK5DcSYYD1Nu7I7ZHkTomnymP3Wq/kLOgSeNp11Z/jHwNvDvIJlNFxVF2QBuAH/qYb+oKIoO/D3gL90j65uwqP6XwB940O8LIf4W8LcAPvWpT03rYpHLhtRKw+H8bAkUEEphRNjzC8NHgWvrND2L5SIBr1WS5o8398fsDiNWGy6eqTGKUlabDiVLP/LhnZgtVmzjWIeqCeX1Wzc6bPRzokRSBPfHMSt1h9myLWOvNZXuOOZWZ0zdM9BVlaWajLEvmTqqplApUrwUVOJU0uA9SydKMoJETkFvd3z8KKPuGdO0PJDd8mGYslx3pn/vaeDHGeudgNmKdYgh8v3nZ6i7hiwCVVis2Xy8ozMMEvI847u3O7y/2eetlSqvr9SP1Wk3dJWaazIXp+wPY759u0PXj9E1hfmKw6dOyTSTzULCYGgKTdcky3NcQ+fq3ogoyZmtWMxVbE41PcLCELY9kmy6LBe4lsqpumxoBImUfD5IwnCn43N1V0pHToJlM4Fn6VxarNIPEv75e1tsDwJELunWJdsgiDP+8Xc2cHSN8/MVXl16elO+x4WiKJyZ8YjTJmGcsNH1ibOMKBVTicRvX9vjd25qnJ5x+ezp5ol5bLRHMXkup+8LVcEgkPHynmVMN4f1jo9jaLy9WmO+YrPZD1nvBuiKQpTmjEIpcx1E0nPps6ebhb/FwyecWS7Y6AbHYsjtDSV9d38k5TtTTxtbJ8lz7nQC8lxwplniM6sGwyjjTneMH6domoqmwPsbA261x9RcnbdPNXAMaVh6VMLVvX97ECY4psbnz7amhahrSsZI5t5lW1Ydg6ojPe4+2h4ghJQo3St1qdoGuchRVQVb14iTjO9u9FBReWOliq6p3OnIVCBdU1htuKw1PbJcHJJhAax3fMnizOEkWxwly2Ct4dIdxVLCberc7vmcnSnhGBqurvJL39smywXvPKVk7knxymKF2/tjNFWw1Q8wdcEwzDg3UyYVgu/c6fGNG11ONRw+d6b5WA38LJcsge9tDBjHKY5psDMIUBUFy1CYr1qcbpUQiOm62/VjgjiTfk2qSnsUsdUPWKg6zFdsqo5Z+NCE7A5DFquPZxb+OKjYJqaq0QtibralUfMoSkkzmSjmmjJp7J1T0mR1pmxhaHItqtjyHr6xN+JXPthhux+QpBn/1hdmqHmSXdsZx1QdA91WCl+ohHNPwPz69FqN6+0haSbY7oV8b6NPnuestcp8+nSDhZrDbNni/Y0Bpi4/0zgT6JoyHXbVij1eAa7vj1nv+oUnjv7Y8gvb0ChZGsMoYX+UTVm1mqKwU5haX1qsYBsaXT/m3fU+VccgzXM0VYanWLrKUs1hZxixhsvuICLNZfrWIEholiyEkAzkIMnZ7Esvs7pnTFNx0yxnayBN5c/OlFiuu1OJ0CRVV1FgueEyX7HJ8pxreyMubw9RAUWV9+l6N+B0y6MbJNKkP5bmz799dR+3GBhqmrzfhRAPvB83egGdUYxjStm+bM5ruKb+XBrTf/4Hz7FW9/i7v32d7ijm1z/c5d07ff7Pf/w13lptPvO/fxRsQ+PsbIn2OOLq7ohxIJtFvSDC1XWCOC0afgqtkoGC4PLWgCjNeX2leqQU7kEQQrDeDdgZhNzYH7PV8/EsnaW6jUDuR6tN2eDpjRM+2BqQpILL20NeXqhg6lI+d3l7gKmpfLwz5EzLIxMCS1Pp+3KPe2m+jKrcTcG71R4zDGUT4VNrTc7PlvnyRzu8t9Hn/LwMxbgXH2332eyF/OSr83Lgaqjs9iOSNCOIMz7YHDCKUjZ7IXVXhiqdmy1NjYqrrmyoW4ZKyZTym2/d7LDZC1lrejQ98z5G2L1wTJ2312pc3R5JGXImeH+jTyZk+l6a5YRJim2YcmhafJ81x5zW3BMf2mu7IxxDo1U2OdWSNggHh9FCCMI4o+IYdMcx611fMrlNDS/V6fgxpqZxZkZ/ZL1xUlisOXz6VIP2KKY7jomilCDJOdMycUyNa7tDvnunx0zJ4nNnG1ScRzPSHhffvtnh8vYQRZHNi/mqw94wIkpSLF3WNe+s1V9I6MJm1+c3ruyz05eJp5NndaHmYJsabyzVsAyFVxZrh36v78tAlDjLivCLp8et9ph/8d4Wf+4Hzp6YLFpTFf43X7rIn/m53+G/+9Yd/s3PnXqq14vSjN44kooDXTZ3z8+VWao7GKoqE6aHMV7hIz0IEr632Zf75UIFtwjAanjGkftFZxyz0Q3QNYVzs6UjyR7dgmAwU76bIPvmSo34COa+bH5HxGmGa2l8tB0xDGOGUYqhK9zeHzMME0xdYbFq89kzTdZaz785+izwtI0pmW8nxDXgxxRF8QBVCDE8xu/+ceDTwP+pKCT+Q+BPCiH+XeCvAHPAv1QUpS+E+MPHvaDLOwP2BjHtUYypq7yyWKHuGtRdg2/dCFnv+SRpjmnotDyLSwsVciEZDVd3ZVFUsQ3Wuz4N15r6DzwonvSQ2eIxKZH7o5j2OGZ3KDe6tLgngyQDRS7I19sj4kzSaAdhStU1WFM8uuNImoAKwZWdEWVLByFolAzmKhadccw3r3dI85xTDXc6CryX5j6JnxxFKXXvyaPTJ7rc250xfizZKgcTC6qOwWzFIYgzPt4estULyJFT+iDNubI7wi9YNmXb5OLCo69FVxW+71yLb9xoszWIWO+E+HFG07OouSnNkkw/mqvY0qMEqf2/1faJ85xzMxUMTWW/kBVUbFk4yM/CpD2OpiaRvVCaCKbZ3YSWew3m/cKnrOenxKmg7j25gfNRqLkmLy9U+ebNNtqOwjgWjOOMQZjw7VtdwiSTiVhFN/5ZTbIeBkvXeHWpxrvrPSm9GWe0/YgkL/HunZ70DShZRGnOmZkS808QO30U6q6UY1ZsOX0oWTrfHfTk5MgzCeKMO52ArX7IXEWmN3mmxmYvoD0OCQvDVz/OEQqUrRzP0o/VZO758bGlZw3PLHyiTHlAHATEmeCtlRqDUUqW53z7VodmyWYcJVycr/CtGx0GYYIfZ6h4JFlQTJh1skywtvBoo/G0iJOe4OAU+XbHJ82kN9u9Dc0gzqYpWeMova/Y8OOM5bpLnOY4lsa1vRHrHRlbXbY1LsxXGMcpSZZzbU+yVJfqzpGMwkGYEMUpaQ7NE/RdKVk6b51q0A0SbnXG9P2ELBNc2R3S9xNud30cQ6fumlzfHx/pMfCsUXVMvvTaAp1vRHiWyigW7AwCgrTM9b2xnMjrGn5UY7XpstY6fvNMVRU2ej5b/ZCOH3NpocLOKKZiGazUPSqOMZWRa6pClgu2+zJpKsulj9vl7QHtUcSNvTFfON/kVaXKZj/gVjsgiHL8OKPm3i3UTsIc+XTLYximbHR9On7M9zal/1J3nPD2ap0wlj5Jpq7h3tO0OSiXsQ2Nlxer/NL7W9xs++wNI755s8NnTje5vjei4khvqnIxbJiYlz/u9Zccky+en+VbN9t8vD1idxSTZQJV9flj7yxzZrbMZs/nRntMnGbMl23GSYZjapQsvWjYyPexOwzZ6Pp0xwm6qhYNxcf3ThqGMon46u546uVVdgyCOGe+qjMMU0qmzu5AejrtDyPePlWn4Zn4cYaiyDolTDJUReFsy+NGe8xSw5G+d7ng2t6IG/tjzEI2darpTf1nQMr3Jkbqzj0x1XXPpDuOuTBXZrE41N3pyBTa222fsm3gWRrbA1lfGarKxbkyQZJzquHwyx/s8v5mH1vXOTfvoQ6kcX7V0acH1Inn44RpOApT+mFC1xesNaVs83kmjwH85OsLuKbOf/7PvkeQZGz1Q/7Sf/8uP/enP8NS4/GDI04CrilZtO1hgqqP6QQxIpcDwDyWzY2Bn2DqKn6a4egacxWH6/vjx2pMDYKUnp8QJRmb3QChSJVALuSAZ0eNONVyKRcDt5myxVZP+rBMWABLNYes2LPSTJDkAs/U+M6dHhtdH0VReGetznxF3lNJlk9lNV0/ZqYsa+QsV/DjjMtbQ8rW4b1tpe7wj353A0tT+a0re1ycr7BUddgbRKRCsv0MTcWPU2xTxdTVqUn7QXuB+oHm0+5Q1qgdP0ZV4a3V2kM/q3GUcmV3yLeud4mLIIA0kwqPMM3ZVBW6QcLuIC72h5TZsslCzSFKBasNh6pjEqfSg8bUVPZGEVv9EEtXuDBXph8k2IYmw532pFfb7iBkviJ9CCesuGt7I4ZBBkgZ4PNqTCmKwqdPN/l4Z8i1vRF+ktMdJQyijPV+j34RKvHSfIW5is0bqyfbmOr7CVf3Rry/2edO15fNvLJJ14+JMyjZspH6+bOt5+7lk+WCL3+0y29d3SdKM0Qu8CydPJ+kUY9Ya5WoOPohJmma5dzp+kWAhRxCNB7RID0O/tZvXkdXVf7096099WsdxI9cnOUzaw3+6q9e4WfeWnritGwhIEhSgkQnSlJArvueJZnS1/ZGXNsb0fKsKRvq/Y0+24OQnX7EbMWiZGksVB3Klk6c5vcxkybJmdIyI7uveRWnOetdGVwUZ/mUwKCqCrZ6/x7f9SXpZRyn+GHKes9noyOf/6s7I9IsI80FlqHzwxdmOD9fpvycns1njac9wS4pivJf3vsvJxMrIcRffNAvCiH+IfAP7/nXXyt+9pNPekHSLBiaJYs3V6os1V3OzJQQQhSpd/k0iU56I2mstVx2h2EhdZFF9kJVMomCJHto8eKamjycmeqx6aSeqeHaGpXUoOXZzFZMciEfkjTLud0ZYWoajiEPyXGasd3P0FQpRxmGGX6SslCxCdOcn3p1fjpJ3xmMSfOcJBNEWc5Kw2EYpsyUDhcQlq4SJk8vYdFUhZmyRT9IpEfTEa9XsnRGRcz0Ut1lEKU4hsalxQq/e6snC0Y/Zm8oDVadYzRWNFXhrZUqd9o+QpKxisLUkN5QyM/z3GyJnh/zrRsdmciSCdrjiFwITE0lL2SBLx9oiA1D2WxQFPmaQSyj0t3CjPreiayla3iWPCSVbG2agnKSmC1bXJyvsNENUYBWyZzG1EZJRpZnVFw5dX9R0FSFSwtVLm8P8boBc1WbIEnJ8owgnqS7aMf6fo+L2Yp9yLtKQGHSqdD1Y7p+zDhO8UwZM9wsm7SwqLpddgcKti7pvIYuPS1a3vELbdfUjy0BWaw50wPY3jBiriIjnTVN6sT3CokmQMk2pHFwzWFnIItgQ1dQFSGvv2Qd25tEU6XcYcIIPAhTV0mz7Ejqb7VoWmS5oHmEh5Rn6SRpBih4hk7qCsIkZX8UM1u2ONXKWKg43GyPaZakWeR2L8Az72eAmIbGXNVFUzgUT34SONVy+fTpBkLAh1GflxZKbPVCBLA7CJkt25yblRPsFxWrW3NNvnBulqt7Y9rDmMWag8iZ+iIlmfTfKj3mJNLSZQLMubky2/1AsohnSnTGMcMw5U4nwTV1ru6OuDBbolW2ZJJcKg3t11oeiiI9BCu2QdU2ph4opq5imipzVXu6P17fGzGO5IHycX0DD8I2ZJpqP5DG1Hku6IxiPFNjtmyzUshJ+oGMPQcOhWgEccbN/RHNksVsxebsTJmtXkSQZsRJztXd0bQhe362LIMAsgDbUO9rdB0XNdfgwkyZJMnxo5T9cczFhTILVYc8F9zYGxPGcvCUIxme4yilM45Zrt+dcpqaSsUxCJKcumtQe4JCU1eVQtIupYGKKp/nZskidXKygmnxQcEKmSlb6IoMabB0KV36eHs0bWjPV21eW6ny/Rdmps+uTBLKpSxUyOakbajMH1iLJwOciTfVQSzVnPtYBp6lU3MNyo5O3TFYrjvYusYgkgfruYpNkksm6018KrZJ1dGp2QZdPy3WOGV6fVd2hyhIvyRNVbENlUHBnOz40ovlReCLF2f4j5WX+Q9+/j3COCPOc/7WV67zp7/vNKceo/F8kmh4FnNVi7KlM+OZ1FwDTYF4JyMXOa2Ky0ebQ1xLI00Fp1qHv+vjwDZVVFV6K6LI1Ny1hottaFOmUZhkVGyD2YrNT74yTxCl5CiHpIMzZZNhlEhJqn634XJj36dZstjpR9PGlFGk0w3Cu+l0jZIl5aKYzJTt+yS8rqmzUnfpjONp4y3OZLCQrsmGlqGpBfNC5c2VGm6xd98b5tP3E1Cg4Uoz9AsFk0J7SHo2wEfbQ3YHUXEGkX6aiiJTLJPCmkNXoOLqlGwdTVOIM8HZmTIvL1TI84lEy0FRpMXBb17ZI0oyOqOUqm2iqcUzlQmCOC8CoNTpMH7yedddk84oAUUwUz752vZh0FSFd9Ya0utX9Jkr25Rtjc4oZhSmZLlcN+reyR/IDV0qLcJUKlBsXUNRVFYaHoYecG62zKfXms81fW+CYSh9HkdRiq7AS4sV/DBjbyT93/IiPOTeRs5E9phmgqpjnoh1QpoL/odvr/NH31k68cQ/RVH4yz99kZ/5a7/N3/2tG/zFHz3/RK+jayordenlqh1oAuW5mIaKzZRkKu5C1WYYSpn4Zi9gqe5IP84iLVfTlPvICSAZ23EmbUBKRzTQNFWZDgCPk148qcuFyElzGUISJJIxrmsqpi4ZkJ9eq/Njry6c6LnqReNp30kAfPskLuSkcGamRMXWeXe9hx/nZLng450hSSpZOaMgYaZs4RrSlPlme8S76110VWqmf+jCDDlIuZwqfTQeNrFcabjMlA83ZAZhQmcUU3ONIw0Pz8+X6YUx+8OQharLSsNlEKa8v9ljHEozs0+dqpPoKn6c8Lu3AxaqNmGcyXhlIShbGrlhsFCzD8k7Gp6JY6oE45i6K3XYDS8nSg8fTE+3PPwkwzuhm/l0y2Mcp7j3HJi743iqYa44sqlzbq6MAFqeSZJlfO1qzM4w4O99/Ra//P4OP3Zpli+en33kFMIxDX7gwgzfvdNloWbjWSampjBbLLZywhSiKODZGr2dmOFmylozxzIm7CeVIJGHqQmbQ1dVaarr6JQsnQ+3BliGSpzmnJ25f6qpqQovzVU4N1t+ZpIA19L5mbdWWGu4rHcj4izlX7y7zUY/ZLFqcqZZomxpfLQ9IE5zNBVWm96RTYVniXfWGqw0HL56pY2uK3z5w12+tznENTVerpRYqNls9gLudHz8KKXmGZyfLZ+YHMg2tOlmU3WkXLfpyWlHzTXRNIUPNwdc3R3TCyIqtk6aC+bKJp5t8tJCmaZnMgikMW/V1dkfyQb2vdTciWzgcb3uy7bOZlewOwpxdBVLU1mpu6w1XBplE1uXnjVX94b0ColqP4hZrFZwTJnqttp0CeKMzjiibBv0ion2vQ0BRZEymqOowmvNo59ZkFOcBxlBAmx0A756tY1lqqy1PFYaLm+v1umMY0q2UciHTd5wa9xqj/mH37jFKMr44vkWP/ry3KFi7gcvzPDB5gA/TJ94IvYguKbOWtMr4rFliuObKzn/9LvbbPUDaraJpavsDkPe35AHgLKlU3WPpms/K7y5UmO+8hK/+fE+DU+atH/3do8wzXljucpqy+VOR07MBNIf73TLe2SD8myrzLt3+kRJykxZmgJv9gKGUSqlH3rKZj9kdxBxcaHEudnyoaSpS4vVaQPCNnX2RxGrDY/yJZ2bnTFl28DWVdIsn7Jltgch7XGEqcm0qCct3E+3SsxWbEqmzu/d7tIZR3z9eptPn27w0nyFqPBuubE/ZncQkuWCxZrD7c6Y3UFElOb8gdfn+fzZpjQazXNqjkHXl15vZ2dLWLrKna6PCoW07C7DeLeQbh+ngTEIUmxTZ7HmslCT3j11z+Q76z3GcUoYS5lanOWIPGe+6lCxDPZHMTv9kEGYYOkaKw2HtaaHpavTtNDHxeSZb3om370j//6FuRK2qfP1620645iFqo2uqizUHNrjkIEv2UTKYpWKrXNld8hOP2S2YnGq5U6TyCYQAjp+hBA5Z1olFmqulANmOaMonTYRHUPD0I7nlSW9Hau8uVLDLw6CNc/k27e6VGydXAgMVWGrH1J2DC7O65yZ8fDjlNttn1rJQCu+vxv7Y67ujNFUaI8MkmKKXXEM6q55pJ9YUDC+jzp0nDR+8KV5/sa/ofPX/9U1xlHKV6/s8csf7PDH31ri3//Sy8/879+Lim3wuTNNzs567A2lyfM/f2+TfpjQD1MUFOqegalpuJZKyzMJk4zvbfRYbbgPlVGFScaHWwNOtzxemiujALqicKc7Zqnm8PJChX6UIsThIYipq9zcl4y7uEjF++bNDsMwoWTrLFUdPtwa0iqbzJVthkFC3TNJ85w7HZ/FmjMdnEovJZX1rmQJf/Z0ExB0/OQ+Kb70Q51lox/y8rwcWKZ5zofbfWxd4/vPN9nshSQ9OTy41fE50/L4ypV9ojTnU6fqzFVtPtgacH1vRNOzeHmhzGtLNS7vDIrP5P5gkTTLCdNcDq5NFUtXKNk6nznT4K2VOn9NU1moStnjXNnkd2/3yIvhc5zkfON6G8/Upd2HbeCZ0iagbElZ86dX69JjM5LhEKMwnQbnNEsmoyjlVEvK9jd6AR/vDJmr2Kw1PVplC1WRclhVkdfxvNjFryxWaTo6X72+T5jAziDg8vaQVOS8XrM5M+uy1Q9ojyI0TcUxNM60vCeyi4iSjBv7Y/pB0fg0NZaqDpc3B3THMTVH583VOrZe57Nnmqw0nm8jOU4z/ul3N/m1j3Zpj+SAfWWmxKdX6iiaSi5kk/GVxYpUgYQpln43mEpVpczs4B7/tNgfRRhZzp/94pkTeb178fZqnS+9Ms/f/I1r/BufXX0ilqtVsBrfXKkd+v1b7RE//+0NdgYBf/CNJb7vXAtdU9nqB5xulWh4JmdaJTxL55s32nztWpu6a/LyfBnjnufXNrSH2rhoxWcfpplUOj0CJUtn4Md8+fIue6OIzkgGIcyVLVabMvDo9eUq5+bK/5NqSsHTN6baQoifO5ErOSEkWU6cCmqunP7KA6rJTj+iO46xTR3b1PnCuRZpLuTGsi/jImueSXscM44yLENGpg6CFFWFi/OVqcHnvVIp29AYhAmGKqcNG13ptzCKUqrO/QybUZRi6zqmJg+9YcHi6o0TOn6CZxUUfkPD1HT6gTQxNTWZ7HOzPWKxJou+tdbhw2NnHBNnAlPTGIYZozDhdicgywWtsslCIaHSNZXKCR68NFW5T+6T5eIQdfHCXJmlmsMwklHlH28P2e6F9MKMME7ZHyVEac5HW0PePtV4aMrgBJv9gHGc81tXOry2XOF0q4ShqYSJ9NaYSK1sQ2etWabnx9zpjml4FpfmK6SZNFzeGdw1Zr3VGZOk8vuruxaaqhS+LCrjOKNiK/d9p6qqoPJsC1pDV3l7rUmr4vPP3t0CFUxdQVFVdkch37zRpe6ajGMpv9jqh/zEpfnnPtGZrTj8yMtzfP36HkGS4VoGuiLNNa/vjbm8NWSmbHOn67NUc9EVlTOzD17Qs1wcO3lQUxUcU2ehphR0WwVTl+akQgg+2h5yqz3CMVQUz5SmqQrc6Ya8uSILWT9O+Y2P9xjHCWVLZ7VRoh/IAvbeAIRJ8yITkjJ/HH29bWg0SiaKCmEqmZy5gLmKRc01+WBzQM+PidKcuarDIIyouhZXd8e8faoOyPvxK1d3i3hqwUvzVTRFzp1d67Bs5kFU4aOe2ePio60BgzCFUHpErTRcTrU8NE1BU9VDPlLDMGWjHxDGOd+43uGHL84eeq2aYzHjmXRVhZ0DssOTQt010RSVki3l262SxW9f7TCKMrYGIV+92ub8XJnL20NeXaqSpIKVhsuFuZNLmjsO5qsuP/LyHLuDkF//eAddU1EzAYrgTieQyUSOQS9ImCnZ9MOkOGA9GJkQRShBzr94b4fwJcH1vREdP+Gl+RJzVYt+KA9/wzC9L2nKNXW+//wMO/2A3WEsgw1UlQzQVY0gzqeJm62yySBIGUUJfpRTsmUU+cNS3B6Gyf3ZLMnk2TgTbPR8ZtsWZ2ZKuKZkGI/ClEGQEmUZZVuaxbfHMUmac2PP542VGn/wzSXSLOfDrSH9UP6sVbKKgAGf3UFIL0h4ab5M2TbY7gcEsWy21Y7hXTIJDXAs6fGSC8H+WBqv+3FK3TGncnE/FtRd+dnMVmze3+wzU7YJk5xmbBIkWWGuK9nR76w9fiS6oiiMogxVVYlT2BpEBNGYKM1ojyLKlkbVtXAMFUvVSHOZ8nVpsYofp8SplAy3SkcnEa8XckMhQNckU1lKgsbEaU7F0TnV9I61hx/E5LA+qU12BiF5DjsDOWgzdSn/mq86mLrCei/g+t6QzV5IJlyu7494bblGLgSqKmut2ZJFZywb056ps1x3jvT3aY8j4jQnfrxwvyfGO2st/ur/rMZf+/WP+QffvEOaCf77b6/z9lqdH7o4/3wu4gB0TWWh6tL0bP7R1jqJEPSDlNmKlOCXbB3XVEkzwXrPZ+eWDO7pjBN+4MLMA19XCClvGQSJbDRbOt8ZBASJ4Fp7zFzVZvWIIYgMzZG/ryhwfX/E3jBiGEpJdpLmVB0TU1dZqNmcarkgBFt9acVgGSqeqXNjf4wQkjU4qQdNXWWx5lA9YnAcpRnbgxhNUaXZedPj2u4YQ9XIctlUapUsPtwa4hgqrqlydXdEP0hQFYXbXZ+6Z9IZxSSpoOtHhIkcjmz1Qjxbx9B9qo6Uz4dJRp4Lbnd9klRQcw3OzZbJC39HS7/LMo4zQS6kVFfXVHRNZXcgbTCiNGdv6MtExXHM2ZkSYZJJf7hMfn+fPt1gGKTsj0JURWWneH+LB9iLUZpNJbh7RYK5qal8b7PPnXZAs2SiKjx0cHXSmKu5fOb0DJe3B9zu+NJ/TtUI05wPNofT9yc/P5MozXh1qfbYf+d373TZ6ATsj2IUBcZFSrJpaKQCMiH3xLdX6yzVnr+fz94w4oPtIRu9gL4fY2gqXT8hynI+f7pJLgQlU8MyNN7fHBQStoyXF+6uw/fu8U+Lzijm33pl/pl6dP6lL73Er3y4w3/15av8Z3/olcf+/VwI6p4p6+4Dx7TLO0Ou7g7JBFzZHfKDL8natO6ajKOUku1Oky0/3BpIL68kZLMfPtH9b+rqsc3JwyTjg60B/TDhys6IQSAH5Is1j8+ebXJ2xqNZejGs32eNp21MPdBMR1GUHxdC/MpTvv7xLiLN6Rb+LTf3x9P0jJW6S6tskaSCpYbNOb+Ea2ucaXqsNjxyIT2c5qsWFdvg4nyZXrFxxWmOpshFWlcVkjTj+r5Plov7pAp7w2hKe59Et4+ytEi+ub9ZYWqS0qyqCrqmYOsqmqpS80zCRCbnpJn0lmq6AsfQ0BWFmmuQ5TBXtTE0Ddu4/+vLcoGja4RxjqHLBkpWeC1EB+Q8USqn208b6/kwqIo0f4ySHFufpPRp0ym/bUhqbM0xuOlHWEUCimVq2Md8eC1dauQFAlVRiYp7Yb0bECQpmqpg6RrvrNYRuSDOpLeHoSmstlx0VeF2J2C+evdz0BSFBDGVxZ1uebRHkjp7u+3TLJmHNvLnCUOTxq3fd65Bz5deJnNlk71hzHovZL5iU3ctmiUTQ9VkMowhnun3fBSqrsFnT7e4se+TZF0MHZI857u3u5iGVsgk5fedCnEohvhexKmU31ycLx+rURAmktK8WLW5MHeXjSWTyOBMq0Q/yNA1hbIlo+Q9S5cT+0KauzeK6I5iPFtlue7RLT7r9ig+Mlo8TnJu7fusNJxjxUI7hsbVUYSmqnzmdP3Qs6ypCmVbmgjHqcDUSlimhqYozFVsXFMrCv2UjW4ACE41vMJTSEoeHnT4Oimcny9zvT1CV1XOz8qDq21onJu9/xBbtXU0VLI8K1J9Dt+LO4OA6/s+ozB9Jgw/Q1c5P1fivY0+uYA4z3hnrUGQ7GPrssl3Y2+EpWtsugELNRs/TklzwfNO3G2VZOPsc2stNjoBtqGgoXB1V5prn50poamFdWDx3Ni69kB2qWtp2KYiTeh1uLU/xI+lEbala7yxUsczdXpBwmrzwYX2wemzqoKjadMCb3JokilfGe+t99kfRaCAZz39B1i2dS7Ml6RHYCoYhRnX9kZcnK+gayqNkllQ3DUsQ+XzZ1vkiILVEzMME6qulGoamiIHVLrOZk8OTdY7Ab0gYbGWEqU5ZeThI4ilT+VxmEuT0ADX1Oj5SfH/pWlv2TY4P1ei5uj8zq0uQZLw8c4YIRRQpHEp3E3hk8O1HEWBKE2f2LfLNTVURUFRpayuUXfoBgmuoRfDK4XOKMYyVLI8p2JL1sRC1abumvhxzmzl6H3OMTSEkEmbShFYIIQcDAKHpMMTn6onSQuq2AaKElB2NCxTJU1lavLuIGQYJnT9mH6QIpAylck+N1OyuL43Zq5iUy+ZlIrG2Xz1wetixTGmYQ3PC56l8+e/eIYvf7jHzlDWkL/wnQ26QcIffmMJ9QVI89XC5/TifIWzrRKaAp0gxVBVtgYRXT/G2FemDGJVefg6pChSKl9xDDpj+X1ZusZmGKIq0B7H9zWmwiIpue6ZuIVFQ5JJjxZdk5YBYZJSsmRoUZzmqCpFGIO8F21D7uUTQpRATH9m6gpBnB2phlCVuw2xCbNupiwTQfUiKfVmJ2C1IevHcSQl13tDybBcrjUwNIW5igwImClb1D0pAzJ1lbxIhAZpG3GzOFeEqVQwRKmUCi7XXD7eGZILUcgdmcpfDU3ho+0hcZYzW7YRyHSvKJGKi+EgZX8UcXbWozNOuN3xcUwd19RlKEwgQ2OcI4Z9pqZK1UWcT6X1SZZDLsjynCTNH9v37mmhKAorDRfP0rnTCaZhCTXX4MbekH6Ycmm+jG3qMo09zY89zJwgiFLyTKCpCuM4oTeO2SuUJ1XXwLU05ms2n1qrs/qC/ODqjkHJ0BBF0IOmStmYEJJhc3CNnSRWPmtmW9U1+F/84Nln+jfOzpT42U+t8Pe/cYs//X2nH1qrHIU4zdnoBpSK2tnQlenrqqpClopDXltH1bLvnKrjx21qrs7sc/AmVBWF5YbLzjBERe6njqEVah+FzV6EoWsnZjb/ScJTNaaEEJ8DUBTlF4H/DvgFIcS4+PHfBU4mN/IRmDBzPEvKcjRVYbHqTA+JWS5QFTg7Uy66oHdTWN5cqXFpocyNts/+KKbmGOSGLDRHUcIwDCgVrztp8ATJ4Rj5NL9bhCWF6XiQZEcu+iAL0JfmypxpeUSFiZpr6tRcnVMNjxv7I3aHsue3UHFYa8oHpuIYkvEkyoRpfuTrL9ddHFNDL6bNtzs+/TCmVbrbTBtH6XSKNKHuPgtMJAVhkh3p3XFutsQPXJjBtTTWGg5ClTHZgyDhNz7e40cuzj1SzndpoULF0aeRwTNli64/MVzVWajaBcsgxrMMTFVlpemyXHd5ab7CrfaYVslCiCLaXpcstNEBWdHEp2CvMEtPs5MMR38yvLnS4EyrzM32mM4w5pu39oliwXzF4u21BmXLQFPha9faBEnG26u1I6eSzxI1z+RPfX6NH315lu1+wHfW+2z1ZJLXubkKq3WbTMhkvQ+2Bsx4Jp8982DNvkAWSNmBwu5e+LGUKFVtGR9+sDGsqfJ+DOKMt041pnpvhCBHJousdwNmyiZ1x6A/jqm7FgtVm7KlM44zhOChKXxpLshzaaL8sOJNIFPHNFVhHGWHGlOnWx7jKOXigpSG5sVrqqrC3ihibxjJaPaSyc32mFbZnk6idwbyHk3y+6V7J4mXFyosVm20B+jpD6Limvz4pTm2BwGvrdTu+/kgkIlChq48s3SbxZozlZpVHYM/+MYSnz/b5PLWkP3CYHK2bDNXtYhSwXovIEpz1lreC0nc+dJrC8yULUYFy7AziilZMkHr/Fx5mib5ry7voioKXzjXOnIdNzWVUw2PDzYGlGwD2zS5UNWxdY25iiyuzj0g2OMgWiULQ1OnAQMAF+bK9xX/kwPh6VZJpsmewGR2pmzxhbMtPrMm6AUxo1AmY+VCoKFM/YoOJrL9wPlZvnm9g2WorPcCqq6JoiisNl0puzOkhLtiG6w0XJK9Eb0gmTamh6EMJFiquY9lbLtcGPxPvJo0RUEo8NpSlWHTwzJ01nsyDKBsG8yWLF5frhWNFbln1lyTL5xv8nFx8PyVD3dYqbvToddx0SxZfGpNx49SjELOMVO2We8G3GqPGccZ+3HMYtVmvurQ9CzSTB5kfvjiHFGSPdBMdbnhYuiSPTNbHMBvd3yGoWzKLdflXtMPpJm5ovBEwRznZkvMlm10VeFGW9Ys1/aHdCOZLKUogqZr8CMXZ2mWrKlfV801WSv2O1PXeGn+0XtfxTamSc7PExXP5h/9hc/zt796g482BwzDjF//cA9dVfnpVxdOLMH2uNA1lU+vNXh1sUrZ0smE4Dt3ugRxzu22TEyUzX6Pc7MVkkzwry7voiDXoXvNsW1D5WIhiZPPlWC2bOEWXkZHeXJu9cNpcm1rXh4ez8yUWK3L51FVlSI9MGYYyIZynt8dQkzWISFkwyfLxVTyDpOQh+iQimACQ1Ol3KkIWQBpEbJQdabPdZbLYZ8gJxfSz3W1IetKQ5cD6XOzpUNS5tWGS7NkTt833G3gaqpC0zOxdG3q+/Px7oCb7THzVWe69p5quSSpbFx/ak2mkc5W7hpYCwG/8uE2jWLIbWoqizWb3jim5ppTU+YLc2WSI9QfcLduz3IxvXZL19gdyqbkbMVi5jmHBkzQ8Ex++vUFyeJUBFu9gBv7PlXb4JWlKos1hyyX8rJfen+bxarNW6v1hzKEhBB8b6PPtb0xrqlxbq7MqabH797uoqs+rbLJj1ycwdINFqr2C2tK5bngN67sk+Y5L82XkWGZKhdmK/zAhZn7Gv9nWlKy96S+icfFUs3hjSPqupPG//rHzvOPfm+d/+uvXOav/om3Hut35VBK2rFkeY6B/Kyans0Xz82Q5YLXHsGw+/Rak3OzZTxLfy4y1iTLmSmbLFQtLi5USNOcVtXhX39jEZRCqfEJOIs+CzxVY6poSAE0gf8D8HcURekBm8W/e26YGIutNT32RgHb/ZB313us1F1OFxRDKes5vAkqikKQ5ERJjqooRAfc8ntBPJV3qarCXNXCj7L7fFwmHhS6qk43nEd5peiaKg+x4i5raaHqYGgxNVfn69c6hEnOMEp4pVkhiFLqriE3C1V54OubujrdaPtBQpjkVG2T0oGHKUyy6RQpjLNn2nHVHnKtiqLwmTNNluoud7o+PT/m5r7PZs8nTDJWmy4X5h6e0qeqCqsN79ChRNcsacSuqzRL8kAyClP2RiFRlrM3jPjMWgNRMA6yXBSTcfmwG4UB7WT6C7LIWao7hIUf1YuGpkqzbsfU6FZjwizl2s4YXdNYrXsIBN2xjEBXipjw592YAjnFOTdbpuqYqIrG99Q+Aqg5OrMVh2GY8PH2kCTN6YcpfpLdJzHVNTkty3LB1d0RQvBARpBWFK16sRGB9HwTuZzsTIyVgWLipCAdiaU2H2QaxvnZMk4RJe5aOvUiYt458PsHYegqc1WLhmtwdW9ElMhp3krj6MnOhNKbZDm6phClGeMoo2Lrxc8mhaaYFuIgfVCEQKaAlkwuLVYwdMk6nHweuYDWc/AWO0oGcRQqto5jaSxU3SMNxh1To+ToWMnDJZ1PA9uQck4ZZmFOzWvjTHonnZrxmClZlGyd67sjRmGCZ0iT1RfRmDI0lTdX69MkqW/d6JLmkj07YQ/sDULGUYauqvTGR8tIk8Lke7nhMvATZisWLy9UiLP8yITEh+HeA+c4SlnvBijKXaawY2os1x2iNKdVOhnG3qRZA3Jf/Z1bHZmqOooOHSoPNqFtQ2OxLtNgjQP3nKmpLDVsBoFkxlRsvZDOlAp/GkGQpIVPn8owSh/LdF5RlGlDWlEUkjyn7lmoqoJpqFRdA12VEfcocG6uRJLn95mhNj2L2UoiU7hieRCdpGg9DkxNxVeU6d5W90zpUWlr+FHGuxs9tgcR81XJ6qg5BmGSoijKIxN+DnruRWkmk/4sA8dUp3t+WAzxhJCH8GMuGVMoikLF0aeMib1BSMUySNMYBViue5xqyiGTrk7k23JtXW26+PH9LMwwyfCLpsPB9ciPZRP4cT0DTwK2bfLv/uhL/NJ7m/zyBzt4ls7l7SG2ofKZUw2qz9kr8uA+qSO95kZRSsXR6QR7OLrOa8t1yrbON661GYYppqbRG8cPTW1ruAZXdocIFBZrLnXXYOGI9XXCUlTVgsGeyWaxZ2nTe9kxNRzToeFlbPdDLF07NCSZWG9M1oj1ro+qKMSpwI+kVDWIs/v+9r3vHyTjQtfu7sMrdYfvrvdwTZ2Ko2FoFo6hSXZY8SwrinIf+65k64fW6Ubh1QVyeJLmMoEyyXLawwRd1RgEybQW1RSF2/0QIQSeLT1QG56scSdNpzOtErc7PmVbR1NVdFXw8kKFIMmmz+xEzhWnOfqB+mKCe689znIUVaFVsomK9NLnnWA7wWzZQlUUBFL22PUT4kwwU7KZr9i0R5Ilm6Q5wyBlHKUPZbFHaU57FBeycIGlSWLDjf0RQSwDNN451SROxYntaU+C290x797psjeOmStZnJ+rsFiXqoDKEe9PfcjZ6/cj5io2f+b7T/Nf//o1/uwXz9yXJP0wGJoqvUM981BAVJLnzNdsojR75GelqspzS3ENk4zNrs84yogTgWPqqJbCT786z6vLNfaGEYqiPFNVxIvE0961XwT+FDAq/lkF3gb+NeC5VfOmISccmqowDBNutwO+daOLpil0RglzVfvIyUCS5VzZHRJEGf1QehEcnN7MVWyECO8eUE0djhgua6py39TlUZgcsodhStnWeHWphq7dNS/244yun2BqCne6PuudALu4jlbJ5NzMo/1PSpaOY6rEqfTGmUDS9OVmeBJRoU8DQ5PmyWstjzTL+W9/+ya3OjLifLnustrwsA0ZldsPkiMXj+44ZqMnU5VONTxud326fjxl0BmawmLNoe5K/5EzMyU0TeVWxycXkCM4O+NNi9Qky7myMyLLBQs1e3qAe9Gf1VGwDRlhena2TLNkk6Q5v355h+t7Pgs1izTNUVWVxepz7RMfgqIozFZsNFXBNGRhuNOP+PJHu9Q9gzSVTcW5inWkGb+hqVN/iMmhwU8yjnJesXSN+arFtd0x3cI4fKcvWURLwqHhmdN45O1+xGrDZbXpFo0+OVGN05w0k02A87OlabH7MPmmrirMlm2yXEwls/cyKw+i6hjYpkrop+wNI5JMkGaCTmFuDrKQvrnvM1sxpw3aumcyjuXBOS8mmmeaJWoFI+SkU1FOAoqi4BgagyBF5Pef+vw4pe8nZAji9MGf2dOi6hpUuXsoyIVgue6QCVm427rGlz/a5lvXO+yNYi4tVjj7jBplx8Hk2S5Z+vT+6PkRf+cr16jYsimdZpLV86BUIlNXpaRtHKGrKqau0A8TwqIJezAR7iAkayih4jzYBN4/0HQ4eFB5lsWSoshmS5aLBx4qJzjd8tgZBOwNYz7aHrBcd7jV9vEjKQW0dI2zsy6XFits90PMglWUZHkhbxPH8pd6EPJc0CrJNWFnGE4PpJquYKsqhqbxe7e7eJZOz09YqjucaZUOSCNt8lxgaCqupT1RTPtGL2B/GOEnGW+sVClZxlQummY5fpKRCSlb3xtGvLfeJyuaaacKZvFxINMEpYdW40ATpemZU1nikyQM7g5DruyMaHgm52dL2E2Xmx0fFPj8uSZNz8It5KIfbQ8RQjJTqq4xlVceRJbLtT/PJVPzoEdnmOQvpCl1EF96bZGVhstvX2uz0w/5+d9Z51c/2OXf+eHzrDymfOUkUbYNyrZBZxTz5kpt6v/09752SzZBHJ3PnW5Sf8TBPRWCsmUwClM2egGaqjCbCw72OCahHvujmNeXq+iaytXdIUEsm0MHE5RB7vlH+b1c3x/jR9l0QFR3pQde1dULyVx+X6DJURiGCbfaPlGaMV+R7EJDV6m7k7Achdmyw+VtKbs7iqHSGceF7F76Rk3uS01VpsOrnYEMobAMlXMzJc7MeNzqjFktkgtB1hTyHpXDN12VydL7Q/m7mspU1rXadKaDvIqj3+dHuzsM2elLeeHk/PQglCydMy2POx2f1YaL9QSy3JOCoijT4XCU5LyxUkNVFHIB/+CbdwijlBypMFmq2Y9kdFu6tFG5sjtkqxdyZXfAfMXh4nyZpbqLrauULAPTe77vWQhojyIqjoGqKPzu7R4fbA2J0oxL8xX+8FuLJxYa9PsFf/4Hz/L3v3Gb/90/+YB/+Oc+d+wk5VwIhlFKu2DZTqCrCn6UoSg8c2bZcbHRC7iyPeTyzpBRmLA3jliqOlyYq/DKYvUTW+efJJ62MfV1wBdC/IaiKA7wB4EvAGvA1lO+9rGhFf4FPT/m8vZQSvdUMDUZm7zVl4at81X7EN3x5v5Y6rszwVrL4/x86ZAXj32EufhJQQjBKEzZ7of0A7U4XBxuinX9BEWBOBVTeupsScZ5T+Q8Dc98oMGoTAG4v5OmHtgMP0nQNWkeP1OyGEYyMWQYptiGxq2OPFActRD1ioZFEOdc3Ruy3pHxn6eaUio5SQX6iVcWuLozZBhJP4RuHqMgD80KcKfjF4a7+lS26UcZvLiz6bGxWHOwdI2BH/ONGwGDIMGPEl5ZrtJwpSRoIlV8Uai7JvMVh54fc7sjzXP7fkzVNXltqYaha0US3uH7Ocmkp0irJM0L0yx/KJU8yQSuqZPn4Ed3nWwn32mSCW7u+wzDlGEom1dJJovU5br0dYjIaXjWsTeALBds9AJaJZOFms0wTB/JrMtyga3r0yaxgnJIJnh5e8ggkJvpYsWh7ce4ps4ri1XudHx6fsJcWaNZNh9LbvS8IYSgZBmUZowj/VsGYYIfZWSIqRTxeWCmbJFmki1ZLhgKm72QbiBDKyaHp5WG+1wT+u5FydJZrDkMgpiru0M644RhkNIsWZyfK1NyNIIkO3IfmPjvmbpWvAeF7X5IzTHp+QnLD/DVvr4/IkkFnXHM+QdI/WaK5oauqVTs5zOZTYsghCDJWW48/J7XVHlYURW5Z3bHCXkOQZwSxNLnpjtO2OlHOEWKXFIwalsl66kHEQs1h71hRHsUsTeI2e6FqIqCa+h0/Zi6qzEuiuJxlJFmgmEoPS4/3hliaipnZr0Hfv7HQZYLtvohcZZzfW/M68u1Qz93TI0okUlgXV8+h1GWYZv6VPq6N4zw45S5yoOTuBTl6BRPXVOfuNbIc8H31vv0g5RhkMomci6YK9vMle1DXo89Py5MtuWwcanuMF+x7zu4CSGmzafsni6UoUrm6qMOss8aryzVONUq8bd+4xqKotIeRfzDb97kD725zMWFhzPInzUMXSVMJONusxswjiVjc75i41kGH28POTNTeuCzY+maVB4U8eySSXdYDjwIE7Z6EUGS8fGOTLULk4ztfoRjqofY8UchzwXbg5D1rk/DtRgXbvaepXNp8fE/Pz+Wz+Z6JyCIM5LivDBTltc1V7HZH0XT2kqy8eR+sTsMCWOZknzw+o7CsJAuRklOkudcmC+z2nRpF8x3kDVUEEtpYm+c0PfTYmAnX3MUpdMmzcfbI0xdwzN17v2T/SDh+t54ykyLj+Eb9dJ8hZfmX+z9dy9mK9ZU8fDB5oCtfkgQZdQ9ndlyiSznSBb+QSSZIE5kINPNNGcQ5qSZZAEv1p37vJueF6I0k/WIH7NUc/GjFEWR94Br6/9/15QCKbf+j/7AJf6D/+G7/NVfu8K//+MXjvV7k8TLcZThJxllTd7rmRDTfSv5hMjibrVHfHe9R5zm2IZaKKkkG/15B1m9KDytx9RPASiK8v8BPgv8EvBfA/9KCPFsTU7uQZzm3OkERSMn59OnG0RxxlzVls0FZAF4sEjKBbRKskCfq1jP9dCuqQolW8MJVMm0uKdI6voJnqmT5TllW6NVMinZclJRdWV6oBByEzyYuPD7Ha2KxXzVwQsSKrZOexTR9MzpZn6Uv0+zZE59rJIslywckVPzdLwDm62qQFJ4A2z0Ak41XW63faqOQTdICv8BaTA3ec3ZyouX7R0HFdugYht0xzpnWx53NJki6Og61/dHWLqKpnJko/J5YdIQXao5tEcxozAhiFNWmx4b3YCZiskHWwPeOVU/VAikWc7OIELX1GPJqpqelHLqqjQB3+wH+HFKo2h4SWaEjl8kX273Q+nlJEJOtzzmqzZ7w4iKbRx7IhOnOZ1RTJhknJ0pHUsmtVBx2BvJ1FBDkw2D+QONMOlzl1KxDbaHEUGcMQhkATVTtkjzu02VTzIURWG+atM/II0+iIZrYegqlgqW/vyKrYmf3ASGrnKq8P0bhwlxnrPeCbhV9acsthcBRZGMz/mKzVY/wo/lXtYqWTJ51E/QFBVL0+5r6vaDBF1V0VAQIqdq69Q9i66f0HwIu2FiUXbvvnQQpq4+12QmkI2WCSPnOPt1wzOl3FFTWKjaKAo4pkrVM4gSgWeq9IOEfjCZUMfTBrZrHi3bPS5KlpTapFlOmMgGXtOTqXsrjSphkuOZKjvDmIWqLDyrrsGHmwNu7EtfJs/SnkqCvVizubw9pGrq961lO8NI+vJoKnXPJEeQY2OoKp6lMV+1i4aANOWerI/PCwLJehjH0hNswqatOilpnh+6fyu2Qc1N2eoF6JrK/lA28e9lTOmayqmmyzjKKFkanXFMufAcXe8FWLp23yH+RaBk6fyJT6/w33ztFhtdH1VV+NbNDmVLY7HuvrBDqWfp0z14oSoNwbf6AedmS7SLFOS9YciPvjz/wMP8bNmm5phsFoypeyXIVcdA1xUsFDxLQyCf9SyXiYl+nOJZD65590YR7ZEcOqZZzmrj6dbuhmcyihJcS6dkG9M18aClh/xvZKpp6YCMdcLWLhWMxzjLHsh8nK/abPdDSpY+XdvWuz5BLAN94C7DKssFH24Npp6XC8XvNj2TOMt5f7NPs2SR5zmGpjB7YEiWZjl3Oj4qCsMwZXHeee5m5ieFg3v47jDi3KxHfxxT9Uy2BxH9QHrFvrlSe+Dw7k7H51bbZ3+YsFC3COOc5brDUt19ZsSE42CyDGW5bNbahlQDWJrOXPl/2oyZh+GPvbPM1661+S9/7QrzFZs/+dlHW1mrqoKpKdiGZL9N0HDNoj8AdffFn6PzPOfqzogoy1BVhTeWq/T8FM+Rkt1PwNb0XHBSJ5r/F/CXgbNCiC8riuIoiqILIYYn9PqPhKpIPXrVMTnVlDdYz0+IUplyp6nqfUXmqaZLzzd4dUm/T+r3KJPl4+Kgn9NBbA9ChJBGsrMVKSFMs5wkE1PzcpCHpQtzZfTFw5u8nPrmD6XUCiEYxxm2rv6+6bSu1D10VaUzjlEVhV6QsNELWG26bPXCIxePim1QKZpzcZpTsuJp7PdBTHTzSSrQNaVgEeXsDiManjTJj7MMU1eoe8eTZvrF5P24DYxnjbpn8YMXZ6X0MUzojRPWe/40/vbcbHk6PXhRUFVpknpxoUKYZPT8hI+zAcNQegUMw4RmSbK8Dt7fx/2MTV2dRtcmWU7Pl4y6zX44bUy/c6pOexxjFKmMSSanE3C3yXcv4jSfJvjdh+LSjMdIUaoWaS8AV3eHJJlkXVWKwvX15RrLdZdS0aAdFMbEuqqga+qRh8TJd+uZ2idqouaaGhXHPbKZ4Fk652ZLxFnO0gsyFgVYqbt4ps5n1hq8v9Hna9fbbPcDDtbsD1rPnwdUVeEzpxu8vFDBMzVud30+3BzQDWLWu+q0eXbw+bZ0eSByTJ2yrSMUhYWac6Svy0Gcbnn0g4TaJ6BYO4iqY7BUl14sj/JRmwwzzs+WpoeSe6Vp2/2QvWHEKErJejkdP8Y1dEq2jlr4tjzt973ScOn5CWVbP7R25Lng93q+9A1zjenzbBsaigoaCvYxDowPW897RQNyFKZTs3sovJ+KN6YosgF0FDs0K8JkZC304LUtKJqlJ+k7o6kKFxcqLNelVHXyHR6VyDQZeqiKws4glOm+upRjRml2qL6byNI+3BpIybapcm62jK4qpJl4rql8/z/2/jxKsuw670N/58435siInGqee0IDDaBBAARAkCAlUiIlarL8PEi2bNmW5UX5LT9rWc+jJOvZludnWpYsW7Il2/Kzl5cpWZItUhIJkiABkJgbPddcWZVjzBF3vve8P86NqMyqzKyszMjMaLo/LKzqnOKee4Z99tln7+/bD2fqBf7VH3+BX3xng9VuwDBXm255MTdOKVC+VHEwNVWhULQNfuTFRVxLZxQm/MKba7SGEZoGwyDGMvU9/VPL0PY89DumzheuN+mMYkqOkSsra/hxRj9M2BiEXN4nMDX2nesFi8vzxV0z4J5nviol5DKLFZdhkOyaDVawjMn6HfspRs57q9aQprguJaz2g10v2Er5PrgdaSp38N9sV7gci/TMFa0dPg+oCwUvTFnt+5QdlTU5/mwhlBKta6ng83aKgjSTijDb3FvpdVbx0nKZpVy1+GHX56u3thjFCY96Ph89V0XjsT3fnqm3NQoZRAlRmvLD1+Y5Wy8g4Lk5GKcN21BBzqprcKc1wtA0Xl6usVx1OFc/HVXwWcG/9/s+QnsU8q//3Bt8/1GPP/Gl65NAcZpJHnV97myNuN/2VMabrnGpUWSpYpNJGJt4Q9e4MFfAi9NT95clcHNzSBAlOLrB1YUiX7ixQJyqzPWirZ9q5v5JYlqBqfPAfwbMCSH+JLAI/NPAK1P6/GfCyJU0glzi9HsrXe61PIqWwaevzKFp4qngk4pAP70xhUnK++uqNvtMzTkU4VmSZtzZGvGw4++6kY1vZauuxVxOuvr1Oy1aw4ir8yWlNucoHprdgkqXm0rtzn0iBbo7iqkXleO10vHpejGmIbixUP5AbDTVgkF7qLNUtpFCOe9vr/Z585EKEvrx3jcFUZKx3g+wc66QJ5FlEl0IhnHChVxad4yCpeTPdU3QHsX73siNsdJR5WiWoe04/Jw2xvOtZBt0RxGNkoWlCx52fX7l3Q1Kzt68MScFy1CltVJKen6XZtHOVXgkX3l/a6Iyp2sq82s3B7PrRazmN4x7lYtk20o3tmfbGbrGYsVRJSBIMrmTh+1JREnGu2t9toYRjaLFK2erOwJljqHItctPlDQlacbd1og0U4HwvRzhMc++aq8qVRj30SCIJ2pGyzVnzyBzlkne3xiy2Q9xLI3XztdPJQX9SWwOQtZ66rB4fbH0VHBKiMckyc4JZkw9iXF/g7LLzaKN0AS2YfDGwy4rbR/X0mgUT++2smg/Dm6ckwXubo2IUgMvivn67RbXFoskGcSJmuuupdMsmbS9iK4fsbzl8OJS5ZlBXkUsfHy36Bv9gDDJnhIS2Q09P6bnxcyVrAnZ70Fwp6U4Zoq2vuPQtv1zxzx0FxsurWFMs2RTcy0WKjZxXv52VOzlZ6z3Ax60fTQB52WBd5JUle/Nl2iUbCxDUN3GceVHKVvDkFIuxgDq8unm5nAy3k9iLK5il/TJunt3bcA7a33qBZMbSxWqjrmnXdI1wfXFElGiAvJBnLI5CCluG4fOKJqQ4B9GeW8/jLPO9kKSZqz1A5UVqCkuHwlcmHOxdI33NgbEiWSuZO0IBkgpJ/tB3094e7WPqQvO111KJ1SWehAYusaPvbTA3ZbH1iDk3bUh720Mdtz6nyR0TfGbbOfhXKzaLJQdLjeLRKnK0PnanRaNkk35kO1UXJGP52SzbCPJWO36/Mp7quRtqbJ7po9aO0rFbre52PWiSXXF88zX/ebiIIi5m2c5XmoqX6U1iihYOvWCiW3qPGh7tEYRfpwcKPN7EMQESUacSBaaqmTt/fUhQiiZ+/3ac2muwG/cafOo42MJjTNzj5+na4KrC0WCKHvKX7m9OVSZnHvYzFnG9jnjRwlV1yJMUixd8CvvbeCYOmVH2awgTvnOgw49L2YYxri6jlVR2TQH4R07CURJxnvrfTqjiGKuXmkbgpJtnljp/KzCNnT+0h/6JP/xz7/LX/nKHf7G1+9ztuZi6oJHvYBo20XNR85W1CVTkpIh87LXx/7P3daIUZhOLihOC30/5r//yl0Kts7Hztf49KVGfg4QB/KTfithWrP7zwPvAk3gU/n3Fqf02QeGbTx2vkxdKeTZpo5tPl+kMUwek2DuR2C8HzYGIeuDkI4XY+/i9C3nErC2oVGwVFlRaxiRZfCo6/PKmcpTZRnbsZva3YO2R5ahlPzOVAlzIuE4UU6YdtI6yIdAljFxDOtFUzkQwL2WR71o7lu+sd4PJuV4hV027VGUEMQZtqnT82J165BLepfzG3JL1yf99iyMD9NRkpHOYP/GqcQxDS41irSGKhV8YxCxOYyU3O4MIM0kmtBo5vLRtzZHuJbOm496/MClOdJMccTs5oBtDcOcEDpmobI7f5Zt6FxoFPCjdNfSJT9WJX+G9jTXxXbEaUbPT+h6MWkmWRqGOzIMhGDX9doPkm1qf9GeIgkqezOeKFBtx5iUV4kA7J2+kUrJwE9ojSLsSGO9H8wEl9x2Za4oyZ4ap61hiGVqaELQGsan0cSnMFeyOD9XwLF0BmHCnU2PXq6OdJqBqe2QSM7WXKXgtTqgYGW88bDPtfmda7vrpyyULQZ+QjEvd9a10yvdGATxhEvsWZeUUkoetD2kVPb7SeLj/TAmR99rD2+Posl6qrkWhq7m4PimvJ2XzxwXojRjuebghymmqTJ54yQlSHZXfn3YVWU94+wrQ1fEx3sFpWCsYKUCHOPLmtWeT5ZB24txDO2ZAcixgpdqg48XqizXMfdKmB8Cxuv7eZX3joLNYUhnpGxGThuCpWsIIUgyOembJ4nyhRBcbhbp+wldPyJOlLiAVZu97HJN0ya8TW8+6hHG6b5jfhIYVxQABFGGH6nSk3H5uS40el5MwZzOEaNgqblWdBQX2lo3IM3Ys8R6L95VYMd8DQ+hFLkb/G17XBArDqiN3MZZOf1GwdKJM5W9MVaP3A9hopTCS47iiBqXmI6fsd+67fkxa/0Qx9QYhDEX5naK32w/K40hpZz0TXiKGfXTQJTKfH2rS71RlvGwG3KxISek9SttxZFmGxqaLrjcKD1zPzpJJJlkta84ysquhWNqVFyVFXrKy38mYBs6/8ZPvswf+swl/vb3HvHeuuKX/vFXlrjULHK5WeRSo0jFNXjpL0gqtskoykiybIeND3KxovG/p4UgTpFCcc1dnS/R/IDQyBwHphWYclGk59+SUv6MEMIAvjilzz4UmmWbNA9yPG92SNk2aJaVmszCIWt5bUMRwsZJxnx5d1n77ZH5cSrwWi/gynzxUGmFtqHl5X1qwzlTc9kaRJRyJ/aDgPmyuhkyc4VCx9R5Z3XActXBNvbnGLLNsUwvmLuk4xcsA8dUjnS1oEoDto/v2bpK1W7uMl67YbmqyG0PM8dOAhXXoFGySFKTK80SX73VIkNyZb5I9Tkk0I8Thq5xJicLvzpfIpOw3g+5ulCkVrAmiku7oVaw8KOAoq0/Jbe+HbupM43RLNnEiUTXxb6qV4pbQ3GuzBWtA/PRlWwDQ1ek5ruVB46xV1YF7JSU3i9bxNQ1LjYL9ANVgnWayjnbMbZz1h6ZjBcbRc5Uh6RSzc1ZwHzJJl4sISXMlyzubo1yvj97TwW8k0bVNZmvOMwVbYSA9jBmoazS/MdEuqBK2QZBnKsPVk9N5nsMU9cQQh2wnrWOhFBlPEG8f9n6bjhfLyiS8T3WTM01GYXJRBq+8ETwu14wCeJ0V17DaUCp/oLbUNlp91ueUuDbY3wsXccnwzRUKQ4oP+LJ8d4OTXtawefiXIE4GdEoWc+t9GcbGl7O2TXOumuWLJIsQ9f2t6HHgfH8EQLO1Qr0/HiHnVmuOQyDZFeuyLHSsm1oE1Vf5xTFQZ6FWsHit7+ySNefXsDnsChYioJizMOp52VrS1V3IixgGxqLU7zpf+18ne+v9Bi6CUXHOPT+1izZeXBeTK1UuVG0J2q89YJFnGbbbJxq57m5AkYvyEtynu3fzxWsSYCoUbQwdNVe7QDttk1dZUMFcH2pfCCbL4Qqh+158czscYfFQsVW3Fv5+v/+wz7Nksm5motl6nmWbJGVrochNF49VwV4pmDNScIacxJa6qLi1XNVen6cn0tnp52njQuNAv/Sj1zb93dcU6dZdjhTczD1nWvh/JxLZxTvmwhyEnBNnWbR5kzNnZnEgdOCkFNwuoQQ7wA/B/xe4GeAPw68JaX8N4784QdAs9mUly5dmnwdpRlJmhElElNXfCynfUi7e/cu29t4GpjwZQi1COI0m9wYW4bGg/v3jrWNaSYnDrSuiafSiA+K/fpSSnUjn8mcO8MxT+UW5DjHO0yyyVhahsA1jUO943G2URHzJ8SpRBOqNOiwwbujtnP7vDM0cSylGtPoy34QT0inK64xOXxOC+/dvM3CmfNoGvsGyU4bxzkvM6nmgpSKk7DsmIfKczyuNipOnIwoUQcnyzj83nXQNj65Vh1TP9ES0OPeGzMJYZ7FkEl16WEa2oSL5rTb6EUJUX4FfhQeiVnwMUDN4XEphaFrmLpQGSX5nrz28MFT7QyTjCyTk1IwIcQOmoKTxrT7MpMwCpM8Q1hddByVl/KkxjtMsgn/qZWvm+exD7MyL/04JU4yJOrQb5s64yGYlTZuhx+nk2CXa+msrtw/8TaqwPw401lDy/m+9sNx9qUfpZNgnWvqk8vo58XztjFKM4JI9YWpqxLR4z5XPG8bh2EyOc+VHOO59rej4LDjnUnJMEzIMuWLlezp+7xj3L17l4uXLpFm8sT65XmxXz8qNdAsL83fabtOGt/85jellPJYHcRpndBWgT8BDIC/BmwAJ+ZVXLp0iW984xuTrzujiHutEfc7HudqBRYq9lOkpyeN119/fUcbTwO3N4eMwhTL0HhhqTzhhtA0lRL9uc98+ljbGMUpf/+ddaJYcqlZ4OMX9tAqfwb268ssk/zq+5u0RzFzRYvPX2+eCjH5cY73Ssfj5vqQbhBzfb7Ei8vP5ozZDcfZxjjNeGOlx/22R8U1+MSFOrVD5swftZ1BnPKL72wQxtmR5t1+mEZffv1Oi0cddaP6Iy8uTD0L78YrH+PP/w//J4tVmx+82pzqZ08Txzkvgzjl129t0fMSlqo2n7nSOFR26nG1cRQm3NwY8qDtUS9aXGoWD8RHshsO2sYkzfj+wx73Wh4l1+Dj5+sH5nGaBo57b1RcHQNGYYIfpzRL9oQHZhba+O5an7ceDdA1+OIL8zt4pZ4Hs+BjgAq03dpQ3Fxjjs5bm0O8MKXsGPyBn/jiU+1c7wds9EM2BwFzRRvb1HhxqXxqhLTT7ssoyfjmvTZrvZB60eQzVxpHzlw8qfG+1xrRGkY86vmcrxc4V3efi3d1Vublu2sD1noBXpxwqVHk+kJpUkkwK23cjvutEd+63wXgB682+J1f+vyJt/HmxoBRmLLeD1iuujTL1p50BGMct618f32Ipgk+eq566HPd87axPYr41v0OoyDhYqPAq+dqx36ueN42vrHS4+bGEEMX/OiLC09lAB8XDjvecZrx9dstNgcR82WL1y/NHVs29yc++UmW/6n/jO8/7PPPfv4y/9ZPvXwszzkK9utH5ROOSFKVBXxjsXxq/LFCiG8d9zOOPHOFEBpwEfidR2/OdFAvWriWzrVFVRo063LqJ4WLjSLDUPGMwON+0jVxIqVolqnzIy8sMAwT5o9J8ULTBJ+71qTtRdRca2bU8qaJszVXKbfJ6dy8HgdMXeOVsxUuNgsULR3nFEsPHFPnh2/Mq3k3wynQn7xQ53IzonpM5PRlx+QHrzVOXW3mNOGYOj94tckgiPMSuNlaO0Xb4MZimUvNIrbxtJLsccDQNV46U+FCo0DB1HGmSF49C7AMjeuLJcIkm5RqzYIowBgvLFVolGxsXaN8wqVwx4GCpdTFUiknwb8rzSJBnO2p7LdYcai6Ji8ulfHiNBcjma21eRRYhsYnLtbp+zG1gjWTpf974Xy9QK1g8dKyChSedinwYXF1vshS1cHQ1DvMot+0HRcaxTzzRZso9Z40LjdLDMOEF5fKSKarunkYXJ0vsVBxMDXtREUK5ooWn7/awItTSrY5k3Pn1XNVFqs2Rcs4saDUUWDqGp+50qDrRZT2EeCYBtb7Ie2Hfb5wvclf+codvvTiAp+7NruXs0/iSn5BGaXpiWe0nwaOPHullJkQ4qvAHSnl/Sm0aSqI04zvrfQwdcFHz9VO3aDOAp7kgIjTjLVekEtRTt+QBXHKo66PbeqcrSk+pp4f0SxN/0C4NQx5Z61PyTJ46Uzl0Nxgs44wSXnUDfCiBEvXqBetmQw0POz6jIKYDBgYOufqp0sqW7ANVjo+bz7qc3W+yIXGbHAZbYeha9i6xtfvtHBNg09crE/VARLiMd/T5iDg+w/7NIoWHz1fm9ozZhldL6I1iqgXLIQQ3NkaKhW2k2RrfgZaw5C2FxHFGa6lc7buHpjP7LBI8n0AlBphz4/ZHARUHPMpfqIPKmxDpzOK2egHLFYc2qOIUZSwXHWmqiJ3WDRLtsoaGoZUHZOuH+OYilPxgxigeZKYeaMf8NbqYF/+xrGPVt3mdCdpxkrHRwLn6sqHCOKU5eruimyzhDSTrHQ8AJYrDhuDkCjNTi3IcBhIKXnU83nY8Sk7xkzumwdFKiUb/YDNQchy1eH8XGHmuFf7QczmIKTimJRsQ4knGdqhaS+OiifPDEGc8rDrY+ka5+qPbZMXJaz2AorHaEu3hiE9P0agysDmM+fEeIH8KOVhN0BKSXsUUXZmR71vOyxdY7XnT9TeH3Z8Mik5W3dnMhieSSUQNIqUTV/t+YC6fJ/m2pRS8o++fp4/89Ov8KX/+Mv8V1+++YEJTHW9iLdX+xi6xitnKsfuD84CjmRFhBADQAIF4B8XQqT51wKQUsp9rYYQ4l8Bfp+U8vPbvvenUVxVHeD/kFL+p8/TJi9KeNT1ubM1YhiMCYO9U5WBnEVsDUPeXx8QpZL2MGL+GBQANvohozBlFKZUHGNy+FntBdQK1sRxSzLJ+XrhSFHgm+tDNvsRLS1ivuLsKH9J0owHHR8pJefnCjNpoA+KzUHIMEi4szVkoeIQJhkFS+dRN8A2djoLp4VhmNAeRrRHEVEuCd8ahng5X8K5E94k00xyc2PAr76/SdVVROLn5wqn3k9PoufF/OI7G/T8mKprsVxzjq0E+c2HfVa6vgrmOsYHThr6MHjUDUgziRd6jOWCb2+OqLghrmUcumRuWpBSstoL6Psxm8OQK80SW4OQNIM4yzhbc4/lgqXtRfR9xcH2XthnpeNTsk38KGOuaM3c4e15kaQZt7dG3N4cslhxCGNvonClxEZOf+4HccpGPyROM755t03VtVis2NQL1rFcGp0EgjhlpeNjGxrvr/fp+elENXc/DMOEtZ5PwVKiImN+wEddfzJP1/sBl5qzHSTpbFtXcepN1Fm3hhFnay4Puz5+lLBcdWd2jAdhwnov5FE3oOwoZTzH1AnilDM1dyaCugfF5kC9x+YwZL0f0PYiXj1bm6nsg9Wukrr3wpSSY+CFKQ/aHq1heGpt6nkxG4OAqmsSpaptHimVbaIya71AfT88nIr5s5BlktVuQCYl99sjLjVKrPZ9vDhhFCYsVpx9lRgP+8wH+flESokfZax0PRoFGz/KcoGZ0w0SPOr6eNHj91/tBSSpxI8CBJKer+xtexTNRCAtTjMetD1FtF931QVROFY3H02U8VwrmmpywZmay7//+15F0wT/xGcu8h/9/Lvc3hzOxN6/F9JMKRK/+aiHFyn18EbRmuk2TwtHsshSyrKUsgL8KPDD+b8/tu3fPSGEsIGP7fHj/5eU8oefNygFKhgydgCSLMU0BPUZuhGfFaz1AgSCzijM1WimvzkXc0U1PU+dHn89Tu/v+TF9P8ELU1qjo228tYKJrilCxNITzlLXjxkGCaMwpXPMEuDHjfGNVNFWssNF22BzEOJHyun3ouNxDJ4HtqGha4q81rWUAleYSIZBwjBI6HgnOwZdLyKIMwxdZxQmzBWtmQtKAaz1AwqWTt9P0IQ8VoWrZtmm50XoQkycl9/qGNufgm1M/juIU/wooz2MnpKUP2kIIXAtJeNdyslVM6nspLKRx7NuCpNnSQZBiq5ptEYhrqXNZMnC86LrxwRRSpoxKaUaH0ZnJSBg6RqWodEPYhxTx4tSgjg9ddGWo2D7vuRO9q1nH+TW+wF+lNEaRuiayvQUQqkoGrma2ayM235wTX3S9rmiPVlLJcvAj9Lc5mRsDE4v6PAsOIaOZQpMXdkmQ9PojGL8KGNzhtu9G0q2gWvqj4UQMnVgnyUU8ixA19KouiZpltH3k4koymlgrR8QxBnr/XAiSDD278YYr0fTOJ79QtPU/NOEYK6gLtFNXbA1UGtovR9M/Zn94PH5ZEy4XrJVcNYyNEztdG1zEKe0huP3DyftA2Vni7Y5sT+FGcku7eSBqGGQ0PVjiraykZpG7peP2zt9+67l9vcPfPIcQsDf+d7q1J8xTXS9iEGQYGhKSd4xtefixfwgYypvKaX85UP82R9FEaX/2V1+9ueFEB3gX5VSfud5PrTkGAyChAtzRT5zuaFUjT4s43sKJdtASnj1bI3zcy7HIYjdKNmTGnldE1xuFonSbHLLULB0NE2pQh11wb2wVM6zoQTWE7cYxW0KGh8Eh3Y/1IsWBVvnpeUyqZRYukZ7pG5mTePZiiknAVNX5PpJlqHnHR+lGf1ABUCOM917NxRtA0MXfPx8lcWKMxM3R7uh7BicqRU4U3O5vlA6Vq6fj5ytomsQxNlMlbIdJy7MFQhzdSFQc3IQJKx2g4mzedq40iwS1jIMTSAZq4wmZFI+FXCfFkq2wQtLKqP4ftvDtXTKTpGLjdnLKjwMipaBpgnOz7mcrxeoF62JAtyslPhrmuD6QolmyWK1FxCnGTcWyh/obLWyY9D1Ygxd8PqlOfwopXCA/i7nmSK2qVFzrYmCqKFrlByTJMtOPVPhIChuW1emrgINY1XINFMKd1GSzfRhwzI0XlqqcG2+hK5paAJubg6JEznT7d4NtYLFaxdq3Fgscr/jowlxoEDpSeL8XIH5coqlKwW8oqVTsI2JOt9poOwYtIYRBVunUbKpuCaaEDsuLcYccdYx2qur88XJ/h2lGZaucXNjSBBnU8+WAlWOPD6fnJ8r4Bg6hiYmz9ZO+dLG0jUcUyOIMyp5qef5uQILFTV/hBC8sFTO1btnYx8p2gZCqCBa0TJwLZ0XlsqT+TQucz7OiorFisMnL9T5v76/xp/40evH9pyjomgbaBqcrbt84mKdsnO6XL0niam85baSPgALMIFRnk212++bwBellH9BCPFkYOq/kFL+aSHEdeCvAl94nrY0SzZV10QX4tQNxyzjUrNIlGTHbrC2O5BCiB1fO6bOi0sVpJRHdsCFEHsGnVxL56Xl6TxnFjDuw/Hbjp2FWZrzuibQtcdjbejaqY3BNOfZceJMzaVZsidy6ceNl5arRImSZ/+/A54k7rUNHbukz9R+sRu58ItLZbJjnrtjR/BKsziRhf+tgt3sv6YJHG22DqWaJmjk/ot44uD3QUQtL0Mcry3TPdicWig71AsWhqbsoMbjfnhyX5l1bD9g6ZpAz99FzwORaR6ommUY+k5+yBsL5Q9Eu3eDuoCwKbvWzPoDO/YoU+f6Qok4PY6r44Nhu18CewcNjjvIv31vHPvA1/K+OY79yjZ29xtnZd/QNMG1hRJJtnMtbj9jzdoaLdrGRG11vL9tb+NJtfcnPrLEn/u7b3OvNeLijPLmfVDOLceBqbztuKQv/78D/H7gv9znT/4Q8Df2+Kx2/u/7+z1TCPHPCyG+IYT4xubm5o6fmTMQzf4gYBYOH7omTmTRndRzTgsfhDl/mmPwQRl/y9BONEvlpJ83i5j1taOd4NwVQszEvjBtfFDWP6hAwAc9KDXGYdeWqf/Wt0vaCakhTxsf1HZvxwfJHsyCTZ5VP+G4+2bW54kQH7y1OAv72098ZAmAv/f9tVNtx7Mw6/PvuHAsbyyl/JvAl/b5lReAf1EI8feAV4QQPzP+gRCikv/bZJ+MLinlX5ZSvi6lfH1+fn7Hz1T9+OndMMwqZqFfkvQUi+X3wCz0y/MgyyTpjLdXSnnqY33azz8IpJy9sUzSDClnq03TxCzPi1lYN7thFufpXvgg2Ef4rbvOnue9ZnGuHyc+aO/7QfONDoI0J7P+oOAk58ysj/cs2MxZX8Oz3r4ncRrtPVcv8JGzFX7+zdkOTD2JD5rtOiymVcr3+7Z9qQGvw960RVLKf23b335FSvmzQoiflVL+DPAfCSE+kn/On3retozChDtbI4SAq/OlmeGQOG30vJgHHQ89T/88jSj7o65PaxhRtPWZURbo+TEP2qpfrs6XTv1m6lnwo5TbW0OkhCvzxZlUxZFScmtzhB+lzJdtlqonz+l0rzWi7yfUCibn545H2e6oiNOMW5tDklRyru7OBNfTxiBgvaeIr6/Ol2bylvQoeND26HoxFdeYuRRupR45JEoyztQcGqXpK6UeBuN5GieS83OzMU/3QpSotqaZUmA9TgGBo2C157M1mK29cBoY2w/HVPZjv2yp8VosO8bMK+xNAw+7Pu1hRMkxuPwBeN/tvtFp+YzTRteLeND2MQ3l7836O610PDojtUaOG4Mg5l7LQxOCqwvFmeNx2xyErPWCA9mW44JSe0+YK1mnruK7G25vDhmFKY2SxZkZbN+TuN/y6PnxqfjpP/7yEv/J33+PjX7Awozyzm7Hdtt1bb70WzqTalpv9ru2/f/HgQHw0wf5Qynl5/N/fyb/91+QUn5OSvnZw5CqD8MEKSHL1H9/CIV+ECMlSko0Ph31qTH59ShMZ+ZGezxflMTq6SvaPQvDUCm0SDm78zvJHvflIDgdxbexTPdYanwW4ccpcSInBNezgHG/+VFG9AG7eTsIxv08fs9ZQpikRLn6z6zMB1DqP3Gi7PUstWs3+FFKko7X1OyqTY7n3yzthdPAeH4E8bPtx/h3Z31OTQv9XP10GCQznZUyxmCbzzgLar/TwHiuxYkkOCU/+HlwkmtkEChfOM0kXjh7fTM+PxzEthwHskwpS8Ns7i1ZJhnl49afwfbthnE7T0MZ+sfzcr5feGv9xJ99GGy3Xad1hj8pTEuV749M43OmgXrBYhAkaLm88POi60VESUajZJ96Hew0MAoTBkFC2TEIkxRT145N3elZWCw7bA5DRTasCaSUEwn05glmBwyCGC9KmStaNIoWfqQkOU/iVuqoqBVM5TACNVdlLgzDhFGYUN8mg36aMHWNZlmtw4WyuokIk5TOKKbkGCei5rNYtel6MY3is7M7+kGMH6U0itaJ3kKULIOKaxAl2TPnf5RkdLyIon28/bdQsVnrBRRtg1GY0vNj5kv2b5nMqcWKTWsUUSuovaEziohT1f+nzTPlmjq1gkkQq0xDeDzuBUs/kvLQeB+oF83nvgkv2QZV1yRM0hO104dB2TEoOwZJ9uw1NUaaSVrDENvQqRZOJsNqsWKzMQipOOZTfoaUkq1hhBAnuy8eBeP5VXUN0kxStI1nZqs/uRZBHa62hiGWoc10Zt5hsFRR/k8tV+fb7Ie4lj5RHZw1NEs2Qax8xvK2PWeWbObzYvxOfpziRQkl25jpva1Zsrm5MWC+dPwZHXNFCy9K0DVtoo42RnsUKZtaPL0xXyjbrGYBBUvHMXVlK0YhpqZRP4CfdxgEcUrXi6m6Jq6ls1CxJz7RLODJfX3W2rcb/CidZEktVhw6XsTcMY3ffri+UOJSo8DPv7nGP/mZiyf+/OdB14uQUmLqgoJ1Mmeo08S0Svn+Q+DPAT7w94CPAf9PKeX/OI3Pfx5Yhsa1hcOlxntRwoO2D0CcyZlM1XweSCm5szVCSnBMjeuL5VNtT71o7dhA2qOI1W4AgCbEiRinOM241/KQErwo5XKzyLWF0+2X54GpaztKP9JMcjcf42GYcHVGykKWqy7L1cdfP2j7+FHK1jDkpeXKsQd9F8rOJCi2H8Ik5d6Wp/47zrjQOLl0Yk0TBy4ne9Dx8MIUIY63/yqOScUx6fkx91uqX5B8IFKdD4JGyZ6UyI3ChJWOsveplCxXT9feCyGeSmd/2PUZBglCwAtL5UOVnmTZ431gEMTPvQ8IIU50XRwFmiaeuyzsUden66kb2+vmyZT/1wrWnoGX1ihiraf2RV2IYzt0TQvb55dradw44PzavhbHWOsHtIbqssrUtT2Vdj+I2O7/jEtYAG4slWaubAqUKtSTvtFwxmzm80IFFxzutzw2+hFCiAP5CaeFMEkp2eaJZEjsNt6g9oyH+ZhLCYun5AuUHXPH5czGIGRzEAJg6OJIFzd74V7LI0oy2qOIl89UWKw4p/b+T2K73R2GCdcWSjPVvr1wZ2tEmkm6fsSLS5XJJdxJQwjBj7+yxF/5yh16fjyzZf/b4xKzWkI6bUwrPeC3Syn7wE8BK8AN4E9O6bNPDNq2m5MP2EXQnhi/0yzebG3vb/2Ebq22P2UGu+S5IYBx12kzfPM37mshdo7BaUMgJv03w903GduT6r/ta2OWb5SPgp32fjbfccc4HPIzhJjtfeC0MQ7yzsoU+CDMy+3YPr+Oaiu2B9w/CO9+WIgd++EH5z23m48P6vh8kN5hFmzT9j6ape46iXEcP0M7/UKEXTHZ12doXJ6F8ZyehbX3219ZIskkX35347Sbsid+K8YlnoVpXUeNQ42/E/ifpZTtD+JhxjF1rswXCZOM+gml9B8nhBBcmS8yCpOZjAbXi5ZadIITa5+hK+JEL0p+S5QKaDlp+6yO8RgX5gr0/JiibczU4dgyNK7MFwni7FClvyeF83X3RPuv7JhcbBbIMvlbYp3sBtfSuTxfJE6yHeVEs4Rz9QJdO6JgGYcuM531feC0sVRxcEwd29BmQixlrmipi5oT3BePgmnOr4WyjaVrmIaGa53+WBwXztbcvNxRm4ny+4OiYBkzbzOfhQ/S3rZUcbANZZtOC0Xb4FKzQJLKmRrz+bKNqWsYuji2zMpLzSJ9X1FQzBo07YO5r19uFhkE8bFkuD0vPn6+xkLZ5uffXOOnXzt72s3ZFb/V4hIHwbRW298WQryDKuX740KIeSCY0mefKIq2QXF2y3OfG46pz4SzvRdOitNjO1xL/y3l9M76GIMKCM6KytiTKFgGM+6fnkr/zSr3yTRRsg2YzWkJqNvFaYz7B8FGnBY07WTKyJ8Hp7EvHgXTml/iA1C6OA3M4pw7KGbdZh4EH5S9TZwQxcWzMAtBhCdxErbCnGG/FT6Y+7plzE6faprgt728yM99+yFelMykyjn81otLPAtTCcNLKf8U8FngdSllDIw4oCrfh/gQH+JDfIgP8SE+xIf4EB/iQ3yID/EhPsRJ4Pd8/CxelPJz33542k35EDmmEpgSQvwjQCKlTIUQ/ybwPwJnpvHZH+JDfIgP8SE+xIf4EB/iQ3yID/EhPsSH+BDTwOsX67y8XOGv/fpdskyednM+BNMjP/+3pJQDIcTngR8H/hrwF6f02ceKJM140PZ41PWR8mQmpR+l3GuNaA3DE3neSSKIU6V4MvhAVnIeCmGSv3P/+d6558fca43oB/ExtezoiBK1Ptaf891mGR+Ed5JSstrzedD2iNPstJuzA3FuM8fKYaeBzijiXmvEKExOrQ3PwkY/4EFbqfr83wFSSh511ZxNDjln00yy0vF42PVn2knMMsnDrs9KxyOdwXaOwoR7rRGdUXTaTTk2bA5C7rc8ghNQLNsPY59na8b8ufEcncW1dBp+90HxQVo7h/U9TxNSStZ6wUz6NseFdu6veNHp+CvT2JtPE+M12fWmvyaFEPxzP3SZ99aH/K3vPp015Ucp377fmenzwnZs901mze4fFNMqqBx7Bj8J/EUp5d8SQvzpKX32oZCkGV6cUrSMiQpA3494d33Aei/gm/e6lB2dK/MFgkgyV7KAGvNlm81BiGPqk9ruseOTSYlr6odSngnilP/zjVUKpsb91oj1QcBixeUHLtXRNJ2KazAKEzYHIYau8fHzNfSc7HYUJnhRqkhRZ4A4Os0kUZLhWjpSSvpBMiGO/d5Kl1sbI3RN8OJymTDOKNoGl5tF0kyy3vdBCLJUYlkaZ6sua/2AXi7X/d7GgGvzJV49V5tqm9ujkO+t9JBS8tFztX1rnIdhQmcUUSsoedpBELPZDwHJ3ZZHGKd0vJCSY/LFGwv0/IQHHY8wSXlVPLseX0rJ/bbHt+51WCg7jMIUTfis9wNeWCpTtA0etH3ao4BqweKV5Srr/YCbG0POzblcnCvS82N+7eYmmRT80PUmtWOote96Eb9xp02WSc7WC/hRwr2Wx0LZ5upCmZWOx0Y/RNMkLy1VMQ3BWw8HCA1uLJYpWDpfu7PF3U2Pj1+oc2OxPDXibiklgzDBMfTnIo/d6Af8X99f5Zt324Dg1TMVlmsuN5bKXFso0w9ibEPDnWKt+ShM0IQ4MK9Z14v4xXfW+JX3Wsgs43KzxOX5IlcXSrywVMGLEgxNULRPh/dhvR/wi2+v8Ve/cpuKY/K//bHPYNsnUwCfpBk3N4a89ajP+TmXYRAzilKSVPLx8zXC/MAzimLKjsXLyxXaXsTtjRFF2+D6YgldCL52Z4t7LY+Pn69xY7EyVUJ5L0p4Z7XPSjvgQqPAKExojUJcU+fVczW2hiErHT9fVy6Nos16P2BrGHKm5nCmVmBzEPAbd1poQvDJi3MsTEkC2osS3lsbYuqCG0tlDE1wZ2vE5jDg6nyJZmnnc+I0415rxMBPCJKUhYrDlWYRIQQ9P+Lb9zpomsbHzld50PK5vTWi7Bis9QIuNgsHkmIP4oxbm0NKlsG3H3QYhQm1osVGLyBOM2xTo+slzJUMLjZKkz09STOSTDIIEtqjkDjNyDJolC1MTaPkGFPjjMik5J21Po6hM1c0eXu1z/dWejiGzscvVAlTiaVrvLBYZmMYkknJ2arL22sD4jTjpaUyDzo+j7o+8xWbq/MlbGO63CBpJvn2/Q63Ngbca3vUXIOSZbJUc2mWbM7WHL55v0uaST5zpUFlG2Fu14vIJDPBZxMmKY+6AaYuOFtzJ/5WmknW+gGjIKY9ivjuSo+yZSCFxLV0Pnu1wXK1ACiJ+81BSMU1sQ2NMMmYK1g71nkQp2wOQoq2wVzRIk4z1nrBgfcTKSWjMOU377YYhSmLFQfH0Hh7bUCUZHz0bJWuHzMIYmQm0XU1J8Mkpe5axFmGlIKaa/Drd1ps9UN+4MoclxqlI/ehFyV8536XrUHE+YZLGKes9nyKlsH1xTIPux4POz7NosWLyxW6Qczbjwacm3O40ixzb2vEtx90KNsGn77SoHQEjiGJGtNhkND1Y9I045ff2+Tu1pBLzRI/+tIi5+sufpJRtAwE8Kjnk2aSimuSpJK5ooUfp7y71qc9irg6X+JyboemgUxK3nzYJUwkDzoeX7+9hakL/oUvXuNMrfDU7/tRyvvrAyxD44WlMgDfedBlpePx0lKVK/PFqYuUjNd334/Y6Id4cUqaZWSZxLF0ri9WmC9YhFnGfNlhrmARJhmOqc2Msq4fpXzvYZe1bsDFRpEwSVnvh1iGOvNsDkMedn3iJON8vcDZusv7GwPao4jLzRKLFYfVrs/Xbrco2jqfvdo8dv6rKMn49v02dzaHfOzCHC8tV9gcBNzaHFIrmNxYqLDaV0EfQ9NYqjqcrbm8uzZgvR9wbaFEexQzDGLeWOnxkbNVLjYKhxoTKSVfu91iYxBycc7F0HWuNAt0/YSeF6PrAg1YqjpkwJ3NIWkmkVLy/ro6l718tsIrZ6oEcUqYZFQcAyEEYZKiCYF5SJGVvRCnGb/y7gZbw4gfvNbAtQziNMPSNXp+jKlrDIOYTEqEEJRsk0bR4nsPuwgBHz9f537b435LBTLHe9c0RSN++mNn+e9/7S5/7u+8zesX5zg/V6AfxPylL9/if/jaPQZBghDwL37xKn/yx184sfX0/tqAbz3ocKbq8JGzVbw4o2BorA4CbENnGMQ4ps65eoH1foBr6ry3PuB+2+fqfBFL1/DjFD9W+5P7AeEkm9bp66EQ4r8Gfgz480IIm+llYx0Kt7dGhHFGwda5Oq82+rceDVjp+PzCW2u0hiGaBisdj4prU+kZzBVt4iSjH6iotmvqBHHKg47HSsdnseywULE5P/f0RvUshEnGo65PaxRxZ2NA24upOAPubI1yx8imUTLZGkTMFW1qrsW1xRJxmnFna4SUyqhfaDz/s6cJKSW3NoeEcUa9aCKEoD2MEAKuzhfxwlRlgglJKiWOoeOaOl6kgmudUUSQpARRRqNk4YcJ76wPSRLJdx92mC86bPRDLs+XFMnmlPDGwz7vrKpDgmMavO6aexpgdasg6fkxLy1X+NX3t1jrBjzseZRtk7VegB8nzBVs5ssOZ+suG/2QOE35xt0O5+r7j5Efpzxoq0BUaxjxqUt1bm95k3ZebBS4uTHgW/e61AomW4OAR92Q1jDiXtuj9IrJt+91+I07HdJMYmjwEx9ZnrojdK81YrXn0/MTKgWTR10fL0ppj2IsQ2OtH/JrNzdBCm5velyYK/Ct+12klCRpxlLF5VfebdH3Y9peRKNkM1+eTgDjYdenM4rRNHhhsXwgxbI4zXh7dcBbj/q8szYkyVJubw641CzxsOezOQzZ6EfoGnzppQVKUwj8dL2IB20fgEvNwoGcqHdWB7yxMuCd1T5xKnlvY8iVZonL60Paw4jWKEbX4IduzJ+KqpBj6vxPX7/Lo17Io37IH/ufvsN/9898+kSePQgSbm0OWesHxFnGmarL1lDdot3aGgHK9n/nQZe6a/Go4xHEGXe2PObLNpYh0DWNX31PzcuuFzNfdqZKxtkahtxvK0cVAUVbo++ry42ibTAME7630mG1G1J1TV5cKnOvPcLUdNb6AXNFm6/eavGdB12iOMPQBJ+/vjAVwYab60Pu5P1UsHSKjsGv3dyiM4q53/L4PR8/t8Muvrs64O3VPu9vDDhXL9AZxTSKFrWCxTfutvmldzdBQpgoldNMSu5sDXlxqcJ6L6TmWs90IKWU9L2Y+1serWHErc0RVddgvmTjWgZ3W0OGQUqSZXzxhXkuNoqcrxe4uTEkSlIGQUKQZKz3fYqWyd3WiPmSQ9k1eHHpYLbhWUhSSZxINvse76yp29u7mx7VoknrnQBdqAB5axTQ9VKkhAcVj42+mpvdUcT6IGSjH7JccyhaBhcbxSO368k2rvcDvnmvw2ovUEqjRZOiqTNXtKm4BpkEgcC1NL5wfQGAnhdPbJSU8tSJaTcHIcPcB6u45oSo+l5rxDtrfXpewq3NQb4XRYRxRsU18aOU3/uJcxQsg9VeQBhntEcRhq6hC0GUZJypuZPnrPYCFSzxYoq2ztYwousdPHv5bstjrRvwqBdQMNW6Xh+ErOR9+c20janr3Fof8qjns1SxKTkmhq6haVC0DBbKDt9/2OXXbraI04wgzlj6lHvkw0NrGLExVBllcZYxVzTpegkQIYF7LY+3HvUxNEHLi3nQHtEZJby3rlN+zeKrt7d4Y6WPZWjYls7nr80fui1BnPLOqhovUxd8636Hb9xts9GPWM1txIO2x1zRxrV0miWLziie+L6Nok0Qp3S8iG8/6OIFKWkqaZbtqZGYj8KEb9zrkmWSr9/e5J2NEY6ucbmxxj/9+StP/f7NjQG3NnM7ausYQuONlR5dL8aPUmpFk+aU15Efp9zZHPHmoz5RmtHxIrwwIUozmiWL1jBGosjpX1yqUC0YIAVV1zz1c8MYW6OQlbbHo26ArgnKjk57pNZ60dKJkozv3O+w2g2YLzt89FyFt1YHBFFKz0v4wo0mv/L+Jm+s9BAIyrbFZ681jrXNDzse//CdDUZBSmuUsFCy+M6DLu+uDrBNjdYw4o2VPq1hyELF5hMX6+ia4J21AVLC26t9lmsub632J+OzULEPdWmy2vX5zbsdwijl67e2+NTlJqtdHwms9QIymVEtWDzs+diGzkZf2cEky9gaRli6xjBIiBJ1wSclNEoWRcvgfttDCLi2UJpq8OKd1T5fu93Gi1JaXsgPXGqo/x6GgCDNMvpBzEY/ZLHicH2pzErXY72nMlDrroeUEi9KSWTGtx90WK66XG4Wp6bGqGmC//QffY3f+xd+jZ/62a/wA5fn+PrtFv0g4Sc/uszv+ugy//DtDf6rL9+i5Bj88R++NpXn7ocgTlUAvzXindU+HS/mUqPIlx/1KJgGD7sjwkRi6hqvnKmwUHa41/JY6Xh0RjH3NMHVhRJ9PyGTcpII0SxbLFfdZzfgFDGtk/8fBH4C+I+llF0hxDLwJ6f02c8NKeWkfGJ7qmjR1tF1qLkGwzDG0ARnqi6OZbBUVZLRuq4O90KApoEXp2QSwjgjSjO86HBp47omcEydiq1TL5rEqZKqTTMwNEEQJ5SsAl1dRWZLztOGQXL6aXlJJglj1ad+lE4OHVKqlMiLzSK9IKJgGpObMsdUjqFrabRHyoG2TY0kk5PDlhBQySVZi5aOqU83yFKxDQxdIIVQ82CfiLepayRpim1opJkkzdTNvG1oIMCxNRA6pqE2/aWKy7l6yChMyA4wRo6hA5L5skO1YHJhrsDGMGIYJMwVTVxz/P4SXROEiWR8thJCzZeyo6NrAiHUAXPaQSkAy9CpOOoQemmuwHo/5G7Lo2jr1AoWHS8mijMKloFEBSINTRBnylgWHdVHoIK8tjm9WHWcqn7OMtRzD/A3uhCUHYMzNZe7WyPCRMfNbxNtQ6fnq0NJmsEwSKYSmIq22Z9xm5+FqmswX7bywG2Gbam54No6vfzAlmYqSHMagalmyeZys8Tdlo9ATD3zYz+4pk6aSRYrNstVlxuLJX79VotMQr1gESYptiFAgmloDMKEom0iBKSorBbX2jYvDQ17yjdIY2fp/FyBc3MO9YLFdx/00HVBo2iRpBKZ231TE3hxiqFrpHnWja4JyraJIQTSFNiGsl3TQMEyEAJ0jacCXaauEybZjsCURKJpAsvUyXJ7Pf65JjQMoWyirWvUCzYCwYW5AqauYRkaxkHskgDH0mhoJoMwZrlqc67mEiQZuqbG0dBTorzf4lTtxWmm2ibzcS3aKttC1wTGlMV1xrZWSknZMSnaJgtVh/mShSYEW8MIVZGkIaXyEUxNy/8GCrZBMUzQhLL/x7FmdF3gmuqSqx9EVBwT19IZRSmGpmHqgjgFTQhqzu524/Q9DBWwGV862NuCmnEqsU0dPw5pFG0cU/XnIIhJswzL0NHyfb1g6YRxhm1ok3d68t3GPoamqb1h/KyDXoZ7UYJjaVRck+WKw5V5lcGja4I0kyxVHDYGIUJTz5L5Z0sJtq5PSkALloFtasRpRsU1DrZmnoFqwUQXgnNzLudqLrWCSc8fYBvKBj3s+qRSUjA0kJLtFR+2oVG2jdxn1bCOGtiVas4JlLpsxTGoFSz8vAqgXrIYBAlzRZsoyXBMXfUTMveVFAqWuuSM4gzb0nbMjaNDYBuCYZhRL9qUrABD06jukUFYyG2nsuFqT7HyPaVkG1PN5pi0UIyV6Ey8KCHNDDTx2K8xNYHI506UpsSJ8iO9eHbK3Qumjq5pnK27nJtzmStatEdddE0wX7bZGIT5mUjDNASDKMXQBJkEXVfzqGgZGJqGoYNjHn/myrgaxAtTCpaGk59PMqn2BS9KcQwNQ9NIM7B0tX4Kts4oSKkXLS7OFVjtBQx8FTx0Dmn/S46JbWqEUTrJYrRNjUGgzmKjUGUNO6aOAGxDR9PAMa2JTTg/VyCTknEFbZLKyRwZJ0BMMzBVyYPxkFLP/dUkVWeEOFW2R6LOXbpQmdAX5tRlP0CtqDKoolTSGUU4hq7aGadTC0wBXJ0v8b//8c/x5//eO9zaHPIjLy7wz33hCh85WwXgx19ZYhQl/Od//31++8tLXFs4embrflCBW3WOdk118ZVJMPM1nmVych4U+e5Wc01GgYVtary8XGW+ZDMIYvp+MvFzDxvDOElMZVSllJ4QYgP4vBBiBbgIvD+Nzz4MhBBcaBToeTFzRYs0k3S9iEuNIlXX5FMX67RHESVLp1l2GEUJmtAou8q4Fy0D11LO43xJZVHdWCrhmvqhSypKtsHv/8RZsjwDYnPoc65WZBjGDMKUK/MFipbJlYUiddeklmtDmrrGpWYRL0qYO4FDaJxm+6ZymrpKVR0EMQsVB0vXMPSQQp4ieLlZ5OKcS5SqIMXWMEQT6vCwOQj55MU6ZcdgaxhSsk2Wqg4l26Tnx/z4K4tsDSOWKvbUHfePnq9xbs5BCEHNtfYN5FxuFhlFCQVTx9A1XrtQo2gNKDsVLEPnXE2VH5q64NqCKgN69VwVP0oZbuO8STO5a+mlpgk+dXmORx0fy9CoFS1++MY8oyih6qq++NSlOZaqDuu9kI9fqKMJwUrH41zdoV60+MzVJvMlhxTJlebhDeR+4319oaSCXkKwWHVZrrlcmS9SsAziLOPcnMsf/sGLvPlowLm6y43FMnNFVUZzeb6IqWv84c9cZLXvc3GuNFWJ5jM1lVlXtI0DzxVNE3zkbJWrC0V+6iMLrHR9pBBYmsalpioR+v5qj6JlsDil0qlm0SZJJZoQ1A8oAX99sczZuQK/85VF7rQ8dF0dZM7UCpRdk7ce9XFMfcft/0njv/7DP8Cf+VvfJQgz/rkfvkpnFLHW97nSLB050CNRAYDd0qUdS+fz1+dpDwMWqi4Vx+RHX1pAAgXToOtFfPpyk+WKw6NewGsXaiAF5+uqnGm+bCOE4J/8gQusD0IuNoqHzszca33PFW0+d61B349ZrLqUbINmyVaOq5QsVuAPvn6ebzzooAvB1fkSWZqRCVgsOZi6xg+9MM/5ORcEnK8XppZef3WhSL1oogmoF22klPzQjSarXVV2+GRfvLRcwTQ0PnGxRsU2KNjmJKD12atzKjM2kbx+aY6CbU7GLYhTLF3b85CfZSoj1THVYfNMtQBIri6U8eOUIE4p20Z+SZDx1voAL0w4W3U5Vy/gmOqCJ0kl1+dLiDwYECVZfhhTZfzTyJYC5SS+sFgiXSix1gs4V3epF1TGcJpJ3nzYwzY1Pnquxq2NIT0/5uUzFa4vlklSSbNssTkIee1CnbmiNVWHegxDE3zheoPXzlW4uTUiSTJcy6DrR8SJ5PpiCcfS6XsqK3uMasHknHTJpJyJUr560aKQXx6Nx8+PUsqOwY35MjcWymwO1P7bLNm8vz5EIPjYhdrkQHWuXqBZUnNwGCWEcUbjiXc7W3OpuCaOofb5ZsmmYOmTNb3X+h7jXK1AaxRyuan8SlC+54+9tECSScqOQdHyMHWNF5ZK1As2ixWHfhAjhFCHdF3gGDpnaw5+knGpUXiuObvX/l1xTH7oepPWKKJesKgVTJZrLn6Y4tg6X3phgSvNAo96PufnCrx2oc6tzSHn8j75sZeXuLFYRtcFF+eOltmna4KSo0qOdF3jpaUyHz1XpTMMyYD5skvVNUkySb1o4Zg6LyyVyfILZj9OaRRtBNAo2kRpylzBwpyij+iYGq+eq7FUcfCihC+/vUGYZvzQteauv391QVEuCCFYyPeU3/Wxs/S8mFrRPBbZ+YJp8Okrdcq2yl7bHAa0hxFhCstVm5JlsjkK0cfnHz9mteszXzlZP2G//btRsvnBqw2GYcJS1aFgGdRcC0MT6LpASvgDnzjDdx/20DWNT5yvs9EMCJKMq/Mqk+fHX1nk6kIJx9CmnnW6G87UC/wTub9wpVGkaJt85kqTxaqLpQkWqw7fMjqcazi8fmGOKJMYusaXXlhgFCZUXLVPfORMBS9KWa66+54/pJQke3ADVVyTf+z183T9WJVyRQkX5wr0/YStYUi9YOLHKf0gZqFkc76uAkC1gkWSSSxdoGnKXpytu/hxynzJRghVsqhrYmLLnoU4zQ4URL/YLPJPffYiW8OQ843H5WVBnBKnGTXXYmMQ0PZCslS16/xcYXLWHl8Qv3a+RpykrPZChGAS5NoPz8v/eG2hxH/zh1/f9WdCCP7sT3+EX373l/jP/sF7/IV//BPP9dnPC1PX+N2vneHV81Uqtkk9Lze/2CiwMQj4wvUGd1qqmurFxQobg4BS2eLFpTJxXgat3qlMlmVsjaK85PxwmZwHHe9pYCrWUwjx7wCvA58A/hTgAg+EEP8S8GellL97Gs95HlScxyng91sePV/xEry71mNzGPG5aw1eObuArgkq+QTveTG3O6oOd1z+ZxkqMLQXel7M5jCg4pr78mkEccqdLQ/b1DB0jSwT/Oa9NkIoh1cTGut5hNgxdWrb/rZkG1Mta9sLYZLxzuqA+bLNUnXvd5kv7yzJOltzaY8i3ljpcnNjiG3qfPryHIausTmIWO35dP2I+ZLNhUaRimPuyPRolOxJ+cDzcBlkmWSl4xNnGWdr+6e/qxuZg23QuiZ2BFFag4hH3YC31/pcXyiTZurWPIgztkYhC2WVbacOS+q9/Djl7dX+JJDzJGxDp2gbrPdDkkxysVHEznS+drtFz49ZqroINM7WCwyCmGsLZaSU3N4cstIJuDJf4lrObXBYPGu8DV1juepya3PIO2t95YAXLG5tDHlrrU+zaFN2jUnpYphmXG4Wudfy+M27bc7WXM7XCzQPwDPzvLAN/VAltZah8ZWbbb53v48XJyxWFB+AF2cs10w+9xwlC2kmedD2yPYhb9U08dwBJEPX+NbNLb55t0OQqNrwy40iYSo555r84B7O8l7Y6AfHQrD/7/z0xwAI45T/6ss3+eqtFvWCyX/0+z9KpXj4MoYgSrm5MeTqfGlXBy5MUvxY0vNiKnn2yoO2xzc2O/m60kFonKsXGQYppq44w6JUcRktVBwWqi4LR0hnftb61oTAizI2+gHFZhFD03hvY8Bq12ep6lK0deaLY8dLBVDeX++z2g24ulBioexwbfFo63s3CCF2lGoFccYgULevVfdpR8/QNV5cqky+7owi3lrt8aDtUS9YlG0Tu6gy+Qq2OTmMmLqmSr5zrpDqE0HZh12frhcjhMpO/OrtLc7UXK7MlyYlMO287D3NJBpqD729NaJZtrmbO2SXmkXcbXvjeNodhRNnNwzDhL/7xhrXFoq8vFydzMvWMORua0SUZlRci64Xs9L1eNgJGAQJP/rSwuQgMC2esL0QJhlvPhrgRQkFy8ALUzbbI9b6IedqLnYeBFyPJQ+7Aalkso/XZyAgFcQpKx0f29A4V1fcUv1ACYQ86gRIJAVLx49TWsMIQ9N4+YzGZ681dw3OjP2BimPCLl0vhHjqsmS8lp+1vkEF9KoFFYy9vTXCC1PO1BwksDUMiVtqfwiTjCvzRa7n67nimmSZ5Jv3OgzDhI+dr3LxEJdLz9q/HUsn7GU86vl5RpbkdmvE5iDgSrPEfNkhzZSdWtLVDfubj3q8tzHk5eUK17et+6PA1LWcR26EELA5VJxC99sB/SBhuZbwUx89syMIOB7PYZDQHkVkmeLNOa55mmQqg8S1dCquyfogYqXrkUjJH/38lV2DhUtVlzhV7yWl5EKjwJn68QWBhFCXHisdn1sbgzwTUnBjsYRjGjTLNqP8sC+lpDOKaQ1j1vohr5zJTiSIA8/evwu2wcYg5H7b4+p8ibJjcL/l8eZqn7miRcnWmS+pfvSTlPmKw6OOxxsPe8yXbM7VXV5ans7cPCgWqy6LVZcsk9xveawPFF9bs+ISxBn1grKjq/1wwhV8Zb7I1fkSQgg2BgGbg4iyY+xbkq+oUkb4+2S1VArW5My6mH9vrmTlPMlqT3pvY8j3HvRYrjvMlxxKjsnWIOQ7D7pkUqrLz7rL2eLj+fo882NzELLWCw5cBbFUc1mqKa67b9xTFCSfvFib8KRWCybffZBypzui7cX0gwRDF4oXUCgeTE0IrswXD1yWGsQptzaH7OOePzeaJZs/8rnL/Je/dJM/8aXBhF/uuOBaBi8vq4ytJM1Y6Xis90PO1h3mivbkbPWd+13ubI2wDI1XzpQJE0lrFHFxrsAo5wY2dY2r88VDXdY973gfFdOKdvxe4OPACHgZ+DJQllJ+RwhxaUrPODTGB8fWMOCt1QFhkvHWoz6vna/vCJAMwhgpVZqhH6cHSsdd6wfqVidS6eV73bBJqQ6yfU+lct5vewzDhEEYUzB1NKFhmxoCwUbOPTRXtE40K2LM4D8I4n0DU7thtafUXx50fM7XC9xve1zKDV17FBEmGV0vIYjTiTMopSIT96KEc7WnDy/PwiBMJuVXW8PwmdxOY9xveXnJiHugG+KtnK+hPVLBzY1BiKmrzWUQJCzsZpukGvNhmOzp2LZzhYm+n5BmkrYXEcQZfpThBQmWqaFrOlk+dx51A+63fTpexPog4IdvLBwp5fYg4z0ME5K8BK3vKxLvjheRJJKuH00yqgBkBhtDZcBWOqrWeRAkk1TYk4YfpdxtjTA0waWmyuAaBTGr3ZBhmLA5CtRtkqvKCtJMPlfJVNeLGARHT5N/0PbyYKRDs2TjRQmr3YBhqEid1W2+amOSyecqc03SbBLwPi5kUvJ+ntEyCBL+jzce8Y9+6uKRsnyCOCPOMmzt6fndGak13/ViztVlbltiokSVWhcslf2hCUHPj9E1wYO2Rz9IeHGpjJQcPXvvGeu7k3PVjMKUKM1ojUKCKMWPMpW1sG1vyaQilF9pB7RyYvTPXm0c2J4dBcMwmThuozB5ZibP5jBUPAZtHy9M81LkIpncOY8VP6MqY+360VO2fbwnyzyN348yoiTbccP5qOvzsKM47tYHAbYuWKy4OaeGmLT5JC5tsvzg2hpFRGmGk8/LzWFIlAd6un7M1jBgpRMw8BMgwItSSs7JOHNje97zYwqWwYOuRxhl3NlUNvDWxpBXclscJinv5aTCl5qFEy3H3QubgxA/ShVHTy48sjVQ/bveV06xF6XEieIbMbRs4qs9aWvCJOXulodEcqlRfP598gD79+NnZXihOkh2PMWNlKQqQ3w8z8fBgnHgdmMQ5pdqKf/grYCPna9zsVF4rnY+a/8ehemOvVvXBF0vIknJebUev1cmJa3hYz7EO+YIL0rp+TGLFedI3JCZlCSpIorvjEJafswwUPxSzaJNx4sI4mRXMY+NQTjpy4WyfSyUBcCO8RbASldxE97aGO1a3hrEyrfo+3FeJqvR9WIWK8e3jiTwG3dadL2YtX5AyTYYBimLVUeV6Gpiws3WGkZIJKMowdS1qfgpz4P99u++r85ZcSIZhQmWodH11f7d9eIJ9QeoMVnvBaz2Qt5bH9AsWWTUj1QlcBSs9QO+9aDDWtefBN62nyHSLGMQxARxxihU/If1ojXhrhsEyb5VCmkm9w1KbUeSZupSJJFcbBQm63kUJgz8BD9J6YximkVHcT+2RgSx4jquF6ynLuCfB4P8onNM63IQPGh7vPGwy9Ywomyb3NnydpwNUpkpf0BKNgcBzZIqhc6kouzIUDbkoHvVKEzIjkGA8I9+4TL/7Vdu89/92h3+g9//0ek/YBeEScq37nV5f2MwKWFuFO1J/CLJX1RKydYwwjYUX9swUqT4UqqMuFGUUnWf3x85zHgfBdPy6CIppRRCSCllTwhxoDcXQvwrwO+TUn5+2/fOAP8j6o7r35ZS/oOjNu5sXWX0uGaVm5tDWsOI+eLT5HPNkk0QZ5Ma4YOg5Bi0h5FKPd9n09SEwDY1rsyrtMtXz1Z581GfgmUwX1Yp3lXXnKhUSKk2l+Wqc2IKAIauOAUOc7Nbtk3FF1AwsQ3BuXqBetEilRJNqMVSsHSaxZ239eONtO09fXh5FlxTn/A5lA/IBxQl2SSY1RqGBwpMvbBUpjOKsHWd+bLFJy7USTK1qS7s4bBpmuKy2i/dtFmy2eiHqvZbE1QcpQ5k6oIrCyUqrsEgUOV9ev55mVTlBZamT0phDouDjLe64VG187WCiaVr1AomcSKpFgyuL5To+orro1owibNscigt2gZhnD2zPPS40PEiklQ5xcPcQSjYBpfni/hxwpm6w1LF4UxNOd7Pe5OgUvmP1sYkzSZOS3sU0SzZuKbOhUYBL044U1VcDOM2Pm8/6ppSAzyos3MYuJbBT766zF//6j1KjsGZijvp78NAE4JGydrTARkrp47FF5SKoiq7tk2VZWhogmGu2vjWox5JKimYOoMg5uwUbrWftb6bJYtHXXV4sA11C9/1Ys7UVYbecsWhk9uhesEkSTMKls5KkjJv2XnQ7cjNfCbqBXPidBxkvGquSdU1aFtKSfbl5QpF26Dqmry3PgTUvnV9oUTJMQjidFcbe6bmYhsRrqVj6IKLjQIX5twdZQRlx6Bg6XRGMRdqBYZhTLNkcalZZHMYkUl5oHT+acDUNUqOztmau4PbpurmttAxqbgmrqVxvu6ygs/1xUMERI4AXVP8Rq+erYKAj5+r885an2bZouIYLFaVj3G27rLW87FSjSjJ6PsJ8+XTD0yVbIOuF+f7kmpP1TUZhSnXF4sEsaTsGmhA148p20o5eTdfre8nE57R/iH2yYPs32PYhkbVNRmGCc2SlRP7qoCfoQv8KOX83E4VroqreKX6g4iFsqPGIXi+dj5r/35y77YNjSvzJdZ7AQsVxePW9iNMTaPsKN7TgqUTJim13F6B2peOEpgalwfpOtimYGMYUndtqraFZao2uebu/rYSf4mouMbxBaXYOd4C+Ni5Kre3Rnz60tyue27Pj4kTiS40giTFNjXKzvEGyLNMPS/NYKniUHYMrIZOwVScVmrMlM9TK1o0yzZ6Xmq8+JwXzUfBs/bvekFxiumaoGQbaEJQsHSWqw4V1+Rys6iIrrOMZtHOfV4VpNKEIDqhw/FuCOIUkfPpClT750uKW3HMCeRaHq4V4lo6BVv1QbNks9YLFBfYPj6coWvMl+3JnrwfRvlFFyhfdxyYWq46LFVt5ooWixV1tixYBhfmCnRGIc2yRdk5WhXOQq6OWDjgZ8S5n1t1LB60faquSfMJm/LSUnXiL4Gy4VXXzPnxlODP86yxqmvSD5J9KxoOg1rB4vd+/Cw/9+2H/Knf8eKJ8LwOggRdKD67MEkp2jvV9V45U51k45VsJVRl6poqFy+KSYD6sGP+vON9VEzrKf9rrsqXCiH+G+Aa8J8IIX4W+PXd/iBX7vvYLj/6U8C/CXwP+DvAkQNTpq6xWHGYK1r87o+dxY9TbiyWnsqIckz9uQnNztZc5kv2M7MYbFPjRp7KXcy5lT5+oY6uC3Qhtm26JplUGUC1gnliQSlQ/XT9kOUjFxoFFqs2n7o0pzaQ/H2aJZtmyZ5wf2x/H9vQKNjq0HxQ/p3tGEv1ZlIe+MBuGdok4HNQPo3zcwXO1lziLMt5U549JmMncD+M+2aMsmPy6tnqhOQS2BE8vbZQYrFicy+XpT1oLfheOMh4m7rGtSdSwq4tlLnSlJMx3n6oaZbsXAXGZXMQUSvsrX543KgVlHOtOC5UPwoh+MGrTT5zuZEHTcW+AeX94Jg6Ly1XkEfY+AxdyzfQeHIIEkLwuWtNPnulMZHQPWwbhRBcnS8emHj9sPjJj53l01fneNAKKNjGpL8PA9vU9s0UfbKUWAjBtYUSWSZ3HF7GjtprF2pUt5Syy9m6OxVH4lnru1awdjyn4pi8vFzZsba3r/2FisMXblhcXSg+l206Kgz92XZqOxYqDj9SWuRzVzOEYAef2HgezxUVh9/lfUrgx1yFoC4YPnHx6SjchbkCS1WHvh+z1gtwTJ0rzSK6rk29VO9ZcC2d3/by0lPfX666LObKrI+6PiXb4BMX6hMS5+M8TD8Jy9B4+czjEpflqsvVhRICle1l5WM1V7QoWDp3tlRpVcU9GWfzWagXLUqOscMfapRs6gU1n5JcSOIgFwgV16A1Upw1lUPskwfZv8cYc5qOUSuowMF+Y1+wDH7bS4sMgpiNYXioLM5n7d+77d03Fstc21ZitZ1+Yq5o8SMvzpNmEtcyJhmQ9eLR19q4f9JMcqamlFTLjsFy1cXQxJ59NV5fx72Onhzvf+oHL+FF2Z77WNU1aY8iTEPnlUYZ29CP3VfXNMF8xabsGFxuFinn8zpKskkfvrBY3uF/v3jCJW/w7P3btfSnSqCuL5Z37N/bD93LVZe6a7FYcQji7FQVxRYqDpfnE64tFLncLE0O6tv9kavzJS43ijv2+rmideA9fanqHKhipWjpOKZGlGY7fA3T0Pl07t9u973HarZCKCGJoxD0l2zjuc6KZu7nCgE/+dFlGkUL94nEENfSubH4eL5unw+HKZkzdG1fH+Qo+MOfvcT//BsP+F9+8wH/whevHssztqPsGFQKBq+eq3Ku5lB2rR1nArWmHvddLe9rkfM0vnjEsuznHe+j4sgeiVAr738BXgQ84LPACvA7gJ8H/twef/pHgb8G/Nknvv9R4F/OM7AGQoiylHJw1HaCuuUo2gaXmtO9yTzMAhdC4OTyqA9zDoCxk3BQwzRrGEe6d9ufx30Up5mqVTXUTd/V5zgU7QZdE2hSlRJmUjmEzzrEH6bWXtPErmnJ08Z+DpgQgopr8cqyyVo/oDWKDvS+x4H92mnqGmdqBYq2Sc+LGZ5Quc2TKFgGixUbLy/T277kNU2gcfR+U31/tM8ZHwyL9s75Na02CiEmikHHiWbJpVl67DSOwoTWMKLqms+dDXkY7DUnXcuYHNj9KOV+y6PsGCfOq/Osw5XiMyzRHkWMQlX2PI19ahgmtIcqI/WowWxQ7+HswpMxbUnysVrmfFln/gg8dVLKnMsvY6niTI0QfYxxOcf44BGnGa1RNNnjThPjfdeLEtZaHhVXKaKNg+qzht0uMcbr5nnGzTb0p5xxL0om2TfHfcv9rLUexCmbg5CC9XQ7jxv7tc3aluVyfq6APVBy81GSTUVpTtcES1WXpecILjzZ3ijJJqWd+/G6HgWapu1bgvu86yfLJGv9AHh20HIvCJhcbm/H9nERQuzqf59Enx0V+/WJkx+8B0FMZxQjtCmU4z8n/CilPYw4n1eD7IeTuJAwnghMbw1VKfRCLh61m+84btdJ+INPYuwfDIJYXVoX5b5jeJKXOs+Ll5Yr/MDlOf76V+/xz37+8tR9iidhGzrLVZeeF2MY+1dnwWz33UFw5N6UKl3gbwK/CLwqpfyMlPIFKeWnpJT/ppQyePJvhBAm8EUp5S/u8pG6fJyC0AN2LWgQQvzzQohvCCG+sbm5+cx2BnHKStvnUVf9/7QRJRnDMGGtF9D1YtZ7IV40O7Kux4X1fv6+/XCSrhrE6ZHevevFbA0i1roBD9qjaTV1JpGkGQ86HpuDkPYwojU6Xv6gw2IQxNzeVOpUKx3vVNoQJRmPumq+Pbnm/Uipgpw2kjTjQdun58c87OxsY5jsVHn8oGGlo97r9taQgT998vXD4ObGgK2cxylOT68kYC90RhF3Nkd0vZiHU9qnxpkPD9rPvw6llAyCeJKtcho4ahv6viKj7YxiNofHay/jNOP25pDOKNqxx50WvCiZkIorW+w/t1LRaSLN1NhPo82z1AervYDOKOLmxpBhOBu2EXauNS9KWO+Fub/2lBs/VQRxeuBy84kP2VNE0yeFo/iprVFEa6j+P+YWnUZ7Zr3PpokgTnlvTfmU91sn71M+7Kp99ObGkOEp23V4bBuzTBLEKau5r7vWO961ehRkmeSd1T7tUXQof2SW8M987hIPuz6/8Nb6sT9LSiWk0fEi3lntn6o/dhKYVhrD11CKfJ4Qoiql7D3j9/8Q8Df2+Nl2S1sBurv9kpTyLwN/GeD1119/yssYBDFhklGydDaHEZYheNTzCGP1q9vTdr0oIUwUx8eTddFSSjo574GhiZyY03pmxDJJMzQheNTzn1IFiJKM7z/sESbZpGZW08DI1XviJOVe26PimDtuXMMk5UHbo+yYNIrWnlHaLJMMgoQky3KSS/25bqimiSyTbA4DSrZJcVI/rNSYBPCo63FzY8jGIORyo8hLZyo86gQIITk/V9hxg7cbpFTkp4NABbvCxKZoGySZxDYUKWUm1XjYhlJENHUNLU9z7AexkvgtmERJxiBImC/bxyLnfVQkacY373cI4ww/Sifp0j0vpuIadLyItV6Aa+p5doRFGKdI5A5i0fYoon+MgYL31ga0RhEdT2V0FfLMKdfSkVLyqOuTSqmkggsmtqFPiJfH6yqIU9Z6waRG/3mQZpL2MMI2tQkH2fZbxbFjE+e8Po2STdFW2YtBnOKaqhSt40UULcXfoAlFxBrEKUtVZypkwV0vUrwROqQpOz4zSjLeXx+SZhIhVNnXXMEiSJRzbBuq3Z1RhDbhalAO8DBIWKg8zaF30rANjWGQcL894h++tYaUkn/5R69hWSevAJakGTc3htxve8SpVDwWYYKha8Spuk3WNUGtYNEoWkSJ4kYbS4KDsmW72fNpIMsktzaHbA0jtoYhy1UH29DoB0p5ME0z7rY84kzJKxdtpbAWJoq/bfv83r6+pZSs9Ty+96DHxUaRawulHVlYSZrR9WOK1u5qQSsdf8L788JiecdN3ChU/A3lY765ftD2aY9C4jTjY+drz9wTYOe+bRkaQiiOEtvQ6fsRoyil5lpKJSzPXNmuVhjFKR1fySsftBQ5yyTvrQ241/YQqIwTXQhawxDb1CdZo2km6XiKc9HUBH6c0fUi3JxvEqAfxBiaoGAZJGmGZPdsItjbnreGIe+tDzF1MfEzxntfkmbca3sUrad9gyyTrPd9wkTuaUeklPT9RKkMa4LVXgAC5ksWzh58QYfBrY0hm0NVxnmm5qIJwTBU/D5XF0qTPgnilGGQMIoUmfJu5T62oRHGGYYuOK0L5c4oQhNqTm4Ow5xcXWeuYHK35XGxWcA1jYkvGmcZel6OAUwUv46Lz+jdNRW4nytauaKY6tso0ZSMfSq51x6RSTnJvHFNnVRKDO2xHXrW/h2nGaMwoeyYeFHC3S11SL3QKOyZ1TnOOup6EZlU2VdZpoiS00xSckxKtjEhhQeIcr9vbMO7XkScZgRxphRzD8jhOgxivv+wP1HpPkhZVmekLg5dcycfzJNzr5sHqmoFiyAn8tc1QZJkvLXWxzF0rj5BMTIME+5sqkvYC3OPhYO29+v2M0qWSbpehBDgRQ4FS4nqjPk/x7/b9aKJWqomBPNle0fb+74KEp80zcjmIOC99SE9XxFnL1Rsel6MY2mYmsbNjSFxmrFQcSjZBqYuciEUfbJ2tu/fUZrxoO1xpuZO5tEoSnBMnSBOaQ1Den7Cci5IMwgSBIpcfnMYECYpV+ZLJypOlaQZ91oeUkKjaPHl99YxdcWpqYjYFUn4eA32g5ggSpkv28c6Vkkmubs1YrHi4Fo6aSYn82oUJkRpxr2tEQhVArs5VH7vi8sV+kFMkkrqJzyfpoHf9vIS5+dc/spX7vA7X10+8ueN+3G85wZxClJxCSql8xZFU6fsmtzaHHFjscQgTEjTk1+Px41p7W4/AvwxwAc2hRBDICMPPkkp/8QTv/8C8JoQ4o8BrwghfkZK+bP5z74nhPgsimOqIqXsP29jel7Ml9/bIMtJHxXHkQpejKKUc3OPgz1+lPL++lAFfFyDF5cqLG4LBm0OQtb7yilOM4lj6ng5meVeWOl4dEbxRBnqSbRGAW+v9nFMncvNIjeWyli6RteP2OiH3MuVFoQGP3Jjnmqedv7mox73tny6XsjLZ6osV91dyyfGUtx3WkOSVCIQfP5640jlEIfF1+60WO8pouLPXm3kBM6CIElZ6XhsDiO+ervF1iDia7dbvLRUwTF1ul7MaxdqfOJCfV951Yddn85IbZYLFQsp4XsrPfp+QhAnXGgoIsUgTnjU9VmquIqgueZydb7E/dzQd0bRZGEnWfYUN8NpYpQr47VGYR60g0uNAvNli6/daqEJRdy50gmIknRSW120dNb6IXGW8YnzNS40iiRp9lRmzjQQJilemBKmKqg6DBIWKzZnajY310d870GPgqWRSiW369o6VUcRGfeDiNYgplm2+PTlBpahsdoLGAbJodRk3nrU4+bGCEMXfPFGE03TKG6bQx0v4tbWkM1eyHLNoR9ECDTubI3w45SzNZelqo2UgkEQU5j8reJ60kS47/o/CDb6Ad9d6TEKEy43C1yZL+0odwzjlAcdj41BgCk0biyVudca0R5FrHR8ztQcbiyWiRJF7C40VQceJxmGrpFk8rn58qaNC3MFbEPjq7c2+N+/9YggTnnjYZ+/+kd+4NhTn8cY3yq38n6L04yFskPR0fjKzRZhkhJECRvDiCjJ+MjZirILbY9RqLgIXz6jlGO6fjxRBJwW4lQJQPSCmPttpWK5XFXEtu+u93lnrc+r56qsdHy+e7+LY2rUChZX5kt4cUx7mDBXNHlpuUKjZD+1vrtexM9/f503V/vUXJOlqs1Ly1VWuv6EL8+PUoRQ6elPXriEibonSlKp9jMeH2DefNjHNjWuLZSOrTSq58V0vYhHPZ8wlhTt0Q4epd3QHkW88bBLEGUsVx2uLpQUB5mUPOz4fOt+By9MlahA1SWTj1XKxgeTr7y/xWovwNTFM3laklRdaFiG4EHHI4wzdA2uLRRpj2LubI7YHIa8sFTmxaVyrjQYs9ZXmTvdUUylYHC+XqRo64zCdHLrfabmqKAPcLFReCoIuJc996KEd9f6rPVCNE3wmctzFB0Dx1B27tv3O/hRRsk1+MK15iQoJ6XkrUc9fvm9LRxT4xMX6nx8F/6vR72A9jDKOapMOvkNeL1ocWW+eGQemChRB+z31vrc2hrRGoXMl2yyDDZHIQslh9cGAT90Y4EoUUHn9V4AGiyUHIq28VSZyIW5AsMwwTWPnw9oN7SGIbc2RqSZ5OUzZcV7mioxlr/+1buMwoSKa/ITryyTSEnNVfyMhi64Oq8Cyo+6PkGcTVVlzYsUUbxr6tzeGhHGKnBzfaGEBtzcGHKuXkDXNN7fGPDOqlJHKzsmyzWlnBUnkrmSxUtLZRol+5n7963NIXEiKdgRtW2BqK1hgCbYNdg9zjqSUl08l2yDt1b7eFGCF2VcmCtwfs7lYdfP1T4lSEGtYHJ+rsCjrsfXb3fo+zHnGy7zJYeCqR+opPtua8SdrREIyVLFgWewQajMyRG/cbeFoWn84NUG1xZKPOx6POwEjEJ1hujk+xLAWi+YcP9cmy/yS+9t8PajASXHeKqMMkqyPKstZRTGk8DUrc0hfpjS9iKWqy4XGwUsQ2MQJgRJSpxmPOz63GuNGIUJuqbRKFncWCyjCXURESUZKx2fy80iUZpN6DYetD2+ea+DoQleu1A7dtVYKSU9PybL4NbGSAkFuQZLVYeOF/PWo41JgPat1T6WJliquVxqFBiGqlR2vmzz+qW6OlNs27/TVNL1YmxTo1m0+db9Dg/aPpYhaJZsvvugix8rBbhrC0WGYYpjalydLxIkCZuDCFBqp5Yx5k86xuBPmvHNex2+cbeDqauMy7V+SMUx8rETzBVMCrZBo2QzDBO+erOFF6Vcni/w2vnjU1KJ8wv9TPpcbBR5f2OAF6aMomQSnP3qrTaGJnh5ucLnrzcJk4xmyeKth32EgMvN4qmXvT8vdE3wR37wMn/277zFdx50ee187UifN+7HJMsoWAb3tjxao5DFss3//u0VNgYhUZzxez5+Fj9StvXmxhA/Srm8UOBM9fhVnE8K0zod/A7gCvBvo8jL/xzw7wHfzP+/A1LKf01K+eNSyp8A3pRS/mxOlA7wHwL/HxTp+b93mMZsl4kcp7yFaYYuNLJUOa7jW5UkU9K+cSrJMvlU6cz48kXm/1Pt3//5fV99hnLqd/5ymkkedQOSVBIkKfWiuuWxDI32KN90w0S1T+7867H0rxelZFLS3yOdNHnc6JxbRxBEJ5/6l2ZK3hNgGDyWJd8YhGz2I+62PCq2UofIpMxVeSKiWL2flOA/o9xq3CfjLDY/v+1QUXtJnKioc2cUE8aSjUGAHykZZT9Smw2Aa+uTzX8WpLPHGIUJtzdH3G97dLyYpfxG6HKziB+npNmYPyDE0FSgNcsU6WEvl+CVGZP0cT3fSKcJKSW3N0esdHwetD0aRaX6sVh1qBdt+vmaWuuH+XoShJG6uU7SjG7uLIxy5wmYjIvxDFGB3TBew+M5UNqW9QLqxtLWNbw4puvFtEcxmlBSqFmmsqZyQSdGUYJE2YGxJKttHr3/4kwSRClSQpBkFK2dbdR1QdE0SFM5KcOSEoIoy+W3mZQiDiO1ttJMkuUWY3j91AAA5fBJREFUw5lCG48KTRMs11wWKg5hmioZ4GHIzc2pUAY+E+MspJWOz2rXVwpejlL9EQiiJFM3yX4MUuaS7kpm3c/Hpj16XHZh55k308TdLbVu7rdGzBUsSrZyvG1TJ0khzWCjHxLmAcdRpG7UozTDC9VlyViaGp5e30KojBxdaCSJJIwzOp5y9oM421GashuJ/9maymA4V3d3BBNXOv5E8v64FB83BgH32x5hmiKAxYo92YP3Q3sUIjNyZSf1F46pMlCGoTqE+3GqJKjzd1YZy2pw/SglzjJMTeS3lvs/817bU2PY9mkU1RieqblYuo5EKeqoeaUysyUSKWU+zzKiNMszuVXWyfYys0GY5BLa7NrPu9nzIE65vTlimPsJNdek6BiUHZMkU/M7lcq2IXe+XiahH4z9l2xP0YQ0fewLWbrKSh1nKY/n4lFwe0ut22GUYusajqFUaONUMsr9nmH+nLGvYJs6Wao4Lu1d9jghBGXHPLGg+JMYRQkPuz5r/YCtYci1hdJEhXXc116QqDUpoZeXMGbZY5nucfbKtPbw8Vx50PZZHwTMl+yJDZIIRnGSZxnG9PP26HmWn64pEmU/THM7lE7Gfr/9e5x5BeTZEhaNkoWmwTBIubvl7erbjt85SpUt1DV1mZvx2HYNA+X7q6zpeNLvAL3cLzd0gR+muXjDwfoxSSVhfslxkD1AF+ryNU1VxvMwTHAtpVas2pJntG77Gy9f31GS4SfpxA6E8dOqxvWCiZ+kBGlKN3+vcb/6cZr7hnLyHADH0DE0jShJcxuo7H+SSqIkU7y3poaWK/nCznU0CJTsfJz7zseN1V7Ag7bP7a0hlqFRzzkSLzWLdHJ/dr0fIMnQAC9OMTRBlGaTDNJxKfP4XSZjl//rmrr6/eCxDzqem36eXbmaZ1kFcUajaNMoKoEfx9S401JrZ1pl93shHp9RpaQfJKSZzCtDMharDuv9gNV+wFo/yG1GNplPA/94SzfHfeqYOnGaESdykrmXoS6XwiQlk2qfLdoqAWQYJqz2Ah51gx3z9IOEP/ip85Rtg7/8K7eO/Fnb+9GLErw4UftdnODH6szqWmo9NkvKFxr7YQ/bp09PNE0cKWNKCLEA/OsoFb43gH//eTOcpJSfz//9mfzfFeBLR2nXUtXh2kIJP0545UxFLYj8ZtgyNBpFe7IhlB2Ti80CpiFwTV3dhmzDQtlG1wSmrrIl/Gh3+evtWKzYbA0jFitFqgXzCcdPYhs6VxeKGLrG+W23Do2izXo/4FMXlapPxTV33ER/9FyNoj3kynwBxzT2VEs5W3PZGoacqzXZGqlbzYXq4eV+Dws9j5Dfa484V3MnTtXY8C9UbJoVh3/8By7w5qM+nVHE5WaJDFU7fWGusOM2bTecyd+1YOl0PYOBlVArGCQZVGyDRtkmzTIWKxZr/RDH0Ci7JmXHUJKpTgkvSiblCmGS4p6gxPezkG6bPAtlO1cyNPJgps6ZWkiSSc7WHLZGEa/ogvmyQyahZOu8vz4kSjOu5OoUYwWzcSbE1NqZO1EVx6RRsrncLFIvWkgp85tCnxeXlfLKmYqTyxerQ9VCxebO5ogzNXci/b1cVdLx1iEOER85W0XT+lQcc1e570bRZqHsIJHUXIszNZVFZ5vqULVYdThbc+mMIhYrNj0/xjZ0lqo2aca+GXwHxWLZ5sXlMv0g5lKj+BRZoWPonJtzCZIUS9coOQZX5ossVh02egGVglJ5a40iGiWLUahKWM5UlXrkaZfxbccf/NRFbm0M+ca9Ll+43sQQJ3MwHB9YAeYrqhTyhaUyxTyzbHMQkaQZr56r0Bkl6JpS11msOJi6oOfHvLCNXLRoG1xfLE21lG+8vusFm8WqzZWFElXXVOWFvYAozXh5ucLWSJV+NUsWZdvMlXUyVjoBVddgoaLs+5Pru1aw+Md+4Dy/9O4GV5pFXr/cQKIOQZahca7u0s9FQXY7sLuWvmtWbsnWmSuaSFRW8nFgbFMcw+CTF4vEmTwQeXujaBNEGdWCyaVGYZKJqGuC5apLKiVemHCm5nKpUZzcjI/fv+qaXF8o0RpGnJ8rPHO/H7czzSQfOVul7cVUHCVvv1Rx8BYT2qOIRknZ77M1F9fUJ+XCApdmyWax6mAZ2qScT89J1VdQQendMjt2s+dppub9QslmvmRzfu5xppVjKltyY7FMkqQsVt0dst26Jri2WCLKSzFePbd7tthyzcHQlc9ULyoFyvmyTZhkUxFuGffpC4tloiwjTlLCWKJpko9lVbJM8qlLc/k76ZyruzRKKijomPrUL1+mASWRbiGEoGibOKbO+bkCFdfkx15a4G7L49OX6ixUXOJU4lg6WSYxdDERyBi/57Quz7bbSF3TeGG5TJD7uIausVh2SVKouuoyzDV1Kq7K7is7BqMwYb5sTUjlx3Zov/1bCMGlZpGeHzOXKy6eqbmYujbJFEx3CYhWXZNrCyWklGwMQkZRwkfP1hBALDMqtipxjtKMTDIRPhlnA16ZLzIKEzQhuLFYwjS0A/fjcs2l5UUUTOOZNB6gLmU+dq6KhrrUHhOlL1Yc2qNoYlPmch8J1Dxe7weUbIOSbfLauRpFS/Xp2frODEQhBPWCRXlbPwkhuNgo0PaiPAArJqrIFxsF5kvqmYau4UUpHS9CF4JGyZ74NFeaJYIk5eXlsqJC2ZbFfbFRJMxLIC8dk9rZdoxtgG3oLJRtzs25NIs2miZ4canM7c0RLyyVlU2zTeaKFpV8zi1VE+61PJarziRzcvv+7Rg61xcfl7VfWyhzZ3PIUrVE1bU4V1eZqqoEW2elGzCX27l60WJrGJFmWZ45xSQR4rjgWno+9zNc02AUJ2wNQ15aLlMv2Dzq+uoiRKoAZcW1+MjZCq1hxNWF4x0r21Tn2bHPuVCxGQYacyWLOJF8ZLlEo2QxCBJ+20sLXFsoIYQgzjIWKzZJJnf10z8IKNkGf+Rzl/gvfvEm377f4eMXDp+Z5mzrx2EeIK24CUsVh3/yMxf52u0WSxWHj12oTezBfMkizuShlGdnGUc9vfx1VEbUzwI/BTwUQjzFRC6lvHLE5zwXNE3w6rnqU9///PUm7VFEyd65uTRL9g7p7jE2BgE9L6ZRsicBooPwaTRK9g6+iu0wdY0LjQKNkkWjaO84DDwpg74d/SBmvRdQL1jPrGu2jMdyrfU92jFNpJkiZksyyfk5d8dmf7buPrWpXmoW6PkxVdecGLPPX58/1LO3v2vBMmiNQgrW0zwFZ2oFPrrHZ2wf070O9FvDkE7uUOw1ttPAw66PFyYsVR3KjknFMTlTc0gyyXzJ3hHAcC2dT19pTL6+1Hz6817Pnfft0HPuksOi58ds9ANKudzz2NEcBDH1XPFpDCEENxbLu6rJPIbNhbmnN8/DtrHsmHz6cmPPnxdtg09eqtMeFYmSjPk8+NwoWqx0fMI85X2cWnwcKcZPKqo8CU0TXJkvca5eoDUKJ6Upc0VlI9Z7Aau9YFdbYE4tEXZ6+H//5CsMAqXQOFe0Jra1WbKnoo63OQjpeurwP3b6jdwhHz9zu10yDY3PXNl7jrx6rrbr949yIFQcgT6GJhT/kCa4OFek60c7bCGofWL72i675q7Sx+d3WTdPru/PXG1yeb5E34+Jc2np7eVwh1H+O1svYJs6BdN4SvZ5WlgoO2hCcTs+j82tF60959R2xdtRmHBna5QHNh6/g6YJri2UubZwsOddmCvQyQ+DUaqCXuNyJF0TXH+iLNzQBQsVh70+XimXPbY5z1KRfXK8i7bB2bq7w7aNIYTYV0J7teczDBI+cbG+r2KSUl59bHvGQZZp4VKjSD+IqbnWnhcBYZJya3OILtR6OmmVzSchpZzsH2drhafaXXUtXl6uTPbyx983+d2vnTvQM4Q42t79JII4I0qU+udY4Xf7uF9oFHYEpq8vlnfsW2O/+Oou7tt+7YyTDC9MMPXH2TnNkgrSCCH2HMvx717ahwP0yh5Kz7ah7+oPHQSLed9kmaRZsolzjiJQXHK78b+VHJPPXtvplO3m42+3bdvbvlRzWdrH17/UeLx3jFF2TOXPPvGaZUftL/fbHlmUcr5e2HW9attsyZNcfkXb2LWsdxoYhYpqw7X0SYngctXB1LVJ+fp2XGwUd9jFJ8e8sYdPuV05fPu+d2GuwIUn+uNi8/FnXl/cGaAfj6FrGnhxsuP8uN4P6PsxC2VnqmrE+6m1zxUt2qNoxwWTWqtP/64fpTzsetiGCugftQRRsHOtL1acHXQ4ANcWnz6PN4oW1xZLCASN0tPrPUyUaIcmBBdyf2kW8c9/8Sp/4zce8Gf+9lv8b3/ss0fKyB33Y8k2dlAInJ8r8Pqlp/3VV8/XJueu/TDuy/FeOat9OcZRd7glKeW/kf/3zwshfojH2U4O8I/wlIk8PYwlFw8CKSXrPaXgs9YLDkR2eFBU8oDD82CjHxLEGUEcTfXGbBro+/GES6A1jJ4ZOCtYxrFkdOxFejoNrPUCpIS1fnBsgakgVnK0oModxwGz4wyEHQYb/WAyF5slG1PX8lu+2cnSOQieXNOjKKXrqZTirUHEhcbpv89uc3qWbcF+GDvNO2xrP5jKgXK9r9bnas/fMa4TR30G0BpGkxKIQRBTK6hDt2sdL4Fqmkk2+qq/1/vhVPigTP34bO0YuiaecnCnic3BeB1lNErWofckx3zsV7y/Pni8Nov2qWXuHMZfCZOUrTwDYKMfnLgc+3YUbeOZAiSdUYyXl471/HiqPtphsH3/2ByEu2YaztpevtYLsAw9ryo4wef2czqLnuIOE0IghJhpnpntwYfWIJqULXa8aEIEf5J43r2j58cMcz+9PYqmktk4LWxss8VzRVXBYOjaTLVxN1QLJlUe28nte+1aP5hqYGo/PM/ZdmsY4kcZfpRRK5yefySE2HfdzJp93wsl2+Df+qmX+Jf/f9/hP/n77/Gv/cSLJ/rsg5y72qNo0pd9Pz71S5xn4ahekxBC1IUQc0KIcQAqQ5VO+1LK/5wjluUdBlLKvN76cX6lqrvdvQZjt+8LIXAtDT9KD62AkmVyV96O3RCnGVGyMx90+9+WbaVoZhsCM1fvC3aRrk23PTNJswM//ygo2HoegZXYpthXylLV6SeTMYKnuU12a/NufRnnHDFZ9nis9+vzZ0ls7tdX4zmwn7M+5lk4LDTAMgRSym2E2zuRZTvHNEkyvF34GHZ7Fyn3XgMHhZRycmtpGWLCy/Lk7zw5vl6YPNX/239nO55Xynu3+fPkZzz5O2kmSZ9cH1mmFPIyuaea0FH6cPuzsj3s0fbfkTLnSNuGKMlwTEEmJZYhdi2VmMY4HyeEEJTy9TReV1s9n+AQsuljGzfmNNltfT7Zp+O9YcwnttdaeRJHkZhP0oyirW/jEdg5buPxyp6oCRiF8VNz4Hnbpwllo9Xa1YgSlSXxLGxfn9vXbpY9vb6eF/vN0Sf3btj5buM2pU/8zl773fg9tu+NUiruRSkV2fDzBHf3e/+xk2jq8GRMavuaD2OVlflkO5+Fo/Z7kmZPlXGPn2tqyufZrrSYpNlT8+/JsTisdPX2sdjtM8ZjFkTJrvt6wco5Y4TEysfyNOEYGoaubHTpGWqyWabGIczfbS9Ma4/c/ncTftX0sSp0yXnMcTh+3pO2KIgTwl38myf3tb2wfZxLtoGUkuI+++yTn/3ke2x/Zpo9bae2//wgftl+Z4Qn26J4K1XmzVhYZTc/JNujnQdBlkmSJJv4ywfB2GcYz5vt66Zg6WiaarO5y3oZfx3E6Yn6D0mq1ouUir9sN1u8m08Z7GJDxz97EnudC3b7/pNfZ5nED+NJn2xvy5O/q2sC2xzbUOPQtnF7W/Zr3/b+UH2y+xodI0mzHfxvh8mWPgj2mq9SSqI4zefY/ufTgqUUk4XY+zw0K/jp187yj/3Aef7il2/xH/xf7zx1lgcVXPvqrRb/7a/e5k//H2/yZ/72m/zVr9zhjZXeY5/mGWeC7d9Taqm7+69PwjHUnBRCToWK5Lhx1JSAKqqUb3w6tYDv5/8thRB/Djh2eTM/Trm1McDUNX7jdotfu7nBr99qE2aS185W+X2fOEs/TFko2zk5nsyJAAUrHY9UQqNkcbbmUnZMNE2pDv3i2xvc2RyxWHP4A584x/m54q6DmmaSzUGIoYvJrcogiLnX8tA1MVG12I5+EPPldzZ4d73PpUaRy80ib60O6IwiXlou887qgG/d73J9ochnrjT4zkqXzjCiWjC5sVii5cW8vdonTSWXmwXmyw4LFQcvHKe3w42lClcXStRdEz/JmC+pG9woybjbGiGlUvo5qnGyDZ0Xl8rc3BjwC99fZ6Mf0CzZXJ5XinhvPOzRKFpcni/y1ZtbfPt+l0zCa+drnKk4bHkRJcdgqeLy/Ucd3l4dUnMNfvDaPGfrDmkGm/0QL0752LkqPT/mr/36bTZ6IQ+7HhLBXNHkI+dqLBQdoizjlTMV5suqnt81NX7lvU2+eqdNaxDQKFq8erYGmuTtRwMaJYtr82XiNGOx6nJjscQvvLnGdx50WSzb/NgrS7xypspGLks8lkLtehFrOSfActXl/Y0BcS6x/bxoD0O+/6hPmqX0/YS3V/ucqSnVxYWSxS++u8mX313n1qZHzTX4Rz55ljCV/P031wlTSd01WK4XePVMmY1BxJuPBpyt2diGztYoYrmiVOYWKjavX5o71M1kmkm+/7BHZxQyCGKCJOPt1T6vnKlyoVHgfmvE3/z2Q37zTptMwg+/0OT1Sw3+zzfWWOmokpmlqsOLyxUarsXX73UwBBQtg0RmlCwDKQQ11+TqQmlSr93zY37pnXU+fbnBo57P3ZZHzVVqmw+7Hl6UcWOxxMVGkWGQ8De/vYIXpXzqcp3VXsAbK11GUcZ82eJ8rYCpwy+/t0VrFPHRs1WaFYdRmNAfJdiWoGRr/LVfH1AvmfyOV5b55MU5UilZ6Xhs9FVZ3ZX54o4Mi0GQ8He/t8onL9ZIMslK2yeVUkn1SlgbBLimznLNpe6a/PJ7m6y0Pc7Ulc25szVktRegayrb4UzF4et32txre1xqFHn1bA0/jllpB9imRq1g8s5qnzSDH3tpkS+9vIihCdb6AXc2R5RsgwuNwrGppR0VlxoFkpyk/w/95V/hV28rQvRPnTs4H8Jqz2etF7DS9pkvqzKQe+0RtzaHfP5ak9Wez9/53iNaw4iSrXNrY0SYpiwUbAxLqZ9lWcZ82eF3vXaGuYLFb95t86vvbaELdcOyXHX4Jz59gZtbI1rDkBuLZV5Y2l+l7Ums9wPut0eKmFdKen7Cg86Iq/Mllqsuv/TOOr95p8VbawPKtsH/41MXuLZY4n/9xgPeXx9haKr8+cZimZpr8Z0HXcWXVHPY6If4cUqtYLFQUhxV43UTpxl/97sr/M+/cZ931gc4us6nL9c5U3dpDROuL5V4cUlxMM4VLZYqzuQm7b31Ab/6/iZV12SpYrM5iFms2Lx2vso/fHuDYZSyWLYIEkndNWmNImxT49OX51jvB2wNIy42irtmzyZpxs1NpRi7vZwkyyRrA5+Vlo9rGZytOQRJxt283M42lcLjN+728KOEF5aqfPryHD/y4gI3N4e0BqoNBUsnySQ3Nwa8uz5gs+cTZxnXFytcmlN8bl0/Js0y1vsBQZThxQlnqi6fvFinmGc0X2wUnipz8MOEbz7ooAvBq+dqGJrgrUd93l8fsNrzSDJB2dbZGoW0BgGWYXCuXsA2Nd5+1KMXxBM1sFhKFko2l+dL2IYitL/cLFEvmHzzXpuOF3NxrsDFZpELc4WJQnDRVmq+BynBeNjx+FvffYQfpvz2lxdIEXzrfpuBH3OxUeKb99q0RiEvLZZZqrr0/JitYYBhGJypWPSDhAcdRf5btg3O1V1Krsn5usswTHljpYtj6rx6tspnrjbpBzF9P6ZRtHOy55R7LQ9NwKVmEVPX8OOUr95W0tdelLDSUVmOc0WLkmNSdnTSDO5sDfm197dY7wdcahT5xMU6pqFzqeHy333lLl+708I1dc7XXcXnVXX41OU5XPPxLfKDtkfRNrg8rwQPel7EWj+k7BoYQpBJRYAcZxmDIKYzCqm4h7OZuiZoDyN+9eYWzZLFH3z9AlLCL76zxmov4CNnq2z0Q77/qMtaL8QLYoQmuDxf4qc+ssTqIOJee0gYS5olJeZyb9MjkRlna67ioatYvLk2wDlEJp4XJXwn970WyhabwwgvSjhbc0nTjL/z3Ufc3Rohkax2fVqjkLJtcWOphBelvLM2UGW1RYsLjQJLFZuv3+lgGRofv1DnYWfEai9kqWrz2avzE6XZMMm43/bwI6WM/c5qn/c3hiRZStW1+cTFGp+/No9j6jxoe6z1At5d6/PN+x2KpsHv+fhZagWDn/vOQ9Z6PmfrBT55fg5NFwgBUZyxOQzp+0px0Y9jSrbJxy/WudIo8K37Xfw44+qCmgNBnJKkGVuDSPHcVB2iJOOrt7eouxZXFx5zD0kpubM14o2VHms9n7mSxcVGkc4w4tsPOvSDhNfO11io2Lz1qI+pa3z0XBXH1NkchLy9OuBys8BHzlX4S790m1tbQz5/tcm/9KXrT5X89LyYRz2PJFVBhu+tdPmFN9eRAr54bQEpleLwWi+gaOl8/1GPIJH8ntfOkGaSX3lvkzcf9bnfHpJlcHWhSBBnCKHxiYs1LjUK/MO3NrjfGVFzTW4sVPnSywsE8WO+qfttj4JlcHWhxItL5YmNyTKp1EyjlFfPVqgXp5P5tzUMubkxJEkyBn5M149ZaXtcWyxxca7Ab95t8/PfX+N+xyNOMl5cLvOJCzV+6b0tNnoBC2ULxzL4yNkqr5yt8g/eWqfrRdQLFn0/wbE0ri+UEEJl9X/uWnOSxboxCPjNO23auXLcxiDA1jXCGK7OF3lxucRXb7dZydVyLVPjC1cbPOz6vPFwgNDU+enHX17ks1eb3G/73N0asdrzqTgGUZJwe2vE+br7zHLs3eBFCf/Nr97GNKDhOvTCiF99b5Oel3BjqciNxQor7QBTB5lJfuNeh1RKPn6hxmevNrizOWIYpHzyUh2B4ObmgL4Xc7FZ5LXzNS7MPc1tehi0hiH/33/wHufnXDb6IXe3Rpg5d6xAMAgVl9yLi2W+96jLb97tEkUJhVxk4dWzNc7WXN5c7bFQdvjSiwvYhs7f/s4q9zsen7pY56Xlp0sBZw3/7k9/BCnhL/3yLX7u2yt87mqTkmOw0Q95a7XP/bz0F9RemknJKM+gvzBXwItS/uIv3+Tu5oiCrfPq2RrLNYfv3e9xpzWkaOlcbBQ5W3X46p0299seXphQcBT36FK5wCcu1LjX9sgk/MiLC1xsFLnf9vje/S5BktAoOaTZgOWqM9PZqUcKTEkpL23/WgjxS9u+TIBPAn/wKM84WEOg6yVIJDc3h9za8un4MboQfPdhj1rBolqwuLM1Yr7k4FgapqYRxin3c6doECTMl9XmMle0uN8ecXN9SMdTxvL9jSGOaeyanr0xCCYp8LahUXZM+rkST5LKHcpHk7/pB9xtjeiOEm6mI3Shcb/loQnB91a6vPmwT99P+MbdDsMoxQsSun7MKM6QiMnfK6UXj8uNEheaBZL/P3t/HmRplp73Yb9v3+6e+1Z7VVf39DJbDwYYEDspgZQhhkTBpkiZRoSCpCkxZCnMoCQ7bDNsh8UwHZL/sIOmSUOkSYoMmUHSJAASgEgAswCz9GCm9+5aMisr97sv374c/3Fu3sqsNasqM6sazieio6uy8t577ved75z3vO/zPk8uaI/bwWpeTN01GASptJDPC86PtRv2XV4GYXosWXOBpK7eHTtgpQUkhRiPM6BmS8e9m3sjtgcRWQGWMeBmc4Q3duN7baHK79/pE6QZgyBloeajKNIpaHX8sH64PSROC9650yOMpc07CHqBFOtslmLmyg5r7WBsWSrtdD/YGtIdxqy2fZIspxtkmJpClBWMYunANVdxaA6lRfhOX2rgCAGrLZ8LU96k/SjNBOem5EEhzQTdLKViG6SZzFz78dO7YNzpBLRHCa1RhKYoZIVAVRVqrslWN+R3b7f5aHtI20/Jc4tfe38X29S41fTRNYWdvkAoKnGS0/YTRnHOesfnwrRLe5QSJTmqqlB1TTZ74TMtSlGas9r2SbOC1eaIuapDkCRcmCpxp+3zOzdavLsxYKMX4hga724M2OxF3Ngd0Q9TNE0mhVVFRVf2rdUzNEWl5plYuoKCCjMu652Az6/UUBQFMX6+19o+QZIzDDMUZPLXj3PS8Zxfrrusd3w6Y5e/76520FSVu52IvCjo+gmDIGWzF/HJ7gBFUQnSjC+tTNENY/IC7ETl/c2QvWHC7kDjQmPAq4tVOqOEzW5Ecxiz0nAYRtmhxFReSGeb280RZdukFybjAFOyY9ojqQVh+4kUth5EhGnBp7sjZsomN5s+/UC+pj1M+HR7yHfvdFFQ6Pgy0E7znL1BQqNk8PH2kHaQgIB3N/t8/nwdU5NryO4gJi0VVEPjpU1MKYo0lAD4xu17Ln3f3fB5iFTaQzGMMhkItX3iTDoMlW2DbpayN4z5/p0en+wMaQ9jorxgGGYUAjbUiNmqxSjMKDsGcVbw7kYP19R5926PjV7IKE4oWVI49rt3umS5oBBwtxs+dWKqH8i50xrFKApoKIS6Ss9L2egGfGe1w0fbQ7b7EUXF5jc/3uVuL+QHd3tyDUImyQxNIxcjNjoRKrDa9nENnTjLaQ4SrGWVO51gkpjKcsF7mwM+2R0xDDN8NedWK2B7KNerb9/qkGRy3l4ff6f9xNQHm338SLrGSZFii71RzKe7I1ZbAaMkZburcnGmzCcDWRRyc521dkDXT+n4CaMop+YaD7TIBWk+WSsHB9x49oYxd9shW72IhZot230Kwe4gxtSh46d8d7VPcxDRHVP7bzZHXF8os9by8eMcRREs1mSA/OnuiLvtgE93R9RcgzDpYxs6tq6y1gnQFLgz3ieCNCNIcixD59WFCgoKQZI/0E52pxPQHMj9daYcUXUMdvoRq22fteaImmtxc1e2Yf/+3T4LFYcbeyMuNDxuNEcUuXTDSjJB2dTY6cd4tk6WC2bKNs2hnCfrnVC6MaY5Nc8kzgrpHol01ZNJ3ScfKm7uDdnuRhRC8N21Llfny2x3IwTwrVtNWsOU1ihmbxBzeUZaxsdZgaIktAYxiiK42fQJIukqtt7x+dKFBlGSo2kKrVGKpWfsjMe63pZC7UGSc22uTC9IJ9XjQSj1OhGw24+YK9u8s96lKKTL49W5MtPlgjvtDM/SubXny308yUgyKQY+XbLZ7AbcbI1oDRNyIWiPYlamXIRQuNsJpPlHAUGc0Q+lo1E3SMeuvzFpDmmWE6Q55xoeq22f+YrNp7tDdFUlSJ6djfTRzpBhmBHEOXc7Pmku+HRnxCDK2BvGmKrKh9vygBinBa6lYZsR/+y9bRRFZavrY2ga/cAkTqV7ZH/8u1OljH6YsNuPqD1D8my7H7E7bjPqhQm6qsjnO8gYxgk/vNtlsxeiKAqb3RBFhfVWSJTltP2YrJDucs1hPE5KysRImhVYusreMAEhuJ3kXJmNqTrScTpMcr51o8VCzSbNZcK47Sds9yIWqtJs5tWFCotVh16Q4scZ72/2aA5j+lrKB9sDqrbOVjdiuxcTJgJL09BUlbKtS2e5Qhb3kqzA0BRCR9AaxqiKwvY4bru1O2K6bBNnOXdaPkFa4CcZjimTZ82B3E/9OJvExKM4Y70TcLvps9b2x+tITpQWbPUjkkzwg/Ue9ZKJH+U4lsZaK+Bcw+N7d7oMw4xBmBKlMn6JUsF7m322eiHnDiQrsrzgbjfgTjtAUeSz8t7mgK1+hK4pfLTTJysK2n5CP8y40/L5YGuIY2j8zqctGp7BnXbI+1v9sQtoMXFwrToGt/ZG9EdSEHy9G9K2Usq2yYfbfRarLnuDhG4Qs9kLmfIsKmOh+f01Zm8Yc3fs/HWj6fOVY0pMdUYJO/2IUSyvk6mrxP2QhZrDnU7Av/6kyc2mz3p7RMnSeW9DsNOLWO9KN77WKGap5mFoI4I449OdIX6ccVP4VGxj4hL6ynyZLBf0wnttl5vdkCQT3Gn5bPcj4vE8L1smUZZzt+czDHNuNn2KQroW/nqSy/0ikeexLC/415rKYt1lFOVsD0KGkVyvWqOEimOiK8ozJabCRH6/UZQTTwm2eiF32rJI8PvrfVrDlFGSYyjSSXVnII0DbuyOMIRKJ0oJxq7Sdc9ksxvRHsUUSH2yC9PH07u77xzcDxIGccZGJ8TRVZpDaTbVGiXYpkw6t0cJgyChOUpwDI12kGAbuiRZFLJ978K0x1RJ7u1JVvDx7pAfuzr9Uhn6PAy6pvJf/btv8vNvLPB3f+8Ov3u7TZjm1F0pRP+LX17m9aUqry9VpauekISW3/qkyW98tMtGmtP1E242fS40HL6/3uWL1PjhZo+eHzOIMrp+yneFwFAVNjqhZAwO5RmhKFSGN5pkORQI6p4k26y1fLb6EUEqBdVLlk4nSP7gJqb2oSjKPwX+AfBvCSH843jPp/t8KZyY5gXXZsvsDUI2ewFpJliuOSw3bMJUMF+xmfIsCgE1V5d2mgqAwsUpD0vXmC6bmJpG2TG4tlDiw+0hU66FZ2qT9pP7cVBIbP/PU55JEGdoqvLQHt65inT+6ocp56dcLs9Id6C2H3NpqkRRCL6z2mW54bJQsegZGo6p0fBMlmo2055BP0pwDQ3H1LEMjcWKdBc0NB9dUVmpOcxVbQahTJLtV2jKtk5Tkwf+4+ov1lSFpZrDXMVGUaDhmizXHFRFoesnVByDt5ZrxGlOcxiTA4sVm5JjMIwy9JLJbMXi8pzH3U5IxTI4P+WxULFRUCVtNyuYLVsoCsxXbMJEXl8UqVt1daaEpim4pkbNMSb3wjY0rs25DMKY5Vy6A16dLRGnMokzV7V5daFCkOTMlCwuT8tES8uPmS3ZnG/ISq+iML6O8n2rrkHUlxXssi3dU/yxcPnTYrpksdWLWKo5KAjCTDBfscb2oDozJWssDgqNksH1+TJRVrBZjtCBmmdQsaSrgzfQubk34nLZo1Ey0VWV5ZqDoUshyftFHo8K19So2gZBknN1royqKhMWXtk2mC9ZzJQMWkOpIXZtroxnS4t2RYG6azJdtlioSsvdXpggLA3P0rFMjYotEwH1sSXwfrVOUZhY1m/1Ikq2HEejJJNsYZIzW5Eiv8s1h4ZnEKY5b5+vs9YJmK+aZLmc946pk2QFu32TJC+4MlViumwyUzYYRjkVV8czNaJsQMmSffuOoaFpCp6pMTJVXFN/wIlMUyU9/vy0R5oJqrZJLgRzFSmUOlUycQ2dmbJFZTxXpAiuiWfJ8bYMDQWBrsmk+UzJYhClLNZtFus2jNsoK7bOlGvyzl2ZMFms29QcgzgvcAwNz5Ki1A8zdHgZ8XOv1PiNT3oAlJ9iOZor22z1QlYaLqaucmVWrh0lW2e6ZLJYtcYOfIKGKuiZGsNIMgRsQ+N83SXOhWRdNBzy8bXc6AXUHBfT0CjZGm8sVdjuxzSH8cTd8mkwV7G51fRZGpsYaKosjEhnTXWchJGiySVb4+3zDQQK5+sua0VA2daZL1vMlS2qrskwzMeC4KbU5cjkXKk5xqHxqWPh7WnPJE6lC9/lmRKzZZlkmilb4/ki21IOOrtcmPJo+wllS+f6QpnN8dq0ULVxTA1VFSxWHSxD5Wq5RNtPMHWNCw2PMBmgqVB29IdS00umdERNxs/FZLwKE7c6x9BYrDls9kLqnkEhBIuGzsVpl2GUcN51mSnZvLFUGSfwpZPhtGdhG3IfPxc7BEmKnzhommQur9RdkjznilYizQs0RWGrH2LFcp++OOXgWRq2oT60YFNxDFxTIxeS1eKaOhVXZ6pkkmYOuqZyYcZhbyAPQK6lMW3anJt26IWxZFGWbFRVocgFnqMxU7IoWRphJmiUTMq2zs29IY2SQcWVh3tLV5ktW+yMtZ8eJrb8MFyeKfM9t0eSF3xuqcxcRYr8dsOEizMe7653CZKEpbpH3ZNutVGSkwnBbNmSB7AgZaApkzFUHIOLUy5RJuiOUhxT49K0h6mr6JpCmonJ+KqOQcdPUFUm8ZOiyAqxoSksVm06QYqtq0yXTTRFwTP18TNps9N32R5EnG+4Mg6zNGZKJpenXO62fQxNYbnuULVNLs24nJ9yMTS5hlccjTDLZRtrIefWUFUwdBXX1pmu2KiKZD0kWTGJx/Yd8J4WuqbyylyJ5jCm5hgs1BySTOCYOkGWc2HKI8kLZvsmlq6Sj1uYlusOF6dKbA9CPEuy9WZrFp6hc7s1pGzrNMomC2WbxZpNWoiHttA/CXVXWtwrKKw0bKJUyLWjbKJpAs/WaXgmqqJg6QpdPyW35D5bdw12hwmzJfnvVVen4RqsdkJMVefV+QoVJ2S7HzFXsai7xqHkmWWolB0dQ1V5Zb5Mvj1EEQp1z6DhGUx5UmdqqmSSFQXXF2U8Zusa12Y96p7FB9sDwjTn3JTLdNnEM+UzP1O26AUpjiFlLpIiR1Mlq3iqZErX2iTjwoxLnAkE0jFMjBJM3Zg4btuGimfph8TELV2j6hjUXJ2yL5/VqZLUBuz4CcMwZanhsFL3+HhnQMMzuDzr4Zg65+oOt3Kfhmfy5kqN7651ubnnc32+wkz5cGJRVRRURcYYSV6wXLdpjxzudgPyXHB9vsS/VuWzMdAzLs54rPdkIXuhZjFXtvloe8i5ulwzdU1lpWajqPK7XZ4tc67ucKM1YC638CyDpYbDlVmZsJkumxSikBVmVeHC9GFB9/LYtTjJCqaOUTdppmJhNlXmLIuqI/eEqm3I+WLrLFRsNjoBsxUby1CZKdlcnHbxk5wcwZRrYOoaM2WTa/MVVtsBlq7KFlFFtqq9OlfB0FUqjk7jQKHuXMNlux9ycdrD0FWagwjX0ikK6WJ+dbrE+1t9zk+5BElGnBZcnSvRGsQ0RwmmoVJxDOarNp6pkReC5ZrLnhbLuWRqjOKcuWd0RDd0aURQsQyWqg6uobHR8RnGOfMVi7mynB9VR6dRskiLnCyHy3MlXj9X5ft3eqgKLNVt6q5JmGR4libFyY9Ru0tVpRPffNXmbjsgzws0VWWp7hAmGSgCBbnWl225lxuqgmmoOIbOTNnE1DXWx+zWhfHvrdQddgcRV2dKL5VT+pPwk9dm+MlrTzbz2tfU+8W3V/jFt1d47a/JtebitItr6rw2X2Gh6rBck7G/XHcNKpZOnBeEacYgzCbn7Zpj8PpShQ+3BiiqdO3UVIWZssXeMKKUSYdl19Je+rOBchx9+Yqi/CTwPwb+J8BvA38P+GPAW8B/LoT49ef+kMdgenpaXLhw4bnfJ83v9cBbhor6nG4FB7G2tsbBMWaFrDSBFDh+GVTyb91eZXH5HKoqg9CXFfdfy9OGQLKHEDIh9zCB2/1raejqMwWRp4Gz+y3ZAUUhYHwoflacjfHeGG1D43lm/K3bqyyunHvu9zlJfBae76Pc732mH/DCvsvTzssXMebP4v1+GWMMOJ51KM0LslzGrscdq8Fn435/lvbvucUVQCbvjsL0O218Fu73szw3UkPxQRe6k8RnYf9+0WeIxyEcny12t+6+tGNMskIWnRTY3Xw5x3kwTniWa5kLQZKeXpzxMs/Jg3jnnXeEEOJEN5xjSUxN3kxRfgj8L4H/NfBjwJeBXxZCfPHYPuQh+PKXvyy+973vPff77PRlqw7ApRnvia4wT4Mvf/nLHBxj10/Y6Epq7HLdeSlU8j/31hf4B7/yW5Rs/bGW0i8a91/L00aaF3yyM0QIqDj6Q2m6n3vzC/yDX/0tlurOS+smcXa/4VZzRBDnqCq8Ol955p77kxzj7eZo3KYEry5UnvmAeZJjXG1JDSVFgevz5eeyzP3cm1/gH/7ab/HKfPnIzJDTxmfh+T7K/e4FyaRF40V9l6edl/0gneg1LNTsU6n+fRbvd3MYs9OX7R3nptxDTJAXieNYh7b74UQ+4cps6dgFXT8L9/uzsn9/8Utf4m//038FwEzZeimd1j4L9/tZnptPdoayvVFXJu3aJ43Pwv79os8Qj0JRCD7aGVAU8Et//GdfyjECrLcD+mGKosD/7N9+Ocd5ME54lms5jFLWWvL1c1XrxJ03Hzcn80LwV/7ZB3xntcN/+oev8W98bv5Ex/I4KIryjhDiyyf5GceWeVEUxQFqwJ8HPg/8uhDih8pRFDpfEsxVLAxNQdfUY01KPQwHE1EvQ1IKpD7WfNWmfkoWp59VGJrKxWkp7P6oa2Xq6kuTcHwUzu63pHP3xvojxyEEeRJYOTDGl4X1cD9W6g7dIMWztOdKSoGsTl0cCyW/rPgsPN9Hwb4GmRAvzz70JFRdgxWciWj7aeCzeL/3BbQ1RXlpklLHhbmyjaGpmLp6Ii5Dn4X7/VnZv1VF4fy0S5oVL23S57Nwv58FF6ZdBmH2zM7iz4LPwv79skJVFS5Nlxg9g07taWKp7uCY2kvtlncwTngWlG2Dcw2XrHjx69bf/tYaf+d37zBbtviLf//3+f/+xa+dWqL5ReBYVg5FUf4h8BEQAueBPeDfUxSljNRt/UxA9rhbpxbE1T3zpdoIVUX2oz7vwfL/H+BZ+mOvlaYqL9W9fRjO7rdMMs6UrZfaQvWzMEZ9PMbjEKjUVeXECwPPi8/C831U1NyXax86CmquearB4mfxfiuKQsMzqb7kiYtngapKB+TKMWlk3o/Pwv3+LO3fFdtgqmQdyUnyReCzcL+fBZauMVO2Tq2NDz4b+/fLDMeU9+xlxr520ct+n583Tqi6L37dygvB/+N3bvGjl6b4F/+Ln8C1NP5Pv/rxCxvPaeC4drRfBi4DrwF/FnhbCBEABvBLx/QZZzjDGc5whjOc4QxnOMMZznCGM5zhDH9g8Z3VDruDmD/91fM0PJO/8FOX+e1Pm7xzp/uih3ZiOJbElBDiXwA/AvxvgC8Cv6Aoyl9Hak31j+MzznCGM5zhDGc4wxnOcIYznOEMZzjDGf4g49fe38Y2VH76unT6+9NfPU/F1vlb37j9gkd2cjiuVr7/N/DXgP8Y6cT388CfAO4Af+c4PuMMZzjDGc5whjOc4QxnOMMZznCGM5zhDzK+fqPFj1+ZnshkuKbOn/yRc/yL93fY6AYveHQng+Nq5fsy8DVgXQjxF5F6U39ZCPF/BcrH9BlnOMMZznCGM5zhDGc4wxnOcIYznOEMfyCxN4xYbfl85WLj0M//zI9eQFEU/s7v3nlBIztZHFdi6n1gHhgqivJfAP8B8CuKomhInakznOEMZzjDGc5whjOc4QxnOMMZznCGMzwC312VOlJfuTh16OeLNYeff32e/+476/gvuYPjs+C4ElPTwIdIB74/BewCfwNYAv7Px/QZZzjDGc5whjOc4QxnOMMZznCGM5zhDH8g8d21Do6h8bnFygP/9ktfu8gwyvhH3994ASM7WRyX1+P/7sCf54Bl4B2gBfzjY/qMM5zhDGc4wxnOcIYznOEMZzjDGc5whj+Q+PZqhy+er2FoD3KIvniuxlvLVf7bb67xp3/kPKqqvIARngyOy5Xvt4UQvw1cA/4S8B+N/74E/JPj+IwznOEMZzjDGc5whjOc4QxnOMMZznCGP4johykf7wz4yoWph/67oij80tcucrvl89s3mqc8upPFcyWmFEUZKooy2P8P+OvAK8AFRVEGQogbwOwT3uOCoii7iqL8lqIovz7+2V9SFOUbiqL8PUVRzjSqznCGM5zhDGc4wxnOcIYznOEMZzjDH1j8/noXIeDLF+qP/J0/+sYCs2WLX/7m2ukN7BTwXIkpIURZCFHZ/w/43vj/7wohKoqi6IA4wlv9hhDip4QQf0RRlBngp4UQPw68C/zxpx1XP0jZHURkefG0Lz1VFIVgbxDR8ZMXPZRjRcdP2BtEFMVRbv3Li0GUstOPSE95HrVGMXvDCCFe3us3HF+bJDv9Z6wfvpj78jRI84KdfkQ/TF/0UF56CCHYG0a0RvFzvU+SyWs+iF7Oa56P1/vuH7D1/jT3sSjN2elHL43gpxCC5jCmOYxf2vV68ALX6ochzcVL+4weBz4r8c/LuEf5ccZOPyJK8xc9lGfGy3r/g+Tlvraj8b2Ps5dzfEfBy/hMwcsfG92P44oJ770f7PQjhp+R7w/w/fUeqgKfX6k98ndMXeU/+Op5fufTJjf3Rqc3uBPGcYmf7+O3FUX5LwFHUZQ/DPz3wD87wut+WlGUryuK8p8CXwF+a/zz3wS++jQDiNKc9U7A3iBmux89zUsfijTLaY1i+sHxT+i9YcxaK+D9jT5d/8kPYJYXL0XwGyQZe8PDiYGiEOSFYBRnbHZDdgcxu8Pnv/4vCklWsN4OaA5jNrshwCTRKYSgPYqf64BZFELOq/s2sK4fs9EJ2e3HtEYv/gDb8ZMHvmeWF9xu+uwNIu52g1MdT5zlk/uy1QuP9b33Ewe94Pmv+1YvpDmMWW8Hxxpo5YU8CHf9F38Qftg68DTYf55ao4Tdfsx272jXPkxy9oYPHrTXO/7kmr/opOXDrs3eMGKrF7HeCRi9gMTKowo1xXhOPWvQujuM2B3IdfKkv9d6Rz77a22ffpjQHMbPdQB82j31/mvVDWTSZ6cf0R6vky/LPg3yoPTx9oBPd4esd568VgshTrygl+XFcz2jQohJTJYX4oUlAKJUrkMHD/qDMGG9HbA7iNkbHs+h6lkRZw+O7yD296jVpn+iyYC8kPHS/c/E/fNMCMFae7yGH2GuHieK8UH4aeZ+8ZC5N4zSSfz7ou//wX1SCMFqy2d3IO3nXyT8OHvgWheF4NbeSMaUp3zvjxMHn6n745PR+HvnL2C92jwQj6Z5QV6IQ8/j/pnmOGLf48B+TLjRCWnfl5x62JnkSUjyguYw5k47IMuLZ9rjhlFKcxif2v37/p0u1+creNbjpcD//R85h6mr/LffWj2VcZ0Gjkv8fB9/GfgPgfeAPwf8KvA3n/CabaQ2VQz8U6CCdPUD6AMP5bEpivJngT8LcO7cuQM/l/8JwUPFwPYfRkV5slDYt2+3+XR3RMlSuTJb4aLmUXrCJHkchBCHPregYHN8uN4eRNQ965Gv3RtG7PZjHFPl8kyJti+D8qpjsFC1j/R9jgN5Ibjd9BECRlHGpZkScZZza09ueoYGQijUXBPtBMcUJBl3OyGGpnCu4aI/RBzueXBw6JqqsN4O6IcpFUfHs3S2ezLppioKVffpu013hxGtYUIhBFfnShQC1ts+qy2fKC2YKVss1Z3j+jrPhPYoZqsnmVtCCOqeyZ12wHrHZ6sfUbENXp0vn+qYVEW593w/x/wqCvHA+rDRCfjenS67g4gvnKvylYvTaM8oKLg/NkV59nE+bIxbvZCbe0M+2Rmx0rD56VfmcJ9jTXpWFAfWgWGUcXmm9NDxPgprLZ9hlNEomYhCcKfto6kKK43Hz3khBLdbI7JcsN4O8Cydsq2TF4LVZoCiwHzV5kXKQO6vkXkh5Hd0TXYGER0/Zm+QoKlwYco71THdbo7w45zpsslC9fA13h5EdMZJ8KtzJWxDe+T7ZHnBWjsgLwrOT3nYhnZonb//9j/NnADI84L1bkic5SzX3Qf22/1nSRYO5N6Z5AVLtadfKzt+wmY3xDLknvqkZ70oBBvdgPc3+xTAj1+ZPvTdNUVhdxCxN4hxTI3LM96p7csHx3jweidpPl7DwdJVrsyWHvlaIQS3miPCpGCuYjFbsdnoBgyjjPmKTc01jvX7KOPPXO8EhGnOYs2hYhuTsTzqs3b6Ec1hTJjlqCh4ls6lGe+x8/YkcKcdkGQF7VHCqwsVkjTn26sdPtkecmWuxFzl0fHcaY0vSnKaasznlqqToo4QggvTJVRFYW8QMYwzSrbGldmT2cuTTMa5a20fz9JZqjl0g4R+kFG2dS5My7VQURRURaFAPNfe/iyI0pzvrHYoWzo/dmUaQ1MfOwfDJOd2a4QQcGnGwzXlOnVw3Opxl/3vw8PW1rsdn1GcM1+x2OpHFAUMwpQrs2WyXLDW8jENlZXGg2vraSDNC1ZbPkUh8KOMqbLFVi8kjFPudEJ0VeWVU44pjxOqorDZDYmyHEGBbeg0PJOaa3C7OUJBIU4LVhruqY5rf59qDkKGYUImYKZscWWmhK6pNEcxu32ZAFJVZbIOvyhoqkJrFPHh1oCVhsfPvTqDY+p0/ISt8dlLUaDmmkd6v0IIVlsjXFOjbOkMosNrz6Owny9I8oI77QAh5Fpx0vcvLwS/v97l3/ni8hN/d6pk8W+/tcg/emeTv/RHrj/TefRlw7GtTIqiqMgWvteB/+dRXyeEiJFJKRRF+efAACmaDjJJ1XvE6/4G8DcAvvzlL09SmJaucWnGI04LauMblOVyY4ySgiQv0FSF6bKJqig0XPOhgXOaSebVVjckzHKW6u5zHXaCJOObN9t8fqVGyZaXfcazWKhaKKqCazz+VgxCWYkOx9+hNYrJcsHdbkBrFE++9756/zBK2RvGlG2d2bL9HCM/wneLc5KsYKsXjoN2wZ/6ygoz5ZMLzDp+QpjmfLrj8/5mn4vTHq/MVzD144kGDE0eVsI0p+YYfLDVZ6MbErcKXp0v4ycZSVaw/IzJo1GUcas5IisEpq6gKAofbg3Y6UdMlU38KMM1TzfQvh9ZIdgdhnT9hCCRScibeyNu7A3RVRlEHtf1Piruvy/PgnfWOtzpBFyY8nhrpTY5kCZ5QddP2B3E/PBun+Wax8rUs21ASzUHz9JxDO2hjhqPgxCCdzf6rLV9Fqs2n1uqTgJfRZHVpOYwIogzZis2bz9CHPEkkeYFvSDBMlRcS6PrJ2x0Q+zxIf9xyQghZMIGZNBs6or8PmnOuSNc77WWT8dP0FSZlH7nTpc4zbkyV8LUNK7Mlo49Uf00KArBnY5Pz09ZqjvkecFGJ2S961OxdFBUtvvhqQUQeSHw43zSIlxzTJxnXFu6QcLH2wOyQh4er86VmSlbmLpKnBWM4gxTU1EUhVvN0WSNfFwAOYozfnC3x+UZj4+2B+wNYpbqDp1R8sDh6fyUyzDK0FQmiSkFGSxu9UJsQ2PxiEmqwZitGqcFcZZPnrGHIcsF37jZYrPr0xwm6JpKay7iylyF86qLEFB1DG7sDomznM1uiK4qTwx8jxNRWvD1m00uTHmcHyc+dV1lpeEQpgXz1cfHAUleECaykjyIUuqeSdeX12i17WP2VExd5dK0N3m+un5CJ0iY8swjHxKMcYJM11SCJJvENu1Rgmto3Gr6pHmOoamYusZC1Z4kneIs51ZrxF4/Is0FC1UH29AIkvzUE1P7GEYp31vrEGc5n2wP2R6EJEXOz70690LGA/vMvoi7nRDPlAewXiDFdHMh2yktXaUQguW6Q5gUj03EPA/iTDKs656Brqq8s9alF6UYqsKUZ3F+yp187qUZDz/OKdtHO5oIIdjohmSFYLFmY+nPNgfCpGCt5XNhyqM9GjNLCsEby9WHHtJHcUZR3Pvz/trhWToXZzyyvDj0POSFYLMbUgjBUt156pjgINK84ObeED/OqXsml6Y9skLw0faA202fhZqNroIiU7+T181WLIZxhqnJWHOxZrNUc043eS4E2/2Q5iBhrmqRjBNV6+2AkqljmoKae/oJs+PClGcySjJURfDt1Q6LVYflhkOa29zYHZEVBW8uV099XEt1h9vNIb/y3g6epfPmco2aYxKmOeUXGCs9CnXX4MbOiK1+iKLAt1dlAdLWNQrx9InrJCu43RpxcVqSOgxNZRhlj13zojTnVlO2x+2f8/pRigKsNJ7r6z0Rn+4O8ZOcL56vHen3f+lrF/nv39ngH35vnT/7E5dPdnCngGObkUKIAvihoijnnvjLB6AoysH0+NeAm8BPjv/+c8DvPe1YXFOn7pmTCdfxEwZhxnY/pB8m+EnKpzsjtnvRI9vNDF1jumRRcjSuzZeoOsYTKXWPQ5LJFoAbe8NDn/HmSo1L06UnJjhmKxaWodIomVi6Rs25t+kpKCRZQRDfo2Pv9COCOGe3Hx8rNV9TFS7PlJiv2pOsccUxqLoGSZbT9hOSVPD99f6JbngVR36en+QkmWBnENM+Qjvk08AxNRqeTFw2PItcCKY8kzQXZLlAVxXCZ+jXj7OcMM0JxkFCloMoQFNVLENBCKiXTJovmAoeJDlZJogzgW1oJFlBnBVUbZMoLZgumXT89NSpyQfvy9NidxDy3mafjU7Ijd3hIerypWmPSzMeDU9numw9VzuYnDPPlgDojd047rQCPt0dsXOgJXmh6vD6UpWqZ1ArmadeWd7HZi/E0jWiVLJV9ltSo7QgekJbiKIozI3Xs7mKTZIJgqRAQaH3hJbpYZwRJjnFmAHSD1PCJEfT5GuvPYHxcxpo+wlpKmTSWVOxDZ1RnDFTsoizHMfQibLi1HSSNFWhbOv4SYZjaOwODu95CxWbhZrNhWn3iddOURT2H3fBPfaxZ+k0h7LqutkLidKcOC0QgifqbWS5YLXps94JMLVxAiItqD4k8WxoKg3PpOqYXJh2WajZzFdsdgcRfpzTHiVHvq7TZQvbUKm5Bs4TvneUyffuh9lk/fHGB9aKbUzGOlu28eMM01AYRtmptmwmWU5nlPLB1mCyJlu6xivzFa7Pl1muPz7pa+kaUyUTy1CZKdsYmjopokl2k7wvwYE9b7MXEsT5hPl9FOiqMplntq7hmKqsfjvGeD8vGMU5G52QUZQd2gf9OKdiG/L5N1T8NMMx1YfOlZPGhWmXiqOT53C3E5JkBYMoRVdVSpb+xLXsJLE7jEgzQZwVNEqGLAQoUBQy6N/qhYRpgWNqVByDuap1YvGaockCcMM1SfMCU1dRkFIWcZYTpff2WUuXz9ZREzeDMKMXpIyi7LmkDyxdzqGyrTMIUzZ7kvm4/oi2t5pr4FoarnU4FgcoWfoDSdpekNAPU4ZR9txafOudgNVWwEZPPh9JPt5LhHyeRnFGzbW4NOMxX7U515BJ6pmSxWJV7reaCl0/ZXjKLeWdICXNBGlR4BgaAoiSgrKlE2YZdcecJMc/ixhEGdOeSZDIdSovwFBl4tzSFKK0wI/yU9f50lSF76/3SPNCdraoClXHmBR+ZkoWizWbcw33hbOlAII4wzAUDFWjPUqwdZW7nZBemGKOiy1HLYSAZEypqAyClJmy3OOetOYNopSikGtmnMl4pChkXHfSOqHv3OkC8KVzR8uAvbZY4UcuNvjb37rz0mtrHwXHnZpeAD5QFOU7wGRFF0L8wmNe84cURfnfI1lT3xBCfFtRlN9RFOUbwDrw3zzvoBxTQ1Gg6hpoqoKqgK48+TD9h65Os1x3KASce07qnqJIobL7H3rX1B9bqd1HxTYOvXa+ajNXsQjHmlq6ei+IBHAtnShNsA31mduRHgXH1A4duDVV4eK0R+MLy+wOYtK8eGJLzvOiYht86Vydsm1wa29ExT7adXxWLNUdCiHwk4yaY/K8EiKqonBuyiPNC6ZKJg3PRFGgEGWyvJgc9l405qsOAnkImC5bfPF8jc4oIc0LNFXFMY9/fp0kDE1jumwRJDk1zzg8jzWVn3pllgvTHnFWMPOCWjEMTaXumvSChNqB4AHks/bqQoWKY9DzE+aewII4SdiGXAcMTWWqZBJlOY6hPfGQDzBbsZmtyLErwOtLFQZRyvIR2C5zFZtukHJ5xmOxZvO9Oz0QcHnWY6r0Yttn9jFXsSUzt2RxbspFVeUhStcklV9TT5dtuNJwibKcNBO41uH7o47HeRTUXZPPLVVIxq12j4JralQcnSgtnnhPFBgzey3afsL1hQoXpp7cnl22DfarWq6pT66vdcTrWrJ0rs4drW1EVxV0VWG54bBSd/GshzORq67B60tVtnoRmnr0sRwHtPEY6/cx8UqWfuS2nfvZZhenPYQQBEnO3W6AqamUDuyznqUzijK8Z9x7VVXhymx5UrnOi3vz09CUyWfsY3+fny5ZlG0Dy1C5MOW9kD3IGhcvB2FGOdExdY1/680FVlsBnq29kGTZQdRckyDNKdsGtXHs+9pimbyQz1ySCxZrDpdmHt3eeRzQxszBlYaDEIK73ZC8EMxXbFxT53nyYbapoqry8Og9B8Pc0FS+crHBhWmPUZThGAFZUVDzHn743WduHxUHv+ezslUPou6YdIKYumtg6bKd2rV0Lsy4nKu7k/b+g4UGXVO5NFOi5ppsdkNUVSayThuzFYtCCMqOwZWZErauMowzgliyVl+GuPdZ4Voyviw7Orqq4poqF6ZLjKKMLcfAsXTs8Xn0tHG+4dIPMxqezh99c+HQ/qooyksTO4F8Ri5Pl2i4FuenXTRFxQpTSpZO1TGeKikFYGoqF6Zczk27LNbcI+0XNcecsKprjslIzag/5ec+K76/3mW6ZD3VOfqXvnaRP/933+E3Ptzl599YOMHRnTyOewX4K0/7AiHEryK1qA7+7K8Cf/W4BlW2Da7NlVEUuaGkuWw5yAtBwzXx4wxVUR7YMHRNPXLg+uQx6HzlYoOGZ8pWljjD1rVxC0Q+aX94GiiKgmvqXJ+vPPBvSzWHKc98pvd9VlQ9k7/wU5dZ7/hcOOFgB2Qi4dWFCldnpUbTSR70pObJPdqza0kGUWO8UA0jmck/CpXc0rVxAJRiGRoVWwaN1xcqpHkhBTUVnpmWflxYqTuULJ2FmkXVMbENjYWqw1zZJisEhZCMkM8SGp7JVy9NcXXGY6nuPpDMVFXlxAP1J6FkybXiymyJsq0z85AD8FLNeSZdneNCzTUwdclekYwcg8sz2lgD7OnWm7pn8tXLU2iK8sRkRMU2eHO5RphJ9k/ZMvi5V2cla+olSZDOVSx0TeFy4U32lOW6S1opUBWFrCjQ1dNN6GqqwtXZMmlePBejTFMVVuouhnb4PhuaysVpj46fUHWkFtH5I+poebbO2xcbVB2DmTHjKMmLB+bCfiXwYXNkpmxRtnUM7WSuq21ofPXyFLahUh4XiIIkQwjQNeXQPjtVsijZ+qnfY9fS+erlKTxLQ0FWfB1DQ1cVkrx45v1kv0jysDjjwpRLnBXPnYDbv3b7jGyQ9zsXAgVloqeja7IN8MKUy94wRlV5oc+9Z+mcaziUbI3FqoNlaFybr1AIga69uHHNjRlvCzWZwNt/5q/OVUiyAk2BtBCnkji1DW3Sor2/LqzUXTa6AbahPXE9elx8bOkar8yVyYV4rnjJMlReGc9vw1V5bamMpWvMVZ5c+HncurQPx9R4Zb6MOIY4dZ/VUrJqOKY2iT2vzJakGcATqqYNz8SztCPtt8eN2bKFPm7Bdy0dXZOJm6IQRKlkPr/ouPd5UBmfNbNCrrf7a1PJ1nlrpUaSFni2/kK+489cn+XaQpkrM94LlTo4ClRV5e2Lki3kmDpFIWiUDDRFeSZpGs/S+SOvzz9VfGDqKuenPFRFQVMVGrqJAozi9FiSy4/D99a6fPFc7ali6T/82hzLdYdf/ubaWWIKQFEUG/jzwBWk8PnfEkK8MD/nvBB8sjMgzQVXZkskWTFpw+qHKZ9sD9kZhLy1XJuI1YHsbz+5bL1CmOT0lIT2KKEbJJRtA9fUGEYZnqU99kCc5gVJVhwaX5jkDKMUz9LY7kdkheB8495h6LRbWtK84Iebfe62A97fGvLqfJkwK/BMjZWG+9RZ7kdhFGe8v9njtYXqJFh9FvhxhqWrT3z9Vi+kPUrQNUVW5RSoOiZT43bRfTFWRYFrc+UjBR4lS2e7F9IcJjhmQtnWWN0LUFS5iR0UqY3SnJt7QwZRyrm6x/IpCSfqmtSg2BskNIcJSzWbjW7IIEqp2OZEIHcfO/2QW02fsq1zba78wluqQPaWZ0WBa+psdAN6Qcpaa8St5oiaa/Jvvr5wpODzJLHPSLANbeLqs97xubU3wjY0fur67IkJ0z4L9oYRG52QzW7A9YUKV+fK9MOUux0pPn5ltvRUgVdeCD7eGtAJUl5fevDwez8qjs72bkgzSyjbKWmes9rymS7ZLNWdyf3c7IXcbQfUPYOlmtSiOY2ATFFk69yNXSmOO10y2OxJ6+Plusu1ufIkOErzYuwiG1H3TF6ZKx9rIaEoBGEq55amKmjq4fsyjFJWWz4KCvNV+4m6gPtr4b4JR1YIgjifsHV7Y5c621BZrDlHqsLq47aCJCv4YLPP3jBmpmxxda40SQL5cTZxkzooNrz/HVt+jKVpY62piJKls9I4un7KfmLzcWv3wWuz3Qv5ZGfIdj9ktmJzYdo7lFDphyl+nBMmOVVHtvbs34OTwj7zbKsXstENqNgmtqliaip+nFNzjSOJth5cM/f/3gsSSrZON0jpBymzFYvpkmyFeJ51Ph3r+lm6SnOUkBUFC1WbQZhhaJINs9uPJwdvBWm2YGgKW70QTVXIC15okn4YZ4yinJvJiKszJb5/p0vbj3l1ocJy3eXm3oi2H/PaQuWhRYaTgKoqGJrKdi9ib5CwVLdpDhL8JENVFRxDavEdfD46fsKtphQIXqpJHaTjjIf7QUovlPPIj2QLnqJkeNajWTJ3O3LPdi3tEEMpLwRtX2qrVh1jcpA5uJfe/6wVhXT9i8e6d+UDHQhCIIXhEfhxJluw9JzZ8uPbfcLkng7NhenD5khZXtDxExxTo2wbR2pP7PgJO/2Isq1PntUslxIK+9hvZ+4FCe9v9hjFOdMlk4vTJdY7AXkhHtnqNIozgjij7pmTvdCPM0xdJS/ExA3xwpR3IoXe/WL6reYIMYiZq1o0hzHbvZCZss1izWGmLNcTIQQ390bsDCLmqzZXX6IYCOBWc8hWN2K2YnNt7t6zFI1NBtqjmIptcHWuxN1uSJYLqo7B3CkxwtqjmLWWT5oLdA0+3hliaCpxWvCl8/VTN+Z4HNqjiPe3BjQ8kyszZfaGEe9v9ilZOl+7Ms3drmxbNXTlmeL1KM355s0m1+crLD2hpX0f/SBlvRPIYsmsTFB9sNUnSHL6YcbVuaeLc4+Ku52A9U7AL33twlO9TlMV/syPXuD/+Ksf8f5mn9eXTl/L7LhwXE/I3wZS4OvAzwOvAf/JMb33U2NvEPHt2x2SvGAYplTHC7TUSMj5YKvPMJLihW+s3Lt5J2kxno6D1e2BtO1MM8FsWZAVOgoKfpwfEmLbt6SeLVs4hsaN3RF5IZgpW8xX7Yk7lex/zScPSDdIcMwXE6TFWUGYyNbCOCt4f7PPhSmXKCu4NOPx+mKVc8fgRpXlghu7Pkt195mplQeTTQcPigcxGNuDtkYxrqGz1Q+pOSZ3uwFzZZvlusNKw53MGyEgKwrMI0q37QcbQZLxwVaf9jBBVeFL5xt0/ZQgCXFMjUGY8e3VDmFS0B4LKp/WprJveSsEfHetSy9IaY4ifuRig36oEqUFAoFjaLy3OeCjrQF1z8Q1T87l56joBynfXm1jairXFkp0/ZQ0L/i91Q6dkRRAfGWu/MTg8yTR9RPe3+qjjanUmiqv+Q/We9zphuiKwmLd4fyU91yCqceJNJfWztv9iFGc0fBM4kzqCQkhg/Wn2bB3+iG/9v4OcVbQD5/cu18IuQaA3MS3+xE7/YhzUwXDKCXJ5OH2blv+28e7Ay5OlZirWlybLT+TNtnTIsvFpN33w+0Ba62QIJWH7cWqzTDOpDZgnvPexoC73WDCcj3Ow+t6R7qq2caD7N84y1lt+txq+pQsHV1TnpiY2tdMCpOCNC+4PXYR9aNM6u0UguYoHhs3KFScox3IikLw/mafdzd7pJlkll2Yvlf595OMLC9oDhOyXPD6UmVysNoZRLT39WXGer/9MGU2s46UNNl3H91Pqj7pNR0/4VbL573NvrSeFoKpksVay0dR7onNr7V9lmoOdzuBFPA2Na4dEwP7UdjpSyeju92AharD5RmPKC3QFGViOLCPKM3Z7kdYujpp4Uuyght7Q4oC5qoWs2VbuuYlOTuDaOKG2hrFR27/fBzudgL8OJdVaENHUxVu7vkTJq5ATDQ007xgbxBLAf6dPj0/ZbpsU37BrT/peC0qCtjsh/zgbo8sFxQCDFXhtz7dk+YQ7ZB/50vLJ15tvzeue/HsD+/26AUZnSDm8rSHVrJJMqkxJYTg090hH24PyfKChmeyN5D3d6pkHtlM4HGQLXzSqv2dO50xa0udsMQfhf31JojzQy502/1wIsx/0El0vRMwCDMsQ+XqfYm3IM3xxzqsXT89lJhKxwZJO/0IgWCh4lB2dIQ47NB8EM1hzHpHHvw9U8ePs0OJqa1eRD9Mn6pg2R5JO/pekDJXkS3fN/ZGk/1uH2ttKRh+p+1TdaQMRJD2CeOcqZI11pk6HBtnuRR4FwL8JOfitMd2P6Q1lEYiNUcnHut99cP0xMyL0qKY7I0fbQ3Y3i/sqgqWoUoDDV3F0hQ+2B5wtxNQb5mUTJ2FF5iAPojdQcTv3uzQDRIW6w5TJamfFiY5CgphmvHB9oCKZdALE6ZLck9P8tPRlpLP84A7bR9bV9nohqgo1EsmcxXZ8WC8QEbnQcRpzq9/sMvN5kjqvFk6n+6OuLXngyJlCLKxZuJ+XPW04fogTPn6jTarrYD/8A9dOtJrRolce/JCECUFa+0RH+8MCeIc21DJi5MxNvndW20AvnZl+qlf+4tvr/Bf/+an/PI31/i//OJbxz20U8Nx7eivCSHeAFAU5W8B3zmm930m7ItL54XAT+4lpkBQCOk+YuoKhqGwULXpBSnauGp7Uth/kIpCimbnSsFMWR5C2n5Mzb0n1p7lxUTweLuIONdwJ2KmB0Xz9l03XFNHVeUD9CJ1DTxTVuFWmzJA74dSXHEQpixWHXb6MSsN91iSALah4j5HpXb/Oma5GOslPfhe271ICn6nBVme0nBMciEQ40V9P6Caq9goimSoPY3O1fkpl16Q4pka6+1A2t4LGYBvdgNMXZMJSyTlPkoKXEMjL06vTWC+Kr+bpWsMIskCKFkyYOsGCYYqGWdxVqCpslKrqyfbVnlUbPbkoccnx49yKo7UoTnfcBlFKbauUrb0F1o52uyF9IOUTAjKtsFcxSJKC+ZrDh0/pkCh7pqHbOlfNObKFjXPwE8kpVlVZEAZphlTnvXU4pl+kpPmxeS/J2G/nWwQpdiGSttPKNs6UZIT6Crr7WAiSL3dj2QbCJBmglwI1OfyVz0aPEtnvmoTZzmFELRHKVleYOgqW72AtABdVcmLQrpyAtYJtF3vC9HLxOFhBxoFBXUsjC7gSEn++arN3iCibEuHrTiVycB+kMpWOl1lrmKhqSq6pjxy3mZ5QXvMJgAZ6A+jlKptEKQ5CzWbumsghAxE667J3U44aVPpBvcOTgc/ou4akmFhakduU9o3sBBCOtM9KTGV5QUVW6fuGRiqwnTZJkoy1oOUmmuQI9AVdeIsZhnyviZZ8VCL9+PEvkOdqamYujIpnPTDlCnv8EFzbxAzijJGSDORkqWT5MXEbWz/kLp/fTVVwTN1htHxaW3sz0fH1DDHDN3pkskgzFAUWKw6dIOUvJDfIUxz/DhjEOQYukZeFIdYuy8CizWbvUGMZ+mkuRQ9HsUZ067JTj+iPYzJCinAm+YFDqeTmNoXGwc5Z7t+iihkqq/uGtiGfD4GoXRGzHMxeRb2dQKPS6RZGTv4xlnOKM5xDZ1ekJDm+UMTi/vP/ULVpjWKqTqHzU725839y8u+kPq+8cLBf3cMDduQscr9jqgyoSxjmLmKgzFOkvhJdiiBtY8sly7UmqIySBPmKjaN+/SonmUpr43nTMnWMTTZgnt/UgogTDJGUYauKpRt2a7r6LKIqak8MWm8P7T96yW13XR64+fuqK6Iz4LKOM5JC4GqCDp+imfq6Aq0hzGWoY2ZcDquoSEK8CxtkgB+GZBkBWVHp+MnuKZk6nb9lCTLSbIc29SxNHWiwXmuIeOVk3QqPzi21jAmzQr2BiEN16Jqy/XdG3czvCxFTpDF/LwQpJmgO4rZ7kdShkZX8UxZrJiv2rRHCRXHeKb9sxCQZgVBklEUBar65O8/5Zl0/YQ4lTGapqpUbB0VGQedlKbxN2+1JGN89uklRaqOwZ/40jL/4Dt3+c9//vqpzLeTwHFd2Yn9iBAie9EUwcWqQ9012B3ETJVsaq7Obj9mbxhTFFJ4149SzjfcI4uPPy9MTeXijMdeP2QYZXQDmbRZaWgT8c/1dkCc5SzWbGxDslFcU/bgz1Ut1toBRSgdAeqeycUpl81+hGOo1FzzhYsGKorU5/mf/pjNnXbAIEr44d0+2/2Qj7cGNEoGeSEI0oyikIckS1efuhWgZOv85Cszso3ET6i5xlMf6BZrDruDCNfUsQ1NusMkBWVbR1UVun7CVk8ehBQFaq7FRicgTGWCY7pksVCTAbGpq090PHoYyrYxCXp+9PIUbT/B1BTWWgFrHR8VhdmKxRuLVd6+0GCnH2HqCp/sDLlyQjTS+2Fo975bydK52/XxLJ27nZC1ls8oSpmr2lycLvHqfBlDVcgKQWeU4hjxiS+MeSGkWKmpPZAMmy5Z7LkxBbJ6HaZS8Pyt5RpBkpELaAcp/TA98YRuNta1K411FfbhmhqzZZu0KKi5Op1AzoE3lyr0gpgkF8RpTjyubr8M0DWVL6zUyXJBxdZxDJVv3W6PK0naUwcO055Jw5OHuX1dgSeh6kon0KIQWIaKKKAfJnxnrcvNdIRQCmbLDq8ulCmEdPwbxhk3dofMVxzq3tOvGU+L/bk/MxZDLQrBKM75aGfAIMyouQZXZktcmSkxV7HGtuojTE2lckzzcanmsNmTe85qy+f8AaFoU5e6UPNVWyY/D9w3IQSDMMM2D+vmVWwDBckO2RnINWAYp1yY8lBVqR/jmRp+kmPr6iPnwmYvnCQfslzQGiWYuixs7LcAZrlk3QZJzrkpF31sXBKm2aFq73zFHidipP7Tcv1o10YIMWaUpeiaQt09WlJ1umTRC1OWay5lR2Ox6vLB1oBOINu5z0253GqOmK/YvLZYZRRnfLIzGLcfJSe6Js5XbVbqDoNIp+IYE7e8S9MlHFObtOvkhRiz2jgk0l6y5EFgZxBSGx/ep0smLSHbzT3L4ML0cbCe5Xq4ULEY2TqeqR9a34IkG49LoyjgVmtEkglsY9xepgi6fsqFqRq9MGGzF7JQtY9NLuBpYOnaoRbJn74+Q5zJw9Zvf7JHkhXMVy3eXKlyY3eEoSksN1xpFHGCa7qqKixUJcOk5pjkFDRKsqX0bjegE0jWsKpIEfHpkknN9XhzuUprlLDW8omzHFXxOT/1/AXFyzMlwlQWtj7dHWIbKh/vDMlzwduXpia/l2QFt5qjMXvLYqXhPhDrLFRsbF3Fuk+jaqpk8v5mn4pjjJ247o1ZU5VHasYamsrnV2r0wxRNVWWr7vaQnV7EG8tVhOBQnNkLEja6UiD9ykyZ8w33gbVuseZIoyDjwdjkUZgpW5P1Ic0L7nZCwvTBRLCqKjiWRtlxabiGbLENU1YaDjMl6Sg8CCXjv2TpLDekmUTF1tnshUyV5bO9ULXZVWQcXHPNU3t+9pPJs2ULx5RJuG6Q8sFmn26QslRzuDpX5vpCiYZnkOSC5kgW65frzqmwnh8GIQSb3ZDdQcS0J10OZytSF3GtNWKrH+FZGp9brPI/+vwivSBheaxlen8y9LiQjl0ZhRCoioqly4Tqu3d7FEK6Q3/+XH3SxfAyaHHGWU4Q52x0ZXfNGytVBmHGZi/gvc0+P31tlp9/Y17up2NXSbfx7OdbZ1yoOt9wjpSUAnlmb4/iiaPphWmXjU7AYs3m0vTJ6NAKIfjWrTY/dnnqmdfbP/NjF/g7v3uHv//tdf6Tn7t6zCM8HRxXJuMtRVEG3EvEOwf+LoQQTxYOOUa0A2nrLPVxIlk9NTT6QTrZ4FamPIQYVzGFeGRyJC8Et5sj4qxgpeE+1wG2ZOn0xhtp1THHhyXJOhjF2cRWuz1KuTxTOlS9bbgmG52QLC/4/nqXuYps5xuM7ZTPN1yuHNDkeJFwTJ3rCxX2BhG/82mLJCsIdOncc7cb0vFjun6KbWjUXOOpe3WLQvDh1oBukDBbtokzm/mndCezDW0izlsUglt7PnkhqDg656c8muNWhTiTgVSQ5OwOZc94mssK/nEmhqZKFlMli92BbI+qWAZ+Ii3mW36COm7FuNP2yQvZivjT12dPVcTQMTWuzVWIs5xPd0ZYuobiyMOqENAcJggUbuwO8OMeizWHn3plhrnqydGv1zuBrBxqCtfnD+vzzFZsKo4xfoZ9BmE6DrYLao5JP8wIk4zmMKLqGOMgXLaptIbJkTVZjoLVccuTZaiH2nkuTnss1hwsXeVOOxhThn3yIsdQVTRFIcoKWiPJNszyYiI8v9ry0VSFS9OlU2eoBck9V7ZBlDGIMkTBM9no3u0GbPUisgJWmw+3534UVFWZBC53OwpVR6dq6+z0YkxNY6sXstJwMTSVQZjy7dUO5+ouX7pQf6Zk8rPA0jUuTZfw44z3t/roqkbNVXEtyYjsBxlZkfPB1gCBQnsU8/NvLB7LZ5dtA8+UFt2yZSqjbOncbo2IUqm18rDq+kZXtjoLBG8sVSfrzDBKWWtJHZLmKKIQ4JkGcxWb8wd0SZ7kAqceDLrGfyxZOhem3cke1gtSVsef1R4lY7fMnBI62/0QU1MnidCHaVkVhTj0Pe8/dIVpziDMAAXH0I+8h6iqgmtqk89c7/gMowxNkS1xG92AfpCx1upIp8m6i6lpoEl9tpNO1k+XLUpj1s4++2k/zhiEKaNxS59naVydKx0ShM0LQZRlzJRkC19zFE3YQEm7YLZsc3HGO7LL36Nwu+UTJTmtUcxsxZ4c4vexXyxsjWLudgO2exHTJXOyZy/WHKqu1Cfa7cfYhkZzGL+QxNT92Ncw+XCrT5QJpsoWV2fL6KrC9+902ewFnGt4fPF8/Uito8cBx9S4NF2Wh+phhGfqNIdSoqBk6zQ8c9K2f2N3xN2xzuF+K26Q5M9d+NRUhZKl88p8hamSxT//4RadUUyc5ry2VJ28vx9nZLkYt3gl9EOb6/OyBXujG9D100e2GCZZMWEGPqyd7XEo2Qal8drzwVafNBdsDyJKTVlMGkQyYSL/nLFQsbnVGhGmOZvjfeYgdgYRnVHCVOnZisb9MCVMchxDf6BQ4Zk6c2VbmuUIhYYnZQBqjslqy0dVZIvp7iACFApkrNENUrp+yu6gy0+/Ios7RzWpOAkYY6fAohDsDrvYhk7dBVOXJiGrzRjHVLnbCWiN5J7+s9dnufQMbJLjwGYv5Nc/3CVIpITBpekSa22fmmNiGzo1x8DUNeK0oO6azyTU/bS43fTp+gnNYcRCTRoWOYZGmOWIQj4Hr8yVJ06NLxpZXnBzb8QHm30+3B6yVHP4yoUGl2c9ojwnSQuiPOfq/PG1vUdpziBOubHrE6c51hHW3LwQdMN0HNfGzJatydoepDmVEzh7fbQ9pDmM+drlp2/j28flmRI/c32Wv/WN2/zJH1k5lTl43DiWmSqEeDlK+WMESU5WFOwMIsqWNmmF2283qbuGrBxpGqstX7qrlUxmStYDBzw/ztjshghkoPvaYuW5kgHTrskHWZ9RlIIiN5iOn2DrKoaukGYCz9L4eGdAlOa8tlgdM3oKmqOYnp9SdWUrVXuUEKYZ3VFMwzUOUX6TrHjAOem0MVO2WKw59P1EtglkBXdaPt+61WStHfD55Sp/6NrcpE3xqMgLwe4wYq3pMwgSPEsDbAZRynZPJiL3Wxj2daT2BhGKqnBlpvQAjbUQ95xM9nuZPVNjFMnNxzVVoizn1YUy7VHCXMWaVJ/vrz4Mo5Sn/DqHMFu2+NxihU4Qc7cTstqSYuJJLtjuB3x7tcNs2WK5IZkQzphxc5qwdI03l6ustnzCNGO7HzMIpTPMMMr4/fUucSZt4pujhCQXzFasY03kRWku9b+GEbYhtW2kxpGcG6qiMFuWGjNFIdBUWVlyTQ0VSC2NIJHuX4am0gsSbu/JipeuwmJNtlmuHI3A80jkhWBnELHdi6gdeEZbo5g4KyZjBGmFvtMPMTSFkiXbWfbdaoZROk4IDrjTDrAMjbmyTVHsi5ee7oFsqmRyuzUkSgvONxyuzpToBskjLbQ7vqww66rKYu0ws2E0FuDOioLt/rMHI0s1h7dWagRJzmYn5KOtATuDkE+2B1ya9mj5Md1Riq2pDIKUvPrg83uS8CydV+fLOIZGkmastkO2ugH5WPvw3c0+ddfgfMOhOYxI84K5so32jPtNXohxVT+nOYxolKT2W5jmhIk8hO4NYsJUHjoPsoXCNOdO25fzddxmulizJ4mOIMnwo4zmKGKhYk+o90fFUs3BGwfQuqqw0nDGbYX3xpAVUjxYVWTbc3MU0Q+ziZ5TcxCzMK6sP+y73+347PRjoizndnPET70yQ8W5N+9s/UBrz1MWnKY8iyDJMTSVzijmTmtILqDuGez0I8nILCDL4ObeiOmSRddPcC39ofvGcWK55vCdOx3COENTZHuQEHLNdC1tLBheEKY5apCiKhBlBTXHYKsf0Q1SECn2mK0UJgVhHBOlOVXHmLiQ7SPNC3T16WKNLBdSAzTOmBm3hR9shdobRHT8hDDJUBUVKLjdGpEUOZemPKZKFkEnI4gyBnGCpeu8eUAv9GXAldkSd1oBm/0QXVcIk4wPt/ts90K2e5L9MeUZzFdPRzOy4ZljVyuLTpAwiGJ2BglWoBLnDklasNaRLGhRyDVgGKZMl6xjn68lS6fuyf2uK2B3EFAIBT/OcEwd21Cl25yqEjj6hP3UC2TxthskLNYc2dYZpRPGZ9mW8bSmKo/thBBCauGpivJAYj5Oc2mYVORcmS6hayrNUcR7GzGNkslXLtSpODr9IMEzpcPaw1rQu35CmOR8ujuk4ZkYmmzjNjX1SMU6x9DoBQmGrlC27yWPhBDMlm2G8ZAsyYkyySxbrNl8/dMWH+8MOFf3uDIn3arLtkaWy1buYZiyN4xYbrj0wuQQiydM8gl7/LTZ2aqq8PpCBUOVEhlrLZ8bu0OSTDAIE27uDYkzwZvLVda7PrapMluy0U+xILc7iLjT9hGi4MbOCFUtGEYZFcegOYxAyGdeUxWuzJ5eu1yaF9zaG/CvPtljqebw1UvT2IZGxdJIc7g44700SSmQibIPN3t840abvWFEP0i4PueNTVB05io2145ZnzbNJQszSnL2Bc6KMXu448u9Z7nuHDrbG7rUoG2PYs41XJKsYLU14vJ0idIJdVn9xoe7KAr89PXZ53qf/9Ufe5Wf/2++zv/2n37A//1PffGlEro/Co7t6iqKogLvCiFeP673fBaESY4fpYyilLprEKYFfpozU7Joj2KagwRFgapr0okT2n7CfMXm5u6QzugwSyJIMtbaI4ZxykYn5PpCmfVO8Mx28r0g4ffXu9zc8aUA3bhPPUoLojTj0kyJiq1zpx3y/fUenVHCziDiZ1+dI0xzFqsOc2WLAoGqgGNpNEcxmqYgkFUGYFJVepLT30lDURReXajgmjpxnuOnOd+40eSbN5oUQl6Pn3l17qlbKTVVapdUbYPVVghj/YI0FySZdC+cKefsDiIGYcZqSzLedFXFVFUu31dt0TWVlYbLKM6Y8kyGUUo3SNFVqe+z0ZVaAtMlnS+fbxBnBZ/uDgGZnd7fxHf6IZ/ujqg8R3++oihcnCkhmvDt211GUcZ81ebclMN3V0MEgrudgFGY8YP1HmGa87mlCq/OP1/C9GkxVbLwLJ3/7jt36AUpeS74qeuzfLozJCsEwzjjTnvEtGcQpAWWofEz12ePrd10qxfixzmKolCydaZKUoNCJqska2ffvWYQpeQFNDyDXEitoa1eRJTK6oyqyMTlb3y8S9dPWKzaOKbOtWOo2LRHMZ1Rgm2qaJrC+SmXIMkmB5OiEJP1phumuJY+TpSlgMKeH2EaUl+hFyT89ict1joB8xWLL5yrc37KnTiinSY6fsL7GwMURTo8/cS1mbH22YNzcBilrLcDVls+NVeKbB9MTPXCVIq+CkHPTx94/VGhqgrX5iqstXy+0WoRJBl7w5gpz+YHmwNsXWV7EFG2NW61fKKsYLosq5qn5SBZcUxeXzT4rU/3xnNYOrK2x4fwJCsYxSmf7IzYHci2gLcvNh7QBzoKkqxgsxvy3maf6ZJJfXw4GoRSs8caV1XjoUzgX58vT+7flGdScnSiOOfjnSH9MKPm6vzE1VkWazYfbsnCSZTkVByDMHuyNthBqKpyKBFxP7MhSnM+2h5gGSqGJtf33UHMSt0hzgrWWgFpLtjohQ+4i4FkJg2ijK4f8707XUqWTpTm/OLb5ybvP4hSVhoupvbolsNHwRkLmReF4PdutVnvRnT9hCQvUBSFqmVQLRmkuVyjun7CRi/ANXRqjk7ds1CAunf8CeUbzRHv3e3jmDqmrjFXlRpIrVHMQtVhumxS5ILmKOGjrQE9X7Zjz1UsQGG2ZGPpKnMVm81eyHzF4pOdAYWQVtkHk3j74sn7Lo1HDYDPT7l0gwRvrFc4fd/83h3E7A4jBkGCqkm28CDMuL0njUcansl3b7f49mobXVG5NFs6lvX6OGHqGl+8UKe8q/ODu1LU39QUQKHtR/zLD7Zpj2J+4pUZvnT+OSsgR0TVNahiMIhSNjsx7SBmxjOZr7oUosAPM4aRTEqXHZ0sFyyNEj7eHrDccDF19ak1BO9H10/4nRtNWsMUR9eZLpu8c6fHTNlmEKZcnC5h6QqFgGaQMF21JuvSdMmi4ydMl0yEkC57RSFZIxXbwDFVXlsoH2rXCZKMUSzb4faTBc1RzG4/BqQr6EH860/2Ji2XP/2KbFFujyJMXaUXxnx3rcNUySIvBHXXQtcVluoPJpqmPJPVVpeyrXOnHZAXBZ/syPf92hXtic++NDKSjpppdq/audry2R3EfLw9IM4L6q7BbMWmF2Tcavls9WIEgp99bZaLMx5hWjDlmXyyM2R3GJMVAs/QHtDEWh23bt5ujfj8Su1UJE4OwjZ13lyu8a8+3mWzG5HkBUt1h2GU4icZgyjnZmvIuSmXb9/u4poaXzxfP3EGqh9n/P56j52+LATfbvm0g5iSqdP1E8lA7oRYmkrZMfnDr86daqvhXNXiNz/aY6094sbeiCjL+fHLM1ybr2CbOtdmT7Vh6bG40/L5jY92+R8+2qUoCgrkufX3Vjs4hrz/1+bLR2I0PQ2yXNANUixNJc0LLKS4eWskCQD7yez7WY+vLlTIxtqn//j7W7RG0pTs6nwZ8wTu8a9/uMOXzj3/nL48U+I/+yPX+K9+7WP+b//6Jv/xz3y2WvqObeURQhSKovxQUZRzQoj143rfp0U/TOmFGa5pECQpqiKTGOa4Hx2kK8R622e54WLosgKxfzAZRPJgtN/+0/MzNFWVFElbnzBrngXDKMMZ29gmWTF2cpAaOXvDCFPXxpobxUS01lA1ojEtNExyhJBim4Mo4/dut9BVSeOVjl7S8vVO2x9XGTlxsdUnYbZio6sqzWHEdj9kpxchkIm0sq2TFWO6sRBomkrDNZ84XlNX+fGrM3zndpscUBWVfpCyUHMI4hxnbJG93y5iGbLitdePqbkaZVunbB+uClUdYxJwD6J0LJwpxSdlhVlM7OY7QTJxFRnFUt8ozQtWWz7tUTIRjX0eJLkU7zR0RSZSHZOZsimFnmsGZVuTzh9bQ9bbPmGS85WLU09+42NEmMhDl6aoaIZAQVaMPt0bsWyZrNRd4kxwu+VLIW9R8G98buGpkwBZIcYH+HvLlWXINijX1DnXcCcVXV2V1fY4L5ityMDLT+SzpCgqFUsjTHKKsbvUWjvgSxfqdIOUNCuI0pyybXB1rjzR5zgK8uKe9ttB7LPEHEO2iHqWjh+nbPVDEDJZduh6IkUWa57Bjb0Cz9AnbQJ1RydIM+I0H+u5eVw8oV73JyEcs80EY+csRXmkIL+mKmhji3JVedBkYrcfkQtAOR6GZ5BmoIJpyNaqkilNBSTzRwp07w5CNrohV2dLBEnO9fnTC97SQgpMK8hrttKQjovdkRQQ9yyDIMm42/Fp+wn9IOHn31g4xPY5ChRFBtXR2I0qziQDaa0ltVHOT3kMonSi9XTw2jc8k1fnK7SGMd+/22VnEKLrLv0o5dV6hdmKzXY/wtA1BJAfYOtKdl9xpLX8UQiSHMfUKVk6qiLZZraRoqqKFJU1NFRFJtcOjnsUZ2iKnG8KCkt1l5vNEaMo43ZLOlkt1x3W2j5pJuj4yXPde0UB19JkMUIITFVFKApzVZuKrWOZUv9sGKV0RglDLcMzNTa6sn1YUR5Myj0PikJQFALblELTDc+aMJKDOOfW7pBBlFGypcBwkkkjjSiV17vi6IyijLmKjXogbqqXLIpirDE2vt6yrdOXbSMJT+X05Fn6Y4sUVcfgbjcgSgtMIVl1lq5ScwxcU2e1OSJKBXEqyNSCvUHEziA6VIjz44wgyam7xkMT5kLIAoqtH10D6Glh6SppJtm8rqVTFzZZIZPx/SDlk50huqry2kIVx5RyE7kQ1J9BN/NpsC9hYagKmq6S5jmLNZdOkFL0Is5NudiGRmuYkBc57272eH9zQMXR+dHL0891cFptjSTTZJzgmqs6FEJMRKQ1VZoySDaleoid0PBMXEubmJZoqkJRiHFsLLjbTccmIpJFvh/HCyHj731G774pQz9MKAeH5+G+W3JWCFBk8viL5xt8e7VDlMiiyjBKGUYZy3WXunNP1iEYO3m5Ywe5q5Fso9ZU8GP5vmkunniOyAvBVi/k27fbuKY+SSIJIVuy4zQnTKTJ02zZGouXa3iGjmeqzFccDE09YPwkWZHSqERDUe85LoNcN3tBQsePAYXbTZ9XFyqnrkeUF4IsZ3JvpzwTTYU7nYDlmslS1SHNcj7dlYSBNM/56uXpY3EIfRjSvOCHd3v8q092SbKcN5drLFQdigL6YSxb4csWu8MIRVHI84K0KLAeYqZ0nIhSyW7LckGS5ZQtDUVRyfOc1iCh46ecm/KYGRvVvCikeUEvSClZkgX5vTtdfrDeIy8EnmVQsjSmSzaepZEXck4e1bTkqSGk2L+f5pQcyUi0xmduz9IfGavomkpWFCR5Rpzl5IVBmObHvmekecEHWwP+i5+/fizv9+d+4hKf7Az5a7/+KVMliz/5lXPH8r6ngeNOiS8AHyiK8h1gIhYihPiFY/6cR6LrJ4yiDNdSub7YYMozuThdouYYzJWloOpuP2Z1nF2+OltiylUwdBXbUB/Qqqh7JjXPYL5ijwOGw0HkvuONfPAevxjNlKXA7c9cNxmEKVu9iKuzJdTxAeVuL6AzTCjbBp9fqSIKWKy7VGy5Cc9VbFZbPjeb0j62apsMSbm+UGZmXPW/2wlQUOj4yamIBA6ilM1uiGvKlsn7g6nFqqy+liwNP85YrDnoKmQI3r7QwI8z/NhnoxtKXa2sOJI9ccnS+erlKcz1DnFSsFRzqLrmofuw3y5yoeHyD1rrCOD3bncwNJ2aa1B3TbqB1AA4mIRouCZRUqAoskLX8Eyaw4hekHKn8Fmo2oyiDEWR7jb7KNuyVet59TcAzjVcvnpJsrM+t1Dme3d6TJdsLs0Irs+X+cmrs3zjZpOdfsCeoqJpLd5YquKcYpWr4hj82KUpNnshry5U6Piybe/ClMtcxeKnXpnDTzK+t95hdxDzuzfbXJou8cZy7ak+J81k0u+V+Xv06MWqTdUxsHT1UPBk6hplR6ei3HOcmSlZpFmBriks1RwankE/TPiND3axTY1v3Wzz1kqVL51rsDuM+PEr00e2yO6HKUJIpt7GuOX3YCWy6hpc0UsT10aAIJEVzKwQGAc2t6WaI+ejZ6FrCnGa8SvvbRMmsoI95Zl86VyD6VLA6wsVLhxRGyJK84nt9nHBNXUsQyVIsokQZC9IUFAeEPmU4sAO5xqS3XV/sKtrCo6hkhWCK8fA8FyqufzYpSmSXPDaQoXf/GhXsviilFcXXMI4Z7sX4Sc5cxULhdPRmtqHpWt8bqmCbciD9r74dJBIHb6fvDZLmGR882aL9W7AIEx5fanK55aeLoFh6RozZZtzcUaSC67OyvX1bjdACJlM8mwdW9c4P+0eui+KorBYc1isObT9GA2ZDF6qO2OmgMH5hotjSOecharcN6M0n2hQxZlcl58Wu4OI1jDG0BSuz5UkcysRfPmCTWuYkBWCuZqFY+hcP8CS6fgJm10p9n151sNqaPI5ynJ+73abqmOy1QskW2IQMVu2MPTnWy8VReFnX5lFV2CU5lyd8QiSnDgTCCHY6clWwutzZaJUEGU5QZrR7gYUQjKvjjMxpaoKi3WHrxnTRElOP0wwNIWZsoUQBb9zo8VuP2a+YvH2xSm+cE46tzmmxkLVQVMVZkqCtXbAanOEY0hR8otTHrqmcmVWrjlJVnCnHQAK/TDllfnKc7euCCGr2qaucm7Kpe4Z/PBujzQXlG0HW1MZJjlRluNaOtMVi8W6LR0tDSmgHib5oUKREDJZcH7Km/wsLwQXpjzaY61LVYVX5sonwjiuuSZvX6xTdnTCJCPNCrqRy3Y35E47YHcQsTMI+MHdLq8tVlnvyGdHuhOeHBPk8myJrCgIkpxrsyU+3B7w3kYfQ4O3VqqUTE1qg6Y5cVrw8c6AG3s+jqlRdQ1+svxsrSZrLZ/WMGF3EDLtWfzRN+cBBc/QyIWgbBlomkKay2JHXohJMinLC27sDSkKaJRMlmoOl6ZLtEYxQZLx3maPCw2P1iieJKYO4uCuM1WyxonLTIobH8Arc2Vaw4j5mj3Rdqo4Bj/9yox0PBvF3Ngd4RgafpIyXZItpP1QMoMBzk+7VGxjoi1YtnWirEDTFMqW/lBNvIO43Rxxe280Zolqk4I5yEKrQNAomfSDFMdQWaza1D2LH73SoF7SmS49yAK+OOVyt+PL9lhU6X42NplYa/nYhjZxwnxR0DWVz5+rjTX8TGqOwXdWO1yaLuGZKj/5yixBkvOvPmnSHqW8bw24Olc+sWclTnPe3+qz3pJmROZ5lT/6xjz/+qM9uqGBZ2m8tlDhXMNlbxg/tV7us0AImWzd7oWMkpT5isMXzjVICkGSFiw3XCqezrmGNBF5GDNv3/gjTHMWa85zsyAfhfVOQBDnqCrUHYPbzRGDIKZi67wyV2Kl4TFdloxIz5L7+UnoJOuagqEqeJY2IRUYmsrrSxUuTXsTU6uDKApBN0iwDI2SpbNYc9jux7iminMCyTOpdwl/+LW5Y3k/RVH4q//um3SDhP/yH7+HZ+n8wlvHo1160jjuU+xfOeb3e2qoqkLNNYgyiylPukzsV58+3hmxNYjY6ITEmWQh9aOUFaTW00GtCk2VjAQ/fnTFDQ4/eK8tVFAUhSyXvceepR/KqtqGdB3qjmJ+46M9RlHG3bbPv/flFfyxLlYy1v6YKzss1x0GYUacSRH0QZSSZAVZXuCPDzFzVSk6u58Q2tfpqDjGoarWftAXZznTJevY+p/bo4QsFzSHMYUQzFUO22gmecFWN6QANFVlvip74RuexSvzFbp+zM4wZrMbSLe78tMF6VXbAluyYrYHA4oCVhpSs8E21EmSYKZsEaaSiebH0ro9SnMsXeNOS9rL71dwdU0GxvvQUOiH2bi1Rme2bD/QImlo0uHqYbbBzwLX1PnSBUnvH0YpvTCl5SfEac5OP+LdrR5zVYulusMozPFMab9saOqptfRpqsK1+QrXxoyDG7sjmr50kuuGCe+sd3hjqcJizSaI83E7jbzuz9s6pSjKQxOAli4dzYI4J8sFWS611uar9qTNxtQ1emHKKMnIhNx8zjVcZisOnqUdmr9CCPqhNE24X3fhYCD6ONz/Os+65ySkAP0gpWxrE0fIkqUjhKAXSmHsfT25mmuwWHP48oXGoeTPvoOaoT+oq1EUglvNEUUBYjzmfeeth6EoBINIGhM87h6lRcFiVT4jvTDFG8V8sDkABd5cqlIbPwNxmnOr6ZNk+US74v7PXql7XJktA8qxULirjsEXx60xN3aHtIYxQZITZgVRkrM3lC5EjZLJXEWuR11fWhGfVoV4oeqwUHXojwX5t/sRmqrSCVK+dbvJF5drLNdshnFK2ZKHml6QjFk2Rxujosh1Ly8EozhFV1UcU5nsC0GSU3YM0kIm4fthOimC7GO7H5JkgpJjcHWmRHnsyHm3E3C363Nltoyla+QCDoaTfpzhWs92L5vDWDJWURjEGavtgDgvuDjloioKqqKwUvcOtR7CPQZAmGa0hwkr4zX83JRHnMm2+WGcYWYF056FbahHTu4+FqrCuakSAsFmL8SPchRFJqaiTDJBpsrWuCVXurX1ggyVgp1ByOUZGRjL+/P883+2bDNbtvmVH25xsylbO/7EF5c5P9ZmitMCz5Ki1zNla+LqtI8oHduNF4I0Sql50j3yYMywP0VKlk6t7kyE4/fXDwTyEP6YQ8b9cdLOQAqtB0nO5xYrVByDharN7WZAIQSDOCctCgZBimvKtvr9z5WOteojq9jJ+P77cYauqvTDdGI/XxSQC3HswfA+SrbBly802OmFfG+9S54LLk579MOU7UFElAl6fsLdTkCS5Zj6vcPTScE2NN5akfaVRSFo+ykdP2arG7FUd3hzucoXzzekU1bXZ7Xto49ZTNGYgXxUFEIwijMUpNHFZi9kyrO5NOMxCHLqnsH6OKF8cVrD03VMXXlArzAXYqJxF6dyDKYumfGuqbNS97BNHRWFQZRSseV6fnmmNFlHe0FCIcA2JJuoHz5YsMmKgpJtsDdIuLE75LXFKlGa8/5mn0LAK/Ml5sd6e7ZxL946qDO1vxbJOSn3wpKm8tpChVGUkY61LR+FMM3RdBXXVCnZ+kRHdGcQEaeSqTwIpeRE3TNojhLqnkXVMXllrjq5XgchBFyYKmHrOq1RxLLhIg78jqGpLNZcKdpdkbpi8qyR45naqcWVcxV7klh8f7PP7jBGwNjRdoijySK9IiSbztLVE3FWjrOcYZxRdwxqjjlOLqf8cKNLP0oRQmF3kND2Y95aqXN94Vg//rFI85y1tk+U5ohC4Y2VGrWSyVY3QBQCS9MYRJLVXrYPO0EPI+nW2A0STE2jM0pOLDG1P73ao5heEBPEGWKs/3Z5tjxuD8/40vk6K42TE+E3NJVXF8qUbHkv96EoCn6asd4OsA2NlbozYRlu9AJu7/lYhsqbyzUKoXB9voKhKYgnhGBJVkwS0k96buJMstlrrsH/4d//4rHK75i6yl//01/iz/y/vsN/9g9/gGdq/Oyrx5P4Okkc614shPjt43y/o3/uvZa1qqOz24+Yr5jEqbSkvNPxaTgGv/ruNqstn0ZJthlNeSZXZkuUbIOpkpyMt/ZGfLDVZ8qzuDpfYm8QM4ozLoztcoUQhwL3/YVdCi/LgG2t7RMmBYauPLRNoB0k7PRDKe6oq3z9RouVhsvrC5VxEkolL6RVNiiTil7Z1tlVYbcbMV22MHSVyzPeofEYqjIWg5RskqIQrLZ9NroBzWGMpqhcnvV4c8xauf/7PC1qjoEfZxPr4TAJeG2xMnnvW3vy0CUQFAhp+zqQbYsVW+OH6z7fWm2joeAauqywH9HuuxAQZRl3Wj6rLR9DV3l9HESYmoKuq1yfl3TkH7syRXlzgGOq3G4GjMYOKyVbJktu7o24Old6ZF+9pDpnsrXgvnaFopBaB2EqncpOQih0qWbz8U6f7V7E7bbPN260uDpXYrZkMVsGx1B5Z73H5SmXmarDTj8aO/F4z3V/nwZX5kp8tD2gPYrZ6Ga8s9bjtz5ucmHK5cqMh6qqY0HlnM8tVtkdSgHwc1PuYzdGY2xrf5Rkqq6pXJku8d5Wj0GY8k9/sEnVMbENaSW/UJUi+atNn6wQJGNB3zArJsFfkhV881aTfpixWLFwTNlyc3817FBQp6ss1Z0jJSVdU1aGRlHKnU4oE0dCMFO2qDsmrqUzV7GkWGMmK9ZlS0NT7zE6i0LwznqXzW5I1ZEVWFVRHnB5EtwLDuJUmg94tv5IkfKNbkg/fDKLYNqziNOcXAhmyyYdP2FvFDMMExxT422vwU4/Yq3lM4hSySJJM64EyQN6Km9fqPNbn+zSDWQC9jjhWTo1z+C9rT5+JJPLaVYwUzK5PO3hxxn/w4e7LDccGp5kR250wwlL5KQZp54pE4CuofHRVp9ukPDpzpBvfNri8ozHhYZL1TG53ZRB6Lmx7XdrmFD3jCc6C85VLL671uaT7RGf7gz5xbeX0TWFjU4g2WKKFN2/uSeTlzVXPxQg7vQiBlFCa5hwru6yO4jxY6ndleUyYXp5tjQ5HAyjFF2VBQk/yiYMlqdB1THoBfK9wjTnw+0Bfpyxuufzh65O4dk65xreA3NzpmzhJym7g4yNTof3t3tcmSkzW7bY6UeIoiBMMiIU4rTg9WUpEutHKXc6gdT3m/aeOmnuGBqqClu9iGGQ8uH22DG2YnFxukTd0TE1lbpr0BolpKKg4eqsdULWmgGu0UVXJfPzyngP2ulHY5e5Z3MGvduRotudkXyWP9jss9OPmStblG0NXVEI45StvKA9ku07riXNC4pCWrOHScFrC2VemSs/8BzIViiZtF+o3WOnfHetw2p7RJwK3lqusTKu2sODsgL3x0lFIcbC8Tm2ofL5lRq9UOoD7Q4jFCQz9Y2lKst1h6woGEYpG92A9XbATNlipe7gWjr62DkxSDLmy3It3Rw7zZ1reFyZLckD/TCW7M8TZjkkWcEPNnrsDaR2jq5a3O2GqCgIUfCtW02iT5pUHZ1ffHv5EBP7pKGqCuenXdbaI7phQsnWWWv7eKbOv/xwh/WOT92xcE2NiqOjABttn2x8qJyv2o9lrMRpwWrTp+FJuYS5qsXN3RHvbqS8Ml+mOdLwTHmAO9iyn2RSVH9/zli6xnzVZm8QsdkL+WCrz0JVum3uGyRUbIO2n3CnJVt2PUvnTkfqUG33pA5ckGaTOXBu6nByBqBsSWZHUcCH1oDXFqvsDSPudmTyrGLrXGh4rLZHkr00jqErlk7o6hiaRsM1KYqC3UGMrqm4hso3brZZa/tcmyuxVHcPufOCZJONYtlGO1+16YwSOp41SewlWcG3b7fHrc0GIBglKdv9iIvjovNcxZ4UGYahFI9f60iWWpJl0iWyZBKlGiiw3Y9YrDlcnimx0Q3wY8EwypgumZJJtf+MagqqAkkuOD/lngir5WFYqNpYhsp6SyZSvn+3i2caLNVs3lypYJsa31vrslhzuDTjjbU4U2bK1lM7dYNcN3tBylTJoDmIuNMJyXLBa0tVNtojvv5pm44fU3UMaq4pmXun5O57EM1BzO3WgM1OxGY94OrseUbjLpy6a5IXgs2xpqGpS0IEMJZ6CcbFkZS5inbsCb2DWKja/PoH23zzZpsCQVEUiELO571BjKKCpqj88G5v0vVzElCAOBN8damMfSAe2e6HvLPWpT2KmK047A0k622x5vDhVp+dQUzVNrk+X9DwDD7oBZyf9p64X9xujUgzgWPeu/YPQ5oX3NgdTQxR/tibx5/dtA2Nv/lnvsyf/pvf5n/+977PP/4LP8bnFl8uo5D7cayJKUVRhsizEICJLKL6QogTFfCI0pybzRFXZkpoqoppqHz7dpudfsT1hRJzFRdNlW1n0kVB563lGm9fbNAPE3YHMcMo41zD4Z07HTpBOnYqkofBUZQRpwUbvZAozVmqORN65ErDnegKybYwa+Ls9ii3uWxcMbu9N2Lak251UVpwux0w5Vm8u9Hl+3e6dPyEH700jWVqbPUiLEORFSNFHsDv1wWBexpZn+6OMDQVS1f5ZGdIXhQMwpS6a8ksu5D6Gt9Z66ApCm9fOGI26D7UPZPaOAkWpcWhpMwoylhry47OumugCPhhlFEgq8jNYcRv32iy3gmIkpxhlBFlObYuXUsOalAUhcBPpEbXPkqWjqGqdPyErh+jqhqrzREVz2S7K13QkqzANXWiNGO2bLPdD9nqhQRxTtU1UDWFW7s+u4OIC1OunLUP+56uSZLmFMhK1MFlSbKwZAWv6yfHvtArisKVuTIogn/x3i7vb/bJheDTnRHLUw4VS+duO6R7O2XaM1mqO3i21DRaqjmnJuy8UHX46qUpaq7OP/vhNsMoYxinRGnO5ZkSLT/kk90BqqLw4faAJBNyrKb22MSUriqTuRBnOUXxIAtpH1kuDwDfX+9iair+WAup50u79BuWbG9yDJ2GY2IZCqM45Vd+uMVb52q8MlchTHPudkJ6fspuP+JHL0+R5VLzoe6ak9abmmtSCFkR1g+IOedjJz3X1B6ZFBxGGV+/0WKnH8nnsmSy24uZrVr0goQvna+TZTl1zyRKcnRd5dfe3+bqTIlXF6u4psZGN2CjG7LaKvixy9M4psbOIMQ1JBNiX6fh4rQ3Dmwle2muajFTls5mFdvgwvS9REQ2LknnuWC9HaCosv3xfiaCFN2vIoRA1zSmPA1DU9A1jSwT9IOUbpDgmhqbvZB//sNNskLwY5cT3liqYh7Y2JujmCgrSHLBZj980jR7KizWHF6dq3Bjd0hTgfV2SKNkkhaC39/o4kcZ/ThnrmxTd6VD1sVpDyFM4qw4cXciXVN5Zb4MCKJcJsn8pCDYTeiGCefqHlke8+5GjwKFy9MuuqaxULNYytwnJqaSvOC9jT7vbvSIU6kI1ihZ9MMUXVP5wrkGQgh+uNFndxCxVLOputK9K8tl64mmSk2nfMwsWWk47A6ke6VnaSxULQohg3qp5ZJOWt7lfHq6a7jScFmuC27sSW2oT9QhigI7g5C2n1ArGQ9ozoFkcM6WbW7s+OwMIsI0w48Klus2lq4RiIKPt4fUPRNVUXhvo89MxeKdtS5bvZDXFitMlUxsQ6M9itnuR5TH6+jjsK+fNle2aY5dDh1DQ1MUZkoWmZDM6m6QMIplcWMUSSv42bLFWjtguxdJg5B4hnNTDr/y3jaaCp9frrNcfzrXtn1dj9cWKgyjlCnPJExzBFLfxtJ11ts+31nrSB2psfmHZWgs1RyKsWacqijEefHQ5OzeMOZm08fWpaOpEONWyl5Insu9vxBiwkr6YKvPJztDzh1Ish2Mkzp+QmuU0A0SNFUmPPNCYOkKW92Akq3SDjL6QcruMOJSy5fC6cAwkMzVbpiyWHN4Y7lGN0jHe7JCL8wma/I+G0OuVeoDz0+UPh0b6En3YX38TMyWLQZhQj+Uz0bFlu0huRBULIP3t2Qys+IYGKrCj1+b5vp8lZor752pPZoNdhyYr9j85LVZ3lnvSOfUqsON5og77YDbzRGOGXK+7jGMMv7ut9co2wafW6iwWJdsv6O0Upm6lHsI4gzbkK1k7Al+9OI0ZUdHU9VJXL3bD1lrB1QcY5IYDRJZWNjsyHvdGsYUQs6j0lgjxjTuXaP99u00EwgE2/2Q76112BskXF+QSaFrc+UHrutKw+XKTAk/ySesTyEks1lR5Wf5aUaaS31UIeQ6NwizMXNeJvzfudPlbiei4RnUPYMgyeVrhjFzFdkuF6U5t5s+WV6Q5MWE2fnmco2ZisVvfBgyjGW7XpoXZDn4Scp81Wa57qGpKnNlE8eU+o2DMOX9zR6rTZmo/fKFOkGSc2NvRJjkvLZY4fyUNzFf2T+jOKZGxTGIUuned2NvNGEWliyN76x2SHNBxTHY7AW8fb5B48A9P+iIfZyYKll87fI0JUvnNz/coTVKSKyCXBTMVixuNkf0g5SikBIXmqayVHdRFJ46MVWM9W7vtH1WP5C6qLuDBNdUuThdYrMvnUIHQYZt6ry1UuOL5+sn1kYokHupZ97TP/LjlA+3pObVd9d6+EnOIMr4+q0WU54JimxdbjgGqRAESc5qa8RKw5F6SkjyhKooXJopTQgXx4X9c5qpqbT9mO/f6fKr725zuy1bqN8ax34lW8czNRRV6v86odSX2xgzJ8+NjRaOC/t7zd4gJsuLSVFrve3za+9u0fQTPn+uyr/5uUV643ZyTdFQhHT6dExpFvCl8w0URcoD3J+citKczV6IqSlj51rloTmAO22ffphyYdrD1FQ2uyHBU7JQnxZl2+CXf+kr/JH/+nf4y//oXf7JX/jaqZplPS2OmzF1qASgKMofB75ynJ/xKMSpFJ2b8gx+cDfhbjeg6ycMo4xf+LxL2da5NF1CAc7PlLgw7bLa9tnqhKx3AzxLpzmMKNuyimbrsjr0/uaAumeQFx7hePJ0g3six/viaaNYVvZMXeV8w6MbPDpBYZsaddfirXPS9UQKqsmqRC9IxyKECXEmWGuP8Eyd7Z5kRixUXaY8WfWcrzzMCcTidlMGbUGS0w9SNEUhB96+0JALdsXm450hH20PSNKC7lgn51mhKAoXpmXQcrC9qhvIoNiPc67NSUdDx9AwFIW6ZzKIMjRNJUgKFOQ1vN0c8v/5fs6Xzzd4dbEy0X5a7wQMo+yBxcrSVWYrNh9sDXENQS9K8VPpAFjKVcIkH4uvx6y1fDpBTJwUlB2DimOiCEHF0TG0R7cR7fRlpa3tJyyPWQMHq9i2ruGORbXv1yA7LpRtnZpr8YVzNTxb54ONDkGSst7MWax7bPYC+V0VhaQQVGyZtLtVGqE+IxPgWTBTsYiyMj96KeV2e8hq06c1ijFVhVGaMwhTKmMGiBSXz5kumYzinIXa4yuvUZpzc2+EEDySnRRlBTv9iIqtM0pyztVdcgFmWeVmy2cYjQ+MFYPdoWybu7nnU3UM6p7FXMVhtmyNE7exdL2zdPw4ZxTljKLwUJvb/WMQQnBzb0QypuY+iu2w3vXJC7BMjYoin1vhSue9fpDx8c6Qsm1gjRJqFZ31VkCc5RiqSqNk8dpCRW7+w5jZii2FT02dYZgzDKU4+n7L1r7QsKYqlB0pKP3h1oDtXoShSfvwfTvh5bpL249Js2LS5tD24weE4G1D5YOtPrqqcG7KpeaavLVcZacf41nSeW+mbLE3iDF1BdfS8aOMrp9MTAn2MYgybu75BEnG5anjrz5emPa4vlClED2uzpZpDiM6fsytvRFxKltnNEWKzwsFNnshry2UOdewT802e65i86VzDdrDlM4o4sbeiI6fMYr6TJcsWoMYw1BY68i2c4HUY3lvo/9Y5lQQ5zi6NGzwTJ32SLba+olcq5Os4IcbPe52fBRkm+snOwP2BgkgWKo5XJsrE2cFC1V5qNdUhUuzHh9uDdkbxLxzp8fbF+rj1g/BXNXGNTUMTX3myvo+e2kYZegafP3TlmxpTDM+2BhOWmr222z88WHXNXU8S2qwRGlOxdLG+owm722EEzZW3ZNGEjuDiM2Oz41mQJoVfH6lBsg9Xgip+3BQJPhRMDRVOlRaGl9YqbE9iDg/5YAixf2bw5j1jo+hSpdBS9fGQvcalqGxN4yIwpw0L/j6jSbtYUI3iDE16d518SmYr4amUnF0dgcRX7kwRXMYoyoKwyjFtdSxIL485DaHEYtVm9+73eHyjEfJ0nljqUrZMnD04pGV4SDJcHSNOJNJuJ2+POjWHMk+vzZXYr4qRW0/2OrzL97fQUFei30cjJN2BxGqokwcbT1Lx08ybu5JFs8wlqYJgaoQxAXNoWSdp7kYC7SruMbBdqP9FmyZAEkLeZC1dI1GyXxoUO7HGZ/uDlE4noNaL0gJxgWrfpigKioCeWA2DY3zUx5xWlB3Nb633iXJC8I4ZRjn/Mv3d+n4GSVLGx+MdK7NnZwFfdUx6PopX70ohc1tXeVX3t0iTFMcU8fSVMIsZ3cvZLMb4Vkyrpyrumz3Qt7b6D9yvzM0ldmKxXRJFnL8JGOrL23iZ8sWFdsYt3Lfw/ubfVp+zCjKCZOMyzNloiwjTDIKCoIkY6ZiUTIlG1EIeQYwNYW5qgUCyfoZJz1zISjZMpEZpRnvbvQpj5l11xcO181VVeHLF6fY6oWTVt8wydA0xgLNOZoK317tkKQ556dc6p7FZi9gxrOYLkv3v2TspOcnGdcXynT8FFUVXJ4pc2FaXifpGCwTwZqm0B+kVBxjHK8O2e6HZIUgzWTRNy2kgHkQyzPDbMViseayUne4tTfik50ht1tD9obxOCksnw/TULB0mQhtjAsPUSbdyvex/+e8ELRHyXhe6BSFbAm62/b5eGfAW0t13lG6/MS1mcn60BrGE0fs48Zc1eZSVOLqbJmZssWtvRF+lPHd1S5pURCPC+LbgxhTkzG/Pe5qeBIbfx9BkrHa8lltjrjVHNIJMtqjiL1hiqlCL0zk9RTw2lKZpbrLxekS8yeoxxWn0n123119bxjxzlqXb97YY6MXkucFSSo19xCS6VexDdlya+ucL1vc2PUp2/qEHaWOW1uDJH8qWYCjYrXt0/MTtvoRwzDlu2sd4lQylQ1Vtt1em5MM67JjUHJ09kYRqiKLtftn7F6YTDoYjgNJVnCn42ONHez3kRZjMXRLtgDbY7dKXVWYq0iW6LV52YWQ5gW/v95lZcrjde1Brk1zGBPEOQGyEJGLB88HQZzx3kafNJeGTm9faODZOtoRTUOeBw3P5K/8wuf4j/7+9/lb31jlz/3k5RP/zGfFiSolCyH+iaIo//lJfgbIjWS6LJ0xbu4N6Y5SokQe4pbqDrYhK2OeKQ9nMxXJJuj4CbtD2W5ybspFV6UA8XLdZanuTKxrAVBkAiNI8geECw+yhDRVwTE1HPPRC9bS2D1urS0F7Eq2ziBOyXNBlBVcX6hyc2+IpavMVx0+3h6gKiqO7krBXNd4ZBW17pm8faHBZi/Es3Q6oxjb0Hh1scy5cYtGaxTT86Vl+DCWrRfPK8BqaOoDD2HF0RlEOjXXpGLr6Krs1U2ygq9cmKI1irg87ZHnBZYhnfXW2yFbvQhNUbh4oN0oyfcdTQ5vfI2SRW0Y88p8mawQVB0DTQFbz7m+WKbiSFenYZjyye6IMMlY+f+19+Zxkl5V/f/71L519T49+5JJMslkDwlJZA+7gAQFQUUEVFxB+QlfUFD4iV8BQVFAUUCIrKIgYVMWgUDYCZCFkH2dyaw90z3dVd21n+8f51Z1dU11d1XXU8skz+f16ldXPfU8957n7vfccz5nLM7ejUOct3WY2QWL9LRtLFFTNhyZz3EsU2AsGWEqHWM6k7foL2rv2eiqVx3su4loKMhZG01Rt3kkQa5Y5K7DWbKFMsGgWSvlShXSMSvvktrm88SC8ZINx8MtE3p3gk3DcSZTUYZiISYeCDObNfesbKnMRCJMOmoRnhIRi8hYKCnZQplCOU+htPrJa75UqbmlrXSynYwEmRqOEpgXztmcYMd4nJxzB9o3a9HIZhaLHM8WGI5F3ImgTea5kkW8K1eUR+wYZSQRIRkJsSEd48SiRdWqnjathIou8Uusdvq+MR3n4GyeVCzIpTvGKFWUmYU81905Tb5c5mgmz2K+RCIaYj5XZDgRIRQKkCsaV8d8rsQ5m4dRhUDAeGXikSDZvHFeNYbABuduOBJn03CMu45mWCyWOLFoPC9VxVQkFLC2VCwznzclYLPoWTftP8HPDswRDAp7N6UZSUTYOZFy0UHFKQhCTKSibE5HbaMxn+OxeyZP2hTO54puzAwynPT+9HEoHubp527k3M1pCiXlxGKeq799P4WyopgL2LaxBIIwGreACDMLRb5z93Eet2eyJ2GzR5wlXioW4u4jWUKho/zs4ByLFbNem0xHGU1ECAWdJUuxgmIWAccX8jXi6kak42Emh2OcMWlWBxPpGIVSpXYSmCuVjSewooQCVv/H5gvM54tEg8YHdu4WU/48cHyBheksO8cTTKSiREJZFgtG3F4oG0nxYqFc40rrFNU5JRoSHji+SLmiTA1FOejCvM/nSjUOteOZAtmCueiMJ6NcuG20pjTJlyrkiiU2jdicmc6VSEaDhAMBNg1HeXBmgU3DMbaNJ5b6jRqZ/7axk60Fm2HraJx03MLVLxYqXLIr4EhqF8jkS+6gwCKpCkFGEkHS8Qi7J1NEQgHuPpIlFQshoubeJcpQzOb5B2cXCYeErSOtn27vGE8yFDOXpAdnF9g8kqBYto2OADvHjcPyzsMZYhFhPl/i6HyBQGCevZvTnL4hxVyuyIYVoq+NJ6MsjJZrpOmLRXMJHE1GOGfzMJFQgELJrPXmchZS/YSzDK2ifp00nopSKFv00UVnPT23WGJ2ochioUIiEuTCbaM8MLvAQq5IIBBgsaBsGI5QrphF9oahWI242U69hcViiUgoQixkLivbxxMUShawZqghEtPhuRz3TS/glffuUCzEkXn7HAoG2DFuh0PpeJhdE0lQMd4krdTmvU1pi0ImEmB6Ps9900Wm0nG2jycolZVunS0lIqEaBQPA/9x8gNsPZ2z8HragFWPJCPcezTC7WKJSgQu2plHUuasJx7IhNg3HThrfQ44TCKBcrjCRirFnKsU9R7PEwiEaj0QtsnaRI3NGDxFwVhUZpzgslpW9m4fZPppg43CMhWKZ/TMLRIIBUtEw6XgdtUVQatyxRzM5fnzfcWZcdO1j2Xwtil49VJWgmAV0yilKY5EgqWiYcEgw/YQwHAtRiYbIlyrML+b58X2zDMVDjKcibEzH2TmRJB4JMjlkB16pqFEC1M8nVUU5wJnjKTamLcCDRQCndsBGwJTZW0fjFnW4pBxbsDWMkcJn2D+zSKFcZrFQIR4KMTUcZSwZo6JKfNc42bx5ewQC0pQQOxBYqifFFLUbh2MUyxV+9MBxopEgG0JW3qmIWVdVFVPpeJhs3lxwvUY6FubiHaMko0GmMwW+ePMB7jicZT5XYjwVZiQRJhwIMJEyi6Fc0aJtRjJ5VLWlYDsPzi5yZC5HJleiVIGxRJggSiQYpFguM7dYolhRto7G+flzN7FpNM45m4e7SpOhrmdU9z75YoUfP3Ccm/fPkS+XmRiKsX0sSDoR4vQNQzxi5ygVbO1n5RFlPlemossDMq3FH9oJMnmLfnvv0QzRcJBgMMDkcISjmQiRkFnmnrdtmAABdk4mOJYpcsbkUI3TLOCaz1DUW6+TQEAYiUeogC3S3etfsGXYPApyRR63Z8OyMTDiAitV++uN+2a560iWfTOLXLJ9hHTDnjkZNQVgMCCMrcDjPLNYYDqbr0UcDTlu4jmPKSxWws+ft5En753i775yB089Z+Myb4lBgteufL9Y9zUAXAInzTueI+o2U2AcKeFQkJ0TSWJBYeeGIc7bMsKo4w5JxcLkixUqTpt5YqHIhdtHmF0oEg2FSCeMfyoSChAKCouOqDkRCbFjvHln2TAUIxq0CECtbGLCQeOGuu9YloBTkE2kolQqFcKBABuGYpy3ZZjFYtlMfEsVMrkyuyaTllc4sOqAOJqMMJqMkMmXmM8VSQnLOkk6FmZmsUA8HGL3jiG2jMTJNpmgO8VIIsJQLEzAuRxuGTVy6fFUlOF4mIoqTzp7it2TpkG//XCG6+8/zvxiqWYSWcXW0TjHmpD0TaVjzDr3uen5ApNDtpgIBwO1zfp0Jl/jaEFgJBnlUWdMcCxbNELIiSR76vz9j87nqVTs/1Q6xngqwrFMgQu2DTOaiHTVJ3stGLHzKIfncsxmy0wKnL0pzeRQjMVChUfuGuVnB+e5f3qBWCjAHUfmLHpjrgj0JtpKKBjgrI1DRALCbYczJBfybB9LcMaGFCBsH0swmozwzTuOIgj3TWcZioYJjcWbuuhUkY4ZOX6prCuGqxYRLt05ztH5HLGQ8SjccSTLTLbErvEU2ULJyNgLZYbjAdKJEDvGLGLTltE42XyZfccX2DFuZvLRkJ3EJyPBGh/QahvVYMDa+XyuuKqSbSod4zFnTLBYMKXQvdNZ7jySYTwZrUU2vPNwhngkyFAszJlTQ8zlC5w5aYSRDxxfYNtYnDOmhggGbCwLBwPsmkxSUW16ShgJBjjbnQ6fvTHN9FyBWDjA0UyeqQaz91g4yJ6pIRSaTrBzi3aiWixrLbw20NRCZiQV5ennbmJ2ocBYE8XTWDLKrrEk2YKRYHYDiUiIPRvTlCvKA8ez7J5KEQ4JqViYS3eOsmU4welTKQ7MLHDtHdPcediUcvdOZ3vqj797cojto0lzCSuUzTJoKsn4kAW5mEiEufaOaeLO3ayiBTamzUW5mdWUOjfTnZNJptJRLts1zs37T5CMVJhKx2uRLXeNp9g2GicYDBAJBihpha2jydrhwMyCuauDWbiNJSNcftpYjcuuSpreDXejmYUi28dMoXD6ZJJ0POwUs+kah1rOzenlijKSCFMBUtE4oaCNL9l8hVgowEQ6yt6z0tx+aI5cqcJwPMIvXryV+44tMJGMkI7bmmCxWGEkEWlZKSliFj3pmG1Uq64MIgucPjVEAChVIJO3CJXDsQjBoJB3oeQv3TlmSkcgHgmRjIUYSYQISpD5XImZTJFYqLDiuNcMY8kIdx6pMJaMMrtYYDIVrVkDbR1LsHkkwVmb0hzL5EmG55nPl9g5niSbM+uzyaHUinyJw4kww4mlfrF9LM5crkAoEGD/zELthF+x8PbnbR1mNGFWqW9vll48XJtXbz80TyQcZHahyDmb06YwToY5e3OaS3aO8uMHZlGMN8Q2khU2jRiXVTUoREUhHjbuqHg4SLFSYSQZrikyS2WtKaqqCAdsPlCPjD5i4SBnO45REWubk0NRNo/EqaiSjNnmZDabZ9dEkh3jSbaPJyzqb94IeePhICcWCwzH0z2z3swVyywWKwhCOBjkqedMsSEdo6LwqNPH2XbHNMlIiL2bh7hvepFSCW7cd4LLdo1zaC63qntxxHExhoPCVDpONBw46RAlXyyzfcwUq9GQ/Z7JlXjg+CIVtX6WCAdJJ8K1YCHNuFwLJbOsGnIk6KWy8ujTJ9k8knFk2ZGm81XeKS7BSJuH42F2jhu/ZKFYYUM6RihoXgKLhQp7Nw9xx+EMW8biBBCy7kCqGtUUzA2wGnFx58QSR1M0FKxxTVUqSiIcYveGMNFQkAeOZ9m7Oc1CocJZG9Pm9hkLWxAXYPdkinyxQjoWJl+uEAsFSYYDXH7aOLFQsLbnqY6J9ZtuWAqaEg0HTlJU1EdTvePwPBduH+XGfTMMxUJEgkE2jcZq1o1g0atHHddXt7BnY5rTK8q90xnm8yXCAeHcrcOkomEmh2JcunOMT/94P+WKcvd0lkJJa0GjVrOaKpSM5uTgiUX2zS6wdSTJWDLMxdtH+NEDs8wvFrjt8Dxzbg926WnjnkZSXQmRoBkhVJWIkSAcOL5IoWJj+sXbR9k0asr47eNJRhMRHnX6BMcyeUYSEeKRpai13ebKrGJqKMqP7ztOUMzF+9IdIxQrZcYTMeYLJeKRIBMpU5YOx8JsH0tyYHaRgAgb0zE2OsWo1/LGw0E2pmPsnkyidXvnXAmevHcjFbS2Nq6icWzIFStUnDpjLlc6STE1lozUAgs1mzcLpQrHM0V2jSUpo7X+uGUkvq7oxeuBiPBXV53Lk/7uG7zmUzfx8d++vGdtox14fRT8rLrPJeA+4Nke57EiCqUK46kIM9kCiUiIDUNRRuIRRIybZsuIhbpOx0PO1C6CYOa0U2njoaj35U/HwqQ3taaEaAyRvhYCAWE0ETFi41iQLaMJiqUKkbCQitgpwHy+RDQYIB4JkXXkhw8cXzAi5g0pFFPKraSkCohFNooEg46s1BAJBThzaojFgvFoNW5KvUR9Bx1LRpZZVcXCQcKhIGdMpdk2GmfbWIKj83Yylo6G2Xd8geGEdfZEJERirHlz3TGRNH6U0TgbhmI14tj5XKZGBr1tLM6FW4cJBMVCz0bDHJqzk/dSWVE1a6yAGJ/UgdlFEhGLjlaNoDUoCAaES3aOutMF4bTxBMWKWc5MDsXYnC2xkC9RLleYy1UoVSyKY6dE9+1ARNg2nuQp52zkwdkF5zNuPAg7JxJmaj8UdZF6yoSCtvktlU/WY1dUWSiUSERCLdXDsUyeQ86qwvjPBBFzM9k5mSSAcMVpdno5ljRF13AixNH5Ys0nvBqmun6jvdpiRNXGkaFo6KR2vhIOz+XI5sscmc9TriixUJCclp0FUpiNaSP4HYmHEUfmWyops4tFRMxvfvtYYtmGpVmkwmZIRkPs2TRExm1Cm2E1H/RH7pogWzD+trM3D614XxUH53LkChXK5NjboOiZHIpyztY0QRG2jna3nwXdqfDjzpjk0FSKqXScZMSigo0nIywWyuwcNx6UbMGs5HqNcCjAY86cYDJtEdOS0RDjSYvAGQuZWwwKmUKJYMA47pr1G7B+WCwr5Yoyky0SDgU4Y2rI2vcGI9p+4tlTbvEeYt/MIhDi/C2jyzbt6ViY484Ns9rGEpGQpxFkVkLVqmAoFiYZC7O3Qbm5ayJp1l9Fi0C0eSTONvdb0UV+K1XMhWXDcJTj2TwPHF9E1SwqtoyOMDkUq81VC4UShXKZSDDY9qLNosFafxxPRtk1YREBt47Guey0cX528ASiQiwSQFV4cGaRyaEI8/kSp00kScVs3htNRDhjKkUkFKxF/lxPUI2haIRUNM+QU8AePJEjHlk6yAsHzVp4x3iSQydylMoV7p7OEgsFScWK7JpIUqkoxcrKbn0mW4BoKEilsiRnLBwk6g4J2wmjPhQzF9NQUDh3wwhTabNaG0nYAcuhEzkqahv8x+6ZrCmawgHhxGKReNh4zzIuEmz9QUepXKn1lUKD9fX4UIQNuSjDMe82nfXtp15hUypXiIdDlCvKnk3DJGNh7j6S4axNaYad4rVYqtS4tmLBAIuFEvEeWG9GQ3awFAwIk6kIZ20erm3si+UKl59m0fFGE0HuKmcoVcoMx0PgLDgLpcqqCuqJVJSxhHH4lcp6kvXOeCpKvlRh82icTekYgYBw26E5U9QG4PTJFFPDsVXnukyuyN1H7eA3GS1w2mSKoAjhUJAdE0kEs0Bq5i4UCVp0zMVCuTbnz+ds/EkNL+V5xe6J2ueRRIRCybiPHuHcgcHWEaVKhXx5yXq6uMJY/eDsorPgt3ecSEUZ3jXOg7OLFuVShHAwwKZ0nJ3jCTLOPSodD7N/ZoGgW1tlC+b+OBQL8eBsDkFOauvFcoV7jmbIl8w1cM/Gld1EY6Eg+WKF0yZTTvlkvJONa8leRLQNBoQrdo8zEo8QD5u1UCxkEXbDQWHrWILj2TwLRTv4PprJc+YKXL9VCMqxTJ5yBYZiEdLxIJtG4kymY5wxNUS+WGHrWJLZxSK7N6S6FsGu2btWXWOL5Qr7ZhYZG4qSL1fYmI7x7Iu2UKoopbLWuHfrFfzQO4UUVIMBKcWKOo6vOGdvHiYWCjCSMHqLR+4aYyZr69dYxAwI1uJw9ALJSJCLto+wedT4BavI5kscdvvA+fHSqmv8J501RSwcZDwVWdH7ZLVxLxQQwiGzphpLRVY8gO82ptIxXvfzZ/Pa/7qZ93/rHl722MFz6fOaY+olXqbXDkpli6yGGufJxnSMfbO2oDswm6NcMaLln9s9XhtQA4hFw5EAZSmzcThmBHI9wkgiRCKcYM+m9EknFvtnFpjJmlngjvEEx7MF44QJieORylCqmLvcSh07EQmxazJJqVw5ycrntIlkjaS1X4hHgpwxlULVFrEjyQj5Upkv/vQwmVyRH947QygU4Lwtw6suamOOr6GKKoGzOmLqVNSsJXaOJ7njSIawiw63eTjO7YfnGI5HmM8Xa1FXto7GiYYClCvKobncQCmlqtg4HOfp58ZqbXmhYMSb2byRfaeiYWYX8kRCAe6dXiAaDDIUDdfM2nuBSCjA5bvHUTXCwKprW6mi3DudZTwRJZsvkgwHODyXJx4JcOP+WX5u9/gypUi+WOHuI1l2TLTGF1CqW4gMxUIsFiLoCJy5YYiRZGSZgq5cUe48Ms+hEwVGE2ES0RDHs3n2HV8kGBDO3jTUkjIvXypz//RCW1G0qnJW1DZFuWKZ3RuSbB9L1qwMqzgyl+PwXN7cNkdiZHIlDs7mEOGkSHytYsdYYt1jwMRQlOc+YmtLZaOqbEzHyObLTaNNHc/muXn/HKp60qluN5CIhLiibh6o9h0Fd1IujCTCHJzLETpwgj0bh9iQ7p7yvhm2jyfNvVDENjwVJRQUbj80z1gySq5YYrFobniH53LO5TR6koVPsWyK6UOzi0RCAR6YXuCiHaPL5oOqGyXYKXyVuL8eyWiIvZvSPVNs12MoFjbLmRXyTjYoH+oRdlaCuyaMI7IadTIWDpgpfSDAHYcyBINLyjec5dXGsdU579ZCIGBuRNXxpuiUEaoQjwQsVPdCnpnFImOJCFtHEwQCwoMzCxw8sWjBT3aPs2MigSrrstTdOZFgoWDWIZtG4myqW1Afmc9x+ES+NoZMDkW588g8+48vMpYMu+jANj4WS8pUOrpiPwg2cJeAKSCq9AntWNJtHokzkggTCZqrQ72CtKKm4FksltkwFCMctMi7mVyRe6cXmM8VjUfHRVxuXDeEggG2jcWZz1kglf0zC4wlzTLuwGwO1HgPu41QMMCZUykKZVPubxyO8Ygdo4gYYe6JxSInFgssFitMZ/N8465pEuEgj9w1xpbRRNe4psDmnb2bhzm7SX8PB+1Qs1g2su90PMzMYpEtwzHuP5bl/mNZ9h1f5MqzNqx6sHF8oeDW3nrSu9RvyKtIRkJMz1vE1x3jCWKrKOiOZwvsP77AvdNZNo+YhwHYAYh5QhjPW3Xd2YhAwKLbVvvtTLZQI2VeaQ0SCwd50t7lYdjr+85kOkIoCPmiklwpcEt1PVCxOtg9meL2Q3NsHI6bhaDA3s3pmlyJujEvIMadc9+xBfZsHOLBQpkDs3kW8iVCwQBbRpf6baViPJj7ji8QEDuoKVdWdhPdNhZnvBDhrOAQ83nrN91sf2th9+SQ8QW7AB3VPnT30QzxcJBYxFzAHzi2wHQmx1Q6yiWOtLoZ9s0ucv/0AgdP5Ng6atZw4WCAE4ulZfuTXh7sNmL/zALfvmuaxYJFbXz2hVs4Y2po2fv3E/O5Ij+85xj7ZhaMGmcswdbRONtGE4wkbN9RLbuJlI2vvQrKBBas55YDcxzPFnjiWRupVmMqFmKji2SZWEOereMJnj+2bd1tIBAQTp9MDUR9Pf/SbXzjjqO8+X9uIxkN8WuX7Vj1fgs8kWekR95CXrvybQXeBTwKc+H7FvBHqrp/lWcuA94BlIHrVfWVInIC+Im75RdV9fhaeZdVa9YOI/EwM1okGQ5T0Qq5Yrm2aW+0ZKgqMSLBICPONLhSUfbNLJh7z0hi3SbU2bzxwTRblNnpJAQCtvhTVe4/luV4tshpk8kaT025YiGS1ZE5qlDjnbA8lhZRZRcRoboYtPcKWPSDhs4UqIt01k80LhzDoSCbR+McmIGCCwd9+6F5RhJh5hZLjKxhmZbJlxhNhAmIcZ9UBwA7vQ0QEBukYpGAix5hJ2OHTuSpVJRSRR1hqZXXSpYIYJvYw3MWuakfyqv6Oq2+Z7FsYUcnh6IEA7DveJaZbJ5cKclPD5xgOB5mcii64qldN+WsTkQnHKdCPBIkHBKyhTL3Ti8QCkY4dCLHzftn2ev89+vN/IsNxJqVioU2jkUCy9rRZCpa416KOY6ZeDjE7GKRkWRkWbllckXuOZolKGJcdO7EDUypWVGoHrBUXJjbZi67Ve6rxpNJsEG9XNGTTIO3jyU4li2QjoV4cHaRWNhI1huVUsVyhZ8dnCNXqDCVjpJyvBbVfOsVcapGqkidZctK6HQMaHWCFjHlerZQZqKJK9+901mOzOfc58y65WkHzfpOrlh20WqSHJzNUiopB2dzFnY5EuJErsBkKtZVd4VmMlbnj3ypjKpZxQ3HQwQlwF1HMjZfHV9gKBri7M1pIqFArX/nimUmk1EqzprhnqMZztu6smticJU24eWiPFcs16JprYVSueJ4Tdrjrjo6byHGx5MRxlPRGj9hOhaqWU0fnstRKFXIZkss5MvMZIskXISqVDRUm5s7Qb0SvJpUKBBwhNMF8qUKE0mzkI4EA5QqSkCsDjO5EjscD4S6sPGxho2h1kW/a4QRgJs1WdWlJZM3fsJMoUgq4tyc3BgiCJuGYzU+kGK5QtGROGfyJSZXkKFUrjhOsOXz+XrXTist3Kvud6VKpWbtks2XyDrS3Pl8kbAEqFQgVzCLo0zeNnNVhdmIc8e/5cBcLYrk5pEEmVyJYECWuSZ3EyGneKui2k6CLsLr9vEkxbKSK5rr1qETee6dznLT/tmuW5bWy9OIcNDc63764AnyJWX7aILxVMQI6edytYOn7WMrK9Cq6yoRWTZ/rYRMvkiuVOb+Y1mCApfvHmco1py8uViuIGLteCgWYpuzVBORmkVEqVxB1hhLqmkXK0vtobxCP6tGYBQsql84GGB+scjcgrkvzWaLFErKYsEi/p4+dbKl6eaRGNOZghG6uzE/GgqiRbMeVIW7jmQIBowOod5Cqbr3qR7GZvIlMrkCdxzJcMHWUY7OL7nRl9WsbCZSUXKlMltHlyI3V8eS+j2LyNKcMBbq3cH9aqjWTX0fKpXNdW9qKE44kOeGfQUSYbM43ZCKMpqMkIyGUTX2plK5wrFsgVsPzDGXK3JisciZG5NsGrb6K5aXW4n2WilVLFe4af8sKBzLFhBnMbdlNEHY1U/jGNIPLBRKfP7GAyzky2QKJYbjETYPm7VZMy6zXiqkqsiXKhzNGI9tvlgi7jisxpMRyhvMeKPZoWkjOm0Dg1BfYO/xjudfyMKHf8TrPv1TrvnJgzz1nI017uoTC0XunrZgCnceztT0Da952lk9kc9rzcQHgY8Bz3PfX+iuPXmVZ+4HrlTVnIh8VETOA25W1ce3k3GVGDCTLzE5FGU6M0uhXOHEQoWtY3FQacrPsMVxFyWjodokmikY8SYYUXirFhD1OJaxRcT+mcWmi4jqwC9iC5GFQpmfHZwnXzT/9it2WzSdVDTEaDJCRZVCucJkKkrIne5XF91V3DudMeLDSJDTN6Q4eGLRnTIF2D2Z6pu2vx1MpKKMJ6OEAmLm3oUKdy9kODqfZzwZZccqUbuqViUiNHUdKJQrtWgIU+nl5HSTQxFu3n+CgjsZ3joaPylqSbP88sUK+WKB8WS0q+GcW4VFvjFT2lQ0SLZQ5vQNFU4sFiiUK3zrzmlGk5GuhbhtBcOJMBvLjpQzFODwXI6zN1to8yPzOYrlCndPL7DHhXKuRnhrVCrXm76ftTFdW6gFAlILFVwqVwgE7BQy3KR+soUyiXCQxZK5tYKdyB/PGgFpNc1S2aKXPXBskcl0lHM3p5eZ/ZqrSfikMSaTL3Hv0SxgC8/6wAkxF54dIBzMUyyVa9G96jGzUCAZDVrYcMcHMTUUJSA4wlcbxlWVWw/OccfhDCNx42SZ6rGlTzPMZAs8OJMjFJQah0A9YqEAhbJxBCUj/eNvq7r8LhTKXLprjIXiMUJBIRYK8q27jnJi0Tjpzt3SO86pekRDS/JNpKIgGbaOJcjmS9wznSEUFKazeXZOpGrRbdKxMIGg8asEgwHCoYDnIb3bRX10zanhtcehe6az5IuVWnSiVlEN5X5oLsd4KspQLMymkViNo+7QXI5C2ZQXW0fiKMJ4Smo8iCJw68G5Tl51Gerb10Qqyv4Zs1iIBIMsFMo8cMzc9LeNGuVAJBRY5ma/77hZe4WCwp4pI7NXVe4+mq3VdyNCgaV1Rth9vnHfCY7M5Y2bbsqipVXHkM0jMQplU/pUx77JoSjZghEh759ZrBG87nHuXnO5Yk323ZPrs95sB/Vj7LFMngPOclQEAgQoqpKMBomFAzxw3Fxxj87nllmcVTd5hVKF2YUipfICxUqFdDzSFo9XN7FlxLiYto7GOXBikUyuxN1HM9x2YJ5Uj9yJVsJCoUwkGCARCTCWjLJn4xD3TGcple0g+O6jGR6cWVxmoVePKql+MCAtWQJuHo7zpblDZAslbtx/guGEudM0W5tPpKKUK8qGQJQNQ9GT5tP5XJH722ivE0k76BJhxYPRmYVCLQKjuR2H2D+7SLZQJBCEbWMprr9vxlw0K8ZV1Oj6Fg0Fl3HNLBRM4Tq7UGDvpjSlitb6+YnF4rL10OaRONOZPMmI8aqNJsJ8755jzC4UufPIPBfXcTeG66wGJ4eiy97/vmMLZHKltiy/BwXbxxLMLBRIx8PceRh2TSYpFI0/6vr7Z6lQYed4kng4RK5Y5is/O8SJhRIzC3YQuX08waaRJKdvSNX2Wv1ENXjEsWyeiWSUzcMxiyg9NDhjFFh7//bd0+zdmGbzSJwdYwm2jiX6usdohNH5VCirEgouVzZW99zFsg4sGXg3EAsH+cCLL+Wj37+fD3zrXv7qC7cu+z0cNKvNR+wY5QWXbmPLaJzzerT29VoxNamqH6z7frWI/PFqD6jqobqvJcxy6mwRuQ74NvCn2uKRZZX0G0wTWlGIhoUdYyuTeEZDwZP8ReNhIzIvV5qTCLeCgpugjbvoZPGn0kbMHQnaRrNc0dpJfCQUcIvYpYmhMRJgMx6b6klf1doqkzPl2mKhQqmiy3xrBxVVE2awTcvB2RzHsnnmF9fmSKq3IimWlcbD+HJFSUZCJJ1v81jSIkUEpBoBysp4oVBmyyoEnlWk42FyxbxZ/gxI2YosRVbJx43EdPOwReJ6YGaRios21e9Jozqxqiqnb1jiO7th3yyCcHzBIqoUSnYSv7EJD1rVOqlSsVPCYJMw36FggNM3pMgVK8vIOqtIxUJMDEUJiNT6WCx88piQK1VYLFh+i/nySWGRm7kfwPIT1tVOhneOJ8nkS03N/FPREPFwiG2jIU5zUUJDwcBJVnqmdLUxZ6HYWpj7XiCTt3GoVFYWnfVqPcaSMS7YOoxiLo39hEXHsyhfFYSIGyfuPGJkqqXKUmTIfsoHGJGnmtXgvUczhINBxy+ypKQIBIR0zCK1Hs0UOHvjUMtcP91CsbxUhmu10eoYALRtyTIUC5m7Ud0cXj/ulcoVYqEQW0ZCnD6VcpZKS9Y6xzJ5z+u6vv6G42G2jiaooEwko8znSuY2Eglxyc6xk56tupiVykpFLXpfuW6z2gy28TSXxar1UjWoiLnfJZe1h8Z1BrBs7D1YNsvGcsUs1IMBIZs3uVWxUO09PBGvzgGqEAwsyTrh3LaqURKbkVyfNplkoVDmeLZgXHtuLdiPE/1mCAbExvhhOGNqiFyxzBdvPkg0slCL2NUvxMJB4pEQQRf5WhX2TKWZHIpahCkVF3W3eZ+tPzxqBcOJCJftGueu6QyZxRKhVSzbggFZNQJxdY5UtbXeWvVdH61uJaSiIY5Ivva5UK56OVjwnJFEhM0jMeZyNsevtF5plDPigvgEg+KiNeIi+y2XORIKLHvnRMQi4o44zqGdDXQf1Siw9VDV2p5hPud9MKRuoz7K566JJAHnPj2fLzKbLbGQV/LFCjGjQ2OhUCFfMjL7oXiIiWSMTQ2Hh/2ECI7wPsKGdJSNwzH2bLQ209/efzKGoiG2jMZ55gVbesI11i6ioSAXbhshHQtR1gphltag83nz4KiuUx9OCAaEF12xkxddsZMj88bNXKUN2Dgc65vLrnRqpr4sMZH/Ba4GPu4u/QrwElV9YgvPng+8WVWfISJjwAzwz8AXVPWzTe5/GfAy93UPcHsLIk4A0y3c1400LgZ+3KW0vcAEsJ21ZWwlnW6+w6DJuVI6rdS317K0m2Y7MraaZrvwSs5e9p1mea0kY6/karUcH2jhvn6h+g6nQrvst4zd6N+d5NVJWuuVsxO52n22mYz9XE80e77VcjwV1hmDOp638myv7l1Nxm732XbQy3mnm+tzL/NbT5r9mnO8GCu9TN+L9NaSsVvjTzvp9nu91qqsna4zejGP9ns/1kq6varvTt9vh6pOeiVMU6iqZ3/YguOzwFH3d417ibWeGwO+CWxsuP504M88lO/6QUijH2n3Ku9uv8OgyTmoberhlmYv+047efVKrlbz6ecY0y3ZBrldnirp9SqvQUlrUMbtTtNYz/OnwjrjVGnf3ZoL+tEuupnWoM2Dg5zfoK2JTpU1vZfpdeud2033VBirByGfQRvv1ptuL8p8kPcA1T+vo/I9APxCO8+ISAj4CPBqVT0kIkkgp6pljET9Zi9l9OHDhw8fPnz48OHDhw8fPnz48DEY8NSBUEROE5HPichRETkiIp8RkdPWeOx5wKXAW0XkWuB84IeOY2ob8EkvZfThw4cPHz58+PDhw4cPHz58+PAxGPCa/PxjwD8Cz3HfX4DxTV220gOq+nGWOKmquNhjuap474Ck0Y+0e5V3t99h0OQc1Db1cEuzl32nnbx6JVer+fRzjFkL65VtkNvlqZJer/IalLQGZdzuNI31PH8qrDNOlfbdrbmgH+2im2kN2jw4yPkN2proVFnTe5let9653XRPhbF6EPIZtPFuven2oswHeQ8AeE9+/n1Vvazh2vdU9XLPMvHhw4cPHz58+PDhw4cPHz58+PDxkIDXiqm3ALPAv2MRLZ8PRDErKlT1uGeZ+fDhw4cPHz58+PDhw4cPHz58+Dil4bVi6t5VflZVXYtvyocPHz58+PDhw4cPHz58+PDhw8fDBJ4qpnz48OHDhw8fPnz48OHDhw8fPnz4aBVek58jIucCe4FY9ZqqfsjrfHz48OHDhw8f3YGIJIFRYFZVM/2Wx4cPH6cO/PGjNYhICNiDKyvgdlUt9lWohxm6XQciIsAUcFRVy16l6zVO1T4rImeq6h0dPH9KvvdDFV678r0BeDymmPpv4OnAt1T1uZ5l0rosZ6nqbSISAV4GnAvcDfyTqmbbSCcF/C5wOTCCDVrfA/5FVec7kK8r6fYy726/g5fpe5GWF22qG2X2cEuzl32nnbx6JdcgytQu1ivXILfLUyW9FvK7EvhzYM79pYEh4K9V9X/bSOePVfXvReQC4F0Y72QIeK2qXtemTJuBP8PWFgGgAvwMeIuq7u/B817MHx2lsZ7nRSQIXOWeGa175hpVLbUi93rRqry9lLGTvNqZ/9t494FaU3jUzj0ZP1rIx7PxpV/5icivA78F3MBSWV0AfKCdA30v+1A3++Mgzo1e1UGTdN+iqq91/eHtwB3A6cCbVfVTTe7vaXtuyLtXffYJwBux+fdfVPXf3fVPq+pzWkzjpY2XgD8C/l5VP9CmPF1571bqUkRGVHXWfX4mS2P/J9UjxUw/5/+OoKqe/QE3Y4u+G933KeBzXubRhixfc//fA7wWOAv4TeDTbabzWeB5wBgQxCr3eZ2+V7fS7WXe3X4HL9P3Ii0v2lQ3yuzhlmYv+047efVKrkGUqVdtYZDb5amSXgv5fQtINFxLAt9uM53qePll4HT3eaLddNxzXwUubbj2SOCrPXrei/mjozTW8zzwYeDVwMXAbuAi9/0j3Wg765G3lzJ2khdtzP9tvPtArSk8aueejB9t1EfH40u/8gOuwxkI1F0LYgf6PWnX3Uyrm23Vw/bqSR2s0l6uBSbc5zjw3V61rzZk7VWf/Tam/IkBbwHeC4SBr7eRxg3Al4CXAi8CfgO4CXjRoLx3K3VZd8+bsfH/acCbgA96WN59m/87ktvjRvdD9/9HrvEJcEtfXqxuUGi4fm2b6XwbCDRcC3jQcLuSbi/z7vY7eJm+F2l50aa6UWYPtzR72XfayatXcg2iTL1qC4PcLk+V9FrI76vAZQ3XLqdFJU7dMzcAVwLXN1xve8EPfIfmC8jv9Oh5L+aPjtJYz/PAde1c97gdtSRvL2XsJC/amP/bePeBWlN41M49GT9ayMez8aVf+WGKlRdgm9aI+/8C2j+s86wPdbM/etlWvUrPqzpoku5tmPLk5obrTeecXrfnhjx61We/0/D9KuArOGOWNtL5BeDjwO8AUeC/B+m9W6nLurH/Gw33fKOTvBvS6tv838mfJxxTIvJu10h+ICIjwPsw5VQG+IEXeawDm0XkOmCsajLnzKWH2kznH4FrReQmzNRvGDgH+KcO5etWur3Mu9vv4GX6XqTlRZvqRpk93NLsZd9pJ69eyTWIMrWL9co1yO3yVElvLbwQeK2IvAVb5JdxJ5JtpvNp4DHA5+rGyyHgp+uQ6XXA50VkAZhn6dT1z3v0vBd10Gka63n+syLyeezUfg5778cBn2tD7vWiVXk/00MZOymPdub/Vt990NYUXqTl1fixFrwcX/qV368Cv42V7wgwA3zXXW8HK7Xrz65Dpm6OGYM4Nzarg+/Rfh004s3u/9tFJK2qc669fHGF+3vdnuvRqz77RRHZoar3A6jqNSJyD/A37SSiqp/F2ulTMKugjeuUp1vv3UpdXiwi3wT21t0TAFId5l2Pfs7/64YnHFMi8keYhnkz8O+YkmoWSKvqTR1n4BFEJAyMquqRNp8LAWey5MN8h3rgn9mtdNvMe9jlfed68u72O3glp9dp1aXZdpvqRpl16d0GVs5e9p12ZO6VXOuUybO24QXWW1aD3C67JeOg1mGvISJxXJmq6mIvn/eiTjutx/XIICITmNviI4C7gLtU9YftyL1etPK+IvIL2EHmBSy91w9V9WgX5Ilga9UdWFmEgZ3AO9XxfbSZ3orzfwfjW1/XFP5Yc2pCRB4NnIfV2Qngh8Bpqvr9daR1CdYGgthmPaCqH/FIzoGcG8X4qkaBGfUJsH30AGLB4sqqeqv7ngDOV9XveZhH3+b/9cJr8vMd2KT/Auw08uPAx1X1Ts8yaV0WAX4eG1S/rKoVd/3ZqvqZNtIZ0S4QlPWC+GyVvD0hROv2O3glp1dpedGmulFmXpbTqSBnL/tOOzL3Sq42ZRpI8sP1ltUgt8tuyTgodSgi71TVV3iQzj+o6h+1+UwKM9tvLIN2iMM7eb7jOu20Htcjg4h8UVWfJiJ/DDwJ+DzwKOBBVX1tK3KvF62+r4gcAO4HDmMnzZ9V1ZkuyfRpzIp/FFuofwE4Bvyqqj51jWdbnv9brSsReQXweVW9p4N38my86eZY49X40UI+bY8vg5Zfu2mKyN8CG7C2OQ68VFWPisjXVPXKNvP+V/exAEwCBzBriw2q+rJ20mqS9sDNjSLyROD12DuewBRcXhBgd0z07e7vaXtuyPuU6bNellO33rteRi/77Cr59W3+7wSeKqaWJSxyEfABTPsX7Eomq+f/EeA+oAQ8EfgtVb293Uqv3i8ib8Y0/J/BKnarqr6kA/m6km6LeX8YI6r/X2wgTmON9gJVfWEb6XT1HbyS06u0vGhT3SgzL8vpVJCzl32nHZl7JVebMnneNrzAestqkNtlt2TsZx26E71zgbu1zVM2MUuY/1XVBQ/k+CzwEU4ugxep6rN68HzHddppPa5HhrpnvgE8oU6Z8i1VfXQrcq8Xrb6viHxdVZ8gIruAXwSeBeSBz6iqp+6q1bzc55tV9bzG66s82/L832pdibmx3Ii5onwR+C9VvbnNd/JsvOnCWLju8aOFtD0bXwYxv3YgIt9Q1ce5z+cD78RIjt+6DsVUfVpt9ZEW0h64uVFEvgU8pb5eRSSJKZ8f1a5MdWl8G1Nk5zEF1RjwBy7dpuUoIudgFjS31V27XD20oFlF3kcA+zBF/TOBRVX9chfy6fgdV0jjMl2HdWCTtP9AVf+x03TWStfLPrtKnn2b/zuCekhYhZlFPwv4KHAI+ARwlZd5tCHLtXWfN2Ps+M/GEY61kU5XCMq6lW6LeXtCiNbtd/BKTq/S8qJNdaPMvCynU0HOXvaddmTulVxtyjSQ5IfrLatBbpfdkrHXdQh80f3/Y4yL4HcxHoc3t5nOAYwv5Roscs5oBzL1nDjc6zrttB7XIwO2DvsQsB+I112/vpU8O2xHLb0vTSIyYRGdX9YFmT6PWUe8CSPd/RPgJdU2v8az19Z9XnX+b7Wuqu8OJIBfwpSnPwL+po138my88WKs8Wr8aCEfz8aXfuWHucr9EvA24P3A24HnAqE20/k2EKn7PopZAx5eh0z1kcOeVff52nbTapL2wM2NdI8Auy2ib+BvXf+/2vWbyfoy6+Yf8K+YIcl7gE9iSpK/At7rcT4dv6OX5YRFZPym+7vO/R0Hvtnhe66Zrpd9dhU5+jb/d/LnFfn5k4FfAZ6BmUn/O7aoyHqR/joREEc4p6oHnNnoezHz7XZwsRg55dniLUFZL4jPVoJXhGjdfodGOYeBx65DTliZYLUdckgv2lQ32lM3CO4GWc5u9clmaIdUtFdytSOTl6SoXmK9Y8cgt8tuydhrAsuI+/8clk7Z/tmdLLeD23W5JcynRWS9ljDdIg5/T4vPe1GnndbjevrMZe7/n2OWPlW3xlZJ3ztBq3PuWxofVNXD2NzqNZ6HheW+G/hrTMEQA57fwrPtzP9ttRc1a41PAZ8S48xp58Tcy/HGi7HGq/FjLXg5vvQrv6sxsuWPs9zi52qMmLlVvBKzQDoCoKozzsLreeuQ6WUiElTVsqp+DkCMm+3v1pFWIwZxbnwh3SHAbpfo+xJdbkHznyLy6g5laBWn63Iruee6z1/3OB8v3tHLcvo0cD5wtape69L8H1V9+jrTayddL/vsSujn/L9ueEV+/nXgY8CnVPV4xwl6ABHZiRGczjZcf6yqfrPDtBPAuaraUcRB6QHx2Sp5e0KIJkaS+ABL5p8F4KCq3uCxnMOY//glqvqmDtMacWn9ENjZ6nt3q02JyMuxE6N1Bwrwqj7XyGNg5fSqT66Q9qNZJ6lot+RqR6ZO5O8mvBr/Brld1qXfkYy96N91eR3CrEGuBM5QRxIuIter6iVtpPN1bXBZEJEp4Nmq2rbSQfpAHL5Gem3XqYfzbtVF6kFgTlVvbDeNXqDTOXeQ4Ob/GVU9UXftDzGi9lbmgpPai4ic39h+xANXkk7Gm07bqFfjRwv5eDq+9CM/EblOVR/T6vWHIk6lubGbEHP9e4KqFtz3Ucwy6BJVnep23urcFkXkWXUKyWtV9fFe5kOH7+h1OTml629hRg8fA37PA8VU19J9OKBrHFP9htPCN8OXVPXJHaYjmLlyy+k0SbfrxGer5O0JIZoskSTmsXfxjCTRpX8dUG2g4v7vBW5R1ce2mVbH7cGjNOoVWNV3Ogf4abvvVJem5wR3gyxnt/rkCnm13E97JVebMvVtnFkN65VrkNtlt2TsRv9eI78ddV8PqGrRnbI9RlX/p410nqqqX/JIpq6QMtcvwte4r+M67bQe657/I/f8F9p5vtfwag02KGhnPdJqe1khzXbblWfjjRdjjVfjRwv5eDa+9Cs/EXkV8HhOtvj5pqq+zcu8BgGn0twoXSIdXyldEXkkcJ/WReN0897z1BGndwtinE23qWq57loEeJqqemZd78U7dquc3MHVrwN7vJxPu5XuQxmeuPINKDLYwlVYPvGf36d0GtFPs02vTK27bf7ppZlltR7r0W49etEWrsF709FumM4Pspzd6pPN0E4/7ZVc7cjUz3FmNaxXrmsY3HbZLRl75RoDgDrXg4ZrGaCtTaXHm7irMZLbdbm8iMhpzS4D/4fW3D6uofM67bQeq8//4jqf7zW8mHMHCe2sR65p8V4v1jit5tUKOh5rvBo/WsinZ0qpbuWnqm8XkatZsircD/wbsNPrvAYE1zCAc6M0IdPGrFw6wgrpfrzZvdrEqt4pirqqlHL53NLkWgGPKR+8eMdulZM74PpgJ2n0Mt2HMh7Kiqlbgedondk1gIh8pU/pNCIkIhFVLajqTSLyHMwc8ZwO020Fe0XkQ8BuIAosuuuxNtOpbz9/VvdZGm9cD1T176rmkCLyu3Q2UXhRjx2n4fE7VeFVfdYw4HJ2q082Qzv9tFdytSNTP8eZ1bAuuQa8XXZLRs/79ymInar66w3XfuIsTlrBDRipa+PctKuVhz2q007r8VRrB2uOhyJSxhSOVVyFbcpfparP7CRzd7L+doxIXYFvAa/ANrGvcbdlMBeLNV0h22kDrd7rRbvyeLw51drYKQ1nVXgci8hYj48BJ1kVisg4RtYNFsmxDBx13x/plAleyfaHGIH9boxgetpdPwvbaF8MvE5V395qmoM4N4pZb08BJVe+L1XVo8CbaY/rrdV0/7qTdH0MFkTkWiyww5fqrv0xcKaq/n6PZanOpyFs/v0NHcAoomvhoezKtwk41jhQi0hI2+Ol8CSdJun202zTK1eNnph/unQ7Mof0oh69bgtemXh6VZ+nipzd6pMr5NVyP+2VXG3K1LdxZjV4Idegtctuydjt/n0qQDp0eRGR72BcMEcbrn9CVVshvq5/Zl112mk9nmrtoJXxUEQyqppq+P3xdKiYEuP++QHwAlX9rogIFv3sOmwTe6sa2ezTgTeq6mWrJNcs/ZbbQKv3ejRWdLpOOqXa2KkOEVlgBatCVR1f49k3Apl2FENtynYRMIONuZfUKaY2ADswJfLMevMflLlRRL6hy6233wm8GnirdkB30K10fQwWROR3gMtV9SV1174HvFpVWz0461SGoKqW6+dTEfko8CNV/bvG+3ok07r3PQ9ZxZQPHz58+PDhozWIyFYset1eLDrR57HFVWEV65PtrPP0fB3yrZtIe6VFkohc2srzPrqDtRRTIjKGhTE/DVjAoj3fJCI3A4/B3DqngVeq6odE5MOYK9RjAVT1L9bIfxTjt9ni7Zv5aIY+Wcg9GXgTUMEiU/2xqg6E+6uI/Ai4splVoa7Bw1ZVTAFfxyLmpbC+8GJVPegsOX6CkYJPYlHm/hQLhPIJVX29GKH/F4HvAxcBdwAvqreyEJH7qFNMNebfzTG/F5AukY6vN91mY2KL+X0fsxobA+JYYAyAq1T1vnbTWyOvAnAPFuzqbuAl2hAUqhcyrlZWIvIm4NlYvz+C9YsDdb/fB8y73w9j7f7QOmQYB24Dtqpq3vWpb2IckJdi7/lJVX1DXb6fAKqBFH5VVe9yStYPYH31KFamD4i5+l6AWXd/C3i8qqbcPPkG4CBwoarubVBM/S7mNvsf9fdh/f8t2EFfFPhHVf0Xd5D0CezQLwT8HvAd4F+BS7Ax9QOq+g43trxKVa9367LrVXWniLwYeAZmsZgEngW8y+UZwg6BPrNWma5ETunDhw8fPnz4eBjAWZT8F0YmfgYWvS4F/F9nffKfwGtUdQ9wNraZGcLcUF6BbQi7KV+9y8u/u//HMLeIVlARkUDDX7CN5310B3ERucH9fbrJ7/8/8BNVPR+jC/iQu/5tjOT4HGyDVI1gdjlmgXIu8KMW8v9NPOY+8rEqFlX1wrq/+7xIdI0x6qvABap6IfBS4P1e5OkRnsmS+1k9WuVcEmzj91xVfQS2sf2/db8X1EjF/xn4DPAHWN94sdtQA+wB3uv62BzQU/ejAcArscMOAFR1BvgFoFPi826l2xSqeplr43+BKR497WMNKGPRps/HlJl/OoAyvk1Vz3f5fd7l2YgnqOoFwPUsp6NBDGvqSFT1GGad+zR36QWYgud1alFIzwce56zmqphT1UcC7wb+3q1F3g18yJXpRzELuyo+i1kXNuKRLp+9DbKHsDHk5ib3/SZwQlUvxRRnvy0iu4BfxQKTXIgpwm7AFFlbVPVcVT2P1riyrsBcCK8EXgd8zeX1BOBtIpJcK4GHMseUDx8+fPjw4WNtXAnkVPWDYGSiIvJK4F7spOzfVPW77jfF+JqqOCIiz+iyfJ0SafcyYIKP1rHoFsIr4dGYCx6q+jURGReRYcwl77HA/cB7gJeJyBbguKpmTM+6OkTkCdgi/dGdvYIPr9ChhdxqY1QVSZb6f9+hqgdXuN6qC0wUUzR9xbX5IGYZUUWVUuNmLHrkQQARuQfYhlme7lPVb7v7PkIPDhoGCdo9Mu2O0nUWMW/E2ntV0f5CTAHyElX95br7/kRVn9Ukjd2YFfQk1p9+W1Vvc1Y4i8BZmFvmS4DfwJQK31fVF7vnM8C/YEqFGcw1+ihG6F5yeT8DSIvIs/so4xeAn3f3n8AURS90rtovwSwHdRU5vgm8wlk7/Q9mhXgFcJWI/DLwy1hf+7SqvsEpV/4D2Ir1ua8DLxCRKzBetgeAC53yd6e7Zy9wE2Zl/nEny0tdPjdjUarvEJEfurzqA7bcjFl3NeIHqnpv3fe4iNzgPl+HWTv9XMN9TwHOF5Hnuu/DwBmYBfoHRCSMHVDe4MaJ00TkXa6Mv9xEhkZ8RVWP1+X1C2JUDGCWVNsx/qsV8ZC0mHKLl+op3CERebDue2TtFNrK6w9F5C4RUWfS1upz5TqZbhCRnSLyeBH5vAcyPVJEvikit4vIbSLyfhFJiMhZIvJdEcnXNZS10uplWX7UyfxTEal2kEGQKywibxGRO51sP3ADHiLyf0VknxscV0ujl/L+q4jcKCI3icgnxXzuB0GupuXo2uYXXFu9RUTeMohyut++6Mr2FhH5Z7GTjmZp9EzeujzfJSKZurHlpyLynyKS6EZ+XqDFseovelj3V4vIvXXpX9jic71sn+LGnTtE5FYReYUHyZ5Dg4WJqs5hC6zTG3/rA6pE2lfW/T0B+HGbzz9hnc8vQ4/r+4ki8mOX9rdE5PQBkWu1cfL5bv65RUT+ppNsmlxTbCPxGPd3Leb68FxsMQ5wC+bCtJLs52OWM892J96rC9Hbcr3S1fdPReTfxE6/B0GupmtdNx690/12k4hcvEoyfbGQE5HniMht2Obqpa298SkBwRROVcuT81T1KXW/593/St3n6vdqu2pU1HWsuBuQdvlrrj3eJCLfEZELvMy3R7gIU3TsxRQVjwK+AlwuS5Ynz8csdJrhvcDLnTXdq4B/qvttFDuQeiUWmfYdWP86r27dkwR+rKoXA9/AXMIasQd4W59lvBNr0x8CvlQnx2OwKLYvxCymVpLjmSxZF+3BLJcucp/PwCyOLgQeISKPxRRvB1T1AlU9FyPKfxJmLXU/8FSMy/CJmHL4xywn5K/2sUuBrLNkirJkyXQFEBWzZCqxXFdT33+yDe9Rb5H6cl3id6y/T7Dyrt63S1W/rKrfxBT8DwIfFpEXOSu/C7A59g9Ysjatl6kx0EBjXr9Ul9d2VV1VKQUPUYspt9C4EHriB/1tzEzw2jafO+mkUExb2xFkyaS5kfSz3u3iqlbT63FZfpSl0N8fA34LOw3tt1xvAjZhpqt5V8aPc799DjPBvHO1BHos7yvdphIR+TvgDzGf4n7LtVo5vl1Vv+4WLV8VkadrHXnlAMn5y6o65/rVJ4Hn0eQErMfyIiKXsGQ2XhtbxAgQfxfjoKjeOxAEiG2MVQt17/NGus9r8WpVbXbaviJ6XN8vxk67z1LVihgZbaeotyRqvO5JlNUO0anLS6fPL0OP6/s9mALlVhH5feD1WBvot1xNx0mxU+K3AY9Q1aNOufJEVf3qqqk1xzeBXwPeJHbCPO3mtjm3CY2o6j1i4eFfhc11YHPyD0TkC6r6fQAReSHwv9jC/r+AX1fVO1oRolflKuY68m/AE1X1DhH5S8xK4F/7KZfDSmvdp2ObtzOAy7D2uhKZfF8s5FT108Cn3abyTdgm8qGAPDApIle4OTSMRQO7pY00tlefB34F47HpCAPSLu8FHqdLQQ7ey8rtclDxA1XdDyBmCbNTVb8lIl8EniUin8Qslv5P44NiB9I/B/xnXf+I1t3yOVVVMWvEw6p6s3vuFszK5wZM2VNV5HwEGzfr8ULMkurdLq1ey4iT8etY3f6Tk/G7To4/c/PEEPDyJnJ8XYz37iZsXh0B7lfVqnX2U9zfT9z3FDbOXQe8XUTeCnxeVa8T4116JnYIdhVmpX0CU9xchI3rVTwfU6jfj3F0gVlE/Z6I/CLGwVVwed2HHbL8D8aft6LBRov4ksvna2rBAs7ElFETwIOq+j6nULxYRP4bcwf+lIjcDVzt0qjK9APsQGi1vF4uIi939XiRqv5klfuBh6jFVDOIyCNE5Bsi8iMR+ZIY0Rcicq2IvEPs1P5WEblURP5L7BTwr9w9O8VO8/9NlqxQEgCq+hPtgn+siIyJyDUuv++J808VkZtFZEQMx0TkRe76h0XkSZhWc5lJs6p+UlUPq+oRNaLXYoeydass/9vJq1iD39pvuZxsv41pmPNOzsOq+h/u8/d0BXPsPpZjVSklGPFeWydgvS5HVV1Q1a+7awXsdGHNuu9Tfc+57EPYBqflsu1WfYtZbb2NJhM/NoGeLmaN+XUR+Rhws4gEReRtIvJDl97vuLQ2OTmqFlePcfde7b7fLObiVZX7Evd5QozUERF5sZil1ueAL4tIUswC8oci8hMxk2/oYKzqVll6iS7K+HvAX6pqxZXbkeYStIVbMILLevnTmALsLlaxPukFVPWgNgmFvpLS0+vnW0EX61sxQlIws/sDJ+feW7lk9XHyNOAOXYqA+L84ZcM68EbgEhG5CTtc+Y26376P8ZuAjXNbcJtqVT2MnV6/Xcwa81bs9HwOOzkfB/7JjXPXr0ewLtX3OJCvU5h9hTbLrlvtcJW17rMxCwN1G7qRap7rQFcs5GoJmVXAblnDu0H64NFQ9/ulLv/VNnxVVLByeKuI3IgpE36uTZFuBX7D9bEx3GGwiLxCRPZja7GbROT97vpGd/3/A14vIvvdXLEqet0uVfU7ahYfYEqArbKGZ8Mqsn/ftYMHRORofbtYT3prICimePkay61RyiwZk3wCcy+7EvihqjZz8woAs7qc0+3sut9bsaZrRG29KyJVt7rr3Z6t3zJWf9cmcoxg5P+NcjzB5fkiXSJvb7T4eXOdbKer6r+68fkRmJXVm0XkLzBjihjG53YR5pp4C9Yfb3dlVj3oi2JKtM2YNRjAjRgJewAzdDhbVb8MvA87GH8PZkHWaCXVLt4P/Az4sYj8FHPVDGFk6DeIyE+wOecfsDn1WjGF49UscYm9HVNufQdTaK2EN2GKtJtcXm9qSUJVfUj/YQubV2Ps8pPu2vMxdnmwSe6t7vMfYYu+TVjD2Y8tFHZijf1R7r4PYIz09fncB0y0IVcZm0RuwPxWcQ3j8+7zu4A3uM9XAje4z/+MaX3PxXxC3+eu34lpc/8LO11dq0xe1aqsfSjLMKaceEy/5cI4SH7SggyZQSpHjKTuMHaSkOi3XG2U4whmqn/aoMqJnQLMYBNRsN/17Z55ZbUd4toiNtl8BlNkPB6b0Ha5314GvN59jmLkj7uAP8FIEsH84oewCfgr9XVUJ/cl7vMEcJ/7/GIn95j7/tfAC+vq9w7M/LrtsaoHZXk1toi4CTMbj7bar3so4zGMVPJ67BTtjHZlbCKzuPReVFf37wP+Fjulux+4rO7+FwIbV6qnh9NfD+r7Ma7O92MLynS/5WKVcRJbPO93z4aAT2En332vq0Gvb9cP72dpXP0H4OZ+y9WQz33UrXUxa5VH133/alX+JjKetE5i+br3ncCf113/Sd19d2CbYIDXAPtw8werjFGYK3I1AvnFmHWArFGWq8rZQdupynmF+y6YYmnKfQ9iCon/xgjNu92Wd2JRKU/J/rJau2z47VXYhrzldfoK6bwYsw7qZnllMReyG4Dr6q6/G4ssV20n92EW57+8koyuzJ9X19YucJ+vrravxjbQ8JtiFu1gFkXvcp8Xsbno2fV9otcyYutdBf4SG4dej+2d340FQqjKUZ0/f7kujZPaS5N8noIdgKTc9y0YF9RmIOauXQVcg+2/N7hrY5g1Z7Xc3lp3r2Lr5cc3lN3LXDph9/1MIFn3+7L7H8p/DxeLqXqCwBuwhlJvkXESQaDaKWCVIBBOJgjslDCz3hf0OU1+fzTwYTCTZqDRpPmxmAb1PKkzae5QplbQi7L8J+CbqnodrWMQ67hv8qrqS7DB81ZsETAQcq0GMS6NjwPvVNV7BlVOVX0qSwunK1t5plvyishmzJ3wXXVpVQkQr8c4gqpuII0EiC9y930fW/xVCRBfImZ+f57a6VKNAFFEnoZZHayFRgLE17q8rmWJAHG96Gbd/ylGtnkptrh4zQDKGMWIyi/BlEcfWKeMNaitfJ4DPE9E7sQ2gTngz3QV65P1np4/BNHN+n4l8POquhU7cKi55fZZrqZQs1L4Peyk+jpsA+CZZdqAoCvl6vrhC4B3iMgPMPeOdsquH/PiSlZO68Eb8d5C7peAn7ry+Efg+a6c1w3pgkeDS/rlmCLXCyvYQUI/15XVIAevqbv2eGep9UlnifVRV2dPF5H/aLjvcyuku1uMc/RHInKdiJzlrl8tIu8Rs1C/R0QeJ2YxfqsYoXf1+YyI/K0Yn9xXRWTS/aSqevtq76RGxfB5zI12NSu+XwN+U8ya7hZMkdQOssA5IvIjbK37l+56FDu0/FvgMSLyz32WcSfWHuplfJ6z0vkJNg6MriHHSVCzWPoY8F0xd8JPYu99HuYqfgN2SPhX7vrn3dj1DZYsod6Hubj/AHM3XGnsWcmSCRG5DlPwPdGtsZ7aznucanhIckw1QZUg8IoVfu8LQeAaWM2k+Q+wjd3rsM1EM5Pmz3RRrq6VpYi8ATOB/J0BkesuzAd/SJuboq4XXW+TapG1PoGdVn2wz3K1Uo7vBe5U1b8fcDlR1ZyIfBabRL/SR3kvwk6E7zIrYarm7Rcuy9x+a0aA+KWTBDUejmdgBIhvU4t+dAFG6PgHmHn2S2mfAHHZYsuZq69nrOpa39Elt9y8iHwQO2ldD7rZv/djmxeAT9N6314VqroPOClqjvvtuywRDtdjgTZdrteCGEdRlY9oI2ZdXHULe6Q2ccnrIK/rsAUl2EnoD1T1qvUkRRfq221WLlDHk4Qpe77Yb7lYY5xU1c9h/IuIyMuwOnwooZtjUK2vichTsJPzvsu1CvazpDwAGw+aupuqaqrJtWtx/EDuMKPpxlRVf73u83dooCJZZYx6q/trB/XRre5tcnhcJWm/SkSuxEiXL2SJpP1+lkjaP4SRtP8e8Pss55qpwR0wPwfbXF/aprzrgpoL3Lk9yKovezBZCnLwdFU9Jsu5yC7CiLQPsFRvXwH+RUSSqpplbdLu31XVO0Wkym9UPaisknb/AjYOPgrjzP2hiFyoqjewRCz+J2KuYG8A/rCuj8xSt/5Q1Sp/Xv33Zdfc9atxXEDuIPJpTe55cd3n+6hrA/W/ue9/Dvx5w7WmRi19kPGTIpJR1Rc1PH5Snk3S39nk2rJ83LV/wCxX63E35jnRiEc2SfMw1v+rqLrDXUsdL5oaNcOfub/GNJqNaw9ZPFwspvI4gkAAsWgy57SZxvbq83hEELgGqqSfSB3pp9s8TGDuG/c4OV7FkmLq3Zi/eI3kT0ReKCIbPZKra2UpIr+FbX5/xXXSvsulqguYxck7xUUTEePheWGbafdEXnfqc7pLU7CN5m39lmutchTjEhjGIpAMpJwikpIlXoQQFp621bLtlrxfUNWNqrrTTbQL7m8tfAnzEQ87ec4U44LaARxR1fdh5XCxGB9HQFU/hS1QqlGX7mOJ12M1PowvYQSI4vK6yF1f71jVzTGoWr+CmV3/tM10uy4jZu5dXQA/jiUrgocEVPWYOmtizHX9HbpkXeyZUsrl9Zi6vL7LyeSuraJb9T0DDIsRlAI8mTVCLfdCrhbG8w3u/yi2GX9/m3kOOro5BlXLLopZeZxkjdAPuVbBZzHrWxGRy7HIUuvi3Rwg9MOj4e8x96OHmhIX+tAuRWQ7qwc5+IGq7nd7jRswsuwSpvh/llvjPYMmB2eynLT7Bsy6ZVPdLZ9zVnk10m6XTyNpd1Xp1W0PDR8+Thk8XBRTPScI9ABvxGOTZvHG7aJrZYktwKYws8kbxE4RBkGu12Mn9j8TM7G8xn1HRP7GlWnClecb+yyvAP8mZnZ6MzZZ/uXKSfRMLlihHEVkK2b9txczY71BTEk5UHJiJ1yfdfffiJnbt7pp6Ka860HfCRA7GKu6WZYfres7E5iJ9nrQTRnfAvySk/PN2EnsQxrSZbJ7ERnClH3XrFPErtS32yj9NvApl+6vYxawfZXLXV9xXgT+QUR+hlkivGWFjeGpjG6W66vdWHgTtsH92iDItcpa978x66C7MLeV328zv1MR3SBpvwT4d7EgIs/FyPmv8kzi/qIf7XKtIAf1llkDRSw+KGhm4ThoOBVk9NEmdACIrgb9jx4QBD5c/ga1LAdVrlNN3kGV61SV81SVd5D/ToWyPBVk7FE5vJHeEOe+CPikX9+nhlyn+t+gluugytWHcug5SXtDXlfTA/LzU+XPq3bJUmCYWl267wNDLF5377WsEETA//P/Hsp/DxeLKR8+fPjw4cPHqYdeEOf+ChZ4wYcPHz7WwhvxnqTdxwBA+0wsLiLPcRZgVwBfEJFmXEY+fDxkUQ2h6sOHDx8+fPjwMTBwrtFlLCrdScS5InItZv10vRgX46tU9Zn1vwHTwDdUdYe7fiVG/P8c930c20huUdVcl1/Jhw8fPnw8zCFG2u27ofnw0QDfYsqHDx8+fPjwMajoNnHu8zC3Dl8p5cOHDx8+fPjw0Sf4iikfPnz48OHDx6Ci24EDXoDvxufDhw8fPnoE31rKh4/m8F35fPjw4cOHDx8PSYjITswi6tx+y+LDhw8fPnz48OGjOXyLKR8+fPjw4cOHDx8+fPjw4cOHDx99gW8x5cOHDx8+fPjw4cOHDx8+fPjw4aMv8C2mfPjw4cOHDx8+fPjw4cOHDx8+fPQFvmLKhw8fPnz48OHDhw8fPnz48OHDR1/gK6Z8+PDhw4cPHz58+PDhw4cPHz589AW+YsqHDx8+fPjw4cOHDx8+fPjw4cNHX+Arpnz48OHDhw8fPnz48OHDhw8fPnz0Bb5iyocPHz58+PDhw4cPHz58+PDhw0df8P8AcI2cLP0w34MAAAAASUVORK5CYII=\n", - "text/plain": [ - "
    " - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "#scatter_matrix(distill.iloc[0::3,:], alpha = 0.2, figsize=(20, 20), diagonal = \"kde\");" ] @@ -226,7 +225,7 @@ }, { "cell_type": "code", - "execution_count": 191, + "execution_count": 7, "metadata": {}, "outputs": [ { @@ -281,6 +280,8 @@ "source": [ "temp = distill.corr().iloc[-1]\n", "display(temp.sort_values())\n", + "\n", + "from pandas.plotting import scatter_matrix\n", "scatter_matrix(distill.loc[:, [\"Temp9\", \"InvTemp3\", \"InvPressure1\", \"VapourPressure\"]], alpha = 0.4, figsize=(10, 10), diagonal = \"kde\");\n" ] }, @@ -288,15 +289,17 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Let us build a regression model using that measurement of \"H2S\", the concentration of hydrogen sulfide in the cheese, to predict its `Taste`.\n", + "Let us build a regression model using that measurement of `InvTemp3`, the inverse temperature measured at position 3 in the distillation column, to predict the `VapourPressure`.\n", "\n", - "There are 30 measurements (rows) in the dataset. For this demonstration we will use the 15 measurements (0, 2, 4, ... 28) to build the model, and then the other 15 measurements (1, 3, 5, ... 29) to test how well we can predict taste.\n", + "There are 253 measurements (rows) in the dataset. We will use the first 150 rows in the data set to build the model, and then use the remaining rows to test the model, to see how well we can predict vapour pressure. This is good statistical practice. Do not use all the data to build the prediction model; you will get an inflated sense of how well the model works.\n", "\n", - "To select every second row in an alternating way:\n", + "Notice here, we use the first 150 rows to build and the rest to predict, because this is how we will use the model in practice. We will build it to use make predictions in the future.\n", + "\n", + "Select every second row in an alternating way:\n", "```python\n", - "build = cheese.iloc[0:30:2]\n", + "build = distill.iloc[___] <-- what goes here?\n", "display(build)\n", - "test = cheese.iloc[1:30:2]\n", + "test = distill.iloc[___] <-- what goes here?\n", "display(test)\n", "```\n", "\n", @@ -305,10 +308,1870 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    DateTemp1FlowC1Temp2TempC1Temp3TempC2TempC3Temp4PressureC1...Temp10FlowC3FlowC4Temp11Temp12InvTemp1InvTemp2InvTemp3InvPressure1VapourPressure
    02000-08-21139.9857432.0636377.8119100.2204492.1353490.1459180.5578187.4331215.0627...513.96538.627910.598830.8983489.99002.04092.64682.16814.352432.5026
    12000-08-23131.0470487.4029371.3060100.2297482.2100480.3128172.6575179.5089205.0999...504.51458.766210.756031.9099480.28882.08212.69322.22074.549734.8598
    22000-08-26118.2666437.3516378.4483100.3084488.7266487.0040165.9400172.9262205.0304...508.99978.531910.573729.9165486.61902.05502.64242.17964.551132.1666
    32000-08-29118.1769481.8314378.002895.5766493.1481491.1137167.2085174.2338205.2561...514.17948.626010.669530.6229491.13042.03612.64552.16204.546430.4064
    42000-08-30120.7891412.6471377.887192.9052490.2486488.6641167.0326173.9681205.0883...511.09488.593910.492229.4977487.64752.05072.64632.17044.549930.9238
    ..................................................................
    1952002-09-06134.6606264.8941373.969296.2987474.5708473.0312177.4560184.1642225.2350...485.83376.87558.082419.4196473.48912.11202.67402.19714.167936.0323
    1962002-09-15119.0903206.4074390.045695.8916485.6057484.0312172.7778179.3194224.2304...496.06325.38836.403715.4854484.14012.06552.56382.12714.185431.2690
    1972002-09-17132.5331241.1905391.598395.6777487.6021486.0270183.7753190.4245244.9713...497.92735.72746.492415.4361486.22532.05672.55362.11793.851131.6002
    1982002-09-20136.3621308.0172380.7815117.3736486.6382484.7651180.3657186.9452225.4729...498.35466.47987.490218.6019485.24892.06082.62622.13664.163731.6657
    1992002-09-22130.1449218.7684379.6459114.7861478.8128477.1987174.1088180.5563225.1212...489.59845.56646.420415.2878477.27572.09522.63402.15744.169833.2634
    \n", + "

    200 rows × 28 columns

    \n", + "
    " + ], + "text/plain": [ + " Date Temp1 FlowC1 Temp2 TempC1 Temp3 TempC2 \\\n", + "0 2000-08-21 139.9857 432.0636 377.8119 100.2204 492.1353 490.1459 \n", + "1 2000-08-23 131.0470 487.4029 371.3060 100.2297 482.2100 480.3128 \n", + "2 2000-08-26 118.2666 437.3516 378.4483 100.3084 488.7266 487.0040 \n", + "3 2000-08-29 118.1769 481.8314 378.0028 95.5766 493.1481 491.1137 \n", + "4 2000-08-30 120.7891 412.6471 377.8871 92.9052 490.2486 488.6641 \n", + ".. ... ... ... ... ... ... ... \n", + "195 2002-09-06 134.6606 264.8941 373.9692 96.2987 474.5708 473.0312 \n", + "196 2002-09-15 119.0903 206.4074 390.0456 95.8916 485.6057 484.0312 \n", + "197 2002-09-17 132.5331 241.1905 391.5983 95.6777 487.6021 486.0270 \n", + "198 2002-09-20 136.3621 308.0172 380.7815 117.3736 486.6382 484.7651 \n", + "199 2002-09-22 130.1449 218.7684 379.6459 114.7861 478.8128 477.1987 \n", + "\n", + " TempC3 Temp4 PressureC1 ... Temp10 FlowC3 FlowC4 Temp11 \\\n", + "0 180.5578 187.4331 215.0627 ... 513.9653 8.6279 10.5988 30.8983 \n", + "1 172.6575 179.5089 205.0999 ... 504.5145 8.7662 10.7560 31.9099 \n", + "2 165.9400 172.9262 205.0304 ... 508.9997 8.5319 10.5737 29.9165 \n", + "3 167.2085 174.2338 205.2561 ... 514.1794 8.6260 10.6695 30.6229 \n", + "4 167.0326 173.9681 205.0883 ... 511.0948 8.5939 10.4922 29.4977 \n", + ".. ... ... ... ... ... ... ... ... \n", + "195 177.4560 184.1642 225.2350 ... 485.8337 6.8755 8.0824 19.4196 \n", + "196 172.7778 179.3194 224.2304 ... 496.0632 5.3883 6.4037 15.4854 \n", + "197 183.7753 190.4245 244.9713 ... 497.9273 5.7274 6.4924 15.4361 \n", + "198 180.3657 186.9452 225.4729 ... 498.3546 6.4798 7.4902 18.6019 \n", + "199 174.1088 180.5563 225.1212 ... 489.5984 5.5664 6.4204 15.2878 \n", + "\n", + " Temp12 InvTemp1 InvTemp2 InvTemp3 InvPressure1 VapourPressure \n", + "0 489.9900 2.0409 2.6468 2.1681 4.3524 32.5026 \n", + "1 480.2888 2.0821 2.6932 2.2207 4.5497 34.8598 \n", + "2 486.6190 2.0550 2.6424 2.1796 4.5511 32.1666 \n", + "3 491.1304 2.0361 2.6455 2.1620 4.5464 30.4064 \n", + "4 487.6475 2.0507 2.6463 2.1704 4.5499 30.9238 \n", + ".. ... ... ... ... ... ... \n", + "195 473.4891 2.1120 2.6740 2.1971 4.1679 36.0323 \n", + "196 484.1401 2.0655 2.5638 2.1271 4.1854 31.2690 \n", + "197 486.2253 2.0567 2.5536 2.1179 3.8511 31.6002 \n", + "198 485.2489 2.0608 2.6262 2.1366 4.1637 31.6657 \n", + "199 477.2757 2.0952 2.6340 2.1574 4.1698 33.2634 \n", + "\n", + "[200 rows x 28 columns]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    DateTemp1FlowC1Temp2TempC1Temp3TempC2TempC3Temp4PressureC1...Temp10FlowC3FlowC4Temp11Temp12InvTemp1InvTemp2InvTemp3InvPressure1VapourPressure
    2002002-09-24129.0805213.2836380.7217114.1283478.7518477.0228171.1089176.8634225.2223...488.31925.56456.439314.9261477.31522.09512.62662.15604.168133.0152
    2012002-09-27127.6677230.0301384.7974111.7620485.3882483.8969171.4422177.7434225.2376...496.04285.59016.423214.7016484.06362.06582.59882.12464.167830.6151
    2022002-09-29133.9841230.1198385.0251115.8648485.6616483.8598177.4421184.4027225.4709...495.86995.53076.460914.9262484.39882.06442.59722.12434.163830.6245
    2032002-10-06135.5393257.0055370.9490126.8105470.0046467.8403178.1088184.9023224.9438...481.21625.61236.371318.3418468.31272.13532.69582.21404.172937.3363
    2042002-10-11120.5756207.2579372.7217117.0955466.5929465.0434146.2112154.2099225.6821...476.67155.90966.376519.0475465.14882.14982.68302.23444.160138.3952
    2052002-10-13148.6477216.6856385.0836128.8138483.6262482.0609183.7638190.4715225.2223...493.83035.58356.470314.3060482.16052.07402.59682.13074.168130.8035
    2062002-10-15143.2965206.1413380.4483128.9633476.6435475.0362180.4397187.1792224.7874...487.15955.61046.476414.0956475.27912.10402.62852.16194.175733.4861
    2072002-10-18140.8193212.0484380.1355129.6625476.4121475.0200178.9976185.3848225.2999...487.12655.51456.446414.3450474.96182.10542.63062.16424.166733.6691
    2082002-10-20133.0551251.3095373.6029126.3942472.4041470.7506178.8911185.7151224.7404...483.24055.61296.441819.0039471.25252.12202.67662.20564.176536.6612
    2092002-10-22131.1826197.2343370.7849123.0914466.7582465.1313173.8565180.4050224.6946...477.58205.69596.459415.4725464.96202.15072.69702.21594.177338.0614
    2102002-10-25131.9151197.4947369.5819123.6664465.8274464.0339175.3033181.8992225.0443...476.50625.47156.347615.4669464.02042.15512.70582.22044.171237.8471
    2112002-10-27132.8828217.7848372.5742122.9442470.1890468.5719175.4491182.0696225.0875...480.98985.64086.412714.9370468.82422.13302.68402.19664.170436.9011
    2122002-10-29131.7675197.4716358.8275124.0275453.2095452.0360172.5417179.1117225.0697...464.34485.69306.431715.7890452.00692.21242.78692.28614.170743.7621
    2132002-11-01135.3638212.4563354.5127129.0093447.7277445.9537174.1945180.8310223.8337...458.51965.55976.340217.2657446.10992.24162.82082.32314.192444.0626
    2142002-11-03131.3479202.5253353.9404127.5093445.3524444.0968173.1088178.8319225.4945...456.53345.47996.586317.5040443.85992.25302.82532.33734.163447.4158
    2152002-11-05132.3487180.9797356.0387125.2906446.0365444.6872173.3311179.3813224.6653...456.13795.45386.360214.8656444.60572.24922.80872.31934.177845.7207
    2162002-11-08131.4700184.4221353.7497123.9585444.6860443.1198172.6112178.9574224.8688...455.47425.54766.392315.5614443.00062.25732.82692.33034.174247.2427
    2172002-11-10131.3860194.0956359.0233124.1471451.1025449.3618172.5487179.0100224.9038...461.48885.53226.447515.6452449.64812.22402.78532.29644.173645.0156
    2182002-11-12131.3447225.6996383.1239122.9534482.9734480.9287175.3310181.6449225.0723...493.57605.69006.522115.8562480.88422.07952.61012.14084.170731.0176
    2192002-11-15148.7621236.0500367.0640132.1994467.6280465.5435185.3193191.8564225.7990...478.87395.70756.346417.1392465.90592.14642.72432.21984.158138.1245
    2202002-11-17130.1703206.3496368.7172121.7731465.2120463.1633174.2176180.7496224.6628...475.62375.52286.397215.9811463.32972.15832.71212.22604.177840.1241
    2212002-11-19138.6002286.0001366.5528126.1895470.5806468.6830179.7754185.9584225.0723...483.17066.34307.450421.1024468.91162.13262.72812.22484.170737.6231
    2222002-11-22130.6790215.2941361.8375120.6994462.9435461.0495174.1621180.2477225.0850...473.89106.26617.443617.5400461.15322.16852.76372.24524.170540.8039
    2232002-11-24133.9586241.3670358.4879124.1057459.5026457.5094178.6458184.8215224.4644...470.23225.65566.432020.0584457.46472.18602.78952.27564.181342.2749
    2242002-11-26130.1602234.8553357.4062123.3927453.8491451.9642175.7755181.8916224.9604...464.93225.31206.183718.6353452.01982.21232.79792.29774.172644.6285
    2252002-11-29130.3261207.5645359.7990122.7257454.7951452.8348173.7871180.0456225.0824...465.29085.39946.148216.0693452.69822.20902.77932.27934.170543.0842
    2262002-12-01131.3098230.6694356.1565123.0546454.7977452.5824176.8750183.4494224.2495...466.24705.12635.847019.4878452.86932.20812.80782.29724.185144.3923
    2272002-12-03130.6790187.1819358.5947122.2036455.1487453.0617174.7454180.8986225.2223...465.60115.15545.881816.1465452.98852.20762.78872.27794.168143.1091
    2282002-12-06130.9918187.8356356.0895120.6806455.0113453.2006175.5509181.8318225.0710...466.53445.21535.993816.7862453.22662.20642.80832.28194.170743.4364
    2292002-12-08140.0626227.2154354.6348126.7783455.0291453.1311180.5393186.8511225.4105...466.06394.96365.893519.4437453.10572.20702.81982.29584.164844.4360
    2302002-12-10140.0868222.7865351.5599125.3615455.2326453.3395179.9976186.3026224.2546...467.10665.05285.941320.3562453.32582.20592.84452.29954.185044.7115
    2312002-12-15146.5876234.4098339.2044123.6204446.1357443.9162185.1989191.4316225.8302...457.33584.98385.943320.8430444.09622.25182.94812.35134.157649.2542
    2322002-12-17141.9612214.1370337.3452123.0086442.9389440.9874182.4420188.9951224.5140...454.27514.96115.890319.9698441.10312.26702.96432.36424.180451.0110
    2332002-12-20136.1624219.8676319.6830123.3329420.7777419.0175176.2083182.2947225.3571...432.44835.27745.934020.4612419.42742.38423.12812.49804.165764.2496
    2342002-12-22139.5044223.4113318.4470124.1195424.2567422.5136179.3541185.5565230.0852...435.85875.08945.907321.4259422.73252.36563.14022.48244.085364.3135
    2352002-12-27129.6134174.7428329.7076119.6253425.6631423.9189169.9978176.2988229.2319...435.73925.56446.421916.2859423.51932.36123.03302.44274.099661.3798
    2362002-12-29128.0988186.7045347.3672119.6805443.9689442.0431172.3195178.6412230.0242...454.42895.62046.446117.1022441.77462.26362.87882.34274.086350.3487
    2372002-12-31128.3468182.5534352.9320119.9381448.0240446.6251173.3889179.4025230.2073...458.71425.39426.405916.1330445.51512.24462.83342.31544.083247.8131
    2382003-01-03127.0319213.7436364.6987118.6524462.3484460.3618173.2061179.5339229.2128...473.65025.49966.483216.4960459.59722.17582.74202.24294.099941.1565
    2392003-01-05129.7405241.5810353.9519118.1901459.7849457.6992173.7732180.1201228.8288...471.27496.71498.084119.9675457.43942.18612.82522.27374.106443.4220
    2402003-01-07129.6668236.1426353.3745117.5277458.6480457.1088173.2454179.4182230.3891...470.93156.50937.725319.0810456.30182.19152.82992.27504.080243.8887
    2412003-01-10126.8233193.7080361.5094116.9849460.1892457.9724173.7500180.1443228.5287...470.63655.34036.413515.9750457.31562.18672.76622.25124.111442.0116
    2422003-01-12130.3023191.0987361.8833119.1055461.0094459.2250175.3310181.6779230.0585...472.57195.49296.378916.4250458.43532.18132.76332.24934.085741.2867
    2432003-01-14128.4205204.9900361.3415117.5139461.0666459.4265174.6389180.8691229.6821...468.91745.57776.470816.1318459.13512.17802.76752.24754.092041.2680
    2442003-01-17125.5936209.9800363.3330117.7025461.1862459.5700172.2269178.4886229.9421...472.57195.56876.408116.3124459.19992.17772.75232.24784.087741.2811
    2452003-01-19138.5455278.4846375.4659121.5688480.8092479.8914182.6642188.1583229.8156...492.66295.51796.439921.0017479.26432.08652.66342.17484.089834.5282
    2462003-01-21125.1536257.9138365.2837119.9151467.4932466.1431176.9745182.8288229.6490...479.18165.63146.455020.8455465.84122.14672.73762.23894.092640.5895
    2472003-01-24131.0465229.0812366.1790122.8058467.3127466.1825178.4398184.2251230.0795...478.98075.35456.401619.0024465.60402.14772.73092.23064.085439.5276
    2482003-01-26130.8138212.6385341.5964121.4354468.3401467.0299174.7639180.7649229.7393...479.02905.55906.447016.4131466.33472.14442.92742.21274.091138.8507
    2492003-01-28128.9673225.1412349.8965118.8604479.7665478.4652176.2176182.3646230.5049...491.23625.63426.436017.2385477.88162.09262.85802.16204.078334.2653
    2502003-01-31130.5328223.5965345.9366120.4027474.5378473.1145176.3310182.2578230.6638...485.87865.48106.357516.9866472.31762.11722.89072.18554.075636.5717
    2512003-02-03128.5248213.5613343.4950119.6989469.3802467.9954174.6435180.5093230.5226...480.28795.47276.417516.6778467.00012.14132.91132.20904.078038.1054
    2522003-02-04131.0491217.4117346.1960119.0825474.6599473.0381177.1088183.1810225.6420...486.02535.45976.329116.8766472.27012.11742.88852.18444.160835.6298
    \n", + "

    53 rows × 28 columns

    \n", + "
    " + ], + "text/plain": [ + " Date Temp1 FlowC1 Temp2 TempC1 Temp3 TempC2 \\\n", + "200 2002-09-24 129.0805 213.2836 380.7217 114.1283 478.7518 477.0228 \n", + "201 2002-09-27 127.6677 230.0301 384.7974 111.7620 485.3882 483.8969 \n", + "202 2002-09-29 133.9841 230.1198 385.0251 115.8648 485.6616 483.8598 \n", + "203 2002-10-06 135.5393 257.0055 370.9490 126.8105 470.0046 467.8403 \n", + "204 2002-10-11 120.5756 207.2579 372.7217 117.0955 466.5929 465.0434 \n", + "205 2002-10-13 148.6477 216.6856 385.0836 128.8138 483.6262 482.0609 \n", + "206 2002-10-15 143.2965 206.1413 380.4483 128.9633 476.6435 475.0362 \n", + "207 2002-10-18 140.8193 212.0484 380.1355 129.6625 476.4121 475.0200 \n", + "208 2002-10-20 133.0551 251.3095 373.6029 126.3942 472.4041 470.7506 \n", + "209 2002-10-22 131.1826 197.2343 370.7849 123.0914 466.7582 465.1313 \n", + "210 2002-10-25 131.9151 197.4947 369.5819 123.6664 465.8274 464.0339 \n", + "211 2002-10-27 132.8828 217.7848 372.5742 122.9442 470.1890 468.5719 \n", + "212 2002-10-29 131.7675 197.4716 358.8275 124.0275 453.2095 452.0360 \n", + "213 2002-11-01 135.3638 212.4563 354.5127 129.0093 447.7277 445.9537 \n", + "214 2002-11-03 131.3479 202.5253 353.9404 127.5093 445.3524 444.0968 \n", + "215 2002-11-05 132.3487 180.9797 356.0387 125.2906 446.0365 444.6872 \n", + "216 2002-11-08 131.4700 184.4221 353.7497 123.9585 444.6860 443.1198 \n", + "217 2002-11-10 131.3860 194.0956 359.0233 124.1471 451.1025 449.3618 \n", + "218 2002-11-12 131.3447 225.6996 383.1239 122.9534 482.9734 480.9287 \n", + "219 2002-11-15 148.7621 236.0500 367.0640 132.1994 467.6280 465.5435 \n", + "220 2002-11-17 130.1703 206.3496 368.7172 121.7731 465.2120 463.1633 \n", + "221 2002-11-19 138.6002 286.0001 366.5528 126.1895 470.5806 468.6830 \n", + "222 2002-11-22 130.6790 215.2941 361.8375 120.6994 462.9435 461.0495 \n", + "223 2002-11-24 133.9586 241.3670 358.4879 124.1057 459.5026 457.5094 \n", + "224 2002-11-26 130.1602 234.8553 357.4062 123.3927 453.8491 451.9642 \n", + "225 2002-11-29 130.3261 207.5645 359.7990 122.7257 454.7951 452.8348 \n", + "226 2002-12-01 131.3098 230.6694 356.1565 123.0546 454.7977 452.5824 \n", + "227 2002-12-03 130.6790 187.1819 358.5947 122.2036 455.1487 453.0617 \n", + "228 2002-12-06 130.9918 187.8356 356.0895 120.6806 455.0113 453.2006 \n", + "229 2002-12-08 140.0626 227.2154 354.6348 126.7783 455.0291 453.1311 \n", + "230 2002-12-10 140.0868 222.7865 351.5599 125.3615 455.2326 453.3395 \n", + "231 2002-12-15 146.5876 234.4098 339.2044 123.6204 446.1357 443.9162 \n", + "232 2002-12-17 141.9612 214.1370 337.3452 123.0086 442.9389 440.9874 \n", + "233 2002-12-20 136.1624 219.8676 319.6830 123.3329 420.7777 419.0175 \n", + "234 2002-12-22 139.5044 223.4113 318.4470 124.1195 424.2567 422.5136 \n", + "235 2002-12-27 129.6134 174.7428 329.7076 119.6253 425.6631 423.9189 \n", + "236 2002-12-29 128.0988 186.7045 347.3672 119.6805 443.9689 442.0431 \n", + "237 2002-12-31 128.3468 182.5534 352.9320 119.9381 448.0240 446.6251 \n", + "238 2003-01-03 127.0319 213.7436 364.6987 118.6524 462.3484 460.3618 \n", + "239 2003-01-05 129.7405 241.5810 353.9519 118.1901 459.7849 457.6992 \n", + "240 2003-01-07 129.6668 236.1426 353.3745 117.5277 458.6480 457.1088 \n", + "241 2003-01-10 126.8233 193.7080 361.5094 116.9849 460.1892 457.9724 \n", + "242 2003-01-12 130.3023 191.0987 361.8833 119.1055 461.0094 459.2250 \n", + "243 2003-01-14 128.4205 204.9900 361.3415 117.5139 461.0666 459.4265 \n", + "244 2003-01-17 125.5936 209.9800 363.3330 117.7025 461.1862 459.5700 \n", + "245 2003-01-19 138.5455 278.4846 375.4659 121.5688 480.8092 479.8914 \n", + "246 2003-01-21 125.1536 257.9138 365.2837 119.9151 467.4932 466.1431 \n", + "247 2003-01-24 131.0465 229.0812 366.1790 122.8058 467.3127 466.1825 \n", + "248 2003-01-26 130.8138 212.6385 341.5964 121.4354 468.3401 467.0299 \n", + "249 2003-01-28 128.9673 225.1412 349.8965 118.8604 479.7665 478.4652 \n", + "250 2003-01-31 130.5328 223.5965 345.9366 120.4027 474.5378 473.1145 \n", + "251 2003-02-03 128.5248 213.5613 343.4950 119.6989 469.3802 467.9954 \n", + "252 2003-02-04 131.0491 217.4117 346.1960 119.0825 474.6599 473.0381 \n", + "\n", + " TempC3 Temp4 PressureC1 ... Temp10 FlowC3 FlowC4 Temp11 \\\n", + "200 171.1089 176.8634 225.2223 ... 488.3192 5.5645 6.4393 14.9261 \n", + "201 171.4422 177.7434 225.2376 ... 496.0428 5.5901 6.4232 14.7016 \n", + "202 177.4421 184.4027 225.4709 ... 495.8699 5.5307 6.4609 14.9262 \n", + "203 178.1088 184.9023 224.9438 ... 481.2162 5.6123 6.3713 18.3418 \n", + "204 146.2112 154.2099 225.6821 ... 476.6715 5.9096 6.3765 19.0475 \n", + "205 183.7638 190.4715 225.2223 ... 493.8303 5.5835 6.4703 14.3060 \n", + "206 180.4397 187.1792 224.7874 ... 487.1595 5.6104 6.4764 14.0956 \n", + "207 178.9976 185.3848 225.2999 ... 487.1265 5.5145 6.4464 14.3450 \n", + "208 178.8911 185.7151 224.7404 ... 483.2405 5.6129 6.4418 19.0039 \n", + "209 173.8565 180.4050 224.6946 ... 477.5820 5.6959 6.4594 15.4725 \n", + "210 175.3033 181.8992 225.0443 ... 476.5062 5.4715 6.3476 15.4669 \n", + "211 175.4491 182.0696 225.0875 ... 480.9898 5.6408 6.4127 14.9370 \n", + "212 172.5417 179.1117 225.0697 ... 464.3448 5.6930 6.4317 15.7890 \n", + "213 174.1945 180.8310 223.8337 ... 458.5196 5.5597 6.3402 17.2657 \n", + "214 173.1088 178.8319 225.4945 ... 456.5334 5.4799 6.5863 17.5040 \n", + "215 173.3311 179.3813 224.6653 ... 456.1379 5.4538 6.3602 14.8656 \n", + "216 172.6112 178.9574 224.8688 ... 455.4742 5.5476 6.3923 15.5614 \n", + "217 172.5487 179.0100 224.9038 ... 461.4888 5.5322 6.4475 15.6452 \n", + "218 175.3310 181.6449 225.0723 ... 493.5760 5.6900 6.5221 15.8562 \n", + "219 185.3193 191.8564 225.7990 ... 478.8739 5.7075 6.3464 17.1392 \n", + "220 174.2176 180.7496 224.6628 ... 475.6237 5.5228 6.3972 15.9811 \n", + "221 179.7754 185.9584 225.0723 ... 483.1706 6.3430 7.4504 21.1024 \n", + "222 174.1621 180.2477 225.0850 ... 473.8910 6.2661 7.4436 17.5400 \n", + "223 178.6458 184.8215 224.4644 ... 470.2322 5.6556 6.4320 20.0584 \n", + "224 175.7755 181.8916 224.9604 ... 464.9322 5.3120 6.1837 18.6353 \n", + "225 173.7871 180.0456 225.0824 ... 465.2908 5.3994 6.1482 16.0693 \n", + "226 176.8750 183.4494 224.2495 ... 466.2470 5.1263 5.8470 19.4878 \n", + "227 174.7454 180.8986 225.2223 ... 465.6011 5.1554 5.8818 16.1465 \n", + "228 175.5509 181.8318 225.0710 ... 466.5344 5.2153 5.9938 16.7862 \n", + "229 180.5393 186.8511 225.4105 ... 466.0639 4.9636 5.8935 19.4437 \n", + "230 179.9976 186.3026 224.2546 ... 467.1066 5.0528 5.9413 20.3562 \n", + "231 185.1989 191.4316 225.8302 ... 457.3358 4.9838 5.9433 20.8430 \n", + "232 182.4420 188.9951 224.5140 ... 454.2751 4.9611 5.8903 19.9698 \n", + "233 176.2083 182.2947 225.3571 ... 432.4483 5.2774 5.9340 20.4612 \n", + "234 179.3541 185.5565 230.0852 ... 435.8587 5.0894 5.9073 21.4259 \n", + "235 169.9978 176.2988 229.2319 ... 435.7392 5.5644 6.4219 16.2859 \n", + "236 172.3195 178.6412 230.0242 ... 454.4289 5.6204 6.4461 17.1022 \n", + "237 173.3889 179.4025 230.2073 ... 458.7142 5.3942 6.4059 16.1330 \n", + "238 173.2061 179.5339 229.2128 ... 473.6502 5.4996 6.4832 16.4960 \n", + "239 173.7732 180.1201 228.8288 ... 471.2749 6.7149 8.0841 19.9675 \n", + "240 173.2454 179.4182 230.3891 ... 470.9315 6.5093 7.7253 19.0810 \n", + "241 173.7500 180.1443 228.5287 ... 470.6365 5.3403 6.4135 15.9750 \n", + "242 175.3310 181.6779 230.0585 ... 472.5719 5.4929 6.3789 16.4250 \n", + "243 174.6389 180.8691 229.6821 ... 468.9174 5.5777 6.4708 16.1318 \n", + "244 172.2269 178.4886 229.9421 ... 472.5719 5.5687 6.4081 16.3124 \n", + "245 182.6642 188.1583 229.8156 ... 492.6629 5.5179 6.4399 21.0017 \n", + "246 176.9745 182.8288 229.6490 ... 479.1816 5.6314 6.4550 20.8455 \n", + "247 178.4398 184.2251 230.0795 ... 478.9807 5.3545 6.4016 19.0024 \n", + "248 174.7639 180.7649 229.7393 ... 479.0290 5.5590 6.4470 16.4131 \n", + "249 176.2176 182.3646 230.5049 ... 491.2362 5.6342 6.4360 17.2385 \n", + "250 176.3310 182.2578 230.6638 ... 485.8786 5.4810 6.3575 16.9866 \n", + "251 174.6435 180.5093 230.5226 ... 480.2879 5.4727 6.4175 16.6778 \n", + "252 177.1088 183.1810 225.6420 ... 486.0253 5.4597 6.3291 16.8766 \n", + "\n", + " Temp12 InvTemp1 InvTemp2 InvTemp3 InvPressure1 VapourPressure \n", + "200 477.3152 2.0951 2.6266 2.1560 4.1681 33.0152 \n", + "201 484.0636 2.0658 2.5988 2.1246 4.1678 30.6151 \n", + "202 484.3988 2.0644 2.5972 2.1243 4.1638 30.6245 \n", + "203 468.3127 2.1353 2.6958 2.2140 4.1729 37.3363 \n", + "204 465.1488 2.1498 2.6830 2.2344 4.1601 38.3952 \n", + "205 482.1605 2.0740 2.5968 2.1307 4.1681 30.8035 \n", + "206 475.2791 2.1040 2.6285 2.1619 4.1757 33.4861 \n", + "207 474.9618 2.1054 2.6306 2.1642 4.1667 33.6691 \n", + "208 471.2525 2.1220 2.6766 2.2056 4.1765 36.6612 \n", + "209 464.9620 2.1507 2.6970 2.2159 4.1773 38.0614 \n", + "210 464.0204 2.1551 2.7058 2.2204 4.1712 37.8471 \n", + "211 468.8242 2.1330 2.6840 2.1966 4.1704 36.9011 \n", + "212 452.0069 2.2124 2.7869 2.2861 4.1707 43.7621 \n", + "213 446.1099 2.2416 2.8208 2.3231 4.1924 44.0626 \n", + "214 443.8599 2.2530 2.8253 2.3373 4.1634 47.4158 \n", + "215 444.6057 2.2492 2.8087 2.3193 4.1778 45.7207 \n", + "216 443.0006 2.2573 2.8269 2.3303 4.1742 47.2427 \n", + "217 449.6481 2.2240 2.7853 2.2964 4.1736 45.0156 \n", + "218 480.8842 2.0795 2.6101 2.1408 4.1707 31.0176 \n", + "219 465.9059 2.1464 2.7243 2.2198 4.1581 38.1245 \n", + "220 463.3297 2.1583 2.7121 2.2260 4.1778 40.1241 \n", + "221 468.9116 2.1326 2.7281 2.2248 4.1707 37.6231 \n", + "222 461.1532 2.1685 2.7637 2.2452 4.1705 40.8039 \n", + "223 457.4647 2.1860 2.7895 2.2756 4.1813 42.2749 \n", + "224 452.0198 2.2123 2.7979 2.2977 4.1726 44.6285 \n", + "225 452.6982 2.2090 2.7793 2.2793 4.1705 43.0842 \n", + "226 452.8693 2.2081 2.8078 2.2972 4.1851 44.3923 \n", + "227 452.9885 2.2076 2.7887 2.2779 4.1681 43.1091 \n", + "228 453.2266 2.2064 2.8083 2.2819 4.1707 43.4364 \n", + "229 453.1057 2.2070 2.8198 2.2958 4.1648 44.4360 \n", + "230 453.3258 2.2059 2.8445 2.2995 4.1850 44.7115 \n", + "231 444.0962 2.2518 2.9481 2.3513 4.1576 49.2542 \n", + "232 441.1031 2.2670 2.9643 2.3642 4.1804 51.0110 \n", + "233 419.4274 2.3842 3.1281 2.4980 4.1657 64.2496 \n", + "234 422.7325 2.3656 3.1402 2.4824 4.0853 64.3135 \n", + "235 423.5193 2.3612 3.0330 2.4427 4.0996 61.3798 \n", + "236 441.7746 2.2636 2.8788 2.3427 4.0863 50.3487 \n", + "237 445.5151 2.2446 2.8334 2.3154 4.0832 47.8131 \n", + "238 459.5972 2.1758 2.7420 2.2429 4.0999 41.1565 \n", + "239 457.4394 2.1861 2.8252 2.2737 4.1064 43.4220 \n", + "240 456.3018 2.1915 2.8299 2.2750 4.0802 43.8887 \n", + "241 457.3156 2.1867 2.7662 2.2512 4.1114 42.0116 \n", + "242 458.4353 2.1813 2.7633 2.2493 4.0857 41.2867 \n", + "243 459.1351 2.1780 2.7675 2.2475 4.0920 41.2680 \n", + "244 459.1999 2.1777 2.7523 2.2478 4.0877 41.2811 \n", + "245 479.2643 2.0865 2.6634 2.1748 4.0898 34.5282 \n", + "246 465.8412 2.1467 2.7376 2.2389 4.0926 40.5895 \n", + "247 465.6040 2.1477 2.7309 2.2306 4.0854 39.5276 \n", + "248 466.3347 2.1444 2.9274 2.2127 4.0911 38.8507 \n", + "249 477.8816 2.0926 2.8580 2.1620 4.0783 34.2653 \n", + "250 472.3176 2.1172 2.8907 2.1855 4.0756 36.5717 \n", + "251 467.0001 2.1413 2.9113 2.2090 4.0780 38.1054 \n", + "252 472.2701 2.1174 2.8885 2.1844 4.1608 35.6298 \n", + "\n", + "[53 rows x 28 columns]" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "build = distill.iloc[0:200]\n", + "display(build)\n", + "test = distill.iloc[200:]\n", + "display(test)" + ] }, { "cell_type": "markdown", @@ -337,11 +2200,11 @@ "We need numeric values for `X` and `y`. We can get those as follows.\n", "\n", "```python\n", - "print(build[\"H2S\"]) # A Pandas Series (single column from the matrix of Cheese data)\n", - "print(build[\"H2S\"].values) # NumPy vector of values, \n", - "print(build[\"H2S\"].values.shape) # Notice the vector is just a 1-D array of 30 values\n", - "print(build[\"H2S\"].values.reshape(-1, 1)) # Force them into a single column\n", - "print(build[\"H2S\"].values.reshape(-1, 1).shape) # Now we have the right shape for scikit-learn\n", + "print(build[\"InvTemp3\"]) # A Pandas Series (single column from the matrix of data)\n", + "print(build[\"InvTemp3\"].values) # NumPy vector of values, \n", + "print(build[\"InvTemp3\"].values.shape) # Notice the vector is just a 1-D array of 30 values\n", + "print(build[\"InvTemp3\"].values.reshape(-1, 1)) # Force them into a single column\n", + "print(build[\"InvTemp3\"].values.reshape(-1, 1).shape) # Now we have the right shape for scikit-learn\n", "```\n", "\n", "Scikit-learn requires the `X` data (the values used to predict `y`) to be a column vector or a matrix. Notice that a column vector is just a matrix with 1 column. This is because, you will see later, you can have 1 or more columns used to predict `y`. Therefore every input used to predict `y` must be in a column. Each row in the input matrix is one observation.\n", @@ -349,8 +2212,8 @@ "There is a shortcut to force the column to be extracted as a column:\n", "\n", "```python\n", - "build[[\"H2S\"]].values\n", - "build[[\"H2S\"]].values.shape # check what the shape is\n", + "build[[\"InvTemp3\"]].values\n", + "build[[\"InvTemp3\"]].values.shape # check what the shape is\n", "```\n", "\n", "So this will work to build your regression model:\n", @@ -358,8 +2221,8 @@ "```python\n", "\n", "# A single column in matrix X (capital X indicates one or more input columns)\n", - "X = build[[\"H2S\"]].values\n", - "y = build[\"Taste\"].values\n", + "X = build[[\"InvTemp3\"]].values\n", + "y = build[\"VapourPressure\"].values\n", "mymodel = LinearRegression()\n", "mymodel.fit(X, y)\n", "```\n", @@ -369,10 +2232,26 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "data": { + "text/plain": [ + "LinearRegression()" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X = build[[\"InvTemp3\"]].values\n", + "y = build[\"VapourPressure\"].values\n", + "mymodel = LinearRegression()\n", + "mymodel.fit(X, y)" + ] }, { "cell_type": "markdown", @@ -389,7 +2268,6 @@ "* `coef_`\n", "* `intercept_`\n", "* `predict`\n", - "* `rank_`\n", "* `score`\n", "\n", "The first two, are as you might guess, the intercept of the model and the coefficient (slope).\n", @@ -418,46 +2296,90 @@ }, { "cell_type": "code", - "execution_count": 150, + "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "The intercept is -128.5 and the slope is = 76.13\n" + "The intercept is -128.53 and the slope is = 76.13\n", + "The intercept is -128.52780 and the slope is = 76.13031\n" ] } ], "source": [ - "build = cheese.iloc[0:200]\n", - "X_build = build[[\"InvTemp3\"]].values\n", - "y_build = build[\"VapourPressure\"].values\n", - "mymodel = LinearRegression()\n", - "mymodel.fit(X=X_build, y=y_build)\n", - "print(f\"The intercept is {mymodel.intercept_:.4g} and the slope is = {mymodel.coef_[0]:.4g}\")" + "print(f\"The intercept is {mymodel.intercept_:.5g} and the slope is = {mymodel.coef_[0]:.5g}\")\n", + "print(f\"The intercept is {mymodel.intercept_:.5f} and the slope is = {mymodel.coef_[0]:.5f}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Detour: Visualization of the regression model\n", + "\n", + "After building the regression model it is helpful to visualize it. The Seaborn library has a useful function to do so.\n", + "\n", + "```python\n", + "import seaborn as sns\n", + "ax = sns.regplot(x=\"InvTemp3\", y=\"VapourPressure\", data=distill)\n", + "ax.grid(True)\n", + "```\n", + "\n", + "Take a look at the documentation for the `regplot` function: https://seaborn.pydata.org/generated/seaborn.regplot.html\n", + "\n", + "for more options, but the simple function above already does most of what you would expect:\n", + "* it draws a scatter plot of the raw data\n", + "* adds the regression line to the plot\n", + "* shows the confidence interval for the regression (the interval expected for the true but unknown slope)\n", + "* adds labels to the axes.\n", + "\n", + "An \"upgrade\" you might be interested in, is the joint plot, which adds the histograms to the axes:\n", + "\n", + "```python\n", + "sns.jointplot(x=\"InvTemp3\", y=\"VapourPressure\", data=distill, kind=\"reg\");\n", + "\n", + "# Or, show the kde=kernel density estimate\n", + "sns.jointplot(x=\"InvTemp3\", y=\"VapourPressure\", data=distill, kind=\"kde\");\n", + "\n", + "```\n" ] }, { "cell_type": "code", - "execution_count": 147, + "execution_count": 49, "metadata": {}, "outputs": [ { "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABF5UlEQVR4nO29eXhc5Xn3/7nPmVUarbbl3dgGExMSnIBJTFhiIMkPskDaQpaGlKzQNm9I+r7JC82bpr/S9vrBm/R9m7RpC9lK0gSH0pKQjSYNUQ0JmyEsARRs5H2TtWs0+znP748zM5qRZkYjSyN5NPfnunxJc+bMmeeRrO955n7u+3uLMQZFURSlcbAWegCKoijK/KLCryiK0mCo8CuKojQYKvyKoigNhgq/oihKg+Fb6AFUw9KlS8369etnfZ3x8XGam5tnP6A6pZHn38hzh8aefyPP/cknn+w3xiybfLwuhH/9+vXs2rVr1tfp7u5m+/btsx9QndLI82/kuUNjz7+R5y4i+0sd11CPoihKg6HCryiK0mCo8CuKojQYKvyKoigNhgq/oihKg1EXWT2KoijzSXdPH3fs7OXgUIy1HU3ceMlGtm/uWuhhzdm4dMWvKIpSQHdPH5+7/3n6xhK0h/30jSX43P3P093TVzfj6u7p4713Pop/2fpXl7qWCr+iKEoBd+zsxW8LTQEfIt5Xvy3csbO3LsZVeIPAuJlS11LhVxRFKeDgUIyw3y46FvbbHBqKLdCIPKodV+ENohwq/IqiKAWs7WginnaKjsXTDms6mhZoRB7VjqvUDWIyKvyKoigF3HjJRtKOIZbKYIz3Ne0YbrxkY12Mq9QNYjIq/IqiKAVs39zFrVedTVdLiJF4mq6WELdedfaCZ/VUO67CG0Q5NJ1TURRlEts3dy240JeimnFt39zFrXixfsQqqfEq/IqiKIuM3A1Cbtz3XKnnNdSjKIrSYKjwK4qiNBgq/IqiKIuQtOOWfU5j/IqiKIuIVMZlcDyFwZQ9R4VfURRlEeC4hqFYirGEl+cfqlDEpcKvKIoyByyUo6cxhtF4hqFYCteUX+UXojF+RVGUWbJQjp7jyQyHhuIMjCerFn1Q4VcURZk18+3omcw4HB2Jc3w0UXETtxwa6lEURZklB4ditIf9Rcdq4eiZcVyGYmnGEumK5/VHk3znsQNln1fhVxRFmSVrO5roG0sUWSHPpaOnMYaReJrhWLpiSGcskebuxw9y368Pk8xoOqeiKErNuPGSjXzu/ueJpTKE/TbxtDNnjp7RZIah8VTFkE4i7XDfrw9z9+MHiSY9c7b2Jj/7y5xfU+EXkXbgq8CrAAN8CPgt8F1gPbAPeJcxZqiW41AURaklhcZoh4ZirJmDrJ5E2mFwPEWigsWy4xp+8puj3PXIfgaiKQCaAjbv3rqW921bx6Y/L/26Wq/4vwg8YIy5RkQCQBPwGeDnxpjbROQW4Bbg5hqPQ1EUpabMlaNnxnEZjKWIJsrbKhtj2Lm7n689vJdDQ3EA/LZw1ZZVvO/162hvCixMHr+ItAKXAB/IDjQFpETkamB79rS7gG5U+BVFaXBcNxvHj6cxFeL4T+0f4isP7eW3x8cAEOAtZy/n+jesZ0VrqKr3kkpvMBtE5DXAncALwBbgSeATwGFjTHvBeUPGmI4Sr78BuAFg+fLl5+3YsWPWY4pGo0QikVlfp15p5Pk38tyhsedfD3N3jSHjGiq4LLB/1OXf96R5cXAi1r9lqcU7z/CzOjI1M19EeMubLnvSGLN1ynM1FP6twKPAhcaYx0Tki8Ao8PFqhL+QrVu3ml27ds16TN3d3Wzfvn3W16lXGnn+jTx3aOz5n8pzj6ccBsaTpCpk4BwcjPGNX+6j+6UT+WOvXt3GRy/ewKtWt5V9Xchvs7qjqaTw1zLGfwg4ZIx5LPv4Xrx4/nERWWmMOSoiK4HalrYpiqKcYuSM1Cq1R+yPJvnWI/v50XNHcbPr843LmvnIRRt4/YZOROSk379mwm+MOSYiB0XkFcaY3wKX44V9XgCuB27Lfv1+rcagKIpyKjHZSK0U0USGu584wL8/NZGLv6I1xAcvXM/lZ3VhVSH4tiVEQuXlvdZZPR8Hvp3N6OkFPohnE3GPiHwYOABcW+MxKIqiLCjVGKklc7n4TxxkLJvR0x72c92203jHlpX47ekddmxLaAv7aQ35sazyN4iaCr8x5mlgSnwJb/WvKIqy6JmuAMvLxT/GXY/sK8rFf9fWNVxz3pqiauByVCv4ObRyV1EUpQZMV4BVTS7+dMxU8HOo8CuKoswhGcfbuM1ZJ5SibC7+BetZ0TZ9Lr5tCe3hAC0h34wEP4cKv6IoyhzguobheJqRCgVYLx0f4ysP7eXJ/RMuNW84fQkfvmgDG5Y2T/seOcFvDftOzaweRVGURmEskWZoPE3GLR3HL52L38pHL95YMRc/h8+yvJDOLAU/f71ZX0FRFKVBSaQd+qPlC7BK5uIvbeYjF1eXiz9XK/zJqPAriqLMkHQ2jj9eJo4/21z8Wgl+DhV+RVGUKpkujp9MO9z39BHufvzAlFz8t5+zkoCvci5+rQU/hwq/oihKFYwm0gyNp3DcqYLvuIYHsrn4/dlc/LDf5t3nV5eLf7JpmSeLCr+iKEoFKhmpGWN4KJuLf7AgF/8dW1ZxXRW5+PMt+DlU+BVFUUownZHaUweyufjHJnLx3/zK5XzgDdPn4i+U4OdQ4VcURSlgOiO1Urn42zZ28pGLNrBxWWXff0s8wW8LL4zg51DhVxRFYXojtUNDMb7+8Mnl4p8qgp9DhV9RlIankpHaQDTJN0vk4n/4og1s21g5F98SoTUr+PYpIPg5VPgVRWlYKhmpRRMZdjxxgH8rkYt/2eauikJ+qgp+DhV+RVEajkpGauVz8dfx9nNWVczFP9UFP4cKv6IoDUOlAqxyufjv2rqGa7dWzsWvF8HPocKvKEpDUK4Aq1Quvs8SrnqN54vfUSEX3xKhJeSjvSlQF4KfQ4VfUZRFjWs8d8xSG7dPHRjiqw/tpacgF/9Nr1zOB6fJxa9Xwc+hwq8oyqIkV4CVcdwpov/S8TG++tBedhXk4l+wcQkfubiyL369hXTKocKvKMqiIleANRpPT3nu8FCcr/9yL7/47UQu/qtWebn4r15TPhd/sQh+DhV+RVEWBZUKsAaiSb756H5+/NyxfIx/w9JmPjJNLv5iE/wcKvyKotQ948kMgyUKsKLJDPftSfOL7sdJFOTif+DC9VxeIRd/sQp+DhV+RWlQunv6uGNnLweHYqztaOLGSzayfXPXQg9rRpQrwEplXO779WHufvwAozPIxV/sgp9DhV9RGpDunj4+d//z+G2hPeynbyzB5+5/nluhLsQ/47gMxlJEE8UFWI5r+Onzx/jnX+3nRDQJQNCG97zutIq5+I0i+DlU+BWlAbljZy9+W/JC2BTwEUtluGNn7ykt/OUKsIwxPLxngK8/vJf9gzEgm4u/ZRVvaBng3PPXl7xeowl+DhV+RWlADg7FaA/7i46F/TaHhmILNKLKGGMYTWQYjk0twPp11he/p4wv/p5nBqdcT0RoreM8/Nmiwq8oDcjajib6xhJFoY942mFNR9MCjqo0sVSGgejUjdvdx8f46sN7eWJf9b74OcFvC/vx2ZX73y5mVPgVpQG58ZKNfO7+54mlMoT9NvG0Q9ox3HjJxoUeWp5kxtu4jaeKN25PJhdfcpW2DS74OVT4FaUB2b65i1vxYv2HhmKsOYWyejKOy1AszViiuABrIJrkW48e4EfPHc2He9YvaeIjF2/ggo1LSubiiwiWJaztCKvgF6DCrygNyvbNXaeE0OcwxjASTzMcSxcVYEWTGb77xEH+7clD+Vz85a1BPviG9Vx+1vKSMXoRIRL00d7kZ78lKvqTUOFXFGXBKdUBq1Qufls2F/8dZXLxCwXfr2JfFhV+RVEWjETa4UfPHOFbjx7g6Gicla1hrj1vDcPxVFEu/nS++Cr4M0OFX1GUeSftuAyNp3jwxT6++OBufJbQErQ5OBTjz3/wPJlsDD+Xi/++baV98VXwTw4VfkVpcObTumFyAdaOJw7iswRjDIeGkvkYPsCbzurigxeuZ2VbeMp1RITmoE1HU0AF/yRQ4VeUBmYurRumu4GU6oB1YGicRNolVpCy2RSwCfstPvPWs6a8hwr+3KDCryh1QndPH7f95EX2DnjVtRuXNnPzFZtntTqfK+uGSjeQ123snFKAdXgozjd+tY/B8YmUzZDfYmlzEBFY0hwsur4K/txSU+EXkX3AGOAAGWPMVhHpBL4LrAf2Ae8yxgyVu4aiKJ6wfureZxiOpcllL+7ui/Lpe5/h89dsOWnxnyvrhlI3kPFkmi89uJsvLNmSP29wPMU3H9lflIvvs7ybRXuTj2TGkHEN7zl/LaCCXyuqEn4RCQPrjDG/PYn3uNQY01/w+Bbg58aY20Tkluzjm0/iuorSMNyxs5doMoOdLUgCEGMYS8zOWG2urBsKbyDGeOJtW8KRYa95ealc/K6WIB+8cD1tIT/37DrEsdE4K1rDvOf8tbz+9CW6aVtDphV+EXkH8AUgAGwQkdcAtxpjrjrJ97wa2J79/i6gGxV+RanIwaEYjmuwC6pTRbwq19kYq82VdcPajiaOj8YJ+m1vJW8gkXbpaglxz66DfOex4lz8971+HVdtmcjF33b6kuycNEtnPhAzqUXZlBNEngQuA7qNMa/NHnvWGHPOtBcX2QsMAQa4wxhzp4gMG2PaC84ZMsZ0lHjtDcANAMuXLz9vx44d1c+qDNFolEiktHlTI9DI86/3ue/tHy/aAC2kKWBXbBAOlecfTWQ4EU2SyrgEfBbLIkEioZlFgUfjaY6MJBA8q+OMa3h2EB45bjGc8s7xW4Zty4W3rvexpNk/5RqWJdiWMNdemfX+u58Nl1566ZPGmK2Tj1fz280YY0bK9aSchguNMUdEpAv4mYj0VPtCY8ydwJ0AW7duNdu3bz+Z9y+iu7ububhOvdLI86/7uZeI8bsGOpr8VcX4azX/RNphYDxFMu0Q6x3k7scPsH9wnHjaJVmQmhkJ2ixrCbIvYfjSC4ZPXHYGr8v2uo0EfXQ01c48re5/9zWgGuH/jYj8PmCLyCbgJuBX1VzcGHMk+7VPRO4DXgccF5GVxpijIrIS6DvJsStKw7B9cxdfuGZLUVbPpmXFWT3zmY+fK8CKJic6YAX8FinXZTjuHROgvclPyGfREvJW+H7L20PYsesgbzp7ubplLhDVCP/Hgf8FJIHvAP8B/NV0LxKRZsAyxoxlv38LcCtwP3A9cFv26/dPbuiK0liUM1Xr7unj9gd6eKkvit8WlrcEa9ZK0XUNQ7EUo4lMvgPWnr4oX32ol8cn+eJ/+KINfPZ7vykOGwk0B2z6xxIsjQQnX16ZJyoKv4jYwP3GmDfhif9MWA7clw0R+YDvGGMeEJEngHtE5MPAAeDamQ9bUeqbuVqd5/Ln+0YT2ALGhSMjCVa1hfHbMmetFEt1wDo8HOcbv9zHgz0TH9rPXtXKRy/ewDlr2gFY2RpmYDxJOGBjixfDj6cd1nZW3pNQaktF4TfGOCISE5E2Y8zITC5sjOkFtpQ4PgBcPrNhKsriYS6rZXP5844x2Y1RARf6o0k2LG2ek1aK48kMgwXOmYPjKb71yH5+WIUv/ntet5a/e3APGcclEPCdkg1fGpFqQj0J4DkR+RkwnjtojLmpZqNSlEXMXFTL5j4xPL5vkKAt2CIY46V4ikDKcWfdSnFyB6yZ+OLnOl5dc94aVrSGTsmGL41MNcL/o+w/RVHmgNlWy+aqeKPJDK5riLkGS7w0SiwvLGNbMqOVdWHoaU17mPecv45z1nptDFMZl+8/fZhvT5OLD6V72p5qDV+UKoTfGHPXfAxEURqF2VbL3vaTFxmOeR43uSoc14BgEISMMWzsbOaWK8+qSnBzoSefBZGAzeHhOLf/Rw//bfsZDCfS3PWrffSNeb74Ib/Fu85by7Vb19AcnBi/NjGvL6qp3N3LxP+vPMYYDdIpykkw22pZL53T4LheymTuj9MxcOZJGLfdsbMXS8Bv27jGEPJZDMbS3PqjF/K5+D5LOH99J6PxNP/xwjGePTTi+ekI3PvkIY6OxFnX2axhnDqhmlBPYdVXCC8Lp7M2w1GUxc9cNDrPZEUfyYp/Vv3bmwIzuk485bC3P0pLyIcxhljKoT864YsvwOVndXHu2g6+9dh+fJa3sh8YT/L5n/bk37OjKVCzFFJl7qkm1DMw6dDfisjDwOdqMyRFWfxUE/cul/K5cWkzLx4b804q+Cwe9FlV7xOkMi5DsRTjyQwrWsMcHYkzlswU2UK0hnz8zbVbOL0rwn//7jP4LMmnZbaFbU6MJUFgVfvsLJ2V+aeaUM+5BQ8tvE8ALTUbkaIoFVM+b75iMx/91i7Sjqf6AtiW0NHkn3afwHENwwUFWIeH4xgMx7MxfICAbdES8vHpt7yC07s8j5ujo3E6svH7XLpmxnWZbOVyMpbOyvxTTajnbwq+z5D10K/JaBRFASqnfN59wzY+fukZfLn7ZRzXEPR5Qh3w2RX3CUbi6XwBVqlc/JDPIuS3OK2zmfe+bl3eS6cl5GPDkmZORJP4fRNC77MsJjuqzTaFVJkfqgn1XDofA1EUZYLpUj5vetOZnLOmvap9glgqQ9pxGYgmiSYz3LPrIPfumuqL/6aCXPzJ5ml/+MbTp2xIt4R8mOz1Z2PprMw/1YR6PgF8A6+T1leAc4FbjDE/rfHYFKVhqSblc7p9gsICrFTG8K+7Dhbl4reGfFy37bSiXPxybpmlNqT/7G2vBGa3Sa0sDNWEej5kjPmiiPw/QBfwQbwbgQq/otSI2aR85kI5Y4k0jmv42QvH+cqvkgwlewEvF//a89bwrq1r87n4OcF/5uAQX3t4X0kPoXI3GhX6+qMa4c9F8d4KfMMY84ycpDm/oigTVDJqO5mUT2MMo/EMQ7EUjuvyyz0DfO2Xe9mftXH2WcLbz1nJddtOo7M5ABT3tP3l7n5u/eGLc+IhpJzaVCP8T4rIT4ENwJ+KSAvgTvMaRWloKol6tTbKM7E6KDRSe+bgMF95qJcXjnopnwK8boXNx992Hqvaw/nXREK+oibmc+EhpNQH1Qj/h4HXAL3GmJiIdOKFexRFKUGlVExgTm2UE2kvjp9IOyV98V+/oZOPXLQBc/SFvOhHQj7aw4Eijx2YvYeQUj9UI/wXAE8bY8ZF5Dq8zd0v1nZYilK/VFo5A3Nio5xxXAZjKaKJTElf/HWdTQRsi30D43z5Fy9z/YZMWcHPMVsPIaV+qMZN6R+BmIhsAf4nsB/4Zk1HpSh1zMGhGGG/XXQst3LOPRewrbzNwkxslI0xDI2nODQU58BAjC/9fDcf+MYTedE/bUkT73/9aYzGUxwYGqdvNMkzh4Y5NBzn+q89zq/29Je99o2XbCTtGGKpTNa+IaPpmYuUaputGxG5GviiMeZrInJ9rQemKPXKdCvnvrEEy1qCHBlO4GKqtlEeTaQZHk8zHE/xr7sO8q9PHiKRnsjF/8Ab1vPmVy7nuq88ku97W8jLJ6IVN2vnwkNIqQ+qEf4xEflT4P3Axdl2jP5pXqMoDct0qZi5+P/KtiDHR5PT2ijHUw4D40miicwUX/zWkI/3vX4dV79mNQGfxeO9gxyPpkuOK+WYafcR1Du/MahG+N8N/D5ePv8xEVkHfL62w1KU+mW6lXPhc69d11F2VZ0rwIomMvz0heNTfPGvPW8N125dSySbix8J+rjv6cMVxzbThi9z0RdYOfWoxrLhmIj8G7Ape6gfuK+mo1KUOqfSynm6VXVu43Ysnuaff7mff33yYN5ewRJ4x5ZVvH/baew5HuVz33ue42MJ1nU28UdvPJ3Dw/Gy1xWq36ydy77AyqlHNZYNHwVuwPPgPx1YDfwT2jBdaWAmr4Yv2NjJI72Ds1odP/jicf6h+2UODsVoCfoZiac4EU3ln28K2DQHbS7YsIQ9x6P83S/2EPQJS5oD9EeTfO7+52kJ+gjYQsqZ0jsJv119O0bN6V/cVBPq+RjwOuAxAGPMbhHR37zSsExeDe8biPL4vkGWRQIsjZQuxip3ndzNI+yzGBhP4bctxpIZjo9O2CQLEPB5tsupjMNf/fgFUhkXyxKWt4QQkbwwG2NoC/sZHE8xWftPXxapujuX5vQvbqoR/qQxJpVzaRARHyVaMSrKYmXy6n5oPFm0Gh6NZ7AExhIZlrWEqlod524etgVNfpu9A1EyTuk/LL9PcFzD4eFE0XGfMRwZ8UI7rWE/Yb/NSDzN56/Zwu0P9NDbPw7AhiVNbFiS5ifvu6TqOWtO/+KmGuH/LxH5DBAWkTcDfwz8oLbDUhYa3djz+NJ/vsSXu18m47oEbQvHdekbS7KmwPog5bhY2Vz8HNOtjv/xv17ON0fvG0uSnmh8RcC2AJMP1xjXa7U4mYwLPssr/moN+/PCXGoPobu7e0bznm1fYOXUppoCrpuBE8BzwI3Aj4HP1nJQysKSW432jSWKNva6CypDG4Hunj5P9B0XYyCWdjk24oVgjo8lGUuk6T0RJeMYkhmDXeBdWG517LiG/miS3v4oY4kMewdiDMcn0i8tgdM6w7jG5P84M275D9gZ15By3Dkvttq+uYtbrzqbrpYQI/E0XS0hbr3q7Ia8+S9GKq74RcQCnjXGvArPi19pABp5Y6/wk85oPE3acXGNF2fPybrjguu67B+IFYVmEhmX0XgKn21NEWFjDCPxNMdHE3zv6SMMRFMU6nmT3yKRdvFZgmVJviHK0iZ/0QYveJW+mImwkCVCV0tozj+VaU7/4qWi8BtjXBF5RkTWGWMOzNeglIWlkTb2CoW+JejjRDRJW9hPe9jPsZHEhDgXGpGb8ptcBwfjvH7jkrwId/f08Q/dL7N/IErQ5/OqbwtX+Hir/GTGpSlgsbqjiVjKYcOSZgbGU9j2VAd0M6nB+h3XnacCrcyIamL8K4HnReRxYDx30BhzVc1GpSwojbKxNzk7Z09flIxraA74kIAQ9FlkUl7wvVBsswtu7/sCXTYGjMDdN2wD4Ke/Ocaf3/8boskM0aSDYWLlHgnaNAe8G0Ha8Vb6azqaeOBP3pg/J7e/IFL6/f228LHtp6voKzOmGuH/i5qPQjmlaJSNvckhLccYLJnYLF0aCRIb9MI5lpAP+bQ3+RiKTfXCAU+gUxmXoViK//0fv+VENFUUo8+JdmvIR2s4wNKWIJZIPhRUyCO9g6zpCNMU8DEaT3NsNEEy44LA5q5IWYsHRZmOssIvIiHgD4Ez8DZ2v2aMKf2/XVlUNIpZ1+SQVsC2SDtuPjunNeynLexjJJ5BBJp8Fm1Nfvy2TSzpkHSmxnzCPoudu0/wlZ297DkRzR+3BM+GWSCVMQyMp1gSCeWfL/WJqnB8rWE/rWF//gZR+MlAUWZKpRX/XUAaeAi4Engl8In5GJSy8DTCxt7ajib2DUQZjWdIOS62ePnyfp+FMYZ42qE1HOBDF27gkd7Bopvgs4eG+duf72Zyws3K9jAfvWvXlD0A14DrGGyBoC1kXKb9RNUoITdl/qkk/K80xrwaQES+Bjw+P0NSlPlhRWuAR3q99EwBXDEYvEyakXi66JPOTZNem7spfuWhXqJJB9sSXGPyRVO50NBkHAOtQZsVrWHamwIVP1E1SshNmX8qCX8+4GiMyWh/dWU+qXUBWXdPHz/+zXGyWZPeitxAW9jH2iWR/AZtORJphytevZIT0WSRL74l0Bb2M5ZIlxR+gFjKrco6oVFCbsr8U0n4t4jIKBOJbOGCx8YY01rz0SkNyVw7Q3b39LG3f5zP3v5g/iZyx85eMq5LwGd57Q8B1zWkHVMxbTWVcTk2kuDuJw7w7Uf3F/niR4K+/I1kKFbaEx+gJeSreh7Thdy0wlo5GcoKvzHGLvecotSSuSwgy91ErjvN0B72s7c/yo3/8iTpbDVuBq85CXipmcmMW7bi9ge/Psz/+fluDg3F8qv5kM/iDacv4cRYiuePjuCzvH2CyeSyeQTY1NUyozlMNze1TlZmSkXLBhGxROQ38zUYRYHKPWtnSu4mkjNRGxhPkXG9alxDzvLAwWDyDdAnV9wOjSe59f7n+dS/PcuBwQnRbwrYXL1lFT3Hxoim0oR8FinHTHHFhInkH9tizmL0hTfInENnrsOWolSi5pW72VaNu4DDxpi3i0gn8F1gPbAPeJcxZuhkrq0sTkplswyMJxlPOlxUEK4ptaqdHPp47vAQxgiJlS4Hh2Ilq24dFzAuPtsqKogaS6T5Rc8JvvDT33JgcOKmE/ZbLG8J4WL48W+O0tXqOXKaVtg34J1XWOSVw2fBTZdtmrPVeCNVWCtzy3xU7n4CeBHI7QncAvzcGHObiNySfXxz9UNWFjuTs1kGxpP0jaVYFglUDGn8yY6nuO/po/nHR4fjOAZsyWbtFCixJXjpm8bgGmgO+vjSe17L9s1dJNIOj+0d5B9+sYfH9g7mXyN410o7Lk7W9/7wcCL/6aQl5Cfks0hkXAxe2ibZFNGmgJ2//lyh6Z7KyVLTyl0RWQO8Dfhr4L9nD18NbM9+fxfQjQq/UsDkbJbxpMOySIBlLV7BU6mY/5f+86Ui0QfyIZdcnVVhiqXPsrAtwXINPltoC/u5cNNSfn1giC//Yg8/f7Evv2IPFPjluK7BceHQUJwT0SQBW4innbz4rmgLcWgojs8WzlgWyadg1sLZUtM9lZNFjCmTczYXFxe5F/j/gBbgU9lQz7Axpr3gnCFjTEeJ196A1/KR5cuXn7djx45ZjycajRKJRGZ9nXqlXuf/22NjebfKQhzX8IoV3kbpC0dHS26q5lgehr54saOlMSb/OOEIzw77+dVRN3/DWNksbFvmcFa7YMSQzq7kcwiCZXlfbUvyNxYnezNxXUPAZ7EsEiQSqmaNNXOiiQwnoklSGbfie9Xr734uaOS5X3rppU8aY7ZOPl5Nz90xJv5eAoAfGJ8unVNE3g70GWOeFJHtMx2wMeZO4E6ArVu3mu3bZ3yJKXR3dzMX16lX6nX+d9z56JSQRiyV8ayI3+Pl23/4Mz+uKPyfPsfhH38bIOizGIqnEQMuE7nK3iu9XPyuliDXv2E9b331Cv7nvc/y7OEUTQEfu4+PkcyKvyWwrrMJ2xICtjVtMdZCU6+/+7mgkedejmmF3xhTlHsmIu/E68E7HRcCV4nIW4EQ0Coi/wIcF5GVxpijIrISaKzuHsqMyYU0TowlGEtkSGZcbEs4Z3Ur773zUW/TtgI5cU9kHJZEgnzgDeu5c+fLjKfcKRuwnU1+vvPR19PVGqIl6ONj28/Ih1Mck0v9FFa1h2gJTXjn/OST1bc1VJSFppoOXEUYY74HXFbFeX9qjFljjFkPvAd40BhzHXA/cH32tOuB7890DEpjsX1zF9ecu5qhWJpYysE1hrTjct/TR+k5NkJ72E9bhVBKwBaMgeaAjz+94hWEAzaxdLHoWwI+geF4moMDMVpDfkSkqBOVJYIlE6IPupmq1CfVhHp+t+ChBWxlds3WbwPuEZEPAweAa2dxLaVB+PFzR3FdT6wLt6WGYhlaQxlWdzQBMYZi6Yk4PuD3WTiuF8vftqGT2//jt/mUy9w5PtsTdNcYfCLc+dBeLj1ref6cXPXsRIN0yZu46WaqUo9Us+P0joLvM3i591fP5E2MMd142TsYYwaAy2fyeqWx6e7p46W+aFnvm+OjCVrDfla1h2kO+njo5svyTUzSGRcX2PGyxeHYRFRxy5o2nj00gm15FbvepYXlrcGyefCF2Ua7+8ZIZdyigqlTLa6vKOWoJsb/wfkYiKKUorunjz/+zlNlRR+8XrdQHHb51csDNAcshrLPHY5lbRmAmy47gzOXt/Cpe58hnnYR1+CzDLZlcWg4TtC2ufJvdzKWzEwpFst9/dz9z9MWFsJ+W60SlLqjmlDPGuDv8DZrDfAw8AljzKEaj01ZxEzudWuMIZpyioQ2F1qJZdsfViKWyuTDLi8eHeHpQ8N5x0yAlU2GEwkv1v/Ab45y39NHaG/ykxlL4WJIu+AYFxHvBvLisTFsgf6xJJ++9xk+f82WvKg3cjN6ZXFQTajnG8B3mIjFX5c99uZaDUpZ3BSai9kCu/u8TlWr20P0jSX41L3PsCwSpLd/nKnZ+6Xpagnxu+eu4ofPHeF7vz5S1O7QZwnvO93hS8/78Pst9g3GWdMRpi0cIuizi+wYCs3UPC8fl/5oio9+cxdb13dy4yUb1SpBqXuqEf5lxphvFDz+ZxH5ZI3GozQAhSvm3hNRrzjLQH80xdJIkOFYmmgik3fQrIQFbFzWzFkrW/iz7z+fX+W3hf1EE541ctY5ASOeJfJQLF1ks5Ar5sp58gMgFD1OuyYf0okE7KJqXdDsHqW+qCads19ErhMRO/vvOmCg1gNTFi+F7pspxwuvuMYwnnLYPxgj4xoSmQkHzUqE/BZHRxJ8/Zf7SKRdWkM+/uiNp/PAJy/m45edgc+28pW4S5oDBHw2G5c2E0974aOxRDqf9VNUHFzwxpL9l3O/FBHSjiGWymCMKQozKUo9UM2K/0PA3wP/N/v4l9ljijKFahqDFJqLBWyLZMYtCs1Ui88SYtkVfshn8XvnreGjF29kbWcTD710gsf2DtES8pHKuFiSYcPSSF6cc0VZfaMJLPH8fCxytbvFNxyTvT54IZ2ReJq/vPpV2hlLqVuqyeo5AFTrxKk0MNU2Bik0F1saCbB/MD6j9wn5LRJp72ZhW8Lbz1nJH73xdM7oiuCzraJxrGgNEU87WFYqL/p37OxlPJkm7XifLMJ+m6aA7RWHpZ18eCcX5/dZwoo2zyAuF9JphGb0yuKlmqyejcAXgW14fwePAH9ijNFuD0oR02W7FH4aiARsRCSfC58u1b0kizDhrGkgH8ffsqYNxzXs2jfIX4wm86vuUuMQhNsf6GE85eC3hZVtYeJph2TGpSXkyzt/ApwYSxBLOQRsYSzp0NnsJxL0aUhHWTRUE+P/DnAPni//KuBfgbtrOSilPqnUOSu3Ct/bH2VoPMWeE+P09o9z7Xlr2HpaJyGfRdBnEfbb+Es5cRbE+89f38Gn33Img+Mp4mmHjqZA/tNFd09fyXFYAr3941M6VnU2+7NWEBPx+oDP887f9Wdv4Y7rzmP9kggj8TRdLaGa2CsrynxTTYxfjDHfKnj8LyLy32o1IGX+mOtG3eUag0SCPm7a8WvGso3JbUu83rTG8OXul/nY9tPZ0zfm2S2IQaS4g9WElTL80RtP55NvPpM/+NrjBHxWyU8XuXE4ruHEWJKU43LFEhfXWFNuCEuag6QdQ1dLqGS8XkM6ymKkGuH/RbZT1g68v8F3Az/KtlDEGDNY6cXKqclsG3WXummUagwyGve8c2IpB8Tz2XFcgyWeh33acXmkd5DPX7OF2x/oYU/fWNHqPofPgraQj/PXd+K3rYq59H959av49L3PMBRLY+VuIsbrnzswnmRpZCKsE087bOpq4e4bts36Z6oo9UI1oZ53AzcCv8Dz2/kjvKyeJ/F66Sp1yGwadeduGn1jiaKbBsCtV51NwLbY3Rfl0FCc4ViK0Xg2ZbJAzTOul6MftC0ODcV4zbp2Ltq0FJ9tT2mRGPYJazqaaG8O5scXCdjsORGl59govSeijMbTRRuvS5oD+GzBAH7bwu8TlkaCDI6nNQ1TaXiqyerZMB8DUeaX2VSfVtrEvfGSjYynHNZ0hMk4bjZjx2DLRCvEnMOmMdAS9kIv2z/fzXA8nR9HIu1gC/h8Fq6BI8MJVrYF8/sFA+MpMo7ByvbAPTwcp73Jz5+97ZUARFMOZyyLIOLtF9gyzNJIkIzjlg3rKEqjUFU/OBF5FfBKvIYqABhjvlmrQSm152QadefCO4/vGyRoi9esJOtLn7tp3LGzl1TGYSCaKfLYMVAk/gAhv9AfTeOYdP7Y8tYgkYDN4ZEExvXaGoqAi+H4aJLXruvgjp29tIb9NAd9+Ri+zxKWRYJ5ES83v03LWzWsozQ804Z6ROTP8Uza/g64FPjfaF5/3XPjJRtnVH1aGN4J+SzSruHIcIKxrC1C7qbx3OEhjo8mGU85RXF613je+Ln/cLbAaMLJ3wgiQZtNy5qJBH3sG4zRErRxMbiu8XrjGkPadfNeOWG/TUvIz8ZlETavaOWMrgjRZKbs/FzDnIZ1unv6eO+dj3LR7Q/y3jsfpbtHG8kp9UM1K/5rgC3Ar40xHxSR5cBXazsspdYUestXE/YoDO8sjQQ5MhIn47rsH4jlBb5vNE406ZZ8PVDUrDwn+D5LaA37WN0+8UnDb1mMJR1WtYXpj3oretsSNnY2s31zF2t3Tv9pZfL8/LbMKBWzUsbTbDfGFWWhqUb4E8YYV0QyItKK1yNXd8MWAdWmKnb39PHUgSFcYwjYFksjQdrDfk5EU0XnjVUQfSgO8+TIuIaxRIbReJrW7J7D8tYgh4YT+GxhaSTA8bEkaccgInT39JXMHiq1mi+cX3d395S5lhP3nLCnMg5jiQzHRhI8dWCIj20/nZvedKbaMit1T9lQj4j8vYhcCDwuIu3AV/AyeZ4CHp+f4Sm1otpQRU4EBXBdQyxrpNZfIPpSrXdyGdKO4cBgLJ+d47MtzuyK4LeEQ8NxMLCmPUTKcYuyh7paQiddWFUuMyl3M0hlnPwGss/y2jJ+ufvlsgViasus1BOVVvy7gS/gVetG8ap13wy0GmOenYexKTViJqGK3Oo26LPyna5g5k2Xc5YLQN5jf7IRWmF2zheu2cIdO3tZ75qikE5uZX33DdtmvLrOifruXLGYawgHbJZGgrSG/cRSGW77yYvsHYiRys5VMHmLZjDc9pMXT2pjXFFOJcqu+I0xXzTGXABcAgziNV/5CfBOEdk0T+NTasBMcvgPDsXIOC6jiUyJK3lM55kPELQnPhYYSt84XENRds5crqyjiQyfu/959g1EGYl5dQUukEw7HBmJMxpPk3Fcdp+I5quGDZ5bZ+ENa/eJKBds7CTtGPqjCV7uG+OFoyMcGopzwcbOGY9LURaCabN6jDH7jTG3G2NeC/w+8DtAT81HptSM6QS1u6ePK/92Jxtv+RGHhuLsH4zPeIWfQ/AsjTNmkt/9JOysJ3/acek5NsZ5f/lTRuNpBsaTReed7Mr6RDSJ3xZG4xksS/JjcQELoT+a5PhYEr9lsaItNKXzlwA+W/BbFo/0DnLNuasZHE+Tcgwhn01Hk597nzqs2T1KXVCNO6cfuAJ4D3A58F/AX9R4XEoNKRWqGBhPMhLPcMZnfkSm8h5t1Qhe1awxELAt/AFhOF76k0Phxq8Ao4kMzQGbvjFvL2FJc7DsJm41pLL2y7kMIZ9lkXK8Zi+IIZnxmrGsafdqE7paghwfm7jp+GxBEG/jeSjGI72wpiNcMgylG7zKqU6lzd03i8jXgUPADcCPgdONMe82xnxvnsan1IDJOe790QTHR5MkUg7OLER/bUeYjrAPnyX4LC9UknJcMsazPm4NB/id16ycto+uJd4qPO0YlkUCjCedWbtjBnwW8bRDIHsjyhnFWeJlFjUFbM7M+vkDdLWG8s1XBO/Gtao9hM+2WNPRpBu8Sl1TacX/GTxL5k+pEdviojDHfffxUQZjaU6iAdYUjo0mWNIcoDUcoD+axGRcXNfguDAUS7NxaQDwVs+V/PcNXqZQynFZGgkyEk/z0M2XzWpsyyKeC2dr2Ef/WAo36wLaFQkS8NncetXZAEVpoh3NfvrGUiyLBFgaKf7EccfOXt3gVeqWssJvjLl0Pgei1Jbunj729o/z2dsfZG1HExds7GRoPDknoi+Qddr0cvKXLQvRGvYzGk9zZCSOawybuiL0R5Pc9/RRbAv8lpCe9MaWTHj45MJDsxXTXCbP9tY4Tf5WJGCTdgypjEvAlnw7xtyniMKir/VLIrz3/E4e6R0sWeRWTS2BopyKVOXVo9Q3ufTN604ztIf97O2P8vi+QWypLiOnErk4vmV5IZNkwQZBf9SLkYd8XretnB+/MZ75mmOcSU6cQiY7oGQ2/j4aT+eN1ybPabpeAoVpq3a7d6NJOy5fuGZL2XBRqaK2m8qcV67yea77HCjKXKPCv8goJTq59E1LyAuwJZCqEG6pFhFvte9V9Qoikl8FJ3OhHjH0HBslk32/nNjb4r0OIGCRT/CX3HVtq2Q2UbV1CLWusC11k1A7B6UeUOE/BZirFWI50RlPplnZFs6fl3Lc2S/1s7gGHNdbnXc0+Xn/ttPyoRG/LaSM58Nvi5DJyrjgpW7atteFywCtTQFSGZfOZruo/22pnr1PHRhCwEu7zNYhlBL02VhPnyxq56DUAyr8C8xsVoiTbxjDsVSR6Diu4dhInJRjGBxPc+VSl9F4moBtMV5gmTwbJPspYtOyZm6+YjPbN3flQyNX/u1OdvdFs0t4sC3IuGBZXt5+0nHx21beA+ei2x8sK9SFPyfXGATPo39VO7SE/CUFvVKFba3CMQtxs1GUmVJNBy6lhpxsJ6xSXjMv9UXJZPMx+0YT7BuI5cM5Bm+VvX/QW4mD187QLvcGWVqD5c/w28KfXL6Jc9d1MJb0VrWFBUxjyQyr20Nef13XEPTZLIv48VkWSyJBXrd+CXdcdx43velMwBPqeLr4hpQT6sKfU8C28j79J7K59qU2gQvTVoG89fQFGzvL+vTMlkpzUJRTBRX+BeZk88HL3TCOjyYZS6SLio8mk8y4rGr1UisrrfttC+IZlyb/1P8mflt4+6tXcO9Th8sK6NqOJny2lffM37gsQms4wLnrOnjo5svyDVFyZnHDsRQj8dKtEQt/TksjQVw8j/5kxinbS2D75q68mZvjmnwdwCO9gyfddnI6ZtrnQFEWAhX+BeZkV4i7+8Y4OhzP95wdS6RZ3hIk7bocG0lUfG3acQn6fUUVuoFssZIt0BywWd4SxBYL1xjiaXdK0VXaMdz/7DGiiXRZAZ1OBCd/akk53vv4LZlSsFX4c2oN+1nVFsayBNuyKhZ2bd/cxd03bOMVK1ryxm61LL4qvNnMtuhMUWqFxvgXmFLe8qPxNH5LuCibcz85/tzd08dYIuNtkFpCJtsNa0nEz6ZlEfYOlBaw/uz9IOOSP6cl5CPoszhjWYQ9J6KsaA3l+9SGAzb7ylwLvD2EwVgav52gqzXEaDxNfzTJvoEY773zUW68ZCO3XnV22WYvpTZCATqag9xypZeN9Nnv/4a1O726g3ufOpz/OflsOWlRrbW7ZrV9DhRlodAV/wIzeYUYyKYwpl1TNv58x85eOpq8DUSvLy0YvA3cW648i3PXdZR8r7t2T6xyfZZwZleEL77rNez67JvZceMFbOpqKfr0Ea9yA/hENJkv1ko5LkFb8uMGuPuGbSVDO08dGMrvSeQI+212941NicHf+9Rhrjl39ZyspDUcozQ6uuI/BShcIb73zkdJOW7FdMCDQzGWRoIEfXa+NWHAtgj7rfw5j/UOMNV2J7uS91usX9JEyjH8vz98AcsStm/uKvr0kXHcivsEhbhmolhL8Jqwlxr35Aym/miSw8MJRCTftD2edkhlXNrCU1MiH+kdnJNG6TNtO6koiw0V/lOAwtTCE2NJVrQGi56fHH/OhSpaw/58u8JYKkNXNv99NJ6mKWATnbRif/Nqh58dtrFE8Nk2Prs4T75QEJ86MDSjOcTTDsZ4qZq5TJtI0Fc07smhneUtIQ4Nxdg/EMO2wGdZtIS8fYJaG6BpOEZpZGoW6hGRkIg8LiLPiMjzIvIX2eOdIvIzEdmd/Vo6LtEgTN7gFODwcILReBrwRHzPiSh9Y8l8i8RyoYr3b1vHn+z4NZ+85+kpou+3YEunIegTr4Ary2RBzW2GLmspvvlUoilg47ctz6/enthzGBhPFsXNJ2+qSoFlhIiAeGmnXS0hTYlUlBpSyxh/ErjMGLMFeA1whYhsA24Bfm6M2QT8PPu4YZmclrmizVu1Hx9LMBpPcXg4TsYxrGgNFsXNc/sCx0biHB+J0x9N8snvPsN9Tx/BNdnGIZYn+AFLCGT9ctys+VmOcoK6tkqR9VbqUnbPoTBuPjmD6cRYEtsWmgI2m1e0sqmrhbawH2OMxuAVpYbUTPiNRzT70J/9Z4Crgbuyx+8C3lmrMdQDk1fBLSE/q9tDGAPHRpP4LGFNRxgQjo0kODIc56YdvwZg62ltDMfTRFMusZSTX8k3BSxOX9bM6vYwIhZkLY49Tx0vk2c6Qb3xko0Vm6gHbM/PvrMpgN8WlkaCrGoL48vaMARsi5agXRROmfxJJZHxbgJLIxOfLsJ+m/GUoymRilJDxMyRZ0vJi4vYwJPAGcCXjTE3i8iwMaa94JwhY8yUcI+I3IDXAIbly5eft2PHjlmPJxqNEolEZn2dGb9vIsOJaNKzAvZZLIsEiYS8OPfe/nHSjilqS+gar0AqlfHE2smugPNNyo3haFz4ryMWh2ITLzyzzeXC5S6dQc8x05c1T8t5368IGxxfiPFkpuRYJnNoKMZQLJ1/nOtF65moCQGfxcrWECeiybJz2LC0uezPwjHG228oeGG5182Whfrdnyo08vwbee6XXnrpk8aYrZOP11T4828i0g7cB3wceLga4S9k69atZteuXbMeR3d3N9u3b5/1dWb0ngWZLIW+7bkVbOHzGcfl+GiStOuyaVkEES8ef2wkQcbxGodksoZo1Xjod0UCtIT9+ffj2Asznv+X/vMlvvrwXsZTDs0Bm49ctCFvsVDtHE/2ZzOXLMTv/lSikeffyHMXkZLCPy9ZPcaYYRHpxuvde1xEVhpjjorISmBRd6eezq0xl0lz+wM97BvwfHTWtIcZjqcZGE/huAbXeDE5MwP/fAFORFOc3tUy4RN/7IUZj/+mN505Regnc7LpkZpWqSgLQ82EX0SWAems6IeBNwG3A/cD1wO3Zb9+v1ZjOBWoxq1x++Yu7tjZy/olTTQFfIxmRd8Ygw242X85c3q/LTiOKZGnn33ekmxjFOYk770aTjY9UtMqFWX+qeWKfyVwVzbObwH3GGN+KCKPAPeIyIeBA8C1NRzDglOtPUDhDeLEWAJcgxHITFrhd7UECPltjgzHEePF2jOT4j4+2yLjujQHpvPeVBSlEamZ8BtjngVeW+L4AHB5rd73VCNXDXtiLMFYIkMyu2F79ZZVReet7Wji+Ggcv22RyHhx/NwK3xJoDtokUg4B22J1exOxbMy9P5rCTRe3MMztA3zkog3zN1FFUeoG9eqZY7p7+vJeNO+981EArjl3NUOxNImMQ8AWOpv93PvU4bz/Ttpxufa8NQyOp9lzYnxSH1ovXp9Ku5zR1cLDt1zO3TdsY1NXS97y+OxVbSxvCeazfsJ+m09cdsa0sXlFURoTtWw4Ccp1byrVTetT9z5DLOWQcVwMEEu7xEeS+G3htp+8yFmrWniw5wRfeaiX4Xhx6iR4NskigmM8M7Tunr4pvjphv00k5CPot6vKiNFm4IrS2OiKf4aU6nyVc8+cXIWbcQzDsTSxlINTkIJp8Bqd9xyP8u47HuVP//05ek+MA7D9zGV860Ov44xlzQR8AiL4bYvV7WHawv681/3J+r5XGr+iKI2BrvhnSKX0zMkZPP3RZFFRUylyfvfnrWvnIxdv5PwNnXQ0BYhnXDZ1teS98cEr3JqcDTTTlbo2A1cURYV/hpRKz8w4bt7Nsj+aZHlLiNaCjlKVsAVu/71zuGjTMjqbA/lOWLVqFqLNwBVFqYtQT8+xsbwz5UIz2WhsNJ72POWBFa1BMo7h8HCc0XgKS7wuVSVa1uYJ+S3eds4qVrSF8qIPtWsWos3AFUWpC+H3WXLKxKInC/LxMa+f4Yq2EK3hAGs6wtgCR0cSrGwN4fdZRb1tC7GAcMBHuES+fa16t2r3KUVR6ibUs1Cx6MkZMBds7KQ5YNPb723GOq7L6vYwLSE/I7EU/dEkGddggP7xNIl0adUP2kJnJMD6JeXNo2pR1ao2CYqi1I3ww/zHoienZ+7tj/L4vkG6WgJs6ooQTzscGoqTSDs4boqjI3EAsmaYRJMZ/LZwzXlr2LSsha/9ci9Bn7exmjMkW4iVttokKEpjU1fCP5+x6O6ePm7a8WvGUxlCPptlLUHGEhksgdF4hqWREGG/TXvYx+B4CtdMCH6O5oDN+iXN3HT5JjqbA2xc1qwrbUVRFpy6Ef75ikV39/Rx+wM9vNQXxckm3o+nHMazaZd+C5IZryDLMQa/zyrK0Qev+MoWaA/7GI6nWNkWBnSlrSjKqUFdCL/jGrpaQjVfIeeLm0YTCKX9j9Ou130qlsrQH00xXtDbVgCfLVgiGGPoj6Y497TOmo1XURTlZKgL4X/FipZ5sRfOFTc5xlRsdJJ2DPsH4/nHtkB7k5+ReBoxkHNXyxjNllEU5dSjLoS/1nT39HHbT16k57jXItiSyh2uck8FfRa/d+4anj88wnA8RXPAx8B4Kt/fdmNns4Z2FEU55Wh44e/u6eNT9z7DcCyd7yk7XVtDvyV8/PIzuOLsFURCfn5zaIS/+vGL+H1er9hcxs4tV541H1NQFEWZEQ0v/Hfs7CWazGCLgJgpjU8mE/Zb/OkVZ3HpWV10NgdoDvpY1R4m4LM0Y0dRlLqg4YX/4FCMjONii2DbFibj4pQ4zxLP7uCPt5/OFa9aSWvYV2Sgphk7iqLUCw0t/K5rWNEaom8sgeMYEKb0sX37OSt5/7bT6GoN0RLy0dEUwJ7OclNRFOUUpiGF33UNo4k0I/E015y7ht8eG2Us44CZiPP4beGmSzfxti0raQ56gl9ooqYoilKvNJzwD8dSjMTTOK5h38A4P3j2CGPJ4lz8VW0hPn7ZJi46cylLI0FCfm1arijK4qEhhD+3wk85LoPjKY6PJrjrV/v56QvH8hk8Zy6P8NGLN3LeaR34LIuOZj8tIX/lCyuKotQhi1r4C0M6jmuIJg3/2P0y33v6MOmssc6ajjAfunA9l5y5DNuyaAv7aQ/7sTSOryjKImVRCv9kwY+nHO596hB3P5og4RwCYElzgOvfcBpXnL0Cn20RCfrobA7gszWOryjK4mZRCf9kwU87Lj989ij/8uh+hmJpACJBH+85fy2/e+5qQn6boN9mSXNA4/iKojQMi0L4jTGMxjMMx1M4rsE1hl/09PH1X+7j6IjXISvgs7h0tcUfv/11tIT8+G2LjuYAkeCi+BEoiqJUTV2r3mTBN8bwxL4hvvrQXvacmPDdeeurvVz8kd5naAsH6GgKTCnAUhRFaRTqUvhzgj8ST5NxvZKrF46M8pWHennm0Ej+vEvOXMqHLtzAus4mRIQxS1jb2aQFWIqiNDR1JfzGGEYTGUZiE4K/b2Ccrz28l1/uGcifd+66dj5y8QY2r2gFoDm7cbvfEhV9RVEanroR/tFEmuHxCcEvlYu/qSvCRy/ewNb1XvMT3bhVFEWZSl0Ifyrj0j+WBGAknuY7jx0om4tviejGraIoSgXqQhkN5HPx73niYL7d4ZLmAH9wwWlc+SovF98S0Y1bRVGUaagL4R+Opbjua4/lc/GbgzbvPX9dPhdfRNQ5U1EUpUrqQvj7xpLYsTQBn8XvvGYV733dOlrDno+OOmcqiqLMjLoQfoC3vXolf3DBaSxrCQK6casoinKy1IXwr1/SzP94y5kA6pypKIoyS+pC+AM+b+O2vclPW9ivG7eKoiizoC6E37aENR1hdc5UFEWZA2qmpCKyVkR+ISIvisjzIvKJ7PFOEfmZiOzOfu2Y7lo+S1T0FUVR5ohaqmkG+B/GmLOAbcDHROSVwC3Az40xm4CfZx8riqIo80TNhN8Yc9QY81T2+zHgRWA1cDVwV/a0u4B31moMiqIoylTEGFP7NxFZD+wEXgUcMMa0Fzw3ZIyZEu4RkRuAGwCWL19+3o4dO2Y9jmg0SiQSmfV16pVGnn8jzx0ae/6NPPdLL730SWPM1snHa765KyIR4N+ATxpjRqvNyDHG3AncCbB161azffv2WY+lu7ububhOvdLI82/kuUNjz7+R516Omu6YiogfT/S/bYz59+zh4yKyMvv8SqCvlmNQFEVRiqllVo8AXwNeNMb8n4Kn7geuz35/PfD9Wo1BURRFmUotQz0XAu8HnhORp7PHPgPcBtwjIh8GDgDX1nAMiqIoyiRqJvzGmIeBcgH9y2v1voqiKEpltCpKURSlwZiXdM7ZIiIngP1zcKmlQP8cXKdeaeT5N/LcobHn38hzP80Ys2zywboQ/rlCRHaVymltFBp5/o08d2js+Tfy3MuhoR5FUZQGQ4VfURSlwWg04b9zoQewwDTy/Bt57tDY82/kuZekoWL8iqIoSuOt+BVFURoeFX5FUZQGY9EJf7nOX5POERH5kojsEZFnReTchRhrLahy/ptF5BERSYrIpxZinLWgyrm/L/s7f1ZEfiUiWxZirLWgyvlfnZ370yKyS0QuWoixzjXVzL3g3PNFxBGRa+ZzjKcUxphF9Q9YCZyb/b4FeAl45aRz3gr8BM9SYhvw2EKPe57n3wWcD/w18KmFHvM8z/0NQEf2+ysb8HcfYWJv7xygZ6HHPV9zzz5nAw8CPwauWehxL9S/RbfiN+U7fxVyNfBN4/Eo0J6ziq53qpm/MabPGPMEkF6AIdaMKuf+K2PMUPbho8Ca+R1l7ahy/lGTVUCgGVgU2R1V/t0DfBzPKr6h7eAXnfAXku389VrgsUlPrQYOFjw+ROn/JHVNhfkveqqc+4fxPvktOirNX0R+R0R6gB8BH5rnodWccnMXkdXA7wD/tADDOqVYtMI/ufPX5KdLvGRRrHxyTDP/RU01cxeRS/GE/+b5HNt8MN38jTH3GWM24/W7/st5Hl5NmWbufwvcbIxx5n1gpxg1b724EJTp/FXIIWBtweM1wJH5GNt8UMX8Fy3VzF1EzgG+ClxpjBmYz/HVmpn87o0xO0XkdBFZaoypexOzKua+FdiRbf+6FHiriGSMMd+bv1GeGiy6FX+Fzl+F3A/8QTa7ZxswYow5Om+DrCFVzn9RUs3cRWQd8O/A+40xL83n+GpNlfM/I3se2Wy2AFD3N79q5m6M2WCMWW+MWQ/cC/xxI4o+LMLK3Wx62kPAc4CbPfwZYB2AMeafsv9J/h64AogBHzTG7FqA4c45Vc5/BbALaM2eE8XLgKjrkFCVc/8q8HtM2HxnzCJxbqxy/jcDf4C3sR8HPm28pkl1TTVzn3T+PwM/NMbcO4/DPGVYdMKvKIqiVGbRhXoURVGUyqjwK4qiNBgq/IqiKA2GCr+iKEqDocKvKIrSYCzKAi5FKUREosaYyEm87jEgCHQCYeBw9ql3GmP2zd0IQUT+Es9DysXzkfmAMWbRFBUqpxaazqksek5W+Ate/wFgqzHmv83dqKa8R2uujkJEbsKrq/jDWr2f0thoqEdpGERku4h0i8i9ItIjIt/OVm9fKSL3TDrvB2WucbqIPCAiT4rIQyKyOXv8n0XkH7Oe8L0i8kYR+XrWH/6fC14fFZG/EZGnROTnIrIMYFLx3KJxzVROTVT4lUbjtcAngVcCG4ELgZ8B20SkOXvOu4Hvlnn9ncDHjTHnAZ8C/qHguQ7gMuBPgB8A/xc4G3i1iLwme04z8JQx5lzgv4A/z71YRP5aRA4C7wM+N6tZKkoFVPiVRuNxY8whY4wLPA2sN8ZkgAeAd4iID3gb8P3JL8w6P74B+FcReRq4A68BSI4fZL3unwOOG2Oey77P88D67DkuEzeVfwHyHbCMMf/LGLMW+DZQs7CSoujmrtJoJAu+d5j4G/gu8DFgEHgi28xjMhYwbIx5zTTXdie9j0v5v7VSIZ3v4Hnl/3mJ5xRl1uiKX1E8uoFzgY9SJsyTjcPvFZFrId+7eaY9ey0g1+v194GHs9faVHDOVUDPDK+rKFWjK35FAYwxjoj8EPgAcH2FU98H/KOIfBbwAzuAZ2bwVuPA2SLyJDCCt58AcJuIvALv08F+QDN6lJqh6ZyKMo/MNrVUUeYCDfUoiqI0GLriVxRFaTB0xa8oitJgqPAriqI0GCr8iqIoDYYKv6IoSoOhwq8oitJg/P+TsB7Qfo6J4AAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "
    " ] }, - "execution_count": 147, - "metadata": {}, - "output_type": "execute_result" - }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import seaborn as sns\n", + "ax = sns.regplot(x=\"InvTemp3\", y=\"VapourPressure\", data=distill)\n", + "ax.grid(True)" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAuF0lEQVR4nO3deZxcdZnv8c9TVd2dJgsJIcZAEiIE9CZIGuwZYKIooDOIrBfEOyDuxLkDDM5FCeooopc7LDKKwqCoKIxBxTCyBGV02DQIaEeTQCJCRMgqJG0S0tjppeq5f5yq7trr9HKququ+79crr+46VXXql0N46nd+y/OYuyMiIo0jVusGiIhIdSnwi4g0GAV+EZEGo8AvItJgFPhFRBpMotYNCGP//ff3efPm1boZIiLjyqpVq3a4+4z84+Mi8M+bN4+Ojo5aN0NEZFwxsxeLHddQj4hIg4k08JvZVDNbbmbPmNnvzOxYM/ucmW0xs9XpPydH2QYREckV9VDPDcAD7n62mTUD+wB/B3zJ3b8Y8WeLiEgRkQV+M5sCHAd8AMDde4FeM4vqI0VEJIQoh3oOBrYD3zaz35rZN81sYvq5i8xsrZndambTImyDiIjkiTLwJ4CjgJvd/UjgVeBy4GbgEKAN2AZcX+zNZrbEzDrMrGP79u0RNlNEZGzq7OphzaZddHb1jOp5oxzj3wxsdvcn04+XA5e7+0uZF5jZN4AVxd7s7rcAtwC0t7crhaiINJR7Vm9h6V1raYrF6EuluPasIzit7cBROXdkPX53/xOwycxenz50IrDezGZlvexM4Omo2iAiMh51dvWw9K617O1Lsaenn719KS67a+2o9fyjXtVzMbAsvaLneeCDwFfMrA1w4AXgoxG3QURkXNm8s5umWIy9pAaONcVibN7ZzfRJLSM+f6SB391XA+15h8+P8jNFRMa72dNa6Uulco71pVLMntY6KufXzl0RkTFm+qQWrj3rCCY0xZjckmBCU4xrzzpiVHr7ME5y9YiINJrT2g5k8fz92byzm9nTWkct6IMCv4jImDV9UsuoBvwMDfWIiDQYBX4RkQajwC8i0mAU+EVEGowCv4hIg1HgFxFpMAr8IiINRoFfRKTBKPCLiDQYBX4RkQajwC8i0mAU+EVEGowCv4hIg1HgFxFpMJEGfjObambLzewZM/udmR1rZvuZ2c/M7Ln0z2lRtkFERHJF3eO/AXjA3d8ALAJ+B1wOPOjuhwIPph+LiEiVRBb4zWwKcBzwLQB373X3XcDpwG3pl90GnBFVG0REpFCUPf6Dge3At83st2b2TTObCMx0920A6Z+vKfZmM1tiZh1m1rF9+/YImyki0liiDPwJ4CjgZnc/EniVIQzruPst7t7u7u0zZsyIqo0iIg0nysC/Gdjs7k+mHy8n+CJ4ycxmAaR/vhxhG0REJE9kgd/d/wRsMrPXpw+dCKwH7gXenz72fuCeqNogIiKFEhGf/2JgmZk1A88DHyT4srnTzD4MbATeHXEbREQkS6SB391XA+1Fnjoxys8VEZHStHNXRKTBKPCLiDQYBX4RkQajwC8i0mAU+EVEGowCv4hIg1HgFxFpMAr8IiINRoFfRKTBKPCLiDQYBX4RkQajwC8i0mAU+EVEGowCv4hIg1HgFxFpMAr8IiINJtLAb2YvmNlTZrbazDrSxz5nZlvSx1ab2clRtkFERHJFXXoR4Hh335F37Evu/sUqfLaIiOTRUI+ISIOJOvA78FMzW2VmS7KOX2Rma83sVjObVuyNZrbEzDrMrGP79u0RN1NEpHFEHfgXu/tRwDuBC83sOOBm4BCgDdgGXF/sje5+i7u3u3v7jBkzIm6miEjjiDTwu/vW9M+XgR8Bf+3uL7l70t1TwDeAv46yDSIikiuywG9mE81scuZ34G+Bp81sVtbLzgSejqoNIiJSKMpVPTOBH5lZ5nPucPcHzOw/zKyNYPz/BeCjEbZBRETyRBb43f15YFGR4+dH9ZkiIlKZlnOKiDQYBX4RqZrOrh7WbNpFZ1dPrZvS0Kqxc1dEhHtWb2HpXWtpisXoS6W49qwjOK3twFo3qyGpxy8ikevs6mHpXWvZ25diT08/e/tSXHbXWvX8a0SBX0Qit3lnN02x3HDTFIuxeWd3jVrU2BT4RSRys6e10pdK5RzrS6WYPa21Ri1qbAr8IhK56ZNauPasI5jQFGNyS4IJTTGuPesIpk9qqXXTGpImd0WkKk5rO5DF8/dn885uZk9rVdCvIQV+Eama6ZNaFPDHAA31iIg0mFCB38xazez1UTdGRESiVzHwm9mpwGrggfTjNjO7N+J2iYhIRML0+D9HkDN/F4C7rwbmRdUgERGJVpjA3+/uuyNviYg0FOXtqZ0wq3qeNrNzgbiZHQr8E/DLaJslIvVMeXtqK0yP/2JgIdAD3AHsBj4WYZtEZIzY8NIelndsYsNLe0btnMrbU3tle/xmFgfudfe3A58e6snN7AVgD5AkGDJqN7P9gB8QzBO8AJzj7juHem4RidZn736K25/YOPD4fcfO5fOnv3HE583k7dnLYAqHTN4erfGvjrI9fndPAn8xs31H8BnHu3ubu7enH18OPOjuhwIPph+LyBiy4aU9OUEf4PbHN45Kz195e2ovzFDPXuApM/uWmX0l82cEn3k6cFv699uAM0ZwLhGJwOpNu4Z0fCiUt6f2wkzu3p/+MxwO/NTMHPi6u98CzHT3bQDuvs3MXlPsjWa2BFgCMHfu3GF+vIgMR9ucqUM6PlTK21NbFQO/u99W6TVlLHb3reng/jMzeybsG9NfErcAtLe3+wjaICJDNH/mZN537Fxufzx3jH/+zMmj9hnK21M7FQO/mf2RoOeew90PrvRed9+a/vmymf2IYCPYS2Y2K93bnwW8PPRmi0jUPn/6G3nfMfNYvWkXbXOmjmrQl9oKM9TTnvX7BODdwH6V3mRmE4GYu+9J//63wOeBe4H3A1enf94z1EaLSHXMnzm5ZMDv7OrRUM04FWaopzPv0JfNbCXw2QpvnQn8yMwyn3OHuz9gZr8G7jSzDwMbCb5IRGQcWfbEi1x53zqa4jGS7tqANc6EGeo5KuthjOAOoOI9n7s/DywqcrwTOHEIbRSRERrN3vmyJ17k03c/DUBvMgnAZXetZfH8/dXzHyfCDPVcn/V7P+lNV5G0RkRG3WimR+js6uHKFesLjsfNtAFrHAkz1HN8NRoiIqMvOz1CZqfsSHrnm3d20xw3evtzj/cltQFrPAmTj/8SM5tigW+a2W/M7G+r0TgRGZlMeoRsmfQIQ9XZ1cPu7j76koWrq684daF6++NImKGeD7n7DWb2d8BrgA8C3wZ+GmnLRGTERis9Qs5kbipFU9xoTsToSzpXnLqA844+aDSbLRELE/gt/fNk4NvuvsbSS3VEZGzLpEe4LG+Mfyi982KTuS0JuPm8o1h4wL7q6Y9DYQL/KjP7KfA64JNmNhlIVXiPiIwRI0mPUGoyF2Df1mYF/XEqTOD/MNAGPO/uf0mnVf5gpK0SkVE13PQIwRyB0Zt3vKffmdgcH53GSdWFyc55LPB7d99lZu8F/oWgGIuI1JFipRCDOYLCydzmGLzam6xm82QUhQn8NxPk5F8EXAa8CNweaatEpKruWb2Fxdc8xHu/+SSLr3mIe1dvAYI7hStOXVDw+lg8puWb41jYYutOkEf/Bne/gRA7d0VkfKhUCvG8ow/iqjMOpzluTGyOK39+HQgzxr/HzD4JnA+8JV2OsSnaZolItYQphXjeMQdx0uGvVVK2OhEm8L8HOJdgPf+fzGwucF20zRKRagm71l/58+tHxaEed/8TcBeQ+S++A/hRlI0SkepRKcTGEyY75wUEJRD3Aw4BDgS+hjJsitQNlUJsLGGGei4kqJz1JIC7P1eqTq6IjF2VUjNrKKdxhAn8Pe7em8nSYGYJipRiFJHaKBfQM889vWU3X7h//aikZpbxL0zgf9TMPgW0mtk7gH8E7gv7AelVQB3AFnc/xcw+B1wAbE+/5FPu/uOhNVtEoHyu/cxziZjR1RNsthqN1Mwy/oVZx7+UIEg/BXwU+DHB7t2wLgF+l3fsS+7elv6joC8yDOXW32c/lwn62YabmlnqQ9kev5nFgLXufjjwjaGe3MxmA+8CrgL+z7BaKCJFlVt/n/l9b4l8isNJzSz1o2yP391TwJr02v3h+DJBmof8f30XmdlaM7vVzKYN89wiDa3c+vtizwHaeStAuKGeWcA6M3vQzO7N/Kn0JjM7BXjZ3VflPXUzwbLQNmAbuTV9s9+/xMw6zKxj+/btxV4i0tDKrb8v9txVZx7OHRccw2NLT9DEboOzIA1PmReYvbXYcXd/tML7/pUgzUM/MAGYAvynu7836zXzgBXpoaSS2tvbvaOjo2w7RRpVmFU9WpvfmMxslbu35x8vOcZvZhOAfwDmE0zsfsvd+0u9Pp+7fxL4ZPpcbwM+7u7vNbNZ7r4t/bIzgafDnlNECpVbf6+1+VJMucnd24A+4BfAO4EFBCt0RupaM2sj2AvwAsFKIREpQb12GW3lAv8Cd38jgJl9C/jVcD/E3R8BHkn/fv5wzyPSaIqt0x+N1Ar6Mmls5QJ/X+YXd+9XfXWRaOUH4+y1+JllmZf+cA0xg+Z4fEg7cLPPvXLDjpKbvqQxlAv8i8zsFSAT8VuzHru7T4m8dSINoljP/qDpEwvW4vclg8UYPf3BdFuYHbjZ5+5NJkl5cB7t4m1cJZdzunvc3ae4++T0n0TWYwV9GZZidV0bXWdXD5ctL9yBO7E5XnQtfrZKO3Dzd/f29PvAl0fYc0j9KbuO38xiZqZVNzIqStV1bXTLntxIT39ugG+KxXi1N5mzFr8lESOR939spR24md295WgXb+Mpm7LB3VNmtsbM5rr7xmo1SupPsfHqRh1iyB5vB7jp4ecKXrO3P8nsaa0smjOVA/adwM+f28Fxh+7P1t17uSxvSKjc9Su2gzcRg3gsRnM83Dmk/oTJzpnZufsr4NXMQXc/LbJWSd0JU9e1npVKj3zh2+aTiMXoITeRWioVDMd89u6nuP2JoM/1lYc2cE77gTy29ISiK3KKrdSZPqmFc9pnc/vjg/22c4+eyyUnHqZVPQ0sTOC/MvJWSN0LW9e1HpVLj3zjw8+RKrJ5fkJznMf/0DkQ9DPu7NjC/BmTWfLWQ4p+Rv5Knc6uHu7s2Jx3js1ccuJhLJozdfT+kjKuhKm5+2ixP9VonNSPRq3rWik9cnM8zkfe/LqC48mUs6PEBPh1P/19zuR4ufTMxcb4NZkrYWru7mGw4lYz0AS8qpU9MlSNWNe12BBXtr5Uio+85WBm77cPV963nqa4kUw51551BAtmFf9frCmeO0RWbhitke+0pLSKgd/dJ2c/NrMzCGrwigxZo+WOKZceOek+cNdz3tEHcdLC1xZ8KZ7TfiB3duSufkq55wTucsE9c6c1lAlhqX8Vs3MWfZPZE+5+TATtKUrZOWU8u3f1Fj6xfC3xWNCb/+ypCzj8gH1D3/Xc8ugfuO6nv6cpHiOV/rLI32l77+otBcE9+zVK0dCYhpydM+uN/zPrYQxoR8XWRULbs7efVCqFEQOcyS2JIU2sLnnrIZz1ptllA3elYbRGu9OS8sKs6jk16/d+goyap0fSGpEqqVYPeNkTL/Lpu4M9kJnhmOHsXwgTuBXcJawwY/wfrEZDRKql1NLH0dbZ1cOVK9YXHI+bjev9Cxo2Gv/CDPXMBr4KLCYY4lkJXOLum8u+UWQMimoHcf5u3M07u9nd3Utz3OjNK1/Ulxy/q2qq9aUp0Qoz1PNt4A7g3enH700fe0dUjRKJShQ7iLODYXdfP2bGhER8IBNmvitOXVj2s8Zqj1ppN+pHmMA/w92/nfX4O2b2sYjaIxKpcksfhxNwg8yaa+jp96wvE6cvGXTz40aQXC1u9CWdK05dwHlHH1TyfGO5R93oaTfqSZjAv8PM3gt8L/3474HOsB9gZnGgA9ji7qeY2X7AD4B5BBPF57j7zqE0WmS4Sq1rH0pxkuwviCCzZulFbkmHJYvncdLhsyp+oYz1HrU2g9WPMIH/Q8CNwJfSjx9LHwvrEuB3QGYb4uXAg+5+tZldnn68dAjnExmR/KWPAIuveShUwP36o3/guv96hkQsRspTOJUr09362B/5yFsOrhi8x3qPWpvB6keYVT0bgWFl4kxPDL8LuAr4P+nDpwNvS/9+G0EtXgV+qarspY9rNu0KFXAv++Fq7lwV7KLtTw0O61TSHI+HCt7joUfdiGk36lHFJG1mdrCZ3Wdm283sZTO7x8wODnn+LwOXQU6ikpnuvg0g/fM1JT53iZl1mFnH9u3bQ36cyNCFCbgbXtozEPTLaUnEaI7nHutNJtnd3Vux6th4SWQ3fVILi+ZMHXPtkvDCDPXcAdwEnJl+/L8IxvuPLvcmMzsFeNndV5nZ24baMHe/BbgFgpQNQ32/SFhhhjBWb9pV8TwtiRjXnX0EwMC5uvv6STlcuOy3oSZr1aOWaggT+M3d/yPr8XfN7KIQ71sMnGZmJwMTgClm9l3gJTOb5e7bzGwW8PLQmy0yuooF3OxJ3LYKKRb2aYrztfPfxHGHzQBg8fz9Wbf1FS64vYOe/tTAKp8wk7XagStRCxP4H05Pwn6fYEDzPcD96dU5uPufi73J3T8JfBIg3eP/uLu/18yuA94PXJ3+ec8I/w4ioyITbNdtfYXH/7CDWx/7I83x+EBP/X3Hzs2pZJUthbPwgCk559q3tYnmeCynnu5YmqyVxhUm8L8n/fOjecc/RPBFEHa8P+Nq4E4z+zCwkcGNYSI109nVw7InN3LDfz9LMmtgsad/sKf+2NITeN8x81i5YQcv7HiV7/16I4lYjL5kis+8a0FBMB8Pk7XSmMKs6iksDzRE7v4Iweod3L0TOHGk5xQZLfes3sJly9fm9MzzZXrqi+ZMZf7MoETFoTMnc+WK9TQnYnzh/vVMnpDIGb/X8kcZq8L0+DGzw4EFBGP1ALj77VE1SqRaOrt6+PgP19CXLL9+IL+n3tnVwxfuX09vf2ogF88nlheO32uyVsaiMMs5ryBI0vZV4HjgWoa5rl+kFjq7elizaVfR5ZSP/2FHxaDfkrCCnnqxWrY9/SnueLJwDkDLH2WsCdPjPxtYBPzW3T9oZjOBb0bbLJHhy16NUy4Vwz2rt/CJH64te64P/M1BXHzCoUXH73uThUNDNz78HOcePVdBXsa0MIF/r7unzKzfzKYQLL8c6oSuSFVkJznrTaZIplL0p8hJxbBg1hS27t7LZcvXFg3eGS0J48wjZxcN4tMntXDR8fO5/mfP5hwPu0tXpJZKBn4zu5Fgo9avzGwq8A1gFdAF/KoqrRMZgmJJzvJ5yjn5qytJmJWdzAUws7IrcM49ei43PvxcTpI2rdqR8aBcj/854IvAAQTB/nsEOfinuHv5+2ORGiiW5CxfT9IBp7fCuYqN6+ebPqmF685epFU7Mu6UDPzufgNwg5kdRJCm4dsEq3q+Z2bd7v5cldooAlQuUFJs3XxT3EilnArztwC0xA3MuOj4+aHH6bVqR8Yjcw+fBsfMjgRuBY5w93il14+W9vZ27+joqNbHyRgUtkDJvau35PTAP3PKAj5/3/qKwzqJmHHrB/6KhQdMUfCWumFmq9y9Pf94mJq7TcBJBL3+E4FHgStHvYUiJYQpUJK5G1g8f38eW3rCQA98885u4rHKOfP7U8EQkIK+NIJyk7vvIKi29S6CydzvA0vc/dUqtU0EqFygpNLdQLJY4duiKn9BiNSDchu4PgU8DvwPdz/V3Zcp6EsY5TZMDUelOrmZu4E9Pf3s7UvxieVrBj47mIA9gqb4YFCPG+TfBCRi5CRZE6ln5SZ3j69mQ6Q+RFEsvFzOm58/+zIxy43iPf3OHU9u5OITDwUGJ2DXbd0NGAsPmMJjG3bw8R+uxojhpPjiu9uGNcwznALtIrUWKlePSBijVSy8WDAttnomSK62pmix8xsf3pCzMmf6pBaOO2yw2JsDZjHiMSOZqpi5pKgovuREqkGBX0bNaBQLLxdMM+fYvLObna/2lgz6AM3x0p/b2dVTkI1zqF9Qo/UlJ1ILCvwyakaaf75SMM3+UvhLb3/ZtfnlPnfZkxsLlncO9QtqNL7kRGplePe4IkUMt1h4ZjJ43dbdBRkvM8E0fxK3VNCf2BIv+NzsyebOrh5uerhw72FvcmipFlRkRcazyHr8ZjYB+DnQkv6c5e5+hZl9DrgA2J5+6afc/cdRtUOqa6g7WXOTqiXJX3mZCabrtr5CssL22//91oM56fBZOZ+bP3R04dvm0xyPD1TWyrjo+PlD6qmryIqMZ0PauTukE5sZMNHdu9KbwFYClxBsButy9y+GPZd27tanzq4eFl/zEHv7BnvOiRjEzEjEYvSnklx8wmHsN7GZK+9bR2+ZwN+SiPHLy0/IKZI+sTnOKTeuzDl/SyIGeM7cQEvC+OXlJ1Z9VU+Y92rVkIzEsHfuDpcH3yhd6YdN6T/RfMvIuFRsnDxuRoqgp9+XhK8+9FzZgL9PU5wUPtDbXvbEi1x53zqa4jH6Uo7ldWya4zGWHHcwNz2yYVR66tMntYQaysoP3vl3Ohcdf2hBfiCtGpKoRNbjBzCzOEEq5/nATe6+ND3U8wHgFaADuNTddxZ57xJgCcDcuXPf9OKLL0bWTqmNDS/t4eSv/KJsYC+nOW782zltHHvIdKZPauHrj/6Bf/3JM2XfM6EpxmNLTwCoSk+6WPBePH//gjsdCO5Grjs7CO7F7oYybVfPX8Iq1eOPdHLX3ZPu3gbMBv46Xbv3ZuAQoA3YBlxf4r23uHu7u7fPmDEjymbKKAq7a/ee1Vs45caVxNJbaJvjRnyIGRMM+PjyNTy2YQfLnnixaNBvSRjNcSuYbK5GOcRiu4ovu2st67a+UjCJDUHpxsvuWjtwh1BqoltkpKqynNPdd5nZI8BJ2WP7ZvYNYEU12iDRCzs0kR0QM3qTzlDTvfYkHZLOJ5avKZgUzuhPOf91yXG82pusyjh59rDOuq2vEMvL/9MUi/FKdy89/cmi74+bDbxfq4YkKlGu6pkB9KWDfivwduAaM5vl7tvSLzsTeDqqNkj1DGVDU6mCKcVDYWVxixEzL1403WHaxGbmz4x+eCT7i29vf7JoHYDuvn4u/eHa4E6nSHtf7U3y9NbdLJozNWfVUG8yWJEkMhqiHOqZBTxsZmuBXwM/c/cVwLVm9lT6+PHAP0fYBqmSsEMTnV09rN+6m1d7c5dT5osBzXG49B2HcdUZh9NcZhwo6amSPf59mhM5bRjtBHLZ580e1ulLFgb95nhQzrGnPzVwt1MsZfQXVqyns6uH09oO5LGlJ3DBcQcDzi0/f57F1zzEvau3jGrbpfFEuapnLXBkkePnR/WZUjthhiaWPfEin7473A2eGfz4n45j/szJABz9uv04+asr6e3PnxA1rjt7EQCfyEvDkN+GKFfJVCr7uE9znMv+7jCu/+lz9CUHv/RaEjHcne6+0juA//2RDfT0+8DeA6WGkJHSzl0ZFaV27QL8/NmX+dw9T4cO+hCUTFyd1TOfP3MyV5y6gOZEjIktcVoSMS59x2H88vITOa3tQE5rO5BfXn4Cl77jMJrjwTLP7Lq5pSZao0wdnS3lzpvnzyh4TTLlpPJW1mV/WWmSV6KgXD0yavJ37a7csINj/vXB4mPvWYzCDR57+51P3/00ZnDtWUfgBEMgTTGjrz/FFacu5KTDXzsQADMrdeZO3wezWPqkg8MoUefWyd/Ju7c/ibvT2pQYuLuYP3Ny0d2+QMkdwJrklShEuo5/tGjn7thUblfphpf2cNINP6dCqVsArj7zcB5/vpN71mwr+nyx3baJGMRjMZrj5dfHZ6/br8a6+OxrAsX3ChS7buWuZX4dYW3kkrBKreNX4JdhKTVe3tnVw7InN3LDg8+FKnloBOP5LYlYzjh3tn2a4+Dwl77S634mNMW45fw3ceGy37KnZ3AMfXJLgu9+5GgWzZkaaQCNOrVCqfMrpYOUU/WUDVK/Si3d3LO3n8+vWFcyR34xDrhTMuhDpmZu+XMG4+BWdljktLYDWTBrCqs37aJtztSBieNihhJQq5FaoVhqCKV0kOFS4JeK8oNgqRw7V65YT+8Qgn4pTXGjL+lMaAomNfPHwTNZPLPnDvpSKRYeMKVsxswwgTJzx3LTwxtyhpFKBdRaFWRRIRgZCQX+OjPat/7FguWCWVMKdp72JVM0J2JUWJ5PwqDcd0NTDL71/nYO2Le1YLdt9sTxDf/9LLc/sXHgfee0z2b6pJaSaaHDBMr8Uo6ZpaHlAmqtCrKoEIyMhAJ/HRnprX/+l0axYHnpD9ekkxAEa3Fa4obFjM+8awGfX7G+4mc0JWL0lxnW+chbDs6pjZstM9zR2dXDnas25zx3Z8dmLjnxsIHXhNktnB0oM3/XYsNU5QJquVU3UY6/a7WPjIQCf50Y6a1/sS+Ng6ZPLAiWg8Mrwc+kwwMXvZn5Myfz51d7uf5nz5b8jLhRdsI3bkHgz/47FQucw+ntVgqU5TZglQuopQqyrNywI9LxdxWCkZFQ4K8TI7n1L/WlseKiN5fdlARBErStu7uZP3My5x49lxsffq6g19wUg75U0NtPppxEDFqbEnT39ZNMQXMiuIe47uxFocbjw/Z28784ygXKUhuwWhKVy0fmDy/B4NLRKMffh1rtTCRDO3frxEhu/UvtDn21N8m1Zx2RXkdf2ivdwcD+9EktXHf2opzdu5965xuw9Ln39qXoSzrxWIzzjplLPGa0NgVfBpe+4/Usnr8/azbtYsNLe8rusg1T2/ee1VtYfM1DvPebTw7kt8nkvvnuR47msaUn5PTA88/ZkrD0zuATQvXUs9M8V3O3bTXSS0v9UY+/Tozk1n/2tFb25k3W7u0PJlYXzZnK1H2a+fB3fkWpofkprYP/jPJ7oZt3dtMSj+Xk2EnEjW+tfJ5gWX5wd/D/fvIM1zzwDC1NcfqSqYLkZfl3L+V6u5WGvUpdk9HqQWv8XcY6Bf46UikYlgto+Rv5sh8vPGBKyVX0Biw8YN+cY/nBNT8I9vSliu7oTTr8pTf4AspP81AscBYL4p1dPTz8zMskKnxxlLoeYUopVqLxdxnrFPjrzHA2+mze2U1rUyJnx2trU2IgUE6f1MKVpx/Op39UmGTt/55xOABrNu0q+qWSHwR7kyn6kyHyOBBU5WpJxEMHzszfM27Gq715y02rlKUzQ+PvMpYp8Ne5MKt9wgxNnHf0QeDwL3c/PdD7jxv8/qVX+ML968sG0ewg+JOnt/G1R58P1fZ/O6eNOfvtEypwFqvqBUG6h/6U85lTFpRcohrVxqfRuHsQiYImd+tMfqGRMBONYSZLO7t6mLNfK01Z9RGTDrc/vjFUquPpk1qYPa2Vbz/2Qqi/RyIGxx4ynUVzpgJULJ5S7O/ZkjB6+5M0xYwvrFjPvau3KM2xCNGWXpwA/BxoSX/Ocne/wsz2A34AzANeAM5x951RtaORFBvCWDx//4LefG8yye7uXjq7ekJNlmbOGzOjt0J9xHJLSDfv7KY5HisolpKvOQ5ffHcb0ye1hB6WKXbXkllW2p9udKklqpp4lUYTZY+/BzjB3RcBbcBJZnYMcDnwoLsfCjyYfiwjVKrQCJDTm0/EIOVw4bLfFpTxyywNhMEedvZ5/1Ip6lM+iBYLzvF0Zs5gCWVQXOXxT759INNn2OIp+XctzYkYLfHCCd7MEtVydzci9S7K0osOdKUfNqX/OHA68Lb08duAR4ClUbWjUZTbwJXpza/b+goX3N5BT39qoPzfJ5avyRnfXvbEi1y5Yj3NcaM/5Vz4tvlFd7Tu0xQnhXNO+2zu7NgcavVKqdUupe40hropLfuuZWJznFNuXJlT0DzzpbRozlRNvEpDi3Ry18ziwCpgPnCTuz9pZjPdfRuAu28zs6KJWcxsCbAEYO7cuVE2c9wpthSx0gTt9Ekt7NvaVDDU0tPv3PHkRi4+8dCcmriZZGtfeeg5Ypbbc25JxPja+W9i4QFTmD6phUtOPCx0EC01pDTUPDilZE+olltSqYlXaWRVKcRiZlOBHwEXAyvdfWrWczvdfVq596sQy6ByY96VCo10dvXwN1c/WJBSoSUR4/6L38zJX/kFvUXKJMYM4jFjQtbSymrlfR9p8RQVKpFGVtNCLO6+y8weAU4CXjKzWene/izg5Wq0oR5UWopYLGdMZn09BEMnH1r8Om7OW07ZHI+xetMumuJBrvt8KYeYOzeddyQLD9i3qgF0pOvh1bMXKRTlqp4ZQF866LcCbweuAe4F3g9cnf55T1RtqDdhxrwzgS77zqC7rx+zoMfem0wFWTKzOvZ9qRRtc6YW5NjPlhkdqkUQVfAWGV1R9vhnAbelx/ljwJ3uvsLMHgfuNLMPAxuBd0fYhroylKyU+XcG4AMTuk1xI2HQHB8cupk2sRmzIMd+aVbmOREZL6Jc1bMWOLLI8U7gxKg+t56FzQFTLrc8wIREnJvOO5J9W5sHhk/WbNoVjOEni5fQSsSCnD0iMv4pZcM4k700E7wgQRqUzi2fEdSnzR2rL/We1kSMFJ6TK19ExjcF/jGs1IqUStWd8u8MMmP8zYkYfcnBvDXZit1NfOaUBRx+wL5aESNSZ6qynHOk6nk5Z6ngXir9wrqtu9ObsAb/u7UkYvzy8hOKpijOnPuBp//ElfetoykeI+leclnkcJc/atmkyNhTajmnAn8NlVqT39nVM1C6LyMRg3gsRjxmRVMnXPqOw7j4xEOLfk6x801oivHY0sIvi9H8e4hIbZUK/MrOWSPl8tAUyyDZn4Ke/tL5cr760LMls1dGmZFyKPl0RGRsUOCvkVLBeN3WV9jd3Vt0I1U57lYykEdZClBpjkXGn7qe3B3L487FgnF3Xz8X3N5BczxGyoPhndamBL3JJCkvLEeYrS/lTGyOF30uylKAqi8rMv7UbeAf6+POhSUJg+De058aSKLWkohx03lHsfCAKTy2YUfWKp0k/ancL4EJTbGCcoPZoioFqPqyIuNPXQb+apbXG4nsYLy7u5cLl/02ZwNVczzGvq1NBXl4JjbHeddXVxYUNKnUy44q9YHqy4qML3U5xj8Wx53zSyJmHgMsmjOVhQfsW6SCVDJn+CZTKGX+zMlcd/bYKiaSaZuCvsjYV5c9/rE27pw/7HTOm2Zz56rNBcNQmSETTzk9SScWM065cWXFAubqZYvIUNRljz9M8fBqKbbc8fYnihcoP63tQFZc9GY8nQxtb1+qYrlB9bJFZKjqsscPte8RZ1YUbfrzXyrmtMxOrfzjp/9EbzJV8nkRkZGq28APtcvjnhnaAXJ2y5aSGYbq7OrhpoefK3i+N6nlkSIyeupyqKeWclYUlQj6RpATP38YavPObprjhWvxLzp+vnr7IjJq6rrHXwvrtu4uKE6ezwnq2OaXMiw2Kd2SMM49WsXmRWT0qMc/ipY98SIfvq2jZD6dbM3xOPu2Nuf05ItNSisPvoiMtihr7s4BbgdeC6SAW9z9BjP7HHABsD390k+5+4+jake1LHviRT5999OhX19qeWmtJ6VFpP5FOdTTD1zq7r8xs8nAKjP7Wfq5L7n7FyP87Krq7OrhyvvWFRyf0BTji2cfwZTWJh7/Qye3PvYCzfHKaQ1UXFxEohRlzd1twLb073vM7HfA2EmWM4o27+ymKR4ryKiZcjj2kCBNxHGHvYaPvOVg9eRFpOaqMsZvZvMICq8/mT50kZmtNbNbzWxaifcsMbMOM+vYvn17sZeMGbOntZIsUtDmilMXFIzha8OViNRa5IHfzCYBdwEfc/dXgJuBQ4A2gjuC64u9z91vcfd2d2+fMWNG1M0ckexJ2YnNcZrjxlVnHM55Rx9U66aJiBSIdDmnmTURBP1l7v6fAO7+Utbz3wBWRNmGatGkrIiMF1Gu6jHgW8Dv3P3fso7PSo//A5wJhF8KM8ZpUlZExoMoe/yLgfOBp8xsdfrYp4C/N7M2gn1MLwAfjbANIiKSJ8pVPSuhaH6ycb9mX0RkPNPOXRGRBqPALyLSYBT4RUQajHmRjUdjjZltB16sdTvS9gd21LoRY4SuxSBdi1y6HoNqeS0OcveCjVDjIvCPJWbW4e7ttW7HWKBrMUjXIpeux6CxeC001CMi0mAU+EVEGowC/9DdUusGjCG6FoN0LXLpegwac9dCY/wiIg1GPX4RkQajwC8i0mAU+POY2Rwze9jMfmdm68zskiKvMTP7ipltSBeUOaoWba2GkNfjDWb2uJn1mNnHa9HOagh5Lc5L/5tYa2a/NLNFtWhrNYS8Hqenr8XqdGGlN9eirVELcy2yXvtXZpY0s7Or2cYc7q4/WX+AWcBR6d8nA88CC/JeczLwE4IkdMcAT9a63TW+Hq8B/gq4Cvh4rdtc42vxN8C09O/v1L8NJjE4l3gE8Eyt212ra5F+Lg48RJCs8uxatVc9/jzuvs3df5P+fQ9QrFbw6cDtHngCmGpms6rc1KoIcz3c/WV3/zXQV4MmVk3Ia/FLd9+ZfvgEMLu6rayekNejy9MRD5hIkI697oSMGwAXExSnermKzSugwF9GkVrBGQcCm7Ieb6ZOC8lnK3M9Gk7Ia/FhgjvDulfuepjZmWb2DHA/8KEqN63qSl0LMzuQoPjU12rQrBwK/CUUqRWc83SRt9RlTyajwvVoKGGuhZkdTxD4l1azbbVQ6Xq4+4/c/Q3AGcAXqty8qqpwLb4MLHX3ZNUblifSmrvjVbFawXk2A3OyHs8GtlajbbUQ4no0jDDXwsyOAL4JvNPdO6vZvmobyr8Nd/+5mR1iZvu7e90lcAtxLdqB7wdVadkfONnM+t397uq1MqAef55StYLz3Au8L7265xhgtw/WEa4rIa9HQwhzLcxsLvCfwPnu/mw121dtIa/H/PTrSK9+awbq7sswzLVw99e5+zx3nwcsB/6xFkEftHO3QHq52S+Ap4BU+vCngLkA7v619H/kG4GTgL8AH3T3jho0N3Ihr8drgQ5gSvo1XQQrGupqSCjktfgmcBaDacT7fYxlZhwtIa/HUuB9BBP/3cAnPCjLWlfCXIu8138HWOHuy6vYzMHPV+AXEWksGuoREWkwCvwiIg1GgV9EpMEo8IuINBgFfhGRBqMNXFL3zKzL3ScN431PAi3AfkArsCX91Bnu/sLotRDM7AsEOaBSBHlcPuDudbspUGpLyzml7g038Ge9/wNAu7tfNHqtKviMKZl9D2b2TwT7IP4hqs+TxqahHmkYZvY2M3vEzJab2TNmtiy9+/qdZnZn3uvuK3GOQ8zsATNbZWa/MLM3pI9/x8xuTudkf97M3mpmt6bzs38n6/1dZna9mf3GzB40sxkAeZvd6jaLpYwNCvzSaI4EPgYsAA4GFgM/A44xs4np17wH+EGJ998CXOzubwI+Dvx71nPTgBOAfwbuA74ELATeaGZt6ddMBH7j7kcBjwJXZN5sZleZ2SbgPOCzI/pbipShwC+N5lfuvtndU8BqYJ679wMPAKeaWQJ4F3BP/hvTmRf/Bvihma0Gvk5QgCPjvnTu+aeAl9z9qfTnrAPmpV+TYvBL5bvAQEUqd/+0u88BlgGRDSuJaHJXGk1P1u9JBv8f+AFwIfBn4NfpYhr5YsAud2+rcO5U3uekKP3/WrEhnTsIctdfUeQ5kRFTj18k8AhwFHABJYZ50uPwfzSzd8NA7eWh1tSNAZlaq+cCK9PnOjTrNacBzwzxvCKhqccvArh70sxWAB8A3l/mpecBN5vZvwBNwPeBNUP4qFeBhWa2CthNMJ8AcLWZvZ7g7uBFQCt6JDJazilSRSNdWioyGjTUIyLSYNTjFxFpMOrxi4g0GAV+EZEGo8AvItJgFPhFRBqMAr+ISIP5/7XPek+SKqPrAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaUAAAGoCAYAAADmTPpwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABxzUlEQVR4nO3dd5xkVZnw8d+5t1KH6hwm9eRhIgwzDDiSHARZkbwqgrqyhoVdA4ZdV3dFVJRdw5pXV1DX1VcFFCWIgigwIkoaYGByTj3TOVZ15XvP+8etrqnu6VAdK/Tz9TN2d3WFc5nueuac85znUVprhBBCiFxgZHsAQgghRD8JSkIIIXKGBCUhhBA5Q4KSEEKInCFBSQghRM5wZXsAGZIUQSFEIVHZHkCukpmSEEKInCFBSQghRM6QoFSgGuYvQCk1aX8a5i/I9iUJIWYAlScVHfJikLlEKcXXHtszac/3sUuXkyc/K0LkA9lTGobMlIQQQuQMCUpCCCFyhgQlIYQQOUOCkhBCiJyRL4dnRZYpTxEtvRG0Bo2m2O2irMiFUrJfK4SYPJJ9V6Amkn3XG45zrCtEY1eYzr4YvZE4kbh9yv28LoP6Mh/zKotYObuMVbPLOH1eOcvqSiVYCTEy+QUZhsyUBAB90QS7mnrZ2dRLVygOQLHHpLbUS32Zj6d+9g2++82volAo5dy/NRClpTfCofY+fvrsEaIJJ3DVlHp47ZIazl1SzblLqplfVSxBSgiREZkpFahMZ0ptgSgvHO7kQFsQW8OcCh9La0uZX1VMVYknFUxGO6eUsGwOd/Tx0tFunjnQwV/2t9MaiAKwsLqYS1fP4g2r6lk/vxLTkAAlZjz5JRiGBKUCNVpQ6gnHeeZgB3uaA3hcBqtnl7FmbjlVJZ4h7z/Ww7Naaw629/GX/e08vquVvx5oJ25pqks8XLKynktX13Pe0hp8bnPM1yZEAZCgNAwJSgVquKCUsGyeP9zJi0e6MJRibUMFGxZUjhocJlrRIRCJs3lPG3/Y2cKTu1sJRBMUuU1ed1otb1hVz0Ur6oYNiEIUIAlKw5A9pRnkeFeYx3e30BWKs3KWn3OX1lDqzfBHQBmTti80b8EifvbYczy2s5k/7Gzh0R3NGAo2LKziDSvruWRVPYtqSibltYQQ+UVmSgUqfaaUsG3+eqCDl492U+Zz8foVdSyoHtub/scuXT5ptfTSZ11aa7Yd7+GPO1t4bGcLu5sDACytK+WSlfW8YVUdZzbIPpQoOPIDPQyZKRW4rlCMR7c30xqIcsbccs5fVoPbzJ0z00opzphXwRnzKvjYpcs51hni8V0t/HFXKz/480G+96cDlBe5OX9pDReeVsOFp9Uyu7wo28MWQkwRCUoFbE9zgMd3t2AoxRVnzGZJbWm2h+TIcClQeUsoWrSe4KL1PNi6nt9uqwYg1n6EyKGXCR98kRp6OXZo/1SPWAgxTSQoFaCEZVOx6d08uqOZ2eU+LlszC7/Pne1hnaTtMS8Faq3p6ItxtCPEkapijtctpOzsa7DjUd71v89z4bIaNi2vZUmtHNwVIp9JUCowXX0xPnT3y5S/5s2cMbecC0+rLYj9GKUUNaVeakq9rF9QSdyyOd4V5v/98Hs83ruOp/Y28IXf7iLR3UzowAuED7xA5Og2sOJjep15DfM5dvTIFF2FEGI0EpQKyM4Tvdz80y209ERp/903ueir/53tIU0Zt2mwsKaErsfv4tOP7aE3HOdIR4hDHSUcq5pN4qwrcRmKhqpiFtWUsLimhJIMMg0/dunyaRi9EGI4EpQKxG9eOcHH73uF8iI39968kfX/8YdsD2lalRW5OX1eOafPKydh2TR2hTnU0cfh9j4OtffxJDC3sojT6v0srS2lyCOHdoXIRRKU8pxla7786G7ufOogGxZU8t13rqfO78v2sLLKlZxFLawpQZ/m7EXtawmytyXAE7tbeXJPKw2VxSyrL2VZbSleqSohRM6QoJTHuvpi3HLPy/x5Xzvv3Dif265YjceVO+neuSB9L2rj4iragzH2tgTY1xrk8V2tbN7TxpLaElbPKaehUlLNhcg2CUp5altjD//40xdpC0T54t+ezvXnzM/2kHKeUopav5dav5dzl1TTEoiy60Qve1oC7G0J4ve5KD//HRztCDG/ujjbwxViRpKglId+8cIxbn1wOzUlHn75j69lbUNFtoeUd5RSzCrzMavMxwXLajjQ1sfOpl56z30bF37lSV67uJq3nd3AG9fMkqKxQkwjCUp5JBK3+NxvdnD388c4f2kN37phnRQxnQQu02D5LD/LZ/n5+JvP5+v3/4VfvHiMj9y7lbIHXVyzbi5vO7uB1XPKsz1UIQqeBKU8cai9j1vufpltx3v4wEVL+NgblhfE+aNcYwXa+NDFy/jARUt59mAH97xwjHteOMZPnjnCmrllvO3s+Vy1dg7lRTl0GFmIAiJBKcdprfnli4189qEduE2Du/7uLC5dPSvbwyp4hqE4d2kN5y6toTsU44GXj3PPC8f49APb+cLDO7n89Nlcd3YDr1lUJRUkhJhEEpRyWEcwym0P7uC325rYuLiKr7/tTClGmgUVxR7+/rxF3HjuQrYd7+HeF47x0NYT/Prl4yyqKeGtG+bxlvXzqCub2an4QkwGCUo5pGH+AhqPHQWgeOWFVF1yM4a3mO6nf869X/4V995sZ3mEM1t6RfNbL1/F77Y1ce8Lx/jyo3v46mN7OW9pDdecOYdLV8/KvE+VEGIA+c3JIY3HjvLZB7fzp71tHGzvo77MyyUr66m59AvAF8b0XFIuZ5zG0czQVTmH0jUX80Tn63hqbxt2/DnC+58nvPvP9O1/AezEhIclNfnETCFBKUeEYgnKL3gnP3n2CAq4YGkNZ86vwJD9iuk1jgrmqYdqTVNPhD3NAfYWbyKy8kLmuQyW1peyor6MORW+ce8/yT8yxEwhQSnL4pbNfS828s0/7qPi3OtZWlfKeUuqc6vVhMiIUoo5FUXMqSjiwtNq+fT738mFH/wqu5sCbD/ei9/nYnm9nxWz/FSXerM9XCFykgSlLIlbNve/fJxvPb6Pxq4w6+ZXsPW7H+TDP3ow20MTk8A0FJGDW3jjmlnELZsDbUH2NAd48WgXW450UVvqZcUsP6fN8sv+kxBp5LdhmvWE49zz/FH+76+HaeqJcMa8cj5/zRo2nVaL8YHd2R6emAJu02DFrDJWzCojFEuwryXIruZe/ry/nT/vb6ehqogVs8pYWlsqtQvFjCdBaRporXml0UklfnDrcUIxi3OXVHPHtWu4aHmdnHOZQYo9LtY2VLC2oYKuUIw9zQF2Nwf4w84WnjRaWVxbwopZZSyoLpb9RDEjSVCaQh3BKPe/fJxfbDnG3pYgPrfB5afP4T3nL5SSNYLKYg8bF1fzmkVVNPdG2N0cYG+yOGyp18Wq2WWsnlNGmVSPEDOIBKVJ1h2K8diOFn67rYm/7G8nYWvObKjgP//2dK44Y7YkMIhTKKWYXV7E7PIiLlxWy6H2Praf6OH5w508f7iT+VXFFK84n2jCwuuS4rCisElQmqCG+Qs40dZJ0bLXUrLiPHwLzkSZLuLdzYR2P03fjic40n4USV8QmTANxdK6UpbWldIbibPrRC87mnqpvfqTbPyPx/nb9fO4/uwGltX7sz1UIaaEBKVx6ghG+cPOFmIb38uCJWdhayjzuVhW72dZXSl1/qUodQHwbxk/p5xFEenKfG5es7iasxdVcevNN/CmL3yfnzxzmB8+fYj18yt429kNXH7GHMneEwVFfprHoKU3wu93NPPItmaeO9SBrZ3T/OsaKllWX0qd3ytJC2LSGUoROfwy333HWbQHo9z/0nHueeEon/jVNj73m51cccZsrtvQwFkLKuXnT+Q9CUqjON4d5pFtTTy6vZkXj3ahNSypLeH9m5Zy2emzWDO3gvPHWQFAiLGqKfXyDxcu5n0XLOKlo9384oVj/ObVE/xiSyNLaku4bkMD166fS51fisOK/CRBaQhHOvp4ZHszj2xr4pXGHgBWzPLzkYtP402nz5L1fJF1SinOWlDJWQsque3KVfz21SZ+seUY//nIbr78+z1ctLyOq86cwyUr6yj2yK+5yB8z7qc1vRJ3Olf1PEpOO4/i5efhqV8MQLRpL6E9fyW0968c6TrB74GPTO9whRhVidfFdWc3cN3ZDexvDfLLLcd4YOtx/rirhSK3ycUr67hy7Rw2La+V7D2R82ZcUGo8dpSvPbYHrTXtwRj7W4Psbw3SGYoBMLvc52Q/1ZZSVrQMuHzE55PkBJFLltaV8m9vWskn3riC5w938ptXTvC7bU08/GoTfp+LS1fN4g2r6rlgWQ0lkiAhctCM+qnUWuOZfRpP729nf2uQnnAcBcytKOKMebUsqSuVTCZREAxDsXFxNRsXV/PZq1bz1wMd/OaVE/x+RzO/eqkRj2mwcUk1l6ys46LldTRUFWd7yEIAMyAohWIJ/rq/gyf3tPLk7lZmv+trvHy0i4bKYjYsqGRxbYmsuYvcN44+T0MyTLzzVlF35sUcq7ya2x7cAeygoaqIcxfXcO7Sal67pFoSJUTWFNy7sWVrdjX18uzBDp7a186zBzuIJWyKPSbnL63h1Z//B5/60n/jc8vausgjE+jzNJSPXbqcow9+nQNtQZ7e185f9rfzyPYm7t1yDICF1cWsn1/JugWVrJ9fwfJ6Py5TisWKqZf3QSkQibPzRC9bj3Xz3KFOXjjcSSDidPpcXFvCuzYu4KIVdWxYWInXZfL9G5+QgCTEUDMvZeCpW4RvwVpCc1dy4MgKfv1yJQB2LEK8/QixtsPEWw85H9sOY0eC0hVXTKq8CUrRhMWxzhAH2/o40NbHzqZedhzv4WB7X+o+i2tLuOKMOWxcXMVrFlUzq1yWIIQYUgYzL601gUiCpp4Izb0R2usr6QiuIhy3Uvcp9bpo3/sS/3rfK8yvKqahqpj5yT9VJR45zCvGLC+C0oVffpLGrhC2Pnnb3Ioi1swt49p1c1kzt5w1c8up9Us3TyEmi1KKsiI3ZUVuls9yzuZprQnFLNqDUdqDMTqCUdpNk8172mgNRAc83m0qqku8VJd6qCk9+bG8yE2xx6TE46LIY1LiNSlyu/C5DUxDYSjnj/O5k7RhKIUCdHIMzkcAjdbO7SRv0/23pX1O6v5p3x/muUi9zsDvX/e262lva4X0QKsUoE7elvy6/x4awE6gLcv5aFtoK0Gs5cAk/A0VprwISmsbKrhm3VwW15SwsKaERdUllBdLtW0hpptSihKvixKviwXVJQA8+tFP0Kw14ZhFY1eIo50hjnSEaA1E6QhG6ehzgtf+1iBtwSixhJ3lqxgf85KPUJ/tQcwAeRGUHvjENUMeeBVC5I4ij+kUJB6h4onWmmjCJhyz6Islkh8tQrEEkbjFje9+Lx3t7WAYKGWAMkCp5OcqNd3RWpOaH/V/rnX6C6HRGIaJbSXS7pO6Q/I+DHzsKc978rnQ8IH/+knaPAhnktT/af9kidQnoMHSGtvW2Fpja7DTxylOoXQe/AdSSj0K1EzwaWqA9kkYTj6YKdc6U64T5FoLTbvW+o3ZHkQuyougNBmUUlu01huyPY7pMFOudaZcJ8i1iplDDh4IIYTIGRKUhBBC5IyZFJTuyvYAptFMudaZcp0g1ypmiBmzpySEECL3zaSZkhBCiBwnQUkIIUTOkKAkhBAiZ0hQEkIIkTPyIii98Y1v7K/9IX/kj/yRP4XwJ2MF+v43rLwISu3thV5xRAghhjbT3v/yIigJIYSYGSQoCSGEyBkSlIQQQuQMCUpCCCFyhgQlIYQQOUOCkhBCiJwhQUkIIUTOkKAkhBAiZ0hQEkIIkTMkKAkhhMgZrmwPQAghxmvz7lbufOogx7pCNFQWc/OFi9m0oi5nx9J/n2cOdhw8/MXLF2dloDlOZkpCiLy0eXcrtz20g9ZAhIoiN62BCLc9tIPNu1tzcizp9wE6x/L8ccvGtsdUxzVvSVASQuSlO586iNtUFHtcKOV8dJuKO586mJNjSb/PWETiNss+9QiPbG+e7GHnJAlKQoi8dKwrRJHbHHBbkduksSuUk2MZ6j6Z2Lt3LwDXXfdWGuYvmNhA84AEJSFEXmqoLCYctwbcFo5bzKsszsmxDHWfTCQScQBuvPWbNB47OrGB5gEJSkKIvHTzhYuJW5pQLIHWzse4pbn5wunPH8hkLOn3EcOToCSEyEubVtRx+1WrqfP76AnHqfP7uP2q1VnJvstkLOn3AaqmfZB5QlLChRB5a9OKuqylgA+WyVjS7iPp4MOQmZIQQoicIUFJCCHygFIq20OYFhKUhBAilynnbdptSlASQgiRbckZktucGW/XM+MqhRAiX6VmSjPj7XpmXKUQQuQpJct3QgghcoYs3wkhhJgq3aHY2B6QnCm5ZKYkhBBiMrUHo3T2jS0oqRk2U5KKDkIIMcW01rQGovRFx1H3ThmYhsKYIeeUJCgJIcQUsmxNc2+E6DgqhAOgjBmT5AASlIQQM8h0t0+PJWxaeiPELXv8T6LUjFm6A9lTEkLMENPdPj0St2jqCU8sIAHKMOhoPMjHLl3OvIb5kzS63CVBSQgxI0xn+/RgNEFTTwTL1hN/MqXQsQhaa44dPTLx58txEpSEEDPCdLVP7wnFae11gsikUAY6Hpmc58oDEpSEEDPCdLRP7whG6eiLjnif3nB8bE+qDGwJSkIIUVimsn261pqW3gg9owScox0h3v/zl8b03EqpGTVTkuw7IcSMsGlFHbfj7C01doWYN0nZd5btBKTIKCnfLxzu5PaHd9IXHWNq+AxbvpOgJISYMSa7fXrcsmnuGTnlW2vN/S+f4Lub92NrqCrxjO1FlMKOSVASQggxgkjcoqV35Ay7hGXz7Sf285tXmwBYVlfKF65ZM6bXUcpAx0fepyokUxqUlFIVwA+ANYAG3gPsAe4FFgKHgeu01l1TOQ4hhJhMoViC1t4o9ggZdr3hOJ97eCcvH+0G4MJlNXzyshX4BmUAjmqG7SlNdaLDN4FHtdYrgLXALuCTwONa62XA48mvhRAiL/RG4jT3REYMSEc7Q3zg5y+nAtLfbZzPbVeuGntASrITMlOaMKVUGXAh8PcAWusYEFNKXQ1sSt7tx8Bm4BNTNQ4hhJgsnX2xUVtPbDncyeeSCQ1uU/Gvf7OCi1dObB9rJi3fTeVMaTHQBvxIKfWyUuoHSqkSoF5r3QSQ/Djk35ZS6ial1Bal1Ja2trYpHKYQQozMqfIdGTUgPfDycT756230RS2qSjx8421njisgpb//gQSlyeIC1gP/o7VeB/QxhqU6rfVdWusNWusNtbW1UzVGIYQYkZ2s8h2MDN92ImHZfOOP+/jWE06G3dLaUr779nWsnF02rtdMf/8D0LJ8NykagUat9XPJr+/DCUotSqnZWusmpdRsYGqqIQohxAQlLJvm3gixxPAp373hOLc/vJOXkvtHFyQTGgaXNJoImSlNAq11M3BMKbU8edPFwE7gIeDG5G03Ag9O1RiEEGK8ogmLE90jB6RjnSE+ePfLqYD0zo3z+cyVqyY1IIEkOkymDwE/U0p5gIPAu3EC4S+UUu8FjgJvneIxCCHEmIRjzhmkkTLsthzu5PaHdxGMJpIJDcu5eGX9lIxnJs2UpjQoaa23AhuG+NbFU/m6QggxXoFInPZgbMQq3w9uPc63nzhZoeHzV6/OeP9ozBUdAJ0YOcGikEhFByGESOrqi9E1QoadZWv++8n9PLj1BOAkNHzhmtXUlflGfW7TUNT5fRR5xr60V19TPebH5CsJSkKIGU9rTVswOmKGXSAS5/bf7OTF5P7R+Utr+Lc3ZZbQ4HWb1Pu9uMbZ1vyFZ54e1+PykQQlIcSMZtualkCEcGz46t3HOkN86oHtNHaFAXjHa+bz7vMWYig16vP7fW5qSj2oDO47HLc5/sfmGwlKQogZK5OU75eOdPHZ3+xMJTR8/G+Wc0kGCQ1KKWpKPfh97gmP0zQkKAkhREGLJZy2Ewl7+ID04NYTfPuJfdgaKovd3H71albPKR/1ud2mQV2ZF69rclLDJSgJIUQBGy3l27I133lyPw8kExqW1JbwhWvWUJ9BQkOxx0Wd34sxiYFEgpIQQhSo0VK+A5E4tz+8ixePOB11zltSzb+/aWVGWXNVJR4qisee8j0aCUpCCFGAukMxOvuGT/lu7Arxqfu3cyyZ0PD2cxp4z/mLRk1omEi6dybMCSRJ5BsJSkKIGaEtECUQiQ/7/ZeOdvG53+wkEHESGv750uVcumr0hIaJpntnQmZKQghRIGxb0xqIEooNfwbpoVdO8K3Hx57QUFbkprpkYuneo9J6ap8/x0hQEkIULCvZdiIaH/oM0uCEhsXJhIZZoyQ0TGa6txhIgpIQoiDFEjYtvRHi1tAp38FIgtsf3smWMSY0THa6txhIgpIQouBE4k7Kt2UPnWF3vCvMv9+/LZXQcP3ZDbzvgtETGkq8LmpLJzfde1RKoWfQEp4EJSFEQQlGE7QFosOmfL+cTGjoHWNCw1Sle2fC1jBTKg1JUBJCFIyeUJyOvuF7Dz386gm++fh+LFtTUeQkNKyZO3JCw1Sne2fCsvWMycCToCSEKAjtwSi94aFTvi1b8z9/OsCvXzoOZJ7QMB3p3pkYbhmyEElQEkLkNa2dlO++6NAp38Fogs8/vJMXDjsJDecuqeZTGSQ0TEu6d4ac+nwzI7FCgpIQIm+NlvJ9vCvMpx7YztHOEOAkNLz3/EUjLoXlYrr3CDVjC44EJSFEXopbTpXv4VK+tx7r5rMP7UglNHzsDafxN6tnjficuZruHRvmGguRBCUhRN4ZLeX74Veb+Obj+8aU0DAV1b0nS2SYmWAhkqAkhMgrfdEErcOkfFu25nt/OsCvkgkNi2pKuOOaNcwqHzmhobLYQ2VJdtK9MxEaoStuoZGgJITIGyOlfAejCb7w8E6eTyY0vHZxNZ+6fAXFnuHf5kxDUev3jnifXNA3Qt2+QpPbfxNCCJHUEYzSM0zK9/HuMLfev50jyYSGt22Yx/suWDxiQoPHZVBf5sOd5XTvTIRlpiSEELlBa01bIEpwmJTvV45185lkQoPLcBIa3rhm5ISGUq+LWr83J9K9MyHLd0IIkQMsW9PSGxl2o/+3rzbxjWRCQ3mRm9uvWs3p84ZPaFBKUVXiobwod9K9MzFS241CI0FJCJGTRkr5tmzNnU8d4L4XTyY0fOGa1cwuLxr2+UxDUV/mw+fOrXTvTAy3bFmIJCgJIXLOSCnffdEEX/jtLp471AnAxsVVfOpNKynxDv92livlgsZFQ0dw+BbuhUaCkhAip4RiCVp7o9hDpHyf6HYqNBzpcBIa3nrWPG66cOSEhlwqFzQeWlt09klQEkKIadcbidMeGDrl+5XGbj7z4MmEho++4TQuGyGhIRfLBY2LLUFJCCGmXWdfjO7Q0G++v9vWxDf+uI9EMqHhc1et4ox5FcM+V66WCxoPbVsjtuMoNBKUhBBZpbWmLRglGDk1w8yyNXc9dZBfvtgIwMLqYu64ds2ICQ1FHpM6v69w+g/JTEkIIaaHbWtaApEhD4eOJ6GhothDVQ6XCxoPbVu0DbOkWYgkKAkhsiJh2TQNk/J9ojvMrQ9s53CGCQ2GcsoFjRSw8pW2EnSF4oRiiZwvhzQZCv8KhRA5J5qwaOmJJpvXDfRqYzefeWgnPeE4LkPxkUuW8abTZw/7XG7TKRfkceVhuncmLOeM0vGuMMvq/VkezNSToCSEmFYjpXw/sq2JrycTGsp8Lj539WrWjpDQUOJ1UVuam+0mJovSTuBu7JagJIQQk6o3EqcjGDul7cTghIYF1cXccc0a5lQMn9BQVeKhoriw9o+GYsWd/aTjXeEsj2R6SFASIg9t3t3KnU8d5FhXiIbKYm6+cDGbVtRle1gj6uqL0TVEyndfNMEdv9vFswedhIbXLKri1suHT2gwDUWd30eRJ//TvTNiW+hEnGNdoWyPZFpIUBIiz2ze3cptD+3AbSoqity0BiLc9tAOboecDEwjpXw39YT51P2ZJzTkdbmgCYh3n+BA67xsD2NazKy/WSEKwJ1PHcRtKoo9LpRyPrpNxZ1PHcz20E5h25rm3siQAWlbYw/v/9nLHO4IYRqKf37DafzTpiXDBqSyIjdzyn0zLiABxDsaOdgWzPYwpoXMlITIM8e6QlQMar1Q5DZpzLHlnYRl09wbIZY4NcPu0e3NfO0Pe08mNFy1mrUNFUM+T8GUC5qAeMcxjnSGiCXsws0yTJKgJESeaagspjUQGXBmJRy3mFdZnMVRDTRcyrdla77/54P8YksyoaGqmC9cu4a5wyQ0FFK5oIlIdDRi2ZrDHX2cVuAZeIUdcoUoQDdfuJi4pQnFEmjtfIxbmpsvXJztoQFO6+6m7sgpAakvmuDTD25PBaRzFlXx7bevGzYglXhdzK0omvEBCZyZEsDelkCWRzL1JCgJkWc2rajj9qtWU+f30ROOU+f3cftVq3MiySEQidPcGznlDFJzT4Rb7tmayrB7y1lzueOaNZQOk2FXXeKlvsxX0OePxiLWfgS3qdh2vCfbQ5lysnwnRB7atKIuJ4JQuu5QbMjCodsae/jMQzvoDscxDcVHLl7G5WcMXaFhxqV7Z8pKsGJWGa8ek6AkhBCjagtECURObdn9+x1OQkPcGj2hYaame2fqjHnlPLT1BLatC3oGKX/7Qohxs21Nc0/klIBk2Zo7/3SALz26h7ilWVBVzHfesX7YgOT3zdx070ytbaggEE1wsL0v20OZUjJTEkKMi5U8gxSND2w7EYoluOO3u3nmYAcA5yys5NYrVg25f6SUorrUQ9kMTvfOVH8NwFcbu1laV5rdwUwh+WeJEGLMYgmbE93hUwJSc0+EW+7emgpIb14/lzuuPX3IgOQyDGaX+yQgZWhpXSnFHpNXGwt7X0lmSkKIMYnELVp6I1j2wAy77cd7uO3BkwkNH754KVecMWfI5yi47rDTwDQUa+aU80pjd7aHMqUkKAkhMtYXTdAaiJ5S5fuxnS189bE9qYSGz161mjOH2T8qxO6w0+WMeeX8v2ePELds3AW6/yZBSQiRkZ5wnI6g00bh+YOd3PPCMU70hABFa7Jd9/wqp+XE3MpTD8QWcnfY6XJGQwXRpw+xpznAmrnl2R7OlCjMUCuEmFSdfbEBAembT+yjLRihL2qlAtJpdaX899vXDRmQ3KbBnIoiCUjjokAZKKV486azAHjt5W9DKYVSiob5C7I8vsklPyFC5Lmp7K00VNuJe144BlrT1hdPFVst9ZoUuc0hExpmQnfYqaX52u93O59ppxnihe/5FJes/BYAH7t0eTYHN+lkpiREHuvvrdQaiAzorbR5d+uEn3u4thNHOvtoDURTAanO72V2uY+WQOSU56gq8Ui5oEmklKKuzEdL76n/rQuFzJSEmEabd7fyxUd2cSjZ1G5xTQmfeOOKcc9s0nsrARR7XIRiCe586mDGzznUTOv8ZTVDtp14bEcz3aE4GjAUzCn3UexxEY5bzCo7uWwn5YKmTn2Zly1HQgWb7FB4VyREjtq8u5V/ue8V9rf1obVGa82+1iAfv++Vcc9sjnWFKHIPfOMfS2+loWZan35wO79+qXFAQLKTy0ZffHQPmv6g46XIYxKOWyRszfVnNwBOuaC5FUUSkKZIfZkPrZ3SToVoSoOSUuqwUmqbUmqrUmpL8rYqpdQflFL7kh8rp3IMQuSKO586SDCawFQK0zCSfxSBSGLcXWMbKosJDzrAOpbeSoO72PpcJkrBz587dvL5YhafeXCHs5cEnLWgkk9dtpJZZUUEIgmqS7x8+PXLOGdxlZQLmgazynwABbuENx3LdxdprdvTvv4k8LjW+otKqU8mv/7ENIxDiKw61hXCsjWmOrm/opTToXW8XWNvvnAxtz20g1AsQZHbmbWMpbdSehdby9YkbBuvy6C5Nww4b3y3PrCdA21OvbVr183l/cmW5ZtW1KZdh5QLmi4lXhelXhctvTJTmixXAz9Ofv5j4JosjEGIaddQWYxpKNLPnWrtlNsZb9fYifZW6p9pJWybhGWDhkjcZlZZETtO9PD+n73EgbY+DAUfuWQZH3r90lOqMEi5oOlXX+aVmdI4aeAxpZQG7tRa3wXUa62bALTWTUqpIX97lFI3ATcBzJ8/f4qHKcTUu/nCxfzLfa84iQLJEj22hspi94S6xk6kt9JNFyzi1gd3EEvY+NwGkbhNwtYsry/lY794hbil8ftcfObKVayff+pKu5QLmhrp739DqSvzcaCt75Tag4VgqmdK52mt1wOXAR9QSl2Y6QO11ndprTdorTfU1taO/gAhctymFXX811vWsrS2JHXwcVldKV95y9qsNOyzbc3KOeV86KKlVJd4CUQSVBV7WF7v594XG4lbmobKIr7z9nVDBqTyIjezy4skIE2B9Pe/ob5f7/cC0FKAyQ5TOlPSWp9IfmxVSt0PnAO0KKVmJ2dJs4GJH6gQIk/kSsfYhGWnUr7PWVzFOYurCMcs/uORXWze2waA3+sikrD42mP7uP7sBs5ZXAU45YJq/N5hW5mLqVdfwMkOUzZTUkqVKKX8/Z8DlwLbgYeAG5N3uxF4cKrGIIQ4ldN2YuAZpJbeCLfc8zJ/2e+0nCj2mJQXuagoctPRF+WbT+zj+YOdqXJBEpCyy+c2KS9yF2RQmsqfrHrgfuVkGrmAn2utH1VKvQD8Qin1XuAo8NYpHIMQIk045rSdsNOyLXaccFpOdIXiyQOxRShF6vxTf1bfL19s5LqzG6Q6Q46oL/NyoluCUsa01geBtUPc3gFcPFWvK0S+msoadgDBaIK2QW0n/rirha/83mk5Uep1Ehr+67E9lPkGvjWUeF20BiISkHJIfZmPvS1BjJKKbA9lUskcXIgc8K0/7uU7mw9g2RqvyyBh2dz20A5uh0kJTN2hGJ19sdTXttb86C+H+dlzRwGYV1nEHdesoaGqmNllRXT0RZ2ZkgK3YRBJZH4gV0yP/n0l76zTsjySySXHroWYgM27W7nhrmc5/0tPcMNdz46rXNDm3a18Z/MBbK1xGYqEpenoixFLWOOu9JCuLRAdEJDCcYvPPrQzFZDWz6/gO29fR0OVE3SuP7uBhK2JJCzchiKSGNuBXDE96vxeFOCZvSzbQ5lUEpSEGKfJqtB951MHSdg2puGkiRuGwsApPzTeSg/gtDlo6Y0QiMRTt7X2Rvjw3Vt5er9TZOXqtXP44t+ejj/t4Os5i6v4xN8sZ055Eb2RxJgP5Irp4TYNqks9eGcX1kxJlu+EGKfJqNANTqkfr2lgaafsEDgfowl73EtmVrLtRPrhyl1NvXz6wR109sUwFHzwoqVcs27uKY+tLvFyzfp5XLN+3rheW0w2NWzPpKo3foji085Fa41ShbHfJ0FJiHFKrxvXb6wVuu986mAq+cDWgOEEJEtrTEONa8ksbtk090SIWydTvh/f1cKXkwkNJV6Tz1yxig0LqwY8TtpN5CrN1x7bM+R3tjX28MSeVo51hplfXRh7fhKUhBinhspiWgOR1EwJMq/Q3b/05zYVs8q8HO+OOFlxGuK2xmUYfGDTkjEvmUXiTsq3lSpjpPm/vx7mp8+eTGj4wjVrmF81cIxet0m93yvVvfNMfZlT2eGVxm4JSkLMdBOp0H3nUweJJSw6gglilo2pQCsFSnHOgqoxpYP3z7iOdPZR5/dx/Qan+kI4bvHFR3bz533O/tG6+RV85opVlA2a3fl9bmpKPQWz/DOTVJd6seNRXj7azZVr52R7OJMio6CklCoC5muth55DCjEDbVpRx+04AaaxK8S8MZwt2tvSS3c4ju0U5kYBhgGVPhd337Qx4zH0z7hMBSUek46gU33h78ML+eVLjexvDQJw1do5fPCiJQNmQtJuIv+ZhiLWtJcXjxROEsqoQUkpdSXwX4AHWKSUOhO4XWt91RSPTYicN95aduG4jWU7wUgpQINlQyhuj/bQAe586iCGItUWu8ht0h2O85XH9pCw9bAJDS8e7uK+lxo53h2ekoO6YvpEG3ey48QZhGKJAUvJ+SqTK/gsTiHVzQBa661KqYVTNyQhCl88re4cepjbR6G15nBHH6Xek4kJvZG4kzgBlHhNbrtiFWcvrOL5g53c88IxmnrD+L0uukIxKoo9A1LZJ+ugrphekeO7SNiarce6OXdJTbaHM2GZ7GomtNY9Uz4SIWYQw1C4jIEp4C6DjMv42LampTdKvd9HJG6jtaY9GKW51wlIHpfBd25YnwpI33xiHx19USqL3TR2hekJJ0hYThpxsceF21STclBXTL/Y8V2AM/stBJkEpe1KqbcDplJqmVLq28Bfp3hcQhS0RdXFgMJtGHhdBm7DAFTy9pElLJsTPWFCsQTXn91AzLJp7A7TGXIOyXpMg0/+zfJUNtY9LxzDbSrKfG7cpomlnWW99uDJXjxjSWUXucWO9rFilp9nD3VkeyiTIpOg9CFgNRAFfg70AB+ZwjEJUTCGK0P0yctWUlHsRhnOmSRlQEWxm09etnLE54slbJp6TradWFRbgstQhJN7UdUlHj5zxaoBy3DNySW7/lmYJ7n/FEs7x5RpKrvITRcsq+GFQ12EYolsD2XCRtxTUkqZwENa60uAT03PkIQoDOlnkYbau/mvt6wdU+be4DNIu5t7+fQDO+hIVmj4wEVLuebMOQNSu0t9LhZWl9AWjFLscYJRrd9LY1cYl6nQWo8plV3kptedVsf3/3yI5w52clGe7wuOGJS01pZSKqSUKpd9JSHGZrQyRGPJ3BvcduLJ3a186fd7iCXsAQkN/dLTvf/xdUsGnKcyDUVlsZvqEg894fiYUtlFbtqwsBKf22DzntbCDkpJEWCbUuoPQF//jVrrW6ZsVEIUgImWIerXE4rT0efs/9ha85NnjvCTZ44AMKfCx39cc/qA0/xu06DW78WXbNI31HmqT1++SoJQAfG5Tc5bUsMfd7Xy2avyuw5eJkHpt8k/QogxmEgZon7twSi9YSeBIRK3+NKje/jT3jYAzmwo5zNXrqY8LfAVe1zU+r2Yg7L4xnueSuSPy06fzeO7W3mlsYczGyqyPZxxGzUoaa1/PB0DEaLQTKQMkW1r2oJR+qLOxnVbIMqnH9zO3hanQsMVZ8zmltcvHVChobLYQ2WJZ2ouRuS8N6yqx20qfvvqicIOSkqpQww43ufQWsuuqBAjGG8ZooRl0xKIptpO7GkOcOsD21MJDe/ftIRr181NLdGYhqLW7y2I0/xi/MqL3FywrJbfbWvm3y5bmbet6zP5Kd6Q9rkPeCtQNcx9hRBpxrpsFk1YtPRESdhOuvaAhAaPyaevWMU5i07++nndJnV+L27TSBVmPdYVktJBM9RVa+fwkd1bee5QJ69dUp3t4YyL6s/mGdODlHpaa33+FIxnSBs2bNBbtmyZrpcTYkwmKxiEYglae6PYWg+Z0HDHNWtYUF2Sun96de/09PP0pULpGJuzMp7GKGXoIRar0u5ggHb+EaNcHuZ94CeEDrxAx8NfBWBew3yOHT0ysdFOvmGvP5Plu/VpXxo4Myf/JAxKiLw32lmkTPWE43QkKyxE4hZffnQPm4dJaFBKUVPqGdDCfLK64IpcNHyTv6E8uaeVHcV+/vmf3ovPbQ7btTZXZbJ899W0zxPAYeC6KRmNEDlouJnQ5t2t3HLPy4RiFl6XQU2pl7Ii95iDQUcwSk8yw25wQsPlp8/mlouXpqqAu02DujIvXtfA7rCTlX4u8t/qOWW82tjD7uZAXiY8ZJJ9d9F0DESIXDTcTOgtjd3c99Jx+mIJXIYiYWlO9IQB8PtcGQUDrTWtgZMZdnuaA9z64HY6gk5Cwz9tWsLfpiU0DJfuDZOTfi4KQ53fR32Zl1eOdbN2Xnm2hzNmo9a+U0p9WClVphw/UEq9pJS6dDoGJ0S2pS+LpVfU/sHTh3CbCp/LBBSGoTBQtAejGQUDy9ac6ImkAtLmPa185N6tdARjlHhMbnztQv6yr4O3/+A5PnbvK+w80cusct+QAQmc9PO4pQnFEmjtfJTSQTPXuoZKusNxDrX3jX7nHJNJQdb3aK17gUuBOuDdwBendFRC5IhjXSGK3AOXyorcJn0xiyK3Sa3fi9ZOpQWUJpqwRw0GsYTNie4w0biF1pof//Uwtz+8i2jCZk6Fj5svWMyjO5rp6ItS5nPTE4nx5d/vSRVzHcqmFXXcftVq6vw+esJx6vw+SXKYwZbWlVLqdfHyse5sD2XMMtlT6v+n2ZuAH2mtX1H5XMNCiDEYblmsxONkuPl9buZUOHtBkYRNicc1YjBIL6oajVt8+fd7eHKPk9Cwdl45n71qNZ97aCcuQ2HbmiPtQeLJlunv/9lLfPcd64d9bqnaIPqZhuLMhgqe3t+Ou25RtoczJpnMlF5USj2GE5R+r5TyA2Pr2SxEnhpuWex95y9K3V7qdTGr3MfcimK+df26YQNDXzRBU48TkNqDUT5y7yupgPSm02fx5becQXmRm6beMFo7y3sx+2QycChu8fH7XhlxxiREvzVzypw+WhuuyfZQxiSTmdJ7gTOBg1rrkFKqCmcJT4iCN1JVhjPmVWRcrSG9qOrelgCfeuBkQsM/vm4Jb17vJDQopZhfVcyLh7tOOZmigEBE0rxFZrxuk1Wzy9gau5DW3gh1Zb5sDykjmQSl1wJbtdZ9Sql3AuuBb07tsITIHcMti2W6XJae8v2nvW188ZHdRBM2xR6TT1+xktcsck7e96d7z6vw8cIQz6MUJGxb0rxFxs5sqGDrsS5+8swR/uVv8uO8UiZB6X+AtUqptcC/Aj8EfgK8bioHJkS+S0/51lrz02eP8qO/HgZgdrmPL1yzhkU1ToWGIo9Jnd/Jrnt8d9uQz2drp2tsJmneUnJIAFQUewjve46flnj5wEVLKfKYoz8oyzLZU0popxbR1cA3tdbfRCo6CDEiy9Y0JVO+/7KvnTf/zzOpgLSouoTvvn19KiCVF7mZXV6USvfui1m4h/nN9Ptco6Z595+tag1EBpytkr2oman3+fvpDsW576XGbA8lI5kEpYBS6t+AvwN+m2yR7h7lMULMWHHLSfmOxC3+uLOF23+7k+7k8p2TtZdgT3MApRR7mgN88Ocvc/6XnuCGu55l8+5WSjwmKIXHHPjraSj4ylvWjjrjGe5s1Z1PHZyyaxa5K3p8J2vnlfO/Tx/Ctsde63S6ZRKU3gZEcc4rNQNzga9M6aiEmGabd7dyw13PDggO4xGJW5zoDhO3bPa2BPjKY3uIW84bQW2phznlPtymwb1bjrG/JcB/PrL7lBnNxStqsTVoNF6Xwm0qTEPxkYuXZbQEN9zZKtmLmrned8FiDrX38XgezJYzKTPUrJT6FbAseVM7cP+UjkqIaTS4lNDhjiA3//RFSr0mp9WXjbof079/c6SzD59pgFJ09EXpjSTQ2smac5uKrlCMYDRBsdtkR2+ED979MkpBvd+H8qhUEdXm3hgffv1SfvD0Ifpizpmo952/iFsuOS2j65GSQ2Kwy9bMYm5FEd//80HesKo+28MZUSZVwv8BuAmnh9ISnJnS94CLp3ZoQkyNwUkAXX3R1HJXIBKnIxhHo4nE7VGrfvcHNEMBWnO4I4Tm1EYDGjAMRdyy6YjbeEyFZdsYSqVq5pUVuVMzmlsu2ZhxEBpsIh1vRWFymQbvPm8hX/jtLrY19nB6DtfEy2T57gPAeUAvgNZ6H065ISHyzlBJAPvagiQs5zx4WyCKUmAqRcyyR92PufOpgxjKyYrr7IsNCEhFbgOz/2sNtqVJJI+dxyyNyzBQ6mTNPJicGY2UHBJDue7sBorcJj9/Pud6Kw2QSUp4VGsd668spJRyMWLHKSFy15ce3U1rbwRLazymQa3fi9swaAlEKSvyELNsTEOhbVKJBsPtx2itOdzRR6nXJGHZRBInfy0UMK+iiEMdfSjbSVKIDqqDEk3YKAUuQxGzJreIqpQcKiRqYj2RlJGqNF992S38rO8CvnTDRnTMmaHnWhPATILSn5RS/w4UKaXeALwf+M3UDktMh5l2lmXz7lb2tgYxlVMbLGFrTnRHqChy0RGKE4olcBuKeDJDqabUOQE/1OzFsjUtvRHq/T6aesJ09MVS33NmTk51BtNQmMpZPrGxU0kP/fobPxtKUef3FfzfgRiPsTX5G0lzT4R7txzjxu9t5ox5FQA51wQwk+W7TwBtwDbgZuB3wK1TOSgx9WbiWZb+VGlbO5W6YwmbuG3THY5zWl0pdX4fxV4XhlJUl3jw+1xDzl7SU77XzCmjNRAlYWsUzi+UAqpKnFmX3+emrMhNJGGRGByQkn+UUtz5zrO4+6aNEpDElKov81JT6mHHid5sD2VYI86UlFIG8KrWeg3w/ekZkpgOM6V9dvpssC0QxWtCJJ4WHLSzv1NR5GLHiR76YhYeU+E2DXrC8VNq2kUTFi09UeKWxc+eO8pPnz8KnCyl73Ypqoo9KKWYXV6UCma33PMyvZFEMiHCeYCtnVmV32sW1H9zkbuUUqycXcaf97XT1RejssST7SGdYsSgpLW2lVKvKKXma62PTtegxNQr1PbZ6UHI73XRFoxSXuSmoshNezBKIGo7ywMquXSWDBLPHOrCUE68CMc1x7rCXHvmbL5+/frUc/9+WxP/89RBTnSHiFuarpBzINZtKmpLvZR4TaIJG63h81evGRBovnX9Om7+6YvYWmMq5fRgQlNd4mFRTel0/icSM9xp9X7+vK+dPS0BNi6uzvZwTpHJ8t1sYIdS6nGl1EP9f6Z6YGJqNVQWE45bA27L97Msg5ckD7X30R2Kk7A0Sinq/T40Tt8Vj8vA4zJwG0Yqa8fWJ/d4AB7Y2pRazvzdqyf47MM7ae2N0BtOpAJSqdek3u+l1OvCNAzKfG48LmPIbL3aEjdxSxNJ2KCgusSDx2VKqraYVqVeF/MqitjTEkDr3MtZyyTR4XNTPgox7QrxLMvgJUlLawwF7cEoZUXO3o7XZRBN2Fj2yey7wx0nZ4ep9pXamTXd+dRBzmio4K6nnBItHX0xEslEiPIiF33RBEXlPlymkapdN3jG2R8svR4XC6qcTL+4paks9vCJN66QpTsx7U6b5eeJ3a20B2Oj33maDRuUlFI+4B+BpThJDj/UWiema2Biao3UJyhfDV6S9JgGccsmZp3Mxa4sdtMVijOvsigVjPu3eYZypKOP7lCMQx1BesOJ1P08pnLq2MUsErbG5z7ZjHnwjHNwsCwr8hCKJago9uT1f2+RvxbXlPAEcKijL9tDOcVIM6UfA3Hgz8BlwCrgw9MxKDE9Cu0sy+DyOrV+L41dYVymQmtNOG7hcZl8YNN8njnYmQrGZ8wt4/6tTc6T6JMfKnwuaku9/Oy5I/SET/57zGU4y3wtvVFmlXmxbEaccRbq/p3IXyVeF3V+L4fb8ysordJanw6glPoh8Pz0DEmI8Rm8JGkaispiN9UlnlMy6W455dEv8cDWptRMqNznwucxUYbih08fTt3LZTjlgvrzucuKnCW4kWacUotO5KJFNSU8d6gTo6gs20MZYKSgFO//RGudUEqNcFchsq9/SfJLj+5mX2sQgEXVxXzyspWjzgi/fv16rj6zlf/50wGOdvRRVeIlEImz9Vg3AD63QWWRi+5wgrhl43WZzC73EIwmRp1xFuL+nch/C6udoORbsDbbQxlgpKC0VinVy8kjGEVpX2utdW6FVyGS+mLWgD2jkQqqptu4pJqFNSXsbQlw6wPbaQ1EUcBZCyrYcqSbprizKexSUFPqxWU6VRhGU4j7dyL/1fq9uAyFd+6KbA9lgGGDktY69/vmCjHIFx/ZRWsgksquqyn1pgqqjhQEgtEEbYEof97bxn/8bheRhI3HZVDsUmw50j3gvgkNRzpD1JR6+PTlqzIaV6Ht34n8ZxqK+jIffXNWZnsoA4ylooMQk2Kqau5t3t3KvrYgplKYSpGwNCd6wswp942YVNATitMejHD388f4wdOHAKgoduMyFB0jpMzWlnol0Ii8NrvcR2P9YiJxC587N+YhIx6e1VrbwCtKqfnTNB5R4Kay5t6dTx3EnWwHoZTCMJy2EC2B6LBJBe3BKE09Yf7zkd2pgLR6Thlzy4so9pgjlsMPRuWEhMhvs8t9KNPFq4092R5KSiaHZ/srOjwPpPIHtdZXTdmoRMGajJp7w820jnWFqC/z0tQTxUajlNNSPGFxSlKB1prWQJRjnSFue3AHO5ucApWXrqrnY284jb//0fN4zOGTewzFpGXPzbRq7SJ3zC4vAuClo12cs6gqy6NxSEUHMa0memZncOvy9M6w/anXcyp8tAWiTm8kpVhSWzLgTd6yNc29EXae6OFT959MaHjfBYtYXF3Cv9+/jc60yg1DKfFMTnmgka5HApOYakUek3jncV48kjst0kcNSlrrP03HQMTMMNEzO0PNtNoCEW6552XcpiIYtagqcbOopiSVev2JN57MLoolbFp6I9z1p4P87PkjqUrd73zNApbUlPLtJ/fjcxvMLvdxpDM85BgM4Ns3rJ+UoDFTqrWLiZhgk79RVL/pozz6QjHqxrOB7Df9GzUoKaUCnKzC4gHcQJ+khIvxmOiZncEzrd5wnI6+GLat8boMYgmb5t4ofVGL1XPKByyFReIWzT1hvvi73Ty6swVwur5Wl3j4w64WnjvYgc9tpAKEzxUlkrBRQLHHHJAGPlkBQ6o9iNFNXpO/oWxr7OGJPa3c9sA2Koo9WW/6l8lMyZ/+tVLqGuCcTF9AKWUCW4DjWusrlFJVwL3AQuAwcJ3WuivzIYt8NvjMTqnXhdvQ3PrgdhqeGn4/pX/fpS0QpaUnjGEY2Fpj2TpV2dvS4HUbWLYmmrAHPFcwmuB4V5ivPraHx5IBCZwKDaah8LkNDneGWFZ3so3ErHIfx7vCaBgw85rMQ69S7UFk2+wK56xdc0+EiuLs91fKpHXFAFrrB4DXj+EhHwZ2pX39SeBxrfUy4PHk12IG2bSijrtv2sjnr15DX8wibusRM/HSM/bKfCZxG6IJG7R22k3gnOg2lELhpINbtk61j+gJxdnT3MvHfrE1FZAU4DbAtkmdawIGtPPw+9zU+D0Ue0x6wnHq/D5uv2r1pC6r3XzhYuKWJhRLoLUestOtEFOpqsSDxzQ40RPJ9lCAzJbv/jbtSwPYwPBFlQc/dh5wOXAH8LHkzVcDm5Kf/xjYjNNyXcwwme6n/Msvt9LeFx/wWAUkbGc/yO6PSklag9dl0NgVoiMY5aWjXamEBgBTOS0qzP70cVvTEoiyqLqYUNwesLToNk2+df0ZU7a/I9UeRLYZSjGr3EdzvgQl4Mq0zxM4S25XZ/j83wD+FUhfAqzXWjcBaK2blFLy2zdDZbKf8tF7XjolIIHzryKXoZhXWcThjlCyQZ9OdXQt9bqo8/v43bYm7vjdLiJxG5/bwOsyKPGYtAViyX9Z6VTa+Ccvc062T3eAkGoPIttml/t4/lAnsYQ9+p2nWCZ7Su8ezxMrpa4AWrXWLyqlNo3j8TcBNwHMny9ndwtRJvspD73aPOzj+5fcqorddIXjJJLJDqVeF4ZS1Pm93PbgDjRQ5/dyxzVr+O7mA/SEY8ytLKKpO0w0odE4iQwgAULkhvT3v+kwu9zpytzcm/3Z0qh7SkqpeUqp+5VSrUqpFqXUr5LLcqM5D7hKKXUYuAd4vVLqp0CLUmp28rlnA0Me5dda36W13qC13lBbW5vxBYn8kcl+ijXCWSFDOZuzpT43H714GUtrS4hbNp19MQJRi0d2NKOBVbP9fPcd6zmjoYIPvX4pCdvJxLMBl6lwG4ryItekVZYQYqLS3/+m4/VmlTvJDk3dQx+DmE6ZJDr8CHgImAPMBX6TvG1EWut/01rP01ovBK4HntBavzP5XDcm73Yj8OA4xi0KwKYVddx+1Wrq/L5hEwn6W4wPxTAUGrj9qtWcMa+CYMyi1u/FNI1UCaB1DRV87bozWVpXSn2Zj9evrOf2q1YTilnY2inaOreyiJpSX6pwqxAzjddlUlvq5XgOBKVM9pRqtdbpQej/lFIfmcBrfhH4hVLqvcBR4K0TeC6R50ZbLrvqjFknu8KmKfOa1Jb5UmeGrvveM8QTNh1plRjKfS601iyoLqHIc7LY5KYVdZQVuZlfVUx6nzA5HyRmsrkVRWw/0QNGJmFh6mTy6u1KqXcCdye/vgHoGMuLaK0342TZobXuAC4ey+NFYRtc++21i6t45mDnya8XVfLc4S76V/LKvAa1Zb7UUl93KMbell56Igm0TqZ7m4q+WIKdTb08d7DjlMAn54OEGGhOpY+tjd14Zi3N6jgyCUrvAf4b+Hry678kbxNiwvrPIMUSFoFIghPdYZ452EFlsYu5FU7giFua/02WQOnPjKvz+7j5wsWsmlPGdzcfoDvsLNelaqjqk2eXhqolJ91ghRhoboVTnNXXkN1ORZlk3x0FpCK4mBJffGQXTd0h4oMyUbtCCcp8CcqK3KmzS3fftBFwAtPRzj6+8fheTGXw4lGnIIjbVIBzmlYZCrRz/sI0Tm3yJ+eDhBio2OOiqthDeMEZWR1HJodnFwPfBDbiHA95Bvio1lp2hMWEbN7dyt7WIMMl2LX0Rigrcqf2evpnVS7D2Zjd2RRInau4ZGUdF51Wy+ce3omNxmUoav1e/D43Wush94rS97P6lxBvfXC7tI8QM9aC6mI6Gk6nL5qgxJudvaVMsu9+DvwCp6/SHOCXnNxfEmLcvvTo7mEDEiRLCXFyr+fOpw7iMpw6dofa+1IBqbLYzWeuXMV158znrAVVLKguYXFtKX6fe8DjhzOVjQeFyCeLa0tQLjd/3teWtTFkEpSU1vr/aa0TyT8/JcMyQ0KM5GB7HyNkfKNhwNmlI519dIditKaqMTh7SD3hOPtagvxlXzvdoRiHO0Lsaw3Q3BNiX0uAQ+19bD3WxYYv/IEb7nr2lGCTXu5IKeejpIeLmWh2eRFWJMgfd2XvH2SZzM+eVEp9EucArAbeBvw2We0brXXnFI5P5Lnhuqpu3t1KLGGP+q+b/oSGM+dXgIbO0MkW5G5ToTQYpuLLj+4mFLdxm4p5FT6aeiK0BeOpxIeErekJxTncETwl8UHaRwjhMA1F5MAWHq+qJJaw8bjGXLN7wjIJSm9Lfrx50O3vwQlSkq4kBugPRPtaAwQiCSqL3dSUelPLYm9p7Oa+l46PGJAMoKrUw903baS5J8wnf7UtVcVY4bScUBq0gnq/l0MdIeZVFqVSvNuDMTQ2lq0xklXDbQ0tvVHqy7wDEh8kPVzktqlt8jeYb8nZdK3exJILr+HYXx+attftl0n23aLpGIgoDOntvUPRBLbWdPTF8LrMVCbdD54+RK3fi8tQw7Ycry/3sqCqhN1NvXz8vlfZdrwHgFKPSdSy0Bo8LiPVeA+c2U2/mGVjKIhrsLVG4QQzW0NzT5SW3ig33PUsN1+4WNLDRY6b2iZ/g9m25od/OUT7rOxk4WU0N1NKrVFKXaeUelf/n6kemMhP6fszcVtjGgoDRXswSm84TnNPhN5IgqbuMC5DOUtwaY93GeBzG7gMgwuW1vDu/3shFZDee/5Cbr96NbPKilhQXcKimhJcpiJuaRYnm/D185jGwCQKdXIjVOO0t+ifuQGjljsSYqYwDMXKWWUULTmb9mB02l8/k5Twz+D0P1oF/A64DHga+MmUjkzkpfT9GY9pkLA1SkEkYXOi52RdrXDcTjXnM5P/NOpv2De/sojzltbwnT8dIBSz8LkMPvmmFVy9di6VJR6qSrynnC8CBsx2vC6DvtjJIKXTApTzmmpA/6a7b9ooQUiIpJWz/bx4tIt7XzjGBy6a3goPmewpvQVYC7ystX63Uqoe+MHUDkvkq/T9mVq/lxPdERK2jaXBSrtf+qwlYTuBYnl9KR+5ZBmvHu/lfzYfQAO1pV7+49o1nLesJrXnM1y9vP7DsPtaA/TFLCqKXPRGEgNmTP0ByZvcwJWEBiFOVV3qJXxwCz/6i4f3nr8IX9rS+FTLZPkuorW2gYRSqgyn1YQsts9Qm3e3csNdz3L+l54YMr06vR1FqddFqdfEGiXFzmMqVszy8/N/2MiDrzTx3WRAWjHLz/dvPItNK+oGJCEMp7/N+rI6P/Mqi2ioKqGhshi36SwTGsppVWEo52AtSEKDEMPpefZXtAdj3Pdi47S+7rC/6Uqp/8Y5JPu8UqoC+D7wIhAEnp+W0Ymckp7EkH7IND29enD5noStcRuQ0AOX0Pop5dze1Bvmxh+d3D+6aHktn7tqNQ1plbyHSy8fLH0JsSz5sT0YJWRZGEpRVeKm1Osasn+TEMIRPbaNtQ0V3PXUQa4/uwGXOT3p4SO9yj7gv4ArgH8DngXeANw43m60Ir9lesi0f8by50+8nrIit9O6fJhDsi6lsLWmJ5RIBaT3nLeQr193JvOrSwYEpEyrLjRUFg9IeigrcjOr3MfGxdXc+c6zWFhdKgkNQmTg/ZuWcLQzxC+ncbY07ExJa/1N4JtKqQU4Tfp+BPiAu5VSYa31vmkao8gRIx0yHW4W01BZTHsgigbcaOKDUsC11qnlPa/L4FNvWsmsMh//9LOXBjxXekAEBiQpAKe0vrjvpeNDpnhLu3MhMnfpqno2LKjkq4/t5cq1cyidhnp4Sg+1pjLcnZVaB/wvcIbWetp2vjZs2KC3bNkyXS8nhnHDXc+ecsg0FEvgMZ1MN7epBgSB269aDcDH73uFrlDcOTdk6VSSQ7KmN+BUZ/je350FNnzu4Z2nPFdfNM7s8qIBTfm01jT3RlIztvT7v2X9XJ452CkVwEWuGqHA1qA7KqWn85xSv49duhytNS8f7eLa7/6VD71+Kf88eYd4h73+URcJlVJupdSVSqmfAY8Ae4E3T9bIRP5IT2LQWqf2ZLTWuE1FwtIcau/jaGeI1kCELz6yi00r6vjKW9ayrK4UpRQuQ2EAPpcxICB9+vJVvH55HT94+tCQS4RxSw9YkgMnSSGWsIe8/zMHO1NLiJLuLcT4rZtfyZVr53DXUwenpV36SIkOb8DpMns5TmLDPcBNWuu+KR+VmFSZJgiMZrgeRLc+uB1TwYmeCAYKUylsW7OvLcjm3a0DlsyOdPTx9z96gUPtzo9RRZGbz1yximvPmgcMv0TocRmpgJg+I+qfIQ2+v6R5CzF5/vVvlvOHnc18+oHt/PDGDQNWLCbbSDOlf8fpnbRSa32l1vpnEpDyz2S3ZUhPYuhvutcbjnOkM0wiuTSnlEIphdswBiRBvHCog+vvejYVkEq9JsvqSqks8aTuMzhJAZwZ0bI6P7dftRqPabCvNUhjV5hit0Gd3zfk/SXNW4jJ01BVzL9cupwndrfy0CsnpvS1hg1KWuuLtNbflyrg+W28bRlGO4/Uf5/bHtpBsceZqWggbtkkbButob7MS2NXCNvW/PqlRv7+Ry/QlCyqWlPqYX5VMZ2h2IAgOdwSYX/adl/MYl5lEcvqSonbmrZk+aLh7i+EmBzvPm8Raxsq+NxvdtLZF5uy18lOa0ExbcbTlmGk80hwMtOtIxjFsvtnR855Iw1YtmZ+VRGmoagp8fCNP+7lv5/cj61J1sLTdIdihGMWtX5vKkj2L/GVeEwOJmdTi6qL+fTlq9i0oo4b7nr2lAw8ALehqCzxSlKDEFPINBRffvMZXPHtP3P7b3bwjevXTcnrSFAqcONpyzBc+vWXHt2dyrIzlVO/DpygYAIJnIKq4PwAR+MWGvjWE/sBmFdZxPGuMKapMJMVwk90R5hd7h3Q7txtKpbVlRKOW4SSrwHDB9iecJxHP7px4v+xhBAjWj7Lzz9tWsq3Ht/H1WfO5aIp+Mff9HdwEtNqtOWwoRzrCg2ZPHCwvS8VrNqDsVQ7CEtr3C4TlyI5GzIo87lxu0yeP9wFOBUa6v1evG4DlfyfoRRKOT2O+tudj7TUONx+k+wfCTF9PnDREpbVlfKp+7cRjCZGf8AYyUypwA2XMTfU8lZ/ll5bIEp7IMqsch9+nzMz6Q8GRW4zuYdjnSyqqkGjMQyF1vDxNyznf585xIluZ/9oVpmPPc29dPTFKfOZdIcTYPcv+WkSWqey+EZaapS+R2Jmmt4mfydf1hg2y84zZzmz3vkV5l/xIbr++L1Rn2pew3yOHT2S2cuO5fBstsjh2amXvnSWsGyOJwPK3AofLtNJxy52G3SH43T0xVKZdv0M5SzjVZV66A0n6ItZuAyF3+uissRNscfF/tYgCVtTWewmFLOIWTamoVhYVcyjH33dsIdz6/y+VKZff+CU/SOR53L+8Oxo/rS3ja3HunnrWfOYU1E04n37D+KmGfb6ZaYkgFP3kUBxojvE0a4wHtNgcU0JK2aV8sArTWjNKY35DAVet0lzj1NSyFDOoViPS1HidWY/s8p9NHaFCUQTLK0tTc10PnnZSiCzmdB4ygSNdk5rss5xCTGTnLukmgNtQZ7Y3coN58zHNCbn7JLsKQlg6H0klFN9wVSwpyXA/VubQJ8sD6RwAo9tOz2ReiMJp8adqVhUU0zMsukMxekNxwHw+9zMrfChNUMWRN20om7SO8COdk5rss9xCTFTuE2DTctr6eiL8dLRrkl7XpkpCeDULL32YBTL0tgwIAOufwJuKCfDzqXAcBlEE3bqdtvWNPdEnQrgyefqbyHhMg3Wz6/k7ps2pmYotz64fcAMZaJBKH3W09UXTc0Ae8Nx2oNRogmbW+55mW9dv27EQq8yWxJiZItrSllSW8Lzhzo5rd5P+aA94fGQmZIA4LWLq2jsCrOrqZeDbUFCcYv+UDTUXqetneKq4YROBaT+2y0NoZhFwtZYlvP9wZl/UzFDGeo597UFSVg2veE4J3qcqhOmAX2xBLc9tIN9rQEpUyTEBLzutFqUcvaYJoMEpQKXaWWG+146TlWJG1M5VRP69yQzXSU20+7YH8SstMO0+1qDuA2VWo4bb6WJkQz5nIZBSyBKezCKgcIwnER2n8vEbSpiCVvSzIWYAL/PzdkLqzjU3seJSSjYKst3BSyTTrHgvJnHEhbdoTjRQb3Lder/hmcqBrQ8T0+y0UBdqQd/kTujg7BjmaEMXqrb29LL7PKBWUD1ZV4auyMkcGZIdrIDbq3f6xR6TVYglzRzIcbvzIYKth7r5q8HOnjz+rkTKtgqM6UClulsZG9LLx19MSJpy3Bj4TJG/jHqDiewbD2pB2EHL9Ud7gjS2Rdn5wln+bE/uSKasPG6DCxbE00uNVpaO2exglGW1ZdNenKFEDON2zQ4e2EVx7vDtPRGJ/RcEpQK2HCVGQbPRuLW+M+qeUxjyD2nfgpnOa8tED3lIOxYK02kSw+4wWiCjmAcw3BmZjHL5kRPmGOdfbQFY5QXuagtPVmJXKGJWTZtwRivXVyVqnz++avXAHDrg9uHXeoUQgxt1ewy3Kbi1ePdE3oeCUoFbLTZyObdrZz/n3+kN5IYNTC5Bp1B8BjObUqBrTVuY+j9J9NQxC2bvpjF3pYAHcEY53/pCe586iBvWT933DOU9IDbFoiiFLgNA8NQeEwDW2sCUYs6v4eaUl+qZp8CLNsJpnV+D88c7Ez9t5DUcCHGz+MyWDGrjL0tQaIJa/QHDEOCUgEbaTbyrT/u5e//7wUaezKbaidsjcdl8HevmU9DZREN1SXMrfClat8tqS3lo5cso8znwmUovMkAkLA1djLexSxNJG5hKmgNRLjvpePcfOHicXWHTQ+4MctOVSn3uQwW15ayclYZANUl3tR9TEPhdRm4TMXi2lKqk5XFYfwtPoQQJy2v92PZmsau8Sc8SFAqYIMPo3pMA9u2ed9PXuBrf9w3pucyFNz1d2dx8cp6SjwmjV1hmnujLKop4YfvOptHP/o6brnkNL51/TrmVBRRWeIZMj/CMBTtwdiE3/TTA67bUFi2xkZTU+oEoXDcosRjpgKXxzScGn3a+bz/Pv2zxkyXOoUQw6sv9+IyFMc6x/97I0GpwKXvl7QHozT3RrHGkc/gMRWvHuvmtod2ELc1y+pKmVdZRF/s1Gl6icekJRBNe6xxsqK47eznwMTe9NMDbrHXhaEU1SUe/D5Xakb4vvMXpQJXTakHy9ZYWlNT6jllD0sqkAsxcS7DYHa5L9XMc1zPMYnjETnszqcOEogkMJOzirGKW5pvP7mf6hIP5UU+ABKWpjUQ4eafvsj6+ZXMKvPwu+0tzvMPeon0JoBDzVTGI736w3CFWs+YV5G6fVldKVpr+mIWdX7fgBp3UoFciMlRUexhb0tg3I+XoFRARiosuu1417hTvvsz7KIJm0AkQa2fVIUEhZPocKg9yDMHo5iGk3CQHvjilo3LUMSTB5iGmqlM1HDliTItWzSWFh9CiOH53AaxZBWX8ZxXkqBUIIY7KPuWxm5+8cJRgtGxBySXArfL2Wfpb1TRX1Kov0ICCrymQSDiNPvSGpRSThBKC0z9hVrrSz3YmlNmKmO91qmo6j3RuntCiP73gPE/XoJSgRiqsGhbIMJ3Nh8gPp5NJCChwbA1ZrJ5n8dUKKUIxRJOxhuAVtT6vRzv7p81OY91mQZgkbCdVNH18ysnJXhkWqViskhbCyHGJhSz8LnNcVd1kKBUIIYq2xOIJEjYNuPYQkpxAprC1lBZ7ObvNi7gmYOdNHY5Qai/O63HjGLbFrZ2lvNU8tSsx6W4851nsWlFXaoO30T6Gk1nVe/pDoBCDC1LnWfHadY7/wttxfnY5y87eWOyi20mHWglKOWpwW/gpcn05/SurdGEjUsprNGK141A4yzHLast4RNvXMGmFXXcwsk37Ejcoi0QJRxzqoqXek1sWxO1bFyGwQc2LUkFpJHe4DMNAJNRMy9T0tZC5AZNLnaeHUosYXPnUwdYN7+S89996pgzCa4SlPLQUG/gveF4KvT0Z48p5RxeNYDxLeDBaxdXp1qRp9u0oo63NHbznc0HSNg2PreB120Qitn4fS7W1vkHzHRGeoMHuOWel+mLJfC5TGr9Xvw+95ABYHDfJ5i61O3pDIBCFIJD7X3YGhZWj//3UYLSNBvPHsXgx3SHYgPe4C1bE4gksLQmlrDxmIpl9WVE4xbNvVFchiI6zn2lkbLjnjnYybzKogEBIhRLUOf3nRLIhnuD39fSm0zFtnAZioStOdEdYU4FlHpdpwSA6Uzdns4AKES+01qz9Vg3fp+LuRVFoz9gGHJ4dhqNp77aUI/Z2+o0rgMIROKc6I6QsG0SlqYvliAQtXjt4ipQirkVPlzm8BuOXlPhHuanoLrYNWLAHEsVhOEOp8Ysp3q412WAVhhKpQq4DhUAhmuZDozaN2qsJlo0VoiZ5Hh3mObeCGctqJxQ6wqZKU2j8exRDPUYt6lo6Y1SVuShuSeSqpAATrFRy7b59pP7WVJTQtzWNFQWcbQrTCit+oIJaAVVpR48psHRzvCAVuclHpOvXrduxJndWGYSw81wPC6DIrdJTamXEz1hZ51RaSIJe9gAMDh1e6oSEuTskhCZ0VrzzIEOij0mq2eXTei5JChNo/HsUQz1mHq/l8buMO3ByLAHYuOWJhCJY2noCsVT54sUUOxWmKYzw+mLWsRNmxWz/KlqB/1vvsCIb/ZjWUob7g3+zqcO0hqIUJa8xvZglGhCU+JxZVw1fCoTEuTskhCj236ilxM9ES5eWZc8DjJ+EpSm0Xj2KIZ6jMs0WFZbyolR6ku1BqKUF3tSAane7+Ut6+fym23NuE2VCiS94Thaa4Ixa8Bs6Ia7nh3xzX60mcRQs6yhkib6A5vf58KV7AQ71jYWkpAgRHYEIwme3tfOvMqiCc+SQILStBrPJv3NFy7m4/e9wvGuMAnbSbP2+1x85S1rufXB7fQmKykMJW5De9BJivjEG1fwzo0LePePXjglSaIrFCcQTVDv9/LysS7e8+MX8LlNInELn8ugrsw5iwSnvtkPN5PIdEltMpbIJCFBiOywbM0jO5qwteb1K+omtJfUT4LSNBrvG7AGUM55IdTJWqcNlcWj9i2pLHbzn397OhevrMdtGqfMKtoCUbTWROKaI50nn6t//ykUt2nsCjOv0ikf0hKIoLWTVDDS2MeypDbRJTIppipEdvzlQDsnuiP8zep6Kos9oz8gAxKUptlQb8AjJRPc+dRByovczC4/mWLZ/+Z+84WLeeZgx7CvNbvcx3ffsZ618yowkp1jB88qIgmb0bqhJ2xNY2coVdBqboVv1GSCYVPAWwMjVnUYD0lIEGL67W7u5eWj3aydV86KWRNftusnQSnLRlvmGmm/ZNOKOq49czb3b2065XmL3Qb1fh8f/PlLzK8qSb1Jp88qEpadcRuLhAafqVJlhYBTZj7pwbU3HMeybWpKfann6OiLEogkTkmJn4yyPZKQIMT0OdoZ4g87W5hbUcQFy2on9bnlnFKWjdaGe7Tmc5+/9gzOXVI54PsuA8Jxm+beMJXFngHnofrP+XhMg8busTXiWlpXmgpIMHB/afB5qmKPSWsgRnswkjrj09kXp7LYLS3HhchjbYEov321icpiD1eeMRvTmPg+UjoJSlk22gHUkQ5wdvbFeHR7E88d7AacdO9ZZV48poHLVAQiiSHf/DetqKOi2MPC6mJcGf48GYoRg+Pg4Frr91HmcwLTruYAbYEoHlOl2pUPda1CiNzW2Rfjga3H8bgMrj5zDt5B712TQZbvplkmhVTT3+yH2i/5hwsWsWJ2Gbf/ZgcPbD2Relx1iYfqUi8dfTEMxYBDtYPf/PuXBTMtPuR1GTQmMwC9pkF5sRu3aaaSCQYvMwYicYIRCwWsmOUnHLdo7ArT0RcdsKQnWXJC5IeuUIxfv9QIwLXr5g5YNZlMEpSmUaaFVAdnjqXvl0QTFie6w3z03q2pJAeFM5PpDsco8brwmAYxy061HYdT3/z7Ex5G21JSQInXJG5pKovdBCIJogmbzr44H9g0f9jqDm2BaKoBYP9srbLYTWdfnGKPS7LkhMgj3aEYv37pOLaGN6+fS1XJ5GTaDWXKlu+UUj6l1PNKqVeUUjuUUp9L3l6llPqDUmpf8mPlaM9VKIbaPyorclNb6qXO76O5J0xbIJpKIBhcvy0QibO3OcDHf/lqKiCVeExml3uTNeMU7cEoZUUubA1+n2vYmm39y4L9y8Eq+Sf9B6LYbTCr3JsKSLV+H4trS1k5u4x5lUU8c7DzlOfrX2aMJJylvvTluppSL36veUrdOklQECJ39Ybj/Prl4yRsm79dP5fqQUvwk01pPYEOcCM9sXOKqkRrHVRKuYGngQ8Dfwt0aq2/qJT6JFCptf7ESM+1YcMGvWXLlikZ53Q6/0tPUFHkHnDATGtNTzjO569ek5pFpc8ibr9qNa9bXkt7MMa9zx/l20/uT1VoKPWazK0owm0aBKMJWnsjRC3NOQureO3iqmQzvuFTpDfvbuXW+1+lsScK4BRmVYqEpZlX6aSgz6ssZm9LL7PLi4Yc958/8foBz9e/zNgTjlPsMan1n1yqG66CuBAzUMbZAUoZmgn0RJsI01/LrLf/J8pbQss9/0689dCEni+tyd+w1z9lQWnAiyhVjBOU/gn4CbBJa92klJoNbNZaj9j5qVCC0g13PXtK5YH+N2og9b3ecDxZA86myG3wtrMb+O2rTTT1RlOPMw1AQ0NV8YAU7fG86X/rj3v5wdOH6ItZlHhM3nf+Im655LSMxj3ca6UvVQ4OsjIzEmIsQUnpyW7y97FLlzPae39zT4S33fUMnX0xfv6+jZw+r3wyhzDs9U/pnpJSygReBJYC39FaP6eUqtdaNwEkA9OQ71BKqZuAmwDmz58/lcOcEkMdiB2p8sCtD26noshNbzjOiZ4wBgpDaQJRix8+fXjAv5NMBZVFbrrDCZp7IpR6XRPan7nlktMGBKHBxlMxQQ60CjF+6e9/2dDaG+Ht33+WjmCM//fecyY7II1oumZKFcD9wIeAp7XWFWnf69Jaj7ivlG8zpZFmCTD0G3X/bKS5J0LC0smusTbpRcD7933SM+ZMQzGn3Dflb/rpS3MSYISYsJydKbUHo1x/17Oc6A7z/957DmctqJrU107Kzkypn9a6Wym1GXgj0KKUmp22fDfxbmw5ZqS6b3fftPGUCgi3PridUo9JbzhOJG5hGv19kU597sE3WbbmrWfNG3GmMxmkYoIQha+rL8Y7f/AcjV0hfvzuKQtII5rK7Lva5AwJpVQRcAmwG3gIuDF5txuBB6dqDNmSSUfWwRUQusNxukIxLA0xCxL2ya3N/qy4of5dYyj4wdMT23wUQoieUJx3/vA5DrX38cMbz+Y1i6uzMo6pnCnNBn6c3FcygF9orR9WSj0D/EIp9V7gKPDWKRxDVmTSSiF9NtWf2ADOflF6gdRSj0kwZg051zUAt6noi1lDfFcIITLTG4nzrv99jn0tQe5611mct7Qma2OZsqCktX4VWDfE7R3AxVP1urkgk8SA9AoIbYEICoWNHhCQTAOWzyqjpTdMezCW6jKrONnOwtbOWSUhhBiPUCzBu3/0AjtO9PK9d57FpuXZXaaX2ndToL/o6UiHRBsqi5OHWm2iCRtL69Qeksc0WFhdRL3fx6/efy4oxdK6Uur9Aw+t2dr5877zF03n5QkhCkTCsvnQz1/m5aNdfOuGdVyyqj7bQ5IyQ1NltMSAd5+7kM/+ZgfRhI2GVLkfn8tgXkURCa1ZUO0s9/UvB9aVOeeZ2oJRtHYy7z78+qVTnuQghCg8Wms+df92Ht/dyheuWcObTp+d7SEBMlOaMpt3t3LDXc9y/pee4Ia7nh1QMqgnFGfZLD/veM0C2oOxVEAqchvMq/RhobE1qeW+9BI+tX4vi2pKmF9VzA/ftUECkhBiXL7+h73cu+UYH3r9Ut65cUG2h5MiM6UpMFzjvs9pzep55QQjCV451s2dTx0gmrBxGYprzpzLgbYgbYEIDWlN+UAOogohJlfpGW/gW0/s57oN8/jYG3LrH7YSlCbB4OoN3aEYblNh2ZpD7X3ELBsDuON3u7jrXRv47atNfOPxfVi2przIze1XrSaWsDnWdbLl+GByTkgIMRlOdIepuvT9XLCshjuuPX1ATctcIEEpQ0OVDdq0ou6UWdGh9iDNvVEMBXpQGcX9bX18+oHt/OWAU+F7UU0Jd1yzhqaeMN96Yh8elzFpbcKHG68QYuYKRhL8dlsTid42/vuGy3GbubeDk3sjykGDD7qmtxdPP28UiCTo6IsBTuLCUIdd+wPSxsVVfPuGM1laV8ovtzTicRmT1iZ8pPEKIWamhGXz8LYTxC2btl9/gfLiqWnSN1ESlDIwVB+k/qCRXr2hPRjFQOExR54Ov23DPD5/9RpmlxdRV+ajsTs8agWIyRqvEGJm+tPeNlp6o/zN6lnE249mezjDkqCUgZHKBjVUFhOOOxUVYpY93JZQiqng5tctoa7Ml2qWlf4c/SbSJjyTMkdCiJljX0uA7Sd6OWtBJUtqS7M9nBHJnlIGhiob1B6MEopZhOMBApEElcVuPKZBNGGhUBiKIVuN15S4qS/zUeI9+VzjaQ0x1vFOJMgJIbJJ8bFLR2w5NyLTX8vs93ybROdxfv2Vf+XXtsW8htxtB5QXQWl3c4Ab7no2a5v1g4NGezBKWzBGnd9DdYkXtxmlsy+O29AopSj3mXT2JU55HgOoKPEOCEgw+Snfkx3khBDZpBlr64r+1hQJy+aG7z/LrqYAv/30FSz4ycemaIyTJy+CkstQk5KRNl6Dg0YoZlHn91BT6lRYqC7x4jENKou9XHPmHL72x72pFhMKp5K3x2VQW+ohNEzx1MlM+ZZzTUIIcN4DXjjcxdfftpYF1SXZHk5G8iIowcCeRNl4c00PGud/6YlUMVVbaxKWxuMyaOwO8X/PHKY34syS/F4Xs8q8GIaB21SE41aq9fl0jlcIMfPsbw3yzcf38abTZ3HtunnZHk7G8iYoQe5s1vfv2cQSNu3BKHHLdip229AejOEyFFevncNfD3YQs2xKXYYsoQkhpo8y+MSvXqXYY/K5q9ZkezRjkldBaTo369MPn5Z6TJRSBKIJGiqL2biokh8/e4SeUDx1SLa/wnexx+SOa9ewdl4FF55Wyz0vHJMlNCHEtPKvv5wXj3TxtevWUjuou0Cuy5ug5LR5mJ6ZRnqVBlM5lRgA5lb4aOkNc++WPtyGk2GX3iHWZSgWVBWzdl4FVSUerl43l6vXzZ3y8QohRL9gJEHFhe9i0/Jars3D95+8OKdk2XrInkRTJf3waXswhqkUpqFoC0Rxmyamoejoi+F2mamAVOIxmV9VRFcoRl2Zj4piz5SPUwghBnt6fzvKMLn9qjU5V9cuE3kxU1o+y8/dN22c0tfYvLuVLz26m/2tQeLJA0Y+l0Hc1rgNhUYTszRaa0zDmSElkpl0CrBsm0AkwaKaUkq9efGfVQhRYI53hdnTEqDnuV8xv/rabA9nXPJipjTVNu9u5eP3vcLelkAqIAFEEjaWrVMf3aZBKGZxtDOcuo+hwGVCwtZ09MU4f2l1Ni5BCDHD2VqzeW8rfp+L3mfvy/Zwxk2CEs5yXSCSwNbOrGcoCRsMpWjsDmNrJxiV+0y8LgOtnRbmdX4vzxzsnNaxCyEEwLbjPbQHY1ywtAadiGZ7OOMm60w4teISttOWXCmGLO9tAH3J5bo6vxdLa6qK3ZiGgctQKKXQWudEyroQYmaJxi2ePdDBvMoiltbldm270chMCefckcswnFnSUAFJkarQcM6iKn544wYaKoqJWToVkEDqywkhsuPFo11EEjYXLKvJy+SGdDM+KG3e3UpXX5SY5cyUhuqB1L/NVFvq5Y5r1lDidfG+8xehtROItNbTmrIuhBD9+qIJXj7azWn1pdNWMWYqzejlu2/9cS/f2XyAhG1j4izdWUNFJaC8yMU/v+E0XKZBTamHK86cQ6nPJfXlhBBZ9fzhTiyt2bi4MJKsZmxQ2ry7le9sPoCtnSU4rcHQUFXiwud2caI7gqU1SsGSmlLed/4iNi6ppr7MR5HH6VUk9eWEENnUE46z/XgPq+eUUVkgZyNnbFC686mDJCwbl6EAhVJga5vOvjiWjgOwoKqYL1y7hrkVRbgMg/pyL16XOfITCyHENHn2YAdKKV6zqDBmSTCDg9LRzj48LoOEpZP16zSWdurYAZyzsJJbr1hFqdeF2zSYXe7DZc74LTghxDRzuz3DNvnzNqzBXTWX2/7z9wNuz+UmfqOZkUEpkmwhEY1bdIfjWFYyICW/f96Saj571WpMQ+Fzm8wq82EY+Z3RIoTIT2eccTpbtmzJ9jCmzYz7p39POE5TT4S3bWjA7TIp8Zgk0gLSuYur+Pw1azANRanXxexyCUhCCDFdZkxQ0lrT2huhIxhFa805i6s4f0kNvRHnQKxpKP7h/EV84drTASgvclNX5sv7nH8hhMgnM2L5LpawU035wKk6/sOnD/HLlxoBmF9VzB3XrGFuZRHgtDcvL3ZnbbxCCDFTFXxQ6osmaAtEsZMZDKFYgv/43W7+eqADgLMXVvLpy1dR6nOhlKLO76VEqnwLIURWFPS7b1dfjK5QLPV1c2+EW+/fzsF2p2nf366byz9tWoJpOP2S6st8+NyS8i2EENlSkEHJtjWtgSihWCJ1244TPdz24A66QnFMQ3HL65dy5do5ALhNg/oyHx7XjNliE0KInFRwQSmWsGnpjRC37NRtj+1s4auP7SFuafw+F5+9chXr5lcC4E2mfJuSYSeEEFlXUEEpGE3QnrZ/ZGsnoeHu548B0FBZxB3XrklV8i7xuqjzeyXDTgghckRBBCWtNZ19MXrC8dRt4ZjFf/xuF39JJjRsWFDJbVc4CQ0AZUVuakq9WRmvEEKIoeV9ULJsTUtvhEjcSt3W0hvh1ge2c6DNSWi45sw5fOCipaklOkn5FkKI3JTXQSkSt2jtjZKwT+4fpSc0GApuuXgZVyUTGiTlWwghclvevjv3RuJ0BGNofbIB0h92tvBfaQkNn7lyFeuTCQ2S8i2EELkv74KS1pr2YIxA5OT+ka01//v0IX6eTGiYV1nEf6QlNEjKtxBC5Ie8CkoJy6YlECWatn8Ujln85yO7eXp/OwBnza/gtitX4fc5e0aS8i2EEPkjb4JSJG7R0hvBsk8u17X2Rrj1gR3sbwsCcPWZc/hgWkKDpHwLIUR+yYugZNmapp7IgP2jnSd6+fSD21MJDR96/TKuPnNO6vuS8i2EEPknL4JSwtYDAtLju1r48u+dhIZSr5PQcNaCytT3JeVbCCHyU14EpX621vzoL4f52XNHASeh4Y5r1tBQ5SQ0KKWo9XsplZRvIYTIS3nz7h2OW3zxkd38ed/QCQ2S8i2EEPkvL4JSwrL58N1bTyY0rJ3DBy5agst0Urwl5VsIIQpDXgSlI50hwm1BDAUfvGgp16ybm/qex2Uwq8yXClBCCCHyV14EJct2Ehpuu2IlGxZWpW4v9jgp34acQRJCiIKQF0HJbRr899vXMT+Z0ADg97mpKfXIGSQhhCggeRGU5lcVDwhIlcUeKks8WRyREEKIqZAXQam/QoNSiupSD2U+OYMkhBCFKC+CEoChFHVlXoo9eTNkIYQQY5QX7/AKmF3hw+uSM0hCCFHI8iKP2u0yJCAJIcQMMGVBSSnVoJR6Uim1Sym1Qyn14eTtVUqpPyil9iU/Vo76XFM1SCGEEDllKmdKCeCftdYrgY3AB5RSq4BPAo9rrZcBjye/FkIIIaYuKGmtm7TWLyU/DwC7gLnA1cCPk3f7MXDNVI1BCCFEfpmWPSWl1EJgHfAcUK+1bgIncAF1wzzmJqXUFqXUlra2tukYphBC5ISZ/P435UFJKVUK/Ar4iNa6N9PHaa3v0lpv0FpvqK2tnboBCiFEjpnJ739TGpSUUm6cgPQzrfWvkze3KKVmJ78/G2idyjEIIYTIH1OZfaeAHwK7tNZfS/vWQ8CNyc9vBB6cqjEIIYTIL1N5ePY84O+AbUqprcnb/h34IvALpdR7gaPAW6dwDEIIIfLIlAUlrfXTDH/E6OKpel0hhBD5Ky8qOgghhJgZJCgJIYTIGRKUhBBC5AwJSkIIIXKGBCUhhBA5Q2mtsz2GUSml2oAjE3yaGqB9EoaTD2bKtc6U6wS51kLTrrV+YyZ3VEo9mul9C0FeBKXJoJTaorXekO1xTIeZcq0z5TpBrlXMHLJ8J4QQImdIUBJCCJEzZlJQuivbA5hGM+VaZ8p1glyrmCFmzJ6SEEKI3DeTZkpCCCFynAQlIYQQOaOggpJSqkEp9aRSapdSaodS6sND3Ecppb6llNqvlHpVKbU+G2OdiAyvc4VS6hmlVFQp9S/ZGOdkyPBa35H8u3xVKfVXpdTabIx1ojK81quT17k12S77/GyMdaIyuda0+56tlLKUUm+ZzjGKLNFaF8wfYDawPvm5H9gLrBp0nzcBj+C01dgIPJftcU/RddYBZwN3AP+S7TFP8bWeC1QmP78sH/9Ox3CtpZzcCz4D2J3tcU/VtSa/ZwJPAL8D3pLtccufqf9TUDMlrXWT1vql5OcBYBcwd9DdrgZ+oh3PAhX97dnzRSbXqbVu1Vq/AMSzMMRJk+G1/lVr3ZX88llg3vSOcnJkeK1BrXV/dlIJkJeZShn+rgJ8CPgV0DqNwxNZVFBBKZ1SaiGwDnhu0LfmAsfSvm5k6F+GvDDCdRacDK/1vTgz4bw20rUqpa5VSu0Gfgu8Z5qHNumGu1al1FzgWuB7WRiWyJKCDEpKqVKcf119RGvdO/jbQzwkL/+1Ocp1FpRMrlUpdRFOUPrEdI5tso12rVrr+7XWK4BrgM9P8/Am1SjX+g3gE1pra9oHJrJmytqhZ4tSyo3zQ/4zrfWvh7hLI9CQ9vU84MR0jG0yZXCdBSOTa1VKnQH8ALhMa90xneObTGP5e9VaP6WUWqKUqtFa510B0wyudQNwj1IKnCKtb1JKJbTWD0zfKMV0K6iZknJ+en8I7NJaf22Yuz0EvCuZhbcR6NFaN03bICdBhtdZEDK5VqXUfODXwN9prfdO5/gmU4bXujR5P5KZox4g74JwJteqtV6ktV6otV4I3Ae8XwJS4Suoig7J9Ng/A9sAO3nzvwPzAbTW30v+Mvw38EYgBLxba70lC8MdtwyvcxawBShL3ieIk92UV8t8GV7rD4A3c7K9SULnYZXpDK/1E8C7cBJYwsDHtdZPZ2G4E5LJtQ66//8BD2ut75vGYYosKKigJIQQIr8V1PKdEEKI/CZBSQghRM6QoCSEECJnSFASQgiRMyQoCSGEyBkFd3hWFD6lVFBrXTqOxz0HeIEqoAg4nvzWNVrrw5M3QlBKfR6nzqKNU7ft77XWeXdIW4jpJinhIu+MNyilPf7vgQ1a6w9O3qhOeY2y/jNhSqlbcM6I/eNUvZ4QhUKW70TeUkptUkptVkrdp5TarZT6WbJSx2VKqV8Mut9vhnmOJUqpR5VSLyql/qyUWpG8/f+UUv+T7PlzUCn1OqXU/yb7//xf2uODSqmvKqVeUko9rpSqBRh0SDlvq3kLMd0kKIl8tw74CLAKWAycB/wB2KiUKkne523AvcM8/i7gQ1rrs4B/Ab6b9r1K4PXAR4HfAF8HVgOnK6XOTN6nBHhJa70e+BPwmf4HK6XuUEodA94B3DahqxRihpCgJPLd81rrRq21DWwFFmqtE8CjwJVKKRdwOfDg4AcmK1SfC/xSKbUVuBOn+Vy/3yR7F20DWrTW25KvswNYmLyPzcmA91Mg1QlWa/0prXUD8DNgypYKhSgkkugg8l007XOLkz/T9wIfADqBF5KN5AYzgG6t9ZmjPLc96HVshv/dGWqZ7uc4vY8+M8T3hBBpZKYkCtVmYD3wDwyzdJfc9zmklHorOJWrlVJrx/g6BvCW5OdvB55OPteytPtcBewe4/MKMSPJTEkUJK21pZR6GPh74MYR7voO4H+UUrcCbuAe4JUxvFQfsFop9SLQg7N/BfBFpdRynFnVEUAy74TIgKSECzEBE01PF0IMJMt3QgghcobMlIQQQuQMmSkJIYTIGRKUhBBC5AwJSkIIIXKGBCUhhBA5Q4KSEEKInPH/ASXTfE3642ceAAAAAElFTkSuQmCC\n", "text/plain": [ - "
    " + "
    " ] }, "metadata": { @@ -467,9 +2389,9 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAfA0lEQVR4nO3de5RcZZnv8e+vOp1OIImEpMFAyMlAUBcgCdiimCMKeAFELnLzKIjX6CxBHMcBdM4oHpbrAMIBZnRwInJTGEU4CIIyMiDOYUCwg0m4KshESIghxARpDJ1093P+2LuhulPVvbu7dnVV799nrVpdtWvv3s/aqTz19rvf93kVEZiZWXGUxjsAMzOrLyd+M7OCceI3MysYJ34zs4Jx4jczK5hJ4x1AFrNnz4758+ePdxhmZk1l2bJlz0dE++DtTZH458+fT2dn53iHYWbWVCT9odJ2d/WYmRVMrolf0g6SbpD0uKTHJB0o6RxJayQtTx9H5BmDmZkNlHdXz6XA7RFxvKTJwHbAe4GLI+LCnM9tZmYV5Jb4Jc0ADgI+ChARW4AtkvI6pZmZZZBnV8/uwHrgSkm/kXS5pO3T906TtFLSFZJmVjpY0hJJnZI6169fn2OYZmbFkmfinwTsD1wWEfsBLwFnA5cBewCLgLXARZUOjoilEdERER3t7duMRjIzayoburpZ8cwmNnR1j3coufbxrwZWR8T96esbgLMjYl3/DpK+A9yaYwxmZuPu5uVrOOvGlbSWSmzt6+OC4/blqEW7Dnvchq5uVm/czNyZU5k1ra1m8eSW+CPij5KekfT6iPgtcCjwqKQ5EbE23e1Y4OG8YjAzG28buro568aVvLy1j5fpA+DMG1eyeMHsIZP5aL8sssh7VM/pwLXpiJ6ngI8B/yhpERDAKuDTOcdgZjZuVm/cTGup9ErSB2gtlVi9cXPVxD/aL4usck38EbEc6Bi0+ZQ8z2lm1kjmzpzK1r6+Adu29vUxd+bUqseM5stiJDxz18wsR7OmtXHBcfsypbXE9LZJTGktccFx+w6ZwEfzZTESTVGrx8ysmR21aFcWL5id+UZt/5fFmYP6+Gt1g9eJ38ysDmZNaxtR4h7pl8VIOPGbmTWokX5ZZOU+fjOzgnHiNzMrGCd+M7OCceI3MysYJ34zs4Jx4jczKxgnfjOzgnHiNzMrGCd+M5vwGmkRlEbgmbtmNqHlWde+WbnFb2YTVnld+xe7e3h5ax9n3riy8C1/J34zm7D669qX669rX2RO/GY2YeVd175ZOfGb2YQ1mkVQisA3d81sQsuzrn2zcuI3swkvr7r2zSrXrh5JO0i6QdLjkh6TdKCkHSXdIemJ9OfMPGMwM7OB8u7jvxS4PSLeACwEHgPOBu6MiD2BO9PXZmZWJ7klfkkzgIOA7wJExJaI2AQcDVyd7nY1cExeMZiZ2bbybPHvDqwHrpT0G0mXS9oe2Dki1gKkP3fKMQYzMxskz8Q/CdgfuCwi9gNeYgTdOpKWSOqU1Ll+/fq8YjQzK5w8E/9qYHVE3J++voHki2CdpDkA6c/nKh0cEUsjoiMiOtrb23MM08ysWHJL/BHxR+AZSa9PNx0KPArcApyabjsVuDmvGMzMbFt5j+M/HbhW0mTgKeBjJF8210v6BPA0cELOMZiZWZlcE39ELAc6Krx1aJ7nNTOz6lyrx8ysYJz4zcwKxonfzKxgnPjNzArGid/MrGCc+M3MCsaJ38ysYJz4zcwKxonfzKxgnPjNzArGid/MrGCc+M3MCsaJ38ysYJz4zcwKxonfzKxgnPjNzArGid/MrGCc+M3MCsaJ38ysYJz4zcwKxonfzKxgck38klZJekjSckmd6bZzJK1Jty2XdESeMZiZ2UCT6nCOgyPi+UHbLo6IC+twbjMzG8RdPWZmBZN34g/g55KWSVpStv00SSslXSFpZqUDJS2R1Cmpc/369TmHaWZWHHkn/sURsT9wOPBZSQcBlwF7AIuAtcBFlQ6MiKUR0RERHe3t7TmHaWZWHLkm/oh4Nv35HHATcEBErIuI3ojoA74DHJBnDGZmNlBuiV/S9pKm9z8H3gM8LGlO2W7HAg/nFYOZmW0rz1E9OwM3Seo/z3URcbuk70laRNL/vwr4dI4xmJnZILkl/oh4ClhYYfspeZ3TzMyG5+GcZmYF48RvZlYwmRK/pKmSXp93MGZmlr9hE7+k9wPLgdvT14sk3ZJzXGZmlpMsLf5zSMbabwKIiOXA/LwCMjOzfGVJ/D0R8ULukZiZWV1kGc75sKQPAS2S9gQ+B9ybb1hmZpaXLC3+04G9gW7gOuAF4PM5xmRmZjkassUvqQW4JSLeBfx9fUIyM7M8Ddnij4he4C+SXlOneMzMLGdZ+vhfBh6SdAfwUv/GiPhcblGZmVlusiT+29KHmZlNAMMm/oi4uh6BmJlZfQyb+CX9F0kJ5QEiYvdcIjIzs1xl6erpKHs+BTgB2DGfcMwsLxu6ulm9cTNzZ05l1rS28Q7HxlGWrp4NgzZdIuke4Cv5hGRmtXbz8jWcdeNKWksltvb1ccFx+3LUol3HOywbJ1m6evYve1ki+Qtgem4RmVlNbejq5qwbV/Ly1j5epg+AM29cyeIFs93yL6gsXT0XlT3vIVku8cRcojGzmlu9cTOtpdIrSR+gtVRi9cbNTvwFlaWr5+B6BGJmlY21b37uzKls7esbsG1rXx9zZ06tVYjWZLLU4z9D0gwlLpf0oKT31CM4s6K7efkaFp9/Fydffj+Lz7+LW5avGfHvmDWtjQuO25cprSWmt01iSmuJC47b1639AsvS1fPxiLhU0nuBnYCPAVcCPx/uQEmrgBeBXpLyzh2SdgR+SFLTfxVwYkRsHFX0ZhNYLfvmj1q0K4sXzPaoHgOyVedU+vMI4MqIWFG2LYuDI2JRRPQPCz0buDMi9gTuTF+b2SD9ffPl+vvmR2PWtDYW7raDk75lSvzLJP2cJPH/m6TpQN8wxwzlaKB/NvDVwDFj+F1mE5b75i0vWRL/J0ha5W+OiL8ArSTdPVkE8HNJyyQtSbftHBFrAdKfO1U6UNISSZ2SOtevX5/xdGYTh/vmLS9Z+vgPBJZHxEuSTgb2By7N+PsXR8SzknYC7pD0eNbAImIpsBSgo6Njm5IRZkXgvnnLQ5YW/2UkNfkXAmcCfwCuyfLLI+LZ9OdzwE0ki7avkzQHIP353CjiNiuMofrmN3R1s+KZTWzo6h6HyKxZZV1sPUj65i+NiEvJMHNX0vbp/QAkbQ+8B3gYuAU4Nd3tVODm0QRuVnS1GOppxZSlq+dFSV8CTgHeni7H2JrhuJ2BmyT1n+e6iLhd0q+B6yV9AniapOibmY2AyzDYWGRJ/CcBHyIZz/9HSfOAbwx3UEQ8BSyssH0DcOhIAzWzV7kMg43FsF09EfFH4Eag/9P0PEl/vZmNEw/1tLHIUrLhU8ANwL+km3YFfpxjTGY2DA/1tLHI0tXzWZLROPcDRMQT6fBMMxtHHuppo5Ul8XdHxJb0Ji2SJlFhKUYzq79Z09qc8G3Esgzn/KWkLwNTJb0b+BHwk3zDMms+HlNvzSJLi/8s4JPAQ8CngZ8Cl+cZlFmz8dKG1kyGTPySSsDKiNgH+E59QjJrLrUeU+9F0S1vQyb+iOiTtELSvIh4ul5BmTWT0Y6pr5Tg/ZeD1UOWrp45wCOSHgBe6t8YEUflFpVZExnNmPpKCX7xgtmejWt1kSXxfy33KMyaWP+Y+jMHJfJqybpa19DSUzo8G9fqomrilzQF+AywgOTG7ncjoqdegZk1k5GMqa/WNQTh2bhWF0MN57wa6CBJ+ocDF9UlIrMmlXVpw2pdQ3vv8hrPxrW6GKqrZ6+IeCOApO8CD9QnJLOJbaiuIc/GtXoYKvFv7X8SET39M3fNbOyGSvCejWt5GyrxL5T0Z6A/408tex0RMSP36MwmMCd4Gy9VE39EtNQzEDMzq48ha/VIKkl6uF7BmE0Urttjjcwzd81qzLNvrdF55q5ZDXktXGsGnrlrVkNeC9eawbCJPyJ+OZYTSGoBOoE1EXGkpHOATwHr012+HBE/Hcs5zGqhFlUxvRauNYNhE7+kF3l1xa3JQCvw0giGc54BPAaU739xRFw4kkDN8lSrfvmR1u0xGw9ZWvzTy19LOoZkDd5hSZoLvA/4OvCFUcRnlrtK/fJ/d8MKdtiulb13ec2Ik7Zn31qjy7L04gAR8WPgkIy7XwKcCfQN2n6apJWSrpA0c6QxmNVSf798ue6e4DPff5DF59/FLcvXjPh3Zq3bYzYehk38kj5Q9jhe0nlkWGxd0pHAcxGxbNBblwF7AIuAtVQp/iZpiaROSZ3r16+vtItZTVTqlwf4y5ZeXt7ax5k3rvR4fJtQsrT431/2eC/wInB0huMWA0dJWgX8ADhE0vcjYl1E9EZEH8lyjhW7jSJiaUR0RERHe3t7htOZjc6saW0ctXCXqu/3j8oxmyiy9PF/bDS/OCK+BHwJQNI7gS9GxMmS5kTE2nS3YwHPDLZxtaGrmx//5tmq7491VI7X0LVGk2VUz1zgn0ha8AHcA5wREatHec4LJC1Kf9cq4NOj/D1mrxhLcl29cTMtJaB32/cmt2hMo3I8i9caUZYJXFcC1wEnpK9PTre9O+tJIuJu4O70+SkjitBsGFmTa7Uvh7kzp9JX4a5Vi+Cnn3s7C3aevu2bGXgWrzWqLH387RFxZUT0pI+rAHe6W0MoT64vdvdUvRl78/I1LD7/Lk6+/P5tRurMmtbGN47fl9aWV9ecaBFcfNKiUSd9qDxayPcLrBFkafE/L+lk4F/T1/8D2JBfSGbZrd64mUmlgYsElZdI2NDVzSPPvsCZN6yguyeqtrz7x94/8uwLgNh7lxljbpV7Fq81qiyJ/+PAN4GL09f/mW4zG3cPr3mBru6BnfP9ybW/C6gk0d0zsC+nUv2cWdPaOOh1O9UsNs/itUaVZVTP04ArcVrD2dDVzbm3PbrN9g++eS73/X4DZ96wku6ebcfnQ/1a3p7Fa40oy6ie3YFLgbeSjMS5D/ibiHgq59jMhlSpEibAVfc+zVX3Vl4+YrvWFvqIura8vcSiNZosXT3XAd8iGXMP8EGS/v635BWUWRbVZtxW0zapxLdPeVNN+u/NmlmWUT2KiO+Vjer5PhlKNpjlrb8PfUprie0mV18iervJLUxpLfGN4/floNe1O+lb4WVp8f9C0tkkZRcCOAm4TdKOABHxpxzjMxtS+WicT17dyZbegW2SyS3w7ZP3H1WVTbOJKkviPyn9OXiG7cdJvgh2r2lEZiM0a1obe+/yGk4/ZE/+8a4n2Jom/0kluPCERTUdqWM2EWQZ1fNX9QjEiqdWNWzKZ+6WBH/9jt05cI/Z7ss3qyJLix9J+wB7AVP6t0XENXkFZRNfrWrYVCqLcOW9q/jk23d30jerIks9/q+SFGn7J+Bg4AI8rt/GIGuZhSxcFsFs5LKM6jkeOBT4Y1qieSHgppSNWi2TtcsimI1clsT/crpoSo+kGcBz+IaujdKT617knifWs3lLz4Dto03W5UM6p7dNYkpryWURzIZRtY9f0jdJJmo9IGkHktWylgFdwAN1ic6aXvkN3Ev//Xdc86uBM2rbWoRKY6t577IIZiMz1M3dJ4ALgV1Ikv2/ktTgnxERK+sQmzW58hu43T09bKmw0ElvBLefNvqa9/1cFsEsu6pdPRFxaUQcCBwE/Ilk8ZWfAcdI2rNO8VmTGnwDt1LSB2hRiZeqvWlmuRi2jz8i/hAR50fEfsCHSGr2PJ57ZNa0NnR184vHn6NFGnbfwDdizeotS3XOVuAwkuJshwK/BL6Wc1zWpPq7dyaVNGxLXiQza91FY1ZfQ93cfTfJalvvI7mZ+wNgSUS8VKfYrMmUd+8MZXKLOOPQPfngAfOc9M3GwVAt/i+TlGT+oguxWZbyCpXq4283uYUtPb2Ur4dSKslJ32wcVU38EXFwLU4gqQXoBNZExJFpVc8fAvOBVcCJEbGxFueyfGQtr1BpMlVfBF87ah/Ove1RLz9o1iAy1eoZozOAx4AZ6euzgTsj4ry03PPZwFl1iMNGoVItnMELlfertsbsUYt25bB9Xutx9mYNItfEL2kuyT2CrwNfSDcfDbwzfX41cDdO/A2rUvdNpYXK+1WbTOVx9maNI+8W/yXAmUD57JydI2ItQESslVSxWLqkJcASgHnz5uUcplVTrRbO9pNbWPHMpooteCd5s8aWpVbPqEg6EnguIpaN5viIWBoRHRHR0d7eXuPoLKtKtXBOfNNcjvzmPZx8+f0sPv8ublm+ZrzDNLMRyLPFvxg4StIRJHX8Z0j6PrBO0py0tT+HpOibNbDy7pvtJ7dw5DfvydTnb2aNKbcWf0R8KSLmRsR8kslfd0XEycAtwKnpbqcCN+cVg9XOrGltLNxtB17a0uv692ZNLrfEP4TzgHdLeoKk6Nt54xCDkYzYWfHMphEtgOL692bNrx7DOYmIu0lG7xARG0hKP9g4Gu3Sh9WGbLqbx6x51CXxW2MZydj8SgYP2QSqjvAxs8bjxF9AIx2bX0n/kM1aLZpuZvUzHn38No42dHXzwuYtbOkdWDlzS28fL2zeyoau7sx9/7VcNN3M6sct/gIpb533BUwqwdTWSbzc00tvXx+fvfZBNm/tQRKtLSV6+4JvHF+9BV+LvxzMrP7c4i+Iwa3zrb1BS6nE//7APpQEPX3wYncPPX2wtTf4y5Zeunv6+NsfrajagvcIH7Pm5MRfEP2t83KTW0q8vLWPyS0tVY/b2hvc9/vnK3b9VJrV6xE+Zo3PXT0FUa11Pn/WdnT3Dr1wyheuX0nbpMo3b6sVZTOzxuUWf0FUrLnTMZeTr3gARQDQNqnyGrlbeoe+eds/q9dJ36w5uMVfINVq7vSLgC8f/gYuuuO3tKjE1r5eWkqlAfv45q1Z83PinyCyLI0Ir46/X/HMpm1G5LRNauEtu8/i3rMPHfDlUM43b82anxP/BDDcJKpKXwpDjcgpr6fv8gxmE48TfxMYqjU/XPmFal8KWWvu+Oat2cTjxN/ghmvNDzWJChjySyFrUveKWmYTi0f1NLAsJRGG6rKpNHZ/cO18j8gxKx4n/gaWNXFXm0TlmbVmVom7ehpY1sRdrcvGtfPNrBIn/gY2ksRdrR/eN2fNbDAn/ga3eMFslp7yJkDsvcuMUSVu35w1s3JO/A3Mi5yYWR58c7dBeZETM8tLbolf0hRJD0haIekRSV9Lt58jaY2k5enjiLxiaGZZRvSYmY1Gnl093cAhEdElqRW4R9LP0vcujogLczx30/NQTDPLS24t/kh0pS9b00fkdb6JxoucmFlecr25K6kFWAYsAL4VEfdLOhw4TdJHgE7gbyNiY4VjlwBLAObNm5dnmONqqDo8HoppZnlQRP6NcEk7ADcBpwPrgedJWv/nAnMi4uNDHd/R0RGdnZ15h1l3HrVjZnmStCwiOgZvr8uonojYBNwNHBYR6yKiNyL6gO8AB9Qjhnrb0NVdcZ3a8vc9asfMxkNuXT2S2oGtEbFJ0lTgXcD5kuZExNp0t2OBh/OKYbxkackPVVXTXTpmlqc8+/jnAFen/fwl4PqIuFXS9yQtIunqWQV8OscY6m64+vj9PGrHzMZLbok/IlYC+1XYfkpe52wElVryJYlHnn2Bg1630yvbXEDNzMaLSzbUWKWW/F+29PKpazr5xvELB3T5eNSOmY0Hl2yosVnT2jixY+4227t7ouLNWy+EYmb15sRfYxu6urm+c3XF91xywcwagbt6aqB8ElalPv5+vnlrZo3AiX+MBg/d/If37bVNHz9A2ySXXDCzxuDEPwaVhm6ee9uj/MORe3HurY/SWiqxpbeX0w7ekw+9ZZ6Tvpk1BCf+Mag2CWufXV7Df551iEfrmFlDcuIfg6EmYXm5QzNrVB7VMwYunWxmzcgt/jHyJCwzazZO/DXgbh0zaybu6jEzKxgnfjOzgnHiNzMrGCd+M7OCceKvYLhlE83MmlnhRvWUF1SrNBLHC6Cb2UQ3oRP/k+teZPkzm1i02w4s2Hn6sEk967KJZmbNbMIm/q/8+CGu+dXTr7w+sWNXblmxdsik7gXQzawIJmQf/5PrXhyQ9AGu71xDizRg2+CFUbwAupkVQW6JX9IUSQ9IWiHpEUlfS7fvKOkOSU+kP2fW+tzLn9lUcfuW3qGTumvvmFkR5NnV0w0cEhFdklqBeyT9DPgAcGdEnCfpbOBs4KxannjRbjtU3P5373k9/+fffzegj39wUnftHTOb6HJL/BERQFf6sjV9BHA08M50+9XA3dQ48S/YeTofOXAe19z3anfPRw6cx5J37MFxb5o7bFJ37R0zm8hyvbkrqQVYBiwAvhUR90vaOSLWAkTEWkk75XHu/3X0G/nIW+cPGNUDTupmZrkm/ojoBRZJ2gG4SdI+WY+VtARYAjBv3rxRnX/BztNfSfhmZpaoy6ieiNhE0qVzGLBO0hyA9OdzVY5ZGhEdEdHR3t5ejzDNzAohz1E97WlLH0lTgXcBjwO3AKemu50K3JxXDGZmtq08u3rmAFen/fwl4PqIuFXSfcD1kj4BPA2ckGMMZmY2SJ6jelYC+1XYvgE4NK/zmpnZ0CbkzF0zM6tOyXD7xiZpPfCH8Y6jzGzg+fEOYhiOcewaPT5wjLXQ6PHB6GP8bxGxzeiYpkj8jUZSZ0R0jHccQ3GMY9fo8YFjrIVGjw9qH6O7eszMCsaJ38ysYJz4R2fpeAeQgWMcu0aPDxxjLTR6fFDjGN3Hb2ZWMG7xm5kVjBO/mVnBOPGXkbSbpF9IeixdNeyMCvu8QdJ9krolfXHQe6skPSRpuaTOcYrvw5JWpo97JS0se+8wSb+V9GS6CE7N1SDGXK/hCGI8Oo1vuaROSf+97L1GuY5DxTjun8Wyfd8sqVfS8WXbGuIaDhNjo3wW3ynphTSO5ZK+Uvbe6K5jRPiRPkjqC+2fPp8O/A7Ya9A+OwFvBr4OfHHQe6uA2eMc39uAmenzw4H70+ctwO+B3YHJwIrBx453jPW4hiOIcRqv3gPbF3i8Aa9jxRgb5bNYdr3uAn4KHN9o17BajA32WXwncGuVuEd1Hd3iLxMRayPiwfT5i8BjwK6D9nkuIn4NbG3Q+O6NiI3py18Bc9PnBwBPRsRTEbEF+AHJamiNFGNdZIyxK9L/XcD2JKvHQWNdx2ox5i5LfKnTgRsZWH69Ya7hEDHWxQhirGTU19GJvwpJ80mKzN0/gsMC+LmkZUoWkslNxvg+Afwsfb4r8EzZe6vJ/gEblVHECHW8hjB0jJKOlfQ4cBvw8XRzQ13HKjFCA3wWJe0KHAt8e9AhDXMNh4gRGuizCBwoaYWkn0naO9026uuY6wpczUrSNJIWwOcj4s8jOHRxRDyrZDnJOyQ9HhH/MR7xSTqYJKn29/uqwm65tRBHGSPU6RpmiTEibiJZOe4g4FySNSUa6jpWiREa47N4CXBWRPRKAy5bI13DS6gcIzTOZ/FBkpo7XZKOAH4M7MkYrqNb/INIaiX5B7g2Iv7vSI6NiGfTn88BN5H8KVb3+CTtC1wOHB1JGWxIWgO7le02F3i21vGNMca6XMOsMZbF9B/AHpJm02DXsUqMjfJZ7AB+IGkVcDzwz5KOobGuYbUYG+azGBF/joiu9PlPgdYxfxZrfbOimR8k36DXAJdk2Pccym7ukvSxTi97fi9wWL3jA+YBTwJvG7R9EvAU8Fe8eiNo7/G4hkPEmPs1HEGMC3j1xun+wJr0uEa6jtVibIjP4qD9r+LVm7sNcw2HiLGRPouvLft3PoBkAasxfRbd1TPQYuAU4CFJy9NtXyZJVETEtyW9FugEZgB9kj4P7EVSNvWm9M/FScB1EXF7veMDvgLMImm5APREsnZxj6TTgH8jGQ1wRUQ8UuP4xhQjsDP5X8OsMR4HfETSVmAzcFIk//Ma6TpWjFFSPa5jlvgqarDPYjWN9Fk8HvhrST0k/84fHOtn0SUbzMwKxn38ZmYF48RvZlYwTvxmZgXjxG9mVjBO/GZmBePhnDbhSeqKiGmjOO5+oA3YEZhKMk4e4JiIWFW7CEHSuSR1VvpIasZ8NNIJRGa15uGcNuGNNvGXHf9RoCMiTqtdVNucY0akU/UlfY6kyuJn8jqfFZu7eqww0rrmd0u6QdLjkq5V4nBJ1w/a7ydVfscekm5PC3f9P0lvSLdfJekyJbXVn5L0DklXKKmzflXZ8V2SLpL0oKQ7JbVDMi2/7DR1rbRpxePEb0WzH/B5ktnWu5PMnLwDeKuk7dN9TgJ+WOX4pcDpEfEm4IvAP5e9NxM4BPgb4CfAxcDewBslLUr32R54MCL2B34JfLX/YElfl/QM8GGS2c1muXDit6J5ICJWR0QfsByYHxE9wO3A+yVNAt4H3Dz4wLSC4tuAH6XT6/+FZCGNfj9Jp9I/BKyLiIfS8zwCzE/36ePVL5XvU1aZNCL+PiJ2A64FcutWMvPNXSua7rLnvbz6f+CHwGeBPwG/jmRRjMFKwKaIWDTM7+4bdJ4+qv9fq9Slcx1Jff2vVnjPbMzc4jdL3E1S4fJTVOnmSfvh/0vSCQDp/YGFlfYdQomk6BbAh4B70t+1Z9k+RwGPj/D3mmXmFr8ZEMlCHLcCHwVOHWLXDwOXSfqfQCvJcncrRnCql4C9JS0DXiC5nwBwnqTXk/x18AfAI3osNx7OaVZHYx1aalYL7uoxMysYt/jNzArGLX4zs4Jx4jczKxgnfjOzgnHiNzMrGCd+M7OC+f8/S/HuKCC0hwAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaUAAAGoCAYAAADmTPpwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAACdAUlEQVR4nOzddVyV5/vA8c9z6JRGKQUJARUDa/Y2dZs65zZ19tQZ633X3fVbd1mzY87NnjNni6g0SHd3c+r5/XEQZYKik5L7/Xrxog7nXCici/t+rvu6JFmWEQRBEIS2QNHaAQiCIAjCRSIpCYIgCG2GSEqCIAhCmyGSkiAIgtBmiKQkCIIgtBn6rR1AE4kSQUEQbiVSawfQVomVkiAIgtBmtJeVktAOVSk1nEjI53RSIYl55ZRWqUECewsjutub09fNiiEethgb6LV2qIIgtBFSOzk82y6CFHTyymr4+Z8ENp1Jo6xGjaG+Ag87M6xNDdHIMnllNaQUVKCVwdxInzt9HZjQ24nRPRzQU4hdDaFDED/ojRBJSbhptFqZVSeT+fzvWKpVGu7u1YWpgS4MdLfBSL/+aqhSqSYoqZA94dnsjcqmuFKFq40J825zZ+oAV8yNxCJeuKWJpNQIkZSEm6KwQskzm0I4EpvHKB973pzgh4e9eZO+VqXRsj8qh+XHkghOKcLCWJ95Q92ZP7QbVqaGzRy5ILQKkZQaIZKS8J8l5Vcwb2UQmSXVvDnBj5mD3JCkG/udO59axE//JLA3MgdzI33mDOnKI8M9sDETyUm4pYik1AiRlIT/JDGvnKk/n0Iryyyd05/+XW1uyv3GZJfy7cF4dodnYayvx+whXXlkuDsOFsY35f4FoZWJpNQIkZSEG5ZWWMnUn0+iVGvZtHgwng4WN/0x4nPL+O5gPNtDMzHQUzBjkBuLR3SncyeRnIR2TSSlRoikJNyQrJIqpv58ktIqNRsWDsbPybJZHy8pv4IfDsWz9XwGepLE1AEuPDrKE2crk2Z9XEFoJiIpNUIkJeG6VSrV3P/DCdKLqlj3yCACXK1a7LHTCiv54XACW86mAfBAPxceG+WJm61pi8UgCDeBSEqNEElJuC6yLPPMphC2h2ayat5ARnjbt0ocmcVV/PRPAhvPpKHRytzXx5nHR3dvcsWfILQykZQaIZKScF1+PZ7E2zuieH6sN0/c7tXa4ZBTWs0vRxJZdzoFpVrL+N5OLB7hQU/nTq0dmiBcjUhKjRBJSWiyM8mFTP/lFKN8HPhldn8Ubaj7Ql5ZDcuOJbLuVCrlNWqGetqyeER3hnvZ3XB5uiA0I/FD2QiRlIQmyS2tZvy3xzAz1GP7k8OwNDZo7ZAaVFqtYv3pVFYeTyKntAbfLpYsGuHOhN5OGOiJ/sNCmyGSUiNEUhKuSaXRMnPpacIzSvjz8aH4dL75pd83W41aw7aQTJYeSSQutxynTsbMH+bOzEFdMTEUDWCFVieSUiNEUhKu6d0dUaw4nsTXD/VhUh/n1g7numi1Modjc/npn0SCkgpxtDTi6Tu8mRLoIlZOQmsSSakRIikJV7UtJIOnN4Ywb2g33pro39rh/CdBSYX8318xnE0pwsPOjOfG+nBPr87impPQGsQPXSNEUhIaFZNdyuTvT9DT2ZL1CwffEisLWZY5EJ3LJ3tjiM0pp6+bFe9N6imq9YSWJpJSI0RSEhpUWq3i3m+PUaHUsOvJYThY3lptfTRama3n0vm/v2IorFAye3BXnh3rQyeTtlnAIdxyRFJqhEhKwhW0WplFa85y+EIuGxYNZkC3m9NktS0qqVLxxd8XWHMqBRszI169pweT+zqLLT2huYkfsEaIpCRc4buDcXz2dyxvTfRj3lD31g6nRURklPD6nxGEpBVzW3dbPpjcC3c7s9YOS7h1iaTUCJGUhHr2R+WwcE0wkwKc+HJanw61YtBqZTacSeXjPTHUqLU8dbsni0Z0x1C//V9LE9qcjvOLdZ1EUhLqxOeWcd/3J3C3M+O3JUMwNuiY53lyS6t5Z0cUu8Kz8HY056P7e920OVGCUEskpUaIpCQAUFKp4r4fjlNWrWbHk0Pp0kmMhDgYk8Mbf0aSUVzFzEFuvHhXD1EIIdwsIik1QiQlgRq1hodXnCE4pZANCwcTeAsXNlyviho1X+yLZeXxJGzNjXh7or842yTcDOIHqBEiKXVwGq3MkxvOsTs8my+nBTC5r0trh9QmhaeX8PLWMCIzS7mjhwPv3tdTDBgU/guRlBohklIHJssyb26LZM2pFF4f78sjwz1aO6Q2Ta3R8uuJZD7/OxZJgqfu8GLe0G4Y6XfMa2/CfyKSUiNEUuqgZFnm070X+OFwAotHePDKPb6tHVK7kV5Uydvbo9gfnYObjSmv3uPLOH9HsaUnXA/xw9IIkZQ6IK1W5t2dUfx6IpnpA135cHIv8YR6A47E5vH+rihic8oZ7GHDmxP88XOybO2whPZB/MI1QiSlDkajlXllaxibg9OZP9SdNyb4ioT0H6g1WjYEpfLFvliKq1Q8NMCV58b6YGdu1NqhCW2b+KVrhEhKHUhptYpnN4WwPzqXp2735H9jvEVCuklKKlV8fSCO1SeTMTbQ48nbPZk31F0cvBUaI37xGiGSUgcRn1vOojXBpBRU8uYEP+be1q21Q7olJeSV88GuaA7G5OJhZ8YbE/0Y7ePQ2mEJbY9ISo0QSakD2BmWySu/h2Oor+D7mf0Y7GHb2iHd8g5dyOXdHVEk5Vdwp68Db0zwo6ut6KUn1BFJqREiKd3CCiuUvLEtgl1hWQS4WvHDzH7ibE0LUqq1rDiexLcH4lBpZBaOcOfx0Z6YGuq3dmhC6xNJqREiKd2CNFqZP89n8NGeaEqqVDxzpzeLR3igfwsM6WuPckqr+XhPDH+cz8CpkzHv3deTO3wdWzssoXWJpNQIkZRuIbIsczg2j//bE0NMdhm9nDvxyYO98e0iypTbgjPJhby6NZy43HLG9+7CWxP9cLC4tYYnCk0mklIjRFK6RYSkFfPxnmhOJRbiZmPK8+N8mNCrCwqF+NlvS5RqLT/9k8B3B+MxNlDw2nhfpga6iirIjkf8hzdCJKV2Lim/gk/3xrA7PBtbM0OeusOL6QPdRClyGxefW86rW8MJSi5ksIcNH07uhYe9eWuHJbQckZQaIZJSO5VbVs03B+LYEJSGkb6CR4Z7sGiEB+ZG4iJ6e6HVymw8k8ZHe6LFUMGORySlRoik1M6UVatYeiSRpUeTUGm0TB/oxpN3eIprE+1Ybmk1b++IZHd4Nl4O5rx/X08GibL9W51ISo0QSamdUKq1rD+dwrcH4ymoUDK+dxeeH+uDu504+3KrOBCdw5vbdEMFH+zvwit398BWtCu6VYmk1AiRlNo4rVZmR1gmn/19gbTCKoZ42PLy3T0IcLVq7dCEZlCpVPPtwXiWHknEzEifV+7uwdRAV1GwcusR/6GNEEmpDTsal8fHe2KIzCylR2cLXr67ByO97UWlVgcQm1PG639GEJRUSD83K16f4Ec/N+vWDku4ecQvcSNEUmqDIjJK+L+/Yjgal4+zlQnPj/NmUoCz+Gu5g5Flmd/PZfDxnmjyy5WM83fkhXE98HQQVXq3APHL3AiRlNqQlIIKPv87lu2hmViZGvDEaE9mD+kqJpt2cBU1apYfS+LnfxKoUmmYGujKU3d44SRaRrVnIik1QiSlNiCtsJLvDsaz5Vw6BnoSC4a5s3hkdyyNDVo7NKENKSiv4btD8aw9lQLApD7OLBnpgaeDRStHJtwAkZQaIZJSK8ooruK7g/H8FpyGQiExY6Abj47qjqOlKO8WGpdeVMmyo0lsPJNKtUrLaB97Zg3uyigfB/TEFm97If6jGiGSUisITy9hxfEkdoZlIiHx0EBXHhvlSedOIhkJTVdQXsPqkylsCEolt6wGZysTHujnzMQAJ7wcxeqpjRNJqREiKbWQiho1eyKy2XQmlTPJRZgZ6jF1gCsLh3uIawPCf6LSaNkXlcP606kcT8hHlqFHZwsmBjhxT68u4ixb2ySSUiNEUmpGFTVqjsbl83dUNn9FZFOp1NDN1pRZg7sydYCruGYk3HS5pdXsDs9iZ1gWwSlFALjamDDM045hnvbc1t0WazPDVo5SQCSlRomkdBNVqzSEphUTnFLE6aRCTiUWoFRrsTDWZ3yvLjzY34X+Xa3FOSOhRWQUV7E/Kofj8fmcTCigrEaNJIG7rRl+Tpb4O3XC38mSHp0tsDM3EkcOWpb4x26ESErXSanWklVSRUZRFenFVaQXVZGQW05MdinJBZVotLpQvRzMGeFtzx2+DgzoZoOBGLAntCK1RktYRgkn4vMJzyghIqOUjOKqus8b6ilwsjLGycoEJysTrEwMMDfWx9xIHwtjfYwNdMcSJElCAiQJFJKELINGltFqZTRaGY0sI8syGm39j2tl3YtGi+7t2ttefK3RUvt1ut8fhUJCkkBCQiFdejzpYgwSGOgpMDbQw9hAgYmBHiYGehgb6mGsr4eJoR5mhnqYGenrXgz12tqQS5GUGtGuk1JuWTWlVSq0MnU/+PJlb2vlS78AdW9f/LhWRqnRUq3SUKPSUq3WUKXUUH3Z28WVSoqrVBRVqiipVFJUqaK0WsXl/2SSBG42pvg4WuDT2YI+rlb072qNlanYIhHatuJKJVGZpcTnlZNRVEVGse4lq7ia0moVlUpNi8Shp5DQkyQUCl3iAZBrf19lGWR0v7Ny7e/ujTLSV2B+MUnVJiozI/3aj9UmMEP92o/p3jcx0CUzPQXoKRToKyQUkoS+nlQXt55C96KoTZagyzgGegq6NX49TySlRrTrpPT6n+GsPZV60x/MQE/CxEAPK1NDrEwNdK9NDLA2NcDazBAnKxNcrExwtjahSycTMWpAuCWpNVoqlBrKa9RUqzS1f4xdTBS6pKGQdCsZhXTpifnia4WCuidtxcXPXfZx3W2u/7lZrk1WKq1W90ekSvdHZJVKo3u79v0KpYaKGnXti4YKpZryGjWVNWrKa2o/V/cx3fvlSjU36ynRxdqEYy/d3tinRVJqRLtISpIk/QXYXeeX2QH5zRDOzSbivPnaS6ztJU5oP7G2lzjzZVm+q7WDaIvaRVK6EZIkBcuyHNjacVyLiPPmay+xtpc4of3E2l7iFBon9p0EQRCENkMkJUEQBKHNuJWT0i+tHUATiThvvvYSa3uJE9pPrO0lTqERt+w1JUEQBKH9uZVXSoIgCEI7I5KSIAiC0GaIpCQIgiC0GSIpCYIgCG1Gu0hKd911l4yus4l4ES/iRbzcCi9Ndos+/zWqXSSl/Pz20DVEEATh5utoz3/tIikJgiAIHYNISoIgCEKbIZKSIAiC0GaIpCQIgiC0GSIpCYIgCG2GSEqCIAhtWGGFsrVDaFEiKQmCILRhRZUiKQmCIAhtREcb5CCSkiAIgtBmNFtSkiTJR5KkkMteSiVJekaSJBtJkvZJkhRX+9q6uWIQBEEQ2pdmS0qyLF+QZbmPLMt9gP5AJfAH8DJwQJZlL+BA7fuCIAhCAzrY7l2Lbd/dASTIspwCTAJW1X58FXBfC8UgCILQ/nSwrNRSSekhYEPt246yLGcB1L52aOgLJElaJElSsCRJwXl5eS0UpiAIQuu7/PlPrVG3djgtSpKbubRDkiRDIBPwl2U5R5KkYlmWrS77fJEsy1e9rhQYGCgHBwc3a5yCIAgtSGrqDS1cfOSy9AvNGUtraPT7b4mV0t3AOVmWc2rfz5EkqQtA7evcFohBEAShXepgu3ctkpSmc2nrDmA7MLf27bnAthaIQRAEoX3qYFmpWZOSJEmmwBhg62Uf/hgYI0lSXO3nPm7OGARBENozuYNlJf3mvHNZlisB2399rABdNZ4gCIJwDR0rJYmODoIgCG2aaDMkCIIgtBlaWUal0bZ2GC1GJCVBEIQ2rrRK1dohtBiRlARBENq40uqOc4BWJCVBEIQ2rkSslARBEIS2QmzfCYIgCG1GabVISoIgCEIbIbbvBEEQhDajtEoUOgiCIAhtgITYvhMEQRDaCD2FJLbvBEEQhLZBTyGJ6jtBEAShbVBIkjg8KwiCILQNYvtOEARBaDP0FBJlIikJgiAIbYGeQhLVd4IgCELboCfptu/kDjJYSSQlQRCENkxPIaHSyFSrOsZMpWYdhy4IgtBSMourOBCTS2pBBYM9bLnD17G1Q7op9BQSWnQHaE0M9Vo7nGYnkpIgCO1aWmElH+2J5q+IbLSy7kl86dEkVjwcyO092n9iupiUSqpUOFoat3Y4zU4kJUEQ2iWNVmbZ0US+2BeLnkJi8cjuTA10xdJYn/7v7yc6q+yWSEoKSQI6zvgKkZQEQWh3UgoqeGZTCOdTixnr58g7k/zp0skEgBMJ+QB0tzdvzRBvGj2FLimVdZADtCIpCYLQrmwPzeSV38PQU0h8/VAf7g1wQqpdTQCsPpFCJxMDRnrbt2KUN09tTqJSqWndQFqISEqCILQLGq3MJ3tj+PmfRAZ0s+arh/ribGVS7zbH4/P5KzKbp273vGWKAi5u31UqxUpJEAShTahUqnl6Ywj7onKYOciNtyb6Y6hf/0RLWbWKl7eG0c3WlMdGe7ZSpDefonapVKUSKyVBEIRWl19ew/xfzxCRUcJbE/2YN9T9itvIssyb2yLJKKpi8+IhGBvcGqskENt3giAIbUZqQSWzV5wmp7SaX2YHcqdfw9V0G4LS+ON8Bs/c6UVgN5sWjrJ5Xdq+E0lJEASh1cTmlDFr2Wlq1FrWLxxMPzfrBm8XnFzIW9sjGOltz5O3e7VwlC3DUF9BjVokJUEQhFYRkVHC7OWnMdBTsHnxEHw6WzR4u5SCChatOYuLtSlfP9Snrnz6VnNrflcNE0lJEIQ2JSKjhJnLTmNupM+6RwbRzc6swdvlllYze3kQWllmxcMDsDI1bOFIheYgkpIgCG1GZOalhLRx0WBcbUwbvF1hhZI5K4LIL69h/cLBuDeSuIT2RyQlQRDahLicMmYvD8LMUO+qCamoQsnMZadJzK9gxdwB9HG1atlAW0HHGFqhI5KSIAitLq2wklnLT6OnkFi3sPGElFtWzZzlQSTmV7BsTiDDvOxaONLWoVRrMTXoGE/XHeO7FAShzSoor2HOiiCqlBo2LxnS6FZcWmEls5efJreshhVzB3SYhKTR6tZJ5sYd4+m6Y3yXgiC0SVVKDY+sDiazuIp1jwyiR2fLBm8Xnl7CvF/PoNJoWbNgEP27NlwefivS1E6ctTDqGE/XHeO7FAShzdFqZZ7dHEJIWjE/zuzX6KHXfVE5PL3xPNamhmxcNAhPh4bLw29V2tqVkoVYKQmCIDSfL/fHsicim9fH+3JXzy5XfF6WZZYeTeSjPTH0cu7EsjmBOHSAIXf/dnGlJLbvBEEQmsmusCy+PRjPtEBXFgy7spddlVLDK1vD+DMkk3t6debzKX1uma7f10ur1b02F9t3giAIN19CXjkvbAmlr5sV797nX28WEui6NDy69hzR2aU8N8abJ273vOI2HYmmbvvOoJUjaRkiKQmC0GLUGi3Pbg7FUF/BjzP7Y6Rff/WzOzyLl7aEoVBIrJg7gNE9HFop0rZDK4trSoIgCM3i1xPJhKYV8+30vnTudOn6UFm1ind3RPHb2XQCXK34fkZfXKwbPqvU0Wi0MhIiKQmCINxU2SXVfLEvltt7ODCh96XChhMJ+bzwWxhZJVU8MdqTp+7wumKAX0emlWUMJDC5hWZEXY1ISoIgtIif/klAqdby9kTddaSSShUf/xXNhqA03O3M+G3JbR3q/FFTabQy1kb6Hea6mkhKgiA0O1mW2XI2HW9HC8yN9fnuYBy/HEmkvEbNohEe/O9O7w5bXXctGlnuMEUOIJKSIAgtQJIkHh3VnU/3XqDfe/sAuKOHA8+N9cHPqeEuDoKOVttxrieBSEqCILSQx0d7EuBiRURmCSO87EUyaiKtLIukJAiC0ByGedl1mEaqN4tGK3eYg7MAosRFEAShDdPIMuYd6JpSsyYlSZKsJEnaIklSjCRJ0ZIkDZEkyUaSpH2SJMXVvhblNoIgCI3QajvW9l1zr5S+Bv6SZbkHEABEAy8DB2RZ9gIO1L4vCIIgNECjlTvM2ApoxqQkSZIlMAJYDiDLslKW5WJgErCq9margPuaKwZBEIT2TqbjNGOF5l0peQB5wEpJks5LkrRMkiQzwFGW5SyA2tcNNreSJGmRJEnBkiQF5+XlNWOYgiAIbcvlz3/QccZWQPMmJX2gH/CjLMt9gQquY6tOluVfZFkOlGU50N7evrliFARBaHMuf/4DMDMUSelmSAfSZVk+Xfv+FnRJKkeSpC4Ata9zmzEGQRCEdq8jdbtotqQky3I2kCZJkk/th+4AooDtwNzaj80FtjVXDIIgCLcC0w6UlJp7TfgksE6SJEMgEZiHLhFuliRpAZAKTGnmGARBENo10w60fdes36ksyyFAYAOfuqM5H1cQBOFW0pFWSqKjgyAIQhsnkpIgCILQZohCB0EQBKHN6EiTeDvOdyoIgtBO6XWQqbMgkpIgCEKbp6/oOE/VHec7FQRBaKf09MRKSRAEQWgjxPadIAiC0GboKURSEgRBENoIkZQEQRCENqPjpCSRlARBENo8tVZu7RBajEhKgiAIbZxaq23tEFqMSEqCIAhtnEojVkqCIAhCG6HWiJWSIAiC0EaIa0qCIAhCm1GjEislQRAEoY0orVa1dggtRiQlQRCENq6sWt3aIbQYkZQEQRDauDKxUhIEQRDaCrFSEgRBENoMsVISBEEQ2oyiSpGUBEEQhDZAXyGRW1bd2mG0GJGUBEEQ2jB9PQU5pTWtHUaL0W/tAARBuLrskmqOxOaRV17DlP4uOFgat3ZIQgsy0JPIKe04KyWRlAShjUorrOS7g/FsOZeOprbNzNcH4vhwci8e7O/SytEJLcVAT0F2iUhKgiC0Eo1WZsWxJD7fdwGtDLMHd2X6QDeMDRTMWn6aTWdSRVLqQAz1FBRUKCmvUWNudOs/Zd/636EgtCNZJVU8tzmUEwkF3OnryLuT/HGyMqn7/NDuduyLymnFCIWWZqSvQAkk5VXQy6VTa4fT7ERSEoQ24kR8Pk9sOE+1SsMnD/RmSqALklR/ELaLtQkFFUqqVRqMDfRaKVKhJRnq66EEEvPLO0RSEtV3gtDKZFlm6ZFEZi4/jbWpATueHMbUAa5XJCQAL0cLAP44n9HSYQqtxEhfgSRBUn5Fa4fSIsRKSRBakVKt5fU/w9kcnM49vTrz6YMBmF3lusEYX0cGe9jw+p8RbAvJwNLYAABrU0MCXK2YEuiCgZ74W/NWIkngam1KXE55a4fSIsRPryC0ktJqFfN+DWJzcDpP3e7Jd9P7XTUhASgUEp9NCWBSgBMqjUxaURWphZUciMnl1T/CGfflEeJyyq47FlmWSSusJDy9hKIK5Y1+S0Iz8XeyJDyjpLXDaBFipSQIrSC3tJq5K88Ql1PGZ1MCrquazsXalC+m9an3MVmWOXQhl+c2h/LuzijWLBh0zfuRZZmzKUX8fi6DfVHZ5JdfSkZP3eHFs2O8mxyT0Lx6OndiT0Q2JZUqOpkatHY4zUokJUFoYakFlcxcfoqCciXLHx7ASG/7/3yfkiRxew9HZg3uyveH4sktrW70kK1ao2V3RDa/HEkgIqMUU0M97vB1ZJC7DXbmRuwKz+KbA3F4O5ozobfTf45N+O96OesKHCIySxjqadfK0TQvkZQEoQXF5pQxa9lplBot6xcOpo+r1U29/7F+nfn2YDynkwqZGFA/oWi0MjvDMvlyXyzJBZV42JvxweSeTO7rjKnhpaeCO3wdCE4uZG9kjkhKbUTP2qQUli6SkiAIN0lkZgmzlwehr5DYvHgI3rWVdDeTT2cLDPUVnEstqktK1SoNf5zP4JcjiSTlV9CjswU/zerHWL/OKBRXVvgZ6ClwtTYlpwN1EWjrbMwM6WZrytmUotYOpdmJpCQILSAio4SZy05jZqjHuoWDcbcza5bHMdRXMMzTji1n03HqZEJKYQV/ReiuF/V0tuSHmf24y7/hZHS5/IoafJohaQo3bqC7DXsjc9Bq5Wv+/7VnovpOEJpZeHoJM5aewtxIn02LhzRbQrro5bt74GhpzAe7o/njXAb93KxZ/8ggdjwxjHt6dbnmE1qlUk1q7fae0HYMcrelpEpFbO71V1e2J2KlJAjNKCqzlFnLT2NhbMDGRYNxtTFt9sf0drRg/7MjyS2rxtrU8LrPLZ1NKUKtlQnsZtNMEQo3YqC77v/jdGIhPTpbtnI0zUeslAShmcTllDFruW7LrqUS0uUcLIxv6CDtvqgcjA0UDHa3bYaohBvlYm2Cs5UJJxMKWjuUZiWSkiA0g+T8CmYuO42+QmL9wpZPSDdKqdayOzyL0T4OmBiK3nptiSRJDPO040RCPmqNtrXDaTYiKQnCTZZdUs2s5adRabSse2QQ3Zr5GtLNdPhCLvnlSjEao40a7m1HabWasFu4u4NISoJwExVXKpm9/DTFlSpWzR9Y10C1vVh7OhVHSyNG3IQDvcLNN7S7HZIER2PzWzuUZiOSkiDcJFVKDfN/PUNKYSW/zOlPbxer1g7pusTllHEkNo8ZA7uKpq5tlLWZIb2dO3E0Lq+1Q2k2TfrJkyTJRJIkn+YORhDaK7VGy5MbznE+rZivp/Xhtu7t79T9z0cSMTHQY/aQrq0dinAVw7zsOJ9WTGm1qrVDaRbXTEqSJE0EQoC/at/vI0nS9maOSxDaDVmWeXtHJPujc3n3Xn/u7tWltUO6bhnFVWwLyWDaAFdszAxbOxzhKoZ72aPRyrdsFV5TVkpvAwOBYgBZlkOAbs0VkCC0Nz8fSWTtqVSWjOzO7CHdWjucG/Lj4XhkGRaO8GjtUIRr6Odmjamh3i27hdeUpKSWZfnWLfUQhP9gV1gWH++JYXzvLrw4rn3ucKcWVLIxKI2HBrribGXS2uEI12Cor2CIhy3H4m7NYoemJKUISZJmAHqSJHlJkvQtcKIpdy5JUrIkSeGSJIVIkhRc+zEbSZL2SZIUV/va+j/ELwit5nxqEc9uDqF/V2s+nxJww/3IatQajsbl8cPheM6lFiHL8k2O9Oq+PhCHnkLiydu9WvRxhRs33MuO5IJKUgsqWzuUm64pbYaeBF4DaoD1wF7g/et4jNGyLF+e0l8GDsiy/LEkSS/Xvv/SddyfILS6jOIqFq4OxtHSmF9m98fY4PoPmqo0WjYEpfLdwXhyy2rqPj6+dxe+n9HvZobbqJjsUraeT2fhcA8cG5m/JLQ9w2tL9o/G5zHT9tYqTLlqUpIkSQ/YLsvynegS080wCRhV+/Yq4DAiKQntSEWNmkdWBVOj0rJxUSC25kbXfR/ByYW8+kc4sTnlDOxmw4eTe9HbtRMLfg0msgUPRr6/M5pOJgY8OrJ7iz2m8N952JnhbGXC0dh8Zg7qQElJlmWNJEmVkiR1usHrSjLwtyRJMvCzLMu/AI6yLGfV3n+WJEkODX2hJEmLgEUAbm5uN/DQgnDzybLMi1vCuJBdyoqHB+DpcH2HY2vUGj7/O5alRxNx6mTC0jmB3OnrgCTptv4cLY2pqFE3R+hXOHQhl2Px+bwxwQ9rUXHXplzr+e9iy6HdEVmoNVr0b6FzZU3ZvqsGwiVJ2gdUXPygLMtPNeFrh8qynFmbePZJkhTT1MBqE9gvAIGBgS27yS4IjfjhcAK7wrN45e4ejPJp8O+pRqUVVvLE+nOEppcwY5Abr93ji5nRpV9BtUZLUFIBd/ds/pLyGrWG93ZE4WFnxuzBt9Zf2reCpjz/Dfe2Y1NwGqHpJfTveutcmm9KUtpV+3LdZFnOrH2dK0nSH+hKy3MkSepSu0rqAuTeyH0LQks7FpfP539fYGKAE4uus3T6WFw+j607iwz8NKs/d/XsfMVtjicUUFqtZnSP60t2N2L1iRQS8ytYOW8Ahvq3zl/ZHUldy6G4vI6VlGRZXnUjdyxJkhmgkGW5rPbtscC7wHZgLvBx7ettN3L/gtCSskqqeGrjebrbm/Px/b3qttuaYuXxJN7fFY2nvTlL5wTiZttwx/Dfz6ZjYazP6B7X13cuo7iKkwkFqDVaRnjb43SNsu7c0mq+ORjHKB97Rl/nak9oOy61HMrnmTu9Wzucm+aaSUmSpCR014bqkWX5Wn8qOgJ/1P7y6gPrZVn+S5KkM8BmSZIWAKnAlOuOWhBakFqj5cn156lRafhpdv96W25Xo9XKvL8rmhXHkxjj58iX0/pg3sjX5pZWszs8izlDumGkf+1KPlmWOZFQwNKjiRy+cOkQpSTBjzP7cddVtgDf2RlFjVrLWxP9m/R9CG3XcC97fvwngdJqFZbGBq0dzk3RlN+uwMveNkaXRK45klKW5UQgoIGPFwB3NDVAQWhtn++LJTiliK8f6kN3e/MmfU2NWsNzm0PZGZbFw7d1440Jfuhd5RzT2lMpaGSZOU3oOxeTXcq7O6I4kVCAnbkhz47xZqy/IwpJYuK3xzgUk9doUjoRn8+usCz+d6d3s49lF5rfcC87vjsUz8mEAsb5X7kl3B41Zfvu3w2WvpIk6RjwZvOEJAhtx9G4PH48nMD0gW5M6uPcpK+pVKpZvOYsR+PyeeXuHiy+Rrl1lVLDutOp3NHD4aqzl8qqVXyxL5Y1J1OwMNbnzQl+zBzsVm9lZWtmiErb8AC4GrWGt7ZH4mpjwuKRop3QraCvmzVmtS2HOkxSkiTp8lN8CnQrp/Y1JEYQbkB+eQ3Pbg7F08Gctyb6NelrSqpUzFsZREhaMZ882Jupga7X/JpNZ1IpqFCycHjjiWJ/VA6v/xlBTlk10we68cJYnyvKuHPLqsksqca7kRlOS48kEpdbzsqHB9zQYV+h7THUVzCkuy1Hb6GWQ03Zvvv8srfVQDIwtVmiEYQ2QpZlXv49nJIqFWsWDGzSk3hRhZLZK05zIbuM72f0a1K3cK1WZvnxJAK7WjPIw/aKz+eX1/Dmtgh2h2fTo7MFP87qR1+3hiut9kZkAzDM88qxGYl55Xx7MJ67e3Zukeo+oeUM87Rjf3QuKQUVdLVt/1uyTdm+G90SgQhCW7LlbDr7o3N47R5fenS2vObtCyuUzFx2moS8cn6ZHdjkJ/6j8fmkFVbxwrge9T4uyzLbQzN5Z0cU5dVqXhjnw8LhHo2Wb8uyzNpTqfg7WeLvZHnF517+PRwjfQXv3CuKG241dS2H4vJviaTUlHlKT0uSZCnpLJMk6ZwkSWNbIjhBaA2ZxVW8uyOKQe42LBjmfs3bF9UmpMS8cpbPbXpCAvgtOA0rUwPG+TvWfSy1oJK5K8/w9MYQXG1M2fnUMB4f7XnV80RH4/K5kFPG3Nu6XVGu/sf5DIKSC3ltvC8Oor/dLediy6EjsbfGKIumbN/Nl2X5a0mSxgEOwDxgJfB3s0YmCK1AlmXe+DMCtVbmkwd7X7Pzd0mlilnLdSukZXMCGe6l+6u1tFrFXxHZnEoo4LHR3RtsR1Sj1rAvKocpgS4Y6etRpdTw4z8J/PRPAgYKibcn+jF7SLerVu1djPmbA3E4WhoxqY9Tvc8VlNfw4e5oAlytmNL/2te3hPZHkiRG+djzx/kMqlWadn+9sClJ6eJvxD3ASlmWQ6XrOTkoCO3I9tBMDsTk8vp432tuhZTXqJmzMoi4nHJ+ntOfEd72yLLMnohs3toeSV5t5++Uwkp+f/S2K74+PL2EGrUWWYbvD8Wz/nQqGcVV3BvgxKv3+NK5U9NWNfujcwlOKeLDyb2uOOP0wa5oSqpUrH2k1w2P1hDavrH+nVl3OpUTCfnc3sPx2l/QhjUlKZ2VJOlvwB14RZIkC6DhmlNBaMdKq1W8tzOaAJdOzBt69W27KqWG+b+eITKjhB9n9We0jwNl1Spe+yOC7aGZ+HWx5KdZ/dgYlMb+6JwG78PewggPezPWnU4FYGA3Gz6fGsDgBgoeGlOj1vDBrii625sxNdCl3ucOX8hl6/kMnhjt2aTrYkL7NdjDBnMjff6OzOkQSWkB0AdIlGW5UpIkG3RbeIJwS/ls7wUKK2pY8XDgVbfMatQalqw9y5nkQr55qC9j/ByJzy1n4epgUgoqeG6MN4+O6o6+noI3t0Xi07nhEu2utmYceHYkCXkVGOkrcLW5sv2QRiuTUVRFFytjDBroBL3yeDLJBZWsmj+wXqfoiho1r/0RgaeDOU/e4XkD/xpCe2Kkr8coH3v2R+eg0crX3PJty5qSlIYAIbIsV0iSNAvoB3zdvGEJQsuKyixl7akUZg3uSm8Xq0Zvp9ZoeWZjCP/E5vF/D/RiYoATJxLyWbzmLIZ6CjYsHFxX2h2fW05kZimvj/dt9P4kScLT4couEedSi1h5PJn9UTlUqTR42Jnx1UN96sWWUVzF1/vjGOPnyEjv+v3yvj0YT0ZxFVuWDGlS2yKh/Rvn35mdYVkEJRUypHvTV9ttTVPaA/8IVEqSFAC8CKQAq5s1KkFoQbIs897OKDqZGPDcGJ9Gb6fVyryyNZw9Edm8Pt6XaQPc2Hounbkrguhsacyfjw+td9ZoQ1Aq+gqJe/9VfHA14eklzF5+mvt/OMHhmFzu7+fMWxP9SC2sZOu5jHoxv7o1HEniioO94eklLD2ayJT+LgR2u2ZHMOEWcaevIxZG+vx+Lr21Q/lPmrJSUsuyLEuSNAn4Wpbl5ZIkzW3uwAShpeyJyOZkYgHvTfKnk2nDTS1lWea9XVH8djadp+/wYsEwd5YeSeSD3dEM8bDlp9n96WRy6WurlBp+C07jrp6dcbC4dsFCXlkNn+6N4bez6VibGvLaPb7MGOSGmZE+Ko2WD3ZFY2J4acXzZ0gG/8Tm8fZEP1ysL237qTVaXvo9DFszQ14f37QuFMKtwcRQj/G9u+jOt93r3+TGwW1NU6IukyTpFWA2MLx2RPqt0Y5W6PBq1Bo+2hNNj84WTB/Y+ITjL/fHsfJ4MvOHuvP0HZ58tCeGX44kMr5XF76YFnDFFtm2kAxKq9XXHKCn0cqsO53Cp39doFqt4ZFh7jx1hxcWl3V8PhKbh1or07+2k0N2STVvboukf1drZg/pVu/+lh1LIiqrlB9n9ms0wQq3rimBLmw8k8afIRntdkx6U5LSNGAGuvNK2ZIkuQGfNm9YgtAyVhxLJq2wirULBjU6UnrpkUS+ORDH1EAXXrnbh5d+D+e3s+nMGdKVtyf6N1hqvfZ0Cj06WzDQvfHts8jMEl7dGk5oegnDPO14d5I/Hg10If/1RDJ25oaM9NGVnL/4exhqjcznUwLqXdBOLajky32xjPVzbFKLI+HW08/Nmp7Olqw8nsyMgW7XNferrbjmNSVZlrOB3wGj2g/lA380Z1CC0BJyS6v57mAcd/o6MMzryn5xABuDUvlgdzTje3Xh7Xv9eWZTaN0W3jv3NpyQIjJKiMgoZcaghp8UKpVqPtoTzb3fHSejuJqvH+rDmgUDG0xIwcmFHI3LZ9EIDwz0FKw9lcKR2DxevadHvY7isizz1vYI9BUS707q+R/+VYT2TJIk5g91Jz63nCPttElrU9oMLQS2AD/XfsgZ+LMZYxKEFvHxnhhUGrnRay87QjN55Y9wRnrb89H9vViy9hy7wrN4fbwv/xvj3ehfodtDMzHQk5gUcOWoi4MxOYz54gg//5PIA/2c2f/sCCb1cW7wvrRaXQGGg4URswZ3JTanjPd2RTPS255Z/9oW/DMkg0MX8vjfGO8mH7oVbk0TejvhYGHEj4fjWzuUG9KU6rvHgaFAKYAsy3Ho2g0JQrt1IiGfreczeGS4e4MzjA5E5/C/TSEM6GrD51MCWLg6mKNxeXzyQG8eucqICYC/I7MZ5mlX75pOWmElC1cHM//XYEwN9di0aDCfPBiAlalho/ez4UwqoeklvHx3DyQkntpwHnMjfT6bElAviRVWKHl3RxT93KyueehXuPUZ6itYMrI7pxILOZnw73F4bV9TrinVyLKsvPhLIEmSPg2MRxeE9qJSqeaVreF0szXlydu9rvj8iYR8Hl13Dj8nS76YFsDCNcGEpZfw1bQ+1xz0l1NaTXJBJQ/213VXyCurYdmxRH49noyeQuKlu3qwYJj7VZurgq6Y4ePdMdzW3ZbJfZ159Y9wYrLL+HXeAOwtjOrd9qPd0ZRVq/nw/l7t+tCkcPPMGOTGT/8k8OX+WAZ7DG5X15aakpT+kSTpVcBEkqQxwGPAjuYNSxCaz8d7YkgpqGTjosH1yqwBzqYU8ciqYLrZmvL1tD4sWn2WuFzdfKS7el57sqeeQsLO3JDvDyUQnFLEifgC1Fot9wY48dLdPejSyQSAapWGsPQSskurub2HA+aXle/KssxLv4eh1sp8OLkXW89lsCEojUdHdWeUT/1NipMJBfx2Np1HR3UXrYSEOsYGejw+2pO3tkdyMCaXO3zbT+uhpiSll4BHgHBgMbAbWNacQQlCczkUk8vqkyksGOZ+RY+5iIwS5q0MwsHCiK+n9eHRdedIzK9g6ZxARvk4kFtaTURmCZ1MDOjlbNXgasfO3IhdTw3n+d9Cic0uY/aQrswa3BX32i3CkioVK44lseJ4EmXVagD6uVmx9bGhdfex7nQq/8Tm8e4kf6rVGl77M5zBHjY8N8a73mNVqzS8/mc4rjYmPH3HlSs+oWObMciN1SeTeX9XNMO97K+5Om8rrpqUJElSAGGyLPcElrZMSILQPHJLq3n+t1B6dLbghXH1OzfE55YxZ0UQFsYGfPVQH57cGEJGURUrHx5AH1cr3t0RxdrTKSjVul7ET93hxbP/ShIXOVoas2bBoHofq1ZpWH4siZ//SaC0Ws04f0em9Hfl20PxFFQo68Xx/q4ohnvZMSnAick/nMDC2IBvpve9omT96wNxJORVsGp+0ybjCh2LgZ6CNyb48fDKM/x6IolFI7q3dkhNctWkJMuyVpKkUEmS3GRZTm2poAThZlNptDy+/hyVSg3fTu9b70k8paCCGUtPo5AkvpwWwDMbQ8gtq+HXeQMwM9JnwrfHSC6o4MF+LkwJdGX28tNEZZY0+bGPxObx5rYIkgsqudPXgWfu9KancydkWebzfbHYmOmKHaqUGh5fdx5TQ30+e7A3L/4eRkphJeseGXRFV4iozFJ+OZLI1ECXK/reCcJFo3wcuL2HA98ciGdyX5crrke2RU3ZvusCREqSFARUXPygLMv3NltUgnCTfbArmjPJRXz9UB+8HC917c4ormLG0tOoNFq+md6X538Lo7BCyZoFg0jIK+eNPyOwNjVkw8LBddt9liYGdYnkanLLqnl3RxQ7w7LwsDNj7YJB9c5DnUosJDqrlA8m96w7Z3Qhp4zV8wey5VwGeyNzeH287xXbjGqNlle2hmFtasCr9zTe7FUQAF4f78vYL4/w2d4L/N+DvVs7nGtqSlJ6p9mjEIRmtOZUCr+e0LUIurx6Lre0mplLT1FareKraX14ZWs4pVUqVj4cyLaQDFafTGGIhy3fzuiLnbnuL8y8shryymrwdmx4HAXozhdtPJPGR3uiqVFr+d+d3iwZ5VGvFZFSreXNbRE4W5kwua8zG8+ksTk4nSdv90Sjlfns7wtMDHBqcBz7iuNJhKaX8M30vlctKRcEAA97c+YN7cayY0nMGtyVXi6dWjukq2o0KUmSZAwsATzRFTksl2VZ3VKBCcLNcDAmh7e3R3JHDwdeu2yEREF5DTOXnSa3rIZPpwTwxp8RlNeo+WlWfz7fF8upxEIWDnfn5bt965VZh6YVA9DH1arBx0vIK+eVreG68QEetnwwuWeDnRq+PRhHXG45Kx4O5EJ2GW9ti2S4lx3je3Vhyk8n8e1syScP9L6ilDchr5zP/47lTl9HJvYWrYSEpnnyDi+2nsvgnR2R/LZkSJsuEb/aSmkVoAKOAncDfsDTLRGUINwMoWnFPL7uPL5dLPhmet+65FJcqWTW8iDSiir5+P7efLAzikqVhs+mBPD6nxGkF1XxxdQA7u/ncsV9RmeVAuDbpX75dbVKwy9HEvnuUDzG+go+eaA3UwJdGvzlD08v4YfDCdzfz5mezp2499vjOHYy4p17/Xl45RmMDPRYOjfwinJ1tUbLc5tDMTHU48PJPdv0E4vQtlgaG/DCOB9e3hrOjrAs7g1o+jiVlna1pOQny3IvAEmSlgNBLROSIPx3CXnlzPv1DLbmhqx4eEBdG//SahVzVgSRkFvO+/f15OM9MSg1Wt4c78fLW8ORZZm1jwxqtJFqTlk1NmaGdfcnyzJ7I3P4aE80KQWVjO/dhbcm+jU6rqJKqeHpTeexNzfi5bt7sGTNWUqqVGxcNIiXfw8nu7SaDQsH42xlcsXX/nwkkZC0Yr6Z3hcHS9FKSLg+UwJdWXMqhY92RzPG1/GKP3raiqsVrqsuviG27YT2JKukijnLg5CANQsuVa6V16iZt/IMUZmlvDnRj8/3XUCp0fL0nV68+mc4Fsb6bH1s6FU7e2u0Miq1lrTCSnaFZfHgTydZsvasrlnqgkF8P6NfowlJlmXe3BZBYl4Fn03pzcd7YjiXWsxnU3qz6kQKQcmFfDYlgP5dra/42sjMEr7aH8v4Xl3a9F+5Qtulp5B4a6I/WSXVLD2a2NrhNOpqK6UASZJKgYt7BCaXvS/LsiyOjwttTkF5DbOWnaa0SsWGRYPrDq1WKTUs+PUMIWnFvD7el28PxqHWyMwf6s67O6Lw62LJynkD6goaGjO5rwsbgtIY/skhAFysTXjvvp5MH+Da6OiLizYEpfHbWV0xQ0RmKVvPZfD0HV5cyCln6/kMnhvj3WDCqVZpeGZjCNamhrx/n+gALty4ge42jPN35Od/Epg+0K1Nlog3mpRkWW6baztBaERJpYrZy4PIKK5i1byB9HTWVRlVqzQsWhNMUHIhr9zdgx8PJ6DRytzfz4XP/r7AUE9bvnmoL/uicvgrMhs9SeLB/i4NziQa6G7DN9P7Ulqlwt3OjMEetnXXqjKKq9gekklEZgmLR3jQ28Wq7uvOphTy1vYIRnjb49vZgsfWn2dC7y64Wpvw/JYwpga68MTtng1+Xx/ujiYut5xV8wdi3YRSdEG4mpfu6sH+6CN8fSCW9+/r1drhXOF6OjoIQptVVq1i7sog4nPLWTo3kEG1Z3tq1BoeW3eOo3H5vDDOm2VHk1BrtNzVqwtLj+omx04f6Fo726gKDzszUgorOZVYwB2+jg22Zvn3aqaiRs0Ph+NZeiQJpUaLmaEeh2JyOf3qHVgYG5BVUsWStedwsjJh8XAPHlkdTF83Kx7s78LC1cEM9bTlg8m9Gixc2BeVU9cWSRySFW4GD3tzZgx0Y31QKg/f5o6nw5XVoa3pqvsNsixrgdDaabOC0CZV1F4risgo4bsZfeuevFUaLU+uP8/BmFz+N8aLVSdS0Gi1DPe2Z/3pVKb0d8HTwZzZK4LQ15NYPX8gB54byUt3+VCh1KDUaK/6uLIssy0kg9s/P8z3hxIY37sLR18cTb+u1libGmJqqE+VUsPC1cFUKTW8N6knT286j625Ia/e3YOnNpynm60ZP8zsj0EDW3+ZxVW8sCUUfydLXrzLp4EIBOHGPH2nFyYGeny6N6a1Q7mC6OggtGuVSjXzfj3D+bRivp3el7H+uk7eao2WZzaF8HdUDk+O7s7606moNVr6d7NhW0gmswe7kZhfwW9n07m/rzPv3dezrqKuvEaDJIHhVa4RFZTX8NofEfwVmU1vl078MLMf/bvacOhCLkfj8nl+rDcS8OzmECIzS/lmWl/e2RGJUq3l+xn9eGZTKIb6eqx4eACdTAyuuH+1RsvTG8+jUmv5dnrfegdvBeG/sjM3YsEwd74+EEdMdmmb6jAvOjoI7ValUs38X88QnFzIVw/15Z7aa0AarcyLW8LYFZbFkpEe/HY2A5VaS09nK/ZF5TBzkBuHL+SRU1bDx/f3YtoA13pbZwm55XS1MW20q/JfEdm8+kc45dVqXrm7B48M90BPIVFUoeTl38PwdjTnkeEefPb3BfZEZPPSXT6sOZ1CWmEVv8zpz3u7oiiqVLJp0RBcbUwbfIzP/o6ta4vU0OFbQfiv5g3txrKjiXx/KIFvp/dt7XDqXDMpybL8T0sEIgjXQ1dNF0xQUiFfTO1Td51Hq5V5dWu4bqrssG5sC8mkWqXGp4slR+LyeLCfM3+cz8DS2ICNiwbTz+3K8uvo7NJ6/fEuKqpQ8vaOSLaFZNLT2ZIvpvapazckyzIvbAmjqELF8rkD2BaSwQ+HE5g+wJXw9JLaOANYfiyJ6Kwyls0JbLTdy4HoHH6qrY661lBBQbhRVqaGzBrSlaVHEnlujHeDE5hbwzUHbEiSVCZJUmntS7UkSZra0nBBaBVVSg3zfz3D6aQCPp8awH19dU/cuqamkWwKTuPhIV3ZE5FDpVJNdwcLTicWMr5XZ34/n0F3e3M+fqAXeyOzORCdU+++NVqZ5PwKvB0vrU5kWeaviCzGfHmEXWFZPHOnF388NrRe/7uVx5PZH53DS3f3oKBCyat/RDDcyw4DPQW7I7J55e4eHI3L52hcPh/d34vRPeoP67sorbCS/20Kwd/Jkrcm+jXDv54gXLJgqDsKSWLNqZTWDqVOU1ZK9f5klCTpPmBgcwUkCFdTqVSz4NfguoQ0ua+uFZAsy7y/K5o1p1KYMdCN/TG5lFXryrbPphQxytueXeHZDPeyQ18h8fDKMwD8/E8iD9/Wjbfv9Qd0VXxaGWzMdOc3UgoqeGt7JIcv5OHvZMnq+QPxc6q//342pYgPd0dzp68jg91tmPbLKbwczOnf1Zqv9sexYJg7BeU1/HE+g+fHejM10LXB761apeHx9eeQgR9n9hczkoRm52BpzF09O/NbcBrPj/VpE10ernsUoSzLfwK33/xQBOHqLk9IX0ztUy8hfbL3AsuPJTGlvwvH4vMprlTiZmNKWHoJA7pZczg2j2GetpxPLeZkYgEv3uXDuTfGMNDdhv2XrZaMDfQw0lfw5/kMFq0OZvRnhzmTVMjr43358/GhVySkjOIqFq8JxsnKhOfGeTN/1RksjPV5sL8LX+2PY2KAE50tjfjlaBKzBrvx+OiGzyIBvLczirD0Ej6fEoCbbcPXmgThZpszpBul1Wp2hGa2dihAE1ZKkiTdf9m7CiAQkJstIkFowMWihqCkQr6c1qfetZZvDsTz4+EE7uvjzJnkQgrKa+hqa0ZkZik9nTtxJrmIns6WHIsvoK+bFV9N60NXW93+uVYr49TpUp85YwM95t7WjR2hmeSX1/DIcA8WDHPHsYFec2XVKhb8eoYalZZfZgfw1PrzVCo1vDjOh7d3RDHU05ZR3nY891sY9/TqzDv3Nt5E9c/zGaw7ncrikR51FYSC0BIGdLPGw96M38+lM3VAw6v4ltSU6ruJl72tBpKBSc0SjSA04GoJ6ed/EviytidcREYJOaXVdLM1Iya7FC9Hc8IzSnC2MiEio5QlI7vz3FjvujNB1SoNYRklzBnctd7jvXqP7zWH56k0Wh5bd4743HJ+nt2fD3fHkFJQyesTfPlgdzS+XSyYPbgbT6w/x2APG76Y2qfeCIzLxeaU8crWcAZ2s+GFseI8ktCyJEnivj7OfLEvloziqgabAbekplxTmtcSgQhCQy5PSF9MrZ+QVp1I5qM9MYz1cyQ+r5y0ogq62ZpzIacMNxtT4nLKsTY1oLBCyY8z+13RNuh0UiFKtZbbPG3//bBXJcsyr/0RztG4fD6c3JMNQWmcTS3i9fG+fLEvFkdLY54f68Nj687h5WjBL3MCG70+VKlU89i6c5gZ6fHdjL7X7J8nCM1hUh8nvtgXy47QTJaM7N6qsTSl+s5FkqQ/JEnKlSQpR5Kk3yVJunLQjCDcZP8u+75YZQew6Uwqb22PZJSPPelFVSTlleNuZ05cbhnOViakF1VhYqiHvp6CzYuHNNjH7q+IbEwN9bitu90Vn7uarw/E1U2JDc8oZX90Dv+705sVx5LRVyj44L6ePLs5FFtzQ1bNG4Cl8ZWHYy96/c8IEvLK+fohMY5CaD1dbc3wd7K8ohq1NTTlz7KVwHbACXAGdtR+TBCaTZVSw4JVZzhVW9RweULaFpLBy1vDGeppS1GFkticUtztzYnNKcPR0piskmoAunQyZs38gcRkl5JeVFnv/mvUGnaFZTLWz/G6qtw2BqXy1f44Huyv+7tsQ1AqjwxzZ2dYJiVVKr6cGsDLW8ORgNXzB1010Ww9l87Wcxk8dbsXQz2vLzEKws022seBc6nFlFSqrn3jZtSUpGQvy/JKWZbVtS+/AqIzpNBsLnb1PplYwOdTAuolpL2R2Ty7OZTArtbUqLWEZ5TQ3d6C2Owy7C2MyC+vQSPL9HS2ZMYgN2YuO80LW8KYvTwI9WW97I7F5VNarb6uw6kHonN47c8IRnrb08u5E98ejOeBfs6cTy0iOb+Srx7qw4d7YiisULJy3oC6sRkNSS2o5I0/IxjobsOTjXQHF4SWNMrHHo1W5mh8XqvG0ZSklC9J0ixJkvRqX2YBBc0dmNAx1ag1LFl7lmPx+fzfA73rjSQ/fCGXJ9afw9/JEn09BWeTi/B2tOBCThl2FkYUVShRaWQGudtgYqDPezuj6e5gzpKR3UnKr2BXeFbdfe2JyMbCSL/JK5RzqUU8vv4cfl0smdzXibd3RHJ7DwdKqlScSyvmkym9WX40ibicMn6a1b/e2Ip/02hlnt0cgkIh8eW0PuI6ktAm9HG1wtJYn8MX2n5Smg9MBbJrXx6s/Zgg3FRKtZbH1p7j8IU8Pprcq94h01OJBSxZexZPe3OsTA04mVCAT2cLYrLLsDUzoLhSiVIjM7CbDTHZZYRnlPD+fT3ZtGgw9/XVtSCqUelWStUqDXsjshnj3/Boin+Lzy1nwa9ncLQ05onbPXnx93D6ulrhaGHE/uhc3hzvx4HoXE4mFvDJg70ZcY0REyuPJxGcUsTbE/1bvdJJEC7S11Mwwtuef2Lz0Gpb79RPU6rvUgHREVxoViqNlqc2nOdATC7v3deThwZempYSmlbMgl/P4GxlgrO1Cfujc/HtYkF0Vhk2pgaUVqtRaWT6uVkRnFKIt6MFP87qX7d9tjdCd/F2pI8uWRyKyaWsRs3kvtfeussprWbuiiD0FAremujH0xtDcLU2YainHd8ejGfxCA9yy2vYEZrJS3f1qLeya0haYSWf/X2BO30duL+f6GsntC2jfBzYGZZFVFZp3ZDMltaU6jsPSZJ2SJKUV1uBt02SJI+mPkDtlt95SZJ21r5vI0nSPkmS4mpfX9kRU+hQdNtZofwVmc2bE/yYfdm5oZjsUuasCMLazACfzpbsj87Fr4sl0VllWJsaUFabkPy7WHIutZjbezjy+6O31SUkjVZmc3Aawzzt6g7A7o/OxcrUgCEeVy8FL6lUMXdFEMWVSv7vgV68sjUcU0M9Zg3qyrcH47k3wAl3OzN+PJzAjEFuLBl59V8LWZZ5c1sEepLE+/c1PNRPEFrTxVlkhy/ktloMTdm+Ww9sRjdXyQn4DdhwHY/xNBB92fsvAwdkWfYCDtS+L3RQWq3MS7+HsSM0k5fv7sH8Ye51n0vOr2DWsiCM9RUM6GbL7vAsfLtYEpVVirWJvi4haWU87MyIzCrl4du68fPs/nVzkQD2RGSRUVzFzEGXVl4XckoJcLG66rWcapWGhWuCScgr5/OpAXy0J4ZKpYb/3enNh3uiGexhwwP9nXn9T13j1Xfu9b9mkvknNo9DF/L43xhvOncS5d9C22NvYUQv504casXrSk1JSpIsy2suq75bSxPbDNWeZxoPLLvsw5OAVbVvrwLuu454hVuILMu8uT2CLWfTeeZOr3qH9jKLq5i57DQarZZRPRz443xG7ZZdKdamBpTWaFBrZVytTUjMr+C1e3x5a6Jfva4JWq3M94cS8LA3q9e6J79Mia2ZYaNxabQyT288T1BSIR/d34tlR5NILajkzQl+fLA7Gnc7M16925enNoTgbmfG9zP7NTg59nJarczHe2LoamvKnCHdbvwfTRCa2Sgfe86nFlFcqWyVx29KUjokSdLLkiR1kySpqyRJLwK7arfhbK7xtV8BLwKXz5V2lGU5C6D2dYM9/CVJWiRJUrAkScF5ea1bDSLcfLIs88GuaNae0vV7e/oOr7rP5ZfXMGv5aUqrVEzo7cSmM2n06Ky7hmRlok9plRqNVsbBwojMkmo+mxLAwhEeV6xU9kZmE51VypO3e9ZLVt0dzDiekM/nf18gp7T6irje2h7B3sgcXh/vy/6oXM6mFvH2vX58uS8WEwM9vnmoL89sCkFPIbF87tUPx160KzyLmOwynh3j3aTiCqFja83nv1E+DmhlOBKX36KPe1FTfjumAYuBQ8Bh4FF01XdngeDGvkiSpAlArizLZ28kMFmWf5FlOVCW5UB7e3Es6lbz5f44lh1LYu6Qrrx8V4+6hFJarWLO8iAyi6t4oL8La06l4OOoq7KzMtGntFqNRpaxMTOkuErFz7P608/Niryymnr3r9Zo+ezvC3g6mHNvQP2CgukD3dBoZb49GM+B6Pp7598fimftqVQWjfAgrbCSvyKzeWlcD9YHpVJcpWLpnP68vyuatKJKfprVv0ndvGVZ5ofDCXg6mDOht9N//JcTOoLWfP7r42qFlakBh2Ja57pSU6rv3K91m0YMBe6VJOkewBiwlCRpLZAjSVIXWZazJEnqArTeFTWhVfz0TwLfHIhjaqALb028dC1G11boDLE5Zcy9rSvLjyXj5aDrZXcxIWllsDIxoEal4YspAewIy2RbSCaSBK/c3YNFI3RbgFvPZZCQV8FPs/pf0Qh1Qm8njscX8PvZdMb5O9Z9/LfgND77O5bJfZ2xNTPgoz2JLBjmzpnkQqIyS1k+dwB/nM/kWHw+nzzYm4Hu19oo0DmZUEB0VimfPNC70aasgtBW6Ckkbvdx4EBMLiqN9ppb0zdbkx5NkqSekiRNlSRpzsWXa32NLMuvyLLsIstyN+Ah4KAsy7PQtSyaW3uzucC2G4xdaIdWn0zm4z0xTAxw4qP7e6OofZJWqrU8uu4swSlFzL2tKyuPJ9Pd3oy43HKsTPQpqU1IFsb6aGWZR4Z78Mof4fwVkc3Dt3VDliG7RLdaKqtW8cneC/R1s6qXdC6KzCxh05lUpg90xdZcN8zv0IVcXt4aznAvO0Z62/HRnguM790FtUbLgZhc3rnXn+zSan49kcyCYe6NDupr+HtOwdrUgHv7iFWS0D6M8XOkpErFmeTCFn/sppSEvwV8W/syGviE/3Zu6WNgjCRJccCY2veFDuC34DTe3BbJGD9HvpgaULdquNjh4PCFPOYO6cbqkym42ZiSkFdBJxN9SqrUyDKYGemhkHTnjb4+EIePowV//29E3Xkj/9oBfL8cSSS/vIa3J15ZEVepVPPc5lCsTQ15tnZMRGhaMY+vO0ePzhYsHO7Bi7+HM6CbNX1drVh1MoUFw9zp0cWSN7fpKu1eubtHk7/n/PIa9kfn8GB/FzFJVmg3RnjbY6ivYH9Uy29kNWWl9CBwB5BdO8YiADC6ngeRZfmwLMsTat8ukGX5DlmWvWpft3wqFlrczrBMXvo9jOFednw3o2/dlsDFszs7w7KYNciNjWdScbQwJqWg8lJCAkwN9TDSU9CjiyU7QrOYP9SdTYuH0NXWjM3BaRjpKxjj70hOaTXLjiYxMcCJAFerejHIssxLv4cTm1PGl9P60MnEgJSCCub/egZbc0PeneTPUxvP42JlwpzB3fhwdzRj/ByZP9SdR9eexcXalO+m97uutkA7QjNRa2Ue7N/6w9MEoanMjPQZ2t2Wv6OykeWW7e7QlN+ualmWtYBakiRLdNeAmnx4VhAOROfwzMYQArva8MvsQIz0L60YPvv7AutOp/JAPxe2hWRiZWJAVkkVFsa6hARgYqCHsYECe0tjziQV8u4kf96sLf/OLqnmt7PpTOrjhKWxAR/ujkYjyw0Oy/v1RDI7QjN5fpwPI7ztyS+vYc6KILSyzDcP9eW5zaEoJInXxvvy8tYwfLtY8tmU3jy9UTdRdumc/nQyvXal3eX+OJ+Bv5MlPp0t/ts/oiC0sPG9nUgvquJsSlGLPm6jSUmSpO8kSRoKBEmSZAUsRVdxdw4IapnwhPbuRHw+j647h5+TJcsfDsTE8FJCWnokke8PJXBPr84cupCLkYGCwgolpkZ6lFbrEpKxgQJjAwVmhvok5+sKFy4/5/PtwTi0Wpknb/fibEoR20IyWTLC44qquJC0Yj7cHc2dvo48OrI7VUoNj6wKJqe0mh9n9efD3dG15eW9eXNbJObG+iyfO4Cf/kkkOKWIj+7vhafD9SWWhLxywtJLmtTOSBDamrt7dsbUUI/fz6W36ONerfouDvgMXReHcnRdHMYAlrIsh7VAbEI7F5xcyIJVwbjbmrFq3kAsLjvPszk4jQ92RzPax55zKcVotDJVag1GBnqUXZaQTAz0UEgSJVUq1iwYVK/iLbWgkk1n0nhooCvOViY8ueE8DhZGLP7X5MyyahVPbjiHg4Uxn08JQCvDUxvPE5pezE8z+7EhKJUzyUV8Na0PPx5OIL+8ht+WDCEhr5yf/kngoQGu1zXi4qJdYVlIEqIMXGiXzIz0ubtnF3aGZvHGBD9MDa9ZrH1TNLpSkmX5a1mWhwAjgEJ0g/32APdJkuTV2NcJAkBERgnzVp7RDdp7ZCDWl3VQ+Csim5d/D2OQuw0JeRWU16jRaLXoKaS6hGSkr8BIX4FaKyNJEpuXDLmiBPvjv6Ix0FPw5O1e/BmSQUhaMS+M86nXZgjg7e1RZBRV8fVDfehkasAHu6LZF5XDWxP8iMoqY1tIJi+M8+Z0UgFnkov45MHeuFib8r9NIXjYmfHmRL/r/v5lWWZ7aCYDutqIlkJCuzVjkCtlNWq2nG251dI1rynJspwiy/L/ybLcF5gBTAZimj0yod2KzSlj9vLTWJoYsPaRQThYXHpSPhaXz1MbzuPvZElhhZLcsmoM9CS0MpTXaID6CamTiQG/PzqEHp0t6z1GUFIhu8OzWTKyO5bGBny29wK9XTrxwL+6dO8My+T3c+k8cbsXgd1sWH0ymRXHk3j4tm5YmRry9QHdFFlzI302BKXx2Kju3BvgxMu/h1FcqeKb6X1v6C/EqKxS4nPLmSjKwIV2rJ+bNX3drFh2NAlNC42zaEpJuIEkSRMlSVqHbqUUCzzQ7JEJ7VJyfgUzl53GQE/BukcG4XTZvKCzKUUsXB1MN1tTJCSS8yuwMDagSqWhUnkpIRnqK6hRa3G0NGZzbYXd5TRamXd2RNKlkzGLRnjw4+F4Mkuqee0e37pzTwApBRW88ns4fd2sePJ2T/6JzeOdHVHc6evA3T078+IW3WptUoAT7+6M5o4eDjw31oeNZ9L4OyqHF+/ywd/pxtr3/xacjqGeggm9utzQ1wtCWyBJEouGe5BaWMlfEdkt8phXK3QYI0nSCiAdWATsBrrLsjxNluU/WyQ6oV3JqGuiKrP2kUF0u2wceGRmCQ+vDMLBwpBOpgZEZJZgZ2FESaWS6trhe0b6CvQVEtUqDd1szdi8eEi9pHbRb8FpRGaW8vLdPSitVvHzkUQmBjgx6LJRFEq1bj6TJMG30/uSUlDBE+vO4e1owQtjfXh03TmcrIx5Y4IfT208TzdbU756qA+lVSo+3B3Nbd1tmT/0xpqZKNVatodmMsbPsd62pSC0R2P9O+PpYM5nf19ApdFe+wv+o6utlF4FTgK+sixPlGV5nSzLFc0ekdAu5ZZWM3PpKUqrVayePxBvx0uVaol55cxdEYSZoR5utmacSS7CycqEvLIalBrdloCRvgI9hUSNWotPZws2LhqMnfmVx+FKqlR8uvcCgV2tuTfAiW8PxqHRyrw4rn4J+Bf7YglNL+GTB3tjbqTPglXBGBko+HpaAE9uPI9ao+WHmf14/rdQ1FqZZXMHYGFswI//JFBRo+atif71Vl3X49CFXAorlGKIn3BL0FNIvHxXD5LyK9gYlNrsj9foZrksy6Ob/dGFW0JRhZLZy4PILathzYKB9SZWphdVMmvZabRamd5drfk7MoeuNqakFVVycYvaUF+BJEGNWktPJ0uWzx3Ab2fTKKtWM9zLvl6Bw5f7YimqVLLq3oFcyClj/elUZg3uiqvNpRLwU4kF/HwkgekDXbnT15GHV54hq7iadQsH8fFfF0jMq2DV/AF8fyiB2JwyVs4biLudGbll1aw+mcx9fZ3/07mitadS6GxpfM2x6ILQXtzh68Agdxu+2h/HvQHO131e73qIHvrCf1JarWLOiiCSCipYNieQ/l0vJZC8shpmLw+itFrFMC87/o7MoZutKSmFlVw8JG5Y2x1BpZHp7dKJ18b7MmPZKT7cHcO3B+OZ+vNJcmvHS8Rkl7LmVAozBrnR07kTn/51AQtjA/53p3fdY5bXqHn+t1DcbEx5fbxu/tGx+Hzev68neyOyORiTy9v3+nM+tZhd4Vm8dFePummb20MyqVZpeWK05w3/e8TnlnM0Lp+Zg9xavJGlIDQXSZJ4Y4IfxVUq3tsV1ayPJX5rhBtWqVSz4NczRGeV8tOsftzmaVf3uZJKFbOXnyantJp7enVhe2gW7nZmJBdUole7K2ZQ+4Zao6WPSycm9nZi1vIgSqvUrHg4kABXK7wczLG3MNLNOdoWiYWxPs+N8SEsvZgDMbksHO5e77rN+zujyCyu4oupAewKz2Ll8eS6a0PLjumq7pysjPl8Xyz39XFi0YhLzUmKaoeaXX7A93qtPZWCgZ7EjMsm3QrCraCncyeWjPRgy9l0DjXjuHSRlIQbUqPWsHjNWc6mFPHVQ324vcelbtzlNWrmrgwiMa+C+/u6sDk4HXc7M5LyK9BX6Mq/9fUkZBnUWi19XK1wtzfn3Z1RDHK3YddTw7A3NyY0rZgZg9yQJIkdYVmcTirk+bE+WJka8PGeGKxNDZh7W7e6x/0rIouNZ9JqD89KvP5HBMM87Rjr78hrf+o6gM+9rSvPbAzBr4slHz/Qu17DVr8uum3HIR8dZNJ3x/hs7wUKK5o+fbOkSsVvwWmM79Wlrvu4INxKnrrDCy8Hc17dGn5dvxvXQyQl4bqpNbrKtqNx+Xz8QO96HQuqVRoWrQ4mPKOEGYNcWXs6BXdbXUIy0JPQaOXaxCSjlWX6uFphpK/HlrPpPDaqO6vmDcTW3IgVx5MwMdDjgf4uVNSo+Wh3NP5Olkwf6MaJhAJOJBTw1B1edV0iskqqeOn3cAJcOjFzoBtL1p6li5Uxr4335fF153CxNuWzKQE8tSEEgJ9m9b+ia/f43l048NxInhvjjYGegh8OxzOz9npYU6w5mUyFUlM300kQbjVG+np8MbUPBRVKHl17tlmq8URSEq6LVivz4pYw9kbm8PZEv3pzhVQaLU+sP8eJhALmDOnK6pMpdLM1JamgAkN9CbVGRk8hoZFlZBl6OXeiRq0lKLmQTx/szYt39UChkIjKLOXPkAzmDOmKpbEBXx+II6ukmncn9UQhwVf7Y+lsacz0gW51MT23ORSVRsv/Pdibxzecp7JGzTfTdU1WlRotS+cE8tX+OMIzSvh8ap96hRGX625vzpN3eLHl0dv45MEAorNK+Tvq2uczqlUaVhxPZrSPPX5Olte8vSC0V71cOvF/D/TidFIh7+yIvOn3L5KS0GSyLPP2jki2ns/guTHePHzZOR6NVub530LZH53Lw7d1Zd2pVJysTEguqMRIX4FKLaNQSHWnwn27WFJarSYut5xfZvdnymXJ7ZO9MVgY6fPYKE8S8spZcSyJqYEu9O9qzeHYPM4kF/HY6O51K52VJ5I5kVDA6+N9WXksmdC0Yj59MICfDicQk13KN9P7EppWzIagVB4d1Z0xflcO/mvIfX2cMNRXcCb52l2SNwSlUlihZMlIsUoSbn2T+7qweKQHa0+lsvZUyk29b5GUhCb7/O9YVp9MYdEID564/VKF2sWZSNtCMpk12I3NwenYmBmSXlSFiYGuO4NC0iUuhULCu7MFxZUq8spqWD1/IHf4XkoSJ+LzOXwhj8dGe2Jpos+7O6IwMdDjhXE90GplPtt7ATcbUx4aoFslxeaU8X9/xXCnrwNaWWZTcBpPjPYkNreMPRHZvHK3L106GfPan+EM9rDhuTHeV3xfjVFpZJRqLdbXKH+tVmn46Z8EBrnb1DvAKwi3shfH9WC0jz1vb4/kVGLBTbtfkZSEJvnlSALfHYpn+kBXXrm7R12BgCzLfLwnhnWnU5k2wJWdYVmYGuqRW1qNqYGCKlVtQpJ1h/A87EwpLFdSXqNm3SODGPyvLgxvbo/E1caEh2/rxt7IHP6JzeOZMd7YWxjxV2Q2kZmlPHWHF4b6CqpVGp7acB4LI31mDHLjnR1RjPS2x6+LBV/tj+P+fs5MHeDCkjVnsTQ24Jvpfa9rQF9Q7Sjoy89dNWTtqRRySmv433UkPEFo7/QUEl9P70tXW1MeXXuWtMLKm3K/IikJ17T5TBof7o5hfO8uvH9fr3oVaz8cTuDnI4nc18eJQzG5IENxpRJjAwWVKi0S6KrtFBJuNiYUVarQaGU2LR58xWTYFceTiM8t560J/mhlmfd2RuHjaMHcIV1RabR8tvcCng7mdfOJPt4TQ0x2Ga+P9+OVreF07mTM46O78/yWMAJcrfjwvp68+kcEaUVVfD+zX73GsE2xJzwLEwO9eonz3ypq1Pz0TyJDPGyvejtBuBVZGhuwbO4ANFqZhauDqahR/+f7FElJuKq/IrJ4eWsYI7zt+XJqH/Qua72z6kQyn+69wF3+jpxPLaaiRk2lUo2hni4hAcjoziM5WRlTUqVGIUlsWjz4iq7fGcVVfHMgjjt9HbjTz5FvDsSTUVzF+5N7oq+nYGNQKon5Fbx8Vw/0FBIHonP49UQyc2/ryoYzqbr2Qw8E8OzmUCyM9flldn+2h2axKyyL58Z6M6Bb/bEX11JarWJ7aCYTA7pcUaV3uRXHksgvr+GFu66cdCsIHYG7nRnfz+xHbE4Zz24OaXK1amNEUhIadTw+n6c2hNDH1YqfZvXDUP/Sj8vWc+m8tT2SUT72JOZXkFNajYyuuu5iQgJdxwZ7cyNKq9ToKyQ2LBp8xQRXWZZ5488IZBnevtef+Nxylh1N5MH+LgzoZkNJlYov98cx0N2GO3wdyC6p5vnfQvHrYolWqxtj8f59PfnqQCy5ZTX8PDuQGpWWd3ZEMsTDliU3UKK96ngylUpNvSm3/1ZUoeTnI4mM9XOkn5v1dT+GINwqhnvZ89p4P/ZG5vD1gbj/dF8iKQkNCk0rZtHqYNztzFjx8IB6M4X+jszmhS1hDPawoahCSVJeBYb6CrRaqLosIRnpK+hkqk+VSoOhvoKNiwbT3d78isfaEZbFwZhcnhvrjbOVCW/8GYGJoR4v390DuNTv7s0JfmhleHZzCNUqLfcGdGHNqRQWDHMnPL2EU4mF/N8Dvejl3InnfwtFIUl8NjXguhurFlUoWXo0kTt9Ha56Pem7Q/FUKNU8P06skgRh/tBuTOnvwtcH4tgdnnXD9yOSknCF+NwyHl4ZhI25IasXDMTK9FIbn2Nx+Tyx/nzdWZzwjBIsjPWpVmmoVl9KSMb6CkyN9FBrZPT1FGxYNBiPBhJSXlkNb22LIMDVinlD3dl0Jo2TiQW8eo8vduZGRGWWsvpkMjNr+939eDieEwkFLBzhzpf74xjsYYOXgzmrTqbwyDB3Jvd14ecjCQQlF/L2vf44NzD64lq+PhBHeY2aF8b1uMq/UTmrTiTz0ADXeh3RBaGjkiSJ9yf3pJ+bFc9tDiUys+SG7kckJaGejOIqZi8PQk+hYO2CQThaXioOOJ9axKI1wbjbmWJrZsipxELsLYwor9HUjaAAMDZQYKCnQE+SUEgSGxYOanCFJMsyr2wNp0Kp4fMpvSkor+GD3dEMdLfhoQGuaLQyr/4RjpWpIc+P9eFUYgFf7ItlnJ8jW4LTsTUz5NFRnry5LZLbutvy8t09iMgo4ct9sdzTq/MNjY6IyChh9clkZgxyu2qn8E/+isHEQI/nx4pVkiBcZKSvx0+z+2NlasCja89RWq267vsQSUmoU1ihZPby05TXqFmzYGC9ia8Xsst4eOUZbM0M6e5gzuELeThbmVBQrkR5WasRk9qiAFMjPdS1w/7+fQ3pos3BaeyPzuHFcT50tzfnjW0R1Ki1fHy/rsJv9clkQtKKeWOCL8ra1kZdbc0oqlSRX6Hkowd68dKWMBwsjfh+Rj8UksQLW8KwNjXkg39VCTaFUq3lpd/DsDEz4oWxja+SgpIK+Tsqh0UjPESPO0H4FwcLY76b0Y+M4ipe2RqOLF9f4YNISgKgK22e9+sZMoqqWDYnEN8ul6rjUgoqmLX8NEb6EoM8bNkdno2rtQmZJVWoayttJMDEQIFao8XGzJCKGg2r5g2sdz+XS8wr5+3tUQz11E143RGWxd7IHJ4d442HvTmJeeX8318xjPaxZ0KvLjy14Tyl1Sp6u3QiKLmQ9yb58/X+OEqqVPwyOxBrM0N2hmcRnVXKa+N9b2ji63eH4onMLOX9+/wbnRej0mh5/c9wnK1MWDD8xibTCsKtrn9Xa54f68OusCzWX+dgQJGUBJRqLY+uO0dERgnfzehXrytBbmk1s5afRq3RMs6/C1vOptPV1pS0oipdvTe6HyIjAwU1Ki1Otaun5XMDrziHdFG1SsMT689jZKDg8yl9yCmr5o0/ddeVFg73QKXR8r9NIRjp6/HxA7359O9YTiUWMrmvM9tCMpl3WzfOphRxLrWYz6YE4OdkSY1aw2d7L9CjswUTL2sQ21Rnkgv57mAc9/d15q6eXRq93aoTycTmlPPWRL96xR+CINS3eIQHI7zteW9n1HUdrBVJqYPTamVe+j2MI7F5fDi5Z72+cMWVuomyBeVKHujvwppTugarKZfNRFJIYKCvoFqlxd3ejIziKn6c1e+q7Xbe2xlFVFYpX0wNwN7CiGc36ZqpfjVNdw7q6/1xhKaX8NH9vTibUsQvRxK5q2dnfj+XwW3dbXGyMmFzcDpP3e7J+N66BLL5TBqphZW8eo8vCoVEeY2avyKyOBKbd81zE4UVSp7acB5XG1PemeTf6O1ySqv5an8co3zsm9w/TxA6KoVC4uP7e6GQJN7b2fTBgOJPvQ7u//6K4Y/aBqvTBlwaTFepVDP/1zMk5VewYJg7P/6TgLutKUkFlRjo6Tp+KyTdD16NWouPowUXcsr4alr92Ur/9ltwGutOp7J4pAe393Dky32xnEws4JMHe+NuZ8bx+Hy+PxzPlP4ueDqYc9/3x+npZMnZ5EIcLY2YMciNpzacZ6yfI89cNnE2NqccgNyyGhatDubwhby6a10edmZsWjwEe4srr/9otDJPbThPQYWS35fcVjcKoyFvb49EpdHy1kT/675eJQgdkZOVCY+O7M7n+2IJSy+mt4vVNb9GrJQ6sJXHk/j5SCKzB3et12BVqdayZO05QtKKWTjcnV+OJtaOoKjE2EChS0gKCSQJlUbGt4suIb0+3pf7+jZe8XY+tYjX/ozgtu62vDDWhyOxeXxzMI4H+rkwNdCVnNJqnt4YgoedGc+O8Wbh6mBMDfXRyDIVSg1v1LYT8na04MtpfeqdP7o4evz530IJSStm1uCubFw0mLF+jiTmVzRanvrxHt249Pcm+dPLpfEzSbvDs9gTkc2Tt3vibmfW6O0EQajv4aHdsDTWZ+nRpCbdXqyUOqhdYVm8uzOKcf6OvH3vpb/8tVqZ534L5UhsHktGerDsWBJdOhmTXFCJqaGCKqUWSdLdTgZ8u1gQnVXG4hEePDLco9HHyyiuYuHqszhaGvHdjH5kl1bz9Mbz+Dha8P59PVGqdbOYKmrUrJ4/gBd/DyOruJoB3aw5kVjAl1MD+HB3NIZ6CpbNDcTMqP6P7jNjvBjoboOHvRnd7c3RU0gUVSg5n1ZMT2dLhl02qv2izWfSWHo0iblDutZbJf5bbmk1r/4RTm+XTrVTbQVBaCoLYwMm9XFmc3AaZdWqq+5GgFgpdUhnkgv53+YQ+rlZ8/VDfev62cmyzDs7ItkRmsn8od1YfzoVa1MDMourMDfSo1Kp2w7TyqCQJDwdzInOKmNC7y68dFfjJdSl1SrmrQyiRqVh+dwBGOkreGRVMGqtzA8z+2FsoODNbRGcSS7i4wd6sSEojaNx+Qz3suN4QgHPj/Xht7PpZBZX8/Ps/rhYXzmgz9LYgLt6dsbb0UI3SFAr8/SmEEoqVXx8f+8ruoP/E5vHq3/oRqS/McGv0dgvJulqlYYvp/WpW5EJgtB04/w7U6PWcj61+Jq3Fb9hHUxCXjkLVwfjYmXC0jmB9ZqNfnswnlUnU5gW6MLOsCwM9BQUV6owMdCjvEYD6AruDPUUOFkZk15YST83Kz6b0ngrn4vj0RPzKvhpdn887Mx4asN5YnPK+H5GPzzszVl+LImNZ9J4fHR3CiuUrDmVwigfew7E5DI10IWs4iqOxxfw/uSeBDahsapc22H8SGwe70zyv6JVUEhaMY+uPYuXowU/zOx31XEWy44lcjQun9fG+zV4AFgQhGvr7ar7HYzKKr3mbUVS6kDyy2uYt/IMepLEr/MGYnPZWZ4NQal8sS+W8T07E5RcRGWNGrVWi55CokKpqbudqaEe5kZ6VKu02Job8fPswEa7aKs1Wp7eeJ5TiYV8NiWA27rb8sa2CA7E5PLupJ6M8LZnd3gWH+yO5p5enenp3Il3d0YR2NWaY3F53NbdFm9HC9aeTmXRCI96o9cbI8syX+yL5dcTyTwyzJ2HBtT/Gt0h4CDszI1YNW/AVbcSgpML+b+/LnCXf2dmDWp8e08QhKuzMNLHUE9BUaXymrcVSamDqFZpWLg6mNyyapbNDcTN9tIW2N7IbF77I5xhXnakFVWRWVyJuYkBNWptXUKSAHMjfTRaLfaWxpTXqPllTv8GK9pAV9X27OZQ9kbm8NZEPyb1ceKjPTFsCNJNhp01uCsnEvJ5ZlMIfV2tmDXYjWc2huDtYEFMVinuduZMG+DKh7ujGePneNXtwYu0Wpn3dkbz7cF4pgW68tp433pVcnE5ZcxcdgojfQXrHhmEg2Xj85UyiqtYsvYsLtYmfDKlt6i2E4T/QKOVUWm1GDZh+1skpQ5Aq5V5/rdQzqcW89W0PvS9bMzC6cQCntxwnl7OnZC1MhGZJThZmZJfVkN1bcdvfQWYGelRXqNmQDdbLmSX8dmUAPydGq5WU2u0vPBbKNtDM3nprh48fFs3vtgXyy9HEpkzpCvPjfWu7UJ+lm62prx6jy+Prj2Pg4URRRVKzIz1efGuHrz8ezi9nDvx9UP15zg1pFql4X+bQ1hxPIl5Q7vx0f312wxdyC5j+tJTSJLE+oWDcbW58rrURSVVKhb8eoYalZblcwOxvMaFWUEQri61sBJZpkkNkkX1XQfw1YE4doZl8crdPep1K4jMLOGRVcG4WBnjamPKzrAs/LtYEplVip6kWx0Z6CtQSFBeo2GcvyN7I3NYPNKj7tDqv6k0Wp7dHMqO0EyeH+vNkpEefLL3Aj8eTuChAa68PdGfyMxSZi8/jbWZAR/f35tH153FQE9CkqBKpeHLh/rw4pYw7C2MWDZ3wDU7J+SWVrNozVlC0op5YZwPj43qXi8hhaUXM2dFEIZ6CtYvbHh8xkUXV5QJeeWseHhAo337BEFouuPx+QAMdL/2NWGRlG5xW86m882BOKYFurJoxKWS7ZSCCuauOIOFsT7DvOxZfTKFANdOhKaVYKSvQKXWYqCnQKPVotLCCC87Dl/Iqztj1JAqpYbH15/jYEwur9zdg4XDPXhzWyRrTqUwY5Ab70/qSVhGCXNXBGFhbMDX0/rwzKYQqpQaOteWnX81rQ9vbYsEYNX8gY1uD150IkE3iLCiRs1Ps/pzV8/O9T8fn8+iNWexMjVg3SOD6jWZ/bcatYbFa85yJrmQr6b1YbiXfVP/mQVBaIQsy2wISsPb0bxJZ/xEUrqFnUwo4JWtYQz1tOW9+3rWrR7yy2uYvTwItVbL9IFd+fZgPH1crQhJK8bSWJ/yGjUKhYRSo8VYX0FXezOSCyqxMjXgm+l9G6xWK6xQsnB1MOdSi/hwci/u7+fMkxvPsyssi8UjPHj57h6cTirkkVXBWJsZ8O1DfXl2cygFFTV0szXjQnYZn08J4Kv9sZRUqdiwcPBVf4DLqlV8dyiepUcScbczY/3CQVfMNdoWksHzv4XiYWfOqvkD6dyp8WtI1SoNj649yz+xeXx8fy8m9bn+sReCIFxpX1QOUVmldd3/r0UkpVtUQl45S9aepautGT/M7F83yrysWsXDK4PILavmmTu9+eSvGHo6WRKSVoyViT4l1WqQQS3LWJsaIEkS3o7m7ArPYuOiIdg1MKohKb+C+b+eIbO4ih9qG7rOWnaa4JQiXr2nB4tGdGdnWCbPbgrFzdaUL6YG8MzGELJLq/F0MCc8o4SP7+/F8uNJJBdU8uu8AY12V9BqZbaFZvDBrhjyy2uY0t+Ft+71x/yyw7SyLPPdwXg+3xfLQHcbls4ObLTrN0B5jZqFq4I5lVTAh5N78dBAUWknCDdDeY2ad3dG4e1ozgP9XZr0NSIp3YKKKpQs+PUM+gqJlQ8PoJOJ7glZqdby2LpzRGeV8crdPfh07wXc7cyIyS7F1syQggpduaYEOFgYkV9ewwvjfPi/vy7w6KjuDe4HH4vL5/H159BTSKx7ZBDmxvpM+v4YOaU1fD+jH/f06sz3h+L5dO8FArta8869/jy2/hz55TV4O1oQml7Me5N6sjk4najMUn6Z05/bul/ZfaGiRs3W8xmsPpFMXG45Aa5WDXYir1ZpeHFLGNtDM7m/rzMfPdALI/2GS9ZBN/l2/q9n6hrETu7btF8cQRCuTpZlXv8jnMziKjYtHtLkg+ciKd1ilGoti9eeJbO4mg2LBtVVmWm1Mi9uCeVoXD4v3eXDj4cTsDEzJLesBgtjg7qEZKSvwMJYn9yyGp4f6836oFQ87M145k6veo8jyzLLjibx0Z5oPB3MWT53AJGZpcxZEYS5kT6bFg3G29GCJzecZ2dYFpP6OPHIcHfmrzpDtUqLl4MuIb0z0Z/tIZmEpBXz3fS+9Zq5yrLMmeQidoVlsvV8BmXVano6W/LltAAmBThfcWA3o7iKJWvOEpFZ0mDBw7/F5ZQx79czFJQrWTqn/1UbyQqCcH1+OZLInyGZPDvGmwFNOPR+kUhKtxBZlnlreyRBSboL9f27XvpB+PTvC/wZksnjo7uz6UwaKq0WA1mBLENRpUo3pM9Qt6IoqlQx1s+RSqWGtMIqNi4aXG+1UVKp4oUtofwdlcPdPTvz8QO9WXY0kW8PxhPgasUvs/tTXKni3u+OkZRfwUt39aCPaydmLj2NkYEebjYmhKYX8+6knmwPyeBcban63b0uVfQdvpDLZ39fICKjFEN9BeP8O/PwbV3p52bdYKI5FpfPUxvPo1JrWTo7kDuvMVriQHQOz2wMwchAj02LBzepe7EgCE2z9Vw6H+2JYULvLjwx2vPaX3AZkZRuIatPprAhKJVHR3Wv1617zclkfjycwNRAF47HF5BZXIWbrRmpBZVotFr0JDA20KNCqcHO3BAbM0OeH+fD+G+Ocn8/ZwZfNhvpaFweL20JI7eshtfH+3J/X2ee2nCef2LzmBrowjv3+rM5OJ0Pd0djYWzA2kcGkV1SzdwVZ3CyMsZIX4+orDI+mtyLTcFphKWX8M1DfetKzFMLKnl3ZxT7o3NwszHl/x7oxfjeTvWuGV1Oo9VdP/rqQCye9ub8NLv/VUu+tVqZ7w7F8+X+WPydLPlldiBOTTg7IQhC0/x5XldgNMTD9qotyBojktIt4lRiAe/tjOJOX4d6Jdv7o3J4a3skt/vYU1CuJDStmIDaSjtzQz1qkJAkXSuhHp0tiMstZ/PiQPZF5aDSyDx9h27brrBCyYe7o9lyNp3u9mZsefQ2NFqZCd8eI79cyQeTezLS256Fq89yLD6f0T72fHh/L1YcS2Lp0ST6ullRWK4kuaCCTx/szdKjSSTklvPDzH6M8++MViuz4ngSn/19AT1J4oVxPiwc7lFXoNGQnNJqntkYwsnEAib3deb9+3pe0T38ciVVKp7dFMKBmFwm93Xmw8m96laHgiD8d8uPJfH+rigGu9uy/OHGW5BdjUhKt4DM4ioeW3eOrramfHHZnKHw9BKe3HAefydLOncyZn1QGsM87TgWn4+DuSGFlSrUWhk9BfR0siQis5Rnx3jTv6s1v55IxqmTMeZG+nx7II6lRxOpVGp4dFR3nhztycoTyXyxLxYnK2O2PDqEyMxS7vrqKFpZ5sPJvRjlY8dTG85zJrmIu3t2JiipAI0MX0wN4NO9F8gurWbp3EBGetuTV1bDs5tDOBqXz52+Drx3X0+6dLr66uXvyGxe+j2MapWWTx/szYP9Xa56/ehCdhlL1p4lrbCSd+71Z86QrqJ1kCDcJFqtzPu7ollxPIm7/Dvz1UN9bighgUhK7d7F8zVKtZZf5lxqiZNRXMX8VWewMTPk9h4OfH0gnuFedhyNy8fF2oSMoipkwMJYH3MjfVIKK+njasVjo3TzgjzszNgRmkn/9/cDcKevIy+M88HSRJ8Fq4I5mVjAhN5deGyUJx/u1g3Ku627Lf/3QG/C0ku4++tjqDRaZg/uyqbgNDpbGvPa+B68/mckSrWWdY8Mon9XG04mFPDMpvMUV6r4cHIvpg90vWqyqFSqeX9XNOtPp+LvZMnXD/XF0+Hq3bu3nkvntT8iMDPSZ/3CwU06VS4IQtNUqzQ8uzmE3eHZzBvajdfH+12zLdjViKTUjsmyzGt/RBCaXsIvl11LKa9Rs+DXM1QrNSwZ48H7u6IZ5G7NyYQC3GxMSS2sBKjrNeftaEFkZglfTutTdzB2SqALxgZ6lNeouDfAGZ/OFuwJz+KVP8JRqrV8NLknJVUq7v/xOPoKBe/f15Mxfo68uyOKXeFZBLh0wtvRgjWnUhjYzYZZQ9x4dlMonUwMWL9kCB725ny1P5avD8ThbmvGiocHNNpL76KzKYU8tzmUlMJKFo/w4Nmx3lct966oUfPmtkh+P5fOIHcbvp3e96pNWAVBuD5phZU8uu4sERmlvD7e96qDPptKJKV27NcTyfx+Lp2n7/BirL+uvY5GK/Pk+nPE5Zbz+nhfPt4Tg29nC2Kyy7E1NyS1sBJDPQlLEwNyy2qYNsCFTWfSeXOCX70OCi7Wpjxau2oqqVLx7OYQtp7LoLdLJ56504uv98cRml7Cnb6OvDXRl0MX8rjzi3+oUWlZPMKD4JRCfjubztwhXXG1MeWZjSH4drFkxcMDAJix9BSnkwq5v68z713jWlC1SsMX+2JZdjQRJysTNiwcXK/4oiFh6cU8vTGElIIKnrrdk6fu8Lrq3CRBEK7PP7F5PL3xPBqtzLI51654bapmS0qSJBkDRwCj2sfZIsvyW5Ik2QCbgG5AMjBVluWi5orjVnUiPp/3d+nGOlwsRgD4cHc0hy7k8dwYb74/FI+duSEVSg1aWaa4UomJoR4SugO24/wdOR5fQI/OFsy9rVuDj3MwJodXt0aQV17D46M90ZMkFq85i4WxAd/N6Iu5kT6PrDrLhZwyhnnaMdLHnu8OxqPWaPlsSm/OphTx/q5o7vR15OuH+hCaVsyTG85TqdTw2ZQAHujnfNXtujPJhby0JYzE/AqmD3TltfF+jVbigW5ve+nRRD7dewF7CyPWNyGBCYLQdFqtzPeH4vlifyw+jhb8NKs/3ZrQ066pmnOlVAPcLstyuSRJBsAxSZL2APcDB2RZ/liSpJeBl4GXmjGOW056USVPbjiPu50ZX15W2LD2VArLjyUxY6AbO8OyqFZpcLMxJSy9GCsTA9QaBVVKDfbmRlibGtLTuRN7I3NYu2DQFXvAuWXVvL8zmu2hmXg7mvP8OG+WHkniQk4ZEwOcmDHAlR/+SeBoXH5d6fahmFw+2BVNXzcrXr1Ht0o7m1LE46O78+yd3vxyNIlP98bgYW/OpsX9rtqBu7RaxSd/xbDudCrOViasXTCIYV5Xdnq4XFZJFS9uCeNoXD539+zMR/f3wsrU8KpfIwhC05VUqXhucwj7o3N1M9Lu73XNLv7Xq9mSkizLMlBe+65B7YsMTAJG1X58FXAYkZSarEat4dG151Cqtfw8u3/dquFoXB5vbY9ktI89GcVVJOSVM9rHgX3ROXS3NyOloBK1VqankyVRWaWsXziYx9edY7iXXb0ne5VGy9pTKXyxL5YalZYnb/ekqrZ1j4OFMZ882JvTiYXMWH4aS2MDXr2nh67yZmc0NRotL4zzobdLJx5de5aKGg3fz+jHUE9bFq89y/7oXMb37sInD/RudLtOlmW2h2by/q5oCsprmHebO8+N9b7q9p4sy2wLyeTNbRGoNDIfTO7JjIFuorpOEG6imOxSlqw5S3pRFW9P9GPubd2a5XesWa8pSZKkB5wFPIHvZVk+LUmSoyzLWQCyLGdJkuTQyNcuAhYBuLmJBpkXvbMjivCMEn6+rLAhNqeMx9aew8vBHFcbU1afTGFigBM7QjPxd7IkMrMUfYWEbxcLIjJLWTzCA1mGggolM2vHfGu1MrsjsvhyXywJeRUM87Tjwf4ufHMgjsT8Cqb0d8HW3JA3t0WglWHhMA88Hc344VACyQWVjPS2543xvmwLzWTuiiDc7czYsHAwpdVqxn9zjNyyat6a6MfDV/lBjsgo4Z0dkZxJLiLApRMr5jbemPWi3NJqXv0jnP3RufRzs+KLqX1u6laCILSGtvb8ty0kg5d/D8fcWJ8NiwZfV9ug69WsSUmWZQ3QR5IkK+APSZJ6XsfX/gL8AhAYGCg3T4Tty7aQDNafTmXJyO6Mqy1sKCivYcGqMxgb6nFfX2c+3hPDOH9Hdodn4dfFgsjMUiyN9TEyUJBfrsTH0YJnx3rXDd2KziojpaCSDUGpJBdU4ulgztcP9SEoqYBnNoXgYm3C46O788e5DDJLqhnfqwtDutuw9lQqvxxNxMfRghUPB+JqbcrzW8IISSvmgX4uvDXRj7WnU/j879qzTEtuu6J56kVphZV8uT+WP85nYGNqyEf392JqoOtVy0ovro7e3hFJlVLD6+N9mTfU/T+VogpCW9FWnv/UGi0f74lh2bEkBnSz5vsZ/Zq9grVFqu9kWS6WJOkwcBeQI0lSl9pVUhcgtyViaO/ic8t57Y8IArta8/xYb0DXfHXJ2rPkltbwxgQ/3tkRyYBuNpxKLMTZypj43HJszAwpqVLRv6s1R+LyWTF3AEb6eozwssfLwZyvD8QBMKCbNc+P88FQoeDN7ZHklFXzQD9n0gqr+P5QAn5dLJk2wI3d4VnsCs+qvZ4VwN09u7DieBKPrj2HiaEe30zvyxAPWx5ff46jcfmM792Fj+7v1eBI8dSCSn46ksDmM2koFBKLRnjw2CjPuq7mjUkrrOTVP8I5GpdPH1crPp8acNXWQoIgXL/CCiVPbjjH8fgC5g7pyusT/Jrc6fu/aM7qO3tAVZuQTIA7gf8DtgNzgY9rX29rrhhuFRU1apasPYuRvqJuyJ7ujFI4Z5KLeHOCH5/9fQEXKxMKymuQkVFqZEwM9Sis3aJbdzqVxSM96rbD9PUU7Ht2JAeic/DpbIGBnoK3t0eyJyIbb0dzRni78Of5TIwNFMwY6MbZlEK+3B9Ld3szvprWhwm9uxCUVMi93x0jNqecu3t25p17/YnOLuOeb45SWtXwYVhZljmfVszyY0nsCc9CX6Fg+kA3Hhvd/ZpdHJRqLUuPJvLtwTj0JIl3J/kzc1BXsToShJssMrOERavPkldWwycP9mZqoGuLPXZzrpS6AKtqryspgM2yLO+UJOkksFmSpAVAKjClGWNo92RZ5sXfw0jMK2ftgkF1zUNXHE/mt7PpLB7hwbrTKciyTBcrE04nFuDv3ImozFIkCYZ52hKTVYaDhRFP3e51xf0P97Jn1Ylkvtofi1orM22AK6cS8tkcnM4wTzuKKpW68RV2Znz9UB8m9HYiNqeMxWvOciAmF1cbE36e3Z/hXnZ88tcFfj2RjLejOavnD8S3i2Xd41SrNGwPzWTNyRTCM0qwMNZn4XAP5g9zx7EJ2wEn4vN5e0cksTnljPN35O17/a+ZxARBuH7bQjJ46fcwrEwM2bxkCH0a2XZvLs1ZfRcG9G3g4wXAHc31uLea5ceS2BWWxYt3+XCbp65K7mhcHh/simKMrwPRWaWkFlYyobcTf5zPYJS3PYdj83C0NEKjhQf6ufK/zSENNiv9JzaPd3dEkpBXwXAvO0wM9dh0Jg0XKxMGdLPmWHw+nS2N+eSB3tzfz5nIzFIeW3eWvZE5WBjr8+JdPswf6k5kZgn3fH2U5IJKHr6tGy/f3aOu71V+eQ2/Hk9m7ekUiitVeDmY894kf+7v53LVirqLskqqeGd7FH9FZuNsZcLyuYHc4SvmHgnCzabVynyy9wI//ZPAwG42fD+zH/YWV06abm6io0MbFpxcWFe48OhIXXeF1IJKnlh/Hi8HC5ysTFh1MqVue26klz3/xOXh7WBObG45K+cNYN2pVOwtjJg24NLyOyy9mE/3XuBoXD5dbUx5ZLg7W89lUFqlIrCrNaHpxRRUKHl2jDfzh7pzPCGfWctPcyqxEAtjfZ66w4v5Q7thoKfg070XWHE8CefaTgtDuusOquaUVvPj4QQ2BKWi1GgZ6+fIw7e5M9jDpkllpDVqDcuPJfH9wXg0sswL43xYMMz9hps8CoLQuGqVhud+C2VXWBYzBrnx9kT/q3bob04iKbVRRRVKnlh/HmdrEz55MABJkqhUqlm0JhhZlpnc15mP/4phUh/dCsnPyZLwzBJcrUyJyytnxiA3Rvs48PzmUPq6WSEBh2Jy+fVEMv/E5mFlasAToz05n1rEsqNJdLc3w0BPIjiliHsDnHh2jDcnEgqYWDuoz9nKhNfu8eWhga6YG+mzNzKH93ZGkVlSxYyBbrxyjy/mRvqUVatYeiSRX44motbo4lwyqvt1FSIcvpDLOzuiSMqv4E5fB96c4I+brWnz/WMLQgdWVKFk0ZpgziQX8crdPVg0wqNVz/iJpNQGybLMC1tCKaio4Y/HhtLJxEB3bWlLGLE5ZbwxwY+P9sQwoJs1oWnFmBjoYaSnoLJGjYmBHk6dTHj1Hl8A7uvrzPJjSfR+528qlRrsLYz4351eyMCPhxPQV0h1Z5k87M1YNb83F7LLePCnE+SXK+nl3InvZvTlLv/O6OspiMws4YNd0ZxIKMDH0YItS4bQv6sNWq3MutMpfPF3LAUVSib07sKL43pcVzJJL6rk7e26AX/udmasnj+QEd72zfSvLAhCZnEVs5afJr2wim+n92VigFNrhySSUlu0/FgS+6NzeXOCHz2dddVyPxxOYGdYFk+M9uTnfxKxNzfE1FCf9KJi7uvrzJaz6Yz2sefQhTzWPzKortPDY6O6U63SUF6j5i7/zlibGfD29ihissvwd7IkuaCCuNxy/nenF1amBry4JYyc0hqGe9nx6KjuDPGwRZIk4nLK+PZgPDvCMrEyMeCde/2ZOcgNfT0FIWnFvLU9ktC0Yga527ByvO91jRevUmr45UgiP/2TAMBLd/Vg/rBuV+0ALgjCf5NaUMn0pacorVKx9pFBbWaki0hKbUxIWjH/91cMY/wcmTe0G6Dbdvvs7wtMDOhCUHIhxVVKpgW6supkCnOHdGXNqRTG+Dpw8IJuJPnFgggAW3MjPpjci/zyGj7aHcPv59JxsDDCy8GcyMxSBnvY8EA/F378J4HEvAoCu1rz9UN9+f/27jsqqmvt4/h3I0UpgoCAgoIggg0saNAkdmO7N9EYk+uNRtN7ountTe/JvbkpN8XojcaYqIldYzSxJJrYFQvFCkhRREB6GZj9/jEjASMKKsMMPJ+1WGtgzpn5rQHmmX3OPs+ODvZCa82u5By+3HSMNbEZODs2494BIdw/MAR3ZweyC8t4Z3UCC3am0NrNiQ9uiWRsjws3WD3X5sOneW7Jfo5nFzGmexueHR1OQCs5VCdEfTpyqoBbZ26ltNzIt3dHX7RziiVJUbIipwtKuW/uLvzcm/PeTREopTiWWcAj8/fQ2a8lrZwdWbH3BA8MCuHzX49yXRdf1sZlEOjlgpNDMxyb2fHUyPBqj2moMPLd9uO8v+YgRWUV9O3gyZ7jORQbKnh6ZBh7jufw5A/7CPJyZuZtUQzt7EOxoYJ525L5dtvxyo4QjwzpyNSrO+Dp4kiFUTN3SxLvrz1EYWk5d1/bgUeHdbpg9+5zpZ8p5rWVcaw+cJIO3i58e/dV9A+5cMNVIcTlO3Iqn3/M2Aoo5t8TTbhfy4vuY0lSlKxEhVHz2MK9ZBeVseSB/ng4O1JUVs793+zG3k4xISqAV1bEcXNUAAt3phLc2pXmDs3IzC/li8m9ufvrndx1bTDerqYpnFpr1sRm8O5PCRw7XUhEgDsFJeVsT8zmuq6+dPJx48N1h1EonhwRxl3XdiA1p5hXVsSxaFcq+aXlhPu58frYbozr6V85fXvL0SxeXxVHbHoe/UO8ePn6rnTyrbnb97kMFUZm/57EB78cwqg1jw3vxD0DgmVWnRAWkJJdxK0zt6GUqSBZYycUKUpW4pP1R/jtUCZvjutO17bulRMbDp/K5/Wx3XhtZTx9AluRnFVEQamB6cNDeX7JAR4e0pH4E3kYNYzu3obyCiM/x2UwY9Mx9hw/Q0hrF0Z09WVtbAbebk48OyqcpTHprI3N4Louvrx0fVdO5ZVw39xdbDiYiUMzxahubbitXyC9A1tVHopLPF3IG6vi+CX+FP4eLfh4Yk/+FtGmTofqth3L4vmlBzhyqoAh4T68cn1X2nnKoTohLCEjr4RbZ26jtNzIgnv6WWVBAilKVmFHUjYfrT/M2B5tmdjXdD3R3K3JrNx3gkeGdmTmpkRcnOzp2d6DGZsSeWNcNz7/9SjBrV14aEhHDp0s4LONRxn739/xcnEkq7CMgFYtuPPqDqyNO8ma2AzG9wrAxcmOd35KwNvViS8m98bb1YlnFpnWH/JwduCx4Z2Y2Ld9tQvmjmcV8cmGwyzanUZze7tLul4oJbuIt1cnsGr/Cfw9WlQeJpSlJYSwjNwiA5NmbiOroJRv744mzK/2RzcsTYpSA8stMvDId3to16oFr47thlKKmJQzvLYyjsFhrTl6qpDk7CJe+lsXXl4Ry7ie/pw4U0JKdjEL7onGyb4Z3QPcmTW1D9/vTCWvxMCIrr5sPnyaWb8nEuTlzIt/68KcLUkkZxUxsW97pvQP5NMNR1m+Nx1vV0eeGRXOpOjAaueEEk7mMWtTIov3pNHMTnFbv0DuHxSCj1vtOwQXlJbzpXlWnZ1STB9mOlTXwlEO1QlhKWcbNydlFTLnjr41duu3FlKUGpDWmueW7Cczv5TFD/SnZXMHcosMPPTtbnzcmhMd7MVbqxN4dGgoMzcn4t+qBQ8MCmHMx5u5oUdbrqqyzHd0sBd9gjxZsCOF11bGm85HDQwhv9TAa6viCGjVgtm39yEm5Qw3fPI7AI8M6ch9g0IqV44sKzcd+puzJYntidk0d7BjcrSpGNWmP91ZZeWmyRUfrTtMVmEZYyLa8MKYztKrTggLO/ses+VYFh/cEmkTk4mkKDWgr35PYtV+U1+7iAAPjEbN9IUxZOSV8O74CJ5evJ/BYa05lV9CSk4RC+/tx9KYNMorjDxxXVi1x9qemM2rK2M5kJZH3w6e3BLVjo/WHybZ3I9uQKh3ZZeEv0W04dnRnfH3aIHWmt3Hc1i2J40V+06QXVhGO88WPDMqnFui2tHKpfbLiZeVG1m8O5XPfj1KclYR0cGezBrV2eINHYUQJp9uPMoPu1KZNiyUcT0DGjpOrUhRaiB7U87w5o/xDO/iy30DTH3tZmw6xvqEUzw/ujOfbDiCewsHbuodwIPf7uGeAcH0CfLk8YV7GRTmUzlBIOFkHv/5+TA/xZ6kjXtz3p8QyYG0Mzz+/V7ae5qmef8cl8Edc3YS6OVc2SUhv8TA3C1JfLP1OAcz8nG0t2N4Z19uigpgQGjrOi0HUVRWzg+7Uvl841HSc0vo7u/O/6ZGMThMzhsJ0VA2HjRd33h9ZFseHfrXFQKslRSlBpBbZOCBebvxbdmc92+KxM5OsSMpm/fWHGR0dz8STxdw7HQhX06O4qXlsQS3duGx4Z3QWnMyrwRXJ3uW7kljWUwaGw5m4upkz/Rhnegd6MELSw9Uduvu2d6dZxbvI6fIwH0DQ5g2LJTcYgOvrohjwY7jFJZV0M2/JW/d2J2/RbTB7TwL8V3IidxiZv+exHfbj5NXUk6v9h68eWN3BnZqLcVIiAZ0PKuIR+fHEO7XknfGR9jU/6MUJQvTWvN/yw6QkVfCovv74+7sQG6xgWnzTUuPj+7ehofMI6OYlDOknSnm+/v60dyhGVprIgPc2ZGUw7QFMXi7OjFtWCi3RLVj5uZEJv9vOwGtTLPbVu0/waPz99LNvyWzb++Ln3tz3vkpgXnbjlNh1Fwf2ZYp/YOIDHCv0x/s2cN9s/9IZvX+Exi1ZmQ3P26/ugNRVaaQCyEaRomhgnu/2YXWmi8m9ba5iUVSlCzsh12pLN+bzuPDOxHZzsN0InLxfjLySpg1JYrHv99LuJ8bE/u2Y8R/NjG2R1v6BJl6UimlmHvnVaTmFFFu1AR7u7IrOYd/fLmV5KwiJkW35+qO3jy/dD9ZBWU8OjSUuwd0YN7W43y8/gjFhgrG9/LnocGhde66XWHUrIk9yRe/HWNvyhncmtszpX8QU/sHybVGQliRt36MJ/5EHl9N7WOT3fWlKFlQSnYRr6yIo28HTx4Y3BGAJXvSWLX/BE+OCOOH3WnkFhuYe+dVfLbxKGh48py2Qc0dmtHRx43cYgMvLjvA/B0pBHo5878pUayJzeD+b3YT6uPKrCl9yCwoZcxHm0nOKmJIuA/Pj+lc5wvmSgwVLNyZwqzNiSRnFRHo5czrY7txYy//yll7Qgjr8EtcBnO2JHPnNR0YHO7T0HEuibyrWEhZuZGHv9uDAv59cyTN7BQp2UW8uCyWPkGt6OjjyntrDjJ9WCe8XZ1YvDuNSdGB+HtUn0attWb53nReXxVPdmEZ9w4IZkCoN88s2U9aTjH3Dwrhtn6BvPvTQZbsSSOktQtz7ujLwDouAVFUVs787Sl88dtRMvJK6dneg6dHhjOiq1+dJkEIISwjI6+EJ3/YS9e2LXlqZNjFd7BSUpQs5P21B4lJOcOnt/YioJUzFUbN9AUxKOCNsd2Z+tV2wnzduH9QCN9sTabcqJkU3b7aYxxIy+XVlXFsT8wmIsCdLyb3Yk1sBpPM55IW3tuPtDPFjP5wE/kl5Tw8pCMPDelYpyUgisrK+XpLMl/8epScIgN9O3jywc096BfiJeeLhLBSRqPmsYUxlBiMfDSxp00v+yJFyQI2Hz7Nl5uO8c+r2jO6exsAvvo9kZ3JOfxrQiRLY9JIzy3h+4k9cbS3IzY9D9+WTnT0MbUCOZSRz383HGFZTDpeLo68Ma4b3f3deeqHfSSczGdi3/bcO7ADb65KYG1cBj3aefDuTRF1apSaXVjGnD+SmLs1mezCMgZ2as3DQzoSFWQda6wIIWo2Z0sSvx/J4p3x3a22p11tSVGqZ7nFBh5bGENIa1deGGNaDfZYZgHvrjnIsM6+RAW14tnF+7mxp3/lhAaNJruwjKH/2oiLkz37UnNp7mDHA4NCuPvaDny7PYXxn/2Bh7Mjs6ZEUW7U3PjpFgpKy3ludDh3XhNc60NsiacLmbslme+2H6fYUMHQcB8eGNyR3oGt6u01EUJcOak5Rby35iCDwlpzc1S7ho5z2aQo1bNXVsSSVVjGrCl9cHa0r2z74WRvx5vjuvH6qnjs7Ki2DtILY7rQTCl2Hc/BsZkdz40OZ3yvAHKKypj61Q72puYyJqINT40I4z+/HGbJnjS6tm3Jh//oUTm6upDC0nLWxJ5k/o4UtidmY2+nuL5HWx4YFFKr/YUQ1kFrzfNLDgDwurl3pq2TolSPVu07weLdaTwyNLRyZceFO1PYeiybN8d1p9hQwcp96dwzIAQ/9z97y3m6OPLehMjK7w0VRmb8dowP1x3GxbEZH0/siaeLIxNnbCUjv5RHh4by0JCOODSzqzFL0ulCNh05zaZDmfx2OJMSg5EgL2eeHBHGhN4B+NSht50Qwjosi0nn10OZvPz3Lo1mxWYpSvUkM7+UF5buJzLAnYeHmKZ/5xSW8eaPCfQN8uQffdrx+qp47O3suMO87Pn57Es9w9OL9hN/Io/R3f14YUwXvvo9kS83JRLs7cKi+/uft7ec1pp9qbmsPnCStXEnOZZZCIC/RwtujmrHmO5t6BPkiZ3MpBPCJuUUlvHKilh6tvdgcr+gho5zxUhRqgdaa574fi9FZRW8PyGycgTz/tqD5JcYeG1sN4xas3xvGsO6+Jx3lJJbZODdNQl8u/04Pm5OfD6pN4FeztwxewcJJ/OZFN2e50d3+cvV2jmFZczblsyCnSmkZBdjb6eIDvbituhABnRqTQdvl0YxxBeiqftw3WFyiw28dWP3RnWZhhSlerB4dxq/Hsrkleu7EmqeAXfwZD7fbT/Obf2CCPNzIzY9l9MFZYzo6ldt3xJDBfO2Hefj9YfJLylnav8gHh0ayvwdKTzy3R7cnR2YNSWKoZ19q+2XVVDKl5sS+XpLEkVlFfQP8eLhIaFc18UXD+fad/oWQli/I6cKmLs1mYl92xPu17Kh41xRUpSusFN5Jby6Mo5e7T2YHB1Y+fP31hzE1cmeacNM3XpTsosBKDUYTfvll7B4dxqzNieSmV/KNR29eW50Z9ya23PXnJ3sTM5hZFc/3hjXDS/XP1eGLTFUMGtzIp9uOEKRoYK/R7TlwcEdrXplSSHE5Xl7dTzODs2YPrxTQ0e54qQoXWEvr4il2GA6bHf2fM3+1Fx+ic9g+rBOlaOWfiFeRAS489SifTy1aB9KgdYQHezJh//oQXQHT77bkcJbPyaggA9uiWRsD/9qh942HDzFy8tjSc4q4rouvjw1MkxmzwnRyO1LPcMv8ad44jpT95fGRorSFfRLXAY/7j/JkyPCCK5yAdtnv5rWRrrjmqDKn7m3cGDBPf1YuS+dtXEZdGvrzpiINnT0cSU1p4ips3fy26FM+od48c74iGpNTzPzS3ljVRxLY9IJae3C3Dv7cm1o3doICSFs08frTe8nU/oHNXSUeiFF6QrJKzHw7JL9hPu5cfe1wZU/z8grYU1sBndd0+Ev6xW1cGzGhKh2TDBf8GY0amb/nsi7aw6igFdv6Mrk6MDK0ZHWmkW703hlRSwlhgoeGdKRh4aE4mhf81RwIUTjEX8ij5/jMpg2LLTO65/ZCilKV8h/1x/hdEEps6ZEVSsSq/adoMKouaXPha+0PpCWy4vLDrD7+BkGdmrNG+O6Vbvu4HRBKf+39ACrD5ykb5AnbzWCdiJCiLr5eksSzR3suL1/h4aOUm+kKF0BhzPymbU5kQm9A4gI8Kh23/qEU4T5ulU7nFdVTmEZ//75EPO2JePp4si/JkRyY6/q547WxWfw9KJ95BWX89TIMO4dENKopoAKIS4ur8TA0j3pXB/ZFnfnxjlKAilKl01rzYvLYnFxsueZUZ3/cn/i6UL6BP21j1xBaTn/25zIl78do8hQwaToQB6/Lgz3Fn/+seWVGHhx6QGWxqQT7ufGvLuiZVadEE3Usj1pFJvfKxozKUqXaePBTLYcy+KV67vi6fLX64GaO9iRWVCK1hqAgxn5LNqVyvwdKeSXlHNdF1+eGBH2l47eO5OymbYghhO5JTw6NJQHB3eUc0dCNGHL95o+nJ57NKaxkaJ0GcorjLy2Mo5gbxcm9m1/3m2u6+rHZxuP0uHZH/FwduBMkQF7O8WIrn7cMyCYyHNaBBkqjHy87jAfbziCv4dpjSTp2C1E03Yqr4SdyTlMG9r4rks6lxSly7B4TxrHThcyY3LvGkcx04d1or2nM0mnC8kvLadLm5aM6uZX7QLYsxJO5vHYgr3EnchjfK8AXrmhK65O8isSoqlbE5eB1jCqu9/FN7Zx8o53icorjHy28Sjd/FsyvItvjds52tvVOIo6y2jUfPVHEu/8lEDL5vZ8PqkXI7u1udKRhRA2avPhTAJatSDUp/HPuJWidImWxaSTeLqQzyf1vqwGp+lnipm+IIZtidkM6+zD2+MjGuVV2kKIS7ctMZvhnX2bRDNlKUqXQGvNzM2JhPm6MaJrzaOkiz3GvG3HeWd1AkateXd8BBOiAprEH50QovZKDBUUFBm4KtiroaNYhBSlS7A3NZf4E3m8Oa77JRWR1Jwinlm0n81HTtM/xIu3buxOoJdLPSQVQti6YkMFAD3bezRsEAuRonQJFu9OxdHejjERdTvvYzRqZv+RxPtrTW2EXhvbjUlXtZfRkRCiRiUGI24OdgQ1kQ+uUpTqSGvNTwdOMqyzT7ULXS8mJuUMLy+PJSblDIPDWvPqDd2qNVkVQojzKTFUEOXr1mS6uEhRqqOjmQWcyi9lYKfadeWuuoKst6sT/745knE9/WV0JISoldJyIx28m8YoCaQo1dmxzEKAi672WGKo4OstSXyy/ggFpeXc3r8D04c33s6+Qoj6UV5hpI1Hi4aOYTFSlOqotNy0UqyTw/kvli0qK2fR7jQ+23CE9NwSBoe15skR4XRp27iWLBZCWIYG2rg3b+gYFiNFqY7am88D/XEkq3K0pLXmyKkCFu1OY+HOFLILy+jRzoP3JkRydUfvhowrhGgE/FpKURI16ObvzrWh3ry6Mo7le9Nxa27P0VMFpOeW0MxOMSTch3sGBBMV2ErOGwkhrgg/GSmJmjSzU8y5vS9fbjrG6gMnySs20DOwFQ+GeDGssy++TegTjRDCMuoy09fW1VtRUkq1A74G/AAjMENr/aFSyhNYAAQBScDNWuuc+spRH+zsFPcODOHegSENHUUI0QQ0pcbM9blATznwuNa6MxANPKiU6gI8A6zTWocC68zfCyGEqIFrcylKl01rfUJrvdt8Ox+IB/yBG4A55s3mAGPrK4MQQtg6BTjZN2voGBZjkaVMlVJBQE9gG+CrtT4BpsIF+NSwzz1KqZ1KqZ2ZmZmWiCmEEFah6vtfQ2extHovSkopV2ARME1rnVfb/bTWM7TWUVrrqNata9c9QQghGoOq739Npb3QWfValJRSDpgK0jyt9WLzjzOUUm3M97cBTtVnBiGEELaj3oqSMl2kMwuI11r/u8pdy4Ep5ttTgGX1lUEIIWxdU7vesT6ndFwNTAb2K6VizD97DngbWKiUuhM4DkyoxwxCCGHTmlZJqseipLXeTM2v59D6el4hhGhMmthAyTKz74QQQlwa1cTGSlKUhBDCmjWtmiRFSQghrFkTq0lSlIQQwpq1cGw63RxAipIQQlg1/ya06ixIURJCCGFFpCgJIYSwGlKUhBBCWA0pSkIIIayGFCUhhBBWQ4qSEEIIq6G01g2d4aKUUplAch138wZO10OcK01yXnm2ktVWcoLtZLWVnKe11iNrs6FS6qfabtsY2ERRuhRKqZ1a66iGznExkvPKs5WstpITbCerreQUNZPDd0IIIayGFCUhhBBWozEXpRkNHaCWJOeVZytZbSUn2E5WW8kpatBozykJIYSwPY15pCSEEMLGSFESQghhNWy6KCml/qeUOqWUOlDD/a2UUkuUUvuUUtuVUt0sndGco51SaoNSKl4pFauUevQ82yil1EdKqSPmvL2sNGe4UmqLUqpUKfWEpTNWyVGbrLeaX8t9Sqk/lFKRVprzBnPGGKXUTqXUNZbOWdusVbbto5SqUErdZMmM5ueuzWs6SCmVa35NY5RSL1o6p7hEWmub/QIGAL2AAzXc/x7wkvl2OLCugXK2AXqZb7sBh4Au52wzGliNaaHJaGCbleb0AfoAbwBPNODvvjZZ+wOtzLdHWfFr6sqf53cjgARrfU3N9zUD1gM/AjdZY05gELCyIV5H+bq8L5seKWmtfwOyL7BJF2CdedsEIEgp5WuJbFVprU9orXebb+cD8YD/OZvdAHytTbYCHkqpNtaWU2t9Smu9AzBYMtu5apn1D611jvnbrUCAZVPWOmeB1vrsjCMXoEFmH9Xy7xTgYWARcMqC8SrVIaewQTZdlGphL3AjgFKqLxBIA7wxVaWUCgJ6AtvOucsfSKnyfSoN+I92gZxWp5ZZ78Q0Em0wF8qplBqnlEoAVgF3WDjaX9SUVSnlD4wDPm+AWH9xkd99P6XUXqXUaqVUV8smE5eqsRelt4FWSqkYTJ/u9gDlDRVGKeWK6RPmNK113rl3n2eXBvnEfJGcVqU2WZVSgzEVpactme2cDBfMqbVeorUOB8YCr1k4XjUXyfof4GmtdYXFg53jIjl3A4Fa60jgY2CpheOJS2Tf0AHqk/kP9XYwTSQAEs1fFqeUcsD0DzRPa734PJukAu2qfB8ApFsiW1W1yGk1apNVKRUBzARGaa2zLJmvSoZav6Za69+UUiFKKW+ttcUbi9YiaxQw3/TvhDcwWilVrrVearmUF89ZtUhprX9USn3aUK+pqJtGPVJSSnkopRzN394F/NYQn/zNBXEWEK+1/ncNmy0HbjPPwosGcrXWJywWklrntAq1yaqUag8sBiZrrQ9ZMl+VDLXJ2dG8HeZZl46AxQtobbJqrTtorYO01kHAD8ADDVCQavOa+lV5Tftieq9rkA8lom5suqODUuo7TLNsvIEM4CXAAUBr/blSqh/wNVABxAF3Vjnxbcmc1wCbgP2A0fzj54D2VbIq4BNgJFAE3K613mmFOf2AnUBL8zYFmGY+WbTY1zLrTGA8fy57Uq4t3EG6ljmfBm7DNHmkGHhSa73Zkjlrm/Wc7WdjmuH2gwVj1vY1fQi4H9Ph+mLgMa31H5bMKS6NTRclIYQQjUujPnwnhBDCtkhREkIIYTWkKAkhhLAaUpSEEEJYDSlKQgghrEajvnhWNE5KqQKttesl7LcNcAI8gRZAmvmusVrrpCuXEJRSr2HqZ2jE1CNuqtba4hdDC2FrZEq4sDmXWpSq7D8ViNJaP3TlUv3lOVqevXZLKfUIpmu57quv5xOisZDDd8JmmdfM2aiU+kEplaCUmmfuiDFKKbXwnO1W1PAYIUqpn5RSu5RSm5RS4eafz1ZKfWZet+eYUmqgMq3fFW++aPTs/gVKqX8ppXYrpdYppVpD9TY3NGDnbyFsjRQlYet6AtMwLVMSDFwN/AxEK6VczNvcAiyoYf8ZwMNa697AE8CnVe5rBQwBpgMrgA+ArkB3pVQP8zYuwG6tdS/gV0xdRQBQSr2hlEoBbgVkkTkhakGKkrB127XWqVprIxADBGmty4GfgL8rpeyBMcCyc3c0d5nuD3xv7iT/BaYF5M5aYV7naD+QobXeb36eWCDIvI2RPwveN0DlqrFa6+e11u2AeUC9HSoUojGRiQ7C1pVWuV3Bn3/TC4AHMS0CucO8GNy57IAzWuseF3ls4znPY6Tm/53zHab7FtM6SS+d5z4hRBUyUhKN1UagF3A3NRy6M5/3SVRKTQBT92mlVGQdn8cOuMl8+5/AZvNjhVbZ5nogoY6PK0STJCMl0ShprSuUUiuBqcCUC2x6K/CZUuoFTB3m52Nasbi2CoGuSqldQC6m81cAbyulwjCNqpIBmXknRC3IlHAhLsPlTk8XQlQnh++EEEJYDRkpCSGEsBoyUhJCCGE1pCgJIYSwGlKUhBBCWA0pSkIIIayGFCUhhBBW4/8B9yb2UOsVRvoAAAAASUVORK5CYII=\n", "text/plain": [ - "
    " + "
    " ] }, "metadata": { @@ -478,13 +2400,11 @@ "output_type": "display_data" } ], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, "source": [ - "TODO: Visualize this with Seaborn" + "sns.jointplot(x=\"InvTemp3\", y=\"VapourPressure\", data=distill, kind=\"reg\");\n", + "\n", + "# Or, show the kde=kernel density estimate\n", + "sns.jointplot(x=\"InvTemp3\", y=\"VapourPressure\", data=distill, kind=\"kde\");" ] }, { @@ -498,64 +2418,92 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Next, we would like to extract some idea of how the model performs. For that we have to take a look at the predictions of the `build`ing data, and then of the `test`ing data.\n", + "## Checking how well the regression model works\n", + "\n", + "Next, we would like to extract some idea of how the model performs. For that we can look at\n", + "* the predictions of the `build`ing data, \n", + "* the predictions of the `test`ing data.\n", "\n", "For the model building data:\n", "```python\n", - "predict_build = mymodel.predict(X_build)\n", - "errors_build = y_build - predict_build\n", - "avg_absolute_error = np.nanmean(np.abs(errors_build))\n", - "```" + "# Get the predicted values from the data used to build the model\n", + "X_build = build[[\"InvTemp3\"]]\n", + "y_build = build[\"VapourPressure\"].values\n", + "\n", + "prediction_build = mymodel.predict(X_build)\n", + "errors_build = y_build - prediction_build # error = actual minus predicted\n", + "\n", + "# There are several ways to see \"how good\" the model is, but the average \n", + "# of the absolute values of the errors gives a good feeling. Smaller is better.\n", + "avg_absolute_error = pd.Series(errors_build).abs().mean()\n", + "\n", + "```\n", + "\n", + "1. Calculate this average absolute error below\n", + "2. Also calculate the standard deviation of the errors (another way to judge the model). Smaller is better.\n", + "3. Lastly, plot the prediction errors for the building data (first 200 rows) to see what time-based trends there are." ] }, { "cell_type": "code", - "execution_count": 151, + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "1.8751450770825844" - ] - }, - "execution_count": 151, - "metadata": {}, - "output_type": "execute_result" - } - ], "source": [ - "predict_build = mymodel.predict(X_build)\n", - "errors_build = y_build - predict_build\n", - "avg_absolute_error = pd.Series(errors_build).abs().mean()\n", - "avg_absolute_error \n" + "The above gives an idea of how the model works on the data used to build the model. \n", + "\n", + "But of course, the idea is to use the model in the future, on data not seen before. So let's test the model on the rest of the rows\n", + "\n", + "```python\n", + "# Create the testing data set\n", + "test = distill.iloc[200:]\n", + "X_test = test[[\"InvTemp3\"]].values\n", + "y_test = test[\"VapourPressure\"].values\n", + "```\n", + "\n", + "Then use the `predict(...)` function again, but on the testing data. Notice how simple scikit-learn makes this:\n", + "```python\n", + "prediction_test = mymodel.predict(X_test)\n", + "errors_test = y_test - prediction_test\n", + "avg_absolute_error = pd.Series(errors_test).abs().mean()\n", + "avg_absolute_error, errors_test.std()\n", + "```\n", + "\n", + "1. Calculate the average absolute error below, but for the model testing data\n", + "2. Calculate the standard deviation of the prediction errors (another way to judge the model). Smaller is better.\n", + "3. Lastly, plot the prediction errors for the building data (first 200 rows) to see what time-based trends there are." ] }, { "cell_type": "code", - "execution_count": 153, + "execution_count": 57, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "1.9788871919692939" + "(1.9788871919692939, 1.501480336386846)" ] }, - "execution_count": 153, + "execution_count": 57, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "test = cheese.iloc[200:]\n", + "test = distill.iloc[200:]\n", "X_test = test[[\"InvTemp3\"]].values\n", "y_test = test[\"VapourPressure\"].values\n", "\n", - "predict_test = mymodel.predict(X_test)\n", - "errors_test = y_test - predict_test\n", + "prediction_test = mymodel.predict(X_test)\n", + "errors_test = y_test - prediction_test\n", "avg_absolute_error = pd.Series(errors_test).abs().mean()\n", - "avg_absolute_error " + "avg_absolute_error, errors_test.std()" ] }, { @@ -565,29 +2513,45 @@ "outputs": [], "source": [] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "TODO: calculate R2, using the `score` method" + ] + }, { "cell_type": "code", - "execution_count": 161, + "execution_count": 41, "metadata": {}, "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The intercept is -101.91491 and the slope is = [81.1501202 -9.56356174]\n" - ] - }, { "data": { "text/plain": [ - "0.9069484718453001" + "0.8007063962347453" ] }, - "execution_count": 161, + "execution_count": 41, "metadata": {}, "output_type": "execute_result" } ], + "source": [ + "mymodel.score(X_build, y_build)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "predictors = [\"InvTemp3\", \"InvPressure1\" ]\n", "X_build_MLR = build[predictors].values\n", @@ -604,22 +2568,11 @@ }, { "cell_type": "code", - "execution_count": 162, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0.6056633330452365" - ] - }, - "execution_count": 162, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ - "test = cheese.iloc[200:]\n", + "test = distill.iloc[200:]\n", "X_test_MLR = test[predictors].values\n", "y_test = test[\"VapourPressure\"].values\n", "predict_MLR_test = full_model.predict(X_test_MLR)\n", @@ -632,9 +2585,170 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 28, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "# IGNORE this. Execute this cell to load the notebook's style sheet.\n", "from IPython.core.display import HTML\n", From eb633b221b6e565d4bf25c176b6455955a8b3ded Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Mon, 23 Nov 2020 19:57:42 +0100 Subject: [PATCH 112/134] Update the code for the linear regression --- Module-15-interactive.ipynb | 2310 ++--------------------------------- 1 file changed, 78 insertions(+), 2232 deletions(-) diff --git a/Module-15-interactive.ipynb b/Module-15-interactive.ipynb index 304c585..3192692 100644 --- a/Module-15-interactive.ipynb +++ b/Module-15-interactive.ipynb @@ -7,7 +7,7 @@ }, "source": [ "

    Table of Contents

    \n", - "" + "" ] }, { @@ -61,7 +61,7 @@ "## Keeping Conda up to date and installing new packages\n", "\n", "\n", - "Newer versions of packages are released frequently. You can update your packages (libraries), with this command::\n", + "Newer versions of packages are released frequently. You can update your packages (libraries), with these commands. Do this at the command line (not in Jupyter notebook!)::\n", "```bash\n", "\n", " conda update -n base conda\n", @@ -108,7 +108,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -129,7 +129,7 @@ "\n", "In the [prior module](https://yint.org/pybasic14) you were asked to \n", "\n", - "1. calculate the correlation matrix of values and display that. Were you able to do so? \n", + "1. Calculate the correlation matrix of values and display that. Were you able to do so? \n", "2. Could you also visualize a scatter plot matrix of these values with the \"kde\" on the diagonal, squares for the markers and an alpha value of 0.8 for the points?\n", " \n", "*Hint*: look at the documentation for `scatter_matrix` to see how to do this. You can look at the documentation inside Jupyter in several ways:\n", @@ -139,20 +139,9 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(253, 28)" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "distill = pd.read_csv(\"https://openmv.net/file/distillation-tower.csv\")\n", "distill.shape" @@ -160,7 +149,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -204,7 +193,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -225,61 +214,10 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Temp9 -0.917730\n", - "Temp5 -0.909300\n", - "Temp12 -0.904225\n", - "Temp6 -0.901668\n", - "Temp3 -0.900017\n", - "TempC2 -0.899899\n", - "Temp2 -0.886628\n", - "Temp10 -0.861789\n", - "Temp8 -0.756223\n", - "Temp7 -0.453747\n", - "FlowC4 -0.366443\n", - "FlowC3 -0.355872\n", - "FlowC2 -0.353991\n", - "TempC9 -0.195908\n", - "FlowC1 -0.193701\n", - "Temp11 -0.102214\n", - "Temp1 -0.039136\n", - "Temp4 -0.020000\n", - "TempC3 -0.017537\n", - "InvPressure1 -0.014673\n", - "PressureC1 0.005279\n", - "TempC1 0.233138\n", - "OC1 0.329478\n", - "InvTemp2 0.891112\n", - "InvTemp1 0.911963\n", - "InvTemp3 0.926652\n", - "VapourPressure 1.000000\n", - "Name: VapourPressure, dtype: float64" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmAAAAJUCAYAAACygJprAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3ycWXX4/899pndJo94sy03u3evt6+3L0ncJLYQQCCwQUkiAkJBGvvwIIQmEhCRAEsoSYCnLFli2N29170WSZfU20vRenvv7Y2Stm2TJljQq9/1av9YazYyOrNHMmXvPPUdIKVEURVEURVFmjlboABRFURRFURYalYApiqIoiqLMMJWAKYqiKIqizDCVgCmKoiiKoswwlYApiqIoiqLMMGOhA5is0tJS2dDQUOgwlDmgvb0d9VhRJko9XpSJUo8VZTL27t07JKUsO//yOZeANTQ0sGfPnkKHocwBW7ZsUY8VZcLU40WZKPVYUSZDCNFxscvnXAKmKJO1u91PdyDO2hoPS8tdhQ5HmeMOdQc55YuyrNzFmhpPocNRZqFQIsPOFh9GTXDj8nJsZkOhQ1JmIVUDpsxrqWyOloEoibTOsb5IocNR5oFjveGRx1O40KEos1T7UIxwIos/lqE7EC90OMospRIwZV6zGA1UF1kBWOx1FDgaZT5oKM0/jhaXqseTcnE1xTZMBoHVpFHhsRY6HGWWUluQC1wineNEf5jaYjtlLkuhw5kWN60oR9clmiYKHYoyD2xv9LK1oQSDejwpYyh1WrhnUy1CgBDqcaJcnErAFigpJd97pZ1/euIksXQOgyb4yPWL+dwdTfMyUZmP35NSOCr5Ui5FPecol6ISsAVISslXHj/Jf71wih0rynj31jqePTHIt15ow6Rp/NkdKwodoqIoiqLMayoBW4Ae2N3Ff71wivdfVc/fv20Nmia4Y3UlAP/xfCu3rapgfV1RYYNUFEVRlHlMFeEvMMf7wvz1I0e5bmkpXxxJviBfp/CFN6+ixGHhH584UeAoFUVRFGV+m7YETAjRIIQYEEI8L4R4cuSyzwghXhJC/J8QwjRy2fuFEK8IIX4lhHBPVzwK6LrkL395GJfFyL++Z8MFdSxuq4nfv34xL7cOc7ArWJggFUVRFGUBmO4VsKeklDdJKW8XQpQBO6SU1wGHgLePJGH3ATcA9wMfm+Z4FrRf7u9hX2eQz93VhNd58ROP79++CKfFyP2vXbRxr6IoiqIoU2C6E7AdQoidQog/AbYBz49c/jSwHVgOHJZSZs+67AJCiI8KIfYIIfb4fL5pDnl+iiQzfPk3J9hQV8S9m2rHvJ7TYuTutVU8driPWCo7gxEqiqIoysIxnQlYH/kEawdwK7AFONM6OgQUA0UXuewCUspvSym3SCm3lJVdMM9SmYB/fbqF4ViKL75t9SWPR9+zuZZ4OseTx/pnKDpFURRFWVimLQGTUqaklLGR1a1fAa3AmRovNxAc+XP+ZcoUax6I8N1X2nnP1jrW1RZd8vpbFhVT7rLw5NGB6Q9ulgnG00QSmUKHocxi6ayOlHLK7zeUyJDM5Kb8fpXpk83p+CJJsjm90KEoc9C0taEQQriklGeG710L/BvwPuAfya+IvQY0A2uEEIazLlOmkJSSv33kKE6Lkc/c0TSh22ia4JaVFTxyoIdUNofFuDAGyR7pCfHdl9sByX03LmFZhRrcrZzreF+Y/Z1BiuxGdqyomLIhy80DEfa0BzAbNe5aU4nDojoEzXZSSn62t5vdp/2Uu6187MZGHGYjZqNqLqBMzHQ+Uq4XQuwVQrwC9EopXwdeFEK8BGwAHpJSZoDvADuBDwLfmsZ4FqTfHOnnlVPD/NntyylxmCd8u1tXlhNL53i9zT+N0c0uLQMRwokMp3wxvv9KO9GkqoFTztXpj5PVdZ45PsgPX+vglC86Jfc7FEkB+dW1iHrczQmZnKTLH0eXMBRN8uPXO/jh6x10Dqvh28rETOcW5GNSys1SymuklJ8duewrUsrrpJTvk1KmRy67f+Q6d0spQ9MVz0IUT2f5f786xqoqN++7atGkbnvt0lIsRo3nTy6cQw83Li/HbTNi0OCUL8pXnzhBMq22hJQ3rK52MxhJ0uqL8mKzjyM9U/OUtabWQ1WRlRWVTirc83Mm63xjNmrcurKC6iIrS8udHOgK8vSxAX59uFdtSSoTotZK57FvPtdKbyjJF9+2etKz66wmA5vqi3mtbXiaopt9Spxm/vLuVTR4HQxF0zx3YpAvPXZsWup9lLmpttiO02IkkszSF0rgj6Wn5H7dVhNXLS7BF0nx2OF+wklVhzgXbFpUzGfvbGJ1lYc2XxxfJMWrp4Z5cF8Pg5FkocNTZjmVgM1TLQMRvv1iG+/cVMOWhpLLuo+rl3g53h8mGJ+aF5m5oMRh5oPXNGDQBFazge5AglO+WKHDUmaRIruZSreVqiIbS8oc4153OJoiNMFDHV3+BP5YhlAiQ8eQ2saaS4aiKRZ57VhNBspdVoKJDH1BlYAp41MJ2Dyk65K/+OVhnBYjf/mmlZd9P9sbvUgJr59eOHVgAOtqi/jYDY0sKXOgCfi/1zp4sXnhbMUq47t2SSlvXlfFlkXFFNnHrqts80V54ugAvzncx3A0dcn7rfRYsRg1TAZBTbFtKkNWptmyChfXLy/lnZuqsZkNdAzHgPzKeSSZ4ZXWIY73hce/E2XBUUdt5qEH9nSxuz3AV+9dN2bH+4lYX+fBatJ49dTw6LDuheIdm2pZX1fEd3aeJhDP8GrbMNsbveqEk0JdiZ0lZU5AcKQnTJnLQpXnwoQpPFJMr0uIJLOX/F302Ey8c1MNUnLJXn3K7LKmxsPKKje9wQQ7jUMAZEfKwPZ3BukOJGgfjlPptlI8icNQyvymXk3mmcFIki8/dpztjSXcu3nsjvcTYTEa2LyoeMGtgJ3R4HWwvNxJicNMKpvlOy+eonUwcukbKvNaLJnlpVYf+zoCZHK5MVtGrKxy0VjmoKnKRX2JfUL3LYQYN/lKZXMLqiRgLsnpEl2XLPLaKXOacVsNPHygZ2Q1DEwGgdW0MFr6KBOjVsDmmb//1XGSGZ0vvWMtQlz5u+jN9cX8+3OtxFLZBdebSNMEv3NNA4e7Q3xr5yl2nQ7wYouP/3jfZrwudVJtoXrq+AAn+iOkMzr1JRW4raaLXs9iNLC90TtlXzeZyfHY4T6SGZ11tR7W1Him7L6VK/dCs4+BcJLWwQjLK9ycGIjgdVgwaBrLyh2YDIZJH4ZS5je1AjaPPH9ykEcP9vLJHUtHtkiu3Mb6YnQJh6fouP1cY9AETVUusjmdcCJDJJnlmeMLb0KA8oZ4OstwNE04lUWfwW4DsVSWZCb/BYen6PSlMnXi6Sw5XRJOZJFSYhkpV3BaDLQMRjnWF2ZP+8LcTVAubmEtacxjiXSOv3r4CEvKHNx3U+OU3e/6uiIgX8cwle/m5xKrycDn7mjin55qxmUx0jYc46ljA9zSVK5qdRagzYuKae6P4LAaqS0Z+xSkP5ZmT7sfj83EtsUlV7wi7XVaWFXtJhBLs75WrX7NNtctLeWUL0ZjmYNMTmd1tYcSh5lTvij3v9pBsd18zlZ0JqeTyOTGXEFV5j+VgM0TX3+mmS5/ggc+un1KRweVOMw0eO0c6ApM2X3ORUsrXHzp7Wt44kg/L58a4qlj/fxiXyf/9dtbCx2aMsNCiQxdgQRZXeeqhhKWlTsvmogf7Q0xFE0zFE2zuNRBuds65n0ORpKYNO2SBdobRt4QKbOP12m54KBFKJHh5dYhQok0bb4oK6ucJDM5NCH4zZE+Yqmc2k5ewNQW5DxwrDfMf+88zbu31HHVNKxSbagrYn9ncME3JPU6LWxpKOFkf4S+YIrXTwX49gunCh2WMsMe2t9D+1CMU74Yr50epi988X5PlSMJl91swG0be5WjzRfl6WODPH60XzXvnEdC8Qy/OdzH08cHOdIdZjCS5FhfhNbBKPF0llgqP2VD/cwXLpWAzXE5XfL5Xx6myGbi82+a2LDtydpYX8xgJEVfSD1RLK90saWhGKtJw24xorOwk9KFqN5rx2ExYjcbKLKbKRojuVpW4eJtG6q5e13VuKffzrwQS/nG35W5L57Joksoc5opdVpwW004zAZKnRaK7GZWVrkoc1lYV1tU6FCVAlFbkHPcj17v4GBXkK+/e8O4TSGvxMb6IiBfB1ZdpBpE/sM961lW3kYmlyOV0fmrh47wto3VbFl0eRMHlLlD1yVehxmv08yqKhe/vX0RdvPYT6MTOTm8otJFKpvDZNBYNMF2FcrsV+Wxsa7WQ5nTTE5KKt1Wlle6Rh8vG+uLgXwX/Yf292A1ady0onw0WW/z5Qv360vsKkmbp9QK2Bzmi6T4xydOct3SUt62oXravk5TpRuTQSzYk5AX8+HrG7lzTTWnh+L0BhPc/2rHhLqdK3ObL5riaG8Ys1Gj1Rejuf/K+8KZjRpbGkpYX1ekDnXMM2tqPNy2upI711Sxob4Yu9lITpfsaffzetsw6axO+1CMeDqHP5ah/6xdhsM9IcKJLEd6wmTUcO95SSVgc9iXHztOMpPj7962ekp6fo3FbNRYXuHiaK9KwM5W5bFS6jTjj6VJpHN85fHjdAfUDL/5zGMzUVds57QvxnA0PWW1kdFUli5/HF1XW9rzUTKTIzDSOqRlIMzrbX6O90VoHohQX2LHZBDYzBrtwzFeaR0ilc1ROzKOqtJjwWRQL9XzkfqpzlGvtQ3z4P4ePnbDkinr+TWeNdUejvaGF3wh/tksJgOfvWMFb15fRXcgwe7TAT7zs4PEUhMbvqzMPVaTgfV1RVhMGol0jt5Q4orf/KSyOR4/0s/OliF2qT5R804ineNXh/r4zZF+jvWGOd4XoXVke9FpMRBL57huWSmrqjz0BpO0D8dpHYyyeVEJ79xUw44V5YX+FpRpohKwOUjXJX/7yFFqimx8csfSGfmaa2rc+GNpVYh/HrPJwD0ba3FZDGRyku5Agm+/0EY6q7YM5quTAxEMQoCA5RVX/uYnm5Ojj5d4Osv+zgAvNPsIJ1UiPx9EUpnRn68/lsZsNLCmxsOSMgcvNA/xo9c7efrYIDldRxMgRL79D+QT/unc3VAKa9qL8IUQnwbeCdwA/ACoAzLAe6SUQ0KI9wOfBPzA+6SUamT8JTx8sIcT/RG+8d6N2MwzM1tsVXW+T82RnpAqxD9PkcPM5+5q4h8eP4lB5LuUn/JFWVnlLnRoyjSoL7Gzob6IbE5yw/IrX51wWIxcvcTLYDhJqdMyOnvVpAmuWVp6xfevFFa5y8qqajfBeJq1tR5yuqR5IEI0mWFvZxBfJIXDYqDYYebN66uRUuJSzVkXhGldARNCWID1Ix9uANJSyhuB7wLvF0KYgPvIJ2f3Ax+bznjmg3RW55+fbGZ1tZs3r62asa+7ssqFJuBor8qPL2bTohL++s2r2FRfTLHDxL88eZK/ePAg2Wy20KEpU2yx10FWl5Q6zRRP0cnjKrcVXzTF6aEYmgApJSXO6TnVrMy8DXVF3LSiHI/NhNmoUWQ34baayGZzeOxGrltWSpXHhsNs4ER/hGeOD3CoO8hzJwfpCSYKHb4yTaZ7BewjwPeBLwI9MNo0qQgYBpYDh6WUWSHE08C3pzmeOe/HuzrpDiT40jvWzuiJKbvZyJIypyrEH8eaGg+LvHb++qEj7O8Kks1Jcjp85d71l76xMmc8e3KQaDJHNJlgf2dgSpofP3qol50tPkLxLE1VLpaUOWksHXt7M5nJIQRTOvVCmRnPnxwknMiyu30YKUGXkiJbPtkejKRoGYgipeSVU8MsKXMSiKV556baAketTIdpWwEbWd26UUr57MhFQ4BFCHEc+DjwIPlE7MySSggoHuO+PiqE2COE2OPz+aYr5Fkvlc3xzeda2ba4hBuWzfzWxOpqN0d61ArYeFxWE7XFNjI5nXg6w85mH997qa3QYSlTaJHXjhBgNgpqiqdoO17m6we7AnH8sRRZXRJKXLwGrDeY4KH9PTx8oJdgfGJDuXVd0jIQoWM4NjXxKpdNl7Cv08++jiCHekIYNY2OoXzS5baasJo0hMg/tuKpLNFUllhKraTPR9O5BfkB4EdnfXw7EJJSrgT+FvgzIAicKZRxj3x8ASnlt6WUW6SUW8rKyqYr3lnvof09DEZS/MGOpQUpzFxT46E/nGRI9bsa15/e0cRb1lVR6rQgBXzvlXZ+vKuj0GEpU2RllZu7VlfwoWsbqPZceQKWyubISYnFqLG2xo3HZqauxIZ3jLmQA+EkuswX7w/HJpaAneiPsLs9wMutw2pLq8BuXF4GCFZUuPBYTXjsJlp8MZ4+PojFqPHmddVcu6SERSU2UrkcBiHY2bJwFx7ms+ncglwBbBBC3AesJr/deOaM9RDgAZqBNUIIA3Ar8No0xjOn6brkWy+2sbrazfUFWP0CWD1SiH+0NzzyJKKM5e/fvhbx8BGeODpATzTJXz90hIOdQf5BbUfOaad8Ub706+O0DISxmQxcvbSUP9ixlDLX2IO2x5PM5NjZ4qMnmGRTfQkg2dRQTIPXMWaJwfIKF/5YGpNBo151zp9zPDYTH7qmgccO93H7mgrsZiPBeIYTfWHMBkGJ08wXHjpC+1AMgyZ458ZavKoecF6atgRMSvm5M38XQrwEfBP4iRDiefIrbx+SUmaEEN8BdgIB4H3TFc9c9+SxAdp8Mb7x3o0FO5a8qjq/WHmkJ6QSsEsQQvDXb15N62CU19tSSODhA7185IZGlpa7Ch2ecpl6AwkGwkmGY2kEgtO+GId7QtzcdHkJ2JGeEAPhFNFUlsYyB06zkYFQisFwirdvqLnoKWeHxcgtKysm9XWaKl2YDAKTQaNGnWIuuNU1HlbX5N/Qdg7H2dXuJ5rO0hNMsr8ryFAkRTydX/1qHYxy26oKHtrfw7IK5+gbYWXum5E+YFLK66SUWSnlvVLKm6SUN0gpT4187n4p5TVSyrullKrCewz/vbONuhIbb1pTWbAYPDYT9SV2VYg/QSajxtd+awMOqwGDJjBokm883czpoWihQ1Mu0+aGYopsRgxCYDIIXFYji7yOy74/u9mIJvLbUW9eWz26kmbQBNoUPjtrmmBZhYuG0suPVbk8sVSW3e1+Wgcv/ntf77Xz1vXVWAwaB7uDVLitbFlUhMNspNxlYV2th9Mj44qOqhrceUUN454DWgcj7OkI8Pm7mjAWeCTF6mq3akUxCZVFNp784xv44qNHOTkQZXdHgA/+7y6+/u4NbFLDu+eco70hpA4Wk0aV28rbN9Re0SSKVdVuiuwmNA1eP+0nmsqwotLF0nKnOuE4T+zrDNDlz9fdlTrNFF2kdYlEUmw3YzEasJkMfO3dm9jfFWAgnMRhNvBS6zChRJbbV73Rd27XaT99oQTra4vOSaxzuuT0UBSX1USF+/JWZpWZoTrhzwEP7O7CqIlZcRR5TY2HjuG46tI9CVVFdr76rg1UF1kJxjMMhJN89P69tParRHau2dse4PRwjHAiy3AsjcNy5UlSdZGNdEbij6VJZyXZnI7HNvONOBPpHIl0bsa/7nxnH9lGNmoCs/HiL7lmg0a9106xw0xDab7+b/OiEnI6vNrm53BPkC5/lGdPDNITjBNPZ2kdjBJL5TjWd+7zyIGuILtOB3j2xOCET8kqhaESsFkundX5xb4ebl1ZQZnLUuhwRuvAjqlVsElxWk385d0rcZgNZHMSfzTN+/77NfzqROmc4rQYiWdy5HRJLJXlUHdw3Ov7Iinah2KXHLJd7rbgshoxGkRBtgl9kRSPHOzh4QM9DITVuLGptLGumOuXlXLHmkrs5otvOgkhuGVlBfdurmVDXRH+WJo2X5RsTqd1IMLJ/iitgzF2tg7xNw8fYW+7n/KR14PzD2LoI/N6pcyvhimzl9qCnOWeOjaAP5bm3dvqCh0KkB/KDfmTkNunoAHlQrKyqoh/f/8mPvy93SQzOr5ohlu/9gIP/P42llUWFTo8ZQzJTI7mgQglDjONZQ6K7EZiySzJTI7jfWF0XV70xGIwnubp4wNICcFEhg11RWN+jXROZ/OiYqo81oIcshmOpciNjC/tCyWIJLOUuSwFWYmbbzRNUDeB06qheAZfNIXXYeapY/3kdCiyG3HbTCwqsTMcSxOJZ9jXHmAwnOK/f3crJXbzBWUpG+qKsJkMuK0mvM6pfdMeSWY45YtRXWSl/DJP/ipvUCtgs9xPdndS7bFyw7LZceqwzGWh3GXhaI8qxL8c2xtL+cLdq7AYBBLwxzLc8fWX6R6OFDo0ZQx72gMc6Qmzs2WIQDxDsc2MBCSCnmCSloGL/+wyOcnIYgSZ3MWHs+d0yc4WH197spkfv97JQ/t7eLHZN+OrUItLHVR5rPgiSX66u4snjvTz5NH+MeNWplYwnuaLjx7lq4+f4N+ePcmRnhDhZAZdh+piOy6biRUVTiwmjUgqS6svxhd+eZihWOqCvowmg8aaGg/13qlvUfJy6xDHesM8f8JHVj02rphaAZvFuvxxXmod4g9vXoZhBscOXcqaGo8qxL8C771qEb5Iin95ugUAHbj+qy+y7y9uptitWgTMNmd+9zSR/5Md2dbJ5iSpTHbMmY1lLgvbG0uIprI0VV58MPvpoRh72gM8eayfcCKD2WTg3s21BOJp3rahZnq+oYuwGA1UFVl57HCCE/1hTg/FWVxqx2gQ3LqyQg2HnmZPHuunxRdlIJTkcE9+gLfZYGB7YzGPHOrheF8Yi0GjxGEmlMxi1AQHu4J84aEjXLuklDXVHjK6zooK15Svep3NOHI0V9NEwdohzSdqBWwW+9nebgDetaXwxfdnW13tptUXJZlRBbuX6w9vXc7a6jdOz0ngmq8+S069q5x1tjYUs21xCRvrivHHMggJAjAaBLUl9nGbsDaWOVlXWzRm8bXbZiSnS5KZHNmcTjqTY2+7vyC/Wy6ridbBCG1DMY72BjFogkRap2M4PuOxLDSVbiu6LgknMwxFU/SHkxg08DosJNM6OV2SyukU2828fUM1VqNGPK2zvyPIoe4QL7f6aB+K81qbn0gyM221X9ctK2VrQzG3raqYVYsCc5VKwGapnC752Z4url9WRm3x7Op2vbraQ06XnOhX22ZX4tE/vJFazxvvVhMZuOWfn0NKVTg7mxgNGkvLnaPv+svdFhD5wumSMcYFTVS5y8rVS0qodNuwmA04LAY8NhPprD7jBdQ1RTbsZiNWgwGHxUgwlsFs1KhWjVun3Q3Ly1lb46bCZcFuNmI3Gah0W3Bbzdy2qoKqIhvlTgsGg2AwkqbOa8ds1NCAk/1h9nUG8EVS9IcTPHqwjyeP9l/y4MflsJoMLKtwqdrAKaISsFnqxRYffaEk79k6O4rvz7b6rI74ypV56fO3sqzsjQS7O5jkrx46XMCIlLEsLnWwrMJJTgenxYTFqFE2Bds9w7E0K6vd3LS8grvWVLF9SSlGg0ZWn9nV0NNDMZZVOLGYNSpcFu7b0cg9m2oumWQOR1Mc7AqOOTxcGZ+UkuaBCFc1etlYX0RjmZMlZQ6EpvFS6xAfuLqBBz66ndtWV1JiN5NM51ha5mTzoiKaqvKr6MFEFl3K0ZORgXiGVFatps92KgGbpR7Y1UWJw8ytkxw5MhNqi214bCZVBzZFnvrTHVzVUIxJA13CT3Z1cfe/vljosJTzGDTB1oYSFpc6SOd0NAFNVW6ePNrP08f6L7s3XpnTSpXHyqZ6D5/YsZTVVW6ubvRediPWIz0hXmoZIjLJeDI5nVKnlW0NXm5qqsDruPSJTCklz54Y5GhvmBeb1cDoy3GmDjCUyLKk3MW9m+tYUeXBYjSMHoJwWU2jU1Cqiqx84OpFfPmedSwrd+VPT4aTRJMZqjw2oskMyyuc2MwGWgejPHm0n/ahWCG/RWUMKgGbhXyRFE8fH+CeTTVj1o4UkhBipCO+WgGbKg/cdw0fuHoRmoCchBP9ET7/4MFCh7UgpbP6uCe8QskMFS4LXoeZXW1+Hjvcz6tt/svujdcTjJPK6FhMBspcVq5ZWnrZvcCGoikOdYfo9Mc52DW538+lZU4Wee3Uldgoc1mIpiaWwBkN+STNZFA1QZfjTGF7NifJjZQfLKtwsrLKdc7MXbNJY01NEetri0hkdJ45Pkh/JEWR3YTbZqIzEOfh/T3oktHVrz3tfoaiafZ0BGb+G1MuSZ2CnIUe3NdNVpe8exZuP56xpsbD915pJ5PTMRV4PNJ88ddvWcNzJwfpGEqQk/DQ/l7MmoG/e/uaQoe2YPQGE7zY7MNk0Lh99cVP/1mMBhKZHE6zgVKXmXAqSyyVHd3+mawjPWGC8QzhZIZ7N9ddUXGz3WzAZBBkcnLSdTqaJlhS5uB4X5hsTmdx6aVHLAmRPyXZH0rOulrVuaLea+d6UYqUkMrm8EVTrKnx4LaaONIT4qljA9QW2+j0xznWF6a+xI7baqR1MIqu52sUix0m3FYTLYNROvxxgvE0m+qLKHNZGAinLvuxqUyvMRMwIYQG/C5wD1ALZIEW4L+klM/PRHALkZSSB3Z3sWVRMUvLXYUOZ0yrq92kszqtg1FWVl38iL0yec98+iY++D+vs7sjCFLys31dmAzwhbeoJGwm9IUSoysIw9H0RRMwj9WEx2ZGlzrlLgtLy10sKXfSeJkzIVdVu2nuj5DM5HitbYgtDSWXvf1oNxu5e10VsVTusiZntAxGcVqMgCCT0zFol47DZTXNqTYVui7pDiRwWY0UX+EhiqlSV2Inkc4xEE6yqb4Yqyn/7948ECGrS472htAlLPY6WFzmYEWlm7U1UfpDCVZVu3nTmkr6QimOW8N0+uMMhJN8+bETrKn1cN1Sr0qOZ6nxli7+B6gHvgw8B/x65LIvCCE+NQOxLUi72wO0DcVm9eoX5E9CAqoObIppmsb//u42NtQVkZOSRFrnf17u4Pe+u6vQoS0IS8tdlDjMVBVZxzz9V1NiJZLKktUlvmia21dXXtFA7jevq6LIbsIfT/PwgT5eOOnjl/u7efxI32W1o7CbjeckXy0DEZ4/OYgvcumxVz3BBM+eGOC1tqF8b5R56GB3kJdah3jiaP+k6+Sm0zMnBnjl1DDPnRgcvWxpuRNNQG2JnU5/nFfbhmkfjhFKpAnE0/SFkpzsj/Dwwd7R9hDlbjP+eIaeYIKBUJJwMoumCbr8cV5uHVKjpmaR8RKwzVLKv5VSviSl/GPgdinlU8DdwCdmJLoF6Ce7O3Fa8u9iZ7PFpQ5sJoM6CTkNTCYDP/r9q1g68qIugWdP+vjzn6uasOnmsZm4c00lO1aUj1l/WVtkp9RhxmoyYDdd+TDufMJkHS26HoqmSKR1/LEM/aHLf7FMZ3UePdjL/758ms7hOHs7/Je8TSKVw20144+l2dkyeMnrz6R4OsuvDvXyy/3d+GMTHzI9EE7y3InB0YkFyUy+PkqX+X+j2WB/Z4ADnUESmRxdgTg/3dPFcycHWVPt4T3b6llR4cJpNeKxmTjWE+b+Vzo41htmMJwinMwQT+d4vd3P9kYv79laz7bFJVS4rTitRhZ57UgpebHZx+unh3niaH+hv11lxHg1YBkhxBIp5SkhxCYgDSClTAkh5ul7o8IKJTI8driPd26qHXNo62xh0ASrqt1qKPc00TSNH/zeNm7/+k788fy79J/u7abSY+WPb1tR4OgWNrNJI5vTSWZyF50BeTluXVlOicNEsd1MfYmdF5p9WE0GKtz5Jq+6LklkcjgsE39e2NU+zNPHB+gJJDBpGssrxy9pkFLithvpDyfw2Ez0hlLEUtlJfc2JyumSaDKL22accEf13mCScCILQMdwbMI92Ha3+wknsvSFkizyOthYn2+M67FN/azEyzEYSXK8L0KZy4IAvE4LqYxOXzBJJJnFbjFQ7DBzdaOX9sEogWSWV9uGEELQ4LWhaQKDEAyEUuxq93PV4pLR14/6Ejs/3dOFL5IilMgQSmQJxTPE09lZ/xqzEIz3E/gM8JwQIgmYgPcCCCHKgF9N9AsIIT4NvFNKeZ0Q4jbg8+RX3v5USrlXCPF+4JOAH3iflHLBvqI/crCXZEaflb2/LmZ1tZtf7O0ecxixcmVK3TZe/fNbuO4fn2UomkaX8O/PtRJOZvhrVRNWMPkXsgw5KXm5dYh3b62/4tPKXqeFHSvKRwcrv2vLuc8Bz50cZCCcorHMwfZG74Tu06QJNCGoLrKyZXExVy0uGff6mZzEYTZx/fIygvEMJQ4zlmk6hf3UsQH8sTQNXjvXLC2d0G2qPPkVnUxWp34Cw63PKHGYOdkfwWLUkFJiNRnYvKj4ckOfck6LEbNRw2Ex4rIasRoNZLJpKtxWbCaN3xzpJ5rMsrLKxXu31/OdnadJpHMU281cu7SUpkoX7SPTCjr9cYrtZpaUOTAaNI72hHitzU8ongIBa2uKqC22c6lez/5YmkxOH30DoEyPMRMwKeWzQohFgFdKOXTW5T7gsxO5cyGEBVg/8ncb8DHgNillbuQyE3AfcAP5Yv+PAV+9vG9l7ntgdycrq9ysrfEUOpQJWVPt4QevdtDhj7P4Mo/NK+OzmA08+qlreed/vkJvMEVWh+++3IFBE/zl3asLHd6Ck8rmeHh/D8OxNEKALiU5XedKOvpkcjoP7O7iQFeQdTUe3ntV/Tkni3O6ZCCcr9/qCyUmfL9bGrzkdIhnslR7bATjmXGLzs1Gjc2LiilzWagttrK03DWaEE6lbE4f3UL0RS9dl3aGw2LkreurJ/316optHLWZsBo1TvRHWF9XNOn7mE52s5E3r6viUHeQ1sEYsVSOqxpLWFLmJJLMEE3mV/0GIynuWF3Jy63DJNI56ortXLPEi0ETlLosnPZF6fIn+PGuThwWA+/cVEsqm6N1MIIvkqapykk0laW2xDbuquaZNkhSwrbFs/sw2Fw37m+XzM9EiQohPi2EeFAI8QshxJ8IISaaFn8E+P7I368mP3f4N0KI+4UQDmA5cFhKmQWeBrZf3rcx9x3pCXGkJ8x7ttbNmSGnq1RH/BlR6bHz+B/dQIk9f9JMAt99uZ1/evx4YQNbYAYjSR7Y1cXJ/igCiS4lBk274pl4wXiGNl+MbE7SNhRlOHpufZNBE6yv81BkN7GhbuIrNwZNcM3SUgSCA10hnjo+MNrYcywrKl3ctqqClVWeaWsvYzRobGnIJ3qb6qd/JcpiMmA2aCQyudHThbONdaQH3NkfQ/5nWF9ip9xlYWN9EQDv3lrHNUtL2dRQzL7OILvbA0SSGbY0lKBpgmA8Q1aXtAxEyeQkTZUuaktsZHMSfyzNt54/xaf+by8P7u0iMjK9QNcl+zsD7G73E0pkRlfIYik173c6TWQT+AdABPi3kY/fC9wPvGu8G42sbt0opfymEOKLQAVQBdwEfJT8atfrwJktxxBw0d9GIcRHR25DfX39BEKee36yuxOLUePtG2oKHcqELa9wYTZoHOkJ8ZbLeGeqTJzbZuYXn7iad37zFQKJLFkdvvl8GxazxqduVjVh001KyS/39fD8yUH88TTpnMSoCexmjd5g8rIbpwJ4HWbW1LjZ3e6nqdKN13nhKtXqas/oyePJGh0JKLnk1tNMWV7hYnnF5FdWYqksw9E0VUXWCSeIbqsJKSWZXL6ObrZaXOrAatLQhKDCbSWayvLY4T6iySwNpXa8jny92tJyF0vLXfhjaVoGokD+Z+x1WrhtVTlmY37reWm5kwq3ha2NXupKHHhsRl5qHeZ4f4RsTmd3e4DDPSE+vmMpkWSW4335Qwpra9ysq/WQyuZUi6FpNpEEbIWUcv1ZHz8nhJjIcawPAD866+MQ8JKUMieEeBb4M+AJ4MxP2A0EL3ZHUspvA98G2LJlyyx5Cpk6iXSOh/f38qa1VXjsc6efjtmosarazf6uYKFDWRAWl7p45k9v4qavPkc4lUMC//n8aeqKHbx9Y22hw5vXwsks8XSOVFbHZBCYjfnB3DaTkdIrbHKpaYJ3bqrlnZum9mc4GElyrDdMudtClcdKhds6bq3a4e4QR3pDLCqZeF3WTNJ1yZPH+kmkdaqKrOxYUT6h2yUzOcxGA2ajgUB84qcnC6HK80brk2gySzKd42hvmN5gAqvJwDVL3vi5lDjMXL+slHAyw/IKF8PRFLtOB3BZTdy8opzmwQj9oSTv3FiD3Wwkk9PpDiRoHYwQjOskszoHu4N0DSeoK7EhRD5Bd9tMLPKqkpKZMJG3EPuFEKNbg0KIq4CXJ3C7FcDHhRCPA6uBzcDKkc9tAE4DzcAaIYQBuBV4beKhzx+PHe4jksrO+t5fF7OxvohD3cFLbm0oU6PEaeHnn7iaYpsRgwCr0cCD+3qIzqJ+RvORy2JkTbWbdbVF7FhRzmKvky31xdy5unKkcenss7c9QG8wydGeMEvLnZdszHrKF0VKaB+OjzuKqVByUpIaaSGRSE98JavIbmZ9nYfaYhubJrGFW2iVHivLKlwU2UzUFNsu2hOursTO6ur8dnFXIEEqqxNL5TjQHeRkfzTfPX/kpLrJoPGpW5bxge2LWF/rodJjpdJjI5XN4bGZuGZJCbevrlDJ1wyayDPHVcDvCCE6Rz6uB44LIQ6TLxNbd7EbSSk/d+bvQoiXpJR/P1I/9iIQJ3/iMSOE+A6wEwgA77uSb2auemB3Fw1e+yVPKc1Gm+qL+e7L7Zzsj7BmjhwemOuWV3h4/jM7+MgP9uCPpmnzxbjnv17l969bzL1b5l4SPxdomuC21ZXcuqqCf3+uhZdah8hJOavHcBU7zATiGZxW44TiXF7h4mhviEVex7QU318pk0Hj+uVl9AYTLCufXOPby92+LbSrl3ipLrIyGEnRdIk2Ig1eOx3DMUwGjWXlLvqCSbK6POfgRanTwn03LeW3r27g8cN9ZHWJQRN85Ae78UfTvGV9Nb9/w5IrrmtUJmYiCdidV/pFpJTXjfz/a8DXzvvc/eRryhakU74ou9r9fO7OpjlTfH+2M4Wh+zsDKgGbQR67mR9++Cp++FoH//tSGx1DMb7w0GF6Agn+6LblhQ5v3srpkieO9JPI5EhncwxN4hTf+YajKY70hql0W1lR6SKWypLK6hPub3UpVy0uYWm5E7fVNKEX1FXVbjI5nUcO9HCgK8gHti/CZp5dRes1RTZqxphQMJ0K2WpnkdfBIq8DXR+/+qbIbuZtG2rY2xHgQFeATYuKON4f4WBXEItRGx1HNBRNcqg7RFWRlbU1RXxnZxst/VGyUvLUsQFuWlFOk6r9mhGXfJsjpewgXyjvAbxn/kgpO0Y+p1yBn+7uwqAJ7tk8d4rvz1ZTZKPcZWFfZ7DQoSw4FpOBd26qwWUxks7ppLKSf3+ulV/u7Sp0aPNWLJ1DE4JURkciMBov/0V5b0eAnkCCvR0B+oIJfn2oj8eP9NM6GJmSWIUQlDotk+pR9tyJQYZjGY71hunyx6ckjssVS2VnRaf600Mxfrqni8eP9BVkazaZyfHIwV5+vrf7nDYkkWTmgnhCiQwn+yP4YxkOdoWIJLIkMzotg/li/S5/nPtf7eTRg30c6QnTFYhjNxtw2oykszoWo4Ef7+rk4QM9xFLZGf0+F6JLroAJIf6e/FDuU7wxHUwCN09fWAtDOqvzi33d3NJUTrlrbja8E0Kwsb6I/Z2BQoeyIBU7LPz4Y1dzyz+/MHJ8XPLVJ0+S1iXv3jo/TwwXiq5LjvSEWFLuJJPTKbKbcVxBN/Fih5mhaBq72UAykyM7ssIRiBeunm9ltZu2oRiZnE4oUbg42nxRXmvzYzFq3Lmmclq68U9U62CUSCpLTkqCiQylM9w93xdJjfYC6xyOU+WxcagryOvtfsqcZu5eVz26xewwG3DbjIQTWexmAx3DMZxWI4u9+ea9wXgGm8kAEhKZHEV2M9sWezEZNDqGYwTiGQbCSYYi+TmTSye51atMzkQe1b8FLJFSzu7jI3PQsycGGIqmec+2uV23s7G+mCeO5jtbT9X2iTJxxQ4LD33iWj7+wz20DcUYjqb4wi+P0NIX4QtvVc1ap8rp4Rgdw3FK7GaK7GYqXFYyOZ1oKntZhfhbFhXT4HXgshoxaYJDPSGyOcmaKapXiqWyvHJqGE3AtUtLJ9QD647VlQjyL/otg1EWlzlmPOEARhvPprI6wURmyhKwoWiKJ4/247IauWtN1SVr3XK6pDeYoLk/wtJyJyX2mXl+03XJK6eGGY6l2FhfRJnLQjydZclIQvTMiUE6hvOrV01VbhaXOrAYDRgNGnetqSI20sKi0mPDbtZG26RE0/m5kdcu83JzUwV2s4FgPM1bN1TzcusQP9/TRTor6Q3GMRu0c57TMzl9Vtc8zkUTeVQfAYqA2TWZdR74ye4uKt1WblhWVuhQrsiZZor7OwPcsrKiwNEsTPWlDh78g+t413++wuGeMBLJ/7zSTkbm+Lu3XfScjDJJtpEExm030VDqoDuQ4Od7uxkaKV62mgzsOu3n9FCUlVX5E5PjEUKMnkw83hcebXo5HEtRa574qJ2xnB6K4YukiCQzNA9EaKp0c/2y0ksmHZJ8bWq91469QDVgq6rdo3Moq6ZwHM6LzT52nQ4gRL626lI/ozNJx8b6YortphmrA/PH03SObAGfGoxx26pzn1eL7CaGowb8sTR72wO0DkZ587p8L0aDJnDbTLisJkKJDFaTgT3tfqwmA60DUUqcJqSEl1qHODUYxevMj5yyGg1UF9nJ5CT13vwMyd5ggttWV1BXbOdQd4gyl4VbmsrV6LkpMpF09svkW1E8IYR45Myf6Q5svusPJXmx2ce9m2tn5YmjyVhX68Fs0Nh12l/oUBY0i9HAtz6wGacl/6IpgZ/u6eGHr54ubGDzRHWRjVtXlrOy0k0qo2M25JtmJkb6g+m6pHUwSk5ntEFmIVW4rRg1wXAsjUnT6Aslxx39k8rm6A0maB2I0htM0D4UG90WnWkem4lbV1Vw9RLvlL7Yu6xGhACzQcM0gfvVhMBi1IinsqMHjmaCx2aiyG5CiHyrifM1Vbqo8thYXuFCCEEslb2gSP+2VRXcurIci9FA80CUXaf9HO4Jsft0gL5QgmgySyiRHh1wvq2xhFtXVfD2jdWsry1iIJJEl/nHcsdwjIFwkldah+gJFrY2cD6ZyArY94GvAIfJjxJSpsCD+7vRJdy7ee430LSaDGyoK+LVtuFCh7LgVRXZeewPr+ft//EywVi+SPcffnOSUCLDJ29WpyOvVEaXDEXT1JXYKctkqRmZx+ex5RsoL6twctoXm3SX96ZKFyaDwGR447TalSpzWXjHphq6A3Feb/PjtBrHLBFIpHM8driPoWiKF1t8ZHI65S4r/mgat3XuNIe+mEQ6x3MnB8nkdFZXubm5qZzaYhsrKi990u9kf4RoKovZpBGbRO+xK2UyaNy1ppKcLi94g57K5jg9FMNuMaAJA13+GC6b6YKZvGajRrnbyumhGAAtA2FODUawmUzkRiY5rKnxsKTMSW2xnTKXZbQRbCans62hhE5/nK0NxRTbzbzYPITbZuJIT5iaIrtaBZsCE0nAhqSU35j2SBYQKSU/39PN1obiKxphMptsX+Ll359tIZzMzPkn7Lmuzuvgpc/dzPv/+3WO94aJpXP8y1MtHO4J818f2FLo8Oa0aDLLoa4gnf44y8qd3LOp9pz6pK0NJWxtmHw/PyHEtAw9Nhk0Fpc6WVTiGPcFM5zMkMqeGZItSaRyCAHVnrl5OOhsPcEEwXiGZCbHL/f3UFNsx6hpE0ogYukMB7qCGARcN8PTAYQQGA0XxqghaBmIEohn0KWOJjRiqRzNA5FzErAztjaUkM3pvNzqI5nRMRt0qott3Lu59px/g6O9ISLJLOtri7CZDbzrrJ6C2ZzO1Uu8HOgK8qtDfRzsCnLn2spJzSZVLjSRva+9QogvCyGuFkJsOvNn2iObx/Z1Bmkbis2L1a8zrm70okvYrbYhZwWb2ch3P7iVRaX5d7S6hGdPDPKT3apzzOXK5nQOdAXwRVP0BBM0D0bZ3T67H+9SSk70hzk5EBm3j1S5y8KyCidFdhNOiwmHzYjNZKAzkBjzNnNFlceKw2IAweiot1h6Yi0WTAaNlVVumqrcs6ZPYzqn01DqYHmFE4fFiNuWHzPUOMabeU0TxNI56krsVBfbuG55KdctKxtNvtp8UZ4/OcjejgBPHRvg359roXP43G1Go0FjY30RupQE4mmO9IZ5/qSP4Svog6dMbAVs48j/t591mWpDcQV+vrcbm8nA3evmzwDrjfVFmI0ar54aVoX4s4THYeaX913LrV97gf5ICqMm+OcnTvJS8xD//v7NhQ5vztGEwGzUkEgiyQyBuAHXFJ3Oi6ezGDVtUj27JuKUL8a+jiAARk2wbIytUSEE9SV2QvE0yUyOvlCKcrcVl3V2jlmaDIfFyNs25PssnugPE0lmWTvBptENXgcvnPRhNmlUuGf+NOjFOCxGlpU7CcTTXNXopWM4hqaJcU+KNpY58cfSbFtcQoPXQU8ggdtqJJHO8Vqbn2QmR3cgjj+WobbYxon+MPXec7fCB8NJQok0Rk3gsubr0473h9lcXzLrGvbOFRNpxLrjIn9U8nWZkpkcvzrYy11rZu8MucthNRnYVK/qwGYbm9XEc3+6g3duqMFoEAzHMvzmSD+///1dhQ5tztE0we2rKkmkcxg1QTyVnZK2K+1DMR4+0MsjB3uJTnHzS5NBIJEMhJN0+uPjroK92OxjMJKmodTBZ+9cwTs21lAxhScQZ4OmSjdbG0om1JID4GhvmK5AgrbBGEd6QtMc3cQc7Q3l53XqklVVblJZnXgqN+5q7NJyJ+/ZVs9Vi7281uandTBflH+mvsxqMnDLynK2Lc5vKdrO+/fp9sf55yebafPFKbab+MSNjQgJbb4Yezpm9yrwbHbJBEwIUSGE+B8hxG9GPl4lhPjw9Ic2Pz1xtJ9IKjuvth/PuGZJKcf6wmpZepYxmw185d71LCl1IMhvRx7oCvHdl9oKHdqc47AY0TSB2WjAbNIwTcGK1WAkhZT5xsyB2NS2W1zkddDgdWAyCA50BfnNkT5yYyRhZ1YxrEYDpU7LOTMEF6qcLiH/H7NlPvngSI+0WCpHMpOjaOQAyETeDBgNYnSV1WY2UOIwc+vKcq5e4uXqxlIaSh1Ueay0DEZ5sdk3Og1hOJ5GAgYhMGoavmia9uE4R3vDmLS5fYq/kCbyL/c94AngzH5ZM/DH0xTPvPfzvd3UFNnY3ugtdChTbseKcqSE50/6Ch2Kch5NE/z0Y9tZU+2i2G5CCMG/PdPKh777OrnczJ3umg92rChjcamdbQ3FU3JisanKRYXbQoPXTvU0zDn0WA2cGoxyrDfMqcEYzQMXH3V068oK1lS7CSbS/HJ/N5Fk4TrhT5f2oRgP7O7kqWMDYyaiZ9ve6OW21RXcuaaSTYuKpj/AizjSE+Inuzp5pXUIgDU1HkqdZlZUuih2mLltVQV3rK7g2iWXPiRgMRq4Y3UF1y8r5arF+degcreVxaX5QxpGTaN9OMZTx/r5ya5O/vfl08RSGVZWunnXllquXeblj29bRjKbY1W1m9oi2zkzgJOZHAe7ghfUkCkXN2YCJoQ4sz9WKqX8KSMtKKSUWUA9Y1+G3mCCl1qHuOe80yfzxepqN+UuC8+eVD17ZyOTycRDf3A9n7p5GbquE0ln2dkyxHu/8/olB/0qbyh2mDEZDYSTOdp8V97vy201ccvKCq5ZWjqhodmTMRxN8c3nT3GkN8xgJElW12kZiFx0zqPVZEAHpBQk0joD4eSUxjIbtA3l+7T5IqkJjVqymQ28aW0Vd6yuxGIsTJ3TKV8UXUL7cJxMTqfMZeH21ZVsXpTfLjQaNLxOy4RfU1xWE3Ul9os+1jbVF+GyGrGbDLzW5ueZ4wPc/2o7L5wcJJbKsqWhhCqPjU2LillS7uT21ZU4z6oT3NcR4GhvmJdahwgVcKTWXDHeCtiZIpGYEMLLyBxIIcR2YHZshs8xjx7sRUp458a5OXj7UjRNsGNFOS+ezPcRUmYfIQQfum4x141MXxBC0BWIs6fdj5QqCZsIi8GA02LEoInRbuWzVW8wQSqr4zAbKXNZsJoMRFM5Xm4dIpm58H304pHRSCUOEzVFU9OPbDZZVp7vt1blsY5u3c12y8pdGA2CJWWOaR8FZDRo3LSinAq3BbfNiMdm5kBXmFfb/BzsCtHtT+CLpih3WdmxopwVlece6jAZNTI5HSHAcJEWGsq5xqsCP/Ov92ngEWCJEOJloAy4d7oDm48eOdjL+lrPvOn9dTE7msp5YE8Xe9oDXL1k/m2zzhdff89GpIS9HX6qPFZ+tKuDn+zu5C/ftAqva3ac9pqNBiNJJJKuoSjWKR6TMx2Wlru4uamc1oEod6ytJJuTdPkTGA3aRVdAPHYTb1k/f05nn6+uxH7RzvKz2apqN6uqL900dqqsqy2iqdLNN55tIZrMsLrazUA4zVA0STSZxmkxEoilCcTT1JfYz2kUqwlBKJ6h1GXGdon6yEAsP26pvsS+YOsNx0vAyoQQnx75+y+Bx8gnZSngVuDQNMc2r5zyRTnaG+YLd68sdCjT6rplpZiNGk8c7VcJ2Cz3r+/dSE8gwY9eb+dne3tIZ3WGovv5/u9dNWt6Hs0m/liap44O8MjBXvoiKSyJLC+2+lhRNXMvjpNlMxv47e0Nox9nczp1xQm8TrMarKyMyWzU+LPbVwD5wyGtgxEcFg2L0cjrbX78sTRZXTIQTp3zPN8XSpDIZNl1OobTYuTN66rH3Bp9vnmQRFqnbSjKOzbOv0NpEzHeb6ABcAIuwEE+WTMA9pHLJkQI8WkhxEtnfXyPEKLrrI/fL4R4RQjxKyHE7H0mu0KPHuxFCEYHps5XTouRm1eU8+vDY5+2UmaPmmIbmxuK0WV+NElPMMFjh/tIZVWZ5/nObKufGVBtMWkjhRlXLpvTefbEAA/u66Y3OH3NT40GjYZSBy41rUKZILNRY5HXgc10Zr1G0h9Osq8jwMGu4DnXXVvjIZ3VqfJYiaZyJMd5HjGMnJ40LuBTlOOtgPVJKb94JXcuhLAA68+7+F6ga+TzJuA+4AbgHuBjwFev5GvORlJKHjnYy7aGEirnwWiPS3nL+moeP9rP623DXDPD4zuUybu5qZLP3J7m10f6WFbupC+Y5NGDvdywrIzyWb7FNpMq3FauavTisZvY3+6n1GXlLVP0hsofS9MfyrcXaB2MTstpyDNfxyDEaEd4RZkIh8XIzU3l+ONpGkuddPrj2C0GLCaNWCo72gR2kdfB713fyOHuIFUeG3azESklp3xRjJp2TvnNLU3l9AYT0/ZYnwsmUgN2JT5Cfpj3FwGEEHcDTwG/N/L55cBhKWVWCPE08O0p+JqzztHeMG2+GB++bnGhQ5kRNzeV4zAbePRQr0rA5oh3b6vnpqZyXmj28dihXroDCb71wim+9u4NrKkpKnR4s0aF28Lu9ixLKtwsLnVQOUUvHsUOMyUOE6FEhgbv1NSI6rrkhWYfQ9EU2xaXoAnBzpYhhMi/+F0suc7pksFIksFwir5QghWV7ovOF1QWluaBCG2+KEvLXSOlCimGIimGo2lKnWZubqoYTcJqimzUnPV70TwQZW9HAACDJkZr8BwW45iTGRaK8db+brmSOx5Z3bpRSvnsWRd/EPjhWR8XAeGRv4eAi072FEJ8VAixRwixx+ebez2mHj3Ui1ET3LWmqtChzAib2cBtqyr49aG+i560UmanCreVd22uxWLUCCWydPrjfOi7u/nN4d5Chzar5HRJmy/K4Z7QuI/vUDzDSy1DY/bdOpvJoHHnmip+a0vdBSNgLlcokaEvlCSTk7QORkfbLkgJ4eTFO+4/cbSfL/3qOF/81TF6g0n2dwamJBZlbtvXEcAfy/Ba2xBfffI4r5waJpLM4LIaiSRz9EzhtnlPIME3n2vlwX3dU3afs9WYCZiU8krnC3wA+NGZD4QQNwOvSCnPbvUcBM7UfblHPr5YLN+WUm6RUm4pKyu7wrBmlq5LfnWwj+uWlU7J2JK54re21hFOZvnVob5Ch6JMghCCj96wBKtJQ0qIJDJ87ueHeGCXGuIN0B1IcLI/zMn+CL2B+AU1MGfb0+Gn0x9nT3tgwk1Np/Lwg8dmotJjwagJGsucLK9wsaTMwYpK55irWns7ArQNRfFFknQOxxZEyYRyaWceB1ajgWAsSyYn8cfSxNM5zAYx7jbi8gon2xaXcM0SL7qU/M/ONr7+dDOvtQ1d9PoPH+ihZSDKi81DNPdf+s3LXDadwwhXABuEEPcBq4G1wFuFEHcCq4UQ/w/4O2CNEMJA/mTla9MYT0Hs6wzQE0zwp7cvL3QoM+rqRi+NZQ7+7/WOeTl2aT7b3FDCD35vKx/83130BJPksjpfeuw4LouRN62fnz3sJiKnS15uHWIgnKLNFyWQSNNY7uSqMaZauK1GeoIJnBbjpJp4tvmi7O8MUuWxXtEWvqYJbm6qOOeysWI9o67YxgtZictqYsviYq6ZQHd1ZX7Z2+GnfSjO6ho3TZX59ZEbl5cRG0m2QskM/ni+HYXdbMBsMow711gIwdJyJ4l0ju+9cppXTg2TyelEklmkzG9Lrqn2YB+5j+oiK80DUSwmjbJ53hJn2hIwKeXnzvxdCPGSlPJfgX896+MvjPz9O8BOIAC8b7riKZRHD/ZiMWrcvrqy0KHMKCEE779qEX//q2Mc6QmdM65Cmf0Wl7l44GPX8O5vv4ovkiKjw3deOk2Fx8bmhpJCh1cQBk1Q5bFhMWpYzQbcVhPBMbp953TJcCxNIp1jTbVndP7eRDQPREhlddqH46yve6PAeSasryuiO5DAYjSwonLeHkpXxpDN6Zzsz093ONEXGU3AhBCjSdaHr2vkrjVV/HhXJ26riVQmRyyVxWzUxm1tYtAEbqsJq1Ejp0vMBsHLLcP0hBLUFPn4g5uXYTUZePvGWtbUeCi2m+d9f7AZ+c2WUl431sdSyvuB+2cijpmWzen8+nAft6wsH/cdwnx176Za/uXJk3z7xTa+8d6NhQ5HmaSqIhs/+eh2/uSBAwxHUgxEUnzqx/u4dmkpX33XhkKHVxB3ralkbY2bRw72okvJutqLv7GIp7P4YxlcVhODkckNp28odeCPBan0WEZbXsyEaCpLy0CE5oEIBg2MByRLK9zctqoCq6kwY3iUmWU0aNSX2On0x8c9fFFdZON3r2mgfTjGQDjJn//iEKFEho11Rayq8XBzU/kFyZjZqPHm9dVctbgEKfO1wt9/pR0pIavnT+ie2cpcWr4wivMXXlYwg15tG2Yomuat87iz9Hg8dhO/ffUivvNiG39y23J1mmoOqi6yc//vXcX3X2vnWy+0kcnpvNDs48XmQW5YXl7o8GacpgnqvQ5+55oG/NE0tcUXr31xWU0sLXfSH06yepJdzJsq3Swvd834vNhALI0vkiacyJLK5ugJDrDKn6TYYeK6pXOr9la5fNctK0XX5SUff16nBa/TwteeauZkfwR/PI0/lqbYYSEQS1/0lK3HZsJz1giod2+r4+XWYeq9dioWYMubhdsBbQY8erAXp8XITSsW3gvVGR+5rhGTQeM/n28tdCjKZTKbDPz+9UvYVF+E0aBR6rSw0MdGuq0mGkod54xhOd+2xSW8dX31ZY2+menkC/KrGquq3VR4LHjsRorsZjSRL7xWFpbJPP62NBRjMWl4bCZcViNFdtOED5wtLXfxwWsa2LGifMoH0c8FagVsmqSzOo8f6ef2Bb58X+ay8N5t9fzwtQ4+duMSlpQ5Cx2Scpm+/TtbefpYPwahsWlRMXva/aRzOpvqixfUYzynS/Z3Bubd927QBDuayrmqsYRQPMPpoRgGg2Bj/UW7AykKANcvK2NxqYMDnUEayxysqp6Zet8T/WEGwynW1njmbK2YSsCmyc4WH+Fkdl4Ptp2oP7h5Kb/Y282XHzvOf39wa6HDUa7Aravyh0naRmab7jo9zGOH+vijW5dR5pr/WwhSSh492MOu0wHqS+w4zEbW1xUVOqwxheIZDveEKHdbWD7Bppd2sxG72UjVAu5QrkxObbGd2uKJrfSe6A8zHE2zpsZzznbk2fyxNLtO+3FZjVzd6L1gRS6SzLCvIwjkFztuXVVxkXuZ/dQW5DT51aE+PDYT16pO8JQ6LXzy5qU8fXyQl1sv3vtFmVvcNhPd/jjdgQTH+yN8/ekWgvH0pW84xwXjGQYjKRKZHL3BBEWzfKTP2b3IwhPsRZZI53juxCAvNPvUTFBl0nRd8sqpIZ46NkDovFPCwXiafR1BOobj7Bunye+JvjD+WJqO4Tj94eQFn7cYDdjM+fSl2DG7fwfHoxKwaZDM5HjyaD93ramc1PHz+ex3r2mgttjGFx89NjrUWJm7Sp0W7tlcQ4XbQi6n0xdM8O0XTzEYufDJcj5xWo1UF9lYW+PhzeurWDRFY4Omy5kVBotRwzLB56LWwSh9oSSnBqN8/5V2HjnYO+HkTVlYjvSE+NmeLvZ2vNG3vS+cpH0oji+S4lhf+JzrW02G0dfEsVa/IH8CWwiwmTWK7RduL5qNGnetqeK2VRVsmsNb5GoLcho8f3KQWDrHm6doUO98YDUZ+Ju3rOb3f7CH7+xs4xM3LS10SMoVaqry8LdvWcOPdnWO9I4ysrc9wJaGknnbQNFkyD/xp7M6thlsEXG5Ni8qpq7EjttqmnAzWLfNSDCe72HmtpmIJrN0+eOsnqHaHmXuONkfIZOTnOyPsqm+GCEExXYTVpNGMqNT4X7jeSCayhKIpbljdQWJdO6ipyTPWFzqoMpjxaiJMQ+6WE2GOV9/qRKwafDowT5KnWa2Ny7MhpVjuW1VBXeuruRfn27hTWuqaFBtKea86mIbH7uxkSeP9TMQTtExHCcQz7CjqYwqz/ysITJoYk4kX5BvoDnZ4/0Hu0M4LEbK3VbOvPbVFk3NfEplfllS7uR4X5jFpY7RMVp2s5G3rK8mk9Oxm/MpRjqr88SRflJZnQavfUITHuZ6cjURan9sisVSWZ45McBda6rGPaK+UP3tW1djNmj85UOHkQu9l8E84bKauGdTHTcuL8NtMxFJZnjq2MC4NR7K7JNI53j2xACHu4NoAkwGwTs21vKOjbV4Znmtm1IYG+qKeO+2erafN+LKZNBGky/InxyOJDOc7A+zuz1AVpWhACoBm3JPHx8gmdHV6ccxVHqsfPauJl5uHebBfT2FDkeZQisqXKyscmEyCATw7PFBXmz2qZq/AjvRH2ZfZ4B0dvyfQ/NAhP5QihKHBYfFoA4QKVPGZjZQ7rZiNubnRnb442NeN53V2dcZ4Ph59WPzkUrAptivDvVR6bayZdHcLQycbu/fVs+m+iK+9NhxArH5f3JuoTAaNDbWF7NtsZdQIosvkqR9OLYgnkhnq95ggn0dQU70RTjcExr3umUuC5oAr8PMjhUVlDrnZx2fUhjraj00ljlw2Yx4x+nbdaQ3xIm+CPs7g/QEEzMY4cxTCdgUCsbTvHDSx93rqgrSyXqu0DTBl96xllAiwz8+caLQ4ShTbE2Nh7vXVrKmxoNR0+gJJNjZ4iOUUCfpZprVZGCkNAfbODU1Ukr6w0kq3FZuW1UxZxtbKrNXbbGdt22o5q3rqyk662SjlJIDXUFebh0ins6OPk6FAOs87yKgivCn0KOH+kjndN6xsabQocx6K6vc/N61DXxn52nu3VzL5kXqwMJ8srjMictmwhdOsb8rSCCeIafLBT2WqxBKHGbuWF1JIpOjZpzGqt2BBCf6IgC4bVE2O9TvozL1zq4LO6MvlORYb36V3KgJrmr04raZsBo1vPN8FXZ+p5cz7MF93TRVuiY9fHeh+uNbl1PlsfKXvzyi6oTmoVKnhcVljtH+U0UX6eejTL8Sh3nc5AvAZTWOnnj02NTPSZk5TqsR48iO0ZnniJoi27xPvkCtgE2ZU74o+zuD/MWbmkaP4yrjc1iM/M1bVnPfD/fyvZfb+f0bGgsdkjLFrCYDb1pbRTSVpcxl4VhvmJbBCEvLnaqv1CxSZDdz97pq0lmdEoeZ19uG6Q8n2VRffFnDxBVlotxWE3evqyKZyZ2TdKWzOjtbfCQzOtcu9c7LN3BqBWyKPLivG03A2zeo7cfJuGN1BTc3lfO1p5vnfRf1hcpmNow2Zj3SEyKWynG4e/yCcGXmOS1GShxmIskMp3wxYqncBZ3MFWU6OCzGC1a8+kIJBsIpQokMLYPRAkU2vVQCNgV0XfLLfT1cv6xs3O6+yoWEEPzVm1eRzup87amWQoejTLN6r/2c/yuzj8NsxOvMrzbUq9UvpUBKnRZsZg2DBrXF87Op87RvQQohPg28E/gA8ANAAt3AB6SUOSHE+4FPAn7gfVLKOfeW6+VTQ/SGknzurqZChzInLS518NvbF/GDV9v50LUNLK9wFTokZZpsb/SyeVExJtWkeNbSNMEdqyvJ5HT1c1IKxmEx8rb1NehSztum5tP6XQkhLMD6kQ+DwFuklDcAp4E3CSFMwH3ADcD9wMemM57p8sPXOkZPGymX549uWYbDYuT/e+x4oUNRppl6UZ8b1M9JKTRtnFmQ88F0f2cfAb4PIKUMSCmDI5dngRywHDgspcwCTwPbL3YnQoiPCiH2CCH2+Hy+aQ55cvpCCZ4+Psi7ttQuiNlV06XYYeZTNy/l+ZM+drbMrp+xoiiKoky1aUvARla3bpRSPnve5dXArcCTQBFwZssxBFy0fbyU8ttSyi1Syi1lZWXTFfJl+fGuLnQpef+2RYUOZc77nasbqC228f89dgJdV3MiFUVRlPlrOlfAPgD86OwLRrYkvw/8/siqVxA40zTLPfLxnJHJ6fxkVyc3Li9TRcVTwGoy8Jk7VnC8L8xDB9ScSEVRFGX+ms4EbAXwcSHE48BqIcSngG8D/yGlPDZynWZgjRDCQH5V7LVpjGfKPXa4j8FIig9sV6tfU+Ut66pZW+Phn544STKTK3Q4iqIoijItpi0Bk1J+Tkp5h5TyTuAosIf8acg/EkI8L4R4h5QyA3wH2Al8EPjWdMUz1aSU/Ofzp1ha7mSHGq8yZTRN8Pk3NdEbSvL9V9oLHY6iKIqiTIsZ6YQvpbxu5K8X9BeQUt5P/gTknPJ8s48T/RG+eu86NXh7il2zpJQdK8r45nOtvHtr3bzsgKwoiqIsbPP3fOc0+6/nT1HlsfI21fl+WnzuriYiqSzffK610KEoiqIoypRTCdhl2Nni4/XTfj56QyNmo/onnA5NlW7u3VTL91/poMsfL3Q4yizQOhhlb0eg4LWB6azO/s4AzQORgsahKMrsc6I/zIGuIOmsfsnrquxhknRd8o+Pn6SmyMb7rqovdDjz2qdvX44Q8M9Pnix0KEqBDUdT7Drt52R/hP2dwYLGcrgnyPG+CHvaA/SFEgWNRVGU2aMnmGBfR5BjvWGO9l563q1KwCbp14f7ONwT4tO3LcdiVI1Xp1OVx8aHr1vMQwd6OdKjhjcvZGajxplSS6upsE9bZ37vhUA9ByiKMspy1o7YRBqzz0gR/nwRTWX50q+Ps7LKzds3qtqvmXDfTUv48a5Ovvyb4/zww1chhDrwsBC5rCbuWF1JJJmlrqSwg3lXV7vx2EzYzQZKHOqAiKIoeaVOC7evriCZyVFbfOneoGoFbBL+5clmBiJJ/r93rMGgTj7OCLfVxB/esoyXW4d54uhAocNRCqjYYabeaz8nCR+KpjjZH5lQvcVUEUJQV2LH67TM2NecCu1DMdqHYoUOQ1HmpIk+15Q6LRNKvkAlYBO2p93P9145zfu21bOx/qITk5Rp8tvbF7Gqys1fPXyEUDxT6HCUWSKZyfHM8QH2dgR4/fRwocOZ1dp8UV45Ncwrp4Zp80ULHY6izCmJ9BvPNbtO+6fsflUCNgHBeJo/+skBaovtfO6upkKHs+CYDBr/eO86/LE0X3rs2KVvoCwIUub/AKjRoeM7+99H/VspyuRI5FnPNVP3C6RqwC4hk9P5w58cYCCc5Bcfvwa31VTokBakNTUePnpDI//5/CluWlHOm9ZWFTokpcBsZgM3rShnKJpiabmz0OHMakvKHMiRF44lZY4CR6Moc4vdbJyW5xqVgI1D1yWff/AwLzb7+Id3rmV9XVGhQ1rQ/uTW5bzWNsxnf36IFZUulpSpF92FrtJjpdJjLXQYs54QgmUVFwwiURRlgqbjuUZtQY4hndX5k58e4Od7u/njW5fxnm2q51ehmY0a33zfJsxGjQ9/bzeDkWShQ1IURVGUy6ISsItoHYxyz3++wsMHevnsnSv4o1uWFTokZUR1kY3//uAWBiMpfud/dqkkTFEURZmTVAI2QkrJga4gf/6LQ9zx9RfpCsT5r9/ezCduWqp6T80ym+qL+c7vbKFjOM47vvnKhDoOK4qiKMpsMmdrwGKpLCf6I5zoD3OyP0JfKMlgJEUgliaT08nkJCCxmQ3YTcb8/80GbCYD1pE/FpNGLJVlKJriaG+YYDyD2ajx/qvq+dTNyyhzza0+PwvJtUtL+dl9V/Ph7+/m7d98mU/uWMp9Ny6ZUPdhZeHpCyXwRVIsK3dhMy+cx4iUkuaBfNuJ5RVO9WZSUaZZlz9OMJ5hWYXzkq9HczYBu+WfX6A/nN9+clqM1BbbKHNZaPDaMRs0jIb84l4qkyOezhHP5Eiks0SSWRKZHIl0jlQ2h8NipNhu5s7VlWxeVMztqyvx2NRJx7lgTY2Hx//oBv720aN8/ekWfryrk7+8exVvXV9d6NCUWSSRzvHCSR+6hOFomh1N5YUOacac8uUHmAMYNKFOiyrKNAolMuxsGQIgnMxw7dLSca8/ZxOwP7+rCbvZwMoqN7XFNvXOboEqdpj51/ds5L3b6vmnJ06Szc1cR3RlbhACNCHQpcRoWFjPEwbtjSoTo5reoSjTyqAJNJHvtTeR37dpT8CEEJ8G3imlvE4I8RngbUAH8LtSyowQ4v3AJwE/8D4pZXgi96tmMSpn297o5Wf3XV3oMJRZyGoycOuqCoajKRZ58z2w+kIJArEMS8udmI3ztxR2cakDgxAIAXUllx6P0h9K4o+l5/2/i6JMB6fFyLIKJ6FEhk31RZe8/rT+hgkhLMD6kb+XATuklNcBh4C3CyFMwH3ADcD9wMemMx5lfhNCqJVQ5aJKHGaWVbgwGzUiyQzPn/RxoCvIno6pGysyW9V77RNKviLJDM+dHMz/u7TP/38XRZlqHcMxTvZH6Q+lOD0cv+T1p/stzkeA74/8fRvw/Mjfnwa2A8uBw1LK7FmXXUAI8VEhxB4hxB6fzze9ESuKsmAIVMJ+hhBn/WuofxZFmbSzn08m8is0bVuQI6tbN0opvymE+CJQBJzZXgwBxWNcdgEp5beBbwNs2bJFTTJTFOWyuawmbm4qJxBPq2kKZ3FajNzcVI4/nqaxVP27KMpk1XvtXCO95KSksfTSI7+mswbsA8CPzvo4CJwp3HKPfBwc+fvZlymKokyrCreVCrcaYXS+creVcvXvoiiXrWECidcZQk7hZO9z7liIrwAbyCdWW4EeICelbBRCfBZoB9YAnwb2kC/MPyql/Mfx7re0tFQ2NDRMS8zK/NLe3o56rCgTpR4vykSpx4oyGXv37pVSygtKvqYtARv9AkJUAr+QUl4rhNgPSOAE8LvAXwBW8kX4AfKnIMdta75lyxa5Z88epJSq4FoZ15YtW9izZ0+hw1DmCPV4yVPPrZemHivKZAgh9kopt5x/+bS3oZBS9gPXjnx4CPiKlPLYSFAAt5FPvv7yUsnXGYORJM+f9GExaty2qgK7ec62M1MURZkVsjmdZ04MEoil2ba4hEZVH6cokxJOZnjm+AA5HW5uKqfEYR73+jPW6EUIsQ4oPZN8jfiGlHIz8HHg38a57TmnILv8cbI5SSyVYyCcmu7QFUVR5r1QIsNwNI0uoWMCR+gVRTlXXzBJIq2Tzur0BBKXvP6MJGBCiBLg34EPn325lNI/8v+W8W4vpfy2lHKLlHJLWVkZi0udOCwGShxmqjyqYFRRFOVKFdvNVBdZsZo0NbJIUS5DbbGNIrsJl9VIvffSvfdmohO+Efgh8JmR7cizP+eWUoaFEKWTiaXEYeZtG97ohB9PZwHUVqQyp0kpOdAVJBBPs7WhBJdVzSRVrtxEnx81TXDTioUzJ1NRpprDYuTWlRUkMrkJzZSeiYzlXeRPQX5lpObr8+SL7T8FfFUIsYb8StyfX86dD0aSPHt8EIAdTeXqaLkyJyUzOT75f/t45kT+sVziMPNv7914yWGuijKewXCSZ0ceUzc3lasWE4oyjZKZHL850kcirbO+zsPqas+415+JIvwfAz8+7+JXRz53xaOH/LF8zQLAUDSlEjBlTvqLBw/zzIlBPn9XE6uq3fy/Xx3nQ9/dzY8/ehWbF5UUOjxljhqKvvH8OBxLqwRMUaZRLJUlkdYB8EUuXZ8+56etNpY6qS+xU1tsU12tlTnppZYhHtzfwx/evJSP3biE65eV8cDHtlNVZOXjP9xHMJ4udIjKHLWk3EFdiY36EjuNZRNvEKkoyuR5nRaaqlxUuC2sqy265PXnfAJmNmpct6yUG5aXYTUZCh2OokzaN55poabIxidvXjp6WZHdzDfft4nhWJqvPH6igNEpc5nFaOD6ZWVct6wUi1E9PyrKdNtUX8wtKysu2YIC5kECpihz2YGuILva/fzedYsveIFcU+Phw9ct5se7utjfGShQhIqiKMp0UAmYohTQz/Z0YTMZePfWuot+/o9uWYbXYearT5yc4cgURVGU6aQSMEUpkExO57HDfdy6qgKn5eLnYRwWI5/csZRXTg3zUsvQDEeoKIqiTBeVgClKgbzUMkQgnuGt66vHvd77t9dTU2Tjq0+eZLpntyqKoigzQyVgilIgTx0fwGE2cMPy8Xt9WYwGPrFjCQe7grxyaniGolMURVGm04JIwPpCCU75oui6Wj1QZgcpJS82+7hm6cROp92zqZZyl4VvPtc6A9Ep81HncJxONeNRUS7LcDRFy0CETE6fsvuc9wnYUDTFcyd8vN7m50hvqNDhKAoAbUMxugMJblheNqHrW00GPnL9Yl45NaxORCqTdnooxkutQ7zUOsTpoVihw1GUOSWRzvH08QF2twd4vc0/Zfc77xOw3FmrXlm1AqbMEi82+wC4cdnEEjCA9121CI/NxH88f2q6wlLmqbOfB3PqeVBRJkWXcnSiRG4K63Dn/fTqCreVq5d4iaezrKhwFTocRQHg5dZhGrx26r32Cd/GaTHywWsa+MYzLTQPRFiuHs/KBC0pc4wmXktUR3xFmRSHxciNy8sYjqZZVjF1E3fm/QoYwOJSB6urPRgNC+LbVWY5KSV7O/xsbZj8jMcPXdOA3WzgP9UqmDIJQghWVLpYUelCCFHocBRlzqkusrG21jOlE3cWZEYSiKU53hcmkc4VOhRlATrlixGIZ9jSUDzp2xY7zLxvWz2PHOylY1jV8hRCTpe0DEToDqiCdkVRztXlj9MyEJnQob8Fl4BlczpPHx9gf2eQnS2+QoejLEB7O/JFnJsXTX4FDOCjNzRi0AT/8ZxaBSuEwz0hdrcHeLF5CF8kVehwFEWZJQbCSXa2DLG7PcCxvvAlr7/gEjAAed7/FWUm7WkPUGw3XXYtTrnbynu31vGLfd10+dUqTCFJ9SyiKMqIs+vzJ1Krv+ASMKNB45amctbXebhu6fgNMBVlOuztCLB5UckV1eLcd9MSNCH4rxfUKthMW1vjYdOiIq5fVkq5y1rocBRFmSUqPVauW1rK5kXFrK52X/L6Cy4BA/A6Layu9uAYY/6eokwXfyxN21Dssuq/zlblsXHvllp+tqebvlBiiqJTJsKgCZoq3dSVTPwEq6IoC0O9186KSheaduk32NOegAkhrhJCvCKE2CmE+NpFPi+EEAeFEB+Z7lgUpdCO9OSbAa+r9VzxfX38xiXoUvKtF9qu+L4URVGUmTUTK2AdwM1SyuuBciHE2vM+/1ZgcAbiUJSCO1OYuarq0svTl1JXYueeTbX8aFcnPUG1CqYoijKXTHsCJqXsl1ImRz7MAuf3fngv8MB0x6Eos8HR3jA1RTaK7OYpub9P3bIUJHz9qeYpuT9FURRlZsxYDZgQYh1QKqU8dtZldwAvkE/MxrvtR4UQe4QQe3w+1TpCmbuO9oYmVJw5UbXFdn7n6kX8Yl83zQORKbtfRVEUZXrNSAImhCgB/h348Hmf+gjw3UvdXkr5bSnlFinllrKyic/OU5TZJJbKcnooxurqK6//OtsndyzFYTbyj4+fnNL7VRRFUabPTBThG4EfAp+RUvaf9+llwEPAnwJ/LIRomu54FKVQTvSHkZIpXQGDfHf8j93YyNPHB9jT7p/S+1YURVGmx0ysgL0L2Ap8RQjxvBDiaiHEvwFIKTdIKe8E/hn4upTyxAzEoygFcax3pAB/ihMwgN+7bjFlLgtfefwEciIdABVFUZSCmvZGWFLKHwM/Pu/iV8+7zvemOw5FKbSjvWGK7SaqPFPfvNNuNvKHtyzjrx46wrMnBrllZcWUfw1FURRl6izIRqyKUghHe8OsrvZcUQf88bxnax2LvHa++sTJCQ2CVRRFUQpHJWATlMzkSGbO76ChKBOTyemc7I9Mef3X2UwGjU/ftpwT/REePdQ7bV9Hmf9yuiSaGvdwuqJMu3RWJ5Gev6+7KgGbgOFoikcO9PLwgR4Gw8lL30BRztM6GCWd06el/utsb1lXzcoqN//yVDOZnD6tX0uZn7I5nceP9PPIgV4OdQcLHY6yQEWSGR452MtDB3ro8scLHc60UAnYBPiiKbK6JKfDYCRV6HCUOejoSAH+dK6AAWia4LN3rKBjOM4Du7um9Wsp81MikyOUyADQF1JvOJXC8MfSpLM6UsLAPF34UAnYBDR4HVQXWanyWFlS5ix0OMocdKw3jM1kYHHp9D9+blpRxtaGYr7xTMu8Xr5XpofLamJVtZsSh5n1tUWFDkdZoGqKbCzy2il3WVhR6Sp0ONNi2k9BzgdWk4GbVpQD+e3I3xzpw2zUuKWpApvZUODolLngaG+IpioXBm16CvDPJoTgs3c28a7/epX7X2vnozcsmfavqcxtyUyOZ08MkkjnuH55KRvqiqCu0FEpC0Eqm+O5E4NEUzmuX1ZKhTt/Stxo0Lh2aWmBo5teagVsktqH4yQzOuFElr6QGoCsXJqUkmN94Wnffjzb1oYSrl3q5b93niaVVatgyvgGwymC8QyprE770Pyst1FmJ18khT+WIZ3VafPFCh3OjFIJ2CQt8tqxGDUMGhzuDvH8yUGyqthZGUeXP0EkmWVV1dSOILqUj9+4lMFIil/u65nRr6vMHtmczvMnB/nN4T6C8fSY1yt3Wyiym7AYNRpK7TMYobLQlbksFNtNmAyCxjIHwXiax4/08fzJwXl/kEglYJNU6rRwz+ZaFpc6iaVzHOgK8kKzj5zqu6SM4WhvCJj+AvzzXbvUy9oaD996sU09PheovlCS3mCSQDxD80B0zOtZTQbuXF3Jyio3oXhmBiNUFoqcLjnaG6J1MHLO5RajgbvWVvGuLXVUuK20DEbxxzL0BpP0Bedn8f0ZKgG7TFUeK8F4mp5Agk5/nON94UKHpMxSx/rCGDQx44WkQgg+ftMSTg/FePzI+WNYlYXA6zRjM2togktOYDjRH+FAV5Dd7QE6hhfWVpAy/Y73hTnYFWLX6cC4bSWqPFY0ATazhtdpnsEIZ54qwr9MdSV23ry+ihebh4gks7x2episLvPFq4pylqO9YZaWObGaZv7Axh2rK2nw2vnfl09z97qqGf/6SmHZzUbeur6GnC4xG8d/v20y5A+I9IeTvNQ6hC5hcaljJsJUFoBTvihHekLUldgxGsY+jFRbbOedm2oxaGJGDi0VkloBuwL1JQ5ubirHaTFgMxk41hse7Z+jKGcc7Q3N+PbjGQZN8NvbF7G3IzC6FaosLAZNXDL5AlhW4eLqJSXYTBoCwb6OALou1VgrZVwTqYGOprJEU1mqPFaKbCaqPLZxr282avM++QKVgF2x6iIb62qLQEKnP8bDB3pU92hl1FA0xUA4Ne0d8Mfzrs11WE0a97/aUbAYlLlhcamTFZUusrqOzazx4P4eHtzfQyA2dgG/snDt7fDz0z3dvNw6dM7l2Zx+zug+m8lAsd2M12kp6HPhbKMSsCmwvq6IW1eWU+G2cqQnzI9e71SrDQrwRgf8Qj7peOwm3rGxhocO9KgC6wUoksxM6qT2qio3SElzf5RgPN+NvFe13FEu4kzLko7hOFLmV0oT6RyPHurll/t7aB/K1xIaNMEdqyt524ZqVle71ZzRESoBmyIVHhvlLiupTI6T/RG+/NhxXjnvXYGy8IyegJzhFhTn+8D2BpIZnZ/tVeOJrkROlzxzfIAHdnfS5hv7VOFscbg7xKMH+3jsSP+Ej/QPRlIYDQY8dhOagGK7iUVeVQumXGhVtRubWWNVtRsh8luG/niaRDo/QujsxN2gCUwGjV8f7uORA73jLlL0hRL8bE8Xjx/pI50d+3E71093TzgBE0JUCiH+UwjxTSGEVwjxt0KIw0KInwohVHUvcNeaSjYtKsKgCSLJLP/3egc9QfXOcSE71humttiGx24qaByrqt1sXlTMj3Z1jr5TVSYvnMjQMRxnT0eAH7zawWBkdh+TPzNDL5rMEp/gWKolZU7KXBYavA7ed9Ui7lpbhdOizmspF1pZ5eYdG2vPOXxW6bZSX2KnxGFmZeW5K/+xVJZYKv84HAyPPVf5tC9GJifxxzIMRS+8Xk6XPHG0nwd2d3GyP3KRe5gbJrMC9j3gGNAFPAckgLuBncB/jXUjIcRVQohXhBA7hRBfO+9znxdCvCiE2C2EeMeko59lNE3wnq31rK8rwmExsKTMNW+nuCsTc6x3Zjvgj+fdW+to88XY1xkodChzlseWb1aq6xKvw0xPYHa/wVpX68HrNLOyyoXHNrE3AQ6LkdtWVbCjqbwgJ3eVuc2gCa5bVsqdayopdpzbRqLYYWZFpZNSp5k1NWPvCiwuc2A2apQ4zJQ6LRd8PprKMhzN1yXO5ZYpk3lbUyGl/DcAIcQnpJRfGbn834QQHx7ndh3AzVLKpBDi/4QQa6WUh0c+909Syi8LIZzA08AvJ/0dzDIWk4E/v6uJnS0+oqkcS8udDEdT2MwG7Gb1LnIhiaaynB6O8bYNNYUOBYC711bxt48c5ae7u9m8qKTQ4cxJmia4Z3MtZS4L6ZxO4wwMV78S5W4rd6yuvKzbhuIZhAZua2FXb5W5YSiawmE2XnI+8kSee6o8Nu7dXDvm591WIw1eO4ORFCurZscb3MsxmYzg7NWyH4zzuXNIKc/uAJkFcmd97kxFsA04MolYZjWTQePmpgogXwP07RdP0TGc4FM7lnDLqst7MlTmnuN9YaSEtbWz4wnCYTHy5nVV/OpQL3/9llU41LbSZbGaDNx+mUnNbDccTfH08QE6huME4xlcViMfvHoR1cVqPJFyccPRFN94ppneYJK6Ejsf2L6IxWXT+8ZECME182BQ92S2IB8eWalCSvmFMxcKIZYCzZe6sRBiHVAqpTx23uX/ARwCnh3nth8VQuwRQuzx+XyTCLnwWgYivHrKT/tQjC89dkwd515AjvScGUFU2AL8s717ax2xdI5fH+4rdCjzXjSVpcsfnzOFwv5Ymp/u7uInu7p4/qSPfZ0BBsIpjqopH8o4fr63i50twyNTFPw8fXxwUqete4KJceeUzmcTTsCklH8tpbzg2I+UslVKee94txVClAD/DlywVSml/ATQBPzlOF/721LKLVLKLWVlZRMNeVa4utGLzaQhkURSOf7mkSN0zeE9a2XijvaGKXVaKHddWMNQKJvqi2ksc/CzPeo05JU43B3iyaP99IcuXoSfzuo8fqSfnS1DvH56eFL3nc7qtAxEZvxFKZHJYTUZMBgEdrNGsd1Eudsyp7d4lMkLJzO0DETO6eM1HpPBQIkjXxtZ6bHitBphAj1UpZQ8sLuT/3r+FL/Y270gm5hPeg9CCOEF/ha4FpDAS8AXpZQXfZYRQhiBHwKfOW87EiGERUqZIl/QPy/fZlV4bPz3B7fw1cdP0jYcY2fLEPs7A/zH+zextra40OEp0+hIT4g1NW8cz54NhBD81pY6/uE3J2jzRWmc5q2C+SYQS/PMsQGebx7EZTMRTGT4rS11F1wvq+ujx+fjqYm9kJ3xatswPYEERoPg7RtqJtTFfirUFNlYU+OhJ5jAYTHw1vXVeJ0Wiuzzex6f8gZdlzx9bIBkRqdtKDZu/eCh7iAn+yOsqHJSXdSI02Kg1GnFYzeNeeDjeF+YvR1+kpkcDV4nLQNRIsksPcEkqUwOJnhQZL64nN/snwCDwD3AvYAPeGCc678L2Ap8RQjxvBDiaiHEv4187l+FEM8DzwNfvYxY5oRlFW7+7m1rsBo1EuksA+EUv//9vTT3z8ucUwGSmRwtg9FZcwLybO/cWINBE/x0T3ehQ5lTdF3yyMFenmse5GB3iOO9YYYiFz9Kbzcb2VDnIavrVBeNP3blfGeapuq6RJ/hliE5XTIUS9MTSBJN5VTytQBlR7bMx9o6j6ayPHWsnx+93klXIEHncII711Rx3bJymqrcY44ZiqWy7GwZ4okjAzx5bJDXTg1R5rJQ4bawrbGYcnd+WHw4keEXe7t45dT876N5OVW4JVLKvz/r4/8nhHj7WFeWUv4Y+PF5F7868rn7LuPrz0lVRTb++s2ruO+HewklsgzHUnzk+7v52X3XUHGJuVjK3NM8ECGnS9bMovqvM8rdVnasKOPBfd382e3LMRpUP+aJECI/oy6T0zEaBA6zkQrP2NvLA5EURk3jYHeQeq99wr20tjd6aR2MUuG2XnEbiGQmRyyVxXuRo/wXs7cjwP7OAGaDxqZeDysqXaoVxQKiaYIdK8rpDSZoOGsQeyKdoz+cxG018M3nTnGgK0ipy0I6q7Nl0cR2cixGDYfFgMmogQCzycA9m2uxmgzn/G78dE8XR3ryixO1RXbqvfP3AMjlJGDPCSHeA/x05ON7gV9PXUjz17bGUv7tPZv41AP7iSay9EdS/O53d/P939s2mv0r88OZJ5Dxet0U0m9tqePp44M8f9LHrasqCh3OnCCE4K41lcSSGRwWI42lTtbVFI15fcvI1qFBExgnMVjYYTGy/qzGlpcrlc3xmyN9JNI6q6rdNJY5eKllCE0IblxedtF2AbF0lhK7mWA8TedQgheafZfdxkKZm8pcFsrOq1t96vgA0WSWdDaHP5YhndU5PRhj6+ISeoMJfJHUBbc5I53V2d8ZwGgQvHNjLRvriomkMqyocF10hdVizD8uNQ2MhtlTvjEdLicB+xjwafJ1XZDfxowJIT4NSCnl7NtzmUWuXV7GP9+7js/84hCZnCSSzPKbI3389vaGBTH9faE40hvCbTVSWzw7Vzd3NJVT6rTwwJ4ulYBNgi7BbjGxpMxFmcvM0vKxa+iuWuyl2mOj2GGe0CpSNqeTzulT1i8wmdZJpPPbmf5YCk1AcOR0WlcgzvIK1wW3uW1VBZlsfrWj1msnNc4YGGXhOFPP6LaZWFXlYiiaxOu0kNMluoRQIj1mAnayP8IpX/7gmcdmvuRc3HdvqaWuxEa1xzbp7fu5ZtK/6VLKC39rlUnZsbKSL98D//Z0C0ZNoy+U5Imj/dyxulIlYfPE0d4wq6s9s6oA/2wmg8Y9m2v4752nGYwkKXepFdiJsJkMmAyCEoeZFZXjH7AwaOKcbZzxJDM5Hj/STzydY2tDMcsukhxNlsduYl2th6FoivW1ReSk5GR/BE0IKsZYcd9YX8yGuiJ8kRRdgTiLZ3mjWWVm3LC8lC5/nAavgxKHGQQc7g6jadBY6qBhnFmhZwryhQC37dIph9lk4KYV5VMW+2x2WW+1Rnp6NZx9eynlg1MU04Jw28pKrmrw8psjfYSTWb7/SjsP7+/mr968itoSNfh2LsvmdE70hfnA9kWFDmVcv7Wljm+90MaD+3q478YlhQ5nTmgbimIzGTjSM0x/KDFlg6rDyczorMa+UHJKEjC4cAv8nk21CMG4iaMQgnK3VZVFKKPKXVbSWZ3uQAKHxYhR0yhzm6ktsrOuznNOHenpoRgHugJUeWxsb/RS77VzpzW/uHD26chQPENXIE5diX3CY7Lmm8tpQ/G/wDrgKHBmfVoCKgGbJLfNxPXLyvjmsy20DkaREj7904Pc/5GrRvfBlbnnRH+EVFZn3RTU8UynJWVOtjYU89PdXXzshsZZu1o3W/SFEhzoDPLE0X5O9kdwWU3YLQbuu3HpFd93mdPCkjIHwURmWusGNbXCrlyGSDLDzpYhpITeYIJkJkcyrQPynC3z1sEoP3i1HYvRQCKts7bGg8NizK+anee5k4PE0zlO+aKzZlzbTLucFbDtUspVUx7JAlVdZOOt62t4+vggmVz+2O+uNj/bGktUEjZH7e8KArBxlidgAO/aUsdnf36IPR0Btjao+ZDjsZuMaEKQyUkMmiCr69im6ISgEIKrGr1Tcl/jyeTyqxhep1nNeFQmJJXN0eWPk8pkMRuN2M1Gylz5/nDLKs7doj7RH8ZjM9HlT7Cpvmjc3w/1fu/yErBXhRCrzh8ppFy+q5Z4+du3reLpo/2Ekjn+7tGjGDTB//zOVmrn8RHc+epAZ5BSp3nWFuCf7e61VfzdI0d5YHeXSsAuwWM38aa1VVR5LPznC23YTAauWzq7J3Mk0jl+ub+blsEob1pTRSKTozuQwGQQvG0Gm7wqc0s6q/PN51qIpnI0VTgZjKRpHoywptrNloYqJIJQIkO159xt6kVeO6d9MW5uKufONZXjrqrvaCqnJ5CYE8+T0+VyErDvk0/C+oEU+aEDUkq5bkojW2DuWlPNrU0VfPj7e+gJJsjkdN79nVf51R9cT7FTNUOcS/Z3BdhQVzQntvQcFiNvWV/Nwwd6+Zu3rMKlVkXG5bGbiKVzVHqsaELQHYyzZJyTkIV2yhfh6eOD+KNpOodjbFvsxWU1jZxeu7DRZiiR4aWWIYyGfKuK+dYDrDsQZ3e7nxKHheuXls6JLdmT/RGO9IRY5LWzZQbeJB3pCfGTXZ28fGoIp8VEXzBBpceGQQhsZiPhZJYqj+2ife1SGZ0Sh5lEJks8ncMxTu87t9WEu2phP99cztuf/wU+ANwJvAV488j/lStkMhq4e23l6BNjKJ7mLx86THgBzsiaq0LxDG2+GBvr586Yqd/aWkcik+NXh9SA7olI53SiySyZnE5t8exeoa702DAZBIlsFl8kTSyVxW0zcv0YydXpoRihRIbhaJruQLwAEU+v5oEIibROTyBBcI48r57oD5PK6jQPRMnkprctiK5LXmj20R9KEopnCSXSrKv1cM0SLxvqi6gpslHmtOCPpXmpZYhTvnPHQ6eyOkIIcjrTHut8cDkJWKeU8hEp5WkpZceZP1Me2QL17m2L+OztKyi2mzAbNfZ0+HnHN1/iZF+w0KEpE3CgOwjAhjlQ/3XGxroilpU7+cluNaB7IiKJDCApdVhYMgWzNOPpLC+1DLG3I4Cc4tFDpU4Ln9qxhBWVLspcFkwGjcWlDmou0l8pk9OxGASaAKtJG7NVxVzW4HWgCUZq4C69AZTK5nj+5CAvt/hGR0TNtMUjrUzqS+yYDBrBeJoXmn0c6QkB+aQplspO+P6SmRyDkeRFH2v7uwIEYmli6SzbFhdz0/Iy3retnptWlFHusnCyP4w/lmbXaT8tAxGePDpAIv3G1968qJimKhdXL/GqMVYTcDlbkCeEED8CHiW/BQmoNhRT6cM3LGHL4hI+/+BhTvZH8EXSvOc7u3jlz2+5aPdqZfY40BlECFhXOzs74F+MEIL3bqvni786xuHuEGvnUOyF8PTxQdp8MTr9CfpD+e2ZK3G0N0ynP7/aVOG2TPmqWiKrs7rSQziZpc5rZ8UYLS6eOT6IP5amzGXm1pUVc2ILfbIay5wsLnVM+Ht7vc3PIwd6AbCYDDOyBXi+dbVFrKn2jG6X7u8M0hdKjtZP7WkPMBhJ0VjmYPslDnKks/rodIRlFU62NpQQimeIZ/LbismMTmOZk0qPhcZSJ41lTtx2M4e7Q3z/lXYSaZ1TvhhvWlPFkd4wBg0O94TYtjj/da0mA5vm0Op/oV3OCpiNfOJ1O/mtxzPbkMoUWl9XzB/cvCTfs4f8ANTP/OwAvkii0KEp49jfFWBZuXPO1VLds7kWu9nAD15tL3Qos1oqmyOnS7I5nUxOJ57KXfF9Fo+sFBg1MeWPm55ggub+KJFUlg31Ht6yrnrM2Z9nSh3CiXz9TiJ95d/bbDSZxDKrSyT5PkuZAk4FOLtWrXikpYPVpGEyCAZHBsL3h5KXvJ907o3pCMF4hlA8w2+O9PHcCR8HOv34Y2n6QgmaKt3cvLJitJGw02Igp4MuJZmcTnWRlUVeO6urPSQyaqvxcl1OJ/wPTUcgyoXetLaG4/0RfvRaF9mczhPHBtjZOsTPP3Y1yyrVxKfZJqdL9rYHeMuG6kKHMmkem4m3b6zhF3u7+Ys3rRx9klfeIKXkyaMDWIwa6ZxOkclELDPxrZ+xLC134nWYMRu1cYuWL0cslUUIQXWRjboS+7iTNq5e4uVYb5hWX5Qv/+Y4Kypc3LW2itIJDvKeCzqH44STGZZXuCZ0AnRDbRF7O/xYjNqUzOecChvqikhlcoSTGXqCSRwWA9mcHLfsocsfZ19ngDKXhU31RQxGUqyt8RDPZNFl/o3Frw71MRTNsMhrH20KfMbiMid/sGMJP9ndRSiZ4dsvtlHntVNfYmdT/dhfVxnfpFfAhBDLhRDPCCGOjHy8TgjxhakPTQH409ua+O6HtgKQy0nCiSzv/+/XODUYKXBkyvmO9YaJpLJctXhutnP4nasXkcrq/HSPqgW7mKwuiaayCAFOqxG31cxwJHXpG05AscM85ckX5Jvtrqp2s7LKxdJL1KuFkxn6wwkOd4c4NRilL5QkEEtPeUwzLZnJ8dSxAR7Y3clTxwc41B3i4Eit5qW0+2OUOi14bGZ80an5WV+pRDpH80CUjqE4P3ytg8M9IQ73hMZNro/3hWnzxfjJrk52twdYVe2m2GGmymNjQ10RVR4rtcV2XFYjsXR2tO7sbIvLnFQV2UhndAYiSYTIT1qYa6v9s8nlbEF+B/g8kAGQUh4C3jOVQSnnWldbxMduaMQwMhk+EM/wu9/dRbd//p1SmsteaxsGuGQdxmzVVOlm2+IS7n+tg5w+tcXg84HJoLG+1oPbaqLcaaWxzMGGWV7vYtAEG+qK2FhfPObWI8BgJMnBrhDdgQSBWIpgPEM8laG+ZHaf8pyI7kACXyRFJJllaCSJmujM3UxW51BXiMM9wVnzO2EQ+ZFYh3tD+GNphiJp0lmdY33hMW/jsho55YtyajDGE0f7eKHZN/q5VdVu7lhdyZoaDzc3lfMHO5ZeMAorp0sOdAWJp7M4LYb8FI1FJWMO4FYm5nLectmllLvO20e/8nV4ZVyfuHkZtUU2vvDIEZLpHH2hJHd/Yydff/d6dqysLHR4CvkErLHUMadPj33w6gY++aN9PHdikFtXVRQ6nFnHZTWxdbGXem8SOXJkf0tDyeipwiM9IdqGYqysdE16nmOXP47ZOPWnDwfDSV5tG8ZlNXLDsrKLJmJ2sxGjlh8ynpMSs1FDRzAQTlE/x5tBV7gtWIwaRs3EVYtL6A4msE1wyojVZGB1jRuDJi7aN60QdPInI6s8VkyaoDuYoNhuGTNZ3t8Z4PRQHJtJw2LS0KWkYyjGwwd6sBg1GsucVLit5xww0HXJ08f7aR9OsL2xBKfFyK7TfrwOC9sbvdyxunLe9YgrhAknYEKIeillJzAkhFhCvi4RIcS9gGogNAPeuqkWu83In//8EEOxDKFklo/ev5f/+d3N3LBcJWGFlNMlu9r9vHldVaFDuSK3r66gwm3hB691qATsIlxWI16HmT3tfmLpLB3+GOFEhrdvrMFhNnKoO98a4HBPaFIJWMtAhN3tAQBubiqn0nPlSVgglubZE4O0DkYpc1mIpXL4oimqLnJq02kxctfaSvpDydEtLgC3beq3RWeay2riHRtr0KXklVNDPHN8EKtR40PXLr5kE93lFS5O9IcJJ7IzOjA6p0teaB5kOJpme6OXurOSK6vJQGOpg/1dQZIyf7LToAmaKi9ctYoms6PbyE0VLnQpiSZzaEIQS+U42BWidTBGhdvCjqZyTvZHsJo0LAYDTx0fJJOVpLM6jaUOXFYjgXiadTVFKvmaIpPZgnxo5P9/AHwLaBJC9AB/DHx8rBsJIa4SQrwihNgphPjaeZ/7GyHEqyN/bplc6AvTrSsr+eLb13DmTWxGh08/cIiOoVhhA1vgjveFiSSzc3b78QyTQeN92xbxYrOPtvOaLC50g5EkvznSz8mBCGaDRiyVJZWVmAwCgybQNEHNyFiVybaSSJ11wi49RafteoIJUlkdp8VIOJHBbbv4UOQzXFYTyypcrKh0UWw30VBiL9gLbSyV7422v3NqeqNpmsBo0BgIp8jmJNFUvoj9UoQAXeYnRuztCF5xHBMViKfpD6XI5CStgxf+HrYPx/BH0zT3h0GC1Wi44HTn08cH+PXhPrK6pLbYxrq6ItbWFrGloZgKjwWjJjAa8m8qsrrktbZhHjnYy/2vdrKvK0DJyOncKo+FCk++PcrVS7xzfkV0NpnM2xsBIKU8BdwqhHAAmpTyUtXgHcDNUsqkEOL/hBBrpZSHRz73Aynl3wkhioBHgGcmGf+C9Ka11cSSWb7w0GFyMt+i4gP//Rqff9Mq7prjKzBz1UutQ8Dcrf8623uvquPfn2vh/tc6+Ju3rC50OLNGOJFBynyxelcgRrnbys0ryrl6aSl2c/6p9MblZaSyOSwT3OIKxtM4LEZWVDhpGYiS1XXK3VNTV1PvtXN6KIbHZuKGZaW4JriCYzEZWFtbBOS/10IkYYd7QqO90So91ouu2l2O65aV4o+lcVmNrKq+9ElyoyZIZXOc7I+yuNSBlHJG+qMV2UyUuSwEYmnqvTZebPYRT+ff4BXZzfSHUwTiGWxmI6urPSw9ayi2rkuS2RzD0fzKVzyd4/bVlUgpiaVz7GkP4HVauKWpnDcZqjjZH6HcZWF3+zA9gQSZXI5uv4V7NudnhS4uzd/30jIXDothwvVzyqVNJgGrEUJ84/wLzzwYpZR/eLEbSSn7z/owC+TO+tzpkb+mGNnSVCbmXVvraSh18FcPH6ZtMEZ3KMkfP7Afic6b1tUUOrwF57kTg6yscs/p+q8zyl1W7lpTxc/3dvOZO1aMJhcLXYPXQac/zmunhvDH0uhAidN8QZuGiSZf+zoDnOiL4LQaWV/nIZHJPzUe7Q2xedGVn6R1W028Zf3kWqI8e3yARw/0ks7pfGB7PeWuwjye873RYhg1cdGZg5erymPjYzcumfD1jQaNao+NeDqH3WxgOJaekbYcRoPGbSMlAF3+ON2BfP/Hk/0Rrmr0cv3SUvZ2Bih1/P/s3Xd8ZNlZ4P3fuZWzVMpZrc45qWemZ3qCJzrOOBuMbbxgTDRmCS+8vKRlWVjCsrvY7IIBg8HYHhvnOPZ4enLoOJ2jclapcq669573j5I0HaRuSa3c5/v59Ke7VelIqrr3uec853kcbKn3T5bU0A2TH50dIZopUuaycnY4ic9hpS+SoSnoptLrwOe08sKlMfqjWd7f3oTNInjm/Cg94TRehxXd0Kjw2rFobwRfUOqDqsyv2byzs8DRub6QEGIHUCmlPDvFzX9EaVlzusd+HPg4QHNz81yHsOrsW1PBP37kDt72N8+TzBsUDMn/+7VTCKHxlu1qJmyxJHJFjvZE+bn72pZ6KPPmI/tb+NaJQb5xfJAP3qk+c1A6Ke5tDvK/f3SplNScyJHMzX3/UWi8hEUqp2MVpRZApgSvY+lOdCf74wghcFgtVCxh/a+J1kmOBaiNNltrKj2MpUqzZv4lKLlQ4bXjsmvkiyb145s97myrYG21F6/DelU9s3TeIJopLa1miyb14zOHl0MpmoJuvA4r6fEaXw6rxlgqzysdY3z16ADDiRzbGvysrfJR6XXM20ysMr3ZvLPDUsrPzeVFhBBB4NPA+6e47V1AhZTyC9M9Xkr5GeAzAO3t7Wqm7AqNQTd/91N7+KUvHieZ07FZNJ483Mu+1iCVaovwonjp0hi6KXnTxuqlHsq82dtSzpY6P//6Sjc/eUfTqmxLMxceh4WiaWK3ln4et9IfcHdzGaf649T4nTSUu3nLtjryukH1PM2iSikZSxXwu6wznpU7sL6SsfQAtX7nVYnfS+FG+WqLaX2Nj6agG7tFu6oi/WJx2608vrMB3TSv+j1ONRMXcNtYW+UhlMqzrtrDucFSA++14zNZrZUefmJfEyf7YzisFhrLXCSyOvFsEZtFI1cweX97I1vqA2qpcRHMJgl/ThX5hBBW4PPAb12zHDkxK/bL43+UOdq/vprvffJetjcE8DqsdI6l+cl/eIV/fbnr5g9WbtmzF0L4nNZVVRFaCMFH9rdwfviN3Xm3OyklhpQ8vLkGl81KpddJ0Dv3IKHa5+ShzTVsayj13gy4bfMWfAG82hnhR2dH+MHp4RnVsDozGKczlOYdO+r5lQfXL8ul595whpc7xggvclFUp82yJMEXQEcoxaGuCLmbtPyJpgt8/Xg/oVSevc3lnOiLky0a7Gkpvypxvr7MxT3rKhlO5Pj+mWEOrKukrcpLtc/BAxur2FznV8HXIplxACalvAtACPEtIcQHx5PwZ+J9wD7gz4UQzwoh9gshPjV+218CNcBTQohvzmbgytXqAm6+9PH9fGh/KwA94Qz/5dtn+fjnDi3twFY5w5T8+PzotPWVVrIndjXgd1r5nOoPiWFKvn9qmD/+9lk6RpP4nBbK3DZyheXbBy+WKV0zp/MGxRnM1JU2AUg6QulbmtlbKEXD5OWOMbrHMrzaGZnVY4/1RvnR2ZHJQqwrgWlKnrswyude7ubsYIIj3Tf+nnsiGbIFk0RW53IoxcSvcOJ9ADAUy/JXT53nw//4Gp99oZNnzo9gAp/96D7+x/t38p72plV3HFvO5vKT/h/AAeCsEOIrQoj3CiGmvWyTUn5RSlklpXxg/M8rUspPjN/2mJRy+/jXn5jj96CMc9gsvHdvA+UuO0VDYkj44bkQv/7k8aUe2qp1qCvCWCrPW7avvjpsLruF97c38dTpYUYTN2/0u5qlCzpnhxKcGUzwcmdpt9iZgThPnRkmnr15OYMZvUZen9fAp701SH2Zk021Pk72x+m7SeeMddVeLFop52k5noQtQuCyl5bgvM6Zz85F0wXODyUJJfOcGq/TthKMJHP0RDJkCgaD8eyUmxEujiQ52hMhVzRoDrpx2jQ8dgsbq0vlRJqDpYbZhinJFQz+19MX+Y9j/VwcTTKayhNOFXDaNKKZAq/3xXnuQmjKshfKwphLM+7ngOeEEBbgQeDngM8Cqjv0MlDmdvCln7uTA395kHC6dGL4+vFBLg4n+c4n71vi0a0+3z01iNOm8eCm1ZP/daUP3dXCP73UxRcO9fJrD29Y6uEsGb/TRoXHjs9hRTckeV1itUBBN4hlCrdUpLNomHz+1R5O9sfZXOfnI/tbpiz9MNsSCFU+Bw9srOYHp4eJpAt0hlK8a0/DtPlg2xoCk8uhy5GmCR7bWks4XaBmFvmtHoeVVL5IIquzdQalJ5aKaUoujibRhGB9tZeAy4bHbmVrvZ+NtT72XVGpfiK/78h4ekDRkNzVVsGGGh/PnB8lli2yp7mc1jo3//hiJ0OxHF6nheFEnkLRxKYJPHYre5vLaK3wkLhiM0mmoPNyxxgF3eSONcFluRS9WszpJyuEcAHvAD4A7AHmlJyvLAyX08bzv/kA7/o/L3MplEYCp4eS/NQ/vsrnf/ZOlVA9TwxT8oPTwzy4qXrVHqRaKz3cv6GKL7zWyy+/aR22ZTgzsljeubsBt8PCYCzDoJEdr8FnTO40m6tYpkhfJIuUMBjLEMsUqQ1cHSS9fHmM7nCGrfV+djaVzer5XXYLpMFu1bAsk8/+a51hesIZtjb42Vo/86DPabNMtn2aqVAqj8tmwappaMvk+5/KpdEUx8aLvdosGmsqPbx9Rx3PXgzRH83S7U/TVuXlaE+EC8Mp6gKOyZ2zLpuFkUSOQ10ROkNpqnx2agNOUnmdU/3xyXpw1X4Hu5rLqPU7edPGag6sr8RlLxXozRYMdNPEbbNweqDUV/L8cJI9y7zf6Uo266OpEOJJ4Byl2a+/BdZOLCkqy4fHZed7n7yP5oo3Vodfvhzmgb88SDozp/0UyjVe6wozlirw1lVe8uOn97cymszz1Jnhm995FSv32HnPnka21PsxKS2J6cbM8qtupMJjZ29LGUGPjb0t5VRfM7tjmJLucGn5sHNs5stD2YLBv73STcdokt3NZTy2tfamS4svXhrj317p5rsnB4mkF+Y4oRtmKc/MlFwamd1yVzxbnPW4dN1kNJnHkHLZJpcPxbP0RjKYpomUklimQLZgUDBMwqkCuiG5NJoiU9D515d7ePFyiNc6I7RVebirLUimoHPwwii5okGt30GF18H2hgBWC/RG0kTSBSxaaSb3A/ua+dN37+CRrbW4xi8chRBsqfezo7GMKp8TqyYQAqqWsBTJ7WAul+3/DHxQSmnc9J7KkrJaNZ77rYf40D++ysuXw5hAbyTLW/7meb75iQOUe1Z+0dCl9LVjA3jsllW7/Djh/g1VNAVd/Purvbx9x+wKe642VovGO3bWc6o/TsEw8ThtV9VhmgtNE7xtRz1vu+JnO5LI4bBqlLntWDTBxlovXWMZNtbMfAntlY4wR3tiZIs6uaLBh8c36EynoJv0RjKc6I+jGybpvMETu+tnXMJipqwWjdZKN73hDOtu0ovxSmOpPE+fHcGUcPfaClorZ7YP7OJoCpfNQlE3WV89071jiyeWKXDwfAiAgNuOJuDcUJKusTRv2VZLXZmT0USOtVVevnq0tMsxm9eJZQrYbRprqzwMRHP4XTbqAi7eubthsl5YMqezqdZPY7lOvmjgtFroDWeIZ4rTFlYNuG08vqsew5RLXoNttZtLDtgPhBB3CyFar3y8lPJf53Ngyvz5/Mfu4qf/8VWevxxGAr2xPPf894N8/9fupaVi5gdA5Q3JXJHvnhziiV31q3b5cYKmCd6/t4n/8aOL9IYzt30vOJfNisNuwSjAvesr5iVh/cxAnO+dHqLMZWPfmgrODiYQAh7bWkvQY2dvS3DW1fErvDaEKBV8jWV1Xu2MTFZXn4rdqjEcz3K8N4rfaWVnYxnz0IZxSnevreTumRekB0qtoCaqacxm44OUkjK3HatFIIRgKJ7llY4wAZeN+zcsn93LfZEMQpRmRF12K7miSXG8vmA6r/P5V3t47uIoRUPicVqxWTR+fG6Ep06XNk40Bd28e08DZW4bPzwzTCqvs6+1nCd2NTCayNIxlmE0kceQ5uRmhumoZtuLYy5LkP8G/BWlnZD7xv+0z/O4lHn2uY/dxfvb32hRlC2a/NznjtAXUU285+I7J4fIFg3ev69pqYeyKN7b3ogm4CtH+5Z6KAtuNJkjnpn+BB/PFikUTewWjVByfnZAHu6OMBDNcWYwyfGeUmK1lKWdkXO1s6mcn7t3DQ9srKIl6MZmufnymyElTeVuPA4bu5rKltWJuLXCw8ZaH21VHjbV+Wb8uAPrK9nZFOChTdVYLRqXRlLkiiYjiTzhBVpmnY0yt537N1Zht2rUBZxYLILmoJu9LeXYNI1LI0kujyYJpfK47Vaag27e195EQ5mLfFEihAQk+1rLWVfl4TsnBnnm/CgHz4/y5SP9rKv28oE7Wtha72drg5+72ipuedZWmR9zuXRvB7bI+WhRryyqP3/vLmKZIk+fG8WU0BNO84HPvMq//+wdrKma+QFNgS8d7mNDjZfds0yIXqnqAi7u21DFfxzt59ce3rBsc2lu1eXRUtFLTcAjW2qmbMdzcThBXjexagKnTWMkkaPK65hzoc4Lw4nx5PsC66q9tLcGyekGLpuFxvJbS/DfUh+godzNWCpPU/nNZy4r3A4kUOt3sL1xee2I1DTB3pbZJ4S7xxtWT1hT6WEonsXvtI33nFx6DePFUTtCKbbUeCdnO39weohIuohhSlK50gzgjsYAj++sx6LBxZEUBcNgW0OAuoCDf3m5h+O9URK5IlaLht9pIzUexD+ypYaRRJ66gEo9WS7mEoCdBmqBoXkei7II/v4j+zjcGeKXv/A6ybzOcCzH2/7mRX7jkQ387H2zXBO4TZ0dTHCiL8bvvW3zbbWj9APtTfzivx/j+UuhVdV26UrJXGlGy5SlAqZTrdDHsgWQEgFYBPzzS134XTZ+en/rnHJmvnF8gNFkkeagm5+7r+2WGrpLKTnUFSGaKdLeWk6l10HAZZtxmYzGoIt711di1QQzKJ4/yTTlklWKn62moJv3ly+v9lpSlmawtjf4SV4x66mP/xJMKdlS58dlyxDNFEnmilwaSVPhsWG1OBhO5PjG64N0j6WJZoqsq/ayv60Su1VjMFqqIdYUdLOmcnWnS6w0c/ltVFIqwnoImCwrLKV8fN5GpSyofW1V/OHjW/n9b54mWzTJFk3+4qkLrK328MCm1VdQdL7904tduGwW3rf39lh+nPDQ5hqCHjtfPty3agOwLfV+iobEadNoCk49+xRN6yAEmiboCmdIZA1imSKnB+Lc2VYx69e0aKXlILtVu6XgC0olFzpCpbSCs4MJ7ttQNavHV3rtHOqKUOVzEMsUZtQa6aXLY/SEM2ys9c1phmopLKfgK54t8vTZEQq6QdGQWC0a66o9tFV5uXttJb2RDI3lLk72xeiNlGbuzgwmsVk0knmdwVgOt8NCfcCJKQXrqrzsaS7nXXsaePJwL/EsxLLFJe/tqVxvLgvBfwS8E/hTSlXxJ/4oK8jbdtTz2Q+345xoKmxKfvkLx/ndr72+tANb5kaTOb59YpD3tTdOu4totbJbNd61u4Gnz40sei++xeKwWrhjTZAdjWXTnqTdTguJXJFYpsiGai+VPjtrKj1zbh69rzVI0GNjS72fgm7SGUqRyM0tt8zvtOFxlPK2ZrvUNBTPcvBCaDIvaiaJ7qYp6RkvkdE9pvJJ52IoniWvm2QKpXIZUCoH8sMzI7zeF2VXUxmVXgfraryE03kuDiep9ju4d30lNT4Hum4QTuaxaoJHtlRT43eyoaaUUlI2vsS6XBqbK1ebayV8ZRXY1RrkKz+/n9/8ykk6xlKkCyZfODTAyd4Y3/m1B5Z6eMvS51/poWia/Kd71iz1UJbEB/Y18U8vdvH14wN87N62pR7Oors0kiSUyCMEGBJiWZ1ff2QD+aJJ+RxPcql8kbxu8vzFMYbjWTwOG16HlSd21c96h57TZuFt2+soGvKmO92uFUkXEMDJ/hjD8Sxv33nz2XBNE2yu89E1lmZz3fKtMr+cNZW76QqlKRom0XSe0wNx/C4r1T4HkfFuJkXD5EdnRjBMyWAqy+df7UEgSeUNrDYNOxprqnxU+ZyA4NJokq0Nfh7aVE0sW1w2uW7K1Wb86RZCJIUQiSn+JIUQiYUcpLJwtjeV8+Vf2H9VsvHp4TRb/r/vYhiq1NuVckWDz7/Wy0ObqlkzwxpEq82GGh+7msr48pE+brd9OD3hNIe7o+SKOtmCQa5o0BdN47Zb5xx8AdgtGqf647x0OcS/v9LNa51hkrnCrHKwrmS1aLMOvgDWV/t4rStMJJWnN5zmf/3oEj84PTSZxD2d3c3lvHtPowrA5sjjsPKW7XX0hNO81hXh5ECMs4NxIukCd7SW872Tg3zoH1/lG68PEE4VyBVNTvXH+PaJIY72RsAEr8NCtmDQNV6oVxMCTQisFo1Kr2PVbppZ6WYcgEkpfVJK/xR/fFJK9clbwQJuO0/96gF89jfeDhkDNv/+D4gmb+8mzFf6+vEBIukCP3Pg9pz9mvCBfU1cHEnxel9sqYeyKHTD5PJoaVnQMCXJnI6UpcToSPLWyhiEU3lODsToi6ZJZovEcwb90QwCseilAqKZAsmcTt6QxLI6uiGJpItqaXERvNoZ5sXLYfqjWVLZIvGsTjxbRBPw5OE+Lo2mGIznyBaKVPpsdIbSZIsGhgmtlS72tpaztspDhdfBHWvKeXRL7YK0DcsVDS6PJuetAf3tThUDUQAo8zo5/LsP4rjiQqlgwkP/8znSubnXIlotTFPyDy90sqXOz/45JFqvJm/fUYfLZuHLR1Z/TTCAw91RDnVFODuYwG3XyOtmKQAzoT+WZfQGFynnhhIc7o6QK049m1xqqyNwWC1YLAKLRbC9MYD/Fpp7z1U4VWBDjY9av5M1Fa7xwqVSlS1YBN3hNHaLwOWw4HVYqfDayRYNhuM5JKWacBZKle2fOR8iXzSwWwTra7zsX1vN/rZKKrx27mgNsq7at2D5qS9eGuNQV5QfnS0thyq3Ru1JVSY5nQ4u/Nnb2PvHTxHOlIKuSEbn0f/1HP/0kXY2zaJp7mrz4/OjdIbS/O+f2LWsdlAtBZ/Txlu31/HtE0P8/tu3rPpOAMZkKYBSk2SEQFIqQeG0WYimClT7rg9SRhI5jvfGSo815ZQ7JFsrPexqKiOUyGOzCNbVeKkvc7OpdnHr8qXzOpdHkwQ9dnY0+llT6aM24OCJXQ3LqhjravXI5mpeuhSi0munrsyBbgjqy9wMxHO0VXqIpkt5h32RDEXdRFgt7Ggq53ffugmXzbpoOxx1s9T31DTleArC7X0svFWr+8ipzMnRP3iMn/mXQ7xwKYRpwHA8x0/942v8zU/u5p71s9vWvlr8/XMdNJS5Vn3j7Zn6wL4mvnqsn++eHOJ97au7HEd7azl+l5Wgx86ZgTixTGHytFMXcLK+ZupgyWmzoIlS4DZdfTCbReOhzTW0twbpj2YIuu3Uld1a8dW56I1kSOUN1lX72FxXj89ppcrrVMHXIqnwOvmTd+4glMpR6XXww7Mj6IbEMCRD8SzZokkqr2NKCDgt1Jd7+IO3bUbTNGqvmaGMZQoc7Ynic9rY11o+rxeMpWKxaerLnMumhdNKpn6CypQ++9E7+K9PbMdh15BAMq/zn598nUNdY0s9tEV3tCfKkZ4oP3tgzYLkVaxE+1rLaav03BbLkE6bhR2NZTSWu+kJZ8gUDBDgtFtobymftgBpwGXjLdvqeGBjFdsabjx7bJqSU/1xDl4IcX548fc01QdcOKwadqtGa4VnQZexbjfxbJHnL4Y4PRC/4f100ySvm9itGm/ZVsv9G6vQTRNDlhqRS1nK1717fRX/5fGtHOuL83JHmFc6wlc9z9nBBCOJPJdHU4wk5rdcjM9ZalE11YyvMnsLfjYRQtwphHhZCPGCEOJ/XnPbzwghuoQQn1/ocSiz9xN3NPOZD+2lwm1HE1AwJZ8+2MHFJThBLKXPPN9BwGXjA7dJ38eZEELwvvYmDndH6Qillno4i8aiCcrddmwa+J0W1k0z+zUh4LZRP4MZrUzRmNz1eCv9H+cq4Lbx7j0NvGdPwy3t6FSu93pfjP5olpP98fGcv+vphsmPz49yoi/Oi5fG8DltNJS5qPA62FLnZ09rOetrvDy+s4G/eM9OtjYE0I3ScuC1+YXV/tKOdqdNm3EHBGVpLMblfA/woJTyXqBaCLH9itu+BTyyCGNQ5ujAhmr+/WN3srXBT63fwfnBBO/+Py/x/v/70lIPbVF0hlL88OwIH76rZU5tZlaz9+xtwKKJ22IWbMKj22qp8tmxWTSkFDx7YXSyfdFcjKXyfOvEIOeHEmyp9+F1WLgwnOT5i6FFL/MhhLjt8xsXQtl4EOSwarhvUB6kczTF8d4ooVSeb5/o5/FPv8A/PN9Bc4WLrbUBttYHaKlw4XZYcdos3Luhio21Xu5ae3Vu4bpqH4/vquftO+rnVI5EWTwLHoBJKYellBPbhHTAuOK2sfGv3ZAQ4uNCiCNCiCOhUGiBRqpMZ0Odn3/56J28bXsdqbxOumBypCfGx//1MLpuLvXwFtQ/vtiFzaLx03e3LvVQlp1qn5M3bazmq0cHKBqr+30wIZoukMob6KYkli1yfjjJ8d7onJ/v8miKVE7nZH+cgWh2PAASpXIE8zwTFkkXVPmAJbCzqYxHt9bw1u11U+bUxbNFXrw8hsUiqA04CSfz/MUPLnJuKMmpgTg/PDvKmioPLRUeXFdseGkoc7G3JYjfef0sl9dhXfQyJsrsLdpvSAixA6iUUp6d7WOllJ+RUrZLKdurqm7PJPCl5nPZ+MUH1lEznvApBBzpjvCb/3GC1CotUxFK5vmPo/28Z08DVT7HzR9wG/rAvibGUnmevXB7XBhlCwZlbjsumwW33YLfaafMNfclu+agm2xBZzie5cJwkrNDCfK6QV2ZE880u0vzusFrnWGO9UYxZ1gKoGsszQ9OD/P9U0OMrdI2UstZpddx1WxUbzjDP77QycHzo7zaGWYgmiWZ1an0Oqgvc2GzCDQxvgPXlLjtpRZZD25anT1Yb1eLsqYihAgCnwbevxivpywMq0Xjmd94gF/5wjEOdUewAIe7I3z0nw/x+2/bzM7mldGId6b+9ZVuioZ5W7bcmak3bayiyufgycN9PLKlZqmHs+DaW4N8+K5mXrw0RmuFi0e21rGueu4lI+rLXLx3byNfPdbPD88MU+a2I6Vk4w1yyy4MJycbbpe77TPqyjAx82VKSOVKJ3placQzRT598BKxdJHvnhpiS52P5qCHnU1lvH1HHYYpSeV0TvRHMSTsbSmnYEjWVXuXeujKPFuMJHwr8Hngt6SUwwv9esrCEkLwtz+1l//nsY0EPQ6i6QLnhxP86peOk1hFyxuZgs6/vdrDI5trWFulDnzTsVo03rOnkYMXRhlNrP6uCRZN4LJbKRiSjrEsNu3WD6GB8U0uybzBheEkw/Ec3eHMZFPsa00sOQlRWmqaiU21PtqqPGys9dG8SDWjlKk9e3GUTMHg/EiSSLrUfSDosfHYtloMKfnuqSHsNgub6wKsr/YRzxa5a01wqYetLIDFWIJ8H7AP+HMhxLNCiP1CiE8BCCHeTik4e0gI8dVFGIsyT97X3sx/fec2PE7reEIyHOmJMBDLLvXQ5sWXD/cRyxT5+fvV7NfNvL+9EcOU/Mex/qUeyqIYjmeREnRDMjxPQafXaWNNpYe6Mhdep4V4tjBtwnZrpYfHttbw1m11M14ad9os3NVWwd4blM1QFodV07hrTZAtdT7WVHrIFQ12N5fjdVhJ5XSKRqnIaSiVp8LroCnoptqvyj6sRgu+BCml/CLwxWu+/Mr4bd8BvrPQY1AWxt7WIH/9vl188VAv1T4HR7qjfPfkII9treXRrSu3YKlumPzji120t5Szt0Vded5MW5WX/W0V/PurvXz83rZVX6BxX0uQVzvDlLvt7Goqm5fnfNu2OuwWDYdVYySZRxOCs0MJ9rVO/f6rUEuIK0quWGreXua288DGKjpCKRqDLg6eDxFJFzjSHaU56KHa72RLvZ94tsielnLCqYJaelzF1L565Zbcu6GKezdU8fLlMb54qIfTgwmO9cZ4vS/Obz22cUVua//e6WH6o1n+4O1blnooK8Z/uqeVj//bUX54dmTVdws4P5wkntUJp4q83hebssXQbOiGycGLIVJ5g2q/k0imiJSgJqpWh2zB4HunhsjrJruby8gUdC4MpygaJg6bBYumEU4X6A2nGUnmMaXkzjVB1YXgNrC6L1WVRbNvTZBt9QFMWWoc+8y5Eb5+fGDFNWyVUvKZ5ztoq/Lw8ObVn1Q+Xx7aXENT0MVnX+xa6qEsuJxuMBLPMRzP8cyF0Vt+vnTBIJYp5U8mskXetLGafa3l7GpaXZtablfJfJH8eLmecKpAZyjN6YE454bi7G0uY2Otl4YyF+mCQU84Q18ky+XR26e48e1MBWDKvLBZNH7+gXW8e3fDeB85O187NsAffesMI/GVkxf2SkeY0wMJPn5vm8qVmQWLJvjo3Ws40hPlRF9sqYezYHTDpGiU+vJZLeCwiFsumBpw2dhQ46XMbWNbQ4Da8f6SFvX+WxWqfU421/moK3OyvTFApc+BBCo8TurKXPzEvmacNo3ucBopJZoola24OJLka8f6OdoTWepvQVkgKgBT5tUnH97Af3/PDhqDbgq6STxb4JWulXMA+bvnO6n0Onjn7oalHsqK8772Rjx2C599afXOgoXTBS6Ppmmr8lDudrC5LjAvy+ztrUHeur1uRm2LlJVnd3M5b9pYTcBlY29LOXesKWdNlYfGcjcdoRSRdJF03mBPSxnv2FlPbcDJuaEEuaI5uVyprD4qAFPm3db6AB+/by1rKt04bRZSWZ1f+vxRPv3MpaUe2g2dHUzw/MUQ/+meVpV/MQd+p40P7GvmOyeH6Amnl3o4C6LcbafcbSeWKVDutrG1wX/Lz5nO6zxzfoTnL4YorPLOErcT05S83DHGF17r5TPPd/DkoV56wmn8Thvv2t3Iu3fX43NaqStzoYlSq6KmoGey5VlrRam+W2O5C9sq39hyu1JJ+MqCWFPl5U/euQ1Twkf/+RAXRpK8eGmMomnyyQc3LMvlvb9/vgOvw8qH7mpZ6qGsWD9/fxuff62Hvz14mb94786lHs68s1s1MoUi2aLB+eEE/3Gkn4/es4bgFA2sC7rJheEkAZeN5orpa29dGk0xHC9Vp++NZNSut1ViMJ6leyzDM+dG6I9msVgEg7Esj+9uoCXo5odnR4hlirS3lvOuPQ1YhLhqB/HOpjK2NwSW5bFSmR8qrFYWjM1qwWGzUOa2UdQlEjjdn+DUQGzZJef3RTJ8+8QgH7yzmYDr+t5qyszU+J188I5mvnZsgL5IZqmHsyCKpgQE43+hm1PPWh3rjXJqIM6Ll8eITlNUFaDa50ATYLUIKr1zb2ukLC/lbjsOq0a6YFAwDNJ5HUmpflwyp09uvOiLZHBYLVOWb1HB1+qmAjBlwf3v9+/i7Tvq2NUUoC7g5Lsnh/nv3z9HT3j57PT5hxc6sWiCn7lnzVIPZcX7hfvXognB3x68vNRDWRDv2tVAjd9BW5WHA2srqfZNXSTTZimdPIW48Ym0vszFO3c38MSuesrcNw7AhuJZzg4m1FLlMpQrGnSPpemLlHY5CgHv2FnP+9sbWVvtpS7gZF2Vl/XVpQ0XrZVuvE4rm+tufRlbWZnUEqSy4Ox2K3/2nh30RTK8dHmM75wcZCCW5URfjP/5E7toKFva1ihjqTxPHu7j3bsbqQ2oitO3qjbg5IN3NvNvr/bwMwfWsOEGfQ1XorNDCXQDioZBMj99I/pdTeUEXHb8LutNZ1VnknOYyBV59kIIKUu9HfevvbX6Y8r8eu5iiNFEnrNDcbY3lHGyP4bTZsFu0dhS68fvsuN1WSeD8bvXVi7xiJWlpmbAlEXTFHTz4KZqJGDRNCSlsg9LvVT12Re7KBgmH1dth+bNrz60Hrfdwp9899xSD2XeFQ0TTYOibhLLTr+0aNEE66q9086QzdaVc2grsL7xqjdR60sfbyU0EMuSK5rEskXqy134XRa21QeWeJTKcqICMGVRVfud/Ld3bufutgq21wc4N5jkb358ia8fX5o+gmOpPP/ycjdv31Gvmm7Po6DHzicfWs/zF0McnIdipcvJo1traRnvzxdJF6fN74plCnzn5CA/PDNMrmjc8uv6nDYe3FTN3pZy9raoIq3LzYF1layr9rC13k8yr7O/rQIhSsV1i4bEMME9w+bpyu1BBWDKomut9PDH79zGB+9qJlM0KBqSYz0xvnq0j7HU/DQ3nqn/c7CDvG7ynx9ev6ivezv4yP5W1lR6+KNvnSFbuPUAZLkod9u5e20l+1rL8ditFKdJwu8IpUlkdcZSBQZn0KReSsmF4STnhhKY02xSqfE72VjrU2UJlplUXqc3ksFm0cgUDXRD4rBZ+EB7EzubytBEadPGctt8pCwt9SlWlszaKi8H1lVQE3DQGUrxxUO9/PK/H6NjkdpwDMWzfP61Ht6zp4E2Nfs17+xWjT9913Z6whn+6ocXlno48+bFSyF+fG6EFy6NUV/mnHaJsanchVUTuOwaNf6bL0N2jaU52hPleG+MS6oVzYry4qUQXzrUy//80UVO9MXoDKXQDRNNE+xtKWdLvZ8D6yrVDmvlKioAU5aMEIK37ajnVx9cT5nbRjhVYCSe53/86AIXR5IL/vp//v3zQClfSVkY+9dW8KG7mvnsS12rpqXK8d4Y54aT9Eez9N6g4Gy138l79zbyzl0Nk8U1b+TKWS3VhmhlSWSLHO2J0hfJkM7p7GkpbcCA0gaLXU1lN6wFp9yeVACmLDmPw8ovv2ktrZUeAi4rY6k8f/CN0/zrywvX0ua1zjDfeH2QX7ivjcZydWBcSL/zls3UB1z86hdfv2E9rJWgJ5xmLJUnb5g4rRo36xCjaWJGrYoi6QJnBhN47BbuXluhirGuEK90hPnjb5+hO5zGbhUE3Haq/Q72NJezqXZ17f5V5p8KwJRlYUt9Gf/np/bwvvZmxHiRy2O9ccLp/Ly/Vl43+INvnqGhzMUvPrBu3p9fuZrXYeVvf2oPo8kcv/7l16fNb1oJzg8nWV/tZVONj4e31HBHW3B+nncoQSRdIF0wcNjUYXklyOsGL1wKEUkXGU7keWBDNQ9srOJnDrSxpd6viqgqN7Xgn3QhxJ1CiJeFEC8IIf7nNbfVCyGeGb/94YUei7K8uexWPnhnM2/fWUdtwElT0EXAOf85E3/9o4tcGEnyx09sxWVXPR8Xw66mMv7g7Vs4eCHEn31/5ZamaKv04LRbedfuBj56dytb56mswET9OZddo8ylquGvBHaLxrpqLxZN0Fju4qP3tPKxA21sa1ClJpSZWYw9sT3Ag1LKnBDi34UQ26WUp8Zv+x3g94CTwHeApxdhPMoypmmCD9/Vyrt3NeKyW+b9KvLFS2N85vlOPnhnMw9trpnX51Zu7EN3tXB5NMU/vNBFpdfBz9+/dqmHNGvra3ysq/bOaFlxNtqqvNSXlZL2p2pJoyw/QgjeuauBx7bW4HGo5Hpl9hY8AJNSDl/xXx24cj/6DuCTUkophEgKIXxSyoXPvlaWPY9z/t+aHaEUv/TvR1lX5eX33rZ53p9fuTEhBH/4jq1EMkX+7PvnyRVNfvWhdfMezCy0hRrvTKrhK8uLpgkVfClztmhV4YQQO4BKKeXZK75skVJOJITEgXLgugBMCPFx4OMAzc3NCz1UZRXqDWf46c8ewm7V+OxH9+G2q4KIS0HTBH/9/p3YLRr/8+mL9EYy/PETW2e0S1BRFGU1WZS5biFEEPg08LPX3HTlbJgfiE31eCnlZ6SU7VLK9qqqqoUZpLJqXR5N8r6/f5lUXuefP3oHTUG163Ep2Swaf/W+HXzyofV87Xg/b//Uixw8P8ob12KKoiir34JfdgohrMDngd+6ZjkS4KQQYj+lHDC/lDKx0ONRbj990SwWIXjy4/vZqLaGLwtCCP7zIxu4e20Fv/3Vk/ynfznMzsYA721v4t51lbRUuKdc6ssVDWKZIvFskXRBJ1swSOd1skUDU0qkBFOWqspLxv+WpaKwPqcNn9NKpddBU9CFw6qW/BRFWTqLMe//PmAf8OfjB9T/F/iglPITwF8A/wq4gD9chLEot6E3bazmmd98QOXYLEN3tlXww/98P08e6ePfXunm979xGgC33UKN34nNIpCy1OolmimQK96k8NYMCQG1fifP/MYDaiesoihLYjGS8L8IfPGaL78yfls/8OBCj0FRVPC1fNmtGh++q4UP3dnM5dEUh7ojdIbSjCRy6IZEiFKx3nK3jTK3nXK3nYDLhtthwW2z4LZbcdk1LJqGJkAgEILxPwIB5HWTZK5IMqczksjRE84QSuVV8KUoypJRma/KqpAtGJwdShD02FlT6Vnq4ShzIIRgfY2P9TXLe5l4NJmjN5yhtdJDpdex1MNRliHdMDk7lMCiCbbU+VfcTl9lcagATFkVjvZE6Y1kACZnShRlITx/cYyCbtIXzfCu3Y1LPRxlGbowkuT0QCml2W23qotCZUqq4p+yKjjH27dYtKubGivKfJt4r6kkfmU6V6Y8OFVrKWUaagZMWRX2NJdT7XPid1lVTSllQT20qYaRRG6yfZCiXGttlReXzYJVE1T71ftEmZo6UymrgqYJmitUfS9l4bnsFlrVkpJyE/VlrqUegrLMiZVW/LCyslK2trYu9TCUFaC7uxv1XlFmSr1flJlS7xVlNo4ePSqllNetRa+4GbDW1laOHDmy1MNYVnTDRDelKrVwjfb29tvqvaLeB7fmdnu/KHO32O8V9dle2YQQx6b6+ooLwG43g/EMg9EcG2t9mLJUCbxomJS57fSE0/RFM4QSeawWjf1tFWpp5DaVzus8dWaYdN7A67BQE3Cys7GMSLqAw6qBgKDbzoXhJFatVO5B09TWeEVZ7iY+23nd5J61lTSWu/jxuRHODyd487Y6GspdhJJ56gIu7FaV8L+SqABsGRtJ5PjH57uJpAs0lbuoCTjpCWfwOCxUeOyTFcKH4jk21/kZjGdVAHabiqRLVeJHkzl6IybZosnl0RS6Ibk0kmRrQ4CibnBqIIGmCd67p4G71lYu9bAVRbmJic82wFA8S18kw59+/xy6ITk1kOCt22vJFEyqfQ4e3lKzxKNVZkMFYMtYtlCa7QKIZ4tU+hzkdQNt/CLHYdPQNBsuu4Wgx87mWv8SjlZZSnUBJ81BN5pWumLWBFiEIKMb5HQTKSGcLpb6JBqSdMFY6iErijIDdQEnTUEXmYLBplo/L3WEEAiklBRNk7xeOkdki+ozvdKoAGwZa6lw8/YddXSE0ty1ppxk3qA56MJq0Wgoc9FQ7iKdNwh6VNHR253VonFgfWlGK5krAlDQTS6NpthQ48Vlt/LwlmoOdUawWgT711Ys5XBXPCklL3eE6YtkeHRrrfoMKgvGatG4d33V5P/v31DNUCxLfzTLB+9sweu00h/NsrbKu4SjVOZCBWDLmBCCO9squLNt+pOlKgapXMvntE3+u+KaVjlP7G5Y7OGsSv/9++f5++c7AfgfP7rIlz5+lzoBKovC47Dys/euveprdQFV8mIlUhl7iqIos/DcxRB//3wnP3lHM1/9xf0YpuRXvnAcfTxdQFEUZSZUAKYoijJDUkr+9LvnWFPp4Y8e38LeliB/8s5tnBtK8LXjA0s9PEVRVpBFC8CEEL8uhHjxmq85hRD/JIR4RgjxqcUai6Ioyly83BHmwkiSX3xg7eTy/1u21bKjMcDfHryMaa6swtaKoiydRQnAhBAOYOcUN/0q8AUp5YNSyk8sxlgURVHm6snDfZS5bTy+s37ya0IIfvbAGnrCGV7qGFvC0SmKspIs1gzYx4DPTfH1B4DHhRDPCiEeX6SxKIqizFquaPDjcyO8eWvtdRXJ37ytlnK3jS8d6lui0SmKstIseAAmhLAB90spn5ni5rXAd4G3Ab8vhJhyV6YQ4uNCiCNCiCOhUGgBR6soijK15y+GSBcM3rq97rrbHFYL79hZz4/Pj5Ap6EswOkVRVprFmAH7MPCFaW6LA89JKdPAZWDKMr5Sys9IKdullO1VVVVT3UWZId0wuTiSZCieXeqhKDchpaQjlKInnF7qoSjAwQshvA7rtDXU3rytllzR5NkL6iJRmb1Ersi5ocRkHT9l9VuMAGwj8ItCiB8AW4UQV+Z6vQzsEEJYgFZAHbkA05RcHk3dMEjqHkvzlSN9HOmOIOXME39P9Mc40h3l4PkQ0XRhPoarLJBLoyle64zw0uVSwc+Z6o2kefJwH4e7pn9vpPM6F0eS6mA/Cy93jHFXWxCbZerD5h2tQYIeO98/PbzII1NWg4PnRzneG+PgeADfF8lwqj9OLF3g4kiSePb6z2oomefVzrC6oF6hFrwQq5Tytyf+LYR4UUr5KSHEp8aT7v+cUm6YH/gHKaWKCIBTA3HODCYAeHRrDZXjxTRf6Qgzmsyxpc7Pd08N0T2W4fW+GOUe+4yLQF55Plb7tZa3q35XM/xlZQsGXz7cR380x9nBBG67hd5IBiEE922oxG0vfeQPXhglkdXxOCw8sUsVZ72Z/miGnnCGn97fOu19rBaNhzdX84PTw+iGiXWaQE1RpmKOf8illMSzRV64VNrQ8ePzI1T7nDisGu/a3YCmicnHfOFQLwPRDI3lbj7x4DqEEFM+t7I8LWolfCnlgfG/PzH+9xDw6GKOYSUwrjjbTnwoE7kiXWOlpahLo6nJJGC7VcOmTX2gN0151YcVYFdTGW67FZ/TqtqnLHMbarylno6aoLnCfdVtEzNb1x5whQDH+HtD00qNfKOZ0pVzbyTDpvF+ocZ4uQTdUGH4TLzcEQbg7nU3buF034Yqvnykn5MDcfY0ly/G0JRV4sGNNfRFMzQF3Vg0gSbgyqomhpRXXTQbpmQsmaegS0KpnAq+ViDVimgZ2tEQwGHV8NitVPucAHjHg6ZDXRHW13h5395GLo+mqPE7rjs5AxzpjnBxpHR70ZDYLIINtV6kKdhc51Mf1hVACMH6Gh/ZgkFHKEXRMLk0ksLrsDCWKmDRBA9vqcF/Reshp83CT93ZwoXhBGsqPZwdSnBuKEFrhZs6/xvtSh7YUE1PJE1T+fXvHeV6h7silLttbKzx3fB+96ytRAh44eKYCsCUGQun8owkcvRHMwzFc9y7vpL7NlTyvVPD+J1Wqrx2dreUY7nigtqiCd60sYqnz48QdNsZjGWpL1MtiVYSFYAtQ1aLxtb6wFVf0zRBa4WHWKaIRROE04Ub9oicmC072hOlsdxNOl/kVH+car+THY0BtjUEpn2ssrw8c36UeLbIpdEk66t9nBtKUO1zYrdqDMdzVwVgAEGPnf1rK0nmigzH82ys9VHhtRNwv3G/gNvGDnfZIn8nK9eJ/hi7mspueuFS7rGzoyHA85dCfPLh9Ys0OmUli2eL/OjsCH2RLIY0aQ566Aln8DmtkykDHod1MhXlSvvWBBmI5bBoglMDcRWArTAqSWEFqfE7sFsFNoug2nf9h/FKm+v8OG0a+1qDWDWBEGKySXNB9axbUQqGAUBg/PdXCqhsBD02GsunP+C67VbK3DY0IdRM1y1I5XUujabY2VQ2o/vfu76K1/tiJNQGB2UGDFNiSvC7rJgSbBZBjd9Btc9Bjd+Bx2FhXfXUOb5uu5UKbymVpEEFXyuOmgFbQar9Tt61uxEhmHYn1oRtDW/MchUNE00IusZSZAoGm+v8izFcZZ7cv6Ga7nCaR7fW4HNasVu0GS0hWzTBm7fWktdNXHbLTe+vTO1UfxwpS/mTM3H3ugo+ffAyR7ojPLhpyso6ijKpNGNdQTxbZF2VB6fNMrmB46HNN37/qM/4yqYCsBXGbp39pOVEsLau+sb5K8ryFPTY57xhQtOEOjDfotf7YgDsbCyb0f13N5VjswgOdUVVAKbMyJpKz5wfqz7jK5daglQURbmBE30xWirclM8wCHbZLWxvCHCoK7zAI1MUZSVTAZiiKMoNnBqIs2OGs18T7lhTwamBONmCsTCDUhRlxVMBmKIoyjTi2SIDsSxbZpk3eceacoqG5HhfdIFGpijKSqcCMEVRlGlcGE4CsKl2dvmTe1uCCAGHu1QApijK1FQApiiKMo0Lw6WWYJvqZheABVw2NtX6OdSt8sAURZmaCsAURVGmcW44id9ppdbvnPVj71wT5FhPjKKqu6coyhRUAKYoijKNC8NJNtX559S6q721nGzR4OxgYgFGpijKSqcCMEVRlClIKUsB2Czzvya0twQBONKj8sAURbmeCsBWoVRe52R/jFAyf9XXi4ZJJF1ASrlEI1PmoqCbRNOFq76mGyZnBuP0hNNLNKrVrz+aJZXX2VQ7t84RtQEnjeUujnRH5nlkymoXTRco6KWl6+F4jlP9qqTJaqQq4a9CL10eI5wqcH4oybv3NGC1aJim5KkzwySyOmurPDds5K0sH0XD5Punh0jnDTbV+djTXA7Aif745A49l91CtW/2OUrKjZ0f//lunOMMGEB7SzkvdYSRUs5pGVO5/bzeF+PsYAKPw8IDG6p59sIopoRwOs8DG6uXenjKPFIzYKuQZfxAf+XxvmCYJLI6AGOpwlQPU5ahXNEgnS9d+Yav+L1ZtDd+uRZ1Yl8QF0duPQDb2xoklMzTF8nO17CUVW5sfOUinTfI6Qba+Of7ys+8sjqoGbBV6MD6SnojGap9jsmmrk6bhb0t5QzEMmypCyzxCJWZ8jlt7GgMMJrMXVWNfUdDAK/DisdhocLrWLoBrmIdoynqAk68jrkfJve1lmYsD3dHaK5wz9fQlFVsV3MZp/rjVPkc1PidPLS5mnC6QGvF3PtFKsuTCsBWIafNwoaa66/aN9b6bulqXlka2xoCwNVBs6YJ1lV7l2ZAt4mOUIq2qls76W2o9uFzWjnSE+U9exvnaWTKalbpdfCmTW8sNVZ4Heoia5VSS5ArnGlKckWVnKmU6Iap6k7NAyklnaE0a6tuLcjVNMHelnKO9qhEfGV+5YoGpqk2VK1kixaACSF+XQjx4hRfF0KIE0KIjy3WWFaLUoL2MF87NjCZkK3cvmKZAl8/PsDXjw1ctwNWmZ1QMk8yr99yAAalRPyLIyliGZV7qcyPc0MJvnZsgB+cGUZXF1wr1qIEYEIIB7BzmpsfB0YXYxyrTSqnE88WARiIZZZ4NMpSG0nkKRoS3ZSMJHJLPZwVrSNUKu9xq0uQUOoLCXCsV9UDU+ZHf7S0qSOWKU5u0lFWnsWaAfsY8LlpbvtJ4MlFGseqUua20VblIeCyqcR6hZYKNzV+B5VeO2sqVcLuregIpQDmZQZsV1MZVk1wuFsFYMr82NbgJ+Cysa7aS8BtW+rhKHM0L0n4QohHpJQ/muY2G3C/lPJvhRB/fM1tjwHPAfqNxiKE+DjwcYDm5ub5GPKqIITgLlXPSxnntFl4aHPNUg9jVegIpXDZLHPqAXktl93C1oYAR1UApsyTuoCLt+1wLfUwlFs0XzNg/3SD2z4MfGGa2z4G/PPNnlxK+RkpZbuUsr2qqmou41MURZmxzlCatioP2jzVXmpvKedEf4y8rpaLFEUpmfEMmBDiW9PdBNxoGmYjsEsI8QvAViHEJ6SUnxq/bT3wDaCh9BLiRSnl+ZmOSVEUZSF0hFLsHu86MB/2tZbzTy92cXogwd6W+XteRVFWrtksQd4LfAhIXfN1Adwx3YOklL89ecdSgPUpIcSnpJSfkFLuGv/6RwGrCr4URVlquaLBQCzLe+exbtdEIv7RnogKwBRFAWYXgL0KZKSUz117gxDiwkyeQEp5YPzvT1zz9X+ZxTgURVEWTNdYGinnJwF/QpXPQWuFmyPdUT5+37w9raIoK9iMAzAp5VtucJs6pCxj54YSnB9O0FbpZWdT2VIPR5mDbMHg+UshdENyYH0lAZfa+bRQJnZAzkcJiivtbQny7IVR1ZhbmTEpJa92RhhJ5NjTXK7aWa0yc0rCF0K0CCEeHv+3Swih+tssY2cGE2QLJmcGE0ipKievRP3RDOFUgXi2SPdYeqmHs6p1TtQAq5zfVk/treWE0wW61O9PmaFUXqdrLE2mYHBuOLHUw1Hm2awDMCHEzwH/Afz9+JcaKSXSK8tU6/hVU0uFW115r1A1ASdOm4bVImgoV9vPF1JHKEVDmQuX3TKvzzvRmPuIKkehzJDHbqXSawdKx29ldZlLHbBfppR0/xqAlPKSEKL6xg9RllJ7a7BUDNKiWn+uVH6njXftbkBK5q00gjK1iRIU862t0kuZ28aRngjv39c078+vrD6aJnh0ay2GKbGoz/2qM5cALC+lLEzMpAghrIBa11rmVPC18gkhUBOYC297Y4C2BegkoGmC9pZyjvSoGTBldlTwtTrNJQB7Tgjxu4BLCPEI8EvAt+d3WIqiKEvjT9+1fcGee29LkKfPjRJO5anwOhbsdRRFWf7mMi3y20AIOAX8PPA94Pfmc1CKoiirUft4HthRNQumKLe9Wc2ACSE04KSUchvwDwszJEVRlNVpe0MAu0XjSE+UR7fWLvVwFEVZQrOaAZNSmsAJIYTqiK0oijJLTpuF7Y0BjnRHlnooiqIssbnkgNUBZ4QQh4DJgjZSysfnbVSKoiirVHtrOZ99sYtc0cBpm99SF4qirBxzCcD+y7yPQlEU5TbR3hLk75/r5GR/nDvWBJd6OIqiLJFZB2BT9YJUFEVRZmaiGfeRnogKwBTlNjbrAEwIkeSNul92wAakpZT++RyYsnji2SKGKQl67Es9lNteJF3AognV63EVC3rsrK3yqIr4yqR4pohEUuZWx+DbyVxmwK7q+yiEeCelyvjKChRO5fnR2RFMCfvXVrBmAQpQKjPTG87w4uUxhICHNldT7XMu9ZCUBXJXWwXfOD5AQTexW1WR5NvZcDzHwQujSAn3baiksVy1HLpd3PInX0r5DeDBWx+KshSSOR1zfD4zni0u7WBucxM/fylLvxdl9bpvQxXpgsGxXjULdrtL5IpIdQy+Lc1lCfLdV/xXA9pRrYhWrOagm3C6QNEw2VTru/kDlAWzsdZHpqBjtQhaK9RM5Gp299oKrJrg+Ysh7mqrWOrhKEuordJDIlvElLChRh2Dbydz2QX5jiv+rQPdwBPzMhpl0WmamEwKVpaW3apxpzoZ3xZ8Tht7mst5/lKI/+fNm5Z6OMoSslo02lvVZozb0VxywP7TQgxEURTldnLfhkr+6ocXGUvlqVR9IRXltjPrHDAhxF8IIfxCCJsQ4sdCiDEhxIcWYnCKoiir1X0bqgB48dLYEo9EUZSlMJck/EellAng7UA/sAH4rXkdlaIoyiq3rT5A0GPnuYuhpR6KoihLYC4B2ESBorcCX5RSzqipmRDi14UQL17ztT8UQrwy/uehOYxFURRlRdI0wf0bqnj2wii6YS71cBRFWWRzCcC+LYQ4T2n344+FEFVA7kYPEEI4gJ1T3PSvUsr9wFuAP5zDWJadojqQKrch05QqiJiDR7fUEM0UOayKsiorlDrnzd2sAzAp5e8A+4F2KWWRUkPum+2C/BjwuSmeq2v8n3luUMpCCPFxIcQRIcSRUGh5TtebpuSpM8N85Ug/ZwcTV91mmJKCbizRyGYvWzCQUlUWWSy5ooFproyfd75oYFwz1mzB4NsnB/mPo/0MxLJLNLKV6f6NVTisGk+dGV7qoSjLhG6Y5FfI+eJwd4SvHOnn4IURdQE2B3NJwn8foEspDSHE7wGfB+pvcH8bcL+U8pkbPO0fAX8/3Y1Sys9IKdullO1VVVWzHfK86Itk6A1npr09XdAJpwqYUtI1lp78evdYmv/y7TP8/jfPcKznjavccCrP8d4o0XRhxmMo6Av/Bj/UFeHrxwc4eGF0wV9LgXNDCb52bIDvnx5e0ANYQTdnFVR3hlKc6o9f9Z470h3hD791hv/6nTP0hN94j48mcySypYK+/ZHpPyMA6bzOpZEkqbwqNAvgtlu5d30VPzo7oi56FNJ5nW+dGOTrxwbou8lnab6Zppx2Nmu681VvOMNgLMvnX+nlj759hu+cGKRomPM2Iz4Uz9IZSq3az8Zc6oD9vpTyK0KIA8BjwF8B/xe4c5r7fxj4wnRPJoR4F1AhpZz2PkttokUMwJ1mkLVV3qtuT+aKXBxJ4rJpvN4Xo9rvpHssTWulh45QiqF4jkS2yNGeCNsaAhQNc/yKV9AbyfDErobrXlM3TDQh0DQBwMn+GK/3xfA5rOiGyXAyz97mcsbSBfxOK3e3VWCxaFjG738t05Qc7o6Qyuu0twav6jWY1w2smkbRMDncFcZu1Xi5I4VAcGdbELd9Lm8T5WZOD8T54ZlhHDYLQ/Es2xv8NJS70U0Th9Uyeb+OUIqO0RTra3zTtoqSUmKYkosjKS6NJqn1OTg5kMBigbqAk9FEgbqAk4c310y+p6ZrgzOayPFqZwRTSuLZAntbyrFbLRzqjtA1libgttEZStNS4SFXNDjaE6UjlKK5wkXRlJwZjLOlzo8Q178Xnzk/SjKn43UmeXzntNdtt5XHttbw9LkRTg8k2N4YWOrhKEvk3FCC471RLo4kqfY5GYrnaApe3ZZoJJHjZH+cuoCTbQ03fq+83hejeyzFumovLrsVi1a6wJYmHNhQRUOZa/K+uaLBU2eGyRYM7l5bSW3AedWx4dkLIfK6SW8kwzt21KObJqaE9TVezgzGsVkEQ7Ecx/ti1JU56Y9myRYM7llXOfk99EUyjCZzbKjx4XPevNftaDLHwfOlFa9Mwbjp97sSzeXMOjE3+jbg/0opvymE+KMb3H8jsEsI8QvAViHEJ6SUnwIQQuwAfnn8uWZMSklPOIPDplEXcN38AbdIN9+I5K9dftENk5cvhwmnCyRzRdZUerFbNfqiGVorPbRVehiMZUjnDU4Pxvi3V7p54VKI/miWpqCbd+1uvO71BmNZnr8YwmHTeHRLLR6HlVP9cV7tDNMbzuCwalR6nZwfSnBnWwUjiSzPnBvFabfw4btarvvQAlwYTXLwQojRRI6vHOljd3M5bVVefA4rXeE0FiE4Pxjj2YthMoUiW+sD1PldBNylgpHK/ErldV7vizGcyPH8xVEsmsaFoQRv2lQDAqp9DvJFg9ODCU4PxGkod3F6MM4nH9pwXZBdNEw+93I3/dEsLptGU9DDkxf6KRqS4XiWvGFS4bGzuc7PPesq8TisvNwxRvdYhtZKN3evrbzq+awWjVgmz9PnRsjrJuuqfRxYW8H5oQSjiRzZgk5bVSkQjGYK5IomG2p8aJQuVnrDoAnBxhrfZLA3YeLzs9TLFWOpPLFMkdYKN1bL0vZifGhzDZqAp84MqwDsNhVLF/jUjy/yWleEgm6yrtrLHWvK6Q2nuTCSoqncRXc4zVePDWDTBA3lLmr9Tip919ePOzuYYDie5eJoip5whm8cH6Sh3MW5oQQC2N5YRlPQfVUAFkkXSOdLp/anzgzhcdhYU+lh/9pSYWirRZDXQQB/91wHR3siuOxWGspcbKnzM5LIMRjPIpG82hnGYbXgtlvpi2ZoCrrJFgxevDxG0TAJpwo8urX2pj+TK8+11553l7P+aAbThOaKm/f0nEsANiCE+HvgYeDPxxPspz2CSSl/e+LfQogXpZSfEkJ8Skr5CeAvgRrgKSFEXEo5o4r654aSvN4XA0pNi2v8C9u0eE2lB92UmFKyrsrLaCKHzaKhaYIfnR3h3FCCSq+doMdBlddOumCwcbytT8Btp8bvJJIqMhjLU+cvMJzII4QgUzBomeKXNBDLYkrIFkwuDCfIFU0QYJrgcVjJFgx002BNlQ8BjCbyRDMFLDmNw90RwukC0XSBXU1llHvsAJwdSJSunvpiNFe4efrcCI8IQSxTIOCycWE4yaHu0oc/lTfoDqdx2CzsXxskWzBw2S3XjVOZu2xBZzSR4/RAgkROx2m1cLQ3htWisbHOR8doCqtF40hPBN2QhPvj7Gst59xQgm0NAaSUHO2Jksrr1AWcnB4o5R3GkTQFPTSWu8avQnXcdiuGKbFogpP9ccrctsnljf5IFtZePbagx47VopXeg0WTkUSO4WSekUSegMtOjd9Bmbv0vqryOmgod5HMFakLOLkwnGI4keXg+QIdoRSPba0lVzRI5krjfGBjFT3hDM1TXCQsllRe5+nxBvThVH7Juw8EPXbuXlvJt08O8huPbphy5lBZ3Q51RzjSEyWR07FqGvGszguXxsjrJs1BD6/3RskUDNI5nbFUHiHg9GCcBzZWTz5Hrmjw3MUQh7sitFR4iKbzZAsGHoeFgVgWw5RoAi6NJNndFCCeKRJwl2aiqn1vfI4zhVJ6QF8kMxmAPby5hqF4joJu8vS5UcKpInk9h9tupWf8XFHmshMY/1PutiGBjeOtlSyaIJ3XOTOYoMrn4M62iqtWYeKZItmiQW3gjXN5XcDFXW1BskVj8nmWu75IhhfG6/rdYQRZV+294f3nEoC9H3gz8FdSypgQoo4Z1gGTUh4Y//sT438/NofXv2pGSl+EyFgIMdmj6/JoikNdEYSAddVeCrpJa4WHoNfGveur8F8ztRr02LlnXRXnhxI0B13UBlwMxb2EUnm2N5RNOVu1vtpLKJnHZbPQEUpRNMAwJA9vruaHZ0dYU+lhW4OfhzbXUOV10B/N8NmXutENSVPQPbkJQIjY5AfU57Syu7kMc/xDWOay47BqbGvw0x/JEnDZ2Nbg5/xgAk1Yaa30Uu138npfnNMDCR7dWjN50lVuzZHuCBdHUhgmNJY7SeWLFHST5qCLar8TC6XZo7FUnmqfA9OUVPkcrK/24RhfFhiM57g4kgLAqgnqy5yE0wXuW1/Fo1tryBUNDnVF8NithFJ5NtX5aAl6JvMT11S6GU3mWV899YFtX2uQiyNJBmNZttb5WVflRUPQHU6zs6ls8uBptWjcv+GNvMzagItXO8fIFyWJrE4omefFy2PohmRjrY+9LeVL/j4yTDnZgH4xjh8z8c7dDfzmV05wrDfK3hbVluZ2Y0pJbcBJQZe47BY21fmo8bvoHksTTRcYTZaCqTKPjTK3jb0twavSFAAuDCcZSeSI54qE03ke2VpLKqczNp6b3D2WpmM0hSklR3tjeBw2Ht5SA1z9OT4zGOfyaOqqvpQeh5V11V7yRYPGche5okGZy8rGWi9ehxWv00aFx057Szm7msuvmxSxWzU21fpK34PbzlgqP3kMiWeKfP/0EKaEXU1lbKn3Tz6urerGAcxyo89y1m4urYgyQohR4ABwiVI/yEuzfZ5bsbU+gEUTOKyWq6ZRF0N6PHlYSih32agrc1LQTe5eWzHtuvZ79zRyZihOtc/Jumov72tvIpkrYtHElPlVZW47b91eB8DTZ0cYTeap8Dq4sy1IwSj9UtdWeSaXX1srvfzGoxvRBNgsGv3RDNmCeVV7k/s2VNEfzfKu3Q0YpsRu0SgaEr/LSl43eaUzjJSS9VVeusJpRhN5Am4boWQB3ZTEMsUlP3GuFmOpUiJrtd/Bhpp63rpdsq3eT38sh2FK7lgTxGWzkM4bWCyl2ZBkrjgZYAMEXDZsFkHRKB24f+3hDSRyRSo8doQQ2CwaG2p8jCTybAa2NfiREs4MJrBqgh2NZXgc03/8dzeXs6bSg8tumTzQXxhOEkkX2Nbgn/ZxDWUuDqyr4mhPlAqPHZdNQx9/z6aXSeJ9wGXj3vWVRDOFZdP8+M3bavm9b5zi68cHVAB2G7p/QzUF3SRTMHjrtlpGknk6QmnuWFPOSLx0LNYNye7mMpqDbqKZwnWzyEGPHZtFY2djGXe1BVl3zcWVbpg8ebiP430xdEPic079+d9aH2Br/dRL4Q6bhV97eAPpvD65upIp6Jzsj+NzWqd9HMDOpjLSBQO7VaOp/I2xZ4r65AVRurA8jhFz1VrhpmiYGKZk/U1mvwDEbHcXCCH+kFINsI1Syg1CiHrgK1LKe+Y04llqb2+XR44cWYyXmlJBNznZH8NhtbCtYepE4/lUNExCyTwVXjsOa2lGLJnT2Vznu+4KaEJeNyavNG5FpqBzpDuKw1pqFjtdgv9y1d7ezlK+V6YzmsxxeiBOrd911dXebOWKBnndvGoq/1oXhpPkdYMtdX6sFo3heA6PwzKjJNj5cmkkSThdYFtDAO8Ngr6lttTvl1/94nGevxTi0O8+POXmCGX5WMz3Sq5ocLg7glXT2NdafsOcxRtd2AMMx3N0hlJU+uysq7o+R3OpnBmMk84b7GgM4LStvnQXIcRRKWX7tV+fy9HwXcBu4BiAlHJQCLE8LiMXgd26uJ3rbRaN+itm+a7dgTkVh9UybXA2G267dbJfnTJ/qn1OHtx063mLTpvlpgeriVzECVfmWCyW9TU+1i/6q64879rTwLdODHLwwiiPzSBJeT6cGYzz/VPDhNMFttT5eOfuhkUNzpWbc9os3Lt+Zsfhm/3uagPOJTkG3MyNZs5Ws7kEYAUppRRCSAAhxNT74hVFUZQZu3ddJdU+B1861LvgAViuaPBfvn2GLx7qw6oJ/C4bXzzUy6cPXuZTP7mHO9aoZVBFWWhzmef+8vguyDIhxM8BTwP/ML/DUhRFub1YLRo/cUczz14M3bDo861K5op85LOH+NLhPn7+vjaO/t4jHPv9R/jaL92Nx27lI599jcPdM2rxqyjKLZhVACZKCU9PAv8BfJVSja8/mKjrpczOaCJHOJW/6msvXhrji4d6OT0QX6JRKbeLeLbI14/387Vj/cQyb1S4Nk1JfzSjqtUvgQ/e0YwmBP/+Ws+CPL9umPzyF45zrCfK//6J3fy/b908WYpgT3M5X/6F/dQHXPzSvx9j7Jpjk3J7Oj0Q54uHenlpvBg5lPKD+yKZJa/nt9LNKgCTpYz9b0gpfySl/C0p5W9KKX+0QGObN6PJHD3h9LJqZ9A1lubpc6M8dWaEkUSpl3lhvNKwlKU3/YXhJNnC8uwJli0Yk7VllOkNx3NXBTfLgZSSzlCK471RsgWTXNGkP/pGD8fXuiI8f3GMH5weXpT2V7cilinQGUqtmhNBbcDJo1tqePJIH7ni/H/2/+S753j+Yog/eee2KTsRVHod/J8P7SGeLfK7Xzs176+vzE6uaNAfXfxAp6CbXBxJEk7l6QilkBJ6whmKhok+3snlhUtjvNwRXtRxLaWFONbMJQfsVSHEPinl4XkbxQIKp/I8fbbU1zDZqC+bdgZXbsmf+LfdqrG2ysOF4SS9kTTJnI6mwQfvaLmuEGo8W0QIrqs7di3dMLFoYl53axqm5AdnhsgWTJqCrhkniN5uzg8nONYTQxPw2NbayW3bt0o3zJtWb88VDVJ5/apSJFAKvp4+N1KqQ2ZIhCZprfBeVbV5ohBjQTcpGlO3K1oOckWDH54ZQTclw/Ecd6+rvPmDVoAP72/h+6eH+eqxfn7qzpZ5e96nz47wLy938zP3rOEn7mie9n6bav188qH1/OVTF3jhUkh9vpeIlJKnzgyTzhvUBZy8aVP1lPcxTDmnbg7RdAG7VbuqHI1umHSNpTk3lGAonkMAd7ZVcHEkSUuFB5tFI68bpeLgvHGsWO0W6lgzlwDsTcAvCCG6gTSl7gRSSrljXkY0B73hDKaUtE7RJ+/Kwmj5ebyaL+gmZ4cSuO2W62oJ5XUDw5Q37KG4sdZHwTCxaoLWijfGva3ez1eP9nNpNInLlqCl0stTZ4bZWOujsdyFz2ljMJbluYulHlkPbpq+E0BnKMVrXRH8ThuPbKnBogle6wqTLRjsWxO8afA2Hd00Jz+Ay6W203I08bMxJWSKBnNp6NQXyXB2KEFz0M3mOj+XR1Mc7o4QcJV+p7YpDrwF3eT7p0sB8kTxU8OUdIRSDMdznOiLc2kkyWgqT7nLzq6msqveC/vWBDk3mKDa77xhrbCJ1yoa5pT3OzeUoGiYkyUw5pthSozxWe38Ta5Kw6k84XSB1grPsg0oJ+xvq2BnUxl/91wHH2hvmpef3Wgyx//z1ZNsqfPz22/ZeNP7/+yBNTx5uI8/+c45vv/JymVTruB2UuqGUpoFvTYdIFsweOFyiNd7Y9SXubhvfdWMWt9MmCgobtUEO5oCWISgrco73tc1zfHeCJfGCz3vbCzjfe1Nk491WC3cs7aSwXiWTbWzL4CgGybZojHtjs2iYXJmMIHLZrluF/dSufJYU7jJsWY0mSOeKbKm0nPTz+5cArC3zOExC6Z7LD05DWpIeV2Zhhq/kzvWBMkUdDbXzb3m0rVOD8Y5P5QESlXmJ4qixrNFnjozjGFKDlzRiPRakXSBWKZAfZnrqoPb85dCXBxJUTBMhBCsr/Zyoi9GpmBwaTTF4zvriWYKmKYknCpwfihxXQCW1w3EeKNvKUtjGknkeOnyGBdHkrRVeTk3mJhzC5aJD+BAbG4fwNvF1voApgSXbe4Fg4/1RhlN5Hn2wijv3dNAImcgJcQyReKZAm6H9bpAfziRpWssQ4XHPrn8+XpfjAvDpcr2fqcVj8NKKpxGmvDN14e4d/0bV9dOqwXDlAzGstSXOactaZItGHz/9BC5osm+1nLWX3Eh0hfJcLw3BoBALEiPQ4/Dyr3rKwkl8zc8UOeKBj8+Nzp59brcS6sIIfiVN63j5/71CN86Mci791zfL3Y2pJT81ldOks7r/M1P7ppRiRqnzcJvPLqBT37pdX54dpg3b6u7pTEos2fRBAfWV9IXybK+5urz2uXRFK/3xjg7mEADTvTHSOSKrKv2Tpam0Q0T3ZRXlaoJp/KMpQqE06X8vli2wI/PjVLuLrXQmwgyJJDM6ThtFl7uHOPOtVefK5or3FT7HRzpjqJpcEdrcEYXChMXh+m8wc6mqQu+nh6Ic+6Kc2v9Ihdbn4rHYeXAukrGUjc+1qTyOs+cGy21OUsXuOsm59gZB2BCiGrgd4F1wCngz6SUiZk+fqGYV+R1mdPkI92sH9NcTLSEEQLsV7zxounCZOXv0WR+2gDsaE+UWKbIcDxPa4Vn8kNS6XNQF3CSKui8Z089a6v8OG2l55/IYVtf7ePMQIJkvkhvJENfJDP5OqOJHAcvjCKEYGdDGYmcTpnLxtGeKC9eHmMolkUTggO3OIXaXOGe1RXX7chps7DvFmvG1fidfO/kMNFsgS8d7ucD+5pI5CxUeBy83hdnNJmnrcoz+UEvGiavdkaQUhLNFHjHZJ5P6b1TF3DSVlVqsvt/n+sgnTNYW3X1zHHnWIru8V14ZW7btDV6Erni5EzoSCJ/VQDmuGKWyWFbuBmnxnI3jeU3fh9K+cZxwlhGeaA38tCmajbV+vjbg5d5fGf9Lc2Cff7VHp67GOKPn9h6XXX0G3nb9jr++kcX+fTByzy2tVb1qFwC072/fU4rg7EsRcMkntMZjmdJjveJfGBjNam8zlOnhykY5uREwJUXIhVeG81BN3ndYDheykE2pWRvSzl+p42WoJNIuohhSrbUTf35vzSSone8p2y1zzGj91Y6r082/R5N5Nl6fRriVRcIy2m2uinonvZ8PsGUkokjzHTxyJVmMwP2r8BR4FPA24G/AT46i8cviDWVHkxZ6u22EIHWdLbU+fE7bThtFiquyLNpLHfRUlF6Y98oUi7NThTxu6xXBXB7m4N4H7aiCW3y8c1B92RXeSi9Kbc3BiaXV688p4wk8pRmSCUIJhNtv3NiEKum0Rh0c9+GyimXa5Xl5662Cg51hukYSyNEKSBrbw1impIvHe4DYCj+RgK9lIAsNbKt8jkIjued7Wwsw2234nVYJ99H//WJbXSH09cdOINuOxOTshWeq3PIrlTtc7C2ykMip1/Xnqja7+ThLaX2KjcLkBaay27hTZuqCSXzi3qMuBWaJvi1hzfwC58/ypcO9/Ghu+aWC9Y1lua/fe8c922o4sOzfA6rReMX71/L73ztFC93hLlnleTYrQY1fid7W4KYUtJY7mIsVTrua+NBciRVmEy5GU7kJj/zExcidouFA+tLv8++SGnH8/pqL1aLNpknXRtwkS7obKsvm3IMQa8dIUo5SDPtulLusbOx1kc4lZ82H3tLvR+f04rTZrkuh3W58ztt3Lehimi6cN2s5VRm3IpICPG6lHLXFf8/JqXcM+eRztFStyKaL6UZiiI+p3XKPJ6bMU3JpdEUVou4atk1U9B5+XIYiybYv7ZicmatoJu82hnGadNobwmiaQIpJcd6SzNxy6FJ8nxb6tYycxFJFzjeG6XcY2dPcylrLJEt8FpXhPqAi61XHLTODiboDqfZVOu7qmntaDLHaKI0M3ajPMQbSed1JCzr1kHzbbm9X6SU/MRnXuXyaIqDv/XArHM2dcPkfX//Cp2hNE/92n1zqoCeKxrc9Wc/Zn9bBf/3Q3tn/fjVaineK7phcrg7Sl432NcaJF3QCacKtFV5SOZK/15TWcpx1A2TlzvCZIsGd7VVTLYrG03kGE3mWVvlvW5j11wkc0U0IW6aK3q7m49WREIIUU4p4AWwXPl/KaWq3DcLQojJ2Ym50DQx5Qyb226d7HB/JbtVuy73JZTKc2G4lGh5sj++7HNjbgcn+2OMJPKMJPK0BN1UeB34XXYe2XJ9ZfQt9f4pe0lW+5xU+26t3Yg6oC49IQS///YtvOPTL/LXP7zIHz2+dVaP//vnOzneG+N//8SuObefcdosvL+9iX96sYuRRG7aDT/KwuuPZukaSwNwfjjJ3pbyyc+5w3v1bJHVcv3xHkoz09Xz+DtUbatuzWymXgKUliAn/vgp9YM8Ciyfy0ZlxkpLqKW3QJVvZU31rlYTvweXXVNBkMK2hgAfvquFz73SzaudM6+59FpnmL/+0UXetqNuynpfs/HBO5oxTMmXDvXd0vMot6bcbceqCYSAqhW2NKdMbcZHeCll6wKOQ1kCTpuFt++oJ6cbcy5JocyvrfUBGsvduGyWZZWAqiyd33nLJp67GOI3v3KCb//KgZvWkxtJ5PjlLxynJejmv797+y0nz7dWerh3fSVPHu7lEw+uUyUplkjAbePxXfXoprytUgNWs1kf4YUQ3xRC/KRqwr062K2aCr6WmYDLpoIvZZLbbuV/fWAXo8k8P//5o+T16SvkxzIFPvJPh8gUdP7uw3vnbYnovXsbGYzneLXr9ql8vhw5bRYVfK0icznK/zVwL3BWCPEVIcR7hRAqMUBRFGWB7G4u5y/fu4NDXRE+9rkjU/bpHIhl+eA/vEbXWJp/+Ej7dQWib8WjW2rxOqx8/djAvD2notzuZh2ASSmfk1L+EtAGfAZ4PzA63wNTFEVR3vDErgb+4r07eLkjzJv/1/N87Vg/kXSBoXiWf3qxi7f9zQv0RTL8w0+3z3vJCJfdwlu21fL908PLtj+toqw0c5rLFEK4gHcAHwD2AJ+bwWN+HXi3lPLAFV+rBz4POIE/kFI+PZfxKIvPNCUn+mPopmRnY5laMpvCheEk4XSe7Q0BtVtImRfvb29iTaWH3/3aKX79yyeuum1/WwV/8q5t13UDmS/v2tPAV47288Ozwzyxq2FBXuN2MZbKc3E4SWO5Kmh9O5t1ACaEeBK4E/gB8LfAs1LKGzZHEkI4gJ1T3PQ7wO8BJ4HvACoAWyG6w+nJdhFOq2XWrWaklCuusvZsxhzLFDjaEwWgaEjuVyU+lHmyrzXIU792H4e7I5weTGC3CPa0lLOlzr+gn6m71lRQH3Dy9eMDKgC7iZsdK17rjBDPFumJZKgra5xTLUhl5ZvLDNg/Ax+UUs5mHvpjlGbJ/viar+8APimllEKIpBDCJ6VMzmFMyiLzOq0IUaq87nPO7m10qCvC5dEUG2q8tN9iq57F0jWW5rXOMGVuOw9vrr5paxiH1YLNIigactY/H0W5GU0T3NlWMed+rnN9zSd2N/CZ5zsZS+VXXJXyxSCl5LmLIQZjuWl7HULp+BnPFnHbLVhW2IWoMn/mkgP2A+BOIcQHhRAfmfgz3f2FEDbgfinlM1PcbJFvlOKPA+XTPMfHhRBHhBBHQqHQbId82ysaJqOJHPpNurjPRrXPyVu21fLo1ppZtzXqDKXG/07P23gWWvdYGlOON1HPFm96f5fdwlu31/Hgpmp2N5XNyxiSuSKRdGFenktR5uKduxowTMl3Tw4t9VCWpbxuMhgr9VacKJo6lQPrKnlgYxWPba2ddVkPffx4XpzH47myNOZShuLfgL8CDgD7xv9cV2L/Ch8GvjDNbVfOovmB2FR3klJ+RkrZLqVsr6pSSzmz9eNzozx9bpRnL8xv8Frmts/pKnhznR+HVWNz3fVV3JerDbU+nDaN+jInwRm2bPI4rNQGnPOyLBRJF/juySF+cHp4MoBVlMW2sdbHplof33hd7YacitNmoa3Kg8Oqsal2+uObRRPUl7kmW8XNxrMXQjx9bpQfn1N731a6uayNtANb5EybSMJGYJcQ4heArUKIT0gpPzV+20khxH5KOWB+KWViDuNRbiIxPmMzk5mbxbCzqYyd8zQrtFgayly8e0/jkr1+Kqcz3nt92fweldvTE7sa+PMfnKc3nFEJ5FO4a4GXhePjn/+EOg6seHPJ/DsNXN+YbhpSyt+WUj4mpXwzcEZK+SkhxEQA9hfAf6OUfP+ncxiLMgP711bQWO5i/9rFyxdR5ldjuYtNdT7WVHrYsoJmDpXV5x076wD4ppoFWxJ3qeP5qjGXGbBKSkVYDwH5iS9KKR+/2QMnSlBIKT8x/nc/8OAcxqDMQlPQTVNQXamuZJom2NM8ZYqkoiyqxnI3d7QG+cbrA/zKg+tW3G7mla6hzEVDmWuph6HMg7kEYH8034O4XYSSebrG0rRWuOe1I/1snB6I0xfJsK0hMO9BWSqv47RqN90huJrliqW0xrnkdkzleG+UkUSOnU1l1AWW5qDbPZYmlMqzuc6v2qAoADyxu57/7+unOTOYYFvD7ErQKG/IFgyEuLXjxdGeCKFknt3N5dTMw3llKJ6lL5JlXbWX4E36jiq3ZtZHUynlcwsxkNvBi5dDZAsmPeE072tvWvTXz+sGJ/vjALzeF7sqACsaJmcGEzisGvVlLkLJPM1B93UFVvsiGfqiGTbU+PA7bRzpiQDgsVs5M5jA47Dwlm11cyrMutxqg812PKFknmfOjwDQVuUhlTPYVOfDbtG4MJKksez6oot9kQyaJsgXDaKZAlvqArjspYNxKq9P1lo70RdfkgAsmSvyckd4cjxv2li96GNQlp+3bqvjD795hm+dGFQB2LjZHi+G4lk+/0oPuaLJT9/dQnPFG7vJMwWdk/1xAi4bm+v8SCm5OJKkL5KltdLNuupSm6l4psiF4dKmnJP9cR7ZcmsBmGFKnr8YwjBLTd3fsbP+lp5PubEZB2BCiCQwVeK9AKSUUiWm3ITLZiFbMCdPsFD60IbTBXxOKw7r3K6CTFOSLug3rbZut2hUeO0Mx3OUu6++79nBBGcG43SMpIhlC2ys9bOx1scD4yfcdF7HIuCly2OYEsKpAlU+Byf74vhdNnTTxKpppPMGqbxO0DrzKyfTlBy8MMpoMs+e5nI21s5fD7u5ujSS5EhPlCqvgwc3Vc9oq/hYKo9hlg5iL1wcI+C20xNJU+l1kMjq9IYzlHvqsFk0nDYLXWNpnr8Y4uxgnLxusru5nGzB5MD6UhsZl82C3SLIFA3qy25+YJ2P2bdYpoDdquG2lw4NNouG1SLQDYlrnmb1lJWv3GPngY1VfOv1QX77zZuwzLKUwmpzZjDOib449WVO7t9QddNATErJy5fDdIcz2Cwar3SGrwrAXu+N0R3OAFDpdfD0uWGeOj2C3abR3hKc3IEukThtGrmiSV1gZsHXjY4T2vhsXDpv4LZP/3mfOG/5nTbVBeUWzDgAk1Iu/VlxhXtgYzWjiTzV/jdKNxzujnJ5NIXHYeFt2+tmvHx3djDB2aEErRUuwuki4VSB9TVe9l1T2PSVjjF6whnu31BFXZmLzXU+DneHiWULtFV5qR/PJXDaLISTeY72RBhO5LgwnORj97YBbxxcPA4LdotGTjdJ5Yt0hFK8cHEM3TR5+446aiucuB0WUjkdv9M64+8lXdAZSZTSCbvG0gRcNo73RqnyORa1UGsyV+TVzgg2iyCdN5ASRpN5knmdgOvGwW1BN7FqggqvjVzR4OlzMYZiOXY0BGit8hD0ONDH6ycJAW/aWE0qV+TghRHODSZx2S1UeOxsrX/jOuZUf5yOUBqrRbCh2oeUkmcvjBJKFnhwc/VVJUCG4lmeuxBCE4KtDX7ODyUJeu3ct75qxifHjlCK1zojWDXBY9tqCbhsOG0W3rytlnimqPJOlKs8vquBp8+NcqgrctsmhJ/qj9MXzTCayGO3agzGcuR184YXQacH4nzt2ABjqSyXRlOsqfBQ7XOS143Ji3DvePFmTcCXX+vhn1/pRkqoL3ehN5qEknmiqQI/vjBKLF3g8Z31bBmfibw2bcEwJaFknnKPjUi6MHmceGRLDbFskaM9UWr9Tu5ZV4EQgke31BJK5qm9QUB3qCtCRyg96/OWcjWV0LGInDbLdUtQE4U103mDgmFe9UbOFQ2euxhCNyQH1ldeFQScH05Q0E3ODiWxCIEQguF47qrnjqULfOP4AHldMpLI88mH1/NKR5ixZJFQIs8PTg8RcNvZXh/AlJL+WJbBeI5kXieZNzjeG+POtgpGErnJMT60uYr+aJaXLo/RNZomW9Qp99i5HErzMwfa+NaJAXrDWerLnJOzZ0d7onSMplhf42X3FInkXoeVlgo3w/Ecm2p9nBqIE80UiWaKrK/x3TT4mS+XRlOEkqVAsCnoIq8bVPuc+K+pZJ/XDQ6eHyWVN7h3fSU1fifPXwwxmszjcZQqWzusFiyaoCeawee2sbU+QNBr48xAEiQMJ3KcG0pwuj9OKq+TykNPOEOuaHB6IMa5oSSXRpKMJPMIBOeGEwRcNr59YghTQsEw+NBdrZNjCiXzmBJMKTneG0MTgqFYjmimMBmomabkpY4xIukC+1qDk8H3hOj4e1E3JYlscfLn7nfa8Ktelso1Htlcg9tu4ZuvD9yWAVheNzg1UErpKBgmPqeVxvI3antNdZwA+PqxAS6MJBiMZtnaEMBp1RiIZvjB6SJv3VaLbsKOxjKqfA76Ihk+93IXmYKBpoHLpqGbkh+cHuJQZ5jhZJ7GcheVPgdbGgIkc8XJtIWT/aW0hRculSrz+5xWmspdk8eJcDrP5dE0Bd2kN5JhZ77Us9Zlv/48lS2UzkWmLJ2Lopk3zltFQzLHxZvbngrAllh7azmnB+LUBpyTyz4T+qMZwqnSG71rLM2uK2pntVV5OTeUYF21l4DLRl8ke9XsCYDNKsaXzkrT1ABrKj1cHEkRTuXpDWeI9SfoCqWxalDQJR6HhXRBxyIEyVyBRK7ItoYARSNGpdfOUDzPS5fHKOiSpgo3JiZCCLbU+TFMSb5Yqs48Mc0NpeU8U8KlkdSUAZgQgnvWVU7+P13QCSXzBFw2PDeYBp9vtX4nF4eTWDTBjsayaQO/0USeSLpUg6drLE2N30lm/PvNFQ3aW4K8cClMQTep9ttxWi281hXmgY3VNJS7MKVkTaWHFy+FAIFEYLdouO0Wnr0QQjdNYhkdm0WgCUFdwEmVz4FhSqwWjYJuXrdcva7aSzhVwKKV7n+0J0q5x07ZFd9DJFOgL5IFSo3Crw3AttT7yRVNXHZNzXYpN+WyW3hsay3fOzXEf3li65xTKFYqu0WjyucglMyzt6WMvS1Xz9aHkm8cJzpD6ckAzOeyUu62gywdj6WUCE1wsj/O8d4oFR4Hd6wJcmdbBbFMkSqfk7FUAZfNwh1rKhmK50jlioykCqRyOsPxPH5X6dzhtlspc9uIZYqTS5KJnA6U0kjaqjxEM0UsmqA56EFKiGYK1PgdeOzThwN90czkZEH3WJq9LUHODJYCPNciHqNXGxWALbFKr2NypuhaNX4nzvErnmtPiLuaytjZGEAIQSqvM5rIMxDLUl/mmlxy8jhs/OyBNrrH0uxqLgOgvSVIXcBFIlvkB2eGiWV1XHaNgMuOpglqAw4uDCcwJbRUellX5cVq0Xhsa6n02xcP9VLmtjMYzfLg5hr2NK8nVzQnp8zvWVc6QGyo8U6OdX2Nj8ujSdZf8bUb2VofoK3Si8OqzbpNx62oL3Pxzt0NWDRxw+a41X4H5W4b6YLBmvE2TPesraAjlKYp6KIu4OJP3rkNKSXnR5J85+QQtX4nnaE0P7GvafJ7Wl/tY9+aIIlcgVq/k7qAm4DLRjxTIJbRaSx38djWWoIe++Su2Z+8o4lopsD+tsqrxjQYy6GbkrYqDy0VHtZVe6/LQwm4bJS5bcSzxSkLaLrt1sn8M0WZiSd21fP14wM8eyE0eYy4XQgheGhTNTnduO7iGaDKVzpOpMYDnwk/vb+Vc0MJWio9VHkdJHJFjnRHGInn6I0UKOiSwXjpQmljjY9PPrSennCKGr+LnkiWco8Nm0UjmilS9DhoKHfyyObSz96iCR7bWkuuaOAZ37F815ogF0dSNAVd+F127llXyaGuCK92hrljTXDKY8W1avxOHFYNU0rqy1w3PG8pMydmXtB+eWhvb5dHjhxZ6mEsGiklUnLDQORwd4RLI6WdMPeur5xxeYlQMsdANEtNwEnQYyeeLVLpcXByIM5gLMv2KUpVvNIRpmsszcZa73VXfMtNe3s7y+G9cqw3yvmhJC0V7qtm+rIFg5cuj6FpcPfaSpI5Ha/DSiRTYDieZW2Vl7IZtj360qFeTAkOq8Z79t64Yr9hyts+aXoqy+X9spLohsmdf/pj7mqr4G9/as9SD2fRzPd7xTQlz5wf5fW+GH6XjYc3V9NWdf0FayRdwGYR+JylC6mzg3E21PiomEVLuAvDSY72RAHY0RiY8S7WmZyLlKkJIY5KKa9r2ahmwJY5IQQ329lc5XVwaSSFzSIIuGeeq1Plc1LleyPRstpXmkre1VR21XLnlfavreDONUH1IZyFPc3l7Gosu+5n5rJbeHhLzeT/J3JHGuyzL7RY6XUwmsxT5bv5gVgFX8p8sVo03r6jji8d7iOZK950J7YyNU0TPLyl5qY7rq+syxVw2di/dvYz1kGPHYsGUjKrXr4zORcps6MCsFWgtdJDpc+BVRPzVgD0RlTwNXsL/TN7cFM1yZyOz6k+0srienxXA597pYenzozw3pvMvio3thjH1iqfg8d3NiCRUy6dKotH7R1dJbwO66IEX8rypGml2U8VHCuLbU9zGU1Bl+oNuYK47BYVfC0DKgBTFEVR5kwIwRM7G3jp8hijydzNH6AoCqACMEVRFOUWvXN3PaaEb58YWuqhKMqKoQIwZVp9kUyphpc5PztldcOkaJhXfU1KSSRdoKCb0zxqaWUKOvFs8aqvFXQT4xZ/JpF0gbODCbIF4+Z3VpRlbl21j52NAb54qJeVtrN+vmULxnXHjFzRmNXPZWS8UPNyPS4q80MtAi+SWKbAuaEktX4HnWNpQsk87a3lk01Vl5vheI4XLo0BkNfNW264G8sU+NHZEaSEN22qntytN9GKyeu08rbtdctqh14sU+CHZ0bQTck96ypoqfDQF8nw0uUxnLZSEcq5FCHUDZMfnxuhaEj6oxkeXab1k168NEZfNMP2hgA2i0YsU2BbQ2CyvpCiXOkj+1v5ja+c4OWO8FXlVm4n8UyRp84Mo5uS/WsrWFPp4WhPlAvDSWr8Dh7aXHPT50jmihw8P4o5XiT17jnsdFwpsoVSNwGvw8qW8ULiveEMr3SOEXDZeXhz9apuc7R6v7Nl5tXOCF1jaQ5eDNEfzWJK6Aill3pY05JT9l2fu5FEnqIh0U15VcukSLrU+ieV05fd1V4sU0Qfn+kKj1eBnvjdZQoG4fGxz8VynyOYaE8iJZzoj5XaSYXSvN4XW+qhKcvU23bUEfTY+ZeXu5d6KEsmnn3jmDFxbOuPlppqjyTyMz7Gyev+sTqd7I9xeTTF632xyZZ3nWMpDLO0ShAZb3m0WqlL2UXidViJpAuUuWwEPXbGUgU21izP2S+AuoCLA+sqyekG66YoCDhbLRVu+iIZDCmvqgq9p6WcMwMJ6sqcy66lRVPQzbpknrxusLm2dHW2sdZHNFPA47BS65++We2NWC0aD22qZjiRm6ykv9zYrRprqzz0RjKsr/ZzcSSJbko1+6VMy2mz8JN3NPF/n+2gL5KZcUHo1aSx3MX6Gi/ZgsHmutIxY3tDgDODCZqCbuzWm895+Jw23rSxmmimwNp5OPYuZxPHE4v2Rh3E9TU+wqkC5R4bFZ6Z1ylbiVQl/EVimJLhRI5yt+2Wt//migavdITRTcndayvUSXEat2tlcyklr3VFiKYL7G0tp9o3t0DxSolckVROpy7gvGnbkpXqdn2/zKeheJYDf36QD9/Vwh89vnWph7Ngbof3SmcoxbmhJK2VbrbW31oKyo0MxbO47dZpe++uBtNVwldLkIvEogkaylzzUnulL5JhKJ4jlMzTEUrNw+iU1SScLtAZShPNFDkzmJiX5/Q7bdSXuVZt8KXMj7qAi3fvbuCLh3pVSYoV7kR/jHi2yIm++C1vOrqRuoBrVQdfN7LgAZgQYpsQ4mUhxAtCiH8WVxzBhRD3CyFeE0K8KoT4hYUey2pR5XNgswgsGnNeBlNWL7/TNtkcfbYtjRTlVv3ym9ZRNEw+81znUg9FuQX1gdKxozbgWFabo1aTxVi7uiClvBtACPHPQDtwePy23wDeB/QDrwB/twjjWfHK3HbeubsBKZlRTsGNdI2lGUnk2Fznv22vQpaTWKbA+eEkdQEnLRVzyw+zWzXetr2OomGq7gjKomut9PDOXQ18/rUePnZvG7UBdZG4VIbiWbrHMqyt9sw6FeHOtgp2NJbhtKmFsoWy4D9ZKeWVBVHyQN8V/z8DBAAHsHy3BC5DUpZ23NxKja6O0RR/92wHPzwzwmud4XkcnTJXr3SE+cHp4clE5rlK5t7YjaUoi+0/P7IBU8J///65pR7Kqiel5OXLY3zz9QEGYtmrbnvh0hhdY2leujw26+eNZ4ropqnSDhbQomRvCyEeB/4UuAhceab/BvCd8X//8Q0e/3Hg4wDNzc0LM8gVxDQl3z05SDyrs6HGy93T1NwZSeRI53XqAy4yRR23/ep+kR2hFMZ4IdRr92KEU3m6xtJsrffjuiJvLZzKc7QnSpXPwe7m8mnHWNBNrJqY7E04FM+iCUHNNUumI4kcppTUBZbnUllBNxmMZanyOSY3O5impD+axe+yUua2I6WkaMhpZyNP9scYjOXY01J21VXoxeEkummyuc4/eZArGpJYpojNIugMpa7aSRYf35JtSgin8zQHPVO+ZtdYmhcuhRDA23fUU+6xz9ePQ1FmpCno5uP3tvHpg5f50F0ttLcGl3pIGKakM5TiwkiS0USeeLaIRRM4bRoNZW7WVHrYUOOd97pTE8eLnK7jc9qoC7gwTImUctrXyhUNBmNZesIZWirctI3vhhyMZRiO59haH8AxfiyPZ4t0h0sXa+eHElelHXjsVqLpPAILyVyRgm4SzRRprXDf8PvsDWd48fIYmoCHt9RQ6XWQzBVx261qOXIeLUoAJqX8FvAtIcSngLcDXx+/6S+BA8AI8CMhxBellNdd9kspPwN8Bkq7IG91PPFskVAyR2O5e8GWaM4OJkgXdLY3BHDaLOiGyXMXQxztieJzWllf42NfS5CA20Y8W+Srx/oYiGZ5dEsN6byBpgnuaqsgni1waTSFz2GlcyxNa4WH5qCbly6HSeSK9ITT2K0aveEMOV3HYdWo8DgZTmQ5eHEUixBkCya6YeK0W9jfFiSdN8gXTar9TuoDDkaTeRLZPH/4zVNE00USuSKDsSxOmwWf08rmOj87Gstw2608fW6YzrEMAZeV33nzZmoDTl7uGKO53E1LpYeXL49xuCuCSan0xIH1lWQLBk8e6cNh0XjHznqSOZ3ecAarRZDI6dgsGnubyzg3lKQ3kqa2zMnupnLWz7JMh26YWDQx5RWbbpgzOrAmckVeuBjiZF+Mlgo3fredRFYnnMpR5rZTX+aiqJu80hmmzG3jA/uaeO5CiI5QiqIhedOmava1lvNqZ4S6gJNyj51PP3OZSDpP42kXj26pozea5sxggq7RFJmCjs9ppTrgIui2saXGj80CdX4H5wbjvNQxRtBdKltybiiBVROAxGmzUl/m5P6N1aTyOmOJHF6XjRqfk4ujSV66HMbntNJW5aG5wsPR7ih1gdKW7jK3nTWVXrrGUlweTdFS4eFoT4TBWJYHN9VwZ1sFUDoIH+uLMhTNUjQld64JTt5mmpLTg3GKhmRHY6lQ60ILJfMkc0VaKzyq6fgK8EtvWstXj/XzO187xbd/5cCSlJkZjud4+twIz5wf5ZWOMNnijTtPeB1W9rWW8+Zttbx5ax0B98zSMgzD5DPPd3BxJMUH9jWxqc6PAM4PJxmMZfnWiUFGEjneur2O+9ZXcXE0RSavs6u5jAqPneR4HcQT/TES2SJdY2mG4zkay11U+51sa/AzmsjxzPlRBmKl3fT3rK9kNJEHaRJKF6nxObFb/fz1j86RypnYLYItdX66w2l6whleuBTi8miK9dVe7lpXgd2iYREa2xv8PHcxRHc4TZnTRsBlxW6zkNMNnFYr8WyRiyNJvvhaL6FUnnftbODejZWUu+1oQkwGggCpXJHvnRoiUzDY2VR23UX6oa4Iw4kcu5vKqC9z8dLlMeLZIneuCVI9fnGeLRicHYoTcNlZVz19GY7OUIpQMs/mej9+5/JJnxmO58gVDVoq3DedPVzwAEwI4ZBSTlSsTABXzpEaQExKWRBCmMCC/xQNU/L02RHyukn3WIaHt9y8MvFsSCn53ukhXrwUpiXoRgDtrUGGEzkuDCd5vS9GOJVnd3M5p/tjbK4PkC8afO3oALFskWM9URrK3SDh6bPDHO2NkS+WAqigx0GVz862xgAWDZI5nVimyGee76QvkqYvUgqaNtb6CCVz9Edzk1PImoAKj52uUCnwyRUN7BaNomGgCcEPTg+DEGQLOsjSTIzVIkBKTg7E+drxAaq9pWAkmtVx2zVe6giRL0rODJYCg831Pp45P0o4WcBts3CkJ8rJ/jhF3eRwTwSBKC2bSjg/lKTCa6el0s26Kh/fOTnIkZ4Yo4kcTUE34WSBxnLXVbNvN9IRSnGoK0LAZeORLTVXBQQHz48yFM+xtd7PzqayGz7P4a4I3z05xPnhJG67hbVVXjbX+Xm5I0ymYFDusZPIFhlN5LFZBJdGkgzH8yRyRQwJl0Mpnj7rIZU3EAJ2NPo41hslldPpHktzuCtCNFvEMCWGKTFNEAK0oRQ2q8Z3xTCVHju6aWK3WtBNcFo10gWddF4nWzAwpMSiCexWjaF4lhN9cVJ5A7fdwoYaH9U+O3ndwG1aONwd5SuH++iL5UjmiuSKBlZN4662IMmcjkXTyBaLXBxOYZiScLqAy26hM5SiN5Ll7FCC3nCKWr+bcreNLfV+fE4bPZEMx3tjdIymeL03yk/e2TwvO3ynE88W+fG5kcnq4Htbln5GRbkxt93KX7x3Bx/+p0P82ffP8cdPbFuU1zVMycHzo3zhUC/PXihVlG8OunlfeyM7G8vYXOenNuCkzGXDlJJM0aA/kuXSaJJDXRFevDzGb3/1FL//jTO8ZXstHzvQxvbG6cswRNIFzg7F+Y9jA2TyBif6Y3xgXzMXR5IIIbg4nODyaAoJvHx5jHXVXtJ5nRP9Mc4MxjEkFA2TaLqAzaJxYThJrqATyxax2zRq/A6O90UZiuXoj5aKI/cIweVQmlzRIF80sFktNJY5+e6pQdJ5E4tW2l3YF83QOZYhVzRIFwx03aQ7XCqobLdqtFV5+e7JQY72RIikC1g0QbXPSX25i+ZyN/dvrKK1wsOTh3p57mKIbNGgYzTFS51hNFEKWD98Vwsbx2ueff61Xp45N4pumuimZGOtDynh1c4wBd0klMpT1CWff7Ubt700qVAbcFLmtk0GYMd7o6UL1LE0966v5NGttdfNuqXyOq92RgBIF3Qe3DS/5/G5Gk2WgmQojetm5TsWYwbszUKIXx//9yXgh0KIT0kpPwH8OfD0ePD1fSllfKEHI6Wc3FKrm/NfeT2aKTIUK0XApfomVQBUeh247BZCyTzpfJGecAanTSOcKlDQS/0G80UTc3x8UkK2aJLO6ZgSUvkiUpZ6E66t8uKylz5wQghGkzkSOb2U8yMgkS2QzBuYstSz0GXXMEyJ12nBabWAEKTyOl6HRiqv47Jb0E2J3Soo/WgkmlZa6hISMnkDTTMAiZACTUg0IeiPZAm47ZM/y4Ju4rBq2K0aBhKnppEtGmQKOk6bBSHAZRUk8yZCA5fNwsYaH1vqAhQMs/T8ojQL1RfN8PS5Ud6+o25GOQgTVdtjmSLxbJFKb2m2J68bDI1X3u+JZG4YgA3Fs5wZSDCUyFE0TDTNSkuFmw21Hs4PO+mLZpBS4rJpuGwWNAHhdBGn3UI4lcftsOK0lq4c33jOPIJSkDXxs8jpEiFBjn9bUpY6D1iEQJelHgS6CS5NI1fUcbttWDRBrmBgs2gYuoFhSExhEkkXKZqydCIpGKXf5/iSiibAIgTdkSzhVJ5MQcdh0TC1icr+ApdWOmHphkm2aJIvGpweiKObpTZJA5HM+Cxlnmq/E894kOWxWwinCyRyOumCTmcofcvtqm7EMCUTKW1FQ+W2rRT3rq/iZw+s4Z9e7GJ7Q4D3tTct2GsNx3M8ebiPJw/3MhjPUeVz8MtvWscTu+pZW+Wd8jiiIfBbNLbUly4untjVgJSSUwNxvnZsgP842s83Xx/krrYg//nhDZMzwBMmluoS2WLpMyklVq3Utks3JYJSKzeBRAiNKp+De9dX8fS5kf+/vfOOj+O67v33zva+6L0QBHuvopolqlmyJUuOey9JbCdx7Ly8+KW8FKfH6YmfnbjXyHYcF7nIsq0uqlEiRbF3oncstveZ+/6YBQiSAIle7/fzwQe7gylnBrsz5557zu/gsllwWjV6ommsmobNIpBSYrMIwrqBAeR1SSSZRxpJJOZ9JG+ATTOjTUKY92kpIZ0zQIJmjpsBEGj4nTaEENg1jVReJxTPks7pZk9bKdENg8Km6IYknMpR6nPQVO6lKujCogmaK7wYhoEA0nmdV9uHEALWVPo5P5gYccCyOQOX3UI0beB3mvfDI50ReqMZpJRk8jrPnzMdJ6sAh83CQCxDXdHFVAun3UJP1HyG9kTT9EbTVF9WzW2zmAPQbN6Y1YHfZMmPujdN5D4165ZLKR8CHrps8W8X/vYI8Mhs2zAaq0Xj1jVldEXSrCybeRVyn9M6UvWztso30t/KabPwpu01HOuKkMzqVPqdrKvyF0YJfm5YWUJnOMVta8vY3lDMYDxLMqvjdVjpj2UACUJg1QSVARd+lzkX3xFKoWmCdVWSE91xij123nd9PV985gLHcjp2q6DU62D3ihLu2ViF12Exp6ziGc72JUjldFI5nSq/g6OdUSwahFMZIkkdj8PKUDJHXzSNRYPqoJvV5V5O9sbxOKxc11TC9vogT5zqZ0Wph8qAk9UVPjQN6oIufnioG0NK7t5QwROn+nHaNN68o5bucIbzA3Eq/E52ryhGCEHQbaPYbSNvGPRGM/icNhIZ0/m0TGC2aW2lj2gqR7HHTrH7Ys6Tw2phTaWXjqEU6ws3ifGIpfOU+hzcsa4caUCJz871TaU0lnpYUerjYGuI6oCTgNvOjw51Uel3ksqbI9cP3thI3pA4rBqrK3zsbxmi0u/EZhWc6I4RSeYo9dppDyUZSGRwWC2Uee24bBZSeZ3GUjeprGR9hY9IJofdaiHostFc7qHM5wIkneEU3z/YyZneGPFMDr/Tzt0bK2gZSHK4M0J10IXDotFU5sFps9Jc7qU7kmZNhZdkkcu8eesGmqZx++oyAh5zCqG+xMXf/ewUed3ghuZSKv0uuiNpbm4uLQwEdGqLXLx2VM/Kcr+T+7dU8cSpfvxO2xW5fTNNscfOjc0lRFI51lQu3A4Siiv5/bvXcqonxh9+/wilXgd715bP2L51Q/L0mX4efLGNx0/2oRuSm1eV8qf3ref2dRVTmhoXQrC5Nsjm2iC/e9dqvrO/nS/tu8CRzsgVDlg0bdaY+V02fvv2ZjpCcm3EFAAAeD5JREFUSWqLPAQ9NqKpHImszo3NJfzieC8C+NN71+NxWLl/aw0bawJ0h1PkdIOBRJbGYg8uu0YonuGbL7ZxqidGMquzrb6IYreNnGHQH80QzeRIZ3UcVg2rxYLLrlHhc3LnhgoOtUU43h1hW30Rt6+rwG238tiJXjQN7ttUxYP723nxwiA90Qxuu4XtdUFet7GKTz9xhpdbhshLg8ZiD42lHtZW+lhb+K79yrZajnVGONUTw2nTSGYl4VQWAWyruzjN+O7r66kuclIdcLGnqQRNM/N+T3RH0SwaN9WXkkjrtIaS5rb1ATZUB2kc1RFka22QTE7neHeUIred4jFyWB1WC3dvrCSczI7IZSwEqoMudq8oJp3TR67d1VBK+LOAYUiy40gA7D8/yPmBBNvqi2gq86Abkpxu8MjRHnK6ZPeK4jHnvU90RznaGaGx1MPKMi9uuzmyONMbx2YR3LK6jFKvA00TdA4l+ddHz3CmL05jiZs3bKlh79qya0aSzvTGeKllCE1Auc9BLJ1nbbWP7nCaUCxDfYmHTXWBkTnu1RW+q+4zlTUjQZPN/eiLpjndG6e+2E19ydTbmUxWrTqvmzkYhoStdcEJ3bzzukEiq19VwuNcfwyk6bQ8f3aQRDZHVcBFOqcTSZvTioY0c+au1cS4P5bh2/vbePJ0H267lfs2V/PWXWZUIZbO8cL5QfpjWTwOC/duqmIolSOWynGwLUyx184tq8quyJ/K6wYPH+0hns6zptLH9vogyaw5pfn8+UHaBpNct6KYFWO0RcnpxozIoSwEloO6+XwRS+d4xxde4GR3jL/9lU3TjoR1R1L890sd/PfL7XSGU5R67bxlZx3v2FU/rXvGeGTyOlJebJcz/FnJ5g0OtYexaIKtdcExE9R1Q9IWShIotKGbCAPxDF1DSTSLoD+aZUWpB3fhPtofz/D8uUF0QxJ023jLjrqr5kSaaQcCq0WjK5ziy/sucKg9TGXAye7GYt57QyNg3q8fOtSJIaGu2MXNq8quuAaheJazfTF+9Go3LruFN26tYVvD+MVYo23QCqkwT53uJ5TIcmNz6RWRrcuPZ9W0JZH0P54SvnLAFgjpnE5WNyaVTGgU2hsFXLZL2hFl8waPnuihZTDJ+io/N6wsnfADsi+WJps32HdmAEPCmkrvos23WcgP1Egqx8+OdGNIaCrz0FDipsLnnFByeVsowS+O9mKzatyyuuyS0WNeN+iNZSjx2CdVYJLTDRKZPEH38q2YXMifl6VANJ3jI984wHPnBrl/azV/eM+6SWmE9cXS/PxYLw8f7ubFC4MYEm5eVco7dtdzx7qKOR0EzPdnRTckfbE0Re7Jfc/BTGf56eFuhpI5djQUsWtUhWoqqxNKZqn0O8d0fB470UtvNINFgzvWVVDiXdq9GmeK8RywhTN5usxx2iyT/iJpmhhzBGG3arxuUzVSyklruJT7nAwlsiP5Ntn84nLQFwt53Ri5xgImJcNRX+zh117TNOb/12rRpqR+b7Noy9r5Usw+fqeNr39wN5998hz//tgZfnakh3u3VHHPxiq21AYo8zlGPs+ZvE7rYJLTvTEOtoZ5/vwgJ3uiSAkryzx8dG8zb95RNyvRrsWARRNTlu7xOmy8bVf9mPcPl91CjX38/eb0i3nTSrh7+igHbAkzVQG9Io+dG1aqfJvZpMTr4PqVJURTOdZWTe0aK4FExWLDatH42O2reOO2Gv7jqXP8+NUuvn+wEzAHjh67hUzeIJm9WMjisGrsaCjid+9YzV0bKlldMXZCvWJyTOUa3tBcytm+ODVB14zrpS1HlAOmGJPR01qK2WGFusaKZUpdsZu/eeMmPnnfBg62DXGiO0pvNEM8k8NpteB32agvdrOqwktzuReHVbXUWgj4nTa2X0WAWzE5lAO2TOmLmbpkdUVu5WwtQE50RxmMZ9lUG1ChfsWSxW7V2NNUwp7LqgsVV3K8K0ookWVzXWBBCY8qpo5ywJYpL54PEUvn6RhKUVukwskLiXAyyyttYcDUV7t1zcyV7SsUisXHUCLLofYwALqU3LK67OobKBYF6qm7TBmOqngdqrfXQsNps4xUdKnol0KhcNnVPWEpoiJgy5Qbm0sZiGcIum0qoXWB4bRZeN2mSuKZ/CXNuxUKxfJE3ROWJsoBW6ZYCgrFioWJ225dUC02FArF/KLuCUuPRSfEWlpaKhsbG+fbDMUioKWlBfVZUUwU9XlRTBT1WVFMhgMHDkgp5RUpX4vOnW5sbLxCgTieySOlxDfByhCzKejYrYIUS4f5VqtWzCyGIQtN4yefuprNG8Qz+au2gpnM5yWbN7BqYkKdC+abWKFf4UTvj4pro+4tiskghDg41vJF54CBKaHw1Kl+HDYLW2oDPH9uEAncuqZsQurAj5/sozeaYW2VT2maKBSLgExe5+fHeklk8ly3opimMfpSjkdON/jZ0W4SGZ01lV621AZ57GQfQ4kse5pKJi3D0h5K8uzZAZw2C3dtqFjQ00I9kTRPnOpDAHvXll817SCvGzx+so9QIst1TSVKp06hmGUWZRVkeyhJTpfE03nO9cUxJEgJoUT2mttm8jq90QwAHUOp2TZVoVDMAOFkjng6j5TQGZ7c9zaTN0hkTGX1wXiWcCrHYNxst3VhIDFpWzrDKQwJyazOYPza95z5ZCiZRUowJnB/jKRyDBSuS8sUrotCoZgcC3fodhUaSzy0h1I4bRq7VhRzpDMCEprLrz0qdlgtrK/20xZKsqkmMAfWKhSK6VLmdVBf7CaSyrG20j+pbb0OK1vqAvRFM2yqDVDktlMVcBJKZCd0z7icNRU+QoksbruFqkk0k54PVpZ5GUpkQZivr0aR205V0EkoPrXrolAoJseidMBKvA4e2FYz8v6GlaWT2n5rXZCtdcEZtkqhUMwWmia4adXkvuej2VAdYEP1xfd7105d3LbIY+d1m6qmvP1cYrdq3NA8seumaYK9SvR3wdIeSvKDVzop9Tp4044a1Z5pCbAoHTCFQqFQKJYLh9rDvOsLL5AoNCn/3sEOvvGruxd0/qHi2izKHDCFQqFQKJYDqazORx88SLHXzr7f38u/vX0rB9uG+Oufnphv0xTTRLnPCoVCoVAsUL607zwdQym+86E91Ba5qS1yc7gjwpf2XeDtu+rZVKtymRcrKgKmUCgUCsUCJJPX+epzrdy6pozrmkpGlv/OHavwO618+vEz82idYrooB0yhUCgUigXIw0e6GYhn+NWbVlyy3Oe08f4bV/CL472c74/Pk3WK6bIsHLCWgQTHuiLkdWO+TVEoFDNIdyTFkY4I6Zw+36YsaKSUnO6Ncbo3xmJrP7eceehQFzVBFzeNUcn67j31WDTBd15unwfLFDPBknfA+qJpnjs3yKvtEVMvTKFQLAmS2TxPnernSGeEF84Pzrc5C5pz/Qlebhni5ZYhzvUrkdXFwFAiy74zA9y7pQohrmx5Ve5zcvvacr53oJOcCi4sSpa8Aza6V5tlEfRtUygUE0MTguHnklVb8reyaWFR98FFxy+O95A3JPdtrh53nbfurGMgnmHfmYE5tEwxUyz5KshSr4O9a8tIZnVWlKjeZgrFUsFps3DHugpCiSwN6rt9VVaUerAUvNX6Evc8W6OYCE+e6qc64GRD9fidH25eXYrPaeVnR7unJS6smB/mfNgohHivEOIxIcSTQogaIcQnhBD7hBD/JYSwzcYxqwIuVpZ5L4mGKRSKxU+J18GqCh92q4qAXYv6ErdyvhYJuiF59uwAN68qG3P6cRiH1cKd6yr4xfFeNQ25CJnTu5YQoga4RUp5u5TyViAL7JVS3gQcBh6YS3sUCoVCoVhoHO4IE03nuXn1tdtI3bOpinAyp/IgFyFzPWx8LWApRMA+DewGniz87VFgzxzbo1AoFArFguKZMwMIATdOoM/xzatK8dgtPHykZw4sU8wkc+2AVQB2KeXtQBIIAtHC3yJA0VgbCSE+JIR4WQjxcn9//5wYqlAoFArFfLDvzAAbqwMUeezXXNdps3DLmjKeONmnJEYWGXPtgEWApwqvHwcageEMQz8QHmsjKeXnpZQ7pZQ7y8rKZttGhUKhUCjmhUxe51BHmOtXllx75QK3rimnJ5rmRHdsFi1TzDRz7YA9B2wuvN4KtAO3FN7fAbwwx/YoFAqFQrFgONYVJZs32F4/5oTQmNy6xgxMPHGqb7bMUswCc+qASSkPASkhxJPALuDbwNNCiH2YDtkP59IehUKhUCgWEgdbhwDY3hCc8DblPiebagI8cVI5YIuJOdcBk1L+3mWLPlX4USgUCoViWfNyyxD1xW7Kfc5Jbbd3bTn/7/EzDCWyE8odU8w/SjxHoVAoFIoFgJSSA21D7GiY+PTjMHvXlGFIePqMKlRbLCgHTKFQKBSKBUDHUIr+WIbtU3DANtcGKfbY1TTkIkI5YAqFQqFQLAAOFPK/dkwiAX8Yiya4dXUZT57uRzeUHMViQDlgCoVCoVAsAA53RHDaNFZXeKe0/d615YSTOV5pG5phyxSzgXLAFAqFQqFYABzrirCuyo/VMrVH82tWl2HRBI+rachFgXLAFAqFQqGYZwxDcrwrysbqwJT3EXDZ2NVYpBywRYJywBQKhUKhmGfaQklimTwbqv3XXvkq3La2nJM9MTrDqRmyTDFbKAdMoVAoFIp55mhXBICNNVOPgAHctrYCQEXBFgHKAVMoFAqFYp452hnFZhGsmmIC/jAryzw0lLh5/ETvDFmmmC2m7IAJIVxCiDUzaYxCoVAoFMuRY10RVlf4cFgt09qPEIK9a8p57twgqaw+Q9YpZoMpOWBCiPuAQ8AjhfdbhRA/mkG7FAqFQqFYFkgpOTbNBPzR3L6unEze4LlzAzOyP8XsMNUI2CeB3UAYRppsN86EQQqFQqFQLCe6I2lCiSwba6aXgD/M7hXFeOwWHlN5YAuaqTpgeSllZEYtUSgUCoViGXK003ycrp+hCJjDauHmVWU8cbIPKZUq/kJlqg7YUSHEOwGLEGKVEOLTwHMzaJdCoVAoFMuCo11RNAHrqnwzts8711fQHUnzSnt4xvapmFmm6oD9NrAByAAPAhHgd2bIJoVCoVAolg3HuyKsLPPitltnbJ93bqjAbtH4yavdM7ZPxcwyaQdMCGEBfiSl/L9Syl2Fnz+WUqZnwb5FSyKTZzCemW8zFIpZI5rOEU5m59uMeSG2jM9dMfMc7YxOW//rcvxOG7esKePhI90Yqjn3gmTSDpiUUgeSQoiZ/bQsIaLpHD893M3Pj/Vyujc23+YoFDPOQDzDw4e7efhID22Dyfk2Z04ZiGf4aeHcWwcT822OYpHTH8vQE01PWwF/LO7dXEVPNM3Lrao590JkqvHONHBECPFLYOQOJKX82IxYtciJpfPkCyOOcDI3z9YoFDNPNJVjeFAdTmWpxz2/Bs0hl5x7MkdDyfzao1jcHCso4G+YoQT80dy+rgKHVeMnh7vYvaJ4xvevmB5TdcB+WvhRjEF1wMm6Kh/JrD5jZcUKxUKiocRDKJElp0tWV8xc4vBiYPjcs7rBmsrlde6KmedYVxSA9bMQAfM6rNy+rpyfHO7m/75+3bRFXhUzy5QcMCnl12bakKWEEIJt9UXzbYZCMWtYNMHOxuU5ol7O566YeY51RWgocRNw2WZl/2/dWcfDR3r45fFe7t1cPSvHUEyNqSrhXxBCnL/8Z6aNUygUCoViKXO0c+YU8Mfi5lVl1ARdfHt/+6wdQzE1pjoFuXPUayfwFkANCRUKhUKhmCCRZI62UJK3766btWNYNMHbdtXxz788TetggoYSz6wdSzE5phQBk1IOjvrplFL+K3DbzJq2sIikckRUQr1CMS3yukFfLE1eN+bbFMVVSOd0+mMZpaI+yxzrnr0E/NG8dWcdFk3w9edbZ/U4iskxpQiYEGL7qLcaZkRsyWaj9kbTPH6yDynhljVmOFehUEyeJ0/10xfLUOq1c9eGyvk2RzEGOd3gkaM9JLM6qyq87FL5brPGsU4zAX82JChGUxlw8oYt1Xxrfxu/fVszQbd9Vo+nmBhTnYL8p1Gv80AL8NZpW7NAiaRyyJGy8+yIA6YbEk2YSffD6IbkiZN9hBJZrmsqVuFexZIlls6NDEz2rikn4L40idgwJBJzCmSYoYJ46WKVZ9ENyZOn+hiMZ9m9opjG0oX//ZZSYshL/w9XI5s3SGZ1YPH+nxYLx7oiVPqdlHods36sj9yykh+80snXnmvl43esmvXjKa7NVKsg905lOyFEI/AicALISinvEkJ8ArgfaAXeL6VccN/4plIP4WQOQ0pWlZuBvs5win1n+nHaLNy1vhKX3SzvDSez9MVMBfzz/VfOt0sp+dxT5zg/kODuDVXctq58bk9GoZgAUkq+8PR5zvbHuXN9BXeuvzJa1RlOkciYD+r2oSQB98VplHgmzy+P95DLS25ZU0aF3wnA9StLONefoGkROC5jEU2ZOTunemOc6YvxW3vHjya0DCR4qSVEud/Jzc2laBN0gGaSVFbnF8d7SOd0blo1sei9x2FlR0MRvdH0jKuzKy7laNfMK+CPx5pKH3esK+erz13ggzc14nPOTtWlYuJMtQry40IIvzD5ohDioBDirglu/ksp5a0F56sM2CulvAk4DDwwFXtmG6tFY/eKYvY0lWC3mpesI5RENyCRMXMlhgm67VT4HVgtgpVl3iv2NRDPcLInTjYvef78wJydg0IxGYYSWY53x8jmJS+cD425Tk3QhddpxeOwUFd0qRBrbzRNKmuQNySd4dTI8toiN7esLqOueHEKtwZcNmwWjVzewO+00RYavwvAmb44OV3SOZQils7PoZUX6Y9lSGR0dMO8Z02UNZU+XrO6jGKPmqqaLRKZPOf643OqFfnx21czlMzxH0+em7NjKsZnqlOQH5RS/psQ4rVAOfAB4CvALyaw7V4hxDPA94HTwJOF5Y8C7wS+O0Wb5pRVFT764xncdguVAefIcosmuH1dxbjblXgcrCz3cKE/oXIrFAuWoNtOc4WH830JdjWOrWnnc9p4w5axdYVqgi7KfA6yeYOVpVcORBYrmiZ4YFsNPqcV3ZBXOJ6jaSrzMBjPUOZz4HPOXJPlyVAVdFIZcBTyuZZsmu6i5ER3FCmZVQmKy9lUG+CN22r44r4LvPO6emqv8vlVzD5TvSsMx9JfB3xFSvmqGJ0INT7dwGogAzwE+IHewt8iwJh3eiHEh4APAdTX10/R5JlBSsmFgQR2qzYlUTtNE/z2bWr+XbGw0TTBR/dO/XPqtFm4c705EOmLpTnTm2ZFqQerZUpB9wWF12Hl/q0111xvZZl3zCj4XGKzaNy2dvwB4Wi6wilSOZ0VJZ55mS5dbhztNCsg53qa9xOvXcPDR7r565+e4D/evWNOj624lKneDQ8IIX6B6YD9XAjhA65ZVy6lzEgpE1LKPPAT4CymE0bhd3ic7T4vpdwppdxZVlY2RZNnhpM9MV44H+Lp0wN0R1LX3mAUiUxedaVXLEryukEyO/lptHgmz+Mn+nipZWjZNQTWDUkiMz9Tj5OlL5bmyVP9vHg+xPHu6Hybsyw42hWl1GumrMwl1UEXH7t9FT872sNPD3fP6bEVlzJVB+xXgT8Adkkpk4ANcxryqhQctWFuxHTAbim8vwN4YYr2zBn6KAdKn4QzdbBtiC89c4HPP32eTE6fDdMUillhMJ7hs0+e5avPtnCmNzapbQ1pVkICS2rw0R1Jcag9PK6DpRuSR4728NChLg53hOfWuClgjBo+T+a+ppg6RzsjbKwJMLHJo5nlw69pYlNNgD996OglOcyKuWWqDtj1wCkpZVgI8W7gjzGnEK/FzUKIA0KI54AuKeWLwNNCiH3AVuCHU7Rnzlhf5WdbfZA9TcWTmj8/1RPj/ECCkz0xDowRCXipJcTDR7onHVVTKKaLbkj2nRngkaPdhBLZK/7+1Ol+zvcnOdMXp3Vw4oncAH6njdesLmNzbYAd4+SSLTYOtg7x6cfO8vTpPl44PzjmOslsnkjKLOjujqTn0rwpURlwcsPKErbWBVXl4xyQzumc6YvPaf7XaKwWjX98yxbimTwf+9YrShh5npiqA/YfQFIIsQX4P5gSEl+/1kZSyoellDuklDdIKf9PYdmnpJQ3SSnfKaW88u6/wNA0wboqP02TzO3YXBvA47BQ7rOTMy79sEeSOc70xgkncyPCfArFXNEbTdMWShJK5Dh52fSTbkismqDEa8PntE5JMLIm6GJjTQCH1TJTJs8bed3gYNsQkVSOjqHUuDltPqeNdVU+ij02NtcuDoemsdTD+mr/hPXCFFPnVE8M3ZBzWgF5OWsqffzVAxt5/vwg//zL0/Nmx3Jmqg5YXpo9Ku4H/k1K+W8sYSX8yWAYklfahnjh/CDpUVONG6oDfPiWJqwWjWfPDPDs2f6Rv3kcFgIuU5OlWqnsK+aYIrcdt92CEFd+/r5/oIPDHRHKvA5+987VVF3296OdEZ47O7Bocp2mS2c4xaH2ITI5nZoiF9c3lYy77rb6Iu7eWEVVYP6+05FkjmfPDnB6klPHitnlaNfctCC6Fm/ZWcc7dtfx2SfP8dChznm1ZTky1SrImBDiD4H3YE4rWjDzwJYdfbE0OV2OCBx2DKU40W3e7BxWjW31F6ddnFYLxzojZHUDQ8KNzWZBgdWicc/GSrK6gdO2+KMEisWFy27hvi3V5C77/KWyOk+e7mMgnqXS7xgZJAzTF0tzuONi5sENzaWAGTXrGEoSdNmvUMdfzBiG5LGTfVg0DYkBEsKpLOU+57U3nicOtIXoiWRoHUxSGXDiv4b4Zmc4hU0TlPsX7jktBY52Rgm4bNQWzf+A+5Nv2MD5/gSf+O5hKvxO9lxlUKGYWaYaAXsbppTEB6WUPUAN8A8zZtUioTea5tHjffz4UBdfe+4ChzvCeJ1WhiP4/sseWDnDwGa1IBA47Zdeek0TyvlSzBuWMT5/Fk1gtWhoQmCzaFckZ7vtVqyFD7vfZTMdtlN9fHnfeZ463c/Pj/WQyi6dghMhoMRjp6LgcHkdNl5pC8+vUddg2OFyWDUc1qvf7s/2xXnqVD//9WIb336pjdbBxFyYuCw51hVhY41/XhLwL8dhtfD59+ykvsTNh77+8qQLbRRTZ6qtiHqEEN8DhoWCBoAfzJhVi4RMzszlai+M9o92RllZ5uWeTVXkdOOK/l5Bl529a8sIxbPcvq6c7ojZyqWpVOnuKBYO0XSO7nCa2iIX922u4kR3jKYyzxW5QV6HlddtriKZzVPuc3KkI0JXOE1nOE3AZaPC7yRnGLhYGgMLIQR3rq+gKuAk0GLDbtUo882thMBk2dFQRF2xG7/Tds0cvHROx5CStsEkFk1woHVI9bKdBXK6wcnuGB+4sXG+TRkh4Lbxlffv4o2ffY73f+UlfvBbNyzoyO5SYUoOmBDi1zGFUYuBlZgRsP8Ebp850xY+dcUuttYFsWqCbF7H77LitFnGTWL1OKy8aXstWd0glzf4+TFTgzaRybOlLjiHlisU4/PYiV5SWYNz/XHu2VjJzsZivA7rmKN1r8OK12HeRsp8DjQBK8s81BS5aCr1XnPKa7GhG5Lz/Qn8TivVQSfb6xd2ZacQYqQP57VYW+nDkJJsXsdhs6gH8CxxpjdOVjfYsMCqTeuK3Xzl/bt46+ee59e+9jLf/tAe3Pb56eCwXJjq1f0tYDdmY22klGeEEMuuq7QQgvXVftZX+4mlc7iu4nwN47RZcNos9MUulqbrUunuKBYGUkqGK9J1QyKEGLfZ9OVUBpzcv7UGIViy0+mGBAlYNA3XEjtHq0Vjc22QjdUB4tk8Pod6+M4Gw7pwG6dQUTzbbKoN8Ol3bOND33iZj3/7EP/57h2qKnYWmWoOWGa0ZIQQwgosay/C57RNqs1Kuc/Jjc0lbKkLsHmBjYQUyxchBLetLWdjjZ/XrJ581wmX3bJknS8wm3HfvKp0SemaXY6mCfxO24LIT1qKHGoPE3DZWFG6MKd371hfwZ/dt4FfHu/lr356fL7NWdJMdYjzlBDijwCXEOJO4DeBH8+cWYsTKSUH28JEUzm21xddswJsdH5FKJHFZhH4ltiUjWJxYBiSgXiGgNtGscdOsWdiUS8pJQdah4il8+xoLFpyU45jUVvkptSrE0nlKPctPWczndN5qSWERQh2rSjGtgT6dy4kDrWH2VIXXNAO7vtuaKQtlORL+y6wvsrPW3bWzbdJS5KpfrN+H+gHjgAfBh7GVMNf1vTHMpzqidEdSXOkcyKNAUzO9cd55GgP3325nc6hJLF0jvP9cbJ5pU6smD06wym6wikMQ/LwkW4eOdbDz4/1TqplUG80w+neON2R9Ehz4aVOKpvnP588y3f2t4/Z1WKxc6Y3TnsoRctgkpYBVQk5kyQyeU73xti2CHJ+/+h167i+qYQ/feiYqoycJSYdARNCaMBhKeVG4Aszb9Lixee04bBqZPLGJdVRiUyeznCKqoBzzAhXOJmjL5qmZTBJKqcTcNrRNEFlIMFtayvm8hQUy4QLAwmeP2e20XHZLLzYMgjSzAHJGxL7GHkfkVSO3mia+mL3yDSjz2nFbtXI5g3KvAu7InCm+OmRbp48NYAQUO5zsKNhaU1F2iyCvliaUq+doglGQhUT43BHBEPC1vrgfJtyTSya4N/evpXX/fsz/NaDB/nRR29a0ukF88GkI2BSSgN4VQhRPwv2LGpcdgv3bqni9ZurWFNpNgYwDMmDL7bxyNFuHjvRN+Z2G6r9BFw2KgMOfA4bsYzZQ05FwBSzxejP1mAiw4oSDy67hR0NRdjH0IsyDMkvj/fyyJFuvvVi20iUzOOwcu9m8zO/qmJ5NMPI5AyKPDZcdgvVwaVVKZjTDQ61h3HZLBgGS0rHbSFwqD0MwNba4LzaMVHK/U7+8S1bON0b5/89fna+zVlyTDUHrAo4JoTYD4zEqKWUb5gRqxYxDqvlEr2d/S0hHj7azVAiy83NpTywreaKbZw2C2/fXc8rbUM47Raq/E66o2lWTrLfpEIxUVaVe8npBpoQlHhsnOqNc+f6inF7nErgQMsgz58PUe51sKHGz+4VpmL2cGXvcuG+LVUYEoIuKzc0T75QYSFzuifGE6d6yeYlmhAkszqv31xFXbF7vk1bEhxqH6KxxL2oIou3rinnTdtr+c+nzvH6zVWsq1p41ZuLlak6YH8+o1YsEVLZ4cRcx4iwaiiRIZzIkszqnB9IkMrquOxXPqxcdstIKxfgip57CsVMommCjaOqbyuu0a8wmc1zfiBJMqszmMwSSV3a+zGazpHJGQtemHQm8LvsvOf6hvk2Y8bpjabZd3YAgUYml0OXksOdYZrKPMoBmyEOtYev2j90ofLHr1/Hk6f6+KMfHOH7v3HDgi4gWExMygETQjiBjwDNmAn4X5JSLo8uvNcgpxs8cqybVNZgZZmH6wpfsptWlvJgURuxdJ66IhehRAZP3kpOlxzvjlITdNJcfvWpG8OQSilfMSNM5LOU1w0OtA4hge31RYSTWQwpqS12kcrpBF22Sx4ikWSOR451oxum8vrw9PtSZrF8J493RRmIZ9hcG7imnpsmBF6nlTKfgzKvjbw0iyyOdUXYUBMY6XermBrdkRS90QxbF0EC/uUUeez8wT1r+cT/HOanR7q5d3P1fJu0JJhsBOxrQA54BrgHWA98fKaNWoxk8waprJlXE01f9En9bjt/+cBGDrWHqfI7eer0AOmcjiZMzaVzfTHSOYNKv5Og+1Itsa5wihcvDJLM6qwq97F7RfGcn5di6dAxlOTZswPkDcm2uiCrK3wjnzcpJZmcQWfErIw80xvHbhFc6I+T1SUum4X3X9/Iuf442xuK8Dov3jri2fyIeGs0nZuPU5szDEPy1Ol+DrWH2VofZO+amdOf7oumiaZzNJZ4JqUpOB6RZG4k50g3JHvXlpPK6uMK5Zb5HKyp8NE5lKLEa8NptVLiSVPmcxJL5wDlgE2HQ4W+oVsXePeE8fiV7bV8ad8FPvXISe5cX3HN1laKazNZB2y9lHITgBDiS8D+mTdpceJxWNm9opjeaJoNlykcryj1sqLUy7GuCOFkljO9cZLZPEIIUrk8qZxOx1CKDVV+bllTTl2xm95omidP9fNyS4jqIhfZnIEQUFfkpjKwtBJ/FbNLMpvnRHeU1oEkiYzOkc4IkWSOeEZn94piM8H+RC+HOyIIAdFUjv5YhlzeIOg2BTk31gQo9zvZNEbycHXAycYaP4mMzqYlLCqcyup85+U2vvNSOxU+J73R9Iw5YJFUjsdO9iGlWRW9s3H6gy2nXcNp00jnDAJuG92RFE+d6kcTgjvWV4yp9RbP5GkdTNAZ1njHrjrWVvmQEppVPuq0OdA6hN2qsa5qcUaILZrg/75+He/50n6+8Xwrv3Zz03ybtOiZrAM2MryVUubVPPClNJd7aS4f/0a1usLHsc4Ihzt0zvfHcNitrKv0MRjLks4Z6BI6hlLUFbvRC1VmVQEXNk2QyOZ55Eg3CMHv3rkazyy3CemLpomkcqwonZnRuOJKeqNpYukcK0q9s9ru49v722kZTFDsseN32PA5rPicNvKGGbZKZPMMxrMYhiSaziEQ+J1W9rcMEXBZWVPho7ncO25PQSEEmxdJVddUyOkGLQMJYukch9sjZj/IgTjl/plLpJZSMtyRLD8JHbar4bBaeN2mKmLpPGU+B4c7whgSDCkZjGfGdMBO98Q43RvHadOwWgQ7GlTUfabY3xJiW11wUUeObl5Vxg0rS/jc0+d5956GZVV8MxtM9im+RQgRBYafFq5R76WUUpVHXAWbReMNW2vYfyFEideFRLKxJsCGKj8tg0k0TYzkz1QHXexpKqYvmkbTBL883suB1jA+l5WDrYPsbiqdtS/yJaPxVI5dMzAaV1xKOJnl8cI1jqRys/KgMwzJ+f44RzvDnO9PUu6z8+FbmlhT5SXgsrOqwhws+Jw2GkvdaAIq/E58TisPHeqkyu9EAqsrfdw4qkBkufFSS4iWgSS6YRBw2Qi4rKRzOn3RLGd6YzMivxF027l5VSmRVI7VMyjnMbpCdVW5j1Aii0UTl3ThGE0im6fc5wAEjjHkSBRTI57Jc6wrym/eunK+TZk2H72tmXd+4UW++3I777m+cb7NWdRMygGTUip3d5o4bRbee30j3zvYicdh4Y3banHYNDojaRIZnXP9cY53GZR47dQVufnLnxwnls7jcWiU+x2kcjoH2yIc646xe0Uxm2uCMx6hGj0a12doNK64FEMyco1n4xKf74/z7NkBcrpkMJGlzOdACMnf//w0hiH57dubSWRc7L8Qothtpy+awZCm47+m0ofDqvHt/e2U+hz8yhjSKcuJQqAQq0Xj3Xvq+Z1vD9ATTtEfzfKLYz3TdsAG4hmePTuA227lltVlY+qwzQQuu4VbrzFleteGShIZnSKPDZvFQjqnqyjHDHCwdQjdkEtiMHt9Uwk7Gor4z6fO87Zd9bP2eV0OTFcJXzEFNtcFaQ0liaXzPHt2gF0riklkTMHDx070YtE0Sj12IlVZwqkc0gCBYO/aMnqjGexWCye7Y1g1DYFg2wwndc7WaFxxkWKPeY2j6RyrrlEFO1l6o2leOB/iSGeEYo+DrXVBSj0OzvTH6Y2a7YKOdkZJZnVOdsdIZPJUB104bBZ6o2nKfQ6OdkXZUBNgU02AIs/Sl5a4GjsbiwgWemQaUmKzWEHTMDB4qWWInG5Mq1/iub44iYxOIqPTG03PquRDKmsO8sr9Dsp9V04pb6gOsKE6wEOHOjnYFqY1lOS1GypnzZ7lwkstITQB25dA1wQhBB+9rZkPfOUlHjrUqfpEToNJO2BSSkMI8aoQol5K2TYbRi0H0jnT4UrndUo8dlZXeOmPZTjbZxBKZIhn8ty3pZobVpbQOpjg3dc1sGdlKaFElqdP9xNL53DbrbPWKLeu2I36Ws0us/WgtRbyyRpKPDhtGresLqe53EsokeHvHzlJXpfcub6CI50RWgaT2CyCtVV+fE4rG2sCZHVjJDqXySsldKfNMqKZZhiSt+2uo+fRM7jtFrbWB9GmmQtbX+KmdTCJw6bNuo7a8+cH6IlksGjwwLaaMdMYhitiATKqG8eMsP9CiI01AbyznLs7V9y6uow1FT6+8mwLb95Rq3TBpohSwp8nbllTRnsoSUOJByEEOxuL0Q1JPJOnN5Kiwu+k1OfgE69di5Ry5ANe7LHzwLYanj83QDKrs24ZaC4pJkeJ18G6Sh+9sTS3rC7DZTe/5sUeB3/3pi0jGlZSSloHExS57WytD17SeWFXYxHxTJ711SqtczSaJnjbrnpuX1tBy2CCVRW+SwooBuIZOodSNJZ6CLiu7Ps6FlUBF2/eUTtrumLZvE46a+BzWUfuI4LxjyWE4JY1ZXQMJVlRqqofp0smr/NKe5j37Fk64r1CCN5/YyN/+P0j7L8QGtG9VEwOpYQ/T5T7nFdMAVg0QVOZhwf3t5HJ6bQPpXj3ngbKL6s+axlI8MTJfoaSWXRDctc1pgjSOR27RVsUwpGKq5PNG2iCq+b9tQ4m+M7L7Vg1DafVwq1rL837yRkGTx7v44v7LpDI5Nm7tvyKtlfLpa/jVPE6rVT4HTxxso8Sr50bV5YiBDxxso+cLmkLJblvy8TFKmfruzmUyPK3Dx/nTH+C+iI3926pYlNNgOqg86pFPBV+57hVr4rJcaQjQjZvLIn8r9E8sLWGTz1ykq8826IcsCkyJQdMSvnUTBuyHIhn8nQMJakJuvA5xx4dtw4m0Q0zcfqZM/2sLPdy/9ZLk6DzhkFfLGOuH0qMtZsRjnRECrlAdu5aX6GcsEVMZzjFM6f7sVk0XruxctzpjLZQkkzeIC0NwqnsFX8/2R3jqTP9tIeS+Jw2OoZSVz1ufyxDKJFlRalHJdwCB9uGONkdozucojLgJJnVCVfnKPbYsVoEOV1is0z9e5bO6bQOJin12inxTm9KsnUwQW80Syqrc7YvzrHOKFUB17j7NQzJmb44VotQvWhniBcvhAAzqryUcNktvGN3PZ976hztoaRqVzUFpnQ3FULEhBDRwk9aCKEX5CgUV+GJk30cbA3z+Mm+cde5ZXUpJW47Fk0gBLzSNkTbYJKOoSQDcdPpai73cdOqElaUuin3Ofnuy21870AHfbH0FfvrDCcBCCWypHIqn2cx0x1OYUgzL2eg4IAPk80b/PxYD9/e30Y0maO53MO6Kt+IUGgik6dlIMFQIsuxrgitA0mcVg0B3Le5atxjJrN5HjvRy4HWIfYXHiTLmfZQkhfODfDcuQGOd0eJZ0zHy1/oDHDHugp2NRZxy+qpC7Q+f36QA61DPHaib9o5eGur/Gyu86MJ8DgseJ1W/OMM/gBO9cY40DrEi+dDtIeS0zq2wuSZM/2sq/JP25leiLxnTwNCCL7+fMt8m7IomWoE7JL5CSHEA8DuiW4vhPhd4FeklDcJIT4B3A+0Au+XUi7ZXiZGIbN5+PdYlHid/O/XruGlCyFeuBCi3O/kJ4e78LtsJDJ57t1SRU3QzZt31PHNF1p56lQ/yUyeNVV+jndGKV19sRF4OqezqsLLie4YVQHnrIu3KmaXVRU+BuIZnFYLAbftktzAznCSc31xzvXFSWZ16ktc/O6da3DYLOTzBt890I5AkMnreB02Sn12ttQGWVvt5471409hj/6oXu1zuxxoDyV55swAL7cOcao7RpHHzppK/yXSDj6nbdzo9kSRhesskUz3kjttFl6/uZqqgJtkNs/6Kj/1JeNHKoYLCpLZPImsavM7XZLZPAdbw7zvhqWT/zWa6qCLuzdW8p2X2vlfd67GbVfPmMkwI1dLSvlDIcQfTGRdIYQD2FJ4XQbsLThivw88AHx3JmxaiNy6ppz2UJLaoqv3VFtf5cdps+CyWzAk6IbBhYEEg/EsdqvGe69vJJ3TOdcXJ6cbtA0l0ZGc6olyqH2IX72xiWRe54mTfVdtO6JYXARcNu7eWMW+MwP87EgPVUEne9eU870DHTx3tp9wKk9fLE25z8lAPMuFgQRrq/y82DLI4fYIVotgfVUAIWBHQzHrq/zXbJztcVi5dU05A/HMVbs8LAd0Q5LO6VzoT9AfTxPP5Om6xvTtVLi+qdSUivA5ZkSDq9TrwKoJvA7rNf+Hqyu8DMQzvNIW5pW2MMVu+xU5qIqJ81LLEFnd4KZVZfNtyqzxgRsa+enhbn7wSifvum5pOpqzxZQcMCHEr4x6qwE7gYmO1X4Ns6n3X2BGzZ4sLH8UeCdL2AELuGwEJtArT9MEzeVemko9JLJ5BILPPHGGmiIzcTanGzisGhtqAlzoT1Dmc9AVTvH8+RBHOyPEM3nesLVmpO3IwDhtRxSLk+6I+dDvjaR5tX2IzzxxlqFkljKvnTvXV5LM5akelecTz5iR0I6hFDetKqEm6EbTmHAnhcqAU/UfBRpLPWys9pPO6eiGqakVz858wN5lvyh7MRNoQnDzqlKKPPZrOnRCCAIuU/NMSrO5unLAps6+M/3YLRq7l1gC/mh2NBSxodrP155r4Z2765UkxSSYakbtfaN+XgvEMKcRr4oQwgbcIqV8vLAoCAznjkWAMbMUhRAfEkK8LIR4ub+/f4omLz40TeBz2th3tp8ijx2rprF7RTFOm4X2oRQOq8bNq0t54/ZaDCkRSHQJQ4kczeVeKgMOaopcNFxlykGx+NjeUESxx8b2hiI6hlIM3+8MCfXFbt57fSPlficXBhJIKdnZUITPaaXM5+Bga5i8YSzqfnTzyfaGIsp8TuxWDZfdgk2bmeuYyOR59HgvT53uJzuD2ltd4RSPHO3hiVP9Izmk12J1hY+VZR5WV3iVDMU02Xd2kB0NRbjsS/f7JoTgfTc0cro3zvPnBufbnEXFVHPAPjDF470HeHDU+zAwXOLnL7wf63ifBz4PsHPnzmWXiBJN5/E6bJR4HCNTCAfbQqSyBrF0nrs2VHDTqjJyukQTgjfvrCWWyrOjoRifw6oqH5cYK8u8VAdcJLN57NV+bmwu5VhnlBubS1lT6CuayOic6omxssxDidfByjIfmkiQNyTJrD7tPKXlitWi8Ws3r+BzT5+jyG3nplUz0yPzdG9spLK5LZScseneWNrM4zKkJJrKjTPEvRS7VVOyAjNAfyzDie4on3jtmvk2ZdZ5w5Zq/vbhE3z1uRZuWMZ9YyfLVKcga4FPAzdiTj3uAz4upey4xqZrgK1CiI8AGzCnLncDfw/cAbwwFXuWOjc1l9IykGBFmdlAN5TIcqY3zkAsy82rSyn1Ori5uZQbm0vwOW08dqKP/3qhFbvVwl0bKrl7o2olspTojab5+nMtHO2MsKOxiLs3VPLxO1bRFU6zrtLHqd4Yjx3vJacbbKsPUuJ1sKXOnNLyOa1K32mKnOqJ0RtN43FYaCjxoAlBIjP1RHUpTbkZn9NKZcDJqZ4YFk1QNoPVcivLPJztj3O0I4zXYaGpzKt6O84Rz50bAMz791LHaTMlKf7zqXN0DCWpLVKzLhNhqkn4X8GMZL2l8P7dhWV3Xm0jKeXvD78WQuyTUv65EOL3hRD7gDbgX6doz5IlnMzSG02zutJHaeHG3BVOUV/socLvpLnMy6meKM+cGcDntLK+yk8kleVYV5REVudsf4wN1X6l0bJEyOsGX3+2he8f6sAwwGm3sLbSz0sXhuiOpOgcSnF9UwnNFV6sQtAdSbOxJoDbbmVbfZBTPTFaBxM0lHjm+1QWFfFMnidP9XGmL0bbYJJIKofXaaUneqX0y0R5uXWIM71xPA4Lr9tUxT0bK9ENScA9c9FJq0Uj6LJRV+whmTUYSmapCoxdBDQYz9AWStJY4qFI5YxOmydP9VPkts1oPt9C5t17Gvjc0+f5xgut/OE96+bbnEXBVHPAyqSUX5FS5gs/XwUmVeYhpbyp8PtTUsqbpJTvlFJeqRq5zHnqdD8numM8cbIPKSXHu6Kc7o0RTmZI53RSuTy/ONrD0c4oZ/riBN02msu85HSDWDpHbzjNL4/3zPdpKGaIUCLL/tYQ4USOZDaP125l94piWgYTHO6I8PjJXtpDiZEE6u5IkhfPD5rtUNrCHOuK8uzZQcJJ9VWbDHaLRjiZo2UgSUc4RTKTI5bOTau331DC/B8kMjqD8Qy/ON7LI8d6uTBwdXHliaIbkiMdEQwpcTssVAWdV42uPfhiGz890s3Pj3dzrj9OZ3jmKzyXC7oheeJUH3vXlF/SqmopUx10cdf6Cr69v51UVmlOToSp3j0GhBDvBr5VeP8OQGXfzQJ2i0YCHbtVozuS5lsvtnJ+MEGJx0510MXx7hhZXRbEIG3UBN34nDbWVfl56UKIjCF5uWWIG5ujHGoP0xvNsLHGz/VNpUs6MXSp0BtN8/TpfnqiaVZX+JBS0h1JY9EERW47d26oJOi2s6LUTU8kTbHHxuOn+rBbLZzsiRNJ5XjpglkK7ypMPWmCZfNQmCnsVo17NlbSFkqQSOfoCKeIZnT2nemnqcxLdfDq0jJjsaOhiKNdUSr8DnK6JKeb6a0D8QwrSqcfoTzTF+NIZwSA3SuKr5pX1hdL0zGUJJUzuNAf50xvgoZiN6/dWKmmrKfAK21DhJM5bl9XMd+mzCnvu6GRnx3t4aFDnbx9d/18m7PgmaoD9kHg/wH/Unj/bGGZYoa5dU05nWGz4vE7+9s40hVB18FrtyAlWDUzYTad01lf7UfTBEG3nbfvrieR1UFK3HYLD73ShdUiaAulsAhzne31S6s1xlLkpZYQx7ujDCVyGIb5oFxd4WMgluG6lcVcX0iWvmV1OS6bFQF0R9MMxDMIKQknswwlsvzgYCe/dnMTe5qK8bumLxa6HNlcF+T9N67gwRdaGErnyOYkr3ZGsE7RmS3xOrhltTlxYBiSlWUekjmddVUz0wDdOarS1Wm7+mSHy2ZKXxzpjNAVznOofQhNiGUvvjtVHjvZh1UT3Lx66ed/jea6FcWsrfTx1edaeNuuOiVJcQ2mWgXZBrxhhm1RjIHLbqG53Muh9jBuh5XaIjfZnE5lwJSXuG1NGZVjjL5vX1fByjIvn3v6HBf6E0RSObK6QXXAic9lpUTleCwKij12ynwOBmIZnjvXh8tmJZ0zeM/19dy/tXakN6PTZuE1hYd5LJ3j+XODJNJ50oVWNtVBFy2DCV63afy2Q4prs6uxGLfNwsG2MDk9T5XfSdA9ve+SYUj2nR1gKJll94riaU1rjqax1IPDpqEJcc0ols9p4/5tNbjtVloGEkTSeQIu67j5Yoqr8/iJPnavKL5q26eliBCC99/QyB98/wgvXgixR1XTXpWp9oJsEkL8WAjRL4ToE0I8JIRommnjFBdpLHFTGXCyd205e9eVs6bSDwh8LvMLfqwrwsG2oUs0hIbFM0OJLIc6wmhCY22Vn/u31owkYR9oHeJnR7pHxD0V80vHUJKHj3RzqD0MwPVNJTywtQavw0o0pXOsy5TN8zhslzTGPtsX56WWEMlsHp/TRlY3qClyc/3KUl6/uZqGEjerK5Sm03TJ5HX2nRvAZrEQdNlJZXWePdvPz4/1TDmvbjCRpWMoNSIdMpNUBVwTnkL0O21srg3gtluoCbpYUaoKd6ZCeyjJqd4Yt62dej/Qxcz9W2sIuGx87bmW+TZlwTPVodaDwGeANxbevx0zH+y6mTBKcSVBt537t5qSaS0DCQ61m2Xl+84OkMnpxNL5kXCv227BIkw1fbfdLHHXDUmgMPVkswjO9sXxOawjN/zDHRE12l0AHOmIEE7mCCdzlHsdJHM6lX6zJU2px0E2b1Dhd+KyaQzGM3SGUwRdtpFG2ef7EwRcVtx2C3ld0lzuZfeKpavCPdckMjrprEHAZSGVM6gJOukMp9GE4GRPbEoj/qDbRtBtI5LKzWh1aiKT51x/nEq/c8Jq9smsTnXQTWsoQX8se0m/UcXEePxkH8Cyy/8axmW38PbddXzh6fO0DSav2nt0uTNVB0xIKb8x6v03hRAfnQmDFNemsdRDY6mHZ88O0DqYJJ7JY0gDv9NOfzTDYKG6ymbReO/1DZzqjiEBt8PCrsYiHnyxnUzenI4Mum2Ekzmqr+J8pbI6qZyu2hnNAHndYCiZo8htw2q5MgBdFXQxlMzhdVh46nQf/fEsTaUefu3mJo50hpFS4nHY2L2iiB+/2k1OlzisGlZNkDckrYMJaovcWDR42y6VBDvTFHvs7Gkq5lBbiBKvhe0NRaTzkkzeoGqK7ZpsFo3XbapCN+SMFkc8d25wRAz0jdtqL4mYjofHYcFh1SjzOknnDfrjGcp9Kgl/Mjx6opemUs+MFFIsVj5wwwq+8mwLn3niLJ968+b5NmfBMlUH7IlC8+1vYwqxvg34qRCiGEBKGZoh+xRXoTLgpHUwSdBtw2EVaEJQX+IeccAsmmAomcViEWypC1LqdXC8K8qJniihhPlg/993rkFijloyeR2bpl2inJ/I5Hn4iPmg31oXZH31zCQIL1eePNVPXyxDuc/BHesvjpClNB/iW+uCrK7wEk3l+KdfnCaSzhFKZNjdVMzdG6s42DZEOJklmdGxaIKcLvE4LJR5nZzvj7Om0ksiY6jKtVkkrxt0hNNoGpwfSPKRW1aSN+S0BE4jqRwHW4fwu6xsry+akajTcHGAJgQT3Z3bbqXU58BuE1QFnMsuh2m6DCWyPHdukA+9Znln5FQGnLxzdz3ffKGV39rbrKJg4zBVB+xthd8fvmz5BzEdsuX96ZsjhlvSnO6NcqzLnErUhGB9lY9ERsfjsPL4yT46hpK0DSb5wE0ryBtm5KsnnGYwnuWzT55lT1MJfpeNwx0R/C4rd62vHBktJzL5kfJ4pR01fUKFaxi67Fo+frKP3miGxhI3hpQ8frKXWCZHJqtTW+RGNyQtA3EePtKN127FomlsqQvSNphkc22Anx/rBcCtWXjD1ko8SmJk1nj4aDedQyksmtnix2rRmG5rzaOdEbojabojUFvknhEH+vqVJbSFkpT7HNjGiLZeTjqn85PDXbhsFrwON3dvqMShVPMnxS9P9KIbktdtVMUuv3HrSh7c36aiYFdhqlWQK2baEMXUcNktlPudHO+OIQC7RfBKTwxDgtBMTaH+WBarptEXTbO+yk8yk6c7Yjpgg4ksHocVu1XDYbUQTeWJpnMjqvvlfifrq/1EUzk21S4PRefZ5PqmEs71x1lZdjEhPps36I2afQBfbh1CACd74rhsGjVFLm5sLqUq4OKXx3uJJHMMxLJsqPGz/0IIKc0cIp/TSiydp9TrmLEqOsXYDBdC6AYUeWYmQlTqddA6mMRh1WYs6uS0WVhd4Zvw+k+f7qc7kiaeznPrmjLlfE2Bnx3pprbIxcYaNVNQ4TejYN94oZVfvXnFpD6Ly4Up36mFEBuB9cDIUE1K+fWZMEoxOaoCLu7dXIUQAt2QGAXpHinhtrXlHGwNo0uDZ84O0FjiZs/KUtJ5gydO9nGyJ0rrYJI37agxR+DhNPvO9LOjoXikfdHWuuD8ndwSo67YfUlbqFg6xzNnBoimspT5HGyp9fOjQ93kdYP6Ci9v2FpDfbGbR4/30joYZ12VD6umsbbSzzNnzF5zhpS8dkMl8UyeohlsY6MYm9UVPloHk1gLYriPHO2ZdruvNZU+KgNOnDZzIDQTpHM6z58bxJCSG1ZeW3g5p0uay7xk8jp3LtME8ukQSeXYd3aAD9y4QhUuFPjY7av4/sEO/vInx/n6B3er63IZU23G/WfArZgO2MPAPZgNuZUDNsOc7YtzsHWIyoCT7fVBnj03iFUTXN9UghBi5KY6Wljz5lWlhBJZ1lT6cNosVAVcvHhhkERG57ETfVwYSLCzoZh1VX6i6Rw90RTfO9BB0G1DIvAUqiNV/8jZp2UgSTiZI50zONIZJZbOEkrmqClys7k2iCEZKecOuG00lnjYUhfE67Cyp6mYREZnTaUPu1Wj2HqxSCKT19GEKHQ/SLOtvohkJs8rbWGqgk5uai5VN8MpsqHKxzNn+vE6LBxqi9BU5uWV9vC0vy+BgqRMJJXjhfODuGwWblhZMmaxxkRoHUzSHTF7VZ7rj1+zJ+FNq0o53x+npsiFfQlFvzJ5nWfPDpDNS25sLsFuNbXRJjItG0nmePJ0H0IIbltbftXo8mMnesnpkns2Vs6k+YuaYo+d371zNZ/88XEePdHHneuVYz+aqUbA3gxsAV6RUn5ACFEBfHHmzFIMc7YvRt6QtIeSHOsKc7o3QV2Ri7ZQEofVwvpq/xURquEoi5kQOkDQbWdlmZeDrUO0h1Kc6o3x/LlB7t1cRW80Qyie5URXlFKfE5/DggBKvXZVgj4HaAK6IykOtA4RSebojaUo9jhI53QQkv948iwAJR47O33FVAedvHh+kGKPnW3jdDLojqR46lQ/Od0gksrROpjkYOsQ66v9hc9SimTWzBFUTJ7HTvYRTuYYSuaIpMxcvspp5GxlC9Ho490RKvwuVpZ5GIyb++0Mp6YsTVHmc2C1CIYSWU71RLFo4qoq+wGXbdzP1GKmPZSiJ5Ihbxh89omz9MeyrK708bZddSNO73i0hZIkMqaYcedQijWV40+j/exoD1UBJ1tqgzNp/qLnXXsaeHB/G5/80TH2NBWrLhyjmGoz7rSU0gDyQgg/0IdKvJ8VVpZ5sWhQ7LUjEAhgMJ5BNyS6ITnWGaEznEKO0TLkSGeEnkiGk90xSr2monpXJMmF/gQtgwl+eaKXRCaP1WKOBnXDoC+W5lhXhNO9Mc4XmgKf74/z3Zfb2XdmYMzjKCZGKqvz8JFuHjrUyVAiSzqn83JriLO9MbrCSXKGjsNiQUhJKqvzs6O99EbTnO6JkczqNJd7aRlM0hvNcKI7RihxZVHEYDzD4fYwmbyBEIJYKkdOl7gdVrxOKxYNaotcuFWS/pQIJ7P0xzNk8waGblAfdHLflqppaa199bkL/Ptjp/npkW5evDBIfzyDJsBh1aYl/eK0abjtFs73xznWFeX5c4OmY79I6I6kiCRz095Pmc+B3aqRyuoksjp5Q9IbTdMfy1xz27piFw6rwKJBdXB8JzuWzvHU6X7u3lh5SRW5wpRZ+dSbNtMdSfFXPzkx3+YsKCY1BBZC/D9MwdX9Qogg8AXgABAH9s+4dQoCLhs3rSqjxG3js11Rktk8ZT4PhpSc6Y3SH8vSGU5x29pydjZe+hAo9TroGDL7SPZE07QMJnDZLEREDpfNQjZnUFPkwmbRWFnm4VhnlINtQwwmIsTTeW5ZZba2Od0bJ6dL2kJJtmQCagQzRTrDKcKFB0rLYIK1lT5euhDixZYQhpQ0FrvZu6acjqEUElOawmYRCA10Q3KkM8L6aj/dgMuu4XFc6kR1R1L86FAXRwv9CVeWeyn22mkJJYkks6wq91HisRNN5ZGSCUsTKEwG4hm+f6ADiwY2DZx2K2mdaX8fjnVGSWV1QsksbptGddDF+io/Vk2MTD8ahiSezeNzWCcclW4dTBJKZOmKpLEUptzsU5zOnGuOdUV4tT2CJuCeTVXXjFRdjYDLxgNbq8nqBo+d6OOVtiE2VPupn8CUcX80zbdfaseQklKvY1xx1UeO9pDNG9y7uXrKdi5lttUX8eFbVvIfT57jjvUVaiqywGTnIM4A/whUYzpd3wLuBPxSysMzbNuypyeSHlFVrgm6qAy4CCVySMCiaVT4XUTTpgp+PJO/Yvv11X5qily8eH6Qnx/t5ZW2ISRw29oKttUHcdstHGoP01Tq5TWry/jkj48ihCBvGFwYSPC//+cQv//ataws8xBOZqnwO/HY1bTVVKkKOPE4LOR0SZHHxkcfPMir7WFSWR2H1YLDZuE9exp5qTVE62CS3Y1FnO5NcLQzzOneOI+f6CWnG1zfVEJzue8KYc1EJk8sk8eiadQWu9CEQJfgsllZXeGnZSDBgZYh8oZkVYWXXY1KIX8yhJM54hmdVNZAIrBo2oz0VN1aF+BkT5TGUi+NpV621AavEGR97GQf/TFTpuSG5ok1eK4KOHFYTYeuJuhkQ3XgmtGZl1pCtAwkqPA72dFQNG/T1MPTfoY0I8fTccCAglSIxn1bqrlvy8SdpJ8c6aE7bObRPXmyb1wH7IeHOmkocbO9PjgtO5cyv3PHKp4+3c/v/vchfvzRm2hcxkK1w0zq2yWl/Dfg34QQDZjth76CWQX5LSFESkp5ZhZsXLaMni7wOi34XVZqi13YLWZ0w+uw4HVaKfc52NEwdu5GwGUzR8HhFJm8js9pI+iycsNKU/vL67QSTuY41RvFkNBc5jHD8/Es7aEUf/D9I7z7+gY+dPPKa1ZRKa6Ox2Hl/q01vNoR5v989zCvtofRNIHLZmFFqYeg28arHWF8DhuvWV3G9voiKgIuXu0Ywu+0kMwaDMSypHL6mKrmTaVeXrOqlMMdEVaUeij1OjjRHaWp1I3DplFX5B6Ru1hMU1ELhcYSN06bhm5IJBDP5HnkeDfvuK5hWt+NO9ZX8GpHBK/TSk3QxcmeKBV+54gUjG7Ikemy3lj6qvuSUhbEenNsry/iLTvquGtDJaFElrqiq0d8snmDE91RXroQIqebx3zD1uoJJavPNJtrAwgBnkIrtfliQ5WfR1028tLghuax20z1RNI8d26Qj922SuXMXgWH1cJ/vnsH9356Hx/55gG+/5s34F7mA/qp6oC1Ap8CPiWE2AZ8GfgzQD2hZ5CGEjeJbJ68LtlQ7WdHw5U3wh0N145i7Gwspn0oSSyTI5HJ82pnhP5Hz1BX7KI7kqG+2M3LrSGiqRx2m8ZbdtbwmSfOYxiSTC7P4yf6aCz2cP+2GoYSWdwOy4yVyi8X0jmddE7H67DypX3nL5lmXFnmpchtI5k1eOhQJ7tXlPDMmX5ePDfAhcEkPZE0hjTzuFZXeguN2K9E0wS7V5Swe8XFB8WWywo0bFaNUCLD+iql6TYWg/EMz5wZwGHV2Lu2/BJ1e6tF47qmYh4+0oUhJRYhyOYMWgcTrL1Kcvu1ONkTp67YTTyTpyuS4khnhKqAk3ftacBm0bBogh0NRbQMJlg3zv9+mP54hlM9ccDMAX3N6jKK3HaK3NeO1NmtGgOxDKd6YvjdNgbiGfK6ZD4KIp02y4KI0N6+voLKoLMgcD32tf/Rq51ICQ9sq5lj6xYfdcVu/u3tW/ngV1/itx98hc+9Z8eUq3yXAlOVobABd2NGwW4HngL+fAbtWvZ0R1K4bBY2VF/9QZnXDZ49N0g8nWdPUzElhVFzTjdGRq7N5V4+fvtqTnRH+OIzFwDB2f44ZT4H4VSWWuki4LIhpaQnmuaHh7qpL/GQyesMxjL0RtN8+6U2QsksDqsFl93sXaecsImRzOZ5+EgPiUyeCwNxjndGSWXzuO0Wyn1OIqkc8UyOxjIvbpuFTN4gldOJpPN0hlP4nXZqipz86k0rqPA7R25Yed1AEwJNE+R1g31nB0hmdfY0lYybvL2i0KMumzdoDyUp8zmm1UJnqdEymCCZ1Ulmdboj6Sv6+fmdNtw2Kw6rBSGgudxHddH0mtg7rGZu1uG2IX4Ry1Dmc7L2smq7NZW+q1bgjbbPZddIZQ3K/Y4J25DXDV7tCDMQz7CyzE08Y7CrsWhWo97ZvDGh/pSXM/reNlkMQ9IdTeN3WieUu2fRBBV+Jy+1mAPUPU0lV0zjfv9gJ1vrgsu69+NkuHVNOX9+/0b+5IdH+ZOHjvI3b9y0bCOHk03CvxN4B/B6zKT7bwMfklImZsG2ZcvxriiH2sNoAu7eWEnwKqPX3liGzqEUAKd6YtzQ7ODV9jDHuqJUBZzsXVvO/gshzvbFqSt28b4bGnn+3CCZvE5eN3jt+gp2N5WAhMdP9vL15y+MTFNtqQ2gIRhMZBmMZzndE2NluRewEk3lsFnM3Izl+uWZCNF0jnAiSzZvMBjP0h1OE0nnsVo0yn12BuM5UnmdgMvKlpoAv7K9FqtF8MzpAU73xthaF8Rls3DHugqePx/CMCS3ri0jkzN49uwALruF126opD+WoauQq3K6N8aeprGnS4Z54lQfg/EsAZeN129WbVOGqSt2c74/gcNmGVNawmmzEPDYKHLb8TjM/8t0lev3NBXz2SfPcrovhi7B77TSXO6ZkpPhtFl4/aZq0nn9Crti6RxWTRvTqTo/kOBUTxyH1YLbYePGVcFZlaR44lQf3eE0ayp946ZPjLndyT66I+kx5XcmwivtQ5zqiWO1CO7bXD0hB/N4d9TsEJLKs7rSNzI1DHCiO8rJnhh/cf+GSduynHnPngZ6Iik+88Q5KvxOfueO1fNt0rww2QjYHwEPAr+nGm7PHomsmVBvSEjldILjrGcYkiKXDY/DQqrQMxCgNZSkYyjJy60hXHYLHQUHrT2U4h2761hV4ePxE72kcmYy8fCN+g1bavjxq910WjNIKfE7bWS8OslsDrfDgsdhpTbgJI/kqdP9ZPOSpjIPTWUe/E7bFZGUznAKTZhK/UuVSCpXyK9xXRJKH4hn6I2kebUjgi4ldqugrshJ+1ASu0XgslqxWy24nQbZhIHPbuf1m6sp9ztHcoxqityUeu3ctKqUzqEU2bwBwOmeGC+cH2QgkWVNhY+BeIZSrwO33UI6p1MTdJHXjauG9hOFoo3hz5rCpNzn5C0768b9e1soScBpxabBylI3upTT1suLpvNIKbFoGsKQ7Ggs5u276qe8P7tVuyKy1B5Ksu/sABYhuHN9BUWXRUh9TvNRIKWkKuDCabNgSLDMwtgqrxsjie3toeSEHbBMXh8Rlm0LJSfsgBmGeb8aiGcQmJ0jcnlJNm9MyAGrK3LTHU7jd1mvcGpbBhKUeOy8fpMaxEyW37trDT2RDP/66BnKfA7edV3DfJs050w2CX/vbBmiuMimmgACcNut4zovoUSWx070FhSay/A5bSMj5g3Vfl44N0C518GFgQTb64s42ROlqdSLEAK/0zrSYDtZeAAP35w+fscqfvhKJ4lMng01AcLJLOW+BKsqfKws83CgbYh9Z009sLfuqGP/hRDn+xO47Br3br6YsHthIMHz5wYBU5l/KarqZ/I6vzjWQ06XdJW4ubFQnXaiO8orbWHah5IEXVZ+dKiLTM7g+lUlbK0LUOSxMRTL0FDqIZ036ImkuHO92UC7L5om6LaPJMnrhsRtt1JX7KZlMIluGFg1gd9lZyCexWbRqCxMS75hSzU53eCp0/08c2aA7Q1B1o6TM3RTcynnBxI0TlHkc7kyEM9woitGbzxDvE1nfU2QVzsi4zoDhiHJG/KqU20+p5XXFhpfN5d5uH1dJYOJLN4ZlHsZiGeQEvJSMpTMXuGAVQVc3LOxkkxOJ2dIcrokbxhYtJmfgrRaNNZX+2kdTLCheuK5cw6rhTWVPjqGkpPaLpzKjThueUOnYyhNqdeBwzaxCGNzuZf6YjdWTVwx/XjPpiruXF+xrPOYpooQgr970yZCiQx/8sOjlHjs3L3Mmpgv7xKEBYrTZrlC0+tyusKpghMl6Y1mKPZcDIuvLPPylp11nCpMGQ7nj/RG0xxqD7OyzMNNq0ppCyVZWealPZQc6St465oyPnLrStoGE5zpi1Puc7JnRUkhIuPi3x87UxBolbzaGebG5jKyOZ1kVpLJX8zNyOQvVtllCpGbpYZeeLjCpecbTuYwDIMyr52TXTHO9MUBiTwDb9tRx5oKH32xDLF0Hp/Lylt31uF3Wvn58V6khF2NRdzYXEpnOMWaCh+d4RT9sQw3NpfgtlsZKmg7VfhLuH3dxZu/pgkyWYOBgop662ByXAes3O+kfBrq7cuVoNtOe8T87sVSec73x9k+TgQnndP5+bEeklmdG1aWjKto77BaeO/1jbxjdwPPnRugdTBJWyE/b6aqxNZW+oml89gs2rj6V/FMHl1K+mJpttVVzmqO59a64JSmEM3pWe+kBg4Bl41yn4PBRAaXzUZjiXleg4ksNcGJReev5kAr52vq2Cwan3nXdt71xRf52LcO8bUP2rl+5dXTJ5YSygFbpDSWemgPJRFC0FBy5Q11W33RJTkc2bzBk6f60A3ojaZ57YZKqgs3n4OtQ+QNg8F4hr95+ASD8QzFHjtVQRdNpV4sFsGOhmJzytNtfmTsVgtuu5WVZV5+criLmqALx6ib1OpyH3ldIgQ0LdHkVLfdyk3NpfTFMpckSPudVi4MJin22Cj2mVOzmbyB12FhfXWAnGHwvQOdxDJ5Hj/Zx3df6kACqyu8NJZ66ItnuHGlGTVMZvM8cqwHKWEomWXvmnKKPHZ+ZXvtmDb5HFZWlHroi6XHrdpSTB2HRaPEbactk0QTkDOMcaMxoUT2kjY24zlgoUQW3ZCU+Ry4CtP4NouGVZu5B7vLbuE1q8uuuk48k8dlsxCKZ3j4aBenemN4HBb2rim/ah7qXNE2mOSlliEApOSavS2HsWiCOwrCnwPxDM+fG8TrsFLhm3iRgmL2cNutfPl9u3jL557nQ19/mW9/eM81i8+WCsoBW6R4HVbumUDeQSyd47lzg1iEQEozx2MokR3JGzrfH+d4V4S+aIbTPRGOd8cIJ3PUFLmwCMHOhiKay3wYhqQ3lub/3L2Wv/vZSawWjffd0Eh3OM2qctP5iKZy6Ibk+fOD+F02bm4uXfKjw7piN9VBF8+c6SdSqJIaSGRZWeYF4MbmUk71xImn83zszmYG4hnK/U7WV/t57HgP3eEUHeEkVosgmc1jKzx0K/1OVpZ56Y6kiKfzeBxWhuJZfnK4i+qgi+3jJEgLIZbVCHKu2VDjZ1tDEeFUDpuASr9r3CT8Cr+T2iIX8Ux+3ArG3miaHx/qwmrRuHVNGdc1lVBb5KbIY5tSheB0WFXu5YevdPDMmQFsVo1NNSluWV1Bx1BqQThgNuvF6b/JXJts3uDZcwNmGsDKEl6/qYq2UJJIKjdSNa6YX4o8dr7+wd286T+e4/1feYnvfeQG6scILCw1lAO2xDnXnxhp7Ntc7qVjKEk8nefR473cs7GKvlgGTTPVsg+1D5HJG2TyBt2RNPXFblZX+Ai4bbxwfpDz/QnO9MW4c0MldUE3ayv9BFw2oukcJR4HRW47z50bJJHRSWR0BuLZeRVRnCsG4pdWIK6t9BFJ5Shy29hcE+Sd19Vzrj/BL4720l6VZmtdkA3Vfh470ctQKksyq+O2W4inc9QUObFqGn1RM2dn/4UhQFLhdxDP5AvVWDHWVfqVMO484HPaeGBLNad6YiDN79R4CfgWTVwz6nSsK8LRriiagHVVPhpLPfP24MnqBk+fNgcSAhiIZXDZLQsmf7Mq4OLWNWXkdGNSDco7wylaBhLYLRpn+2IIITjZHUMT8LrNVdOuYlXMDNVBF1//4G7e/J/P894vv8j//MYNl1ScLkXmdIglhNgohHhOCPGMEOIrwuQTQoh9Qoj/KuiLKWaQqoATiwYSyemeGCd7YkTSOQxpTp+sKPHQFkrSFU5x86oSs6LRZSPgspLM6kRSZu/CWNpM1h9ujnu8O8rRzggVPif3b63hplWlaJqgvtiNJsBt1zjaFebR470jFXdLDSklL54fZP+FECDRBNQXu6nwO3nDlmpuXlXG+YEERzsjZPM68YyOISXxTN6UpSg84HxOK5V+Fzc2l9ITzdAaSrCi1D1S9dgVSXOsK8pg3JQHKfHaL5nuVcwtFk0QcNso9topn+Y0lttmpSroxGoVDMQz89qh4MJAAiEENovAYbPw2o1V3LOx8pptgF5uCfHfL7dztDMy6zZWB12Tcr4A2kMJjnVFOdEdo9LvJJMzv1eGhHyhGEmxMFhV4ePL799FTzTN+7+yf8wWe0uJuY6AnZJS3gAghPgKsBPYK6W8SQjx+8ADwHfn2KYlTYXfyRu31dIZTvL8uRC1QRdWi2BPUzGlXgfn+uMjSbkNJW42VAf4wStd9McybKkNsq6QR7S7sZhjXRFqi1y0DiawWTUOd5g33BWlHjwOK8e7olwYSLCjoQghRMExgTN98Skl3C50BhNZzvWbEnjVQXMq6lhXFE0IqgJOWgeTvHhhEIfNggDu2ViJ32VjU01gRL+rI5xiZZmXW1eXU1PkGomkxdLmtJUhJf2xNCUeOxZN8MC2GhxWTWmvzSP98SxeuwW71cKaimuLo16NTbUBQoksr3aGCadyvNIWZl2VD5d97rtNVPqd7GkqweuwsrrCx21rK64p0msYktO9pvL+qZ7YhPOy5pJIKs+W2iASSanPQYnXgctuIeCyjStYrJg/djQU8dl3befXv36A3/jmAb70vl1zPh0/V8ypAyalzI16mwFWA08W3j8KvBPlgM04dqtGfbGHrnCaZFbnuqbikbB7VcCJ12kllzdYUxAZ3NNUSjydJzjq5hRw20aaAF8YcPP8uUGi6Ry/ON5DLm+wq6GYnx3rweOwksrluXNdJTaLQDfM6bN0TmcomaXc57yi0fBiY/hcgi5TjDOR0Sn22DnQMsTpvjgvtYQocttJZPLkDYOVZT7WVvmuyNu6ZW05u5uK0Q2J12n27ByM92G1CKqCLiyaYGNNAKfNwtm+GCvLvEq1fgGQzOpowlSvl0zvs+xxWLlpdSmhZJbOoRSheIafHe1GNyQfvqWJ+uK5K2Ap8Tr4o9etI5nN43NOTGBZ0wQryzxcGEjQXO6dAysnz9a6YGHw6B5xapfigHApcdvaCv72jZv4P987zB98/zD/9JYtS3LQOec5YEKINwB/A5wuHD9a+FMEGDOzWAjxIeBDAPX1UxcoXM5YNDGiUzUat93KG7ZUX7LMatEucb4uZ0WpBwvw5Wcv8Ep7mJoiFz2RDH6X2djb57Dhslu4b3M1CLOi6yeHu0hkdOqL3dy06ko7FguGIfn5sR4SGZ3aIhev31RFNm+2BNp/IUQqq5PJ57kwkCCWyuGymZGurbXBMffnGiUzUOyx86YdV1Y3Npd7F+zDbTnic1qxWgQWDTyO6TvEfqeNumJXQT8ujt1iochj50hHdEwHLKcbHO6IYLdobKzxz+iDyWrR8LsmFxW6rqmE667ReWE+qSt2L5g8NsXEeeuuOrojaf7l0dNUBZx84rVr59ukGWfO43pSyh9JKTcCnUAeGK7h9gPhcbb5vJRyp5RyZ1nZ1ZNaFXND21CSUCJHLJ2nM5SkodTN2io/m2sDRNM5vv58C7880YsQkDcMklkztyWazl1jzwubvCFHziWWzqMJwb6zA3zt+RYMQ7K60svKUi92izDFHwW83DJ0hYCjYvESdNso8zrI5iXPnh2YkX32R9Mc7QyjS3OwVFvkZHPt2NN5J7tjnOqJcaQzQutgckaOr1AsRD52ezPv2F3HZ544xzdeaJ1vc2acOY2ACSEcUspM4W0UsAC3AH8P3AG8MJf2KKZOZcCJxWJGA1ZV+GgocXPPhip+cKiT411RMnkDt91KJJmjvJBb0hVOXdFkeLFht2rcsLKEjqEUayp9pPNmtef5/gQWTbC5NsDuxiLSeYPeaAarplEdXPqVoMuJbfVFPHt2gPoS90gboelEoeKZPGd64xgIdN3gndfVc/u68nH36R4VdXOrSljFEkYIwV/ev5G+aIY/e+go5T4Hr91QOd9mzRhzPQV5txDidwuvzwB/AlQJIfYBbcC/zrE9iinSXO7j9+5aw08Pd+N12gi4bNisGi6bhcqAk2g6R32xe6SMuCrgpCrgXBI5TA0lHrOViVXDatFYU+mldTCBz2nD7bDidtioCri4d3MVK0o93L6uYr5NVswgXoeVX9ley6sdYZrLxpehmCg2i8DjtNFU4ibotrO1PnjVfa4s8+J1WLFqQulYKZY8VovGp9+5jXd84UU+9q1XePDXr2NHw9U7xSwW5joJ/yHgocsWf6rwo1hk1BS5eeeeBvpjGWoKSeN7VpbQPmg2yrUVKlf6omkePtqDTRPcsa6cWCFpfbFVIEXTOfqiaRIZnQOtQ/hdVu7bUs2OhmLWV/k52hllRambUp+TO9aVk9WNkQbpiqXFkY4wp7pjaAjWVPqm1TLIYbXwqzet4ER3lLoi94S0jypUGynFMsJUy99pCrV++SW++sHdE27ivpBRQqyKCXGgdYj2UJKNNX6ayy9OI3odVrwO82OUyuo8faqfvCGRwO4V5ijl8ZN9/OxIN4YhOdU7XM2ncce6Cl5qGUJKyU2rSvEtQEHEs31xjnZGqA66aC+oZ+87089gIovfaWVLTZBVlT4OtoVpHUzSGkryhi3VY/ZZPNAaoj2UYmNNQCXVL1LimTx/9ZNj/OxID1LAzvoidjUWUV9y5a00ksxxsH2IgMs2bueCYTwO6zX7vyoUy5kSr4P/+vU9vOsLL/DeL73Il9+/a0EXf0yEpSmuoZhRsnmDUz0xklmdY13R8dfTjZHm1KMFJc/2RomkcgzEM8RSOfpiGQwJrYMJQoksQ8ncgk0mPt4dJZnVOd0TJZPT6YqkiKXzhBJZIqk85wdNDaRUITE/pxvoxpXijumczqmeOMmszvHu8a+hYmHTMpDgdG+cnG6QyxnEM3nEOAUWRzojdIfTnOyO0RdLX3W/3RGz4bpCoRifmqCL73z4eioDTt73lf08crR7vk2aFsoBU1wTu/ViIvnVVKgDLhvXryxhTaX30vCw0PAUFN+31AXZUhsotAVJkM3r2CymcOl0iaVzI+rxo9ENOaLoP1kait3ohiSUzCEx82+21gdxWDXcDgtG4XDXNRWzusLLTc2lY7YIctosI+fYuAx6nC1VqoMuttT4cDusBN027t5QSdk4U4YlXnOK3WHV8DnGj+6e7YvzxMl+fnm8l97o1R01hWK5U+F38p0PX8/aSj8f+eZB/u3RMxhjDHoXA2oKUjEhbl1TTl43rtlce0WphxWllzppqyt9lPkceBwWHthWSzyd5/GTfQA0lZlOy3RlGo53RTnUHsZtt3D3xsqRZH8pJb883kMokWNlmWfSIestdUGK3Db2nR0EzG4BOxqClPkcCCEo95sPX5/Tds0ppL1rJ3YNFQuXYo+dFWV+djbkKPHa2dFYNG5hyboqP9UBFw6bdtXik9HR4uFIqkKhGJ9Sr4Nvf2gPf/T9I/zLo6d57twA//iWLXOq9xZOZnmpZYj9FwZpCyUZiGfJ5g3sVg2vw8rn37vjmt0slAOmmDBTdRxuXVNG62CSxhIPXoeVwXiG7kgKr8NKdbCIlsEEXoeVTN6g3O+YUguW4SmeZFYnnsmPPPByuiSUyBXWmfgUTzZv0BtNY0hJTjewanC2P0FtkYvVFX6kFMQzeTbW+K+9s1Eo52vxkzcMBJDI5KkOXv2GH03nsOev7oCtrfSRNyRWTdBwjejomd4YoUSWjTUBPA51+1YsX5w2C//01i3sWVnCX/z4OHf9y9P82s0r+NBrmmYln3ggnmH/hRD7L4R44fwgp3pjSGnOEDWWuCnxOPA7rWR1MzXBPoF7vfoGK2adcp+Tct/FKcb9F0JU+p3YrBqd4TSdQylOdEdZXeGjzGfn7o1Vkz7GppoAOV1S7LFdUkVmt2psqw/SHkqyYRJ96p4508+ZvjgXBhJsqQ1iGAZ1RS46hlKEk1nWLHI9M8XU8bvMCt6aIudVG1Wf6olxoHUIgNvXlY9buWi1aBNqjTOUMEfcYOZb3rxKiVIrljdCCN66s44bm0v5u5+d5NOPn+Vrz7Xw5h11vH13HavKpyYTI6WkYyjFgdYh9reYTtfZPjPf12WzsKOhiNdvquK6phK21AWm3LdVOWCKOSdVSESvL3ZT5DbzZFK5POcHYuy/kEUCe1aUUDQJmYoSr4M714+tt7Wuyj/SVPxa5HWDly4M8oODHVgsGpoQSCmJpvO0hZKUeO1z3iRZsbDI5nVO9EQ52RPl/i3V1IzTr3F0PuJYuYmTxWHTsGqCvCFV9EuhGEVN0MWn37GNX795BV985gLfeKGFLz97gbpiFzc1l7KhOsDqCh/lPgclXju2QnQqqxuE4lkGE1naQgnO9SU40xfjUHuY3qg5Y+J1WNnZWMSbttdyXVMxm2oCI9tPF/UtVsw5fpeNumI3XqeVrbVB2ocS9MczPHKkGykl396fJ5LM8bZddXPegPVIZ4T/2t/OyZ4YuiG5eXUpm2oDnO83Rz9Om4Ul2BNWMQlO9cRoDyXRhOArz7Xyx/euH3O9dVVmlNRu1SaUm5LI5HniVB+6Ibl1TfkV0TW33co9myqJpfMzUrSiUCw1NtcG+fd3bKM/tp5fHO/h8RN9/PRwN9/a3z6h7S2aoKHYzZ6mEnY0FLGjoYg1Fb5ZSx1RDphizmkq85DM6pR67ZR47TjtGi+1DFHksdMXzWCzCKKpHOmcfkmz6rkgkswhMHs++l02it0OGko8GBKSWYMyn6mAr1ieGIakzOfAbrVgswiK3ONPQVotGpvG6ec4Fh1DKaKpPABtg8kxt/U5bQtSL0+hWEiU+Ry867oG3nVdA1JKOsMpzvUnGIhlGExkRuSSbJpmioJ77dQVuagv9mCfw/u7csAUc87m2iCrK3w4rBpCCDx2K6srzGhB0GWlO5rmXH+Czz9zgY/d1jxnUbAzvTEeP9mLVRM8sLUai6axsSaAz2Fla12QtZUXbVYsT168EKLY4+B1myrZUO3nninkK45FJJnjTG+M7kiKxhIPdcWuGdmvQrHcEUJQW+RekF1JlAOmmBdGV4VpmmDv2nL2ri0H4G9+eoJM3qBlIMFQMjdnLYuOd0eJpnVAsLEmwB3rL236uhT6WCqmRzJrRqhWlHq5c30ljhn6TBzrihBN56kKuLihuYSge3G16VIoFJNHzaUoFhw3ry6l1GdnS10Qn3PuxghbaoNUB53UFrvYXq/awiiuZNeKYlaWebh+ZcmMJsIPt65yWLWrVlYqFIqlg4qAKRYcN68qY0tdELfNMqe6WY2lHj56WzOaECrapRgTv9M2K/3nmsu9VAac2C3anOagKBSK+UM5YIoFiX+eEo3dc5z0r1AM41XSEgrFskJIubh6KAkh+oHWwttSYGAezZkv1HlPjO3AwVna90JlqZwHzP25XOvzspCurbJlbObKlsncWxYTC+l/uRCYqevRIKW8Qjl50TlgoxFCvCyl3Dnfdsw16rwX177nkqVyHrDwzmUh2aNsGZuFZMtiRF2/S5nt66GSDRQKhUKhUCjmGOWAKRQKhUKhUMwxi90B+/x8GzBPqPNeXPueS5bKecDCO5eFZI+yZWwWki2LEXX9LmVWr8eizgFTKBQKhUKhWIws9giYQqFQKBQKxaJDOWAKhUKhUCgUc4xywBQKhUKhUCjmGOWAKRQKhUKhUMwxi6L3hRDCC3wE2AMEgTDwAvA5KWVs/iybXZbrecPcnLsQwgMUAWEpZXwm9qmYOYQQq6WUpxeAHQKoAPqllPo82WAF1lD4vAKnpJS5+bBllE3quixihBAW4AHMe+zw9XsB+KGUMj9/ls0P83E9FkUVpBDiR8A3gMeACOAH7gDeK6W8bz5tm02W63nD7J67EOI24E+AaOHHD/iAv5FSPjqdfc8lQoi9wCcBA9Mx/XZh+Q+klG+cT9smixDig5cvAj4O/KuU8svzYM/fSSn/oPBZ+UfgNNAM/K2U8ntzbMt7gF8DDnHx87oF+LKU8utzbIu6LksEIcQ3gMNceY/dIqV893zaNh/My/WQUi74H+BZQLtsmQY8O9+2qfNefOcO7APcly3zLLbrWrhGfsAJ/B2mZo0NeGK+bZvCuRwCfg58EHgv8L7CzfC982TP44XfTwKlhdcu4Pl5sOUZCoPlUcsswD51XRbGdVmMP8Azk1m+1H/m43osiilI4DPAk0KIw5gjnQCwAfjsvFo1+yzX84bZPfcMsAl4cdSyTUB6BvY9lwgpZbTw+g+EEA8ADwPF82fS1JBSbhVCvAF4B+bD/avA2+T8RTKqC1G5EinlQMHGlBBiPqYMhoC3CSEe5WKk547C8rlGXZelw4+EED/B/L4N32NfA/x4Po2aRx667Hr4gVuYxeuxKKYgYWSufzXmhyQMnJHLYJ561HkHMc/79HI4b5i9/7kQogr4A2AzZlRNx4y2/IOUsnO6+58rhBB/CnxNStk6atlm4O+llHfPn2XTQwhxF+bUUrOUcvs82fC+UW9/IKWMCiF8wP+SUv7FHNviBX4duB7zPjCEmZvyRTnHuaAL/LqEgeeZh+uyWBFClAK7uXiP3Sml/Mt5NWqeKDwXcpjXIwg0Am3At2frmbsoHLDlmiwohAhKKcOF1/cCG4FzwP/IxfCPmwbL9X+uUIxHweEoAoakKhpRTBMhxDPA8HNEFH6vB45JKV8zP1bNH0KIx6WUtwkh/h1IAE8AWzGd0rfOxjEXiwzFV4GVwLeAvwX+C1hRWL6U+T6AEOJvgddj5slsBuY8KXke+Cpz/D8XQvzbbO17Llkq5wHzdy5CiEEhxNeFEA8IIZzzYcMoW24XQjyB+R34a+C/hBCPCyHumAdb9gohnhJCPCGEePuo5T+YB1t+p/B7sxDi6YJdzwohbp5rWxYpPwDOA38qpbxZSnkzsH85Ol8FjMLv9VLKP5RS/kJK+fdA2WwdcLHkgDVKKd9z2bJXCh78cuAGKeUthdePCCGemldr5oZZ/Z8LITYAupTy5KjFD87EvueScc7jW/Nlz3RYYP+Tw8A/A28E/lAI0YH5wPqxlDIyx7b8OXCXlDI5vKAgofILYK6rdv8KeB1mHuUnC9WQv4U5ZTPXvAH4V8xqzA9KKc8WptQeAm6cB3sWFVLKfxZC2IFfE0J8hEV4/5thviaE+CLQLoT4JvAUZsDj5dk64GJxwJZrsuD2gsOxbng6UgihAd75NmwOuPx/PmMJkUKIf8LUL8oLIUowb979mJG226a7/7niKufxNyyi84AF+T+RUspDmFHnPxNCNGM6Yw8Bt86xLQupaESMckDnu/CjuOAAFkspzwJIKQfmqSBgUSKlzAKfFUJ8HngP8Oo8mzRvSCm/IYR4DHgt5r3IiplPOGvXZFE4YFLKfxBCfIWLyYLtgLMQHlyySCmDYyz+LeADc2zKnHPZ/3wHcBb4CynlSzOw+53DEcVC0vp3hRCfmIH9zjVL5Txg4Z3LJTfdwgP+Hwo/c827MZ2dv+PSopH3zoMtjwghGoYLP6SUPxRCnAfm4178A+Bm4MejBqg+4Og82LKoKeTVfmW+7ZhvpJRdzOF1WCxJ+MsyWVAI8fTot4XfG4CjS/m8AYQQj0gp7y7kedwB/ARzWqFTSvkH09z3s8DewugPIUQR8E1MJ6BiepbPHUvlPGBpnYtCoVBMhMWShL9ckwV/yJXn/eIyOG8Ae+H3G4E3SCn/s5ATdtMM7Pt/MSpnRUo5hJlP8vEZ2PdcslTOAxbJuRQqpBYEC8yWBVP4sZBsUSiuxqKIgAEMJwti5n49CPyGlPKe+bVq9lnG592DmWR8G7BKSpkqLH9ZSrlzXo1TLAuEEDsw0x0GgXuBlJTyF/NrlYkQ4reklJ+ZbztA2TLXCCGexGz99PNRy34HWC2l/M05tkUHjmCmM50A3je6WERxdRaNAzZMQZzzPcCa6U5FLSaW23kLIRpGve2SUuYKOkg3Syl/Nl92KZYHQogvYU77ZzDL0Lswi0HKpZQfmmNbxkrBmJdUBGXL/COE+DCwR0r5gVHLXgA+IaWcE2UAIYRFSqkLIeJSSm9h2X8BB6SU/3z5enNkk3WxaUQuOgdMoVAoZhshxFOjigKOSCk3FV4/IaXcO8e2/C5mOfxXpZRPFpb9bD4i4cqW+adQJXwSqJVSZoQQjcDTwE+BXZi9Of9HSvlnhfVbgO8Aw5/bdxYkOxowNSXLgH7gA1LKNiHEV4GfSCn/p7B9XErpFULcCvwZ0A1slVKuv8wB+wjm/+O/R6+HWbH7d5jVww7gM1LKzwlTef47mBXuVuA3gOeALwE7MZ3rL0sp/6UQ9fs9KeXLBamRl6WUjUKI92NqZDox+/neB3y6cEwr8Ekp5UPTveazxaKoglQolhujb2yT3O5FzJtcMeaNeLi10gNSypaZsxCEEH8J3I8pYNgHvL9QRbQUGH1v/KNRr8XlK842C0mvSdky/0gpB4UQ+4G7MWVR3o7pyPytlDIkzC4ijwkhNkspDxc2i0opdwsh3oupnXYv8P+Ar0spvybM/p7/jtl95GrsBjZKKS+MXliYobkHeOTy9YQQHwIiUspdQggH8KwQ4hfArwA/l1L+dcFmN6bDViOl3FjYb3ACl+R6YHPh3P8Gs2H8Bwvb7hdCPCqlTExgP3POYknCVygUE0BKeZ2Ucivwp8B3pJRbCz8ts3C4f5BSbi4c7yeFYy4VPlR4KCCl/DGM5GP+81W3miWklFkp5WcxJSlKmEe9JmXLguBbmI4Xhd/fAt4qhDgIvII5Fbv+svWHf19feH09F53WbzCxAqf9lzlfLiHEIUyx0jbM6NXl690FvLew3ouY/6dVwEvAB4QQnwQ2SbN/53mgSQjxaSHE3ZjT/tfil1LK0Khj/UHhWE9iRsbqJ7CPeUFFwBYAhZDyY4W3lZg6P/2F97uHS/Nn6Fi3YSpH24EDwK8utnnz5UQh7P9JYACzF+gBzIfN3ZhTBm8dtd7/llLeN8Y+VgKfwZxqSAK/LqU8WZhqSAFrgQZMfbn3Yd6YX5RSvr+wfRz4HOYUxhDwdillv5Ry9M3Rw8V8nEWPlPLYGMuywI/mwZzRNiwYvSZly7zyQ+CfhRDbMSPdQ8DvAbuklEOF7/boFlpynNeMsTxPITgjhBBcrEgHs0fiaFKFAdgI5iaXrCeA3x5dNDBq3ddgTiF+QwjxD1LKrwshtmCKof4W8Fbgg6Ntuuy8xjrWm6SUp8Y5xwWFioAtAKSUg8ORCuA/gX8ZFbmYSedLA76G+QDdCLRiPnAVC5ttwO9gjmibMPXQfgnsEWZLGoC3YU5DjMXnMW+AOzBv0p8d9bcizErT/4XZZeBfMEfPm4QQWwvreICDUsrtmO05/mx4YyHEXwsh2oF3sbQiYArFgkWazdifxMzh+hZmHlUCiAghKjCnA0fztlG/ny+8fo6LUbR3AfsKr1swxa/BTDGwTdPcnwO/IYSwAQghVgshPIUctD4p5RcwI2fbC/ldmpTye8CfANvHsOnN1zjWbxccR4QQ26Zp+6yiHLAFihBihzCbyx4QQvy8kLCIEOJJIcS/CLP57AkhxC4hxPeFEGeEEH9VWKdRCHFSCPE1IcRhIcT/CCHcmKHfjJTydOEwvwTeND9nqJgE+6WUHVJKA7M1TmNhxP8IcF8h/+L1mPkgl1CoHL0BU1n+EGYkq2rUKj+WZiXOEaBXSnmkcJxjQGNhHYOLzt03GTVVIaX8v1LKOsxG0R+dmdNVKBQT4FvAFuDb0myX8wrm9/bLwLOXreso5Id+HHOwBfAxzCnAw5gV9sOae18AbinkmV3HlVGvyfJF4DhwUAhxFPMeZMVMyj8khHgF8zn0b0AN8GThXvVV4A8L+/hHTCfuOaD0Ksf6S0yH8XDhWH85TdtnFTUFuTARmJUc90sp+4UQbwP+GjMUC5CVUr5GCPFxzIfuDiAEnBNC/EthnTWY04vPCiG+DPwm8E+ATQixU0r5MuZIom7uTksxRTKjXutc/N5+BzNMHwJeKuRQXI4GhC+fJhhj38ZlxzEY//4w1hTGg5hVWH82xt8U02CqBRmFbVuAGOb/sxd4r5SyZwbNmzGEEI8Ae4B9Usp759uehY6U8geMKgoZThkYh89IKf/8su1bGKPPqpSyF/P/MMwfFpY/iRl1G73uFZ/Ly9crDOj+iEuLWcCcjfnaGLZuv3yBlPIkZoXlMH9cWP5VTEdteL0U8OEx9rkgURGwhYkDM9/nl4WRwB8DtaP+PpyHcgSzHVO3lDKDmcA47FC1SymHR0HfBG4qRDreDvxLYXQTw5xbVyxOnsS8Wf0640w/FvK0Lggh3gJmTkchx2IyaFwM+7+TwlSFEGLVqHXegFkar1h47JVSbsFMlL7kIVj4PMzJc2C4qOEq/ANmJEahWBYoB2xhIjAdq+E8sE1SyrtG/X0iUYvLoxQSQEr5vDTbGu3G1I45M/PmK+YCaQoc/gQz3+MnV1n1XcCvCiFexZyiuH+Sh0oAG4QQBzBHzH9RWP53QoijhSmMu1hgbYOWGkKIWwspCP9TSDH4r4IDdY8Q4r8vW+/HY+ziaaC5kKJwQgjxWeAgUCeE+IQQ4qVCysKfF/bjEUL8VAjxauH//LbC8r8TQhwvrPuPhWVfFUK8eZQN8VG2PCGEeBA4IoSwCCH+YdSxRqIVUsrHMAeFihlEStkopRyYbzsUV6KmIBcmGaBMCHG9lPL5QvLi6rEqs65C/fD2wDu4GLUol1L2CVOP5fcxpzYVC4zh0P4Y4fyPXrbeRxkj92p0aL5QDn73GOu8f9TrFsyo6xV/K7z/E8yk2NHLVP7g3LMNs0iiCzPPZ7gg43NCCE9B72i8gox7MaPmYKYofEBK+ZtCiLswZQF2Yw7+flSoTivD7ELxegAhREAIUYzZn3WtlFKKiek0XVMT6jJpA4ViWaAiYAsTA3PK51OFqMUhzETqyXACeF8hOlEM/Edh+SeEECeAw5gJ2I/PjMkKhWIOmEpBxhOFVAY/8LeFZa1SyhcKr+8q/LyCGRFbi+mQHQHuEEJ8Sghxs5QygqnLlAa+KIT4FUxZk4nYfC1NKIVi2aEiYAsMKeUnR729op+ZlPLWUa+f5NLoyK1gVkEChpTyI2Ns/wngEzNjrWI5MNUEcMWsMJWCjL2jp6AKUavLtZP+Vkr5ucsPJsyG5K8D/rYQqfoLIcRu4HbMfNKPYk5LT1Q7alxNKIViuaEiYAqFQrH4eZJrFGRchZ8DHyxIliCEqBFClAshqoGklPKbmDIA2wvrBKSUD2Nq020t7KOFiWlHjakJNUl7FYolgYqALUEuz+dRKBRLGymlLoT4CfB+JimuLKX8hRBiHfC8GbwijtltoRn4ByGEAeQwmyX7gIeEEE7MaNawptQXCsv3Y3b1GE876ouY+nIHC5Gyfgr9B4UQz2BOf3qFEB2YMjoqUqZYsghTmUChUCgUCoVCMVeoKUiFQqFQKBSKOUY5YAqFQqFQKBRzjHLAFAqFQqFQKOYY5YApFAqFQqFQzDHKAVMoFAqFQqGYY5QDplAoFAqFQjHHKAdMoVAoFAqFYo75/7anIERYteH/AAAAAElFTkSuQmCC\n", - "text/plain": [ - "
    " - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ - "temp = distill.corr().iloc[-1]\n", - "display(temp.sort_values())\n", "\n", "from pandas.plotting import scatter_matrix\n", "scatter_matrix(distill.loc[:, [\"Temp9\", \"InvTemp3\", \"InvPressure1\", \"VapourPressure\"]], alpha = 0.4, figsize=(10, 10), diagonal = \"kde\");\n" @@ -293,12 +231,14 @@ "\n", "There are 253 measurements (rows) in the dataset. We will use the first 150 rows in the data set to build the model, and then use the remaining rows to test the model, to see how well we can predict vapour pressure. This is good statistical practice. Do not use all the data to build the prediction model; you will get an inflated sense of how well the model works.\n", "\n", - "Notice here, we use the first 150 rows to build and the rest to predict, because this is how we will use the model in practice. We will build it to use make predictions in the future.\n", - "\n", - "Select every second row in an alternating way:\n", + "Create the building data set from the first 150 rows\n", "```python\n", "build = distill.iloc[___] <-- what goes here?\n", "display(build)\n", + "```\n", + "\n", + "Then the testing data from the rest:\n", + "```python\n", "test = distill.iloc[___] <-- what goes here?\n", "display(test)\n", "```\n", @@ -308,1870 +248,10 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
    \n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    DateTemp1FlowC1Temp2TempC1Temp3TempC2TempC3Temp4PressureC1...Temp10FlowC3FlowC4Temp11Temp12InvTemp1InvTemp2InvTemp3InvPressure1VapourPressure
    02000-08-21139.9857432.0636377.8119100.2204492.1353490.1459180.5578187.4331215.0627...513.96538.627910.598830.8983489.99002.04092.64682.16814.352432.5026
    12000-08-23131.0470487.4029371.3060100.2297482.2100480.3128172.6575179.5089205.0999...504.51458.766210.756031.9099480.28882.08212.69322.22074.549734.8598
    22000-08-26118.2666437.3516378.4483100.3084488.7266487.0040165.9400172.9262205.0304...508.99978.531910.573729.9165486.61902.05502.64242.17964.551132.1666
    32000-08-29118.1769481.8314378.002895.5766493.1481491.1137167.2085174.2338205.2561...514.17948.626010.669530.6229491.13042.03612.64552.16204.546430.4064
    42000-08-30120.7891412.6471377.887192.9052490.2486488.6641167.0326173.9681205.0883...511.09488.593910.492229.4977487.64752.05072.64632.17044.549930.9238
    ..................................................................
    1952002-09-06134.6606264.8941373.969296.2987474.5708473.0312177.4560184.1642225.2350...485.83376.87558.082419.4196473.48912.11202.67402.19714.167936.0323
    1962002-09-15119.0903206.4074390.045695.8916485.6057484.0312172.7778179.3194224.2304...496.06325.38836.403715.4854484.14012.06552.56382.12714.185431.2690
    1972002-09-17132.5331241.1905391.598395.6777487.6021486.0270183.7753190.4245244.9713...497.92735.72746.492415.4361486.22532.05672.55362.11793.851131.6002
    1982002-09-20136.3621308.0172380.7815117.3736486.6382484.7651180.3657186.9452225.4729...498.35466.47987.490218.6019485.24892.06082.62622.13664.163731.6657
    1992002-09-22130.1449218.7684379.6459114.7861478.8128477.1987174.1088180.5563225.1212...489.59845.56646.420415.2878477.27572.09522.63402.15744.169833.2634
    \n", - "

    200 rows × 28 columns

    \n", - "
    " - ], - "text/plain": [ - " Date Temp1 FlowC1 Temp2 TempC1 Temp3 TempC2 \\\n", - "0 2000-08-21 139.9857 432.0636 377.8119 100.2204 492.1353 490.1459 \n", - "1 2000-08-23 131.0470 487.4029 371.3060 100.2297 482.2100 480.3128 \n", - "2 2000-08-26 118.2666 437.3516 378.4483 100.3084 488.7266 487.0040 \n", - "3 2000-08-29 118.1769 481.8314 378.0028 95.5766 493.1481 491.1137 \n", - "4 2000-08-30 120.7891 412.6471 377.8871 92.9052 490.2486 488.6641 \n", - ".. ... ... ... ... ... ... ... \n", - "195 2002-09-06 134.6606 264.8941 373.9692 96.2987 474.5708 473.0312 \n", - "196 2002-09-15 119.0903 206.4074 390.0456 95.8916 485.6057 484.0312 \n", - "197 2002-09-17 132.5331 241.1905 391.5983 95.6777 487.6021 486.0270 \n", - "198 2002-09-20 136.3621 308.0172 380.7815 117.3736 486.6382 484.7651 \n", - "199 2002-09-22 130.1449 218.7684 379.6459 114.7861 478.8128 477.1987 \n", - "\n", - " TempC3 Temp4 PressureC1 ... Temp10 FlowC3 FlowC4 Temp11 \\\n", - "0 180.5578 187.4331 215.0627 ... 513.9653 8.6279 10.5988 30.8983 \n", - "1 172.6575 179.5089 205.0999 ... 504.5145 8.7662 10.7560 31.9099 \n", - "2 165.9400 172.9262 205.0304 ... 508.9997 8.5319 10.5737 29.9165 \n", - "3 167.2085 174.2338 205.2561 ... 514.1794 8.6260 10.6695 30.6229 \n", - "4 167.0326 173.9681 205.0883 ... 511.0948 8.5939 10.4922 29.4977 \n", - ".. ... ... ... ... ... ... ... ... \n", - "195 177.4560 184.1642 225.2350 ... 485.8337 6.8755 8.0824 19.4196 \n", - "196 172.7778 179.3194 224.2304 ... 496.0632 5.3883 6.4037 15.4854 \n", - "197 183.7753 190.4245 244.9713 ... 497.9273 5.7274 6.4924 15.4361 \n", - "198 180.3657 186.9452 225.4729 ... 498.3546 6.4798 7.4902 18.6019 \n", - "199 174.1088 180.5563 225.1212 ... 489.5984 5.5664 6.4204 15.2878 \n", - "\n", - " Temp12 InvTemp1 InvTemp2 InvTemp3 InvPressure1 VapourPressure \n", - "0 489.9900 2.0409 2.6468 2.1681 4.3524 32.5026 \n", - "1 480.2888 2.0821 2.6932 2.2207 4.5497 34.8598 \n", - "2 486.6190 2.0550 2.6424 2.1796 4.5511 32.1666 \n", - "3 491.1304 2.0361 2.6455 2.1620 4.5464 30.4064 \n", - "4 487.6475 2.0507 2.6463 2.1704 4.5499 30.9238 \n", - ".. ... ... ... ... ... ... \n", - "195 473.4891 2.1120 2.6740 2.1971 4.1679 36.0323 \n", - "196 484.1401 2.0655 2.5638 2.1271 4.1854 31.2690 \n", - "197 486.2253 2.0567 2.5536 2.1179 3.8511 31.6002 \n", - "198 485.2489 2.0608 2.6262 2.1366 4.1637 31.6657 \n", - "199 477.2757 2.0952 2.6340 2.1574 4.1698 33.2634 \n", - "\n", - "[200 rows x 28 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
    \n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    DateTemp1FlowC1Temp2TempC1Temp3TempC2TempC3Temp4PressureC1...Temp10FlowC3FlowC4Temp11Temp12InvTemp1InvTemp2InvTemp3InvPressure1VapourPressure
    2002002-09-24129.0805213.2836380.7217114.1283478.7518477.0228171.1089176.8634225.2223...488.31925.56456.439314.9261477.31522.09512.62662.15604.168133.0152
    2012002-09-27127.6677230.0301384.7974111.7620485.3882483.8969171.4422177.7434225.2376...496.04285.59016.423214.7016484.06362.06582.59882.12464.167830.6151
    2022002-09-29133.9841230.1198385.0251115.8648485.6616483.8598177.4421184.4027225.4709...495.86995.53076.460914.9262484.39882.06442.59722.12434.163830.6245
    2032002-10-06135.5393257.0055370.9490126.8105470.0046467.8403178.1088184.9023224.9438...481.21625.61236.371318.3418468.31272.13532.69582.21404.172937.3363
    2042002-10-11120.5756207.2579372.7217117.0955466.5929465.0434146.2112154.2099225.6821...476.67155.90966.376519.0475465.14882.14982.68302.23444.160138.3952
    2052002-10-13148.6477216.6856385.0836128.8138483.6262482.0609183.7638190.4715225.2223...493.83035.58356.470314.3060482.16052.07402.59682.13074.168130.8035
    2062002-10-15143.2965206.1413380.4483128.9633476.6435475.0362180.4397187.1792224.7874...487.15955.61046.476414.0956475.27912.10402.62852.16194.175733.4861
    2072002-10-18140.8193212.0484380.1355129.6625476.4121475.0200178.9976185.3848225.2999...487.12655.51456.446414.3450474.96182.10542.63062.16424.166733.6691
    2082002-10-20133.0551251.3095373.6029126.3942472.4041470.7506178.8911185.7151224.7404...483.24055.61296.441819.0039471.25252.12202.67662.20564.176536.6612
    2092002-10-22131.1826197.2343370.7849123.0914466.7582465.1313173.8565180.4050224.6946...477.58205.69596.459415.4725464.96202.15072.69702.21594.177338.0614
    2102002-10-25131.9151197.4947369.5819123.6664465.8274464.0339175.3033181.8992225.0443...476.50625.47156.347615.4669464.02042.15512.70582.22044.171237.8471
    2112002-10-27132.8828217.7848372.5742122.9442470.1890468.5719175.4491182.0696225.0875...480.98985.64086.412714.9370468.82422.13302.68402.19664.170436.9011
    2122002-10-29131.7675197.4716358.8275124.0275453.2095452.0360172.5417179.1117225.0697...464.34485.69306.431715.7890452.00692.21242.78692.28614.170743.7621
    2132002-11-01135.3638212.4563354.5127129.0093447.7277445.9537174.1945180.8310223.8337...458.51965.55976.340217.2657446.10992.24162.82082.32314.192444.0626
    2142002-11-03131.3479202.5253353.9404127.5093445.3524444.0968173.1088178.8319225.4945...456.53345.47996.586317.5040443.85992.25302.82532.33734.163447.4158
    2152002-11-05132.3487180.9797356.0387125.2906446.0365444.6872173.3311179.3813224.6653...456.13795.45386.360214.8656444.60572.24922.80872.31934.177845.7207
    2162002-11-08131.4700184.4221353.7497123.9585444.6860443.1198172.6112178.9574224.8688...455.47425.54766.392315.5614443.00062.25732.82692.33034.174247.2427
    2172002-11-10131.3860194.0956359.0233124.1471451.1025449.3618172.5487179.0100224.9038...461.48885.53226.447515.6452449.64812.22402.78532.29644.173645.0156
    2182002-11-12131.3447225.6996383.1239122.9534482.9734480.9287175.3310181.6449225.0723...493.57605.69006.522115.8562480.88422.07952.61012.14084.170731.0176
    2192002-11-15148.7621236.0500367.0640132.1994467.6280465.5435185.3193191.8564225.7990...478.87395.70756.346417.1392465.90592.14642.72432.21984.158138.1245
    2202002-11-17130.1703206.3496368.7172121.7731465.2120463.1633174.2176180.7496224.6628...475.62375.52286.397215.9811463.32972.15832.71212.22604.177840.1241
    2212002-11-19138.6002286.0001366.5528126.1895470.5806468.6830179.7754185.9584225.0723...483.17066.34307.450421.1024468.91162.13262.72812.22484.170737.6231
    2222002-11-22130.6790215.2941361.8375120.6994462.9435461.0495174.1621180.2477225.0850...473.89106.26617.443617.5400461.15322.16852.76372.24524.170540.8039
    2232002-11-24133.9586241.3670358.4879124.1057459.5026457.5094178.6458184.8215224.4644...470.23225.65566.432020.0584457.46472.18602.78952.27564.181342.2749
    2242002-11-26130.1602234.8553357.4062123.3927453.8491451.9642175.7755181.8916224.9604...464.93225.31206.183718.6353452.01982.21232.79792.29774.172644.6285
    2252002-11-29130.3261207.5645359.7990122.7257454.7951452.8348173.7871180.0456225.0824...465.29085.39946.148216.0693452.69822.20902.77932.27934.170543.0842
    2262002-12-01131.3098230.6694356.1565123.0546454.7977452.5824176.8750183.4494224.2495...466.24705.12635.847019.4878452.86932.20812.80782.29724.185144.3923
    2272002-12-03130.6790187.1819358.5947122.2036455.1487453.0617174.7454180.8986225.2223...465.60115.15545.881816.1465452.98852.20762.78872.27794.168143.1091
    2282002-12-06130.9918187.8356356.0895120.6806455.0113453.2006175.5509181.8318225.0710...466.53445.21535.993816.7862453.22662.20642.80832.28194.170743.4364
    2292002-12-08140.0626227.2154354.6348126.7783455.0291453.1311180.5393186.8511225.4105...466.06394.96365.893519.4437453.10572.20702.81982.29584.164844.4360
    2302002-12-10140.0868222.7865351.5599125.3615455.2326453.3395179.9976186.3026224.2546...467.10665.05285.941320.3562453.32582.20592.84452.29954.185044.7115
    2312002-12-15146.5876234.4098339.2044123.6204446.1357443.9162185.1989191.4316225.8302...457.33584.98385.943320.8430444.09622.25182.94812.35134.157649.2542
    2322002-12-17141.9612214.1370337.3452123.0086442.9389440.9874182.4420188.9951224.5140...454.27514.96115.890319.9698441.10312.26702.96432.36424.180451.0110
    2332002-12-20136.1624219.8676319.6830123.3329420.7777419.0175176.2083182.2947225.3571...432.44835.27745.934020.4612419.42742.38423.12812.49804.165764.2496
    2342002-12-22139.5044223.4113318.4470124.1195424.2567422.5136179.3541185.5565230.0852...435.85875.08945.907321.4259422.73252.36563.14022.48244.085364.3135
    2352002-12-27129.6134174.7428329.7076119.6253425.6631423.9189169.9978176.2988229.2319...435.73925.56446.421916.2859423.51932.36123.03302.44274.099661.3798
    2362002-12-29128.0988186.7045347.3672119.6805443.9689442.0431172.3195178.6412230.0242...454.42895.62046.446117.1022441.77462.26362.87882.34274.086350.3487
    2372002-12-31128.3468182.5534352.9320119.9381448.0240446.6251173.3889179.4025230.2073...458.71425.39426.405916.1330445.51512.24462.83342.31544.083247.8131
    2382003-01-03127.0319213.7436364.6987118.6524462.3484460.3618173.2061179.5339229.2128...473.65025.49966.483216.4960459.59722.17582.74202.24294.099941.1565
    2392003-01-05129.7405241.5810353.9519118.1901459.7849457.6992173.7732180.1201228.8288...471.27496.71498.084119.9675457.43942.18612.82522.27374.106443.4220
    2402003-01-07129.6668236.1426353.3745117.5277458.6480457.1088173.2454179.4182230.3891...470.93156.50937.725319.0810456.30182.19152.82992.27504.080243.8887
    2412003-01-10126.8233193.7080361.5094116.9849460.1892457.9724173.7500180.1443228.5287...470.63655.34036.413515.9750457.31562.18672.76622.25124.111442.0116
    2422003-01-12130.3023191.0987361.8833119.1055461.0094459.2250175.3310181.6779230.0585...472.57195.49296.378916.4250458.43532.18132.76332.24934.085741.2867
    2432003-01-14128.4205204.9900361.3415117.5139461.0666459.4265174.6389180.8691229.6821...468.91745.57776.470816.1318459.13512.17802.76752.24754.092041.2680
    2442003-01-17125.5936209.9800363.3330117.7025461.1862459.5700172.2269178.4886229.9421...472.57195.56876.408116.3124459.19992.17772.75232.24784.087741.2811
    2452003-01-19138.5455278.4846375.4659121.5688480.8092479.8914182.6642188.1583229.8156...492.66295.51796.439921.0017479.26432.08652.66342.17484.089834.5282
    2462003-01-21125.1536257.9138365.2837119.9151467.4932466.1431176.9745182.8288229.6490...479.18165.63146.455020.8455465.84122.14672.73762.23894.092640.5895
    2472003-01-24131.0465229.0812366.1790122.8058467.3127466.1825178.4398184.2251230.0795...478.98075.35456.401619.0024465.60402.14772.73092.23064.085439.5276
    2482003-01-26130.8138212.6385341.5964121.4354468.3401467.0299174.7639180.7649229.7393...479.02905.55906.447016.4131466.33472.14442.92742.21274.091138.8507
    2492003-01-28128.9673225.1412349.8965118.8604479.7665478.4652176.2176182.3646230.5049...491.23625.63426.436017.2385477.88162.09262.85802.16204.078334.2653
    2502003-01-31130.5328223.5965345.9366120.4027474.5378473.1145176.3310182.2578230.6638...485.87865.48106.357516.9866472.31762.11722.89072.18554.075636.5717
    2512003-02-03128.5248213.5613343.4950119.6989469.3802467.9954174.6435180.5093230.5226...480.28795.47276.417516.6778467.00012.14132.91132.20904.078038.1054
    2522003-02-04131.0491217.4117346.1960119.0825474.6599473.0381177.1088183.1810225.6420...486.02535.45976.329116.8766472.27012.11742.88852.18444.160835.6298
    \n", - "

    53 rows × 28 columns

    \n", - "
    " - ], - "text/plain": [ - " Date Temp1 FlowC1 Temp2 TempC1 Temp3 TempC2 \\\n", - "200 2002-09-24 129.0805 213.2836 380.7217 114.1283 478.7518 477.0228 \n", - "201 2002-09-27 127.6677 230.0301 384.7974 111.7620 485.3882 483.8969 \n", - "202 2002-09-29 133.9841 230.1198 385.0251 115.8648 485.6616 483.8598 \n", - "203 2002-10-06 135.5393 257.0055 370.9490 126.8105 470.0046 467.8403 \n", - "204 2002-10-11 120.5756 207.2579 372.7217 117.0955 466.5929 465.0434 \n", - "205 2002-10-13 148.6477 216.6856 385.0836 128.8138 483.6262 482.0609 \n", - "206 2002-10-15 143.2965 206.1413 380.4483 128.9633 476.6435 475.0362 \n", - "207 2002-10-18 140.8193 212.0484 380.1355 129.6625 476.4121 475.0200 \n", - "208 2002-10-20 133.0551 251.3095 373.6029 126.3942 472.4041 470.7506 \n", - "209 2002-10-22 131.1826 197.2343 370.7849 123.0914 466.7582 465.1313 \n", - "210 2002-10-25 131.9151 197.4947 369.5819 123.6664 465.8274 464.0339 \n", - "211 2002-10-27 132.8828 217.7848 372.5742 122.9442 470.1890 468.5719 \n", - "212 2002-10-29 131.7675 197.4716 358.8275 124.0275 453.2095 452.0360 \n", - "213 2002-11-01 135.3638 212.4563 354.5127 129.0093 447.7277 445.9537 \n", - "214 2002-11-03 131.3479 202.5253 353.9404 127.5093 445.3524 444.0968 \n", - "215 2002-11-05 132.3487 180.9797 356.0387 125.2906 446.0365 444.6872 \n", - "216 2002-11-08 131.4700 184.4221 353.7497 123.9585 444.6860 443.1198 \n", - "217 2002-11-10 131.3860 194.0956 359.0233 124.1471 451.1025 449.3618 \n", - "218 2002-11-12 131.3447 225.6996 383.1239 122.9534 482.9734 480.9287 \n", - "219 2002-11-15 148.7621 236.0500 367.0640 132.1994 467.6280 465.5435 \n", - "220 2002-11-17 130.1703 206.3496 368.7172 121.7731 465.2120 463.1633 \n", - "221 2002-11-19 138.6002 286.0001 366.5528 126.1895 470.5806 468.6830 \n", - "222 2002-11-22 130.6790 215.2941 361.8375 120.6994 462.9435 461.0495 \n", - "223 2002-11-24 133.9586 241.3670 358.4879 124.1057 459.5026 457.5094 \n", - "224 2002-11-26 130.1602 234.8553 357.4062 123.3927 453.8491 451.9642 \n", - "225 2002-11-29 130.3261 207.5645 359.7990 122.7257 454.7951 452.8348 \n", - "226 2002-12-01 131.3098 230.6694 356.1565 123.0546 454.7977 452.5824 \n", - "227 2002-12-03 130.6790 187.1819 358.5947 122.2036 455.1487 453.0617 \n", - "228 2002-12-06 130.9918 187.8356 356.0895 120.6806 455.0113 453.2006 \n", - "229 2002-12-08 140.0626 227.2154 354.6348 126.7783 455.0291 453.1311 \n", - "230 2002-12-10 140.0868 222.7865 351.5599 125.3615 455.2326 453.3395 \n", - "231 2002-12-15 146.5876 234.4098 339.2044 123.6204 446.1357 443.9162 \n", - "232 2002-12-17 141.9612 214.1370 337.3452 123.0086 442.9389 440.9874 \n", - "233 2002-12-20 136.1624 219.8676 319.6830 123.3329 420.7777 419.0175 \n", - "234 2002-12-22 139.5044 223.4113 318.4470 124.1195 424.2567 422.5136 \n", - "235 2002-12-27 129.6134 174.7428 329.7076 119.6253 425.6631 423.9189 \n", - "236 2002-12-29 128.0988 186.7045 347.3672 119.6805 443.9689 442.0431 \n", - "237 2002-12-31 128.3468 182.5534 352.9320 119.9381 448.0240 446.6251 \n", - "238 2003-01-03 127.0319 213.7436 364.6987 118.6524 462.3484 460.3618 \n", - "239 2003-01-05 129.7405 241.5810 353.9519 118.1901 459.7849 457.6992 \n", - "240 2003-01-07 129.6668 236.1426 353.3745 117.5277 458.6480 457.1088 \n", - "241 2003-01-10 126.8233 193.7080 361.5094 116.9849 460.1892 457.9724 \n", - "242 2003-01-12 130.3023 191.0987 361.8833 119.1055 461.0094 459.2250 \n", - "243 2003-01-14 128.4205 204.9900 361.3415 117.5139 461.0666 459.4265 \n", - "244 2003-01-17 125.5936 209.9800 363.3330 117.7025 461.1862 459.5700 \n", - "245 2003-01-19 138.5455 278.4846 375.4659 121.5688 480.8092 479.8914 \n", - "246 2003-01-21 125.1536 257.9138 365.2837 119.9151 467.4932 466.1431 \n", - "247 2003-01-24 131.0465 229.0812 366.1790 122.8058 467.3127 466.1825 \n", - "248 2003-01-26 130.8138 212.6385 341.5964 121.4354 468.3401 467.0299 \n", - "249 2003-01-28 128.9673 225.1412 349.8965 118.8604 479.7665 478.4652 \n", - "250 2003-01-31 130.5328 223.5965 345.9366 120.4027 474.5378 473.1145 \n", - "251 2003-02-03 128.5248 213.5613 343.4950 119.6989 469.3802 467.9954 \n", - "252 2003-02-04 131.0491 217.4117 346.1960 119.0825 474.6599 473.0381 \n", - "\n", - " TempC3 Temp4 PressureC1 ... Temp10 FlowC3 FlowC4 Temp11 \\\n", - "200 171.1089 176.8634 225.2223 ... 488.3192 5.5645 6.4393 14.9261 \n", - "201 171.4422 177.7434 225.2376 ... 496.0428 5.5901 6.4232 14.7016 \n", - "202 177.4421 184.4027 225.4709 ... 495.8699 5.5307 6.4609 14.9262 \n", - "203 178.1088 184.9023 224.9438 ... 481.2162 5.6123 6.3713 18.3418 \n", - "204 146.2112 154.2099 225.6821 ... 476.6715 5.9096 6.3765 19.0475 \n", - "205 183.7638 190.4715 225.2223 ... 493.8303 5.5835 6.4703 14.3060 \n", - "206 180.4397 187.1792 224.7874 ... 487.1595 5.6104 6.4764 14.0956 \n", - "207 178.9976 185.3848 225.2999 ... 487.1265 5.5145 6.4464 14.3450 \n", - "208 178.8911 185.7151 224.7404 ... 483.2405 5.6129 6.4418 19.0039 \n", - "209 173.8565 180.4050 224.6946 ... 477.5820 5.6959 6.4594 15.4725 \n", - "210 175.3033 181.8992 225.0443 ... 476.5062 5.4715 6.3476 15.4669 \n", - "211 175.4491 182.0696 225.0875 ... 480.9898 5.6408 6.4127 14.9370 \n", - "212 172.5417 179.1117 225.0697 ... 464.3448 5.6930 6.4317 15.7890 \n", - "213 174.1945 180.8310 223.8337 ... 458.5196 5.5597 6.3402 17.2657 \n", - "214 173.1088 178.8319 225.4945 ... 456.5334 5.4799 6.5863 17.5040 \n", - "215 173.3311 179.3813 224.6653 ... 456.1379 5.4538 6.3602 14.8656 \n", - "216 172.6112 178.9574 224.8688 ... 455.4742 5.5476 6.3923 15.5614 \n", - "217 172.5487 179.0100 224.9038 ... 461.4888 5.5322 6.4475 15.6452 \n", - "218 175.3310 181.6449 225.0723 ... 493.5760 5.6900 6.5221 15.8562 \n", - "219 185.3193 191.8564 225.7990 ... 478.8739 5.7075 6.3464 17.1392 \n", - "220 174.2176 180.7496 224.6628 ... 475.6237 5.5228 6.3972 15.9811 \n", - "221 179.7754 185.9584 225.0723 ... 483.1706 6.3430 7.4504 21.1024 \n", - "222 174.1621 180.2477 225.0850 ... 473.8910 6.2661 7.4436 17.5400 \n", - "223 178.6458 184.8215 224.4644 ... 470.2322 5.6556 6.4320 20.0584 \n", - "224 175.7755 181.8916 224.9604 ... 464.9322 5.3120 6.1837 18.6353 \n", - "225 173.7871 180.0456 225.0824 ... 465.2908 5.3994 6.1482 16.0693 \n", - "226 176.8750 183.4494 224.2495 ... 466.2470 5.1263 5.8470 19.4878 \n", - "227 174.7454 180.8986 225.2223 ... 465.6011 5.1554 5.8818 16.1465 \n", - "228 175.5509 181.8318 225.0710 ... 466.5344 5.2153 5.9938 16.7862 \n", - "229 180.5393 186.8511 225.4105 ... 466.0639 4.9636 5.8935 19.4437 \n", - "230 179.9976 186.3026 224.2546 ... 467.1066 5.0528 5.9413 20.3562 \n", - "231 185.1989 191.4316 225.8302 ... 457.3358 4.9838 5.9433 20.8430 \n", - "232 182.4420 188.9951 224.5140 ... 454.2751 4.9611 5.8903 19.9698 \n", - "233 176.2083 182.2947 225.3571 ... 432.4483 5.2774 5.9340 20.4612 \n", - "234 179.3541 185.5565 230.0852 ... 435.8587 5.0894 5.9073 21.4259 \n", - "235 169.9978 176.2988 229.2319 ... 435.7392 5.5644 6.4219 16.2859 \n", - "236 172.3195 178.6412 230.0242 ... 454.4289 5.6204 6.4461 17.1022 \n", - "237 173.3889 179.4025 230.2073 ... 458.7142 5.3942 6.4059 16.1330 \n", - "238 173.2061 179.5339 229.2128 ... 473.6502 5.4996 6.4832 16.4960 \n", - "239 173.7732 180.1201 228.8288 ... 471.2749 6.7149 8.0841 19.9675 \n", - "240 173.2454 179.4182 230.3891 ... 470.9315 6.5093 7.7253 19.0810 \n", - "241 173.7500 180.1443 228.5287 ... 470.6365 5.3403 6.4135 15.9750 \n", - "242 175.3310 181.6779 230.0585 ... 472.5719 5.4929 6.3789 16.4250 \n", - "243 174.6389 180.8691 229.6821 ... 468.9174 5.5777 6.4708 16.1318 \n", - "244 172.2269 178.4886 229.9421 ... 472.5719 5.5687 6.4081 16.3124 \n", - "245 182.6642 188.1583 229.8156 ... 492.6629 5.5179 6.4399 21.0017 \n", - "246 176.9745 182.8288 229.6490 ... 479.1816 5.6314 6.4550 20.8455 \n", - "247 178.4398 184.2251 230.0795 ... 478.9807 5.3545 6.4016 19.0024 \n", - "248 174.7639 180.7649 229.7393 ... 479.0290 5.5590 6.4470 16.4131 \n", - "249 176.2176 182.3646 230.5049 ... 491.2362 5.6342 6.4360 17.2385 \n", - "250 176.3310 182.2578 230.6638 ... 485.8786 5.4810 6.3575 16.9866 \n", - "251 174.6435 180.5093 230.5226 ... 480.2879 5.4727 6.4175 16.6778 \n", - "252 177.1088 183.1810 225.6420 ... 486.0253 5.4597 6.3291 16.8766 \n", - "\n", - " Temp12 InvTemp1 InvTemp2 InvTemp3 InvPressure1 VapourPressure \n", - "200 477.3152 2.0951 2.6266 2.1560 4.1681 33.0152 \n", - "201 484.0636 2.0658 2.5988 2.1246 4.1678 30.6151 \n", - "202 484.3988 2.0644 2.5972 2.1243 4.1638 30.6245 \n", - "203 468.3127 2.1353 2.6958 2.2140 4.1729 37.3363 \n", - "204 465.1488 2.1498 2.6830 2.2344 4.1601 38.3952 \n", - "205 482.1605 2.0740 2.5968 2.1307 4.1681 30.8035 \n", - "206 475.2791 2.1040 2.6285 2.1619 4.1757 33.4861 \n", - "207 474.9618 2.1054 2.6306 2.1642 4.1667 33.6691 \n", - "208 471.2525 2.1220 2.6766 2.2056 4.1765 36.6612 \n", - "209 464.9620 2.1507 2.6970 2.2159 4.1773 38.0614 \n", - "210 464.0204 2.1551 2.7058 2.2204 4.1712 37.8471 \n", - "211 468.8242 2.1330 2.6840 2.1966 4.1704 36.9011 \n", - "212 452.0069 2.2124 2.7869 2.2861 4.1707 43.7621 \n", - "213 446.1099 2.2416 2.8208 2.3231 4.1924 44.0626 \n", - "214 443.8599 2.2530 2.8253 2.3373 4.1634 47.4158 \n", - "215 444.6057 2.2492 2.8087 2.3193 4.1778 45.7207 \n", - "216 443.0006 2.2573 2.8269 2.3303 4.1742 47.2427 \n", - "217 449.6481 2.2240 2.7853 2.2964 4.1736 45.0156 \n", - "218 480.8842 2.0795 2.6101 2.1408 4.1707 31.0176 \n", - "219 465.9059 2.1464 2.7243 2.2198 4.1581 38.1245 \n", - "220 463.3297 2.1583 2.7121 2.2260 4.1778 40.1241 \n", - "221 468.9116 2.1326 2.7281 2.2248 4.1707 37.6231 \n", - "222 461.1532 2.1685 2.7637 2.2452 4.1705 40.8039 \n", - "223 457.4647 2.1860 2.7895 2.2756 4.1813 42.2749 \n", - "224 452.0198 2.2123 2.7979 2.2977 4.1726 44.6285 \n", - "225 452.6982 2.2090 2.7793 2.2793 4.1705 43.0842 \n", - "226 452.8693 2.2081 2.8078 2.2972 4.1851 44.3923 \n", - "227 452.9885 2.2076 2.7887 2.2779 4.1681 43.1091 \n", - "228 453.2266 2.2064 2.8083 2.2819 4.1707 43.4364 \n", - "229 453.1057 2.2070 2.8198 2.2958 4.1648 44.4360 \n", - "230 453.3258 2.2059 2.8445 2.2995 4.1850 44.7115 \n", - "231 444.0962 2.2518 2.9481 2.3513 4.1576 49.2542 \n", - "232 441.1031 2.2670 2.9643 2.3642 4.1804 51.0110 \n", - "233 419.4274 2.3842 3.1281 2.4980 4.1657 64.2496 \n", - "234 422.7325 2.3656 3.1402 2.4824 4.0853 64.3135 \n", - "235 423.5193 2.3612 3.0330 2.4427 4.0996 61.3798 \n", - "236 441.7746 2.2636 2.8788 2.3427 4.0863 50.3487 \n", - "237 445.5151 2.2446 2.8334 2.3154 4.0832 47.8131 \n", - "238 459.5972 2.1758 2.7420 2.2429 4.0999 41.1565 \n", - "239 457.4394 2.1861 2.8252 2.2737 4.1064 43.4220 \n", - "240 456.3018 2.1915 2.8299 2.2750 4.0802 43.8887 \n", - "241 457.3156 2.1867 2.7662 2.2512 4.1114 42.0116 \n", - "242 458.4353 2.1813 2.7633 2.2493 4.0857 41.2867 \n", - "243 459.1351 2.1780 2.7675 2.2475 4.0920 41.2680 \n", - "244 459.1999 2.1777 2.7523 2.2478 4.0877 41.2811 \n", - "245 479.2643 2.0865 2.6634 2.1748 4.0898 34.5282 \n", - "246 465.8412 2.1467 2.7376 2.2389 4.0926 40.5895 \n", - "247 465.6040 2.1477 2.7309 2.2306 4.0854 39.5276 \n", - "248 466.3347 2.1444 2.9274 2.2127 4.0911 38.8507 \n", - "249 477.8816 2.0926 2.8580 2.1620 4.0783 34.2653 \n", - "250 472.3176 2.1172 2.8907 2.1855 4.0756 36.5717 \n", - "251 467.0001 2.1413 2.9113 2.2090 4.0780 38.1054 \n", - "252 472.2701 2.1174 2.8885 2.1844 4.1608 35.6298 \n", - "\n", - "[53 rows x 28 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "build = distill.iloc[0:200]\n", - "display(build)\n", - "test = distill.iloc[200:]\n", - "display(test)" - ] + "outputs": [], + "source": [] }, { "cell_type": "markdown", @@ -2193,11 +273,18 @@ "but we have to tell it what is `X` and what is `y`. So we have a small detour..." ] }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, { "cell_type": "markdown", "metadata": {}, "source": [ - "We need numeric values for `X` and `y`. We can get those as follows.\n", + "We need numeric values for `X` and `y`. We can get those as follows. First a small detour...\n", "\n", "```python\n", "print(build[\"InvTemp3\"]) # A Pandas Series (single column from the matrix of data)\n", @@ -2219,7 +306,6 @@ "So this will work to build your regression model:\n", "\n", "```python\n", - "\n", "# A single column in matrix X (capital X indicates one or more input columns)\n", "X = build[[\"InvTemp3\"]].values\n", "y = build[\"VapourPressure\"].values\n", @@ -2232,20 +318,9 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "LinearRegression()" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "X = build[[\"InvTemp3\"]].values\n", "y = build[\"VapourPressure\"].values\n", @@ -2296,22 +371,10 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The intercept is -128.53 and the slope is = 76.13\n", - "The intercept is -128.52780 and the slope is = 76.13031\n" - ] - } - ], - "source": [ - "print(f\"The intercept is {mymodel.intercept_:.5g} and the slope is = {mymodel.coef_[0]:.5g}\")\n", - "print(f\"The intercept is {mymodel.intercept_:.5f} and the slope is = {mymodel.coef_[0]:.5f}\")" - ] + "outputs": [], + "source": [] }, { "cell_type": "markdown", @@ -2333,78 +396,29 @@ "* it draws a scatter plot of the raw data\n", "* adds the regression line to the plot\n", "* shows the confidence interval for the regression (the interval expected for the true but unknown slope)\n", - "* adds labels to the axes.\n", - "\n", - "An \"upgrade\" you might be interested in, is the joint plot, which adds the histograms to the axes:\n", - "\n", - "```python\n", - "sns.jointplot(x=\"InvTemp3\", y=\"VapourPressure\", data=distill, kind=\"reg\");\n", - "\n", - "# Or, show the kde=kernel density estimate\n", - "sns.jointplot(x=\"InvTemp3\", y=\"VapourPressure\", data=distill, kind=\"kde\");\n", - "\n", - "```\n" + "* adds labels to the axes." ] }, { "cell_type": "code", - "execution_count": 49, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABF5UlEQVR4nO29eXhc5Xn3/7nPmVUarbbl3dgGExMSnIBJTFhiIMkPskDaQpaGlKzQNm9I+r7JC82bpr/S9vrBm/R9m7RpC9lK0gSH0pKQjSYNUQ0JmyEsARRs5H2TtWs0+znP748zM5qRZkYjSyN5NPfnunxJc+bMmeeRrO955n7u+3uLMQZFURSlcbAWegCKoijK/KLCryiK0mCo8CuKojQYKvyKoigNhgq/oihKg+Fb6AFUw9KlS8369etnfZ3x8XGam5tnP6A6pZHn38hzh8aefyPP/cknn+w3xiybfLwuhH/9+vXs2rVr1tfp7u5m+/btsx9QndLI82/kuUNjz7+R5y4i+0sd11CPoihKg6HCryiK0mCo8CuKojQYKvyKoigNhgq/oihKg1EXWT2KoijzSXdPH3fs7OXgUIy1HU3ceMlGtm/uWuhhzdm4dMWvKIpSQHdPH5+7/3n6xhK0h/30jSX43P3P093TVzfj6u7p4713Pop/2fpXl7qWCr+iKEoBd+zsxW8LTQEfIt5Xvy3csbO3LsZVeIPAuJlS11LhVxRFKeDgUIyw3y46FvbbHBqKLdCIPKodV+ENohwq/IqiKAWs7WginnaKjsXTDms6mhZoRB7VjqvUDWIyKvyKoigF3HjJRtKOIZbKYIz3Ne0YbrxkY12Mq9QNYjIq/IqiKAVs39zFrVedTVdLiJF4mq6WELdedfaCZ/VUO67CG0Q5NJ1TURRlEts3dy240JeimnFt39zFrXixfsQqqfEq/IqiKIuM3A1Cbtz3XKnnNdSjKIrSYKjwK4qiNBgq/IqiKIuQtOOWfU5j/IqiKIuIVMZlcDyFwZQ9R4VfURRlEeC4hqFYirGEl+cfqlDEpcKvKIoyByyUo6cxhtF4hqFYCteUX+UXojF+RVGUWbJQjp7jyQyHhuIMjCerFn1Q4VcURZk18+3omcw4HB2Jc3w0UXETtxwa6lEURZklB4ditIf9Rcdq4eiZcVyGYmnGEumK5/VHk3znsQNln1fhVxRFmSVrO5roG0sUWSHPpaOnMYaReJrhWLpiSGcskebuxw9y368Pk8xoOqeiKErNuPGSjXzu/ueJpTKE/TbxtDNnjp7RZIah8VTFkE4i7XDfrw9z9+MHiSY9c7b2Jj/7y5xfU+EXkXbgq8CrAAN8CPgt8F1gPbAPeJcxZqiW41AURaklhcZoh4ZirJmDrJ5E2mFwPEWigsWy4xp+8puj3PXIfgaiKQCaAjbv3rqW921bx6Y/L/26Wq/4vwg8YIy5RkQCQBPwGeDnxpjbROQW4Bbg5hqPQ1EUpabMlaNnxnEZjKWIJsrbKhtj2Lm7n689vJdDQ3EA/LZw1ZZVvO/162hvCixMHr+ItAKXAB/IDjQFpETkamB79rS7gG5U+BVFaXBcNxvHj6cxFeL4T+0f4isP7eW3x8cAEOAtZy/n+jesZ0VrqKr3kkpvMBtE5DXAncALwBbgSeATwGFjTHvBeUPGmI4Sr78BuAFg+fLl5+3YsWPWY4pGo0QikVlfp15p5Pk38tyhsedfD3N3jSHjGiq4LLB/1OXf96R5cXAi1r9lqcU7z/CzOjI1M19EeMubLnvSGLN1ynM1FP6twKPAhcaYx0Tki8Ao8PFqhL+QrVu3ml27ds16TN3d3Wzfvn3W16lXGnn+jTx3aOz5n8pzj6ccBsaTpCpk4BwcjPGNX+6j+6UT+WOvXt3GRy/ewKtWt5V9Xchvs7qjqaTw1zLGfwg4ZIx5LPv4Xrx4/nERWWmMOSoiK4HalrYpiqKcYuSM1Cq1R+yPJvnWI/v50XNHcbPr843LmvnIRRt4/YZOROSk379mwm+MOSYiB0XkFcaY3wKX44V9XgCuB27Lfv1+rcagKIpyKjHZSK0U0USGu584wL8/NZGLv6I1xAcvXM/lZ3VhVSH4tiVEQuXlvdZZPR8Hvp3N6OkFPohnE3GPiHwYOABcW+MxKIqiLCjVGKklc7n4TxxkLJvR0x72c92203jHlpX47ekddmxLaAv7aQ35sazyN4iaCr8x5mlgSnwJb/WvKIqy6JmuAMvLxT/GXY/sK8rFf9fWNVxz3pqiauByVCv4ObRyV1EUpQZMV4BVTS7+dMxU8HOo8CuKoswhGcfbuM1ZJ5SibC7+BetZ0TZ9Lr5tCe3hAC0h34wEP4cKv6IoyhzguobheJqRCgVYLx0f4ysP7eXJ/RMuNW84fQkfvmgDG5Y2T/seOcFvDftOzaweRVGURmEskWZoPE3GLR3HL52L38pHL95YMRc/h8+yvJDOLAU/f71ZX0FRFKVBSaQd+qPlC7BK5uIvbeYjF1eXiz9XK/zJqPAriqLMkHQ2jj9eJo4/21z8Wgl+DhV+RVGUKpkujp9MO9z39BHufvzAlFz8t5+zkoCvci5+rQU/hwq/oihKFYwm0gyNp3DcqYLvuIYHsrn4/dlc/LDf5t3nV5eLf7JpmSeLCr+iKEoFKhmpGWN4KJuLf7AgF/8dW1ZxXRW5+PMt+DlU+BVFUUownZHaUweyufjHJnLx3/zK5XzgDdPn4i+U4OdQ4VcURSlgOiO1Urn42zZ28pGLNrBxWWXff0s8wW8LL4zg51DhVxRFYXojtUNDMb7+8Mnl4p8qgp9DhV9RlIankpHaQDTJN0vk4n/4og1s21g5F98SoTUr+PYpIPg5VPgVRWlYKhmpRRMZdjxxgH8rkYt/2eauikJ+qgp+DhV+RVEajkpGauVz8dfx9nNWVczFP9UFP4cKv6IoDUOlAqxyufjv2rqGa7dWzsWvF8HPocKvKEpDUK4Aq1Quvs8SrnqN54vfUSEX3xKhJeSjvSlQF4KfQ4VfUZRFjWs8d8xSG7dPHRjiqw/tpacgF/9Nr1zOB6fJxa9Xwc+hwq8oyqIkV4CVcdwpov/S8TG++tBedhXk4l+wcQkfubiyL369hXTKocKvKMqiIleANRpPT3nu8FCcr/9yL7/47UQu/qtWebn4r15TPhd/sQh+DhV+RVEWBZUKsAaiSb756H5+/NyxfIx/w9JmPjJNLv5iE/wcKvyKotQ948kMgyUKsKLJDPftSfOL7sdJFOTif+DC9VxeIRd/sQp+DhV+RWlQunv6uGNnLweHYqztaOLGSzayfXPXQg9rRpQrwEplXO779WHufvwAozPIxV/sgp9DhV9RGpDunj4+d//z+G2hPeynbyzB5+5/nluhLsQ/47gMxlJEE8UFWI5r+Onzx/jnX+3nRDQJQNCG97zutIq5+I0i+DlU+BWlAbljZy9+W/JC2BTwEUtluGNn7ykt/OUKsIwxPLxngK8/vJf9gzEgm4u/ZRVvaBng3PPXl7xeowl+DhV+RWlADg7FaA/7i46F/TaHhmILNKLKGGMYTWQYjk0twPp11he/p4wv/p5nBqdcT0RoreM8/Nmiwq8oDcjajib6xhJFoY942mFNR9MCjqo0sVSGgejUjdvdx8f46sN7eWJf9b74OcFvC/vx2ZX73y5mVPgVpQG58ZKNfO7+54mlMoT9NvG0Q9ox3HjJxoUeWp5kxtu4jaeKN25PJhdfcpW2DS74OVT4FaUB2b65i1vxYv2HhmKsOYWyejKOy1AszViiuABrIJrkW48e4EfPHc2He9YvaeIjF2/ggo1LSubiiwiWJaztCKvgF6DCrygNyvbNXaeE0OcwxjASTzMcSxcVYEWTGb77xEH+7clD+Vz85a1BPviG9Vx+1vKSMXoRIRL00d7kZ78lKvqTUOFXFGXBKdUBq1Qufls2F/8dZXLxCwXfr2JfFhV+RVEWjETa4UfPHOFbjx7g6Gicla1hrj1vDcPxVFEu/nS++Cr4M0OFX1GUeSftuAyNp3jwxT6++OBufJbQErQ5OBTjz3/wPJlsDD+Xi/++baV98VXwTw4VfkVpcObTumFyAdaOJw7iswRjDIeGkvkYPsCbzurigxeuZ2VbeMp1RITmoE1HU0AF/yRQ4VeUBmYurRumu4GU6oB1YGicRNolVpCy2RSwCfstPvPWs6a8hwr+3KDCryh1QndPH7f95EX2DnjVtRuXNnPzFZtntTqfK+uGSjeQ123snFKAdXgozjd+tY/B8YmUzZDfYmlzEBFY0hwsur4K/txSU+EXkX3AGOAAGWPMVhHpBL4LrAf2Ae8yxgyVu4aiKJ6wfureZxiOpcllL+7ui/Lpe5/h89dsOWnxnyvrhlI3kPFkmi89uJsvLNmSP29wPMU3H9lflIvvs7ybRXuTj2TGkHEN7zl/LaCCXyuqEn4RCQPrjDG/PYn3uNQY01/w+Bbg58aY20Tkluzjm0/iuorSMNyxs5doMoOdLUgCEGMYS8zOWG2urBsKbyDGeOJtW8KRYa95ealc/K6WIB+8cD1tIT/37DrEsdE4K1rDvOf8tbz+9CW6aVtDphV+EXkH8AUgAGwQkdcAtxpjrjrJ97wa2J79/i6gGxV+RanIwaEYjmuwC6pTRbwq19kYq82VdcPajiaOj8YJ+m1vJW8gkXbpaglxz66DfOex4lz8971+HVdtmcjF33b6kuycNEtnPhAzqUXZlBNEngQuA7qNMa/NHnvWGHPOtBcX2QsMAQa4wxhzp4gMG2PaC84ZMsZ0lHjtDcANAMuXLz9vx44d1c+qDNFolEiktHlTI9DI86/3ue/tHy/aAC2kKWBXbBAOlecfTWQ4EU2SyrgEfBbLIkEioZlFgUfjaY6MJBA8q+OMa3h2EB45bjGc8s7xW4Zty4W3rvexpNk/5RqWJdiWMNdemfX+u58Nl1566ZPGmK2Tj1fz280YY0bK9aSchguNMUdEpAv4mYj0VPtCY8ydwJ0AW7duNdu3bz+Z9y+iu7ububhOvdLI86/7uZeI8bsGOpr8VcX4azX/RNphYDxFMu0Q6x3k7scPsH9wnHjaJVmQmhkJ2ixrCbIvYfjSC4ZPXHYGr8v2uo0EfXQ01c48re5/9zWgGuH/jYj8PmCLyCbgJuBX1VzcGHMk+7VPRO4DXgccF5GVxpijIrIS6DvJsStKw7B9cxdfuGZLUVbPpmXFWT3zmY+fK8CKJic6YAX8FinXZTjuHROgvclPyGfREvJW+H7L20PYsesgbzp7ubplLhDVCP/Hgf8FJIHvAP8B/NV0LxKRZsAyxoxlv38LcCtwP3A9cFv26/dPbuiK0liUM1Xr7unj9gd6eKkvit8WlrcEa9ZK0XUNQ7EUo4lMvgPWnr4oX32ol8cn+eJ/+KINfPZ7vykOGwk0B2z6xxIsjQQnX16ZJyoKv4jYwP3GmDfhif9MWA7clw0R+YDvGGMeEJEngHtE5MPAAeDamQ9bUeqbuVqd5/Ln+0YT2ALGhSMjCVa1hfHbMmetFEt1wDo8HOcbv9zHgz0TH9rPXtXKRy/ewDlr2gFY2RpmYDxJOGBjixfDj6cd1nZW3pNQaktF4TfGOCISE5E2Y8zITC5sjOkFtpQ4PgBcPrNhKsriYS6rZXP5844x2Y1RARf6o0k2LG2ek1aK48kMgwXOmYPjKb71yH5+WIUv/ntet5a/e3APGcclEPCdkg1fGpFqQj0J4DkR+RkwnjtojLmpZqNSlEXMXFTL5j4xPL5vkKAt2CIY46V4ikDKcWfdSnFyB6yZ+OLnOl5dc94aVrSGTsmGL41MNcL/o+w/RVHmgNlWy+aqeKPJDK5riLkGS7w0SiwvLGNbMqOVdWHoaU17mPecv45z1nptDFMZl+8/fZhvT5OLD6V72p5qDV+UKoTfGHPXfAxEURqF2VbL3vaTFxmOeR43uSoc14BgEISMMWzsbOaWK8+qSnBzoSefBZGAzeHhOLf/Rw//bfsZDCfS3PWrffSNeb74Ib/Fu85by7Vb19AcnBi/NjGvL6qp3N3LxP+vPMYYDdIpykkw22pZL53T4LheymTuj9MxcOZJGLfdsbMXS8Bv27jGEPJZDMbS3PqjF/K5+D5LOH99J6PxNP/xwjGePTTi+ekI3PvkIY6OxFnX2axhnDqhmlBPYdVXCC8Lp7M2w1GUxc9cNDrPZEUfyYp/Vv3bmwIzuk485bC3P0pLyIcxhljKoT864YsvwOVndXHu2g6+9dh+fJa3sh8YT/L5n/bk37OjKVCzFFJl7qkm1DMw6dDfisjDwOdqMyRFWfxUE/cul/K5cWkzLx4b804q+Cwe9FlV7xOkMi5DsRTjyQwrWsMcHYkzlswU2UK0hnz8zbVbOL0rwn//7jP4LMmnZbaFbU6MJUFgVfvsLJ2V+aeaUM+5BQ8tvE8ALTUbkaIoFVM+b75iMx/91i7Sjqf6AtiW0NHkn3afwHENwwUFWIeH4xgMx7MxfICAbdES8vHpt7yC07s8j5ujo3E6svH7XLpmxnWZbOVyMpbOyvxTTajnbwq+z5D10K/JaBRFASqnfN59wzY+fukZfLn7ZRzXEPR5Qh3w2RX3CUbi6XwBVqlc/JDPIuS3OK2zmfe+bl3eS6cl5GPDkmZORJP4fRNC77MsJjuqzTaFVJkfqgn1XDofA1EUZYLpUj5vetOZnLOmvap9glgqQ9pxGYgmiSYz3LPrIPfumuqL/6aCXPzJ5ml/+MbTp2xIt4R8mOz1Z2PprMw/1YR6PgF8A6+T1leAc4FbjDE/rfHYFKVhqSblc7p9gsICrFTG8K+7Dhbl4reGfFy37bSiXPxybpmlNqT/7G2vBGa3Sa0sDNWEej5kjPmiiPw/QBfwQbwbgQq/otSI2aR85kI5Y4k0jmv42QvH+cqvkgwlewEvF//a89bwrq1r87n4OcF/5uAQX3t4X0kPoXI3GhX6+qMa4c9F8d4KfMMY84ycpDm/oigTVDJqO5mUT2MMo/EMQ7EUjuvyyz0DfO2Xe9mftXH2WcLbz1nJddtOo7M5ABT3tP3l7n5u/eGLc+IhpJzaVCP8T4rIT4ENwJ+KSAvgTvMaRWloKol6tTbKM7E6KDRSe+bgMF95qJcXjnopnwK8boXNx992Hqvaw/nXREK+oibmc+EhpNQH1Qj/h4HXAL3GmJiIdOKFexRFKUGlVExgTm2UE2kvjp9IOyV98V+/oZOPXLQBc/SFvOhHQj7aw4Eijx2YvYeQUj9UI/wXAE8bY8ZF5Dq8zd0v1nZYilK/VFo5A3Nio5xxXAZjKaKJTElf/HWdTQRsi30D43z5Fy9z/YZMWcHPMVsPIaV+qMZN6R+BmIhsAf4nsB/4Zk1HpSh1zMGhGGG/XXQst3LOPRewrbzNwkxslI0xDI2nODQU58BAjC/9fDcf+MYTedE/bUkT73/9aYzGUxwYGqdvNMkzh4Y5NBzn+q89zq/29Je99o2XbCTtGGKpTNa+IaPpmYuUaputGxG5GviiMeZrInJ9rQemKPXKdCvnvrEEy1qCHBlO4GKqtlEeTaQZHk8zHE/xr7sO8q9PHiKRnsjF/8Ab1vPmVy7nuq88ku97W8jLJ6IVN2vnwkNIqQ+qEf4xEflT4P3Axdl2jP5pXqMoDct0qZi5+P/KtiDHR5PT2ijHUw4D40miicwUX/zWkI/3vX4dV79mNQGfxeO9gxyPpkuOK+WYafcR1Du/MahG+N8N/D5ePv8xEVkHfL62w1KU+mW6lXPhc69d11F2VZ0rwIomMvz0heNTfPGvPW8N125dSySbix8J+rjv6cMVxzbThi9z0RdYOfWoxrLhmIj8G7Ape6gfuK+mo1KUOqfSynm6VXVu43Ysnuaff7mff33yYN5ewRJ4x5ZVvH/baew5HuVz33ue42MJ1nU28UdvPJ3Dw/Gy1xWq36ydy77AyqlHNZYNHwVuwPPgPx1YDfwT2jBdaWAmr4Yv2NjJI72Ds1odP/jicf6h+2UODsVoCfoZiac4EU3ln28K2DQHbS7YsIQ9x6P83S/2EPQJS5oD9EeTfO7+52kJ+gjYQsqZ0jsJv119O0bN6V/cVBPq+RjwOuAxAGPMbhHR37zSsExeDe8biPL4vkGWRQIsjZQuxip3ndzNI+yzGBhP4bctxpIZjo9O2CQLEPB5tsupjMNf/fgFUhkXyxKWt4QQkbwwG2NoC/sZHE8xWftPXxapujuX5vQvbqoR/qQxJpVzaRARHyVaMSrKYmXy6n5oPFm0Gh6NZ7AExhIZlrWEqlod524etgVNfpu9A1EyTuk/LL9PcFzD4eFE0XGfMRwZ8UI7rWE/Yb/NSDzN56/Zwu0P9NDbPw7AhiVNbFiS5ifvu6TqOWtO/+KmGuH/LxH5DBAWkTcDfwz8oLbDUhYa3djz+NJ/vsSXu18m47oEbQvHdekbS7KmwPog5bhY2Vz8HNOtjv/xv17ON0fvG0uSnmh8RcC2AJMP1xjXa7U4mYwLPssr/moN+/PCXGoPobu7e0bznm1fYOXUppoCrpuBE8BzwI3Aj4HP1nJQysKSW432jSWKNva6CypDG4Hunj5P9B0XYyCWdjk24oVgjo8lGUuk6T0RJeMYkhmDXeBdWG517LiG/miS3v4oY4kMewdiDMcn0i8tgdM6w7jG5P84M275D9gZ15By3Dkvttq+uYtbrzqbrpYQI/E0XS0hbr3q7Ia8+S9GKq74RcQCnjXGvArPi19pABp5Y6/wk85oPE3acXGNF2fPybrjguu67B+IFYVmEhmX0XgKn21NEWFjDCPxNMdHE3zv6SMMRFMU6nmT3yKRdvFZgmVJviHK0iZ/0QYveJW+mImwkCVCV0tozj+VaU7/4qWi8BtjXBF5RkTWGWMOzNeglIWlkTb2CoW+JejjRDRJW9hPe9jPsZHEhDgXGpGb8ptcBwfjvH7jkrwId/f08Q/dL7N/IErQ5/OqbwtX+Hir/GTGpSlgsbqjiVjKYcOSZgbGU9j2VAd0M6nB+h3XnacCrcyIamL8K4HnReRxYDx30BhzVc1GpSwojbKxNzk7Z09flIxraA74kIAQ9FlkUl7wvVBsswtu7/sCXTYGjMDdN2wD4Ke/Ocaf3/8boskM0aSDYWLlHgnaNAe8G0Ha8Vb6azqaeOBP3pg/J7e/IFL6/f228LHtp6voKzOmGuH/i5qPQjmlaJSNvckhLccYLJnYLF0aCRIb9MI5lpAP+bQ3+RiKTfXCAU+gUxmXoViK//0fv+VENFUUo8+JdmvIR2s4wNKWIJZIPhRUyCO9g6zpCNMU8DEaT3NsNEEy44LA5q5IWYsHRZmOssIvIiHgD4Ez8DZ2v2aMKf2/XVlUNIpZ1+SQVsC2SDtuPjunNeynLexjJJ5BBJp8Fm1Nfvy2TSzpkHSmxnzCPoudu0/wlZ297DkRzR+3BM+GWSCVMQyMp1gSCeWfL/WJqnB8rWE/rWF//gZR+MlAUWZKpRX/XUAaeAi4Engl8In5GJSy8DTCxt7ajib2DUQZjWdIOS62ePnyfp+FMYZ42qE1HOBDF27gkd7Bopvgs4eG+duf72Zyws3K9jAfvWvXlD0A14DrGGyBoC1kXKb9RNUoITdl/qkk/K80xrwaQES+Bjw+P0NSlPlhRWuAR3q99EwBXDEYvEyakXi66JPOTZNem7spfuWhXqJJB9sSXGPyRVO50NBkHAOtQZsVrWHamwIVP1E1SshNmX8qCX8+4GiMyWh/dWU+qXUBWXdPHz/+zXGyWZPeitxAW9jH2iWR/AZtORJphytevZIT0WSRL74l0Bb2M5ZIlxR+gFjKrco6oVFCbsr8U0n4t4jIKBOJbOGCx8YY01rz0SkNyVw7Q3b39LG3f5zP3v5g/iZyx85eMq5LwGd57Q8B1zWkHVMxbTWVcTk2kuDuJw7w7Uf3F/niR4K+/I1kKFbaEx+gJeSreh7Thdy0wlo5GcoKvzHGLvecotSSuSwgy91ErjvN0B72s7c/yo3/8iTpbDVuBq85CXipmcmMW7bi9ge/Psz/+fluDg3F8qv5kM/iDacv4cRYiuePjuCzvH2CyeSyeQTY1NUyozlMNze1TlZmSkXLBhGxROQ38zUYRYHKPWtnSu4mkjNRGxhPkXG9alxDzvLAwWDyDdAnV9wOjSe59f7n+dS/PcuBwQnRbwrYXL1lFT3Hxoim0oR8FinHTHHFhInkH9tizmL0hTfInENnrsOWolSi5pW72VaNu4DDxpi3i0gn8F1gPbAPeJcxZuhkrq0sTkplswyMJxlPOlxUEK4ptaqdHPp47vAQxgiJlS4Hh2Ilq24dFzAuPtsqKogaS6T5Rc8JvvDT33JgcOKmE/ZbLG8J4WL48W+O0tXqOXKaVtg34J1XWOSVw2fBTZdtmrPVeCNVWCtzy3xU7n4CeBHI7QncAvzcGHObiNySfXxz9UNWFjuTs1kGxpP0jaVYFglUDGn8yY6nuO/po/nHR4fjOAZsyWbtFCixJXjpm8bgGmgO+vjSe17L9s1dJNIOj+0d5B9+sYfH9g7mXyN410o7Lk7W9/7wcCL/6aQl5Cfks0hkXAxe2ibZFNGmgJ2//lyh6Z7KyVLTyl0RWQO8Dfhr4L9nD18NbM9+fxfQjQq/UsDkbJbxpMOySIBlLV7BU6mY/5f+86Ui0QfyIZdcnVVhiqXPsrAtwXINPltoC/u5cNNSfn1giC//Yg8/f7Evv2IPFPjluK7BceHQUJwT0SQBW4innbz4rmgLcWgojs8WzlgWyadg1sLZUtM9lZNFjCmTczYXFxe5F/j/gBbgU9lQz7Axpr3gnCFjTEeJ196A1/KR5cuXn7djx45ZjycajRKJRGZ9nXqlXuf/22NjebfKQhzX8IoV3kbpC0dHS26q5lgehr54saOlMSb/OOEIzw77+dVRN3/DWNksbFvmcFa7YMSQzq7kcwiCZXlfbUvyNxYnezNxXUPAZ7EsEiQSqmaNNXOiiQwnoklSGbfie9Xr734uaOS5X3rppU8aY7ZOPl5Nz90xJv5eAoAfGJ8unVNE3g70GWOeFJHtMx2wMeZO4E6ArVu3mu3bZ3yJKXR3dzMX16lX6nX+d9z56JSQRiyV8ayI3+Pl23/4Mz+uKPyfPsfhH38bIOizGIqnEQMuE7nK3iu9XPyuliDXv2E9b331Cv7nvc/y7OEUTQEfu4+PkcyKvyWwrrMJ2xICtjVtMdZCU6+/+7mgkedejmmF3xhTlHsmIu/E68E7HRcCV4nIW4EQ0Coi/wIcF5GVxpijIrISaKzuHsqMyYU0TowlGEtkSGZcbEs4Z3Ur773zUW/TtgI5cU9kHJZEgnzgDeu5c+fLjKfcKRuwnU1+vvPR19PVGqIl6ONj28/Ih1Mck0v9FFa1h2gJTXjn/OST1bc1VJSFppoOXEUYY74HXFbFeX9qjFljjFkPvAd40BhzHXA/cH32tOuB7890DEpjsX1zF9ecu5qhWJpYysE1hrTjct/TR+k5NkJ72E9bhVBKwBaMgeaAjz+94hWEAzaxdLHoWwI+geF4moMDMVpDfkSkqBOVJYIlE6IPupmq1CfVhHp+t+ChBWxlds3WbwPuEZEPAweAa2dxLaVB+PFzR3FdT6wLt6WGYhlaQxlWdzQBMYZi6Yk4PuD3WTiuF8vftqGT2//jt/mUy9w5PtsTdNcYfCLc+dBeLj1ref6cXPXsRIN0yZu46WaqUo9Us+P0joLvM3i591fP5E2MMd142TsYYwaAy2fyeqWx6e7p46W+aFnvm+OjCVrDfla1h2kO+njo5svyTUzSGRcX2PGyxeHYRFRxy5o2nj00gm15FbvepYXlrcGyefCF2Ua7+8ZIZdyigqlTLa6vKOWoJsb/wfkYiKKUorunjz/+zlNlRR+8XrdQHHb51csDNAcshrLPHY5lbRmAmy47gzOXt/Cpe58hnnYR1+CzDLZlcWg4TtC2ufJvdzKWzEwpFst9/dz9z9MWFsJ+W60SlLqjmlDPGuDv8DZrDfAw8AljzKEaj01ZxEzudWuMIZpyioQ2F1qJZdsfViKWyuTDLi8eHeHpQ8N5x0yAlU2GEwkv1v/Ab45y39NHaG/ykxlL4WJIu+AYFxHvBvLisTFsgf6xJJ++9xk+f82WvKg3cjN6ZXFQTajnG8B3mIjFX5c99uZaDUpZ3BSai9kCu/u8TlWr20P0jSX41L3PsCwSpLd/nKnZ+6Xpagnxu+eu4ofPHeF7vz5S1O7QZwnvO93hS8/78Pst9g3GWdMRpi0cIuizi+wYCs3UPC8fl/5oio9+cxdb13dy4yUb1SpBqXuqEf5lxphvFDz+ZxH5ZI3GozQAhSvm3hNRrzjLQH80xdJIkOFYmmgik3fQrIQFbFzWzFkrW/iz7z+fX+W3hf1EE541ctY5ASOeJfJQLF1ks5Ar5sp58gMgFD1OuyYf0okE7KJqXdDsHqW+qCads19ErhMRO/vvOmCg1gNTFi+F7pspxwuvuMYwnnLYPxgj4xoSmQkHzUqE/BZHRxJ8/Zf7SKRdWkM+/uiNp/PAJy/m45edgc+28pW4S5oDBHw2G5c2E0974aOxRDqf9VNUHFzwxpL9l3O/FBHSjiGWymCMKQozKUo9UM2K/0PA3wP/N/v4l9ljijKFahqDFJqLBWyLZMYtCs1Ui88SYtkVfshn8XvnreGjF29kbWcTD710gsf2DtES8pHKuFiSYcPSSF6cc0VZfaMJLPH8fCxytbvFNxyTvT54IZ2ReJq/vPpV2hlLqVuqyeo5AFTrxKk0MNU2Bik0F1saCbB/MD6j9wn5LRJp72ZhW8Lbz1nJH73xdM7oiuCzraJxrGgNEU87WFYqL/p37OxlPJkm7XifLMJ+m6aA7RWHpZ18eCcX5/dZwoo2zyAuF9JphGb0yuKlmqyejcAXgW14fwePAH9ijNFuD0oR02W7FH4aiARsRCSfC58u1b0kizDhrGkgH8ffsqYNxzXs2jfIX4wm86vuUuMQhNsf6GE85eC3hZVtYeJph2TGpSXkyzt/ApwYSxBLOQRsYSzp0NnsJxL0aUhHWTRUE+P/DnAPni//KuBfgbtrOSilPqnUOSu3Ct/bH2VoPMWeE+P09o9z7Xlr2HpaJyGfRdBnEfbb+Es5cRbE+89f38Gn33Img+Mp4mmHjqZA/tNFd09fyXFYAr3941M6VnU2+7NWEBPx+oDP887f9Wdv4Y7rzmP9kggj8TRdLaGa2CsrynxTTYxfjDHfKnj8LyLy32o1IGX+mOtG3eUag0SCPm7a8WvGso3JbUu83rTG8OXul/nY9tPZ0zfm2S2IQaS4g9WElTL80RtP55NvPpM/+NrjBHxWyU8XuXE4ruHEWJKU43LFEhfXWFNuCEuag6QdQ1dLqGS8XkM6ymKkGuH/RbZT1g68v8F3Az/KtlDEGDNY6cXKqclsG3WXummUagwyGve8c2IpB8Tz2XFcgyWeh33acXmkd5DPX7OF2x/oYU/fWNHqPofPgraQj/PXd+K3rYq59H959av49L3PMBRLY+VuIsbrnzswnmRpZCKsE087bOpq4e4bts36Z6oo9UI1oZ53AzcCv8Dz2/kjvKyeJ/F66Sp1yGwadeduGn1jiaKbBsCtV51NwLbY3Rfl0FCc4ViK0Xg2ZbJAzTOul6MftC0ODcV4zbp2Ltq0FJ9tT2mRGPYJazqaaG8O5scXCdjsORGl59govSeijMbTRRuvS5oD+GzBAH7bwu8TlkaCDI6nNQ1TaXiqyerZMB8DUeaX2VSfVtrEvfGSjYynHNZ0hMk4bjZjx2DLRCvEnMOmMdAS9kIv2z/fzXA8nR9HIu1gC/h8Fq6BI8MJVrYF8/sFA+MpMo7ByvbAPTwcp73Jz5+97ZUARFMOZyyLIOLtF9gyzNJIkIzjlg3rKEqjUFU/OBF5FfBKvIYqABhjvlmrQSm152QadefCO4/vGyRoi9esJOtLn7tp3LGzl1TGYSCaKfLYMVAk/gAhv9AfTeOYdP7Y8tYgkYDN4ZEExvXaGoqAi+H4aJLXruvgjp29tIb9NAd9+Ri+zxKWRYJ5ES83v03LWzWsozQ804Z6ROTP8Uza/g64FPjfaF5/3XPjJRtnVH1aGN4J+SzSruHIcIKxrC1C7qbx3OEhjo8mGU85RXF613je+Ln/cLbAaMLJ3wgiQZtNy5qJBH3sG4zRErRxMbiu8XrjGkPadfNeOWG/TUvIz8ZlETavaOWMrgjRZKbs/FzDnIZ1unv6eO+dj3LR7Q/y3jsfpbtHG8kp9UM1K/5rgC3Ar40xHxSR5cBXazsspdYUestXE/YoDO8sjQQ5MhIn47rsH4jlBb5vNE406ZZ8PVDUrDwn+D5LaA37WN0+8UnDb1mMJR1WtYXpj3oretsSNnY2s31zF2t3Tv9pZfL8/LbMKBWzUsbTbDfGFWWhqUb4E8YYV0QyItKK1yNXd8MWAdWmKnb39PHUgSFcYwjYFksjQdrDfk5EU0XnjVUQfSgO8+TIuIaxRIbReJrW7J7D8tYgh4YT+GxhaSTA8bEkaccgInT39JXMHiq1mi+cX3d395S5lhP3nLCnMg5jiQzHRhI8dWCIj20/nZvedKbaMit1T9lQj4j8vYhcCDwuIu3AV/AyeZ4CHp+f4Sm1otpQRU4EBXBdQyxrpNZfIPpSrXdyGdKO4cBgLJ+d47MtzuyK4LeEQ8NxMLCmPUTKcYuyh7paQiddWFUuMyl3M0hlnPwGss/y2jJ+ufvlsgViasus1BOVVvy7gS/gVetG8ap13wy0GmOenYexKTViJqGK3Oo26LPyna5g5k2Xc5YLQN5jf7IRWmF2zheu2cIdO3tZ75qikE5uZX33DdtmvLrOifruXLGYawgHbJZGgrSG/cRSGW77yYvsHYiRys5VMHmLZjDc9pMXT2pjXFFOJcqu+I0xXzTGXABcAgziNV/5CfBOEdk0T+NTasBMcvgPDsXIOC6jiUyJK3lM55kPELQnPhYYSt84XENRds5crqyjiQyfu/959g1EGYl5dQUukEw7HBmJMxpPk3Fcdp+I5quGDZ5bZ+ENa/eJKBds7CTtGPqjCV7uG+OFoyMcGopzwcbOGY9LURaCabN6jDH7jTG3G2NeC/w+8DtAT81HptSM6QS1u6ePK/92Jxtv+RGHhuLsH4zPeIWfQ/AsjTNmkt/9JOysJ3/acek5NsZ5f/lTRuNpBsaTReed7Mr6RDSJ3xZG4xksS/JjcQELoT+a5PhYEr9lsaItNKXzlwA+W/BbFo/0DnLNuasZHE+Tcgwhn01Hk597nzqs2T1KXVCNO6cfuAJ4D3A58F/AX9R4XEoNKRWqGBhPMhLPcMZnfkSm8h5t1Qhe1awxELAt/AFhOF76k0Phxq8Ao4kMzQGbvjFvL2FJc7DsJm41pLL2y7kMIZ9lkXK8Zi+IIZnxmrGsafdqE7paghwfm7jp+GxBEG/jeSjGI72wpiNcMgylG7zKqU6lzd03i8jXgUPADcCPgdONMe82xnxvnsan1IDJOe790QTHR5MkUg7OLER/bUeYjrAPnyX4LC9UknJcMsazPm4NB/id16ycto+uJd4qPO0YlkUCjCedWbtjBnwW8bRDIHsjyhnFWeJlFjUFbM7M+vkDdLWG8s1XBO/Gtao9hM+2WNPRpBu8Sl1TacX/GTxL5k+pEdviojDHfffxUQZjaU6iAdYUjo0mWNIcoDUcoD+axGRcXNfguDAUS7NxaQDwVs+V/PcNXqZQynFZGgkyEk/z0M2XzWpsyyKeC2dr2Ef/WAo36wLaFQkS8NncetXZAEVpoh3NfvrGUiyLBFgaKf7EccfOXt3gVeqWssJvjLl0Pgei1Jbunj729o/z2dsfZG1HExds7GRoPDknoi+Qddr0cvKXLQvRGvYzGk9zZCSOawybuiL0R5Pc9/RRbAv8lpCe9MaWTHj45MJDsxXTXCbP9tY4Tf5WJGCTdgypjEvAlnw7xtyniMKir/VLIrz3/E4e6R0sWeRWTS2BopyKVOXVo9Q3ufTN604ztIf97O2P8vi+QWypLiOnErk4vmV5IZNkwQZBf9SLkYd8XretnB+/MZ75mmOcSU6cQiY7oGQ2/j4aT+eN1ybPabpeAoVpq3a7d6NJOy5fuGZL2XBRqaK2m8qcV67yea77HCjKXKPCv8goJTq59E1LyAuwJZCqEG6pFhFvte9V9Qoikl8FJ3OhHjH0HBslk32/nNjb4r0OIGCRT/CX3HVtq2Q2UbV1CLWusC11k1A7B6UeUOE/BZirFWI50RlPplnZFs6fl3Lc2S/1s7gGHNdbnXc0+Xn/ttPyoRG/LaSM58Nvi5DJyrjgpW7atteFywCtTQFSGZfOZruo/22pnr1PHRhCwEu7zNYhlBL02VhPnyxq56DUAyr8C8xsVoiTbxjDsVSR6Diu4dhInJRjGBxPc+VSl9F4moBtMV5gmTwbJPspYtOyZm6+YjPbN3flQyNX/u1OdvdFs0t4sC3IuGBZXt5+0nHx21beA+ei2x8sK9SFPyfXGATPo39VO7SE/CUFvVKFba3CMQtxs1GUmVJNBy6lhpxsJ6xSXjMv9UXJZPMx+0YT7BuI5cM5Bm+VvX/QW4mD187QLvcGWVqD5c/w28KfXL6Jc9d1MJb0VrWFBUxjyQyr20Nef13XEPTZLIv48VkWSyJBXrd+CXdcdx43velMwBPqeLr4hpQT6sKfU8C28j79J7K59qU2gQvTVoG89fQFGzvL+vTMlkpzUJRTBRX+BeZk88HL3TCOjyYZS6SLio8mk8y4rGr1UisrrfttC+IZlyb/1P8mflt4+6tXcO9Th8sK6NqOJny2lffM37gsQms4wLnrOnjo5svyDVFyZnHDsRQj8dKtEQt/TksjQVw8j/5kxinbS2D75q68mZvjmnwdwCO9gyfddnI6ZtrnQFEWAhX+BeZkV4i7+8Y4OhzP95wdS6RZ3hIk7bocG0lUfG3acQn6fUUVuoFssZIt0BywWd4SxBYL1xjiaXdK0VXaMdz/7DGiiXRZAZ1OBCd/akk53vv4LZlSsFX4c2oN+1nVFsayBNuyKhZ2bd/cxd03bOMVK1ryxm61LL4qvNnMtuhMUWqFxvgXmFLe8qPxNH5LuCibcz85/tzd08dYIuNtkFpCJtsNa0nEz6ZlEfYOlBaw/uz9IOOSP6cl5CPoszhjWYQ9J6KsaA3l+9SGAzb7ylwLvD2EwVgav52gqzXEaDxNfzTJvoEY773zUW68ZCO3XnV22WYvpTZCATqag9xypZeN9Nnv/4a1O726g3ufOpz/OflsOWlRrbW7ZrV9DhRlodAV/wIzeYUYyKYwpl1TNv58x85eOpq8DUSvLy0YvA3cW648i3PXdZR8r7t2T6xyfZZwZleEL77rNez67JvZceMFbOpqKfr0Ea9yA/hENJkv1ko5LkFb8uMGuPuGbSVDO08dGMrvSeQI+212941NicHf+9Rhrjl39ZyspDUcozQ6uuI/BShcIb73zkdJOW7FdMCDQzGWRoIEfXa+NWHAtgj7rfw5j/UOMNV2J7uS91usX9JEyjH8vz98AcsStm/uKvr0kXHcivsEhbhmolhL8Jqwlxr35Aym/miSw8MJRCTftD2edkhlXNrCU1MiH+kdnJNG6TNtO6koiw0V/lOAwtTCE2NJVrQGi56fHH/OhSpaw/58u8JYKkNXNv99NJ6mKWATnbRif/Nqh58dtrFE8Nk2Prs4T75QEJ86MDSjOcTTDsZ4qZq5TJtI0Fc07smhneUtIQ4Nxdg/EMO2wGdZtIS8fYJaG6BpOEZpZGoW6hGRkIg8LiLPiMjzIvIX2eOdIvIzEdmd/Vo6LtEgTN7gFODwcILReBrwRHzPiSh9Y8l8i8RyoYr3b1vHn+z4NZ+85+kpou+3YEunIegTr4Ary2RBzW2GLmspvvlUoilg47ctz6/enthzGBhPFsXNJ2+qSoFlhIiAeGmnXS0hTYlUlBpSyxh/ErjMGLMFeA1whYhsA24Bfm6M2QT8PPu4YZmclrmizVu1Hx9LMBpPcXg4TsYxrGgNFsXNc/sCx0biHB+J0x9N8snvPsN9Tx/BNdnGIZYn+AFLCGT9ctys+VmOcoK6tkqR9VbqUnbPoTBuPjmD6cRYEtsWmgI2m1e0sqmrhbawH2OMxuAVpYbUTPiNRzT70J/9Z4Crgbuyx+8C3lmrMdQDk1fBLSE/q9tDGAPHRpP4LGFNRxgQjo0kODIc56YdvwZg62ltDMfTRFMusZSTX8k3BSxOX9bM6vYwIhZkLY49Tx0vk2c6Qb3xko0Vm6gHbM/PvrMpgN8WlkaCrGoL48vaMARsi5agXRROmfxJJZHxbgJLIxOfLsJ+m/GUoymRilJDxMyRZ0vJi4vYwJPAGcCXjTE3i8iwMaa94JwhY8yUcI+I3IDXAIbly5eft2PHjlmPJxqNEolEZn2dGb9vIsOJaNKzAvZZLIsEiYS8OPfe/nHSjilqS+gar0AqlfHE2smugPNNyo3haFz4ryMWh2ITLzyzzeXC5S6dQc8x05c1T8t5368IGxxfiPFkpuRYJnNoKMZQLJ1/nOtF65moCQGfxcrWECeiybJz2LC0uezPwjHG228oeGG5182Whfrdnyo08vwbee6XXnrpk8aYrZOP11T4828i0g7cB3wceLga4S9k69atZteuXbMeR3d3N9u3b5/1dWb0ngWZLIW+7bkVbOHzGcfl+GiStOuyaVkEES8ef2wkQcbxGodksoZo1Xjod0UCtIT9+ffj2Asznv+X/vMlvvrwXsZTDs0Bm49ctCFvsVDtHE/2ZzOXLMTv/lSikeffyHMXkZLCPy9ZPcaYYRHpxuvde1xEVhpjjorISmBRd6eezq0xl0lz+wM97BvwfHTWtIcZjqcZGE/huAbXeDE5MwP/fAFORFOc3tUy4RN/7IUZj/+mN505Regnc7LpkZpWqSgLQ82EX0SWAems6IeBNwG3A/cD1wO3Zb9+v1ZjOBWoxq1x++Yu7tjZy/olTTQFfIxmRd8Ygw242X85c3q/LTiOKZGnn33ekmxjFOYk770aTjY9UtMqFWX+qeWKfyVwVzbObwH3GGN+KCKPAPeIyIeBA8C1NRzDglOtPUDhDeLEWAJcgxHITFrhd7UECPltjgzHEePF2jOT4j4+2yLjujQHpvPeVBSlEamZ8BtjngVeW+L4AHB5rd73VCNXDXtiLMFYIkMyu2F79ZZVReet7Wji+Ggcv22RyHhx/NwK3xJoDtokUg4B22J1exOxbMy9P5rCTRe3MMztA3zkog3zN1FFUeoG9eqZY7p7+vJeNO+981EArjl3NUOxNImMQ8AWOpv93PvU4bz/Ttpxufa8NQyOp9lzYnxSH1ovXp9Ku5zR1cLDt1zO3TdsY1NXS97y+OxVbSxvCeazfsJ+m09cdsa0sXlFURoTtWw4Ccp1byrVTetT9z5DLOWQcVwMEEu7xEeS+G3htp+8yFmrWniw5wRfeaiX4Xhx6iR4NskigmM8M7Tunr4pvjphv00k5CPot6vKiNFm4IrS2OiKf4aU6nyVc8+cXIWbcQzDsTSxlINTkIJp8Bqd9xyP8u47HuVP//05ek+MA7D9zGV860Ov44xlzQR8AiL4bYvV7WHawv681/3J+r5XGr+iKI2BrvhnSKX0zMkZPP3RZFFRUylyfvfnrWvnIxdv5PwNnXQ0BYhnXDZ1teS98cEr3JqcDTTTlbo2A1cURYV/hpRKz8w4bt7Nsj+aZHlLiNaCjlKVsAVu/71zuGjTMjqbA/lOWLVqFqLNwBVFqYtQT8+xsbwz5UIz2WhsNJ72POWBFa1BMo7h8HCc0XgKS7wuVSVa1uYJ+S3eds4qVrSF8qIPtWsWos3AFUWpC+H3WXLKxKInC/LxMa+f4Yq2EK3hAGs6wtgCR0cSrGwN4fdZRb1tC7GAcMBHuES+fa16t2r3KUVR6ibUs1Cx6MkZMBds7KQ5YNPb723GOq7L6vYwLSE/I7EU/dEkGddggP7xNIl0adUP2kJnJMD6JeXNo2pR1ao2CYqi1I3ww/zHoienZ+7tj/L4vkG6WgJs6ooQTzscGoqTSDs4boqjI3EAsmaYRJMZ/LZwzXlr2LSsha/9ci9Bn7exmjMkW4iVttokKEpjU1fCP5+x6O6ePm7a8WvGUxlCPptlLUHGEhksgdF4hqWREGG/TXvYx+B4CtdMCH6O5oDN+iXN3HT5JjqbA2xc1qwrbUVRFpy6Ef75ikV39/Rx+wM9vNQXxckm3o+nHMazaZd+C5IZryDLMQa/zyrK0Qev+MoWaA/7GI6nWNkWBnSlrSjKqUFdCL/jGrpaQjVfIeeLm0YTCKX9j9Ou130qlsrQH00xXtDbVgCfLVgiGGPoj6Y497TOmo1XURTlZKgL4X/FipZ5sRfOFTc5xlRsdJJ2DPsH4/nHtkB7k5+ReBoxkHNXyxjNllEU5dSjLoS/1nT39HHbT16k57jXItiSyh2uck8FfRa/d+4anj88wnA8RXPAx8B4Kt/fdmNns4Z2FEU55Wh44e/u6eNT9z7DcCyd7yk7XVtDvyV8/PIzuOLsFURCfn5zaIS/+vGL+H1er9hcxs4tV541H1NQFEWZEQ0v/Hfs7CWazGCLgJgpjU8mE/Zb/OkVZ3HpWV10NgdoDvpY1R4m4LM0Y0dRlLqg4YX/4FCMjONii2DbFibj4pQ4zxLP7uCPt5/OFa9aSWvYV2Sgphk7iqLUCw0t/K5rWNEaom8sgeMYEKb0sX37OSt5/7bT6GoN0RLy0dEUwJ7OclNRFOUUpiGF33UNo4k0I/E015y7ht8eG2Us44CZiPP4beGmSzfxti0raQ56gl9ooqYoilKvNJzwD8dSjMTTOK5h38A4P3j2CGPJ4lz8VW0hPn7ZJi46cylLI0FCfm1arijK4qEhhD+3wk85LoPjKY6PJrjrV/v56QvH8hk8Zy6P8NGLN3LeaR34LIuOZj8tIX/lCyuKotQhi1r4C0M6jmuIJg3/2P0y33v6MOmssc6ajjAfunA9l5y5DNuyaAv7aQ/7sTSOryjKImVRCv9kwY+nHO596hB3P5og4RwCYElzgOvfcBpXnL0Cn20RCfrobA7gszWOryjK4mZRCf9kwU87Lj989ij/8uh+hmJpACJBH+85fy2/e+5qQn6boN9mSXNA4/iKojQMi0L4jTGMxjMMx1M4rsE1hl/09PH1X+7j6IjXISvgs7h0tcUfv/11tIT8+G2LjuYAkeCi+BEoiqJUTV2r3mTBN8bwxL4hvvrQXvacmPDdeeurvVz8kd5naAsH6GgKTCnAUhRFaRTqUvhzgj8ST5NxvZKrF46M8pWHennm0Ej+vEvOXMqHLtzAus4mRIQxS1jb2aQFWIqiNDR1JfzGGEYTGUZiE4K/b2Ccrz28l1/uGcifd+66dj5y8QY2r2gFoDm7cbvfEhV9RVEanroR/tFEmuHxCcEvlYu/qSvCRy/ewNb1XvMT3bhVFEWZSl0Ifyrj0j+WBGAknuY7jx0om4tviejGraIoSgXqQhkN5HPx73niYL7d4ZLmAH9wwWlc+SovF98S0Y1bRVGUaagL4R+Opbjua4/lc/GbgzbvPX9dPhdfRNQ5U1EUpUrqQvj7xpLYsTQBn8XvvGYV733dOlrDno+OOmcqiqLMjLoQfoC3vXolf3DBaSxrCQK6casoinKy1IXwr1/SzP94y5kA6pypKIoyS+pC+AM+b+O2vclPW9ivG7eKoiizoC6E37aENR1hdc5UFEWZA2qmpCKyVkR+ISIvisjzIvKJ7PFOEfmZiOzOfu2Y7lo+S1T0FUVR5ohaqmkG+B/GmLOAbcDHROSVwC3Az40xm4CfZx8riqIo80TNhN8Yc9QY81T2+zHgRWA1cDVwV/a0u4B31moMiqIoylTEGFP7NxFZD+wEXgUcMMa0Fzw3ZIyZEu4RkRuAGwCWL19+3o4dO2Y9jmg0SiQSmfV16pVGnn8jzx0ae/6NPPdLL730SWPM1snHa765KyIR4N+ATxpjRqvNyDHG3AncCbB161azffv2WY+lu7ububhOvdLI82/kuUNjz7+R516Omu6YiogfT/S/bYz59+zh4yKyMvv8SqCvlmNQFEVRiqllVo8AXwNeNMb8n4Kn7geuz35/PfD9Wo1BURRFmUotQz0XAu8HnhORp7PHPgPcBtwjIh8GDgDX1nAMiqIoyiRqJvzGmIeBcgH9y2v1voqiKEpltCpKURSlwZiXdM7ZIiIngP1zcKmlQP8cXKdeaeT5N/LcobHn38hzP80Ys2zywboQ/rlCRHaVymltFBp5/o08d2js+Tfy3MuhoR5FUZQGQ4VfURSlwWg04b9zoQewwDTy/Bt57tDY82/kuZekoWL8iqIoSuOt+BVFURoeFX5FUZQGY9EJf7nOX5POERH5kojsEZFnReTchRhrLahy/ptF5BERSYrIpxZinLWgyrm/L/s7f1ZEfiUiWxZirLWgyvlfnZ370yKyS0QuWoixzjXVzL3g3PNFxBGRa+ZzjKcUxphF9Q9YCZyb/b4FeAl45aRz3gr8BM9SYhvw2EKPe57n3wWcD/w18KmFHvM8z/0NQEf2+ysb8HcfYWJv7xygZ6HHPV9zzz5nAw8CPwauWehxL9S/RbfiN+U7fxVyNfBN4/Eo0J6ziq53qpm/MabPGPMEkF6AIdaMKuf+K2PMUPbho8Ca+R1l7ahy/lGTVUCgGVgU2R1V/t0DfBzPKr6h7eAXnfAXku389VrgsUlPrQYOFjw+ROn/JHVNhfkveqqc+4fxPvktOirNX0R+R0R6gB8BH5rnodWccnMXkdXA7wD/tADDOqVYtMI/ufPX5KdLvGRRrHxyTDP/RU01cxeRS/GE/+b5HNt8MN38jTH3GWM24/W7/st5Hl5NmWbufwvcbIxx5n1gpxg1b724EJTp/FXIIWBtweM1wJH5GNt8UMX8Fy3VzF1EzgG+ClxpjBmYz/HVmpn87o0xO0XkdBFZaoypexOzKua+FdiRbf+6FHiriGSMMd+bv1GeGiy6FX+Fzl+F3A/8QTa7ZxswYow5Om+DrCFVzn9RUs3cRWQd8O/A+40xL83n+GpNlfM/I3se2Wy2AFD3N79q5m6M2WCMWW+MWQ/cC/xxI4o+LMLK3Wx62kPAc4CbPfwZYB2AMeafsv9J/h64AogBHzTG7FqA4c45Vc5/BbALaM2eE8XLgKjrkFCVc/8q8HtM2HxnzCJxbqxy/jcDf4C3sR8HPm28pkl1TTVzn3T+PwM/NMbcO4/DPGVYdMKvKIqiVGbRhXoURVGUyqjwK4qiNBgq/IqiKA2GCr+iKEqDocKvKIrSYCzKAi5FKUREosaYyEm87jEgCHQCYeBw9ql3GmP2zd0IQUT+Es9DysXzkfmAMWbRFBUqpxaazqksek5W+Ate/wFgqzHmv83dqKa8R2uujkJEbsKrq/jDWr2f0thoqEdpGERku4h0i8i9ItIjIt/OVm9fKSL3TDrvB2WucbqIPCAiT4rIQyKyOXv8n0XkH7Oe8L0i8kYR+XrWH/6fC14fFZG/EZGnROTnIrIMYFLx3KJxzVROTVT4lUbjtcAngVcCG4ELgZ8B20SkOXvOu4Hvlnn9ncDHjTHnAZ8C/qHguQ7gMuBPgB8A/xc4G3i1iLwme04z8JQx5lzgv4A/z71YRP5aRA4C7wM+N6tZKkoFVPiVRuNxY8whY4wLPA2sN8ZkgAeAd4iID3gb8P3JL8w6P74B+FcReRq4A68BSI4fZL3unwOOG2Oey77P88D67DkuEzeVfwHyHbCMMf/LGLMW+DZQs7CSoujmrtJoJAu+d5j4G/gu8DFgEHgi28xjMhYwbIx5zTTXdie9j0v5v7VSIZ3v4Hnl/3mJ5xRl1uiKX1E8uoFzgY9SJsyTjcPvFZFrId+7eaY9ey0g1+v194GHs9faVHDOVUDPDK+rKFWjK35FAYwxjoj8EPgAcH2FU98H/KOIfBbwAzuAZ2bwVuPA2SLyJDCCt58AcJuIvALv08F+QDN6lJqh6ZyKMo/MNrVUUeYCDfUoiqI0GLriVxRFaTB0xa8oitJgqPAriqI0GCr8iqIoDYYKv6IoSoOhwq8oitJg/P+TsB7Qfo6J4AAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
    " - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "import seaborn as sns\n", - "ax = sns.regplot(x=\"InvTemp3\", y=\"VapourPressure\", data=distill)\n", - "ax.grid(True)" - ] + "outputs": [], + "source": [] }, { - "cell_type": "code", - "execution_count": 27, + "cell_type": "markdown", "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaUAAAGoCAYAAADmTPpwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABxzUlEQVR4nO3dd5xkVZnw8d+5t1KH6hwm9eRhIgwzDDiSHARZkbwqgrqyhoVdA4ZdV3dFVJRdw5pXV1DX1VcFFCWIgigwIkoaYGByTj3TOVZ15XvP+8etrqnu6VAdK/Tz9TN2d3WFc5nueuac85znUVprhBBCiFxgZHsAQgghRD8JSkIIIXKGBCUhhBA5Q4KSEEKInCFBSQghRM5wZXsAGZIUQSFEIVHZHkCukpmSEEKInCFBSQghRM6QoFSgGuYvQCk1aX8a5i/I9iUJIWYAlScVHfJikLlEKcXXHtszac/3sUuXkyc/K0LkA9lTGobMlIQQQuQMCUpCCCFyhgQlIYQQOUOCkhBCiJyRL4dnRZYpTxEtvRG0Bo2m2O2irMiFUrJfK4SYPJJ9V6Amkn3XG45zrCtEY1eYzr4YvZE4kbh9yv28LoP6Mh/zKotYObuMVbPLOH1eOcvqSiVYCTEy+QUZhsyUBAB90QS7mnrZ2dRLVygOQLHHpLbUS32Zj6d+9g2++82volAo5dy/NRClpTfCofY+fvrsEaIJJ3DVlHp47ZIazl1SzblLqplfVSxBSgiREZkpFahMZ0ptgSgvHO7kQFsQW8OcCh9La0uZX1VMVYknFUxGO6eUsGwOd/Tx0tFunjnQwV/2t9MaiAKwsLqYS1fP4g2r6lk/vxLTkAAlZjz5JRiGBKUCNVpQ6gnHeeZgB3uaA3hcBqtnl7FmbjlVJZ4h7z/Ww7Naaw629/GX/e08vquVvx5oJ25pqks8XLKynktX13Pe0hp8bnPM1yZEAZCgNAwJSgVquKCUsGyeP9zJi0e6MJRibUMFGxZUjhocJlrRIRCJs3lPG3/Y2cKTu1sJRBMUuU1ed1otb1hVz0Ur6oYNiEIUIAlKw5A9pRnkeFeYx3e30BWKs3KWn3OX1lDqzfBHQBmTti80b8EifvbYczy2s5k/7Gzh0R3NGAo2LKziDSvruWRVPYtqSibltYQQ+UVmSgUqfaaUsG3+eqCDl492U+Zz8foVdSyoHtub/scuXT5ptfTSZ11aa7Yd7+GPO1t4bGcLu5sDACytK+WSlfW8YVUdZzbIPpQoOPIDPQyZKRW4rlCMR7c30xqIcsbccs5fVoPbzJ0z00opzphXwRnzKvjYpcs51hni8V0t/HFXKz/480G+96cDlBe5OX9pDReeVsOFp9Uyu7wo28MWQkwRCUoFbE9zgMd3t2AoxRVnzGZJbWm2h+TIcClQeUsoWrSe4KL1PNi6nt9uqwYg1n6EyKGXCR98kRp6OXZo/1SPWAgxTSQoFaCEZVOx6d08uqOZ2eU+LlszC7/Pne1hnaTtMS8Faq3p6ItxtCPEkapijtctpOzsa7DjUd71v89z4bIaNi2vZUmtHNwVIp9JUCowXX0xPnT3y5S/5s2cMbecC0+rLYj9GKUUNaVeakq9rF9QSdyyOd4V5v/98Hs83ruOp/Y28IXf7iLR3UzowAuED7xA5Og2sOJjep15DfM5dvTIFF2FEGI0EpQKyM4Tvdz80y209ERp/903ueir/53tIU0Zt2mwsKaErsfv4tOP7aE3HOdIR4hDHSUcq5pN4qwrcRmKhqpiFtWUsLimhJIMMg0/dunyaRi9EGI4EpQKxG9eOcHH73uF8iI39968kfX/8YdsD2lalRW5OX1eOafPKydh2TR2hTnU0cfh9j4OtffxJDC3sojT6v0srS2lyCOHdoXIRRKU8pxla7786G7ufOogGxZU8t13rqfO78v2sLLKlZxFLawpQZ/m7EXtawmytyXAE7tbeXJPKw2VxSyrL2VZbSleqSohRM6QoJTHuvpi3HLPy/x5Xzvv3Dif265YjceVO+neuSB9L2rj4iragzH2tgTY1xrk8V2tbN7TxpLaElbPKaehUlLNhcg2CUp5altjD//40xdpC0T54t+ezvXnzM/2kHKeUopav5dav5dzl1TTEoiy60Qve1oC7G0J4ve5KD//HRztCDG/ujjbwxViRpKglId+8cIxbn1wOzUlHn75j69lbUNFtoeUd5RSzCrzMavMxwXLajjQ1sfOpl56z30bF37lSV67uJq3nd3AG9fMkqKxQkwjCUp5JBK3+NxvdnD388c4f2kN37phnRQxnQQu02D5LD/LZ/n5+JvP5+v3/4VfvHiMj9y7lbIHXVyzbi5vO7uB1XPKsz1UIQqeBKU8cai9j1vufpltx3v4wEVL+NgblhfE+aNcYwXa+NDFy/jARUt59mAH97xwjHteOMZPnjnCmrllvO3s+Vy1dg7lRTl0GFmIAiJBKcdprfnli4189qEduE2Du/7uLC5dPSvbwyp4hqE4d2kN5y6toTsU44GXj3PPC8f49APb+cLDO7n89Nlcd3YDr1lUJRUkhJhEEpRyWEcwym0P7uC325rYuLiKr7/tTClGmgUVxR7+/rxF3HjuQrYd7+HeF47x0NYT/Prl4yyqKeGtG+bxlvXzqCub2an4QkwGCUo5pGH+AhqPHQWgeOWFVF1yM4a3mO6nf869X/4V995sZ3mEM1t6RfNbL1/F77Y1ce8Lx/jyo3v46mN7OW9pDdecOYdLV8/KvE+VEGIA+c3JIY3HjvLZB7fzp71tHGzvo77MyyUr66m59AvAF8b0XFIuZ5zG0czQVTmH0jUX80Tn63hqbxt2/DnC+58nvPvP9O1/AezEhIclNfnETCFBKUeEYgnKL3gnP3n2CAq4YGkNZ86vwJD9iuk1jgrmqYdqTVNPhD3NAfYWbyKy8kLmuQyW1peyor6MORW+ce8/yT8yxEwhQSnL4pbNfS828s0/7qPi3OtZWlfKeUuqc6vVhMiIUoo5FUXMqSjiwtNq+fT738mFH/wqu5sCbD/ei9/nYnm9nxWz/FSXerM9XCFykgSlLIlbNve/fJxvPb6Pxq4w6+ZXsPW7H+TDP3ow20MTk8A0FJGDW3jjmlnELZsDbUH2NAd48WgXW450UVvqZcUsP6fN8sv+kxBp5LdhmvWE49zz/FH+76+HaeqJcMa8cj5/zRo2nVaL8YHd2R6emAJu02DFrDJWzCojFEuwryXIruZe/ry/nT/vb6ehqogVs8pYWlsqtQvFjCdBaRporXml0UklfnDrcUIxi3OXVHPHtWu4aHmdnHOZQYo9LtY2VLC2oYKuUIw9zQF2Nwf4w84WnjRaWVxbwopZZSyoLpb9RDEjSVCaQh3BKPe/fJxfbDnG3pYgPrfB5afP4T3nL5SSNYLKYg8bF1fzmkVVNPdG2N0cYG+yOGyp18Wq2WWsnlNGmVSPEDOIBKVJ1h2K8diOFn67rYm/7G8nYWvObKjgP//2dK44Y7YkMIhTKKWYXV7E7PIiLlxWy6H2Praf6OH5w508f7iT+VXFFK84n2jCwuuS4rCisElQmqCG+Qs40dZJ0bLXUrLiPHwLzkSZLuLdzYR2P03fjic40n4USV8QmTANxdK6UpbWldIbibPrRC87mnqpvfqTbPyPx/nb9fO4/uwGltX7sz1UIaaEBKVx6ghG+cPOFmIb38uCJWdhayjzuVhW72dZXSl1/qUodQHwbxk/p5xFEenKfG5es7iasxdVcevNN/CmL3yfnzxzmB8+fYj18yt429kNXH7GHMneEwVFfprHoKU3wu93NPPItmaeO9SBrZ3T/OsaKllWX0qd3ytJC2LSGUoROfwy333HWbQHo9z/0nHueeEon/jVNj73m51cccZsrtvQwFkLKuXnT+Q9CUqjON4d5pFtTTy6vZkXj3ahNSypLeH9m5Zy2emzWDO3gvPHWQFAiLGqKfXyDxcu5n0XLOKlo9384oVj/ObVE/xiSyNLaku4bkMD166fS51fisOK/CRBaQhHOvp4ZHszj2xr4pXGHgBWzPLzkYtP402nz5L1fJF1SinOWlDJWQsque3KVfz21SZ+seUY//nIbr78+z1ctLyOq86cwyUr6yj2yK+5yB8z7qc1vRJ3Olf1PEpOO4/i5efhqV8MQLRpL6E9fyW0968c6TrB74GPTO9whRhVidfFdWc3cN3ZDexvDfLLLcd4YOtx/rirhSK3ycUr67hy7Rw2La+V7D2R82ZcUGo8dpSvPbYHrTXtwRj7W4Psbw3SGYoBMLvc52Q/1ZZSVrQMuHzE55PkBJFLltaV8m9vWskn3riC5w938ptXTvC7bU08/GoTfp+LS1fN4g2r6rlgWQ0lkiAhctCM+qnUWuOZfRpP729nf2uQnnAcBcytKOKMebUsqSuVTCZREAxDsXFxNRsXV/PZq1bz1wMd/OaVE/x+RzO/eqkRj2mwcUk1l6ys46LldTRUFWd7yEIAMyAohWIJ/rq/gyf3tPLk7lZmv+trvHy0i4bKYjYsqGRxbYmsuYvcN44+T0MyTLzzVlF35sUcq7ya2x7cAeygoaqIcxfXcO7Sal67pFoSJUTWFNy7sWVrdjX18uzBDp7a186zBzuIJWyKPSbnL63h1Z//B5/60n/jc8vausgjE+jzNJSPXbqcow9+nQNtQZ7e185f9rfzyPYm7t1yDICF1cWsn1/JugWVrJ9fwfJ6Py5TisWKqZf3QSkQibPzRC9bj3Xz3KFOXjjcSSDidPpcXFvCuzYu4KIVdWxYWInXZfL9G5+QgCTEUDMvZeCpW4RvwVpCc1dy4MgKfv1yJQB2LEK8/QixtsPEWw85H9sOY0eC0hVXTKq8CUrRhMWxzhAH2/o40NbHzqZedhzv4WB7X+o+i2tLuOKMOWxcXMVrFlUzq1yWIIQYUgYzL601gUiCpp4Izb0R2usr6QiuIhy3Uvcp9bpo3/sS/3rfK8yvKqahqpj5yT9VJR45zCvGLC+C0oVffpLGrhC2Pnnb3Ioi1swt49p1c1kzt5w1c8up9Us3TyEmi1KKsiI3ZUVuls9yzuZprQnFLNqDUdqDMTqCUdpNk8172mgNRAc83m0qqku8VJd6qCk9+bG8yE2xx6TE46LIY1LiNSlyu/C5DUxDYSjnj/O5k7RhKIUCdHIMzkcAjdbO7SRv0/23pX1O6v5p3x/muUi9zsDvX/e262lva4X0QKsUoE7elvy6/x4awE6gLcv5aFtoK0Gs5cAk/A0VprwISmsbKrhm3VwW15SwsKaERdUllBdLtW0hpptSihKvixKviwXVJQA8+tFP0Kw14ZhFY1eIo50hjnSEaA1E6QhG6ehzgtf+1iBtwSixhJ3lqxgf85KPUJ/tQcwAeRGUHvjENUMeeBVC5I4ij+kUJB6h4onWmmjCJhyz6Islkh8tQrEEkbjFje9+Lx3t7WAYKGWAMkCp5OcqNd3RWpOaH/V/rnX6C6HRGIaJbSXS7pO6Q/I+DHzsKc978rnQ8IH/+knaPAhnktT/af9kidQnoMHSGtvW2Fpja7DTxylOoXQe/AdSSj0K1EzwaWqA9kkYTj6YKdc6U64T5FoLTbvW+o3ZHkQuyougNBmUUlu01huyPY7pMFOudaZcJ8i1iplDDh4IIYTIGRKUhBBC5IyZFJTuyvYAptFMudaZcp0g1ypmiBmzpySEECL3zaSZkhBCiBwnQUkIIUTOkKAkhBAiZ0hQEkIIkTPyIii98Y1v7K/9IX/kj/yRP4XwJ2MF+v43rLwISu3thV5xRAghhjbT3v/yIigJIYSYGSQoCSGEyBkSlIQQQuQMCUpCCCFyhgQlIYQQOUOCkhBCiJwhQUkIIUTOkKAkhBAiZ0hQEkIIkTMkKAkhhMgZrmwPQAghxmvz7lbufOogx7pCNFQWc/OFi9m0oi5nx9J/n2cOdhw8/MXLF2dloDlOZkpCiLy0eXcrtz20g9ZAhIoiN62BCLc9tIPNu1tzcizp9wE6x/L8ccvGtsdUxzVvSVASQuSlO586iNtUFHtcKOV8dJuKO586mJNjSb/PWETiNss+9QiPbG+e7GHnJAlKQoi8dKwrRJHbHHBbkduksSuUk2MZ6j6Z2Lt3LwDXXfdWGuYvmNhA84AEJSFEXmqoLCYctwbcFo5bzKsszsmxDHWfTCQScQBuvPWbNB47OrGB5gEJSkKIvHTzhYuJW5pQLIHWzse4pbn5wunPH8hkLOn3EcOToCSEyEubVtRx+1WrqfP76AnHqfP7uP2q1VnJvstkLOn3AaqmfZB5QlLChRB5a9OKuqylgA+WyVjS7iPp4MOQmZIQQoicIUFJCCHygFIq20OYFhKUhBAilynnbdptSlASQgiRbckZktucGW/XM+MqhRAiX6VmSjPj7XpmXKUQQuQpJct3QgghcoYs3wkhhJgq3aHY2B6QnCm5ZKYkhBBiMrUHo3T2jS0oqRk2U5KKDkIIMcW01rQGovRFx1H3ThmYhsKYIeeUJCgJIcQUsmxNc2+E6DgqhAOgjBmT5AASlIQQM8h0t0+PJWxaeiPELXv8T6LUjFm6A9lTEkLMENPdPj0St2jqCU8sIAHKMOhoPMjHLl3OvIb5kzS63CVBSQgxI0xn+/RgNEFTTwTL1hN/MqXQsQhaa44dPTLx58txEpSEEDPCdLVP7wnFae11gsikUAY6Hpmc58oDEpSEEDPCdLRP7whG6eiLjnif3nB8bE+qDGwJSkIIUVimsn261pqW3gg9owScox0h3v/zl8b03EqpGTVTkuw7IcSMsGlFHbfj7C01doWYN0nZd5btBKTIKCnfLxzu5PaHd9IXHWNq+AxbvpOgJISYMSa7fXrcsmnuGTnlW2vN/S+f4Lub92NrqCrxjO1FlMKOSVASQggxgkjcoqV35Ay7hGXz7Sf285tXmwBYVlfKF65ZM6bXUcpAx0fepyokUxqUlFIVwA+ANYAG3gPsAe4FFgKHgeu01l1TOQ4hhJhMoViC1t4o9ggZdr3hOJ97eCcvH+0G4MJlNXzyshX4BmUAjmqG7SlNdaLDN4FHtdYrgLXALuCTwONa62XA48mvhRAiL/RG4jT3REYMSEc7Q3zg5y+nAtLfbZzPbVeuGntASrITMlOaMKVUGXAh8PcAWusYEFNKXQ1sSt7tx8Bm4BNTNQ4hhJgsnX2xUVtPbDncyeeSCQ1uU/Gvf7OCi1dObB9rJi3fTeVMaTHQBvxIKfWyUuoHSqkSoF5r3QSQ/Djk35ZS6ial1Bal1Ja2trYpHKYQQozMqfIdGTUgPfDycT756230RS2qSjx8421njisgpb//gQSlyeIC1gP/o7VeB/QxhqU6rfVdWusNWusNtbW1UzVGIYQYkZ2s8h2MDN92ImHZfOOP+/jWE06G3dLaUr779nWsnF02rtdMf/8D0LJ8NykagUat9XPJr+/DCUotSqnZWusmpdRsYGqqIQohxAQlLJvm3gixxPAp373hOLc/vJOXkvtHFyQTGgaXNJoImSlNAq11M3BMKbU8edPFwE7gIeDG5G03Ag9O1RiEEGK8ogmLE90jB6RjnSE+ePfLqYD0zo3z+cyVqyY1IIEkOkymDwE/U0p5gIPAu3EC4S+UUu8FjgJvneIxCCHEmIRjzhmkkTLsthzu5PaHdxGMJpIJDcu5eGX9lIxnJs2UpjQoaa23AhuG+NbFU/m6QggxXoFInPZgbMQq3w9uPc63nzhZoeHzV6/OeP9ozBUdAJ0YOcGikEhFByGESOrqi9E1QoadZWv++8n9PLj1BOAkNHzhmtXUlflGfW7TUNT5fRR5xr60V19TPebH5CsJSkKIGU9rTVswOmKGXSAS5/bf7OTF5P7R+Utr+Lc3ZZbQ4HWb1Pu9uMbZ1vyFZ54e1+PykQQlIcSMZtualkCEcGz46t3HOkN86oHtNHaFAXjHa+bz7vMWYig16vP7fW5qSj2oDO47HLc5/sfmGwlKQogZK5OU75eOdPHZ3+xMJTR8/G+Wc0kGCQ1KKWpKPfh97gmP0zQkKAkhREGLJZy2Ewl7+ID04NYTfPuJfdgaKovd3H71albPKR/1ud2mQV2ZF69rclLDJSgJIUQBGy3l27I133lyPw8kExqW1JbwhWvWUJ9BQkOxx0Wd34sxiYFEgpIQQhSo0VK+A5E4tz+8ixePOB11zltSzb+/aWVGWXNVJR4qisee8j0aCUpCCFGAukMxOvuGT/lu7Arxqfu3cyyZ0PD2cxp4z/mLRk1omEi6dybMCSRJ5BsJSkKIGaEtECUQiQ/7/ZeOdvG53+wkEHESGv750uVcumr0hIaJpntnQmZKQghRIGxb0xqIEooNfwbpoVdO8K3Hx57QUFbkprpkYuneo9J6ap8/x0hQEkIULCvZdiIaH/oM0uCEhsXJhIZZoyQ0TGa6txhIgpIQoiDFEjYtvRHi1tAp38FIgtsf3smWMSY0THa6txhIgpIQouBE4k7Kt2UPnWF3vCvMv9+/LZXQcP3ZDbzvgtETGkq8LmpLJzfde1RKoWfQEp4EJSFEQQlGE7QFosOmfL+cTGjoHWNCw1Sle2fC1jBTKg1JUBJCFIyeUJyOvuF7Dz386gm++fh+LFtTUeQkNKyZO3JCw1Sne2fCsvWMycCToCSEKAjtwSi94aFTvi1b8z9/OsCvXzoOZJ7QMB3p3pkYbhmyEElQEkLkNa2dlO++6NAp38Fogs8/vJMXDjsJDecuqeZTGSQ0TEu6d4ac+nwzI7FCgpIQIm+NlvJ9vCvMpx7YztHOEOAkNLz3/EUjLoXlYrr3CDVjC44EJSFEXopbTpXv4VK+tx7r5rMP7UglNHzsDafxN6tnjficuZruHRvmGguRBCUhRN4ZLeX74Veb+Obj+8aU0DAV1b0nS2SYmWAhkqAkhMgrfdEErcOkfFu25nt/OsCvkgkNi2pKuOOaNcwqHzmhobLYQ2VJdtK9MxEaoStuoZGgJITIGyOlfAejCb7w8E6eTyY0vHZxNZ+6fAXFnuHf5kxDUev3jnifXNA3Qt2+QpPbfxNCCJHUEYzSM0zK9/HuMLfev50jyYSGt22Yx/suWDxiQoPHZVBf5sOd5XTvTIRlpiSEELlBa01bIEpwmJTvV45185lkQoPLcBIa3rhm5ISGUq+LWr83J9K9MyHLd0IIkQMsW9PSGxl2o/+3rzbxjWRCQ3mRm9uvWs3p84ZPaFBKUVXiobwod9K9MzFS241CI0FJCJGTRkr5tmzNnU8d4L4XTyY0fOGa1cwuLxr2+UxDUV/mw+fOrXTvTAy3bFmIJCgJIXLOSCnffdEEX/jtLp471AnAxsVVfOpNKynxDv92livlgsZFQ0dw+BbuhUaCkhAip4RiCVp7o9hDpHyf6HYqNBzpcBIa3nrWPG66cOSEhlwqFzQeWlt09klQEkKIadcbidMeGDrl+5XGbj7z4MmEho++4TQuGyGhIRfLBY2LLUFJCCGmXWdfjO7Q0G++v9vWxDf+uI9EMqHhc1et4ox5FcM+V66WCxoPbVsjtuMoNBKUhBBZpbWmLRglGDk1w8yyNXc9dZBfvtgIwMLqYu64ds2ICQ1FHpM6v69w+g/JTEkIIaaHbWtaApEhD4eOJ6GhothDVQ6XCxoPbVu0DbOkWYgkKAkhsiJh2TQNk/J9ojvMrQ9s53CGCQ2GcsoFjRSw8pW2EnSF4oRiiZwvhzQZCv8KhRA5J5qwaOmJJpvXDfRqYzefeWgnPeE4LkPxkUuW8abTZw/7XG7TKRfkceVhuncmLOeM0vGuMMvq/VkezNSToCSEmFYjpXw/sq2JrycTGsp8Lj539WrWjpDQUOJ1UVuam+0mJovSTuBu7JagJIQQk6o3EqcjGDul7cTghIYF1cXccc0a5lQMn9BQVeKhoriw9o+GYsWd/aTjXeEsj2R6SFASIg9t3t3KnU8d5FhXiIbKYm6+cDGbVtRle1gj6uqL0TVEyndfNMEdv9vFswedhIbXLKri1suHT2gwDUWd30eRJ//TvTNiW+hEnGNdoWyPZFpIUBIiz2ze3cptD+3AbSoqity0BiLc9tAOboecDEwjpXw39YT51P2ZJzTkdbmgCYh3n+BA67xsD2NazKy/WSEKwJ1PHcRtKoo9LpRyPrpNxZ1PHcz20E5h25rm3siQAWlbYw/v/9nLHO4IYRqKf37DafzTpiXDBqSyIjdzyn0zLiABxDsaOdgWzPYwpoXMlITIM8e6QlQMar1Q5DZpzLHlnYRl09wbIZY4NcPu0e3NfO0Pe08mNFy1mrUNFUM+T8GUC5qAeMcxjnSGiCXsws0yTJKgJESeaagspjUQGXBmJRy3mFdZnMVRDTRcyrdla77/54P8YksyoaGqmC9cu4a5wyQ0FFK5oIlIdDRi2ZrDHX2cVuAZeIUdcoUoQDdfuJi4pQnFEmjtfIxbmpsvXJztoQFO6+6m7sgpAakvmuDTD25PBaRzFlXx7bevGzYglXhdzK0omvEBCZyZEsDelkCWRzL1JCgJkWc2rajj9qtWU+f30ROOU+f3cftVq3MiySEQidPcGznlDFJzT4Rb7tmayrB7y1lzueOaNZQOk2FXXeKlvsxX0OePxiLWfgS3qdh2vCfbQ5lysnwnRB7atKIuJ4JQuu5QbMjCodsae/jMQzvoDscxDcVHLl7G5WcMXaFhxqV7Z8pKsGJWGa8ek6AkhBCjagtECURObdn9+x1OQkPcGj2hYaame2fqjHnlPLT1BLatC3oGKX/7Qohxs21Nc0/klIBk2Zo7/3SALz26h7ilWVBVzHfesX7YgOT3zdx070ytbaggEE1wsL0v20OZUjJTEkKMi5U8gxSND2w7EYoluOO3u3nmYAcA5yys5NYrVg25f6SUorrUQ9kMTvfOVH8NwFcbu1laV5rdwUwh+WeJEGLMYgmbE93hUwJSc0+EW+7emgpIb14/lzuuPX3IgOQyDGaX+yQgZWhpXSnFHpNXGwt7X0lmSkKIMYnELVp6I1j2wAy77cd7uO3BkwkNH754KVecMWfI5yi47rDTwDQUa+aU80pjd7aHMqUkKAkhMtYXTdAaiJ5S5fuxnS189bE9qYSGz161mjOH2T8qxO6w0+WMeeX8v2ePELds3AW6/yZBSQiRkZ5wnI6g00bh+YOd3PPCMU70hABFa7Jd9/wqp+XE3MpTD8QWcnfY6XJGQwXRpw+xpznAmrnl2R7OlCjMUCuEmFSdfbEBAembT+yjLRihL2qlAtJpdaX899vXDRmQ3KbBnIoiCUjjokAZKKV486azAHjt5W9DKYVSiob5C7I8vsklPyFC5Lmp7K00VNuJe144BlrT1hdPFVst9ZoUuc0hExpmQnfYqaX52u93O59ppxnihe/5FJes/BYAH7t0eTYHN+lkpiREHuvvrdQaiAzorbR5d+uEn3u4thNHOvtoDURTAanO72V2uY+WQOSU56gq8Ui5oEmklKKuzEdL76n/rQuFzJSEmEabd7fyxUd2cSjZ1G5xTQmfeOOKcc9s0nsrARR7XIRiCe586mDGzznUTOv8ZTVDtp14bEcz3aE4GjAUzCn3UexxEY5bzCo7uWwn5YKmTn2Zly1HQgWb7FB4VyREjtq8u5V/ue8V9rf1obVGa82+1iAfv++Vcc9sjnWFKHIPfOMfS2+loWZan35wO79+qXFAQLKTy0ZffHQPmv6g46XIYxKOWyRszfVnNwBOuaC5FUUSkKZIfZkPrZ3SToVoSoOSUuqwUmqbUmqrUmpL8rYqpdQflFL7kh8rp3IMQuSKO586SDCawFQK0zCSfxSBSGLcXWMbKosJDzrAOpbeSoO72PpcJkrBz587dvL5YhafeXCHs5cEnLWgkk9dtpJZZUUEIgmqS7x8+PXLOGdxlZQLmgazynwABbuENx3LdxdprdvTvv4k8LjW+otKqU8mv/7ENIxDiKw61hXCsjWmOrm/opTToXW8XWNvvnAxtz20g1AsQZHbmbWMpbdSehdby9YkbBuvy6C5Nww4b3y3PrCdA21OvbVr183l/cmW5ZtW1KZdh5QLmi4lXhelXhctvTJTmixXAz9Ofv5j4JosjEGIaddQWYxpKNLPnWrtlNsZb9fYifZW6p9pJWybhGWDhkjcZlZZETtO9PD+n73EgbY+DAUfuWQZH3r90lOqMEi5oOlXX+aVmdI4aeAxpZQG7tRa3wXUa62bALTWTUqpIX97lFI3ATcBzJ8/f4qHKcTUu/nCxfzLfa84iQLJEj22hspi94S6xk6kt9JNFyzi1gd3EEvY+NwGkbhNwtYsry/lY794hbil8ftcfObKVayff+pKu5QLmhrp739DqSvzcaCt75Tag4VgqmdK52mt1wOXAR9QSl2Y6QO11ndprTdorTfU1taO/gAhctymFXX811vWsrS2JHXwcVldKV95y9qsNOyzbc3KOeV86KKlVJd4CUQSVBV7WF7v594XG4lbmobKIr7z9nVDBqTyIjezy4skIE2B9Pe/ob5f7/cC0FKAyQ5TOlPSWp9IfmxVSt0PnAO0KKVmJ2dJs4GJH6gQIk/kSsfYhGWnUr7PWVzFOYurCMcs/uORXWze2waA3+sikrD42mP7uP7sBs5ZXAU45YJq/N5hW5mLqVdfwMkOUzZTUkqVKKX8/Z8DlwLbgYeAG5N3uxF4cKrGIIQ4ldN2YuAZpJbeCLfc8zJ/2e+0nCj2mJQXuagoctPRF+WbT+zj+YOdqXJBEpCyy+c2KS9yF2RQmsqfrHrgfuVkGrmAn2utH1VKvQD8Qin1XuAo8NYpHIMQIk045rSdsNOyLXaccFpOdIXiyQOxRShF6vxTf1bfL19s5LqzG6Q6Q46oL/NyoluCUsa01geBtUPc3gFcPFWvK0S+msoadgDBaIK2QW0n/rirha/83mk5Uep1Ehr+67E9lPkGvjWUeF20BiISkHJIfZmPvS1BjJKKbA9lUskcXIgc8K0/7uU7mw9g2RqvyyBh2dz20A5uh0kJTN2hGJ19sdTXttb86C+H+dlzRwGYV1nEHdesoaGqmNllRXT0RZ2ZkgK3YRBJZH4gV0yP/n0l76zTsjySySXHroWYgM27W7nhrmc5/0tPcMNdz46rXNDm3a18Z/MBbK1xGYqEpenoixFLWOOu9JCuLRAdEJDCcYvPPrQzFZDWz6/gO29fR0OVE3SuP7uBhK2JJCzchiKSGNuBXDE96vxeFOCZvSzbQ5lUEpSEGKfJqtB951MHSdg2puGkiRuGwsApPzTeSg/gtDlo6Y0QiMRTt7X2Rvjw3Vt5er9TZOXqtXP44t+ejj/t4Os5i6v4xN8sZ055Eb2RxJgP5Irp4TYNqks9eGcX1kxJlu+EGKfJqNANTqkfr2lgaafsEDgfowl73EtmVrLtRPrhyl1NvXz6wR109sUwFHzwoqVcs27uKY+tLvFyzfp5XLN+3rheW0w2NWzPpKo3foji085Fa41ShbHfJ0FJiHFKrxvXb6wVuu986mAq+cDWgOEEJEtrTEONa8ksbtk090SIWydTvh/f1cKXkwkNJV6Tz1yxig0LqwY8TtpN5CrN1x7bM+R3tjX28MSeVo51hplfXRh7fhKUhBinhspiWgOR1EwJMq/Q3b/05zYVs8q8HO+OOFlxGuK2xmUYfGDTkjEvmUXiTsq3lSpjpPm/vx7mp8+eTGj4wjVrmF81cIxet0m93yvVvfNMfZlT2eGVxm4JSkLMdBOp0H3nUweJJSw6gglilo2pQCsFSnHOgqoxpYP3z7iOdPZR5/dx/Qan+kI4bvHFR3bz533O/tG6+RV85opVlA2a3fl9bmpKPQWz/DOTVJd6seNRXj7azZVr52R7OJMio6CklCoC5muth55DCjEDbVpRx+04AaaxK8S8MZwt2tvSS3c4ju0U5kYBhgGVPhd337Qx4zH0z7hMBSUek46gU33h78ML+eVLjexvDQJw1do5fPCiJQNmQtJuIv+ZhiLWtJcXjxROEsqoQUkpdSXwX4AHWKSUOhO4XWt91RSPTYicN95aduG4jWU7wUgpQINlQyhuj/bQAe586iCGItUWu8ht0h2O85XH9pCw9bAJDS8e7uK+lxo53h2ekoO6YvpEG3ey48QZhGKJAUvJ+SqTK/gsTiHVzQBa661KqYVTNyQhCl88re4cepjbR6G15nBHH6Xek4kJvZG4kzgBlHhNbrtiFWcvrOL5g53c88IxmnrD+L0uukIxKoo9A1LZJ+ugrphekeO7SNiarce6OXdJTbaHM2GZ7GomtNY9Uz4SIWYQw1C4jIEp4C6DjMv42LampTdKvd9HJG6jtaY9GKW51wlIHpfBd25YnwpI33xiHx19USqL3TR2hekJJ0hYThpxsceF21STclBXTL/Y8V2AM/stBJkEpe1KqbcDplJqmVLq28Bfp3hcQhS0RdXFgMJtGHhdBm7DAFTy9pElLJsTPWFCsQTXn91AzLJp7A7TGXIOyXpMg0/+zfJUNtY9LxzDbSrKfG7cpomlnWW99uDJXjxjSWUXucWO9rFilp9nD3VkeyiTIpOg9CFgNRAFfg70AB+ZwjEJUTCGK0P0yctWUlHsRhnOmSRlQEWxm09etnLE54slbJp6TradWFRbgstQhJN7UdUlHj5zxaoBy3DNySW7/lmYJ7n/FEs7x5RpKrvITRcsq+GFQ12EYolsD2XCRtxTUkqZwENa60uAT03PkIQoDOlnkYbau/mvt6wdU+be4DNIu5t7+fQDO+hIVmj4wEVLuebMOQNSu0t9LhZWl9AWjFLscYJRrd9LY1cYl6nQWo8plV3kptedVsf3/3yI5w52clGe7wuOGJS01pZSKqSUKpd9JSHGZrQyRGPJ3BvcduLJ3a186fd7iCXsAQkN/dLTvf/xdUsGnKcyDUVlsZvqEg894fiYUtlFbtqwsBKf22DzntbCDkpJEWCbUuoPQF//jVrrW6ZsVEIUgImWIerXE4rT0efs/9ha85NnjvCTZ44AMKfCx39cc/qA0/xu06DW78WXbNI31HmqT1++SoJQAfG5Tc5bUsMfd7Xy2avyuw5eJkHpt8k/QogxmEgZon7twSi9YSeBIRK3+NKje/jT3jYAzmwo5zNXrqY8LfAVe1zU+r2Yg7L4xnueSuSPy06fzeO7W3mlsYczGyqyPZxxGzUoaa1/PB0DEaLQTKQMkW1r2oJR+qLOxnVbIMqnH9zO3hanQsMVZ8zmltcvHVChobLYQ2WJZ2ouRuS8N6yqx20qfvvqicIOSkqpQww43ufQWsuuqBAjGG8ZooRl0xKIptpO7GkOcOsD21MJDe/ftIRr181NLdGYhqLW7y2I0/xi/MqL3FywrJbfbWvm3y5bmbet6zP5Kd6Q9rkPeCtQNcx9hRBpxrpsFk1YtPRESdhOuvaAhAaPyaevWMU5i07++nndJnV+L27TSBVmPdYVktJBM9RVa+fwkd1bee5QJ69dUp3t4YyL6s/mGdODlHpaa33+FIxnSBs2bNBbtmyZrpcTYkwmKxiEYglae6PYWg+Z0HDHNWtYUF2Sun96de/09PP0pULpGJuzMp7GKGXoIRar0u5ggHb+EaNcHuZ94CeEDrxAx8NfBWBew3yOHT0ysdFOvmGvP5Plu/VpXxo4Myf/JAxKiLw32lmkTPWE43QkKyxE4hZffnQPm4dJaFBKUVPqGdDCfLK64IpcNHyTv6E8uaeVHcV+/vmf3ovPbQ7btTZXZbJ899W0zxPAYeC6KRmNEDlouJnQ5t2t3HLPy4RiFl6XQU2pl7Ii95iDQUcwSk8yw25wQsPlp8/mlouXpqqAu02DujIvXtfA7rCTlX4u8t/qOWW82tjD7uZAXiY8ZJJ9d9F0DESIXDTcTOgtjd3c99Jx+mIJXIYiYWlO9IQB8PtcGQUDrTWtgZMZdnuaA9z64HY6gk5Cwz9tWsLfpiU0DJfuDZOTfi4KQ53fR32Zl1eOdbN2Xnm2hzNmo9a+U0p9WClVphw/UEq9pJS6dDoGJ0S2pS+LpVfU/sHTh3CbCp/LBBSGoTBQtAejGQUDy9ac6ImkAtLmPa185N6tdARjlHhMbnztQv6yr4O3/+A5PnbvK+w80cusct+QAQmc9PO4pQnFEmjtfJTSQTPXuoZKusNxDrX3jX7nHJNJQdb3aK17gUuBOuDdwBendFRC5IhjXSGK3AOXyorcJn0xiyK3Sa3fi9ZOpQWUJpqwRw0GsYTNie4w0biF1pof//Uwtz+8i2jCZk6Fj5svWMyjO5rp6ItS5nPTE4nx5d/vSRVzHcqmFXXcftVq6vw+esJx6vw+SXKYwZbWlVLqdfHyse5sD2XMMtlT6v+n2ZuAH2mtX1H5XMNCiDEYblmsxONkuPl9buZUOHtBkYRNicc1YjBIL6oajVt8+fd7eHKPk9Cwdl45n71qNZ97aCcuQ2HbmiPtQeLJlunv/9lLfPcd64d9bqnaIPqZhuLMhgqe3t+Ou25RtoczJpnMlF5USj2GE5R+r5TyA2Pr2SxEnhpuWex95y9K3V7qdTGr3MfcimK+df26YQNDXzRBU48TkNqDUT5y7yupgPSm02fx5becQXmRm6beMFo7y3sx+2QycChu8fH7XhlxxiREvzVzypw+WhuuyfZQxiSTmdJ7gTOBg1rrkFKqCmcJT4iCN1JVhjPmVWRcrSG9qOrelgCfeuBkQsM/vm4Jb17vJDQopZhfVcyLh7tOOZmigEBE0rxFZrxuk1Wzy9gau5DW3gh1Zb5sDykjmQSl1wJbtdZ9Sql3AuuBb07tsITIHcMti2W6XJae8v2nvW188ZHdRBM2xR6TT1+xktcsck7e96d7z6vw8cIQz6MUJGxb0rxFxs5sqGDrsS5+8swR/uVv8uO8UiZB6X+AtUqptcC/Aj8EfgK8bioHJkS+S0/51lrz02eP8qO/HgZgdrmPL1yzhkU1ToWGIo9Jnd/Jrnt8d9uQz2drp2tsJmneUnJIAFQUewjve46flnj5wEVLKfKYoz8oyzLZU0popxbR1cA3tdbfRCo6CDEiy9Y0JVO+/7KvnTf/zzOpgLSouoTvvn19KiCVF7mZXV6USvfui1m4h/nN9Ptco6Z595+tag1EBpytkr2oman3+fvpDsW576XGbA8lI5kEpYBS6t+AvwN+m2yR7h7lMULMWHHLSfmOxC3+uLOF23+7k+7k8p2TtZdgT3MApRR7mgN88Ocvc/6XnuCGu55l8+5WSjwmKIXHHPjraSj4ylvWjjrjGe5s1Z1PHZyyaxa5K3p8J2vnlfO/Tx/Ctsde63S6ZRKU3gZEcc4rNQNzga9M6aiEmGabd7dyw13PDggO4xGJW5zoDhO3bPa2BPjKY3uIW84bQW2phznlPtymwb1bjrG/JcB/PrL7lBnNxStqsTVoNF6Xwm0qTEPxkYuXZbQEN9zZKtmLmrned8FiDrX38XgezJYzKTPUrJT6FbAseVM7cP+UjkqIaTS4lNDhjiA3//RFSr0mp9WXjbof079/c6SzD59pgFJ09EXpjSTQ2smac5uKrlCMYDRBsdtkR2+ED979MkpBvd+H8qhUEdXm3hgffv1SfvD0Ifpizpmo952/iFsuOS2j65GSQ2Kwy9bMYm5FEd//80HesKo+28MZUSZVwv8BuAmnh9ISnJnS94CLp3ZoQkyNwUkAXX3R1HJXIBKnIxhHo4nE7VGrfvcHNEMBWnO4I4Tm1EYDGjAMRdyy6YjbeEyFZdsYSqVq5pUVuVMzmlsu2ZhxEBpsIh1vRWFymQbvPm8hX/jtLrY19nB6DtfEy2T57gPAeUAvgNZ6H065ISHyzlBJAPvagiQs5zx4WyCKUmAqRcyyR92PufOpgxjKyYrr7IsNCEhFbgOz/2sNtqVJJI+dxyyNyzBQ6mTNPJicGY2UHBJDue7sBorcJj9/Pud6Kw2QSUp4VGsd668spJRyMWLHKSFy15ce3U1rbwRLazymQa3fi9swaAlEKSvyELNsTEOhbVKJBsPtx2itOdzRR6nXJGHZRBInfy0UMK+iiEMdfSjbSVKIDqqDEk3YKAUuQxGzJreIqpQcKiRqYj2RlJGqNF992S38rO8CvnTDRnTMmaHnWhPATILSn5RS/w4UKaXeALwf+M3UDktMh5l2lmXz7lb2tgYxlVMbLGFrTnRHqChy0RGKE4olcBuKeDJDqabUOQE/1OzFsjUtvRHq/T6aesJ09MVS33NmTk51BtNQmMpZPrGxU0kP/fobPxtKUef3FfzfgRiPsTX5G0lzT4R7txzjxu9t5ox5FQA51wQwk+W7TwBtwDbgZuB3wK1TOSgx9WbiWZb+VGlbO5W6YwmbuG3THY5zWl0pdX4fxV4XhlJUl3jw+1xDzl7SU77XzCmjNRAlYWsUzi+UAqpKnFmX3+emrMhNJGGRGByQkn+UUtz5zrO4+6aNEpDElKov81JT6mHHid5sD2VYI86UlFIG8KrWeg3w/ekZkpgOM6V9dvpssC0QxWtCJJ4WHLSzv1NR5GLHiR76YhYeU+E2DXrC8VNq2kUTFi09UeKWxc+eO8pPnz8KnCyl73Ypqoo9KKWYXV6UCma33PMyvZFEMiHCeYCtnVmV32sW1H9zkbuUUqycXcaf97XT1RejssST7SGdYsSgpLW2lVKvKKXma62PTtegxNQr1PbZ6UHI73XRFoxSXuSmoshNezBKIGo7ywMquXSWDBLPHOrCUE68CMc1x7rCXHvmbL5+/frUc/9+WxP/89RBTnSHiFuarpBzINZtKmpLvZR4TaIJG63h81evGRBovnX9Om7+6YvYWmMq5fRgQlNd4mFRTel0/icSM9xp9X7+vK+dPS0BNi6uzvZwTpHJ8t1sYIdS6nGl1EP9f6Z6YGJqNVQWE45bA27L97Msg5ckD7X30R2Kk7A0Sinq/T40Tt8Vj8vA4zJwG0Yqa8fWJ/d4AB7Y2pRazvzdqyf47MM7ae2N0BtOpAJSqdek3u+l1OvCNAzKfG48LmPIbL3aEjdxSxNJ2KCgusSDx2VKqraYVqVeF/MqitjTEkDr3MtZyyTR4XNTPgox7QrxLMvgJUlLawwF7cEoZUXO3o7XZRBN2Fj2yey7wx0nZ4ep9pXamTXd+dRBzmio4K6nnBItHX0xEslEiPIiF33RBEXlPlymkapdN3jG2R8svR4XC6qcTL+4paks9vCJN66QpTsx7U6b5eeJ3a20B2Oj33maDRuUlFI+4B+BpThJDj/UWiema2Biao3UJyhfDV6S9JgGccsmZp3Mxa4sdtMVijOvsigVjPu3eYZypKOP7lCMQx1BesOJ1P08pnLq2MUsErbG5z7ZjHnwjHNwsCwr8hCKJago9uT1f2+RvxbXlPAEcKijL9tDOcVIM6UfA3Hgz8BlwCrgw9MxKDE9Cu0sy+DyOrV+L41dYVymQmtNOG7hcZl8YNN8njnYmQrGZ8wt4/6tTc6T6JMfKnwuaku9/Oy5I/SET/57zGU4y3wtvVFmlXmxbEaccRbq/p3IXyVeF3V+L4fb8ysordJanw6glPoh8Pz0DEmI8Rm8JGkaispiN9UlnlMy6W455dEv8cDWptRMqNznwucxUYbih08fTt3LZTjlgvrzucuKnCW4kWacUotO5KJFNSU8d6gTo6gs20MZYKSgFO//RGudUEqNcFchsq9/SfJLj+5mX2sQgEXVxXzyspWjzgi/fv16rj6zlf/50wGOdvRRVeIlEImz9Vg3AD63QWWRi+5wgrhl43WZzC73EIwmRp1xFuL+nch/C6udoORbsDbbQxlgpKC0VinVy8kjGEVpX2utdW6FVyGS+mLWgD2jkQqqptu4pJqFNSXsbQlw6wPbaQ1EUcBZCyrYcqSbprizKexSUFPqxWU6VRhGU4j7dyL/1fq9uAyFd+6KbA9lgGGDktY69/vmCjHIFx/ZRWsgksquqyn1pgqqjhQEgtEEbYEof97bxn/8bheRhI3HZVDsUmw50j3gvgkNRzpD1JR6+PTlqzIaV6Ht34n8ZxqK+jIffXNWZnsoA4ylooMQk2Kqau5t3t3KvrYgplKYSpGwNCd6wswp942YVNATitMejHD388f4wdOHAKgoduMyFB0jpMzWlnol0Ii8NrvcR2P9YiJxC587N+YhIx6e1VrbwCtKqfnTNB5R4Kay5t6dTx3EnWwHoZTCMJy2EC2B6LBJBe3BKE09Yf7zkd2pgLR6Thlzy4so9pgjlsMPRuWEhMhvs8t9KNPFq4092R5KSiaHZ/srOjwPpPIHtdZXTdmoRMGajJp7w820jnWFqC/z0tQTxUajlNNSPGFxSlKB1prWQJRjnSFue3AHO5ucApWXrqrnY284jb//0fN4zOGTewzFpGXPzbRq7SJ3zC4vAuClo12cs6gqy6NxSEUHMa0memZncOvy9M6w/anXcyp8tAWiTm8kpVhSWzLgTd6yNc29EXae6OFT959MaHjfBYtYXF3Cv9+/jc60yg1DKfFMTnmgka5HApOYakUek3jncV48kjst0kcNSlrrP03HQMTMMNEzO0PNtNoCEW6552XcpiIYtagqcbOopiSVev2JN57MLoolbFp6I9z1p4P87PkjqUrd73zNApbUlPLtJ/fjcxvMLvdxpDM85BgM4Ns3rJ+UoDFTqrWLiZhgk79RVL/pozz6QjHqxrOB7Df9GzUoKaUCnKzC4gHcQJ+khIvxmOiZncEzrd5wnI6+GLat8boMYgmb5t4ofVGL1XPKByyFReIWzT1hvvi73Ty6swVwur5Wl3j4w64WnjvYgc9tpAKEzxUlkrBRQLHHHJAGPlkBQ6o9iNFNXpO/oWxr7OGJPa3c9sA2Koo9WW/6l8lMyZ/+tVLqGuCcTF9AKWUCW4DjWusrlFJVwL3AQuAwcJ3WuivzIYt8NvjMTqnXhdvQ3PrgdhqeGn4/pX/fpS0QpaUnjGEY2Fpj2TpV2dvS4HUbWLYmmrAHPFcwmuB4V5ivPraHx5IBCZwKDaah8LkNDneGWFZ3so3ErHIfx7vCaBgw85rMQ69S7UFk2+wK56xdc0+EiuLs91fKpHXFAFrrB4DXj+EhHwZ2pX39SeBxrfUy4PHk12IG2bSijrtv2sjnr15DX8wibusRM/HSM/bKfCZxG6IJG7R22k3gnOg2lELhpINbtk61j+gJxdnT3MvHfrE1FZAU4DbAtkmdawIGtPPw+9zU+D0Ue0x6wnHq/D5uv2r1pC6r3XzhYuKWJhRLoLUestOtEFOpqsSDxzQ40RPJ9lCAzJbv/jbtSwPYwPBFlQc/dh5wOXAH8LHkzVcDm5Kf/xjYjNNyXcwwme6n/Msvt9LeFx/wWAUkbGc/yO6PSklag9dl0NgVoiMY5aWjXamEBgBTOS0qzP70cVvTEoiyqLqYUNwesLToNk2+df0ZU7a/I9UeRLYZSjGr3EdzvgQl4Mq0zxM4S25XZ/j83wD+FUhfAqzXWjcBaK2blFLy2zdDZbKf8tF7XjolIIHzryKXoZhXWcThjlCyQZ9OdXQt9bqo8/v43bYm7vjdLiJxG5/bwOsyKPGYtAViyX9Z6VTa+Ccvc062T3eAkGoPIttml/t4/lAnsYQ9+p2nWCZ7Su8ezxMrpa4AWrXWLyqlNo3j8TcBNwHMny9ndwtRJvspD73aPOzj+5fcqorddIXjJJLJDqVeF4ZS1Pm93PbgDjRQ5/dyxzVr+O7mA/SEY8ytLKKpO0w0odE4iQwgAULkhvT3v+kwu9zpytzcm/3Z0qh7SkqpeUqp+5VSrUqpFqXUr5LLcqM5D7hKKXUYuAd4vVLqp0CLUmp28rlnA0Me5dda36W13qC13lBbW5vxBYn8kcl+ijXCWSFDOZuzpT43H714GUtrS4hbNp19MQJRi0d2NKOBVbP9fPcd6zmjoYIPvX4pCdvJxLMBl6lwG4ryItekVZYQYqLS3/+m4/VmlTvJDk3dQx+DmE6ZJDr8CHgImAPMBX6TvG1EWut/01rP01ovBK4HntBavzP5XDcm73Yj8OA4xi0KwKYVddx+1Wrq/L5hEwn6W4wPxTAUGrj9qtWcMa+CYMyi1u/FNI1UCaB1DRV87bozWVpXSn2Zj9evrOf2q1YTilnY2inaOreyiJpSX6pwqxAzjddlUlvq5XgOBKVM9pRqtdbpQej/lFIfmcBrfhH4hVLqvcBR4K0TeC6R50ZbLrvqjFknu8KmKfOa1Jb5UmeGrvveM8QTNh1plRjKfS601iyoLqHIc7LY5KYVdZQVuZlfVUx6nzA5HyRmsrkVRWw/0QNGJmFh6mTy6u1KqXcCdye/vgHoGMuLaK0342TZobXuAC4ey+NFYRtc++21i6t45mDnya8XVfLc4S76V/LKvAa1Zb7UUl93KMbell56Igm0TqZ7m4q+WIKdTb08d7DjlMAn54OEGGhOpY+tjd14Zi3N6jgyCUrvAf4b+Hry678kbxNiwvrPIMUSFoFIghPdYZ452EFlsYu5FU7giFua/02WQOnPjKvz+7j5wsWsmlPGdzcfoDvsLNelaqjqk2eXhqolJ91ghRhoboVTnNXXkN1ORZlk3x0FpCK4mBJffGQXTd0h4oMyUbtCCcp8CcqK3KmzS3fftBFwAtPRzj6+8fheTGXw4lGnIIjbVIBzmlYZCrRz/sI0Tm3yJ+eDhBio2OOiqthDeMEZWR1HJodnFwPfBDbiHA95Bvio1lp2hMWEbN7dyt7WIMMl2LX0Rigrcqf2evpnVS7D2Zjd2RRInau4ZGUdF51Wy+ce3omNxmUoav1e/D43Wush94rS97P6lxBvfXC7tI8QM9aC6mI6Gk6nL5qgxJudvaVMsu9+DvwCp6/SHOCXnNxfEmLcvvTo7mEDEiRLCXFyr+fOpw7iMpw6dofa+1IBqbLYzWeuXMV158znrAVVLKguYXFtKX6fe8DjhzOVjQeFyCeLa0tQLjd/3teWtTFkEpSU1vr/aa0TyT8/JcMyQ0KM5GB7HyNkfKNhwNmlI519dIditKaqMTh7SD3hOPtagvxlXzvdoRiHO0Lsaw3Q3BNiX0uAQ+19bD3WxYYv/IEb7nr2lGCTXu5IKeejpIeLmWh2eRFWJMgfd2XvH2SZzM+eVEp9EucArAbeBvw2We0brXXnFI5P5Lnhuqpu3t1KLGGP+q+b/oSGM+dXgIbO0MkW5G5ToTQYpuLLj+4mFLdxm4p5FT6aeiK0BeOpxIeErekJxTncETwl8UHaRwjhMA1F5MAWHq+qJJaw8bjGXLN7wjIJSm9Lfrx50O3vwQlSkq4kBugPRPtaAwQiCSqL3dSUelPLYm9p7Oa+l46PGJAMoKrUw903baS5J8wnf7UtVcVY4bScUBq0gnq/l0MdIeZVFqVSvNuDMTQ2lq0xklXDbQ0tvVHqy7wDEh8kPVzktqlt8jeYb8nZdK3exJILr+HYXx+attftl0n23aLpGIgoDOntvUPRBLbWdPTF8LrMVCbdD54+RK3fi8tQw7Ycry/3sqCqhN1NvXz8vlfZdrwHgFKPSdSy0Bo8LiPVeA+c2U2/mGVjKIhrsLVG4QQzW0NzT5SW3ig33PUsN1+4WNLDRY6b2iZ/g9m25od/OUT7rOxk4WU0N1NKrVFKXaeUelf/n6kemMhP6fszcVtjGgoDRXswSm84TnNPhN5IgqbuMC5DOUtwaY93GeBzG7gMgwuW1vDu/3shFZDee/5Cbr96NbPKilhQXcKimhJcpiJuaRYnm/D185jGwCQKdXIjVOO0t+ifuQGjljsSYqYwDMXKWWUULTmb9mB02l8/k5Twz+D0P1oF/A64DHga+MmUjkzkpfT9GY9pkLA1SkEkYXOi52RdrXDcTjXnM5P/NOpv2De/sojzltbwnT8dIBSz8LkMPvmmFVy9di6VJR6qSrynnC8CBsx2vC6DvtjJIKXTApTzmmpA/6a7b9ooQUiIpJWz/bx4tIt7XzjGBy6a3goPmewpvQVYC7ystX63Uqoe+MHUDkvkq/T9mVq/lxPdERK2jaXBSrtf+qwlYTuBYnl9KR+5ZBmvHu/lfzYfQAO1pV7+49o1nLesJrXnM1y9vP7DsPtaA/TFLCqKXPRGEgNmTP0ByZvcwJWEBiFOVV3qJXxwCz/6i4f3nr8IX9rS+FTLZPkuorW2gYRSqgyn1YQsts9Qm3e3csNdz3L+l54YMr06vR1FqddFqdfEGiXFzmMqVszy8/N/2MiDrzTx3WRAWjHLz/dvPItNK+oGJCEMp7/N+rI6P/Mqi2ioKqGhshi36SwTGsppVWEo52AtSEKDEMPpefZXtAdj3Pdi47S+7rC/6Uqp/8Y5JPu8UqoC+D7wIhAEnp+W0Ymckp7EkH7IND29enD5noStcRuQ0AOX0Pop5dze1Bvmxh+d3D+6aHktn7tqNQ1plbyHSy8fLH0JsSz5sT0YJWRZGEpRVeKm1Osasn+TEMIRPbaNtQ0V3PXUQa4/uwGXOT3p4SO9yj7gv4ArgH8DngXeANw43m60Ir9lesi0f8by50+8nrIit9O6fJhDsi6lsLWmJ5RIBaT3nLeQr193JvOrSwYEpEyrLjRUFg9IeigrcjOr3MfGxdXc+c6zWFhdKgkNQmTg/ZuWcLQzxC+ncbY07ExJa/1N4JtKqQU4Tfp+BPiAu5VSYa31vmkao8gRIx0yHW4W01BZTHsgigbcaOKDUsC11qnlPa/L4FNvWsmsMh//9LOXBjxXekAEBiQpAKe0vrjvpeNDpnhLu3MhMnfpqno2LKjkq4/t5cq1cyidhnp4Sg+1pjLcnZVaB/wvcIbWetp2vjZs2KC3bNkyXS8nhnHDXc+ecsg0FEvgMZ1MN7epBgSB269aDcDH73uFrlDcOTdk6VSSQ7KmN+BUZ/je350FNnzu4Z2nPFdfNM7s8qIBTfm01jT3RlIztvT7v2X9XJ452CkVwEWuGqHA1qA7KqWn85xSv49duhytNS8f7eLa7/6VD71+Kf88eYd4h73+URcJlVJupdSVSqmfAY8Ae4E3T9bIRP5IT2LQWqf2ZLTWuE1FwtIcau/jaGeI1kCELz6yi00r6vjKW9ayrK4UpRQuQ2EAPpcxICB9+vJVvH55HT94+tCQS4RxSw9YkgMnSSGWsIe8/zMHO1NLiJLuLcT4rZtfyZVr53DXUwenpV36SIkOb8DpMns5TmLDPcBNWuu+KR+VmFSZJgiMZrgeRLc+uB1TwYmeCAYKUylsW7OvLcjm3a0DlsyOdPTx9z96gUPtzo9RRZGbz1yximvPmgcMv0TocRmpgJg+I+qfIQ2+v6R5CzF5/vVvlvOHnc18+oHt/PDGDQNWLCbbSDOlf8fpnbRSa32l1vpnEpDyz2S3ZUhPYuhvutcbjnOkM0wiuTSnlEIphdswBiRBvHCog+vvejYVkEq9JsvqSqks8aTuMzhJAZwZ0bI6P7dftRqPabCvNUhjV5hit0Gd3zfk/SXNW4jJ01BVzL9cupwndrfy0CsnpvS1hg1KWuuLtNbflyrg+W28bRlGO4/Uf5/bHtpBsceZqWggbtkkbButob7MS2NXCNvW/PqlRv7+Ry/QlCyqWlPqYX5VMZ2h2IAgOdwSYX/adl/MYl5lEcvqSonbmrZk+aLh7i+EmBzvPm8Raxsq+NxvdtLZF5uy18lOa0ExbcbTlmGk80hwMtOtIxjFsvtnR855Iw1YtmZ+VRGmoagp8fCNP+7lv5/cj61J1sLTdIdihGMWtX5vKkj2L/GVeEwOJmdTi6qL+fTlq9i0oo4b7nr2lAw8ALehqCzxSlKDEFPINBRffvMZXPHtP3P7b3bwjevXTcnrSFAqcONpyzBc+vWXHt2dyrIzlVO/DpygYAIJnIKq4PwAR+MWGvjWE/sBmFdZxPGuMKapMJMVwk90R5hd7h3Q7txtKpbVlRKOW4SSrwHDB9iecJxHP7px4v+xhBAjWj7Lzz9tWsq3Ht/H1WfO5aIp+Mff9HdwEtNqtOWwoRzrCg2ZPHCwvS8VrNqDsVQ7CEtr3C4TlyI5GzIo87lxu0yeP9wFOBUa6v1evG4DlfyfoRRKOT2O+tudj7TUONx+k+wfCTF9PnDREpbVlfKp+7cRjCZGf8AYyUypwA2XMTfU8lZ/ll5bIEp7IMqsch9+nzMz6Q8GRW4zuYdjnSyqqkGjMQyF1vDxNyznf585xIluZ/9oVpmPPc29dPTFKfOZdIcTYPcv+WkSWqey+EZaapS+R2Jmmt4mfydf1hg2y84zZzmz3vkV5l/xIbr++L1Rn2pew3yOHT2S2cuO5fBstsjh2amXvnSWsGyOJwPK3AofLtNJxy52G3SH43T0xVKZdv0M5SzjVZV66A0n6ItZuAyF3+uissRNscfF/tYgCVtTWewmFLOIWTamoVhYVcyjH33dsIdz6/y+VKZff+CU/SOR53L+8Oxo/rS3ja3HunnrWfOYU1E04n37D+KmGfb6ZaYkgFP3kUBxojvE0a4wHtNgcU0JK2aV8sArTWjNKY35DAVet0lzj1NSyFDOoViPS1HidWY/s8p9NHaFCUQTLK0tTc10PnnZSiCzmdB4ygSNdk5rss5xCTGTnLukmgNtQZ7Y3coN58zHNCbn7JLsKQlg6H0klFN9wVSwpyXA/VubQJ8sD6RwAo9tOz2ReiMJp8adqVhUU0zMsukMxekNxwHw+9zMrfChNUMWRN20om7SO8COdk5rss9xCTFTuE2DTctr6eiL8dLRrkl7XpkpCeDULL32YBTL0tgwIAOufwJuKCfDzqXAcBlEE3bqdtvWNPdEnQrgyefqbyHhMg3Wz6/k7ps2pmYotz64fcAMZaJBKH3W09UXTc0Ae8Nx2oNRogmbW+55mW9dv27EQq8yWxJiZItrSllSW8Lzhzo5rd5P+aA94fGQmZIA4LWLq2jsCrOrqZeDbUFCcYv+UDTUXqetneKq4YROBaT+2y0NoZhFwtZYlvP9wZl/UzFDGeo597UFSVg2veE4J3qcqhOmAX2xBLc9tIN9rQEpUyTEBLzutFqUcvaYJoMEpQKXaWWG+146TlWJG1M5VRP69yQzXSU20+7YH8SstMO0+1qDuA2VWo4bb6WJkQz5nIZBSyBKezCKgcIwnER2n8vEbSpiCVvSzIWYAL/PzdkLqzjU3seJSSjYKst3BSyTTrHgvJnHEhbdoTjRQb3Lder/hmcqBrQ8T0+y0UBdqQd/kTujg7BjmaEMXqrb29LL7PKBWUD1ZV4auyMkcGZIdrIDbq3f6xR6TVYglzRzIcbvzIYKth7r5q8HOnjz+rkTKtgqM6UClulsZG9LLx19MSJpy3Bj4TJG/jHqDiewbD2pB2EHL9Ud7gjS2Rdn5wln+bE/uSKasPG6DCxbE00uNVpaO2exglGW1ZdNenKFEDON2zQ4e2EVx7vDtPRGJ/RcEpQK2HCVGQbPRuLW+M+qeUxjyD2nfgpnOa8tED3lIOxYK02kSw+4wWiCjmAcw3BmZjHL5kRPmGOdfbQFY5QXuagtPVmJXKGJWTZtwRivXVyVqnz++avXAHDrg9uHXeoUQgxt1ewy3Kbi1ePdE3oeCUoFbLTZyObdrZz/n3+kN5IYNTC5Bp1B8BjObUqBrTVuY+j9J9NQxC2bvpjF3pYAHcEY53/pCe586iBvWT933DOU9IDbFoiiFLgNA8NQeEwDW2sCUYs6v4eaUl+qZp8CLNsJpnV+D88c7Ez9t5DUcCHGz+MyWDGrjL0tQaIJa/QHDEOCUgEbaTbyrT/u5e//7wUaezKbaidsjcdl8HevmU9DZREN1SXMrfClat8tqS3lo5cso8znwmUovMkAkLA1djLexSxNJG5hKmgNRLjvpePcfOHicXWHTQ+4MctOVSn3uQwW15ayclYZANUl3tR9TEPhdRm4TMXi2lKqk5XFYfwtPoQQJy2v92PZmsau8Sc8SFAqYIMPo3pMA9u2ed9PXuBrf9w3pucyFNz1d2dx8cp6SjwmjV1hmnujLKop4YfvOptHP/o6brnkNL51/TrmVBRRWeIZMj/CMBTtwdiE3/TTA67bUFi2xkZTU+oEoXDcosRjpgKXxzScGn3a+bz/Pv2zxkyXOoUQw6sv9+IyFMc6x/97I0GpwKXvl7QHozT3RrHGkc/gMRWvHuvmtod2ELc1y+pKmVdZRF/s1Gl6icekJRBNe6xxsqK47eznwMTe9NMDbrHXhaEU1SUe/D5Xakb4vvMXpQJXTakHy9ZYWlNT6jllD0sqkAsxcS7DYHa5L9XMc1zPMYnjETnszqcOEogkMJOzirGKW5pvP7mf6hIP5UU+ABKWpjUQ4eafvsj6+ZXMKvPwu+0tzvMPeon0JoBDzVTGI736w3CFWs+YV5G6fVldKVpr+mIWdX7fgBp3UoFciMlRUexhb0tg3I+XoFRARiosuu1417hTvvsz7KIJm0AkQa2fVIUEhZPocKg9yDMHo5iGk3CQHvjilo3LUMSTB5iGmqlM1HDliTItWzSWFh9CiOH53AaxZBWX8ZxXkqBUIIY7KPuWxm5+8cJRgtGxBySXArfL2Wfpb1TRX1Kov0ICCrymQSDiNPvSGpRSThBKC0z9hVrrSz3YmlNmKmO91qmo6j3RuntCiP73gPE/XoJSgRiqsGhbIMJ3Nh8gPp5NJCChwbA1ZrJ5n8dUKKUIxRJOxhuAVtT6vRzv7p81OY91mQZgkbCdVNH18ysnJXhkWqViskhbCyHGJhSz8LnNcVd1kKBUIIYq2xOIJEjYNuPYQkpxAprC1lBZ7ObvNi7gmYOdNHY5Qai/O63HjGLbFrZ2lvNU8tSsx6W4851nsWlFXaoO30T6Gk1nVe/pDoBCDC1LnWfHadY7/wttxfnY5y87eWOyi20mHWglKOWpwW/gpcn05/SurdGEjUsprNGK141A4yzHLast4RNvXMGmFXXcwsk37Ejcoi0QJRxzqoqXek1sWxO1bFyGwQc2LUkFpJHe4DMNAJNRMy9T0tZC5AZNLnaeHUosYXPnUwdYN7+S89996pgzCa4SlPLQUG/gveF4KvT0Z48p5RxeNYDxLeDBaxdXp1qRp9u0oo63NHbznc0HSNg2PreB120Qitn4fS7W1vkHzHRGeoMHuOWel+mLJfC5TGr9Xvw+95ABYHDfJ5i61O3pDIBCFIJD7X3YGhZWj//3UYLSNBvPHsXgx3SHYgPe4C1bE4gksLQmlrDxmIpl9WVE4xbNvVFchiI6zn2lkbLjnjnYybzKogEBIhRLUOf3nRLIhnuD39fSm0zFtnAZioStOdEdYU4FlHpdpwSA6Uzdns4AKES+01qz9Vg3fp+LuRVFoz9gGHJ4dhqNp77aUI/Z2+o0rgMIROKc6I6QsG0SlqYvliAQtXjt4ipQirkVPlzm8BuOXlPhHuanoLrYNWLAHEsVhOEOp8Ysp3q412WAVhhKpQq4DhUAhmuZDozaN2qsJlo0VoiZ5Hh3mObeCGctqJxQ6wqZKU2j8exRDPUYt6lo6Y1SVuShuSeSqpAATrFRy7b59pP7WVJTQtzWNFQWcbQrTCit+oIJaAVVpR48psHRzvCAVuclHpOvXrduxJndWGYSw81wPC6DIrdJTamXEz1hZ51RaSIJe9gAMDh1e6oSEuTskhCZ0VrzzIEOij0mq2eXTei5JChNo/HsUQz1mHq/l8buMO3ByLAHYuOWJhCJY2noCsVT54sUUOxWmKYzw+mLWsRNmxWz/KlqB/1vvsCIb/ZjWUob7g3+zqcO0hqIUJa8xvZglGhCU+JxZVw1fCoTEuTskhCj236ilxM9ES5eWZc8DjJ+EpSm0Xj2KIZ6jMs0WFZbyolR6ku1BqKUF3tSAane7+Ut6+fym23NuE2VCiS94Thaa4Ixa8Bs6Ia7nh3xzX60mcRQs6yhkib6A5vf58KV7AQ71jYWkpAgRHYEIwme3tfOvMqiCc+SQILStBrPJv3NFy7m4/e9wvGuMAnbSbP2+1x85S1rufXB7fQmKykMJW5De9BJivjEG1fwzo0LePePXjglSaIrFCcQTVDv9/LysS7e8+MX8LlNInELn8ugrsw5iwSnvtkPN5PIdEltMpbIJCFBiOywbM0jO5qwteb1K+omtJfUT4LSNBrvG7AGUM55IdTJWqcNlcWj9i2pLHbzn397OhevrMdtGqfMKtoCUbTWROKaI50nn6t//ykUt2nsCjOv0ikf0hKIoLWTVDDS2MeypDbRJTIppipEdvzlQDsnuiP8zep6Kos9oz8gAxKUptlQb8AjJRPc+dRByovczC4/mWLZ/+Z+84WLeeZgx7CvNbvcx3ffsZ618yowkp1jB88qIgmb0bqhJ2xNY2coVdBqboVv1GSCYVPAWwMjVnUYD0lIEGL67W7u5eWj3aydV86KWRNftusnQSnLRlvmGmm/ZNOKOq49czb3b2065XmL3Qb1fh8f/PlLzK8qSb1Jp88qEpadcRuLhAafqVJlhYBTZj7pwbU3HMeybWpKfann6OiLEogkTkmJn4yyPZKQIMT0OdoZ4g87W5hbUcQFy2on9bnlnFKWjdaGe7Tmc5+/9gzOXVI54PsuA8Jxm+beMJXFngHnofrP+XhMg8busTXiWlpXmgpIMHB/afB5qmKPSWsgRnswkjrj09kXp7LYLS3HhchjbYEov321icpiD1eeMRvTmPg+UjoJSlk22gHUkQ5wdvbFeHR7E88d7AacdO9ZZV48poHLVAQiiSHf/DetqKOi2MPC6mJcGf48GYoRg+Pg4Frr91HmcwLTruYAbYEoHlOl2pUPda1CiNzW2Rfjga3H8bgMrj5zDt5B712TQZbvplkmhVTT3+yH2i/5hwsWsWJ2Gbf/ZgcPbD2Relx1iYfqUi8dfTEMxYBDtYPf/PuXBTMtPuR1GTQmMwC9pkF5sRu3aaaSCQYvMwYicYIRCwWsmOUnHLdo7ArT0RcdsKQnWXJC5IeuUIxfv9QIwLXr5g5YNZlMEpSmUaaFVAdnjqXvl0QTFie6w3z03q2pJAeFM5PpDsco8brwmAYxy061HYdT3/z7Ex5G21JSQInXJG5pKovdBCIJogmbzr44H9g0f9jqDm2BaKoBYP9srbLYTWdfnGKPS7LkhMgj3aEYv37pOLaGN6+fS1XJ5GTaDWXKlu+UUj6l1PNKqVeUUjuUUp9L3l6llPqDUmpf8mPlaM9VKIbaPyorclNb6qXO76O5J0xbIJpKIBhcvy0QibO3OcDHf/lqKiCVeExml3uTNeMU7cEoZUUubA1+n2vYmm39y4L9y8Eq+Sf9B6LYbTCr3JsKSLV+H4trS1k5u4x5lUU8c7DzlOfrX2aMJJylvvTluppSL36veUrdOklQECJ39Ybj/Prl4yRsm79dP5fqQUvwk01pPYEOcCM9sXOKqkRrHVRKuYGngQ8Dfwt0aq2/qJT6JFCptf7ESM+1YcMGvWXLlikZ53Q6/0tPUFHkHnDATGtNTzjO569ek5pFpc8ibr9qNa9bXkt7MMa9zx/l20/uT1VoKPWazK0owm0aBKMJWnsjRC3NOQureO3iqmQzvuFTpDfvbuXW+1+lsScK4BRmVYqEpZlX6aSgz6ssZm9LL7PLi4Yc958/8foBz9e/zNgTjlPsMan1n1yqG66CuBAzUMbZAUoZmgn0RJsI01/LrLf/J8pbQss9/0689dCEni+tyd+w1z9lQWnAiyhVjBOU/gn4CbBJa92klJoNbNZaj9j5qVCC0g13PXtK5YH+N2og9b3ecDxZA86myG3wtrMb+O2rTTT1RlOPMw1AQ0NV8YAU7fG86X/rj3v5wdOH6ItZlHhM3nf+Im655LSMxj3ca6UvVQ4OsjIzEmIsQUnpyW7y97FLlzPae39zT4S33fUMnX0xfv6+jZw+r3wyhzDs9U/pnpJSygReBJYC39FaP6eUqtdaNwEkA9OQ71BKqZuAmwDmz58/lcOcEkMdiB2p8sCtD26noshNbzjOiZ4wBgpDaQJRix8+fXjAv5NMBZVFbrrDCZp7IpR6XRPan7nlktMGBKHBxlMxQQ60CjF+6e9/2dDaG+Ht33+WjmCM//fecyY7II1oumZKFcD9wIeAp7XWFWnf69Jaj7ivlG8zpZFmCTD0G3X/bKS5J0LC0smusTbpRcD7933SM+ZMQzGn3Dflb/rpS3MSYISYsJydKbUHo1x/17Oc6A7z/957DmctqJrU107Kzkypn9a6Wym1GXgj0KKUmp22fDfxbmw5ZqS6b3fftPGUCgi3PridUo9JbzhOJG5hGv19kU597sE3WbbmrWfNG3GmMxmkYoIQha+rL8Y7f/AcjV0hfvzuKQtII5rK7Lva5AwJpVQRcAmwG3gIuDF5txuBB6dqDNmSSUfWwRUQusNxukIxLA0xCxL2ya3N/qy4of5dYyj4wdMT23wUQoieUJx3/vA5DrX38cMbz+Y1i6uzMo6pnCnNBn6c3FcygF9orR9WSj0D/EIp9V7gKPDWKRxDVmTSSiF9NtWf2ADOflF6gdRSj0kwZg051zUAt6noi1lDfFcIITLTG4nzrv99jn0tQe5611mct7Qma2OZsqCktX4VWDfE7R3AxVP1urkgk8SA9AoIbYEICoWNHhCQTAOWzyqjpTdMezCW6jKrONnOwtbOWSUhhBiPUCzBu3/0AjtO9PK9d57FpuXZXaaX2ndToL/o6UiHRBsqi5OHWm2iCRtL69Qeksc0WFhdRL3fx6/efy4oxdK6Uur9Aw+t2dr5877zF03n5QkhCkTCsvnQz1/m5aNdfOuGdVyyqj7bQ5IyQ1NltMSAd5+7kM/+ZgfRhI2GVLkfn8tgXkURCa1ZUO0s9/UvB9aVOeeZ2oJRtHYy7z78+qVTnuQghCg8Wms+df92Ht/dyheuWcObTp+d7SEBMlOaMpt3t3LDXc9y/pee4Ia7nh1QMqgnFGfZLD/veM0C2oOxVEAqchvMq/RhobE1qeW+9BI+tX4vi2pKmF9VzA/ftUECkhBiXL7+h73cu+UYH3r9Ut65cUG2h5MiM6UpMFzjvs9pzep55QQjCV451s2dTx0gmrBxGYprzpzLgbYgbYEIDWlN+UAOogohJlfpGW/gW0/s57oN8/jYG3LrH7YSlCbB4OoN3aEYblNh2ZpD7X3ELBsDuON3u7jrXRv47atNfOPxfVi2przIze1XrSaWsDnWdbLl+GByTkgIMRlOdIepuvT9XLCshjuuPX1ATctcIEEpQ0OVDdq0ou6UWdGh9iDNvVEMBXpQGcX9bX18+oHt/OWAU+F7UU0Jd1yzhqaeMN96Yh8elzFpbcKHG68QYuYKRhL8dlsTid42/vuGy3GbubeDk3sjykGDD7qmtxdPP28UiCTo6IsBTuLCUIdd+wPSxsVVfPuGM1laV8ovtzTicRmT1iZ8pPEKIWamhGXz8LYTxC2btl9/gfLiqWnSN1ESlDIwVB+k/qCRXr2hPRjFQOExR54Ov23DPD5/9RpmlxdRV+ajsTs8agWIyRqvEGJm+tPeNlp6o/zN6lnE249mezjDkqCUgZHKBjVUFhOOOxUVYpY93JZQiqng5tctoa7Ml2qWlf4c/SbSJjyTMkdCiJljX0uA7Sd6OWtBJUtqS7M9nBHJnlIGhiob1B6MEopZhOMBApEElcVuPKZBNGGhUBiKIVuN15S4qS/zUeI9+VzjaQ0x1vFOJMgJIbJJ8bFLR2w5NyLTX8vs93ybROdxfv2Vf+XXtsW8htxtB5QXQWl3c4Ab7no2a5v1g4NGezBKWzBGnd9DdYkXtxmlsy+O29AopSj3mXT2JU55HgOoKPEOCEgw+Snfkx3khBDZpBlr64r+1hQJy+aG7z/LrqYAv/30FSz4ycemaIyTJy+CkstQk5KRNl6Dg0YoZlHn91BT6lRYqC7x4jENKou9XHPmHL72x72pFhMKp5K3x2VQW+ohNEzx1MlM+ZZzTUIIcN4DXjjcxdfftpYF1SXZHk5G8iIowcCeRNl4c00PGud/6YlUMVVbaxKWxuMyaOwO8X/PHKY34syS/F4Xs8q8GIaB21SE41aq9fl0jlcIMfPsbw3yzcf38abTZ3HtunnZHk7G8iYoQe5s1vfv2cQSNu3BKHHLdip229AejOEyFFevncNfD3YQs2xKXYYsoQkhpo8y+MSvXqXYY/K5q9ZkezRjkldBaTo369MPn5Z6TJRSBKIJGiqL2biokh8/e4SeUDx1SLa/wnexx+SOa9ewdl4FF55Wyz0vHJMlNCHEtPKvv5wXj3TxtevWUjuou0Cuy5ug5LR5mJ6ZRnqVBlM5lRgA5lb4aOkNc++WPtyGk2GX3iHWZSgWVBWzdl4FVSUerl43l6vXzZ3y8QohRL9gJEHFhe9i0/Jars3D95+8OKdk2XrInkRTJf3waXswhqkUpqFoC0Rxmyamoejoi+F2mamAVOIxmV9VRFcoRl2Zj4piz5SPUwghBnt6fzvKMLn9qjU5V9cuE3kxU1o+y8/dN22c0tfYvLuVLz26m/2tQeLJA0Y+l0Hc1rgNhUYTszRaa0zDmSElkpl0CrBsm0AkwaKaUkq9efGfVQhRYI53hdnTEqDnuV8xv/rabA9nXPJipjTVNu9u5eP3vcLelkAqIAFEEjaWrVMf3aZBKGZxtDOcuo+hwGVCwtZ09MU4f2l1Ni5BCDHD2VqzeW8rfp+L3mfvy/Zwxk2CEs5yXSCSwNbOrGcoCRsMpWjsDmNrJxiV+0y8LgOtnRbmdX4vzxzsnNaxCyEEwLbjPbQHY1ywtAadiGZ7OOMm60w4teISttOWXCmGLO9tAH3J5bo6vxdLa6qK3ZiGgctQKKXQWudEyroQYmaJxi2ePdDBvMoiltbldm270chMCefckcswnFnSUAFJkarQcM6iKn544wYaKoqJWToVkEDqywkhsuPFo11EEjYXLKvJy+SGdDM+KG3e3UpXX5SY5cyUhuqB1L/NVFvq5Y5r1lDidfG+8xehtROItNbTmrIuhBD9+qIJXj7azWn1pdNWMWYqzejlu2/9cS/f2XyAhG1j4izdWUNFJaC8yMU/v+E0XKZBTamHK86cQ6nPJfXlhBBZ9fzhTiyt2bi4MJKsZmxQ2ry7le9sPoCtnSU4rcHQUFXiwud2caI7gqU1SsGSmlLed/4iNi6ppr7MR5HH6VUk9eWEENnUE46z/XgPq+eUUVkgZyNnbFC686mDJCwbl6EAhVJga5vOvjiWjgOwoKqYL1y7hrkVRbgMg/pyL16XOfITCyHENHn2YAdKKV6zqDBmSTCDg9LRzj48LoOEpZP16zSWdurYAZyzsJJbr1hFqdeF2zSYXe7DZc74LTghxDRzuz3DNvnzNqzBXTWX2/7z9wNuz+UmfqOZkUEpkmwhEY1bdIfjWFYyICW/f96Saj571WpMQ+Fzm8wq82EY+Z3RIoTIT2eccTpbtmzJ9jCmzYz7p39POE5TT4S3bWjA7TIp8Zgk0gLSuYur+Pw1azANRanXxexyCUhCCDFdZkxQ0lrT2huhIxhFa805i6s4f0kNvRHnQKxpKP7h/EV84drTASgvclNX5sv7nH8hhMgnM2L5LpawU035wKk6/sOnD/HLlxoBmF9VzB3XrGFuZRHgtDcvL3ZnbbxCCDFTFXxQ6osmaAtEsZMZDKFYgv/43W7+eqADgLMXVvLpy1dR6nOhlKLO76VEqnwLIURWFPS7b1dfjK5QLPV1c2+EW+/fzsF2p2nf366byz9tWoJpOP2S6st8+NyS8i2EENlSkEHJtjWtgSihWCJ1244TPdz24A66QnFMQ3HL65dy5do5ALhNg/oyHx7XjNliE0KInFRwQSmWsGnpjRC37NRtj+1s4auP7SFuafw+F5+9chXr5lcC4E2mfJuSYSeEEFlXUEEpGE3QnrZ/ZGsnoeHu548B0FBZxB3XrklV8i7xuqjzeyXDTgghckRBBCWtNZ19MXrC8dRt4ZjFf/xuF39JJjRsWFDJbVc4CQ0AZUVuakq9WRmvEEKIoeV9ULJsTUtvhEjcSt3W0hvh1ge2c6DNSWi45sw5fOCipaklOkn5FkKI3JTXQSkSt2jtjZKwT+4fpSc0GApuuXgZVyUTGiTlWwghclvevjv3RuJ0BGNofbIB0h92tvBfaQkNn7lyFeuTCQ2S8i2EELkv74KS1pr2YIxA5OT+ka01//v0IX6eTGiYV1nEf6QlNEjKtxBC5Ie8CkoJy6YlECWatn8Ujln85yO7eXp/OwBnza/gtitX4fc5e0aS8i2EEPkjb4JSJG7R0hvBsk8u17X2Rrj1gR3sbwsCcPWZc/hgWkKDpHwLIUR+yYugZNmapp7IgP2jnSd6+fSD21MJDR96/TKuPnNO6vuS8i2EEPknL4JSwtYDAtLju1r48u+dhIZSr5PQcNaCytT3JeVbCCHyU14EpX621vzoL4f52XNHASeh4Y5r1tBQ5SQ0KKWo9XsplZRvIYTIS3nz7h2OW3zxkd38ed/QCQ2S8i2EEPkvL4JSwrL58N1bTyY0rJ3DBy5agst0Urwl5VsIIQpDXgSlI50hwm1BDAUfvGgp16ybm/qex2Uwq8yXClBCCCHyV14EJct2Ehpuu2IlGxZWpW4v9jgp34acQRJCiIKQF0HJbRr899vXMT+Z0ADg97mpKfXIGSQhhCggeRGU5lcVDwhIlcUeKks8WRyREEKIqZAXQam/QoNSiupSD2U+OYMkhBCFKC+CEoChFHVlXoo9eTNkIYQQY5QX7/AKmF3hw+uSM0hCCFHI8iKP2u0yJCAJIcQMMGVBSSnVoJR6Uim1Sym1Qyn14eTtVUqpPyil9iU/Vo76XFM1SCGEEDllKmdKCeCftdYrgY3AB5RSq4BPAo9rrZcBjye/FkIIIaYuKGmtm7TWLyU/DwC7gLnA1cCPk3f7MXDNVI1BCCFEfpmWPSWl1EJgHfAcUK+1bgIncAF1wzzmJqXUFqXUlra2tukYphBC5ISZ/P435UFJKVUK/Ar4iNa6N9PHaa3v0lpv0FpvqK2tnboBCiFEjpnJ739TGpSUUm6cgPQzrfWvkze3KKVmJ78/G2idyjEIIYTIH1OZfaeAHwK7tNZfS/vWQ8CNyc9vBB6cqjEIIYTIL1N5ePY84O+AbUqprcnb/h34IvALpdR7gaPAW6dwDEIIIfLIlAUlrfXTDH/E6OKpel0hhBD5Ky8qOgghhJgZJCgJIYTIGRKUhBBC5AwJSkIIIXKGBCUhhBA5Q2mtsz2GUSml2oAjE3yaGqB9EoaTD2bKtc6U6wS51kLTrrV+YyZ3VEo9mul9C0FeBKXJoJTaorXekO1xTIeZcq0z5TpBrlXMHLJ8J4QQImdIUBJCCJEzZlJQuivbA5hGM+VaZ8p1glyrmCFmzJ6SEEKI3DeTZkpCCCFynAQlIYQQOaOggpJSqkEp9aRSapdSaodS6sND3Ecppb6llNqvlHpVKbU+G2OdiAyvc4VS6hmlVFQp9S/ZGOdkyPBa35H8u3xVKfVXpdTabIx1ojK81quT17k12S77/GyMdaIyuda0+56tlLKUUm+ZzjGKLNFaF8wfYDawPvm5H9gLrBp0nzcBj+C01dgIPJftcU/RddYBZwN3AP+S7TFP8bWeC1QmP78sH/9Ox3CtpZzcCz4D2J3tcU/VtSa/ZwJPAL8D3pLtccufqf9TUDMlrXWT1vql5OcBYBcwd9DdrgZ+oh3PAhX97dnzRSbXqbVu1Vq/AMSzMMRJk+G1/lVr3ZX88llg3vSOcnJkeK1BrXV/dlIJkJeZShn+rgJ8CPgV0DqNwxNZVFBBKZ1SaiGwDnhu0LfmAsfSvm5k6F+GvDDCdRacDK/1vTgz4bw20rUqpa5VSu0Gfgu8Z5qHNumGu1al1FzgWuB7WRiWyJKCDEpKqVKcf119RGvdO/jbQzwkL/+1Ocp1FpRMrlUpdRFOUPrEdI5tso12rVrr+7XWK4BrgM9P8/Am1SjX+g3gE1pra9oHJrJmytqhZ4tSyo3zQ/4zrfWvh7hLI9CQ9vU84MR0jG0yZXCdBSOTa1VKnQH8ALhMa90xneObTGP5e9VaP6WUWqKUqtFa510B0wyudQNwj1IKnCKtb1JKJbTWD0zfKMV0K6iZknJ+en8I7NJaf22Yuz0EvCuZhbcR6NFaN03bICdBhtdZEDK5VqXUfODXwN9prfdO5/gmU4bXujR5P5KZox4g74JwJteqtV6ktV6otV4I3Ae8XwJS4Suoig7J9Ng/A9sAO3nzvwPzAbTW30v+Mvw38EYgBLxba70lC8MdtwyvcxawBShL3ieIk92UV8t8GV7rD4A3c7K9SULnYZXpDK/1E8C7cBJYwsDHtdZPZ2G4E5LJtQ66//8BD2ut75vGYYosKKigJIQQIr8V1PKdEEKI/CZBSQghRM6QoCSEECJnSFASQgiRMyQoCSGEyBkFd3hWFD6lVFBrXTqOxz0HeIEqoAg4nvzWNVrrw5M3QlBKfR6nzqKNU7ft77XWeXdIW4jpJinhIu+MNyilPf7vgQ1a6w9O3qhOeY2y/jNhSqlbcM6I/eNUvZ4QhUKW70TeUkptUkptVkrdp5TarZT6WbJSx2VKqV8Mut9vhnmOJUqpR5VSLyql/qyUWpG8/f+UUv+T7PlzUCn1OqXU/yb7//xf2uODSqmvKqVeUko9rpSqBRh0SDlvq3kLMd0kKIl8tw74CLAKWAycB/wB2KiUKkne523AvcM8/i7gQ1rrs4B/Ab6b9r1K4PXAR4HfAF8HVgOnK6XOTN6nBHhJa70e+BPwmf4HK6XuUEodA94B3DahqxRihpCgJPLd81rrRq21DWwFFmqtE8CjwJVKKRdwOfDg4AcmK1SfC/xSKbUVuBOn+Vy/3yR7F20DWrTW25KvswNYmLyPzcmA91Mg1QlWa/0prXUD8DNgypYKhSgkkugg8l007XOLkz/T9wIfADqBF5KN5AYzgG6t9ZmjPLc96HVshv/dGWqZ7uc4vY8+M8T3hBBpZKYkCtVmYD3wDwyzdJfc9zmklHorOJWrlVJrx/g6BvCW5OdvB55OPteytPtcBewe4/MKMSPJTEkUJK21pZR6GPh74MYR7voO4H+UUrcCbuAe4JUxvFQfsFop9SLQg7N/BfBFpdRynFnVEUAy74TIgKSECzEBE01PF0IMJMt3QgghcobMlIQQQuQMmSkJIYTIGRKUhBBC5AwJSkIIIXKGBCUhhBA5Q4KSEEKInPH/ASXTfE3642ceAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
    " - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaUAAAGoCAYAAADmTPpwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAACdAUlEQVR4nOzddVyV5/vA8c9z6JRGKQUJARUDa/Y2dZs65zZ19tQZ633X3fVbd1mzY87NnjNni6g0SHd3c+r5/XEQZYKik5L7/Xrxog7nXCici/t+rvu6JFmWEQRBEIS2QNHaAQiCIAjCRSIpCYIgCG2GSEqCIAhCmyGSkiAIgtBmiKQkCIIgtBn6rR1AE4kSQUEQbiVSawfQVomVkiAIgtBmtJeVktAOVSk1nEjI53RSIYl55ZRWqUECewsjutub09fNiiEethgb6LV2qIIgtBFSOzk82y6CFHTyymr4+Z8ENp1Jo6xGjaG+Ag87M6xNDdHIMnllNaQUVKCVwdxInzt9HZjQ24nRPRzQU4hdDaFDED/ojRBJSbhptFqZVSeT+fzvWKpVGu7u1YWpgS4MdLfBSL/+aqhSqSYoqZA94dnsjcqmuFKFq40J825zZ+oAV8yNxCJeuKWJpNQIkZSEm6KwQskzm0I4EpvHKB973pzgh4e9eZO+VqXRsj8qh+XHkghOKcLCWJ95Q92ZP7QbVqaGzRy5ILQKkZQaIZKS8J8l5Vcwb2UQmSXVvDnBj5mD3JCkG/udO59axE//JLA3MgdzI33mDOnKI8M9sDETyUm4pYik1AiRlIT/JDGvnKk/n0Iryyyd05/+XW1uyv3GZJfy7cF4dodnYayvx+whXXlkuDsOFsY35f4FoZWJpNQIkZSEG5ZWWMnUn0+iVGvZtHgwng4WN/0x4nPL+O5gPNtDMzHQUzBjkBuLR3SncyeRnIR2TSSlRoikJNyQrJIqpv58ktIqNRsWDsbPybJZHy8pv4IfDsWz9XwGepLE1AEuPDrKE2crk2Z9XEFoJiIpNUIkJeG6VSrV3P/DCdKLqlj3yCACXK1a7LHTCiv54XACW86mAfBAPxceG+WJm61pi8UgCDeBSEqNEElJuC6yLPPMphC2h2ayat5ARnjbt0ocmcVV/PRPAhvPpKHRytzXx5nHR3dvcsWfILQykZQaIZKScF1+PZ7E2zuieH6sN0/c7tXa4ZBTWs0vRxJZdzoFpVrL+N5OLB7hQU/nTq0dmiBcjUhKjRBJSWiyM8mFTP/lFKN8HPhldn8Ubaj7Ql5ZDcuOJbLuVCrlNWqGetqyeER3hnvZ3XB5uiA0I/FD2QiRlIQmyS2tZvy3xzAz1GP7k8OwNDZo7ZAaVFqtYv3pVFYeTyKntAbfLpYsGuHOhN5OGOiJ/sNCmyGSUiNEUhKuSaXRMnPpacIzSvjz8aH4dL75pd83W41aw7aQTJYeSSQutxynTsbMH+bOzEFdMTEUDWCFVieSUiNEUhKu6d0dUaw4nsTXD/VhUh/n1g7numi1Modjc/npn0SCkgpxtDTi6Tu8mRLoIlZOQmsSSakRIikJV7UtJIOnN4Ywb2g33pro39rh/CdBSYX8318xnE0pwsPOjOfG+nBPr87impPQGsQPXSNEUhIaFZNdyuTvT9DT2ZL1CwffEisLWZY5EJ3LJ3tjiM0pp6+bFe9N6imq9YSWJpJSI0RSEhpUWq3i3m+PUaHUsOvJYThY3lptfTRama3n0vm/v2IorFAye3BXnh3rQyeTtlnAIdxyRFJqhEhKwhW0WplFa85y+EIuGxYNZkC3m9NktS0qqVLxxd8XWHMqBRszI169pweT+zqLLT2huYkfsEaIpCRc4buDcXz2dyxvTfRj3lD31g6nRURklPD6nxGEpBVzW3dbPpjcC3c7s9YOS7h1iaTUCJGUhHr2R+WwcE0wkwKc+HJanw61YtBqZTacSeXjPTHUqLU8dbsni0Z0x1C//V9LE9qcjvOLdZ1EUhLqxOeWcd/3J3C3M+O3JUMwNuiY53lyS6t5Z0cUu8Kz8HY056P7e920OVGCUEskpUaIpCQAUFKp4r4fjlNWrWbHk0Pp0kmMhDgYk8Mbf0aSUVzFzEFuvHhXD1EIIdwsIik1QiQlgRq1hodXnCE4pZANCwcTeAsXNlyviho1X+yLZeXxJGzNjXh7or842yTcDOIHqBEiKXVwGq3MkxvOsTs8my+nBTC5r0trh9QmhaeX8PLWMCIzS7mjhwPv3tdTDBgU/guRlBohklIHJssyb26LZM2pFF4f78sjwz1aO6Q2Ta3R8uuJZD7/OxZJgqfu8GLe0G4Y6XfMa2/CfyKSUiNEUuqgZFnm070X+OFwAotHePDKPb6tHVK7kV5Uydvbo9gfnYObjSmv3uPLOH9HsaUnXA/xw9IIkZQ6IK1W5t2dUfx6IpnpA135cHIv8YR6A47E5vH+rihic8oZ7GHDmxP88XOybO2whPZB/MI1QiSlDkajlXllaxibg9OZP9SdNyb4ioT0H6g1WjYEpfLFvliKq1Q8NMCV58b6YGdu1NqhCW2b+KVrhEhKHUhptYpnN4WwPzqXp2735H9jvEVCuklKKlV8fSCO1SeTMTbQ48nbPZk31F0cvBUaI37xGiGSUgcRn1vOojXBpBRU8uYEP+be1q21Q7olJeSV88GuaA7G5OJhZ8YbE/0Y7ePQ2mEJbY9ISo0QSakD2BmWySu/h2Oor+D7mf0Y7GHb2iHd8g5dyOXdHVEk5Vdwp68Db0zwo6ut6KUn1BFJqREiKd3CCiuUvLEtgl1hWQS4WvHDzH7ibE0LUqq1rDiexLcH4lBpZBaOcOfx0Z6YGuq3dmhC6xNJqREiKd2CNFqZP89n8NGeaEqqVDxzpzeLR3igfwsM6WuPckqr+XhPDH+cz8CpkzHv3deTO3wdWzssoXWJpNQIkZRuIbIsczg2j//bE0NMdhm9nDvxyYO98e0iypTbgjPJhby6NZy43HLG9+7CWxP9cLC4tYYnCk0mklIjRFK6RYSkFfPxnmhOJRbiZmPK8+N8mNCrCwqF+NlvS5RqLT/9k8B3B+MxNlDw2nhfpga6iirIjkf8hzdCJKV2Lim/gk/3xrA7PBtbM0OeusOL6QPdRClyGxefW86rW8MJSi5ksIcNH07uhYe9eWuHJbQckZQaIZJSO5VbVs03B+LYEJSGkb6CR4Z7sGiEB+ZG4iJ6e6HVymw8k8ZHe6LFUMGORySlRoik1M6UVatYeiSRpUeTUGm0TB/oxpN3eIprE+1Ybmk1b++IZHd4Nl4O5rx/X08GibL9W51ISo0QSamdUKq1rD+dwrcH4ymoUDK+dxeeH+uDu504+3KrOBCdw5vbdEMFH+zvwit398BWtCu6VYmk1AiRlNo4rVZmR1gmn/19gbTCKoZ42PLy3T0IcLVq7dCEZlCpVPPtwXiWHknEzEifV+7uwdRAV1GwcusR/6GNEEmpDTsal8fHe2KIzCylR2cLXr67ByO97UWlVgcQm1PG639GEJRUSD83K16f4Ec/N+vWDku4ecQvcSNEUmqDIjJK+L+/Yjgal4+zlQnPj/NmUoCz+Gu5g5Flmd/PZfDxnmjyy5WM83fkhXE98HQQVXq3APHL3AiRlNqQlIIKPv87lu2hmViZGvDEaE9mD+kqJpt2cBU1apYfS+LnfxKoUmmYGujKU3d44SRaRrVnIik1QiSlNiCtsJLvDsaz5Vw6BnoSC4a5s3hkdyyNDVo7NKENKSiv4btD8aw9lQLApD7OLBnpgaeDRStHJtwAkZQaIZJSK8ooruK7g/H8FpyGQiExY6Abj47qjqOlKO8WGpdeVMmyo0lsPJNKtUrLaB97Zg3uyigfB/TEFm97If6jGiGSUisITy9hxfEkdoZlIiHx0EBXHhvlSedOIhkJTVdQXsPqkylsCEolt6wGZysTHujnzMQAJ7wcxeqpjRNJqREiKbWQiho1eyKy2XQmlTPJRZgZ6jF1gCsLh3uIawPCf6LSaNkXlcP606kcT8hHlqFHZwsmBjhxT68u4ixb2ySSUiNEUmpGFTVqjsbl83dUNn9FZFOp1NDN1pRZg7sydYCruGYk3HS5pdXsDs9iZ1gWwSlFALjamDDM045hnvbc1t0WazPDVo5SQCSlRomkdBNVqzSEphUTnFLE6aRCTiUWoFRrsTDWZ3yvLjzY34X+Xa3FOSOhRWQUV7E/Kofj8fmcTCigrEaNJIG7rRl+Tpb4O3XC38mSHp0tsDM3EkcOWpb4x26ESErXSanWklVSRUZRFenFVaQXVZGQW05MdinJBZVotLpQvRzMGeFtzx2+DgzoZoOBGLAntCK1RktYRgkn4vMJzyghIqOUjOKqus8b6ilwsjLGycoEJysTrEwMMDfWx9xIHwtjfYwNdMcSJElCAiQJFJKELINGltFqZTRaGY0sI8syGm39j2tl3YtGi+7t2ttefK3RUvt1ut8fhUJCkkBCQiFdejzpYgwSGOgpMDbQw9hAgYmBHiYGehgb6mGsr4eJoR5mhnqYGenrXgz12tqQS5GUGtGuk1JuWTWlVSq0MnU/+PJlb2vlS78AdW9f/LhWRqnRUq3SUKPSUq3WUKXUUH3Z28WVSoqrVBRVqiipVFJUqaK0WsXl/2SSBG42pvg4WuDT2YI+rlb072qNlanYIhHatuJKJVGZpcTnlZNRVEVGse4lq7ia0moVlUpNi8Shp5DQkyQUCl3iAZBrf19lGWR0v7Ny7e/ujTLSV2B+MUnVJiozI/3aj9UmMEP92o/p3jcx0CUzPQXoKRToKyQUkoS+nlQXt55C96KoTZagyzgGegq6NX49TySlRrTrpPT6n+GsPZV60x/MQE/CxEAPK1NDrEwNdK9NDLA2NcDazBAnKxNcrExwtjahSycTMWpAuCWpNVoqlBrKa9RUqzS1f4xdTBS6pKGQdCsZhXTpifnia4WCuidtxcXPXfZx3W2u/7lZrk1WKq1W90ekSvdHZJVKo3u79v0KpYaKGnXti4YKpZryGjWVNWrKa2o/V/cx3fvlSjU36ynRxdqEYy/d3tinRVJqRLtISpIk/QXYXeeX2QH5zRDOzSbivPnaS6ztJU5oP7G2lzjzZVm+q7WDaIvaRVK6EZIkBcuyHNjacVyLiPPmay+xtpc4of3E2l7iFBon9p0EQRCENkMkJUEQBKHNuJWT0i+tHUATiThvvvYSa3uJE9pPrO0lTqERt+w1JUEQBKH9uZVXSoIgCEI7I5KSIAiC0GaIpCQIgiC0GSIpCYIgCG1Gu0hKd911l4yus4l4ES/iRbzcCi9Ndos+/zWqXSSl/Pz20DVEEATh5utoz3/tIikJgiAIHYNISoIgCEKbIZKSIAiC0GaIpCQIgiC0GSIpCYIgCG2GSEqCIAhtWGGFsrVDaFEiKQmCILRhRZUiKQmCIAhtREcb5CCSkiAIgtBmNFtSkiTJR5KkkMteSiVJekaSJBtJkvZJkhRX+9q6uWIQBEEQ2pdmS0qyLF+QZbmPLMt9gP5AJfAH8DJwQJZlL+BA7fuCIAhCAzrY7l2Lbd/dASTIspwCTAJW1X58FXBfC8UgCILQ/nSwrNRSSekhYEPt246yLGcB1L52aOgLJElaJElSsCRJwXl5eS0UpiAIQuu7/PlPrVG3djgtSpKbubRDkiRDIBPwl2U5R5KkYlmWrS77fJEsy1e9rhQYGCgHBwc3a5yCIAgtSGrqDS1cfOSy9AvNGUtraPT7b4mV0t3AOVmWc2rfz5EkqQtA7evcFohBEAShXepgu3ctkpSmc2nrDmA7MLf27bnAthaIQRAEoX3qYFmpWZOSJEmmwBhg62Uf/hgYI0lSXO3nPm7OGARBENozuYNlJf3mvHNZlisB2399rABdNZ4gCIJwDR0rJYmODoIgCG2aaDMkCIIgtBlaWUal0bZ2GC1GJCVBEIQ2rrRK1dohtBiRlARBENq40uqOc4BWJCVBEIQ2rkSslARBEIS2QmzfCYIgCG1GabVISoIgCEIbIbbvBEEQhDajtEoUOgiCIAhtgITYvhMEQRDaCD2FJLbvBEEQhLZBTyGJ6jtBEAShbVBIkjg8KwiCILQNYvtOEARBaDP0FBJlIikJgiAIbYGeQhLVd4IgCELboCfptu/kDjJYSSQlQRCENkxPIaHSyFSrOsZMpWYdhy4IgtBSMourOBCTS2pBBYM9bLnD17G1Q7op9BQSWnQHaE0M9Vo7nGYnkpIgCO1aWmElH+2J5q+IbLSy7kl86dEkVjwcyO092n9iupiUSqpUOFoat3Y4zU4kJUEQ2iWNVmbZ0US+2BeLnkJi8cjuTA10xdJYn/7v7yc6q+yWSEoKSQI6zvgKkZQEQWh3UgoqeGZTCOdTixnr58g7k/zp0skEgBMJ+QB0tzdvzRBvGj2FLimVdZADtCIpCYLQrmwPzeSV38PQU0h8/VAf7g1wQqpdTQCsPpFCJxMDRnrbt2KUN09tTqJSqWndQFqISEqCILQLGq3MJ3tj+PmfRAZ0s+arh/ribGVS7zbH4/P5KzKbp273vGWKAi5u31UqxUpJEAShTahUqnl6Ywj7onKYOciNtyb6Y6hf/0RLWbWKl7eG0c3WlMdGe7ZSpDefonapVKUSKyVBEIRWl19ew/xfzxCRUcJbE/2YN9T9itvIssyb2yLJKKpi8+IhGBvcGqskENt3giAIbUZqQSWzV5wmp7SaX2YHcqdfw9V0G4LS+ON8Bs/c6UVgN5sWjrJ5Xdq+E0lJEASh1cTmlDFr2Wlq1FrWLxxMPzfrBm8XnFzIW9sjGOltz5O3e7VwlC3DUF9BjVokJUEQhFYRkVHC7OWnMdBTsHnxEHw6WzR4u5SCChatOYuLtSlfP9Snrnz6VnNrflcNE0lJEIQ2JSKjhJnLTmNupM+6RwbRzc6swdvlllYze3kQWllmxcMDsDI1bOFIheYgkpIgCG1GZOalhLRx0WBcbUwbvF1hhZI5K4LIL69h/cLBuDeSuIT2RyQlQRDahLicMmYvD8LMUO+qCamoQsnMZadJzK9gxdwB9HG1atlAW0HHGFqhI5KSIAitLq2wklnLT6OnkFi3sPGElFtWzZzlQSTmV7BsTiDDvOxaONLWoVRrMTXoGE/XHeO7FAShzSoor2HOiiCqlBo2LxnS6FZcWmEls5efJreshhVzB3SYhKTR6tZJ5sYd4+m6Y3yXgiC0SVVKDY+sDiazuIp1jwyiR2fLBm8Xnl7CvF/PoNJoWbNgEP27NlwefivS1E6ctTDqGE/XHeO7FAShzdFqZZ7dHEJIWjE/zuzX6KHXfVE5PL3xPNamhmxcNAhPh4bLw29V2tqVkoVYKQmCIDSfL/fHsicim9fH+3JXzy5XfF6WZZYeTeSjPTH0cu7EsjmBOHSAIXf/dnGlJLbvBEEQmsmusCy+PRjPtEBXFgy7spddlVLDK1vD+DMkk3t6debzKX1uma7f10ur1b02F9t3giAIN19CXjkvbAmlr5sV797nX28WEui6NDy69hzR2aU8N8abJ273vOI2HYmmbvvOoJUjaRkiKQmC0GLUGi3Pbg7FUF/BjzP7Y6Rff/WzOzyLl7aEoVBIrJg7gNE9HFop0rZDK4trSoIgCM3i1xPJhKYV8+30vnTudOn6UFm1ind3RPHb2XQCXK34fkZfXKwbPqvU0Wi0MhIiKQmCINxU2SXVfLEvltt7ODCh96XChhMJ+bzwWxhZJVU8MdqTp+7wumKAX0emlWUMJDC5hWZEXY1ISoIgtIif/klAqdby9kTddaSSShUf/xXNhqA03O3M+G3JbR3q/FFTabQy1kb6Hea6mkhKgiA0O1mW2XI2HW9HC8yN9fnuYBy/HEmkvEbNohEe/O9O7w5bXXctGlnuMEUOIJKSIAgtQJIkHh3VnU/3XqDfe/sAuKOHA8+N9cHPqeEuDoKOVttxrieBSEqCILSQx0d7EuBiRURmCSO87EUyaiKtLIukJAiC0ByGedl1mEaqN4tGK3eYg7MAosRFEAShDdPIMuYd6JpSsyYlSZKsJEnaIklSjCRJ0ZIkDZEkyUaSpH2SJMXVvhblNoIgCI3QajvW9l1zr5S+Bv6SZbkHEABEAy8DB2RZ9gIO1L4vCIIgNECjlTvM2ApoxqQkSZIlMAJYDiDLslKW5WJgErCq9margPuaKwZBEIT2TqbjNGOF5l0peQB5wEpJks5LkrRMkiQzwFGW5SyA2tcNNreSJGmRJEnBkiQF5+XlNWOYgiAIbcvlz3/QccZWQPMmJX2gH/CjLMt9gQquY6tOluVfZFkOlGU50N7evrliFARBaHMuf/4DMDMUSelmSAfSZVk+Xfv+FnRJKkeSpC4Ata9zmzEGQRCEdq8jdbtotqQky3I2kCZJkk/th+4AooDtwNzaj80FtjVXDIIgCLcC0w6UlJp7TfgksE6SJEMgEZiHLhFuliRpAZAKTGnmGARBENo10w60fdes36ksyyFAYAOfuqM5H1cQBOFW0pFWSqKjgyAIQhsnkpIgCILQZohCB0EQBKHN6EiTeDvOdyoIgtBO6XWQqbMgkpIgCEKbp6/oOE/VHec7FQRBaKf09MRKSRAEQWgjxPadIAiC0GboKURSEgRBENoIkZQEQRCENqPjpCSRlARBENo8tVZu7RBajEhKgiAIbZxaq23tEFqMSEqCIAhtnEojVkqCIAhCG6HWiJWSIAiC0EaIa0qCIAhCm1GjEislQRAEoY0orVa1dggtRiQlQRCENq6sWt3aIbQYkZQEQRDauDKxUhIEQRDaCrFSEgRBENoMsVISBEEQ2oyiSpGUBEEQhDZAXyGRW1bd2mG0GJGUBEEQ2jB9PQU5pTWtHUaL0W/tAARBuLrskmqOxOaRV17DlP4uOFgat3ZIQgsy0JPIKe04KyWRlAShjUorrOS7g/FsOZeOprbNzNcH4vhwci8e7O/SytEJLcVAT0F2iUhKgiC0Eo1WZsWxJD7fdwGtDLMHd2X6QDeMDRTMWn6aTWdSRVLqQAz1FBRUKCmvUWNudOs/Zd/636EgtCNZJVU8tzmUEwkF3OnryLuT/HGyMqn7/NDuduyLymnFCIWWZqSvQAkk5VXQy6VTa4fT7ERSEoQ24kR8Pk9sOE+1SsMnD/RmSqALklR/ELaLtQkFFUqqVRqMDfRaKVKhJRnq66EEEvPLO0RSEtV3gtDKZFlm6ZFEZi4/jbWpATueHMbUAa5XJCQAL0cLAP44n9HSYQqtxEhfgSRBUn5Fa4fSIsRKSRBakVKt5fU/w9kcnM49vTrz6YMBmF3lusEYX0cGe9jw+p8RbAvJwNLYAABrU0MCXK2YEuiCgZ74W/NWIkngam1KXE55a4fSIsRPryC0ktJqFfN+DWJzcDpP3e7Jd9P7XTUhASgUEp9NCWBSgBMqjUxaURWphZUciMnl1T/CGfflEeJyyq47FlmWSSusJDy9hKIK5Y1+S0Iz8XeyJDyjpLXDaBFipSQIrSC3tJq5K88Ql1PGZ1MCrquazsXalC+m9an3MVmWOXQhl+c2h/LuzijWLBh0zfuRZZmzKUX8fi6DfVHZ5JdfSkZP3eHFs2O8mxyT0Lx6OndiT0Q2JZUqOpkatHY4zUokJUFoYakFlcxcfoqCciXLHx7ASG/7/3yfkiRxew9HZg3uyveH4sktrW70kK1ao2V3RDa/HEkgIqMUU0M97vB1ZJC7DXbmRuwKz+KbA3F4O5ozobfTf45N+O96OesKHCIySxjqadfK0TQvkZQEoQXF5pQxa9lplBot6xcOpo+r1U29/7F+nfn2YDynkwqZGFA/oWi0MjvDMvlyXyzJBZV42JvxweSeTO7rjKnhpaeCO3wdCE4uZG9kjkhKbUTP2qQUli6SkiAIN0lkZgmzlwehr5DYvHgI3rWVdDeTT2cLDPUVnEstqktK1SoNf5zP4JcjiSTlV9CjswU/zerHWL/OKBRXVvgZ6ClwtTYlpwN1EWjrbMwM6WZrytmUotYOpdmJpCQILSAio4SZy05jZqjHuoWDcbcza5bHMdRXMMzTji1n03HqZEJKYQV/ReiuF/V0tuSHmf24y7/hZHS5/IoafJohaQo3bqC7DXsjc9Bq5Wv+/7VnovpOEJpZeHoJM5aewtxIn02LhzRbQrro5bt74GhpzAe7o/njXAb93KxZ/8ggdjwxjHt6dbnmE1qlUk1q7fae0HYMcrelpEpFbO71V1e2J2KlJAjNKCqzlFnLT2NhbMDGRYNxtTFt9sf0drRg/7MjyS2rxtrU8LrPLZ1NKUKtlQnsZtNMEQo3YqC77v/jdGIhPTpbtnI0zUeslAShmcTllDFruW7LrqUS0uUcLIxv6CDtvqgcjA0UDHa3bYaohBvlYm2Cs5UJJxMKWjuUZiWSkiA0g+T8CmYuO42+QmL9wpZPSDdKqdayOzyL0T4OmBiK3nptiSRJDPO040RCPmqNtrXDaTYiKQnCTZZdUs2s5adRabSse2QQ3Zr5GtLNdPhCLvnlSjEao40a7m1HabWasFu4u4NISoJwExVXKpm9/DTFlSpWzR9Y10C1vVh7OhVHSyNG3IQDvcLNN7S7HZIER2PzWzuUZiOSkiDcJFVKDfN/PUNKYSW/zOlPbxer1g7pusTllHEkNo8ZA7uKpq5tlLWZIb2dO3E0Lq+1Q2k2TfrJkyTJRJIkn+YORhDaK7VGy5MbznE+rZivp/Xhtu7t79T9z0cSMTHQY/aQrq0dinAVw7zsOJ9WTGm1qrVDaRbXTEqSJE0EQoC/at/vI0nS9maOSxDaDVmWeXtHJPujc3n3Xn/u7tWltUO6bhnFVWwLyWDaAFdszAxbOxzhKoZ72aPRyrdsFV5TVkpvAwOBYgBZlkOAbs0VkCC0Nz8fSWTtqVSWjOzO7CHdWjucG/Lj4XhkGRaO8GjtUIRr6Odmjamh3i27hdeUpKSWZfnWLfUQhP9gV1gWH++JYXzvLrw4rn3ucKcWVLIxKI2HBrribGXS2uEI12Cor2CIhy3H4m7NYoemJKUISZJmAHqSJHlJkvQtcKIpdy5JUrIkSeGSJIVIkhRc+zEbSZL2SZIUV/va+j/ELwit5nxqEc9uDqF/V2s+nxJww/3IatQajsbl8cPheM6lFiHL8k2O9Oq+PhCHnkLiydu9WvRxhRs33MuO5IJKUgsqWzuUm64pbYaeBF4DaoD1wF7g/et4jNGyLF+e0l8GDsiy/LEkSS/Xvv/SddyfILS6jOIqFq4OxtHSmF9m98fY4PoPmqo0WjYEpfLdwXhyy2rqPj6+dxe+n9HvZobbqJjsUraeT2fhcA8cG5m/JLQ9w2tL9o/G5zHT9tYqTLlqUpIkSQ/YLsvynegS080wCRhV+/Yq4DAiKQntSEWNmkdWBVOj0rJxUSC25kbXfR/ByYW8+kc4sTnlDOxmw4eTe9HbtRMLfg0msgUPRr6/M5pOJgY8OrJ7iz2m8N952JnhbGXC0dh8Zg7qQElJlmWNJEmVkiR1usHrSjLwtyRJMvCzLMu/AI6yLGfV3n+WJEkODX2hJEmLgEUAbm5uN/DQgnDzybLMi1vCuJBdyoqHB+DpcH2HY2vUGj7/O5alRxNx6mTC0jmB3OnrgCTptv4cLY2pqFE3R+hXOHQhl2Px+bwxwQ9rUXHXplzr+e9iy6HdEVmoNVr0b6FzZU3ZvqsGwiVJ2gdUXPygLMtPNeFrh8qynFmbePZJkhTT1MBqE9gvAIGBgS27yS4IjfjhcAK7wrN45e4ejPJp8O+pRqUVVvLE+nOEppcwY5Abr93ji5nRpV9BtUZLUFIBd/ds/pLyGrWG93ZE4WFnxuzBt9Zf2reCpjz/Dfe2Y1NwGqHpJfTveutcmm9KUtpV+3LdZFnOrH2dK0nSH+hKy3MkSepSu0rqAuTeyH0LQks7FpfP539fYGKAE4uus3T6WFw+j607iwz8NKs/d/XsfMVtjicUUFqtZnSP60t2N2L1iRQS8ytYOW8Ahvq3zl/ZHUldy6G4vI6VlGRZXnUjdyxJkhmgkGW5rPbtscC7wHZgLvBx7ettN3L/gtCSskqqeGrjebrbm/Px/b3qttuaYuXxJN7fFY2nvTlL5wTiZttwx/Dfz6ZjYazP6B7X13cuo7iKkwkFqDVaRnjb43SNsu7c0mq+ORjHKB97Rl/nak9oOy61HMrnmTu9Wzucm+aaSUmSpCR014bqkWX5Wn8qOgJ/1P7y6gPrZVn+S5KkM8BmSZIWAKnAlOuOWhBakFqj5cn156lRafhpdv96W25Xo9XKvL8rmhXHkxjj58iX0/pg3sjX5pZWszs8izlDumGkf+1KPlmWOZFQwNKjiRy+cOkQpSTBjzP7cddVtgDf2RlFjVrLWxP9m/R9CG3XcC97fvwngdJqFZbGBq0dzk3RlN+uwMveNkaXRK45klKW5UQgoIGPFwB3NDVAQWhtn++LJTiliK8f6kN3e/MmfU2NWsNzm0PZGZbFw7d1440Jfuhd5RzT2lMpaGSZOU3oOxeTXcq7O6I4kVCAnbkhz47xZqy/IwpJYuK3xzgUk9doUjoRn8+usCz+d6d3s49lF5rfcC87vjsUz8mEAsb5X7kl3B41Zfvu3w2WvpIk6RjwZvOEJAhtx9G4PH48nMD0gW5M6uPcpK+pVKpZvOYsR+PyeeXuHiy+Rrl1lVLDutOp3NHD4aqzl8qqVXyxL5Y1J1OwMNbnzQl+zBzsVm9lZWtmiErb8AC4GrWGt7ZH4mpjwuKRop3QraCvmzVmtS2HOkxSkiTp8lN8CnQrp/Y1JEYQbkB+eQ3Pbg7F08Gctyb6NelrSqpUzFsZREhaMZ882Jupga7X/JpNZ1IpqFCycHjjiWJ/VA6v/xlBTlk10we68cJYnyvKuHPLqsksqca7kRlOS48kEpdbzsqHB9zQYV+h7THUVzCkuy1Hb6GWQ03Zvvv8srfVQDIwtVmiEYQ2QpZlXv49nJIqFWsWDGzSk3hRhZLZK05zIbuM72f0a1K3cK1WZvnxJAK7WjPIw/aKz+eX1/Dmtgh2h2fTo7MFP87qR1+3hiut9kZkAzDM88qxGYl55Xx7MJ67e3Zukeo+oeUM87Rjf3QuKQUVdLVt/1uyTdm+G90SgQhCW7LlbDr7o3N47R5fenS2vObtCyuUzFx2moS8cn6ZHdjkJ/6j8fmkFVbxwrge9T4uyzLbQzN5Z0cU5dVqXhjnw8LhHo2Wb8uyzNpTqfg7WeLvZHnF517+PRwjfQXv3CuKG241dS2H4vJviaTUlHlKT0uSZCnpLJMk6ZwkSWNbIjhBaA2ZxVW8uyOKQe42LBjmfs3bF9UmpMS8cpbPbXpCAvgtOA0rUwPG+TvWfSy1oJK5K8/w9MYQXG1M2fnUMB4f7XnV80RH4/K5kFPG3Nu6XVGu/sf5DIKSC3ltvC8Oor/dLediy6EjsbfGKIumbN/Nl2X5a0mSxgEOwDxgJfB3s0YmCK1AlmXe+DMCtVbmkwd7X7Pzd0mlilnLdSukZXMCGe6l+6u1tFrFXxHZnEoo4LHR3RtsR1Sj1rAvKocpgS4Y6etRpdTw4z8J/PRPAgYKibcn+jF7SLerVu1djPmbA3E4WhoxqY9Tvc8VlNfw4e5oAlytmNL/2te3hPZHkiRG+djzx/kMqlWadn+9sClJ6eJvxD3ASlmWQ6XrOTkoCO3I9tBMDsTk8vp432tuhZTXqJmzMoi4nHJ+ntOfEd72yLLMnohs3toeSV5t5++Uwkp+f/S2K74+PL2EGrUWWYbvD8Wz/nQqGcVV3BvgxKv3+NK5U9NWNfujcwlOKeLDyb2uOOP0wa5oSqpUrH2k1w2P1hDavrH+nVl3OpUTCfnc3sPx2l/QhjUlKZ2VJOlvwB14RZIkC6DhmlNBaMdKq1W8tzOaAJdOzBt69W27KqWG+b+eITKjhB9n9We0jwNl1Spe+yOC7aGZ+HWx5KdZ/dgYlMb+6JwG78PewggPezPWnU4FYGA3Gz6fGsDgBgoeGlOj1vDBrii625sxNdCl3ucOX8hl6/kMnhjt2aTrYkL7NdjDBnMjff6OzOkQSWkB0AdIlGW5UpIkG3RbeIJwS/ls7wUKK2pY8XDgVbfMatQalqw9y5nkQr55qC9j/ByJzy1n4epgUgoqeG6MN4+O6o6+noI3t0Xi07nhEu2utmYceHYkCXkVGOkrcLW5sv2QRiuTUVRFFytjDBroBL3yeDLJBZWsmj+wXqfoiho1r/0RgaeDOU/e4XkD/xpCe2Kkr8coH3v2R+eg0crX3PJty5qSlIYAIbIsV0iSNAvoB3zdvGEJQsuKyixl7akUZg3uSm8Xq0Zvp9ZoeWZjCP/E5vF/D/RiYoATJxLyWbzmLIZ6CjYsHFxX2h2fW05kZimvj/dt9P4kScLT4couEedSi1h5PJn9UTlUqTR42Jnx1UN96sWWUVzF1/vjGOPnyEjv+v3yvj0YT0ZxFVuWDGlS2yKh/Rvn35mdYVkEJRUypHvTV9ttTVPaA/8IVEqSFAC8CKQAq5s1KkFoQbIs897OKDqZGPDcGJ9Gb6fVyryyNZw9Edm8Pt6XaQPc2Hounbkrguhsacyfjw+td9ZoQ1Aq+gqJe/9VfHA14eklzF5+mvt/OMHhmFzu7+fMWxP9SC2sZOu5jHoxv7o1HEniioO94eklLD2ayJT+LgR2u2ZHMOEWcaevIxZG+vx+Lr21Q/lPmrJSUsuyLEuSNAn4Wpbl5ZIkzW3uwAShpeyJyOZkYgHvTfKnk2nDTS1lWea9XVH8djadp+/wYsEwd5YeSeSD3dEM8bDlp9n96WRy6WurlBp+C07jrp6dcbC4dsFCXlkNn+6N4bez6VibGvLaPb7MGOSGmZE+Ko2WD3ZFY2J4acXzZ0gG/8Tm8fZEP1ysL237qTVaXvo9DFszQ14f37QuFMKtwcRQj/G9u+jOt93r3+TGwW1NU6IukyTpFWA2MLx2RPqt0Y5W6PBq1Bo+2hNNj84WTB/Y+ITjL/fHsfJ4MvOHuvP0HZ58tCeGX44kMr5XF76YFnDFFtm2kAxKq9XXHKCn0cqsO53Cp39doFqt4ZFh7jx1hxcWl3V8PhKbh1or07+2k0N2STVvboukf1drZg/pVu/+lh1LIiqrlB9n9ms0wQq3rimBLmw8k8afIRntdkx6U5LSNGAGuvNK2ZIkuQGfNm9YgtAyVhxLJq2wirULBjU6UnrpkUS+ORDH1EAXXrnbh5d+D+e3s+nMGdKVtyf6N1hqvfZ0Cj06WzDQvfHts8jMEl7dGk5oegnDPO14d5I/Hg10If/1RDJ25oaM9NGVnL/4exhqjcznUwLqXdBOLajky32xjPVzbFKLI+HW08/Nmp7Olqw8nsyMgW7XNferrbjmNSVZlrOB3wGj2g/lA380Z1CC0BJyS6v57mAcd/o6MMzryn5xABuDUvlgdzTje3Xh7Xv9eWZTaN0W3jv3NpyQIjJKiMgoZcaghp8UKpVqPtoTzb3fHSejuJqvH+rDmgUDG0xIwcmFHI3LZ9EIDwz0FKw9lcKR2DxevadHvY7isizz1vYI9BUS707q+R/+VYT2TJIk5g91Jz63nCPttElrU9oMLQS2AD/XfsgZ+LMZYxKEFvHxnhhUGrnRay87QjN55Y9wRnrb89H9vViy9hy7wrN4fbwv/xvj3ehfodtDMzHQk5gUcOWoi4MxOYz54gg//5PIA/2c2f/sCCb1cW7wvrRaXQGGg4URswZ3JTanjPd2RTPS255Z/9oW/DMkg0MX8vjfGO8mH7oVbk0TejvhYGHEj4fjWzuUG9KU6rvHgaFAKYAsy3Ho2g0JQrt1IiGfreczeGS4e4MzjA5E5/C/TSEM6GrD51MCWLg6mKNxeXzyQG8eucqICYC/I7MZ5mlX75pOWmElC1cHM//XYEwN9di0aDCfPBiAlalho/ez4UwqoeklvHx3DyQkntpwHnMjfT6bElAviRVWKHl3RxT93KyueehXuPUZ6itYMrI7pxILOZnw73F4bV9TrinVyLKsvPhLIEmSPg2MRxeE9qJSqeaVreF0szXlydu9rvj8iYR8Hl13Dj8nS76YFsDCNcGEpZfw1bQ+1xz0l1NaTXJBJQ/213VXyCurYdmxRH49noyeQuKlu3qwYJj7VZurgq6Y4ePdMdzW3ZbJfZ159Y9wYrLL+HXeAOwtjOrd9qPd0ZRVq/nw/l7t+tCkcPPMGOTGT/8k8OX+WAZ7DG5X15aakpT+kSTpVcBEkqQxwGPAjuYNSxCaz8d7YkgpqGTjosH1yqwBzqYU8ciqYLrZmvL1tD4sWn2WuFzdfKS7el57sqeeQsLO3JDvDyUQnFLEifgC1Fot9wY48dLdPejSyQSAapWGsPQSskurub2HA+aXle/KssxLv4eh1sp8OLkXW89lsCEojUdHdWeUT/1NipMJBfx2Np1HR3UXrYSEOsYGejw+2pO3tkdyMCaXO3zbT+uhpiSll4BHgHBgMbAbWNacQQlCczkUk8vqkyksGOZ+RY+5iIwS5q0MwsHCiK+n9eHRdedIzK9g6ZxARvk4kFtaTURmCZ1MDOjlbNXgasfO3IhdTw3n+d9Cic0uY/aQrswa3BX32i3CkioVK44lseJ4EmXVagD6uVmx9bGhdfex7nQq/8Tm8e4kf6rVGl77M5zBHjY8N8a73mNVqzS8/mc4rjYmPH3HlSs+oWObMciN1SeTeX9XNMO97K+5Om8rrpqUJElSAGGyLPcElrZMSILQPHJLq3n+t1B6dLbghXH1OzfE55YxZ0UQFsYGfPVQH57cGEJGURUrHx5AH1cr3t0RxdrTKSjVul7ET93hxbP/ShIXOVoas2bBoHofq1ZpWH4siZ//SaC0Ws04f0em9Hfl20PxFFQo68Xx/q4ohnvZMSnAick/nMDC2IBvpve9omT96wNxJORVsGp+0ybjCh2LgZ6CNyb48fDKM/x6IolFI7q3dkhNctWkJMuyVpKkUEmS3GRZTm2poAThZlNptDy+/hyVSg3fTu9b70k8paCCGUtPo5AkvpwWwDMbQ8gtq+HXeQMwM9JnwrfHSC6o4MF+LkwJdGX28tNEZZY0+bGPxObx5rYIkgsqudPXgWfu9KancydkWebzfbHYmOmKHaqUGh5fdx5TQ30+e7A3L/4eRkphJeseGXRFV4iozFJ+OZLI1ECXK/reCcJFo3wcuL2HA98ciGdyX5crrke2RU3ZvusCREqSFARUXPygLMv3NltUgnCTfbArmjPJRXz9UB+8HC917c4ormLG0tOoNFq+md6X538Lo7BCyZoFg0jIK+eNPyOwNjVkw8LBddt9liYGdYnkanLLqnl3RxQ7w7LwsDNj7YJB9c5DnUosJDqrlA8m96w7Z3Qhp4zV8wey5VwGeyNzeH287xXbjGqNlle2hmFtasCr9zTe7FUQAF4f78vYL4/w2d4L/N+DvVs7nGtqSlJ6p9mjEIRmtOZUCr+e0LUIurx6Lre0mplLT1FareKraX14ZWs4pVUqVj4cyLaQDFafTGGIhy3fzuiLnbnuL8y8shryymrwdmx4HAXozhdtPJPGR3uiqVFr+d+d3iwZ5VGvFZFSreXNbRE4W5kwua8zG8+ksTk4nSdv90Sjlfns7wtMDHBqcBz7iuNJhKaX8M30vlctKRcEAA97c+YN7cayY0nMGtyVXi6dWjukq2o0KUmSZAwsATzRFTksl2VZ3VKBCcLNcDAmh7e3R3JHDwdeu2yEREF5DTOXnSa3rIZPpwTwxp8RlNeo+WlWfz7fF8upxEIWDnfn5bt965VZh6YVA9DH1arBx0vIK+eVreG68QEetnwwuWeDnRq+PRhHXG45Kx4O5EJ2GW9ti2S4lx3je3Vhyk8n8e1syScP9L6ilDchr5zP/47lTl9HJvYWrYSEpnnyDi+2nsvgnR2R/LZkSJsuEb/aSmkVoAKOAncDfsDTLRGUINwMoWnFPL7uPL5dLPhmet+65FJcqWTW8iDSiir5+P7efLAzikqVhs+mBPD6nxGkF1XxxdQA7u/ncsV9RmeVAuDbpX75dbVKwy9HEvnuUDzG+go+eaA3UwJdGvzlD08v4YfDCdzfz5mezp2499vjOHYy4p17/Xl45RmMDPRYOjfwinJ1tUbLc5tDMTHU48PJPdv0E4vQtlgaG/DCOB9e3hrOjrAs7g1o+jiVlna1pOQny3IvAEmSlgNBLROSIPx3CXnlzPv1DLbmhqx4eEBdG//SahVzVgSRkFvO+/f15OM9MSg1Wt4c78fLW8ORZZm1jwxqtJFqTlk1NmaGdfcnyzJ7I3P4aE80KQWVjO/dhbcm+jU6rqJKqeHpTeexNzfi5bt7sGTNWUqqVGxcNIiXfw8nu7SaDQsH42xlcsXX/nwkkZC0Yr6Z3hcHS9FKSLg+UwJdWXMqhY92RzPG1/GKP3raiqsVrqsuviG27YT2JKukijnLg5CANQsuVa6V16iZt/IMUZmlvDnRj8/3XUCp0fL0nV68+mc4Fsb6bH1s6FU7e2u0Miq1lrTCSnaFZfHgTydZsvasrlnqgkF8P6NfowlJlmXe3BZBYl4Fn03pzcd7YjiXWsxnU3qz6kQKQcmFfDYlgP5dra/42sjMEr7aH8v4Xl3a9F+5Qtulp5B4a6I/WSXVLD2a2NrhNOpqK6UASZJKgYt7BCaXvS/LsiyOjwttTkF5DbOWnaa0SsWGRYPrDq1WKTUs+PUMIWnFvD7el28PxqHWyMwf6s67O6Lw62LJynkD6goaGjO5rwsbgtIY/skhAFysTXjvvp5MH+Da6OiLizYEpfHbWV0xQ0RmKVvPZfD0HV5cyCln6/kMnhvj3WDCqVZpeGZjCNamhrx/n+gALty4ge42jPN35Od/Epg+0K1Nlog3mpRkWW6baztBaERJpYrZy4PIKK5i1byB9HTWVRlVqzQsWhNMUHIhr9zdgx8PJ6DRytzfz4XP/r7AUE9bvnmoL/uicvgrMhs9SeLB/i4NziQa6G7DN9P7Ulqlwt3OjMEetnXXqjKKq9gekklEZgmLR3jQ28Wq7uvOphTy1vYIRnjb49vZgsfWn2dC7y64Wpvw/JYwpga68MTtng1+Xx/ujiYut5xV8wdi3YRSdEG4mpfu6sH+6CN8fSCW9+/r1drhXOF6OjoIQptVVq1i7sog4nPLWTo3kEG1Z3tq1BoeW3eOo3H5vDDOm2VHk1BrtNzVqwtLj+omx04f6Fo726gKDzszUgorOZVYwB2+jg22Zvn3aqaiRs0Ph+NZeiQJpUaLmaEeh2JyOf3qHVgYG5BVUsWStedwsjJh8XAPHlkdTF83Kx7s78LC1cEM9bTlg8m9Gixc2BeVU9cWSRySFW4GD3tzZgx0Y31QKg/f5o6nw5XVoa3pqvsNsixrgdDaabOC0CZV1F4risgo4bsZfeuevFUaLU+uP8/BmFz+N8aLVSdS0Gi1DPe2Z/3pVKb0d8HTwZzZK4LQ15NYPX8gB54byUt3+VCh1KDUaK/6uLIssy0kg9s/P8z3hxIY37sLR18cTb+u1libGmJqqE+VUsPC1cFUKTW8N6knT286j625Ia/e3YOnNpynm60ZP8zsj0EDW3+ZxVW8sCUUfydLXrzLp4EIBOHGPH2nFyYGeny6N6a1Q7mC6OggtGuVSjXzfj3D+bRivp3el7H+uk7eao2WZzaF8HdUDk+O7s7606moNVr6d7NhW0gmswe7kZhfwW9n07m/rzPv3dezrqKuvEaDJIHhVa4RFZTX8NofEfwVmU1vl078MLMf/bvacOhCLkfj8nl+rDcS8OzmECIzS/lmWl/e2RGJUq3l+xn9eGZTKIb6eqx4eACdTAyuuH+1RsvTG8+jUmv5dnrfegdvBeG/sjM3YsEwd74+EEdMdmmb6jAvOjoI7ValUs38X88QnFzIVw/15Z7aa0AarcyLW8LYFZbFkpEe/HY2A5VaS09nK/ZF5TBzkBuHL+SRU1bDx/f3YtoA13pbZwm55XS1MW20q/JfEdm8+kc45dVqXrm7B48M90BPIVFUoeTl38PwdjTnkeEefPb3BfZEZPPSXT6sOZ1CWmEVv8zpz3u7oiiqVLJp0RBcbUwbfIzP/o6ta4vU0OFbQfiv5g3txrKjiXx/KIFvp/dt7XDqXDMpybL8T0sEIgjXQ1dNF0xQUiFfTO1Td51Hq5V5dWu4bqrssG5sC8mkWqXGp4slR+LyeLCfM3+cz8DS2ICNiwbTz+3K8uvo7NJ6/fEuKqpQ8vaOSLaFZNLT2ZIvpvapazckyzIvbAmjqELF8rkD2BaSwQ+HE5g+wJXw9JLaOANYfiyJ6Kwyls0JbLTdy4HoHH6qrY661lBBQbhRVqaGzBrSlaVHEnlujHeDE5hbwzUHbEiSVCZJUmntS7UkSZra0nBBaBVVSg3zfz3D6aQCPp8awH19dU/cuqamkWwKTuPhIV3ZE5FDpVJNdwcLTicWMr5XZ34/n0F3e3M+fqAXeyOzORCdU+++NVqZ5PwKvB0vrU5kWeaviCzGfHmEXWFZPHOnF388NrRe/7uVx5PZH53DS3f3oKBCyat/RDDcyw4DPQW7I7J55e4eHI3L52hcPh/d34vRPeoP67sorbCS/20Kwd/Jkrcm+jXDv54gXLJgqDsKSWLNqZTWDqVOU1ZK9f5klCTpPmBgcwUkCFdTqVSz4NfguoQ0ua+uFZAsy7y/K5o1p1KYMdCN/TG5lFXryrbPphQxytueXeHZDPeyQ18h8fDKMwD8/E8iD9/Wjbfv9Qd0VXxaGWzMdOc3UgoqeGt7JIcv5OHvZMnq+QPxc6q//342pYgPd0dzp68jg91tmPbLKbwczOnf1Zqv9sexYJg7BeU1/HE+g+fHejM10LXB761apeHx9eeQgR9n9hczkoRm52BpzF09O/NbcBrPj/VpE10ernsUoSzLfwK33/xQBOHqLk9IX0ztUy8hfbL3AsuPJTGlvwvH4vMprlTiZmNKWHoJA7pZczg2j2GetpxPLeZkYgEv3uXDuTfGMNDdhv2XrZaMDfQw0lfw5/kMFq0OZvRnhzmTVMjr43358/GhVySkjOIqFq8JxsnKhOfGeTN/1RksjPV5sL8LX+2PY2KAE50tjfjlaBKzBrvx+OiGzyIBvLczirD0Ej6fEoCbbcPXmgThZpszpBul1Wp2hGa2dihAE1ZKkiTdf9m7CiAQkJstIkFowMWihqCkQr6c1qfetZZvDsTz4+EE7uvjzJnkQgrKa+hqa0ZkZik9nTtxJrmIns6WHIsvoK+bFV9N60NXW93+uVYr49TpUp85YwM95t7WjR2hmeSX1/DIcA8WDHPHsYFec2XVKhb8eoYalZZfZgfw1PrzVCo1vDjOh7d3RDHU05ZR3nY891sY9/TqzDv3Nt5E9c/zGaw7ncrikR51FYSC0BIGdLPGw96M38+lM3VAw6v4ltSU6ruJl72tBpKBSc0SjSA04GoJ6ed/EviytidcREYJOaXVdLM1Iya7FC9Hc8IzSnC2MiEio5QlI7vz3FjvujNB1SoNYRklzBnctd7jvXqP7zWH56k0Wh5bd4743HJ+nt2fD3fHkFJQyesTfPlgdzS+XSyYPbgbT6w/x2APG76Y2qfeCIzLxeaU8crWcAZ2s+GFseI8ktCyJEnivj7OfLEvloziqgabAbekplxTmtcSgQhCQy5PSF9MrZ+QVp1I5qM9MYz1cyQ+r5y0ogq62ZpzIacMNxtT4nLKsTY1oLBCyY8z+13RNuh0UiFKtZbbPG3//bBXJcsyr/0RztG4fD6c3JMNQWmcTS3i9fG+fLEvFkdLY54f68Nj687h5WjBL3MCG70+VKlU89i6c5gZ6fHdjL7X7J8nCM1hUh8nvtgXy47QTJaM7N6qsTSl+s5FkqQ/JEnKlSQpR5Kk3yVJunLQjCDcZP8u+75YZQew6Uwqb22PZJSPPelFVSTlleNuZ05cbhnOViakF1VhYqiHvp6CzYuHNNjH7q+IbEwN9bitu90Vn7uarw/E1U2JDc8oZX90Dv+705sVx5LRVyj44L6ePLs5FFtzQ1bNG4Cl8ZWHYy96/c8IEvLK+fohMY5CaD1dbc3wd7K8ohq1NTTlz7KVwHbACXAGdtR+TBCaTZVSw4JVZzhVW9RweULaFpLBy1vDGeppS1GFkticUtztzYnNKcPR0piskmoAunQyZs38gcRkl5JeVFnv/mvUGnaFZTLWz/G6qtw2BqXy1f44Huyv+7tsQ1AqjwxzZ2dYJiVVKr6cGsDLW8ORgNXzB1010Ww9l87Wcxk8dbsXQz2vLzEKws022seBc6nFlFSqrn3jZtSUpGQvy/JKWZbVtS+/AqIzpNBsLnb1PplYwOdTAuolpL2R2Ty7OZTArtbUqLWEZ5TQ3d6C2Owy7C2MyC+vQSPL9HS2ZMYgN2YuO80LW8KYvTwI9WW97I7F5VNarb6uw6kHonN47c8IRnrb08u5E98ejOeBfs6cTy0iOb+Srx7qw4d7YiisULJy3oC6sRkNSS2o5I0/IxjobsOTjXQHF4SWNMrHHo1W5mh8XqvG0ZSklC9J0ixJkvRqX2YBBc0dmNAx1ag1LFl7lmPx+fzfA73rjSQ/fCGXJ9afw9/JEn09BWeTi/B2tOBCThl2FkYUVShRaWQGudtgYqDPezuj6e5gzpKR3UnKr2BXeFbdfe2JyMbCSL/JK5RzqUU8vv4cfl0smdzXibd3RHJ7DwdKqlScSyvmkym9WX40ibicMn6a1b/e2Ip/02hlnt0cgkIh8eW0PuI6ktAm9HG1wtJYn8MX2n5Smg9MBbJrXx6s/Zgg3FRKtZbH1p7j8IU8Pprcq94h01OJBSxZexZPe3OsTA04mVCAT2cLYrLLsDUzoLhSiVIjM7CbDTHZZYRnlPD+fT3ZtGgw9/XVtSCqUelWStUqDXsjshnj3/Boin+Lzy1nwa9ncLQ05onbPXnx93D6ulrhaGHE/uhc3hzvx4HoXE4mFvDJg70ZcY0REyuPJxGcUsTbE/1bvdJJEC7S11Mwwtuef2Lz0Gpb79RPU6rvUgHREVxoViqNlqc2nOdATC7v3deThwZempYSmlbMgl/P4GxlgrO1Cfujc/HtYkF0Vhk2pgaUVqtRaWT6uVkRnFKIt6MFP87qX7d9tjdCd/F2pI8uWRyKyaWsRs3kvtfeussprWbuiiD0FAremujH0xtDcLU2YainHd8ejGfxCA9yy2vYEZrJS3f1qLeya0haYSWf/X2BO30duL+f6GsntC2jfBzYGZZFVFZp3ZDMltaU6jsPSZJ2SJKUV1uBt02SJI+mPkDtlt95SZJ21r5vI0nSPkmS4mpfX9kRU+hQdNtZofwVmc2bE/yYfdm5oZjsUuasCMLazACfzpbsj87Fr4sl0VllWJsaUFabkPy7WHIutZjbezjy+6O31SUkjVZmc3Aawzzt6g7A7o/OxcrUgCEeVy8FL6lUMXdFEMWVSv7vgV68sjUcU0M9Zg3qyrcH47k3wAl3OzN+PJzAjEFuLBl59V8LWZZ5c1sEepLE+/c1PNRPEFrTxVlkhy/ktloMTdm+Ww9sRjdXyQn4DdhwHY/xNBB92fsvAwdkWfYCDtS+L3RQWq3MS7+HsSM0k5fv7sH8Ye51n0vOr2DWsiCM9RUM6GbL7vAsfLtYEpVVirWJvi4haWU87MyIzCrl4du68fPs/nVzkQD2RGSRUVzFzEGXVl4XckoJcLG66rWcapWGhWuCScgr5/OpAXy0J4ZKpYb/3enNh3uiGexhwwP9nXn9T13j1Xfu9b9mkvknNo9DF/L43xhvOncS5d9C22NvYUQv504casXrSk1JSpIsy2suq75bSxPbDNWeZxoPLLvsw5OAVbVvrwLuu454hVuILMu8uT2CLWfTeeZOr3qH9jKLq5i57DQarZZRPRz443xG7ZZdKdamBpTWaFBrZVytTUjMr+C1e3x5a6Jfva4JWq3M94cS8LA3q9e6J79Mia2ZYaNxabQyT288T1BSIR/d34tlR5NILajkzQl+fLA7Gnc7M16925enNoTgbmfG9zP7NTg59nJarczHe2LoamvKnCHdbvwfTRCa2Sgfe86nFlFcqWyVx29KUjokSdLLkiR1kySpqyRJLwK7arfhbK7xtV8BLwKXz5V2lGU5C6D2dYM9/CVJWiRJUrAkScF5ea1bDSLcfLIs88GuaNae0vV7e/oOr7rP5ZfXMGv5aUqrVEzo7cSmM2n06Ky7hmRlok9plRqNVsbBwojMkmo+mxLAwhEeV6xU9kZmE51VypO3e9ZLVt0dzDiekM/nf18gp7T6irje2h7B3sgcXh/vy/6oXM6mFvH2vX58uS8WEwM9vnmoL89sCkFPIbF87tUPx160KzyLmOwynh3j3aTiCqFja83nv1E+DmhlOBKX36KPe1FTfjumAYuBQ8Bh4FF01XdngeDGvkiSpAlArizLZ28kMFmWf5FlOVCW5UB7e3Es6lbz5f44lh1LYu6Qrrx8V4+6hFJarWLO8iAyi6t4oL8La06l4OOoq7KzMtGntFqNRpaxMTOkuErFz7P608/Niryymnr3r9Zo+ezvC3g6mHNvQP2CgukD3dBoZb49GM+B6Pp7598fimftqVQWjfAgrbCSvyKzeWlcD9YHpVJcpWLpnP68vyuatKJKfprVv0ndvGVZ5ofDCXg6mDOht9N//JcTOoLWfP7r42qFlakBh2Ja57pSU6rv3K91m0YMBe6VJOkewBiwlCRpLZAjSVIXWZazJEnqArTeFTWhVfz0TwLfHIhjaqALb028dC1G11boDLE5Zcy9rSvLjyXj5aDrZXcxIWllsDIxoEal4YspAewIy2RbSCaSBK/c3YNFI3RbgFvPZZCQV8FPs/pf0Qh1Qm8njscX8PvZdMb5O9Z9/LfgND77O5bJfZ2xNTPgoz2JLBjmzpnkQqIyS1k+dwB/nM/kWHw+nzzYm4Hu19oo0DmZUEB0VimfPNC70aasgtBW6Ckkbvdx4EBMLiqN9ppb0zdbkx5NkqSekiRNlSRpzsWXa32NLMuvyLLsIstyN+Ah4KAsy7PQtSyaW3uzucC2G4xdaIdWn0zm4z0xTAxw4qP7e6OofZJWqrU8uu4swSlFzL2tKyuPJ9Pd3oy43HKsTPQpqU1IFsb6aGWZR4Z78Mof4fwVkc3Dt3VDliG7RLdaKqtW8cneC/R1s6qXdC6KzCxh05lUpg90xdZcN8zv0IVcXt4aznAvO0Z62/HRnguM790FtUbLgZhc3rnXn+zSan49kcyCYe6NDupr+HtOwdrUgHv7iFWS0D6M8XOkpErFmeTCFn/sppSEvwV8W/syGviE/3Zu6WNgjCRJccCY2veFDuC34DTe3BbJGD9HvpgaULdquNjh4PCFPOYO6cbqkym42ZiSkFdBJxN9SqrUyDKYGemhkHTnjb4+EIePowV//29E3Xkj/9oBfL8cSSS/vIa3J15ZEVepVPPc5lCsTQ15tnZMRGhaMY+vO0ePzhYsHO7Bi7+HM6CbNX1drVh1MoUFw9zp0cWSN7fpKu1eubtHk7/n/PIa9kfn8GB/FzFJVmg3RnjbY6ivYH9Uy29kNWWl9CBwB5BdO8YiADC6ngeRZfmwLMsTat8ukGX5DlmWvWpft3wqFlrczrBMXvo9jOFednw3o2/dlsDFszs7w7KYNciNjWdScbQwJqWg8lJCAkwN9TDSU9CjiyU7QrOYP9SdTYuH0NXWjM3BaRjpKxjj70hOaTXLjiYxMcCJAFerejHIssxLv4cTm1PGl9P60MnEgJSCCub/egZbc0PeneTPUxvP42JlwpzB3fhwdzRj/ByZP9SdR9eexcXalO+m97uutkA7QjNRa2Ue7N/6w9MEoanMjPQZ2t2Wv6OykeWW7e7QlN+ualmWtYBakiRLdNeAmnx4VhAOROfwzMYQArva8MvsQIz0L60YPvv7AutOp/JAPxe2hWRiZWJAVkkVFsa6hARgYqCHsYECe0tjziQV8u4kf96sLf/OLqnmt7PpTOrjhKWxAR/ujkYjyw0Oy/v1RDI7QjN5fpwPI7ztyS+vYc6KILSyzDcP9eW5zaEoJInXxvvy8tYwfLtY8tmU3jy9UTdRdumc/nQyvXal3eX+OJ+Bv5MlPp0t/ts/oiC0sPG9nUgvquJsSlGLPm6jSUmSpO8kSRoKBEmSZAUsRVdxdw4IapnwhPbuRHw+j647h5+TJcsfDsTE8FJCWnokke8PJXBPr84cupCLkYGCwgolpkZ6lFbrEpKxgQJjAwVmhvok5+sKFy4/5/PtwTi0Wpknb/fibEoR20IyWTLC44qquJC0Yj7cHc2dvo48OrI7VUoNj6wKJqe0mh9n9efD3dG15eW9eXNbJObG+iyfO4Cf/kkkOKWIj+7vhafD9SWWhLxywtJLmtTOSBDamrt7dsbUUI/fz6W36ONerfouDvgMXReHcnRdHMYAlrIsh7VAbEI7F5xcyIJVwbjbmrFq3kAsLjvPszk4jQ92RzPax55zKcVotDJVag1GBnqUXZaQTAz0UEgSJVUq1iwYVK/iLbWgkk1n0nhooCvOViY8ueE8DhZGLP7X5MyyahVPbjiHg4Uxn08JQCvDUxvPE5pezE8z+7EhKJUzyUV8Na0PPx5OIL+8ht+WDCEhr5yf/kngoQGu1zXi4qJdYVlIEqIMXGiXzIz0ubtnF3aGZvHGBD9MDa9ZrH1TNLpSkmX5a1mWhwAjgEJ0g/32APdJkuTV2NcJAkBERgnzVp7RDdp7ZCDWl3VQ+Csim5d/D2OQuw0JeRWU16jRaLXoKaS6hGSkr8BIX4FaKyNJEpuXDLmiBPvjv6Ix0FPw5O1e/BmSQUhaMS+M86nXZgjg7e1RZBRV8fVDfehkasAHu6LZF5XDWxP8iMoqY1tIJi+M8+Z0UgFnkov45MHeuFib8r9NIXjYmfHmRL/r/v5lWWZ7aCYDutqIlkJCuzVjkCtlNWq2nG251dI1rynJspwiy/L/ybLcF5gBTAZimj0yod2KzSlj9vLTWJoYsPaRQThYXHpSPhaXz1MbzuPvZElhhZLcsmoM9CS0MpTXaID6CamTiQG/PzqEHp0t6z1GUFIhu8OzWTKyO5bGBny29wK9XTrxwL+6dO8My+T3c+k8cbsXgd1sWH0ymRXHk3j4tm5YmRry9QHdFFlzI302BKXx2Kju3BvgxMu/h1FcqeKb6X1v6C/EqKxS4nPLmSjKwIV2rJ+bNX3drFh2NAlNC42zaEpJuIEkSRMlSVqHbqUUCzzQ7JEJ7VJyfgUzl53GQE/BukcG4XTZvKCzKUUsXB1MN1tTJCSS8yuwMDagSqWhUnkpIRnqK6hRa3G0NGZzbYXd5TRamXd2RNKlkzGLRnjw4+F4Mkuqee0e37pzTwApBRW88ns4fd2sePJ2T/6JzeOdHVHc6evA3T078+IW3WptUoAT7+6M5o4eDjw31oeNZ9L4OyqHF+/ywd/pxtr3/xacjqGeggm9utzQ1wtCWyBJEouGe5BaWMlfEdkt8phXK3QYI0nSCiAdWATsBrrLsjxNluU/WyQ6oV3JqGuiKrP2kUF0u2wceGRmCQ+vDMLBwpBOpgZEZJZgZ2FESaWS6trhe0b6CvQVEtUqDd1szdi8eEi9pHbRb8FpRGaW8vLdPSitVvHzkUQmBjgx6LJRFEq1bj6TJMG30/uSUlDBE+vO4e1owQtjfXh03TmcrIx5Y4IfT208TzdbU756qA+lVSo+3B3Nbd1tmT/0xpqZKNVatodmMsbPsd62pSC0R2P9O+PpYM5nf19ApdFe+wv+o6utlF4FTgK+sixPlGV5nSzLFc0ekdAu5ZZWM3PpKUqrVayePxBvx0uVaol55cxdEYSZoR5utmacSS7CycqEvLIalBrdloCRvgI9hUSNWotPZws2LhqMnfmVx+FKqlR8uvcCgV2tuTfAiW8PxqHRyrw4rn4J+Bf7YglNL+GTB3tjbqTPglXBGBko+HpaAE9uPI9ao+WHmf14/rdQ1FqZZXMHYGFswI//JFBRo+atif71Vl3X49CFXAorlGKIn3BL0FNIvHxXD5LyK9gYlNrsj9foZrksy6Ob/dGFW0JRhZLZy4PILathzYKB9SZWphdVMmvZabRamd5drfk7MoeuNqakFVVycYvaUF+BJEGNWktPJ0uWzx3Ab2fTKKtWM9zLvl6Bw5f7YimqVLLq3oFcyClj/elUZg3uiqvNpRLwU4kF/HwkgekDXbnT15GHV54hq7iadQsH8fFfF0jMq2DV/AF8fyiB2JwyVs4biLudGbll1aw+mcx9fZ3/07mitadS6GxpfM2x6ILQXtzh68Agdxu+2h/HvQHO131e73qIHvrCf1JarWLOiiCSCipYNieQ/l0vJZC8shpmLw+itFrFMC87/o7MoZutKSmFlVw8JG5Y2x1BpZHp7dKJ18b7MmPZKT7cHcO3B+OZ+vNJcmvHS8Rkl7LmVAozBrnR07kTn/51AQtjA/53p3fdY5bXqHn+t1DcbEx5fbxu/tGx+Hzev68neyOyORiTy9v3+nM+tZhd4Vm8dFePummb20MyqVZpeWK05w3/e8TnlnM0Lp+Zg9xavJGlIDQXSZJ4Y4IfxVUq3tsV1ayPJX5rhBtWqVSz4NczRGeV8tOsftzmaVf3uZJKFbOXnyantJp7enVhe2gW7nZmJBdUole7K2ZQ+4Zao6WPSycm9nZi1vIgSqvUrHg4kABXK7wczLG3MNLNOdoWiYWxPs+N8SEsvZgDMbksHO5e77rN+zujyCyu4oupAewKz2Ll8eS6a0PLjumq7pysjPl8Xyz39XFi0YhLzUmKaoeaXX7A93qtPZWCgZ7EjMsm3QrCraCncyeWjPRgy9l0DjXjuHSRlIQbUqPWsHjNWc6mFPHVQ324vcelbtzlNWrmrgwiMa+C+/u6sDk4HXc7M5LyK9BX6Mq/9fUkZBnUWi19XK1wtzfn3Z1RDHK3YddTw7A3NyY0rZgZg9yQJIkdYVmcTirk+bE+WJka8PGeGKxNDZh7W7e6x/0rIouNZ9JqD89KvP5HBMM87Rjr78hrf+o6gM+9rSvPbAzBr4slHz/Qu17DVr8uum3HIR8dZNJ3x/hs7wUKK5o+fbOkSsVvwWmM79Wlrvu4INxKnrrDCy8Hc17dGn5dvxvXQyQl4bqpNbrKtqNx+Xz8QO96HQuqVRoWrQ4mPKOEGYNcWXs6BXdbXUIy0JPQaOXaxCSjlWX6uFphpK/HlrPpPDaqO6vmDcTW3IgVx5MwMdDjgf4uVNSo+Wh3NP5Olkwf6MaJhAJOJBTw1B1edV0iskqqeOn3cAJcOjFzoBtL1p6li5Uxr4335fF153CxNuWzKQE8tSEEgJ9m9b+ia/f43l048NxInhvjjYGegh8OxzOz9npYU6w5mUyFUlM300kQbjVG+np8MbUPBRVKHl17tlmq8URSEq6LVivz4pYw9kbm8PZEv3pzhVQaLU+sP8eJhALmDOnK6pMpdLM1JamgAkN9CbVGRk8hoZFlZBl6OXeiRq0lKLmQTx/szYt39UChkIjKLOXPkAzmDOmKpbEBXx+II6ukmncn9UQhwVf7Y+lsacz0gW51MT23ORSVRsv/Pdibxzecp7JGzTfTdU1WlRotS+cE8tX+OMIzSvh8ap96hRGX625vzpN3eLHl0dv45MEAorNK+Tvq2uczqlUaVhxPZrSPPX5Olte8vSC0V71cOvF/D/TidFIh7+yIvOn3L5KS0GSyLPP2jki2ns/guTHePHzZOR6NVub530LZH53Lw7d1Zd2pVJysTEguqMRIX4FKLaNQSHWnwn27WFJarSYut5xfZvdnymXJ7ZO9MVgY6fPYKE8S8spZcSyJqYEu9O9qzeHYPM4kF/HY6O51K52VJ5I5kVDA6+N9WXksmdC0Yj59MICfDicQk13KN9P7EppWzIagVB4d1Z0xflcO/mvIfX2cMNRXcCb52l2SNwSlUlihZMlIsUoSbn2T+7qweKQHa0+lsvZUyk29b5GUhCb7/O9YVp9MYdEID564/VKF2sWZSNtCMpk12I3NwenYmBmSXlSFiYGuO4NC0iUuhULCu7MFxZUq8spqWD1/IHf4XkoSJ+LzOXwhj8dGe2Jpos+7O6IwMdDjhXE90GplPtt7ATcbUx4aoFslxeaU8X9/xXCnrwNaWWZTcBpPjPYkNreMPRHZvHK3L106GfPan+EM9rDhuTHeV3xfjVFpZJRqLdbXKH+tVmn46Z8EBrnb1DvAKwi3shfH9WC0jz1vb4/kVGLBTbtfkZSEJvnlSALfHYpn+kBXXrm7R12BgCzLfLwnhnWnU5k2wJWdYVmYGuqRW1qNqYGCKlVtQpJ1h/A87EwpLFdSXqNm3SODGPyvLgxvbo/E1caEh2/rxt7IHP6JzeOZMd7YWxjxV2Q2kZmlPHWHF4b6CqpVGp7acB4LI31mDHLjnR1RjPS2x6+LBV/tj+P+fs5MHeDCkjVnsTQ24Jvpfa9rQF9Q7Sjoy89dNWTtqRRySmv433UkPEFo7/QUEl9P70tXW1MeXXuWtMLKm3K/IikJ17T5TBof7o5hfO8uvH9fr3oVaz8cTuDnI4nc18eJQzG5IENxpRJjAwWVKi0S6KrtFBJuNiYUVarQaGU2LR58xWTYFceTiM8t560J/mhlmfd2RuHjaMHcIV1RabR8tvcCng7mdfOJPt4TQ0x2Ga+P9+OVreF07mTM46O78/yWMAJcrfjwvp68+kcEaUVVfD+zX73GsE2xJzwLEwO9eonz3ypq1Pz0TyJDPGyvejtBuBVZGhuwbO4ANFqZhauDqahR/+f7FElJuKq/IrJ4eWsYI7zt+XJqH/Qua72z6kQyn+69wF3+jpxPLaaiRk2lUo2hni4hAcjoziM5WRlTUqVGIUlsWjz4iq7fGcVVfHMgjjt9HbjTz5FvDsSTUVzF+5N7oq+nYGNQKon5Fbx8Vw/0FBIHonP49UQyc2/ryoYzqbr2Qw8E8OzmUCyM9flldn+2h2axKyyL58Z6M6Bb/bEX11JarWJ7aCYTA7pcUaV3uRXHksgvr+GFu66cdCsIHYG7nRnfz+xHbE4Zz24OaXK1amNEUhIadTw+n6c2hNDH1YqfZvXDUP/Sj8vWc+m8tT2SUT72JOZXkFNajYyuuu5iQgJdxwZ7cyNKq9ToKyQ2LBp8xQRXWZZ5488IZBnevtef+Nxylh1N5MH+LgzoZkNJlYov98cx0N2GO3wdyC6p5vnfQvHrYolWqxtj8f59PfnqQCy5ZTX8PDuQGpWWd3ZEMsTDliU3UKK96ngylUpNvSm3/1ZUoeTnI4mM9XOkn5v1dT+GINwqhnvZ89p4P/ZG5vD1gbj/dF8iKQkNCk0rZtHqYNztzFjx8IB6M4X+jszmhS1hDPawoahCSVJeBYb6CrRaqLosIRnpK+hkqk+VSoOhvoKNiwbT3d78isfaEZbFwZhcnhvrjbOVCW/8GYGJoR4v390DuNTv7s0JfmhleHZzCNUqLfcGdGHNqRQWDHMnPL2EU4mF/N8Dvejl3InnfwtFIUl8NjXguhurFlUoWXo0kTt9Ha56Pem7Q/FUKNU8P06skgRh/tBuTOnvwtcH4tgdnnXD9yOSknCF+NwyHl4ZhI25IasXDMTK9FIbn2Nx+Tyx/nzdWZzwjBIsjPWpVmmoVl9KSMb6CkyN9FBrZPT1FGxYNBiPBhJSXlkNb22LIMDVinlD3dl0Jo2TiQW8eo8vduZGRGWWsvpkMjNr+939eDieEwkFLBzhzpf74xjsYYOXgzmrTqbwyDB3Jvd14ecjCQQlF/L2vf44NzD64lq+PhBHeY2aF8b1uMq/UTmrTiTz0ADXeh3RBaGjkiSJ9yf3pJ+bFc9tDiUys+SG7kckJaGejOIqZi8PQk+hYO2CQThaXioOOJ9axKI1wbjbmWJrZsipxELsLYwor9HUjaAAMDZQYKCnQE+SUEgSGxYOanCFJMsyr2wNp0Kp4fMpvSkor+GD3dEMdLfhoQGuaLQyr/4RjpWpIc+P9eFUYgFf7ItlnJ8jW4LTsTUz5NFRnry5LZLbutvy8t09iMgo4ct9sdzTq/MNjY6IyChh9clkZgxyu2qn8E/+isHEQI/nx4pVkiBcZKSvx0+z+2NlasCja89RWq267vsQSUmoU1ihZPby05TXqFmzYGC9ia8Xsst4eOUZbM0M6e5gzuELeThbmVBQrkR5WasRk9qiAFMjPdS1w/7+fQ3pos3BaeyPzuHFcT50tzfnjW0R1Ki1fHy/rsJv9clkQtKKeWOCL8ra1kZdbc0oqlSRX6Hkowd68dKWMBwsjfh+Rj8UksQLW8KwNjXkg39VCTaFUq3lpd/DsDEz4oWxja+SgpIK+Tsqh0UjPESPO0H4FwcLY76b0Y+M4ipe2RqOLF9f4YNISgKgK22e9+sZMoqqWDYnEN8ul6rjUgoqmLX8NEb6EoM8bNkdno2rtQmZJVWoayttJMDEQIFao8XGzJCKGg2r5g2sdz+XS8wr5+3tUQz11E143RGWxd7IHJ4d442HvTmJeeX8318xjPaxZ0KvLjy14Tyl1Sp6u3QiKLmQ9yb58/X+OEqqVPwyOxBrM0N2hmcRnVXKa+N9b2ji63eH4onMLOX9+/wbnRej0mh5/c9wnK1MWDD8xibTCsKtrn9Xa54f68OusCzWX+dgQJGUBJRqLY+uO0dERgnfzehXrytBbmk1s5afRq3RMs6/C1vOptPV1pS0oipdvTe6HyIjAwU1Ki1Otaun5XMDrziHdFG1SsMT689jZKDg8yl9yCmr5o0/ddeVFg73QKXR8r9NIRjp6/HxA7359O9YTiUWMrmvM9tCMpl3WzfOphRxLrWYz6YE4OdkSY1aw2d7L9CjswUTL2sQ21Rnkgv57mAc9/d15q6eXRq93aoTycTmlPPWRL96xR+CINS3eIQHI7zteW9n1HUdrBVJqYPTamVe+j2MI7F5fDi5Z72+cMWVuomyBeVKHujvwppTugarKZfNRFJIYKCvoFqlxd3ejIziKn6c1e+q7Xbe2xlFVFYpX0wNwN7CiGc36ZqpfjVNdw7q6/1xhKaX8NH9vTibUsQvRxK5q2dnfj+XwW3dbXGyMmFzcDpP3e7J+N66BLL5TBqphZW8eo8vCoVEeY2avyKyOBKbd81zE4UVSp7acB5XG1PemeTf6O1ySqv5an8co3zsm9w/TxA6KoVC4uP7e6GQJN7b2fTBgOJPvQ7u//6K4Y/aBqvTBlwaTFepVDP/1zMk5VewYJg7P/6TgLutKUkFlRjo6Tp+KyTdD16NWouPowUXcsr4alr92Ur/9ltwGutOp7J4pAe393Dky32xnEws4JMHe+NuZ8bx+Hy+PxzPlP4ueDqYc9/3x+npZMnZ5EIcLY2YMciNpzacZ6yfI89cNnE2NqccgNyyGhatDubwhby6a10edmZsWjwEe4srr/9otDJPbThPQYWS35fcVjcKoyFvb49EpdHy1kT/675eJQgdkZOVCY+O7M7n+2IJSy+mt4vVNb9GrJQ6sJXHk/j5SCKzB3et12BVqdayZO05QtKKWTjcnV+OJtaOoKjE2EChS0gKCSQJlUbGt4suIb0+3pf7+jZe8XY+tYjX/ozgtu62vDDWhyOxeXxzMI4H+rkwNdCVnNJqnt4YgoedGc+O8Wbh6mBMDfXRyDIVSg1v1LYT8na04MtpfeqdP7o4evz530IJSStm1uCubFw0mLF+jiTmVzRanvrxHt249Pcm+dPLpfEzSbvDs9gTkc2Tt3vibmfW6O0EQajv4aHdsDTWZ+nRpCbdXqyUOqhdYVm8uzOKcf6OvH3vpb/8tVqZ534L5UhsHktGerDsWBJdOhmTXFCJqaGCKqUWSdLdTgZ8u1gQnVXG4hEePDLco9HHyyiuYuHqszhaGvHdjH5kl1bz9Mbz+Dha8P59PVGqdbOYKmrUrJ4/gBd/DyOruJoB3aw5kVjAl1MD+HB3NIZ6CpbNDcTMqP6P7jNjvBjoboOHvRnd7c3RU0gUVSg5n1ZMT2dLhl02qv2izWfSWHo0iblDutZbJf5bbmk1r/4RTm+XTrVTbQVBaCoLYwMm9XFmc3AaZdWqq+5GgFgpdUhnkgv53+YQ+rlZ8/VDfev62cmyzDs7ItkRmsn8od1YfzoVa1MDMourMDfSo1Kp2w7TyqCQJDwdzInOKmNC7y68dFfjJdSl1SrmrQyiRqVh+dwBGOkreGRVMGqtzA8z+2FsoODNbRGcSS7i4wd6sSEojaNx+Qz3suN4QgHPj/Xht7PpZBZX8/Ps/rhYXzmgz9LYgLt6dsbb0UI3SFAr8/SmEEoqVXx8f+8ruoP/E5vHq3/oRqS/McGv0dgvJulqlYYvp/WpW5EJgtB04/w7U6PWcj61+Jq3Fb9hHUxCXjkLVwfjYmXC0jmB9ZqNfnswnlUnU5gW6MLOsCwM9BQUV6owMdCjvEYD6AruDPUUOFkZk15YST83Kz6b0ngrn4vj0RPzKvhpdn887Mx4asN5YnPK+H5GPzzszVl+LImNZ9J4fHR3CiuUrDmVwigfew7E5DI10IWs4iqOxxfw/uSeBDahsapc22H8SGwe70zyv6JVUEhaMY+uPYuXowU/zOx31XEWy44lcjQun9fG+zV4AFgQhGvr7ar7HYzKKr3mbUVS6kDyy2uYt/IMepLEr/MGYnPZWZ4NQal8sS+W8T07E5RcRGWNGrVWi55CokKpqbudqaEe5kZ6VKu02Job8fPswEa7aKs1Wp7eeJ5TiYV8NiWA27rb8sa2CA7E5PLupJ6M8LZnd3gWH+yO5p5enenp3Il3d0YR2NWaY3F53NbdFm9HC9aeTmXRCI96o9cbI8syX+yL5dcTyTwyzJ2HBtT/Gt0h4CDszI1YNW/AVbcSgpML+b+/LnCXf2dmDWp8e08QhKuzMNLHUE9BUaXymrcVSamDqFZpWLg6mNyyapbNDcTN9tIW2N7IbF77I5xhXnakFVWRWVyJuYkBNWptXUKSAHMjfTRaLfaWxpTXqPllTv8GK9pAV9X27OZQ9kbm8NZEPyb1ceKjPTFsCNJNhp01uCsnEvJ5ZlMIfV2tmDXYjWc2huDtYEFMVinuduZMG+DKh7ujGePneNXtwYu0Wpn3dkbz7cF4pgW68tp433pVcnE5ZcxcdgojfQXrHhmEg2Xj85UyiqtYsvYsLtYmfDKlt6i2E4T/QKOVUWm1GDZh+1skpQ5Aq5V5/rdQzqcW89W0PvS9bMzC6cQCntxwnl7OnZC1MhGZJThZmZJfVkN1bcdvfQWYGelRXqNmQDdbLmSX8dmUAPydGq5WU2u0vPBbKNtDM3nprh48fFs3vtgXyy9HEpkzpCvPjfWu7UJ+lm62prx6jy+Prj2Pg4URRRVKzIz1efGuHrz8ezi9nDvx9UP15zg1pFql4X+bQ1hxPIl5Q7vx0f312wxdyC5j+tJTSJLE+oWDcbW58rrURSVVKhb8eoYalZblcwOxvMaFWUEQri61sBJZpkkNkkX1XQfw1YE4doZl8crdPep1K4jMLOGRVcG4WBnjamPKzrAs/LtYEplVip6kWx0Z6CtQSFBeo2GcvyN7I3NYPNKj7tDqv6k0Wp7dHMqO0EyeH+vNkpEefLL3Aj8eTuChAa68PdGfyMxSZi8/jbWZAR/f35tH153FQE9CkqBKpeHLh/rw4pYw7C2MWDZ3wDU7J+SWVrNozVlC0op5YZwPj43qXi8hhaUXM2dFEIZ6CtYvbHh8xkUXV5QJeeWseHhAo337BEFouuPx+QAMdL/2NWGRlG5xW86m882BOKYFurJoxKWS7ZSCCuauOIOFsT7DvOxZfTKFANdOhKaVYKSvQKXWYqCnQKPVotLCCC87Dl/Iqztj1JAqpYbH15/jYEwur9zdg4XDPXhzWyRrTqUwY5Ab70/qSVhGCXNXBGFhbMDX0/rwzKYQqpQaOteWnX81rQ9vbYsEYNX8gY1uD150IkE3iLCiRs1Ps/pzV8/O9T8fn8+iNWexMjVg3SOD6jWZ/bcatYbFa85yJrmQr6b1YbiXfVP/mQVBaIQsy2wISsPb0bxJZ/xEUrqFnUwo4JWtYQz1tOW9+3rWrR7yy2uYvTwItVbL9IFd+fZgPH1crQhJK8bSWJ/yGjUKhYRSo8VYX0FXezOSCyqxMjXgm+l9G6xWK6xQsnB1MOdSi/hwci/u7+fMkxvPsyssi8UjPHj57h6cTirkkVXBWJsZ8O1DfXl2cygFFTV0szXjQnYZn08J4Kv9sZRUqdiwcPBVf4DLqlV8dyiepUcScbczY/3CQVfMNdoWksHzv4XiYWfOqvkD6dyp8WtI1SoNj649yz+xeXx8fy8m9bn+sReCIFxpX1QOUVmldd3/r0UkpVtUQl45S9aepautGT/M7F83yrysWsXDK4PILavmmTu9+eSvGHo6WRKSVoyViT4l1WqQQS3LWJsaIEkS3o7m7ArPYuOiIdg1MKohKb+C+b+eIbO4ih9qG7rOWnaa4JQiXr2nB4tGdGdnWCbPbgrFzdaUL6YG8MzGELJLq/F0MCc8o4SP7+/F8uNJJBdU8uu8AY12V9BqZbaFZvDBrhjyy2uY0t+Ft+71x/yyw7SyLPPdwXg+3xfLQHcbls4ObLTrN0B5jZqFq4I5lVTAh5N78dBAUWknCDdDeY2ad3dG4e1ozgP9XZr0NSIp3YKKKpQs+PUM+gqJlQ8PoJOJ7glZqdby2LpzRGeV8crdPfh07wXc7cyIyS7F1syQggpduaYEOFgYkV9ewwvjfPi/vy7w6KjuDe4HH4vL5/H159BTSKx7ZBDmxvpM+v4YOaU1fD+jH/f06sz3h+L5dO8FArta8869/jy2/hz55TV4O1oQml7Me5N6sjk4najMUn6Z05/bul/ZfaGiRs3W8xmsPpFMXG45Aa5WDXYir1ZpeHFLGNtDM7m/rzMfPdALI/2GS9ZBN/l2/q9n6hrETu7btF8cQRCuTpZlXv8jnMziKjYtHtLkg+ciKd1ilGoti9eeJbO4mg2LBtVVmWm1Mi9uCeVoXD4v3eXDj4cTsDEzJLesBgtjg7qEZKSvwMJYn9yyGp4f6836oFQ87M145k6veo8jyzLLjibx0Z5oPB3MWT53AJGZpcxZEYS5kT6bFg3G29GCJzecZ2dYFpP6OPHIcHfmrzpDtUqLl4MuIb0z0Z/tIZmEpBXz3fS+9Zq5yrLMmeQidoVlsvV8BmXVano6W/LltAAmBThfcWA3o7iKJWvOEpFZ0mDBw7/F5ZQx79czFJQrWTqn/1UbyQqCcH1+OZLInyGZPDvGmwFNOPR+kUhKtxBZlnlreyRBSboL9f27XvpB+PTvC/wZksnjo7uz6UwaKq0WA1mBLENRpUo3pM9Qt6IoqlQx1s+RSqWGtMIqNi4aXG+1UVKp4oUtofwdlcPdPTvz8QO9WXY0kW8PxhPgasUvs/tTXKni3u+OkZRfwUt39aCPaydmLj2NkYEebjYmhKYX8+6knmwPyeBcban63b0uVfQdvpDLZ39fICKjFEN9BeP8O/PwbV3p52bdYKI5FpfPUxvPo1JrWTo7kDuvMVriQHQOz2wMwchAj02LBzepe7EgCE2z9Vw6H+2JYULvLjwx2vPaX3AZkZRuIatPprAhKJVHR3Wv1617zclkfjycwNRAF47HF5BZXIWbrRmpBZVotFr0JDA20KNCqcHO3BAbM0OeH+fD+G+Ocn8/ZwZfNhvpaFweL20JI7eshtfH+3J/X2ee2nCef2LzmBrowjv3+rM5OJ0Pd0djYWzA2kcGkV1SzdwVZ3CyMsZIX4+orDI+mtyLTcFphKWX8M1DfetKzFMLKnl3ZxT7o3NwszHl/x7oxfjeTvWuGV1Oo9VdP/rqQCye9ub8NLv/VUu+tVqZ7w7F8+X+WPydLPlldiBOTTg7IQhC0/x5XldgNMTD9qotyBojktIt4lRiAe/tjOJOX4d6Jdv7o3J4a3skt/vYU1CuJDStmIDaSjtzQz1qkJAkXSuhHp0tiMstZ/PiQPZF5aDSyDx9h27brrBCyYe7o9lyNp3u9mZsefQ2NFqZCd8eI79cyQeTezLS256Fq89yLD6f0T72fHh/L1YcS2Lp0ST6ullRWK4kuaCCTx/szdKjSSTklvPDzH6M8++MViuz4ngSn/19AT1J4oVxPiwc7lFXoNGQnNJqntkYwsnEAib3deb9+3pe0T38ciVVKp7dFMKBmFwm93Xmw8m96laHgiD8d8uPJfH+rigGu9uy/OHGW5BdjUhKt4DM4ioeW3eOrramfHHZnKHw9BKe3HAefydLOncyZn1QGsM87TgWn4+DuSGFlSrUWhk9BfR0siQis5Rnx3jTv6s1v55IxqmTMeZG+nx7II6lRxOpVGp4dFR3nhztycoTyXyxLxYnK2O2PDqEyMxS7vrqKFpZ5sPJvRjlY8dTG85zJrmIu3t2JiipAI0MX0wN4NO9F8gurWbp3EBGetuTV1bDs5tDOBqXz52+Drx3X0+6dLr66uXvyGxe+j2MapWWTx/szYP9Xa56/ehCdhlL1p4lrbCSd+71Z86QrqJ1kCDcJFqtzPu7ollxPIm7/Dvz1UN9bighgUhK7d7F8zVKtZZf5lxqiZNRXMX8VWewMTPk9h4OfH0gnuFedhyNy8fF2oSMoipkwMJYH3MjfVIKK+njasVjo3TzgjzszNgRmkn/9/cDcKevIy+M88HSRJ8Fq4I5mVjAhN5deGyUJx/u1g3Ku627Lf/3QG/C0ku4++tjqDRaZg/uyqbgNDpbGvPa+B68/mckSrWWdY8Mon9XG04mFPDMpvMUV6r4cHIvpg90vWqyqFSqeX9XNOtPp+LvZMnXD/XF0+Hq3bu3nkvntT8iMDPSZ/3CwU06VS4IQtNUqzQ8uzmE3eHZzBvajdfH+12zLdjViKTUjsmyzGt/RBCaXsIvl11LKa9Rs+DXM1QrNSwZ48H7u6IZ5G7NyYQC3GxMSS2sBKjrNeftaEFkZglfTutTdzB2SqALxgZ6lNeouDfAGZ/OFuwJz+KVP8JRqrV8NLknJVUq7v/xOPoKBe/f15Mxfo68uyOKXeFZBLh0wtvRgjWnUhjYzYZZQ9x4dlMonUwMWL9kCB725ny1P5avD8ThbmvGiocHNNpL76KzKYU8tzmUlMJKFo/w4Nmx3lct966oUfPmtkh+P5fOIHcbvp3e96pNWAVBuD5phZU8uu4sERmlvD7e96qDPptKJKV27NcTyfx+Lp2n7/BirL+uvY5GK/Pk+nPE5Zbz+nhfPt4Tg29nC2Kyy7E1NyS1sBJDPQlLEwNyy2qYNsCFTWfSeXOCX70OCi7Wpjxau2oqqVLx7OYQtp7LoLdLJ56504uv98cRml7Cnb6OvDXRl0MX8rjzi3+oUWlZPMKD4JRCfjubztwhXXG1MeWZjSH4drFkxcMDAJix9BSnkwq5v68z713jWlC1SsMX+2JZdjQRJysTNiwcXK/4oiFh6cU8vTGElIIKnrrdk6fu8Lrq3CRBEK7PP7F5PL3xPBqtzLI51654bapmS0qSJBkDRwCj2sfZIsvyW5Ik2QCbgG5AMjBVluWi5orjVnUiPp/3d+nGOlwsRgD4cHc0hy7k8dwYb74/FI+duSEVSg1aWaa4UomJoR4SugO24/wdOR5fQI/OFsy9rVuDj3MwJodXt0aQV17D46M90ZMkFq85i4WxAd/N6Iu5kT6PrDrLhZwyhnnaMdLHnu8OxqPWaPlsSm/OphTx/q5o7vR15OuH+hCaVsyTG85TqdTw2ZQAHujnfNXtujPJhby0JYzE/AqmD3TltfF+jVbigW5ve+nRRD7dewF7CyPWNyGBCYLQdFqtzPeH4vlifyw+jhb8NKs/3ZrQ066pmnOlVAPcLstyuSRJBsAxSZL2APcDB2RZ/liSpJeBl4GXmjGOW056USVPbjiPu50ZX15W2LD2VArLjyUxY6AbO8OyqFZpcLMxJSy9GCsTA9QaBVVKDfbmRlibGtLTuRN7I3NYu2DQFXvAuWXVvL8zmu2hmXg7mvP8OG+WHkniQk4ZEwOcmDHAlR/+SeBoXH5d6fahmFw+2BVNXzcrXr1Ht0o7m1LE46O78+yd3vxyNIlP98bgYW/OpsX9rtqBu7RaxSd/xbDudCrOViasXTCIYV5Xdnq4XFZJFS9uCeNoXD539+zMR/f3wsrU8KpfIwhC05VUqXhucwj7o3N1M9Lu73XNLv7Xq9mSkizLMlBe+65B7YsMTAJG1X58FXAYkZSarEat4dG151Cqtfw8u3/dquFoXB5vbY9ktI89GcVVJOSVM9rHgX3ROXS3NyOloBK1VqankyVRWaWsXziYx9edY7iXXb0ne5VGy9pTKXyxL5YalZYnb/ekqrZ1j4OFMZ882JvTiYXMWH4aS2MDXr2nh67yZmc0NRotL4zzobdLJx5de5aKGg3fz+jHUE9bFq89y/7oXMb37sInD/RudLtOlmW2h2by/q5oCsprmHebO8+N9b7q9p4sy2wLyeTNbRGoNDIfTO7JjIFuorpOEG6imOxSlqw5S3pRFW9P9GPubd2a5XesWa8pSZKkB5wFPIHvZVk+LUmSoyzLWQCyLGdJkuTQyNcuAhYBuLmJBpkXvbMjivCMEn6+rLAhNqeMx9aew8vBHFcbU1afTGFigBM7QjPxd7IkMrMUfYWEbxcLIjJLWTzCA1mGggolM2vHfGu1MrsjsvhyXywJeRUM87Tjwf4ufHMgjsT8Cqb0d8HW3JA3t0WglWHhMA88Hc344VACyQWVjPS2543xvmwLzWTuiiDc7czYsHAwpdVqxn9zjNyyat6a6MfDV/lBjsgo4Z0dkZxJLiLApRMr5jbemPWi3NJqXv0jnP3RufRzs+KLqX1u6laCILSGtvb8ty0kg5d/D8fcWJ8NiwZfV9ug69WsSUmWZQ3QR5IkK+APSZJ6XsfX/gL8AhAYGCg3T4Tty7aQDNafTmXJyO6Mqy1sKCivYcGqMxgb6nFfX2c+3hPDOH9Hdodn4dfFgsjMUiyN9TEyUJBfrsTH0YJnx3rXDd2KziojpaCSDUGpJBdU4ulgztcP9SEoqYBnNoXgYm3C46O788e5DDJLqhnfqwtDutuw9lQqvxxNxMfRghUPB+JqbcrzW8IISSvmgX4uvDXRj7WnU/j879qzTEtuu6J56kVphZV8uT+WP85nYGNqyEf392JqoOtVy0ovro7e3hFJlVLD6+N9mTfU/T+VogpCW9FWnv/UGi0f74lh2bEkBnSz5vsZ/Zq9grVFqu9kWS6WJOkwcBeQI0lSl9pVUhcgtyViaO/ic8t57Y8IArta8/xYb0DXfHXJ2rPkltbwxgQ/3tkRyYBuNpxKLMTZypj43HJszAwpqVLRv6s1R+LyWTF3AEb6eozwssfLwZyvD8QBMKCbNc+P88FQoeDN7ZHklFXzQD9n0gqr+P5QAn5dLJk2wI3d4VnsCs+qvZ4VwN09u7DieBKPrj2HiaEe30zvyxAPWx5ff46jcfmM792Fj+7v1eBI8dSCSn46ksDmM2koFBKLRnjw2CjPuq7mjUkrrOTVP8I5GpdPH1crPp8acNXWQoIgXL/CCiVPbjjH8fgC5g7pyusT/Jrc6fu/aM7qO3tAVZuQTIA7gf8DtgNzgY9rX29rrhhuFRU1apasPYuRvqJuyJ7ujFI4Z5KLeHOCH5/9fQEXKxMKymuQkVFqZEwM9Sis3aJbdzqVxSM96rbD9PUU7Ht2JAeic/DpbIGBnoK3t0eyJyIbb0dzRni78Of5TIwNFMwY6MbZlEK+3B9Ld3szvprWhwm9uxCUVMi93x0jNqecu3t25p17/YnOLuOeb45SWtXwYVhZljmfVszyY0nsCc9CX6Fg+kA3Hhvd/ZpdHJRqLUuPJvLtwTj0JIl3J/kzc1BXsToShJssMrOERavPkldWwycP9mZqoGuLPXZzrpS6AKtqryspgM2yLO+UJOkksFmSpAVAKjClGWNo92RZ5sXfw0jMK2ftgkF1zUNXHE/mt7PpLB7hwbrTKciyTBcrE04nFuDv3ImozFIkCYZ52hKTVYaDhRFP3e51xf0P97Jn1Ylkvtofi1orM22AK6cS8tkcnM4wTzuKKpW68RV2Znz9UB8m9HYiNqeMxWvOciAmF1cbE36e3Z/hXnZ88tcFfj2RjLejOavnD8S3i2Xd41SrNGwPzWTNyRTCM0qwMNZn4XAP5g9zx7EJ2wEn4vN5e0cksTnljPN35O17/a+ZxARBuH7bQjJ46fcwrEwM2bxkCH0a2XZvLs1ZfRcG9G3g4wXAHc31uLea5ceS2BWWxYt3+XCbp65K7mhcHh/simKMrwPRWaWkFlYyobcTf5zPYJS3PYdj83C0NEKjhQf6ufK/zSENNiv9JzaPd3dEkpBXwXAvO0wM9dh0Jg0XKxMGdLPmWHw+nS2N+eSB3tzfz5nIzFIeW3eWvZE5WBjr8+JdPswf6k5kZgn3fH2U5IJKHr6tGy/f3aOu71V+eQ2/Hk9m7ekUiitVeDmY894kf+7v53LVirqLskqqeGd7FH9FZuNsZcLyuYHc4SvmHgnCzabVynyy9wI//ZPAwG42fD+zH/YWV06abm6io0MbFpxcWFe48OhIXXeF1IJKnlh/Hi8HC5ysTFh1MqVue26klz3/xOXh7WBObG45K+cNYN2pVOwtjJg24NLyOyy9mE/3XuBoXD5dbUx5ZLg7W89lUFqlIrCrNaHpxRRUKHl2jDfzh7pzPCGfWctPcyqxEAtjfZ66w4v5Q7thoKfg070XWHE8CefaTgtDuusOquaUVvPj4QQ2BKWi1GgZ6+fIw7e5M9jDpkllpDVqDcuPJfH9wXg0sswL43xYMMz9hps8CoLQuGqVhud+C2VXWBYzBrnx9kT/q3bob04iKbVRRRVKnlh/HmdrEz55MABJkqhUqlm0JhhZlpnc15mP/4phUh/dCsnPyZLwzBJcrUyJyytnxiA3Rvs48PzmUPq6WSEBh2Jy+fVEMv/E5mFlasAToz05n1rEsqNJdLc3w0BPIjiliHsDnHh2jDcnEgqYWDuoz9nKhNfu8eWhga6YG+mzNzKH93ZGkVlSxYyBbrxyjy/mRvqUVatYeiSRX44motbo4lwyqvt1FSIcvpDLOzuiSMqv4E5fB96c4I+brWnz/WMLQgdWVKFk0ZpgziQX8crdPVg0wqNVz/iJpNQGybLMC1tCKaio4Y/HhtLJxEB3bWlLGLE5ZbwxwY+P9sQwoJs1oWnFmBjoYaSnoLJGjYmBHk6dTHj1Hl8A7uvrzPJjSfR+528qlRrsLYz4351eyMCPhxPQV0h1Z5k87M1YNb83F7LLePCnE+SXK+nl3InvZvTlLv/O6OspiMws4YNd0ZxIKMDH0YItS4bQv6sNWq3MutMpfPF3LAUVSib07sKL43pcVzJJL6rk7e26AX/udmasnj+QEd72zfSvLAhCZnEVs5afJr2wim+n92VigFNrhySSUlu0/FgS+6NzeXOCHz2dddVyPxxOYGdYFk+M9uTnfxKxNzfE1FCf9KJi7uvrzJaz6Yz2sefQhTzWPzKortPDY6O6U63SUF6j5i7/zlibGfD29ihissvwd7IkuaCCuNxy/nenF1amBry4JYyc0hqGe9nx6KjuDPGwRZIk4nLK+PZgPDvCMrEyMeCde/2ZOcgNfT0FIWnFvLU9ktC0Yga527ByvO91jRevUmr45UgiP/2TAMBLd/Vg/rBuV+0ALgjCf5NaUMn0pacorVKx9pFBbWaki0hKbUxIWjH/91cMY/wcmTe0G6Dbdvvs7wtMDOhCUHIhxVVKpgW6supkCnOHdGXNqRTG+Dpw8IJuJPnFgggAW3MjPpjci/zyGj7aHcPv59JxsDDCy8GcyMxSBnvY8EA/F378J4HEvAoCu1rz9UN9+f/27jsqqmvt4/h3I0UpgoCAgoIggg0saNAkdmO7N9EYk+uNRtN7ountTe/JvbkpN8XojcaYqIldYzSxJJrYFQvFCkhRREB6GZj9/jEjASMKKsMMPJ+1WGtgzpn5rQHmmX3OPs+ODvZCa82u5By+3HSMNbEZODs2494BIdw/MAR3ZweyC8t4Z3UCC3am0NrNiQ9uiWRsjws3WD3X5sOneW7Jfo5nFzGmexueHR1OQCs5VCdEfTpyqoBbZ26ltNzIt3dHX7RziiVJUbIipwtKuW/uLvzcm/PeTREopTiWWcAj8/fQ2a8lrZwdWbH3BA8MCuHzX49yXRdf1sZlEOjlgpNDMxyb2fHUyPBqj2moMPLd9uO8v+YgRWUV9O3gyZ7jORQbKnh6ZBh7jufw5A/7CPJyZuZtUQzt7EOxoYJ525L5dtvxyo4QjwzpyNSrO+Dp4kiFUTN3SxLvrz1EYWk5d1/bgUeHdbpg9+5zpZ8p5rWVcaw+cJIO3i58e/dV9A+5cMNVIcTlO3Iqn3/M2Aoo5t8TTbhfy4vuY0lSlKxEhVHz2MK9ZBeVseSB/ng4O1JUVs793+zG3k4xISqAV1bEcXNUAAt3phLc2pXmDs3IzC/li8m9ufvrndx1bTDerqYpnFpr1sRm8O5PCRw7XUhEgDsFJeVsT8zmuq6+dPJx48N1h1EonhwRxl3XdiA1p5hXVsSxaFcq+aXlhPu58frYbozr6V85fXvL0SxeXxVHbHoe/UO8ePn6rnTyrbnb97kMFUZm/57EB78cwqg1jw3vxD0DgmVWnRAWkJJdxK0zt6GUqSBZYycUKUpW4pP1R/jtUCZvjutO17bulRMbDp/K5/Wx3XhtZTx9AluRnFVEQamB6cNDeX7JAR4e0pH4E3kYNYzu3obyCiM/x2UwY9Mx9hw/Q0hrF0Z09WVtbAbebk48OyqcpTHprI3N4Louvrx0fVdO5ZVw39xdbDiYiUMzxahubbitXyC9A1tVHopLPF3IG6vi+CX+FP4eLfh4Yk/+FtGmTofqth3L4vmlBzhyqoAh4T68cn1X2nnKoTohLCEjr4RbZ26jtNzIgnv6WWVBAilKVmFHUjYfrT/M2B5tmdjXdD3R3K3JrNx3gkeGdmTmpkRcnOzp2d6DGZsSeWNcNz7/9SjBrV14aEhHDp0s4LONRxn739/xcnEkq7CMgFYtuPPqDqyNO8ma2AzG9wrAxcmOd35KwNvViS8m98bb1YlnFpnWH/JwduCx4Z2Y2Ld9tQvmjmcV8cmGwyzanUZze7tLul4oJbuIt1cnsGr/Cfw9WlQeJpSlJYSwjNwiA5NmbiOroJRv744mzK/2RzcsTYpSA8stMvDId3to16oFr47thlKKmJQzvLYyjsFhrTl6qpDk7CJe+lsXXl4Ry7ie/pw4U0JKdjEL7onGyb4Z3QPcmTW1D9/vTCWvxMCIrr5sPnyaWb8nEuTlzIt/68KcLUkkZxUxsW97pvQP5NMNR1m+Nx1vV0eeGRXOpOjAaueEEk7mMWtTIov3pNHMTnFbv0DuHxSCj1vtOwQXlJbzpXlWnZ1STB9mOlTXwlEO1QlhKWcbNydlFTLnjr41duu3FlKUGpDWmueW7Cczv5TFD/SnZXMHcosMPPTtbnzcmhMd7MVbqxN4dGgoMzcn4t+qBQ8MCmHMx5u5oUdbrqqyzHd0sBd9gjxZsCOF11bGm85HDQwhv9TAa6viCGjVgtm39yEm5Qw3fPI7AI8M6ch9g0IqV44sKzcd+puzJYntidk0d7BjcrSpGNWmP91ZZeWmyRUfrTtMVmEZYyLa8MKYztKrTggLO/ses+VYFh/cEmkTk4mkKDWgr35PYtV+U1+7iAAPjEbN9IUxZOSV8O74CJ5evJ/BYa05lV9CSk4RC+/tx9KYNMorjDxxXVi1x9qemM2rK2M5kJZH3w6e3BLVjo/WHybZ3I9uQKh3ZZeEv0W04dnRnfH3aIHWmt3Hc1i2J40V+06QXVhGO88WPDMqnFui2tHKpfbLiZeVG1m8O5XPfj1KclYR0cGezBrV2eINHYUQJp9uPMoPu1KZNiyUcT0DGjpOrUhRaiB7U87w5o/xDO/iy30DTH3tZmw6xvqEUzw/ujOfbDiCewsHbuodwIPf7uGeAcH0CfLk8YV7GRTmUzlBIOFkHv/5+TA/xZ6kjXtz3p8QyYG0Mzz+/V7ae5qmef8cl8Edc3YS6OVc2SUhv8TA3C1JfLP1OAcz8nG0t2N4Z19uigpgQGjrOi0HUVRWzg+7Uvl841HSc0vo7u/O/6ZGMThMzhsJ0VA2HjRd33h9ZFseHfrXFQKslRSlBpBbZOCBebvxbdmc92+KxM5OsSMpm/fWHGR0dz8STxdw7HQhX06O4qXlsQS3duGx4Z3QWnMyrwRXJ3uW7kljWUwaGw5m4upkz/Rhnegd6MELSw9Uduvu2d6dZxbvI6fIwH0DQ5g2LJTcYgOvrohjwY7jFJZV0M2/JW/d2J2/RbTB7TwL8V3IidxiZv+exHfbj5NXUk6v9h68eWN3BnZqLcVIiAZ0PKuIR+fHEO7XknfGR9jU/6MUJQvTWvN/yw6QkVfCovv74+7sQG6xgWnzTUuPj+7ehofMI6OYlDOknSnm+/v60dyhGVprIgPc2ZGUw7QFMXi7OjFtWCi3RLVj5uZEJv9vOwGtTLPbVu0/waPz99LNvyWzb++Ln3tz3vkpgXnbjlNh1Fwf2ZYp/YOIDHCv0x/s2cN9s/9IZvX+Exi1ZmQ3P26/ugNRVaaQCyEaRomhgnu/2YXWmi8m9ba5iUVSlCzsh12pLN+bzuPDOxHZzsN0InLxfjLySpg1JYrHv99LuJ8bE/u2Y8R/NjG2R1v6BJl6UimlmHvnVaTmFFFu1AR7u7IrOYd/fLmV5KwiJkW35+qO3jy/dD9ZBWU8OjSUuwd0YN7W43y8/gjFhgrG9/LnocGhde66XWHUrIk9yRe/HWNvyhncmtszpX8QU/sHybVGQliRt36MJ/5EHl9N7WOT3fWlKFlQSnYRr6yIo28HTx4Y3BGAJXvSWLX/BE+OCOOH3WnkFhuYe+dVfLbxKGh48py2Qc0dmtHRx43cYgMvLjvA/B0pBHo5878pUayJzeD+b3YT6uPKrCl9yCwoZcxHm0nOKmJIuA/Pj+lc5wvmSgwVLNyZwqzNiSRnFRHo5czrY7txYy//yll7Qgjr8EtcBnO2JHPnNR0YHO7T0HEuibyrWEhZuZGHv9uDAv59cyTN7BQp2UW8uCyWPkGt6OjjyntrDjJ9WCe8XZ1YvDuNSdGB+HtUn0attWb53nReXxVPdmEZ9w4IZkCoN88s2U9aTjH3Dwrhtn6BvPvTQZbsSSOktQtz7ujLwDouAVFUVs787Sl88dtRMvJK6dneg6dHhjOiq1+dJkEIISwjI6+EJ3/YS9e2LXlqZNjFd7BSUpQs5P21B4lJOcOnt/YioJUzFUbN9AUxKOCNsd2Z+tV2wnzduH9QCN9sTabcqJkU3b7aYxxIy+XVlXFsT8wmIsCdLyb3Yk1sBpPM55IW3tuPtDPFjP5wE/kl5Tw8pCMPDelYpyUgisrK+XpLMl/8epScIgN9O3jywc096BfiJeeLhLBSRqPmsYUxlBiMfDSxp00v+yJFyQI2Hz7Nl5uO8c+r2jO6exsAvvo9kZ3JOfxrQiRLY9JIzy3h+4k9cbS3IzY9D9+WTnT0MbUCOZSRz383HGFZTDpeLo68Ma4b3f3deeqHfSSczGdi3/bcO7ADb65KYG1cBj3aefDuTRF1apSaXVjGnD+SmLs1mezCMgZ2as3DQzoSFWQda6wIIWo2Z0sSvx/J4p3x3a22p11tSVGqZ7nFBh5bGENIa1deGGNaDfZYZgHvrjnIsM6+RAW14tnF+7mxp3/lhAaNJruwjKH/2oiLkz37UnNp7mDHA4NCuPvaDny7PYXxn/2Bh7Mjs6ZEUW7U3PjpFgpKy3ludDh3XhNc60NsiacLmbslme+2H6fYUMHQcB8eGNyR3oGt6u01EUJcOak5Rby35iCDwlpzc1S7ho5z2aQo1bNXVsSSVVjGrCl9cHa0r2z74WRvx5vjuvH6qnjs7Ki2DtILY7rQTCl2Hc/BsZkdz40OZ3yvAHKKypj61Q72puYyJqINT40I4z+/HGbJnjS6tm3Jh//oUTm6upDC0nLWxJ5k/o4UtidmY2+nuL5HWx4YFFKr/YUQ1kFrzfNLDgDwurl3pq2TolSPVu07weLdaTwyNLRyZceFO1PYeiybN8d1p9hQwcp96dwzIAQ/9z97y3m6OPLehMjK7w0VRmb8dowP1x3GxbEZH0/siaeLIxNnbCUjv5RHh4by0JCOODSzqzFL0ulCNh05zaZDmfx2OJMSg5EgL2eeHBHGhN4B+NSht50Qwjosi0nn10OZvPz3Lo1mxWYpSvUkM7+UF5buJzLAnYeHmKZ/5xSW8eaPCfQN8uQffdrx+qp47O3suMO87Pn57Es9w9OL9hN/Io/R3f14YUwXvvo9kS83JRLs7cKi+/uft7ec1pp9qbmsPnCStXEnOZZZCIC/RwtujmrHmO5t6BPkiZ3MpBPCJuUUlvHKilh6tvdgcr+gho5zxUhRqgdaa574fi9FZRW8PyGycgTz/tqD5JcYeG1sN4xas3xvGsO6+Jx3lJJbZODdNQl8u/04Pm5OfD6pN4FeztwxewcJJ/OZFN2e50d3+cvV2jmFZczblsyCnSmkZBdjb6eIDvbituhABnRqTQdvl0YxxBeiqftw3WFyiw28dWP3RnWZhhSlerB4dxq/Hsrkleu7EmqeAXfwZD7fbT/Obf2CCPNzIzY9l9MFZYzo6ldt3xJDBfO2Hefj9YfJLylnav8gHh0ayvwdKTzy3R7cnR2YNSWKoZ19q+2XVVDKl5sS+XpLEkVlFfQP8eLhIaFc18UXD+fad/oWQli/I6cKmLs1mYl92xPu17Kh41xRUpSusFN5Jby6Mo5e7T2YHB1Y+fP31hzE1cmeacNM3XpTsosBKDUYTfvll7B4dxqzNieSmV/KNR29eW50Z9ya23PXnJ3sTM5hZFc/3hjXDS/XP1eGLTFUMGtzIp9uOEKRoYK/R7TlwcEdrXplSSHE5Xl7dTzODs2YPrxTQ0e54qQoXWEvr4il2GA6bHf2fM3+1Fx+ic9g+rBOlaOWfiFeRAS489SifTy1aB9KgdYQHezJh//oQXQHT77bkcJbPyaggA9uiWRsD/9qh942HDzFy8tjSc4q4rouvjw1MkxmzwnRyO1LPcMv8ad44jpT95fGRorSFfRLXAY/7j/JkyPCCK5yAdtnv5rWRrrjmqDKn7m3cGDBPf1YuS+dtXEZdGvrzpiINnT0cSU1p4ips3fy26FM+od48c74iGpNTzPzS3ljVRxLY9IJae3C3Dv7cm1o3doICSFs08frTe8nU/oHNXSUeiFF6QrJKzHw7JL9hPu5cfe1wZU/z8grYU1sBndd0+Ev6xW1cGzGhKh2TDBf8GY0amb/nsi7aw6igFdv6Mrk6MDK0ZHWmkW703hlRSwlhgoeGdKRh4aE4mhf81RwIUTjEX8ij5/jMpg2LLTO65/ZCilKV8h/1x/hdEEps6ZEVSsSq/adoMKouaXPha+0PpCWy4vLDrD7+BkGdmrNG+O6Vbvu4HRBKf+39ACrD5ykb5AnbzWCdiJCiLr5eksSzR3suL1/h4aOUm+kKF0BhzPymbU5kQm9A4gI8Kh23/qEU4T5ulU7nFdVTmEZ//75EPO2JePp4si/JkRyY6/q547WxWfw9KJ95BWX89TIMO4dENKopoAKIS4ur8TA0j3pXB/ZFnfnxjlKAilKl01rzYvLYnFxsueZUZ3/cn/i6UL6BP21j1xBaTn/25zIl78do8hQwaToQB6/Lgz3Fn/+seWVGHhx6QGWxqQT7ufGvLuiZVadEE3Usj1pFJvfKxozKUqXaePBTLYcy+KV67vi6fLX64GaO9iRWVCK1hqAgxn5LNqVyvwdKeSXlHNdF1+eGBH2l47eO5OymbYghhO5JTw6NJQHB3eUc0dCNGHL95o+nJ57NKaxkaJ0GcorjLy2Mo5gbxcm9m1/3m2u6+rHZxuP0uHZH/FwduBMkQF7O8WIrn7cMyCYyHNaBBkqjHy87jAfbziCv4dpjSTp2C1E03Yqr4SdyTlMG9r4rks6lxSly7B4TxrHThcyY3LvGkcx04d1or2nM0mnC8kvLadLm5aM6uZX7QLYsxJO5vHYgr3EnchjfK8AXrmhK65O8isSoqlbE5eB1jCqu9/FN7Zx8o53icorjHy28Sjd/FsyvItvjds52tvVOIo6y2jUfPVHEu/8lEDL5vZ8PqkXI7u1udKRhRA2avPhTAJatSDUp/HPuJWidImWxaSTeLqQzyf1vqwGp+lnipm+IIZtidkM6+zD2+MjGuVV2kKIS7ctMZvhnX2bRDNlKUqXQGvNzM2JhPm6MaJrzaOkiz3GvG3HeWd1AkateXd8BBOiAprEH50QovZKDBUUFBm4KtiroaNYhBSlS7A3NZf4E3m8Oa77JRWR1Jwinlm0n81HTtM/xIu3buxOoJdLPSQVQti6YkMFAD3bezRsEAuRonQJFu9OxdHejjERdTvvYzRqZv+RxPtrTW2EXhvbjUlXtZfRkRCiRiUGI24OdgQ1kQ+uUpTqSGvNTwdOMqyzT7ULXS8mJuUMLy+PJSblDIPDWvPqDd2qNVkVQojzKTFUEOXr1mS6uEhRqqOjmQWcyi9lYKfadeWuuoKst6sT/745knE9/WV0JISoldJyIx28m8YoCaQo1dmxzEKAi672WGKo4OstSXyy/ggFpeXc3r8D04c33s6+Qoj6UV5hpI1Hi4aOYTFSlOqotNy0UqyTw/kvli0qK2fR7jQ+23CE9NwSBoe15skR4XRp27iWLBZCWIYG2rg3b+gYFiNFqY7am88D/XEkq3K0pLXmyKkCFu1OY+HOFLILy+jRzoP3JkRydUfvhowrhGgE/FpKURI16ObvzrWh3ry6Mo7le9Nxa27P0VMFpOeW0MxOMSTch3sGBBMV2ErOGwkhrgg/GSmJmjSzU8y5vS9fbjrG6gMnySs20DOwFQ+GeDGssy++TegTjRDCMuoy09fW1VtRUkq1A74G/AAjMENr/aFSyhNYAAQBScDNWuuc+spRH+zsFPcODOHegSENHUUI0QQ0pcbM9blATznwuNa6MxANPKiU6gI8A6zTWocC68zfCyGEqIFrcylKl01rfUJrvdt8Ox+IB/yBG4A55s3mAGPrK4MQQtg6BTjZN2voGBZjkaVMlVJBQE9gG+CrtT4BpsIF+NSwzz1KqZ1KqZ2ZmZmWiCmEEFah6vtfQ2extHovSkopV2ARME1rnVfb/bTWM7TWUVrrqNata9c9QQghGoOq739Npb3QWfValJRSDpgK0jyt9WLzjzOUUm3M97cBTtVnBiGEELaj3oqSMl2kMwuI11r/u8pdy4Ep5ttTgGX1lUEIIWxdU7vesT6ndFwNTAb2K6VizD97DngbWKiUuhM4DkyoxwxCCGHTmlZJqseipLXeTM2v59D6el4hhGhMmthAyTKz74QQQlwa1cTGSlKUhBDCmjWtmiRFSQghrFkTq0lSlIQQwpq1cGw63RxAipIQQlg1/ya06ixIURJCCGFFpCgJIYSwGlKUhBBCWA0pSkIIIayGFCUhhBBWQ4qSEEIIq6G01g2d4aKUUplAch138wZO10OcK01yXnm2ktVWcoLtZLWVnKe11iNrs6FS6qfabtsY2ERRuhRKqZ1a66iGznExkvPKs5WstpITbCerreQUNZPDd0IIIayGFCUhhBBWozEXpRkNHaCWJOeVZytZbSUn2E5WW8kpatBozykJIYSwPY15pCSEEMLGSFESQghhNWy6KCml/qeUOqWUOlDD/a2UUkuUUvuUUtuVUt0sndGco51SaoNSKl4pFauUevQ82yil1EdKqSPmvL2sNGe4UmqLUqpUKfWEpTNWyVGbrLeaX8t9Sqk/lFKRVprzBnPGGKXUTqXUNZbOWdusVbbto5SqUErdZMmM5ueuzWs6SCmVa35NY5RSL1o6p7hEWmub/QIGAL2AAzXc/x7wkvl2OLCugXK2AXqZb7sBh4Au52wzGliNaaHJaGCbleb0AfoAbwBPNODvvjZZ+wOtzLdHWfFr6sqf53cjgARrfU3N9zUD1gM/AjdZY05gELCyIV5H+bq8L5seKWmtfwOyL7BJF2CdedsEIEgp5WuJbFVprU9orXebb+cD8YD/OZvdAHytTbYCHkqpNtaWU2t9Smu9AzBYMtu5apn1D611jvnbrUCAZVPWOmeB1vrsjCMXoEFmH9Xy7xTgYWARcMqC8SrVIaewQTZdlGphL3AjgFKqLxBIA7wxVaWUCgJ6AtvOucsfSKnyfSoN+I92gZxWp5ZZ78Q0Em0wF8qplBqnlEoAVgF3WDjaX9SUVSnlD4wDPm+AWH9xkd99P6XUXqXUaqVUV8smE5eqsRelt4FWSqkYTJ/u9gDlDRVGKeWK6RPmNK113rl3n2eXBvnEfJGcVqU2WZVSgzEVpactme2cDBfMqbVeorUOB8YCr1k4XjUXyfof4GmtdYXFg53jIjl3A4Fa60jgY2CpheOJS2Tf0AHqk/kP9XYwTSQAEs1fFqeUcsD0DzRPa734PJukAu2qfB8ApFsiW1W1yGk1apNVKRUBzARGaa2zLJmvSoZav6Za69+UUiFKKW+ttcUbi9YiaxQw3/TvhDcwWilVrrVearmUF89ZtUhprX9USn3aUK+pqJtGPVJSSnkopRzN394F/NYQn/zNBXEWEK+1/ncNmy0HbjPPwosGcrXWJywWklrntAq1yaqUag8sBiZrrQ9ZMl+VDLXJ2dG8HeZZl46AxQtobbJqrTtorYO01kHAD8ADDVCQavOa+lV5Tftieq9rkA8lom5suqODUuo7TLNsvIEM4CXAAUBr/blSqh/wNVABxAF3Vjnxbcmc1wCbgP2A0fzj54D2VbIq4BNgJFAE3K613mmFOf2AnUBL8zYFmGY+WbTY1zLrTGA8fy57Uq4t3EG6ljmfBm7DNHmkGHhSa73Zkjlrm/Wc7WdjmuH2gwVj1vY1fQi4H9Ph+mLgMa31H5bMKS6NTRclIYQQjUujPnwnhBDCtkhREkIIYTWkKAkhhLAaUpSEEEJYDSlKQgghrEajvnhWNE5KqQKttesl7LcNcAI8gRZAmvmusVrrpCuXEJRSr2HqZ2jE1CNuqtba4hdDC2FrZEq4sDmXWpSq7D8ViNJaP3TlUv3lOVqevXZLKfUIpmu57quv5xOisZDDd8JmmdfM2aiU+kEplaCUmmfuiDFKKbXwnO1W1PAYIUqpn5RSu5RSm5RS4eafz1ZKfWZet+eYUmqgMq3fFW++aPTs/gVKqX8ppXYrpdYppVpD9TY3NGDnbyFsjRQlYet6AtMwLVMSDFwN/AxEK6VczNvcAiyoYf8ZwMNa697AE8CnVe5rBQwBpgMrgA+ArkB3pVQP8zYuwG6tdS/gV0xdRQBQSr2hlEoBbgVkkTkhakGKkrB127XWqVprIxADBGmty4GfgL8rpeyBMcCyc3c0d5nuD3xv7iT/BaYF5M5aYV7naD+QobXeb36eWCDIvI2RPwveN0DlqrFa6+e11u2AeUC9HSoUojGRiQ7C1pVWuV3Bn3/TC4AHMS0CucO8GNy57IAzWuseF3ls4znPY6Tm/53zHab7FtM6SS+d5z4hRBUyUhKN1UagF3A3NRy6M5/3SVRKTQBT92mlVGQdn8cOuMl8+5/AZvNjhVbZ5nogoY6PK0STJCMl0ShprSuUUiuBqcCUC2x6K/CZUuoFTB3m52Nasbi2CoGuSqldQC6m81cAbyulwjCNqpIBmXknRC3IlHAhLsPlTk8XQlQnh++EEEJYDRkpCSGEsBoyUhJCCGE1pCgJIYSwGlKUhBBCWA0pSkIIIayGFCUhhBBW4/8B9yb2UOsVRvoAAAAASUVORK5CYII=\n", - "text/plain": [ - "
    " - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], "source": [ + "An \"upgrade\" you might be interested in, is the joint plot, which adds the histograms to the axes:\n", + "\n", + "```python\n", "sns.jointplot(x=\"InvTemp3\", y=\"VapourPressure\", data=distill, kind=\"reg\");\n", "\n", "# Or, show the kde=kernel density estimate\n", - "sns.jointplot(x=\"InvTemp3\", y=\"VapourPressure\", data=distill, kind=\"kde\");" + "sns.jointplot(x=\"InvTemp3\", y=\"VapourPressure\", data=distill, kind=\"kde\");\n", + "\n", + "```" ] }, { @@ -2418,7 +432,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Checking how well the regression model works\n", + "## Checking how well the regression model works: training data\n", "\n", "Next, we would like to extract some idea of how the model performs. For that we can look at\n", "* the predictions of the `build`ing data, \n", @@ -2455,9 +469,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "The above gives an idea of how the model works on the data used to build the model. \n", + "## Checking how well the regression model works: testing data\n", "\n", - "But of course, the idea is to use the model in the future, on data not seen before. So let's test the model on the rest of the rows\n", + "The above gives an idea of how the model works on the data used to build the model. But of course, the idea is to use the model in the future, on data not seen before. So let's test the model on the remaining rows:\n", "\n", "```python\n", "# Create the testing data set\n", @@ -2466,7 +480,7 @@ "y_test = test[\"VapourPressure\"].values\n", "```\n", "\n", - "Then use the `predict(...)` function again, but on the testing data. Notice how simple scikit-learn makes this:\n", + "Then use the `predict(...)` function again, but on the testing data. Notice how simple scikit-learn makes this; just replace the input to the function with a different data frame:\n", "```python\n", "prediction_test = mymodel.predict(X_test)\n", "errors_test = y_test - prediction_test\n", @@ -2476,25 +490,14 @@ "\n", "1. Calculate the average absolute error below, but for the model testing data\n", "2. Calculate the standard deviation of the prediction errors (another way to judge the model). Smaller is better.\n", - "3. Lastly, plot the prediction errors for the building data (first 200 rows) to see what time-based trends there are." + "3. Lastly, plot the prediction errors for the testing data to see what time-based trends there are. Any concerns?" ] }, { "cell_type": "code", - "execution_count": 57, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(1.9788871919692939, 1.501480336386846)" - ] - }, - "execution_count": 57, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "test = distill.iloc[200:]\n", "X_test = test[[\"InvTemp3\"]].values\n", @@ -2503,7 +506,8 @@ "prediction_test = mymodel.predict(X_test)\n", "errors_test = y_test - prediction_test\n", "avg_absolute_error = pd.Series(errors_test).abs().mean()\n", - "avg_absolute_error, errors_test.std()" + "avg_absolute_error, errors_test.std()\n", + "pd.Series(errors_test).plot(grid=True)" ] }, { @@ -2517,27 +521,14 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "TODO: calculate R2, using the `score` method" - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0.8007063962347453" - ] - }, - "execution_count": 41, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "mymodel.score(X_build, y_build)" + "## Calculate the $R^2$ value\n", + "\n", + "Using the `score` method, we can get the $R^2$ value. The function needs two inputs:\n", + "```python\n", + "mymodel.score(X_build, y_build)\n", + "```\n", + "\n", + "and you will get a value that shows how the two variables are correlated. NOTE: the $R^2$ value is not a measure of goodness of the predictions. Only of the degree of correlation. High correlation is no guarantee of good prediction." ] }, { @@ -2547,6 +538,22 @@ "outputs": [], "source": [] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Improving the model: adding extra predictors\n", + "\n", + "A least squares model $$ y = b_0 + b_1x1$$\n", + "with an intercept $b_0$ and slope of $b_1$ can be improved by adding a second, or more predictors: $$ y = b_0 + b_1x1 + b_2x_2 + \\ldots$$\n", + "\n", + "We will try to improve our model by adding another predictor ``InvPressure1``.\n", + "\n", + "```python\n", + "\n", + "```" + ] + }, { "cell_type": "code", "execution_count": null, @@ -2585,170 +592,9 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" - ], - "text/plain": [ - "" - ] - }, - "execution_count": 28, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# IGNORE this. Execute this cell to load the notebook's style sheet.\n", "from IPython.core.display import HTML\n", @@ -2774,7 +620,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.1" + "version": "3.7.9" }, "toc": { "base_numbering": "1", From 4236b22bfef07e516f51aaa082f1c165b9331740 Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Mon, 23 Nov 2020 20:26:56 +0100 Subject: [PATCH 113/134] Update worksheet for linear regression and extra visualization. --- Module-15-interactive.ipynb | 136 +++++++++++++++++++----------------- 1 file changed, 72 insertions(+), 64 deletions(-) diff --git a/Module-15-interactive.ipynb b/Module-15-interactive.ipynb index 3192692..6a43c0e 100644 --- a/Module-15-interactive.ipynb +++ b/Module-15-interactive.ipynb @@ -7,7 +7,7 @@ }, "source": [ "

    Table of Contents

    \n", - "" + "" ] }, { @@ -42,10 +42,10 @@ "\n", "In this module we will cover\n", "\n", + "* Visualization of a correlation matrix with a heat map\n", "* Fitting a linear regression model to the data\n", "* Visualization of the linear regression model\n", "* Accessing data from your data frame using `.loc` and `.iloc`\n", - "* TODO: Summarizing your data using an aggregation function and apply function.\n", "\n", "**Requirements before starting**\n", "\n", @@ -147,23 +147,48 @@ "distill.shape" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Visualizing the correlation matrix\n", + "\n", + "The correlation matrix of numbers can be tedious to read on a screen. You can easily visualize it though:\n", + "\n", + "```python\n", + "import seaborn as sns\n", + "display(distill.corr());\n", + "\n", + "# Let's visualize it instead, as a heat map.\n", + "sns.set(rc={'figure.figsize':(15, 15)})\n", + "sns.heatmap(distill.corr());\n", + "\n", + "# This is not so attractive. Use a different colour map (cmap):\n", + "cmap = sns.diverging_palette(220, 10, as_cmap=True)\n", + "sns.heatmap(distill.corr(), cmap=cmap, square=True, linewidths=0.2, cbar_kws={\"shrink\": 0.5});\n", + "```" + ] + }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], - "source": [ - "# Here is the solution code for the above:\n", - " \n", - "# display(distill.corr())\n", - "# from pandas.plotting import scatter_matrix\n", - "# scatter_matrix(distill, alpha = 0.2, figsize=(15, 15), diagonal = \"kde\");\n" - ] + "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ + "### Visualizing the scatter plot matrix\n", + "\n", + "We saw the scatter plots before, and the scatter plot matrix.\n", + "\n", + "```python\n", + "from pandas.plotting import scatter_matrix\n", + "scatter_matrix(distill, alpha = 0.2, figsize=(15, 15), diagonal = \"kde\");\n", + "```\n", + "\n", "The data set is quite big and takes some time to generate all the scatter plot combinations.\n", "\n", "We can use every third row instead.\n", @@ -196,9 +221,7 @@ "execution_count": null, "metadata": {}, "outputs": [], - "source": [ - "#scatter_matrix(distill.iloc[0::3,:], alpha = 0.2, figsize=(20, 20), diagonal = \"kde\");" - ] + "source": [] }, { "cell_type": "markdown", @@ -217,11 +240,7 @@ "execution_count": null, "metadata": {}, "outputs": [], - "source": [ - "\n", - "from pandas.plotting import scatter_matrix\n", - "scatter_matrix(distill.loc[:, [\"Temp9\", \"InvTemp3\", \"InvPressure1\", \"VapourPressure\"]], alpha = 0.4, figsize=(10, 10), diagonal = \"kde\");\n" - ] + "source": [] }, { "cell_type": "markdown", @@ -321,12 +340,7 @@ "execution_count": null, "metadata": {}, "outputs": [], - "source": [ - "X = build[[\"InvTemp3\"]].values\n", - "y = build[\"VapourPressure\"].values\n", - "mymodel = LinearRegression()\n", - "mymodel.fit(X, y)" - ] + "source": [] }, { "cell_type": "markdown", @@ -493,23 +507,6 @@ "3. Lastly, plot the prediction errors for the testing data to see what time-based trends there are. Any concerns?" ] }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "test = distill.iloc[200:]\n", - "X_test = test[[\"InvTemp3\"]].values\n", - "y_test = test[\"VapourPressure\"].values\n", - "\n", - "prediction_test = mymodel.predict(X_test)\n", - "errors_test = y_test - prediction_test\n", - "avg_absolute_error = pd.Series(errors_test).abs().mean()\n", - "avg_absolute_error, errors_test.std()\n", - "pd.Series(errors_test).plot(grid=True)" - ] - }, { "cell_type": "code", "execution_count": null, @@ -544,33 +541,33 @@ "source": [ "## Improving the model: adding extra predictors\n", "\n", - "A least squares model $$ y = b_0 + b_1x1$$\n", - "with an intercept $b_0$ and slope of $b_1$ can be improved by adding a second, or more predictors: $$ y = b_0 + b_1x1 + b_2x_2 + \\ldots$$\n", + "A least squares model $$ y = b_0 + b_1x_1$$\n", + "with an intercept $b_0$ and a single slope of $b_1$ can be improved by adding a second, or more predictors: $$ y = b_0 + b_1x_1 + b_2x_2 + \\ldots$$\n", "\n", - "We will try to improve our model by adding another predictor ``InvPressure1``.\n", + "This is called a multiple linear regression (MLR) model. We will try to improve our model by adding an extra predictor ``InvPressure1``:\n", "\n", "```python\n", "\n", - "```" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "predictors = [\"InvTemp3\", \"InvPressure1\" ]\n", + "# Specify the predictors in a list:\n", + "predictors = [\"InvTemp3\", \"InvPressure1\"]\n", + "\n", + "# Specify the training data:\n", "X_build_MLR = build[predictors].values\n", "y_build = build[\"VapourPressure\"].values\n", + "\n", + "# Fit the model\n", "full_model = LinearRegression()\n", "full_model.fit(X=X_build_MLR, y=y_build)\n", - "print(f\"The intercept is {full_model.intercept_:.5f} and the slope is = {full_model.coef_}\")\n", + "\n", + "# Print some stats:\n", "predict_MLR_build = full_model.predict(X_build_MLR)\n", "errors_MLR_build = y_build - predict_MLR_build\n", "avg_absolute_error_MLR_build = pd.Series(errors_MLR_build).abs().mean()\n", - "avg_absolute_error_MLR_build\n", - "\n" + "print(f\"The average absolute error {avg_absolute_error_MLR_build:.3f}\")\n", + "pd.Series(errors_MLR_build).plot(grid=True, title=\"Error = Actual - Predicted\")\n", + "```\n", + "\n", + "Notice the power here: you only have to change the first line to add new predictor. The rest of the code is the same as before (just more generic variable names)." ] }, { @@ -578,18 +575,29 @@ "execution_count": null, "metadata": {}, "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, "source": [ - "test = distill.iloc[200:]\n", - "X_test_MLR = test[predictors].values\n", - "y_test = test[\"VapourPressure\"].values\n", - "predict_MLR_test = full_model.predict(X_test_MLR)\n", - "errors_MLR_test = y_test - predict_MLR_test\n", - "avg_absolute_error_MLR_test = pd.Series(errors_MLR_test).abs().mean()\n", - "avg_absolute_error_MLR_test \n", + "## Challenge: checking the MLR model on the testing data\n", + "\n", + "Try creating code for the testing data, which uses the 2 predictors.\n", "\n", - "\n" + "* Extract the values for ``X_test_MLR`` and `y_test``.\n", + "* Use the ``full_model.predict(...)`` function\n", + "* Calculate the average absolute error and the standard deviation of the error.\n", + "* Plot the errors over time. Are they smaller than for the case where you had only 1 predictor?" ] }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, { "cell_type": "code", "execution_count": null, From f125e958f47839311c50930dfc4bab43512797df Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Tue, 24 Nov 2020 15:01:01 +0100 Subject: [PATCH 114/134] Updates and tweaks to the text. --- Module-06-interactive.ipynb | 171 +--------- Module-07-interactive.ipynb | 169 +--------- Module-08-interactive.ipynb | 169 +--------- Module-09-interactive.ipynb | 626 +++--------------------------------- Module-15-interactive.ipynb | 92 ++++-- 5 files changed, 106 insertions(+), 1121 deletions(-) diff --git a/Module-06-interactive.ipynb b/Module-06-interactive.ipynb index 19e06eb..ddf7a82 100644 --- a/Module-06-interactive.ipynb +++ b/Module-06-interactive.ipynb @@ -7,7 +7,7 @@ }, "source": [ "

    Table of Contents

    \n", - "" + "" ] }, { @@ -721,170 +721,9 @@ }, { "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" - ], - "text/plain": [ - "" - ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "# IGNORE this. Execute this cell to load the notebook's style sheet.\n", "from IPython.core.display import HTML\n", @@ -917,7 +756,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.3" + "version": "3.7.9" }, "toc": { "base_numbering": 1, diff --git a/Module-07-interactive.ipynb b/Module-07-interactive.ipynb index ec5cae6..2abae28 100644 --- a/Module-07-interactive.ipynb +++ b/Module-07-interactive.ipynb @@ -7,7 +7,7 @@ }, "source": [ "

    Table of Contents

    \n", - "" + "" ] }, { @@ -882,170 +882,9 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" - ], - "text/plain": [ - "" - ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# IGNORE this. Execute this cell to load the notebook's style sheet.\n", "from IPython.core.display import HTML\n", @@ -1078,7 +917,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.3" + "version": "3.7.9" }, "toc": { "base_numbering": 1, diff --git a/Module-08-interactive.ipynb b/Module-08-interactive.ipynb index ca12e5b..ac2172e 100644 --- a/Module-08-interactive.ipynb +++ b/Module-08-interactive.ipynb @@ -7,7 +7,7 @@ }, "source": [ "

    Table of Contents

    \n", - "" + "" ] }, { @@ -336,170 +336,9 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" - ], - "text/plain": [ - "" - ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# IGNORE this. Execute this cell to load the notebook's style sheet.\n", "from IPython.core.display import HTML\n", @@ -532,7 +371,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.1" + "version": "3.7.9" }, "toc": { "base_numbering": 1, diff --git a/Module-09-interactive.ipynb b/Module-09-interactive.ipynb index e05f894..db6fa02 100644 --- a/Module-09-interactive.ipynb +++ b/Module-09-interactive.ipynb @@ -7,7 +7,7 @@ }, "source": [ "

    Table of Contents

    \n", - "
    " + "" ] }, { @@ -28,170 +28,9 @@ }, { "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" - ], - "text/plain": [ - "" - ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "# Run this cell once, at the start, to load the notebook's style sheet.\n", "from IPython.core.display import HTML\n", @@ -630,37 +469,9 @@ }, { "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " TopRight TopLeft BottomRight BottomLeft\n", - "count 160.000000 160.000000 160.000000 160.000000\n", - "mean 556.300000 578.162500 485.881250 562.987500\n", - "std 253.979864 345.012148 248.875038 345.173805\n", - "min 26.000000 0.000000 5.000000 9.000000\n", - "25% 387.250000 295.000000 316.500000 261.250000\n", - "50% 548.000000 548.000000 491.500000 557.000000\n", - "75% 687.250000 855.250000 643.500000 796.250000\n", - "max 1264.000000 1440.000000 1229.000000 1410.000000\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD8CAYAAAB+UHOxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAGetJREFUeJzt3X2UHNV55/HvLxLiPQiMPSskYEhQiEAxGCYYs9gZoV2McGJps7AgcWLhla2cNWjjJAQJK1kcZ0VE2BjbwiFWPCwiQRKY2KAgkKzI02F1zPu7YEzQwQTGgLEDKB6LAMLP/lF3cGs00vR01/Rb/T7n9FHVrdu3bz9T6qfr1q0uRQRmZlY8v9DoDpiZWWM4AZiZFZQTgJlZQTkBmJkVlBOAmVlBOQGYmRWUE4CZWUE5AZiZFZQTgJlZQY1vdAf25vDDD4/Ozs5Gd2NEP/3pTznwwAMb3Y224Xjmy/HMT6vE8qGHHvpxRLx3pHpNnQA6Ozt58MEHG92NEZVKJbq7uxvdjbbheObL8cxPq8RS0r9UUs9DQGZmBeUEYGZWUE4AZmYF5QRgZlZQTgBmZgXlBGBmVlBOAGZmBeUEYGZWUE19IZi1H0m5teX7WZvVxkcAVlcRMeLj6MV3VFTPzGozYgKQdL2kVyRtHWbbpZJC0uFpXZK+ImmbpMclnVxWd76kZ9Jjfr5vw8zMRquSI4AbgLOHFko6EvjPwPNlxbOAqemxELgu1T0MuAL4IHAqcIWkQ2vpuJmZ1WbEcwARcbekzmE2XQNcBtxeVjYbuDGy4/N7JU2UNAnoBjZFxKsAkjaRJZU1NfXezCwneZ6fgtY4R1XVOQBJHwd+EBGPDdk0GXihbL0/le2p3MysKeR5fqoVPvyhillAkg4AlgJnDbd5mLLYS/lw7S8kGz6io6ODUqk02i7W3cDAQEv0s5U4nvnx/pmvdoplNdNAfxk4BngsHTJNAR6WdCrZN/sjy+pOAV5M5d1DykvDNR4RK4GVAF1dXdEKv73dKr8R3jI2rHc8c+T9M0dttm+OeggoIp6IiPdFRGdEdJJ9uJ8cES8D64BPpNlApwHbI+IlYCNwlqRD08nfs1KZmZk1SCXTQNcA9wDHSeqXtGAv1e8EngW2AX8DfAYgnfz9M+CB9PjC4AlhMzNrjEpmAc0dYXtn2XIAF++h3vXA9aPsn5mZjRFfCWxmVlBOAGZmBeUEYGZWUE4AZmYF5QRgZlZQTgBmZgXlBGBmVlBOAGZmBeUEYGZWUE4AZmYF5QRQgzVr1jB9+nRmzpzJ9OnTWbPG97cxs9ZRzc9BG9mH/9KlS+np6eGdd95h3LhxLFiQ/U7e3Ll7/fkkM7Om4ARQpWXLljFv3jwWLVpEX18f06ZNY968eSxbtswJwMxaghNAlZ566il27Nix2xHAc8891+iumZlVxOcAqjRhwgQuueQSZsyYwfjx45kxYwaXXHIJEyZMaHTXzMwq4gRQpbfeeosVK1bQ29vLzp076e3tZcWKFbz11luN7poZ4EkKNjIPAVXp+OOPZ86cObucA7jwwgu57bbbGt01M09SsIo4AVRp6dKlw/4HW7ZsWaO7ZsayZcvo6elhxowZ794Uvqenh0WLFjkB2LucAKo0d+5cvvvd7zJr1izefPNN9t13Xz796U/7P5c1hb6+Ps4444xdys444wz6+voa1CNrRpXcFP56Sa9I2lpWdrWk70l6XNK3JE0s23a5pG2Snpb00bLys1PZNklL8n8r9bVmzRrWr1/PXXfdxaZNm7jrrrtYv369x1mtKUybNo0tW7bsUrZlyxamTZvWoB5ZM6rkJPANwNlDyjYB0yPi/cA/A5cDSDoeuAA4IT3nrySNkzQO+CowCzgemJvqtqzyQ+zBWUA9PT0eArKmsHTpUhYsWLDLJIUFCxawdOnSRnfNmsiIQ0ARcbekziFl3y5bvRc4Ny3PBtZGxJvA9yVtA05N27ZFxLMAktamuk/V1PsG8iG2NbPBocjySQq+SNGGyuMcwH8Hbk7Lk8kSwqD+VAbwwpDyDw7XmKSFwEKAjo4OSqVSDl3M31FHHcW1117LBz7wAQYGBiiVSjzyyCMcddRRTdvnVuIY1m7SpElce+21DAwMcNBBBwGOax7aKYY1JQBJS4GdwE2DRcNUC4Yfaorh2oyIlcBKgK6uruju7q6li2PmyiuvfHcW0H777UdEsGLFCq688kqatc8tY8N6xzBHg7OALAdttm9WnQAkzQd+E5gZEYMf5v3AkWXVpgAvpuU9lbckzwIys1ZXVQKQdDawGPiNiNhRtmkdsFrSF4EjgKnA/WRHBlMlHQP8gOxE8bxaOt5o5bOAyq8DOP30050EzKwlVDINdA1wD3CcpH5JC4BrgYOBTZIelfTXABHxJHAL2cndDcDFEfFOROwELgE2An3ALaluy/IsIDNrdZXMAhru62zPXuovA3b7FIyIO4E7R9W7JtbX10d/fz/Tp09/d5bF4sWLPQvIzFqGrwSu0hFHHMFll13G6tWr3x0CmjdvHkcccUSju2ZmVhH/GmgNJO113cysmfkIoEovvvgiN9xwwy4X2lx11VVcdNFFje6amVlFfARQpWnTpjFlyhS2bt3K5s2b2bp1K1OmTPFvrZhZy/ARwAj2Nqxz5plnjvo5P79kwsyssXwEMIKI2ONj9erVnHDCCaBf4IQTTmD16tV7re8PfzNrJj4CqMHcuXOZO3cunUvWs3X5xxrdHTOzUfERgJlZQTkBmJkVlIeAzFpU3ted+BxV8fgIwKxFjTThYPBx9OI7KqpnxeMEYGZWUE4AZmYF5QRgZlZQTgBmZgXlBGBmVlBOAGZmBeUEYGZWUJXcE/h6Sa9I2lpWdpikTZKeSf8emsol6SuStkl6XNLJZc+Zn+o/I2n+2LwdMzOrVCVHADcAZw8pWwJsjoipwOa0DjALmJoeC4HrIEsYwBXAB4FTgSsGk4aZmTXGiAkgIu4GXh1SPBtYlZZXAXPKym+MzL3AREmTgI8CmyLi1Yh4DdjE7knFzMzqqNpzAB0R8RJA+vd9qXwy8EJZvf5UtqdyMzNrkLx/DG64X6eKvZTv3oC0kGz4iI6ODkqlUm6dG0ut0s9W4Xjmy/HMTzvFstoE8ENJkyLipTTE80oq7weOLKs3BXgxlXcPKS8N13BErARWAnR1dUV3d/dw1ZrLhvW0RD9bheOZL8czP20Wy2qHgNYBgzN55gO3l5V/Is0GOg3YnoaINgJnSTo0nfw9K5WZmVmDjHgEIGkN2bf3wyX1k83mWQ7cImkB8DxwXqp+J3AOsA3YAXwSICJelfRnwAOp3hciYuiJZTMzq6MRE0BEzN3DppnD1A3g4j20cz1w/ah6Z2ZmY8ZXApuZFZQTgJlZQTkBmJkVlBOAmVlBOQGYmRWUE4CZWUE5AZiZFZQTgJlZQTkBmJkVlBOAmVlBOQGYmRWUE4CZWUE5AZiZFZQTgJlZQTkBmJkVVN73BLaCOvFPv832N97Orb3OJetzaeeQ/ffhsSvOyqUts3bjBGC52P7G2zy3/GO5tFUqlXK772peicSsHXkIyMysoGpKAJJ+X9KTkrZKWiNpP0nHSLpP0jOSbpY0IdXdN61vS9s783gDZmZWnaoTgKTJwP8EuiJiOjAOuAC4CrgmIqYCrwEL0lMWAK9FxLHANamemZk1SK1DQOOB/SWNBw4AXgLOBG5N21cBc9Ly7LRO2j5Tkmp8fTMzq1LVCSAifgD8H+B5sg/+7cBDwOsRsTNV6wcmp+XJwAvpuTtT/fdU+/pmZlabqmcBSTqU7Fv9McDrwDeAWcNUjcGn7GVbebsLgYUAHR0dlEqlartYV63Sz7GUVwwGBgZyjaf/No5BntoplrVMA/1PwPcj4kcAkr4JnA5MlDQ+fcufAryY6vcDRwL9acjoEODVoY1GxEpgJUBXV1fkNR1wTG1Yn9u0xZaVYwzynAbqvw2OAflep3LRhp/m0k4zXKNSSwJ4HjhN0gHAG8BM4EGgFzgXWAvMB25P9del9XvS9u9ExG5HAGZmecvrOpV2u0allnMA95GdzH0YeCK1tRJYDPyBpG1kY/w96Sk9wHtS+R8AS2rot5mZ1aimK4Ej4grgiiHFzwKnDlP334Hzank9MzPLj68ENjMrKCcAM7OCcgIwMysoJwAzs4JyAjAzKygnADOzgnICMDMrKCcAM7OCcgIwMysoJwAzs4JyAjAzK6iafguoleX587CQ3y/7NcNPxJpZMRQ2AeT187DQfj8Ra2bF4CEgM7OCcgIwMysoJwAzs4JyAjAzK6jCngQ2a2aepWb14ARg1oQ8S83qoaYhIEkTJd0q6XuS+iR9SNJhkjZJeib9e2iqK0lfkbRN0uOSTs7nLZiZWTVqPQfwZWBDRPwqcCLQBywBNkfEVGBzWgeYBUxNj4XAdTW+tpmZ1aDqBCDpF4GPAD0AEfFWRLwOzAZWpWqrgDlpeTZwY2TuBSZKmlR1z83MrCa1HAH8EvAj4P9KekTS1yUdCHRExEsA6d/3pfqTgRfKnt+fyszMrAFqOQk8HjgZWBQR90n6Mj8f7hmOhimL3SpJC8mGiOjo6KBUKtXQxb3Lq+2BgYFc+zmW73ksOZ75cjzzlUe/2y6WEVHVA/gPwHNl6x8G1gNPA5NS2STg6bT8NWBuWf136+3pccopp8RYOXrxHbm11dvbm1tbefarnhzPfDme+cqr360SS+DBqOBzvOohoIh4GXhB0nGpaCbwFLAOmJ/K5gO3p+V1wCfSbKDTgO2RhorMzKz+ar0OYBFwk6QJwLPAJ8nOK9wiaQHwPHBeqnsncA6wDdiR6pqZWYPUlAAi4lGga5hNM4epG8DFtbyemZnlx1cCm1nbO3jaEn5t1d7mqIzCqpGrVOLgaQD5XO1dLScAM2t7P+lbnstPa7Tbz2oUNgHk+o0A2upbQTUcT7PWU9gEkNc3Ami/bwXVcDzNWo/vB2BmVlBOAGZmBeUEYGZWUE4AZmYF5QRgZlZQhZ0FZNbMPK3W6sEJwKwJeVqt1YOHgMzMCsoJwMysoJwAzMwKygnAzKygnADMzArKCcDMrKCcAMzMCqrmBCBpnKRHJN2R1o+RdJ+kZyTdnO4XjKR90/q2tL2z1tc2M7Pq5XEE8HtAX9n6VcA1ETEVeA1YkMoXAK9FxLHANamemZk1SE0JQNIUsuvCv57WBZwJ3JqqrALmpOXZ/PyC9FuBmam+mZk1QK1HAF8CLgN+ltbfA7weETvTej8wOS1PBl4ASNu3p/pmZtYAVf8WkKTfBF6JiIckdQ8WD1M1KthW3u5CYCFAR0cHpVKp2i6OKK+2BwYGcu3nWL7nseR45svxzFce/W67WEZEVQ/gz8m+4T8HvAzsAG4CfgyMT3U+BGxMyxuBD6Xl8ame9vYap5xySoyVoxffkVtbvb29ubWVZ7/qyfHMl+OZr7z63SqxBB6MCj7Hqz4CiIjLgcsB0hHApRFxoaRvAOcCa4H5wO3pKevS+j1p+3dSRxsm11823JBPW4fsv08u7ZiZjWQsfg56MbBW0v8GHgF6UnkP8LeStgGvAheMwWtXLK+f2oUskeTZnplZPeSSACKiBJTS8rPAqcPU+XfgvDxez8zMaucrgc3MCsoJwMysoJwAzMwKygnAzKygnADMzArKCcDMrKDG4joAM8uBL1S0seYEYNaEfKGi1YOHgMzMCspHAJYbD1mYtRYnAMuFhyzMWo+HgMzMCsoJwMysoJwAzMwKyucAzKwQcpuk0EYTFJwAzKzt5TWpoN0mKHgIyMysoJwAzMwKygnAzKygqk4Ako6U1CupT9KTkn4vlR8maZOkZ9K/h6ZySfqKpG2SHpd0cl5vwszMRq+WI4CdwB9GxDTgNOBiSccDS4DNETEV2JzWAWYBU9NjIXBdDa9tZmY1qjoBRMRLEfFwWv4J0AdMBmYDq1K1VcCctDwbuDEy9wITJU2quudmZlaTXKaBSuoEPgDcB3RExEuQJQlJ70vVJgMvlD2tP5W9NKSthWRHCHR0dFAqlfLo4phrlX62CsczX45nftopljUnAEkHAX8PfDYi/k3SHqsOUxa7FUSsBFYCdHV1RXd3d61dHHsb1tMS/WwVjme+HM/8tFksa5oFJGkfsg//myLim6n4h4NDO+nfV1J5P3Bk2dOnAC/W8vpmZla9WmYBCegB+iLii2Wb1gHz0/J84Pay8k+k2UCnAdsHh4rMzKz+ahkC+o/A7wBPSHo0lX0OWA7cImkB8DxwXtp2J3AOsA3YAXyyhtc2M7MaVZ0AImILw4/rA8wcpn4AF1f7emZmli9fCWxmVlBOAGZmBeUEYGZWUE4AZmYF5QRgZlZQTgBmZgXlBGBmVlBOAGZmBeUEYGZWUE4AZmYF5QRgZlZQTgBmZgXlBGBmVlBOAGZmBeUEYGZWUE4AZmYF5QRgZlZQTgBmZgVVyz2BqyLpbODLwDjg6xGxvN59GA1pT3e9HFLvqsray+6MaWbWeHU9ApA0DvgqMAs4Hpgr6fh69mG0ImLER29vb0X1/OFvZs2k3kNApwLbIuLZiHgLWAvMrnMfzMyM+g8BTQZeKFvvBz5Y5z6YtYVKhyehsiHKoh+hFnG4V/XspKTzgI9GxKfS+u8Ap0bEorI6C4GFAB0dHaesXbu2bv2r1sDAAAcddFCju9ESZsyYkVtbvb29ubXVzrx/5qdVYjljxoyHIqJrpHr1PgLoB44sW58CvFheISJWAisBurq6oru7u26dq1apVKIV+tkMKvnC4Xjmy/HMT7vFst7nAB4Apko6RtIE4AJgXZ37YGZm1PkIICJ2SroE2Eg2DfT6iHiynn0wM7NM3a8DiIg7gTvr/bpmZrYrXwlsZlZQTgBmZgXlBGBmVlBOAGZmBeUEYGZWUHW9Eni0JP0I+JdG96MChwM/bnQn2ojjmS/HMz+tEsujI+K9I1Vq6gTQKiQ9WMll11YZxzNfjmd+2i2WHgIyMysoJwAzs4JyAsjHykZ3oM04nvlyPPPTVrH0OQAzs4LyEYCZWUEVKgFIeo+kR9PjZUk/KFufMMq2tkh6WtJjku6X9P6ybRslHVzB808apvxkSWePpi/NYAxiu1ts9lL/i5KelLRc0m9L+tXRv4OxJemdFIvHJD0s6fQR6ndKmle2fpKkc3LsT6ls/32gPN6S7pQ0sYLn7zYbJu9+VqpJ41vxbCFJV6d9+GpJc+p1r/RCJYCI+NeIOCkiTgL+GrhmcD3do3i0zo+IE4G/Ad69UVxEfDQiflJlN08GWi4BjEFsK6LsPn6fAk6KiCXAbwNNlwCAN1IsTgQuB/58hPqdwLyy9ZOAvD9YL0z9+Svg6sHCiDgnIl6vss2x6GclmjG+o/G7wMkR8UfAHMAJoJ4kXSZpa3osSmXHpqz8t5KekHSLpP2Hefo9ZPc7Hmyrf/AblKQ/lfQ9SZsk3Szps2XPuyAdPTwt6fTU9v8CLkzfZs4dw7dcNzXGdrCN8emb/v2SHpf0qbRpPXAg8ICkPyH7T3xNil/nGL+1av0i8BpkCSx969ua4nB+qrMc+HB6H4uBLwDnp/XzJR0m6bYUi3sHj0AlfV7SKknflvRcOiL6i9T2Bkn7DNOfofvvc5IOT8t/Urb/rpF0adnzzkt/j3+W9OF0pLdLP/MOXIWaLb6k545LfXkgtfu7qXwd2T58n6QrgI8DV6e+/PKYRQmyW/QV8QF8Hrg0LZ8KPAYcABwM9AHvB44FAjgt1bsR+Gxa3kL2rRPgUuALZW33AxOB04CHgH3Jdspnhzz/qrT8cWBDWv4U8KVGx6dZYlvW5meAJWl5X+AR4Ciye1q8Xlbv74A5jY7BMDF5B3gU+B6wHTgllf9XYBPZDZI6gOeBSUA3cEfZ8y8Cri1bXwFckZbPBB4ti/0WYB/gRGAHMCtt+9ZgbIAS0JWWPwtcWdb2c2RXvHalPu+f/nbPlP1dS8BfpuVzgH8crp+O7y59XAj8cdk+/CBwTFofKKt3A3BuPeJW9xvCNKkPA38fETsAJN0GnAF8G/h+RNyb6v0d2R/xS2n9ZkkHAiIbuhnqDOC2iHgTeFPSHUO2fzP9+xDZIWk7qja2Q50FTJN0QVo/BJjKkHtKN7E3IhseQ9KHgBslTSeLxZqIeAf4oaR/An4d+LcR2juD7MONiPiOsnMwh6Rtd0XE25KeIPvg25DKn2DX/eymtP+OY8/77+0R8Ubq9z8M2d5M+28zxneos4D3lx3ZD+7D3x/F+8yVE0BGe9k2dJ5s+fr5wFPAX5B9Y/hvo2gX4M307zu079+i2tgO185nImLzLoVSy8UtIu5JQyzvZeR9ZE+Ge95g/N5Mr/MzSW9H+loJ/Ixd97MLyY7OlgNfJTt/MtJrlGvK/beJ4jtcm4siYmOVfcqdzwFk7gb+i6T9JR0EzAb+X9p2jKRfT8tzyQ7/3hXZCc7PAR+R9CtD2t0CfFzSvspmBVVykuknZIfb7aLq2A6xEfjM4Ae+pOP2cM6g6eOnbJbSOOBfyeJzfhoffi/wEeB+dn8fQ9fvJvsAR1I38OOIGOlb7W4i4m3gj4HTJE0bsnkL8FuS9kt/u49V0GTD499M8R1iI/A/Bs8TSPqVdAQ2VN1i6AQARMT9wBrgAeBe4LqIeCJtfhL4tKTHyU7U7HYlYBreuAb4wyHl95AdHj4O3Jra3z5Cd74DnCjpEbXBSeAaYrtR2cn0fklrgK+RjUE/KmkrcB3Df9taA3xOzXcSeP/Up0eBm4H5aVjiW2T7x2Nkf/vLIuLlVLZT2bTG3wd6gePLTq5+HuhKsVsOzK+2Y2mI5y/JzmWVlz8ArEt9+ybZmPVI++/QftZLM8Z3fdk+/A3g62QjBg+nffhrDL8PrwX+KH0GjOlJYF8JvBeSjgVuHRxbrLKNgyJiIGX6LWQ75uO5dbJF5RFbG3tl++8BZN+KF0bEw43ul+Wjacbt2liPpOOA/YDr/eFvLWalsouS9gNW+cO/vfgIwMysoHwOwMysoJwAzMwKygnAzKygnADMzArKCcDMrKCcAMzMCur/A+xJqKMJE0fwAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
    " - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "# Imports for reading the file and to plot it\n", "import io\n", @@ -752,114 +563,9 @@ }, { "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " DayOfWeek MonthDay Year Visits\n", - "0 Monday June 1 2009 27\n", - "1 Tuesday June 2 2009 31\n", - "2 Wednesday June 3 2009 38\n", - "3 Thursday June 4 2009 38\n", - "4 Friday June 5 2009 31\n", - " DayOfWeek MonthDay Year Visits\n", - "209 Sunday December 27 2009 15\n", - "210 Monday December 28 2009 24\n", - "211 Tuesday December 29 2009 18\n", - "212 Wednesday December 30 2009 10\n", - "213 Thursday December 31 2009 7\n" - ] - }, - { - "data": { - "text/html": [ - "
    \n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    YearVisits
    count214.0214.000000
    mean2009.022.233645
    std0.08.331826
    min2009.03.000000
    25%2009.016.250000
    50%2009.022.000000
    75%2009.027.750000
    max2009.048.000000
    \n", - "
    " - ], - "text/plain": [ - " Year Visits\n", - "count 214.0 214.000000\n", - "mean 2009.0 22.233645\n", - "std 0.0 8.331826\n", - "min 2009.0 3.000000\n", - "25% 2009.0 16.250000\n", - "50% 2009.0 22.000000\n", - "75% 2009.0 27.750000\n", - "max 2009.0 48.000000" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "import pandas as pd\n", "website = pd.read_csv('http://openmv.net/file/website-traffic.csv')\n", @@ -952,178 +658,9 @@ }, { "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
    \n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    YearVisits
    DayOfWeek
    Friday2009.020.766667
    Monday2009.025.322581
    Saturday2009.015.266667
    Sunday2009.017.633333
    Thursday2009.023.709677
    Tuesday2009.025.774194
    Wednesday2009.026.741935
    \n", - "
    " - ], - "text/plain": [ - " Year Visits\n", - "DayOfWeek \n", - "Friday 2009.0 20.766667\n", - "Monday 2009.0 25.322581\n", - "Saturday 2009.0 15.266667\n", - "Sunday 2009.0 17.633333\n", - "Thursday 2009.0 23.709677\n", - "Tuesday 2009.0 25.774194\n", - "Wednesday 2009.0 26.741935" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "After removing the \"Year\" column there is only 1 column of data:\n" - ] - }, - { - "data": { - "text/html": [ - "
    \n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Visits
    DayOfWeek
    Friday20.766667
    Monday25.322581
    Saturday15.266667
    Sunday17.633333
    Thursday23.709677
    Tuesday25.774194
    Wednesday26.741935
    \n", - "
    " - ], - "text/plain": [ - " Visits\n", - "DayOfWeek \n", - "Friday 20.766667\n", - "Monday 25.322581\n", - "Saturday 15.266667\n", - "Sunday 17.633333\n", - "Thursday 23.709677\n", - "Tuesday 25.774194\n", - "Wednesday 26.741935" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "from IPython.display import display\n", "\n", @@ -1337,7 +874,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -1385,20 +922,9 @@ }, { "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAD8CAYAAABw1c+bAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAEThJREFUeJzt3X+MZWV9x/H3p4jaKgF0R0RgXbSEFI0imawaWuNPhJWINrZd0lTa0qxaTTRpk6410dX+g23UxGIka9n4IxatVZSEVdlYGzRRcJcusBSRla5xXcKuoiDR1q5++8c9W4fZe2eGe+7MZed5v5Kbe85znnvO9+Ewnzn37L3PpKqQJLXjN6ZdgCRpZRn8ktQYg1+SGmPwS1JjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMY8ZtoFDLNmzZpat27dtMuQpGPGrl27flhVM0vp+6gM/nXr1rFz585plyFJx4wk31tqX2/1SFJjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYx6V39w91qzbfP3Q9n1XvGqFK5GkxXnFL0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNWbRuXqSbAMuBg5W1bO7tk8DZ3ddTgJ+UlXnDnntPuCnwC+Bw1U1O6G6JUljWsokbR8FrgQ+fqShqv7oyHKS9wEPLPD6l1TVD8ctUJI0WYsGf1XdmGTdsG1JAvwh8NLJliVJWi597/H/HnBfVd09YnsBNyTZlWRTz2NJkiag73z8lwLXLLD9/Ko6kOQpwI4k366qG4d17H4xbAJYu3Ztz7IkSaOMfcWf5DHA7wOfHtWnqg50zweBa4H1C/TdWlWzVTU7MzMzblmSpEX0udXzcuDbVbV/2MYkT0hywpFl4AJgT4/jSZImYNHgT3IN8A3g7CT7k1zebdrIvNs8SZ6WZHu3egrw9SS3AjcD11fVlyZXuiRpHEv5VM+lI9r/dEjbAWBDt3wP8Nye9UmSJsxv7kpSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY3pOx+/tHy2nLjM+1/oL4ZOYv/LWP9y165VzSt+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5Ias5Q/tr4tycEke+a0bUnygyS7u8eGEa+9MMldSfYm2TzJwiVJ41nKFf9HgQuHtH+gqs7tHtvnb0xyHPAh4CLgHODSJOf0KVaS1N+iwV9VNwL3j7Hv9cDeqrqnqn4BfAq4ZIz9SJImqM89/rckua27FXTykO2nAd+fs76/axsqyaYkO5PsPHToUI+yJEkLGTf4Pww8EzgXuBd435A+GdJWo3ZYVVuraraqZmdmZsYsS5K0mLGCv6ruq6pfVtWvgI8wuK0z337gjDnrpwMHxjmeJGlyxgr+JKfOWX0tsGdIt28BZyU5M8ljgY3AdeMcT5I0OYtOy5zkGuDFwJok+4F3AS9Oci6DWzf7gDd0fZ8G/FNVbaiqw0neAnwZOA7YVlV3LMsoJElLtmjwV9WlQ5qvHtH3ALBhzvp24KiPekqSpsdv7kpSYwx+SWqMwS9JjTH4JakxBr8kNWbRT/VofOs2Xz+0fd8Vr1rhSiTp17zil6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1JjFg3+JNuSHEyyZ07bPyT5dpLbklyb5KQRr92X5PYku5PsnGThkqTxLOWK/6PAhfPadgDPrqrnAN8B3r7A619SVedW1ex4JUqSJmnR4K+qG4H757XdUFWHu9VvAqcvQ22SpGUwiXv8fw58ccS2Am5IsivJpgkcS5LUU68/xJLkHcBh4JMjupxfVQeSPAXYkeTb3TuIYfvaBGwCWLt2bZ+yJEkLGPuKP8llwMXAH1dVDetTVQe654PAtcD6Ufurqq1VNVtVszMzM+OWJUlaxFjBn+RC4G+AV1fVz0b0eUKSE44sAxcAe4b1lSStnKV8nPMa4BvA2Un2J7kcuBI4gcHtm91Jrur6Pi3J9u6lpwBfT3IrcDNwfVV9aVlGIUlaskXv8VfVpUOarx7R9wCwoVu+B3hur+okSRPnN3clqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TG9JqPX+NZt/n6oe37rnjVRPpribacOO0KpKnwil+SGmPwS1JjDH5JaozBL0mNMfglqTEGvyQ1ZknBn2RbkoNJ9sxpe1KSHUnu7p5PHvHay7o+dye5bFKFS5LGs9Qr/o8CF85r2wx8parOAr7SrT9MkicB7wKeD6wH3jXqF4QkaWUsKfir6kbg/nnNlwAf65Y/BrxmyEtfCeyoqvur6sfADo7+BSJJWkF97vGfUlX3AnTPTxnS5zTg+3PW93dtkqQpWe4pGzKkrYZ2TDYBmwDWrl27nDU9ao2amkGSJqnPFf99SU4F6J4PDumzHzhjzvrpwIFhO6uqrVU1W1WzMzMzPcqSJC2kT/BfBxz5lM5lwBeG9PkycEGSk7t/1L2ga5MkTclSP855DfAN4Owk+5NcDlwBvCLJ3cArunWSzCb5J4Cquh/4O+Bb3eM9XZskaUqWdI+/qi4dsellQ/ruBP5izvo2YNtY1UmSJs5v7kpSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1JjlvQXuKSRtpw47QratNz/3bc8sLz711SNfcWf5Owku+c8Hkzytnl9XpzkgTl93tm/ZElSH2Nf8VfVXcC5AEmOA34AXDuk69eq6uJxjyNJmqxJ3eN/GfDdqvrehPYnSVomkwr+jcA1I7a9MMmtSb6Y5FkTOp4kaUy9gz/JY4FXA58ZsvkW4OlV9VzgH4HPL7CfTUl2Jtl56NChvmVJkkaYxBX/RcAtVXXf/A1V9WBVPdQtbweOT7Jm2E6qamtVzVbV7MzMzATKkiQNM4ngv5QRt3mSPDVJuuX13fF+NIFjSpLG1Otz/El+C3gF8IY5bW8EqKqrgNcBb0pyGPg5sLGqqs8xJUn99Ar+qvoZ8OR5bVfNWb4SuLLPMSRJk+WUDZLUGKdskHS05ZwSwukgps4rfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1JjDH5Jaozf3B1i3ebrh7bvu+JVK1yJtAr5h+Knzit+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5Ia0zv4k+xLcnuS3Ul2DtmeJB9MsjfJbUnO63tMSdL4JvUFrpdU1Q9HbLsIOKt7PB/4cPcsSZqClbjVcwnw8Rr4JnBSklNX4LiSpCEmEfwF3JBkV5JNQ7afBnx/zvr+ru1hkmxKsjPJzkOHDk2gLEnSMJMI/vOr6jwGt3TenORF87ZnyGvqqIaqrVU1W1WzMzMzEyhLkjRM7+CvqgPd80HgWmD9vC77gTPmrJ8OHOh7XEnSeHoFf5InJDnhyDJwAbBnXrfrgNd3n+55AfBAVd3b57iSpPH1/VTPKcC1SY7s65+r6ktJ3ghQVVcB24ENwF7gZ8Cf9TymJKmHXsFfVfcAzx3SftWc5QLe3Oc4kqTJ8Zu7ktQYg1+SGmPwS1JjDH5JaozBL0mNmdQkbcesdZuvn3YJkrSivOKXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1Jjmp2x4JI7J6R22nDjtCqTVZTl/prY8sHz7nsMrfklqzNjBn+SMJF9NcmeSO5K8dUifFyd5IMnu7vHOfuVKkvrqc6vnMPBXVXVLkhOAXUl2VNV/zuv3taq6uMdxJEkTNPYVf1XdW1W3dMs/Be4ETptUYZKk5TGRe/xJ1gHPA24asvmFSW5N8sUkz5rE8SRJ4+v9qZ4kTwQ+C7ytqh6ct/kW4OlV9VCSDcDngbNG7GcTsAlg7dq1fcuSJI3Q64o/yfEMQv+TVfW5+dur6sGqeqhb3g4cn2TNsH1V1daqmq2q2ZmZmT5lSZIW0OdTPQGuBu6sqveP6PPUrh9J1nfH+9G4x5Qk9dfnVs/5wJ8AtyfZ3bX9LbAWoKquAl4HvCnJYeDnwMaqqh7HlCT1NHbwV9XXgSzS50rgynGPIUmaPKdskLS6OE3JopyyQZIaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1JjVt2UDes2Xz/tEiTpUc0rfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktSYXsGf5MIkdyXZm2TzkO2PS/LpbvtNSdb1OZ4kqb+xgz/JccCHgIuAc4BLk5wzr9vlwI+r6reBDwDvHfd4kqTJ6HPFvx7YW1X3VNUvgE8Bl8zrcwnwsW75X4GXJVnwD7RLkpZXn+A/Dfj+nPX9XdvQPlV1GHgAeHKPY0qSeuozZcOwK/cao8+gY7IJ2NStPpTkrh61DbMG+OGE9zlVOfrG2aob4wiOc3VxnEe8u9cNkacvtWOf4N8PnDFn/XTgwIg++5M8BjgRuH/YzqpqK7C1Rz0LSrKzqmaXa/+PBi2MERznauM4V16fWz3fAs5KcmaSxwIbgevm9bkOuKxbfh3wb1U19IpfkrQyxr7ir6rDSd4CfBk4DthWVXckeQ+ws6quA64GPpFkL4Mr/Y2TKFqSNL5e0zJX1XZg+7y2d85Z/m/gD/ocY4KW7TbSo0gLYwTHudo4zhUW77xIUlucskGSGrMqgz/JviS3J9mdZGfX9qQkO5Lc3T2fPO06H6kk25IcTLJnTtvQcWXgg910GbclOW96lT8yI8a5JckPunO6O8mGOdve3o3zriSvnE7Vj0ySM5J8NcmdSe5I8taufVWdzwXGudrO5+OT3Jzk1m6c7+7az+ymq7m7m77msV37dKezqapV9wD2AWvmtf09sLlb3gy8d9p1jjGuFwHnAXsWGxewAfgig+9SvAC4adr19xznFuCvh/Q9B7gVeBxwJvBd4Lhpj2EJYzwVOK9bPgH4TjeWVXU+FxjnajufAZ7YLR8P3NSdp38BNnbtVwFv6pb/EriqW94IfHol612VV/wjzJ0+4mPAa6ZYy1iq6kaO/h7EqHFdAny8Br4JnJTk1JWptJ8R4xzlEuBTVfU/VfVfwF4G04k8qlXVvVV1S7f8U+BOBt90X1Xnc4FxjnKsns+qqoe61eO7RwEvZTBdDRx9Pqc2nc1qDf4Cbkiyq/tGMMApVXUvDP5nBJ4yteoma9S4ljKlxrHmLd1tjm1zbtUd8+Ps3uY/j8FV4qo9n/PGCavsfCY5Lslu4CCwg8G7lZ/UYLoaePhYpjqdzWoN/vOr6jwGM4e+OcmLpl3QFCx5uoxjxIeBZwLnAvcC7+vaj+lxJnki8FngbVX14EJdh7Qdy+Ncdeezqn5ZVecymMVgPfA7w7p1z1Md56oM/qo60D0fBK5lcBLuO/LWuHs+OL0KJ2rUuJYypcYxo6ru636wfgV8hF+//T9mx5nkeAZh+Mmq+lzXvOrO57BxrsbzeURV/QT4dwb3+E/qpquBh4/l/8e52HQ2y2HVBX+SJyQ54cgycAGwh4dPH3EZ8IXpVDhxo8Z1HfD67tMgLwAeOHIL4Vg07372axmcUxiMc2P3KYkzgbOAm1e6vkequ597NXBnVb1/zqZVdT5HjXMVns+ZJCd1y78JvJzBv2d8lcF0NXD0+ZzedDbT/tfwST+AZzD4VMCtwB3AO7r2JwNfAe7unp807VrHGNs1DN4W/y+DK4bLR42LwVvJDzG4z3g7MDvt+nuO8xPdOG5j8ENz6pz+7+jGeRdw0bTrX+IYf5fBW/vbgN3dY8NqO58LjHO1nc/nAP/RjWcP8M6u/RkMfnHtBT4DPK5rf3y3vrfb/oyVrNdv7kpSY1bdrR5J0sIMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGvN/sBcjSK/I16YAAAAASUVORK5CYII=\n", - "text/plain": [ - "
    " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "# Will plot both histograms in the same \"axis\" (graph)\n", "pyplot.hist(data['Grade']);\n", @@ -1420,20 +946,9 @@ }, { "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3QAAAFNCAYAAABIei33AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3XuYJVV97//3J4yCIIpCS7g4DqBi0J8iGRGDGhQ13BRM1MAxES/JqFEjuRwl8UTJxYRETWKikaAS1GMQQ0RJ8AJiFM0RdCBcBQRhlBFkBpFbICry/f1R1bJns3d3T+/u3l3d79fz7Kd3rVq76ltrV/fqb9WqqlQVkiRJkqTu+ZlxByBJkiRJmh0TOkmSJEnqKBM6SZIkSeooEzpJkiRJ6igTOkmSJEnqKBM6SZIkSeooEzrNSJLLkxww7jjGKckLk1yf5M4kT55B/QOSrF+I2EaR5OVJvjLuOOZKkkry6HHHIUlTsV9dfP1qkhOS/NF8LX8U9m2aigmdSLIuyXP6yjb5J7+qHl9VX5xmOavaPzgr5inUcXsn8PqqenBV/Vf/zHH9sV1Mf+QXUyySNC72qzM2tn510MHMqnpNVf3pfKyvb92dOOCr7jChU2csgg7tUcDlY45h2UjDv1GSNE/sV6WlwX+WNCO9RxuT7JtkbZLbk9yU5K/baue2P29th088LcnPJPk/Sb6dZEOSDyd5aM9yX9bO+36SP+pbz3FJTkvyf5PcDry8XfdXk9ya5MYk70nywJ7lVZLfSnJ1kjuS/GmSPdrP3J7k4731+7ZxYKxJtkxyJ7AFcHGSbw347OS2X9xu+6/2zPu9dnk3JnlFT/mWSd6Z5DttO56Q5EFDYnt0ki8luS3JzUlOHbbeQUcde49yJtk+yRlte3wN2KOv7uOSnJ3kliRXJXlJz7yTk7w3yZlt+56fZI/p2qDn81skeVe7DdcleX3v0eckX0zy9iT/CdwF7J7kFUmuaNd3bZJX9y3zf7dte0OSV/bNG9rGSXZI8u/tvnRLki/HBFLSAon96tj61SQ/B5wAPK1d9q1t+clJ/qx9f0CS9Une1LOuI5IckuSbbb/xh33bemySb7Vt//EkDx+w7m2AzwA7t+u+M8nO030Pfct4epqhqs9qp2fVb2sJqSpfy/wFrAOe01f2cuArg+oAXwV+vX3/YGC/9v0qoIAVPZ97JXANsHtb9xPAR9p5ewF3Ak8HHkgz9OLHPes5rp0+gubgw4OAnwf2A1a067sCOKZnfQWcATwEeDzwQ+Ccdv0PBb4BHD2kHYbG2rPsR0/RjpvMBw4A7gH+BHgAcAhNkvKwdv7ftrE+HNgW+DfgL4Ys+xTgLW07bAU8fYr1bvLd9dcBPgZ8HNgGeALw3cn6bdn1wCvaNt4HuBl4fDv/ZOAWYN92/keBj21GG72m/Q52BR4GfL53nwG+CHyn/e5WtO12KE3SGeAX2zbcp61/EHBTux3bAP/ct61D2xj4C5oO/QHt6xlAxv376MuXr+6/sF+dNtaeZY+rX93k+2jLTgb+rG9db23X9ZvAxraf2bZti/8Bdm/rHwOcR9O/bQn8I3DKkHUfAKzvK5vJ9/Bo4Jdo+ul92/KR+m1fS+M19gB8jf9F06ncCdza87qL4R3PucAfAzv0LWcV9+94zgF+q2d6T5rOZEX7R/KUnnlbAz9i047n3GliPwY4vWe6gP17pi8A3twz/S7gb4csa2isPcve3I7n7r722ND+wQ7w38AePfOeBlw3ZNkfBk4Edp3Bel/OkISO5mjoj4HH9cz7c+5L6H4V+HLfZ/8ReFv7/mTgAz3zDgGuHBbLgFi/ALy6Z/o53D+h+5NpvvNPAm9s358EHN8z77E92zplG9P8Q/CpqeL15cuXr9m8sF+dNtaeZY+rX3050yd0dwNbtNPbtvE8ta8tjmjfXwEc2DNvp95t7VvPAfQldDP8Hv4A+Dbw//WUj9Rv+1oaL4cXadIRVbXd5Av4rSnqvormH+crk3w9yWFT1N2Z5o/PpG/TdDo7tvOun5xRVXcB3+/7/PW9E0ke2w6T+147XOTPgR36PnNTz/u7B0w/eBaxztb3q+qenum72vVP0HS0F7TDK24FPtuWD/Imms7qa2nujPbKIfWmM0GzTb3t2rvNjwKeOhlTG9dLgZ/tqfO9AdszU5t8533vB5YlOTjJee1QkltpOqPJ77x/eb3bMl0bv4PmyPFZaYZyHrsZ2yFJ07FfXdz96kzX9ZP2/d3tz2Hb/ijg9J51XwH8hBlu6wy/h2OAj1fVpT1l891vqwNM6LTZqurqqjoKeATwl8Bp7ZjwGlD9Bpo/NpNW0gxhuAm4kWZoAgDtOPft+1fXN/0+4ErgMVX1EOAPaRKduTBVrHPtZpqO4PE9Hf5Dq2rgH9mq+l5V/WZV7Qy8GviHDL/z13/TdGoAJOn9o76RZpse2VO2suf99cCXev8JqebuY6/d/E0caJPvvC+OST/9zpNsCfwrzbChHdt/ij7Nfd/5jQzflinbuKruqKrfq6rdgecDv5vkwNE2T5I2n/3qnNisfpXBbTuK64GD+/rPrarquzNc90y+hxcDRyQ5pm+989lvqwNM6LTZkvxakomqupdmGAk0R6E2AvfSjJWfdArwO0l2S/JgmiNOp7ZH104Dnp/kF9oLf/+Y6TuRbYHbgTuTPA6Yyz9YU8U6Ezex6bYP1bbd+4G/SfIIgCS7JPmlQfWTvDjJZCf9A5rOYPKoYf96LwYen2TvJFvRDLGZXO9PaK5hOC7J1kn2Ao7u+ey/A49N8utJHtC+ntJeQD4T07XBx4E3ttu6HfDmaZb3QJprETYC9yQ5GHhe3/JenmSvJFsDb+vZ1inbOMlhaW42E5p96ifc16aStGDsV4eat361Xfauw248MgsnAG9P8qh23RNJDp9i3dun52Y2zOx7uAE4EPjtJJNnfEftt7UEmNBpNg4CLk9zh6p3A0dW1f+0QzveDvxne9p/P5prnD5Cc33AdTQXEL8BoKoub99/jOao4h00Y+F/OMW6fx/4X23d9wOnzuF2DY11ho4DPtRu+0umq0yTzFwDnNcOr/g8zfUFgzwFOL9t8zNoriG7btB6q+qbNNeHfR64Guh/aPjraYZbfI9mbP0/Tc6oqjtoEqYjaTqO79EcLd5yBttzv1gGzH8/cBZwCfBfNGfb7mFIItXG89s0idsPaL77M3rmf4bmIvgv0LTlF/oWMVUbP6advpPmhgT/UNM8E0qS5on96mDHMX/96hdoHpnwvSQ3b0ZMw7ybpn86K8kdNDdIeeqgilV1JU2ye227bTszw++hqr5Dk9S9OclvzEG/rSUgVXN9xlmanfbo3a00ww2um66+uq8943ZCVT1q2sqSpM1ivyotD56h01gleX479G8bmuukLqW585eWoCQPSvMMnxVJdqEZInn6uOOSpKXCflVafkzoNG6H0wwRuIFmCNyR5WnjpSw013T8gGbI5RU0t9mWJM0N+1VpmXHIpSRJkiR1lGfoJEmSJKmjTOgkSZIkqaNWjDuAQXbYYYdatWrVuMOQJM2zCy644Oaqmhh3HF1h/yhJy8dM+8hFmdCtWrWKtWvXjjsMSdI8S/LtccfQJfaPkrR8zLSPdMilJEmSJHWUCZ0kSZIkdZQJnSRJkiR1lAmdJEmSJHWUCZ0kSZIkdZQJnSRJkiR1lAmdJEmSJHWUCZ0kSfMoyUlJNiS5rK/8DUmuSnJ5kr8aV3ySpG4zoZMkaX6dDBzUW5DkWcDhwBOr6vHAO8cQlyRpCTChkyRpHlXVucAtfcWvBY6vqh+2dTYseGCSpCXBhE6SpIX3WOAZSc5P8qUkTxl3QJKkblox7gAkNVYde+a4QwBg3fGHjjsEaTlYATwM2A94CvDxJLtXVfVXTLIGWAOwcuXKBQ1yOfFv8P3ZJlI3eIZOkqSFtx74RDW+BtwL7DCoYlWdWFWrq2r1xMTEggYpSVr8TOgkSVp4nwSeDZDkscADgZvHGpEkqZMccilJ0jxKcgpwALBDkvXA24CTgJPaRxn8CDh60HBLSZKmY0InSdI8qqqjhsz6tQUNRJK0JDnkUpIkSZI6yoROkiRJkjrKhE6SJEmSOsqETpIkSZI6yoROkiRJkjrKhE6SJEmSOsqETpIkSZI6yoROkiRJkjrKhE6SJEmSOsqETpIkSZI6yoROkiRJkjrKhE6SJEmSOmrFdBWSnAQcBmyoqie0ZacCe7ZVtgNuraq9B3x2HXAH8BPgnqpaPUdxS5IkSdKyN21CB5wMvAf48GRBVf3q5Psk7wJum+Lzz6qqm2cboCRJkiRpsGkTuqo6N8mqQfOSBHgJ8Oy5DUuSJEmSNJ1Rr6F7BnBTVV09ZH4BZyW5IMmaqRaUZE2StUnWbty4ccSwJEmSJGnpGzWhOwo4ZYr5+1fVPsDBwOuSPHNYxao6sapWV9XqiYmJEcOSJEmSpKVv1gldkhXALwOnDqtTVTe0PzcApwP7znZ9kiRJkqRNjXKG7jnAlVW1ftDMJNsk2XbyPfA84LIR1idJkiRJ6jFtQpfkFOCrwJ5J1id5VTvrSPqGWybZOcmn28kdga8kuRj4GnBmVX127kKXJEmSpOVtJne5PGpI+csHlN0AHNK+vxZ40ojxSZIkSZKGGPWmKJIkSZKkMTGhkyRJkqSOMqGTJGmeJTkpyYYk97s5WJLfT1JJdhhHbJKkbjOhkyRp/p0MHNRfmOSRwHOB7yx0QJKkpcGETpKkeVZV5wK3DJj1N8CbgFrYiCRJS4UJnSRJY5DkBcB3q+riccciSequaR9bIEmS5laSrYG3AM+bQd01wBqAlStXznNkkqSu8QydJEkLbw9gN+DiJOuAXYELk/xsf8WqOrGqVlfV6omJiQUOU5K02HmGTpKkBVZVlwKPmJxuk7rVVXXz2IKSJHWSZ+gkSZpnSU4BvgrsmWR9kleNOyZJ0tLgGTpJkuZZVR01zfxVCxSKJGmJ8QydJEmSJHWUCZ0kSZIkdZQJnSRJkiR1lAmdJEmSJHWUCZ0kSZIkdZQJnSRJkiR1lAmdJEmSJHWUCZ0kSZIkdZQJnSRJkiR1lAmdJEmSJHWUCZ0kSZIkdZQJnSRJkiR1lAmdJEmSJHWUCZ0kSZIkddS0CV2Sk5JsSHJZT9lxSb6b5KL2dciQzx6U5Kok1yQ5di4DlyRJkqTlbiZn6E4GDhpQ/jdVtXf7+nT/zCRbAO8FDgb2Ao5KstcowUqSJEmS7jNtQldV5wK3zGLZ+wLXVNW1VfUj4GPA4bNYjiRJkiRpgFGuoXt9kkvaIZkPGzB/F+D6nun1bdlASdYkWZtk7caNG0cIS5IkSZKWh9kmdO8D9gD2Bm4E3jWgTgaU1bAFVtWJVbW6qlZPTEzMMixJkiRJWj5mldBV1U1V9ZOquhd4P83wyn7rgUf2TO8K3DCb9UmSJEmS7m9WCV2SnXomXwhcNqDa14HHJNktyQOBI4EzZrM+SZIkSdL9rZiuQpJTgAOAHZKsB94GHJBkb5ohlOuAV7d1dwY+UFWHVNU9SV4PfA7YAjipqi6fl62QJEmSpGVo2oSuqo4aUPzBIXVvAA7pmf40cL9HGkiSJEmSRjfKXS4lSZIkSWNkQidJ0jxqH++zIcllPWXvSHJl+/if05NsN84YJUndZUInSdL8Ohk4qK/sbOAJVfVE4JvAHyx0UJKkpcGETpKkeVRV5wK39JWdVVX3tJPn0TzaR5KkzWZCJ0nSeL0S+My4g5AkdZMJnSRJY5LkLcA9wEenqLMmydokazdu3LhwwUmSOsGETpKkMUhyNHAY8NKqqmH1qurEqlpdVasnJiYWLkBJUidM+xw6SZI0t5IcBLwZ+MWqumvc8UiSusuETtImVh175rhD+Kl1xx867hCkkSU5BTgA2CHJeuBtNHe13BI4OwnAeVX1mrEFKUnqLBM6SZLmUVUdNaD4gwseiCRpSfIaOkmSJEnqKBM6SZIkSeooEzpJkiRJ6igTOkmSJEnqKBM6SZIkSeooEzpJkiRJ6igTOkmSJEnqKBM6SZIkSeooEzpJkiRJ6igTOkmSJEnqKBM6SZIkSeqoFeMOQJIkSY1Vx5457hAkdYxn6CRJkiSpo0zoJEmSJKmjTOgkSZIkqaOmTeiSnJRkQ5LLesrekeTKJJckOT3JdkM+uy7JpUkuSrJ2LgOXJEmSpOVuJmfoTgYO6is7G3hCVT0R+CbwB1N8/llVtXdVrZ5diJIkSZKkQaZN6KrqXOCWvrKzquqedvI8YNd5iE2SJEmSNIW5uIbulcBnhswr4KwkFyRZM9VCkqxJsjbJ2o0bN85BWJIkSZK0tI2U0CV5C3AP8NEhVfavqn2Ag4HXJXnmsGVV1YlVtbqqVk9MTIwSliRJkiQtC7NO6JIcDRwGvLSqalCdqrqh/bkBOB3Yd7brkyRJkiRtalYJXZKDgDcDL6iqu4bU2SbJtpPvgecBlw2qK0mSJEnafDN5bMEpwFeBPZOsT/Iq4D3AtsDZ7SMJTmjr7pzk0+1HdwS+kuRi4GvAmVX12XnZCkmSJElahlZMV6GqjhpQ/MEhdW8ADmnfXws8aaToJElaApKcRHOZwoaqekJb9nDgVGAVsA54SVX9YFwxSpK6aS7ucilJkqZ2Mvd/puuxwDlV9RjgnHZakqTNYkInSdI8G/RMV+Bw4EPt+w8BRyxoUJKkJcGETpKk8dixqm4EaH8+YszxSJI6yIROkqRFLMmaJGuTrN24ceO4w5EkLTImdJIkjcdNSXYCaH9uGFSpqk6sqtVVtXpiYmJBA5QkLX4mdJIkjccZwNHt+6OBT40xFklSR5nQSZI0z4Y80/V44LlJrgae205LkrRZpn0OnSRJGs2QZ7oCHLiggUiSlhzP0EmSJElSR5nQSZIkSVJHmdBJkiRJUkeZ0EmSJElSR5nQSZIkSVJHmdBJkiRJUkeZ0EmSJElSR/kcOkmL1qpjzxx3CD+17vhDxx0CYJtIkqRNeYZOkiRJkjrKhE6SJEmSOsqETpIkSZI6yoROkiRJkjrKhE6SJEmSOsqETpIkSZI6yoROkiRJkjrKhE6SJEmSOsqETpIkSZI6akYJXZKTkmxIcllP2cOTnJ3k6vbnw4Z89ui2ztVJjp6rwCVJkiRpuZvpGbqTgYP6yo4FzqmqxwDntNObSPJw4G3AU4F9gbcNS/wkSZIkSZtnRgldVZ0L3NJXfDjwofb9h4AjBnz0l4Czq+qWqvoBcDb3TwwlSZIkSbMwyjV0O1bVjQDtz0cMqLMLcH3P9Pq2TJIkSZI0ohXzvPwMKKuBFZM1wBqAlStXzmdMkrTZVh175rhDkCRJup9RztDdlGQngPbnhgF11gOP7JneFbhh0MKq6sSqWl1VqycmJkYIS5IkSZKWh1ESujOAybtWHg18akCdzwHPS/Kw9mYoz2vLJEmSJEkjmuljC04BvgrsmWR9klcBxwPPTXI18Nx2miSrk3wAoKpuAf4U+Hr7+pO2TJKkZS/J7yS5PMllSU5JstW4Y5IkdcuMrqGrqqOGzDpwQN21wG/0TJ8EnDSr6CRJWqKS7AL8NrBXVd2d5OPAkTSPCpIkaUZGGXIpSZJGswJ4UJIVwNYMuc5ckqRh5vsul5IkaYCq+m6SdwLfAe4Gzqqqs/rrLeW7QHv3WM3EYtpP1h1/6LhDkO7HM3SSJI1Be7Oww4HdgJ2BbZL8Wn897wItSZqKCZ0kSePxHOC6qtpYVT8GPgH8wphjkiR1jAmdJEnj8R1gvyRbJwnNjcauGHNMkqSOMaGTJGkMqup84DTgQuBSmj75xLEGJUnqHG+KIknSmFTV24C3jTsOSVJ3eYZOkiRJkjrKhE6SJEmSOsqETpIkSZI6yoROkiRJkjrKhE6SJEmSOsqETpIkSZI6yoROkiRJkjrKhE6SJEmSOsqETpIkSZI6yoROkiRJkjrKhE6SJEmSOmrFuAOQJEmSumDVsWeOO4SfWnf8oeMOQYuEZ+gkSZIkqaNM6CRJkiSpo0zoJEmSJKmjTOgkSZIkqaNM6CRJkiSpo0zoJEmSJKmjZp3QJdkzyUU9r9uTHNNX54Akt/XUeevoIUuSJEmSYITn0FXVVcDeAEm2AL4LnD6g6per6rDZrkeSJEmSNNhcDbk8EPhWVX17jpYnSZIkSZrGXCV0RwKnDJn3tCQXJ/lMksfP0fokSZIkadkbOaFL8kDgBcC/DJh9IfCoqnoS8PfAJ6dYzpoka5Os3bhx46hhSZIkSdKSNxdn6A4GLqyqm/pnVNXtVXVn+/7TwAOS7DBoIVV1YlWtrqrVExMTcxCWJEmLW5LtkpyW5MokVyR52rhjkiR1y6xvitLjKIYMt0zys8BNVVVJ9qVJIL8/B+uUJGkpeDfw2ap6UTviZetxByRJ6paRErokWwPPBV7dU/YagKo6AXgR8Nok9wB3A0dWVY2yTkmSloIkDwGeCbwcoKp+BPxonDFJkrpnpISuqu4Ctu8rO6Hn/XuA94yyDkmSlqjdgY3APyV5EnAB8Maq+u/xhiVJ6pK5GHIpSZI23wpgH+ANVXV+kncDxwJ/1FspyRpgDcDKlSsXPEhJi9OqY88cdwgArDv+0HGHsOzN1WMLJEnS5lkPrK+q89vp02gSvE140zBJ0lRM6CRJGoOq+h5wfZI926IDgW+MMSRJUgc55FKSpPF5A/DR9g6X1wKvGHM8kqSOMaGTJGlMquoiYPW445AkdZdDLiVJkiSpo0zoJEmSJKmjTOgkSZIkqaNM6CRJkiSpo0zoJEmSJKmjTOgkSZIkqaNM6CRJkiSpo0zoJEmSJKmjTOgkSZIkqaNM6CRJkiSpo1aMOwAtT6uOPXPcIQCw7vhDxx2CJEmSNGueoZMkSZKkjjKhkyRJkqSOMqGTJEmSpI4yoZMkSZKkjjKhkyRJkqSOMqGTJEmSpI4yoZMkSZKkjjKhkyRJkqSOMqGTJEmSpI4aOaFLsi7JpUkuSrJ2wPwk+bsk1yS5JMk+o65TkiRJkgQr5mg5z6qqm4fMOxh4TPt6KvC+9qckSZIkaQQLMeTycODD1TgP2C7JTguwXkmSJEla0uYioSvgrCQXJFkzYP4uwPU90+vbMkmSlr0kWyT5ryT/Pu5YJEndMxdDLvevqhuSPAI4O8mVVXVuz/wM+Ez1F7TJ4BqAlStXzkFYkiR1whuBK4CHjDsQSVL3jHyGrqpuaH9uAE4H9u2rsh54ZM/0rsANA5ZzYlWtrqrVExMTo4YlSdKil2RX4FDgA+OORZLUTSMldEm2SbLt5HvgecBlfdXOAF7W3u1yP+C2qrpxlPVKkrRE/C3wJuDecQciSeqmUYdc7gicnmRyWf9cVZ9N8hqAqjoB+DRwCHANcBfwihHXKUlS5yU5DNhQVRckOWCKel6SIEkaaqSErqquBZ40oPyEnvcFvG6U9UiStATtD7wgySHAVsBDkvzfqvq13kpVdSJwIsDq1avvdw26JGl5W4jHFkiSpD5V9QdVtWtVrQKOBL7Qn8xJkjQdEzpJkiRJ6qi5eGyBJEkaQVV9EfjimMOQJHWQZ+gkSZIkqaNM6CRJkiSpo0zoJEmSJKmjTOgkSZIkqaNM6CRJkiSpo7zL5TKy6tgzxx2CJEmSpDnkGTpJkiRJ6igTOkmSJEnqKBM6SZIkSeooEzpJkiRJ6igTOkmSJEnqKO9yKUnSMuIdjyUtVYvl79u64w9d0PV5hk6SJEmSOsqETpIkSZI6yoROkiRJkjrKhE6SJEmSOsqETpIkSZI6yoROkiRJkjrKhE6SJEmSOsrn0GlZWyzPK5EkSZJmwzN0kiRJktRRJnSSJEmS1FGzTuiSPDLJfyS5IsnlSd44oM4BSW5LclH7euto4UqSJEmSJo1yDd09wO9V1YVJtgUuSHJ2VX2jr96Xq+qwEdYjSZIkSRpg1mfoqurGqrqwfX8HcAWwy1wFJknSUjaTkS6SJE1nTq6hS7IKeDJw/oDZT0tycZLPJHn8XKxPkqQlYHKky88B+wGvS7LXmGOSJHXMyAldkgcD/wocU1W3982+EHhUVT0J+Hvgk1MsZ02StUnWbty4cdSwJEla1BzpIkmaCyM9hy7JA2iSuY9W1Sf65/cmeFX16ST/kGSHqrp5QN0TgRMBVq9eXaPEJUlSl0w10iXJGmANwMqVKxc0Lkmajs/0Hb9R7nIZ4IPAFVX110Pq/GxbjyT7tuv7/mzXKUnSUjPNSBeq6sSqWl1VqycmJhY+QEnSojbKGbr9gV8HLk1yUVv2h8BKgKo6AXgR8Nok9wB3A0dWlWffJEli+pEukiRNZ9YJXVV9Bcg0dd4DvGe265AkaamayUgXSZKmMyd3uZQkSZttcqTLs5Nc1L4OGXdQkqRuGemmKJIkaXZmMtJFkqTpeIZOkiRJkjrKhE6SJEmSOsqETpIkSZI6yoROkiRJkjrKhE6SJEmSOsqETpIkSZI6yoROkiRJkjrKhE6SJEmSOsqETpIkSZI6yoROkiRJkjrKhE6SJEmSOsqETpIkSZI6yoROkiRJkjpqxbgDmC+rjj1z3CFIkiRJ0rzyDJ0kSZIkdZQJnSRJkiR1lAmdJEmSJHWUCZ0kSZIkdZQJnSRJkiR1lAmdJEmSJHWUCZ0kSZIkdZQJnSRJkiR1lAmdJEmSJHXUSAldkoOSXJXkmiTHDpi/ZZJT2/nnJ1k1yvokSVpKputHJUmazqwTuiRbAO8FDgb2Ao5KsldftVcBP6iqRwN/A/zlbNcnSdJSMsN+VJKkKY1yhm5f4JqquraqfgR8DDi8r87hwIfa96cBBybJCOuUJGmpmEk/KknSlEZJ6HYBru+ZXt+WDaxTVfcAtwHbj7BOSZKWipn0o5IkTWnFCJ8ddKatZlGnqZisAda0k3cmuWqE2BaTHYCbxx3EImJ7bMr22JTtsalF3R6Zm0H0j5qTpXTTjPrIEfrHRb3/9DDOudeVWLsSJ3QnVuOce5sd6xz1jzDDPnKUhG498Mie6V2BG4bUWZ9kBfBQ4JZBC6uqE4ETR4hnUUqytqpWjzuOxcL22JTtsSnbY1O2x5I3k3501v1jV/Yf45x7XYm1K3FCd2I1zrnXhVhHGXL5deAxSXZL8kDgSOCMvjpnAEe3718EfKGqBp6hkyRpmZk5BVZeAAAO+ElEQVRJPypJ0pRmfYauqu5J8nrgc8AWwElVdXmSPwHWVtUZwAeBjyS5hubM3JFzEbQkSV03rB8dc1iSpI4ZZcglVfVp4NN9ZW/tef8/wItHWccSsOSGkY7I9tiU7bEp22NTtscSN6gfnUNd2X+Mc+51JdauxAndidU4596ijzWOgJQkSZKkbhrlGjpJkiRJ0hiZ0M2hJOuSXJrkoiRr27KHJzk7ydXtz4eNO86FkmS7JKcluTLJFUmetszbY89235h83Z7kmGXeJr+T5PIklyU5JclW7Q0izm/b49T2ZhHLQpI3tm1xeZJj2rJlu39ouCQnJdmQ5LKesoH7Shp/l+SaJJck2WcRxPqOtm+4JMnpSbZry1clubvn7+QJY47zuCTf7YnnkJ55f9C26VVJfmnMcZ7aE+O6JBe15eNsz0cm+Y+2/788yRvb8kW3n04R66LaT6eIczHup8NiXVT7apr/O76W5OI2zj9uy3fLgP9FkmzZTl/Tzl+1EHFOq6p8zdELWAfs0Ff2V8Cx7ftjgb8cd5wL2B4fAn6jff9AYLvl3B59bbMF8D2a54ssyzaheYDydcCD2umPAy9vfx7Zlp0AvHbcsS5QezwBuAzYmub65s8Dj1mu+4evafeXZwL7AJf1lA3cV4BDgM/QPPduP+D8RRDr84AV7fu/7Il1VW+9RRDnccDvD6i7F3AxsCWwG/AtYItxxdk3/13AWxdBe+4E7NO+3xb4Zttui24/nSLWRbWfThHnYtxPB8a62PbVdn97cPv+AcD57f438H8R4LeAE9r3RwKnLnTMg16eoZt/h9MkNrQ/jxhjLAsmyUNoOp0PAlTVj6rqVpZpewxwIPCtqvo2y7tNVgAPSvOcyq2BG4FnA6e185dTe/wccF5V3VVV9wBfAl7I8t4/NERVncv9n+s6bF85HPhwNc4Dtkuy08JEOjjWqjqr3c8BzqN5Bt9YDWnTYQ4HPlZVP6yq64BrgH3nLbgeU8WZJMBLgFMWIpapVNWNVXVh+/4O4AqaA3mLbj8dFuti20+naNNhxrmfThnrYtlX2/3tznbyAe2rGP6/SO/+expwYLstY2VCN7cKOCvJBUnWtGU7VtWN0OzcwCPGFt3C2h3YCPxTkv9K8oEk27B826Pfkdz3R2xZtklVfRd4J/AdmkTuNuAC4NaeDnQ9U3dWS8llwDOTbJ9ka5qj1Y9kme4fmpVh+8ouwPU99Rbb79Urac7MTNqt7Te+lOQZ4wqqx+vbIXcn5b4hz4u1TZ8B3FRVV/eUjb0922FpT6Y5+7Go99O+WHstqv10QJyLdj8d0qaLZl9NskU79HMDcDbNmcxh/4v8tE3b+bcB2y9UrMOY0M2t/atqH+Bg4HVJnjnugMZoBc2QkPdV1ZOB/6YZWrHsteOwXwD8y7hjGae2wzmcZhjIzsA2NL87/ZbFrXir6gqaIT1nA5+lGSZzz5QfkmZm0NHjRfF7leQtNPv5R9uiG4GVbb/xu8A/tyM+xuV9wB7A3m1s72rLF2ubHsWmZzzG3p5JHgz8K3BMVd0+VdUBZQvapsNiXWz76YA4F+1+OsX3v2j21ar6SVXtTXMGdl+aETP3q9b+HHubDmJCN4eq6ob25wbgdJqd4qbJIQPtzw3ji3BBrQfWV9Xk0ZjTaBK85doevQ4GLqyqm9rp5domzwGuq6qNVfVj4BPAL9AMs5l8RuauwA3jCnChVdUHq2qfqnomzZCqq1m++4c237B9ZT3N2d5Ji+L3KsnRwGHAS6u9IKUdGvb99v0FNEfKHzuuGKvqpvafvXuB93PfcLVF16bt381fBk6dLBt3eyZ5AM0/8x+tqk+0xYtyPx0S66LbTwfFuVj30ynadNHtq+16bwW+SHMN3bD/RX7apu38hzLzodrzxoRujiTZJsm2k+9pLqS9DDgDOLqtdjTwqfFEuLCq6nvA9Un2bIsOBL7BMm2PPv1HpZZrm3wH2C/J1u3488l95D+AF7V1llN7kOQR7c+VNJ3dKSzf/UObb9i+cgbwsjT2A26bHPI2LkkOAt4MvKCq7uopn0iyRft+d5obA107nih/mnBMeiFNvw5Nmx7Z3vFuN5o4v7bQ8fV5DnBlVa2fLBhne7Z/1z8IXFFVf90za9Htp8NiXWz76RRxLrr9dIrvHxbRvtqud/LupQ9qY7uC4f+L9O6/LwK+MJnoj1WN4U4sS/FFc83Yxe3rcuAtbfn2wDk0R9rPAR4+7lgXsE32BtYClwCfBB62nNujbZOtge8DD+0pW7ZtAvwxcCVN5/MRmjtx7U7T4VxDMyx1y3HHuYDt8WWapPZi4MDlvn/4mnJfOYVmiNKPaY4Yv2rYvkIzROi9NEe8LwVWL4JYr6G5DuWi9jV517hfafvQi4ELgeePOc6PtG12Cc0/cjv11H9L26ZXAQePM862/GTgNX11x9meT6cZinZJz/d8yGLcT6eIdVHtp1PEuRj304GxLrZ9FXgi8F9tnJdx3103B/4vAmzVTl/Tzt99odp0qlfa4CRJkiRJHeOQS0mSJEnqKBM6SZIkSeooEzpJkiRJ6igTOkmSJEnqKBM6SZIkSeooEzotGUl2TPLPSa5NckGSryZ54YjLPC7J72/mZ45I8tZR1jvXkmyX5LfmadmvT/KK+Vi2JEmSpmZCpyWhfYDlJ4Fzq2r3qvp54Ehg1wF1V8xzOG8C/mHUhUw+YHOObAfMS0IHnAT89jwtW5K0QJJsn+Si9vW9JN/tmf5/87TOJyf5wGZ+5gNJ9prl+lYl+V+z+Wz7+c8nedhsPy/NBxM6LRXPBn5UVSdMFlTVt6vq7wGSvDzJvyT5N+CsJA9Ock6SC5NcmuTwyc8leUuSq5J8Htizp3yPJJ9tz/59Ocnj+oNI8ljgh1V1czt9cpIT2vrfTHJYW75Fknck+XqSS5K8ui0/IMl/JPlnmoeEkuRlbZ2Lk3ykLZtI8q/t57+eZP+2/LgkJyX5YnumcjLROh7Yo+2U3zHN9v9RkiuTnJ3klMkzlMO2v6ruAtYl2Xe0r1CSNE5V9f2q2ruq9gZOAP5mcrqqfmGeVvuHwN9vzgeq6jeq6huzXN8qYNYJHc1DvOfrAKk0K/N9pkJaKI8HLpymztOAJ1bVLe1ZuhdW1e1JdgDOS3IGsA/Nmb0n0/x+XAhc0H7+ROA1VXV1kqfSnIV7dt869h8QxyrgF4E9gP9I8mjgZcBtVfWUJFsC/5nkrLb+vsATquq6JI8H3gLsX1U3J3l4W+fdNB3tV5KsBD4H/Fw773HAs4BtgauSvA84tl3m3vDTs5SDtv/ngV+ZxfavBZ4BfG2qL0CS1E1J7qyqByc5APhj4CZgb+ATNAcg3wg8CDiiqr6VZIImKVzZLuKYqvrPvmVuS9MvX9xOHwfsBuwEPBb4XWA/4GDgu8Dzq+rHSb4I/H5VrU1yJ02feBhwN3B4Vd2U5GTg36vqtN74aQ5w/lySi4APAX/Xlh0AbAm8t6r+MclOwKnAQ2j6w9dW1ZeBM4AvA28fvVWluWFCpyUpyXuBp9OctXtKW3x2Vd0yWQX48yTPBO4FdgF2pElKTm/POtEmOSR5MPALwL80ozuB5g9/v52AjX1lH6+qe4Grk1xLk3A9D3hikhe1dR4KPAb4EfC1qrquLX82cNrkGb+e+J8D7NUTy0PajhHgzKr6IfDDJBva7bpfEw3Z/qcDn6qqu9vt/rcZbv+GdrskSUvfk2gOIt4CXAt8oKr2TfJG4A3AMUx94HHSauCyvrI9aA5K7gV8FfiVqnpTktOBQ2kur+i1DXBeVb0lyV8Bvwn82RSxH0uTDE6OmFnD4AOsvwx8rqre3l4CsTVAVf0gyZZJtq+q78+ksaT5ZkKnpeJymjNLAFTV69ozT2t76vx3z/uXAhPAz7dH+9YBW01+fMDyfwa4dfIM1xTupknOevUvr2gSqjdU1ed6Z7RHPnvjzBTxPG0y8er5PMAPe4p+wuDf82HbnwF1J9c31fZvRbPtkqSl7+tVdSNAkm8BkyNMLqVJxmDIgcequqNnOYMOgn6m7ZcuBbYAPtuz7FUDYvkR8O/t+wuA527mtgw7wPp14KQkDwA+WVUX9XxmA7AzYEKnRcFr6LRUfAHYKslre8q2nqL+Q4ENbafxLOBRbfm5wAuTPKg94/V8gKq6HbguyYuhuQlLkicNWO4VwKP7yl6c5GeS7AHsDlxFc6TytW1HQZLHJtlmwPLOAV6SZPu23uSQy7OA109WSjJdonkHzRDM6bb/K8Dzk2zVnpU7dIbb/1juf5RVkrQ09R44vLdn+l7uO4g4eeBx8hq8XfqSOWgOBG7VV/ZDgHZky4+ravKgZu+ye/XW6T2IeU8bw+SN0x44ZFsmD7BOxrlbVZ1VVecCz6QZ6vmRJC/r+YwHMbWomNBpSWj/mB8B/GKS65J8jWZs/JuHfOSjwOoka2nOVl3ZLudCmjHzFwH/SjNOftJLgVcluZjmjODh3N+5wJPTc0iSJoH7EvAZmmvQ/gf4APAN4MIklwH/yICOqqoupxmn/6V2vX/dzvrtNv5LknwDeM3QxmmW832aYSSXJXnHFNv/dZrrAy6muS5iLXDbDLZ/f+DzU8UgSVpWZnLgcdBB0Lmyjua6cGj6qwe07/sPcA48wJrkUTQHPt8PfJDmGvvJ5PBn2+VLi4JDLrVktMM/jhwy72Tg5J7pm2lukjKo7tsZcLFze13bQdPEcFeau2MeyH0Jzn9W1e/01buX5s5ef9i3iC+2r966H6JJTnvLbgZ+dcD6j+ubfkLP+/67eg3cfuCdVXVckq1pEtR3tZ8fuP1JngxcPnmdnyRJNAce35vkEpr/N8+l7+BjVV2Z5KEDhmLOhfcDn2oP8J7DfZczXALc0x6cPJnmWr9VNAdYQzME9Aiam6T87yQ/Bu6kuZkZNEnieVV1zxzHK81a7jtLLWkuJNkReGpVndF/l60uSPPIhL1ohpR8qKr+Ypr6zwWurqp1CxCeJGkJSfI7wB1VtVnPohuXJO8Gzqiqc8YdizTJhE6SJEljkWQr4MVV9ZFxxzITSX6zHYYpLRomdJIkSZLUUd4URZIkSZI6yoROkiRJkjrKhE6SJEmSOsqETpIkSZI6yoROkiRJkjrq/wdsQq8CkzHY+gAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
    " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "# We want our histograms in separate axes:\n", "pyplot.figure(figsize=(15, 5)) # (width, height) = (15, 5)\n", @@ -1464,20 +979,9 @@ }, { "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3QAAAFNCAYAAABIei33AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xu4JHV95/H3xxl0BEFERuQijhrEKE9Ac4Iixmjwwi1ijCawalBxR914S8xjcJOIe0mWrEmMG43sBBCzUWJEUSKIELygiaLDTQcGxOAoI8gcRQEvyDB+94+uo83x3Pv06apz3q/n6ae7fvXrX32r+8wXvlW/rkpVIUmSJEnqnvuMOgBJkiRJ0sJY0EmSJElSR1nQSZIkSVJHWdBJkiRJUkdZ0EmSJElSR1nQSZIkSVJHWdB1XJJPJXn5qONYDElekuSzo45jrmaLN8nHkpy4lDFJbWJ+Gh3zkzQ9c9PomJuGw4JuyJI8Jcm/J7k9yW1J/i3JrzTrWvOPsE2xDFOSvZOcl+TmJJVk3aT190tyZpI7knwryR8sdFtVdVRVvWfQmKVhMT+1S5Jjknw2yfea/PP3SXbtW29+0opgbmqXJE9P8uUmN30nyblJ9u1bb24aMQu6IUqyG/BR4G+BPYB9gf8G/HiUcS2FJKtHHcM0fgJcCPzWNOvfAhwAPBx4OvDGJEcuTWjS0jE/tdIDgf8J7AP8IrAf8Na+9W/B/KRlztzUStcCz66q3enlpxuAd/WtfwvmppGyoBuuRwNU1dlVtaOqflRVF1XVl5L8InAacFiS7yf5Hvz8NIDJR3+SPDPJdc1Rq3cA6d9gkpcl2Zzku0k+nuThfesqySuT3NCsf2d6poxlsiSPSHJpkjuT/Gvz/n9s1q1rxj8pyTeATzTtH2iO1tzevPdxfeM9uDlbdkeSLwCPmrS9xyS5uDk6d32S3+5bd3SSa5tYvpnkD+fyhVTVrVX1d8AXp+nyu8D/qKrvVtVm4O+Bl8wwZJL8bbN/1yU5om/FT7/Lie8xyV82n/3XkhzV1/clSW5s9udrSV44l/2RBmB+al9+el9VXVhVP6yq79LLP4f3dTE/aSUwN7UvN91aVTf3Ne0AfqFv2dw0YhZ0w/UVYEeS9yQ5KsmDJlY0f/CvBD5XVQ9ojnrMKMmewAeBPwH2BP6Dvv/YJ3ku8F+B5wFrgc8AZ08a5ljgV4CDgd+md8RlrrG8D/gC8GB6R2NePEWfX6N3ZPnZzfLH6B21eQhwBfDevr7vBO4C9gZe1jwm9mUX4OJmmw8BTgD+ri+pnQG8oqp2BQ6iSYLNe7+X5CnT7MO0mu9nH+DqvuargcdN/Q4AngjcSO/7OAX4UJI9Zuh7fdP3fwNnNP9R2AX4P8BRzf48GbhqvvFL82R+an9+eipwTfM+85NWCnNTC3NTkv2bovVHwB/SyxPmppawoBuiqroDeApQ9I5WjDdHVfZa4JBHA9dW1TlVtR34G+BbfetfAfyvqtpcVfcAfw4c0n+kCTi1qr5XVd8APgkcMpcNJ9mfXjJ7c1XdXVWfBc6boutbquoHVfUjgKo6s6rurKof00tkByd5YJJV9KY9vrnpvwnonzN9LLClqt5dVfdU1RX0EvLzm/Xbgccm2a05InTFxBuravcmvvl6QPN8e1/b7cCuU/SdsA34m6raXlXvp5d0jpmm79er6u+rage9fd0bmPhb+AlwUJL7V9UtVXXNAuKX5sz81O78lOSZwInAm5sm85NWBHNTO3NTVX2jKVr3pFccX9esMje1gAXdkDUJ4iVVtR+9oyH70EsmC7EPcFPf2NW/TG/u8tuboyzfA26jN61g374+/Unsh/zsH+Jctn1bVf2wr+2mKfr9tC3JqiSnJvmPJHcAW5pVe9I7CrZ60hhfn7QvT5zYl2Z/Xgg8tFn/W/SS9NeTfDrJYXPcj5l8v3nera9tN+DOGd7zzeZ7mPB1ep/VVH762fd9jg+oqh8Av0PvSN8tSc5P8ph5RS4tgPmpnfkpyZPoHWF/flV9pWk2P2nFMDe1MzcBVNVt9Aqrj6T3mz9zUwtY0C2hqroOOItecoLe0afJfgDs3Lf80L7XtwAPm1hIkv5lev/AX9EcZZl43L+q/n0u4c2y/hZgjyT9sT1sin794/wn4DjgGfR+7L9uInRgHLhn0hj7972+Cfj0pH15QFW9CqCqvlhVx9GbUvBh4J9niX9W1fvNyi30plRMOJhmytM09m2+h/59uHm6zjNs++NV9Ux6R56uo3dUUloy5qd25Kckj6d3BP9lVXXJTwM3P2mFMje1IzdNsroZYzdzUztY0A1Rej9MfUOS/Zrlh9Gbz/z5psutwH5J7tv3tquA5yXZOckvACf1rTsfeFyS5zVHRV7LvZPWacCbJuZKN6fnXzDHcKeK5aeq6uvARuAtSe7bHNX5jVnG3JXeVam+Qy/R/nnfeDuADzXj7ZzksfSmF034KPDoJC9OslPz+JUkv9hs/4VJHthMn7iD3g905yTJGuB+zeL9muUJ/wD8SZIHNUd6/jO9/5BM5yHAa5v4XkBvDvwFc42liWevJM9p5oP/mN7Rrjnvj7QQ5qf25ackB9G7Cu9rqupfpuhiftKyZ25qZW56XpIDk9wnyVrgr4Erm7N1YG4aOQu64bqT3o85L0vyA3rJaBPwhmb9J+gdwfhWkm83bW8D7qaXJN5D3w9hq+rbwAuAU+n9Qz8A+Le+9ecCfwH8U3qn6TcBP70a0CymimWyFwKHNdv+n8D7mfkywv9A7zT6N+ld8vbzk9a/mt60hW/R+4f/7r59uRN4FnA8vaM232r2baIQezGwpdnPVwIvmnhveleb+tUZ4voRP5sicF2zPOEUej+Y/jrwaeCtVXXhDGNdRu97+DbwZ/SmSH1nhv5TuQ+9v4mb6U31+DXgv8xzDGm+zE/ty09voDel6oym3/eT9B/lNj9pJTA3tS837UvvYNOdwJfp/XbtN/vWm5tGLPeewirNXZL3A9dV1SmjjkWS+pmfJLWRuUnD4Bk6zVlz2v5RzSn3I+nN8f7wqOOSJPOTpDYyN2kptPWO9Gqnh9Kbu/1gYCvwqqq6crQhSRJgfpLUTuYmDZ1TLiVJkiSpo5xyKUmSJEkdZUEnSZIkSR3Vyt/Q7bnnnrVu3bpRhyFpEV1++eXfrqq1o45jEOYmafkxN0lqq7nmp1YWdOvWrWPjxo2jDkPSIkry9VHHMChzk7T8mJsktdVc85NTLiVJkiSpoyzoJEmSJKmjLOgkSZIkqaMs6CRJkiSpoyzoJEmSJKmjLOgkSZIkqaMs6CRJkiSpoyzoJC1rSc5Msi3Jpr62tya5LsmXkpybZPdRxihJkrRQFnSSlruzgCMntV0MHFRVvwR8BXjTUgclSZK0GCzoJC1rVXUpcNuktouq6p5m8fPAfksemCRJ0iKwoJO00r0M+Niog5AkSVoICzqN1F3bd3RqXC0vSf4YuAd47wx91ifZmGTj+Pj40gWnzphPvjE3SRqmmXKM+Wf5Wj3qALSyrdlpFetOPn/Rx91y6jGLPqaWlyQnAscCR1RVTdevqjYAGwDGxsam7aeVaz55zNwkaZhmykfmn+XLgk7SipPkSOCPgF+rqh+OOh5JkqSFcsqlpGUtydnA54ADk2xNchLwDmBX4OIkVyU5baRBSpIkLZBn6CQta1V1whTNZyx5IJIkSUPgGTpJkiRJ6igLOkmSJEnqKAs6SZIkSeooCzpJkiRJ6igLOkmSJEnqKAs6SZIkSeooCzpJkiRJ6igLOkmSJEnqKAs6SZIkSeooCzpJkiRJ6igLOkmSJEnqKAs6SZIkSeqo1bN1SHImcCywraoOatreDxzYdNkd+F5VHTLFe7cAdwI7gHuqamyR4pYkSZKkFW/Wgg44C3gH8A8TDVX1OxOvk/wVcPsM7396VX17oQFKkiRJkqY2a0FXVZcmWTfVuiQBfhv49cUNS5IkSZI0m0F/Q/erwK1VdcM06wu4KMnlSdbPNFCS9Uk2Jtk4Pj4+YFiSJEmStPwNWtCdAJw9w/rDq+oJwFHA7yV56nQdq2pDVY1V1djatWsHDEuSJEmSlr8FF3RJVgPPA94/XZ+qurl53gacCxy60O1JkiRJku5tkDN0zwCuq6qtU61MskuSXSdeA88CNg2wPUmSJElSn1kLuiRnA58DDkyyNclJzarjmTTdMsk+SS5oFvcCPpvkauALwPlVdeHihS5JkiRJK9tcrnJ5wjTtL5mi7Wbg6Ob1jcDBA8YnSZK04iT5feDl9C4w92XgpVV112ijktRGg14URZIkSYsoyb7Aa4GxqjoIWEVvZpQk/RwLOkmSpPZZDdy/uQjdzsDNI45HUktZ0EmSJLVIVX0T+EvgG8AtwO1VddFoo5LUVhZ0kiRJLZLkQcBxwCOAfYBdkrxoUp/1STYm2Tg+Pj6KMCW1hAWdJElSuzwD+FpVjVfVduBDwJP7O1TVhqoaq6qxtWvXjiRISe1gQSdJktQu3wCelGTnJAGOADaPOCZJLWVBJ0mS1CJVdRlwDnAFvVsW3AfYMNKgJLXWrPehkyRJ0tKqqlOAU0Ydh6T28wydJEmSJHWUBZ0kSZIkdZQFnSRJkiR1lAWdJEmSJHWUBZ0kSZIkdZQFnaRlLcmZSbYl2dTXtkeSi5Pc0Dw/aJQxSpIkLZQFnaTl7izgyEltJwOXVNUBwCXNsiRJUudY0Ela1qrqUuC2Sc3HAe9pXr8HeO6SBiVJkrRILOgkrUR7VdUtAM3zQ0YcjyRJ0oJY0EnSDJKsT7Ixycbx8fFRhyNJknQvFnSSVqJbk+wN0Dxvm65jVW2oqrGqGlu7du2SBShJkjQXFnSSVqLzgBOb1ycCHxlhLJIkSQtmQSdpWUtyNvA54MAkW5OcBJwKPDPJDcAzm2VJkqTOWT3qACRpmKrqhGlWHbGkgUiSJA2BZ+gkSZIkqaMs6CRJkiSpoyzoJEmSJKmjZi3okpyZZFuSTX1tb0nyzSRXNY+jp3nvkUmuT/LVJCcvZuCSJEmStNLN5QzdWcCRU7S/raoOaR4XTF6ZZBXwTuAo4LHACUkeO0iwkiRJkqSfmbWgq6pLgdsWMPahwFer6saquhv4J+C4BYwjSZIkSZrCIL+he3WSLzVTMh80xfp9gZv6lrc2bVNKsj7JxiQbx8fHBwhLkiRJklaGhRZ07wIeBRwC3AL81RR9MkVbTTdgVW2oqrGqGlu7du0Cw5IkSZKklWNBBV1V3VpVO6rqJ8Df05teOdlW4GF9y/sBNy9ke5IkSZKkn7eggi7J3n2LvwlsmqLbF4EDkjwiyX2B44HzFrI9SZIkSe101/YdC1qnxbF6tg5JzgaeBuyZZCtwCvC0JIfQm0K5BXhF03cf4PSqOrqq7knyauDjwCrgzKq6Zih7IUmSJGkk1uy0inUnnz/lui2nHrPE0aw8sxZ0VXXCFM1nTNP3ZuDovuULgJ+7pYEkSZIkaXCDXOVSkiRJkjRCFnSSJEmS1FEWdJIkSZLUURZ0kiRJktRRFnSSJEmS1FEWdJIkSZLUURZ0kiRJktRRFnSSJEmS1FEWdFqW7tq+o1PjSpIkSQuxetQBSMOwZqdVrDv5/EUfd8upxyz6mJIkSdJCeYZOkiRJkjrKgk6SJEmSOsqCTpIkSZI6yoJOkiRJkjrKgk6SJEmSOsqCTpIkSZI6yoJOkiRJkjrKgk6SJEmSOsqCTpIkSZI6yoJOkiRJkjrKgk6SJEmSOsqCTpIkSZI6yoJO0oqV5PeTXJNkU5Kzk6wZdUySBJBk9yTnJLkuyeYkh406JkntZEEnaUVKsi/wWmCsqg4CVgHHjzYqSfqptwMXVtVjgIOBzSOOR1JLrR51AJI0QquB+yfZDuwM3DzieCSJJLsBTwVeAlBVdwN3jzImSe016xm6JGcm2ZZkU1/bW5spAF9Kcm6S3ad575YkX05yVZKNixm4JA2iqr4J/CXwDeAW4Paqumi0UUkSAI8ExoF3J7kyyelJdhl1UJLaaS5TLs8CjpzUdjFwUFX9EvAV4E0zvP/pVXVIVY0tLERJWnxJHgQcBzwC2AfYJcmLpui3PsnGJBvHx8eXOkytcHdt3zGUvmq91cATgHdV1eOBHwAn93cwN2m+ZssR5pC5aePnOOuUy6q6NMm6SW39R7E/Dzx/ccOSpKF7BvC1qhoHSPIh4MnAP/Z3qqoNwAaAsbGxWuogtbKt2WkV604+f059t5x6zJCj0RLaCmytqsua5XOYVNCZmzRfs+UTc8jctPFzXIyLorwM+Ng06wq4KMnlSdbPNIhHmiQtsW8AT0qyc5IAR+BFByS1QFV9C7gpyYFN0xHAtSMMSVKLDXRRlCR/DNwDvHeaLodX1c1JHgJcnOS6qrp0qo4eaZK0lKrqsiTnAFfQy2NX0uQgSWqB1wDvTXJf4EbgpSOOR1JLLbigS3IicCxwRFVNWYBV1c3N87Yk5wKHAlMWdJK01KrqFOCUUcchSZNV1VWA1x+QNKsFTblMciTwR8BzquqH0/TZJcmuE6+BZwGbpuorSZIkSZq/udy24Gzgc8CBSbYmOQl4B7ArvWmUVyU5rem7T5ILmrfuBXw2ydXAF4Dzq+rCoeyFJEmSJK1Ac7nK5QlTNJ8xTd+bgaOb1zcCBw8UnSRJkiRpWotxlUtJkiRJ0ghY0EmSJElSR1nQSZIkSVJHWdBJkiRJUkdZ0EmSJElSR1nQSZIkSVJHWdBJkiRJUkdZ0EmSJElSR1nQSZIkSVJHWdBJkiRJUkdZ0EmSJElSR1nQSZIkSVJHWdBJkiRJUkdZ0EmSJElSR1nQSZI0yV3bd4w6BEmS5mT1qAOQuuSu7TtYs9OqTo3dxZilUVuz0yrWnXz+nPpuOfWYIUcjSdL0LOikeZjP/+TN17D+p7CLMUuSJGlunHIpSZIkSR1lQSdJkiRJHWVBJ0mSJEkdZUEnSZIkSR1lQSdJkiTN00y3N+nirU+GtT+zvXdYn9WotjsKXuVSkiRJmqeZriLdxatAD2t/Zrva9qiu8t3F72g6nqGTJEmSpI6yoJMkSZKkjppTQZfkzCTbkmzqa9sjycVJbmieHzTNe09s+tyQ5MTFClySJEmSVrq5nqE7CzhyUtvJwCVVdQBwSbN8L0n2AE4BnggcCpwyXeEnSZIkSZqfORV0VXUpcNuk5uOA9zSv3wM8d4q3Phu4uKpuq6rvAhfz84WhJEmSJGkBBvkN3V5VdQtA8/yQKfrsC9zUt7y1aZMkSZIkDWjYF0XJFG01ZcdkfZKNSTaOj48POSypfZbT/VAkSZK0NAa5D92tSfauqluS7A1sm6LPVuBpfcv7AZ+aarCq2gBsABgbG5uy6JOWs9nul7JQy+k+K5IkSbq3Qc7QnQdMXLXyROAjU/T5OPCsJA9qLobyrKZNkiRJkjSgud624Gzgc8CBSbYmOQk4FXhmkhuAZzbLJBlLcjpAVd0G/A/gi83jvzdtkjRySXZPck6S65JsTnLYqGOSJEmajzlNuayqE6ZZdcQUfTcCL+9bPhM4c0HRSdJwvR24sKqen+S+wM6jDkiSJGk+BvkNnSR1VpLdgKcCLwGoqruBu0cZkyRJ0nwN+yqXktRWjwTGgXcnuTLJ6Ul2mdzJK/BqMQ3zarbzGbstV9XtYsyS1DaeoZO0Uq0GngC8pqouS/J24GTgT/s7eQVeLab5Xs12Plepnc/Ybbn6bRdjlqS28QydpJVqK7C1qi5rls+hV+BJkiR1hgWdpBWpqr4F3JTkwKbpCODaEYYkSZI0b065lLSSvQZ4b3OFyxuBl444HkmSpHmxoJO0YlXVVcDYqOOQJElaKKdcSpIkSVJHWdBJkiRJUkdZ0EmSJElSR1nQSZIkSVJHWdBJkiRJUkdZ0EmSJLVQklVJrkzy0VHHIqm9LOgkSZLa6XXA5lEHIandLOgkSZJaJsl+wDHA6aOORVK7WdBJkiS1z98AbwR+MupAJLWbBZ0kSVKLJDkW2FZVl8/QZ32SjUk2jo+PL2F0GqW7tu8YdQhqodWjDkCSJEn3cjjwnCRHA2uA3ZL8Y1W9aKJDVW0ANgCMjY3VaMLUUluz0yrWnXz+tOu3nHrMEkajtvAMnSRJUotU1Zuqar+qWgccD3yiv5iTpH4WdJIkSZLUUU65lCRJaqmq+hTwqRGHIanFPEMnSZIkSR1lQSdJkiRJHWVBJ0lqlflclttLeC/MsD7jYX4fbYlDktrG39BJklpltsty9/MS3Qsz3894GH0n+s+VfxeSNLUFn6FLcmCSq/oedyR5/aQ+T0tye1+fNw8esiRJkiQJBjhDV1XXA4cAJFkFfBM4d4qun6mqYxe6HUmSJEnS1BbrN3RHAP9RVV9fpPEkSZIkSbNYrILueODsadYdluTqJB9L8rhF2p4kSZIkrXgDF3RJ7gs8B/jAFKuvAB5eVQcDfwt8eIZx1ifZmGTj+Pj4oGFJkiRJ0rK3GGfojgKuqKpbJ6+oqjuq6vvN6wuAnZLsOdUgVbWhqsaqamzt2rWLEJYkSZIkLW+LUdCdwDTTLZM8NEma14c22/vOImxTkiRJkla8ge5Dl2Rn4JnAK/raXglQVacBzwdeleQe4EfA8VVVg2xTkiRJktQzUEFXVT8EHjyp7bS+1+8A3jHINiRJkiRJU1usq1xKkiRJkpaYBZ0kSZIkdZQFnSRJkiR1lAWdJEmSJHWUBZ0kSZIkdZQFnSRJkiR1lAWdJEmSJHWUBZ2kFS3JqiRXJvnoqGORJEmaLws6SSvd64DNow5CkiRpISzoJK1YSfYDjgFOH3UskiRJC2FBJ2kl+xvgjcBPRh2IJEnSQljQSVqRkhwLbKuqy2fptz7JxiQbx8fHlyg6SdJiuGv7joHWa/hm+g6G+f0Nst1RjDuT1UMZVZLa73DgOUmOBtYAuyX5x6p6UX+nqtoAbAAYGxurpQ9TkrRQa3ZaxbqTz592/ZZTj1nCaDSVmb6jLaceM7Tvb7bttm3cmXiGTtKKVFVvqqr9qmodcDzwicnFnCRJUttZ0EmSJElSR1nQLSPDmpfr/HItd1X1qao6dtRxSJIkzZe/oVtGZpsnvlDOL5ckSZLayTN0kiRJktRRFnSSJEmS1FEWdJIkSZLUURZ0kiRJktRRFnSSJEmS1FEWdJIkSZLUURZ0kiRJktRRFnSSJEmS1FEDF3RJtiT5cpKrkmycYn2S/J8kX03ypSRPGHSbkiRJkiRYvUjjPL2qvj3NuqOAA5rHE4F3Nc+SJEmSpAEsxZTL44B/qJ7PA7sn2XsJtitJkiRJy9piFHQFXJTk8iTrp1i/L3BT3/LWpk2SJEmSNIDFmHJ5eFXdnOQhwMVJrquqS/vWZ4r31OSGphhcD7D//vsvQliSJEmStLwNfIauqm5unrcB5wKHTuqyFXhY3/J+wM1TjLOhqsaqamzt2rWDhiVJkiRJy95ABV2SXZLsOvEaeBawaVK384Dfba52+STg9qq6ZZDtSpIkSZIGn3K5F3Bukomx3ldVFyZ5JUBVnQZcABwNfBX4IfDSAbcpSRqxu7bvYM1Oqxa9ryRJmp+BCrqquhE4eIr20/peF/B7g2xHktQua3ZaxbqTz59T3y2nHjPkaCRJWrmW4rYFkiRJkqQhsKCTJElqkSQPS/LJJJuTXJPkdaOOSVJ7LcZtCyRJkrR47gHeUFVXNBefuzzJxVV17agDk9Q+nqGTJElqkaq6paquaF7fCWwG9h1tVJLayoJOkiSppZKsAx4PXDbaSCS1lQWdJElSCyV5APBB4PVVdcekdeuTbEyycXx8fDQBaiju2r5j1CH8nDbGBMOLq637Ox1/QydJktQySXaiV8y9t6o+NHl9VW0ANgCMjY3VEoenIZrptjCjug3MbLeqaWNcg8TUxu9gJp6hkyRJapEkAc4ANlfVX486HkntZkE3Al07jStJkpbU4cCLgV9PclXzOHrUQUlqJ6dcjsBsp60Xqo2ngCVJ0vxU1WeBjDoOSd3gGTpJkiRJ6igLOkmSJEnqKAs6SZIkSeooCzpJkiRJ6igLOkmSJEnqKAs6SZIkSeooCzpJK1KShyX5ZJLNSa5J8rpRxyRJkjRf3odO0kp1D/CGqroiya7A5UkurqprRx2YJEnSXHmGTtKKVFW3VNUVzes7gc3AvqONSpIkaX4s6CSteEnWAY8HLhttJJIkSfNjQSdpRUvyAOCDwOur6o4p1q9PsjHJxvHx8aUPUIvmru07Rh2CJEmLzt/QSVqxkuxEr5h7b1V9aKo+VbUB2AAwNjZWSxieFtmanVax7uTz59R3y6nHDDkaSZIWh2foNCuPams5ShLgDGBzVf31qOORJElaCM/QaVbzOao9Xx4F1wgdDrwY+HKSq5q2/1pVF4wwJkmSpHmxoJO0IlXVZ4GMOg5JkqRBLHjK5VxuypvkaUluT3JV83jzYOFKkiRJkiYMcoZurjfl/UxVHTvAdiRJkiRJU1jwGTpvyitJkiRJo7UoV7mc5aa8hyW5OsnHkjxuMbYnSZIkSVqEi6LMclPeK4CHV9X3kxwNfBg4YJpx1gPrAfbff/9Bw5IkSZKkZW+gM3Sz3ZS3qu6oqu83ry8Adkqy51RjVdWGqhqrqrG1a9cOEpYkSZIkrQiDXOVy1pvyJnlo048khzbb+85CtylJkiRJ+plBplxOeVNeYH+AqjoNeD7wqiT3AD8Cjq+qGmCbkiRJkqTGggu6udyUt6reAbxjoduQJEmSJE1vUa5yKUmSpG64a/uOBa1r47jDHLutMUuTDXyVS0mSJHXHmp1Wse7k86dct+XUYzo17jDHbmvM0mSeoZMkSZKkjrKgkyRJkqSOsqCTJEmSpI6yoJMkSZKkjrKgkyRJkqSOsqCTpCGYzyWp53v56mGNPazLaA/z8txe+luStNJ52wJJGoLZLlndb76Xrx7W2G0Yd5hje5lwSdJy5Bk6SZIkSeooCzpJkiRJ6igLOkmSJEnqKAs6SZIkSeooCzpJkiRJ6igLOkmSJEnqqM4XdF28b5IkSZIkLYbO34duvvc3mqstpx4zlHEnxpYkSZKkQXX+DJ0kSZIkrVQWdJIkSZLUURZ0kiRJktRRFnSSJEmS1FEWdJIkSZLUURZ0kiRJktRRFnSSJEmS1FFNRa7jAAAKuElEQVQWdJIkSZLUUQMVdEmOTHJ9kq8mOXmK9fdL8v5m/WVJ1g2yPUlaTLPlMEkaFfOTpLlacEGXZBXwTuAo4LHACUkeO6nbScB3q+oXgLcBf7HQ7UnSYppjDpOkJWd+kjQfg5yhOxT4alXdWFV3A/8EHDepz3HAe5rX5wBHJMkA25SkxTKXHCZJo2B+kjRngxR0+wI39S1vbdqm7FNV9wC3Aw8eYJuStFjmksMkaRTMT5LmLFW1sDcmLwCeXVUvb5ZfDBxaVa/p63NN02drs/wfTZ/vTDHeemB9s3ggcP2CAls8ewLfHnEM82G8w2W8g3t4Va0ddRAT5pLDmnZz02CMd7iMd3Ctyk0w5//HaltugnZ+vzMx3uEy3sHNKT+tHmADW4GH9S3vB9w8TZ+tSVYDDwRum2qwqtoAbBggnkWVZGNVjY06jrky3uEy3mVpLjnM3DQg4x0u4122Zs1PbctN0L3v13iHy3iXziBTLr8IHJDkEUnuCxwPnDepz3nAic3r5wOfqIWeEpSkxTWXHCZJo2B+kjRnCz5DV1X3JHk18HFgFXBmVV2T5L8DG6vqPOAM4P8l+Sq9M3PHL0bQkjSo6XLYiMOSJPOTpHkZZMolVXUBcMGktjf3vb4LeMEg2xihVk1jmAPjHS7jXYamymEd0LXv1niHy3iXKfPTkjDe4TLeJbLgi6JIkiRJkkZrkN/QSZIkSZJGyIIOSLIlyZeTXJVkY9O2R5KLk9zQPD9o1HFOSLJ7knOSXJdkc5LD2hpvkgObz3XicUeS17c1XoAkv5/kmiSbkpydZE3zw/TLmnjf3/xIvRWSvK6J9Zokr2/aWvv5an7MT8Njfho+89PyZW4aHnPT8C233GRB9zNPr6pD+i5XejJwSVUdAFzSLLfF24ELq+oxwMHAZloab1Vd33yuhwC/DPwQOJeWxptkX+C1wFhVHUTvx+jHA38BvK2J97vASaOL8meSHAT8Z+BQen8LxyY5gJZ+vlow89MQmJ+Gy/y0IpibhsDcNFzLMjdV1Yp/AFuAPSe1XQ/s3bzeG7h+1HE2sewGfI3m949tj3dSjM8C/q3N8QL7AjcBe9C7aNBHgWfTu9Hk6qbPYcDHRx1rE8sLgNP7lv8UeGNbP18fC/qOzU9LE7v5afHjNT8t44e5acliNzctfrzLLjd5hq6ngIuSXJ5kfdO2V1XdAtA8P2Rk0d3bI4Fx4N1JrkxyepJdaG+8/Y4Hzm5etzLeqvom8JfAN4BbgNuBy4HvVdU9Tbet9JJXG2wCnprkwUl2Bo6mdzPaVn6+WhDz09IwPy0+89PyZm5aGuamxbfscpMFXc/hVfUE4Cjg95I8ddQBzWA18ATgXVX1eOAHdOCUcDNv+jnAB0Ydy0ya+dLHAY8A9gF2ofd3MVkrLg9bVZvpTWm4GLgQuBq4Z8Y3qWvMT0NmfhoO89OyZ24aMnPTcCzH3GRBB1TVzc3zNnpzlA8Fbk2yN0DzvG10Ed7LVmBrVV3WLJ9DL0m1Nd4JRwFXVNWtzXJb430G8LWqGq+q7cCHgCcDuyeZuG/jfsDNowpwsqo6o6qeUFVPBW4DbqC9n6/myfy0JMxPQ2J+Wr7MTUvC3DQkyy03rfiCLskuSXadeE1vrvIm4DzgxKbbicBHRhPhvVXVt4CbkhzYNB0BXEtL4+1zAj+bMgDtjfcbwJOS7Jwk/Ozz/STw/KZPm+IlyUOa5/2B59H7nNv6+WoezE9Lxvw0JOan5cnctGTMTUOy3HLTir+xeJJH0juyBL1T8u+rqj9L8mDgn4H96f2hvqCqbhtRmPeS5BDgdOC+wI3AS+kV522Nd2d6P5Z9ZFXd3rS1+fP9b8Dv0Dv9fiXwcnrzvv+J3g9+rwReVFU/HlmQfZJ8BngwsB34g6q6pM2fr+bO/DR85qfhMj8tT+am4TM3Dddyy00rvqCTJEmSpK5a8VMuJUmSJKmrLOgkSZIkqaMs6CRJkiSpoyzoJEmSJKmjLOgkSZIkqaMs6DosyV5J3pfkxiSXJ/lckt8ccMy3JPnDeb7nuUnePMh2F1uS3ZP8lyGN/eokLx3G2NJyYX6anvlJGh1z0/TMTd1lQddRzY0bPwxcWlWPrKpfBo4H9pui7+ohh/NG4O8GHSTJqkWIZcLuwFCSEnAm8NohjS11nvlpVuYnaQTMTbMyN3WUBV13/Tpwd1WdNtFQVV+vqr8FSPKSJB9I8i/ARUkekOSSJFck+XKS4ybel+SPk1yf5F+BA/vaH5XkwuYI1meSPGZyEEkeDfy4qr7dLJ+V5LSm/1eSHNu0r0ry1iRfTPKlJK9o2p+W5JNJ3gd8uWn73abP1Un+X9O2NskHm/d/McnhTftbkpyZ5FPN0baJZHEq8KgkVzXbnWn//zTJdUkuTnL2xFG26fa/qn4IbEly6GBfobRsmZ8wP0ktZG7C3LQsVZWPDj7oHeV42wzrXwJsBfZollcDuzWv9wS+CgT4ZXrJYGdgt6b9D5t+lwAHNK+fCHxiiu28FPirvuWzgAvpHSw4oIlhDbAe+JOmz/2AjcAjgKcBPwAe0ax7HHA9sGezPBH/+4CnNK/3BzY3r98C/Hsz5p7Ad4CdgHXApr64ptv/MeAq4P7ArsANc9l/4I+BN4z678CHjzY+zE/mJx8+2vgwN5mblutj2KeTtUSSvBN4Cr0jT7/SNF9cVbdNdAH+PMlTgZ8A+wJ7Ab8KnFu9IyckOa95fgDwZOADSSY2c78pNr03MD6p7Z+r6ifADUluBB4DPAv4pSTPb/o8kF7Suhv4QlV9rWn/deCcao5a9cX/DOCxfbHslmTX5vX5VfVj4MdJtjX79XMf0TT7/xTgI1X1o2a//2WO+7+t2S9JszA/mZ+kNjI3mZuWCwu67roG+K2Jhar6vSR70jt6M+EHfa9fCKwFfrmqtifZQu/oD0BNMf59gO9V1SGzxPEjegmm3+Txil5SeE1Vfbx/RZKnTYozM8Rz2ETy6Hs/wI/7mnYw9d/1dPufKfpObG+m/V9Db98l/TzzE+YnqYXMTZibliN/Q9ddnwDWJHlVX9vOM/R/ILCt+Qf5dODhTfulwG8muX9z1OY3AKrqDuBrSV4AvR8SJzl4inE3A78wqe0FSe6T5FHAI+lNA/g48KokOzXjPTrJLlOMdwnw20ke3PTbo2m/CHj1RKcksyXLO+lNA5ht/z8L/EaSNc2RpWPmuP+PBjbNEoO0UpmfZmZ+kkbD3DQzc1NHWdB1VFUV8Fzg15J8LckXgPcAfzTNW94LjCXZSO+Iy3XNOFcA76c3F/qDwGf63vNC4KQkV9M7qnUcP+9S4PHpO7dOLwl9GvgY8Mqqugs4HbgWuCLJJuD/MsXRoKq6Bvgz4NPNdv+6WfXaJv4vJbkWeOW0H05vnO8A/5ZkU5K3zrD/XwTOA64GPkTvKN3tc9j/w4F/nSkGaaUyP5mfpDYyN5mblqv0/ralhUvyduBfqupfk5wFfLSqzhlxWHOW5AFV9f0kO9NLsuubZD1d/8cDf1BVL16yICUtiPlJUhuZm7SYPEOnxfDnzDxloe02JLkKuAL44EwJqbEn8KfDD0vSIjA/SWojc5MWjWfoJEmSJKmjPEMnSZIkSR1lQSdJkiRJHWVBJ0mSJEkdZUEnSZIkSR1lQSdJkiRJHWVBJ0mSJEkd9f8B9ojyYUtrzmUAAAAASUVORK5CYII=\n", - "text/plain": [ - "
    " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "# We want our histograms in separate axes:\n", "pyplot.figure(figsize=(15, 5)) # (width, height) = (15, 5)\n", @@ -1586,26 +1090,9 @@ }, { "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Regular walking: \n", - "[ 4.56798475 -1.36339616 -1.88600533 11.0979383 -1.34439339\n", - " 4.09510966 -2.17683652 -12.56631925 1.60094522 2.26334441\n", - " -1.29498663 -1.38011919 5.48607771 -3.24023843 -0.84698968\n", - " 6.39153474 0.34283469 1.58041635 1.34505927 4.9467819 ]\n", - "Someone who has consumed too much: \n", - "[ -6.70629936 -10.85259119 14.41649468 -19.29289544 -12.79304396\n", - " -1.88593944 -4.10296009 -21.25691093 -19.26441228 4.1956626\n", - " -12.46944515 9.15476077 8.96899927 3.81338229 1.3806409\n", - " 12.37733136 17.41419496 9.27630789 19.07739056 -7.88737314]\n" - ] - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "from scipy.stats import norm\n", "\n", @@ -1729,28 +1216,9 @@ }, { "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "count 10000.000000\n", - "mean -0.010293\n", - "std 0.999821\n", - "min -4.109381\n", - "25% -0.683082\n", - "50% -0.011365\n", - "75% 0.661128\n", - "max 4.232757\n", - "dtype: float64" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "from scipy.stats import norm\n", "import pandas as pd\n", @@ -1777,20 +1245,9 @@ }, { "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2oAAAE/CAYAAAA39zBmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3X24XXV95/33pyEaR1SkREQejFXHilbRK2VwaJWKWiSOaKe20g7FVid6j3a0t7amzFixj+ncrbbTB3tFwWBFxFuxMoKt3AhSHIsGGp4aHS0TFYgkKghYg0n43n+slXFzOCdnn3P2OXutfd6v69rX2WvttX/ru55+5/ddD7+dqkKSJEmS1B0/NO4AJEmSJEkPZKImSZIkSR1joiZJkiRJHWOiJkmSJEkdY6ImSZIkSR1joiZJkiRJHWOiBiRZk6SSHLSE80yS9yW5M8nnl2q+kyjJ9iQvGHLaVyW5emD43iQ/MqI4zkry3vb9SPepJMe0sa4YRXmafNZrC5fkd5N8M8k3hpz+7CQfaN+P9JhN8ldJ3ta+PynJraMoty3vJ5N8aVTlSXNhXbU4kmxO8rvt+5Ee40k+meTM9v0D2lUjKPsXk3xqVOX13UQkakn+LslvTzP+tCTfWMqDfw5+AnghcFRVHT/uYJarqjq4qm450DTDNoqq6ver6jWjiGtq8llVX2tj3TeK8tV91mvjleRo4M3AsVX12Ll+f9hjdthGTlW9rqp+Z65xzDDPSvKkgbL/vqqeMoqytfxYVy2+qcfsXA17jA+ebJqlvBdX1XnzjWdgfg9K0qvq/Kp60ULLnhQTkagBm4EzkmTK+DOA86tq79KHNKvHA9ur6rvTfdjRim3BXC5paJuxXhunxwPfqqqd4w7EK+nquM1YVy0L7ZXISckd+qGqev8CHgZ8B3juwLhHA7uBZ7bD64B/BO4Gvg6cPTDtGqCAg9rh7cALBj4/G/jAwPAJwP8E7gKuB04a+OxVwC3APcD/Bn5xmnhf3ca2D7gXeAdwEnAr8FbgG8Bft9P+R+ArwLeBi4HHDZRTwH8CvtzO73eAJwKfa5fzw8BDZlhnTwQ+DXwL+CZwPnDIAdZxAa9r53Un8BdA2s9+CPivwFeBncD7gUdNWbevBr4GXDUw7pfbbXFnW/aPAze06/XPh4116vaaEvcPt+vtbuDz7Tq6espyPal9fyrwT+26vA14C/Bw4HvA/e22uhd4XLtPfAT4QFv2awb3k4FlXA/cDuwA3jww383A7w4MnwTc2r7/63Z+32vn9xs8eB99XLtc3273j/84ZX/9cLsd7gFuBtaO+zj1NbcX1msjr9fadfAWmnrmO8CFwKppynkBDzzuN88wvycAn2njvAz4cx5cBxw00zoEnjplnd3VTrsZeDdwKfDdNp7NtHXGwHo9q13O7YPbBLgSeM2U7Xd1+/6qNq7vtvP8eQbqn3aap7Zl3EVTf7x04LPNNPX/Je2yXAM8cdzHi6/xvbCuWtQ22HTH7AzTPQu4ro3lQuBDTKkzBqZ9K0075x7gS8DJwCnA94E97Xyub6e9Evg94LM09eKTGKhj2nX+WeDP2v3gi8DJA/OacXvStAuLH7SvnsNAfdVO82+BL7RlfwH4twOfXdmu98+2y/Ip4LBxHxMjPb7GHcDIFgTeA7x3YPi1wNaB4ZOAH6NJKp4B3AG8rP1sDUNWEsCR7YF1alvWC9vh1TSN+ruBp7TTHgE8bYZ4p+6IJwF7gT8EHkpT8T2f5gB+djvuz4CrBr5TNBXHI4GnAfcBlwM/AjyKJuk4c4b5P6mN/aFt7FcBf3KA9VvAJ4BDgGOAXcAp7We/QlOR/QhwMHARP6jk9q/b97fr52ED4/4KWAW8iKbS/BvgMe063gk8b5hYp26vKXF/iKayfDjwdJqKaaZEbQfwk+37RwPPHtg2t04p92yayuxl7X7wMKZP1C5o5/1j7Tp7Qfv5ZmZI1GbYB/eXt38f/Qzwl+36O64t++SB2HbT7KMrgD8A/mHcx6ivub+wXhtpvdaug8/TnOg4FNgGvG6Gsh5wTM4wzeeAd7bzey5NQ+FBidqB1uHUddaO20zTKDmx3R6reHCitndg3s+jacTtL/9KZkjUBtbxk6ZbVmAlTX1+FvCQdnvdM1D2ZppG6/Htsp0PfGjcx4qv8b6wrlqKNtiTDvD5Q2hOlv9aewz/LE0b5UGJGvAUmmT5cQPr/4lT1/VA2VfSJFRPa4/5lTw4Uds7MO+fp6m/Dh1iez5g20/dNjT19J00V2cPAk5vh394ILZ/Bv51u82uBDaO+3gY5WuSLl+eB7wiycPa4V9qxwFQVVdW1Y1VdX9V3UDTgH7ePObzH4BLq+rStqzLgC00lQY0Z2CfnuRhVbWjqm6eQ9n3A2+vqvuq6ns0Z1zPrarrquo+4DeB5yRZM/CdP6yqu9v53AR8qqpuqarvAJ+kOcPyIFX1laq6rJ3XLpp/+LOtj41VdVdVfQ24giZBoI3zne18723jfOWUWwfOrqrvtsu13+9U1e6q+hRNI+OCqtpZVbcBf78/9nnGuv92oX8P/FY775sY2CemsQc4Nskjq+rOqrpulll8rqr+pt0PvjfDNO9o530j8D6aSmZB2mdnfgJ4a7v+tgLvpanI9ru63Uf30Vyhe+ZC56uxsF4bfb3236vq9qr6NvA/+EE9NidJjqG5C+Bt7fyuasubyVzX4cer6rPt9tg9wzT75/0ZmitcPzfnBXmwE2hOuG2squ9X1adpTtIN1l0XVdXnq7ml7XzmuQ41UayrFr8NdiAn0CRJf1JVe6rqIzRXn6azjyZBPDbJyqraXlX/PEv5m6vq5qraW1V7pvl858C8L6S5SrdunssyaB3w5ar663beF9Bcsft3A9O8r6r+V7vNPsyE1UcTk6hV1dU0VxVOa3vx+3Hgg/s/T/JvklyRZFeS79DcanfYPGb1eJrK6K79L5pG8xHV3Ov8823ZO5JckuRH51D2rin/kB9Hc4Zk/zLeS3Pm6MiBae4YeP+9aYYPnm5GSR6T5ENJbktyN80tfLOtj8Gez/5loOwHxNm+Pwg4fGDc16cpb6jY5xkrNGepDpoy76/OMC00Sd2pwFeTfCbJc2Ypf7plOtA0X6VZVwv1OODbVXXPlLIH94up22qV99z3j/UaMPp6baZ67IDaXhfvbV9ntctxZz3wGZdp65d5rsPZ6pfp5j2q+uXrVXX/lLIPVL8MtQ41uayrgMVvgw1+/5MD9dEvtrHeVtVcZmrNVB99BXgTzZWtnW0cs9Uds9VH0817VPXR1OVYVvXRxCRqrffTnMU5g+asxuAB80GaS9RHV9WjaG67m/rg637fBf7VwPBgj19fp7mt75CB18OraiNAVf1dVb2Q5pL7F2luBxhWTRm+naZSAiDJw2meubptDmXO5A/a+T2jqh5Jc5ZqpvUxmwfESXNr5F4eWGFNXba5mG+su9o4jp4S27Sq6gtVdRrN7Zd/Q3NmBmaOfZhlmjrv29v3B9rHZiv7duDQJI+YUvYo9gt1j/Xa8EZZrz1ANb0uHty+fp/mVulHt/Hvd6D6ZaZ1ON/6Zbp5D1u/HMjtwNFTOgywftEwrKuGt6C6qppeF/fXR+fT1EdHTunQ5UD10Qer6idolq9obvmE+ddH0817mPpotnKnti/3l71s6qNJTNReQPPw59Rb3B5BcxVid5LjgV84QDlbaW7dW5lkLc29vvt9APh3SX46yYokq9J0335UksOTvLQ9mO+jeTById2pfxD45STHJXko8PvANVW1fQFl7veINr67khwJ/PoCyroA+LUkT0hyME2cF9boenqaV6zV3PZ3EXB2kn+V5FjgzOmmTfKQNL/d8aj2sv7d/GDb3QH8cJJHzSP2t7XzfhpN5ykXtuO3AqcmOTTJY2nObg26g+Y+9+mW6+s0D1L/Qbv/PYPm4ejz5xGfus96bXijrNcOqKq+SnPL1Tva+uMneODtOP/HLOvwDuCoJA+ZRxj75/2TwEuA/7cdvxX4mbbueRJN/TBoxvqFpnOQ7wK/0e4rJ7XL9aF5xKflxbpqeHOtqw50zELzvOxe4D8nOSjJz9A8R/ogSZ6S5PntMu2mufI3WB+tydx7dnxMO++VSV5B0yHRpe1nB9qeu2huOZ1p2S4F/nWSX2iX6+eBY2lux14WJipRaw+e/0nzQOnFUz7+T8BvJ7kH+C1+cLVkOm+j6ZHnTpregP7P5fu2kXwazYPWu2jO7vw6zbr8IZrf3bmd5mHr57Xzne/yXN7G8lGasyVPBF453/KmeAfNA7LfoXm24aIFlHUuzXNQV9H0srQb+NWFBjhgIbG+geYy+DdoHoJ/3wGmPQPY3t6G8DqaM1xU1RdpktFb2lst5nI5/zM0D+ZfDvxRNc/jQbO+rqd5yPZT/CCB2+8PgP/azu8t05R7Os1DuLcDH6O5r/6yOcSlnrBem5NR1mvD+AXg39Csl7fTNFSnc6B1+GmanhW/keSbc5j3N2i25e00J2le19ZVAO+i6b3tDpoG89STOGcD57X1ywOea6uq7wMvBV5M05HCXwK/NFC2NC3rqjmZa111NjMcs22s3wd+hqYjjjtpbgGdqcyHAhtpju9v0CRZZ7Wf7T/Z860ksz2nP+ga4Mltmb8H/GxVfav97EDb81/a6T/bLtsJU5brWzQnod5Mc9vpbwAvqaq51JW9tr97dUmSJElSR0zUFTVJkiRJmgQmapIkSZLUMSZqkiRJktQxJmqSJEmS1DEmapIkSZLUMQct5cwOO+ywWrNmzVLOUtIiu/baa79ZVavHHcdCWDdJk8n6SVIXDVs3LWmitmbNGrZs2bKUs5S0yJJ8ddwxLJR1kzSZrJ8kddGwdZO3PkqSJElSx5ioSZIkSVLHmKhJkiRJUseYqEmSJElSx5ioSZIkSVLHmKhJkiRJUseYqEmSJElSx8yaqCU5OskVSbYluTnJG9vxZye5LcnW9nXq4ocrSZLUbUlWJfl8kuvbttM72vGbk/zvgbbTceOOVVJ3DfOD13uBN1fVdUkeAVyb5LL2s3dV1R8tXniSJEm9cx/w/Kq6N8lK4Ookn2w/+/Wq+sgYY5PUE7MmalW1A9jRvr8nyTbgyMUOTJIkqY+qqoB728GV7avGF5GkPprTM2pJ1gDPAq5pR70hyQ1Jzk3y6BHHJkmS1EtJViTZCuwELquq/W2n32vbTu9K8tAxhiip44ZO1JIcDHwUeFNV3Q28G3gicBzNFbc/nuF765NsSbJl165dIwhZo7R7z75elStNMo9HaXJU1b6qOg44Cjg+ydOB3wR+FPhx4FDgrdN917ZTdy1mfWpdramGeUaN9v7qjwLnV9VFAFV1x8Dn7wE+Md13q2oTsAlg7dq1XvbvmFUrV7BmwyUjL3f7xnUjL1OadB6P0uSpqruSXAmcMvBc/31J3ge8ZYbv2HbqqMWqp8G6Wg82TK+PAc4BtlXVOwfGHzEw2cuBm0YfniRJUr8kWZ3kkPb9w4AXAF/c33Zq21Yvw7aTpAMY5oraicAZwI3tvdYAZwGnt93KFrAdeO2iRChJ00iyCrgKeChNXfaRqnp7ks3A84DvtJO+qqq2Tl+KJC2KI4DzkqygOSn+4ar6RJJPJ1kNBNgKvG6cQUrqtmF6fbyapkKZ6tLRhyNJQ7P7a0mdVFU30HS+NnX888cQjqSeGuoZNUnqGru/liRJk2xO3fNLUpfY/bUkSZpUJmqSesvuryVJ0qQyUZPUe1V1F3AlTffXO6pxH/A+4PgZvrOpqtZW1drVq1cvYbSSJEmzM1GT1Et2fy1JkiaZnYlI6iu7v5YkSRPLRE1SL9n9tSRJmmTe+ihJkiRJHWOiJkmSJEkdY6ImSZIkSR1joiZJkiRJHWOiJkmSJEkdY6ImSZIkSR1joiZJkiRJHWOiJkmSJEkdY6ImSZIkSR1joiZJkiRJHWOiJkmSJEkdY6ImSZIkSR1joiZJkiRJHWOiJkmSJEkdY6ImSZIkSR1joiZJkiRJHWOiJkmSJEkdY6ImSZIkSR1joiZJkiRJHWOiJkmSJEkdY6ImSZIkSR1joiZJkjRCSVYl+XyS65PcnOQd7fgnJLkmyZeTXJjkIeOOVVJ3mahJkiSN1n3A86vqmcBxwClJTgD+EHhXVT0ZuBN49RhjlNRxJmqSJEkjVI1728GV7auA5wMfacefB7xsDOFJ6gkTNUmSpBFLsiLJVmAncBnwz8BdVbW3neRW4MhxxSep+0zUJEmSRqyq9lXVccBRwPHAU6ebbLrvJlmfZEuSLbt27VrMMCV1mImaJEnSIqmqu4ArgROAQ5Ic1H50FHD7DN/ZVFVrq2rt6tWrlyZQSZ1joiapt+xZTVIXJVmd5JD2/cOAFwDbgCuAn20nOxP4+HgilNQHJmqS+sye1SR10RHAFUluAL4AXFZVnwDeCvzfSb4C/DBwzhhjlNRxB80+iSR1U1UVMFPPar/Qjj8POBt491LHJ2l5qqobgGdNM/4WmufVJGlWXlGT1Gv2rCZJkiaRiZqkXptvz2r2qiZJkrrMRE3SRJhrz2r2qiZJkrrMRE1Sb9mzmiRJmlR2JiKpz44AzkuygubE04er6hNJ/gn4UJLfBf4Re1aTJEk9Y6ImqbfsWU2SJE2qWW99THJ0kiuSbGt/UPaN7fhDk1zW/qDsZUkevfjhSpIkSdLkG+YZtb3Am6vqqTQP6b8+ybHABuDy9gdlL2+HJUmSJEkLNGuiVlU7quq69v09NA/qHwmcRvNDsrR/X7ZYQUqSJEnScjKnXh+TrKF5HuQa4PCq2gFNMgc8ZtTBSZIkSdJyNHSiluRg4KPAm6rq7jl8zx+VlSRJkqQ5GCpRS7KSJkk7v6ouakffkeSI9vMjgJ3TfdcflZUkSZKkuRmm18fQ/AbRtqp658BHF9P8kCz4g7KSJEmSNDLD/I7aicAZwI1JtrbjzgI2Ah9O8mrga8ArFidESZIkSVpeZk3UqupqIDN8fPJow5EkSZIkzanXR0mSJEnS4jNRkyRJkqSOMVGTJEmSpI4xUZMkSZKkjjFRkyRJkqSOMVHToti9Z1+vypUkSZK6ZJjfUZPmbNXKFazZcMnIy92+cd3Iy5QkSZK6xitqkiRJktQxJmqSJEmS1DEmapIkSZLUMSZqkiRJktQxJmqSJEmS1DEmapIkSZLUMSZqkiRJI5Tk6CRXJNmW5OYkb2zHn53ktiRb29ep445VUnf5O2qSJEmjtRd4c1Vdl+QRwLVJLms/e1dV/dEYY5PUE15RU6/s3rOvl2VLkpaPqtpRVde17+8BtgFHjjcqSX3jFTX1yqqVK1iz4ZJFKXv7xnWLUq4kaflKsgZ4FnANcCLwhiS/BGyhuep25/iik9RlXlGTJElaBEkOBj4KvKmq7gbeDTwROA7YAfzxDN9bn2RLki27du1asngldYuJmqRe8mF9SV2WZCVNknZ+VV0EUFV3VNW+qrofeA9w/HTfrapNVbW2qtauXr166YKW1Cne+iipr3xYX1InJQlwDrCtqt45MP6IqtrRDr4cuGkc8UnqBxM1Sb3UNnZ2tO/vSeLD+pK64kTgDODGJFvbcWcBpyc5DihgO/Da8YQnqQ9M1CT1ng/rS+qSqroayDQfXbrUsUjqL59Rk9RrPqwvSZImkYmapN7yYX1JkjSpTNQk9dKBHtYfmMyH9SVJUi/5jJqkvvJhfUmSNLFM1CT1kg/rS5KkSeatj5IkSZLUMSZqkiRJktQxJmqSJEmS1DEmapIkSZLUMSZqkiRJktQxJmqSJEmS1DEmapIkSZLUMSZqkiRJktQxJmqSJEmS1DEmapI04Xbv2dfLsiVJWs4OGncAkqTFtWrlCtZsuGRRyt6+cd2ilCtJ0nLnFTVJkiRJ6hgTNUmSJEnqGBM1SZIkSeoYEzVJkiRJ6hgTNUmSJEnqmFkTtSTnJtmZ5KaBcWcnuS3J1vZ16uKGKUmSJEnLxzBX1DYDp0wz/l1VdVz7unS0YUmSJEnS8jVrolZVVwHfXoJYJEmSJEks7Bm1NyS5ob018tEzTZRkfZItSbbs2rVrAbOTJEmSZrd7z75xhyAt2EHz/N67gd8Bqv37x8CvTDdhVW0CNgGsXbu25jk/SZIkaSirVq5gzYZLRl7u9o3rRl6mNJN5XVGrqjuqal9V3Q+8Bzh+tGFJkiRJ0vI1r0QtyREDgy8HbpppWkmSJEnS3Mx662OSC4CTgMOS3Aq8HTgpyXE0tz5uB167iDFKkiT1RpKjgfcDjwXuBzZV1Z8mORS4EFhD0376uaq6c1xxSuq2WRO1qjp9mtHnLEIskiRJk2Av8Oaqui7JI4Brk1wGvAq4vKo2JtkAbADeOsY4JXXYQnp9lCRJ0hRVtaOqrmvf3wNsA44ETgPOayc7D3jZeCKU1AcmapIkSYskyRrgWcA1wOFVtQOaZA54zPgik9R1JmqSeinJ0UmuSLItyc1J3tiOPzTJZUm+3P6d8XceJWkxJTkY+Cjwpqq6ew7f8zdoJZmoSeqt/c+APBU4AXh9kmNpnvm4vKqeDFzeDkvSkkqykiZJO7+qLmpH37G/5+z2787pvltVm6pqbVWtXb169dIELKlzTNQk9ZLPgEjqqiSh6XhtW1W9c+Cji4Ez2/dnAh9f6tgk9cesvT5KUtcd6BmQJD4DImmpnQicAdyYZGs77ixgI/DhJK8Gvga8YkzxSeoBEzVJvTb1GZDmRPZQ31sPrAc45phjFi9ASctOVV0NzFQZnbyUsUjqL299lNRbPgMiSZImlYmapF7yGRBJkjTJvPVRUl/5DIgkSZpYJmqSeslnQCRJ0iTz1kdJkiRJ6hgTNUmSJEnqGBM1SZIkSeoYEzVJkiRJ6hgTNUmSJEnqGBM1SZIkSeoYEzVJkiRJ6hgTNUmSJEnqGBM1SZIkSeoYEzVJkiRJ6hgTNUmSJEnqGBM1SZIkSeoYEzVJkiRJ6hgTNUmSJEnqGBM1SZIkSeoYEzVJkiRJ6hgTNUmSJEnqGBM1SZIkSeoYEzVJkiRJ6hgTNUmSJEnqGBM1SZIkacx279nXq3K1+A4adwCSJEnScrdq5QrWbLhk5OVu37hu5GVqaXhFTZIkSZI6xkRNkiRJkjrGRE2SJGmEkpybZGeSmwbGnZ3ktiRb29ep44xRUveZqEmSJI3WZuCUaca/q6qOa1+XLnFMknrGRE2SJGmEquoq4NvjjkNSv5moSeotby+S1DNvSHJDW3c9etzBSOo2EzVJfbYZby+S1A/vBp4IHAfsAP54pgmTrE+yJcmWXbt2LVV8kjrGRE1Sb3l7kaS+qKo7qmpfVd0PvAc4/gDTbqqqtVW1dvXq1UsXpKROMVGTNIm8vUhSpyQ5YmDw5cBNM00rSTBEojbDMyCHJrksyZfbvzaEJHXFULcXeWuRpMWS5ALgc8BTktya5NXAf0tyY5IbgJ8Cfm2sQUrqvGGuqG3mwc+AbAAur6onA5e3w5I0dsPeXuStRZIWS1WdXlVHVNXKqjqqqs6pqjOq6seq6hlV9dKq2jHuOCV126yJ2gzPgJwGnNe+Pw942YjjkqR58fYiSZI0CQ6a5/cO338mqKp2JHnMCGOSpKG0txedBByW5Fbg7cBJSY4DCtgOvHZsAUqSJM3TfBO1oSVZD6wHOOaYYxZ7dpKWkao6fZrR5yx5IJKkedm9Zx+rVq4YdxhSJ803UbsjyRHt1bQjgJ0zTVhVm4BNAGvXrq15zk+SJEkTZtXKFazZcMnIy92+cd3Iy5SW2ny7578YOLN9fybw8dGEI0mSJEkapnv+6bqY3Qi8MMmXgRe2w5IkSZKkEZj11scZngEBOHnEsUiSJEmSmP+tj5IkSZKkRWKiJkmSJEkdY6ImSZIkSR1joiZJkiRJHWOiJkmSJEkdY6ImSXO0e8++cYcgSZIm3Kzd82v8du/Zx6qVK8YdhqTWqpUrWLPhkpGXu33jupGXKUmS+slErQcWq1EINgwlSZKkLvLWR0mSJEnqGBM1SZIkSeoYEzVJkiRJ6hgTNUmSJEnqGBM1SZIkSeoYEzVJkiRJ6hgTNUmSJEnqGBM1SZIkSeoYEzVJkiRJ6hgTNUmSJEnqGBM1SZIkSeoYEzVJkiRJ6hgTNUnSsrF7z75eli1JWn4OGncAkiQtlVUrV7BmwyWLUvb2jesWpVz1T5JzgZcAO6vq6e24Q4ELgTXAduDnqurOccUoqfu8oiZJkjRam4FTpozbAFxeVU8GLm+HJWlGJmqSeivJuUl2JrlpYNyhSS5L8uX276PHGaOk5aeqrgK+PWX0acB57fvzgJctaVCSesdETVKfbcaz1pL64fCq2gHQ/n3MmOOR1HEmapJ6y7PWkiZRkvVJtiTZsmvXrnGHI2lMTNSk1mL12GYvc0vOs9aSuuiOJEcAtH93zjRhVW2qqrVVtXb16tVLFqCkbrHXR6m1WL3Bbd+4zl7mOijJemA9wDHHHDPmaDTV7j37WLVyxbjDkEbpYuBMYGP79+PjDUdS15moSZo0dyQ5oqp2HOisdVVtAjYBrF27tpYyQM1uMU+cSIstyQXAScBhSW4F3k6ToH04yauBrwGvGF+EkvrARE3SpPGstaSxqqrTZ/jo5CUNRFKv+YyapN5qz1p/DnhKklvbM9UbgRcm+TLwwnZYkiSpV7yiJqm3PGstSZImlVfUJEmSJKljTNQkSZIkqWNM1CRJkiSpY0zUJEmSJKljTNQkSZIkqWNM1EZo95594w5BkiRJ0gSwe/4RWrVyBWs2XDLycrdvXDfyMiVJkiR1l1fUJEmSJKljTNQkSZIkqWNM1CRJkiSpY0zUJEmSJKljFtSZSJLtwD3APmBvVa0dRVCSJEmStJyNotfHn6qqb46gHEmSJEkS3vooSZIkSZ2z0EStgE8luTbJ+lEEJEmSJEnL3UITtROr6tnAi4HXJ3nu1AmSrE+yJcmWXbt2DV3w7j37FhjaeMqWJEmaJLabpPFY0DNqVXV7+3dnko8BxwNXTZlmE7AJYO3atTVs2atWrmDNhksWEt6Mtm9ctyjlSpIkTRrbZNJ4zPuKWpKHJ3nE/vfAi4CbRhWYJEmSJC1XC7midjjwsST7y/lgVf3tSKKSJEmSpGVs3olaVd0CPHOEsUiSJEmSsHsvYQ8MAAAJiklEQVR+SZIkSeocEzVJkiRJ6hgTNUmSJEnqGBM1SZIkSeoYEzVJ0rz5Q7iSJC2OBf3gtaTx2r1nH6tWruhNuZo8i/VDuP4IriRpuTNRk3rMRrIk9UuS7cA9wD5gb1WtHW9EkrrKRE3SRLIxJKnDfqqqvjnuICR1m4mapElmY0iSJPWSnYlIkiQtnQI+leTaJOvHHYyk7jJRkzSpbAxJ6qITq+rZwIuB1yd57tQJkqxPsiXJll27di19hJI6wURN0qQ6YGPIhpCkcaiq29u/O4GPAcdPM82mqlpbVWtXr1691CFK6ggTNUkTabbGkA0hSUstycOTPGL/e+BFwE3jjUpSV5moSZo4NoYkddThwNVJrgc+D1xSVX875pgkdZS9PkqaRIcDH0sCTT33QRtDksatqm4BnjnuOCT1g4mapIljY0iSJPWdtz5KkiRJUseYqEmSJElSx5ioSZIkSVLHmKhJkiRJUseYqEmSJElSx5ioSZIkSVLHmKhJkiRJUseYqEmSJElSx5ioSZIkSVLHmKhJkiRJUseYqEmSJElSx5ioSZIkSVLHmKhJkiRJUseYqEmSJElSx5ioSZIkSVLHmKhJkiRJUseYqEmSJEkTaveefb0rezFj7pODxh2AJEmSpMWxauUK1my4ZFHK3r5x3aKUvX3jupGX2UdeUZMkSZKkjjFRkyRJkqSOMVGTJEmSpI4xUZMkSZKkjjFRkyRJkqSOMVGTJEmaAHZprknRx27/F6Nsu+eXJEkjtXvPPlatXNGbcifFYnXDblfpWmqLuS8v5k8VjJqJmiRJGikTBklaOG99lCRJkqSOWVCiluSUJF9K8pUkG0YVlCQtlPWTpC6ybpI0rHknaklWAH8BvBg4Fjg9ybGjCkyS5sv6SVIXWTdJmouFXFE7HvhKVd1SVd8HPgScNpqwJGlBrJ8kdZF1k6ShLSRROxL4+sDwre04SRo36ydJXWTdJGloqar5fTF5BfDTVfWadvgM4Piq+tUp060H1reDTwG+NP9wF8VhwDfHHcQ89DVuMPZxWazYH19Vqxeh3Hkbpn6aQ93U520+V8tpWcHlnXSHAQ/vUv20SG2nvm7XvsYNxj4ufY19uriHajstpHv+W4GjB4aPAm6fOlFVbQI2LWA+iyrJlqpaO+445qqvcYOxj0ufY5+HWeunYeum5bTeltOygss76drlXTPuOKYYedupr9u1r3GDsY9LX2NfSNwLufXxC8CTkzwhyUOAVwIXL6A8SRoV6ydJXWTdJGlo876iVlV7k7wB+DtgBXBuVd08ssgkaZ6snyR1kXWTpLlYyK2PVNWlwKUjimVcOntb5iz6GjcY+7j0OfY5G2H9tJzW23JaVnB5J10nl3cR2k6dXM4h9DVuMPZx6Wvs84573p2JSJIkSZIWx0KeUZMkSZIkLQITNSDJ/5Pki0luSPKxJIeMO6ZhJHlFkpuT3J+kF73gJDklyZeSfCXJhnHHM6wk5ybZmeSmcccyF0mOTnJFkm3tvvLGccfURbPtl0lelWRXkq3t6zXjiHNUZtuf0/jv7fq4IcmzlzrGURliWU9K8p2BbftbSx3jKA1zzE/Y9h1meSdqG88kyVuSVJLDxh3LsPrY/upjO2YS2gJJViT5xySfGHcsc5HkkCQfaffzbUmeM5fvm6g1LgOeXlXPAP4X8JtjjmdYNwE/A1w17kCGkWQF8BfAi4FjgdOTHDveqIa2GThl3EHMw17gzVX1VOAE4PU9WudLYg775YVVdVz7eu+SBjl6mznw/vxi4Mntaz3w7iWIabFsZvZj9+8Htu1vL0FMi2mYY36Stu+wddwkbeMHSXI08ELga+OOZY561f7qcTtmEtoCbwS2jTuIefhT4G+r6keBZzLHZTBRA6rqU1W1tx38B5rfNem8qtpWVV37AfEDOR74SlXdUlXfBz4EnDbmmIZSVVcB3x53HHNVVTuq6rr2/T00FcSR442qc3q7X87XEPvzacD7q/EPwCFJjlia6Earr8fufA15zE/S9rWOa7wL+A2gVx0P9LD91cv/F30/TpIcBawDenWSNMkjgecC5wBU1fer6q65lGGi9mC/Anxy3EFMqCOBrw8M30qPKoq+S7IGeBZwzXgj6Zxh98t/396e85H27PUkW27H6nOSXJ/kk0meNu5gRuUAx/xEbt9Z6riJ3MYASV4K3FZV1487lgXqQ/ur98dOT9sCf0JzIuL+cQcyRz8C7ALe1962+d4kD59LAQvqnr9Pkvx/wGOn+ei/VNXH22n+C83l4fOXMrYDGSbuHsk043p19q+vkhwMfBR4U1XdPe54OmaY/fJ/ABdU1X1JXgecBzx/0SMbn+V0rF4HPL6q7k1yKvA3NLcE9tosx/zEbd9Zlrf32/hAbQHgLOBFSxvR8Pra/ppBr4+dPrYFkrwE2FlV1yY5adzxzNFBwLOBX62qa5L8KbABeNtcClgWquoFB/o8yZnAS4CTq0O/WTBb3D1zKzB4JeIo4PYxxbJsJFlJUzGfX1UXjTueDpp1v6yqbw0Mvgf4wyWIa5yWzbE62FipqkuT/GWSw6rqm+OMayGGOOYnavvOtryTsI1nagsk+THgCcD1SaDZltclOb6qvrGEIc6or+2vGfT22OlxW+BE4KXtSZZVwCOTfKCq/sOY4xrGrcCtVbX/6uVHaBK1oXnrI00PPsBbgZdW1b+MO54J9gXgyUmekOQhwCuBi8cc00RL85/7HGBbVb1z3PF01Kz75ZTnd15KPx9onouLgV9qewc8AfhOVe0Yd1CLIclj2+OEJMfT/F/81oG/1V1DHvMTs32HWd5J28aDqurGqnpMVa2pqjU0DcNndyVJm00P21+9bMf0uS1QVb9ZVUe1+/crgU/3JEmjPQ6/nuQp7aiTgX+aSxnL5oraLP4ceChwWVuX/0NVvW68Ic0uycuBPwNWA5ck2VpVPz3msGZUVXuTvAH4O2AFcG5V3TzmsIaS5ALgJOCwJLcCb6+qc8Yb1VBOBM4AbkyytR13VlVdOsaYOmWm/TLJbwNbqupi4D+3z4HspemY4lVjC3gEptufgZUAVfVXwKXAqcBXgH8Bfnk8kS7cEMv6s8D/lWQv8D3glT04q38g0x7zwDEweduX4ZZ30rbxJOlV+6vH7RjbAuPzq8D5bWJ/C3Osb2NdJUmSJEnd4q2PkiRJktQxJmqSJEmS1DEmapIkSZLUMSZqkiRJktQxJmqSJEmS1DEmapIkSZLUMSZqkiRJktQxJmqSJEmS1DH/Pxqt/WQpCTaoAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
    " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "from scipy.stats import f, norm, t\n", "import pandas as pd\n", @@ -1879,20 +1336,9 @@ }, { "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEKCAYAAAAb7IIBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAGXlJREFUeJzt3X+UXWV97/H3h0QgBCGByJQmqRNt0FKDmDuNWKpOgUJAF8FVWSVVDDRdc62ItOQuDPWu0qvLu2i5FAtY1p2SmLBuBBHUZGkqROSItCaEIBLCjzIXUjIkGmlC6oBKR7/3j/3M9TCcZCZnzzmbmefzWmvW7P3sZ+/9PGQ4n7Of/UsRgZmZ5eeQqhtgZmbVcACYmWXKAWBmlikHgJlZphwAZmaZcgCYmWXKAWBmlikHgJlZphwAZmaZmlx1Aw5kxowZ0dnZ2fT6L774IlOnTh27Bo0DufU5t/6C+5yLMn3esmXL8xHxhpHqvaYDoLOzkwcffLDp9Wu1Gt3d3WPXoHEgtz7n1l9wn3NRps+S/m009TwEZGaWKQeAmVmmHABmZplyAJiZZcoBYGaWKQeAmVmmHABmZplyAJiZZcoBYGaWqdf0ncBmr2Wdy79RyX5XLczrkQjWOj4CMDPLlAPAzCxTDgAzs0yNGACSVkraLenRYeWXSnpS0jZJf1tXfqWkvrTsrLryhamsT9Lyse2GmZkdrNGcBF4F3AjcMlQg6feBRcBJEfFzScel8hOBC4DfBn4d+JakE9Jqnwf+AOgHNktaFxGPjVVHzMzs4IwYABFxn6TOYcV/BlwdET9PdXan8kXAban8GUl9wIK0rC8ingaQdFuq6wAwM6tIs+cATgDeLWmTpO9I+p1UPhPYUVevP5Xtr9zMzCrS7H0Ak4HpwCnA7wC3S3oToAZ1g8ZBE402LKkH6AHo6OigVqs12UQYGBgotf54lFufq+zvsnmDlew3t39jcJ9bpdkA6Ae+EhEBPCDpl8CMVD67rt4sYGea3l/5K0REL9AL0NXVFWVeA+fXyE18Vfb3ogpvBMvp3xjy+7uG9vS52SGgrwGnAaSTvIcCzwPrgAskHSZpDjAXeADYDMyVNEfSoRQniteVbbyZmTVvxCMASbcC3cAMSf3AVcBKYGW6NPRlYEk6Gtgm6XaKk7uDwCUR8Yu0nY8DdwGTgJURsa0F/TEzs1EazVVAi/ez6MP7qf9Z4LMNytcD6w+qdWZm1jK+E9jMLFMOADOzTDkAzMwy5QAwM8uUA8DMLFMOADOzTDkAzMwy5QAwM8uUA8DMLFMOADOzTDkAzMwy5QAwM8uUA8DMLFMOADOzTDkAzMwy1ewrIc1eE7Y+t6+yVzOajXcjHgFIWilpd3r71/Bl/01SSJqR5iXpekl9kh6RNL+u7hJJT6WfJWPbDTMzO1ijGQJaBSwcXihpNvAHwLN1xWdTvAd4LtAD3JTqHkPxKsl3AguAqyRNL9NwMzMrZ8QAiIj7gD0NFl0HXAFEXdki4JYobASmSToeOAvYEBF7ImIvsIEGoWJmZu3T1DkASecCz0XEDyTVL5oJ7Kib709l+ys3s4NU5XmP7Ve/r5L9WmscdABIOgL4FHBmo8UNyuIA5Y2230MxfERHRwe1Wu1gm/j/DQwMlFp/PMqtzx1TYNm8waqb0VZV9rmqv63c/q6hPX1u5gjgzcAcYOjb/yzgIUkLKL7Zz66rOwvYmcq7h5XXGm08InqBXoCurq7o7u5uVG1UarUaZdYfj3Lr8w1r1nLt1rwuZls2b7CyPm//UHcl+83t7xra0+eDvg8gIrZGxHER0RkRnRQf7vMj4ofAOuAj6WqgU4B9EbELuAs4U9L0dPL3zFRmZmYVGc1loLcC3wPeIqlf0tIDVF8PPA30Af8IfAwgIvYAnwE2p59PpzIzM6vIiMeREbF4hOWdddMBXLKfeiuBlQfZPjMzaxE/CsLMLFMOADOzTDkAzMwy5QAwM8uUA8DMLFMOADOzTDkAzMwy5QAwM8uUA8DMLFMOADOzTDkAzMwy5QAwM8uUA8DMLFMOADOzTDkAzMwy5QAwM8vUaN4ItlLSbkmP1pVdI+kJSY9I+qqkaXXLrpTUJ+lJSWfVlS9MZX2Slo99V8zM7GCM5ghgFbBwWNkG4G0RcRLwr8CVAJJOBC4Afjut8w+SJkmaBHweOBs4EVic6pqZWUVGDICIuA/YM6zs7ogYTLMbgVlpehFwW0T8PCKeoXg38IL00xcRT0fEy8Btqa6ZmVVkLM4B/AnwT2l6JrCjbll/KttfuZmZVWTEl8IfiKRPAYPAmqGiBtWCxkET+9lmD9AD0NHRQa1Wa7p9AwMDpdYfj3Lrc8cUWDZvcOSKE0iVfa7qbyu3v2toT5+bDgBJS4D3A6dHxNCHeT8wu67aLGBnmt5f+StERC/QC9DV1RXd3d3NNpFarUaZ9cej3Pp8w5q1XLu11PeYcWfZvMHK+rz9Q92V7De3v2toT5+bGgKStBD4JHBuRLxUt2gdcIGkwyTNAeYCDwCbgbmS5kg6lOJE8bpyTTczszJG/Boh6VagG5ghqR+4iuKqn8OADZIANkbERyNim6TbgccohoYuiYhfpO18HLgLmASsjIhtLeiPmZmN0ogBEBGLGxSvOED9zwKfbVC+Hlh/UK0zM7OW8Z3AZmaZcgCYmWXKAWBmlikHgJlZpvK6gNpapnP5NyrZ77J5lezWbELwEYCZWaYcAGZmmXIAmJllygFgZpYpB4CZWaZ8FZCZjVpVV3utWji1kv1OdD4CMDPLlAPAzCxTDgAzs0w5AMzMMuUAMDPL1IgBIGmlpN2SHq0rO0bSBklPpd/TU7kkXS+pT9IjkubXrbMk1X8qvU/YzMwqNJojgFXAwmFly4F7ImIucE+aBzib4j3Ac4Ee4CYoAoPiVZLvBBYAVw2FhpmZVWPEAIiI+4A9w4oXAavT9GrgvLryW6KwEZgm6XjgLGBDROyJiL3ABl4dKmZm1kbN3gjWERG7ACJil6TjUvlMYEddvf5Utr/yV5HUQ3H0QEdHB7VarckmwsDAQKn1x6Oq+rxs3mDb9wnQMaW6fVclxz77/+XWGOs7gdWgLA5Q/urCiF6gF6Crqyu6u7ubbkytVqPM+uNRVX2+qLL3AQxy7da8bmjPsc+rFk71/8st0OxVQD9KQzuk37tTeT8wu67eLGDnAcrNzKwizQbAOmDoSp4lwNq68o+kq4FOAfaloaK7gDMlTU8nf89MZWZmVpERjyMl3Qp0AzMk9VNczXM1cLukpcCzwPmp+nrgHKAPeAm4GCAi9kj6DLA51ft0RAw/sWxmZm00YgBExOL9LDq9Qd0ALtnPdlYCKw+qdWZm1jK+E9jMLFMOADOzTDkAzMwy5QAwM8uUA8DMLFMOADOzTDkAzMwy5QAwM8uUA8DMLFMOADOzTDkAzMwy5QAwM8uUA8DMLFMOADOzTDkAzMwy5QAwM8tUqTdLS/oL4E8pXvC+leINYMcDtwHHAA8BF0bEy5IOA24B/gvw78AfRcT2Mvs3M2u1zuXfqGS/qxZObfk+mj4CkDQT+ATQFRFvAyYBFwB/A1wXEXOBvcDStMpSYG9E/CZwXapnZmYVKXUEkNafIuk/gSOAXcBpwB+n5auBvwZuAhalaYA7gBslKb1G0sbI1uf2cVFF31jMWsV/163RdABExHOS/hfFS+F/CtwNbAFeiIjBVK0fmJmmZwI70rqDkvYBxwLP129XUg/QA9DR0UGtVmu2iQwMDJRafzzqmALL5g2OXHGCyK2/4D7noh2fX00HgKTpFN/q5wAvAF8Gzm5Qdegbvg6w7FcFEb1AL0BXV1d0d3c320RqtRpl1h+Pblizlmu3lj2wGz+WzRvMqr/gPudi1cKpLf/8KnMV0BnAMxHx44j4T+ArwO8C0yQN/UvNAnam6X5gNkBafjSwp8T+zcyshDIB8CxwiqQjJAk4HXgMuBf4YKqzBFibpteledLyb3v838ysOk0HQERsojiZ+xDFJaCHUAzdfBK4XFIfxRj/irTKCuDYVH45sLxEu83MrKRSg2oRcRVw1bDip4EFDer+DDi/zP7MzGzs+E5gM7NMOQDMzDLlADAzy5QDwMwsUw4AM7NMOQDMzDLlADAzy5QDwMwsUw4AM7NMOQDMzDLlADAzy5QDwMwsUw4AM7NMOQDMzDLlADAzy5QDwMwsU6UCQNI0SXdIekLS45LeJekYSRskPZV+T091Jel6SX2SHpE0f2y6YGZmzSh7BPD3wDcj4q3A24HHKV71eE9EzAXu4VevfjwbmJt+eoCbSu7bzMxKaDoAJB0FvIf0zt+IeDkiXgAWAatTtdXAeWl6EXBLFDYC0yQd33TLzcyslDLvBH4T8GPgC5LeDmwBLgM6ImIXQETsknRcqj8T2FG3fn8q21W/UUk9FEcIdHR0UKvVmm7gwMBAqfXHo44psGzeYNXNaJvc+gvucy7a8flVJgAmA/OBSyNik6S/51fDPY2oQVm8qiCiF+gF6Orqiu7u7qYbWKvVKLP+eHTDmrVcu7XMP+v4smzeYFb9Bfc5F6sWTm3551eZcwD9QH9EbErzd1AEwo+GhnbS79119WfXrT8L2Fli/2ZmVkLTARARPwR2SHpLKjodeAxYByxJZUuAtWl6HfCRdDXQKcC+oaEiMzNrv7LHVJcCayQdCjwNXEwRKrdLWgo8C5yf6q4HzgH6gJdSXTMzq0ipAIiIh4GuBotOb1A3gEvK7G+86Fz+jcr2vWxeZbs2s3HGdwKbmWXKAWBmlikHgJlZphwAZmaZcgCYmWXKAWBmlikHgJlZphwAZmaZcgCYmWXKAWBmlikHgJlZphwAZmaZcgCYmWXKAWBmlikHgJlZpkoHgKRJkr4v6etpfo6kTZKekvSl9LIYJB2W5vvS8s6y+zYzs+aNxRHAZcDjdfN/A1wXEXOBvcDSVL4U2BsRvwlcl+qZmVlFSgWApFnA+4Cb07yA0yheEA+wGjgvTS9K86Tlp6f6ZmZWgbJHAJ8DrgB+meaPBV6IiME03w/MTNMzgR0Aafm+VN/MzCrQ9DuBJb0f2B0RWyR1DxU3qBqjWFa/3R6gB6Cjo4NardZsExkYGCi1frOWzRscuVKLdEypdv/tllt/wX3ORTs+v8q8FP5U4FxJ5wCHA0dRHBFMkzQ5fcufBexM9fuB2UC/pMnA0cCe4RuNiF6gF6Crqyu6u7ubbmCtVqPM+s26qNKXwg9y7dYy/6zjS279Bfc5F6sWTm3551fTQ0ARcWVEzIqITuAC4NsR8SHgXuCDqdoSYG2aXpfmScu/HRGvOgIwM7P2aMV9AJ8ELpfURzHGvyKVrwCOTeWXA8tbsG8zMxulMTmmiogaUEvTTwMLGtT5GXD+WOzPzMzK853AZmaZcgCYmWXKAWBmlikHgJlZphwAZmaZcgCYmWXKAWBmlikHgJlZphwAZmaZmtBPV9r63L5KH8xmZvZa5iMAM7NMOQDMzDLlADAzy5QDwMwsUw4AM7NMOQDMzDLVdABImi3pXkmPS9om6bJUfoykDZKeSr+np3JJul5Sn6RHJM0fq06YmdnBK3MEMAgsi4jfAk4BLpF0IsWrHu+JiLnAPfzq1Y9nA3PTTw9wU4l9m5lZSWVeCr8rIh5K0z8BHgdmAouA1anaauC8NL0IuCUKG4Fpko5vuuVmZlbKmJwDkNQJvAPYBHRExC4oQgI4LlWbCeyoW60/lZmZWQVKPwpC0pHAncCfR8R/SNpv1QZl0WB7PRRDRHR0dFCr1ZpuW8cUWDZvsOn1x6Pc+pxbf8F9zsXAwECpz7/RKBUAkl5H8eG/JiK+kop/JOn4iNiVhnh2p/J+YHbd6rOAncO3GRG9QC9AV1dXdHd3N92+G9as5dqtE/pxR6+ybN5gVn3Orb/gPudi1cKplPn8G40yVwEJWAE8HhF/V7doHbAkTS8B1taVfyRdDXQKsG9oqMjMzNqvTKSeClwIbJX0cCr7S+Bq4HZJS4FngfPTsvXAOUAf8BJwcYl9m5lZSU0HQETcT+NxfYDTG9QP4JJm92dmZmPLdwKbmWXKAWBmlikHgJlZphwAZmaZcgCYmWXKAWBmlikHgJlZphwAZmaZcgCYmWXKAWBmlikHgJlZphwAZmaZcgCYmWXKAWBmlikHgJlZphwAZmaZansASFoo6UlJfZKWt3v/ZmZWaGsASJoEfB44GzgRWCzpxHa2wczMCu0+AlgA9EXE0xHxMnAbsKjNbTAzM9ofADOBHXXz/anMzMzaTMW72tu0M+l84KyI+NM0fyGwICIuravTA/Sk2bcAT5bY5Qzg+RLrj0e59Tm3/oL7nIsyfX5jRLxhpEqTm9x4s/qB2XXzs4Cd9RUiohfoHYudSXowIrrGYlvjRW59zq2/4D7noh19bvcQ0GZgrqQ5kg4FLgDWtbkNZmZGm48AImJQ0seBu4BJwMqI2NbONpiZWaHdQ0BExHpgfZt2NyZDSeNMbn3Orb/gPuei5X1u60lgMzN77fCjIMzMMjUhA0DSSkm7JT1adVvaQdJsSfdKelzSNkmXVd2mVpN0uKQHJP0g9fl/VN2mdpE0SdL3JX296ra0g6TtkrZKeljSg1W3px0kTZN0h6Qn0v/X72rJfibiEJCk9wADwC0R8baq29Nqko4Hjo+IhyS9HtgCnBcRj1XctJaRJGBqRAxIeh1wP3BZRGysuGktJ+lyoAs4KiLeX3V7Wk3SdqArIrK5D0DSauC7EXFzumLyiIh4Yaz3MyGPACLiPmBP1e1ol4jYFREPpemfAI8zwe+wjsJAmn1d+pl432aGkTQLeB9wc9VtsdaQdBTwHmAFQES83IoPf5igAZAzSZ3AO4BN1bak9dJQyMPAbmBDREz4PgOfA64Afll1Q9oogLslbUlPCpjo3gT8GPhCGuq7WdLUVuzIATCBSDoSuBP484j4j6rb02oR8YuIOJnijvIFkib0cJ+k9wO7I2JL1W1ps1MjYj7FU4QvSUO8E9lkYD5wU0S8A3gRaMmj8x0AE0QaB78TWBMRX6m6Pe2UDo9rwMKKm9JqpwLnpjHx24DTJP2fapvUehGxM/3eDXyV4qnCE1k/0F93RHsHRSCMOQfABJBOiK4AHo+Iv6u6Pe0g6Q2SpqXpKcAZwBPVtqq1IuLKiJgVEZ0Uj1H5dkR8uOJmtZSkqenCBtIwyJnAhL66LyJ+COyQ9JZUdDrQkgs62n4ncDtIuhXoBmZI6geuiogV1baqpU4FLgS2pjFxgL9Md11PVMcDq9NLhg4Bbo+ILC6LzEwH8NXiOw6TgS9GxDerbVJbXAqsSVcAPQ1c3IqdTMjLQM3MbGQeAjIzy5QDwMwsUw4AM7NMOQDMzDLlADAzy5QDwCoh6QOSQtJbq25LGZJulfSIpL8YVn65pMfSsnskvbHButMkfaxuvjuXJ3zaa4MDwKqymOIJnheMxcbS/QBtJenXgN+NiJMi4rphi79P8QTLkyju5PzbBpuYBnysQflI+217X21icgBY26VnFp0KLKUuACR9SdI5dfOrJP1heujbNZI2p2/U/zUt707vQfgisDWVfS09NGxb/YPDJC2V9K+SapL+UdKNqfwNku5M294s6dQG7T1c0hfSM+m/L+n306K7gePSc+rfXb9ORNwbES+l2Y0Uzysa7mrgzWn9a1LZkXXPgV+T7vIeeib+X0m6Hzhf0smSNqb/Hl+VNF3ScZK2pPpvT0dYv5Hm/6+kIySdL+lRFe9RuG80/142gUWEf/zT1h/gw8CKNP0vwPw0/QFgdZo+FNgBTAF6gP+eyg8DHgTmUNzt/SIwp27bx6TfUygeGXAs8OvAduAYisdGfxe4MdX7IvB7afo3KB6nMby9y4AvpOm3As8ChwOdwKOj6O+NQ+0fVv6K9VN/9lGExSHA9+rath24oq7uI8B70/Sngc+l6W3AUcDHgc3Ah4A3At9Ly7cCM9P0tKr/FvxT7c+EfBSEveYtpnisMRQPNVsMPAT8E3C9pMMoHux2X0T8VNKZwEmSPpjWORqYC7wMPBARz9Rt+xOSPpCmZ6d6vwZ8JyL2AEj6MnBCqnMGcGL6og1wlKTXR/FehSG/B9wAEBFPSPq3tP6IT1yV9GGKl7e8d6S6yQMR0Z/WfZgiJO5Py76Uyo+m+PD+TipfDXw5Tf8LxdHVe4D/SfHfURShB/DPwCpJtwNZPTTQXs0BYG0l6VjgNOBtkgKYBISkKyLiZ5JqwFnAHwG3Dq0GXBoRdw3bVjfFEUD9/BnAuyLipbStw9P6+3NIqv/TAzV71B18ZfvOAD5F8U3956Ncrb7eL3jl/6MvMrLvAu+m+Na/FvgkxfP0vw4QER+V9E6Kl8o8LOnkiPj3UbbNJhifA7B2+yDFqzrfGBGdETEbeIbiWzYURwQXU3yIDX3g3wX8WXrkNZJO2M8LMo4G9qYP/7cCp6TyB4D3pnHyycAf1q1zN8VwCWnbJzfY7n0UQylIOoFiqOjJA3VS0juA/w2cG8VjjBv5CfD6A22nkYjYB+ytO+9wITB0NHAfxRDbUxHxS4o3451D8c0fSW+OiE0R8VfA8xRHSZYpB4C122KKZ7rXuxP44zR9N8Xwxbci4uVUdjPF43AfkvQoxQdro6PXbwKTJT0CfIbi5CsR8RzFcMgm4FtpW/vSOp8AutLJ1MeAjzbY7j8AkyRtpRiGuWgU3+ivAY4EvpxO8q4bXiF98/7ndFL2mldt4cCWANekvp5McR6AiNielg+d4L0feCEi9g61K53MfjTV+cFB7tcmED8N1LIg6cgoXiA/mSKAVkbE8CAyy4qPACwXf51Oqj5KMeT0tYrbY1Y5HwGYmWXKRwBmZplyAJiZZcoBYGaWKQeAmVmmHABmZplyAJiZZer/ASR5fKlqwdN6AAAAAElFTkSuQmCC\n", - "text/plain": [ - "
    " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "import numpy as np\n", "import pandas as pd\n", @@ -1962,7 +1408,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.1" + "version": "3.7.9" }, "toc": { "base_numbering": 1, diff --git a/Module-15-interactive.ipynb b/Module-15-interactive.ipynb index 6a43c0e..bc16a38 100644 --- a/Module-15-interactive.ipynb +++ b/Module-15-interactive.ipynb @@ -45,7 +45,7 @@ "* Visualization of a correlation matrix with a heat map\n", "* Fitting a linear regression model to the data\n", "* Visualization of the linear regression model\n", - "* Accessing data from your data frame using `.loc` and `.iloc`\n", + "* Accessing data from your data frame using `.iloc`\n", "\n", "**Requirements before starting**\n", "\n", @@ -61,7 +61,7 @@ "## Keeping Conda up to date and installing new packages\n", "\n", "\n", - "Newer versions of packages are released frequently. You can update your packages (libraries), with these commands. Do this at the command line (not in Jupyter notebook!)::\n", + "Newer versions of packages are released frequently. You can update your packages (libraries), with these commands. Do this at the command line (not in Jupyter notebook!):\n", "```bash\n", "\n", " conda update -n base conda\n", @@ -70,9 +70,9 @@ "\n", "### Installing a new package in your virtual environment\n", "\n", - "You will come across people recommending different packages in Python for all sorts of interesting applications. For example, the library `seaborn` is often recommended for visualization. But you might not have it installed yet. \n", + "You will come across people recommending different packages in Python for all sorts of interesting applications. For example, the library `seaborn` is often recommended for visualization. But you might not have it installed yet. In this module we will use `seaborn` and also `scikit-learn`.\n", "\n", - "This is how you can install the package called `seaborn` and `scikit-learn` packages in your virtual environment called ``myenv``:\n", + "This is how you can install the `seaborn` and `scikit-learn` packages in your virtual environment called ``myenv``:\n", "```bash\n", " conda activate myenv <--- change the last word in the command to the name of your actual environment\n", " conda install seaborn scikit-learn\n", @@ -103,7 +103,7 @@ "\n", "In this module we will take these skills a step further, but first, we will learn about fitting regression models to some data. \n", "\n", - "Start by importing Pandas, but also the tools to build regression models, from the `scikit-learn` library, which is imported as `sklearn`. You can read more about scikit-learn at their website: https://scikit-learn.org/stable/" + "Start by importing Pandas, and also a tool to build regression models, which is from the `scikit-learn` library. This is imported as `sklearn`. You can read more about scikit-learn at their website: https://scikit-learn.org/stable/" ] }, { @@ -120,21 +120,19 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "We will use a data set that is concerns a [distillation column](https://openmv.net/info/distillation-tower), and predicting an important output variable, called the Reid Vapour Pressure (RVP).\n", + "We will use a data set that is from a [distillation column](https://openmv.net/info/distillation-tower), and predicting an important output variable, called the Reid Vapour Pressure (RVP).\n", "\n", - "Read the data set in and set the column called \"Case\" to be the index:\n", + "Read in the data set and set the column called \"Case\" to be the index:\n", "```python\n", "distill = pd.read_csv(\"https://openmv.net/file/distillation-tower.csv\")\n", "```\n", "\n", - "In the [prior module](https://yint.org/pybasic14) you were asked to \n", + "In the [prior module](https://yint.org/pybasic14) you were asked to use your own data and:\n", "\n", "1. Calculate the correlation matrix of values and display that. Were you able to do so? \n", "2. Could you also visualize a scatter plot matrix of these values with the \"kde\" on the diagonal, squares for the markers and an alpha value of 0.8 for the points?\n", - " \n", - "*Hint*: look at the documentation for `scatter_matrix` to see how to do this. You can look at the documentation inside Jupyter in several ways:\n", - "* ``help(scatter_matrix)``\n", - "* ``scatter_matrix?`` and then hit Ctrl-Enter." + "\n", + "We will do this interactively below, but also introduce a new plot, the *heat map*." ] }, { @@ -189,8 +187,20 @@ "scatter_matrix(distill, alpha = 0.2, figsize=(15, 15), diagonal = \"kde\");\n", "```\n", "\n", - "The data set is quite big and takes some time to generate all the scatter plot combinations.\n", - "\n", + "The data set is quite big and takes some time to generate all the scatter plot combinations." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ "We can use every third row instead.\n", "```python\n", "print(distill.shape)\n", @@ -201,19 +211,31 @@ "The `.iloc` function accesses the data by `index` (the `i` in `iloc`) and for a given `loc`ation, so `iloc`= *index location*.\n", "\n", "Some examples:\n", - "* `.iloc[0:10, :]` will return the \\_\\_\\_ rows, and \\_\\_\\_ columns\n", - "* `.iloc[20, 2:4]` will return only row \\_\\_\\_, and columns \\_\\_\\_\n", - "* `.iloc[0:10:2, :]` will return only rows with index \\_\\_\\_; and \\_\\_\\_ columns\n", - "* `.iloc[0::2, :]` will return \\_\\_\\_ row; and \\_\\_\\_ columns\n", - "* `.iloc[:, -1]` will return \\_\\_\\_ rows of the \\_\\_\\_ column\n", + "* `mydata.iloc[0:10, :]` will return the \\_\\_\\_ rows, and \\_\\_\\_ columns\n", + "* `mydata.iloc[20, 2:4]` will return only row \\_\\_\\_, and columns \\_\\_\\_\n", + "* `mydata.iloc[0:10:2, :]` will return only rows with index \\_\\_\\_; and \\_\\_\\_ columns\n", + "* `mydata.iloc[0::2, :]` will return \\_\\_\\_ row; and \\_\\_\\_ columns\n", + "* `mydata.iloc[:, -1]` will return \\_\\_\\_ rows of the \\_\\_\\_ column\n", "\n", + "Try some examples of using `.iloc` below on the `distill` data:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ "Now that you understand what `.iloc` is doing, you can understand why this code is faster, because it uses half the data set to create the scatter plot matrix:\n", - "\n", "```python\n", "scatter_matrix(distill.iloc[0::2,:], alpha = 0.2, figsize=(15, 15), diagonal = \"kde\");\n", "```\n", - "\n", - "Try some examples of `.iloc` yourself below:" + "\n" ] }, { @@ -230,7 +252,7 @@ "Which 2 columns are the most correlated with the outcome variable called \"VapourPressure\"?\n", "\n", "```python\n", - "distill.corr()\n", + "distill.corr().shape\n", "distill.corr().iloc[...] # <-- fill in some code to show only the last row of the correlation matrix\n", "```" ] @@ -246,19 +268,19 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Let us build a regression model using that measurement of `InvTemp3`, the inverse temperature measured at position 3 in the distillation column, to predict the `VapourPressure`.\n", + "Let us build a regression model using the `InvTemp3` measurement, the inverse temperature measured at position 3 in the distillation column, to predict the `VapourPressure`.\n", "\n", - "There are 253 measurements (rows) in the dataset. We will use the first 150 rows in the data set to build the model, and then use the remaining rows to test the model, to see how well we can predict vapour pressure. This is good statistical practice. Do not use all the data to build the prediction model; you will get an inflated sense of how well the model works.\n", + "There are 253 measurements (rows) in the dataset. We will use the first 150 rows in the data set to build the model, and then use the remaining rows to test the model, to see how well we can predict vapour pressure. This is good statistical practice. Do not use all the data to build the prediction model; you will get an inflated sense of how well the model works. **Always keep some testing for validation/verification.**\n", "\n", - "Create the building data set from the first 150 rows\n", + "Create the model building data set from the first 150 rows:\n", "```python\n", - "build = distill.iloc[___] <-- what goes here?\n", + "build = distill.iloc[___] # <-- what goes here?\n", "display(build)\n", "```\n", "\n", - "Then the testing data from the rest:\n", + "Then create test testing data from the rest of the data frame:\n", "```python\n", - "test = distill.iloc[___] <-- what goes here?\n", + "test = distill.iloc[___] # <-- what goes here?\n", "display(test)\n", "```\n", "\n", @@ -276,13 +298,13 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "First, we set up an `instance` of the linear regression model:\n", + "First, we set up an instance of the linear regression model:\n", "```python\n", "mymodel = LinearRegression()\n", "type(mymodel)\n", "```\n", "\n", - "The `mymodel` is an object. It is an object of a linear regression model, but it is empty at the moment. We will provide it some training data, to build the model, in this way:\n", + "The `mymodel` is an object. It is an object of a linear regression model, but it is empty at the moment. We will give it some training data, to build the model:\n", "\n", "```python\n", "mymodel = LinearRegression()\n", @@ -303,7 +325,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "We need numeric values for `X` and `y`. We can get those as follows. First a small detour...\n", + "We need numeric values for `X` and `y`. We can get those as follows.\n", "\n", "```python\n", "print(build[\"InvTemp3\"]) # A Pandas Series (single column from the matrix of data)\n", @@ -332,7 +354,7 @@ "mymodel.fit(X, y)\n", "```\n", "\n", - "If you run this code and see no error messages, the model has been built. But it is not that exciting. " + "If you run this code and see no error messages, then then model has been built. But it is not that exciting, ... yet." ] }, { @@ -350,7 +372,7 @@ "```python\n", "dir(mymodel)\n", "```\n", - "to ask Python what can be done. Note that the ``dir(...)`` function works on any object and is something that you will use regularly.\n", + "to ask Python what can be done with that `object`. Note that the ``dir(...)`` function works on any object and is something that you will use regularly.\n", "\n", "There are several interesting *methods* that you see there which we will get to use.\n", "\n", @@ -371,7 +393,7 @@ "print(f\"The intercept is {mymodel.intercept_:.5g} and the slope is = {mymodel.coef_}\")\n", "```\n", "\n", - "We have to be a bit more careful with the slope. It is an array (see the square brackets?): so we need to extract the first entry from that vector before displaying it:\n", + "We have to be a bit more careful with the slope. It is an array (*see the square brackets?*): so we need to extract the first entry from that vector before displaying it:\n", "```python\n", "print(f\"The intercept is {mymodel.intercept_:.5g} and the slope is = {mymodel.coef_[0]:.5g}\")\n", "```\n", From 1277b5029d6da7a91ec6253931567a5bdf6549df Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Tue, 24 Nov 2020 16:56:40 +0100 Subject: [PATCH 115/134] Updated module 15 with text tweaks. --- Module-15-interactive.ipynb | 32 ++++++++++++++++---------------- 1 file changed, 16 insertions(+), 16 deletions(-) diff --git a/Module-15-interactive.ipynb b/Module-15-interactive.ipynb index bc16a38..de7c8af 100644 --- a/Module-15-interactive.ipynb +++ b/Module-15-interactive.ipynb @@ -7,7 +7,7 @@ }, "source": [ "

    Table of Contents

    \n", - "" + "" ] }, { @@ -468,13 +468,13 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Checking how well the regression model works: training data\n", + "## How well the regression model works: training (building) data\n", "\n", "Next, we would like to extract some idea of how the model performs. For that we can look at\n", - "* the predictions of the `build`ing data, \n", - "* the predictions of the `test`ing data.\n", + "1. The predictions of the `build`ing data, \n", + "2. The predictions of the `test`ing data. *This is a more accurate estimate.*\n", "\n", - "For the model building data:\n", + "Firstly, for the model building data:\n", "```python\n", "# Get the predicted values from the data used to build the model\n", "X_build = build[[\"InvTemp3\"]]\n", @@ -489,8 +489,8 @@ "\n", "```\n", "\n", - "1. Calculate this average absolute error below\n", - "2. Also calculate the standard deviation of the errors (another way to judge the model). Smaller is better.\n", + "1. Calculate this average absolute error below.\n", + "2. Also calculate the standard deviation of the errors (this is another way to judge the model). Smaller is better.\n", "3. Lastly, plot the prediction errors for the building data (first 200 rows) to see what time-based trends there are." ] }, @@ -505,7 +505,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Checking how well the regression model works: testing data\n", + "## Secondly, how well the regression model works on testing data\n", "\n", "The above gives an idea of how the model works on the data used to build the model. But of course, the idea is to use the model in the future, on data not seen before. So let's test the model on the remaining rows:\n", "\n", @@ -516,7 +516,7 @@ "y_test = test[\"VapourPressure\"].values\n", "```\n", "\n", - "Then use the `predict(...)` function again, but on the testing data. Notice how simple scikit-learn makes this; just replace the input to the function with a different data frame:\n", + "Then use the `predict(...)` function again, but on the testing data. Notice how simple scikit-learn makes this; just replace the input to the `predict` function with a different data frame:\n", "```python\n", "prediction_test = mymodel.predict(X_test)\n", "errors_test = y_test - prediction_test\n", @@ -524,8 +524,8 @@ "avg_absolute_error, errors_test.std()\n", "```\n", "\n", - "1. Calculate the average absolute error below, but for the model testing data\n", - "2. Calculate the standard deviation of the prediction errors (another way to judge the model). Smaller is better.\n", + "1. Calculate the average absolute error below, but for the model testing data.\n", + "2. Calculate the standard deviation of the prediction errors. Again, smaller is better.\n", "3. Lastly, plot the prediction errors for the testing data to see what time-based trends there are. Any concerns?" ] }, @@ -547,7 +547,7 @@ "mymodel.score(X_build, y_build)\n", "```\n", "\n", - "and you will get a value that shows how the two variables are correlated. NOTE: the $R^2$ value is not a measure of goodness of the predictions. Only of the degree of correlation. High correlation is no guarantee of good prediction." + "and you will get a value that shows how the two variables are correlated. NOTE: the $R^2$ value is ***not a measure of prediction precision or accuracy***. It is only an estimate of the degree of correlation. High correlation is no guarantee of good prediction." ] }, { @@ -589,7 +589,7 @@ "pd.Series(errors_MLR_build).plot(grid=True, title=\"Error = Actual - Predicted\")\n", "```\n", "\n", - "Notice the power here: you only have to change the first line to add new predictor. The rest of the code is the same as before (just more generic variable names)." + "Notice the power here: you only have to change the first line to add new predictor. The rest of the code is the same as before (just more generic variable names have been used)." ] }, { @@ -607,9 +607,9 @@ "\n", "Try creating code for the testing data, which uses the 2 predictors.\n", "\n", - "* Extract the values for ``X_test_MLR`` and `y_test``.\n", - "* Use the ``full_model.predict(...)`` function\n", - "* Calculate the average absolute error and the standard deviation of the error.\n", + "* Extract the values for ``X_test_MLR`` and ``y_test``.\n", + "* Use the ``full_model.predict(...)`` function, but on the testing data.\n", + "* As before, calculate the average absolute error and the standard deviation of the error. How does it compare to the prior model with a single predictor?\n", "* Plot the errors over time. Are they smaller than for the case where you had only 1 predictor?" ] }, From f1c6349081ec3997c13eb58ec381dcb41640a8fe Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Wed, 25 Nov 2020 12:18:55 +0100 Subject: [PATCH 116/134] Tweaks to notebook 15. Update README. --- Module-15-interactive.ipynb | 10 +++++----- README.md | 14 ++++++++++++++ 2 files changed, 19 insertions(+), 5 deletions(-) diff --git a/Module-15-interactive.ipynb b/Module-15-interactive.ipynb index de7c8af..1b048c2 100644 --- a/Module-15-interactive.ipynb +++ b/Module-15-interactive.ipynb @@ -211,7 +211,7 @@ "The `.iloc` function accesses the data by `index` (the `i` in `iloc`) and for a given `loc`ation, so `iloc`= *index location*.\n", "\n", "Some examples:\n", - "* `mydata.iloc[0:10, :]` will return the \\_\\_\\_ rows, and \\_\\_\\_ columns\n", + "* `mydata.iloc[0:10, :]` will return the 10 rows, and all columns\n", "* `mydata.iloc[20, 2:4]` will return only row \\_\\_\\_, and columns \\_\\_\\_\n", "* `mydata.iloc[0:10:2, :]` will return only rows with index \\_\\_\\_; and \\_\\_\\_ columns\n", "* `mydata.iloc[0::2, :]` will return \\_\\_\\_ row; and \\_\\_\\_ columns\n", @@ -491,7 +491,7 @@ "\n", "1. Calculate this average absolute error below.\n", "2. Also calculate the standard deviation of the errors (this is another way to judge the model). Smaller is better.\n", - "3. Lastly, plot the prediction errors for the building data (first 200 rows) to see what time-based trends there are." + "3. Lastly, plot the prediction errors for the building data (first 150 rows) to see what time-based trends there are." ] }, { @@ -511,7 +511,7 @@ "\n", "```python\n", "# Create the testing data set\n", - "test = distill.iloc[200:]\n", + "test = distill.iloc[150:]\n", "X_test = test[[\"InvTemp3\"]].values\n", "y_test = test[\"VapourPressure\"].values\n", "```\n", @@ -629,7 +629,7 @@ "# IGNORE this. Execute this cell to load the notebook's style sheet.\n", "from IPython.core.display import HTML\n", "css_file = './images/style.css'\n", - "HTML(open(css_file, \"r\").read())" + "#HTML(open(css_file, \"r\").read())" ] } ], @@ -665,7 +665,7 @@ "height": "calc(100% - 180px)", "left": "10px", "top": "150px", - "width": "348.984px" + "width": "246.975px" }, "toc_section_display": true, "toc_window_display": true diff --git a/README.md b/README.md index 270fac3..648568b 100644 --- a/README.md +++ b/README.md @@ -83,3 +83,17 @@ notebooks. * Scatter plots; showing 5 variables in 1 plot * Extending the box plot: violin, swarm and raincloud plots + +Learning Python: focus on getting results +================================== + +In these series of 6 notebooks the focus is for people with some/minimal experience in coding (e.g. MATLAB, C++) to get started with Python. The target audience is process engineers and scientists. People that need to get some sort of value extracted from their data. + +As such, it does not teach loops, branching, data structures, etc. In other words, the theoretical computer science concepts are introduced as needed, but not explicitly. + +[Notebook 11: https://yint.org/pybasic11](https://yint.org/pybasic11) + +* Printing output to the screen +* Creating variables +* Basic calculations with variables +* Lists From 8e2fdb758a5f8e4a665dbf0278466b6c5a0fbf15 Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Sun, 6 Dec 2020 18:22:39 +0100 Subject: [PATCH 117/134] Added the start of module 16; tweak to the README --- Module-16-interactive.ipynb | 861 ++++++++++++++++++++++++++++++++++++ README.md | 3 +- 2 files changed, 862 insertions(+), 2 deletions(-) create mode 100644 Module-16-interactive.ipynb diff --git a/Module-16-interactive.ipynb b/Module-16-interactive.ipynb new file mode 100644 index 0000000..5e045bd --- /dev/null +++ b/Module-16-interactive.ipynb @@ -0,0 +1,861 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "toc": true + }, + "source": [ + "

    Table of Contents

    \n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "> All content here is under a Creative Commons Attribution [CC-BY 4.0](https://creativecommons.org/licenses/by/4.0/) and all source code is released under a [BSD-2 clause license](https://en.wikipedia.org/wiki/BSD_licenses).\n", + ">\n", + ">Please reuse, remix, revise, and [reshare this content](https://github.com/kgdunn/python-basic-notebooks) in any way, keeping this notice." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Course overview\n", + "\n", + "This is the sixth, and final, module of several (11, 12, 13, 14, 15 and 16), which refocuses the course material in the [first 10 modules](https://github.com/kgdunn/python-basic-notebooks) in a slightly different way. It places more emphasis on\n", + "\n", + "* dealing with data: importing, merging, filtering;\n", + "* calculations from the data;\n", + "* visualization of it.\n", + "\n", + "In short: ***how to extract value from your data***.\n", + "\n", + "## Review so far\n", + "\n", + "In [module 11](https://yint.org/pybasic11) we learned about\n", + "* creating variables, and showing their `type` \n", + "* performing basic calculations, and the `math` library\n", + "* lists, as one of the most fundamental Python objects\n", + "\n", + "In the [module 12](https://yint.org/pybasic12) we took this a step further:\n", + "* and introduced the Pandas library, for `Series` and `DataFrame` objects\n", + "* learned how to import and write Excel files\n", + "* do basic operations on DataFrames, and \n", + "* learned about another fundamental Python type, the `dict`ionary.\n", + "\n", + "[Module 13](https://yint.org/pybasic13) we introduced:\n", + "* a general workflow for data processing\n", + "* and haw to visualize data with Pandas:\n", + "\n", + " * box plot, \n", + " * time series (sequence) plot, and\n", + " * scatter plots [including showing how you can visualize 5 dimensions!]\n", + "\n", + "[Module 14](https://yint.org/pybasic14) we saw how to create:\n", + "* for loops, for when we need to do things over and over,\n", + "* by we also saw the `groupby` function, which does actions repeatedly on sub-groups of your data.\n", + "* We also introduced the correlation matrix.\n", + "\n", + "Then in [module 15](https://yint.org/pybasic15) we saw:\n", + "* that we could visualize the correlation matrix (2D histogram), to find candidates for regression,\n", + "* using the `LinearRegression` tool from a new library, `scikit-learn`.\n", + "* We also used another new library, `seaborn`, to visualize the regression models.\n", + "\n", + "\n", + "# Module 16 Overview\n", + "\n", + "In this module we will cover\n", + "\n", + "* A bunch of loose ideas of things you regularly need in your day-to-day work. Most of these come from this list, with some modifications: https://towardsdatascience.com/30-examples-to-master-pandas-f8a2da751fa4\n", + "* We close with a generic framework for things you can do to extract value from data." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Data set import and basic checks\n", + "\n", + "We will use a data set that ... " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "\n", + "df = pd.read_csv(\"https://openmv.net/file/food-consumption.csv\")\n", + "display(df.head(10))\n", + "df.info()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Visualizing the correlation matrix is essential to help understanding relationships. Use the code and the plot below to help answer:\n", + "\n", + "* Countries which consume garlic more than average, also seem to consume a higher amount of ...\n", + "* Which variables are negatively correlated with \"Real coffee\" consumption?\n", + "* Countries with higher consumption of \"Crisp bread\" also show high consumption of which other products?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import seaborn as sns\n", + "sns.set(rc={'figure.figsize':(15, 15)})\n", + "cmap = sns.diverging_palette(220, 10, as_cmap=True)\n", + "sns.heatmap(df.corr(), cmap=cmap, square=True, linewidths=0.2, cbar_kws={\"shrink\": 0.5});" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Reading only certain rows\n", + "\n", + "Imagine you had a large data set, and only needed certain rows." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df_subset = pd.read_csv(\"https://openmv.net/file/food-consumption.csv\", nrows=5)\n", + "display(df_subset)\n", + "\n", + "df_partial = pd.read_csv(\"https://openmv.net/file/food-consumption.csv\", skiprows=[2, 3, 4])\n", + "display(df_partial)\n", + "\n", + "# Requires an extra `engine` input\n", + "df_bottom = pd.read_csv(\"https://openmv.net/file/food-consumption.csv\", skipfooter=12,engine='python')\n", + "display(df_bottom)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Skipping every 3rd row:\n", + "df_partial = pd.read_csv(\"https://openmv.net/file/food-consumption.csv\", \n", + " skiprows=[i for i in range(40) if i%3 ==1])\n", + "\n", + "# This is call a \"list comprehension\", super powerful. Read about it on your own time.\n", + "# https://realpython.com/list-comprehension-python/#using-list-comprehensions\n", + "print([i for i in range(40) if i%3 ==1])\n", + "display(df_partial)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Import specific columns only\n", + "\n", + "If you know the names of the columns you need, you can use the `usecols` input (works for Excel and CSV file import)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df_subset = pd.read_csv(\"https://openmv.net/file/food-consumption.csv\", \n", + " usecols=[\"Country\", \"Sweetener\", \"Biscuits\", \"Powder soup\", \"Tin soup\"])\n", + "display(df_subset)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Dropping columns or rows\n", + "\n", + "Conversely, you can read in the whole data set, and drop away the columns or rows you do not need." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df = pd.read_csv(\"https://openmv.net/file/food-consumption.csv\")\n", + "\n", + "df.drop([\"Sweetener\", \"Biscuits\", \"Powder soup\", \"Tin soup\"], axis=1, inplace=True)\n", + "display(df)\n", + "df.shape\n", + "\n", + "# Also drop some rows: drop away every 3rd row.\n", + "# Replace the \"...\" with some code\n", + "df_subset = df.drop(... , axis=0) # you can also leave away 'axis=0' (that's the default)\n", + "display(df_subset)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Setting an index\n", + "\n", + "You can always set a column to be your dataframe index, using the `set_index` function." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df = pd.read_csv(\"https://openmv.net/file/food-consumption.csv\")\n", + "df = df.set_index('Country')\n", + "display(df)\n", + "\n", + "# Or, in a single line:\n", + "df = pd.read_csv(\"https://openmv.net/file/food-consumption.csv\").set_index('Country')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Deleting missing values\n", + "\n", + "Pandas generally handles missing values well: for example, with ``df.mean()`` will work even there are missing values. But some mathematical tools cannot have missing values, such as when performing a linear regression. So deleting missing first is one option:\n", + "\n", + "* How many missing values per column? Or per row?\n", + "* Delete columns with missing values.\n", + "* Deleting rows with any missing values" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Which columns have missing values:\n", + "df = pd.read_csv(\"https://openmv.net/file/food-consumption.csv\").set_index('Country')\n", + "display(df.isna().sum())\n", + "\n", + "# Which rows have missing values:\n", + "df.isna().sum(axis=1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Confirm that the \"Sweetener\", \"Biscuits\", and \"Yoghurt\" columns are not present after running this command:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df.dropna(axis=1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Confirm that the rows for \"Sweden\", \"Finland\", and \"Spain\" are not present after this:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df.dropna(axis=0)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Dropping missing values in all rows, but only for a subset of the columns is possible. For example, drop only rows in the columns for \"Sweetener\" and \"Yoghurt\" (ignore the column for \"Biscuits\":" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "display(df.dropna(subset=[\"Sweetener\", \"Yoghurt\"], axis=0))\n", + "\n", + "# Note: you can also flip this around. Specify a subset of row\n", + "# names in `subset` and delete from all columns, using `axis=1`.\n", + "df.dropna(subset=[\"Sweden\"], axis=1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Using iloc and loc\n", + "\n", + "We learned about `.iloc` in the [prior module](https://yint.org/pybasic15). Let's look at these two again:\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df = pd.read_csv(\"https://openmv.net/file/food-consumption.csv\").set_index('Country')\n", + "\n", + "# \"Instant coffee\" is column 1: make all these values missing\n", + "df.iloc[:, 1] = np.nan\n", + "display(df)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# But what if don't know, or care, which column it is? If we know \n", + "# the column name, then use \".loc\"\n", + "df.loc[:, \"Tea\"] = np.nan\n", + "df" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Or you can use a list of column names:\n", + "df.loc[:, [\"Potatoes\",\"Frozen fish\"]] = 98.76\n", + "df" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Or a mixture of column and row names:\n", + "df.loc[\"Holland\", \"Biscuits\"] = np.nan\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# You can use a mixture of iloc and loc:\n", + "df.iloc[[0, 1, 2], :].loc[:, \"Tin soup\"]\n", + "\n", + "# but this is less code:\n", + "df.iloc[[0, 1, 2], :][\"Tin soup\"]\n", + "\n", + "# or even less\n", + "df.iloc[[0, 1, 2]][\"Tin soup\"]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Dropping missing values, specifying a threshold\n", + "\n", + "If you want to delete a column only if there are more than a certain number of missing values..\n", + "\n", + "* Read the data\n", + "* Make a column have a high number of missing values (for demonstration purposes)\n", + "* Remove that column, because it has a high degree of missing values." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Read the data, and make every 3rd row a missing value for column \"Tea\"\n", + "df = pd.read_csv(\"https://openmv.net/file/food-consumption.csv\").set_index('Country')\n", + "\n", + "df.iloc[[i for i in range(16) if i%3 == 1]][\"Tea\"] = np.nan\n", + "\n", + "# The above code generates a warning. Why?\n", + "display(df)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# How to solve it? As suggested by the warning, use \".loc\" instead.\n", + "# df.loc[row_indexer, col_indexer] = np.nan\n", + "\n", + "# This is all row names:\n", + "row_indexer = df.index\n", + "\n", + "# Now take every second row name:\n", + "row_indexer = df.index[ [i for i in range(16) if i%3 ==1] ]\n", + "row_indexer" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df.loc[row_indexer, \"Tea\"] = np.nan\n", + "display(df)\n", + "df.isna().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Finally, we can now delete columns with a threshold (degree) of missing values\n", + "# What value should you fill in?\n", + "display(df.dropna(thresh=___, axis=1))\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Filtering rows\n", + "\n", + "* Find which countries have `\"Olive oil\"` consumption of more than 50?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df = pd.read_csv(\"https://openmv.net/file/food-consumption.csv\").set_index('Country')\n", + "df[df[\"Olive oil\"]>50]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* Which countries have `\"Olive oil\"` more than 50, **and** `\"Garlic\"` more than 40?\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df[(df[\"Olive oil\"]>50) & (df[\"Garlic\"]>40)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* Which countries have `\"Tea\"` more than 80, **or** `\"Oranges\"` more than 90?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df[(df[\"Tea\"]>80) | (df[\"Oranges\"]>90)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Filtering with the `.query` function\n", + "\n", + "It is sometimes more natural to filter with the `.query` function:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df.query(\"30 < Tea < 80\")\n", + "\n", + "# or if the column name has a space:\n", + "df.query(\"10 < `Tin soup` < 20\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can have multiple queries:\n", + "\n", + "Find the countries which have \"Real coffee\" and \"Tea\" consumption above 70. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df.query(\"(`Real coffee` > 70) and (Tea > 70)\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Really powerful is the ability to reference one column against another.\n", + "\n", + "Find all countries where more `\"Instant coffee\"` is drunk than `\"Real coffee\"`. *These are countries to avoid visiting*. What else do you notice about these countries eating habits?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df.query(\"`Instant coffee` > `Real coffee`\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Filling in missing values\n", + "\n", + "mode = df['Geography'].value_counts().index[0]\n", + "df['Geography'].fillna(value=mode, inplace=True)\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## isin funcion\n", + "\n", + "df[df['Tenure'].isin([4,6,9,10])][:3]\n", + "\n", + "\n", + "df.query('a not in b')\n", + "\n", + "\n", + "Versus using the .isin function\n", + "\n", + "In [244]: df[~df['a'].isin(df['b'])]\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Multilevel groupby\n", + "\n", + "df[['Geography','Gender','Exited']].groupby(['Geography','Gender']).mean()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Multiple groupby summaries\n", + "df[['Geography','Gender','Exited']].groupby(['Geography','Gender']).agg(['mean','count'])\n", + "\n", + "df['fare'].agg(['sum', 'mean'])\n", + "\n", + "\n", + "\n", + "agg_func_math = {\n", + " 'fare':\n", + " ['sum', 'mean', 'median', 'min', 'max', 'std', 'var', 'mad', 'prod']\n", + "}\n", + "df.groupby(['embark_town']).agg(agg_func_math).round(2)\n", + "\n", + "\n", + "@ Calling a function:\n", + "\n", + "def sparkline_str(x):\n", + " bins=np.histogram(x)[0]\n", + " sl = ''.join(sparklines(bins))\n", + " return sl\n", + " \n", + "and then...\n", + "\n", + "agg_func_largest = {\n", + " 'fare': [percentile_90, trim_mean_10, largest, sparkline_str]\n", + "}\n", + "df.groupby(['class', 'embark_town']).agg(agg_func_largest)\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Mixed groupby\n", + "\n", + "df_summary = df[['Geography','Exited','Balance']].groupby('Geography')\\\n", + ".agg({'Exited':'sum', 'Balance':'mean'})\n", + "df_summary.rename(columns={'Exited':'# of churned customers', 'Balance':'Average Balance of Customers'},inplace=True)\n", + "df_summary" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Add a new column, not at the end\n", + "df_new.insert(0, 'Group', group)\n", + "df_new" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## REplace values in a column\n", + "df['column'].replace({0: \"No\", 1: \"Yes\"})\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Rounding\n", + "\n", + "#df_new.round(1) #number of desired decimal points\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "!pip install sparklines\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Display options\n", + "pd.set_option(\"display.precision\", 2)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Styling\n", + "\n", + "df_new.style.highlight_max(axis=0, color='darkgreen')\n", + "df.style.bar(align='mid', color=['red', 'lightgreen'])\n", + "\n", + "\n", + "or\n", + "\n", + "(monthly_sales\n", + " .style\n", + " .format(format_dict)\n", + " .hide_index()\n", + " .bar(color='#FFA07A', vmin=100_000, subset=['sum'], align='zero')\n", + " .bar(color='lightgreen', vmin=0, subset=['pct_of_total'], align='zero')\n", + " .set_caption('2018 Sales Performance'))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df = pd.read_csv(\"https://openmv.net/file/raw-material-characterization.csv\")\n", + "df.info()\n", + "df" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Five main goals with data science\n", + "\n", + "\n", + "In the [prior module](https://yint.org/pybasic09) I described my approach for any data analysis project. The first step is to **define the goals**. When I take a look at various projects I have worked on, the goals always fall into one or more of these categories, or 'application domains'.\n", + "\n", + "1. Learning more about our system\n", + "2. Troubleshooting a problem that is occurring\n", + "3. Making predictions using (some) data from the system\n", + "4. Monitoring that system in real-time, or nearly real time \n", + "5. Optimizing the system\n", + "\n", + "I will describe these goals shortly. But why look at this? The reason is that certain goals can be solved with a subset of tools. The number of tools available to you is large. Knowing which one to use for which type of goal helps you along the way faster.\n", + "\n", + "
    \n", + "Goals 1 and 2 take place off-line, using data that has been collected already.\n", + "\n", + "Goals 3, making predictions from the system, e.g. predicting what quality is being produced by the system; or how much longer a batch should be run before it is completed. The prediction is typically required to support other decisions, or to apply real-time control on the system. \n", + "\n", + "Goal 4 also can take place on-line, and is used to ensure the system is operating in a stable manner, and if not, using the data to figure what is going wrong, or about to go wrong.\n", + "\n", + "Goal 5 is typically off-line, and here we use the data to make longer term improvements. For example, we try to move the system to a different state of operation that is more optimal/profitable. This can also be done in real-time, where systems are continuously shifted around to track an optimum target.\n", + "\n", + "
    \n", + "\n", + "This is just one way to to categorize data science problems. There are of course other ways to do this: such as if you are dealing with one variable (vector) or many variables (matrices). Or which type of technique you are using: ***supervised*** or ***unsupervised***.\n", + "\n", + "We will encounter these terms along the way. But for now, you should be able to see any problem where you have used data as fitting into one of these five categories above. \n", + "\n", + "\n", + "### Examples of using this categorization\n", + "\n", + "For example: your manager asks you to use data (whatever is available) to discover why we are seeing increased number of customers returning our most profitable product to the store. Your objective: Find reason(s) for increased returns of product.\n", + "\n", + "Which of the 5 goals above are used?: Number 2 \"Troubleshoot a problem that is occurring\" is the most direct. But along the way to achieving that goal, you will almost certainly apply number 1: \"Learn more about your system\".\n", + "\n", + "Following up: in the future, after you have found the reasons for returned product, you might have done number 5: \"optimizing the system\" to find settings for the machines, so that fewer low-quality products are produced. Then, in a different data science project, based on number 4: you \"monitor the system in real-time\" to prevent producing bad quality products\". This might be done by applying number 3: \"making predictions of the product quality\" in real-time, while the system is operating.\n", + "\n", + "\n", + "As you can see, these 5 goals are generally very broad. Why do we mention them?\n", + "\n", + "You might learn, in other courses and later in your career, about different tools to implement. Then you can interchange the tools in your toolbox. For example, linear regression is one type of prediction tool to achieve goal 3, but so is a neural network. If one tool does not work so well, you can swap it for another one in your pipeline.\n", + "\n", + "### Try it yourself\n", + "\n", + "Try breaking down the existing data-based project you are currently working in. Check which one or more of the five apply.\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# IGNORE this. Execute this cell to load the notebook's style sheet.\n", + "from IPython.core.display import HTML\n", + "css_file = './images/style.css'\n", + "#HTML(open(css_file, \"r\").read())" + ] + } + ], + "metadata": { + "hide_input": false, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.1" + }, + "toc": { + "base_numbering": "1", + "nav_menu": {}, + "number_sections": true, + "sideBar": true, + "skip_h1_title": true, + "title_cell": "Table of Contents", + "title_sidebar": "Contents", + "toc_cell": true, + "toc_position": { + "height": "calc(100% - 180px)", + "left": "10px", + "top": "150px", + "width": "376.22283935546875px" + }, + "toc_section_display": true, + "toc_window_display": true + }, + "varInspector": { + "cols": { + "lenName": 16, + "lenType": 16, + "lenVar": 40 + }, + "kernels_config": { + "python": { + "delete_cmd_postfix": "", + "delete_cmd_prefix": "del ", + "library": "var_list.py", + "varRefreshCmd": "print(var_dic_list())" + }, + "r": { + "delete_cmd_postfix": ") ", + "delete_cmd_prefix": "rm(", + "library": "var_list.r", + "varRefreshCmd": "cat(var_dic_list()) " + } + }, + "types_to_exclude": [ + "module", + "function", + "builtin_function_or_method", + "instance", + "_Feature" + ], + "window_display": false + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/README.md b/README.md index 648568b..0b23c20 100644 --- a/README.md +++ b/README.md @@ -94,6 +94,5 @@ As such, it does not teach loops, branching, data structures, etc. In other word [Notebook 11: https://yint.org/pybasic11](https://yint.org/pybasic11) * Printing output to the screen -* Creating variables -* Basic calculations with variables +* Creating variables, and basic calculations with them * Lists From b6a48c311587ee403da7de101bf38cddb10e1bcf Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Mon, 7 Dec 2020 18:56:19 +0100 Subject: [PATCH 118/134] Updating the overview of the materials in this repo --- README.md | 33 +++++++++++++++++++++++++++++++++ 1 file changed, 33 insertions(+) diff --git a/README.md b/README.md index 0b23c20..d24fd67 100644 --- a/README.md +++ b/README.md @@ -96,3 +96,36 @@ As such, it does not teach loops, branching, data structures, etc. In other word * Printing output to the screen * Creating variables, and basic calculations with them * Lists + +[Notebook 12: https://yint.org/pybasic12](https://yint.org/pybasic12) + +* Using and understanding the Pandas library +* Creating Pandas series and data frames and basic calculations with them +* Reading in Excel files with Pandas and basic calculation + +[Notebook 13: https://yint.org/pybasic13](https://yint.org/pybasic13) + +* Becoming more comfortable with Pandas data processing +* Shape of data, unique values, adding/removing data, merging dataframes, sorting data +* Basic plotting with Pandas: box plot, time series and scatter plots + +[Notebook 14: https://yint.org/pybasic14](https://yint.org/pybasic14) + +* For loops, for when we need to do things over and over +* The `groupby` function, for repeated actions on sub-groups of your data +* Calculating the correlation matrix + +[Notebook 15: https://yint.org/pybasic15](https://yint.org/pybasic15) + +* Visualize the correlation matrix (2D histograms) +* Using the `LinearRegression` tool from `scikit-learn` +* The `.iloc` function in Pandas to split data into testing and training subset +* Using `seaborn` to visualize regression models + +[Notebook 16: https://yint.org/pybasic16](https://yint.org/pybasic16) + +* Pandas collection: reading in subsets of data +* Handling missing values with Pandas +* Filtering data, and the multi-level groupby capability of Panda +* Effective table display in Pandas +* Summary of what value you can extract from data From 7d07bd8ea22b0ed7bd62d82bf65eb62715de29e2 Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Mon, 7 Dec 2020 20:06:31 +0100 Subject: [PATCH 119/134] Working on module 16 still --- Module-16-interactive.ipynb | 553 ++++++++++++++++++++++++++++++++++-- 1 file changed, 537 insertions(+), 16 deletions(-) diff --git a/Module-16-interactive.ipynb b/Module-16-interactive.ipynb index 5e045bd..ba9a47e 100644 --- a/Module-16-interactive.ipynb +++ b/Module-16-interactive.ipynb @@ -7,7 +7,7 @@ }, "source": [ "

    Table of Contents

    \n", - "" + "" ] }, { @@ -569,7 +569,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Filling in missing values\n", + "## TODO: Filling in missing values\n", "\n", "mode = df['Geography'].value_counts().index[0]\n", "df['Geography'].fillna(value=mode, inplace=True)\n", @@ -580,26 +580,524 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## isin funcion\n", - "\n", - "df[df['Tenure'].isin([4,6,9,10])][:3]\n", - "\n", - "\n", - "df.query('a not in b')\n", + "## New data set: raw material properties\n", "\n", + "For the rest of the notebook we will switch to a new data set, where we characterize the properties of a raw material. As each batch of raw material is acquired, there are 6 measurements taken. There is also an indicator variable (categorical variable) on whether the raw materials outcome was (`Adequate`), or not (`Poor`).\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Index: 24 entries, B370 to B986\n", + "Data columns (total 7 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 Outcome 24 non-null category\n", + " 1 Size5 24 non-null float64 \n", + " 2 Size10 24 non-null float64 \n", + " 3 Size15 24 non-null float64 \n", + " 4 TGA 24 non-null float64 \n", + " 5 DSC 24 non-null float64 \n", + " 6 TMA 24 non-null float64 \n", + "dtypes: category(1), float64(6)\n", + "memory usage: 1.4+ KB\n" + ] + }, + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    OutcomeSize5Size10Size15TGADSCTMA
    Lot number
    B370Adequate13.89.241.2787.318.065.0
    B880Adequate11.25.827.6772.217.768.8
    B452Adequate9.95.828.3602.318.350.7
    B287Adequate10.44.024.7677.917.756.5
    B576Adequate12.39.322.0593.519.552.0
    \n", + "
    " + ], + "text/plain": [ + " Outcome Size5 Size10 Size15 TGA DSC TMA\n", + "Lot number \n", + "B370 Adequate 13.8 9.2 41.2 787.3 18.0 65.0\n", + "B880 Adequate 11.2 5.8 27.6 772.2 17.7 68.8\n", + "B452 Adequate 9.9 5.8 28.3 602.3 18.3 50.7\n", + "B287 Adequate 10.4 4.0 24.7 677.9 17.7 56.5\n", + "B576 Adequate 12.3 9.3 22.0 593.5 19.5 52.0" + ] + }, + "execution_count": 59, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "df = pd.read_csv(\"https://openmv.net/file/raw-material-characterization.csv\").set_index(\"Lot number\")\n", "\n", - "Versus using the .isin function\n", + "# Note that the Outcome column is an object. We can explicitly convert it to a categorical variable:\n", + "df[\"Outcome\"] = df[\"Outcome\"].astype('category')\n", + "df.info()\n", + "df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Single level `groupby`\n", "\n", - "In [244]: df[~df['a'].isin(df['b'])]\n" + "Recall the `groupby` function from [two modules ago](https://yint.org/pybasic14), which we applied as follows:" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Outcome\n", + "Adequate AxesSubplot(0.125,0.125;0.775x0.755)\n", + "Poor AxesSubplot(0.125,0.125;0.775x0.755)\n", + "dtype: object" + ] + }, + "execution_count": 60, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAUW0lEQVR4nO3df5Bd5X3f8fdHsAhikSKEQhSEi2tsU8eDZXtD7VGbFKVJPMQjcLGTTJ0MmZAhaeuMW7sWdtx6nHqYBsUOblMnHgy2mIaJzSBqCGOPIfxKnJngSEQIMMbGMS4oGASBFCWgCvbbP+7RYVm02h+65967d9+vmR3de+6ee76HZe9nn+c5z3NSVUiSBLBi2AVIkkaHoSBJahkKkqSWoSBJahkKkqSWoSBJanUeCkmOSvJXSW5snm9L8t0ku5qvDV3XIEman6MHcIz3AfcDPzht2wer6toBHFuStACdthSSrAd+Friiy+NIkvqj65bCp4AtwPEztl+S5KPALcCHqmr/zB2TXARcBPCKV7ziLWeccUbHpUrSeNm5c+cTVbV2Ifukq2UukrwDOKeq/l2Sfwn8p6p6R5J1wPeBY4DLge9U1X893HtNTk7Wjh07OqlTksZVkp1VNbmQfbrsPtoIbE7yEPAFYFOSP6yqR6tnP/B54KwOa5AkLUBnoVBVH66q9VV1GvALwK1V9YtNS4EkAc4D7u2qBknSwgzi6qOZrk6yFgiwC/j1IdQgSTqEgYRCVd0O3N483jSIY0qSFs4ZzZKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCtIy8uS+/dz98NM8uW//sEvRiDp62AVIGozrd+3h4u27mVixggNTU2w9/0w2bzhl2GVpxNhSkJaBJ/ft5+Ltu3nuwBTP7H+e5w5MsWX7blsMehlDQVoGHnnqWSZWvPTXfWLFCh556tkhVaRRZShIy8D61cdxYGrqJdsOTE2xfvVxQ6pIo8pQkJaBNatWsvX8Mzl2YgXHrzyaYydWsPX8M1mzauWwS9OIcaBZWiY2bziFjaefxCNPPcv61ccZCDokQ0FaRtasWmkY6LDsPpIktToPhSRHJfmrJDc2z1+V5M4kDyb5YpJjuq5BkjQ/g2gpvA+4f9rzS4HLqup04CngwgHUIEmah05DIcl64GeBK5rnATYB1zbfchVwXpc1SJLmr+uWwqeALcDBC6TXAE9X1fPN80cA59lL0ojoLBSSvAN4vKp2LnL/i5LsSLJj7969fa5OknQoXbYUNgKbkzwEfIFet9F/B05IcvBS2PXAnkPtXFWXV9VkVU2uXbu2wzIlSQd1FgpV9eGqWl9VpwG/ANxaVe8BbgPe1XzbBcD1XdUgSVqYYcxTuBh4f5IH6Y0xXDmEGiRJhzCQGc1VdTtwe/P4r4GzBnFcSdLCOKNZktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJrc5CIcmxSb6e5O4k9yX5rWb7tiTfTbKr+drQVQ2SpIU5usP33g9sqqp9SSaAryX5SvPaB6vq2g6PLUlahM5CoaoK2Nc8nWi+qqvjSZKOXKdjCkmOSrILeBy4uarubF66JMnuJJclWTnLvhcl2ZFkx969e7ssU5LU6DQUquqFqtoArAfOSvIG4MPAGcCPAScCF8+y7+VVNVlVk2vXru2yTElSYyBXH1XV08BtwNur6tHq2Q98HjhrEDVIkubW5dVHa5Oc0Dw+Dvgp4JtJ1jXbApwH3NtVDZKkheny6qN1wFVJjqIXPtdU1Y1Jbk2yFgiwC/j1DmuQJC1Al1cf7QbedIjtm7o6piTpyDijWZLUMhQkSS1DQZLUMhQkSS1DQZLUMhQkSS1DQZLUMhQkSa0FhUKSVUnefHD5CknSeDlsKCT5/WmP/znwDeCTwD1Jzum4NknSgM21zMVbpz3+OHBeVd2V5J8A1wBf7qwySdLALaT76Aer6i6AqvrrBe4rSVoC5mopnJFkN70VTU9LsrqqnkqyAjim+/IkSYM0Vyj80xnPD95z+UTgo/0vR5I0TIcNhar63izbnwCu66QiSdLQLHpcIMlX+lmIJGn4DttSSPLm2V4CNvS9GknSUM01pvCXwB30QmCmE/pejSRpqOYKhfuBX6uqb898IcnD3ZQkSRqWucYUPnaY7/mN/pYiSRq2ua4+uvYwr32p79VIkoZqXlcfJTk5yZUHrzhK8vokF3ZbmiRp0OZ7Seo24KvAjzTPvwX8hw7qkSQN0XxD4aSqugaYAqiq54EXOqtKkjQU8w2Fv0+yBiiAJG8F/q6zqiRJQzHXJakHfQC4AXh1kj8H1gLv7qwqSdJQzCsUqmpnkp8AXkdvItsDVXWg08okSQM336uPvgP8alXdV1X3VtWBJDd2XJskacDmO6ZwADg7yeeTHLyPwikd1SRJGpL5hsI/VNXP01v24s+SvJJm0FmSND7mO9AcgKramuQu4CZ6N9qRJI2R+bYU2rusVdWfAD8D/M/D7ZDk2CRfT3J3kvuS/Faz/VVJ7kzyYJIvTuuO0iI8uW8/dz/8NE/u2z/sUiSNgbnup3BGVX0T2HOIeyvMNdC8H9hUVfuSTABfa5bJeD9wWVV9IclngAuBP1hk/cva9bv2cPH23UysWMGBqSm2nn8mmzc41CNp8ebqPno/cBHwyeb5zHGETbPtWFXFi/d0nmi+qtnn3zTbr6K3EquhsEBP7tvPxdt389yBKZ7rTTRny/bdbDz9JNasWjmUeh556lnWrz5uKMeX1B9zhcIVSX64qs4GSHIBcD7wEL0P88NKchSwEzgd+DTwHeDpZpkMgEeY5SqmJBfRCyRe+cpXznWoZeeRp55lYsWKNhAAJlas4JGnnh34h7ItFml8zDWm8Bng/wEk+XHgv9H76/7vgMvnevOqeqGqNgDrgbOAM+ZbWFVdXlWTVTW5du3a+e62bKxffRwHpqZesu3A1BTrVx830Dqmt1ie2f88zx2YYsv23Y5xSEvUXKFwVFX9bfP454HLq2p7Vf0Xen/9z0tVPQ3cBrwNOCHJwRbKemDPwkoWwJpVK9l6/pkcO7GC41cezbETK9h6/pkDbyUcbLFMd7DFImnpmav76KgkRzfdPT9J050zn32TrAUOVNXTSY4Dfgq4lF44vAv4AnABcP1ii1/uNm84hY2nnzTUvvxRabFI6o+5Wgp/BNyR5HrgWeDPAJKcztyrpK4DbkuyG/hL4OaquhG4GHh/kgeBNcCVR1D/srdm1UreeOoJQxvcHZUWi6T+SO8iocN8Q2+Z7HXATVX198221wKrququ7kuEycnJ2rFjxyAOpUXy6iNp9CTZWVWTC9lnzhnNVfUXh9j2rYUcRONvzaqVhoE0BuY7o1mStAwYCpKklqEgSWoZCpKklqEgSWoZCpKklqEgjSHvs6HFmu+d1yQtEa5aqyNhS0EaI65aqyNlKByBQTfR7RLQXFy1VkfK7qNFGnQT3S4BzYer1upI2VJYhEE30e0S0Hy5aq2OlC2FRRj0rTBH6dabGn2jcJ8NLV2GwiIMuolul4AWylVrtVh2Hy3CoJvodgmMJgf+NY7mvMnOKBjVm+wM+sYy3shmdDjwr6Wgk5vsaHaDbqLbJTAapg/8Hxzn2bJ9NxtPP8mfj5Y8u4+kBXIugMaZoXAERrlPeZRrW+oc+Nc4s/tokUa5T3mUaxsHBwf+t8z4b2zXkcaBA82L8OS+/Wy89FaeO/DiX4vHTqzgzy/eNPQPhlGubdw48K9Rt5iBZruPFmGU+5RHubZxs2bVSt546gkGgsaKobAIo9ynPMq1SRp9hsIijPJkslGuTdLoc0zhCIxyn/Io1yZpMJy8NmCjPJlslGuTNLrsPpIktQwFSVLLUJAWyVnjGkeOKUiL4KxxjavOWgpJTk1yW5JvJLkvyfua7R9LsifJrubrnK5qkLrg7VE1zrpsKTwPfKCq7kpyPLAzyc3Na5dV1Sc6PLbUGW+PqnHWWShU1aPAo83jZ5LcD9i+ngfnGIw2Z41rnA1koDnJacCbgDubTe9NsjvJ55KsnmWfi5LsSLJj7969fa9pVAcJr9+1h42X3sovXnEnGy+9lRt27Rl2SZrBWeMaZ53PaE6yCrgDuKSqrktyMvAEUMDHgXVV9SuHe49+z2ge1UFCVzhdWmzRadSN3CqpSSaA7cDVVXUdQFU9VlUvVNUU8FngrC5rmGmUBwld4XRpcZVUjaMurz4KcCVwf1X97rTt66Z92zuBe7uq4VBG+YPXvmpJw9ZlS2Ej8EvAphmXn25Nck+S3cDZwH/ssIaXGeUPXvuqJQ1bl1cffQ3IIV76clfHnI9Rv5Xi5g2nsPH0k+yrljQUy3JG86h/8LrCqaRhWZahAH7wStKhuCCeNM2ozl+RBmXZthSkmUZ1/oo0SLYUJEZ7/oo0SIaCxGjPX5EGyVCQGO35K9IgGQoSThyUDnKgWWqM+vwVaRAMBWka569oubP7SJLUMhQkSS1DQZLUMhQkSS1DQZLUMhQkSS1DQSPNVUulwXKegkaWq5ZKg2dLQSPJVUul4TAUNJJctVQaDkNBI8lVS6XhMBQ0kly1VBoOB5o1sly1VBo8Q0EjzVVLpcGy+0iS1DIUJEktQ0GS1DIUJEktQ0GS1DIUJEktQ0GzcoVSaflxnoIOyRVKpeWps5ZCklOT3JbkG0nuS/K+ZvuJSW5O8u3m39Vd1aDFcYVSafnqsvvoeeADVfV64K3Av0/yeuBDwC1V9Rrglua5RogrlErLV2ehUFWPVtVdzeNngPuBU4Bzgauab7sKOK+rGrQ4rlAqLV8DGWhOchrwJuBO4OSqerR56fvAybPsc1GSHUl27N27dxBlquEKpdLylarq9gDJKuAO4JKqui7J01V1wrTXn6qqw44rTE5O1o4dOzqtUy/35L79rlAqLWFJdlbV5EL26fTqoyQTwHbg6qq6rtn8WJJ1VfVoknXA413WoMVzhVJp+eny6qMAVwL3V9XvTnvpBuCC5vEFwPVd1SBJWpguWwobgV8C7kmyq9n2m8BvA9ckuRD4HvBzHdYgSVqAzkKhqr4GZJaXf7Kr40qSFs9lLiRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktTqfOnsfkjyDPDAsOvo0EnAE8MuokPjfH7jfG7g+S11r6uq4xeyQ6dLZ/fRAwtdE3wpSbLD81uaxvncwPNb6pIs+EY0dh9JklqGgiSptVRC4fJhF9Axz2/pGudzA89vqVvw+S2JgWZJ0mAslZaCJGkADAVJUmvkQiHJ55I8nuTeadtOTHJzkm83/64eZo1HYpbze3eS+5JMJVmyl8fNcm6/k+SbSXYn+d9JThhiiUdklvP7eHNuu5LclORHhlnjkTjU+U177QNJKslJw6itH2b5+X0syZ7m57cryTnDrHGxZvvZJfmN5vfvviRb5/NeIxcKwDbg7TO2fQi4papeA9zSPF+qtvHy87sX+NfAnw68mv7axsvP7WbgDVV1JvAt4MODLqqPtvHy8/udqjqzqjYANwIfHXRRfbSNl58fSU4Ffhr4P4MuqM+2cYjzAy6rqg3N15cHXFO/bGPGuSU5GzgXeGNV/Sjwifm80ciFQlX9KfC3MzafC1zVPL4KOG+QNfXToc6vqu6vqiU/Y3uWc7upqp5vnv4FsH7ghfXJLOf3f6c9fQWwZK/cmOV3D+AyYAtL+NzgsOe35M1ybv8W+O2q2t98z+Pzea+RC4VZnFxVjzaPvw+cPMxitGi/Anxl2EX0W5JLkjwMvIel3VJ4mSTnAnuq6u5h19Kh9zZdgJ9byl3Th/Ba4F8kuTPJHUl+bD47LZVQaFXvGtol/RfLcpTkI8DzwNXDrqXfquojVXUqvXN777Dr6ZckPwD8JmMWdDP8AfBqYAPwKPDJoVbTX0cDJwJvBT4IXJMkc+20VELhsSTrAJp/59UM0mhI8svAO4D31HhPjLkaOH/YRfTRq4FXAXcneYhe199dSX54qFX1UVU9VlUvVNUU8FngrGHX1EePANdVz9eBKXoLAB7WUgmFG4ALmscXANcPsRYtQJK30+uP3lxV/zDsevotyWumPT0X+Oawaum3qrqnqn6oqk6rqtPofci8uaq+P+TS+ubgH5uNd9K76GNcfAk4GyDJa4FjmM+KsFU1Ul/AH9Frxh2g9z/hhcAaelcdfRv4E+DEYdfZ5/N7Z/N4P/AY8NVh19nHc3sQeBjY1Xx9Zth19vn8ttP7INkN/DFwyrDr7Of5zXj9IeCkYdfZ55/f/wLuaX5+NwDrhl1nH8/tGOAPm/8/7wI2zee9XOZCktRaKt1HkqQBMBQkSS1DQZLUMhQkSS1DQZLUMhSkGZJ8pFlV8uDqp/8syRVJXr+I9xqLVTi1fBw97AKkUZLkbfRmX7+5qvY3S0UfU1W/egRve1lVzWuFSmnYbClIL7UOeKJeXFnyiar6myS3J5lMsnnaX/0PJPkuQJK3NIuO7Uzy1RkzZaUlw1CQXuom4NQk30ry+0l+YvqLVXVDNWvvA3cDn0gyAfwe8K6qegvwOeCSabuN6yqcGkOGgjRNVe0D3gJcBOwFvtgs6PcSSbYAz1bVp4HXAW8Abk6yC/jPvHjfiHFehVNjyDEFaYaqegG4Hbg9yT28uBgjAEn+FfBu4McPbgLuq6q3HeK9Hpu232fp3Z1NGlm2FKRpkrxuxsqnG4DvTXv9HwOfBt5dVc82mx8A1jaD1CSZSPKjzeNxXoVTY8iWgvRSq4DfS3ICvZsCPUivK+na5vVfprdq75ea+5X8TVWdk+RdwP9I8o/o/V59CrgP2JpkA70bQz0E/NqAzkNaFFdJlSS17D6SJLUMBUlSy1CQJLUMBUlSy1CQJLUMBUlSy1CQJLX+P1lanM8WzEKbAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAATeUlEQVR4nO3dfZBd9X3f8fdn0SJUiwQhtkRBtLjGMXU8iowVag9tXEjSeggjcLGTtK4HT5zBaeuMM3Et/NBx3bpME8UObtM8DDa2mIaJwyBqCGOPIRjsuDMhXREhwBg/BRcpGIQiHNSIzcJ++8c9OqyEtA/SPXv3Xt6vmTs695w993x/sw8f/c7vnN9JVSFJEsDYoAuQJC0fhoIkqWUoSJJahoIkqWUoSJJahoIkqdV5KCQ5KcmfJ7m9eb8tyV8k2dm8NnZdgyRpYVYswTHeAzwM/MCsde+rqpuX4NiSpEXotKeQZD3wM8CnujyOJKk/uu4pfALYApx6xPprknwYuAt4f1VNHbljkquAqwBe9rKXve68887ruFRJGi07dux4qqomFrNPuprmIsmlwCVV9W+T/FPg31fVpUnWAd8DTgauA75dVf95rs/atGlTTU5OdlKnJI2qJDuqatNi9uny9NGFwOYkjwKfBS5O8vtV9Xj1TAGfAS7osAZJ0iJ0FgpV9YGqWl9V5wA/D3ypqv5101MgSYDLgQe7qkGStDhLcfXRkW5MMgEE2An80gBqkCQdxZKEQlXdA9zTLF+8FMeUJC2edzRLklqGgiSpZShIklqGgiSpZShIklqGgiSpZShIklqGgiSpZShIklqGgiSpZShIklqGgiSpZShIklqGgiSpZShIklqGgiSpZShIklqGgiSpZShIklqGgiSpZShIklqGgiSpZShIklqGgiSpZShIGmn7Dkxx/2NPs+/A1KBLGQorBl2AJHXl1p17uHr7LsbHxpiemWHrFRvYvPGsQZe1rNlTkDSS9h2Y4urtu3h2eoZnpp7j2ekZtmzfZY9hHoaCpJG0e/9BxscO/xM3PjbG7v0HB1TRcDAUJI2k9WtWMT0zc9i66ZkZ1q9ZNaCKhoOhIGkkrV29kq1XbOCU8TFOXbmCU8bH2HrFBtauXjno0pY1B5oljazNG8/iwnPPYPf+g6xfs8pAWIDOQyHJScAksKeqLk3ycuCzwFpgB/D2qvrbruuQ9NK0dvVKw2ARluL00XuAh2e9/3Xg2qo6F9gPvHMJapAkLUCnoZBkPfAzwKea9wEuBm5uvuQG4PIua5AkLVzXPYVPAFuAQ5cArAWerqrnmve7Ae8kkaRlorNQSHIp8GRV7TjO/a9KMplkcu/evX2uTpJ0NF32FC4ENid5lN7A8sXAfwNOS3JogHs9sOdoO1fVdVW1qao2TUxMdFimJOmQzkKhqj5QVeur6hzg54EvVdXbgLuBtzRfdiVwa1c1SJIWZxA3r10N/GqSb9EbY7h+ADVIko5iSW5eq6p7gHua5e8AFyzFcSVJi+M0F5KklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgLcC+A1Pc/9jT7DswNehSpE6tGHQB0nJ36849XL19F+NjY0zPzLD1ig1s3njWoMuSOmFPQZrDvgNTXL19F89Oz/DM1HM8Oz3Dlu277DFoZBkK0hx27z/I+NjhvybjY2Ps3n9wQBVJ3TIUpDmsX7OK6ZmZw9ZNz8ywfs2qAVWk5W7Yx58cU5DmsHb1SrZesYEtR4wprF29ctClaRkahfEnQ0Gax+aNZ3HhuWewe/9B1q9ZZSDoqGaPPz1Lr3e5ZfsuLjz3jKH6mTEUpAVYu3rlUP1ia+kdGn86FAjwwvjTMP3sOKYgSX0wKuNPhoIk9cGh8adTxsc4deUKThkfG8rxJ08fSVKfjML4U2ehkOQU4CvAyuY4N1fVf0yyDXgj8P3mS99RVTu7qkOSltKwjz912VOYAi6uqgNJxoGvJvlCs+19VXVzh8eWJB2HzkKhqgo40Lwdb17V1fEkSSeu04HmJCcl2Qk8CdxZVfc2m65JsivJtUmO2s9KclWSySSTe/fu7bJMSVKj01CoqueraiOwHrggyWuADwDnAT8OnA5cfYx9r6uqTVW1aWJiossyJUmNJbkktaqeBu4G3lRVj1fPFPAZ4IKlqEGSNL/OQiHJRJLTmuVVwE8DX0+yrlkX4HLgwa5qkKTlYlgmyuvy6qN1wA1JTqIXPjdV1e1JvpRkAgiwE/ilDmuQpIEbponyurz6aBfw2qOsv7irY0rScjNsE+U5zYUkdWjYHtRkKEhSh4ZtojxDQZI6NGwT5TkhniR1bJgmyjMUJGkJDMtEeZ4+kiS1DAVJUstQkCS1FhUKSVYnOf/Q9BWSpNEyZygk+Z1Zy/8Y+BrwceCBJJd0XJskaYnNd/XR62ctfxS4vKruS/IPgJuAz3dWmSRpyS3m9NEPVNV9AFX1nUXuK0kaAvP1FM5LsovejKbnJFlTVfuTjAEnd1+eJGkpzRcK//CI94eeuXw68OH+lyNJGqQ5Q6GqvnuM9U8Bt3RSkSRpYI57XCDJF/pZiCRp8ObsKSQ5/1ibgI19r0aSNFDzjSn8H+DL9ELgSKf1vRpJ0kDNFwoPA++qqm8euSHJY92UJEkalPnGFD4yx9f8cn9LkSQN2nxXH908x7bP9b0aSdJALejqoyRnJrn+0BVHSV6d5J3dliZJWmoLvSR1G/BF4Ieb998AfqWDeiRJA7TQUDijqm4CZgCq6jng+c6qkiQNxEJD4f8lWQsUQJLXA9/vrCpJ0kDMd0nqIe8FbgNekeR/AxPAWzurSpI0EAsKharakeSNwKvo3cj2SFVNd1qZJGnJLfTqo28Dv1hVD1XVg1U1neT2jmuTJC2xhY4pTAMXJflMkkPPUTiro5okSQOy0FD4m6r6OXrTXvxJkr9HM+gsSRodCx1oDkBVbU1yH3AHvQftSJJGyEJ7Cu1T1qrqj4F/DvyPuXZIckqSP0tyf5KHkvynZv3Lk9yb5FtJ/nDW6ShJ0oDNGQpJzmsW9yQ5/9ALWAvMN9A8BVxcVT9G79kLb2rub/h14NqqOhfYDzhdhiQtE/OdPvpV4Crg4837I8cRLj7WjlVVvPBM5/HmVc0+/6pZfwO9mVh/d8EVS5I6M9/po08l+aGquqiqLqL3R/wA8CDwlvk+PMlJSXYCTwJ3At8Gnm6myQDYzTGuYkpyVZLJJJN79+5dWGskSSdkvlD4PeBvAZL8BPBf6QXD94Hr5vvwqnq+qjYC64ELgPPm3uOwfa+rqk1VtWliYmKhu0mSTsB8p49Oqqq/apZ/DriuqrYD25sewIJU1dNJ7gbeAJyWZEXTW1gP7DmOuiVJHZivp3BSkkPB8ZPAl2ZtmzNQkkwkOa1ZXgX8NL37HO7mhVNPVwK3LrJmSVJH5usp/AHw5SRPAQeBPwFIci7zz5K6DrghyUn0wuemqro9ydeAzyb5L8CfA9efSAMkSf0z3+M4r0lyF70/8Hc0VxRB74/8nM9orqpdwGuPsv479MYXJEnLzLx3NFfVnx5l3Te6KUeSNEgLvaNZkvQSYChIklqGgiSpZShIklqGgiSpZShIklqGgiSpZShIklqGgiSpZShIklqGgiSpZShIklqGgiSpZShIklqGgjSC9h2Y4v7HnmbfgalBl6IhM+/zFCQNl1t37uHq7bsYHxtjemaGrVdsYPPGswZdloaEPQVphOw7MMXV23fx7PQMz0w9x7PTM2zZvssegxbMUJBGyO79BxkfO/zXenxsjN37Dw6oIg0bQ0EaIevXrGJ6ZuawddMzM6xfs2pAFWnYGArSCFm7eiVbr9jAKeNjnLpyBaeMj7H1ig2sXb1y0KVpSDjQLI2YzRvP4sJzz2D3/oOsX7PKQNCiGArSCFq7eqVhoOPi6SNJUstQkCS1DAVJUstQkCS1DAVJUstQkCS1DAVJUstQkCS1OguFJGcnuTvJ15I8lOQ9zfqPJNmTZGfzuqSrGiRJi9PlHc3PAe+tqvuSnArsSHJns+3aqvpYh8eWJB2HzkKhqh4HHm+Wn0nyMOCTPiRpGVuSMYUk5wCvBe5tVr07ya4kn06y5hj7XJVkMsnk3r17F3QcH0EoSScmVdXtAZLVwJeBa6rqliRnAk8BBXwUWFdVvzDXZ2zatKkmJyfnPI6PIJSkwyXZUVWbFrNPpz2FJOPAduDGqroFoKqeqKrnq2oG+CRwwYkex0cQSlJ/dHn1UYDrgYer6jdnrV8368veDDx4osfyEYSS1B9dXn10IfB24IEkO5t1HwT+ZZKN9E4fPQq860QP5CMIJak/urz66KtAjrLp8/0+1qFHEG45YkzBh4xI0uKMzJPXfAShJJ24kQkF8BGEknSinPtIktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJrc5CIcnZSe5O8rUkDyV5T7P+9CR3Jvlm8++armqQJC1Olz2F54D3VtWrgdcD/y7Jq4H3A3dV1SuBu5r3kqRloLNQqKrHq+q+ZvkZ4GHgLOAy4Ibmy24ALu+qBknS4izJmEKSc4DXAvcCZ1bV482m7wFnHmOfq5JMJpncu3fvUpQpSS95nYdCktXAduBXquqvZ2+rqgLqaPtV1XVVtamqNk1MTHRdpiSJjkMhyTi9QLixqm5pVj+RZF2zfR3wZJc1SJIWrsurjwJcDzxcVb85a9NtwJXN8pXArV3VIElanBUdfvaFwNuBB5LsbNZ9EPg14KYk7wS+C/xshzVIkhahs1Coqq8COcbmn+zquJKk4+cdzZKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWqlN3v18pbkGeCRQdfRoTOApwZdRIdGuX2j3DawfcPuVVV16mJ26HJCvH56pKo2DbqIriSZtH3DaZTbBrZv2CWZXOw+nj6SJLUMBUlSa1hC4bpBF9Ax2ze8RrltYPuG3aLbNxQDzZKkpTEsPQVJ0hIwFCRJrWUXCkk+neTJJA/OWnd6kjuTfLP5d80gazwRx2jfW5M8lGQmydBeHneMtv1Gkq8n2ZXkfyU5bYAlnpBjtO+jTdt2JrkjyQ8PssYTcbT2zdr23iSV5IxB1NYPx/j+fSTJnub7tzPJJYOs8Xgd63uX5Jeb37+HkmxdyGctu1AAtgFvOmLd+4G7quqVwF3N+2G1jRe370HgXwBfWfJq+msbL27bncBrqmoD8A3gA0tdVB9t48Xt+42q2lBVG4HbgQ8vdVF9tI0Xt48kZwP/DPi/S11Qn23jKO0Drq2qjc3r80tcU79s44i2JbkIuAz4sar6UeBjC/mgZRcKVfUV4K+OWH0ZcEOzfANw+VLW1E9Ha19VPVxVQ3/H9jHadkdVPde8/VNg/ZIX1ifHaN9fz3r7MmBor9w4xu8ewLXAFoa4bTBn+4beMdr2b4Bfq6qp5mueXMhnLbtQOIYzq+rxZvl7wJmDLEbH7ReALwy6iH5Lck2Sx4C3Mdw9hRdJchmwp6ruH3QtHXp3cwrw08N8avoofgT4J0nuTfLlJD++kJ2GJRRa1buGdqj/x/JSlORDwHPAjYOupd+q6kNVdTa9tr170PX0S5K/A3yQEQu6I/wu8ApgI/A48PGBVtNfK4DTgdcD7wNuSpL5dhqWUHgiyTqA5t8FdYO0PCR5B3Ap8LYa7RtjbgSuGHQRffQK4OXA/UkepXfq774kPzTQqvqoqp6oqueragb4JHDBoGvqo93ALdXzZ8AMvQkA5zQsoXAbcGWzfCVw6wBr0SIkeRO989Gbq+pvBl1PvyV55ay3lwFfH1Qt/VZVD1TV362qc6rqHHp/ZM6vqu8NuLS+OfSfzcab6V30MSo+B1wEkORHgJNZyIywVbWsXsAf0OvGTdP7IXwnsJbeVUffBP4YOH3Qdfa5fW9ulqeAJ4AvDrrOPrbtW8BjwM7m9XuDrrPP7dtO7w/JLuCPgLMGXWc/23fE9keBMwZdZ5+/f/8TeKD5/t0GrBt0nX1s28nA7zc/n/cBFy/ks5zmQpLUGpbTR5KkJWAoSJJahoIkqWUoSJJahoIkqWUoSEdI8qFmVslDs5/+oySfSvLq4/iskZiFUy8dKwZdgLScJHkDvbuvz6+qqWaq6JOr6hdP4GOvraoFzVApDZo9Belw64Cn6oWZJZ+qqr9Mck+STUk2z/pf/yNJ/gIgyeuaScd2JPniEXfKSkPDUJAOdwdwdpJvJPmdJG+cvbGqbqtm7n3gfuBjScaB3wLeUlWvAz4NXDNrt1GdhVMjyFCQZqmqA8DrgKuAvcAfNhP6HSbJFuBgVf028CrgNcCdSXYC/4EXnhsxyrNwagQ5piAdoaqeB+4B7knyAC9MxghAkp8C3gr8xKFVwENV9YajfNYTs/b7JL2ns0nLlj0FaZYkrzpi5tONwHdnbf/7wG8Db62qg83qR4CJZpCaJONJfrRZHuVZODWC7ClIh1sN/FaS0+g9FOhb9E4l3dxsfwe9WXs/1zyv5C+r6pIkbwH+e5IfpPd79QngIWBrko30Hgz1KPCuJWqHdFycJVWS1PL0kSSpZShIklqGgiSpZShIklqGgiSpZShIklqGgiSp9f8B58eVXI7c9yQAAAAASUVORK5CYII=\n", + "text/plain": [ + "
    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Groupby: for plotting\n", + "df.groupby(\"Outcome\").plot.scatter(x='Size5', y=\"Size15\", xlim=(10, 16), ylim=(18, 45))" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Outcome\n", + "Adequate AxesSubplot(0.125,0.125;0.775x0.755)\n", + "Poor AxesSubplot(0.125,0.125;0.775x0.755)\n", + "dtype: object" + ] + }, + "execution_count": 61, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEGCAYAAABLgMOSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAbjUlEQVR4nO3dfZBV9Z3n8fenoWkcMEKg1zKgA0Q0ZSxsscfZLNGdGRKjThaNZg0m2fiQHXRL3c26U6ibramsU6laiU5iamrJEhLHZHwcu1BmxjgSncnOVC1kGsWO8SECamgGsYP4gELbcL/7xzk3HDq3L/Tpe+5D83lVdfU5v/Nwv1wO98N5uL+fIgIzM7PRamt0AWZm1pocIGZmlosDxMzMcnGAmJlZLg4QMzPLZWKjCxiLmTNnxpw5cxpdhplZS9m4ceOvIqJzrPtp6QCZM2cOvb29jS7DzKylSHq1FvvxJSwzM8vFAWJmZrk4QMzMLBcHiJmZ5eIAMTOzXBwgZmaWiwPEzMxycYCYmVkuDhAzM8vFAWJmZrk4QMzMLBcHiJmZ5eIAMTOzXBwgZmaWiwPEzMxyKSxAJJ0qaVPm521JX5H0NUnbM+0XZra5RdJmSS9K+lRRtZmZ2dgVNqBURLwIdAFImgBsB9YAVwHfjIjbs+tLOg1YCnwU+BDwY0mnRMSBomo0M7P86nUJazGwJSKqjYJ1EXB/RAxGxMvAZuDsulRnZmajVq8AWQrcl5m/XlKfpO9Lmp62zQK2ZdbpT9sOIWmZpF5JvQMDA8VVbGZmVRUeIJImAUuAv0qbVgIfJrm8tQO4YzT7i4hVEdEdEd2dnWMeE97MzHKqxxnIBcBTEbETICJ2RsSBiCgB3+XgZartwImZ7WanbWZm1oTqESCXk7l8JemEzLLPAM+m02uBpZI6JM0F5gM/rUN9ZmaWQ2FPYQFImgJ8Ergm07xCUhcQwCvlZRHxc0kPAs8B+4Hr/ASWmVnzKjRAIuJdYMawtv9QZf2vA18vsiYzM6sNfxPdzMxycYCYmVkuDhAzazq79gzyzLY32bVnsNGlWBWF3gMxMxutRzZt56aePtrb2hgqlVhx6QKWdP3Gd4qtCfgMxMyaxq49g9zU08e+oRLvDO5n31CJ5T19PhNpUg4QM2sa/bv30t526MdSe1sb/bv3Nqgiq8YBYmZNY/b0YxgqlQ5pGyqVmD39mAZVZNU4QMysacyY2sGKSxcwub2NYzsmMrm9jRWXLmDG1I5Gl2YV+Ca6mTWVJV2zWHTyTPp372X29GMcHk3MAWJmTWfG1A4HRwvwJSwzM8vFAWJmZrk4QMzMLBcHiJmZ5eIAMbNc3F+V+SksMxs191dlUOAZiKRTJW3K/Lwt6SuSviHpBUl9ktZImpauP0fS3sz63ymqNjPLz/1VWVlhARIRL0ZEV0R0AWcB7wFrgHXA6RGxAPgFcEtmsy3lbSLi2qJqM7P83F+VldXrHshiknB4NSIej4j9aft6YHadajCzGnB/VVZWrwBZCtxXof1q4EeZ+bmSnpb0E0nnVNqRpGWSeiX1DgwMFFGrmVXh/qqsTBFR7AtIk4B/AT4aETsz7V8FuoFLIiIkdQBTI2KXpLOAh9Nt3h5p393d3dHb21to/WZW2a49g+6vqkVJ2hgR3WPdTz2ewroAeGpYeFwJfBpYHGmCRcQgMJhOb5S0BTgFcEKYNSH3V2X1uIR1OZnLV5LOB5YDSyLivUx7p6QJ6fQ8YD6wtQ71mZlZDoWegUiaAnwSuCbT/OdAB7BOEsD69Imrc4FbJQ0BJeDaiHijyPrMzCy/QgMkIt4FZgxrO3mEdXuAniLrMTOz2nFXJmZmlosDxMzMcnGAmJlZLg4QMzPLxQFiZma5OEDMzCwXB4iZmeXiADEzs1wcIGZmlosDxMzMcnGAmJlZLg4QMzPLxQFiZma5OEDMzCwXB4iZjXu79gzyzLY32bVnsNGljCuFjQci6VTggUzTPOBPgB+k7XOAV4DLImK3ktGl7gQuBN4DroyIp4qqz2y885jliUc2beemnj7a29oYKpVYcekClnTNanRZ40JhZyAR8WJEdEVEF3AWSSisAW4GnoiI+cAT6TwkY6fPT3+WASuLqs1svHtk03YW3fYkX1y9gUW3PcnaTdvHtL9W/R/8rj2D3NTTx76hEu8M7mffUInlPX0t9+doVvW6hLUY2BIRrwIXAXen7XcDF6fTFwE/iMR6YJqkE+pUn9m4UesPzVqHUT31795Le9uhH3PtbW30797boIrGl3oFyFLgvnT6+IjYkU6/BhyfTs8CtmW26U/bzGwUavmh2er/g589/RiGSqVD2oZKJWZPP6ZBFY0vhQeIpEnAEuCvhi+LiABilPtbJqlXUu/AwECNqjQbP2r5odnq/4OfMbWDFZcuYHJ7G8d2TGRyexsrLl1wVN8TqqXCbqJnXAA8FRE70/mdkk6IiB3pJarX0/btwImZ7WanbYeIiFXAKoDu7u5RhY/Z0aD8obl82I3jPB+a4+F/8Eu6ZrHo5Jl+oKAA9QiQyzl4+QpgLXAF8L/S349k2q+XdD/wu8BbmUtdZjYKtfrQrGUYNdKMqR0tV3MrUHIVqaCdS1OAXwLzIuKttG0G8CBwEvAqyWO8b6SP8f45cD7JE1tXRURvtf13d3dHb2/VVcysBvxI8PgiaWNEdI91P4WegUTEu8CMYW27SJ7KGr5uANcVWY+Z5eP/wVsl/ia6mZnl4gAxM7NcHCBmZpaLA8TMzHJxgJiZWS4OEDMzy8UBYmZmuThAzMwsFweImZnl4gAxq5NWHZTJbCT16EzR7KjnYVVtPPIZiFnBWn1QJrOROEDMCtbqgzKZjcQBYlawogZl8j0VazTfAzErWBGDMvmeijUDB4hZHdRyWNXsPZV9JGc2y3v6WHTyTI/ZYXVVaIBImgasBk4HArga+ApwarrKNODNiOiSNAd4HngxXbY+Iq4tsj6zeqrVoEzleyrl8ICD91QcIFZPRZ+B3Ak8FhGflTQJ+K2I+Fx5oaQ7gLcy62+JiK6CazJraUXdUzEbrcJuoks6DjgX+B5ARLwfEW9mlgu4DLivqBrMxqPyPZXJ7W0c2zGRye1tY76nYpZHkWcgc4EB4C5JZwAbgf+SjpMOcA6wMyJeym4j6WngbeB/RMQ/Dt+ppGXAMoCTTjqpwPLNmlct76mY5VXkY7wTgYXAyog4E3gXuDmz/HIOPfvYAZyUrnsjcK+kDwzfaUSsiojuiOju7OwsrnqzJjdjagdnnDjN4WENU2SA9AP9EbEhnX+IJFCQNBG4BHigvHJEDEbErnR6I7AFOKXA+szMbAwKC5CIeA3YJqn8xNVi4Ll0+hPACxHRX15fUqekCen0PGA+sLWo+szMbGyKfgrrBuCe9AmsrcBVaftSfvPm+bnArZKGgBJwbUS8UXB9ZmaWU6EBEhGbgO4K7VdWaOsBeoqsx8zMamfUl7AkTZb074soxszMWscRBYikCZIulPRD4FXgc4fbxszMxreql7Ak/Vvg88CFwE+BRcDciHivDrWZmVkTGzFAJPUDvwRWAn8cEe9IetnhYWZmUP0S1kPAh0guV/07SVNIOkQ0MzMbOUAi4isk3ZHcAfweSS+5nZIukzS1LtWZjTPlQaA273zHg0FZy6t6DyQiAvh74O8ltQPnk3yH438DM4svz2z8KA8CBbBvqETHBKE2eTAoa1lH/BhvRAxFxF9HxBeAEwusyWzcOWQQqKGkK/bBA8G+oRLLe/p8JmItacQAkXSRpOsy8xskbZW0FfjDulRnNk6UB4GqpDwYlFmrqXYGshxYm5nvAH6H5H7IfyqwJrNxp9IgUGUeDMpaVbUAmRQR2zLz/xQRuyLil8CUgusyG1eyg0BNbk/+2XVM0KgGgyrfgPflLmsW1W6iT8/ORMT1mVkPxGE2StlBoKZMmsC77x844sGgyjfg29vaGCqVfOPdmkK1ANkg6Y8i4rvZRknXkHwr3cxGacbUjlEPAHXIDXiSy2DLe/pYdPJMDyZlDVUtQP4r8LCkzwNPpW1nkdwLubjguswsVb4BXw4POHjj3QFijVQtQB6LiIWSFgOnpW1/GxFP1qEuM0tVugHvG+/WDKoFiAAi4gngifqUY2bDlW/ALx92D8RnH9Zo1QKkU9KNIy2MiD873M4lTQNWA6eT9KN1NfAp4I+AgXS1/x4Rj6br3wJ8GTgA/OeI+Lsj+DOYjXvZG/BHeuPdrGjVAmQCMJX0TCSnO0kuhX02Hdb2t0gC5JsRcXt2RUmnkXST8lGSThx/LOmUiDgwhtc3Gzfy3IA3K1K1ANkREbfm3bGk40jGOb8SICLeB96XRsyji4D7I2IQeFnSZuBs4P/lrcHMzIpT7YuEYznzgKQn3wHgLklPS1qddgkPcL2kPknfl1T+vsksIPvFxf607dCipGWSeiX1DgwMDF9sZmZ1Ui1AFo9x3xOBhcDKiDgTeBe4mWSAqg8DXcAOku7ij1hErIqI7ojo7uz09xnNzBql2nggb4xx3/1Af0RsSOcfAhZGxM6IOBARJeC7JJepALZzaC+/s9M2MzNrQkfcnftoRcRrwDZJp6ZNi4HnJJ2QWe0zwLPp9FpgqaQOSXOB+fgb72ZmTavqgFI1cANwT/oE1lbgKuDbkrpIHut9BbgGICJ+LulB4DlgP3Cdn8AyM2teSgYdbE3d3d3R29vb6DLMzFqKpI0R0T3W/RR2CcvMzMY3B4iZmeXiADEzs1wcIGZmlosDxMzMcnGAmNkR8ZjsNlzR3wMxs3HAY7JbJT4DMbOqsmOyvzO4n31DJZb39PlMxBwgZlZdeUz2rPKY7HZ0c4CYWVUek91G4gAxs6rKY7JPbm/j2I6JTG5v85jsBvgmupkdAY/JbpU4QMzsiHhMdhvOl7DMzCwXB4iZmeXiADEzs1wKDRBJ0yQ9JOkFSc9L+pikb6TzfZLWSJqWrjtH0l5Jm9Kf7xRZm5mZjU3RZyB3Ao9FxEeAM4DngXXA6RGxAPgFcEtm/S0R0ZX+XFtwbWZmNgaFBYik44Bzge8BRMT7EfFmRDweEfvT1dYDs4uqwczMilPkGchcYAC4S9LTklZLmjJsnauBH2W3Sdf9iaRzKu1U0jJJvZJ6BwYGCirdzMwOp8gAmQgsBFZGxJnAu8DN5YWSvgrsB+5Jm3YAJ6Xr3gjcK+kDw3caEasiojsiujs7Owss38zMqikyQPqB/ojYkM4/RBIoSLoS+DTwhYgIgIgYjIhd6fRGYAtwSoH1mZnZGBQWIBHxGrBN0qlp02LgOUnnA8uBJRHxXnl9SZ2SJqTT84D5wNai6jMzs7EpuiuTG4B7JE0iCYOrgH8GOoB1kgDWp09cnQvcKmkIKAHXRsQbBddnZmY5FRogEbEJ6B7WfPII6/YAPUXWY2ZmteNvopuZWS4OEDMzy8UBYmZmuThAzMwsFweImZnl4gAxM7NcHCBmZpaLA8TMzHJxgJiZWS4OEDMzy8UBYmZmuThAzMwsFweImZnl4gCxXHbtGeSZbW+ya89go0sxswYpejwQG4ce2bSdm3r6aG9rY6hUYsWlC1jSNavRZZlZnRV6BiJpmqSHJL0g6XlJH5P0QUnrJL2U/p6eritJ35a0WVKfpIVF1mb57NozyE09fewbKvHO4H72DZVY3tPnMxGzo1DRl7DuBB6LiI8AZwDPAzcDT0TEfOCJdB7gApJhbOcDy4CVBddmOfTv3kt726GHTXtbG/279zaoIjNrlMICRNJxJMPUfg8gIt6PiDeBi4C709XuBi5Opy8CfhCJ9cA0SScUVZ/lM3v6MQyVSoe0DZVKzJ5+TIMqMrNGKfIMZC4wANwl6WlJqyVNAY6PiB3pOq8Bx6fTs4Btme3707ZDSFomqVdS78DAQIHlWyUzpnaw4tIFTG5v49iOiUxub2PFpQuYMbWj0aWZWZ0VeRN9IrAQuCEiNki6k4OXqwCIiJAUo9lpRKwCVgF0d3ePalurjSVds1h08kz6d+9l9vRjHB5mR6kiz0D6gf6I2JDOP0QSKDvLl6bS36+ny7cDJ2a2n522WQ3U+rHbGVM7OOPEaQ4Ps6NYYQESEa8B2ySdmjYtBp4D1gJXpG1XAI+k02uBL6VPY/1r4K3MpS4bg0c2bWfRbU/yxdUbWHTbk6zd5Fw2s7Er+nsgNwD3SJoEbAWuIgmtByV9GXgVuCxd91HgQmAz8F66ro1R9rHbfSQ3v5f39LHo5JlNefawa8+gL42ZtYhCAyQiNgHdFRYtrrBuANcVWc/RqPzYbTk84OBjt832Ae0vKJq1FndlMs61ymO3/oKiWetxgIxzrfLYrb+gaNZ63BfWUaAVHrttlTMlMzvIZyBHiWZ/7LZVzpTM7CCfgVjTaIUzJTM7yAFiTWXG1A4Hh1mL8CUsMzPLxQFiZma5OEDMzCwXB4iZmeXiADEzs1wcIGZmlosDxMzMcnGAmJlZLg4QMzPLxQFidVfr4XXNrDEK7cpE0ivAO8ABYH9EdEt6ACgPczsNeDMiuiTNAZ4HXkyXrY+Ia4usz+rPg0aZjR/16Avr9yPiV+WZiPhceVrSHcBbmXW3RERXHWqyBmi14XXNrLqGXcKSJJLx0O9rVA1WXx40ymx8KTpAAnhc0kZJy4YtOwfYGREvZdrmSnpa0k8knVNph5KWSeqV1DswMFBU3VYADxplNr4UHSAfj4iFwAXAdZLOzSy7nEPPPnYAJ0XEmcCNwL2SPjB8hxGxKiK6I6K7s7OzyNqtxjxolNn4Uug9kIjYnv5+XdIa4Gzg/0qaCFwCnJVZdxAYTKc3StoCnAL0Flmj1ZcHjTIbPwo7A5E0RdKx5WngPODZdPEngBcioj+zfqekCen0PGA+sLWo+qxxmn14XTM7MkWegRwPrEnulTMRuDciHkuXLeU3b56fC9wqaQgoAddGxBsF1mdmZmNQWIBExFbgjBGWXVmhrQfoKaoeMzOrLX8T3czMcnGAmJlZLg4QMzPLxQFiZma5OEDMzCwXB4iZmeXiADEzs1wcIGZmlosDxMzMcnGAmJlZLg4QMzPLxQFiZma5OEDMzCwXB4iZmeXiADEzs1wcIGZmlkuhASLpFUk/k7RJUm/a9jVJ29O2TZIuzKx/i6TNkl6U9KkiazMzs7Epckjbst+PiF8Na/tmRNyebZB0GslQtx8FPgT8WNIpEXGgDjWamdkoNdMlrIuA+yNiMCJeBjYDZze4JjMzG0HRZyABPC4pgP8TEavS9uslfQnoBf5bROwGZgHrM9v2p22HkLQMWJbODkp6trDqa2cmMPwsrBm5ztpynbXTCjVC69R5ai12UnSAfDwitkv6V8A6SS8AK4E/JQmXPwXuAK4+0h2mIbQKQFJvRHTXvuzacp215TprqxXqbIUaobXqrMV+Cr2EFRHb09+vA2uAsyNiZ0QciIgS8F0OXqbaDpyY2Xx22mZmZk2osACRNEXSseVp4DzgWUknZFb7DFC+BLUWWCqpQ9JcYD7w06LqMzOzsSnyEtbxwBpJ5de5NyIek/RDSV0kl7BeAa4BiIifS3oQeA7YD1x3BE9grTrM8mbhOmvLddZWK9TZCjXCUVanIqIW+zEzs6NMMz3Ga2ZmLcQBYmZmuTR1gEiaIOlpSX+Tzv+FpJcz3aB0jbDdFZJeSn+uqHON/5ip718kPTzCdgcy660tssb09Sp1K/NBSevS92mdpOkjbFvP97NSnd+Q9IKkPklrJE070m3rWOOIXfQM2/b8tKuezZJuLqrGKnU+kKnxFUmbjnTbAuucJumh9O/4eUkfa9Jjs1KdTXVsVqmzmOMzIpr2B7gRuBf4m3T+L4DPHmabDwJb09/T0+np9apx2LIe4EsjbLenzu/lK8DMYW0rgJvT6ZuB25rg/axU53nAxHT6tkp1jrRtHWv8GvDHh9luArAFmAdMAp4BTqtnncOW3wH8SSPfy/S17gb+Yzo9CZjWpMdmpTqb6tisUmchx2fTnoFImg38IbB6lJt+ClgXEW9E8g33dcD5ta4Pqtco6QPAHwAPF/HaNXIRycFG+vviCuvU7f0cSUQ8HhH709n1JN8RakVnA5sjYmtEvA/cT/J3UHdKHo+8DLivEa+fqeM44FzgewAR8X5EvEmTHZsj1dlsx2aV9/NIjPr4bNoAAb4FLAdKw9q/np4uflNSR4XtZgHbMvMVu0SpkW9RuUZIDvgnIuLtEbadLKlX0npJFxdT3iHK3cpsVNIdDMDxEbEjnX6N5NHr4er5fkLlOrOuBn6Uc9taGel1rk+Pze+PcMmlmd7Lc4CdEfFSjm1raS4wANyl5FLwaiXfG2u2Y3OkOrOa4disVmfNj8+mDBBJnwZej4iNwxbdAnwE+B2S09ab6l1bWZUayy6n+v/ufjuSLg8+D3xL0odrXeMwH4+IhcAFwHWSzs0ujOQcthme6R6xTklfJfmO0D2j3bYONa4EPgx0ATtILg81WrX343DHZ73ey4nAQmBlRJwJvEtyyerXmuTYrFpnEx2bI9VZyPHZlAECLAKWSHqF5DTqDyT9ZUTsiMQgcBeVe+utV5coFWsEkDQzre1vR9o4DnbzshX4B+DMAmqs9Hq/7lYG2Km0Z4D09+sVNq1rFzMj1ImkK4FPA19IP1COeNt61Bgjd9GT1Szv5UTgEuCB0W5bgH6gPyI2pPMPkXwANtuxOVKdTXVsjlRnUcdnUwZIRNwSEbMjYg7JGCFPRsQXMweUSC4RVeqJ9++A8yRNT0/Tzkvb6lJjuvizJDfV91XaNq2tI52eSRJGz9W6xszrVexWhqT7mPKTK1cAj1TYvC7vZ7U6JZ1PcqlwSUS8N5pt61jjSF30ZP0zMF/SXEmTSI6bQp7AO8z78QnghYjoz7FtTUXEa8A2SeXeYReT/FtoqmNzpDqb6dg8TJ3FHJ9FPAVQyx/g9zj4FNaTwM/SP/xfAlPT9m5gdWabq0nGE9kMXFXPGtP5fwDOH7bOr2sE/k3653gm/f3lguubl77WM8DPga+m7TOAJ4CXgB8DH2zk+1mlzs0k12Y3pT/fSds/BDxabds61vjD9O+yL/1Hd8LwGtP5C4FfkDztUkiNh3s/SJ5mvHbY+nV/LzOv3UUytEMfyUMn05vt2KxSZ9Mcm4eps5Dj012ZmJlZLk15CcvMzJqfA8TMzHJxgJiZWS4OEDMzy8UBYmZmuThAzEZB0oxMj6av6dAeTqP8ZdJ03YmSBpT21Jxpf1jS+vpXb1ZbRQ5pazbuRMQukufskfQ1kl6Vb0/n9wCnSzomIvYCn2TYN3mVdPd9FrBH0rxIeiIwa0k+AzGrrUdJemiGyv1NXQL8NUn3N0vrWJdZzTlAzGrrfmCppMnAAmDDsOXlULkvnTZrWQ4QsxqKiD5gDkk4PJpdJul4YD7wTxHxC2BI0ul1L9KsRhwgZrW3Frid37x8dRlJv0Qvp704z8FnIdbCHCBmtfd94H9GxM+GtV9O0snmnEh6cT4L3wexFuYAMauxiOiPiG9n2yTNAX6bZNjT8novA29J+t36VmhWG+6N18zMcvEZiJmZ5eIAMTOzXBwgZmaWiwPEzMxycYCYmVkuDhAzM8vFAWJmZrn8f3Y7/DD2u5yBAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEGCAYAAABLgMOSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAaIklEQVR4nO3dfZBV9Z3n8fenoWkYUWmhxzK0GTAiKWNhiz3uZInuTEiMOlkwIWswmYkPmUG21K2suwW6qZrKOpXaldFNTG0Vs4TEcTI+hi4CmTGORHeym6qBTBOxY3yIgFh0L2CnRRMUmob73T/O6Xi6032B0/fcvtf+vKq6+pzfebhfLgc/nt8553cUEZiZmZ2qhvEuwMzM6pMDxMzMcnGAmJlZLg4QMzPLxQFiZma5TB7vAsZi1qxZMWfOnPEuw8ysrmzfvv2XEdEy1v3UdYDMmTOHzs7O8S7DzKyuSHqtEvtxF5aZmeXiADEzs1wcIGZmlosDxMzMcnGAmJlZLg4QMzPLxQFiZma5OEDMzCwXB4iZmeXiADEzs1wcIGZmlosDxMzMcnGAmJlZLg4QMzPLxQFiZma5FBYgkuZL2pH5+ZWkL0n6iqSeTPs1mW3ukrRT0suSPlFUbWZmNnaFvVAqIl4G2gAkTQJ6gI3ATcDXIuLe7PqSLgSWAx8C3gf8UNIFEXG8qBrNzCy/anVhLQZ2RUS5t2AtBR6NiP6IeBXYCVxWlerMzOyUVStAlgOPZOZvk9Ql6duSmtO22cDezDrdadsQklZI6pTU2dvbW1zFZmZWVuEBImkKsAT4btq0FvgASffWPuC+U9lfRKyLiPaIaG9pGfM74c3MLKdqnIFcDfw0Ig4ARMSBiDgeESXgm7zbTdUDnJvZrjVtMzOzGlSNALmeTPeVpHMyyz4FPJ9ObwaWS2qSNBeYB/ykCvWZmVkOhd2FBSDpNODjwC2Z5jWS2oAA9gwui4ifS3oceAE4BtzqO7DMzGpXoQESEW8DM4e1/WmZ9b8KfLXImszMrDL8JLqZmeXiADEzs1wcIGZmlosDxMzMcnGAmJlZLg4QMzPLxQFiZma5OEDMzCwXB4iZmeXiADEzs1wcIGZmlosDxMzMcnGAmJlZLg4QMzPLxQFiZma5OEDMzCyXwl4oJWk+8Fim6TzgL4DZwL8FjgK7gJsi4k1Jc4AXgZfT9bdGxMqi6jMzs7EpLEAi4mWgDUDSJKAH2AjMB+6KiGOS7gHuAlanm+2KiLaiajIzs8qpVhfWYpJweC0inoqIY2n7VqC1SjWYmVkFVStAlgOPjNB+M/CDzPxcSc9K+pGky0fakaQVkjoldfb29hZRq5mZnYTCA0TSFGAJ8N1h7V8GjgEPpU37gPdHxCXAHcDDks4Yvr+IWBcR7RHR3tLSUmzxZmY2qmqcgVwN/DQiDgw2SLoR+CTw+YgIgIjoj4i+dHo7yQX2C6pQn5mZ5VCNALmeTPeVpKuAVcCSiHgn096SXmxH0nnAPGB3FeozM7McCrsLC0DSacDHgVsyzf8TaAK2SIJ3b9e9Arhb0gBQAlZGxBtF1mdmZvkVGiAR8TYwc1jb+aOs2wF0FFmPmZlVjp9ENzOzXBwgZmaWiwPEzMxycYCYmVkuDhAzM8vFAWJmZrk4QMzMLBcHiJmZ5eIAMTOzXBwgZmaWiwPEzMxycYCYmVkuDhAzM8vFAWJmZrk4QMzMLJfCAkTSfEk7Mj+/kvQlSWdJ2iLplfR3c7q+JH1D0k5JXZIWFlWbmZmNXWEBEhEvR0RbRLQBlwLvABuBO4GnI2Ie8HQ6D8m70+elPyuAtUXVZmZmY1etLqzFwK6IeA1YCjyYtj8IXJtOLwX+NhJbgRmSzqlSfWZmdoqqFSDLgUfS6bMjYl86vR84O52eDezNbNOdtpmZWQ0qPEAkTQGWAN8dviwiAohT3N8KSZ2SOnt7eytUpZmZnapqnIFcDfw0Ig6k8wcGu6bS36+n7T3AuZntWtO2ISJiXUS0R0R7S0tLgWWbmVk51QiQ63m3+wpgM3BDOn0DsCnT/oX0bqw/AN7KdHWZmVmNmVzkziWdBnwcuCXT/N+BxyV9EXgNuC5tfwK4BthJcsfWTUXWZmZmY1NogETE28DMYW19JHdlDV83gFuLrMfMzCrHT6KbmVkuDhAzM8vFAWJmZrk4QMzMLBcHiJmZ5eIAMTOzXBwgZmaWiwPEzMxycYCYmVkuDhCzOtN3qJ/n9r5J36H+8S7FJrhChzIxs8ratKOH1R1dNDY0MFAqsWbZApa0+bU5Nj58BmJWJ/oO9bO6o4sjAyV+3X+MIwMlVnV0+UzExo0DxKxOdB88TGPD0H+yjQ0NdB88PE4V2UTnADGrE63N0xgolYa0DZRKtDZPG6eKbKJzgJjViZnTm1izbAFTGxs4vWkyUxsbWLNsATOnN413aTZB+SK6WR1Z0jabRefPovvgYVqbpzk8bFwV/UbCGcB64CIggJuBLwHz01VmAG9GRJukOcCLwMvpsq0RsbLI+szq0czpTQ4OqwlFn4HcDzwZEZ+RNAX4nYj47OBCSfcBb2XW3xURbQXXZGZmFVBYgEg6E7gCuBEgIo4CRzPLRfI+9I8WVYOZmRWnyIvoc4Fe4AFJz0paL+m0zPLLgQMR8Up2m3TdH0m6fKSdSlohqVNSZ29vb4Hlm5lZOUUGyGRgIbA2Ii4B3gbuzCy/HngkM78PeH+67h3Aw5LOGL7TiFgXEe0R0d7S0lJc9WZmVlaRAdINdEfEtnR+A0mgIGky8GngscGVI6I/IvrS6e3ALuCCAuszM7MxKCxAImI/sFfS4B1Xi4EX0umPAS9FRPfg+pJaJE1Kp88D5gG7i6rPzMzGpui7sG4HHkrvwNoN3JS2L2do9xUkF9zvljQAlICVEfFGwfWZjbu+Q/1+rsPqUqEBEhE7gPYR2m8coa0D6CiyHrNa49F1rZ6dcheWpKmS/l0RxZhNJB5d1+rdSQWIpEmSrpH0HeA14LMn2sbMyvPoulbvynZhSfo3wOeAa4CfAIuAuRHxThVqM3tP8+i6Vu9GPQOR1A38N+DHwIURsQw47PAwqwyPrmv1rtwZyAbgWpLuquOSNpEMiGhmFeLRda2ejXoGEhFfIhmO5D7gD0lGyW2RdJ2k6VWpzmwCmDm9iYvPneHwsLpT9iJ6JP53RKwgCZPPAUuBPVWozczMathJPwcSEQPA94HvS/JVPjOzCa7cRfSlkm7NzG+TtFvSbuCPq1KdmZnVrHJdWKuAzZn5JuD3Sa6H/PsCazIzszpQrgtrSkTszcz/OB0tt2/Yez3MzGwCKncG0pydiYjbMrN+EYeZ2QRXLkC2Sfrz4Y2SbiF5Kt3MzCawcl1Y/xH4nqTPAT9N2y4luRZybcF1mZlZjSsXIE9GxEJJi4EL07Z/iIhnqlCXmZnVuHIBIoCIeBp4ujrlmJlZvSgXIC2S7hhtYUT8jxPtXNIMYD1wEck4WjcDnwD+HOhNV/svEfFEuv5dwBeB48B/iIh/PIk/g5mZjYNyATIJmE56JpLT/SRdYZ9JX2v7OyQB8rWIuDe7oqQLSV51+yHgfcAPJV0QEcfH8PlmZlaQcgGyLyLuzrtjSWeSvOf8RoCIOAoclUbNo6XAoxHRD7wqaSdwGfDPeWswM7PilLuNdyxnHpAMvtgLPCDpWUnrMw8g3iapS9K3JQ0+bzIbyD642J22DS1KWiGpU1Jnb2/v8MVmZlYl5QJk8Rj3PRlYCKyNiEuAt4E7gbXAB4A2YB/JcPEnLSLWRUR7RLS3tPh5RjOz8VLufSBvjHHf3UB3RGxL5zcACyPiQEQcj4gS8E2SbiqAHuDczPataZuZmdWgsu8DGYuI2A/slTQ/bVoMvCDpnMxqnwKeT6c3A8slNUmaC8zDT7ybmdWsk34fSE63Aw+ld2DtBm4CviGpjeS23j3ALQAR8XNJjwMvAMeAW30HltWrvkP9fk2tvecpon5fc97e3h6dnZ3jXYbZEJt29LC6o4vGhgYGSiXWLFvAkrbfuh/EbNxI2h4R7WPdT2FdWGYTUd+hflZ3dHFkoMSv+49xZKDEqo4u+g71j3dpZhXnADGroO6Dh2lsGPrPqrGhge6Dh8epIrPiOEDMKqi1eRoDpdKQtoFSidbmaeNUkVlxHCBmFTRzehNrli1gamMDpzdNZmpjA2uWLfCFdHtPKvouLLMJZ0nbbBadP8t3Ydl7ngPErAAzpzc5OOw9z11YZmaWiwPEzMxycYCYmVkuDhAzM8vFAWJmZrk4QMzMLBcHiJmZ5eIAMTOzXBwgZmaWiwPEzMxyKTRAJM2QtEHSS5JelPRhSX+VzndJ2ihpRrruHEmHJe1If/66yNrMzGxsij4DuR94MiI+CFwMvAhsAS6KiAXAL4C7Muvvioi29GdlwbWZmdkYFBYgks4ErgC+BRARRyPizYh4KiKOpattBVqLqsHMzIpT5BnIXKAXeEDSs5LWSzpt2Do3Az/IbpOu+yNJl4+0U0krJHVK6uzt7S2odDMzO5EiA2QysBBYGxGXAG8Ddw4ulPRl4BjwUNq0D3h/uu4dwMOSzhi+04hYFxHtEdHe0tJSYPlmZlZOkQHSDXRHxLZ0fgNJoCDpRuCTwOcjIgAioj8i+tLp7cAu4IIC6zMzszEoLEAiYj+wV9L8tGkx8IKkq4BVwJKIeGdwfUktkial0+cB84DdRdVnZmZjU/QbCW8HHpI0hSQMbgL+BWgCtkgC2JrecXUFcLekAaAErIyINwquz8zMcio0QCJiB9A+rPn8UdbtADqKrMfMzCrHT6KbmVkuDhADoO9QP8/tfZO+Q/3jXYqZ1Ymir4FYHdi0o4fVHV00NjQwUCqxZtkClrTNHu+yzKzG+Qxkgus71M/qji6ODJT4df8xjgyUWNXR5TMRMzshB8gE133wMI0NQw+DxoYGug8eHqeKzKxeOEAmuNbmaQyUSkPaBkolWpunjVNFZlYvHCAT3MzpTaxZtoCpjQ2c3jSZqY0NrFm2gJnTm8a7NDOrcb6Ibixpm82i82fRffAwrc3THB5mdlIcIAYkZyIODjM7Fe7CMjOzXBwgZmaWiwPEzMxycYCYmVkuDhCbkDz2l9nY+S4sm3A89pdZZRR6BiJphqQNkl6S9KKkD0s6S9IWSa+kv5vTdSXpG5J2SuqStLDI2mxi8thfZpVTdBfW/cCTEfFB4GLgReBO4OmImAc8nc4DXE3yGtt5wApgbcG12QTksb/MKqewAJF0Jslrar8FEBFHI+JNYCnwYLrag8C16fRS4G8jsRWYIemcouqziXkdwGN/mVVOkWcgc4Fe4AFJz0paL+k04OyI2Jeusx84O52eDezNbN+dtg0haYWkTkmdvb29BZb/3rZpRw+L7nmGP1m/jUX3PMPmHT3jXVJVeOwvs8op8iL6ZGAhcHtEbJN0P+92VwEQESEpTmWnEbEOWAfQ3t5+SttaInsd4AjJ/42v6uhi0fmzJsR/SD32l1llFHkG0g10R8S2dH4DSaAcGOyaSn+/ni7vAc7NbN+atlmF+TpAciZy8bkzHB5mY1BYgETEfmCvpPlp02LgBWAzcEPadgOwKZ3eDHwhvRvrD4C3Ml1dVkG+DmBmlVD0cyC3Aw9JmgLsBm4iCa3HJX0ReA24Ll33CeAaYCfwTrquFWDwOsCqYc9C+P/GzexUKKJ+LyO0t7dHZ2fneJdRt/oO9fs6gNkEJGl7RLSPdT9+En0C8ztAzGwsPBaWmZnl4gAxM7NcHCBmZpaLA8TMzHJxgJiZWS4OEDMzy8UBYmZmuThAzMwsFweImZnl4gAxM7NcHCBmZpaLA8TMzHJxgJiZWS4OEDMzy8UBkuo71M9ze9+k71D/eJdiZlYXCn0fiKQ9wK+B48CxiGiX9Bgw+JrbGcCbEdEmaQ7wIvByumxrRKwssr5Bm3b0sHrY2/mWtM2uxkebmdWtarxQ6o8i4peDMxHx2cFpSfcBb2XW3RURbVWo6Tf6DvWzuqOLIwMljpC8J3xVRxeLzp/lly2ZmZUxbl1YkkTyPvRHxqsGgO6Dh2lsGPo1NDY00H3w8DhVZGZWH4oOkACekrRd0ophyy4HDkTEK5m2uZKelfQjSZePtENJKyR1Surs7e0dc4GtzdMYKJWGtA2USrQ2Txvzvs3M3suKDpCPRMRC4GrgVklXZJZdz9Czj33A+yPiEuAO4GFJZwzfYUSsi4j2iGhvaWkZc4EzpzexZtkCpjY2cHrTZKY2NrBm2QJ3X5mZnUCh10Aioif9/bqkjcBlwP+RNBn4NHBpZt1+oD+d3i5pF3AB0FlkjQBL2maz6PxZdB88TGvzNIeHmdlJKOwMRNJpkk4fnAauBJ5PF38MeCkiujPrt0ialE6fB8wDdhdV33Azpzdx8bkzHB5mZiepyDOQs4GNybVyJgMPR8ST6bLl/PbF8yuAuyUNACVgZUS8UWB9ZmY2BoUFSETsBi4eZdmNI7R1AB1F1WNmZpXlJ9HNzCwXB4iZmeXiADEzs1wcIGZmlosDxMzMcnGAmJlZLg4QMzPLxQFiZma5OEDMzCwXB4iZmeXiADEzs1wcIGZmlosDxMzMcnGAmJlZLg4QMzPLxQFiZma5FBogkvZI+pmkHZI607avSOpJ23ZIuiaz/l2Sdkp6WdIniqzNzMzGpshX2g76o4j45bC2r0XEvdkGSReSvOr2Q8D7gB9KuiAijlehRjMzO0W11IW1FHg0Ivoj4lVgJ3DZONdkZmajKPoMJICnJAXwvyJiXdp+m6QvAJ3Af4qIg8BsYGtm2+60bQhJK4AV6Wy/pOcLq75yZgHDz8JqkeusLNdZOfVQI9RPnfMrsZOiA+QjEdEj6XeBLZJeAtYCf0kSLn8J3AfcfLI7TENoHYCkzohor3zZleU6K8t1VlY91FkPNUJ91VmJ/RTahRURPenv14GNwGURcSAijkdECfgm73ZT9QDnZjZvTdvMzKwGFRYgkk6TdPrgNHAl8LykczKrfQoY7ILaDCyX1CRpLjAP+ElR9ZmZ2dgU2YV1NrBR0uDnPBwRT0r6jqQ2ki6sPcAtABHxc0mPAy8Ax4BbT+IOrHUnWF4rXGdluc7Kqoc666FGmGB1KiIqsR8zM5tgauk2XjMzqyMOEDMzy6WmA0TSJEnPSvr7dP5vJL2aGQalbZTtbpD0SvpzQ5Vr/L+Z+v6fpO+Nst3xzHqbi6wx/byRhpU5S9KW9HvaIql5lG2r+X2OVOdfSXpJUpekjZJmnOy2Vaxx1CF6hm17VTpUz05JdxZVY5k6H8vUuEfSjpPdtsA6Z0jakP4dvyjpwzV6bI5UZ00dm2XqLOb4jIia/QHuAB4G/j6d/xvgMyfY5ixgd/q7OZ1urlaNw5Z1AF8YZbtDVf4u9wCzhrWtAe5Mp+8E7qmB73OkOq8EJqfT94xU52jbVrHGrwD/+QTbTQJ2AecBU4DngAurWeew5fcBfzGe32X6WQ8Cf5ZOTwFm1OixOVKdNXVslqmzkOOzZs9AJLUCfwysP8VNPwFsiYg3InnCfQtwVaXrg/I1SjoD+CjwvSI+u0KWkhxspL+vHWGdqn2fo4mIpyLiWDq7leQZoXp0GbAzInZHxFHgUZK/g6pTcnvkdcAj4/H5mTrOBK4AvgUQEUcj4k1q7Ngcrc5aOzbLfJ8n45SPz5oNEODrwCqgNKz9q+np4tckNY2w3Wxgb2Z+xCFRKuTrjFwjJAf80xHxq1G2nSqpU9JWSdcWU94Qg8PKbFcyHAzA2RGxL53eT3Lr9XDV/D5h5DqzbgZ+kHPbShntc25Lj81vj9LlUkvf5eXAgYh4Jce2lTQX6AUeUNIVvF7Jc2O1dmyOVmdWLRyb5eqs+PFZkwEi6ZPA6xGxfdiiu4APAr9Pctq6utq1DSpT46DrKf9/d78XyZAHnwO+LukDla5xmI9ExELgauBWSVdkF0ZyDlsL93SPWqekL5M8I/TQqW5bhRrXAh8A2oB9JN1D463c93Gi47Na3+VkYCGwNiIuAd4m6bL6jRo5NsvWWUPH5mh1FnJ81mSAAIuAJZL2kJxGfVTS30XEvkj0Aw8w8mi91RoSZcQaASTNSmv7h9E2jneHedkN/BNwSQE1jvR5vxlWBjigdGSA9PfrI2xa1SFmRqkTSTcCnwQ+n/4H5aS3rUaNMfoQPVm18l1OBj4NPHaq2xagG+iOiG3p/AaS/wDW2rE5Wp01dWyOVmdRx2dNBkhE3BURrRExh+QdIc9ExJ9kDiiRdBGNNBLvPwJXSmpOT9OuTNuqUmO6+DMkF9WPjLRtWltTOj2LJIxeqHSNmc8bcVgZkuFjBu9cuQHYNMLmVfk+y9Up6SqSrsIlEfHOqWxbxRpHG6In61+AeZLmSppCctwUcgfeCb6PjwEvRUR3jm0rKiL2A3slDY4Ou5jk30JNHZuj1VlLx+YJ6izm+CziLoBK/gB/yLt3YT0D/Cz9w/8dMD1tbwfWZ7a5meR9IjuBm6pZYzr/T8BVw9b5TY3Av07/HM+lv79YcH3npZ/1HPBz4Mtp+0zgaeAV4IfAWeP5fZapcydJ3+yO9Oev0/b3AU+U27aKNX4n/bvsSv/RnTO8xnT+GuAXJHe7FFLjib4PkrsZVw5bv+rfZeaz20he7dBFctNJc60dm2XqrJlj8wR1FnJ8eigTMzPLpSa7sMzMrPY5QMzMLBcHiJmZ5eIAMTOzXBwgZmaWiwPE7BRImpkZ0XS/ho5wGoMPk6brTpbUq3Sk5kz79yRtrX71ZpVV5Cttzd5zIqKP5D57JH2FZFTle9P5Q8BFkqZFxGHg4wx7klfJcN+XAocknRfJSARmdclnIGaV9QTJCM0w8nhTnwa+TzL8zfIq1mVWcQ4Qs8p6FFguaSqwANg2bPlgqDySTpvVLQeIWQVFRBcwhyQcnsguk3Q2MA/4cUT8AhiQdFHVizSrEAeIWeVtBu7lt7uvriMZl+jVdBTnOfgsxOqYA8Ss8r4N/NeI+Nmw9utJBtmcE8kozpfi6yBWxxwgZhUWEd0R8Y1sm6Q5wO+RvPZ0cL1Xgbck/avqVmhWGR6N18zMcvEZiJmZ5eIAMTOzXBwgZmaWiwPEzMxycYCYmVkuDhAzM8vFAWJmZrn8f7xwLX0jqKx8AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Or another combination of the variables plotted:\n", + "df.groupby(\"Outcome\").plot.scatter(x='TMA', y=\"TGA\", xlim=(45, 65), ylim=(550, 770))" ] }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    Size5Size10Size15TGADSCTMA
    Outcome
    Adequate11.7176476.14117626.494118674.72352918.55294157.005882
    Poor14.1000009.65714334.057143626.41428618.64285752.385714
    \n", + "
    " + ], + "text/plain": [ + " Size5 Size10 Size15 TGA DSC TMA\n", + "Outcome \n", + "Adequate 11.717647 6.141176 26.494118 674.723529 18.552941 57.005882\n", + "Poor 14.100000 9.657143 34.057143 626.414286 18.642857 52.385714" + ] + }, + "execution_count": 62, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Or using groupby for summaries\n", + "df.groupby(\"Outcome\").mean()\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Multilevel groupby\n", "\n", - "df[['Geography','Gender','Exited']].groupby(['Geography','Gender']).mean()\n" + "We can also use `groupby` for multiple levels. Imagine we have a second categorical variable, or some other variable with few discrete values:\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 80, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    Size5Size10Size15TGADSCTMA
    OutcomeSmallSizeHighT
    AdequateFalseFalseNaNNaNNaNNaNNaNNaN
    True2.02.02.02.02.02.0
    TrueFalse5.05.05.05.05.05.0
    True10.010.010.010.010.010.0
    PoorFalseFalse3.03.03.03.03.03.0
    True2.02.02.02.02.02.0
    TrueFalse2.02.02.02.02.02.0
    TrueNaNNaNNaNNaNNaNNaN
    \n", + "
    " + ], + "text/plain": [ + " Size5 Size10 Size15 TGA DSC TMA\n", + "Outcome SmallSize HighT \n", + "Adequate False False NaN NaN NaN NaN NaN NaN\n", + " True 2.0 2.0 2.0 2.0 2.0 2.0\n", + " True False 5.0 5.0 5.0 5.0 5.0 5.0\n", + " True 10.0 10.0 10.0 10.0 10.0 10.0\n", + "Poor False False 3.0 3.0 3.0 3.0 3.0 3.0\n", + " True 2.0 2.0 2.0 2.0 2.0 2.0\n", + " True False 2.0 2.0 2.0 2.0 2.0 2.0\n", + " True NaN NaN NaN NaN NaN NaN" + ] + }, + "execution_count": 80, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Groupby: for summaries\n", + "df[\"SmallSize\"] = True\n", + "row_indexer = df[\"Size5\"] > 13\n", + "df.loc[row_indexer,\"SmallSize\"] = False\n", + "\n", + "df.groupby([\"Outcome\", \"SmallSize\"]).median()\n", + "\n", + "df[\"HighT\"] = True\n", + "row_indexer = df[\"TGA\"] < 650\n", + "df.loc[row_indexer,\"HighT\"] = False\n", + "\n", + "df.groupby([\"Outcome\", \"SmallSize\", \"HighT\", ]).count()\n", + "\n" ] }, { @@ -715,13 +1213,36 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 71, "metadata": {}, - "outputs": [], + "outputs": [ + { + "ename": "ParserError", + "evalue": "Error tokenizing data. C error: Expected 6 fields in line 22, saw 7\n", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mParserError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mdf2\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mread_csv\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"https://openmv.net/file/class-grades.csv\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0mdf2\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0minfo\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;31m#df2[\"Crispy\"].unique()\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;31m#df2.groupby*\"\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mdf2\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/envs/datamore/lib/python3.8/site-packages/pandas/io/parsers.py\u001b[0m in \u001b[0;36mread_csv\u001b[0;34m(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, squeeze, prefix, mangle_dupe_cols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, skipfooter, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, dayfirst, cache_dates, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, doublequote, escapechar, comment, encoding, dialect, error_bad_lines, warn_bad_lines, delim_whitespace, low_memory, memory_map, float_precision)\u001b[0m\n\u001b[1;32m 686\u001b[0m )\n\u001b[1;32m 687\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 688\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0m_read\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilepath_or_buffer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 689\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 690\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/envs/datamore/lib/python3.8/site-packages/pandas/io/parsers.py\u001b[0m in \u001b[0;36m_read\u001b[0;34m(filepath_or_buffer, kwds)\u001b[0m\n\u001b[1;32m 458\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 459\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 460\u001b[0;31m \u001b[0mdata\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mparser\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mread\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnrows\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 461\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 462\u001b[0m \u001b[0mparser\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mclose\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/envs/datamore/lib/python3.8/site-packages/pandas/io/parsers.py\u001b[0m in \u001b[0;36mread\u001b[0;34m(self, nrows)\u001b[0m\n\u001b[1;32m 1196\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mread\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnrows\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1197\u001b[0m \u001b[0mnrows\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_validate_integer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"nrows\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnrows\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1198\u001b[0;31m \u001b[0mret\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mread\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnrows\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1199\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1200\u001b[0m \u001b[0;31m# May alter columns / col_dict\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/envs/datamore/lib/python3.8/site-packages/pandas/io/parsers.py\u001b[0m in \u001b[0;36mread\u001b[0;34m(self, nrows)\u001b[0m\n\u001b[1;32m 2155\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mread\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnrows\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2156\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2157\u001b[0;31m \u001b[0mdata\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_reader\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mread\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnrows\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2158\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mStopIteration\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2159\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_first_chunk\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32mpandas/_libs/parsers.pyx\u001b[0m in \u001b[0;36mpandas._libs.parsers.TextReader.read\u001b[0;34m()\u001b[0m\n", + "\u001b[0;32mpandas/_libs/parsers.pyx\u001b[0m in \u001b[0;36mpandas._libs.parsers.TextReader._read_low_memory\u001b[0;34m()\u001b[0m\n", + "\u001b[0;32mpandas/_libs/parsers.pyx\u001b[0m in \u001b[0;36mpandas._libs.parsers.TextReader._read_rows\u001b[0;34m()\u001b[0m\n", + "\u001b[0;32mpandas/_libs/parsers.pyx\u001b[0m in \u001b[0;36mpandas._libs.parsers.TextReader._tokenize_rows\u001b[0;34m()\u001b[0m\n", + "\u001b[0;32mpandas/_libs/parsers.pyx\u001b[0m in \u001b[0;36mpandas._libs.parsers.raise_parser_error\u001b[0;34m()\u001b[0m\n", + "\u001b[0;31mParserError\u001b[0m: Error tokenizing data. C error: Expected 6 fields in line 22, saw 7\n" + ] + } + ], "source": [ - "df = pd.read_csv(\"https://openmv.net/file/raw-material-characterization.csv\")\n", - "df.info()\n", - "df" + "df2 = pd.read_csv(\"https://openmv.net/file/class-grades.csv\")\n", + "df2.info()\n", + "#df2[\"Crispy\"].unique()\n", + "#df2.groupby*\"\"\n", + "df2" ] }, { From 873085c378fb1ef02cd8d11359741e6b26409277 Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Tue, 8 Dec 2020 11:12:39 +0100 Subject: [PATCH 120/134] Updating and heading to wrapping up module 16. --- Module-16-interactive.ipynb | 773 ++++++++---------------------------- README.md | 3 +- 2 files changed, 159 insertions(+), 617 deletions(-) diff --git a/Module-16-interactive.ipynb b/Module-16-interactive.ipynb index ba9a47e..36a0b88 100644 --- a/Module-16-interactive.ipynb +++ b/Module-16-interactive.ipynb @@ -7,7 +7,7 @@ }, "source": [ "

    Table of Contents

    \n", - "" + "" ] }, { @@ -69,8 +69,7 @@ "\n", "In this module we will cover\n", "\n", - "* A bunch of loose ideas of things you regularly need in your day-to-day work. Most of these come from this list, with some modifications: https://towardsdatascience.com/30-examples-to-master-pandas-f8a2da751fa4\n", - "* We close with a generic framework for things you can do to extract value from data." + "* A bunch of loose ideas of things you regularly need in your day-to-day work. Most of these come from this list, with some modifications: https://towardsdatascience.com/30-examples-to-master-pandas-f8a2da751fa4" ] }, { @@ -107,10 +106,8 @@ ] }, { - "cell_type": "code", - "execution_count": null, + "cell_type": "markdown", "metadata": {}, - "outputs": [], "source": [ "import seaborn as sns\n", "sns.set(rc={'figure.figsize':(15, 15)})\n", @@ -118,6 +115,29 @@ "sns.heatmap(df.corr(), cmap=cmap, square=True, linewidths=0.2, cbar_kws={\"shrink\": 0.5});" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## List comprehensions\n", + "\n", + "\"List comprehensions\" are a quick way to make a list. You can read more, and see some examples here: https://realpython.com/list-comprehension-python/#using-list-comprehensions" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print( [i for i in range(10)] )\n", + "print( [i*2 for i in range(10)] )\n", + "print( [i*2 for i in range(10) if i > 4] )\n", + "print( [i*2 for i in range(10) if i % 2 == 1] )\n", + "print( [i*2 for i in range(10) if i % 2 == 0] )\n", + "print( [i for i in range(10) if i % 3 == 1] )" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -154,10 +174,7 @@ "df_partial = pd.read_csv(\"https://openmv.net/file/food-consumption.csv\", \n", " skiprows=[i for i in range(40) if i%3 ==1])\n", "\n", - "# This is call a \"list comprehension\", super powerful. Read about it on your own time.\n", - "# https://realpython.com/list-comprehension-python/#using-list-comprehensions\n", - "print([i for i in range(40) if i%3 ==1])\n", - "display(df_partial)\n" + "display(df_partial)" ] }, { @@ -371,7 +388,7 @@ "outputs": [], "source": [ "# Or a mixture of column and row names:\n", - "df.loc[\"Holland\", \"Biscuits\"] = np.nan\n" + "df.loc[\"Holland\", \"Biscuits\"] = np.nan" ] }, { @@ -454,7 +471,7 @@ "source": [ "# Finally, we can now delete columns with a threshold (degree) of missing values\n", "# What value should you fill in?\n", - "display(df.dropna(thresh=___, axis=1))\n" + "display(df.dropna(thresh=___, axis=1))" ] }, { @@ -473,7 +490,7 @@ "outputs": [], "source": [ "df = pd.read_csv(\"https://openmv.net/file/food-consumption.csv\").set_index('Country')\n", - "df[df[\"Olive oil\"]>50]" + "df[df[\"Olive oil\"] > 50]" ] }, { @@ -489,7 +506,7 @@ "metadata": {}, "outputs": [], "source": [ - "df[(df[\"Olive oil\"]>50) & (df[\"Garlic\"]>40)]" + "df[(df[\"Olive oil\"] > 50) & (df[\"Garlic\"] > 40)]" ] }, { @@ -505,7 +522,7 @@ "metadata": {}, "outputs": [], "source": [ - "df[(df[\"Tea\"]>80) | (df[\"Oranges\"]>90)]" + "df[(df[\"Tea\"] > 80) | (df[\"Oranges\"] > 90)]" ] }, { @@ -525,7 +542,7 @@ "source": [ "df.query(\"30 < Tea < 80\")\n", "\n", - "# or if the column name has a space:\n", + "# or use backticks if the column name has a space:\n", "df.query(\"10 < `Tin soup` < 20\")" ] }, @@ -565,17 +582,6 @@ "df.query(\"`Instant coffee` > `Real coffee`\")" ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## TODO: Filling in missing values\n", - "\n", - "mode = df['Geography'].value_counts().index[0]\n", - "df['Geography'].fillna(value=mode, inplace=True)\n", - "\n" - ] - }, { "cell_type": "markdown", "metadata": {}, @@ -588,139 +594,9 @@ }, { "cell_type": "code", - "execution_count": 59, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Index: 24 entries, B370 to B986\n", - "Data columns (total 7 columns):\n", - " # Column Non-Null Count Dtype \n", - "--- ------ -------------- ----- \n", - " 0 Outcome 24 non-null category\n", - " 1 Size5 24 non-null float64 \n", - " 2 Size10 24 non-null float64 \n", - " 3 Size15 24 non-null float64 \n", - " 4 TGA 24 non-null float64 \n", - " 5 DSC 24 non-null float64 \n", - " 6 TMA 24 non-null float64 \n", - "dtypes: category(1), float64(6)\n", - "memory usage: 1.4+ KB\n" - ] - }, - { - "data": { - "text/html": [ - "
    \n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    OutcomeSize5Size10Size15TGADSCTMA
    Lot number
    B370Adequate13.89.241.2787.318.065.0
    B880Adequate11.25.827.6772.217.768.8
    B452Adequate9.95.828.3602.318.350.7
    B287Adequate10.44.024.7677.917.756.5
    B576Adequate12.39.322.0593.519.552.0
    \n", - "
    " - ], - "text/plain": [ - " Outcome Size5 Size10 Size15 TGA DSC TMA\n", - "Lot number \n", - "B370 Adequate 13.8 9.2 41.2 787.3 18.0 65.0\n", - "B880 Adequate 11.2 5.8 27.6 772.2 17.7 68.8\n", - "B452 Adequate 9.9 5.8 28.3 602.3 18.3 50.7\n", - "B287 Adequate 10.4 4.0 24.7 677.9 17.7 56.5\n", - "B576 Adequate 12.3 9.3 22.0 593.5 19.5 52.0" - ] - }, - "execution_count": 59, - "metadata": {}, - "output_type": "execute_result" - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "import pandas as pd\n", "df = pd.read_csv(\"https://openmv.net/file/raw-material-characterization.csv\").set_index(\"Lot number\")\n", @@ -742,47 +618,9 @@ }, { "cell_type": "code", - "execution_count": 60, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Outcome\n", - "Adequate AxesSubplot(0.125,0.125;0.775x0.755)\n", - "Poor AxesSubplot(0.125,0.125;0.775x0.755)\n", - "dtype: object" - ] - }, - "execution_count": 60, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAUW0lEQVR4nO3df5Bd5X3f8fdHsAhikSKEQhSEi2tsU8eDZXtD7VGbFKVJPMQjcLGTTJ0MmZAhaeuMW7sWdtx6nHqYBsUOblMnHgy2mIaJzSBqCGOPIfxKnJngSEQIMMbGMS4oGASBFCWgCvbbP+7RYVm02h+65967d9+vmR3de+6ee76HZe9nn+c5z3NSVUiSBLBi2AVIkkaHoSBJahkKkqSWoSBJahkKkqSWoSBJanUeCkmOSvJXSW5snm9L8t0ku5qvDV3XIEman6MHcIz3AfcDPzht2wer6toBHFuStACdthSSrAd+Friiy+NIkvqj65bCp4AtwPEztl+S5KPALcCHqmr/zB2TXARcBPCKV7ziLWeccUbHpUrSeNm5c+cTVbV2Ifukq2UukrwDOKeq/l2Sfwn8p6p6R5J1wPeBY4DLge9U1X893HtNTk7Wjh07OqlTksZVkp1VNbmQfbrsPtoIbE7yEPAFYFOSP6yqR6tnP/B54KwOa5AkLUBnoVBVH66q9VV1GvALwK1V9YtNS4EkAc4D7u2qBknSwgzi6qOZrk6yFgiwC/j1IdQgSTqEgYRCVd0O3N483jSIY0qSFs4ZzZKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCtIy8uS+/dz98NM8uW//sEvRiDp62AVIGozrd+3h4u27mVixggNTU2w9/0w2bzhl2GVpxNhSkJaBJ/ft5+Ltu3nuwBTP7H+e5w5MsWX7blsMehlDQVoGHnnqWSZWvPTXfWLFCh556tkhVaRRZShIy8D61cdxYGrqJdsOTE2xfvVxQ6pIo8pQkJaBNatWsvX8Mzl2YgXHrzyaYydWsPX8M1mzauWwS9OIcaBZWiY2bziFjaefxCNPPcv61ccZCDokQ0FaRtasWmkY6LDsPpIktToPhSRHJfmrJDc2z1+V5M4kDyb5YpJjuq5BkjQ/g2gpvA+4f9rzS4HLqup04CngwgHUIEmah05DIcl64GeBK5rnATYB1zbfchVwXpc1SJLmr+uWwqeALcDBC6TXAE9X1fPN80cA59lL0ojoLBSSvAN4vKp2LnL/i5LsSLJj7969fa5OknQoXbYUNgKbkzwEfIFet9F/B05IcvBS2PXAnkPtXFWXV9VkVU2uXbu2wzIlSQd1FgpV9eGqWl9VpwG/ANxaVe8BbgPe1XzbBcD1XdUgSVqYYcxTuBh4f5IH6Y0xXDmEGiRJhzCQGc1VdTtwe/P4r4GzBnFcSdLCOKNZktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJrc5CIcmxSb6e5O4k9yX5rWb7tiTfTbKr+drQVQ2SpIU5usP33g9sqqp9SSaAryX5SvPaB6vq2g6PLUlahM5CoaoK2Nc8nWi+qqvjSZKOXKdjCkmOSrILeBy4uarubF66JMnuJJclWTnLvhcl2ZFkx969e7ssU5LU6DQUquqFqtoArAfOSvIG4MPAGcCPAScCF8+y7+VVNVlVk2vXru2yTElSYyBXH1XV08BtwNur6tHq2Q98HjhrEDVIkubW5dVHa5Oc0Dw+Dvgp4JtJ1jXbApwH3NtVDZKkheny6qN1wFVJjqIXPtdU1Y1Jbk2yFgiwC/j1DmuQJC1Al1cf7QbedIjtm7o6piTpyDijWZLUMhQkSS1DQZLUMhQkSS1DQZLUMhQkSS1DQZLUMhQkSa0FhUKSVUnefHD5CknSeDlsKCT5/WmP/znwDeCTwD1Jzum4NknSgM21zMVbpz3+OHBeVd2V5J8A1wBf7qwySdLALaT76Aer6i6AqvrrBe4rSVoC5mopnJFkN70VTU9LsrqqnkqyAjim+/IkSYM0Vyj80xnPD95z+UTgo/0vR5I0TIcNhar63izbnwCu66QiSdLQLHpcIMlX+lmIJGn4DttSSPLm2V4CNvS9GknSUM01pvCXwB30QmCmE/pejSRpqOYKhfuBX6uqb898IcnD3ZQkSRqWucYUPnaY7/mN/pYiSRq2ua4+uvYwr32p79VIkoZqXlcfJTk5yZUHrzhK8vokF3ZbmiRp0OZ7Seo24KvAjzTPvwX8hw7qkSQN0XxD4aSqugaYAqiq54EXOqtKkjQU8w2Fv0+yBiiAJG8F/q6zqiRJQzHXJakHfQC4AXh1kj8H1gLv7qwqSdJQzCsUqmpnkp8AXkdvItsDVXWg08okSQM336uPvgP8alXdV1X3VtWBJDd2XJskacDmO6ZwADg7yeeTHLyPwikd1SRJGpL5hsI/VNXP01v24s+SvJJm0FmSND7mO9AcgKramuQu4CZ6N9qRJI2R+bYU2rusVdWfAD8D/M/D7ZDk2CRfT3J3kvuS/Faz/VVJ7kzyYJIvTuuO0iI8uW8/dz/8NE/u2z/sUiSNgbnup3BGVX0T2HOIeyvMNdC8H9hUVfuSTABfa5bJeD9wWVV9IclngAuBP1hk/cva9bv2cPH23UysWMGBqSm2nn8mmzc41CNp8ebqPno/cBHwyeb5zHGETbPtWFXFi/d0nmi+qtnn3zTbr6K3EquhsEBP7tvPxdt389yBKZ7rTTRny/bdbDz9JNasWjmUeh556lnWrz5uKMeX1B9zhcIVSX64qs4GSHIBcD7wEL0P88NKchSwEzgd+DTwHeDpZpkMgEeY5SqmJBfRCyRe+cpXznWoZeeRp55lYsWKNhAAJlas4JGnnh34h7ItFml8zDWm8Bng/wEk+XHgv9H76/7vgMvnevOqeqGqNgDrgbOAM+ZbWFVdXlWTVTW5du3a+e62bKxffRwHpqZesu3A1BTrVx830Dqmt1ie2f88zx2YYsv23Y5xSEvUXKFwVFX9bfP454HLq2p7Vf0Xen/9z0tVPQ3cBrwNOCHJwRbKemDPwkoWwJpVK9l6/pkcO7GC41cezbETK9h6/pkDbyUcbLFMd7DFImnpmav76KgkRzfdPT9J050zn32TrAUOVNXTSY4Dfgq4lF44vAv4AnABcP1ii1/uNm84hY2nnzTUvvxRabFI6o+5Wgp/BNyR5HrgWeDPAJKcztyrpK4DbkuyG/hL4OaquhG4GHh/kgeBNcCVR1D/srdm1UreeOoJQxvcHZUWi6T+SO8iocN8Q2+Z7HXATVX198221wKrququ7kuEycnJ2rFjxyAOpUXy6iNp9CTZWVWTC9lnzhnNVfUXh9j2rYUcRONvzaqVhoE0BuY7o1mStAwYCpKklqEgSWoZCpKklqEgSWoZCpKklqEgjSHvs6HFmu+d1yQtEa5aqyNhS0EaI65aqyNlKByBQTfR7RLQXFy1VkfK7qNFGnQT3S4BzYer1upI2VJYhEE30e0S0Hy5aq2OlC2FRRj0rTBH6dabGn2jcJ8NLV2GwiIMuolul4AWylVrtVh2Hy3CoJvodgmMJgf+NY7mvMnOKBjVm+wM+sYy3shmdDjwr6Wgk5vsaHaDbqLbJTAapg/8Hxzn2bJ9NxtPP8mfj5Y8u4+kBXIugMaZoXAERrlPeZRrW+oc+Nc4s/tokUa5T3mUaxsHBwf+t8z4b2zXkcaBA82L8OS+/Wy89FaeO/DiX4vHTqzgzy/eNPQPhlGubdw48K9Rt5iBZruPFmGU+5RHubZxs2bVSt546gkGgsaKobAIo9ynPMq1SRp9hsIijPJkslGuTdLoc0zhCIxyn/Io1yZpMJy8NmCjPJlslGuTNLrsPpIktQwFSVLLUJAWyVnjGkeOKUiL4KxxjavOWgpJTk1yW5JvJLkvyfua7R9LsifJrubrnK5qkLrg7VE1zrpsKTwPfKCq7kpyPLAzyc3Na5dV1Sc6PLbUGW+PqnHWWShU1aPAo83jZ5LcD9i+ngfnGIw2Z41rnA1koDnJacCbgDubTe9NsjvJ55KsnmWfi5LsSLJj7969fa9pVAcJr9+1h42X3sovXnEnGy+9lRt27Rl2SZrBWeMaZ53PaE6yCrgDuKSqrktyMvAEUMDHgXVV9SuHe49+z2ge1UFCVzhdWmzRadSN3CqpSSaA7cDVVXUdQFU9VlUvVNUU8FngrC5rmGmUBwld4XRpcZVUjaMurz4KcCVwf1X97rTt66Z92zuBe7uq4VBG+YPXvmpJw9ZlS2Ej8EvAphmXn25Nck+S3cDZwH/ssIaXGeUPXvuqJQ1bl1cffQ3IIV76clfHnI9Rv5Xi5g2nsPH0k+yrljQUy3JG86h/8LrCqaRhWZahAH7wStKhuCCeNM2ozl+RBmXZthSkmUZ1/oo0SLYUJEZ7/oo0SIaCxGjPX5EGyVCQGO35K9IgGQoSThyUDnKgWWqM+vwVaRAMBWka569oubP7SJLUMhQkSS1DQZLUMhQkSS1DQZLUMhQkSS1DQSPNVUulwXKegkaWq5ZKg2dLQSPJVUul4TAUNJJctVQaDkNBI8lVS6XhMBQ0kly1VBoOB5o1sly1VBo8Q0EjzVVLpcGy+0iS1DIUJEktQ0GS1DIUJEktQ0GS1DIUJEktQ0GzcoVSaflxnoIOyRVKpeWps5ZCklOT3JbkG0nuS/K+ZvuJSW5O8u3m39Vd1aDFcYVSafnqsvvoeeADVfV64K3Av0/yeuBDwC1V9Rrglua5RogrlErLV2ehUFWPVtVdzeNngPuBU4Bzgauab7sKOK+rGrQ4rlAqLV8DGWhOchrwJuBO4OSqerR56fvAybPsc1GSHUl27N27dxBlquEKpdLylarq9gDJKuAO4JKqui7J01V1wrTXn6qqw44rTE5O1o4dOzqtUy/35L79rlAqLWFJdlbV5EL26fTqoyQTwHbg6qq6rtn8WJJ1VfVoknXA413WoMVzhVJp+eny6qMAVwL3V9XvTnvpBuCC5vEFwPVd1SBJWpguWwobgV8C7kmyq9n2m8BvA9ckuRD4HvBzHdYgSVqAzkKhqr4GZJaXf7Kr40qSFs9lLiRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktTqfOnsfkjyDPDAsOvo0EnAE8MuokPjfH7jfG7g+S11r6uq4xeyQ6dLZ/fRAwtdE3wpSbLD81uaxvncwPNb6pIs+EY0dh9JklqGgiSptVRC4fJhF9Axz2/pGudzA89vqVvw+S2JgWZJ0mAslZaCJGkADAVJUmvkQiHJ55I8nuTeadtOTHJzkm83/64eZo1HYpbze3eS+5JMJVmyl8fNcm6/k+SbSXYn+d9JThhiiUdklvP7eHNuu5LclORHhlnjkTjU+U177QNJKslJw6itH2b5+X0syZ7m57cryTnDrHGxZvvZJfmN5vfvviRb5/NeIxcKwDbg7TO2fQi4papeA9zSPF+qtvHy87sX+NfAnw68mv7axsvP7WbgDVV1JvAt4MODLqqPtvHy8/udqjqzqjYANwIfHXRRfbSNl58fSU4Ffhr4P4MuqM+2cYjzAy6rqg3N15cHXFO/bGPGuSU5GzgXeGNV/Sjwifm80ciFQlX9KfC3MzafC1zVPL4KOG+QNfXToc6vqu6vqiU/Y3uWc7upqp5vnv4FsH7ghfXJLOf3f6c9fQWwZK/cmOV3D+AyYAtL+NzgsOe35M1ybv8W+O2q2t98z+Pzea+RC4VZnFxVjzaPvw+cPMxitGi/Anxl2EX0W5JLkjwMvIel3VJ4mSTnAnuq6u5h19Kh9zZdgJ9byl3Th/Ba4F8kuTPJHUl+bD47LZVQaFXvGtol/RfLcpTkI8DzwNXDrqXfquojVXUqvXN777Dr6ZckPwD8JmMWdDP8AfBqYAPwKPDJoVbTX0cDJwJvBT4IXJMkc+20VELhsSTrAJp/59UM0mhI8svAO4D31HhPjLkaOH/YRfTRq4FXAXcneYhe199dSX54qFX1UVU9VlUvVNUU8FngrGHX1EePANdVz9eBKXoLAB7WUgmFG4ALmscXANcPsRYtQJK30+uP3lxV/zDsevotyWumPT0X+Oawaum3qrqnqn6oqk6rqtPofci8uaq+P+TS+ubgH5uNd9K76GNcfAk4GyDJa4FjmM+KsFU1Ul/AH9Frxh2g9z/hhcAaelcdfRv4E+DEYdfZ5/N7Z/N4P/AY8NVh19nHc3sQeBjY1Xx9Zth19vn8ttP7INkN/DFwyrDr7Of5zXj9IeCkYdfZ55/f/wLuaX5+NwDrhl1nH8/tGOAPm/8/7wI2zee9XOZCktRaKt1HkqQBMBQkSS1DQZLUMhQkSS1DQZLUMhSkGZJ8pFlV8uDqp/8syRVJXr+I9xqLVTi1fBw97AKkUZLkbfRmX7+5qvY3S0UfU1W/egRve1lVzWuFSmnYbClIL7UOeKJeXFnyiar6myS3J5lMsnnaX/0PJPkuQJK3NIuO7Uzy1RkzZaUlw1CQXuom4NQk30ry+0l+YvqLVXVDNWvvA3cDn0gyAfwe8K6qegvwOeCSabuN6yqcGkOGgjRNVe0D3gJcBOwFvtgs6PcSSbYAz1bVp4HXAW8Abk6yC/jPvHjfiHFehVNjyDEFaYaqegG4Hbg9yT28uBgjAEn+FfBu4McPbgLuq6q3HeK9Hpu232fp3Z1NGlm2FKRpkrxuxsqnG4DvTXv9HwOfBt5dVc82mx8A1jaD1CSZSPKjzeNxXoVTY8iWgvRSq4DfS3ICvZsCPUivK+na5vVfprdq75ea+5X8TVWdk+RdwP9I8o/o/V59CrgP2JpkA70bQz0E/NqAzkNaFFdJlSS17D6SJLUMBUlSy1CQJLUMBUlSy1CQJLUMBUlSy1CQJLX+P1lanM8WzEKbAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
    " - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAATeUlEQVR4nO3dfZBd9X3f8fdn0SJUiwQhtkRBtLjGMXU8iowVag9tXEjSeggjcLGTtK4HT5zBaeuMM3Et/NBx3bpME8UObtM8DDa2mIaJwyBqCGOPIRjsuDMhXREhwBg/BRcpGIQiHNSIzcJ++8c9OqyEtA/SPXv3Xt6vmTs695w993x/sw8f/c7vnN9JVSFJEsDYoAuQJC0fhoIkqWUoSJJahoIkqWUoSJJahoIkqdV5KCQ5KcmfJ7m9eb8tyV8k2dm8NnZdgyRpYVYswTHeAzwM/MCsde+rqpuX4NiSpEXotKeQZD3wM8CnujyOJKk/uu4pfALYApx6xPprknwYuAt4f1VNHbljkquAqwBe9rKXve68887ruFRJGi07dux4qqomFrNPuprmIsmlwCVV9W+T/FPg31fVpUnWAd8DTgauA75dVf95rs/atGlTTU5OdlKnJI2qJDuqatNi9uny9NGFwOYkjwKfBS5O8vtV9Xj1TAGfAS7osAZJ0iJ0FgpV9YGqWl9V5wA/D3ypqv5101MgSYDLgQe7qkGStDhLcfXRkW5MMgEE2An80gBqkCQdxZKEQlXdA9zTLF+8FMeUJC2edzRLklqGgiSpZShIklqGgiSpZShIklqGgiSpZShIklqGgiSpZShIklqGgiSpZShIklqGgiSpZShIklqGgiSpZShIklqGgiSpZShIklqGgiSpZShIklqGgiSpZShIklqGgiSpZShIklqGgiSpZShIGmn7Dkxx/2NPs+/A1KBLGQorBl2AJHXl1p17uHr7LsbHxpiemWHrFRvYvPGsQZe1rNlTkDSS9h2Y4urtu3h2eoZnpp7j2ekZtmzfZY9hHoaCpJG0e/9BxscO/xM3PjbG7v0HB1TRcDAUJI2k9WtWMT0zc9i66ZkZ1q9ZNaCKhoOhIGkkrV29kq1XbOCU8TFOXbmCU8bH2HrFBtauXjno0pY1B5oljazNG8/iwnPPYPf+g6xfs8pAWIDOQyHJScAksKeqLk3ycuCzwFpgB/D2qvrbruuQ9NK0dvVKw2ARluL00XuAh2e9/3Xg2qo6F9gPvHMJapAkLUCnoZBkPfAzwKea9wEuBm5uvuQG4PIua5AkLVzXPYVPAFuAQ5cArAWerqrnmve7Ae8kkaRlorNQSHIp8GRV7TjO/a9KMplkcu/evX2uTpJ0NF32FC4ENid5lN7A8sXAfwNOS3JogHs9sOdoO1fVdVW1qao2TUxMdFimJOmQzkKhqj5QVeur6hzg54EvVdXbgLuBtzRfdiVwa1c1SJIWZxA3r10N/GqSb9EbY7h+ADVIko5iSW5eq6p7gHua5e8AFyzFcSVJi+M0F5KklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgLcC+A1Pc/9jT7DswNehSpE6tGHQB0nJ36849XL19F+NjY0zPzLD1ig1s3njWoMuSOmFPQZrDvgNTXL19F89Oz/DM1HM8Oz3Dlu277DFoZBkK0hx27z/I+NjhvybjY2Ps3n9wQBVJ3TIUpDmsX7OK6ZmZw9ZNz8ywfs2qAVWk5W7Yx58cU5DmsHb1SrZesYEtR4wprF29ctClaRkahfEnQ0Gax+aNZ3HhuWewe/9B1q9ZZSDoqGaPPz1Lr3e5ZfsuLjz3jKH6mTEUpAVYu3rlUP1ia+kdGn86FAjwwvjTMP3sOKYgSX0wKuNPhoIk9cGh8adTxsc4deUKThkfG8rxJ08fSVKfjML4U2ehkOQU4CvAyuY4N1fVf0yyDXgj8P3mS99RVTu7qkOSltKwjz912VOYAi6uqgNJxoGvJvlCs+19VXVzh8eWJB2HzkKhqgo40Lwdb17V1fEkSSeu04HmJCcl2Qk8CdxZVfc2m65JsivJtUmO2s9KclWSySSTe/fu7bJMSVKj01CoqueraiOwHrggyWuADwDnAT8OnA5cfYx9r6uqTVW1aWJiossyJUmNJbkktaqeBu4G3lRVj1fPFPAZ4IKlqEGSNL/OQiHJRJLTmuVVwE8DX0+yrlkX4HLgwa5qkKTlYlgmyuvy6qN1wA1JTqIXPjdV1e1JvpRkAgiwE/ilDmuQpIEbponyurz6aBfw2qOsv7irY0rScjNsE+U5zYUkdWjYHtRkKEhSh4ZtojxDQZI6NGwT5TkhniR1bJgmyjMUJGkJDMtEeZ4+kiS1DAVJUstQkCS1FhUKSVYnOf/Q9BWSpNEyZygk+Z1Zy/8Y+BrwceCBJJd0XJskaYnNd/XR62ctfxS4vKruS/IPgJuAz3dWmSRpyS3m9NEPVNV9AFX1nUXuK0kaAvP1FM5LsovejKbnJFlTVfuTjAEnd1+eJGkpzRcK//CI94eeuXw68OH+lyNJGqQ5Q6GqvnuM9U8Bt3RSkSRpYI57XCDJF/pZiCRp8ObsKSQ5/1ibgI19r0aSNFDzjSn8H+DL9ELgSKf1vRpJ0kDNFwoPA++qqm8euSHJY92UJEkalPnGFD4yx9f8cn9LkSQN2nxXH908x7bP9b0aSdJALejqoyRnJrn+0BVHSV6d5J3dliZJWmoLvSR1G/BF4Ieb998AfqWDeiRJA7TQUDijqm4CZgCq6jng+c6qkiQNxEJD4f8lWQsUQJLXA9/vrCpJ0kDMd0nqIe8FbgNekeR/AxPAWzurSpI0EAsKharakeSNwKvo3cj2SFVNd1qZJGnJLfTqo28Dv1hVD1XVg1U1neT2jmuTJC2xhY4pTAMXJflMkkPPUTiro5okSQOy0FD4m6r6OXrTXvxJkr9HM+gsSRodCx1oDkBVbU1yH3AHvQftSJJGyEJ7Cu1T1qrqj4F/DvyPuXZIckqSP0tyf5KHkvynZv3Lk9yb5FtJ/nDW6ShJ0oDNGQpJzmsW9yQ5/9ALWAvMN9A8BVxcVT9G79kLb2rub/h14NqqOhfYDzhdhiQtE/OdPvpV4Crg4837I8cRLj7WjlVVvPBM5/HmVc0+/6pZfwO9mVh/d8EVS5I6M9/po08l+aGquqiqLqL3R/wA8CDwlvk+PMlJSXYCTwJ3At8Gnm6myQDYzTGuYkpyVZLJJJN79+5dWGskSSdkvlD4PeBvAZL8BPBf6QXD94Hr5vvwqnq+qjYC64ELgPPm3uOwfa+rqk1VtWliYmKhu0mSTsB8p49Oqqq/apZ/DriuqrYD25sewIJU1dNJ7gbeAJyWZEXTW1gP7DmOuiVJHZivp3BSkkPB8ZPAl2ZtmzNQkkwkOa1ZXgX8NL37HO7mhVNPVwK3LrJmSVJH5usp/AHw5SRPAQeBPwFIci7zz5K6DrghyUn0wuemqro9ydeAzyb5L8CfA9efSAMkSf0z3+M4r0lyF70/8Hc0VxRB74/8nM9orqpdwGuPsv479MYXJEnLzLx3NFfVnx5l3Te6KUeSNEgLvaNZkvQSYChIklqGgiSpZShIklqGgiSpZShIklqGgiSpZShIklqGgiSpZShIklqGgiSpZShIklqGgiSpZShIklqGgjSC9h2Y4v7HnmbfgalBl6IhM+/zFCQNl1t37uHq7bsYHxtjemaGrVdsYPPGswZdloaEPQVphOw7MMXV23fx7PQMz0w9x7PTM2zZvssegxbMUJBGyO79BxkfO/zXenxsjN37Dw6oIg0bQ0EaIevXrGJ6ZuawddMzM6xfs2pAFWnYGArSCFm7eiVbr9jAKeNjnLpyBaeMj7H1ig2sXb1y0KVpSDjQLI2YzRvP4sJzz2D3/oOsX7PKQNCiGArSCFq7eqVhoOPi6SNJUstQkCS1DAVJUstQkCS1DAVJUstQkCS1DAVJUstQkCS1OguFJGcnuTvJ15I8lOQ9zfqPJNmTZGfzuqSrGiRJi9PlHc3PAe+tqvuSnArsSHJns+3aqvpYh8eWJB2HzkKhqh4HHm+Wn0nyMOCTPiRpGVuSMYUk5wCvBe5tVr07ya4kn06y5hj7XJVkMsnk3r17F3QcH0EoSScmVdXtAZLVwJeBa6rqliRnAk8BBXwUWFdVvzDXZ2zatKkmJyfnPI6PIJSkwyXZUVWbFrNPpz2FJOPAduDGqroFoKqeqKrnq2oG+CRwwYkex0cQSlJ/dHn1UYDrgYer6jdnrV8368veDDx4osfyEYSS1B9dXn10IfB24IEkO5t1HwT+ZZKN9E4fPQq860QP5CMIJak/urz66KtAjrLp8/0+1qFHEG45YkzBh4xI0uKMzJPXfAShJJ24kQkF8BGEknSinPtIktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJrc5CIcnZSe5O8rUkDyV5T7P+9CR3Jvlm8++armqQJC1Olz2F54D3VtWrgdcD/y7Jq4H3A3dV1SuBu5r3kqRloLNQqKrHq+q+ZvkZ4GHgLOAy4Ibmy24ALu+qBknS4izJmEKSc4DXAvcCZ1bV482m7wFnHmOfq5JMJpncu3fvUpQpSS95nYdCktXAduBXquqvZ2+rqgLqaPtV1XVVtamqNk1MTHRdpiSJjkMhyTi9QLixqm5pVj+RZF2zfR3wZJc1SJIWrsurjwJcDzxcVb85a9NtwJXN8pXArV3VIElanBUdfvaFwNuBB5LsbNZ9EPg14KYk7wS+C/xshzVIkhahs1Coqq8COcbmn+zquJKk4+cdzZKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWqlN3v18pbkGeCRQdfRoTOApwZdRIdGuX2j3DawfcPuVVV16mJ26HJCvH56pKo2DbqIriSZtH3DaZTbBrZv2CWZXOw+nj6SJLUMBUlSa1hC4bpBF9Ax2ze8RrltYPuG3aLbNxQDzZKkpTEsPQVJ0hIwFCRJrWUXCkk+neTJJA/OWnd6kjuTfLP5d80gazwRx2jfW5M8lGQmydBeHneMtv1Gkq8n2ZXkfyU5bYAlnpBjtO+jTdt2JrkjyQ8PssYTcbT2zdr23iSV5IxB1NYPx/j+fSTJnub7tzPJJYOs8Xgd63uX5Jeb37+HkmxdyGctu1AAtgFvOmLd+4G7quqVwF3N+2G1jRe370HgXwBfWfJq+msbL27bncBrqmoD8A3gA0tdVB9t48Xt+42q2lBVG4HbgQ8vdVF9tI0Xt48kZwP/DPi/S11Qn23jKO0Drq2qjc3r80tcU79s44i2JbkIuAz4sar6UeBjC/mgZRcKVfUV4K+OWH0ZcEOzfANw+VLW1E9Ha19VPVxVQ3/H9jHadkdVPde8/VNg/ZIX1ifHaN9fz3r7MmBor9w4xu8ewLXAFoa4bTBn+4beMdr2b4Bfq6qp5mueXMhnLbtQOIYzq+rxZvl7wJmDLEbH7ReALwy6iH5Lck2Sx4C3Mdw9hRdJchmwp6ruH3QtHXp3cwrw08N8avoofgT4J0nuTfLlJD++kJ2GJRRa1buGdqj/x/JSlORDwHPAjYOupd+q6kNVdTa9tr170PX0S5K/A3yQEQu6I/wu8ApgI/A48PGBVtNfK4DTgdcD7wNuSpL5dhqWUHgiyTqA5t8FdYO0PCR5B3Ap8LYa7RtjbgSuGHQRffQK4OXA/UkepXfq774kPzTQqvqoqp6oqueragb4JHDBoGvqo93ALdXzZ8AMvQkA5zQsoXAbcGWzfCVw6wBr0SIkeRO989Gbq+pvBl1PvyV55ay3lwFfH1Qt/VZVD1TV362qc6rqHHp/ZM6vqu8NuLS+OfSfzcab6V30MSo+B1wEkORHgJNZyIywVbWsXsAf0OvGTdP7IXwnsJbeVUffBP4YOH3Qdfa5fW9ulqeAJ4AvDrrOPrbtW8BjwM7m9XuDrrPP7dtO7w/JLuCPgLMGXWc/23fE9keBMwZdZ5+/f/8TeKD5/t0GrBt0nX1s28nA7zc/n/cBFy/ks5zmQpLUGpbTR5KkJWAoSJJahoIkqWUoSJJahoIkqWUoSEdI8qFmVslDs5/+oySfSvLq4/iskZiFUy8dKwZdgLScJHkDvbuvz6+qqWaq6JOr6hdP4GOvraoFzVApDZo9Belw64Cn6oWZJZ+qqr9Mck+STUk2z/pf/yNJ/gIgyeuaScd2JPniEXfKSkPDUJAOdwdwdpJvJPmdJG+cvbGqbqtm7n3gfuBjScaB3wLeUlWvAz4NXDNrt1GdhVMjyFCQZqmqA8DrgKuAvcAfNhP6HSbJFuBgVf028CrgNcCdSXYC/4EXnhsxyrNwagQ5piAdoaqeB+4B7knyAC9MxghAkp8C3gr8xKFVwENV9YajfNYTs/b7JL2ns0nLlj0FaZYkrzpi5tONwHdnbf/7wG8Db62qg83qR4CJZpCaJONJfrRZHuVZODWC7ClIh1sN/FaS0+g9FOhb9E4l3dxsfwe9WXs/1zyv5C+r6pIkbwH+e5IfpPd79QngIWBrko30Hgz1KPCuJWqHdFycJVWS1PL0kSSpZShIklqGgiSpZShIklqGgiSpZShIklqGgiSp9f8B58eVXI7c9yQAAAAASUVORK5CYII=\n", - "text/plain": [ - "
    " - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "# Groupby: for plotting\n", "df.groupby(\"Outcome\").plot.scatter(x='Size5', y=\"Size15\", xlim=(10, 16), ylim=(18, 45))" @@ -790,141 +628,23 @@ }, { "cell_type": "code", - "execution_count": 61, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Outcome\n", - "Adequate AxesSubplot(0.125,0.125;0.775x0.755)\n", - "Poor AxesSubplot(0.125,0.125;0.775x0.755)\n", - "dtype: object" - ] - }, - "execution_count": 61, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEGCAYAAABLgMOSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAbjUlEQVR4nO3dfZBV9Z3n8fenoWkcMEKg1zKgA0Q0ZSxsscfZLNGdGRKjThaNZg0m2fiQHXRL3c26U6ibramsU6laiU5iamrJEhLHZHwcu1BmxjgSncnOVC1kGsWO8SECamgGsYP4gELbcL/7xzk3HDq3L/Tpe+5D83lVdfU5v/Nwv1wO98N5uL+fIgIzM7PRamt0AWZm1pocIGZmlosDxMzMcnGAmJlZLg4QMzPLZWKjCxiLmTNnxpw5cxpdhplZS9m4ceOvIqJzrPtp6QCZM2cOvb29jS7DzKylSHq1FvvxJSwzM8vFAWJmZrk4QMzMLBcHiJmZ5eIAMTOzXBwgZmaWiwPEzMxycYCYmVkuDhAzM8vFAWJmZrk4QMzMLBcHiJmZ5eIAMTOzXBwgZmaWiwPEzMxyKSxAJJ0qaVPm521JX5H0NUnbM+0XZra5RdJmSS9K+lRRtZmZ2dgVNqBURLwIdAFImgBsB9YAVwHfjIjbs+tLOg1YCnwU+BDwY0mnRMSBomo0M7P86nUJazGwJSKqjYJ1EXB/RAxGxMvAZuDsulRnZmajVq8AWQrcl5m/XlKfpO9Lmp62zQK2ZdbpT9sOIWmZpF5JvQMDA8VVbGZmVRUeIJImAUuAv0qbVgIfJrm8tQO4YzT7i4hVEdEdEd2dnWMeE97MzHKqxxnIBcBTEbETICJ2RsSBiCgB3+XgZartwImZ7WanbWZm1oTqESCXk7l8JemEzLLPAM+m02uBpZI6JM0F5gM/rUN9ZmaWQ2FPYQFImgJ8Ergm07xCUhcQwCvlZRHxc0kPAs8B+4Hr/ASWmVnzKjRAIuJdYMawtv9QZf2vA18vsiYzM6sNfxPdzMxycYCYmVkuDhAzazq79gzyzLY32bVnsNGlWBWF3gMxMxutRzZt56aePtrb2hgqlVhx6QKWdP3Gd4qtCfgMxMyaxq49g9zU08e+oRLvDO5n31CJ5T19PhNpUg4QM2sa/bv30t526MdSe1sb/bv3Nqgiq8YBYmZNY/b0YxgqlQ5pGyqVmD39mAZVZNU4QMysacyY2sGKSxcwub2NYzsmMrm9jRWXLmDG1I5Gl2YV+Ca6mTWVJV2zWHTyTPp372X29GMcHk3MAWJmTWfG1A4HRwvwJSwzM8vFAWJmZrk4QMzMLBcHiJmZ5eIAMbNc3F+V+SksMxs191dlUOAZiKRTJW3K/Lwt6SuSviHpBUl9ktZImpauP0fS3sz63ymqNjPLz/1VWVlhARIRL0ZEV0R0AWcB7wFrgHXA6RGxAPgFcEtmsy3lbSLi2qJqM7P83F+VldXrHshiknB4NSIej4j9aft6YHadajCzGnB/VVZWrwBZCtxXof1q4EeZ+bmSnpb0E0nnVNqRpGWSeiX1DgwMFFGrmVXh/qqsTBFR7AtIk4B/AT4aETsz7V8FuoFLIiIkdQBTI2KXpLOAh9Nt3h5p393d3dHb21to/WZW2a49g+6vqkVJ2hgR3WPdTz2ewroAeGpYeFwJfBpYHGmCRcQgMJhOb5S0BTgFcEKYNSH3V2X1uIR1OZnLV5LOB5YDSyLivUx7p6QJ6fQ8YD6wtQ71mZlZDoWegUiaAnwSuCbT/OdAB7BOEsD69Imrc4FbJQ0BJeDaiHijyPrMzCy/QgMkIt4FZgxrO3mEdXuAniLrMTOz2nFXJmZmlosDxMzMcnGAmJlZLg4QMzPLxQFiZma5OEDMzCwXB4iZmeXiADEzs1wcIGZmlosDxMzMcnGAmJlZLg4QMzPLxQFiZma5OEDMzCwXB4iZjXu79gzyzLY32bVnsNGljCuFjQci6VTggUzTPOBPgB+k7XOAV4DLImK3ktGl7gQuBN4DroyIp4qqz2y885jliUc2beemnj7a29oYKpVYcekClnTNanRZ40JhZyAR8WJEdEVEF3AWSSisAW4GnoiI+cAT6TwkY6fPT3+WASuLqs1svHtk03YW3fYkX1y9gUW3PcnaTdvHtL9W/R/8rj2D3NTTx76hEu8M7mffUInlPX0t9+doVvW6hLUY2BIRrwIXAXen7XcDF6fTFwE/iMR6YJqkE+pUn9m4UesPzVqHUT31795Le9uhH3PtbW30797boIrGl3oFyFLgvnT6+IjYkU6/BhyfTs8CtmW26U/bzGwUavmh2er/g589/RiGSqVD2oZKJWZPP6ZBFY0vhQeIpEnAEuCvhi+LiABilPtbJqlXUu/AwECNqjQbP2r5odnq/4OfMbWDFZcuYHJ7G8d2TGRyexsrLl1wVN8TqqXCbqJnXAA8FRE70/mdkk6IiB3pJarX0/btwImZ7WanbYeIiFXAKoDu7u5RhY/Z0aD8obl82I3jPB+a4+F/8Eu6ZrHo5Jl+oKAA9QiQyzl4+QpgLXAF8L/S349k2q+XdD/wu8BbmUtdZjYKtfrQrGUYNdKMqR0tV3MrUHIVqaCdS1OAXwLzIuKttG0G8CBwEvAqyWO8b6SP8f45cD7JE1tXRURvtf13d3dHb2/VVcysBvxI8PgiaWNEdI91P4WegUTEu8CMYW27SJ7KGr5uANcVWY+Z5eP/wVsl/ia6mZnl4gAxM7NcHCBmZpaLA8TMzHJxgJiZWS4OEDMzy8UBYmZmuThAzMwsFweImZnl4gAxq5NWHZTJbCT16EzR7KjnYVVtPPIZiFnBWn1QJrOROEDMCtbqgzKZjcQBYlawogZl8j0VazTfAzErWBGDMvmeijUDB4hZHdRyWNXsPZV9JGc2y3v6WHTyTI/ZYXVVaIBImgasBk4HArga+ApwarrKNODNiOiSNAd4HngxXbY+Iq4tsj6zeqrVoEzleyrl8ICD91QcIFZPRZ+B3Ak8FhGflTQJ+K2I+Fx5oaQ7gLcy62+JiK6CazJraUXdUzEbrcJuoks6DjgX+B5ARLwfEW9mlgu4DLivqBrMxqPyPZXJ7W0c2zGRye1tY76nYpZHkWcgc4EB4C5JZwAbgf+SjpMOcA6wMyJeym4j6WngbeB/RMQ/Dt+ppGXAMoCTTjqpwPLNmlct76mY5VXkY7wTgYXAyog4E3gXuDmz/HIOPfvYAZyUrnsjcK+kDwzfaUSsiojuiOju7OwsrnqzJjdjagdnnDjN4WENU2SA9AP9EbEhnX+IJFCQNBG4BHigvHJEDEbErnR6I7AFOKXA+szMbAwKC5CIeA3YJqn8xNVi4Ll0+hPACxHRX15fUqekCen0PGA+sLWo+szMbGyKfgrrBuCe9AmsrcBVaftSfvPm+bnArZKGgBJwbUS8UXB9ZmaWU6EBEhGbgO4K7VdWaOsBeoqsx8zMamfUl7AkTZb074soxszMWscRBYikCZIulPRD4FXgc4fbxszMxreql7Ak/Vvg88CFwE+BRcDciHivDrWZmVkTGzFAJPUDvwRWAn8cEe9IetnhYWZmUP0S1kPAh0guV/07SVNIOkQ0MzMbOUAi4isk3ZHcAfweSS+5nZIukzS1LtWZjTPlQaA273zHg0FZy6t6DyQiAvh74O8ltQPnk3yH438DM4svz2z8KA8CBbBvqETHBKE2eTAoa1lH/BhvRAxFxF9HxBeAEwusyWzcOWQQqKGkK/bBA8G+oRLLe/p8JmItacQAkXSRpOsy8xskbZW0FfjDulRnNk6UB4GqpDwYlFmrqXYGshxYm5nvAH6H5H7IfyqwJrNxp9IgUGUeDMpaVbUAmRQR2zLz/xQRuyLil8CUgusyG1eyg0BNbk/+2XVM0KgGgyrfgPflLmsW1W6iT8/ORMT1mVkPxGE2StlBoKZMmsC77x844sGgyjfg29vaGCqVfOPdmkK1ANkg6Y8i4rvZRknXkHwr3cxGacbUjlEPAHXIDXiSy2DLe/pYdPJMDyZlDVUtQP4r8LCkzwNPpW1nkdwLubjguswsVb4BXw4POHjj3QFijVQtQB6LiIWSFgOnpW1/GxFP1qEuM0tVugHvG+/WDKoFiAAi4gngifqUY2bDlW/ALx92D8RnH9Zo1QKkU9KNIy2MiD873M4lTQNWA6eT9KN1NfAp4I+AgXS1/x4Rj6br3wJ8GTgA/OeI+Lsj+DOYjXvZG/BHeuPdrGjVAmQCMJX0TCSnO0kuhX02Hdb2t0gC5JsRcXt2RUmnkXST8lGSThx/LOmUiDgwhtc3Gzfy3IA3K1K1ANkREbfm3bGk40jGOb8SICLeB96XRsyji4D7I2IQeFnSZuBs4P/lrcHMzIpT7YuEYznzgKQn3wHgLklPS1qddgkPcL2kPknfl1T+vsksIPvFxf607dCipGWSeiX1DgwMDF9sZmZ1Ui1AFo9x3xOBhcDKiDgTeBe4mWSAqg8DXcAOku7ij1hErIqI7ojo7uz09xnNzBql2nggb4xx3/1Af0RsSOcfAhZGxM6IOBARJeC7JJepALZzaC+/s9M2MzNrQkfcnftoRcRrwDZJp6ZNi4HnJJ2QWe0zwLPp9FpgqaQOSXOB+fgb72ZmTavqgFI1cANwT/oE1lbgKuDbkrpIHut9BbgGICJ+LulB4DlgP3Cdn8AyM2teSgYdbE3d3d3R29vb6DLMzFqKpI0R0T3W/RR2CcvMzMY3B4iZmeXiADEzs1wcIGZmlosDxMzMcnGAmNkR8ZjsNlzR3wMxs3HAY7JbJT4DMbOqsmOyvzO4n31DJZb39PlMxBwgZlZdeUz2rPKY7HZ0c4CYWVUek91G4gAxs6rKY7JPbm/j2I6JTG5v85jsBvgmupkdAY/JbpU4QMzsiHhMdhvOl7DMzCwXB4iZmeXiADEzs1wKDRBJ0yQ9JOkFSc9L+pikb6TzfZLWSJqWrjtH0l5Jm9Kf7xRZm5mZjU3RZyB3Ao9FxEeAM4DngXXA6RGxAPgFcEtm/S0R0ZX+XFtwbWZmNgaFBYik44Bzge8BRMT7EfFmRDweEfvT1dYDs4uqwczMilPkGchcYAC4S9LTklZLmjJsnauBH2W3Sdf9iaRzKu1U0jJJvZJ6BwYGCirdzMwOp8gAmQgsBFZGxJnAu8DN5YWSvgrsB+5Jm3YAJ6Xr3gjcK+kDw3caEasiojsiujs7Owss38zMqikyQPqB/ojYkM4/RBIoSLoS+DTwhYgIgIgYjIhd6fRGYAtwSoH1mZnZGBQWIBHxGrBN0qlp02LgOUnnA8uBJRHxXnl9SZ2SJqTT84D5wNai6jMzs7EpuiuTG4B7JE0iCYOrgH8GOoB1kgDWp09cnQvcKmkIKAHXRsQbBddnZmY5FRogEbEJ6B7WfPII6/YAPUXWY2ZmteNvopuZWS4OEDMzy8UBYmZmuThAzMwsFweImZnl4gAxM7NcHCBmZpaLA8TMzHJxgJiZWS4OEDMzy8UBYmZmuThAzMwsFweImZnl4gCxXHbtGeSZbW+ya89go0sxswYpejwQG4ce2bSdm3r6aG9rY6hUYsWlC1jSNavRZZlZnRV6BiJpmqSHJL0g6XlJH5P0QUnrJL2U/p6eritJ35a0WVKfpIVF1mb57NozyE09fewbKvHO4H72DZVY3tPnMxGzo1DRl7DuBB6LiI8AZwDPAzcDT0TEfOCJdB7gApJhbOcDy4CVBddmOfTv3kt726GHTXtbG/279zaoIjNrlMICRNJxJMPUfg8gIt6PiDeBi4C709XuBi5Opy8CfhCJ9cA0SScUVZ/lM3v6MQyVSoe0DZVKzJ5+TIMqMrNGKfIMZC4wANwl6WlJqyVNAY6PiB3pOq8Bx6fTs4Btme3707ZDSFomqVdS78DAQIHlWyUzpnaw4tIFTG5v49iOiUxub2PFpQuYMbWj0aWZWZ0VeRN9IrAQuCEiNki6k4OXqwCIiJAUo9lpRKwCVgF0d3ePalurjSVds1h08kz6d+9l9vRjHB5mR6kiz0D6gf6I2JDOP0QSKDvLl6bS36+ny7cDJ2a2n522WQ3U+rHbGVM7OOPEaQ4Ps6NYYQESEa8B2ySdmjYtBp4D1gJXpG1XAI+k02uBL6VPY/1r4K3MpS4bg0c2bWfRbU/yxdUbWHTbk6zd5Fw2s7Er+nsgNwD3SJoEbAWuIgmtByV9GXgVuCxd91HgQmAz8F66ro1R9rHbfSQ3v5f39LHo5JlNefawa8+gL42ZtYhCAyQiNgHdFRYtrrBuANcVWc/RqPzYbTk84OBjt832Ae0vKJq1FndlMs61ymO3/oKiWetxgIxzrfLYrb+gaNZ63BfWUaAVHrttlTMlMzvIZyBHiWZ/7LZVzpTM7CCfgVjTaIUzJTM7yAFiTWXG1A4Hh1mL8CUsMzPLxQFiZma5OEDMzCwXB4iZmeXiADEzs1wcIGZmlosDxMzMcnGAmJlZLg4QMzPLxQFidVfr4XXNrDEK7cpE0ivAO8ABYH9EdEt6ACgPczsNeDMiuiTNAZ4HXkyXrY+Ia4usz+rPg0aZjR/16Avr9yPiV+WZiPhceVrSHcBbmXW3RERXHWqyBmi14XXNrLqGXcKSJJLx0O9rVA1WXx40ymx8KTpAAnhc0kZJy4YtOwfYGREvZdrmSnpa0k8knVNph5KWSeqV1DswMFBU3VYADxplNr4UHSAfj4iFwAXAdZLOzSy7nEPPPnYAJ0XEmcCNwL2SPjB8hxGxKiK6I6K7s7OzyNqtxjxolNn4Uug9kIjYnv5+XdIa4Gzg/0qaCFwCnJVZdxAYTKc3StoCnAL0Flmj1ZcHjTIbPwo7A5E0RdKx5WngPODZdPEngBcioj+zfqekCen0PGA+sLWo+qxxmn14XTM7MkWegRwPrEnulTMRuDciHkuXLeU3b56fC9wqaQgoAddGxBsF1mdmZmNQWIBExFbgjBGWXVmhrQfoKaoeMzOrLX8T3czMcnGAmJlZLg4QMzPLxQFiZma5OEDMzCwXB4iZmeXiADEzs1wcIGZmlosDxMzMcnGAmJlZLg4QMzPLxQFiZma5OEDMzCwXB4iZmeXiADEzs1wcIGZmlkuhASLpFUk/k7RJUm/a9jVJ29O2TZIuzKx/i6TNkl6U9KkiazMzs7Epckjbst+PiF8Na/tmRNyebZB0GslQtx8FPgT8WNIpEXGgDjWamdkoNdMlrIuA+yNiMCJeBjYDZze4JjMzG0HRZyABPC4pgP8TEavS9uslfQnoBf5bROwGZgHrM9v2p22HkLQMWJbODkp6trDqa2cmMPwsrBm5ztpynbXTCjVC69R5ai12UnSAfDwitkv6V8A6SS8AK4E/JQmXPwXuAK4+0h2mIbQKQFJvRHTXvuzacp215TprqxXqbIUaobXqrMV+Cr2EFRHb09+vA2uAsyNiZ0QciIgS8F0OXqbaDpyY2Xx22mZmZk2osACRNEXSseVp4DzgWUknZFb7DFC+BLUWWCqpQ9JcYD7w06LqMzOzsSnyEtbxwBpJ5de5NyIek/RDSV0kl7BeAa4BiIifS3oQeA7YD1x3BE9grTrM8mbhOmvLddZWK9TZCjXCUVanIqIW+zEzs6NMMz3Ga2ZmLcQBYmZmuTR1gEiaIOlpSX+Tzv+FpJcz3aB0jbDdFZJeSn+uqHON/5ip718kPTzCdgcy660tssb09Sp1K/NBSevS92mdpOkjbFvP97NSnd+Q9IKkPklrJE070m3rWOOIXfQM2/b8tKuezZJuLqrGKnU+kKnxFUmbjnTbAuucJumh9O/4eUkfa9Jjs1KdTXVsVqmzmOMzIpr2B7gRuBf4m3T+L4DPHmabDwJb09/T0+np9apx2LIe4EsjbLenzu/lK8DMYW0rgJvT6ZuB25rg/axU53nAxHT6tkp1jrRtHWv8GvDHh9luArAFmAdMAp4BTqtnncOW3wH8SSPfy/S17gb+Yzo9CZjWpMdmpTqb6tisUmchx2fTnoFImg38IbB6lJt+ClgXEW9E8g33dcD5ta4Pqtco6QPAHwAPF/HaNXIRycFG+vviCuvU7f0cSUQ8HhH709n1JN8RakVnA5sjYmtEvA/cT/J3UHdKHo+8DLivEa+fqeM44FzgewAR8X5EvEmTHZsj1dlsx2aV9/NIjPr4bNoAAb4FLAdKw9q/np4uflNSR4XtZgHbMvMVu0SpkW9RuUZIDvgnIuLtEbadLKlX0npJFxdT3iHK3cpsVNIdDMDxEbEjnX6N5NHr4er5fkLlOrOuBn6Uc9taGel1rk+Pze+PcMmlmd7Lc4CdEfFSjm1raS4wANyl5FLwaiXfG2u2Y3OkOrOa4disVmfNj8+mDBBJnwZej4iNwxbdAnwE+B2S09ab6l1bWZUayy6n+v/ufjuSLg8+D3xL0odrXeMwH4+IhcAFwHWSzs0ujOQcthme6R6xTklfJfmO0D2j3bYONa4EPgx0ATtILg81WrX343DHZ73ey4nAQmBlRJwJvEtyyerXmuTYrFpnEx2bI9VZyPHZlAECLAKWSHqF5DTqDyT9ZUTsiMQgcBeVe+utV5coFWsEkDQzre1vR9o4DnbzshX4B+DMAmqs9Hq/7lYG2Km0Z4D09+sVNq1rFzMj1ImkK4FPA19IP1COeNt61Bgjd9GT1Szv5UTgEuCB0W5bgH6gPyI2pPMPkXwANtuxOVKdTXVsjlRnUcdnUwZIRNwSEbMjYg7JGCFPRsQXMweUSC4RVeqJ9++A8yRNT0/Tzkvb6lJjuvizJDfV91XaNq2tI52eSRJGz9W6xszrVexWhqT7mPKTK1cAj1TYvC7vZ7U6JZ1PcqlwSUS8N5pt61jjSF30ZP0zMF/SXEmTSI6bQp7AO8z78QnghYjoz7FtTUXEa8A2SeXeYReT/FtoqmNzpDqb6dg8TJ3FHJ9FPAVQyx/g9zj4FNaTwM/SP/xfAlPT9m5gdWabq0nGE9kMXFXPGtP5fwDOH7bOr2sE/k3653gm/f3lguubl77WM8DPga+m7TOAJ4CXgB8DH2zk+1mlzs0k12Y3pT/fSds/BDxabds61vjD9O+yL/1Hd8LwGtP5C4FfkDztUkiNh3s/SJ5mvHbY+nV/LzOv3UUytEMfyUMn05vt2KxSZ9Mcm4eps5Dj012ZmJlZLk15CcvMzJqfA8TMzHJxgJiZWS4OEDMzy8UBYmZmuThAzEZB0oxMj6av6dAeTqP8ZdJ03YmSBpT21Jxpf1jS+vpXb1ZbRQ5pazbuRMQukufskfQ1kl6Vb0/n9wCnSzomIvYCn2TYN3mVdPd9FrBH0rxIeiIwa0k+AzGrrUdJemiGyv1NXQL8NUn3N0vrWJdZzTlAzGrrfmCppMnAAmDDsOXlULkvnTZrWQ4QsxqKiD5gDkk4PJpdJul4YD7wTxHxC2BI0ul1L9KsRhwgZrW3Frid37x8dRlJv0Qvp704z8FnIdbCHCBmtfd94H9GxM+GtV9O0snmnEh6cT4L3wexFuYAMauxiOiPiG9n2yTNAX6bZNjT8novA29J+t36VmhWG+6N18zMcvEZiJmZ5eIAMTOzXBwgZmaWiwPEzMxycYCYmVkuDhAzM8vFAWJmZrn8f3Y7/DD2u5yBAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
    " - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEGCAYAAABLgMOSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAaIklEQVR4nO3dfZBV9Z3n8fenoWkYUWmhxzK0GTAiKWNhiz3uZInuTEiMOlkwIWswmYkPmUG21K2suwW6qZrKOpXaldFNTG0Vs4TEcTI+hi4CmTGORHeym6qBTBOxY3yIgFh0L2CnRRMUmob73T/O6Xi6032B0/fcvtf+vKq6+pzfebhfLgc/nt8553cUEZiZmZ2qhvEuwMzM6pMDxMzMcnGAmJlZLg4QMzPLxQFiZma5TB7vAsZi1qxZMWfOnPEuw8ysrmzfvv2XEdEy1v3UdYDMmTOHzs7O8S7DzKyuSHqtEvtxF5aZmeXiADEzs1wcIGZmlosDxMzMcnGAmJlZLg4QMzPLxQFiZma5OEDMzCwXB4iZmeXiADEzs1wcIGZmlosDxMzMcnGAmJlZLg4QMzPLxQFiZma5FBYgkuZL2pH5+ZWkL0n6iqSeTPs1mW3ukrRT0suSPlFUbWZmNnaFvVAqIl4G2gAkTQJ6gI3ATcDXIuLe7PqSLgSWAx8C3gf8UNIFEXG8qBrNzCy/anVhLQZ2RUS5t2AtBR6NiP6IeBXYCVxWlerMzOyUVStAlgOPZOZvk9Ql6duSmtO22cDezDrdadsQklZI6pTU2dvbW1zFZmZWVuEBImkKsAT4btq0FvgASffWPuC+U9lfRKyLiPaIaG9pGfM74c3MLKdqnIFcDfw0Ig4ARMSBiDgeESXgm7zbTdUDnJvZrjVtMzOzGlSNALmeTPeVpHMyyz4FPJ9ObwaWS2qSNBeYB/ykCvWZmVkOhd2FBSDpNODjwC2Z5jWS2oAA9gwui4ifS3oceAE4BtzqO7DMzGpXoQESEW8DM4e1/WmZ9b8KfLXImszMrDL8JLqZmeXiADEzs1wcIGZmlosDxMzMcnGAmJlZLg4QMzPLxQFiZma5OEDMzCwXB4iZmeXiADEzs1wcIGZmlosDxMzMcnGAmJlZLg4QMzPLxQFiZma5OEDMzCyXwl4oJWk+8Fim6TzgL4DZwL8FjgK7gJsi4k1Jc4AXgZfT9bdGxMqi6jMzs7EpLEAi4mWgDUDSJKAH2AjMB+6KiGOS7gHuAlanm+2KiLaiajIzs8qpVhfWYpJweC0inoqIY2n7VqC1SjWYmVkFVStAlgOPjNB+M/CDzPxcSc9K+pGky0fakaQVkjoldfb29hZRq5mZnYTCA0TSFGAJ8N1h7V8GjgEPpU37gPdHxCXAHcDDks4Yvr+IWBcR7RHR3tLSUmzxZmY2qmqcgVwN/DQiDgw2SLoR+CTw+YgIgIjoj4i+dHo7yQX2C6pQn5mZ5VCNALmeTPeVpKuAVcCSiHgn096SXmxH0nnAPGB3FeozM7McCrsLC0DSacDHgVsyzf8TaAK2SIJ3b9e9Arhb0gBQAlZGxBtF1mdmZvkVGiAR8TYwc1jb+aOs2wF0FFmPmZlVjp9ENzOzXBwgZmaWiwPEzMxycYCYmVkuDhAzM8vFAWJmZrk4QMzMLBcHiJmZ5eIAMTOzXBwgZmaWiwPEzMxycYCYmVkuDhAzM8vFAWJmZrk4QMzMLJfCAkTSfEk7Mj+/kvQlSWdJ2iLplfR3c7q+JH1D0k5JXZIWFlWbmZmNXWEBEhEvR0RbRLQBlwLvABuBO4GnI2Ie8HQ6D8m70+elPyuAtUXVZmZmY1etLqzFwK6IeA1YCjyYtj8IXJtOLwX+NhJbgRmSzqlSfWZmdoqqFSDLgUfS6bMjYl86vR84O52eDezNbNOdtpmZWQ0qPEAkTQGWAN8dviwiAohT3N8KSZ2SOnt7eytUpZmZnapqnIFcDfw0Ig6k8wcGu6bS36+n7T3AuZntWtO2ISJiXUS0R0R7S0tLgWWbmVk51QiQ63m3+wpgM3BDOn0DsCnT/oX0bqw/AN7KdHWZmVmNmVzkziWdBnwcuCXT/N+BxyV9EXgNuC5tfwK4BthJcsfWTUXWZmZmY1NogETE28DMYW19JHdlDV83gFuLrMfMzCrHT6KbmVkuDhAzM8vFAWJmZrk4QMzMLBcHiJmZ5eIAMTOzXBwgZmaWiwPEzMxycYCYmVkuDhCzOtN3qJ/n9r5J36H+8S7FJrhChzIxs8ratKOH1R1dNDY0MFAqsWbZApa0+bU5Nj58BmJWJ/oO9bO6o4sjAyV+3X+MIwMlVnV0+UzExo0DxKxOdB88TGPD0H+yjQ0NdB88PE4V2UTnADGrE63N0xgolYa0DZRKtDZPG6eKbKJzgJjViZnTm1izbAFTGxs4vWkyUxsbWLNsATOnN413aTZB+SK6WR1Z0jabRefPovvgYVqbpzk8bFwV/UbCGcB64CIggJuBLwHz01VmAG9GRJukOcCLwMvpsq0RsbLI+szq0czpTQ4OqwlFn4HcDzwZEZ+RNAX4nYj47OBCSfcBb2XW3xURbQXXZGZmFVBYgEg6E7gCuBEgIo4CRzPLRfI+9I8WVYOZmRWnyIvoc4Fe4AFJz0paL+m0zPLLgQMR8Up2m3TdH0m6fKSdSlohqVNSZ29vb4Hlm5lZOUUGyGRgIbA2Ii4B3gbuzCy/HngkM78PeH+67h3Aw5LOGL7TiFgXEe0R0d7S0lJc9WZmVlaRAdINdEfEtnR+A0mgIGky8GngscGVI6I/IvrS6e3ALuCCAuszM7MxKCxAImI/sFfS4B1Xi4EX0umPAS9FRPfg+pJaJE1Kp88D5gG7i6rPzMzGpui7sG4HHkrvwNoN3JS2L2do9xUkF9zvljQAlICVEfFGwfWZjbu+Q/1+rsPqUqEBEhE7gPYR2m8coa0D6CiyHrNa49F1rZ6dcheWpKmS/l0RxZhNJB5d1+rdSQWIpEmSrpH0HeA14LMn2sbMyvPoulbvynZhSfo3wOeAa4CfAIuAuRHxThVqM3tP8+i6Vu9GPQOR1A38N+DHwIURsQw47PAwqwyPrmv1rtwZyAbgWpLuquOSNpEMiGhmFeLRda2ejXoGEhFfIhmO5D7gD0lGyW2RdJ2k6VWpzmwCmDm9iYvPneHwsLpT9iJ6JP53RKwgCZPPAUuBPVWozczMathJPwcSEQPA94HvS/JVPjOzCa7cRfSlkm7NzG+TtFvSbuCPq1KdmZnVrHJdWKuAzZn5JuD3Sa6H/PsCazIzszpQrgtrSkTszcz/OB0tt2/Yez3MzGwCKncG0pydiYjbMrN+EYeZ2QRXLkC2Sfrz4Y2SbiF5Kt3MzCawcl1Y/xH4nqTPAT9N2y4luRZybcF1mZlZjSsXIE9GxEJJi4EL07Z/iIhnqlCXmZnVuHIBIoCIeBp4ujrlmJlZvSgXIC2S7hhtYUT8jxPtXNIMYD1wEck4WjcDnwD+HOhNV/svEfFEuv5dwBeB48B/iIh/PIk/g5mZjYNyATIJmE56JpLT/SRdYZ9JX2v7OyQB8rWIuDe7oqQLSV51+yHgfcAPJV0QEcfH8PlmZlaQcgGyLyLuzrtjSWeSvOf8RoCIOAoclUbNo6XAoxHRD7wqaSdwGfDPeWswM7PilLuNdyxnHpAMvtgLPCDpWUnrMw8g3iapS9K3JQ0+bzIbyD642J22DS1KWiGpU1Jnb2/v8MVmZlYl5QJk8Rj3PRlYCKyNiEuAt4E7gbXAB4A2YB/JcPEnLSLWRUR7RLS3tPh5RjOz8VLufSBvjHHf3UB3RGxL5zcACyPiQEQcj4gS8E2SbiqAHuDczPataZuZmdWgsu8DGYuI2A/slTQ/bVoMvCDpnMxqnwKeT6c3A8slNUmaC8zDT7ybmdWsk34fSE63Aw+ld2DtBm4CviGpjeS23j3ALQAR8XNJjwMvAMeAW30HltWrvkP9fk2tvecpon5fc97e3h6dnZ3jXYbZEJt29LC6o4vGhgYGSiXWLFvAkrbfuh/EbNxI2h4R7WPdT2FdWGYTUd+hflZ3dHFkoMSv+49xZKDEqo4u+g71j3dpZhXnADGroO6Dh2lsGPrPqrGhge6Dh8epIrPiOEDMKqi1eRoDpdKQtoFSidbmaeNUkVlxHCBmFTRzehNrli1gamMDpzdNZmpjA2uWLfCFdHtPKvouLLMJZ0nbbBadP8t3Ydl7ngPErAAzpzc5OOw9z11YZmaWiwPEzMxycYCYmVkuDhAzM8vFAWJmZrk4QMzMLBcHiJmZ5eIAMTOzXBwgZmaWiwPEzMxyKTRAJM2QtEHSS5JelPRhSX+VzndJ2ihpRrruHEmHJe1If/66yNrMzGxsij4DuR94MiI+CFwMvAhsAS6KiAXAL4C7Muvvioi29GdlwbWZmdkYFBYgks4ErgC+BRARRyPizYh4KiKOpattBVqLqsHMzIpT5BnIXKAXeEDSs5LWSzpt2Do3Az/IbpOu+yNJl4+0U0krJHVK6uzt7S2odDMzO5EiA2QysBBYGxGXAG8Ddw4ulPRl4BjwUNq0D3h/uu4dwMOSzhi+04hYFxHtEdHe0tJSYPlmZlZOkQHSDXRHxLZ0fgNJoCDpRuCTwOcjIgAioj8i+tLp7cAu4IIC6zMzszEoLEAiYj+wV9L8tGkx8IKkq4BVwJKIeGdwfUktkial0+cB84DdRdVnZmZjU/QbCW8HHpI0hSQMbgL+BWgCtkgC2JrecXUFcLekAaAErIyINwquz8zMcio0QCJiB9A+rPn8UdbtADqKrMfMzCrHT6KbmVkuDhADoO9QP8/tfZO+Q/3jXYqZ1Ymir4FYHdi0o4fVHV00NjQwUCqxZtkClrTNHu+yzKzG+Qxkgus71M/qji6ODJT4df8xjgyUWNXR5TMRMzshB8gE133wMI0NQw+DxoYGug8eHqeKzKxeOEAmuNbmaQyUSkPaBkolWpunjVNFZlYvHCAT3MzpTaxZtoCpjQ2c3jSZqY0NrFm2gJnTm8a7NDOrcb6Ibixpm82i82fRffAwrc3THB5mdlIcIAYkZyIODjM7Fe7CMjOzXBwgZmaWiwPEzMxycYCYmVkuDhCbkDz2l9nY+S4sm3A89pdZZRR6BiJphqQNkl6S9KKkD0s6S9IWSa+kv5vTdSXpG5J2SuqStLDI2mxi8thfZpVTdBfW/cCTEfFB4GLgReBO4OmImAc8nc4DXE3yGtt5wApgbcG12QTksb/MKqewAJF0Jslrar8FEBFHI+JNYCnwYLrag8C16fRS4G8jsRWYIemcouqziXkdwGN/mVVOkWcgc4Fe4AFJz0paL+k04OyI2Jeusx84O52eDezNbN+dtg0haYWkTkmdvb29BZb/3rZpRw+L7nmGP1m/jUX3PMPmHT3jXVJVeOwvs8op8iL6ZGAhcHtEbJN0P+92VwEQESEpTmWnEbEOWAfQ3t5+SttaInsd4AjJ/42v6uhi0fmzJsR/SD32l1llFHkG0g10R8S2dH4DSaAcGOyaSn+/ni7vAc7NbN+atlmF+TpAciZy8bkzHB5mY1BYgETEfmCvpPlp02LgBWAzcEPadgOwKZ3eDHwhvRvrD4C3Ml1dVkG+DmBmlVD0cyC3Aw9JmgLsBm4iCa3HJX0ReA24Ll33CeAaYCfwTrquFWDwOsCqYc9C+P/GzexUKKJ+LyO0t7dHZ2fneJdRt/oO9fs6gNkEJGl7RLSPdT9+En0C8ztAzGwsPBaWmZnl4gAxM7NcHCBmZpaLA8TMzHJxgJiZWS4OEDMzy8UBYmZmuThAzMwsFweImZnl4gAxM7NcHCBmZpaLA8TMzHJxgJiZWS4OEDMzy8UBkuo71M9ze9+k71D/eJdiZlYXCn0fiKQ9wK+B48CxiGiX9Bgw+JrbGcCbEdEmaQ7wIvByumxrRKwssr5Bm3b0sHrY2/mWtM2uxkebmdWtarxQ6o8i4peDMxHx2cFpSfcBb2XW3RURbVWo6Tf6DvWzuqOLIwMljpC8J3xVRxeLzp/lly2ZmZUxbl1YkkTyPvRHxqsGgO6Dh2lsGPo1NDY00H3w8DhVZGZWH4oOkACekrRd0ophyy4HDkTEK5m2uZKelfQjSZePtENJKyR1Surs7e0dc4GtzdMYKJWGtA2USrQ2Txvzvs3M3suKDpCPRMRC4GrgVklXZJZdz9Czj33A+yPiEuAO4GFJZwzfYUSsi4j2iGhvaWkZc4EzpzexZtkCpjY2cHrTZKY2NrBm2QJ3X5mZnUCh10Aioif9/bqkjcBlwP+RNBn4NHBpZt1+oD+d3i5pF3AB0FlkjQBL2maz6PxZdB88TGvzNIeHmdlJKOwMRNJpkk4fnAauBJ5PF38MeCkiujPrt0ialE6fB8wDdhdV33Azpzdx8bkzHB5mZiepyDOQs4GNybVyJgMPR8ST6bLl/PbF8yuAuyUNACVgZUS8UWB9ZmY2BoUFSETsBi4eZdmNI7R1AB1F1WNmZpXlJ9HNzCwXB4iZmeXiADEzs1wcIGZmlosDxMzMcnGAmJlZLg4QMzPLxQFiZma5OEDMzCwXB4iZmeXiADEzs1wcIGZmlosDxMzMcnGAmJlZLg4QMzPLxQFiZma5FBogkvZI+pmkHZI607avSOpJ23ZIuiaz/l2Sdkp6WdIniqzNzMzGpshX2g76o4j45bC2r0XEvdkGSReSvOr2Q8D7gB9KuiAijlehRjMzO0W11IW1FHg0Ivoj4lVgJ3DZONdkZmajKPoMJICnJAXwvyJiXdp+m6QvAJ3Af4qIg8BsYGtm2+60bQhJK4AV6Wy/pOcLq75yZgHDz8JqkeusLNdZOfVQI9RPnfMrsZOiA+QjEdEj6XeBLZJeAtYCf0kSLn8J3AfcfLI7TENoHYCkzohor3zZleU6K8t1VlY91FkPNUJ91VmJ/RTahRURPenv14GNwGURcSAijkdECfgm73ZT9QDnZjZvTdvMzKwGFRYgkk6TdPrgNHAl8LykczKrfQoY7ILaDCyX1CRpLjAP+ElR9ZmZ2dgU2YV1NrBR0uDnPBwRT0r6jqQ2ki6sPcAtABHxc0mPAy8Ax4BbT+IOrHUnWF4rXGdluc7Kqoc666FGmGB1KiIqsR8zM5tgauk2XjMzqyMOEDMzy6WmA0TSJEnPSvr7dP5vJL2aGQalbZTtbpD0SvpzQ5Vr/L+Z+v6fpO+Nst3xzHqbi6wx/byRhpU5S9KW9HvaIql5lG2r+X2OVOdfSXpJUpekjZJmnOy2Vaxx1CF6hm17VTpUz05JdxZVY5k6H8vUuEfSjpPdtsA6Z0jakP4dvyjpwzV6bI5UZ00dm2XqLOb4jIia/QHuAB4G/j6d/xvgMyfY5ixgd/q7OZ1urlaNw5Z1AF8YZbtDVf4u9wCzhrWtAe5Mp+8E7qmB73OkOq8EJqfT94xU52jbVrHGrwD/+QTbTQJ2AecBU4DngAurWeew5fcBfzGe32X6WQ8Cf5ZOTwFm1OixOVKdNXVslqmzkOOzZs9AJLUCfwysP8VNPwFsiYg3InnCfQtwVaXrg/I1SjoD+CjwvSI+u0KWkhxspL+vHWGdqn2fo4mIpyLiWDq7leQZoXp0GbAzInZHxFHgUZK/g6pTcnvkdcAj4/H5mTrOBK4AvgUQEUcj4k1q7Ngcrc5aOzbLfJ8n45SPz5oNEODrwCqgNKz9q+np4tckNY2w3Wxgb2Z+xCFRKuTrjFwjJAf80xHxq1G2nSqpU9JWSdcWU94Qg8PKbFcyHAzA2RGxL53eT3Lr9XDV/D5h5DqzbgZ+kHPbShntc25Lj81vj9LlUkvf5eXAgYh4Jce2lTQX6AUeUNIVvF7Jc2O1dmyOVmdWLRyb5eqs+PFZkwEi6ZPA6xGxfdiiu4APAr9Pctq6utq1DSpT46DrKf9/d78XyZAHnwO+LukDla5xmI9ExELgauBWSVdkF0ZyDlsL93SPWqekL5M8I/TQqW5bhRrXAh8A2oB9JN1D463c93Gi47Na3+VkYCGwNiIuAd4m6bL6jRo5NsvWWUPH5mh1FnJ81mSAAIuAJZL2kJxGfVTS30XEvkj0Aw8w8mi91RoSZcQaASTNSmv7h9E2jneHedkN/BNwSQE1jvR5vxlWBjigdGSA9PfrI2xa1SFmRqkTSTcCnwQ+n/4H5aS3rUaNMfoQPVm18l1OBj4NPHaq2xagG+iOiG3p/AaS/wDW2rE5Wp01dWyOVmdRx2dNBkhE3BURrRExh+QdIc9ExJ9kDiiRdBGNNBLvPwJXSmpOT9OuTNuqUmO6+DMkF9WPjLRtWltTOj2LJIxeqHSNmc8bcVgZkuFjBu9cuQHYNMLmVfk+y9Up6SqSrsIlEfHOqWxbxRpHG6In61+AeZLmSppCctwUcgfeCb6PjwEvRUR3jm0rKiL2A3slDY4Ou5jk30JNHZuj1VlLx+YJ6izm+CziLoBK/gB/yLt3YT0D/Cz9w/8dMD1tbwfWZ7a5meR9IjuBm6pZYzr/T8BVw9b5TY3Av07/HM+lv79YcH3npZ/1HPBz4Mtp+0zgaeAV4IfAWeP5fZapcydJ3+yO9Oev0/b3AU+U27aKNX4n/bvsSv/RnTO8xnT+GuAXJHe7FFLjib4PkrsZVw5bv+rfZeaz20he7dBFctNJc60dm2XqrJlj8wR1FnJ8eigTMzPLpSa7sMzMrPY5QMzMLBcHiJmZ5eIAMTOzXBwgZmaWiwPE7BRImpkZ0XS/ho5wGoMPk6brTpbUq3Sk5kz79yRtrX71ZpVV5Cttzd5zIqKP5D57JH2FZFTle9P5Q8BFkqZFxGHg4wx7klfJcN+XAocknRfJSARmdclnIGaV9QTJCM0w8nhTnwa+TzL8zfIq1mVWcQ4Qs8p6FFguaSqwANg2bPlgqDySTpvVLQeIWQVFRBcwhyQcnsguk3Q2MA/4cUT8AhiQdFHVizSrEAeIWeVtBu7lt7uvriMZl+jVdBTnOfgsxOqYA8Ss8r4N/NeI+Nmw9utJBtmcE8kozpfi6yBWxxwgZhUWEd0R8Y1sm6Q5wO+RvPZ0cL1Xgbck/avqVmhWGR6N18zMcvEZiJmZ5eIAMTOzXBwgZmaWiwPEzMxycYCYmVkuDhAzM8vFAWJmZrn8f7xwLX0jqKx8AAAAAElFTkSuQmCC\n", - "text/plain": [ - "
    " - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "# Or another combination of the variables plotted:\n", "df.groupby(\"Outcome\").plot.scatter(x='TMA', y=\"TGA\", xlim=(45, 65), ylim=(550, 770))" ] }, - { - "cell_type": "code", - "execution_count": 62, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
    \n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Size5Size10Size15TGADSCTMA
    Outcome
    Adequate11.7176476.14117626.494118674.72352918.55294157.005882
    Poor14.1000009.65714334.057143626.41428618.64285752.385714
    \n", - "
    " - ], - "text/plain": [ - " Size5 Size10 Size15 TGA DSC TMA\n", - "Outcome \n", - "Adequate 11.717647 6.141176 26.494118 674.723529 18.552941 57.005882\n", - "Poor 14.100000 9.657143 34.057143 626.414286 18.642857 52.385714" - ] - }, - "execution_count": 62, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Or using groupby for summaries\n", - "df.groupby(\"Outcome\").mean()\n" - ] - }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "# Or using groupby for summaries\n", + "df.groupby(\"Outcome\").mean()" + ] }, { "cell_type": "markdown", @@ -938,166 +658,22 @@ }, { "cell_type": "code", - "execution_count": 80, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
    \n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Size5Size10Size15TGADSCTMA
    OutcomeSmallSizeHighT
    AdequateFalseFalseNaNNaNNaNNaNNaNNaN
    True2.02.02.02.02.02.0
    TrueFalse5.05.05.05.05.05.0
    True10.010.010.010.010.010.0
    PoorFalseFalse3.03.03.03.03.03.0
    True2.02.02.02.02.02.0
    TrueFalse2.02.02.02.02.02.0
    TrueNaNNaNNaNNaNNaNNaN
    \n", - "
    " - ], - "text/plain": [ - " Size5 Size10 Size15 TGA DSC TMA\n", - "Outcome SmallSize HighT \n", - "Adequate False False NaN NaN NaN NaN NaN NaN\n", - " True 2.0 2.0 2.0 2.0 2.0 2.0\n", - " True False 5.0 5.0 5.0 5.0 5.0 5.0\n", - " True 10.0 10.0 10.0 10.0 10.0 10.0\n", - "Poor False False 3.0 3.0 3.0 3.0 3.0 3.0\n", - " True 2.0 2.0 2.0 2.0 2.0 2.0\n", - " True False 2.0 2.0 2.0 2.0 2.0 2.0\n", - " True NaN NaN NaN NaN NaN NaN" - ] - }, - "execution_count": 80, - "metadata": {}, - "output_type": "execute_result" - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ - "# Groupby: for summaries\n", - "df[\"SmallSize\"] = True\n", - "row_indexer = df[\"Size5\"] > 13\n", - "df.loc[row_indexer,\"SmallSize\"] = False\n", + "# First, create a new categorical variable, using a list comprehension\n", + "print( [item for item in df[\"Size5\"]] )\n", + "print( [item for item in df[\"Size5\"] if item <= 13] )\n", + "print( [\"Small\" if item <= 13 else \"Large\" for item in df[\"Size5\"]] )\n", "\n", - "df.groupby([\"Outcome\", \"SmallSize\"]).median()\n", + "# Using what you learned above, you can see how we can quickly create a new column, \n", + "# based on the values in another column.\n", + "df[\"Size\"] = [\"Small\" if item <= 13 else \"Large\" for item in df[\"Size5\"]]\n", "\n", - "df[\"HighT\"] = True\n", - "row_indexer = df[\"TGA\"] < 650\n", - "df.loc[row_indexer,\"HighT\"] = False\n", - "\n", - "df.groupby([\"Outcome\", \"SmallSize\", \"HighT\", ]).count()\n", - "\n" + "# Now you can use a multi-level groupby:\n", + "display(df.groupby([\"Outcome\", \"Size\", ]).count())\n", + "display(df.groupby([\"Outcome\", \"Size\", ]).mean())" ] }, { @@ -1105,71 +681,65 @@ "metadata": {}, "source": [ "## Multiple groupby summaries\n", - "df[['Geography','Gender','Exited']].groupby(['Geography','Gender']).agg(['mean','count'])\n", - "\n", - "df['fare'].agg(['sum', 'mean'])\n", - "\n", - "\n", "\n", - "agg_func_math = {\n", - " 'fare':\n", - " ['sum', 'mean', 'median', 'min', 'max', 'std', 'var', 'mad', 'prod']\n", - "}\n", - "df.groupby(['embark_town']).agg(agg_func_math).round(2)\n", "\n", - "\n", - "@ Calling a function:\n", - "\n", - "def sparkline_str(x):\n", - " bins=np.histogram(x)[0]\n", - " sl = ''.join(sparklines(bins))\n", - " return sl\n", - " \n", - "and then...\n", - "\n", - "agg_func_largest = {\n", - " 'fare': [percentile_90, trim_mean_10, largest, sparkline_str]\n", - "}\n", - "df.groupby(['class', 'embark_town']).agg(agg_func_largest)\n", - "\n" + "In the above, we had to write 2 lines with the `groupby` function: once for `count` and once for `mean`. But you can get them both in 1 table, using the `agg` function. `agg` is short hand for aggregation (which means to form things into a cluster)." ] }, { - "cell_type": "markdown", + "cell_type": "code", + "execution_count": null, "metadata": {}, + "outputs": [], "source": [ - "## Mixed groupby\n", + "# These 2 lines do exactly the same:\n", + "display( df.groupby([\"Outcome\", \"Size\"]).count() )\n", + "display( df.groupby([\"Outcome\", \"Size\"]).agg('count') )\n", "\n", - "df_summary = df[['Geography','Exited','Balance']].groupby('Geography')\\\n", - ".agg({'Exited':'sum', 'Balance':'mean'})\n", - "df_summary.rename(columns={'Exited':'# of churned customers', 'Balance':'Average Balance of Customers'},inplace=True)\n", - "df_summary" + "# Now extend the input to the .agg function, with 2 aggregations\":\n", + "display( df.groupby([\"Outcome\", \"Size\"]).agg([\"count\", \"mean\"]) )" ] }, { - "cell_type": "markdown", + "cell_type": "code", + "execution_count": null, "metadata": {}, + "outputs": [], "source": [ - "## Add a new column, not at the end\n", - "df_new.insert(0, 'Group', group)\n", - "df_new" + "# You can specify an entire collection of aggregations:\n", + "agg_func_math = ['count', 'mean', 'median', 'min', 'max', 'std']\n", + "df[[\"Size5\", \"TGA\", \"Outcome\"]].groupby(['Outcome']).agg(agg_func_math).round(2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## REplace values in a column\n", - "df['column'].replace({0: \"No\", 1: \"Yes\"})\n" + "## Add a new column, not at the end (right)\n", + "\n", + "We saw above that we can create a new column, but that it automatically gets added at the right of the data frame. If you would like the column elsewhere, use the `.insert()` function." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df.insert(0, 'EmptyColumn', np.nan)\n", + "df.insert(3, 'Column of ones', [1] * df.shape[0])\n", + "df" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## Rounding\n", + "## Replace values in a column\n", "\n", - "#df_new.round(1) #number of desired decimal points\n" + "We can do a \"search and replace\" function on the values in a data frame. \n", + "\n", + "Imagine if we wanted to change the `Outcome` column, and instead of `Adequate` and `Poor` we would rather have `Good` and `Bad`." ] }, { @@ -1178,123 +748,96 @@ "metadata": {}, "outputs": [], "source": [ - "!pip install sparklines\n", - "\n" + "df['Outcome'].replace({\"Adequate\": \"Good\", \"Poor\": \"Bad\"})\n", + "\n", + "# Try setting the `Outcome` column to numeric values: Adequate -> 1 and Poor -> 0\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## Display options\n", - "pd.set_option(\"display.precision\", 2)\n" + "## Styling table displays\n", + "\n", + "To help emphasize your message in a table, you might want to colour your table appropriately.\n", + "\n", + "You can read about all the options on this page in the Pandas documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/style.html" ] }, { - "cell_type": "markdown", + "cell_type": "code", + "execution_count": null, "metadata": {}, + "outputs": [], "source": [ - "## Styling\n", - "\n", - "df_new.style.highlight_max(axis=0, color='darkgreen')\n", - "df.style.bar(align='mid', color=['red', 'lightgreen'])\n", + "import pandas as pd\n", + "df = pd.read_csv(\"https://openmv.net/file/raw-material-characterization.csv\").set_index(\"Lot number\")\n", "\n", + "pd.option_context('precision', 3)\n", + "df.style.bar(color=['lightgreen'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "(df.style\n", + " .hide_index()\n", + " .bar(color='green', subset=['Size5', 'Size10', 'Size15'])\n", + " .set_caption('Raw material outcomes')\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import seaborn as sns\n", + "cmap = cmap=sns.diverging_palette(0, 50, as_cmap=True)\n", "\n", - "or\n", + "# Double sort: first on `Outcome`, then on `Size5`\n", + "df.sort_values([\"Outcome\", \"Size5\"], inplace=True)\n", "\n", - "(monthly_sales\n", - " .style\n", - " .format(format_dict)\n", - " .hide_index()\n", - " .bar(color='#FFA07A', vmin=100_000, subset=['sum'], align='zero')\n", - " .bar(color='lightgreen', vmin=0, subset=['pct_of_total'], align='zero')\n", - " .set_caption('2018 Sales Performance'))" + "(df[[\"Outcome\", \"Size5\", \"Size10\", \"Size15\"]].style\n", + " .background_gradient(cmap)\n", + " .set_precision(2)\n", + ")" ] }, { "cell_type": "code", - "execution_count": 71, - "metadata": {}, - "outputs": [ - { - "ename": "ParserError", - "evalue": "Error tokenizing data. C error: Expected 6 fields in line 22, saw 7\n", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mParserError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mdf2\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mread_csv\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"https://openmv.net/file/class-grades.csv\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0mdf2\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0minfo\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;31m#df2[\"Crispy\"].unique()\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;31m#df2.groupby*\"\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mdf2\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/anaconda3/envs/datamore/lib/python3.8/site-packages/pandas/io/parsers.py\u001b[0m in \u001b[0;36mread_csv\u001b[0;34m(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, squeeze, prefix, mangle_dupe_cols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, skipfooter, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, dayfirst, cache_dates, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, doublequote, escapechar, comment, encoding, dialect, error_bad_lines, warn_bad_lines, delim_whitespace, low_memory, memory_map, float_precision)\u001b[0m\n\u001b[1;32m 686\u001b[0m )\n\u001b[1;32m 687\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 688\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0m_read\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilepath_or_buffer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 689\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 690\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/anaconda3/envs/datamore/lib/python3.8/site-packages/pandas/io/parsers.py\u001b[0m in \u001b[0;36m_read\u001b[0;34m(filepath_or_buffer, kwds)\u001b[0m\n\u001b[1;32m 458\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 459\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 460\u001b[0;31m \u001b[0mdata\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mparser\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mread\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnrows\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 461\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 462\u001b[0m \u001b[0mparser\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mclose\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/anaconda3/envs/datamore/lib/python3.8/site-packages/pandas/io/parsers.py\u001b[0m in \u001b[0;36mread\u001b[0;34m(self, nrows)\u001b[0m\n\u001b[1;32m 1196\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mread\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnrows\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1197\u001b[0m \u001b[0mnrows\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_validate_integer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"nrows\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnrows\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1198\u001b[0;31m \u001b[0mret\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mread\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnrows\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1199\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1200\u001b[0m \u001b[0;31m# May alter columns / col_dict\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/anaconda3/envs/datamore/lib/python3.8/site-packages/pandas/io/parsers.py\u001b[0m in \u001b[0;36mread\u001b[0;34m(self, nrows)\u001b[0m\n\u001b[1;32m 2155\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mread\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnrows\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2156\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2157\u001b[0;31m \u001b[0mdata\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_reader\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mread\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnrows\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2158\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mStopIteration\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2159\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_first_chunk\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32mpandas/_libs/parsers.pyx\u001b[0m in \u001b[0;36mpandas._libs.parsers.TextReader.read\u001b[0;34m()\u001b[0m\n", - "\u001b[0;32mpandas/_libs/parsers.pyx\u001b[0m in \u001b[0;36mpandas._libs.parsers.TextReader._read_low_memory\u001b[0;34m()\u001b[0m\n", - "\u001b[0;32mpandas/_libs/parsers.pyx\u001b[0m in \u001b[0;36mpandas._libs.parsers.TextReader._read_rows\u001b[0;34m()\u001b[0m\n", - "\u001b[0;32mpandas/_libs/parsers.pyx\u001b[0m in \u001b[0;36mpandas._libs.parsers.TextReader._tokenize_rows\u001b[0;34m()\u001b[0m\n", - "\u001b[0;32mpandas/_libs/parsers.pyx\u001b[0m in \u001b[0;36mpandas._libs.parsers.raise_parser_error\u001b[0;34m()\u001b[0m\n", - "\u001b[0;31mParserError\u001b[0m: Error tokenizing data. C error: Expected 6 fields in line 22, saw 7\n" - ] - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ - "df2 = pd.read_csv(\"https://openmv.net/file/class-grades.csv\")\n", - "df2.info()\n", - "#df2[\"Crispy\"].unique()\n", - "#df2.groupby*\"\"\n", - "df2" + "# Show missing values:\n", + "df.iloc[4, 3] = np.nan\n", + "df.head().style.set_precision(2).highlight_null('red')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Show the minimum and maximum values\n", + "(df.style\n", + " .set_precision(2)\n", + " .highlight_min(axis=0, color=\"lightblue\")\n", + " .highlight_max(axis=0, color='orange')\n", + ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## Five main goals with data science\n", - "\n", - "\n", - "In the [prior module](https://yint.org/pybasic09) I described my approach for any data analysis project. The first step is to **define the goals**. When I take a look at various projects I have worked on, the goals always fall into one or more of these categories, or 'application domains'.\n", - "\n", - "1. Learning more about our system\n", - "2. Troubleshooting a problem that is occurring\n", - "3. Making predictions using (some) data from the system\n", - "4. Monitoring that system in real-time, or nearly real time \n", - "5. Optimizing the system\n", - "\n", - "I will describe these goals shortly. But why look at this? The reason is that certain goals can be solved with a subset of tools. The number of tools available to you is large. Knowing which one to use for which type of goal helps you along the way faster.\n", - "\n", - "
    \n", - "Goals 1 and 2 take place off-line, using data that has been collected already.\n", - "\n", - "Goals 3, making predictions from the system, e.g. predicting what quality is being produced by the system; or how much longer a batch should be run before it is completed. The prediction is typically required to support other decisions, or to apply real-time control on the system. \n", - "\n", - "Goal 4 also can take place on-line, and is used to ensure the system is operating in a stable manner, and if not, using the data to figure what is going wrong, or about to go wrong.\n", - "\n", - "Goal 5 is typically off-line, and here we use the data to make longer term improvements. For example, we try to move the system to a different state of operation that is more optimal/profitable. This can also be done in real-time, where systems are continuously shifted around to track an optimum target.\n", - "\n", - "
    \n", - "\n", - "This is just one way to to categorize data science problems. There are of course other ways to do this: such as if you are dealing with one variable (vector) or many variables (matrices). Or which type of technique you are using: ***supervised*** or ***unsupervised***.\n", - "\n", - "We will encounter these terms along the way. But for now, you should be able to see any problem where you have used data as fitting into one of these five categories above. \n", - "\n", - "\n", - "### Examples of using this categorization\n", - "\n", - "For example: your manager asks you to use data (whatever is available) to discover why we are seeing increased number of customers returning our most profitable product to the store. Your objective: Find reason(s) for increased returns of product.\n", - "\n", - "Which of the 5 goals above are used?: Number 2 \"Troubleshoot a problem that is occurring\" is the most direct. But along the way to achieving that goal, you will almost certainly apply number 1: \"Learn more about your system\".\n", - "\n", - "Following up: in the future, after you have found the reasons for returned product, you might have done number 5: \"optimizing the system\" to find settings for the machines, so that fewer low-quality products are produced. Then, in a different data science project, based on number 4: you \"monitor the system in real-time\" to prevent producing bad quality products\". This might be done by applying number 3: \"making predictions of the product quality\" in real-time, while the system is operating.\n", - "\n", - "\n", - "As you can see, these 5 goals are generally very broad. Why do we mention them?\n", - "\n", - "You might learn, in other courses and later in your career, about different tools to implement. Then you can interchange the tools in your toolbox. For example, linear regression is one type of prediction tool to achieve goal 3, but so is a neural network. If one tool does not work so well, you can swap it for another one in your pipeline.\n", - "\n", - "### Try it yourself\n", - "\n", - "Try breaking down the existing data-based project you are currently working in. Check which one or more of the five apply.\n", - "\n" + "End of this notebook." ] }, { @@ -1327,7 +870,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.1" + "version": "3.7.9" }, "toc": { "base_numbering": "1", diff --git a/README.md b/README.md index d24fd67..f7f9c19 100644 --- a/README.md +++ b/README.md @@ -127,5 +127,4 @@ As such, it does not teach loops, branching, data structures, etc. In other word * Pandas collection: reading in subsets of data * Handling missing values with Pandas * Filtering data, and the multi-level groupby capability of Panda -* Effective table display in Pandas -* Summary of what value you can extract from data +* Effective table display in Pandas \ No newline at end of file From 9d2a8e303393d94a2d2ac92f9c085e9184646369 Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Tue, 8 Dec 2020 17:52:21 +0100 Subject: [PATCH 121/134] Tweaks before sharing the notebook. --- Module-16-interactive.ipynb | 177 ++++++++++++++++++++++-------------- 1 file changed, 110 insertions(+), 67 deletions(-) diff --git a/Module-16-interactive.ipynb b/Module-16-interactive.ipynb index 36a0b88..e740339 100644 --- a/Module-16-interactive.ipynb +++ b/Module-16-interactive.ipynb @@ -7,7 +7,7 @@ }, "source": [ "

    Table of Contents

    \n", - "" + "" ] }, { @@ -36,13 +36,13 @@ "## Review so far\n", "\n", "In [module 11](https://yint.org/pybasic11) we learned about\n", - "* creating variables, and showing their `type` \n", - "* performing basic calculations, and the `math` library\n", - "* lists, as one of the most fundamental Python objects\n", + "* creating variables, and showing their `type`,\n", + "* performing basic calculations, and the `math` library,\n", + "* lists, as one of the most fundamental Python objects.\n", "\n", "In the [module 12](https://yint.org/pybasic12) we took this a step further:\n", - "* and introduced the Pandas library, for `Series` and `DataFrame` objects\n", - "* learned how to import and write Excel files\n", + "* and introduced the Pandas library, for `Series` and `DataFrame` objects,\n", + "* learned how to import and write Excel files,\n", "* do basic operations on DataFrames, and \n", "* learned about another fundamental Python type, the `dict`ionary.\n", "\n", @@ -56,29 +56,35 @@ "\n", "[Module 14](https://yint.org/pybasic14) we saw how to create:\n", "* for loops, for when we need to do things over and over,\n", - "* by we also saw the `groupby` function, which does actions repeatedly on sub-groups of your data.\n", + "* but we also saw the `groupby` function, which does actions repeatedly on sub-groups of your data.\n", "* We also introduced the correlation matrix.\n", "\n", "Then in [module 15](https://yint.org/pybasic15) we saw:\n", "* that we could visualize the correlation matrix (2D histogram), to find candidates for regression,\n", "* using the `LinearRegression` tool from a new library, `scikit-learn`.\n", - "* We also used another new library, `seaborn`, to visualize the regression models.\n", + "* We also used another new library, `seaborn`, to visualize these regression models.\n", "\n", "\n", "# Module 16 Overview\n", "\n", - "In this module we will cover\n", + "In this module we will cover:a collection of last loose ends. Things you will use regularly in your work. \n", "\n", - "* A bunch of loose ideas of things you regularly need in your day-to-day work. Most of these come from this list, with some modifications: https://towardsdatascience.com/30-examples-to-master-pandas-f8a2da751fa4" + "* Reading in subsets of data\n", + "* Handling missing values with Pandas\n", + "* Filtering data, and the multi-level `groupby` capability of Panda\n", + "* Effective table display in Pandas\n", + "\n", + "Most of them come from this list, with some modifications: https://towardsdatascience.com/30-examples-to-master-pandas-f8a2da751fa4" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ + "\n", "## Data set import and basic checks\n", "\n", - "We will use a data set that ... " + "We will use a data set that is related to food consumption. It shows, in a relative way, the food consumption habits of European (and soon to be former EU) countries." ] }, { @@ -106,8 +112,10 @@ ] }, { - "cell_type": "markdown", + "cell_type": "code", + "execution_count": null, "metadata": {}, + "outputs": [], "source": [ "import seaborn as sns\n", "sns.set(rc={'figure.figsize':(15, 15)})\n", @@ -121,7 +129,7 @@ "source": [ "## List comprehensions\n", "\n", - "\"List comprehensions\" are a quick way to make a list. You can read more, and see some examples here: https://realpython.com/list-comprehension-python/#using-list-comprehensions" + "\"*List comprehensions*\" are a quick way to make a list. You can read more, and see some examples here: https://realpython.com/list-comprehension-python/#using-list-comprehensions" ] }, { @@ -130,12 +138,13 @@ "metadata": {}, "outputs": [], "source": [ - "print( [i for i in range(10)] )\n", - "print( [i*2 for i in range(10)] )\n", - "print( [i*2 for i in range(10) if i > 4] )\n", - "print( [i*2 for i in range(10) if i % 2 == 1] )\n", - "print( [i*2 for i in range(10) if i % 2 == 0] )\n", - "print( [i for i in range(10) if i % 3 == 1] )" + "import math\n", + "print( [i for i in range(10)] )\n", + "print( [round(math.exp(i)) for i in range(10)] )\n", + "print( [i*2 for i in range(10) if i > 4] )\n", + "print( [i*2 for i in range(10) if i % 2 == 1] )\n", + "print( [i*2 for i in range(10) if i % 2 == 0] )\n", + "print( [i for i in range(10) if i % 3 == 1] )" ] }, { @@ -160,7 +169,7 @@ "display(df_partial)\n", "\n", "# Requires an extra `engine` input\n", - "df_bottom = pd.read_csv(\"https://openmv.net/file/food-consumption.csv\", skipfooter=12,engine='python')\n", + "df_bottom = pd.read_csv(\"https://openmv.net/file/food-consumption.csv\", skipfooter=12, engine='python')\n", "display(df_bottom)" ] }, @@ -170,7 +179,8 @@ "metadata": {}, "outputs": [], "source": [ - "# Skipping every 3rd row:\n", + "# Skipping every 3rd row, using a list comprehension...\n", + "print([i for i in range(40) if i%3 ==1])\n", "df_partial = pd.read_csv(\"https://openmv.net/file/food-consumption.csv\", \n", " skiprows=[i for i in range(40) if i%3 ==1])\n", "\n", @@ -183,7 +193,9 @@ "source": [ "## Import specific columns only\n", "\n", - "If you know the names of the columns you need, you can use the `usecols` input (works for Excel and CSV file import)." + "If you know the names of the columns you need, you can use the `usecols` input.\n", + "\n", + "Note: this also works for Excel files! You can say, for example, `usecols=\"F,G,BQ\"` if you need columns F, G and BQ only." ] }, { @@ -220,7 +232,8 @@ "\n", "# Also drop some rows: drop away every 3rd row.\n", "# Replace the \"...\" with some code\n", - "df_subset = df.drop(... , axis=0) # you can also leave away 'axis=0' (that's the default)\n", + "\n", + "df_subset = df.drop(... , axis=0) # you can also leave away 'axis=0' (because that's the default)\n", "display(df_subset)" ] }, @@ -230,7 +243,7 @@ "source": [ "## Setting an index\n", "\n", - "You can always set a column to be your dataframe index, using the `set_index` function." + "You can always set a column from the dataframe to be your `index`, using the `set_index` function." ] }, { @@ -253,11 +266,11 @@ "source": [ "## Deleting missing values\n", "\n", - "Pandas generally handles missing values well: for example, with ``df.mean()`` will work even there are missing values. But some mathematical tools cannot have missing values, such as when performing a linear regression. So deleting missing first is one option:\n", + "Pandas generally handles missing values well: for example, the ``df.mean()`` function will work even if there are missing values. But some mathematical tools cannot have missing values, such as when performing a linear regression. So deleting missing data first is an option. It is therefore helpful that you can:\n", "\n", - "* How many missing values per column? Or per row?\n", + "* Find how many missing values are there per column? Or per row?\n", "* Delete columns with missing values.\n", - "* Deleting rows with any missing values" + "* Deleting rows with any missing values." ] }, { @@ -287,6 +300,7 @@ "metadata": {}, "outputs": [], "source": [ + "# Delete columns with missing values\n", "df.dropna(axis=1)" ] }, @@ -303,6 +317,7 @@ "metadata": {}, "outputs": [], "source": [ + "# Delete rows with missing values\n", "df.dropna(axis=0)" ] }, @@ -310,7 +325,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Dropping missing values in all rows, but only for a subset of the columns is possible. For example, drop only rows in the columns for \"Sweetener\" and \"Yoghurt\" (ignore the column for \"Biscuits\":" + "Dropping missing values in all rows, but only for a subset of the columns is possible. For example, drop only rows in the columns for \"Sweetener\" and \"Yoghurt\" (ignore the column for \"Biscuits\"):" ] }, { @@ -321,8 +336,8 @@ "source": [ "display(df.dropna(subset=[\"Sweetener\", \"Yoghurt\"], axis=0))\n", "\n", - "# Note: you can also flip this around. Specify a subset of row\n", - "# names in `subset` and delete from all columns, using `axis=1`.\n", + "# Note: you can also flip this around. Specify a subset of row names\n", + "# in `subset` and delete from all columns, using `axis=1`.\n", "df.dropna(subset=[\"Sweden\"], axis=1)" ] }, @@ -364,8 +379,8 @@ "metadata": {}, "outputs": [], "source": [ - "# But what if don't know, or care, which column it is? If we know \n", - "# the column name, then use \".loc\"\n", + "# But what if don't know, or care, which column index it is? \n", + "# When we know the column's name, then use \".loc\" \n", "df.loc[:, \"Tea\"] = np.nan\n", "df" ] @@ -381,16 +396,6 @@ "df" ] }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Or a mixture of column and row names:\n", - "df.loc[\"Holland\", \"Biscuits\"] = np.nan" - ] - }, { "cell_type": "code", "execution_count": null, @@ -403,7 +408,7 @@ "# but this is less code:\n", "df.iloc[[0, 1, 2], :][\"Tin soup\"]\n", "\n", - "# or even less\n", + "# or even less this way:\n", "df.iloc[[0, 1, 2]][\"Tin soup\"]" ] }, @@ -413,10 +418,10 @@ "source": [ "## Dropping missing values, specifying a threshold\n", "\n", - "If you want to delete a column only if there are more than a certain number of missing values..\n", + "If you want to delete a column only if there are more than a certain number of missing values:\n", "\n", "* Read the data\n", - "* Make a column have a high number of missing values (for demonstration purposes)\n", + "* Make a column have a high number of missing values (for demonstration purposes; normally the column is already problematic)\n", "* Remove that column, because it has a high degree of missing values." ] }, @@ -444,10 +449,10 @@ "# How to solve it? As suggested by the warning, use \".loc\" instead.\n", "# df.loc[row_indexer, col_indexer] = np.nan\n", "\n", - "# This is all row names:\n", + "# Create a variable containing all row names:\n", "row_indexer = df.index\n", "\n", - "# Now take every second row name:\n", + "# Now take every third row name:\n", "row_indexer = df.index[ [i for i in range(16) if i%3 ==1] ]\n", "row_indexer" ] @@ -458,6 +463,7 @@ "metadata": {}, "outputs": [], "source": [ + "# Then, set these rows to have missing values:\n", "df.loc[row_indexer, \"Tea\"] = np.nan\n", "display(df)\n", "df.isna().sum()" @@ -470,7 +476,7 @@ "outputs": [], "source": [ "# Finally, we can now delete columns with a threshold (degree) of missing values\n", - "# What value should you fill in?\n", + "# What value should you fill in here?\n", "display(df.dropna(thresh=___, axis=1))" ] }, @@ -570,7 +576,7 @@ "source": [ "Really powerful is the ability to reference one column against another.\n", "\n", - "Find all countries where more `\"Instant coffee\"` is drunk than `\"Real coffee\"`. *These are countries to avoid visiting*. What else do you notice about these countries eating habits?" + "Find all countries where more `\"Instant coffee\"` is drunk more than `\"Real coffee\"`. *These are countries to avoid visiting*. What else do you notice about these countries eating habits?" ] }, { @@ -622,8 +628,13 @@ "metadata": {}, "outputs": [], "source": [ + "# First, reset the plot settings back to their defaults\n", + "import matplotlib as mpl\n", + "mpl.rcParams.update(mpl.rcParamsDefault)\n", + "\n", + "\n", "# Groupby: for plotting\n", - "df.groupby(\"Outcome\").plot.scatter(x='Size5', y=\"Size15\", xlim=(10, 16), ylim=(18, 45))" + "df.groupby(\"Outcome\").plot.scatter(x='Size5', y=\"Size15\", xlim=(10, 16), ylim=(18, 45), grid=True);" ] }, { @@ -633,7 +644,7 @@ "outputs": [], "source": [ "# Or another combination of the variables plotted:\n", - "df.groupby(\"Outcome\").plot.scatter(x='TMA', y=\"TGA\", xlim=(45, 65), ylim=(550, 770))" + "df.groupby(\"Outcome\").plot.scatter(x='TMA', y=\"TGA\", xlim=(45, 65), ylim=(550, 770), grid=True);" ] }, { @@ -665,14 +676,21 @@ "# First, create a new categorical variable, using a list comprehension\n", "print( [item for item in df[\"Size5\"]] )\n", "print( [item for item in df[\"Size5\"] if item <= 13] )\n", - "print( [\"Small\" if item <= 13 else \"Large\" for item in df[\"Size5\"]] )\n", - "\n", + "print( [\"Small\" if item <= 13 else \"Large\" for item in df[\"Size5\"]] )" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ "# Using what you learned above, you can see how we can quickly create a new column, \n", "# based on the values in another column.\n", "df[\"Size\"] = [\"Small\" if item <= 13 else \"Large\" for item in df[\"Size5\"]]\n", "\n", "# Now you can use a multi-level groupby:\n", - "display(df.groupby([\"Outcome\", \"Size\", ]).count())\n", + "display(df.groupby([\"Outcome\", \"Size\", ]).size())\n", "display(df.groupby([\"Outcome\", \"Size\", ]).mean())" ] }, @@ -693,11 +711,18 @@ "outputs": [], "source": [ "# These 2 lines do exactly the same:\n", - "display( df.groupby([\"Outcome\", \"Size\"]).count() )\n", - "display( df.groupby([\"Outcome\", \"Size\"]).agg('count') )\n", - "\n", - "# Now extend the input to the .agg function, with 2 aggregations\":\n", - "display( df.groupby([\"Outcome\", \"Size\"]).agg([\"count\", \"mean\"]) )" + "display( df.groupby([\"Outcome\", \"Size\"]).mean() )\n", + "display( df.groupby([\"Outcome\", \"Size\"]).agg('mean') )" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Now extend the input to the .agg function, with 2 aggregations:\n", + "display( df.groupby([\"Outcome\", \"Size\"]).agg([\"mean\", \"std\"]) )" ] }, { @@ -706,18 +731,18 @@ "metadata": {}, "outputs": [], "source": [ - "# You can specify an entire collection of aggregations:\n", + "# You can specify an entire collection of aggregations, and on which columns you want to do that:\n", "agg_func_math = ['count', 'mean', 'median', 'min', 'max', 'std']\n", - "df[[\"Size5\", \"TGA\", \"Outcome\"]].groupby(['Outcome']).agg(agg_func_math).round(2)" + "df.groupby(['Outcome'])[[\"Size5\", \"TGA\"]].agg(agg_func_math).round(2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## Add a new column, not at the end (right)\n", + "## Add a new column, not at the end (right-hand side)\n", "\n", - "We saw above that we can create a new column, but that it automatically gets added at the right of the data frame. If you would like the column elsewhere, use the `.insert()` function." + "We saw above that we can create a new column, but that it automatically gets added on the right-hand side of the data frame. If you would like the column elsewhere, use the `.insert()` function." ] }, { @@ -774,7 +799,7 @@ "df = pd.read_csv(\"https://openmv.net/file/raw-material-characterization.csv\").set_index(\"Lot number\")\n", "\n", "pd.option_context('precision', 3)\n", - "df.style.bar(color=['lightgreen'])" + "df.style.bar(color=['lightblue'])" ] }, { @@ -783,8 +808,9 @@ "metadata": {}, "outputs": [], "source": [ + "# How to style only a subset of the columns:\n", "(df.style\n", - " .hide_index()\n", + " .hide_index() # if you don't need your index column, you can drop it away \n", " .bar(color='green', subset=['Size5', 'Size10', 'Size15'])\n", " .set_caption('Raw material outcomes')\n", ")" @@ -814,7 +840,7 @@ "metadata": {}, "outputs": [], "source": [ - "# Show missing values:\n", + "# Show missing values with a colour. First, create an artificial missing value:\n", "df.iloc[4, 3] = np.nan\n", "df.head().style.set_precision(2).highlight_null('red')" ] @@ -825,7 +851,7 @@ "metadata": {}, "outputs": [], "source": [ - "# Show the minimum and maximum values\n", + "# Show the minimum and maximum values with different colours:\n", "(df.style\n", " .set_precision(2)\n", " .highlight_min(axis=0, color=\"lightblue\")\n", @@ -833,6 +859,23 @@ ")" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Challenge\n", + "\n", + "1. Apply table styling to the Foods data set, at the start of this notebook. Can you visualize, in a colourful way, some of the food consumption trends?\n", + "2. Apply this same table styling to a small/medium sized data set of your own." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, { "cell_type": "markdown", "metadata": {}, From a0f7d4a53415e085f08a3a8283a2689f7266d458 Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Wed, 9 Dec 2020 12:21:41 +0100 Subject: [PATCH 122/134] Updated the notebook after the course demo. --- Module-16-interactive.ipynb | 96 ++++++++++++++++++++----------------- 1 file changed, 51 insertions(+), 45 deletions(-) diff --git a/Module-16-interactive.ipynb b/Module-16-interactive.ipynb index e740339..041d80e 100644 --- a/Module-16-interactive.ipynb +++ b/Module-16-interactive.ipynb @@ -7,7 +7,7 @@ }, "source": [ "

    Table of Contents

    \n", - "" + "" ] }, { @@ -48,7 +48,7 @@ "\n", "[Module 13](https://yint.org/pybasic13) we introduced:\n", "* a general workflow for data processing\n", - "* and haw to visualize data with Pandas:\n", + "* and how to visualize data with Pandas:\n", "\n", " * box plot, \n", " * time series (sequence) plot, and\n", @@ -67,7 +67,7 @@ "\n", "# Module 16 Overview\n", "\n", - "In this module we will cover:a collection of last loose ends. Things you will use regularly in your work. \n", + "In this module we will cover a collection of last loose ends. Things you will use regularly in your work. \n", "\n", "* Reading in subsets of data\n", "* Handling missing values with Pandas\n", @@ -94,10 +94,9 @@ "outputs": [], "source": [ "import pandas as pd\n", - "\n", "df = pd.read_csv(\"https://openmv.net/file/food-consumption.csv\")\n", - "display(df.head(10))\n", - "df.info()" + "df.info()\n", + "df" ] }, { @@ -138,13 +137,12 @@ "metadata": {}, "outputs": [], "source": [ - "import math\n", - "print( [i for i in range(10)] )\n", - "print( [round(math.exp(i)) for i in range(10)] )\n", - "print( [i*2 for i in range(10) if i > 4] )\n", - "print( [i*2 for i in range(10) if i % 2 == 1] )\n", - "print( [i*2 for i in range(10) if i % 2 == 0] )\n", - "print( [i for i in range(10) if i % 3 == 1] )" + "print( [i for i in range(10)] )\n", + "print( [i*2+1 for i in range(10)] )\n", + "print( [i*2 for i in range(10) if i > 4] )\n", + "print( [i for i in range(10) if i % 2 == 1] )\n", + "print( [i for i in range(10) if i % 2 == 0] )\n", + "print( [i for i in range(10) if i % 4 == 1] )" ] }, { @@ -153,7 +151,7 @@ "source": [ "## Reading only certain rows\n", "\n", - "Imagine you had a large data set, and only needed certain rows." + "Imagine you had a large data set, and only needed certain rows for your calculations/visualization later on. You can use the `nrows` and `skiprows` arguments to read only a subset of the data." ] }, { @@ -183,7 +181,6 @@ "print([i for i in range(40) if i%3 ==1])\n", "df_partial = pd.read_csv(\"https://openmv.net/file/food-consumption.csv\", \n", " skiprows=[i for i in range(40) if i%3 ==1])\n", - "\n", "display(df_partial)" ] }, @@ -224,16 +221,16 @@ "metadata": {}, "outputs": [], "source": [ - "df = pd.read_csv(\"https://openmv.net/file/food-consumption.csv\")\n", - "\n", - "df.drop([\"Sweetener\", \"Biscuits\", \"Powder soup\", \"Tin soup\"], axis=1, inplace=True)\n", + "df = (\n", + " pd.read_csv(\"https://openmv.net/file/food-consumption.csv\")\n", + " .drop([\"Sweetener\", \"Biscuits\", \"Powder soup\", \"Tin soup\"], axis=1)\n", + ")\n", "display(df)\n", "df.shape\n", "\n", "# Also drop some rows: drop away every 3rd row.\n", - "# Replace the \"...\" with some code\n", - "\n", - "df_subset = df.drop(... , axis=0) # you can also leave away 'axis=0' (because that's the default)\n", + "# You can also leave away 'axis=0' (because that's the default)\n", + "df_subset = df.drop([i for i in range( df.shape[0] ) if i%3 ==1] , axis=0) \n", "display(df_subset)" ] }, @@ -243,7 +240,7 @@ "source": [ "## Setting an index\n", "\n", - "You can always set a column from the dataframe to be your `index`, using the `set_index` function." + "You can always make a column from your dataframe to be your `index`, using the `set_index` function." ] }, { @@ -256,15 +253,20 @@ "df = df.set_index('Country')\n", "display(df)\n", "\n", - "# Or, in a single line:\n", - "df = pd.read_csv(\"https://openmv.net/file/food-consumption.csv\").set_index('Country')" + "# Or, in a single line, in a chained operation\n", + "df = (\n", + " pd.read_csv(\"https://openmv.net/file/food-consumption.csv\")\n", + " .drop([i for i in range( df.shape[0] ) if i%3 ==1] , axis=0)\n", + " .set_index('Country')\n", + ")\n", + "display(df)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## Deleting missing values\n", + "## Visualizing and deleting missing values\n", "\n", "Pandas generally handles missing values well: for example, the ``df.mean()`` function will work even if there are missing values. But some mathematical tools cannot have missing values, such as when performing a linear regression. So deleting missing data first is an option. It is therefore helpful that you can:\n", "\n", @@ -284,14 +286,19 @@ "display(df.isna().sum())\n", "\n", "# Which rows have missing values:\n", - "df.isna().sum(axis=1)" + "df.isna().sum(axis=1)\n", + "\n", + "# Display missing values in a heat map\n", + "import matplotlib as mpl \n", + "mpl.rcParams.update(mpl.rcParamsDefault) # reset the visualization parameters\n", + "sns.heatmap(df.isna());" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Confirm that the \"Sweetener\", \"Biscuits\", and \"Yoghurt\" columns are not present after running this command:" + "Confirm that the \"Sweetener\", \"Biscuits\", and \"Yoghurt\" columns are not present after running this command (these columns had missing values in them):" ] }, { @@ -308,7 +315,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Confirm that the rows for \"Sweden\", \"Finland\", and \"Spain\" are not present after this:" + "Confirm that the rows for \"Sweden\", \"Finland\", and \"Spain\", which had missing entries, are not present after this:" ] }, { @@ -347,7 +354,7 @@ "source": [ "## Using iloc and loc\n", "\n", - "We learned about `.iloc` in the [prior module](https://yint.org/pybasic15). Let's look at these two again:\n" + "We learned about `.iloc` in the [prior module](https://yint.org/pybasic15). Let's look at this again, and emphasize the difference between `.iloc` and `.loc`. [This article](https://www.shanelynn.ie/select-pandas-dataframe-rows-and-columns-using-iloc-loc-and-ix/) gives more details about the two if you want some more explanation.\n" ] }, { @@ -477,7 +484,7 @@ "source": [ "# Finally, we can now delete columns with a threshold (degree) of missing values\n", "# What value should you fill in here?\n", - "display(df.dropna(thresh=___, axis=1))" + "display(df.dropna(thresh=11, axis=1))" ] }, { @@ -496,7 +503,7 @@ "outputs": [], "source": [ "df = pd.read_csv(\"https://openmv.net/file/food-consumption.csv\").set_index('Country')\n", - "df[df[\"Olive oil\"] > 50]" + "df[ df[\"Olive oil\"] > 50 ]" ] }, { @@ -512,7 +519,7 @@ "metadata": {}, "outputs": [], "source": [ - "df[(df[\"Olive oil\"] > 50) & (df[\"Garlic\"] > 40)]" + "df[ (df[\"Tea\"] > 30) & (df[\"Tea\"] < 80) ]" ] }, { @@ -567,7 +574,7 @@ "metadata": {}, "outputs": [], "source": [ - "df.query(\"(`Real coffee` > 70) and (Tea > 70)\")" + "df.query(\"(`Real coffee` > 70) or (Tea > 70)\")" ] }, { @@ -610,7 +617,7 @@ "# Note that the Outcome column is an object. We can explicitly convert it to a categorical variable:\n", "df[\"Outcome\"] = df[\"Outcome\"].astype('category')\n", "df.info()\n", - "df.head()" + "df" ] }, { @@ -628,11 +635,6 @@ "metadata": {}, "outputs": [], "source": [ - "# First, reset the plot settings back to their defaults\n", - "import matplotlib as mpl\n", - "mpl.rcParams.update(mpl.rcParamsDefault)\n", - "\n", - "\n", "# Groupby: for plotting\n", "df.groupby(\"Outcome\").plot.scatter(x='Size5', y=\"Size15\", xlim=(10, 16), ylim=(18, 45), grid=True);" ] @@ -654,7 +656,11 @@ "outputs": [], "source": [ "# Or using groupby for summaries\n", - "df.groupby(\"Outcome\").mean()" + "display(df.groupby(\"Outcome\").mean())\n", + "display(df.groupby(\"Outcome\").std())\n", + "\n", + "# Or, call all the summaries together. We will explain the .agg function below.\n", + "df.groupby(\"Outcome\").agg([\"mean\", \"std\"]).round(2)" ] }, { @@ -773,9 +779,10 @@ "metadata": {}, "outputs": [], "source": [ - "df['Outcome'].replace({\"Adequate\": \"Good\", \"Poor\": \"Bad\"})\n", + "df[\"Outcome-newname\"] = df['Outcome'].replace({\"Adequate\": \"Good\", \"Poor\": \"Bad\"})\n", + "df\n", "\n", - "# Try setting the `Outcome` column to numeric values: Adequate -> 1 and Poor -> 0\n" + "# Try setting the `Outcome` column to numeric values: Adequate -> 1 and Poor -> 0" ] }, { @@ -797,8 +804,6 @@ "source": [ "import pandas as pd\n", "df = pd.read_csv(\"https://openmv.net/file/raw-material-characterization.csv\").set_index(\"Lot number\")\n", - "\n", - "pd.option_context('precision', 3)\n", "df.style.bar(color=['lightblue'])" ] }, @@ -842,7 +847,7 @@ "source": [ "# Show missing values with a colour. First, create an artificial missing value:\n", "df.iloc[4, 3] = np.nan\n", - "df.head().style.set_precision(2).highlight_null('red')" + "df.head(7).style.set_precision(2).highlight_null('red')" ] }, { @@ -856,6 +861,7 @@ " .set_precision(2)\n", " .highlight_min(axis=0, color=\"lightblue\")\n", " .highlight_max(axis=0, color='orange')\n", + " .highlight_null('red')\n", ")" ] }, From bc1df5ce4d704a23b16c1340be7843037db3ad73 Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Tue, 14 Sep 2021 22:29:25 +0200 Subject: [PATCH 123/134] Removed style sheet cell at the end of module 11 --- Module-11-interactive.ipynb | 12 ------------ Module-15-interactive.ipynb | 2 +- 2 files changed, 1 insertion(+), 13 deletions(-) diff --git a/Module-11-interactive.ipynb b/Module-11-interactive.ipynb index 68d2b3a..caf2453 100644 --- a/Module-11-interactive.ipynb +++ b/Module-11-interactive.ipynb @@ -759,18 +759,6 @@ "metadata": {}, "outputs": [], "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# IGNORE this. Execute this cell to load the notebook's style sheet.\n", - "from IPython.core.display import HTML\n", - "css_file = './images/style.css'\n", - "HTML(open(css_file, \"r\").read())" - ] } ], "metadata": { diff --git a/Module-15-interactive.ipynb b/Module-15-interactive.ipynb index 1b048c2..16aa2c6 100644 --- a/Module-15-interactive.ipynb +++ b/Module-15-interactive.ipynb @@ -650,7 +650,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.9" + "version": "3.8.1" }, "toc": { "base_numbering": "1", From 4b4629e96fd217b9037111618f9cde6fff6c4128 Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Tue, 21 Sep 2021 22:13:54 +0200 Subject: [PATCH 124/134] Improve formatting of markdown cells --- Module-12-interactive.ipynb | 366 ++++++++++++++++++------------------ 1 file changed, 180 insertions(+), 186 deletions(-) diff --git a/Module-12-interactive.ipynb b/Module-12-interactive.ipynb index 06dd8f3..c99d9ae 100644 --- a/Module-12-interactive.ipynb +++ b/Module-12-interactive.ipynb @@ -2,26 +2,25 @@ "cells": [ { "cell_type": "markdown", - "metadata": { - "toc": true - }, "source": [ "

    Table of Contents

    \n", "" - ] + ], + "metadata": { + "toc": true + } }, { "cell_type": "markdown", - "metadata": {}, "source": [ "> All content here is under a Creative Commons Attribution [CC-BY 4.0](https://creativecommons.org/licenses/by/4.0/) and all source code is released under a [BSD-2 clause license](https://en.wikipedia.org/wiki/BSD_licenses).\n", ">\n", ">Please reuse, remix, revise, and [reshare this content](https://github.com/kgdunn/python-basic-notebooks) in any way, keeping this notice." - ] + ], + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "# Course overview\n", "\n", @@ -32,11 +31,11 @@ "* visualization of it.\n", "\n", "In short: ***how to extract value from your data***.\n" - ] + ], + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "# Module 12 Overview\n", "\n", @@ -50,11 +49,11 @@ "**Requirements before starting**\n", "\n", "* Have your Python installation working as for module 11, and also the Pandas library installed." - ] + ], + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "## Introduction to Pandas\n", "\n", @@ -81,18 +80,18 @@ " * ``df[\"TemperatureC\"].plot()``\n", " * ``df.boxplot(column='activity', by='reactor')`` will create a boxplot of the values in the `activity` column, for every `reactor` \n", " " - ] + ], + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "## Getting started with the Pandas library" - ] + ], + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "A library is a collection of someone else's Python code. It saves time to use existing, good-quality libraries, so you can focus on your work. E.g. focus on interpreting the data, and less on how to manipulate/process your data.\n", "\n", @@ -100,32 +99,32 @@ "\n", "```python\n", "import pandas as pd\n", - "pd.__version__ # ensure you have a version >= 1.1\n", + "pd.__version__ # ensure you have a version >= 1.3\n", "```\n", "\n", "Try it below:" - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": null, - "metadata": {}, + "source": [], "outputs": [], - "source": [] + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "There are 2 types of objects in Pandas we will use: a ``Series`` and a ``DataFrame``. \n", "\n", "* A ``Series`` is roughly the equivalent of a vector, or a column/row in a spreadsheet.\n", "* A ``DataFrame`` is a collection of ``Series`` objects, next to each other, to create a matrix of data." - ] + ], + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "## Working with Pandas ``Series`` objects\n", "\n", @@ -138,18 +137,18 @@ "```\n", "\n", "Put your own numbers inside the list in the space below. You learned [about lists in the prior module](https://yint.org/pybasic11)." - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": null, - "metadata": {}, + "source": [], "outputs": [], - "source": [] + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "Notice the index (the column to the left of your numbers)? Let's look at another example:\n", "```python\n", @@ -164,112 +163,116 @@ "dtype: float64\n", "```\n", "If you do not provide any labels for the rows, the these will be automatically generated for you, starting from 0." - ] + ], + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "What if you have your own labels already?\n", "```python\n", "# You call the function with two inputs. One input is \n", "# mandatory (the first one), the other is optional.\n", - "s = pd.Series(data = [5, 9, 1, -4, float('nan'), 5 ], \n", - " index = ['a', 'b', 'c', 'd', 'e', 'f'])\n", + "s = pd.Series(\n", + " data = [5, 9, 1, -4, float('nan'), 5 ], \n", + " index = ['a', 'b', 'c', 'd', 'e', 'f']\n", + ")\n", "print(s)\n", "s.values\n", "type(s.values)\n", "```" - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": null, - "metadata": {}, + "source": [], "outputs": [], - "source": [] + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "Ah ha! See what you get there in the output from ``s.values``? Pandas is built on top of another library, called NumPy. The underlying data are NumPy arrays, and Pandas adds extra functionality on top of that. We will refer back to NumPy later, or you will see it commonly referenced in Python websites that deal with data processing. So it is good to know about it." - ] + ], + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "Lastly, give your series a nice name:\n", "```python\n", "s.name = 'Random values'\n", "print(s)\n", "```" - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": null, - "metadata": {}, + "source": [], "outputs": [], - "source": [] + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "### Mathematical calculations\n", "\n", "The series you created above, can be used in calculations. Notice how missing data are handled seamlessly.\n", "\n", "```python\n", - "s = pd.Series(data = [5, 9, 1, -4, float('nan'), 5 ], \n", - " index = ['a', 'b', 'c', 'd', 'e', 'f'],\n", - " name = 'Calculations')\n", + "s = pd.Series(\n", + " data = [5, 9, 1, -4, float('nan'), 5 ], \n", + " index = ['a', 'b', 'c', 'd', 'e', 'f'],\n", + " name = 'Calculations'\n", + ")\n", "print(s * 5 + 2)\n", "```" - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": null, - "metadata": {}, + "source": [], "outputs": [], - "source": [] + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "What type is a series object? Hint, use the ``type(...)`` function." - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": null, - "metadata": {}, + "source": [], "outputs": [], - "source": [] + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "Calculate the square root of this column `s`. Remember in the [prior module](https://yint.org/pybasic11) how we calculated the square root by raising the number to the power of 0.5? \n", "\n", "Since the square root is not defined for negative numbers, such as the $-4$ in row `d`, what do you expect as an answer? Check it out in the space below." - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": null, - "metadata": {}, + "source": [], "outputs": [], - "source": [] + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "Logical operations are possible too. Try some of these out:\n", "```python\n", @@ -277,18 +280,18 @@ "s.isna()\n", "s.notna()\n", "```" - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": null, - "metadata": {}, + "source": [], "outputs": [], - "source": [] + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "### Accessing entries\n", "\n", @@ -299,18 +302,18 @@ "```\n", "\n", "Notice the second example above: you can access entries in the Series by their name!" - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": null, - "metadata": {}, + "source": [], "outputs": [], - "source": [] + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "Selected subsets from the series can be accessed too, again using square brackets:\n", "```python\n", @@ -320,18 +323,18 @@ "# Selection based on logic: I want only values greater than 4. This is called filtering.\n", "s[s > 4]\n", "```" - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": null, - "metadata": {}, + "source": [], "outputs": [], - "source": [] + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "You can also access a ``range`` of entries:\n", "```python\n", @@ -347,25 +350,25 @@ "`['Toronto', 'Vancouver', 'Ottawa', 'Montréal', 'Halifax']`\n", "\n", "then with `['Vancouver':'Montréal']` you expect to see the middle 3 entries, inclusive of `Montréal`." - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": null, - "metadata": {}, + "source": [], "outputs": [], - "source": [] + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "## Working with Pandas ``DataFrame`` objects\n", "\n", "\n", "Imagine you have 5 temperature measurements (rows) for 4 cities (columns). In actual data the columns would be the temperature measurement from a different part of the process. For this example, each column is a city.\n", "\n", - "We can create a ``DataFrame`` using a list-of-lists:\n", + "We can create a ``DataFrame`` using a ***list-of-lists***:\n", "```python\n", "import pandas as pd\n", "rawdata = [[17, 19, 22, 20], \n", @@ -376,36 +379,36 @@ "df = pd.DataFrame(data=rawdata, columns = ['Johannesburg', 'Cape Town', 'Pretoria', 'Durban'])\n", "print(df)\n", "```" - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": null, - "metadata": {}, + "source": [], "outputs": [], - "source": [] + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "Tip: Pandas can handle column names with a space in them.😊 This is why when you want to see one column, you can refer to it as follows:\n", "\n", "* ``df[\"Cape Town\"]``\n", "* ``df['Johannesburg']``\n", "* What type is each column inside ``df``? Try finding out: ``type(df[\"Cape Town\"])``" - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": null, - "metadata": {}, + "source": [], "outputs": [], - "source": [] + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "Try some calculations now:\n", "```python\n", @@ -413,18 +416,18 @@ "df.max(axis=0) \n", "df.max(axis=1) \n", "```" - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": null, - "metadata": {}, + "source": [], "outputs": [], - "source": [] + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "Now try some other types of calculations on all the columns: \n", "\n", @@ -437,18 +440,18 @@ "* ``df.diff``\n", "\n", "Notice that these calculations take place on the columns, by default. What if you wanted to do them on the rows?\n" - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": null, - "metadata": {}, + "source": [], "outputs": [], - "source": [] + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "Try the following to expand your knowledge.\n", "\n", @@ -469,36 +472,36 @@ "```\n", "\n", "* What is the interpretation of that long command?" - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": null, - "metadata": {}, + "source": [], "outputs": [], - "source": [] + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "You can stack up your sequential operations quite compactly in Pandas. It works because the output from one function is the input for the next one to the right.\n", "\n", "**A tip on style**\n", "\n", "You can also use ``df.Johannesburg`` to access a column, but this is not good Pandas style, so don't do this. It cannot handle column names with spaces, and if you have a column name that is also a built-in operation, like ``max``, for example, it is confusing." - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": null, - "metadata": {}, + "source": [], "outputs": [], - "source": [] + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "## Time for a diversion: Dictionaries!\n", "\n", @@ -514,18 +517,18 @@ " }\n", "print(random_objects)\n", "```" - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": null, - "metadata": {}, + "source": [], "outputs": [], - "source": [] + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "In older Python versions, the dictionary print out will be a random order. Newer versions of Python ***maintain the order*** of the container. \n", "\n", @@ -545,18 +548,18 @@ "# What happens when you use a non-existent key?\n", "random_objects['mystery']\n", "```" - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": null, - "metadata": {}, + "source": [], "outputs": [], - "source": [] + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "In the above example, the keys were all ***string*** objects. But that is not required. You can use integers, floating point values, strings, tuples, or a mixture of them. There are other options too, but these are comprehensive enough.\n", "\n", @@ -573,20 +576,20 @@ "5. `residuals`: a list (vector) of residuals. You can use a Pandas Series here also!\n", "\n", "You can create the above dictionary in a single line of code. " - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": null, - "metadata": {}, - "outputs": [], "source": [ "regression_model = ___\n" - ] + ], + "outputs": [], + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "### Add a new item to the dictionary\n", "\n", @@ -600,18 +603,18 @@ "random_objects['my integer'] = 42\n", "```\n", "This implies you can never have 2 keys which are the same. If you try to create a second key which already exists, it will overwrite the object associated with the existing key.\n" - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": null, - "metadata": {}, + "source": [], "outputs": [], - "source": [] + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "### Creating a Series from a dictionary\n", "\n", @@ -629,18 +632,18 @@ "2. And the least herring?\n", "3. What does this do? ``tons_herring_eaten.sort_values()``. Print the variable afterwards. \n", "4. And what does this do then? ``tons_herring_eaten.sort_index()``" - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": null, - "metadata": {}, + "source": [], "outputs": [], - "source": [] + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "## DataFrame operations\n", "\n", @@ -658,9 +661,11 @@ "\n", ">```python\n", ">import pandas as pd\n", - ">data = {'Herring': [27, 13, 52, 54, 5, 19], \n", - "> 'Coffee': [90, 94, 96, 97, 30, 73],\n", - "> 'Tea': [88, 48, 98, 93, 99, 88]}\n", + ">data = {\n", + "> 'Herring': [27, 13, 52, 54, 5, 19], \n", + "> 'Coffee': [90, 94, 96, 97, 30, 73],\n", + "> 'Tea': [88, 48, 98, 93, 99, 88]\n", + ">}\n", ">countries = ['Germany', 'Belgium', 'Netherlands', 'Sweden', 'Ireland', 'Switzerland']\n", ">food_consumed = pd.DataFrame(data, index=countries)\n", ">\n", @@ -671,18 +676,18 @@ ">print(type(food_consumed))\n", ">food_consumed\n", ">```" - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": null, - "metadata": {}, + "source": [], "outputs": [], - "source": [] + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "#### 0. Getting an idea about your data first\n", "\n", @@ -699,18 +704,18 @@ "# Some information about the data structure: missing values, memory usage, etc\n", "food_consumed.info()\n", "```" - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": null, - "metadata": {}, + "source": [], "outputs": [], - "source": [] + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "#### 1. Shape of a data frame\n", "\n", @@ -724,18 +729,18 @@ "# Interesting: what shapes do summary vectors have?\n", "food_consumed.mean().shape\n", "```" - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": null, - "metadata": {}, + "source": [], "outputs": [], - "source": [] + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "#### 2. Unique entries\n", "```python\n", @@ -748,18 +753,18 @@ "food_consumed.nunique() # in each column \n", "food_consumed.nunique(axis=1) # in each row\n", "```" - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": null, - "metadata": {}, + "source": [], "outputs": [], - "source": [] + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "#### 3. Add a new column\n", "```python\n", @@ -768,18 +773,18 @@ "food_consumed['Yoghurt'] = [30, 20, 53, 2, 3, 48]\n", "print(food_consumed)\n", "```" - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": null, - "metadata": {}, + "source": [], "outputs": [], - "source": [] + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "#### 4. Merging dataframes \n", "```python\n", @@ -792,18 +797,18 @@ "food_consumed = food_consumed.join(more_foods)\n", "food_consumed\n", "```" - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": null, - "metadata": {}, + "source": [], "outputs": [], - "source": [] + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "#### 5. Adding a new row\n", "```python\n", @@ -817,18 +822,18 @@ "\n", "# What happens if you run the above commands more than once?\n", "```" - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": null, - "metadata": {}, + "source": [], "outputs": [], - "source": [] + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "#### 6. Delete or drop a row/column\n", "```python\n", @@ -846,18 +851,18 @@ "# a copy, with those rows removed. \n", "non_EU_consumption = food_consumed.drop(['Switzerland', ], axis=0)\n", "```" - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": null, - "metadata": {}, + "source": [], "outputs": [], - "source": [] + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "#### 7. Remove rows with missing values\n", "```python\n", @@ -871,18 +876,18 @@ "# Remove only rows where all values are missing:\n", "food_consumed.dropna(how='all')\n", "```" - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": null, - "metadata": {}, + "source": [], "outputs": [], - "source": [] + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "#### 8. Sort the data\n", "\n", @@ -891,18 +896,18 @@ "food_consumed.sort_values(by=\"Garlic\", inplace=True)\n", "food_consumed.sort_values(by=\"Garlic\", inplace=True, ascending=False)\n", "```" - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": null, - "metadata": {}, + "source": [], "outputs": [], - "source": [] + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "## Reading and writing Excel files with Pandas\n", "\n", @@ -927,25 +932,25 @@ "* Change the `filename` line in the code above.\n", "* Run the code and verify you got what you expected.\n", "* Adjust the `skiprows` and `index_col` function inputs to see what happens.\n" - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": null, - "metadata": {}, + "source": [], "outputs": [], - "source": [] + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "Excel files can be complex, with different layouts, so read the documentation about Pandas and Excel files: https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_excel.html" - ] + ], + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "## Exercise: mass balance\n", "\n", @@ -954,18 +959,18 @@ "3. Use the knowledge you learned above to read in that Excel file. Use the ``df.head()`` function to make sure you have the correct values.\n", "4. Use the mass balance principle: $$ \\text{Accumulation} = \\text{Input} - \\text{Output} + \\text{Generation} - \\text{Consumption} $$\n", "5. Collect all the columns that are needed for the right hand side of the equation. For example, consider a carbon balance (then the $\\text{Generation}$ and $\\text{Consumption}$ columns are zero). Therefore calculate the input and the output carbon, and check if there is an accumulation in the tank over time." - ] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": null, - "metadata": {}, + "source": [], "outputs": [], - "source": [] + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "## Exporting to Excel\n", "\n", @@ -976,26 +981,15 @@ "df.to_excel(\"output.xlsx\", sheet_name='Summary')\n", "```\n", "and it is worth checking the documentation for further function options: https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_excel.html" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] + ], + "metadata": {} }, { "cell_type": "code", "execution_count": null, - "metadata": {}, + "source": [], "outputs": [], - "source": [ - "# IGNORE this. Execute this cell to load the notebook's style sheet.\n", - "from IPython.core.display import HTML\n", - "css_file = './images/style.css'\n", - "HTML(open(css_file, \"r\").read())" - ] + "metadata": {} } ], "metadata": { @@ -1067,4 +1061,4 @@ }, "nbformat": 4, "nbformat_minor": 2 -} +} \ No newline at end of file From c0d4bbf3a578df701da25d73811974804144fc9b Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Wed, 22 Sep 2021 10:03:57 +0000 Subject: [PATCH 125/134] Further fixed up layouts --- Module-12-interactive.ipynb | 56 +++++++++++++++++++++++++------------ 1 file changed, 38 insertions(+), 18 deletions(-) diff --git a/Module-12-interactive.ipynb b/Module-12-interactive.ipynb index c99d9ae..3d9b816 100644 --- a/Module-12-interactive.ipynb +++ b/Module-12-interactive.ipynb @@ -178,7 +178,7 @@ " index = ['a', 'b', 'c', 'd', 'e', 'f']\n", ")\n", "print(s)\n", - "s.values\n", + "print(s.values)\n", "type(s.values)\n", "```" ], @@ -376,7 +376,10 @@ " [ 7, 11, 8, 7], \n", " [ 8, 9, 8, 8], \n", " [ 7, 9, 8, 6]]\n", - "df = pd.DataFrame(data=rawdata, columns = ['Johannesburg', 'Cape Town', 'Pretoria', 'Durban'])\n", + "df = pd.DataFrame(\n", + " data=rawdata, \n", + " columns = ['Johannesburg', 'Cape Town', 'Pretoria', 'Durban']\n", + ")\n", "print(df)\n", "```" ], @@ -508,13 +511,14 @@ "A dictionary is a Python ***object*** that is a flexible data container for other objects. It contains these objects using what are called ***key*** - ***value*** pairs. You create a dictionary like this:\n", "\n", "```python\n", - "random_objects = {'my integer': 45,\n", - " 'a float': 12.34,\n", - " 'short_list': [1, 4, 7],\n", - " 'longer list': [2, 4, 6, 9, 12, 16, 20, 25, 30, 36, 42],\n", - " 'website': \"https://learnche.org\",\n", - " 'a tuple': (1, 2.0, 33, 444, '5555', 'etc')\n", - " }\n", + "random_objects = {\n", + " 'my integer': 45,\n", + " 'a float': 12.34,\n", + " 'short_list': [1, 4, 7],\n", + " 'longer list': [2, 4, 6, 9, 12, 16, 20, 25, 30, 36, 42],\n", + " 'website': \"https://learnche.org\",\n", + " 'a tuple': (1, 2.0, 33, 444, '5555', 'etc'),\n", + "}\n", "print(random_objects)\n", "```" ], @@ -621,7 +625,13 @@ "Now we can combine two new concepts you have just learned: Dictionaries and Pandas.\n", "\n", "```python\n", - "raw_data = {'Germany': 27, 'Belgium': 13, 'Netherlands': 52, 'Sweden': 54, 'Ireland': 5}\n", + "raw_data = {\n", + " 'Germany': 27, \n", + " 'Belgium': 13, \n", + " 'Netherlands': 52, \n", + " 'Sweden': 54, \n", + " 'Ireland': 5\n", + "}\n", "tons_herring_eaten = pd.Series(raw_data)\n", "print(tons_herring_eaten)\n", "```\n", @@ -789,8 +799,10 @@ "#### 4. Merging dataframes \n", "```python\n", "# Note the row order is different this time:\n", - "more_foods = pd.DataFrame(index=['Belgium', 'Germany', 'Ireland', 'Netherlands', 'Sweden', 'Switzerland'],\n", - " data={'Garlic': [29, 22, 5, 15, 9, 64]})\n", + "more_foods = pd.DataFrame(\n", + " index=['Belgium', 'Germany', 'Ireland', 'Netherlands', 'Sweden', 'Switzerland'],\n", + " data={'Garlic': [29, 22, 5, 15, 9, 64]},\n", + ")\n", "print(food_consumed)\n", "print(more_foods)\n", "# Merge 'more_foods' into the 'food_consumed' data frame. Merging works, even if row order is not the same!\n", @@ -813,8 +825,14 @@ "#### 5. Adding a new row\n", "```python\n", "# Collect the new data in a Series. Note that 'Tea' is (intentionally) missing!\n", - "portugal = pd.Series({'Coffee': 72, 'Herring': 20, 'Yoghurt': 6, 'Garlic': 89},\n", - " name = 'Portugal')\n", + "portugal = pd.Series(\n", + " data = {\n", + " 'Coffee': 72, \n", + " 'Herring': 20, \n", + " 'Yoghurt': 6, \n", + " 'Garlic': 89},\n", + " name = 'Portugal'\n", + ")\n", "\n", "food_consumed = food_consumed.append(portugal)\n", "# See the missing value created?\n", @@ -918,10 +936,12 @@ "\n", "# or, you can even specify the web address for the file\n", "filename = \"https://yint.org/static/colour-reference.xlsx\"\n", - "colour_data = pd.read_excel(filename, \n", - " sheet_name='Sheet1', \n", - " skiprows=0, \n", - " index_col=0)\n", + "colour_data = pd.read_excel(\n", + " filename, \n", + " sheet_name='Sheet1', \n", + " skiprows=0, \n", + " index_col=0,\n", + ")\n", "print(colour_data)\n", "```\n", "\n", From ca83249a79d00602db6c55f99c0fae046c883bf2 Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Wed, 22 Sep 2021 10:10:38 +0000 Subject: [PATCH 126/134] More layout tweaks --- Module-12-interactive.ipynb | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/Module-12-interactive.ipynb b/Module-12-interactive.ipynb index 3d9b816..2774aee 100644 --- a/Module-12-interactive.ipynb +++ b/Module-12-interactive.ipynb @@ -830,7 +830,8 @@ " 'Coffee': 72, \n", " 'Herring': 20, \n", " 'Yoghurt': 6, \n", - " 'Garlic': 89},\n", + " 'Garlic': 89,\n", + " },\n", " name = 'Portugal'\n", ")\n", "\n", From 3f82c6ae4c16cc05a2343d5eb73c5a2f19442317 Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Wed, 6 Oct 2021 07:48:49 +0000 Subject: [PATCH 127/134] Tweaks to the 13th notebook. --- Module-13-interactive.ipynb | 26 +++++--------------------- 1 file changed, 5 insertions(+), 21 deletions(-) diff --git a/Module-13-interactive.ipynb b/Module-13-interactive.ipynb index 0acbb03..8f1ea86 100644 --- a/Module-13-interactive.ipynb +++ b/Module-13-interactive.ipynb @@ -56,7 +56,7 @@ "source": [ "## A general work flow for any project where you deal with data\n", "\n", - "*** After years of experience, and working with data you will find your own approach. ***\n", + "***After years of experience, and working with data you will find your own approach.***\n", "\n", "Here is my 6-step approach (not linear, but iterative): **Define**, **Get**, **Explore**, **Clean**, **Manipulate**, **Communicate**\n", "\n", @@ -166,7 +166,6 @@ "outputs": [], "source": [ "# Loading the data from a local file\n", - "import os\n", "import pandas as pd\n", "\n", "# If you have saved the file already to your computer:\n", @@ -1150,7 +1149,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ @@ -1163,27 +1161,13 @@ "execution_count": null, "metadata": {}, "outputs": [], - "source": [ - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# IGNORE this. Execute this cell to load the notebook's style sheet.\n", - "from IPython.core.display import HTML\n", - "css_file = './images/style.css'\n", - "HTML(open(css_file, \"r\").read())" - ] + "source": [] } ], "metadata": { "hide_input": false, "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, @@ -1197,7 +1181,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.9" + "version": "3.9.6" }, "toc": { "base_numbering": "1", @@ -1248,5 +1232,5 @@ } }, "nbformat": 4, - "nbformat_minor": 2 + "nbformat_minor": 4 } From 18ab21263c6b9e0a22d7303b222e030e7bf2109e Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Wed, 6 Oct 2021 08:57:11 +0000 Subject: [PATCH 128/134] Updated notebook 13 to use Plotly instead of matplotlib. --- Module-13-interactive-plotly.ipynb | 1267 ++++++++++++++++++++++++++++ 1 file changed, 1267 insertions(+) create mode 100644 Module-13-interactive-plotly.ipynb diff --git a/Module-13-interactive-plotly.ipynb b/Module-13-interactive-plotly.ipynb new file mode 100644 index 0000000..d86f7e9 --- /dev/null +++ b/Module-13-interactive-plotly.ipynb @@ -0,0 +1,1267 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "toc": true + }, + "source": [ + "

    Table of Contents

    \n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "> All content here is under a Creative Commons Attribution [CC-BY 4.0](https://creativecommons.org/licenses/by/4.0/) and all source code is released under a [BSD-2 clause license](https://en.wikipedia.org/wiki/BSD_licenses).\n", + ">\n", + ">Please reuse, remix, revise, and [reshare this content](https://github.com/kgdunn/python-basic-notebooks) in any way, keeping this notice." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Course overview\n", + "\n", + "This is the third module of several (11, 12, 13, 14, 15 and 16), which refocuses the course material in the [prior 10 modules](https://github.com/kgdunn/python-basic-notebooks) in a slightly different way. It places more emphasis on\n", + "\n", + "* dealing with data: importing, merging, filtering;\n", + "* calculations from the data;\n", + "* visualization of it.\n", + "\n", + "In short: ***how to extract value from your data***.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Module 13 Overview\n", + "\n", + "This is the third of 6 modules. In this module we will cover\n", + "\n", + "* Becoming more comfortable with Pandas data processing\n", + "* Basic plotting with Pandas\n", + "\n", + "**Requirements before starting**\n", + "\n", + "* Have your Python installation working as you had for modules 11 and 12, and also the Pandas and Plotly libraries installed." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## A general work flow for any project where you deal with data\n", + "\n", + "***After years of experience, and working with data you will find your own approach.***\n", + "\n", + "Here is my 6-step approach (not linear, but iterative): **Define**, **Get**, **Explore**, **Clean**, **Manipulate**, **Communicate**\n", + "\n", + "1. **Define**/clarify the *objective*. Write down exactly what you need to deliver to have the project/assignment considered as completed.\n", + "\n", + " Then your next steps become clear.\n", + " \n", + "2. Look for and **get** your data (or it will be given to you by a colleague). Since you have your objective clarified, it is clearer now which data, and how much data you need.\n", + "\n", + "3. Then start looking at the data. Are the data what we expect? This is the **explore** step. Use plots and table summaries.\n", + "\n", + "4. **Clean** up your data. This step and the prior step are iterative. As you explore your data you notice problems, bad data, you ask questions, you gain a bit of insight into the data. You clean, and re-explore, but always with the goal(s) in mind. Or perhaps you realize already this isn't the right data to reach your objective. You need other data, so you iterate.\n", + "\n", + "5. Modifying, making calculations from, and **manipulate** the data. This step is also called modeling, if you are building models, but sometimes you are simply summarizing your data to get the objective solved.\n", + "\n", + "6. From the data models and summaries and plots you start extracting the insights and conclusions you were looking for. Again, you can go back to any of the prior steps if you realize you need that to better achieve your goal(s). You **communicate** clear visualizations to your colleagues, with crisp, short text explanations that meet the objectives.\n", + "\n", + "___\n", + "\n", + "The above work flow (also called a '*pipeline*') is not new or unique to this course. Other people have written about similar approaches:\n", + "\n", + "* Garrett Grolemund and Hadley Wickham in their book on R for Data Science have this diagram (from this part of their book). It matches the above, with slightly different names for the steps. It misses, in my opinion, the most important step of ***defining your goal*** first.\n", + "\n", + "\n", + "___\n", + "* Hilary Mason and Chris Wiggins in their article on A Taxonomy of Data Science describe their 5 steps in detail:\n", + " 1. **Obtain**: pointing and clicking does not scale. In other words, pointing and clicking in Excel, Minitab, or similar software is OK for small data/quick analysis, but does not scale to large data, nor repeated data analysis.\n", + " 2. **Scrub**: the world is a messy place\n", + " 3. **Explore**: you can see a lot by looking\n", + " 4. **Models**: always bad, sometimes ugly\n", + " 5. **Interpret**: \"the purpose of computing is insight, not numbers.\"\n", + " \n", + " You can read their article, as well as this view on it, which is bit more lighthearted.\n", + " \n", + "___\n", + "\n", + "What has been your approach so far?" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Visualization with Pandas\n", + "\n", + "In this module we want to show how you can quickly create visualizations of your data with Pandas.\n", + "\n", + "But first, you should check if you are using the appropriate visualization tool. This website helps you select: https://www.data-to-viz.com\n", + "\n", + "In this module we will consider:\n", + "\n", + "\n", + "* box plots\n", + "* bar plots (histograms only; general bar plots will come later)\n", + "* time-series (sequence plots), \n", + "* scatter plots (plot one column against another column)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Box plots (and histograms): using the Ammonia case study\n", + "\n", + "We will implement the 6-step workflow suggested above.\n", + "\n", + "\n", + "### Defining the problem (step 1)\n", + "Our (1) **objective** is to \n", + "\n", + ">Describe what time-based trends we see in the ammonia concentration of a wastewater stream. We have a single measurement, taken every six hours. \n", + "\n", + "We will first see how we can summarize the data.\n", + "\n", + "### Getting the data (step 2)\n", + "\n", + "The next step is to (2) **get** the data. We have a data file from [this website](https://openmv.net/info/ammonia) where there is 1 column of numbers and several rows of ammonia measurements.\n", + "\n", + "### Overview of remaining steps\n", + "\n", + "Step 3 and 4 of exploring the data are often iterative and can happen interchangeably. We will (3) **explore** the data and see if our knowledge that ammonia concentrations should be in the range of 15 to 50 mmol/L is true. We might have to sometimes (4) **clean** up the data if there are problems.\n", + "\n", + "We will also summarize the data by doing various calculations, also called (5) **manipulations**, and we will (6) **communicate** what we see with plots." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's get started. There are 3 ways to **get** the data:\n", + "1. Download the file to your computer\n", + "2. Read the file directly from the website (no proxy server)\n", + "3. Read the file directly from the website (you are behind a proxy server)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Import the plotly library\n", + "import plotly.graph_objects as go\n", + "import plotly.io as pio\n", + "pio.renderers.default = \"iframe\" # \"notebook\" # jupyterlab" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "pd.options.plotting.backend = \"plotly\"" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Loading the data from a local file, if you have it saved to your own computer\n", + "data_file = r'C:\\location\\of\\file\\ammonia.csv'\n", + "waste = pd.read_csv(data_file)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Read the CSV file directly from a web server:\n", + "import pandas as pd\n", + "waste = pd.read_csv('https://openmv.net/file/ammonia.csv')\n", + "\n", + "# If you are on a work computer behind a proxy server, you\n", + "# have to take a few more steps. Uncomment these lines of code.\n", + "#\n", + "# import io\n", + "# import requests\n", + "# proxyDict = {\"http\" : \"http://replace.with.proxy.address:port\"}\n", + "# url = \"http://openmv.net/file/ammonia.csv\"\n", + "# s = requests.get(url, proxies=proxyDict).content\n", + "# web_dataset = io.StringIO(s.decode('utf-8'))\n", + "# waste = pd.read_csv(web_dataset)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Show only the first few lines of the data table (by default it will show 5 lines)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "waste" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Print the last 10 rows of the data to the screen:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Exploration (step 3)\n", + "\n", + "Once we have opened the data we check with the ``.head(...)`` command if our data are within the expected range. At least the first few values. Similar for the ``.tail(...)`` values.\n", + "\n", + "Those two commands are always good to check first.\n", + "\n", + "Now we are ready to move on, to explore further with the ``.describe(...)`` command." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Run this single line of code, and answer the questions below\n", + "waste.describe()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Check your knowledge\n", + "\n", + "1. There are \\_\\_\\_\\_\\_\\_ rows of data. Measured at 6 hours apart, this represents \\_\\_\\_\\_\\_\\_ days of sensor readings.\n", + "2. We expected ammonia concentrations to typically be in the range of 15 to 50 mmol/L. Is that the case from the description?\n", + "3. What is the average ammonia concentration?\n", + "4. Sort the ammonia values from low to how, and store the result in a new variable called ``ammonia_sorted``.\n", + "\n", + "4. What does the 25th percentile mean? Below the 25th percentile value we will find \\_\\_\\_\\_% of the values, and above the 25th percentile we find \\_\\_\\_\\_% of the values. In this case that means the 25th percentile will be close to value of the 360th entry in the sorted vector of data. Try it:\n", + "\n", + " ``ammonia_sorted[358:362]``\n", + "\n", + "5. What does the 75th percentile mean? Below the 75th percentile value we will find \\_\\_\\_\\_% of the values, and above the 75th percentile we find \\_\\_\\_\\_% of the values. In this case that means the 75th percentile will be close to value of the 1080th entry in the sorted vector of data. Try it:\n", + "\n", + " ``ammonia_sorted[1078:1082]``\n", + "\n", + "6. So therefore: between the 25th percentile and the 75th percentile, we will find \\_\\_\\_\\_% of the values in our vector. \n", + "\n", + "7. Given this knowledge, does this match with the expectation we have that our Ammonia concentration values should lie between 15 to 50 mmol/L?\n", + "\n", + "And there is the key reason why you are given the 25th and 75th percentile values. Half of the data in the sorted data vector lie between these two values. 25% of the data lie below the 25th percentile, and the other 25% lie above the 75th percentile, and the bulk of the data lie between these two values." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Add your code here to answer the above questions.\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Introducing the box plot\n", + "\n", + "We have looked at the extremes with ``.head()`` and ``.tail()``, and we have learned about the mean and the median. \n", + "\n", + "What about the **typical** values? What do we even mean by _typical_ or _usual_ or _common_ values? Could we use the 25th and 75th percentiles to help guide us?\n", + "\n", + "One way to get a feel for that is to plot these numbers: 25th, 50th and 75th percentiles. Let's see how, by using a **boxplot**." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "waste.boxplot()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In general, it is worth taking a look at the documentation for the function you are using here. This is available on the Pandas website:\n", + "\n", + "https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.boxplot.html\n", + "\n", + "which you can quickly find by searching for `pandas boxplot`, and the first link as result will likely be the one above." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The boxplot gives you an idea of the distribution, the spread, of the data.\n", + "\n", + "The key point is the orange center line, the line that splits the centre square (actually it is a rectangle, but it looks squarish). That horizontal line is the median.\n", + "\n", + "It is surprising to see that middle chunk, that middle 50% of the sorted data values fall in such a narrow range of the rectangle.\n", + "![alt=\"Boxplot for the percentiles](https://raw.githubusercontent.com/kgdunn/python-basic-notebooks/master/images/summarizing-data/percentiles-ammonia.png)\n", + "\n", + " The bottom 25% of the data falls below the box, and the top 25% of the data falls above the box. That is indicated to some extent by the whiskers, the lines leaving the middle square/rectangle shape. The whiskers tell how much spread there is in our data. We we see 2 single circles below the bottom whisker. These are likely *outliers*, data which are unusual, given the context of the rest of the data. More about *outliers* later.\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now let us try plotting a histogram of these same data.\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "waste.hist()\n", + "\n", + "# Search for the documentation for this function. Adjust the number of bins to 30.\n", + "\n", + "# Add code here for a histogram with 30 bins." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Make the figure less wide and less high:\n", + "waste.hist(width=500, height=300)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# AIM: create a histogram, with extra annotations\n", + "# `fig` is a Plotly figure:\n", + "fig = waste.hist(nbins=30)\n", + "\n", + "# With this variable you can further manipulate the plot. Use it, for example, to add an x-axis label:\n", + "fig.update_layout(xaxis_title_text='Ammonia concentration [mmol/L]')\n", + "# \n", + "# Update the y-axis label here:\n", + "\n", + "\n", + "\n", + "# Superimpose the 25th and the 75th percentiles as vertical lines (vlines) on the histogram\n", + "fig.add_vline(x=waste['Ammonia'].quantile(0.25), line_color=\"red\", line_width=3, line_dash='solid')\n", + "fig.add_vline(x=waste['Ammonia'].quantile(0.75), line_color=\"red\", line_width=3, line_dash='solid' )\n", + "fig.add_vline(\n", + " x=waste['Ammonia'].quantile(0.50), \n", + " line_color=\"orange\", \n", + " line_width=3, \n", + " annotation_text=\"Median\", \n", + " line_dash='longdash') # 'dot', 'dash', 'longdash', 'dashdot', 'longdashdot'\n", + "\n", + "\n", + "# Make the range bigger (e.g. to match requirements in a technical report)\n", + "fig.update_layout(xaxis_range=[0, 70])\n", + "display(fig)\n", + "\n", + "# NOTE: the 0.5 quantile, is the same as the 50th percentile, is the same as the median.\n", + "print(f'The 50th percentile (also called the median) is at: {waste[\"Ammonia\"].quantile(0.5)}') " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "All of this you can get from this single table which you can create with ``.describe()``:" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Which brings us to two important points:\n", + "1. Tables **are** (despite what some people might say), a very effective form of summarizing data\n", + "2. Start your data analysis with the ``.describe()`` function to get a (tabular) feel for your data.\n", + "\n", + "\n", + "### Looking ahead\n", + "\n", + "We have not solved our complete objective yet. Scroll up, and recall what we needed to do: \"*describe what **time-based** trends we see in the ammonia concentration of a wastewater stream*\". We will look at that next.\n", + "\n", + "### Summary\n", + "\n", + "We have learned quite a bit in this section so far:\n", + "\n", + "* head and tail of a data set\n", + "* median\n", + "* spread in the data\n", + "* distribution of a data column\n", + "* box plot\n", + "* percentile" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Time-series, or a sequence plot\n", + "\n", + "\n", + "If you have a single column of data, you may see interesting trends in the sequence of numbers when plotting it. These trends are not always visible when just looking at the numbers, and they definitely cannot be seen in a box plot.\n", + "\n", + "An effective way of plotting these columns is horizontally, as a series plot, or a trace. We also call them time-series plots, if there is a second column of information indicating the corresponding time of each data point." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Below we import the data. \n", + "\n", + "* The dataset had no time-based column, so Pandas provides a simple function for creating your tie column: `pd.date_range(...)`.\n", + "* We were told the data were collected every 6 hours. \n", + "* Set that time-based column to be our ***index***. Do you [recall that term](http://yint.org/pybasic12) about a Pandas data frame?\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "waste = pd.read_csv('http://openmv.net/file/ammonia.csv')\n", + "datetimes = pd.date_range('1/1/2020', periods=waste.shape[0], freq='6H')\n", + "\n", + "print(datetimes)\n", + "# What is this \"datetimes\" variable we have just created?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "waste.set_index(datetimes, inplace=True)\n", + "\n", + "# Why \"inplace\" ?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# The code to plot the data as a time-series sequence:\n", + "fig = waste.plot.line() # you can also say: ammonia.plot()\n", + "fig" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "waste['Ammonia'].plot()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Make the plot look a bit different:\n", + "fig = waste.plot.line(\n", + " markers=True, \n", + " log_y=True, \n", + " range_y=[5, 85], \n", + " color_discrete_sequence=[\"firebrick\"],\n", + " width=800,\n", + " height=400,\n", + ")\n", + "fig.update_layout(showlegend=False)\n", + "fig.update_layout(plot_bgcolor=\"lightgrey\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "fig = go.Figure()\n", + "fig.add_trace(\n", + " go.Scatter(\n", + " x=waste.index,\n", + " y=waste['Ammonia'],\n", + " name=\"Ammonia\",\n", + " )\n", + ")\n", + "fig.update_layout(showlegend=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# The above code is the same as \n", + "waste.plot.line()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Now calculation the the 5-day moving average:\n", + "waste['Ammonia'].rolling('5D').mean()\n", + "\n", + "# OK, now plot that moving average:\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Add a rolling average on top of the raw data, to help see the signal through the noise.\n", + "\n", + "# First plot the original data\n", + "fig = go.Figure()\n", + "fig.add_trace(\n", + " go.Scatter(\n", + " x=waste.index,\n", + " y=waste['Ammonia'],\n", + " name=\"Ammonia concentration\",\n", + " line_color=\"rosybrown\",\n", + " )\n", + ")\n", + "\n", + "# Then add the moving average on top\n", + "fig.add_trace(\n", + " go.Scatter(\n", + " x=waste.index,\n", + " y=waste['Ammonia'].rolling('5D').mean(),\n", + " name=\"5 day moving average\",\n", + " line_color=\"black\",\n", + " )\n", + ")\n", + "fig.update_layout(showlegend=True)\n", + "fig.show()\n", + "\n", + "# Later on this code will make more sense; for now, hopefully it is useful in your daily work." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* Try different rolling window sizes: `'12H'` (12 hours), `'2D'` (2 days), `'30D'`, etc.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## DataFrame operations\n", + "\n", + "Last time we looked at some basic data frame operations. Let's recap some important ones.\n", + "\n", + "* adding rows, \n", + "* deleting rows,\n", + "* merging data frames.\n", + "\n", + "We will use this made-up data set, showing how much food is used by each country. You can replace these data with numbers and columns and rows which make sense to your application.\n", + "\n", + ">```python\n", + ">import pandas as pd\n", + ">data = {'Herring': [27, 13, 52, 54, 5, 19], \n", + "> 'Coffee': [90, 94, 96, 97, 30, 73],\n", + "> 'Tea': [88, 48, 98, 93, 99, 88]}\n", + ">countries = ['Germany', 'Belgium', 'Netherlands', 'Sweden', 'Ireland', 'Switzerland']\n", + ">food_consumed = pd.DataFrame(data, index=countries)\n", + ">\n", + ">print(data)\n", + ">print(countries)\n", + ">print(type(data))\n", + ">print(type(countries))\n", + ">print(type(food_consumed))\n", + ">food_consumed\n", + ">```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "data = {'Herring': [27, 13, 52, 54, 5, 19], \n", + " 'Coffee': [90, 94, 96, 97, 30, 73],\n", + " 'Tea': [88, 48, 98, 93, 99, 88]}\n", + "countries = ['Germany', 'Belgium', 'Netherlands', 'Sweden', 'Ireland', 'Switzerland']\n", + "food_consumed = pd.DataFrame(data, index=countries)\n", + "\n", + "print(data)\n", + "print(countries)\n", + "print(type(data))\n", + "print(type(countries))\n", + "print(type(food_consumed))\n", + "food_consumed" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Getting an idea about your data first: you are now very comfortable with these\n", + "\n", + "```python\n", + "# The first rows:\n", + "food_consumed.head()\n", + "\n", + "# The last rows:\n", + "food_consumed.tail()\n", + "\n", + "# Some basic statistics\n", + "food_consumed.describe()\n", + "\n", + "# Some information about the data structure: missing values, memory usage, etc\n", + "food_consumed.info()\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### 1. Shape of a data frame\n", + "\n", + "```python\n", + "# There were 6 countries, and 3 food types. Verify:\n", + "food_consumed.shape\n", + "\n", + "# Transposed and then shape:\n", + "food_consumed.T.shape\n", + "\n", + "# Interesting: what shapes do summary vectors have?\n", + "food_consumed.mean().shape\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### 2. Unique entries\n", + "```python\n", + "food_consumed['Tea'].unique()\n", + "\n", + "# Unique names of the rows: (not so useful in this example, because they are already unique)\n", + "food_consumed.index.unique()\n", + "\n", + "# Get counts (n) of the unique entries:\n", + "food_consumed.nunique() # in each column \n", + "food_consumed.nunique(axis=1) # in each row\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### 3. Add a new column\n", + "```python\n", + "# Works just like a dictionary!\n", + "# If the data are in the same row order\n", + "food_consumed['Yoghurt'] = [30, 20, 53, 2, 3, 48]\n", + "print(food_consumed)\n", + "display(food_consumed)\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### 4. Merging dataframes \n", + "```python\n", + "# Note the row order is different this time:\n", + "more_foods = pd.DataFrame(index=['Belgium', 'Germany', 'Ireland', 'Netherlands', 'Sweden', 'Switzerland'],\n", + " data={'Garlic': [29, 22, 5, 15, 9, 64]})\n", + "print(food_consumed)\n", + "print(more_foods)\n", + "# Merge 'more_foods' into the 'food_consumed' data frame. Merging works, even if row order is not the same!\n", + "food_consumed = food_consumed.join(more_foods)\n", + "food_consumed\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### 5. Adding a new row\n", + "```python\n", + "# Collect the new data in a Series. Note that 'Tea' is (intentionally) missing!\n", + "portugal = pd.Series({'Coffee': 72, 'Herring': 20, 'Yoghurt': 6, 'Garlic': 89},\n", + " name = 'Portugal')\n", + "\n", + "food_consumed = food_consumed.append(portugal)\n", + "# See the missing value created?\n", + "print(food_consumed)\n", + "\n", + "# What happens if you run the above commands more than once?\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### 6. Delete or drop a row/column\n", + "```python\n", + "# Drop a column, and returns its values to you\n", + "coffee_column = food_consumed.pop('Coffee')\n", + "print(coffee_column)\n", + "print(food_consumed)\n", + "\n", + "# Leaves the original data untouched; returns only \n", + "# a copy, with those columns removed\n", + "food_consumed.drop(['Garlic', 'Yoghurt'], axis=1)\n", + "print(food_consumed)\n", + "\n", + "# Leaves the original data untouched; returns only \n", + "# a copy, with those rows removed. \n", + "non_EU_consumption = food_consumed.drop(['Switzerland', ], axis=0)\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### 7. Remove rows with missing values\n", + "```python\n", + "# Returns a COPY of the array, with no missing values:\n", + "cleaned_data = food_consumed.dropna() \n", + "\n", + "# Makes the deletion inplace; you do not not have to assign the output to a new variable.\n", + "# Inplace is not always faster!\n", + "food_consumed.dropna(inplace=True) \n", + "\n", + "# Remove only rows where all values are missing:\n", + "food_consumed.dropna(how='all')\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### 8. Sort the data\n", + "\n", + "```python\n", + "food_consumed.sort_values(by=\"Garlic\")\n", + "food_consumed.sort_values(by=\"Garlic\", inplace=True)\n", + "food_consumed.sort_values(by=\"Garlic\", inplace=True, ascending=False)\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Scatter plots\n", + "\n", + "\n", + "Scatter plots are widely used and easy to understand. ***When should you use a scatter plot?*** When your goal is to draw the reader's attention between the relationship of 2 (or more) variables.\n", + "\n", + "* Data tables also show relationships between two or more variables, but the trends are sometimes harder to see.\n", + "* A time-series plot shows the relationship between time and another variable. So also two variables, but one of which is time. \n", + "\n", + "In a scatter plot we use 2 sets of axes, at 90 degrees to each other. We place a marker at the intersection of the values shown on the horizontal (x) axis and vertical (y) axis. \n", + "\n", + "\n", + "* Most often **variable 1 and 2** (also called the dimensions) will be continuous variables. Or at least [***ordinal variables***](https://en.wikipedia.org/wiki/Ordinal_data). You will seldom use categorical data on the $x$ and $y$ axes.\n", + "\n", + "* You can add a **3rd dimension**: the marker's size indicates the value of a 3rd variable. It makes sense to use a numeric variable here, not a categorical variable.\n", + "\n", + "* You can add a **4th dimension**: the marker's colour indicates the value of a 4th variable: usually this will be a categorical variable. E.g. red = category 1, blue = category 2, green = category 3. Continuous numeric transitions are hard to map onto colour. However it is possible to use transitions, e.g. values from low to high are shown on a sliding gray scale\n", + "\n", + "* You can add a **5th dimension**: the marker's shape can indicate the discrete values of a 5th categorical variable. E.g. circles = category 1, squares = category 2, triangles = category 3, etc.\n", + "\n", + "In summary:\n", + "\n", + "* marker's size = numeric variable\n", + "* marker's colour = categorical, maybe numeric, especially with a gray-scale\n", + "* marker's shape = can only be categorical\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's use the Bioreactor yields data set. There is information about it here:\n", + "\n", + "http://openmv.net/info/bioreactor-yields\n", + "\n", + "\n", + "Read in the data into a Pandas data frame, and use the `.describe` function to check it:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Standard imports required to show plots and tables \n", + "import pandas as pd\n", + "\n", + "yields = pd.read_csv('http://openmv.net/file/bioreactor-yields.csv')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Are all 5 columns shown in the summary? Modify the `.describe` function call to show information on all 5 columns." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now plot the data as a scatter plot, using this code as a guide. We want to see if there is a relationship between temperature and yield." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "fig = yields.plot.scatter(\n", + " x='temperature', \n", + " y='yield',\n", + " width=500,\n", + " height=400,\n", + " title='Yield [%] as a function of temperature [°C]',\n", + ")\n", + "fig.update_layout(xaxis_title_text='Temperature [°C]')\n", + "fig.update_layout(yaxis_title_text='Yield [%]')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The objective of this data file was to check if there is a relationship between `Temperature` and `Yield`. Visually that is confirmed.\n", + "\n", + "Let us also quantify it with the correlation value we introduced above. Calculate the correlation with this code:\n", + "\n", + "```python\n", + "\n", + "display(yields.corr())\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "display(yields.corr())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The correlation value is $r=-0.746$, essentially negative 75%.\n", + "\n", + "* The correlation value is ***symmetrical***: the correlation between temperature and yield is the same as between yield and temperature.\n", + "* Interesting tip: the $R^2$ value from a regression model is that same value squared: in other words, $R^2 = (-0.746356)^2 = 0.5570$, or roughly 55.7%.\n", + "\n", + "> Think of the implication of that: you can calculate the $R^2$ value - *the* value often used to judge how good a linear regression is - without calculating the linear regression model!! Further, it shows that for linear regression it does not matter which variable is on your $x$-axis, or your $y$-axis: the $R^2$ value is the same.\n", + "\n", + "> If you understand these 2 points, you will understand why $R^2$ is not a great number at all to judge a linear regression model." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Adding more dimensions to your scatter plots\n", + "\n", + "We saw that we can alter the size, colour, and shape of the marker to indicate a 3rd, 4th or 5th dimension.\n", + "\n", + "We consider changing the markers' colour and shape in the next piece of code.\n", + "\n", + "Colour and shape are perfect for categorical variables, but unfortunately in this data set we only have 1 categorical variable. So use it for both the marker's shape (symbol) and colour." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "baffles = yields['baffles'].values\n", + "print(baffles)\n", + "# So we see the \"baffles\" column is actually text: \"Yes\" or \"No\". \n", + "# We call this a categorical variable." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Use the \"baffles\" column to pick colours\n", + "fig = yields.plot.scatter(\n", + " x='temperature', \n", + " y='yield',\n", + " width=500,\n", + " height=400,\n", + " title='Yield [%] as a function of temperature [°C]; colours indicate presence/absense of baffles',\n", + " color=\"baffles\",\n", + " symbol=\"baffles\",\n", + ")\n", + "fig.update_layout(xaxis_title_text='Temperature [°C]')\n", + "fig.update_layout(yaxis_title_text='Yield [%]')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In the code below we want to make the marker size proportional to the speed of the impeller. \n", + "\n", + "The `size` input of the `.scatter` function can be specified as the name of the column to determine the marker size:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Modify the speed column to be more \"spread out\" in size\n", + "yields['Speed(plot)'] = (yields['speed']-3200).pow(2) / 1000\n", + "\n", + "fig = yields.plot.scatter(\n", + " x='temperature', \n", + " y='yield',\n", + " width=500,\n", + " height=400,\n", + " title='Yield [%] as a function of temperature [°C]; colours for baffles; size related to impeller speed',\n", + " color=\"baffles\", \n", + " size='Speed(plot)',\n", + ")\n", + "fig.update_layout(xaxis_title_text='Temperature [°C]')\n", + "fig.update_layout(yaxis_title_text='Yield [%]')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Saving your plots\n", + "\n", + "Once you have created your plot you can of course include it in a document. Click on the \"camera\" icon at the top right hover area." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Demonstration time\n", + "\n", + "Some examples will be shown on what you can do with data frames.\n", + "\n", + "* Dashboards\n", + "* Calculations" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Diversion: how is time represented in Python?\n", + "\n", + "Try the following in the space below:\n", + "```python\n", + "from datetime import datetime\n", + "now = datetime.now()\n", + "\n", + "# Do some things with `now`:\n", + "print(now)\n", + "print(now.year)\n", + "print(f\"Which weekday is it today? It is day: {now.isoweekday()} in the week\")\n", + "print(now.second)\n", + "print(now.seconds) # use singular\n", + "```\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "After trying the above, try these lines below. Comment out the lines that cause errors.\n", + "\n", + "```python\n", + "later = datetime.now()\n", + "print(later)\n", + "print(type(later))\n", + "print(later - now)\n", + "print(now - later) \n", + "print(now + later)\n", + "\n", + "delta = later - now\n", + "print(delta)\n", + "print(type(delta))\n", + "print(f\"There were this many seconds between 'now' and 'later': {delta.total_seconds()}\")\n", + "print(later + delta)\n", + "\n", + "sometime_in_the_future = later + delta*1000\n", + "print(sometime_in_the_future)\n", + "print(sometime_in_the_future - now)\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + " " + ] + } + ], + "metadata": { + "hide_input": false, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.6" + }, + "toc": { + "base_numbering": "1", + "nav_menu": {}, + "number_sections": true, + "sideBar": true, + "skip_h1_title": true, + "title_cell": "Table of Contents", + "title_sidebar": "Contents", + "toc_cell": true, + "toc_position": { + "height": "calc(100% - 180px)", + "left": "10px", + "top": "150px", + "width": "348.969px" + }, + "toc_section_display": true, + "toc_window_display": true + }, + "varInspector": { + "cols": { + "lenName": 16, + "lenType": 16, + "lenVar": 40 + }, + "kernels_config": { + "python": { + "delete_cmd_postfix": "", + "delete_cmd_prefix": "del ", + "library": "var_list.py", + "varRefreshCmd": "print(var_dic_list())" + }, + "r": { + "delete_cmd_postfix": ") ", + "delete_cmd_prefix": "rm(", + "library": "var_list.r", + "varRefreshCmd": "cat(var_dic_list()) " + } + }, + "types_to_exclude": [ + "module", + "function", + "builtin_function_or_method", + "instance", + "_Feature" + ], + "window_display": false + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} From 6b60c3f94099f76f2ae731f51586128a68e418ce Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Wed, 6 Oct 2021 15:24:11 +0000 Subject: [PATCH 129/134] Changes after using the notebook. --- Module-13-interactive-plotly.ipynb | 86 ++++++++++++++++++++++-------- 1 file changed, 64 insertions(+), 22 deletions(-) diff --git a/Module-13-interactive-plotly.ipynb b/Module-13-interactive-plotly.ipynb index d86f7e9..891f1e7 100644 --- a/Module-13-interactive-plotly.ipynb +++ b/Module-13-interactive-plotly.ipynb @@ -369,8 +369,7 @@ "waste.hist()\n", "\n", "# Search for the documentation for this function. Adjust the number of bins to 30.\n", - "\n", - "# Add code here for a histogram with 30 bins." + "# Add code here for a histogram with 30 bins.\n" ] }, { @@ -380,7 +379,7 @@ "outputs": [], "source": [ "# Make the figure less wide and less high:\n", - "waste.hist(width=500, height=300)" + "waste.hist(width=400, height=400)" ] }, { @@ -401,8 +400,9 @@ "\n", "\n", "# Superimpose the 25th and the 75th percentiles as vertical lines (vlines) on the histogram\n", - "fig.add_vline(x=waste['Ammonia'].quantile(0.25), line_color=\"red\", line_width=3, line_dash='solid')\n", - "fig.add_vline(x=waste['Ammonia'].quantile(0.75), line_color=\"red\", line_width=3, line_dash='solid' )\n", + "fig.add_vline(x=waste['Ammonia'].quantile(0.25), line_color=\"purple\", line_width=1, line_dash='solid')\n", + "fig.add_vline(x=waste['Ammonia'].quantile(0.75), line_color=\"purple\", line_width=1, line_dash='solid' )\n", + "fig.add_hline(y= 80, line_dash='longdash', annotation_text=\"Cutoff\")\n", "fig.add_vline(\n", " x=waste['Ammonia'].quantile(0.50), \n", " line_color=\"orange\", \n", @@ -412,7 +412,8 @@ "\n", "\n", "# Make the range bigger (e.g. to match requirements in a technical report)\n", - "fig.update_layout(xaxis_range=[0, 70])\n", + "fig.update_layout(xaxis_range=[0, 70],\n", + " yaxis_range=[0, 200])\n", "display(fig)\n", "\n", "# NOTE: the 0.5 quantile, is the same as the 50th percentile, is the same as the median.\n", @@ -475,6 +476,15 @@ "\n" ] }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "waste.shape[0]" + ] + }, { "cell_type": "code", "execution_count": null, @@ -488,6 +498,13 @@ "# What is this \"datetimes\" variable we have just created?" ] }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, { "cell_type": "code", "execution_count": null, @@ -495,7 +512,6 @@ "outputs": [], "source": [ "waste.set_index(datetimes, inplace=True)\n", - "\n", "# Why \"inplace\" ?" ] }, @@ -506,7 +522,7 @@ "outputs": [], "source": [ "# The code to plot the data as a time-series sequence:\n", - "fig = waste.plot.line() # you can also say: ammonia.plot()\n", + "fig = waste.plot.line() # you can also say: waste.plot()\n", "fig" ] }, @@ -516,7 +532,7 @@ "metadata": {}, "outputs": [], "source": [ - "waste['Ammonia'].plot()" + "waste.plot()" ] }, { @@ -530,12 +546,12 @@ " markers=True, \n", " log_y=True, \n", " range_y=[5, 85], \n", - " color_discrete_sequence=[\"firebrick\"],\n", + " color_discrete_sequence=[\"orange\"],\n", " width=800,\n", " height=400,\n", ")\n", "fig.update_layout(showlegend=False)\n", - "fig.update_layout(plot_bgcolor=\"lightgrey\")" + "fig.update_layout(plot_bgcolor=\"black\")" ] }, { @@ -574,10 +590,16 @@ "# Now calculation the the 5-day moving average:\n", "waste['Ammonia'].rolling('5D').mean()\n", "\n", - "# OK, now plot that moving average:\n", - "\n" + "# OK, now plot that moving average:\n" ] }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, { "cell_type": "code", "execution_count": null, @@ -601,7 +623,7 @@ "fig.add_trace(\n", " go.Scatter(\n", " x=waste.index,\n", - " y=waste['Ammonia'].rolling('5D').mean(),\n", + " y=waste['Ammonia'].rolling('5D', center=True).mean(),\n", " name=\"5 day moving average\",\n", " line_color=\"black\",\n", " )\n", @@ -722,7 +744,9 @@ "execution_count": null, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "food_consumed" + ] }, { "cell_type": "markdown", @@ -773,7 +797,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "#### 4. Merging dataframes \n", + "#### 4. Joining dataframes \n", "```python\n", "# Note the row order is different this time:\n", "more_foods = pd.DataFrame(index=['Belgium', 'Germany', 'Ireland', 'Netherlands', 'Sweden', 'Switzerland'],\n", @@ -958,7 +982,9 @@ "execution_count": null, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "yields" + ] }, { "cell_type": "markdown", @@ -1040,12 +1066,19 @@ "metadata": {}, "outputs": [], "source": [ - "baffles = yields['baffles'].values\n", - "print(baffles)\n", + "yields['baffles'].unique()\n", + "\n", "# So we see the \"baffles\" column is actually text: \"Yes\" or \"No\". \n", "# We call this a categorical variable." ] }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, { "cell_type": "code", "execution_count": null, @@ -1061,6 +1094,7 @@ " title='Yield [%] as a function of temperature [°C]; colours indicate presence/absense of baffles',\n", " color=\"baffles\",\n", " symbol=\"baffles\",\n", + " size=\"speed\",\n", ")\n", "fig.update_layout(xaxis_title_text='Temperature [°C]')\n", "fig.update_layout(yaxis_title_text='Yield [%]')" @@ -1083,7 +1117,15 @@ "source": [ "# Modify the speed column to be more \"spread out\" in size\n", "yields['Speed(plot)'] = (yields['speed']-3200).pow(2) / 1000\n", - "\n", + "yields" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ "fig = yields.plot.scatter(\n", " x='temperature', \n", " y='yield',\n", @@ -1198,7 +1240,7 @@ "metadata": { "hide_input": false, "kernelspec": { - "display_name": "Python 3 (ipykernel)", + "display_name": "Python 3", "language": "python", "name": "python3" }, @@ -1212,7 +1254,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.6" + "version": "3.7.10" }, "toc": { "base_numbering": "1", From cdeb738e1b57d079132da1c358ef6b43f8a15dfc Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Sun, 24 Oct 2021 18:40:40 +0200 Subject: [PATCH 130/134] Added the plotly version for notebook 14. --- Module-14-interactive-plotly.ipynb | 800 +++++++++++++++++++++++++++++ 1 file changed, 800 insertions(+) create mode 100644 Module-14-interactive-plotly.ipynb diff --git a/Module-14-interactive-plotly.ipynb b/Module-14-interactive-plotly.ipynb new file mode 100644 index 0000000..6afbf26 --- /dev/null +++ b/Module-14-interactive-plotly.ipynb @@ -0,0 +1,800 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "toc": true + }, + "source": [ + "

    Table of Contents

    \n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "> All content here is under a Creative Commons Attribution [CC-BY 4.0](https://creativecommons.org/licenses/by/4.0/) and all source code is released under a [BSD-2 clause license](https://en.wikipedia.org/wiki/BSD_licenses).\n", + ">\n", + ">Please reuse, remix, revise, and [reshare this content](https://github.com/kgdunn/python-basic-notebooks) in any way, keeping this notice." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Course overview\n", + "\n", + "This is the fourth module of several (11, 12, 13, 14, 15 and 16), which refocuses the course material in the [prior 10 modules](https://github.com/kgdunn/python-basic-notebooks) in a slightly different way. It places more emphasis on\n", + "\n", + "* dealing with data: importing, merging, filtering;\n", + "* calculations from the data;\n", + "* visualization of it.\n", + "\n", + "In short: ***how to extract value from your data***.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Module 14 Overview\n", + "\n", + "In this module we will cover\n", + "\n", + "* Setting date and time stamps\n", + "* More plots with Pandas\n", + "* Filtering and grouping data\n", + "\n", + "**Requirements before starting**\n", + "\n", + "* Have your Python installation working as you had for modules 11, 12 and 13, including the Pandas library installed." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "# General import. To ensure that Plotly, and not matplotlib, is the default plotting engine\n", + "import pandas as pd\n", + "import plotly.graph_objects as go\n", + "import plotly.io as pio\n", + "pio.renderers.default = \"iframe\" # \"notebook\" # jupyterlab\n", + "pd.options.plotting.backend = \"plotly\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Date and time processing\n", + "\n", + "In the [prior module](https://yint.org/pybasic13) you learned about box plots, histogram plot, time-series (or sequence) plots, and scatter plots. We will revise some of those, and build on that knowledge a bit further.\n", + "\n", + "Start with the data from an actual plant, where we have 5 columns of measurements from a [flotation cell](https://en.wikipedia.org/wiki/Froth_flotation). Read the link if you need a quick overview of what flotation is." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "flot = pd.read_csv(\"https://openmv.net/file/flotation-cell.csv\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Some things to do with a new data set called `df`:\n", + "\n", + "* `df.head()` and `df.tail()` to check you have the right data\n", + "* `df.describe()` to get some basic statistics\n", + "* `df.info()` to see the data types\n", + "\n", + "In the space below, apply these to the data you just read in:\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next plot sequence plots of all data columns, using this command\n", + "\n", + "```python\n", + "ax = flot.plot()\n", + "```\n", + "\n", + "Notice that the x-axis is not time-based, even though there is a column in data frame called `\"Date and time\"`. So what went wrong?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "When reading in a new data frame you might need to first:\n", + "* force a column to be of the `type` of date and time, so Pandas can use it in the plots\n", + "* set that column to be the index of your data frame.\n", + "\n", + "and then you can proceed with your plotting and data analysis.\n", + "\n", + "To set a column to the right type, you can use the ``pd.to_datetime(...)`` function. Many times Pandas will get it right, but if it doesn't you can give it some help.\n", + "\n", + "So try this first below. If it works, you are lucky, and can continue.\n", + "```python\n", + "flot[\"Timestamp\"] = pd.to_datetime(flot[\"Date and time\"])\n", + "```\n", + "\n", + "Note that we created a new column. Check it with ``flot.info()`` again, to see if it is of the right type. You can of course simply overwrite your previous column." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If the conversion did not work, you could have given it some guidance.\n", + "\n", + "For example:\n", + "```python\n", + "pd.to_datetime(\"20/12/21\", yearfirst=True) # it is supposed to be 21 December 2020\n", + "pd.to_datetime(\"20/12/21\", dayfirst=True) # it is supposed to be 20 December 2021\n", + "pd.to_datetime(\"20/12/21\", format=\"%d/%m\", exact=False)\n", + "```\n", + "\n", + "For the `format` specifier, you can see all the options available from this page: https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Once you have the column correctly as a date and time stamp, you probably want this to be your data frame index.\n", + "``` python\n", + "flot=flot.set_index(\"Timestamp\")\n", + "\n", + "# and drop the original \"Date and time\" column, since we don't need it anymore\n", + "flot.drop(columns=\"Date and time\", inplace=True)\n", + "\n", + "flot.plot()\n", + "```\n", + "\n", + "Now you will see a short break in the data around 09:00 on 16 December 2004 which was not visible before." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Date and time processing: Check your understanding\n", + "\n", + "From the provided Excel file, read in the data. Convert the date and time column to the desired format:\n", + "\n", + "* assuming the date in the first row is in American format: June 01, 2018\n", + "* assuming the date in the first row is in the usual format: 06 January 2018" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Recap: boxplot\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A box plot can be shown per column in one simple line for a data frame `df`:\n", + "\n", + "```python\n", + "df.plot.box()\n", + "```\n", + "\n", + "Does it make sense to plot box plots for all columns, especially when units and orders of magnitude are so different?\n", + "\n", + "So now rather plot only the box plot for \"Upstream pH\":\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Notice that there are so many outliers beyond the whiskers. What is going on? Look at the time-based plot of that column:\n", + "\n", + "```python\n", + "df[\"name of column\"].plot.line()\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Recap: histogram\n", + "\n", + "Similar to ``df.plot.line()`` and ``df.plot.box()`` to get a line and box plot, you can also use ``df.plot.hist()`` to get a histogram. \n", + "\n", + "But this tries to put all histograms in one plot, which is not so useful. But we will see a better way below." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Recap: line plot, or sequence plot (and learning about for-loops!)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If you use this code, you will get all the line plots in the same plot:\n", + "```python\n", + "flot[\"Timestamp\"] = pd.to_datetime(flot[\"Date and time\"])\n", + "flot=flot.set_index(\"Timestamp\")\n", + "flot.plot()\n", + "```\n", + "\n", + "But if you want each plot in its own axis instead, you need to use a loop to create multiple plots:\n", + "```python\n", + "print(flot.columns)\n", + "for column in flot.columns:\n", + " print(column)\n", + " display(flot[column].plot())\n", + "```\n", + "\n", + "Pandas can only plot columns of numeric data. If the column is non-numeric, it will create an error. So to ensure the loop only goes through numeric columns, you can filter on that. Change the first lines to \n", + "\n", + "```python\n", + "flot[\"artificial column\"] = \"abc\"\n", + "flot.head()\n", + "for column in flot.select_dtypes(\"number\"):\n", + " # add the loop content here, indented appropriately\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Recap: correlation, and introducing the scatter plot matrix\n", + "\n", + "We saw the correlation matrix can be calculated with this handy one-liner:\n", + "\n", + "```python\n", + "df.corr()\n", + "```\n", + "\n", + "Do this below for the flotation data. Any interesting leads to investigate?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The scatter plot matrix is a visual tool to help create a scatter plot of each combination. The plot on the diagonal would not be an interesting scatter plot, so this is often replaced with a histogram or a kernel density estimate (kde) plot.\n", + "\n", + "Use the code below to try creating both types of plots on the diagonal:\n", + "```python\n", + "from pandas.plotting import scatter_matrix\n", + "\n", + "scatter_matrix(df, alpha = 0.2, figsize=(10, 8), diagonal = 'kde');\n", + "scatter_matrix(df, alpha = 0.2, figsize=(10, 8), diagonal = 'hist');\n", + "```\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Learn about filtering and grouping (Blender Efficiency dataset)\n", + "\n", + "\n", + "Filtering and grouping data is part of the daily work of anyone working with data. The reason is because once you have filtered the data or grouped it, then you want to calculate some statistics or create a visualization on the result. So your workflow becomes:\n", + "\n", + ">1. Import all your data;\n", + ">2. Filter or group to get a subset of the data;\n", + ">3. Do calculations and create visualizations on the subset of the data.\n", + "\n", + "\n", + "Some typical examples of filtering and grouping:\n", + "\n", + "* Filter out and keep only the data after 1 January 2018. Throw the rest away.\n", + "* Extract only the rows in the data frame where vessel V145 was used, and ignore the rest.\n", + "* Group the data by type of product (we have product name A, B, C and D). Do the same set of calculations/visualizations for each product.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The [\"Blender Efficiency\" data set](https://openmv.net/info/blender-efficiency) is related to a set of designed experiments. There are 4 factors being changed to affect the blending efficiency: \n", + "* `particle size`\n", + "* `mixer diameter`\n", + "* `mixer rotational speed`, and \n", + "* `blending time`.\n", + "\n", + "[Last time](https://yint.org/pybasic13) we mentioned 6 steps in a data workflow:\n", + "\n", + "1. **Define the objective**: understanding which factors can be changed to improve blending efficiency.\n", + "2. **Get your data**: in this example it is given to you at the web site address above.\n", + "3. **Explore** your data: use tables and plots.\n", + "4. **Clean** your data, if needed. In this case the data are pre-cleaned.\n", + "5. **Calculations and models**: later we will see how to build a regression model from these data. For now we will calculate correlations and show the results for groups.\n", + "6. **Communicate your result**: show the correlations." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Step 2 and 3: get your data and explore it\n", + "\n", + "```python\n", + "import pandas as pd\n", + "blender = pd.read_csv('http://openmv.net/file/blender-efficiency.csv')\n", + "\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Tips to explore your data.\n", + "\n", + "* Sort the table by the outcome value (the `BlendingEfficiency` column). Values from low to high. Visually, in the table, which columns appear to be related to it?\n", + "\n", + "* Is a box plot useful?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now move on to calculations and other visualizations inspired by those calculations:\n", + "\n", + "* Create and display the numeric correlation matrix. Why columns are most correlated with the outcome variable?\n", + "* Instead of plotting a scatter plot for each and every interesting correlation, rather plot a scatter plot matrix. What interesting features do you observe?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Some more models/calculations: the particle size (discrete values at 2, 5 and 8) seem to have an interesting relationship to the outcome variable.\n", + "\n", + "Let's look at this a bit more. Start with the scatter plot of just these 2 variables:\n", + "```python\n", + "blender.plot.scatter(x=\"ParticleSize\", y=\"BlendingEfficiency\")\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, we will create a subset of the data set showing just the results when the particle size is \"2\":\n", + "\n", + "```python\n", + "blender[\"ParticleSize\"] == 2\n", + "```\n", + "\n", + "will create an 'indicator' variable with `True` values where the condition is met. We only want the rows where the condition is true. \n", + "\n", + "In [module 12](https://yint.org/pybasic12#Accessing-entries), in the sub-section on \"Accessing entries\", you saw how you can do this.\n", + "```python\n", + "blender[blender[\"ParticleSize\"] == 2]\n", + "```\n", + "\n", + "returns just the 4 rows where this condition is true.\n", + "\n", + "* Try it below. \n", + "* Also, add code to return only the rows when `ParticleSize` $\\leq 5$.\n", + "* Change the filter to return rows when `ParticleSize` $> 5$. How many rows are that?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now you can do interesting things on this subset. The subset is just a regular data frame, so you can plot them or do further calculations with them.\n", + "\n", + "```python\n", + "blender[blender[\"ParticleSize\"] == 2].mean()\n", + "```\n", + "\n", + "will calculate the average of only these rows. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, calculate the average of only the \"BlendingEfficiency\" column when particle size is 2, 5 and 8. In other words, calculate 3 averages.\n", + "\n", + "You probably end up with something like this:\n", + "```python\n", + "print(blender[blender[\"ParticleSize\"] == 2][\"BlendingEfficiency\"].mean())\n", + "print(blender[blender[\"ParticleSize\"] == 5][\"BlendingEfficiency\"].mean())\n", + "print(blender[blender[\"ParticleSize\"] == 8][\"BlendingEfficiency\"].mean())\n", + "```\n", + "\n", + "Can it be done more cleanly? Perhaps you could do it in a loop?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The ``df.groupby()`` function in Panadas is a way to do that in a single line.\n", + "\n", + "```python\n", + "blender.groupby(by=\"ParticleSize\").mean() # simplify it: leave out the \"by=\"\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now go wild. Try it with different types of functions:\n", + "\n", + "* ``blender.groupby(\"ParticleSize\").std()``\n", + "* ``blender.groupby(\"ParticleSize\").max()``\n", + "* ``blender.groupby(\"ParticleSize\").plot()`` # what do you think this does? Guess before testing it!\n", + "* ``blender.groupby(\"ParticleSize\").plot.scatter(x=\"BlendingTime\", y=\"BlendingEfficiency\")``" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You will find, that if you use the plotly backend for plotting, you will notice\n", + "you don't get plots displayed if you use the code above, while with the `matplotlib` \n", + "backend it will show plots.\n", + "\n", + "\n", + "So, to use Plotly, you will need to call use `groupby` in a loop instead:\n", + "\n", + "```python\n", + "import time\n", + "for psize, subset in blender.groupby(by=\"ParticleSize\"):\n", + " print(psize)\n", + " display(subset)\n", + " subset.plot()\n", + " \n", + " # Then add code here to do something with the \"subset\" plot.\n", + " # For example, such as changing the axis titles, or figure size\n", + " \n", + " time.sleep(0.2) # pause for 200 milliseconds\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Keeping Conda up to date and installing new packages\n", + "\n", + "Newer versions of packages are released frequently. You can update your packages (libraries), with this command::\n", + "```bash\n", + "\n", + " conda update -n base conda\n", + " conda update --all\n", + "```\n", + "\n", + "### Installing a new package in your virtual environment\n", + "\n", + "You will come across people recommending different packages in Python for all sorts of interesting applications. For example, the library `seaborn` is often recommended for visualization. But you might not have it installed yet. \n", + "\n", + "This is how you can install the package called `seaborn` in your virtual environment called ``myenv``:\n", + "```bash\n", + " conda activate myenv <--- change the last word in the command to the name of your actual environment\n", + " conda install seaborn\n", + "```\n", + "\n", + "Or in one line:\n", + "```bash\n", + " conda install -n myenv seaborn\n", + "```\n", + "\n", + "\n", + "### Updating an existing package\n", + "\n", + "Similar to the above, you can update a package to the latest version. Just change ``install`` to ``update`` instead.\n", + "Or in one line:\n", + "```bash\n", + " conda update -n myenv seaborn\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Homework: Try the above steps again on a different data set\n", + "\n", + "There is another data set, about the taste of Cheddar cheese: https://openmv.net/info/cheddar-cheese\n", + "\n", + "Read the data set in:\n", + "```python\n", + "cheese = pd.read_csv(\"https://openmv.net/file/cheddar-cheese.csv\")\n", + "```\n", + "\n", + "1. Drop the column called \"Case\"\n", + "2. Calculate the correlation matrix of values and display that\n", + "3. Plot a scatter plot matrix of these values:\n", + " \n", + " * with the \"kde\" on the diagonal\n", + " * squares for the markers\n", + " * alpha value of 0.8 for the points. \n", + " \n", + "*Hint*: look at the documentation for `scatter_matrix` to see how to do this. You can look at the documentation inside Jupyter in several ways:\n", + "* ``help(scatter_matrix)``\n", + "* ``scatter_matrix?`` and then hit Ctrl-Enter." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Homework: Testing your knowledge on another data set\n", + "\n", + "The pulp digester is an industrial unit operating in the pulp and paper industry. \n", + "You can find the data on this page: https://openmv.net/info/kamyr-digester\n", + "\n", + "Some things to try when exploring the data:\n", + "\n", + "* Using a set of histograms, one per variable, find 2 variables which have a bimodal distribution. Which 2 have a normal distribution?\n", + "* For the 2 variables with a bimodal distribution: make a time-series (sequence) plot, to visualize what they look like when their data are plotted in sequence order. Do you now see why they have a bimodal histogram?\n", + "* Plot time sequence plots of some of the other variables, including the output variable called `'Y-Kappa'`.\n", + "* Which interesting correlations are there with this variable? Write Python code to find the 3 strongest positively correlated columns, and 3 strongest negatively correlated columns.\n", + "* Create a new data frame with only these 6 columns of strongly correlating variables and add the `Y-Kappa` as the 7th column.\n", + "* Create a scatter plot matrix for only this group of data. Use a `kde` for the diagonal plots.\n", + "* If you needed to increase the Kappa number for this process, which variables would you change and in which direction?\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "hide_input": false, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.7" + }, + "toc": { + "base_numbering": "1", + "nav_menu": {}, + "number_sections": true, + "sideBar": true, + "skip_h1_title": true, + "title_cell": "Table of Contents", + "title_sidebar": "Contents", + "toc_cell": true, + "toc_position": { + "height": "calc(100% - 180px)", + "left": "10px", + "top": "150px", + "width": "348.984px" + }, + "toc_section_display": true, + "toc_window_display": true + }, + "varInspector": { + "cols": { + "lenName": 16, + "lenType": 16, + "lenVar": 40 + }, + "kernels_config": { + "python": { + "delete_cmd_postfix": "", + "delete_cmd_prefix": "del ", + "library": "var_list.py", + "varRefreshCmd": "print(var_dic_list())" + }, + "r": { + "delete_cmd_postfix": ") ", + "delete_cmd_prefix": "rm(", + "library": "var_list.r", + "varRefreshCmd": "cat(var_dic_list()) " + } + }, + "types_to_exclude": [ + "module", + "function", + "builtin_function_or_method", + "instance", + "_Feature" + ], + "window_display": false + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} From 949e15944cb03eb65373bb77d5d30804c8339833 Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Wed, 3 Nov 2021 11:18:12 +0100 Subject: [PATCH 131/134] Added modified notebook #15 --- Module-15-interactive-plotly.ipynb | 705 +++++++++++++++++++++++++++++ 1 file changed, 705 insertions(+) create mode 100644 Module-15-interactive-plotly.ipynb diff --git a/Module-15-interactive-plotly.ipynb b/Module-15-interactive-plotly.ipynb new file mode 100644 index 0000000..16aa2c6 --- /dev/null +++ b/Module-15-interactive-plotly.ipynb @@ -0,0 +1,705 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "toc": true + }, + "source": [ + "

    Table of Contents

    \n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "> All content here is under a Creative Commons Attribution [CC-BY 4.0](https://creativecommons.org/licenses/by/4.0/) and all source code is released under a [BSD-2 clause license](https://en.wikipedia.org/wiki/BSD_licenses).\n", + ">\n", + ">Please reuse, remix, revise, and [reshare this content](https://github.com/kgdunn/python-basic-notebooks) in any way, keeping this notice." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Course overview\n", + "\n", + "This is the fifth module of several (11, 12, 13, 14, 15 and 16), which refocuses the course material in the [prior 10 modules](https://github.com/kgdunn/python-basic-notebooks) in a slightly different way. It places more emphasis on\n", + "\n", + "* dealing with data: importing, merging, filtering;\n", + "* calculations from the data;\n", + "* visualization of it.\n", + "\n", + "In short: ***how to extract value from your data***.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Module 15 Overview\n", + "\n", + "In this module we will cover\n", + "\n", + "* Visualization of a correlation matrix with a heat map\n", + "* Fitting a linear regression model to the data\n", + "* Visualization of the linear regression model\n", + "* Accessing data from your data frame using `.iloc`\n", + "\n", + "**Requirements before starting**\n", + "\n", + "* Have your Python installation working as you had for modules 11 to 14, including the Pandas library installed. \n", + "\n", + "* An extra requirement: install the `scikit-learn` and `seaborn` libraries. See instructions below." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Keeping Conda up to date and installing new packages\n", + "\n", + "\n", + "Newer versions of packages are released frequently. You can update your packages (libraries), with these commands. Do this at the command line (not in Jupyter notebook!):\n", + "```bash\n", + "\n", + " conda update -n base conda\n", + " conda update --all\n", + "```\n", + "\n", + "### Installing a new package in your virtual environment\n", + "\n", + "You will come across people recommending different packages in Python for all sorts of interesting applications. For example, the library `seaborn` is often recommended for visualization. But you might not have it installed yet. In this module we will use `seaborn` and also `scikit-learn`.\n", + "\n", + "This is how you can install the `seaborn` and `scikit-learn` packages in your virtual environment called ``myenv``:\n", + "```bash\n", + " conda activate myenv <--- change the last word in the command to the name of your actual environment\n", + " conda install seaborn scikit-learn\n", + "```\n", + "\n", + "Or in one line:\n", + "```bash\n", + " conda install -n myenv seaborn scikit-learn\n", + "```\n", + "\n", + "\n", + "### Updating an existing package\n", + "\n", + "Similar to the above, you can update a package to the latest version. Just change ``install`` to ``update`` instead.\n", + "Or in one line:\n", + "```bash\n", + " conda update -n myenv seaborn scikit-learn\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Building regression models\n", + "\n", + "In the [prior module](https://yint.org/pybasic14) you learned about setting the date and time when importing data, visualizing your data with box plots, histograms, line or time-series plots, and scatter plots. You applied these to your own data, and learned about the very powerful ``groupby`` function in Pandas.\n", + "\n", + "In this module we will take these skills a step further, but first, we will learn about fitting regression models to some data. \n", + "\n", + "Start by importing Pandas, and also a tool to build regression models, which is from the `scikit-learn` library. This is imported as `sklearn`. You can read more about scikit-learn at their website: https://scikit-learn.org/stable/" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "from sklearn.linear_model import LinearRegression" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We will use a data set that is from a [distillation column](https://openmv.net/info/distillation-tower), and predicting an important output variable, called the Reid Vapour Pressure (RVP).\n", + "\n", + "Read in the data set and set the column called \"Case\" to be the index:\n", + "```python\n", + "distill = pd.read_csv(\"https://openmv.net/file/distillation-tower.csv\")\n", + "```\n", + "\n", + "In the [prior module](https://yint.org/pybasic14) you were asked to use your own data and:\n", + "\n", + "1. Calculate the correlation matrix of values and display that. Were you able to do so? \n", + "2. Could you also visualize a scatter plot matrix of these values with the \"kde\" on the diagonal, squares for the markers and an alpha value of 0.8 for the points?\n", + "\n", + "We will do this interactively below, but also introduce a new plot, the *heat map*." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "distill = pd.read_csv(\"https://openmv.net/file/distillation-tower.csv\")\n", + "distill.shape" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Visualizing the correlation matrix\n", + "\n", + "The correlation matrix of numbers can be tedious to read on a screen. You can easily visualize it though:\n", + "\n", + "```python\n", + "import seaborn as sns\n", + "display(distill.corr());\n", + "\n", + "# Let's visualize it instead, as a heat map.\n", + "sns.set(rc={'figure.figsize':(15, 15)})\n", + "sns.heatmap(distill.corr());\n", + "\n", + "# This is not so attractive. Use a different colour map (cmap):\n", + "cmap = sns.diverging_palette(220, 10, as_cmap=True)\n", + "sns.heatmap(distill.corr(), cmap=cmap, square=True, linewidths=0.2, cbar_kws={\"shrink\": 0.5});\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Visualizing the scatter plot matrix\n", + "\n", + "We saw the scatter plots before, and the scatter plot matrix.\n", + "\n", + "```python\n", + "from pandas.plotting import scatter_matrix\n", + "scatter_matrix(distill, alpha = 0.2, figsize=(15, 15), diagonal = \"kde\");\n", + "```\n", + "\n", + "The data set is quite big and takes some time to generate all the scatter plot combinations." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can use every third row instead.\n", + "```python\n", + "print(distill.shape)\n", + "subset = distill.iloc[0::3, :]\n", + "subset.shape\n", + "```\n", + "\n", + "The `.iloc` function accesses the data by `index` (the `i` in `iloc`) and for a given `loc`ation, so `iloc`= *index location*.\n", + "\n", + "Some examples:\n", + "* `mydata.iloc[0:10, :]` will return the 10 rows, and all columns\n", + "* `mydata.iloc[20, 2:4]` will return only row \\_\\_\\_, and columns \\_\\_\\_\n", + "* `mydata.iloc[0:10:2, :]` will return only rows with index \\_\\_\\_; and \\_\\_\\_ columns\n", + "* `mydata.iloc[0::2, :]` will return \\_\\_\\_ row; and \\_\\_\\_ columns\n", + "* `mydata.iloc[:, -1]` will return \\_\\_\\_ rows of the \\_\\_\\_ column\n", + "\n", + "Try some examples of using `.iloc` below on the `distill` data:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now that you understand what `.iloc` is doing, you can understand why this code is faster, because it uses half the data set to create the scatter plot matrix:\n", + "```python\n", + "scatter_matrix(distill.iloc[0::2,:], alpha = 0.2, figsize=(15, 15), diagonal = \"kde\");\n", + "```\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Which 2 columns are the most correlated with the outcome variable called \"VapourPressure\"?\n", + "\n", + "```python\n", + "distill.corr().shape\n", + "distill.corr().iloc[...] # <-- fill in some code to show only the last row of the correlation matrix\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us build a regression model using the `InvTemp3` measurement, the inverse temperature measured at position 3 in the distillation column, to predict the `VapourPressure`.\n", + "\n", + "There are 253 measurements (rows) in the dataset. We will use the first 150 rows in the data set to build the model, and then use the remaining rows to test the model, to see how well we can predict vapour pressure. This is good statistical practice. Do not use all the data to build the prediction model; you will get an inflated sense of how well the model works. **Always keep some testing for validation/verification.**\n", + "\n", + "Create the model building data set from the first 150 rows:\n", + "```python\n", + "build = distill.iloc[___] # <-- what goes here?\n", + "display(build)\n", + "```\n", + "\n", + "Then create test testing data from the rest of the data frame:\n", + "```python\n", + "test = distill.iloc[___] # <-- what goes here?\n", + "display(test)\n", + "```\n", + "\n", + "Try it below, and use the `.shape` command to verify the `build`ing and `test`ing data have the correct shape." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "First, we set up an instance of the linear regression model:\n", + "```python\n", + "mymodel = LinearRegression()\n", + "type(mymodel)\n", + "```\n", + "\n", + "The `mymodel` is an object. It is an object of a linear regression model, but it is empty at the moment. We will give it some training data, to build the model:\n", + "\n", + "```python\n", + "mymodel = LinearRegression()\n", + "mymodel.fit(X, y)\n", + "```\n", + "\n", + "but we have to tell it what is `X` and what is `y`. So we have a small detour..." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We need numeric values for `X` and `y`. We can get those as follows.\n", + "\n", + "```python\n", + "print(build[\"InvTemp3\"]) # A Pandas Series (single column from the matrix of data)\n", + "print(build[\"InvTemp3\"].values) # NumPy vector of values, \n", + "print(build[\"InvTemp3\"].values.shape) # Notice the vector is just a 1-D array of 30 values\n", + "print(build[\"InvTemp3\"].values.reshape(-1, 1)) # Force them into a single column\n", + "print(build[\"InvTemp3\"].values.reshape(-1, 1).shape) # Now we have the right shape for scikit-learn\n", + "```\n", + "\n", + "Scikit-learn requires the `X` data (the values used to predict `y`) to be a column vector or a matrix. Notice that a column vector is just a matrix with 1 column. This is because, you will see later, you can have 1 or more columns used to predict `y`. Therefore every input used to predict `y` must be in a column. Each row in the input matrix is one observation.\n", + "\n", + "There is a shortcut to force the column to be extracted as a column:\n", + "\n", + "```python\n", + "build[[\"InvTemp3\"]].values\n", + "build[[\"InvTemp3\"]].values.shape # check what the shape is\n", + "```\n", + "\n", + "So this will work to build your regression model:\n", + "\n", + "```python\n", + "# A single column in matrix X (capital X indicates one or more input columns)\n", + "X = build[[\"InvTemp3\"]].values\n", + "y = build[\"VapourPressure\"].values\n", + "mymodel = LinearRegression()\n", + "mymodel.fit(X, y)\n", + "```\n", + "\n", + "If you run this code and see no error messages, then then model has been built. But it is not that exciting, ... yet." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "So what can you do with this model? Use \n", + "```python\n", + "dir(mymodel)\n", + "```\n", + "to ask Python what can be done with that `object`. Note that the ``dir(...)`` function works on any object and is something that you will use regularly.\n", + "\n", + "There are several interesting *methods* that you see there which we will get to use.\n", + "\n", + "* `coef_`\n", + "* `intercept_`\n", + "* `predict`\n", + "* `score`\n", + "\n", + "The first two, are as you might guess, the intercept of the model and the coefficient (slope).\n", + "\n", + "```python\n", + "print(f\"The intercept is {mymodel.intercept_} and the slope is = {mymodel.coef_}\")\n", + "```\n", + "\n", + "Now it is not so handy having all those decimal places. Python allows you to truncate them to the desired number:\n", + "\n", + "```python\n", + "print(f\"The intercept is {mymodel.intercept_:.5g} and the slope is = {mymodel.coef_}\")\n", + "```\n", + "\n", + "We have to be a bit more careful with the slope. It is an array (*see the square brackets?*): so we need to extract the first entry from that vector before displaying it:\n", + "```python\n", + "print(f\"The intercept is {mymodel.intercept_:.5g} and the slope is = {mymodel.coef_[0]:.5g}\")\n", + "```\n", + "\n", + "Try this as well:\n", + "```python\n", + "print(f\"The intercept is {mymodel.intercept_:.5f} and the slope is = {mymodel.coef_[0]:.5f}\")\n", + "```\n", + "There is a subtle difference between the `f` and the `g` format specifiers." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Detour: Visualization of the regression model\n", + "\n", + "After building the regression model it is helpful to visualize it. The Seaborn library has a useful function to do so.\n", + "\n", + "```python\n", + "import seaborn as sns\n", + "ax = sns.regplot(x=\"InvTemp3\", y=\"VapourPressure\", data=distill)\n", + "ax.grid(True)\n", + "```\n", + "\n", + "Take a look at the documentation for the `regplot` function: https://seaborn.pydata.org/generated/seaborn.regplot.html\n", + "\n", + "for more options, but the simple function above already does most of what you would expect:\n", + "* it draws a scatter plot of the raw data\n", + "* adds the regression line to the plot\n", + "* shows the confidence interval for the regression (the interval expected for the true but unknown slope)\n", + "* adds labels to the axes." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "An \"upgrade\" you might be interested in, is the joint plot, which adds the histograms to the axes:\n", + "\n", + "```python\n", + "sns.jointplot(x=\"InvTemp3\", y=\"VapourPressure\", data=distill, kind=\"reg\");\n", + "\n", + "# Or, show the kde=kernel density estimate\n", + "sns.jointplot(x=\"InvTemp3\", y=\"VapourPressure\", data=distill, kind=\"kde\");\n", + "\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## How well the regression model works: training (building) data\n", + "\n", + "Next, we would like to extract some idea of how the model performs. For that we can look at\n", + "1. The predictions of the `build`ing data, \n", + "2. The predictions of the `test`ing data. *This is a more accurate estimate.*\n", + "\n", + "Firstly, for the model building data:\n", + "```python\n", + "# Get the predicted values from the data used to build the model\n", + "X_build = build[[\"InvTemp3\"]]\n", + "y_build = build[\"VapourPressure\"].values\n", + "\n", + "prediction_build = mymodel.predict(X_build)\n", + "errors_build = y_build - prediction_build # error = actual minus predicted\n", + "\n", + "# There are several ways to see \"how good\" the model is, but the average \n", + "# of the absolute values of the errors gives a good feeling. Smaller is better.\n", + "avg_absolute_error = pd.Series(errors_build).abs().mean()\n", + "\n", + "```\n", + "\n", + "1. Calculate this average absolute error below.\n", + "2. Also calculate the standard deviation of the errors (this is another way to judge the model). Smaller is better.\n", + "3. Lastly, plot the prediction errors for the building data (first 150 rows) to see what time-based trends there are." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Secondly, how well the regression model works on testing data\n", + "\n", + "The above gives an idea of how the model works on the data used to build the model. But of course, the idea is to use the model in the future, on data not seen before. So let's test the model on the remaining rows:\n", + "\n", + "```python\n", + "# Create the testing data set\n", + "test = distill.iloc[150:]\n", + "X_test = test[[\"InvTemp3\"]].values\n", + "y_test = test[\"VapourPressure\"].values\n", + "```\n", + "\n", + "Then use the `predict(...)` function again, but on the testing data. Notice how simple scikit-learn makes this; just replace the input to the `predict` function with a different data frame:\n", + "```python\n", + "prediction_test = mymodel.predict(X_test)\n", + "errors_test = y_test - prediction_test\n", + "avg_absolute_error = pd.Series(errors_test).abs().mean()\n", + "avg_absolute_error, errors_test.std()\n", + "```\n", + "\n", + "1. Calculate the average absolute error below, but for the model testing data.\n", + "2. Calculate the standard deviation of the prediction errors. Again, smaller is better.\n", + "3. Lastly, plot the prediction errors for the testing data to see what time-based trends there are. Any concerns?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Calculate the $R^2$ value\n", + "\n", + "Using the `score` method, we can get the $R^2$ value. The function needs two inputs:\n", + "```python\n", + "mymodel.score(X_build, y_build)\n", + "```\n", + "\n", + "and you will get a value that shows how the two variables are correlated. NOTE: the $R^2$ value is ***not a measure of prediction precision or accuracy***. It is only an estimate of the degree of correlation. High correlation is no guarantee of good prediction." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Improving the model: adding extra predictors\n", + "\n", + "A least squares model $$ y = b_0 + b_1x_1$$\n", + "with an intercept $b_0$ and a single slope of $b_1$ can be improved by adding a second, or more predictors: $$ y = b_0 + b_1x_1 + b_2x_2 + \\ldots$$\n", + "\n", + "This is called a multiple linear regression (MLR) model. We will try to improve our model by adding an extra predictor ``InvPressure1``:\n", + "\n", + "```python\n", + "\n", + "# Specify the predictors in a list:\n", + "predictors = [\"InvTemp3\", \"InvPressure1\"]\n", + "\n", + "# Specify the training data:\n", + "X_build_MLR = build[predictors].values\n", + "y_build = build[\"VapourPressure\"].values\n", + "\n", + "# Fit the model\n", + "full_model = LinearRegression()\n", + "full_model.fit(X=X_build_MLR, y=y_build)\n", + "\n", + "# Print some stats:\n", + "predict_MLR_build = full_model.predict(X_build_MLR)\n", + "errors_MLR_build = y_build - predict_MLR_build\n", + "avg_absolute_error_MLR_build = pd.Series(errors_MLR_build).abs().mean()\n", + "print(f\"The average absolute error {avg_absolute_error_MLR_build:.3f}\")\n", + "pd.Series(errors_MLR_build).plot(grid=True, title=\"Error = Actual - Predicted\")\n", + "```\n", + "\n", + "Notice the power here: you only have to change the first line to add new predictor. The rest of the code is the same as before (just more generic variable names have been used)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Challenge: checking the MLR model on the testing data\n", + "\n", + "Try creating code for the testing data, which uses the 2 predictors.\n", + "\n", + "* Extract the values for ``X_test_MLR`` and ``y_test``.\n", + "* Use the ``full_model.predict(...)`` function, but on the testing data.\n", + "* As before, calculate the average absolute error and the standard deviation of the error. How does it compare to the prior model with a single predictor?\n", + "* Plot the errors over time. Are they smaller than for the case where you had only 1 predictor?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# IGNORE this. Execute this cell to load the notebook's style sheet.\n", + "from IPython.core.display import HTML\n", + "css_file = './images/style.css'\n", + "#HTML(open(css_file, \"r\").read())" + ] + } + ], + "metadata": { + "hide_input": false, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.1" + }, + "toc": { + "base_numbering": "1", + "nav_menu": {}, + "number_sections": true, + "sideBar": true, + "skip_h1_title": true, + "title_cell": "Table of Contents", + "title_sidebar": "Contents", + "toc_cell": true, + "toc_position": { + "height": "calc(100% - 180px)", + "left": "10px", + "top": "150px", + "width": "246.975px" + }, + "toc_section_display": true, + "toc_window_display": true + }, + "varInspector": { + "cols": { + "lenName": 16, + "lenType": 16, + "lenVar": 40 + }, + "kernels_config": { + "python": { + "delete_cmd_postfix": "", + "delete_cmd_prefix": "del ", + "library": "var_list.py", + "varRefreshCmd": "print(var_dic_list())" + }, + "r": { + "delete_cmd_postfix": ") ", + "delete_cmd_prefix": "rm(", + "library": "var_list.r", + "varRefreshCmd": "cat(var_dic_list()) " + } + }, + "types_to_exclude": [ + "module", + "function", + "builtin_function_or_method", + "instance", + "_Feature" + ], + "window_display": false + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} From fd29ec7053ad2b472637ffeca88b85bfbf0e87f6 Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Wed, 3 Nov 2021 10:37:38 +0000 Subject: [PATCH 132/134] Updated notebook 15 --- Module-15-interactive-plotly.ipynb | 66 ++++++++++++++---------------- 1 file changed, 31 insertions(+), 35 deletions(-) diff --git a/Module-15-interactive-plotly.ipynb b/Module-15-interactive-plotly.ipynb index 16aa2c6..f91e91a 100644 --- a/Module-15-interactive-plotly.ipynb +++ b/Module-15-interactive-plotly.ipynb @@ -1,5 +1,12 @@ { "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, { "cell_type": "markdown", "metadata": { @@ -108,7 +115,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -140,10 +147,7 @@ "execution_count": null, "metadata": {}, "outputs": [], - "source": [ - "distill = pd.read_csv(\"https://openmv.net/file/distillation-tower.csv\")\n", - "distill.shape" - ] + "source": [] }, { "cell_type": "markdown", @@ -234,8 +238,7 @@ "Now that you understand what `.iloc` is doing, you can understand why this code is faster, because it uses half the data set to create the scatter plot matrix:\n", "```python\n", "scatter_matrix(distill.iloc[0::2,:], alpha = 0.2, figsize=(15, 15), diagonal = \"kde\");\n", - "```\n", - "\n" + "```" ] }, { @@ -325,23 +328,15 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "We need numeric values for `X` and `y`. We can get those as follows.\n", + "We need numeric values for `X` and `y`. Scikit-learn requires the `X` data (the values used to predict `y`) to be a column vector or a matrix. \n", "\n", - "```python\n", - "print(build[\"InvTemp3\"]) # A Pandas Series (single column from the matrix of data)\n", - "print(build[\"InvTemp3\"].values) # NumPy vector of values, \n", - "print(build[\"InvTemp3\"].values.shape) # Notice the vector is just a 1-D array of 30 values\n", - "print(build[\"InvTemp3\"].values.reshape(-1, 1)) # Force them into a single column\n", - "print(build[\"InvTemp3\"].values.reshape(-1, 1).shape) # Now we have the right shape for scikit-learn\n", - "```\n", + "Notice that a column vector is just a matrix with 1 column. This is because, you will see later, you can have 1 or more columns used to predict `y`. Therefore every input used to predict `y` must be in a column. Each row in the input matrix is one observation.\n", "\n", - "Scikit-learn requires the `X` data (the values used to predict `y`) to be a column vector or a matrix. Notice that a column vector is just a matrix with 1 column. This is because, you will see later, you can have 1 or more columns used to predict `y`. Therefore every input used to predict `y` must be in a column. Each row in the input matrix is one observation.\n", - "\n", - "There is a shortcut to force the column to be extracted as a column:\n", + "There is a shortcut to force Pandas to return a single column to be extracted as a column, and not a Series\n", "\n", "```python\n", - "build[[\"InvTemp3\"]].values\n", - "build[[\"InvTemp3\"]].values.shape # check what the shape is\n", + "print(build[\"InvTemp3\"].shape)\n", + "print(build[[\"InvTemp3\"]].shape)\n", "```\n", "\n", "So this will work to build your regression model:\n", @@ -478,7 +473,7 @@ "```python\n", "# Get the predicted values from the data used to build the model\n", "X_build = build[[\"InvTemp3\"]]\n", - "y_build = build[\"VapourPressure\"].values\n", + "y_build = build[\"VapourPressure\"]\n", "\n", "prediction_build = mymodel.predict(X_build)\n", "errors_build = y_build - prediction_build # error = actual minus predicted\n", @@ -512,8 +507,8 @@ "```python\n", "# Create the testing data set\n", "test = distill.iloc[150:]\n", - "X_test = test[[\"InvTemp3\"]].values\n", - "y_test = test[\"VapourPressure\"].values\n", + "X_test = test[[\"InvTemp3\"]]\n", + "y_test = test[\"VapourPressure\"]\n", "```\n", "\n", "Then use the `predict(...)` function again, but on the testing data. Notice how simple scikit-learn makes this; just replace the input to the `predict` function with a different data frame:\n", @@ -563,8 +558,7 @@ "source": [ "## Improving the model: adding extra predictors\n", "\n", - "A least squares model $$ y = b_0 + b_1x_1$$\n", - "with an intercept $b_0$ and a single slope of $b_1$ can be improved by adding a second, or more predictors: $$ y = b_0 + b_1x_1 + b_2x_2 + \\ldots$$\n", + "A least squares model $y = b_0 + b_1x_1$ with an intercept $b_0$ and a single slope of $b_1$ can be improved by adding a second, or more predictors: $$ y = b_0 + b_1x_1 + b_2x_2 + \\ldots$$\n", "\n", "This is called a multiple linear regression (MLR) model. We will try to improve our model by adding an extra predictor ``InvPressure1``:\n", "\n", @@ -574,8 +568,8 @@ "predictors = [\"InvTemp3\", \"InvPressure1\"]\n", "\n", "# Specify the training data:\n", - "X_build_MLR = build[predictors].values\n", - "y_build = build[\"VapourPressure\"].values\n", + "X_build_MLR = build[predictors]\n", + "y_build = build[\"VapourPressure\"]\n", "\n", "# Fit the model\n", "full_model = LinearRegression()\n", @@ -599,6 +593,13 @@ "outputs": [], "source": [] }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, { "cell_type": "markdown", "metadata": {}, @@ -625,12 +626,7 @@ "execution_count": null, "metadata": {}, "outputs": [], - "source": [ - "# IGNORE this. Execute this cell to load the notebook's style sheet.\n", - "from IPython.core.display import HTML\n", - "css_file = './images/style.css'\n", - "#HTML(open(css_file, \"r\").read())" - ] + "source": [] } ], "metadata": { @@ -650,7 +646,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.1" + "version": "3.7.10" }, "toc": { "base_numbering": "1", @@ -701,5 +697,5 @@ } }, "nbformat": 4, - "nbformat_minor": 2 + "nbformat_minor": 4 } From 9272bac1f24e13023907f9e492d92198be4fa970 Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Mon, 8 Nov 2021 23:04:54 +0100 Subject: [PATCH 133/134] Update module 16 to newer Pandas library version. --- Module-16-interactive-plotly.ipynb | 1019 ++++++++++++++++++++++++++++ 1 file changed, 1019 insertions(+) create mode 100644 Module-16-interactive-plotly.ipynb diff --git a/Module-16-interactive-plotly.ipynb b/Module-16-interactive-plotly.ipynb new file mode 100644 index 0000000..609ec96 --- /dev/null +++ b/Module-16-interactive-plotly.ipynb @@ -0,0 +1,1019 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "toc": true + }, + "source": [ + "

    Table of Contents

    \n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "> All content here is under a Creative Commons Attribution [CC-BY 4.0](https://creativecommons.org/licenses/by/4.0/) and all source code is released under a [BSD-2 clause license](https://en.wikipedia.org/wiki/BSD_licenses).\n", + ">\n", + ">Please reuse, remix, revise, and [reshare this content](https://github.com/kgdunn/python-basic-notebooks) in any way, keeping this notice." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Course overview\n", + "\n", + "This is the sixth, and final, module of several (11, 12, 13, 14, 15 and 16), which refocuses the course material in the [first 10 modules](https://github.com/kgdunn/python-basic-notebooks) in a slightly different way. It places more emphasis on\n", + "\n", + "* dealing with data: importing, merging, filtering;\n", + "* calculations from the data;\n", + "* visualization of it.\n", + "\n", + "In short: ***how to extract value from your data***.\n", + "\n", + "## Review so far\n", + "\n", + "In [module 11](https://yint.org/pybasic11) we learned about\n", + "* creating variables, and showing their `type`,\n", + "* performing basic calculations, and the `math` library,\n", + "* lists, as one of the most fundamental Python objects.\n", + "\n", + "In the [module 12](https://yint.org/pybasic12) we took this a step further:\n", + "* and introduced the Pandas library, for `Series` and `DataFrame` objects,\n", + "* learned how to import and write Excel files,\n", + "* do basic operations on DataFrames, and \n", + "* learned about another fundamental Python type, the `dict`ionary.\n", + "\n", + "[Module 13](https://yint.org/pybasic13) we introduced:\n", + "* a general workflow for data processing\n", + "* and how to visualize data with Pandas:\n", + "\n", + " * box plot, \n", + " * time series (sequence) plot, and\n", + " * scatter plots [including showing how you can visualize 5 dimensions!]\n", + "\n", + "[Module 14](https://yint.org/pybasic14) we saw how to create:\n", + "* for loops, for when we need to do things over and over,\n", + "* but we also saw the `groupby` function, which does actions repeatedly on sub-groups of your data.\n", + "* We also introduced the correlation matrix.\n", + "\n", + "Then in [module 15](https://yint.org/pybasic15) we saw:\n", + "* that we could visualize the correlation matrix (2D histogram), to find candidates for regression,\n", + "* using the `LinearRegression` tool from a new library, `scikit-learn`.\n", + "* We also used another new library, `seaborn`, to visualize these regression models.\n", + "\n", + "\n", + "# Module 16 Overview\n", + "\n", + "In this module we will cover a collection of last loose ends. Things you will use regularly in your work. \n", + "\n", + "* Reading in subsets of data\n", + "* Handling missing values with Pandas\n", + "* Filtering data, and the multi-level `groupby` capability of Panda\n", + "* Effective table display in Pandas\n", + "\n", + "Most of them come from this list, with some modifications: https://towardsdatascience.com/30-examples-to-master-pandas-f8a2da751fa4" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "## Data set import and basic checks\n", + "\n", + "We will use a data set that is related to food consumption. It shows, in a relative way, the food consumption habits of European (and soon to be former EU) countries." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import time \n", + "import pandas as pd\n", + "import numpy as np\n", + "import seaborn as sns\n", + "import plotly.graph_objects as go\n", + "import plotly.io as pio\n", + "pio.renderers.default = \"iframe\" # \"notebook\" # jupyterlab\n", + "pd.options.plotting.backend = \"plotly\"" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df = pd.read_csv(\"https://openmv.net/file/food-consumption.csv\")\n", + "display(df.info())\n", + "display(df)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Visualizing the correlation matrix is essential to help understanding relationships. Use the code and the plot below to help answer:\n", + "\n", + "* Countries which consume garlic more than average, also seem to consume a higher amount of ...\n", + "* Which variables are negatively correlated with \"Real coffee\" consumption?\n", + "* Countries with higher consumption of \"Crisp bread\" also show high consumption of which other products?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "sns.set(rc={'figure.figsize': (15, 15)})\n", + "cmap = sns.diverging_palette(220, 10, as_cmap=True)\n", + "sns.heatmap(df.corr(), cmap=cmap, square=True, linewidths=0.5, cbar_kws={\"shrink\": 0.8});" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## List comprehensions\n", + "\n", + "\"*List comprehensions*\" are a quick way to make a list. You can read more, and see some examples here: https://realpython.com/list-comprehension-python/#using-list-comprehensions" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print( [i for i in range(10)] )\n", + "print( [i*2+1 for i in range(10)] )\n", + "print( [i*2 for i in range(10) if i > 4] )\n", + "print( [i for i in range(10) if i % 2 == 1] )\n", + "print( [i for i in range(10) if i % 2 == 0] )\n", + "print( [i for i in range(10) if i % 4 == 1] )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Reading only certain rows\n", + "\n", + "Imagine you had a large data set, and only needed certain rows for your calculations/visualization later on. You can use the `nrows` and `skiprows` arguments to read only a subset of the data." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df_subset = pd.read_csv(\"https://openmv.net/file/food-consumption.csv\", nrows=5)\n", + "display(df_subset)\n", + "\n", + "df_partial = pd.read_csv(\"https://openmv.net/file/food-consumption.csv\", skiprows=[2, 3, 4])\n", + "display(df_partial)\n", + "\n", + "# Requires an extra `engine` input\n", + "df_bottom = pd.read_csv(\"https://openmv.net/file/food-consumption.csv\", skipfooter=12) #, engine='python') <- intentionally left out for demo\n", + "display(df_bottom)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Skipping every 3rd row, using a list comprehension...\n", + "print([i for i in range(40) if i%3 ==1])\n", + "df_partial = pd.read_csv(\"https://openmv.net/file/food-consumption.csv\", \n", + " skiprows=[i for i in range(40) if i%3 ==1])\n", + "display(df_partial)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Import specific columns only\n", + "\n", + "If you know the names of the columns you need, you can use the `usecols` input.\n", + "\n", + "Note: this also works for Excel files! You can say, for example, `usecols=\"F,G,BQ\"` if you need columns F, G and BQ only." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df_subset = pd.read_csv(\"https://openmv.net/file/food-consumption.csv\", \n", + " usecols=[\"Country\", \"Sweetener\", \"Biscuits\", \"Powder soup\", \"Tin soup\"])\n", + "display(df_subset)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Dropping columns or rows\n", + "\n", + "Conversely, you can read in the whole data set, and drop away the columns or rows you do not need." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df = (\n", + " pd.read_csv(\"https://openmv.net/file/food-consumption.csv\")\n", + " .drop([\"Sweetener\", \"Biscuits\", \"Powder soup\", \"Tin soup\"], axis=1)\n", + ")\n", + "display(df)\n", + "df.shape\n", + "\n", + "# Also drop some rows: drop away every 3rd row.\n", + "# You can also leave away 'axis=0' (because that's the default)\n", + "df_subset = df.drop([i for i in range( df.shape[0] ) if i%3 ==1] , axis=0) \n", + "display(df_subset)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Setting an index\n", + "\n", + "You can always make a column from your dataframe to be your `index`, using the `set_index` function." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df = pd.read_csv(\"https://openmv.net/file/food-consumption.csv\")\n", + "df = df.set_index('Country')\n", + "display(df)\n", + "\n", + "# Or, in a single line, in a chained operation\n", + "df = (\n", + " pd.read_csv(\"https://openmv.net/file/food-consumption.csv\")\n", + " .drop([i for i in range( df.shape[0] ) if i%3 ==1] , axis=0)\n", + " .set_index('Country')\n", + ")\n", + "display(df)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Visualizing and deleting missing values\n", + "\n", + "Pandas generally handles missing values well: for example, the ``df.mean()`` function will work even if there are missing values. But some mathematical tools cannot have missing values, such as when performing a linear regression. So deleting missing data first is an option. It is therefore helpful that you can:\n", + "\n", + "* Find how many missing values are there per column? Or per row?\n", + "* Delete columns with missing values.\n", + "* Deleting rows with any missing values." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Which columns have missing values:\n", + "df = pd.read_csv(\"https://openmv.net/file/food-consumption.csv\").set_index('Country')\n", + "display(df.isna().sum())\n", + "\n", + "# Which rows have missing values:\n", + "df.isna().sum(axis=1)\n", + "\n", + "# Display missing values in a heat map\n", + "sns.set(rc={'figure.figsize': (10, 10)})\n", + "sns.heatmap(df.isna(), square=True, cbar_kws={\"shrink\": 0.5});" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Confirm that the \"Sweetener\", \"Biscuits\", and \"Yoghurt\" columns are not present after running this command (these columns had missing values in them):" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Delete columns with missing values\n", + "df.dropna(axis=1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Confirm that the rows for \"Sweden\", \"Finland\", and \"Spain\", which had missing entries, are not present after this:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Delete rows with missing values\n", + "df.dropna(axis=0)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Dropping missing values in all rows, but only for a subset of the columns is possible. For example, drop only rows in the columns for \"Sweetener\" and \"Yoghurt\" (ignore the column for \"Biscuits\"):" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "display(df.dropna(subset=[\"Sweetener\", \"Yoghurt\"], axis=0))\n", + "\n", + "# Note: you can also flip this around. Specify a subset of row names\n", + "# in `subset` and delete from all columns, using `axis=1`.\n", + "df.dropna(subset=[\"Sweden\"], axis=1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Using iloc and loc\n", + "\n", + "We learned about `.iloc` in the [prior module](https://yint.org/pybasic15). Let's look at this again, and emphasize the difference between `.iloc` and `.loc`. [This article](https://www.shanelynn.ie/select-pandas-dataframe-rows-and-columns-using-iloc-loc-and-ix/) gives more details about the two if you want some more explanation.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df = pd.read_csv(\"https://openmv.net/file/food-consumption.csv\").set_index('Country')\n", + "\n", + "# \"Instant coffee\" is column 1: make all these values missing\n", + "df.iloc[:, 1] = np.nan\n", + "display(df)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# But what if don't know, or care, which column index it is? \n", + "# When we know the column's name, then use \".loc\" \n", + "df.loc[:, \"Tea\"] = np.nan\n", + "df" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Or you can use a list of column names:\n", + "df.loc[:, [\"Potatoes\",\"Frozen fish\"]] = 98.76\n", + "df" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# You can use a mixture of .iloc and .loc:\n", + "df.iloc[[0, 1, 2], :].loc[:, \"Tin soup\"]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# but this is less code:\n", + "df.iloc[[0, 1, 2], :][\"Tin soup\"]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# or even less this way:\n", + "df.iloc[[0, 1, 2]][\"Tin soup\"]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Or using .loc\n", + "df.loc[\"Germany\":\"France\", \"Tin soup\"]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Dropping missing values, specifying a threshold\n", + "\n", + "If you want to delete a column only if there are more than a certain number of missing values:\n", + "\n", + "* Read the data\n", + "* Make a column have a high number of missing values (for demonstration purposes; normally the column is already problematic)\n", + "* Remove that column, because it has a high degree of missing values." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Read the data, and make every 3rd row a missing value for column \"Tea\"\n", + "df = pd.read_csv(\"https://openmv.net/file/food-consumption.csv\").set_index('Country')\n", + "\n", + "df.iloc[[i for i in range(16) if i%3 == 1]][\"Tea\"] = np.nan\n", + "\n", + "# The above code generates a warning. Why?\n", + "display(df)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# How to make this warning go away? As suggested by the warning, use \".loc\" instead.\n", + "# df.loc[row_indexer, col_indexer] = np.nan\n", + "\n", + "# Create a variable containing all row names:\n", + "row_indexer = df.index\n", + "\n", + "# Now take every third row name:\n", + "row_indexer = df.index[ [i for i in range(16) if i%3 ==1] ]\n", + "row_indexer" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Then, set these rows to have missing values:\n", + "df.loc[row_indexer, \"Tea\"] = np.nan\n", + "display(df)\n", + "df.isna().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Finally, we can now delete columns with a threshold (degree) of missing values\n", + "# What value should you fill in here?\n", + "display(df.dropna(thresh=11, axis=1))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Filtering rows\n", + "\n", + "* Find which countries have `\"Olive oil\"` consumption of more than 50?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df = pd.read_csv(\"https://openmv.net/file/food-consumption.csv\").set_index('Country')\n", + "df[ df[\"Olive oil\"] > 50 ]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* Which countries have `\"Olive oil\"` more than 50, **and** `\"Garlic\"` more than 40?\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df[ (df[\"Olive oil\"] > 50) & (df[\"Garlic\"] > 40) ]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* Which countries have `\"Tea\"` more than 80, **or** `\"Oranges\"` more than 90?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df[(df[\"Tea\"] > 80) | (df[\"Oranges\"] > 90)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Filtering with the `.query` function\n", + "\n", + "It is sometimes more natural to filter with the `.query` function:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "display(df.query(\"30 < Tea < 80\"))\n", + "\n", + "# or use backticks if the column name has a space:\n", + "df.query(\"10 < `Tin soup` < 20\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can have multiple queries:\n", + "\n", + "Find the countries which have \"Real coffee\" and \"Tea\" consumption above 70. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df.query(\"(`Real coffee` > 70) or (Tea > 70)\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Really powerful is the ability to reference one column against another.\n", + "\n", + "Find all countries where more `\"Instant coffee\"` is drunk more than `\"Real coffee\"`. *These are countries to avoid visiting*. What else do you notice about these countries eating habits?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df.query(\"`Instant coffee` > `Real coffee`\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## New data set: raw material properties\n", + "\n", + "For the rest of the notebook we will switch to a new data set, where we characterize the properties of a raw material. As each batch of raw material is acquired, there are 6 measurements taken. There is also an indicator variable (categorical variable) on whether the raw materials outcome was (`Adequate`), or not (`Poor`).\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df = pd.read_csv(\"https://openmv.net/file/raw-material-characterization.csv\").set_index(\"Lot number\")\n", + "display(df)\n", + "\n", + "# Note that the Outcome column is an object. We can explicitly convert it to a categorical variable:\n", + "df[\"Outcome\"] = df[\"Outcome\"].astype('category')\n", + "df.info()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Single level `groupby`\n", + "\n", + "Recall the `groupby` function from [two modules ago](https://yint.org/pybasic14), which we applied as follows:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Groupby: for plotting\n", + "for outcome, subset in df.groupby(\"Outcome\"):\n", + " fig=subset.plot.scatter(x='Size5', y=\"Size15\")\n", + " fig.update_layout(\n", + " xaxis_range=[10, 16], \n", + " yaxis_range=[18, 45],\n", + " width=500,\n", + " )\n", + " fig.show()\n", + " time.sleep(0.5)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Or another combination of the variables plotted:\n", + "for outcome, subset in df.groupby(\"Outcome\"):\n", + " fig=subset.plot.scatter(x='TMA', y=\"TGA\")\n", + " fig.update_layout(\n", + " xaxis_range=[45, 65], \n", + " yaxis_range=[550, 770],\n", + " width=500,\n", + " )\n", + " fig.show()\n", + " time.sleep(0.5) " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Or using groupby for summaries\n", + "display(df.groupby(\"Outcome\").mean())\n", + "display(df.groupby(\"Outcome\").std())\n", + "\n", + "# Or, call all the summaries together. We will explain the .agg function below.\n", + "df.groupby(\"Outcome\").agg([\"mean\", \"std\"]).round(2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Multilevel groupby\n", + "\n", + "We can also use `groupby` for multiple levels. Imagine we have a second categorical variable, or some other variable with few discrete values:\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# First, create a new categorical variable, using a list comprehension\n", + "print( [item for item in df[\"Size5\"]] )\n", + "print( [\"Small\" if item <= 13 else \"Large\" for item in df[\"Size5\"]] )" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Using what you learned above, you can see how we can quickly create a new column, \n", + "# based on the values in another column.\n", + "df[\"Size\"] = [\"Small\" if item <= 13 else \"Large\" for item in df[\"Size5\"]]\n", + "display(df.head())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Now you can use a multi-level groupby:\n", + "display(df.groupby([\"Outcome\", \"Size\", ]).count()) # <-- redundant, use the next one instead\n", + "display(df.groupby([\"Outcome\", \"Size\", ]).size())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "display(df.groupby([\"Outcome\", \"Size\", ]).mean())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Multiple groupby summaries\n", + "\n", + "\n", + "In the above, we had to write 2 lines with the `groupby` function: once for `size` and once for `mean`. But you can get them both in 1 table, using the `agg` function. `agg` is short hand for aggregation (which means to form things into a cluster)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# These 2 lines do exactly the same:\n", + "display( df.groupby([\"Outcome\", \"Size\"]).mean() )\n", + "display( df.groupby([\"Outcome\", \"Size\"]).agg('mean') )" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Now extend the input to the .agg function, with 2 aggregations:\n", + "display( df.groupby([\"Outcome\", \"Size\"]).agg([\"mean\", \"std\"]) )" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# You can specify an entire collection of aggregations, and on which columns you want to do that:\n", + "agg_func_math = ['count', 'mean', 'median', 'min', 'max', 'std']\n", + "df.groupby(['Outcome'])[[\"Size5\", \"TGA\"]].agg(agg_func_math).round(2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Add a new column, not at the end (right-hand side)\n", + "\n", + "We saw above that we can create a new column, but that it automatically gets added on the right-hand side of the data frame. If you would like the column elsewhere, use the `.insert()` function." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df.insert(0, 'EmptyColumn', np.nan)\n", + "df.insert(3, 'Column of ones', [1] * df.shape[0])\n", + "df" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Replace values in a column\n", + "\n", + "We can do a \"search and replace\" function on the values in a data frame. \n", + "\n", + "Imagine if we wanted to change the `Outcome` column, and instead of `Adequate` and `Poor` we would rather have `Good` and `Bad`." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df[\"Outcome-newname\"] = df['Outcome'].replace({\"Adequate\": \"Good\", \"Poor\": \"Bad\"})\n", + "df\n", + "\n", + "# Try setting the `Outcome` column to numeric values: Adequate -> 1 and Poor -> 0" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Styling table displays\n", + "\n", + "To help emphasize your message in a table, you might want to colour your table appropriately.\n", + "\n", + "You can read about all the options on this page in the Pandas documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/style.html" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df = pd.read_csv(\"https://openmv.net/file/raw-material-characterization.csv\").set_index(\"Lot number\")\n", + "df.style.bar(color=['lightblue'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# How to style only a subset of the columns:\n", + "(df.style\n", + " .hide_index() # if you don't need your index column, you can drop it away \n", + " .bar(color='green', subset=['Size5', 'Size10', 'Size15'])\n", + " .set_caption('Raw material outcomes')\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import seaborn as sns\n", + "cmap = cmap=sns.diverging_palette(0, 50, as_cmap=True)\n", + "\n", + "# Double sort: first on `Outcome`, then on `Size5`\n", + "df.sort_values([\"Outcome\", \"Size5\"], inplace=True)\n", + "\n", + "(df[[\"Outcome\", \"Size5\", \"Size10\", \"Size15\"]].style\n", + " .background_gradient(cmap)\n", + " .format(precision=2) # number of places after the decimal\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Show missing values with a colour. First, create an artificial missing value:\n", + "df.iloc[4, 3] = np.nan\n", + "df.head(7).style.format(precision=2).highlight_null('red')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Show the minimum and maximum values with different colours:\n", + "(df.style\n", + " .format(precision=2)\n", + " .highlight_min(axis=0, color=\"lightblue\")\n", + " .highlight_max(axis=0, color='orange')\n", + " .highlight_null('red')\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Challenge\n", + "\n", + "1. Apply table styling to the Foods data set, at the start of this notebook. Can you visualize, in a colourful way, some of the food consumption trends?\n", + "2. Apply this same table styling to a small/medium sized data set of your own." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "End of this notebook." + ] + } + ], + "metadata": { + "hide_input": false, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.10" + }, + "toc": { + "base_numbering": "1", + "nav_menu": {}, + "number_sections": true, + "sideBar": true, + "skip_h1_title": true, + "title_cell": "Table of Contents", + "title_sidebar": "Contents", + "toc_cell": true, + "toc_position": { + "height": "calc(100% - 180px)", + "left": "10px", + "top": "150px", + "width": "376.22283935546875px" + }, + "toc_section_display": true, + "toc_window_display": true + }, + "varInspector": { + "cols": { + "lenName": 16, + "lenType": 16, + "lenVar": 40 + }, + "kernels_config": { + "python": { + "delete_cmd_postfix": "", + "delete_cmd_prefix": "del ", + "library": "var_list.py", + "varRefreshCmd": "print(var_dic_list())" + }, + "r": { + "delete_cmd_postfix": ") ", + "delete_cmd_prefix": "rm(", + "library": "var_list.r", + "varRefreshCmd": "cat(var_dic_list()) " + } + }, + "types_to_exclude": [ + "module", + "function", + "builtin_function_or_method", + "instance", + "_Feature" + ], + "window_display": false + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} From e2df4649b5402bcdba902c548cc8cb43ec987d05 Mon Sep 17 00:00:00 2001 From: Kevin Dunn Date: Wed, 10 Nov 2021 11:42:07 +0000 Subject: [PATCH 134/134] Add the part on subplots and smoothing. --- Module-16-interactive-plotly.ipynb | 258 ++++++++++++++++++++++++----- 1 file changed, 217 insertions(+), 41 deletions(-) diff --git a/Module-16-interactive-plotly.ipynb b/Module-16-interactive-plotly.ipynb index 609ec96..dd8c37e 100644 --- a/Module-16-interactive-plotly.ipynb +++ b/Module-16-interactive-plotly.ipynb @@ -7,7 +7,7 @@ }, "source": [ "

    Table of Contents

    \n", - "" + "" ] }, { @@ -97,8 +97,18 @@ "import pandas as pd\n", "import numpy as np\n", "import seaborn as sns\n", + "from scipy.interpolate import UnivariateSpline\n", + "from scipy.signal import savgol_filter\n", "import plotly.graph_objects as go\n", - "import plotly.io as pio\n", + "import plotly.io as pio" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ "pio.renderers.default = \"iframe\" # \"notebook\" # jupyterlab\n", "pd.options.plotting.backend = \"plotly\"" ] @@ -643,7 +653,7 @@ "\n", "# Note that the Outcome column is an object. We can explicitly convert it to a categorical variable:\n", "df[\"Outcome\"] = df[\"Outcome\"].astype('category')\n", - "df.info()" + "display(df.info())" ] }, { @@ -652,7 +662,7 @@ "source": [ "## Single level `groupby`\n", "\n", - "Recall the `groupby` function from [two modules ago](https://yint.org/pybasic14), which we applied as follows:" + "Recall the `groupby` function from [two modules ago](https://yint.org/pybasic14), which we applied as follows in a loop to create a plot for each group:" ] }, { @@ -673,22 +683,26 @@ " time.sleep(0.5)" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Two new concepts: cutting and subplots\n", + "\n", + "Sometimes you want the plots shown in a matrix, or a grid. This is called a subplot. You can read the Plotly documentation about [subplots](https://plotly.com/python/subplots/) on their site.\n", + "\n", + "Sometimes you want to split your (continuous) data into smaller groups (or categories). This can be done with the [cut function](https://pandas.pydata.org/docs/reference/api/pandas.cut.html) in Pandas." + ] + }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ - "# Or another combination of the variables plotted:\n", - "for outcome, subset in df.groupby(\"Outcome\"):\n", - " fig=subset.plot.scatter(x='TMA', y=\"TGA\")\n", - " fig.update_layout(\n", - " xaxis_range=[45, 65], \n", - " yaxis_range=[550, 770],\n", - " width=500,\n", - " )\n", - " fig.show()\n", - " time.sleep(0.5) " + "# Cut the \"TMA\" variable. These values lie between 46.2 and 68.0, so let's create 3 bins, with 4 cuts at [40, 50, 55, 100]\n", + "display(pd.cut(df['TMA'], bins=[40, 50, 55, 100]))\n", + "df['TMA categories'] = pd.cut(df['TMA'], bins=[40, 50, 55, 100])" ] }, { @@ -697,22 +711,52 @@ "metadata": {}, "outputs": [], "source": [ - "# Or using groupby for summaries\n", - "display(df.groupby(\"Outcome\").mean())\n", - "display(df.groupby(\"Outcome\").std())\n", + "print(f'Using groupby you can loop; there would be {df.groupby(\"TMA categories\").ngroups} groups. But we will use subplots instead ...')\n", "\n", - "# Or, call all the summaries together. We will explain the .agg function below.\n", - "df.groupby(\"Outcome\").agg([\"mean\", \"std\"]).round(2)" + "# You can use this code below as a general recipe for creating subplots.\n", + "nrows = 2\n", + "ncols = 2\n", + "from plotly.subplots import make_subplots\n", + "fig = make_subplots(\n", + " rows=nrows, \n", + " cols=ncols, \n", + " shared_xaxes=False,\n", + " shared_yaxes=False,\n", + " vertical_spacing=0.15,\n", + " horizontal_spacing=0.10,\n", + " subplot_titles=[str(val) for val in df.groupby(\"TMA categories\").groups.keys()],\n", + " start_cell=\"top-left\") # \"bottom-left\"\n", + "\n", + "# In a loop, create each subplot \n", + "row = col = 1\n", + "for category, subset in df.groupby(\"TMA categories\"):\n", + " fig.add_trace(\n", + " go.Scatter(\n", + " x=subset['TMA'], \n", + " y=subset['Size15'],\n", + " mode=\"markers\",\n", + " name=str(category),\n", + " showlegend=True,\n", + " ),\n", + " row=row, \n", + " col=col, \n", + " )\n", + " \n", + " # Bump up the counters for the next plot ...\n", + " col += 1\n", + " if col > ncols:\n", + " col = 1\n", + " row += 1\n", + "\n", + "fig.update_layout(width=1000)\n", + "fig.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## Multilevel groupby\n", - "\n", - "We can also use `groupby` for multiple levels. Imagine we have a second categorical variable, or some other variable with few discrete values:\n", - "\n" + "## Extending groupby to show multiple outputs" ] }, { @@ -721,21 +765,22 @@ "metadata": {}, "outputs": [], "source": [ - "# First, create a new categorical variable, using a list comprehension\n", - "print( [item for item in df[\"Size5\"]] )\n", - "print( [\"Small\" if item <= 13 else \"Large\" for item in df[\"Size5\"]] )" + "# Or using groupby for a single summary\n", + "display(df.groupby(\"Outcome\").mean())\n", + "display(df.groupby(\"Outcome\").std())\n", + "\n", + "# Or, call all the summaries together. We will explain the .agg function below.\n", + "df.groupby(\"Outcome\").agg([\"mean\", \"std\"]).round(2)" ] }, { - "cell_type": "code", - "execution_count": null, + "cell_type": "markdown", "metadata": {}, - "outputs": [], "source": [ - "# Using what you learned above, you can see how we can quickly create a new column, \n", - "# based on the values in another column.\n", - "df[\"Size\"] = [\"Small\" if item <= 13 else \"Large\" for item in df[\"Size5\"]]\n", - "display(df.head())" + "## Multilevel groupby\n", + "\n", + "We can also use `groupby` for multiple levels. Imagine we have a second categorical variable, or some other variable with few discrete values:\n", + "\n" ] }, { @@ -744,9 +789,9 @@ "metadata": {}, "outputs": [], "source": [ - "# Now you can use a multi-level groupby:\n", - "display(df.groupby([\"Outcome\", \"Size\", ]).count()) # <-- redundant, use the next one instead\n", - "display(df.groupby([\"Outcome\", \"Size\", ]).size())" + "# Using what you learned above, you can see how we can quickly create a new column with .cut(...)\n", + "df[\"Size\"] = pd.cut(df['Size5'], bins=[0, 13, np.inf]) # --> intentionally left out for now: labels=[\"Small\", \"Large\"]\n", + "df" ] }, { @@ -755,7 +800,9 @@ "metadata": {}, "outputs": [], "source": [ - "display(df.groupby([\"Outcome\", \"Size\", ]).mean())" + "# Now you can use a multi-level groupby:\n", + "display(df.groupby([\"Outcome\", \"Size\", ]).count()) # <-- redundant, use the next one instead\n", + "display(df.groupby([\"Outcome\", \"Size\", ]).size())" ] }, { @@ -785,7 +832,7 @@ "metadata": {}, "outputs": [], "source": [ - "# Now extend the input to the .agg function, with 2 aggregations:\n", + "# Now extend it: we have 2 groups (vertical index axis) and 2 .agg functions (horizontal column axis):\n", "display( df.groupby([\"Outcome\", \"Size\"]).agg([\"mean\", \"std\"]) )" ] }, @@ -922,6 +969,132 @@ ")" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Smoothing a curve\n", + "\n", + "We often want a smoother version of the raw data. One option to use the [Savitzky-Golay filter](https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.savgol_filter.html); though there are a number of other options." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "seq = [1.87, 1.88, 1.89, 1.9, 1.92, 1.96, 2.0, 2.1, 2.12, 2.27, 2.29, 2.28, 2.44, 2.48, 2.52, 2.53, 2.54, 2.55, 2.56, 2.57]\n", + "absorbances = pd.Series(seq)\n", + "time_points = [ 81 + i*9 for i in range(len(seq)) ]\n", + "df = pd.DataFrame(dict(absorbances=absorbances, time_points=time_points))\n", + "fig=df.plot.line(x=\"time_points\", y=\"absorbances\", title=\"Raw data\")\n", + "fig.add_hline(y=2.25, line_color=\"purple\", line_dash=\"dash\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from scipy.interpolate import UnivariateSpline\n", + "from scipy.signal import savgol_filter\n", + "\n", + "filtered_series = savgol_filter(\n", + " x=seq, \n", + " window_length=5, \n", + " polyorder=3, \n", + ") \n", + "\n", + "# Create a data frame of this and plot it:\n", + "df_smoothed = pd.DataFrame(\n", + " dict(\n", + " time_points=time_points, \n", + " filtered_series=filtered_series \n", + " )\n", + ")\n", + "\n", + "# Plot the raw data and smoothed data:\n", + "fig = go.Figure()\n", + "fig.add_trace(\n", + " go.Scatter(\n", + " x= df['time_points'], \n", + " y= df[\"absorbances\"],\n", + " mode=\"markers\",\n", + " name=\"Raw data\",\n", + " )\n", + ")\n", + "fig.add_trace(\n", + " go.Scatter(\n", + " x=df_smoothed['time_points'], \n", + " y=df_smoothed[\"filtered_series\"],\n", + " mode=\"lines\",\n", + " name=\"Smoothed fit\",\n", + " )\n", + ")\n", + "fig.add_hline(y=2.25, line_color=\"purple\", line_dash=\"dash\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Note! here we flip x and y around: we want to know what is the expected\n", + "# values of time, given the absorbance value of 2.25.\n", + "spline = UnivariateSpline(\n", + " x = df_smoothed[\"filtered_series\"], \n", + " y = df_smoothed['time_points'], \n", + " #bc_type='not-a-knot',\n", + " #extrapolate=None\n", + ")\n", + "\n", + "# Interpolate a new x-axis (absorbance axis) on a very fine scale, between 2.1 and 2.4\n", + "interpolated_abs = np.arange(2.1, 2.4, 0.01)\n", + "predicted_time = spline(interpolated_abs)\n", + "\n", + "# Create a data frame of this and plot it:\n", + "df_interpolated = pd.DataFrame(\n", + " dict(\n", + " predicted_time=predicted_time, \n", + " interpolated_abs=interpolated_abs \n", + " )\n", + ")\n", + "# At what timepoint does the line cross 2.25? Answer is shown in the table: 166.357 seconds\n", + "display(df_interpolated.iloc[(df_interpolated[\"interpolated_abs\"] - 2.25).abs().argmin()])\n", + "\n", + "# Plot the raw data and smoothed data:\n", + "fig = go.Figure()\n", + "fig.add_trace(\n", + " go.Scatter(\n", + " x= df['time_points'], \n", + " y= df[\"absorbances\"],\n", + " mode=\"markers\",\n", + " name=\"Raw data\",\n", + " )\n", + ")\n", + "fig.add_trace(\n", + " go.Scatter(\n", + " x=df_smoothed['time_points'], \n", + " y=df_smoothed[\"filtered_series\"],\n", + " mode=\"lines\",\n", + " name=\"Smoothed fit\",\n", + " )\n", + ")\n", + "fig.add_trace(\n", + " go.Scatter(\n", + " x= df_interpolated['predicted_time'], \n", + " y= df_interpolated[\"interpolated_abs\"],\n", + " mode=\"lines\",\n", + " name=\"Interpolated spline fit\",\n", + " )\n", + ")\n", + "fig.add_hline(y=2.25, line_color=\"purple\", line_dash=\"dash\")\n", + "fig.show()" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -950,7 +1123,7 @@ "metadata": { "hide_input": false, "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, @@ -964,7 +1137,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.10" + "version": "3.9.6" }, "toc": { "base_numbering": "1", @@ -979,11 +1152,14 @@ "height": "calc(100% - 180px)", "left": "10px", "top": "150px", - "width": "376.22283935546875px" + "width": "376.219px" }, "toc_section_display": true, "toc_window_display": true }, + "toc-autonumbering": true, + "toc-showcode": false, + "toc-showtags": false, "varInspector": { "cols": { "lenName": 16,